

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

DEFINITION AND TERMINOLGY

Course Title	THEORY (OF COMPU	FATION		
Course Code	AITC04				
Program	B.Tech				
Semester	IV	IT			
Course Type	Core				
Regulation	IARE - R20				
Theory Practic		tical			
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Course Coordinator	Dr. U Sivaji, Assistant Professor				

COURSE OBJECTIVES:

The students will try to learn:

I	The fundamental knowledge of automata theory which is used to solve computational problems.
II	TThe reorganization of context free language for processing infinite information using push down automata
III	The computer based algorithms with the help of an abstract machine to solve recursively Enumerable problems.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Make use of deterministic finite automata and non deterministic	Apply
	finite automata for modeling lexical analysis and text editors.	
CO 2	Extend regular expressions and regular grammars for parsing and	Understand
	designing programming languages.	
CO 3	Illusrate the pumping lemma on regular and context free	Understand
	languages for perform negative test .	
CO 4	Demonstarte context free grammars, normal forms for generating	Understand
	patterns of strings and minimize the ambiguity in parsing the given	
	strings.	

CO 5	Construct push down automata for context free languages for	Apply
	developing parsing phase of a compiler.	
CO 6	Apply Turing machines and Linear bounded automata for	Apply
	recognizing the languages, complex problems.	

DEFINITION AND TERMINOLOGY:

S.No	DEFINITION	CO's
	MODULE I	
	FINITE AUTOMATA	
1	Define Automata? It is an abstract model of digital computer. It has a mechanism for reading input. Automata enable the scientists to understand how	CO 1
	machines compute the functions and solve problems.	
2	Define Symbol? Symbol is the smallest building block, which can be any alphabet, letter or any picture. Ex: a, b, 0,1	CO 1
3	Define Alphabet with example Alphabet is set of symbols, which are always finite. It is denoted by \sum . Ex: $\{0, 1\}, \{a, b\}, \{a, b, c\}$	CO 1
4	What is String? Mention an example String is a finite sequence of symbols from 1 error3 warnings some alphabet. String is generally denoted as w. Ex: String over $\sum = \{a,b\}$ is ababa	CO 1
5	What is length of string? The number of symbols in the given string is called length of the string. length of a string is denoted as $ w $. Example: $ abb = 3$ over $\sum = \{a,b\}$.	CO 1
6	What is substring of a string? Any sequence of 0 or more consecutive symbols of the given string over an alphabets is called substring. Example: For string abb the substrings are ϵ , a, ab, abb.	CO 1
7	Define Null String? Empty string is the string with zero occurrences of symbol, represented as \in .	CO 1
8	What is Prefix of a String? A group of leading symbols of string is called as prefix. Ex: Prefixes of sting abc are ϵ ,a, ab, abc.	CO 1
9	What is Suffix of a String? A group of trailing symbols of string is called as suffix. Ex: Suffixes of sting abc are ϵ , a, bc, abc	CO 1

10	What is proper Prefix of a String?	CO 1
	A group of leading symbols other than string is called as proper	CO 1
	prefix. Ex: Proper Prefixes of sting abc are ϵ , a, ab	
11	What is proper Suffix of a String?	CO 1
	A group of trailing symbols other than the string is called as proper	CO 1
	suffix. Ex: Proper Suffixes of sting abc are ϵ , a, bc.	
12	What is power of alphabet?	GO 1
	Consider $\Sigma = \{0.1\}$ the following are the powers	CO 1
	$1.\sum_{0}^{0} = \{\epsilon\}$ $2.\sum_{1}^{1} = \{0,1\}$ $3.\sum_{0}^{2} = \{00,01,10,11\}$ $4.\sum_{0}^{3} = \{000,001,010,011,100,101,110,111\}$	
	$2.\sum_{1}^{1} = \{0,1\}$	
	$3.\overline{\sum}^2 = \{00, 01, 10, 11\}$	
	$4.\overline{\sum}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$	
13	What is kleenclosure?	00.1
	The set of all strings over on alphabet. It is denoted as	CO 1
	$\sum^* = \sum^0 \cup \sum^1 \cup \sum^2 \cup \sum^3 \cup \dots$	
14	What is positive closure?	
	The set of all strings except ϵ over on alphabet. It is denoted as	CO 1
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	
15	Define Language?	
10	A language is a set of strings, chosen form some \sum^* or A language is	CO 1
	a subset of \sum^* . A language which can be formed over \sum can be	
	Finite or Infinite. Language that contains strings over	
	$\sum = \{a, b\} are\{\epsilon, a, b, aa, ab, \dots\}$	
16	What is grammar?	CO 1
10	It contains set of rules to generate the strings of a language.	
17	Define formal languages?	
11	Formal language is set of all strings where each string restricted over	CO 1
	particular forms of strings. String with given input.	
10		
18	What are the types of formal languages?	CO 1
	There are four types	
	1.Regular languages	
	2.Context Free languages 3.Context Sensitive languages	
	4.Recursively Enumerable languages	
10		
19	What are the types of automation?	CO 1
	There are four types:	
	1.Finite Automation	
	2.Push Down Automation	
	3.Linear Bound Automation 4 Turing Machine	
00	4.Turing Machine	
20	What is finite automata?	CO 1
	An automation the accepts regular language is called finite automata.	

There are the two types: 1.Deterministic Finite Automata (DFA) 2.Non- Deterministic Finite Automata? An automata the accepts context free language is called Push Down automata? There are the two types: 1.Deterministic Push Down Automata (DPDA) 2.Non- Deterministic Push Down Automata (NPDA) 2.Non- Deterministic Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (NLBA) 2.Non- Deterministic Linear Bound South on the current state. It does not depend on the current input. 2.27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 2.28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 2.29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. 30 What is a regular expression? A regular expression is a string that describes the whole set of strings according to certain syntax rules.	21	What are the types of finite automata?	CO 1
2.Non- Deterministic Finite Automata (NDFA) Both are equivalent in power. What is Push Down automata? An automata the accepts context free language is called Push Down automata. What are the types of Push Down automata? There are the two types: 1.Deterministic Push Down Automata (NPDA) What is Linear Bound automata? An automata the accepts context sensitive language is called Linear Bound automata. What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. Define Mealy Machine changes its output on the basis of its present state and current input. Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. Define Finite Automata? It is the starting state from which reading of input symbols from the string starts. What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES What is a regular expression? A regular expression is a string that describes the whole set of strings		There are the two types:	001
Both are equivalent in power. What is Push Down automata? An automata the accepts context free language is called Push Down automata. What are the types of Push Down automata? There are the two types: 1.Deterministic Push Down Automata (DPDA) 2.Non- Deterministic Push Down Automata (NPDA) What is Linear Bound automata? An automata the accepts context sensitive language is called Linear Bound automata. What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. Pefine Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. Define Finite Automata? It is the starting state from which reading of input symbols from the string starts. What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES What is a regular expression: A regular expression is a string that describes the whole set of strings		` '	
CO 1 An automata the accepts context free language is called Push Down automata.		` '	
An automata the accepts context free language is called Push Down automata. What are the types of Push Down automata? There are the two types: 1.Deterministic Push Down Automata (DPDA) 2.Non- Deterministic Push Down Automata (NPDA) What is Linear Bound automata? An automata the accepts context sensitive language is called Linear Bound automata. What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. Define Finite Automata? It is the starting state from which reading of input symbols from the string starts. What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES A regular expression is a string that describes the whole set of strings			
automata. 23 What are the types of Push Down automata? There are the two types: 1.Deterministic Push Down Automata (DPDA) 2.Non- Deterministic Push Down Automata (NPDA) 24 What is Linear Bound automata? An automata the accepts context sensitive language is called Linear Bound automata. 25 What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine? A Moore Machine on the current state. It does not depend on the current input. 27 Define Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	22		CO 1
There are the two types: 1.Deterministic Push Down Automata (DPDA) 2.Non- Deterministic Push Down Automata (NPDA) 24			
There are the two types: 1.Deterministic Push Down Automata (DPDA) 2.Non- Deterministic Push Down Automata (NPDA) 24 What is Linear Bound automata? An automata the accepts context sensitive language is called Linear Bound automata. 25 What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	23	What are the types of Push Down automata?	CO 5
2.Non- Deterministic Push Down Automata (NPDA) 24 What is Linear Bound automata? An automata the accepts context sensitive language is called Linear Bound automata. 25 What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		There are the two types:	00 3
24 What is Linear Bound automata? An automata the accepts context sensitive language is called Linear Bound automata. 25 What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES CO 2		1.Deterministic Push Down Automata (DPDA)	
An automata the accepts context sensitive language is called Linear Bound automata. 25 What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		2.Non- Deterministic Push Down Automata (NPDA)	
An automata the accepts context sensitive language is called Linear Bound automata. 25 What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	24	What is Linear Bound automata?	CO 5
25 What are the types of Linear Bound automata? There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		An automata the accepts context sensitive language is called Linear	00 3
There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		Bound automata.	
There are the two types: 1.Deterministic Linear Bound Automata (DLBA) 2.Non- Deterministic Linear Bound Automata (NLBA) 26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	25	What are the types of Linear Bound automata?	CO 5
2.Non- Deterministic Linear Bound Automata (NLBA) What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		There are the two types:	CO 3
26 What is Moore Machine? A Moore Machine's output depends only on the current state. It does not depend on the current input. . 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		1.Deterministic Linear Bound Automata (DLBA)	
A Moore Machine's output depends only on the current state. It does not depend on the current input. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		2.Non- Deterministic Linear Bound Automata (NLBA)	
A Moore Machine's output depends only on the current state. It does not depend on the current input. . 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	26	What is Moore Machine?	CO 5
. 27 Define Mealy Machine? A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		A Moore Machine's output depends only on the current state. It	00 0
A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		does not depend on the current input.	
A Mealy Machine changes its output on the basis of its present state and current input. 28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	. 27	Define Mealy Machine?	CO 6
28 Define Finite Automata? A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. CO 1 MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		A Mealy Machine changes its output on the basis of its present state	000
A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. CO 1 MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		and current input.	
A finite automata consists of finite set of states and transitions from state to state occur on input symbols chosen from an alphabet. 29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. CO 1 REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	28	Define Finite Automata?	CO 6
29 What is Initial state? It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. CO 1 REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		A finite automata consists of finite set of states and transitions from	000
It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. **MODULE II** **REGULAR LANGUAGES** 1 What is a regular expression? A regular expression is a string that describes the whole set of strings* **CO 1** **CO 1** **CO 2** **Tender of the starting of input symbols from the string starts. **CO 1** **CO 1** **Tender of the starting state of strings* **CO 1** **Tender of the starting state of strings* **CO 2** **Tender of the starting state of strings* **CO 2** **Tender of the starting state of strings* **Tender of the starting starting state of strings* **Tender of the starting state of strings* **Tender of the starting state of starting starting start		state to state occur on input symbols chosen from an alphabet.	
It is the starting state from which reading of input symbols from the string starts. 30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. CO 1 REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	29	What is Initial state?	CO 1
30 What is Final state? It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		It is the starting state from which reading of input symbols from the	001
It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		string starts.	
It is the last state reached by a accepted state means accepted string should reach final state. MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings	30		CO 1
MODULE II REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		It is the last state reached by a accepted state means accepted string	001
REGULAR LANGUAGES 1 What is a regular expression? A regular expression is a string that describes the whole set of strings		should reach final state.	
1 What is a regular expression? A regular expression is a string that describes the whole set of strings		MODULE II	
A regular expression is a string that describes the whole set of strings		REGULAR LANGUAGES	
A regular expression is a string that describes the whole set of strings	1	What is a regular expression?	CO 2
according to certain syntax rules.		A regular expression is a string that describes the whole set of strings	00 2
		according to certain syntax rules.	

2	Define acceptor?	CO 2
	An automaton that computes a Boolean function is called an acceptor. All the states of an acceptor is either accepting or rejecting the inputs given to it.	002
3	What is a regular language?	00.0
	A language accepted by the regular expression is called as Regular Language.	CO 2
4	What is a regular set?	CO 2
	A regular language which is accepted by finite automata is called regular set.	
5	What is Kleen closure?	00.0
	Kleen closure is defined as * that is 0 or more occurrence.	CO 2
6	What is positive closure?	GO 2
	positive closure is defined as + that is 1 or more occurrence.	CO 2
7	Identify the equivalent identity rule for RR*.	
	The equivalent identity rule for RR* is R*R	CO 2
8	Identify the equivalent identity rule for (R*)*	CO 5
	The equivalent identity rule for $(R^*)^*$ is R^*	
9	Identify the equivalent identity rule for R*R*	CO 5
J	The equivalent identity rule for R*R*is R*.	
10	Identify the equivalent identity rule for R+R	CO 5
	The equivalent identity rule for R+R is R(Idempotent law)	
11	Identify the equivalent identity rule for $R\epsilon$ or ϵR	CO 5
	The equivalent identity rule for $R\epsilon$ or ϵR is R	
12	Identify the equivalent identity rule for ϕ L or L ϕ	GO 1
	The equivalent identity rule for ϕ L or L ϕ is ϕ	CO 4
13	Identify the equivalent identity rule for $\epsilon + RR^*$	
	The equivalent identity rule for $\epsilon + RR^*$ is R^*	CO 5
14	Identify the equivalent identity rule for (PQ)*P	00.4
	The equivalent identity rule for (PQ)*P is P(QP)*	CO 4
15	What are the applications of pumping lemma?	00.5
	Pumping lemma is used to check if a language is regular or not.	CO 5
	(i) Assume that the language(L) is regular.	
	(ii) Select a constant 'n'.	
	(iii) Select a string(z) in L, such that $ z > n$.	
	(iv) Splitthewordzintou, vandwsuchthat $ uv \le n$ and $ v \ge 1$.	
	$(v) \ You achieve a contradiction to pumping lemma that there exists an `i'$	
16	What is Arden's Theorem?	CO 6
	Arden's theorem helps in checking the equivalence of two regular	
	expressions. The regular expression R is given as: R=Q+RP Which has a unique solution as R=QP*.	

17	What is the closure property of regular sets?	CO 5	
	The regular sets are closed under union, concatenation and Kleene	000	
	closure.		
	r1Ur2 = r1 + r2		
	r1.r2= r1r2		
	(r)*=r*		
	The class of regular sets are closed under complementation,		
	substitution, homomorphism and inverse homomorphism.		
18	Identify the RE for string length exactly 2?	CO 4	
	The regular expression for strings of length exactly 2 is (a+b)(a+b)		
19	Identify the RE for string length exactly 3	CO 4	
	The regular expression for strings of length exactly 3 is		
	(a+b)(a+b)(a+b)		
20	Identify the RE for string length atleast 2	CO 5	
	The regular expression for strings of length exactly 2 is	CO 5	
	(a+b)(a+b)(a+b)		
21	Identify the RE for string length atmost 2	CO 2	
	The regular expression for strings of length exactly 2 is		
	$(a+b+\epsilon)(a+b+\epsilon)$		
22	Identify the regular set for given regular expression (0 +	CO 2	
	10*)		
	Regular set is $L = \{ 0, 1, 10, 100, 1000, 10000, \}$		
23	Identify the regular set for given regular expression (0*10*)	CO 2	
	Regular set is $L = \{1, 01, 10, 010, 0010, \dots\}$		
24	Identify the regular set for given regular expression		
	$(0+\epsilon)(1+\epsilon)$	CO 2	
	Regular set is $(0 + \epsilon)(1 + \epsilon)$		
25	Identify the regular set for given regular expression (11)*		
20	Set consisting of even number of 1's including empty string, So L= {	$CO\ 2$	
	ϵ , 11, 1111, 111111,		
26	Identify the regular set for given regular expression		
20	(aa)*(bb)*b	CO 2	
	Set of strings consisting of even number of a's followed by odd		
	number of b's, so $L = \{b, aab, aabbb, aabbbb, aaaab, aaaabbb, aabbbb, aaaab, aaabbb,$		
	$\begin{bmatrix} 10111061 & 01 & 05 \\ 0. & 102$		
27	Identify the regular set for given regular expression (aa +		
41	ab + ba + bb)*	CO 2	
	String of a's and b's of even length can be obtained by concatenating		
	any combination of the strings aa, ab, ba and bb including null, so L		
	= {aa, ab, ba, bb, aaab, aaba,}		

28	Identify the regular set for given regular expression (a+b)*abb	CO 4
	Set of strings of a's and b's ending with the string abb. So $L = \{abb, aabb, babb, aaabb, ababb, \dots \}$	
29	Identify the RE for strings which begin or end with either 00 or 11.	CO 5
	The regular expression for begins and ends with 00 or 11 is= $[(00+11)(0+1)^*] + [(0+1)^* (00+11)]$	
30	Identify the RE for strings with at least two c's over the set $\sum = \{c,b\}$	CO 4
	The regular expression for strings with atleast two c's: (b+c)* c (b+c)* c (b+c)*	
	MODULE III	
	CONTEXT FREE GRAMMARS GENERATION	
1	What are the applications of Context free languages?	GO 4
	Context free languages are used in:	CO 6
	a)Defining programming languages.	
	b)Formalizing the notion of parsing.	
	c)Translation of programming languages.	
	d)String processing applications.	
2	Define a context free grammar	CO 4
	A context free grammar (CFG) is denoted as G=(V,T,P,S) where	CO 4
	V = Finite non-empty set of variables / non-terminal symbols	
	T = Finite set of terminal symbols	
	P = Finite non-empty set of production rules of the form A $\rightarrow \alpha$	
	where $A \in V$ and $\alpha \in (V \cup T)^*$	
	S = Start symbol	
3	Define left-most Derivation?	CO 6
	In the left most derivation, the input is scanned and replaced with	000
	the production rule from left to right. So in left most derivatives read	
	the input string from left to right.	
4	What is right-most Derivation?	CO 6
	In the right most derivation, the input is scanned and replaced with	
	the production rule from right to left. So in right most derivatives	
	read the input string from right to left.	
5	What is CFL?	CO 6
	L is a context free language (CFL) if it is L(G) for some CFG G.	
6	What is Derivation?	CO 6
	Synthesized attributes and inherited attributes.	
7	Define parse tree?	CO 6
	Parse tree is the graphical representation of symbol. The symbol can	
	be terminal or non-terminal. In parsing, the string is derived using	
	the start symbol. The root of the parse tree is that start symbol.	

8	Define subtree?	CO 4
	A subtree of a derivation tree is a particular vertex of the tree together with all its descendants ,the edges connecting them and their labels. The label of the root may not be the start symbol of the grammar.	001
9	If $S \rightarrow aSb \mid aAb$, $A \rightarrow bAa$, $A \rightarrow ba$. Find out the CFL $S \rightarrow aAb \implies abab$ $S \rightarrow aSb \implies a \ aAb \ b \implies a \ a \ ba \ b \ (sub \ S \rightarrow aAb) \ S \rightarrow aSb \implies a \ aSb$	CO 6
	$b \implies a \text{ a Ab } b \implies a \text{ a ba b b (sub } 5 \rightarrow a \text{Ab)}) 5 \rightarrow a \text{ b b } b \implies a \text{ a ba b b b Thus } L = \{anbmambn, where } n,m \ge 1\}$	
10	Define ambiguous grammar? A grammar is said to be ambiguous if it has more than one derivation trees for a sentence or in other words if it has more than one leftmost derivation or more than one rightmost derivation	CO 4
11	Write the three ways to simplify a context free grammar?	CO 4
	a)By removing the useless symbols from the set of productions. b)By eliminating the empty productions. c)By eliminating the unit productions.	
12	List the Intermediate forms of source programsWrite about normal form? By reducing the grammar, although the grammar gets minimized but does not get standardized. This is because the RHS of productions	CO 4
	have no specific format. In order to standardize the given grammar, we normalize it.	
13	Differentiate sentences and sentential forms A sentence is a string of terminal symbols. A sentential form is a string containing a mix of variables and terminal symbols or all variables. This is an intermediate form in doing a derivation.	CO 4
14	Define Chomsky normal form? A grammar is said to be Chomsky Normal Form (CNF), if all its productions must derive either two non-terminals or a single terminal	CO 4
15	State the pumping lemma for CFLs. Let L be any CFL. Then there is a constant n, depending only on L, such that if z is in L and $ z \ge n$, then z=uvwxy such that :	CO 4
	$ \begin{array}{l} (i) \mid vx \mid \geq 1 \\ (ii) \mid vwx \mid \leq n \text{ and} \\ (iii) \text{ for all } i \geq 0 \text{ uviwxiy is in L.} \\ \end{array} $	
16	List the types of normal forms? There are two types of normal form a)Chomsky Normal Form (CNF) b)Greibach Normal Form (GNF).	CO 4

17	What are the properties of Context free languages?	CO 4
	a)Context free languages are closed under union	004
	b) Context free languages are closed under concatenation	
	c) Context free languages are closed under kleen closure	
	d) Context free languages are closed under intersection	
	e) Context free languages are closed under complement	
18	Define syntax tree?	CO 4
	Concrete syntax tree is an ordered, rooted tree that represents the	001
	syntactic structure of a string according to some context-free	
	grammar.	
19	List the applications of CFG?	CO 4
	a)For defining programming languages	004
	b) For parsing the program by constructing syntax tree	
	c)For translation of programming languages	
	d)For describing arithmetic expression	
	e)For construction of compilers	
20	What are decisions to be considered during derivation?	CO 4
	During parsing two decisions are taken. These are as follows:	
	a) Decide the non-terminal which is to be replaced.	
	b) Decide the production rule by which the non-terminal will be	
	replaced.	
21	List the properties of Derivation tree?	CO 4
	a)The root node is always a node indicating start symbol	CO 4
	b)The derivation is read from left to right	
	c)The leaf nodes always terminals nodes	
	d)The interior nodes are always non terminal nodes	
22	What is nonterminal?	CO 4
	Nonterminal symbols are those symbols which can be replaced. They	CO 4
	may also be called simply syntactic variables. A formal grammar	
	includes a start symbol, a designated member of the set of	
	non-terminals from which all the strings in the language may be	
	derived by successive applications of the production rules.	
23	Define Terminal?	CO 4
	Terminal symbols are literal symbols which may appear in the	CO 4
	outputs of the production rules of a formal grammar and which	
	cannot be changed using the rules of the grammar	
24	List different types of derivations?	CO 4
	There are two types as follows:	004
	a)Left-most Derivation	
	b)Right-most Derivation	
25	What is root vertex?	CO 4
	Root vertex is always called as Non-terminal. It must be labeled by	004
	start symbol	

26	Define vertex and leaves in Derivation tree?	CO 4
	Vertex are labeled by a non terminal symbol Leaves are labeled by a terminal symbol or epsilon(empty symbol)	
27	List the approaches for representing Derivation tree?	CO 4
	There are two approaches	CO 4
	a)Top-down approach	
	b)Bottom-up approach	
28	Define Top-down approach?	CO 2
	This approach starts with the starting symbol S. and moves down	CO 2
	from root node to leaf nodes using productions	
29	Define Bottom-up approach?	CO 2
	This approach start from leaf nodes .and it proceeds upwards to the	CO 2
	root which is the starting symbol S	
30	What is partial Derivation tree?	CO 4
	Apartial derivation tree is a sub tree of a derivation tree such that all	CO 4
	of its children are in the subtree or none of them are in the subtree	
	MODULE IV	
	PUSHDOWN AUTOMATA	
1	What is the PDA? why it is developed?	~~ -
	PDA is a tool to implement CFLs .The FA has no memory to	CO 5
	remember the count of input symbols or to match the relationship	
	between the different types of symbols occurring in the string, that's	
	why PDA is developed	
2	Define Push Down Automata?	
	A pushdown automaton is a way to implement a context-free	CO 5
	grammar in a similar way we design DFA for a regular grammar. A	
	DFA can remember a finite amount of information, but a PDA can	
	remember an infinite amount of information. Basically a pushdown	
	automaton is	
	"Finite state machine" + "a stack"	
	A pushdown automaton has three components	
	• an input tape,	
	• a control unit, and	
	 a control unit, and a stack with infinite size. 	
3	 a control unit, and a stack with infinite size. How to represent the initial store of PDA?	CO 5
3	 a control unit, and a stack with infinite size. 	CO 5
3	 a control unit, and a stack with infinite size. How to represent the initial store of PDA? A Special pushdown symbol called the initial symbol on push down	
	 a control unit, and a stack with infinite size. How to represent the initial store of PDA? A Special pushdown symbol called the initial symbol on push down store represented by Z0	CO 5
	 a control unit, and a stack with infinite size. How to represent the initial store of PDA? A Special pushdown symbol called the initial symbol on push down store represented by Z0 How to represent the PDA 	

6	Name the 7 tuples of PDA	CO 5
	Q= Set Of All States	000
	$\Gamma = \text{stack symbols}$	
	\sum = input alphabet	
	$\delta = \text{transition function}$	
	$q_0 = \text{start state}$	
	$Z_0 = \text{Initial stack top symbol}$	
	F = Final/accepting states	
7	How many operations are performed on the stack?	CO 5
	A stack does two operations	00 5
	Push —a new symbol is added at the top.	
	Pop —the top symbol is read and removed.	
8	How to represent the empty stack initially?	00 F
	Initially we put a special symbol\$into the empty stack.	CO 5
9	Define Deterministic Context-free Language?	
	Deterministic CFL are subset of CFL which can be recognized by	CO 5
	Deterministic PDA. Deterministic PDA has only one move from a	
	given state and input symbol.	
10	Show the notation of the empty string in PDA	
10		CO 5
11	If $ S = 0$, it is called an empty string. (Denoted by λ or ϵ) Show the notation of the input state in PDA?	
11	→ q	CO 5
12	What is meant by empty stack acceptability	CO 5
	A PDA accepts a string when, after reading the entire string, the	000
	PDA has emptied its stack. For a PDA $(Q, \sum, S, \delta, q_0, I, F)$ the	
	language accepted by the empty stack is $L(PDA)=\{w \ (q_0,w,I)$	
	$\vdash^{\star} (q, \epsilon, \epsilon), q \in Q $	
13	Show the notation of the output state in PDA?	CO 5
	qf	CO 5
14	Define acceptance of PDA by Final State	00.5
	In final state acceptability, a PDA accepts a string when, after	CO 5
	reading the entire string, the PDA is in a final state. From the	
	starting state, we can make moves that end up in a final state with	
	any stack values. The stack values are irrelevant as long as we end up	
	in a final state. For a PDA $(Q, \sum, S, \delta, q_0, I, F)$ the language	
	accepted by the set of final states F is $L(PDA) = \{w (q_0, w, I)\}$	
	$\vdash^* (q, \epsilon, x), q \in F$ } for any input stack string x.	

15	Define acceptance of PDA by empty Stack?	CO 5
	In final state acceptability, a PDA accepts a string when, after reading the entire string, the PDA is in a final state. For a PDA	CO 3
	($Q, \sum, S, \delta, q_0, I, F$) the language accepted by the empty stack is	
	$L(PDA) = \{ w (q_0, w, I) \vdash^{\star} (q, \epsilon, \epsilon), q \in Q \}$	
16	Show the notation of the transition symbol between two	00.5
	states in PDA?	CO 5
	\longrightarrow	
17	Why input tape is used in PDA?	CO 5
	Input tape is a buffer ,which is divided into cells and each cell stores	
	a one input symbol from the give string input symbols are read by	
	control head from left to right. \$\\$ is placed at the end of the string.	
18	Why stack is used in the PDA?	CO 5
	finite control reads the input symbols and places them in stack which	000
	is last in first out data structure	
19	Why pop operation is used in PDA?	CO 5
	while reading the input symbols from input tape based on the	00 0
	condition top of the stack symbol is popped from stack to recognize a	
	particular string	
20	why push operation is used in PDA?	CO 5
	While reading the symbols from the input tape finite control will	
	push them into the top of the stack.	
21	What is Non Deterministic PDA?	CO 5
	Heap allocation is used to dynamically allocate memory to the	CO 3
	variables and claim it back when the variables are no more required.	
	Memory allocation and deallocation can be done at any time and at	
	any place depending on the requirement of the user. Conceptually	
	NPDA is similar to NFA. in NPDA there could be multiple	
	transitions for a unique input. Construction of NPDA is much more	
	simplest than PDA	
22	What is The Condition for converting CFG to PDA?	CO 5
	in a production rule first symbol on the RHS is terminal symbol	
	when we want to convert CGF to PDA	
23	Why two stacks are used in PDA?	CO 5
	There are certain languages which cannot be accepted by PDA with	CO 3
	single stack. This is a special case and when we want to perform two	
	checks on the input strings we will use two stacks with PDA	
24	Why finite automata is less powerful than PDA	CO 5
	since no stack concept is used in FA,That's why PDA is more	CO 3
	powerful than FA	

25	What is instantaneous description?	CO 5
	Instantaneous description of a PDA is a triple of three parameters	000
	triple(q,w,y)	
	-q is the state	
	- w is the remaining input string -y is the stack contents	
26	show the PDA machine configuration	
20	A machine configuration is an element of $K \times \sum^* \times \Gamma^*$.	CO 5
	$(p,w,\gamma) = (\text{current state, unprocessed input, stack content}).$	
27	show the condition to accept the string in PDA	
21	A string w is accepted by a PDA if and only if $(s, w, e) \vdash^* (f, e, e)$	CO 5
28		
28	What are the different types of language acceptances by a PDA and define them.	CO 5
	For a PDA M= $(Q, \sum, \Gamma, \delta, q_0, Z_0, F)$ we define the language accepted	
	by the final state L(M) as: ${}^{\star}\{w \ (q_0,w,Z_0)\vdash (p,\epsilon,\gamma) \text{for some p in F}$	
	and $\gamma in\Gamma^{\star}$ }.Language accepted by empty / null stackN(M) is: \star	
29	What is the significance of PDA?	CO 5
	Finite Automata is used to model regular expression and cannot be	
	used to represent non regular languages. Thus to model a context	
	free language, a Pushdown Automata is used.	
30	When is a string accepted by a PDA?	CO 5
	The input string is accepted by the PDA if: The finalstate is reached.	
	The stack is empty.	
	MODULE V	
	TURING MACHINE	
1	what is Turing machine	CO 6
	A Turing machine consists of a tape of infinite length on which read	
	and writes operation can be performed. The tape consists of infinite	
	cells on which each cell either contains input symbol ora special	
	symbol called blank. It also consists of a head pointer which points	
	to cell currently being read and it can move in both directions.	GO 4
2	Define recursively enumerable languages	CO 6
	A language is recursively enumerable if there exists a Turing machine	
	that accepts every string of the language, and does not accept strings	
	that are not in the language.	~~~
3	Define recursive languages	CO 6
	A language is recursive if there exists a Turing machine that accepts	
	every string of tShe language and rejects every string that is not in	
	the language.	

4	What is Church's hypothesis	CO C
	The Church-Turing thesis (formerly commonly known simply as	CO 6
	Church's thesis) says that any real-world computation can be	
	translated into an equivalent computation involving a Turing	
	machine.	
5	Describe counter machine	CO_6
	Counter machine has the same structure as the multi-stack	
	machine but in place of each stack is a counter. Counters hold any	
	non-negative integer, but we can only distinguish between zero and	
	nonzero counters. That's the move of the counter machine depends on its state,input symbol and which if any of the counters are zero.	
6	Define linear bounded automata	
0	A linear bounded automata A linear bounded automaton is a multi-track non-deterministic	CO_6
	Turing machine with a tape of some bounded finite length. Length =	
	function (Length of the initial input string, constant c)	
	Here,	
	Memory information $c \times Input$ information The computation is	
	restricted to the constant bounded area. The input alphabet contains	
	two special symbols which serve as left end markers and right end	
	markers which mean the transitions neither move to the left of the	
	left end marker nor to the right of the right end marker of the tape.	
7	which generate context sensitive language	CO 6
	Type-1 grammars generate context-sensitive languages.	
8	List Chomsky hierarchy of languages	CO 6
	One way showing the relationship among the languages if Chomsky	000
	hierarchy.	
	Type 0 known as unrestricted grammar.	
	Type 1 known as context sensitive grammar.	
	Type 2 known as context free grammar.	
	Type 3 Regular Grammar.	
9	Define Regular Grammar.	CO_6
	Type-3 grammars generate regular languages. Type-3 grammars	
	must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal	
	followed by a single non-terminal.	
	The productions must be in the form $X \to a$ or $X \to aY$	
	where $X, Y \in N(Non terminal)$	
	and $a \in T(Terminal)$	
	The rule $S \to \in$ is allowed if S does not appear on the right side of	
	any rule.	

10	What are Type-2 grammars	CO 6
	Type-2 grammars generate context-free languages. The productions	CO 0
	must be in the form $A \to \gamma$	
	where $A \in N$ (Non terminal)	
	and $\gamma \in (T \cup N)^*$ (String of terminals and non-terminals).	
	These languages generated by these grammars are be recognized by a	
11	non-deterministic pushdown automaton.	
11	Describe Context-free grammar	CO_6
	A context-free grammar (CFG) consisting of a finite set of grammar rules is a quadruple (N, T, P, S) where	
	N is a set of non-terminal symbols.	
	T is a set of non-terminal symbols. $T \text{ is a set of terminals where } N \cap T = \text{NULL}.$	
	P is a set of rules, P: N \rightarrow (N \cup T)*, i.e., the left-hand side of the	
	production rule.P does have any right context or left context.	
	S is the start symbol.	
12	Define Context-sensitive grammar	
	Context sensitive grammars generates context-sensitive languages.	CO 6
	The productions must be in the form: $\alpha \to \beta$, with the following	
	condition $ \beta \ge \alpha $, i.e. length of β is greater than length of α .	
13	Recall Unrestricted grammar	GO 4
	Type-0 grammars generate recursively enumerable languages. The	CO 6
	productions have no restrictions. They are any phase structure	
	grammar including all formal grammars. They generate the	
	languages that are recognized by a Turing machine.	
14	Define Pushdown automata	
	A pushdown automaton is a way to implement a context-free	CO 6
	grammar in a similar way we design DFA for a regular grammar. A	
	DFA can remember a finite amount of information, but a PDA can	
	remember an infinite amount of information. Basically a pushdown	
	automaton is – "Finite state machine" + "a stack" A pushdown	
	automaton has three components	
	an input tape,	
	a control unit, and	
	a stack with infinite size.	
	The stack head scans the top symbol of the stack.	
15	what is Multi-tape Turing Machine.	CO 6
	Multi-tape Turing Machines have multiple tapes where each tape is	- •
	accessed with a separate head. Each head can move independently of	
	the other heads. Initially the input is on tape 1 and others are blank.	
	At first, the first tape is occupied by the input and the other tapes	
	are kept blank. Next, the machine reads consecutive symbols under	
	its heads and the TM prints a symbol on each tape and moves its	
	heads.	

16	Waht is Turing machine with multiple tapes	CO 6
	Multi-tape Turing Machines have multiple tapes where each tape is accessed with a separate head. Each head can move independently of	000
	the other heads. Initially the input is on tape 1 and others are blank. At first, the first tape is occupied by the input and the other tapes	
	are kept blank. Next, the machine reads consecutive symbols under	
	its heads and the TM prints a symbol on each tape and moves its heads.	
17	Name Chomsky hierarchy of grammars	CO 6
	Type-0, Type-1, Type-2 and Type-3 grammars	CO 6
18	How Turing machine with two dimensional tapes	CO 6
	Turing machine with two dimensional tapes that have one finite	000
	control, one read-write head and one two dimensional tape. The tape	
	has the top end and the left end but extends indefinitely to the right and down. It is divided into rows of small squares.	
19	What is Turing machine with infinite tape	
10	a tape has infinite length and divided into cells	CO_6
20	What is Deterministic Turing machine	CO 6
	Turing machines are a model of computation. It is believed that	
	anything that can be computed can be by a Turing Machine	
21	Overview of Multi-track Turing machines	CO 6
	Multi-track Turing machines, a specific type of Multi-tape Turing	000
	machine, contain multiple tracks but just one tape head reads and	
	writes on all tracks. Here, a single tape head reads n symbols	
	from n tracks at one step. It accepts recursively enumerable languages like a normal single-track single-tape Turing Machine	
	accepts.	
22	Decribe Type 0 Grammar	
	Type 0 grammars generate recursively enumerable languages. The	CO 6
	productions have no restrictions. They are any phase structure	
	grammar including all formal grammars. They generate the	
	languages that are recognized by a Turing machine.	
23	Define Type 1 Grammar	CO 6
	Type 1 grammars generate context-sensitive languages. The	
	productions must be in the form: $\alpha \to \beta$, with the following condition $ \beta \ge \alpha $, i.e. length of β is greater than length of α .	
24	Recall Type 2 Grammar	
21	Type-2 grammars generate context-free languages. The productions	CO 6
	must be in the form A $\rightarrow \gamma$	
	where $A \in N$ (Non terminal)	
	and $\gamma \in (T \cup N)^*$ (String of terminals and non-terminals).	
	These languages generated by these grammars are be recognized by a	
	non-deterministic pushdown automaton.	

25	Define Type 3 Grammar	CO 6
	Type-3 grammars generate regular languages. Type-3 grammars	
	must have a single non-terminal on the left-hand side and a	
	right-hand side consisting of a single terminal or single terminal	
	followed by a single non-terminal. The productions must be in the	
	form $X \to a$ or $X \to aY$	
26	What is Multiple Tracks	CO 6
	This is the final phase of compilation. which takes input as a	
	optimized code and convert in to machine/assembly language.It is a	
	tape, which is divided into multiple tracks, on the first track the	
	input is placed is surrounded by # and \$, using which we can perform	
	arithmetic operations	
27	Brifly about the Author of Turing Machine	CO 6
	Alan Turing OBE FRS was an English mathematician, computer	
	scientist, logician, cryptanalyst, philosopher and theoretical Born: 23	
	June 1912, Maida Vale Died: 7 June 1954, Wilmslow, United	
	Kingdom Award: Smith's Prize	
	Education: Princeton University (1936–1938)	
28	Describe about Left linear Grammar	CO 6
	In a left-linear grammar, all productions have one of the two forms:	
	$V \rightarrow VT^*$	
	Or .	
	$V \rightarrow T^*$	
	That is, the left-hand side must consist of a single variable, and the	
	right-hand side consists of an optional single variable followed by any	
20	number of terminals.	
29	Describe about Right linear Grammar	CO 6
	A strictly right-linear grammar is a context free grammar G where	
	each rule has one of the following forms: $A \to xB$ for $x \in \sum A \to 1$	
	Any derivation of a word w from a start symbol S in a strictly	
	right-linear grammar has the form $S \implies x1A1 \implies$	
	$x1x2A2 \Longrightarrow \cdots \Longrightarrow x1 \dots xnAn \Longrightarrow x1 \dots xn$ where $w = x1 \dots xn$.	
20	Note that some of the xi may be .	
30	Illustrate about Regular Grammar	CO 6
	Regular grammars generate regular languages. Type-3 grammars	
	must have a single non-terminal on the left-hand side and a	
	right-hand side consisting of a single terminal or single terminal	
	followed by a single non-terminal. The productions must be in the	
	form $X \to a$ or $X \to aY$	

Course Coordinator: Dr.U.Sivaji HOD IT