

Intel® Xeon® Processor D-1500 Product Family

Datasheet - Volume 3 of 4: Electrical

January 2019

Document Number: 332052-004US

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com/design/literature.htm.

Intel, Xeon, and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2019, Intel Corporation. All Rights Reserved.

Contents

1	Intro	ductionduction	. 6
	1.1	Electrical Specification Introduction	
	1.2	Statement of Volatility (S0V)	. 6
2	Signa	l Names and Descriptions	. 7
	2.1	Overview	
	2.2	Name Convention	
	2.3	System DDR Memory Signals	
	2.4	PCI Express* 3.0 Interface Signals	
	2.5	PECI Signal	
	2.6	JTAG and TAP Signals	12
	2.7	UART Signals	13
	2.8	Serial Interrupt Signals	
	2.9	SVID Signals	14
	2.10	Miscellaneous Signals	
	2.11	USB Interface	18
	2.12	SATA Signals	
	2.13	Clock Signals	
	2.14	PCI Express Gen2 Interface Signals	
	2.15	LPC Interface Signals	
	2.16	Power Management Signals	
	2.17	Interrupt Signals	
	2.18 2.19	GPIO Signals	
	2.19	MGPIO Signals	
	2.20	SPI Signals	
	2.21	Integrated PCH Functional Straps	
	2.23	SoC Integrated Processor Straps	
	2.24	Reserved/Test Signals	
	2.25	Power Signals	
	2.26	Integrated 10 GbE Controller Signals	
_			
3	_	Il Pin States and Termination	
	3.1	PCH Integrated Pull-Ups and Pull-Downs	
	3.2	Integrated PCH Output Signals Planes and States	
	3.3	Integrated PCH Input and I/O Signals Planes and States	
4	Signa	Il DC and Timing Characteristics4	17
	4.1	General DC Characteristics	47
		4.1.1 General DC Input Characteristics	47
		4.1.2 SoC Integrated Processor Voltage and Current Specifications	
		4.1.3 SoC Integrated Processor Die Voltage Validation	
		4.1.4 Signal DC Specifications	52
5	Opera	ating Conditions and Power Requirements6	52
	5.1	Absolute Maximum and Minimum Ratings	
	5.2	Storage Conditions Specifications	
		5.2.1 Overshoot/Undershoot Tolerance	
		·	
Fia	ures		
		IN Static and Transient Tolerance Loadlines	۵۵
		Overshoot Example Waveform	
		I_CPU Input Device Hysteresis	

	5-1	Maximum Acceptable Overshoot/Undershoot Waveform	.65
7	able		
	2-1	Buffer Power Rails	
	2-2	Buffer Types	7
	2-3	Signal Type Definitions	8
	2-4	DDR Memory Signals	8
	2-5	PCI Express Signals	.11
	2-6	PECI Signals	.12
	2-7	JTAG Signals	.12
		UART Signals	
	2-9	Serial Interrupt Request Interface Signals	.13
	2-10	SVID Signals	.14
	2-11	Misc. Signals	.14
	2-12	USB Interface Signals	.18
	2-13	SATA2 Signals	.20
	2-14	Clock Signals	.22
	2-15	PCIe Express Gen 2 Interface Signals	.23
		LPC Signals	
		Power Management Signals	
		Interrupt Signals	
		General Purpose I/O Signals	
	2-20	MGPIO Conversion Table	.30
		SMBus and SMLink Signals	
		SPI Signals	
		SoC Integrated PCH Functional Strap Definitions	
		SoC Integrated Processor Straps Definitions	
		Reserved Signals	
		Power Signals	
	3-1	PCH Integrated Pull-Up and Pull-Down Resistors	
	3-2	PCH Logic Output Signals - Power Plane and States	
	3-3	Integrated PCH Input Signals - Power Plane and States	
	4-1	Voltage Specification	
	4-2	VCCIN Supply Current (IccIN_MAX and ICCIN_TDC) Specification	
	4-3	SoC CPU Section Current Specifications	
	4-4	SoC PCH Section Current Specifications	.50
	4-5	VCCIN Overshoot Specifications	
	4-6	DDR4 Signal DC Specifications	
	4-7	PECI_CPU DC Specifications	
	4-8	SMBus DC Specifications	
	4-9	JTAG and TAP Signals DC Specifications	
		Serial VID Interface (SVID) DC Specifications	
		SoC Misc Signal DC Specifications	
		Single-Ended Signal DC Characteristics as Inputs or Outputs	
		Differential Signal DC Characteristics	
		LAN SPI, MDIO and SDP DC Specifications	
	5-1	SoC Integrated Processor Absolute Minimum and Maximum Ratings	
	5-2	SoC Integrated PCH Absolute Maximum Ratings	
	5-3	Storage Condition Ratings	
	5-4	Processor I/O Overshoot/Undershoot Specifications	

Revision History

Document Number	Revision Number	Description	Date
332052	001	Initial release of the document.	March 2015
332052	002	 Added RSVD13 to table 2-25. Added LAN SMBUS and LAN I2C DC signal characteristics to section 4.1.4.3 Added section 4.1.4.11 for DC specs on LAN SPI, MDIO and SDP pins. Updated ICCMAX for VCCD rail. Updated VCCIOIN and VCCSCSUS ICC specifications. Updated VCC, VCCIO, VCCCLK, and P1V05_PROC_IO Voltage specifications. 	November 2015
332052	003	 Updated Table 4-4. SoC PCH Section Current Specifications - Note 4. Updated Table 4-11. SoC Misc Signal DC Specifications - Added DDR_PWRGOOD, THROTTLE_PECI_ID2. Added SKUs and fixed SKU names in Table 4-2. Fixed max. power spec for D-1509 in Table 4-2. Minor updates to the description of RSMRST_N and RSMRST_CPU_N. Fixed integrated PU/PD values of CPU pins in Tables 2-4, 2-7, and 2-11. Added information about Intel[®] ME recovery mode pin to Table 2-23. Fixed description of MFG_MODE_STPAP. Added Statement of Volatility (SOV) in Section 1.2. Updated 5.1 Storage Conditions Specifications. 	April 2018
332052	003	Removed Figure 4-4.	January 2019

1 Introduction

The datasheet provides functional descriptions of the Intel® Xeon® Processor D-1500 product family, Configuration Space Registers (CSRs), and Electrical specifications (including DC, signal integrity, and signal definitions). This document is distributed as a part of the complete document consisting of five volumes.

Note: The Intel® Xeon® processor D-1500 product family is also referred to as the "SoC" throughout this document.

1.1 Electrical Specification Introduction

This is volume three (Vol 3) of the Intel® Xeon® Processor D-1500 product family Datasheet, which provides DC electrical specifications and signal definitions of the processor.

The target audience for this document is primarily system architects and board designers who are planning to develop a SoC-based microserver solution. Additionally, this document is also used by other system engineers such as system test engineers, software developers, and BIOS developers.

The data contained within this document is preliminary and is subject to change. This data is the most accurate information available by the publication date. Electrical DC specifications are based on estimated I/O buffer behavior.

1.2 Statement of Volatility (S0V)

The Intel® Xeon® Processor D-1500 product family does not retain any end-user data when powered down.

§

Note:

2 Signal Names and Descriptions

2.1 Overview

This chapter provides a detailed description of the signals and bootstrap definitions for the SoC. The signals are arranged in functional groups according to their associated interface.

Each signal description table has the following headings:

- **Signal:** The name of the signal.
- **Description:** A brief explanation of the signal function.
- **Power Rail:** Power rails used to supply power to the I/O signal are defined in Table 2-1.

Table 2-1. Buffer Power Rails

Power Rail	Description								
VCCIO	1.05 I/O rail for the P	CH. This rail is of	f in the S4 ar	nd S5 power states.					
VCCIOIN	1.05V I/O rail for CPU	J.This rail is active	e in the S4 ar	nd S5 power states.					
VCC	1.05V Core rail. This	rail is inactive in t	the S4 and S5	power states, but powered in	S0.				
VCCSUS3_3	3.3V SUS rail. This ra	il is active in the	S4 and S5 po	wer states.					
VCC3_3	3.3V Core rail. This ra	3.3V Core rail. This rail is inactive in the S4 and S5 power states, but powered in S0.							
VCCRTC	3.3V RTC Power rail	3.3V RTC Power rail							
VDDQ	DDR4/DDR3L I/O Volt	DDR4/DDR3L I/O Voltage (1.2V/1.35V)							
		Technology Voltage (VDDR) Speeds (MT/s)							
		DDR4 1.20V 1600, 1866, 2133							
		DDR3L	1.35V	1333, 1600					

- Direction and Type: The buffer direction and type.
 - Buffer direction is input (I), output (O), or bi-directional (I/O or IO).
 - Buffer Types are defined in Table 2-2.

Table 2-2. Buffer Types

Buffer Type	Buffer Description		
CMOS	CMOS buffers: 1.05V		
CMOS_OD	Open Drain CMOS (ODCMOS) buffers: 1.05V tolerant		
DDR4 DDR4 Buffer: 1.2V			
SSTL Source Series Terminated Logic (JEDEC SSTL_15)			
PCI Express	PCI Express* interface signals. These signals are compatible with PCI Express 3.0 Signaling Environment AC Specifications and are AC coupled. The buffers are not 3.3V tolerant. Refer to the <i>PCIe* Specification</i> .		
Asynchronous	Signal has no timing relationship with any system reference clock.		
Analog	Analog reference or output. May be used as a threshold voltage or for buffer compensation.		

2.2 Name Convention

Table 2-3 provides the legend for interpreting the I/O Type field that appears the tables in this section.

Table 2-3. Signal Type Definitions

Туре	Description					
# or _N	Active low signal					
CMOS	CMOS buffers					
DDR	Double Data Rate					
I	Input pin					
I/O or IO	Bi-directional Input/Output pin					
I/OD	Bi-directional Input/Open Drain output pin					
NC	No Connection to pin					
0	Output pin					
OD	Open Drain output pin					
NCTF/TP	/TP Non Critical To Function pins/ Test Point pins.					
RSVD	Reserved Pin. This signal must be connected as described in signal description.					
T/S	Tri-State pin					

2.3 System DDR Memory Signals

Table 2-4. DDR Memory Signals (Sheet 1 of 4)

Signal Name	I/O Type	I/O Buffer Type	Internal Resistor PU/PD	Power Rail	Description
DDR Reference Clocks					
DDR{0/1}_CLK_DN[3:0] DDR{0/1}_CLK_DP[3:0]	0	SSTL		VDDQ	DDR4 Differential Clock: All address and control input signals are sampled on the crossing of the positive edge of CLK_DP and negative edge of CLK_DN. Output (read) data is referenced to the crossings of CLK_DP and CLK_DN (both directions of crossing).

Table 2-4. DDR Memory Signals (Sheet 2 of 4)

Signal Name	I/O Type	I/O Buffer Type	Internal Resistor PU/PD	Power Rail	Description			
DDR Command Signals								
DDR{0/1}_MA[13:0] DDR{0/1}_MA14_WE_N DDR{0/1}_MA15_CAS_N DDR{0/1}_MA16_RAS_N	0	SSTL		VDDQ	Memory Address. Selects the Row address for Reads and writes, and the column address for activates. Also used to set values for DRAM configuration registers. MA[16], MA[15], and MA[14] are MUXed with RAS_N, CAS_N, and WE_N, respectively. DDR4 Write Enable: (active low). Used with CAS#, RAS#, and CS# to define commands. RAS, CAS, and WE (along with CS) define the command being entered. DDR4 Column Address Strobe: (active low). Used with CAS#, RAS#, and CS# to define commands. RAS, CAS, and WE (along with CS) define the command being entered. DDR4 Row Address Strobe: (active low). Used with CAS# and RAS# (along with CS) define the command being entered. DDR4 Row Address Strobe: (active low). Used with CAS# and RAS# (along with CS#) to define commands. RAS, CAS, and WE (along with CS) define the command being entered. Note: If the SoC is configured to support DDR3 interface, DDR{0/1}_MA14_WE_N, DDR{0/1}_MA14_WE_N, DDR{0/1}_MA15_CAS_N and DDR{0/1}_MA16_RAS_N are mapped as DDR{0/1}_MA16_RAS_N are mapped as DDR{0/1}_RAS_N in DDR3 interface respectively.			
DDR{0/1}_BA[1:0]	0	SSTL		VDDQ	Bank Address. defines the bank which is the destination for the current Activate, Read, Write, or Precharge command.			
DDR{0/1}_BG[0]_BA[2] DDR{0/1}_BG[1]_MA[14]	0	SSTL		VDDQ	Bank Group. Defines which bank group an Active, Read, Write or Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRC cycle. **Note:** If the SoC is configured to support DDR3 interface, DDR{0/1}_BG[0]_BA[2] and DDR{0/1}_BG[0]_BA[2] and DDR{0/1}_BG[1]_MA[14] are mapped as DDR{0/1}_BA[2] and DDR{0/1}_MA[14] in DDR3 interface respectively.			
DDR{0/1}_ACT_N_MA[15]	0	SSTL		VDDQ	Activate. When asserted, indicated MA[16:14] are command signals (RAS_N, CAS_N, WE_N). **Note:** If the SoC is configured to support DDR3 interface, this pin DDR{0/1}_ACT_N_MA[15] is mapped as DDR{0/1}_MA[15] in DDR3 interface.			
DDR{0/1}_PAR	0	SSTL		VDDQ	Even parity across Address and Command.			
DDR Control Signals								
DDR{0/1}_CS_N[1:0] DDR{0/1}_CS_N[5:4]	0	SSTL		VDDQ	DDR4 Chip Select: (active low). Each signal selects one rank as the target of the command and address. These signals determine whether a command is valid in a given cycle for the devices connected to it. All commands are masked when CS# is registered HIGH. CS# provides for external Rank selection on systems with multiple Ranks. CS# is considered part of the command code.			

Table 2-4. DDR Memory Signals (Sheet 3 of 4)

Signal Name	I/O Type	I/O Buffer Type	Internal Resistor PU/PD	Power Rail	Description
DDR{0/1}_CKE[3:0]	0	SSTL		VDDQ	DDR4 Clock Enable: (active high). CKE is used for power control of the DRAM devices. For the DRAM Devices: CKE HIGH activates, and CKE LOW deactivates, internal clock signals and device input buffers and output drivers. Taking CKE LOW provides Pre-charge Power Down and Self-Refresh operation (all banks idle) or Active Power Down (row Active in any bank). CKE is synchronous for a power down entry and exit, and for self-refresh entry. CKE is asynchronous for self-refresh exit. After VREF has become stable during the power-on and initialization sequence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and exit, VREF must be maintained to this input. CKE must be maintained HIGH throughout read and write accesses. Input buffers, excluding CLK_DP/DN, ODT, and CKE are disabled during power down. Input buffers, excluding CKE, are disabled during self-refresh.
DDR{0/1}_ODT[3:0]	0	SSTL		VDDQ	DDR4 On-Die Termination Enable: (active high). Enables DRAM on die termination during Data Write or Data Read transactions. ODT (registered HIGH) enables termination resistance internal to the DDR device SDRAM. When the ODT feature is enabled, it is dynamically enabled for the receiver of the data. The SoC does this internally for read data returning from the DRAM devices. For write data to the DRAM devices, the ODT pins are asserted to enable ODT within the DRAM devices themselves. Because ODT consumes power, when the feature is enabled, it is control dynamically by the SoC. ODT impacts the DQ, DQS, and DM signals. The ODT pin is ignored by the DDR devices if the EMR(1) is programmed to disable ODT. One pin per rank.
DDR Data Signals	•				
DDR{0/1}_DQ[63:0]	I/O	SSTL		VDDQ	DDR4 Data Bus: Memory read and write data. Data signal interface to the SDRAM data bus. These 64-bit signals have 8-byte lanes, and each byte lane has a corresponding strobe pair.
DDR{0/1}_DQS_DP[17:0] DDR{0/1}_DQS_DN[17:0]	I/O	SSTL		VDDQ	Data strobes. Differential pair, Data/ECC Strobe. Differential strobes latch data/ECC for each DRAM. Different numbers of strobes are used depending on whether the connected DRAMs are x4,x8. Driven with edges in center of data, receive edges are aligned with data edges.
DDR{0/1}_ECC[7:0]	I/O	SSTL		VDDQ	Check bits. An error correction code is driven along with data on these lines for DIMMs that support that capability.

Table 2-4. DDR Memory Signals (Sheet 4 of 4)

Signal Name	I/O Type	I/O Buffer Type	Internal Resistor PU/PD	Power Rail	Description			
DDR Miscellaneous Signals								
DDR{0/1}_ALERT_N/ PAR_ERR_N	I	SSTL		VDDQ	DDR4 Alert: it has multi functions such as CRC error flag, Command and Address Parity error flag. If there is error in CRC, then ALERT_N goes low for the period time interval and goes back high. If there is an error in Command Address Parity Check, then ALERT_N goes LOW for a relatively long period until the on going DRAM internal recovery transaction is complete. **Note:** If the SoC is configured to support DDR3 interface, this pin is mapped as DDR{0/1}_PAR_ERR_N for DDR 3 interface. It indicates Parity Error detected by the DIMM (one for each channel).			
DRAM_PWR_OK	I	CMOS		VCCIOIN	Power good for VCCD rail used by the DRAM. This is an input signal used to indicate to the VCCD power supply is stable for memory channels.			
DDR_PWRGOOD	I	CMOS		VCCIOIN	Power good for both VCCD and VCCIN power rails.			
DDR3_4_STRAP	I	CMOS	PU 5K-15K	VCCIOIN	DDR3 and DDR4 selection strap. If this pin is pulled low = DDR3; if this pin is pulled high = DDR4.			
DDR_RCOMP[2:0]	I	CMOS		VCCIOIN	System memory impedance compensation. Impedance compensation must be terminated on the system board using a precision resistor.			
DDR_SCL	I/OD	CMOS OD		VCCIOIN	SMBus clock for the dedicated interface to the serial presence detect (SPD) and thermal sensors (TSoD) on the DIMMs.			
DDR_SDA	I/OD	CMOS OD		VCCIOIN	SMBus Data for the dedicated interface to the serial presence detect (SPD) and thermal sensors (TSoD) on the DIMMs.			
DDR_VREF	0	Analog		N/A	Voltage reference for the Command/Address to the DIMMs.			
DDR_VREFDQ[1:0]	0	Analog		N/A	Voltage reference for system memory reads/ writes.			
DDR_RESET_N	0	CMOS 1.2V		VCCD	System memory reset: Reset signal from processor to DRAM devices on the DIMMs.			

2.4 PCI Express* 3.0 Interface Signals

Table 2-5. PCI Express Signals (Sheet 1 of 2)

Signal Name	I/O Type	I/O Buffer Type	Power Rail	Description
PE1_RX_DN[15:0] PE1_RX_DP[15:0]	I	PCI Express*	VCCIOIN	PCIe* Receive Data Input
PE1_TX_DN[15:0] PE1_TX_DP[15:0]	0	PCI Express	VCCIOIN	PCIe Transmit Data Output
PE2_RX_DN[7:0] PE2_RX_DP[7:0]	I	PCI Express	VCCIOIN	PCIe Receive Data Input

Table 2-5. PCI Express Signals (Sheet 2 of 2)

Signal Name	I/O Type	I/O Buffer Type	Power Rail	Description
PE2_TX_DN[7:0] PE2_TX_DP[7:0]	0	PCI Express	VCCIOIN	PCIe Transmit Data Output
PE_HP_SCL	I/OD	Open Drain CMOS	VCCIOIN	PCI Express Hot-Plug SMBus Clock: Provides PCI Express hot- plug support via a dedicated SMBus interface. Requires an external General Purpose Input/Output (GPIO) expansion device on the platform.
PE_HP_SDA	I/OD	Open Drain CMOS	VCCIOIN	PCI Express Hot-Plug SMBus Data: Provides PCI Express hot- plug support via a dedicated SMBus interface. Requires an external General Purpose Input/Output (GPIO) expansion device on the platform.

2.5 PECI Signal

Table 2-6. PECI Signals

Signal Name	I/O Type	I/O Buffer Type	Internal Resistor PU/PD	Power Rail	Description
PECI_CPU	I/O	CMOS		VCCIOIN	Platform Environment Control Interface (PECI) is the serial sideband interface to the SoC integrated processor and is used primarily for thermal, power and error management.
PECI_PCH	I/O	CMOS	PD 350 Ohm	P1V05_ PROC_ IO	Platform Environment Control Interface (PECI) is the serial sideband interface to the SoC integrated PCH.

2.6 JTAG and TAP Signals

Table 2-7. JTAG Signals (Sheet 1 of 2)

Signal Name	I/O Type	I/O Buffer Type	Internal Resistor PU/PD	Power Rail	Description
JTAG_TCK_CPU	I	CMOS	PD 5K-15K	VCCIOIN	TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port).
JTAG_TRST_N_CPU	I	CMOS	PU 5K-15K	VCCIOIN	TRST_N (Test Reset) resets the Test Access Port (TAP) logic. TRST_N must be driven low during power on reset.
JTAG_TMS_CPU	I	CMOS	PU 5K-15K	VCCIOIN	TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.
JTAG_TDI_CPU	I	CMOS	PU 5K-15K	VCCIOIN	TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support.
JTAG_TDO_CPU	0	CMOS OD		VCCIOIN	TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support.
PRDY_N	0	CMOS		VCCIOIN	Probe Mode Ready is a processor output used by debug tools to determine processor debug readiness.
PREQ_N	I/O	CMOS		VCCIOIN	Probe Mode Request is used by debug tools to request debug operation of the processor.

Table 2-7. JTAG Signals (Sheet 2 of 2)

Signal Name	I/O Type	I/O Buffer Type	Internal Resistor PU/PD	Power Rail	Description
BPM_N[7:0]	I/O	CMOS OD		VCCIOIN	Breakpoint and Performance Monitor Signals: I/O signals from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance. These are 100MHa signals.
JTAG_TCK_PCH	I	CMOS	PD 10K-45K ohm	VCCIOIN	Test Clock Input (TCK): The test clock input provides the clock for the JTAG test logic
JTAG_TDO_PCH	0	CMOS OD		VCCIOIN	Test Data Output (TDO): TDO is the serial output for test instructions and data from the test logic defined in this standard.
JTAG_TMS_PCH	I	CMOS	PU 10K - 45K ohm	VCCIOIN	Test Mode Select (TMS): The signal is decoded by the Test Access Port (TAP) controller to control test operations.
JTAG_TDI_PCH	I	CMOS	PU 10K - 45K ohm	VCCIOIN	Test Data Input (TDI): Serial test instructions and data are received by the test logic at TDI
DEBUG_EN_N	I	CMOS	PU 5K-15K	VCCIOIN	This pin is used to force debug to be enabled when the Intel [®] In-Target Probe (Intel [®] ITP) is connected to the main board. This allows debug to occur beginning from cold boot.
PWR_DEBUG_N	I	CMOS	PU 5K-15K	VCCIOIN	Debug signal for power debug using Intel ITP.
EAR_N	I	CMOS	PU 5K-15K	VCCIOIN	External Alignment of Reset, used to bring the processor up into a deterministic state.

2.7 UART Signals

Table 2-8. UART Signals

Signal Name	I/O Type	I/O Buffer Type	Internal Resistor PU/PD	Power Rail	Description
UART_RXD[1:0]	I	CMOS		VCCIOIN	Receiver input for UART port 0 and 1. Serial receive data.
UART_TXD[1:0]	0	CMOS		VCCIOIN	Transmitter output for UART port 0 and 1. Serial transmit data.

2.8 Serial Interrupt Signals

Table 2-9. Serial Interrupt Request Interface Signals

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
SERIRQ_DATA	I/O	PU 3.5K-6.5K	VCCIOIN	Serial Interrupt Request Data signal.
SERIRQ_DIR	0	N/A	VCCIOIN	Serial Interrupt Request Direction signal: Input/Output direction control for the SERIRQ_DATA pin.
SERIRQ_CLK	I	PD 3.5K-6.5K	VCCIOIN	33 MHz Serial Interrupt Request Clock signal. SoC Integrated 33 MHz clock could be the clock source.

2.9 SVID Signals

Table 2-10. SVID Signals

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
SVID_ALERT_N	I		VCCIOIN	SVID Alert (Serial Voltage Identification Alert): (active low). Used by VR to signal that the prior request has not reached the requested operating point.
SVID_DATA	I/OD		VCCIOIN	SVID Data (Serial Voltage Identification Data): Bi-Directional signal. Used as data communication interface between the SoC and VR.
SVID_CLK	OD		VCCIOIN	SVID Clock (Serial Voltage Identification Clock): The SoC and VR use this clock for communication on the SVID Data bus. SoC SVID requests are driven out on SVID Data with this clock and are registered in the VR using this for the clock. When the VR responds, it also uses this clock to drive the data.

2.10 Miscellaneous Signals

Table 2-11. Misc. Signals (Sheet 1 of 5)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
CATERR_N	I/OD		VCCIOIN	Indicates that the system has experienced a fatal or catastrophic error and cannot continue to operate. The processor will assert CATERR_N for unrecoverable machine check errors and other internal unrecoverable errors. It is expected that every processor in the system will wire-OR CATERR_N for all processors. Since this is an I/O ball, external agents are allowed to assert this ball which will cause the processor to take a machine check exception. This signal is sampled after PWRGOOD assertion. CATERR_N is used for signaling the following types of errors: • Legacy MCERRs, CATERR_N is asserted for 16 BCLKs. • Legacy IERRs, CATERR_N remains asserted until warm or cold reset.
ERROR_N[2:0]	OD		VCCIOIN	Error status signals for integrated I/O (IIO) unit: • 0 = Hardware correctable error (no operating system or firmware action necessary) • 1 = Non-fatal error (operating system or firmware action required to contain and recover) • 2 = Fatal error (system reset likely required to recover)
PMSYNC_CPU	I		VCCIOIN	Power Management Sync. A sideband signal to communicate power management status from the integrated PCH to the integrated processor in SoC.
MEM_HOT_N	I/OD		VCCIOIN	Memory throttle control. Signals that a DIMM is exceeding its temperature limit. MEM_HOT_N signal has two modes of operation - input and output mode. Input mode is externally asserted and is used to detect external events such as VR_HOT# from the memory voltage regulator and causes the processor to throttle the appropriate memory channels. Output mode is asserted by the processor known as level mode. In level mode, the output indicates that a particular branch of memory subsystem is hot.

Table 2-11. Misc. Signals (Sheet 2 of 5)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
THERMTRIP_N	OD		P1V05_ PROC_IO	Assertion of THERMTRIP_N (Thermal Trip) indicates one of two possible critical over-temperature conditions: One, the processor junction temperature has reached a level beyond which permanent silicon damage may occur and Two, the system memory interface has exceeded a critical temperature limit set by BIOS. Measurement of the processor junction temperature is accomplished through multiple internal thermal sensors that are monitored by the Digital Thermal Sensor (DTS). Simultaneously, the Power Control Unit (PCU) monitors external memory temperatures via the dedicated SMBus interface to the DIMMs. If any of the DIMMs exceed the BIOS defined limits, the PCU will signal THERMTRIP_N to prevent damage to the DIMMs. Once activated, the processor will stop all execution and shut down all PLLs. To further protect the processor, its core voltage (VCCIN), VCCD, VCCIOIN supplies must be removed following the assertion of THERMTRIP_N. Once activated, THERMTRIP_N remains latched until RESET_N is asserted. While the assertion of the RESET_N signal may de-assert THERMTRIP_N, if the processor's junction temperature remains at or above the trip level, THERMTRIP_N will again be asserted after RESET_N is de-asserted. This signal can also be asserted if the system memory interface has exceeded a critical temperature limit set by BIOS.
PWRGOOD_CPU	I		VCCIOIN	PWRGOOD_CPU is an integrated processor input. The processor requires this signal to be a clean indication that all processor clocks and power supplies are stable and within their specifications. "Clean" implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. PWRGOOD_CPU can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD_CPU. PWRGOOD_CPU transitions from inactive to active when all supplies except VCCIN are stable. The signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation.
PROCHOT_N	I/OD		VCCIOIN	PROCHOT_N will go active when the integrated processor temperature monitoring sensor detects that the integrated processor has reached its maximum safe operating temperature. This indicates that the integrated processor Thermal Control Circuit has been activated, if enabled. This signal can also be driven to the integrated processor to activate the Thermal Control Circuit. This signal is sampled after PWRGOOD assertion. If PROCHOT_N is asserted at the deassertion of RESET_N, the processor will tristate its outputs
BIST_ENABLE	I	PU 5K-15K	VCCIOIN	BIST Enable Strap. Input which allows the platform to enable or disable Built-In Self Test (BIST) on the processor. This signal is pulled up on the die.
BMCINIT	I	PD 5K-15K	VCCIOIN	BMC Initialization Strap. Indicates whether the Service Processor Boot Mode should be used. 0: Service Processor Boot Mode Disabled. 1: Service Processor Boot Mode Enabled. In this mode of operation, the processor performs the absolute minimum internal configuration and then waits for the service processor to complete its initialization. The socket boots after receiving a "GO" handshake signal via a firmware scratchpad register. This signal is pulled down on the die.
FIVR_FAULT	0		VCCIOIN	Indicates THERMTRIP was signaled due to an internal error with the integrated voltage regulator rather than an over temperature condition. Must be qualified with THERMTRIP_N assertion.
SAFE_MODE_BOOT	I	PD 5K-15K	VCCIOIN	Safe Mode Boot Strap. SAFE_MODE_BOOT allows the processor to wake up safely by disabling all clock gating. This allows BIOS to load registers or patches if required. This signal is sampled after PWRGOOD assertion. The signal is pulled down on the die.

Table 2-11. Misc. Signals (Sheet 3 of 5)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
TXT_AGENT	I	PD 5K-15K	VCCIOIN	Intel [®] Trusted Execution Technology (Intel [®] TXT) Agent Strap. 0 = Default. The socket is not the Intel TXT Agent. 1 = The socket is the Intel TXT Agent. This signal is pulled down on the die.
TXT_PLTEN	I	PU 5K-15K	VCCIOIN	Intel TXT Platform Enable Strap. 0 = The platform is not Intel TXT enabled. 1 = Default. The platform is Intel TXT enabled. When this is set, Intel TXT functionality requires user to explicitly enable Intel TXT via BIOS setup. This signal is pulled up on the die.
TEST[1:0]	0	None	VCCIOIN	Test[1:0] must be individually connected to an appropriate power source or ground through a resistor for proper SoC operation.
SLP_S3_CPU_N	I	None	VCCIOIN	S3 Sleep Control coming from integrated PCH to integrated processor.
RSMRST_CPU_N	I	None	VCCIOIN	Resume Well Reset to the CPU.
THROTTLE_PECI_ID2	0		VCCIOIN	Signal from SoC integrated processor to integrated PCH for throttling. Also this pin is a strap for PECI ID[2] and it is sampled at rising edge of LAN_PWRGOOD.
PCHHOT_CPU_N	I	None	VCCIOIN	SoC integrated PCH Hot indication to integrated processor.
RESET_CPU_N	I	None	VCCIOIN	Global reset signal coming from integrated PCH to integrated processor.
PECI_ID0	I	None	VCCIOIN	SoC strap pin for PECI ID[0] and it is sampled at rising edge of LAN_PWRGOOD.
PROCPWRGD_PCH	0	None	P1V05_P ROC_IO	This pin is connected to integrated processor to indicate the integrated processor power is valid.
ADR_COMPLETE	0	None	VCCIOIN	Asynchronous DRAM Self-Refresh Complete.
ADR_IN	I	PD 5K-15K	VCCIOIN	Asynchronous DRAM Self-Refresh Request.
PM_SYNC_PCH	0	None	P1V05_P ROC_IO	Power Management Sync: Provides state information from the integrated PCH to the integrated processor.
THERMTRIP_PCH_N	I	None	P1V05_P ROC_IO	Thermal Trip : When low, this signal indicates that a thermal trip from the integrated processor occurred, and the integrated PCH will immediately transition to a S5 state. The integrated PCH will not wait for the integrated processor stop grant cycle since the processor has overheated.
SOC_IREF	I	None	VCCVRM	SoC Internal Reference Voltage
SOC_RCOMP	I	None	VCCVRM	SoC Impedance Compensation Input
MFG_MODE_STRAP	I	9K-50K PD	vccsus 3_3	Flash Descriptor Security Override. This signal has a weak internal pull-down. 0 = Enable security measures defined in the Flash Descriptor. 1 = Disable Flash Descriptor Security (override). This strap should only be asserted high using external pull-up in manufacturing/debug environments ONLY. Notes: 1. The internal pull-down is disabled after PLTRST_N de-asserts, but the pin is driven low instead. 2. Asserting the MFG_MODE_STRAP pin high on the rising edge of PWROK will also halt Intel ME after the chipset brings up and disables runtime Intel ME features. This is a debug mode and must not be asserted after manufacturing/debug. 3. This signal is in the suspend well.

Table 2-11. Misc. Signals (Sheet 4 of 5)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
RTCRST_N	I	None	RTC	 RTC Reset: When asserted, this signal resets register bits in the RTC well. Notes: Unless CMOS is being cleared (only to be done in the G3 power state), the RTCRST_N input must always be high when all other RTC power planes are on. In the case where the RTC battery is dead or missing on the platform, the RTCRST_N pin must rise before the DPWROK pin.
SRTCRST_N	I	None	RTC	Secondary RTC Reset: This signal resets the manageability register bits in the RTC well when the RTC battery is removed. Notes: 1. The SRTCRST_N input must always be high when all other RTC power planes are on. 2. The SRTCRST_N pin must rise before the RTCRST_N pin.
INTVRMEN	I	None	RTC	Internal Voltage Regulator Enable: When pulled high, this signal enables the internal 1.05 V regulators for the Suspend well in the integrated PCH. This signal must remain asserted for the VRMs to behave properly (no glitches allowed). This signal does not have an internal resistor; an external resistor is required. 0 = DCPSUS1, DCPSUS2 and DCPSUS3 are powered from an external power source (should be connected to an external VRM). External VR powering option is for Mobile Only; Desktop/Server/ Workstation should not pull the strap low. 1 = Integrated VRMs enabled. DCPSUS1, DCPSUS2 and DCPSUS3 can be left as No Connect. Notes: 1. This signal is always sampled. 2. This signal is in the RTC well.
PME_N	I/OD	15K-40K PU	VCCSUS 3_3	PCI Power Management Event: PCI peripherals drive PME_N to wake the system from low-power states S1–S5. PME_N assertion can also be enabled to generate an SCI from the S0 state. In some cases the integrated PCH may drive PME_N active due to an internal wake event. The integrated PCH will not drive PME_N high, but it will be pulled up to VccSUS3_3 by an internal pull-up resistor. PME_N is still functional and can be used with PCI legacy mode on platforms using a PCIe-to-PCI bridge. Downstream PCI devices would need to have PME_N routed from the connector to the PCH PME_N pin.
DSWODVREN	I	None	RTC	DeepSx Well Internal Voltage Regulator Enable: This signal enables the internal DSW 1.05V regulators and must be always pulled-up to VCCRTC. DeepSx Well On Die Voltage Regulator Enable. This signal does not have an internal resistor; an external resistor is required. 0 = Disable Integrated DeepSx Well (DSW) On-Die Voltage Regulator. This mode is only supported for testing environments. 1 = Enable DSW 3.3V-to-1.05V Integrated DeepSx Well (DSW) On-Die Voltage Regulator. This must always be pulled high on production boards. Notes: 1. This signal is always sampled. 2. This signal is in the RTC well.
SPKR	0	15K-40K PD	VCC3_3	Speaker: The SPKR signal is the output of counter 2 and is internally "ANDed" with Port 61h Bit 1 to provide Speaker Data Enable. This signal drives an external speaker driver device, which in turn drives the system speaker. Upon PLTRST_N, its output state is 0. Note: SPKR is sampled as a functional strap. There is a weak integrated pull-down resistor on SPKR pin which is disabled after PLTRST_N de-asserts.
GPIO35_NMI_N	IO/OD	15K-40K PU in NMI mode Only	VCC3_3	NMI_N: This is an NMI event indication to an external controller (such as a BMC) on server/workstation platforms. When operating as NMI event indication pin function (enabled when "NMI SMI Event Native GPIO Enable" soft strap [PCHSTRP9:bit 16] is set to 1), the pin is OD (open drain).

Table 2-11. Misc. Signals (Sheet 5 of 5)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
GPIO20_SMI_N	IO/OD	15K-40K PU in SMI mode Only	VCC3_3	SMI_N: This is an SMI event indication to an external controller (such as a BMC) on server/workstation platforms. When operating as SMI event indication pin function (enabled when "NMI SMI Event Native GPIO Enable" soft strap [PCHSTRP9:bit 16] is set to 1), the pin is OD (open drain).
SUS_STAT_N_GPIO61	O/IO	None	VCCSUS 3_3	Suspend Status: This signal is asserted by the PCH to indicate that the system will be entering a low power state soon. This can be monitored by devices with memory that need to switch from normal refresh to suspend refresh mode. It can also be used by other peripherals as an indication that they should isolate their outputs that may be going to powered-off planes. This pin may also be used as GPIO61.
SLP_WLAN_N_GPI029 _MGPI03	O/IO	None	VCCSUS 3_3	WLAN Sub-System Sleep Control: When SLP_WLAN_N is asserted, power can be shut off to the external wireless LAN device. SLP_WLAN_N will always will be de-asserted in S0. Note: The selection between native and GPIO mode is based on a soft strap. The soft strap default is 0, SLP_WLAN_N mode. The native and GPIO functionality is only available when the SUS well is powered. Set soft strap to 1 to use the GPIO mode.
BMBUSY_N_GPIO0	I/IO	None	VCC3_3	Bus Master Busy: Generic bus master activity indication driven into the PCH. This signal can be configured to set the PM1_STS.BM_STS bit. The signal can also be configured to assert indications transmitted from the integrated PCH to the integrated processor using the PMSYNCH pin.

2.11 USB Interface

Note: The USB2.0 signals in the integrated PCH integrate pull-down resistors and provide an

output driver impedance of 45 Ω that requires no external series resistor. No external pull-up/pull-down resistors should be added to the USB2.0 signals. USB ports not

needed can be left floating as No Connect.

Note: The voltage divider formed by the device pull-up and the host pull-down will guarantee

the data wire will park at a safe voltage level, which is below the VBUS value. This ensures that the host/hub will not see 5V at the wire when inter-operating with devices

that have VBUS at 5V.

Note: All USB 2.0 register addresses throughout the EDS correspond to the external pin

names. Refer to the table below to know exactly how the USB pins are mapped to the

different internal ports within the xHCI and EHCI controllers.

Table 2-12. USB Interface Signals (Sheet 1 of 2)

Name	xHCI Port	EHCI Port	Туре	Description
USB2_DP0 USB2_DN0	0	0	I/O	USB 2.0 Port 0 Transmit/Receive Differential Pair 0: This USB 2.0 signal pair can be routed to xHCI or EHCI Controller 1 through software and should map to a USB connector with one of the overcurrent OC Pins 0-3.
USB2_DP1 USB2_DN1	1	1	I/O	USB 2.0 Port 1 Transmit/Receive Differential Pair 1: This USB 2.0 signal pair can be routed to xHCI or EHCI Controller 1 through software and should map to a USB connector with one of the overcurrent OC Pins 0-3.
USB2_DP2 USB2_DN2	2	2	I/O	USB 2.0 Port 2 Transmit/Receive Differential Pair 2: This USB 2.0 signal pair can be routed to xHCI or EHCI Controller 1 through software and should map to a USB connector with one of the overcurrent OC Pins 0-3.
USB2_DP3 USB2_DN3	3	3	I/O	USB 2.0 Port 3 Transmit/Receive Differential Pair 3: This USB 2.0 signal pair can be routed to xHCI or EHCI Controller 1 through software and should map to a USB connector with one of the overcurrent OC Pins 0-3.

Table 2-12. USB Interface Signals (Sheet 2 of 2)

Name	xHCI Port	EHCI Port	Туре	Description
USB3_TX_DP1 USB3_TX_DN1	1	N/A	0	USB 3.0 Differential Transmit Pair 1: These are USB 3.0-based outbound high-speed differential signals, mapped to High Speed I/O (HSIO) Port #1 and the xHCI Controller. It should map to a USB connector with one of the OC (overcurrent) pins 0-7.
USB3_RX_DP1 USB3_RX_DN1	1	N/A	I	USB 3.0 Differential Receive Pair 1: These are USB 3.0-based inbound high-speed differential signals, mapped to High Speed I/O (HSIO) Port #1 and the xHCI Controller. It should map to a USB connector with one of the OC (overcurrent) pins 0-7.
USB3_TX_DP2 USB3_TX_DN2	2	N/A	0	USB 3.0 Differential Transmit Pair 2: These are USB 3.0-based outbound high-speed differential signals, mapped to High Speed I/O (HSIO) Port #2 and the xHCI Controller. It should map to a USB connector with one of the OC (overcurrent) pins 0-7.
USB3_RX_DP2 USB3_RX_DN2	2	N/A	I	USB 3.0 Differential Receive Pair 2: These are USB 3.0-based inbound high-speed differential signals, mapped to High Speed I/O (HSIO) Port #2 and the xHCI Controller. It should map to a USB connector with one of the OC (overcurrent) pins 0-7.
USB3_TX_DP5 USB3_TX_DN5	5	N/A	0	USB 3.0 Differential Transmit Pair 5: These are USB 3.0-based outbound high-speed differential signals, mapped to High Speed I/O (HSIO) Port #3 and the xHCI Controller. It should map to a USB connector with one of the OC (overcurrent) pins 0-7.
USB3_RX_DP5 USB3_RX_DN5	5	N/A	I	USB 3.0 Differential Receive Pair 5: These are USB 3.0-based inbound high-speed differential signals, mapped to High Speed I/O (HSIO) Port #3 and the xHCI Controller. It should map to a USB connector with one of the OC (overcurrent) pins 0-7.
USB3_TX_DP6 USB3_TX_DN6	6	N/A	0	USB 3.0 Differential Transmit Pair 6: These are USB 3.0-based outbound high-speed differential signals, mapped to High Speed I/O (HSIO) Port #4 and the xHCI Controller. It should map to a USB connector with one of the OC (overcurrent) pins 0-7.
USB3_RX_DP6 USB3_RX_DN6	6	N/A	I	USB 3.0 Differential Receive Pair 6: These are USB 3.0-based inbound high-speed differential signals, mapped to High Speed I/O (HSIO) Port #4 and the xHCI Controller. It should map to a USB connector with one of the OC (overcurrent) pins 0-7.
OC0#/GPIO59 OC1#/GPIO40 OC2#/GPIO41 OC3#/GPIO42 OC4#/GPIO43 OC5#/GPIO9 OC6#/GPIO10 OC7#/GPIO14	N/A	N/A	I	Overcurrent Indicators: These signals set corresponding bits in the USB controllers to indicate that an over-current condition has occurred. OC[7:0]# is the default (Native) function for these pins but they may be configured as GPIOs instead. OC pins are 3.3V tolerant. Sharing of OC pins is required to cover all USB connectors but no more than 1 OC line may be connected to a USB connector. OC[3:0]# should be connected with USB 2.0 ports 0-3 and any 4 of USB 3.0 ports. OC[7:4]# should be connected with any 4 of USB 3.0 ports.
USB2_RBIAS	N/A	N/A	0	USB Resistor Bias: Analog connection point for an external resistor that is used to set transmit currents and internal load resistors. It is recommended that a 22.6 Ω ± 1% resistor to ground be connected to this pin.
USB2_RBIAS#	N/A	N/A	I	USB Resistor Bias Complement: Analog connection point for an external resistor that is used to set transmit currents and internal load resistors. This signal should be connected directly to USBRBIAS.

2.12 SATA Signals

Table 2-13. SATA2 Signals (Sheet 1 of 2)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
SATA_TX_DP0 SATA_TX_DN0	0	N/A	VCCIO	Serial ATA Differential Transmit Pair 0: These outbound SATA Port 0 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 15. In compatible mode, SATA Port 0 is the primary master of SATA Controller 1.
SATA_RX_DP0 SATA_RX_DN0	I	N/A	VCCIO	Serial ATA Differential Receive Pair 0: These inbound SATA Port 0 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 15. In compatible mode, SATA Port 0 is the primary master of SATA Controller 1.
SATA_TX_DP1 SATA_TX_DN1	0	N/A	VCCIO	Serial ATA Differential Transmit Pair 1: These outbound SATA Port 1 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 16. In compatible mode, SATA Port 1 is the secondary master of SATA Controller 1.
SATA_RX_DP1 SATA_RX_DN1	I	N/A	VCCIO	Serial ATA Differential Receive Pair 1: These inbound SATA Port 1 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 16. In compatible mode, SATA Port 1 is the secondary master of SATA Controller 1.
SATA_TX_DP2 SATA_TX_DN2	0	N/A	VCCIO	Serial ATA Differential Transmit Pair 2: These outbound SATA Port 2 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 17. In compatible mode, SATA Port 2 is the primary slave of SATA Controller 1.
SATA_RX_DP2 SATA_RX_DN2	I	N/A	VCCIO	Serial ATA Differential Receive Pair 2: These inbound SATA Port 2 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 17. In compatible mode, SATA Port 2 is the primary slave of SATA Controller 1.
SATA_TX_DP3 SATA_TX_DN3	0	N/A	VCCIO	Serial ATA Differential Transmit Pair 3: These outbound SATA Port 3 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 18. In compatible mode, SATA Port 3 is the secondary slave of SATA Controller 1.
SATA_RX_DP3 SATA_RX_DN3	I	N/A	VCCIO	Serial ATA Differential Receive Pair 3: These inbound SATA Port 3 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 18. In compatible mode, SATA Port 3 is the secondary slave of SATA Controller 1.
SATA_TX_DP4 SATA_TX_DN4	0	N/A	VCCIO	Serial ATA Differential Transmit Pair 4: These outbound SATA Port 4 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 13. In compatible mode, SATA Port 4 is the primary master of SATA Controller 2. Note: Use FITC to set the soft straps that select this port as PCIe Port 1. Default configuration is SATA Port 4.
SATA_RX_DP4 SATA_RX_DN4	I	N/A	VCCIO	Serial ATA Differential Receive Pair 4: These inbound SATA Port 4 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 13. In compatible mode, SATA Port 4 is the primary master of SATA Controller 2. Note: Use FITC to set the soft straps that select this port as PCIe Port 1. Default configuration is SATA Port 4.
SATA_TX_DP5 SATA_TX_DN5	0	N/A	VCCIO	Serial ATA Differential Transmit Pair 5: These outbound SATA Port 5 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 14. In compatible mode, SATA Port 5 is the secondary master of SATA Controller 2. Note: Use FITC to set the soft straps that select this port as PCIe Port 2. Default configuration is SATA Port 5.
SATA_RX_DP5 SATA_RX_DN5	I	N/A	VCCIO	Serial ATA Differential Receive Pair 5: These inbound SATA Port 5 high-speed differential signals support 1.5 Gb/s, 3 Gb/s and 6 Gb/s, and are mapped to HSIO Port 14. In compatible mode, SATA Port 5 is the secondary master of SATA Controller 2. Note: Use FITC to set the soft straps that select this port as PCIe Port 2. Default configuration is SATA Port 5.

Table 2-13. SATA2 Signals (Sheet 2 of 2)

ĺ				
Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
SATA0GP / GPIO21	I	None	VCC3_3	Serial ATA 0 General Purpose: When configured as SATA0GP, this is an input pin that is used as an interlock switch status indicator for SATA Port 0. Drive the pin to 0 to indicate that the switch is closed and to 1 to indicate that the switch is open. The default use of this pin is GPIO21.
SATA1GP / GPIO19	I	15K-40K PU	VCC3_3	Serial ATA 1 General Purpose: When configured as SATA1GP, this is an input pin that is used as an interlock switch status indicator for SATA Port 1. Drive the pin to 0 to indicate that the switch is closed and to 1 to indicate that the switch is open. The default use of this pin is GPIO19.
SATA2GP / GPIO36	I	15K-40K PD	VCC3_3	Serial ATA 2 General Purpose: When configured as SATA2GP, this is an input pin that is used as an interlock switch status indicator for SATA Port 2. Drive the pin to 0 to indicate that the switch is closed and to 1 to indicate that the switch is open. The default use of this pin is GPIO36.
SATA3GP / GPIO37	I	15K-40K PD	VCC3_3	Serial ATA 3 General Purpose: When configured as SATA3GP, this is an input pin that is used as an interlock switch status indicator for SATA Port 3. Drive the pin to 0 to indicate that the switch is closed and to 1 to indicate that the switch is open. The default use of this pin is GPIO37.
SATA4GP/GPIO16	I	15K-40K PU	VCC3_3	Serial ATA 4 General Purpose: When configured as SATA4GP, this is an input pin that is used as an interlock switch status indicator for SATA Port 4. Drive the pin to 0 to indicate that the switch is closed and to 1 to indicate that the switch is open. The default use of this pin is GPIO16.
SATA5GP /GPIO49	I	15K-40K PU	VCC3_3	Serial ATA 5 General Purpose: When configured as SATA5GP, this is an input pin that is used as an interlock switch status indicator for SATA Port 5. Drive the pin to 0 to indicate that the switch is closed and to 1 to indicate that the switch is open. The default use of this pin is GPIO49.
SATALED#	OD	None	VCC3_3	Serial ATA LED: This signal is an open-drain output pin driven during SATA command activity. It is to be connected to external circuitry that can provide the current to drive a platform LED. When active, the LED is on. When tri-stated, the LED is off. An external pull-up resistor to Vcc3_3 is required.
SCLOCK /GPIO22	OD	None	VCC3_3	SGPIO Reference Clock: The SATA controller uses rising edges of this clock to transmit serial data, and the target uses the falling edge of this clock to latch data. The SClock frequency supported is 32 kHz. If SGPIO interface is not used, this signal can be used as GPIO22.
SLOAD / GPIO38	OD	None	VCC3_3	SGPIO Load: The controller drives a 1 at the rising edge of SCLOCK to indicate either the start or end of a bit stream. A 4-bit vendor specific pattern will be transmitted right after the signal assertion. If SGPIO interface is not used, this signal can be used as GPIO38.
SDATAOUTO / GPIO39 SDATAOUT1 / GPIO48	OD	None	VCC3_3	SGPIO Dataout: Driven by the controller to indicate the drive status in the following sequence: drive 0, 1, 2, 3, 4, 5, 0, 1, 2 If SGPIO interface is not used, the signals can be used as GPIO.
SATA_RCOMP	I	None	VCCVRM	Impedance Compensation Input: Connected to a 7.5 k Ω (1%) precision external pull-up resistor to 1.5V.
SATA_IREF	I	None	VCCVRM	Internal Reference Voltage: Connect directly to 1.5V.

2.13 Clock Signals

Table 2-14. Clock Signals

		1	1	
Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
CLKOUT_ITPXDP_DP CLKOUT_ITPXDP_DN	0	None	VCCIO	100 MHz PCIe* 3.0 specification compliant differential output to processor XDP/Intel ITP connector on platform.
CLKIN_GND[4:1]_DP CLKIN_GND[4:1]_DN	I	None	VCCIO	Unused. Tie each signal to GND through a 10 $k\Omega$ resistor.
XTAL25_IN	I	None		Connection for 25 MHz crystal to integrated PCH oscillator circuit
XTAL25_OUT	0	None		Connection for 25 MHz crystal to integrated PCH oscillator circuit
REFCLK14IN	I	None	VCC3_3	Unused. Tie signal to GND through a 10 $k\Omega$ resistor.
CLKOUT_PEG_DP CLKOUT_PEG_DN	0	None	VCCIO	100 MHz PCIe 3.0 specification compliant differential output to a PCI Express* device.
CLKOUT_PCIE_P[7:0] CLKOUT_PCIE_N[7:0]	0	None	VCCIO	100 MHz PCIe 2.0 and PCIe 3.0 specification compliant differential output to PCI Express devices
CLKOUT_PCI[4:0]	0	10K-45K PD	VCC3_3	Single-Ended, 33 MHz outputs to various PCI connectors/devices. One of these signals must be connected to CLKIN_PCILOOPBACK to function as a 33 MHz clock loopback. This allows skew control for variable lengths of CLKOUT_PCI[4:0] .
CLKOUTFLEX1 / GPIO65; CLKOUTFLEX3 / GPIO67	0	10K-45K PD	VCC3_3	Configurable as a GPIO or as a programmable output clock which can be configured by using FITC to set ICC settings as one of the following: Default configuration is 33 MHz. 33 MHz 14.318 MHz 48/24 MHz DC Output logic 0
DIFFCLK_BIASREF	I/O	None	VCCVRM	Differential Clock Bias Reference: Connected to an external precision resistor (7.5 k Ω ±1%) to 1.5V
CLKIN_PCILOOPBACK	I	None	VCC3_3	33 MHz clock feedback input, to reduce skew between integrated PCH on-die 33 MHz clock and 33 MHz clock observed by connected devices.
ICLK_IREF	I/O	None	VCCVRM	Internal Clock Bias Reference: Connect directly to a quiet 1.5V supply.
RTCX1	I	None	RTC	Crystal Input 1: This signal is connected to the 32.768 kHz crystal. If no external crystal is used, then RTCX1 can be driven with the desired clock rate. Max voltage allowed on this pin is 1.2V.
RTCX2	0	None	RTC	Crystal Input 2: This signal is connected to the 32.768 kHz crystal. If no external crystal is used, then RTCX2 must be left floating. Max voltage allowed on this pin is 1.2V.

2.14 PCI Express Gen2 Interface Signals

Table 2-15. PCIe Express Gen 2 Interface Signals

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
PCIE_TX_DP[7:0]	0	N/A	VCCIO	PCI Express* Transmit: Differential-pair output. 2.5 GT/s and 5.0 GT/s data rates supported.
PCIE_TX_DN[7:0]	0	N/A	VCCIO	PCI Express Transmit: Differential-pair output. 2.5 GT/s and 5.0 GT/s data rates supported.
PCIE_RX_DP[7:0]	I	N/A	VCCIO	PCI Express Receive: Differential-pair input. 2.5 GT/s and 5.0 GT/s data rates supported.
PCIE_RX_DN[7:0]	I	N/A	VCCIO	PCI Express Receive: Differential-pair input. 2.5GT/s and 5.0GT/s data rates supported.
PCIE_IREF	I	None	VCCVRM	Internal Reference Voltage: Connected directly to 1.5V
PCIE_RCOMP	I	None	VCCVRM	Impedance Compensation Input: Connected to a 7.5 k Ω (1%) precision external pull-up resistor to 1.5V

2.15 LPC Interface Signals

Table 2-16. LPC Signals

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
LAD[3:0]	I/O	15K-40K PU	VCC3_3	LPC Multiplexed Command, Address, Data: For LAD[3:0], internal pull-ups are provided.
LFRAME#	0	None	VCC3_3	LPC Frame: LFRAME# indicates the start of an LPC cycle, or an abort.
LDRQ0# LDRQ1#/GPIO23	I	15K-40K PU	VCC3_3	LPC Serial DMA/Master Request Inputs: LDRQ[1:0]# are used to request DMA or bus master access. These signals are typically connected to an external super I/O device. An internal pull-up resistor is provided on these signals. LDRQ1# may optionally be used as GPIO23.

2.16 Power Management Signals

Table 2-17. Power Management Signals (Sheet 1 of 3)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
APWROK	I	None	VCCSUS3_3	Active Sleep Well (ASW) Power OK: When asserted, this signal indicates that power to the ASW sub-system is stable. The ASW power rail is connected together with VCCIOIN power rail. APWROK may be tied together with PCH_PWROK signal in the Intel® Xeon® Processor D-1500 Product Family-based platform.
DPWROK	I	None	RTC	DPWROK: Power OK Indication for the VccDSW3_3 voltage rail. In Intel® Xeon® Processor D-1500 Product Family-based platform Deep Sleep Power rail is not supported, this input is tied together with RSMRST_N on platforms that do not support DeepSx. This signal is in the RTC well.
DRAMPWROK_PCH	OD	None	VCCIOIN	DRAM Power OK: This signal should connect to the SoC integrated processor's DRAM_PWR_OK pin. The integrated PCH asserts this pin to indicate when DRAM power is stable. This pin requires an external pull-up to VCCIOIN.

Table 2-17. Power Management Signals (Sheet 2 of 3)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description		
SLP_A_N	0	None	VCCSUS3_3	SLP_A_N: This signal is used to control power to the active sleep well (ASW) of the PCH. This signal is unused.		
SLP_S3_N	0	None	VCCSUS3_3	S3 Sleep Control: SLP_S3_N is for power plane control. This signal shuts off power to all non-critical systems when in S3 (Suspend To RAM), S4 (Suspend to Disk), or S5 (Soft Off) states		
SLP_S4_N	0	None	VCCSUS3_3	S4 Sleep Control: SLP_S4_N is for power plane control. This signal shuts power to all non-critical systems when in the S4 (Suspend to Disk) or S5 (Soft Off) state. Note: This pin must be used to control the DRAM power in order to use the PCH's DRAM power-cycling feature.		
SLP_SUS_N	0	None	VCCSUS3_3	DeepSx Indication: DeepSx is not supported, this pin can be left unconnected.		
SYS_PWROK	I	None	VCCSUS3_3	System Power OK: This generic power good input to the integrated PCH is driven and utilized in a platform-specific manner. While PWROK always indicates that the core wells of the PCH are stable, SYS_PWROK is used to inform the PCH that power is stable to some other system component(s) and the system is ready to start the exit from reset.		
SYS_RESET_N	I	None	VCC3_3	System Reset : This signal forces an internal reset after being debounced. The integrated PCH will reset immediately if the SMBus is idle; otherwise, it will wait up to 25 ms ±2 ms for the SMBus to idle before forcing a reset on the system		
SUSACK_N	I	9K-50K PU	VCCSUS3_3	SUSACK_N: Intel® Xeon® Processor D-1500 Product Family-based platform doesn't support Deep Sleep Power state. This pin is not used.		
SUSWARN_N_SUSP WRDNACK_GPIO30	0	None	VCC3_3	SUSWARN_N: This signal is multiplexed with GPIO30 and SUSPWRDNACK. Intel® Xeon® Processor D-1500 Product Family-based platform doesn't support Deep Sleep Power state.		
PCH_PWROK	I	None	VCCSUS3_3	Power OK: When asserted, PCH_PWROK is an indication to the integrated PCH that all of its core power rails have been stable for at least 5 ms. PCH_PWROK can be driven asynchronously. When PCH_PWROK is negated, the integrated PCH asserts PLTRST_N. Notes: 1. It is required that the power rails associated with PCI/PCIe (typically the 3.3V, 5V, and 12V core well rails) have been valid for 99 ms prior to PCH_PWROK assertion in order to comply with the 100 ms PCI 2.3/PCIe* 2.0 specification on PLTRST_N de-assertion. 2. PWROK must not glitch, even if RSMRST_N is low.		
PWRBTN_N	I	15K-40K PU	VCCSUS3_3	Power Button: The Power Button will cause SMI# or SCI to indicate a system request to go to a sleep state. If the system is already in a sleep state, this signal will cause a wake event. If PWRBTN# is pressed for more than 4 seconds, this will cause an unconditional transition (power button override) to the S5 state. Override will occur even if the system is in the S1–S4 states. This signal has an internal pull-up resistor and has an internal 16 ms debounce on the input.		
RSMRST_N	I	None	RTC	Resume Well Reset: This signal is used for resetting the resume power plane logic in the PCH. This signal must be asserted for at least 10 ms after the suspend power wells are valid. When deasserted, this signal is an indication that the suspend power wells are stable.		
PLTRST_PROC_N	0	None	VCCIO	Platform Reset Processor: A 1.0 V copy of PLTRST_N pin. This signal is the main host platform reset and should directly connect to the integrated processor pin RESET_CPU_N. No on-board logic is required to level shift the voltage of this signal.		

Table 2-17. Power Management Signals (Sheet 3 of 3)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
PLTRST_N	0	None	VCCSUS3_3	Platform Reset: The integrated PCH asserts PLTRST_N to reset devices on the platform (such as SIO, LAN, integrated processor, and so on). The integrated PCH asserts PLTRST_N during power-up and when S/W initiates a hard reset sequence through the Reset Control register (I/O port CF9h). The integrated PCH drives PLTRST_N active a minimum of 1 ms when initiated through the Reset Control register (I/O port CF9h). Note: PLTRST_N is in the VccSUS3_3 well.
LAN_PHY_PWR_CTRL _GPIO12	0	None	VCCSUS3_3	LAN PHY Power Control: LAN_PHY_PWR_CTRL should be connected to LAN_DISABLE_N on the PHY. Integrated PCH will drive LAN_PHY_PWR_CTRL low to put the PHY into a low power state when functionality is not needed. Notes: 1. LAN_PHY_PWR_CTRL can only be driven low if SLP_LAN_N is deasserted. 2. Signal can instead be used as GPIO12.
RI_N	I	None	VCCSUS3_3	Ring Indicate: This signal is an input from a modem. It can be enabled as a wake event, and this is preserved across power failures.
SUSCLK_GPI062	I/O	15K-40K PU	VCCSUS3_3	Suspend Clock: This clock is an output of the RTC generator circuit to use by other chips for refresh clock. This pin may also be used as GPIO62
WAKE_N	I/O	15K-40K PD	VCCSUS3_3	PCI Express* Wake Event in Sx: This signal is in SUS and behaves as an input pin in Sx states. Sideband wake signal on PCI Express asserted by components requesting wake up. PCIe OBFF on this pin has been de-featured and is not supported
LAN_PWRGOOD	I	None	VCCIOIN	Power good indication that all power rails to SoC South Complex are good.
WAKELAN_N	0	None	VCCIOIN	This is an indication from SoC South Complex (SC) to the integrated PCH that SC receives the magic packet from 10GbE interface.
TD_IREF	I	None	N/A	This pin requires an 8.2K 1% pull-down resistor tied to ground. It provides a reference current for a thermal diode in the PCH logic.

2.17 Interrupt Signals

Table 2-18. Interrupt Signals

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
SERIRQ	I/OD	None	VCC3_3	Serial Interrupt Request: This pin implements the serial interrupt protocol.
PIRQ[D:A]_N	I/OD	None	VCC3_3	PCI Interrupt Requests: In non-APIC mode, the PIRQx_N signals can be routed to interrupts 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, or 15. Each PIRQx_N line has a separate Route Control register. In APIC mode, these signals are connected to the internal I/O APIC in the following fashion: PIRQA_N is connected to IRQ16, PIRQB_N to IRQ17, PIRQC_N to IRQ18, and PIRQD# to IRQ19. This frees the legacy interrupts.
PIRQ[H:E]_N/GPIO[5:2]	I/OD	None	VCC3_3	PCI Interrupt Requests: In non-APIC mode, the PIRQx# signals can be routed to interrupts 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, or 15. Each PIRQx_N line has a separate Route Control register. In APIC mode, these signals are connected to the internal I/O APIC in the following fashion: PIRQE_N is connected to IRQ20, PIRQF_N to IRQ21, PIRQG_N to IRQ22, and PIRQH_N to IRQ23. This frees the legacy interrupts. If not needed for interrupts, these signals can be used as GPIO

2.18 **GPIO Signals**

The following table summarizes the GPIOs in the PCH. The control for the GPIO signals is handled through an independent 128-byte I/O space. The base offset for this space is selected by the GPIO_BAR register in D31:F0 configuration space.

Highlights of GPIO features:

- a. Only GPIO[31:1] are blink-capable.
- When the default of a multiplexed GPIO is native but the desired functionality is GPIO, care should be taken to ensure the signal is stable until it is initialized to GPIO functionality.
- c. Glitch-less output means the signal is ensured to be stable (no glitch) during power on and when switching mode of operation from native to GPIO or GPIO to native. Glitch-less Input means the signal has built-in de-glitch protection that gates the input signal until power has become stable (the input is ignored during this time).
- d. The following GPIOs are capable of generating SMI_N, SCI, or NMI: GPIO[60, 57, 43, 27, 22, 21, 19, 17, 15, 14, 12:0].
- e. $GPIO_USE_SEL[31:0]$, $GPIO_USE_SEL2[63:32]$ and $GPIO_USE_SEL3[75:64]$ select whether the pin is selected to function as GPIO ($GPIO_USE_SEL[x] = 1$) or Native ($GPIO_USE_SEL[x] = 0$). However, the PCH soft straps (SPI Flash) take precedence if there is a mismatch with $GPIO_USE_SEL$.
- f. $GP_IO_SEL[31:0]$, $GP_IO_SEL[63:32]$ and $GP_IO_SEL[75:64]$ select whether the pin is an output $(GP_IO_SEL[x] = 0)$ or an input $(GP_IO_SEL[x] = 1)$. The value written to or reported in this register is invalid when the pin is programmed to native function.
- g. If the corresponding GPIO has been set as an input, and GPI_ROUT has been programmed for NMI functionality, the GPI_NMI_EN[15:0] is used to allow active-high or active-low NMI events (depending on the polarity selected by GPI_INV[31:0]).
- All the GP_RST_SEL registers are only resettable by RSMRST_N. GPIO Configuration registers within the core well are reset whenever PWROK is deasserted.
- GPIO Configuration registers within the suspend well are reset when RSMRST_N is asserted, CF9h reset (06h or 0Eh), or SYS_RESET_N is asserted. However, CF9h reset and SYS_RESET_N events can be masked from resetting the suspend well GPIO by programming appropriate GPIO Reset Select (GPIO_RST_SEL) registers.
- j. GPIO24 is an exception to the other GPIO signals in the suspend well and is not reset by CF9h reset (06h or 0Eh).

Table 2-19. General Purpose I/O Signals (Sheet 1 of 4)

Name Power Well	Default (Note 2)	GPI Event		h-less te 6)	Description	
	Well	(Note 2)		Input	Output	
GPIO0	Core	GPI	Yes	No	No	Multiplexed with BMBUSY_N
GPIO1	Core	GPI	Yes	Yes	No	Multiplexed with TACH1.
GPIO2 ⁸	Core	GPI	Yes	No	No	Multiplexed PIRQE_N.
GPIO3 ⁸	Core	GPI	Yes	No	No	Multiplexed PIRQF_N.
GPIO4 ⁸	Core	GPI	Yes	No	No	Multiplexed PIRQG_N.
GPIO5 ⁸	Core	GPI	Yes	No	No	Multiplexed PIRQH_N.

Table 2-19. General Purpose I/O Signals (Sheet 2 of 4)

Name	Power Well	Default (Note 2)	GPI Event		ch-less ote 6)	Description
	weii	(Note 2)		Input	Output	
GPIO6	Core	GPI	Yes	Yes	No	Multiplexed with TACH2
GPIO7	Core	GPI	Yes	Yes	No	Multiplexed with TACH3
GPIO8	Sus	GPO	Yes	No	No	Unmultiplexed
GPIO9	Sus	Native	Yes	No	No	Multiplexed with OC5#. When configured as GPIO, default direction is Input (GPI).
GPIO10	Sus	Native	Yes	No	No	Multiplexed with OC6#. When configured as GPIO, default direction is Input (GPI).
GPIO11	Sus	Native	Yes	Yes	No	Multiplexed with SMBALERT#. When configured as GPIO, default direction is Input (GPI).
GPIO12 ¹⁰	SUS	Native	Yes	No	No	Multiplexed with LAN_PHY_PWR_CTRL. GPIO / Native functionality is controlled using soft strap. When configured as GPIO, default direction is Output (GPO).
GPIO14	Sus	Native	Yes	No	No	Multiplexed with OC7#. When configured as GPIO, default direction is Input (GPI).
GPIO15	SUS	GPO	Yes	No	Yes	Unmultiplexed
GPIO16 ¹⁰	Core	GPI	No	No	No	Multiplexed with SATA4GP.
GPIO17	Core	GPI	Yes	Yes	No	Multiplexed with TACH0.
GPIO18	Core	Native	No	No	No	Multiplexed with PCIECLKRQ1_N. External pull up resistor required for Native function. When configured as GPIO, default direction is Output (GPO).
GPIO19 ⁵	Core	GPI	Yes	No	No	Multiplexed with SATA1GP.
GPIO20 ¹⁴	Core	Native	No	No	No	When configured as GPIO, default direction is Output (GPO). Also available as SMI_N.
GPIO21	Core	GPI	Yes	No	No	Multiplexed with SATA0GP.
GPIO22	Core	GPI	Yes	No	No	Multiplexed with SCLOCK.
GPIO23	Core	Native	No	No	No	Multiplexed with LDRQ1_N.
GPIO24 ¹	SUS	GPO	No	No	Yes	Unmultiplexed
GPIO25	SUS	Native	No	No	No	Unmultiplexed (native function not supported but pin defaults to native mode and be configured for GPIO.)
GPIO26	SUS	Native	No	No	No	Unmultiplexed (native function not supported but pin defaults to native mode and be configured for GPIO.)
GPIO27	SUS	GPI	No	No	No	Unmultiplexed
GPIO28	SUS	GPO	No	No	Yes	Unmultiplexed
GPIO29 ^{10,13}	SUS	Native	No	No	Yes	Multiplexed with SLP_WLAN_N. GPIO / Native functionality is controlled using soft strap. When configured as GPIO, default direction is Output (GPO).
GPIO30	Sus	Native	No	No	Yes	Multiplexed with SUSPWRDNACK, SUSWARN_N. SUSPWRDNACK mode is the default mode of operation. When configured as GPIO, default direction is Input (GPI).
GPIO31 ³	SUS	GPI	No	No	Yes	Notes: 1. Toggling this pin at a frequency higher than 10 Hz is not supported. 2. GPIO_USE_SEL[31] is internally hardwired to a 1b, which means GPIO mode is permanently selected and cannot be changed.

Table 2-19. General Purpose I/O Signals (Sheet 3 of 4)

Name	Power Well	Default (Note 2)	GPI Event	Glitch-less (Note 6)		Description	
	weii	(Note 2)		Input	Output		
GPIO32 ⁴	Core	GPO	No	No	No	Unmultiplexed	
GPIO33 ⁵	Core	GPO	No	No	No	Unmultiplexed	
GPIO35	Core	GPO	No	No	Yes	Also available as NMI_N.	
GPIO36 ⁵	Core	GPI	No	No	No	Multiplexed with SATA2GP.	
GPIO37 ⁵	Core	GPI	No	No	No	Multiplexed with SATA3GP.	
GPIO38	Core	GPI	No	No	No	Multiplexed with SLOAD.	
GPIO39	Core	GPI	No	No	No	Multiplexed with SDATAOUT0.	
GPIO40	Sus	Native	No	No	No	Multiplexed with OC1#. When configured as GPIO, default direction is Input (GPI).	
GPIO41	Sus	Native	No	No	No	Multiplexed with OC2#. When configured as GPIO, default direction is Input (GPI).	
GPIO42	Sus	Native	No	No	No	Multiplexed with OC3#. When configured as GPIO, default direction is Input (GPI).	
GPIO43	Sus	Native	Yes	No	No	Multiplexed with OC4#. When configured as GPIO, default direction is Inp (GPI).	
GPIO44	Sus	Native	No	No	No	Unmultiplexed (native function not supported but pin defaults to native mode and be configured for GPIO.)	
GPIO45	Sus	Native	No	No	No	Unmultiplexed (native function not supported but pin defaults to native mode and be configured for GPIO.)	
GPIO46	Sus	Native	No	No	No	Unmultiplexed (native function not supported but pin defaults to native mode and be configured for GPIO.)	
GPIO48	Core	GPI	No	No	No	Multiplexed with SDATAOUT1.	
GPIO49 ¹⁰	Core	GPI	No	Yes	No	Multiplexed with SATA5GP.	
GPIO50	Core	GPI	No	No	No	Unmultiplexed	
GPIO51 ⁵	Core	GPO	No	No	No	Unmultiplexed	
GPIO52	Core	GPI	No	No	No	Unmultiplexed	
GPIO53 ⁵	Core	GPO	No	No	No	Unmultiplexed	
GPIO54	Core	GPI	No	No	No	Unmultiplexed	
GPIO55 ⁵	Core	GPO	No	No	No	Unmultiplexed	
GPI057 ⁹	Sus	GPI	Yes	No	Yes	Unmultiplexed. Can be re-purposed for NFC interface input.	
GPIO58	Sus	Native	No	Yes	No	Multiplexed with SML1CLK. When configured as GPIO, default direction is Input (GPI).	
GPIO59	Sus	Native	No	No	No	Multiplexed with OCO#. When configured as GPIO, default direction is Input (GPI).	
GPIO60	Sus	Native	Yes	Yes	No	Multiplexed with SMLOALERT#. When configured as GPIO, default direction is Input (GPI).	
GPIO61	Sus	Native	No	No	Yes	Multiplexed with SUS_STAT_N. When configured as GPIO, default direction is Output (GPO).	

Table 2-19. General Purpose I/O Signals (Sheet 4 of 4)

Name	Power Well	Default (Note 2)	GPI Event		h-less ete 6)	Description
	Well	(Note 2)		Input	Output	
GPIO62 ^{5,11}	Sus	Native	No	No	No	Multiplexed with SUSCLK. When configured as GPIO, default direction is Output (GPO).
GPIO65	Core	Native	No	No	No	Multiplexed with CLKOUTFLEX1. When configured as GPIO, default direction is Output (GPO).
GPIO67	Core	Native	No	No	No	Multiplexed with CLKOUTFLEX3. When configured as GPIO, default direction is Output (GPO).
GPIO68	Core	GPI	No	Yes	No	Multiplexed with TACH4.
GPIO69	Core	GPI	No	Yes	No	Multiplexed with TACH5.
GPIO70 ¹⁰	Core	Native	No	Yes	No	Multiplexed with TACH6.
GPIO71 ¹⁰	Core	Native	No	Yes	No	Multiplexed with TACH7.
GPIO72 ⁴	SUS	Native	No	No	No	Unmultiplexed
GPIO74 ^{9,11,15}	Sus	Native	No	Yes	No	Multiplexed with SML1ALERT_N/TEMP_ALERT_N. When configured as GPIO, default direction is Input (GPI). Can be re-purposed for NFC interface input.
GPIO75	Sus	Native	No	Yes	No	Multiplexed with SML1DATA. When configured as GPIO, default direction is Input (GPI).

Notes:

- GPIO24 register bits are not cleared by CF9h reset by default, it is programmable through GP_RST_SEL[24].
- Internal pull up or pull down may be present when Native functionality is selected.
- Internal pull down resistor may be enabled in Deep Sx mode based on DSX_CFG configuration bit, as follows: 1 (pin will be driven by platform in Deep Sx) -> Z; 0 (pin will NOT be driven by platform in Deep Sx) -> Internal pull-down. Refer to DSX_CFG register (RCBA+3334h) for more details.
- For pins that are available as GPIO-only: if the power-on default is native, BIOS is still required to configure the pin as GPIO by writing to the pin's GPIO_USE_SEL register, even though the pin is only available as GPIO.
- A functional strap also exists on this pin.
- Glitch-less Inputs are guaranteed, by circuit design, to de-glitch the input. Glitch-less Outputs are guaranteed, by circuit design, to not generate any glitches on the output during power-on.
- The GPIO pins which are capable of generating NMI message when it is configured as input, its GPI_ROUT register is configured NMI functionality and its corresponding GPI NMI Enable (GNE) bit is set. NMI event is positive edge trigger based on the signal and after GPI Inversion logic.
- When GPIO[5:2] are configured as output GPIOs, they behave in an open drain manner.
- GPIO 74 or GPIO 57 can be used for NFC on a platform. The NFC option can be set through FITC in Intel ME configuration
- 10. For GPIOs where GPIO vs Native Mode is configured using SPI Soft Strap, the corresponding GPIO_USE_SEL bits for these GPIOs have no effect. The GPIO_USE_SEL bits for these GPIOs may change to reflect the Soft-Strap configuration even though GPIO Lockdown Enable (GLE) bit is set.
- GPIO62 defaults as Native SUSCLK. If this pin is to be configured as GPIO, it is required that the board ensure that the 32.768 kHz toggle rate does not affect the receiving logic of the pin until it is set as GPIO.
- When switching from GPIO at logic 1 to the native functionality, the pin must not glitch low.
 A soft strap (PMC_SOFT_STRAP_2 register[7] GP23MGPIO3_SLPWLAN_SEL) to enable switching between SLP_WLAN_N (default) or GP29/MPGIO3. By default the strap is 0b, which enables the SLP_WLAN_N pin function when SUS well is up. When soft strap is loaded and value is 1b, the pin returns to its regular GPIO or MGPIO mode while SLP_WLAN_N function no longer exists. Please also take into account of note 11.
- When strapped as SMI_N, the pin is automatically configured as open drain. The SMI_N function is not the same as the SMI_N events that the GPIOs can be configured to generate, as described in GPI_ROUT and ALT_GPI_SMI_EN.

 15. The choice of which native mode, SML1ALERT_N or TEMP_ALERT_N, is determined by a soft strap.

2.19 MGPIO Signals

The following signals can be optionally used by the Intel[®] Management Engine (Intel[®] ME) supported applications and appropriately configured by Intel ME Firmware. When configured and used as a manageability function, the associated host GPIO functionality is no longer available. If the manageability function is not used in a platform, the signal can be used as a host General Purpose I/O or a native function.

The manageability signals are referred to as Intel ME GPIO pins (MGPIO pins), which are GPIO pins that can be controlled through Intel ME FW.

Table 2-20. MGPIO Conversion Table

MGPIO	GPIO	Well	Default Usage
1	30	SUS	SUSWARN_N or SUSPWRDNACK
2	31	SUS	GPIO
4	60	SUS	SML0ALERT_N
5	57	SUS	GPIO (assumes GPIO57 is not setup for NFC)
6	27	DSW	Intel ME Wake Input
8	74	SUS	SML1ALERT_N/TEMP_ALERT_N
9	16	Core	SATA4GP
10	49	Core	SATA5GP
11	58	SUS	SML1CLK
12	75	SUS	SML1DATA

2.20 System Management Interface Signals

Table 2-21. SMBus and SMLink Signals (Sheet 1 of 2)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
INTRUDER_N	I	None	RTC	Intruder Detect: This signal can be set to disable the system if box detected open. This signal status is readable, so it can be used like a GPI if the Intruder Detection is not needed.
SMBALERT_N_GPIO11	OD	None	VCCSUS3_3	SMBus Alert: This signal is used to wake the system or generate SMI_N. This signal may be used as GPIO11.
SMBCLK	I/OD	None	VCCSUS3_3	SMBus Clock: External pull-up resistor is required.
SMBDATA	I/OD	None	VCCSUS3_3	SMBus Data: External pull-up resistor is required.
SML0ALERT_N_GPIO60 _MGPIO4	OD	None	VCCSUS3_3	SMLink Alert 0: Output of the integrated LAN controller to external PHY. External pull-up resistor is required. This signal can instead be used as GPIO60. Also, alert for the ME SMBus controller to optional Embedded Controller or BMC.
SML0CLK	I/OD	None	VCCSUS3_3	System Management Link 0 Clock: SMBus link to external PHY. SMBus link to optional Embedded Controller or BMC.External pullup is required.
SMLODATA	I/OD	None	VCCSUS3_3	System Management Link 0 Data: SMBus link to external PHY. SMBus link to optional Embedded Controller or BMC.External pullup is required.

Table 2-21. SMBus and SMLink Signals (Sheet 2 of 2)

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
SML1ALERT_N_PCHHO T_N_GPIO74	OD	None	VCCSUS3_3	SMLink Alert 1: A soft-strap determines the native function SML1ALERT_N or TEMP_ALERT_N usage. When soft-strap is 0, function is SML1ALERT_N, when soft-strap is 1, function is TEMP_ALERT_N. This pin can also be set to function as GPIO74. External pull-up resistor is required on this pin.
SML1CLK_GPIO58_MG PIO11	I/OD	None	VCCSUS3_3	System Management Link 1 Clock: External pull-up resistor is required. This signal can instead be used as GPIO58.
SML1DATA_GPIO75_M GPIO12	I/OD	None	VCCSUS3_3	System Management Link 1 Data: External pull-up resistor is required. This signal can instead be used as GPIO75.

2.21 SPI Signals

Table 2-22. SPI Signals

Signal Name	I/O Type	Internal Resistor PU/PD	Power Rail	Description
SPI_CLK	0	15K-40K PU	VCCSUS 3_3	SPI Clock : SPI clock signal, during idle the bus owner will drive the clock signal low. Supported frequencies are 20 MHz, 33 MHz and 50 MHz.
SPI_CSO_N	0	15K-40K PU	VCCSUS 3_3	SPI Chip Select 0: Used to select the primary SPI Flash device. Note: This signal cannot be used for any other type of device than SPI Flash.
SPI_CS1_N	0	15K-40K PU	VCCSUS 3_3	SPI Chip Select 1: Used to select an optional secondary SPI Flash device. Note: SPI_CS1_N cannot be used for any other type of device than SPI Flash.
SPI_CS2_N	0	15K-40K PU	VCCSUS 3_3	SPI Chip Select 2: Used to select the TPM device if it is connected to the SPI interface, it cannot be used for any other type of device than TPM. Note: TPM can be configured through soft straps to operate over LPC or SPI, but no more than 1 TPM is allowed in the system.
SPI_MOSI_IO0	I/O	15K-40K PU	VCCSUS 3_3	SPI Master OUT Slave IN: Defaults as a data output pin for PCH in Dual Output Fast Read mode. Can be configured with a soft strap as a bidirectional signal (SPI_IO0) to support the new Dual IO Fast Read, Quad IO Fast Read and Quad Output Fast Read modes.
SPI_MISO_IO1	I/O	15K-40K PU	VCCSUS 3_3	SPI Master IN Slave OUT: Defaults as a data input pin for PCH in Dual Output Fast Read mode. Can be configured with a soft strap as a bidirectional signal (SPI_IO1) to support the new Dual IO Fast Read, Quad IO Fast Read and Quad Output Fast Read modes.
SPI_IO2	I/O	15K-40K PU	VCCSUS 3_3	SPI Data I/O: A bidirectional signal used to support the new Dual IO Fast Read, Quad IO Fast Read and Quad Output Fast Read modes. This signal is not used in Dual Output Fast Read mode.
SPI_IO3	I/O	15K-40K PU	VCCSUS 3_3	SPI Data I/O: A bidirectional signal used to support the new Dual IO Fast Read, Quad IO Fast Read and Quad Output Fast Read modes. This signal is not used in Dual Output Fast Read mode.

2.22 Integrated PCH Functional Straps

The SoC integrated PCH implements hardware functional straps that are used to configure specific functions very early in the boot process, before BIOS or software intervention. Some are sampled at the rising edge of PCH_PWROK, while others at the rising edge of RSMRST_N to select configurations (except as noted), and then revert later to their normal usage. When Descriptor Mode is enabled, the PCH will read Soft Strap data out of the SPI device prior to the de-assertion of reset to both the Intel Management Engine and the Host system. In some cases, the soft strap data may override the hardware functional straps.

Table 2-23. SoC Integrated PCH Functional Strap Definitions (Sheet 1 of 3)

Signal	Usage	When Sampled			С	omment			
SATA1GP / GPIO19	Boot BIOS Strap bit 0 (BBS0)	Rising edge of PCH_PWROK	This fi memo bit (Ch	eld determ ry range. nipset Con	nines the de Also control fig Register	nal pull-up. stination of accesses to lable using Boot BIOS l s: Offset 3410h:Bit 10) Boot BIOS Destination	Destination . This strap		
				Bit11	Bit 10	Boot BIOS Destination			
			•	0	1	Reserved			
			-	1	0	Reserved			
			•	1	1	SPI (default)			
			i	0	0	LPC			
			LPC con in c 3. Bod or u acc	, but the process. The process of th	platform is rectly to the lot. estination Services BIOS Desti	cted, BIOS may still be required to have SPI fla PCH SPI bus with a vali elect to LPC/PCI by fund nation Bit will not affect ME or Integrated GbE well.	ish d descripto ctional stra t SPI		
GPIO51	Boot BIOS Strap bit 1 (BBS1)	Rising edge of PCH_PWROK			This fi memo bit (Ch	eld determ ry range. nipset Con	nines the de Also control fig Register	nal pull-up. stination of accesses to lable using Boot BIOS l s: Offset 3410h:Bit 11) Boot BIOS Destination	Destinatior . This strap
				Bit11	Bit 10	Boot BIOS Destination			
					0	1	Reserved		
				1	0	Reserved			
				1	1	SPI (default)			
				0	0	LPC			
			2. If o LPC con des 3. Boo or u acc	e internal prion 00 (c, but the preceded directed directed directed directed by BIOS Designed Bootesses initialismes and besses	LPC) is sele platform is a rectly to the order to boo estination Selection S	elect to LPC/PCI by fund nation Bit will not affect of ME or Integrated GbE	placed on ish ralid ctional stra it SPI		

Table 2-23. SoC Integrated PCH Functional Strap Definitions (Sheet 2 of 3)

Signal	Usage	When Sampled	Comment
SATA3GP / GPIO37	TLS Confidentiality	Rising edge of PCH_PWROK	This signal has a weak internal pull-down. 0 = Disable Intel ME Crypto Transport Layer Security (TLS) cipher suite (no confidentiality). 1 = Enable Intel ME Crypto Transport Layer Security (TLS) cipher suite (with confidentiality). Notes: 1. The internal pull-down is disabled after PLTRST_N deasserts. 2. This signal is in the Core well.
MFG_MODE_STRAP	Flash Descriptor Security Override	Rising edge of PCH_PWROK	This signal has a weak internal pull-down. 0 = Enable security measures defined in the Flash Descriptor. 1 = Disable Flash Descriptor Security (override). This strap should only be asserted high using external pull-up in manufacturing/debug environments ONLY. Notes: 1. The internal pull-down is disabled after PLTRST_N deasserts, but the pin is driven low instead. 2. Asserting MFG_MODE_STRAP high on the rising edge of PWROK will also halt Intel ME after the SoC brings up and disables the runtime Intel ME features. This is a debug mode and must not be asserted after manufacturing/debug. 3. This signal is in the Suspend well.
INTVRMEN	Integrated VRM Enable	Always	This signal does not have an internal resistor; an external resistor is required . 0 = DCPSUS1, DCPSUS2 and DCPSUS3 are powered from an external power source (should be connected to an external VRM). It should not pull the strap low. 1 = Integrated VRMs enabled. DCPSUS1, DCPSUS2 and DCPSUS3 can be left as No Connect. Notes: 1. This signal is always sampled. 2. This signal is in the RTC well.
GPIO62 / SUSCLK	PLL On-Die Voltage Regulator Enable	Rising edge of RSMRST_N	This signal has a weak internal pull-up. 0 = Disable PLL On-Die voltage regulator. 1 = Enable PLL On-Die voltage regulator. Notes: 1. The internal pull-up is disabled after RSMRST_N de-asserts. 2. This signal is in the Suspend well.
DSWODVREN	DeepSx Well On- Die Voltage Regulator Enable	Always	This signal does not have an internal resistor; an external resistor is required . 0 = Disable Integrated DeepSx Well (DSW) On-Die Voltage Regulator. This mode is only supported for testing environments. 1 = Enable DSW 3.3 V-to-1.05 V Integrated DeepSx Well (DSW) On-Die Voltage Regulator. This must always be pulled high on production boards. Notes: 1. This signal is always sampled. 2. This signal is in the RTC well.
SPKR	No Reboot	Rising edge of PCH_PWROK	The signal has a weak internal pull-down. 0 = Disable "No Reboot" mode. 1 = Enable "No Reboot" mode (integrated PCH will disable the TCO Timer system reboot feature). This function is useful when running Intel [®] In-Target Probe (Intel [®] ITP)/XDP. Notes: 1. The internal pull-down is disabled after PLTRST_N deasserts. 2. The status of this strap is readable using the NO REBOOT bit (Chipset Config Registers: RCBA + Offset 3410h:Bit 5). 3. This signal is in the Core well.

Table 2-23. SoC Integrated PCH Functional Strap Definitions (Sheet 3 of 3)

Signal	Usage	When Sampled	Comment
SATA2GP/GPIO36	SoC RX Termination	Rising edge of PCH_PWROK	This signal has a weak internal pull-down. This signal only takes effect if SoC is configured in AC coupled mode. 0 = SoC RX is terminated to VSS. Intel® Xeon® Processor D-1500 Product Family-based platform only supports SoC Rx terminated to VSS. 1 = SoC RX is terminated to VCC/2. Notes: 1. The internal pull-down is disabled after PLTRST_N de-asserts. 2. If SoC is operating in DC-coupled mode, then SoC RX is terminated to VSS and the value of this strap is ignored and does not take effect. 3. This signal is in the Core well
GPIO33	SoC Tx Termination	Rising edge of PCH_PWROK	This signal has a weak internal pull-down. 0 = SoC TX is terminated to VSS. Intel® Xeon® Processor D- 1500 Product Family-based platform only supports SoC Tx terminated to VSS 1 = SoC TX is terminated to VCC/2. Notes: 1. The internal pull-down is disabled after PLTRST_N de- asserts. 2. This signal is in the Core well.
GPIO53	SoC AC-Coupling or DC-Coupling Mode	Rising edge of PCH_PWROK	This signal has a weak internal pull-up. 0 = SoC is in AC-coupling mode. Intel® Xeon® Processor D- 1500 Product Family-based platform only supports AC- coupling mode. 1 = SoC is in DC-coupling mode. Notes: 1. The internal pull-up is disabled after PLTRST_N de- asserts. 2. This signal is in the Core well.
GPIO55	Top Swap Override	Rising edge of PCH_PWROK	The signal has a weak internal pull-up. 0 = Enable "Top Swap" mode. This inverts an address on access to SPI flash, so the processor fetches the alternate boot block instead of the original boot-block. PCH will invert A16 (default) for cycles going to the upper two 64 KB blocks in the SPI flash or the appropriate address lines (A16, A17, A18, A19, or A20) as selected in Top-Swap Block size soft strap (handled through FITc. 1 = Disable "Top Swap" mode. Notes: 1. The internal pull-up is disabled after PLTRST_N de-asserts. 2. Software will not be able to clear the Top Swap mode bit until the system is rebooted. 3. The status of this strap is readable using the Top Swap bit (Chipset Config Registers: RCBA + Offset 3414h:Bit 0). 4. This signal is in the Core well.
GPIO72	Boot Inhibit	Rising edge of RSMRST_N	Need 1K-10K pull-up to VCCSUS3_3. Signal must be sampled high at rising edge of RSMRST_N.
ME_RCVR_N	Forces ME into Recovery Mode.	This signal is checked whenever the ME resets. It should not be shared with other functions if configured for ME Recovery.	This signal can be configured via the FITc tool to be on MGPIO[8:0] or disabled. The default is pin GPIO57_MGPIO5. This signal does not have an internal pull-up or pull-down. It should have an external 10K pull-up to VCCSUS3_3 with a jumper option to a 1K pull-down resistor. 0 = Recovery mode 1 = Normal operating mode for Intel ME. The default for production systems must be normal operating mode.

2.23 SoC Integrated Processor Straps

Table 2-24. SoC Integrated Processor Straps Definitions (Sheet 1 of 2)

Signal	Usage	When Sampled	Description
BIST_ENABLE	BIST Enable Strap	RESET_CPU_N De-assertion	$5k-15 \ k\Omega$ internal pull up to VCCIOIN power rail. Build-in Self Test (BIST) enable strap: $0 = \text{BIST Disable} \\ 1 = \text{BIST Enable}$
BMCINIT	BMC Initialization Strap	PWRGOOD_CPU assertion	$5k-15~k\Omega$ internal pull down to GND. Integrated Service Processor Boot Mode Selection: 0 = Integrated Service Processor Boot Mode Disabled 1 = Integrated Service Processor Boot Mode Enable
TXT_PLTEN	Platform Enable Strap	PWRGOOD_CPU assertion	$5k-15~k\Omega$ internal pull up to VCCIOIN power rail. 0 = The platform is not Intel enabled. 1 = Default. The platform is Intel enabled.
TXT_AGENT	Agent Strap	PWRGOOD_CPU assertion	$5k-15 \text{ k}\Omega$ internal pull down to GND. 0 = Default. The SoC is not the Intel Agent. 1 = The SoC is the Intel Agent.
SAFE_MODE_BOOT	Safe Mode Boot Strap	PWRGOOD_CPU assertion	$5k-15 \text{ k}\Omega$ internal pull down to GND. 0 = Safe Mode Boot Disabled 1 = Safe Mode Boot Enabled
DEBUG_EN_N	Force Debug Enable Strap	PWRGOOD_CPU assertion	$5k\text{-}15~k\Omega$ internal pull up to VCCIOIN power rail. 0 = Debug Mode 1 = Normal Mode
DDR3_4_STRAP	DDR3 or DDR4 Selection Strap	Rising edge of LAN_PWRGOOD	It has internal pull up. Select between DDR4 and DDR3. $0 = \text{DDR3, it requires} < 1 \text{ k}\Omega \text{ pull down in order to out drive the internal pull up.} \\ 1 = \text{DDR4 (Default)}$
PECI_ID0; LAN_NCSI_TRI_EN_P ECI_ID1; THROTTLE_PECI_ID2	PECI ID[2:0]	Rising edge of LAN_PWRGOOD	In microserver design space, there will be multiple sockets that share a PECI bus. However these sockets are effectively independent agents. The PECI IDs are used as straps to identify which socket is which in order for PECI bus to work. For example: Node 0 - 3'b000, Node 1- 3'b001, Node 2- 3'b010 and so on. Recommend 5.1 k Ω pull up to VCCIOIN or 5.1 k Ω pull down to GND. There is no internal pull up or pull down.
LAN_MDIO_DIR_CTL _0; LAN_MDIO_DIR_CTL _1	LAN_SEL[1:0]	Rising edge of LAN_PWRGOOD	$00=$ Both LAN ports are disabled. Note: In this mode manageability is not functional and must not be enabled in NVM control word 1. $01=$ Port 1 is disabled. Port 0 is enabled. $10=$ Reserved $11=$ Both Port 0 and 1 are enabled. Recommend 5.1 k Ω pull up to VCCIOIN or 5.1 k Ω pull down to GND. There is no internal pull up or pull down.
RSVD12_AJ67	Reserved	Rising edge of LAN_PWRGOOD	This pin should have a 5.1 k Ω pull down to GND. There is weak internal pull down.
RSVD11_AG67	Reserved	Rising edge of LAN_PWRGOOD	This pin should have a 5.1 k Ω pull down to GND. There is weak internal pull down.
RSVD10_AN78	Reserved	Rising edge of LAN_PWRGOOD	This pin should have a 5.1 k Ω pull down to GND. There is weak internal pull down.
RSVD09_AC64	Reserved	Rising edge of LAN_PWRGOOD	This pin should always 5.1 k Ω pull down to GND. There is weak internal pull down.

Table 2-24. SoC Integrated Processor Straps Definitions (Sheet 2 of 2)

Signal	Usage	When Sampled	Description
SERIRQ_DIR	Reserved	Rising edge of LAN_PWRGOOD	Recommend 5.1 $k\Omega$ pull up to VCCIOIN. There is no internal pull up or pull down.
UART_TXD[0]	Reserved	Rising edge of LAN_PWRGOOD	Recommend 5.1 k Ω pull down to GND. There is no internal pull up or pull down.
UART_TXD[1]	NVM Security Attributes Control	Rising edge of LAN_PWRGOOD	Controls the security attributes on the NVM - for preproduction usage only. $0 = \text{Disable NVM Security (Default)} \\ 1 = \text{Security Enabled} \\ \text{Recommend 5.1 k} \Omega \text{ pull down to GND.} \\ \text{There is weak internal pull up.}$
LAN_NCSI_RXD0	Reserved	Rising edge of LAN_PWRGOOD	Recommend 5.1 $k\Omega$ pull up to VCCIOIN. There is no internal pull up or pull down.
LAN_NCSI_RXD1	Manageability Traffic Control	Rising edge of LAN_PWRGOOD	Enable/Disable manageability traffic: $0 = \text{LAN available in S5 for WoL (Default)} \\ 1 = \text{LAN not available in S5. Manageability is disabled.} \\ \text{Recommend 5.1 k} \Omega \text{ pull down to GND.} \\ \text{There is no internal pull up or pull down.}$
LAN_NCSI_ARB_OUT	SVID VR Configuration	Rising edge of LAN_PWRGOOD	Selects SVID VR Operating Mode 1 - VCCSCSUS, P1V05_PCH, VCCGBE, VCCIOIN are combined into one SVID controlled supply. 0 - Separate SVID controllers (default).

2.24 Reserved/Test Signals

Reserved and NCTF/TP can generally be left unconnected except for the following signals which require special termination. A range is specified where the exact value is not critical.

Table 2-25. Reserved Signals

Signal Name	Pin	Connection
RSVD84	AA66	49.9 Ω 1% to GND
RSVD93	A73	1k - 5.1 kΩ to GND
RSVD94	A74	1k - 5.1 kΩ to GND
RSVD00	BL14	1k - 5.1 kΩ to VCC3_3
RSVD18	E55	1k - 5.1 kΩ to GND
RSVD16	F54	1k - 5.1 kΩ to GND
RSVD17	J54	1k - 5.1 kΩ to GND
NCTF/TP	BA27	1k - 5.1 kΩ to VCC3_3
RSVD13	D71	5.1k - 10 kΩ to VCCIOIN
NCTF/TP	P11	8.2k to GND

2.25 Power Signals

Table 2-26. Power Signals (Sheet 1 of 2)

Signal Name	Description
VCCD	Power supply for the SoC memory interface.
VCCIN	Input to the Integrated Voltage Regulator (IVR) for the SoC. It is provided by a VRM/EVRD 12.5 compliant regulator. The output voltage of this supply is selected by the SoC, using the serial voltage ID (SVID) bus.
VCCIOIN	1.05 voltage supply input for SoC TAP port, Intel ITP connector and PECI interface, Intel ME and South Complex.
VCCGBE	Power supply to SoC Integrated 10 GbE controller interface
VCCSCSUS	SoC South Complex digital supply
VCCKRHV	High Voltage KR supply
VCCKRLCPLL	Power supply to KR PLL. Filter version of VCCGBE, tie to VCCGBE on motherboard.
VCCKX4PLL	Power supply to KX PLL. Tie to VCCKRHV on motherboard.
VCCSCFUSESUS	1.7V SC Fuse LVR always ON supply
VCCSCPLL	Supplies SC PLLs. Filtered version of VCCGBE, tied to VCCGBE on motherboard.
VCCSCSUS_SENSE, VSS_VCCSCSUS_SENSE	Remote sense signals for VCCSCSUS and are used by the voltage regulator to ensure accurate voltage regulation. These signals must be connected to the voltage regulator feedback circuit, which insures the output voltage remains within specification.
VCCGBE_SENSE VSS_VCCGBE_SENSE	Remote sense signals for VCCGBE and are used by the voltage regulator to ensure accurate voltage regulation. These signals must be connected to the voltage regulator feedback circuit, which insures the output voltage remains within specification
VCCIN_SENSE VSS_VCCIN_SENSE	VCCIN_SENSE and VSS_VCCIN_SENSE are remote sense signals for VCCIN MBVR12.5 and are used by the voltage regulator to ensure accurate voltage regulation. These signals must be connected to the voltage regulator feedback circuit, which insures the output voltage remains within specification.
DCPRTC	Decoupling: This signal is for RTC decoupling only. The signal requires decoupling.
DCPSST	Decoupling: Internally generated 1.5V powered from Suspend Well. This signal requires decoupling. Decoupling is required even if this feature is not used.
DCPSUS1	1.05V Suspend well power. If INTVRMEN is strapped high, power to this well is supplied internally and this pin should be left as no connect. If INTVRMEN is strapped low, power to this well must be supplied by an external 1.05V suspend rail.
DCPSUS2	1.05V Suspend well power for USB 2.0. If INTVRMEN is strapped high, power to this well is supplied internally and this pin should be left as no connect. If INTVRMEN is strapped low, power to this well must be supplied by an external 1.05V suspend rail.
DCPSUS3	1.05V Suspend well power for USB 3.0. If INTVRMEN is strapped high, power to this well is supplied internally and these pins should be left as no connect. If INTVRMEN is strapped low, power to this well must be supplied by an external 1.05V suspend rail.
DCPSUSBYP	Decoupling: This signal is for decoupling internally generated 1.05V DeepSx only.
P1V05_PROC_IO	1.05V supply for SoC integrated processor interface signals. This power may be shut off in S3, S4, S5, or G3 states.
VCC	1.05V supply for PCH core well logic. This power may be shut off in S3, S4, S5, or G3 states.
VCC_SENSE	VCC_SENSE is remote sense signals for VCC and is used by voltage regulator to ensure accurate voltage regulation.
VCC3_3	3.3V supply for core well I/O buffers
VCCADAC1_5	1.5V supply for Display DAC Analog Power. This power may be shut off in S3, S4, S5 or G3 states.
VCCADACBG3_3	3.3V supply for Display DAC Band Gap. This power may be shut off in S3, S4, S5 or G3 states.
VCCAXCK1_05	Filter version of VCCCLK
VCCCLK	1.05V Analog power supply for internal clock PLL. This power may be shut off in S3, S4, S5 or G3 states.

Table 2-26. Power Signals (Sheet 2 of 2)

Signal Name	Description
VCCCLK3_3	3.3V Analog power supply for internal clock PLL. This power may be shut off in S3, S4, S5 or G3 states.
VCCRTC	3.3V (can drop to 2.0 V min. in G3 state) supply for the RTC well. This power is not expected to be shut off unless the RTC battery is removed or completely drained. *Note:* Implementations should not attempt to clear CMOS by using a jumper to pull VccRTC low. Clearing CMOS can be done by using a jumper on RTCRST_N or GPI.
VCCIO	1.05V supply for SoC integrated PCH I/O buffers. This power may be shut off in S3, S4, S5, or G3 states.
VCCSUS3_3	3.3V supply for suspend well I/O buffers.
VCCUSBPLL	1.05V Analog power supply for USB PLL. This power may be shut off in S3, S4, S5, or G3 states.
VCCVRM	1.5V supply for internal VRMs. This power may be shut off in S3, S4, S5, or G3 states.
VSS	Ground

2.26 Integrated 10 GbE Controller Signals

Refer to Volume Four: 10 Gb Ethernet (volume 4 of 4).

3 Signal Pin States and Termination

This chapter describes the states of each SoC signal during reset sequencing and the S5 (Soft-Off) power state. It also documents what signals have internal pull-up/pull-down/series termination resistors and their values.

3.1 PCH Integrated Pull-Ups and Pull-Downs

Table 3-1. PCH Integrated Pull-Up and Pull-Down Resistors (Sheet 1 of 2)

Signal	Resistor Type	Nominal	Notes
USB2p/n[3:0]	Pull-down	15K	4
SATA1GP/GPIO19, SUSCLK/GPIO62, GPIO55, GPIO53, GPIO51,	Pull-up	20K	3, 7
SATA2GP/GPIO36, SATA3GP/GPIO37, SPKR	Pull-down	20K	3, 7
MFG_MODE_STRAP	Pull-down	15K	2, 7, 12
SATA4GP/GPIO16, SATA5GP/GPIO49	Pull-up	20K	3, 5
GPIO44, GPIO46, GPIO8	Pull-up	20K	3, 11
NMI#	Pull-up	20K	3, 6
USB3[T/R] [p/n] [2:1], USB3[T/R] [p/n] [6:5]	Pull-down	15K	4
SPI_CLK, SPI_CS[2:0]#	Pull-up	20K	3, 23
SPI_MOSI	Pull-up or Pull-down	20K	3, 22
SPI_MISO, SPI_IO3, SPI_IO2	Pull-up	20K	3, 8
PECI_PCH	Pull-down	350	17
LAD[3:0], LDRQ0#, LDRQ1#	Pull-up	20K	3
TACH[7:0]	Pull-up	20K	3, 19
PWRBTN#	Pull-up	20K	3
WAKE#	Pull-down	20K	3, 9, 19
GPIO31	Pull-down	20K	3, 9
SUSACK#	Pull-up	20K	2
GPIO27	Pull-down	20K	3, 9, 20
PME_N	Pull-up	20K	3
CLKOUT_PCI[4:0], CLKOUTFLEX3/GPIO67, CLKOUTFLEX1/GPIO65	Pull-down	20K	1, 10

Table 3-1. PCH Integrated Pull-Up and Pull-Down Resistors (Sheet 2 of 2)

Signal	Resistor Type Nominal		Notes
SMI#	Pull-up	20K	3, 9
JTAG_TDI_PCH, JTAG_TMS_PCH	Pull-up	20K	3
JTAG_TCK_PCH	Pull-down	20K	3
PCIE_Tx/Rx_DP/DN[8:1], USB3[T/R] [p/n] [2:1], USB3[T/R] [p/n] [6:5] SATA_TX/RX p/n [6:1]	Pull-up or Pull-down	50	14

Notes:

- Simulation data shows that these resistor values can range from 10 k Ω to 45 k Ω .
- Simulation data shows that these resistor values can range from 9 k Ω to 50 k Ω .
- Simulation data shows that these resistor values can range from 15 k Ω to 40 k Ω .
- Simulation data shows that these resistor values can range from 14.25 k Ω to 24.8 k Ω .
- GPIO16 has two native functions the 1st native function (SATAP4_PCIEP1_SELECT) is selected if the Flex I/O soft strap SATAP4_PCIEP1_MODE = 11b and takes precedence over any other assignments to this pin (that is, if this is selected, writes to GPIO_USE_SEL are ignored). If SATAP4_PCIEP1_MODE is not set to 11b, the GPIO_USE_SEL register can be used to select the 2nd native function (SATA4GP) or GPIO functionality. Setting SATAP4 PCIEP1 MODE = 11b also enables an internal pull up resistor in this pin to allow Flexible I/O selection of SATA Port 4 or PCIe Port 1 to be done based on the type of card installed (If sampled value = 1, select SATA; if sampled value = 0, select PCIe). The same behavior is true of pin SATA5GP/GPIO49 when the soft strap SATAP5_PCIEP2_MODE = 11b. Soft straps are handled through FITc. When operating as NMI# event indication pin function, the pin is open drain but the PCH provides an
- internal pull up to ensure the pin does not float.

 This signal is a PCH functional strap; the pull-up or pull-down on this signal is disabled after it is sampled as 7. a PCH functional strap.
- This signal has a weak internal pull-up that always on.
- When operating as SMI# event indication pin function, the pin is open drain but the PCH provides an internal pull up to ensure the pin does not float.
- The pull down is disabled after the pins are driven strongly to logic 0 when PWROK is asserted.
- The pull-up or pull-down on this signal is disabled after RSMRST# de-asserts. Pin must not be driven low until after RSMRST_N de-asserts.
- The internal pull-down on MFG_MODE_STRAP is enabled during reset.
- The Controller Link Clock and Data buffers use internal pull-up or pull-down resistors to drive a logical 1 or
- Termination resistors may be present if signal is enabled (that is, related Port is not disabled). These resistors appear to be strong pull downs or pull ups on the signals.
- 15. Internal pull down resistor may be enabled in Deep Sx mode based on DSX_CFG configuration bit, as follows: 1 (pin will be driven by platform in Deep Sx) -> Z; - 0 (pin will NOT be driven by platform in Deep Sx) -> Internal pull-down. Refer to DSX_CFG register (RCBA+3334h) for more details.
- N/A
- 17. This is a $350-\Omega$ normal pull-down, signal will be overridden to logic 1 with pull-up resistor (31 Ω) to VCC 1.05V.
- 18. N/A
- Regardless of internal pull up or pull down, an external pull up resistor is still required.
- External pull-up if Intel wired LAN is present (pull up to SUS/DSW based on deepest wake on LAN support desired).
- 21. N/A
- Weak internal pull-up resistor is enabled when APWROK is de-asserted and is switched to a weak internal pull-down resistor when APWROK and PLTRST# are both asserted.
- Signals are tri-stated with weak pull-up resistors when APWROK is de-asserted. SPI_CS1# remains tristated with a weak pull-up resistor when APWROK and PLTRST# are both asserted.

3.2 **Integrated PCH Output Signals Planes and States**

The table below shows the power plane associated with the output and I/O signals, as well as the state at various times. Within the table, the following terms are used:

"DL" SoC drives low. "DH" SoC drives high. "IPU" Internal pull-up. "IPD" Internal pull-down.

Toggling or signal is transitioning because function not stopping.

Signal Pin States and Termination

"High-Z" Tri-state. SoC not driving the signal high or low.

"Defined" Driven to a level that is defined by the function or external pull-

up/pull-down resistor (will be high or low).

"Off" The power plane is off; SoC is not driving when configured as an

output or sampling when configured as an input.

Note:

Pin state within table assumes interfaces are idle and default pin configuration for different power states.

Signal levels are the same in S3, S4 and S5, except as noted.

In general, integrated PCH suspend well signal states are indeterminate and undefined and may glitch prior to RSMRST# de-assertion.

PCH core well signal states are indeterminate and undefined and may glitch prior to PCH_PWROK assertion. However, this does not apply to THRMTRIP# as this signal is determinate and defined prior to PCH_PWROK assertion.

DSW indicates PCH Deep Sx Well. This state provides a few wake events and critical context to allow system to draw minimal power in S3, S4 or S5 states. In general, PCH DSW signal states are indeterminate, undefined and may glitch prior to DPWROK assertion. The signals that are determinate and defined prior to DPWROK assertion will have a note added as a reference.

Note that Intel® Xeon® Processor D-1500 Product Family-based platform does not support DSW state. The DSW power well has been merged with VccSUS3_3.

Table 3-2. PCH Logic Output Signals - Power Plane and States (Sheet 1 of 3)

Signal Name	Power Plane			S3/S4/S5				
		USB Interface						
USB2p/n[3:0]	Suspend	IPD	IPD	IPD				
USB3Tp/n[6:5, 2:1]	Suspend	IPD ¹	IPD ¹	S4 and S5 Off				
	PCI Express*							
PCIE_Tx_DP/DN[8:1]	Core	IPD ¹	IPD ¹	Off				
	•	SATA Interface						
SATA_TXp/n[5:0]	Core	IPU ¹	IPU ¹	Off				
SATALED#	Core	High-Z	High-Z	Off				
SCLOCK	SCLOCK Core High-Z H		High-Z	Off				
SLOAD	Core	High-Z	High-Z	Off				
SDATAOUT[1:0]	Core	High-Z	High-Z	Off				
		Clocking Signals						
CLKOUT_ITPXDP_P/N	Core	T (platform dependent)	T (platform dependent)	Off				
XTAL25_OUT	Core	High-Z	High-Z	Off				
CLKOUT_PEG_P/N	Core	Т	Т	Off				
CLKOUT_PCIE_P/N[7:0]	Core	Т	Т	Off				
CLKOUT_PCI[4:0]	Core	Т	Т	Off				
CLKOUTFLEX3, CLKOUTFLEX1	Core	T (platform T (platform Off dependent)		Off				
DIFFCLK_BIASREF	Core	High-Z	High-Z	Off				
ICLK_IREF	Core	High-Z	High-Z	Off				

Table 3-2. PCH Logic Output Signals - Power Plane and States (Sheet 2 of 3)

Signal Name	Power Plane	During Reset ⁵	Immediately after Reset ⁵	S3/S4/S5
	1	Interrupt Interface	9	
SERIRQ	Core	High-Z	High-Z	Off
PIRQ[D:A]#	Core	High-Z	High-Z	Off
PIRQ[H:E]#	Core	High-Z	High-Z	Off
NMI# ⁴	Core	IPU	IPU	Off
		Processor Interface	e	
PROCPWRGD_PCH	Core	DL	DH	Off
PMSYNCH_PCH	Core	DL	DL	Off
MFG_MODE_STRAP	Suspend	IPD	DL	IPD
GPIO33	Core	IPD	IPD	Off
		LPC Interface		
LAD[3:0]	Core	IPU	IPU	Off
LFRAME#	Core	DH	DH	Off
	Non-M	lultiplexed GPIO S	ignals	
GPIO8	Suspend	IPU	DH	DH
GPIO15 ⁴	Suspend	DL	DL	DL
GPIO24 ⁴	Suspend	DL	DL	DL
GPIO28 ⁴	Suspend	DL	DL	DL
GPIO[53, 51]	Core	IPU	DH	Off
GPIO55	Core	IPU	DL	DL
	· L	SMBus Interface	L	
SMBCLK, SMBDATA	Suspend	High-Z	High-Z	High-Z
<u> </u>	Syster	n Management Int	erface	
SML0DATA	Suspend	High-Z	High-Z	High-Z
SML0CLK	Suspend	High-Z	High-Z	High-Z
SML0ALERT#	Suspend	High-Z	High-Z ⁷	High-Z
SML1ALERT#	Suspend	High-Z	High-Z	High-Z
SML1CLK	Suspend	High-Z	High-Z	High-Z
SML1DATA	Suspend	High-Z	High-Z	High-Z
		SPI Interface	<u>.</u>	
SPI_CLK	Suspend	DL	DL	DL
SPI_CS0#	Suspend	DH	DH	DH
SPI_CS1#	Suspend	IPU	DH	DH
SPI_CS2#	Suspend	DH	DH	DH
SPI_MOSI	Suspend	IPD	DL	DL
SPI_MISO	Suspend	IPU	IPU	IPU
SPI_IO2	Suspend	IPU	IPU	IPU
SPI_IO3	Suspend	IPU	IPU	IPU
		Power Managemen	t	
DRAMPWROK_PCH	Suspend	DL	High-Z	S3 High-Z, S4 and S5 DL
AN_PHY_PWR_CTRL	DSW	DL	DL	DL
PLTRST#	Suspend	DL	DH	DL
PLTRST_PROC#	Core	DL	DH	DL

Table 3-2. PCH Logic Output Signals - Power Plane and States (Sheet 3 of 3)

Signal Name	Power Plane	During Reset ⁵	Immediately after Reset ⁵	S3/S4/S5		
SLP_A# ^{2, 3}	DSW	DL	DH	DH		
SLP_S3# ²	DSW	DL	DH	DL		
SLP_S4# ²	DSW	DL	DH	S3 DH, S4 and S5 DL		
SLP_SUS# ²	DSW	DL	DH	DH		
SUS_STAT#	Suspend	DL	DH	DL		
SUSCLK	Suspend	IPU	Т			
SUSWARN#/ SUSPWRDNACK ^{2, 4}	Suspend	DL	DL	DL		
		Thermal Signals				
PWM0	Core	DL	DL	Off		
PECI_PCH	Core	DL	DL	Off		
	Miscellaneous Signals					
SPKR	Core	IPD	DL	Off		
PCH_HOT#	Suspend	High-Z	High-Z	High-Z		
JTAG_TDO	Suspend	High-Z	High-Z	High-Z		

- 1. This is a strong pull down (or pull up, as applicable).
- 2. The pin output shall not glitch during power up sequence.
- 3. The state of signals in S3-S5 will be defined by Intel ME Policies.
- 4. Based on wake events and Intel ME state. SUSPWRDNACK is always 0 while in M0 or M3, but can be driven to 0 or 1 during the Moff state. SUSPWRDNACK is the default mode of operation. If the system supports DeepSx, then subsequent boots will default to SUSWARN# mode.
- 5. The states of signals on core and processor power planes are evaluated at the times during PLTRST# and immediately after PLTRST#. The states of the suspend signals are evaluated at the times during RSMRST# and Immediately after RSMRST#, with an exception to GPIO signals; refer to the EDS for more details on GPIO state after reset.

3.3 Integrated PCH Input and I/O Signals Planes and States

The table below shows the power plane associated with the input and I/O signals, as well as the state at various times. Within the table, the following terms are used:

"IPU" Internal pull-up.
"IPD" Internal pull-down.

"T" Toggling or signal is transitioning because function not stopping.

"High-Z" Tri-state. SoC not driving the signal high or low.

"Defined" Driven to a level that is defined by the function or external pull-

up/pull-down resistor (will be high or low).

"Off" The power plane is off; SoC is not driving when configured as an

output or sampling when configured as an input.

Note: Pin state within table assumes interfaces are idle and default pin configuration for different power states.

Signal levels are the same in S3, S4, and S5, except as noted.

In general, integrated PCH suspend well signal states are indeterminate and undefined and may glitch prior to RSMRST# de-assertion.

Integrated PCH core well signal states are indeterminate and undefined and may glitch prior to PCH_PWROK assertion. However, this does not apply to THRMTRIP# as this signal is determinate and defined prior to PCH_PWROK assertion.

DSW indicates integrated PCH Deep Sx Well. This state provides a few wake events and critical context to allow system to draw minimal power in S3, S4, or S5 states. In general, PCH DSW signal states are indeterminate, undefined and may glitch prior to DPWROK assertion. The signals that are determinate and defined prior to DPWROK assertion will have a note added as a reference.

Note that Intel® Xeon® Processor D-1500 Product Family-based platform does not support DSW state. The DSW power well has been merged with VccSUS3_3.

Table 3-3. Integrated PCH Input Signals - Power Plane and States (Sheet 1 of 3)

Signal Name	Power Plane	During Reset	Immediately after Reset	S3/S4/S5
		USB Interface		
USB2p/n[3:0]	Suspend	IPD	IPD	IPD
USB3Rp/n[6:5, 2:1]	Suspend	IPD ^{1, 2}	IPD ^{1, 2}	S4 and S5 Off
OC0# ³ , OC1# ³ , OC2# ³ , OC3# ³ , OC4# ³ , OC5# ³ , OC6# ³ , OC7# ³	Suspend	High-Z	High-Z	High-Z
		PCI Express*		
PERp/n[8:1]	Core	IPD ⁴	IPD ⁴	Off
		SATA Interface		
SATA_RXp/n[5:0]	Core	IPD ²	IPD ²	Off
SATA0GP, SATA4GP, SATA5G	Core	High-Z	High-Z	Off
SATA1GP	Core	IPU	High-Z	Off
SATA2GP, SATA3GP	Core	IPD	High-Z	Off
		Clocking Signals		
XTAL25_IN	Core	High-Z	High-Z	Off
CLKIN_33MHZLOOPBACK	Core	High-Z	High-Z	Off
DIFFCLK_BIASREF	Core	High-Z	High-Z	Off
ICLK_IREF	Core	High-Z	High-Z	Off
	F	Processor Interfac	e	
THRMTRIP#	Core	High-Z	High-Z	Off
	1	Interrupt Interfac	e	
SERIRQ	Core	High-Z	High-Z	Off
PIRQ[D:A]#	Core	High-Z	High-Z	Off
PIRQ[H:E]#	Core	High-Z	High-Z	Off
		LPC Interface		
LAD[3:0]	Core	IPU	IPU	Off
LDRQ0# LDRQ1#	Core	IPU	IPU	Off
	Non-M	lultiplexed GPIO S	Signals	
GPIO8	Suspend	IPU	DH	DH

Table 3-3. Integrated PCH Input Signals - Power Plane and States (Sheet 2 of 3)

Signal Name	Power Plane	During Reset	Immediately after Reset	S3/S4/S5
GPIO15	Suspend	DL	DL	DL
GPIO24	Suspend	DL	DL	DL
GPIO27	DSW	High-Z	High-Z	High-Z
GPIO28	Suspend	DL	DL	DL
GPIO50	Core	High-Z	High-Z	Off
GPIO51	Core	IPU	DH	Off
GPIO52	Core	High-Z	High-Z	Off
GPIO53	Core	IPU	DH	Off
GPIO54	Core	High-Z	High-Z	Off
GPIO55	Core	IPU	DL	DL
GPIO57	Suspend	DL	High-Z	High-Z
		SMBus Interface		
SMBCLK, SMBDATA	Suspend	High-Z	High-Z	High-Z
SMBALERT#	Suspend	High-Z	High-Z	High-Z
	Systen	n Management In	terface	
INTRUDER#	RTC	High-Z	High-Z	High-Z
SML0DATA	Suspend	High-Z	High-Z	High-Z
SML0CLK	Suspend	High-Z	High-Z	High-Z
SML1CLK	Suspend	High-Z	High-Z	High-Z
SML1DATA	Suspend	High-Z	High-Z	High-Z
		SPI Interface	<u> </u>	
SPI_MOSI	Suspend	IPD	DL	DL
SPI_MISO	Suspend	IPU	IPU	IPU
SPI_IO2	Suspend	IPU	IPU	IPU
SPI_IO3	Suspend	IPU	IPU	IPU

Table 3-3. Integrated PCH Input Signals - Power Plane and States (Sheet 3 of 3)

Signal Name	Power Plane	During Reset	Immediately after Reset	S3/S4/S5
	P	ower Managemer	nt	
APWROK	Suspend	High-Z	High-Z	High-Z
BMBUSY#	Core	High-Z	High-Z	Off
DPWROK	RTC	High-Z	High-Z	High-Z
PWRBTN#	DSW	IPU	IPU	IPU
PCH_PWROK	RTC	High-Z	High-Z	High-Z
RI#	Suspend	High-Z	High-Z	High-Z
RSMRST#	RTC	High-Z	High-Z	High-Z
SUSACK#	Suspend	IPU	IPU	IPU
SYS_PWROK	Suspend	High-Z	High-Z	High-Z
SYS_RESET#	Core	High-Z	High-Z	Off
WAKE#	DSW	High-Z	High-Z	High-Z
		Thermal Signals		
TACH0, TACH1, TACH2, TACH3, TACH4, TACH5, TACH6, TACH7	Core	IPU (TACH)	IPU(TACH)	Off
PECI_PCH	Core	DL ⁵	DL ⁵	Off
	Mi	scellaneous Signa	als	
INTVRMEN	RTC	High-Z	High-Z	High-Z
DSWVRMEN	RTC	High-Z	High-Z	High-Z
RTCRST#	RTC	High-Z	High-Z	High-Z
SRTCRST#	RTC	High-Z	High-Z	High-Z
PME_N	Suspend	IPU	IPU	IPU
JTAG_TCK_PCH	Suspend	IPD	IPD	IPD
JTAG_TMS_PCH	Suspend	IPU	IPU	IPU
JTAG_TDI_PCH	Suspend	IPU	IPU	IPU

- USB3 Rx pins transition from High-Z to IPD after Reset.
 This is a strong pull down (or pull up, as applicable).
 Signals could be shared between ports.
 PCIe Rx pins transition from High-Z to IPD after Reset.
 This is a 350 ohm normal pull-down, the signal will be overridden to logic 1 with pull-up resistor (31 ohms) to 1.05V.

4 Signal DC and Timing Characteristics

This section documents the DC characteristics of the following signal groups or interfaces. All data in this chapter are pre-silicon estimates.

4.1 General DC Characteristics

4.1.1 General DC Input Characteristics

DC specifications are defined at the SoC pads, unless otherwise noted. DC specifications are only valid while meeting specifications for case temperature T_{CASE} , clock frequency, and input voltages. Care should be taken to read all notes associated with each specification.

4.1.2 SoC Integrated Processor Voltage and Current Specifications

Table 4-1. Voltage Specification (Sheet 1 of 2)

Voltage Rail	Description	Min	Nom	Max	Unit	Notes ¹
VCCIN	Input to Integrated Voltage Regulator (SVID address 00h)	1.6	1.82	1.95	V	2,3,4,5,8, 12
V _{VID_STEP}	VID step size during a transition		10.0		mV	6
VCCD	I/O Voltage for DDR4 (SVID address 02h)	0.95*Vccd_nom	1.2	1.05*VCCD_NOM	V	2,7,9, 10, 11
	I/O Voltage for DDR3L (SVID address 02h)	0.95*Vccd_nom	1.35	1.05*VCCD_NOM	V	2,7,9, 10, 11
VCCIOIN	CPU I/O Voltage	VCCIOIN_NOM - 5%	1.05	VCCIOIN_NOM + 5%	V	
VCCGBE	10GbE Controller (SVID address 03h)	VCCGBE_NOM - 0.018	1.05	VCCGBE_NOM +0.018	V	2,13
VCCKRHV	Supply for KR/KX PHY	1.248	1.3	1.352	V	13
VCCSCSUS	South complex digital logic supply. (SVID address 01h)	NOM -5%	1.05	NOM + 5%	V	2,13
VCCSCFUSESUS		1.615	1.7	1.785	V	13
VCC, VCCIO, VCCLK	PCH Logic supplies (SVID Address 05H)	NOM - 5%	1.05	NOM + 5%	V	2,14

Table 4-1. Voltage Specification (Sheet 2 of 2)

Voltage Rail	Description	Min	Nom	Max	Unit	Notes ¹
P1V05_PROC_IO	PCH Logic I/O Supply for CPU interface.	NOM - 5%	1.05	NOM + 5%	V	14
VCCVRM, VCCADAC1_5	PCH Logic Internal VR supply.	1.43	1.50	1.58	V	14
VCCADACBG3_3, VCCCLK3_3, VCC3_3, VCCSUS3_3, VCCRTC	Misc 3.3V supplies	3.14	3.30	3.47	V	14,15

- 1. Unless otherwise noted, all specifications in this table apply to all SKUs. These specifications are based on pre-silicon characterization and will be updated as further data becomes available.
- 2. These voltages are targets only. A SVID controlled variable voltage source should exist on systems in the event that a different voltage is required.
- 3. The VCCIN voltage specification requirements are measured across the remote sense pin pairs (VCCIN_SENSE and VSS_VCCIN_SENSE) on the SoC package. Voltage measurement should be taken with a DC to 100 MHz bandwidth oscilloscope limit (or DC to 20 MHz for older model oscilloscopes), using a 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external noise from the system is not coupled in the scope probe.VCCIN is a function of sVID setting and the load. The required voltage droop is depicted in Figure 4-1.
- 4. Refer to Table 4-5, "VCCIN Overshoot Specifications" and corresponding figure that the SoC should not be subjected to any static Vccin level that exceeds the Vccin_MAX associated with any particular current. Failure to adhere to this specification can shorten SoC lifetime.
- 5. Minimum VccIN and maximum IccIN are specified at the maximum SoC case temperature TCASE. shown in the TMSDG document. IccIN_MAX is specified at the relative Vcc_MAX point on the VccIN load line. The SoC is capable of drawing IccIN_MAX for up to 4 ms.
- 6. This specification represents the VCCIN reduction or VCCIN increase due to each VID transition.
- 7. Baseboard bandwidth is limited to 20 MHz.
- 8. FMB is the flexible motherboard guidelines.
- 9. DC + AC + Ripple = Total Tolerance
- 10. Vccd tolerance at SoC pins. Tolerance for VR at remote sense is ±3.3%*Vccd.
- 11. The VCCD voltage specification requirements are measured across vias on the platform. Choose VCCD vias close to the package and measure with a DC to 100 MHz bandwidth oscilloscope limit (or DC to 20 MHz for older model oscilloscopes), using 1.5 pF maximum probe capacitance, and 1M ohm minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external noise from the system is not coupled in the scope probe.
- 12. VCCIN has a Vboot setting of 1.7V and is not included in the PWRGOOD_CPU indication.
- 13. The supply voltage is measured at the package pins. The tolerances shown in Table 4-1 are inclusive of all noise from DC up to 20 MHz. In testing, the voltage rails should be measured with a bandwidth limited oscilloscope that has a rolloff of 3 dB/decade above 20 MHz.
- 14. VccRTC can drop to 2.0 Vmin in G3 state.

Figure 4-1. V_{CCIN} Static and Transient Tolerance Loadlines

- The Vccin_min and Vccin_max loadlines represent static and transient limits. See the Vccin Overshoot specifications.
- The loadlines specify voltage limits at the die measured at the VCCIN_SENSE and VSS_VCCIN_SENSE lands. Voltage regulation feedback for voltage regulator circuits must also be taken from SoC VCCIN_SENSE and Vss_vccin_sense lands.
- The Adaptive Voltage Positioning slope is 1.5 m Ω (Mohm) with ± 22 mV Tolerance of Band (TOB).
- $\begin{array}{l} \text{VCCIN_Vmax} = \text{VID(V)} 1.5 \text{ m}\Omega * \text{ICCIN} + 22 \text{ mV} \\ \text{VCCIN_Vtyp} = \text{VID(V)} 1.5 \text{ m}\Omega * \text{ICCIN} \\ \text{VCCIN_Vmin} = \text{VID(V)} 1.5 \text{ m}\Omega * \text{ICCIN} 22 \text{ mV} \\ \end{array}$

-0.180

Table 4-2. VCCIN Supply Current (Iccin_MAX and Iccin_TDC) Specification

Segment/SKU	TDP	ICC_MA X @ VCCIN	ICCIN_TD C@VCCIN	Pmax ² (SoC)	Notes ¹
D-1520, D-1521, D-1530, D-1531, D-1533, D-1540, D-1541, D-1548, D-1557, D-1559, D-1577, D-1571	45W	55A	26A	90W	
D-1518, D-1526, D-1527, D-1528, D-1537, D-1539	35W	43A	21A	70W	
D1508, D1517, D1519	25W	30A	15A	50W	
D1507, D-1529	20W	24A	12A	40W	
D1509	19W	23A	11A	38W	

Notes:

Unless otherwise noted, all specifications in this table apply to all SKUs. These specifications are based on pre-silicon characterization and will be updated as further data becomes available.

Table 4-3. SoC CPU Section Current Specifications

Voltage Rail	Nominal Voltage (V)	TDC	Max ICC	Notes
VCCD - DDR4	1.2V	2.2A	2.45A	SoC only. During Memory training only. May last up to 5 seconds during boot.
	1.2V	0.81A	1.44	SoC only. Normal Operation.
VCCD - DDR3L	1.35V	5.7A	6.1A	SoC only. During Memory training only. May last up to 5 seconds during boot.
	1.35V	1.5A	2.7A	SoC only. Normal Operation.
VCCIOIN	1.05V	1.7A	2.0A	
VCCGBE	1.05V	1.65A	2.3A	
VCCKRHV + VCCKX4PLL	1.3V	0.25A	0.50A	Pins are tied together and sourced from the same supply.
VCCSCSUS	1.05V	3.40A	4.10A	
VCCSCFUSESUS	1.7V	0.25A	0.35A	
VCCKRLCPLL	1.05V	0.08A	0.15A	
VCCSCPLL	1.05V	0.08A	0.15A	

Table 4-4. SoC PCH Section Current Specifications

Voltage Rail	Voltage (V)	S0 Iccmax Current ³ (A)	S0 Idle Current ³ (A)	Sx Iccmax Current ³ (A)	Sx Idle Current ³ (A)	G3
VCC	1.05	1.312	0.130	0	0	0
VCCIO	1.05	3.491	0.199	0	0	0
VCCADAC1_5	1.5	0.004	0.002	0	0	0
VCCADACBG3_3	3.3	<1 mA	<1 mA	0	0	0
VCCCLK	1.05	0.306	0.089	0	0	0
VCCCLK3_3	3.3	0.055	0.011	0	0	0
VCCVRM	1.5	0.158	0.043	0	0	0
VCC3_3	3.3	0.133	0.003	0	0	0
VCCSUS3_3 ⁴	3.3	0.298	0.008	0.055	0.021	0
VCCRTC	3.3	N/A	N/A	N/A	N/A	6 uA See notes 1, 2
P1V05_PROC_IO	1.05	0.004	0.002	0	0	0

- G3 state shown to provide an estimate of battery life.

 Icc (RTC) data is taken with VccRTC at 3.0V while the system in a mechanical off (G3) state at room temperature.
- temperature.

 S0 Iccmax measurements taken at 110 °C (PCH die junction temperature) and S0 Idle/Sx Iccmax/Sx Idle measurements taken at 50 °C (PCH die junction temperature).

 The VccSUS3_3 voltage regulator and associated power delivery circuitry should be capable of handling temporary inrush currents up to 2.5A until the internally generated 1.05V rail (DcpSusByp) ramps. 3.

4.1.3 **SoC Integrated Processor Die Voltage Validation**

Core voltage (VccIN) overshoot events at the SoC must meet the specifications in below table when measured across the VCCIN_SENSE and VSS_VCCIN_SENSE lands. Overshoot events that are < 10 ns in duration may be ignored. These measurements of SoC die level overshoot should be taken with a 100 MHz bandwidth limited oscilloscope.

The SoC can tolerate short transient overshoot events where Vccin exceeds the VID voltage when transitioning from a high-to-low current load condition. This overshoot can't exceed VID + Vos_MAX (Vos_MAX is the maximum allowable overshoot above VID). These specifications apply to the SoC die voltage as measured across the Vccin_sense and Vss_vccin_sense lands.

V_{CCIN} Overshoot Specifications **Table 4-5.**

Symbol	Parameter	Min	Max	Units	Figure	Notes
V _{OS_MAX}	Magnitude of V _{CCIN} overshoot above Vccin-max		50	mV	4-2	
T _{OS_MAX}	Time duration of V _{CCIN} overshoot above Vccin_max value at the new lighter load		25	us	4-2	

Figure 4-2. V_{CC} Overshoot Example Waveform

- $V_{\rm OS_MAX}$ is the measured overshoot voltage.
- Tos MAX is the measured time duration above VccMAX. VccinMAX = VID + 22 mV

Signal DC Specifications 4.1.4

4.1.4.1 **DDR4 Signal**

Table 4-6. DDR4 Signal DC Specifications

Symbol	Parameter	Min	Тур	Max	Units	Notes ¹
I _{IL}	Input Leakage Current	-1.4		1.4	mA	9
Data Signals: DI	DR{0/1}_DQ[63:0], DDR{0/1}_E	CC[7:0], DDI	R{0/1}_DQS_D{P/N	}[17:0]		
V _{OL}	Output Low Voltage		Varies			10
V _{OH}	Output High Voltage		VCCD		V	
R _{ON}	DDR4 Data Buffer On Resistance	27		33	ohm	6
Data ODT	On-Die Termination for Data Signals	45		55	ohm	8
1}_MA15_CAS_	Signals, Command Signals: DDR- N, DDR-	R{0/1}_BA[1	:0], DDR{0/1}_BG[0	0]_BA[2], DDR		
V _{OL}	Output Low Voltage		(V _{CCD} / 2)* (R _{ON} / (R _{ON} +R _{VTT_TERM}))		V	2, 7
V _{OH}	Output High Voltage		V _{CCD} - ((V _{CCD} / 2)* (R _{ON} / (R _{ON} +R _{VTT_TERM}))		V	2, 5, 7
Reference Clock	Signal: DDR{0/1}_CLK_D{P/N}	[3:0]			•	
R _{ON}	DDR4 Clock Buffer On Resistance	27		33	ohm	6
1}_MA16_RAS_	als: DDR{0/1}_MA[13:0], DDR{0, N, DDR{0/1}_BA[1:0], DDR{0/1 15], DDR{0/1}_PAR	/1}_MA14_W }_BG[0]_BA	E_N, DDR{0/1}_MA [2], DDR{0/1}_BG[1	15_CAS_N, DD 1]_MA[14], DD	R{0/ R{0/	
R _{ON}	DDR4 Command Buffer On Resistance	16		20	ohm	6
R _{ON}	DDR4 Reset Buffer On Resistance		78		ohm	6
V _{OL_CMOS1.2v}	Output Low Voltage, Signals DDR_RESET_N			0.2*V _{CCD}	V	1,2
V _{OH_CMOS1.2v}	Output High Voltage, Signals DDR_RESET_N	0.9*V _{CCD}			V	1,2
Control Signals:	DDR{0/1}_CS_N[1:0], DDR{0/1	.}_CS_N_[5:4	I], DDR{0/1}_CKE[3	3:0], DDR{0/1]	}_ODT[3:	0]
R _{ON}	DDR4 Control Buffer On Resistance	27		33	ohm	6
DDR4 Miscelland	eous Signals	•			·	•
ALERT_N	On-Die Termination for Parity Error Signals	81	90	99	ohm	
V _{IL}	Input Low Voltage DRAM_PWR_OK			304	mV	2, 3
V _{IH}	Input High Voltage DRAM PWR OK	800			mV	2, 4, 5

- Unless otherwise noted, all specifications in this table apply to all processor frequencies.

 The voltage rail VCCD that will be set to 1.2V nominal depending on the voltage of all DIMMs connected to the processor.

- 3. VIL is the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
- 4. VIH is the minimum voltage level at a receiving agent that will be interpreted as a logical high value.
- VIH and VOH may experience excursions above VCCD. However, input signal drivers must comply with the signal quality specifications.
- This is the pull down driver resistance. Refer to processor signal integrity models for I/V characteristics. Reset drive does not have a termination.
- 7. RYTT_TERM is the termination on the DIMM and not controlled by the processor. Refer to the applicable DIMM datasheet.
- 8. The minimum and maximum values for these signals are programmable by BIOS to one of the pairs.
- 9. Input leakage current is specified for all DDR4 signals.
- 10. Vol = Ron * [VCCD/(Ron + Rtt_Eff)], where Rtt_Eff is the effective pull-up resistance of all DIMMs in the system, including ODTs and series resistors on the DIMMs.

4.1.4.2 PECI_CPU DC Specification

This section details the DC specifications for the PECI_CPU pin.

Table 4-7. PECI CPU DC Specifications

Symbol	Definition and Conditions	Min	Max	Units	Notes ¹
V _{In}	Input Voltage Range	-0.150	VCCIOIN + 0.150	V	
V _{Hysteresis}	Hysteresis	0.100 * VCCIOIN		V	
V _N	Negative-edge threshold voltage	0.275 *VCCIOIN	0.500 * VCCIOIN	V	2
V _P	Positive-edge threshold voltage	0.550 * VCCIOIN	0.725 * VCCIOIN	V	2
I _{SOURCE}	High level output source V _{OH} = 0.75 * V _{CCIOIN}	-6.0		mA	
I _{Leak+}	High impedance state leakage to V_{CCIOIN} ($V_{leak} = V_{OL}$)	50	200	μΑ	3
R _{ON}	High impedance leakage to GND (Vleak = Voh)	20	36	ohm	
C _{Bus}	Bus capacitance per node	N/A	10	pF	4,5
V _{Noise}	Signal noise immunity above 300 MHz	0.100 * V _{CCIOIN}	N/A	V _{p-p}	
	Output Edge Rate (50 ohm to VSS, between V_{IL} and V_{IH})	1.5	4	V/ns	

- 1. VCCIOIN supplies the PECI interface. PECI behavior does not affect VCCIOIN min/max specification.
- It is expected that the PECI driver will take into account, the variance in the receiver input thresholds and consequently, be able to drive its output within safe limits (-0.150 V to 0.275*VCCIOIN for the low level and 0.725*VCCIOIN to VCCIOIN+0.150 V for the high level).
- 3. The leakage specification applies to powered devices on the PECI bus.
- One node is counted for each client and one node for the system host. Extended trace lengths might appear as additional nodes.
- 5. Excessive capacitive loading on the PECI line may slow down the signal rise/fall times and consequently limit the maximum bit rate at which the interface can operate.

Figure 4-3. PECI_CPU Input Device Hysteresis

4.1.4.3 Memory and LAN SMBus and LAN I2C DC Specifications

This section details the DC specifications for the DDR_SCL, DDR_SDA, LAN_SMBALRT_N, LAN_SMBCLK, LAN_SMBDATA, LAN_I2C_SCL[1:0] and LAN_I2C_SDA[1:0] pins.

Table 4-8. SMBus DC Specifications

Symbol	Parameter	Min	Max	Units	Notes
V _{IL}	Input Low Voltage		0.3*VCCIOIN	V	
V _{IH}	Input High Voltage	0.7*VCCIOIN		V	
V _{Hysteresis}	Hysteresis	0.1*VCCIOIN		V	
V _{OL}	Output Low Voltage		0.2*VCCIOIN	V	
R _{ON}	Buffer On Resistance	4	14	ohm	
I _L	Leakage Current	50	200	μΑ	
	Output Edge Rate (50 ohm to V_{TT} , between V_{IL} and V_{IH})	0.05	0.6	V/ns	

Note: Value obtained through test bench with 50 Ω pull up to VCCIOIN.

4.1.4.4 Integrated Processor JTAG and TAP Signals DC Specifications

This section details the DC specifications for the CPU side JTAG and TAP signals.

Table 4-9. JTAG and TAP Signals DC Specifications

Symbol	Parameter	Min	Max	Units	Notes
V _{IL}	Input Low Voltage		0.4*VCCIOIN	V	
V _{IH}	Input High Voltage	0.8*VCCIOIN		V	
V _{IL}	Input Low Voltage: JTAG_TCK_CPU		0.4*VCCIOIN	V	
V _{IH}	Input High Voltage: JTAG_TCK_CPU	0.6*VCCIOIN		V	
V _{OL}	Output Low Voltage: BPM_N[7:0], JTAG_TDO_CPU		0.2*VCCIOIN	V	
V _{Hysteresis}	Hysteresis	0.1*VCCIOIN		V	
R _{ON}	Buffer On Resistance BPM_N[7:0], JTAG_TDO_CPU	4	14	ohm	
I _{IL}	Input Leakage Current	50	200	μΑ	
	Output Edge Rate (50 ohm to V _{CCIOIN}) Signal: BPM_N[7:0], PRDY_N, TDO	0.2	1.5	V/ns	

- 1. These signals are measured between VIL and VIH.
- 2. The signal edge rate must be met or the signal must transition monotonically to the asserted state.

4.1.4.5 **Serial VID Interface (SVID) DC Specifications**

Table 4-10. Serial VID Interface (SVID) DC Specifications

Symbol	Parameter	Min	Тур	Max	Units	Notes
VCCIOIN	CPU I/O Voltage	VCCIOIN - 5%	1.05	VCCIOIN + 5%	V	1
V _{IL}	Input Low Voltage Signals SVID_DATA, SVIDALERT_N			0.4*VCCIOIN	V	1
V _{IH}	Input High Voltage Signals SVID_DATA, SVIDALERT_N	0.7*VCCIOIN			V	1
V _{OL}	Output Low Voltage Signals SVID_CLK, SVID_DATA			0.2*VCCIOIN	V	1,5
V _{Hysteresis}	Hysteresis	0.05*VCCIOIN			V	1
R _{ON}	Buffer On Resistance Signals SVID_CLK, SVID_DATA	4		14	ohm	2
I _{IL}	Input Leakage Current	50		200	μΑ	3
	Input Edge Rate Signal: SVIDALERT_N	0.05			V/ns	4
	Output Edge Rate (50 Ω to VCCIOIN)	0.20		1.5		4

Notes:

- $V_{\rm CCIOIN}$ refers to instantaneous $V_{\rm CCIOIN}$. Measured at $0.31^*V_{\rm CCIOIN}$ Vin between 0V and $V_{\rm CCIOIN}$ (applies to SVIDDATA and SVIDALERT_N only). These are measured between $V_{\rm IL\ and}\ V_{\rm IH}$. Value obtained through test bench with 50 Ω pull up to VCCIOIN

SoC Integrated Processor Asynchronous Signal DC Specification 4.1.4.6

Table 4-11. SoC Misc Signal DC Specifications (Sheet 1 of 2)

Symbol	Parameter	Min	Max	Units	Notes
	gnal: BIST_ENABLE, BMCINIT, DEBUG_EN DOT, TXT_AGENT, TXT_PLTEN, LAN_PWRG I_ID2				VRGOOD,
V _{IL_CMOS1.05V}	Input Low Voltage		0.4*VCCIOIN	V	1
V _{IH_CMOS1.05V}	Input High Voltage	0.6*VCCIOIN		V	1
I _{IL_CMOS1.05V}	Input Leakage Current	50	200	μА	1
Open Drain CN	40S (ODCMOS) Signals: CATERR_N, ER	ROR_N[2:0], MEM_HC	T_N, PROCHOT_N, THERM	ITRIP	
V _{IL_ODCMOS}	Input Low Voltage Signals: CATERR_N		0.4*VCCIOIN	V	
V _{IL_ODCMOS}	Input Low Voltage Signals: MEM_HOT_N, PROCHOT_N		0.3*VCCIOIN	V	
V _{IH_ODCMOS}	Input High Voltage Signals: CATERR_N, MEM_HOT_N, PROCHOT_N	0.7*VCCIOIN			
V _{OL_ODCMOS}	Output Low Voltage		0.2*VCCIOIN		1
V _{Hysteresis}	Hysteresis Signals: MEM_HOT_N, PROCHOT_N	0.1*VCCIOIN			
V _{Hysteresis}	Hysteresis Signal: CATERR_N	0.05*VCCIOIN			
I _L	Input Leakage Current		200	μА	1

Table 4-11. SoC Misc Signal DC Specifications (Sheet 2 of 2)

Symbol	Parameter	Min	Max	Units	Notes
R _{ON}	Buffer On Resistance	4	14	ohm	1
	Output Edge Rate Signal: MEM_HOT_ N, ERROR_N[2:0], THERMTRIP, PROCHOT_N	0.05	0.60	V/ns	2
	Output Edge Rate Signal: CATERR_N	0.20	1.5	V/ns	2

- 1. Row applies to all signals within group.
- 2. These are measured between $V_{IL\ and}\ V_{IH.}$

4.1.4.7 SoC Integrated PCH General DC Characteristics

Table 4-12. Single-Ended Signal DC Characteristics as Inputs or Outputs (Sheet 1 of 3)

Type	Symbol	Parameter	Min	Max	Units	Condition	Note
GPIO23, L SATA0GP, GPIO35/N	DRQ0#, LAD /GPIO21, SAT MI#, GPIO18 OC3#/GPIO4	S: CLKIN_PCILOOPBACK, G [3:0], LFRAME#, SERIRQ, G FA1GP/GPIO19, SATA2GP/G , GPIO20/SMI#, GPIO25, G 42, OC4#/GPIO43, OC5#/G , SPI_CS0#, SPI_CS1#, SP	GPIO8, GPIO44 PIO36, SATA30 GPIO26, BMBUS GPIO9, OC6#/0	4, GPIO45, GPIO46, I GP/GPIO37, SATA4GI SY#/GPIO0, OC0#/G GPIO10, OC7#/GPIO	_AN_PHY_PW P/GPIO16, SA PIO59, OC1# 14, PLTRST#,	R_CTRL/GPIO12, TA5GP/GPIO49, GPIO40, OC2#/ SPKR, PME_N,	2
	VCC	Supply Voltage Reference	3.14	3.47	V		
Input	VIH	Input High Voltage	0.5 x V _{CC}	V _{CC} + 0.5	V		
	VIL	Input Low Voltage	-0.5	0.3 x V _{CC}	V		
	I _{IL}	Input Leakage Current	-10	10	uA		3
	CIN	Pin Input Capacitance	_	10	pF		4
Output	VoH	Output High Voltage	0.9 x V _{CC}	_	V	I _{out} =-0.5mA	1
	V _{OL}	Output Low Voltage	_	0.1 x V _{CC}	V	I _{out} =1.5mA	
GPIO53, WAKE#, (GPIO1, T	GPIO50, RI# GPIO31, SLP_ ACH0/GPIO1	SATALED#, SYS_RESET#, I #, SUS_STAT#/GPIO61, SU A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G O2, PIRQF#/GPIO3, PIRQG	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/(LK/ŚPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIO	N#/SUSPWR /GPIO29, PW 069, TACH6/G	NACK/GPIO30, /RBTN#, TACH1/ GPIO70, TACH7/	2
GPIO53, WAKE#, (GPIO1, T	GPIO50, RI# GPIO31, SLP_ ACH0/GPIO1	#, SUS_STAT#/GPIO61, ŚU _A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/(LK/ŚPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIO	N#/SUSPWR /GPIO29, PW 069, TACH6/G	NACK/GPIO30, /RBTN#, TACH1/ GPIO70, TACH7/	2
GPIO53, WAKE#, (GPIO1, T	GPIO50, RI# GPIO31, SLP_ ACH0/GPIO1 PIRQE#/GPI	#, SUS_STAT#/GPIO61, SU A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G O2, PIRQF#/GPIO3, PIRQG Supply Voltage	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/0 #/GPIO4, PIRO	LK/ĠPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIC QH#/GPIO5, PIRQA#	N#/SUSPWR :/GPIO29, PW 069, TACH6/G , PIRQB#, PI	NACK/GPIO30, /RBTN#, TACH1/ GPIO70, TACH7/	2
GPIO53, WAKE#, (GPIO1, T GPIO71,	GPIO50, RI# GPIO31, SLP_ ACH0/GPIO1 PIRQE#/GPIO	#, SUS_STAT#/GPIO61, SU A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G O2, PIRQF#/GPIO3, PIRQG Supply Voltage Reference Schmitt Trigger	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/0 #/GPIO4, PIRO 3.14	LK/ĠPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIC QH#/GPIO5, PIRQA#	N#/SUSPWR F/GPIO29, PW 169, TACH6/G , PIRQB#, PI	NACK/GPIO30, /RBTN#, TACH1/ GPIO70, TACH7/	2
GPIO53, WAKE#, (GPIO1, T GPIO71,	GPIO50, RI# GPIO31, SLP_ ACHO/GPIO1 PIRQE#/GPIO VCC VHYS	#, SUS_STAT#/GPIO61, SU A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G O2, PIRQF#/GPIO3, PIRQG Supply Voltage Reference Schmitt Trigger Hysteresis	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/C #/GPIO4, PIRC 3.14	LK/ĠPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIC QH#/GPIO5, PIRQA# 3.47	N#/SUSPWR GPIO29, PW 169, TACH6/G , PIRQB#, PI V	NACK/GPIO30, /RBTN#, TACH1/ GPIO70, TACH7/	2
GPIO53, WAKE#, (GPIO1, T GPIO71,	GPIO50, RI# GPIO31, SLP_ ACHO/GPIO1 PIRQE#/GPIO VCC VHYS	#, SUS_STAT#/GPIO61, SU A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G O2, PIRQF#/GPIO3, PIRQG Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/0 #/GPIO4, PIRO 3.14 250 2	LK/ĠPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIC QH#/GPIO5, PIRQA# 3.47 — VCC + 0.5	M#/SUSPWR /GPIO29, PW 69, TACH6/G , PIRQB#, PI V mVpp	NACK/GPIO30, /RBTN#, TACH1/ GPIO70, TACH7/	2
GPIO53, WAKE#, (GPIO1, T GPIO71,	GPIO50, RI# GPIO31, SLP_ ACHO/GPIO1 PIRQE#/GPIO VCC VHYS VIH VIL	#, SUS_STAT#/GPIO61, SU A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G O2, PIRQF#/GPIO3, PIRQG Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/C #/GPIO4, PIRC 3.14 250 2 -0.5	LK/ĠPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIC QH#/GPIO5, PIRQA# 3.47 — VCC + 0.5 0.8	M#/SUSPWR /GPIO29, PW 069, TACH6/G , PIRQB#, PI V mVpp V	NACK/GPIO30, /RBTN#, TACH1/ GPIO70, TACH7/	2
GPIO53, WAKE#, (GPIO1, T GPIO71,	GPIO50, RI# GPIO31, SLP_ ACHO/GPIO1 PIRQE#/GPI VCC VHYS VIH VIL IIL	#, SUS_STAT#/GPIO61, SU A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G O2, PIRQF#/GPIO3, PIRQG Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/C #/GPIO4, PIRC 3.14 250 2 -0.5	LK/ĠPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIO QH#/GPIO5, PIRQA# 3.47 — VCC + 0.5 0.8	wi#/SUSPWR /GPIO29, PW /69, TACH6/G, , PIRQB#, PI V mVpp V V	NACK/GPIO30, /RBTN#, TACH1/ GPIO70, TACH7/	2
GPIO53, WAKE#, (GPIO1, T GPIO71,	GPIO50, RI# GPIO31, SLP_ ACHO/GPIO1 PIRQE#/GPIO VCC VHYS VIH VIL IIL CIN	#, SUS_STAT#/GPIO61, SUA#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/GO2, PIRQF#/GPIO3, PIRQG Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/0 #/GPIO4, PIRO 3.14 250 2 -0.5 -10	LK/ĠPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIC QH#/GPIO5, PIRQA# 3.47 — VCC + 0.5 0.8 10	w#/SUSPWR /GPIO29, PW 69, TACH6/G , PIRQB#, PI V mVpp V V uA	NACK/GPIO30, /RBTN#, TACH1/ SPIO70, TACH7/ RQC#, PIRQD#	
GPIO53, WAKE#, (GPIO1, T GPIO71, Input	GPIO50, RI# GPIO31, SLP_ ACHO/GPIO1 PIRQE#/GPIO VCC VHYS VIH VIL IIL CIN VOH VOL	#, SUS_STAT#/GPIO61, SU A#, SLP_LAN#, SLP_S3#, 7, TACH2/GPIO6, TACH3/G O2, PIRQF#/GPIO3, PIRQG Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance Output High Voltage	SACK#, SUSCI SLP_S4#, SLP PIO7, TACH4/0 #/GPIO4, PIRO 3.14 250 2 -0.5 -10 — V _{CC} — 0.5	LK/ĠPIO62, ŚUSWAR _SUS#, SLP_WLAN# GPIO68, TACH5/GPIC QH#/GPIO5, PIRQA# 3.47 — VCC + 0.5 0.8 10 10 VCC 0.4	m#/SUSPWR /GPIO29, PW /G9, TACH6/G , PIRQB#, PI V mVpp V V uA pF V	NACK/GPIO30, //RBTN#, TACH1/ SPIO70, TACH7/ RQC#, PIRQD# Iout=-2.0mA Iout= 4.5mA	

Table 4-12. Single-Ended Signal DC Characteristics as Inputs or Outputs (Sheet 2 of 3)

Туре	Symbol	Parameter	Min	Max	Units	Condition	Note
Input	VHYS	Schmitt Trigger Hysteresis	250	_	mVpp		
	VIH	Input High Voltage	2	V _{CC} + 0.5	V		
	VIL	Input Low Voltage	-0.5	0.8	V		
	I _{IL}	Input Leakage Current	-10	10	uA		
	CIN	Pin Input Capacitance	_	10	pF		
Output	VoH	Output High Voltage	2.4	VCC	V	I _{out} =-2.0mA	1
	V _{OL}	Output Low Voltage	_	0.4	V	I _{out} =12mA	
							ı
Associa	nted Signals: SML1ALI	: SMBALERT#/GPIO11, SMB ERT#/TEMP_ALERT#/GPIO7	CLK, SMBDAT	「A, SML0ALERT#/GP GPI058, SML1DATA/	IO60, SML0CI GPIO75, PWM	LK, SMLODATA, 10	2
	VCC	Supply Voltage Reference	3.14	3.47	V		
Input							
	VIH	Input High Voltage	2	V _{CC} + 0.5	V		
	VIL	Input Low Voltage	-0.5	0.8	V		
	I _{IL}	Input Leakage Current	-10	10	uA		
	CIN	Pin Input Capacitance	_	10	pF		
Output							
	V _{OH}	Output High Voltage	2.4	V _{CC}	V	I _{out} =-4.0mA	1
	V _{OL}	Output Low Voltage	_	0.4	V	I _{out} =4mA	
		Associated Sig	nals: SYS_P\	VROK, APWROK			2
Input	VCC	Associated Sig Supply Voltage Reference	nals: SYS_P\ 3.14	VROK, APWROK 3.47	V		2
Input	V _{CC}	Supply Voltage			V mVpp		2
Input		Supply Voltage Reference Schmitt Trigger	3.14				2
Input	V _H YS	Supply Voltage Reference Schmitt Trigger Hysteresis	3.14	3.47	mVpp		2
Input	V _H YS	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage	3.14 250 2.1	3.47	mVpp V		2
Input	V _{HYS} V _{IH} V _{IL}	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage	3.14 250 2.1 —	3.47 — 3.3 0.8	mVpp V V		2
Input	VHYS VIH VIL IIL CIN	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance	3.14 250 2.1 — -10 —	3.47 — 3.3 0.8 10 50	mVpp V V uA pF		
	VHYS VIH VIL IIL CIN	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance	3.14 250 2.1 — -10 —	3.47 — 3.3 0.8 10 50 PCH, JTAG_TDO_PCH	mVpp V V uA pF	PCH	2
Input	VHYS VIH VIL IIL CIN	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance	3.14 250 2.1 — -10 —	3.47 — 3.3 0.8 10 50	mVpp V V uA pF	PCH	
	VHYS VIH VIL IIL CIN	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance ed Signals: JTAG_TCK_PCH Supply Voltage	3.14 250 2.1 — -10 —	3.47 — 3.3 0.8 10 50 PCH, JTAG_TDO_PCH	mVpp V V uA pF	PCH	
	VHYS VIH VIL IIL CIN Associate	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance ed Signals: JTAG_TCK_PCH Supply Voltage Reference Schmitt Trigger	3.14 250 2.1 - -10 - , JTAG_TDI_F 0.94	3.47 — 3.3 0.8 10 50 PCH, JTAG_TDO_PCH	mVpp V V uA pF I, JTAG_TMS_I	PCH	
	VHYS VIH VIL IIL CIN Associate VCC VHYS	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance ed Signals: JTAG_TCK_PCH Supply Voltage Reference Schmitt Trigger Hysteresis	3.14 250 2.1 - -10 - , JTAG_TDI_F 0.94 250	3.47 — 3.3 0.8 10 50 PCH, JTAG_TDO_PCH 1.13 —	mVpp V V uA pF I, JTAG_TMS_I V mVpp	PCH	
	VHYS VIH VIL IIL CIN Associate VCC VHYS	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance ed Signals: JTAG_TCK_PCH Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage	3.14 250 2.1 10 - , JTAG_TDI_F 0.94 250 0.75	3.47 — 3.3 0.8 10 50 PCH, JTAG_TDO_PCH 1.13 — VCC + 0.5	mVpp V V uA pF I, JTAG_TMS_I V mVpp V	PCH	
	VHYS VIH VIL IIL CIN Associate VCC VHYS VIH VIL	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance Ed Signals: JTAG_TCK_PCH Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage	3.14 250 2.1 — -10 — , JTAG_TDI_F 0.94 250 0.75 -0.5	3.47 — 3.3 0.8 10 50 PCH, JTAG_TDO_PCH 1.13 — VCC + 0.5 0.3	mVpp V V uA pF I, JTAG_TMS_I V mVpp V	PCH	
	VHYS VIH VIL IIL CIN Associate VCC VHYS VIH VIL IIL	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance ed Signals: JTAG_TCK_PCH Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current	3.14 250 2.1 10 - , JTAG_TDI_F 0.94 250 0.75 -0.5 -10	3.47 — 3.3 0.8 10 50 CH, JTAG_TDO_PCH 1.13 — VCC + 0.5 0.3 10	mVpp V UA pF I, JTAG_TMS_I V mVpp V UA	PCH I _{out} =-0.5mA	
Input	VHYS VIH VIL IIL CIN Associate VCC VHYS VIH VIL IIL CIN	Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance Ad Signals: JTAG_TCK_PCH Supply Voltage Reference Schmitt Trigger Hysteresis Input High Voltage Input Low Voltage Input Leakage Current Pin Input Capacitance	3.14 250 2.1 10 - , JTAG_TDI_F 0.94 250 0.75 -0.5 -10 -	3.47 — 3.3 0.8 10 50 CH, JTAG_TDO_PCH 1.13 — VCC + 0.5 0.3 10	mVpp V uA pF I, JTAG_TMS_I V mVpp V uA pF		2

Table 4-12. Single-Ended Signal DC Characteristics as Inputs or Outputs (Sheet 3 of 3)

Туре	Symbol	Parameter	Min	Max	Units	Condition	Notes
Input	VCC	Supply Voltage	0.9	1.15	V		
		Reference					
	VHYS	Schmitt Trigger Hysteresis	0.1 x V _{CC}	_	mVpp		
	V _n	Negative edge threshold voltage	0.275 x VCC	0.500 x V _{CC}	V		
	Vp	Positive edge threshold voltage	0.550 x V _{CC}	0.725 x V _{CC}	V		
	VIN	Input Voltage Range	-0.15	V _{CC} + 0.15	V		
Output	VoH	Output High Voltage	0.75 * VCC	_	V	IOH=-6mA	1
	V _{OL}	Output Low Voltage	-	0.25 * VCC	V	IOL= 1 mA	
	•		1		•		
	Associated	Signals: PROCPWRGD_PC	CH, PLTRST_PRO	OC#, PM_SYNC_PC	H, THRMTRIP_	PCH#	2
Input	V _{CC}	Supply Voltage Reference	0.9	1.15	V		
	VHYS	Schmitt Trigger Hysteresis	0.1 x V _{CC}	_	mVpp		
	VIH	Input High Voltage	0.81 x V _{CC}	_	V		
	VIL	Input Low Voltage	_	0.51 x V _{CC}	V		
	IIL	Input Leakage Current	-10	10	uA		
	CIN	Pin Input Capacitance	_	10	pF		
Output	VoH	Output High Voltage	VCC - 0.3	_	V	IOH = -3mA	1
	V _{OL}	Output Low Voltage	_	0.255	V	IOL = 3mA	
					•		
Assoc	iated Signal	s: RSMRST#, INTVRMEN, I	RTCRST_N, SRT DSWVRMEN	TCRST#, INTRUDER	#, PCH_PWRC	OK, DPWROK,	2
VIL_	_RTC1	Input Low Voltage	-0.5	0.78	V		
VIH_	_RTC1	Input High Voltage	2.0	V _{CCRTC} +0.5	V		6
		A	ssociated Sig	nals: RTCX1			
VIL_	_RTC3	Input Low Voltage	-0.5	0.1	V		
VIH_	_RTC3	Input High Voltage	0.8	1.2	V		
		Associate	d Signals: XTA	AL25_IN, XTAL25_O	UT		
\	V _{IL}	Maximum Input Low Voltage	-0.25	0.15	V		
\	/ _{IH}	Minimum Input High Voltage	0.7	1.2	V		
		Associated Signals:	CLKOUT_PCI[4	:0], CLKOUTFLEX1,	CLKOUTFLEX	3	
Output	VoH	Output High Voltage	2.4		V		
	V _{OL}	Output Low Voltage		0.4	V		
	Іон	Output High Current		-1	mA		
	I _{OL}	Output Low Current		1	mA		
-	-						

The V_{OH} specification does not apply to open-collector or open-drain drivers. Signals of this type must have an external pullup resistor, and that's what determines the high-output voltage level. Refer to Chapter 2 for details on signal types.

Signal DC and Timing Characteristics

- 2. Input characteristics apply when a signal is configured as Input or to signals that are only Inputs. Output characteristics apply when a signal is configured as an Output or to signals that are only Outputs. Refer to Chapter 2 for details on signal types.
- PME_N Input Current Leakage is 1 uA max
- CLKIN_33MHZLOOPBACK has a pin capacitance in the range of 1 pF to 12 pF.
- Only applies to FAST MODE (400 kbits/s).

 VCCRTC is the voltage applied to the VCCRTC well of the PCH. When the system is in a G3 state, this is generally supplied by the coin cell battery, but for S5 and greater, this is generally VCCSUS3_3.

Table 4-13. Differential Signal DC Characteristics (Sheet 1 of 2)

Symbol	Parameter	Min	Max	Units	Notes
Associated Signals	PCIE_TX_DP[7:1], PCIE_TX_DN[7:1], F	PCIE_RX_DP[7:1], PC	CIE_RX_DN[7:1]		
Generation 1					
VTX-DIFF P-P	Differential Peak to Peak Output Voltage	0.8	1.2	V	1
VTX-DIFF P-P - Low	Low power differential Peak to Peak Output Voltage	0.4	1.2	V	
VTX_CM-ACp	TX AC Common Mode Output Voltage (2.5 GT/s)	-	20	mV	
ZTX-DIFF-DC	DC Differential TX Impedance	80	120	ohm	
VRX-DIFF p-p	Differential Input Peak to Peak Voltage	0.175	1.2	V	1
VRX_CM-ACp	AC peak Common Mode Input Voltage	=	150	mV	
Generation 2			1	•	
VTX-DIFF P-P	Differential Peak to Peak Output Voltage	0.8	1.2	V	1
VTX-DIFF P-P - Low	Low power differential Peak to Peak Output Voltage	0.8	1.2	V	
VTX_CM-ACp	TX AC Common Mode Output Voltage (2.5 GT/s)	-	100	mV	
ZTX-DIFF-DC	DC Differential TX Impedance		120	ohm	
VRX-DIFF p-p	Differential Input Peak to Peak Voltage	0.1	1.2	V	1
VRX_CM-ACp	AC peak Common Mode Input Voltage	-	150	mV	
Associated Signals	: USB3R[N/P][6:5;2:1], USB3T[N/P][6:5	; 2:1]			
VTX-DIFF P-P	Differential Peak to Peak Output Voltage	0.8	1.2	V	1
VTX-DIFF P-P - Low	Low power differential Peak to Peak Output Voltage	0.4	1.2	V	
Associated Signals	: SATA_RXN[5:0], SATA_RXP[5:0], SATA	_TXN[5:0], SATA_TX	P[5:0]		
VIMIN10- Gen1i	Minimum Input Voltage - 1.5 Gb/s internal SATA	325	=	mVdiff p-p	2
VIMAX10-Gen1i	Maximum Input Voltage - 1.5 Gb/s internal SATA	-	600	mVdiff p-p	2
VIMIN10-Gen1m	Minimum Input Voltage - 1.5 Gb/s eSATA	240	-	mVdiff p-p	2
VIMAX10-Gen1m	Maximum Input Voltage - 1.5 Gb/s eSATA	-	600	mVdiff p-p	2
VIMIN10-Gen2i	Minimum Input Voltage - 3.0 Gb/s internal SATA	275	-	mVdiff p-p	2
VIMAX10-Gen2i	Maximum Input Voltage - 3.0 Gb/s internal SATA	-	750	mVdiff p-p	2
	Minimum Input Voltage - 3.0 Gb/s	240	-	mVdiff p-p	2

Table 4-13. Differential Signal DC Characteristics (Sheet 2 of 2)

Symbol	Parameter	Min	Max	Units	Notes
VIMAX10-Gen2m	Maximum Input Voltage - 3.0 Gb/s eSATA	-	750	mVdiff p-p	2
VIMIN10-Gen3i	Minimum Input Voltage - 6.0 Gb/s internal SATA	240	-	mVdiff p-p	2
VIMAX10-Gen3i	Maximum Input Voltage - 6.0 Gb/s internal SATA	-	1000	mVdiff p-p	2
VOMIN7-Gen1i,m	Minimum Output Voltage 1.5 Gb/s eSATA	400		mVdiff p-p	3
VOMAX7-Gen1i,m	Maximum Output Voltage 1.5 Gb/s eSATA	_	600	mVdiff p-p	3
VOMIN7-Gen2i,m	Minimum Output Voltage 3.0 Gb/s internal SATA	400	_	mVdiff p-p	3
VOMAX7-Gen2i,m	Maximum Output Voltage 3.0 Gb/s internal SATA	_	700	mVdiff p-p	3
VOMIN7-Gen3i	Minimum Output Voltage 6.0 Gb/s internal SATA	200	_	mVdiff p-p	3
VOMAX7-Gen3i	Maximum Output Voltage 6.0 Gb/s internal SATA	-	900	mVdiff p-p	3
Associated Signal	s: USB2_DN[3:0], USB2_DP[3:0]				
VDI	Differential Input Sensitivity - classic mode	0.2	-	V	4,6
VCM	Differential Common Mode Range - classic mode	0.8	2.5	V	5,6
VSE	Single-Ended Receiver Threshold - classic mode	0.8	2	V	6
VCRS	Output Signal Crossover Voltage - classic mode	1.3	2	V	6
VHSSQ	HS Squelch Detection Threshold - HS mode	100	150	mV	7
VHSDSC	HS Disconnect Detection Threshold - HS mode	525	625	mV	7
VHSCM	HS Data Signaling Common Mode Voltage Range - HS mode	-50	500	mV	7
VHSOI	HS Idle Level -HS mode	-10	10	mV	7
VHSOH	HS Data Signaling High -HS mode	360	440	mV	7
VHSOL	HS Data Signaling Low -HS mode	-10	10	mV	7
VCHIRPJ	Chirp J Level -HS mode	700	1100	mV	7
VCHIRPK	Chirp K Level -HS mode	-900	-500	mV	7
VOL	Output Low Voltage	_	0.4	V	6
VOH	Output High Voltage	3.3 V - 0.5	_	V	6

- PCI Express mVdiff p-p = 2*|PETp[x] PETn[x]|; PCI Express mVdiff p-p = 2*|PERp[x] PERn[x]|

 SATA Vdiff, RX (V_{IMAX}/V_{IMIN}) is measured at the SATA connector on the receiver side (generally, the motherboard connector), where SATA mVdiff p-p = 2*|SATA[x]RXP SATA[x]RXN|.

 SATA Vdiff, tx (V_{OMIN}/V_{OMAX}) is measured at the SATA connector on the transmit side (generally, the motherboard connector), where SATA mVdiff p-p = 2*|SATA[x]TXP SATA[x]TXN|

 V_{DI} = | USBPx[P] USBPx[N] |

 Includes VDI range

 Applies to Low-Speed/Full-Speed USB

 Applies to High-Speed USB 2.0.

 USB 3.0 mVdiff p-p = 2*|USB3Rp[x] USB3Rn[x]|; USB 3.0 mVdiff p-p = 2*|USB3Tp[x] USB3Tn[x]|

 Max PCIe* DC voltage is 3.6 V, as specified in PCIe spec, and maximum spike should not exceed 5.4 V as specified in JEDEC specification JESD78.
- 3.

- 6.
- 7. 8.

4.1.4.8 KR Interface AC/DC Specifications

The KR interface supports the 10GBASE-KR electrical specification defined in IEEE802.3ap clause 72.

4.1.4.9 KX Interface AC/DC Specifications

The KX interface supports the 1000BASE-KX electrical specification defined in IEEE802.3ap clause 70.

4.1.4.10 Network Controller Sideband Interface (NC-SI) AC/DC Specifications

The NC-SI interface supports the NC-SI electrical specification as defined by the Distributed Management Task Force.

4.1.4.11 LAN_SPI, LAN_MDIO and LAN_SPD DC Specifications

This section details the DC specifications for the LAN_MDIO[1:0], LAN_MDIO_DIR_CTL, LAN_SDP, LAN_FLASH_CLK, LAN_FLSH_CS_N, LAN_FLSH_DI and LAN_FLSH_DO pins.

Table 4-14. LAN SPI, MDIO and SDP DC Specifications

Symbol	Parameter	Min	Max	Units	Notes
V _{IL}	Input Low Voltage	-0.150	0.3*VCCIOIN	V	
V _{IH}	Input High Voltage	0.7*VCCIOIN	VCCIOIN +0.15	V	
V _{Hysteresis}	Hysteresis	0.1*VCCIOIN		V	
V _{OL}	Output Low Voltage		0.1*VCCIOIN	V	
V _{OH}	Output High Voltage	0.9 *VCCIOIN		V	
R _{ON}	Output Buffer On Resistance	20	50		
IL	Leakage Current	-10	10	μΑ	

5 Operating Conditions and Power Requirements

Note:

The information provided in this chapter is preliminary and subject to change. It is based on both pre-silicon engineering estimates and some post-silicon measurements. As they arise, notable changes to the operational characteristics and parameters will be updated in future revisions of this document.

5.1 Absolute Maximum and Minimum Ratings

Below table specifies absolute maximum and minimum ratings. At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

Although the processor contains protective circuitry to resist damage from Electro-Static Discharge (ESD), precautions should always be taken to avoid high static voltages or electric fields.

Table 5-1. SoC Integrated Processor Absolute Minimum and Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V _{CCIN}	Processor voltage with respect to Vss	-0.3	1.98	V
V _{CCD}	Processor I/O supply voltage for DDR4 (standard voltage) with respect to V _{SS}	-0.3	1.35	V
V _{CCD}	Processor I/O supply voltage for DDR3L (standard voltage) with respect to $V_{\rm SS}$	-0.4	1.6	V
V _{CCIOIN}	Processor system agent voltage with respect to Vss	-0.3	1.35	V

Notes:

- 1. For functional operation, all processor electrical, signal quality, mechanical, and thermal specifications must be satisfied.
- Overshoot and undershoot voltage guidelines for input, output, and I/O signals are outlined in Overshoot/ Undershoot Tolerance. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.

Table 5-2. SoC Integrated PCH Absolute Maximum Ratings

Parameter	Maximum Limits
Voltage on any integrated PCH 3.3V Pin with respect to ground	-0.5 to Vcc3_3 + 0.4V
Voltage on any integrated PCH 1.5V Pin with respect to ground	-0.5 to VccVRM + 0.5V
Voltage on any integrated PCH 1.05V (VCC, VCCIO) tolerant pin with respect to ground	-0.5 to Vcc + 0.5V
1.05V (VCC, VCCIO) supply voltage with respect to VSS	-0.5 to 1.3V
3.3V supply voltage with respect to VSS	-0.5 to 3.7V
P1V05_PROC_IO supply voltage with respect to VSS	-0.5 to 1.3V
1.5V supply voltage for the analog PLL with respect to VSS	-0.5 to 1.65V

The table above specifies absolute maximum and minimum ratings. At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits (but within the absolute maximum and minimum ratings) the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, instantaneous device damage can occur. If a device is subjected to these conditions for any length of time, it will either not function or its reliability will be severely degraded when returned to conditions within the functional operating condition limits.

Although the SoC contains protective circuitry to resist damage from Electrostatic Discharge (ESD), precautions should always be taken to avoid high static voltages or electric fields.

5.2 Storage Conditions Specifications

Environmental storage condition limits define the temperature and relative humidity limits to which the device is exposed to while being stored in a moisture barrier bag. The specified storage conditions are for component level prior to board attach (see notes in the table for post board attach limits).

The table below specifies absolute maximum and minimum storage temperature limits which represent the maximum or minimum device condition beyond which damage, latent or otherwise, may occur. The table also specifies sustained storage temperature, relative humidity, and time-duration limits. These limits specify the maximum or minimum device storage conditions for a sustained period of time. At conditions outside sustained limits, but within absolute maximum and minimum ratings, quality and reliability may be affected.

Table 5-3. Storage Condition Ratings

Symbol	Parameter	Min	Max	Unit
Tabsolute storage	The non-operating device storage temperature. Damage (latent or otherwise) may occur when subjected to this temperature for any length of time in Intel Original sealed moisture barrier bag and / or box	-25 125 °C		1,2,3
T _{sustained} storage	The ambient storage temperature limit (in shipping media) for the sustained period of time as specified below in Intel Original sealed moisture barrier bag and / or box	-5 40 °C		1,2,3
RH _{sustained} storage	The maximum device storage relative humidity for the sustained period of time as specified below in Intel Original sealed moisture barrier bag and / or box	60% @ 24 °C		1,2,3
Time _{sustained} storage	Maximum time: associated with customer shelf life in Intel Original sealed moisture barrier bag and / or box	Moisture Sensitive Devices: 60 months from bag seal date; Non- moisture sensitive devices: 60 months from lot date		1,2,3

TABSOLUTE STORAGE applies to the un-assembled component only and does not apply to the shipping
media, moisture barrier bags or desiccant. This refers to a component device that is not assembled in a
board or socket that is not to be electrically connected to a voltage reference or I/O signals.

- Specified temperatures are based on data collected. Exceptions for surface mount re-flow are specified by applicable JEDEC J-STD-020 and MAS documents. The JEDEC, J-STD-020 moisture level rating and associated handling practices apply to all moisture sensitive devices removed from the moisture barrier bag.
- Post board attach storage temperature limits are not specified for non-Intel branded boards. Consult your board manufacturer for storage specifications.

5.2.1 Overshoot/Undershoot Tolerance

Overshoot (or undershoot) is the absolute value of the maximum voltage above or below V_{SS} , see below figure. The overshoot/undershoot specifications limit transitions beyond V_{CCD} or V_{SS} due to the fast signal edge rates. The processor can be damaged by single and/or repeated overshoot or undershoot events on any input, output, or I/O buffer if the charge is large enough (that is, if the over/undershoot is great enough). Determining the impact of an overshoot/undershoot condition requires knowledge of the magnitude, the pulse direction, and the Activity Factor (AF). Permanent damage to the processor is the likely result of excessive overshoot/undershoot.

Baseboard designs which meet signal integrity and timing requirements and which do not exceed the maximum overshoot or undershoot limits listed in below table will insure reliable IO performance for the lifetime of the processor.

Table 5-4. Processor I/O Overshoot/Undershoot Specifications

Signal Group	Minimum Undershoot	Maximum Overshoot	Overshoot Duration	Undershoot Duration	Notes
DDR4	-0.22*V _{CCD}	1.22*V _{CCD}	0.25*T _{CH}	0.1*T _{CH}	1,2,3
Processor Asynchronous Sideband Signals	-0.35*Vccioin	1.35*Vccioin	1.25 ns	0.5 ns	1,2
PWRGOOD Signal	-0.420V	Vccioin+ 0.28	1.25 ns	0.5 ns	

- 1. These specifications are measured at the processor pad.
- 2. Refer to Figure 5-1 for description of allowable overshoot/undershoot magnitude and duration.
- 3. Tch is the minimum high pulse width duration. It is nominally ½ of the DDR clock period.

Figure 5-1. Maximum Acceptable Overshoot/Undershoot Waveform

5.2.1.1 Overshoot/Undershoot Magnitude

Overshoot/Undershoot magnitude describes the maximum potential difference between a signal and its voltage reference level. For the processor, both overshoot and undershoot magnitude are referenced to V_{SS} . It is important to note that the overshoot and undershoot conditions are separate and their impact must be determined independently.

The pulse magnitude and duration, and activity factor must be used to determine if the overshoot/undershoot pulse is within specifications.

5.2.1.2 Overshoot/Undershoot Pulse Duration

Overshoot/undershoot pulse duration describes the total amount of time that an overshoot/undershoot event exceeds the overshoot/undershoot reference voltage. The total time could encompass several oscillations above the reference voltage. Multiple overshoot/undershoot pulses within a single overshoot/undershoot event may need to be measured to determine the total pulse duration.

Note: Oscillations below the reference voltage cannot be subtracted from the total overshoot/ undershoot pulse duration.

5.2.1.3 Activity Factor

Activity factor (AF) describes the frequency of overshoot (or undershoot) occurrence relative to a clock. Since the highest frequency of assertion of any common clock signal is every other clock, an AF = 0.1 indicates that the specific overshoot (or undershoot) waveform occurs every other clock cycle.

The specification provided in the table shows the maximum pulse duration allowed for a given overshoot/undershoot magnitude at a specific activity factor. Each table entry is independent of all others, meaning that the pulse duration reflects the existence of overshoot/undershoot events of that magnitude ONLY. A platform with an overshoot/undershoot that just meets the pulse duration for a specific magnitude where the AF < 0.1, means that there can be no other overshoot/undershoot events, even of lesser magnitude (note that if AF = 0.1, then the event occurs at all times and no other events can occur).

5.2.1.4 Reading Overshoot/Undershoot Specification Tables

The overshoot/undershoot specification for the processor is not a simple single value. Instead, many factors are needed to determine the over/undershoot specification. In addition to the magnitude of the overshoot, the following parameters must also be known: the width of the overshoot and the Activity Factor (AF). To determine the allowed overshoot for a particular overshoot event, the following must be done:

- 1. Determine the signal group a particular signal falls into.
- 2. Determine the magnitude of the overshoot or the undershoot (relative to VSS).
- 3. Determine the activity factor (How often does this overshoot occur?).
- 4. Next, from the appropriate specification table, determine the maximum pulse duration (in nanoseconds) allowed.
- 5. Compare the specified maximum pulse duration to the signal being measured. If the pulse duration measured is less than the pulse duration shown in the table, then the signal meets the specifications.

Undershoot events must be analyzed separately from overshoot events as they are mutually exclusive.

5.2.1.5 Determining if a System Meets the Overshoot/Undershoot Specifications

The overshoot/undershoot specifications listed in Table 4-5 specify the allowable overshoot/undershoot for a single overshoot/undershoot event. However most systems will have multiple overshoot and/or undershoot events that each have their own set of parameters (duration, AF and magnitude). While each overshoot on its own may meet the overshoot specification, when you add the total impact of all overshoot events, the system may fail. A guideline to ensure a system passes the overshoot and undershoot specifications is shown below.

- 1. If only one overshoot/undershoot event magnitude occurs, ensure it meets the over/undershoot specifications, ${\sf OR}$
- 2. If multiple overshoots and/or multiple undershoots occur, measure the worst case pulse duration for each magnitude and compare the results against the AF = 0.1 specifications. If all of these worst case overshoot or undershoot events meet the specifications (measured time < specifications) in the table (where AF= 0.1), then the system passes.

