EE412 Foundation of Big Data Analytics, Fall 2021

HW3

20170616 정희진

1. Link Analysis

(a) Solve the following problems, which are based on the exercises in the Mining of Massive Datasets 3rd edition (MMDS) textbook.

Exercise 5.1.2

문제를 풀기 위한 식과 코드는 다음과 같다.

$$\begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = O \cdot \mathcal{C} \begin{bmatrix} \frac{1}{3} & \frac{1}{2} & 0 \\ \frac{1}{3} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} + O \cdot \mathcal{C} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

```
import numpy as np
beta = 0.8
M = np.array([[1/3, 1/2, 0], [1/3, 0, 1/2], [1/3, 1/2, 1/2]])
v = np.array([1/3, 1/3, 1/3])
w = np.array([1/3, 1/3, 1/3])

for i in range(40):
    v = beta*M@v+(1-beta)*w
    print(v)

for i in range(10):
    v = beta*M@v+(1-beta)*w
    print(v)
```

위의 코드에서 두 개의 for loop문이 있는데, 첫 번째는 PageRanks equation을 40번 계산하여 v를 구한 것이고, 두 번째는 첫 번째에서 구한 v를 가지고 10번 더 계산하여 v를 구한 것이다. 두 결과값이 차이가 없다면 마지막으로 나온 v가 PageRank라고 할 수 있다.

코드의 결과는 다음과 같다.

```
[0.25925926 0.30864198 0.43209877]
[0.25925926 0.30864198 0.43209877]
```

Print된 두 개의 결과에 차이가 없는 것으로 보아, 각 page의 PageRank는 아래와 같다.

Page	PageRank
a	0.25925926
b	0.30864198
С	0.43209877

Exercise 5.3.1

(a) 문제를 풀기 위한 식과 코드는 다음과 같다.

$$\begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \end{bmatrix} = 0.8 \times \begin{bmatrix} 0 & \frac{1}{2} & 1 & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{2} \\ \frac{1}{3} & 0 & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \end{bmatrix} + 0.2 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

마찬가지로 PageRanks equation을 40번, 50번 계산하여 얻은 v를 프린트 하였다. 두 결과값이 차이가 없다면 마지막으로 나온 v가 PageRank라고 할 수 있다.

코드의 결과는 다음과 같다.

```
[0.42857143 0.19047619 0.19047619 0.19047619]
[0.42857143 0.19047619 0.19047619]
```

Print된 두 개의 결과에 차이가 없는 것으로 보아, 각 page의 PageRank는 아래와 같다.

Page	PageRank
a	0.42857143
b	0.19047619
С	0.19047619
d	0.19047619

(b) 문제를 풀기 위한 식과 코드는 다음과 같다.

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = 0.8 \times \begin{bmatrix} 0 & \frac{1}{2} & 1 & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$$

마찬가지로 PageRanks equation을 40번, 50번 계산하여 얻은 v를 프린트 하였다. 두 결과값이 차이가 없다면 마지막으로 나온 v가 PageRank라고 할 수 있다.

코드의 결과는 다음과 같다.

```
[0.38571429 0.17142857 0.27142857 0.17142857]
[0.38571429 0.17142857 0.27142857 0.17142857]
```

Print된 두 개의 결과에 차이가 없는 것으로 보아, 각 page의 PageRank는 아래와 같다.

Page	PageRank
a	0.38571429
b	0.17142857
С	0.27142857
d	0.17142857

(b) Implement the PageRank algorithm using Spark.

263	0.00216
537	0.00212
965	0.00206
243	0.00197
255	0.00194
285	0.00193
16	0.00191
126	0.00190
747	0.00190
736	0.00189

2. Mining Social-Network Graphs

(a) Solve the following problems, which are based on the exercises in the MMDS textbook.

Exercise 10.3.2

다음 두가지 조건을 만족하면서 maximal pair을 찾아야 한다 のSxt < nxd (ndt edgeのまか) @t<s<n

(a) st </00, t < s < 200 (b) st < 30000, t < 5 < 200

S	200	198	197	196	194	193	192	191	189	188	187	186	185 184	182 18	5
+	150	151	152	153	154	155	156	15)	158	159	160	161	162 163	164 16	5

S	180	199	178 177	176 175	174	173
+	166	167	168 169	(76 75 170 71	172	173

Exercise 10.5.2

(a)
$$P_{wx} = P_c$$
 $P_{xy} = \in$
 $P_{wy} = \in$ $P_{xz} = \in$ (1) $P_{xz} = e$

(b)
$$P_{wx} = P_C$$
 $P_{xy} = I - (I - P_c)(I - P_p) = P_c + P_p - P_c P_p$
 $P_{wy} = P_C$ $P_{xz} = P_c + P_p - P_c P_p$
 $P_{wz} = P_C$ $P_{yz} = P_c + P_p - P_c P_p$

likelihood = Pc² (I-Pc) (Pc+Bo-PcPo)² (I-Pc-Po+PcPo)

k² (+k) 라는 식에서 비뚤 차면

2k(I-k) -k² = 2k-3k² = k(2-3k) 가 된다

k (2-3k) = O ⇒ k = O 또는 를 반대

k=O 발매 O, k=를 발매 걸, k=발 때 O 이 므로

k=를 발 때 최택값 줄들 갓난다.

커 식에서 Pc² (I-Pc)는 k=Pcฮ에 k²(I-k)와 같으므로

Pc=를 이미+ 한다.

또한 (Pc+Bo-PcPo)² (I-Pc-Po+PcPo)는 k=Pc+Po-PcPo 발때 k²(I-k)과 같으므로

Pc+Po-PcPo=을+Po-를 Po=를+Po=를 ⇒ Po=O 이 떠야 한다

Pc=를 Po=O 발매 위식은 출 × 출 = 160 이 되다

라라시 C 커뮤니티에 있는 엠버끼리 O%의 확률을 edge가 있고

D 커뮤니티에 있는 엠버끼리 O%의 확률을 edge가 있고

maximum likeli hood는 1624 이다

(b) Implement the algorithm for finding triangles in MMDS Chapter 10.7.2. You will analyze part of the Facebook (now Meta) social network to identify communities

3501542

- 3. Large-Scale Machine Learning
- (a) Solve the following problems, which are based on the exercises in the MMDS textbook.

Exercise 12.5.3

$$(a) f(p) = 1 - \frac{1}{\ln} (p_i)^2$$

$$\frac{\partial f(p)}{\partial p_i} = -2p_i$$

$$\frac{\partial f(p)}{\partial p_i} = -2p_i$$

$$\frac{\partial f(p)}{\partial p_i} = -\frac{1}{\ln 2} - \frac{1}{\ln 2} - \frac{1}{\ln 2} - \frac{1}{\ln 2}$$

$$\frac{\partial^2 f(p)}{\partial p_i^2} = -2 < 0$$

$$\frac{\partial^2 f(p)}{\partial p_i^2} = -\frac{1}{\ln 2} < 0 \quad (0 \le p_i \le 1 \text{ old})$$

$$2 \le p_i \text{ old}_i \text{ o$$

(b) Implement the gradient descent SVM algorithm described in MMDS Chapter 12.3.4 using Python

