Diszkrét matematika 2.C szakirány

5. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/~nagy

Komputeralgebra Tanszék

2016. ősz

Műveletek

Definíció

Egy X halmazon értelmezett művelet alatt egy $*: X^n \to X$ függvényt értünk.

Egy X halmazon értelmezett binér (kétváltozós) művelet egy $*: X \times X \to X$ függvény. Gyakran *(x, y) helyett x * y-t írunk.

- © halmazon az +, · binér művelet.
- $\mathbb C$ halmazon az \div (osztás) nem művelet, mert $\mathrm{dmn}(\div) \neq \mathbb C \times \mathbb C$.
- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ halmazon az \div binér művelet.

Műveleti tulajdonságok

Definíció

```
A *: X \times X \to X művelet asszociatív, ha \forall a, b, c \in X: (a*b)*c = a*(b*c); kommutatív, ha \forall a, b \in X: a*b = b*a.
```

- C-n az + ill. a · műveletek asszociatívak, kommutatívak.
- A függvények halmazán a kompozíció művelete asszociatív: $(f \circ g) \circ h = f \circ (g \circ h)$.
- A függvények halmazán a kompozíció művelete nem kommutatív: f(x) = x + 1, $g(x) = x^2$: $x^2 + 1 = (f \circ g)(x) \neq (g \circ f)(x) = (x + 1)^2$.
- A kivonás az egész számok halmazán nem asszociatív: $-1 = (1-1) 1 \neq 1 (1-1) = 1$.

Algebrai struktúrák

Definíció

A (H; M) pár algebrai struktúra, ha H egy halmaz, M pedig H-n értelmezett műveletek halmaza.

Az egy binér műveletes struktúrát grupoidnak nevezzük.

- $(\mathbb{N}; +)$ algebrai struktúra, mert természetes számok összege természetes szám (ld. Diszkrét matematika 1.), és grupoid is.
- $(\mathbb{N}; -)$ nem algebrai struktúra, mert például $0 1 = -1 \notin \mathbb{N}$.
- $(\mathbb{Z};+,\cdot)$ algebrai struktúra, mert egész számok összege és szorzata egész szám (ld. Diszkrét matematika 1.), de nem grupoid.
- ullet ($\mathbb{Z}_m;+,\cdot$) algebrai struktúra (ld. Diszkrét matematika 1.), de nem grupoid.

Félcsoportok

Definíció

```
A (G; *) grupoid félcsoport, ha * asszociatív G-n.
Ha létezik s \in G: \forall g \in G: s * g = g * s = g,
akkor az s semleges elem (egységelem), (G;*) pedig semleges elemes
félcsoport (egységelemes félcsoport, monoid).
```

- N az + művelettel egységelemes félcsoport n=0 egységelemmel.
- \mathbb{Q} a · művelettel egységelemes félcsoport n=1 egységelemmel.
- ullet a mátrixszorzással egységelemes félcsoport az egységmátrixszal mint egységelemmel.

2016. ősz

Struktúrák

Definíció

Legyen (G;*) egy egységelemes félcsoport e egységelemmel. A $g \in G$ elem inverze a $g^{-1} \in G$ elem, melyre $g*g^{-1} = g^{-1}*g = e$. Ha minden $g \in G$ elemnek létezik inverze, akkor (G;*) csoport. Ha ezen felül * kommutatív is, akkor (G;*) Abel-csoport.

- $(\mathbb{Q}; +)$ a 0 egységelemmel.
- $(\mathbb{Q}^*; \cdot)$ az 1 egységelemmel, ahol $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$.
- $(\mathbb{Z}_m; +)$ a $\overline{0}$ egységelemmel.
- $(\mathbb{Z}_p^*;\cdot)$ az $\overline{1}$ egységelemmel.
- $\{M \in \mathbb{C}^{k \times k} : \det M \neq 0\}$ a mátrixszorzással, és az egységmátrixszal mint egységelemmel.
- X → X bijektív függvények a kompozícióval, és az id_X : x → x identikus leképzéssel mint egységelemmel.

Gyűrűk

Definíció

Legyen $(R; *, \circ)$ algebrai struktúra, ahol * és \circ binér műveletek. Azt mondjuk, hogy teljesül a o-nek a *-ra vonatkozó bal oldali disztributivitása, illetve jobb oldali disztributivitása, ha $\forall k, l, m \in R$ -re: $k \circ (l * m) = (k \circ l) * (k \circ m)$, illetve $\forall k, l, m \in R$ -re: $(l * m) \circ k = (l \circ k) * (m \circ k)$.

Példa

 $(\mathbb{Z};+,\cdot)$ esetén teljesül a szorzás összeadásra vonatkozó mindkét oldali disztributivitása.

Elnevezés

(R; *, 0) két binér műveletes algebrai struktúra esetén a *-ra vonatkozó semleges elemet nullelemnek, a o-re vonatkozó semleges elemet egységelemnek nevezzük. A nullelem szokásos jelölése 0, az egységelemé 1, esetleg *e*.

Gyűrűk

Definíció

Az $(R; *, \circ)$ két binér műveletes algebrai struktúra gyűrű, ha

- (R;*) Abel-csoport;
- (R; ∘) félcsoport;
- teljesül a ∘-nek a ∗-ra vonatkozó mindkét oldali disztributivitása.

Az $(R; *, \circ)$ gyűrű egységelemes gyűrű, ha R-en a \circ műveletre nézve van egységelem.

Az $(R; *, \circ)$ gyűrű kommutatív gyűrű, ha a \circ művelet (is) kommutatív.

- $(\mathbb{Z}; +, \cdot)$ egységelemes kommutatív gyűrű.
- (2ℤ; +, ·) gyűrű, de nem egységelemes.
- ℚ, ℝ, ℂ a szokásos műveletekkel egységelemes kommutatív gyűrűk.
- $\mathbb{C}^{k \times k}$ a szokásos műveletekkel egységelemes gyűrű, de nem kommutatív, ha k > 1.

Nullosztómentes gyűrűk

Definíció

Ha egy $(R, *, \circ)$ gyűrűben $\forall r, s \in R, r, s \neq 0$ esetén $r \circ s \neq 0$, akkor R nullosztómentes gyűrű.

Példa

Nem nullosztómentes gyűrű

$$\bullet \ (\mathbb{R}^{2\times 2};+,\cdot): \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

Állítás

Nullosztómentes gyűrűben a nem-nulla elemek additív rendje megegyezik, és vagy egy p prímszám vagy végtelen.

Definíció

Ha az előző állításban szereplő közös rend p, akkor a gyűrű karakterisztikája p, ha a közös rend végtelen, akkor pedig 0. Jelölése: char(R).

Definíció

A kommutatív, nullosztómentes gyűrűt integritási tartománynak nevezzük.

Példa

• $(\mathbb{Z};+,\cdot)$

Definíció

Az $(R; *, \circ)$ egységelemes integritási tartományban az $a, b \in R$ elemekre azt mondjuk, hogy a osztója b-nek, ha van olyan $c \in R$, amire $b = a \circ c$. Jelölése: a|b.

Definíció

Az egységelem osztóját egységnek nevezzük.

Testek

Definíció

Az $(R; *, \circ)$ gyűrű ferdetest, ha $(R \setminus \{0\}; \circ)$ csoport. A kommutatív ferdetestet testnek nevezzük.

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ a szokásos műveletekkel,
- \mathbb{Z}_p a szokásos műveletekkel, ha p prím.

Definíció

Legyen $(R;+,\cdot)$ gyűrű. A gyűrű elemeiből képzett $f=(f_0,f_1,f_2,\dots)$ $(f_j\in R)$ végtelen sorozatot R fölötti polinomnak nevezzük, ha csak véges sok eleme nem-nulla.

Az R fölötti polinomok halmazát R[x]-szel jelöljük.

R[x] elemein definiáljuk az összeadást és a szorzást.

$$f = (f_0, f_1, f_2, ...), g = (g_0, g_1, g_2, ...)$$
 és $h = (h_0, h_1, h_2, ...)$ esetén $f + g = (f_0 + g_0, f_1 + g_1, f_2 + g_2, ...)$ és $f \cdot g = h$, ahol

$$h_k = \sum_{i+j=k} f_i g_j = \sum_{i=0}^k f_i g_{k-i} = \sum_{j=0}^k f_{k-j} g_j.$$

Megjegyzés

Könnyen látható, hogy polinomok összege és szorzata is polinom.

2016. ősz

Alapfogalmak

Állítás (NB)

Ha $(R; +, \cdot)$ gyűrű, akkor $(R[x]; +, \cdot)$ is gyűrű, és R fölötti polinomgyűrűnek nevezzük.

Megjegyzés

Gyakran az $(R; +, \cdot)$ gyűrűre szimplán R-ként, az $(R[x]; +, \cdot)$ gyűrűre R[x]-ként hivatkozunk.

Állítás

Ha az R gyűrű kommutatív, akkor R[x] is kommutatív.

Bizonyítás

$$(f \cdot g)_k = f_0 g_k + f_1 g_{k-1} + \dots + f_{k-1} g_1 + f_k g_0 =$$

$$= g_k f_0 + g_{k-1} f_1 + \dots + g_1 f_{k-1} + g_0 f_k =$$

$$= g_0 f_k + g_1 f_{k-1} + \dots + g_{k-1} f_1 + g_k f_0 = (g \cdot f)_k$$

14.

Alapfogalmak

Állítás

 $1 \in R$ egységelem esetén $e = (1, 0, 0 \dots)$ egységeleme lesz R[x]-nek.

Bizonyítás

$$(f \cdot e)_k = \sum_{j=0}^k f_j e_{k-j} = \sum_{j=0}^{k-1} f_j e_{k-j} + f_k e_0 = f_k$$

Állítás

Ha az R gyűrű nullosztómentes, akkor R[x] is nullosztómentes.

Bizonvítás

Legyen n, illetve m a legkisebb olyan index, amire $f_n \neq 0$, illetve $g_m \neq 0$.

$$(f \cdot g)_{n+m} = \sum_{j=0}^{n+m} f_j g_{n+m-j} = \sum_{j=0}^{n-1} f_j g_{n+m-j} + f_n g_m + \sum_{j=n+1}^{n+m} f_j g_{n+m-j} = \sum_{j=0}^{n+m} f_j g_{n+m-j} = \sum_{j=0$$

$$= 0 + f_n g_m + 0 = f_n g_m \neq 0$$

2016. ősz

Alapfogalmak

Jelölés

Az $f = (f_0, f_1, f_2, \dots, f_n, 0, 0, \dots), f_n \neq 0$ polinomot $f(x) = f_0 + f_1 x + f_2 x^2 + ... + f_n x^n$, $f_n \neq 0$ alakba írjuk.

Definíció

Az előző pontban szereplő polinom esetén f_i -t az i-ed fokú tag együtthatójának nevezzük, f_0 a polinom konstans tagja, f_n a főegyütthatója, $f_n x^n$ a főtagja, n pedig a foka. f fokának jelölésére deg(f) használatos.

16.

Megjegyzés

A főegyüttható tehát a legnagyobb indexű nem-nulla együttható, a fok pedig ennek indexe.

A $0 = (0, 0, \dots)$ nullpolinomnak nincs legnagyobb indexű nem-nulla együtthatója, így a fokát külön definiáljuk, mégpedig $deg(0) = -\infty$.

Definíció

A konstans polinomok a legfeljebb nulladfokú polinomok, a lineáris polinomok pedig a legfeljebb elsőfokú polinomok. Az $f_i x^i$ alakba írható polinomok a monomok. Ha $f \in R[x]$ polinom főegyütthatója R egységeleme, akkor f-et főpolinomnak nevezzük.

- $x^3 + 1 \in \mathbb{Z}[x]$
- $\frac{2}{3} \in \mathbb{Q}[x]$
- $\pi x + (i + \sqrt{2}) \in \mathbb{C}[x]$

Állítás

Legyen $f, g \in R[x]$, deg(f) = n, és deg(g) = k. Ekkor:

- $deg(f+g) \leq \max(n,k)$;
- $deg(f \cdot g) \leq n + k$.

Bizonyítás

Legyen h = f + g. Ekkor $j > \max(n, k)$ esetén $h_j = 0 + 0 = 0$.

Legyen $h = f \cdot g$. Ekkor j > n + k esetén

$$h_j = \sum_{i=0}^J f_i g_{j-i} = \sum_{i=0}^n f_i g_{j-i} + \sum_{i=n+1}^J f_i g_{j-i} = \sum_{i=0}^n f_i \cdot 0 + \sum_{i=n+1}^J 0 \cdot g_{j-i} = 0.$$

Megjegyzés

Nullosztómentes gyűrű esetén egyenlőség teljesül a 2. egyenlőtlenségben, hiszen

$$h_{n+k} = \sum_{i=0}^{n+k} f_i g_{n+k-i} = \sum_{i=0}^{n-1} f_i g_{n+k-i} + f_n g_k + \sum_{i=n+1}^{n+k} f_i g_{n+k-i} = f_n g_k \neq 0.$$

Definíció

Az $f(x) = f_0 + f_1 x + f_2 x^2 + \ldots + f_n x^n \in R[x]$ polinom $r \in R$ helyen felvett helyettesítési értékén az $f(r) = f_0 + f_1 r + f_2 r^2 + \ldots + f_n r^n \in R$ elemet értjük.

f(r) = 0 esetén r-et a polinom gyökének nevezzük.

Az $\hat{f}: r \mapsto f(r)$ leképezés az f polinomhoz tartozó polinomfüggvény.

Megjegyzés

Ha R véges, akkor csak véges sok $R \to R$ függvény van, míg végtelen sok R[x]-beli polinom, így vannak olyan polinomok, amikhez ugyanaz a polinomfüggvény tartozik, például $x, x^2 \in \mathbb{Z}_2[x]$.

Példa

 $f(x) = x^2 + x - 2 \in \mathbb{Z}[x]$ -nek a -2 helyen felvett helyettesítési értéke $(-2)^2 + (-2) - 2 = 0$, ezért -2 gyöke f-nek.

Horner-elrendezés

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0$, ahol $f_n \neq 0$. Ekkor átrendezéssel a következő alakot kapjuk:

$$f(x) = (\cdots((f_n \cdot x + f_{n-1}) \cdot x + f_{n-2}) \cdot x + \dots + f_1) \cdot x + f_0, \text{ \'es \'igy}$$

$$f(c) = (\dots((f_n \cdot c + f_{n-1}) \cdot c + f_{n-2}) \cdot c + \dots + f_1) \cdot c + f_0.$$

Vagyis f(c) kiszámítható n db szorzás és n db összeadás segítségével.

Általánosan: $c_k = c_{k-1}c + f_{n-k+1}$, ha $1 < k \le n$.

Példa

Határozzuk meg az $f(x) = x^4 - 3x^3 + x + 6$ polinom -2 helyen vett helyettesítési értékét!

Tétel (polinomok maradékos osztása)

Legyen R egységelemes integritási tartomány, $f,g \in R[x]$, és tegyük fel, hogy g főegyütthatója egység R-ben. Ekkor egyértelműen léteznek olyan $q,r \in R[x]$ polinomok, melyekre f=qg+r, ahol deg(r) < deg(g).

Bizonyítás

esetén megfelelő előállítást kapunk. Legyen f főegyütthatója f_n , g főegyütthatója g_k . $n \ge k$ esetén legyen $f^*(x) = f(x) - f_n g_k^{-1} g(x) x^{n-k}$. $deg(f^*) < deg(f)$ (Miért?) miatt f^* -ra használhatjuk az indukciós feltevést, vagyis léteznek $q^*, r^* \in R[x]$ polinomok, amikre $f^* = q^*g + r^*$. $f(x) = f^*(x) + f_n g_k^{-1} g(x) x^{n-k} = q^*(x) g(x) + r^*(x) + f_n g_k^{-1} g(x) x^{n-k} = (g^*(x) + f_n g_k^{-1} x^{n-k}) g(x) + r^*(x)$,

így $q(x) = q^*(x) + f_n g_k^{-1} x^{n-k}$ és $r(x) = r^*(x)$ jó választás.

Létezés: f foka szerinti TI: ha deg(f) < deg(g), akkor g = 0 és r = f

Bizonyítás folyt.

Egyértelműség: Tekintsük f két megfelelő előállítását:

 $f = qg + r = q^*g + r^*$, amiből:

$$g(q-q^*)=r^*-r.$$

Ha a bal oldal nem 0, akkor a foka legalább k, de a jobb oldal foka legfeljebb k-1, tehát

$$0 = g(q - q^*) = r^* - r$$
, és így $q = q^*$ és $r = r^*$.

Definíció

Ha $c \in R$ az $f \in R[x]$ polinom gyöke, akkor $(x - c) \in R[x]$ a c-hez tartozó gyöktényező.

Következmény (gyöktényező leválasztása)

Ha $0 \neq f \in R[x]$, és $c \in R$ gyöke f-nek, akkor létezik olyan $q \in R[x]$, amire f(x) = (x - c)q(x).

Bizonyítás

Osszuk el maradékosan f-et (x - c)-vel (Miért lehet?):

$$f(x) = q(x)(x - c) + r(x).$$

Mivel deg(r(x)) < deg(x-c) = 1, ezért r konstans polinom. Helyettesítsünk be c-t, így azt kapjuk, hogy 0 = f(c) = q(c)(c-c) + r(c) = r(c), amiből r = 0.

Következmény

Az $f \neq 0$ polinomnak legfeljebb deg(f) gyöke van.

Bizonvítás

f foka szerinti TI:

deg(f) = 0-ra igaz az állítás (Miért?).

Ha deg(f) > 0, és f(c) = 0, akkor f(x) = (x - c)g(x) (Miért?), ahol deg(g) + 1 = deg(f) (Miért?). Ha d gyöke f-nek, akkor d - c = 0, amiből d = c, vagy d gyöke g-nek (Miért?). Innen következik az állítás.

Következmény

Ha két, legfeljebb n-ed fokú polinomnak n+1 különböző helyen ugyanaz a helyettesítési értéke, akkor egyenlőek.

Bizonyítás

A két polinom különbsége legfeljebb n-ed fokú, és n+1 gyöke van (Miért?), ezért nullpolinom (Miért?), vagyis a polinomok egyenlőek.

Következmény

Ha R végtelen, akkor két különböző R[x]-beli polinomhoz nem tartozik ugyanaz a polinomfüggvény.

Bizonyítás

Ellenkező esetben a polinomok különbségének végtelen sok gyöke lenne (Miért?).

Bővített euklideszi algoritmus

Definíció

Azt mondjuk, hogy $f,g \in R[x]$ polinomok esetén f osztója g-nek (g többszöröse f-nek), ha létezik $h \in R[x]$, amire $g = f \cdot h$.

Definíció

Az $f,g \in R[x]$ polinomok kitüntetett közös osztója (legnagyobb közös osztója) az a $d \in R[x]$ polinom, amelyre d|f,d|g, és tetszőleges $c \in R[x]$ esetén $(c|f \wedge c|g) \Rightarrow c|d$.

Test fölötti polinomgyűrűben tetszőleges nem-nulla polinommal tudunk maradékosan osztani, ezért működik a bővített euklideszi-algoritmus. Ez $f,g\in R[x]$ esetén (R test) meghatározza f és g kitüntetett közös osztóját, a $d\in R[x]$ polinomot, továbbá $u,v\in R[x]$ polinomokat, amelyekre $d=u\cdot f+v\cdot g$.

2016. ősz

Bővített euklideszi algoritmus

Algoritmus

Legyen R test, $f,g \in R[x]$. Ha g=0, akkor $(f,g)=f=1\cdot f+0\cdot g$, különben végezzük el a következő maradékos osztásokat:

 $f = q_1 g + r_1$;

$$g = q_{2}r_{1} + r_{2};$$

$$r_{1} = q_{3}r_{2} + r_{3};$$

$$\vdots$$

$$r_{n-2} = q_{n}r_{n-1} + r_{n};$$

$$r_{n-1} = q_{n+1}r_{n}.$$

Ekkor $d = r_n$ jó lesz kitüntetett közös osztónak.

Az $u_{-1}=1,\ u_0=0,\ v_{-1}=0,\ v_0=1$ kezdőértékekkel, továbbá az $u_k=u_{k-2}-q_k\cdot u_{k-1}$ és $v_k=v_{k-2}-q_k\cdot v_{k-1}$ rekurziókkal megkapható $u=u_n$ és $v=v_n$ polinomok olyanok, amelyekre teljesül $d=u\cdot f+v\cdot g$.