MATH 307 Assignment #9 Due Friday, March 25, 2022

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

1. Suppose V is finite-dimensional and $P \in \mathcal{L}(V)$ is such that (1) $P^2 = P$ and (2) every vector in null P is orthogonal to every vector in range P. Prove that there exists a subspace U of V such that $P = P_U$.

Hint: For $v \in V$, write v = Pv + (v - Pv).

Proof. We will first show that $V = \text{range } P \oplus \text{null } P$. Let $u \in \text{range } P$ and $w \in \text{null } P$. Then we will show that every $v \in V$ can be expressed as v = u + w. Taking P(v - Pv) we have $Pv - P^2v = Pv - Pv$ by hypothesis (1), which is clearly zero. Therefore $(v - Pv) \in \text{null } P$. As for Pv, we know that $Pv \in \text{range } P$ by definition of range. Therefore we can rewrite v as the sum of subsets

$$v = \underbrace{Pv}_{\in \text{ range } P} + \underbrace{(v - Pv)}_{\in \text{ null } P}.$$

To show it is a unique linear combination (direct sum), we need null $P \cap \text{range } P = \{0\}$. For every $x \in \text{null } P \cap \text{range } P$, we have Px = 0 and x = Py for some $y \in V$. By hypothesis (1), $P^2y = Py = P(Py) = Px = 0$. Thus, null $P \cap \text{range } P = \{0\}$ and

$$v = \text{range } P \oplus \text{null } P$$
.

Hence every $v \in V$ can be written as a unique linear combination v = Pv + (v - Pv). By hypothesis (2), we have null $P \subseteq (\text{range } P)^{\perp}$. For U := range P (a subspace), then

$$P_{U}v = P_{U}(Pv + v - Pv) = P_{U}\underbrace{(Pv)}_{\in U} + P_{U}\underbrace{(v - Pv)}_{\in U^{\perp}} = Pv + 0 = Pv.$$

2. Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if $P_U T P_U = T P_U$.

Proof. (\Longrightarrow) (If *U* is invariant under *T* then $P_UTP_U = TP_U$.)

For any $v \in V$ we have $P_U v \in U$ by properties of P_U (6.55 (d)). By our hypothesis $T(T_U v) \in U$, therefore

$$P_U \underbrace{(TP_U v)}_{\in U} = TP_U v$$

by property 6.55 (b).

Proof. (\iff) (If $P_UTP_U = TP_U$ then U is invariant under T.)

For any vector $u \in U$ we have Tu = v + w for some $v \in U$ and $w \in U^{\perp}$. Then we would first have

$$P_{U}TP_{U} = P_{U}Tu$$

$$= P_{U}(v + w)$$

$$= \underbrace{P_{U}v}_{\in U} + \underbrace{P_{U}w}_{\in U^{\perp}}$$

$$= v + 0$$

$$= v.$$

Secondly, we would have $TP_Uu = Tu = v + w$. Therefore under our hypothesis, v = v + w, which implies w = 0. Then $Tu = v + 0 = v \in U$, hence U is invariant under T.

Hence *U* is invariant under *T* if and only if $P_UTP_U = TP_U$.

3. In \mathbb{R}^4 , let

$$U = \text{span}((0,0,1,1),(1,2,1,1)).$$

Find $u \in U$ such that ||u - (1, 3, 5, 4)|| is as small as possible.

Solution: Let *B* be an orthonormal basis of *U*. Let $v_1, v_2 \in \mathbb{R}^4$ equal $v_1 = (0, 0, 1, 1)$ and $v_2 = (1, 2, 1, 1)$. Using the Gram-Schmidt procedure on v_1 and v_2 ,

$$e_1 = \frac{1}{\|v_1\|} v_1 = \frac{1}{\sqrt{2}} (0, 0, 1, 1)$$

and

$$e_{2} = \frac{v_{2} - \langle v_{2}, e_{1} \rangle e_{1}}{\|v_{2} - \langle v_{2}, e_{1} \rangle e_{1}\|}$$

$$= \frac{v_{2} - \frac{1}{2} \langle v_{2}, v_{1} \rangle v_{1}}{\|v_{2} - \frac{1}{2} \langle v_{2}, v_{1} \rangle v_{1}\|}$$

$$= \frac{v_{2} - \frac{1}{2} (0 + 0 + 1 + 1) v_{1}}{\|v_{2} - \frac{1}{2} (0 + 0 + 1 + 1) v_{1}\|}$$

$$= \frac{v_{2} - v_{1}}{\|v_{2} - v_{1}\|}$$

$$= \frac{1}{\sqrt{5}} (1, 2, 0, 0).$$

Then $B := \{e_1, e_2\}$. Then the closest point to $u \in U$ to w := (1, 3, 5, 4) is

$$u = \langle w, e_1 \rangle e_1 + \langle w, e_2 \rangle e_2$$

= $\frac{5+4}{2}(0,0,1,1) + \frac{1+6}{5}(1,2,0,0)$
= $\left(\frac{7}{5}, \frac{14}{5}, \frac{9}{2}, \frac{9}{2}\right)$.

4. Assume $T \in \mathcal{L}(V)$ for a complex vector space V. Prove that T is self-adjoint if and only if all eigenvalues for T are real.

Proof. (\Longrightarrow) (If T is self-adjoint, then all the eigenvalues for T are real.)

Let λ be an eigenvalue of T and $v \in V \setminus 0$ such that $Tv = \lambda v$. Then

$$\lambda \|v\|^{2} = \langle \lambda v, v \rangle$$

$$= \langle Tv, v \rangle$$

$$= \langle v, T^{*}v \rangle$$

$$= \langle v, Tv \rangle \qquad \text{by hypothesis}$$

$$= \langle v, \lambda v \rangle$$

$$= \overline{\lambda} \langle v, v \rangle$$

$$= \overline{\lambda} \|v\|^{2}.$$

Therefore $\lambda = \overline{\lambda}$, hence $\lambda \in \mathbb{R}$.

Proof. (\iff) (If all the eigenvalues for T are real, then T is self-adjoint.) By the hypothesis, $\lambda = \bar{\lambda}$ for an eigenvalue λ . Let $v \in V$ be an eigenvector so that $Tv = \lambda v$. Then,

$$\langle Tv, v \rangle = \langle \lambda v, v \rangle$$

$$= \lambda \langle v, v \rangle$$

$$= \langle v, \overline{\lambda} v \rangle$$

$$= \langle v, \lambda v \rangle \quad \text{by hypothesis}$$

$$= \langle v, Tv \rangle.$$

Therefore $\langle Tv, v \rangle = \langle v, Tv \rangle$ is true for eigenvector $v \in V$. We are not guaranteed anything else under these assumptions.

False by counterexample: Let

$$\mathcal{M}(T) := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $\mathcal{M}(T^*) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

The eigenvalues of T are $\lambda = 1$ with multiplicity 2. However, $\mathcal{M}(T) \neq \mathcal{M}(T^*)$. Hence a counterexample.

5. If $T \in \mathcal{L}(V)$ is self-adjoint and if $T^2v = 0$, then Tv = 0

Proof. If we have $T^2v = 0$, then this is equivilent to T(Tv) = 0. Taking the inner product of Tv with itself, $\langle Tv, Tv \rangle$, we will show this is zero. By our hypothesis,

$$\langle Tv, Tv \rangle = \langle v, T^*Tv \rangle$$

= $\langle v, T^2v \rangle$
= $\langle v, 0 \rangle$ by hypothesis
= 0.

Hence $\langle Tv, Tv \rangle = 0$, which implies that Tv = 0.

- 6. Suppose $T \in \mathcal{L}(V, W)$. Prove that
 - (a) T is injective if and only if T^* is surjective.

Proof. (\Longleftrightarrow)

By definition of injective, null $T = \{0\}$. Using 7.7 properties,

$$\operatorname{null} T = \{0\}$$
 (hypothesis)
$$\iff (\operatorname{range} T^*)^{\perp} = \{0\}$$
 (c)
$$\iff \operatorname{range} T^* = \{0\}^{\perp} = W$$
 (perp of both)
$$\iff T^* \text{ is surjective.}$$
 (definition of surjective)

(b) T is surjective if and only if T^* is injective.

Proof. (\Longleftrightarrow)

By definition of injective, null $T^* = \{0\}$. Using 7.7 properties,

$$\operatorname{null} T^* = \{0\}$$
 (hypothesis)
 $\iff (\operatorname{range} T)^{\perp} = \{0\}$ (a)
 $\iff (\operatorname{range} T) = \{0\}^{\perp} = W$ (perp of both)
 $\iff T \text{ is surjective.}$ (definition of surjective)

7. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.

Proof. (\Longrightarrow) (If ST is self-adjoint then ST = TS.)

$$ST = (ST)^*$$
 (ST self adjoint hypothesis)
= T^*S^* (property e)
= TS . ($T = T^*$ and $S = S^*$ hypothesis)

Hence if ST is self adjoint then ST = TS.

Proof. (\iff) (If ST = TS then ST is self-adjoint.)

$$(ST)^* = T^*S^*$$
 (property e)
= TS ($T = T^*$ and $S = S^*$ hypothesis)
= ST . ($ST = TS$ hypothesis)

Hence if ST = TS then $(ST)^* = ST$. In other words, ST is self-adjoint.

8. Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that there is a subspace U of V such that $P = P_U$ if and only if P is self-adjoint.

Proof. (\Longrightarrow) (If there is a subspace U of V such that $P = P_U$ then P is self-adjoint)

Proof. (\iff) (If P is self-adjoint then there exists a subspace U of V such that $P=P_U$) Since P is self-adjoint under the hypothesis, $V=\operatorname{range} P+\operatorname{null} P$. By the logic of problem #1, $V=\operatorname{range} P\oplus\operatorname{null} P$. Let $U:=\operatorname{range} P$ and $v\in V$. Then for some $u\in U$ and some $w\in U^\perp$, v=u+w. We have Pw=0 by null space definition. So

$$P_{U}v = P_{U}(u+w)$$

$$= P_{U}u + P_{U}w$$

$$= u + 0$$

$$= u$$

$$= Pu + 0$$

$$= Pu + Pw$$

$$= Pv.$$