ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO DECANATURA DE INGENIERÍA DE SISTEMAS REDES DE COMPUTADORES

- 1. Archivo de 1024 MB se comprime al 60%, se demora 1600seg su transmisión, ¿cuál es el throughput?
- 2. Al transmitir un video de 50 cuadros de 640x480 pixels (1 pixel = 3 Bytes), se logró un throughput de 25.475 Mbps. ¿Cuánto demoró la transmisión? si se logró una compresión del 50% a partir del segundo cuadro.
- 3. Codifique la cadena 010011101101 por los métodos de codificación indicados:

Bits							
Manchester		u.		u.			
Manchester diferencial							
MTL-3							

¿Qué número binario repres	senta?
--	--------

Si fue codificada con Manchester

Si fue codificada con Manchester diferencial

5. ¿Qué número binario representa?

Si fue codificada con Manchester

Si fue codificada con Manchester diferencial

6. Complete la siguiente tabla

	¿Qué es?	¿Cuál es la diferencia entre ellos?
Ancho de banda		
velocidad de transmisión		
throughput		

7. Dibuje las topologías indicadas.

Bus	Anillo	Árbol	Estrella

Qué es:			
	Definición		
Multicast			
Fullduplex			
Unicast			
Halfduplex			
Protocolo			
RFC			

- 9. Coloque encabezado y fin a las siguientes cadenas de datos basado en la técnica starting and ending flag with bit stuffing.

8.

- c. 1011101000001111111111111111111111
- 10. Si a destino llegan las siguientes cadenas que incluyen el framming usando la misma técnica del punto anterior, ¿cuáles serán los datos de usuario?
 - a. 0111111001111110011111010101011111110
 - b. 0111111011111011111001111110
- 11. Calcule es el CRC para la siguiente cadena 100010110111110101011111101011010010011101 con polinomio generador x^5+x^2+1 . ¿Cuál será la cadena a enviar incluyendo framming?

9)	1		,			<u> </u>					1		ı	<u>.</u>	1		t i			1		11	1				1 6	
(9)	1 .	0 11	11	11	0	1	1 /	111	1	11	11	1	11	11	11	A	1 1	1	11	11	7 1	11	1	0:	717	779	70	_
		1111					_				,									-			-		1	1 1		
· ·			40									_	<u>۔</u> م مام	<u>.</u> د مد دا	<u> </u>	0.4	اروا	. 1		11	11	111	2			1		
-	7	111	3 U	10	71	701	0	000	0	777	117	0	777	777	77	07	7.1	7	0	77	7.	1				1	1	
10)		1 1	1			1	-				1	1					1			1					1	1	1	
9) .	111	11	K O	11	111	11	§ 1	9 1	101	0	<u> </u>		10	4	i: t	9	a	Ç	ło			- !		1		1	
Ь) 1	111	110	1	11	11	0		_	1		-	<u> </u>	1		:	1 1			(!	1			3	1	!	1	
!		1	1	1	,	1		1 1							1	1		!		1 1	01	11	11	0			1	
11)	4 1	(2)	0	m	ee	1	yo	y	9	se	di	v:	13	-	7 01	1		1	- Janks - 13.4		1	V	1	, , ,			1	
	1	1	;		1	1		1 1		1	!	-	1	1	1 4 1	 	1 1	1		1		1	1	- ;				
t t	1	1 1		1	1	+ 1		1 1		1	1	1	1 1 1	1	1	† † !		1 1		1	1	1 1	1	1			1	
1	刘	546	26	C	191	to)	ρ	e 5	91	,	V.	1 (100	100	0		1			- 1	1		- 1	1	1	1 1	
•	1	1			2	1		1 1		1	1	1	1	-	->	1	co.	we	65	70	,	2 6	25+	e	1	1		-
- 1	1	1 1	:		1	L	18	OX	6	4	> X	3	χ 8	3	1	1 1	1	I I 4		1	1	1	+			1	1	
1 4			;			:		1 1		1	-	-	7	3	72	80	0	6		>	7	.4	1	16	1	1	!	
1	1 1	1				1		1 j		1	1	i t	-	1	1	1	1			1	1		1	5		-	1	
1		1			Vi	dec	Car	MP		18	78.	7	MA	, ,	!	!	1	1		1	1			1 7		1	- 1	-
1	1	1 1			!	ř L					1	1	1	1 1	1 1	i !	1	1 1		- 1	1 1			_ ;	. 1	1	1	
1	1	7			1	1		F 1	2	5;1	17	5 -		18:	8,7	<i>t</i>	=>	1	1	=	7,	47	S		!			
	1	1 1						1			!	1	1	t	1	1	1	1		1	- !	- :	1	- 1			1	
	1			,						!	1	1	1	t t			1	1			1		1					
1	1	, , ,	- 1 : :				-	1		1				; ; 1	1	1 1		-			1	1	1	1		1	1	
1		1 1						1		1	1	1	-	1	1		1	1				1) } !	1		1	1	
- 1	-	1 1	1				1			1 1	1	!	1	!			- 1	1		1		1) 1		1		
	1			7	1	1	- 1		-	1			1 1	I I	i					1						1	1	
- !		; ;			1	1	!	!		1 1		1	1 1 2			1		1				1						

1 SQUARE =