National University of Computer & Emerging Sciences CS 3001 - COMPUTER NETWORKS

Lecture 03
Chapter 1

30th August, 2022

Nauman Moazzam Hayat nauman.moazzam@lhr.nu.edu.pk

Office Hours: 02:30 pm till 06:00 pm (Every Tuesday & Thursday)

Chapter I: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

A closer look at network structure:

- network edge:
 - hosts: clients and servers
 - servers often in data centers
- access networks, physical media: wired, wireless communication links

- network core:
 - interconnected routers
 - network of networks

Network Edge (Client, Server, Peer)

Network edge comprises of the millions and billions of end systems / hosts and applications which reside in them

An end system (or host) can either request service (*client*) or provide service (*server*) or act as both interchangeably (*peer*).

Server

- A server is a service provider providing access to network resources:
 - A server can have multiple roles (e.g web servers, mail servers, print servers, Remote Access Servers (RAS), Directory Servers (DNS) etc)
 - Always on host
 - Permanent IP address
 - Most servers reside in large data centres

Client

- A client is a requestor of these services
 - May be intermittently on
 - may have dynamic IP address
 - do not communicate directly with each other

Peer

- A Peer-to-Peer network doesn't have dedicated servers. All hosts are equal and they both provide and request service i.e. they have both client & server functionalities.
 - Not always on server
 - arbitrary end systems directly communicate
 - peers are intermittently connected and change IP addresses
 - complex management
 - Examples are Skype, BitTorrent, Napster

Access networks and physical media

Q: How to connect end systems to first / edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Links: Medium + Adapter Cards

Communication Medium

Network Adapter

Transmission Modes

Access net: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < I Mbps)</p>
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)
 </p>

Access net: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Access net: cable network

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2
 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- * today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): 11,54 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between I and I0 Mbps
- 3G, 4G: LTE

Physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1
 Gpbs Ethernet
 - Category 6: 10Gbps

Physical media: coax, fiber

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gpbs transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- * terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - IIMbps, 54 Mbps
- wide-area (e.g., cellular)
 - 3G, 4G cellular: ~ few Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Chapter I: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

Two approaches to sharing

- Reservations
- On demand

How are these implemented?

Two approaches to sharing

- Reservations circuit switching
- ► On demand → packet switching

How are these implemented?

Two approaches to sharing

- Packet switching
 - packets treated on demand
 - admission control: per packet
- Circuit switching
 - resources reserved per active "connection"
 - admission control: <u>per connection</u>
- A hybrid: virtual circuits
 - emulating circuit switching with packets