

54F/74F544 Octal Registered Transceiver

General Description

The 'F544 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The A outputs are guaranteed to sink 24 mA (20 mA Mil) while the B outputs are rated for 64 mA (48 mA Mil). The 'F544 inverts data in both directions.

Features

- 8-bit octal transceiver
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- A outputs sink 24 mA (20 mA Mil), B outputs sink 64 mA (48 mA Mil)
- 300 mil slim PDIP

Commercial	Military	Package Number	Package Description
74F544SPC		N24C	24-Lead (0.300" Wide) Molded Dual-In-Line
	54F544DM (Note 2)	J24A	24-Lead Ceramic Dual-In-Line
	54F544SDM (Note 2)	J24F	24-Lead (0.300" Wide) Ceramic Dual-In-Line
74F544SC (Note 1)		M24B	24-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F544MSA (Note 1)		MSA24	24-Lead Molded Shrink Small Outline, EIAJ, Type II
	54F544FM (Note 2)	W24C	24-Lead Cerpack
	54F544LM (Note 2)	E28A	24-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and MSAX.

 $\textbf{Note 2:} \ \textbf{Military grade device with environmental and burn-in processing.} \ \textbf{Use suffix} = \textbf{DMQB, FMQB and LMQB}$

TI /F/9555-2

Logic Symbols

TL/F/9555-1

RI-STATE® is a registered trademark of National Semiconductor Corporation

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

A₆ A₅ A₄ NC A₃ A₂ A₁
11 10 9 8 7 6 5

A₇ 12

CEAB 13

NC 15

OEAB 16

LEAB 17

B₇ 18

19 20 21 22 23 24 25

B6 B5 B4 NC B3 B2 B1

Pin Assignment

for LCC

TL/F/9555-4

TL/F/9555-3

Unit Loading/Fan Out

		54F/74F				
Pin Names Description		U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
OEAB	A-to-B Output Enable Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA			
OEBA	B-to-A Output Enable Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA			
CEAB	A-to-B Enable Input (Active LOW)	1.0/2.0	20 μA/-1.2 mA			
CEBA	B-to-A Enable Input (Active LOW)	1.0/2.0	20 μA/-1.2 mA			
LEAB	A-to-B Latch Enable Input (Active LOW)	1.0/1.0	20 μA/ – 0.6 mA			
LEBA	B-to-A Latch Enable Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA			
$\overline{A}_0 - \overline{A}_7$	A-to-B Data Inputs or	3.5/1.083	70 μΑ/ -650 μΑ			
	B-to-A TRI-STATE Outputs	150/40(33.3)	-3 mA/24 mA (20 mA)			
$\overline{B}_0 - \overline{B}_7$	B-to-A Data Inputs or	3.5/1.083	70 μΑ/ -650 μΑ			
	A-to-B TRI-STATE Outputs	600/106.6(80)	-12 mA/64 mA (48 mA)			

Functional Description

The 'F544 contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable ($\overline{\text{CEAB}}$) input must be LOW in order to enter data from $\overline{\text{A}}_0-\overline{\text{A}}_7$ or take data from $\overline{\text{B}}_0-\overline{\text{B}}_7$, as indicated in the Data I/O Control Table. With $\overline{\text{CEAB}}$ LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\text{LEAB}}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the $\overline{\text{LEAB}}$ signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{\text{CEAB}}$ and $\overline{\text{OEAB}}$ both LOW, the TRI-STATE® B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{\text{CEBA}}$, $\overline{\text{LEBA}}$ and $\overline{\text{OEBA}}$ inputs.

Data I/O Control Table

	Inputs		Latch Status	Output Buffers		
CEAB	LEAB	OEAB	Laton Otatus	Catput Barrers		
Н	Х	Х	Latched	High Z		
Χ	Н	Χ	Latched	_		
L	L	Χ	Transparent	_		
Χ	X	Н	_	High Z		
L	X	L	_	Driving		

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

A-to-B data flow shown; B-to-A flow control is the same, except using $\overline{\text{CEBA}},$ $\overline{\text{LEBA}}$ and $\overline{\text{OEBA}}$

A₁ — DETAIL A — B₀ A₂ — O A₃ — O A₄ — O A₅ — O A₆ — O A₇ — O DETAIL A × 7 DE

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

CEBA ·

LEBA -

- OEAB

TL/F/9555-5

CEAB

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V

Input Current (Note 2) $$-30~\rm{mA}$ to $+5.0~\rm{mA}$ Note 1: Absolute maximum ratings are values beyond which the device may

be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature

Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parameter .		54F/74F			Units	V _{CC}	Conditions	
Зупівої			Min	Тур	Max	Units	V CC	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	٧	Min	$I_{IN} = -18 \text{ mA},$ (except \overline{A}_n , \overline{B}_n)	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.0 2.5 2.4 2.0 2.7 2.7			V	Min	$\begin{split} I_{OH} &= -1 \text{ ma } (\overline{A}_n) \\ I_{OH} &= -3 \text{ ma } (\overline{A}_n, \overline{B}_n) \\ I_{OH} &= -12 \text{ ma } (\overline{B}_n) \\ I_{OH} &= -1 \text{ ma } (\overline{A}_n) \\ I_{OH} &= -1 \text{ ma } (\overline{A}_n, \overline{B}_n) \\ I_{OH} &= -15 \text{ ma } (\overline{B}_n) \\ I_{OH} &= -1 \text{ ma } (\overline{A}_n, \overline{B}_n) \\ I_{OH} &= -1 \text{ ma } (\overline{A}_n, \overline{B}_n) \\ I_{OH} &= -3 \text{ ma } (\overline{A}_n, \overline{B}_n) \end{split}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC}			0.5 0.55 0.5 0.55	V	Min	$\begin{split} &I_{OL} = 20 \text{ mA } (\overline{A}_n) \\ &I_{OL} = 48 \text{ mA } (\overline{B}_n) \\ &I_{OL} = 24 \text{ mA } (\overline{A}_n) \\ &I_{OL} = 64 \text{ mA } (\overline{B}_n) \end{split}$	
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V \text{ (except } \overline{A}_n, \overline{B}_n \text{)}$	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V \text{ (except } \overline{A}_n, \overline{B}_n \text{)}$	
I _{BVIT}	Input HIGH Current Breakdown (I/O)	54F 74F			1.0 0.5	mA	Max	$V_{IN} = 5.5V (\overline{A}_n, \overline{B}_n)$	
I _{CEX}	Output HIGH Leakage Current	54F 74F			250 250	μΑ	Max	$V_{OUT} = V_{CC}(\overline{A}_n, \overline{B}_n)$	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \ \mu\text{A}$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6 -1.2	mA	Max	$V_{IN} = 0.5V (\overline{OEAB}, \overline{OEBA})$ $V_{IN} = 0.5V (\overline{CEAB}, \overline{CEBA})$	
I _{IH} + I _{OZH}	Output Leakage Curr	ent			70	μΑ	Max	$V_{OUT} = 2.7V (\overline{A}_n, \overline{B}_n)$	
I _{IL} + I _{OZL}	Output Leakage Curr	ent			-650	μΑ	Max	$V_{OUT} = 0.5V (\overline{A}_n, \overline{B}_n)$	

DC Electrical Characteristics (Continued)

Symbol	Parameter		54F/74F		Units	v _{cc}	Conditions	
	rainetei	Min	Тур	Max	Omis			
los	Output Short-Circuit Current	-60 -100		150 225	mA	Max	$V_{OUT} = 0V (\overline{A}_n)$ $V_{OUT} = 0V (\overline{B}_n)$	
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	$V_{OUT} = 5.25V (\overline{A}_n, \overline{B}_n)$	
I _{CCH}	Power Supply Current		70	105	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current		85	130	mA	Max	$V_O = LOW$	
Iccz	Power Supply Current		83	125	mA	Max	$V_O = HIGH Z$	

AC Electrical Characteristics

		$74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		7-	4F	
Symbol	Parameter						T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation Delay Transparent Mode \overline{A}_n to \overline{B}_n or \overline{B}_n to \overline{A}_n	3.0 3.0	7.0 5.0	9.5 6.5	3.0 2.5	12.0 8.5	3.0 3.0	10.5 7.5	ns
t _{PLH}	Propagation Delay LEBA to Ā _n	6.0 4.0	10.0 7.0	13.0 9.5	6.0 4.0	18.0 11.5	6.0 4.0	14.5 10.5	ns
t _{PLH}	Propagation Delay LEAB to B _n	6.0 4.0	10.0 7.0	13.0 9.5	6.0 4.0	18.0 11.5	6.0 4.0	14.5 10.5	ns
t _{PZH} t _{PZL}	Output Enable Time $\overline{\text{OEBA}}$ or $\overline{\text{OEAB}}$ to $\overline{\text{A}}_n$ or $\overline{\text{B}}_n$ $\overline{\text{CEBA}}$ or $\overline{\text{CEAB}}$ to $\overline{\text{A}}_n$ or $\overline{\text{B}}_n$	3.0 4.0	7.0 7.5	9.0 10.5	3.0 4.0	11.0 13.0	3.0 4.0	10.0 12.0	- ns
t _{PHZ}	Output Disable Time \overline{OEBA} or \overline{OEAB} to \overline{A}_n or \overline{B}_n \overline{CEBA} or \overline{CEAB} to \overline{A}_n or \overline{B}_n	1.0 2.5	6.0 5.5	8.0 10.5	2.0 2.0	10.0 9.5	1.0 2.5	9.0 11.5	

AC Operating Requirements

		$74F$ $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		54	F	74F		
Symbol	Parameter			${\sf T_A,V_{CC}}={\sf Mil}$		T _A , V _{CC} = Com		Units
		Min	Max	Min	Max	Min	Max	
t _s (H) t _s (L)	Setup Time, HIGH or LOW \overline{A}_n or \overline{B}_n to \overline{LEBA} or \overline{LEAB}	3.0 3.0		3.0 3.0		3.0 3.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW \overline{A}_n or \overline{B}_n to \overline{LEBA} or \overline{LEAB}	3.0 3.0		3.0 3.0		3.0 3.0		113
t _w (L)	Latch Enable, B to A Pulse Width, LOW	6.0		9.0		7.5		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1

National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181

National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Mellbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998