NJU 数学分析 C 期中考试

2019.11.05

一、计算下列各题 $(3 \times 10 = 30 \text{ })$

1. 设
$$x = e^u \cos v, y = e^u \sin v, z = uv, 求 \frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}.$$

2. 设
$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$
. 证明 $f(x,y)$ 在 $(0,0)$ 处连续, 且

在此处所有的方向导数存在, 但不可微,

3. 设 a, b, c 为不全为零的实数, 设 $D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\},$ 计算积分 $I = \iiint_D \cos(ax + by + cz) \, dx \, dy \, dz.$

二、(15 分) 设 Ω 为 \mathbb{R}^n 中的有界开区域, $u \in C^2(\Omega)$. 证明若 u 在某点 $x_0 \in \Omega$ 取最小值, 则 $\nabla^2 u(x_0)$ 正定.

三、(15分)证明可求面积的零测集为零面积集.

四、(10 分) 设 $\delta_0 > 0$, $B_{\delta_0} = \{x \in \mathbb{R}^n : ||x|| \le \delta_0\}$. 若 $F : B_{\delta_0} \to \mathbb{R}^n$ 是 C^1 映射,且 $\det D F(0) = 0$. 证明 $\lim_{\delta \to 0} \frac{V(F(B_{\delta}(0)))}{V(B_{\delta}(0))} = 0$.

五、(15 分) 设 $\psi(x) \in C^1(\mathbb{R})$ 且 $|\psi'(x)| < 1$. 证明对方程 $\psi(x) - y - \psi(y) = 0$, 存在 $\eta > 0$, 以及唯一的隐函数 $y = y(x) \in C^1(-\eta, \eta)$, 使得 y(0) = 0, 且 $\psi(x) - y(x) - \psi(y(x)) = 0 (\forall |x| < \eta)$.

六、(15 分) 设 $\Delta_n = \{x \in \mathbb{R}^n : x_1 \ge 0, x_2 \ge 0, \dots x_n \ge 0, x_1 + x_2 + \dots + x_n \le 1\},$ $D_n = \{x \in \mathbb{R}^n : x_1 \ge 0, x_2 \ge 0, \dots x_n \ge 0\}.$ 证明对于 $f \in C[0, 1],$

$$\lim_{n\to\infty} \frac{1}{V(\Delta_n)} \int_{\Delta_n} f(\frac{x_1 + x_2 + \dots + x_n}{n}) dx_1 dx_2 \cdots dx_n = f(0).$$

2. $\lim_{n \to \infty} \frac{1}{V(D_n)} \int_{D_n} f(\frac{x_1 + x_2 + \dots + x_n}{n}) dx_1 dx_2 \cdots dx_n = f(\frac{1}{2}).$