L'atmosphère de la Terre

Sur 10 points

Partie 1 – Vénus et la Terre, deux planètes aux conditions physico-chimiques différentes ?

De par sa taille équivalente et sa proximité de la Terre, Vénus a longtemps été considérée comme la sœur jumelle de la Terre.

En réalité, Vénus possède une atmosphère extrêmement dense, la pression à sa surface est environ 100 fois supérieure à celle de la Terre. De plus, son atmosphère se compose majoritairement de dioxyde de carbone (CO₂) et de diazote (N₂).

- **1.1** Renseigner la composition atmosphérique actuelle de la Terre dans le tableau du document 1 de l'annexe.
- **1.2** En utilisant les données ci-dessous, positionner sur le graphique du document 2 de l'annexe Vénus (**V**) et la Terre dans les conditions actuelles (**Ta**).

Planètes	Composition atmosphérique (en % volumique)	Pression atmosphériques (en Pa)	Température moyenne de surface (en °C)
Vénus	CO ₂ (96,5 %) N ₂ (3,5 %)	10 ⁷	+ 470
Terre primitive	H ₂ O (80 %) CO ₂ (12 %) N ₂ (5 %) Autres (3 %)	10 ⁷	•••
Terre actuelle	•••	10 ⁵	+ 15

- **1.3** En sachant que l'eau était uniquement sous forme gazeuse dans l'atmosphère primitive de la Terre, que peut-on en déduire quant à la température de l'atmosphère sur la Terre primitive ?
- **1.4** Discuter de l'affirmation posée en introduction : « Vénus a longtemps été considérée comme la sœur jumelle de la Terre ».

Partie 2 – L'évolution de l'atmosphère terrestre au cours des temps géologiques

Les **BIF** (Banded Iron Formations) sont des gisements de fer constitués d'hématite (Fe₂O₃).

L'altération des roches continentales provoque la libération d'ions Fe²⁺ qui peuvent être transportés par ruissellement jusqu'à l'océan. Dans l'océan, en présence de dioxygène, les ions Fe²⁺ sont oxydés en Fe³⁺ et forment l'hydroxyde de fer Fe(OH)₃ selon l'équation <u>non ajustée</u> suivante :

...Fe(OH)₂ + ...H₂O + ...O₂
$$\rightarrow$$
 ... Fe(OH)₃ (réaction 1)

L'hydroxyde de fer Fe(OH)3 précipite ensuite selon l'équation non ajustée suivante :

...Fe(OH)₃
$$\rightarrow$$
 ...Fe₂O₃ + ...H₂O (réaction 2)

- 2.1 Recopier et ajuster l'équation de la réaction 1.
- **2.2** D'où provient le dioxygène à l'origine de la formation des BIF ?
- **2.3** À partir de vos connaissances et des informations apportées par le document, dater les événements suivants : fin de la formation des océans ; apparition de la photosynthèse ; apparition du dioxygène dans l'atmosphère.

Document réponse à rendre avec la copie

Exercice 2 L'atmosphère de la Terre

Document 1 : Paramètres physico-chimiques de deux planètes telluriques

Planètes	Composition atmosphérique (en % volumique)	Pression atmosphériques (en Pa)	Température moyenne de surface (en °C)
Vénus	CO ₂ (96,5 %) N ₂ (3,5 %)	10 ⁷	+ 470
Terre primitive	H ₂ O (80 %) CO ₂ (12 %) N ₂ (5 %) Autres (3 %)	10 ⁷	•••
Terre actuelle	•••	10 ⁵	+ 15

Document 2 : Diagramme d'état de l'eau

Ce diagramme à droite présente l'état de l'eau en fonction des conditions de pressions et de température (en kelvins).

$$T_{(K)} = T_{(C)} + 273$$

 $T_{(K)}$ est la température en kelvins.

 $T_{(C)}$ est la température en degrés Celsius.

D'après https://webhome.phy.duke.edu