These slides are almost the exact copy of ML-MIPT course. Special thanks to ML-MIPT team.

# Attention is All You Need

#### Based on:

https://github.com/girafe-ai/ml-mipt/blob/master/week1\_04\_Transformer/week04\_Transformer.pdf http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

https://jalammar.github.io/illustrated-transformer/

https://github.com/yandexdataschool/nlp\_course

# Deep Encoder-Decoder Models (GNMT)



Wu et al. 2016



# The Transformer

Image source: Attention Is All You Need, Neural Information Processing Systems 2017

# The Transformer



# The Transformer





#### The Encoder Side



the word in each position flows through its own path in the encoder 7

#### The Transformer: quick overview

- Proposed in 2017 in paper <u>Attention is All You Need</u>
   <u>by Ashish Vaswani</u> et al.
- No recurrent or convolutional layers, only attention
- Beats seq2seq in machine translation task
  - 28.4 BLEU on the WMT 2014
     English-to-German translation task
- Much faster
- Uses <u>self-attention</u> concept

# **Self-Attention**

# Self-Attention at a High Level

"The animal didn't cross the street because it was too tired"

- What does "it" in this sentence refer to?
- We want self-attention to associate "it" with "animal"

 Self-attention is the method the Transformer uses to bake the "understanding" of other relevant words into the one we're currently processing

#### Self-Attention at a High Level





#### **Thinking Machines** Input STEP 1: **Embedding** create 3 vectors WQ **Oueries** (query, key, value) WK Keys from each of the encoder's input vectors W۷ Values

What are the query, key, value vectors?

They're abstractions that are useful for calculating and thinking about attention.

#### **STEP 2:**

calculate a score

(score each word of the input sentence against the current word) Input

**Embedding** 

Queries

Keys

Values

Score





#### **STEP 5**:

multiply each value vector by the softmax score

#### STEP 6:

sum up the weighted value vectors





# Self-Attention: Matrix Calculation

Pack embeddings into matrix **X** 

Multiply X by weight matrices we've trained (Wk, Wq, Wv)



Image source: <a href="https://jalammar.github.io/illustrated-transformer/">https://jalammar.github.io/illustrated-transformer/</a>

#### Self-Attention: Matrix Calculation





Image source: <a href="https://jalammar.github.io/illustrated-transformer/">https://jalammar.github.io/illustrated-transformer/</a>



Image source: <a href="https://jalammar.github.io/illustrated-transformer/">https://jalammar.github.io/illustrated-transformer/</a>

ATTENTION

HEAD #0

 $Z_0$ 

1) Concatenate all the attention heads



2) Multiply with a weight matrix W<sup>o</sup> that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN









# Why Multi-Head Attention?



# Attention head: Who



# Attention head: Did What?



# Attention head: To Whom?



#### Attention vs. Multi-Head Attention

Attention: a weighted average



#### **Multi-Head Attention:**

parallel attention layers with different linear transformations on input and output.



#### Performance: WMT 2014 BLEU

|              | EN-DE | EN-FR |
|--------------|-------|-------|
| GNMT (orig)  | 24.6  | 39.9  |
| ConvSeq2Seq  | 25.2  | 40.5  |
| Transformer* | 28.4  | 41.8  |

<sup>\*</sup>Transformer models trained >3x faster than the others.

# Positional Encoding

#### The Encoder Side



the word in each position flows through its own path in the encoder 46

# Positional encoding requirements

- Positional encoding should be unique for every position in the sequence
- Distance between two same positions should be preserved with sequences of different length
- The positional encoding should be deterministic
- It would be great if it would work with long sequences (longer than any sequence in the training set)

# Positional Encoding



# Positional Encoding: why sin and cos?

$$\vec{p_t}^{(i)} = f(t)^{(i)} = \begin{cases} \sin(\omega_k t), & \text{if } i = 2k \\ \cos(\omega_k t), & \text{if } i = 2k + 1 \end{cases} \begin{bmatrix} \sin(\omega_1 t) \\ \cos(\omega_1 t) \end{bmatrix}$$

$$\omega_k = \frac{1}{10000^{2k/d}}$$

t stays for position in the original sequence k is the index of the element in the positional vector

$$\begin{array}{c|c}
\cos(\omega_1.t) \\
\sin(\omega_2.t) \\
\cos(\omega_2.t)
\end{array}$$

 $\begin{bmatrix} \sin(\omega_{d/2}.t) \\ \cos(\omega_{d/2}.t) \end{bmatrix}_{d\times 1}$ 

## Positional Encoding



Image source: https://kazemnejad.com/blog/transformer\_architecture\_positional\_encoding/

Positional Encoding: why sin and cos?

We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented as a linear function of PEpos.

$$M \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k (t + \phi)) \\ \cos(\omega_k (t + \phi)) \end{bmatrix}$$

Positional Encoding: why sin and

$$\begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k (t + \phi)) \\ \cos(\omega_k (t + \phi)) \end{bmatrix}$$

$$\begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k t) \cos(\omega_k \phi) + \cos(\omega_k t) \sin(\omega_k \phi) \\ \cos(\omega_k t) \cos(\omega_k \phi) - \sin(\omega_k t) \sin(\omega_k \phi) \end{bmatrix}$$

$$M_{\phi,k} = \begin{bmatrix} \cos(\omega_k \phi) & \sin(\omega_k \phi) \\ -\sin(\omega_k \phi) & \cos(\omega_k \phi) \end{bmatrix}$$



Output

## The Transformer: recap



Like BatchNorm

but normalize along all features representing latent vector



More info:

<u>Layer Normalization</u>



Image source: https://jalammar.github.ro/illustrated-transformer/

## The Decoder

#### The Decoder Side



## The masked decoder input



#### The Decoder Side

Decoding time step: 1 2 3 4 5 6 OUTPUT



## Final Linear and Softmax Layer





# The Transformer

Image source: Attention Is All You Need, Neural Information Processing Systems 2017

Consider Adam optimizer

$$\mu_{t+1} = \beta_1 \cdot \mu_t + (1 - \beta_1) \cdot \nabla_{\theta} L$$

$$v_{t+1} = \beta_2 \cdot v_t + (1 - \beta_2) \cdot || \nabla_{\theta} L ||^2$$

$$\theta_{t+1} = \theta_t - \frac{\alpha}{\sqrt{v_t + \epsilon}} \mu_t$$

> The choice of α is crucial!



https://raw.githubusercontent.com/yandexdataschool/nlp\_course/master/resources/slides/nlp18 13 abstractive summarization.pdf

- > Traditional approach: decrease learning rate in stages
  - every k steps or whenever progress slows down



https://raw.githubusercontent.com/yandexdataschool/nlp\_course/master/resources/slides/nlp18 13 abstractive summarization.pdf

- > Traditional approach: decrease learning rate in stages
  - every k steps or whenever progress slows down





https://raw.githubusercontent.com/yandexdataschool/nlp\_course/master/resources/slides/nlp18 13 abstractive summarization.pdf

- > Problem: first k steps of Adam are unstable
  - it needs time to accumulate statistics
- ightharpoonup Use warmup time! keep Ir small over first epochs:  $\alpha = \alpha_{base} \cdot min(growth(t), decay(t))$

$$growth(t) = \frac{t}{T_{warmup}}$$

$$decay(t) = \sqrt{\frac{T_{warmup}}{t}}$$



#### Transformers trainings requires non-trivial efforts



Figure 8: Effect of the warmup steps on a single GPU. All trained on CzEng 1.0 with the default batch size (1500) and learning rate (0.20).