MA207 Short Notes

Aditya Byju

Course Professor: Prof. Ronnie Sebastian Ref: Prof's slides
All the world's a differential equation, and the men and women are merely variables!

Differential Equations - 2

September 2021

Contents

Power series	3
Taylor series and analytic functions	5
Legendre polynomials	6
More complicated ODE's	11

Power series

• For real numbers $x_0, a_0, a_1, a_2, \ldots$, an infinite series:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

is called a power series in $x - x_0$ with center x_0

• For a real number x_1 , if the limit:

$$\lim_{N \to \infty} \sum_{n=0}^{N} a_{1}(x_{1} - x_{0})^{n}$$

exists and is finite, then we say the power series converges at the point $x = x_1$. In this case, the value of the series at x_1 is, by definition, the value of the limit.

- If the series does not converge at x_1 , that is, either the limit does not exist, or it is $\pm \infty$, then we say the power series diverges at x_1 . Also, a power series always converges at its center $x = x_0$.
- radius of convergence (R): for any power series:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

exactly one of these statements is true:

- the power series converges ony for $x = x_0$ (here R = 0)
- the power series converges for all values of x (here $R = \infty$)
- there is a positive number $0 < R < \infty$ such that the power series converges if $|x \overline{x_0}| < R$ and diverges if $|x x_0| > R$
- Ratio test: assume that there is an integer N such that for all $n \ge N$ we have an $a_n \ne 0$ Also assume the following limit exists:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

and denote it by L. Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is $R=\frac{1}{L}$.

• **Def:** Suppose we are given a sequence $\{a_n\}_{n\geq 1}$. For every $k\geq 1$ define:

$$b_k = \sup_{n > k} \{a_n\}$$

We know $\{b_k\}_{k\geq 1}$ is a decreasing sequence, and hence we define $\limsup\{a_n\}$ as:

$$\lim \sup\{a_n\} = \lim_{n \to \infty} b_n$$

Similarly, we define $\liminf \{a_n\}$, by replacing sup by \inf in the above definition.

- For a sequence $\{a_n\}_{n\geq 1}$, the limit may not exist. However, the lim sup and liminf always exist (possibly $+\infty$ or $-\infty$)
- **Theorem:** Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers. Then $\lim_{n\to\infty}a_n$ exists if and only if $\lim\sup a_n=\liminf a_n$. Further, if $\lim_{n\to\infty}a_n$ exists, then

$$\lim \sup\{a_n\} = \lim \inf\{a_n\} = \lim_{n \to \infty} a_n$$

- Root test: let $\limsup\{|a_n|^{1/n}\}=L$. Then radius of convergence of the power series $\sum_{n=0}^{\infty}a_n(x-x_0)^n$ is R=1/L.
- **Theorem:** Let R > 0 be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (x x_0)^n$, then the power series converges (absolutely) for all $x \in (x_0 R, x_0 + R)$. The open interval $(x_0 R, x_0 + R)$ is called the interval of convergence of the power series.
- **Theorem:** let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$. We assume R>0. We define a function $f:(x_0-R,x_0+R)\to\mathbb{R}$ by:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

This function satisfies the following properties:

- -f is infinitely differentiable $\forall x \in (x_0 R, x_0 + R)$
- the successive derivatives of f can be computed by differentiating the power series term-by-term, that is:

$$f'(x) = \sum_{n=0}^{\infty} na_n (x - x_0)^{n-1}$$

- $f_{(k)}(x) = \sum_{n=0}^{\infty} n(n-1) \dots (n-k+1) a_n (x-x_0)^{n-k}$
- the power series representing the derivatives $f_{(n)}(x)$ have same radius of convergence R
- we can determine the coefficients a_n (in terms of derivatives of f at x_0) as:

$$a_n = \frac{f_{(n)}(x_0)}{n!}$$

– we can also integrate the function $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ term-wise, that is, if $[a,b] \subset (x_0-R,x_0+R)$, then:

$$\int_{a}^{b} f(x)dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$$

- power series representation of f in an open interval I containing x_0 is unique, that is, if:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} b_n (x - x_0)^n$$

for all $x \in I$, then $a_n = b_n$ for all n

- if:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = 0$$

for all $x \in I$, then $a_n = 0$ for all n

• Power series representation of some familiar functions:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $-\infty < x < \infty$

$$sin(x) = \sum_{0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$$

$$(1-x)^{-1} = \sum_{n=0}^{\infty} x^n, -1 < x < 1$$

$$cos(x) = \sum_{0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$$

$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$$

$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} , -\infty < x < \infty$$

• If $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$, $g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$ have radii of convergence R_1 and R_2 respectively, then:

$$c_1 f(x) + c_2 g(x) = \sum_{n=0}^{\infty} (c_1 a_n + c_2 b_n)(x - x_0)^n$$

has radius of convergence $R \ge \min\{R_1, R_2\}$ for $c_1, c_2 \in \mathbb{R}$. Further, we can multiply the series as if they are polynomials, that is:

$$f(x)g(x) = \sum_{n=0}^{\infty} c_n(x - x_0)^n$$
; $c_n = a_0b_n + a_1b_{n-1} + \dots + a_nb_0$

it also has radius of convergence $R \ge \min \{R_1, R_2\}$.

Taylor series and analytic functions

• Let f(x) be infinitely differentiable at x_0 . The Taylor series of f at x_0 is defined as the power series:

$$TS \ f|_{x_0} = \sum_{0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

- Suppose f(x) is infinitely differentiable at x_0 and Taylor series of f at x_0 converges to f(x) for all x in some open interval around x_0 , then f is called analytic at x_0 . Thus if f is analytic, then there is an interval I around x_0 and f is given by a power series in I.
- Polynomials e^x , sin(x) and cos(x) are analytic at all $x \in \mathbb{R}$. f(x) = tan(x) is analytic at all x except $x = (2n+1)\pi/2$, where $n = \pm 1, \pm 2, \ldots$
- If f(x) and g(x) are analytic at x_0 , then $f(x) \pm g(x)$, f(x)g(x) and f(x)/g(x) (if $g(x_0) \neq 0$) are analytic at x_0
- If f(x) is analytic at x_0 and g(x) is analytic at $f(x_0)$, then $g(f(x)) = (g \circ f)(x)$ is analytic at x_0
- If a power series $\sum_{0}^{\infty} a_n(x-x_0)^n$ has radius of convergence R>0, then the function $f(x)=\sum_{0}^{\infty} a_n(x-x_0)^n$ is analytic at all points $x\in(x_0-R,x_0+R)$
- Theorem: let:

$$F(x) = \frac{N(x)}{D(x)}$$

be a rational function, where N(x) and D(x) are polynomials without any common factors, that is they do not have any common (complex) zeros. Let $\alpha_1, \ldots, \alpha_r$ be distinct complex zeros of D(x).

Then F(x) is analytic at all x except at $x \in \{\alpha_1, \ldots, \alpha_r\}$. If x_0 is different from $\{\alpha_1, \ldots, \alpha_r\}$, then the radius of convergence R of the Taylor series of F at x_0 :

$$TS F|_{x_0} = \sum_{0}^{\infty} \frac{F^{(n)}(x_0)}{n!} (x - x_0)^n$$

is given by:

$$R = \min\{|x_0 - \alpha_1|, |x_0 - \alpha_2|, \dots, |x_0 - \alpha_r|\}$$

• Existence theorem: if p(x) and q(x) are analytic functions at x_0 , then every solution of:

$$y'' + p(x)y' + q(x)y = 0$$

is also analytic at x_0 , and therefore any solution can be expressed as:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

If R1 is the radius of convergence of Taylor series of p(x) at x_0 , R_2 is the radius of convergence of Taylor series of q(x) at x_0 , then radius of convergence of y(x) is at least $\min(R_1, R_2) > 0$

• The standard form of an ordinary differential equation (ODE) is:

$$y'' + p(x)y' + q(x)y = 0$$

- Steps for series solution of linear ODE:
 - write ODE in the standard form y'' + p(x)y' + q(x)y = 0
 - choose x_0 at which p(x) and q(x) are analytic. If boundary conditions at x_0 are given, choose the center of the power series as x_0 .
 - find the minimum of radii of convergence of Taylor series of p(x) and q(x) at x_0
 - let $y(x) = \sum_{0}^{\infty} a_n(x-x_0)^n$, compute the power series for y'(x) and y''(x) at x_0 and substitute these onto the ODE
 - set the coefficients of $(x-x_0)^n$ to zero and find recursion formula
 - from the recursion formula, obtain (linearly independent) solutions $y_1(x)$ and $y_2(x)$. The general solution then looks like $y(x) = a_1y_1(x) + a_2y_2(x)$
- initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain
- Bessel's equation:

$$x^2y'' + xy' + (x^2 - v^2)y = 0$$

Legendre polynomials

• Legendre equation:

$$(1-x^2)y'' - 2xy' + p(p+1)y = 0$$
, where p is a real number

• The two independent solutions of the Legendre equation are:

$$y_1(x) = a_0 \left[1 - \frac{p(p+1)}{2!} x^2 + \frac{p(p+1)(p-2)(p+3)}{4!} x^4 + \dots \right]$$

$$y_2(x) = a_1 \left[x - \frac{(p-1)(p+2)}{3!} x^3 + \frac{(p-1)(p+2)(p-3)(p+4)}{5!} x^5 + \dots \right]$$

If $p \in \{0, 2, 4, ...\} \cup \{-1, -3, -5, ...\}$ then $y_1(x)$ is a polynomial function. $y_2(x)$ is an odd function. If $p \in \{1, 3, 5, ...\} \cup \{-2, -4, -6, ...\}$ then $y_2(x)$ is a polynomial function. Thus, if p is an integer then exactly one solution is a polynomial and the other is an infinite power series.

• The general solution (of the Legendre equation):

$$y(x) = a_0 y_1(x) + a_1 y_2(x)$$

is called a Legendre function. If p = m is an integer, then precisely one of y_1 or y_2 is a polynomial, and it is called the m^{th} Legendre polynomial $P_m(x)$. For $m \ge 0$ note that $P_m(x)$ is a polynomial of degree m. It is an even function if m is even and an odd function if m is odd.

- A vector space (V) is a set equipped with two operations:
 - addition:

$$v + w, v, w \in V$$

- scalar multiplication:

$$cv, c \in \mathbb{R}, v \in V$$

A vector space V has a dimension, which may not be finite

• Let V be a vector space over \mathbb{R} (not necessarily finite-dimensional). A bilinear form on V is a map:

$$\langle,\rangle:V\times V\to\mathbb{R}$$

which is linear in both coordinates, that is:

$$\langle au + v, w \rangle = a \langle u, v \rangle + \langle v, w \rangle$$

$$\langle u, av + w \rangle = a \langle u, v \rangle + \langle u, w \rangle$$

for $a \in \mathbb{R}$ and $u, v \in V$

- An inner product on V is a bilinear form on V which is:
 - symmetric: $\langle v, w \rangle = \langle w, v \rangle$
 - positive definite: $\langle v, v \rangle \geq 0$ for all v and $\langle v, v \rangle = 0$ iff v = 0

A vector space with an inner product is called an inner product space.

- In an inner product space V, two vectors u and v are orthogonal if $\langle v, v \rangle = 0$. More generally, a set of vectors forms an orthogonal system if they are mutually orthogonal.
- A set $\{v_i\}_{i\in I}\subset V$ is called a basis if the vectors in it are:
 - linearly independent i.e., $\sum_{j=1}^{m} a_j v_{ij} = 0 \implies a_j = 0$
 - they span V, i.e., every w can be written as $w = \sum_{j=1}^{m} a_j v_{ij}$

An orthogonal basis is an orthogonal system which is also a basis.

 \bullet Consider the vector space \mathbb{R}^n with coordinate-wise addition and scalar multiplication. The rule:

$$\langle (a_1,\ldots,a_n),(b_1,\ldots,b_n)\rangle = \sum_{i=1}^n a_i b_i$$

defines an inner product on \mathbb{R}^n . The standard basis $\{e_1,\ldots,e_n\}$ is an orthogonal basis of \mathbb{R}^n .

• Lemma: suppose V is a finite dimensional inner product space, and e_1, \ldots, e_n is an orthogonal basis. Then for any $v \in V$:

$$v = \sum_{i=1}^{n} \frac{\langle v, e_i \rangle}{\langle e_i, e_i \rangle} e_i$$

- Lemma: In a finite-dimensional inner product space, there always exists an orthogonal basis. This result is not necessarily true in infinite-dimensional inner product spaces. For infinite dimensional vector spaces, we can only talk of a maximal orthogonal set. A subset $\{e_1, e_2, \ldots\}$ is called a maximal orthogonal set for V if:
 - $-\langle e_i, e_j \rangle = \delta_{ij}$
 - $-\langle v, e_i \rangle = 0$ for all i iff v = 0
- tbDef: for a vector v in an inner product space, we define the norm or length of the vector v as:

$$||v|| = \langle v, v \rangle^{1/2}$$

It satisfies the following three properties:

- ||0|| = 0 and ||v|| > 0 if $v \neq 0$
- $-||v+w|| \le ||v|| + ||w||$
- ||av|| = |a|||v||

for all $v, w \in V$ and $a \in \mathbb{R}$

• Pythagoras theorem: for orthogonal vectors v and w in any inner product space V:

$$||v + w||^2 = ||v||^2 + ||w||^2$$

More generally, for any orthogonal system $\{v_1, \ldots, v_n\}$:

$$||v_1 + \ldots + v_n||^2 = ||v_1||^2 + \ldots + ||v_n||^2$$

• The set of all polynomials in the variable x is a vector space denoted by $\mathcal{P}(x)$. The set $\{1, x, x^2, \ldots\}$ is an infinite basis of the vector space $\mathcal{P}(x)$. $\mathcal{P}(x)$ carries an inner product defined by:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

We are integrating over finite interval [-1,1] which ensures that the integral is finite. The norm of a polynomial is by definition $\langle f,f\rangle$:

$$||f|| = \left(\int_{-1}^{1} f(x)f(x)dx\right)^{1/2}$$

• **Derivative-transfer:** if f(1)g(1) = f(-1)g(-1), then:

$$\int_{-1}^{1} g \frac{df}{dx} = -\int_{-1}^{1} f \frac{dg}{dx}$$

• **Theorem:** since $P_m(x)$ is a polynomial of degree m,, it follows that:

$$\{P_0(x), P_1(x), P_2(x), \ldots\}$$

is a basis of the vector space of polynomials $\mathcal{P}(x)$. We have:

$$\langle P_m, P_n \rangle = \int_{-1}^1 P_m(x) P_n(x) dx = \begin{cases} 0, & \text{if } m \neq n \\ \frac{2}{2n+1}, & \text{if } m = n \end{cases}$$

i.e., Legendre polynomials form an orthogonal basis for the vector space $\mathcal{P}(x)$ and:

$$||P_n(x)||^2 = \frac{2}{2n+1}$$

• Rodrigues' formula for Legendre polynomials P_n :

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

- Let $f_i(x)$ (for $i \geq 0$) be a collection of non-zero polynomials. Assume that $f_i(x)$ has degree i. Then $\{f_0(x), f_1(x), \dots, f_n(x)\}$ is a basis for the vector space consisting of polynomials of degree $\leq n$.
- A function f(x) on [-1,1] is square-integrable if:

$$\int_{-1}^{1} f(x)g(x)dx < \infty$$

For instance, polynomials, continuous functions, piecewise continuous functions are square-integrable. The set of all square-integrable functions on [-1,1] is a vector space and is denoted by $L^2([-1,1])$. For square-integrable functions f and g, we define their inner product by:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

• Legendre polynomials form a maximal orthogonal set in $L^2([-1,1])$. This means that a square-integrable function which is orthogonal to all Legendre polynomials is necessarily the constant function "0". We can expand any square-integrable function f(x) on [11,1] in a series of Legendre polynomials:

$$\sum_{n=0}^{\infty} c_n P_n(x), \quad c_n = \frac{\langle f, P_n \rangle}{\langle P_n, P_n \rangle} = \frac{2n+1}{2} \int_{-1}^1 f(x) P_n(x) dx$$

This is called the Fourier-Legendre series (or simply the Legendre series) of f(x).

• **Theorem:** The Fourier-Legendre series of $f(x) \in L^2([-1,1])$ given by:

$$\sum_{n=0}^{\infty} c_n P_n(x), \quad c_n = \frac{\langle f, P_n \rangle}{\langle P_n, P_n \rangle} = \frac{2n+1}{2} \int_{-1}^1 f(x) P_n(x) dx$$

converges in L^2 norm to f(x), that is:

$$||f(x) - \sum_{n=0}^{m} c_n P_n(x)|| \rightarrow 0 \text{ as } m \rightarrow \infty$$

• Legandre expansion theorem: if both f(x) and f'(x) have at most a finite number of jump discontinuities in the interval [-1,1], then the Legendre series converges to:

$$\frac{1}{2}(f(x_{-}) + f(x_{+})), \text{ for } -1 < x < 1$$

$$f(-1_+), for x = -1$$

$$f(1_{-}), for x = 1$$

In particular, the series converges to f(x) at every point of continuity x

• Least square approximation theorem: Suppose we want to approximate $f \in L^2([-1,1])$ in the sense of least square by polynomials p(x) of degree $\leq n$, that is, we want to find a polynomial p(x) which minimizes:

$$I = \int_{-1}^{1} [f(x) - p(x)]^{2} dx$$

Then the minimizing polynomial is precisely the first n+1 terms of the Legendre series of f(x), i.e.:

$$c_0 P_0(x) + \ldots + c_n P_n(x)$$
 $c_k = \frac{2k+1}{2} \int_{-1}^1 f(x) P_k(x) dx$

- Steps to solve a second order linear ODE using power series:
 - given an ODE of the type

$$F_0(x)y'' + F_1(x)y' + F_2(x)y = 0$$
 ...(1)

first convert it to the standard form

$$y'' + \frac{F_1(x)}{F_0(x)}y' + \frac{F_2(x)}{F_0(x)}y = 0 \quad \dots (2)$$

Let

$$p(x) := \frac{F_1(x)}{F_0(x)} \quad q(x) := \frac{F_2(x)}{F_0(x)}$$

- now find the set:

$$U := \{x_0 \in \mathbb{R} \mid p(x), q(x) \text{ are analytic at } x_0\}$$

- By the existence theorem, for every $x_0 \in U$, there will exist two independent solutions to the above ODE, call them $y_1(x)$ and $y_2(x)$, such that both of them will be analytic in an interval I around x_0 .
- To find the solutions in a neighborhood of x_0 , set $y(x) = \sum_{n\geq 0} a_n (x-x_0)^n$ into the ODE (1) or (2) and get recursive relations involving the a_n . Note that when you do this, the coefficient functions $(p(x), q(x), F_0(x), ...)$ have to be written as power series in $x-x_0$. Note that the recursive relation you get, will be same, irrespective of whether you choose equation (1) or (2)
- thus, depending on the situation, you may want to choose 1 or 2. For example, for the Legendre equation, in the open interval (-1,1) around $x_0 = 0$, the equation (1) looks like

$$(1 - x^2)y'' - 2xy' + p(p+1)y = 0$$

while (2) looks like

$$y'' - 2\left(\sum_{n\geq 0} x^{2n+1}\right)y' + p(p+1)\left(\sum_{n\geq 0} x^{2n}\right)y = 0$$

In this case it is clear that, we should choose 1, as it will be easier to work with.

More complicated ODE's

• Def: consider the second-order linear ODE in standard form

$$y'' + p(x)y' + q(x)y = 0 \quad \dots (1)$$

Then:

- $-x_0 \in \mathbb{R}$ is called an ordinary point of (1) if p(x) and q(x) are analytic at x_0
- $-x_0 \in \mathbb{R}$ is called regular singular point if x_0 is not an ordinary point and both $(x-x_0) p(x)$ and $(x-x_0)^2 q(x)$ are analytic at x_0 If x_0 is regular singular then there are functions b(x) and c(x) which are analytic at x_0 such that

$$p(x) = \frac{b(x)}{(x - x_0)}$$
 $q(x) = \frac{c(x)}{(x - x_0)^2}$

- If $x_0 \in \mathbb{R}$ is not ordinary or regular singular, then we call it irregular singular
- Cauchy-Euler equation:

$$x^2y'' + b_0xy' + c_0y = 0 b_0, c_0 \in \mathbb{R}$$

x = 0 is a regular singular point, since we can write the ODE as:

$$y'' + \frac{b_0}{r}y' + \frac{c_0}{r^2}y = 0$$

All $x \neq 0$ are ordinary points. Assume x > 0. Note that $y = x^r$ solves the equation iff:

$$r(r-1) + b_0 r + c_0 = 0$$

 $\iff r^2 + (b_0 - 1) r + c_0 = 0$

Let r_1 and r_2 denote the roots of this quadratic equation. Then:

- if the roots $r_1 \neq r_2$ are real, then x^{r_1} and x^{r_2} are two independent solutions
- if the roots $r_1 = r_2$ are real, then x^{r_1} and $(\log x)x^{r_1}$ are two independent solutions
- if the roots are complex (written as $a \pm ib$), then $x^a \cos(b \log x)$ and $x^a \sin(b \log x)$ are two independent solutions
- **Theorem:** consider the ODE:

$$x^2y'' + xb(x)y' + c(x)y = 0$$
 ...(1)

where b(x) and c(x) are analytic at 0. Then x = 0 is a regular singular point of the ODE. Then (1) has a solution of the form:

$$y(x) = x_1^r \sum_{n>0} a_n x^n \quad a_0 \neq 0, \quad r \in \mathbb{C} \quad \dots (2)$$

The solution (2) is called Frobenius solution or fractional power series solution. The power series $\sum_{n\geq 0} a_n x^n$ converges on $(-\rho, \rho)$, where ρ is the minimum of the radius of convergence of b(x) and c(x). We will consider the solution y(x) in the open interval $(0, \rho)$.

• Indicial equation: An indicial equation, also called a characteristic equation, is a recurrence equation obtained during application of the Frobenius method of solving a second-order ordinary differential equation.