

- 5 What is claimed is:
- 6 1. A method for quickly and reliably transmitting a byte stream from a sending node
7 having a number of credits with an established connection to a receiving node in a
8 communication environment having a plurality of nodes and a plurality of
9 interconnectable paths, the method comprising:
10 transmitting a predetermined number of bytes of a byte stream from a sending node
11 to a receiving node, said predetermined number of bytes corresponding to the
12 number of credits present at said sending node;
13 transmitting a predetermined number of credits from said receiving node to said
14 sending node when a predetermined event occurs; and
15 transmitting a predetermined number of negative acknowledgements from said
16 receiving node to said sending node, when at least one transmitted byte is lost or
17 corrupted.
- 1 2. The method of claim 1, further including the step of retransmitting at least once, from
2 said sending node to said receiving node, said lost or corrupted bytes corresponding to
3 said predetermined number of negative acknowledgments received at said sending
4 node.
- 1 3. The method of claim 1, wherein said step of transmitting said predetermined number
2 of credits from said receiving node to said sending node occurs before the transmission
3 of said predetermined number of bytes of said byte stream.
- 1 4. The method of claim 3, wherein said step of transmitting of said predetermined
2 number of credits occurs during a connection establishment of said sending node and
3 said receiving node.
- 1 5. The method of claim 3, wherein said step of transmitting of said predetermined
2 number of credits occurs after a connection establishment of said sending node and said
3 receiving node.

1 6. The method of claim 1, wherein said predetermined event is one from the group of a)
2 a predetermined number of bytes from said byte stream is received at said receiving
3 node, b) a predetermined number of bytes from said byte stream is received at said
4 receiving node and a congestion indicator at said receiver node is less than a
5 predetermined threshold, c) a predetermined number of bytes from said byte stream is
6 received at said receiving node and a data error indicator at said receiver node is less
7 than a predetermined threshold, d) a buffer at said receiving node, containing said bytes
8 transmitted from said sending node to said receiving node, has free space, e) a buffer at
9 said receiving node, containing said bytes transmitted from said sending node to said
10 receiving node, has free space and a congestion indicator at said receiver node is less
11 than a predetermined threshold, and f) a buffer at said receiving node, containing said
12 bytes transmitted from said sending node to said receiving node, has free space and a
13 data error indicator at said receiver node is less than a predetermined threshold.

1 7. The method of claim 1, wherein the reception of said credits at said receiving node
2 indicates that at least a subset of said byte stream was correctly received at said
3 receiving node.

1 8. The method of claim 1, wherein said step of transmitting of said predetermined
2 number of credits is dependent upon a counter exceeding a predetermined number
3 representative of received bytes at said receiving node, said transmitting step including
4 the steps of:

5 transmitting a predetermined number of credits from said receiving node to said
6 sending node when said counter is equal to at least a predetermined value; and
7 decrementing said counter by said byte size upon transmission of said credits.

1 9. The method of claim 1, wherein said credits from said credit transmission step are
2 reduced or delayed to reflect congestion detection in an established connection.

- 1 10. The method of claim 1, wherein said step of transmitting of said predetermined
2 number of bytes is dependent upon a counter exceeding a predetermined number
3 representative of received credits at said sending node, said transmitting step including
4 the steps of:
5 transmitting said bytes from said sending node to said receiving node when said
6 counter is equal to at least said number of bytes; and
7 decrementing said counter by said number of bytes upon said transmission of said
8 bytes.
- 1 11. The method of claim 1, wherein said bytes transmitted in said byte transmission
2 step are in the form of Transmission Control Protocol (TCP) packets, whereby said
3 method is compatible at the application programming level of TCP.
- 1 12. The method of claim 1, wherein the established connection between said sending
2 node and said receiving node is established using the standard 3-way handshake of
3 Transmission Control Protocol (TCP).
- 1 13. The method of claim 1, further including the step of resetting said established
2 connection when said transmission of at least one of said negative acknowledgements
3 occurs a predetermined number of times.
- 1 14. The method of claim 1, wherein said transmitting of said predetermined number of
2 credits occurs by piggybacking existing traffic with said credits from said receiving
3 node to said sending node.
- 1 15. The method of claim 1, wherein said credits in said credit transmission step are not
2 retransmitted if they are lost.
- 1 16. The method of claim 1, wherein said predetermined number of negative
2 acknowledgements is transmitted at predetermined events.
- 1 17. The method of claim 1, wherein said at least one corrupted byte is detected by
2 means of error detection hardware only.

1 22. The method of claim 19, further including the step of retransmitting at least once,
2 from said sending node to said receiving node, said lost or corrupted bytes
3 corresponding to said predetermined number of negative acknowledgments received at
4 said sending node.

1 23. The method of claim 19, wherein said step of transmitting said predetermined
2 number of credits from said receiving node to said sending node occurs before the
3 transmission of said predetermined number of bytes of said byte stream.

1 24. The method of claim 23, wherein said step of transmitting of said predetermined
2 number of credits occurs during a connection establishment of said sending node and
3 said receiving node.

1 25. The method of claim 23, wherein said step of transmitting of said predetermined
2 number of credits occurs after a connection establishment of said sending node and said
3 receiving node.

1 26. The method of claim 19, wherein said predetermined event is one from the group of
2 a) a predetermined number of bytes from said byte stream is received at said receiving
3 node, b) a predetermined number of bytes from said byte stream is received at said
4 receiving node and a congestion indicator at said receiver node is less than a
5 predetermined threshold, c) a predetermined number of bytes from said byte stream is
6 received at said receiving node and a data error indicator at said receiver node is less
7 than a predetermined threshold, d) a buffer at said receiving node, containing said bytes
8 transmitted from said sending node to said receiving node, has free space, e) a buffer at
9 said receiving node, containing said bytes transmitted from said sending node to said
10 receiving node, has free space and a congestion indicator at said receiver node is less
11 than a predetermined threshold, and f) a buffer at said receiving node, containing said
12 bytes transmitted from said sending node to said receiving node, has free space and a
13 data error indicator at said receiver node is less than a predetermined threshold.

1 27. The method of claim 19, wherein the reception of said credits at said receiving node
2 indicates that at least a subset of said byte stream was correctly received at said
3 receiving node.

1 28. The method of claim 19, wherein said step of transmitting of said predetermined
2 number of credits is dependent upon a counter exceeding a predetermined number
3 representative of received bytes at said receiving node, said transmitting step including
4 the steps of:

5 transmitting a predetermined number of credits from said receiving node to said
6 sending node when said counter is equal to at least a predetermined value; and
7 decrementing said counter by said byte size upon transmission of said credits.

1 29. The method of claim 19, wherein said credits from said credit transmission step are
2 reduced or delayed to reflect congestion detection in an established connection.

1 30. The method of claim 19, wherein said step of transmitting of said predetermined
2 number of bytes is dependent upon a counter exceeding a predetermined number
3 representative of received credits at said sending node, said transmitting step including
4 the steps of:

5 transmitting said bytes from said sending node to said receiving node when said
6 counter is equal to at least said number of bytes; and
7 decrementing said counter by said number of bytes upon said transmission of said
8 bytes.

1 31. The method of claim 19, wherein said bytes transmitted in said byte transmission
2 step are in the form of Transmission Control Protocol (TCP) packets, whereby said
3 method is compatible at the application programming level of TCP.

1 32. The method of claim 19, wherein the established connection between said sending
2 node and said receiving node is established using the standard 3-way handshake of
3 Transmission Control Protocol (TCP).

1 33. The method of claim 19, further including the step of resetting said established
2 connection when said transmission of at least one of said negative acknowledgements
3 occurs a predetermined number of times.

1 34. The method of claim 19, wherein said transmitting of said predetermined number of
2 credits occurs by piggybacking existing traffic with said credits from said receiving
3 node to said sending node.

1 35. The method of claim 19, wherein said credits in said credit transmission step are not
2 retransmitted if they are lost.

1 36. The method of claim 19, wherein said predetermined number of negative
2 acknowledgements is transmitted at predetermined events.

1 37. The method of claim 19, wherein said at least one corrupted byte is detected by
2 means of error detection hardware only.

1 38. The method of claim 19, wherein said at least one corrupted byte is detected only
2 once by software error detection means.

1 39. A system for quickly and reliably transmitting a byte stream from a sending node
2 having credits with an established connection to a receiving node in a communication
3 environment having a plurality of nodes with a plurality of interconnectable paths,
4 comprising:

5 means for transmitting a predetermined number of bytes of a byte stream from a
6 sending node to a receiving node, said predetermined number of bytes
7 corresponding to the number of credits present at said sending node;
8 means for transmitting a predetermined number of credits from said receiving node
9 to said sending node when a predetermined event occurs; and
10 means transmitting a predetermined number of negative acknowledgements from
11 said receiving node to said sending node, when at least one transmitted byte is lost
12 or corrupted.

1 40. The system of claim 39, further comprising:

2 means for retransmitting at least once, from said sending node to said receiving
3 node, said lost or corrupted bytes corresponding to said predetermined number of
4 negative acknowledgments received at said sending node.

1 41. The system of claim 39, further comprising:

2 means for transmitting said predetermined number of credits from said receiving
3 node to said sending node occurs before the transmission of said predetermined
4 number of bytes of said byte stream.

1 42. The system of claim 41, wherein said means for transmitting of said predetermined
2 number of credits occurs during a connection establishment of said sending node and
3 said receiving node.

1 43. The system of claim 41, wherein said means for transmitting of said predetermined
2 number of credits occurs after a connection establishment of said sending node and said
3 receiving node.

1 44. The system of claim 39, wherein said predetermined event is one from the group of
2 a) a predetermined number of bytes from said byte stream is received at said receiving
3 node, b) a predetermined number of bytes from said byte stream is received at said
4 receiving node and a congestion indicator at said receiver node is less than a
5 predetermined threshold, c) a predetermined number of bytes from said byte stream is
6 received at said receiving node and a data error indicator at said receiver node is less
7 than a predetermined threshold, d) a buffer at said receiving node, containing said bytes
8 transmitted from said sending node to said receiving node, has free space, e) a buffer at
9 said receiving node, containing said bytes transmitted from said sending node to said
10 receiving node, has free space and a congestion indicator at said receiver node is less
11 than a predetermined threshold, and f) a buffer at said receiving node, containing said
12 bytes transmitted from said sending node to said receiving node, has free space and a
13 data error indicator at said receiver node is less than a predetermined threshold.

1 45. The system of claim 39, wherein the reception of said credits at said receiving node
2 indicates that at least a subset of said byte stream was correctly received at said
3 receiving node.

1 46. The system of claim 39, wherein said means for transmitting of said predetermined
2 number of credits is dependent upon a counter exceeding a predetermined number
3 representative of received bytes at said receiving node, said transmitting means
4 comprising:

5 means for transmitting a predetermined number of credits from said receiving node
6 to said sending node when said counter is equal to at least a predetermined value;
7 and
8 means for decrementing said counter by said byte size upon transmission of said
9 credits.

- 1 47. The system of claim 39, wherein said credits from said means for credit
2 transmission are reduced or delayed to reflect congestion detection in an established
3 connection.
- 1 48. The system of claim 39, wherein said means for transmitting of said predetermined
2 number of bytes is dependent upon a counter exceeding a predetermined number
3 representative of received credits at said sending node, said transmitting means
4 comprising:
5 means for transmitting said bytes from said sending node to said receiving node
6 when said counter is equal to at least said number of bytes; and
7 means for decrementing said counter by said number of bytes upon said
8 transmission of said bytes.
- 1 49. The system of claim 39, wherein said bytes transmitted by said byte transmission
2 means are in the form of Transmission Control Protocol (TCP) packets, whereby said
3 system is compatible at the application programming level of TCP.
- 1 50. The system of claim 39, wherein the established connection between said sending
2 node and said receiving node is established using the standard 3-way handshake of
3 Transmission Control Protocol (TCP).
- 1 51. The system of claim 39, further comprising:
2 means for resetting said established connection when said transmission of at least
3 one of said negative acknowledgements occurs a predetermined number of times.
- 1 52. The system of claim 39, wherein said means for transmitting of said predetermined
2 number of credits occurs by piggybacking existing traffic with said credits from said
3 receiving node to said sending node.
- 1 53. The system of claim 39, wherein said credits in said credit transmission means are
2 not retransmitted if they are lost.
- 1 54. The system of claim 39, wherein said predetermined number of negative
2 acknowledgements is transmitted at predetermined events.

1 55. The system of claim 39, wherein said at least one corrupted byte is detected by
2 means of error detection hardware only.

1 56. The system of claim 39, wherein said at least one corrupted byte is detected only
2 once by software error detection means.

1 57. A system for quickly and reliably transmitting a byte stream from a sending node
2 having credits with an established connection to a receiving node in a communication
3 environment having a plurality of nodes and with a plurality of interconnectable paths,
4 where the bytes of said byte stream are formed into a plurality of data packets of a
5 protocol, the system comprising:

6 a predetermined identifier associated with data packets;
7 means for transmitting a predetermined number of bytes of a byte stream from a
8 sending node to a receiving node, corresponding to the number of credits present at
9 said sending node, if said predetermined identifier indicates a credit and negative
10 acknowledgement transport system;
11 means for transmitting a predetermined number of credits from said receiving node
12 to said sending node when a predetermined even occurs; and
13 means for transmitting a predetermined number of negative acknowledgements
14 from said receiving node to said sending node, when at least one transmitted byte is
15 lost or corrupted.

1 58. The system of claim 57, further comprising:

2 means for processing said data stream by a transport system independent of credit
3 and negative acknowledgements, if said predetermined identifier indicates a
4 transport system that is not exclusively credit and negative acknowledgement
5 based, whereby compatibility at the application programming level of a protocol is
6 maintained.

1 59. The system of claim 57, further comprising:

2 a first packet filter for filtering data packets at a sending node;
3 a second packet filter for filtering data packets at a receiving node, so that said
4 predetermined identifier indicates a credit and negative acknowledgement transport
5 system dependent on said first and second packet filters.

- 1 60. The system of claim 57, further comprising:
2 means for retransmitting at least once, from said sending node to said receiving
3 node, said lost or corrupted bytes corresponding to said predetermined number of
4 negative acknowledgments received at said sending node.
- 1 61. The system of claim 57, further comprising:
2 means for transmitting said predetermined number of credits from said receiving
3 node to said sending node occurs before the transmission of said predetermined
4 number of bytes of said byte stream.
- 1 62. The system of claim 61, wherein said means for transmitting of said predetermined
2 number of credits occurs during a connection establishment of said sending node and
3 said receiving node.
- 1 63. The system of claim 61, wherein said means for transmitting of said predetermined
2 number of credits occurs after a connection establishment of said sending node and said
3 receiving node.
- 1 64. The system of claim 57, wherein said predetermined event is one from the group of
2 a) a predetermined number of bytes from said byte stream is received at said receiving
3 node, b) a predetermined number of bytes from said byte stream is received at said
4 receiving node and a congestion indicator at said receiver node is less than a
5 predetermined threshold, c) a predetermined number of bytes from said byte stream is
6 received at said receiving node and a data error indicator at said receiver node is less
7 than a predetermined threshold, d) a buffer at said receiving node, containing said bytes
8 transmitted from said sending node to said receiving node, has free space, e) a buffer at
9 said receiving node, containing said bytes transmitted from said sending node to said
10 receiving node, has free space and a congestion indicator at said receiver node is less
11 than a predetermined threshold, and f) a buffer at said receiving node, containing said
12 bytes transmitted from said sending node to said receiving node, has free space and a
13 data error indicator at said receiver node is less than a predetermined threshold.
- 1 65. The system of claim 57, wherein the reception of said credits at said receiving node
2 indicates that at least a subset of said byte stream was correctly received at said
3 receiving node.

1 66. The system of claim 57, wherein said means for transmitting of said predetermined
2 number of credits is dependent upon a counter exceeding a predetermined number
3 representative of received bytes at said receiving node, said transmitting means
4 comprising:

5 means for transmitting a predetermined number of credits from said receiving node
6 to said sending node when said counter is equal to at least a predetermined value;
7 and
8 means for decrementing said counter by said byte size upon transmission of said
9 credits.

1 67. The system of claim 57, wherein said credits from said means for credit
2 transmission are reduced or delayed to reflect congestion detection in an established
3 connection.

1
2 68. The system of claim 57, wherein said means for transmitting of said predetermined
3 number of bytes is dependent upon a counter exceeding a predetermined number
4 representative of received credits at said sending node, said transmitting means
5 comprising:
6 means for transmitting said bytes from said sending node to said receiving node
7 when said counter is equal to at least said number of bytes; and
8 means for decrementing said counter by said number of bytes upon said
9 transmission of said bytes.

1 69. The system of claim 57, wherein said bytes transmitted by said byte transmission
2 means are in the form of Transmission Control Protocol (TCP) packets, whereby said
3 system is compatible at the application programming level of TCP.

1 70. The system of claim 57, wherein the established connection between said sending
2 node and said receiving node is established using the standard 3-way handshake of
3 Transmission Control Protocol (TCP).

1 71. The system of claim 57, further comprising:
2 means for resetting said established connection when said transmission of at least
3 one of said negative acknowledgements occurs a predetermined number of times.

- 1 72. The system of claim 57, wherein said means for transmitting of said predetermined
 - 2 number of credits occurs by piggybacking existing traffic with said credits from said
 - 3 receiving node to said sending node.
-
- 1 73. The system of claim 57, wherein said credits in said credit transmission means are
 - 2 not retransmitted if they are lost.
-
- 1 74. The system of claim 57, wherein said predetermined number of negative
 - 2 acknowledgements is transmitted at predetermined events.
-
- 1 75. The system of claim 57, wherein said at least one corrupted byte is detected by
 - 2 means of error detection hardware only.
-
- 1 76. The system of claim 57, wherein said at least one corrupted byte is detected only
 - 2 once by software error detection means.