

Kontakt

ŽILINSKÁ UNIVERZITA V ŽILINE

Ing. Jozef Dubovan, PhD.

• tel.: +421 41 513 2219

e-mail: jozef.dubovan@fel.uniza.sk

■ miestnosť: ND327b (KTaM – 3. posch. EF)

Úvod do optických prenosových médií

Úvod

Optický komunikačný systém

ŽILINSKÁ UNIVERZITA V ŽILINE

Zjednodušený optický prenosový systém.

LASER je akronym pre

- Light
- Amplification by
- Stimulated
- Emission of
- Radiation

Laser – princíp činnosti

Zdroje pre optické vysielače

ŽILINSKÁ UNIVERZITA V ŽILIN

- K dispozícii máme viacero typov optických zdrojov:
 - Light Emitting Diodes (LED) LED fotodiódy
 - Solid state lasers pevnolátkové lasery
 - Gas lasers plynné lasery
 - Semiconductor lasers polovodičové lasery
 - Fiber lasers vláknové lasery
- Preferované sú polovodičové lasery, pretože:
 - sú napájané el. energiou
 - priamo konvertujú elektrický signál na optický
 - generujú koherentné svetlo na rozdiel od LED

Základné parametre laserov

ŽILINSKÁ UNIVERZITA V ŽILINE

- Priemer zväzku laserového žiarenia je vzdialenosť medzi protiľahlými bodmi zväzku , v ktorých je hustota energie (výkonu) rovná 1/e násobku maximálnej hustoty.
- Rozbiehavosť (divergencia) zväzku žiarenia je celý uhol rozbiehavosti zväzku meraný medzi protiľahlými priamkami prechádzajúcimi rovnoľahlými bodmi zväzku, v ktorých hustota žiarivého toku v tom istom priereze. Udáva sa v miliradiánoch [mrad].

Bežný zdroj vs. laser

- svetlo bežného zdroja generuje polychromatické svetlo, zväzok ma divergentný charakter, výkon pri priemere zornice 7 mm zo vzd. 1 m je približne 6 uW, priemer obrazu cca 100 um,
- laserové svetlo sa vyznačuje spektrálnou čiarou úzkou (takmer monochromatické), zväzok má len malú divergenciu, za rovnakých podmienok ako v prvom prípade sa na sietnicu dostáva takmer plný výkon t.j. 1W, priemer obrazu cca. 10 um – porov. so žltou škvrnou, tzn. že krátkotrvajúci impulz definitívne znamená oslepnutie.

Opis šírenia sa svetla v zmysle geometrickej optiky

Geometrická optika (angl. Ray optic)

λ [m]

$$E = h\nu$$
 [J]

Dualita fotónu

Častica

Vlna

Optika (opis)

Geometrická

Vlnová

Kvantová

Materiály

Priehľadné (transparentné)

Priesvitné

Nepriesvitné

Základné parametre a zákony

ŽILINSKÁ UNIVERZITA V ŽILINE

Index lomu

$$n = \frac{c}{v} = \sqrt{\varepsilon_r \mu_r}$$

Vlnová dĺžka

$$\lambda = \frac{c}{f}$$

Vlnové číslo

$$k = \frac{2\pi}{\lambda}$$

Snellov zákon

$$n_1 \sin \alpha = n_2 \sin \beta$$

Zákon odrazu

$$\alpha = \alpha'$$

Relatívny rozdiel indexov lomu

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2}$$

Huygensov princíp

ŽILINSKÁ UNIVERZITA V ŽILINE

Geometrická (lúčová) optika

Geometrická (lúčová) optika predstavuje jeden z najstarších opisov šírenia sa optického signálu transparentným, respektíve čiastočne transparentným médiom. Zjednodušene môžeme hovoriť o určitom zidealizovaní predstavy o optickom lúči. Tento typ opisu šírenia sa svetla však nedokáže vysvetliť javy ako je interferencia alebo difrakcia.

Geometrická (lúčová) optika

ŽILINSKÁ UNIVERZITA V ŽILINE

Základné zákony lúčovej optiky

ŽILINSKÁ UNIVERZITA V ŽIL

Totálny vnútorný odraz

ŽILINSKÁ UNIVERZITA V ŽILIN

Totálny odraz predstavuje optický jav, ku ktorému dochádza keď na rozhranie dvoch prostredí dopadá optický lúč pod uhlom väčším ako je *kritický* (obr. dole). Toto sa deje v prípade ak je na opačnej strane médium s menším indexom lomu.

$$\theta_c = \theta_i = \arcsin\left(\frac{n_2}{n_1}\right)$$

Klasifikácia lúčov

ŽILINSKÁ UNIVERZITA V ŽILINI

Kobskidioonálny lúč

- Meridionálne lúče sa šíria v rovinách, prechádzajúcich cez os vlákna. Lúče pretínajú dvakrát os vlákna počas periódy odrazov.
- Šikmé (kosé) lúče neprechádzajú cez os vlákna a šíria sa po špirálovej dráhe.

Prenos perfektným vláknom

ŽILINSKÁ UNIVERZITA V ŽILINE

Šírenie meridionálneho lúča

Prenos perfektným vláknom

ŽILINSKA UNIVERZITA V ŽILINE

Šírenie kosého lúča

Porušenie podmienok šírenia sa svetla

ŽILINSKÁ UNIVERZITA V ŽILINE

Klasifikácia optických vlákien

Základné delenie

ŽILINSKÁ UNIVERZITA V ŽILIN

Konvenčné

- Sklené
 - Jednojadrové
 - SM (SI, GI)
 - MM (SI, GI)
 - Viacjadrové
 - SM
 - SM+MM

Nekonvenčné

- Sklené
 - rôzny priemer
 - PCF (2. typy) + Braggovo
- Plastové (POF)

Konvenčné a PCF vlákna

ŽILINSKÁ UNIVERZITA V ŽILINE

Konvenčné telekomunikačné vlákna SM MM SM MM SI GI Typ a profil indexu lomu Fotonické kryštáľové vlákna

Základné typy telekomunikačných optických vlákien

ŽILINSKÁ UNIVERZITA V ŽILINE

Za základné členenie môžeme chápať delenie na jedno a multimódové vlákna. Toto delenie je z pohľadu rozloženia poľa v optickom vlákne. Parametre optických vlákien však vyžadujú podrobnejšie delenie.

Fyzické rozmery konvenčných telekomunikačných vlákien

Fyzické rozmery SM OV

	Parameter	rozmer [μm]
	priemer jadra	2 - 9
	priemer plášťa	125
	priemer PO	250

Pri konvenčných vláknach vždy platí:

 $n_1 > n_2$

Optické vlákno – profil indexu lomu

ZILINSKA UNIVERZITA V ZILINE

Profil indexu lomu (RI)

Numerická apertúra (akceptačný kužel)

ŽILINSKÁ UNIVERZITA V ŽILINE

Meridionálne

$$NA = n_0 \sin \theta_a = \sqrt{n_1^2 - n_2^2}$$

Kosé (šikmé)

$$n_0 \sin \theta_{as} \cos \varphi = \sqrt{n_1^2 - n_2^2} = NA$$

Gradientné optické vlákna (profil indexu lomu)

ŽILINSKÁ UNIVERZITA V ŽILINE

Zmena indexu lomu

Jadro

$$n(r) = n_1 \sqrt{1 - 2\Delta \left(\frac{r}{a}\right)^{\alpha}} \text{ pre } r < a$$

Plášť

$$n(r) = n_1 \sqrt{1 - 2\Delta} \text{ pre } r > a$$

Ukážka šírenia sa lúča v GI vlákne

ŽILINSKÁ UNIVERZITA V ŽILINE

Parabolický profil

Ďakujem za pozornosť

jozef.dubovan@fel.uniza.sk