Machine learning

Claire Boyer

October 14th, 2020

Today 2 / 95

- 1. Complexity, Selection and Penalization
- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6. Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descent
- 8. Stochastic gradient descent

Mainly taken from Stéphane Gaïffas's lectures

Some references:

- Yurii Nesterov, Introductory lectures on convex optimization, Springer
- Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge University Press
- ► Lieven Vandenberghe's lectures
- Sébastien Bubeck, Convex Optimization: Algorithms and Complexity
- + research papers

Summary 4 / 95

1. Complexity, Selection and Penalization

- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6. Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descen
- 8. Stochastic gradient descent

Machine Learning

Learn a rule to construct a predictor $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

Canonical example: Empirical Risk Minimizer

- ▶ One restricts f to a subset of functions $S = \{f_{\theta}, \theta \in \Theta\}$
- One replaces the minimization of the average loss by the minimization of the empirical loss

$$\widehat{f} = f_{\widehat{\theta}} = \operatorname{argmin}_{f_{\theta}, \theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(X_i))$$

- Examples:
 - Linear regression
 - Linear discrimination with

$$\mathcal{S} = \{\mathbf{x} \mapsto \operatorname{sign}\{\beta^T \mathbf{x} + \beta_0\} / \beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R}\}\$$

Linear Classifier

Classifier family:

$$\mathcal{S} = \{ f_{\theta} : \mathbf{x} \mapsto \operatorname{sign}\{\beta^{\mathsf{T}}\mathbf{x} + \beta_{0}\} / \beta \in \mathbb{R}^{d}, \beta_{0} \in \mathbb{R} \}$$

► Natural loss: $\ell^{0/1}(Y, f(x)) = 1_{y \neq f(x)}$

Empirical Risk Minimization

► ERM Classifier:

$$\widehat{f} = f_{\widehat{\theta}} = \operatorname{argmin}_{f_{\theta}, \theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} 1_{Y_{i} \neq f_{\theta}(\mathbf{X}_{i})}$$

- Not smooth or convex ⇒ no easy minimization scheme!
- \triangleright \neq regression with quadratic loss case!
- ► How to go beyond?

Constrained Optimization

- ► Choose a constant *C*.
- ightharpoonup Compute β as

$$\operatorname{argmin}_{\beta \in \mathbb{R}^d, \|\beta\|_{p} \leqslant C} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i(\beta^t x_i)})$$

Lagrangian Reformulation

ightharpoonup Choose λ and compute β as

$$\operatorname{argmin}_{\beta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i(\beta^t x_i)}) + \lambda \|\beta\|_{p}^{p'}$$

with p' = p except if p = 0 where p' = 1.

Easier calibration...

Penalization 9 / 95

Penalized Likelihood

Minimization of

$$\operatorname{argmin}_{eta \in \mathbb{R}^d} rac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i(eta^t x_i)}) + \operatorname{pen}(eta)$$

where $pen(\beta)$ is a (sparsity promoting) penalty

▶ Variable selection if β is sparse.

Classical Penalties

- ► AIC: $pen(\beta) = \lambda ||\beta||_0$ (non convex / sparsity)
- ▶ Ridge: $pen(\beta) = \lambda \|\beta\|_2^2$ (convex / no sparsity)
- Lasso: pen(β) = $\lambda \|\beta\|_1$ (convex / sparsity)
- ► Elastic net: $pen(\beta) = \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$ (convex / sparsity)
- ► Easy optimization if pen (and the loss) is convex...
- ▶ Need to specify λ !

▶ Need to choose λ from the data!

Error behaviour

- ► Learning/training error (error made on the learning/training set) decays when the regularization parameter decreases.
- Quite different behavior when the error is computed on new observations (generalization error).
- Overfit for complex models: parameters learned are too specific to the learning set!
- ► General situation! (Think of polynomial fit...)
- ▶ Need another criterion than the training error!

- ▶ **Very simple idea**: use a second learning/verification set to compute a verification error.
- Sufficient to avoid over-fitting!

Cross Validation

- ▶ Use $\frac{V-1}{V}n$ observations to train and $\frac{1}{V}n$ to verify!
- ▶ Validation for a learning set of size $(1 \frac{1}{V}) \times n$ instead of n!
- Most classical variations:
 - Leave One Out,
 - V-fold cross validation.
- Accuracy/Speed tradeoff: V = 5 or V = 10!

Practical Selection Methodology

- ▶ Choose a penalty shape $\widetilde{pen}(\beta)$.
- ▶ Compute a CV error for a penalty $\lambda \widetilde{pen}(\beta)$ for all $\lambda \in \Lambda$.
- ▶ Determine $\hat{\lambda}$ the λ minimizing the CV error.
- ► Compute the final logistic regression with a penalty $\widehat{\lambda} \widetilde{pen}(\beta)$.

Why not using only CV?

- ▶ If the penalized likelihood minimization is easy, much cheaper to compute the CV error for all $\lambda \in \Lambda$ than for all $\beta \in \mathbb{R}^d$!
- CV performs best when the set of candidates is not too big (or is structured...)

We encountered a lot of problems of the form

$$\operatorname{argmin}_{w \in \mathbb{R}^d} f(w) + g(w)$$

with f a goodness-of-fit function

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle w, x_i \rangle)$$

where ℓ is some loss and

$$g(w) = \frac{1}{C} \operatorname{pen}(w)$$

where pen(·) is some penalization function, examples being $pen(w) = \frac{1}{2} \|w\|_2^2$ (Ridge) and $pen(w) = \|w\|_1$ (Lasso)

Examples 14 / 95

Classical losses for classification

- Logistic loss, $\ell(y, y') = \log(1 + e^{-yy'})$
- ► Hinge loss, $\ell(y, y') = (1 yy')_+$
- Quadratic hinge loss, $\ell(y, y') = \frac{1}{2}(1 yy')_+^2$
- ► Huber loss $\ell(y, y') = -4yy' \mathbb{1}_{yy' < -1} + (1 yy')^2_+ \mathbb{1}_{yy' \geqslant -1}$

Minimization of

$$F(w) = f(w) + g(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle x_i, w \rangle) + \frac{1}{C} \operatorname{pen}(w)$$

First, note that the gradient and Hessian matrix writes

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell'(y_i, \langle x_i, w \rangle) x_i$$
$$\nabla^2 f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \langle x_i, w \rangle) x_i x_i^{\top}$$

with

$$\ell'(y,y') = \frac{\partial \ell'(y,y')}{\partial y'}$$
 and $\ell''(y,y') = \frac{\partial^2 \ell'(y,y')}{\partial y'^2}$

Summary 16 / 95

- 1. Complexity, Selection and Penalization
- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6. Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descen
- 8. Stochastic gradient descen

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if for all $(x, y) \in \mathbb{R}^d$ and all $\alpha \in [0, 1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

<u>Interpretation</u>: The graph of a cvx fct is always below the segment joining 2 points on the graph.

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is strictly convex if for all $(x,y) \in \mathbb{R}^d$ and all $\alpha \in]0,1[$

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

<u>Interpretation</u>: The graph of a cvx fct is always strictly below the segment joining 2 points on the graph.

Convexity and linear approx

▶ If f is cvx and differentiable then for all x, y

$$f(y) \geqslant f(x) + \langle \nabla f(x), y - x \rangle$$

- Interpretation : a cvx fct is always above its tangent hyperplane
- ▶ For strict convexity, the inequality is strict when $y \neq x$

Convexity and monotone gradient

ightharpoonup f is cvx and differentiable \iff for all x, y

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \geqslant 0$$

- ▶ In 1D : f cvx \iff f' non-decreasing
- For strict convexity, the inequality is strict when $y \neq x$

Convexity and Hessian

▶ f is cvx and twice differentiable \iff its Hessian is semi-definite positive for all x, i.e.

$$\nabla^2 f(w)$$
 or $H[f](x) \geq 0$

- ▶ In 1D : $f \text{ cvx} \iff f'' \geqslant 0$
- ► For strict convexity, the Hessian is definite positive.

Back to the problem of minimizing

$$F(w) = f(w) + g(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle x_i, w \rangle) + \frac{1}{C} \operatorname{pen}(w)$$

Note that f is convex iff

$$y' \mapsto \ell(y_i, y')$$

is for any $i = 1, \ldots, n$.

Definition

We say that f is L-smooth if it is continuously differentiable and if

$$\|\nabla f(w) - \nabla f(w')\|_2 \leq L \|w - w'\|_2$$
 for any $w, w' \in \mathbb{R}^d$

The gradient is L-Lipschitz continuous.

Another characterization of L-smooth

If f is twice differentiable, this is equivalent to assuming

$$\lambda_{\max}(\nabla^2 f(w)) \leqslant L$$
 for any $w \in \mathbb{R}^d$

(largest eigenvalue of the Hessian matrix of f is smaller than L)

► For the least-squares loss

$$abla f(w) = \frac{1}{n} \sum_{i=1}^n (\langle x_i, w \rangle - y_i) x_i, \quad
abla^2 f(w) = \frac{1}{n} \sum_{i=1}^n x_i x_i^{\top}$$

so that

$$L = \frac{1}{n} \lambda_{\max} \left(\sum_{i=1}^{n} x_i x_i^{\top} \right) = \frac{1}{n} \lambda_{\max} \left(X^T X \right)$$

with the (x_i) 's rows of X

► For the logit loss

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} y_i (\sigma(y_i \langle x_i, w \rangle) - 1) x_i$$

and

$$\nabla^2 f(w) = \frac{1}{n} \sum_{i=1}^n \sigma(y_i \langle x_i, w \rangle) (1 - \sigma(y_i \langle x_i, w \rangle)) x_i x_i^{\top}$$

so that

$$L = \frac{1}{4n} \lambda_{\max} \left(\sum_{i=1}^{n} x_i x_i^{\top} \right) = \frac{1}{4n} \lambda_{\max} \left(X^T X \right)$$

with the (x_i) 's rows of X

Def : Strong convexity

f is μ -strongly convex iff $\forall x, y$ and $\forall \lambda \in [0, 1]$

$$f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1-\lambda)f(y) - \frac{\mu}{2}\lambda(1-\lambda)\|x-y\|_2^2$$

Strong convexity and linear approx.

A differentiable function f is μ -strongly convex if $\forall x, y$

$$f(y) \geqslant f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2$$

Strong convexity and Hessian

A twice-differentiable function f is μ -strongly convex if $\forall x$

$$\lambda_{\min}(\nabla^2 f(x)) \geqslant \mu$$

- ► L-smooth : $\Delta(x,y) \leq \frac{L}{2}||y-x||_2^2$
- μ -strongly convex : $\Delta(x,y) \geqslant \frac{\mu}{2} ||y-x||_2^2$

We define in this case

$$\kappa = \frac{L}{\mu} \geqslant 1$$

as the condition number of f.

Summary 28 / 95

- 1. Complexity, Selection and Penalization
- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6. Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descen
- 8. Stochastic gradient descent

Now how to find

$$w^* \in \operatorname{argmin}_{w \in \mathbb{R}^d} f(w)$$
 ?

A key point is the following.

Lemma (The descent lemma)

If f is L-smooth, then

$$f(w') \leqslant f(w) + \langle \nabla f(w), w' - w \rangle + \frac{L}{2} \|w - w'\|_2^2$$

for any $w, w' \in \mathbb{R}^d$

Proof of the descent lemma. Use the fact that

$$f(w') = f(w) + \int_0^1 \langle \nabla f(w + t(w' - w)), w' - w \rangle dt$$

= $f(w) + \langle \nabla f(w), w' - w \rangle$
+ $\int_0^1 \langle \nabla f(w + t(w' - w)) - \nabla f(w), w' - w \rangle dt$

So that

$$|f(w') - f(w) - \langle \nabla f(w), w' - w \rangle|$$

$$\leq \int_{0}^{1} |\langle \nabla f(w + t(w' - w)) - \nabla f(w), w' - w \rangle dt|$$

$$\leq \int_{0}^{1} ||\nabla f(w + t(w' - w)) - \nabla f(w)|| ||w' - w|| dt$$

$$\leq \int_{0}^{1} Lt ||w' - w||^{2} dt = \frac{L}{2} ||w' - w||^{2}$$

which proves the descent lemma.

It leads, around a point w^k (where k is an iteration counter) to

$$f(w) \leqslant f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} \|w - w^k\|_2^2$$

for any $w \in \mathbb{R}^d$

Remark that

$$\begin{aligned} & \operatorname{argmin}_{w \in \mathbb{R}^d} \left\{ f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} \left\| w - w^k \right\|_2^2 \right\} \\ &= \operatorname{argmin}_{w \in \mathbb{R}^d} \left\| w - \left(w^k - \frac{1}{L} \nabla f(w^k) \right) \right\|_2^2 \end{aligned}$$

Hence, it is natural to choose

$$w^{k+1} = w^k - \frac{1}{I} \nabla f(w^k)$$

This is the basic gradient descent algorithm

Theorem (Convergence of gradient descent)

Assume that f has a minimizer $x^* \in \mathbb{R}^d$ and that the gradient of f is Lipschitz continuous with Lipschitz constant L > 0:

$$\forall (x,y) \in (\mathbb{R}^d)^2 \colon \quad \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

For a constant step size $\gamma_k = \frac{1}{L} \ (\forall k \in \mathbb{N})$:

$$f(x_k) - f(x^*) \le \frac{L}{2k} ||x_0 - x^*||_2^2.$$

Theorem (Convergence of gradient descent (strong convexity))

Assume that f has a minimizer $x^* \in \mathbb{R}^d$, is μ -strongly convex $(\mu > 0)$ and that the gradient of f is Lipschitz continuous with Lipschitz constant L > 0. For a constant step size $\gamma_k = \frac{1}{L}$ $(\forall k \in \mathbb{N})$:

$$f(x_k) - f(x^*) \le \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^k ||x_0 - x^*||_2^2$$

and

$$||x_k - x^*||^2 \le \left(1 - \frac{\mu}{L}\right)^k ||x_0 - x^*||_2^2,$$

Take-home message

- ▶ L-smooth : CV in O(1/k) iterations sublinear rate
- \blacktriangleright + μ -strong convexity :
 - ightharpoonup CV in $O(c^k)$ 0 < c < 1 linear rate
 - CV for the iterates!
- --- Complexity theory for first order methods

Can be accelerated

- Heavy ball methods
- Nesterov's acceleration

Let's not forget about g

Summary 36 / 95

- 1. Complexity, Selection and Penalization
- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6 Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descen
- 8. Stochastic gradient descen

Let's put back g:

$$f(w) + g(w) \le f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} \left\| w - w^k \right\|_2^2 + g(w)$$
 and again

$$\begin{aligned} & \operatorname{argmin}_{w \in \mathbb{R}^d} \left\{ f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} \left\| w - w^k \right\|_2^2 + g(w) \right\} \\ &= \operatorname{argmin}_{w \in \mathbb{R}^d} \left\{ \frac{L}{2} \left\| w - \left(w^k - \frac{1}{L} \nabla f(w^k) \right) \right\|_2^2 + g(w) \right\} \\ &= \operatorname{argmin}_{w \in \mathbb{R}^d} \left\{ \frac{1}{2} \left\| w - \left(w^k - \frac{1}{L} \nabla f(w^k) \right) \right\|_2^2 + \frac{1}{L} g(w) \right\} \\ &= ???? \end{aligned}$$

Definition (Proximal operator)

For any $g: \mathbb{R}^d \to \mathbb{R}$ convex, and any $w \in \mathbb{R}^d$, we define

$$\operatorname{prox}_{g}(w) = \operatorname{argmin}_{w' \in \mathbb{R}^{d}} \left\{ \frac{1}{2} \left\| w - w' \right\|_{2}^{2} + g(w') \right\}$$

▶ If $g(w) = \lambda ||w||_1$ then \rightsquigarrow (soft-thresholding, cf TD)

$$\operatorname{prox}_{g}(w) = S_{\lambda}(w) = \operatorname{sign}(w) \odot (|w| - \lambda)_{+}$$

► If $g(w) = \frac{\lambda}{2} \|w\|_2^2$ then \rightsquigarrow (shrinkage)

$$\operatorname{prox}_{g}(w) = \frac{1}{1+\lambda}w$$

Algo: prox gradient descent (PGD)

- Input: starting point w^0 , Lipschitz constant L > 0 for ∇f
- For $k = 1, 2, \dots$ until convergence do

$$w^k \leftarrow \operatorname{prox}_{g/L} \left(w^{k-1} - \frac{1}{L} \nabla f(w^{k-1}) \right)$$

► Return last w^k

Ex: Lasso

$$w^* \in \operatorname{argmin}_{w \in \mathbb{R}^d} \left\{ \frac{1}{2n} \|y - Xw\|_2^2 + \lambda \|w\|_1 \right\},$$

the iteration is

$$w^k \leftarrow S_{\lambda/L} \left(w^{k-1} - \frac{1}{Ln} X^{\top} (Xw^{k-1} - y) \right),$$

where S_{λ} is the soft-thresholding operator

- ▶ Put for short F = f + g,
- ► Take any $w^* \in \operatorname{argmin}_{w \in \mathbb{R}^d} F(w)$

Theorem

If the sequence $\{w^k\}$ is generated by the proximal gradient descent algorithm, then if f is L-smooth then

$$F(w^k) - F(w^*) \leqslant \frac{L \|w^0 - w^*\|_2^2}{2k}$$

Comments

- ▶ Convergence rate is O(1/k) (sublinear)
- ▶ ε -accuracy (namely $F(w^k) F(w^*) \leq \varepsilon$) achieved after $O(L/\varepsilon)$ iterations
- ▶ Is it possible to improve the O(1/k) rate? It's very slow!
- Again using: strong convexity

Recall 41 / 95

f is μ -strongly convex if

$$f(\cdot) - \frac{\mu}{2} \left\| \cdot \right\|_2^2$$

is convex. When f if differentiable, it is equivalent to

$$f(w') \ge f(w) + \langle \nabla f(w), w' - w \rangle + \frac{\mu}{2} \|w' - w\|_2^2$$

for any $w, w' \in \mathbb{R}^d$. When f is twice differentiable, this is equivalent to

$$\lambda_{\min}(\nabla^2 f(w)) \geqslant \mu$$

for any $w \in \mathbb{R}^d$ (smallest eigenvalue of $abla^2 f(w)$)

Theorem

If the sequence $\{w^k\}$ is generated by the proximal gradient descent algorithm, and if f is L-smooth and μ -strongly convex, we have

$$F(w^k) - F(w^*) \leqslant \frac{L}{2} \exp\left(-\frac{4k}{\kappa+1}\right) \left\|w^0 - w^*\right\|^2$$

where $\kappa = L/\mu$ is the condition number of f.

Comments

- ► Convergence rate is $O(e^{-ck})$ (linear)
- ightharpoonup ε -accuracy achieved after $O(\kappa \log(1/\varepsilon))$ iterations

Summary 43 / 95

- 1. Complexity, Selection and Penalization
- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6 Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descen
- 8. Stochastic gradient descent

Acceleration 44 / 95

Can we improve the number of iterations $O(L/\varepsilon)$ (*L*-smooth) and $O(\frac{L}{\mu}\log(1/\varepsilon))$ (*L*-smooth and μ strongly-convex) ?

Yes: the idea is to combine w^k and w^{k-1} to find w^{k+1}

Accelerated Proximal Gradient Descent (AGD)

- ▶ *Input*: starting points $z^1 = w^0$, Lipschitz constant L > 0 for ∇f , $t_1 = 1$
- For $k = 1, 2, \dots$ until converged do

$$w^k \leftarrow \operatorname{prox}_{g/L}(z^k - \frac{1}{L}\nabla f(z^k))$$
 $t_{k+1} \leftarrow \frac{1 + \sqrt{1 + 4t_k^2}}{2}$ $z^{k+1} \leftarrow w^k + \frac{t_k - 1}{t_{k+1}}(w^k - w^{k-1})$

Return last w^k

Theorem

Accelerated proximal gradient descent needs

 $O(L/\sqrt{\varepsilon})$ iterations to achieve ε -precision

in the L-smooth case and

$$O\left(\sqrt{rac{L}{\mu}}\log(1/arepsilon)
ight)$$
 iterations to achieve $arepsilon$ -precision

in the L-smooth and μ -strongly convex case

Remark You can also accelerate gradient descent with the same algorithm (by removing the prox)!

Remark. APGD is not a descent algorithm, while PGD is

Summary 47 / 95

- 1. Complexity, Selection and Penalization
- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6. Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descen
- 8. Stochastic gradient descen

Goal: still to minimize a function f (unconstrained problem)

$$w^* \in \operatorname{argmin}_{w \in \mathbb{R}^d} f(w)$$
 ?

Newton iteration

$$w_{k+1} \leftarrow w_k - (\nabla^2 f(w_k))^{-1} \nabla f(w_k)$$

Proposition

If the Hessian is well-conditioned through the iterations, i.e.

$$\exists M > 0, \forall k \in \mathbb{N}, \|\nabla^2 f(w_k)\|_{2 \to 2} \|(\nabla^2 f(w_k))^{-1}\|_{2 \to 2} \leqslant M,$$

then, the Newton algorithm globally converges.

Proposition

Assume that

- ightharpoonup f is convex. C^2 .
- the Hessian is M-Lipschitz,
- the Hessian is locally lower-bounded, i.e. $\exists \ell > 0$, such that

$$\nabla^2 f(w^*) \succeq \ell \mathrm{Id}$$

▶ the first iterate is not far from the solution w*:

$$\|w_0-w^\star\|<\bar{r}=\frac{2\ell}{3M}$$

Then the Newton method ensures that $||w_k - w^*|| \le \bar{r}$ for all k and it quadratically converges:

$$||w_{k+1} - w^*|| \le \frac{M||w_k - w^*||^2}{2(\ell - M||w_k - w^*||)}.$$

Summary 51 / 95

- Complexity, Selection and Penalization
- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6. Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descent
- 8. Stochastic gradient descent

Coordinate descent

- Received a lot of attention in machine learning and statistics the last 10 years
- ► It is state-of-the-art on several machine learning problems, when possible
- This is what is used in many R packages and for scikit-learn Lasso / Elastic-net and LinearSVC

Idea.

Minimize one coordinate at a time (keeping all others fixed)

Proposition

Given $f: \mathbb{R}^d \to \mathbb{R}$ convex and smooth if we have

$$f(w + ze_i) \geqslant f(w)$$
 for all $z \in \mathbb{R}$ and $j = 1, ..., d$

(where $e_j = j$ -th canonical vector of \mathbb{R}^d) then we have

$$f(w) = \min_{w' \in \mathbb{R}^d} f(w')$$

Proof. $f(w + ze_j) \geqslant f(w)$ for all $z \in \mathbb{R}$ implies that

$$\frac{\partial f}{\partial w^j}(w) = 0$$

which entails $\nabla f(w) = 0$, so that w is a minimum for f convex and smooth

Algo: Exact coordinate descent (CD)

- ▶ For t = 1, ...,
- ▶ Choose $j \in \{1, \ldots, d\}$
- Compute

$$\begin{aligned} w_j^{t+1} &= \operatorname{argmin}_{z \in \mathbb{R}} f(w_1^t, \dots, w_{j-1}^t, z, w_{j+1}^t, \dots, w_d^t) \\ w_{j'}^{t+1} &= w_{j'}^t \quad \text{ for } j' \neq j \end{aligned}$$

Remarks

- Cycling through the coordinates is arbitrary: uniform sampling, pick a permutation and cycle over it every each d iterations
- Only 1D optimization problems to solve, but a lot of them

- ► Let $f(w) = \frac{1}{2n} \|Xw y\|_2^2$
- \triangleright X features matrix with columns X^1, \dots, X^d
- ▶ Minimization over *w_i* with all other coordinates fixed:

$$0 = \nabla_{w_j} f(w) = \langle X^j, Xw - y \rangle = \langle X^j, X^j w_j + X^{-j} w_{-j} - y \rangle$$

where \mathbf{X}^{-j} is \mathbf{X} with j-th columns removed and w_{-j} is w with j-th coordinate removed

Namely

$$w_j = \frac{\langle X^j, y - X^{-j} w_{-j} \rangle}{\|X^j\|_2^2}$$

Repeat these updates cycling through the coordinates $j=1,\ldots,d$

▶ Namely pick $j \in \{1, ..., d\}$ at iteration t and do

$$\begin{aligned} w_j^{t+1} \leftarrow \frac{\langle X^j, y - X^{-j} w_{-j}^t \rangle}{\|X^j\|_2^2} \\ w_{j'}^{t+1} \leftarrow w_{j'}^t & \text{for } j' \neq j \end{aligned}$$

- Written like this, one update complexity is n × d (matrix-vector product X^{-j}w_{-i} and inner product with X_i)
- ▶ Update of all coordinates is $O(nd^2)$? While GD is O(nd) at each iteration...
- No! There is a trick. Defining the current residual $r^t \leftarrow y Xw^t$ we can write an update as

$$w_j^{t+1} \leftarrow w_j^t + \frac{\langle X^J, r^t \rangle}{\left\| X_2^J \right\|^2}$$
 and $r^{t+1} \leftarrow r^t + (w_j^{t+1} - w_j^t) X^j$

► This is 2n, which makes the full coordinates update O(nd), like an iteration of GD

Theorem (Warga (1963))

If f is continuously differentiable and strictly convex, then exact coordinate descent converges to a minimum.

Remarks.

- ► A 1D optimization problem to solve at each iteration: cheap for least-squares, but can be expensive for other problems
- Let's solve it approximately, since we have many iterations left
- ► Replace exact minimization w.r.t. one coordinate by a single gradient step in the 1D problem

Algo: Coordinate gradient descent (CGD)

- ▶ For k = 1, ...,
- ightharpoonup Choose $j \in \{1, \ldots, d\}$
- Compute

$$w_j^{k+1} = w_j^k - \eta_j \nabla_{w_j} f(w^k)$$

$$w_{j'}^{k+1} = w_{j'}^k \quad \text{for } j' \neq j$$

where

 $\mathbf{p}_j = \mathbf{p}_j = \mathbf{p}_j = \mathbf{p}_j = 1/L_j$ where L_j is the Lipchitz constant of

$$f^{j}(z) = f(w + ze_{j}) = f(w_{1}, \dots, w_{j-1}, z, w_{j+1}, \dots, w_{d})$$

Wow! Coordinate gradient descent is much faster than GD and AGD! But why ?

The answer is... 60 / 95

Theorem (Nesterov (2012))

Assume that f is convex and smooth and that each f^j is L_j -smooth. Consider a sequence $\{w^t\}$ given by CGD with $\eta_j=1/L_j$ and coordinates j_1,j_2,\ldots chosen at random: i.i.d and uniform distribution in $\{1,\ldots,d\}$. Then

$$\mathbb{E}f(w^{k+1}) - f(w^*) \le \frac{d}{d+k} \left(\left(1 - \frac{1}{d} \right) (f(w^0) - f(w^*)) + \frac{1}{2} \|w^0 - w^*\|_L^2 \right)$$

with
$$||w||_L^2 = \sum_{j=1}^d L_j w_j^2$$
.

Remark. Bound in expectation, since coordinates are taken at random. For cycling coordinates $j = (t \mod d) + 1$ the bound is much worse.

▶ GD achieves ε -precision with

$$\frac{L \|w^0 - w^*\|_2^2}{2\varepsilon}$$

iterations. A single iteration for GD is O(nd)

ightharpoonup CGD achieves ε -precision with

$$\frac{d}{\varepsilon}\left(\left(1-\frac{1}{d}\right)\left(f(w^0)-f(w^*)\right)+\frac{1}{2}\left\|w^0-w^*\right\|_L^2\right)$$

iterations. A single iteration for CGD is O(n)

Note that $f(w^0) - f(w^*) \le \frac{L}{2} \|w^0 - w^*\|_2^2$ but typically $f(w^0) - f(w^*) \ll \frac{L}{2} \|w^0 - w^*\|_2^2$

GD vs. CGD 62 / 95

So, this is actually

$$\frac{L \left\| w^0 - w^* \right\|_2^2}{\varepsilon} \text{ against } \frac{1}{\varepsilon} \left\| w^0 - w^* \right\|_L^2$$

- ightharpoonup Namely L against the L_j
- ► For least-squares we have $L = \lambda_{\text{max}}(X^TX)$ and $L_j = \|X^j\|_2^2$
- We always have

$$||L_j|| = ||X^j||_2^2 = ||Xe_j||_2^2 \leqslant \max_{u:||u||_2 = 1} ||Xu||_2^2 = \lambda_{\max}(X^\top X) = L$$

And actually it often happens that $L_j \ll L$. For instance, if features are normalized then $L_j = 1$, while $L \approx d$ meaning $L_j = O(L/d)$

→ This explains roughly why CGD is much faster than GD for ML problems

What's next? 63 / 95

- ▶ What about non-smooth penalization using CGD ?
- ▶ What if I want to use an ℓ^1 penalization $g(w) = \lambda \|w\|_1$?
- We only talk about the minimization of f(w) convex and smooth using CGD
- What if we want to minimize f(w) + g(w) for g a penalization function, like we did with GD and AGD

Proximal coordinate gradient descent allows to minimize f(w) + g(w) for a separable function g, namely a function of the form

$$g(w) = \sum_{j=1}^d g_j(w^j)$$

with each g_j convex (eventually not smooth) and such that $prox_{g_j}$ is easy to compute.

For Lasso, take $g^j(w^j) = \lambda |w^j|$ for the Lasso (we saw 3 weeks ago that $\operatorname{prox}_{g_j}$ is easy to compute)

Algo: Proximal coordinate gradient descent (PCGD)

- ▶ For t = 1, ...,
- ightharpoonup Choose $j \in \{1, \ldots, d\}$
- Compute

$$w_j^{t+1} \leftarrow \operatorname{prox}_{\eta_j g_j} (w_j^t - \eta_j \nabla_{w_j} f(w^t))$$

 $w_{j'}^{t+1} = w_{j'}^t \quad \text{for } j' \neq j$

where we recall that

- $ightharpoonup \eta_j =$ the step-size for coordinate j, can be taken as $\eta_j = 1/L_j$
- ightharpoonup And where $prox_{\eta_i g_i}$ is

$$\operatorname{prox}_{\eta_j g_j}(w_j) = \operatorname{argmin}_{z \in \mathbb{R}} \frac{1}{2} (z - w_j)^2 + \eta_j g_j(z)$$

→ Same theoretical guarantees as for (CGD) (under the same assumptions, for random draws of coordinates)

Minimization of

$$\min_{w \in \mathbb{R}^d} f(w) + \sum_{j=1}^d g_j(w^j)$$

- Regression elastic-net: $f(w) = \frac{1}{2n} \|Xw y\|_2^2$ and $g_i(w) = \lambda(\tau | w_i| + (1 \tau)w_i^2)$
- ▶ Logistic regression ℓ_1 : $f(w) = \log(1 + \exp(-y \odot Xw))$ and $g_j(w) = \lambda |w_j|$
- ▶ Box-constrained regression $f(w) = \frac{1}{2n} \|Xw y\|_2^2$ such that $\|w\|_{\infty} \leq r$
- Non-linear least-squares $f(w) = \frac{1}{2n} \|Xw y\|_2^2$ such that $w_j \ge 0$
- ► This is what is used in scikit-learn for LinearSVC when dual=True (even if constraint is not separable)

Summary 67 / 95

- 1. Complexity, Selection and Penalization
- 2. Convex analysis: reminder
- 3. Gradient descent
- 4. Proximal Gradient descent
- 5. Acceleration
- 6. Newton method
- 7. Coordinate descent
 Exact coordinate descent
 Coordinate gradient descent
 Proximal coordinate gradient descen
- 8. Stochastic gradient descent

Recall 68 / 95

We want to minimize

$$F(w) = f(w) + g(w)$$

► f is goodness-of-fit

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$
 with $f_i(w) = \ell(y_i, \langle x_i, w \rangle)$

g is penalization, where main examples are

$$g(w) = \frac{\lambda}{2} \|w\|_2^2$$
 (ridge) $g(w) = \lambda \|w\|_1$ (lasso)

Gradient descent

$$w^k \leftarrow w^{k-1} - \eta \nabla f(w^{k-1})$$

▶ To achieve ε -precision, if f is L-smooth then the number of iterations is

$$O(L/\varepsilon)$$
,

 \blacktriangleright if f is also μ -strongly convex then the number of iterations is

$$O\left(\frac{L}{\mu}\log(1/\varepsilon)\right)$$

In terms of numerical cost, one should say

$$\leadsto O\left(\frac{L}{\mu}\log(1/\varepsilon)\right)$$

if the "unit" is complexity of $\langle x_i, w \rangle$, namely O(d)

These methods are said based on full gradients, since at each iteration we need to compute

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w),$$

which depends on the whole dataset

Problem

If n is large, computing $\nabla f(w)$ is long: need to pass on the whole data before doing a step towards the minimum!

Idea

Large datasets make your modern computer look old: go back to "old" algorithms.

A first estimator

Choosing uniformly at random $I \in \{1, ..., n\}$, then

$$\mathbb{E}[\nabla f_l(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w)$$

 $\nabla f_I(w)$ is an **unbiased** but very noisy estimate of the full gradient $\nabla f(w)$

 \sim Computation of $\nabla f_I(w)$ only requires the *I*-th line of data (O(d)) and smaller for sparse data, see next)

Algo: Stochastic Gradient Descent (SGD)

Input: starting point w^0 , steps (learning rates) η_t For t = 1, 2, ... until convergence do

- ▶ Pick at random (uniformly) i_t in $\{1, ..., n\}$
- compute

$$w^t = w^{t-1} - \eta_t \nabla f_{i_t}(w^{t-1})$$

Return last w^t

Remarks

- ▶ Each iteration has complexity O(d) instead of O(nd) for full gradient methods
- Possible to reduce this to O(s) when features are s-sparse using lazy-updates (more on this later)

When f is μ -strongly con)vex and L-smooth (and if again the "unit" is complexity of O(d))

► Full gradient descent

$$w^k \leftarrow w^{t-1} - \frac{\eta_t}{n} \sum_{i=1}^n \nabla f_i(w^{t-1})$$

has O(nd) operations: numerical complexity $O\left(n\frac{L}{\mu}\log\left(\frac{1}{\varepsilon}\right)\right)$

► Stochastic gradient descent

$$w^t \leftarrow w^{t-1} - \eta_t \nabla f_{i_t}(w^{t-1})$$

O(d) operations: numerical complexity $O\left(\frac{1}{\mu\varepsilon}\right)$ (more next...)

Take-home message

It does not depend on n for SGD!

Now w^t is a stochastic sequence, that depends on random draws of indices i_1, \ldots, i_t , denoted \mathcal{F}_t

If i_t is chosen uniformly at random in $\{1, \ldots, n\}$ and independent of previous \mathcal{F}_{t-1} then

$$\mathbb{E}\left[\nabla f_{i}(w^{t-1})|\mathcal{F}_{t-1}\right] = \frac{1}{n} \sum_{i'=1}^{n} \nabla f_{i'}(w^{t-1}) = \nabla f(w^{t-1})$$

SGD uses very noisy unbiased estimations of the full gradient

Polyak-Ruppert averaging

Use SGD iterates w^t but return

$$\bar{w}^t = \frac{1}{t} \sum_{t'=1}^t w^{t'}$$

Theorem

If:

- f is convex
- gradients are bounded: $\|\nabla f_i(w)\|_2 \leqslant b$

we have a convergence rate

$$O\left(rac{1}{\sqrt{t}}
ight)$$
 with $\eta_t = O\left(rac{1}{\sqrt{t}}
ight)$

and if moreover

 \blacktriangleright f is μ -strongly convex

the rate is

$$O\left(rac{1}{\mu t}
ight) \quad ext{ with } \quad \eta_t = O\left(rac{1}{\mu t}
ight)$$

Both achieved by ASGD (average SGD)

Under strong convexity, GD versus SGD is

$$O\left(\frac{n}{\mu}\log\left(\frac{1}{\varepsilon}\right)\right)$$
 versus $O\left(\frac{1}{\mu\varepsilon}\right)$

GD leads to a more accurate solution, but what if n is very large?

Recipe

- SGD is extremely fast in the early iterations (first two passes on the data)
- But it fails to converge accurately to the minimum

- Feature vectors can be very sparse (bag-of-words, etc.)
- Complexity of the iteration can reduced from O(d) to O(s), where s is the sparsity of the features.

Typically $d \approx 10^7$ and $s \approx 10^3$

For minimizing

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle x_i, w \rangle) + \frac{\lambda}{2} \|w\|_2^2$$

an iteration of SGD writes

$$w^{t} = (1 - \eta_{t}\lambda)w^{t-1} - \eta_{t}\ell'(y_{i}, \langle x_{i}, w^{t-1}\rangle)x_{i}$$

If x_i is s-sparse, then computing $\eta_t \ell'(y_i, \langle x_i, w^{t-1} \rangle) x_i$ is O(s), but $(1 - \eta_t \lambda) w^{t-1}$ is O(d)

Put
$$w^t = s_t \beta^t$$
, with $s_t \in [0,1]$ and $s_t = (1 - \eta_t \lambda) s_{t-1}$
$$w^t = (1 - \eta_t \lambda) w^{t-1} - \eta_t \ell'(y_i, \langle x_i, w^{t-1} \rangle) x_i$$

becomes

$$s_t \beta^t = (1 - \eta_t \lambda) s_{t-1} \beta^{t-1} - \eta_t \ell'(y_i, s_{t-1} \langle x_i, \beta^{t-1} \rangle) x_i$$

= $s_t \beta^{t-1} - \eta_t \ell'(y_i, s_{t-1} \langle x_i, \beta^{t-1} \rangle) x_i$

so the iteration is now

$$\beta^t = \beta^{t-1} - \frac{\eta_t}{s_t} \ell'(y_i, s_{t-1} \langle x_i, \beta^{t-1} \rangle) x_i$$

which has complexity O(s).

Recent results improve this:

- Bottou and LeCun (2005)
- Shalev-Shwartz et al (2007, 2009)
- Nesterov et al. (2008, 2009)
- ▶ Bach et al. (2011, 2012, 2014, 2015)
- ► T. Zhang et al. (2014, 2015)

- ▶ Put $X = \nabla f_I(w)$ with I uniformly chosen at random in $\{1, \ldots, n\}$
- ▶ In SGD we use $X = \nabla f_I(w)$ as an approximation of $\mathbb{E}X = \nabla f(w)$

Problem

How to reduce $\mathbb{V}(X)$?

An idea 81 / 95

▶ Reduce it by finding C s.t. $\mathbb{E}C$ is "easy" to compute and such that C is highly correlated with X

Put

$$Z_{\alpha} = \alpha(X - C) + \mathbb{E}C$$

for $\alpha \in [0,1]$. We have

$$\mathbb{E} Z_{\alpha} = \alpha \mathbb{E} X + (1 - \alpha) \mathbb{E} C$$

and

$$\mathbb{V}Z_{\alpha} = \alpha^{2}(\mathbb{V}X + \mathbb{V}C - 2\operatorname{Cov}(X,C))$$

Standard variance reduction: $\alpha = 1$, so that $\mathbb{E}Z_{\alpha} = \mathbb{E}X$ (unbiased)

In the iterations of SGD, replace $\nabla f_{i_t}(w^{t-1})$ by

$$\alpha(\nabla f_{i_t}(\mathbf{w}^{t-1}) - \nabla f_{i_t}(\tilde{\mathbf{w}})) + \nabla f(\tilde{\mathbf{w}})$$

where \tilde{w} is an "old" value of the iterate, namely use

SGD iterate with variance reduction

$$w^{t} \leftarrow w^{t-1} - \eta \left(\alpha \left(\nabla f_{i_{t}}(w^{t-1}) - \nabla f_{i_{t}}(\tilde{w}) \right) + \nabla f(\tilde{w}) \right)$$

Several cases

- $ightharpoonup \alpha = 1/n$: SAG (Bach et al. 2013)
- $\alpha = 1$: SVRG (T. Zhang et al. 2015, 2015)
- ightharpoonup lpha = 1: SAGA (Bach et al., 2014)

Algo: Stochastic Average Gradient

Input: starting point w^0 , learning rate $\eta > 0$

For $t = 1, 2, \ldots$ until *convergence* do

- ▶ Pick uniformly at random i_t in $\{1, ..., n\}$
- ► Put

$$g_t(i) = egin{cases}
abla f_i(w^{t-1}) & \text{if } i = i_t \\ g_{t-1}(i) & \text{otherwise} \end{cases}$$

and compute

$$w^{t} = w^{t-1} - \frac{\eta}{n} \sum_{i=1}^{n} g_{t}(i)$$

Return last w^t

Algo: Stochastic Variance Reduced Gradient (SVRG)

Input: starting point w^0 , learning rate $\eta > 0$

Put $\tilde{w}_1 \leftarrow w^0$

For $k = 1, 2, \dots$ until convergence do

- ▶ Put $w_k^0 \leftarrow \tilde{w}_k$
- ightharpoonup Compute $\nabla f(\tilde{w}_k)$
- ▶ For t = 0, ..., m 1
 - Pick uniformly at random i in $\{1, \ldots, n\}$
 - Apply the step

$$w_k^{t+1} \leftarrow w_k^t - \eta \left(\mathbf{1} \cdot \left(\nabla f_i(w_k^t) - \nabla f_i(\tilde{w}_k) \right) + \nabla f(\tilde{w}_k) \right)$$

► Set

$$\tilde{w}_k \leftarrow \frac{1}{m} \sum_{i=1}^m w_k^t$$

Return last w_{ν}^{t}

SAGA 85 / 95

Algo : SAGA

Input: starting point w^0 , learning rate $\eta > 0$ Compute $g_0(i) \leftarrow \nabla f_i(w^0)$ for all i = 1, ..., n

For $t = 1, 2, \dots$ until convergence do

- ▶ Pick uniformly at random i_t in $\{1, ..., n\}$
- ightharpoonup Compute $\nabla f_{i_t}(w^{t-1})$
- Apply

$$w^t \leftarrow w^{t-1} - \eta \left(rac{1}{n} \cdot \left(
abla f_{i_t}(w^{t-1}) - g_{t-1}(i_t)
ight) + \underbrace{rac{1}{n} \sum_{i=1}^n g_{t-1}(i)}_{\mathbb{E}}
ight)$$

▶ Store $g_t(i_t) \leftarrow \nabla f_{i_t}(w^{t-1})$

Return last w^t

Prox-version 86 / 95

Stochastic Variance Reduced Gradient

Phase size typically chosen as m = n or m = 2nIf F = f + g with g prox-capable, use

$$w_k^{t+1} \leftarrow \mathsf{prox}_{\eta g} \big(w_k^t - \eta \big(\nabla f_i \big(w_k^t \big) - \nabla f_i \big(\tilde{w}_k \big) + \nabla f \big(\tilde{w}_k \big) \big) \big)$$

SAGA

If F = f + g with g prox-capable, use

$$w^t \leftarrow \mathsf{prox}_{\eta g} \left(w^{t-1} - \eta \left(\nabla f_{i_t}(w^{t-1}) - g_{t-1}(i_t) + \frac{1}{n} \sum_{i=1}^n g_{t-1}(i) \right) \right)$$

Important remark

- ▶ In these algorithms, the step-size η is kept constant
- ► Leads to linearly convergent algorithms, with a numerical complexity comparable to SGD!

Algorithms comparison

- ▶ Each f_i is L_i -smooth. Put $L_{max} = \max_{i=1,...n} L_i$
- f is μ -strongly convex

Theorem (For SAG)

Take $\eta = 1/(16L_{\sf max})$ constant

$$\mathbb{E}f(w^t) - f(w^*) \leqslant O\left(\frac{1}{n\mu} + \frac{L_{\mathsf{max}}}{n}\right) \exp\left(-t\left(\frac{1}{8n} \wedge \frac{\mu}{16L_{\mathsf{max}}}\right)\right)$$

The rate is typically faster than gradient descent!

- ▶ Each f_i is L_i -smooth. Put $L_{max} = \max_{i=1,...n} L_i$
- f is μ -strongly convex

Theorem (For SVRG)

Take η and m such that

$$\rho = \frac{1}{1 - 2\eta L_{\mathsf{max}}} \left(\frac{1}{\mathsf{m}\eta\mu} + 2L_{\mathsf{max}}\eta \right) < 1$$

Then

$$\mathbb{E}f(w^k) - f(w^*) \leqslant \frac{\rho^k}{\rho^k} (f(w^0) - f(w^*))$$

In practice m=n and $\eta=1/L_{\sf max}$ works

- ► Complexity O(d) instead of O(nd) at each iteration
- ▶ Choice of a fixed step-size $\eta > 0$ possible
- Much faster than full gradient descent!

Numerical complexities (w/unit in O(d))

- $ightharpoonup O(nL/\mu\log(1/\varepsilon))$ for GD
- $ightharpoonup O(1/(\mu\varepsilon))$ for SGD
- $O((n + L_{\text{max}}/\mu) \log(1/\varepsilon))$ for SGD with variance reduction (SAG, SAGA, SVRG, etc.)

where L = Lipschitz constant of $\frac{1}{n} \sum_{i=1}^{n} \nabla f_i$. Note that typically

$$n \frac{L}{\mu} \log(1/arepsilon) \gg \left(n + \frac{L_{\sf max}}{\mu}\right) \log(1/arepsilon)$$

Memory

- SAG and SAGA requires extra memory: need to save all the previous gradients!
- Actually no...

$$\nabla f_i(w) = \ell'(y_i, \langle x_i, w \rangle) x_i,$$

so only need to save $\ell'(y_i, \langle x_i, w \rangle)$

- Memory footprint is O(n) instead of O(nd). If $n = 10^7$, this is 76 Mo
- Can use same lazy updating tricks as for SGD from before

- V-fold cross-validation
- ▶ Take V=5 or V=10. Pick a random partition I_1,\ldots,I_V of $\{1,\ldots,n\}$, where $|I_v|\approx \frac{n}{V}$ for any $v=1,\ldots,V$

Question

How to do it with SGD type algorithms?

V-fold cross-validation ?

Simple solution

When picking a line i at random in the optimization loop, its fold number is given by i%V

- ▶ Pick *i* uniformly at random in $\{1, ..., n\}$
- ightharpoonup Put v = i%V
- For v' = 1, ..., V with $v' \neq v$: update $\hat{w}^{(v')}$ using line i
- ▶ Update the testing error of $\hat{w}^{(v)}$ using line i

We want to minimize a sequence of objectives

$$f(w) + \lambda g(w)$$

for $\lambda = \lambda_1, \dots, \lambda_M$, and select the best using V-fold cross-validation

Idea

Use the fact that solutions $\hat{w}^{\lambda_{j-1}}$ and \hat{w}^{λ_j} are close when λ_{j-1} and λ_j are

Warm-starting

Algo: warm-starting

Put $w^0 = 0$ (I don't know where to start) For $m = M, \dots, 1$

- Put $\lambda = \lambda_m$
- Solve the problems starting at x_0 for this value of λ (on each fold)
- ▶ Keep the solutions \hat{w} (test it, save it...)
- ▶ Put $w^0 \leftarrow \hat{w}$

This allows to solve much more rapidly the sequence of problems