Automatic Control Systems

Lecture-5
Block Diagram Representation of Control Systems

Introduction

- A Block Diagram is a shorthand pictorial representation of the cause-and-effect relationship of a system.
- The interior of the rectangle representing the block usually contains a description of or the name of the element, gain, or the symbol for the mathematical operation to be performed on the input to yield the output.
- The arrows represent the direction of information or signal flow.

Introduction

- The operations of addition and subtraction have a special representation.
- The block becomes a small circle, called a summing point, with the appropriate plus or minus sign associated with the arrows entering the circle.
- The output is the algebraic sum of the inputs.
- Any number of inputs may enter a summing point.
- Some books put a cross in the circle.

Introduction

- In order to have the same signal or variable be an input to more than one block or summing point, a takeoff (or pickoff) point is used.
- This permits the signal to proceed unaltered along several different paths to several destinations.

• Consider the following equations in which x_1 , x_2 , x_3 , are variables, and a_1 , a_2 are general coefficients or mathematical operators.

$$x_3 = a_1 x_1 + a_2 x_2 - 5$$

$$x_3 = a_1 x_1 + a_2 x_2 - 5$$

Draw the Block Diagrams of the following equations.

(1)
$$x_2 = a_1 \frac{dx_1}{dt} + \frac{1}{b} \int x_1 dt$$

(2)
$$x_3 = a_1 \frac{d^2 x_2}{dt^2} + 3 \frac{dx_1}{dt} - bx_1$$

Canonical Form of A Feedback Control System

 $G \equiv \text{direct transfer function} \equiv \text{forward transfer function}$

 $H \equiv$ feedback transfer function

 $GH \equiv \text{loop transfer function} \equiv \text{open-loop transfer function}$

$$C/R \equiv$$
 closed-loop transfer function \equiv control ratio $\frac{C}{R} = \frac{G}{1 \pm GH}$
 $E/R \equiv$ actuating signal ratio \equiv error ratio $\frac{E}{R} = \frac{1}{1 \pm GH}$
 $B/R \equiv$ primary feedback ratio $\frac{B}{R} = \frac{GH}{1 \pm GH}$

Characteristic Equation

The control ratio is the closed loop transfer function of the system.

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 \pm G(s)H(s)}$$

- The denominator of closed loop transfer function determines the characteristic equation of the system.
- Which is usually determined as:

$$1 \pm G(s)H(s) = 0$$

G(s)

(1+K)s+1

H(s)

1. Open loop transfer function
$$\frac{B(s)}{E(s)} = G(s)H(s)$$

2. Feed Forward Transfer function
$$\frac{C(s)}{E(s)} = G(s)$$

3. control ratio
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

4. feedback ratio
$$\frac{B(s)}{R(s)} = \frac{G(s)H(s)}{1 + G(s)H(s)}$$

5. error ratio
$$\frac{E(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$$

6. closed loop transfer function
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

7. characteristic equation
$$1 + G(s)H(s) = 0$$

8. Open loop poles and zeros if **9.** closed loop poles and zeros if K=10.

Reduction techniques

1. Combining blocks in cascade

2. Combining blocks in parallel

3. Eliminating a feedback loop

Example-4: Reduce the Block Diagram to Canonical Form.

Step 1: Combine all cascade blocks

Step 2: Combine all parallel blocks

Example-4: Continue.

Step 3: Eliminate all minor feedback loops

- For the system represented by the following block diagram determine:
 - 1. Open loop transfer function
 - Feed Forward Transfer function
 - 3. control ratio
 - 4. feedback ratio
 - 5. error ratio
 - 6. closed loop transfer function
 - 7. characteristic equation
 - 8. closed loop poles and zeros if K=10.

First we will reduce the given block diagram to canonical form

Example-5 (see example-3)

G(s)

(1+K)s+1

H(s)

- 1. Open loop transfer function $\frac{B(s)}{E(s)} = G(s)H(s)$
- 2. Feed Forward Transfer function $\frac{C(s)}{E(s)} = G(s)$
- 3. control ratio $\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$
- 4. feedback ratio $\frac{B(s)}{R(s)} = \frac{G(s)H(s)}{1 + G(s)H(s)}$
- 5. error ratio $\frac{E(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$
- 6. closed loop transfer function $\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$
- 7. characteristic equation 1 + G(s)H(s) = 0
- 8. closed loop poles and zeros if K=10.

- For the system represented by the following block diagram determine:
 - 1. Open loop transfer function
 - 2. Feed Forward Transfer function
 - 3. control ratio
 - 4. feedback ratio
 - 5. error ratio
 - 6. closed loop transfer function
 - 7. characteristic equation
 - 8. closed loop poles and zeros if K=100.

Reduction techniques

4. Moving a summing point behind a block

5. Moving a summing point ahead a block

6. Moving a pickoff point behind a block

7. Moving a pickoff point ahead of a block

8. Swap with two neighboring summing points

Reduce the following block diagram to canonical form.

Find the transfer function of the following block diagram

Solution:

- 1. Moving pickoff point A ahead of block $oxedown_2$
- 2. Eliminate loop I & simplify

$$\begin{array}{c}
 & B \\
\hline
 & G_4 + G_2 G_3
\end{array}$$

4. Eliminate loop III

$$\frac{Y(s)}{R(s)} = \frac{G_1(G_4 + G_2G_3)}{1 + G_1G_2H_1 + H_2(G_4 + G_2G_3) + G_1(G_4 + G_2G_3)}$$

Find the transfer function of the following block diagrams

Solution:

2. Eliminate loop I and Simplify

3. Eliminate loop II & IIII

$$\frac{Y(s)}{R(s)} = \frac{G_1 G_2 G_3 G_4}{1 + G_2 G_3 H_3 + G_3 G_4 H_4 + G_1 G_2 G_3 H_2 - G_1 G_2 G_3 G_4 H_1}$$

Example-10: Reduce the Block Diagram.

First, to eliminate the loop $G_3G_4H_1$, we move H_2 behind block G_4

Example-10: Continue.

Eliminating the loop $G_3G_4H_1$ we obtain

Then, eliminating the inner loop containing H_2/G_4 , we obtain

Finally, by reducing the loop containing H_3 , we obtain

Example-11: Simplify the block diagram then obtain the close-loop transfer function C(S)/R(S). (from Ogata: Page-47)

First move the branch point between G_3 and G_4 to the right-hand side of the loop containing G_3 , G_4 , and H_2 . Then move the summing point between G_1 and G_2 to the left-hand side of the first summing point.

Example-11: Continue.

By simplifying each loop, the block diagram can be modified as

Further simplification results in

$$\frac{G_1 G_2 G_3 G_4}{1 + G_1 G_2 H_1 + G_3 G_4 H_2 - G_2 G_3 H_3 + G_1 G_2 G_3 G_4 H_1 H_2}$$
 $C(s)$

the closed-loop transfer function C(s)/R(s) is obtained as

$$\frac{C(s)}{R(s)} = \frac{G_1 G_2 G_3 G_4}{1 + G_1 G_2 H_1 + G_3 G_4 H_2 - G_2 G_3 H_3 + G_1 G_2 G_3 G_4 H_1 H_2}$$

Superposition of Multiple Inputs

- Step 1: Set all inputs except one equal to zero.
- Step 2: Transform the block diagram to canonical form, using the transformations of Section 7.5.
- Step 3: Calculate the response due to the chosen input acting alone.
- Step 4: Repeat Steps 1 to 3 for each of the remaining inputs.
- Step 5: Algebraically add all of the responses (outputs) determined in Steps 1 to 4. This sum is the total output of the system with all inputs acting simultaneously.

Example-12: Multiple Input System. Determine the output C due to inputs R and U using the Superposition Method.

Step 1: Put $U \equiv 0$.

Step 2: The system reduces to

Step 3: the output C_R due to input R is $C_R = [G_1G_2/(1 + G_1G_2)]R$.

Example-12: Continue.

Step 4a: Put R = 0.

Step 4b: Put -1 into a block, representing the negative feedback effect:

Rearrange the block diagram:

Let the -1 block be absorbed into the summing point:

Step 4c: the output C_U due to input U is $C_U = [G_2/(1 + G_1G_2)]U$.

Example-12: Continue.

Step 5: The total output is $C = C_R + C_U$

$$= \left[\frac{G_1 G_2}{1 + G_1 G_2} \right] R + \left[\frac{G_2}{1 + G_1 G_2} \right] U$$

$$= \left[\frac{G_2}{1 + G_1 G_2}\right] [G_1 R + U]$$

Example-13: Multiple-Input System. Determine the output C due to inputs R, U1 and U2 using the Superposition Method.

 $C_R = [G_1G_2/(1 - G_1G_2H_1H_2)]R$

where C_R is the output due to R acting alone.

Example-13: Continue.

Now let $R = U_2 = 0$.

Rearranging the blocks, we get

$$C_1 = [G_2/(1 - G_1G_2H_1H_2)]U_1$$

where C_1 is the response due to U_1 acting alone.

Example-13: Continue.

Finally, let $R = U_1 = 0$.

Rearranging the blocks, we get

$$C_2 = [G_1G_2H_1/(1 - G_1G_2H_1H_2)]U_2$$

where C_2 is the response due to U_2 acting alone.

By superposition, the total output is

$$C = C_R + C_1 + C_2 = \frac{G_1 G_2 R + G_2 U_1 + G_1 G_2 H_1 U_2}{1 - G_1 G_2 H_1 H_2}$$

Example-14: Multi-Input Multi-Output System. Determine C1 and C2 due to R1 and R2.

First ignoring the output C_2 .

Example-14: Continue.

Letting $R_2 = 0$ and combining the summing points,

Hence C_{11} , the output at C_1 due to R_1 alone, is $C_{11} = G_1 R_1/(1 - G_1 G_2 G_3 G_4)$.

For
$$R_1 = 0$$
,
$$R_2 + G_1G_3G_4$$

$$G_2$$

Hence $C_{12} = -G_1G_3G_4R_2/(1 - G_1G_2G_3G_4)$ is the output at C_1 due to R_2 alone.

Thus
$$C_1 = C_{11} + C_{12} = (G_1 R_1 - G_1 G_3 G_4 R_2)/(1 - G_1 G_2 G_3 G_4)$$

Example-14: Continue.

Now we reduce the original block diagram, ignoring output C_1 .

Finally,
$$C_2 = C_{22} + C_{21} = (G_4 R_2 - G_1 G_2 G_4 R_1)/(1 - G_1 G_2 G_3 G_4)$$

$$(L_a s + R_a)I_a(s) + K_b \omega(s) = V_a(s)$$

$$(Js+c)\omega(s) = K_m I_a(s)$$

$$(L_a s + R_a)I_a(s) + K_b \omega(s) = V_a(s)$$

$$(Js + c)\omega(s) = K_{ma}I_a(s)$$

The DC-Motor control system

Fig. 1.9

Fundamental structure of control systems

1) Open loop control systems

Features: Only there is a forward action from the input to the output.

2) Closed loop (feedback) control systems

Features:

not only there is a forward action, also a backward action between the output and the input (measuring the output and comparing it with the input).

1) measuring the output (controlled variable). 2) Feedback.

Chapter 2 Mathematical models of systems

2.1 Introduction

2.1.1 Why?

- 1) Easy to discuss the full possible types of the control systems—in terms of the system's "mathematical characteristics".
- 2) The basis analyzing or designing the control systems.

For example, we design a temperature Control system:

The key — designing the controller \rightarrow how produce u_k .