Math 445 Honework #2 Solutions

5. n=pq, p < q both pr:ne, then q-1+n-1: Signore $n-1=(q-1)\times$, then $pq-1=q\times-x$, so q(p-x)=1-xSignore $n-1=(q-1)\times-1=q$, so $x-1\geq q$ (we can't have x<1, because $x\geq 0$). So $x\geq q+1$, so $x\geq q+1$, so $x\geq q-1 \geq q^2$, $n-1=(q-1)\times\geq (q-1)(q+1)=q^2-1$. So $n=pq\geq q^2$, implying $p\geq q$, a contradiction! So $q-1\neq n-1$.

6. Find another Carendrael number.

 $110S = S \cdot 221 = 5 \cdot 13 \cdot 17$ is a Carmichael number, since S-1 = 4 | 110S-1 = 1104 $110t = 4 \cdot 276$; also, $1104 = 12 \cdot 92$ to 13-1 | 110S-1, and $1104 = 16 \cdot 69$ to 17-1 | 110S-1. Therefore, if (a, 110S) = 1, then (a, S) = (a, 13) = (a, 17) = 1 to $a^{1} = 1$ to

TFY1: Other (cronichael number one 1729,2465, 2821, 6601, 8911, 10585, 15841, 29341,41041, ... (sarce: mathus old. wolfram.com)

7. Find all abocto with a Eb, bac, and cra

Gitter two (or more) of a,b, c are equal, or they are all distinct; after changing the names (ar hypothesis is symmetric in a,b,c) we may assume either a=b or acbec.

But if a=b, then (=a (mod b) really says (=a (mod a), le. (=o (mod a)), re. a|c, so a,b,c really one a,a, at fir same t. But a =a, a = at, and alx =a are all true. So (a,b,c) = (a,a,ak) are subtions on the other hand, if ox acbec, then ox bax (-a < c and then a=b (mod c), re. c|b-a is impossible; no number strictly between 0 and c is a multiple of c. So the only solitions (up to changing names) are a,a,ak; is. for any solition, two of the terms are equal, and the third is a multiple of that common value. y

8. If $x^2 \equiv 1 \pmod{n}$ and $x \not\equiv \pm 1 \pmod{n}$ then $1 < (x-1,n) < n \pmod{1} < (x+1,n) < n$.

we have $n[x^2-1]=(x-1)(x+1)$ and n[x-1] (so (x-1,n) < n) and n[x+1] (so (x+1,n) < n). If (x-1,n)=1, then since n[(x-1)(x+1)) we have n[x+1], a contradiction. So 1 < (x-1,n) < n. Similarly, if (x+1,n)=1, then since n[(x+1)(x-1)] we have n[x-1], a contradiction. So 1 < (x+1,n) < n.

9. $n=3277=29\times113$ is a strong pseudoprime to the base 2. $n-1=3276=2\times1638=2\times819$. So we need to show that either $2^{819}\equiv 1\pmod{3277}$ or $2^{819}\equiv -1\pmod{3277}$ or $2^{1638}\equiv -1\pmod{3277}$. So we compute

 $2^{1} \equiv 2 \pmod{3277}$ $2^{2} \equiv 4$ $2^{4} \equiv 4^{2} \equiv 16$ $2^{8} \equiv 16^{2} \equiv 756$ $2^{16} \equiv (756)^{2} = 65536 \equiv -4 \pmod{3777}$ $2^{32} \equiv (-4)^{2} \equiv 16$ $2^{64} \equiv 16^{2} \equiv 756$ $2^{128} \equiv (756)^{2} \equiv -4$ $2^{256} \equiv (-4)^{2} \equiv 16$ $2^{512} \equiv (16)^{2} \equiv 256$

Then we check $2^{163F} = (2^{579})^2 = (178)^2 = 16384 = 3277 \times 5 - 1 = -1.$ $3777 \times 5 - 1 = -1.$

80 2¹⁶³⁸ = -1, 80 3277 is a strong pseudoprine to the base 2. 4