1. Let A be a matrix over \mathbb{R} with 3 rows and m columns and let $x \in \mathbb{R}^m$, so that Ax is in \mathbb{R}^3 . Prove or disprove the following statements:

(a) If
$$Ax = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 has a solution, then $Ax = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ has a solution.

(b) If
$$Ax = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 has a *unique* solution, then $Ax = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ has a *unique* solution.

(c) If
$$Ax = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 has no solution, then $Ax = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ has no solution.

(d) If
$$Ax = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $Bx = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ both have unique solutions,

then
$$(A + B)x = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
 has a unique solution.

2. For which of the items in Question 1 the answer will change if we require A to be a 3×3 matrix? Prove.

3. Let Ax = b be a system of linear equations in 4 variables over \mathbb{R} . Assume (4, -2, -2, 4) and (-2, 4, 4, -2) are solutions and (2, 2, 2, 2) is not a solution.

- (a) Prove $b \neq \vec{0}$.
- (b) Prove (0, 2, 2, 0) is a solution.
- (c) Prove (0,4,4,0) is not a solution.

4. Find a system of linear equations Ax = b in variables x_1, \ldots, x_k (over an arbitrary field), such that the following are equivalent:

- i. $(\alpha_1, \ldots, \alpha_k)$ is a solution to Ax = b.
- ii. For every system of linear equations (in n variables) A'x = b' over the same field of definition as A, if v_1, \ldots, v_k are all solutions to A'x = b', then $\alpha_1 v_1 + \cdots + \alpha_k v_k$ is also a solution to A'x = b'.
- iii. There is some system of linear equations (in n variables) A'x = b' over the same field of definition as A, such that $b' \neq 0$ and v_1, \ldots, v_k such that $v_1, \ldots, v_k, \alpha_1 v_1 + \cdots + \alpha_k v_k$ are all solutions to A'x = b'.
- 5. Prove that for any $A \in M_{m \times n}(\mathbb{R})$, the following are equivalent:

- i. There is some $B \in M_{n \times m}(\mathbb{R})$ such that $BA = I_n$
- ii. The system of linear equations Ax = 0 has a unique solution.
- iii. A is row-equivalent to $\binom{I_n}{O}$, i.e. it is row-equivalent to the matrix whose rows are the rows of I_n for the first n rows, followed by m-n rows of zeros.

Note that the question does not assume $m \geq n$.

6. Prove that for any $A \in M_{m \times n}(\mathbb{R})$, if there are $B_1, B_2 \in M_{n \times m}$ such that $B_1 A = I_n$ and $AB_2 = I_m$ then $B_1 = B_2$.