

Embedded Software: Model Based Design (MBD)

Franco Fummi

Contents

- Introduction
 - Motivations for Model Based Design
 - Existing MBD approaches
- UML
 - Main characteristics
 - UML for Embedded software
- Case study
 - Coffee vending machine
- References

INTRODUCTION

Embedded SW: what?

- It is a specific-purpose software
 - tightly integrated with the underlying execution platform
 - that constantly reacts to events, and
 - mixes control and data flows
- Its main role is not transformation of data, but interaction with the physical world
 - It executes on machine that are not only computers ...
 - ... they are cars, planes, phones, medical equipments, toys, manufacturing systems, ...

ESW: characteristics

Timeliness

- Physical processes evolve over time
- A "late computation" is not just in delay, it is incorrect!

Concurrency

- Signals from environment can arrive simultaneously
- Disjoint but parallel activities may be monitored

Liveness

- In the Turing view of computation, all nonterminating programs are defective programs
- In embedded computing, terminating programs are defective!

Reactivity

 ESW are real-time constrained and safety critical systems that react continuously to their environment

Heterogeneity

ESW mixes computational styles and implementation technologies

ES market: trend

EISD

- Expected to increase from \$92.0 billion in 2008 to \$112.5 billion by the end of 2013:
 - a compound annual growth rate (CAGR) of 4.1%
 - embedded hardware from \$89.8 billion in 2008 to \$109.6 billion in 2013
 - embedded software from \$2.2 billion in 2008 to \$2.9 billion in 2013, for a CAGR of 5.6%.

SUMMARY FIGURE EMBEDDED TECHNOLOGY MARKET, 2007-2013

Source: http://www.bccresearch.com/report/IFT016C.html

ESW: role

- Previous data highlights that:
 - ESW is the component of an Embedded System that is making and it will even more make the difference
 - ESW has the central role in the value of an ES
- ESW must thus be:
 - rapidly developed
 - rapidly modifiable and extendable
 - compliant to customer specifications
 - easily portable among ES platforms

8

ESW: design constraints

- ESW design implies conflicting design constraints:
 - efficient, effective, low computational cost, low memory...
 - thigh integration with the ES platform
 - reusable, rapidly developed, maintainable, portable...
 - abstract and independent from the ES platform
- ESW design solution solving the conflict:
 - design based on abstract models
 - automatic code generations from the abstract models
 - in few words: Model Based Design (MBD)

MBD: general flow

MBD: solutions on the market (I)

Matlab

- application field:
 - Algorithms development
 - Rapid prototyping of HW/SW designs
 - Performance analysis
 - Optimization analysis
- disadvantages:
 - Supports only functional specification

11

MBD: solutions on the market (II)

Modelica

- application field:
 - Technical systems design, e.g., mechanical, electrical, thermal, hydraulic, pneumatic, fluid, control systems
 - Dynamic behavior specification described by differential, algebraic, and discrete equations
 - Performance analysis
- disadvantages:
 - Supports mainly functional/behavioral specification

12

MBD: solutions on the market (III)

Simulink

- application field:
 - Dynamical and control systems design
 - System behaviors described by using a library of graphical blocks or differential, algebraic, and discrete equations
 - Performance analysis
 - Optimization analysis
- disadvantages:
 - Supports mainly functional/behavioral specification
 - Partially supports the structural partitioning of the system

MBD: solutions on the market (IV)

- UML-based flows
 - Structural specification
 - Functional specification
 - Use case specification
- Why UML is the most suited MBD for ESW design
 - Graphical specification are easy to be interpreted
 - Specification at different abstraction levels
 - Requirements level (use cases)
 - System level (structural view)
 - Integration level (subsystems interaction view)
 - Unit level (subsystem functional view)

Unified Modeling Language (UML)

UML Diagram – What is UML?

 The Unified Modeling Language (UML) is a standard language for

Different Views

Users Designers Analyzers

Use Case Diagram

Actor:

An actor is a person, organization, or external system that plays a role in one or more interactions with your system

Customer

Use case:

A use case describes a sequence of actions that provide something of measurable value to an

Get Confirmation #

EISD

System bound ary

- Overview the usage requirements
- Presentations project
 stakelystern boundary:
- "The meat" of the actual requirements the scope of your system. Anything within the box represents functionality that is in scope and anything outside the box is not

Class Diagram

Relationships between Class Diagrams

- Association -- relationship between instances of two classes
 - There is an association between two classes if an instance of one class must know about the other in order to perform its work

- Aggregation -- an association in which one class belongs to a collection
 - An aggregation has a diamond end pointing to the part containing the whole

- Generalization -- an inheritance link indicating one class 15 a supultation of the other
 - A generalization has a triangle pointing to the superclass

Sequence Diagram

Activities Diagram

Activity diagrams describe the workflow behaviour of a system

Fork denotes the beginning of parallel activity

Joint denotes the end of parallel processing. All flows going into the join must reach it before processing may continue

Decision (a diamond with one flow entering and several leaving): the flows leaving include conditions although some modelers will not indicate the conditions if it is obvious.

Merge (a diamond with several flows entering and one leaving): the implication is that one or more incoming flows must reach this point until processing continues, based on any guards on the outgoing flow

State Machine Diagram

State diagram shows the object undergoing a

UML for Embedded Software

- Which are the diagrams useful for ESW design?
 - Use case
 - only for a first roundtable with the customer... too abstract
 - Class
 - not very useful since too high-level for ESW data structures
 - Sequence
 - they capture timing relationships potentially interesting for ESW even if it is hard to automatically coding
 - Activities
 - too far away from actual code
 - State machine
 - perfect trade-off among abstraction and closeness to actual code
 - they allow to make an abstract representation of ESW, but maintaining the contact to the generated code

Coffee vending machine

CASE STUDY

25

Specifications

- The machine takes 5, 10, 25-cent coins
- The coffee cost is 35 cents

Requirements

- The maximum amount of money inserted is 55 cents
- When the amount of money is sufficient the machine starts preparing the coffee
- If the amount of money is sufficient for preparing a coffee, the coin slot is closed
- If the serving of a coffee is done, then the coin slot has to be opened for accepting new money
- The conclusion of the coffee preparation is combined with a buzzer notification
- The machine is cleaned before the coffee brewing starts

27

Module design

From specifications to model

References

- http://www.omg.org/news/whitepapers/#UML
- http://www.sparxsystems.com/resources/uml2_tutorial/