

POLISHING PAD AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE

Publication number: JP2004228101

Publication date: 2004-08-12

Inventor: NAKAMORI MASAHICO; SHIMOMURA TETSUO;
YAMADA TAKATOSHI; OGAWA KAZUYUKI; KAZUNO
ATSUSHI

Applicant: TOYO BOSEKI; TOYO TIRE & RUBBER CO

Classification:

- **international:** B24B37/00; H01L21/304; B24B37/00; H01L21/02;
(IPC1-7): H01L21/304; B24B37/00

- **european:**

Application number: JP20030000331 20030106

Priority number(s): JP20030000331 20030106; JP20020343199 20021127

[Report a data error here](#)

Abstract of JP2004228101

PROBLEM TO BE SOLVED: To provide a polishing pad which highly precisely detects an optical endpoint in a state where polishing is performed, and is superior in a polishing characteristic (surface uniformity), and also to provide a manufacturing method of a semiconductor device using the polishing pad.

Data supplied from the **esp@cenet** database - Worldwide

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特願2004-228101

(P2004-228101A)

(43) 公開日 平成16年8月12日(2004.8.12)

(51) Int.CI.⁷
H01L 21/304
B24B 37/00

F 1
H01L 21/304 622F
H01L 21/304 622S
B24B 37/00 C

テーマコード(参考)
3C058

審査請求 有 請求項の数 15 O.L (全 20 頁)

(21) 出願番号 特願2003-331 (P2003-331)
(22) 出願日 平成15年1月6日 (2003.1.6)
(31) 優先権主張番号 特願2002-343199 (P2002-343199)
(32) 優先日 平成14年11月27日 (2002.11.27)
(33) 優先権主張国 日本国 (JP)

(71) 出願人 000003160
東洋紡績株式会社
大阪府大阪市北区堂島浜2丁目2番8号
(71) 出願人 000003148
東洋ゴム工業株式会社
大阪府大阪市西区江戸堀1丁目17番18号
(74) 代理人 100092266
弁理士 鈴木 崇生
(74) 代理人 100104422
弁理士 梶崎 弘一
(74) 代理人 100105717
弁理士 尾崎 雄三
(74) 代理人 100104101
弁理士 谷口 俊彦

最終頁に続く

(54) 【発明の名称】 研磨パッド及び半導体デバイスの製造方法

(57) 【要約】 (修正有)

【課題】 研磨を行っている状態で高精度の光学終点検知を可能とし、これにより研磨特性（表面均一性など）に優れる研磨パッド、及び該研磨パッドを用いた半導体デバイスの製造方法を提供すること。

【解決手段】 ケミカルメカニカルポリッシングに用いられ、研磨領域および光透過領域8を有する研磨パッド1であって、光透過領域8の波長400～700nmの全領域における光透過率が50%以上であることを特徴とする研磨パッド。

【選択図】 図6

【特許請求の範囲】**【請求項 1】**

ケミカルメカニカルポリッシングに用いられ、研磨領域および光透過領域を有する研磨パッドであって、光透過領域の波長 400～700 nm の全領域における光透過率が 50% 以上であることを特徴とする研磨パッド。

【請求項 2】

下記式で表される光透過領域の波長 400～700 nm における光透過率の変化率が 50% 以下であることを特徴とする請求項 1 記載の研磨パッド。

$$\text{変化率 (\%)} = \{ (\text{400} \sim \text{700 nm における最大光透過率} - \text{400} \sim \text{700 nm における最小光透過率}) / \text{400} \sim \text{700 nm における最大光透過率} \} \times 100$$

10

【請求項 3】

光透過領域の波長 400 nm における光透過率が 50% 以上であり、かつ波長 500～700 nm の全領域における光透過率が 90% 以上であることを特徴とする請求項 1 又は 2 記載の研磨パッド。

【請求項 4】

光透過領域の波長 500～700 nm における各光透過率の差が 5% 以内であることを特徴とする請求項 1～3 のいずれかに記載の研磨パッド。

【請求項 5】

光透過領域の形成材料が、無発泡体であることを特徴とする請求項 1～4 のいずれかに記載の研磨パッド。

20

【請求項 6】

光透過領域の研磨側表面に研磨液を保持・更新する凹凸構造を有しないことを特徴とする請求項 1～5 のいずれかに記載の研磨パッド。

【請求項 7】

研磨領域の形成材料が、微細発泡体であることを特徴とする請求項 1～6 のいずれかに記載の研磨パッド。

【請求項 8】

研磨領域の研磨側表面に溝が設けられていることを特徴とする請求項 1～7 のいずれかに記載の研磨パッド。

【請求項 9】

微細発泡体の平均気泡径が、70 μm 以下であることを特徴とする請求項 7 又は 8 記載の研磨パッド。

30

【請求項 10】

微細発泡体の比重が、0.5～1.0 g/cm³ であることを特徴とする請求項 7～9 のいずれかに記載の研磨パッド。

【請求項 11】

微細発泡体の硬度が、アスカーダ硬度で 4.5～6.5 度であることを特徴とする請求項 7～10 のいずれかに記載の研磨パッド。

【請求項 12】

微細発泡体の圧縮率が、0.5～5.0 % であることを特徴とする請求項 7～11 のいずれかに記載の研磨パッド。

40

【請求項 13】

微細発泡体の圧縮回復率が、50～100 % であることを特徴とする請求項 7～12 のいずれかに記載の研磨パッド。

【請求項 14】

微細発泡体の 40°C、1 Hz における貯蔵弾性率が、200 MPa 以上であることを特徴とする請求項 7～13 のいずれかに記載の研磨パッド。

【請求項 15】

請求項 1～14 のいずれかに記載の研磨パッドを用いて半導体ウエハの表面を研磨する工程を含む半導体デバイスの製造方法。

50

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、ウエハ表面の凹凸をケミカルメカニカルポリシング(CMP)で平坦化する際に使用される研磨パッドに関し、詳しくは、研磨状況等を光学的手段により検知するための窓を有する研磨パッド、及び該研磨パッドを用いた半導体デバイスの製造方法、に関する。

【0002】

【従来の技術】

半導体装置を製造する際には、ウエハ表面に導電性膜を形成し、フォトリソグラフィー、エッチング等をすることにより配線層を形成する工程や、配線層の上に層間絶縁膜を形成する工程等が行われ、これらの工程によってウエハ表面に金属等の導電体や絶縁体からなる凹凸が生じる。近年、半導体集積回路の高密度化を目的として配線の微細化や多層配線化が進んでいるが、これに伴い、ウエハ表面の凹凸を平坦化する技術が重要となってきた。

10

【0003】

ウエハ表面の凹凸を平坦化する方法としては、一般的にCMP法が採用されている。CMPは、ウエハの被研磨面を研磨パッドの研磨面に押し付けた状態で、砥粒が分散されたスラリー状の研磨剤(以下、スラリーという)を用いて研磨する技術である。

20

【0004】

CMPで一般的に使用する研磨装置は、例えば、図1に示すように、研磨パッド1を支持する研磨定盤2と、被研磨対象物(ウエハ)4を支持する支持台(ポリシングヘッド)5とウエハの均一加圧を行うためのバックキング材と、研磨剤の供給機構を備えている。研磨パッド1は、例えば、両面テープで貼り付けることにより、研磨定盤2に装着される。研磨定盤2と支持台5とは、それぞれに支持された研磨パッド1と被研磨対象物4が対向するように配置され、それぞれに回転軸6、7を備えている。また、支持台5には、被研磨対象物4を研磨パッド1に押し付けるための加圧機構が設けてある。

20

【0005】

このようなCMPを行う上で、ウエハ表面の平坦度の判定の問題がある。すなわち、希望の表面特性や平面状態に到達した時点を検知する必要がある。従来、酸化膜の膜厚や研磨速度等に関しては、テストウエハを定期的に処理し、結果を確認してから製品となるウエハを研磨処理することが行われてきた。

30

【0006】

しかし、この方法では、テストウエハを処理する時間とコストが無駄になり、また、あらかじめ加工が全く施されていないテストウエハと製品ウエハでは、CMP特有のローディング効果により、研磨結果が異なり、製品ウエハを実際に加工してみないと、加工結果の正確な予想が困難である。

40

【0007】

そのため、最近では上記の問題点を解消するために、CMPプロセス時に、その場で、希望の表面特性や厚さが得られた時点を検出できる方法が望まれている。このような検知について、様々な方法が用いられている。現在、提案されている検知手段としては、

(1) ウエハとパッド間の摩擦係数をウエハ保持ヘッドや定盤の回転トルクの変化として検出するトルク検出法(特許文献1)

(2) ウエハ上に残る絶縁膜の厚さを検出する静電容量法(特許文献2)

(3) 回転定盤内にレーザー光による膜厚モニタ機構を組み込んだ光学的方法(特許文献3、特許文献4)

(4) ヘッドあるいはスピンドルに取り付けた振動や加速センサーから得る周波数スペクトルを解析する振動解析方法

(5) ヘッド内に内蔵した差動トランジスタ応用検出法

(6) ウエハと研磨パッドとの摩擦熱やスラリーと被研磨対象物との反応熱を赤外線放射

50

温度計で計測する方法（特許文献 5）

（7）超音波の伝播時間を測定することにより被研磨対象物の厚みを測定する方法（特許文献 6、特許文献 7）

（8）ウエハ表面の金属膜のシート抵抗を計測する方法（特許文献 8）

などが挙げられる。現在、（1）の方法が多く用いられているが、測定精度や非接触測定における空間分解能の点から（3）の方法が主流となりつつある。

【0008】

（3）の方法である光学的検知手段とは、具体的には光ビームを窓（光透過領域）を通して研磨パッド越しにウエハに照射して、その反射によって発生する干渉信号をモニタすることによって研磨の終点を検知する方法である。

10

【0009】

現在、光ビームとしては、600 nm付近の波長光を持つHe—Ne レーザー光や380～800 nmに波長光を持つハロゲンランプを使用した白色光が一般的に用いられている。

【0010】

このような方法では、ウエハの表面層の厚さの変化をモニターして、表面凹凸の近似的な深さを知ることによって終点が決定される。このような厚さの変化が凹凸の深さに等しくなった時点で、CMPプロセスを終了させる。また、このような光学的手段による研磨の終点検知法およびその方法に用いられる研磨パッドについては、様々なものが提案されてきた。

20

【0011】

固体で均質な190 nmから3500 nmの波長光を透過する透明なポリマーシートを少なくとも一部分に有する研磨パッドが開示されている（特許文献 9）。また、段付の透明プラグが挿入された研磨パッドが開示されている（特許文献 10）。さらに、ポリシング面と同一面である透明プラグを有する研磨パッドが開示されている（特許文献 11）。いずれも終点検知用の窓として用いることが開示されている。

【0012】

【特許文献 1】

米国特許第5069002号明細書

【特許文献 2】

米国特許第5081421号明細書

30

【特許文献 3】

特開平9-7985号公報

【特許文献 4】

特開平9-36072号公報

【特許文献 5】

米国特許第5196353号明細書

【特許文献 6】

特開昭55-106769号公報

40

【特許文献 7】

特開平7-135190号公報

【特許文献 8】

米国特許第5559428号明細書

【特許文献 9】

特表平11-512977号公報

【特許文献 10】

特開平9-7985号公報

【特許文献 11】

特開平10-83977号公報

【発明が解決しようとする課題】

50

前記のように、光ビームとしてはHe—Neレーザー光やハロゲンランプを使用した白色光などが用いられているが、白色光を用いた場合にはさまざまな波長光をウエハに上に当てることができ、多くのウエハ表面のプロファイルが得られるという利点がある。この白色光を光ビームとして用いる場合には、広い波長範囲で検出精度を高める必要がある。また今後、半導体製造における高集積化・超小型化において、集積回路の配線幅はますます小さくなっていくことが予想され、その際には高精度の光学的終点検知が必要となるが、従来の終点検知用の窓は広い波長範囲で十分満足できるほどの精度を有していない。

【0013】

本発明は、上記問題を解決するためになされたものであり、研磨を行っている状態で高精度の光学終点検知を可能とし、これにより研磨特性（表面均一性など）に優れる研磨パッド、及び該研磨パッドを用いた半導体デバイスの製造方法を提供することを目的とする。

10

【0014】

【課題を解決するための手段】

本発明者は、上述のような現状に鑑み、鋭意研究を重ねた結果、研磨パッド用の光透過領域として、ある特定の光透過率を有する光透過領域を用いることにより、上記課題を解決できることを見出した。

【0015】

即ち、本発明は、ケミカルメカニカルポリッシングに用いられ、研磨領域および光透過領域を有する研磨パッドであって、光透過領域の波長400～700nmの全領域における光透過率が50%以上であることを特徴とする研磨パッド、に関する。

20

【0016】

本発明の研磨パッドに用いられる光透過領域は、下記式で表される波長400～700nmにおける光透過率の変化率が50%以下であることが好ましい。

【0017】

変化率(%) = { (400～700nmにおける最大光透過率 - 400～700nmにおける最小光透過率) / 400～700nmにおける最大光透過率 } × 100

研磨パッドの光透過領域を通過する光の強度の減衰が少ないと研磨終点の検出精度や膜厚の測定精度を高めることができる。そのため、使用する測定光の波長における光透過率の度合いは、研磨終点の検出精度や膜厚の測定精度を決定づけるため重要となる。本発明の光透過領域は、短波長側での光透過率の減衰が小さく、広い波長範囲で検出精度を高く維持することが可能である。

30

【0018】

本発明の研磨パッドに用いられる光透過領域は、波長400～700nmの全領域における光透過率が50%以上であり、好ましくは70%以上である。光透過率が50%より小さい場合には、研磨中にスラリー層の影響やドレッシング痕の影響などにより、光透過領域を通過する光の強度の減衰が大きくなり、研磨終点の検出精度や膜厚の測定精度が低下する。

40

【0019】

また、光透過領域の上記式で表される波長400～700nmにおける光透過率の変化率は30%以下であることがさらに好ましい。光透過率の変化率が50%を超える場合には、短波長側での光透過領域を通過する光の強度の減衰が大きくなり、干渉光の振幅が小さくなるため研磨終点の検出精度や膜厚の測定精度が低下する傾向にある。

【0020】

前記光透過領域の波長400nmにおける光透過率は70%以上であることが好ましい。波長400nmにおける光透過率が70%以上であれば、研磨終点の検出精度や膜厚の測定精度をさらに高くすることができます。

40

【0021】

また、前記光透過領域の波長500～700nmの全領域における光透過率が90%以上であることが好ましく、さらに好ましくは95%以上である。光透過率が90%以上であれば、研磨終点の検出精度や膜厚の測定精度を極めて高くすることができます。

50

【0022】

また、光透過領域は、波長500～700nmにおける各光透過率の差が5%以内であることが好ましく、さらに好ましくは3%以内である。各波長における光透過率の差が5%以内であれば、ウエハの膜厚を分光解析する場合に、ウエハ上へ一定の入射光を照射でき、正確な反射率を算出できるため検出精度を高めることができる。

【0023】

なお、本発明における光透過領域の光透過率は、光透過領域の厚みが1mmの場合の値、又は1mmの厚みに換算した場合の値である。一般に、光透過率は、Lambert-Beerの法則より、光透過領域の厚みによって変化する。厚みが大きいほど、光透過率は低下するため、厚みを一定にした時の光透過率を算出する必要がある。

10

【0024】

本発明において、前記光透過領域の形成材料は無発泡体であることが好ましい。無発泡体であれば光の散乱を抑制することができるため、正確な反射率を検出することができ、研磨の光学終点の検出精度を高めることができる。

【0025】

また、前記光透過領域の研磨側表面に研磨液を保持・更新する凹凸構造を有しないことが好ましい。光透過領域の研磨側表面にマクロな表面凹凸があると、凹部に砥粒等の添加剤を含有したスラリーが溜まり、光の散乱・吸収が起こり、検出精度に影響を及ぼす傾向にある。さらに、光透過領域の他面側表面もマクロな表面凹凸を有しないことが好ましい。マクロな表面凹凸があると、光の散乱が起こりやすく、検出精度に影響を及ぼすおそれがあるからである。

20

【0026】

本発明においては、前記研磨領域の形成材料が、微細発泡体であることが好ましい。

【0027】

また、本発明においては、前記研磨領域の研磨側表面に溝が設けられていることが好ましい。

【0028】

また、前記微細発泡体の平均気泡径は、70μm以下であることが好ましく、さらに好ましくは50μm以下である。平均気泡径が70μm以下であれば、プラナリティ（平坦性）が良好となる。

30

【0029】

また、前記微細発泡体の比重は、0.5～1.0g/cm³であることが好ましく、さらに好ましくは0.7～0.9g/cm³である。比重が0.5g/cm³未満の場合、研磨領域の表面の強度が低下し、被研磨対象物のプラナリティが低下し、また、1.0g/cm³より大きい場合は、研磨領域の表面の微細気泡の数が少なくなり、プラナリティは良好であるが、研磨速度が小さくなる傾向にある。

【0030】

また、前記微細発泡体の硬度は、アスカーディ硬度で45～65度であることが好ましく、さらに好ましくは45～60度である。アスカーディ硬度が45度未満の場合には、被研磨対象物のプラナリティが低下し、65度より大きい場合には、プラナリティは良好であるが、被研磨対象物のユニフォーミティ（均一性）が低下する傾向にある。

40

【0031】

また、前記微細発泡体の圧縮率は、0.5～5.0%であることが好ましく、さらに好ましくは0.5～3.0%である。圧縮率が前記範囲内にあれば十分にプラナリティとユニフォーミティを両立させることが可能となる。なお、圧縮率は下記式により算出される値である。

【0032】

圧縮率(%) = { (T1-T2) / T1 } × 100

T1：微細発泡体に無負荷状態から30KPa (300g/cm²) の応力の負荷を60秒間保持した時の微細発泡体の厚み

50

T2 : T1の状態から180KPa (1800g/cm²) の応力の負荷を60秒間保持した時の微細発泡体の厚み

また、前記微細発泡体の圧縮回復率は、50～100%であることが好ましく、さらに好ましくは60～100%である。50%未満の場合には、研磨中に繰り返しの荷重が研磨領域にかかるにつれて、研磨領域の厚みに大きな変化が現れ、研磨特性の安定性が低下する傾向にある。なお、圧縮回復率は下記式により算出される値である。

【0033】

圧縮回復率(%) = { (T3-T2) / (T1-T2) } × 100

T1 : 微細発泡体に無負荷状態から30KPa (300g/cm²) の応力の負荷を60秒間保持した時の微細発泡体の厚み

T2 : T1の状態から180KPa (1800g/cm²) の応力の負荷を60秒間保持した時の微細発泡体の厚み

T3 : T2の状態から無負荷状態で60秒間保持し、その後、30KPa (300g/cm²) の応力の負荷を60秒間保持した時の微細発泡体の厚み

また、前記微細発泡体の40℃、1Hzにおける貯蔵弾性率が、200MPa以上であることが好ましく、さらに好ましくは250MPa以上である。貯蔵弾性率が200MPa未満の場合には、研磨領域の表面の強度が低下し、被研磨対象物のプラナリティが低下する傾向にある。なお、貯蔵弾性率とは、微細発泡体に動的粘弾性測定装置で引っ張り試験用治具を用い、正弦波振動を加え測定した弾性率をいう。

【0034】

また、本発明は、前記記載の研磨パッドを用いて半導体ウェハの表面を研磨する工程を含む半導体デバイスの製造方法、に関する。

【0035】

【発明の実施の形態】

本発明の研磨パッドは、研磨領域および光透過領域を有する。

【0036】

光透過領域の形成材料は、波長400～700nmの全領域における光透過率が50%以上であれば特に制限されない。例えば、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、ポリカーボネート樹脂、ハロゲン系樹脂（ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど）、ポリスチレン、オレフィン系樹脂（ポリエチレン、ポリプロピレンなど）、及びエポキシ樹脂などが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。なお、研磨領域に用いられる形成材料や研磨領域の物性に類似する材料を用いることが好ましい。特に、研磨中のドレッシング痕による光透過領域の光散乱を抑制できる耐摩耗性の高いポリウレタン樹脂が望ましい。

【0037】

前記ポリウレタン樹脂は、有機イソシアネート、ポリオール、及び鎖延長剤からなるものである。

【0038】

有機イソシアネートとしては、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、2,2'-ジフェニルメタンジイソシアネート、2,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、1,4-シクロヘキサンジイソシアネート、4,4'-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。

【0039】

有機イソシアネートとしては、上記ジイソシアネート化合物の他に、3官能以上の多官能ポリイソシアネート化合物も使用可能である。多官能のイソシアネート化合物としては、

10

20

30

40

50

デスマジュールーN（バイエル社製）や商品名デュラネット（旭化成工業社製）として一連のジイソシアネートアダクト体化合物が市販されている。これら3官能以上のポリイソシアネート化合物は、単独で使用するとプレポリマー合成に際して、ゲル化しやすいため、ジイソシアネート化合物に添加して使用することが好ましい。

【0040】

ポリオールとしては、ポリテトラメチレンエーテルグリコールに代表されるポリエーテルポリオール、ポリブチレンアジペートに代表されるポリエステルポリオール、ポリカプロラクトンポリオール、ポリカプロラクトンのようなポリエステルグリコールとアルキレンカーボネートとの反応物などで例示されるポリエステルポリカーボネートポリオール、エチレンカーボネートを多価アルコールと反応させ、次いで得られた反応混合物を有機ジカルボン酸と反応させたポリエステルポリカーボネートポリオール、及びポリヒドキシル化合物とアリールカーボネートとのエステル交換反応により得られるポリカーボネートポリオールなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。

10

【0041】

また、ポリオールとして上述したポリオールの他に、エチレングリコール、1, 2-プロピレングリコール、1, 3-プロピレングリコール、1, 4-ブタンジオール、1, 6-ヘキサンジオール、ネオペンチルグリコール、1, 4-シクロヘキサンジメタノール、3-メチル-1, 5-ペニタンジオール、ジエチレングリコール、トリエチレングリコール、1, 4-ビス(2-ヒドロキシエトキシ)ベンゼン等の低分子量ポリオールを併用してもよい。

20

【0042】

鎖延長剤としては、エチレングリコール、1, 2-プロピレングリコール、1, 3-プロピレングリコール、1, 4-ブタンジオール、1, 6-ヘキサンジオール、ネオペンチルグリコール、1, 4-シクロヘキサンジメタノール、3-メチル-1, 5-ペニタンジオール、ジエチレングリコール、トリエチレングリコール、1, 4-ビス(2-ヒドロキシエトキシ)ベンゼン等の低分子量ポリオール類、あるいは2, 4-トルエンジアミン、2, 6-トルエンジアミン、3, 5-ジエチル-2, 4-トルエンジアミン、4, 4'-ジ-sec-ブチルジアミノジフェニルメタン、4, 4'-ジアミノジフェニルメタン、3, 3'-ジクロロ-4, 4'-ジアミノジフェニルメタン、2, 2', 3, 3'-テトラクロロ-4, 4'-ジアミノジフェニルメタン、4, 4'-ジアミノ-3, 3'-ジエチル-5, 5'-ジメチルジフェニルメタン、3, 3'-ジエチル-4, 4'-ジアミノジフェニルメタン、4, 4'-メチレン-ビス-メチルアンスラニレート、4, 4'-メチレン-ビス-アンスラニリックアシッド、4, 4'-ジアミノジフェニルスルファン、N, N'-ジ-sec-ブチル-p-フェニレンジアミン、4, 4'-メチレン-ビス(3-クロロ-2, 6-ジエチルアミン)、3, 3'-ジクロロ-4, 4'-ジアミノ-5, 5'-ジエチルジフェニルメタン、1, 2-ビス(2-アミノフェニルチオ)エタン、トリメチレングリコール-ジ-p-アミノベンゾエート、3, 5-ビス(メチルチオ)-2, 4-トルエンジアミン等に例示されるポリアミン類を挙げることができる。これらは1種で用いても、2種以上を混合しても差し支えない。ただし、ポリアミン類については自身が着色していたり、これらを用いてなる樹脂が着色する場合も多いため、物性や光透過性を損なわない程度に配合することが好ましい。また、芳香族炭化水素基を有する化合物を用いると短波長側での光透過率が低下する傾向にあるため、このような化合物を用いないことが特に好ましいが、要求される光透過性を損なわない程度に配合してもよい。

30

【0043】

前記ポリウレタン樹脂における有機イソシアネート、ポリオール、及び鎖延長剤の比は、各々の分子量やこれらから製造される光透過領域の所望物性などにより適宜変更できる。光透過領域が前記特性を得るために、ポリオールと鎖延長剤の合計官能基(水酸基+アミノ基)数に対する有機イソシアネートのイソシアネート基数が0.95~1.15であることが好ましく、さらに好ましくは0.99~1.10である。

40

50

【0044】

前記ポリウレタン樹脂は、溶融法、溶液法など公知のウレタン化技術を応用して製造することができるが、コスト、作業環境などを考慮した場合、溶融法で製造することが好ましい。

【0045】

前記ポリウレタン樹脂の重合手順としては、プレポリマー法、ワンショット法のどちらでも可能であるが、事前に有機イソシアネートとポリオールからイソシアネート末端プレポリマーを合成しておき、これに鎖延長剤を反応させるプレポリマー法が一般的である。なお、有機イソシアネートとポリオールから製造されるイソシアネート末端プレポリマーが市販されているが、本発明に適合するものであれば、それらを用いて、プレポリマー法により本発明で使用するポリウレタンを重合することも可能である。10

【0046】

光透過領域の作製方法は特に制限されず、公知の方法により作製できる。例えば、前記方法により製造したポリウレタン樹脂のブロックをバンドソー方式やカンナ方式のスライサーを用いて所定厚みにする方法や所定厚みのキャビティーを持った金型に樹脂を流し込み硬化させる方法や、コーティング技術やシート成形技術を用いた方法などが用いられる。

【0047】

光透過領域の形状は特に制限されるものではないが、研磨領域の開口部と同様の形状にすることが好ましい。

【0048】

光透過領域の大きさは特に制限されるものではないが、研磨領域の開口部と同程度の大きさにすることが好ましい。20

【0049】

光透過領域の厚さは特に制限されるものではないが、研磨領域の厚みと同一厚さ、またはそれ以下にすることが好ましい。光透過領域が研磨領域より厚い場合には、研磨中に突き出た部分により被研磨対象物を傷つけるおそれがある。

【0050】

また、光透過領域の厚みのバラツキは、 $100\mu\text{m}$ 以下であることが好ましい。厚みのバラツキが $100\mu\text{m}$ を越える場合には、大きなうねりを持ったものとなり、被研磨対象物に対する接觸状態が異なる部分が発生するため研磨特性に影響を及ぼす傾向にある。30

【0051】

厚みのバラツキを抑える方法としては、所定厚みにしたシート表面をバッティングする方法が挙げられる。バッティングは、粒度などが異なる研磨シートを用いて段階的に行なうことが好ましい。なお、光透過領域をバッティングする場合には、表面粗さは小さければ小さい程良い。表面粗さが大きい場合には、光透過領域表面で入射光が乱反射するため光透過率が下がり、検出精度が低下する傾向にある。

【0052】

研磨領域の形成材料は、研磨層の材料として通常用いられるものであれば特に制限なく使用できるが、本発明においては微細発泡体を用いることが好ましい。例えば、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、ポリカーボネート樹脂、ハロゲン系樹脂（ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど）、ポリスチレン、オレフィン系樹脂（ポリエチレン、ポリプロピレンなど）、エポキシ樹脂、及び感光性樹脂などが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。なお、研磨領域の形成材料は、光透過領域と同組成でも異なる組成であってもよい。

【0053】

ポリウレタン樹脂は耐摩耗性に優れ、原料組成を種々変えることにより所望の物性を有するポリマーを容易に得ることができるために、研磨領域の形成材料として特に好ましい材料である。

【0054】

10

20

30

40

50

前記ポリウレタン樹脂は、有機イソシアネート、ポリオール、鎖延長剤からなるものである。

【0055】

使用する有機イソシアネートは特に制限されず、例えば前記記載の有機イソシアネートが挙げられる。

【0056】

使用するポリオールは特に制限されず、例えば前記記載のポリオールが挙げられる。なお、これらポリオールの数平均分子量は、特に限定されるものではないが、得られるポリウレタンの弾性特性等の観点から500～2000であることが好ましい。数平均分子量が500未満であると、これを用いたポリウレタンは十分な弾性特性を有さず、脆いポリマーとなる。そのためこのポリウレタンから製造される研磨パッドは硬くなりすぎ、被研磨対象物の研磨面のスクラッチの原因となる。また、摩耗しやすくなるため、パッド寿命の観点からも好ましくない。一方、数平均分子量が2000を超えると、これを用いたポリウレタンは軟らかくなるため、このポリウレタンから製造される研磨パッドは平坦化特性に劣る傾向にある。

10

【0057】

また、ポリオールとしては、上述した高分子量のポリオールの他に、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン等の低分子量ポリオールを併用することもできる。

20

【0058】

また、ポリオール中の高分子量成分と低分子量成分の比は、これらから製造される研磨領域に要求される特性により決められる。

【0059】

鎖延長剤としては、4,4'-メチレンビス(4-クロロアニリン)、2,6-ジクロロ-p-フェニレンジアミン、4,4'-メチレンビス(2,3-ジクロロアニリン)等に例示されるポリアミン類、あるいは、上述した低分子量ポリオールを挙げることができる。これらは1種で用いても、2種以上を併用してもよい。

30

【0060】

前記ポリウレタン樹脂における有機イソシアネート、ポリオール、及び鎖延長剤の比は、各々の分子量やこれらから製造される研磨領域の所望物性などにより種々変え得る。研磨特性に優れる研磨領域を得るためにには、ポリオールと鎖延長剤の合計官能基(水酸基+アミノ基)数に対する有機イソシアネートのイソシアネート基数は0.95～1.15であることが好ましく、さらに好ましくは0.99～1.10である。

【0061】

前記ポリウレタン樹脂は、前記記載の方法と同様の方法により製造することができる。なお、必要に応じてポリウレタン樹脂に酸化防止剤等の安定剤、界面活性剤、滑剤、顔料、充填剤、帯電防止剤、その他の添加剤を添加してもよい。

40

【0062】

前記ポリウレタン樹脂を微細発泡させる方法は特に制限されないが、例えば中空ビーズを添加する方法、機械的発泡法、及び化学的発泡法等により発泡させる方法などが挙げられる。なお、各方法を併用してもよいが、特にポリアルキルシリコンとポリエーテルとの共重合体であって活性水素基を有しないシリコーン系界面活性剤を使用した機械的発泡法が好ましい。該シリコーン系界面活性剤としては、SH-192(東レダウコーニングシリコン製)等が好適な化合物として例示される。

【0063】

研磨領域に用いられる独立気泡タイプのポリウレタン発泡体を製造する方法の例について以下に説明する。かかるポリウレタン発泡体の製造方法は、以下の工程を有する。

50

【0064】

1) イソシアネート末端プレポリマーの気泡分散液を作製する搅拌工程

イソシアネート末端プレポリマーにシリコーン系界面活性剤を添加し、非反応性气体と搅拌し、非反応性气体を微細気泡として分散させて気泡分散液とする。イソシアネート末端プレポリマーが常温で固体の場合には適宜の温度に予熱し、溶融して使用する。

2) 硬化剤（鎖延長剤）混合工程

上記の気泡分散液に鎖延長剤を添加し、混合搅拌する。

3) 硬化工程

鎖延長剤を混合したイソシアネート末端プレポリマーを注型し、加熱硬化させる。

【0065】

微細気泡を形成するために使用される非反応性气体としては、可燃性でないものが好ましく、具体的には窒素、酸素、炭酸ガス、ヘリウムやアルゴン等の希ガスやこれらの混合气体が例示され、乾燥して水分を除去した空気の使用がコスト的に最も好ましい。

10

【0066】

非反応性气体を微細気泡状にしてシリコーン系界面活性剤を含むイソシアネート末端プレポリマーに分散させる搅拌装置としては、公知の搅拌装置を特に限定なく使用可能であり、具体的にはホモジナイザー、ディゾルバー、2軸遊星型ミキサー（プラネタリーミキサー）等が例示される。搅拌装置の搅拌翼の形状も特に限定されないが、ハイパー型の搅拌翼の使用すると微細気泡が得られるため好ましい。

【0067】

なお、搅拌工程において気泡分散液を作成する搅拌と、混合工程における鎖延長剤を添加して混合する搅拌は、異なる搅拌装置を使用することも好ましい態様である。特に混合工程における搅拌は気泡を形成する搅拌でなくてもよく、大きな気泡を巻き込まない搅拌装置の使用が好ましい。このような搅拌装置としては、遊星型ミキサーが好適である。搅拌工程と混合工程の搅拌装置を同一の搅拌装置を使用しても支障はなく、必要に応じて搅拌翼の回転速度を調整する等の搅拌条件の調整を行って使用することも好適である。

20

【0068】

前記ポリウレタン微細発泡体の製造方法においては、気泡分散液を型に流し込んで流動しなくなるまで反応した発泡体を、加熱、ポストキュアすることは、発泡体の物理的特性を向上させる効果があり、極めて好適である。金型に気泡分散液を流し込んで直ちに加熱オーブン中に入れてポストキュアを行う条件としてもよく、そのような条件下でもすぐに反応成分に熱が伝達されないので、気泡径が大きくなることはない。硬化反応は、常圧で行うと気泡形状が安定するため好ましい。

30

【0069】

前記ポリウレタン樹脂の製造において、第3級アミン系、有機スズ系等の公知のポリウレタン反応を促進する触媒を使用してもかまわない。触媒の種類、添加量は、混合工程後、所定形状の型に流し込む流動時間を考慮して選択する。

【0070】

前記ポリウレタン発泡体の製造は、容器に各成分を計量して投入し、搅拌するバッチ方式であっても、また搅拌装置に各成分と非反応性气体を連続して供給して搅拌し、気泡分散液を送り出して成形品を製造する連続生産方式であってもよい。

40

【0071】

研磨層となる研磨領域は、以上のようにして作製されたポリウレタン発泡体を、所定のサイズに裁断して製造される。

【0072】

本発明の微細発泡体からなる研磨領域は、被研磨対象物と接触する研磨側表面に、スラリーを保持・更新するための溝が設けられていることが好ましい。該研磨領域は、微細発泡体により形成されているため研磨表面に多くの開口を有し、スラリーを保持する働きを持っているが、更なるスラリーの保持性とスラリーの更新を効率よく行うため、また被研磨対象物との吸着による被研磨対象物の破壊を防ぐためにも、研磨側表面に溝を有すること

50

が好ましい。溝は、スラリーを保持・更新する表面形状であれば特に限定されるものではなく、例えば、XY格子溝、同心円状溝、貫通孔、貫通していない穴、多角柱、円柱、螺旋状溝、偏心円状溝、放射状溝、及びこれらの溝を組み合わせたものが挙げられる。また、溝ピッチ、溝幅、溝深さ等も特に制限されず適宜選択して形成される。さらに、これらの溝は規則性のあるものが一般的であるが、スラリーの保持・更新性を望ましいものにするため、ある範囲ごとに溝ピッチ、溝幅、溝深さ等を変化させることも可能である。

【0073】

前記溝の形成方法は特に限定されるものではないが、例えば、所定サイズのバイトのような治具を用い機械切削する方法、所定の表面形状を有した金型に樹脂を流しこみ硬化させる方法、所定の表面形状を有したプレス板で樹脂をプレスして形成する方法、フォトリソグラフィを用いて形成する方法、印刷手法を用いて形成する方法、及び炭酸ガスレーザーなどを用いたレーザー光により形成する方法などが挙げられる。

10

【0074】

研磨領域の厚みは特に限定されるものではないが、0.8～2.0mm程度である。前記厚みの研磨領域を作製する方法としては、前記微細発泡体のブロックをバンドソー方式やカンナ方式のスライサーを用いて所定厚みにする方法、所定厚みのキャビティーを持った金型に樹脂を流し込み硬化させる方法、及びコーティング技術やシート成形技術を用いた方法などが挙げられる。

20

【0075】

また、研磨領域の厚みのバラツキは、100μm以下であることが好ましく、特に50μm以下であることが好ましい。厚みのバラツキが100μmを越える場合には、研磨領域が大きくなれりを持ったものとなり、被研磨対象物に対する接触状態が異なる部分ができる、研磨特性に悪影響を与える傾向にある。また、研磨領域の厚みのバラツキを解消するため、一般的には研磨初期に研磨領域の表面をダイヤモンド砥粒を電着、又は融着させたドレッサーを用いてドレッシングするが、上記範囲を超えたものは、ドレッシング時間が長くなり、生産効率を低下させることになる。また、厚みのバラツキを抑える方法としては、所定厚みにした研磨領域表面をバッティングする方法もある。バッティングする際には、粒度などが異なる研磨シートで段階的に行なうことが好ましい。

【0076】

研磨領域および光透過領域を有する研磨パッドの作成方法は特に制限されず、種々の方法が考えられるが、具体的な例を以下に説明する。なお、下記具体例ではクッション層を設けた研磨パッドについて記載しているが、クッション層を設けない研磨パッドであってもよい。

30

【0077】

まず1つめの例は、図2に示すように、所定の大きさに開口した研磨領域9を両面テープ10と貼り合わせ、その下に研磨領域9の開口部に合わせるように、所定の大きさに開口したクッション層11を貼り合わせる。次に、クッション層11に離型紙13のついた両面テープ12を貼りあわせ、研磨領域9の開口部に光透過領域8をはめ込み、貼り合わせる方法である。

40

【0078】

2つめの具体例としては、図3に示すように、所定の大きさに開口した研磨領域9を両面テープ10と貼り合わせ、その下にクッション層11を貼り合わせる。その後、研磨領域9の開口部に合わせるように、両面テープ10、及びクッション層11を所定の大きさに開口する。次に、クッション層11に離型紙13のついた両面テープ12を貼りあわせ、研磨領域9の開口部に光透過領域8をはめ込み、貼り合わせる方法である。

50

【0079】

3つめの具体例としては、図4に示すように、所定の大きさに開口した研磨領域9を両面テープ10と貼り合わせ、その下にクッション層11を貼り合わせる。次に、クッション層11の反対面に離型紙13のついた両面テープ12を貼りあわせ、その後、研磨領域9の開口部に合わせるように、両面テープ10から離型紙13まで所定の大きさに開口する

。研磨領域9の開口部に光透過領域8をはめ込み、貼り合わせる方法である。なおこの場合、光透過領域8の反対側が開放された状態になり、埃等がたまる可能性があるため、それを塞ぐ部材14を取り付けることが好ましい。

【0080】

4つめの具体例としては、図5に示すように、離型紙13のついた両面テープ12を貼り合わせたクッション層11を所定の大きさに開口する。次に所定の大きさに開口した研磨領域9を両面テープ10と貼り合わせ、これらを開口部が合うように貼りあわせる。そして研磨領域9の開口部に光透過領域8をはめ込み、貼り合わせる方法である。なおこの場合、研磨領域の反対側が開放された状態になり、埃等がたまる可能性があるため、それを塞ぐ部材14を取り付けることが好ましい。

10

【0081】

前記研磨パッドの作成方法において、研磨領域やクッション層などを開口する手段は特に制限されるものではないが、例えば、切削能力をもつ治具をプレスして開口する方法、炭酸レーザーなどによるレーザーを利用する方法、及びバイトのような治具にて研削する方法などが挙げられる。なお、研磨領域の開口部の大きさは特に制限されない。また、研磨領域の開口部の形状も特に制限されない。

20

【0082】

前記クッション層は、研磨領域（研磨層）の特性を補うものである。クッション層は、CMPにおいて、トレードオフの関係にあるプラナリティとユニフォーミティの両者を両立させるために必要なものである。プラナリティとは、パターン形成時に発生する微小凹凸のある被研磨対象物を研磨した時のパターン部の平坦性をいい、ユニフォーミティとは、被研磨対象物全体の均一性をいう。研磨層の特性によって、プラナリティを改善し、クッション層の特性によってユニフォーミティを改善することを行う。本発明の研磨パッドにおいては、クッション層は研磨層より柔らかいものを用いることが好ましい。

30

【0083】

前記クッション層の形成材料は特に制限されないが、例えば、ポリエステル不織布、ナイロン不織布、アクリル不織布などの纖維不織布、ポリウレタンを含浸したポリエステル不織布のような樹脂含浸不織布、ポリウレタンフォーム、ポリエチレンフォームなどの高分子樹脂発泡体、ブタジエンゴム、イソプレンゴムなどのゴム性樹脂、及び感光性樹脂などが挙げられる。

40

【0084】

研磨領域9に用いられる研磨層とクッション層11とを貼り合わせる手段としては、例えば、研磨領域とクッション層を両面テープで挟み、プレスする方法が挙げられる。

【0085】

両面テープは、不織布やフィルム等の基材の両面に接着層を設けた一般的な構成を有するものである。クッション層へのスラリーの浸透等を防ぐことを考慮すると、基材にフィルムを用いることが好ましい。また、接着層の組成としては、例えば、ゴム系接着剤やアクリル系接着剤等が挙げられる。金属イオンの含有量を考慮すると、アクリル系接着剤は金属イオン含有量が少ないため好ましい。また、研磨領域とクッション層は組成が異なることもあるため、両面テープの各接着層の組成を異なるものとし、各層の接着力を適正化することも可能である。

【0086】

クッション層11と両面テープ12とを貼り合わせる手段としては、クッション層に両面テープをプレスして接着する方法が挙げられる。

【0087】

該両面テープは、上述と同様に不織布やフィルム等の基材の両面に接着層を設けた一般的な構成を有するものである。研磨パッドの使用後に、プラテンから剥がすことを考慮すると、基材にフィルムを用いるとテープ残り等を解消することができるため好ましい。また、接着層の組成は、上述と同様である。

50

【0088】

前記部材14は、開口部を塞ぐものであれば特に制限されるものではない。但し、研磨を行う際には、剥離可能なものでなければならない。

【0089】

半導体デバイスは、前記研磨パッドを用いて半導体ウエハの表面を研磨する工程を経て製造される。半導体ウエハとは、一般にシリコンウエハ上に配線金属及び酸化膜を積層したものである。半導体ウエハの研磨方法、研磨装置は特に制限されず、例えば、図1に示すように研磨パッド1を支持する研磨定盤2と、半導体ウエハ4を支持する支持台(ポリシングヘッド)5とウエハへの均一加圧を行うためのバックキング材と、研磨剤3の供給機構を備えた研磨装置などを用いて行われる。研磨パッド1は、例えば、両面テープで貼り付けることにより、研磨定盤2に装着される。研磨定盤2と支持台5とは、それぞれに支持された研磨パッド1と半導体ウエハ4が対向するように配置され、それぞれに回転軸6、7を備えている。また、支持台5側には、半導体ウエハ4を研磨パッド1に押し付けるための加圧機構が設けてある。研磨に際しては、研磨定盤2と支持台5とを回転させつつ半導体ウエハ4を研磨パッド1に押し付け、スラリーを供給しながら研磨を行う。スラリーの流量、研磨荷重、研磨定盤回転数、及びウエハ回転数は特に制限されず、適宜調整して行う。

10

【0090】

これにより半導体ウエハ4の表面の突出した部分が除去されて平坦状に研磨される。その後、ダイシング、ボンディング、パッケージング等することにより半導体デバイスが製造される。半導体デバイスは、演算処理装置やメモリー等に用いられる。

20

【0091】

【実施例】

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定した。

【0092】

(光透過率測定)

作製した光透過領域部材を $2\text{ cm} \times 6\text{ cm}$ (厚み:任意)の大きさに切り出して光透過率測定用試料とした。分光光度計(日立製作所製、U-3210 Spectro Photometer)を用いて、測定波長域 $300\text{~}700\text{ nm}$ で測定した。これらの光透過率の測定結果をLambert-Beerの法則を用いて、厚み 1 mm の光透過率に換算をした。

30

【0093】

(平均気泡径測定)

厚み 1 mm 程度になるべく薄くミクロトームカッターで平行に切り出した研磨領域を平均気泡径測定用試料とした。試料をスライドガラス上に固定し、画像処理装置(東洋紡社製、Image Analyzer V10)を用いて、任意の $0.2\text{ mm} \times 0.2\text{ mm}$ 範囲の全気泡径を測定し、平均気泡径を算出した。

【0094】

(比重測定)

JIS Z 8807-1976に準拠して行った。 $4\text{ cm} \times 8.5\text{ cm}$ の短冊状(厚み:任意)に切り出した研磨領域を比重測定用試料とし、温度 $23^\circ\text{C} \pm 2^\circ\text{C}$ 、湿度 $50\% \pm 5\%$ の環境で16時間静置した。測定には比重計(ザルトリウス社製)を用い、比重を測定した。

40

【0095】

(アスカーデ硬度測定)

JIS K 6253-1997に準拠して行った。 $2\text{ cm} \times 2\text{ cm}$ (厚み:任意)の大きさに切り出した研磨領域を硬度測定用試料とし、温度 $23^\circ\text{C} \pm 2^\circ\text{C}$ 、湿度 $50\% \pm 5\%$ の環境で16時間静置した。測定時には、試料を重ね合わせ、厚み 6 mm 以上とした。硬度計(高分子計器社製、アスカーデ型硬度計)を用い、硬度を測定した。

【0096】

50

(圧縮率および圧縮回復率測定)

直径 7 mm の円 (厚み: 任意) に切り出した研磨領域 (研磨層) を圧縮率および圧縮回復率測定用試料とし、温度 23 °C ± 2 °C、湿度 50 % ± 5 % の環境で 40 時間静置した。測定には熱分析測定器 TMA (SEIKO INSTRUMENTS 製、SS 6000) を用い、圧縮率と圧縮回復率を測定した。また、圧縮率と圧縮回復率の計算式を下記に示す。

【0097】

$$\text{圧縮率 (\%)} = \{ (T_1 - T_2) / T_1 \} \times 100$$

T₁ : 研磨層に無負荷状態から 30 KPa (300 g/cm²) の応力の負荷を 60 秒間保持した時の研磨層厚み

T₂ : T₁ の状態から 180 KPa (1800 g/cm²) の応力の負荷を 60 秒間保持した時の研磨層厚み

$$\text{圧縮回復率 (\%)} = \{ (T_3 - T_2) / (T_1 - T_2) \} \times 100$$

T₁ : 研磨層に無負荷状態から 30 KPa (300 g/cm²) の応力の負荷を 60 秒間保持した時の研磨層厚み

T₂ : T₁ の状態から 180 KPa (1800 g/cm²) の応力の負荷を 60 秒間保持した時の研磨層厚み

T₃ : T₂ の状態から無負荷状態で 60 秒間保持し、その後、30 KPa (300 g/cm²) の応力の負荷を 60 秒間保持した時の研磨層厚み

(貯蔵弾性率測定)

JIS K 7198-1991 に準拠して行った。3 mm × 40 mm の短冊状 (厚み: 任意) に切り出した研磨領域を動的粘弹性測定用試料とし、23 °C の環境条件で、シリカゲルを入れた容器内に 4 日間静置した。切り出した後の各シートの正確な幅および厚みの計測は、マイクロメータにて行った。測定には動的粘弹性スペクトロメーター (岩本製作所製、現アイエス技研) を用い、貯蔵弾性率 E' を測定した。その際の測定条件を下記に示す。

<測定条件>

測定温度 : 40 °C

印加歪 : 0.03 %

初期荷重 : 20 g

周波数 : 1 Hz

(膜厚検出評価)

ウエハの膜厚の光学的検出評価は以下のようない法で行った。ウエハとして、8インチのシリコンウエハに熱酸化膜を 1 μm 製膜したものを用い、その上に、厚み 1.27 mm の光透過領域部材を設置した。干渉式膜厚測定装置 (大塚電子社製) を用い、波長領域 400 ~ 800 nm において膜厚測定を数回行った。算出される膜厚結果、及び各波長での干渉光の山と谷の状況確認を行い、以下のような基準で検出評価した。

◎: 極めて再現よく、膜厚が測定されている

○: 再現よく、膜厚が測定されている

×: 再現性が悪く、検出精度が不十分である

(研磨特性の評価)

研磨装置として SPP 600 S (岡本工作機械社製) を用い、作製した研磨パッドを用いて、研磨特性の評価を行った。研磨レートは、8インチのシリコンウエハに熱酸化膜を 1 μm 製膜したものを、約 0.5 μm 研磨して、このときの時間から算出した。酸化膜の膜厚測定には、干渉式膜厚測定装置 (大塚電子社製) を用いた。研磨条件としては、スラリーとしてシリカスラリー (SS 12、キャボット社製) を研磨中に流量 150 ml/mi n にて添加した。研磨荷重としては 350 g/cm²、研磨定盤回転数 35 rpm、ウエハ回転数 30 rpm とした。

平坦化特性の評価では、8インチシリコンウエハに熱酸化膜を 0.5 μm 堆積させた後、所定のパターニングを行い、p-T EOS にて酸化膜を 1 μm 堆積させ、初期段差 0.5

10

20

30

40

50

μm のパターン付きウエハを作製した。このウエハを前述条件にて研磨を行い、研磨後、各段差を測定し平坦化特性を評価した。平坦化特性としては2つの段差を測定した。一つはローカル段差であり、これは幅 $270\mu\text{m}$ のラインが $30\mu\text{m}$ のスペースで並んだパターンにおける段差であり、1分後の段差を測定した。もう一つは削れ量であり、幅 $270\mu\text{m}$ のラインが $30\mu\text{m}$ のスペースで並んだパターンにおいて、上記の2種のパターンのライン上部の段差が 2000Å 以下になるときの $270\mu\text{m}$ のスペースの削れ量を測定した。ローカル段差の数値が低いとウエハ上のパターン依存により発生した酸化膜の凹凸に対し、ある時間において平坦になる速度が速いことを示す。また、スペースの削れ量が少ないと削れて欲しくない部分の削れ量が少なく平坦性が高いことを示す。

10

【0098】

〔光透過領域の作製〕

製造例1

アジピン酸とヘキサンジオールからなるポリエステルポリオール（数平均分子量2440）125重量部、及び1,4-ブタンジオール31重量部を混合し、70°Cに温調した。この混合液に、予め70°Cに温調した4,4'-ジフェニルメタンジイソシアネート100重量部を加え、約1分間攪拌した。そして、100°Cに保温した容器中に該混合液を流し込み、100°Cで8時間ポストキュアを行ってポリウレタン樹脂を作製した。作製したポリウレタン樹脂を用い、インジェクション成型にて光透過領域（縦57mm、横19mm、厚さ1.25mm）を作製した。作製した光透過領域の光透過率及び変化率を表1に示す。

20

【0099】

製造例2

製造例1において、アジピン酸とヘキサンジオールからなるポリエステルポリオール（数平均分子量1920）77重量部、及び1,4-ブタンジオール32重量部に変更した以外は製造例1と同様の方法により光透過領域（縦57mm、横19mm、厚さ1.25mm）を作製した。作製した光透過領域の光透過率及び変化率を表1に示す。

30

【0100】

製造例3

製造例1において、ポリオールとしてポリテトラメチレングリコール（数平均分子量890）114重量部、及び1,4-ブタンジオール24重量部に変更した以外は製造例1と同様の方法により光透過領域（縦57mm、横19mm、厚さ1.25mm）を作製した。作製した光透過領域の光透過率及び変化率を表1に示す。

40

【0101】

製造例4

70°Cに温調したイソシアネート末端プレポリマー（ユニロイヤル社製、L-325、NCO含有率：9.15重量%）100重量部を減圧タンクに計量し、減圧（約10Torr）によりプレポリマー中に残存している気体を脱泡させた。脱泡した上記プレポリマーに、120°Cで溶解させた4,4'-メチレンビス（o-クロロアニリン）（イハラケミカル社製、イハラキュアミンMT）26重量部を加え、ハイブリッドミキサー（キエンス社製）を用いて攪拌・混合した。そして該混合物を型に流し込み、110°Cのオーブン中で8時間ポストキュアを行い光透過領域（縦57mm、横19mm、厚さ1.25mm）を作製した。作製した光透過領域の光透過率及び変化率を表1に示す。

50

【0102】

〔研磨領域の作製〕

フッ素コーティングした反応容器内に、フィルタリングしたポリエーテル系プレポリマー（ユニロイヤル社製、アジプレンL-325、NCO濃度：2.22meq/g）100重量部、及びフィルタリングしたシリコーン系ノニオン界面活性剤（東レ・ダウシリコン社製、SH192）3重量部を混合し、温度を80°Cに調整した。フッ素コーティングした攪拌翼を用いて、回転数900rpmで反応系内に気泡を取り込むように約4分間激

50

しく攪拌を行った。そこへ予め 120°C で溶融し、フィルタリングした 4,4'-メチレンビス(オクロロアニリン)（イハラケミカル社製、イハラキュアミン MT）26 重量部を添加した。その後、約 1 分間攪拌を続けてフッ素コーティングしたパン型のオープンモールドへ反応溶液を流し込んだ。この反応溶液の流動性がなくなった時点でオープン内に入れ、110°C で 6 時間ポストキュアを行いポリウレタン樹脂発泡体ブロックを得た。このポリウレタン樹脂発泡体ブロックをバンドソータイプのスライサー（フェッケン社製）を用いてスライスし、ポリウレタン樹脂発泡体シートを得た。次にこのシートをバフ機（アミテック社製）を使用して、所定の厚さに表面バフをし、厚み精度を整えたシートとした（シート厚み：1.27 mm）。このバフ処理をしたシートを所定の直径（61 cm）に打ち抜き、溝加工機（東邦鋼機社製）を用いて表面に溝幅 0.25 mm、溝ピッチ 1.50 mm、溝深さ 0.40 mm の同心円状の溝加工を行った。このシートの溝加工面と反対側の面にラミ機を使用して、両面テープ（積水化学工業社製、ダブルタックテープ）を貼り、その後、この溝加工したシートの所定位置に光透過領域をはめ込むための穴（厚み 1.27 mm、57.5 mm × 19.5 mm）を打ち抜いて両面テープ付き研磨領域を作製した。作製した研磨領域の各物性は、平均気泡径 45 μm、比重 0.86 g/cm³、アスカーダ硬度 53 度、圧縮率 1.0%、圧縮回復率 65.0%、貯蔵弾性率 275 MPa であった。

10

【0103】

〔研磨パッドの作製〕

20

実施例 1

表面をバフがけし、コロナ処理したポリエチレンフォーム（東レ社製、トーレペフ、厚さ：0.8 mm）からなるクッション層を前記作製した両面テープ付き研磨領域の粘着面に、ラミ機を用いて貼り合わせた。さらにクッション層表面に両面テープを貼り合わせた。その後、研磨領域の光透過領域をはめ込むために打ち抜いた穴部分のうち、51 mm × 13 mm の大きさでクッション層を打ち抜き、穴を貫通させた。その後、製造例 1 で作製した光透過領域をはめ込み、研磨パッドを作製した。作製した研磨パッドの研磨特性等を表 1 に示す。

30

【0104】

実施例 2

製造例 2 で作製した光透過領域を用い、実施例 1 と同様の方法により研磨パッドを作製した。作製した研磨パッドの研磨特性等を表 1 に示す。

40

【0105】

実施例 3

製造例 3 で作製した光透過領域を用い、実施例 1 と同様の方法により研磨パッドを作製した。作製した研磨パッドの研磨特性等を表 1 に示す。

【0106】

比較例 1

製造例 4 で作製した光透過領域を用い、実施例 1 と同様の方法により研磨パッドを作製した。作製した研磨パッドの研磨特性等を表 1 に示す。

【0107】

〔表 1〕

	光透過率(%)			最大光透過率 (%)	最小光透過率 (%)	変化率 (%)	研磨速度 (Å/min)	ローカル段差 (Å)	削れ量 (Å)	膜厚検出
	400nm	500nm	600nm							
実施例1	71.5	96.5	96.9	95.5	97.1	71.5	26.4	2300	20	2900
実施例2	77.9	95.0	94.8	93.3	95.1	77.9	18.1	2400	10	3000
実施例3	51.4	96.9	96.8	95.3	97.2	51.4	47.1	2300	20	3000
比較例1	14.7	85.4	92.9	93.9	94.1	14.7	84.4	2350	20	2950
										x

表1から、波長400～700 nmにおける光透過領域の光透過率が50%以上である場合（実施例1～3）には、研磨特性に影響を与えることなく再現性よくウエハの終点検出が可能であることがわかる。

【図面の簡単な説明】

【図1】 CMP研磨で使用する従来の研磨装置の一例を示す概略構成図

【図 2】本発明の研磨パッドの一例を示す概略断面図

【図 3】本発明の研磨パッドの他の一例を示す概略断面図

【図 4】本発明の研磨パッドの他の一例を示す概略断面図

【図 5】本発明の研磨パッドの他の一例を示す概略断面図

【図 6】本発明の終点検出装置を有する CMP 研磨装置の一例を示す概略構成図

【符号の説明】

1 : 研磨パッド

2 : 定盤

3 : 研磨剤 (スラリー)

4 : 被研磨対象物 (ウエハ)

5 : 被研磨対象物 (ウエハ) 支持台 (ポリシングヘッド)

6、7 : 回転軸

8 : 光透過領域

9 : 研磨領域

10、12 : 両面テープ

11 : クッション層

13 : 離型紙 (フィルム)

14 : 開口部を塞ぐ部材

15 : レーザー干渉計

16 : レーザービーム

10

20

【図 1】

【図 2】

【図 3】

【図 4】

【図 5】

【図 6】

フロントページの続き

(72) 発明者 中森 雅彦
滋賀県大津市堅田二丁目 1 番 1 号 東洋紡績株式会社総合研究所内

(72) 発明者 下村 哲生
滋賀県大津市堅田二丁目 1 番 1 号 東洋紡績株式会社総合研究所内

(72) 発明者 山田 孝敏
滋賀県大津市堅田二丁目 1 番 1 号 東洋紡績株式会社総合研究所内

(72) 発明者 小川 一幸
大阪府大阪市西区江戸堀 1 丁目 17 番 18 号 東洋ゴム工業株式会社内

(72) 発明者 数野 淳
大阪府大阪市西区江戸堀 1 丁目 17 番 18 号 東洋ゴム工業株式会社内

F ターム(参考) 3C058 AA07 AA09 CA01 CB01 DA12