ΦΥΣΙΚΗ Β΄ ΓΥΜΝΑΣΙΟΥ $KEΦΑΛΑΙΟ 2^{O} - KINΗΣΕΙΣ$

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ

2.1 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ

- Η **κίνηση** είναι γενική και χαρακτηριστική ιδιότητα της ύλης. Εκδηλώνεται σε κάθε σώμα από τα σωματίδια του μικροκόσμου μέχρι τους μακρινούς γαλαξίες.
- Κατά τη μελέτη της κίνησης, θεωρούμε τα αντικείμενα ως υλικά σημεία, δηλαδή σώματα που δεν έχουν διαστάσεις αλλά καταλαμβάνουν ένα σημείο του χώρου.
- **Ευθύγραμμες κινήσεις** είναι οι κινήσεις αυτές που πραγματοποιούνται σε ευθείες γραμμές.

1. Πως προσδιορίζεται η θέση () ενός αντικειμένου ;

Η θέση ενός αντικειμένου είναι σχετική και εξαρτάται από τον παρατηρητή και το σύστημα αναφοράς.

Η θέση x ενός σώματος σε μία ευθεία καθορίζεται σε σχέση με ένα σημείο που έχουμε επιλέξει ως σημείο αναφοράς (το σημείο 0 σε ένα άξονα συντεταγμένων). Προσδιορίζεται με έναν αριθμό που δείχνει την απόσταση του σημείου από το σημείο αναφοράς και ένα πρόσημο που δηλώνει την κατεύθυνση δηλαδή αν το σώμα είναι δεξιά (+) ή αριστερά (–) από το σημείο αναφοράς.

Πχ. το σώμα Α βρίσκεται στη θέση $\overrightarrow{x_A}$ = 3 m, το σώμα Β βρίσκεται στη θέση $\overrightarrow{x_B}$ = 6m ενώ το σώμα Γ στη θέση $\overrightarrow{x_\Gamma}$ = -2 m

2. Πως βρίσκουμε τη μετατόπιση $(\overrightarrow{\Delta x})$ ενός σώματος ;

Ένα σώμα θα λέμε ότι κινείται ή μετατοπίζεται όταν αλλάζει η θέση του.

Μετατόπιση (Δx) ενός σώματος ονομάζουμε τη διαφορά της τελικής θέσης του σώματος μείον την αρχική θέση του σώματος

$$\overrightarrow{\Delta x} = \overrightarrow{x_{\tau \varepsilon \lambda}} - \overrightarrow{x_{\alpha \rho \gamma}}$$

Πχ . Η μετατόπιση από το A στο B είναι : $\overrightarrow{\Delta x} = \overrightarrow{xB} - \overrightarrow{xA} = 6m - 3m = 3m$, ενώ η μετατόπιση από το Δ στο Γ είναι : $\overrightarrow{\Delta x} = \overrightarrow{x\Gamma} - \overrightarrow{x\Delta} = -2m - 2m = -4m$

- Θετική μετατόπιση έχουμε όταν το σώμα κινείται προς τα δεξιά
- Αρνητική μετατόπιση έχουμε όταν το σώμα κινείται προς τα αριστερά.

3. Μονόμετρα & διανυσματικά μεγέθη

Τα φυσικά μεγέθη τα χωρίζουμε σε : **Μονόμετρα** που είναι τα μεγέθη που μπορούν να προσδιοριστούν μόνο με το μέτρο τους (πχ. μάζα, χρόνος, εμβαδόν, πυκνότητα, όγκος, απόσταση) και σε **Διανυσματικά** που είναι τα μεγέθη που χρειάζονται εκτός από το μέτρο τους και την κατεύθυνσή τους (πχ. θέση, μετατόπιση, ταχύτητα, δύναμη).

4. Διάστημα της κίνησης

Διάστημα (ή απόσταση) ονομάζουμε το **μήκος της διαδρομής** που διένυσε το σώμα. Για το διάστημα δε μας ενδιαφέρει η κατεύθυνση της κίνησης, απλώς το μήκος της διαδρομής.

5. Τροχιά της κίνησης

Τροχιά ονομάζουμε το σύνολο των διαδοχικών θέσεων από τις οποίες διέρχεται ένα σώμα καθώς κινείται.

Η τροχιά μπορεί να είναι *ευθύγραμμη* (αν το σώμα κινείται σε ευθεία γραμμή) , ή καμπυλόγραμμη

6. Χρονική στιγμή – χρονικό διάστημα

Μία στιγμή στο χρόνο ονομάζεται χρονική στιγμή και παριστάνεται με ${\bf t}$ (t_1 , t_2 , t_3). Χρονικό διάστημα ονομάζουμε τη διαφορά δύο χρονικών στιγμών ${\bf \Delta t}$ = t_2 – t_1 .

2.2 Η ΕΝΝΟΙΑ ΤΗΣ ΤΑΧΥΤΗΤΑΣ

1. Πως ορίζουμε τη ταχύτητα ενός σώματος ;

Η ταχύτητα ενός σώματος δείχνει το πόσο γρήγορα ή αργά κινείται ένα σώμα. Σχετίζεται με τη μετατόπιση του σώματος αλλά και με το χρόνο που χρειάζεται για να γίνει αυτή η μετατόπιση.

Μέση ταχύτητα ενός σώματος ονομάζουμε το πηλίκο του μήκους της διαδρομής που διένυσε ένα σώμα σε κάποιο χρονικό διάστημα προς το χρονικό διάστημα που έγινε αυτή η διαδρομή.

2. Ποια είναι η μονάδα μέτρησης της ταχύτητας στο S.I.;

Σύμφωνα με τον τύπο ορισμού της ταχύτητας , η μονάδα μέτρησης της ταχύτητας είναι το **1 m/sec**.

Άλλες μονάδες μέτρησης είναι: 1 km/h, 1 km/sec, 1 cm/sec κα.

Πχ. 36 km/h =
$$36 \frac{1000m}{3600sec}$$
 = 10 m/sec.

3. Τι είναι η στιγμιαία ταχύτητα ;

Όταν κινείται ένα σώμα, η ταχύτητά του δε παραμένει σταθερή αλλά μεταβάλλεται συνεχώς.

Στιγμιαία ταχύτητα ονομάζεται η ταχύτητα που έχει το σώμα σε μία ορισμένη χρονική στιγμή.

4. Πως επιλύουμε το τύπο της ταχύτητας ως προς τα άλλα μεγέθη ;

Χρησιμοποιώντας τη μέθοδο της πυραμίδας, προκύπτει ότι :

$$v = \frac{s}{t}$$
 , $s = v \cdot t$, $t = \frac{s}{v}$

5. Πότε μια κίνηση λέγεται ευθύγραμμη ομαλή ;

Μία κίνηση λέγεται **ευθύγραμμη ομαλή** όταν το σώμα έχει **σταθερή ταχύτητα** σε όλη τη διάρκεια της κίνησης.

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΚΙΝΗΣΕΙΣ

- **1.** Ένα αυτοκίνητο ξεκινάει από την Αθήνα για τη Πάτρα που απέχει 210km. Το ταξίδι διαρκεί 3 h. Ποια είναι η μέση ταχύτητα του αυτοκινήτου ;
- **2.** Η μέση ταχύτητα ενός αυτοκινήτου είναι υ=20 m/s.
 - Α) πόση απόσταση θα έχει διανύσει το αυτοκίνητο σε 2 ώρες;
 - B) σε πόσο χρόνο θα έχει διανύσει απόσταση x= 2000 m;
- **3.** Η μέση ταχύτητα ενός δρομέα των 10000m είναι υ=4m/s. Να βρείτε σε πόσο χρόνο θα τερματίσει ;
- **4.** Τη χρονική στιγμή t_1 =3sec , ένα σώμα βρίσκεται στη θέση x_1 = 20m και τη χρονική στιγμή t_2 = 8sec, το ίδιο σώμα βρίσκεται στη θέση x_2 =30m. Να υπολογίσετε :
 - Α) την απόσταση των δύο θέσεων του σώματος
 - Β) τη χρονική διάρκεια της κίνησης
 - Γ) τη μέση ταχύτητα του σώματος
- **5.** Ένα σώμα κινείται με σταθερή ταχύτητα . Να συμπληρώσετε το παρακάτω πίνακα :

Χρόνος (sec)	Διάστημα (m)	Taxὑτητa (m/s)
5	30	
13		
	90	

- **6.** Δύο σώματα κινούνται πάνω σε ένα ευθύγραμμο δρόμο. Το πρώτο σώμα έχει ταχύτητα u_1 =72 km/h, ενώ το δεύτερο u_2 = 25 m/s. Ποιο από τα δύο σώματα έχει μεγαλύτερη ταχύτητα ;
- **7.** Ένας δρομέας κινείται σε ευθύγραμμο δρόμο κινούμενος με σταθερή ταχύτητα. Αν τη χρονική στιγμή t =6s,βρίσκεται στη θέση x=18m, να υπολογίσετε:
 - α) τη ταχύτητα του δρομέα
 - β) τη θέση του δρομέα τη χρονική στιγμή t=30s
 - γ) πότε ο δρομέας θα έχει διανύσει 600m;
 - δ) να κάνετε τη γραφική παράσταση θέσης χρόνου για τη κίνηση του δρομέα μέχρι τη χρονική στιγμή 10sec