Ejercicio 5.6.a. Estudiar la continuidad de la siguiente función:

$$f(x) = \begin{cases} 0 & si \operatorname{sen}(x) \le 0, \\ 1/e & si \operatorname{cos}(2x) = 0, \operatorname{sen}(x) > 0, \\ (2\operatorname{sen}(x))^{1/\operatorname{cos}(2x)} & en \ caso \ contrario. \end{cases}$$

Solución. La función es claramente 2π -periódica, de forma que nos podemos ceñir sencillamente a $[0, 2\pi]$ para discutir la continuidad de f. En dicho intervalo se distinguen los cambios en la definición de f en 0 y en π , así como en $\pi/4$ y $3\pi/4$. En el caso de $\pi/4$, tenemos lo siguiente*:

$$\lim_{x \to \pi/4^{-}} f(x) = \lim_{x \to \pi/4^{-}} (2\operatorname{sen}(x))^{1/\cos(2x)} \stackrel{!}{=} (\sqrt{2})^{\infty} \stackrel{!}{=} \infty.$$

mientras que el otro límite lateral resulta

$$\lim_{x \to \pi/4^+} f(x) = \lim_{x \to \pi/4^+} (2 \operatorname{sen}(x))^{1/\cos(2x)} = (\sqrt{2})^{-\infty} = 0.$$

Se obtiene un resultado análogo en $3\pi/4$. Por último, observamos que

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2\operatorname{sen}(x))^{1/\cos(2x)} = 0,$$

dado que sen $(x) \to 0$ cuando $x \to 0$ mientras que $\cos(2x) \to 1$ cuando $x \to 0$, con lo que f es continua en 0. Se razona de la misma forma para concluir que f es continua en π . Así, la función no es continua en los puntos $\pi/4 + 2\kappa\pi$, $3\pi/4 + 2\kappa\pi$, cualquiera que sea $\kappa \in \mathbb{Z}$.

Ejercicio 5.8. Determínese c > 0 para que sea continua la función $f : \mathbb{R} \to \mathbb{R}$, dada por:

$$f(x) = \begin{cases} 3 - \sqrt{c} x & \text{si } x \le c, \\ \frac{x - c}{\sqrt{x} - \sqrt{c}} & \text{si } x > c. \end{cases}$$

*Veamos la justificación dicho límite rigurosamente, mediante el Criterio ε - δ de Weierstraß. En primer lugar, dado que $2 \operatorname{sen}(x) \to \sqrt{2}$ cuando $x \to \pi/4^-$, pues $x \mapsto 2 \operatorname{sen}(x)$ deducimos que para todo $\varepsilon > 0$, existe $\delta > 0$ de forma que si $x \in (\pi/4 - \delta, \pi/4)$, entonces $\sqrt{2} - 2 \operatorname{sen}(x) < \varepsilon$. Si tomamos, por ejemplo, $\varepsilon_0 := (\sqrt{2} - 1)/2 > 0$, deducimos que para cierto $\delta_0 > 0$, cualquiera que sea $x \in (\pi/4 - \delta_0, \pi/4)$, tenemos que $2 \operatorname{sen}(x) \ge (\sqrt{2} + 1)/2 =: c$, que satisface c > 1 (gracias a que hemos elegido ε_0 de la forma anterior, aunque podríamos haber elegido sencillamente $\varepsilon_0 := \sqrt{2} - 1{,}0001$). Ahora bien, dado que

$$\lim_{x \to \pi/4^-} c^{1/\cos(2x)} = +\infty,$$

como hemos visto como consecuencia de la Desigualdad de Bernoulli y que las exponenciales con base mayor que 1 son funciones estrictamente crecientes, lo cual significa más concretamente que para todo M>0, existe $\eta(M)>0$ de forma que para todo $x\in(\pi/4-\eta(M),\pi/4)$, se tiene $c^{1/\cos(2x)}>M$. Concluimos así que dado cualquier M>0 existe $\delta(M):=\min\{\delta_0,\eta(M)\}$ de forma que

$$(2\operatorname{sen}(x))^{1/\cos(2x)} \ge c^{1/\cos(2x)} > M,$$

como queríamos demostrar.

Solución. En primer lugar, calculemos el límite lateral por la izquierda

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{-}} (3 - \sqrt{c}x) = 3 - \sqrt{c}c = 3 - (\sqrt{c})^{3} = f(c),$$

mientras que el límite lateral por la derecha resulta

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{+}} \frac{x - c}{\sqrt{x} - \sqrt{c}} = \lim_{x \to c^{+}} \frac{x - c}{\sqrt{x} - \sqrt{c}} \frac{\sqrt{x} + \sqrt{c}}{\sqrt{x} + \sqrt{c}}$$

$$= \lim_{x \to c^{+}} \frac{(x - c)(\sqrt{x} + \sqrt{c})}{x - c} = \lim_{x \to c^{+}} (\sqrt{x} + \sqrt{c}) = 2\sqrt{c}.$$

de forma que para que ambas expresiones coincidan, y equivalentemente f sea continua, basta hallar las soluciones de la ecuación

$$2\sqrt{c} = 3 - (\sqrt{c})^3$$

o equivalentemente, tras realizar el cambio de variable $z \equiv \sqrt{c}$, las soluciones reales no negativas de la ecuación $z^3 + 2z - 3 = 0$. En virtud del Teorema Fundamental del Álgebra, dicha ecuación tiene a lo sumo tres soluciones, y un método que sue-le funcionar consiste en probar soluciones enteras, más concretamente divisores del término independiente, como consecuencia del Teorema del Resto. Una solución es claramente z = 1, de forma que podemos escribir $z^3 + 2z - 3 = (z - 1)(z^2 + z + 3)$ empleando la Regla de división de Ruffini. La ecuación $z^2 + z + 3 = 0$ no tiene, sin embargo, soluciones reales, de forma que c = 1 es la única elección posible para que c = 1 sea continua.

Ejercicio 5.9. (a) Hállese una función definida en \mathbb{R} que sea discontinua en $\{1/n : n \in \mathbb{N}\}$, pero continua en los demás puntos (b) Hállese una función definida en \mathbb{R} que sea discontinua en $\{1/n : n \in \mathbb{N}\} \cup \{0\}$, pero continua en los demás puntos.

Solución. Definimos $f: \mathbb{R} \to \mathbb{R}$, dada por

$$f(x) = \begin{cases} 1 & \text{si } x = 1/n \text{ para algún } n \in \mathbb{N}, \\ 0 & \text{en caso contrario.} \end{cases}$$

Observamos que f no es continua en cada punto de la forma 1/n dado que f es nula en (1/(n+1), 1/n), y por ende

$$\lim_{x \to 1/n^+} f(x) = 0 \neq 1 = f(1/n).$$

En 0 tampoco es continua, dado que

$$f(0) = 0 \neq 1 = \lim_{n \to \infty} f(1/n),$$

esto es, no es secuencialmente continua. Ahora, $g: \mathbb{R} \to \mathbb{R}$, dada por

$$g(x) = \begin{cases} 1/n & \text{si } x = 1/n \text{ para algún } n \in \mathbb{N}, \\ 0 & \text{en caso contrario.} \end{cases}$$

es continua en 0, como sencillamente se puede comprobar. Sin embargo, es claramente discontinua en $\{1/n : n \in \mathbb{N}\}$ como se razona análogamente al caso anterior.

Recordemos ahora que \mathbb{Q} es denso en \mathbb{R} , esto es, si escogemos cualquier número real, podemos encontrar un número racional tan cercano a éste como queramos, esto es, dado $x \in \mathbb{R}$, para todo $\varepsilon > 0$ existe $r \in \mathbb{Q}$ de forma que $|x - r| < \varepsilon$. Sabemos

también que $\mathbb{R} \setminus \mathbb{Q}$ es denso en \mathbb{R} . En la mayoría de ocasiones, y con el objetivo de evitar sobrecargar la notación, evitaremos hacer referencia a las dependencias de unas variables respecto de otras. Por ejemplo, en la anterior expresión, r dependerá tanto de x como de ε . Podríamos denotar entonces $r_{x,\varepsilon}$ o bien $r(x,\varepsilon)$ para hacer énfasis en dicha dependencia. Otra opción suele ser escribir $r \equiv r(x,\varepsilon)$ y no hacer más referencias a x y ε . Especificar las dependencias y tenerlas en mente es muy importante, y es particularmente clarificador, por ejemplo, a la hora de distinguir entre la continuidad de una función y la continuidad uniforme. Por otra parte, y en adelante, si X es un conjunto cualquiera, denotaremos, para cada subconjunto $A \subseteq X$, por $\chi_A : X \to \{0,1\}$, la función dada por

$$\chi_A(x) = \begin{cases} 0 & \text{si } x \notin A, \\ 1 & \text{si } x \in A, \end{cases}$$

comúnmente conocida como función característica de A en X. Por último, recordemos que, en lógica matemática, si P (la hipótesis) y Q (la tesis) denotan dos proposiciones lógicas, la implicación $P \implies Q$ se define como $\neg P \lor Q$, la cual es necesariamente cierta si no se cumple la hipótesis P, o se cumple la tesis Q si se cumple la hipótesis P. Por tanto, $\neg(P \implies Q)$ equivale a $P \land \neg Q$. Además, si R es una proposición sobre los elementos de un conjunto, $\neg(\exists x \ R(x))$ es equivalente a $\forall x \ \neg R(x)$ y de la misma forma, $\neg(\forall x \ R(x))$ es equivalente a $\exists x \ \neg R(x)$. Con ello, se deduce fácilmente que la negación de la continuidad de una función f en un punto $x \in \mathbb{R}$,

$$\neg(\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall y \in \mathbb{R} \quad |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon)$$

es equivalente a la siguiente proposición:

$$\exists \varepsilon > 0 \quad \forall \delta > 0 \quad \exists y \in \mathbb{R} \quad |x - y| < \delta \wedge |f(x) - f(y)| \ge \varepsilon.$$

Esto resultará suficiente para demostrar, en muchos ejercicios, con elecciones sencillas de ε e y, la falta de continuidad en ciertos puntos x.

Ejercicio 5.10. Dar un ejemplo de función $f : \mathbb{R} \to \mathbb{R}$ que sea discontinua en cualquier punto de \mathbb{R} pero tal que |f| sea continua en \mathbb{R} .

Solución. Consideremos la función $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f = \chi_{\mathbb{Q}} - \chi_{\mathbb{R} \setminus \mathbb{Q}},$$

la cual toma el valor -1 en $\mathbb{R} \setminus \mathbb{Q}$, el valor +1 en \mathbb{Q} y no es continua en ningún punto. En efecto, siguiendo la negación de la continuidad de f, dado $x_0 \in \mathbb{Q}$, se tiene que $f(x_0) = 1$, pero existe $\varepsilon := 1$, de forma que para todo $\delta > 0$ podemos encontrar $y \in B(x_0, \delta) \cap (\mathbb{R} \setminus \mathbb{Q})$, dada la densidad de $\mathbb{R} \setminus \mathbb{Q}$ en \mathbb{R} , que satisface $|f(x_0) - f(y)| = |1 - (-1)| = 2 \ge \varepsilon = 1$, como queríamos. Se razona análogamente supuesto que $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Sin embargo, |f| = 1 en \mathbb{R} , la cual es trivialmente continua.