第3章 逻辑代数基础

3.1 已知逻辑函数真值表如题表3.1 所示,写出函数对应的标准与或表达式、标准或与表达式。

解:

$F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C$
$=\sum (0,1,4,5)$
$= (A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)(\overline{A} + \overline{B} + \overline{C})$
$=\prod (2,3,6,7)$

题表 3.1						
A	В	С	F			
0	0	0	1			
0	0	1	1			
0	1	0	0			
0	1	1	0			
1	0	0	1			
1	0	1	1			
1	1	0	0			
1	1	1	0			

- 3.2 写出下列函数的标准与或式、标准或与式。
 - (1) $X = (A+B+D)(A+C+\overline{D})(\overline{B}+\overline{C}+D)$
- 解: (先求标准或与式,得最大项;最大项中没有的编号构成最小项,组成标准与或式)

$$X = (A + B + D)(A + C + \overline{D})(\overline{B} + \overline{C} + D)$$

$$= (A+B+C+D)(A+B+\overline{C}+D)(A+B+C+\overline{D})(A+\overline{B}+\overline{C}+D)(\overline{A}+\overline{B}+\overline{C}+D)$$

$$= \prod (0,1,2,6,14) = \sum (3,4,5,7,8,9,10,11,12,13,15)$$

- (2) $X = BCD + A\overline{C} \overline{D} + \overline{A} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{D}$
- 解:(先求标准与或式,得最小项;最小项中没有的编号构成最大项,组成标准或与式)

$$X = BCD + A\overline{C} \overline{D} + \overline{A} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{D}$$

$$=ABCD+\overline{A}BCD+AB\overline{C}\ \overline{D}+A\overline{B}\ \overline{C}\ \overline{D}+\overline{A}B\overline{C}\ \overline{D}+\overline{A}\ \overline{B}\ \overline{C}\ \overline{D}+\overline{A}\ \overline{B}C\overline{D}$$

$$= \sum (0, 2, 4, 7, 8, 12, 15) = \prod (1, 3, 5, 6, 9, 10, 11, 13, 14)$$

3.3 分别指出下列逻辑函数的所有最大项和所有最小项,并说明哪些变量组合使得函数为 0,哪些变量组合使得函数为 1。

(1)
$$X = (\overline{A} + B)(B + \overline{C})(\overline{A} + C)(A + \overline{C})(\overline{B} + C)$$

$$X = (\overline{A} + B)(B + \overline{C})(\overline{A} + C)(A + \overline{C})(\overline{B} + C)$$

$$= (\overline{A} + B + C)(\overline{A} + B + \overline{C})(A + B + \overline{C})(\overline{A} + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)$$

$$= \prod (1,2,3,4,5,6) = \sum (0,7)$$

使函数为 0 的组合即最大项,有 ABC= "110", "101", "100", "011", "010", "001"; 使之为 1 的逻辑变量组合有 ABC= "000", "111"。

(2)
$$X = (A \oplus C)B + (A \oplus \overline{C})D$$

$$X = \sum (1,5,6,7,11,12,13,15) + \prod (0,2,3,4,8,9,10,14)$$

使函数为 0 的组合即最大项,有 ABCD= "0000", "0010", "0011", "0100", "1000", "1000", "1001", "1010", "1110", 使之为 1 的逻辑变量组合有 ABCD="0001", "0101", "0110", "0111", "1011", "1100", "1101", "1111"。

(3)
$$X = \overline{AC} + \overline{AB} + B\overline{CD} + BD + A\overline{BD} + \overline{ABCD}$$

$$X = \sum (0,1,2,3,4,5,6,7,8,10,12,13,15) + \prod (9,11,14)$$

使函数为 0 的组合即最大项,有 ABCD="1001","1011","1110";使之为 1 的逻辑变量组合有 ABCD="0000","0001","0010","0011","0100","0110","0111","1000","1010","1100","1101","1111"。

3.4 写出下列函数的对偶式。

(1)
$$F = (A + \overline{B})(\overline{A} + B)(B + C)(\overline{A} + C)$$

$$\widetilde{R}: F' = A\overline{B} + \overline{AB} + BC + \overline{AC}$$

(2)
$$F = A + \overline{B + \overline{C}}$$

解:
$$F' = A \cdot \overline{BC}$$

$$(3) \quad F = \overline{A} \cdot \overline{B + \overline{C}}$$

解:
$$F' = \overline{A} + \overline{BC}$$

(4)
$$F = AB + \overline{BC} + \overline{AC}$$

解:
$$F' = (A+B)(\overline{B}+\overline{C})(\overline{A}+C)$$

(5)
$$F = \overline{A} + \overline{BC} + D$$

解:
$$F' = \overline{A}(\overline{B} + \overline{C})D$$

(6)
$$F = (A + \overline{C})(B + C + D)(A + B + D) + ABC$$

解:
$$F' = A\overline{C} + BCD + ABD(A + B + C)$$

(7)
$$F = (A + \overline{B})(\overline{A} + C)(B + C)$$

解:
$$F' = A\overline{B} + \overline{AC} + BC$$

(8)
$$F = A\overline{B}C + \overline{C}D + B\overline{D} + C$$

解:
$$F' = (A + \overline{B} + C)(\overline{C} + D)(B + \overline{D})C$$

(9)
$$F = A \cdot \overline{\overline{B} + C} + \overline{AD}$$

解:
$$F' = (A + \overline{BC})(\overline{A} + D)$$

3.5 写出下列函数的反函数。

(1)
$$F = A + \overline{B + C + D + E}$$

解:
$$\overline{F} = \overline{A} \cdot \overline{BC} \cdot \overline{\overline{DE}}$$

(2)
$$F = B[(C\overline{D} + A) + \overline{E}]$$

解:
$$\overline{F} = \overline{B} + (\overline{C} + D)\overline{A}E$$

(3)
$$F = A\overline{B} + \overline{C}D$$

解:
$$\overline{F} = (\overline{A} + B)(C + \overline{D})$$

(4)
$$F = (A \oplus B)C + (B \oplus \overline{C})D$$

$$\widetilde{\mathbf{M}}: F = \overline{ABC} + \overline{ABC} + \overline{BCD} + BCD$$

$$\overline{F} = (A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})(B + C + \overline{D})(\overline{B} + \overline{C} + \overline{D})$$

(5)
$$F = (\overline{A} + \overline{B})(BCD + \overline{E})(\overline{C} + A)$$

解:
$$\overline{F} = AB + (\overline{B} + \overline{C} + \overline{D})E + \overline{AC}$$

(6)
$$F = (\overline{A} + D)(\overline{B} + \overline{C} + \overline{D})(AB + C)$$

$$\widetilde{F} = A\overline{D} + BCD + (\overline{A} + \overline{B})\overline{C}$$

(7)
$$F = BC + \overline{AB} + A\overline{BC}$$

$$\widetilde{R}: \overline{F} = (\overline{B} + \overline{C})(A + \overline{B})(\overline{A} + B + \overline{C})$$

(8)
$$F = \overline{A} + \overline{B} + \overline{D} + \overline{C}$$

解:
$$\overline{F} = A\overline{BDC}$$

3.6 将下列函数写成与非-与非式。

(1)
$$XY + \overline{X}Z + \overline{Y}\overline{Z}$$

$$M: XY + \overline{X}Z + \overline{Y} \overline{Z} = \overline{\overline{XY + \overline{X}Z + \overline{Y}} \overline{Z}} = \overline{\overline{XY} \cdot \overline{\overline{X}Z} \cdot \overline{\overline{Y}} \overline{Z}}$$

(2)
$$XYZ + \overline{X}\overline{Y}\overline{Z}$$

$$\widetilde{\mathbf{M}}: XYZ + \overline{X} \ \overline{Y} \ \overline{Z} = \overline{\overline{XYZ} + \overline{X} \ \overline{Y} \ \overline{Z}} = \overline{\overline{XYZ} \cdot \overline{\overline{X} \ \overline{Y} \ \overline{Z}}}$$

(3)
$$\overline{A+C+D} + \overline{ABCD} + A\overline{BCD}$$

解

$$= \overline{ACD} + \overline{ABCD} + A\overline{BCD}$$

$$= \overline{ACD} \ \overline{AB}CD \ A\overline{B}C\overline{D}$$

$$(4) (A+B)(B+C+D)(A+B+C)$$

解:

$$=B\overline{C}+B\overline{D}+\overline{A}\overline{B}C$$

$$=\overline{\overline{B\overline{C}}}\,\,\overline{\overline{B\overline{D}}}\,\,\overline{\overline{\overline{A}}\overline{B}C}$$

(5)
$$A[(B\overline{D}+C)+\overline{E}]$$

解:

$$= AB\overline{D} + AC + A\overline{E}$$

$$=\overline{\overline{ABD}}\,\overline{\overline{AC}}\,\overline{\overline{AE}}$$

(6)
$$A \oplus B \oplus C$$

$$= \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

$$=\overline{\overline{ABC}}\ \overline{\overline{ABC}}\ \overline{\overline{ABC}}\ \overline{\overline{ABC}}\ \overline{\overline{ABC}}$$

3.7 将下列函数写成"或非-或非式"。

$$(1) (\overline{A} + \overline{B})(B + C)$$

$$\widetilde{H}: (\overline{A} + \overline{B})(B + C) = \overline{(\overline{A} + \overline{B})(B + C)} = \overline{\overline{A} + \overline{B} + \overline{B} + \overline{B}}$$

(2)
$$(A+B+\overline{C})(\overline{A}+\overline{C}+D)(\overline{B}+C+\overline{D})$$

$$\widetilde{\mathbf{R}}: = \overline{\overline{A} + B + \overline{C} + \overline{A} + \overline{C} + D + \overline{B} + C + D}$$

(3)
$$\overline{(A+C)(A+C+D)} + ABC + \overline{A+B+D}$$

解:

$$=(\overline{A}+B)(C+\overline{D})(\overline{A}+C)$$

$$=\overline{(\overline{A}+B)}+\overline{(C+\overline{D})}+\overline{(\overline{A}+C)}$$

(4)
$$A \oplus B \oplus C$$

解:

$$=(A+B+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)(\overline{A}+B+\overline{C})$$

$$= \overline{(A+B+C)} + \overline{(A+\overline{B}+\overline{C})} + \overline{(\overline{A}+\overline{B}+C)} + \overline{(\overline{A}+B+\overline{C})}$$

(5)
$$\overline{AB} + \overline{B(C+D)}$$

解:

$$=(\overline{A}+\overline{B}+\overline{D})(\overline{A}+\overline{B}+\overline{C})$$

$$=\overline{(\overline{A}+\overline{B}+\overline{D})}+\overline{(\overline{A}+\overline{B}+\overline{C})}$$

(6)
$$ABD + \overrightarrow{ACD} + \overrightarrow{CD} + \overrightarrow{ABC} + \overrightarrow{ACD}$$

解:

$$=(A+\overline{D})(\overline{A}+\overline{B}+\overline{C}+D)$$

$$= \overline{(A+\overline{D})} + \overline{(\overline{A}+\overline{B}+\overline{C}+D)}$$

(7)
$$\overline{ABC} + \overline{BCD} + \overline{ABD}$$

解:

$$=(A+\overline{B})(\overline{A}+\overline{D})(\overline{A}+\overline{C})(B+C+D)$$

$$= \overline{(\overline{A} + \overline{B})} + \overline{(\overline{A} + \overline{D})} + \overline{(\overline{A} + \overline{C})} + \overline{(\overline{B} + C + D)}$$

(8)
$$\overline{CD} \cdot \overline{BC} \cdot \overline{\overline{ABDC}}$$

解:
$$= (A + \overline{B})D(B + C)(\overline{B} + \overline{C})$$
$$= (\overline{A + \overline{B}}) + \overline{D} + (\overline{B} + \overline{C}) + (\overline{\overline{B}} + \overline{\overline{C}})$$

3.8 用公式法化简下列逻辑函数成最简与或式。

(1)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} + \overrightarrow{AB}$$

解: 原式

$$=A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B + A\overline{C}$$
 第5由第1、3增加的冗余

$$=A\overline{B}+B\overline{C}+\overline{A}B+A\overline{C}$$

$$= B\overline{C} + \overline{A}B + A\overline{C}$$

答案二: AB + BC + AC

(2)
$$\overline{ABBCBCDABCD} + \overline{ABCD}$$

解:原式

$$= A + B + B\overline{C} + B\overline{C}D + \overline{A}\overline{B}CD + \overline{A}\overline{B}\overline{C}D$$

$$= A + \overline{B}CD + \overline{B}\overline{C}D + B + B\overline{C} + B\overline{C}D$$

$$=A+\overline{B}D+B$$

$$=A+B+D$$

(3)
$$(A+B)(B+D)(\overline{C}+\overline{D})(A+C+\overline{D})(\overline{B}+\overline{C}+D)$$

解:原式取对偶

$$F' = AB + BD + \overline{CD} + AC\overline{D} + \overline{BC}D$$

$$=AB+BD+\overline{C}\overline{D}+\overline{B}\overline{C}D+A\overline{D}$$

$$=AB+BD+\overline{C}\overline{D}+\overline{B}\overline{C}+A\overline{D}$$

$$=AB+BD+\overline{C}\overline{BD}+A\overline{D}$$

$$=AB+BD+\overline{C}+A\overline{D}$$
 冗余定理

$$=BD + \overline{C} + A\overline{D}$$

对上式再去对偶, 原式

$$=(B+D)(A+\overline{D})\overline{C}$$

$$=(AB+AD+B\overline{D})\overline{C}$$

$$=(AD+B\overline{D})\overline{C}$$

$$=A\overline{C}D+B\overline{C}\overline{D}$$

(4)
$$\overline{\overline{C} D + A} + CD + AB$$

解:
$$\overline{\overline{CDA}} + CD + AB = \overline{AC} + \overline{AD} + CD + AB$$

(5)
$$\overline{\overline{A}} \overline{\overline{B}} \overline{\overline{\overline{C}}} \overline{\overline{\overline{C}}} \overline{\overline{\overline{C}}} \overline{\overline{\overline{B}}} \overline{\overline{\overline{C}}} \overline{\overline{\overline{C}}} + \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} \overline{\overline{\overline{C}}}$$

解: 原式

$$=A+B+B\overline{C}+B\overline{C}D+\overline{ABCD}+\overline{A}(B+C+\overline{D})$$

$$=A+B+\overline{B}CD+B+C+\overline{D}$$

$$=A+B+CD+C+\overline{D}$$

$$=A+B+C+\overline{D}$$

(6)
$$\overline{AC + \overline{ABC} + \overline{BC}} + AB\overline{C}$$

$$\widetilde{\mathbf{H}}_{:} \quad F_{6} = \overline{AC + BC + \overline{BC}} + AB\overline{C} = \overline{C} + AB\overline{C} = \overline{C}$$

(7)
$$AB + A\overline{C} + \overline{B}C + B\overline{C} + \overline{B}D + B\overline{D} + ADE(F + G)$$

解:原式

$$=A\overline{BC} + \overline{BC} + B\overline{C} + B\overline{D} + B\overline{D} + ADE(F+G)$$

$$=A+\overline{B}C+B\overline{C}+\overline{B}D+B\overline{D}$$

$$=A+BC+BC+BD+BD+CD$$
 增加第6项,是第3,4项的冗余项

$$=A+BC+BD+BD+CD$$
 上式第3项是第5.6项的冗余

$$=A+BC+BD+CD$$
 上式第3项是第2,5项的冗余

(8)
$$AB + A\overline{B} + \overline{AB} \cdot (\overline{A}\overline{B} + CD)$$

$$\widetilde{\mathbf{H}}: F_{\mathbf{g}} = \overline{A + B} \cdot (\overline{A} \ \overline{B} + CD) = \overline{A} \ \overline{B} \cdot (\overline{A} \ \overline{B} + CD) = \overline{A} \ \overline{B}$$

(9)
$$(A+C+D)(A+C+\overline{D})(A+\overline{C}+D)(A+\overline{B})$$

解: 上式取对偶

$$F' = ACD + AC\overline{D} + A\overline{C}D + A\overline{B}$$

$$=AC+A\overline{C}D+A\overline{B}$$

$$=AC+AD+A\overline{B}$$

$$=A(\overline{B}+C+D)$$

再次取对偶 原式=
$$=A+BCD$$

(10)
$$ABC + \overline{A}\overline{C}(B + \overline{D})\overline{C}D$$

$$\widetilde{\mathbf{M}}: F_{10} = ABC + A + C + \overline{B}D + C + \overline{D} = A + \overline{B} + C + \overline{D}$$

$$(11) \overline{X+Y} \cdot \overline{\overline{X}+\overline{Y}}$$

解: 原式= $\overline{X}\overline{Y}XY=0$

(12)
$$ABC + \overline{A}\overline{B}C + \overline{A}BC + AB\overline{C} + \overline{A}\overline{B}\overline{C}$$

解: 原式

$$=BC + \overline{AB} + AB\overline{C}$$
 第2、4项合并

$$=B(C+A\overline{C})+\overline{AB}$$

$$=BC+AB+\overline{AB}$$

答案二:
$$AB + \overline{AB} + \overline{AC}$$

(13)
$$\overline{A} + C + D \cdot (A + \overline{C})(\overline{A} + B)(\overline{B} + C)$$

解:原式

$$=A\overline{C} + D[\overline{A}C + A\overline{B} + B\overline{C}]$$

$$=A\overline{C}+\overline{A}CD+A\overline{B}D+B\overline{C}D$$

$$=A\overline{C}+\overline{ABCD}+\overline{ABCD}+A\overline{BCD}+A\overline{BCD}+AB\overline{CD}+AB\overline{CD}+AB\overline{CD}$$

第2,7项合并; 第1,5,6项吸收; 第3,4项合并

$$=A\overline{C} + \overline{A}BD + \overline{B}CD$$

(14)
$$A(\overline{B} + C + D)(B + \overline{D})$$

解: 原式

$$=A(\overline{BD}+BC+C\overline{D}+BD)$$

$$=A(\overline{BD}+BC+BD)$$
 上式前3项冗余定理

$$=A\overline{B}\overline{D}+ABC+ABD$$

答案二:
$$\overline{ABD} + A\overline{CD} + ABD$$

(15)
$$\overline{AB} + (AB + A\overline{B} + \overline{AB})C$$

解: 原式

$$=\overline{A}\overline{B}+(A+\overline{A}B)C$$

$$=\overline{A}\overline{B}+(A+B)C$$

$$=\overline{A}\overline{B}+AC+BC$$

$$=\overline{AB} + AC + BC + \overline{BC}$$
 第4项是前两项由冗余定理增加的

$$=\overline{A}\overline{B}+AC+C$$

$$=\overline{A}\overline{B}+C$$

(16)
$$A\overline{B}(C+D) + B\overline{C} + \overline{AB} + \overline{AC} + BC + \overline{BCD}$$

解: 原式

$$=\overline{ABC} + \overline{ABD} + \overline{BC} + \overline{AB} + \overline{AC} + \overline{BCD}$$
 第3.6项合并

$$=A\overline{B}C+A\overline{B}D+B+\overline{A}\overline{B}+\overline{A}C+\overline{B}\overline{C}\overline{D}$$

$$=AC+AD+B+\overline{A}+\overline{AC}+\overline{CD}$$

$$=C+D+B+\overline{A}+\overline{C}\overline{D}$$

$$=C+D+B+\overline{A}+\overline{D}$$

=1

(17)
$$(A+B)(A+C)(A+\overline{C})$$

解: 取对偶
$$F' = AB + AC + A\overline{C}$$

= A

再取对偶

原式 = A

(18)
$$\overline{(A+BC)(\overline{A}+\overline{D}E)}$$

解: 原式

$$= \overline{(A + B\overline{C})} + \overline{(\overline{A} + \overline{D}E)}$$

$$=\overline{A}\overline{B}\overline{\overline{C}}+A\overline{\overline{D}E}$$

$$=\overline{AB}+\overline{AC}+AD+A\overline{E}$$

(19)
$$A\overline{B}CD + ABD + A\overline{C}D$$

解: 原式

$$=AD(\overline{B}C+B+\overline{C})$$

$$=AD$$

(20)
$$AC(\overline{CD} + \overline{AB}) + BC(\overline{B} + AD + CE)$$

解: 原式

$$=BC(\overline{B}+AD+CE)$$

$$=BC(\overline{B}+AD)\overline{CE}$$

$$= ABCD(\overline{C} + \overline{E})$$

$$=ABCD\overline{E}$$

(21)
$$A\overline{B}(ACD + \overline{AD} + \overline{BC})(\overline{A} + B)$$

解: 原式

$$=A\overline{B}(\overline{A}+B)(ACD+\overline{AD}+\overline{BC})$$

$$=0(ACD + \overline{AD} + \overline{B}\overline{C})$$

=0

$$(22)$$
 $\overline{CD} + B\overline{CD} + \overline{BCD} + \overline{ABCD}$

解: 原式

$$=\overline{C}\overline{D} + B\overline{C}D + C\overline{D}(\overline{B} + \overline{A}B)$$

$$=\overline{C}\overline{D}+B\overline{C}D+\overline{B}C\overline{D}+\overline{A}C\overline{D}$$

$$=(\overline{C}+\overline{B}C+\overline{A}C)\overline{D}+\overline{B}\overline{C}D$$

$$= \overline{C}\overline{D} + \overline{B}\overline{D} + \overline{A}\overline{D} + B\overline{C}D$$

$$= \overline{C}(\overline{D} + BD) + \overline{B}\overline{D} + \overline{A}\overline{D}$$

$$=\overline{C}\overline{D} + B\overline{C} + \overline{B}\overline{D} + \overline{A}\overline{D}$$

$$=\overline{B}\overline{D}+\overline{A}\overline{D}+B\overline{C}$$

3.9 证明下列异或运算公式。

$$(1)$$
 $A \oplus 0 = A$

证明:
$$A \oplus 0 = \overline{A} \cdot 0 + A \cdot \overline{0} = 0 + A = A$$

(2)
$$A \oplus 1 = \overline{A}$$

证明:
$$A \oplus 1 = \overline{A} \cdot 1 + A \cdot \overline{1} = \overline{A} + 0 = \overline{A}$$

(3)
$$A \oplus A = 0$$

证明:
$$A \oplus A = \overline{A} \cdot A + A \cdot \overline{A} = 0$$

$$(4) A \oplus \overline{A} = 1$$

证明:
$$A \oplus \overline{A} = \overline{A} \cdot \overline{A} + A \cdot \overline{A} = \overline{A} + A = 1$$

$$(5) \quad AB \oplus A\overline{B} = A$$

证明:
$$AB \oplus A\overline{B} = \overline{AB} \cdot A\overline{B} + AB \cdot \overline{AB} = (\overline{A} + \overline{B}) \cdot A\overline{B} + AB \cdot (\overline{A} + B) = A\overline{B} + AB = A$$

3.10 证明下列等式成立。

(1)
$$A \odot B = \overline{A} \oplus B$$

证明:
$$\overline{A} \oplus B = \overline{A} \cdot B + \overline{A} \cdot \overline{B} = A \cdot B + \overline{A} \cdot \overline{B} = A \square B$$

(2)
$$\overline{A} \oplus B = A \oplus \overline{B}$$

证明:
$$\overline{A} \oplus B = \overline{\overline{A}} \cdot B + \overline{A} \cdot \overline{B} = A \cdot B + \overline{A} \cdot \overline{B} = A \cdot \overline{B} + \overline{A} \cdot \overline{B} = A \oplus \overline{B}$$
(3) $A \oplus B \oplus C = A \odot B \odot C$

证明:
$$A \oplus B \oplus C = \overline{(AB+A)B} \cdot C + \overline{AB} \overline{)AB}$$
$$= (A+B)\overline{(A+B)C+ABC} \overline{A}$$
$$= ABC+\overline{ABC} \overline{ABC} \overline{AB}$$

$$A \odot B \odot C = \overline{(AB + \overline{AB})} \cdot \overline{C} + (AB + \overline{AB}) \cdot C$$
$$= (\overline{A} + \overline{B})(A + B)\overline{C} + ABC + \overline{AB}C$$

$$= A\overline{BC} + \overline{ABC} + ABC + \overline{ABC}$$

3.11 化简下列各式为最简或与式。

(1)
$$X = (\overline{A} + B)(B + \overline{C})(\overline{A} + C)(A + \overline{C})(\overline{B} + C)$$

解:

$$X' = \overline{AB} + B\overline{C} + A\overline{C} + A\overline{C} + \overline{BC}$$

$$= \overline{AB} + A\overline{C} + \overline{BC}$$

$$X = (\overline{A} + B)(A + \overline{C})(\overline{B} + C)$$

$$or = (A + \overline{B})(\overline{A} + C)(B + \overline{C})$$

(2)
$$X = (A+B)(B+D)(\overline{C}+\overline{D})(A+C+\overline{D})(\overline{B}+\overline{C}+D)$$

解:

$$X' = AB + BD + \overline{CD} + AC\overline{D} + \overline{B} C\overline{D}$$

$$= AB + (B + \overline{B} C)D + (\overline{C} + AC)\overline{D}$$

$$= AB + BD + \overline{C} + A\overline{D} = BD + \overline{C} + A\overline{D}$$

$$X = (B + D)(A + \overline{D})\overline{C}$$

$$(2) \quad X = (B + C + D)(A + \overline{C} + \overline{D})(\overline{A} + \overline{C} + \overline{D})(\overline{A}$$

(3)
$$X = (B+C+D)(A+\overline{C}+\overline{D})(\overline{A}+\overline{C}+\overline{D})(\overline{A}+\overline{B}+\overline{D})$$

$$\mathfrak{M}\colon \ X=(B+C+D)(\overline{C}+\overline{D})(\overline{A}+\overline{B}+\overline{D})$$

$$(4) \quad X = AD + A\overline{BD} + \overline{ABCD}$$

解:

$$X = (A + \overline{D})(A + \overline{C})(\overline{B} + D)$$

(5)
$$X = A\overline{B}(\overline{ACD} + \overline{(AD + BC)})(\overline{A} + B)$$

$$X = A\overline{B}(\overline{A} + B)(\overline{A}CD + \overline{(AD + BC)})$$

$$= (A\overline{B}\overline{A} + A\overline{B}B)(\overline{A}CD + \overline{(AD + BC)})$$

$$= (0 + 0) \bullet (\overline{A}CD + \overline{(AD + BC)})$$

$$= 0$$

(6)
$$X = AC(CD + \overline{AB}) + BC((B + AD) + CE)$$

解:

$$X = AC(\overline{C}D + \overline{A}B) + BC((\overline{B} + AD) + CE)$$

$$=0+BC((\overline{B}+AD)+CE)$$

$$=BC(\overline{B} + AD)\overline{CE}$$

$$=BC(\overline{B}+AD)(\overline{C}+\overline{E})$$

 $=ABCD\overline{E}$

(7)
$$X = \overrightarrow{ABD} + \overrightarrow{ABCD} + \overrightarrow{BCD} + (\overrightarrow{AB} + C)(B + D)$$

解:

$$X = (B+D)(\overline{B}+\overline{C})$$

(8)
$$X = \overrightarrow{ABCD} + \overrightarrow{ACDE} + \overrightarrow{BDE} + \overrightarrow{ACDE}$$

解:

答:
$$(D+E)(A+\overline{E})(\overline{B}+D+E)(\overline{A}+\overline{C}+\overline{E})$$

3.12 化简下列各式。

(1)
$$G = AB + \overline{B}C + AC$$

$$\widetilde{\mathbf{H}}: G = \overline{AB} \cdot \overline{\overline{BC}} = (\overline{A} + \overline{B})(B + \overline{C}) = \overline{AB} + \overline{A} \ \overline{C} + \overline{B} \ \overline{C} = \overline{AB} + \overline{B} \ \overline{C}$$

(2)
$$G = \overline{(A + \overline{C} + D)(\overline{B} + C + D)(\overline{A} + C + \overline{D})(\overline{A} + \overline{C} + D)}$$

$$\widetilde{\mathbf{M}}: G = \overline{ACD} + B\overline{C} \ \overline{D} + A\overline{CD} + A\overline{CD} = C\overline{D} + B\overline{C} \ \overline{D} + A\overline{CD} = C\overline{D} + B\overline{D} + A\overline{CD}$$

(3)
$$G = (A \oplus B)C + (B \oplus \overline{C})D$$

$$G = (A \square B + \overline{C})(B \square \overline{C} + \overline{D})$$

$$= (AB + \overline{A} \overline{B} + \overline{C})(B\overline{C} + \overline{B}C + \overline{D})$$

$$= AB\overline{C} + AB\overline{D} + \overline{A} \overline{B}C + \overline{A} \overline{B} \overline{D} + B\overline{C} + \overline{C} \overline{D}$$

$$= \overline{A} \overline{B}C + AB\overline{D} + \overline{A} \overline{B} \overline{D} + B\overline{C} + \overline{C} \overline{D}$$

$$= \overline{A} \overline{B}C + AB\overline{D} + B\overline{C} + \overline{C} \overline{D}$$

$$(4) G = A + (\overline{B} + \overline{C})(A + \overline{B} + C)(A + B + C)$$

解.

$$=A+\overline{B}C(A+AB+AC+A\overline{B}+\overline{B}C+AC+BC+C)$$

$$=A+\overline{B}C(A+\overline{B}C+BC+C)$$

$$=A+\overline{B}C(A+C)$$

$$=A+\overline{B}C$$

(5)
$$G = B\overline{C} + AB\overline{C}E + \overline{B(AD + AD)} + B(A\overline{D} + \overline{AD})$$

解:

$$= B\overline{C} + AB\overline{C}E + \overline{B}(A+D)(\overline{A}+\overline{D}) + B(A\overline{D}+\overline{A}D)$$

$$= B\overline{C} + AB\overline{C}E + \overline{B}(A\overline{D} + \overline{A}D) + B(A\overline{D} + \overline{A}D)$$

$$=B\overline{C} + AB\overline{C}E + A\overline{D} + \overline{A}D$$

$$= B\overline{C} + A\overline{D} + \overline{A}D$$

(6)
$$G = AC + A\overline{C}D + A\overline{B}\overline{E}F + B(D \oplus E) + B\overline{C}D\overline{E} + B\overline{C}DE + AB\overline{E}F$$

解:

$$=AC+AD+A\overline{BE}F+B(D\oplus E)+B\overline{C}D\overline{E}+B\overline{C}\overline{D}E+AB\overline{E}F$$

$$=AC+AD+\overline{ABEE}+\overline{BDE}+\overline{BDE}+\overline{BEDE}+\overline{BEDE}+\overline{ABEE}$$
 观察相同标记的项

$$=AC+AD+A\overline{E}F+B\overline{D}E+BD\overline{E}$$

(7)
$$G = \overline{A(CD + CD)} + \overline{BCD} + \overline{ACD} + \overline{ACD}$$

解:

$$=\overline{ACD}+\overline{ACD}+B\overline{CD}+A\overline{CD}+\overline{ACD}$$

$$=\overline{A}C\overline{D}+\overline{A}\overline{C}D+B\overline{C}D+A\overline{C}D$$

$$=\overline{A}C\overline{D}+\overline{C}D+B\overline{C}D$$

$$=\overline{A}C\overline{D}+\overline{C}D$$

(8)
$$G = \overline{(A+B)D} + \overline{(AB+BD)C} + \overline{ABCD} + \overline{D}$$

$$=\overline{(\overline{A}+\overline{B})D}+(\overline{A}\overline{B}+BD)\overline{C}+\overline{A}B\overline{C}D+\overline{D}$$

$$=AB+\overline{D}+\overline{A}\overline{B}\overline{C}+B\overline{C}D+\overline{A}B\overline{C}D+\overline{D}$$

$$=AB+\overline{D}+\overline{A}\overline{B}\overline{C}+B\overline{C}D+\overline{A}B\overline{C}D$$

$$=AB+\overline{D}+\overline{A}\overline{B}\overline{C}+B\overline{C}+\overline{A}B\overline{C}$$

$$=AB+\overline{D}+\overline{A}\overline{B}\overline{C}+B\overline{C}$$

$$=AB+\overline{D}+\overline{AC}+B\overline{C}$$
 冗余定理

$$=AB+\overline{D}+\overline{A}\overline{C}$$

3.13 指出下列逻辑函数项在卡诺图中的相邻项有哪些?

(1) W XYZ 的相邻项

 $M: \overline{W} \overline{X}YZ, WXYZ, W\overline{X} \overline{Y}Z, W\overline{X}Y\overline{Z}.$

(2) WXYZ 的相邻项

解:对应的 WXYZ= "0100", "0010", "0111", "1110"

(3) WX YZ 的相邻项

解:对应的 WXYZ= "0100", "1101", "1110", "1000"

(4) WXYZ 的相邻项

解:对应的 WXYZ= "1101", "0111", "1011", "1110"

(5) ABCDE 的相邻项

解:对应的ABCDE="11101","11011","10111","11110","01111"

(6) ABCDE 的相邻项

解:对应的ABCDE="00011","11011","10001","10111","10010"

(7) ABCDE 的相邻项

解:对应的 ABCDE="00101", "01100", "01111", "01001", "11101"

(8) ABCDE 的相邻项

解:对应的ABCDE="01100","11000","11101","10100","11110"

3.14 画出下列函数的卡诺图,分析每组函数间的关系。

(1)
$$F_1 = X\overline{Y} + \overline{X}Z$$

$$F_{2} = (X + Z)(\overline{X} + \overline{Y})$$

$$F_{1}$$

$$Z$$

$$0$$

$$0$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$\therefore F_1 = F_2 \circ$$

(2)
$$G_1 = \overline{A} \overline{B} \overline{D} + \overline{ABC} + ABD + A\overline{BC}$$

 $G_2 = (A + C + D)(\overline{B} + C + \overline{D})(\overline{A} + \overline{C} + \overline{D})(B + \overline{C} + D)$

解:

$$\therefore G_1 = \overline{G_2} \circ$$

3.15 用卡诺图化简下列函数,并求出最简与或表达式。

(1)
$$F_1(X,Y,Z) = \sum_{i=1}^{n} (2, 3, 6, 7)$$

解: $F_1 = Y$

(2)
$$F_2(A,B,C,D) = \sum_{i=1}^{n} (7, 13, 14, 15)$$

解: $F_2 = ABC + BCD + ABD$

(3)
$$F_3(A,B,C,D) = \sum (1, 3, 4, 6, 7, 9, 11, 12, 14, 15)$$

解:
$$F_3 = \overline{BD} + B\overline{D} + BC$$
 或 $F_3 = \overline{BD} + \overline{BD}$ (

(4)
$$F_4(X,Y,Z) = \sum m(0,1,2,5,6,7)$$

答案一: $\overline{XY} + Y\overline{Z} + XZ$

答案二: $\overline{XZ} + XY + \overline{YZ}$

(5) $F_5(A, B, C, D) = \sum m(0,1,2,3,4,6,7,8,9,10,11,14)$

原式= $\overline{B}+C\overline{D}+\overline{AC}+\overline{AD}$

(6) $F_6(A, B, C, D) = \sum m(0,1,4,6,8,9,10,12,13,14,15)$

原式=
$$AB+\overline{BC}+B\overline{D}+A\overline{D}$$

(7)
$$F_7(A, B, C, D) = M_1 \cdot M_2$$

原式= $A+B+\overline{CD}+CD$

(8) $F_8(A, B, C, D, E) = \sum m(0.3, 4, 6, 7, 8, 11, 15, 16, 17, 20, 22, 25, 27, 29, 30, 31)$

原式= $\overline{ADE} + \overline{ABE} + \overline{BCE} + \overline{ACDE} + \overline{ABCD} + \overline{ABCD}$

(9) $F_9(A, B, C, D) = \sum m(0,2,3,4,6,7,10,11,13,14,15)$

原式= $C+\overline{AD}+ABD$

(10) $F_{10}(A, B, C, D) = \sum m(4,5,6,7,8,9,10,11,12,13)$

答案一: 原式= \overline{AB} + \overline{AB} + \overline{BC} 答案二: 原式= \overline{AB} + \overline{AB} + \overline{AC}

3.16 用卡诺图化简下列函数,并求出最简与或式。

(1)
$$F_1 = ABD + \overline{A}\overline{C}\overline{D} + \overline{AB} + \overline{ACD} + A\overline{B}\overline{D}$$

$$\widetilde{\mathbf{H}}: F_1 = \overline{A} \overline{C} \overline{D} + A\overline{B} \overline{D} + \overline{ACD} + \overline{AB} + BD$$

或
$$F_1 = \overline{B} \ \overline{C} \ \overline{D} + A\overline{B} \ \overline{D} + \overline{A}CD + \overline{A}B + BD$$

(2)
$$F_2 = \overline{X}Z + \overline{W}X\overline{Y} + W(\overline{X}Y + X\overline{Y})$$

解:
$$F_2 = X\overline{Y} + \overline{X}Z + W\overline{X}Y$$

(3)
$$F_3 = BDE + \overline{B}CD + CDE + \overline{A}BCE + \overline{A}BC + \overline{B}CDE$$

解: $F_3 = \overline{B} \ \overline{C}E + \overline{B} \ \overline{C}D + \overline{A} \ \overline{B}C + DE$

F_{I}					
\	AB				
(CD	00	01	11	10
	00	(1			
	01		1	1	
	11	(1	\exists	1	
	10		1		1

F_2					
	WX	00	0.1	11	10
	YZ	00	01	11	10
	00		[1	1	
	01	1	1	1	1
	11	1			
	10				1
		-	-		

CD AB	00	01	11	10
00	E			E_{\perp}
01		Е	Е	
11	E+1	Ε	Ε	E
10	E+1			

 F_3

(4) $F_A(A, B, C, D) = (A + D)(\overline{B} + \overline{C} + \overline{D})(AB + \overline{C})$

原式= $AB+\overline{C}D+\overline{AC}$

(5) $F_5(A,B,C,D,E) = (\overline{A} + \overline{B})(BCD + \overline{E})(\overline{B} + \overline{C} + \overline{E})(\overline{A} + \overline{C})$

ABC DE	000	001	011	010	110	111	101	100
DE								
00	<u>></u>				0	0	0	
01	0	0	0	0	0	0	0	0
11	0	0		0	0	0	0	0
10					0	0	0	\langle

原式= \overline{AE} + $\overline{BC}\overline{E}$ + \overline{ABCD}

(6) $F_6(A,B,C,D) = A \cdot \overline{\overline{B} + C} + \overline{AD}$

原式= $A\overline{D}+AB\overline{C}$

(7) $F_7(A,B,C,D) = (A \oplus B)\overline{C} + (B \oplus \overline{C})D$

原式= $\overline{ABC} + \overline{ABC} + BCD + \overline{BCD}$

答案二: ~BC+ABC+BCD+ACD

(8) $F_8(A,B,C,D) = \overline{(A+C)(B+C+D)(A+B+D)} + ABC$

原式= \overline{AC} +ABC+ \overline{BCD}

(9) $F_9(A, B, C, D) = (A + \overline{B})(\overline{A} + C)(B + C)(\overline{C} + D)$

原式=ACD+BCD

(10) $F_{10}(A, B, C, D) = \Pi(6,7,9,12)$

答案一: $\overline{AC} + AC + \overline{BC} + \overline{BCD} + ABD$

答案二: $\overline{AC} + AC + \overline{BC} + \overline{BCD} + B\overline{CD}$

答案三: $\overline{AB} + \overline{AC} + AC + \overline{BCD} + ABD$

答案四: $\overline{AB} + \overline{AC} + AC + \overline{BCD} + B\overline{CD}$

3.17 用卡诺图化简下列函数,并求出最简或与式。

(1)
$$F_1(A,B,C) = \prod_{i=1}^{n} (0, 1, 4, 5)$$

解: $F_1 = B$

(2)
$$F_2(A,B,C,D) = \prod (0, 1, 2, 3, 4, 10, 11)$$

解: $F_2 = (A+B)(B+\overline{C})(A+C+D)$

(3)
$$F_3(W,C,Y,Z) = \prod (1, 3, 5, 7, 13, 15)$$

解:
$$F_3 = (W + \overline{Z})(\overline{C} + \overline{Z})$$

(4)
$$F_4(X,Y,Z) = \sum m(0,1,3,5,6,7)$$

$$F_4$$

$$Z$$

$$0$$

$$0$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

原式= $(\overline{Y}+Z)(\overline{X}+Z)$

(5) $F_5(A,B,C,D,E) = (\overline{A} + \overline{B})(BCD + \overline{E})(\overline{B} + C + \overline{E})(\overline{A} + \overline{C})$

ABC	000	001	011	010	110	111	101	100
ABC DE								
00					0	0	0	ļ
01	0	0	0	0	0	0	0	0
11	0	0		0	0	0	0	0
10					0	0	0	

原式= $(D+\overline{E})(\overline{A}+\overline{B})(\overline{A}+\overline{C})(\overline{B}+C+\overline{E})(\overline{A}+\overline{E})(B+\overline{E})$

(6)
$$F_6(A,B,C,D) = \overline{A} \cdot \overline{\overline{B} + C} + \overline{A}D$$

原式=
$$\overline{A}(\overline{C}+D)(B+D)$$

(7) $F_7(X,Y,Z,W) = \Pi(0,1,4,5,7,13,15)$

原式=
$$(X+Z)(\overline{Y}+\overline{W})$$

(8)
$$F_8(A,B,C,D) = \overline{(\overline{A}+\overline{B})D} + (\overline{AC}+BD)\overline{C} + \overline{ABC}D + D$$

原式=1

3.18 用卡诺图化简下列各式,并求出函数的最简与或式、最简或与式。

(1)
$$F_1 = \overline{X}\overline{Z} + \overline{Y}\overline{Z} + Y\overline{Z} + XYZ$$

解:
$$F_1 = \overline{Z} + XY = (X + \overline{Z})(Y + \overline{Z})$$

(2)
$$F_2 = (A + \overline{B} + D)(\overline{A} + B + D)(\overline{A} + B + \overline{D})(B + \overline{C} + \overline{D})$$

解:
$$F_2 = \overline{A} \ \overline{B} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} + BD + AB \ \overrightarrow{\boxtimes} \ = \overline{A} \ \overline{B} \ \overline{D} + \overline{A} \ \overline{C}D + BD + AB$$
$$= (B + \overline{C} + \overline{D})(A + \overline{B} + D)(\overline{A} + B)$$

(3)
$$F_3 = (\overline{A} + \overline{B} + D)(\overline{A} + D)(A + B + \overline{D})(A + \overline{B} + C + D)$$

解:
$$F_3 = BD + AD + \overline{A} \overline{B} \overline{D} + \overline{ABC}$$
 或 $BD + AD + \overline{A} \overline{B} \overline{D} + \overline{ACD}$
= $(A + B + \overline{D})(\overline{B} + C + D)(\overline{A} + D)$

F_2					
	AB				
	CD	00	01	11	10
	00	\bigcirc	0		0
	01				0
	11	0	J		0
	10		(0,		0

(4)
$$F_4(A,B,C) = (\overline{A}+B)(A+\overline{B})C+\overline{BC}$$

最简与或式: $A + \overline{B} + \overline{C}$

最简或与式: $(A+\overline{B}+\overline{C})$

(5)
$$F_5(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC}$$

最简与或式: $\overline{AC} + \overline{BC} + \overline{AB} + ABC$

最简或与式: $(\overline{A} + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + \overline{C})$

(6)
$$F_6(A,B,C,D) = AB\overline{C} + A\overline{B}C + \overline{A}BC + B\overline{D}$$

求原函数的反函数

$$\overline{F}_6 = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{BD}$$

$$= (AB\overline{C} + A\overline{B}C + \overline{A}BC)\overline{B}\overline{D}$$

$$=(AB\overline{C}+A\overline{B}C+\overline{A}BC)(\overline{B}+D)$$

$$= \overrightarrow{ABC} + \overrightarrow{ABCD} + \overrightarrow{ABCD} + \overrightarrow{ABCD}$$

最简与或式: $\overline{AB} + \overline{CD} + \overline{AC} + \overline{AD} + \overline{BC} + ABC$

最简或与式: $(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+\overline{D})$

(7)
$$F_7(A,B,C,D) = A\overline{BC} + \overline{AB} + \overline{AB} + BC + AD$$

$$\begin{split} F_7 &= A\overline{B} + A\overline{C} + AD + A\overline{B}\,\overline{A}\,\overline{B}\,\overline{B}\overline{C} \\ &= A\overline{B} + A\overline{C} + AD + A\overline{B}(A+B)(\overline{B}+\overline{C}) \\ &= A\overline{B} + A\overline{C} + AD + A\overline{B} + A\overline{B}\,\overline{C} \\ &= A\overline{C} + AD + A\overline{B} \end{split}$$

最简与或式: $A\overline{C} + AD + A\overline{B}$

最简或与式: $A(\overline{B}+\overline{C}+D)$

(8)
$$F_8(A, B, C, D) = A\overline{BC} + \overline{AC} + \overline{BC} + \overline{AD}$$

$$\begin{split} F_8 &= A\overline{B} + A\overline{C} + \overline{A}C + B\overline{C}\,\overline{\overline{A}D} \\ &= A\overline{B} + A\overline{C} + \overline{A}C + AB\overline{C} + B\overline{C}\overline{D} \end{split}$$

最简与或式: $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{BCD}$ 或者 $\overrightarrow{BC} + \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{BCD}$

最简或与式: $(A+B+C)(A+C+\overline{D})(\overline{A}+\overline{B}+\overline{C})$

3.19 试用最少与非门实现下列逻辑函数。

(1)
$$Y = \overline{A}\overline{C} + A\overline{B}\overline{C} + \overline{AB}\overline{C}$$

$$\mathfrak{M}\colon \ Y = \overline{A} \ \overline{C} + A \overline{B} \ \overline{C} + \overline{A} B \overline{C} = \overline{A} \ \overline{C} + \overline{B} \ \overline{C} = \overline{\overline{A} \ \overline{C} + \overline{B} \ \overline{C}}$$

或
$$Y_1 = (\overline{A} + A\overline{B} + \overline{A}B)\overline{C} = (\overline{A} + \overline{B})\overline{C} = \overline{\overline{A}B \cdot \overline{C}}$$

(2)
$$Y = A\overline{B}D + BC\overline{D} + \overline{A}\overline{B}D + B\overline{C}\overline{D} + \overline{A}\overline{C}$$

$$\widetilde{\mathbf{M}}: Y_2 = \overline{B}D + B\overline{D} + \overline{A} \ \overline{C} = \overline{\overline{B}D + B\overline{D} + \overline{A}} \ \overline{C} = \overline{\overline{B}D \cdot B\overline{D} \cdot \overline{A}} \ \overline{C}$$

(3)
$$Y = AB + AC + \overline{ABC}$$

$$\text{ \mathfrak{P}:} \quad Y_3 = \overline{AB + (A+B)C} = (\overline{A} + \overline{B})(\overline{A} \cdot \overline{B} + \overline{C}) = \overline{A} \ \overline{B} + \overline{A} \ \overline{C} + \overline{B} \ \overline{C} = \overline{\overline{A} \ \overline{B}} \cdot \overline{\overline{A} \ \overline{C}} \cdot \overline{\overline{B} \ \overline{C}}$$

(4) $Y(A,B,C,D) = AD + A\overline{B}\overline{D} + \overline{A}\overline{B}\overline{C}\overline{D}$

化简为最简与或式

$$AD + A\overline{B} + \overline{B}\overline{C}\overline{D}$$

$$=AD + A\overline{B} + \overline{BCD}$$
, 电路图略

$=\overline{AD}A\overline{B}\overline{B}\overline{C}\overline{D}$

(5)
$$Y(A,B,C,D) = \overline{CD} + B\overline{CD} + \overline{BCD} + \overline{ABCD}$$

$$B\overline{C} + \overline{AD} + \overline{BD}$$

= $\overline{B\overline{C} + \overline{AD} + \overline{BD}}$, 电路图略
= $\overline{BC}\overline{AD}\overline{BD}$

(7)
$$Y(A,B,C,D) = (A+B+C)(B+D)(A+C)$$

Y					
	AB				
	CD	00	01	11	10
	00	0	£	1	
	01	0	0	0	П
	11	1	0	0	0
	10	1_	1	0	0

$$A\overline{C}\overline{D} + A\overline{B}\overline{C} + \overline{A}B\overline{D} + \overline{A}\overline{B}C$$

$$=\overline{ACD} + \overline{ABC} + \overline{ABD} + \overline{ABC}$$
, 电路图略

$$=\overline{ACD}\overline{ABC}\overline{\overline{ABD}}\overline{\overline{ABC}}$$

(8)
$$Y(A,B,C,D) = M_1 \cdot M_5 \cdot M_8 \cdot M_9$$

$$AB+C+\overline{A}\overline{D}$$

$$=\overline{\overline{AB}+C+\overline{AD}}$$
, 电路图略

$$=\overline{AB}\,\overline{C}\,\overline{\overline{AD}}$$

3.20 写出题图 3.20 中各逻辑图的逻辑函数式,并化简为最简与或式。

解: (a)
$$Y = \overline{AB \cdot BC \cdot C} = AB + BC + \overline{C} = AB + \overline{C}$$

(b)
$$F_1 = \overline{AB + A \oplus B \cdot C} = AB + (A\overline{B} + \overline{A}B)C = AB + A\overline{B}C + \overline{A}BC = AB + AC + BC$$

 $F_2 = A \oplus B \oplus C = (A\overline{B} + \overline{A}B)\overline{C} + (\overline{A} \overline{B} + AB)C = A\overline{B} \overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C + ABC$

3.21 利用函数的随意状态化简函数,并求出最简与或式。

(1)
$$G = \overline{Y} + \overline{X} \overline{Z}$$
, $d = YZ + XY$

解: $G_1 = 1$

(2)
$$G = \overline{B} \overline{C} \overline{D} + BC\overline{D} + AB\overline{C}D$$
, $d = \overline{B}C\overline{D} + \overline{A}B\overline{C}D$

解: $G_2 = \overline{B} \ \overline{D} + C\overline{D} + B\overline{C}D$

(3)
$$G(A, B, C, D) = \sum m(0, 1, 5, 7, 8, 11, 14) + \sum d(3, 9, 15)$$

解:
$$G_3 = \overline{B} \ \overline{C} + \overline{AD} + CD + ABC$$
 或 $\overline{B} \ \overline{C} + \overline{AD} + ABC + \overline{BD}$

(4) $G(A, B, C, D) = \sum m(0,2,3,4,5,6,11,12) + \sum d(8,9,10,13,14,15)$

答: $A + \overline{D} + B\overline{C} + \overline{ABC}$

(5)
$$G(A,B,C,D) = \overline{A+C+D} + \overline{ABCD} + A\overline{BCD}, \quad d = AB + AC$$

答: $AD + \overline{ACD} + \overline{ABD}$

(6) $G(A,B,C,D) = \sum m(0,1,3,5,8) + \sum d(10,11,12,13,14,15)$

答: $\overline{BCD} + \overline{ACD} + \overline{ABD}$

(7) $G(A, B, C, D) = \sum m(0,1,2,4,7,8,9) + \sum d(10,11,12,13,14,15)$

AB				
CD	00	01	11	10
00		1	Φ	Q
01	Ū		Φ	1
11		1	Φ	Φ
10	1)		Φ	Ø

答:
$$A + \overline{C}\overline{D} + \overline{B}\overline{D} + BCD + \overline{A}\overline{B}\overline{C}$$

(8) $G(A, B, C, D) = \sum m(2,3,4,7,12,13,14) + \sum d(5,6,8,9,10,11)$

答: *CD*+*BC*+*AC*

3.22 化简下列逻辑函数为最简与或式。

(1)
$$Z_1 = \overline{A}\overline{C} + \overline{A}B$$
, $d = AB + AC$

解:
$$Z_1 = \overline{A} \overline{C} + B$$

(2)
$$Z_2 = \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{D}$$
, $d = AB + AC$

$$\mathfrak{M}\colon \ Z_2 = \overline{A} \ \overline{B} \ \overline{C} + \overline{C} \ \overline{D} + \overline{B} \ \overline{D}$$

(3)
$$Z_3 = \overline{A}\overline{C}\overline{D} + \overline{A}BCD + \overline{A}\overline{B}D + A\overline{B}\overline{C}D$$
, $d = AB + AC$

$\searrow AB$				
CD	00	01	11	10
00		1	ф	Ø
01	U		ф	
11			ф	ф
10	1		ф	ф

Z_3					
	AB				
	CD	00	01	11	10
	00	1	1)	ф	
	01	1		ф	1
	11	$\overline{\Box}$	1	ф	ф
	10			ф	ф

(4) $Z_4(A, B, C, D) = \sum m(3,5,6,7) + \sum d(2,4)$

CD AB	00	01	11	10
00		Φ		
01		1		
11	1	1		
10	Ф	1		

(5) $Z_5(A, B, C, D) = \sum m(0, 2, 7, 8, 13, 15) + \sum d(1, 5, 6, 9, 10, 11, 12)$

AB				
CD	00	01	11	10
00	\rightarrow		Φ	(V
01	Φ	Э	$\overline{+}$	Φ
11		1	Ų	Φ
10		Φ		(

答: $BD + \overline{AD + BD}$

(6) $Z_6(A,B,C,D) = \sum m(0,4,8,13) + \sum d(1,5,6,9,10,11)$,更改题目,删除最小项中的 6

答: $\overline{AB} + \overline{CD} + \overline{AC}$

(7) $Z_7(A, B, C, D) = \sum m(0,1,8,10) + \sum d(2,3,4,5,11)$

\nearrow AB				
CD	00	01	11	10
00	\Diamond	Φ		$\langle \rangle$
01		Φ		
11	Φ			Φ
10	$\langle \Phi \rangle$			(

答: $\overline{AC} + \overline{\overline{BD}}$

(8) $Z_8(A, B, C, D) = \sum m(0,2,6,8,10,14) + \sum d(5,7,13,15)$

CD AB	00	01	11	10
00	1			$\langle \rangle$
01		Φ	Φ	
11		Φ	Φ	
10		F		

答: $\overline{BD} + BC$

(9) $Z_9(A, B, C, D) = \sum m(1,4,5,6,7,9) + \sum d(10,11,12,13,14,15)$

AB				
CD	00	01	11	10
00		[1	Φ	
01	1	1	Φ	1
11		1	Φ	Φ
10		ı	Φ	Φ

答: B+CD

3.23 用 VEM 化简逻辑函数。

(1) $X = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$, 将变量 C 作为引入卡诺图的变量。

解: $X_1 = \overline{AB} + A\overline{C}$

(2) $X = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$, 将变量 D 作为引入卡诺图的变量。

解: $X_2 = \overline{B} \ \overline{D} + A\overline{B}$

(3) X = BDE + BCD + CDE + ABCE + ABCE + BCDE, 将变量 E 作为引入变量。

CD AB	00	01	11	10	AB CD 00 01 11 10	\searrow_{AB}			
00	\boldsymbol{E}			Ε	00	CD	00 0	1 11	10
01	1	Е	Ε	1	01 1 E E 1	00	\rightarrow		
11	E+1	Ε	Ε	Ε		01	1		1
10	E+1				10 1	11	1		
						10	Ш		

答: $DE + \overline{ABE} + \overline{BCE} + \overline{BCD} + \overline{ABC}$

(4) X = ABCDE + ABDE + ACDE + ACBE + CD, 将变量 E 作为引入变量。

答: ĀBDE+ĀCDE+ĀBCDE

(5) $X(A,B,C,D) = \overline{A+C+D} + \overline{ABCD} + A\overline{BCD}$, d = AB + AC, 将变量 D 作为引入变量。

答: $AD + \overline{ACD} + \overline{ABD}$

(6) $X(A,B,C,D) = \sum m(0,1,5,7,8,11,14) + \sum d(3,9,15)$,将变量 D 作为引入变量。 Φ 可以是 D 或 \overline{D}

情况一: $\Phi 1=D$, $\Phi 2=D$, $\Phi 3=\overline{D}$

答案: $\overline{AD} + CD + \overline{BCD} + ABC$

情况二: $\Phi 1=D$, $\Phi 2=\overline{D}$, $\Phi 3=\overline{D}$

答案: ¬AD+ABC+BCD+BCD

C AB	00	01	11	10
0	$\overline{\overline{D}}D$	D		$\overline{D}_+\Phi 3$
1	Q 1	D	Φ +Φ2	D

3.24 用 VEM 化简下列逻辑函数,将变量 $C \times D$ 作为引入卡诺图的变量。

(1) $Y = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{C} D + \overline{A} \overline{C} D + \overline{A} \overline{C} D + \overline{A} \overline{C} D + \overline$

 $\widetilde{\mathbf{M}}: \ Y_1 = \overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ \overline{D} + ACD + BCD$

(2) $Y = A\overline{B}CD + AB\overline{C}D + AB\overline{C}D + AB\overline{C}D + \overline{A}BCD + A\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + ABCD$

 $\widetilde{\mathbf{H}}: \ Y_2 = \overline{A} \ \overline{B} \ \overline{C}D + AC + BCD + AB$

(3) $Y(A,B,C,D) = \overline{ABD} + B\overline{CD} + \overline{ABD} + B\overline{CD} + \overline{AC}$

答案: $A\overline{C} + AD + \overline{B}D + AB\overline{D}$