PACIFIC AND DRAKE PASSAGE MOVIE INTERPRETATIONS

Prani Nalluri Applied Physics and Applied Mathematics, Columbia University

Regions

Drake Passage (just region b/n South America and Antarctic Peninsula)

North Pacific

DRAKE PASSAGE REGION

Drake Passage – Specific Humidity at Reference Height of 2m

Drake Passage - Relative Humidity at Reference Height of 2m

- RH may be close to saturation, since the reference height is so close to the sea surface
- The pattern of low and high RH seems somewhat chaotic, could this be due to storms?
 - Storms would increase/decrease RH

Drake Passage - Sea Level Pressure

- Some interplay between low and high pressure air masses
- Low pressure seems to be coming from southwest
 - Perhaps due to low pressure zone west of Antarctic Peninsula (Amundsen-Bellingshau sen Sea Low)

Drake Passage – Sea Surface Temperature

- Cold water from the Southern Ocean
- Warmer water from southern Atlantic and Pacific
- Both water masses are mixing
- Lots of mixing in Drake Passage → very sharp gradients in movie
- Tongues of cold water coming southward, and tongues of warm water going upward

Drake Passage – Temperature at Reference Height of 2m

- Cold air encroaching from the South
 - Could this be due to winter?
- Westerly winds? (from west to east)

Drake Passage - Zonal Ocean Velocity

- Dominant eastward flow, which is consistent with the clockwise Antarctic Circumpolar Current
- Larger zonal velocities seem to occur in eddies
- Flow is more laminar than turbulent

Drake Passage - Zonal Reference Velocity at Height 2m

- Dominant eastward flow, which aligns with the behavior of westerlies in the region
- The gradients in the horizontal direction vary in sharpness
- There is some chaos in the flow, so determining where exactly certain air masses come from isn't easy

Drake Passage - Zonal Relative Velocity

- Movement is relatively eastward, which aligns with westerly and ACC behavior
- At certain time points it is possible to see the ocean eddies
 - Depends on relative magnitude of atmospheric versus ocean zonal speeds
- Atmospheric behavior occurs at much larger scales

Drake Passage - Meridional Ocean Velocity

- There is no dominant flow in a particular direction
- Some tongues move vertically north or south at large velocity magnitudes
- Horizontal gradients are quite large, but vertical gradients are pretty small

Drake Passage – Meridional Reference Velocity at Height 2m

- Movement is relatively zonal
- Sharper gradients in the zonal than the meridional direction
- Seems like cold air may be coming up from the south
- Meridional winds are smaller in magnitude than zonal winds

Drake Passage - Meridional Relative Velocity

- For some snapshots, it is possible to see the ocean eddies
 - Depends on relative magnitude of atmospheric versus ocean meridional speeds
- Atmospheric behavior occurs at much larger scales than oceanic behavior

Drake Passage - Wind

- Winds are moving mostly eastward, which is consistent with the behavior of westerlies
- Gradients typically don't seem sharp in the vertical or horizontal direction
- There is some variability in winds
 - Could be due to storms, since the Drake
 Passage is a storm corridor

NORTH PACIFIC REGION

Pacific Ocean – Specific Humidity at Reference Height of 2m

- Very clear division between high and low specific humidity regions
- SH fronts are moving eastward
- The boundary b/n low and high SH seems to roll eastward too
- Could colder air be coming from Japan and warmer air from the south?

Pacific Ocean – Relative Humidity at Reference Height of 2m

- Air masses with different RHs are moving eastward
- No spatial split b/n high and low RH, like for SH
- Maybe higher RH masses correspond to warmer ocean air from the ocean, and lower RH masses correspond to drier air from inland?

Pacific Ocean - Sea Level Pressure

- Spatial split b/n high and low sea level pressure → lower in the north and higher in the south
- Low pressure systems tend to move across the north Pacific in the winter
 - Could these low pressure patches by storms?

Pacific Ocean - Sea Surface Temperature

- Spatial split b/n high and low sea surface temperature → lower in the north and higher in the south
- Eddies are mixing water masses of different temperatures in the middle
- Cold tongue on left → Kuroshio Current

Pacific Ocean – Temperature at Reference Height of 2m

- Spatial split b/n high and low temperature → lower in the north and higher in the south
- Primarily zonal movement of air masses
 - Seeing mostly eastward motion of air masses

Pacific Ocean - Zonal Ocean Velocity

- Much smaller scales for oceanic processes than atmospheric processes
- Mostly eastward movement of flows
- A few westward chunks show up, but these are within eddy formations, so have to do with eddies being present, rather macroscopic flow movement
- Not too turbulent

Pacific Ocean - Zonal Reference Velocity at Height 2m

- Much larger scales for atmospheric zonal ocean velocity than for oceanic
- Mostly eastward movement, with some westward bits on north and south edges of the frame
- Much larger magnitudes for atmosphere than ocean

Pacific Ocean - Zonal Relative Velocity

- Clearly, the atmospheric zonal flows are dominating in this image, due to their large magnitude
 - Could the atmospheric zonal flows be forcing the oceanic zonal flow?
- Mostly eastward movement, especially in the middle of the frame

Pacific Ocean - Meridional Ocean Velocity

- Very small scales, compared to atmospheric motion
- Northward and southward vertical bits, but no general northward or southward flows
- Much steeper gradients in the zonal direction than the meridional direction
- Some eastward movement of background net northward and southward flows?

Pacific Ocean – Meridional Reference Velocity at Height 2m

- Much larger scales for atmospheric meridional ocean velocity than for oceanic
- Eastward movement of air masses moving northward or southward with large velocities
- Alternate air masses of strong northward and strong southward flows

Pacific Ocean - Meridional Relative Velocity

- Atmospheric meridional motion is dominating ← much larger scales for atmospheric meridional ocean velocity than for oceanic
- Eastward movement of masses with strong northward or southward flow
- The atmospheric motion could be forcing the eastward ocean movement?

Pacific Ocean - Wind

- Generally eastern, slightly northeastern, flow
- Alternation of air masses with very large and small speeds
 - These air masses all move eastward or northeastward

