Kinetic assumptions in Boolean networks: a case for buffering

Aurélien Naldi

Elisa Tonello Heike Siebert

Qualitative Dynamical Models in Biology

Logical modelling framework

No quantitative parameters

Formal description of competing effects

x: state

 \bar{x}^i : flip i

 $f(x) = \bar{x}^U$: image

 $U = \{i : f_i(x) \neq x_i\}$

x: state

 \bar{x}^i : flip i

 $f(x) = \bar{x}^U$: image

 $U = \{i : f_i(x) \neq x_i\}$

Everything happens at the same time

Nothing ever happens at the same time

x: state \bar{x}^i : flip i $f(x) = \bar{x}^U$: image $U = \{i : f_i(x) \neq x_i\}$

Nothing ever happens at the same time

x: state

 \bar{x}^i : flip i

 $f(x) = \bar{x}^U$: image

 $U = \{i : f_i(x) \neq x_i\}$

Everything happens at the same time

 $\forall C \subseteq U \colon x \to \bar{x}^C$

Nothing ever happens at the same time

ON/OFF transitions are atomic

x: state

 \bar{x}^i : flip i

 $f(x) = \bar{x}^U$: image

 $U = \{i : f_i(x) \neq x_i\}$

Everything happens at the same time

 $\forall C \subseteq U \colon\thinspace x \to \bar{x}^C$

Nothing ever happens at the same time

ON/OFF transitions are atomic

x: state

 \bar{x}^i : flip i

 $f(x) = \bar{x}^U$: image

 $U = \{i : f_i(x) \neq x_i\}$

Everything happens at the same time

 $\forall C \subseteq U \colon x \to \bar{x}^C$

Nothing ever happens at the same time

ON/OFF transitions are atomic

Alternative trajectories

Huge number of trajectories

Low computational complexity

- attractors
- reachability

Multivalued refinements

Trajectories with untangled thresholds

Trajectories with dual interactions

Refinements can introduce dual interactions

Stable states/patterns seem special

Buffer networks

Buffer networks

Asynchronous updating of the extended model

Buffer networks

Asynchronous updating of the extended model

Enclosing stable pattern

Extend f to patterns

$$F_i(p) = \begin{cases} * & \text{if } p_i = *, \\ * & \text{if } \exists x \in p : f_i(x) \neq p_i, \\ p_i & \text{otherwise.} \end{cases}$$

 $F^n(x)$ is the smallest stable pattern containing the state x

Enclosing stable pattern

Extend f to patterns

$$F_i(p) = \begin{cases} * & \text{if } p_i = *, \\ * & \text{if } \exists x \in p : f_i(x) \neq p_i, \\ p_i & \text{otherwise.} \end{cases}$$

 $F^n(x)$ is the smallest stable pattern containing the state x

Same constraints on regulators

Same constraints on regulators

Buffers always follow (for a consistent initial state)

Same constraints on regulators

Buffers always follow (for a consistent initial state)

Buffers eliminate cycles in the partial order graph

Reaching the opposing corner

Acyclic partial order

Reaching the opposing corner

Acyclic partial order

The minimal hypercube enclosing an attractor is a stable pattern

All attractors are in terminal stable patterns

1 attractor ⇔ 1 trapspace

The minimal enclosing hypercube is a stable pattern

All attractors are in terminal stable patterns

Attractor reachable from all states in the hypercube

Attractor

t
stable pattern

Stable patterns are good estimators for attractors

Summary

	Async	Buffer	MP
Trapspace vs attractor	lower bound	1:1	Exact
Reach. states	2^n	???	3n
Reach. trapspace	2^n	2(n+m)	3n

Stable patterns as robust abstraction for attractors and reachability

Analysis directly on un-buffered model

Discussion

Limits

Assumption: variable threshold order

▶ kinetic information → **\sqrt** alternative trajectories

Perspectives

From partial order to constraints on kinetic parameters Prime implicant graph to improve partial order

Can use existing stochastic tools (MaBoSS) Derive analytic estimation of probabilities

Reverting to reach a trapspace

For each core: fix regulators to the trapspace value

Reachability across updating semantics

Attractors = stable phenotypes

Trap spaces

(stable patterns/hypercubes)

hypercube h:

$$\forall x \in h : f(x) \in h$$

Constraint solving

Zanudo et al., 2013 Klarner et al., 2014

Stable states (fixed points)

state x: f(x) = x

Constraint solving

Naldi et al., 2007

Complex attractors

states C: $\{x: F(x) = C\}$

Symbolic exploration

Garg et al., 2008