北京化工大学 2018——2019 学年第一学期 《概率论与数理统计》期末考试试卷

课程代码	M	A	T	2	5	4	0	0	T
------	---	---	---	---	---	---	---	---	---

- 一、填空(24分)
- 1. 三次独立的试验中,每次成功的概率相同,已知至少成功一次的概率是 37/64,则每次试验成功的概率是______.
 - 2. 设随机变量 X 服从泊松分布,且 $P(X=3) = \frac{4}{3}e^{-2}$,则 $E(X) = _____$.
 - 3. 若 $X \sim U(0,5)$,方程 $x^2 + 2Xx + 5X 4 = 0$ 有实根的概率为______
 - 4. 设X表示 10 次独立重复试验中命中目标的次数,每次命中目标的概率是 0.6,则 E(X)= .
 - 5. $3X + 5 \sim N(11, \sigma^2)$, A = P(2 < X < 4) = 0.15, A = P(X < 0) = 1
 - 6. 某电子元件的寿命服从正态分布 $N(\mu, \sigma^2)$,抽样检查 10 个元件,得样本均值 $\bar{x}=1200$, 样本标准差 s=14 ,则 μ 的置信度为 99%的置信区间是_______. ($t_{0.005}$ (9)=3.25)
 - 二、(12 分) 甲、乙、丙三个工厂生产同一种零件,设甲、乙、丙的次品率为 0.2,0.1,0.3, 先从三个厂的产品占比分别为 15%,80%,5%的一批产品中随机抽取一件,求
 - (1) 抽取的零件是次品的概率;
 - (2) 发现抽取的零件是次品, 求该次品是甲厂生产的概率。
 - 三、(12 分) 设随机变量 X 的密度函数为 $f(x) = \begin{cases} \frac{a}{x^2}, & 2 \le x < +\infty \\ 0, & 其它 \end{cases}$

(1) 求常数 a; (2)求 P(0.5 < X < 4); (3) 求 X 的分布函数 F(x).

四、(10分)某人寿保险公司每年有 10000人投保,每人每年付 120元保费,如果该年内投保人死亡,保险公司赔付 10000元。已知一个人一年内死亡的概率为 0.0064。用中心极限定理近似计算该保险公司一年内的利润不少于 480000元的概率。已知 $\Phi(1)=0.8413,\Phi(2)=0.9772$ 。

五、(12 分) 设二维随机变量(X,Y)的联合密度函数为 $f(x) = \begin{cases} 6x, & 0 < x < y < 1 \\ 0, & 其它 \end{cases}$

(1) 求 X, Y 的边缘密度函数; (2) 求协方差 Cov(X, Y)。

六、(12 分) 设二维随机变量(X,Y)的联合密度函数为 $f(x) = \begin{cases} 2e^{-2x-y}, & x > 0, y > 0 \\ 0, & 其它 \end{cases}$

(1) 判断 X、Y 是否独立; (2) 求 $Z = \max(X, Y)$ 的密度函数。

七、 $(6\,\%)$ 设 X_1 , …, X_n 是来自总体 $N(\mu_1,\sigma^2)$ 的样本, Y_1 , …, Y_m 是来自总体 $N(\mu_2,\sigma^2)$ 的样本,c、d 是任意两个不为 0 的常数,证明

$$t = \frac{c(\overline{X} - \mu_1) - d(\overline{Y} - \mu_2)}{S_w \sqrt{\frac{c^2}{n} + \frac{d^2}{m}}} \sim t(m + n - 2),$$

其中
$$S_w = \frac{(n-1)S_1^2 + (m-1)S_2^2}{m+n-2}$$
。

八、(12 分) 设 X_1 , …, X_n 是来自总体 X 的样本,X 的密度函数为 $f(x) = \begin{cases} \frac{1}{\theta} e^{\frac{-(x-\mu)}{\theta}}, & x \geq \mu \\ 0, &$ 其它

其中 θ , μ 为未知参数, $\theta > 0$, 求 θ , μ 的矩估计和极大似然估计。