GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021(COGC-2021) Semester - V
Course Title: Alloy Steel
(Code: 4362101)

Diploma Programme in which this course is offered	Semester in which offered
Metallurgy Engineering	6 th Semester

1 RATIONALE

The incorporation of the alloy steel subject within the curriculum is geared towards furnishing Metallurgical Engineers with comprehensive knowledge concerning the intricacies of composition, microstructure, properties, and applications associated with a diverse array of steels used on a global scale for specific purposes. Given the extensive variety of steel types utilized in the manufacturing of a wide range of products, it is imperative for a diploma metallurgical engineer to delve into the fundamental aspects, including properties, composition, and applications of these steels. The design of this course is meticulously tailored to provide students with a thorough and foundational understanding of the complexities inherent in Alloy Steels.

2 COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in students so that they are able to acquire following competencies.

☐ Select the appropriate alloy steels for intended application.

3 COURSE OUTCOMES (COs)

At the end of the study of this course the student will be able to:

- CO1: Understand the effects of various alloying elements on properties of steels.
- CO2: Select the appropriate alloy steel for specific application.
- CO3: Discuss the composition, properties and applications of the alloy steels.

4 TEACHING AND EXAMINATION SCHEME

	_	cheme	Total	Examination Scheme				
(1	n Hou	rs)	Credits (L+T+P/2)	Theory Marks Practical Marks Total Ma			Total Marks	
L	T	P	C	CA ESE CA ESE				
3	0	2	4	30*	70	25	25	150

^{(*):} Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment: ESE -End Semester Examination.

5 SUGGESTED PRACTICAL EXERCISES

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Observe the microstructure of low carbon steels and identify the phases present in it.	1	3
2	Observe the microstructure of medium carbon steels and identify the phases present in it.	1	3
3	Observe the microstructure of high carbon steels and identify the phases present in it.	1	3
4	To decode the various code/designation system of steels.	2	2
5	To study the effects of alloying elements added to steels.	2	2
6	Identify the various stainless steel based on their microstructure.	3	3
7	Analyze the microstructure of various tool steels.	4	3
8	To do the microstructural case study of EN 31 steel.	5	3
9	Investigate the microstructure of HSLA steels.	5	3
10	Visit the relevant alloy steel industry and write down the report.	5	3
	Total Hours		28

Notes:

- 1. More Practical Exercises can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- 2. The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.

Sr.	Sample Performance Indicators for the PrOs.	Weightage in %
No.		
1	Identification of the component and Preparation of	20
	experimental Set-up	
2	Operate equipment set-up	10
3	Observation and recording of the data correctly	10
4	Interpretation of the result and conclusion	20
5	Safety precaution and safety gadgets used	20
6	Submission of report within time limit and attendance in	20
	the laboratory	

6 MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to user in uniformity of practical in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
	Metallurgical Microscope:	1, 2, 3, 5, 6, 7, 8,
	Magnification: Typically ranges from 50x to 1000x or more. It includes both	9
	the objective lens and the eyepiece magnifications.	
	Objective Lenses: Multiple objective lenses with varying magnifications,	
	such as 5x, 10x, 20x, 50x, and 100x.	
	Illumination: Light passes through the specimen from below, useful for	
	transparent or thin sections.	
	Reflected Illumination: Light reflects off the surface of opaque specimens,	
	providing detailed surface examination.	
	Halogen or LED Lighting: Common light sources for better control and	
	longevity.	
	Stage: Allows precise movement of the specimen for easy navigation and	
	examination.	
1	Stage Size: Large enough to accommodate various sample sizes. Optical System: Binocular or Trinocular Head: Binocular for visual	
1	observation, trinocular for attaching a camera or imaging system.	
	Diopter Adjustment: Individual eye focusing for user comfort.	
	Camera Compatibility: Trinocular microscopes often have a camera port for	
	attaching a camera for image capture and documentation.	
	Focusing System: Coarse and Fine Focusing Knobs: For rapid and precise	
	focusing.	
	Eyepieces: Widefield Eyepieces: Commonly 10x magnification.	
	Objectives: Plan Achromatic Objectives: Corrected for flat field imaging.	
	Contrast Methods: Brightfield, Darkfield, Polarized Light: Various contrast	
	methods for different material examinations.	
	Build and Construction: Sturdy Construction: Designed to withstand	
	continuous usage in industrial or laboratory settings.	
	Anti-Vibration Features: To minimize external vibrations for accurate	
	observations.	

	Image Analyzing System:	1, 2, 3, 5, 6, 7, 8,
2	1). Grain size Steel Grain size ASTM 1382, E 930 ISO 643, DIN EN 180 643-2003 Prior Austenite Grain Size, ASTM E 112, E 1382 Non ferrous metals and Alloy grain size with above method 2). Non metallic inclusion (Nodules & Flakes) Determination of inclusion types (Oxides, Sulphides, and Oxides-Sulphides) Estander of inclusion ASTM E 1245, E 45 E 1122, ISO 4967, DIN 50602 3).Phase Analysis Relative content of Ferrite/Pearlite Ferrite content in Austenite steel bar. Carbide inhomogenuity in alloyed tool steels. Length of Marstenstitic lenghts & needles. 4).Graphite in ferrous methods ASTM A 247 5).Vectors and knob hardness methods ASTM E 384, E 92 6).Decarbised layer depth ASTM A 247, ISO 3887	9

7 AFFECTIVE DOMAIN OUTCOMES

The following sample Affective Domain Outcomes (ADOs) are embedded in many of the abovementioned Cos. More could be added to fulfill the development of this course competency

- Aware about the effect of various alloying elements on properties of steels.
- Participate in class discussion on various engineering applications and suggest the suitable alloy steels suitable for this application.
- Work as independently individuals, displays teamwork, displays leadership quality and professional commitment to ethical practice on daily basis.

8 UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of Revised Bloom's taxonomy that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit Major Learning Outcomes		Topics and Sub-topics	
UNIT-I	UNIT-I 1a. Introduction to steels 1.1. Definition of steel		
Introduction to	1b. Classification of steels	1.2. Classification of steel on the basis of	
Steels	1c. Effect of carbon on properties of steels1d. Effect of inherent impurities on properties of steels1e. Plain carbon steels, their properties	amount of carbon, amount of allying elements, deoxidation, grain coarsening, method of manufacturing, depth of hardening and form and uses.	

	and applications	1.2 Effects of corbon on properties of
	and applications	1.3. Effects of carbon on properties of steels.
		1.4. Effects of sulphur and phosphorous
		on properties of steels.
		1.5. Composition, properties and
		applications of low carbon steel, mild
		Steel, medium carbon steel and high
		carbon steel.
UNIT-II	2a. Needs of alloy steels.	2.1. Limitations of plain carbon steels.
Introduction to	2b. Properties and uses of alloying	2.2. Justify the needs of alloy steels.
Alloy Steels	elements.	2.3. Properties and uses of alloying
	2c. Designation of steels as per various	elements like silicon, manganese,
	code and standards.	nickle, chromium, tungsten,
		molybdenum, vanadium, titanium,
		cobalt, aluminium and boron.
		2.4. Designation of steels as per IS,
		AISI/SAE, ASTM, EN, DIN.
UNIT-III	3a. Introduction of stainless steels	3.1. Introduction and definition of
Stainless Steels	3b. Classification of stainless steels	stainless steel.
	3c. Composition, properties and	3.2. List of ferrite and austenite stabilizing
	applications of various stainless	elements.
	steels	3.3. Classification of stainless steels.
	3d. Sensitization	3.4. Grades, composition, properties and
		applications of ferritic stainless steels,
		austenitic stainless steels, martensitic
		stainless steels, duplex and
		precipitation hardened stainless
		steels. 3.5. Sensitization behavior in austenitic
TINITED TT		stainless steels.
UNIT-IV	4a. Introduction of tool steels	4.1. Introduction and definition of tool
Tool Steels	4b. Needs of tool steels	steels.
	4c. Classification of tool steels	4.2. Properties required and uses of tool
	4d. Composition, properties and	steels 4.3. Classification of tool steels
	applications of various tool steels	
	4e. Heat treatment of high speed tool	4.4. Composition, properties and
	steel	applications of cold work tool
		steels, hot work tool steels, high
		speed tool steels and special purpose
		tool steels.
		4.5. Heat treatment cycle of high speed
		too steel

UNIT-V Special Purpose Steels

- 5a. Describe various specia purpose steels like Ausforming steel, Maraging steel, spring steel, ball bearing steel, Hadfield Mn Steel, Dual Phase steels, High strength low alloy steel (HSLA), High temperature alloys, Alloys for heating elements etc.
- 5.1. Introduction, manufacturing, composition, properties and applications of Ausforming steel, Maraging steel, spring steel, ball bearing steel, Hadfield Mn Steel, Dual Phase steels, High strength low alloy steel (HSLA), Steel for high temperature application, Alloys for heating elements etc.

9 SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

		Teaching -	Distribution of Theory Marks				
Unit	Unit Title	Hours	R	U	A	Total	
		Hours	Level	Level	Level	Marks	
I	Introduction to Steels	08	4	4	2	10	
II	Introduction to Alloys Steels	06	4	2	4	10	
III	Stainless Steels	12	6	8	6	20	
IV	Tool Steels	06	4	4	2	10	
V	Special purpose Steels	10	6	8	6	20	
	Total	42	24	26	20	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Notes:**

- 1. This specification table shall be treated as a general guideline for students and Teachers. The actual distribution of marks in the question paper may slightly vary from above Table.
- 2. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

10 SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related cocurricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group

- 1. Organize field trip to companies or research facilities involved in alloy steel.
- 2. Analyze the microstructure of various alloy steels and stainless steels.
- 3. Compare properties and applications of different alloy steels.
- 4. Assign case studies that explore the application of alloy steels in industry.

11 SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- **b)** Guide student(s) in undertaking micro-projects
- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- **d)** About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- e) With respect to section No.10, teachers need to ensure to create opportunities and provisions for co-curricular activities.
- **f**) Guide students on how to address issues on environment and sustainability.
- **g)** Encourage students to read codes and standards.

12 SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be individually undertaken to build up the skill and confidence in every student to become problem solver so that he/she contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratorybased or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than 16 (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- 1. List the limitation of plain carbon steel.
- 2. Prepare reports of need of alloy steel for various industrial applications.
- 3. Prepare chart of various alloying elements and effects of their addition on properties of steel.
- 4. Collect samples of tools, check their chemical composition and observe their microstructure.
- 5. Collect samples of stainless steels, check their chemical composition and observe their microstructure.

13 SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and
			ISBN
1	Introduction to physical	Sidney H. Avner	Publisher: McGraw-Hill Inc. ISBN:
	metallurgy		9780070850187
2	Physical metallurgy	Vijendra Singh	Publisher: Standard Publishers
			Distributors
			ISBN: 978-8186308639
3	Material science and	V.D. Kodgire	Publisher: Everest Publishing House
	Metallurgy		ISBN: 978-8176314008
4	Physical Metallurgy for	D. S. Clark and W. R.	Publisher: CBS Publishers &
	Engineers	Varney	Distributors
			ISBN: 9788123911786
5	Engineering Metallurgy	R. A. Higgins	Publisher: Butterworth-Heinemann Ltd
	: Applied Physical		ISBN: 978-0340568309
	Metallurgy		

14 SOFTWARE/LEARNING WEBSITES

https://onlinecourses.nptel.ac.in/noc20_mm07/preview

• https://en.wikipedia.org/wiki/SAE_steel_grades

15 PO-COMPETENCY-CO MAPPING

Semester VI	Alloy Steel (Course Code: 4362101)						
	POs						
Competency &	PO 1						
Course Outcomes	Basic	&					
	D bl. D	 /E	 			 	
		sign/ Engi practices		ngineering P Managelong	Project LifeDis e specific	_	si-ment
	Experime				c specific	Anaiy	/SI-IIICIIt
					olutionTesting	& s	
	enviro	nment					
Competency	Select the	appropria	ate alloy st	teels for intend	ded application		
CO1: Understand the							
effects of various	3	1	1	0	0	0	1
alloying elements on	3	1	1	U			1
properties of steels.							
CO2: Select the							
appropriate alloy steel	3	3	2	1	2	0	3
for specific			_		_		
application.							
CO3: Discuss the							
composition,			4				
properties and	3	2	1	0	1	0	2
applications of the							
alloy steels.							

16 COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact details
1.	Shri. Ravi D. Dave	Dr. S. & S. S. Ghandhy	rdkdave@gmail.com
	Lecturer Metallurgy	College of Engineering &	
	Engineering	Technology, Surat	
2.	Shri. Kartik H. Raj	Lukhdhirji Engineering	rajkartikh@gmail.com
	Lecturer Metallurgy	College, (Polytechnic),	
	Engineering	Morbi	
