A Novel Hierarchical Binary Tagging Framework for Joint Extraction of Entities and Relations

Zhepei Wei¹, Jianlin Su², Yue Wang³, Yuan Tian¹, Yi Chang¹

¹School of Artificial Intelligence, Jilin University ²Shenzhen Zhuiyi Technology Co., Ltd.

³School of Information and Library Science, University of North Carolina at Chapel Hill weizp19@mails.jlu.edu.cn, bojonesu@wezhuiyi.com, wangyue@email.unc.edu, yuantian@jlu.edu.cn, yichang@jlu.edu.cn

这是CopyMTL之后比较新的又一个工作、刷了sota、而且幅度还不小。 主要针对解决的问题和CopyMTL针对copyRE的不同,这篇主要是要解决entity 重叠的问题。

传统如果直接使用tagger方法,一个词/entity只能属于一个relation 但是实际上,可以有多个relation的情况。

所以这篇就是来解决这个问题的。

当然了copyRE是第一个显式解决这个问题的,但是解决得还不够好。

其实想法也是比较简单的。

首先是输入句子经过一个bert encoder进行编码。

然后decoder是一个层次结构。

第一层是一个subject tagger, 用来标注可能的头实体。

$$p_i^{start_s} = \sigma(\mathbf{W}_{start}\mathbf{x}_i + \mathbf{b}_{start})$$
$$p_i^{end_s} = \sigma(\mathbf{W}_{end}\mathbf{x}_i + \mathbf{b}_{end})$$

$$p_i^{end_s} = \sigma(\mathbf{W}_{end}\mathbf{x}_i + \mathbf{b}_{end})$$

大于某个threshold(实验是0.5)就是1,否则0.

然后就能够标注出头实体。

之后标注出了k个可能的头实体之后,对每个头实体进行遍历。 每个relation都有自己一套参数,能够标注给定头实体情况下,这个关系可能的 尾实体。

$$p_i^{start_o} = \sigma(\mathbf{W}_{start}^r(\mathbf{x}_i + \mathbf{v}_{sub}^k) + \mathbf{b}_{start}^r)$$
$$p_i^{end_o} = \sigma(\mathbf{W}_{end}^r(\mathbf{x}_i + \mathbf{v}_{sub}^k) + \mathbf{b}_{end}^r)$$

然后就可以进行监督学习啦

$$J(\Theta) = \sum_{j=1}^{|D|} \left[\sum_{s \in T_j} \log p_{\theta}(s|\mathbf{x}_j) + \sum_{r \in T_j|s} \log p_{\phi_r}(o|s, \mathbf{x}_j) + \sum_{r \in R \setminus T_j|s} \log p_{\phi_r}(o_{\varnothing}|s, \mathbf{x}_j) \right].$$
(12)

数据集同样是NYT和WebNLG, 结果变态好

	NYT			WebNLG		
Prec.	Rec.	<i>F1</i>	Prec.	Rec.	<i>F1</i>	
52.4	31.7	42.0	52.5	19.3	28.3	
59.4	53.1	56.0	32.2	28.9	30.5	
51.0	56.6	58.7	37.7	36.4	37.1	
52.9	57.3	60.0	42.3	39.2	40.7	
53.9	60.0	61.9	44.7	41.1	42.9	
34.7 20.7	72.3	78.0 87. 5	67.9 80.5	40.4	50.6 88.8	
52 59 51 52 53	2.4 2.4 2.4 2.0 2.9 3.9	2.4 31.7 2.4 53.1 3.0 56.6 2.9 57.3 3.9 60.0 4.7 72.3	2.4 31.7 42.0 2.4 53.1 56.0 3.0 56.6 58.7 2.9 57.3 60.0 3.9 60.0 61.9 4.7 72.3 78.0	2.4 31.7 42.0 52.5 2.4 53.1 56.0 32.2 3.0 56.6 58.7 37.7 3.9 57.3 60.0 42.3 3.9 60.0 61.9 44.7 3.7 72.3 78.0 67.9	2.4 31.7 42.0 52.5 19.3 2.4 53.1 56.0 32.2 28.9 3.0 56.6 58.7 37.7 36.4 3.9 57.3 60.0 42.3 39.2 3.9 60.0 61.9 44.7 41.1 3.7 72.3 78.0 67.9 40.4	

Table 2: Results of different methods on NYT and WebNLG datasets.

而且说其他方法NYT不错但是WebNLG不好,原因是WebNLG实体重叠现象更多,所以更难。