

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

к лабораторной работе №1

По курсу: «Моделирование»

Студент	ИУ7И-76Б	Нгуен Ф. С.	
-	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Рудаков И.В.
		(Подпись, дата)	(И.О. Фамилия)

Оглавление

Формализация задачи	. 3
Равномерное распределение:	
Нормальное распределение:	
Результаты работы	
Равномерное распределение:	
Нормальное распределение:	
Код программы	٠, >

Формализация задачи

Равномерное распределение:

Равномерное распределение — распределение случайной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке всюду постоянна.

Равномерное распределение обозначают $X \sim R(a, b)$, где $a, b \in \mathbb{R}$.

Функция распределения равномерной непрерывной случайной величины:

$$F(x) = egin{cases} 0 & ext{при } x \leq a \ \dfrac{x-a}{b-a} & ext{при } a \leq x \leq b \ 1 & ext{при } x > b \end{cases}$$

Плотность распределения равномерной непрерывной случайной величины:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{при } a \le x \le b \\ 0 & \text{иначе} \end{cases}$$
 (2)

Нормальное распределение:

Нормальное распределение - распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (3)

где параметр μ — математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ - среднеквадратическое отклонение (σ^2 - дисперсия) распределения.

Функция распределения:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
 (4)

Обозначают нормальное распределение $X \sim N(\mu, \sigma^2)$.

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием $\mu=0$ и стандартным отклонением $\sigma=1$.

Математическое ожидание μ характеризует положение «центра тяжести» вероятностной массы нормального распределения. Получается, что график плотности распределения случайной величины, имеющей нормальное распределение, симметричен относительно $x = \mu$. Дисперсия σ характеризует разброс значений случайной величины относительно «центра тяжести».

Результаты работы

Равномерное распределение:

Равномерное распределение

Рисунок 1 графики функции распределения и плотности распределения равномерной случайной величины при a = -10, b = 10

Равномерное распределение

Рисунок 2 - графики функции распределения и плотности распределения равномерной случайной величины при $a=10,\ b=20.$

Нормальное распределение:

Нормальное распределение

Рисунок 3 - графики функции распределения и плотности распределения нормальной случайной величины при $\mu=0,\ \sigma=1.$

Нормальное распределение

Рисунок 4 - графики функции распределения и плотности распределения нормальной случайной величины при $\mu=15,\ \sigma=5.$

Код программы

Main.py

```
import matplotlib.pyplot as plt
from math import sqrt
from scipy.stats import norm
import numpy as np
#Равномерное распределение
def ud function(a, b, x):
    \#return (x - a) / (b - a) if a \le x \le b else 0 if x \le a
a else 1
    if (x < a):
        return 0
    if (x > b):
        return 1
    return (x - a) / (b - a)
def ud density(a, b, x):
    if (a <= x <= b):
        return 1 / (b - a)
    return 0
#Нормальное распределение
def norm function(x, mu, sigma):
    return norm.cdf(x, mu, sqrt(sigma))
def norm density(x, mu, sigma):
    return norm.pdf(x, mu, sqrt(sigma))
def draw graphics(x, y function, y density, name):
    fig, axs = plt.subplots(2, figsize=(6, 7))
    fig.suptitle(name)
    axs[0].plot(x, y function, color='red')
    axs[1].plot(x, y density, color='blue')
    axs[0].set xlabel('x')
    axs[0].set ylabel('F(x)')
    axs[1].set xlabel('x')
    axs[1].set ylabel('f(x)')
    axs[0].grid(True)
```

axs[1].grid(True)

```
def main():
   print('Равномерное распределение:')
    a = float(input("Input a: "))
    b = float(input("Input b: "))
   print('Нормальное распределение:')
    mu = float(input("Input mu: "))
    sigma = float(input("Input sigma: "))
    delta = b - a
    x = np.arange(a - delta / 2, b + delta / 2, 0.001)
    y function = [ud function(a, b, x) for x in x]
    y_density = [ud_density(a, b, _x) for _x in x]
    draw graphics (x, y function, y density, 'Равномерное
распределение')
    x = np.arange(mu - 5 * sigma, mu + 5 * sigma, 0.001)
    y function = norm function(x, mu, sigma)
    y_{density} = norm density(x, mu, sigma)
    draw graphics (x, y function, y density, 'Нормальное
распределение')
   plt.show()
if __name__ == '__main__':
    main()
```