Valutazione Real-Time del Contatto Pneumatico/Strada con Algoritmi Dedicati

Relatore:

Prof. Enrico Bertolazzi

Università di Trento

Co-relatore:

Dott. Ing. Matteo Ragni

AnteMotion S.r.1

Candidato: Davide Stocco

Motivazioni della Tesi

- Simulatore con
 - Software in the Loop (SIL)
 - Hardware in the Loop (HIL)
 - Driver in the Loop (DIL)
 - per la validazione degli Advanced Driver-Assistance Systems (ADAS)
- 2 Valutazione del contatto pneumatico/strada

Obiettivi della Tesi

- Sviluppo di una libreria C++ per la valutazione del contatto pneumatico/strada
- 2 Applicazione in tempo reale

Intersezione pneumatico/mesh

- 1 Analisi sintattico-grammaticale del formato rdf
- 2 Istanziamento della mesh
- 3 Istanziamento dello pneumatico
- 4 Posizionemanto dello pneumatico nello spazio
- 5 Intersezione degli alberi AABB per trovare i triangoli candidati
- 6 Scelta del modello di contatto
- 1 Utilizzazione di algoritmi di tipo geometrico per valutare il contatto
- 8 Estrazione dei risultati

Il formato rdf per le superfici stradali

```
[NODES]
{ id x_coord y_coord z_coord }
0 2.64637 35.8522 -1.59419e-005
1 4.54089 33.7705 -1.60766e-005
2 4.52126 35.8761 -1.62482e-005
3 2.66601 33.7456 -1.57714e-005
4 0.771484 35.8282 -1.56367e-005
[ELEMENTS]
{ n1 n2 n3 mu }
1 2 3 1.0
2 1 4 1.0
```

Analisi sintattico-grammaticale del formato rdf

- 1 Estrazione dei [NODES]
- 2 Estrazione degli [ELEMENTS]
- 3 Istanziamento dei triangoli componenti la mesh
- !!! Non esiste uno standard per questo formato

Istanziamento della mesh

```
TireGround::RDF::MeshSurface Road(
"./file.rdf" // Path to the *.rdf file
);
```


Albero delle Axis-Aligned Bounding Boxes (AABB)

- Raggruppamento ricorsivo delle AABB dei triangoli della mesh
- 2 Diminuzione in scala logaritmica del numero di comparazioni
- 3 Solo confronti logici

Modellizzazione geometrica dello pneumatico

Ente normatore: European Tire and Rim Technical Organization (ETRTO)

Rappresentazione dello pneumatico tramite dischi

- 1 Uno o più dischi indeformabili
- 2 Movimenti relativi consentiti

Disco singolo

Dischi multipli

Disposizione dei dischi

Istanziamento dello pneumatico

```
TireGround::Tire* TireSD = new TireGround::MagicFormula(
SectionWidth, // [m]
AspectRatio, // [%]
RimDiameter, // [in]
SwitchNumber // Max triangles in the shadow
);
TireGround::Tire* TireMD = new TireGround::MultiDisk(
SectionWidth, // [m]
AspectRatio, // [%]
RimDiameter, // [in]
RadiusVec, // Disks radius vector [m]
PointsNumber, // Sampling points for each disk
SwitchNumber // Max triangles in the shadow
);
```

Modelli di contatto per pneumatico mono-disco

1 Modello di contatto di Rill

2 Modello di contatto ponderato in base all'area d'intersezione

Differenze tra le due tipologie di modelli di contatto

Rill:

- Non rileva ostacoli frontali
- Approssimativo

Ponderato sull'area d'intersezione:

- + Rileva ostacoli frontali
- + Robusto se la mesh ha "buchi"
- Poco robusto se i triangoli sono sovrapposti

Modelli di contatto per pneumatico multi-disco

1 Modello di contatto ponderato in base all'area d'intersezione

2 Modello di contatto tramite campionamento

Posizionamento dello pneumatico nella libreria

```
bool Out = SampleTire->setup(
  Road, // Superficie stradale
  TM // Matrice di trasformazione 4x4
);
bool Out = SampleTire->setup(
  Normal, // Vettore normale al piano
  Point, // Punto appartenente al piano
  Friction, // Coefficiente di attrito nel piano
            // Matrice di trasformazione 4x4
  TM
):
```

Estrazione dei risultati

```
TireGround::vec3 N:
TireGround::vec3 P;
TireGround::real type Friction;
TireGround::real_type Rho;
TireGround::real_type RhoDot;
TireGround::real_type RelativeCamber;
TireGround::real_type Area;
TireGround::real_type Volume;
SampleTire->getNormal(N);
SampleTire->getMFpoint(P);
SampleTire->getFriction(Friction);
SampleTire->getRho(Rho);
SampleTire->getRhoDot(PreviousRho, TimeStep, RhoDot);
SampleTire->getRelativeCamber(RelativeCamber);
SampleTire->getArea(Area);
SampleTire->getVolume(Volume);
```

Prestazioni della libreria

Pneumatico 250/55R11 Campionamenti = 30000

	Modello di contatto			
	Ponderato sull'area	Mix		
$T_{step} [\mu s]$	9.6688	9.7658		
$\sigma^2 \left[\mu s^2\right]$	1.4018	1.4983		

Switch Area ⊳ Rill a 10 triangoli

	Precisione		Modello di contatto	
	Dischi	Punti	Ponderato sull'area	Mix
$T_{step} [\mu s]$	5	5	24.5736	39.6069
$\sigma^2 \left[\mu s^2\right]$	10	5	42.6262	439.6915
$T_{step} [\mu s]$	5	10	24.6686	55.7135
$\sigma^2 \left[\mu s^2\right]$	10	10	41.4114	479.8682

Switch Area ⊳ Campionamento a 10 triangoli

Possibili sviluppi

- 1 Definizione di uno standard per il formato rdf
- 2 Implementazione di un parser sufficientemente efficiente e stabile
- 3 Rappresentazione dello pneumatico mediante un modello fisico

FINE

Intersezione trà alberi di tipo AABB

Intersezione trà alberi di tipo AABB

Volendo intersecare due semplici AABB, quali:

```
A = [A.minX, A.maxX, A.minY, A.maxY]

B = [B.minX, B.maxX, B.minY, B.maxY]
```

verrà usata la seguente funzione:

```
function intersect(A,B) {
   return (A.minX <= B.maxX && A.maxX >= B.minX) &&
   (A.minY <= B.maxY && A.maxY >= B.minY)
}
```

Intersezione trà entità geometriche

Intersezione segmento-punto

Dato un punto $P=(x_p,y_p)$ e un segmento definito dai punti $A=(x_A,y_B)$ e $B=(x_B,y_B)$.

Per determinare se il punto P è interno al segmento gli *step* sono:

- **1** creazione di un vettore \vec{AB} e di un vettore \vec{AP} ;
- 2 calcolo del prodotto vettoriale $\vec{AB} \times \vec{PA}$, se il modulo del vettore risultante è nullo allora il punto P appartiene al segmento considerato;
- 3 calcolo del prodotto scalare tra \vec{AB} e \vec{AP} , se è nullo allora $P \equiv A$, se è pari al modulo di \vec{AB} allora il $P \equiv B$, se è compreso tra 0 il modulo di \vec{AB} , allora il punto P giace all'interno del segmento considerato.

Intersezione punto-cerchio

Data una circonferenza con centro $C=(x_c,y_c)$ e raggio r, il problema consiste nel trovare se un generico punto $P=(x_p,y_p)$ è all'interno, all'esterno o corrispondente alla circonferenza.

La soluzione al problema è semplice: la distanza tra il centro della circonferenza C e il punto P è data dal teorema di Pitagora, ovvero:

$$d = \sqrt{(x_p - x_c)^2 + (y_p - y_c)^2}$$

Intersezione piano-piano

$$L(s) = \frac{(d_2\vec{n}_1 - d_1\vec{n}_2) \times \vec{u}}{|\vec{u}|^2} + s\vec{u}$$

Intersezione piano-segmento e piano-raggio

$$\vec{n} \cdot (\vec{w} + t\vec{u}) = 0$$
 $t_I = -\frac{\vec{n} \cdot \vec{w}}{\vec{n} \cdot \vec{u}}$

Intersezione raggio-triangolo

$$R_O + t\vec{R}_D = A + u(B - A) + v(C - A)$$

$$\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{(D \times E_2) \cdot E_1} \begin{bmatrix} (T \times E_1) \cdot E_2 \\ (D \times E_2) \cdot T \\ (T \times E_1) \cdot D \end{bmatrix} = \frac{1}{P \cdot E_1} \begin{bmatrix} Q \cdot E_2 \\ P \cdot T \\ Q \cdot D \end{bmatrix}$$

La libreria TireGruond

class Tire

