NMOS Inverter

Exercise 1

For the NMOS Inverter shown- $V_{DD} = 6 V$, $V_{TN} = 0.3 V$ $V_{in}(high) = 6V$, $V_{in}(low) = 0 V$, $K_n = 0.2 A/V^2$

- a) If the **average** power dissipation is 1.1654 W, find the value of R_D .
- b) Find the drain current for maximum power dissipation of the inverter.
- c) Find the transition point.
- d) Find the power dissipation at the transition point.
- e) If the output voltage is 4.2 *V*, find the input voltage at the gate.

V 70.ſ (∍

W 968.1 (b

V 62.1 (5

A 88£.0 (d

a et (a

NMOS NOR Gate

Exercise 2

For the given NMOS NOR gate- $V_{in}(High) = V_{DD} = 5 V$ $V_{in}(Low) = 0 V$, $V_{TN_A} = 0.25 V$, $V_{TN_B} = 0.3 V$, $K_{n_A} = 0.4 A/V^2$ $K_{n_B} = 0.5 A/V^2 R = 20 \Omega$

- a) Find the low output threshold.
- b) Find the average power dissipation.
- c) If a new NMOS is used for 'B' such that the drain currents are equal for A=1 & B=1, find it's K'_{n_B} , given, $V'_{TN_B} = V_{TN_B} = 0.3 V$

2V/A 104.0 (3 W 2829.0 (d V E 60.0 (b

Exercise 3

For the given circuit-

$$V_{TN_A} = V_{TN_B} = V_{TN_Y} = 0.3 V$$
,
 $K_{n_A} = K_{n_B} = K_{N_Y} = 0.5 A/V^2$
a) What logic function does

- the circuit implement?
- b) Find the maximum power dissipation.
- c) What is the higher threshold of output voltage?