1.DC Motor First Principle

GODAVARTHI AAHLADH 2018HT01513

1-1. Equivalent moment of Inertia

$$J_{eq} = J_m + J_h + J_d$$

1-1) Given,
$$J_{m} = (4.0 \times 10^{-6}) \text{kg.m}^{2}$$
 $y_{h} = 0.0111 \text{ m}$; $y_{d} = 0.0248 \text{ m}$
 $m_{h} = 0.0106 \text{ kg}$; $m_{d} = 0.053 \text{ kg}$
 $J_{eq} = J_{m} + J_{h} + J_{d}$
 $= (J_{m}) + (\frac{1}{2} \times m_{h} \times v_{h}^{2}) + (\frac{1}{2} \times m_{d} \times v_{d}^{2})$
 $= (4 \times 10^{-6}) + ((\frac{1}{2} \times 0.0106) \times (0.011)^{2})$
 $+ (\frac{1}{2} \times 0.053 \times (0.0248)^{2})$
 $J_{eq} = (2.0951 \times 10^{-5}) \text{ kg.m}^{2}$

1-2 Attach the screen capture you saved in Step 4.

1-2 Contd.. (comparing actual with model)

1.2.1

Signal Type	Amplitude of the Signal	Peak Speed (rad/s)
Sine	2	93.88
Square	3	120
Saw tooth	4	120.8
Random	5	82.45

1.2.2 Sine with amplitude 2

1.2.2 Square with amplitude 3

1.2.2 Sawtooth with amplitude 4

1.2.2 Random signal with amplitude 5

1.3 What is the offset voltage of the system after running the final VI (step 6)?

OFFSET VOLATGE = 1V

1-4 Transfer Function parameters

Transfer function
$$\rightarrow \frac{R_m(s)}{V_m(s)} = \frac{1}{K_m}$$

Substituting, $K_m = 0.042 \text{ V}/(\text{Vad}(s))$

Teq = $2.095 \text{ (\times 10^{-5} kg. m^2)}$
 $K_t = 0.042 \text{ N.m/A}$
 $K_t = 0.042 \text{ N.m/A}$

Note: Transfer function output exactly coincided with actual value. Hence red waveform is not visible.