

Supporting the HSC student community since 2002 https://boredofstudies.org

2023

BORED OF STUDIES TRIAL EXAMINATION

3rd October

Mathematics Extension 1

General instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using a black or blue pen
- Calculators approved by NESA may be used
- A reference sheet is provided
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

70

Total marks: Section I – 10 marks (pages 2–4)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II – 60 marks (pages 5–10)

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 Consider the following table of values for a function f(x).

x	f(x)	f'(x)
0	-1	1
1	0	2
2	2	3

Suppose that f(x) has a unique inverse function g(x) for all real x. What is the value of g'(0)?

(A) -1

(B) 1

(C) $\frac{1}{3}$

(D) $\frac{1}{2}$

When the polynomial $P(x) = acx^3 + bcx + d$ is divided by D(x), it gives cx with a $\mathbf{2}$ remainder of d. What is D(x)?

(A) $-ax^2 - b$

(B) $-ax^2 + b$

(C) $ax^2 - b$

(D) $ax^2 + b$

What is the range of $y = \sin^{-1} \left(1 - \sqrt{1 + 2x^2}\right)$ 3

- (A) $\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$ (B) $\left[-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}\right]$ (C) $\left[-\frac{\pi}{2}, 0\right]$ (D) $\left[0, \frac{\pi}{2}\right]$

Suppose that the vectors $a\underline{i} + bj$ and $c\underline{i} + dj$ are perpendicular. Which of the following 4 could be true?

- (A) a < 0, b < 0, c < 0 and d < 0
- (B) a < 0, b < 0, c > 0 and d > 0
- (C) a > 0, b < 0, c > 0 and d < 0
- (D) a > 0, b > 0, c < 0 and d > 0

- Let $(3x+1)^8 = c_0 + c_1x + c_2x^2 + \cdots + c_8x^8$ for some constants $c_0, c_1, c_2, \ldots, c_7$ and c_8 . **5** Which of the following has the largest value?
 - (A) c_1

(B) c_3

(C) c_5

- (D) c_7
- Suppose that $\sqrt{2}\sin x + \cos\left(x + \frac{\pi}{4}\right) + R\cos(x + \alpha) = 0$ where R > 0 and $0 < \alpha < 2\pi$. 6

What is the value of α ?

- (A) $\frac{\pi}{4}$
- (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{4}$ (D) $\frac{7\pi}{4}$
- 7 Which of the following differential equations best represents the direction field below?

(A) $\frac{dy}{dx} = x + e^{x^2 + y^2}$

(B) $\frac{dy}{dx} = x + e^{-x^2 + y^2}$

(C) $\frac{dy}{dx} = x + e^{x^2 - y^2}$

(D) $\frac{dy}{dx} = x + e^{-x^2 - y^2}$

8 A group of 6 people have reserved seating tickets for a concert. The six seats are split into 4 adjacent seats in one row and the remaining 2 adjacent seats in another row.

There is a couple in the group who must sit next to each other. How many possible seating arrangements are there for the group?

- (A) 48
- (B) 120
- (C) 144
- (D) 192
- 9 Let $f(x) = 8\cos^6 x 12\cos^4 x + 6\cos^2 x 1$. Which expression is equal to $\int f(x) dx$?
 - (A) $\frac{1}{24}\sin 6x + \frac{3}{8}\sin 2x + c$
 - (B) $\frac{1}{12}\sin 6x + \frac{3}{4}\sin 2x + c$
 - $(C) \frac{(\sin 2x)^4}{4} + c$
 - (D) $\frac{(\sin 2x)^4}{8} + c$
- 10 Suppose that a polynomial P(x) is such that there exists some a > 0 where

$$\int_0^a P(x) \, dx = 0.$$

Which of the following polynomials satisfies this condition?

(A) $-x(x^2+1)$

- (B) -x(x-1)(x-4)
- (C) (x+1)(x-1)(x-2)
- (D) (x+1)(x+2)(x+3)

Section II

60 marks

Attempt Questions 11—14

Allow about 1 hour and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet

- (a) Find the projection of the vector $\underline{i} 2\underline{j}$ onto the line 2x + 3y + 6 = 0.
- (b) Show that $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$.
- (c) The polynomial $P(x) = x^3 3x + 2$ has a double root.
 - (i) Find all the roots of P(x).
 - (ii) Hence, or otherwise, solve $\frac{x^2 x + 2}{4x} \le \frac{1}{x+1}$.
- (d) A circular metallic disc initially has a radius of 1 cm. As it gets heated, the rate at which its radius R expands at time t is given by

$$\frac{dR}{dt} = 10 - 2R.$$

- (i) Find the specific solution to the differential equation of R in terms of t.
- (ii) When is the growth rate of disc's **area** the fastest?
- (e) A boat is sailing at constant velocity in a straight line across a lake. At time t hours, its displacement in kilometres is given by the position vector \underline{r} . Let the unit vectors \underline{i} and \underline{j} be directed at due east and due north respectively. The boat is initially at $-5\underline{i}+10\underline{j}$ and 3 hours later it is at $4\underline{i}-2\underline{j}$.
 - (i) Find the displacement equation \underline{r} of the boat in terms of t.
 - (ii) Find the velocity of the boat in terms of magnitude and direction in true bearings (to the nearest degree).

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet

(a) A multiple choice test of 25 questions is designed such that there are four possible options and only one correct answer for each question. Each correct answer gains 3 marks but each incorrect answer loses 1 mark.

Suppose a certain student chooses to make a non-serious attempt and answers all 25 questions at random.

(i) Find the probability the student will get exactly 15 marks in total.

1

(ii) Now suppose that for each question, the student can choose to make a serious attempt (not answering at random) or a non-serious attempt (answering at random), both of which are equally likely.

2

If the student makes a serious attempt at the question, the probability that they get the question correct is $\frac{5}{12}$.

By considering a normal approximation, find the probability that the student will score at least 27 marks.

(b) A circle with centre O is inscribed in a square ABCD with a side length of 1 unit as shown in the diagram below. Let P be the point on the circle where the diagonal AC intersects the circle and is closest to C. Let Q be the point where PB intersects the circle. Suppose that the vectors representing \overrightarrow{AB} and \overrightarrow{AD} are i and i respectively.

- (i) Show that the vector presenting \overrightarrow{BP} is $\left(\frac{\sqrt{2}-2}{4}\right)\underline{i}+\left(\frac{\sqrt{2}+2}{4}\right)\underline{j}$.
- (ii) Hence, show that $\cos \angle POQ = \frac{1}{3}$.

Question 12 continues on page 7

(c) Student A launches a ball into the air from the ground at an angle of θ to the horizontal and an initial speed of u. Student B is on the ground R metres away from student A and will catch the ball.

Whilst the ball is in flight, student A and student B are both stationary and view the ball at an angle of elevation of α and β respectively at time t.

The displacement vector of the ball relative to the origin at student A is given by

$$\underline{r} = ut\cos\theta \underline{i} + \left(ut\sin\theta - \frac{gt^2}{2}\right)\underline{j}$$
 (Do NOT prove this)

where g is the acceleration due to gravity.

- (i) Show that $\tan \alpha$ decreases linearly over time.
- (ii) Show that $\tan \alpha + \tan \beta$ is independent of time.

1

2

- (d) It can be shown that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$. (Do NOT prove this)
 - (i) Use this result to show that

$$\sin 7\theta + \sin \theta = 8\sin \theta - 56\sin^3 \theta + 112\sin^5 \theta - 64\sin^7 \theta.$$

- (ii) Hence, find the roots of $64x^6 112x^4 + 56x^2 7$.
- (iii) Deduce that $\csc^2\frac{\pi}{7} + \csc^2\frac{2\pi}{7} + \csc^2\frac{3\pi}{7} = 8.$

End of Question 12

Question 13 (15 marks) Use the Question 13 Writing Booklet

(a) By considering an appropriate t-formula, or otherwise, show that

 $\tan^{-1} x = \begin{cases} -\frac{1}{2} \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) & \text{for } x < 0\\ \frac{1}{2} \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) & \text{for } x \ge 0. \end{cases}$

2

(b) Let (x, y) be a point on the circle $x^2 + y^2 = r^2$ for some constant r > 0. Let f(z) be a probability density function on all real z, with a global maximum turning point at (0, 1).

Suppose that f(z) has the property that for some values x and y on the circle

$$g(r) = f(x)f(y)$$

where g(r) is some function of r, independent of x and y.

(i) By considering the parametric equations of the circle, show that for $x \neq 0$ and $y \neq 0$ $\frac{f'(x)}{xf(x)} = \frac{f'(y)}{yf(y)}.$

(ii) Explain why $\frac{f'(x)}{xf(x)} = -k$ for some constant k > 0.

(iii) Hence, use the substitution $u = x\sqrt{k}$ to find a specific solution to the differential equation in part (ii).

Question 13 continues on page 9

(c) Consider a pentagon with side lengths as shown in the diagram below. Note that the top vertex bisects the side length of a 2 cm by 2 cm square.

- (i) Explain why the longest distance between any two points within the pentagon must be between two non-adjacent vertices.
- (ii) Hence, show that the longest distance between any two points within the pentagon is $\sqrt{5}$ cm.

1

3

- (iii) Six points are randomly placed within a 3 cm by 4 cm rectangle.
 Use the pigeonhole principle and the result of part (ii) to show that there exists at least one pair of points that are within √5 cm of each other.
- (d) Prove by mathematical induction that for positive integers n

 $\frac{\sin x}{\cos x + \cos 3x} + \frac{\sin x}{\cos x + \cos 5x} + \dots + \frac{\sin x}{\cos x + \cos(2n+1)x} = \frac{\tan(n+1)x - \tan x}{2}.$

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet

- (a) (i) By considering the graph of $y = x^2 3x + 3$, or otherwise, sketch the graph of $y = \frac{1}{x^2 3x + 3}$, showing any turning points and asymptotes.
 - (ii) On the same set of axes, sketch the graph of $y = \tan^{-1} \left(\frac{1}{x^2 3x + 3} \right)$.
 - (iii) Explain why the graphs of $y = \frac{1}{x^2 3x + 3}$ and $y = \tan^{-1}\left(\frac{1}{x^2 3x + 3}\right)$ do not have a point of intersection.
 - (iv) Differentiate $(x+c) \tan^{-1}(x+c) \ln\left(\sqrt{1+(x+c)^2}\right)$ with respect to x for some constant c.
 - (v) Hence, use the expansion of $\tan(A+B)$ to find the area between the curves $y=\frac{1}{x^2-3x+3}\quad\text{and}\quad y=\tan^{-1}\left(\frac{1}{x^2-3x+3}\right)$ for $1\leq x\leq 2$.
- (b) A soccer player performs a training drill where she needs to score exactly r goals. Her training session is complete after she scores her r^{th} goal.

She is given a maximum of n attempts and manages to score r goals and complete her training session. By considering two different methods to count the number of ways she can do this, show that

$$\binom{r-1}{r-1} + \binom{r}{r-1} + \binom{r+1}{r-1} + \dots + \binom{n-1}{r-1} = \binom{n}{r}.$$

- (c) (i) Show that for integer $n \ge 4$ $n^4 = 24 \binom{n}{4} + 36 \binom{n}{3} + 14 \binom{n}{2} + \binom{n}{1}.$
 - (ii) Hence, using the results in parts (b) and (c)(i), show without induction that $1^4 + 2^4 + 3^4 + \dots + n^4 = \frac{1}{20}n(n+1)(2n+1)(3n^2 + 3n 1).$

End of paper

BLANK PAGE

BLANK PAGE