2.1.5. Integral Test.

Theorem 21 (Integral Test for Series Convergence). Let ries $\sum\limits_{n=1}^{\infty}a_{n}$ converges if and only if the improper integral f(x) be a continuous, non-negative, monotonic decreasing function on $[1,\infty)$ and let $a_n=f(n)$. Then the se- $\int_{1}^{\infty} f(x) dx \text{ converges.}$ **Theorem 22.** If the series $\sum a_n$ absolutely converges and the series $\sum b_n$ is obtained from $\sum a_n$ by changing the order of the terms in $\sum a_n$ then $\sum b_n$ also absolutely converges and $\sum b_n = \sum a_n$.

veryes. That is, if $\sum a_n$ converges, then any series of the and diverges for form $(a_1 + a_2) + (a_3 + a_4 + a_5) + a_6 + \dots$ also converges. Theorem 23. If a series converges then the series with brackets without changing the order of terms also con-

Theorem 24. If a series with brackets converges and the terms in the brackets have the same sign, then the series $\text{If } x = \frac{5}{2},$ without brackets also converges.

3. Power Series

Definition 16 (Power series). The series $\sum_{n=0}^{\infty} a_n(x-c)^n$ is called a power series.

may be infinity, $K = \overline{\lim_{n \to \infty} \sqrt{|a_n|}}$ and the series converges for |x - c| < R and diverges for |x - c| > R. The end for |x - c| < R and diverges for |x - c| > R. The end for |x - c| < R and diverges for |x - c| > R. The end for |x - c| < R and forTheorem 25 (Cauchy-Hadamard Theorem). For any power series $\sum_{n=0}^{\infty} a_n (x-c)^n$ there exists the limit, which may be infinity, $R = \frac{1}{\lim \sqrt{|a_n|}}$ and the series converges be separately checked for series convergence.

gence and the interval |x-c| < R is called the convergence **Exercise 7.** interval of the series. The point c is called the centre of interval). The number R is called the radius of converthe convergence interval. Theorem 26. If $\exists \lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$, which may be infinite, Solution 7. then, $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

Theorem 27 (Stirling's Approximation). For $n \to \infty$, Therefore, $n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$

Exercise 6.

Find the domain of convergence of $\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n}$.

Solution 6.

$$\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n} = \sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{n}$$

Therefore, by Cauchy's Formula for Radius of Conver-

gence,

$$R = \frac{1}{\lim_{n \to \infty} \sqrt{|a_n|}}$$

$$= \frac{1}{\lim_{n \to \infty} \sqrt{\frac{2^n}{n}}}$$

$$= \frac{1}{1}$$

$$=\frac{1}{\lim_{n\to\infty}\sqrt[n]{\frac{2^n}{n}}}$$

$$=\frac{1}{\lim_{n\to\infty}\frac{2}{\sqrt[n]{n}}}$$

Therefore, the series converges for

$$|x-2| < \frac{1}{2}$$
 and diverges for

$$|x-2| > \frac{1}{2}$$
If $x = \frac{5}{2}$,
$$\sqrt{\frac{2^n}{\sqrt{\frac{5}{2}}}} \left(\frac{5}{2}\right)$$

 $\sum_{n=1}^{\infty} \frac{2^n}{n} \left(\frac{5}{2} - 2 \right)^n$

s.t. $a_n \le a_{n+1}$, $\forall n \ge n_0$.

s.t. $a_n \ge a_{n+1}, \forall n \ge n_0$.

Therefore, the series diverges. If $x = \frac{3}{2}$,

 $\sum_{n=1}^{\infty} \frac{2^n}{n} \left(\frac{3}{2} - 2 \right)^n$

Definition 17 (Radius of convergence and convergence Therefore, the domain of convergence is $\begin{pmatrix} 3 & 5 \\ 2 & 2 \end{pmatrix}$

ries converges.

Find the radius of convergence of $\sum_{n=0}^{\infty} n! x^{n!}$.

 $\iff \frac{n^2}{2^n} > \frac{(n+1)^2}{2^{n+1}}$ $\iff 2n^2 > (n+1)^2$

 $a_n > a_{n+1}$

 $\iff \sqrt{2}n > n+1$

 $\iff n(\sqrt{2}-1) > 1$

$$\frac{1}{\overline{\lim}} \sqrt[3]{a_n} = x + x + 2x^2 + 6x^6 + 24x^{24} + \dots$$

$$a_n = \begin{cases} n & ; \quad n = k^2 \\ 0 & ; \quad n \neq k^2 \end{cases}$$

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a_n}}$$

$$= \lim_{k \to \infty} \sqrt[n]{k!}$$

DIFFERENTIAL AND INTEGRAL CALCULUS: COMPENDIUM

AAKASH JOG

Prove that 2 is not a limit of $\left\{\frac{3n+1}{n}\right\}$. said to be bounded from above if $\exists M \in \mathbb{R}$, s.t. $a_n \leq M$, Solution 1. **Definition 1** (Sequences bounded from above). $\{a_n\}$ is

If possible, let

 $\forall n \in \mathbb{N}$. Each such M is called an upper bound of $\{a_n\}$.

1. Sequences

Definition 2 (Sequences bounded from below). $\{a_n\}$ is $\lim_{n\to\infty}\frac{3n+1}{n}=2$ said to be bounded from below if $\exists m\in\mathbb{R}$, s.t. $a_n\geq M$, $\lim_{n\to\infty}\frac{3n+1}{n}=2$ $\forall n\in\mathbb{N}$. Each such M is called an lower bound of $\{a_n\}$. Then, $\forall \varepsilon>0,\ \exists n_0\in\mathbb{N},\ \text{s.t.}\ \left|\frac{3n+1}{n}-2\right|<\varepsilon,\ \forall n\geq n_0$. **Definition 3.** $\{a_n\}$ is said to be bounded if it is bounded However,

 $\left|\frac{3n+1}{n}-2\right|=1+\frac{1}{n}>1$

Definition 4 (Monotonic increasing sequence). A sequence $\{a_n\}$ is called monotonic increasing if $\exists n_0 \in \mathbb{N}$, This is a contradiction for $\varepsilon = \frac{1}{2}$. Therefore, 2 is not a **Theorem 1.** If a sequence $\{a_n\}$ has a limit L then the limit.

Theorem 2. If a sequence $\{a_n\}$ has limit L, then the sequence is bounded. **Definition 5** (Monotonic decreasing sequence). A sequence $\{a_n\}$ is called monotonic decreasing if $\exists n_0 \in \mathbb{N}$, limit is unique.

Definition 6 (Strongly increasing sequence). A sequence $\{a_n\}$ is called monotonic increasing if $\exists n_0 \in \mathbb{N}$, s.t. **Theorem 3.** Let

$$\lim_{n \to \infty} a_n = a$$
$$\lim_{n \to \infty} b_n = b$$

Definition 7 (Strongly decreasing sequence). A sequence $\{a_n\}$ is called monotonic decreasing if $\exists n_0 \in \mathbb{N}$, s.t.

 $a_n > a_{n+1}, \forall n \ge n_0.$

 $a_n < a_{n+1}, \forall n \ge n_0.$

Example 1. The sequence $\left\{\frac{n^2}{2^n}\right\}$ is strongly decreasing. However, this is not evident by observing the first few

terms. $\frac{1}{2}$, 1, $\frac{9}{8}$, 1, $\frac{25}{32}$, ...

and let c be a constant. Then,

 $\lim(a_n \pm b_n) = \lim a_n \pm \lim b_n$ $\lim(a_nb_n) = \lim a_n \lim b_n$ $\lim(ca_n) = c \lim a_n$ $\lim c = c$

 $\lim(\frac{a_n}{b_n}) = \frac{\lim a_n}{\lim b_n} \quad (\text{ if } \lim b \neq 0)$

 $\lim(a_nb_n)=0$

Theorem 4. Let $\{b_n\}$ be bounded and let $\lim a_n = 0$.

Theorem 5 (Sandwich Theorem). Let $\{a_n\}, \{b_n\}, \{c_n\}$ be three sequences. If

 $\iff n > \frac{1}{\sqrt{2} - 1}$

 $\Leftrightarrow n > 3$

1.1. Limit of a Sequence.

and $\exists n_0 \in \mathbb{N}$, s.t. $\forall n \geq n_0$, $a_n \leq b_n \leq c_n$. Then, $\lim a_n = \lim b_n = L$

 $\lim b_n = L$

Calculate $\lim_{n\to\infty} \sqrt[n]{2^n+3^n}$ Exercise 2.

That is, there are infinitely many terms inside the interval

and a finite number of terms outside it.

Date: Wednesday 29th April, 2015.

Definition 8 (Limit of a sequence). Let $\{a_n\}$ be a given sequence. A number L is said to be the limit of the sequence if $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, s.t. $|a_n - L| < \varepsilon$, $\forall n \ge n_0$.

Solution 2.

$$\sqrt[n]{3^n} \le \sqrt[n]{2^n + 3^n} \le \sqrt[n]{3^n + 3^n} = \sqrt[n]{2 \cdot 3^n}$$
$$\therefore 3 \le \sqrt[n]{2^n + 3^n} \le 3\sqrt[n]{2}$$

Therefore, by the Sandwich Theorem, $\lim_{n\to\infty} \sqrt[n]{2^n+3^n}=3$.

below converges. monotonically decreasing sequence which is bounded from which is bounded from above converges. Similarly, any **Theorem 6.** Any monotonically increasing sequence

Exercise 3.

Prove that there exists a limit for
$$\underbrace{\sqrt{2+\sqrt{2+\sqrt{2}+\dots}}}_{n \text{ times}} \text{ and find it.}$$

 a_n

$$a_1 = \sqrt{2} < \sqrt{2 + \sqrt{2}} = a_2$$
 If possible, let

$$a_{n-1} < a_n$$

$$\therefore \sqrt{2 + a_{n-1}} < \sqrt{2 + a_n}$$

$$\therefore a_n < a_{n+1}$$

Hence, by induction, $\{a_n\}$ is monotonically increasing

$$a_1=\sqrt{2}\leq 2$$

If possible, let

$$a_n \le 2$$

$$\therefore \sqrt{2 + a_n} \le \sqrt{2 + 2}$$

$$\therefore a_{n+1} \le 2$$

Therefore, by , $\{a_n\}$ converges

1.2. Sub-sequences.

Then $\{b_k\}_{k=1}^{\infty}$ is called a sub-sequence of $\{a_n\}_{n=1}^{\infty}$. Let $\{n_k\}_{k=1}^{\infty}$ be a strongly increasing sequence of natural numbers. Let $\{b_k\}_{k=1}^{\infty}$ be a sequence such that $b_k = a_{n_k}$. **Definition 9** (Sub-sequence). Let $\{a_n\}_{n=1}^{\infty}$ be a sequence.

of $\{a_n\}$ converges to the same limit L. wide sense, i.e. L can be infinite, then any sub-sequence **Theorem 7.** If the sequence $\{a_n\}$ converges to L in a

may be infinite, is called a partial limit of the sequence **Definition 10** (Partial limit). A real number a, which $\{a_n\}$ is there exists a sub-sequence of $\{a_n\}$ which con-

vergent, s.t. there exists at least one partial limit. bounded sequence there exists a subsequence which is con-**Theorem 8** (Bolzano-Weierstrass Theorem). For any

Definition 11 (Upper partial limit). The largest partial limit of a sequence is called the upper partial limit. It is denoted by $\lim a_n$ or $\lim \sup a_n$.

denoted by $\underline{\lim} a_n$ or $\lim \inf a_n$. limit of a sequence is called the upper partial limit. It is **Definition 12** (Lower partial limit). The smallest partial

Theorem 9. If the sequence $\{a_n\}$ is bounded and $\lim a_n =$ $\underline{\lim} a_n = a \ then \ \exists \lim a_n = a.$

1.3. Cauchy Characterisation of Convergence

quence if $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, s.t. $\forall m, n \geq n_0$, $|a_n - a_m| < \varepsilon$. **Definition 13.** A sequence $\{a_n\}$ is called a Cauchy se-

A sequence $\{a_n\}$ converges if and only if it is a Cauchy **Theorem 10** (Cauchy Characterisation of Convergence).

acterisation Theorem). The sequence $\{a_n\}$ converges if Hence, by induction, $\{a_n\}$ is bounded from above by 2. and only if $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, such that $\forall n \geq n_0$ and $\forall p \in \mathbb{N}, \ |a_{n+p} - a_n| < \varepsilon.$ **Theorem 11** (Another Formulation of the Cauchy Char-

Prove that the sequence $a_n = \frac{1}{1^2} + \frac{1}{2^2} + \cdots + \frac{1}{n^2}$ is convergent

Solution 4.

$$|a_{n+p} - a_n| = \left| \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{(n+p)^2} - \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) \right|$$

$$= \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2}$$

$$\therefore |a_{n+p} - a_n| < \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)(n+p)}$$

$$\therefore |a_{n+p} - a_n| < \frac{1}{n} - \frac{1}{p+1} + \frac{1}{p+1} + \dots + \frac{1}{p+p-1} - \frac{1}{n+p}$$

$$\therefore |a_{n+p} - a_n| < \frac{1}{n} - \frac{1}{n+p}$$

$$\therefore |a_{n+p} - a_n| < \frac{1}{n} - \frac{1}{n+p}$$

Therefore, $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, s.t. $\forall n \geq n_0$ and $\forall p \in \mathbb{N}$, $|a_{n+p} - a_n| < \varepsilon$, where $n_0 > \frac{1}{\varepsilon}$.

Prove that the sequence

$$a_n = \frac{1}{1} + \frac{1}{n} + \dots + \frac{1}{n}$$

diverges.

If possible, let the sequence converge. Then, by the Cauchy Characterisation of Convergence, $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, s.t. $\forall n \geq n_0$ and $\forall p \in \mathbb{N}$, $|a_{n+p} - a_n| < \varepsilon$. Therefore,

$$|a_{n+p} - a_n| = \left| \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+p} - \left(\frac{1}{n} + \dots + \frac{1}{n} \right) \right|$$

$$= \frac{1}{n+1} + \dots + \frac{1}{n+p}$$

$$\geq p \cdot \frac{1}{n+p}$$

$$\geq p \cdot \frac{1}{n+p}$$

$$\therefore |a_{n+p} - a_n| > \frac{p}{n+p}$$

$$\frac{p}{n+p} = \frac{1}{2}$$

This contradicts the result obtained from the Cauchy Characterisation of Convergence, for $\varepsilon = \frac{1}{4}$.

Therefore, the sequence diverges.

(2) If $a_n \geq b_n$, $\forall n \geq n_0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then

Definition 14 (*p*-series). The series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is called the *p*-series.

Theorem 12. The p-series converges for p > 1 and di- **Theorem 17** (Another Formulation of the Compari-

the converse is not true.

Theorem 14. If $\sum a_n$ and $\sum b_n$ converge, then $\sum (a_n \pm 2.1.3. \ d'Alembert Criteria (Ratio Test). <math>b_n$) and $\sum ca_n$, where c is a constant, also converge. Also,

$$\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n$$
$$\sum (ca_n) = c \sum a_n$$

2.1. Convergence Criteria.

2.1.1. Leibniz's Criteria.

alternating series $\sum (-1)^{n-1}a_n$ with $a_n > 0$ satisfies **Theorem 15** (Leibniz's Criteria for Convergence). If an

 $(2) \lim_{n \to \infty} a_n = 0$ (1) $a_{n+1} \leq a_n$, i.e. $\{a_n\}$ is monotonically decreasing

then the series $(-1)^{n-1}a_n$ converges

Example 2. The alternating harmonic series $\sum_{n=0}^{\infty} \frac{(-1)^n-1}{n}$ converges as $a_n = \frac{1}{n} > 0$, a_n decreases and $\lim a_n = 0$.

2.1.2. Comparison Test.

Assume $\exists n_0 \in \mathbb{N}$, such that $a_n \geq 0$, $b_n \geq 0$, $\forall n \geq n_0$. **Theorem 16** (First Comparison Test for Convergence).

(1) If $a_n \leq b_n$, $\forall n \geq n_0$ and $\sum_{n=1}^{\infty} b_n$ converges, then

 $\sum_{n=1}^{\infty} a_n \ converges$

Definition 14 (p-series). The series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is called the $\sum_{n=1}^{\infty} a_n$ diverges. p -series.

Theorem 12. The p-series converges for $p > 1$ and di . Theorem 17 (Another Formulation of the Compariverges for $p \le 1$.

Theorem 13. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$, but $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} a_n = 0$, but $\lim_{n\to\infty} a_n = 0$, but $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} a_n = 0$, but $\lim_{n\to\infty} a_n = 0$.

The series $\sum a_n$ is said to converge absolutely if $\sum |a_n|$ converges. The series $\sum a_n$ is said to converge conditionally if it converges but $\sum |a_n|$ diverges. **Definition 15** (Absolute and conditional convergence).

it converges. **Theorem 18.** If the series $\sum a_n$ converges absolutely then

Theorem 19 (d'Alembert Criteria (Ratio Test)). (1) If $\lim_{n\to\infty}\left|\frac{a_{n-1}}{a_n}\right|=L<1$ then $\sum a_n$ converges ab-

(2) If $\lim_{n\to\infty} \left| \frac{a_{n-1}}{a_n} \right| = L > 1 (including \ L = \infty)$, then $\sum a_n$ converges diverges. (3) If L = 1, the test does not apply. solutely.

2.1.4. Cauchy Criteria (Cauchy Root Test,

Theorem 20 (Cauchy Criteria (Cauchy Root Test)). If $\overline{\lim} \sqrt[n]{|a_n|} = L < 1$ then $\sum a_n$ converges abso-(1)

(2) If $\overline{\lim} \sqrt[n]{|a_n|} = L > 1$ (including $L = \infty$), then $\sum a_n$ diverges. lutely.

(3) If L=1, the test does not apply