15-151 Math Foundations CS – EXCEL

Services available: Supplemental Instruction (SI), Academic Counseling in Study Skills, Individual & Walk-in Tutoring

Topic: Number Theory, Modular Arithmetic, Functions

EXCEL Leader: Sam Yong

Email: myong@andrew.cmu.edu

Session Date: Thu Oct 11

Academic Development

Cyert Hall B5 | 412-268-6878

an. <u>myong@andrew.cmu.edu</u> Cyert Han B3 | 412-208-08/8

"If you can't solve a problem, then there is an easier problem you can solve: find it."

- George Pólya

<u>Puzzle 001</u>. **Kakuro** is like a crossword puzzle with numbers. Each "word" must add up to the number provided in the clue above it or to the left. Words can only use the numbers 1 through 9, and a given number can only be used once in a word. Every kakuro puzzle has one and only solution, and can be solved through logic alone.

		16	
	16	17 17	
30			
16			

		16	7	9
	16	17	9	8
30	9	8	6	7
16	7	9		

		- 1	
1	L'unotione	Fundamental	a

Let X and Y be sets. A fur	etion f from X to Y is a mathematical object which assigns to
each element of X exactly	one element of Y. Given $x \in X$, the element of Y associated with
x by f is denoted	, and is called the value of f at x . We write
	o denote that f is a function from X to Y . We say X is the
$_$ of f and Y is	ne of <i>f</i> .
Totality : A value $f(x)$ sh	ould be
Existence: For each	, the specified value
	the specified value
Uniqueness: For each	, 2p
Given functions $f: X \to Y$	That is, if $x = x' \in X$ then we should have and $g: Y \to Z$, their composition $g \circ f$ is the function Intuitively, $g \circ f$ is the
Given functions $f: X \to Y$ function resulting from fin	That is, if $x = x' \in X$ then we should have and $g: Y \to Z$, their composition $g \circ f$ is the function Intuitively, $g \circ f$ is the stapplying
Given functions $f: X \to Y$ function resulting from find A function $f: X \to Y$ is in	That is, if $x = x' \in X$ then we should have and $g: Y \to Z$, their composition $g \circ f$ is the function Intuitively, $g \circ f$ is the st applying then applying **ective* (or one-to-one) if
Given functions $f: X \to Y$ function resulting from find A function $f: X \to Y$ is in for all $x, x' \in X$. An injection	That is, if $x = x' \in X$ then we should have and $g: Y \to Z$, their composition $g \circ f$ is the function
Given functions $f: X \to Y$ function resulting from find A function $f: X \to Y$ is in for all $x, x' \in X$. An injective is equivalent	That is, if $x = x' \in X$ then we should have and $g: Y \to Z$, their composition $g \circ f$ is the function Intuitively, $g \circ f$ is the st applying then applying **ective* (or one-to-one) if
Given functions $f: X \to Y$ function resulting from find A function $f: X \to Y$ is in for all $x, x' \in X$. An injective is equivalent.	That is, if $x = x' \in X$ then we should have and $g: Y \to Z$, their composition $g \circ f$ is the function
Given functions $f: X \to Y$ function resulting from find A function $f: X \to Y$ is in for all $x, x' \in X$. An injective is equivalent.	That is, if $x = x' \in X$ then we should have and $g: Y \to Z$, their composition $g \circ f$ is the function Intuitively, $g \circ f$ is the st applying then applying ective (or one-to-one) if ve function is said to be an injection. By contrapositive, $f: X \to A$ lent to saying that if $x, x' \in X$ and $x \neq x'$, then
Given functions $f: X \to Y$ function resulting from fin A function $f: X \to Y$ is in for all $x, x' \in X$. An inject Y being injective is equived. A function $f: X \to Y$ is su A surjective function is sa	That is, if $x = x' \in X$ then we should have and $g: Y \to Z$, their composition $g \circ f$ is the function Intuitively, $g \circ f$ is the st applying then applying ective (or one-to-one) if ve function is said to be an injection. By contrapositive, $f: X \to A$ lent to saying that if $x, x' \in X$ and $x \neq x'$, then

<u>Puzzle 002</u>. Do you remember the four numbers game last week? Again, use only $+ - \times \div$ to make 24.

7 9 9 13

4 5 7 12

3 4 6 6

	Given integers a, l	$b \in \mathbb{Z}$, we say	y a is congruent to b modulo n , and write
	if		. If a is not congruent to b modulo
write		The numb	per <i>n</i> is called
True or Fal	se?		
a) 1	$1 \equiv 5 \bmod 2$		_
b) 1	$1 \equiv 5 \bmod 3$		_
c) 1	$1 \equiv 5 \bmod 4$		_
d) 1	$2 \equiv 18 \bmod 6$		_
e) -	$1 \equiv 23 \bmod 4$		_
f) -	$1 \equiv 13 \bmod 4$		_

- - a) $a \equiv a \mod n$
 - b) If $a \equiv b \mod n$, then $b \equiv a \mod n$
 - c) If $a \equiv b \mod n$ and $b \equiv c \mod n$, then $a \equiv c \mod n$

- 3. Prove **Proposition** 3.3.7: Fix a modulus n and let $a, b \in \mathbb{Z}$. The following are equivalent,
 - a) a and b leave the same remainder when divided by n
 - b) a = b + kn for some $k \in \mathbb{Z}$
 - c) $a \equiv b \mod n$

[Step 1: How do we prove three statements equivalent?]

<u>Puzzle 003</u>. Prove the following **visually**. (Hint: squares, area of a rectangle)

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

4. Prove **Theorem** 3.3.9: Fix a modulus n, and let $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ such that

$$a_1 \equiv b_1 \bmod n \land a_2 \equiv b_2 \bmod n$$

Then,

- a) $a_1 + a_2 \equiv b_1 + b_2 \mod n$
- b) $a_1a_2 \equiv b_1b_2 \mod n$
- c) $a_1 a_2 \equiv b_1 b_2 \mod n$

5. Find all integers x such that $2x + 9 \equiv 3x + 7 \mod 5$.

[Show your steps formally. Reference theorems and propositions above when necessary.]

6.	Fix a modulus n . Prove or disprove: $\forall a, b, q \in \mathbb{Z}$ with $q \not\equiv 0 \bmod n$,
	$qa \equiv qb \bmod n \ \Rightarrow a \equiv b \bmod n$
7.	Definition 3.3.15. Fix a modulus n . Given $a \in \mathbb{Z}$, a multiplicative inverse for a modulo n is an
	integer <i>u</i> such that
0	
8.	Prove Proposition 3.3.19: Let $a \in \mathbb{Z}$ and let n be a modulus. Then a has a multiplicative inverse modulo n if and only if

9.	Find all integers x such that $25x - 4 \equiv 4x + 3 \mod 13$.
10	. Big Little Theorems
10	• Fermat's little theorem : Let $a, p \in \mathbb{Z}$ with p a positive prime. Then
	$p \in \mathbb{Z}$ with $p \notin p$ positive prime. Then $p \notin p$ mod p . Corollary: If $p \notin a$, then
	Review totient and Euler's Theorem on your own.
	• Wilson's theorem: Let $n > 1$ be a modulus. Then n is prime if and only if
	• Chinese remainder theorem: Let m, n be moduli and let $a, b \in \mathbb{Z}$. If m and n are coprime
	then there exists an integer solution x to the simultaneous congruence
	$x \equiv a \bmod m \land x \equiv b \bmod n$
	Moreover, if $x, y \in \mathbb{Z}$ are two such solutions, then $x \equiv y \mod mn$.
	• Review the generalized version of Chinese remainder theorem on your own.
	Teview the generalized version of entitlese remainder theorem on your own.

14. Real Secret Application of number theory (seriously, Rivest-Shamir-Aldeman)

• Step 1: Let p and q be distinct ______, and let n = pq. Then $\varphi(n) =$

- Step 2: Choose integer e with ______ and $e \perp$ _____. The pair (n, e) is called the _____.
- Step 3: Choose integer d with ______. The pair (n, d) is called the
- Step 4: To encrypt a message M (which is encoded as an integer), compute $K \in [n]$ such that ______. Then _____ is the encrypted message.
- Step 5: The original message *M* can be recovered since ______.

<u>Puzzle 004</u>. How would two entities on an open unsafe network channel establish a pair of public-secret keys in the first place?

15. For each of the following functions: is it injective? Surjective? Bijective? Prove your claims.

- $f: \mathbb{R} \to \mathbb{R}$ via f(x) = 2x + 1
- $g: \mathbb{R} \to \mathbb{R}$ via $g(x) = x^2$
- $g': \mathbb{R} \to \mathbb{R}^+$ via $g'(x) = x^2$
- $h: \mathbb{R} \to \mathbb{R}^+$ via $h(x) = e^x$