4.5. Алгоритм обмена ключа Диффи-Хеллмана

Цель алгоритма состоит в том, чтобы два участника могли безопасно обменяться ключом, который в дальнейшем может использоваться в какомлибо алгоритме симметричного шифрования. Сам *алгоритм Диффи- Хеллмана* может применяться только для обмена ключами.

Алгоритм основан на трудности вычислений дискретных логарифмов. Дискретный логарифм определяется следующим образом. Вводится понятие примитивного корня простого числа Q как числа, чьи степени создают все целые от 1 до Q - 1. Это означает, что если A является примитивным корнем простого числа Q, тогда числа

 $A \bmod Q, A^2 \bmod Q, \dots, A^{Q-1} \bmod Q$

являются различными и состоят из целых от 1 до Q - 1 с некоторыми перестановками. В этом случае для любого целого Y < Q и *примитивного корня* А простого числа Q можно найти единственную экспоненту X, такую, что

 $Y = A^X \mod Q$, где $0 \le X \le (Q - 1)$

Экспонента X называется *дискретным логарифмом*, или индексом Y, по основанию $A \mod Q$. Это обозначается как

 $ind_{A,Q}(Y)$.

Теперь опишем алгоритм обмена ключей Диффи-Хеллмана.

Общеизвестные элементы. Q: простое число; A: A < Q и A является примитивным корнем Q.

Создание пары ключей пользователем І. Выбор случайного числа X_i (закрытый ключ), $X_i < Q$. Вычисление числа Y_i (открытый ключ) $Y_i = A$ $X_i \mod Q$.

Создание *открытого ключа* пользователем **J.** Выбор случайного числа Xj (закрытый ключ) Xj < Q. Вычисление случайного числа Yj (открытый ключ) Yj = A $Xj \mod Q$.

Создание общего секретного ключа пользователем I. $K=(Y_j)^{Xi} \bmod Q.$

Создание общего секретного ключа пользователем J. $K = (Y_i)^{X_j} \bmod Q$.

Предполагается, что существуют два известных всем числа: простое число Q и целое A, которое является *примитивным корнем* Q. Теперь предположим, что пользователи I и J хотят обменяться ключом для алгоритма симметричного шифрования. Пользователь I выбирает случайное число $X_i < Q$ и вычисляет $Y_i = A^{Xi} \mod Q$. Аналогично пользователь J независимо выбирает случайное целое число $X_j < Q$ и вычисляет $Y_j = A^{Xj} \mod Q$. Каждая сторона держит значение X в секрете и делает значение Y доступным для другой стороны. Теперь пользователь I вычисляет ключ как $K = (Y_i)^{Xi} \mod Q$, и пользователь J вычисляет ключ как $K = (Y_i)^{Xj} \mod Q$. В результате оба получат одно и то же значение:

$$\begin{split} K &= (Y_j)^{Xi} \text{ mod } Q &= (A^{Xj} \text{ mod } Q)^{Xi} \text{ mod } Q &= (A^{Xj})^{Xi} \text{ mod } Q = A^{Xj Xi} \text{ mod } Q \\ Q &= (A^{Xj})Xj \text{ mod } Q &= (A^{Xi} \text{ mod } Q)^{Xj} \text{ mod } Q = (Y_i)^{Xj} \text{ mod } Q \end{split}$$

Таким образом, две стороны обменялись секретным ключом. Так как X_i и X_j являются закрытыми, противник может получить только следующие значения: Q, A, Y_i и Y_j . Для вычисления ключа атакующий должен взломать дискретный логарифм, т.е. вычислить

$$X_j = ind_{a, q}(Y_j)$$

Следует заметить, что данный алгоритм уязвим для атак типа "man-in-the-middle".