

Production

If cash
support the control of the con

Interrupts

Asknowledgementa Federanes

- Reporting the trap of the space in the s

Happy Hacking!

OVERVIEW OF PCI(e) SUBSYSTEM

KISHON VIJAY ABRAHAM I, VIGNESH R

Introduction

- PCIe Vs PCI
- Usage model and software interface same as PCI
- Serial communication interface like USB, SATA
- Performance: Higher throughput, multi-lane
- Add peripherals to the system (USB, Ethernet, SATA, DCAN etc..)

Terminology

- Root Complex PCIe host
- Endpoint PCIe device
- cpu_addr CPU physical address (proc/iomem)
- pci_addr PCI bus address
- Switches allow more devices to be connected
- Enumeration discovering devices

Topology

Topology

I/O Lines

RX+	
RX-	
TX+	
TX-	
REFCLK+	
REFCLK-	
PERST#	
WAKE#	
PRSNT1#	
PRSNT2#	
JTAG#	
+12V#	
RX+	
RX-	
TX+	
TX-	

Topology

Address Space

Configuration Space Header

Address Space

Enhanced Configuration Access Mechanism (ECAM)

- Memory address (PCIe address space) determines configuration register accessed
- Function of bus number, device number, function and register number

Address Space

Address Space

PCIe Endpoint

Configuration

4Kb Space Configuration

Memory Space

Bus:2

Configuration Space Header

Address Space

Configuration Space Header

Address Space

Interrupts

Configuration Space Header

Interrupts

Configuration Space Header

Interrupts

Device Tree

```
pcie1: pcie@51000000 {
   compatible = "ti,dra7-pcie";
   reg = \langle 0x51000000 \ 0x2000 \rangle, \langle 0x51002000 \ 0x14c \rangle, \langle A \ 0x2000 \rangle;
   reg-names = "rc_dbics", "ti_conf", "config";
   interrupts = <0 232 0x4>, <0 233 0x4>;
   device type = "pci";
   #address-cells = <3>;
   \#size-cells = <2>;
   ranges = <0x820000000 0 B B 0 0xfffd000>;
   interrupt-map-mask = <0 0 0 7>;
   interrupt-map = <0 0 0 1 & pcie1_intc 1>,
                     <0 0 0 2 &pcie1_intc 2>,
                     <0 0 0 3 &pcie1_intc 3>,
                     <0 0 0 4 &pcie1_intc 4>;
   pcie1_intc: interrupt-controller {
      interrupt-controller;
      #address-cells = <0>;
      #interrupt-cells = <1>;
};
};
```

'ranges' Property

	CPU		PCIE
--	-----	--	------

Source Address	Destination Address	Size	Туре
В	В	~256MB	MEM

PCIe Address Space

CFG1

Controller

Physical MEM Address

В

Device Tree

```
pcie1: pcie@51000000 {
   compatible = "ti,dra7-pcie";
   reg = \langle 0x51000000 \ 0x2000 \rangle, \langle 0x51002000 \ 0x14c \rangle, \langle A \ 0x2000 \rangle;
   reg-names = "rc_dbics", "ti_conf", "config";
   interrupts = <0 232 0x4>, <0 233 0x4>;
   device type = "pci";
   #address-cells = <3>;
   \#size-cells = <2>;
   ranges = <0x820000000 0 B B 0 0xfffd000>;
   interrupt-map-mask = <0 0 0 7>;
   interrupt-map = <0 0 0 1 & pcie1_intc 1>,
                     <0 0 0 2 &pcie1_intc 2>,
                     <0 0 0 3 &pcie1_intc 3>,
                     <0 0 0 4 &pcie1_intc 4>;
   pcie1_intc: interrupt-controller {
      interrupt-controller;
      #address-cells = <0>;
      #interrupt-cells = <1>;
};
};
```

Linux PCI(e) Subsystem

Interrupt Handling

Ispci

Displays all PCI buses, devices in a system

```
root@am57xx-evm:~# lspci
00:00.0 PCI bridge: Texas Instruments Device 8888 (rev 01)
01:00.0 PCI bridge: Pericom Semiconductor Device 2304 (rev 05)
02:01.0 PCI bridge: Pericom Semiconductor Device 2304 (rev 05)
02:02.0 PCI bridge: Pericom Semiconductor Device 2304 (rev 05)
03:00.0 SATA controller: ASMedia Technology Inc. ASM1062 Serial
ATA Controller (rev 01)
04:00.0 USB controller: Etron Technology, Inc. EJ168 USB 3.0 Host
Controller (rev 01)
```

· http://linuxcommand.org/man_pages/lspci8.html

Acknowledgements

- Jingoo Han, Pratyush Anand, Bjorn Helgaas
- Linux Community
- Texas Instruments
- Linux Foundation

References

- PCI Local Bus Specification 3.0
- PCI Express Base Specification 3.0
- PCI Express System Architecture (by Mindshare)

Happy Hacking!

Feedback: kishon@ti.com kishonvijayabraham@gmail.com

vigneshr@ti.com vignesh.r.blr@gmail.com