

Advanced timing cycles

Objectives

Upon completion of this program the participant will be able to:

- Identify timing cycles of single-chamber (VVI/AAI), dualchamber (DDD), and adaptive-rate pacemakers.
- Explain the significance of TARP and calculate TARP based on given parameters.
- Describe upper rate pacing characteristics of 1:1 conduction, pacemaker Wenckebach and 2:1 block
- Describe the difference in atrial- and ventricular-based timing systems.

Timing cycles

- Single chamber
- Dual chamber
- Timing systems

Single-chamber Timing Review

Single chamber

Timing Intervals

60 ppm

Interval (ms) = 60,000 / rate (ppm)

60,000 / 60 ppm = 1000 ms

Single chamber

Single chamber

VVIR timing

Sensor-determined Rate Controls V-V Interval

VVIR timing

Shortened Sensing Windows at High Rates

Dual-chamber Timing Review

Timing intervals

Dual chamber (DDD)

- •V-V = Lower Rate Limit
- VA = Atrial Escape Interval
- •AV = AV Delay

$$V-V = VA + AV$$

Timing intervals

Example

$$V-V = VA + AV$$

$$VA = V-V - AV$$

Lower Rate =
$$60 \text{ ppm}$$
 V-V = 1000 ms AV Delay = 200 ms

VA = 1000 ms - 200 ms = 800 ms

AV sequential pacing

A Pace / V Pace

Atrial pacing with conduction

P-synchronous pacing

A Sense / V Pace

Complete inhibition

A Sense / V Sense

Timing intervals

Timing intervals

DDI Mode - Review of PVARP

- Provides AV sequential pacing at the lower rate with dual-chamber sensing
- Prevents competitive atrial pacing
- Atrial refractory period is added to prevent oversensing
- PVARP is an atrial refractory period that occurs after a paced or sensed ventricular event
- Prevents the atrial channel from sensing the ventricular pacing pulse, the far-field QRS and retrograde P-waves

DDI mode

PVARP and **TARP**

$$TARP = AV + PVARP$$

Pacemaker Wenckebach

4:3 Wenckebach

2:1 Rate = 60,000 / TARP

Upper rate behavior is determined by TARP and MTR

2:1 Block > MTR

MTR = 140 ppm AV = 100 ms

PVARP = 300 ms

TARP = 400 ms

Sinus Rate

2:1

Wenckebach

1:1

MTR

TARP

LRL

2:1 Block Point

= 60,000/TARP

= 60,000/400

= 150 bpm

2:1 Block < MTR

MTR = 140 ppm AV = 200 ms PVARP = 300 ms TARP = 500 ms

2:1 Block Point

= 60,000/TARP

= 60,000/500

= 120 bpm

Sensor pacing

Sensor Rate Controls the VA Interval

DDDR timing

Sensor-controlled Rate Not Limited by PVARP

Sensor Pacing 150 ppm

DDDR pacing

Sensor-driven (DDDR) pacing promotes a more regular rhythm if the sinus rate exceeds the MTR

DDD - Wenckebach

DDDR

Pacemaker mediated tachycardia (PMT)

PMT prevention

Program Ionger PVARP

PVARP after PVC

Use PMT prevention scheme

DDDR: sinus or sensor?

Follow the Faster Input

Dynamic AV Delay

- Programmed AV Delay shortens with increasing rate
- Uses discrete steps or linear reduction
- Allows a higher 1:1 P-synchronous tracking rate

Dynamic AV Delay

Rate = 65 ppm AV Delay ~180 ms Rate ↑ to 135 ppm AV Delay ↓ to ~ 80 ms

Dynamic AV Delay

Effects of Shorter AV Delay

AV DELAY +	<u>PVARP</u>	= <u>TARP</u>
65 ms	300 ms	365 ms (164 ppm)
130 ms	300 ms	430 ms (139 ppm)
200 ms	300 ms	500 ms (120 ppm)

Ventricular- and atrial-based timing

Ventricular-Based Timing: Ventricular events start timing cycles

Atrial-Based Timing: Atrial events start timing cycles

LRL Behavior with AV Conduction

LRL = 1000 ms (60 ppm)

AV Delay = 200 ms

VA Interval = 800 ms

PR Interval = 150 ms

Pacing Interval = VA + PR = 950 ms Atrial pacing = 63 ppm Effective ventricular rate = 63 bpm

Pacing Interval = AV + VA = 1000 ms Atrial pacing = 60 ppm Effective ventricular rate = 60 bpm

LRL Behavior with Intermittent AV Conduction

LRL= 1000 ms (60ppm)
AV Delay = 200 ms
VA Interval = 800 ms
PR Interval = 150 ms

Pacing Interval = 950 or 1000 ms

Atrial pacing at 63 or 60 ppm

Effective ventricular rate= 63 or 60 ppm

Pacing Interval = A-A Interval = 1000 ms Atrial pacing at 60 ppm Effective ventricular rate = 63 or 57 ppm

LRL Behavior with AV Sequential Pacing (AP + VP)

LRL= 1000 ms (60 ppm)
AV Delay = 200 ms
VA Interval = 800 ms

Pacing Interval = 1000 ms

Atrial pacing at 60 ppm

Effective ventricular rate = 60 ppm

Pacing Interval = 1000 ms
Atrial pacing at 60 ppm
Effective ventricular rate = 60 ppm

MSR Behavior with AV Conduction

MSR = 400 ms (150 ppm) AV Delay = 200 ms

VA Interval = 200 ms

PR Interval = 150 ms

Pacing Interval = VA + PR = 350 ms Atrial pacing = 171 ppm Effective ventricular rate = 171 bpm

Pacing Interval = AV + VA = 400 ms Atrial pacing = 150 ppm Effective ventricular rate = 150 bpm

Summary

Single-Chamber Timing

- VVI & AAI
- VVIR

Dual-Chamber Timing

- DDD & DDI (brief review)
- Upper rate behavior
- DDDR
- Dynamic AV Delay

Timing Systems

Ventricular- and Atrial-based timing

Questions?

