Name:	

MASTERY QUIZ DAY 21

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

A3. Determine if the following linear maps are injective (one-to-one) and/or surjective (onto).

(a)
$$S: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x + 2y \\ x - y \\ x + 4y \end{bmatrix}$

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y+z \\ 2y+3z \\ x-y-2z \end{bmatrix}$

Solution:

(a)

RREF
$$\left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, T is not injective. Since there is a zero row, T is not surjective.

(b)

RREF
$$\begin{pmatrix} \begin{bmatrix} 3 & 2 \\ 1 & -1 \\ 1 & 4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Since all columns are pivot columns, S is injective. Since there is a zero row, S is not surjective.

A4. Let
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 be the linear map given by $T \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 8x - 3y - z + 4w \\ y + 3z - 4w \\ -7x + 3y + 2z - 5w \end{bmatrix}$. Compute the kernel and image of T .

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 8 & -3 & -1 & 4 \\ 0 & 1 & 3 & -4 \\ -7 & 3 & 2 & -5 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{Im}(T) = \operatorname{span}\left(\left\{ \begin{bmatrix} 8\\0\\-7 \end{bmatrix}, \begin{bmatrix} -3\\1\\3 \end{bmatrix} \right\} \right)$$
$$\ker(T) = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\3\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\4\\0\\1 \end{bmatrix} \right\} \right)$$

A3:

A4: