Unit 1 Review – Polynomial Functions

1. Fill in the blanks.

- a) State the remainder when $-4x^3 + 3x^2 + 2x 1$ is divided by x 2. $\frac{1}{2}$
- b) State the roots and the order of each root of $g(x) = 2x^2(2x+3)^3$. O (order 2), $\frac{-3}{2}$ (order 3)
- c) When a function is divided by 2x-1, the remainder is -2; Determine the remainder when the same function is divided by $x-\frac{1}{2}$.
- d) Values that could be zeros for the polynomial $f(x) = 4x^3 + 2x^2 7x 8$ are $\frac{\pm \left(\frac{1}{2}, \frac{4}{8}, \frac{1}{2}\right) + \frac{1}{4}\right)}{4}$
- e) State if $y = -2x^4 + 3x^2 + 1$ is odd, even or neither.
- f) Beside each equation below, put the letter of the graph that best describes the equation:
 - i) $y = (x^2 16)(x 1)^2$
- <u>A</u>_
- ii) y = (2-x)(x-4)(x+1)

- 2. Write the equation in factored form of any quartic function with following characteristics. Sketch the graph of function:
 - f(o) = o
 - f(x) < 0, when x < -2
 - $f(x) \ge 0$, when $-2 \le x \le 3$
 - f(x) < 0, when x > 3

$$f(x) = -x^2(x+2)(x-3)$$

The passenger section of a train has a width 2x - 7, length 2x + 3, and height 9. x - 2, with all dimensions in metres. Solve a polynomial equation to determine the dimensions of the section of the train if the volume is 117m3.

$$(2x-7)(2x+3)(x-2) = 117$$

 $4x^3 - 16x^2 - 5x + 42 = 117$
 $4x^3 - [6x^2 - 5x - 75] = 0$

$$f(5)=0 \Rightarrow x-5$$
 is a factor

$$(x-5)(4x^2+4x+15)=0$$

$$2x-7 = 2(5)-7 = 3$$

$$2x + 3 = 2(5) + 3 = 13$$

 $x - 3 = 5 - 3 = 3$

a)
$$f(x) = 4x^3$$

b)
$$f(x) = 2x^4 - x^2$$

c)
$$g(x) = \sqrt[3]{2x^2 + 1}$$

$$f(-x) = 4(-x)^3$$

$$= -4x^3$$

$$= -f(x)$$

$$\therefore Odd$$

$$f(-x) = 2(-x)^{4} - (-x)^{2}$$
$$= 2x^{4} - x^{2}$$

$$g(-x) = \frac{3}{3} \left[2(-x)^{2} + 1 \right]$$

$$= \frac{3}{3} \left[2x^{2} + 1 \right]$$

$$= f(x)$$

: Even

d)
$$h(x) = \frac{-x^3}{(3x^3 - 9x)^2}$$

$$e) f(x) = x + |x|$$

: Even

f)
$$g(x) = \frac{2x}{|x|}$$

 $g(-x) = \frac{2(-x)}{|-x|}$

$$h(-x) = \frac{-(-x)^3}{[3(-x)^3 - 9(-x)]^2}$$

$$= \frac{x^3}{(-3x^3 + 9x)^2}$$

$$= \frac{x^3}{[-(3x^3 - 9x)]^2}$$

$$= \frac{x^3}{[3x^3 - 9x)^2}$$

$$f(-x) = -x + |-x|$$

$$= -x + |x|$$

$$= -x + |x|$$

$$= -f(x) \neq f(x)$$

$$\therefore \text{ Neither}$$

$$= \frac{-ax}{|x|}$$
$$= -g(x)$$
$$\therefore Odd$$

$$= \frac{x^3}{(3x^3 - 9x)^2}$$

$$= -f(x)$$

$$\therefore Odd$$

11. The table of values below represents a polynomial function. Determine the equation of this function.

X	у	Δy	$\Delta^2 y$	Δ ³ Υ
-2	-19			
-1	-3	16		
0	1	4	-12	
1	-1	-2	-6	6
2	-3	-2	0	6
3	1	4	6	6

6 =
$$a \cdot 3$$
!
6 = $6a$
1 = a
 $y = ax^3 + bx^2 + cx + d$
 $y = x^3 + bx^2 + cx + d$

Sub.
$$(0,1): 1 = 0$$

Sub. $(1,-1): -1 = 1 + b + c + 1$
 $-3 = b + c - 0$
Sub. $(-1,-3): -3 = -1 + b - c + 1$
 $-3 = b - c - 3$

① + ②:
$$-3 = b + c$$
 Sub. $b = -3$ 1 into ①: $+1 - 3 = b - c$ $-3 = -3 + c$ $0 = c$ $-3 = b$

 $x = x^3 - 3x^2 + 1$

$$x = 3 \pm 2\sqrt{2}$$

$$(x-3)^{2} = (\pm 2\sqrt{2})^{2}$$

$$x^{2} - 6x + 9 = 4(2)$$

$$x^{2} - 6x + 1 = 0$$

$$(x + 3)^{2} = (\pm 2\sqrt{2})^{2}$$

$$x^{2} - 6x + 1 = 0$$

$$(x + 3)^{2} = (\pm 2\sqrt{2})^{2}$$

$$(x - 6x + 1) = (x + 1)$$

$$(x - 6x + 1) = 0$$

13. Given the graph of a polynomial function g(x), answer the following:

- b) Is the function even or odd or neither? Neither
- c) State the zeroes and the lowest possible order of each zero (order 1), 5 (order 2)
- d) State the interval where the function is positive $\times \in (\mathcal{O}, \mathcal{S}) \cup (\mathcal{S}, \infty)$

14. Water is draining from a container. The height, in millimeters, of the water as a function of time, in seconds, can be modeled by the function

$$h(t) = 0.00185(250-t)^2$$
.

a) Calculate the average rate of change of height with respect to time from 50s to 100s.

A.R.O.C =
$$\frac{h(00) - h(50)}{(00 - 50)} = \frac{41.625 - 74}{50} = -0.6475 \text{ mL/s}$$

b) Calculate the instantaneous rate of change of height with respect to time at t=60s.

$$1.R.O.C = \frac{h(60.001) - h(60)}{0.001} = \frac{66.784297 - 66.785}{0.001} = -0.703 \text{ mL/s}$$

c) Create a sketch of the function indicating the secant line and tangent line from part a.

15.	When polynomial x^3 - a x +21 is divided by x + b , the quotient is x^2 - 3 x +5 and the remainder is 6. Determine values of a and b .
	$f(x) = x^{3} - ax + 2 = (x^{2} - 3x + 5)(x + b) + 6$ $= x^{3} + bx^{2} - 3x^{2} - 3xb + 5x + 5b + 6$ $= x^{3} + (b - 3)x^{2} + (-3b + 5)x + (5b + 6)$
	0=b-3 $-a=-3b+53=b$ $-a=-9+5a=4$
16	Is x+b a factor of x9+5b2x7+5bx8- b9?
	$f(-b) = (-b)^9 + 5b^2(-b)^7 + 5b(-b)^8 - b^9$
	$= -b^{9} - 5b^{9} + 5b^{9} - b^{9}$ $= -2b^{9}$
	± 0
	1. X + 10 is not a factor.