Fibonacci Sum

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

Let f(i) denote the *i*-th number in the famous Fibonacci Sequence. Formally:

$$f(i) = \begin{cases} 1 & \text{if } i \le 2, \\ f(i-1) + f(i-2) & \text{if } i > 2. \end{cases}$$

Let g(x) denote the count of 1's in the binary representation of number x. For example, $g(5) = g(101_{(2)}) = 2$, $g(15) = g(1111_{(2)}) = 4$.

Your task is to calculate the following value:

$$\sum_{i=1}^{n} f(g(i)) \bmod 10^9 + 7$$

Input

The input contains a string s ($1 \le |s| \le 10^7$) consisting of only '0' or '1', denoting the number n in binary form.

It's guaranteed that the input contains no leading 0's.

Output

The output contains a single integer, denoting the answer modulo $10^9 + 7$.

Examples

standard input	standard output
1	1
10	2
11	3

Note

It can be calculated that $f\left(g(1_{(2)})\right)=1,$ $f\left(g(10_{(2)})\right)=1,$ $f\left(g(11_{(2)})\right)=1.$