Wireless Mobile & Multimedia Networking 7COM1076 Ad-hoc Networks 2

Dr Tazeen Syed

t.s.syed@herts.ac.uk

School of Physics Engineering and Computer Science (SPECS)

Outline

- □ Table Driven Routing protocols
- DSDV
 - Count-to-infinity Problem
 - Basic operation
 - Routing table Structure
 - Sequence Number
 - Route Advertisement
 - Route Updating
- DSDV Routing Establishment
 - Building routing tables
 - Adding new node
- DSDV Route Maintenance
 - Link Breakage
- Stability and Scalability

Table Driven Routing protocols

- They are extension of wired network routing protocols.
- They maintain the global topology information in the form of tables in every node.
- These tables are updated frequently in order to maintain consistent and accurate network state information.
 - Destination Sequenced Distance-Vector (DSDV)
 - Wireless Routing protocol (WRP)
 - Source-tree Adaptive Routing Protocol (STAR)
 - Cluster-Head Gateway Switch Routing Protocol (CGSR)

Destination Sequenced Distance-Vector Routing Protocol

- Enhanced version of Bellman-Ford routing protocol
- Loop free
 - Tag each routing table entry with a Destination sequence number
- Faster convergence
 - Make immediate route advertisement on significant changes in routing table
 - but wait with advertising of unstable routes (damping fluctuations)
- Counter the count-to-infinity problem

Count-to-Infinity problem

Routing table of B			
dest	next node dist		
В	ВО		
Α	A 1		
Č	C 1		

Routing table of C				
dest	next node dist			
С	С	0		
В	B 1			
Α	В	2		

A	В	C
		
	/	

Routing table of A		Rou	
dest	next node	dist	dest
Α	A	0	В
В	В	1	Α
Č	В	2	
A sends its update to B			

Routing table of B			
dest	next node dist		
В	В	0	
Α	A	1	

Routing table of C			
dest	next node dis		
С	Č	0	
В	B	1	
A	В	2	

A sends update to B before B sends update about the broken link

A =====	= В	C

Routing table of A				
dest	next node dist			
Α	A 0			
В	B 1			
Č	В	2		

Routing table of B				
dest	next node dist			
В	В	0		
Α	A	1		

After getting update from A, B will assume it can reach C through A with 3 hops

Routing table of A			
dest	next node dist		
Α	A 0		
В	В	1	
Č	В	2	

Routing table of B			
dest	next node dist		
В	В	0	
Α	Α	1	
Č	Α	3	

B sends update to A	and A updates t	ne distance to	Cas 4
A -====	— В	\	C
<u> </u>			_08

Routing table of A			
dest	next node	dist	
Α	Α	0	
В	В	1	
Č	В	4	

Routing table of B			
dest	next node	dist	
В	В	0	
Α	Α	1	
Č	Α	3	

Basic operation - DSDV

- Each node maintains routing information for all known destinations
- Routing information must be updated periodically (no sleeping nodes)
- Traffic overhead even if there is no change in network topology
- Maintains routes which are never used

Basic operation – DSDV (cont.)

- Tables are exchanged between neighbors at regular intervals to keep up-to-date view of the network topology
- Routes to ALL destinations are readily available at every node at all times.
- Table updates are initiated by a destination with a new sequence number always greater than the previous one.

Routing Table Structure

Routing table of A

Dest	NextNode	Dist	SeqNo
Α	Α	0	A-550
В	В	1	B-102
С	В	2	C-588
D	В	3	D-312

- Dest: destination node
- NextNode: go to the destination through this node
- Dist: distance of going to the destination through the NextNode.
- SeqNo: sequence number originated from destination.

Use of Sequence Number

- Destination sequenced
- On each advertisement the sender increases its own destination sequence number (use only even numbers)
- If a node is no more reachable (timeout) increase sequence number of this node by 1 (odd sequence number) and set metric = ∞
- Ensures a route is loop-free and fresh.

Route Advertisement

- Routing information in tables is transmitted by broadcast.
- Route advertisements are transmitted periodically or immediately when any significant topology change is available.
- Two types of advertisement
 - Full dump: all information from the transmitting node
 - Incremental dump: all information that has changed since the last full dump
 - Full dump if incremental dump exceeds one NPDU (network protocol data unit)

Route Updating

- Rules
 - The route entry with the higher sequence number is chosen;
 - If the sequence numbers of two route entries are the same, the one with the smaller metric is chosen

.

- **■** Example of Building Routing Tables (1)
 - Initial states

Dest.	Next	Dist	Seq
Α	Α	0	A-0

Dest.	Next	Dist	Seq
В	В	0	B-0

Dest.	Next	Dist	Seq
С	С	0	C-0

Example of Building Routing Tables (2)

- B advertises a full dump.
- A receives the advertisement and updates its routing table.
- C receives the advertisement and updates its routing table.

Dest.	Next	Dist	Seq
Α	Α	0	A-0
В	В	1	B-2

Dest.	Next	Dist	Seq
В	В	0	B-2

Dest.	Next	Dist	Seq
В	В	1	B-2
С	С	0	C-0

Example of Building Routing Tables (3)

- A advertises a full dump
- C advertises a full dump
- B receives both advertisements and updates its routing table.

Dest.	Next	Dist	Seq
Α	Α	0	A-2
В	В	1	B-2

Dest.	Next	Dist	Seq
Α	Α	1	A-2
В	В	0	B-2
С	С	1	C-2

Dest.	Next	Dist	Seq
В	В	1	B-2
С	С	0	C-2

Example of Building Routing Tables (4)

- B advertises a full dump
- A receives the advertisement and updates its routing table
- C receives the advertisement and updates its routing table

Dest.	Next	Dist	Seq
Α	Α	0	A-2
В	В	1	B-4
С	В	2	C-2

Dest.	Next	Dist	Seq
Α	Α	1	A-2
В	В	0	B-4
С	С	1	C-2

Dest.	Next	Dist	Seq
Α	В	2	A-2
В	В	1	B-4
С	С	0	C-2

- Example of New Node (1)
- New node D comes and broadcasts its existence.
- C receives D's advertisement, updates its routing table

Dest.	Next	Dist	Seq
Α	Α	0	A-24
В	В	1	B-24
С	В	2	C-24

Dest.	Next	Dist	Seq
Α	Α	1	A-24
В	В	0	B-24
С	С	1	C-24

Dest.	Next	Dist	Seq
Α	В	2	A-24
В	В	1	B-24
С	С	0	C-24
D	D	1	D-2

- Example of New Node (2)
- C broadcasts a full dump immediately

Dest.	Next	Dist	Seq
Α	Α	0	A-24
В	В	1	B-24
С	В	2	C-24

Dest.	Next	Dist	Seq
Α	Α	1	A-24
В	В	0	B-24
С	С	1	C-24

Dest.	Next	Dist	Seq
Α	В	2	A-24
В	В	1	B-24
С	С	0	C-26
D	D	1	D-2

- Example of New Node (3)
- D creates the routing table based on C's advertisement.
- B updates its routing table

Dest.	Next	Dist	Seq
Α	Α	1	A-24
В	В	0	B-24
С	С	1	C-26
D	С	2	D-2

Dest.	Next	Dist	Seq
4	В	2	A-24
В	В	1	B-24
C	С	0	C-26
D	D	1	D-2

Dest.	Next	Dist	Seq
Α	C	3	A-24
В	С	2	B-24
С	С	1	C-26
D	D	0	D-2

Example of Link Breakage (1)

Node D leaves, and node C detects the link breakage, and updates its routing table by setting the distance to D as infinity and increasing the sequence number to D by 1.

Dest.	Next	Dist	Seq
Α	Α	1	A-34
В	В	0	B-34
С	С	1	C-34
D	С	2	D-10

Dest.	Next	Dist	Seq
Α	В	2	A-34
В	В	1	B-34
С	С	0	C-34
D	D	8	D-11

Dest.	Next	Dist	Seq
Α	C	3	A-34
В	С	2	B-34
С	С	1	C-34
D	D	0	D-10

Example of Link Breakage (2)

When node B's full dump reaches node C, node C notes it is out-of-date, since node C has a higher sequence number for destination D in its routing table.

Dest.	Next	Dist	Seq
Α	Α	0	A-34
В	В	1	B-36
C	В	2	C-34
D	В	3	D-10

Dest.	Next	Dist	Seq
Α	Α	1	A-34
В	В	0	B-36
С	C	1	C-34
D	С	2	D-10

Dest.	Next	Dist	Seq
A	В	2	A-34
В	В	1	B-36
С	С	0	C-34
D	D	8	D-11

Example of Link Breakage (4)

Node B broadcasts the link breakage to node A

Dest.	Next	Dist	Seq
Α	Α	0	A-34
В	В	1	B-38
С	В	2	C-36
D	В	8	D-11

Dest.	Next	Dist	Seq
Α	Α	1	A-34
В	В	0	B-38
С	С	1	C-36
D	С	8	D-11

Dest.	Next	Dist	Seq
Α	В	2	A-34
В	В	1	B-36
С	С	0	C-36
D	D	8	D-11

Stability and Scalability

- DSDV requires a full dump update periodically so it is not efficient in route updating
- Whenever topology of a network changes, DSDV is unstable until update packets propagate through the network
- DSDV is effective for creating ad-hoc networks for small populations of mobile nodes
- DSDV is a fairly brute force approach, because connectivity information needs periodical update throughout the whole network

References

- Ad Hoc Wireless Networks, architectures and protocols. C. Siva Ram Murthy and B. S. Manoj, 1st edition.
 - Sections 7.1, 7.2, 7.3, 7.4.1
- □ RFC 2501.
 - http://www.ietf.org/rfc/rfc2501.txt

Thank you Any Questions?

t.s.syed@herts.ac.uk