

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 486 Control Systems

Lecture 16: Nyquist Stability

Liangjing Yang
Assistant Professor, ZJU-UIUC Institute
liangjingyang@intl.zju.edu.cn

Checklist

Wk	Торіс	Ref.
1	✓ Introduction to feedback control ✓ State-space models of systems; linearization	Ch. 1 Sections 1.1, 1.2, 2.1– 2.4, 7.2, 9.2.1
2	✓ Linear systems and their dynamic response	Section 3.1, Appendix A
Modeling	✓ Transient and steady-state dynamic response with arbitrary initial conditions	Section 3.1, Appendix A
3	✓ National Holiday Week	
4	✓ System modeling diagrams; prototype second-order system	Sections 3.1, 3.2, lab manual
Analysis	✓ Transient response specifications	Sections 3.3, 3.14, lab manual
5	✓ Effect of zeros and extra poles; Routh- Hurwitz stability criterion	Sections 3.5, 3.6
 	✓ Basic properties and benefits of feedback control; Introduction to Proportional- Integral-Derivative (PID) control	Section 4.1-4.3, lab manual
6	✓ Review A	
	✓ Term Test A	
7	✓ Introduction to Root Locus design method	Ch. 5
	✓ Root Locus continued; introduction to dynamic compensation	Root Locus
8	✓ Lead and lag dynamic compensation	Ch. 5
	✓ Introduction to frequency-response design method	Sections 5.1-5.4, 6.1

			Root Locus	
Modeling	Analysis	Design		:
			Frequency Respor	nse i
		į		
		-	State-Space	į

Wk	Topic	Ref.
9	Bode plots for three types of transfer functions	Section 6.1
	Stability from frequency response; gain and phase margins	Section 6.1
10	Control design using frequency response: PD and Lead	Ch. 6
	Control design using frequency response continued; PI and lag, PID and lead-lag	Frequency Response
11	Nyquist stability criterion	Ch. 6
	Nyquist stability criterion continued; gain and phase margins from Nyquist plots	Ch. 6
12	Review B	
	Term Test B	
13	Introduction to state-space design	Ch. 7
	Controllability, stability, and pole-zero cancellations; similarity transformation; conversion of controllable systems to Controller Canonical Form	Ch. 7
14	Pole placement by full state feedback	Ch. 7
	Observer design for state estimation	01 7
15	Joint observer and controller design by dynamic output feedback; separation principle	State-Space Ch. 7
	In-class review	Ch. 7
16	END OF LECTURES: Revision Week	
	Final	

Review: Frequency Domain Design Method

Design based on Bode plots is good for:

> easily visualizing the concepts

- > evaluating the design and seeing which way to change it
- > using experimental data (frequency response of the uncontrolled system measured empirically)

Review: Frequency Domain Design Method

Design based on Bode plots is not good for:

- exact closed-loop pole placement (root locus is more suitable for that)
- \triangleright deciding if a given K is stabilizing or not ...
 - we can only measure *how far* we are from instability (using GM or PM), if we know that we are stable
 - > however, we don't have a way of checking whether a given
 - K is stabilizing from frequency response data

Nyquist criterion- A frequency-domain substitute for the Routh-Hurwitz criterion

Nyquist Stability Criterion

Goal: count the number of RHP poles (if any) of the closed-loop transfer function

$$\frac{KG(s)}{1+KG(s)}$$

based on frequency-domain characteristics of the plant transfer function G(s)

Nyquist Plot

Consider an arbitrary strictly proper transfer function H:

 $\text{Im } H(j\omega)$

as ω varies from $-\infty$ to ∞

H(s)-plane

Nyquist Plot: Mapping of the s-Plane

• View the Nyquist plot of H as the image of the imaginary axis $\{j\omega: -\infty < \omega < \infty\}$ under the mapping $H: \mathbb{C} \to \mathbb{C}$

Transformation of a Closed Contour Under H

If we choose any closed curve (or contour) C on the left, it will get mapped by H to some other curve (contour) on the right:

Important: when working with contours in the complex plane, always keep track of the direction in which we traverse the contour (clockwise vs. counterclockwise)!!

Phase of H Along a Contour

For any $s \in \mathbb{C}$, the phase (or argument) of H(s) is

$$\angle H(s) = \angle \frac{(s - z_1) \dots (s - z_m)}{(s - p_1) \dots (s - p_n)}$$

$$= \sum_{i=1}^{m} \angle (s - z_i) - \sum_{j=1}^{n} \angle (s - p_j)$$

$$= \sum_{i=1}^{m} \psi_i - \sum_{j=1}^{n} \varphi_j$$

 $\angle(O_1 + O_2)$

Interested in how $\angle H(s)$ changes as s traverses a closed, clockwise (CW) oriented contour C in the complex plane.

Look at several cases, depending on how the contour is located relative to poles and zeros of H.

Case 1: Contour Encircles a Zero

Suppose that C is a closed, CW-oriented contour in C that encircles a zero of H(s):

How does $\angle H(s)$ change as we go around C?

Case 1: Contour Encircles a Zero

How does $\angle H(s)$ change as we go around C?

Angles from s to poles/zeros of H:

- ϕ_1 and ϕ_2 return to their original values
- ψ_1 registers a net change of -360°
- ► therefore, $\angle H(s)$ registers a net change of -360°
 - H(C) encircles the origin once, clockwise (CW)

Case 2: Contour Encircles a Pole

Suppose that C is a closed, \bigcirc -oriented contour in \mathbb{C} that encircles a pole

How does $\angle H(s)$ change as we go around C?

Case 2: Contour Encircles a Pole

Let's see what happens to angles from s to poles/zeros of H:

- ϕ_1 and ψ_1 return to their original values
- ϕ_2 picks up a net change of -360°
- ► therefore, $\angle H(s)$ picks up a net change of 360°, so H(C) encircles the origin once counterclockwise

Case 3: Contour Encircles No Poles or Zeros

Suppose that C is a closed, CW-oriented contour in C that does not encircle any poles or zeros of H(s):

How does $\angle H(s)$ change as we go around C?

Case 3: Contour Encircles No Poles or Zeros

How does $\angle H(s)$ change as we go around C?

Let's see what happens to angles from s to poles/zeros of H:

- ϕ_1 , ϕ_2 , ψ_1 all return to their original values
- ► therefore, no net change in $\angle H(s)$, so H(C) does not encircle the origin

The Argument Principle

These special cases all lead to the following general result:

The Argument Principle. Let C be a closed, clockwise \circlearrowright oriented contour not passing through any zeros or poles* of H(s). Let H(C) be the image of C under the map $s \mapsto H(s)$:

$$H(C) = \{H(s) : s \in \mathbb{C}\}.$$

Then:

#(clockwise encirclements \circlearrowright of 0 by H(C))
= #(zeros of H(s) inside C) - #(poles of H(S) inside C).

More succinctly,

$$N = Z - P$$

will see the reason for this later ...

The Argument Principle

$$N = Z - P$$

- ► If N < 0, it means that H(C) encircles the origin counterclockwise (O).
- We do not want C to pass through any pole of H because then H(C) would not be defined.
- We also do not want C to pass through any zero of H because then $0 \in H(C)$, so #(encirclements) is not well-defined.

► We are interested in RHP poles, so let's choose a suitable contour C that encloses the RHP:

Harry Nyquist (1889–1976)

- From now on, C = imaginary axis plus the "path around infinity."
- ► If H is strictly proper, then $H(\infty) = 0$.

With this choice of C,

$$H(C) = \text{Nyquist plot of } H$$

(image of the imaginary axis under the map $H: C \to C$; if H is strictly proper, $0 = H(\infty)$)

H(C) = Nyquist plot of H

We are interested in RHP roots of 1 + KG(s), where G is the plant transfer function.

Thus, we choose H(s) = 1 + KG(s)

Examining the Nyquist plot of H(s) = 1 + KG(s).

By the argument principle,

$$N = Z - P$$
,
where $N = \#(\mathsf{CW} \text{ encirclements of } 0$
by Nyquist plot of $1 + KG(s)$,
 $Z = \#(\mathsf{zeros} \text{ of } 1 + KG(s) \text{ inside } C)$,
 $P = \#(\mathsf{poles} \text{ of } 1 + KG(s) \text{ inside } C)$

Now we extract information about RHP roots of 1 + KG(s)

Nyquist Criterion: N

```
N = \#(CW \text{ encirclements of 0 by Nyquist plot of } 1 + KG(s))
```

= #(CW encirclements of -1 by Nyquist plot of KG(s))

= #(CW encirclements of -1/K by Nyquist plot of G(s))

— can be read off the Nyquist plot of the open-loop t.f. G!!

Nyquist Criterion: Z

$$1 + KG(s) = \frac{P(s) + G(s)}{p(s)}$$
closed-loop t.f.
$$= \frac{KG(s)}{1 + KG(s)} = \frac{Kq(s)}{p(s) + Kq(s)}$$

Therefore:

$$Z = \#(\text{zeros of } 1 + KG(s) \text{ inside } C)$$

= $\#(\text{RHP zeros of } 1 + KG(s))$
= $\#(\text{RHP closed-loop poles})$

Nyquist Criterion: P

$$G(s) = \frac{q(s)}{p(s)}, \qquad \deg(q) \le \deg(p)$$

$$1 + KG(s) = 1 + K\frac{q(s)}{p(s)} = \frac{p(s) + Kq(s)}{p(s)}$$

Therefore:

$$P = \#(\text{poles of } 1 + KG(s) \text{ inside } C)$$

= $\#(\text{RHP poles of } 1 + KG(s))$
= $\#(\text{RHP roots of } p(s))$
= $\#(\text{RHP open-loop poles})$

The Nyquist Theorem

Nyquist Theorem (1928) Assume that G(s) has no poles on the imaginary axis*, and that its Nyquist plot does not pass through the point -1/K. Then

$$N = Z - P$$

#(Q of $-1/K$ by Nyquist plot of $G(s)$)

= $\#(RHP \text{ closed-loop poles}) - \#(RHP \text{ open-loop poles})$

^{*} Easy to fix: draw an infinitesimally small circular path that goes *around* the pole and stays in RHP

The Nyquist Stability Criterion

Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K) is stable if and only if the Nyquist plot of G(s) encircles the point -1/K P times counterclockwise, where P is the number of unstable (RHP) open-loop poles of G(s).

The Nyquist Stability Criterion

Workflow:

Bode M and ϕ -plots \longrightarrow Nyquist plot

Advantages of Nyquist over Routh-Hurwitz

- can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)
- less computational, more geometric (came 55 years after Routh)

How to choose K for stability?

Routh-Sunstz

$$G(s) = \frac{1}{(s+1)(s+2)}$$
 (no open-loop RHP poles)

Characteristic equation:

$$(s+1)(s+2) + K = 0$$
 \iff $s^2 + 3s + K + 2 = 0$

From Routh, we already know that the closed-loop system is stable for K > -2.

We will now reproduce this answer using the Nyquist criterion.

$$G(s) = \frac{1}{(s+1)(s+2)}$$
 (no open-loop RHP poles)

Strategy:

- ▶ Start with the Bode plot of *G*
- ▶ Use the Bode plot to graph Im $G(j\omega)$ vs. Re $G(j\omega)$ for $0 \le \omega < \infty$
- ▶ This gives only a *portion* of the entire Nyquist plot

(Re
$$G(j\omega)$$
, Im $G(j\omega)$), $-\infty < \omega < \infty$

► Symmetry:

$$G(-j\omega) = \overline{G(j\omega)}$$

— Nyquist plots are always symmetric w.r.t. the real axis!!

$$G(s) = \frac{1}{(s+1)(s+2)}$$

(no open-loop RHP poles)

Bode plot:

Im {H(c)} → Re {H(c)}

$$G(s) = \frac{1}{(s+1)(s+2)}$$

(no open-loop RHP poles)

Bode plot:

Nyquist plot:

$$G(s) = \frac{1}{(s+1)(s+2)}$$

(no open-loop RHP poles)

Bode plot:

#(
$$\circlearrowright$$
 of $-1/K$)
$$= \#(RHP CL poles) - \underbrace{\#(RHP OL poles)}_{=0}$$

 $\Longrightarrow K \in \mathbb{R}$ is stabilizing if and only if

$$\#(\circlearrowright \text{ of } -1/K) = 0$$

- ▶ If K > 0, #(\circlearrowright of -1/K) = 0
- ▶ If 0 < -1/K < 1/2, #(\circlearrowright of -1/K) > $0 \Longrightarrow$ closed-loop stable for K > -2

$$G(s) = \frac{1}{(s+1)(s+2)}$$
 (no open-loop RHP poles)

Strategy:

- ▶ Start with the Bode plot of *G*
- ▶ Use the Bode plot to graph Im $G(j\omega)$ vs. Re $G(j\omega)$ for $0 \le \omega < \infty$
- ▶ This gives only a *portion* of the entire Nyquist plot

(Re
$$G(j\omega)$$
, Im $G(j\omega)$), $-\infty < \omega < \infty$

► Symmetry:

$$G(-j\omega) = \overline{G(j\omega)}$$

— Nyquist plots are always symmetric w.r.t. the real axis!!