# Representation Learning: Compositionality and Disentanglement

#### Representations as Attributes

- The representations we described so far are quite abstract
- Evaluated by downstream task performance
- Here, we think of representations as consisting of attributes



## Compositionality in ML

- Given a dataset where each image has two labels, fruit type and color
- Assume in the dataset we see either red apples or yellow bananas
- At test, we see a yellow apple
- We ask: "what fruit is it?"







## Ways to Overcome It

- Need more information different methods for injecting it:
  - Option 1: biasing architecture to differentiate between attributes
  - Option 2: reducing bias e.g. seeing many (color, fruit) combinations

## Disentanglement

- Disentangled representation:
  - Each dimension is informative over at most a single attribute
  - Every attribute is predictable from the representation



# Disentanglement Entails Compositionality

- Disentanglement is harder compositionality entails it
- Trivial: every attribute is representated by different dimensions
- Compositionality: problem biased datasets
- Disentanglement: problem even in unbiased datasets



## Disentanglement Entails Classification

- Disentanglement is harder than classification
- Trivial: every attribute is represented spearately



# Quest for Unsupervised Disentanglement

- Unsupervised disentangled representations holy grail of SSL
- This is probably impossible
- Assumes we get a bunch of unlabeled images and classify all attributes without supervision – too good to be true

# Identifibility in the Linear Setting

- Assume we have two attributes  $x_1$ ,  $x_2$  which are not observed
- Pass through a linear generative process G physics of the world
- G is invertible by unknown
- Observe  $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = G \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
- Can we identify G and thus recover the true  $x_1$ ,  $x_2$ ?

# Independent Component Analysis (ICA)

- ICA observes that  $x_1, x_2$  unidentifiable if they are Gaussian (Why?)
- Instead, it assumes  $x_1, x_2$  are highly non-Gaussian, independent
- Main idea combination of non Gaussians is less non-Gaussian
- Greedily recovers the most non-Gaussian combination of  $y_1$ ,  $y_2$

$$min_v \sum_i \rho(v \cdot x_i)$$

Different non-Gaussianity measures can be used

# Nonlinear Identifiability Results

- There is a body of theory examining when attributes are recoverable
- $(y_1, y_2, y_3, ...) = G(x_1, x_2, x_3, ...)$
- G non-linear, x and G are unknown
- Indentifiability guranteed only in very limited settings
- Out of scope for this course very interesting if you like maths!

# BetaVAE for Unsupervised Disentanglement

BetaVAE: normal VAE but with larger weight (beta) on the KL term

$$L_{ ext{BETA}}(\phi,eta) = -\mathbb{E}_{\mathbf{z}\sim q_{\phi}(\mathbf{z}|\mathbf{x})}\log p_{ heta}(\mathbf{x}|\mathbf{z}) + eta D_{ ext{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p_{ heta}(\mathbf{z}))$$

- Intuition: makes the latent codes more Gaussian
- More Gaussian means more independent
- Locatello et al. showed this does not work in general (why?)

## How to Evaluate Disentanglement - DCI

- Latent code with 10 dims
- Assume there are K factors of variation
- Expect: one latent code for every factors, 10 K empty codes
- DCI metrics:
  - Completeness each factor described by at least 1 code dim
  - Disentanglement each code dim correlated with at most 1 factor
  - Informaticeness all factors are described by code

## Conditional Disentanglement

- Unsupervised disentanglement may be too hard
- Let's tackle a different setting conditional disentanglement
- Every image x is also labeled with its condition c
- This can really be any attribute e.g. pose, car model, painting/photo



## VAE for Conditional Disentanglement

- Choose a prior such that p(z|c) = N(0, I)
- Reminder the ELBO is given by:

$$L(S,G) = \sum_{(x,c)} E_{z \sim q_{x,c}} ||x - G(c,z)||^2 + KL(q_{x,c}||p(z|c)) + \log(p(c))$$

- As  $p(z) = sum_c p(z|c)p(c) = p(z|c)$ , z does not depend on c
- The combination of z, c must represent all attributes in x
- Independence + completeness -> z includes all attributes but x

## Amortized VAE: Bad for Disentanglement

- The core idea in VAE was using an encoder to predict q(z|x) given x
- Consider what happens at initilization, encoder has random weights
- Latent code contains random combination of attributes entangled
- While training loss enforces disentanglement, z does not recover



# LORD: Latent Optimization is King

- For each image: optimize the expectation mu\_x of p(z|x) = N(mu\_x, s)
- As each mu\_x is initialized randomly, independent of c
- During training mu becomes more informative on x, but still not on c



## Does This Solve Disentanglement?

- Identifiably of the unknown attributes is still not guranteed!
- This is not hard to see: for images of (apples, bananas), (red, yellow)
- Every image is tagged with color (c) but not fruit
- LORD ensures that (z, c) describe all attributes, and z,c independent
- Both options are feasible solutions, but only the first is helpful

|     | c = red | c = yellow |
|-----|---------|------------|
| z=0 | apples  | apples     |
| z=1 | bananas | bananas    |

|     | c= red  | c = yellow |
|-----|---------|------------|
| z=0 | apples  | bananas    |
| z=1 | bananas | apples     |

## Why Does LORD Work in Practice?

- Inductive bias magic of CNNs
- While multiple solutions are feasible they prefer the correct one
- This is clearly not always going to be true!
- Occurs in many interesting cases though
- https://github.com/avivga/lord-pytorch

# Age Transfer using LORD



#### Benefits of Correct Disentanglement

Non-disentangled representations mix different conditions (species)

