CSARCH2 Mock Long Exam 2 Part 1

by: Clive Jarel Ang, Sean Benedict Bernardo, Brent Isaac Uy, Enzo Arkin Panugayan, and Roan Cedric Campo

Important Reminders:

- 1. Read ALL instructions carefully and thoroughly before answering this mock exam.
- 2. The use of calculators and other computing devices are NOT allowed in the exam. However, you will be answering this in the comfort of your own home, so I literally have 0 control over the enforcement of that rule. $^-_(^\vee)_-/^-$
- 3. Cheating in ANY form during the actual exam will be considered a major offense, merit you a 0.0 in the course, and would result in both Sir Rog and I becoming very sad.
- 4. This exam is GOOD FOR 4 HOURS. To be sufficiently prepared for the long exam proper, try to finish this mock exam in a shorter amount of time (while keeping a high score obv).
- 5. Yes, I'm sadistic and this mock exam reflects that. -Clive

I don't think Clive knows what Sadism means. -Enzo

i had fun making this :D -Sean

shout out fraser 📆 -Brent

I. Understanding Decimal Floating Point Representation

Express the following using IEEE 754 Single Precision (Decimal-32) format:

- 1. 26, 884, 291 \times 10⁷²
- $2. -94,722 \times 10^{392}$
- $3.\ 174,941 \times 10^{-70}$
- $4. 9, 251, 416 \times 10^{-43}$

#	Sign	Combi. Bit	Exp. Cont. Bit	Coefficient Continuation Bits
1.				
2.				
3.				
4.				

Express the following using IEEE 754 Double Precision (Decimal-64) format:

- 1. $132,981,718 \times 10^{141}$
- $2.\,\, -1,122,334.455667788\,\,\times\,\,10^{-333}$
- $3.\,\,891,112,289,184.7148\,\,\times\,\,10^{400}$

#	Sign	Sign Combination Bits		3	Exponent Continuation Bits		ation Bits
1.	Coefficient Continuation Bits						

#	Sign Combination Bits		3	Exponent Continuation Bits			
2.	2. Coefficient Continuation Bits						

#	Sign		Combination Bits		Exponent Continuation		Bits
3.	Coefficient Continuation Bits						

II. Understanding Unicode Representation #1

- Convert the Unicode to its equivalent UTF representation.
- The final answer should be in hexademical.
- Write "N/A" if not possible.

	$_{ m U+DEC3}$
UTF-8 (answer format: xx xx xx xx or less is okay)	
UTF-16 (answer format: xxxx xxxx)	
UTF-32 (answer format: xxxx xxxx)	

	$\mathrm{U}{+}9\mathrm{D}83\mathrm{E}$
UTF-8 (answer format: xx xx xx xx or less is okay)	
UTF-16 (answer format: xxxx xxxx)	
UTF-32 (answer format: xxxx xxxx)	

III. Understanding Unicode Representation #2

- Write the Unicode equivalent of the given UTF representation.
- The final answer should be in hexademical.
- No need to write the "U+" prefix.
- Write "N/A" if not possible.

UTF Representation (encoding)	Unicode Code Point Equivalent
1) F7 8A AF 81 (UTF-8)	
2) DA49 DC57 (UTF-16)	
3) DBEA DEAA (UTF-16)	
4) E0 A2 97 (UTF-8)	
5) 0010 DECB (UTF-32)	

IV. Understanding BCD Representation #1

- Determine the equivalent densely packed BCD representation.
- If there is no equivalent, write "N/A".

Decimal	DPBCD
413	
	1110101101
3,898	
773	
	1010001001 0110111111
	1010110100
8,928	
	0001100111 0111011101

V. Understanding BCD Representation #2

- Determine the equivalent decimal number.
- If there is no equivalent, write "N/A".

10-bit representation	2's Complement	Unsigned Integer	Densely Packed BCD
		238	
1010101001			
	-98		
			147
1111111111			

VI. Understanding Memory Representation

- Determine the equivalent fixed-point decimal number or special case.
- Write "N/A" if it can't be represented.
- If applicable, specify special cases (+/- Infinity, sNaN, qNaN, Denormalized).

Internal Memory	View as	Fixed-point Decimal or Special Case Equivalent
0xFF800000	Binary32 floating point	
0x40C1A9D000000000	Binary64 floating point	
0x74000000000000000	Decimal32 floating point	
0x222C00000028F0CE	Decimal64 floating point	

VII. Designing a Data Type Representation

An IEEE-754/1985 quadruple-precision (128-bit) binary floating-point uses the following rules:

- 1-bit sign, 15-bit exponent representation, 112-bit significand
- Implicit binary normalization

1.) What is the bias or excess for E'?	
2.) What is the largest exponent (normalized)?	
3.) What is the smallest exponent	
(normalized)?	
4.) What is the E' representation for infinity	
(in binary with ellipsis allowed)?	
5.) What is the E' representation for quiet NaN	
(in binary with ellipsis allowed)?	