

SIMULATION-BASED MANPOWER PLANNING WITH OPTIMIZED SCHEDULING IN A DISTRIBUTED MULTI-USER ENVIRONMENT

David Kalasky - IBM Corporation

Michael Coffman - Transportation Security Administration

Melanie De Grano - IBM Corporation

Kevin Field - ProModel Corporation

AGENDA

Overview of ESM process

Use of simulation engine to determine requirements

Overview of scheduling optimizer

Benefits of ESM simulation-based scheduling system

Enhance Staffing Model (ESM) allocates airport staff based on unique airport screening, equipment, facility layout, and scheduling requirements

Annual TSO Allocation Process

Source: GAO analysis of TSA Staffing Allocation Model.

End result is the airport's FTE allocation used to guide hiring and as a measure of each airport's performance

Screening requirements are generated in the application as flight instances based on a combination of data provided by OAG (Official Airline Guide) and BTS (Bureau of Transportation Statistics)

Building the ESM simulation model first required a thorough understanding of passenger and bag generation as well as variability

Day of Week Variability

Origination Factors by Time of Day

Building the ESM simulation model first required a thorough understanding of passenger and bag generation as well as variability

Expected # of passengers = aircraft capacity * origination factor * load factor

Passengers are distributed using empirical distributions based on time of day, flight duration, and individual airport characteristics

Example arrival distribution for peak domestic flight

The number of checked bags is modeled as a discrete distribution ranging from zero to six bags and is a function of the flight type (Intl, Domestic, Low Cost, Legacy).

The model logic was initially designed as a prototype including three functional areas: concourse, checkpoint, and bag zone

The concourse is a single location with probabilities and delays for arrival patterns, check-in and bag check

The checkpoint is a single queue with multiple servers (lanes) that can be opened and closed

The bag zone is the same as checkpoint with additional secondary screening queue and servers

Passenger and bag screening equipment data, hours of operation, and facility layout configurations are edited by the user for each airport

The logic for determining checkpoint and bag zone equipment requirements is based on the number in queue, equipment processing rate and MOE

Model first observes # in queue and determines the time needed to process the queue:

Time to Clear Queue = # in Queue / Processing Rate

Model determines the number of servers needed to meet the user-defined measure of effectiveness (MOE):

Number of servers = Time to Clear Queue / MOE

This provides an estimate of checkpoint lanes and bag screening equipment needed to support the MOE

Airports of different sizes and configurations were tested against TSA-approved statistics

	<u> </u>
	Reported Statistic
Checkpoint	Sum of passengers processed
	Sum of non-passengers processed
	Max processing time for all Checkpoints (minutes)
	Max passengers in queue for all Checkpoints
	Average processing time (Average Queue Time) in Minutes
	Total Checkpoint Utilization
	% of passengers waiting over 10 minutes
	Total # of lanes open for all priority groups
Bag Zone	Count of bag entered across all Bag Zones
	Count of bags processed across all Bag Zones
	Count of alarmed bags across all Bag Zones
	Count of alarms resolved across all Bag Zones
	Max processing time for all Bag Zones in Minutes
	Max bags in queue for all Bag Zones
	Average bag TAT (average delay) in minutes
	% of bags with TAT greater than 10 minutes
	Utilization of EDS primary systems
	Utilization of ETD alarm resolvers

Prototype logic was tested for robustness using results from the original model statistics

After results were verified, the prototype was made "generic" so that it could solve *any* airport model

ESM results provide staffing requirements for checkpoints and bag zones, as well as any additional staff required

Airport Abbrevation:	ORD				Terminal Name:	
Experiment Name:	ORD_RAJA				Start Date:	
Comments: This is a test comment entered for ORD_RAJA!						
SUNDAY						
Checkpoint3 - CheckPoi	intStaff - Either					
	Time	Either	Male	Female	Staff Multiplier	Total Sta
	2:00 PM	9	4	4	1	1
	3:00 PM	7	3	3	1	1
	4:00 PM	7	3	3	1	1
	5:00 PM	7	3	3	1	1
	6:00 PM	7	3	3	1	1
	7:00 PM	3	1	1	1	
	8:00 PM	0	0	0	1	
	9:00 PM	0	0	0	1	
	10:00 PM	0	0	0	1	
	11:00 PM	0	0	0	1	
Maxir	num by Day	9	4	4	1	1
CheckpointFIS 1 - Checl	kPointStaff - Either	Either	Male	Female	Staff Multiplier	Total Sta
	12:00 AM	0	0	0	1	7000
	1:00 AM	0	0	0	1	
	2:00 AM	0	0	0	1	
	3:00 AM	3	1	1	1	
	4:00 AM	3	1	1	1	
	5:00 AM	3	1	1	1	
	6:00 AM	3	1	1	1	
SA Enhanced Staffing Model		Page 11 of 8	4		Printed	9/27/2010 4:42:18 F

Schedules are created from these staffing requirements

The optimization engine exports the staffing requirements from ESM into a CPLEX-based scheduling optimizer

The user can edit shift intervals, breaks, rosters, and run-time settings before optimization

Established staffing rules are validated in the optimization engine, and a deployable schedule with FTE requirements is generated

The move from PC-based to network model provides benefits to the user while meeting the required end-user functionality

Network efficiency is improved due to single data repository, centralized enduser support, and instant access to model and data upgrades

Users are more productive due to faster simulation run time and ability to run simultaneous models

Reduced help desk support and TCO

Access to TSA SOA IT infrastructure & support

Improved security

SIMULATION-BASED MANPOWER PLANNING WITH OPTIMIZED SCHEDULING IN A DISTRIBUTED MULTI-USER ENVIRONMENT

David Kalasky - IBM Corporation

Michael Coffman - Transportation Security Administration

Melanie De Grano - IBM Corporation

Kevin Field - ProModel Corporation

The ESM simulation engine was built in steps

Gain thorough understanding of passenger/bag generation and variability

Build a prototype with prototypical data

Decompose prototype into generic submodels

Test submodels and logic for robustness, "harden"

Coordinate design and use of external data files

Develop schema for programmatic model builds

Test, test, test!

The prototype was used to create generic concourse, checkpoint and bag zone submodels along with a base "zero-level" model

The zero-level model (ZLM) contains the attributes, global variables, data arrays, subroutines, and statistical distributions inherent in every model

The concourse submodel has processing records for passengers (arrival delay, check-in, bag divesting, routing) and for bags (generation, determine standard or oversize, routing to bag zone)

The checkpoint submodel has processing records used at the checkpoint queues for the processing of passengers and non-passengers

The bag zone submodel is similar to the checkpoint submodel but also has another queue with infinite capacity and multiple server locations for secondary processing of the bags

Screening requirements are based on average weekly enplanements for the peak month of travel for each airport

Month	Monthly Enplanements	Days	Avg Weekly Enplanements
Jan	254168	31.00	8199
Feb	238635	28.00	8523
Mar	302462	31.00	9757
Apr	282966	30.00	9432
May	314311	31.00	10139
Jun	315088	30.00	10503
Jul	330806	31.00	10671
Aug	308251	31.00	9944
Sep	267968	30.00	8932
Oct	310840	31.00	10027
Nov	284867	30.00	9496
Dec	269556	31.00	8695

The ESM simulation engine was built in steps

Gain thorough understanding of passenger/bag generation and variability

Build a prototype with prototypical data

Decompose prototype into generic submodels and test for robustness

Coordinate design and use of external data files

Develop schema for programmatic model builds

The prototype was then designed and tested as generic concourse, checkpoint and bag zone submodels along with a base "zero-level" model

After submodels were tested, external data files were incorporated

All airport data was handled within ProModel as Arrays, User Distributions, and Shift files

A subroutine is called at initialization of the model to read each of the files to populate the three main data arrays for Flight Data, Checkpoint, and Bag Zone Configuration

ESM programmatically builds each unique airport model from the input files

ESM begins by loading the zero-level model

Based on the unique airport configuration information, submodels are merged (concourses, checkpoints and bag zones) to model the airport

Using this schema, an airport with one concourse, one checkpoint and one bag zone would generate a Locations table as shown below

Automatically-applied suffixes are used in order to differentiate among multiple submodels with the same name

After ZLM and submodels are successfully merged, the remaining configuration data is read in

The ProModel application programming interface (API) populates the remaining configuration and operational data including secondary bag screening equipment counts and screening rates

Lastly, shifts, variables, user distributions and random number streams are added programmatically and the model is run

Example Simulation Process Log

ESM overcame many unique modeling challenges

Data-driven model builds for 450 unique airports

Data and model integrity for 450 unique endusers (non-simulationists)

Integration with network GUI and optimizer

File interchange via .CSV files

Naming conventions and passing strings

Improved speed vs. compiled language code

