Recall: Superposition for Linear Homogeneous ODEs

Suppose the linearly independent functions $y_1(t)$ and $y_2(t)$ both independently solve a 2nd order linear homogeneous ODE

$$L[y] = 0$$

then

$$y_h = c_1 y_1(t) + c_2 y_2(t)$$

is the general solution to the ODE.

Proof:

$$L \left[c_1 y_1 + c_2 y_2 \right] \stackrel{\text{Linearity 1}}{=} L \left[c_1 y_1 \right] + L \left[c_2 y_2 \right]$$

$$\stackrel{\text{Linearity 2}}{=} c_1 L \left[y_1 \right] + c_2 L \left[y_2 \right]$$

$$= c_1 \cdot 0 + c_2 \cdot 0 = 0$$

Superposition for Linear Inhomogeneous ODEs

Suppose the linearly independent functions $y_1(t)$ and $y_2(t)$ both solve a 2^{nd} order linear homogeneous ODE

$$L[y] = 0 \tag{1}$$

and a particular solution $y_p(t)$ solves the linear inhomogeneous ODE

$$L[y_p] = f(t) \neq 0 \tag{2}$$

then
$$y_g = \underbrace{c_1 y_1 + c_2 y_2}_{+} + y_p$$
 is the general solution to Eq. (2).

homogeneous or complementary

solution

Proof:

$$L\left[c_{1}y_{1}+c_{2}y_{2}+y_{\rho}\right] \stackrel{\text{Linearity 1}}{=} L\left[c_{1}y_{1}\right]+L\left[c_{2}y_{2}\right]+L\left[y_{\rho}\right]$$

$$\stackrel{\text{Linearity 2}}{=} \underbrace{c_{1}L\left[y_{1}\right]+c_{2}L\left[y_{2}\right]}_{0}+\underbrace{L\left[y_{\rho}\right]}_{f(t)}=f(t)$$

For proof of uniqueness of y_p , see DiffQs §2.5.1

The general solution to

$$L[y(t)] = f(t)$$
 with $f(t) \neq 0$

where L[·] is linear is always of the form

$$y_g(t) = y_h(t) + y_p(t)$$

where y_h solves L[y] = 0 the associated homogeneous problem.

ex: Second order L
$$[y] \neq 0$$
 with $y(0) = y_0$, $y'(0) = v_0$

$$y_h = c_1 y_1(t) + c_2 y_2(t)$$

$$y(0) = y_0 = c_1 y_1(0) + c_2 y_2(0) + y_p(0)$$

$$y'(0) = v_0 = c_1 y_1'(0) + c_2 y_2'(0) + y_p'(0)$$

Solve for c_1 and c_2 . Don't forget to include y_p .

How to find y_p ? Method of Undetermined Coefficients

Suppose we get:

$$ay'' + by' + cy = 0 \implies \text{guess } y_h = e^{rt}$$

Suppose we get:

$$ay'' + by' + cy = f(t)$$

Guess $y_p = \text{similar to } f(t)$

This approach works for:

- f(t) = polynomial func.
- f(t) =exponential func.
- \bullet $f(t) = \sin \operatorname{or} \cos$
- additive combinations of above
- multiplicative combinations of above

How to find y_p ? Method of Undetermined Coefficients

Suppose we get:

$$ay'' + by' + cy = Dt + E \implies \text{guess } y_p = Ft + H$$

Plug in guess to find F and H:

$$y_p' = F,$$
 $y_p'' = 0$
 $bF + cFt + cH = Dt + E$ (one eq. two unknowns)

group by powers of t to obtain two eqs.

$$\underline{t^{1}}: cFt = Dt \Rightarrow F = D/c$$

$$\underline{t^{0}}: bF + cH = D$$

$$b\frac{D}{c} + cH = E \Rightarrow H = \frac{E}{c} - b\frac{D}{c^{2}}$$

Works as long as $c \neq 0$...otherwise the algebra is impossible.

ex: Find the particular solution to
$$y'' + 2y' + 2y = 2t^2 - 2$$
.
Guess: $y_D = At^2 + Bt + C$

$$y'_p = 2At + B$$
, $y''_p = 2A$
 $2A + 2(2At + B) + 2(At^2 + Bt + C) = 2t^2 - 2$

group by powers of *t*:

$$\underline{t^2}: 2At^2 = 2t^2 \Rightarrow A = 1$$

$$\underline{t^1}: 4At + 2Bt = 0$$

$$4 + 2B = 0 \Rightarrow B = -2$$

$$\underline{t^0}: 4At + 2Bt = -2$$

$$2A + 2B + 2C = -2$$

$$2 - 4 + 2C = -2 \Rightarrow C = 0$$

 $y_p = t^2 - 2t$

 $r = \frac{-2 \pm \sqrt{4 - 8}}{2}$

= -1 + i

ex: Solve
$$y'' + 2y' + 2y = 2t^2 - 2$$
 with $y(0) = 1, y'(0) = -3$.
 $y = c_1y_1 + c_2y_2 + \underbrace{y_p}_{t^2 - 2t}$

$$y_{1,2} = e^{rt}$$

$$v(t) = e^{-t} (c_1 \cos(t) + c_2 \sin(t)) + t^2 - 2t$$

initial conditions:

$$y(0) = 1 = c_1 \implies c_1 = 1$$

 $y'(t) = -e^t (c_1 \cos(t) + c_2 \sin(t)) + e^t (c_2 \cos(t) - c_1 \sin(t)) + 2t - 2$

$$y'(0) = -3 = -c_1 + c_2 - 2 \Rightarrow c_2 = 0$$
$$y(t) = e^{-t}\cos(t) + t^2 - 2t$$

Mathematical Resonance & Undetermined Coefficients

Given an inhomogeneous linear DE L $[y] = f(t) \neq 0$, we say that mathematical resonance occurs when f(t) (or its derivatives) has the same form as y_h .

result = impossible algebra

$$\underline{ex:} \quad x'' + x = \sin \omega t$$
$$y_h = c_1 \cos(t) + c_2 \sin(t)$$

$$\underline{\omega \neq 1}$$
 (no problem) $\underline{\omega = 1}$ (resonance) $y_p = A\cos(\omega t) + B\sin(\omega t)$ $y_p = At\cos(t) + Bt\sin(t)$

Trick: Multiply the naïve guess for $y_p(t)$ by t^k where k is large enough to ensure that y_p is not of the same form as y_h .

Method of Undetermined Coefficients - Resonance

$$ay'' + by' + cy = f(t)$$

1. Solve the associated homogeneous eqn. to get $y_h(t)$:

$$y_h = c_1 y_1 + c_2 y_2$$

2. Determine the "family of functional forms" for f(t) by differentiating:

$$\begin{array}{ll} \underline{\operatorname{ex:}} & \cos(3t) & \{\cos(3t),\sin(3t)\} \Rightarrow y_p = A\cos(3t) + B\sin(3t) \\ \underline{\operatorname{ex:}} & t^2e^{-t} & \{t^2e^{-t},te^{-t},e^{-t}\} \Rightarrow y_p = At^2e^{-t} + Bte^{-t} + Ce^{-t} \\ \underline{\operatorname{ex:}} & t\sin 2t & \{t\sin 2t,t\cos 2t,\sin 2t,\cos 2t\} \Rightarrow y_p = \cdots \\ \\ \text{If the family for } f(t) \text{ has } N \text{ members, } y_p(t) \text{ must have } N \text{ L.I. terms.} \end{array}$$

3. Check for that none of the family members look like $y_1(t)$ or $y_2(t)$.

Multiply family members by t until there is no more resonance.

Practice spotting resonance

(1)
$$y' + 6y = \cos t + t^2$$

 $y_h = c_1 e^{-6t}$
family = $\{\cos t, \sin t, t^2, t, 1\}$
 $y_p = A\cos t + B\sin t$

(2) $v'' = t^2$

$$A\cos t + B\sin t + Ct^2 + Dt + E$$

$$y_h = c_1 + c_2 t$$

family =
$$\{t^2, \underline{t}, \underline{1}\}$$

 $y_p = At^2 + Bt^3 + Ct^4$
(3) $y'' + 3y' + 2y = 5e^{-t}$
 $y_h = c_1e^{-t} + c_2e^{-2t}$
family = $\{e^{-t}\}$

 $y_p = Ate^{-t}$

(4) $v'' + 2v' + v = 12e^{-t}$ $v_h = c_1 e^{-t} + c_2 t e^{-t}$ family = $\{\underline{e^{-t}}\}$ $y_p = At^2e^{-t}$

$$y_p = At^2 e^{-t}$$
(5) $y'' + 6y' = \cos t + t^2$

$$y_h = c_1 e^{-6t} + c_2$$
family = $\{\cos t, \sin t, t^2, t\}$

family = $\{\cos t, \sin t, t^2, t, 1\}$

 $y_p = A \cos t + B \sin t$

 $+ Ct^{2} + Dt + Ft^{3}$

Find the general solution of $y'' + 5y' + 4y = e^{-4t}$

$$r_{1,2} = \frac{-5 \pm \sqrt{25 - 16}}{2} = \frac{-5 \pm 3}{2} = -1, -4$$

$$y_h = c_1 e^{-t} + \underbrace{c_2 e^{-4t}}_{\propto f(t)}$$

Try:
$$y_p = Ate^{-4t}$$

 $y'_p = A(e^{-4t} - 4te^{-4t})$
 $y''_p = -Ae^{-4t} - 4A(e^{-4t} - 4te^{-4t})$
 $= -8Ae^{-4t} + 16Ate^{-4t}$

plug into DE:

$$-8Ae^{-4t} + 16Ate^{-4t} + 5Ae^{-4t} - 20Ate^{-4t} + 4Ate^{-4t} = e^{-4t}$$
$$(-8+5)Ae^{-4t} + (20-20)te^{-4t} = e^{-4t}$$
$$-3Ae^{-4t} = e^{-4t}$$

$$A = -\frac{1}{3}$$

$$y = c_1 e^{-4t} + c_2 e^{-t} - \frac{1}{3} t e^{-4t}$$

Find the general solution of $y'' + 4y' + 4y = e^{-2t}$

$$r_{1,2} = \frac{-4 \pm \sqrt{16 - 16}}{2} = -2$$

$$y_h = \underbrace{c_1 e^{-2t}}_{\propto f(t)} + c_2 t e^{-2t}$$
Try: $y_p = A t^2 e^{-2t}$

$$y'_p = A \left(2t e^{-2t} - 2t^2 e^{-2t}\right)$$

$$y''_p = 2A \left(e^{-2t} - 2t e^{-2t}\right) - 2A \left(2t e^{-2t} - 2t^2 e^{-2t}\right)$$

$$= 4A t^2 e^{-2t} - 8A t e^{-2t} + 2A e^{-2t}$$

$$4At^{2}e^{-2t} - 8Ate^{-2t} + 2Ae^{-2t} + 8Ate^{-2t} - 8At^{2}e^{-2t} + 4At^{2}e^{-2t} = e^{-2t}$$
$$(-8+8)At^{2}e^{-2t} + (-8+8)te^{-2t} + 2Ae^{-2t} = e^{-2t}$$
$$2Ae^{-2t} = e^{-2t}$$

$$2A = 1$$
 $\Rightarrow A = \frac{1}{2}$

$$y = c_1 e^{-2t} + c_2 t e^{-2t} + \frac{1}{2} t^2 e^{2t}$$

Method of Undetermined Coefficients:

$$ay'' + by' + cy = f(t)$$

$$y_g(t) = y_p(t) + y_h(t)$$

Form of function $f(t)$	Guess for $y_p(t)$
$\sum_{j=0}^{N} d_j t^j$	$\sum_{j=0}^{N} A_j t^j$
$e^{\lambda t}$	$Ae^{\lambda t}$
$\sin(\omega t)$ or $\cos(\omega t)$	$A\sin(\omega t) + B\cos(\omega t)$
$e^{\lambda t}\sin\omega t$ or $e^{\lambda t}\cos\omega t$	$e^{\lambda t}A\sin\omega t+e^{\lambda t}B\cos\omega t$
Additive combinations of above	Additive combinations of above
Multiplicative combinations of above	Multiplicative combinations of above
Part of the homogeneous solution Note 1	$Atf(t)$ or $At^2f(t)$
Anything else	You are out of luck

¹Note: This corresponds to resonance.

²Note: a, b, c, d_i, A_i , A, and B are all constants in the above table