A practical Microcylinder Appearance Model for Cloth Rendering

Presented by Garoe Dorta Perez

University of Bath Centre For Digital Entertainment

May 27, 2015

Overview

Introduction Cloth rendering

Outline

Introduction Cloth rendering

$$L_o(\mathbf{p}, \omega_{\mathbf{o}}) = L_e(\mathbf{p}, \omega_{\mathbf{o}}) + \int_{\Omega} f(\mathbf{p}, \omega_{\mathbf{o}}, \omega_{\mathbf{i}}) L_i(\mathbf{p}, \omega_{\mathbf{i}}) |\cos \theta_i| d\omega_{\mathbf{i}}$$

Diagram of light emitted from ${\bf p}$, image taken from [PH10].

where L_o is the outgoing radiance, L_i incoming radiance, L_e emitted radiance, f BRDF function, \mathbf{p} surface point, ω_i incident light, ω_o outgoing light, Ω hemisphere above \mathbf{p} , θ_i angle of incidence.

The problem

- Render cloth fast and realistically
 - Small threads
 - Weaving patterns

Left shows a close up view of fabric, right shows a picture of cloth, images taken from [SBD*13].

Appearance model

• Two microcylinders [SBD*13]

Left shows model in a triangle mesh, right shows scattering cones in a patch, images taken from [SBD*13].

$$\mathsf{BRDF} \colon f(t,\omega_i,\omega_r) = \frac{\mathsf{Reflection} \ \mathsf{term} + \mathsf{Volume} \ \mathsf{scattering} \ \mathsf{term}}{\mathsf{Normalization} \ \mathsf{factor}}$$

where f is the BRDF function, t is the thread direction, ω_i is the ray incoming direction, ω_r is the ray outgoing direction.

Angle definitions for a single thread, image taken from [SBD*13].

BRDF:
$$f(t, \omega_i, \omega_r) = \left(\overbrace{F_r(\eta, \omega_i) \cos(\phi_d/2) g(\gamma_s, \theta_h)}^{\text{Reflection term}} + F_t(\eta, \omega_i) F_t(\eta', \omega'_r) \frac{(1 - k_d) g(\gamma_v, \theta_h) + k_d}{\cos \theta_i + \cos \theta_r} A \right) / \cos^2(\theta_d),$$

BRDF:
$$f(t, \omega_i, \omega_r) = \left(F_r(\eta, \omega_i) \underbrace{\cos(\phi_d/2)}^{\text{Cylinder reflection}} g(\gamma_s, \theta_h) + \underbrace{\cos(\phi_d/2)}^{\text{Cyl$$

$$F_t(\eta,\omega_i)F_t(\eta',\omega_r')\frac{(1-k_d)g(\gamma_v,\theta_h)+k_d}{\cos\theta_i+\cos\theta_r}A\bigg)/\cos^2(\theta_d),$$

BRDF:
$$f(t, \omega_i, \omega_r) = \left(F_r(\eta, \omega_i) \cos(\phi_d/2) \underbrace{g(\gamma_s, \theta_h)}_{\text{Cylinder roughness}} + F_t(\eta, \omega_i) F_t(\eta', \omega_r') \underbrace{\frac{(1 - k_d)g(\gamma_v, \theta_h) + k_d}{\cos \theta_i + \cos \theta_r}}_{\text{Cylinder roughness}} A\right) / \cos^2(\theta_d),$$

BRDF:
$$f(t, \omega_i, \omega_r) = \left(\overbrace{F_r(\eta, \omega_i)}^{\text{Attenuation factor}} \cos(\phi_d/2)g(\gamma_s, \theta_h) + F_t(\eta, \omega_i)F_t(\eta', \omega'_r) \frac{(1 - k_d)g(\gamma_v, \theta_h) + k_d}{\cos \theta_i + \cos \theta_r} A \right) / \cos^2(\theta_d),$$

BRDF:
$$f(t, \omega_i, \omega_r) = \left(F_r(\eta, \omega_i)\cos(\phi_d/2)g(\gamma_s, \theta_h) + \right)$$

Volume scattering term
$$\overbrace{F_t(\eta,\omega_i)F_t(\eta',\omega_r')\frac{(1-k_d)g(\gamma_v,\theta_h)+k_d}{\cos\theta_i+\cos\theta_r}}^{\text{Volume scattering term}} / \cos^2(\theta_d),$$

BRDF:
$$f(t, \omega_i, \omega_r) = \left(F_r(\eta, \omega_i)\cos(\phi_d/2)g(\gamma_s, \theta_h) + \right)$$

Attenuation factor
$$\overbrace{F_t(\eta,\omega_i)F_t(\eta',\omega_r')}^{\text{Attenuation factor}} \frac{(1-k_d)g(\gamma_v,\theta_h)+k_d}{\cos\theta_i+\cos\theta_r} A / \cos^2(\theta_d),$$

BRDF:
$$f(t, \omega_i, \omega_r) = \left(F_r(\eta, \omega_i)\cos(\phi_d/2)g(\gamma_s, \theta_h) + \frac{1}{F_t(\eta, \omega_i)F_t(\eta', \omega_r')}\frac{(1 - k_d)\underbrace{g(\gamma_v, \theta_h)}_{g(\gamma_v, \theta_h)} + k_d}{\cos\theta_i + \cos\theta_r}A\right) / \cos^2(\theta_d),$$

where f is the BRDF function, t is the thread direction, ω_i is the ray incoming direction, ω_r is the ray outgoing direction, F are Fresnel terms, f are Fresnel coefficients, f is a Gaussian lobe, f is a scattering constant, f are Gaussian widths, f is f and f is an equal to f is a factor of f and f is a factor of f is

BRDF:
$$f(t, \omega_i, \omega_r) = \left(F_r(\eta, \omega_i)\cos(\phi_d/2)g(\gamma_s, \theta_h) + \right)$$

$$F_t(\eta, \omega_i) F_t(\eta', \omega_r') \underbrace{\frac{(1 - k_d) g(\gamma_v, \theta_h) + k_d}{\cos \theta_i + \cos \theta_r}}_{\text{Normalization factor}} A \right) / \cos^2(\theta_d),$$

BRDF:
$$f(t, \omega_i, \omega_r) = \left(F_r(\eta, \omega_i)\cos(\phi_d/2)g(\gamma_s, \theta_h) + \right)$$

$$F_t(\eta, \omega_i) F_t(\eta', \omega_r') \frac{(1 - k_d) g(\gamma_v, \theta_h) + k_d}{\cos \theta_i + \cos \theta_r} A \bigg) / \frac{\text{Normalization factor}}{\cos^2(\theta_d)},$$

where f is the BRDF function, t is the thread direction, ω_i is the ray incoming direction, ω_r is the ray outgoing direction, F are Fresnel terms, f are Fresnel coefficients, f is a Gaussian lobe, f is a scattering constant, f are Gaussian widths, f is f and f is an incomplete f is a factor of f and f is a factor of f i

Shading Model 1

Normal sampling, (top-left) cloth patch, (bottom-left) smallest cloth patch, (top-right) blue thread tangent curve, (bottom-right) red thread tangent curve, image taken from [SBD*13].

Shading Model 2

Masking examples, Green arrow points view from above, red arrow points view at grazing angle, image taken from [SBD*13].

$$L_r(\omega_r) = Q(t) \sum \int L_i(\omega_i) f(t, \omega_i, \omega_r) M(t) P(t) \cos \theta_i d\omega_i,$$

where f is the BRDF function, t is the thread direction, ω_i is the ray incoming direction, ω_r is the ray outgoing direction, θ_i is the incoming ray angle, Q(t) is a normalization factor for samples and non watertight patches, M(t) is the masking term and P(t) is a view-projection normalization factor.

Results

Results

Cloth render result from [SBD*13].

Cloth render with our code.

Conclusions and Future Work

- Limitations
 - Requires data capture
 - Difficult parametrization
- Future work
 - Implement full model
 - Importance sampling extensions by [MI] and [WXK]

Thank you

Questions?

References

[SBD*13] Sadeghi, I. et al. A practical microcylinder appearance model for cloth rendering. ACM 2013 [PH10] Pharr, M. et al. Physically based rendering: From theory to implementation, Morgan Kaufmann, 2010 [MI] Mizutani K. et al. Importance Sampling for Cloth Rendering under Environment Light, Mathematical Progress in Expressive Image Synthesis I, 2014

[WXK] Wang J. et al. Importance Sampling for a Microcylinder Based Cloth Bsdf, SIGGRAPH Talks, 2014