Aspect-based Sentiment Analysis using Transformers

Constantin Gabriel-Adrian (507) Sociu Daniel (507)

Problem definition

Task definition

- Aspect-based Sentiment Analysis:
 - involves predicting the sentiment of a specific paragraph when given a context / term
 - Can be a key indicator of satisfaction level of a user with regards to a specific aspect (for example when looking at reviews)
- Example:
 - Text:
 - In the shop, these MacBooks are encased in a soft rubber enclosure so you will never know about the razor edge until you buy it, get it home, break the seal and use it (very clever con)
 - Aspect-sentiment pairs:
 - o "rubber enclosure" positive
 - "edge" negative

Dataset

SemEval 2014

The processed dataset turned out to have:

- 2700 training samples per dataset
- 800 test samples per dataset

Dataset	Sentiment class	Encoded Class	Frequency
Laptop 2014	O	0	42080
Laptop 2014	T-POS	1	1222
Laptop 2014	T-NEG	2	1142
Laptop 2014	T-NEU	3	666
Restaurant 2014	O	0	37773
Restaurant 2014	T-POS	1	2818
Restaurant 2014	T-NEG	2	923
Restaurant 2014	T-NEU	3	759

Related research

Related Research

- Word embeddings generation
 - Context-independent:
 - GloVe
 - Word2Vec
 - Context-dependent:
 - RNNs
 - Transformers

BERT with different E2E-ABSA layers

Related Research - E2E-ABSA layer

- Proposed E2E-ABSA classifier layers
 - Linear Layer
 - LSTM
 - GRU
 - Transformer encoder layer
 - Self-Attention Networks
 - Conditional Random Fields
- These layers are trying to improve the predictions, given the transformer encodings as input

Proposed solution

E2E ABSA

- Write our own E2E python scripts using PyTorch in order to solve the problem
- Attempt to improve the results from the paper
- Keep the same layers from the original paper
 - Also test with HuggingFace linear implementation for token classification
- Try different backbone models:
 - BERT
 - RoBERTa

Experimental Setup

Training tricks & hyper-parameters

- AdamW as optimizer
- Dynamic learning rate changes via ReduceLROnPlateau
- About 15 epochs of training, with Early Stopping
- Weight-adjusted importance for each class
 - by dividing the number of elements from class 0 with the number of elements from a given class
 - by using compute_class_weight from sklearn
- Saved best model based on validation F1
 - Evaluated after each training epoch

Train class distribution and weights attributed

Dataset	Sentiment class	Encoded Class	Frequency	Manual weight	Sklearn weight
Laptop 2014	O	0	42080	1	0.268
Laptop 2014	T-POS	1	1222	34.435	9.228
Laptop 2014	T-NEG	2	1142	36.847	9.875
Laptop 2014	T-NEU	3	666	63.183	16.933
Restaurant 2014	0	0	37773	1	0.279
Restaurant 2014	T-POS	1	2818	13.404	3.750
Restaurant 2014	T-NEG	2	923	40.924	11.449
Restaurant 2014	T-NEU	3	759	49.766	13.923

Metrics used

- Accuracy
 - Number of correctly classified sentiments divided by the number of total samples.
- Micro F1
 - Global average F1 which counts the number of TP, FN, FP
 - o proportion of correctly classified observations out of all observations

Micro F1 Score =
$$\frac{\text{Net } TP}{\text{Net } TP + \frac{1}{2}(\text{Net } FP + \text{Net } FN)}$$

$$= \frac{\sum_{i=1}^{n} M_{ii}}{\sum_{i=1}^{n} M_{ii} + \frac{1}{2}\left[\left(\sum_{i=1}^{n} \sum_{j=1 \text{ to } n; i \neq j} M_{ij}\right) + \left(\sum_{i=1}^{n} \sum_{j=1 \text{ to } n; i \neq j} M_{ji}\right)\right]}$$

Results

Results

Model	Datasets		
Model	Laptop Restaurar		
Our BERT + GRU	58.7	65.1	
Paper BERT + GRU	61.1	70.2	

Table 1: Comparison of our BERT results with those reported in the paper.

Model	Datasets		
Model	Laptop	Restaurant	
BERT + Linear	50.8	61.2	
BERT + LSTM	49.8	61.0	
BERT + GRU	53.1	64.4	
RoBERTa + Linear	14.9	30.4	
RoBERTa + LSTM	10.4	26.3	
RoBERTa + GRU	19.1	35.6	

Table 3: Comparing the partially frozen BERT model with the partially frozen RoBERTa.

Datasets		
Laptop	Restaurant	
50.8	61.2	
49.8	61.0	
53.1	64.4	
45.5	60.5	
48.0	58.8	
	Laptop 50.8 49.8 53.1 45.5	

Table 2: Comparison of partial frozen BERT model with various heads on two datasets.

Plots - best model - laptop

Plots - best model - restaurant

Conclusions and Future Work

Conclusions

- Improvements in the pipeline:
 - Added weighted training.
 - Speed-up training with frozen layers while keeping good accuracy.
- Evaluation:
 - They were evaluating on the split tokens of each word
 - They considered these tokens class "O"
 - We filtered all those tokens out.
- Although, those didn't bring any improvement to the results.

Thank you!