Лекция 7. Максимально правдоподобно о логит и пробит-моделях

8 октября 2014 г.

Метод максимального правдоподобия

Наблюдения: вижу работающий фонтан

Гипотеза 1: фонтан работает каждый день

Гипотеза 2: фонтан включают раз в году

Правдоподобие. Более формально

Метод максимального правдоподобия (ML — Maximum Likelihood)

В качестве оценки неизвестного параметра θ возьмем такое число $\hat{\theta}$, при котором вероятность имеющихся данных максимальна.

Пример задачи

Наблюдения: $y_1 = 0$, $y_2 = 1$, $y_3 = 2$, $y_4 = 0$.

Модель: наблюдения независимы,

у	0	1	2
Вероятность	р	2 <i>p</i>	1 - 3p

Решаем задачу у чудо-доски

Правдоподобие. Непрерывный случай

Для непрерывных случайных величин максимизируется плотность вероятности

Для независимых наблюдений:

$$f(y_1, y_2, ..., y_n | \theta) = f(y_1 | \theta) \cdot f(y_2 | \theta) \cdot ... \cdot f(y_n | \theta) = \prod f(y_i | \theta)$$

Трюк с логарифмированием: $I(\theta) = \ln \left(\prod f(y_i | \theta) \right) = \sum \ln f(y_i | \theta)$

Задача 2.

100 наблюдений: $y_1 = 1.1, y_2 = 2.7, \ldots, y_{100} = 1.5.$

Сумма, $\sum y_i = 200$.

Модель: наблюдения независимы, $f(y) = \lambda e^{-\lambda x}$ при x > 0.

Найдите $\hat{\lambda}$

Решаем задачу 2 чудо-доска.

ML — это хорошо!

ML оценки:

- lacktriangle Состоятельны: $\hat{ heta}_{ML} o heta$ при $n o \infty$
- lacktriangle Асимптотически несмещены: $E(\hat{ heta}_{ML}) o heta$ при $n o \infty$
- Асимптотически эффективны:

 $Var(\hat{ heta}_{ML})$ наименьшая среди асимптотически несмещенных

ML — это нормально!

Асимптотически нормальны:

$$\hat{ heta}_{ML} \sim \textit{N}(heta, \emph{I}^{-1})$$
 при $n >> 0$

I — информация Фишера, $I = -E(I''(\theta))$

В многомерном случае: I = -E(H), H — матрица Гессе

ML оценка как случайная величина

Среднее: $E(\hat{\theta}_{ML}) \approx \theta$, дисперсия: $Var(\hat{\theta}_{ML}) \approx I^{-1}$

Оценка дисперсии: $\widehat{Var}(\hat{ heta}_{ML}) = \hat{I}^{-1}$

Наблюдаемая информация Фишера $\hat{I} = -I''(\hat{\theta})$

Доверительный интервал

Доверительный интервал:

$$\theta \in [\hat{\theta}_{ML} - z_{cr}se(\hat{\theta}); \hat{\theta}_{ML} + z_{cr}se(\hat{\theta})],$$

$$se(\hat{\theta})) = \sqrt{\widehat{Var}(\hat{\theta}_{ML})} = \sqrt{-(I''(\hat{\theta}))^{-1}}$$

Продолжение задачи у чудо-доски

Постройте 95%-ый доверительный интервал для θ .

Проверка гипотез

 H_0 : Система из q уравнений на неизвестные параметры

 H_a : Хотя бы одно из q условий не выполнено

Тест отношения правдоподобия (Likelihood Ratio, LR):

$$LR = 2(I(\hat{\theta}) - I(\hat{\theta}_{H0})) \sim \chi_q^2$$

Продолжение задачи у чудо-доски

Проверьте гипотезу H_0 : $\lambda = 1$.

Логит и пробит-модели

Бинарная объясняемая переменная: $y_i \in \{0,1\}$.

Скрытая ненаблюдаемая переменная: $y_i^* = \beta_1 + \beta_2 x_i + \varepsilon_i$.

$$y_i = \begin{cases} 1, y_i^* \ge 0 \\ 0, y_i^* < 0 \end{cases}$$

Разница логит-пробит

Логит-модель: $\varepsilon_i \sim logistic$, $f(t) = e^{-x}/(1+e^{-x})^2$

Пробит-модель: $\varepsilon_i \sim N(0,1)$.

Логистическое похоже на $N(0, 1.6^2)$

Вероятность

$$P(y_{i} = 1) = P(y_{i}^{*} \geq 0) = P(\beta_{1} + \beta_{2}x_{i} + \varepsilon_{i} \geq 0) =$$

$$= P(-\varepsilon_{i} \leq \beta_{1} + \beta_{2}x_{i}) = P(\varepsilon_{i} \leq \beta_{1} + \beta_{2}x_{i}) =$$

$$= F(\beta_{1} + \beta_{2}x_{i}) = \int_{-\infty}^{\beta_{1} + \beta_{2}x_{i}} f(t)dt \quad (1)$$

Упражнение.

Для логит-модели найдите $P(y_i = 1)$, $\ln P(y_i = 1)/P(y_i = 0)$

Чудо-Доска

Логарифмическое отношение шансов

Для логит-модели:

$$P(y_i = 1) = \frac{1}{1 + exp(-(\beta_1 + \beta_2 x_i))}$$

$$\ln P(y_i = 1)/P(y_i = 0) = \beta_1 + \beta_2 x_i$$

Функция правдоподобия

Наблюдения: $y_1 = 1, y_2 = 0, \dots$

Модель: логит.

Функция правдоподобия:

$$P(y_1 = 1, y_2 = 0, ...) = P(y_1 = 1) \cdot P(y_2 = 0) \cdot ...$$

Интерпретация

Коэффициенты плохо интерпретируемы

Предельный эффект — производная вероятности:

$$\frac{dP(y=1)}{dx} = \frac{dF(\beta_1 + \beta_2 x)}{dx} = \beta_2 \cdot f(\beta_1 + \beta_2 x)$$

Зависит от x (!)

Два средних предельных эффекта:

Средний предельный эффект по наблюдениям:

$$\frac{\sum \beta_2 \cdot f(\beta_1 + \beta_2 x_i)}{n}$$

Предельный эффект для среднего наблюдения:

$$\beta_2 \cdot f(\beta_1 + \beta_2 \bar{x})$$

Прогнозирование

Прогноз скрытой переменной: $\hat{y}_f^* = \hat{\beta}_1 + \hat{\beta}_2 x_f$ Доверительный интервал для $E(\hat{y}_f^*)$:

$$[\hat{y}_f^* - z_{cr}se(\hat{y}_f^*); \hat{y}_f^* + z_{cr}se(\hat{y}_f^*)]$$

Переход к
$$\hat{P}(y_f = 1) = F(y_f^*)$$

Разница логит-пробит на практике

Коэффициенты логит/пробит отличаются в ~ 1.6 раза:

Логит (примерно):
$$y_i^* = \beta_1 + \beta_2 x_i + N(0, 1.6^2)$$

$$\frac{y_i^*}{1.6} = \frac{\beta_1}{1.6} + \frac{\beta_2}{1.6}x_i + N(0,1)$$

Пробит:
$$y_i^* = \beta_1 + \beta_2 x_i + N(0, 1)$$

Проблема логит-пробит моделей

"Идеальное прогнозирование":

$$y_1 = 0$$
 $y_2 = 0$ $y_3 = 1$
 $x_1 = 1$ $x_2 = 2$ $x_3 = 3$

ML оценки не существуют!

Объяснение с помощью ЧД

Проблема логит-пробит моделей

Нередко возникает при большом количестве дамми-регрессоров

Признаки: не сходится МL,

R: "fitted probabilities numerically 0 or 1 occurred"

Решения: регуляризация, байесовский подход