2 9. 12. 03 24 JUN

REC'D 07 JAN 2004 WIPO

本证明之附件是向本局提交的下列专利申请副本

申 日: 2002 12 30

申 请 号: 02 1 60465.7

申请类别: 发明

发明创造名称: 基于СDMA系统的多用户检测的简化去相关的方法及其

申 皇家飞利浦电子股份有限公司

发明人或设计人:梁景新;尹小俊;张之禹

COMPLIANCE WITH RULE 17.1(a) OR (b)

中华人民共和国 国家知识产权局局长 主意川

2003 年 11 月 3 日

权利要求书

- I、一种基于 CDMA 系统的多用户检测的简化去相关法,用于移动终端,包括如下步骤:
- a:接收无线信号 S;
- b:获得一个信道相关矩阵 R, 取该矩阵 R的部分以获得部分相关矩阵 R_p ;
- c:对部分相关矩阵R, 求逆, 从而获得矩阵V(m);
- d:根据针对所述移动终端的发送信号 D 的相应位置所对应的 $\mathbf{v}^{(m)}$ 从接收信号 S 中恢复发送信号 D。
- 2、根据权利要求 1 所述的基于 CDMA 系统的多用户检测的简化去相关法,其中所述的部分相关矩阵 $\mathbf{R}_{\rho} = \{r_{i,j}\}_{i,j=1...(2P+1)K}$,所述的部分相关矩阵 \mathbf{R}_{ρ} 是相关矩阵 \mathbf{R} 的对角线上的子阵,所述的 \mathbf{K} 为同一时隙内的用户数,其中 \mathbf{P} 为对当前信号有影响的前后信号数;
- 3、根据权利要求 2 所述的基于 CDMA 系统的多用户检测的简化去相关法,其中所述的 $\mathbf{V}^{(m)} = \{v_{i,j}^{(m)}\}$,其中

$$v_{i,j}^{(m)} = (\mathbf{R}_P^{-1})_{i+(m-1)K,j}, \quad i = 1...K, j = 1...(2P+1)K, m = 1...2P+1$$

- 4、根据权利要求 1 所述的基于 CDMA 系统的多用户检测的简化去相关法,其中所述发送信号 **D**^(*)的位置分三种情况:
- 1) 当 $1 \le n \le P$ 时, $\mathbf{V}^{(n)} = \mathbf{V}^{(n)}$, $\mathbf{D}^{(n)}$ 可被恢复为 $\hat{\mathbf{D}}^{(n)} = \mathbf{V}^{(n)}\mathbf{S}_{p}^{(n)}$
- 2) 当 $P+1 \le n \le N-P$ 时, $\mathbf{V}^{(n)} = \mathbf{V}^{(P+1)}$, $\mathbf{D}^{(n)}$ 可被恢复为 $\hat{\mathbf{D}}^{(n)} = \mathbf{V}^{(P+1)}\mathbf{S}_{p}^{(n)}$
- 3)当 $N+1-P \le n \le N$ 时, $\mathbf{V}^{(n)} = \mathbf{V}^{(2P+1+n-N)}$, $\mathbf{D}^{(n)}$ 可被恢复为 $\hat{\mathbf{D}}^{(n)} = \mathbf{V}^{(2P+1+n-N)}\mathbf{S}_{p}^{(n)}$,所述的 $\hat{\mathbf{D}}^{(n)}$ 为发送信号的估计,所述的 \mathbf{n} 为码片位置。
- 5、根据权利要求 1 所述基于 CDMA 系统的多用户检测的简化去相关法,

$$\mathbf{S}_{P}^{(n)} = \left(\widehat{s}_{1}^{(n-P)}, \widehat{s}_{2}^{(n-P)}, ..., \widehat{s}_{K}^{(n-P)}, ..., \widehat{s}_{1}^{(n)}, \widehat{s}_{2}^{(n)}, ..., \widehat{s}_{K}^{(n)}, ..., \widehat{s}_{K}^{(n+P)}, \widehat{s}_{2}^{(n+P)}, ..., \widehat{s}_{K}^{(n+P)}\right)$$

 $\bar{s}_1^{(n-P)}, \bar{s}_2^{(n-P)}, \dots, \bar{s}_k^{(n-P)}$ 表示所有 K 个用户的第(n-P)个信号,上述的 $\bar{s}_1^{(n)}, \bar{s}_2^{(n)}, \dots, \bar{s}_k^{(n)}$ 表示所有 K 个用户的第 (n) 个信号,上述的 $\bar{s}_1^{(n+P)}, \bar{s}_2^{(n+P)}, \dots, \bar{s}_k^{(n+P)}$ 表示所有 K 个用户的第 (n+P) 个信号。

当 $1 \le n \le P$ 时

$$\mathbf{S}_{P}^{(n)} = \left(\widehat{s}_{1}^{(1)}, \widehat{s}_{2}^{(1)}, ..., \widehat{s}_{K}^{(1)}, ..., \widehat{s}_{1}^{(n)}, \widehat{s}_{2}^{(n)}, ..., \widehat{s}_{K}^{(n)}, ..., \widehat{s}_{1}^{(2P+1)}, \widehat{s}_{2}^{(2P+1)}, ..., \widehat{s}_{K}^{(2P+1)}, ..., \widehat{s}_{K}^{(2P+1)},$$

上述的 $\bar{s}_{1}^{(1)}$, $\bar{s}_{2}^{(1)}$,..., $\bar{s}_{k}^{(1)}$ 为所有 K 个用户的第一个信号,上述的 $\bar{s}_{1}^{(n)}$, $\bar{s}_{2}^{(n)}$,..., $\bar{s}_{k}^{(n)}$ 为 所有 K 个用户的第 n 个信号,上述的 $\bar{s}_{1}^{(2P+1)}$, $\bar{s}_{2}^{(2P+1)}$,..., $\bar{s}_{k}^{(2P+1)}$ 为 所有 K 个用户的 第 2P+1 个信号。

当 $N+1-P \le n \le N$ 时

$$\mathbf{S}_{P}^{(n)} = \left(\widehat{s}_{1}^{(N-2P)}, \widehat{s}_{2}^{(N-2P)}, ..., \widehat{s}_{K}^{(N-2P)},, \widehat{s}_{1}^{(n)}, \widehat{s}_{2}^{(n)}, ..., \widehat{s}_{K}^{(n)},, \widehat{s}_{1}^{(N)}, \widehat{s}_{2}^{(N)},, \widehat{s}_{K}^{(N)}\right)$$

上述的 $.s_1^{(N-2p)}, s_2^{(N-2p)}, ..., s_k^{(N-2p)}$, 为所有 K 个用户的第 N-2p 个信号,上述的 $.s_1^{(n)}, s_2^{(n)}, ..., s_k^{(n)}$, 为所有 ... 个用户的第 n 个信号,上述的 $.s_1^{(n)}, s_2^{(n)}, ..., s_k^{(n)}$, 为所有 ... 个用户的第 N 个信号。

- 6、根据权利要求 2 所述基于 CDMA 系统的多用户检测的简化去相关法,其中所述的 $1 \le K \le 16$ 。
- 7、根据权利要求 2 所述的基于 CDMA 系统的多用户检测的简化去相关法, 其中所述的 P 为一个整数,所述的 N 为 22。

- 8、根据权利要求 7 所述的基于 CDMA 系统的多用户检测的简化去相关法, 其中所述的 P 为 2。
- 9、一种基于 CDMA 系统的移动终端,包括依次连接的 用于定义部分相关矩阵 R_p 的相关计算装置;

用于定义新的矩阵 v(**) 的矩阵求逆装置及抽取装置;

用于将接收信号 S 与所述的矩阵 V(**) 相乘的矩阵向量乘法器。

10、根据权利要求 9 所述的基于 CDMA 系统的移动终端,还包括 // 个匹配滤波器以及与之一一对应连接的 // 个缓冲存储器。

基于 CDMA 系统的多用户检测的简化去相关的方法及其装置

技术领域

本发明涉及一种基于 CDMA 系统的去相关方法及其装置,尤其涉及一种 TD-SCDMA 的多用户检测简化去相关方法及其装置。

背景技术

在信道多径扩散、符号间干扰(ISI)和多址接入干扰(MAI)的共同影响下,如何把多用户干扰抵销算法,即去相关法的复杂度降低到可接受的程度是多用户检测技术能否实用的关键。接收信号向量 S 可表达为发送信号矢量 D 左乘一个信道相关矩阵 R 并加上噪声矢量 n 的和。解调接收信号向量 S 得到发送信号的估计 \hat{D} 的算法中,最复杂的一步在于求信道相关矩阵 R 的逆矩阵 R^{-1} ,如现有技术一般采用下述方法:下行链路的扩频系数是 SF=16,假设在同一时隙内有 K 个用户且 $1 \le K \le 16$,在每一个数据部分,总共有 K*N 个数据信号,每个用户有 N=22 个数据信号,该 K 个用户的第 M 个发送数据信号 M 为

$$\mathbf{D}^{(n)} = \left(d_1^{(n)}, d_2^{(n)}, d_3^{(n)}, \dots d_K^{(n)}\right), \qquad n=1,\dots,N$$
 (1)

每个用户的信号序列包括 N 个间隔为 Ts 的数据,该数据取自星座表(1,j,-1,-j), K 用户的每个数据信号被该用户的特殊信号序列所扩频,信号序列表示为:

$$\mathbf{C}^{(k)} = \left(c_1^{(k)}, c_2^{(k)}, \dots, c_Q^{(k)}\right)^{\mathsf{T}}, k=1,\dots,\mathsf{K}$$
 (2)

这里[.]^T是矩阵转置,用户的签名序列包含 Q 个码片,码片宽度 Tc 等于 Ts/Q,

1

所述的 Ts 为信号宽度,通过各自的离散冲激响应来区别 K 个不同的信道, 第 k 个信道的离散冲激响应表达为:

$$\mathbf{H}^{(k)} = \left(h_1^{(k)}, h_2^{(k)}, \dots, h_W^{(k)}\right)^{\mathsf{T}}, k=1,\dots,K$$
 (3)

该冲激响应包含间隔为 Tc(码片宽度)的 W 个采样。假定该通道冲激响应在一个时隙内保持不变。

很明显, W>1 时信号间干扰上升;同时信道畸变与非正交信号 C^(k)造成 多址干扰。该组合的信道冲激响应由卷积函数所定义:

$$\mathbf{B}^{(k)} = \left(b_1^{(k)}, b_2^{(k)}, \dots, b_{Q+W-1}^{(k)}\right)^{\mathsf{T}} = \mathbf{C}^{(k)} * \mathbf{H}^{(k)}, k=1,\dots,K$$
(4)

接收码片序列 e 是 K 个用户信道码片序列的叠加,假设所有用户的信号同步到达,长度为(N•Q+W-1)个码片, 且叠加一个同长度的噪声序列:

$$\mathbf{n} = (n_1, n_2, ..., n_{N \cdot Q + |V| - 1})^{\mathrm{T}}$$
(5)

接收序列可表达成

$$\mathbf{e} = (e_1, e_2, \dots, e_{N \cdot Q + W - 1})^{\mathsf{T}} = \mathbf{A} \cdot \mathbf{D} + \mathbf{n}$$
 (6)

其中发送数据矢量信号

$$\mathbf{D} = \left(\mathbf{D}^{(1)}, \mathbf{D}^{(2)}, ..., \mathbf{D}^{(N)}\right)^{\mathsf{T}}$$

$$= \left(d_{1}^{(1)}, d_{2}^{(1)}, ..., d_{K}^{(1)},, d_{1}^{(n)}, d_{2}^{(n)}, ..., d_{K}^{(n)}, d_{1}^{(N)}, d_{2}^{(N)}, ..., d_{K}^{(N)}\right)^{\mathsf{T}}$$

$$= \left(d_{1}, d_{2}, ..., d_{KN}\right)^{\mathsf{T}}$$
(7)

其中 d₁("),d₂("),...d_k(")为所有 K 个用户的第 n 个信号,这里

$$d_j = d_k^{(n)}; j = k + K \cdot (n-1), k=1...K, n=1...N$$
 (8)

其中矩阵

$$\mathbf{A} = \left(a_{ij}\right); \ i = 1...(N \cdot Q + W - 1) \ , \ j = 1...K \cdot N$$

$$a_{Q(n-1)+l,k+K(n-1)} = \begin{cases} b_l^{(k)}, \stackrel{\triangle}{=} \begin{cases} n = 1...N, k = 1...K \\ l = 1...(Q + W - 1) \end{cases} \\ 0, \qquad \qquad (9)$$

假定用户签名序列 $C^{(k)}$ 及信道互相关值 $H^{(k)}$,k=1...K 在接收机中是已知的,处理接收序列 e 以获得对传输数据信号 D 的判决。

目前使用迫零法以消除多址干扰及码间干扰,它的理论基础是最小化

$$\left\| \mathbf{A} \hat{\mathbf{D}} - \mathbf{e} \right\|^2 \tag{10}$$

这里 D 是所有 K 个用户的发送信号的估计,因此

$$\widehat{\mathbf{D}} = \left(\mathbf{A}^{\mathsf{H}} \mathbf{A}\right)^{-1} \quad \mathbf{A}^{\mathsf{H}} \mathbf{e} \\ \mathbb{\mathbf{U}} \widehat{\mathbf{n}} \widehat{\mathbf{u}} \widehat{\mathbf$$

这里[-]"是共轭转置, A^{He} 为匹配滤波器的输出, $(A^{H}A)^{-1}A^{Hn}$ 为噪声项,上述 $\hat{\mathbf{D}}$ 包括期望输出 \mathbf{D} 及噪声,没有多址干扰及码间干扰,它的协方差矩阵 $\sigma^2(A^{H}A)^{-1}$ 给出了噪声量的自相关。一般来说,噪声项的方差大于使用匹配滤波器方法得到的噪声项。去相关输出的每一信号的信噪比等于:

$$\gamma(k,n) = \frac{1}{\sigma^2 [(\mathbf{A}^H \mathbf{A})^{-1}]_{j,j}}; \quad j = n + N \cdot (k-1) \\ k = 1 \dots K, \quad n = 1 \dots N$$
 (12)

令

$$\mathbf{R} = \mathbf{A}^{\mathsf{H}} \mathbf{A} \tag{13}$$

这样式(Eq.11)可表达为

$$\widehat{\mathbf{D}} = (\mathbf{R})^{-1} \left(\mathbf{R} \mathbf{D} + \mathbf{A}^{\mathsf{H}} \mathbf{n} \right) = \mathbf{D}_{\mathsf{f}, \mathsf{H}, \mathsf{B}, \mathsf{fd}, \mathsf{H}, \mathsf{H}} + (\mathbf{R})^{-1} \mathbf{A}^{\mathsf{H}} \mathbf{n}$$
(14)

由于 R 的矩阵求逆操作较复杂,因此现有的 TD-CDMA 系统中的计算负荷较大。

发明内容

本发明所要解决的技术问题是提供一种简化的去相关法,它可大大降低多用户检测计算的复杂度。

ι.

为了解决上述技术,本发明所采用的技术方案为:提供一种简化的去相关法,包括如下步骤:

- a:接收无线信号 S;
- b:获得一个信道相关矩阵 R,取该矩阵 R 的某一部分以获得部分相关矩阵 R_p ;
- c:对部分相关矩阵 \mathbf{R} ,求逆,从而获得矩阵 $\mathbf{V}^{(m)}$:
- d:根据发送信号 D 的相应位置所对相应的 $\mathbf{v}^{(m)}$ 分别从接收信号 S 中恢复发送信号 D。

根据上述方法所采用的装置,包括依次连接的用于定义部分相关矩阵 R_p 的相关计算装置;用于定义新的矩阵 $\mathbf{v}^{(n)}$ 的矩阵求逆装置及抽取装置;用于将接收信号 S 与所述的矩阵 $\mathbf{v}^{(n)}$ 相乘的矩阵向量乘法器。

本发明根据信道相关矩阵 R 的特点,仅根据相关矩阵 R 的对角线子矩阵 R_p 的逆阵完成解调,从而大大降低求逆所需的计算量,而解调性能损失很少。假定 P=2,最大延时为 4 个码片,多径数目为 4,总用户数为 12 时,其性能和没有简化时几乎一致。由于一个大小为 M*M 的矩阵的求逆计算的复杂度与 M^3 成正比,因此当 P=2,N=22 时,部分求逆的计算复杂度只有原始没有简化求逆的计算复杂度的(5/22) 3 ,使计算极大地简化了。同样,恢复信号的计算的复杂度与原装置相比也减少到原先的 5/22。

附图说明

图 1 是本发明的简化去相关法所采用的装置。

具体实施方式

原始的发送数据信号D可表达为

$$\mathbf{D} = \left(\dots d_1^{(n-P)}, d_2^{(n-P)}, \dots, d_K^{(n-P)}, \dots, d_1^{(n)}, d_2^{(n)}, \dots, d_K^{(n)}, \dots, d_1^{(n+P)}, d_2^{(n+P)}, \dots, d_K^{(n+P)}, \dots \right)$$

上述的 $d_1^{(n-P)}, d_2^{(n-P)}, \cdots d_k^{(n-P)}$ 表示所有 K 个用户的第 (n-P) 个信号,上述的 $d_1^{(n)}, d_2^{(n)}, \cdots, d_k^{(n)}$ 表示所有 K 个用户的第 (n) 个信号,上述的 $d_1^{(n+P)}, d_2^{(n+P)}, \cdots, d_k^{(n+P)}$ 表示所有 K 个用户的第 (n+P) 个信号。

接收信号S可表达为

$$S = \left(\dots, \widehat{s}_{1}^{(n-P)}, \widehat{s}_{2}^{(n-P)}, \dots, \widehat{s}_{K}^{(n-P)}, \dots, \widehat{s}_{1}^{(n)}, \widehat{s}_{2}^{(n)}, \dots, \widehat{s}_{K}^{(n)}, \dots, \widehat{s}_{1}^{(n+P)}, \widehat{s}_{2}^{(n+P)}, \dots, \widehat{s}_{K}^{(n+P)}, \dots \right) \quad \bot \quad \text{if} \quad \text{if$$

 $s_1^{(n-P)}, s_2^{(n-P)}, \dots, s_k^{(n-P)}$ 表示所有 K 个用户的第(n-P)个信号,上述的 $s_1^{(n)}, s_2^{(n)}, \dots, s_k^{(n)}$ 表示所有 K 个用户的第(n)个信号,上述的 $s_1^{(n+P)}, s_2^{(n+P)}, \dots, s_k^{(n+P)}$ 表示所有 K 个用户的第(n+P)个信号。下面我们定义 $s_1^{(n)}, s_2^{(n)}, \dots, s_k^{(n)}$ 为 $S^{(n)}$,由于在 TD-CDMA 中假定多径扩散少于 12 码片,而下行链路中扩谱因子是 16,所以距离超过两个信号间隔的信号间没有码间干扰,来自任意的一个特定其 他用户的多址干扰和码间干扰能量通常远小于有用用户信号,为了恢复发 送信号 $D^{(n)} = (d_1^{(n)}, d_2^{(n)}, d_3^{(n)}, \dots d_k^{(n)})$,来自接收信号 $S^{(n)}$ (t<n-P 或 t>n+P)的干扰可被忽略,这就意味着发送信号 $D^{(n)}$ 可以部分接收信号序列中恢复

$$\mathbf{S}_{p}^{(n)} = \left(\widehat{s}_{1}^{(n-P)}, \widehat{s}_{2}^{(n-P)}, ..., \widehat{s}_{K}^{(n-P)}, ..., \widehat{s}_{1}^{(n)}, \widehat{s}_{2}^{(n)}, ..., \widehat{s}_{K}^{(n)},, \widehat{s}_{1}^{(n+P)}, \widehat{s}_{2}^{(n+P)}, ..., \widehat{s}_{K}^{(n+P)}\right)$$

 $\bar{s}_1^{(n-P)}, \bar{s}_2^{(n-P)}, \dots, \bar{s}_k^{(n-P)}$ 表示所有 K 个用户的第(n-P)个信号,上述的 $\bar{s}_1^{(n)}, \bar{s}_2^{(n)}, \dots, \bar{s}_k^{(n)}$ 表示所有 K 个用户的第(n) 个信号,上述的 $\bar{s}_1^{(n+P)}, \bar{s}_2^{(n+P)}, \dots, \bar{s}_k^{(n+P)}$ 表示所有 K 个用户的第(n+P) 个信号。假定 P 足够大,这里我们定义一个部分相关矩阵

 $\mathbf{R}_{P} = \{r_{i,j}\}, \quad i, j = 1...(2P+1)K$

这里r,」是信道相关矩阵R的第i行第j列的元素。

定义一个新的矩阵 $\mathbf{V}^{(m)} = \left\{v_{i,j}^{(m)}\right\}$

$$v_{i,j}^{(m)} = (\mathbf{R}_P^{-1})_{i+(m-1)K,j}, \quad i = 1...K, j = 1...(2P+1)K, m = 1...2P+1$$

这里 R^{-1}_{p} 表示矩阵求逆,当 $P+1 \le n \le N-P$,可将发送信号 $\mathbf{D}^{(n)}$ 恢复为

$$\widehat{\mathbf{D}}^{(n)} = \mathbf{V}^{(P+1)} \mathbf{S}_{P}^{(n)}$$

所述的 $\hat{\mathbf{D}}^{(n)}$ 为发送信号的估计,当 $n \leq P$ 时,此时发送信号 $\mathbf{D}^{(n)}$ 前面的干扰信号少于 \mathbf{P} 个,发送信号 $\mathbf{D}^{(n)}$ 可被恢复为

$$\widehat{\mathbf{D}}^{(n)} = \mathbf{V}^{(n)} \mathbf{S}_P^{(n)}$$

这里接收信号S(#)被定义为

$$\mathbf{S}_{P}^{(n)} = \left(\widehat{s}_{1}^{(1)}, \widehat{s}_{2}^{(1)}, ..., \widehat{s}_{K}^{(1)}, ..., \widehat{s}_{1}^{(n)}, \widehat{s}_{2}^{(n)}, ..., \widehat{s}_{K}^{(n)}, ..., \widehat{s}_{K}^{(2P+1)}, \widehat{s}_{2}^{(2P+1)}, ..., \widehat{s}_{K}^{(2P+1)}\right)$$

上述的 $\bar{s}_{1}^{(1)},\bar{s}_{2}^{(1)},...,\bar{s}_{k}^{(1)}$ 为所有 K 个用户的第一个信号,上述的 $\bar{s}_{1}^{(n)},\bar{s}_{2}^{(n)},...,\bar{s}_{k}^{(n)}$ 为所有 K 个用户的第 n 个信号,上述的 $\bar{s}_{1}^{(2P+1)},\bar{s}_{2}^{(2P+1)},...,\bar{s}_{k}^{(2P+1)}$ 为所有 K 个用户的第 2P+1 个信号。

当n ≥ N + 1 - P 时,此时发送信号 $\mathbf{D}^{(n)}$ 后面的干扰信号少于 \mathbf{P} 个,发送信号 $\mathbf{D}^{(n)}$ 可被恢复为

$$\hat{\mathbf{D}}^{(n)} = \mathbf{V}^{(2^{p+1+n-N)}} \mathbf{S}_{p}^{(n)}$$

这里 S(**)被定义为

$$\mathbf{S}_{P}^{(n)} = \left(\widehat{s}_{1}^{(N-2P)}, \widehat{s}_{2}^{(N-2P)}, ..., \widehat{s}_{K}^{(N-2P)},, \widehat{s}_{1}^{(n)}, \widehat{s}_{2}^{(n)}, ..., \widehat{s}_{K}^{(n)},, \widehat{s}_{K}^{(N)}, \widehat{s}_{2}^{(N)},, \widehat{s}_{K}^{(N)}\right)$$

上述的 $\cdot \widehat{s}_{1}^{(N-2p)},\widehat{s}_{2}^{(N-2p)},...,\widehat{s}_{k}^{(N-2p)}$,为所有 K 个用户的第 N-2p 个信号,上述的

 $\hat{s}_{1}^{(n)},\hat{s}_{2}^{(n)},\dots,\hat{s}_{k}^{(n)}$,为所有 K 个用户的第 n 个信号,上述的 $\hat{s}_{1}^{(N)},\hat{s}_{2}^{(N)},\dots,\hat{s}_{k}^{(N)}$,为所有 K 个用户的第 N 个信号。

另外,该简化去相关法可被命名为部分去相关,其意义是仅根据当前信号的前后各 P 组信号,用去相关法去除前后信号对当前信号的影响。

如图 1 所示的是使用该简化去相关法所采用的装置的结构示意图: 其包括 K 个匹配滤波器 1 及与 K 个匹配滤波器 1 ——对应连接的 K 个缓冲存储器 2,以及用于定义部分相关矩阵 R_p 的相关计算装置 3、后接于相关计算装置 3 的用于定义新的矩阵 $V^{(m)}$ 的矩阵求逆装置 4 及抽取装置 5,所述的缓冲存储器 2 的输出输、抽取装置 5 的输出端与矩阵向量乘法器 6 的输入端相连接。所述 K 个用户的基带信号,分别输入给一一对应连接的 K 个匹配滤波器 1、及 K 个缓冲存储器 2,从而得到接收信号 $S_p^{(m)}$,所述的用户的签名序列 $C^{(k)}=(c_1^{(k)},c_2^{(k)},\dots c_Q^{(k)})^T$ 、信道冲激响应 $H^{(1)},H^{(2)},\dots,H^{(K)}$ 、信道特殊乘法因子分别输入相关计算装置 3 计算得到部分相关矩阵 $R_p=\{r_{i,j}\}$,然后通过矩阵或逆装置 4 及抽取装置 5 得到 R_p 的逆阵 V 并从中抽取子阵 $V^{(m)}$,所述的接收信号 $S_p^{(m)}$ 及 $V^{(m)}$ 通过矩阵向量乘法器 6 从而获得信号估计值 $\hat{\mathbf{D}}^{(m)}$ 。

当然本发明并不局限于上述实施例所描述的装置及方法,由本领域普通技术人员所熟知的技术变换应均落在本发明的保护范围内。

图 1

l

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.