

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

ЛАБОРАТОРНАЯ РАБОТА №2 ПРЕДМЕТ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» ТЕМА «ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ»

Вариант 1, 1

Преподаватель: Лимар И. А. Студент: Румянцев А. А.

Поток: Мат Стат 31.2

Факультет: СУиР Группа: R3341

Содержание

	Задание 1		
	1.1	Условие	2
	1.2	Выполнение	2
2 3	Задание 2		2
	2.1	Условие	2
	22	Вынолнание	9

1 Задание 1

1.1 Условие

Предъявите доверительный интервал уровня $1-\alpha$ для указанного параметра при данных предположениях (с математическими обоснованиями). Сгенерируйте 2 выборки объёма объёма 25 и посчитайте доверительный интервал. Повторить 1000 раз. Посчитайте, сколько раз 95-процентный доверительный интервал покрывает реальное значение параметра. То же самое сделайте для объема выборки 10000. Как изменился результат? Как объяснить? Что изменяется при росте объемов выборок?

Даны две независимые выборки X_1 , X_2 из нормальных распределений $\mathcal{N}(\mu_1, \sigma_1^2)$, $\mathcal{N}(\mu_2, \sigma_2^2)$ объемов n_1 , n_2 соответственно. Сначала указывается оцениваемая функция, потом данные об остальных параметрах, затем параметры эксперимента и подсказки.

 $au=\mu_1-\mu_2;\ \sigma_1^2,\ \sigma_2^2$ известны; $\mu_1=2,\ \mu_2=1,\ \sigma_1^2=1,\ \sigma_2^2=0.5;$ воспользуйтесь функцией

$$\frac{\overline{X_1} - \overline{X_2} - \tau}{\sigma}$$
, $\sigma^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

1.2 Выполнение

тут будет выполнение

2 Задание 2

2.1 Условие

Постройте асимптотический доверительный интервал уровня $1-\alpha$ для указанного параметра. Проведите эксперимент по схеме, аналогичной первой задаче.

Сначала указывается класс распределений (однопараметрический), затем параметры эксперимента и подсказки.

$$\text{Exp}(\lambda)$$
; медиана; $\lambda = 1$

2.2 Выполнение

тут будет выполнение