## Devoir Maison 6: Lois du frottement solide

## Pour Jeudi 7 octobre 2021

## Un traineau sur la glace

Un traîneau à chiens est un dispositif de masse totale M (le pilote, ou musher, est compris dans cette masse) qui peut glisser sur la surface de la glace avec des coefficients de glissement statique (avant le démarrage)  $\mu_s$  et dynamique (en mouvement)  $\mu_d$ .

- 1. Les chiens sont reliés au traîneau par des éléments de corde tendus, de masse négligeable et inextensibles. Appliquer le PFD à un élément de corde entre x et x + dx avec  $\vec{e}_x$  l'axe de la corde et montrer que la tension de la corde est constante le long de celle-ci.
- 2. De même appliquer le théorème du moment cinétique sur ce même élément de corde et montrer que la tension est colinéaire à la corde.
- 3. Le trajet se fait soit à l'horizontale, soit sur une faible pente ascendante caractérisée par l'angle  $\alpha$  avec l'horizontale.
  - Appliquer le PFD au traineau à l'horizontale et projeter selon les direction de  $\vec{T}$  et de  $\vec{N}$ . En déduire une relation liant  $a, F, \mu_d$ .
  - De même pour une faible pente d'angle  $\alpha$  établir la même équation et montrer que tout se passe comme dans un mouvement horizontal sous réserve de remplacer  $\mu_d$  par  $\mu'_d = \mu_d + \alpha$ .

L'intensité de la force de traction totale F exercée par l'ensemble des chiens dépend de leur vitesse v et on adoptera le modèle  $F=F_0-\beta v$  où  $F_0$  et  $\beta$  sont des constantes positives. On prendra les valeurs  $M=5,0\times 10^2$  kg,  $\alpha=0,\,\mu_d=5,0\times 10^{-2}$  et  $\mu_s=8,0\times 10^{-2}$ .

- 4. Déterminer la valeur minimale de  ${\cal F}_0$  permettant le démarrage du traı̂neau.
- 5. La vitesse du traîneau en régime stationnaire est  $v_0 = 3 \text{ m.s}^{-1}$ , atteinte à 5% près au bout d'un temps  $t_1 = 5 \text{ s.}$ 
  - Établir l'équation différentielle vérifiée par la vitesse du traineau, faire apparaître une constante de temps, en déduire une expression de  $\beta$  en fonction de M et  $t_1$  et faire l'application numérique.
- 6. En utilisant le régime stationnaire, exprimer  $F_0$  en fonction de  $\beta$ ,  $v_0$ ,  $\mu_d$ , M et g et calculer sa valeur numérique.

Toujours à vitesse constante  $v_0$ , le traîneau aborde une courbe à plat qu'on assimilera à un cercle de centre O et de rayon R (cf. figure). Les chiens (modélisés ici en un seul point C) doivent donc tirer vers l'intérieur du cercle.

7. Déterminer en fonction des données la tension  $\vec{T}$  de la corde et l'angle  $\theta$  entre la force de traction et la trajectoire.



Figure - Trajectoire circulaire du traîneau