Summer 2018 ECE 466/568

Assignment 1 Due June 6, 13:59

Important: Late submissions will NOT be accepted. Please submit a <a href="https://narcepy.com/hardcopy.com

1. [10 points] Slides **24** and **25** from the "SystemC: Part I" lecture notes show two versions of a <u>2-cycle complex multiplier</u>. Below are the two corresponding waveform examples (see the course website for the complete code including a testbench). The inputs are the same (**Re1**, **Im1**, **Re2**, **Im2**) in both examples, but the <u>outputs are different</u> (**ReX**, **ImX**). Briefly explain why such outputs have been produced in each case, i.e., explain the observed output <u>values</u> and their <u>timing</u>.

"Bad" Multiplier

Time	10	ns 20	ns 30	ns 40	ns 50	ns 60 1	s 70 n	\$
Re1[31:0]	(0)(2		χ1					
<pre>Im1[31:0]</pre>	(0)(3)(0					
Re2[31:0]	(0	χ4)(0				
Im2[31:0]	(0	χ5)(1				
ReX[31:0]	(0		X-7		χ0			
ImX[31:0]	(0			(5		(1		

"Good" Multiplier

Time		10 ns	20 ns	30 h	\$ 40	ns 50 1	ns 60 r	is 70 n	S
Re1[31:0]	0 \(\(\)2			χ1					
Im1[31:0]	0 \(\lambda \)			χ0					
Re2[31:0]	(0	χ4	!		(0				
Im2[31:0]	(0	χ5	5		(1				
ReX[31:0]	(0				(-7		χο		
ImX[31:0]	0					(22		χ1	

2. [10 points] Consider the SystemC code and the <u>input waveforms</u> of clk, x1, and x2 shown below. Draw the corresponding <u>output waveforms</u> of y1, y2, and y3.


```
SC MODULE (example) {
        sc in <sc logic> x1, x2;
        sc out <sc logic> y1, y2, y3;
        sc in clk clock;
        sc signal <sc logic> s;
                                               // signal "s"
        void example_process1() {
          sc logic v;
                                                // variable "v"
          v = \sim s.read();
                                               // ~ means NOT
          y1.write(x1.read() ^ v);
                                               // ^ means XOR
        void example process2() {
          sc_logic u;
                                                // variable "u"
                                               // ~ means NOT
          u = \sim x2.read();
                                               // & means AND
          y2.write(s.read() & u);
        void example process3() {
          while(1) {
             s.write(x1.read() ^ x2.read()); // ^ means XOR
                                               // ~ means NOT
             y3.write(~s.read());
             wait();
          }
        }
        SC CTOR (example) {
              SC METHOD (example process1); sensitive << x1 << s;
              SC METHOD (example process2); sensitive << x2 << s;
              SC_CTHREAD(example_process3, clock.pos());
              s.write(SC LOGIC 0);
                                               // s initially 0
              y1.initialize(SC LOGIC 0);
                                              // y1 initially 0
              y2.initialize(SC LOGIC 0);
                                              // y2 initially 0
              y3.initialize(SC LOGIC 0);
                                              // y3 initially 0
        }
};
```

3. [20 points] Using a <u>single module</u> with a <u>single process</u> of type **SC_CTHREAD**, write a SystemC code for the <u>digital filter</u> shown below (\mathbf{z}^{-1} means a delay of 1 clock cycle), whose multiplication coefficients are 0.4, 0.24, -0.8, 0.2, -0.5, and 0.25. In addition to the clock, the filter has one float-type input port **X** and one float-type output port **Y**. Your code must include a <u>stimulus generator</u> (e.g., a simple 1-cycle pulse to obtain the impulse response) and a <u>result monitor</u> with <u>waveform tracing</u>.

Please submit a softcopy of your <u>SystemC code</u> via the ECE 466 **CourseSpaces** webpage (following the submission guidelines posted on the course website), and put a <u>hardcopy</u> of your code in the ECE 466 drop-box.

