

During 1980-81 various numerical experiments were made on one-dimensional model inverse problems modelled by a method that is extendable to higher dimensions. The underlying problem is to recover the speed of propagation or the shape of an object from a scattered field.

The one dimensional problem that was investigated was based on the wave equation with potential

$$u_{t+} - u_{xx} + q(x)u = 0$$

where the function to be recovered is the potential q(x). The model initial conditions were u=0, $u_t=-2\delta'(x)$. The model boundary condition was u=0 on x=0. And the "extra" condition which determines q(x) is either (a) $\partial u/\partial x$ on x=0 for all time or (b) the scattered field $u \wedge \delta(t-x) + R(t-x)$ at $x=+\infty$. The free space (q=0) solution is $u=\delta(x-t)-\delta(x+t)$. The distorted plane wave P(x,t) is defined by the condition that it is a solution of the equation and at $x=-\infty$, $t\to +\infty$,

82 01 28 03 2

I

Approved for public release; distribution unlimited.

AD A110299

it becomes $\delta(t-x)$ (exactly if q has compact support) and P is written as $\delta(t-x)$ + P_{scat}.

The linearized equation based on the assumption that q << 1 and that terms of order q^2 may be neglected, yields for (a)

$$q = + 2 \frac{d}{dx} \left[\mathcal{J}(2x) - P_{\text{scat}}(0, -2x) \right]$$
with
$$\int_{\infty}^{t} \frac{\partial u}{\partial x} dt \Big|_{x=0_{\infty}} = \mathcal{J}(t) \text{ for } t > 0 ;$$

$$q = -2 \frac{d}{dx} R(2x)$$

for (b).

The numerical method is based on the well-known formula that follows from the propagation of singularities

$$q = 2 \frac{d}{dx} \lim_{t\to x+} u(x,x)$$

and then representing u(x,x) by means of distorted plane waves. (All these have analogous formulas in higher dimensions.)

The analogues of the above equation are for (b)

$$q = -2 \frac{d}{dx} R(2x) + \frac{d}{dx} \int_{0}^{\infty} (P_{\text{scat}}(x,x-s) - P_{\text{scat}}(-x,x-s)) R(s) ds$$

and for (a) we insert in this formula

$$R(s) = -\mathcal{H}(s) + P_{\text{scat}}(0,-s) + \mathcal{H}(0) \int_{\infty}^{s} P_{\text{scat}}(0,-s') ds'$$

$$+ \int_{0}^{\infty} \mathcal{H}(t) P_{\text{scat}}(0,t-s) dt$$

The idea is to use one of these formulas as part of an iteration. We guess q and P and recompute q using the above formulas for cases (a) or (b).

Note that if the given data vanishes in case (b) we recover $q \equiv 0$ but in case (a) we do not.

We have been unable to implement (a) as planned. The reason is that we must operate in a finite region and use a radiation condition at a finite distance. In our case for example with q a simple quadratic with support in |x| < 2, over $-8 \le x \le 8$ and $0 \le t \le \dots$ The errors produced are compounded in case (a). The potential could only be recovered to 40% of its original value with an error of about 5% of the maximum potential. However, the potentials were well beyond the range of the linear theory.

In case (b) even with a coarse mesh the results are surprisingly worse.

The results are being written up as a technical report to be issued at the Courant Institute.

BIBLIOGRAPHY

- [1] Kriegsmann, G. A. and Morawetz, C. S., Solving the Helmholtz equation for exterior problems with variable index of refraction: I, SIAM J. Sci. Stat. Comput., Vol. 1, No. 3, September 1980, pp. 371-385.
- [2] Morawetz, C. S., A formulation for higher dimensional inverse problems for the wave equation, Comp. & Math. with Appls., Vol. 7, 1981, pp. 319-331.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFOSR-TR- 3 1 - 08 7 9 ADA 110 29	
4. TITLE (and Subtitle)	5 TYPE OF REPORT & PEPIOD COVERED
COMPUTING SOLUTIONS OF THE REDUCED WAVE	FINAL, 21 NOV 79 - 30 SEP 81
EQUATION,	6. PERFORMING ORG. REPORT NUMBER
· L	
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(5)
Cathleen S. Morawetz	F49620-79-C-0193
9. PERFORMING ORGANIZATION NAME AND ADDRESS Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
New York NY 10012	.61102 F ; 2304/A3
11. CONTROLLING OFFICE NAME AND ADDRESS Mathematical & Information Sciences Directorate	12. REPORT DATE
Air Force Office of Scientific Research	SEP 1981
Bolling AFB DC 20332	4
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	SCHEDULE
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
20. JABSTRACT (Continue on reverse side if necessary and identify by block number)	
This report summarizes progress made in various numerical experiments made on	
one-dimensional model inverse problems.	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

