Solving non Linear equations

The solution to non linear equations is through matrix operations while for nonlinear they require solvers such as scipy optimize and fsolve to numerically find the solution Q1. **Solve the equation** $f(x) = x^2 - 5$

Solving a non linear eq involves first putting it in the form of f(x)=0

We know the function f and we want to find the valur of x that gives f(x)=0

To solve this

- define the function f(x)
- set an initial guess for x.
- we need to import a library:from scipy.optimize import fsolve
- call the func fsolve: x=fsolve(f,x0)
- f is the name of the function ur solving and x0 is ur initial guess

Funtion in single variables

function in muliple variables

Q2. **solve the function** $x^{2} + y^{2} = 16$

```
In []: def myf(z):
    x = z[0]
    y = z[1]

    F = np.empty((2))
    F[0] = x**2 + y**2 - 16
    return F

zguess = np.array([1,1])

z = fsolve(myf,zguess)

print(z,myf(z))
```

```
[1. 1.] [-14. 1.]
```

Exercises

solve single equations with one variable

```
1. x^2 + x + 1 = 3
2. y + 2 * Cos(y) = 0
```

```
In [ ]:
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         from scipy.optimize import fsolve
         from re import X
         def f(x):
             return x**2 - x - 2
         x = fsolve(f, 2)
         print(x,f(x))
         [2.] [0.]
        import math
In [ ]:
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         from scipy.optimize import fsolve
         from re import X
         def f(y):
             return y - 2*math.cos(y)
         y = fsolve(f, 2)
         print(y,f(y))
         [1.02986653] [0.]
```