Properties of Expectations Moment Generating Functions [Ross S7.7]

dom variable X is $M_X(t) = E[e^{tX}]$

Note: a closely related concept is the characteristic function defined as $\phi_X(t) = E[e^{itX}]$ $i = \sqrt{-1}$ $M_X(t)$ is called moment generating function because we can find the moments $E[X^n]$ from it easily:

[f'(t) = derivative of f(t)] $M_X'(t) = \frac{d}{dt} E[e^{tX}]$

Definition 36.1: The moment generating function (MGF) $M_X(t)$ of a ran-

 $= \begin{cases} \sum_x e^{tx} p_X(x) & \text{discrete case} \\ \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx & \text{continuous case} \end{cases}$

 $= E \left[\frac{d}{dt} e^{tX} \right]$ $= E \left[X e^{tX} \right]$

 $M_X^{(n)}(t) = E\left[X^n e^{tX}\right]$

 $[f^{(n)}(t) = n$ th derivative of f(t)

Hence $M_X'(0) = E[X]$ $M_X^{(n)}(0) = E[X^n]$

Example 36.1: Find $M_X(t)$ if $X \sim \mathsf{Poisson}(\lambda)$. Use this to find E[X], $E[X^2]$ and Var[X].

Solution:

Example 36.2: Find $M_X(t)$ if $X \sim \mathcal{N}(\mu, \sigma^2)$. Use this to find E[X], $E[X^2]$ and Var[X].

Solution:

 $=E\left[e^{tX}\right]E\left[e^{tY}\right]$ [since X and Y are independent] $=M_X(t)M_Y(t)$ Another useful fact: the distribution of X ($f_X(x)$ or $p_X(k)$) is uniquely determined by $M_X(t)$.

Your textbook has tables of MGF for different distributions.

Example 36.3: Let $X \sim \mathsf{Poisson}(\lambda_1)$ and $Y \sim \mathsf{Poisson}(\lambda_2)$ be independent.

Example 36.4: Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be independent.

MGF of Sum of Independent Random Variables [Ross S7.7]

Let X and Y be independent random variables:

 $= E\left[e^{tX}e^{tY}\right]$

 $M_{X+Y}(t) = E\left[e^{t(X+Y)}\right]$

What is the distribution of X + Y?

Joint Moment Generating Functions

Solution:

is defined as

Then

Solution:

Solution:

For random variables X_1, X_2, \dots, X_n , the joint moment generating function

 $M(t_1,\ldots,t_n) = E\left[e^{t_1X_1 + t_2X_2 + \cdots + t_nX_n}\right]$

 $M_{X_i}(t) = E[e^{tX_i}] = M(0, 0, \dots, t, 0, \dots, 0)$

Since the joint MGF uniquely specifies the joint distribution, then X_1, \ldots, X_n

Example 36.5: $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\mu, \sigma^2)$ are independent. Show

 $= E\left[e^{t_1X_1}\right]E\left[e^{t_2X_2}\right]\cdots E\left[e^{t_nX_n}\right]$ $= M_{X_1}(t_1)M_{X_2}(t_2)\cdots M_{X_n}(t_n)$

 $M(t_1, t_2, \dots, t_n) = E\left[e^{t_1 X_1 + t_2 X_2 + \dots + t_n X_n}\right]$

independent is equivalent to $M(t_1, t_2, \dots, t_n) = M_{X_1}(t_1)M_{X_2}(t_2)\cdots M_{X_n}(t_n)$

that X + Y and X - Y are independent.

The joint MGF uniquely determines the joint pdf.

If X_1, \ldots, X_n are independent then: