Improving Multiset Canonical Correlation Analysis in High Dimensional Sample Deficient Settings

Nicholas Asendorf, Ph.D. asendorf@umich.edu

Prof. Raj Nadakuditi rajnrao@umich.edu

Department of Electrical Engineering and Computer Science University of Michigan

Asilomar Conference on Signals, Systems, and Computers

November 9, 2015

Motivation

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

Multiple Datasets

- * Audio-Video
- * Audio-Audio

Machine Learning

- * emotion identification
- * shopping predictions
- * music genre classification

Medical Signal Processing

- * disco influences
- * danceable grooves
- repetitive melodic phrasing
- * extensive vamping
- * minor key tonality

MCCA - Multiset Canonical Correlation Analysis

Notation

- * data: $y_1 \in \mathbb{C}^{d_1 \times 1}, \dots, y_m \in \mathbb{C}^{d_m \times 1}$
- * covariance matrices: $R_{ij} = \mathbb{E}\left[y_i y_j^H\right]$
- * canonical vectors: x_1, \ldots, x_m
- * canonical variates: $w_1, \ldots, w_m, w_i = x_i^H y_i$

$$\Phi(x) = E[ww^{H}] = \begin{bmatrix} x_{1}^{H}R_{11}x_{1} & \dots & x_{1}^{H}R_{1m}x_{m} \\ \vdots & \ddots & \vdots \\ x_{m}^{H}R_{m1}x_{1} & \dots & x_{m}^{H}R_{mm}x_{m} \end{bmatrix}$$

Optimization Problem

optimize
$$J(\Phi(x))$$

subject to $h(x, R)$

MCCA - Multiset Canonical Correlation Analysis

Notation

- * data: $y_1 \in \mathbb{C}^{d_1 \times 1}, \dots, y_m \in \mathbb{C}^{d_m \times 1}$
- * covariance matrices: $R_{ij} = \mathbb{E}\left[y_i y_j^H\right]$
- * canonical vectors: x_1, \ldots, x_m
- * canonical variates: $w_1, \ldots, w_m, w_i = x_i^H y_i$

$$\Phi(x) = E[ww^{H}] = \begin{bmatrix} x_{1}^{H}R_{11}x_{1} & \dots & x_{1}^{H}R_{1m}x_{m} \\ \vdots & \ddots & \vdots \\ x_{m}^{H}R_{m1}x_{1} & \dots & x_{m}^{H}R_{mm}x_{m} \end{bmatrix}$$

MAXVAR Optimization Problem

$$egin{argmax}{argmax} &
ho_{mcca} = \lambda_1 \left(\Phi(x)
ight) \ & ext{subject to} & x_i^H R_{ii} x_i = 1 \ & ext{} \end{array}$$

MCCA Solution and Empirical Solution

Notation

- $* R = [R_{ij}]_{i,j=1}^m$
- * $R_D = blkdiag(R_{11}, \dots, R_{mm})$
- * $C_{\text{mcca}} = R_D^{-/12} R R_D^{-1/2}$

MCCA Solution

$$ho_{ exttt{mcca}}^{(j)} = \lambda_{j} \left(extcolor{C}_{ exttt{mcca}}
ight)$$

MCCA Solution and Empirical Solution

Notation

$$* R = [R_{ij}]_{i,j=1}^m$$

*
$$R_D = \mathbf{blkdiag}(R_{11}, \dots, R_{mm})$$

*
$$C_{\text{mcca}} = R_D^{-/12} R R_D^{-1/2}$$

MCCA Solution

$$ho_{ exttt{mcca}}^{(j)} = \lambda_{j} \left(extcolor{C}_{ exttt{mcca}}
ight)$$

Empirical MAXVAR

- * Covariance matrices R_{ij} are typically unknown in practice
- * Training data $Y_j = \left[y_1^{(j)}, \dots, y_n^{(j)}\right], j = 1, \dots, m$
- * Sample covariance matrices $\widehat{R}_{ij} = \frac{1}{n} Y_i Y_j^H$
- * Form \hat{R} and \hat{R}_D
- $* \widehat{C}_{\text{mcca}} = \widehat{R}_D^{-/12} \widehat{R} \widehat{R}_D^{-1/2}$

Proposed correlation statistic

$$\widehat{
ho}_{ ext{mcca}}^{(j)} = \lambda_j \left(\widehat{C}_{ ext{mcca}} - I\right)$$

Empirical MCCA Insights

Empirical MAXVAR Equivalency

- st Let $Y_j = \widehat{U}_j \widehat{\Sigma}_j \widehat{V}_j$ be SVD of dataset j
- * Let $\widetilde{U} = \mathbf{blkdiag}(\widehat{U}_1, \dots, \widehat{U}_m)$
- * Let $\widetilde{V} = [\widehat{V}_1, \dots, \widehat{V}_m]$
- * $\widehat{C}_{mcca} = \widetilde{U}\widetilde{V}^H\widetilde{V}\widetilde{U}$
- $* \ \lambda_j \left(\widehat{\textit{C}}_{\text{mcca}} \right) = \lambda_j \left(\widetilde{\textit{V}}^H \widetilde{\textit{V}} \right)$

Insights

- * This uses ALL right singular vectors
- * In many applications, low-rank setting
- * In low-SNR, low-sample regime, singular vectors may be inaccurate
- * We can use insights from random matrix theory (RMT) to quantify singular vector accuracy to improve MCCA
- * Let \hat{k}_i be RMT estimates of rank of each dataset

IMCCA - Informative MCCA

Idea - Trim right singular vectors

*
$$\mathring{V}_i = \widehat{V}_i \left(:, 1 : \widehat{k}_i\right)$$

$$* \overset{\circ}{V} = \begin{bmatrix} \overset{\circ}{V}_1, \dots \overset{\circ}{V}_m \end{bmatrix}$$

New IMCCA Matrix

$$\widehat{C}_{imcca} = \overset{\circ}{V}{}^H\overset{\circ}{V}$$

Insights

- * Eigenvalue detects correlation
- * Eigenvector reveals structure

Proposed correlation statistic

$$\widehat{
ho}_{\mathsf{imcca}}^{(j)} = \lambda_j \left(\widehat{C}_{\mathsf{imcca}} - I \right)$$

Numerical Simulation

- * rank-1 setting, m = 3, $d_1 = d_2 = d_3 = 150$
- * $y_j^{(i)} = U_j s_j^{(i)} + z_j^{(i)}$
- * $z_j \sim \mathcal{CN}(0, I), \, s_j^{(i)} \sim \mathcal{CN}(0, \theta)$
- * $\mathbb{E}\left[s_i s_i\right] = 0.9$
- * Plot KS-statistic of $\widehat{\rho}_{\mathrm{mcca}}^{(j)}$ and $\widehat{\rho}_{\mathrm{imcca}}^{(j)}$ for signal-plus-noise vs. noise only

Empirical MCCA and IMCCA Demonstration

Conclusion

Take Home Message

Trim then fuse NOT fuse then trim

Contributions

- * Proposed IMCCA algorithm
- * Proposed statistics to detect latent correlations in more than 2 datasets
- * Acheived better performance in low-SNR, high dimensional setting