Basic Statistics tasks

1. Which store has maximum sales

```
getwd()
library(readr)
 Walmart_Store_sales
 read csv("C:/Users/Ra
hul/Downloads/Walma
rt_Store_sales.csv")
df <-
Walmart_Store_sales
view(df)
summary(df)
colnames(df)
attach(df)
library(dplyr)
library(magrittr)
summary_1 <-
df%>%
  group_by(Store)%>%
summarise(mean = mean(Weekly_Sales),
sum = sum(Weekly_Sales),
      max = max(Weekly\_Sales),
      std = sd(Weekly_Sales))
summary_1
#Arranging the data
 Arrange <- arrange(summary_1, desc(max))
 Arrange
head(Arrange)
```

```
6 x 5
Store
                                                       std
              mean
                               sum
                                            max
             <db7>
                            <db7>
                                         <db7>
<int>
                                                    <db1>
    14 2<u>020</u>978. 288<u>999</u>911. 3<u>818</u>686.
                                                 <u>317</u>570.
    20 2<u>107</u>677. 301<u>397</u>792. 3<u>766</u>687.
    10 1899425. 271617714. 3749058.
     4 2<u>094</u>713. 299<u>543</u>953.
                                    3<u>676</u>389.
    13 2<u>003</u>620. 286<u>517</u>704.
                                    3<u>595</u>903.
                                                 265507.
     2 1925751. 275382441.
                                    3436008.
```

Inference

Store 14 has the maximum sales.

2. Which store has maximum standard deviation i.e., the sales vary a lot. Also, find out the coefficient of mean to standard deviation?

```
Arrange1 <- arrange(summary_1, desc(std))
Arrange1
```

head(Arrange1)

Output

```
Store
                mean
                                                   max
               <db7>
                                 <db7>
                                                \langle db 7 \rangle
                                                             <db1>
    14 2<u>020</u>978. 288<u>999</u>911. 3<u>818</u>686.
                                                         <u>317</u>570.
    10 1<u>899</u>425.
                        271<u>617</u>714.
                                          3749058.
    20 2<u>107</u>677.
                        301<u>397</u>792.
                                          3766687.
      4 2<u>094</u>713. 299<u>543</u>953.
                                          3<u>676</u>389.
    13 2<u>003</u>620. 286<u>517</u>704. 3<u>595</u>903.
                                                         <u>265</u>507.
    23 1<u>389</u>864. 198<u>7</u>50618. 2<u>734</u>277.
```

```
summary_1$cv <- round(((summary_1$std/summary_1$mean)*100),2)</pre>
```

Arrange2 <- arrange(summary_1, desc(cv))

Arrange2

#	A tibi	ole: 6 x 6)			
	Store	mean	sum	max	std	CV
	<int></int>	<db1></db1>	<db7></db7>	<db7></db7>	<db7></db7>	<db7></db7>
1	35	<u>919</u> 725.	131 <u>520</u> 672.	1 <u>781</u> 867.	<u>211</u> 243.	23.0
2	7	<u>570</u> 617.	81 <u>598</u> 275.	1 <u>059</u> 715.	<u>112</u> 585.	19.7
3	15	<u>623</u> 312.	89 <u>133</u> 684.	1 <u>368</u> 318.	<u>120</u> 539.	19.3
4	29	<u>539</u> 451.	77 <u>141</u> 554.	1 <u>130</u> 927.	<u>99</u> 120.	18.4
5	23	1 <u>389</u> 864.	198 <u>750</u> 618.	2 <u>734</u> 277.	<u>249</u> 788.	18.0
6	21	<u>756</u> 069.	108 <u>117</u> 879.	1 <u>587</u> 258.	<u>128</u> 753.	17.0
				·		

Inference

Store 14 has the highest STD

Store 35 has the highest COV

3. Which store/s has good quarterly growth rate in Q3'2012

```
# check data formats
sapply(df, class)

dtype <- sapply(df, class)

# change the date format

df$date_v2 <- as.Date(df$Date, format = "%d-%m-%Y")

# Check data format again

dtype <- sapply(df, class)

# Take year and month

df$month_1 <- substring(df$Date,4,5)

df$year_1 <- substring(df$Date,7,10)

sapply(df, class)

# change the format of month to numeric so I could use arithmatic operators for conditional statements

df$month_3 <- as.numeric(df$month_1)

attach(df)
```

```
# create a new variable called quarter
df$quarter[month_3 < 4] <- "Q1"
df$quarter[month_3 > 3 & month_3 <= 6] <- "Q2"
df$quarter[month_3 > 6 & month_3 <= 9] <- "Q3"
df$quarter[month_3 > 9] <- "Q4"
df$year_quarter <- transform(df, cat=interaction(year_1, quarter,sep='-'))
df$year_quarter <- paste(df$year_1,df$quarter, sep = "-")</pre>
# to get the sum of sales by store, year, and quarter
df2 <- aggregate(df$Weekly_Sales, by=list( store=df$Store, y_q=df$year_quarter), FUN=sum)
df2$store_y_q <- paste(df2$store,df2$y_q)
df2 <- arrange(df2, (store_y_q))
attach(df2)
df3 <- select(df2, store, y_q, x)
install.packages("tidyverse")
library(tidyverse)
df3 <-
 df3 %>%
 rename(quarter\_sale = x)
# Calculating my growth rate for stores
install.packages("plyr")
library(plyr)
df4 <- ddply(df3,"store",transform, growth=c(NA,exp(diff(log(x)))-1))
# rounding
df4\$growth = round((df4\$growth*100),1)
df5 <- filter(df4, y_q == "2012 Q3")
df5 <- arrange(df5, desc(growth))
View(df5)
```

store [‡]	y_q [‡]	x	growth
7	2012 Q3	8262787	13.3
16	2012 Q3	7121542	8.5
35	2012 Q3	11322421	4.5
26	2012 Q3	13675692	4.0
39	2012 Q3	20715116	2.5
41	2012 Q3	18093844	2.5
44	2012 Q3	4411251	2.4
24	2012 Q3	17976378	1.7
40	2012 Q3	12873195	1.1
23	2012 Q3	18641489	0.8
32	2012 Q3	15396529	-0.6
38	2012 Q3	5605482	-0.6

Inference

Store 7 has the highest quarterly growth rate in Q3 2012

4. Some holidays have a negative impact on sales. Find out holidays which have higher sales than the mean sales in non-holiday season for all stores together?

```
df_hd <- filter(df, Holiday_Flag == "1")
df_non_hd <- filter(df, Holiday_Flag != "1")
mean(df_non_hd$Weekly_Sales)
df_hd$sales <- as.numeric(df_hd$Weekly_Sales)
attach(df)
df_hd$flag[df_hd$sales > 1041256] <- "1"
df_hd2 <- filter(df_hd, flag == "1")
distinct(df_hd2, Date)
```

	Date
1	12-02-2010
2	10-09-2010
3	26-11-2010
4	31-12-2010
5	11-02-2011
6	09-09-2011
7	25-11-2011
8	30-12-2011
9	10-02-2012
10	07-09-2012

Inference

Weekly sales for at least one store was greater than the average sales on non-holiday weeks for all stores for the below holidays:

Super Bowl week: 2010-2012
Labour Day week: 2010-2012
Thanksgiving week: 2010-2011
Christmas week: 2010-2011

5. Provide a monthly and semester view of sales in units and give insights

monthly data

```
\label{eq:continuous_series} \begin{split} & \text{df\$year\_month} <- \text{format}(\text{as.Date}(\text{df\$date\_v2}, \text{format="\%d-\%m-\%Y"}), "\%Y-\%m") \\ & \text{df\_m1} <- \text{aggregate}(\text{df\$Weekly\_Sales}, \text{by=list}(\text{y\_m=df\$year\_month}), \text{FUN=sum}) \\ & \text{df\_m1} <- \text{arrange}(\text{df\_m1}, (\text{y\_m})) \\ & \text{df\_m1\$monthly\_sale} <- \text{round}((\text{df\_m1\$x/1000000}), 2) \\ & \text{\#df\_m1\$year\_month\_v2} <- \text{as.Date}(\text{df\_m1\$y\_m}, \text{format} = "\%Y-\%m") \\ & \text{attach}(\text{df\_m1}) \\ & \text{plot}(\text{monthly\_sale}, \text{type="l"}) \\ & \text{library}(\text{ggplot2}) \\ & \text{ggplot}(\text{df\_m1}, \text{aes}(\text{x=y\_m}, \text{y=monthly\_sale}, \text{group=1})) + \text{geom\_line}(\text{col="gray"}, \text{linetype} = "\text{solid"}) + \text{geom\_point}(\text{col="red"}) + \text{theme}(\text{axis.text.x=element\_text}(\text{color} = "\text{black"}, \text{size=11}, \text{angle=90}, \text{vjust=.8}, \text{hjust=0.8})) \\ \end{split}
```

Monthly Data Output

Semester (half year)

 $df\$semester[month_3 \le 6\] < - "S1"$

df\$semester[month_3 > 6] <- "S2"

attach(df)

table(semester)

semster data

df\$year_semester <- paste(df\$year_1,df\$semester)</pre>

#Aggregate sales by semester

df_s1 <- aggregate(df\$Weekly_Sales, by=list(y_s=df\$year_semester), FUN=sum)

 $df_s1 \leftarrow arrange(df_s1, (y_s))$

 df_s1 half_year_sale <- round((df_s1 \$x/1000000),2)

$$\begin{split} &ggplot(df_s1,\,aes(x=y_s,\,y=half_year_sale\,,\,group=1)) + geom_line(col="red",\,linetype="solid") + geom_point(col="gray") + theme(axis.text.x=element_text(color="black",\,linetype="black",\,l$$

size=11, angle=90, vjust=.8, hjust=0.8))

Semester Data Output

Inference

There is increase in sales in the month of December, in line with question 4 the increase may due to Christmas holidays.

Sales also increase in the month of April & June.

Sales increased in the second half of the year in comparison with first half of the year.

Drastic decrease in the sales of 2nd semester could be because of incomplete data, so interpretation for second half of the year is not complete.

Statistical Model

For Store 1 – Build prediction models to forecast demand

```
df_store_1 <- filter(df, Store == "1")
df_store_1$date <- as.Date(df_store_1$Date, format = "%d-%m-%Y")
df_store_1 <- arrange(df_m1,(date))
df_store_1 <- cbind(date_new = rownames(df_store_1), df_store_1)
rownames(df_store_1) <- 1:nrow(df_store_1)
df_store_1$sales <- as.numeric(df_store_1$Weekly_Sales)
df_store_1$sales <- as.numeric(df_store_1$date_new)
model_obj = lm(sales ~ date_new + CPI + Unemployment + Fuel_Price , data=df_store_1)
summary(model_obj)
AIC(model_obj)</pre>
```

Output – 1

```
Residuals:
   Min
            1Q Median
                             3Q
                                   мах
-287031 -85237
                -22986
                          61308 878829
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -3483483.4 3001974.9 -1.160
date_new
                  235.9
                           1426.9
                                    0.165
                                            0.8690
CPI
               19855.8
                          13547.0
                                    1.466
                                            0.1450
              124852.4
                          59178.7
                                    2.110
                                            0.0367 *
Unemployment
Fuel_Price
              -67463.6
                          49616.7 -1.360
                                            0.1761
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 151300 on 138 degrees of freedom
Multiple R-squared: 0.08517, Adjusted R-squared: 0.05865
F-statistic: 3.212 on 4 and 138 DF, p-value: 0.01479
> AIC(model_obj)
[1] 3823.926
```

```
model_obj2 = lm(sales ~ CPI + Unemployment + Fuel_Price + month_2 + year_1,
data=df_store_1)
summary(model_obj2)
AIC(model_obj2)
```

Output – 2

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        2203851 -2.782 0.006167 **
(Intercept)
            -6130853
CPI
               33167
                           9693
                                  3.422 0.000821 ***
                                  1.121 0.264283
Unemployment
               89571
                          79908
              -20383
Fuel_Price
                          63005 -0.324 0.746804
year_12011
              -95648
                          65412 -1.462 0.145965
                         120405 -1.633 0.104846
year_12012
             -196575
Signif. codes:
               0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1
Residual standard error: 150400 on 137 degrees of freedom
Multiple R-squared: 0.1032,
                               Adjusted R-squared:
F-statistic: 3.154 on 5 and 137 DF, p-value: 0.009992
> AIC(model_obj2)
Γ17 3823.074
```

Inference

The model was statistically significant with an R2 of 0.09

Only CPI was statistically significant

Other predictors are not statistically significant

Change dates into days by creating new variable

df\$day <- format(as.Date(df\$date_v2, format="%d-%m-%Y"),"%d")