КОМП'ЮТЕРНА ОБРОБКА ЗОБРАЖЕНЬ

Digital Image Processing - DIP

2019 / 2020 навчальний рік

МОДУЛЬ 2. Фільтрація зображень

- 2.1. Загальні відомості з цифрової фільтрації двовимірних сигналів. Базові маніпуляції
- 2.2. Лінійні фільтри. Фільтр Гауса.
- 2.3. Нелінійні фільтри
- 2.4. Морфологічні перетворення
- 2.5. Антіеліасінг

2.5. Усунення ступінчастості (антіелайсінг)

Класифікація сигналів

Дискретизація сигналів

Дискретизація (discretization) - це перетворення безперервного сигналу в послідовність відліків (sampls). Дискретизація здійснює перетворення безперервних сигналів (функцій I(x)), в функції миттєвих значень сигналів $I(n*\Delta x)$ по дискретному аргументу. $I(n^*\Delta x)$ – відлік I(x) в точці $n^*\Delta x$

Дискретизація сигналів

Декілька визначень.

Растрування - природний спосіб дискретизації - уявлення сигналу у вигляді вибірки його значень в окремих, регулярно розташованих точках.

Послідовність точок (вузлів), в яких беруться відліки, називається *растром*.

Інтервал, через який беруться значення безперервного сигналу називається кроком дискретизації.

Зворотне кроку величина називається частотою дискретизації.

Квантування сигналу за рівнем

Квантування (quantization) сигналу розбивка діапазону значень сигналу на скінченну кількість інтервалів. Кількість інтервалів (рівнів) **n** – глибина

2D – дискретизований квантований сигнал - цифрове зображення

Тригонометричний ряд Φ ур'є — спосіб представлення довільного безперервного безконечного періодичного сигналу (функції) I(x) сумою тригонометричних функцій синусу та косинусу. Процес знаходження параметрів ряду — розклад на гармоніки.

$$I(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} I(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} I(x) \sin(nx) dx$$

Інша форма:

$$I(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(A_n \cos(n \frac{2\pi}{\tau} x + \theta_n) \right)$$

 A_n - амплітуда n—го гармонічного коливання,

 $n = n\omega$ - кругова частота n-го гармонічного коливання,

 θ_n - начальна фаза n—го гармонічного коливання.

 τ - період функції I(x)

Для розкладу в ряд Фур'є неперіодичної функції, заданої на кінцевому довільному проміжку [a, b], треба: до визначити [b, a+2l] і періодично

довжити.

Комплексна форма ряду Фур'є

$$I(x) = \sum_{n=-\infty}^{\infty} \left(c_n e^{-\frac{i\pi nx}{l}}\right)$$

$$c_n = \frac{1}{2l} \int_{-l}^{l} I(x) e^{-\frac{i\pi nx}{l}} dx$$

$$n = 0, \pm 1, \pm 2, \dots$$

$$|c_n| = \sqrt{a_n^2 + b_n^2} /_2 - \text{спектр амплітуд}$$

$$\angle c_n = \text{arctg}(\frac{b_n}{a_n}) - \text{спектр фаз}$$

 $\overset{https://uk.wikipedia.org/wiki/\%D0\%A0\%D1\%8F\%D0\%B4~\%D0\%A4\%D1\%83\%D1\%80\%27\%D1\%94}{\mathbf{0} \boldsymbol{\pi}. 2.5.}$

Ряд Фур'є. Спектр

Ряд Фур'є. Спектр. Шум

Мод.2.5.

14

Ряд Фур'є. Спектр. Імпульс

Ряд Фур'є. Спектр. Імпульс

Функція вибірки – кардинальний синус:

Перетворення Фур'є

Неперіодичний сигнал = сигнал з безкінечним періодом. Ряд Фур'є перетворюється в інтеграл Фур'є

Пряме перетворення
$$I \Rightarrow F$$

$$F(\omega) = \int_{-\infty}^{\infty} I(x) e^{-j\omega x} dx$$

3воротне перетворення $F \Rightarrow I$

$$I(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega x} d\omega$$

 $F(\omega)$ - комплексна функція — спектр сигналу I(x)

Дельта - функція

Дельта- функція Дірака

!! Площа дельта-функції = 1

https://uk.wikipedia.org/wiki/%D0%94%D0%B5%D0%BB%D1%8C%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F %D0%94%D1%96%D1%80%D0%B0%D0%BA%D0%B0

Дельта - функція

Інтеграл від довільної функції I(x) помноженої на дельта- функцію в точці x_0 є

$$\int_{-\infty}^{\infty} I(x) \, \delta(x - x_0) dx = \int_{-\infty}^{\infty} I(x_0) \, \delta(x - x_0) dx$$

Дискретизація – множення сигналу на дельта-функцію

Спектр дискретизованого сигналу

Сигнал $I_s(x) \Rightarrow$ його спектр $F(\omega)$ Дискретизований сигнал $I_s(x) \Rightarrow$?? спектр

$$S(\widehat{\omega}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \left(F(\frac{\widehat{\omega}}{T} - n\omega_s) \right)$$
 $f_s = \frac{1}{T}$ - частота дискретизації (Гц)

 $\omega_s = \frac{2\pi}{T}$ - кругова частота дискретизації (рад/с) його спектр $F(\omega)$

 $\hat{\boldsymbol{\omega}}: (-\pi ...\pi)$ - нормована кругова частота дискретизації (рад/відлік)

f: (-1...1)- нормована частота дискретизації (π рад/відлік)

20

Спектр дискретизованого сигналу

$$S(\widehat{\omega}) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \left(F(\frac{\widehat{\omega}}{T} - n\omega_s) \right)$$

Спектр дискретизованого сигналу $I_{s}(x)$, отриманого шляхом дискретизації безперервного сигналу $I_s(x)$, дорівнює нескінченної сумі по nзсунутих копій спектрів вхідного безперервного сигналу $F(\omega)$. Зсув = номер n копії помножений на кругову частоту дискретизації $\omega_s = \frac{2\pi}{T}$ Тобто $S(\widehat{\omega})$ - періодична функція, що повторюється з періодом 2π радіан на відлік або в абсолютних одиницях рівній частоті дискретизації f_{s} .

21

Спектр дискретизованого сигналу

До вибору шагу дискретизації

Якщо безперервний сигнал x(t) має спектр, обмежений частотою f_{max} , то він може бути однозначно і без витрат відтворений за своїми дискретними відліками, узятими з частотою $f_{samp} > 2*f_{max} (\omega_s > 2 \omega_{max})$, або за вдліками, узятими з періодом $T_{sampl} < 1/(2*f_{max})$.

f_{max} - частота Найквіста

Тобто, для того, щоб відтворити сигнал за його відліками без втрат, необхідно, щоб частота дискретизації була хоча б у два рази більша за f_{max} первинного безперервного сигналу.

Відтворення (встановлення) сигналу

$$I (x) = \sum_{k=-\infty}^{\infty} I(t_k) \frac{\sin(\frac{\pi}{T_S}(t - kT_S))}{\frac{\pi}{T_S}(t - kT_S))}$$

$$I(x) = \sum_{k=-\infty}^{\infty} I(t_k) \operatorname{sinc}(\frac{\pi}{T_S}(t - kT_S))$$

2D перетворення Фур'є

Пряме перетворення $I(x,y) \Rightarrow F(\omega_1, \omega_2)$

$$F(\omega_1, \omega_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(x, y) e^{-j(\omega_1 x + \omega_2 y)} dx dy$$

Зворотне перетворення $F(\omega_1, \omega_2) \Rightarrow I(x,y)$

$$I(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega_1, \omega_2) e^{j(\omega_1 x + \omega_2 y)} d\omega_1 d\omega_2$$

 $F(\omega_1, \omega_2)$ - комплексна функція — двовимірний спектр сигналу I(x, y)

2D дельта-функція

$$\delta(x,y) = \begin{cases} \infty : x = 0 \text{ and } y = 0 \\ 0 : x \neq 0 \text{ or } y \neq 0 \end{cases}$$

2D дискретизуюча функція

$$comb(x, y, \Delta x, \Delta y) =$$

$$= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x - m\Delta x, y - n\Delta y)$$

2D дискретизація

2D дискретизація – перемноження первинної функції на дискретизуючу функцію

$$I_{s}(x,y) = I(x,y) * comb(x,y,\Delta x,\Delta y) =$$

$$= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} I(m\Delta x, n\Delta y) \delta(x - m\Delta x, y - n\Delta y)$$

Сигнал-зображення $I(x,y) \Rightarrow$ його спектр $F(\omega_1, \omega_2)$

Дискретизоване зображення - сигнал $I_s(x,y)$ \Rightarrow його ?? спектр

2D дискретизація

Просторові частоти дискретизації $\boldsymbol{\omega}_{xs} = ^{1}/_{\Delta x}$, $\boldsymbol{\omega}_{ys} = ^{1}/_{\Delta y}$

Спектр $F_s(\boldsymbol{\omega_1}, \boldsymbol{\omega_2})$ дискретизованого зображення

$$F_{S}(\omega_{x}, \omega_{y}) = \omega_{xs}\omega_{xs} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} F(\omega_{x} - k\omega_{xs}, \omega_{y} - l\omega_{ys})$$

Спектр дискретизованого зображення є періодична (нескінчена) комбінація спектрів вихідного (безперервного) зображення, повторених в вузлах сітки $\boldsymbol{\omega}_{xs}$, $\boldsymbol{\omega}_{vs}$

Спектр дискретизованого 2D сигналу

Відтворення 2D сигналу

Відтворення 2D сигналу однозначне можливе, коли виконуються умови 2D аналогу теореми Найквіста — Котельникова, тобто:

$$1/\Delta x = \omega_{xs} > 2\omega_{xmax}$$
 $1/\Delta y = \omega_{ys} > 2\omega_{ymax}$

$$\widehat{I}(x,y) = \sum_{\infty}^{\infty} \sum_{1}^{\infty} I(m\Delta x, n\Delta y) \operatorname{sinc}(\omega_{xs} x - m) \operatorname{sinc}(\omega_{ys} x - n)$$

Мод.2.5.

 $m = -\infty$ $n = -\infty$

Відтворення 2D сигналу

Спектр дискретизованого 2D сигналу

Порушення умов теореми Найквіста-Котельникова. Відтворення **НЕМОЖЛИВО**

Артефакти дискретизації

Geometry Aliasing

Geometry Aliasing (3D)

Transparancy Aliasing

Sub-pixel Aliasing

Texture Aliasing

Shader Aliasing

Геометричні спотврення 2D

Геометричне спотворення

Геометричне спотворення

•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•		•
•	•	•	•	•	•		•
•	•	•	•	•	•	•	•
•	•	•	•	•	• •		•

Пропуск

Пропуск

•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•

Класифікація методі згладжування

https://soft-tuning.ru/zhelezo/40-

%D1%81%D0%B3%D0%BB%D0%B0%D0%B6%D0%B8%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5.html

Надсемплювання SSAA SSAA – SuperSample Anti Aliasing

Загальна ідея — рендерінг на збільшеному растрі, визначення відсотка пікселя, який займає певна область у векторній графіці — тобто: квадрат розміром пікселя поділяється на декілька підпікселів (subpixels) — які використовуються обчислення кольору пікселя.

2 Samples

4 Samples

9 Samples

4 Samples rotated

Мод.2.5.

42

Надсемплювання SSAA

Фільтр, що усереднює!

Варіації: інше розташування субпікселів, інші фільтри, урахування глибини

Надсемплювання SSAA

Мультісемплювання MSAA

MSAA - MultySample Anti Aliasing

Мультісемплювання. Зміна **SSAA**, зображення рендерится в збільшеному растрі, але продуктивність досягнута за рахунок **AA** тільки країв об'єкта, а не всієї картинки як в **SSAA**. Рекомендовано використовувати на низькій роздільній здатності.

Розвиток SSAA\MSAA

CSAA	Coverage Sampling Anti-Aliasing, Згладжування з перекриттям					
FSAA	Full Scene Anti-Aliasing, Повноекранне згладжування					
QSAA	Quality Coverage Sampling Anti-Aliasing, Згладжування з перекриттям підвищеної якості					
EQAA	Enhanced Quality Anti-Aliasing, CSAA у AMD, відрізняються положенням семплів.					
AAA	Adaptive Anti-Aliasing, Адаптивне згладжування (від AMD, суміш MSAA/SSAA)					
TrAA	Transparency Anti-Aliasing, Прозоре згладжування (AAA від Nvidia)					
TrAAA	Transparency Adaptive Anti-Aliasing = TrAA					
TrMSAA	Transparency Multi-Sampling Anti-Aliasing, Прозоре згладжування з мультісемплюванням					
TrMSAA	Transparency Super-Sampling Anti-Aliasing, Прозоре повноекранне згладжування з мультісемплюванням					

Аналітичні методи згладжування

MLAA - Morphological Anti Aliasing

Розробка Intel (2011). Алгоритм, шукає піксельні кордони, схожі на букві Z, L і U і змішує кольори сусідніх пікселів, що входять в кожну таку частину. Три етапи:

- знайти розриви між пікселями на зображенні.
- визначити **Z**, **L** і **U** -подібні шаблони.
- змішайте кольори поруч із цими шаблонами. Алгоритм орієнтовно на використання CPU, а не GPU. Є реалізація AMD, технічно може використовувати і NVidia.

https://software.intel.com/en-us/articles/morphological-antialiasing-mlaa-sample

MLAA - Morphological Anti Aliasing

Аналітичні методи згладжування

MLAA	MorphoLogical Anti-Aliasing, Морфологічне згладжування
FXAA	Fast approXimate Anti-Aliasing, Швидке приблизне згладжування (NVidia)
SRAA	SubPixel Reconstraction Anti-Aliasing, Субпіксельне відтворююче згладжування (Nvidia, ≈ MLAA, використовує Z-буфер)
SMAA	Enhanced SubPixel Morphological Anti-Aliasing, Субпіксельне морфологічне згладжування (MLAA + SSAA MSAA).
CMAA	Conservative Morphological Anti-Aliasing, Консервативне морфологічне згладжування (суміш FXAA & SMAA)
MFAA	Multi-Frame Sampled Anti-Aliasing, Мультікадрове згладжування (Nvidia, змішування поточного кадру, попереднього та наступного)
GBAA	Geometry Buffer Adaptive Anti-Aliasing, Згладжування з урахування геометричного буферу

Темпоральне (часове) згладжування Temporal Anti-Aliasing (TAA)

ТАА - зменшує наслідки тимчасового еліайсінгу. Для цього застосовується часовий фільтр згладжування (фільтр нижніх частот). Визначається, які об'єкти охоплюють певні пікселі в будь-який момент часу. Перші версії Використовували функції тимчасової інтенсивності високої роздільної здатності з атрибутів об'єктів сцени, які потім об'єднуються фільтром усереднення для обчислення згладженого зображення.

https://en.wikipedia.org/wiki/Temporal_anti-aliasing

Темпоральне (часове) згладжування

TAA	Temporal Anti-Aliasing, Часове згладжування (від Nvidia)
ATAA	Adaptive temporal Anti-Aliasing, адаптивне часове згладжування (від Nvidia)
TXAA	Temporal approXimate Anti-Aliasing, Часове приблизне згладжування (від Nvidia)
TSSAA	Temporal Super Sampling Anti-Aliasing, Часове згладжування з надлишковою вибіркою (ТХАА від сторонніх фірм)

https://www.overclockers.ua/news/hardware/2018-07-31/122698/https://sketchfab.com/blogs/community/introducing-temporal-anti-aliasing/

Порівняння методів згладжування

quantity antialiasing method	depth	coverage	geometry	shading values	storage	BW		legend: sampling rate per
no antialiasing		х					П	pixel
multisampling antialiasing MSAA [Ake93]							П	X:
coverage sampling antialiasing CSAA [You06]							ı	not used
supersampling antialiasing SSAA [Lel80]		х					П	
MLAA [Res09, BHD10, Per10, Bir11, JME*11], FXAA [Lot11], SMAA 1x [JES*12]		х					ı	once
a directionally adaptive edge antialiasing [IYP09, Joh12]	х						П	
geometric methods [BWG03, CD05, Mal10, GG12, Per12]	х	х					П	some
edge blurring: directionally localized DLAA [And11]; normal filter NFAA, screen-space SSAA [Uni11]		Х					ı	
temporal <u>reprojection</u> [NSL*07, YNS*09, Kap10]		х					П	many
spatial/temporal <u>supersampling</u> + morphological <u>antialiasing</u> SMAA 4x [JES*12]		х					ı	
deferred MSAA [Pet10]		х					П	all
subpixel reconstruction antialiasing SRAA [CML11]		х					ı	
surface based antialiasing SBAA [SV12]								
resampling antialiasing RSAA [Res12]								∞

Рекомендована ЛІТЕРАТУРА

- Вовк С.М., Гнатушенко В.В., Бондаренко М.В. Методи обробки зображень та комп'ютерний зір: навчальний посібник. Д.: Ліра, 2016 148 с.
- **Красильников Н.Н.** Цифровая обработка 2D- и 3D-изображений: учеб.пособие.- СПб.: БХВ-Петербург, 2011.- 608 с.: ил.
- Гонсалес Р.С., Вудс Р.Э. Цифровая обработка изображений. М.: Техносфера, 2005. -1070 с.
- Визильтер Ю.В., Желтов С.Ю. и др. Обработка и анализ зображений в задачах машинного зрения.-М.: Физматкнига, 2010.-672 с.

Рекомендована ЛІТЕРАТУРА

- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М.: ДИАЛОГ-МИФИ, 2002. 384 с.
- **Творошенко І.С.** Конспект лекцій з дисципліни «Цифрова обробка зображень» / І.С.Творошенко : І.С. Творошенко ; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2017. 75 с.
- Методи компьютерной обработки изображений: Учебное пособие для ВУЗов/ Под ред.: Сойфер В.А.. 2-е изд., испр. М.: Физматлит, 2003. 780 с.
- Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.

Додаткова ЛІТЕРАТУРА

- **Грузман И.С.**, Киричук В.С. Цифровая обработка зображений в информационных системах. Новосибирск: Изд-во НГУ, 2002. 352 с.: ил.
- Solomon C., Breckon T. Fundamentals of Digital Image Processing. Willey-Blackwell, 2011 344 p.
- Павлидис Т. Алгоритмы машинной графики и обработки изображений: Пер. с англ. М.: Радио и связь, 1986. 400 с.
- **Яншин В. В.**, Калинин Г. А. Обработка изображений на языке Си для IBM РС: Алгоритмы и программы. М.: Мир, 1994. 240 с.

Інформаційні ресурси

- Компьютерная обработка изображений. Конспект лекций. http://aco.ifmo.ru/el_books/image_processing/
- Цифрова обробка зображень [Електронний ресурс]: методичні рекомендації до виконання лабораторних робіт / НТУУ «КПІ»; уклад.: В. С. Лазебний, П. В. Попович. Електронні текстові дані (1 файл: 1,41 Мбайт). Київ: НТУУ «КПІ», 2016. 73 с. https://ela.kpi.ua/handle/123456789/21035
- https://www.youtube.com/watch?v=CZ99Q0DQq3Y
- https://www.youtube.com/watch?v=FKTLW8GAdu4

The END Modulo 2.5