

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 5

Последовательность независимых испытаний

Последовательность независимых испытаний (Схема Бернулли)

Проводятся одинаковые независимые испытания. Испытание называется удачным, если в нём произошло определённое событие ${\cal A}$.

$$P(A) = p_{-}$$
 вероятность удачи, $P(A) = 1 - p = q_{-}$ вероятность

неудачи. Удаче поставим в соответствие 1, а неудаче – 0.

Пример последовательности независимых испытаний

$$A \quad \overline{A} \quad \overline{A} \quad A \quad \overline{A} \quad \overline{A} \quad \overline{A} \quad \overline{A}$$

Рассмотрим событие

$$B_k = \{ npousoum opobno \underline{k} \ y \partial a v \ b \ \underline{n} \ nesabucumых испытаниях \} .$$

обозначим
$$P(B_k) = P_n(k)$$
.

Формула Бернулли

Теорема.
$$P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$$

Доказательство:

$$\varepsilon_{i} = egin{cases} 1 \text{, если удача в } i - \text{ом независимом испытании} \\ 0 \text{, иначе} \end{cases}$$

$$\Omega = \left\{ \overline{\varepsilon} \mid (\varepsilon_1, ..., \varepsilon_n), \varepsilon_i = 0, 1 \right\}$$

$$B_k = \left\{ \overline{\varepsilon} \mid \sum \varepsilon_i = k \right\}, \quad \overline{\varepsilon} \in B_k \implies P(\left\{ \overline{\varepsilon} \right\}) = p^k q^{n-k}$$

$$P(B_k) = |B_k| p^k q^{n-k} = C_n^k p^k q^{n-k}$$

Приближение Пуассона

Применяется при n >> 1, p << 1, $0,1 < n \cdot p <10$.

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}, \qquad (\lambda = np)$$

<u>Теорема Пуассона.</u> Пусть p_n (вероятность удачи) зависит от числа испытаний, при этом $\lim_{n\to\infty} np_n = \lambda > 0$, $\lambda < \infty$.

Тогда
$$\lim_{n\to\infty} C_n^k p_n^k (1-p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda} .$$

Приближение Лапласа

При больших n>>1 и при условии n>>1, 0< p<1, np>10 или nq>10

применяется приближение Лапласа, основанное на теоремах Муавра-Лапласа.

Локальная теорема Муавра-Лапласа:

$$P_n(k) = C_n^k p_n q^{n-k} \underset{n \to \infty}{\sim} \frac{1}{\sqrt{npq}} \varphi_0 \left(\frac{k-np}{\sqrt{npq}} \right)$$
, где

$$\varphi_0(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$
.

Приближение Лапласа

Интегральная теорема Муавра-Лапласа.

Пусть ξ_n — число удач в n независимых испытаниях,

p – вероятность удачи в одном испытании, q=1-p . Тогда

$$\lim_{n\to\infty} P(C_1 \le \frac{\xi_n - np}{\sqrt{npq}} \le C_2) = \int_{C_1}^{C_2} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \int_{C_1}^{C_2} \varphi_0(t) dt$$

Функции $\varphi_0(t)$ и $\Phi(x)$

$$\Phi(x) = \int_{-\infty}^{x} \varphi_0(t) dt$$
, $\varphi_0(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$

Свойства: 1)
$$\varphi_0(t) > 0$$
, 2) $\varphi_0(-t) = \varphi_0(t)$,

3)
$$\int_{-\infty}^{+\infty} \varphi_0(t)dt = 1$$
, 4) $\Phi(-x) + \Phi(x) = 1$, 5) $\Phi(0) = 0.5$

Приближение Лапласа

Следствие 1:

$$P(k_1 \le \xi_n \le k_2) = P\left(\frac{k_1 - np}{\sqrt{npq}} \le \frac{\xi_n - np}{\sqrt{npq}} \le \frac{k_2 - np}{\sqrt{npq}}\right) \approx \int_{\frac{k_1 - np}{\sqrt{npq}}}^{\frac{k_2 - np}{\sqrt{npq}}} \varphi_0(t)dt =$$

$$=\Phi\left(\frac{k_2-np}{\sqrt{npq}}\right)-\Phi\left(\frac{k_1-np}{\sqrt{npq}}\right)$$

<u>Приближение Лапласа</u>

$$\underline{Cnedcmaue 2:} \quad \Pi \text{ усть } \qquad v_n = \frac{\xi_n}{n},$$

$$P(|v_n - p| \le \varepsilon) = P(-\varepsilon \le v_n - p \le \varepsilon) = P(p - \varepsilon \le \frac{\xi_n}{n} \le p + \varepsilon) =$$

$$= P(n(p - \varepsilon) \le \xi_n \le n(p + \varepsilon)) \approx \Phi\left(\frac{n\varepsilon}{\sqrt{npq}}\right) - \Phi\left(-\frac{n\varepsilon}{\sqrt{npq}}\right) =$$

$$= 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right) - 1 = 1 - 2\Phi\left(-\varepsilon\sqrt{\frac{n}{pq}}\right)$$