Apuntes de C.A. 1/2

$$e = E_0 \operatorname{Sen} (\omega t \pm \varphi)$$

Siendo: La fase ($\omega t \pm \varphi$); el desfase φ

 ω : Pulsación, frecuencia angular, velocidad angular.

$$\omega=rac{2\Pi}{T};\;T=rac{1}{f}\;;\;\omega=2\Pi$$

e = Tensión instantánea y E_0 = Tensión máxima

Impedancias

$$Z = R$$

C
$$X_c = \frac{-1}{C\omega} \frac{-1}{cw} \rightarrow X_c = \frac{-1}{c\omega}j$$
 Capacitancia = - X_c

$$+$$

L
$$X_1 = L \cdot w \rightarrow X_1 = L \cdot w j$$
 Inductancia = X_1

Impedancia total :
$$Z = \sqrt{R^2 + (X_l - X_c)^2}$$

Reactancia total :
$$X = (X_l - X_c)$$

Susceptancia :
$$b = \frac{X}{Z^2}$$

Conductancia :
$$g = \frac{R}{Z^2}$$

Admitancia :
$$Y = \frac{1}{Z} \rightarrow Y = \sqrt{g^2 + b^2}$$

$$i = I_0 \operatorname{Sen} (\omega t \pm \varphi)$$

i =Intensidad instantánea y I_0 = Intensidad máxima

$$i = \frac{e}{Z}$$
; $I_0 = \frac{E_0}{Z}$; $E_{ef} = \frac{E_0}{\sqrt{2}}$; $I_{ef} = \frac{I_0}{\sqrt{2}}$; $I_{ef} = \frac{E_{ef}}{Z}$; $I_{ef} = Irms$; $E_{ef} = Erms$

Potencias

$$S = V \cdot I$$

 $P = V \cdot I \cdot Cos \phi$
 $Q = V \cdot I \cdot Sen \phi$
Factor de potencia = $Cos \phi$
 $\phi = arc.tang X/R$

Potencias Tensiones Impedancias

$$S = V \cdot I / Q = X \cdot I \qquad V / X \cdot I \qquad Z = V / I / X$$

$$P = R \cdot I \qquad \Phi$$

$$R \cdot I \qquad R$$

$$V = \sqrt{V_R^2 + (V_l - V_c)^2}$$
 $Z = \sqrt{R^2 + (X_l - X_c)^2}$

Si dividimos por Z, tendremos:

Transformador

$$P_{p} = P_{s}; \quad \frac{V_{p}}{V_{s}} = \frac{N_{p}}{N_{s}}; \quad \frac{I_{p}}{I_{s}} = \frac{N_{p}}{N_{s}}; \quad \frac{Z_{p}}{Z_{s}} = (\frac{N_{p}}{N_{s}})^{2} \frac{Z_{p}}{Z_{s}} (\frac{N_{p}}{N_{s}})^{2}$$

Resonancia

$$X_1 = X_c \rightarrow L\omega = \frac{1}{c\omega} \rightarrow \omega^2 = \frac{1}{Lc} \rightarrow (2\pi f)^2 = \frac{1}{Lc} \rightarrow (2\pi f)^2 = \frac{1}{LC} \rightarrow f = \frac{1}{2\pi\sqrt{LC}}$$