Package 'geoCount'

April 1, 2013

Type Package

Title Analysis and Modeling for Geostatistical Count Data
Version 1.130330
Date 2013-03-30
Author Liang Jing
Maintainer Liang Jing <1jing918@gmail.com>
Description This package provides a variety of functions to analyze and model geostatistical count data with generalized linear spatial models, including 1) simulate and visualize the data; 2) posterior sampling with robust MCMC algorithms (in serial or parallel way); 3) perform prediction for unsampled locations; 4) conduct Bayesian model checking procedure to evaluate the goodness of fitting; 5) conduct transformed residual checking procedure. In the package, seamlessly embedded C++ programs and parallel computing techniques are implemented to speed up the computing processes.
License GPL (>= 2)
LazyLoad Yes
Depends R (>= 2.12.0), Rcpp (>= 0.9.4), RcppArmadillo (>= 0.2.19)
LinkingTo Rcpp, RcppArmadillo
Suggests coda, distrEx, reldist, snow, snowfall, multicore
R topics documented:
baseline.dist

Index

	14
TexasCounty.center	13
TexasCounty.boundary	12
simData	11
runMCMC.sf	39
runMCMC.multiChain	37
runMCMC	35
Rongelap	34
rhoSph	33
rhoPowerExp	32
rhoMatern	31
Rhizoc	30
1 1	29
1	28
F	27
1	26
1	25
r	24
r	23
r	22
F	21
F	20
	19
1	18
	17
	16
1	15
locGrid	14
locCircle	13
-	12
	11
helloWorld	11
findMode	10
Earthquakes	9
e2dist	8
	8

baseline.dist 3

baseline.dist

Generate Distance Samples to Build Baseline Distribution

Description

This function generates the samples of distance to build the baseline distribution for standard normal.

Usage

```
baseline.dist(n, iter)
```

Arguments

n the number of residuals

iter the number of distance samples to generate

Details

HellingerDist and KolmogorovDist functions in {distrEx} are used to compute the distances. See ?HellingerDist and ?KolmogorovDist for details about how the distances are computed.

Value

A $iter \times 3$ matrix for three types of distance: "Discrete Hellinger", "Smooth Hellinger" and "Kolmogorov".

Author(s)

```
Liang Jing 1jing918@gmail.com>
```

See Also

```
d.base, baseline.parallel, plot_baseline, pOne.
```

```
## Not run:
# Time-consuming! Run once with large "iter" and
# save the results for future use
d.base <- baseline.dist(50, iter=100)
## End(Not run)</pre>
```

4 baseline.parallel

baseline.parallel	Generate Distance Samples to Build Baseline Distribution (Parallel
	Version)

Description

This function generates distance samples in parallel to build the baseline distribution for standard normal.

Usage

```
baseline.parallel(n, iter, n.cores = getOption("cores"))
```

Arguments

n the number of residuals

iter the number of distance samples to generate

n.cores the number of CPUs that will be used for parallel computing

Details

HellingerDist and KolmogorovDist functions in {distrEx} are used to compute the distances. See ?HellingerDist and ?KolmogorovDist for details about how the distances are computed.

This function performs parallel computing with the help of {multicore} package. Be aware that {multicore} package currently is not available in Windows.

Value

A $iter \times 3$ matrix for three types of distance: "Discrete Hellinger", "Smooth Hellinger" and "Kolmogorov".

Author(s)

```
Liang Jing 1jing918@gmail.com>
```

See Also

```
d.base, baseline.dist, plot_baseline, pOne.
```

```
## Not run:
# Time-consuming! Run once with large "iter" and
# save the results for future use
require(multicore)
d.base <- baseline.parallel(50, iter=100, n.cores = 4)
## End(Not run)</pre>
```

BMCT 5

BMCT

Perform Bayesian Model Checking

Description

This function conducts Bayesian model checking by comparing observed and reference data sets and reveals the result via "p-value" and "RPS" (as well as the plot).

Usage

```
BMCT(Y.obs, Y.rep, funcT, ifplot = FALSE)
```

Arguments

Y.obs	a vector which indicates the observed data set
Y.rep	a matrix which indicates the reference data sets
funcT	a function which defines the dignostic statistic
ifplot	a logical value which indicates whether plot the dignostic statistics

Value

A vector of p-value and RPS.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

```
repYeb, repYpost, pRPS, plot_pRPS
```

```
## Not run:
Yrep.eb <- repYeb(N.sim=2000, loc, L, res.m, est = "mode")
funcT <- function(Y){ max(Y)-min(Y) }
BMCT(Y, Yrep.eb, funcT, ifplot=TRUE)
## End(Not run)</pre>
```

6 cdfU

cdfU

Approximate the CDF Value from Reference Samples

Description

This function approximates the CDF value for the observed data by using reference data.

Usage

```
cdfU(Y.obs, Y.rep, discrete = FALSE)
```

Arguments

Y. obs a vector which indicates the observed data setY. rep a matrix which indicates the reference data setsdiscrete a logical value which indicates if the variable is discrete

Value

A vector of CDF values.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

tranR

```
## Not run:
Y.obs <- 11:20
res <- matrix(0, 10, 50)
for(i in 1:50){
Y.rep <- matrix(rpois(10*5000, 15), 10, )
res[, i] <- cdfU(Y.obs, Y.rep)
}
matplot(t(res), type="1")
abline(h = ppois(11:20, 15))
## End(Not run)</pre>
```

cutChain 7

cutChain Modify Markov Chains with Burn-in and Thining
--

Description

This function takes the results from runMCMC and modifies the chains of posterior samples for burnin and thinning.

Usage

```
cutChain(res, chain.ind=2:4, burnin, thinning)
```

Arguments

res a list with elements containing the posterior samples of latent variables and pa-

rameters; usually the output from runMCMC

chain.ind the index of elements in "res" that will be modified

burnin the number for burn-in thinning the number for thining

Value

A list with elements containing the modified posterior samples.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

```
runMCMC, runMCMC.multiChain, mixChain.
```

```
## Not run:
res <- runMCMC(Y, L=0, loc=loc, MCMCinput = input )
res.m <- cutChain(res, chain.ind=1:4, burnin=100, thining=10)
## End(Not run)</pre>
```

8 e2dist

d.base

Data Set of Baseline Samples

Description

This data set contains baseline samples for 100 residuals with 5000 iterations.

Usage

```
data(Dbase_n100N5000)
```

Details

A data.frame "d.base" with 5000 observations and 3 variables will be loaded.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
baseline.dist, plot_baseline, pOne.
```

Examples

```
## Not run:

data(Dbase_n100N5000)
str(d.base)
plot_baseline(d.base[,1], colnames(d.base)[1])
## End(Not run)
```

e2dist

Calculate Distances between Transformed Residuals and Standard Normal

Description

This function calcualtes three types of distance between the empirical distribution of transformed residuals and standard normal.

Usage

```
e2dist(e.tran)
```

Earthquakes 9

Arguments

e.tran

a vector which indicates the transformed residuals

Details

HellingerDist and KolmogorovDist functions in {distrEx} are used to compute the distances. See ?HellingerDist and ?KolmogorovDist for details about how the distances are computed.

Value

A vector with length 3 containing "Discrete Hellinger", "Smooth Hellinger" and "Kolmogorov" distances.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
tranR, baseline.dist, pOne.
```

Examples

```
## Not run:
require(distrEx)
e2dist(rnorm(200))
## End(Not run)
```

Earthquakes

Data Set of Earthquakes

Description

This data set contains the informations of earthquakes.

Usage

```
data(datEarthquake)
```

Details

...

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

10 findMode

See Also

```
plotData.
```

Examples

```
## Not run:
data(datEarthquake)
str(Earthquakes)
plotData(Earthquakes$Magnitude, Earthquakes[,c("Lat","Lon")])
## End(Not run)
```

findMode

Estimate Mode of the Posterior Samples

Description

This function estimates the mode of empirical density function for a given posterior samples.

Usage

```
findMode(x, ...)
```

Arguments

x a vector of posterior samples

... other parameters used when estimating then empirical density function; see ?density

Details

This function uses density function to estimate the empirical density function.

Value

The value of mode.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

```
## Not run:
findMode(rnorm(1000))
## End(Not run)
```

helloWorld 11

helloWorld

Hello

Description

Test package loading.

Usage

```
helloWorld()
```

Examples

```
## Not run:
helloWorld()
## End(Not run)
```

loc2U

Calculate the Distance Matrix among Given Locations

Description

This function calculates the distance matrix among the given locations.

Usage

loc2U(loc)

Arguments

loc

a matrix of $n \times 2$ which indicates the x-y coordinates of the original locations

Details

This function calls the underlying C++ program to do the computation.

Value

A $n \times n$ matrix with the element e_{ij} indicating the distance between the ith and jth locations.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

 $loc 2U_R$

See Also

loc2U_R, locCircle, locGrid, locSquad.

Examples

```
## Not run:
   loc <- locGrid(1, 2, 10, 5)
   U <- loc2U(loc)
## End(Not run)</pre>
```

loc2U_R

Calculate the Distance Matrix among Given Locations

Description

This function calculates the distance matrix among the given locations.

Usage

```
loc2U_R(loc)
```

Arguments

loc

a matrix of $n \times 2$ which indicates the x-y coordinates of the original locations

Details

This function performs the computation in R.

Value

A $n \times n$ matrix with the element e_{ij} indicating the distance between the ith and jth locations.

Author(s)

```
Liang Jing 1jing918@gmail.com>
```

See Also

```
loc2U, locCircle, locGrid, locSquad.
```

```
## Not run:
   loc <- locGrid(1, 2, 10, 5)
   U <- loc2U_R(loc)
## End(Not run)</pre>
```

locCircle 13

locCircle

Simulate Circlular Locations

Description

This function simulates a given number of locations equally distributed on a circle.

Usage

```
locCircle(r, np)
```

Arguments

r the radius of the circle

np the number of locations on the circle

Details

The center of the circle is (0, 0).

Value

A $np \times 2$ matrix indicates the x-y coordinates of the locations.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
locGrid, locSquad, simData, plotData.
```

```
## Not run:
  loc <- locCircle(1, 40)
## End(Not run)</pre>
```

14 locGrid

	C		C

Simulate Locations on Grid

Description

This function simulates a given number of locations distributed on a grid.

Usage

```
locGrid(x, y, nx, ny)
```

Arguments

```
    x the length of x edge
    y the length of y edge
    nx the number of locations in x direction
    ny the number of locations in y direction
```

Details

The grid lies in the range of $(0, x) \times (0, y)$.

Value

A $(nx \times ny) \times 2$ matrix indicates the x-y coordinates of the locations.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

```
locCircle, locSquad, simData, plotData.
```

```
## Not run:
  loc <- locGrid(1, 2, 10, 5)
  plot(loc, xlab="x", ylab="y")
## End(Not run)</pre>
```

locSquad 15

locSquad

Simulate Squared Locations

Description

This function simulates a given number of locations equally distributed on a square.

Usage

```
locSquad(a, np)
```

Arguments

a half length of the edge

np the number of locations on each edge

Details

The center of the square is (0, 0).

Value

```
A (4 \times np - 4) \times 2 matrix indicates the x-y coordinates of the locations.
```

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
locCircle, locGrid, simData, plotData.
```

```
## Not run:
   plot(locSquad(0.5, 4))
## End(Not run)
```

16 locUloc

locUloc	Calculate the Distance Matrix Between Observed and Predicting Locations
	cations

Description

This function calculates the distance matrix between observed and predicting locations.

Usage

```
locUloc(loc, locp)
```

Arguments

loc a matrix of $n \times 2$ which indicates the x-y coordinates of the observed locations;

if a vector is used, it will be converted to matrix automatically

locp a matrix of $m \times 2$ which indicates the x-y coordinates of the predicting locations;

if a vector is used, it will be converted to matrix automatically

Details

This function calls the underlying C++ program to do the computation.

Value

A $m \times n$ matrix with the element e_{ij} indicating the distance between the ith predicting location and the jth observed locations.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

loc2U, locCircle, locGrid, locSquad.

```
## Not run:
   loc <- locGrid(1, 2, 10, 5)
   locp <- c(0.5, 0.5)
   U <- locUloc(loc, locp)
## End(Not run)</pre>
```

locUloc_R

locUloc_R	Calculate the Distance Matrix Between Observed and Predicting Locations
	сапопѕ

Description

This function calculates the distance matrix between observed and predicting locations.

Usage

```
locUloc_R(loc, locp)
```

Arguments

loc a matrix of $n \times 2$ which indicates the x-y coordinates of the observed locations;

if a vector is used, it will be converted to matrix automatically

locp a matrix of $m \times 2$ which indicates the x-y coordinates of the predicting locations;

if a vector is used, it will be converted to matrix automatically

Details

This function performs the computation in R.

Value

A $m \times n$ matrix with the element e_{ij} indicating the distance between the ith predicting location and the jth observed locations.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

locUloc, loc2U, locCircle, locGrid, locSquad.

```
## Not run:
    loc <- locGrid(1, 2, 10, 5)
    locp <- c(0.5, 0.5)
    U <- locUloc_R(loc, locp)
## End(Not run)</pre>
```

18 MCMCinput

	~ .	_			
м	CM	(' 1	n	n	11
- 11	CI I	~ 1		\mathbf{v}	uч

Settings for the MCMC Algorithm

Description

This function sets up the parameters and initial values used for the MCMC algorithms.

Usage

Arguments

run	the number of iterations
run.S	the number of internal iterations for latent variables
rho.family	take the value of "rhoPowerExp", "rhoMatern", or "rhoSph" which indicates the powered exponential, Matern, or Spherical correlation function is used
Y.family	take the value of "Poisson" or "Binomial" which indicates Poisson or Binomial distribution for response variables
priorSigma	the prior distribution for σ , the options include "Halft" (positive-truncated t distribution), "InvGamma" (inverse gamma distribution), and "Reciprocal" (reciprocal distribution)
parSigma	the parameters for the prior distribution of σ : when priorSigma = "Halft" the first parameter is scale and the second is degree of freedom; when priorSigma = "InvGamma" the first parameter is shape and the second is scale; when priorSigma = "Reciprocal" both parameters are ignored
ifkappa	take zero or non-zero value which indicates whether κ should be sampled
scales	a vector which indicates the tuning parameters for $(S,\beta,\sigma,\phi,\kappa)$ respectively
phi.bound	the upper and lower bound for ϕ
initials	a list which indicates the initial values for $(\beta,\sigma,\phi,\kappa)$ respectively

Details

During each iteration of Gibbs sampling process, the group of latent variables is updated "run.S" times to improve accuracy and reduce autocorrelations.

Value

A list of setting parameters.

mixChain 19

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

```
runMCMC, runMCMC.multiChain, runMCMC.sf.
```

Examples

mixChain

Mix Parallel Markov Chains

Description

This function mix parallel chains into one chain.

Usage

```
mixChain(res.m.prl)
```

Arguments

res.m.prl

a list with each element containing the result of posterior samples from one CPU; the elements shoul only contain the Markov chains of posterior samples (while "AccRate" is eliminated when using cutChain)

Value

A list with elements containing the mixed posterior samples.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

20 plotACF

See Also

```
runMCMC.multiChain, cutChain.
```

Examples

plotACF

Auto-correlation Plot for Latent Variables

Description

This function plots auto-correlation curves for latent variables.

Usage

```
plotACF(S.mcmc, lags = NULL)
```

Arguments

S.mcmc a matrix (or data.frame) with each row containing the posterior samples of one

latent variable

lags the maximum number of lags; the default "NULL" will result in $10*\log_{10}(N/m)$

where N is the number of observations and m the number of series

Details

This function uses acf function to compute the estimates of auto-correlation.

Value

No return value. A plot of auto-correlation curves.

Author(s)

```
Liang Jing 1jing918@gmail.com>
```

```
## Not run:
plotACF(res.m$S.posterior)
## End(Not run)
```

plotData 21

plotData

Plot Geostatistical Data

Description

This function plots geostatistical data for up to three data sets.

Usage

Arguments

```
Y, Yp, Yt the vector of response variables loc, locp, loct n \times 2 matrix that indicates the coordinates of locations bdry a list containing the coordinates of boundaries cols the colors used for different sets of response variables pchs the shapes used for different sets of response variables size the minimum and maximum of the sizes other parameters that control the plotting
```

Author(s)

Liang Jing 1jing918@gmail.com>

See Also

locCircle, locGrid, locSquad, plotDataBD, simData.

22 plot_baseline

```
plotData(bdry = TexasCounty.boundary)
# plot data with the boundary
data(Rongelap)
str(Rongelap)
plotData(bdry = Rongelap$borders, Y = Rongelap$data, loc = Rongelap$coords)
## End(Not run)
```

plot_baseline

Plot Baseline Samples

Description

This function plots the baseline samples.

Usage

```
plot_baseline(d.samples, dist.name)
```

Arguments

d.samples the baseline samples dist.name the name of distance

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
e2dist, baseline.dist d.base.
```

```
## Not run:
plot_baseline(d.base[,1], colnames(d.base)[1])
plot_baseline(d.base[,2], colnames(d.base)[2])
plot_baseline(d.base[,3], colnames(d.base)[3])
## End(Not run)
```

plot_etran 23

plot_etran

Plot Transformed Residuals

Description

This function plots transformed residuals in different types.

Usage

```
plot_etran(e.tran, fig = 1:4)
```

Arguments

e.tran a vector which indicates the transformed residuals

fig a vector which indicates which types to plot: 1 indicates scatter plot, 2 indicates

QQ-plot, 3 indicates density plot, and 4 indicates relative density plot (with

standard normal distribution served as the base)

Details

density function is used to compute the empirical density.

reldist function in {reldist} is used to compute the relative density.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

tranR

```
## Not run:
require(reldist)
plot_etran(rnorm(200), fig=c(1,4))
## End(Not run)
```

plot_pRPS

plot_pRPS

Plot Observed vs. Reference Diagnostic Statistics

Description

This function plots the observed statistic vs. the empirical density of reference statistics.

Usage

```
plot_pRPS(T.obs, T.rep, nm = "x")
```

Arguments

T. obs a value which indicates the observed statisticT. rep a vector which indicates the reference statistics

nm the name of the diagnostic statistics

Details

density function is used to compute the empirical density of reference statistics.

Value

A plot.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
BMCT, pRPS.
```

```
## Not run:
plot_pRPS(1, rnorm(1000))
## End(Not run)
```

pOne 25

p0ne

Calculate One-side P-value

Description

This function calculates one-side p-value(s) for observed distance(s) with respect to the samples of baseline distances.

Usage

```
pOne(d.obs, d.base)
```

Arguments

d. obsa value (or a vector) which indicates the distance for observed datad. basea vector (or a matrix) which indicates the samples of baseline distances

Value

A p-value (or a vector of p-values).

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

```
e2dist, baseline.dist, pRPS, plot_pRPS.
```

```
## Not run:
# For single value
pOne(2, rnorm(10000))
# Visualize with plot_pRPS()
plot_pRPS(2, rnorm(10000), nm="d")
# For vector
pOne(1:3, matrix(rnorm(30000),,3))
## End(Not run)
```

26 predY

predY	Predict for Unsampled Locations	

Description

This function generates posterior predictive samples of latent and response variables for predicting locations.

Usage

Arguments

res.m	a list with elements containing the posterior samples of latent variables and parameters for observed locations
loc	a matrix which indicates the coordinates of the observed locations
locp	a matrix which indicates the coordinates of the predicting locations
X	the covariate matrix for observed locations
Хр	the covariate matrix for predicting locations
Lp	a vector which indicates the time duration during which the Poisson counts are accumulated or the total number of trials for Binomial response; if 0 is found in the vector, 1 will be used to replace all the values in the vector
k	a value for fixed κ ; ignored if there are posterior samples for κ in "res.m"
rho.family	take the value of "rhoPowerExp" or "rhoMatern" which indicates the powered exponential or Matern correlation function is used
Y.family	take the value of "Poisson" or "Binomial" which indicates Poisson or Binomial distribution for response variables
parallel	the default input NULL indicates no parallel computing will be applied; the input value "multicore" or "snowfall" indicates parallel computing with the help of {multicore} or {snowfall} package will be applied a logical value which indicates if the parallel computing should be used for prediction
n.cores	the number of CPUs that will be used for parallel computing; used only if parallel isn't \ensuremath{NULL}
cluster.type	type of cluster to be used for parallel computing; can be "SOCK", "MPI", "PVM", or "NWS"; used only if parallel="snowfall"

Details

This function performs parallel computing with the help of {multicore} or {snowfall} package. Be aware that {multicore} package currently is not available in Windows (so set parallel="snowfall" if you want to do parallel prediction in Windows).

pRPS 27

Value

A list with elements:

latent.predict a matrix containing the posterior predictive samples for latent variables
Y.predict a matrix containing the posterior predictive samples for response variables

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
runMCMC, runMCMC.multiChain.
```

Examples

pRPS

Calculate P-value and RPS

Description

This function calculates p-value and relative predictive surprise (RPS) by comparing observed and reference statistics.

Usage

```
pRPS(T.obs, T.rep)
```

Arguments

T. obs a value which indicates the observed statisticT. rep a vector which indicates the reference statistics

Details

density function is used to compute the empirical density of reference statistics.

28 repYeb

Value

A vector of p-value and RPS.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
BMCT, plot_pRPS.
```

Examples

```
## Not run:
pRPS(2, rnorm(1000))
## End(Not run)
```

repYeb

Generate Replicated Data with Estimated Parameters

Description

This function generates replicated data sets based on estimated parameters (given or from posterior samples).

Usage

Arguments

N.sim	the number of replicated data sets to be simulated
loc	a $n \times 2$ matrix which indicates the coordinates of observed locations
L	a vector of length n; it indicates the time duration during which the Poisson counts are accumulated, or the total number of trials for Binomial response
Χ	a $n \times p$ covariate matrix; the default value "NULL" indicates no covariate
rho.family	take the value of "rhoPowerExp" or "rhoMatern" which indicates the powered exponential or Matern correlation function is used
Y.family	take the value of "Poisson" or "Binomial" which indicates Poisson or Binomial distribution for response variables
res.m	a list with elements containing the posterior samples of latent variables and parameters for observed locations
est	take the value of "mode" which indicates the mode of posterior samples will be used as the parameter estimate; otherwise, the mean will be used

repYpost 29

beta	a value which indicates the estimation for β ; ignored if "res.m" is given
sigma	a value which indicates the estimation for σ ; ignored if "res.m" is given
phi	a value which indicates the estimation for ϕ ; ignored if "res.m" is given
k	a value which indicates the estimation for κ ; ignored if "res.m" is given and
	contains the posterior samples for κ

Value

A $n \times N.sim$ matrix of replicated data sets.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
repYpost, simData.
```

Examples

repYpost

Generate Replicated Data with Posterior Samples of Latent Variables

Description

This function generates replicated data sets based on posterior samples of latent variables.

Usage

```
repYpost(res.m, L, Y.family="Poisson")
```

Arguments

res.m	a list with elements containing the posterior samples of latent variables and parameters for observed locations
L	a vector of length n; it indicates the time duration during which the Poisson counts are accumulated, or the total number of trials for Binomial response
Y.family	take the value of "Poisson" or "Binomial" which indicates Poisson or Binomial distribution for response variables

30 Rhizoc

Value

A matrix of replicated data sets.

Author(s)

```
Liang Jing ljing918@gmail.com>
```

See Also

```
repYeb
```

Examples

```
## Not run:
Yrep.post <- repYpost(res.m, L)
## End(Not run)</pre>
```

Rhizoc

Rhizoc Data

Description

This data set contains the Rhizoc data set.

Usage

```
data(Rhizoc)
```

Details

This dataset appeared Zhang (2002) and was modeled using the Binomial Logit-normal spatial model. It consists of counts of the root disease Rhizoctonia root rot present in barey plants collected at 100 locations in the Cunningham farm in the north-west of the U.S. The sampling consisted on pulling from the ground 15 plants at each location. This dataset is a 100 by 4 matrix with rows (x_i, y_i, t_i) , where x_i are the coordinates of the ith sampling location, y_i is the total number of infected crown roots in the pulled plants at x_i , and t_i is the total number of crown roots in the pulled plants at x_i ; see Zhang (2002) for further details.

Value

A data.frame with 100 observations and 5 variables.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
plotData.
```

rhoMatern 31

Examples

rhoMatern

Matern Correlation Function

Description

This function calculates the Matern correlation.

Usage

```
rhoMatern(u, a, k)
```

Arguments

u a value which indicates the distance

a a value which indicates the scale parameter, ϕ

k a value which indicates the shape parameter, κ

Details

The function is $\rho(u) = [2^{\kappa-1}\tau(\kappa)]^{-1}(-u/\phi)^{\kappa}K_{\kappa}(-u/\phi)$ where $K_{\kappa}(\cdot)$ denotes a modified Bessel function of order κ .

Value

A value of the correlation.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
rhoPowerExp, rhoSph, U2Z, loc2U.
```

```
## Not run:
    rhoMatern(0.3, a=0.1, k=1)
## End(Not run)
```

32 rhoPowerExp

rhoPowerExp

Powered Exponential Correlation Function

Description

This function calculates the powered exponential correlation.

Usage

```
rhoPowerExp(u, a, k)
```

Arguments

```
u a value which indicates the distance
```

a a value which indicates the scale parameter, ϕ k a value which indicates the shape parameter, κ

Details

```
The function is \rho(u) = \exp((-u/\phi)^{\kappa}) .
```

When using the powered exponential correlation function, note that $0 < \kappa <= 2$.

Value

A value of the correlation.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
rhoMatern, rhoSph, U2Z, loc2U.
```

```
## Not run:
   rhoPowerExp(0.3, a=0.1, k=1)
## End(Not run)
```

rhoSph 33

rhoSph

Spherical Correlation Function

Description

This function calculates the spherical correlation.

Usage

```
rhoSph(u, a, k=NULL)
```

Arguments

u a value which indicates the distance

a value which indicates the scale parameter, ϕ

k useless (it is kept here only in the purpose of maintaining consistent argument

format to other corrlelation functions)

Details

```
The function is \rho(u) = 1 - 1.5 * (u/\phi) + 0.5 * (-u/\phi)^3.
```

Value

A value of the correlation.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
rhoPowerExp, rhoMatern, U2Z, loc2U.
```

```
## Not run:
    rhoSph(0.1, a=0.2)
## End(Not run)
```

Rongelap Rongelap

Rongelap	Data Set of Rongelap Island
----------	-----------------------------

Description

This data set contains the Rongelap data.

Usage

```
data(Rongelap)
```

Details

The data were collected from Rongelap Island, the principal island of Rongelap Atoll in the South Pacific, which forms part of the Marshall Islands. U.S. nuclear weapon testing program generated heavy fallout over the island in the 1950s and it has been uninhabited since 1985. Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998). Model based geostatistics (with discussion). Applied Statistics, 47, 299-350.

Value

A list with 4 elements:

coords a 157×2 matrix which indicates the coordinates of 157 sampled locations

data a vector of length 157 indicates the counts of photo emission for 157 sampled

locations

units.m a vector of length 157 indicates the time (in seconds) over which the counts was

accumulated

borders a matrix containing the boundary information of Rongelap island

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
plotData.
```

```
## Not run:
data(Rongelap)
str(Rongelap)
plotDataBD(Rongelap$borders, Rongelap$data, Rongelap$coords)
## End(Not run)
```

runMCMC 35

runMCMC	Perform Robust MCMC Algorithms for GLSM
---------	---

Description

This function performs robust MCMC algorithms for generalized linear spatial models and generates posterior samples for latent variables and hyper-parameters.

Usage

Arguments

Υ	a vector of length n which indicates the response variables
L	a vector of length n; it indicates the time duration during which the Poisson counts are accumulated, or the total number of trials for Binomial response; if 0 is found in the vector, 1 will be used to replace all the values in the vector
loc	a $n \times 2$ matrix which indicates the coordinates of locations
Χ	a $n \times p$ covariate matrix; the default value "NULL" indicates no covariate
run	the number of iterations
run.S	the number of internal iterations for latern variables
rho.family	take the value of "rhoPowerExp", "rhoMatern", or "rhoSph" which indicates the powered exponential, Matern, or Spherical correlation function is used
Y.family	take the value of "Poisson" or "Binomial" which indicates Poisson or Binomial distribution for response variables
priorSigma	the prior distribution for σ , the options include "Halft" (positive-truncated t distribution), "InvGamma" (inverse gamma distribution), and "Reciprocal" (reciprocal distribution)
parSigma	the parameters for the prior distribution of σ : when priorSigma = "Halft" the first parameter is scale and the second is degree of freedom; when priorSigma = "InvGamma" the first parameter is shape and the second is scale; when priorSigma = "Reciprocal" both parameters are ignored
ifkappa	take zero or non-zero value which indicates whether κ should be sampled
scales	a vector which indicates the tuning parameters for $(S,\beta,\sigma,\phi,\kappa)$ respectively
phi.bound	the upper and lower bound for ϕ
initials	a list which indicates the initial values for $(\beta, \sigma, \phi, \kappa)$ respectively

36 runMCMC

MCMCinput	a list of alternative settings; usually the result from MCMCinput function
partial	a logical input which indicates whether partial posterior sampling should be used; only works for Y.family = "Poisson"
famT	take the value of 1, 2, or 3 which indicates the type of partial posterior sampling: 1 means "mean" diagnostic statistic is used, 2 means "maximum", and 3 means "minimum"; ignored if partial=FALSE

Details

Group updating scheme, Langevin algorithms, and Data-based parameterization are applied to improve the robustness and efficiency of MCMC algorithms. The flat priors are used to guarantee an appropriate posterior. See my dissertation for more details.

During each iteration of Gibbs sampling process, the group of latent variables is updated "run.S" times to improve accuracy and reduce autocorrelations.

Value

A list with elements:

```
S.posterior a n \times run matrix containing the posterior samples for latent variables m.posterior a (p+1) \times run matrix (in case of p covariate variables) or a vector with length "run" (no covariate case), containing the posterior samples for \beta s.posterior a vector with length "run" containing the posterior samples for \sigma a vector with length "run" containing the posterior samples for \phi a vector with length "run" containing the posterior samples for \kappa in the case that "ifkappa" is set to non-zero value a vector which indicates the acceptance rates
```

Author(s)

```
Liang Jing ljing918@gmail.com>
```

See Also

```
MCMCinput, runMCMC.multiChain, runMCMC.sf.
```

runMCMC.multiChain 37

```
phi.bound=c(0.005, 1),
    initials=list(c(-1), 1, 0.1, 1) )
res <- runMCMC(Y, L=L, loc=loc, X=NULL, MCMCinput = input.Weed )
## End(Not run)</pre>
```

runMCMC.multiChain

Perform Robust MCMC Algorithms for GLSM in Parallel

Description

This function performs robust MCMC algorithms in a parallel way for generalized linear spatial models and generates posterior samples for latent variables and hyper-parameters.

Usage

Arguments

Υ	a vector of length n which indicates the response variables
L	a vector of length n; it indicates the time duration during which the Poisson counts are accumulated, or the total number of trials for Binomial response; if 0 is found in the vector, 1 will be used to replace all the values in the vector
loc	a $n \times 2$ matrix which indicates the coordinates of locations
X	a $n \times p$ covariate matrix; the default value "NULL" indicates no covariate
run	the number of iterations
run.S	the number of internal iterations for latern variables
rho.family	take the value of "rhoPowerExp", "rhoMatern", or "rhoSph" which indicates the powered exponential, Matern, or Spherical correlation function is used
Y.family	take the value of "Poisson" or "Binomial" which indicates Poisson or Binomial distribution for response variables
priorSigma	the prior distribution for σ , the options include "Halft" (positive-truncated t distribution), "InvGamma" (inverse gamma distribution), and "Reciprocal" (reciprocal distribution)
parSigma	the parameters for the prior distribution of σ : when priorSigma = "Halft" the first parameter is scale and the second is degree of freedom; when priorSigma = "InvGamma" the first parameter is shape and the second is scale; when priorSigma = "Reciprocal" both parameters are ignored

38 runMCMC.multiChain

ifkappa	take zero or non-zero value which indicates whether κ should be sampled
scales	a vector which indicates the tuning parameters for $(S,\beta,\sigma,\phi,\kappa)$ respectively
phi.bound	the upper and lower bound for ϕ
initials	a list which indicates the initial values for $(\beta,\sigma,\phi,\kappa)$ respectively
MCMCinput	a list of alternative settings
partial	a logical input which indicats whether partial posterior sampling should be used; only works for Y.family = "Poisson"
famT	take the value of 1, 2, or 3 which indicates the type of partial posterior sampling: 1 means "mean" diagnostic statistic is used, 2 means "maximum", and 3 means "minimum"; ignored if partial=FALSE
n.chn	the number of Markov chain sets that will be generated in parallel
n.cores	the number of CPUs that will be used to generate parallel Markov chains

Details

Essentially, this function runs runMCMC function simultaneously on different CPUs (if there are more than one CPU available) with different initial values. In the case the number of available CPUs is less than "n.chn", Markov chains will be put in a queue.

This function performs parallel computing with the help of {multicore} package. Be aware that {multicore} package currently is not available in Windows (so use runMCMC.sf instead).

Value

A list of length "n.chn" containing the result of each Markov chain. Each element is a list with elements:

S.posterior	a $n \times run$ matrix containing the posterior samples for latent variables
m.posterior	a $(p+1) \times run$ matrix (in case of p covariate variables) or a vector with length "run" (no covariate case), containing the posterior samples for β
s.posterior	a vector with length "run" containing the posterior samples for $\boldsymbol{\sigma}$
a.posterior	a vector with length "run" containing the posterior samples for $\boldsymbol{\phi}$
k.posterior	a vector with length "run" containing the posterior samples for κ in the case that "ifkappa" is set to non-zero value
AccRate	a vector which indicates the acceptance rates

Author(s)

Liang Jing 1jing918@gmail.com>

See Also

MCMCinput, runMCMC, runMCMC.sf.

runMCMC.sf 39

Examples

```
## Not run:
 require(multicore)
 data(datWeed)
 Y \leftarrow Weed[,3]
 loc <- unifLoc(Weed[,1:2])</pre>
 L <- rep(1, length(Y))
 input.Weed <- MCMCinput( run=1000, run.S=10, rho.family="rhoPowerExp",</pre>
          Y.family = "Poisson",
          priorSigma = "Halft", parSigma = c(1, 1),
          ifkappa=0,
          scales=c(0.5, 3.5, 0.9, 0.6, 0.5),
          phi.bound=c(0.005, 1),
          initials=list(c(-1), 1, 0.1, 1))
 res.prl <- runMCMC.multiChain(Y, L=L, loc=loc, X=NULL,</pre>
          MCMCinput = input.Weed, n.chn = 4, n.cores = 4)
## End(Not run)
```

runMCMC.sf

Perform Robust MCMC Algorithms for GLSM in Parallel

Description

This function performs robust MCMC algorithms in a parallel way for generalized linear spatial models and generates posterior samples for latent variables and hyper-parameters.

Usage

```
runMCMC.sf(Y, L = 0, loc, X = NULL, run = 200, run.S = 1,
       rho.family = "rhoPowerExp", Y.family = "Poisson",
       priorSigma = "Halft", parSigma = c(1, 1), ifkappa = 0,
       scales = c(0.5, 1.65^2 + 0.8, 0.8, 0.7, 0.15),
       phi.bound = c(0.005, 1), initials = list(c(1), 1.5, 0.2, 1),
       MCMCinput = NULL, partial = FALSE, famT = 1,
       n.chn = 2, n.cores = getOption("cores"), cluster.type="SOCK")
```

Arguments

Υ	a vector of length n which indicates the response variables	
L	a vector of length n; it indicates the time duration during which the Poisson counts are accumulated, or the total number of trials for Binomial response; if 0 is found in the vector, 1 will be used to replace all the values in the vector	
loc	a $n \times 2$ matrix which indicates the coordinates of locations	
Χ	a $n \times p$ covariate matrix; the default value "NULL" indicates no covariate	
run	the number of iterations	
run.S	the number of internal iterations for latern variables	

40 runMCMC.sf

rho.family	take the value of "rhoPowerExp", "rhoMatern", or "rhoSph" which indicates the powered exponential, Matern, or Spherical correlation function is used
Y.family	take the value of "Poisson" or "Binomial" which indicates Poisson or Binomial distribution for response variables
priorSigma	the prior distribution for σ , the options include "Halft" (positive-truncated t distribution), "InvGamma" (inverse gamma distribution), and "Reciprocal" (reciprocal distribution)
parSigma	the parameters for the prior distribution of σ : when priorSigma = "Halft" the first parameter is scale and the second is degree of freedom; when priorSigma = "InvGamma" the first parameter is shape and the second is scale; when priorSigma = "Reciprocal" both parameters are ignored
ifkappa	take zero or non-zero value which indicates whether κ should be sampled
scales	a vector which indicates the tuning parameters for $(S,\beta,\sigma,\phi,\kappa)$ respectively
phi.bound	the upper and lower bound for ϕ
initials	a list which indicates the initial values for $(\beta, \sigma, \phi, \kappa)$ respectively
MCMCinput	a list of alternative settings
partial	a logical input which indicats whether partial posterior sampling should be used; only works for Y.family = "Poisson"
famT	take the value of 1, 2, or 3 which indicates the type of partial posterior sampling: 1 means "mean" diagnostic statistic is used, 2 means "maximum", and 3 means "minimum"; ignored if partial=FALSE
n.chn	the number of Markov chain sets that will be generated in parallel
n.cores	the number of CPUs that will be used to generate parallel Markov chains
cluster.type	type of cluster to be used for parallel computing; can be "SOCK", "MPI", "PVM", or "NWS" $$

Details

Essentially, this function runs runMCMC function simultaneously on different CPUs (if there are more than one CPU available) with different initial values. In the case the number of available CPUs is less than "n.chn", Markov chains will be put in a queue.

This function performs parallel computing with the help of {snow} and {snowfall} packages.

Value

A list of length "n.chn" containing the result of each Markov chain. Each element is a list with elements:

S.posterior	a $n \times run$ matrix containing the posterior samples for latent variables	
m.posterior	a $(p+1) \times run$ matrix (in case of p covariate variables) or a vector with length "run" (no covariate case), containing the posterior samples for β	
s.posterior	a vector with length "run" containing the posterior samples for σ	
a.posterior	a vector with length "run" containing the posterior samples for ϕ	
k.posterior	a vector with length "run" containing the posterior samples for κ in the case that "ifkappa" is set to non-zero value	
AccRate	a vector which indicates the acceptance rates	

simData 41

Author(s)

```
Liang Jing 1jing918@gmail.com>
```

See Also

MCMCinput, runMCMC, runMCMC.multiChain.

Examples

```
## Not run:
 require(snowfall)
 data(datWeed)
 Y <- Weed[,3]
 loc <- unifLoc(Weed[,1:2])</pre>
 L <- rep(1, length(Y))
 input.Weed <- MCMCinput( run=1000, run.S=10, rho.family="rhoPowerExp",</pre>
          Y.family = "Poisson",
          priorSigma = "Halft", parSigma = c(1, 1),
          ifkappa=0,
          scales=c(0.5, 3.5, 0.9, 0.6, 0.5),
          phi.bound=c(0.005, 1),
          initials=list(c(-1), 1, 0.1, 1) )
 res.prl <- runMCMC.sf(Y, L=L, loc=loc, X=NULL,</pre>
          MCMCinput = input.Weed, n.chn = 4, n.cores = 4, cluster.type="SOCK")
## End(Not run)
```

simData

Simulate Data Set from Generalized Linear Spatial Model on Given Locations

Description

This function simulates a data set on given locations for Poisson Log-normal spatial model or Binomial Logistic-normal spatial model.

Usage

Arguments

loc	a $n \times 2$ matrix which indicates the coordinates of given locations	
L	a vector of length n; it indicates the time duration during which the Poisson counts are accumulated, or the total number of trials for Binomial response; if 0	
	is found in the vector, 1 will be used to replace all the values in the vector	
Χ	a $n \times p$ covariate matrix; the default value "NULL" indicates no covariate	

beta a vector of length (p+1) that indicates the coefficients cov.par a vector of length 3 that indicates the value of (σ,ϕ,κ)

 ${\tt rho.family} \qquad {\tt take \ the \ value \ of \ "rhoPowerExp", \ "rhoMatern", or \ "rhoSph" \ which \ indicates}$

the powered exponential, Matern, or Spherical correlation function is used

Y. family take the value of "Poisson" or "Binomial" which indicates Poisson or Bino-

mial distribution for response variables

Details

When using the powered exponential correlation function, note that $0 < \kappa <= 2$.

Value

A list with two elements:

data a vector indicates the response variables latent a vector indicates the latent variables

Author(s)

```
Liang Jing ljing918@gmail.com>
```

See Also

```
locCircle, locGrid, locSquad, simData, plotData.
```

Examples

TexasCounty.boundary Data Set of Texas County Boundries

Description

This data set contains the boundary information for all Texas countries.

Usage

```
data(TexasCounty_boundary)
```

TexasCounty.center 43

Value

A list with 254 elements each of which contains the boundary information for one county.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
plotDataBD, TexasCounty.center, TexasCounty.population.
```

Examples

```
## Not run:
data(TexasCounty_boundary)
length(TexasCounty.boundary); names(TexasCounty.boundary)
plotDataBD(TexasCounty.boundary, xlab = "Longitude", ylab = "Latitude")
text(TexasCounty.center[,2:3], names(TexasCounty.boundary), cex=0.4)
## End(Not run)
```

TexasCounty.center

Data Set of Texas County Centers

Description

This data set contains the locations of centers for all Texas countries.

Usage

```
data(TexasCounty_center)
```

Value

A data.frame with 254 observations and 3 variables.

Author(s)

```
Liang Jing 1jing918@gmail.com>
```

See Also

 ${\tt TexasCounty.boundary, TexasCounty.population.}$

Examples

```
## Not run:
data(TexasCounty_center)
str(TexasCounty.center)
plotDataBD(TexasCounty.boundary)
points(TexasCounty.center[,2:3], col=2, pch=3)
## End(Not run)
```

TexasCounty.population

Data Set of Texas County Population

Description

This data set contains the population information for all Texas countries.

Usage

```
data(TexasCounty_population)
```

Details

Year: 2009

Source: U.S. Census Bureau, Small Area Estimates Branch, Poverty and Median Income Estimates

Value

A data frame with 254 observations and 3 variables.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

TexasCounty.boundary, TexasCounty.center.

```
## Not run:
data(TexasCounty_population)
str(TexasCounty.population)
## End(Not run)
```

tranR 45

tranR

Calculate Transformed Residuals for Observed Data

Description

This function approximates transformed residuals for the observed data by using reference data.

Usage

```
tranR(Y.obs, Y.rep, discrete = FALSE)
```

Arguments

Y. obs a vector which indicates the observed data set
 Y. rep a matrix which indicates the reference data sets
 discrete a logical value which indicates if the distribution of response variable is discrete

Value

A vector of transformed residuals.

Author(s)

```
Liang Jing <1jing918@gmail.com>
```

See Also

```
cdfU, plot_etran, e2dist.
```

```
## Not run:
Yrep <- repYeb(N.sim=2000, loc, L, beta = 5, sigma = 1, phi = 0.1)
tranR(Y.obs, Y.rep)
## End(Not run)</pre>
```

46 U2Z

U2Z

Convert Distance Matrix to Correlation Matrix

Description

This function converts the distance matrix to correlation matrix.

Usage

```
U2Z(U, cov.par, rho.family = "rhoPowerExp")
```

Arguments

U a $n \times n$ matrix which indicates the distance between locations

cov.par a vector of length 3 that indicates the value of (σ, ϕ, κ)

rho.family take the value of "rhoPowerExp", "rhoMatern", or "rhoSph" which indicates

the powered exponential, Matern, or Spherical correlation function is used

Details

When using the powered exponential correlation function, note that $0 < \kappa <= 2$.

Value

A $n \times n$ matrix with the element e_{ij} indicating the correlation between variables on the ith and jth locations.

Author(s)

```
Liang Jing ljing918@gmail.com>
```

See Also

loc2U, rhoPowerExp, rhoMatern.

```
## Not run:
    loc <- locGrid(1, 2, 10, 5)
    U <- loc2U(loc)
    Z <- U2Z(U, cov.par=c(0.5, 0.1, 1))
## End(Not run)</pre>
```

unifLoc 47

unifLoc

Scale Locations into A Unit Square

Description

This function scales the coordinates of original locations to fit into a unit square.

Usage

```
unifLoc(loc, length=1)
```

Arguments

loc a matrix of $n \times 2$ which indicates the x-y coordinates of the original locations length the edge length of the square

Value

A matrix of $n \times 2$ which indicates the x-y coordinates of scaled locations.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

```
locCircle, locGrid, locSquad.
```

Examples

```
## Not run:
  loc <- locGrid(1, 2, 10, 5)
  plot(unifLoc(loc, length=1))
## End(Not run)</pre>
```

Weed

Weed Data

Description

This data set contains the Weed data set.

Usage

```
data(Weed)
```

48 Weed

Details

The Weed data were collected at the Bjertorp farm in the south-west of Sweden. Weed counts of non-crop plants were observed at different locations, and camera recorded images were used to estimate the counts with the help of certain image analysis algorithm. Guillot, G., Loren, N., and Rudemo, M. (2009). Spatial prediction of weed intensities from exact count data and image-based estimates. Journal of Applied Statistics, 58, Part 4, 525-542.

Value

A data.frame with 100 observations and 4 variables.

Author(s)

```
Liang Jing <ljing918@gmail.com>
```

See Also

```
plotData.
```

Index

*Topic Bayesian Model Checking	runMCMC.multiChain, 37
BMCT, 5	runMCMC.sf, 39
plot_pRPS, 24	*Topic Transformed Residual
pRPS, 27	Checking
*Topic Correlation	baseline.dist,3
rhoMatern, 31	baseline.parallel,4
rhoPowerExp, 32	cdfU, 6
rhoSph, 33	d.base, 8
U2Z, 46	e2dist,8
*Topic Data Simulation	plot_baseline, 22
repYeb, 28	plot_etran,23
repYpost, 29	p0ne, 25
simData, 41	tranR, 45
*Topic Data	1 1 1 1 2 4 0 0 22 25
Earthquakes, 9	baseline.dist, 3, 4, 8, 9, 22, 25
plotData, 21	baseline.parallel, 3, 4
Rhizoc, 30	BMCT, 5, 24, 28
Rongelap, 34	cdfU, 6, 45
TexasCounty.boundary, 42	cutChain, 7, 19, 20
TexasCounty.center, 43	, ., ., .,
TexasCounty.population, 44	d.base, 3, 4, 8, 22
Weed, 47	24
*Topic Location	e2dist, 8, 22, 25, 45
loc2U, 11	Earthquakes, 9
loc2U_R, 12	findMode, 10
locCircle, 13	1 21141.1040, 20
locGrid, 14	helloWorld, 11
locSquad, 15	
locUloc, 16	loc2U, 11, <i>12</i> , <i>16</i> , <i>17</i> , <i>31–33</i> , <i>46</i>
locUloc_R, 17	loc2U_R, 12, 12
unifLoc, 47	locCircle, 12, 13, 14–17, 21, 42, 47
*Topic MCMC	locGrid, 12, 13, 14, 15–17, 21, 42, 47
cutChain, 7	locSquad, 12–14, 15, 16, 17, 21, 42, 47
findMode, 10	locUloc, 16, 17
MCMCinput, 18	locUloc_R, 17
mixChain, 19	MCMCinput, 18, 36, 38, 41
plotACF, 20	mixChain, 7, 19
predY, 26	, , , .
runMCMC, 35	plot_baseline, 3 , 4 , 8 , 22

50 INDEX

```
plot_etran, 23, 45
plot_pRPS, 5, 24, 25, 28
plotACF, 20
plotData, 10, 13-15, 21, 30, 34, 42, 48
plotDataBD, 21, 43
p0ne, 3, 4, 8, 9, 25
predY, 26
pRPS, 5, 24, 25, 27
repYeb, 5, 28, 30
repYpost, 5, 29, 29
Rhizoc, 30
rhoMatern, 31, 32, 33, 46
rhoPowerExp, 31, 32, 33, 46
rhoSph, 31, 32, 33
Rongelap, 34
runMCMC, 7, 19, 27, 35, 38, 40, 41
runMCMC.multiChain, 7, 19, 20, 27, 36, 37, 41
runMCMC.sf, 19, 36, 38, 39
simData, 13-15, 21, 29, 41, 42
TexasCounty.boundary, 42, 43, 44
TexasCounty.center, 43, 43, 44
TexasCounty.population, 43, 44
tranR, 6, 9, 23, 45
U2Z, 31–33, 46
unifLoc, 47
Weed, 47
```