Translation rules: Event-B to Eiffel

V. Rivera

November 21, 2016

1 The translation

EB2Eif implements the mapping δ : EventB \to Eiffel is a transition step to translate Event-B constructs to Eiffel.

 ξ translates Event-B Expressions or Predicates to Eiffel.

 τ translates Event-B variable's type to Eiffel.

Translating EventB machines (Machine-rule)

Translation rule for Event-B machine M to Eiffel:

```
\tau(v) = \text{Type} \quad \xi(I(s,c,v)) = \text{Inv} \quad \delta(\text{events } e) = \text{E}
\delta ({\sf event} \; initialisation \; {\sf then} \; A(s,c,v) \; {\sf end}) = {\sf Init}
                                                                 - (Machine-rule)
   \delta(\mathsf{machine}\ M\ \mathsf{sees}\ C
          \mathsf{variables}\ v
          invariants label\_inv: I(s, c, v)
          event initialisation then A(s,c,v) end
           \mathsf{events}\; e
       end) =
   class M
   create initialisation
   feature -- Initialisation
       Init
   feature -- Events
   feature -- Access
      ctx : CONSTANTS

    translation of Event-B constants

       v : Type
               — variable comment
   invariant
       label_inv: Inv
   end
```

Translating EventB Contexts (Context-rule)

Translation rule for Event-B context ${\cal C}$ to Eiffel:

```
\delta(\operatorname{axioms} X(s,c)) = \mathbf{X}
      	au(c) = 	ext{Type} (Context-rule)
\delta({\sf Context}\ C
        \mathsf{constant}\; c
        \mathsf{set}\; S
        \mathsf{Axioms}\ X(s,c)
    end) =
class CONSTANTS
\mathbf{feature} \ -- \ \mathsf{Constants}
    c: Type
             -- 'c' comment
        once
            create Type Result
        \mathbf{end}
invariant
    Χ
\mathbf{end}
```

Translating EventB carrier sets (CSet-rule)

Translation rule for Event-B carrier set S to Eiffel. In EventB, carrier sets represent a new type defined by the user. It is translated as an Eiffel class:

```
\tau(s) = Type
                                                 —— (CSet-rule)
                             \delta(\mathsf{Context}\ C
                                    \mathsf{constant}\; c
                                    \mathsf{set}\; S
                                    Axioms X(s,c)
                                 end) =
                                                         finite: BOOLEAN
class S
                                                                 -- FROM EBSET
inherit
   \mathsf{EBSET}[\mathtt{Type}]
                                                                Result := False
      export
                                                            end
          {NONE}
                                                         union (other: EBSET[Type]): EBSET[Type]
             singleton, from_set, card, partition,
             pow, pow1, min, max
                                                                 — FROM EBSET
      redefine
          has, is_empty, default_create, finite, union,
                                                                Result := Current
          intersection, difference, is_equal, partition
                                                            end
      end
                                                         intersection (other: EBSET[Type]): EBSET[Type]
create
                                                                 -- FROM EBSET
   default_create
feature -- Default Creation
                                                                Result := Current
   default_create
                                                            end
      do
                                                         difference (other: EBSET[Type]): EBSET[Type]
          create elements
                                                                 -- FROM EBSET
          is\_user\_type\_def := True
      end
                                                            do
                                                                Result := Current
feature -- Redefinition
                                                            end
   has (v: Type): BOOLEAN
           -- FROM EBSET
                                                         is_equal (other: Type): BOOLEAN
                                                                 -- FROM EBSET
          Result := True
      end
                                                                Result := True
                                                            end
   is\_empty: BOOLEAN\\
           -- FROM EBSET
                                                         partition (sets: ARRAY[Type]): BOOLEAN
                                                                 -- FROM EBSET
          \mathbf{Result} := \mathbf{False}
                                                            do
      end
                                                                Result := False
```

end

end

Translating initialisation EventB event (init-rule)

Translation rule for Event-B initialisation event initialisation to Eiffel:

```
\xi(A(s,c,v)) = \mathbf{A} \delta(\text{event } initialisation \\ \text{then} \\ label: \ A(s,c,v) \\ \text{end}) = \text{initialisation} \\ -- \text{ evt comment} \\ \text{do} \\ \text{create } \text{ctx} \\ \text{v.assigns}(\mathbf{A}) \\ \text{ensure} \\ label: \ \text{v.is\_equal}(\text{old } \mathbf{A}) \\ \text{end}
```

Translating EventB events (E-rule)

Translation rule for Event-B events to Eiffel:

```
\xi(G(s,c,v,x)) = G \quad \xi(A(s,c,v,x)) = A
\tau(x) = Type
 \delta({\rm event}\ evt
        any
        where
           label\_guard: G(s, c, v, x)
           label\_action: A(s, c, v, x)
        end) =
     evt(x: Type)
            -- 'evt' comment
        require
           label_guard: G
        do
            v.assigns(A)
        ensure
            label_action: v.equals(old A)
        end
```

2 Appendix A: The EventB mathematical language translation to Eiffel

In the following sections, the following predicates, expressions, variables are given:

\mathbf{EventB}	Eiffel translation	
Predicate	P	EBPRED p
Predicate	Q	EBPRED q
Expression	E	EBEXP e
Expression	F	EBEXP f
Set	S	$EBSET[\tau(S)]$ s
Set	T	$EBSET[\tau(T)] t$

2.1 The propositional Language

Most of the EventB propositional language is translated to Eiffel constructs as shown in the following table:

EventB constructs	EventB symbol	Eiffel translation
falsity	Ι.	False
	T	True
negation	_	not
conjunction	\land	and
disjunction	V	or
implication	\Rightarrow	implies
bi-implication	$p \Leftrightarrow q$	(p implies q) and (q implies p)

2.2 The predicate Language

EventB constructs	EventB symbol	Eiffel translation
Universally Quantified Predicate	$\forall var_list \cdot p$	(create var_list).for_all(p)
Existentially Quantified Predicate	$\exists var_list \cdot p$	(create var_list).exists(p)
Paired Expression	$E \mapsto F$	create {EBPAIR[$\tau(E)$, $\tau(F)$]}.make (e,f)
List of variables	var_list	
Equality	E = F	e.equals (f)
Equality	$E \neq F$	not e.equals (f)

2.3 The set-theoretic Language

EventB constructs	EventB symbol	Eiffel translation
Membership	$E \in S$	s.has (e)
Cartesian Product	$S \times T$	create {EBREL[$\tau(S)$, $\tau(T)$]}.cartesian_prod (s, t)
Power set	$\mathbb{P}(S)$	s.power_set
Set Comprehension	$\{x \cdot P \mid E\}$	
Set Inclusion	$S \subseteq T$	s.is_subset (t)
Set Union	$S \cup T$	s.union (t)
Set Intersection	$S \cap T$	s.intersection (t)
Set Difference	$S \setminus T$	s.difference (t)
Empty Set	Ø	<pre>create {EBSET}.empty_set</pre>
Generalised Union	$E \in union(S)$	
Quantified Union	$E \in \bigcup x \cdot P \mid T$	
Generalised Intersection	$E \in inter(S)$	
Quantified Intersection	$E \in \bigcap x \cdot P \mid T$	

The following, shows the translation of a series of binary relation operators: the set of binary relations built on two sets, the domain and range of a binary relation, and then various sets of binary relations. This defines a binary relation in Eiffel

EventB symbol	Eiffel translation
$r \in S \xrightarrow{*} T$	r: EBREL[au(s), au(t)]
	create r.default_create (s, t)

Where $\stackrel{*}{\to} \in \{\leftrightarrow, \leftrightarrow, \leftrightarrow, \leftrightarrow, \leftrightarrow, \rightarrow, \rightarrow, \rightarrow, \rightarrow, \rightarrow, \rightarrow, \rightarrow, \rightarrow, \rightarrow\}$. Additionally constraints are added as follows:

EventB constructs	EventB symbol	Eiffel translation
Set of all total relations	$r \in S \Leftrightarrow T$	r.is_total_rel
Set of all surjective relations	$r \in S \Leftrightarrow T$	r.is_surj_rel
Set of all total and surjective relations	$r \in S \Leftrightarrow T$	r.is_tsurj_rel
Set of all partial functions	$r \in S \rightarrow T$	r.is_partial_func
Set of all total functions	$r \in S \to T$	r.is_total_func
Set of all partial injections	$r \in S \rightarrowtail T$	r.is_pinj_func
Set of all total injections	$r \in S \rightarrow T$	r.is_tinj_func
Set of all partial surjections	$r \in S \twoheadrightarrow T$	r.is_psurj_func
Set of all total surjections	$r \in S \twoheadrightarrow T$	r.is_tsurj_func
Set of all bijections	$r \in S \rightarrowtail T$	r.is_biject_func

Operations on relations and functions:

EventB constructs	EventB symbol	Eiffel translation
Domain	dom(r)	r.domain
Range	ran(r)	r.range
Converse	r^{-1}	r.converse
Domain Restriction	$S \lhd r$	r.domain_restriction
Range Restriction	$r \triangleright T$	r.range_restriction
Domain Subtraction	$S \triangleleft r$	r.domain_subtraction
Range Subtraction	$r \triangleright T$	r.range_subtraction
Relational Image	r[U]	r.rel_image (u)
Forward Composition	$\int f;g$	create {EBREL_OPER[τ (f.domain), τ (g.range)]} .forward (f, g)
Backward Composition	$\int f \circ g$	create {EBREL_OPER[τ (g.range), τ (f.domain)]} .backward (f, g
Overriding	$f \Leftrightarrow g$	create {EBREL_OPER[τ (f.domain), τ (f.range)]} .override (f, g)
Direct Product	$\mid f \otimes g$	create {EBREL_OPER[τ (f.domain),
		EBREL[τ (f.range), τ (g.range)]]}.direct_product (f.
Parallel Product	$\mid f \parallel g$	create {EBREL_OPER
		[EBREL[τ (f.domain), τ (g.domain)], EBREL[τ (f.range), τ (g.range)]]}.parallel (f,
Identity	ID	
First Projection	$\operatorname{prj}_1 P$	p.prj1
Second Projection	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	p.prj2
Lambda Expression	$\begin{vmatrix} \rho_{1,2} \\ \lambda L \cdot P \mid E \end{vmatrix}$	
Function Invocation	f(E)	