Student Name: Raghav Yadav

Branch: CSE Semester: 5

Subject Name: Advanced Database

and Management System

Experiment 2

UID: 23BCS11935

Section/Group: 23BCS_KRG-2/A
Date of Performance:31/07/25

Subject Code: 23CSP-333

1. Aim:

You are a Database Engineer at TalentTree Inc., an enterprise HR analytics platform that stores employee data, including their reporting relationships. The company maintains a centralized Employee relation that holds:

Each Employee's ID, name, department, and manager ID (who is employee in the same table).

Your task is to generate a report that maps employees to their respective managers showing:

- The employee's name and department
- The manager's name and department (if applicable)
- This will help the HR department visualize the internal reporting hierarchy.
- 2. Tools Used: SQL Server Management Studio

3. Code:

-- HEADING: ORGANIZATIONAL HIERARCHY EXFLORER (MEDIUM)

```
-- create
CNEATE TABLE EMPLOYEE (
empld int primary KEY,
name varchar(15),
dept varchar(10),
managerId int
);

INSERT INTO EMPLOYEE(empld,name,dept,managerId)
VALUES (1, 'Alice', 'HR',null),
(2, 'Bob', 'Finance',1),
(3, 'Charlie', 'IT',1),
(4, 'David', 'Finance',2),
```

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

(5, 'Eve', 'IT',3), (6, 'Frank', 'HR',1);

-- fetch

SELECT * FROM EMPLOYEE;

ALTER TABLE EMPLOYEE

ADD constraint FK_EMPLoYEE FOREIGN KEY(managerId)

references EMPLOYEE(empld)

select E1.name as[EMPLOYEE_Name], E2.name

as[Manager_Name],E1.dept as[EMPLOYEE dept], E2.dept

as[Manager dept]

from EMPLOYEE as E1

Left Outer join

EMPLOYEE as E2

on E1.managerId=E2.empId

4. Output:

EMPLOYE	E_Name	Manager_Name	EMPLOYEE dept	Manager dept
Alice		NULL	HR	NULL
Bob		Alice	Finance	HR
Charlie		Alice	IT	HR
David		Bob	Finance	Finance
Eve		Charlie	IT	IT
Frank		Alice	HR	HR

empId	name	dept	managerId
1	Alice	HR	NULL
2	Bob	Finance	1
3	Charlie	IT	1
4	David	Finance	2
5	Eve	IT	3
6	Frank	HR	1

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

5. Learning Outcomes:

- Understand and implement self-joins to model hierarchy relationships within a single table (e.g, employees reporting to other employees).
- Construct relational queries to fetch meaningful information such as employee-manager relationships, including handling NULL values using LEFT JOIN.
- Design and populate tables using the CREATE TABLE and INSERT INTO statements for real-world hierarchical and time-series data scenarios.
- Perform multi-table joins to retrieve and match data across different datasets, such as actual vs requested values (e.g, NPV values for specific years).
- Handle missing data using functions like ISNULL() to substitute default values during join operations.
- Apply conditional joins involving multiple keys (e.g, joining on both ID and Year) to ensure accurate data mapping.
- Develop problem-solving approaches using SQL to derive insights from HR records and financial datasets in enterprise applications.