

Canadian Bioinformatics Workshops

Introduction to R Programming for Bioinformatics

Day 1- Module 1A: Inturoduction to R programming Language

Mohamed Helmy, PhD

Principal Scientist and Adjunct Professor Bioinformatics and Systems Biology Lab VIDO, University of Saskatchewan

6-7October 2025, VIDO, Saskatoon

Land Acknowledgement

"As we gather here today, we acknowledge we are on Treaty 6 Territory and the Homeland of the Métis. We pay our respect to the First Nations and Métis ancestors of this place and reaffirm our relationship with one another."

- University Council, University of Saskatchewan

CBW and CBH Open Contents

House Keeping Rules

Bathrooms

Coffee breaks

Lunches

Internet access

Workshop Objectives

By the end of this workshop, participants will be able to:

- Navigate the R environment: Install, load, and manage R packages.
- Apply core programming concepts: Variables, data structures, loops, and functions.
- Organize and manipulate data: Import, subset, reshape, and prepare datasets.
- Visualize biological data: Generate and customize plots for exploration and communication.
- Work with Bioconductor: Access and explore omic datasets using specialized data structures.
- Preprocess and analyze omics data: Perform normalization, basic visualization (PCA, heatmaps), and annotation.
- Build confidence in R for bioinformatics: Apply learned skills to real-world biological datasets.

Module 1: Getting to Know R

The environment, syntax, data types, and data handling

What is R?

 Open-source programming language for statistics, visualization, and bioinformatics

Widely used in biology, medicine, and data science

Supported by a large community and thousands of packages

• Free, cross-platform (Windows, Mac, Linux)

Integrated development environment (IDE)

- Execute both R and Python code
- Syntax highlighting and code completion
- Manage multiple projects

Another popular environment are Jupyter notebooks and Google CoLab:

R Studio

Source: RStudio IDE User Guide

Pane layout

First Steps in R

• We talk with R through a Syntax (grammar)

• It is as simple as using a Calculator

```
Source on Save Q > - | 1
2 # A simple calculation
3 2 + 3
4
5 # Calcualte the square root
6 sqrt(16)
```

 And we add comments to make our code easy to understand

Variables and Assignments

Variables are places to store Values

Values are assigned to Variable

The assignment in R is = or <- signs.

Scripts and Projects in RStudio

Scripts

- ○Save your code in .R files → easy to re-run and share
- Use comments (#) to explain steps

Projects

- Keep files, data, and scripts organized in one folder
- Makes your work reproducible

Workspaces

Save variables and reload sessions (.RData)

Basic Data Types in R

• **Numeric:** x <- 42

- Character (string): name <- "Alice", "Mike_123"
- Logical (TRUE/FALSE): flag <- TRUE, T
- Factor (categorical): group <- factor(c("control", "treated"))
- Date/Time: Sys.Date()

Data Structures in R

Vector: 1D collection of elements

Matrix: 2D numeric data

Dataframe: like a table with rows and columns

List: collection of different objects

Data Structures in R

• **Vector**: v <- c(1, 2, 3)

• **Matrix**: m <- matrix(1:6, nrow=2)

Dataframe: df <- data.frame(age=c(25,30), group=c("A","B"))

List: lst <- list(numbers=v, info=df)

Saving & Loading Work

- Save your script (.R file) to keep your code.
- Save your workspace (.RData) to reload objects later.
- Use save.image() and load() commands.
- Tip: Best practice is to save code, not just the workspace.

THANK YOU

