Unsupervised Learning VAE & GAN EADINGINDIA.A.

2 September 2023

leadingindia.ai A nationwide AI Skilling and Research Initiative

Applications of Unsupervised Learning

Clustering

Data Compression

Recommender System

Dimensionality Reduction

Data Generation

Discriminative Vs Generative Models

Discriminative Vs Generative Learning

- Discriminative models
- A discriminative model does not care how the data is generated.
 Here we just care about P(y|x).
- Example: Classifying whether image contains cat or not?

- Generative models
- Generative models describe how data is generated using probabilistic models. They predict P(y|x), the probability of y given x, calculating the P(x,y), the probability of x and y.
- Example: Generating a new cat image

Sampling New Data

Training data (e.g. 64x64x3≈12K dims)

Dimensions are large... then how?

Sampling New Data

Step 1: Train an autoencoder

Step 2: Input noise to Decoder

Autoencoder for Image Generation

- Lets imagine an autoencoder with two hidden nodes for MNIST
- Decoder can be used for generating new images if we give 2 numbers of input to it
- Each image in the dataset can be considered as a point in the 2dimensional latent space
- New data can be sampled by picking a new point from then 2D space where new digit will look as interpolation between the neighbourhood points

Autoencoder for Image Generation

From Autoencoder to Variational Autoencoder

- Autoencoders learn a "compressed representation" of input automatically by first compressing the input and decompressing it back
- AE has no control over the Latent activations of the network hence data generation becomes difficult
- Instead of learning a mapping function, Variational Auto Encoder learns the parameters
 of the probability distribution representing the data
- In VAE, we have the control over hidden activations because we keep in near the Unit Gaussian
- Add a Constraint in encoding network, that forces it to generate latent vector, that roughly follow the unit Gaussian distribution.
- This is the constraint that separates it with the standard auto encoder.
- For generation, it is easy now, sample a latent vector from unit Gaussian distribution, and pass it to the decoder. Decoder will generate the image for that latent vector.

Unit Gaussian Distribution

Loss Function

latent vector / variables

Generation Loss = Mean(Square(Generated Image – Real Image))

Latent Loss = KL-Divergence(Latent Variable, Unit Gaussian)

Loss = Generation Loss + Latent Loss

VAE Images

VAE for Music

Google use's Autoencoders for creating new music and sounds

MusicVAE

NSynth Super

Magenta Project https://magenta.tensorflow.org/

Generative Adversarial Network

- A Generator Model G learns to capture the data distribution
- A **Discriminator Model** D estimates the probability that a sample came from the data distribution rather than model distribution.

• This can be think of the minimax game between two networks Discriminator and

Generator vs Discriminator

Objective of the **Generator** is to **cheat** the **Discriminator** by simulating **Realistic** images

Objective of the **Discriminator** is to find out whether image is **Real** or **Fake**

Training a GAN

Pdata(x) - Distribution of real data

X - sample from pdata(x)

P(z) - distribution of generator

Z - sample from p(z)

G(z) - Generator Network

D(x) - Discriminator Network

Training a GAN

GANs objective is to solving a minimax problem

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

GAN Training Example

Recent GAN Applications

Anime Characters

CycleGAN

Image Super Resoultion

Image Inpainting

Pose Guided Person Image Generation

Recent GAN Applications

Fake Celebrities

Text to Image

Predicted Actual

Pix2Pix Next Frame Prediction

Emoji Generator

GANs for Image Super-resolution: SRGAN

- Generator: gets low-resolution image as input and super-resolution image as output
- Discriminator: aims to differentiate between high-resolution image vs super-resolution image

Architecture of SRGAN

GANs for Image Segmentation

- Recently GANs are highly applied for medical image segmentation
- Generator is a segmentation network where discriminator will predict whether it is real segmentation or generated from segmentation

Questions?

Thanks