Modele sieciowe

Badania operacyjne Wykład 6

Plan wykładu

- Zarządzanie złożonymi przedsięwzięciami
- Metoda ścieżki krytycznej
- Metoda PERT
- Projekty z ograniczonymi zasobami
- Modele z kontrolą czasu wykonania czynności

2016-06-12 2

Projekt

Projekt jest to jednorazowe niepowtarzalne przedsięwzięcie wieloczynnościowe o nietypowej strukturze i przebiegu, którego realizacja wymaga zwykle czasu oraz ograniczonych zasobów

(Neumann i in. 2002)

Obszary projektów

- produkcja oprogramowania,
- wdrażanie systemów informatycznych,
- procesy technicznego przygotowania produkcji,
- przedsięwzięcia badawczo-rozwojowe,
- modernizacja zakładów przemysłowych,
- duże przedsięwzięcia inwestycyjne,
- produkcja złożonego wyrobu na zamówienie,

Słynne projekty

Pocisk Polaris (Marynarka wojenna USA)

1958

CONCORDE

1964-1972

GIOTTO

(statek kosmiczny do obserwacji komety Halley'a)

1984

Sala koncertowa europejskiej stolicy kulturalnej w Porto (Portugalia) 2001

2016-06-12 5

Jak modelować projekty?

(Battersby 1967)

- Dyskretny i skończony zbiór czynności (zadań)
- Zbiór ograniczeń kolejnościowych
- Dyskretny i skończony zbiór atrybutów opisujących każdą czynność, takich jak:
 - czas realizacji,
 - koszt realizacji,
 - zapotrzebowanie na zasoby

Jak oceniać projekty?

- Dyskretny i skończony zbiór kryteriów, np.:
 - całkowity czas realizacji,
 - całkowity koszt realizacji,
 - ryzyko,
 - zaktualizowana wartość netto (NPV).

n – liczba zdarzeń w projekcie

G = (V, E) – graf zależności kolejnościowych

 p_{ij} – czas trwania czynności <i,j> i, j = 1, 2, ..., n

n – liczba czynności w projekcie

G = (V, E) – graf zależności kolejnościowych

 p_{ij} – czas trwania czynności <i,j> i, j = 1, 2, ..., n

- Sieć czynności jest to sieć, której graf przedstawia strukturę kolejności realizacji poszczególnych czynności projektu, a funkcje określone na zbiorze łuków i wierzchołków tego grafu reprezentują informacje o charakterze techniczno-ekonomicznym związane z realizacją projektu.
- Czynność <i,j> to czynność, której zdarzeniem początkowym jest zdarzenie i, końcowym – zdarzenie j.

Następstwo zdarzeń w sieci

- Zdarzenie o numerze k wystąpi, gdy zostanie zakończona realizacja wszystkich czynności, dla których k jest zdarzeniem końcowym.
- Rozpoczęcie czynności <i,j> jest możliwe, gdy wystąpi zdarzenie i.

Czynności $\langle i_1, j \rangle$, $\langle i_2, j \rangle$, $\langle i_3, j \rangle$ poprzedzają czynność $\langle j,k \rangle$.

Następstwo zdarzeń w sieci

Sieć czynności jako graf

- Sieć czynności jest grafem
 - unigrafem (między dowolną parą wierzchołków występuje co najwyżej jeden łuk),
 - spójnym,
 - skierowanym,
 - nie zawierającym pętli ani dróg cyklicznych,
 - ma jedno zdarzenie początkowe i jedno zdarzenie końcowe.

Sieć czynności jako graf

- Kolejność czynności w sieci wynika z ograniczeń modelowanego projektu. Mogą to być ograniczenia:
 - technologiczne,
 - o charakterze czasowym,
 - wynikające z niepodzielności i niesubstytucyjności zasobów,
 - o charakterze bilansowym.

wprowadzenie na rynek nowego wyrobu

< 1,3>	badanie popytu n	a wyroby
------------------	------------------	----------

- <1,2> nabycie surowców na prototypy
- <3,4> wyprodukowanie prototypów i ocena ich jakości
- <4,5> wybór opakowań
- <4,6> nabycie surowców do produkcji
- <5,9> nabycie opakowań
- <6,7> analiza kosztów produkcji
- <6,10> reklama i zbieranie zamówień
- <7,8> analiza ekonomicznych parametrów decyzji
- <8,9> proces produkcji wyrobu
- <9,10> pakowanie wyrobu gotowego
- <10,11> wysyłka do handlu

2016-06-12 16

<1,3> badanie popytu na wyroby
<1,2> nabycie surowców na prototypy
<3,4> wyprodukowanie prototypów i ocena ich jakości

<4,5> wybór opakowań

<4,6> nabycie surowców do produkcji

<5,9> nabycie opakowań

<6,7> analiza kosztów produkcji

<6,10> reklama i zbieranie zamówień

<7,8> analiza ekonomicznych parametrów decyzji

<8,9> proces produkcji wyrobu

<9,10> pakowanie wyrobu gotowego

<10,11> wysyłka do handlu

Analiza czasu realizacji projektu

Metoda ścieżki krytycznej – Critical Path Method (CPM)

Metoda PERT – Project Evaluation and Review Technique

Algorytm porządkowania warstwowego

- 1. Zbuduj binarną macierz przejść dla sieci czynności.
- 2. k:=0;
- 3. Do warstwy w_k zalicz zdarzenia odpowiadające zerowym kolumnom aktualnej macierzy przejść; k:=k+1;
- 4. Wykreśl z macierzy przejść zerowe kolumny oraz wiersze o tych samych numerach.
- 5. Jeżeli są jeszcze niewykreślone kolumny, to wróć do kroku 3 w przeciwnym razie stop.

Algorytm porządkowania warstwowego

- 1. Zbuduj binarną macierz przejść dla sieci czynności.
- 2. k:=0;
- Do warstwy w_k zalicz zdarzenia odpowiadające zerowym kolumnom aktualnej macierzy przejść; k:=k+1;
- 4. Wykreśl z macierzy przejść zerowe kolumny oraz wiersze o tych samych numerach.
- 5. Jeżeli są jeszcze niewykreślone kolumny, to wróć do kroku 3 w przeciwnym razie stop.

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6			1			

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6		1	1			

	1	2	3	4	5	6
1						
2			1			
3						
4						
5						
6		1	1			

	1	2	3	4	5	6
1						
2			1			
3	1					
4						
5						
6		1	1			

	1	2	3	4	5	6
1						
2	1		1			
3	1					
4						
5						
6		1	1			

	1	2	3	4	5	6
1						
2	1		1		1	
3	1					
4						
5						
6		1	1			

	1	2	3	4	5	6
1						
2	1		1		1	
3	1					
4						
5	1					
6		1	1			

	1	2	3	4	5	6
1				1		
2	1		1		1	
3	1					
4						
5	1					
6		1	1			

	1	2	3	4	5	6
1				1		
2	1		1		1	
3	1					
4						
5	1			1		
6		1	1			

Binarna macierz przejść									
	1	2	3	4	5	6			
1	0	0	0	1	0	0			
2	1	0	1	0	1	0			
3	1	0	0	0	0	0			
4	0	0	0	0	0	0			
5	1	0	0	1	0	0			
6	0	1	1	0	0	0			

Algorytm porządkowania warstwowego

- 1. Zbuduj binarną macierz przejść dla sieci czynności.
- 2. k:=0;
- 3. Do warstwy w_k zalicz zdarzenia odpowiadające zerowym kolumnom aktualnej macierzy przejść; k:=k+1;
- 4. Wykreśl z macierzy przejść zerowe kolumny oraz wiersze o tych samych numerach.
- 5. Jeżeli są jeszcze niewykreślone kolumny, to wróć do kroku 3 w przeciwnym razie stop.

2016-06-12 32

$$k = 0$$

$$W_0 = \{6\}$$

Binarna macierz przejść									
	1	2	3	4	5	6			
1	0	0	0	1	0	0			
2	1	0	1	0	1				
3	1	0	0	0	0				
4	0	0	0	0	0				
5	1	0	0	1	0	0			
6	0	1	1	0	0				

Algorytm porządkowania warstwowego

- 1. Zbuduj binarną macierz przejść dla sieci czynności.
- 2. k:=0;
- 3. Do warstwy w_k zalicz zdarzenia odpowiadające zerowym kolumnom aktualnej macierzy przejść; k:=k+1;
- 4. Wykreśl z macierzy przejść zerowe kolumny oraz wiersze o tych samych numerach.
- 5. Jeżeli są jeszcze niewykreślone kolumny, to wróć do kroku 3 w przeciwnym razie stop.

$$W_0 = \{6\}$$

k = 1

Binarna macierz przejść									
	1	2	3	4	5	6			
1	0	0	0	1	0	0			
2	1	0	1	0	1	0			
3	1	0	0	0	0	0			
4	0	0	0	0	0	0			
5	1	0	0	1	0	0			
-6	0	1	1	0	0				

Algorytm porządkowania warstwowego

- 1. Zbuduj binarną macierz przejść dla sieci czynności.
- 2. k:=0;
- 3. Do warstwy w_k zalicz zdarzenia odpowiadające zerowym kolumnom aktualnej macierzy przejść; k:=k+1;
- 4. Wykreśl z macierzy przejść zerowe kolumny oraz wiersze o tych samych numerach.
- 5. Jeżeli są jeszcze niewykreślone kolumny, to wróć do kroku 3 w przeciwnym razie stop.

2016-06-12 36

Algorytm porządkowania warstwowego

- 1. Zbuduj binarną macierz przejść dla sieci czynności.
- 2. k:=0;
- 3. Do warstwy w_k zalicz zdarzenia odpowiadające zerowym kolumnom aktualnej macierzy przejść; k:=k+1;
- 4. Wykreśl z macierzy przejść zerowe kolumny oraz wiersze o tych samych numerach.
- 5. Jeżeli są jeszcze niewykreślone kolumny, to wróć do kroku 3 w przeciwnym razie stop.

W_0	=	{6}
• • ()		(V)

$$k = 1$$
 $W_1 = \{2\}$

$$k = 2$$

Binarna macierz przejść						
	1	2	3	4	5	6
1	0		0	1	0	0
2	1		1	0	1	0
3	1		0	0	0	0
4	0		0	0	0	0
5	1		0	1	0	0
-6	0	1	1	0	0	

Algorytm porządkowania warstwowego

- 1. Zbuduj binarną macierz przejść dla sieci czynności.
- 2. k:=0;
- 3. Do warstwy w_k zalicz zdarzenia odpowiadające zerowym kolumnom aktualnej macierzy przejść; k:=k+1;
- 4. Wykreśl z macierzy przejść zerowe kolumny oraz wiersze o tych samych numerach.
- 5. Jeżeli są jeszcze niewykreślone kolumny, to wróć do kroku 3 w przeciwnym razie stop.

W_0	=	{6}
V V ()		101

$$W_1 = \{2\}$$

$$k = 2$$

Binarna macierz przejść						
	1	2	3	4	5	6
1	0	(0	1	0	0
2	1		1	0	1	
3	1	0	0	0	0	0
4	0	C	0	0	0	0
5	1	C	0	1	0	0
-6	0	-	1	0	0	

W_0	=	{6}
A A U	_	$\mathcal{I} \cup \mathcal{I}$

$$W_1 = \{2\}$$

$$k = 2$$
 $W_2 = \{3, 5\}$

$$k = 3$$

Binarna macierz przejść						
	1	2	3	4	5	6
1	0	0	0	1	0	0
	4	-	4		4	
	ı	· ·	ı	U	ı	Ψ
3	1	(0	0	0	0
4	0	(0		0
5	1	C		1		0
			4			
0	Ü			0	O	4

k = 3

$$W_1 = \{2\}$$

$$W_2 = \{3, 5\}$$

$$k = 3$$

$$k = 4$$

$$W_3 = \{1\}$$

$$W_4 = \{4\}$$

Binarna macierz przejść

Algorytm porządkowania warstwowego

- 1. Zbuduj binarną macierz przejść dla sieci czynności.
- 2. k:=0;
- 3. Do warstwy w_k zalicz zdarzenia odpowiadające zerowym kolumnom aktualnej macierzy przejść; k:=k+1;
- 4. Wykreśl z macierzy przejść zerowe kolumny oraz wiersze o tych samych numerach.
- 5. Jeżeli są jeszcze niewykreślone kolumny, to wróć do kroku 3 w przeciwnym razie stop.

$$W_0 = \{6\}$$

$$W_1 = \{2\}$$

$$W_2 = \{3, 5\}$$

$$W_3 = \{1\}$$

$$W_4 = \{4\}$$

Analiza projektu

- czas realizacji przedsięwzięcia,
- stopień równomierności wykorzystania zasobów w czasie
 - zamrożenie środków obrotowych,
 - wielkość przestojów maszyn i urządzeń
- całkowity koszt realizacji przedsięwzięcia,
- ryzyko przekroczenia terminu realizacji lub budżetu,
- odporność harmonogramu na zakłócenia.

Metoda ścieżki krytycznej (CPM)

- CPM Critical Path Method
- pierwsza metoda analizy sieciowej (ok. 1956)
- sieć jest w postaci kanonicznej (deterministyczna struktura sieci i czasy trwania czynności)
- znajduje najkrótszy możliwy czas realizacji projektu

CPM – oznaczenia

przedział na osi czasu

punkt na osi czasu

- t_{ij} czas trwania czynności <i, j>
- T_i^w najwcześniejszy możliwy termin wystąpienia zdarzenia i
- T_j^p najpóźniejszy dopuszczalny termin wystąpienia zdarzenia i

CPM - założenia

- jedno zdarzenie początkowe
- jedno zdarzenie końcowe
- zdarzenia ponumerowane zgodnie z ich następstwem w czasie (algorytm porządkowania warstwowego)
- $T_1^{W} = 0$
- $\blacksquare \mathsf{T}_{\mathsf{n}}^{\mathsf{p}} = \mathsf{T}_{\mathsf{n}}^{\mathsf{w}}$

CPM - założenia

- jedno zdarzenie początkowe
- jedno zdarzenie końcowe
- zdarzenia ponumerowane zgodnie z ich następstwem w czasie (algorytm porządkowania warstwowego)
- $T_1^{W} = 0$
- $\blacksquare \mathsf{T}_{\mathsf{n}}^{\mathsf{p}} = \mathsf{T}_{\mathsf{n}}^{\mathsf{w}}$

CPM – obliczanie T_i^w

Zbiór poprzedników zdarzenia j

$$T_{j}^{w} = \max_{i \in \Gamma_{j}^{-1}} \{T_{i}^{w} + t_{ij}\}, j = 2,...,n$$

CPM - założenia

- jedno zdarzenie początkowe
- jedno zdarzenie końcowe
- zdarzenia ponumerowane zgodnie z ich następstwem w czasie (algorytm porządkowania warstwowego)
- $T_1^{W} = 0$
- $\blacksquare T_n^p = T_n^w$

CPM – obliczanie T_i^p

Zbiór następników zdarzenia i

$$T_i^p = \min_{j \in \Gamma_i} \{ T_j^p - t_{ij} \}, i = 1, 2, ..., n-1$$

Luzem zdarzenia nazywamy liczbę $L_i = T_i^p - T_i^w$.

max{9+7, 11+2, 12+3}

CPM – przykład

CPM – przykład

CPM – przykład

Jeżeli luz zdarzenia jest równy zero, to zdarzenie nazywamy zdarzeniem krytycznym.

Ścieżka krytyczna - definicja

Ścieżką krytyczną nazywamy taką drogę $<i_0, i_1><i_1, i_2>\dots<i_{p-1}, i_p>$ łączącą zdarzenie początkowe $i_0=1$ ze zdarzeniem końcowym $i_p=n$,

dla której czas $\tau = \sum_{k=1}^{p} t_{i_{k-1}i_k}$ jest najdłuższy.

Ścieżka krytyczna - własności

- W danej sieci może istnieć jedna lub więcej ścieżek krytycznych.
- Czynności leżące na ścieżce krytycznej nazywamy czynnościami krytycznymi.
- Suma czasów wykonania czynności krytycznych ogranicza od dołu czas realizacji projektu.
- Czas ten można wyznaczyć jako $\tau = T_n^p = T_n^w$.

Ścieżka krytyczna - wyznaczanie

Ścieżka krytyczna - wyznaczanie

Nie zawsze zdarzenia krytyczne wyznaczają jednoznacznie ścieżkę krytyczną!

Zapas czasu (luz) czynności

 Zapasem całkowitym czasu czynności <i,j> nazywamy wielkość

$$Z_{ij}^{c} = T_j^{p} - T_i^{w} - t_{ij}.$$

Ścieżka krytyczna - wyznaczanie

Twierdzenie

Warunkiem koniecznym i dostatecznym na to, aby czynność $\langle i,j \rangle$ była czynnością krytyczną jest równość $Z_{ii}^{c} = 0$.

Zapas czasu (luz) czynności

Zapasem swobodnym czasu czynności <i,j>nazywamy wielkość

$$Z_{ij}^{s} = T_j^{w} - T_i^{w} - t_{ij}^{}.$$

Zapas czasu (luz) czynności

 Zapasem niezależnym czasu czynności <i,j> nazywamy wielkość

$$Z_{ij}^{n} = T_j^{w} - T_i^{p} - t_{ij}.$$

Zapasy czasu czynności

Twierdzenie

Między zapasami całkowitym, swobodnym i niezależnym zachodzą następujące relacje:

$$Z_{ij}{}^n \leq Z_{ij}{}^s \leq Z_{ij}{}^c.$$

Wniosek

Dla czynności krytycznych wszystkie rodzaje zapasu są równe zero.

Metoda PERT

Rozkład beta

$$f(t) = H(t-a)^{p-1}(b-t)^{q-1}$$

Wartość średnia i wariancja czasu trwania czynności

$$t^e = \frac{a+4m+b}{6}$$

$$\sigma^2 = \frac{\left(b-a\right)^2}{36}$$

- a wartość optymistyczna czasu trwania czynności
- b wartość pesymistyczna czasu trwania czynności
- m najbardziej prawdopodobna wartość czasu trwania czynności

Metoda PERT

Luz zdarzenia ma rozkład normalny o parametrach:

$$N \left[\overline{T}_{i}^{(p)} - \overline{T}_{i}^{(w)}, \sqrt{\sigma_{T_{i}^{(p)}}^{2} + \sigma_{T_{i}^{(w)}}^{2}} \right]$$

$$\overline{T}_i^{(w)} = \sum_{k=1}^m t_k^e$$

$$\sigma_{T_i^{\left(w\right)}} = \sqrt{\sum_{k=1}^{m} \sigma_{t_k}^2}$$

$$\overline{T}_{i}^{(p)} = \sum_{k=1}^{I} t_{k}^{e}$$

$$\sigma_{T_i^{\left(p\right)}} = \sqrt{\sum_{k=1}^{I} \sigma_{t_k}^2}$$

Metoda PERT

 Prawdopodobieństwo ujemnego luzu zdarzenia i

$$P\{L_{i} < 0\} = P\{T_{i}^{(p)} - T_{i}^{(w)} < 0\} = \Phi\left(-\frac{\overline{T}_{i}^{(p)} - \overline{T}_{i}^{(w)}}{\sqrt{\sigma_{T_{i}^{(p)}}^{2} + \sigma_{T_{i}^{(w)}}^{2}}}\right)$$

 Φ - dystrybuanta rozkładu normalnego o parametrach N(0,1)

Przykład

Czynność	а	m	b	t^e_{ij}	σ_{ij}
$\langle 0,1 \rangle$	1	4	5	3,67	0,44
⟨0,2⟩	3	5	7	5,00	0,44
$\langle 1,3 \rangle$	2	5	10	5,33	1,78
⟨1,5 ⟩	5	7	14	7,83	2,25
$\langle 2,4 \rangle$	1	8	9	7,00	1,28
$\langle 3,4 \rangle$	3	9	12	8,50	2,25
⟨3,5 ⟩	5	8	14	8,50	2,25
⟨4,6 ⟩	5	7	10	7,17	0,69
(5,6)	5	5	10	5,83	0,69

i	\overline{T}_i^w	\overline{T}_i^p		
0	0,00	1,33		
1	3,67	5,00		
2	5,00	11,83		
3	9,00	10,33		
4	17,50	18,83		
5	17,50	20,17		
6	24,67	26,00		

i	\overline{T}_i^w	$\sigma_{T_i^w}^2$	\overline{T}_i^p	$\sigma^2_{T^p_i}$
0	0,00	0,00	1,33	2,98
1	3,67	0,44	5,00	2,95
2	5,00	0,44	11,83	1,91
3	9,00	1,83	10,33	2,35
4	17,50	2,90	18,83	0,69
5	17,50	2,90	20,17	0,69
6	24,67	2,98	26,00	0,00

i	\overline{T}_i^w	$\sigma_{T_i^w}^2$	\overline{T}_i^p	$\sigma^2_{T^p_i}$	$\overline{T}_i^p - \overline{T}_i^w$	
0	0,00	0,00	1,33	2,98	1,33	
1	3,67	0,44	5,00	2,95	1,33	
2	5,00	0,44	11,83	1,91	6,83	
3	9,00	1,83	10,33	2,35	1,33	
4	17,50	2,90	18,83	0,69	1,33	
5	17,50	2,90	20,17	0,69	2,67	
6	24,67	2,98	26,00	0,00	1,33	

u _i =	$ \left(\frac{T_i^{(p)} - T_i^{(w)}}{\sqrt{\sigma_{T_i^{(p)}}^2 + \sigma_{T_i^{(w)}}^2}} \right) $
------------------	---

i	\overline{T}_i^w	$\sigma_{T_i^w}^2$	\overline{T}_i^p	$\sigma^2_{T^p_i}$	$\overline{T}_i^p - \overline{T}_i^w$	u_i
0	0,00	0,00	1,33	2,98	1,33	0,45
1	3,67	0,44	5,00	2,95	1,33	0,45
2	5,00	0,44	11,83	1,91	6,83	3,49
3	9,00	1,83	10,33	2,35	1,33	0,45
4	17,50	2,90	18,83	0,69	1,33	0,45
5	17,50	2,90	20,17	0,69	2,67	0,90
6	24,67	2,98	26,00	0,00	1,33	0,45

u . =	$\begin{bmatrix} T_{\mathbf{i}}^{(\mathbf{p})} - T_{\mathbf{i}}^{(\mathbf{w})} \end{bmatrix}$
. 1	$\left\lfloor \sqrt{\sigma_{T_i^{[p)}}^2 + \sigma_{T_i^{[w)}}^2} \right\rfloor$

i	\overline{T}_i^w	$\sigma_{T_i^w}^2$	\overline{T}_i^p	$\sigma^2_{T^p_i}$	$\overline{T}_i^p - \overline{T}_i^w$	u_i	$\Phi(-u_i)$
0	0,00	0,00	1,33	2,98	1,33	0,45	0,3263
1	3,67	0,44	5,00	2,95	1,33	0,45	0,3263
2	5,00	0,44	11,83	1,91	6,83	3,49	0,0002
3	9,00	1,83	10,33	2,35	1,33	0,45	0,3263
4	17,50	2,90	18,83	0,69	1,33	0,45	0,3263
5	17,50	2,90	20,17	0,69	2,67	0,90	0,1840
6	24,67	2,98	26,00	0,00	1,33	0,45	0,3263

Zasoby

Zasoby odnawialne

Zasoby nieodnawialne

Zasoby podwójnie ograniczone

- R –liczba zasobów odnawialnych
- N liczba zasobów nieodnawialnych
- R_k liczba jednostek k-tego zasobu odnawialnego,
 k = 1, 2, ..., R
- N_I liczba jednostek I-tego zasobu nieodnawialnego, I = 1, 2, ..., N
- r_{jk} liczba jednostek zasobu k żądanych przez czynność j
- n_{jl} liczba jednostek zasobu I zużywanych przez czynność j

Zadanie	<1,2>	<1,3>	<1.4>	<2,5>	<3,5>	<3,7>	<4,7>	<5,8>	<7,8>	dostępne
Zasób										
1	1	0	2	0	3	2	1	1	0	3
2	2	4	1	3	1	2	1	5	4	5
3	0	2	0	3	0	0	2	3	2	4

CPM

1-2			2-5				5-8											
1-4		4-7																
1-3						3-5	3-7									7-8		
	_	_		5	6		8	9	10	11	12	13	14	15	16	17	18	19

Zadanie	<1,2>	<1,3>	<1.4>	<2,5>	<3,5>	<3,7>	<4,7>	<5,8>	<7,8>	dostępne
Zasób										
1	1	0	2	0	3	2	1	1	0	3
2	2	4	1	3	1	2	1	5	4	5
3	0	2	0	3	0	0	2	3	2	4

Uszeregowanie dopuszczalne

1-2										2-5									3-5		5-8
1-4			1-3							3-7									7-8		
		4-7																			
1	2	2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Zadanie	<1,2>	<1,3>	<1.4>	<2,5>	<3,5>	<3,7>	<4,7>	<5,8>	<7,8>	dostępne
Zasób										
1	1	0	2	0	3	2	1	1	0	3
2	2	4	1	3	1	2	1	5	4	5
3	0	2	0	3	0	0	2	3	2	4

Zasób 1

1-2					3-7					3-5	5-8
1-4	4-7										

Zadanie	<1,2>	<1,3>	<1.4>	<2,5>	<3,5>	<3,7>	<4,7>	<5,8>	<7,8>	dostępne
Zasób										
1	1	0	2	0	3	2	1	1	0	3
2	2	4	1	3	1	2	1	5	4	5
3	0	2	0	3	0	0	2	3	2	4

Zasób 2

1-2		1-3				2-5					3-5	5-8
											7-8	
1-4												
						3-7						
	4-7											

Zadanie	<1,2>	<1,3>	<1.4>	<2,5>	<3,5>	<3,7>	<4,7>	<5,8>	<7,8>	dostępne
Zasób										
1	1	0	2	0	3	2	1	1	0	3
2	2	4	1	3	1	2	1	5	4	5
3	0	2	0	3	0	0	2	3	2	4

Zasób 3

1-4		1-3				2-5					7-8	5-8
	4-7											

Problem rozdziału zasobów z wieloma sposobami wykonywania czynności

- M_i liczba sposobów wykonania czynności j
- d_{jm} czas trwania czynności j wykonywanej sposobem m,
- r_{jmk} liczba jednostek zasobu odnawialnego k wymaganych do wykonania czynności j sposobem m,
- n_{jml} liczba jednostek zasobu nieodnawialnego l wymaganych do wykonania czynności j sposobem m,

dla więcej niż jednego zasobu znalezienie rozwiązania dopuszczalnego jest silnie NP-trudne (Kolish 1995)

Problem rozdziału zasobów z wieloma sposobami wykonywania czynności

Zadanie Ilość zasobu	<1,2>	<1,3>	<1.4>	<2,5>	<3,5>	<3,7>	<4,7>	<5,8>	<7,8>
1	3	4	4	5	5	5	6	5	6
2	2	3	2	2	3	3	5	3	4
3	1	2	1	1	2	2	4	2	3

Problem rozdziału zasobów z wieloma sposobami wykonywania czynności

- podejścia dokładne:
 - schematy pełnego przeglądu do 15 czynności
 - Talbot 1982
 - Patterson 1989
 - algorytm podziału i ograniczeń do 20 czynności
 - Speranza and Vercellis 1993
 - Demeulemeester and Herroelen 1992
 - Sprecher and Drexl 1998

Problem rozdziału zasobów z wieloma sposobami wykonywania czynności - heurystyki

- algorytm podziału i ograniczeń
 - Talbot 1982
 - Sprecher and Drexl 1998
- losowe próbkowanie
 - Drexl and Grünewald 1993
- symulowane wyżarzanie
 - Słowiński et. al. 1994
 - Bouleimen and Lecocq 1998
 - Józefowska et. al. 2001
- algorytmy genetyczne
 - Özdamar 1999
 - Hartmann 2000
- dekompozycja Bendersa
 - Maniezzo and Mingozzi 1999

Zmienny czas wykonania czynności

$$s = \frac{k_{gr} - k_n}{t_n - t_{gr}}$$

t_n, k_n – czas, koszt normalny t_{gr}, k_{gr} – czas, koszt graniczny s – gradient kosztu

Algorytm kompresji

- 1. Zestawić czynności krytyczne, podać ich gradienty kosztów s oraz czasy graniczne t_{gr}.
- Wyeliminować z zestawienia te czynności, dla których t_{gr} = t_n.
- 3. Proces skracania rozpocząć od czynności krytycznej o najniższym gradiencie kosztów s.
- 4. Należy starać się skrócić czas trwania czynności o jak największą liczbę jednostek. Występują tu dwa ograniczenia:
 - czas graniczny danej czynności t_{gr},
 - pojawienie się nowej ścieżki krytycznej.

Algorytm kompresji

- 5. Przy istnieniu dwóch lub więcej ścieżek krytycznych w sieci należy skracać czas o tę samą wielkość na wszystkich równoległych ścieżkach krytycznych.
- 6. Najkrótszy termin wykonania programu uzyskuje się, gdy wszystkie czynności na ścieżce krytycznej osiągną czasy graniczne.
- 7. Koszty przyspieszenia czynności oblicza się mnożąc liczbę jednostek czasu, o które czynność została skrócona przez jej gradient kosztów.

Zaktualizowana wartość netto

$$NPV = CF_0 + \sum_{t=1}^{\infty} CF_t (1+r)^{-t}$$

- CF₀ przepływ (wypływ) gotówki występujący na początku realizacji przedsięwzięcia
- CF₁ przepływ gotówki występujący na końcu okresu t
- r stopa dyskontowa