Figure 1: RNA Amplification Method

ROUND ONE:

EKTYNDEK et al Title: NUCLEIC ACID AMPLIFICATION

Figure 1: RNA Amplification Method cont.

S

S

Ŝ

First Inventor: Mark G. ERLANDER et al

Sheet 4 of 8 Application No.: To be Assigned - Filed: Herewith Docket No. 485772002900

Figure 2A: Optimization of 2nd Strand Synthesis using Exogenous Primers

-	no RNaseH, no Primer, Exo-Klenow and Tag		12
7	no RNaseH, no Primer, Exo-Klenow and Tag	.l	12
_س	no RNaseH, with Primer, Exo-Klenow and Taq	<u> </u>	14
4	no RNaseH, with Primer, Exo-Klenow and Taq	I	۳
5	with RNaseH, no Primer, Exo-Klenow and Taq		7
9	with RNaseH, no Primer, Exo-Klenow and Taq	l	1.
7	with RNaseH, with Primer, Exo-Klenow and Taq	!	4
æ	with RNaseH, with Primer, Exo-Klenow and Tag		¥
6	with RNaseH, with Primer, Exo-Klenow alone		7
10	with RNaseH, with Primer, Exo-Klenow alone	ا ــِـــا	7
1	11 with RNaseH, with Primer, Tag alone	L	5
		ŀ	

12	with RNaseH, with	12 with RNaseH, with Primer, Taq alone
13	with RNaseH, wi	13 with RNaseH, with Primer, Sequenase alone
14	with RNaseH, wi	with RNaseH, with Primer, Sequenase alone
15	with RNaseH, wi	15 with RNaseH, with Primer, regular Klenow alone
16	with RNaseH, wi	with RNaseH, with Primer, regular Klenow alone
17	with RNaseH, wi	with RNaseH, with Primer, regular Klenow and Taq
18	with RNaseH, wi	with RNaseH, with Primer, regular Klenow and Tag
19	with RNaseH, wi	with RNaseH, with Primer, Reverse Transcriptase alone
20	with RNaseH, wi	with RNaseH, with Primer, Reverse Transcriptase alone
21	endogenous prin	endogenous priming with DNA Pol1, Ligase and RNaseH
22	endogenous prin	endogenous priming with DNA Pol1, Ligase and RNaseH

Title: NUCLEIC ACID AMPLIFICATION
First Inventor: Mark G. ERLANDER et al
Application No.: To be Assigned - Filed: Herewith
Docket No. 485772002900
Sheet 5 of 8

TOSON COLOR COROLLA Application No.: To

Figure 2B:	Figure 2B: Yields From Exogenous Priming of 2nd Strand Synthesis Using Different Enzymes	Different Enzymes
SAMPLES	Condition Tested	ug of amplified RNA
-	no RNaseH, no Primer, Exo-Klenow and Taq	3.6
2		3.4
3	no RNaseH, with Primer, Exo-Klenow and Taq	15.5
4		19.2
5	with RNaseH, no Primer, Exo-Klenow and Tag	3.4
9		3.0
7	with RNaseH, with Primer, Exo-Klenow and Taq	16.9
ω		17.5
6	with RNaseH, with Primer, Exo-Klenow alone	18.7
10		16.8
11	with RNaseH, with Primer, Taq alone	2.8
12		3.6
13	with RNaseH, with Primer, Sequenase alone	0.6
14		10.4
15	with RNaseH, with Primer, regular Klenow alone	16.0
16		15.2
17	with RNaseH, with Primer, regular Klenow and Taq	13.7
18		15.2
10	with RNaseH, with Primer, Reverse Transcriptase alone	7.2
		6.5
21 Eberwine1	endogenous priming method with DNA Pol1, Ligase and RNaseH	10.2
22 Eberwine2		11.7

Title: NUCLEIC ACID AMPLIFICATION First Inventor: Mark G FRI ANDER et al

First Inventor: Mark G. ERLANDER et al Application No.: To be Assigned - Filed: Herewith Docket No. 485772002900

Sheet 6 of 8

IOCEES" IOESJI

	Figure 2C: Comparison of Yields and Fold Amplifcation	nplifcation		
SAMPLES	Condition Tested	ave (ug)	fold diff vs GH	est. fold amp*
1	no RNaseH, no Primer, Exo-Klenow and Taq	3.5	0.3	174
2				
3	no RNaseH, with Primer, Exo-Klenow and Taq	17.3	1.6	865
4		12:		
2	with RNaseH, no Primer, Exo-Klenow and Taq	3.2	0.3	159
9				
7	with RNaseH, with Primer, Exo-Klenow and Taq	17.2	1.6	862
8	1			
6	with RNaseH, with Primer, Exo-Klenow alone	17.7	1.6	887
10				
11	with RNaseH, with Primer, Taq alone	3.2	6.0	161
12				
13	with RNaseH, with Primer, Sequenase alone	9.7	6.0	486
14				
15	with RNaseH, with Primer, regular Klenow alone	15.6	1.4	778
16			•	
17	with RNaseH, with Primer, regular Klenow and Taq	14.4	1.3	721
18				
19	with RNaseH, with Primer, Reverse Transcriptase alone	6.8	9.0	342
20				
21 Eberwine1	endogenous priming method with DNA Pol1, Ligase and RNaseH	11.0	1.0	548
22 Eberwine2				

*fold-amplification calculated as follows: (final μg yield)/(0.020 μg) where 0.020 μg is an estimate based on the assumption that 2% of 1 μg of total RNA (the amount of starting material) is poly(A) RNA Application No.: To be Assigned - Filed: Herewith Docket No. 485772002900

Sheet 7 of 8

mRNAs can be amplified from nanogram

Figure 3A:

amounts of total RNA

Title: NUCLEIC ACID AMPLIFICATION
First Inventor: Mark G. ERLANDER et al
Application No.: To be Assigned - Filed: Herewith
Docket No. 485772002900
Sheet 8 of 8

losessy lossol

Quantitation of amplified RNA Figure 3B:

Total RNA			conc (ng/ml)	yield
10 ng	1	Eberwine method	1860	101.0
10 ng	2	Eberwine method	1800	97.4
2 ng	က	Eberwine method	448	26.9
2 ng	4	Eberwine method	439	26.3
10 ng	5	exo-klenow + taq with t7a1	946	46.2
10 ng	ပ	exo-klenow + taq with t7a1	945	46.1
2 ng	7	exo-klenow + taq with t7a1	518	20.5
2 ng	8	exo-klenow + taq with t7a1	464	17.2
10 ng	6	exo-klenow + taq with t7a1dt	1700	91.4
10 ng	10	exo-klenow + taq with t7a1dt	1825	6.86
2 ng	11	exo-klenow + taq with t7a1dt	2400	144.0
2 ng	12	exo-klenow + taq with t7a1dt	648	38.9
10 ng	13	regular klenow + taq with t7a1	780	36.2
10 ng	14	regular klenow + taq with t7a1	808	37.9
2 ng	15	regular klenow + taq with t7a1	313	8.2
2 ng	16	regular klenow + taq with t7a1	298	7.3