Национальный исследовательский университет информационных технологий, механики и оптики.

Кафедра вычислительной техники. Конструкторско-техническое обеспечение производства ЭВМ.

Домашняя работа №2

Графовое представление электрических схем $Bapuaht\ 5$

Студент: Куклина М.Д., Р3401 Преподаватель: Поляков В.И.

1. Представление исходных данных

1.1. Матрица комплексов

Матрица в транспонированном виде.

waip	1	r	ancı			IIIION		7	1			ı		1	ı		
	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e_{16}	e_{17}
u_1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0
u_2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
u_3	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	1
u_4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
u_5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
u_6	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1
u_7	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
u_8	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
u_9	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0
u_{10}	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
u_{11}	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
u_{12}	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1
u_{13}	0	0	0	0	0	1	0	0	0	1	0	0	0	1	1	0	0
u_{14}	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
u_{15}	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1
u_{16}	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0
u_{17}	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0
u_{18}	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
u_{19}	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
u_{20}	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	0	0
u_{21}	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
u_{22}	0	1	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0
u_{23}	0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0
u_{24}	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
u_{25}	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	0
u_{26}	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0
u_{27}	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0
u_{28}	0	1	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0
u_{29}	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0
u_{30}	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
u_{31}	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	1	0
u_{32}	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0

1.2. Матрица соединений

Из-за того, что граф неориентированный, достаточно указать верхнюю треугольную матрицу.

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e_{16}	e_{17}
e_1	0	1	0	0	1	1	0	1	0	0	2	0	0	0	0	2	1
e_2		0	0	2	2	2	0	0	1	0	1	3	2	0	1	1	1
e_3			0	0	0	1	0	0	0	0	0	0	1	2	1	1	0
e_4				0	0	1	0	0	1	0	0	3	1	1	1	1	3
e_5					0	0	0	0	0	0	1	0	0	0	0	1	1
e_6						0	0	1	2	1	0	2	3	1	1	2	1
e_7							0	0	0	0	0	1	0	0	1	1	0
e_8								0	0	0	1	0	1	0	0	0	0
e_9									0	2	1	2	0	1	2	0	1
e_{10}										0	1	0	1	1	3	1	1
e_{11}											0	0	0	0	1	0	0
e_{12}												0	2	1	2	2	1
e_{13}													0	0	2	3	1
e_{14}														0	2	3	2
e_{15}															0	1	0
e_{16}																0	3
e_{17}																	0

2. Раскраска графа методом упорядочивания вершин

1. Подсчитываем число r_i ненулевых элементов в каждом ряду i в матрице соединений:

																e_{17}
7	11	5	9	5	13	3	4	9	8	7	10	10	9	12	13	11

2. Упорядочим вершины графа в порядке невозрастания r_i :

				e_{17}												
13	13	12	11	11	10	10	9	9	9	8	7	7	5	5	4	3

3. Просматривая последовательность слева направо, закрашиваем в некоторый новый цвет все вершины, которые не смежны ещё окрашенным в этот цвет.

В данном случае это вершины 6 и 5, которые расскрашиывает в один цвет.

4. Удаляем окрашенные рёбра из таблицы.

5. Повторяем до тех пор, пока не останется неокрашенных вершин.

(а) Следующий шаг.

	e_1	e_2	e_3	e_4	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e_{16}	e_{17}	r
e_1	0	1	0	0	0	1	0	0	2	0	0	0	0	2	1	5
e_2		0	0	2	0	0	1	0	1	3	2	0	1	1	1	9
e_3			0	0	0	0	0	0	0	0	1	2	1	1	0	4
e_4				0	0	0	1	0	0	3	1	1	1	1	3	8
e_7					0	0	0	0	0	1	0	0	1	1	0	3
e_8						0	0	0	1	0	1	0	0	0	0	3
e_9							0	2	1	2	0	1	2	0	1	8
e_{10}								0	1	0	1	1	3	1	1	7
e_{11}									0	0	0	0	1	0	0	6
e_{12}										0	2	1	2	2	1	9
e_{13}											0	0	2	3	1	9
e_{14}												0	2	3	2	8
e_{15}													0	1	0	11
e_{16}														0	3	11
e_{17}															0	9

e_{15}	e_{16}	e_2	e_{12}	e_{13}	e_{17}	e_4	e_9	e_{14}	e_{10}	e_{11}	e_1	e_3	e_7	e_8
11	11	9	9	9	9	8	8	8	7	6	5	4	3	3

Вершины 15, 1.

(b) Следующий шаг.

	e_2	e_3	e_4	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{16}	e_{17}	r
e_2	0	0	2	0	0	1	0	1	3	2	0	1	1	7
e_3		0	0	0	0	0	0	0	0	1	2	1	0	3
e_4			0	0	0	1	0	0	3	1	1	1	3	7
e_7				0	0	0	0	0	1	0	0	1	0	2
e_8					0	0	0	1	0	1	0	0	0	2
e_9						0	2	1	2	0	1	0	1	5
e_{10}							0	1	0	1	1	1	1	6
e_{11}								0	0	0	0	0	0	4
e_{12}									0	2	1	2	1	8
e_{13}										0	0	3	1	8
e_{14}											0	3	2	7
e_{16}												0	3	9
e_{17}													0	8

e_{16}	e_{12}	e_{13}	e_{17}	e_2	e_4	e_{14}	e_{10}	e_9	e_{11}	e_3	e_7	e_8
9	8	8	8	7	7	7	6	5	4	3	2	2

Вершины 16, 9, 8.

(с) Следующий шаг.

	e_2	e_3	e_4	e_7	e_{10}	e_{11}	e_{12}	e_{13}	e_{14}	e_{17}	r
e_2	0	0	2	0	0	1	3	2	0	1	5
e_3		0	0	0	0	0	0	1	2	0	2
e_4			0	0	0	0	3	1	1	3	5
e_7				0	0	0	1	0	0	0	1
e_{10}					0	1	0	1	1	1	5
e_{11}						0	0	0	0	0	2
e_{12}							0	2	1	1	6
e_{13}								0	0	1	6
e_{14}									0	2	5
e_{17}										0	6

e_{12}	e_{13}	e_{17}	e_2	e_4	e_{10}	e_{14}	e_3	e_{11}	e_7
6	6	6	5	5	5	5	2	2	1

Вершины 12, 10, 3, 7.

(d) Следующий шаг.

	e_2	e_4	e_{11}	e_{13}	e_{14}	e_{17}	r
e_2	0	2	1	2	0	1	4
e_4		0	0	1	1	3	4
e_{11}			0	0	0	0	1
e_{13}				0	0	1	3
e_{14}					0	2	2
e_{17}						0	4

e_2	e_4	e_{17}	e_{13}	e_{11}	e_{14}
4	4	4	3	2	1

Вершины 2, 14.

(е) Следующий шаг.

	e_4	e_{11}	e_{13}	e_{17}	r
e_4	0	0	1	3	2
e_{11}		0	0	0	0
e_{13}			0	1	2
e_{17}				0	2

e_4	e_{13}	e_{17}	e_{11}
2	2	2	0

Вершины 4, 11.

(f) Следующий шаг.

	e_{13}	e_{17}	r
e_{13}	0	1	1
e_{17}		0	1

Вершина 13.

(g) Следующий шаг. Вершина 17.

Таким образом, получаем следующую раскраску.

Цвет 1: 15, 1.

Цвет 2: 16, 9, 8.

Цвет 3: 12, 10, 3, 7.

Цвет 4: 2, 14.

Цвет 5: 4, 11.

Цвет 6: 13.

Цвет 7: 17.

3. Размещение элементов методом обратного размещения

Зададим поверхность:

Матрица D расстояний между позициями для размещения.

	n.	na	n _o	n.	n-	na	n-	no	no	nas	n	na	n	n	20.5	n	n
	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}	p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}	p_{17}
p_1	0	1	2	3	4	5	1	2	3	4	5	6	2	3	4	5	6
p_2	1	0	1	2	3	4	2	1	2	3	4	5	3	2	3	4	5
p_3	2	1	0	1	2	3	3	2	1	2	3	4	4	3	2	3	4
p_4	3	2	1	0	1	2	4	3	2	1	2	3	5	4	3	2	3
p_5	4	3	2	1	0	1	5	4	3	2	1	2	6	5	4	3	2
p_6	5	4	3	2	1	0	6	5	4	3	2	1	7	6	5	4	3
p_7	1	2	3	4	5	6	0	1	2	3	4	5	1	2	3	4	5
p_8	2	1	2	3	4	5	1	0	1	2	3	4	2	1	2	3	4
p_9	3	2	1	2	3	4	2	1	0	1	2	3	3	2	1	2	3
p_{10}	4	3	2	1	2	3	3	2	1	0	1	2	4	3	2	1	2
p_{11}	5	4	3	2	1	2	4	3	2	1	0	1	5	4	3	2	1
p_{12}	6	5	4	3	2	1	5	4	3	2	1	0	6	5	4	3	2
p_{13}	2	3	4	5	6	7	1	2	3	4	5	6	0	1	2	3	4
p_{14}	3	2	3	4	5	6	2	1	2	3	4	5	1	0	1	2	3
p_{15}	4	3	2	3	4	5	3	2	1	2	3	4	2	1	0	1	2
p_{16}	5	4	3	2	3	4	4	3	2	1	2	3	3	2	1	0	1
p_{17}	6	5	4	3	2	3	5	4	3	2	1	2	4	3	2	1	0

Подсчитываем число r_i ненулевых элементов в каждом ряду i в матрице соединений:

																e_{17}
7	11	5	9	5	13	3	4	9	8	7	10	10	9	12	13	11

Порядок позиций по неубыванию суммы величин D.

																p_{17}
63	51	45	45	51	63	57	45	39	39	45	57	63	51	45	45	51

Упорядочиваем:

				e_{17}												
13	13	12	11	11	10	10	9	9	9	8	7	7	5	5	4	3

p_{10}	p_9	p_{11}	p_{15}	p_{16}	p_3	p_4	p_8	p_{14}	p_{17}	p_2	p_5	p_{12}	p_7	p_1	p_{13}	p_6
39	39	45	45	45	45	45	45	51	51	51	51	57	57	63	63	63

Таким образом, искомое размещение:

39	39	45	45	45	45	45	45	51	51	51	51	57	57	63	63	63
p_{10}	p_9	p_{11}	p_{15}	p_{16}	p_3	p_4	p_8	p_{14}	p_{17}	p_2	p_5	p_{12}	p_7	p_1	p_{13}	p_6
e_6	e_{16}	e_{15}	e_2	e_{17}	e_{12}	e_{13}	e_4	e_9	e_{14}	e_{10}	e_1	e_{11}	e_3	e_5	e_8	e_7
13	13	12	11	11	10	10	9	9	9	8	7	7	5	5	4	3

Функционал данного размещения: $F = \frac{1}{2} \sum_{i} \sum_{j} d_{ij} r_{ij} = 338$.

На рисунке не представлены линии соединений, так как они слишком сильно засорили бы изображение.

4. Поиск кратчайших путей

Матрица весов: $c_{ij} = r_{ij}d_{ij}$:

	Lar pr	'		· J	· ·	$j\omega_{ij}$.				1							
	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	c_{10}	c_{11}	c_{12}	c_{13}	c_{14}	c_{15}	c_{16}	c_{17}
c_1		1			4	5		2			10					10	6
c_2	1			4	6	8			2		4	15	6		3	4	5
c_3						3							4	6	2	3	
c_4		4				2			2			9	5	4	3	2	9
c_5	4	6									1					3	2
c_6	5	8	3	2				5	8	3		2	21	6	5	8	3
c_7												5			3	4	
c_8	2					5					3		2				
c_9		2		2		8				2	2	6		2	2		3
c_{10}						3			2		1		4	3	6	1	2
c_{11}	10	4			1			3	2	1					3		
c_{12}		15		9		2	5		6				12	5	8	6	2
c_{13}		6	4	5		21		2		4		12			4	9	4
c_{14}			6	4		6			2	3		5			2	6	6
c_{15}		3	2	3		5	3		2	6	3	8	4	2		1	
c_{16}	10	4	3	2	3	8	4			1		6	9	6	1		3
c_{17}	6	5		9	2	3			3	2		2	4	6		3	

Найдём кратчайшие пути от вершины 1 до всех остальных.

1. $l(c_1) = 0^+; l(c_i) = \infty$ для всех $i \neq 1, p = c_1$.

c_1	0+
c_2	∞
c_3	∞
c_4	∞
c_5	∞
c_6	∞
c_7	∞
c_8	∞
c_9	∞
c_{10}	∞
c_{11}	∞
c_{12}	∞
c_{13}	∞
c_{14}	∞
c_{15}	∞
c_{16}	∞
c_{17}	∞

2. $\Gamma p = \{c_2, c_5, c_6, c_8, c_11, c_16, c_17\}$. Уточним временные пометки.

$$l(c_2) = min(\infty, 0^+ + 1) = 1$$

$$l(c_5) = min(\infty, 0^+ + 4) = 4$$

$$l(c_6) = min(\infty, 0^+ + 5) = 5$$

$$l(c_8) = min(\infty, 0^+ + 2) = 2$$

$$l(c_{11}) = min(\infty, 0^+ + 10) = 10$$

$$l(c_{16}) = min(\infty, 0^+ + 10) = 10$$

$$l(c_{17}) = min(\infty, 0^+ + 6) = 6$$

$$l(c^*) = min(l(c_i)) = l(c_2) = 1$$

	0+			
c_1	0'			
c_2	∞	1+		
c_3	∞	∞		
c_4	∞	∞		
c_5	∞	4		
c_6	∞	5		
c_7	∞	∞		
c_8	∞	2		
c_9	∞	∞		
c_{10}	∞	∞		
c_{11}	∞	10		
c_{12}	∞	∞		
c_{13}	∞	∞		
c_{14}	∞	∞		
c_{15}	∞	∞		
c_{16}	∞	10		
c_{17}	∞	6		

3. $\Gamma p = \{c_4, c_5, c_6, c_9, c_{11}, c_{12}, c_{13}, c_{15}, c_{16}, c_{17}\}.$

$$l(c_4) = min(\infty, 1^+ + 4) = 5$$

$$l(c_5) = min(4, 1^+ + 6) = 4$$

$$l(c_6) = min(5, 1^+ + 8) = 5$$

$$l(c_9) = min(\infty, 1^+ + 2) = 3$$

$$l(c_{11}) = min(10, 1^+ + 4) = 5$$

$$l(c_{12}) = min(\infty, 1^+ + 15) = 16$$

$$l(c_{13}) = min(\infty, 1^+ + 6) = 7$$

$$l(c_{15}) = min(\infty, 1^+ + 3) = 4$$

$$l(c_{16}) = min(10, 1^+ + 4) = 5$$

$$l(c_{17}) = min(6, 1^+ + 5) = 6$$

$$l(min(c_i)) = l(c_9) = 3$$

c_1	0+		
c_2	∞	1+	
c_3	∞	∞	∞
c_4	∞	∞	5
c_5	∞	4	4
c_6	∞	5	5
c_7	∞	∞	∞
c_8	∞	2	∞
c_9	∞	∞	3+
c_{10}	∞	∞	∞
c_{11}	∞	10	5
c_{12}	∞	∞	16
c_{13}	∞	∞	7
c_{14}	∞	∞	∞
c_{15}	∞	∞	4
c_{16}	∞	10	5
c_{17}	∞	6	6

4. $\Gamma p = \{c_4, c_6, c_{10}, c_{11}, c_{12}, c_{14}, c_{15}, c_{17}\}.$

$$l(c_4) = min(5, 3^+ + 2) = 5$$

$$l(c_6) = min(5, 3^+ + 8) = 5$$

$$l(c_{10}) = min(\infty, 3^{+} + 2) = 5$$

$$l(c_{11}) = min(5, 3^{+} + 2) = 5$$

$$l(c_{12}) = min(16, 3^+ +) = 9$$

$$l(c_{14}) = min(\infty, 3^+ +) = 5$$

$$l(c_{15}) = min(4, 3^+ + 2) = 4$$

$$l(c_{17}) = min(6, 3^+ + 3) = 6$$

c_1	0+			
c_2	∞	1+		
c_3	∞	∞	∞	∞
c_4	∞	∞	5	5
c_5	∞	4	4	4
c_6	∞	5	5	5
c_7	∞	∞	∞	∞
c_8	∞	2	∞	∞
c_9	∞	∞	3+	
c_{10}	∞	∞	∞	5
c_{11}	∞	10	5	5
c_{12}	∞	∞	16	9
c_{13}	∞	∞	7	7
c_{14}	∞	∞	∞	5
c_{15}	∞	∞	4	4+
c_{16}	∞	10	5	5
c_{17}	∞	6	6	6

5. $\Gamma p = \{c_3, c_4, c_6, c_7, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}, c_{16}\}$

$$l(c_3) = min(\infty, 4^+ + 2) = 6$$

$$l(c_4) = min(5, 4^+ + 3) = 5$$

$$l(c_6) = min(5, 4^+ + 5) = 5$$

$$l(c_7) = min(\infty, 4^+ + 3) = 7$$

$$l(c_{10}) = min(5, 4^+ + 6) = 5$$

$$l(c_{11}) = min(5, 4^+ + 3) = 5$$

$$l(c_{12}) = min(9, 4^+ + 8) = 9$$

$$l(c_{13}) = min(7, 4^+ + 4) = 7$$

 $l(c_{14}) = min(5, 4^+ + 2) = 5$

$$l(c_{16}) = min(5, 4^{+} + 1) = 5$$

c_1	0+				
c_2	∞	1+			
c_3	∞	∞	∞	∞	6
c_4	∞	∞	5	5	5
c_5	∞	4	4	4	4+
c_6	∞	5	5	5	5
c_7	∞	∞	∞	∞	7
c_8	∞	2	∞	∞	∞
c_9	∞	∞	3+		
c_{10}	∞	∞	∞	5	5
c_{11}	∞	10	5	5	5
c_{12}	∞	∞	16	9	9
c_{13}	∞	∞	7	7	7
c_{14}	∞	∞	∞	5	5
c_{15}	∞	∞	4	4+	
c_{16}	∞	10	5	5	5
c_{17}	∞	6	6	6	6

6.
$$\Gamma p = \{c_{11}, c_{16}, c_{17}\}$$

$$l(c_{11}) = min(5, 4^{+} + 1) = 5$$

 $l(c_{16}) = min(5, 4^{+} + 3) = 5$

$$l(c_{17}) = min(6, 4^+ + 2) = 6$$

c_1	0+					
c_2	∞	1+				
c_3	∞	∞	∞	∞	6	6
c_4	∞	∞	5	5	5	5 ⁺
c_5	∞	4	4	4	4+	
c_6	∞	5	5	5	5	5
c_7	∞	∞	∞	∞	7	7
c_8	∞	2	∞	∞	∞	∞
c_9	∞	∞	3+			
c_{10}	∞	∞	∞	5	5	5
c_{11}	∞	10	5	5	5	5
c_{12}	∞	∞	16	9	9	9
c_{13}	∞	∞	7	7	7	7
c_{14}	∞	∞	∞	5	5	5
c_{15}	∞	∞	4	4+		
c_{16}	∞	10	5	5	5	5
c_{17}	∞	6	6	6	6	6

7.
$$\Gamma p = \{c_6, c_{12}, c_{13}, c_{14}, c_{16}, c_{17}\}$$

$$l(c_{6}) = min(5, 5^{+} + 2) = 5$$
$$l(c_{12}) = min(9, 5^{+} + 9) = 9$$
$$l(c_{13}) = min(7, 5^{+} + 5) = 7$$
$$l(c_{14}) = min(5, 5^{+} + 4) = 5$$
$$l(c_{16}) = min(5, 5^{+} + 2) = 5$$
$$l(c_{17}) = min(6, 5^{+} + 9) = 6$$

c_1	0+						
c_2	∞	1+					
c_3	∞	∞	∞	∞	6	6	6
c_4	∞	∞	5	5	5	5+	
c_5	∞	4	4	4	4+		
c_6	∞	5	5	5	5	5	5+
c_7	∞	∞	∞	∞	7	7	7
c_8	∞	2	∞	∞	∞	∞	∞
c_9	∞	∞	3+				
c_{10}	∞	∞	∞	5	5	5	5
c_{11}	∞	10	5	5	5	5	5
c_{12}	∞	∞	16	9	9	9	9
c_{13}	∞	∞	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5
c_{15}	∞	∞	4	4+			
c_{16}	∞	10	5	5	5	5	5
c_{17}	∞	6	6	6	6	6	6

8. $\Gamma p = \{c_3, c_8, c_{10}, c_{12}, c_{13}, c_{14}, c_{16}, c_{17}\}$

$$l(c_3) = min(6, 5^+ + 8) = 6$$

$$l(c_8) = min(\infty, 5^+ + 5) = 10$$

$$l(c_{10}) = min(5, 5^+ + 3) = 5$$

$$l(c_{12}) = min(9, 5^+ + 2) = 7$$

$$l(c_{13}) = min(7, 5^+ + 21) = 7$$

$$l(c_{14}) = min(5, 5^+ + 6) = 5$$

$$l(c_{16}) = min(5, 5^+ + 8) = 5$$

$$l(c_{17}) = min(6, 5^+ + 3) = 6$$

c_1	0+							
c_2	∞	1+						
c_3	∞	∞	∞	∞	6	6	6	6
c_4	∞	∞	5	5	5	5+		
c_5	∞	4	4	4	4+			
c_6	∞	5	5	5	5	5	5+	
c_7	∞	∞	∞	∞	7	7	7	7
c_8	∞	2	∞	∞	∞	∞	∞	10
c_9	∞	∞	3+					
c_{10}	∞	∞	∞	5	5	5	5	5+
c_{11}	∞	10	5	5	5	5	5	5
c_{12}	∞	∞	16	9	9	9	9	7
c_{13}	∞	∞	7	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5	5
c_{15}	∞	∞	4	4+				
c_{16}	∞	10	5	5	5	5	5	5
c_{17}	∞	6	6	6	6	6	6	6

9. $\Gamma p = \{c_{11}, c_{13}, c_{14}, c_{16}, c_{17}\}$

$$l(c_{11}) = min(5, 5^{+} + 1) = 5$$

$$l(c_{13}) = min(7, 5^{+} + 4) = 7$$

$$l(c_{14}) = min(5, 5^{+} + 3) = 5$$

$$l(c_{16}) = min(5, 5^{+} + 1) = 5$$

$$l(c_{17}) = min(6, 5^+ + 2) = 6$$

c_1	0+								
c_2	∞	1+							
c_3	∞	∞	∞	∞	6	6	6	6	6
c_4	∞	∞	5	5	5	5+			
c_5	∞	4	4	4	4+				
c_6	∞	5	5	5	5	5	5+		
c_7	∞	∞	∞	∞	7	7	7	7	7
c_8	∞	2	∞	∞	∞	∞	∞	10	10
c_9	∞	∞	3+						
c_{10}	∞	∞	∞	5	5	5	5	5 ⁺	
c_{11}	∞	10	5	5	5	5	5	5	5+
c_{12}	∞	∞	16	9	9	9	9	7	7
c_{13}	∞	∞	7	7	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5	5	5
c_{15}	∞	∞	4	4+					
c_{16}	∞	10	5	5	5	5	5	5	5
c_{17}	∞	6	6	6	6	6	6	6	6

10.
$$\Gamma p = \{c_8\}$$

$$l(c_8) = min(10, 5^+ + 3) = 8$$

c_1	0+									
c_2	∞	1+								
c_3	∞	∞	∞	∞	6	6	6	6	6	6
c_4	∞	∞	5	5	5	5+				
c_5	∞	4	4	4	4+					
c_6	∞	5	5	5	5	5	5+			
c_7	∞	∞	∞	∞	7	7	7	7	7	7
c_8	∞	2	∞	∞	∞	∞	∞	10	10	8
c_9	∞	∞	3+							
c_{10}	∞	∞	∞	5	5	5	5	5+		
c_{11}	∞	10	5	5	5	5	5	5	5+	
c_{12}	∞	∞	16	9	9	9	9	7	7	7
c_{13}	∞	∞	7	7	7	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5	5	5	5+
c_{15}	∞	∞	4	4+						
c_{16}	∞	10	5	5	5	5	5	5	5	5
c_{17}	∞	6	6	6	6	6	6	6	6	6

11.
$$\Gamma p = \{c_3, c_{12}, c_{16}, c_{17}\}$$

$$l(c_3) = min(6, 5^+ + 6) = 6$$

$$l(c_{12} = min(7, 5^+ + 5) = 7$$

$$l(c_{16} = min(5, 5^+ + 6) = 5$$

$$l(c_{17} = min(6, 5^+ + 6) = 6$$

c_1	0+										
c_2	∞	1+									
c_3	∞	∞	∞	∞	6	6	6	6	6	6	6
c_4	∞	∞	5	5	5	5+					
c_5	∞	4	4	4	4+						
c_6	∞	5	5	5	5	5	5+				
c_7	∞	∞	∞	∞	7	7	7	7	7	7	7
c_8	∞	2	∞	∞	∞	∞	∞	10	10	8	8
c_9	∞	∞	3+								
c_{10}	∞	∞	∞	5	5	5	5	5+			
c_{11}	∞	10	5	5	5	5	5	5	5+		
c_{12}	∞	∞	16	9	9	9	9	7	7	7	7
c_{13}	∞	∞	7	7	7	7	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5	5	5	5+	
c_{15}	∞	∞	4	4+							
c_{16}	∞	10	5	5	5	5	5	5	5	5	5+
c_{17}	∞	6	6	6	6	6	6	6	6	6	6

12. $\Gamma p = \{c_3, c_7, c_{12}, c_{13}, c_{17}\}$

$$l(c_3) = min(6, 5^+ + 3) = 6$$

$$l(c_7) = min(7, 5^+ + 4) = 7$$

$$l(c_{12}) = min(7, 5^{+} + 6) = 7$$

$$l(c_{13}) = min(7, 5^+ + 9) = 7$$

$$l(c_{17}) = min(6, 5^+ + 3) = 6$$

	0.1											
c_1	0+											
c_2	∞	1+										
c_3	∞	∞	∞	∞	6	6	6	6	6	6	6	6+
c_4	∞	∞	5	5	5	5+						
c_5	∞	4	4	4	4+							
c_6	∞	5	5	5	5	5	5+					
c_7	∞	∞	∞	∞	7	7	7	7	7	7	7	7
c_8	∞	2	∞	∞	∞	∞	∞	10	10	8	8	8
c_9	∞	∞	3+									
c_{10}	∞	∞	∞	5	5	5	5	5+				
c_{11}	∞	10	5	5	5	5	5	5	5+			
c_{12}	∞	∞	16	9	9	9	9	7	7	7	7	7
c_{13}	∞	∞	7	7	7	7	7	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5	5	5	5+		
c_{15}	∞	∞	4	4+								
c_{16}	∞	10	5	5	5	5	5	5	5	5	5+	
c_{17}	∞	6	6	6	6	6	6	6	6	6	6	6

13. $\Gamma p = \{c_{13}\}.$

$$l(c_{13}) = max(7, 6^+ + 4) = 7$$

c_1	0+												
c_2	∞	1+											
c_3	∞	∞	∞	∞	6	6	6	6	6	6	6	6+	
c_4	∞	∞	5	5	5	5+							
c_5	∞	4	4	4	4+								
c_6	∞	5	5	5	5	5	5+						
c_7	∞	∞	∞	∞	7	7	7	7	7	7	7	7	7
c_8	∞	2	∞	∞	∞	∞	∞	10	10	8	8	8	8
c_9	∞	∞	3+										
c_{10}	∞	∞	∞	5	5	5	5	5^+					
c_{11}	∞	10	5	5	5	5	5	5	5+				
c_{12}	∞	∞	16	9	9	9	9	7	7	7	7	7	7
c_{13}	∞	∞	7	7	7	7	7	7	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5	5	5	5+			
c_{15}	∞	∞	4	4+									
c_{16}	∞	10	5	5	5	5	5	5	5	5	5+		
c_{17}	∞	6	6	6	6	6	6	6	6	6	6	6	6+

14. $\Gamma p = \{c12, c_{13}\}$

$$l(c_{12}) = max(7, 6^{+} + 2) = 7$$

$$l(c_{13}) = max(7, 6^+ + 4) = 7$$

c_1	0+													
c_2	∞	1+												
c_3	∞	∞	∞	∞	6	6	6	6	6	6	6	6+		
c_4	∞	∞	5	5	5	5+								
c_5	∞	4	4	4	4+									
c_6	∞	5	5	5	5	5	5+							
c_7	∞	∞	∞	∞	7	7	7	7	7	7	7	7	7	7+
c_8	∞	2	∞	∞	∞	∞	∞	10	10	8	8	8	8	8
c_9	∞	∞	3+											
c_{10}	∞	∞	∞	5	5	5	5	5+						
c_{11}	∞	10	5	5	5	5	5	5	5+					
c_{12}	∞	∞	16	9	9	9	9	7	7	7	7	7	7	7
c_{13}	∞	∞	7	7	7	7	7	7	7	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5	5	5	5+				
c_{15}	∞	∞	4	4+										
c_{16}	∞	10	5	5	5	5	5	5	5	5	5+			
c_{17}	∞	6	6	6	6	6	6	6	6	6	6	6	6+	

15. $\Gamma p = \{c12\}$

$$l(c_{12}) = max(7, 7^{+} + 5) = 7$$

c_1	0+														
c_2	∞	1+													
c_3	∞	∞	∞	∞	6	6	6	6	6	6	6	6+			
c_4	∞	∞	5	5	5	5+									
c_5	∞	4	4	4	4+										
c_6	∞	5	5	5	5	5	5+								
c_7	∞	∞	∞	∞	7	7	7	7	7	7	7	7	7	7+	
c_8	∞	2	∞	∞	∞	∞	∞	10	10	8	8	8	8	8	8
c_9	∞	∞	3+												
c_{10}	∞	∞	∞	5	5	5	5	5+							
c_{11}	∞	10	5	5	5	5	5	5	5+						
c_{12}	∞	∞	16	9	9	9	9	7	7	7	7	7	7	7	7+
c_{13}	∞	∞	7	7	7	7	7	7	7	7	7	7	7	7	7
c_{14}	∞	∞	∞	5	5	5	5	5	5	5+					
c_{15}	∞	∞	4	4+											
c_{16}	∞	10	5	5	5	5	5	5	5	5	5+				
c_{17}	∞	6	6	6	6	6	6	6	6	6	6	6	6+		

16. $\Gamma p = \{c_{13}\}$

$$l(c_{13}) = max(7, 7^{+} + 12) = 7$$

c_1	0+															
		1+														
c_2	∞	1+														
c_3	∞	∞	∞	∞	6	6	6	6	6	6	6	6+				
c_4	∞	∞	5	5	5	5+										
c_5	∞	4	4	4	4+											
c_6	∞	5	5	5	5	5	5+									
c_7	∞	∞	∞	∞	7	7	7	7	7	7	7	7	7	7+		
c_8	∞	2	∞	∞	∞	∞	∞	10	10	8	8	8	8	8	8	8
c_9	∞	∞	3+													
c_{10}	∞	∞	∞	5	5	5	5	5+								
c_{11}	∞	10	5	5	5	5	5	5	5+							
c_{12}	∞	∞	16	9	9	9	9	7	7	7	7	7	7	7	7+	
c_{13}	∞	∞	7	7	7	7	7	7	7	7	7	7	7	7	7	7+
c_{14}	∞	∞	∞	5	5	5	5	5	5	5+						
c_{15}	∞	∞	4	4+												
c_{16}	∞	10	5	5	5	5	5	5	5	5	5+					
c_{17}	∞	6	6	6	6	6	6	6	6	6	6	6	6+			

17. $\Gamma p = \{c_8\}$

$$l(c_{13}) = max(8, 7^{+} + 2) = 8$$

c_1	0+																
c_2	∞	1+															
c_3	∞	∞	∞	∞	6	6	6	6	6	6	6	6+					
c_4	∞	∞	5	5	5	5+											
c_5	∞	4	4	4	4+												
c_6	∞	5	5	5	5	5	5+										
c_7	∞	∞	∞	∞	7	7	7	7	7	7	7	7	7	7+			
c_8	∞	2	∞	∞	∞	∞	∞	10	10	8	8	8	8	8	8	8	8+
c_9	∞	∞	3+														
c_{10}	∞	∞	∞	5	5	5	5	5^+									
c_{11}	∞	10	5	5	5	5	5	5	5+								
c_{12}	∞	∞	16	9	9	9	9	7	7	7	7	7	7	7	7+		
c_{13}	∞	∞	7	7	7	7	7	7	7	7	7	7	7	7	7	7+	
c_{14}	∞	∞	∞	5	5	5	5	5	5	5+							
c_{15}	∞	∞	4	4+													
c_{16}	∞	10	5	5	5	5	5	5	5	5	5+						
c_{17}	∞	6	6	6	6	6	6	6	6	6	6	6	6+				

5. Поиск пропускной способности алгоритмом Франка-Фриша

Возьмём за граф с пропускной способностью граф с весами, представленный в виде матрица из пунтка 4.

Найдём пропускную способность, принимая за исток s вершину e_1 , а за сток t — вершину e_7 .

Обнаружим разрез $(e_1, X \setminus e_1)$. Его максимальная пропускная способность равна 10.

Объединим все вершины, между которыми есть ребро весом ≥ 10 . Объединяются множества $(e_1, e_{11}, e_{16}), (e_2, e_{12}, e_{13}, e_6)$.

Получаем граф (так как разрез определяет по максимальной ΠC , оставляем лишь наибольшие значения):

3110 1011112											
$e_{1,11,16}$	$e_{2,6,12,13}$	e_3	e_4	e_5	e_7	e_8	e_9	e_{10}	e_{14}	e_{15}	e_{17}
0	9	3	2	4	4	3	2	1	6	3	6
	0	4	9	6	5	5	8	4	6	8	5
		0	0	0	0	0	0	0	6	2	0
			0	0	0	0	2	0	4	3	9
				0	0	0	0	0	0	0	2
					0	0	0	0	0	3	0
						0	0	0	0	0	0
							0	2	2	2	3
								0	3	6	2
									0	2	6
										0	0
											0
	$e_{1,11,16}$	$\begin{array}{c cc} e_{1,11,16} & e_{2,6,12,13} \\ 0 & 9 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								

Теперь максимальная ПС – 6. Пусть

$$s = (e_{1,11,16}, e_{14}, e_{17}, e_{2,6,12,13}, e_3, e_4, e_5, e_9, e_{15}, e_{10})$$

$$t = e_7$$

	S	t	e_8
S	0	5	5
t		0	0
e_8			0

Теперь максимальная $\Pi C - 5$. Далее получаем, что s и t в одном множестве, следовательно, максимальная ΠC равна 5. Граф приведён ниже. Из-за большого количество узлов и дуг, обозначим на графе только те вершины, которые задействованы в пути.

Учитывая, что максимальное возможное значение для того, чтобы достигнуть e_7 , это 5, большее значение Π С уж точно не достигнуть.