Лабораторна робота №1 з Чисельних методів Варіант №10 Петрів Владислав

Зміст

Лабораторна робота №1
Завдання 1
1) Умова завдання
2)Теоретичні відомості
3)Графік функції
4)Необхідні обчислення
5)Результат роботи програми
Завдання 25
1) Умова завдання5
2)Теоретичні відомості 5
3)Графік функції 5
4) Необхідні обчислення5
5) Результат роботи програми
Завдання 3
1) Умова завдання
2)Теоретичні відомості
3)Графік функції
4) Необхідні обчислення
5) Результат роботи програми

Завдання 1

1) Умова завдання

Знайти мінімальний від'ємний розв'язок $x^3 - 5x^2 - 4x + 20 = 0$ методом релаксації.

2) Теоретичні відомості

Якщо в методі простої ітерації вибрати $\psi(x) = \tau = const$, то ми отримаємо метод релаксації, формула якого має вигляд $x_{n+1} = x_n + \tau f(x_n)$, $n = 0,1,2 \bullet \bullet \bullet$

Цей метод збігається, якщо $-2 < \tau f'(x) < 0$.

Якщо в якомусь околі корені виконуються умови f'(x) < 0, $0 < m_1 < |f'(x)| < M_1$, то метод релаксації збігається для $\tau \in (0; \frac{2}{M_1})$.

Збіжність найкраща за умови:

$$\tau = \tau_{\text{oht}} = \frac{2}{m_1 + M_1}$$

3 такого вибору т для похибки $z_n = x_n - x^*$ правдива оцінка:

$$|z_n| < q^n |z_0|, n = 0,1,2, ullet ullet ,$$
де $q = rac{M_1 - m_1}{M_1 + m_1}$

Кількість ітерацій, які потрібно для відшукання розв'язку з точністю ε , можна визначити з нерівності:

$$n \ge \left\lceil \frac{\ln\left(\frac{|z_0|}{\varepsilon}\right)}{\ln\left(\frac{1}{q}\right)} \right\rceil + 1$$

Якщо виконується умова f'(x) > 0, то формулу ітераційного методу потрібно записати у вигляді $x_{n+1} = x_n - \tau f(x_n)$.

3)Графік функції

 $f(x) = x^3 - 5x^2 - 4x + 20$ 40 -4 -20 -40

4)Необхідні обчислення

$$f'(x) = (x^3 - 5x^2 - 4x + 20)' = 3x^2 - 10x - 4$$

3 графіку бачимо три розв'язки.

Візьмемо окіл (-3;-1)

f'(x) < 0, 0 < 9 < |f'(x)| < 53. За формулою:

$$\tau = \tau_{\text{OHT}} = \frac{2}{9+53} = \frac{1}{31} \approx 0.0322$$

Виберемо $x_0 = -3$

5)Результат роботи програми

1-th iteration: -3 -40 2-th iteration: -1.70968 7.22634 3-th iteration: -1.94279 1.56619 4-th iteration: -1.99331 0.186896 5-th iteration: -1.99934 0.0185742 6-th iteration: -1.99994 0.0018023

Завдання 2

1) Умова завдання

Знайти мінімальний від'ємний розв'язок $x^3 - 8x^2 + 9x + 18 = 0$ методом Ньютона.

2) Теоретичні відомості

Метод Ньютона застосовують для розв'язання задачі f(x) = 0 із неперервно диференційованою функцією f(x). Спочатку вибирають початкове наближення x_0 , а наступні наближення обчислюють за формулою:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0,1,2, \dots, f'(x_n) \neq 0$$

Якщо $f(x) \in C^2[a;b]$, f(a)f(b) < 0, а f''(x) не змінює знак на [a;b], то для $x_0 \in [a;b]$, що задовільняє умові $f(x_0)f''(x_0) > 0$, можна методом Ньютона обчислити єдиний корінь рівняння із будь-яким степенем точності.

3)Графік функції

$$f(x) = x^3 - 8x^2 + 9x + 18$$

4) Необхідні обчислення

Знайдемо першу і другу похідні:

$$f'(x) = (x^3 - 8x^2 + 9x + 18)' = 3x^2 - 16x + 9;$$

$$f''(x) = (3x^2 - 16x + 9)' = 6x - 16$$

На графіку бачимо три розв'язки, розглянемо той, який лежить на проміжку [-2;0].

 $[a;b]=[-2;0], f(x) \in \mathcal{C}^2[-2;0], f(-2)f(0)<0$ та f''(x) не змінює знак на [-2;0]. Виберемо $x_0=-3.5, x_0 \in [-2;0]$ та $f(x_0)f''(x_0)>0$, отже методом Ньютона можна обчислити єдиний корінь рівняння.

5) Результат роботи програми

```
1-th iteration: -2 -40

2-th iteration: -1.24528 -7.54448

3-th iteration: -1.02059 -0.581168

4-th iteration: -1.00016 -0.00460607

5-th iteration: -1 -2.97604e-07
```

Завдання 3

1) Умова завдання

Знайти мінімальний від'ємний розв'язок $x^3 - 4x^2 - 15x + 18 = 0$ методом січних.

2) Теоретичні відомості

У методі Ньютона основна обчислювальна робота полягає у відшуканні значень f(x) та f'(x). Замінивши похідну f'(x), використовувану в методі Ньютона, різницею послідовних значень функції, віднесеною до різниці значень аргументу (тобто замінивши дотичну січною), отримаємо таку ітераційну формулу для розв'язання рівняння f(x) = 0:

$$x_{n+1} = x_n - \frac{(x_n - x_{n-1})f(x_n)}{f(x_n) - f(x_{n-1})}, n = 0,1,2, \bullet \bullet \bullet$$

3)Графік функції

$$f(x) = x^3 - 4x^2 - 15x + 18$$

4) Необхідні обчислення

На графіку бачимо три розв'язки, розглянемо той, який лежить на проміжку [-5;-2]. Виберемо $x_0=-5, x_{1=}-4,5.$

5) Результат роботи програми

```
1-th iteration: -5 -132
2-th iteration: -3.54545
                          -23.6664
3-th iteration: -0.774194 26.7514
4-th iteration: -1.53165 27.9978
5-th iteration: -2.24461
                         20.2071
6-th iteration: 15.4827
7-th iteration: -4.09387
                         -56.2431
8-th iteration: -2.38686
                        17.4162
9-th iteration: -3.6695
                         -30.2291
10-th iteration: -2.79047
11-th iteration: -2.85572 4.92654
12-th iteration: -2.9554 1.57996
13-th iteration: -3.01214
                          -0.438904
14-th iteration: -3.00246
                         -0.0884829
15-th iteration: -2.9998 0.00710339
16-th iteration: -3.00001 -0.000385909
```