

Jawahar Education Societys Annasaheb Chudaman Patil College of Engineering, Kharghar, Navi Mumbai

NAME: PRIYUSH BHIMRAO KHOBRAGADE

PRN NO: 211112018

Roll No: 52

SUBJECT: Analysis of Algorithms Lab

EXPERMINT: 05

	Experiment No-05 PAGE NO.: DATE.: / / 20
	= 144 0.4 10-03
	· Aim: - Implement a c program for single source shortest
	Path using Glebedy Algorithm.
	· Objectivies: _ to implement and analyze complexity of single source _
	Shortest Path.
	: out comps: - Students will be ack to compute the complexity of
	Single Source shortest path.
	- Handware Software Required: - 'C' compiler
	- Theory
	Girledy Approach: - A J. greedy aborithm is an algorithmic
	Paradigm that follows the problem solving heuristic of making the
	global optimals. The principle of optimality state that "In an
	optimal sequence of decisions or choice, euch subsequence must also be
	optima!
	· Peoglem Definition:
	Shoetest Paths from source yestex. Vo to all remaining vertices
	of G, It is assumed that all the weights are positive, It
	is auto called 'DiJKStED'S Algorithm!
	13 agris contest provide
en	
tie	1
8	Teachers Signature

PAGE NO.:
DATE.: / / 20
7 20
· Algorithm:
Algorithm SSP (VIW)
1. Current +; initialize dist and visit array
2. Initialize distance a visit states of current vertex to 0 2 1 Easp.
3. Repeat step 4 to 13 for all vertices.
4. min - 9999;
5. for - ? + 2 to V do
6. it (visit (i) = 0 & dist (i) 1 min)
$\frac{1}{2} \min \leftarrow dist(i)$
8. C Current ti
9. Change ta visit states of the current verstex.
10. for it 2 to V do
11. if (w(convent, i) (=0) DD visit(i) =0 DD dist(i) > w (current, i) + dist(current))
12. dist(i) + co Courrent, i) + dist (count) &
13. 6114 104.
- Analysis
$\frac{1}{(1)} = \sum_{i=1}^{n} 1.$
$= V_{5} = O(V_{5})$
= 1(= = 0(n))
· Conclusion: Thus, it is proved that the complexity of
Disksfeq's Algorithm. is O(n2).
Teachers Signature

Input:

```
1 #include<stdio.h>
2 #include<conio.h>
3 #define infinity 999
5 vold dij(int n, int v, int cost[10][10], int dist[100])
6 {
7 Int i,u,count,w,flag[10],min;
8
            for(i=1;i\leq n;i++)
9
            flag[i]=0,dist[i]=cost[v][i];
10
            count=2;
11
            while(count<=n)
12
            min=9999;
13
14
             for(w=1;w<=n;w++)
15
                       If(dist[w]<min && !flag[w])
16
                                 min=dist[w],u=w;
17
                       flag[u]=1;
18
                       count++;
19
            for(w=1:w<=n:w++)
20
             If((dist[u]+cost[u][w]<dist[w]) && !flag[w])
21
             dist[w]=dist[u]+cost[u][w];
22
23 }
24 vold main()
25 {
26
             int n,v,i,j,cost[10][10],dist[10];
27
            printf("\n Enter the number of nodes:");
28
            scanf("%d",&n);
29
             printf("\n Enter the cost matrix:\n");
30
                       for(i=1;i \le n;i++)
31
             for(j=1;j\leq=n;j++)
32
33
               scanf("%d",&cost[i][j]);
34
             If(cost[i][j]==0)
35
             cost[i][j]=infinity;
36
37 printf("\n Enter the source :");
38 scanf("%d",&v);
39 dij(n,v,cost,dist);
40 printf("\n Shortest path:\n");
41
            for(i=1;i<=n;i++)
42
             if(i!=v)
43
             printf("%d->%d,cost=%d\n",v,i,dist[i]);
44
             getch();
45
46 }
```

Output:

```
Enter the number of nodes:5

Enter the cost matrix:
99 88 77 99 955
65 656 659 66 999
557 665 455 66 666
65 66 555 665 699
335 606 66 456 556

Enter the source :1

Shortest path:
1->2,cost=88
1->3,cost=77
1->4,cost=99
1->5,cost=743
```

<u>Conclusion</u>: Thus it is proved that the complexity of Dijkstra's **Algorithm is** O(n2).