Using neural networks to decode EEG and read your thoughts

BUILDING A YES/NO CLASSIFIER TO HELP PEOPLE WITH CENTRAL NERVOUS SYSTEM INJURIES COMMUNICATE

We are seeking to replicate and improve on the results of a recent scientific study

- •The original study sought to create the best yes/no binary predictor for nine participants with spinal cord injuries or major strokes.
 - Each participant came for two sessions several days apart
 - At each session they wore an array of thirty EEG electrodes
- And most importantly for our purposes they released the raw data so we can use it to try and replicate and improve on their results

Can we build a model to accurately differentiate between two of those five trial types?

Details of the original study

Source: Reinhold Scherer, Josef Faller, Elisabeth V. C. Friedrich, Eloy Opisso, Ursula Costa, Andrea Kübler, and Gernot R. Müller-Putz: Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

Finding a yes/no predictor against 50% baseline accuracy

Source: Reinhold Scherer, Josef Faller, Elisabeth V. C. Friedrich, Eloy Opisso, Ursula Costa, Andrea Kübler, and Gernot R. Müller-Putz: Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

200 trials conducted each day, 80 data points in each pairwise combination

Day 1				
Trial type	Times conducted			
Word	40			
Subtraction	40			
Navigation	40			
Hand	40			
Feet	40			
Total	200			

Day 2

Can't look at it until testing final model

A number of signal processing methods were tried to improve signal quality

- 1. Frequency filtering (low pass and high pass filters)
- Use signal-space projections (SSP) and independent component analysis (ICA)
- 3. Baseline correction
- **4. Decimate data** (e.g., take every 2nd, 4th, and 8th samples)
- **5. Drop trials** based on peak-to-peak amplitude or lack of peak to trough amplitude
- 6. Common Spatial Patterns (CSP) to reduce dimensionality of data

Dropping trials, visualized

ICA visualized (1 of 2)

Before removing ICA components

ICA visualized (1 of 2)

After removing ICA component 1

I combined several methods to try and solve the problem – unique model for each subject

Convolutional Neural Convolutional Neural LDA + Common Spatial Neural Network + CSP Network (big filters) Network (small filters) Patterns (CSP) **Neural Network** Final prediction for each trial

The original study achieved 80% average accuracy across the nine subjects

Source: Reinhold Scherer, Josef Faller, Elisabeth V. C. Friedrich, Eloy Opisso, Ursula Costa, Andrea Kübler, and Gernot R. Müller-Putz: Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

Unfortunately I wasn't able to match that accuracy on session 2 data

Subject		Ą		С)		Ε		=	(3	ŀ	1		J		-
% Acc. (TPR, TNR)	87	10	48	85	0	100	0	100	73	27	100	0	88	6	97	49	54	36

Extremely unbalanced positive vs negative accuracy rates show the model has not successfully adapted to the shift to session 2.

Overall average accuracy is only 55%

Next steps

- 1. Use **different ensemble model** neural network is overfitting
- 2. Utilize a Reiman geometry method for a new L1 model
 - 1. Supposed to outperform CSP on EEG problems
- 3. Implement a **rebiasing** method
 - 1. Essentially using the first few trials of session 2 to adjust the model to the shifted EEG patterns
- 4. Make CNN models more generalizable
 - 1. Resample the data (e.g., instead of looking at data from 0 5 seconds, create three sections of data 0 3 1 4 2 5)
- 5. Rerun analysis with **fewer dropped channels**
 - 1. The key to success here is more data I should drop as little as possible