

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB201T Transforms and Boundary Value Problems

	UNIT – V : Z Transforms			
CLNIC		Tutorial Sheet - 14	Angway	
Sl.No. Questions Part – B		Answer		
1	Find the z-transforms of $\sin \frac{n\pi}{2}$.		$z\left\{\sin\frac{n\pi}{2}\right\} = \frac{z}{z^2 + 1}$	
2	Find the z-transforms of $\sin^3\left(\frac{n\pi}{6}\right)$.		$z\left\{\sin^3\left(\frac{n\pi}{6}\right)\right\} = \frac{3z}{4(z^2 - z\sqrt{3} + 1)}$ $-\frac{z}{4(z^2 + 1)}$	
3	Find the z-transforms of $\sin^2\left(\frac{n\pi}{4}\right)$.		$z\left\{\sin^2\left(\frac{n\pi}{4}\right)\right\} = \frac{z}{2(z-1)}$ $-\frac{z^2}{2(z^2+1)}$	
4	Use initial $\overline{f}(z) = \frac{ze^{aT}}{z^2e^{2aT}}$		f(0) = 1	
5	Use final value	the etheorem to find $f(\infty)$ when $\overline{f}(z) = \frac{Tze^{aT}}{(ze^{aT} - 1)^2}$.	$f(\infty) = 0$	
	Part – C			
6		rse z-transforms of (i) $\frac{z^2+z}{(z-1)^2}$ (ii) $\frac{2z^2+4z}{(z-2)^3}$ by	(i) $f(n) = 2n + 1$ (ii) $f(n) = n^2 2^n$	
7		division method.	f(n) = 1 + 2u(n-1)	
/	Find the inv	erse z-transform of $\frac{1+2z^{-1}}{1-z^{-1}}$ by long division	I(II) = I + 2u(II - I)	
8		se z-transform of $\frac{5z}{(2z-1)(z-3)}$ by partial fraction	$f(n) = 3^n - \frac{1}{2^n}$	
9		se z-transform of $\frac{z^2 + 2z}{(z-1)(z-2)(z-3)}$ by partial	$f(n) = \frac{3}{2} - 4.2^{n} + \frac{5}{2}.3^{n}$	
10	fraction metho	od.		
10	Find the inverse method.	rse z-transform of $\frac{4z^2-12z}{z^3-3z+2}$ by partial fraction	$f(n) = \frac{20}{9} - \frac{8}{3}n$	
			$-\frac{20}{9}(-2)^{n}$	