CSE/ECE 848 Introduction to Evolutionary Computation

Module 3 - Lecture 12 - Part 4

Particle Swarm Optimization

Wolfgang Banzhaf, CSE
John R. Koza Chair in Genetic Programming

Particle Swarm Optimization

Introduced by James Kennedy and Russell Eberhart (1995) "Particle Swarm Optimization." Proceedings of the IEEE International Conference on Neural Networks, Australia, pp. 1942-1945.

General features of Swarm Algorithms:

- Population-based
- Stochastic
- Derivative free
- Dynamic: Velocity important

Influenced through using the experiences

- Personal (inertia)
- Global (society)
- Neighbors

PSO Main Steps

Updating experiences Updating positions

- Update individual experience
- Update velocities
- Update positions

Initialization of Swarm

- Swarm size NP
- Initialize positions of individuals in search space [xmin, xmax]

$$x_i^0 = x_{min}^0 + rand \times \left(x_{max}^0 - x_{min}^0\right)$$
$$i \in \{1, 2, \dots, NP\}$$

Initialize velocities

$$v_i^0 = \frac{x_i^0}{\Delta t}$$
 or $v_i^0 = 0$ or $v_i^0 = r$ and

Basic Updating

- pb: Previous best (individual best fitness so far)
- gb: Global best (global, swarm best fitness so far)
- Sometimes, gb is replaced by lb: Local best (local in neighbourhood)

$$\begin{aligned} v_i^{k+1} &= w^{k+1} v_i^k + \\ c_1 rand_1 & \frac{\left(x_i^{pb} - x_i^k\right)}{\Delta t} + \\ c_2 rand_2 & \frac{\left(x_i^{gb} - x_i^k\right)}{\Delta t} \end{aligned}$$

$$x_i^{k+1} = x_i^k + v_i^{k+1} \Delta t$$

Synchronous vs. Asynchronous Updates

- Synchronous updates
 - Personal best and neighbourhood best updated separately from velocity and position vectors
 - Slower feedback about best position
 - Better for gbest PSO
- Asynchronous updates
 - New best position updates after each particle position update
 - Immediate feedback about best regions of the search space
 - Better for Ibest PSO

Problems

Velocity has a tendency to explode to large values

Control Parameters

$$v_i^{k+1} = w^{k+1}v_i^k + c_1 rand_1 \frac{\left(x_i^{pb} - x_i^k\right)}{\Delta t} + c_2 rand_2 \frac{\left(x_i^{gb} - x_i^k\right)}{\Delta t}$$

- Convergence depends on parameter settings
- c₁ and c₂ control exploration vs exploitation tendency
- rand are random numbers from [0,1]
- Speed limit V_{max}

$$v_{ij}^{k+1} = \begin{cases} v_{ij}^{k+1} & \left| v_{ij}^{k+1} \right| < V_{max,j} \\ V_{max,j} & otherwise \end{cases}$$

Control Parameters II

- w is a weight for the previous velocity, therefore the inertia
 - 0 < w < 1: Velocity decreases, leading to convergence of swarm
 - w > 1 : Velocity increases, leading to divergence of swarm
- w decreasing over run, $[0.9 \dots 0.4]$, or constant at w=0.7298 with c_1 and c_2 as $c_1 = c_2 = 1.49618$ (empirical results)

Control Parameters III

- c₁ and c₂ are termed acceleration coefficients
- c₁ > 0, c₂ = 0: Independent hill climbers, local search by each particle
- $c_1 = 0$, $c_2 > 0$: Swarm is one stochastic hill climber
- c₁ = c₂ > 0: Particles are attracted to the average of pb and gb
- c₁ < c₂: More beneficial for uni-modal problems
- c₁ > c₂: More beneficial for multi-modal problems
- Low c₁ and c₂: Smooth particle trajectories
- High c₁ and c₂: More acceleration, abrupt movement of particles

Convergence

- Van den Bergh (2002) and Trelea (2003) provided formal proof that particles converge to an equilibrium
- In the limit, for gbest PSO, this is:

$$\lim_{t \to \infty} \vec{x}_i(t) = \frac{c_1 \vec{p}_i(t) + c_2 \vec{p}_g(t)}{c_1 + c_2}$$

A single point!

Convergence II

- However, this does not mean that this weighted average between personal and global best is actually a local minimum
- Particles may prematurely converge to a stable state
- For example, what happens if $\vec{x}_i = \vec{p}_i = \vec{p}_g$??
- Then, only the inertia term $\frac{w\vec{v}_i}{v}$ contributes
- Over a number of iterations, this could mean $w\vec{v}_i \rightarrow 0$
- Add mutation!

Variants

 Without a maximum velocity, a method to restrict the update: a constriction factor

$$v_i^{k+1} = \chi \left(v_i^k + c_1 rand_1 \left(x_i^{pb} - x_i^k \right) + c_2 rand_2 \left(x_i^{gb} - x_i^k \right) \right)$$

$$\chi = \frac{2\kappa}{\left|2 - \phi - \sqrt{\phi^2} - 4\phi\right|}$$

$$\phi = \phi_1 + \phi_2$$

$$\phi_1 = c_1 rand_1$$

$$\phi_2 = c_2 rand_2$$

• $\phi \ge 4$ and $\kappa \in [0,1]$ guarantee convergence

Variants II

Neighborhood (nb) wo/w global best

$$\begin{aligned} v_i^{k+1} = & w^{k+1} v_i^k + c_1 rand_1 \left(x_i^{pb} - x_i^k \right) + c_2 rand_2 \left(x_i^{nb} - x_i^k \right) \\ v_i^{k+1} = & w^{k+1} v_i^k + c_1 rand_1 \left(x_i^{pb} - x_i^k \right) + c_2 rand_2 \left(x_i^{nb} - x_i^k \right) + c_3 rand_3 \left(x_i^{gb} - x_i^k \right) \end{aligned}$$

Worst experience (global or personal)

$$v_{i}^{k+1} = w^{k+1}v_{i}^{k} + c_{1}rand_{1}(x_{i}^{pb} - x_{i}^{k}) + c_{2}rand_{2}(x_{i}^{k} - x_{i}^{gw})$$

$$v_{i}^{k+1} = w^{k+1}v_{i}^{k} + c_{1}rand_{1}(x_{i}^{k} - x_{i}^{pw}) + c_{2}rand_{2}(x_{i}^{gb} - x_{i}^{k})$$

Topologies

- Different topologies to define neighbourhoods
- All
- Ring
- Four clusters

2006

2001