Análisis de sistemas lineales.

"Respuesta de una función ante un rampa."

Tarea Nº2.

Profesor: Erick Salas Chaverri.

Integrante:

Allan Chavarría Araya.

Tabla de Transformadas de Laplace

	F(s)	$f(t)$ $t \ge 0$ $(f(t) = 0 \text{ para } t < 0)$	Observaciones
1	1	$\delta(t)$	Impulso de Dirac
2	e ^{-Ts}	$\delta(t-T)$	Impulso de Dirac retrasado T segundos
3	$\frac{1}{s}$	$u_0(t)$	Escalón unitario
4	$\frac{1}{s}e^{-\tau_s}$	$u_0(t-T)$	Escalón unitario retrasado T segundos
5	$\frac{1}{s^2}$	t	Rampa unidad $tu_0(t)$
6	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!}$	n = 1, 2, 3, 0! = 1
7	$\frac{1}{s+a}$	e ^{-a}	$e^{-at}u_0(t)$
8	$\frac{1}{(s+a)^2}$	te ^{−at}	$te^{-\omega}u_0(t)$
9	$\frac{1}{(s+a)''}$	$\frac{1}{(n-1)!}t^{n-1}e^{-\omega}$	n = 1, 2, 3, 0! = 1
10	$\frac{1}{(s+a)(s+b)}$	$\frac{1}{b-a}(e^{-at} - e^{-bt})$ $\frac{1}{a}(1 - e^{-at})$	Polos reales
11	$\frac{1}{s(s+a)}$	$\frac{1}{a}(1-e^{-\alpha t})$	(Como 10 con b=0)
12	$\frac{s+z}{(s+a)(s+b)}$	$\frac{1}{b-a}\left[(z-a)e^{-at}-(z-b)e^{-bt}\right]$	Polos reales
13	$\frac{s}{(s+a)(s+b)}$	$\frac{1}{a-b} \left[ae^{-at} - be^{-bt} \right]$ $e^{-at} \qquad e^{-bt} \qquad e^{-ct}$	(Como 12 con z=0)
14	$\frac{1}{(s+a)(s+b)(s+c)}$	(b-a)(c-a) + (c-b)(a-b) + (a-c)(b-c)	(Particularizable para c=0)
15	$\frac{(s+z)}{(s+a)(s+b)(s+c)}$	$\frac{(z-a)e^{-at}}{(b-a)(c-a)} + \frac{(z-b)e^{-bt}}{(c-b)(a-b)} + \frac{(z-c)e^{-ct}}{(a-c)(b-c)}$	(Particularizable para c=0 \u00f3 z=0)

	F(s)	$f(t)$ $t \ge 0$ $(f(t) = 0 \text{ para } t < 0)$	Observaciones
16	$\frac{1}{s^2(s+a)}$	$\frac{1}{a^2}(at-1+e^{-\alpha t})$	
17	$\frac{1}{s(s+a)^2}$	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	
18	$\frac{s+z}{s(s+a)^2}$	$\frac{1}{a^2}(z-ze^{-at}+a(a-z)te^{-at})$	
19	$\frac{\omega}{s^2 + \omega^2}$	sen(ωt)	Polos imaginarios puros
20	$\frac{s}{s^2 + \omega^2}$	$\cos(\omega t)$	Polos imaginarios puros
21	$\frac{s+z}{s^2+\omega^2}$	$\sqrt{\frac{z^2 + \omega^2}{\omega^2}} sen(\omega t + \phi) \phi = \tan^{-1} \left(\frac{\omega}{z}\right)$	Polos imaginarios puros
22	$\frac{1}{s(s^2 + \omega^2)}$	$\frac{1}{\omega^2}(1-\cos(\omega t))$	
23	$\frac{s+z}{s(s^2+\omega^2)}$	$\frac{z}{\omega^2} - \sqrt{\frac{z^2 + \omega^2}{\omega^4}} \cos(\omega t + \phi) \phi = \tan^{-1} \left(\frac{\omega}{z}\right)$	
24	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{−st} sen(ωt)	Polos complejos
25	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-it}\cos(\omega t)$	Polos complejos
26	$\frac{s+z}{(s+a)^2+\omega^2}$	$\sqrt{\frac{(z-a)^2+\omega^2}{\omega^2}}e^{-\omega t}sen(\omega t+\phi) \phi=\tan^{-1}\left(\frac{\omega}{z-a}\right)$	Polos complejos
27	$\frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$	$\frac{\omega_n}{\sqrt{1-\xi^2}}e^{-\beta\omega_n t}sen\left(\phi_n\sqrt{1-\xi^2}t\right)$	Polos complejos (equivalente a 24)
28	$\frac{s}{(s^2 + 2\xi\omega_{_{R}}s + \omega_{_{R}}^2)}$	$-\frac{1}{\sqrt{1-\xi^2}}e^{-\xi\omega_n t}sen\left(o_n\sqrt{1-\xi^2}t+\phi\right)\phi=\cos^{-1}\xi$	Polos complejos
29	$\frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$	$1 - \frac{1}{\sqrt{1 - \xi^2}} e^{- w_n ^2} sen(\omega_n \sqrt{1 - \xi^2}t + \phi) \phi = \cos^{-1} \xi$	

Para la elaboración de nuestro trabajo nos apoyaremos en simulink que nos facilita a graficar los impulsos obtenidos.

Esquema general en simulink para la generación de impulsos

Grafica de función rampa

```
🜠 Editor - C:\Users\Allan\Desktop\Fidelitas\7 cuatrimestre ing electri
 Examen_Allan_Chavarria.m × Untitled2 × Tf.m × -
1 -
2 -
         clear <u>all</u>
 3
         cl=10*exp(-6)
         R1=1000
         Num=[1]
8 -
9 -
10 -
         Den=[0.01 1]
         s=tf('s')
         FT=[Num, Den]
         step(FT/s)
12
13
14
```

Comandos utilizados en Matlab para la elaboración de nuestras gráficas.

Grafica obtenida por un escalón.

Código 2

```
Editor - C:\Users\Allan\Desktop\Fidelitas\7 cuatrim
    Examen_Allan_Chavarria.m × Untitled2
 1 -
         clear all
 2 -
         clc
 3
         cl=10*exp(-6)
 5
         R1=1000
         Num=[1]
         Den=[0.01 1 0 0]
 9 -
         s=tf('s')
         FT=[Num, Den]
10 -
11 -
         step(FT/s)
12
13
14
```

Comandos utilizados en Matlab para la elaboración de nuestras gráficas.

Grafica rampa por simulink.

