1. Úvod

1.1. Výroky a metody důkazů

- Výrok je tvrzení, o kterém má smysl říci, že je pravdivé či ne.
- Vytváření nových výroků: Logické spojky & a \vee , Implikace \Rightarrow , Ekvivalence \Leftrightarrow , Negace \neg .
- \bullet Obecný kvatifikátor \forall a existenční kvantifikátor $\exists.$
- Negace výroků.

Konec 1. přednášky 3.10.

Metody důkazů tvrzení:

- Přímý důkaz: $(A \Rightarrow C_1 \Rightarrow C_2 \Rightarrow \cdots \Rightarrow B) \Rightarrow (A \Rightarrow B)$.
- Nepřímý důkaz: $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$
- Důkaz sporem: $(A \Rightarrow B) \Leftrightarrow \neg (A \& \neg B)$
- Matematická indukce:

$$V(1) \& (\forall n \in \mathbb{N}; \ V(n) \Rightarrow V(n+1)) \Rightarrow (\forall n \in \mathbb{N}, \ V(n))$$

1.2. Množina reálných čísel

Definice. Nechť $M \subset \mathbf{R}$. Řekneme, že M je omezená shora (omezená zdola), jestliže existuje $a \in \mathbf{R}$ tak, že pro všechna $x \in M$ platí $x \leq a$ $(x \geq a)$.

Definice. Nechť $M \subset \mathbf{R}$ je shora omezená. Číslo $s \in \mathbf{R}$ nazýváme supremem M pokud

(i)
$$\forall x \in M : x < s$$
;

(ii)
$$\forall y \in \mathbf{R}, \ y < s \ \exists x \in M : y < x.$$

Nechť $M \subset \mathbf{R}$ je zdola omezená. Číslo $i \in \mathbf{R}$ nazýváme infimem M pokud

(i)
$$\forall x \in M : i \leq x$$
;

(ii)
$$\forall y \in \mathbf{R}, i < y \ \exists x \in M : x < y.$$

Příklady: a) $\sup[0, 1] = 1$ b) $\sup(0, 1) = 1$

Definice. Na množině \mathbf{R} je dána relace \leq (\subset $\mathbf{R} \times \mathbf{R}$), operace sčítání +, operace násobení · a množina \mathbf{R} obsahuje prvky 0 a 1 tak, že platí

- $I(i) \forall x, y, z \in \mathbf{R}: x + (y + z) = (x + y) + z$ asociativita +
 - (ii) $\forall x, y \in \mathbf{R} : x + y = y + x$ komutativita +
 - (iii) $\forall x \in \mathbf{R} : x + 0 = x$ existence 0
 - $(iv) \ \forall x \in \mathbf{R} \ \exists -x \in \mathbf{R}: \ x + (-x) = 0$ existence opačného prvku +
 - $(iv) \ \forall x, y, z \in \mathbf{R} : \ x(yz) = (xy)z$ asociativita ·
 - $(v) \ \forall x, y \in \mathbf{R} : \ xy = yx$ komutativita +
 - $(vi) \ \forall x \in \mathbf{R}: \ x1 = x$ existence 1
 - $(vii) \ \forall x \in \mathbf{R} \setminus \{0\} \ \exists x^{-1} \in \mathbf{R}: \ xx^{-1} = 1$ existence opačného prvku ·
 - $(viii) \ \forall x,y,z \in \mathbf{R}: \ (x+y)z = xz + yz$ distributivita

 $II\ (i)\ \forall x,y\in\mathbf{R}:\ (x\leq y\ \&\ y\leq x)\Rightarrow x=y$

slabá antisymetrie

 $(ii) \ \forall x, y, z \in \mathbf{R} : \ (x \le y \ \& \ y \le z) \Rightarrow x \le z$

transitivita

 $(iii) \ \forall x, y \in \mathbf{R}: \ (x \le y) \lor (y \le x)$

dichotomie

 $(iv) \ \forall x, y, z \in \mathbf{R}: \ x \le y \Rightarrow x + z \le y + z$

sčítání a \leq

 $(v) \ \forall x, y \in \mathbf{R}: \ (0 \le x \ \& \ 0 \le y \Rightarrow 0 \le xy)$

násobení a \leq

III Je-li $M\subset {\bf R}$ neprázdná shora omezená množina, pak existuje supremumM.

Konec 2. přednášky 5.10.

Věta L 1.1 (o existenci infima). Nechť $M \subset \mathbf{R}$ je neprázdná zdola omezená množina. Pak existuje inf M.

Věta L 1.2 (Archimedova vlastnost). Ke každému $x \in \mathbf{R}$ existuje $n \in \mathbf{N}$ tak, že x < n.

Věta L 1.3 (hustota \mathbf{Q} a $\mathbf{R} \setminus \mathbf{Q}$). Nechť $a, b \in \mathbf{R}$, a < b. Pak existují $q \in \mathbf{Q}$ a $r \in \mathbf{R} \setminus \mathbf{Q}$ tak, že $q \in (a, b)$ a $r \in (a, b)$.

Věta BD 1.4 (o *n*-té odmocnině). Nechť $n \in \mathbb{N}$ a $x \in [0, \infty)$. Pak existuje právě jedno $y \in [0, \infty)$ tak, že $y^n = x$.

2. Posloupnosti

2.1. Úvod

Definice. Jestliže ke každému $n \in \mathbb{N}$ je přiřazeno $a_n \in \mathbb{R}$, pak říkáme, že $\{a_n\}_{n=1}^{\infty} = \{a_1, a_2, a_3 \dots\}$ je posloupnost reálných čísel.

Definice. Řekneme, že posloupnost $\{a_n\}_{n\in\mathbb{N}}$ je omezená, jestliže množina členů posloupnosti $\{a_n\}$ je omezená podmnožina \mathbf{R} . Analogicky definijeme omezenost shora a omezenost zdola.

Definice. Řekneme, že posloupnost $\{a_n\}_{n\in\mathbb{N}}$ je:

neklesající, jestliže $\forall n \in \mathbf{N} \ a_n \leq a_{n+1}$,

nerostoucí, jestliže $\forall n \in \mathbf{N} \ a_n \ge a_{n+1}$,

klesající, jestliže $\forall n \in \mathbf{N} \ a_n > a_{n+1}$,

rostoucí, jestliže $\forall n \in \mathbf{N} \ a_n < a_{n+1}$.

2.2. Vlastní limita posloupnosti

Definice. Nechť $A \in \mathbf{R}$ a $\{a_n\}_{n=1}^{\infty}$ je posloupnost. Řekneme, že A je (vlastní) limitou posloupnosti $\{a_n\}$, jestliže

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbf{N} \ \forall n \ge n_0, \ n \in \mathbf{N} : |a_n - A| < \varepsilon.$$

Značíme $\lim_{n\to\infty} a_n = A$.

Příklady: Z definice ukažte

- a) $\lim_{n\to\infty} \frac{1}{n} = 0$,
- b) $\lim_{n\to\infty} (-1)^n$ neexistuje,
- c) pro každé $A \in \mathbf{R}$ je limita konstantní posloupnosti $\lim_{n \to \infty} A = A$.

Konec 3. přednášky 10.10.

Věta L 2.1 (jednoznačnost vlastní limity). *Každá posloupnost má nejvýše jednu limitu*.

Věta L 2.2 (o omezenosti konvergentní posloupnosti). Nechť $\{a_n\}$ má vlastní limitu. Pak je $\{a_n\}$ omezená.

Definice. Řekneme, že posloupnost $\{b_k\}_{k\in\mathbb{N}}$ je vybraná z posloupnosti $\{a_n\}_{n\in\mathbb{N}}$, jestliže existuje rostoucí posloupnost přirozených čísel $\{n_k\}_{k=1}^{\infty}$ tak, že $b_k = a_{n_k}$.

Věta L 2.3 (o limitě vybrané posloupnosti). Nechť $\lim_{n\to\infty} a_n = A \in \mathbf{R}$ a nechť $\{b_k\}$ je vybraná a $\{a_n\}$. Pak $\lim_{k\to\infty} b_k = A$.

Věta T 2.4 (aritmetika limit). Nechť $\lim_{n\to\infty} a_n = A \in \mathbf{R} \ a \lim_{n\to\infty} b_n = B \in \mathbf{R}$. Pak platí

- (i) $\lim_{n\to\infty} a_n + b_n = A + B$
- (ii) $\lim_{n\to\infty} a_n b_n = AB$
- (iii) pokud $b_n \neq 0$ pro každé $n \in \mathbb{N}$ a $B \neq 0$, pak $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$.

Příklady: a) $\lim_{n\to\infty} \frac{1}{n^2} = 0$,

- b) $\lim_{n\to\infty} \frac{n+1}{n+2} = 1$
- c) Obecně neplatí

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n,$$

například

$$0 = \lim_{n \to \infty} (-1)^n + (-1)^{n+1} \neq \lim_{n \to \infty} (-1)^n + \lim_{n \to \infty} (-1)^{n+1}.$$

Konec 4. přednášky 12.10.

Věta L 2.5 (limita a uspořádání). Nechť $\lim_{n\to\infty} a_n = A \in \mathbf{R}$, $\lim_{n\to\infty} b_n = B \in \mathbf{R}$.

- (i) Jestliže A < B, pak existuje $n_0 \in \mathbb{N}$, že pro každé $n \ge n_0$ platí $a_n < b_n$.
- (ii) Jestliže existuje $n_0 \in \mathbb{N}$ takové, že pro každé $n \geq n_0$ platí $a_n \geq b_n$, pak $A \geq B$.

Věta L 2.6 (o dvou strážnících). Nechť $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ jsou posloupnosti splňující:

- (i) $\exists n_0 \in \mathbf{N} \ \forall n \in \mathbf{N}, \ n \ge n_0 : \ a_n \le c_n \le b_n,$
- (ii) $\lim a_n = \lim b_n = A \in \mathbf{R}$. $Pak \lim c_n = A$.

Příklady: a) $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$,

- b) $\lim_{n\to\infty} \sqrt{1+\frac{1}{n}} = 1$,
- c) $\lim_{n\to\infty} \sqrt[n]{n} = 1$,
- d) pro každé a > 0 je $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

Věta L 2.7 (o limitě součinu omezené a mizející posloupnosti). Nechť $\lim a_n = 0$ a $\{b_n\}$ je omezená. Pak $\lim a_n b_n = 0$.

Příklad: $\lim_{n\to\infty} \frac{\sin n}{n} = 0$

2.3. Nevlastní limita posloupnosti

Definice. Řekneme, že poloupnost $\{a_n\}_{n\in\mathbb{N}}$ má (nevlastní) limitu $+\infty$ (respektive $-\infty$), pokud :

$$\forall K \in \mathbf{R} \ \exists n_0 \in \mathbf{N} \ \forall n \ge n_0, \ n \in \mathbf{N} : \ a_n > K$$
$$(\forall K \in \mathbf{R} \ \exists n_0 \in \mathbf{N} \ \forall n \ge n_0, \ n \in \mathbf{N} : \ a_n < K).$$

Příklad: $\lim_{n\to\infty} n = \infty$

Věty 2.1, 2.3, 2.5 a 2.6 platí i v případě, že uvažujeme nevlastní limity. Konec 5. přednášky 17.10.

Definice. Rozšířená reálná osa je množina $\mathbf{R}^* = \mathbf{R} \cup \{+\infty\} \cup \{-\infty\}$ s následujícími vlastnostmi:

Uspořádání: $\forall a \in \mathbf{R} \quad -\infty < a < \infty$ Absolutní hodnota: $|+\infty| = |-\infty| = +\infty$ Sčítání: $\forall a \in \mathbf{R}^* \setminus \{+\infty\} \quad -\infty + a = -\infty$ Vá $\in \mathbf{R}^* \setminus \{-\infty\} \quad +\infty + a = +\infty$ Násobení: $\forall a \in \mathbf{R}^*, \ a > 0 \quad a \cdot (\pm \infty) = \pm \infty$ Vá $\in \mathbf{R}^*, \ a < 0 \quad a \cdot (\pm \infty) = \mp \infty$ Dělení: $\forall a \in \mathbf{R} \quad \frac{a}{+\infty} = 0.$

Výrazy $-\infty+\infty,\ 0\cdot(\pm\infty),\ \frac{\pm\infty}{\pm\infty},\ \frac{\text{cokoli}}{0}$ nejsou definovány.

Poznámka: Rozšířená definice sup a inf:.

Je-li $A \neq \emptyset$ shora neomezená, tak definujme sup $A = \infty$.

Je-li $A \neq \emptyset$ zdola neomezená, tak definujme inf $A = \infty$.

Pro prázdnou množinu $A = \emptyset$ definujme sup $A = -\infty$ a inf $A = \infty$.

Věta L 2.4 (aritmetika limit podruhé). $Nech lim_{n\to\infty} a_n = A \in \mathbf{R}^*$ $a \lim_{n\to\infty} b_n = B \in \mathbf{R}^*$. $Pak\ plat i$

- (i) $\lim_{n\to\infty} a_n + b_n = A + B$, pokud je výraz A + B definován
- $(ii) \ \lim_{n \to \infty} a_n b_n = AB, \ pokud \ je \ v\acute{y}raz \ AB \ definov\acute{a}n$
- (iii) pokud $b_n \neq 0$ pro každé $n \in \mathbb{N}$ a $B \neq 0$, pak $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$, pokud je výraz $\frac{A}{B}$ definován.

Příklady: a) $\lim_{n\to\infty}(n+1)-n=1$ a $\lim_{n\to\infty}(n+2)-n=2$, tedy limita typu $\infty-\infty$ může být cokoliv.

b) $\lim_{n\to\infty} \frac{(-1)^{n\choose n}}{n} = 0$, ale $\lim_{n\to\infty} \frac{1}{\frac{(-1)^n}{n}}$ neexistuje.

Věta L 2.8 (limita typu A/0). $Nech t \lim_{n\to\infty} a_n = A \in \mathbf{R}^*, A > 0$, $\lim_{n\to\infty} b_n = 0$ a existuje $n_0 \in \mathbf{N}$, že pro každé $n \in \mathbf{N}$, $n \ge n_0$ platí $b_n > 0$. Pak $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$.

2.4. Hlubší věty o limitách

Věta L 2.9 (o limitě monotónní posloupnosti). Každá monotónní posloupnost má limitu.

Příklad: a) Nechť $a_1 = 10$ a $a_{n+1} = 6 - \frac{5}{a_n}$. Spočtěte $\lim_{n \to \infty} a_n$.

b) Toto nelze aplikovat mechanicky - viz $\lim_{n\to\infty} (-1)^n$.

Konec 6. přednášky 19.10.

Věta L 2.10 (Cantorův princip vložených intervalů). Nechť $\{[a_n,b_n]\}_{n=1}^{\infty}$ je posloupnost uzavřených intervalů splňující:

(i)
$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$$
 pro každé $n \in \mathbb{N}$,

$$(ii) \lim_{n \to \infty} (b_n - a_n) = 0.$$

Pak je množina $\bigcap_{n=1}^{\infty} [a_n, b_n]$ jednobodová.

Věta T 2.11 (Bolzano-Weirstrass). Z každé omezené posloupnosti lze vybrat konvergentní podposloupnost.

Definice. Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost a označme $b_n=\sup\{a_k;\ k\geq n\}$ a $c_n=$ $\inf\{a_k;\ k\geq n\}.$ Je-li $\{a_n\}$ shora (zdola) neomezená, pak klademe $\lim_{n\to\infty}b_n=$ ∞ ($\lim_{n\to\infty} c_n = -\infty$). Číslo $\lim_{n\to\infty} b_n$ nazýváme limes superior posloupnosti $\{a_n\}_{n\in\mathbb{N}}$ a značíme $\limsup_{n\to\infty}a_n$. Číslo $\lim_{n\to\infty}c_n$ nazýváme limes inferior posloupnosti $\{a_n\}_{n\in\mathbb{N}}$ a značíme $\liminf_{n\to\infty} a_n$.

Příklad: $\limsup_{n\to\infty} (-1)^n = 1$ a $\liminf_{n\to\infty} (-1)^n = -1$.

Věta T 2.12 (vztah limity, limes superior a limes inferior). Necht $\{a_n\}_{n=1}^{\infty}$ je posloupnost reálných čísel a $A \in \mathbf{R}^*$. Pak

$$\lim a_n = A \in \mathbf{R}^* \Leftrightarrow \limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = A \in \mathbf{R}^*.$$

Konec 7. přednášky 24.10.

Definice. Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost reálných čísel a $A \in \mathbb{R}^*$. Řekneme, že A je hromadná hodnota posloupnosti $\{a_n\}_{n=1}^{\infty}$, jestliže existuje vybraná podposloupnost $\{a_{n_k}\}_{k=1}^{\infty}$ z $\{a_n\}_{n=1}^{\infty}$ tak, že $\lim_{k\to\infty}a_{n_k}=A$. Množinu hromadných hodnot značíme $H(\{a_n\}_{n=1}^{\infty})$.

Příklad:
$$H(\{(-1)^n\}_{n\in\mathbb{N}}) = \{-1,1\}; H(\{\sin(\frac{\pi}{2}n)\}_{n\in\mathbb{N}}) = \{-1,0,1\}.$$

Věta T 2.13 (o hromadných hodnotách posloupnosti). Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost reálných čísel. Potom $\limsup_{n\to\infty}a_n$ a $\liminf_{n\to\infty}a_n$ jsou hromadnými hodnotami posloupnosti $\{a_n\}_{n=1}^{\infty}$ a pro každou hromadnou hodnotu $A \in \mathbf{R}^*$ této posloupnosti platí

$$\liminf_{n \to \infty} a_n \le A \le \limsup_{n \to \infty} a_n.$$

Důsledky: Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost reálných čísel a $A \in \mathbb{R}^*$. Pak

- a) $H(\{a_n\}_{n=1}^{\infty}) \neq \emptyset$;
- b) $\liminf_{n\to\infty} a_n = \min H(\{a_n\}_{n=1}^{\infty})$ a $\limsup_{n\to\infty} a_n = \max H(\{a_n\}_{n=1}^{\infty})$; c) je-li $\lim_{n\to\infty} a_n = A$, pak $H(\{a_n\}_{n=1}^{\infty}) = \{A\}$.

Věta T 2.14 (BC podmínka). Posloupnost $\{a_n\}_{n\in\mathbb{N}}$ má vlastní limitu, právě když splňuje Bolzano-Cauchyovu podmínku, tedy

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbf{N} \ \forall m, n \in \mathbf{N}, \ n \ge n_0, \ m \ge n_0 : \quad |a_n - a_m| < \varepsilon.$$

Konec 8. přednášky 26.10.

3. Řady

3.1. Úvod

Definice. Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost. Číslo $s_m=a_1+a_2+\ldots+a_m$ nazveme m-tým částečným součtem řady $\sum_{n=1}^\infty a_n$. Součtem nekonečné řady $\sum_{n=1}^\infty a_n$ nazveme limitu posloupnosti $\{s_m\}_{m\in\mathbb{N}}$, pokud tato limita existuje. Je-li tato limita konečná, pak řekneme, že řada je konvergentní. Je-li tato limita nekonečná nebo neexistuje, pak řekneme, že řada je divergentní. Tuto limitu budeme značit $\sum_{n=1}^{\infty} a_n$.

Příklad: 1) $\sum_{n=1}^{\infty} 1$ diverguje. 2) $\sum_{n=1}^{\infty} (-1)^n$ diverguje. 3) $\sum_{n=1}^{\infty} q^n$ konverguje pro |q| < 1.

Věta L 3.1 (nutná podmínka konvergence). *Jestliže je* $\sum_{n=1}^{\infty} a_n$ konvergentní, pak $\lim_{n\to\infty} a_n = 0.$

Varování: Z $\lim_{n\to\infty} a_n = 0$ neplyne konvergence $\sum_{n=1}^{\infty} a_n$.

Příklad: 1) $\sum_{n=1}^{\infty} \frac{1}{n}$ diverguje.

Věta L 3.2 (konvergence součtu řad). (i) Nechť $\alpha \in \mathbf{R} \setminus \{0\}$, pak

$$\sum_{n=1}^{\infty} a_n \ konverguje \ \Leftrightarrow \sum_{n=1}^{\infty} \alpha a_n \ konverguje \ .$$

(ii) Nechť $\sum_{n=1}^{\infty} a_n$ konverguje a $\sum_{n=1}^{\infty} b_n$ konverguje, pak

$$\sum_{n=1}^{\infty} (a_n + b_n) \text{ konverguje } a \sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

3.2. Řady s nezápornými členy

Pozorování: Nechť $\{a_n\}_{n=1}^{\infty}$ je řada s nezápornými členy. Pak $\sum_{n=1}^{\infty} a_n$ konverguje, nebo má součet $+\infty$.

Věta L 3.3 (srovnávací kritérium). Nechť $\sum_{n=1}^{\infty} a_n \ a \sum_{n=1}^{\infty} b_n \ jsou \ rady \ s \ nezápornými členy a nechť existuje <math>n_0 \in \mathbf{N}$ tak, že pro všechna $n \in \mathbf{N}$, $n \geq n_0$ platí $a_n \leq b_n$.

$$(i) \ \sum_{n=1}^{\infty} b_n \ konverguje \ \Rightarrow \sum_{n=1}^{\infty} a_n \ konverguje,$$

(ii)
$$\sum_{n=1}^{\infty} a_n$$
 diverguje $\Rightarrow \sum_{n=1}^{\infty} b_n$ diverguje.

Příklad: 1) $\sum_{n=1}^{\infty} \frac{1}{2^n + 3^n}$ konverguje. 2) $\sum_{n=1}^{\infty} \frac{1}{2n+1}$ diverguje. Konec 9. přednášky 2.11.

Věta L 3.4 (limitní srovnávací kritérium). Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady s nezápornými členy a nechť $\lim_{n\to\infty} \frac{a_n}{b_n} = A \in \mathbf{R}^*$. Pak

(i) Jestliže
$$A \in (0, \infty)$$
, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ konverguje,

(ii) Jestliže
$$A = 0$$
, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} a_n$ konverguje,

(ii) Jestliže
$$A = \infty$$
, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} b_n$ konverguje.

Příklad: 1) $\sum_{n=1}^{\infty} \frac{n+\sqrt{n}}{n^2+3n}$ diverguje. 2) $\sum_{n=1}^{\infty} \frac{n}{3^n}$ konverguje.

Věta L 3.5 (Cauchyovo odmocninové kritérium). Nechť $\sum_{n=1}^{\infty} a_n$ je řada s nezápornými členy.

(i)
$$\exists q \in (0,1) \ \exists n_0 \in \mathbf{N} \ \forall n \in \mathbf{N}, \ n \geq n_0 : \ \sqrt[n]{a_n} < q \Rightarrow \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(ii) \limsup_{n \to \infty} \sqrt[n]{a_n} < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iii) \lim_{n \to \infty} \sqrt[n]{a_n} < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(iv) \limsup_{n \to \infty} \sqrt[n]{a_n} > 1 \Rightarrow \sum_{n=1}^{\infty} a_n \ diverguje,$$

$$(v)\lim_{n\to\infty} \sqrt[n]{a_n} > 1 \Rightarrow \sum_{n=1}^{\infty} a_n \ diverguje,$$

Poznámka: 1) Existuje-li $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$, tak o konvergenci $\sum_{n=1}^{\infty} a_n$ nelze nic říct. Například $\sum_{n=1}^{\infty} 1$ diverguje a $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konverguje.

Příklad: $\sum_{n=1}^{\infty} \frac{n^3}{2^n}$ konverguje.

Z této konvergence a Věty 3.1. plyne, že $\lim_{n\to\infty} \frac{n^3}{2^n} = 0$.

Konec 10. přednášky 7.11.

Věta L 3.6 (d'Alambertovo podílové kritérium). Necht $\sum_{n=1}^{\infty} a_n$ je řada s kladnými

(i)
$$\exists q \in (0,1) \ \exists n_0 \in \mathbf{N} \ \forall n \in \mathbf{N}, \ n \ge n_0: \ \frac{a_{n+1}}{a_n} < q \Rightarrow \sum_{n=1}^{\infty} a_n \ konverguje,$$

(ii)
$$\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iii) \lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iv) \lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1 \Rightarrow \sum_{n=1}^{\infty} a_n \ diverguje.$$

Příklad: 1) $\sum_{n=1}^{\infty} \frac{1}{n!}$ konverguje. 2) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ konverguje pro každé x>0.

Věta T 3.7 (kondenzační kritérium). Nechť $\sum_{n=1}^{\infty} a_n$ je řada s nezápornými členy splňující $a_{n+1} \leq a_n$ pro všechna $n \in \mathbf{N}$. Pak

$$\sum_{n=1}^{\infty} a_n \ konverguje \ \Leftrightarrow \sum_{n=1}^{\infty} 2^n a_{2^n} \ konverguje.$$

Důsledek. Nechť $\alpha \in \mathbf{R}$.

$$(i) \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 konverguje $\Leftrightarrow \alpha > 1$.

$$(ii)$$
 $\sum_{n=2}^{\infty} \frac{1}{n \log^{\alpha} n}$ konverguje $\Leftrightarrow \alpha > 1$.

Konec 11. přednášky 9.11.

3.3. Neabsolutní konvergence řad

Definice. Nechť pro řadu $\sum_{n=1}^{\infty} a_n$ platí, že $\sum_{n=1}^{\infty} |a_n|$ konveguje. Pak říkáme, že $\sum_{n=1}^{\infty} a_n$ konverguje absolutně.

Věta L 3.8 (Bolzano-Cauchyho podmínka pro konvergenci řad). $\check{R}ada \sum_{n=1}^{\infty} a_n$ konverguje, právě tehdy, když je splněna následující podmínka

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbf{N} \ \forall m, n \in \mathbf{N}, \ m \ge n_0, \ n \ge n_0 : \quad \left| \sum_{j=n}^m a_j \right| < \varepsilon.$$

Věta L 3.9 (vztah konvergence a absolutní konvergence). Nechť řada $\sum_{n=1}^{\infty} a_n$ konverguje absolutně, pak řada $\sum_{n=1}^{\infty} a_n$ konverguje.

Důsledky. Nechť $\sum_{n=1}^{\infty} a_n$ je řada.

(1) Pokud
$$\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1$$
, pak $\sum_{n=1}^{\infty} a_n$ konverguje.

(2) Pokud
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1$$
, pak $\sum_{n=1}^{\infty} a_n$ konverguje.

Navíc platí i

(1') Pokud
$$\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} > 1$$
, pak $\sum_{n=1}^{\infty} a_n$ diverguje.

(2') Pokud
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$$
, pak $\sum_{n=1}^{\infty} a_n$ diverguje.

Příklad: 1. $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ konverguje pro každé x < 0. 2. Vyšetřete konvergenci a absolutní konvergenci $\sum_{n=1}^{\infty} \frac{x^n}{n}$ v závislosti na $x \in \mathbf{R}$.

Věta T 3.10 (Leibnitzovo kritérium). Nechť $\{a_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel. Pak

$$\sum_{n=1}^{\infty} (-1)^n a_n \ konverguje \ \Leftrightarrow \lim_{n \to \infty} a_n = 0.$$

Příklad: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ konverguje. Tedy z konvergence řady neplyne absolutní konvergence.

Konec 12. přednášky 14.11.

Lemma (Abelova parciální sumace). Nechť $m, n \in \mathbb{N}$ a $m \leq n$ a nechť $a_m, \ldots, a_n, b_m, \ldots, b_n \in \mathbb{N}$ **R**. Označme $s_k = \sum_{i=m}^k a_i$. Pak platí

$$\sum_{i=m}^{n} a_i b_i = \sum_{i=m}^{n-1} s_i (b_i - b_{i+1}) + s_n b_n.$$

Věta T 3.11 (Abel-Dirichletovo kritérium). Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost reálných čísel a $\{b_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel. Nechť je splněna alespoň jedna z následujících podmínek

(A)
$$\sum_{n=1}^{\infty} a_n$$
 je konvergentní,

(D)
$$\lim_{n\to\infty} b_n = 0$$
 a $\sum_{n=1}^{\infty} a_n$ má omezené častečné součty, tedy

$$\exists K > 0 \ \forall m \in \mathbf{N} : \quad |s_m| = \left| \sum_{i=1}^m a_i \right| < K.$$

Pak je $\sum_{n=1}^{\infty} a_n b_n$ konvergentní.

Příklad: 1) $\{\sin n\}_{n\in\mathbb{N}}$ a $\{\cos n\}_{n\in\mathbb{N}}$ mají omezené částečné součty. 2) $\sum_{n=1}^{\infty}\frac{\sin n}{n}$ a $\sum_{n=1}^{\infty}\frac{\cos n}{n}$ konvergují neabsolutně.

3.4. Přerovnávání řad a součin řad

Definice. Nechť $\sum_{n=1}^{\infty} a_n$ je řada a $p: \mathbf{N} \to \mathbf{N}$ je bijekce. Řadu $\sum_{n=1}^{\infty} a_{p(n)}$ nazýváme *přerovnáním řady* $\sum_{n=1}^{\infty} a_n$.

Věta T 3.12 (o přerovnání absolutně konvergentní řady). Nechť $\sum_{n=1}^{\infty} a_n$ je absolutně konvergentní řada a $\sum_{n=1}^{\infty} a_{p(n)}$ je její přerovnání. Pak $\sum_{n=1}^{\infty} a_{p(n)}$ je absolutně konvergentní řada a má stejný součet jako $\sum_{n=1}^{\infty} a_n$.

Konec 13. přednášky 16.11.

Věta BD 3.13 (Riemann). Neabsolutně konvergentní řadu lze přerovnat k libovolnému součtu z \mathbf{R}^* . Neboli: Nechť pro konvergentní řadu $\sum_{n=1}^{\infty} a_n$ platí $\sum_{n=1}^{\infty} |a_n| = \infty$. Pak pro libovolné $s \in \mathbf{R}^*$ existuje bijekce $p : \mathbf{N} \to \mathbf{N}$ taková, že

$$\sum_{n=1}^{\infty} a_{p(n)} = s.$$

Definice. Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady. Cauchyovským součinem těchto řad nazveme řadu

$$\sum_{k=2}^{\infty} \left(\sum_{i=1}^{k-1} a_{k-i} b_i \right).$$

Věta T 3.14 (o součinu řad). Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ konvergují absolutně. Pak

$$\sum_{k=2}^{\infty} \left(\sum_{i=1}^{k-1} a_{k-i} b_i \right) = \left(\sum_{n=1}^{\infty} a_n \right) \cdot \left(\sum_{n=1}^{\infty} b_n \right).$$

3.5. Limita posloupnosti a součet řady v komplexním oboru

Definice. Nechť $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě reálné posloupnosti. Pak $c_n=a_b+ib_n$ je komplexní posloupnost. Řekneme, že $\lim_{n\to\infty}c_n=A+iB$, pokud existují $\lim_{n\to\infty}a_n=A\in\mathbf{R}$ a $\lim_{n\to\infty}b_n=B\in\mathbf{R}$.

Příklady: 1) $\lim_{n\to\infty} \frac{n+2i}{3+in}$. 2) $\lim_{n\to\infty} (\frac{1}{2} + \frac{1}{2}i)^n$.

Definice. Nechť $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě reálné posloupnosti a $c_n=a_n+ib_n$. Řekneme, že komplexní řada $\sum_{n=1}^{\infty}c_n$ konverguje k A+iB, pokud konvergují řady $\sum_{n=1}^{\infty}a_n=A$ a $\sum_{n=1}^{\infty}b_n=B$.

Příklad: $\sum_{n=1}^{\infty} q^n$ konverguje pro $q \in \mathbb{C}$, |q| < 1.

Věta L 3.15 (vztah konvergence a absolutní konvergence pro komplexní řady). Nechť c_n je komplexní posloupnost a řada $\sum_{n=1}^{\infty} |c_n|$ konverguje. Pak řada $\sum_{n=1}^{\infty} c_n$ konverguje.

Příklad: $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ konverguje pro všechna $z \in \mathbb{C}$. Konec 14. přednášky 21.11.

4. Funkce jedné reálné proměnné

4.1. Základní definice

Definice. Funkcí jedné reálné proměnné rozumíme zobrazení $f:M\to {\bf R},$ kde $M\subset {\bf R}.$

Definice. Rekneme, že funkce $f: M \to \mathbf{R}, M \subset \mathbf{R}$, je

$$\begin{split} & \textit{rostouci}, \, \textit{jestliže} & \quad \forall x,y \in M, \, \, x < y: \quad f(x) < f(y), \\ & \textit{klesajíci}, \, \textit{jestliže} & \quad \forall x,y \in M, \, \, x < y: \quad f(x) > f(y), \\ & \textit{nerostouci}, \, \textit{jestliže} & \quad \forall x,y \in M, \, \, x < y: \quad f(x) \geq f(y), \\ & \textit{neklesajíci}, \, \textit{jestliže} & \quad \forall x,y \in M, \, \, x < y: \quad f(x) \leq f(y). \end{split}$$

Definice. Řekneme, že funkce $f: M \to \mathbf{R}, M \subset \mathbf{R}$, je

$$sud\acute{a}$$
, jestliže
$$\forall x \in M: \quad (-x \in M)\&(f(x) = f(-x)),$$
 $lich\acute{a}$, jestliže
$$\forall x \in M: \quad (-x \in M)\&(f(x) = -f(-x)),$$
 $periodick\acute{a}$, jestliže
$$\exists p > 0, \ \forall x \in M: \quad (x + p \in M)\&(x - p \in M)\&(f(x) = f(x + p)).$$

Definice. Řekneme, že funkce $f: M \to \mathbf{R}$, $M \subset \mathbf{R}$, je omezená (omezená shora, omezená zdola), jestliže f(M) je omezená (shora omezená, zdola omezená) podmnožina \mathbf{R} .

Definice. Nechť $\delta > 0$ a $a \in \mathbf{R}$. Prstencové okolí bodu je

$$P(a,\delta) = (a-\delta, a+\delta) \setminus \{a\}; \quad P(+\infty, \delta) = (\frac{1}{\delta}, +\infty); \quad P(-\infty, \delta) = (-\infty, -\frac{1}{\delta}).$$

Pravé a levé prstencové okolí bodu a je

$$P_{+}(a, \delta) = (a, a + \delta); \quad P_{-}(a, \delta) = (a - \delta, a).$$

Okolí bodu je

$$B(a,\delta) = (a-\delta, a+\delta); \quad B(+\infty, \delta) = (\frac{1}{\delta}, +\infty); \quad B(-\infty, \delta) = (-\infty, -\frac{1}{\delta}).$$

Pravé a levé okolí bodu a je

$$B_{+}(a, \delta) = [a, a + \delta); \quad B_{-}(a, \delta) = (a - \delta, a].$$

Definice. Nechť $f:M\to {\bf R},\,M\subset {\bf R}$. Řekneme, že f má v bodě $a\in {\bf R}^*$ limitu rovnou $A\in {\bf R}^*$, jestliže platí

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in P(a, \delta) : f(x) \in B(A, \varepsilon).$$

Značíme $\lim_{x\to a} f(x) = A$.

Poznámky: 1) Pro $a \in \mathbf{R}$ a $A \in \mathbf{R}$ lze $\lim_{x \to a} f(x) = A$ definovat jako

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (a - \delta, a + \delta) \setminus \{a\}: \ f(x) \in (A - \varepsilon, A + \varepsilon).$$

2) $\lim_{x\to a} f(x) = A$ lze ekvivalentně zapsat

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ f(P(a, \delta)) \subset B(A, \varepsilon).$$

Příklady: 1) $\lim_{x\to a} x = a$.

2) $\lim_{x\to a} c = c$ pro libovolnou konstantu $c \in \mathbf{R}$.

Definice. Nechť $f: M \to \mathbf{R}, M \subset \mathbf{R}$. Řekneme, že f má v bodě $a \in \mathbf{R}$ limitu zprava (zleva) rovnou $A \in \mathbf{R}^*$, jestliže platí

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in P_+(a, \delta) : f(x) \in B(A, \varepsilon)$$

$$(\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in P_{-}(a, \delta) : f(x) \in B(A, \varepsilon)).$$

Značíme $\lim_{x\to a+} f(x) = A (\lim_{x\to a-} f(x) = A).$

Příklady: 1) $\lim_{x\to 0+} \operatorname{sgn}(x) = 1$ a $\lim_{x\to 0-} \operatorname{sgn}(x) = -1$. 2) $\lim_{x\to 0+} \frac{1}{x} = \infty$ a $\lim_{x\to 0-} \frac{1}{x} = -\infty$.

Poznámka:

$$\lim_{x \to a} f(x) = A \Leftrightarrow \lim_{x \to a^{\perp}} f(x) = A \text{ a } \lim_{x \to a^{\perp}} f(x) = A.$$

Definice. Nechť $f: M \to \mathbf{R}, M \subset \mathbf{R}, a \in M$. Řekneme, že f je v a spojitá (spojitá zprava, spojitá zleva), jestliže

$$\lim_{x \to a} f(x) = f(a) \left(\lim_{x \to a+} f(x) = f(a), \lim_{x \to a-} f(x) = f(a) \right).$$

Příklady: 1) Funkce f(x) = x je spojitá na **R**.

2) Dirichletova funkce

$$D(x) = \begin{cases} 1 & \text{pro } x \in \mathbf{Q} \\ 0 & \text{pro } x \in \mathbf{R} \setminus \mathbf{Q} \end{cases}$$

není nikde spojitá.

3) Riemannova funkce

$$D(x) = \begin{cases} \frac{1}{q} & \text{pro } x \in \mathbf{Q}, \ x = \frac{p}{q} \text{ pro } p \in \mathbf{Z}, \ q \in \mathbf{N} \text{ nesoudělná} \\ 0 & \text{pro } x \in \mathbf{R} \setminus \mathbf{Q} \end{cases}$$

je spojitá na $\mathbf{R} \setminus \mathbf{Q}$.

4.2. Věty o limitách

Věta T 4.1 (Heine). Nechť $A \in \mathbb{R}^*$, $f: M \to \mathbb{R}$ a f je definována na prstencovém okolí bodu $a \in \mathbb{R}^*$. Následující tvrzení jsou ekvivalentní:

$$(i) \lim_{x \to a} f(x) = A$$

(ii) pro každou posloupnost $\{x_n\}_{n\in\mathbb{N}}$ takovou, že $x_n \in M, \ \forall n \in \mathbb{N} \ x_n \neq a, \ \lim_{n\to\infty} x_n = a \ plati \ \lim_{n\to\infty} f(x_n) = A.$

Příklad: $\lim_{x\to 0} \sin(\frac{1}{x})$ neexistuje.

Konec 15. přednášky 23.11.

Věta L 4.2 (o jednoznačnosti limity). Funkce f má v daném bodě nejvýše jednu limitu.

Věta L 4.3 (limita a omezenost). Nechť f má vlastní limitu v bodě $a \in \mathbb{R}^*$. Pak existuje $\delta > 0$ tak, že f je na $P(a, \delta)$ omezená.

Věta L 4.4 (o aritmetice limit). Nechť $a\in \mathbf{R}^*$, $\lim_{x\to a}f(x)=A\in \mathbf{R}^*$ $a\lim_{x\to a}g(x)=B\in \mathbf{R}^*$. Pak platí

- $(i) \lim_{x \to a} (f(x) + g(x)) = A + B$, pokud je výraz A + B definován
- $(ii) \ \lim_{x \to a} f(x)g(x) = AB, \ pokud \ je \ v\acute{y}raz \ AB \ definov\acute{a}n$

(iii)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$
, pokud je výraz $\frac{A}{B}$ definován.

Důsledek Věty 4: Nechť jsou funkce f a g spojité v bodě $a \in \mathbf{R}$. Pak jsou funkce $f+g, f\cdot g$ spojité v a. Pokud je navíc $g(a) \neq 0$, pak je i funkce $\frac{f}{g}$ spojitá v a.

Speciálně polynomy jsou spojité na **R** a racionální lomené funkce $\frac{P(x)}{Q(x)}$ jsou spojité ve všech x, kde $Q(x) \neq 0$.

Věta L 4.5 (limita a uspořádání). Nechť $a \in \mathbb{R}^*$.

(i) Nechť $\lim_{x\to a} f(x) > \lim_{x\to a} g(x)$. Pak existuje prstencové okolí $P(a,\delta)$ tak, že

$$\forall x \in P(a, \delta) : f(x) > g(x).$$

(ii) Nechť existuje prstencové okolí bodu $P(a, \delta)$ tak, že

$$\forall x \in P(a, \delta) : f(x) \le g(x).$$

Nechť existují $\lim_{x\to a} f(x)$ a $\lim_{x\to a} g(x)$. Potom platí

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

(iii) Nechť na nějakém prstencovém okolí $P(a,\delta)$ platí $f(x) \leq h(x) \leq g(x)$. Nechť $\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$. Pak existuje $\lim_{x\to a} h(x)$ a všechny tři limity se rovnají.

Příklad: $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$. Konec 16. přednášky 28.11.

Věta T 4.6 (limita složené funkce). Nechť funkce f a g splňují:

$$(i)\lim_{x\to c}g(x)=A,$$

$$(ii) \lim_{y \to A} f(y) = B.$$

Je-li navíc splněna alespoň jedna z podmínek

$$(P) \exists \eta > 0 \ \forall x \in P(c, \eta) : \ g(x) \neq A,$$

pak platí $\lim_{x\to c} f(g(x)) = B$.

Příklady: 1) $f(x) = \sqrt{x}$ je spojitá na $(0, \infty)$.

- 2) $\lim_{x\to 0} \sqrt{1+x^2} = 1$.
- 3) $\lim_{n\to\infty} \sqrt{1+\frac{1}{n^2}} = 1.$
- 4) Pro $g(x) \equiv 0$ a f(x) = 1 pro $x \neq 0$ a f(0) = 0 věta o limitě složené funkce neplatí.

Věta L 4.7 (limita monotónní funkce). Nechť f je monotónní na intervalu (a,b), $a,b \in \mathbf{R}^*$. Potom existuje $\lim_{x \to a+} f(x)$ i $\lim_{x \to b-} f(x)$.

4.3. Funkce spojité na intervalu

 ${\bf Definice.}\,$ Vnitřními body intervalu Jrozumíme ty body zJ,které nejsou krajními.

Definice. Nechť f je funkce a J je interval. Řekneme, že f je spojitá na J, jestliže je spojitá ve všech vnitřních bodech J. Je-li počáteční bod J prvkem J, tak požadujeme i spojitost zprava v tomto bodě a je-li koncový bod J prvkem J, tak požadujeme i spojitost zleva v tomto bodě.

Věta T 4.8 (Darboux). Nechť f je spojitá na intervalu [a,b] a platí f(a) < f(b). Pak pro každé $y \in (f(a), f(b))$ existuje $x_0 \in (a,b)$ tak, že $f(x_0) = y$.

Konec 17. přednášky 30.11.

Důsledek. Nechť J je interval. Nechť funkce $f:J\to\mathbf{R}$ je spojitá. Pak je f(J) interval.

Definice. Nechť $f:M\to {\bf R},\ M\subset {\bf R}$. Řekneme, že funkce f nabývá v bodě $a\in M$

maxima na M jestliže $\forall x \in M$: $f(x) \leq f(a)$, minima na M jestliže $\forall x \in M$: $f(x) \geq f(a)$, ostrého maxima na M jestliže $\forall x \in M, x \neq a$: f(x) < f(a), ostrého minima na M jestliže $\forall x \in M, x \neq a$: f(x) > f(a),

lokálního maxima (ostrého lokálního maxima, ostrého lokálního minima, lokálního minima), jestliže existuje $\delta > 0$ tak, že f nabývá na $M \cap B(a, \delta)$ svého maxima (ostrého maxima, ostrého minima, minima).

Věta T 4.9 (spojitost funkce a nabývaní extrémů). Nechť f je spojitá funkce na intervalu [a,b]. Pak funkce f nabýva na [a,b] svého maxima a minima.

Důsledek. Nechť f je spojitá funkce na intervalu [a,b]. Pak je funkce f na [a,b] omezená.

Definice. Nechť f je funkce a J je interval. Řekneme, že f je prostá na J, jestliže pro všechna $x, y \in J$ platí $x \neq y \Rightarrow f(x) \neq f(y)$. Pro prostou funkci $f: J \to \mathbf{R}$ definujeme funkci $f^{-1}: f(J) \to \mathbf{R}$ předpisem $f^{-1}(y) = x \Leftrightarrow f(x) = y$.

Věta T 4.10 (o inverzní funkci). Nechť f je spojitá a rostoucí (klesající) funkce na intervalu J. Potom je funkce f^{-1} spojitá a rostoucí (klesající) na intervalu f(J).

Příklad: Funkce $x \to x^n$ je spojitá a rostoucí na $[0, \infty)$, a proto je funkce $x \to \sqrt[n]{x}$ spojitá a rostoucí na $[0, \infty)$.

Konec 18. přednášky 5.12.

4.4. Elementární funkce

Věta T 4.11 (zavedení exponenciely). Existuje funkce $\exp : \mathbf{R} \to \mathbf{R}$ splňující:

- a) $\exp(x)$ je rostoucí na \mathbf{R} ,
- b) $\forall x, y \in \mathbf{R} \quad \exp(x+y) = \exp(x) \exp(y),$
- $c) \exp(0) = 1,$
- d) $\lim_{x \to 0} \frac{\exp(x) 1}{x} = 1$,
- e) $\exp(x)$ je spojitá na \mathbf{R} .

Definice. Funkci inverzní k exponenciele exp je logaritmus log.

Věta T 4.12 (vlastnosti logaritmu). Funkce log splňuje:

- a) $\log:(0,\infty)\to\mathbf{R}$ je spojitá rostoucí funkce,
- b) $\forall x, y > 0$ $\log(xy) = \log(x) + \log(y)$,

c)
$$\lim_{x \to 1} \frac{\log(x)}{x - 1} = 1.$$

Definice. Nechť a>0 a $b\in\mathbf{R}$. Pak definujeme $a^b=\exp(b\log(a))$. Je-li b>0 pak definujeme $\log_b a=\frac{\log a}{\log b}$.

Příklad: $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ a $\lim_{n\to\infty} (1+\frac{p}{n})^n = e^p$. Konec 19. přednášky 7.12.

Věta BD 4.13 (zavedení sinu a cosinu). *Existují funkce* sin : $\mathbf{R} \to \mathbf{R}$ a cos : $\mathbf{R} \to \mathbf{R}$ splňující:

- a) $\forall x, y \in \mathbf{R}$ $\sin(x+y) = \sin x \cos y + \cos x \sin y$, $\cos(x+y) = \cos x \cos y - \sin x \sin y$, $\cos(-x) = \cos x$, $\sin(-x) = -\sin x$,
- b) existuje kladné číslo π tak, že sin je rostoucí na $[0, \frac{1}{2}\pi]$ a $\sin(\frac{1}{2}\pi) = 1$,
- $c) \lim_{x \to 0} \frac{\sin x}{x} = 1.$

Příklad: $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$.

Definice. Pro $x \in \mathbf{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbf{Z}\}$ a $y \in \mathbf{R} \setminus \{k\pi, k \in \mathbf{Z}\}$ definujeme funkce tangens a cotangens předpisem

$$\tan x = \frac{\sin x}{\cos x} \text{ a } \cot y = \frac{\cos y}{\sin y}.$$

Věta L 4.14 (spojitost sinu a cosinu). Funkce sin, cos, tan a cotg jsou spojité na svém definičním oboru.

Definice. Nechť

$$\sin^* x = \sin x \text{ pro } x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right],$$

$$\cos^* x = \cos x \text{ pro } x \in \left[0, \pi\right],$$

$$\tan^* x = \tan x \text{ pro } x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \text{ a}$$

$$\cot g^* x = \cot g x \text{ pro } x \in (0, \pi).$$

Definujeme arcsin (respektive arccos, arctan, arccotg) jako inverzní funkci k funkci sin* (respektive cos*, tan*, cotg*).

4.5. Derivace funkce

Definice. Nechť f je reálná funkce a $a \in \mathbf{R}$. Pak derivací f v bodě a budeme rozumět

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h};$$

derivací f v bodě a zprava budeme rozumět

$$f'(a) = \lim_{h \to 0+} \frac{f(a+h) - f(a)}{h};$$

derivací f v bodě a zleva budeme rozumět

$$f'(a) = \lim_{h \to 0-} \frac{f(a+h) - f(a)}{h}.$$

Poznámky: 1) $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

2) $f'(a) = A \Leftrightarrow (f'_+(a) = A \text{ a } f'_-(a) = A).$

Příklady: 1) derivace |x|

- 2) derivace $\operatorname{sgn} x$
- 3) $(x^n)' = nx^{n-1}$.

Věta L 4.15 (vztah derivace a spojitosti). Nechť má funkce f v bodě $a \in \mathbf{R}$ derivaci $f'(a) \in \mathbf{R}$. Pak je f v bodě a spojitá.

Věta T 4.16 (aritmetika derivací). Nechť f'(a) a g'(a) existují.

- (i) (f+g)'(a) = f'(a) + g'(a), pokud má pravá strana smysl.
- (ii) Nechť je g spojitá v a, pak (fg)'(a) = f'(a)g(a) + f(a)g'(a),

pokud má pravá strana smysl.

(iii) Nechť je g spojitá v a a
$$g(a) \neq 0$$
, $pak\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$, pokud má pravá strana smysl.

Konec 20. přednášky 12.12.

Věta T 4.17 (derivace složené funkce). Nechť f má derivaci v bodě y_0 , g má derivaci v x_0 a je v x_0 spojitá a $y_0 = g(x_0)$. Pak

$$(f \circ g)'(x_0) = f'(y_0)g'(x_0) = f'(g(x_0))g'(x_0),$$

je-li výraz vpravo definován.

Příklad: Zderivujte e^{x^2+x} .

Věta L 4.18 (derivace inverzní funkce). Nechť f je na intervalu (a,b) spojitá a rostoucí (respektive klesající). Nechť f má v bodě $x_0 \in (a,b)$ derivaci $f'(x_0)$ vlastní a různou od nuly. Potom má funkce f^{-1} derivaci v bodě $y_0 = f(x_0)$ a platí

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$

Derivace elementárních funkcí:

$$(const)' = 0 \qquad (x^n)' = nx^{n-1} \text{ pro } x \in \mathbf{R}, \ n \in \mathbf{N}$$

$$(\log x)' = \frac{1}{x} \text{ pro } x \in (0, \infty) \qquad (e^x)' = e^x$$

$$(x^a)' = ax^{a-1} \text{ pro } x \in (0, \infty), \ a \in \mathbf{R} \qquad (a^x)' = a^x \log a \text{ pro } x \in \mathbf{R}, \ a \in (0, \infty)$$

$$(\sin x)' = \cos x \qquad (\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x} \qquad (\cot x)' = -\frac{1}{\sin^2 x}$$

$$(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(\operatorname{arccos} x)' = -\frac{1}{1+x^2}$$

$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

Konec 21. přednášky 14.12.

Věta L 4.19 (Fermatova). Nechť $a \in \mathbf{R}$ je bod lokálního extrému funkce f na M. Pak f'(a) neexistuje, nebo f'(a) = 0.

Věta L 4.20 (Rolleova věta). Nechť f je spojitá na intervalu [a,b], f'(x) existuje pro každé $x \in (a,b)$ a f(a) = f(b). Pak existuje $\xi \in (a,b)$ tak, že $f'(\xi) = 0$.

Věta L 4.21 (Lagrangeova věta o střední hodnotě). Nechť je funkce f spojitá na intervalu [a,b] a má derivaci v každém bodě intervalu (a,b). Pak existuje $\xi \in (a,b)$ tak, že

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Definice. Nechť J je interval. Množinu všech vnitřních bodů J nazýváme vnitřek J a značíme int J.

Věta L 4.22 (o vztahu derivace a monotonie). Nechť $J \subset \mathbf{R}$ je interval a f je spojitá na J a v každém vnitřním bodě J má derivaci.

- (i) Je-li f'(x) > 0 na int J, pak je f rostoucí na J.
- (ii) Je-li f'(x) < 0 na int J, pak je f klesající na J.
- (iii) Je-li $f'(x) \ge 0$ na int J, pak je f neklesající na J.
- (iv) Je-li $f'(x) \leq 0$ na int J, pak je f nerostoucí na J.

Věta T 4.23 (Cauchyova věta o střední hodnotě). Nechť f, g jsou spojité funkce na intervalu [a, b] takové, že f má v každém bodě (a, b) derivaci a g má v každém bodě vlastní derivaci různou od nuly. Pak existuje $\xi \in (a,b)$ tak, že

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Konec 22. přednášky 19.12

Věta T 4.24 (l'Hospitalovo pravidlo).

(i) Necht $a \in \mathbf{R}^*$, $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$ a necht existuje $\lim_{x \to a+} \frac{f'(x)}{g'(x)}$. Pak

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

(ii) Nechť $a \in \mathbf{R}^*$, $\lim_{x \to a+} |g(x)| = \infty$ a nechť existuje $\lim_{x \to a+} \frac{f'(x)}{g'(x)}$. Pak

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

Příklady: 1) $\lim_{x\to 0} \frac{x-\sin x}{x^3}$

2) $\lim_{n\to\infty} \frac{\log^a n}{n^b}$ pro a, b > 0.

Varovné příklady: 1) $\lim_{x\to 0} \frac{1+2x}{1+3x} \neq \frac{2}{3}$ 2) $\infty = \lim_{x\to \infty} \frac{x^2}{x+2\sin x} \neq \lim_{x\to \infty} \frac{2x}{1+2\cos x}$

Věta L 4.25 (derivace a limita derivace). Nechť je funkce f spojitá zprava v a a nechť existuje $\lim_{x\to a+} f'(x) = A \in \mathbf{R}^*$. Pak $f'_+(a) = A$.

Příklady: Spočtěte derivaci a jednostranné derivace funkce $|\arctan(x-1)|$ na **R**.

1.3. Krátký výlet do nekonečna

Definice. Řekneme, že množiny A, B mají stejnou mohutnost, pokud existuje bijekce A na B. Značime $A \approx B$.

Rekneme, že množina A má mohutnost menší nebo rovnu monutnosti B, pokud existuje prosté zobrazení A do B. Značíme $A \prec B$.

Rekneme, že množina A má menší mohutnost než B, pokud $A \leq B$, ale neplatí $B \leq A$. Značíme $A \prec B$.

Příklady: 1) $\mathbf{N} \approx \mathbf{Z}$, 2) $\mathbf{N} \approx \mathbf{Q}$, 3) $\mathbf{N} \prec \mathbf{R}$.

Definice. Řekneme, že množina A je konečná, má-li konečný počet prvků.

Řekneme, že množina A je spočetná, jestliže $A \approx \mathbf{N}$, nebo je A konečná.

Řekneme, že množina A je nespočetná, jestliže $\mathbb{N} \prec A$.

Tvrzení. Nechť $A_n, n \in \mathbb{N}$, jsou spočetné množiny. Pak $A = \bigcup_{n=1}^{\infty} A_n$ je spočetná.

Příklady: 1) $\mathbf{N} \times \mathbf{N} = \{[n_1, n_2] : n_1, n_2 \in \mathbf{N}\}$ je spočetná.

2) $\mathbf{Q}^k = \mathbf{Q} \times \mathbf{Q} \times \ldots \times \mathbf{Q}$ je spočetná pro $k \in \mathbf{N}$.

Konec 23. přednášky 21.12.

4.6. Konvexní a konkávní funkce

Definice. Nechť $n \in \mathbb{N}$, $a \in \mathbb{R}$ a nechť f má vlastní n-tou derivaci na okolí bodu a. Pak n + 1-ní derivací funkce f v bodě a budeme rozumět

$$f^{(n+1)}(a) = \lim_{h \to 0} \frac{f^{(n)}(a+h) - f^{(n)}(a)}{h}.$$

Definice. Funkce f na intervalu I nazveme konvexní (konkávní), jestliže

$$\forall x_1, x_2, x_3 \in I, \ x_1 < x_2 < x_3 \Rightarrow \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

Funkci nazveme ryze konvexní (ryze konkávní), jsou-li příslušné nerovnosti ostré.

Poznámka: Ekvivalentně lze definovat, že funkce f je na I konvexní, pokud

$$\forall x, y \in I, \ x < y, \ \forall \alpha \in (0,1) \text{ plati } f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y).$$

Věta T 4.26 (vztah druhé derivace a konvexity (konkávity)). Nechť f má na intervalu (a, b) spojitou první derivaci.

Jestliže $\forall x \in (a,b): f''(x) > 0$, pak f je ryze konvexní.

Jestliže $\forall x \in (a,b): f''(x) < 0, pak f je ryze konkávní.$

Jestliže $\forall x \in (a,b): f''(x) \geq 0$, pak f je konvexní.

Jestliže $\forall x \in (a,b): f''(x) \leq 0, pak f je konkávní.$

Lemma. Nechť je funkce f je na intervalu I konvexní, pak

$$\forall x_1, x_2, x_3 \in I, \ x_1 < x_2 < x_3 \Rightarrow \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

Lemma'. Nechť je funkce f je na intervalu I ryze konvexní, pak

$$\forall x_1, x_2, x_3 \in I, \ x_1 < x_2 < x_3 \Rightarrow \frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_3) - f(x_1)}{x_3 - x_1} < \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

Věta T 4.27 (konvexita a jednostranné derivace). Nechť f je konvexní na intervalu J a $a \in \text{int } J$. Pak $f'_{+}(a) \in \mathbf{R}$ a $f'_{-}(a) \in \mathbf{R}$.

Příklad: Funkce f(x) = |x| je na [-1,1] konvexní, ale neexistuje f'(0).

Věta L 4.28 (konvexita a spojitost). Nechť f je konvexní na otevřeném intervalu J. Pak je f spojitá na J.

Konec 24. přednášky 4.1.

Definice. Nechť f má vlastní derivaci v bodě $a \in \mathbf{R}$. Označme

$$T_a = \{ [x, y]; x \in \mathbf{R}, y = f(a) + f'(a)(x - a) \}.$$

Řekneme, že bod $[x, f(x)], x \in D_f$ leží nad (pod) tečnou T_a , jestliže platí

$$f(x) > f(a) + f'(a)(x - a)$$
 $(f(x) < f(a) + f'(a)(x - a)).$

Definice. Funkce f má v bodě a inflexi (a je inflexní bod), jestliže $f'(a) \in \mathbf{R}$ a existuje $\Delta > 0$ tak, že

- $(i) \ \forall x \in (a \Delta, a) : [x, f(x)]$ leží nad tečnou,
- $(ii) \ \forall x \in (a, a + \Delta) : [x, f(x)] \ \text{leží pod tečnou},$

nebo

- $(i) \ \forall x \in (a \Delta, a) : [x, f(x)] \ \text{leží pod tečnou},$
- (ii) $\forall x \in (a, a + \Delta) : [x, f(x)]$ leží nad tečnou,

Věta T 4.29 (nutná podmínka pro inflexi). Nechť $f''(a) \neq 0$. Pak a není inflexní bod funkce f.

Příklad: Funkce $f(x) = x^4$ splňuje f''(0) = 0, ale v 0 není inflexní bod.

Věta T 4.30 (postačující podmínka pro inflexi). Nechť f má spojitou první derivaci na intervalu (a,b). Nechť $z \in (a,b)$ a platí

$$\forall x \in (a, z) : f''(x) > 0 \ a \ \forall x \in (z, b) : f''(x) < 0.$$

 $Pak \ z \ je \ inflexn i \ bod \ f.$

Konec 25. přednášky 9.1.

4.7. Průběh funkce

Definice. Řekneme, že funkce ax + b, $a, b \in \mathbf{R}$, je asymptotou funkce f $v \infty$ (resp. $-\infty$), jestliže

$$\lim_{x \to \infty} (f(x) - (ax + b)) = 0 \quad \text{(resp. } \lim_{x \to -\infty} (f(x) - (ax + b)) = 0\text{)}.$$

Věta L 4.31 (tvar asymptoty). Funkce f má $v \infty$ asymptotu ax + b, právě když

$$\lim_{x \to \infty} \frac{f(x)}{x} = a \in \mathbf{R} \ a \ \lim_{x \to \infty} (f(x) - ax) = b \in \mathbf{R}.$$

Při vyšetření průběhu funkce provádíme následující kroky:

- 1. Určíme definiční obor a obor spojitosti funkce.
- 2. Zjistíme průsečíky se souřadnými osami.
- 3. Zjistíme symetrii funkce: lichost, sudost, periodicita.
- 4. Dopočítáme limity v 'krajních bodech definičního oboru'.
- 5. Spočteme první derivaci, určíme intervaly monotonie a nalezneme lokální a globální extrémý.
- 6. Spočteme druhou derivaci a určíme intervaly, kde je f konvexní nebo konkávní.
- 7. Vypočteme asymptoty funkce.
- 8. Načtneme graf funkce a určíme obor hodnot. Konec 26. přednášky 11.1.