Introduction

© André Zúquete

Security

Security:

Objectives

- Defense against non-authorized activities (adversaries)
 - Initiated by someone "from inside"
 - Initiated by someone "from outside"
- Types of illegal activities:
 - Access to information
 - Information modification
 - Resource usage
 - CPU, memory, printer, network, etc.
 - Denial of Service (DoS)
 - Vandalism
 - Interference with the normal system behavior without any benefit for the attacker

© André Zúquete

Security

2

Security in computing systems: Complex problems

- Computers can do a lot of damage in a short time frame
 - They manage an always growing amount of data/information
 - They process and communicate very fast
- The number of weakness is always growing
 - Systems are getting more complex with time
 - Time-to-market is each time shorter
- Networks allow:
 - Anonymous (?) attacks from anywhere
 - Automatic propagation of cyberplagues
 - The existence and exploitation of hostile hosts and applications
- In general users are not careful
 - Because they are not aware of the problems and solutions
 - Because they take risks

© André Zúquete Security 3

Security:

Pragmatic approach

- There will never be a 100% protection
 - Cost-efficiency balance
- Security is expensive
 - Dedicated technology, skilled people
 - Use only the minimum required
- Protection, value e punishment
 - Good protection for the most frequent attacks
 - Less interference with daily work than the damage caused by attackers
 - Police and courts for tracking and prosecuting attackers
 - It is critical to avoid the notion of total impunity

Lexicon

- A system weakness that makes it sensible to attacks
- Design / development / installation
- Attack
 - A set of steps that lead to the execution of illegal activities
 - Usually exploiting vulnerabilities
- Risks / threats
 - Damage resulting from an attack
- Defense
 - Set of policies and mechanisms aiming at
 - Reducing the amount of vulnerabilities
 - Detect as fast as possible actual and past attacks
 - Reduce the risks of systems

© André Zúquete Security

Security:

Risks

- Information, time and money
 - Destruction or tampering of information
- Confidentiality
 - Non-authorized access to information
- Privacy
 - Non-authorized gathering of personal information
 - Data warehousing on personal information
- Resource availability
 - Disruption of computing systems / networks
- Impersonation
 - Of people / of services
 - Non-authorized exploitation of personal accounts / profiles

Main vulnerability sources

- Applications with bugs or hostile
 - Morris Worm 1988
 - Buffer overflows + discovery of weak passwords
 - root kits
- People
 - Ignorant or careless
 - telnet vs. ssh, IMAPS vs. IMAP
 - Problems? I'm sufficiently protected with my anti-virus/IDS
 - Hostile
- Defective administration
 - Systems get more complex as they evolve
 - Default configuration seldom are the most secure ones
 - Security restrictions vs. flexible operation
- Communications over uncontrolled/unknown network links

Policies

- Define the power of each and every subject
 - Least privilege principle
 - Hardening
- Define security procedures
 - How does what in which circumstances
- Define the minimum security requirements of a domain
 - Security levels
 - Required authorization

 - And related minimum authentication requirements Strong/weak, single/multi-factor, remote/face-to-face
- Define defense strategies and fight back tactics
 - Defensive architecture
 - Monitoring of critical activities or attack signs
 - Reaction against attacks or other abnormal scenarios
- Define the universe of legal and illegal activities
 - All that is not forbidden is allowed
 - All that is not allowed is forbidden

© André Zúquete

Security

Security:

Mechanisms

- Mechanisms implement policies
 - Policies define, at an higher level, what needs to be done
 - Mechanisms are used to deploy policies
- Generic security mechanisms
 - Confinement (sandboxing)
 - Authentication
 - Access control
 - Privileged execution
 - Filtering
 - Logging
 - Inspection
 - Auditing
 - Crypto algorithms
 - Crypto protocols

© André Zúquete

Security

Security level offered by a computer

- Depends on:
 - Available security policies
 - Correctness and effectiveness of their specification / implementation
- Evaluation criteria:
 - NCSC Trusted Computer System Evaluation Criteria (TCSEC, Orange Book)
 - Classes: D, C (1, 2), B (1, 2, 3) e A (1)
 - D: insecure (minimum protection level)
 - A1: most secure
 - Very demanding and expensive protection policies
 - Formal validation of specification
 - Highly supervised implementation
 - EC Information Technology Security Evaluation Criteria (ITSEC)
 - Levels: E1 to E6
 - Formal specification level
 - Correctness of implementation

© André Zúquete Security 11

Security:

Policies for distributed systems

- Must encompass several hosts and networks
 - Security Domains
 - Definition of the set of hosts and networks of the domain
 - Definition of the set of accepted/authorized users
 - Definition of the set of accepted/not accepted activities
 - Security gateways
 - Definition of the set of allowed in-out interactions
- Perimeter defense vs. Defense in depth

Attacks to distributed systems

- Attacks to hosts
 - Stealing
 - Intrusion
 - Impersonation (of users)
 - Denial of service
- Attacks to networks
 - Packet inspection
 - Packet tampering / injection
 - Traffic interception
 - Traffic replaying
 - Host impersonation
 - Denial of service (jamming, flooding, deception, etc.)
- Other
 - Covert channels

Security

13

7

Attack models

- Target-specific attacks
 - Conceived for a particular host / network
 - Idealized and conducted in real-time by specialists
- Generic, autonomous attacks
 - Conceived for exploiting well-known, common vulnerabilities
 - Coded for many scenarios and targets
 - Mean survivability time
 - Time between two consecutive automatic attacks
 - There are "network sensors" that help to compute it

Mechanisms for distributed systems (2/5)

- Trusted Operating Systems
 - Security levels, certification
 - Secure execution environments for servers
 - Sandboxing / virtual machines
- Authentication
 - Local
 - Remote (network authentication)
 - Single Sign-On
- Firewalls & Security Appliances
 - Traffic control between networks
 - Monitoring (traffic load, etc.)

© André Zúquete

17

Security:

Mechanisms for distributed systems (3/5)

- Certification Authorities / PKI
 - Management of public key certificates
- Encryption of files and sessions
 - Privacy / confidentiality of network data
 - Privacy / confidentiality of long-term stored data
- Secure communications / VPNs
 - Secure channels over insecure, public networks
 - Secure extension of organizational networks

Mechanisms for distributed systems (4/5)

- Content monitoring
 - Detection of virus, worms or other cyberplagues
- Intrusion detection
 - Detention of forbidden / abnormal activities
 - Host-based / Network-Based
- Vulnerability scanners
 - Scanning for problem fixing or exploitation
 - Network-based / Host-based
- Penetration testing
 - Vulnerability assessment
 - Demo penetration attempts
 - Testing of installed security mechanisms
 - Assessment of badly implemented security policies

© André Zúquete Security 19

Security:

Mechanisms for distributed systems (5/5)

- Security administration
 - Development of security policies
 - Distributed enforcement of policies
 - Co-administration / outsourcing of security services
- Real-Time Security Awareness / Incident Response
 - Capacity to detect and react correctly to security incidents in real-time
 - Means for a rapid and effective incident reaction