Eligiendo el horario

Contribución de Lautaro Lasorsa

Descripción del problema

Gastón tiene que ir a la universidad, y quiere saber que tan tarde puede salir de su casa si pretende llegar a tiempo.

Para esto él pretende utilizar los colectivos. Cada colectivo i parte de una parada A_i , llega a una estación B_i , tarda un tiempo de T_i minutos, sale por primera vez a la hora I_i (dada en minutos) y vuelve a salir cada F_i minutos.

Si el colectivo sale en un tiempo t, y Gastón llega a esa parada en el mismo tiempo t, puede tomarlo. Como la zona donde vive no es muy segura, por lo tanto no quiere hacer ningún recorrido por fuera de los colectivos, aunque quedarse esperando en una parada no es un problema. Para su suerte, tiene una parada en frente de su casa y hay una en frente de la universidad.

Por ahora lo unico que desea saber Gastón es que tan tarde puede salir de su casa si quiere llegar a la universidad en un tiempo *llegada*. Si fuera imposible para él llegar a la universidad a tiempo, devolver - 1. Tener en cuenta que Gastón solo puede salir de su casa en el minuto 0 o posterior.

Siendo N las paradas, la parada frente a la casa de Gastón siempre será la 0 y la que está frente a la univerisdad la N-1.

Detalles de implementación

Debes implementarl a función Elegir_Horario(N, A, B, T, I, F, llegada), siendo N del tipo ENTERO, A y B del tipo VECTOR DE ENTEROS, T, I y F del tipo VECTOR DE ENTEROS LARGOS y llegada un ENTERO LARGO. La función debe devolver un ENTERO LARGO con la respuesta a la pregunta de Gastón.

Evaluador local

El evaluador local lee en una primera línea los entero N y M y el entero largo llegada, siendo M la cantidad de colectivos.

Luego lee M líneas, cada una con los datos de un colectivo. La (i + 1) - esima línea contiene A_i , B_i , T_i , I_i y F_i .

Luego llamará a la función Elegir_Horario (N, A, B, T, I, F, llegada) y mostrara lo que retorna en una línea.

Cotas

- $2 \le N \le 200.000$
- $2 \le M \le 300.000$
- $0 < A_i, B_i < N$
- $1 \le T_i, I_i, F_i, Ilegada \le 10^{13}$

Ejemplos

Si el evaluador local recibe la siguiente entrada:

Una implementación correcta deberá devolver:

2

En cambio, si recibe:

8 9 22 0 1 3 2 3 0 2 1 2 2 1 3 2 5 4 3 4 3 2 1 4 5 2 2 4 2 5 10 1 10 5 6 2 1 1 5 7 10 5 10 6 7 6 12 5

Deberá devolver:

-1

Y si recibe:

5 6 25 0 1 5 2 4 2 1 1 1 1 1 2 3 8 6 2 3 1 1 5 3 4 10 1 1 1 4 1 10 16

Devolverá:

2

Subtareas

- 1. 1 \leq *llegada*, T_i , I_i , $F_i \leq$ 500 y 1 \leq N, $M \leq$ 1000 (10 puntos)
- 2. 1 \leq *llegada*, T_i , I_i , $F_i \leq$ 500 (15 puntos)
- 3. M = N 1 (15 puntos)
- 4. $F_i = 1$ (15 puntos)
- 5. Sin restricciones adicionales (45 puntos).