Университет ИТМО

Факультет программной инженерии и компьютерной техники

Сети ЭВМ и телекоммуникации

Учебно-исследовательская работа №1 Кодирование данных в телекоммуникационных сетях

> Лабушев Тимофей Группа Р3302

Санкт-Петербург 2019

Цель

Изучение методов физического и логического кодирования, используемых в цифровых сетях передачи данных.

Задание

В процессе выполнения работы необходимо выполнить логическое и физическое кодирование исходного сообщения в соответствии с заданными методами кодирования, провести сравнительный анализ рассматриваемых методов кодирования, выбрать и обосновать наилучший метод для передачи исходного сообщения.

Ход работы

Этап 1. Формирование сообщения

Исходное сообщение: Лабушев Т.М.

В шестнадцатеричном коде: CB E0 E1 F3 F8 E5 E2 20 D2 2E CC 2E

11100010 00100000 11010010 00101110 11001100 (

Длина сообщения: 12 байт (96 бит)

Этап 2. Физическое кодирование исходного сообщения

Потенциальный код NRZ

Результат кодирования первых четырех байт сообщения:

Рисунок 1. Потенциальный код NRZ

Минимальный период достигается при кодировании чередующихся сигналов (010), а максимальный период — при кодировании последовательности единиц или нулей.

Поскольку в исходном сообщении встречаются чередующиеся сигналы 01 и 10, мы рассматриваем период дискретного сигнала T_0 =2t, где t= $\frac{1}{C}$ —

время передачи одного бита, C — пропускная способность канала. Таким образом, частота основной гармоники $f_0 = \frac{1}{T_0} = \frac{1}{2}C$.

Используя T_0 , мы можем выразить максимальный период как $T_{max} = N T_0$, где N — количество бит в самой длинной нечередующейся последовательности. В рассматриваемом сообщении таковой является 111111 (N=7), следовательно, $T_{max} = 7T_0$. Минимальный период в NRZ кодировании равен T_0 .

Найдем верхнюю и нижнюю границу частот, разложив сигналы в ряд Фурье:

$$\sum_{i \in 1.3.5.7}^{\square} \frac{1}{i} A_0 \sin(2 \pi f_i t), f_i = \frac{1}{T} i$$

Гармониками высших порядков пренебрежем из-за их малого вклада в результирующий сигнал.

Для сигнала из семи последовательных единиц (T_{max}):

$$A_0 \sin(2\pi \frac{1}{7} f_0 t) + \frac{1}{3} A_0 \sin(2\pi \frac{3}{7} f_0 t) + \frac{1}{5} A_0 \sin(2\pi \frac{5}{7} f_0 t) + \frac{1}{7} A_0 \sin(2\pi f_0 t)$$

Получим $f_{min} = \frac{1}{7} f_0$.

Для сигнала из чередующихся единиц и нулей ($T_{\it min}$):

$$A_0 \sin(2\pi f_0 t) + \frac{1}{3} A_0 \sin(2\pi 3 f_0 t) + \frac{1}{5} A_0 \sin(2\pi 5 f_0 t) + \frac{1}{7} A_0 \sin(2\pi 7 f_0 t)$$

Получим $f_{max} = 7f_0$.

Рассчитаем значения, зависящие от пропускной способности канала C:

- Частоту основной гармоники сигнала из последовательности 1111111...: 0
- Нижнюю границу частот $f_{min} = \frac{1}{7} f_0 = \frac{1}{7} \cdot \frac{1}{2} C$
- Верхнюю границу частот $f_{max} = 7f_0 = 7 \cdot \frac{1}{2}C$
- Необходимую полосу пропускания $F = f_{min} \dots f_{max}$

Для нахождения среднего значения частоты передаваемого сообщения обратимся к диаграмме передачи первых четырех байтов. На ней можно выделить пять участков с различными частотами:

• $f_1 = f_0$ при кодировании 0 и 1 (2 бита из 32)

- $f_2 = \frac{1}{2} f_0$ при кодировании 00 и 11 (8 бит из 32)
- $f_3 = \frac{1}{3} f_0$ при кодировании 000 и 111 (3 бита из 32)
- $f_4 = \frac{1}{4} f_0$ при кодировании 0000 и 1111 (4 бита из 32)
- $f_5 = \frac{1}{5} f_0$ при кодировании 00000 и 11111 (15 бит из 32)

Возьмем их среднее арифметическое:

$$f_{mean} = \frac{2}{32} \cdot f_0 + \frac{8}{32} \cdot \frac{1}{2} \cdot f_0 + \frac{3}{32} \cdot \frac{1}{3} \cdot f_0 + \frac{4}{32} \cdot \frac{1}{4} \cdot f_0 + \frac{15}{32} \cdot \frac{1}{5} \cdot f_0$$

Рассчитанные показатели

Таблица 1. Потенциальный код NRZ

C, бит/с	f_{1} , М Γ ц	$f_{\it min}$, М Γ ц	$f_{\it max}$, М Γ ц	F , М Γ ц	$f_{\it mean}$, М Γ ц
10 ⁷	0	0.714286	35	0.7135	1.7188
10^{8}	0	7.14286	350	7.1350	17.1875
10^9	0	71.4286	3500	713500	171.875

Импульсный код RZ

Результат кодирования первых четырех байт сообщения:

Рисунок 2. Импульсный код RZ

Минимальный период достигается при кодировании последовательных единиц или нулей (11, 00), а максимальный период — при кодировании чередующихся сигналов (01, 10). Примем $T_{\it max} = T_{\it 0}$, тогда $T_{\it min} = \frac{1}{2} T$.

Разложим в ряд Фурье сигнал из чередующихся единиц и нулей ($T_{\it max}$):

$$A_0 \sin(2 \pi f_0 t) + \frac{1}{3} A_0 \sin(2 \pi 3 f_0 t) + \frac{1}{5} A_0 \sin(2 \pi 5 f_0 t) + \frac{1}{7} A_0 \sin(2 \pi 7 f_0 t)$$

Получим $f_{min} = f_0$.

Разложим в ряд Фурье сигнал из последовательных единиц и нулей (T_{min}):

$$A_0 \sin \left(2 \, \pi \, 2 f_0 t\right) + \frac{1}{3} A_0 \sin \left(2 \, \pi \, 6 \, f_0 t\right) + \frac{1}{5} A_0 \sin \left(2 \, \pi \, 10 \, f_0 t\right) + \frac{1}{7} A_0 \sin \left(2 \, \pi \, 14 \, f_0 t\right)$$

Получим $f_{max} = 14 f_0$.

Рассчитаем значения, зависящие от пропускной способности канала С:

- Частоту основной гармоники сигнала из последовательности 1111111... вычислим, представив последовательность как повторяющийся сигнал 11, частота основной гармоники которого известна $(2f_0)$: $f_1 = 2f_0 = C$
- Нижнюю границу частот $f_{min} = f_0 = \frac{1}{2}C$
- Верхнюю границу частот $f_{max} = 14 f_0 = 14 \cdot \frac{1}{2} C$
- Необходимую полосу пропускания $F = f_{min}...f_{max}$

Для нахождения среднего значения частоты передаваемого сообщения обратимся к диаграмме передачи первых четырех байтов. На ней можно выделить два вида участков с различными частотами:

- $f_1 = f_0$ при кодировании 01 и 10 (8 бит из 32)
- $f_2 = 2f_0$ при кодировании 00 и 11 (24 бит из 32)

Возьмем их среднее арифметическое:

$$f_{mean} = \frac{8}{32} \cdot f_0 + \frac{24}{32} \cdot 2f_0$$

Рассчитанные показатели

Таблица 2. Импульсный код RZ, манчестерский код (см. ниже)

<i>C</i> , бит/с	f_{1} , М Γ ц	$f_{\it min}$, М Γ ц	$f_{\it max}$, М Γ ц	F , М Γ ц	$f_{\it mean}$, М Γ ц
10 ⁷	10	5	70	570	8.75
10 ⁸	100	50	700	50700	87.5
10 ⁹	1000	500	7000	5007000	875

Манчестерский код

Результат кодирования первых четырех байт сообщения:

Рисунок 3. Манчестерский код

Минимальный период достигается при кодировании последовательности единиц или нулей (11, 00), а максимальный период — при кодировании чередующихся единиц и нулей (10, 01), то есть $T_{\it max}$ = $2T_{\it min}$ = $T_{\it 0}$.

Можно увидеть, что эти показатели полностью соответствует импульсному коду RZ, а следовательно, у данных кодов совпадает и разложение сигналов в ряд Фурье, и значения, зависящие от пропускной способности канала C.

Пятиуровневый код РАМ-5 (потенциальный код 2B1Q)

Результат кодирования первых четырех байт сообщения:

Рисунок 4. Пятиуровневый код РАМ-5

Минимальный период достигается при кодировании последовательности 110011 (T_{min} =2 T_0), а максимальный период — при кодировании последовательности 10111110 (T_{max} =8 T_0).

Разложим в ряд Фурье сигнал 10111110 (T_{max}):

$$A_0 \sin(2\pi \frac{1}{8} f_0 t) + \frac{1}{3} A_0 \sin(2\pi \frac{3}{8} f_0 t) + \frac{1}{5} A_0 \sin(2\pi \frac{5}{8} f_0 t) + \frac{1}{7} A_0 \sin(2\pi \frac{7}{8} f_0 t)$$

Получим $f_{min} = \frac{1}{8} f_0$.

Разложим в ряд Фурье сигнал 110011 (T_{min}):

$$A_0 \sin(2\pi \frac{1}{2}f_0 t) + \frac{1}{3}A_0 \sin(2\pi \frac{3}{2}f_0 t) + \frac{1}{5}A_0 \sin(2\pi \frac{5}{2}f_0 t) + \frac{1}{7}A_0 \sin(2\pi \frac{7}{2}f_0 t)$$

Получим
$$f_{max} = \frac{7}{2} f_0$$
.

Рассчитаем значения, зависящие от пропускной способности канала С:

- Частоту основной гармоники сигнала из последовательности 1111111...: 0
- Нижнюю границу частот $f_{min} = \frac{1}{8} f_0 = \frac{1}{8} \cdot \frac{1}{2} C$
- Верхнюю границу частот $f_{max} = \frac{7}{2} f_0 = \frac{7}{2} \cdot \frac{1}{2} C$
- Необходимую полосу пропускания $F = f_{min} \dots f_{max}$

Для нахождения среднего значения частоты передаваемого сообщения обратимся к диаграмме передачи первых четырех байтов. На ней можно выделить пять участков с различными частотами:

- $f_1 = \frac{1}{2} f_0$ при кодировании 11, 00 (8 бит из 32)
- $f_2 = \frac{1}{4} f_0$ при кодировании 0000, 0001, 1110, 1111 (16 бит из 32)
- $f_3 = \frac{1}{8} f_0$ при кодировании 10111110 (8 бит из 32)

Возьмем их среднее арифметическое:

$$f_{mean} = \frac{8}{32} \cdot \frac{1}{2} f_0 + \frac{16}{32} \cdot \frac{1}{4} f_0 + \frac{8}{32} \cdot \frac{1}{8} f_0$$

Рассчитанные показатели

Таблица 3. Пятиуровневый код РАМ-5

C, бит/с	$f_{1\dots}$, М Γ ц	$f_{\scriptscriptstyle min}$, М Γ ц	$f_{\it max}$, М Γ ц	F , М Γ ц	$f_{\it mean}$, М Γ ц
10 ⁷	0	0.625	17.5	0.62517.5	1.4062
10^8	0	6.25	175	6.25175	14.0625
10^{9}	\$0`\$	62.5	1750	62.51750	140.625

Сравнительный анализ способов физического кодирования

В таблице 4 показано сравнение характеристик для рассмотренных способов физического кодирования. Значения ширины полосы пропускания приведены для скорости передачи в 1000 Mbps.

Таблица 4. Сравнительный анализ способов физического кодирования

Код	Необходимая	Количест	Самосин	Обнару
	ширина	B0	хрониза	жение
	полосы	уровней	ция	ошибок

	пропускания	сигнала		
NRZ	3.43ГГц	2	-	-
RZ	6.5ГГц	3	+	+
Манчестерский	6.5ГГц	2	+	+
2B1Q	1.69ГГц	4	-	-

Код NRZ не требует такой широкой полосы пропускания, как манчестерский и RZ коды, а также имеет низкую стоимость реализации, поскольку ему необходимо лишь 2 уровня сигнала. Тем не менее, NRZ свойственны существенные недостатки: отсутствие самосинхронизации и вероятность появления ошибок при передаче длинных последовательностей нулей или единиц.

Манчестерский код обладает свойством самосинхронизации и предоставляет возможность обнаружения ошибок (отсутствие перехода в середине битового интервала), а также имеет сравнительно низкую стоимость реализации, однако требует более широкую полосу пропускания по сравнению с NRZ и 2B1Q.

Код RZ также поддерживает синхронизацию и обнаружение ошибок, но имеет среднюю стоимость реализации и требует широкую полосу пропускания.

Код 2В1Q требует самую узкую полосу пропускания из всех рассмотренных методов кодирования, но вместе с тем имеет самую высокую стоимость реализации. При этом как и у кода NRZ присутствует вероятность ошибки при передаче длинных последовательностей нулей или единиц, хотя стоит отметить, что эта вероятность ниже, чем у NRZ, за счет кодирования сразу двух байт.

Исходя из сравнительного анализа, можно сделать вывод, что наилучшими способами кодирования являются манчестерский и RZ код, поскольку они обладают свойством самосинхронизации. Манчестерский код отличается меньшей стоимостью реализации. Недостатком этих методов является необходимость большой ширины полосы пропускания.

Этап 3. Логическое кодирование исходного сообщения

Логическое кодирование по методу 4В/5В

Из исходного сообщения нужно получить новое закодированное сообщение с помощью специальной таблицы перекодировки:

Таблица 5. Логическое кодирование 4В/5В

Исходные	Результирующие	Исходные	Результирующие
символы	символы	символы	символы
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Длина сообщения: 120 бит

Избыточность: 25%

Выполним физическое кодирование полученного сообщения методом NRZ.

Результат кодирования первых четырех байт сообщения:

Рисунок 5. Потенциальный код NRZ после применения логического кодирования 4B/5B

Минимальный период достигается при кодировании чередующихся сигналов (010) и равен $T_{\rm 0}$. Максимальный период достигается на участке 111111 и равен $6\,T_{\rm 0}$.

Разложим в ряд Фурье сигнал из шести последовательных единиц ($T_{\it max}$):

$$A_0 \sin \left(2 \pi \frac{1}{6} f_0 t\right) + \frac{1}{3} A_0 \sin \left(2 \pi \frac{3}{6} f_0 t\right) + \frac{1}{5} A_0 \sin \left(2 \pi \frac{5}{6} f_0 t\right) + \frac{1}{7} A_0 \sin \left(2 \pi \frac{7}{6} f_0 t\right)$$

Получим $f_{min} = \frac{1}{6} f_0$.

Разложим в ряд Фурье сигнал из чередующихся единиц и нулей ($T_{\it min}$):

$$A_0 \sin(2\pi f_0 t) + \frac{1}{3} A_0 \sin(2\pi 3 f_0 t) + \frac{1}{5} A_0 \sin(2\pi 5 f_0 t) + \frac{1}{7} A_0 \sin(2\pi 7 f_0)$$

Получим $f_{max} = 7f_0$.

Рассчитаем значения, зависящие от пропускной способности канала С:

- Частоту основной гармоники сигнала из последовательности 1111111...: 0
- Нижнюю границу частот $f_{min} = \frac{1}{6} f_0 = \frac{1}{6} \cdot \frac{1}{2} C$
- Верхнюю границу частот $f_{max} = 7f_0 = 7 \cdot \frac{1}{2}C$
- Необходимую полосу пропускания $F = f_{\min} ... f_{\max}$

Для нахождения среднего значения частоты передаваемого сообщения, обратимся к диаграмме передачи первых четырех байтов. На ней можно выделить пять участков с различными частотами:

- $f_1 = f_0$ при кодировании 0, 1 (7 бит из 32)
- $f_2 = \frac{1}{2} f_0$ при кодировании 00, 11 (6 бит из 32)
- $f_3 = \frac{1}{3} f_0$ при кодировании 000, 111 (9 бит из 32)
- $f_4 = \frac{1}{4} f_0$ при кодировании 1111 (4 бита из 32)
- $f_5 = \frac{1}{6} f_0$ при кодировании 111111 (6 бит из 32)

Возьмем их среднее арифметическое:

$$f_{mean} = \frac{7}{32} \cdot f_0 + \frac{6}{32} \cdot \frac{1}{2} f_0 + \frac{9}{32} \cdot \frac{1}{3} f_0 + \frac{4}{32} \cdot \frac{1}{4} f_0 + \frac{6}{32} \cdot \frac{1}{6} f_0$$

Рассчитанные показатели

Таблица 6. Потенциальный код NRZ после применения логического кодирования 4B/5B

C, бит/с	f_{1} , М Γ ц	$f_{\it min}$, М Γ ц	$f_{\it max}$, М Γ ц	F , М Γ ц	$f_{\it mean}$, М Γ ц
10 ⁷	0	0.8333	35	0.833335	2.3438
10^{8}	0	8.3333	350	8.3333350	23.4375

3500

83.3333...3500

234.375

Сравнение 4B/5B с физическим кодированием NRZ

Применение логического кодирования уменьшило предельную длину последовательности единиц в сообщении с семи до шести, что привело к сужению полосы пропускания и увеличению средней частоты. Появилась также дополнительная помехоустойчивость за счет установления запрещенных комбинаций. Недостатком подхода является 25% избыточность.

Скремблирование

Рассмотрим первые четыре байта исходного сообщения: 11001011 11100000 11100001 11110011.

Выберем полином $B_i = A_i \oplus B_{i-3} \oplus B_{i-5}$

Ход скремблирования:

- 1. $B_0 = A_0 = 1$
- 2. $B_1 = A_1 = 1$
- 3. $B_2 = A_2 = 0$
- 4. $B_3 = A_3 \oplus B_0 = 0 \oplus 1 = 1$
- 5. $B_4 = A_4 \oplus B_1 = 1 \oplus 1 = 0$
- 6. $B_5 = A_5 \oplus B_2 \oplus B_0 = 0 \oplus 0 \oplus 1 = 1$
- 7. $B_6 = A_6 \oplus B_3 \oplus B_1 = 1 \oplus 0 \oplus 1 = 1$
- 8. $B_7 = A_7 \oplus B_4 \oplus B_2 = 1 \oplus 1 \oplus 0 = 1$
- 9. $B_8 = A_8 \oplus B_5 \oplus B_3 = 1 \oplus 0 \oplus 0 = 1$
- 10. $B_9 = A_9 \oplus B_6 \oplus B_4 = 1 \oplus 1 \oplus 1 = 0$
- 11. $B_{10} = A_{10} \oplus B_7 \oplus B_5 = 1 \oplus 1 \oplus 0 = 1$
- 12. $B_{11} = A_{11} \oplus B_8 \oplus B_6 = 0 \oplus 1 \oplus 1 = 0$ 13. $B_{12} = A_{12} \oplus B_9 \oplus B_7 = 0 \oplus 1 \oplus 1 = 1$
- 14. $B_{13} = A_{13} \oplus B_{10} \oplus B_{8} = 0 \oplus 1 \oplus 1 = 0$
- 15. $B_{14} = A_{14} \oplus B_{11} \oplus B_{9} = 0 \oplus 0 \oplus 1 = 0$
- 16. $B_{15} = A_{15} \oplus B_{12} \oplus B_{10} = 0 \oplus 0 \oplus 1 = 0$
- 17. $B_{16} = A_{16} \oplus B_{13} \oplus B_{14} = 1 \oplus 0 \oplus 0 = 1$
- 18. $B_{17} = A_{17} \oplus B_{14} \oplus B_{12} = 1 \oplus 0 \oplus 0 = 0$
- 19. $B_{18} = A_{18} \oplus B_{15} \oplus B_{13} = 1 \oplus 0 \oplus 0 = 1$
- 20. $B_{19} = A_{19} \oplus B_{16} \oplus B_{14} = 0 \oplus 1 \oplus 0 = 1$
- 21. $B_{20} = A_{20} \oplus B_{17} \oplus B_{15} = 0 \oplus 1 \oplus 0 = 0$
- 22. $B_{21} = A_{21} \oplus B_{18} \oplus B_{16} = 0 \oplus 1 \oplus 1 = 0$
- 23. $B_{22} = A_{22} \oplus B_{19} \oplus B_{17} = 0 \oplus 0 \oplus 1 = 1$

24.
$$B_{23} = A_{23} \oplus B_{20} \oplus B_{18} = 1 \oplus 0 \oplus 1 = 0$$

25.
$$B_{24} = A_{24} \oplus B_{21} \oplus B_{19} = 1 \oplus 0 \oplus 0 = 0$$

26.
$$B_{25} = A_{25} \oplus B_{22} \oplus B_{20} = 1 \oplus 0 \oplus 0 = 0$$

27.
$$B_{26} = A_{26} \oplus B_{23} \oplus B_{21} = 1 \oplus 1 \oplus 0 = 1$$

28.
$$B_{27} = A_{27} \oplus B_{24} \oplus B_{22} = 1 \oplus 1 \oplus 0 = 0$$

29.
$$B_{28} = A_{28} \oplus B_{25} \oplus B_{23} = 0 \oplus 1 \oplus 1 = 0$$

30.
$$B_{29} = A_{29} \oplus B_{26} \oplus B_{24} = 0 \oplus 1 \oplus 1 = 1$$

31.
$$B_{30} = A_{30} \oplus B_{27} \oplus B_{25} = 1 \oplus 1 \oplus 1 = 1$$

32.
$$B_{31} = A_{31} \oplus B_{28} \oplus B_{26} = 1 \oplus 0 \oplus 1 = 0$$

Результат скремблирования первых четырех байт: 11010111 10101000 10110010 00100110

Выполним физическое кодирование полученного сообщения методом NRZ:

Рисунок 6. Потенциальный код NRZ после скремблирования 3-5

Длина самой длинной нечередующейся последовательности равна семи (0000000), как и в при рассмотрении физического кодирования NRZ без сремблирования, поэтому границы частот и необходимая полоса пропускания не изменятся.

Для нахождения среднего значения частоты передаваемого сообщения, обратимся к диаграмме передачи первых четырех байтов. На ней можно выделить пять участков с различными частотами:

- $f_1 = f_0$ при кодировании 0 и 1 (12 бит из 32)
- $f_2 = \frac{1}{2} f_0$ при кодировании 00 и 11 (10 бит из 32)
- $f_3 = \frac{1}{3} f_0$ при кодировании 000 и 111 (6 бит из 32)
- $f_4 = \frac{1}{4} f_0$ при кодировании 0000 и 1111 (4 бита из 32)

Возьмем их среднее арифметическое:

$$f_{mean} = \frac{12}{32} \cdot f_0 + \frac{10}{32} \cdot \frac{1}{2} \cdot f_0 + \frac{6}{32} \cdot \frac{1}{3} \cdot f_0 + \frac{4}{32} \cdot \frac{1}{4} \cdot f_0$$

Рассчитанные показатели

Таблица 7. Потенциальный код NRZ после скремблирования 3-5

<i>C</i> , бит/с	$f_{ ext{ iny 1}}$, М Γ ц	$f_{\it min}$, М Γ ц	$f_{\it max}$, М Γ ц	F , М Γ ц	$f_{\it mean}$, М Γ ц
10 ⁷		0.714286	35	0.7135	3.125
10^8		7.14286	350	7.1350	31.25
10^{9}		71.4286	3500	713500	312.5

Сравнение скремблирования 3-5 с физическим кодированием NRZ

Скремблирование схоже с физическим кодированием NRZ: у них совпадают максимальные длины участков с последовательными единицами/нулями и, следовательно, полосы пропускания. Тем не менее, у скремблирования выше средняя частота. Это означает, что длинные участки с с последовательными единицами будут встречаться реже.

Сравнительный анализ способов логического кодирования

В таблице 8 показано сравнение характеристик для рассмотренных способов логического кодирования.

Значения ширины полосы пропускания приведены для скорости передачи в 1000 Mbps.

Таблица 8. Сравнительный анализ способов логического кодирования

Метод	Стоимость	Помехоустой чивость	неооходимая ширина полосы пропускания	Избыто чность
4B/5B	низкая	запрещенные комбинации	3.417ГГц	25%
Скрембли рование	высокая	нет	3.429ГГц	нет

4B/5B отличается сравнительно низкой стоимостью из-за простой реализации в виде таблицы перекодировки, а также повышенной помехоустойчивостью за счет введения запрещенных комбинаций, которые позволяют выявить ошибки. Для рассматриваемого сообщения этот метод оказался эффективнее скремблирования: он позволил сузить необходимую полосу пропускания.

Недостатком 4B/5B является 25% избыточность за счет замены каждых четырех байтов исходного сообщения пятью новыми. Скремблирование обладает большей сложностью реализации (зависит от алгоритма скремблирования и дескремблирования), а также не добавляет помехоустойчивость, но при этом не вносит избыточность.

Таким образом, можно сделать вывод, что наилучшим способом кодирования из рассмотренных является 4B/5B, поскольку он обладает повышенной помехоустойчивостью и низкой стоимостью реализации, при условии, что допустима избыточность в 25%.

Вывод

Исходя из результатов исследования, можно заключить, что манчестерский код является наилучшим из рассмотренных: он обладает свойством самосинхронизации, при этом характеризуется сравнительно низкой стоимостью. Его основной недостаток — требование широкой полосы пропускания.

Оптимальным методом логического кодирования из рассмотренных является 4B/5B. Он обладает повышенной помехоустойчивостью за счет введения запрещенных комбинаций, а также низкой стоимостью реализации, но имеет избыточность в 25%.