Machine learning: Part 1

- Supervised learning
- Decision tree learning
- Statistical learning
- Learning from complete Data

^{*}Slides based on those of Pascal Poupart

What is Machine Learning?

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. [Mitchell, 1997]

Intro to Al

Common learning tasks

- Supervised learning: Given some example input output pairs, learn a function that maps from input to output.
- Unsupervised learning: Find natural classes for examples
- Reinforcement learning: determine what to do based on a series of rewards or punishments

Examples

- Checker (reinforcement learning):
 - T: playing checker
 - P: percent of games won against an opponent
 - E: playing practice games against itself
- Handwriting recognition (supervised learning):
 - T: recognize handwritten words within images
 - P: percent of words correctly recognized
 - E: database of handwritten words with given classifications
- Customer profiling (分析) (unsupervised learning):
 - T: cluster customers based on transaction patterns
 - P: homogeneity (同种性) of clusters
 - E: database of customer transactions

4 / 57

Representation

- Representation of the learned information is important
 - Determines how the learning algorithm will work
- Common representations:
 - Linear weighted polynomials
 - Propositional logic
 - First order logic
 - Bayes nets
 - ...

Supervised learning

- Definition: Given a training set of N example input output pairs $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$, where each y_i was generated by an unknown function y = f(x), discover a function h that approximates the true function f.
- The function h is a hypothesis.
- Learning is a search through the space of possible hypotheses for one that will perform well, even on new examples beyond the training set.

Intro to Al

Classification and regression

- When the output y is one of a finite set of values, the learning problem is called classification (分类).
- Called Boolean or binary classification, if there are only two values.
- When y is a number, the learning problem is called regression (回归).

A regression example

- Fitting a function of a single variable to some data points
- A hypothesis is consistent if it agrees with all the data
- A linear hypothesis and a degree 7 polynomial hypothesis

Y. Liu Intro to Al 8 / 57

Hypothesis space

- ullet Hypothesis space: set of all hypotheses h under consideration
- e.g., set of polynomials
- How to choose from among multiple consistent hypotheses?
- Prefer the simplest hypothesis consistent with the data.
- This principle is called Ockham's razor (奥坎姆剃刀), which
 is against all sorts of complications.
- e.g., (a) should be preferred to (b).

Generalization

- A good hypothesis will generalize (泛化) well, *i.e.*, predict unseen examples well
- In general, there is a tradeoff between complex hypotheses that fit the training data well and simpler hypotheses that may generalize better

An example

- No consistent straight line for this data set
- Require a degree-6 polynomial for an exact fit
- Can be fitted exactly by a simple function of the form $ax + b + c\sin(x)$

Y. Liu Intro to Al 11/57

Realizability

- Finding a consistent hypothesis depends on the hypothesis space
- We say that a learning problem is realizable (可实现的) if the hypothesis space contains the true function.
- Unfortunately, we cannot always tell whether a given learning problem is realizable, because the true function is not known.

12 / 57

Realizability

- Why not let H be the class of all Java programs, or Turing machines, since every computable function can be represented by some Turing machine?
- There is a tradeoff between the expressiveness of a hypothesis space and the complexity of finding a good hypothesis within that space.
- e.g., fitting a straight line to data is easy; fitting high-degree polynomials is harder; and fitting Turing machines is in general undecidable.

Decision trees

- Represent a function that takes as input a vector of attribute values and returns a "decision" —a single output value.
- Reach the decision by performing a sequence of tests.
- Nodes: labeled with attributes
- Edges: labeled with attribute values
- Leaves: labeled with output values

An example (playing tennis)

An instance <Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong>

Classification: No

Y. Liu Intro to Al 15 / 57

Decision tree representation

Decision trees can represent disjunctions of conjunctions of constraints on attribute values

Decision tree representation

- Any Boolean function can be written as a decision tree
- By allowing each row in the truth table correspond to a path in the tree
- Can often use small trees
- Some functions require exponentially large trees
- e.g., the majority function, which returns true iff more than half of the inputs are true,
- No representation efficient for all functions
- With n Boolean attributes, there are 2^{2^n} Boolean functions

Decision tree learning

- Aim: find a small tree consistent with the training examples
- Idea: choose "most significant" attribute as root of (sub)tree

function DECISION-TREE-LEARNING(examples, attributes, parent_examples) **returns** a tree

```
if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else
    A \leftarrow \operatorname{argmax}_{a \in attributes} \text{ IMPORTANCE}(a, examples)
    tree \leftarrow a new decision tree with root test A
    for each value v_k of A do
        exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}
        subtree \leftarrow DECISION-TREE-LEARNING(exs, attributes - A, examples)
        add a branch to tree with label (A = v_k) and subtree subtree
    return tree
```

Plurality-value(examples) returns the majority classification of the examples

An example: restaurant

Example	Attributes						Target				
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	T	Т	Full	\$	F	F	Burger	30-60	Т

Y. Liu Intro to Al

Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

· Patrons? is a better choice

Using information theory

- We will use the notion of information gain (信息增益), which is defined in terms of entropy (熵), the fundamental quantity in information theory.
- Entropy is a measure of the uncertainty of a random variable; acquisition of information corresponds to a reduction in entropy.
- A random variable with only one value has no uncertainty and thus its entropy is defined as zero.
- A flip of a fair coin has "1 bit" of entropy.
- The roll of a fair four-sided die has 2 bits of entropy, because it takes 2 bits to describe one of 4 equally probable choices.

Y. Liu Intro to Al 21 / 57

Entropy

• The entropy of a random variable V with values v_k , each with probability $P(v_k)$:

$$H(V) = -\sum_{k} P(v_k) \log_2 P(V_k)$$

 The entropy of a Boolean random variable that is true with probability q:

$$B(q) = -(q \log_2 q + (1 - q) \log_2 (1 - q))$$

 If a training set contains p positive examples and n negative examples, then the entropy of the goal attribute on the whole set is

$$H(Goal) = B(\frac{p}{p+n})$$

Y. Liu Intro to Al 22 / 57

Information gain

- An attribute A with d distinct values divides the training set E into subsets E_1, \ldots, E_d .
- Each subset E_k has p_k positive examples and n_k negative examples,
- ullet So the expected entropy remaining after testing attribute A is

Remainder(A) =
$$\sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k}).$$

 The information gain (IG) from the attribute test on A is the expected reduction in entropy:

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$

Choose the attribute with the largest IG

Y. Liu Intro to Al 23 / 57

An example

- For the training set, p=n=6, B(6/12)=1
- $Gain(Pat) = 1 \left[\frac{2}{12}B(\frac{0}{2}) + \frac{4}{12}B(\frac{4}{4}) + \frac{6}{12}B(\frac{2}{6})\right] \approx 0.541$
- $\bullet \ \ Gain(Type) = 1 [\tfrac{2}{12}B(\tfrac{1}{2}) + \tfrac{2}{12}B(\tfrac{1}{2}) + \tfrac{4}{12}B(\tfrac{2}{4}) + \tfrac{4}{12}B(\tfrac{2}{4})] = 0$
- So Patrons is a better attribute to split on.
- In fact, Patrons has the maximum gain of any of the attributes and would be chosen by the DTL algorithm as the root.

4 日 ト 4 部 ト 4 差 ト ま ト タ ペ (*)
Y. Liu Intro to Al 24 / 57

An example

Decision tree learned from the 12 examples:

Performance of a learning algorithm

- A learning algorithm is good if it produces a hypothesis that does a good job of predicting classifications of unseen examples
- Verify performance with a test set
 - Collect a large set of examples
 - Divide into 2 disjoint sets: training set and test set
 - ullet Learn hypothesis h with training set
 - ullet Measure percentage of correctly classified examples by h in the test set
 - Repeat 2-4 for different randomly selected training sets of varying sizes

Learning curves

Figure 18.7 A learning curve for the decision tree learning algorithm on 100 randomly generated examples in the restaurant domain. Each data point is the average of 20 trials.

Overfitting

- Decision-tree grows until all training examples are perfectly classified
- But what if
 - Data is noisy
 - Training set is too small to give a representative sample of the target function
- May lead to Overfitting!
 - Common problem with most learning algorithms

Overfitting (过度拟合)

- Definition: Given a hypothesis space H, a hypothesis $h \in H$ is said to overfit the training data if there exists some alternative hypothesis $h' \in H$ such that h has smaller error than h' over the training examples but h' has smaller error than h over the entire distribution of instances
- Avoiding overfitting for DTL: Decision tree pruning: Eliminating nodes that are not clearly relevant.

Intro to Al

K-fold Cross-validation (交叉验证)

- Split data in two parts, one for training, one for testing the accuracy of a hypothesis
- Run k experiments, each time putting aside 1/k of the data to test on
- ullet Take the average test set score of the k rounds
- ullet Popular values for k are 5 and 10

Exercise

Perform DTL on the following dataset, where D is the output

Α	В	С	D
0	0	0	0
0	1	0	0
1	1	0	0
0	0	1	1
1	1	1	1
1	0	0	1
0	1	1	1

Candy example

- Favorite candy sold in two flavors: Cherry (yum), Lime (ugh)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime
- You bought a bag of candy but don't know its flavor ratio
- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Candy example

- Hypothesis H: probabilistic theory of the world
 - h₁: 100% cherry
 - h_2 : 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h_4 : 25% cherry + 75% lime
 - h₅: 100% lime
- Data D: evidence about the world
 - d_1 : 1st candy is cherry
 - d_2 : 2nd candy is lime
 - d_3 : 3rd candy is lime
 - ...

Bayesian Learning

- Prior: Pr(H)
- Likelihood: Pr(d|H)
- Evidence: $d = \langle d_1, d_2, \dots, d_n \rangle$
- Computing the posterior using Bayes'Theorem:

$$Pr(H|d) = \alpha Pr(d|H) Pr(H)$$

Y. Liu Intro to Al

Bayesian Prediction

 Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)

$$P(X|d) = \sum_{i} P(X|d, h_i)P(h_i|d) = \sum_{i} P(X|h_i)P(h_i|d)$$

- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Hypothesis H:
 - h_1 : 100% cherry
 - h_2 : 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h_4 : 25% cherry + 75% lime
 - h₅: 100% lime
- Assume prior $P(H) = \langle 0.1, 0.2, 0.4, 0.2, 0.1 \rangle$
- Assume candies are i.i.d. (identically and independently distributed), i.e., $P(d|h) = \prod_{j} P(d_{j}|h)$
- Suppose first 10 candies all taste lime:
 - $P(d|h_5) = 1^{10} = 1$,
 - $P(d|h_3) = 0.5^{10} = 0.00097$
 - $P(d|h_1) = 0^{10} = 0$

Y. Liu Intro to Al 36 / 57

Bayesian prediction examples

Let $d_1 = \langle lime \rangle$, and $d_2 = \langle lime, lime \rangle$

hypothesis	h_1	h_2	h_3	h_4	h_5
$P(lime h_i)$	0	0.25	0.5	0.75	1
$P(h_i)$	0.1	0.2	0.4	0.2	0.1
$P(d_1 h_i)$	0	0.25	0.5	0.75	1
$P(d_2 h_i)$	0	0.25^{2}	0.5^{2}	0.75^{2}	1

- $P(d_1) = \sum_i P(d_1|h_i)P(h_i) = 0.5$
- $P(lime|d_1) = \frac{1}{P(d_1)} \sum_i P(lime|h_i) P(d_1|h_i) P(h_i) = 0.65$
- $P(d_2) = \sum_i P(d_2|h_i)P(h_i) = 0.325$
- $P(lime|d_2) = \frac{1}{P(d_2)} \sum_i P(lime|h_i) P(d_2|h_i) P(h_i) = 0.654$

Y. Liu Intro to AI 37 / 57

Bayesian predictions with data generated from h_5

Figure 20.1 (a) Posterior probabilities $P(h_i | d_1, \ldots, d_N)$ from Equation (20.1). The number of observations N ranges from 1 to 10, and each observation is of a lime candy. (b) Bayesian prediction $P(d_{N+1} = lime | d_1, \ldots, d_N)$ from Equation (20.2).

Y. Liu Intro to Al 38 / 57

Bayesian learning properties

- Optimal (*i.e.*, given prior, no other prediction is correct more often than the Bayesian one)
- No overfitting (all hypotheses weighted and considered)
- There is a price to pay:
 - When hypothesis space is large, Bayesian learning may be intractable
 - i.e., sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (极大后验,MAP)

- Idea: make prediction based on most probable hypothesis
 - $\bullet \ \ h_{\mathsf{MAP}} = \mathsf{argmax}_{h_i} P(h_i|d)$
 - $P(X|d) \approx P(X|h_{\mathsf{MAP}})$

 In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

Y. Liu Intro to Al 40 / 57

Candy Example (MAP)

- Prediction after
 - 1 lime: $h_{MAP} = h_3$, $Pr(lime|h_{MAP}) = 0.5$
 - 2 limes: $h_{MAP} = h_4$, $Pr(lime|h_{MAP}) = 0.75$
 - 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - ...
- After only 3 limes, it correctly selects h_5
- But what if correct hypothesis is h_4 ?
- After 3 limes, MAP incorrectly predicts h₅
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields P(lime|d) = 0.8

Y. Liu Intro to AI 41 / 57

MAP properties

- \bullet MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis $h_{\mbox{MAP}}$
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - $\bullet \ h_{MAP} = \mathrm{argmax}_h P(h|d)$
 - Optimization may be difficult

MAP computation

- Optimization:
 - $\begin{array}{l} \bullet \ \ h_{\mbox{MAP}} = \mathrm{argmax}_h P(h|d) = \mathrm{argmax}_h P(h) P(d|h) = \\ \mathrm{argmax}_h P(h) \Pi_i P(d_i|h) \end{array}$
- Product induces non-linear optimization
- Take the log to linearize optimization
 - $h_{\mathsf{MAP}} = \mathsf{argmax}_h \log P(h) + \sum_i \log P(d_i|h)$

Maximum Likelihood (极大似然,ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $P(h_i) = P(h_j)$ for all i, j)
 - $h_{MAP} = \operatorname{argmax}_h P(h)P(d|h)$
 - $\bullet \ \ h_{\text{ML}} = \mathrm{argmax}_h P(d|h)$
- Make prediction based on h_{ML} only:
 - $P(X|d) \approx P(X|h_{\mbox{\scriptsize ML}})$

Y. Liu Intro to Al 44 / 57

ML properties

- \bullet ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis $h_{\mbox{\scriptsize MI}}$
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- ullet Finding $h_{
 m ML}$ is often easier than $h_{
 m MAP}$
 - $h_{\mathsf{ML}} = \operatorname{argmax}_h \sum_i \log P(d_i|h)$

Y. Liu Intro to Al

Statistical Learning: summary

- Given: Prior Pr(H), evidence $d=\langle d_1,d_2,\dots,d_n\rangle$, and likelihood Pr(d|H), make prediction on P(X|d)
- i.i.d. assumption: $P(d|h) = \Pi_j P(d_j|h)$
- Bayesian learning: $P(X|d) = \sum_{i} P(X|h_i)P(h_i|d)$
- MAP learning: $P(X|d) \approx P(X|h_{\mbox{MAP}})$, where $h_{\mbox{MAP}} = \mbox{argmax}_{h_i} P(h_i|d) = \mbox{argmax}_{h_i} P(h_i) P(d|h_i)$
- ML learning: $P(X|d) \approx P(X|h_{\mbox{ML}})$, where $h_{\mbox{ML}} = \mbox{argmax}_{h_i} P(d|h_i)$
- ML, MAP and Bayesian predictions converge as data increases

Y. Liu Intro to AI 46 / 57

Statistical Learning

- Complete data:
 - When data has multiple attributes, all attributes are known
 - Easy
- Incomplete data:
 - When data has multiple attributes, some attributes are unknown
 - Harder

Simple ML example

- Hypothesis h_{θ}
 - $P(cherry) = \theta$ and $P(lime) = 1 \theta$
- Data d:
 - ullet c cherries and l limes
- $P(d|h_{\theta}) = \theta^{c}(1-\theta)^{l}$
- $\log P(d|h_{\theta}) = c \log \theta + l \log(1 \theta)$
- $d(logP(d|h_{\theta}))/d\theta = c/\theta l/(1-\theta)$
- $c/\theta l/(1-\theta) = 0 \Rightarrow \theta = c/(c+l)$

 $\frac{P(F=cherry)}{\theta}$

(Flavor

Y. Liu Intro to Al

More complicated ML example

- Hypothesis $h_{\theta,\theta_1,\theta_2}$
- Data d:
 - ullet c cherries: g_c green and r_c red
 - l limes: g_l green and r_l red

•
$$P(d|h_{\theta,\theta_1,\theta_2}) = \theta^c (1-\theta)^l \theta_1^{r_c} (1-\theta_1)^{g_c} \theta_2^{r_l} (1-\theta_2)^{g_l}$$

•
$$c/\theta - l/(1-\theta) = 0 \Rightarrow \theta = c/(c+l)$$

•
$$r_c/\theta_1 - g_c/(1 - \theta_1) = 0 \Rightarrow \theta_1 = r_c/(r_c + g_c)$$

•
$$r_l/\theta_2 - g_l/(1 - \theta_2) = 0 \Rightarrow \theta_2 = r_l/(r_l + g_l)$$

Y. Liu Intro to AI 49 / 57

Laplace Smoothing

- An important case of overfitting happens when there is no sample for a certain outcome
 - e.g., no cherries eaten so far
 - $P(cherry) = \theta = c/(c+l) = 0$
 - Zero prob. are dangerous: they rule out outcomes
- Solution: Laplace (add-one) smoothing
 - Add 1 to all counts
 - $P(cherry) = \theta = (c+1)/(c+l+2) > 0$
 - Much better results in practice

Y. Liu Intro to Al

Naive Bayes models

- ullet Want to predict a class C based on attributes A_1,\ldots,A_n
- Parameters:
 - $\theta = P(C = true)$
 - $\theta_{i1} = P(A_i = true | C = true)$
 - $\theta_{i2} = P(A_i = true | C = false)$
- ullet Assumption: A_i 's are independent given C

An example: restaurant

Example	Attributes						Target				
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	T	Т	Full	\$	F	F	Burger	30-60	Т

Y. Liu Intro to Al 5

Naive Bayes learning

- Notation: $p = \#(c), n = \#(-c), p_i^+ = \#(c, a_i),$ $n_i^+ = \#(c, -a_i), p_i^- = \#(-c, a_i), n_i^- = \#(-c, -a_i)$
- $P(d|h) = \theta^p (1-\theta)^n \Pi_i \theta_{i1}^{p_i^+} \theta_{i2}^{p_i^-} (1-\theta_{i1})^{n_i^+} (1-\theta_{i2})^{n_i^-}$
- $\theta = p/(p+n)$, $\theta_{i1} = p_i^+/(p_i^+ + n_i^+)$, $\theta_{i2} = p_i^-/(p_i^- + n_i^-)$,
- $P(C|a_1,\ldots,a_n) = \alpha P(C) \Pi_i P(a_i|C)$
- Choose the most likely class

Y. Liu Intro to AI 53/57

Naive Bayes vs decision trees

Less accurate since the true hypothesis, which is a decision tree, is not representable exactly using a naive Bayes model.

Figure 20.3 The learning curve for naive Bayes learning applied to the restaurant problem from Chapter 18; the learning curve for decision-tree learning is shown for comparison.

Bayesian network parameter learning (ML)

- Parameters $\theta_{V,pa(V)=v}$:
 - CPTs: $\theta_{V,pa(V)=v} = P(V|pa(V)=v)$
- · Data d:
 - d_1 : $\langle V_1 = V_{1,1}, V_2 = V_{2,1}, ..., V_n = V_{n,1} \rangle$
 - d_2 : $\langle V_1 = v_{1,2}, V_2 = v_{2,2}, ..., V_n = v_{n,2} \rangle$
 - ..
- Maximum likelihood:
 - Set $\theta_{V,pa(V)=v}$ to the relative frequencies of the values of V given the values \mathbf{v} of the parents of V $\theta_{V,pa(V)=v} = \#(V,pa(V)=v) / \#(pa(V)=v)$

Y. Liu Intro to Al 55 / 57

Exercise

对一个新的输入A=0,B=0,C=1, 朴素贝叶斯分类器将会怎样预测D?

Α	В	С	D
0	0	0	0
0	1	0	0
1	1	1	0
1	0	1	1
1	1	0	1
1	0	0	1
0	1	1	1

Y. Liu Intro to AI 56 / 57

Exercise: Candy example

- Prior $P(H) = \langle 0.1, 0.2, 0.4, 0.2, 0.1 \rangle$
- Evidence $d = \langle lime, cherry, lime \rangle$
- Make predictions using Bayesian, MAP and ML learning

Y. Liu Intro to Al 57 / 57