

## Descubre el valor de los datos geoespaciales:

Procesamiento y visualización con herramientas opensource.

Por Jorge Lambraño



## ¡Hola, soy Jorge!













Graduado de Ingeniería electrónica.

Desarrollador **Backend** e Ingeniero de **Datos**.

Me gusta la programación, las matemáticas, el **software libre**, fotografiar y dibujar.

Me apasionan los retos y enseñar de lo que he aprendido.





## Una pequeña introducción

- Los datos geoespaciales contienen información asociada a alguna ubicación.
- Generalmente contienen coordenadas geográficas (latitud, longitud y altitud) o alguna forma de llegar a ellas.



Imagen tomada de lifeder.com



Imagen tomada de slideshare.net



# ¿Qué se debe tener encuenta para manipular estos datos?

©penSaturday
Conf, Barranquilla 2025

- Es necesario conocer un poco de matemáticas y geometría.
- Se debe conocer el sistema de coordenadas de los datos: CRS.
- Entender que existen múltiples formatos (GeoJSON, SHP, TIFF, NetCDF) y resoluciones.

 Nunca olvidar el contexto de los datos.



Imagen tomada de predikdata.com





## Sí. Hay diferentes formatos

Los tipos más comunes de datos geoespaciales son:

- Datos Vectoriales
- Datos Ráster
- Datos LiDAR
- Datos de Sensores
- Datos de Codificación Geográfica



Imagen tomada de predikdata.com



Imagen generada por radar.



# Algunos repositorios de datos geoespaciales.

OpenSaturday Conf, Barranquilla 2025



Copernicus (ESA - Unión Europea)
 Imágenes satelitales y datos
 ambientales.



Agricultura, medio ambiente, monitoreo del suelo, detección de cambios.



# Algunos repositorios de datos geoespaciales.



#### Natural Earth.

Datos geográficos globales listos para visualización, con límites políticos, ríos, ciudades y relieve. Mapas temáticos, visualización base, geografía general.



#### • **USGS Earth Explorer.**

Imágenes satelitales (Landsat, Sentinel, MODIS, etc.). Estudios de suelo, cobertura terrestre, deforestación, minería.





### ¿Y en Colombia?

- En Colombia el Instituto
   Geográfico Agustín Codazzi
   – IGAC. Tiene un geoportal
   donde es posible descargar
   datos abiertos.
- IDEAM tiene un <u>portal</u> para la descarga de información meteorológica: humedad, precipitaciones, vientos.





### ¿Y en Colombia?

 <u>Datos abiertos</u> ofrece un repositorio de datos geográficos.

• Colombia en mapas

- La <u>ICDE</u> asesora a las entidades a disponer Datos Abiertos Geoespaciales cuyo fin es mejorar la planificación y gestión del territorio
- **ESRI** Colombia publica un directorio de geocontenidos donde relaciona enlaces a portales, servicios y visores geográficos.





### **Procesamiento**

# Algunas herramientas para procesamiento



 Un buen motor de procesamiento debe manejar operaciones espaciales.



# Algunas herramientas para procesamiento

 Un buen motor de procesamiento debe manejar operaciones espaciales.





# Herramientas para procesamiento: <u>GeoPandas</u>

©penSaturday
Conf, Barranquilla 2025

- Permite la manipulación de datos de tipo vector.
- Fácil de integrar y maneja una amplia gama de formatos.
- Compatible con shapely.







# Algunas operaciones espaciales en GeoPandas



- intersects: Si las
   geometrías se intersectan
   (tocan, se superponen o una
   está dentro de la otra).
- within: Si la geometría en el GeoDataFrame de la izquierda está completamente dentro de la de la derecha.

- contains: Si la geometría de la izquierda contiene toda la geometría de la derecha.
- touches: Si las geometrías tocan en sus límites pero no se superponen dentro.
- overlaps: Si las geometrías se superponen parcialmente (no son del mismo tamaño y ninguna contiene completamente a la otra).

# Herrramientas para el procesamiento: <u>Apache sedona</u>.

©penSaturday
Conf, Barranquilla 2025

- "Apache Sedona™ makes it easy to process spatial datasets of any scale."
- Permite el procesamiento de dataset distribuido.
- Basado en spark.
- Compatible con geopandas y bases de datos geoespaciales.





### **Almacenamiento**

# Herramientas para el almacenamiento: PostGIS

©penSaturday
Conf, Barranquilla 2025

- PostGIS es una extensión de PostgreSQL que añade soporte para tipos de datos espaciales (puntos, líneas, polígonos, raster, etc.).
- Soporte completo de operaciones espaciales (intersección, buffer, distancia, etc.).



#### Herramientas para el almacenamiento:



#### MongoDB + GeoJSON

- MongoDB es una base de datos basada en documentos. Soporte para GeoJSON y consultas espaciales.
- Datos dinámicos y semiestructurados.





### Visualización

## Herramientas para visualización:

Folium.
 Hace posible la visualización interactiva sobre mapas basados en Leaflet.

 plotly y geoplot.
 Permite la creación de mapas estadísticos.









7000

6000

5000



## Herramientas para visualización:

- Grafana.
   Contiene plugis con capacidad de extraer datos de fuentes geospaciales y visualizar los datos.
- Superset.
   Contiene chars que muestran datos geoespaciales sobre mapas.











# Un pequeño espacio para hablar de QGIS

©penSaturday
Conf, Barranquilla 2025

**QGIS** es un software libre y de **código abierto** muy popular para el **análisis espacial**, **gestión**, **edición** y **visualización** de datos geoespaciales.

Permite trabajar con datos vectoriales, raster y bases de datos espaciales.





"¿Dónde?" es una pregunta muy importante.

## "¿Dónde?" es una pregunta muy importante:

©penSaturday
Conf, Barranquilla 2025

- A través del análisis de datos espaciales es posible encontrar patrones espaciales:
  - Distribución de la población.
  - Tráfico urbano e interurbano.
  - Recursos naturales.



Imagen tomada de blog.gvSIG.org

## "¿Dónde?" es una pregunta muy importante:

©penSaturday
Conf, Barranquilla 2025

- Los datos georgráficos facilitan la gestión de riesgos.
  - Contaminación.
  - Inundaciones.
  - Contaminación.
  - Cambio climático.



Imagen tomada de gidahatari.com



#### Unos casos de uso bombitas...



#### Caso 1. Anális de datos

- Procesamiento de datos tipo Ruster. Paquete rusterio
- Análisis de la vegetación.
- Procesamiento BigData.
- ¿Cómo se visualizan los datos?



https://github.com/iamtekson/geospatial-data-analysis-python





## Caso 2. Embendings

- PDFM Embeddings: Representaciones vectoriales que capturan patrones en datos geoespaciales.
- Contiene tareas de predicción, como pronóstico de salud y modelado socioeconómico.
- Graph Neural Network (GNN)
- Múltiples fuentes.



Percent Person WithHigherEdu - Los Angeles County, CA

https://github.com/google-research/population-dynamics



### Caso 3. Simulación de tráfico I

- Simulación de tráfico.
- Animaciones del tráfico.
- Datos obtenidos de OpenStreetMap.



https://github.com/toruseo/UXsim/





### Caso 4. Simulación de tráfico II

- Representación de trayectorias y flujos de movilidad con estructuras de datos adecuadas.
- Extraer métricas y patrones de movilidad de los datos



https://github.com/scikit-mobility/scikit-mobility



### Caso 3. Recursos hídricos

- Simulación del comportamiento de rescursos hídricos.
- Uso de Machine Learning para encontrar patrones y realizar predicciones





https://github.com/collinsowusu/PyGEE-SWToolbox





### Y si deseas aprender un poco más...

https://github.com/sacridini/Awesome-Geospatial

https://github.com/deepVector/geospatial-machine-learning

https://github.com/opengeos/geospatial-data-catalogs





## Algunas referencias bombitas

- Franco, R. (2025). Geodata General Colombia. Rodolfo Franco Web. Recuperado de https://rodolfofrancoweb.com/geodata/ge odata-colombia/geodata-general-colombia/
- Yorulmaz, T. E. (2025, October 17). Here is everything you need to know about GeoPandas for geospatial data analysis in Python. Python in Plain English. https://python.plainenglish.io/here-is-everything-you-need-to-know-about-geopandas-for-geospatial-data-analysis-in-python-3f9b885567b7
- Predikdata. (s.f.). Datos geoespaciales. Recuperado de https:// predikdata.com/es/datos-geoespaciales/





### Un agradecimiento muy "espacial"







## Y también, muchas gracias a todos ustedes.

