Отчёт по курсовой работе №3

по курсу 1 фундаментальная информатика

студента группы М8О-105Б-21 <u>Бондаревой Елены Евгеньвны,</u> № по списку 2

Контакты www, e-mail, icq, skype: lena_bondareva_03@mail.ru___

Работа выполнена: «15» декабря _2021г.

Преподаватель: каф.806 В.К.Титов

Входной контроль знаний с оценкой ____

Отчёт сдан «21» декабря_ 2021г., итоговая оценка _____

Подпись преподавателя _____

Тема:

Вещественный тип. Приближенные вычисления. Табулирование функций.

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования.

Задание

№	ряд	a	b	функция
$\frac{1}{2}\left \frac{x}{2(x+1)}\right $	x^3 x^{2n+1}	0.0	0.5	$\ln \frac{1+x}{x}$

Необходимо вывести таблицу значений заданной функции на отрезке от а до b, вычисленной двумя способами: с помощью встроенных функций языка программирования и по формуле Тейлора, ряд представлен в таблице.

Оборудование (лабораторное):

ЭВМ_-, процессор_-, имя узла сети-с ОП -МБ

НМД - ГБ. Терминал - адрес _. Принтер _.

Другие устройства -.

Оборудование ПЭВМ студента, если использовалось:

Процессор Intel(R) Core(TM) i3-7020U CPU @ 2.30GHz , ОП 6 ГБ, НМД 240 ГБ. Монитор IPS 1920x1080

Другие устройства -.

Программное обеспечение (лабораторное):

Операционная система семейства -, наименование - версия -

Интерпретатор команд - версия -

Система программирования -версия -

Редактор текстов - версия -

Утилиты операционной системы -

Прикладные системы и программы -

Местонахождения и имена файлов программ и данных-

Программное обеспечение ЭВМ студента, если использовалось:

Операционная система семейства <u>UNIX/GNU</u>, наименование Ubuntu версия x86_64

Интерпретатор команд bash

Редактор текстов етах

Утилиты операционной системы сат

Прикладные системы и программы VTM-diagram

Местонахождения и имена файлов программ и данных -

6 Идея, метод, алгоритм решения задачи (в формах: словесной, псевдокода, графической [блок-схема, диаграмма, рисунок, таблица] или формальное описание с пред- и постусловиями)

В начале найдем и выведем машинный эпсилон путем деления единицы на двойку, пока выполняется условие: (1.+eps>1.). Затем начинаем печатать начало таблицы, в которую будут занесены значения заданной функции, вычисленной двумя способами. Далее идет основной цикл программы - для отрезка от а до b выполняется:

Присвоим d значение 2*x, a n=1. Пока модуль d строго больше эпсилон, присваиваем d новое значение: d=(d*x*x)*(2*n-1)/(2*n+1), которое будет равняться одному компоненту, входящему в ряд Тейлора.

В результате выведем 11 значений для ряда и функции для каждой точки на отрезке, которые будут помещены в таблицу, созданную ранее. После чего отчеркиваем таблицу, завершая ее.

7 Сценарий выполнения работы [план работы, первоначальный текст программы в черновике (можно на отдельном листе) и тесты, либо соображения по тестированию].

```
#include <math.h>
#include <stdio.h>
int main()
{ double x, d, S, eps=1., a=0, b=0.5, h=(b-a)/10.;
while (1.+eps>1.) eps/=2.;
printf("Machine epsilon = \%.21f\n",eps);
printf("-----
----\n");
---|n'');
for(x=a;x<b+0.001;x+=h)
\{ S=d=2*x; n=1; 
 while(fabs(d)>eps)
  \{d=(d*x*x)*(2*n-1)/(2*n+1);
   S+=d; n++;
  \log((1+x)/(1-x)), n);
 printf("-----
n'';
return 0;
```

Распечатка протокола (подклеить листинг окончательного варианта программы с текстовыми примерами, подписанный преподавателем)

```
lena@elena-Aspire-A315-53G:~$ cat tit.txt
          КП №3
       Вещественный тип
     Приближенные вычисления
Табулирование функций
      Бондарева Елена
        M80-1055-21
elena@elena-Aspire-A315-53G:~$ cat kp3.cpp
#include <math.h>
#include <stdio.h>
int main()
double x, d, S, eps=1., a=0, b=0.5, h=(b-a)/10.;
 int n;
 while(1.+eps>1.) eps/=2.; // calculating of machine epsilon
 for(x=a;x<b+0.001;x+=h)
 { S=d=2*x; n=1;
  while(fabs(d)>eps)
     { d=(d*x*x)*(2*n-1)/(2*n+1);
      S+=d; n++;
     printf("| %.3f | %.17f | %.17f | %2d |\n", x, S, log((1+x)/(1-x)), n);
 printf("-----\n");
  return 0;
```

x 1	c 1	log((1+x)/(1-x))	1 0
····^		tog((1+x)/(1-x))	
0.000	0.0000000000000000	0.0000000000000000	1
0.050	0.10008345855698254	0.10008345855698263	7
0.100	0.20067069546215119	0.20067069546215124	9
0.150	0.30228087187293373	0.30228087187293351	10
0.200	0.40546510810816444	0.40546510810816422	1 12
0.250	0.51082562376599050	0.51082562376599072	13
0.300	0.61903920840622317	0.61903920840622362	1 15
0.350	0.73088750854279227	0.73088750854279239	1 17
0.400	0.84729786038720356	0.84729786038720345	19
0.450	0.96940055718810336	0.96940055718810347	22
0.500	1.09861228866810889	1.09861228866810978	25

9.Дневник отладки должен содержать дату и время сеансов отладки, и основные ошибки (ошибки в сценарии и программе, не стандартные операции) и краткие комментарии к ним. В дневнике отладки приводятся сведения об использовании других ЭВМ, существенном участии преподавателя и других лиц в написании и

отладке программы.

№	Лаб.	Дата	Время	Событие		Действие по	Примечание
	или			исправлению		исправлению	
	дом.						
<u>1</u>	<u>дом</u>	<u>21.12.</u>	<u>15:15</u>	Присвоила	d	Внимательно	
		<u>2021</u>		значение	2x,	писать программу.	
				а надо 2*х.		Помнить, что	
						умножение обозначается	
						c	
						помощью « * ».	

10. Замечание автора по существу работы

11. Выводы В результате выполнения работы я составила программу на Си, которая печатае
габлицу значений элементарной функции, вычисленной двумя способами: по формул
Тейлора и с помощью встроенных функций языка программирования.
Недочеты, допущенные при выполнении задания, могут быть устранены следующим образом
Подпись студента