Изучение многочастичных распадов прелестных барионов Λ_b^0 в эксперименте LHCb на Большом адронном коллайдере

Керим Гусейнов

МГУ им. М.В. Ломоносова Физический факультет Кафедра общей ядерной физики

Ломоносов 2023, 11 апреля

Введение: распады прелестных барионов

- Проверка непертурбативных подходов в КХД,
- Большое высвобождение энергии, а значит, богатая резонансная структура.

Переход $b \to c$ на кварковом уровне:

- ullet очарованный барион или D-мезон и протон в конечном состоянии: адронизация c-кварка,
- изучение как очарованных мезонов, так и барионов,
- разрешенный ККМ переход большая статистика событий.

Примеры:
$$\Lambda_b^0 o D^+ p \pi^- \pi^-$$
, $\Lambda_b^0 o \Lambda_c^+ \pi^+ \pi^- \pi^-$.

conventional diquark

Известные очарованные барионные резонансы

Барион	$\mathrm{I}\mathrm{J}^\mathrm{P}$	$\frac{\text{Macca}}{\left[\text{M}\ni\text{B}/c^2\right]}$	Ширина [МэВ]
$\begin{array}{c} \Lambda_c(2595)^+ \\ \Lambda_c(2625)^+ \\ \Lambda_c(2765)^+ (\Sigma_c(2765)^+) \\ \Lambda_c(2860)^+ \\ \Lambda_c(2880)^+ \\ \Lambda_c(2940)^+ \end{array}$	$01/2^{-}$ $03/2^{-}$??? $03/2^{+}$ $05/2^{+}$ $03/2^{-}$	$2592.15 \pm 0.28 \\ 2628.11 \pm 0.19 \\ 2766.6 \pm 2.5 \\ 2856.1^{+2.3}_{-6.0} \\ 2881.63 \pm 0.24 \\ 2939.6^{+1.3}_{-1.5}$	$\begin{array}{c} 2.6 \pm 0.6 \\ < 0.97 @ 90\% CL \\ 50 \\ 68 ^{+12}_{-22} \\ 5.6 ^{+0.8}_{-0.6} \\ 20 ^{+6}_{-5} \end{array}$
$\Sigma_c(2455)$ $^{++}_{0}$	11/2+	2453.97 ± 0.14 2452.9 ± 0.4 2453.75 ± 0.14 2513.41 ± 0.21	$1.89^{+0.09}_{-0.18}$ < $4.6 @ 90\% CL$ $1.83^{+0.11}_{-0.19}$
$\Sigma_c(2520) \begin{array}{c} ++\\ +\\ 0 \end{array}$	$13/2^{+}$	$2518.41^{+0.21}_{-0.19} 2517.5 \pm 2.3 2518.48 \pm 0.20$	$\begin{array}{c} 14.78 ^{+0.30}_{-0.40} \\ < 17 @ 90\% CL \\ 15.3 ^{+0.4}_{-0.5} \end{array}$
$\Sigma_c(2800) \begin{array}{c} ++ \\ + \\ 0 \end{array}$	1??	$2801^{+4}_{-6} \\ 2792^{+14}_{-5} \\ 2806^{+5}_{-7}$	$75 ^{+22}_{-17} \\ 62 ^{+60}_{-40} \\ 72 ^{+22}_{-15}$

[PDG]

Существующие измерения очарованных барионов

Детектор LHCb

[JINST **3** S08005]

$\Lambda_b^0 o D^{(*)+}p\pi^-\pi^-$ и $\Lambda_b^0 o \overline{\Lambda_c^+3\pi}$, Run 1 (2011–2012)

2000 событий

26 000 событий

[JHEP 03 (2022) 153]

Спектры $\Lambda_c^+\pi^+\pi^-$, $\Lambda_c^+\pi^-$, $\Lambda_c^+\pi^+$ Run 1

[JHEP 03 (2022) 153]

Отбор событий Run 1 (2011-2012) & 2 (2015-2018)

Предварительный отбор, за которым следует многопеременный анализ:

- 19 входных переменных: кинематика, качество реконструкции и идентификации,
- Тренировка только на данных, 9-кратная перекрестная проверка,

Улучшение качества сигнала в результате MVA

После предварительного отбора

После MVA

Сокращение фона в 5 раз при потере лишь 5% сигнала.

По сравнению с Run 1 сигнал возрос в 24 раза: $3\times$ от $\mathcal L$ (3 o 9 ϕ 6 $^{-1}$), $8\times$ от отбора.

Финальный отбор: исключение пикующего фона

Итоги

- На большой статистике, собранной детектором LHCb в периоды 2011–2012 и 2015–2018, изучается распад $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$.
- Распад $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$ имеет богатую резонансную структуру и поэтому перспективен.
- Ожидается существенный вклад в адронную спектроскопию и поиск новых состояний.
- Ожидается существенное уточнение масс и естественных ширин очарованных барионных резонансов Λ_c^{*+} , Σ_c^* .
- Работа по изучению очарованных барионов в распаде $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$ активно продвигается.