强化学习2023 第2节

涉及知识点: 马尔可夫决策过程、动态规划求解MDP、 基于模型的强化学习

马尔可夫决策过程

课程大纲

强化学习基础部分

- 1. 强化学习、探索与利用
- 2. MDP和动态规划
- 3. 值函数估计
- 4. 无模型控制方法
- 5. 参数化的值函数和策略
- 6. 规划与学习
- 7. 深度强化学习价值方法
- 8. 深度强化学习策略方法

强化学习前沿部分

- 9. 基于模型的深度强化学习
- 10. 离线强化学习
- 11. 模仿学习
- 12. 参数化动作空间
- 13. 多智能体强化学习基础
- 14. 多智能体强化学习前沿
- 15. 强化学习的应用
- 16. 技术交流与回顾

随机过程

- □ 随机过程是一个或多个事件、随机系统或者随机现象随时间发生演变的过程 $\mathbb{P}[S_{t+1}|S_1,...,S_t]$
 - 概率论研究静态随机现象的统计规律
 - 随机过程研究动态随机现象的发展规律

布朗运动 天气变化 3

随机过程

足球比赛

生态系统

城市交通

星系

马尔可夫过程

□ 马尔可夫过程 (Markov Process) 是具有马尔可夫性质的随机过程 "The future is independent of the past given the present"

□ 定义:

• 状态S_t是马尔可夫的,当且仅当

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, ..., S_t]$$

□ 性质:

- 状态从历史 (history) 中捕获了所有相关信息
- 当状态已知的时候,可以抛开历史不管
- 也就是说, 当前状态是未来的充分统计量

马尔可夫决策过程

- □ 马尔可夫决策过程 (Markov Decision Process, MDP)
 - 提供了一套为在结果部分随机、部分在决策者的控制下的决策过程建模的数学框架

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, \dots, S_t]$$

$$\mathbb{P}[S_{t+1}|S_t, A_t]$$

- □ MDP形式化地描述了一种强化学习的环境
 - 环境完全可观测
 - 即,当前状态可以完全表征过程(马尔可夫性质)

MDP五元组

- MDP可以由一个五元组表示 $(S, A, \{P_{s,a}\}, \gamma, R)$
 - S是状态的集合
 - 比如,迷宫中的位置,Atari游戏中的当前屏幕显示
 - A是动作的集合
 - 比如,向N、E、S、W移动,手柄操纵杆方向和按钮
 - Psa是状态转移概率
 - 对每个状态 $s \in S$ 和动作 $a \in A$, $P_{s,a}$ 是下一个状态在S中的概率分布
 - γ ∈ [0,1]是对未来奖励的折扣因子
 - $R: S \times A \mapsto \mathbb{R}$ 是奖励函数
 - 有时奖励只和状态相关

MDP的动态

因为环境的不确定性,采取某个 动作也许不会有确定的状态转移

□ MDP的动态如下所示:

- · 从状态s₀开始
- 智能体选择某个动作 $a_0 \in A$
- 智能体得到奖励 $R(s_0, a_0)$
- MDP随机转移到下一个状态 $s_1 \sim P_{s_0,a_0}$
 - 这个过程不断进行

$$S_0 \xrightarrow{a_0, R(s_0, a_0)} S_1 \xrightarrow{a_1, R(s_1, a_1)} S_2 \xrightarrow{a_2, R(s_2, a_2)} S_3 \cdots$$

- 直到终止状态s_T出现为止,或者无止尽地进行下去
- 智能体的总回报为

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$$

MDP的动态性

- □ 在许多情况下, 奖励只和状态相关
 - 比如, 在迷宫游戏中, 奖励只和位置相关
 - 在围棋中, 奖励只基于最终所围地盘的大小有关
- □ 这时, 奖励函数为 $R(s): S \mapsto \mathbb{R}$
- □ MDP的过程为

$$S_0 \xrightarrow{a_0, R(s_0)} S_1 \xrightarrow{a_1, R(s_1)} S_2 \xrightarrow{a_2, R(s_2)} S_3 \cdots$$

□累积奖励为

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

REVIEW: 在与动态环境的交互中学习

有监督、无监督学习

Model **←**

Fixed Data

强化学习

Agent +

Dynamic Environment

和动态环境交互产生的数据分布

- 给定同一个动态环境(即MDP),不同的策略采样出来的(状态-行动) 对的分布是不同的
- 占用度量 (Occupancy Measure)

$$\rho^{\pi}(s,a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

占用度量和策略

• 占用度量 (Occupancy Measure)

$$\rho^{\pi}(s, a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

• 定理1:和同一个动态环境交互的两个策略 π_1 和 π_2 得到的占用度量 ρ^{π_1} 和 ρ^{π_2} 满足

$$\rho^{\pi_1} = \rho^{\pi_2}$$
 iff $\pi_1 = \pi_2$

• 定理2:给定一占用度量 ρ ,可生成该占用度量的唯一策略是

$$\pi_{\rho}(a|s) = \frac{\rho(s,a)}{\sum_{a'} \rho(s,a')}$$

占用度量和策略

占用度量(Occupancy Measure)

$$\rho^{\pi}(s, a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

• 状态占用度量

$$\rho^{\pi}(s) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s | s_{0}, \pi)$$

$$= \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s | s_{0}, \pi) \sum_{a'} \pi(a_{t} = a | s_{t} = s)$$

$$= \sum_{a} \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

$$= \sum_{a} \rho^{\pi}(s, a)$$

占用度量和累计奖励

• 占用度量 (Occupancy Measure)

$$\rho^{\pi}(s, a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

□ 策略的累积奖励为

$$V(\pi) = \mathbb{E}_{(s_0, a_0, s_1, a_1, \dots) \text{ is a trajactory}} [R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \dots]$$

$$= \sum_{s, a} \left[\sum_{t=0}^{T} \gamma^t \mathbb{P}(s_t = s, a_t = a | s_0, \pi) \right] R(s, a)$$

$$= \sum_{s, a} \rho^{\pi}(s, a) R(s, a) = \mathbb{E}_{\pi} [R(s, a)]$$
强化学习中的简写

动态规划求解MDP

MDP目标和策略

□ 目标: 选择能够最大化累积奖励期望的动作

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots]$$

- γ ∈ [0,1]是未来奖励的折扣因子,使得和未来奖励相比起来智能体更重视 即时奖励
 - 以金融为例,今天的\$1比明天的\$1更有价值
- □ 给定一个特定的策略 $\pi(s): S \to A$
 - 即,在状态 s 下采取动作 α = π(s)
- □ 给策略π定义价值函数

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

即,给定起始状态和根据策略π采取动作时的累积奖励期望

价值函数的Bellman等式

□ 给策略π定义价值函数

|f(v0)-f(v0')|= gamma|V0-V0'| 收敛性保证 V0-V1=E0-E1f(V0)=?f(V1)=?

最优价值函数

□ 对状态s来说的最优价值函数是所有策略可获得的最大可能折扣奖励的和

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

□ 最优价值函数的Bellman等式

$$V^{*}(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{s,a}(s') V^{*}(s')$$

□ 最优策略

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{s,a}(s') V^*(s')$$

对状态s和策略π

$$V^*(s) = V^{\pi^*}(s) \ge V^{\pi}(s)$$

价值迭代和策略迭代

□ 价值函数和策略相关

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s,\pi(s)}(s')V^{\pi}(s')$$

$$\pi(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{s,a}(s')V^{\pi}(s')$$

$$\pi = \pi^*$$

- □ 可以对最优价值函数和最优策略执行迭代更新
 - 价值迭代 (Value Iteration)
 - 策略迭代 (Policy Iteration)

价值迭代

□ 对于一个动作空间和状态空间有限的MDP

$$|S| < \infty, |A| < \infty$$

- □ 价值迭代过程
 - 1. 对每个状态s,初始化 V(s) = 0
 - 2. 重复以下过程直到收敛 {

对每个状态, 更新

$$V(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{s,a}(s')V(s')$$

注意: 在以上的计算中没有明确的策略

同步 vs. 异步价值迭代

- □ 同步的价值迭代会储存两份价值函数的拷贝
 - 1. 对S中的所有状态s

$$V_{new}(s) \leftarrow \max_{a \in A} \left(R(s) + \gamma \sum_{s' \in S} P_{s,a}(s') V_{old}(s') \right)$$

2. 更新 $V_{old}(s) \leftarrow V_{new}(s)$

同步价值迭代:用上一轮的价值函数来迭代计算新的价值函数然后更新 异步价值迭代:用一直在更新的价值函数计算每一步并更新

- □ 异步价值迭代只储存一份价值函数
 - 1. 对*S*中的所有状态s

$$V(s) \leftarrow \max_{a \in A} \left(R(s) + \gamma \sum_{s' \in S} P_{s,a}(s') V(s') \right)$$

价值迭代例子: 最短路径

g			
	Drob	olom	

Problem

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

0	<u> </u>	-2	-3
-1	-2	<u>ფ</u>	-4
-2	-3	-4	-5
-3	-4	-5	-5

0	-1	-2	-3
-1	-2	ب	-4
-2	-3	-4	-5
-3	-4	-5	-6

策略迭代

□ 对于一个动作空间和状态空间有限的MDP

$$|S| < \infty, |A| < \infty$$

- □ 策略迭代过程
 - 1. 随机初始化策略 π
 - 2. 重复以下过程直到收敛{
 - a) 让 $V \coloneqq V^{\pi}$
 - b) 对每个状态,更新

$$\pi(s) = \arg \max_{a \in A} \sum_{\substack{s' \in S \\ \text{pi'(s)= argmax_a R(s,a) + gamma * E_s'-P(|s,a) (V_pi')}} P_{s,a}(s')V(s')$$

策略迭代

- □策略评估
 - 估计V^π
 - 迭代的评估策略
- □ 策略改进
 - 生成 $\pi' \geq \pi$
 - 贪心策略改进

举例:策略评估

- 非折扣MDP (γ = 1)
- □ 非终止状态: 1, 2, ...,14
- □ 两个终止状态 (灰色方格)
- □ 如果动作指向所有方格以外,则这一步不动
- □ 奖励均为-1, 直到到达终止状态
- □ 智能体的初始策略为均匀随机策略

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 1/4$$

举例:策略评估

随机策略的 V_k V_k 对应的贪心策略

K=0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow
\Rightarrow	\Rightarrow	\bigoplus	\bigoplus
\Leftrightarrow	\Leftrightarrow	\leftrightarrow	\leftrightarrow
\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	

K=1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	J	\bigoplus	\bigoplus
†	\bigoplus	\bigoplus	\bigoplus
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	+
$ \Longleftrightarrow $	${\longleftrightarrow}$	\rightarrow	

K=2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	Ţ	Ţ	\bigoplus
†	1	\bigoplus	↓
†	\bigoplus	Ļ	+
\leftrightarrow	\rightarrow	\rightarrow	

举例:策略评估

K=3

随机策略的 V_k

0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4

V_k 对应的贪心策略

V := V^π 最优策略

27

价值迭代 vs. 策略迭代

价值迭代

- 1. 对每个状态s, 初始化 V(s) = 0
- 2. 重复以下过程直到收敛 {
 对每个状态,更新

$$V(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s')$$

策略迭代

- 1. 随机初始化策略 π
- 2. 重复以下过程直到收敛 {
 - a) 让 $V \coloneqq V^{\pi}$
 - b) 对每个状态,更新

$$\pi(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

备注:

- 1. 价值迭代是贪心更新法
- 2. 策略迭代中,用Bellman等式更新价值函数代价很大
- 3. 对于空间较小的MDP, 策略迭代通常很快收敛
- 4. 对于空间较大的MDP,价值迭代更实用(效率更高)
- 5. 如果没有状态转移循环,最好使用价值迭代

基于模型的强化学习

学习一个MDP模型

- □ 目前我们关注在给出一个已知MDP模型后: (也就是说,状态转移 $P_{sa}(s')$ 和奖励函数R(s)明确给定后)
 - 计算最优价值函数
 - 学习最优策略
- □ 在实际问题中, 状态转移和奖励函数一般不是明确给出的
 - 比如,我们只看到了一些episodes

Episode1:
$$s_0^{(1)} \xrightarrow{a_0^{(1)}, R(s_0)^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}, R(s_1)^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}, R(s_2)^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode2:
$$s_0^{(2)} \xrightarrow{a_0^{(2)}, R(s_0)^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}, R(s_1)^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}, R(s_2)^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

学习一个MDP模型

Episode1:
$$s_0^{(1)} \xrightarrow{a_0^{(1)}, R(s_0)^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}, R(s_1)^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}, R(s_2)^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode2: $s_0^{(2)} \xrightarrow{a_0^{(2)}, R(s_0)^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}, R(s_1)^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}, R(s_2)^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$

:

- □ 从 "经验" 中学习一个MDP模型
 - 学习状态转移概率 $P_{sq}(s')$

学习奖励函数R(s),也就是立即奖赏期望

$$R(s) = average\{R(s)^{(i)}\}$$

学习模型&优化策略

□ 算法

- 1. 随机初始化策略 π
- 2. 重复以下过程直到收敛 {
 - a) 在MDP中执行π, 收集经验数据
 - b) 使用MDP中的累积经验更新对 P_{sa} 和R的估计
 - c) 利用对 P_{sa} 和R的估计执行价值迭代,得到新的估计价值函数V
 - d) 根据V更新策略π为贪心策略

}

学习一个MDP模型

- □ 在实际问题中, 状态转移和奖励函数一般不是明确给出的
 - 比如,我们只看到了一些episodes

Episode1:
$$s_0^{(1)} \xrightarrow{a_0^{(1)}, R(s_0)^{(1)}} s_1^{(1)} \xrightarrow{a_1^{(1)}, R(s_1)^{(1)}} s_2^{(1)} \xrightarrow{a_2^{(1)}, R(s_2)^{(1)}} s_3^{(1)} \cdots s_T^{(1)}$$

Episode2:
$$s_0^{(2)} \xrightarrow{a_0^{(2)}, R(s_0)^{(2)}} s_1^{(2)} \xrightarrow{a_1^{(2)}, R(s_1)^{(2)}} s_2^{(2)} \xrightarrow{a_2^{(2)}, R(s_2)^{(2)}} s_3^{(2)} \cdots s_T^{(2)}$$

- □ 另一种解决方式是不学习MDP, 从经验中直接学习价值函数和策略
 - 也就是模型无关的强化学习 (Model-free Reinforcement Learning)

马尔可夫决策过程总结

- MDP由一个五元组构成 $(S, A, \{P_{sa}\}, \gamma, R)$,其中状态转移P和奖励函数 R构成了动态系统
- 动态系统和策略交互的占用度量

$$\rho^{\pi}(s,a) = \sum_{t=0}^{T} \gamma^{t} \mathbb{P}(s_{t} = s, a_{t} = a | s_{0}, \pi)$$

- 一个白盒环境给定的情况下,可用动态规划的方法求解最优策略
 - 价值迭代和策略迭代
- 如果环境是<mark>黑盒</mark>的,可以根据统计信息来拟合出动态环境*P*和*R*,然后做动态规划求解最优策略

THANK YOU