Attorney Docket: 32301 WD 232

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Mike FARWICK, et al.

Serial No.: Unassigned

Group Art Unit: Unassigned

Filed: September 27, 2001

Examiner: Unassigned

For: NUCLEOTIDE SEQUENCES WHICH CODE FOR THE dep67 GENE

CLAIM FOR FOREIGN PRIORITY

Commissioner for Patents Washington, DC 20231

Sir:

Under 35 U.S.C. §119, Applicants claim the benefit of the filing date of Patent Application 100 47 866.2 filed in Germany on September 27, 2000.

In support of this claim, a certified copy of the German priority application is attached hereto.

Respectfully submitted,

SMITH, GAMBRELL & RUSSELL, LLP

Ву

Robert G. Weilacher, Reg. No. 20,531

1850 M Street, NW - Suite 800

Washington, DC 20036 Telephone: (202) 659-2811 Facsimile: (202) 263-4329

Date: September 27, 2001

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

100 47 866.2

Anmeldetag:

27. September 2000

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

Erstanmelder: Degussa-Hüls Aktiengesellschaft,

Frankfurt am Main/DE

Bezeichnung:

Neue für das dep67-Gen kodierende

Nukleotidsequenzen

IPC:

C 12 N, C 12 Q, C 07 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 26. Juli 2001

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

CEN

Neue für das dep67-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das dep67-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren unter Verwendung von Bakterien, in denen das dep67-Gen verstärkt wird.

Stand der Technik

L-Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der 10 Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

- 25 Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und
- 30 Aminosäuren produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von

L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.

5 Aufgabe der Erfindung

Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren bereitzustellen.

Beschreibung der Erfindung

- Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-
- 15 Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint. Besonders bevorzugt ist L-Lysin.

Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Basen, sondern auch die Salze wie z.B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.

- Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das dep67-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
- a) Polynukleotid, das mindestens zu 70% identisch ist mit 25 einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von
- 30 SEQ ID No. 2,

10

15

- c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität des Efflux-Proteins Dep67 aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz(i) oder (ii) komplementären Sequenzhybridisiert, und gegebenenfalls
- (iv) funktionsneutralen Sinnmutationen in (i).
- 20 Weitere Gegenstände sind
 - ein replizierbares Polynukleotid, insbesondere DNA, enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
- ein Polynukleotid, das für ein Polypeptid

 25 kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2
 dargestellt, enthält;
 - ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, insbesondere Pendelvektor oder Plasmidvektor, und

coryneforme Bakterien, die den Vektor enthalten oder in denen das dep67-Gen verstärkt ist.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die 5 erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen Polynukleotids gemäß SEQ ID No.1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren beziehungsweise Polynukleotide oder Gene in voller Länge zu isolieren, die für das Efflux-Protein Dep67 kodieren, oder um solche Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des dep67-Gens aufweisen.

Polynukleotide, die die Sequenzen gemäß der Erfindung enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für das Efflux-Protein Dep67 kodieren.

Solche als Sonden oder Primer dienende Oligonukleotide, 25 enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.

"Isoliert" bedeutet aus seinem natürlichen Umfeld 30 herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Die Polynukleotide gemäß Erfindung schließen ein Polynukleotid gemäß SEQ ID No. 1 oder ein daraus hergestelltes Fragment und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragments.

10 Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der

- biologischen Aktivität des Efflux-Proteins Dep67 und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.
- Die Erfindung betrifft weiterhin ein Verfahren zur fermermentativen Herstellung von Aminosäuren, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-
- Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das dep67-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
- Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise

die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

- Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der
- 10 Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Geeignete Stämme der Gattung Corynebacterium, insbesondere 15 der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

und daraus hergestellte L-Aminosäuren produzierende Mutanten bzw. Stämme.

Das neue, für das Efflux-Protein Dep67 kodierende dep67-Gen von C. glutamicum wurde isoliert.

Zur Isolierung des dep67-Gens oder auch anderer Gene von

C. glutamicum wird zunächst eine Genbank dieses
Mikroorganismus in Escherichia coli (E. coli) angelegt.

Das Anlegen von Genbanken ist in allgemein bekannten
Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel

seien das Lehrbuch von Winnacker: Gene und Klone, Eine
Einführung in die Gentechnologie (Verlag Chemie, Weinheim,
Deutschland, 1990), oder das Handbuch von Sambrook et al.:
Molecular Cloning, A Laboratory Manual (Cold Spring Harbor
Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank
ist die des E. coli K-12 Stammes W3110, die von Kohara et
al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde.
Bathe et al. (Molecular and General Genetics, 252:255-265,
1996) beschreiben eine Genbank von C. glutamicum ATCC13032,
die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al.,
1987, Proceedings of the National Academy of Sciences USA,
84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al.,
1988, Nucleic Acids Research 16:1563-1575) angelegt wurde.

Börmann et al. (Molecular Microbiology 6(3), 317-326)

(1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)).

Zur Herstellung einer Genbank von C. glutamicum in E. coli

können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 20 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5 α mcr, der von Grant et al. (Proceedings of the 25 National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es 30 z.B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977) beschrieben ist.

Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von

Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.

Die neue für das Gen dep67 kodierende DNA-Sequenz von C.

5 glutamicum wurde gefunden, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende

10 Aminosäuresequenz des dep67-Genproduktes dargestellt.

Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID

- No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense mutations") bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins
- grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann
- unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der
 - 30 Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.

In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.

- Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al.
- (International Journal of Systematic Bacteriology (1991) 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heisst, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70%
- identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflußt bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ
- niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).

Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50°C - 68°C

- 25 eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise
- durch Senken der Salzkonzentration auf 2x SSC und gegebenenfalls nachfolgend 0,5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50°C 68°C eingestellt wird. Es ist
- 35 gegebenenfalls möglich die Salzkonzentration bis auf 0,1x

SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C von 50°C auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).

Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide

synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Es wurde gefunden, daß coryneforme Bakterien nach Überexpression des dep67-Gens in verbesserter Weise Aminosäuren produzieren.

Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise

wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen Aminosäure-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer

der m-RNA wird ebenfalls die Expression verbessert.
Weiterhin wird durch Verhinderung des Abbaus des
Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die
Gene oder Genkonstrukte können entweder in Plasmiden mit
unterschiedlicher Kopienzahl vorliegen oder im Chromosom

integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.

- Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen
- Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung
- WO 96/15246, bei Malumbres et al. (Gene 134, 15 24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996)) und in
- 20 bekannten Lehrbüchern der Genetik und Molekularbiologie.

Zur Verstärkung wurde das erfindungsgemäße dep67-Gen beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche

- bekannte Plasmidvektoren wie z.B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere
- Plasmidvektoren wie z.B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.

35

Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons

Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum

replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry

15 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) oder pBGS8 (Spratt et al.,1986, Gene 41: 337-342) in Frage. Der

Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994))

beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben.

Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.

Zusätzlich kann es für die Produktion von L-Aminosäuren vorteilhaft sein, neben dem dep67-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat-

Zyklus, des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken, insbesondere überzuexprimieren.

So kann für die Herstellung von L-Aminosäuren zusätzlich zur Verstärkung des dep67-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
- das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die Triosephosphat-Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf (JP-A-09224661),
 - das für die Pyruvat-Carboxylase kodierende Gen pyc (DE-A-198 31 609),
- das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
 - das für eine feed-back resistente Aspartatkinase kodierende Gen lysC (Accession No.P26512),
- das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222),
 - das für die Homoserin-Dehydrogenase kodierende Gen hom (EP-A 0131171),

10

20

- das für die Threonin-Dehydratase kodierende Gen ilvA (Möckel et al., Journal of Bacteriology (1992) 8065-8072)) oder das für eine "feed back resistente" Threonin-Dehydratase kodierende Allel ilvA(Fbr) (Möckel et al., (1994) Molecular Microbiology 13: 833-842),
- das für die Acetohydroxysäure-Synthase kodierenden Gen ilvBN (EP-B 0356739),
- das für die Dihydroxysäuredehydratase kodierende Gen ilvD (Sahm und Eggeling (1999) Applied and Environmental Microbiology 65: 1973-1979),
- das für das Zwal-Protein kodierende Gen zwal (DE: 19959328.0, DSM 13115),

verstärkt, insbesondere überexprimiert werden.

- Weiterhin kann es für die Produktion von L-Aminosäuren 15 vorteilhaft sein, zusätzlich zur Verstärkung des dep67-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe
 - das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1; DSM 13047),
 - das für die Glucose-6-Phosphat-Isomerase kodierende Gen pgi (US 09/396,478; DSM 12969),
 - das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 1995 1975.7; DSM 13114),
 - das für das Zwa2-Protein kodierende Gen zwa2 (DE: 19959327.2, DSM 13113)
- 25 abzuschwächen, insbesondere die Expression zu verringern.

Weiterhin kann es für die Produktion von Aminosäuren vorteilhaft sein, neben der Überexpression des dep67-Gens

unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

- Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren)
- zum Zwecke der Produktion von Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch
- von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im

- Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.
 - Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose,
- Melasse, Stärke und Cellulose, Öle und Fette wie z.B.
 Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren
 wie z.B. Palmitinsäure, Stearinsäure und Linolsäure,
 Alkohole wie z.B. Glycerin und Ethanol und organische
 Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe
- 30 können einzeln oder als Mischung verwendet werden.

Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat,

10

15

35

Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die
entsprechenden Natrium haltigen Salze verwendet werden. Das
Kulturmedium muß weiterhin Salze von Metallen enthalten wie
z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum
notwendig sind. Schließlich können essentielle Wuchsstoffe
wie Aminosäuren und Vitamine zusätzlich zu den oben
genannten Stoffen eingesetzt werden. Dem Kulturmedium
können überdies geeignete Vorstufen zugesetzt werden. Die
genannten Einsatzstoffe können zur Kultur in Form eines
einmaligen Ansatzes hinzugegeben oder in geeigneter Weise
während der Kultivierung zugefüttert werden.

Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur 20 Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z.B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen 25 aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des

30 gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Ionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren.

Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

- Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA)
- durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.

Die Zusammensetzung gängiger Nährmedien wie LB- oder TY-Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.

20 Beispiel 1

Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al. (1995, Plasmid 33:168-179)

- 25 beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland,
- Produktbeschreibung SAP, Code no. 1758250)
 dephosphoryliert. Die DNA des Cosmid-Vektors SuperCosl
 (Wahl et al. (1987) Proceedings of the National Academy of

Sciences USA 84:2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.

Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland,

- Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04)
- behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.
- Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) wurden die Zellen in 10 mM MgSO₄ aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor)
- 25 beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 100 mg/l Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.

Beispiel 2

30 Isolierung und Sequenzierung des dep67-Gens

Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany)

10 Germany).

Die DNA des Sequenziervektors pZero-1, bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01), wurde mit dem Restriktionsenzym BamHI

- 15 (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring
- Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A.,
- 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 mg/l Zeocin ausplattiert.

Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden,

- Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin
- 35 Terminator Cycle Sequencing Kit" von PE Applied Biosystems

(Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

Die erhaltenen Roh-Sequenzdaten wurden anschließend unter

Anwendung des Staden-Programpakets (1986, Nucleic Acids
Research, 14:217-231) Version 97-0 prozessiert. Die
Einzelsequenzen der pZerol-Derivate wurden zu einem
zusammenhängenden Contig assembliert. Die computergestützte
Kodierbereichsanalyse wurde mit dem Programm XNIP (Staden,
1986, Nucleic Acids Research, 14:217-231) angefertigt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 1305 Basenpaaren, welches als dep67-Gen bezeichnet wurde. Das dep67-Gen kodiert für ein Protein von 434 Aminosäuren.

SEQUENZPROTOKOLL <110> Degussa-Hüls AG <120> Neue für das dep67-Gen kodierende Nukleotidsequenzen <130> 000565 BT <140> 10 <141> <160> 2 <170> PatentIn Ver. 2.1 15 <210> 1 <211> 1786 <212> DNA <213> Corynebacterium glutamicum 20 <220> <221> CDS <222> (259)..(1560) <223> dep67-Gen 25 <400> 1 cggcgttttc cgagcggtg tctagcgcaa cgagtgcgga accgcgttgt tgggcctggc 60 tggcgagcat gtgttttgcc acgtcgacgg cattgcgctc ggacttaaaa ttcaacgccg 120 30 cagatggtgc aagcagctgt gaaatgaggc gtagggcgcg gacgcgttcc agagaaagtg 180 caggicataac coctaaaata coctgatott coccegtgte etgececegt gtecaecect 240 35 gcgtacataa taggacgc atg gga aaa cat gag gtt gct cag cag acg gtt Met Gly Lys His Glu Val Ala Gln Gln Thr Val ccg ggt cct tcg ccg gaa atg gaa gcg cag cgg cgt aaa gag ttg cgc 339 40 Pro Gly Pro Ser Pro Glu Met Glu Ala Gln Arg Arg Lys Glu Leu Arg aag cac aag gee att gee act gge etg ttg att ttt get gee get gta 387 Lys His Lys Ala Ile Ala Thr Gly Leu Leu Ile Phe Ala Ala Val 45 35 tat ttt ctt tgc cgt ttc gtg gag acc cgt ccg ggt gaa act gca gcg 435 Tyr Phe Leu Cys Arg Phe Val Glu Thr Arg Pro Gly Glu Thr Ala Ala 50 tgg gta ggt ttt gtg cgc gct gcg gca gag gcc gga atg att ggc ggg 483 Trp Val Gly Phe Val Arg Ala Ala Glu Ala Gly Met Ile Gly Gly 55 ttg gcc gac tgg ttc gcg gtc acc gcg ctg ttc cgt cat cca ttg tgg 531 Leu Ala Asp Trp Phe Ala Val Thr Ala Leu Phe Arg His Pro Leu Trp

85

		att Ile												579
5		gcc Ala 110												627
10		acg Thr												675
15		ctc Leu	-	_	_				_	_	-	-	_	723
2 0		ttg Leu	_			 _	-		_	_		_	_	771
	_	 gtg Val					-	_			-			819
25		cca Pro 190												867
30		aac Asn												915
35		gct Ala												963
40		tgg Trp												1011
		gag Glu												1059
45		gcc Ala 270												1107
50		cag Gln												1155
55		atc Ile												1203
		tca Ser												1251

5	tca att ctg cgt cgc aaa att gcc gaa gca gct acc agc tgg ggt caa 1299 Ser Ile Leu Arg Arg Lys Ile Ala Glu Ala Ala Thr Ser Trp Gly Gln 335 340 345	•												
J	aga ttg ctt gtc gac gac tcc ctc cgg cat tca ctc gac acc cgg att 134° Arg Leu Leu Val Asp Asp Ser Leu Arg His Ser Leu Asp Thr Arg Ile 350 360	7												
10	acc ggc gcc gct gct ttc ctc gcc gac aat tac gcc ccc gaa gtc acc Thr Gly Ala Ala Ala Phe Leu Ala Asp Asn Tyr Ala Pro Glu Val Thr 365 370 375	ō												
15	ggc att atc tcc gaa acc att gaa cga tgg gac gct gaa gaa gct tca 144: Gly Ile Ile Ser Glu Thr Ile Glu Arg Trp Asp Ala Glu Glu Ala Ser 380 385 390 395	3												
2 0	gag aaa atc gaa ctc atg gtg ggc aaa gac ctc caa tac atc cgc ctt 1499 Glu Lys Ile Glu Leu Met Val Gly Lys Asp Leu Gln Tyr Ile Arg Leu 400 405 410	L												
25	aat ggc aca att gta ggt gca tta gca gga ctg gcc att tac gct att 1539 Asn Gly Thr Ile Val Gly Ala Leu Ala Gly Leu Ala Ile Tyr Ala Ile 415 420 425	€												
23	tcc cat atc ctc ttc gga gct taactaggag taaccatcat gtccgatgca 1590 Ser His Ile Leu Phe Gly Ala 430)												
30	aaagacgatt ccatcttgtc caagtggagc aatgcagctt ccgagctcag cggtgccgtc 1650													
	agtggagtag cgaagaagct ccgtgaagaa ctctctgaga aggaaacctt cagcaagctt 171 aaaaccgaag ccagcgaagc cgtcgatcaa gcaaagtccg gctcctacct agatgccggt 177													
35	aaggaattcg cccgcg 1786	5												
40	<210> 2 <211> 434 <212> PRT <213> Corynebacterium glutamicum													
45	<400> 2 Met Gly Lys His Glu Val Ala Gln Gln Thr Val Pro Gly Pro Ser Pro 1 5 10 15													
50	Glu Met Glu Ala Gln Arg Arg Lys Glu Leu Arg Lys His Lys Ala Ile 20 25 30													
	Ala Thr Gly Leu Leu Ile Phe Ala Ala Ala Val Tyr Phe Leu Cys Arg 35 40 45													
55	Phe Val Glu Thr Arg Pro Gly Glu Thr Ala Ala Trp Val Gly Phe Val 50 55 60													
	Arg Ala Ala Glu Ala Gly Met Ile Gly Gly Leu Ala Asp Trp Phe 65 70 75 80													

Ala Val Thr Ala Leu Phe Arg His Pro Leu Trp Leu Pro Ile Pro His 5 Thr Ala Ile Ile Pro Arg Lys Lys Asp Gln Leu Gly Glu Ala Leu Ser 105 Gly Phe Val Gly Asp Asn Phe Leu Asn Ala Gln Leu Ile Thr Glu Lys 120 10 Val Ser Gln Ala Arg Ile Pro Glu Arg Ala Gly Glu Trp Leu Ala Gln 135 Pro Glu Asn Gly Glu Lys Val Ser Arg Glu Val Gly Lys Leu Thr Ala 15 Asn Ile Val Arg Ala Ile Asp Pro Ser Asp Ala Glu Ala Val Ile Lys 165 170 20 Ser Ala Val Ile Asp Lys Leu Ala Glu Pro Thr Trp Gly Pro Pro Ala 185 Gly Arg Leu Leu Glu Gln Leu Leu Ala Glu Ala Lys Pro Asn Gln Leu 195 25 Ser Arg Asn Ser Arg Ser Gly Cys Thr Lys Arg Arg Trp Ala Pro Glu Pro Leu Ile Asp Arg Leu Leu Asn Glu Arg Arg Pro Ile Trp Ala Pro 30 235 Lys Phe Thr Ala Gln Leu Val Ser Gly Lys Val Tyr Asp Glu Val Ile 35 Lys Phe Thr Glu Ala Val Ala Ala Asp Pro Asn His Glu Ala Arg Lys Ser Leu Arg Arg Phe Leu Asn Lys Leu Ala Gln Asp Leu Gln His Asp 40 Pro Gly Met Ile Ile Lys Val Glu Glu Ile Lys Arg Asp Ile Met Gly Ser Gly Ala Ile Ala Gln Ala Ala Pro Thr Ile Trp Ala Ser Ala Ser 45 310 315 Glu Ser Leu Ile Glu Ser Ala Glu Asp Glu Ser Ser Ile Leu Arg Arg 50 Lys Ile Ala Glu Ala Ala Thr Ser Trp Gly Gln Arg Leu Leu Val Asp Asp Ser Leu Arg His Ser Leu Asp Thr Arg Ile Thr Gly Ala Ala Ala 355 55 Phe Leu Ala Asp Asn Tyr Ala Pro Glu Val Thr Gly Ile Ile Ser Glu Thr Ile Glu Arg Trp Asp Ala Glu Glu Ala Ser Glu Lys Ile Glu Leu 385 390 395 400

Met Val Gly Lys Asp Leu Gln Tyr Ile Arg Leu Asn Gly Thr Ile Val
415

Gly Ala Leu Ala Gly Leu Ala Ile Tyr Ala Ile Ser His Ile Leu Phe
420

Gly Ala

10

15

Patentansprüche

- 1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das dep67-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c)

wobei das Polypeptid bevorzugt die Aktivität des Efflux-20 Proteins Dep67 aufweist.

- 2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
- 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
 - 4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2, enthaltend
 - (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder

10

20

25

- (ii) mindestens eine Sequenz, die der Sequenz(i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz(i) oder (ii) komplementären Sequenz hybridisiert,und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).
 - 6. Replizierbare DNA gemäß Anspruch 5, dadurch gekennzeichnet, daß die Hybridisierung unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
 - 7. Polynukleotidsequenz gemäß Anspruch 1, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
- 15 8. Coryneforme Bakterien, in denen das dep67-Gen verstärkt, insbesondere überexprimiert wird.
 - 9. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dad urch gekennzeichnet, daß man folgende Schritte durchführt:
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das dep67-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
 - b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.
- 10. Verfahren gemäß Anspruch 9,30 dadurch gekennzeichnet,

daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.

- 11. Verfahren gemäß Anspruch 9, d a d u r c h
 g e k e n n z e i c h n e t, daß man Bakterien
 einsetzt, in denen die Stoffwechselwege zumindest
 teilweise ausgeschaltet sind, die die Bildung der
 gewünschten L-Aminosäure verringern.
- 12. Verfahren gemäß Anspruch 9,

 10 dadurch gekennzeichnet,

 daß man einen mit einem Plasmidvektor transformierten

 Stamm einsetzt, und der Plasmidvektor die für das

 dep67-Gen kodierende Nukleotidsequenz trägt.
- 13. Verfahren gemäß Anspruch 9,

 15 dadurch gekennzeichnet,

 daß man die Expression des (der) Polynukleotides (e),

 das (die) für das dep67-Gen kodiert (kodieren)

 verstärkt, insbesondere überexprimiert.
- 14. Verfahren gemäß Anspruch 9,
 20 dadurch gekennzeichnet,
 daß man die katalytischen Eigenschaften des Polypetids (Enzymprotein) erhöht, für das das Polynukleotid dep67 kodiert.
- 15. Verfahren gemäß Anspruch 9,
 25 dadurch gekennzeichnet,
 daß man zur Herstellung von L-Aminosäuren coryneforme
 Mikroorganismen fermentiert, in denen man gleichzeitig
 eines oder mehrere der Gene, ausgewählt aus der Gruppe
- 15.1 das für die Dihydrodipicolinat-Synthase 30 kodierende Gen dapA,
 - 15.2 das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap,

- 15.3 das für die Triosephosphat-Isomerase kodierende Gen tpi, 15.4 das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk, 5 15.5 das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf, 15.6 das für die Pyruvat-Carboxylase kodierende Gen pyc, 15.7 das für die Malat-Chinon-Oxidoreduktase 10 kodierende Gen mgo, 15.8 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 15.9 das für den Lysin-Export kodierende Gen lysE, 15.10 das für die Homoserin-Dehydrogenase kodierende 15 Gen hom, 15.11 das für die Threonin-Dehydratase kodierende Gen ilvA oder das für eine feed back resistente Threonin-Dehydratase kodierende Allel ilvA(Fbr), 20 das für die Acetohydroxysäure-Synthase 15.12 kodierende Gen ilvBN, 15.13 das für die Dihydroxysäuredehydratase kodierende Gen ilvD, 15.14 das für das Zwal-Protein kodierende Gen zwal 25 verstärkt bzw. überexprimiert.
 - 16. Verfahren gemäß Anspruch 9,
 dadurch gekennzeichnet,
 daß man zur Herstellung von L-Aminosäuren coryneforme

25

Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- 16.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
- 5 16.2 das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi,
 - 16.3 das für die Pyruvat-Oxidase kodierende Gen poxB
 - 16.4 das für das Zwa2-Protein kodierende Gen zwa2 abschwächt.
- 10 17. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
 - 18. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche,
- dadurch gekennzeichnet,
 daß man Mikroorganismen der Art Corynebacterium
 glutamicum einsetzt.
 - 19. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für das Efflux-Protein Dep67 kodieren oder eine hohe Ähnlichkeit mit der Sequenz des dep67-Gens aufweisen,

dadurch gekennzeichnet, daß man das Polynukleotid, enthaltend die Polynukleotidsequenzen gemäß den Ansprüchen 1, 2, 3 oder 4, als Hybridisierungssonden einsetzt.

Zusammenfassung

20

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der Polynukleotidsequenz
 von a), b) oder c),
 - und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das dep67-Gen verstärkt vorliegt, und die Verwendung von Polynukleotiden, die die erfindungsgemäßen Sequenzen enthalten, als Hybridisierungssonden.