mas541 homework

20208209 오재민

2020년 9월 20일

Problem (1).

Let f = u + iv. Then $\bar{f}f' = ff' - 2ivf'$, where ff' is holomorphic. So, $\int_{\gamma} \bar{f}f'dz = \int_{\gamma} -2ivf'dz = \int_{\gamma} -2iv(u_x + iv_x)dz = \int_{\gamma} -2iv(v_y + iv_x)dz = -i\int_{\sigma}^{b} (2vv_y + 2ivv_y)(\gamma_1' + i\gamma_2')dt = \alpha$ where $\gamma = \gamma_1 + i\gamma_2$.

Therefore, real part of $\int_{\gamma} \bar{f} f' dz$ is equal to real part of α . And it is also equal to $-\int_a^b Im\left[(2vv_y+i2vv_x)(\gamma_1'+i\gamma_2')\right]dt = -\int_a^b (2vv_x\gamma_1'+2vv_y\gamma_2')dt = -\int_a^b \frac{d}{dt}(v^2\circ\gamma)dt = 0$ since γ is closed curve.

So, $\int_{\gamma} \bar{f} f' dz$ is purely imaginary.

Problem (2).

Let $f = -u_y$ and $g = u_x$. Then f, g are continuous on U. Since u is harmonic, $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$ on $U \setminus \{0\}$. So there is $v : U \to \mathbb{R}$ which is C^1 function and $v_x = f$, $v_y = g$ by lemma 2.5.3.

Let F = u + iv. Then F is C^1 function since u, v are C^1 . Since $v_x = f = -u_y$ and $v_y = g = u_x$, F satisfies Cauchy-Riemann equation on U. Thus F is holomorphic on U and real part of F is u.

Problem (3).

(a) For $z \notin [0,1]$, the map $w \mapsto \frac{1}{w-z}$ is holomorphic on $\mathbb{C} \setminus [0,1]$. Let $\gamma(t) = t$ for $t \in [0,1]$. Then $F(z) = \int_{\gamma} \frac{dw}{w-z} = \int_{0}^{1} \frac{1}{t-z} dt$ is well defined. For $z \notin [0,1]$, let d > 0 be distance between z and [0,1]. For $|h| < \frac{d}{2}$, consider $\frac{F(z+h)-F(z)}{h} = \int_{0}^{1} \frac{1}{(t-z-h)(t-z)} dt$. Then $\left| \frac{1}{(t-z-h)(t-z)} - \frac{1}{(t-z)^{2}} \right| = \left| \frac{h}{(t-z)^{2}(t-z-h)} \right| \leq |h| \frac{2}{d^{3}}$ since $|t-z| \geq d$ and $|t-z-h| \geq \frac{d}{2}$. Therefore, as $|h| \to 0$, integrand converges to $\frac{1}{(t-z)^{2}}$ uniformly on $t \in [0,1]$. So

 $\lim_{h\to 0} \frac{F(z+h)-F(z)}{h} = \int_0^1 \lim_{h\to 0} \frac{1}{(t-z-h)(t-z)} dt = \int_0^1 \frac{1}{(t-z)^2} dt = F'(z).$

- By same reasoning, we get $F''(z) = \int_0^1 \frac{1}{(t-z)^3} dt$. From existence of F'', F' is continuous. Therefore F is C^1 function. Existence of complex derivative and C^1 implies F is holomorphic on $\mathbb{C} \setminus [0,1]$.
- (b) For $s \in (0,1)$, $F(s+i\varepsilon) = \int_0^1 \frac{1}{t-s-i\varepsilon} dt = \int_0^1 \frac{t-s+i\varepsilon}{(t-s)^2+\varepsilon^2} dt = \int_0^1 \frac{t-s}{(t-s)^2+\varepsilon^2} dt + i \int_0^1 \int_0^1 \frac{\varepsilon}{(t-s)^2+\varepsilon^2} dt$. Let $t-s = \varepsilon \tan \theta$. $\varepsilon \tan \theta_0 + s = 0$ and $\varepsilon \tan \theta_1 + s = 1$ for $-\frac{\pi}{2} < \theta_0, \theta_1 < \frac{\pi}{2}$. Then $\sec^2 \theta_0 = \frac{s^2}{\varepsilon^2} + 1$, $\sec^2 \theta_1 = \frac{(1-s)^2}{\varepsilon^2} + 1$, $\theta_0 = \tan^{-1} \left(\frac{-s}{\varepsilon}\right)$, and $\theta_1 = \tan^{-1} \left(\frac{1-s}{\varepsilon}\right)$.
 - Then $F(s+i\varepsilon) = \int_{\theta_0}^{\theta_1} \tan\theta d\theta + i \int_{\theta_0}^{\theta_1} d\theta = \log \left| \frac{\sec \theta_1}{\sec \theta_0} \right| + i (\theta_1 \theta_0)$. As $\varepsilon \downarrow 0$, $F(s+i\varepsilon)$ goes to $\frac{1-s}{s} + i\pi$ by simple calculation.

Similarly, $F(s-i\varepsilon)$ goes to $\frac{1-s}{s}-i\pi$ as $\varepsilon\downarrow 0$.

(c) Consider $F(-\varepsilon) = \int_0^1 \frac{1}{t+\varepsilon} dt = \log \frac{1+\varepsilon}{\varepsilon}$. It goes to ∞ as $\varepsilon \downarrow 0$. Consider $F(1+\varepsilon) = \int_0^1 \frac{1}{t-1-\varepsilon} dt = \log \frac{\varepsilon}{1+\varepsilon}$. It goes to $-\infty$ as $\varepsilon \downarrow 0$. Therefore, for s = 0, 1, $\lim_{z \notin [0,1] \to s} F(z)$ does not exists.

Problem (4).

IDK where to start...

Problem (5).

It is enough to show γ and μ are path homotopic. Definte $H(t,s)=(1-s)\gamma(t)+\frac{\gamma(t)}{|\gamma(t)|}s$. Then $H(t,1)=\mu(t)$ and $H(t,0)=\gamma(t)$ by reparametrization. And H is continuous because $\gamma(t)\neq 0$. Therefore H is path homotopy between γ and μ . Since line integration is invariant under path homotopy, we get $\int_{\gamma}F(\zeta)d\zeta=\int_{\mu}F(\zeta)d\zeta$.