	Teste de Matemática A
	2022 / 2023
Teste N.º 3	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma: _
Utilize apenas caneta ou esferográfica	
Não é permitido o uso de corretor. Risc É permitido o uso de calculadora.	que aquilo que pretende que não seja classificado.
Apresente apenas uma resposta para o	cada item
As cotações dos itens encontram-se no	
·	ipla, selecione a opção correta. Escreva, na folha de
respostas, o número do item e a letra o	que identifica a opção escolhida.
Na resposta aos restantes itens, apres	sente todos os cálculos que tiver de efetuar e todas
as justificações necessárias. Quando	, para um resultado, não é pedida a aproximação,

apresente sempre o valor exato.

1. Na figura estão representados, num referencial o.n. Oxy, a circunferência trigonométrica e o trapézio [ABCD].

Sabe-se que:

- o ponto *E* tem coordenadas (1,0);
- a reta r é tangente à circunferência no ponto E;
- o ponto A pertence ao quarto quadrante e à circunferência;
- o ponto B é o ponto de interseção da reta r com a semirreta $\dot{O}A$;
- o ponto C é o ponto do eixo Oy com ordenada igual à do ponto B;
- o ponto *D* é o ponto do eixo *Oy* com ordenada igual à do ponto *A*;
- α é a amplitude, em radianos, do ângulo orientado que tem por lado origem o semieixo positivo Ox e por lado extremidade a semirreta $\dot{O}A$, $\alpha \in \left|\frac{3\pi}{2}, 2\pi\right|$.

1.1. Mostre que a área do trapézio [ABCD] pode ser dada, em função de α , pela expressão:

$$\frac{1}{2}(\operatorname{sen}\alpha\cos\alpha-\operatorname{tg}\alpha)$$

- **1.2.** Para uma certa posição do ponto A, sabe-se que $\cos(-\alpha) = \frac{4}{5}$. Sem recurso à calculadora, determine, para essa posição do ponto A, o valor exato da área do trapézio [ABCD]. Apresente o resultado sob a forma de fração irredutível.
- **1.3.** Considere o setor circular de ângulo ao centro de amplitude α , limitado pelos raios [OE] e [OA] e pelo arco maior EA, representado a tracejado na figura ao lado.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de α , arredondado às centésimas, para o qual a área do trapézio [ABCD] é igual à área do setor circular representado a tracejado na figura ao lado.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s)
 função(ões) visualizado(s) na calculadora que lhe
 permite(m) resolver a equação, e apresente as
 coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.

2. Na figura está representada parte do gráfico de uma função periódica.

Qual dos valores seguintes é o período positivo mínimo desta função?

(A)
$$\frac{\pi}{4}$$

(B)
$$\frac{\pi}{2}$$

3. Na figura estão representados, num referencial ortonormado Oxy, uma circunferência, a reta t tangente à circunferência e o triângulo [ABC].

Sabe-se que:

- o ponto A pertence à circunferência, encontra-se no 1.º quadrante e tem ordenada 5;
- a reta t é tangente à circunferência no ponto A;
- o ponto *B* é o ponto de interseção da reta *t* com o eixo das abcissas.

Resolva as alíneas seguintes, recorrendo a processos exclusivamente analíticos.

A calculadora pode ser usada para eventuais cálculos numéricos.

- **3.1.** Seja *P* o ponto pertencente ao segundo quadrante tal que:
 - a sua ordenada é igual a 2;
 - a amplitude, em radianos, do ângulo OCP é igual a $\frac{\pi}{3}$.

Determine o valor exato da abcissa do ponto P.

3.2. Determine o valor exato da área do triângulo [ABC].

Apresente o resultado na forma $\frac{a\sqrt{b}}{c}$, $a, b, c \in \mathbb{N}$.

4. Uma mola está suspensa por uma extremidade no tampo de uma mesa, tendo na outra extremidade uma esfera, como sugere a figura. Após ter sido alongada na vertical, a mola inicia um movimento oscilatório no instante t=0.

Admita que a distância, h, em centímetros, do centro dessa esfera ao tampo dessa mesa é dada em cada instante t (em segundos) por:

$$h(t) = 3 + 2\cos(\pi t + \pi)$$
, com $t \in [0, 4]$

O argumento da função cosseno está em radianos. Seja M a distância máxima do centro dessa esfera ao tampo da mesa e seja m a distância mínima do centro dessa esfera ao tampo da mesa. A amplitude A da oscilação da esfera é dada por A = M - m.

Recorrendo a métodos analíticos, determine o valor de *A*, em centímetros.

5. Na figura está representado, em referencial o.n. 0xyz, um cone reto de vértice V e base de centro no ponto A.

Sabe-se que:

- o ponto *V* tem coordenadas (0, 0, 6);
- o volume do cone é igual a $\frac{28\pi}{3}$ unidades de volume;
- a base do cone está contida no plano definido por -2x - 3y + 6z + 13 = 0.

5.1. Qual das seguintes equações define uma reta estritamente paralela ao plano que contém a base do cone e que passa no ponto V?

(A)
$$(x, y, z) = (0, 0, 6) + k(-2, -3, 6), k \in \mathbb{R}$$
 (B) $(x, y, z) = (0, 0, 6) + k(6, 0, -2), k \in \mathbb{R}$

(B)
$$(x, y, z) = (0, 0, 6) + k(6, 0, -2), k \in \mathbb{R}$$

(C)
$$(x, y, z) = (-6, -4, 2) + k(3, 2, 2), k \in \mathbb{F}$$

(C)
$$(x, y, z) = (-6, -4, 2) + k(3, 2, 2), k \in \mathbb{R}$$
 (D) $(x, y, z) = (-6, -4, 2) + k(3, 4, 3), k \in \mathbb{R}$

- **5.2.** Resolva este item sem recorrer à calculadora. Determine o valor do raio da base do cone.
- **6.** Considera a sucessão (v_n) definida por $v_n = \frac{n+2023}{(-1)^n}$.

Qual das seguintes proposições é verdadeira?

(A) (v_n) é monótona.

(B) (v_n) não é limitada.

(C) (v_n) é convergente para 0.

- **(D)** $\lim v_n = +\infty$
- 7. Seja (a_n) a sucessão definida por $a_n = \begin{cases} (-1)^n & \text{se } n \leq 4 \\ \frac{2n+3}{n+2} & \text{se } n > 4 \end{cases}$

Mostre que a sucessão (a_n) é limitada.

- **8.** De uma progressão aritmética (u_n) , sabe-se que:
 - $u_5 = 5$;
 - $3 u_{11} = 4 u_7$;
 - a soma dos p ($p \in \mathbb{N}$) primeiros termos de (u_n) é igual a 45.

Determine o valor de p, sem recorrer à calculadora a não ser para efetuar eventuais cálculos numéricos.

- **9.** O limite da sucessão de termo geral $u_n = 1 + \frac{1}{\sqrt{3}} + \frac{1}{3} + \dots + \frac{1}{(\sqrt{3})^n}$ é:
 - **(A)** +∞
- **(B)** 0
- (C) $\frac{3+\sqrt{3}}{2}$ (D) $\frac{3-\sqrt{3}}{2}$
- **10.** Na figura ao lado está representada, num referencial o.n. Oxy, parte do gráfico de uma função f, de domínio]-1,3[.

Sabe-se que:

- f(1) = -4;
- a reta de equação x = 1 é assíntota ao gráfico de f.

Qual das expressões seguintes pode ser o termo geral da sucessão (x_n) ?

(B)
$$\frac{n+2}{n+3}$$

(A)
$$\frac{n+2}{n+1}$$
 (B) $\frac{n+2}{n+3}$ (C) $-1 + \frac{1}{2^n}$ (D) $n^2 + \sqrt{n}$

(D)
$$n^2 + \sqrt{n}$$

10.2. Considera as seguintes sucessões e os respetivos termos gerais.

$$a_n = \frac{n^2 + 3}{n^2 + 2}$$

$$b_n = 3 - \frac{1}{\sqrt{n}}$$

$$c_n = -1 + \frac{(-1)^{2n}}{n^3}$$

Determina, se existir, o valor de $\lim(f(a_n))$, $\lim(f(b_n))$ e $\lim(f(c_n))$.

FIM

COTAÇÕES

	Item														
	Cotação (em pontos)														
1.1.	1.2.	1.3.	2.	3.1.	3.2.	4.	5.1.	5.2.	6.	7.	8.	9.	10.1.	10.2.	TOTAL
15	15	15	10	15	15	15	10	15	10	15	15	10	10	15	200