Módulos de Young, volumétrico e de cisalhamento

- Dois tipos de forças
- Forças de volume: atuam em todos os elementos de volume de um corpo (ex: gravidade).
- Forças de superfície: forças de contacto, forças aplicadas na superfície
- A massa volúmica do corpo, que pode variar de região para região, é definida por:

$$\rho(x_1, x_2, x_3) = \frac{\partial M}{\partial V} \qquad \qquad \rho = \frac{M}{V} \qquad \text{Se \'e contante (homog\'eneo)}$$

• Densidade de forças de volume:

$$\vec{f}_V = \frac{\partial \vec{F}}{\partial V}$$
 Densidade volúmica

$$\vec{f}_M = \frac{\partial \vec{F}}{\partial M}$$
 Densidade mássica

• Relação entre densidades de força mássica e de volume:

$$\vec{f}_M = \frac{\partial \vec{F}}{\partial M} = \frac{\partial \vec{F}}{\partial V} \frac{\partial V}{\partial M} = \frac{1}{\rho} \frac{\partial \vec{F}}{\partial V}$$
 $\vec{f}_M = \frac{\vec{f}_V}{\rho}$

$$\vec{f}_M = \frac{\vec{f}_V}{\rho}$$

Volume V de um meio contínuo, e elemento de volume ΔV com massa Δm no ponto P. O ponto P está no centro de ΔV .

Módulos de Young, volumétrico e de cisalhamento

- Introdução à elasticidade
- Forças aplicadas num corpo podem alterar colume ou forma do corpo
- Dois tipos:
 - Elasticidade volumétrica -> alterações de volume
 - Cisalhamento -> forças tangenciais que provocam variação de forma
- A massa volúmica do corpo, que pode variar de região para região, é definida por:
- Deformação <-> tensão
- Considere-se uma barra presa a um suporte que é sujeita a uma força como na figura.

- Tensão aplicada
- Tensão é igual a força por unidade de área:

$$\vec{\tau} = \frac{\vec{F}}{A}$$

- Unidades: Pascal (Pa)
- 1 Pa = 1 N/m^2

Módulos de Young, volumétrico e de cisalhamento

- Deformação ao longo da direção da força é definida pela variação relativa do comprimento
- Comprimento inicial = L_i . Comprimento final = L_f . Deformação:
- Comportamento da tensão versus deformação

$$\frac{\Delta L}{L} = \frac{L_f - L_i}{L_i}$$
 Sem dimensões

Lei de Hooke (região elástica)

$$\tau = E \frac{\Delta L}{L}$$

- Na região elástica -> relação linear entre tensão e deformação
- E -> Módulo de Young (unidades = Pa)
- Do modo como foi definido, o módulo de Young é independente das dimensões do corpo
- Módulo de Young é característica do material

Módulos de Young, volumétrico e de cisalhamento

- Deformação ao longo da direção da força é definida pela variação relativa do comprimento
- Comprimento inicial = L_i . Comprimento final = L_f . Deformação:
- Comportamento da tensão versus deformação

Lei de Hooke (região elástica)

$$\vec{\tau} = E \frac{\Delta L}{L}$$

Exemplos de materiais

Material	E (Gpa)
Borracha	0.01–0.1
Teflon	0.5
Esferovite	1.5–2
Nilon	2–4
Madeira	11
Osso cortical humano	14
Plástico reforçado com fibras de carbono	30–50
Magnésio	45
Vidro	50–90
Alumínio	69
Esmalte humano	83
Bronze	96–120
Titanium (Ti)	110.3
Cobre	117
Silício	130–185
Ferro	190–210
Aço	200
Molibdénio	329–330
Tungsténio	400–410
Carboneto de tungsténio	450–650
Osmio	525–562
Diamante	1050–1210

Módulos de Young, volumétrico e de cisalhamento

- Deformação nas direções ortogonais à direção da força
- Quando o corpo é esticado ou comprimido, como na figura, não só varia o seu comprimento, como também a sua largura e espessura.

Variação relativa de comprimento na direção \perp

$$\frac{\Delta L_{\perp}}{L_{\perp}} = \frac{L_{\perp f} - L_{\perp i}}{L_{\perp i}}$$

- Se L_{\perp} for numa direção perpendicular a L_0 , então: $\frac{\Delta L}{L}$
- ullet Ao parâmetro α de proporcionalidade dá-se o nome de coeficiente de Poisson.
- ullet Se L_0 aumenta então L_\perp diminui e vice versa
- Podem existir materiais, denominados de materiais auxéticos, onde o coeficiente de Poisson é negativo.
- Sabendo a variação de comprimento é possível calcular a variação relativa da largura e espessura.

Exemplos de materiais

Material	Coeficiente de Poisson
Cortiça	0
Betão	0.1-0.2
Vidro	0.18-0.3
Magnésio	0.252-0.289
Aço	0.27-0.30
Titânio	0.265-0.34
Ligas de alumínio	0.32
Cobre	0.33
Barro	0.30-0.45
Ouro	0.42-0.44
Borracha	0.4999

Módulos de Young, volumétrico e de cisalhamento

- Pressão hidrostática sobre o corpo
- Numa barra em três dimensões, o elemento de volume irá sofrer variações do comprimento das suas arestas devido a tensões perpendiculares às suas faces
- Os lados do elemento de volume têm comprimentos L₁, L₂ e L₃.
- Nessa situação, a variação do volume será:

os do elemento de volume tem comprimentos
$$L_1$$
, L_2 e L_3 . situação, a variação do volume será:
$$\Delta V = \frac{\partial V}{\partial L_1} \Delta L_1 + \frac{\partial V}{\partial L_2} \Delta L_2 + \frac{\partial V}{\partial L_3} \Delta L_3 \qquad \text{onde} \qquad \begin{cases} \tau_1 = E \frac{\Delta L_1}{L_1} \\ \tau_3 = E \frac{\Delta L_2}{L_2} \\ \tau_3 = E \frac{\Delta L_3}{L_3} \end{cases}$$

$$V = L_1 L_2 L_3$$

$$\Delta V = \Delta L_1 \cdot L_2 \cdot L_3 + L_1 \cdot \Delta L_2 \cdot L_3 + L_1 \cdot L_2 \cdot \Delta L_3$$

$$\frac{\Delta V}{V} = \frac{\Delta L_1 \cdot L_2 \cdot L_3 + L_1 \cdot \Delta L_2 \cdot L_3 + L_1 \cdot L_2 \cdot \Delta L_3}{L_1 L_2 L_3}$$

Assim, a variação relativa do volume será:

$$\frac{\Delta V}{V} = \frac{\Delta L_1}{L_1} + \frac{\Delta L_2}{L_2} + \frac{\Delta L_3}{L_3}$$

Módulos de Young, volumétrico e de cisalhamento

- Consideremos a variação relativa de comprimento ao longo do eixo x1.
- Essa variação terá uma componente devido à aplicação da força ao longo desse eixo e outra devido à deformação provocada pela aplicação das forças nas faces perpendiculares. Ou seja:

$$\begin{cases} \frac{\Delta L_1}{L_1} = \frac{\tau_1}{E} - \alpha \frac{\tau_2}{E} - \alpha \frac{\tau_3}{E} & \frac{\Delta L_1}{L_1} = \frac{\tau_1}{E} \\ \frac{\Delta L_2}{L_2} = \frac{\tau_2}{E} - \alpha \frac{\tau_1}{E} - \alpha \frac{\tau_3}{E} & \text{onde} & \frac{\Delta L_\perp}{L_\perp} = -\alpha \frac{\Delta L_0}{L_0} \\ \frac{\Delta L_3}{L_3} = \frac{\tau_3}{E} - \alpha \frac{\tau_1}{E} - \alpha \frac{\tau_2}{E} & \text{Exemplo:} \\ & \frac{\Delta L_1}{L_1} = -\alpha \frac{\Delta L_2}{L_2} = -\alpha \frac{\tau_2}{E} \end{cases}$$

• Somando as 3 equações e juntando os termos obtém-se a variação relativa do volume:

$$\frac{\Delta V}{V} = \frac{1}{E} (\tau_1 + \tau_2 + \tau_3) - \frac{2\alpha}{E} (\tau_1 + \tau_2 + \tau_3) = \frac{1 - 2\alpha}{E} (\tau_1 + \tau_2 + \tau_3)$$

Módulos de Young, volumétrico e de cisalhamento

ullet Para uma pressão hidrostática $au_1= au_2= au_3=-P$. Logo:

$$\frac{\Delta V}{V} = -3 \frac{1 - 2\alpha}{E} P$$

$$P = -\frac{E}{3(1-2\alpha)} \frac{\Delta V}{V}$$

$$\frac{\Delta V}{V} = -\beta P$$

$$P = -k \frac{\Delta V}{V}$$

Módulo de compressibilidade

$$\beta = \frac{E}{3(1-2\alpha)}$$

$$k = \frac{1}{\beta}$$

volumétrico *E*

Módulo

$$k = \frac{E}{3(1 - 2\alpha)}$$

Módulo volumétrico de alguns materiais

Material	Módulo volumétrico (Gpa)
Diamante	443
Aço	160
Cobre	123
Ferro	58-119
Alumínio	68-70
Granito	50
Vidro	35-55
Água	2.2
Borracha	1.5-2
Arenito	0.7

Módulos de Young, volumétrico e de cisalhamento

- Módulo de cisalhamento (módulo de rigidez ou de torção).
- Consideremos agora que o corpo é deformado por meio de forças tangenciais, como se mostra na figura.
- Nessa situação, se o ângulo de deformação for pequeno:

$$tg(\phi) = \frac{\Delta x}{l_0} \approx \phi$$
Area A
$$-\vec{E}$$

• Se estivermos na região elástica, então existe uma relação linear entre a tensão aplicada e o angulo de deformação:

$$\tau = \frac{F}{A} \qquad \qquad \boxed{\tau = \mu \, \phi}$$

- A μ dá-se o nome de módulo de cisalhamento.
- Propriedade intrínseca do material.

Material	Módulo de cisalhamento (Gpa)
Borracha	0.0006
Polietileno	0.117
Madeira	4
Granito	24
Alumínio	25.5
Vidro	26.2
Titâneo	41.4
Cobre	44.7
Ferro	52.5
Aço	79.3
Diamante	478

- Princípio de Cauchy
- Seja S* a superfície em estudo, que corta o corpo nas partes I e II. O elemento de área ΔS* contém o ponto P.
- Seja \hat{n} a direção perpendicular à superfície S*.
- As forças internas no plano de corte dão origem a uma distribuição de forças no elemento de área ΔS^* equivalente a uma força resultante Δf_i e um torque resultante ΔM_i em P.
- O princípio de Cauchy das tensões afirma que no limite em que a área ΔS* em torno de P, se reduz a zero, obtém-se:

$$\lim_{\Delta S^* \to 0} \frac{\Delta f_i}{\Delta S^*} = \frac{\Delta f_i}{\Delta S^*} = \tau_i^{\hat{n}}$$

$$\lim_{\Delta S^* \to 0} \frac{\Delta M_i}{\Delta S^*} = 0$$

- O vetor $\vec{\tau}^{\hat{n}}$ é a tensão em P, na superfície que corta na parte I.
- O índice \hat{n} deve-se a que a tensão em P tem que se referir necessariamente ao plano escolhido (com normal \hat{n}), dado que existe um número infinito de planos que passam em P.
- Se a superfície corta a parte II, então a tensão que aparece é $\vec{\tau}^{-\hat{n}}$.
- Pela lei da ação-reação: $\vec{\tau}^{\hat{n}} = -\vec{\tau}^{-\hat{n}}$.

- Tensor das tensões. Consideremos um elemento de volume dV, que resulta da interseção de uma superfície com os eixos das coordenadas, como se mostra na figura abaixo.
- A superfície tem orientação definida pela sua direção normal, com versor \hat{n} .
- Ao aplicar a força $d\vec{F}$, a tensão correspondente que irá aparecer na superfície triangular cuja perpendicular é \hat{n} , é $\vec{\tau}^{\hat{n}}$, com componentes $\tau_1^{\hat{n}}$, $\tau_2^{\hat{n}}$ e $\tau_3^{\hat{n}}$.
- Em resultado da aplicação de $d\vec{F}$, aparecem tensões de resistência nas superfícies perpendiculares aos eixos coordenados, $\vec{\tau}^{\hat{e}_1}$, $\vec{\tau}^{\hat{e}_2}$ e $\vec{\tau}^{\hat{e}_3}$, que se opõem ao efeito da tensão aplicada.
- Essas tensões opostas são originadas no interior do volume dV e não têm que se paralelas a \hat{e}_1 , \hat{e}_2 e \hat{e}_3 . Podem existir, simultaneamente, forças de volume dadas por \vec{f}_V .
- Nessas condições, a resultante das forças será, pela 2º lei de Newton:

$$d\vec{F} - \vec{\tau}^{\hat{e}_1} dS_1 - \vec{\tau}^{\hat{e}_2} dS_2 - \vec{\tau}^{\hat{e}_3} dS_3 + \vec{f}_V dV = dM\vec{a} = \frac{dM}{dV} \vec{a} dV$$
$$d\vec{F} - \vec{\tau}^{\hat{e}_1} dS_1 - \vec{\tau}^{\hat{e}_2} dS_2 - \vec{\tau}^{\hat{e}_3} dS_3 + \vec{f}_V dV = \rho \vec{a} dV$$

- As áreas escalam com distâncias ao quadrado e os volumes com distâncias ao cubo.
- Assim, quando se faz o limite quando o elemento de volume vai para zero (para o ponto P da figura), dV vai mais rapidamente para zero que os dS.
- Nessa situação, a equação acima tenderá para:

$$d\vec{F} - \vec{\tau}^{\hat{e}_1} dS_1 - \vec{\tau}^{\hat{e}_2} dS_2 - \vec{\tau}^{\hat{e}_3} dS_3 = 0$$

• Ou seja, à medida que se reduz o volume ocupado pelo tetraedro da figura, as contribuições da aceleração e das forças de volume irão reduzir-se mais rapidamente do que as forças de superfície, de tal modo que:

$$d\vec{F} = \vec{\tau}^{\hat{e}_1} dS_1 + \vec{\tau}^{\hat{e}_2} dS_2 + \vec{\tau}^{\hat{e}_3} dS_3$$

$$dF_i = \tau_i^{\hat{e}_1} dS_1 + \tau_i^{\hat{e}_2} dS_2 + \tau_i^{\hat{e}_3} dS_3$$
 Em notação de tensores

Escrita explicitamente, a equação fica:

$$dF_1 = \tau_1^{\hat{e}_1} dS_1 + \tau_1^{\hat{e}_2} dS_2 + \tau_1^{\hat{e}_3} dS_3$$

$$dF_2 = \tau_2^{\hat{e}_1} dS_1 + \tau_2^{\hat{e}_2} dS_2 + \tau_2^{\hat{e}_3} dS_3$$

$$dF_3 = \tau_3^{\hat{e}_1} dS_1 + \tau_3^{\hat{e}_2} dS_2 + \tau_3^{\hat{e}_3} dS_3$$

- A força sobre um elemento de superfície arbitrário pode ser escrita como uma combinação linear de três vetores básicos de tensão, um para cada eixo de coordenadas.
- ullet São necessárias nove componentes $au_i^{\hat{e}_j}$ para representar o efeito de $dec{F}$ sobre a superfície.
- ullet As nove componentes designam-se por σ_{ij} ($\sigma_{ij}= au_i^{\hat{e}_j}$). Ou seja:

$$dF_{1} = \sigma_{11}dS_{1} + \sigma_{12}dS_{2} + \sigma_{13}dS_{3}$$

$$dF_{2} = \sigma_{21}dS_{1} + \sigma_{22}dS_{2} + \sigma_{23}dS_{3}$$

$$dF_{3} = \sigma_{31}dS_{1} + \sigma_{32}dS_{2} + \sigma_{33}dS_{3}$$

$$Em notação de tensores$$

• As áreas dS_1 , dS_2 e dS_3 são as projeções da área dS, originando os planos BPC, APC e APB da figura, perpendiculares aos eixos coordenados: $dS_1 = dS \cdot \cos(\sphericalangle(\hat{n}, \hat{e}_1))$, $dS_2 = dS \cdot \cos(\sphericalangle(\hat{n}, \hat{e}_2))$ e $dS_3 = dS \cdot \cos(\sphericalangle(\hat{n}, \hat{e}_3))$. Ou seja:

$$dS_1 = n_1 dS$$

$$dS_2 = n_2 dS \longrightarrow dS_j = n_j dS$$

$$dS_3 = n_3 dS$$

• Então:

al é
$$\hat{n}$$
.
$$\tau_1^{\hat{n}} = \sigma_{11}n_1 + \sigma_{12}n_2 + \sigma_{13}n_3$$
$$\tau_1^{\hat{n}} = \sigma_{11}n_1 + \sigma_{12}n_2 + \sigma_{13}n_3$$

$$\tau_{1}^{\hat{n}} = \sigma_{11}n_{1} + \sigma_{12}n_{2} + \sigma_{13}n_{3}$$

$$\tau_{2}^{\hat{n}} = \sigma_{21}n_{1} + \sigma_{22}n_{2} + \sigma_{23}n_{3}$$

$$\tau_{3}^{\hat{n}} = \sigma_{31}n_{1} + \sigma_{32}n_{2} + \sigma_{33}n_{3}$$

• As nove componentes $\tau_i^{\hat{e}_j}$ formam um tensor de 2ª ordem, σ_{ij} , denominado de **tensor das tensões**, a partir do qual pode ser determinada a tensão numa superfície geral do corpo.

- Significado Físico da componentes do tensor das tensões.
- As três componentes diagonais do tensor das tensões, σ_{11} , σ_{22} e σ_{33} , atuam perpendicularmente (normal) aos respetivos planos de coordenadas, são chamadas de tensões normais.
- As seis tensões não diagonais do tensor, σ_{12} , σ_{21} , σ_{23} , σ_{32} , σ_{31} e σ_{13} , tangenciais aos planos coordenados, são denominadas de tensões de cisalhamento.
- A tensão de tração é considerada positiva e aponta ao longo da direção positiva das coordenadas. As tensões de compressão são negativas.
- As unidades de tensão são em Newtons por metro quadrado (N/m²) no sistema SI. Um Newton por metro quadrado é denominado de Pascal.
- O primeiro subscrito indica o plano de coordenadas no qual a tensão atua e o segundo a direção para onde aponta.
- Exemplos:

- Aplicada na superfície cuja normal é \hat{e}_2 (plano x_1 - x_3 ou x-z) - Aponta na direção de x_2 (eixo dos yy).

- Aplicada na superfície cuja normal é \hat{e}_1 (plano x_2 - x_3 ou y-z) - Aponta na direção de x_2 (eixo dos yy).

• A pressão num ponto é definida como: $P = -\frac{\sigma_{11} + \sigma_{22} + \sigma_3}{3}$

• Uma vez que $\sigma_{11}+\sigma_{22}+\sigma_{33}$ é o traço de σ_{ij} , então P é invariante e não depende do sistema de coordenadas

- Equilíbrio.
- No equilíbrio o corpo encontra-se em repouso. Obedecendo às condições:
 - A resultante das forças é nula
 - A resultante dos torques é nula
- ullet Podem existir forças de volume $ec{f}_V$ e de superfície (cujo campo de tensões é dado por σ_{ij}).
- ullet É definida uma força por unidade de volume, que é a densidade de força resultante $ec{f}_V^{\,R}.$

$$\int_{V} f_{Vi}^{R} \ dV = \int_{V} f_{Vi} \ dV + \oint_{S} \sigma_{ij} \ n_{j} dS$$

$$\int_{V} f_{Vi}^{R} \ dV = \int_{V} f_{Vi} \ dV + \int_{V} \sigma_{ij,j} dV$$
Aplicando o teorema de Gauss:

• Logo:
$$\int_V f_{Vi}^R dV = \int_V (f_{Vi} + \sigma_{ij,j}) dV$$
 \longrightarrow $f_{Vi}^R = f_{Vi} + \sigma_{ij,j}$ Densidade de força resultante

ullet No equilíbrio, a resultante das forças é zero em cada ponto => $f_{Vi}^R=0$. Logo:

$$\boxed{f_{Vi}+\sigma_{ij,j}=0}$$
 ou $\boxed{f_{Vi}+rac{\partial\sigma_{ij}}{\partial x_j}=0}$ Condição de equilíbrio

- Equilíbrio.
- Por outro lado, a resultante dos torques é zero. Considere-se o exemplo da figura abaixo.
- A força tangencial na face perpendicular x_1 e a apontar para x_2 (σ_{12}) tenderia a fazer rodar o elemento de volume para a direita.
- A força tangencial na face perpendicular x_2 e a apontar para x_1 (σ_{12}) tenderia a fazer rodar o elemento de volume para a esquerda.
- No equilíbrio os torques correspondentes as estas forças compensam-se, de tal modo que se obtém a equação correspondente ao equilíbrio:

$$\sigma_{12} = \sigma_{21}$$

• Pelo mesmo tipo de argumento pode-se concluir também:

$$\sigma_{13} = \sigma_{31} \qquad \qquad \sigma_{23} = \sigma_{32}$$

- ullet Assim, o tensor das tensões é simétrico, ou seja: $igg(\sigma_{ij} = \sigma_{ji}igg)$
- σ_{ii} tem valores próprios reais.
- Em vez de 9, há apenas 6 valores independentes do tensor :

$$\sigma_{ij} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}$$

