Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	tion	ı :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)										'	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/												1.1

ÉVALUATION COMMUNE
CLASSE: Première
EC : □ EC1 ⊠ EC2 □ EC3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
\square Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 5

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiple (QCM). Pour chacune des questions, une seule des réponses proposées est exacte. Indiquer sur la copie le numéro de la question ainsi que la réponse choisie. Aucune justification n'est attendue.

Une réponse juste rapporte un point, une réponse fausse ou l'absence de réponse n'enlèvent pas de point.

QUESTION 1:

Dans un repère du plan, la droite (d) a pour équation : 2x - 3y + 1 = 0. Un vecteur directeur de la droite (d) est :

a)
$$\vec{u}$$
 (2; -3)

b)
$$\vec{v}$$
 (3; 2)

c)
$$\vec{w}$$
 (-3;1)

b)
$$\vec{v}$$
 (3;2) c) \vec{w} (-3;1) d) \vec{r} $\left(1;\frac{3}{2}\right)$

QUESTION 2:

Dans un repère du plan, la droite (d) a pour équation : 2x - 3y + 1 = 0. Un vecteur normal à la droite (d) est :

a)
$$\vec{u}$$
 (2; -3)

b)
$$\vec{v}$$
 (3;2)

c)
$$\vec{w}$$
 (-3; 1) d) \vec{r} $\left(1; \frac{3}{2}\right)$

d)
$$\overrightarrow{r}$$
 $\left(1; \frac{3}{2}\right)$

QUESTION 3:

On donne trois points distincts : A, B et C.

Les points D et E sont tels que $\overrightarrow{EB} = \overrightarrow{BA}$ et $\overrightarrow{ED} = 2 \times \overrightarrow{BC}$. On a :

a) A est le milieu de [EB]

b) B est le milieu de [ED]

c) C est le milieu de [AD]

d) D et le milieu de [AC]

QUESTION 4:

Soit x un nombre réel. Dans un repère orthonormé, les vecteurs $\vec{u}(-x+4;7)$ et $\vec{v}(9; 2x-5)$ sont orthogonaux lorsque x est égal à :

a)
$$\frac{1}{5}$$

c)
$$-\frac{1}{5}$$

QUESTION 5:

Dans un repère orthonormé, on considère les points A(-1;-2), B(2;0), C(3;-1) et D(-3;4). Alors $\overrightarrow{AC} \cdot \overrightarrow{BD}$ est égal à :

a)
$$-16$$

d)
$$-24$$

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tion	n :			
Liberté · Égalité · Fraternité RÉPLINI JOHE FRANÇAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Exercice 2 (5 points)

À partir d'un premier segment de $2\,\mathrm{mm}$, on ajoute successivement un nouveau segment mesurant $150\,\%$ de la longueur du précédent.

Pour tout entier naturel $n \geq 1$, on désigne par u_n la longueur, en mm, du n-ième segment. Ainsi $u_1 = 2$ et $u_2 = 3$.

- **1.** Déterminer u_3 et u_4 .
- **2.** Pour tout entier naturel n supérieur à 1, exprimer u_{n+1} en fonction de u_n . En déduire la nature de la suite (u_n) .
- **3.** Pour tout entier naturel $n \ge 1$, exprimer u_n en fonction de n.
- 4. On cherche à déterminer à partir de combien de segments la longueur totale dépasse 1 mètre. On réalise pour cela un programme écrit en langage Python.
 Recopier et compléter sur la copie ce programme pour qu'il affiche le nombre attendu de segments.

```
i = 1
u = 2
longueur = 2

while longueur < 1000 :
    i = ...
    u = ...
    longueur = ...

print(i)</pre>
```

5. Ce programme affiche 14.

Déterminer, par le calcul, la longueur de la spirale formée des 14 premiers segments.

Arrondir le résultat au mm.

Exercice 3 (5 points)

Un libraire dispose d'un stock de magazines. On sait que 40 % des magazines provient d'un fournisseur A et le reste d'un fournisseur B.

Il constate que 91 % des magazines reçus sont vendus dans la semaine.

Il constate également que 85 % des magazines provenant du fournisseur ${\cal A}$ sont vendus dans la semaine.

Le responsable des achats prend au hasard un magazine dans le stock. On considère les évènements suivants :

A: « le magazine provient du fournisseur A »

B: « le magazine provient du fournisseur B »

S: « le magazine est vendu dans la semaine »

Pour tout événement E, on note \bar{E} l'événement contraire de E.

Pour tout événement E et F où F est un événement de probabilité non nulle, la probabilité de E sachant F est notée $P_F(E)$.

- 1. Quelle est la probabilité que le magazine provienne du fournisseur B?
- **2.** On note $P_B(S) = x$, $x \in [0; 1]$. Recopier et compléter sur la copie avec les trois valeurs demandées l'arbre pondéré ci-dessous traduisant la situation :

- **3.** Calculer la probabilité que le magazine choisi au hasard provienne du fournisseur A et qu'il soit vendu dans la semaine.
- **4.** Démontrer que 0.34 + 0.6x = 0.91. En déduire que $P(B \cap S) = 0.57$.
- **5.** Le magazine choisi est vendu dans la semaine. Calculer la probabilité qu'il provienne du fournisseur B. En donner sa valeur arrondie à 10^{-3} .

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE NÉ(e) le :	(Les no	uméro	s figure	ent sur	la con	vocati	on.)]									1.1

Exercice 4 (5 points)

Soit g la fonction définie sur l'intervalle [-5; 5] par :

$$g(x) = e^x - x + 1$$

- **1.** On admet que g est dérivable sur l'intervalle [-5;5] et on note g' sa fonction dérivée. Calculer g'(x).
- **2.** Étudier les variations de la fonction g sur l'intervalle [-5; 5].
- **3.** Démontrer que g est strictement positive sur [-5;5], c'est-à-dire que :

pour tout
$$x \in [-5; 5], g(x) > 0$$
.

Soit f la fonction définie sur [-5; 5] par :

$$f(x) = x + 1 + \frac{x}{e^x}$$

On appelle C_f sa courbe représentative dans un repère du plan.

On admet que f est dérivable sur l'intervalle [-5;5] et on note f' sa fonction dérivée.

4. Démontrer que pour tout réel x de [-5; 5],

$$f'(x) = \frac{1}{e^x} \times g(x)$$

En déduire les variations de f sur l'intervalle [-5; 5].

5. Déterminer l'équation de la tangente à C_f au point d'abscisse 0.