

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi) Department of Mathematics

<u>UNIT-5: NUMERICAL METHODS</u> <u>TUTORIAL SHEET-1</u>

Objective Type Questions:

- 1. $\nabla^2(y_1)$ is ______
- 2. In a Polynomial of n^{th} degree $(n + 1)^{th}$ forward differences will be
- 3. Given a set of points (x_i, y_i) . For conducting Interpolation using Newton Gregory formulae x values should be ______.
- 4. In terms of backward difference $\Delta^2 y_3$ is
- 5. Given that x : 10 20 30 40

y:100 39 14 -1

The process of finding y at x = 60 is called _____.

- 6. The Lagrange's Interpolating polynomial which takes the values (x_i, y_i) for i = 0,
 - 1, 2, 3 will be ______.
- 7. If $f(x) = 3x^3 2x^2 + 1$, then $\Delta^3 f(x) = \underline{\hspace{1cm}}$.
- 8. If $y = x^2 2x + 2$, taking interval of differencing as unity, then $\Delta^2 y =$
- 9. The nth difference of a polynomial of degree n is ______.

Answer the following:

1. Using Newton – Gregory Interpolation formulae, estimate f (0.12) from the following data.

X	0.10	0.15	0.20	0.25	0.30	
f(x)	0.1003	0.1511	0.2027	0.2553	0.3093	

2. Apply Newton's backward difference interpolation formula to find f(7.5) from the following table:

10110 1111	5	• •						
X	1	2	3	4	5	6	7	8
y = f(x)	1	8	27	64	125	216	343	512

3. Use the Lagrange's interpolation formula to estimate f(2.5) from the following data:

X	1	2	3	5	8
f(x)	2	3	6	9	13

4. Using Lagrange's formula find the form of the function y(x) from the table.

X	0	1	3	4
V	-12	0	12	24

RV COLLEGE OF ENGINEERING (An Autonomous Institution Affiliated to VTU, Belagavi) Department of Mathematics

5. Fit a cubic polynomial to the following data using suitable interpolation formula.

X	0	1	2	3
f(x)	-2	2	12	34

6. Using Newton – Gregory Interpolation formulae, estimate f (0.12) from the following data.

	X	0.10	0.15	0.20	0.25	0.30
Ī	f(x)	0.1003	0.1511	0.2027	0.2553	0.3093

7. Apply Newton's backward difference interpolation formula to find (7.5) from the following table:

X	1	2	3	4	5	6	7	8
y = f(x)	1	8	27	64	125	216	343	512

RV COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to VTU, Belagavi) **Department of Mathematics**

<u>UNIT-5: NUMERICAL METHODS</u>

TUTORIAL SHEET-2

1. Find y'(0) and y''(0) from the following table:

	7 ()		0			
x:	0	1	2	3	4	5
y:	4	8	15	7	6	2

- 2. Given $\sin 0^{\circ} = 0.000$, $\sin 10^{\circ} = 0.1736$, $\sin 20^{\circ} = 0.3420$, $\sin 30^{\circ} = 0.5000$, $\sin 40^{\circ} = 0.5000$ 0.6428, find the numerical value of $\frac{dy}{dx}$ at $x = 10^o$ and $\frac{d^2y}{dx^2}$ at $x = 20^o$ 3. The following data corresponding values of pressure and specific volume of a superheated
- steam.

v:	2	4	6	8	10
p:	105	42.7	25.3	16.7	13

Find the rate of change of (i) pressure with respect to volume when v=2

- (ii) volume with respect to pressure when p=105.
- 4. A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of the time t second.

1110 1 0 07 1101							
t:	0	0.2	0.4	0.6	0.8	1.0	1.2
θ :	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity and the angular acceleration of the rod, when t=1.0 second.