

مبانی یادگیری عمیق

مدرس: محمدرضا محمدی

یادگیری عمیق

- یادگیری عمیق به دنبال یافتن یک نگاشت از ورودیها به خروجیهای مطلوب است
 - این یادگیری از طریق مشاهده نمونههای بسیار زیاد از ورودیها و خروجیها حاصل میشود

• نیاز است تا وزنهای تمام لایههای شبکه به گونهای تنظیم شوند که بتواند ورودیهای نمونه را به خروجیهای مربوطه نگاشت کند

یادگیری عمیق

• تابع ضرر (تابع هدف) اندازه گیری می کند که خروجی های شبکه چه مقدار به خروجی های مطلوب نزدیک هستند

یادگیری عمیق

• با استفاده از بازخورد سیگنال تابع ضرر، مقدار وزنهای شبکه در جهت کاهش تابع ضرر برای نمونه فعلی کمی تنظیم میشود

• به یک بهینهساز مناسب نیاز داریم

پیش از یادگیری عمیق

Practical Deep Learning: A Python-Based Introduction R. Kneusel, 2021.

- یادگیری عمیق همواره بهترین ابزار برای حل مسئله مورد نظر ما نیست ممکن است داده کافی برای آموزش مناسب شبکههای عمیق در اختیار نباشد
 - گاهی یک مسئله با الگوریتمهای دیگر بهتر حل میشود
- در ادامه روش مدلسازی احتمالی را بررسی میکنیم تا مروری بر نظریه احتمالات داشته باشیم

• بخشهایی از دانش که ما به آنها دسترسی نداریم، متغیرهای غیرقابل مشاهده نامیده میشوند

• در پرتاب سکه، تنها متغیر قابل مشاهده نتیجه پرتاب سکه (شیر یا خط) است

- آن را به عنوان یک متغیر تصادفی باینری تعریف می کنیم

- فرض کنید X=1 نشان دهنده شیر آمدن سکه و X=1 نشان دهنده خط آمدن باشد

$$P(X = 1) = p_0$$

$$P(X = 0) = 1 - P(X = 1) = 1 - p_0$$

مدلسازى احتمالي

- به عنوان یک مثال ساده، فرض کنید دو جعبه به رنگهای آبی و قرمز داریم
- در جعبه آبی ۱ توپ سبز و ۶ توپ نارنجی قرار دارد و در جعبه قرمز ۳ توپ سبز و ۱ توپ نارنجی
- به صورت تصادفی یکی از جعبهها را انتخاب میکنیم و از درون آن به صورت تصادفی یک توپ را بر میداریم

$$Box = \{red, blue\}$$
 $Ball = \{green, orange\}$

- فرض کنید جعبه قرمز با احتمال ۴۰٪ انتخاب میشود
 - احتمال آنکه یک توپ سبز انتخاب شود چقدر است؟
- اگر بدانیم یک توپ نارنجی انتخاب شده است، احتمال آنکه جعبه انتخاب شده آبی باشد چقدر است؟

$$P(Box = red) = 0.4$$

$$P(Box = blue) = 0.6$$

$$Box = \{red, blue\}$$

$$Ball = \{green, orange\}$$

• برای بدست آوردن قواعد احتمال، یک مثال که شامل دو متغیر تصادفی X و Y است را در نظر بگیرید

$$X = \{x_i \text{ for } i = 1, 2, ..., M\}$$

 $Y = \{y_j \text{ for } j = 1, 2, ..., L\}$

 y_j احتمال آنکه متغیر تصادفی X برابر با x_i و X برابر با با: باشد، احتمال توام (joint) نامیده می شود و برابر است با:

$$n_{ij}$$

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

• احتمال آنکه مقدار X برابر با x_i باشد مستقل از آنکه Y چه مقداری دارد احتمال حاشیهای (marginal) نامیده می شود و برابر است با:

$$P(X = x_i) = \frac{c_i}{N} = \frac{\sum_j n_{ij}}{N} = \sum_{j=1}^{L} P(X = x_i, Y = y_j)$$

• قاعده جمع احتمال

 $X=x_i$ برای $Y=y_j$ برای (conditional) برای $Y=y_j$ به شرط

$$P(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \frac{c_i}{N}$$

$$= P(Y = y_j | X = x_i)P(X = x_i)$$

• قاعده ضرب احتمال

مدلسازى احتمالي

• قاعده جمع:

• قاعده ضرب:

$$= P(Y,X) = P(X|Y)P(Y)$$

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

• تئورى Bayes:

- فرض کنید جعبه قرمز با احتمال ۴۰٪ انتخاب میشود
 - احتمال آنکه یک توپ سبز انتخاب شود چقدر است؟
- اگر بدانیم یک توپ نارنجی انتخاب شده است، احتمال آنکه جعبه انتخاب شده آبی باشد چقدر است؟

$$Box = \{red, blue\}$$

$$Ball = \{green, orange\}$$

$$P(Box = red) = 0.4$$

$$P(Box = blue) = 0.6$$

• احتمال آنکه یک توپ سبز انتخاب شود چقدر است؟

$$P(Ball = green) = P(green|blue)P(blue) + P(green|red)P(red) = \frac{6}{10}\frac{3}{4} + \frac{4}{10}\frac{1}{4} = \frac{11}{20}$$

$$P(Ball = orange) = 9/20$$

$$P(Ball = green | Box = red) = 2/8$$

$$P(Ball = green|Box = blue) = 3/4$$

$$P(Box = red) = 0.4$$

$$P(Box = blue) = 0.6$$

مدلسازى احتمالي

• اگر بدانیم یک توپ نارنجی انتخاب شده است، احتمال آنکه جعبه انتخاب شده آبی باشد چقدر است؟

$$P(Box = blue | Ball = orange) = \frac{P(orange | blue)P(blue)}{P(orange)} = \frac{\frac{1}{4} \frac{6}{10}}{\frac{6}{8} \frac{4}{10} + \frac{1}{4} \frac{6}{10}} = \frac{1}{3}$$

$$P(Box = red | Ball = orange) = \frac{2}{3}$$

$$P(Box = red) = 0.4$$

$$P(Box = blue) = 0.6$$

مدلسازى احتمالي

- چند مفهوم بسیار هم از تئوری Bayes قابل استخراج است:
- اگر از ما پرسیده شود کدام جعبه انتخاب شده است قبل از آنکه توپ برداشته شده مشخص شود
 - است P(Box) است حداکثر اطلاعات ما همان
 - به P(Box) احتمال پیشین (prior) گفته میشود
 - اگر بدانیم توپ برداشته شده نارنجی است
 - مىتوانىم با استفاده از تئورى بىز P(Box|Ball) را محاسبه كنيم
 - به P(Box|Ball) احتمال پسین (posterior) گفته می شود •

$$P(Box = red) = 0.4$$

$$P(Box = blue) = 0.6$$

$$P(red|orange) = 2/3$$

$$P(blue|orange) = 1/3$$

Bayes دستهبند

• دستهبند Bayes کلاسی را انتخاب می کند که بیشترین احتمال پسین را داشته باشد

$$P(C_i|\mathbf{x}) = \frac{P(\mathbf{x}|C_i)P(C_i)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|C_i)P(C_i)}{\sum_{k=1}^K P(\mathbf{x}|C_k)P(C_k)}$$

choose C_i if $P(C_i|\mathbf{x}) = \max_k P(C_k|\mathbf{x})$

Naïve Bayes

• یک دستهبند مبتنی بر تئوری Bayes است که فرض میکند ویژگیها مستقل از هم و دارای توزیع نرمال هستند

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(X) = \prod P(X^k)$$

$$P(X|Y) = \prod P(X^k|Y)$$

Person	height (feet)	weight (lbs)	foot size(inches)
male	6	180	12
male	5.92 (5'11")	190	11
male	5.58 (5'7")	170	12
male	5.92 (5'11")	165	10
female	5	100	6
female	5.5 (5'6")	150	8
female	5.42 (5'5")	130	7
female	5.75 (5'9")	150	9

- مسئله: تشخیص مرد یا زن بودن یک انسان
 - ویژگیها: قد، وزن و اندازه پا

Person	height (feet)	weight (lbs)	foot size(inches)
male	6	180	12
male	5.92 (5'11")	190	11
male	5.58 (5'7")	170	12
male	5.92 (5'11")	165	10
female	5	100	6
female	5.5 (5'6")	150	8
female	5.42 (5'5")	130	7
female	5.75 (5'9")	150	9

Person	height (feet)	weight (lbs)	foot size(inches)
sample	6	130	8

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033×10^{-2}	176.25	1.2292 × 10 ²	11.25	9.1667 × 10 ⁻¹
female	5.4175	9.7225×10^{-2}	132.5	5.5833 × 10 ²	7.5	1.6667

Person	height (feet)	weight (lbs)	foot size(inches)	
sample	6	130	8	

$$\begin{aligned} & \text{posterior (male)} = \frac{P(\text{male}) \, p(\text{height} \mid \text{male}) \, p(\text{weight} \mid \text{male}) \, p(\text{foot size} \mid \text{male})}{evidence} \\ & \text{posterior (female)} = \frac{P(\text{female}) \, p(\text{height} \mid \text{female}) \, p(\text{weight} \mid \text{female}) \, p(\text{foot size} \mid \text{female})}{evidence} \\ & P(\text{male}) = 0.5 \\ & p(\text{height} \mid \text{male}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(6-\mu)^2}{2\sigma^2}\right) \approx 1.5789, \end{aligned}$$

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033×10^{-2}	176.25	1.2292 × 10 ²	11.25	9.1667 × 10 ⁻¹
female	5.4175	9.7225 × 10 ⁻²	132.5	5.5833 × 10 ²	7.5	1.6667

Person	height (feet)	weight (lbs)	foot size(inches)
sample	6	130	8

$$\begin{aligned} \text{posterior (male)} &= \frac{P(\text{male}) \, p(\text{height} \mid \text{male}) \, p(\text{weight} \mid \text{male}) \, p(\text{foot size} \mid \text{male})}{evidence} \\ \text{posterior (female)} &= \frac{P(\text{female}) \, p(\text{height} \mid \text{female}) \, p(\text{weight} \mid \text{female}) \, p(\text{foot size} \mid \text{female})}{evidence} \\ P(\text{male}) &= 0.5 \\ p(\text{height} \mid \text{male}) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(6-\mu)^2}{2\sigma^2}\right) \approx 1.5789, \\ p(\text{weight} \mid \text{male}) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(130-\mu)^2}{2\sigma^2}\right) = 5.9881 \cdot 10^{-6} \\ p(\text{foot size} \mid \text{male}) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(8-\mu)^2}{2\sigma^2}\right) = 1.3112 \cdot 10^{-3} \end{aligned}$$

Person	height (feet)	weight (lbs)	foot size(inches)	
sample	6	130	8	

$$posterior (male) = \frac{P(male) p(height \mid male) p(weight \mid male) p(foot size \mid male)}{evidence}$$

$$P(female) p(height \mid female) p(weight \mid female) p(foot size \mid female)$$

$$\text{posterior (female)} = \frac{P(\text{female}) \, p(\text{height} \mid \text{female}) \, p(\text{weight} \mid \text{female}) \, p(\text{foot size} \mid \text{female})}{evidence}$$

posterior numerator (male) = their product = $6.1984 \cdot 10^{-9}$

posterior numerator (female) = their product = $5.3778 \cdot 10^{-4}$

Person	mean (height)	variance (height)	mean (weight)	variance (weight)	mean (foot size)	variance (foot size)
male	5.855	3.5033×10^{-2}	176.25	1.2292 × 10 ²	11.25	9.1667 × 10 ⁻¹
female	5.4175	9.7225×10^{-2}	132.5	5.5833 × 10 ²	7.5	1.6667