

Theoretische Grundlagen der Informatik

Tutorium 3

Institut für Kryntographie und Sicherheit

Induktive Beweise führen

- Formalia:
 - 1. Induktions an fang (i.d.R. n = 1)
 - 2. Induktionsvorraussetzung
 - 3. Induktionsschluss:
 - $n \rightarrow n + 1$ (Brauche ich auch $n 1 \implies I.A.$ anpassen)
 - Manchmal hilfreich: $n + 1 \rightarrow n$
 - Alle Fälle berücksichtigen!
- Induktion über Wortlänge (n = |w|)
- Induktion über Ableitungsschritte ($\alpha \implies {}^{n}\beta$)

Pumping Lemma

Sei L eine reguläre Sprache. Dann existiert eine Zahl $p \in \mathbb{N}$, sodass für jedes Wort $w \in L$ mit |w| > p eine Darstellung

$$w = xyz$$

existiert, so dass folgende Eigenschaften erfüllt sind:

- 1. $|y| > 0 \ (y \neq \varepsilon)$
- 2. $|xy| \le p$
- 3. Für alle $i \ge 0$ gilt: $xy^iz \in L$

Aufgabe 1

Gegeben sei die Sprache

 $\mathcal{L} = \{ w \in \{a, b\}^* \mid w \text{ enthält gleich viele } a \text{ wie } b \}.$

 Wie lautet das Pumping Lemma? Was genau muss man zeigen, falls man die Kontraposition des Pumping Lemmas verwenden will?

Aufgabe 1

Gegeben sei die Sprache

 $\mathcal{L} = \{ w \in \{a, b\}^* \mid w \text{ enthält gleich viele } a \text{ wie } b \}.$

- Wie lautet das Pumping Lemma? Was genau muss man zeigen, falls man die Kontraposition des Pumping Lemmas verwenden will?
- 2. Zeigen Sie mit Hilfe des Pumping Lemmas, dass L nicht regulär ist!
- 3. Zeigen Sie mit Hilfe des Pumping Lemmas, dass die Sprache $\mathcal{L}' = \{a^p \mid p \text{ Primzahl}\}$ nicht regulär ist.
- 4. Betrachten Sie nun die Sprache $\mathcal{L}'' = \{a, aab, aaab\}!$ Ist diese regulär? Falls ja, geben Sie einen endlichen Automaten an, der diese Sprache akzeptiert! Kann man mit dem Pumping Lemma zeigen, dass die Sprache regulär ist?

Chomsky-Normalform

Chomsky-Normalform

Eine CH-2-Grammatik $G = (\Sigma, \mathcal{V}, \mathcal{S}, \mathcal{R})$ ist in Chomsky-Normalform, wenn jede Produktion aus \mathcal{R} eine der folgenden Formen hat:

- lacksquare A o BC
- A → a
- $S \rightarrow \varepsilon$ (wenn $\varepsilon \in L$)

Wobei gilt A, B, $C \in \mathcal{V}$ und $a \in \Sigma$.

Für alle a ∈ Σ und für alle Produktionen, auf deren rechter Seite a vorkommt (außer für V → a, mit V ∈ V), wird jedes Vorkommen von a durch ein neues Nichtterminalsymbol A ersetzt und die Produktion A → a wird hinzugefügt.

Umwandlungsbeispiel (Schritt 1 von 4)

$$S \to XY$$

$$X \to aXb \mid Z \mid \varepsilon$$

$$Y \to ccY \mid \varepsilon$$

$$Z \to X$$

$$S \to XY$$

$$X \to AXB \mid Z \mid \varepsilon$$

$$Y \to CCY \mid \varepsilon$$

$$Z \to X$$

$$A \to a$$

$$B \to b$$

$$C \to c$$

 Für Produktionen mit mehr als zwei Variablen rechts werden neue Nichterminale eingeführt und dazu passende Produktionen hinzugefügt.

Umwandlungsbeispiel (Schritt 2 von 4)

$$S \to XY$$

$$X \to AXB \mid Z \mid \varepsilon$$

$$Y \to CCY \mid \varepsilon$$

$$Z \to X \qquad \Rightarrow$$

$$A \to a$$

$$B \to b$$

$$C \to c$$

$$S o XY$$
 $X o FB \mid Z \mid \varepsilon$
 $Y o GY \mid \varepsilon$
 $Z o X$
 $F o AX$
 $G o CC$
 $A o a$
 $B o b$
 $C o c$

3. Entfernen von Produktionen der Form $V \to \varepsilon$ für $V \in \mathcal{V}, v \neq \mathcal{S}$ \Rightarrow "Vorwegnahme" dieser Produktionen: Für jede Produktion mit einem der obigen V auf der rechten Seite wird eine neue Produktion ohne dieses V hinzugefügt.

Umwandlungsbeispiel (Schritt 3 von 4)

$$S \rightarrow XY$$

$$X \rightarrow FB \mid Z \mid \varepsilon$$

$$Y \rightarrow GY \mid \varepsilon$$

$$Z \rightarrow X$$

$$F \rightarrow AX$$

$$G \rightarrow CC$$

$$A \rightarrow a, B \rightarrow b, C \rightarrow c$$

$$S \rightarrow XY \mid X \mid Y \mid \varepsilon$$

$$X \rightarrow FB \mid Z \mid \varepsilon$$

$$Y \rightarrow GY \mid G \mid \varepsilon$$

$$Y \rightarrow GY \mid G \mid \varepsilon$$

$$Y \rightarrow GY \mid G \mid \varepsilon$$

$$A \rightarrow AX \mid A$$

4. Für Produktionen mit einer Variablen rechts werden Zyklen gesucht, für gefundene Zyklen werden alle Vorkommnisse aller Variablen des Zyklus durch einen Repräsentanten ausgetauscht. Danach werden triviale Produktionen entfernt.

Umwandlungsbeispiel (Schritt 4a von 4)

4. Alle Regeln, die rechts eine einzelne Variable haben, werden durch "Vorziehen" der Regeln eliminiert.

Außerdem wird ein neues Startsymbol eingeführt, falls eine Regel $\mathcal{S} \to \varepsilon$ existiert.

Umwandlungsbeispiel (Schritt 4b von 4)

$$S oup XY \mid X \mid Y \mid \varepsilon$$
 $X oup FB$
 $Y oup GY \mid G$
 $F oup AX$
 $G oup CC$
 $A oup a$
 $B oup b$
 $C oup c$
 $S' oup S \mid \varepsilon$
 $S oup XY \mid FB \mid GY \mid CC$
 $X oup FB$
 $Y oup GY \mid CC$
 $F oup AX$
 $G oup CC$
 $A oup a$
 $B oup b$
 $C oup c$

Umwandlung in Chomsky-Normalform (nach Skript)

- 1. Schritt: neues Startsymbol $S' \to S|_{\mathcal{E}}$
- 2. Schritt: Entfernen der ε-Produktionen
- 3. Schritt: Entfernen von Kettenregeln $z.B. A \rightarrow B, B \rightarrow c \implies A \rightarrow c$ x
- 4. Schritt: Überführen in Chomsky-Normalform
 - 4.1 Terminale ersetzen
 - 4.2 Regeln auf 2 Variablen 'kürzen'

Aufgabe 2

Gegeben sei die folgende Grammatik: $\mathcal{G} = (\mathcal{T}, \mathcal{V}, \textit{S}, \mathcal{P})$ mit

$$\mathcal{T} := \{a, b, c, d\}, \, \mathcal{V} := \{S, A, D, M\},$$

$$\mathcal{P} := \{S \rightarrow AMD \mid M, A \rightarrow AA \mid a, D \rightarrow DD \mid d, M \rightarrow bMc \mid \epsilon\}$$

- 1. Geben Sie die erzeugte Sprache an!
- 2. Wandeln Sie die gegebene kontextfreie Grammatik \mathcal{G} in eine äquivalente kontextfreie Grammatik \mathcal{G}' in Chomsky-Normalform um, indem sie jeden Schritt durch eine neue Grammatik beschreiben!

CYK Überblick

CYK ist ein Algorithmus, um das Wortproblem in CH-2 zu lösen. Um den Algorithmus anzuwenden, muss eine Grammatik in Chomsky-Normalform vorliegen.

Grundidee zur Überprüfung eines Wortes der Länge n:

- Wir betrachen $V_{i,j}$ = Menge der Nichtterminale, aus denen das Teilwort der Position i bis j abgeleitet werden kann
- Die Frage, ob $V_{i,j}$ ableitbar ist, lässt sich entscheiden durch Betrachten aller möglichen $V_{i,k}$ und $V_{k+1,j}$
- $V_{i,i}$ sind trivial
- Bottom-up lässt sich dadurch $V_{1,n}$ berechnen
- Ist $S \in V_{1,n}$, so lässt sich das Wort ableiten

CYK Beispiel

Gegeben sei die Grammatik $G = (\mathcal{T}, \mathcal{V}, \mathcal{S}, \mathcal{P})$ mit den folgenden Produktionen aus \mathcal{P} :

$$S \rightarrow AX \mid AB$$

 $X \rightarrow SB \mid AB$
 $A \rightarrow a$
 $B \rightarrow b$

- 1. Lässt sich der CYK-Algorithmus auf G anwenden?
- 2. Ist das Wort *aaabbb* in der Sprache $\mathcal{L}(G)$?

Aufgabe 2 Fortsetzung

Gegeben sei die folgende Grammatik: $\mathcal{G} = (\mathcal{T}, \mathcal{V}, \mathcal{S}, \mathcal{P})$ mit

$$\mathcal{T} := \{a, b, c, d\}, \ \mathcal{V} := \{S, A, D, M\},$$

$$\mathcal{P} := \{ S \rightarrow \textit{AMD} \mid \textit{M}, \textit{A} \rightarrow \textit{AA} \mid \textit{a}, \textit{D} \rightarrow \textit{DD} \mid \textit{d}, \textit{M} \rightarrow \textit{bMc} \mid \epsilon \}$$

- 1. Geben Sie die erzeugte Sprache an!
- 2. Wandeln Sie die gegebene kontextfreie Grammatik \mathcal{G} in eine äquivalente kontextfreie Grammatik \mathcal{G}' in Chomsky-Normalform um, indem sie jeden Schritt durch eine neue Grammatik beschreiben!
- Zeigen oder widerlegen Sie mit Hilfe des CYK-Algorithmus, ob die folgenden Wörter in der Sprache £ liegen, die durch die Grammatik G erzeugt wird!
 - 3.1 aabbccdd
 - 3.2 abbcc
 - 3.3 abcdd

Definition Kellerautomaten

Ein (nichtdeterministischer) **Kellerautomat** (NPDA bzw PDA, Pushdown Automaton) besteht aus $(Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$, wobei

- Q endliche Zustandsmenge
- lacksquare Σ endliches Eingabealphabet
- Γ endliches Stack-Alphabet
- lacksquare $q_0\in Q$ Anfangszustand
- $Z_0 \in \Gamma$ Initialisierung des Stacks
- $\delta: \mathbf{Q} \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathbf{2}^{\mathbf{Q} \times \Gamma^*}$
 - $\delta(q, a, Z) \subseteq \{(q, \gamma) : q \in Q, \gamma \in \Gamma^*\}$

■ $F \subseteq Q$ Menge der akzeptierenden Endzustände, $F = \emptyset$ ist möglich.

Zu Kellerautomaten

- Akzeptieren nach Eingabeende, wenn
 - der Stack leer ist oder
 - der Automat in einen akzeptierenden Zustand kommt.
- Sind im Allgemeinen nichtdeterministisch
- Man kann Endzustände auch aus der Definition weglassen und alternativ verlangen, dass der Automat genau bei leerem Keller akzeptiert.
- Man kann sogar alle Zustände bis auf einen weglassen und alles in die Kellerbelegung kodieren

Beispiel

$$M = (Q, \Sigma, \Gamma, q_0, Z_0, \delta, F)$$

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{\#, X\}$
- $Z_0 = #$
- $F = \{q_2\}$

Welche Sprache akzeptiert dieser Automat?

Aufgabe 3

Gegeben sei folgende Sprache für das Alphabet $\Sigma = \{a, b, c\}$:

$$\mathcal{L} = \{ w_1 w_2 \in \Sigma^* \mid w_1 \in \{a, b\}^*, w_2 \in \{b, c\}^*, \\ \#_a w_1 + \#_b w_1 = \#_b w_2 + \#_c w_2 \}$$

Hier gibt $\#_X w$ die Häufigkeit des Vorkommens eines Zeichens $x \in \Sigma$ in einem Wort $w \in \Sigma^*$ an.

- 1. Zeigen Sie, dass \mathcal{L} nicht regulär ist!
- 2. Geben Sie eine Chomsky-2-Grammatik an, die genau die Sprache $\mathcal L$ erzeugt!
- 3. Geben Sie einen Kellerautomaten \mathcal{M} an, der genau die Sprache \mathcal{L} erkennt! Zeichnen Sie den Zustandsübergangsgraphen für \mathcal{M} !

Bis zum nächsten Mal!

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ oder schreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme. Hierfür gelten die Bestimmungen der jeweiligen Urheber.