D001 Economic Analysis of Non-Standard Data Benjamin W. Arold

5. Unsupervised and Supervised Learning from Text

- Unsupervised Learning
 - ▶ algorithm discovers themes/patterns in text (or other high-dimensional data)
 - human interprets the results (e.g. inspect content of topics or clusters)

- Unsupervised Learning
 - ▶ algorithm discovers themes/patterns in text (or other high-dimensional data)
 - human interprets the results (e.g. inspect content of topics or clusters)
- Supervised Learning
 - pursuing a known goal, e.g., predicting whether a political speech is from a Democrat or a Republican
 - machine learns to replicate labels for new data points

- Unsupervised Learning
 - ▶ algorithm discovers themes/patterns in text (or other high-dimensional data)
 - human interprets the results (e.g. inspect content of topics or clusters)
- Supervised Learning
 - pursuing a known goal, e.g., predicting whether a political speech is from a Democrat or a Republican
 - machine learns to replicate labels for new data points
- Both strategies amplify human effort, each in different ways

- Unsupervised Learning
 - ▶ algorithm discovers themes/patterns in text (or other high-dimensional data)
 - human interprets the results (e.g. inspect content of topics or clusters)
- Supervised Learning
 - pursuing a known goal, e.g., predicting whether a political speech is from a Democrat or a Republican
 - machine learns to replicate labels for new data points
- Both strategies amplify human effort, each in different ways
- Distinctions are not clear-cut:
 - unsupervised learning models can be used in service of prediction or known goals
 - supervised learning models can be used to discover themes/patterns

1. What is the research question?

- 1. What is the research question?
- 2. Corpus and Data:
 - b obtain, clean, preprocess, and link
 - Produce descriptive visuals and statistics on the text and metadata

- 1. What is the research question?
- 2. Corpus and Data:
 - b obtain, clean, preprocess, and link
 - Produce descriptive visuals and statistics on the text and metadata
- 3. Unsupervised learning:
 - What are we trying to measure?

- 1. What is the research question?
- 2. Corpus and Data:
 - b obtain, clean, preprocess, and link
 - Produce descriptive visuals and statistics on the text and metadata
- 3. Unsupervised learning:
 - What are we trying to measure?
 - Select a model and train it.
 - Probe sensitivity to hyperparameters
 - Validate that the model is measuring what we want

- 1. What is the research question?
- 2. Corpus and Data:
 - b obtain, clean, preprocess, and link
 - Produce descriptive visuals and statistics on the text and metadata
- 3. Unsupervised learning:
 - What are we trying to measure?
 - Select a model and train it.
 - Probe sensitivity to hyperparameters
 - Validate that the model is measuring what we want
- 4. Empirical analysis
 - Produce statistics or predictions with the trained model
 - Answer the research question

Outline

Dimensionality Reduction

Topic Models

Supervised Learning
Overview
Regression / Regularization
Binary Classification
Multi-Class Models

- each row d represents a document, while each column w represents a word (or term more generally, e.g. n-grams).
 - ▶ A matrix entry $X_{[d,w]}$ quantifies the strength of association between a document and a word, generally its count or frequency

- each row d represents a document, while each column w represents a word (or term more generally, e.g. n-grams).
 - A matrix entry $X_{[d,w]}$ quantifies the strength of association between a document and a word, generally its count or frequency
- ightharpoonup each document/row $X_{[d,:]}$ is a distribution over terms
 - term vocabularies can be in the hundreds of thousands

- each row d represents a document, while each column w represents a word (or term more generally, e.g. n-grams).
 - A matrix entry $X_{[d,w]}$ quantifies the strength of association between a document and a word, generally its count or frequency
- ightharpoonup each document/row $X_{[d,:]}$ is a distribution over terms
 - term vocabularies can be in the hundreds of thousands
- \triangleright each word/column $X_{[:,w]}$ is a distribution over documents.
 - many interesting corpora have millions of documents

- each row d represents a document, while each column w represents a word (or term more generally, e.g. n-grams).
 - A matrix entry $X_{[d,w]}$ quantifies the strength of association between a document and a word, generally its count or frequency
- ightharpoonup each document/row $X_{[d,:]}$ is a distribution over terms
 - term vocabularies can be in the hundreds of thousands
- \triangleright each word/column $X_{[:,w]}$ is a distribution over documents.
 - many interesting corpora have millions of documents
- \rightarrow **X** often has billions of cells.

Distribution of Datasets

- ► Datasets are not distributed uniformly across the feature space
- ► They have a lower-dimensional latent structure – a manifold – that can be learned

"The Swiss Roll"

Distribution of Datasets

- ► Datasets are not distributed uniformly across the feature space
- ► They have a lower-dimensional latent structure – a manifold – that can be learned

"The Swiss Roll"

- Dimensionality reduction makes data more interpretable – for example by projecting down to two dimensions for visualization
- improves computational tractability
- can improve model performance

What dimension reductions have you already tried in this class?

PCA (principal component analysis)

► PCA computes the dimension in data explaining most variance.

```
from sklearn.decomposition import PCA
pca = PCA(n_components=10)
X_train_pca = pca.fit_transform(X_train)
```

PCA (principal component analysis)

► PCA computes the dimension in data explaining most variance.

```
from sklearn.decomposition import PCA
pca = PCA(n_components=10)
X_train_pca = pca.fit_transform(X_train)
```

 after the first component, subsequent components learn the (orthogonal) dimensions explaining most variance in dataset after projecting out first component

PCA and LSA

The document-term matrix \boldsymbol{X} can be reduced by projecting down to first principal component dimensions

- ► This is known as "latent semantic analysis"
- Distance metrics between observations (e.g. cosine similarity) are approximately preserved

PCA and LSA

The document-term matrix \boldsymbol{X} can be reduced by projecting down to first principal component dimensions

- ► This is known as "latent semantic analysis"
- Distance metrics between observations (e.g. cosine similarity) are approximately preserved
- PCA factors are not interpretable
 - For non-negative data (e.g. counts or frequencies), Non-negative Matrix Factorization (NMF) provides more interpretable factors than PCA

Outline

Dimensionality Reduction

Topic Models

Supervised Learning
Overview
Regression / Regularization
Binary Classification
Multi-Class Models

Topic Models in Economics/Social Science

- Core methods for topic models were developed in computer science and statistics
 - summarize unstructured text
 - use words within document to infer subject
 - useful for dimension reduction

Topic Models in Economics/Social Science

- Core methods for topic models were developed in computer science and statistics
 - summarize unstructured text
 - use words within document to infer subject
 - useful for dimension reduction
- Economists use topics as a form of measurement
 - how observed covariates drive trends in language
 - tell a story not just about what, but how and why

Topic Models in Economics/Social Science

- Core methods for topic models were developed in computer science and statistics
 - summarize unstructured text
 - use words within document to infer subject
 - useful for dimension reduction
- Economists use topics as a form of measurement
 - how observed covariates drive trends in language
 - tell a story not just about what, but how and why
 - ▶ topic models are more interpretable than other dimension reduction methods, such as PCA

Latent Dirichlet Allocation

- ► Each topic is a distribution over words
- ► Each document is a distribution over topics

Latent Dirichlet Allocation

- ► Each topic is a distribution over words
- ► Each document is a distribution over topics
- ▶ Input: $N \times M$ document-term count matrix X
- ► Like NMF, LDA works by factorizing *X* into:
 - ightharpoonup an $N \times K$ document-topic matrix
 - ightharpoonup an $K \times M$ topic-term matrix
- \triangleright Assume: there are K topics (tunable hyperparameter, use coherence)
- Unlike NMF, LDA is probabilistic:
 - Goal: Estimate the latent (hidden) topic structure that best explains the word co-occurrences in documents
 - Algorithm maximizes the likelihood of observed documents given the latent topic structure
 - Output: Estimates of probabilities that each word and each document are composed of each topic
 - ▶ LDA is a generative probabilistic model, meaning it assumes documents were generated by an underlying topic structure, and it tries to reverse-engineer that structure
 - Dirichlet priors: Hyperparameters for topics per document (alpha), and words per topic (beta)

Using an LDA Model

Once trained, can easily get topic proportions for a corpus

- ▶ for any document doesn't have to be in training corpus
- main topic is the highest-probability topic

Using an LDA Model

Once trained, can easily get topic proportions for a corpus

- ▶ for any document doesn't have to be in training corpus
- main topic is the highest-probability topic
- documents with highest share in a topic work as representative documents for the topic.

Using an LDA Model

Once trained, can easily get topic proportions for a corpus

- ▶ for any document doesn't have to be in training corpus
- ▶ main topic is the highest-probability topic
- documents with highest share in a topic work as representative documents for the topic.

Can then use the topic proportions as variables in a economics analysis.

 e.g., Catalinac (2016) shows that after a Japanese political reform that reduced intraparty competition, candidate platforms reduced pork-barrel policies and increased national ones

TABLE 1 A Summary of Common Assumptions and Relative Costs Across Different Methods of Discrete Text Categorization

A. Assumptions	Method				
	Reading	Human Coding	Dictionaries	Supervised Learning	Topic Model
Categories are known	No	Yes	Yes	Yes	No
Category nesting, if any, is known	No	Yes	Yes	Yes	No
Relevant text features are known	No	No	Yes	Yes	Yes
Mapping is known	No	No	Yes	No	No
Coding can be automated	No	No	Yes	Yes	Yes
B. Costs					
Preanalysis Costs					
Person-hours spent conceptualizing	Low	High	High	High	Low
Level of substantive knowledge	Moderate/High	High	High	High	Low
Analysis Costs					
Person hours spent per text	High	High	Low	Low	Low
Level of substantive knowledge	Moderate/High	Moderate	Low	Low	Low
Postanalysis Costs					
Person-hours spent interpreting	High	Low	Low	Low	Moderate
Level of substantive knowledge	High	High	High	High	High

Recommended: read this part of Quinn, Monroe, Colaresi, Crespin, and Radev (2010).

Structural Topic Model = LDA + Metadata

Roberts, Stewart, and Tingley

STM provides two ways to include contextual information:

- ► Topic prevalence can vary by metadata
 - e.g. Republicans talk about military issues more then Democrats

Structural Topic Model = LDA + Metadata

Roberts, Stewart, and Tingley

STM provides two ways to include contextual information:

- ► Topic prevalence can vary by metadata
 - e.g. Republicans talk about military issues more then Democrats
- ► Topic content can vary by metadata
 - e.g. Republicans talk about military issues more patriotically than Democrats

Structural Topic Model = LDA + Metadata

Roberts, Stewart, and Tingley

STM provides two ways to include contextual information:

- ► Topic prevalence can vary by metadata
 - e.g. Republicans talk about military issues more then Democrats
- ► Topic content can vary by metadata
 - e.g. Republicans talk about military issues more patriotically than Democrats
- Structural topic model is not a prediction model:
 - it will tell you which topics or features correlate with an outcome, but it will not provide an in-sample or out-of-sample prediction for an outcome
- ▶ It actually uses another distribution of the priors (not Dirichlet) such that without covariates it replicates the correlated topic model (Blei and Lafferty, 2005)

Recent Advances in Topic Model

- ► Keyword-Assisted topic model (Eshima, Imai, and Sasaki, 2024)
 - allows semi-supervised creation of topics
 - input seed dictionaries and labeled topics

Recent Advances in Topic Model

- Keyword-Assisted topic model (Eshima, Imai, and Sasaki, 2024)
 - allows semi-supervised creation of topics
 - input seed dictionaries and labeled topics
- ▶ Problems with unstructured data and casual inference (Battaglia et al., 2024)
 - shows that two-steps strategy leads to invalid inference
 - propose solutions with bias correction and a one-step strategy

Outline

Dimensionality Reduction

Topic Models

Supervised Learning
Overview
Regression / Regularization
Binary Classification
Multi-Class Models

What is supervised machine learning?

Machine

learning

Rules

Data

Answers

- ► In classical computer programming, humans input the rules and the data, and the computer provides answers.
- ▶ In machine learning, humans input the data and the answers, and the computer learns the rules.

What do ML Algorithms do? Fit a function to data points

Figure 4-14. High-degree Polynomial Regression

What do ML Algorithms do? Minimize a cost function

➤ A typical cost function (or loss function) for regression problems is Mean Squared Error (MSE):

$$MSE(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} (h(x_i; \theta) - y_i)^2$$

- $ightharpoonup n_D$, the number of rows/observations
- \triangleright x, the matrix of predictors, with row x_i
- \triangleright y, the vector of outcomes, with item y_i
- $h(x_i; \theta) = \hat{y}$ the model prediction (hypothesis)

The data (x, y) are taken as given, and the ML algorithm searches for parameters θ to minimize the cost function

Loss functions, more generally

- ▶ The loss function $L(\hat{y}, y)$ assigns a score based on prediction and truth:
 - ► Should be bounded from below, with the minimum attained only for cases where the prediction is correct
- ► The average loss for the test set is

$$\mathcal{L}(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \theta), \boldsymbol{y}_i)$$

ightharpoonup The estimated parameter matrix θ solves

$$\hat{ heta} = rg\min_{ heta} \mathcal{L}(heta)$$

Linear Regression is Machine Learning

• Ordinary Least Squares Regression (OLS) assumes the functional form $f(x; \theta) = x_i' \theta$ and minimizes the mean squared error (MSE)

$$\min_{\hat{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} (x_i' \hat{\theta} - y_i)^2$$

Linear Regression is Machine Learning

▶ Ordinary Least Squares Regression (OLS) assumes the functional form $f(x; \theta) = x_i'\theta$ and minimizes the mean squared error (MSE)

$$\min_{\hat{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} (x_i' \hat{\theta} - y_i)^2$$

This minimand has a closed form solution

$$\hat{\theta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$$

most machine learning models do **not** have a closed form solution \rightarrow use numerical optimization instead (gradient descent).

$$MSE(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} (h(\theta; \boldsymbol{x}_i) - y_i)^2$$

 \triangleright The partial derivative for feature j is

$$\frac{\partial \mathsf{MSE}}{\partial \theta_j} = \frac{2}{n_D} \sum_{i=1}^{n_D} (\underbrace{h(\theta; \mathbf{x}_i) - y_i}_{\mathsf{error for this obs}}) \underbrace{\frac{\partial h(\theta; \mathbf{x}_i)}{\partial \theta_j}}_{\mathsf{how } \theta_j \mathsf{ shifts } h(\cdot)}$$

ightharpoonup estimates how changing θ_j would reduce the error across the whole dataset

$$MSE(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} (h(\theta; \mathbf{x}_i) - y_i)^2$$

 \triangleright The partial derivative for feature j is

$$\frac{\partial \mathsf{MSE}}{\partial \theta_j} = \frac{2}{n_D} \sum_{i=1}^{n_D} (\underbrace{h(\theta; \mathbf{x}_i) - y_i}_{\mathsf{error for this obs}}) \underbrace{\frac{\partial h(\theta; \mathbf{x}_i)}{\partial \theta_j}}_{\mathsf{how } \theta_j \mathsf{ shifts } h(\cdot)}$$

- ightharpoonup estimates how changing θ_j would reduce the error across the whole dataset
- ► The *gradient* ∇ gives the vector of these partial derivatives for all features:

$$abla_{ heta}^{ ext{MSE}} = egin{bmatrix} rac{\partial ext{MSE}}{\partial heta_1} \ rac{\partial ext{MSE}}{\partial heta_2} \ dots \ rac{\partial ext{MSE}}{\partial heta_{n_{ ext{x}}}} \end{bmatrix}$$

▶ **Gradient descent** nudges θ against the gradient (the direction that reduces MSE):

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathsf{MSE}$$

 $ightharpoonup \eta = \text{learning rate}$

$$MSE(\theta) = \frac{1}{n_D} \sum_{i=1}^{n_D} (h(\theta; \mathbf{x}_i) - y_i)^2$$

► The partial derivative for feature *i* is

$$\frac{\partial \mathsf{MSE}}{\partial \theta_j} = \frac{2}{n_D} \sum_{i=1}^{n_D} (\underbrace{h(\theta; \mathbf{x}_i) - y_i}_{\mathsf{error for this obs}}) \underbrace{\frac{\partial h(\theta; \mathbf{x}_i)}{\partial \theta_j}}_{\mathsf{how } \theta_i \mathsf{ shifts } h(\cdot)}$$

- \rightarrow estimates how changing θ_i would reduce the error across the whole dataset
- ▶ The *gradient* ∇ gives the vector of these partial derivatives for all features:
- **Gradient descent** nudges θ against the gradient (the direction that reduces MSE):

$$abla_{ heta} \mathsf{MSE} = \left[egin{array}{c} rac{\partial \mathsf{MSE}}{\partial heta_1} \ rac{\partial \mathsf{MSE}}{\partial heta_2} \ dots \ rac{\partial \mathsf{MSE}}{\partial heta_2} \ rac{\partial \mathsf{MSE}}{\partial heta_2} \ \end{array}
ight]$$

- $heta_{t+1} = heta_t \eta
 abla_{ heta} \mathsf{MSE}$
- $ightharpoonup \eta = \text{learning rate}$

If the cost function is convex, gradient descent is guaranteed to find the global minimum

- even when cost function is not convex (eg neural nets), gradient descent often gets decent results
- Stochastic gradient descent (SGD) computes the gradient for a single randomly sampled data point (at each iteration)
 - ► Much faster, still works well

Evaluation: Use Cross-Validation During Model Training

- ► Train/Test Split:
 - ML models can achieve arbitrarily high accuracy in-sample, so performance should be evaluated out-of-sample

Evaluation: Use Cross-Validation During Model Training

- ► Train/Test Split:
 - ML models can achieve arbitrarily high accuracy in-sample, so performance should be evaluated out-of-sample
 - standard approach: randomly sample 80% training dataset to learn parameters, form predictions in 20% testing dataset for evaluating performance
- Within the training set:
 - Use cross-validation with grid search to get model performance metrics across subsets of data using different hyperparameter specs.
 - Find the best hyperparameters for out-of-fold prediction in the training set
- ▶ Then evaluate model performance in the test set using these hyperparameters

Machine Learning with Text Data

▶ We have a corpus (or dataset) D of $n_D \ge 1$ documents d_i (or data points).

Machine Learning with Text Data

- ▶ We have a corpus (or dataset) D of $n_D \ge 1$ documents d_i (or data points).
- **Each** document *i* has an associated outcome or label y_i with dimensions $n_y \ge 1$

Machine Learning with Text Data

- ▶ We have a corpus (or dataset) D of $n_D \ge 1$ documents d_i (or data points).
- **Each** document i has an associated outcome or label y_i with dimensions $n_v \geq 1$
- lacktriangle Some documents are labeled and some are unlabeled ightarrow
 - we would like to learn a function $\hat{y}(d_i)$ based on the labeled data ...
 - ... to machine-classify the unlabeled data.

First Problem

 \triangleright Each document is a sequence of symbols d_i , while (standard) ML algorithms work on numbers.

First Problem

- **Each** document is a sequence of symbols d_i , while (standard) ML algorithms work on numbers.
- ► The solution: all the methods from previous lectures for extracting informative numerical information from documents:
 - style features
 - counts over dictionary patterns
 - tokens
 - n-grams
 - principal components
 - topic shares
 - etc.
- ▶ documents can thus be **featurized** represented as a matrix of vectors x with $n_x \ge 1$ features.

Three Types of (Standard) Machine Learning Problems

Determined by the data type of the outcome variable (or label):

- **Regression**: a one-dimensional, continuous, real-valued outcome.
 - e.g., number of days of prison assigned

Three Types of (Standard) Machine Learning Problems

Determined by the data type of the outcome variable (or label):

- ▶ **Regression**: a one-dimensional, continuous, real-valued outcome.
 - e.g., number of days of prison assigned
- **Binary classification**: two choices, normalized to zero and one.
 - e.g., guilty or innocent

Three Types of (Standard) Machine Learning Problems

Determined by the data type of the outcome variable (or label):

- **Regression**: a one-dimensional, continuous, real-valued outcome.
 - e.g., number of days of prison assigned
- **Binary classification**: two choices, normalized to zero and one.
 - e.g., guilty or innocent
- ▶ Multinomial Classification: Three or more discrete, un-ordered outcomes.
 - e.g., predict what judge is assigned to a case: Alito, Breyer, or Cardozo

Model Evaluation in Test Set

Evaluating a "good" model is context-dependent. Here are some basics

Regression:

- mean squared error (MSE)
- ▶ mean absolute error (MAE, $\sum |\hat{y}(\theta) y|$) is less sensitive to outliers
- R-squared

Model Evaluation in Test Set

Evaluating a "good" model is context-dependent. Here are some basics

Regression:

- mean squared error (MSE)
- ▶ mean absolute error (MAE, $\sum |\hat{y}(\theta) y|$) is less sensitive to outliers
- R-squared

Classification:

more complicated, but accuracy is a good baseline: accuracy = (# correct test-set predictions) / (# of test-set observations)

Model Evaluation in Test Set

Evaluating a "good" model is context-dependent. Here are some basics

Regression:

- mean squared error (MSE)
- ightharpoonup mean absolute error (MAE, $\sum |\hat{y}(\theta) y|$) is less sensitive to outliers
- R-squared

Classification:

- more complicated, but accuracy is a good baseline: accuracy = (# correct test-set predictions) / (# of test-set observations)
- ▶ What if one of the outcomes is over-represented e.g., 19 out of 20? Then I can guess the modal class and get 95% accuracy
 - Some alternative classifier metrics designed to address class imbalance (more below)

Regression models ↔ Continuous outcome

- ► If the outcome is continuous (e.g., Y = tax revenues collected, or criminal sentence imposed in months of prison):
 - ► Need a regression model
- ▶ Problems with OLS:
 - tends to over-fit training data
 - cannot handle multicollinearity

Regression models ↔ Continuous outcome

- ► If the outcome is continuous (e.g., Y = tax revenues collected, or criminal sentence imposed in months of prison):
 - Need a regression model
- ▶ Problems with OLS:
 - tends to over-fit training data
 - cannot handle multicollinearity

▶ **Regularization**: model training methods designed to reduce/prevent over-fitting

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i) + \lambda R(\boldsymbol{\theta})$$

- \triangleright $R(\theta)$ is a "regularization function" or "regularizer", designed to reduce over-fitting
- $ightharpoonup \lambda$ is a hyperparameter where higher values increase regularization

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i) + \lambda R(\boldsymbol{\theta})$$

- \triangleright $R(\theta)$ is a "regularization function" or "regularizer", designed to reduce over-fitting
- lacktriangledown λ is a hyperparameter where higher values increase regularization

In particular:

► "Lasso" (or L1) penalty:

$$R_1 = \|\theta\|_1 = \sum_{i=1}^{n_x} |\theta_i|$$

shrinks coefficients toward zero. automatically performs feature selection and outputs a sparse model

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i) + \lambda R(\boldsymbol{\theta})$$

- \triangleright $R(\theta)$ is a "regularization function" or "regularizer", designed to reduce over-fitting
- $\blacktriangleright\ \lambda$ is a hyperparameter where higher values increase regularization

In particular:

► "Lasso" (or L1) penalty:

$$R_1 = \|\theta\|_1 = \sum_{i=1}^{n_x} |\theta_i|$$

- shrinks coefficients toward zero. automatically performs feature selection and outputs a sparse model
- "Ridge" (or L2) penalty:

$$R_2 = \|\theta\|_2^2 = \sum_{i=1}^{n_x} (\theta_i)^2$$

shrinks large coefficients over-proportionally (while not shrinking small coefficients easily)

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n_D} \sum_{i=1}^{n_D} L(h(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i) + \lambda R(\boldsymbol{\theta})$$

- \triangleright $R(\theta)$ is a "regularization function" or "regularizer", designed to reduce over-fitting
- lacktriangledown λ is a hyperparameter where higher values increase regularization

In particular:

► "Lasso" (or L1) penalty:

$$R_1 = \|\theta\|_1 = \sum_{i=1}^{n_{\chi}} |\theta_i|$$

- shrinks coefficients toward zero. automatically performs feature selection and outputs a sparse model
- "Ridge" (or L2) penalty:

$$R_2 = \|\theta\|_2^2 = \sum_{i=1}^{n_x} (\theta_i)^2$$

- shrinks large coefficients over-proportionally (while not shrinking small coefficients easily)
- Elastic Net: $R_{\text{enet}} = \lambda_1 R_1 + \lambda_2 R_2$

Binary Outcome ↔ Binary Classification

- ▶ Binary classifiers try to match a boolean outcome $y \in \{0, 1\}$.
 - ▶ The standard approach is to apply a transformation (e.g. sigmoid/logit) to normalize $\hat{y} \in [0, 1]$.
 - ▶ Prediction rule is 0 for $\hat{y} < .5$ and 1 otherwise.

Binary Outcome ↔ Binary Classification

- ▶ Binary classifiers try to match a boolean outcome $y \in \{0, 1\}$.
 - ▶ The standard approach is to apply a transformation (e.g. sigmoid/logit) to normalize $\hat{y} \in [0, 1]$.
 - ▶ Prediction rule is 0 for \hat{y} < .5 and 1 otherwise.
- ► The binary cross-entropy (or log loss) is:

$$L(\theta) = \underbrace{-\frac{1}{n_D}}_{\text{negative}} \sum_{i=1}^{n_D} \underbrace{\left[\underbrace{y_i}_{y_i=1} \underbrace{\log(\hat{y}_i)}_{\log \text{prob}y_i=1} + \underbrace{(1-y_i)}_{y_i=0} \underbrace{\log(1-\hat{y}_i)}_{\log \text{prob}y_i=0} \right]}_{\text{log prob}y_i=0}$$

▶ In **logistic regression** we use a sigmoid transformation:

$$\hat{y} = \operatorname{sigmoid}(\mathbf{x} \cdot \mathbf{\theta}) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \mathbf{\theta})}$$

▶ In **logistic regression** we use a sigmoid transformation:

$$\hat{y} = \operatorname{sigmoid}(\mathbf{x} \cdot \mathbf{\theta}) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \mathbf{\theta})}$$

Plugging into the binary-cross entropy loss gives the logistic regression cost objective:

$$\min_{\theta} \sum_{i=1}^{n_D} -y_i \log(\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta)) - [1-y_i] \log(1-\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta))$$

does not have a closed form solution, but it is convex (guaranteeing that gradient descent will find the global minimum). ▶ In **logistic regression** we use a sigmoid transformation:

$$\hat{y} = \mathsf{sigmoid}(\pmb{x} \cdot \theta) = \frac{1}{1 + \exp(-\pmb{x} \cdot \theta)}$$

Plugging into the binary-cross entropy loss gives the logistic regression cost objective:

$$\min_{\theta} \sum_{i=1}^{n_D} -y_i \log(\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta)) - [1-y_i] \log(1-\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta))$$

- does not have a closed form solution, but it is convex (guaranteeing that gradient descent will find the global minimum).
- ► The gradient for one data point is

$$\frac{\partial L(\theta)}{\partial \theta_j} = \underbrace{\left(\underset{\mathsf{error for obs } i}{\operatorname{sigmoid}(\mathbf{x}_i \cdot \theta) - y_i}\right)}_{\mathsf{input } j} \underbrace{x_i^j}_{\mathsf{input } j}$$

▶ In **logistic regression** we use a sigmoid transformation:

$$\hat{y} = \operatorname{sigmoid}(\mathbf{x} \cdot \theta) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \theta)}$$

Plugging into the binary-cross entropy loss gives the logistic regression cost objective:

$$\min_{\theta} \sum_{i=1}^{n_D} -y_i \log(\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta)) - [1-y_i] \log(1-\operatorname{sigmoid}(\boldsymbol{x}_i \cdot \theta))$$

- does not have a closed form solution, but it is convex (guaranteeing that gradient descent will find the global minimum).
- ► The gradient for one data point is

$$\frac{\partial L(\theta)}{\partial \theta_j} = \underbrace{\left(\underset{\mathsf{error \ for \ obs \ } i}{\operatorname{sigmoid}(\mathbf{x}_i \cdot \theta) - y_i}\right)}_{\mathsf{error \ for \ obs \ } i} \underbrace{x_i^j}_{\mathsf{input} \ j}$$

Like linear regression, logistic regression can be regularized with L1 or L2 penalties.

A **Confusion Matrix** is a nice way to visualize classifier performance:

		Predicted Class		
		Negative	Positive	
2*True Class	Negative	# True Negatives	# False Positives	
	Positive	# False Negatives	# True Positives	

► Cell values give counts in the test set.

A **Confusion Matrix** is a nice way to visualize classifier performance:

		Predicted Class		
		Negative	Positive	
2*True Class	Negative	# True Negatives	# False Positives	
	Positive	# False Negatives	# True Positives	

► Cell values give counts in the test set.

$$\mathsf{Accuracy} = \frac{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{True}\;\mathsf{Negatives}}{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Negatives}\;+\;\mathsf{True}\;\mathsf{Negatives}}$$

A **Confusion Matrix** is a nice way to visualize classifier performance:

		Predicted Class		
		Negative	Positive	
2*True Class	Negative	# True Negatives	# False Positives	
	Positive	# False Negatives	# True Positives	

Cell values give counts in the test set.

$$\label{eq:accuracy} \begin{aligned} \mathsf{Accuracy} &= \frac{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{True}\;\mathsf{Negatives}}{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Negatives}\;+\;\mathsf{True}\;\mathsf{Negatives}} \\ \mathsf{Precision}\;(\mathsf{for}\;\mathsf{positive}\;\mathsf{class}) &= \frac{\mathsf{True}\;\mathsf{Positives}}{\mathsf{True}\;\mathsf{Positives}\;+\;\mathsf{False}\;\mathsf{Positives}} \end{aligned}$$

Precision decreases with false positives. "When I guess this outcome, I tend to guess correctly."

A **Confusion Matrix** is a nice way to visualize classifier performance:

		Predicted Class		
		Negative	Positive	
2*True Class	Negative	# True Negatives	# False Positives	
	Positive	# False Negatives	# True Positives	

Cell values give counts in the test set.

$$\label{eq:accuracy} \begin{aligned} & \text{Accuracy} = \frac{\text{True Positives} + \text{True Negatives}}{\text{True Positives} + \text{False Positives} + \text{False Negatives} + \text{True Negatives}} \\ & \text{Precision (for positive class)} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \end{aligned}$$

Precision decreases with false positives. "When I guess this outcome, I tend to guess correctly."

$$\mbox{Recall (for positive class)} = \frac{\mbox{True Positives}}{\mbox{True Positives} + \mbox{False Negatives}}$$

Recall decreases with false negatives. "When this outcome occurs, I don't miss it."

If labels are (almost) balanced, then accuracy is a decent metric.

▶ If not (say 90% in one category), accuracy will be uninformative/misleading.

If labels are (almost) balanced, then accuracy is a decent metric.

▶ If not (say 90% in one category), accuracy will be uninformative/misleading.

Balanced accuracy = the average recall in both classes:

Balanced Accuracy =
$$\frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)$$

ightharpoonup ightharpoonup equal to accuracy when classes are balanced, or when performance is the same across classes.

If labels are (almost) balanced, then accuracy is a decent metric.

▶ If not (say 90% in one category), accuracy will be uninformative/misleading.

Balanced accuracy = the average recall in both classes:

Balanced Accuracy =
$$\frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)$$

ightharpoonup ightharpoonup equal to accuracy when classes are balanced, or when performance is the same across classes.

 F_1 score = the harmonic mean of precision and recall:

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

penalizes both false positives and false negatives; still ignores true negatives

If labels are (almost) balanced, then accuracy is a decent metric.

▶ If not (say 90% in one category), accuracy will be uninformative/misleading.

Balanced accuracy = the average recall in both classes:

Balanced Accuracy =
$$\frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)$$

ightharpoonup ightharpoonup equal to accuracy when classes are balanced, or when performance is the same across classes.

 F_1 score = the harmonic mean of precision and recall:

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

penalizes both false positives and false negatives; still ignores true negatives

AUC-ROC = Area Under the Receiver Operating Characteristic Curve

- ▶ Provides an aggregate measure of performance across all possible classification thresholds
- ► False Positive Rate (FPR) vs. True Positive Rate (TPR)
- ▶ Interpretation: randomly sample one positive and one negative example AUC = probability that the model correctly guesses which is which

Multiple Classes: Setup

▶ The outcome is $y_i \in \{1, ..., k, ..., n_y\}$ output classes, which can also be represented as a one-hot vector

$$\mathbf{y}_i = {\mathbf{1}[y_i = 1], ..., \mathbf{1}[y_i = n_y]}$$

Multiple Classes: Setup

▶ The outcome is $y_i \in \{1, ..., k, ..., n_y\}$ output classes, which can also be represented as a one-hot vector

$$\mathbf{y}_i = {\mathbf{1}[y_i = 1], ..., \mathbf{1}[y_i = n_y]}$$

▶ We want to learn a vector function

$$\mathbf{y} = \mathbf{h}(\mathbf{x}, \theta)$$

taking text features x as inputs and outputing a vector of probabilities across outcome classes:

$$\hat{\mathbf{y}} = \{\hat{y}^1, ..., \hat{y}^{n_y}\}, \sum_{k=1}^{n_y} \hat{y}^k = 1, \hat{y}^k \ge 0 \ \forall k$$

for prediction step, can select the highest-probability class:

$$\tilde{y} = \arg \max_{\iota} \hat{y}_{[k]}$$

The standard loss function in multinomial classification is categorical cross entropy:

$$L(\theta) = -\sum_{k=1}^{n_y} \mathbf{y}^k \log(\hat{y}^k(\mathbf{x}, \theta))$$

Multinomial Logistic Regression

Multinomial logistic regression computes probabilities for each class k using the softmax transformation

$$\hat{y}_k(\boldsymbol{x}_i) = \Pr(y_i = k) = \frac{\exp(\theta_k' \boldsymbol{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta_l' \boldsymbol{x}_i)}$$

- ightharpoonup softmax is the multiclass generalization of sigmoid ightharpoonup can then interpret \hat{y} as probabilities.
- ▶ n_x features and n_y output classes \rightarrow there is a $n_y \times n_x$ parameter matrix Θ , where the parameters for each class θ_k are stored as rows.

Multinomial Logistic Regression

Multinomial logistic regression computes probabilities for each class k using the softmax transformation

$$\hat{y}_k(\boldsymbol{x}_i) = \Pr(y_i = k) = \frac{\exp(\theta_k' \boldsymbol{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta_l' \boldsymbol{x}_i)}$$

- \blacktriangleright softmax is the multiclass generalization of sigmoid \rightarrow can then interpret \hat{y} as probabilities.
- ▶ n_x features and n_y output classes \rightarrow there is a $n_y \times n_x$ parameter matrix Θ , where the parameters for each class θ_k are stored as rows.

The **L2-penalized logistic regression** has loss function

$$\mathcal{L}(\theta) = -\frac{1}{n_D} \sum_{i=1}^{n_D} \log \frac{\exp(\theta_k' \mathbf{x}_i)}{\sum_{l=1}^{n_y} \exp(\theta_l' \mathbf{x}_i)} + \lambda \sum_{j=1}^{n_x} \sum_{k=1}^{n_y} (\theta_{[j,k]})^2$$

- λ = strength of L2 penalty (could also add lasso penalty)
 - ▶ as before, predictors should be scaled to the same variance.

		Predicted Class		
		Class A	Class B	Class C
3*True Class	Class A	Correct A	A, classed as B	A, classed as C
	Class B	B, classed as A	Correct B	B, classed as C
	Class C	C, classed as A	C, classed as B	Correct C

More generally, with **multi-class confusion matrix** M with items M_{ij} (row i, column j):

Precision for
$$k = \frac{\text{True Positives for } k}{\text{True Positives for } k + \text{False Positives for } k} = \frac{M_{kk}}{\sum_{l} M_{lk}}$$
Recall for $k = \frac{\text{True Positives for } k}{\text{True Positives for } k + \text{False Negatives for } k} = \frac{M_{kk}}{\sum_{l} M_{kl}}$

$$F_1(k) = 2 \times \frac{\operatorname{precision}(k) \times \operatorname{recall}(k)}{\operatorname{precision}(k) + \operatorname{recall}(k)}$$

		Predicted Class		
		Class A	Class B	Class C
3*True Class	Class A	Correct A	A, classed as B	A, classed as C
	Class B	B, classed as A	Correct B	B, classed as C
	Class C	C, classed as A	C, classed as B	Correct C

More generally, with **multi-class confusion matrix** M with items M_{ij} (row i, column j):

Precision for
$$k = \frac{\text{True Positives for } k}{\text{True Positives for } k + \text{False Positives for } k} = \frac{M_{kk}}{\sum_{l} M_{lk}}$$
Recall for $k = \frac{\text{True Positives for } k}{\text{True Positives for } k + \text{False Negatives for } k} = \frac{M_{kk}}{\sum_{l} M_{kl}}$

$$F_1(k) = 2 \times \frac{\operatorname{precision}(k) \times \operatorname{recall}(k)}{\operatorname{precision}(k) + \operatorname{recall}(k)}$$

Can average these metrics across classes to get aggregate metrics

- e.g., balanced accuracy = unweighted average of recalls across classes
- can weight classes by their frequency in dataset

Ensemble Methods

Key Idea: Combine multiple models to improve accuracy and reduce errors

- ▶ Voting classifiers (ensembles of different models that vote on the prediction) generally out-perform the best classifier in the ensemble
- More diverse algorithms will make different types of errors, and improve your ensemble's robustness

Types of Ensemble Methods:

- Bagging Combine independent models (Random Forest)
- Boosting Sequentially improve weak models (Gradient Boosting: XGBoost)

1. Take POS-filtered bigrams as inputs X.

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - ► For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor
 - For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor
 - For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning)

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - ► For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor
 - For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning)
- 3. Use cross-validation grid search in training set to select model hyperparameters
 - For classification, use cross entropy; for regression, use mean squared error

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome y:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor
 - For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning)
- 3. Use cross-validation grid search in training set to select model hyperparameters
 - ► For classification, use cross entropy; for regression, use mean squared error
- 4. Evaluate model in held-out test set:
 - For classification, use balanced accuracy, confusion matrix, and calibration plot
 - ► For regression, use R squared and binscatter plot

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor
 - For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning)
- 3. Use cross-validation grid search in training set to select model hyperparameters
 - For classification, use cross entropy; for regression, use mean squared error
- 4. Evaluate model in held-out test set:
 - For classification, use balanced accuracy, confusion matrix, and calibration plot
 - ► For regression, use R squared and binscatter plot
- 5. Interpret the model predictions:
 - ▶ for linear models, examine coefficients
 - for random forest/gradient boosting, use feature importance ranking
 - ▶ look at highest and lowest ranked documents for \hat{y}

- 1. Take POS-filtered bigrams as inputs X.
- 2. Select a machine learning model for predicting outcome *y*:
 - For regression (y is one-dimensional and continuous), elastic net or gradient boosted regressor
 - For classification (y is discrete), L2-penalized logistic regression or gradient boosted classifier
 - ► (If y is more complicated, e.g. a sequence of words, we use deep learning)
- 3. Use cross-validation grid search in training set to select model hyperparameters
 - For classification, use cross entropy; for regression, use mean squared error
- 4. Evaluate model in held-out test set:
 - For classification, use balanced accuracy, confusion matrix, and calibration plot
 - For regression, use R squared and binscatter plot
- 5. Interpret the model predictions:
 - ▶ for linear models, examine coefficients
 - for random forest/gradient boosting, use feature importance ranking
 - look at highest and lowest ranked documents for \hat{y}
- 6. Answer the research question!