Esame CMEPDA Ricostruzione del decadimento di $2~J/\psi \rightarrow 4\mu$

Alessandro Terranova

Settembre 2025

Capitolo 1

L'analisi

Il progetto si basa sull'analisi del decadimento di 2 $J/\psi \to 4\mu$ prodotti dalla collisione pp all'acceleratore LHC, a energia nel centro di massa $\sqrt{s}=7$ TeV. I dati sono ottenuti al detector CMS [1].

In particolare, per questo lavoro è stato utilizzato il dataset MuOnia in formato NANOAOD di Run1 [2, 3], con un totale di N $_{\rm eventi} \simeq 94 \times 10^6$. La sezione d'urto di produzione a $\sqrt{s}=7$ TeV è $\sigma(pp \to 2~J/\psi) \simeq 24$ nb. Quindi, il dataset corrisponde a un valore di luminosità integrata $L_{\rm int} \simeq 3.9~{\rm nb}^{-1}$. Non sono stati utilizzati i dati di Run2 perché il dataset mancava di variabili come la ricostruzione dei dimuoni dopo il vertex fit.

Per prima cosa è stato effettuato uno skimming dei dati, per porteli salvare in locale e poterli trattare semplicemente. Le collezioni selezionate sono *Muon*, *Dimu* e *TrigObj*. Per gli eventi ho selezionato solo quelli che rispettano i seguenti criteri:

- passare il trigger *HLT_Dimuon0_Jpsi_Muon*;
- passare la condizione GoodLumisection;
- che in ogni evento ci siamo almeno 4 muoni, e almeno 2 con carica positiva e 2 con carica negativa;
- che in ogni eventi ci siano solo dimuoni con carica nulla, e almeno 2 di essi.

A questo punto, seguendo l'analisi dell'articolo ho applicato le seguenti riportate in Tabelle 1.1. Va notato che nel dataset non erano presenti gli errori delle distanze tra i due candidati J/ψ , $\sigma_{\Delta\vec{r}}$, che include l'incertezza sulla posizione del vertice e l'incertezza del fit delle tracce dei muoni. Quindi, invece di imporre il taglio alla significance, definita come $\delta \equiv \frac{|\Delta\vec{r}|}{\sigma_{\Delta\vec{r}}} < 8$, ho solamente imposto un taglio sulla differenza di ampiezza dei vettori 3d, $|\Delta\vec{r}| < 0.1$, per i candidati J/ψ . Questa scelta è giustificata dal numero dei candidati in funzione di $|\Delta\vec{r}|$, come si vede in Figura 1.1.

Categoria	Criteri di selezione
Ricostruzione dei muoni	Tutti e quattro i muoni utilizzati nella selezione finale devono appartenere alle categorie di global muon o tracker muon.
Tracciatura nel detector	La traccia deve contenere almeno due hit nel rivelatore Pixel e almeno 11 hit complessivi nel tracciatore interno (Pixel + Strip).
Accettanza geometrica muoni	I muoni devono appartenere all'accettanza geometrica, che riporto nel capitolo dopo. Per farlo, ho creato le funzioni di vettori booleani tightMuAcceptance e loose-MuAcceptance.
Fit della traccia	Il fit della traccia dei muoni deve soddisfare $\chi^2/\text{ndof} < 1.8$.
Parametri di impatto	I muoni devono avere parametro di impatto trasverso $d_{xy}<3~{\rm cm}$ e parametro di impatto longitudinale $d_z<30~{\rm cm}$.
Selezione del candidato J/ψ	È richiesto che la massa invariante dei dimuoni sia compresa tra 2.8 e $3.35~{\rm GeV/}c^2$, che la probabilità di fit del vertice sia superiore allo 0.5% e che rientrino nei criteri di accettanza.
Creazione dei candidati $\mathrm{Di} J/\psi$	La creazione dei candidati richiede la presenza di due candidati J/ψ formati da quattro muoni distinti. Se in un evento esistono più combinazioni, viene scelto come primo J/ψ quello con la probabilità di fit del vertice più alta, e come secondo J/ψ quello con la seconda probabilità più alta che rispetti i requisiti.
Selezione finale $\mathrm{Di} J/\psi$	La selezione finale richiede che i due candidati J/ψ abbiamo una lunghezza di decadimento propria nell'intervallo [-0.05 cm, 0.1 cm] e che la distanza tra i due candidati sia minore di 0.1 cm.

Tabella 1.1: Criteri di selezione.

Distanza tra i candidati J/ψ

Figura 1.1: Distanza spaziale in 3 dimensione tra i candidati J/ψ prima del taglio

Capitolo 2

Accettanza geometrica

In aggiunta, viene imposto un requisito di impulso e di accettanza geometrica per i muoni (misurato tramite la traccia ricostruita dall'inner tracker). Almeno tre muoni devono soddisfare i criteri di accettanza *thight*:

$$\begin{split} |\eta_{\mu}| < 1.2 \quad \text{se} \quad p_T^{\mu} > 3.5 \text{ GeV/c} \,, \\ 1.2 < &|\eta_{\mu}| < 1.6 \quad \text{se} \quad p_T^{\mu} > 3.5 \rightarrow 2.0 \text{ GeV/c} \\ \text{dove } p_T \text{ scala linearmente con } |\eta| \,, \\ 1.6 < &|\eta_{\mu}| < 2.4 \quad \text{se} \quad p_T^{\mu} > 2.0 \text{ GeV/c} \,. \end{split}$$

e devono essere associati ad oggetti muonici che hanno attivato il trigger. L'associazione tra il muone ricostruito offline e quello ricostruito al livello richiede:

$$\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.1$$
, e $|p_T^{\text{off}} - p_T^{\text{trig}}| < 10 \text{ GeV/c}$.

Il quarto muone può invece ricadere in una regione di accettanza loose:

$$\begin{split} |\eta_{\mu}| < 1.2 \quad \text{se} \quad p_T^{\mu} > 3.0 \text{ GeV/c} \,, \\ 1.2 < &|\eta_{\mu}| < 2.4 \quad \text{se} \quad p_T^{\mu} > 3.0 \text{ GeV/c} \,. \end{split}$$

Inoltre, ciascuna J/ψ deve rispettare i criteri di accettanza seguenti:

$$\begin{split} |y_{J/\psi}| < 1.2 \quad \text{se} \quad p_T^{J/\psi} > 6.5 \; \text{GeV/c} \,, \\ 1.2 < &|y_{J/\psi}| < 1.43 \quad \text{se} \quad p_T^{J/\psi} > 6.5 \to 4.5 \; \text{GeV/c} \\ \text{dove} \; p_T \; \text{scala linearmente con} \; |y| \,, \\ 1.43 < &|y_{J/\psi}| < 2.2 \quad \text{se} \quad p_T^{J/\psi} > 4.5 \; \text{GeV/c} \,. \end{split}$$

Capitolo 3

Conclusioni

In totale sono stati ricostruiti 868 candidati eventi di 2 $J/\psi \to 4\mu$. Quindi, ho riprodotto i plot dei due candidati J/ψ a Di J/ψ : in Figura 3.1 singolarmente le loro masse, in Figura 3.2 le due masse in relazione tra loro; la lunghezza di decadimento in Figura 3.3, relazione tra il loro impulso trasverso e la loro rapidità in Figura 3.4. E in Figura 3.5 la relazione tra la pseudorapidità e l'impulso trasverso dei muoni a minore p_T di ogni evento, prima dei tagli in accettanza.

Figura 3.1: Masse candidati J/ψ a Di J/ψ . A sinistra quello con probabilità di vertex fit più alta, a destra quello con la probabilità più bassa dei due.

Distribuzione delle masse delle due J/ψ per cardidato evento

Figura 3.2: Masse candidati J/ψ a $\mathrm{Di}J/\psi.$

Figura 3.3: Lunghezza di decadimento J/ψ a $\mathrm{Di} J/\psi$

Figura 3.4: Plot di rapidità e impulso trasverso di candidati J/ψ a $\mathrm{Di} J/\psi$

Figura 3.5: Plot della pseudorapidità in termini dell'impulso trasverso dei muoni con minore p_T di ogni evento, prima della selezione in accettanza

Bibliografia

- [1] V. Khachatryan et al. "Measurement of Prompt J/ψ Pair Production in pp Collisions at $\sqrt{s}=7$ TeV". In: *Journal of High Energy Physics* 09 (2014), p. 094. DOI: 10.1007/JHEP09(2014)094. arXiv: 1406.0484 [hep-ex].
- [2] CERN Open Data. Record 31124, CERN Open Data Portal. n.d. URL: https://opendata.cern.ch/record/31124.
- [3] CERN Open Data. Record 31130, CERN Open Data Portal. n.d. URL: https://opendata.cern.ch/record/31130.