Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions – Collection of Tables

Nathan Clisby*
ARC Centre of Excellence for Mathematics and Statistics of Complex Systems
139 Barry Street
The University of Melbourne, Parkville Victoria 3010
Australia

Barry M. McCoy[†]
C. N. Yang Institute for Theoretical Physics
Stony Brook University
Stony Brook, NY 11794-3840

March 21, 2005

Abstract

Collection of tables for the dedicated reader of Clisby and McCoy "Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions".

^{*}e-mail:N.Clisby@ms.unimelb.edu.au

[†]e-mail:mccoy@insti.physics.sunysb.edu

Table 1: Singularities for all differential approximants in D=2 in terms of $B_2\rho$, with the corresponding exponents immediately below. Defective approximants are marked with \dagger , and the singularities are arranged so that the singularity nearest $B_2\rho=1.98$ is in the left most column. In most cases, this singularity has the smallest modulus, but when this is not the case the singularity with smallest modulus is marked with *.

Approximant		Singularity / Exponent								
[4, 3; 0]	1.98	$1.58 \pm 2.94 \ i$								
	-1.74	$0.528 \mp 0.449 \ i$								
[3, 4; 0]	1.98	$1.58 \pm 2.92 \ i$	-30.6							
r1+	-1.74	$0.508 \mp 0.453 \ i$	0.728							
$[4,4;0]^{\dagger}$	$ \begin{array}{r} 1.99 \\ -1.79 \end{array} $	$1.46 \pm 2.80 \ i$ $0.406 \mp 0.386 \ i$	-1.11^* 3.18×10^{-5}							
$[5, 4; 0]^{\dagger}$	1.99	$0.400 \pm 0.380 \ i$ $1.46 \pm 2.81 \ i$	-0.978^*							
[0, 4, 0]	-1.79	$0.418 \mp 0.390 \ i$	-0.978 1.38×10^{-5}							
$[4, 5; 0]^{\dagger}$	1.99	$1.46 \pm 2.81 i$	-267.	-0.977^*						
[/ /]	-1.79	$0.418 \mp 0.390 i$	0.952	1.37×10^{-5}						
[3, 2; 1]	1.96	-5.22								
	-1.66	12.3								
[2, 3; 1]	1.96	$-3.66 \pm 7.70 \ i$								
[0.0.1]	-1.67	$1.92 \mp 7.72 i$								
[3, 3; 1]	$1.80 \pm 0.198 \ i$ $-1.07 \mp 0.0804 \ i$	$3.77 \\ -2.70$								
[4, 3; 1]	1.98	-2.58	-0.601^*							
$[\mathbf{T}, \mathbf{O}, 1]$	-1.74	-6.19	27.3							
[3, 4; 1]	1.98	$-0.589 \pm 4.37 i$	-0.828^*							
	-1.76	$0.0841 \mp 2.37 i$	8.79							
[2, 2; 2]	1.96	-5.78								
	-1.66	14.0								
[3, 2; 2]	1.95	0.619*								
اه و ما	-1.59	-0.935								
[2, 3; 2]	$2.06 \\ -2.25$	$2.09 \pm 0.978 \ i$ $-0.830 \pm 1.11 \ i$								
[3, 3; 2]	1.97	$0.945 \pm 1.80 i$								
[0,0,2]	-1.70	$-0.344 \pm 2.38 \ i$								
[2, 2; 3]	1.98	0.345^{*}								
	-1.79	-23.7								
[3, 2; 3]	1.98	0.361^{*}								
f1	-1.78	-21.2								
[2, 3; 3]	1.98	42.6	0.445*							
[9, 9, 4]	-1.78	-3.23 -0.0937^*	-16.6							
[2, 2; 4]	1.98 -1.75	-0.0937 95.9								
[2, 2, 2; 0]	1.79	1.21								
[-, -, -, 0]	1.24	-10.7								
[3, 2, 2; 0]	$2.16 \pm 0.319 \ i$									
[0.9.9.0]	$-2.74 \mp 0.955 i$	0.020 1.61 **								
[2, 3, 3; 0]	$1.94 \\ -1.41$	$0.939 \pm 1.61 \ i^*$ $-0.985 \pm 1.12 \ i$								
[2, 2, 2; 1]	1.98	$0.505 \pm 1.12 \ t$ 9.17								
[-, -, -, +]	-1.72	-17.5								

Table 2: Singularities for all Padé approximants in D=2 in terms of $B_2\rho$, with the corresponding residues immediately below. Defective approximants are marked with \dagger .

Approximant		Singularity / Residue						
[4/3]	1.87 -11.5	2.40 13.7	$19.9 \\ -63.2$					
[3/4]	$1.91 \\ -16.8$	$2.21 \\ 17.4$	$\begin{array}{c} 2.78 \pm 2.62 \ i \\ -0.568 \pm 0.424 \ i \end{array}$					
[4/4]	$1.89 \pm 0.187 \ i$ $-1.33 \mp 6.26 \ i$	$2.81 \pm 1.43 \ i$ $0.839 \pm 1.90 \ i$						
[5/4]	$1.90 \\ -14.4$	2.28 15.8	$0.513 \pm 3.21 \ i$ $0.0116 \mp 0.0580 \ i$					
$[4/5]^{\dagger}$	$-0.908 \\ -4.83 \times 10^{-7}$	$1.94 \\ -26.8$	2.12 27.0	$\begin{array}{c} 2.60 \pm 2.40 \ i \\ -0.380 \pm 0.551 \ i \end{array}$				

Table 3: Predicted coefficients for Padé and differential approximants which exactly reproduce the virial coefficients to B_9 or B_{10} in 2 dimensions. Defective approximants are marked with \dagger .

				edicted coeffi	cients			
	B_{11}/B_2^{10}	B_{12}/B_2^{11}	B_{13}/B_2^{12}	B_{14}/B_2^{13}	B_{15}/B_2^{14}	B_{16}/B_2^{15}	B_{17}/B_2^{16}	B_{18}/B_2^{17}
[4/4]	0.0109	0.00586	0.00313	0.00165	0.000866	0.000449	0.000231	0.000117
[5/4]	0.0109	0.00591	0.00319	0.00171	0.000918	0.000490	0.000261	0.000139
$[4/5]^{\dagger}$	0.0109	0.00590	0.00317	0.00170	0.000902	0.000482	0.000251	0.000136
$[4, 4; 0]^{\dagger}$	0.0109	0.00590	0.00317	0.00170	0.000905	0.000481	0.000254	0.000134
$[5, 4; 0]^{\dagger}$	0.0109	0.00590	0.00317	0.00170	0.000905	0.000482	0.000254	0.000135
$[4, 5; 0]^{\dagger}$	0.0109	0.00590	0.00317	0.00170	0.000905	0.000482	0.000254	0.000135
[3, 3; 1]	0.0109	0.00585	0.00311	0.00164	0.000849	0.000434	0.000217	0.000106
[4, 3; 1]	0.0109	0.00590	0.00318	0.00171	0.000910	0.000484	0.000256	0.000136
[3, 4; 1]	0.0109	0.00590	0.00318	0.00170	0.000909	0.000483	0.000256	0.000135
[3, 2; 2]	0.0108	0.00570	0.00279	0.00104	-0.000190	-0.00131	-0.00264	-0.00453
[2, 3; 2]	0.0109	0.00586	0.00314	0.00167	0.000879	0.000461	0.000241	0.000125
[3, 3; 2]	0.0109	0.00591	0.00318	0.00171	0.000911	0.000484	0.000257	0.000136
[2, 2; 3]	0.0109	0.00590	0.00318	0.00170	0.000908	0.000482	0.000256	0.000135
[3, 2; 3]	0.0109	0.00590	0.00318	0.00170	0.000909	0.000484	0.000253	0.000144
[2, 3; 3]	0.0109	0.00590	0.00318	0.00170	0.000908	0.000487	0.000240	0.000222
[2, 2; 4]	0.0109	0.00590	0.00318	0.00170	0.000910	0.000484	0.000256	0.000135
[3, 2, 2; 0]	0.0109	0.00585	0.00312	0.00164	0.000857	0.000441	0.000225	0.000113
[2, 3, 3; 0]	0.0109	0.00592	0.00319	0.00172	0.000920	0.000491	0.000261	0.000139
[2, 2, 2; 1]	0.0109	0.00590	0.00318	0.00171	0.000911	0.000484	0.000257	0.000136

Table 4: Singularities for all differential approximants in D=3 in terms of $B_2\rho$, with the corresponding exponents immediately below. Defective approximants are marked with \dagger , and the singularities are listed from left to right in order of their modulus. The most stable singularity is on the positive real axis in the vicinity of $B_2\rho=3.75$, and this appears in the second column in all cases.

Approximant	Singular	rity / Exp	ponent
[4, 3; 0]	$-1.03 \pm 2.64 \ i$ $0.640 \mp 0.0898 \ i$	3.71 -2.04	
[3, 4; 0]	$-1.05 \pm 2.73 \ i$ $0.752 \mp 0.134 \ i$	3.83 -2.33	-6.75 0.824
[4, 4; 0]	$-1.04 \pm 2.65 i$ $0.652 \mp 0.0885 i$	3.73 -2.09	-65.6 14.1
[5, 4; 0]	$-1.04 \pm 2.65 i$ $0.651 \mp 0.0881 i$	3.73 -2.09	-232. 183.
[4, 5; 0]	$-1.04 \pm 2.65 i$ $0.651 \mp 0.0881 i$	3.73 -2.09	$-44.4 \pm 58.5 i$ $0.394 \mp 9.61 i$
[3, 2; 1]	-3.49 6.71	4.04	0.394 + 9.01 t
[2, 3; 1]	$-1.68 \pm 1.51 \ i$	-2.95 3.79	
[3, 3; 1]	$1.72 \mp 0.928 \ i$ $-1.93 \pm 1.76 \ i$ $1.54 \mp 1.36 \ i$	-2.25 3.81	
[4, 3; 1]	$-1.11 \pm 2.69 i$	-2.30 3.73	
[3,4;1]	$0.627 \mp 0.190 \ i$ $-0.621 \pm 1.87 \ i$	-2.07 3.79	-6.95
[2, 2; 2]	$0.913 \pm 1.18 \ i$ 1.15	-2.24 3.64	-0.506
[3, 2; 2]	-3.22 -0.544	-1.99 3.87	
[2, 3; 2]	13.4 $-1.24 \pm 2.13 \ i$	-2.47 3.80	
[3, 3; 2]	$1.13 \pm 0.230 \ i$ $-0.464 \pm 2.25 \ i$	-2.27 3.78	
[2, 2; 3]	$0.476 \pm 1.21 \ i$ 2.91	-2.22 3.75	
[3, 2; 3]	-1.17 2.74	-1.96 3.77	
[2, 3; 3]	-1.44 2.37	-2.01 3.77	-38.7
[2, 2; 4]	-2.05 2.78	-2.09 3.77	-3.71
[2, 2, 2; 0]	-1.38 4.35	-2.00 -5.19	
[3, 2, 2; 0]	-3.86 1.21	4.07 6.04	
[2, 3, 3; 0]	-1.35 $-0.840 \pm 2.45 i$	-9.45 3.76	
[2, 2, 2; 1]	$0.469 \pm 0.0986 \ i$ -2.68 6.49	-2.17 3.70 -2.06	

Table 5: Singularities for all Padé approximants in D=3 in terms of $B_2\rho$, with the corresponding residues immediately below. Defective approximants are marked with \dagger .

Approximant	Sing	Singularity / Residue					
$[4/3]^{\dagger}$	0.516 2.84×10^{-7}	3.44	3.92				
[3/4]	$3.32 \pm 0.602 i$	$-146.$ $0.249 \pm 7.66 \ i$ $1.87 \pm 5.40 \ i$	178.				
[4/4]	-2.65	$-1.87 \mp 5.40 \ i$ $3.50 \pm 0.461 \ i$					
[5/4]		$11.9 \mp 65.0 \ i$ $3.57 \pm 0.366 \ i$	-51.2				
[4/5]	$0.00100 \mp 0.00669 i$ 3.43 -109.	$14.0 \mp 92.3 i$ $-1.80 \pm 3.99 i$ $0.135 \mp 0.293 i$	4.39 213.	6.32 -110 .			

Table 6: Predicted coefficients for Padé and differential approximants which exactly reproduce the virial coefficients to B_9 or B_{10} in 3 dimensions. Defective approximants are marked with \dagger .

				Predicted coef	ficients			
	B_{11}/B_2^{10}	B_{12}/B_2^{11}	B_{13}/B_2^{12}	B_{14}/B_2^{13}	B_{15}/B_2^{14}	B_{16}/B_2^{15}	B_{17}/B_2^{16}	B_{18}/B_2^{17}
[4/4]	0.000119	3.48×10^{-5}	1.01×10^{-5}	2.82×10^{-6}	7.92×10^{-7}	2.13×10^{-7}	5.82×10^{-8}	1.48×10^{-8}
[5/4]	0.000121	3.57×10^{-5}	1.06×10^{-5}	3.03×10^{-6}	8.55×10^{-7}	2.49×10^{-7}	6.86×10^{-8}	1.81×10^{-8}
[4/5]	0.000122	3.68×10^{-5}	1.10×10^{-5}	3.26×10^{-6}	9.63×10^{-7}	2.84×10^{-7}	8.34×10^{-8}	2.44×10^{-8}
[4, 4; 0]	0.000122	3.64×10^{-5}	1.08×10^{-5}	3.17×10^{-6}	9.22×10^{-7}	2.67×10^{-7}	7.72×10^{-8}	2.21×10^{-8}
[5, 4; 0]	0.000122	3.64×10^{-5}	1.08×10^{-5}	3.17×10^{-6}	9.21×10^{-7}	2.67×10^{-7}	7.72×10^{-8}	2.21×10^{-8}
[4, 5; 0]	0.000122	3.64×10^{-5}	1.08×10^{-5}	3.17×10^{-6}	9.21×10^{-7}	2.67×10^{-7}	7.72×10^{-8}	2.21×10^{-8}
[3, 3; 1]	0.000121	3.60×10^{-5}	1.06×10^{-5}	3.08×10^{-6}	8.93×10^{-7}	2.56×10^{-7}	7.31×10^{-8}	2.08×10^{-8}
[4, 3; 1]	0.000122	3.64×10^{-5}	1.08×10^{-5}	3.17×10^{-6}	9.24×10^{-7}	2.68×10^{-7}	7.74×10^{-8}	2.22×10^{-8}
[3, 4; 1]	0.000121	3.61×10^{-5}	1.07×10^{-5}	3.12×10^{-6}	8.92×10^{-7}	2.65×10^{-7}	7.53×10^{-8}	2.01×10^{-8}
[3, 2; 2]	0.000120	3.54×10^{-5}	1.05×10^{-5}	2.95×10^{-6}	9.19×10^{-7}	2.08×10^{-7}	1.03×10^{-7}	-8.58×10^{-9}
[2, 3; 2]	0.000121	3.61×10^{-5}	1.06×10^{-5}	3.10×10^{-6}	8.97×10^{-7}	2.59×10^{-7}	7.37×10^{-8}	2.10×10^{-8}
[3, 3; 2]	0.000122	3.61×10^{-5}	1.07×10^{-5}	3.14×10^{-6}	9.02×10^{-7}	2.62×10^{-7}	7.62×10^{-8}	2.12×10^{-8}
[2, 2; 3]	0.000123	3.70×10^{-5}	1.11×10^{-5}	3.34×10^{-6}	1.01×10^{-6}	3.03×10^{-7}	9.19×10^{-8}	2.80×10^{-8}
[3, 2; 3]	0.000123	3.74×10^{-5}	1.14×10^{-5}	3.50×10^{-6}	1.08×10^{-6}	3.41×10^{-7}	1.09×10^{-7}	3.58×10^{-8}
[2, 3; 3]	0.000123	3.79×10^{-5}	1.19×10^{-5}	3.85×10^{-6}	1.31×10^{-6}	4.77×10^{-7}	1.85×10^{-7}	7.61×10^{-8}
[2, 2; 4]	0.000123	3.74×10^{-5}	1.14×10^{-5}	3.48×10^{-6}	1.07×10^{-6}	3.35×10^{-7}	1.06×10^{-7}	3.43×10^{-8}
[3, 2, 2; 0]	0.000154	7.61×10^{-5}	5.20×10^{-5}	4.24×10^{-5}	3.68×10^{-5}	3.23×10^{-5}	2.83×10^{-5}	2.47×10^{-5}
[2, 3, 3; 0]	0.000122	3.63×10^{-5}	1.07×10^{-5}	3.15×10^{-6}	9.11×10^{-7}	2.64×10^{-7}	7.62×10^{-8}	2.16×10^{-8}
[2, 2, 2; 1]	0.000123	3.68×10^{-5}	1.09×10^{-5}	3.23×10^{-6}	9.47×10^{-7}	2.76×10^{-7}	8.01×10^{-8}	2.31×10^{-8}

Table 7: Singularities for all differential approximants in D=4 in terms of $B_2\rho$, with the corresponding exponents immediately below. Defective approximants are marked with \dagger , and the singularities are listed from left to right in order of their modulus.

Approximant		Singularity / Expone	ent	
[4, 3; 0]	$-1.65 \pm 1.68 \ i$	5.55		
	$0.712 \mp 0.0883 i$	-1.21		
[3, 4; 0]	$-1.69 \pm 1.63 i$	-5.02	6.84	
	$0.740 \pm 0.0225 \ i$	0.998	-2.48	
[4, 4; 0]	-2.31	$-1.77 \pm 1.67 i$	7.25	
[* 4 0]	0.142	$0.914 \pm 0.00786 \ i$	-2.87	
[5, 4; 0]	-1.64 0.0127	$-1.73 \pm 1.71 \ i$ $0.857 \mp 0.0831 \ i$	6.79 -2.31	
[4, 5; 0]	-1.50	$-1.72 \pm 1.70 \ i$	-2.31 7.00	-9.46
$[\mathbf{T}, \mathbf{O}, \mathbf{O}]$	0.00557	$0.823 \mp 0.0680 \ i$	-2.60	0.949
[2, 3; 1]	-0.785	4.23	5.41	
[/-/]	5.39	0.787	-2.92	
[3, 2; 1]	-1.06	8.33		
	3.93	-4.37		
[3, 3; 1]	$-1.91 \pm 0.631 i$	7.30		
	$1.35 \mp 1.54 i$	-2.92		
[4, 3; 1]	-1.36	5.41	-257.	
[0 4 1]	3.50	-0.820	-3.27×10^3	
[3, 4; 1]	-1.43 2.67	$-0.828 \pm 3.96 \ i$ $0.171 \pm 0.152 \ i$	6.82 -2.43	
[2, 2, 2]	-3.31	$0.171 \pm 0.132 \ i$ 7.72	-2.43	
[2, 2; 2]	-3.31 -2.02	-3.53		
[3, 2; 2]	-6.31	7.25		
[~, -, -]	-6.37	-2.90		
[2, 3; 2]	$-4.14 \pm 3.88 \ i$	7.28		
	$0.120 \pm 3.48 i$	-2.92		
[3, 3; 2]	1.24	-3.70	7.31	
	-3.28	-1.81	-2.92	
[2, 2; 3]	-6.28	7.51		
	-5.36	-3.40		
[3, 2; 3]	0.0582 856.	-8.14 -93.0		
[2, 3; 3]	1.31	-3.64	7.00	
[2, 3, 3]	-4.92	-1.42	-2.54	
[2, 2; 4]	-1.31	6.19		
[/ /]	3.07	-1.65		
[2, 2, 2; 0]	-1.09	9.29		
	3.26	-5.79		
[3, 2, 2; 0]	-1.04	3.68		
r	7.01	6.41		
[2, 3, 3; 0]	-2.54	6.16	-7.92	
[0,0,0,1]	-0.892	-2.12	12.6	
[2, 2, 2; 1]	-1.14 4.12	$6.83 \\ -2.52$		
	7.12	2.02		

Table 8: Singularities for all Padé approximants in D=4 in terms of $B_2\rho$, with the corresponding residues immediately below. Defective approximants are marked with \dagger .

Approximant		Singularity / Residue						
[4/3]	-2.44	$5.40 \pm 1.44 i$						
[3/4]	-0.0257 -2.55	$52.7 \mp 116. i$ $5.60 \pm 1.38 i$	20.9					
		$71.1 \mp 149. i$	-262.					
[4/4]	-2.84 -0.0678	4.58 -43.1	$4.95 \pm 2.64 \ i$ $44.8 \mp 9.81 \ i$					
[5/4]	-2.85 -0.0695	$4.68 \\ -51.8$	$5.01 \pm 2.76 \ i$ $46.6 \mp 3.20 \ i$					
[4/5]	-0.0095 -2.85	-31.8 4.68	40.0 + 3.20 i $5.01 \pm 2.75 i$	-275.				
	-0.0695	-51.7	$46.7 \mp 3.35 \ i$	1.02×10^{3}				

Table 9: Predicted coefficients for Padé and differential approximants which exactly reproduce the virial coefficients to B_9 or B_{10} in 4 dimensions. Defective approximants are marked with \dagger .

				Predicted coeff	icients			
	B_{11}/B_2^{10}	B_{12}/B_2^{11}	B_{13}/B_2^{12}	B_{14}/B_2^{13}	B_{15}/B_2^{14}	B_{16}/B_2^{15}	B_{17}/B_2^{16}	B_{18}/B_2^{17}
[4/4]	1.19×10^{-6}	6.60×10^{-7}	7.03×10^{-9}	5.27×10^{-8}	-5.71×10^{-9}	4.98×10^{-9}	-1.08×10^{-9}	5.31×10^{-10}
[5/4]	1.17×10^{-6}	6.38×10^{-7}	2.33×10^{-9}	4.98×10^{-8}	-6.03×10^{-9}	4.69×10^{-9}	-1.08×10^{-9}	5.02×10^{-10}
[4/5]	1.17×10^{-6}	6.38×10^{-7}	2.40×10^{-9}	4.99×10^{-8}	-6.02×10^{-9}	4.69×10^{-9}	-1.08×10^{-9}	5.02×10^{-10}
[4, 4; 0]	1.02×10^{-6}	3.92×10^{-7}	-3.89×10^{-8}	4.24×10^{-8}	-1.49×10^{-8}	6.47×10^{-9}	-2.31×10^{-9}	8.40×10^{-10}
[5, 4; 0]	-2.87×10^{-7}	1.37×10^{-6}	-6.26×10^{-7}	3.87×10^{-7}	-2.12×10^{-7}	1.20×10^{-7}	-6.81×10^{-8}	3.92×10^{-8}
[4, 5; 0]	-5.56×10^{-7}	1.66×10^{-6}	-8.85×10^{-7}	5.85×10^{-7}	-3.55×10^{-7}	2.20×10^{-7}	-1.38×10^{-7}	8.67×10^{-8}
[3, 3; 1]	1.48×10^{-6}	5.13×10^{-8}	1.57×10^{-7}	-5.49×10^{-8}	2.73×10^{-8}	-9.66×10^{-9}	3.02×10^{-9}	-5.85×10^{-10}
[4, 3; 1]	5.77×10^{-7}	7.77×10^{-7}	-1.85×10^{-7}	1.30×10^{-7}	-6.09×10^{-8}	3.37×10^{-8}	-1.82×10^{-8}	1.01×10^{-8}
[3, 4; 1]	2.47×10^{-7}	8.50×10^{-7}	-2.54×10^{-7}	1.59×10^{-7}	-7.92×10^{-8}	4.34×10^{-8}	-2.36×10^{-8}	1.31×10^{-8}
[3, 2; 2]	1.11×10^{-6}	3.06×10^{-7}	2.06×10^{-8}	1.01×10^{-8}	7.67×10^{-11}	3.47×10^{-10}	-1.82×10^{-11}	1.25×10^{-11}
[2, 3; 2]	1.15×10^{-6}	2.87×10^{-7}	2.69×10^{-8}	7.91×10^{-9}	6.62×10^{-10}	1.88×10^{-10}	1.98×10^{-11}	3.59×10^{-12}
[3, 3; 2]	2.95×10^{-6}	2.87×10^{-6}	2.89×10^{-6}	3.20×10^{-6}	3.37×10^{-6}	3.46×10^{-6}	3.48×10^{-6}	3.42×10^{-6}
[2, 2; 3]	1.12×10^{-6}	2.96×10^{-7}	2.18×10^{-8}	9.31×10^{-9}	1.86×10^{-10}	3.02×10^{-10}	-1.08×10^{-11}	1.02×10^{-11}
[3, 2; 3]	1.38×10^{-6}	7.20×10^{-7}	9.04×10^{-8}	7.87×10^{-8}	1.57×10^{-8}	1.19×10^{-8}	3.66×10^{-9}	2.26×10^{-9}
[2, 3; 3]	6.03×10^{-6}	1.13×10^{-5}	1.88×10^{-5}	2.82×10^{-5}	3.80×10^{-5}	4.78×10^{-5}	5.66×10^{-5}	6.42×10^{-5}
[2, 2; 4]	4.50×10^{-7}	8.16×10^{-7}	-2.29×10^{-7}	1.53×10^{-7}	-7.75×10^{-8}	4.42×10^{-8}	-2.50×10^{-8}	1.46×10^{-8}
[3, 2, 2; 0]	4.46×10^{-7}	8.95×10^{-7}	-2.63×10^{-7}	1.87×10^{-7}	-1.00×10^{-7}	6.12×10^{-8}	-3.72×10^{-8}	2.35×10^{-8}
[2, 3, 3; 0]	8.47×10^{-7}	6.14×10^{-7}	-6.51×10^{-8}	5.54×10^{-8}	-1.59×10^{-8}	7.10×10^{-9}	-2.58×10^{-9}	1.03×10^{-9}
[2,2,2;1]	2.62×10^{-7}	9.15×10^{-7}	-3.18×10^{-7}	2.14×10^{-7}	-1.21×10^{-7}	7.46×10^{-8}	-4.64×10^{-8}	2.96×10^{-8}

Table 10: Singularities for all differential approximants in D=5 in terms of $B_2\rho$, with the corresponding exponents immediately below. Defective approximants are marked with \dagger , and the singularities are listed from left to right in order of their modulus.

Approximant		Singularity / Exp	onent	
[4, 3; 0]	$-1.92 \pm 0.865 \ i$ $1.28 \pm 0.453 \ i$	$-18.8 \\ -19.9$		
$[3,4;0]^{\dagger}$	1.35 0.000435	$-1.84 \pm 0.871 \ i$ $1.04 \pm 0.335 \ i$	$9.65 \\ -2.09$	
[4, 4; 0]	-1.55 -0.0909	$-1.81 \pm 1.01 \ i$ $0.942 \mp 0.000260 \ i$	$14.3 \\ -3.82$	
$[5,4;0]^{\dagger}$	-0.988 -0.000986	$-1.84 \pm 0.912 \ i$ $1.05 \pm 0.260 \ i$	$47.5 \\ -66.5$	
$[4, 5; 0]^{\dagger}$	-1.09 -0.00298	$-1.81 \pm 0.928 \ i$ $0.988 \pm 0.209 \ i$	$7.76 \pm 3.64 \ i$ $-0.987 \mp 0.245 \ i$	
[2,3;1]	-1.07 2.68	13.2 -3.14	-33.7 1.44	
[3, 2; 1]	-1.07 2.70	$12.5 \\ -2.67$		
[3, 3; 1]	-1.13 2.51	-2.97 0.0814	$14.5 \\ -3.92$	
[4,3;1]	0.329 0.215	-1.06 2.78	$12.1 \\ -2.49$	
[3, 4; 1]	0.301 0.733	-1.05 2.98	12.9 -3.04	-27.3 1.34
[2,2;2]	-1.19 1.92	14.5 - 3.97	3101	1.01
[3, 2; 2]	-1.20 1.84	$14.8 \\ -4.16$		
[2, 3; 2]	-1.20 1.83	14.8 -4.19	231. 2.55	
[3, 3; 2]	0.165 -9.14	-1.29 0.957	$14.4 \\ -3.88$	
[2, 2; 3]	-1.19 1.90	14.7 - 4.09	0.00	
[3, 2; 3]	$-3.92 \pm 5.72 \ i$ $-34.1 \mp 7.49 \ i$	1.00		
[2, 3; 3]	1.24 -7.82	-1.94 -0.888	$13.4 \\ -2.98$	
[2,2;4]	2.24 -10.9	-5.29 5.71	2.00	
[2, 2, 2; 0]	-1.03 3.01	11.8 -1.82		
[3, 2, 2; 0]	-1.17 1.95	$ \begin{array}{r} -1.32 \\ 37.3 \\ -27.5 \end{array} $		
[2, 3, 3; 0]	$-1.22 \pm 1.36 \ i$ $-0.700 \mp 2.90 \ i$	-27.3 7.26 -3.81		
[2, 2, 2; 1]	$-0.700 + 2.90^{\circ}i$ -1.02 2.78	-3.81 15.8 -4.23		

Table 11: Singularities for all Padé approximants in D=5 in terms of $B_2\rho$, with the corresponding residues immediately below. Defective approximants are marked with \dagger .

Approximant	Singularity / Residue						
[4/3]	-2.07	$6.91 \pm 2.98 \ i$					
	0.0412	$77.9 \mp 121. i$					
[3/4]	-2.06	$6.98 \pm 3.01 \ i$	-57.1				
	0.0407	$84.9 \mp 126. i$	477.				
$[4/4]^{\dagger}$	-0.886	-2.23	$7.48 \pm 3.00 i$				
	9.42×10^{-6}	0.0627	$118. \mp 171. i$				
$[5/4]^{\dagger}$	-1.06	-2.31	$7.62 \pm 2.99 i$				
	5.92×10^{-5}	0.0734	$129. \mp 186. i$				
$[4/5]^{\dagger}$	-1.06	-2.31	$7.62 \pm 2.99 i$	204.			
- · ·	5.87×10^{-5}	0.0732	$130. \mp 187. i$	-2.83×10^3			

Table 12: Predicted coefficients for Padé and differential approximants which exactly reproduce the virial coefficients to B_9 or B_{10} in 5 dimensions. Defective approximants are marked with \dagger .

				D 1: 4 1 00	. ,			
	B_{11}/B_2^{10}	B_{12}/B_2^{11}	B_{13}/B_2^{12}	Predicted coeffic B_{14}/B_2^{13}	B_{15}/B_2^{14}	B_{16}/B_2^{15}	B_{17}/B_2^{16}	B_{18}/B_2^{17}
	D_{11}/D_{2}	D_{12}/D_{2}	D_{13}/D_{2}	D_{14}/D_{2}	D_{15}/D_{2}	D_{16}/D_2	D_{17}/D_2	D ₁₈ /D ₂
$[4/4]^{\dagger}$	4.48×10^{-5}	-4.43×10^{-5}	4.72×10^{-5}	-5.20×10^{-5}	5.81×10^{-5}	-6.53×10^{-5}	7.35×10^{-5}	-8.29×10^{-5}
$[5/4]^{\dagger}$	3.76×10^{-5}	-3.16×10^{-5}	2.81×10^{-5}	-2.57×10^{-5}	2.39×10^{-5}	-2.24×10^{-5}	2.10×10^{-5}	-1.97×10^{-5}
$[4/5]^{\dagger}$	3.76×10^{-5}	-3.17×10^{-5}	2.82×10^{-5}	-2.58×10^{-5}	2.40×10^{-5}	-2.24×10^{-5}	2.11×10^{-5}	-1.98×10^{-5}
[4, 4; 0]	2.51×10^{-5}	-1.50×10^{-5}	9.07×10^{-6}	-5.48×10^{-6}	3.33×10^{-6}	-2.02×10^{-6}	1.23×10^{-6}	-7.55×10^{-7}
$[5, 4; 0]^{\dagger}$	3.89×10^{-5}	-3.40×10^{-5}	3.11×10^{-5}	-2.92×10^{-5}	2.76×10^{-5}	-2.62×10^{-5}	2.50×10^{-5}	-2.39×10^{-5}
$[4, 5; 0]^{\dagger}$	3.71×10^{-5}	-3.01×10^{-5}	2.52×10^{-5}	-2.15×10^{-5}	1.84×10^{-5}	-1.58×10^{-5}	1.37×10^{-5}	-1.18×10^{-5}
[3, 3; 1]	2.63×10^{-5}	-1.67×10^{-5}	1.08×10^{-5}	-7.23×10^{-6}	4.92×10^{-6}	-3.40×10^{-6}	2.39×10^{-6}	-1.71×10^{-6}
[4, 3; 1]	1.69×10^{-5}	-5.05×10^{-5}	-7.41×10^{-5}	-0.000249	-0.000662	-0.00187	-0.00526	-0.0149
[3, 4; 1]	1.65×10^{-5}	-5.37×10^{-5}	-8.75×10^{-5}	-0.000302	-0.000857	-0.00257	-0.00767	-0.0231
[3, 2; 2]	2.62×10^{-5}	-1.65×10^{-5}	1.06×10^{-5}	-7.01×10^{-6}	4.70×10^{-6}	-3.20×10^{-6}	2.21×10^{-6}	-1.54×10^{-6}
[2, 3; 2]	2.62×10^{-5}	-1.65×10^{-5}	1.06×10^{-5}	-7.01×10^{-6}	4.70×10^{-6}	-3.20×10^{-6}	2.21×10^{-6}	-1.54×10^{-6}
[3, 3; 2]	-0.00544	-0.292	-8.87	-199.	-3.66×10^{3}	-5.83×10^4	-8.34×10^{5}	-1.10×10^{7}
[2, 2; 3]	2.62×10^{-5}	-1.65×10^{-5}	1.07×10^{-5}	-7.04×10^{-6}	4.73×10^{-6}	-3.23×10^{-6}	2.23×10^{-6}	-1.56×10^{-6}
[3, 2; 3]	4.03×10^{-5}	-5.26×10^{-5}	-0.000242	0.000102	7.39×10^{-5}	-4.82×10^{-5}	-5.17×10^{-6}	1.06×10^{-5}
[2, 3; 3]	6.00×10^{-5}	-0.000298	-0.00509	-0.0246	-0.0768	-0.186	-0.383	-0.697
[2, 2; 4]	3.93×10^{-5}	-3.90×10^{-5}	5.06×10^{-5}	-9.37×10^{-5}	0.000289	-0.00233	-0.0409	-0.186
[3, 2, 2; 0]	2.67×10^{-5}	-1.70×10^{-5}	1.11×10^{-5}	-7.41×10^{-6}	5.04×10^{-6}	-3.49×10^{-6}	2.45×10^{-6}	-1.74×10^{-6}
[2, 3, 3; 0]	3.83×10^{-5}	-3.57×10^{-5}	4.18×10^{-5}	-6.98×10^{-5}	0.000274	0.000698	7.63×10^{-5}	-0.000272
[2, 2, 2; 1]	3.28×10^{-5}	-2.26×10^{-5}	1.60×10^{-5}	-1.16×10^{-5}	8.58×10^{-6}	-6.48×10^{-6}	4.98×10^{-6}	-3.88×10^{-6}

Table 13: Singularities for all differential approximants in D=6 in terms of $B_2\rho$, with the corresponding exponents immediately below. Defective approximants are marked with \dagger , and the singularities are listed from left to right in order of their modulus.

Approximant		Singularity / Expo	nent
[4, 3; 0]	-1.41 -0.572	$-2.14 \pm 0.743 \ i$ $0.909 \mp 1.36 \ i$	
$[3, 4; 0]^{\dagger}$	$0.316 \\ 1.36 \times 10^{-7}$	$-1.64 \pm 0.357 \ i$ $0.947 \pm 0.960 \ i$	$13.5 \\ -1.89$
[4, 4; 0]	-1.11 -0.0450	$-1.67 \pm 0.619 \ i$ $0.852 \pm 0.115 \ i$	$32.2 \\ -6.03$
[5,4;0]	-1.06 -0.0273	$-1.66 \pm 0.576 \ i$ $0.878 \pm 0.238 \ i$	$-43.0 \\ -17.4$
[4, 5; 0]	-1.06 -0.0290	$-1.65 \pm 0.583 \ i$ $0.869 \pm 0.217 \ i$	$12.2 \pm 13.3 \ i \\ -0.854 \mp 1.36 \ i$
[3, 2; 1]	-0.751 3.35	5.36 -0.0420	
[2, 3; 1]	-0.790 2.95	-13.2 1.06	$19.4 \\ -2.59$
[3, 3; 1]	-0.848 2.49	-3.58 0.169	$34.2 \\ -6.55$
[4, 3; 1]	-0.834 2.59	$-10.4 \pm 3.09 \ i$ $-2.09 \mp 3.47 \ i$	
[3, 4; 1]	-0.830 2.67	-4.69 0.295	$12.7 \pm 12.4 \ i$ $-0.890 \mp 1.24 \ i$
[2, 2; 2]	-0.874 2.05	31.1 -5.82	
[2, 3; 2]	-0.885 1.95	$37.0 \pm 22.0 \ i$ $-0.790 \mp 6.41 \ i$	
[3, 2; 2]	-0.883 1.97	$45.5 \\ -13.6$	
[3, 3; 2]	-0.604 5.02	-1.23 -0.351	$33.6 \\ -6.35$
[2, 2; 3]	-0.907 1.66	27.3 -4.60	
[3, 2; 3]	-0.805 3.23	$-40.0 \\ -5.97$	
[2, 3; 3]	-0.811 3.12	$10.6 \pm 17.4 \ i$ $-0.522 \mp 2.42 \ i$	
[2, 2; 4]	-0.809 3.13	154. -42.3	
[2, 2, 2; 0]	-0.561 9.14	4.15 9.08	
[3, 2, 2; 0]	-0.944 1.19	-12.4 18.7	2
[2, 3, 3; 0]	-0.807 3.06	-3.00 1.07	-1.35×10^3 543.
[2, 2, 2; 1]	-0.831 2.66	76.5 -17.1	

Table 14: Singularities for all Padé approximants in D=6 in terms of $B_2\rho$, with the corresponding residues immediately below. Defective approximants are marked with \dagger .

Approximant	Singularity / Residue						
[4/3]	-1.57	1.94	8.53				
	0.0309	0.00967	-207.				
[3/4]	-1.48	$7.01 \pm 4.39 i$	-8.74				
	0.0199	$58.0 \mp 78.7 i$	24.3				
[4/4]	-1.23	-2.50	$11.4 \pm 5.11 \ i$				
	0.00403	0.220	$393. \mp 462. i$				
$[5/4]^{\dagger}$	-1.18	-2.21	$8.74 \pm 4.25 i$				
	0.00247	0.129	$66.4 \mp 168. i$				
$[4/5]^{\dagger}$	-1.17	-2.17	$9.29 \pm 4.88 i$	-27.2			
	0.00236	0.120	$159. \mp 202. i$	267.			

Table 15: Predicted coefficients for Padé and differential approximants which exactly reproduce the virial coefficients to B_9 or B_{10} in 6 dimensions. Defective approximants are marked with \dagger .

			F	redicted coeff	icients			
	B_{11}/B_2^{10}	B_{12}/B_2^{11}	B_{13}/B_2^{12}	B_{14}/B_2^{13}	B_{15}/B_2^{14}	B_{16}/B_2^{15}	B_{17}/B_2^{16}	B_{18}/B_2^{17}
[4/4]	0.000410	-0.000329	0.000265	-0.000214	0.000173	-0.000140	0.000114	-9.22×10^{-5}
$[5/4]^{\dagger}$	0.000427	-0.000353	0.000296	-0.000249	0.000211	-0.000178	0.000151	-0.000128
$[4/5]^{\dagger}$	0.000427	-0.000354	0.000298	-0.000252	0.000213	-0.000181	0.000154	-0.000131
[4, 4; 0]	0.000420	-0.000346	0.000289	-0.000243	0.000206	-0.000175	0.000150	-0.000129
[5, 4; 0]	0.000430	-0.000363	0.000313	-0.000273	0.000240	-0.000213	0.000189	-0.000169
[4, 5; 0]	0.000430	-0.000362	0.000311	-0.000270	0.000237	-0.000209	0.000185	-0.000165
[3, 3; 1]	0.000429	-0.000363	0.000316	-0.000282	0.000257	-0.000238	0.000224	-0.000214
[4, 3; 1]	0.000432	-0.000368	0.000323	-0.000290	0.000267	-0.000250	0.000237	-0.000229
[3, 4; 1]	0.000432	-0.000368	0.000323	-0.000291	0.000267	-0.000250	0.000238	-0.000230
[3, 2; 2]	0.000427	-0.000360	0.000312	-0.000276	0.000249	-0.000228	0.000212	-0.000199
[2, 3; 2]	0.000427	-0.000360	0.000311	-0.000275	0.000248	-0.000227	0.000211	-0.000199
[3, 3; 2]	0.000434	-0.000375	0.000339	-0.000321	0.000316	-0.000325	0.000346	-0.000382
[2, 2; 3]	0.000425	-0.000357	0.000308	-0.000270	0.000242	-0.000220	0.000203	-0.000189
[3, 2; 3]	0.000432	-0.000368	0.000324	-0.000293	0.000270	-0.000254	0.000244	-0.000237
[2, 3; 3]	0.000432	-0.000368	0.000323	-0.000291	0.000269	-0.000252	0.000241	-0.000234
[2, 2; 4]	0.000432	-0.000368	0.000324	-0.000292	0.000270	-0.000254	0.000243	-0.000236
[3, 2, 2; 0]	0.000423	-0.000353	0.000302	-0.000263	0.000233	-0.000209	0.000190	-0.000174
[2, 3, 3; 0]	0.000432	-0.000369	0.000325	-0.000293	0.000271	-0.000256	0.000245	-0.000239
[2, 2, 2; 1]	0.000432	-0.000368	0.000323	-0.000290	0.000267	-0.000250	0.000238	-0.000230

Table 16: Singularities for all differential approximants in D=7 in terms of $B_2\rho$, with the corresponding exponents immediately below. Defective approximants are marked with \dagger , and the singularities are listed from left to right in order of their modulus.

Approximant		Singularity / Exponent						
[4, 3; 0]	-1.00 -0.0527	$-1.56 \pm 0.427 \ i$ $0.775 \pm 0.0594 \ i$						
$[3,4;0]^\dagger$	$0.787 \\ 3.46 \times 10^{-5}$	-1.32 -1.38	-1.57 3.06	$16.5 \\ -1.68$				
[4,4;0]	-0.926 -0.0214	$-1.50 \pm 0.374 \ i$ $0.774 \pm 0.278 \ i$	191. -26.8	1.00				
[5,4;0]	-0.886 -0.0121	$-1.49 \pm 0.312 \ i$ $0.820 \pm 0.530 \ i$	-3.39 -0.157					
[4,5;0]	-0.898 -0.0147	$-1.49 \pm 0.343 \ i$ $0.783 \pm 0.392 \ i$	$10.5 \pm 21.3 \ i$ $-0.776 \mp 1.38 \ i$					
[3, 2; 1]	-0.760 2.36	-3.03 0.134						
[2, 3; 1]	-0.693 3.04	-10.1 0.788	$26.5 \\ -2.23$					
[3, 3; 1]	-0.726 2.67	-4.58 0.144	133. -18.1					
[4, 3; 1]	-0.761 1.83	$-1.29 \pm 1.26 \ i$ $0.0443 \pm 0.321 \ i$						
[3, 4; 1]	-0.703 3.01	-5.79 0.453	7.88 0.247	$16.1 \\ -2.09$				
[2,2;2]	-0.756 2.18	$87.1 \\ -11.3$						
[3, 2; 2]	-0.756 2.16	$12.8 \\ -0.152$						
[2,3;2]	-0.750 2.27	$44.9 \\ -3.90$	-52.2 2.38					
[3, 3; 2]	-0.593 4.78	-1.32 -0.218	$ \begin{array}{r} 162. \\ -22.1 \end{array} $					
[2,2;3]	-0.745 2.35	89.3 -12.0						
[3, 2; 3]	-0.635 4.53	-2.41 0.305						
[2, 3; 3]	-0.667 4.07	$10.1 \pm 5.34 \ i$ $-0.220 \pm 0.296 \ i$						
[2,2;4]	-0.687 3.30	-11.3 3.65						
[2, 2, 2; 0]	$-0.260 \pm 0.710 \ i$ $-12.2 \mp 5.11 \ i$	- 00						
[3, 2, 2; 0]	-0.923 0.440	38.1 -175.						
[2, 3, 3; 0]	-0.641 4.67	-2.90 0.317	-14.7 10.7					
[2, 2, 2; 1]	-0.703 2.98	-25.6 3.62	10.1					

Table 17: Singularities for all Padé approximants in D=7 in terms of $B_2\rho$, with the corresponding residues immediately below. Defective approximants are marked with \dagger .

Approximant	Singularity / Residue					
$[4/3]^{\dagger}$	-0.891 0.000462	-1.80 0.0918	13.8 -692.			
[3/4]	-1.27 0.0131	$-5.50 \\ 8.18$	$7.24 \pm 5.61 i$ $57.2 \mp 70.2 i$			
[4/4]	-1.08 0.00317	$-2.25 \\ 0.210$	18.6 -3.49×10^3	32.3 9.41×10^3		
$[5/4]^{\dagger}$	-1.04 0.00202	$-2.01 \\ 0.131$	2.38 0.00478	13.4 -636.		
$[4/5]^{\dagger}$	-1.01 0.00142	-1.82 0.0783	$-10.9 \\ 49.9$	$9.78 \pm 6.57 \ i$ $136. \mp 164. \ i$		

Table 18: Predicted coefficients for Padé and differential approximants which exactly reproduce the virial coefficients to B_9 or B_{10} in 7 dimensions. Defective approximants are marked with \dagger .

	. 10	. 11		edicted coeff		. 15	. 16	. 17
	B_{11}/B_2^{10}	B_{12}/B_2^{11}	B_{13}/B_2^{12}	B_{14}/B_2^{13}	B_{15}/B_2^{14}	B_{16}/B_2^{15}	B_{17}/B_2^{16}	B_{18}/B_2^{17}
[4/4]	0.00134	-0.00123	0.00113	-0.00104	0.000956	-0.000882	0.000814	-0.000751
$[5/4]^{\dagger}$	0.00140	-0.00132	0.00126	-0.00121	0.00116	-0.00112	0.00108	-0.00104
$[4/5]^{\dagger}$	0.00142	-0.00136	0.00132	-0.00130	0.00128	-0.00126	0.00125	-0.00124
[4, 4; 0]	0.00141	-0.00135	0.00132	-0.00132	0.00132	-0.00134	0.00137	-0.00140
[5, 4; 0]	0.00143	-0.00139	0.00140	-0.00144	0.00150	-0.00157	0.00166	-0.00177
[4, 5; 0]	0.00142	-0.00139	0.00139	-0.00141	0.00145	-0.00151	0.00158	-0.00166
[3, 3; 1]	0.00141	-0.00137	0.00138	-0.00141	0.00148	-0.00159	0.00172	-0.00190
[4, 3; 1]	0.00143	-0.00139	0.00140	-0.00145	0.00152	-0.00162	0.00176	-0.00193
[3, 4; 1]	0.00143	-0.00139	0.00141	-0.00146	0.00155	-0.00168	0.00185	-0.00207
[3, 2; 2]	0.00141	-0.00136	0.00135	-0.00138	0.00143	-0.00151	0.00163	-0.00177
[2, 3; 2]	0.00141	-0.00136	0.00136	-0.00139	0.00144	-0.00153	0.00165	-0.00180
[3, 3; 2]	0.00143	-0.00141	0.00145	-0.00155	0.00171	-0.00194	0.00225	-0.00268
[2, 2; 3]	0.00141	-0.00137	0.00136	-0.00139	0.00145	-0.00154	0.00166	-0.00182
[3, 2; 3]	0.00143	-0.00141	0.00143	-0.00151	0.00163	-0.00181	0.00204	-0.00235
[2, 3; 3]	0.00143	-0.00140	0.00142	-0.00148	0.00158	-0.00172	0.00191	-0.00216
[2, 2; 4]	0.00143	-0.00140	0.00142	-0.00148	0.00158	-0.00172	0.00190	-0.00215
[3, 2, 2; 0]	-0.000977	-0.00499	-0.00324	-0.00493	-0.00181	-0.00275	6.55×10^{-7}	-0.00142
[2, 3, 3; 0]	0.00143	-0.00140	0.00143	-0.00150	0.00161	-0.00178	0.00200	-0.00229
[2, 2, 2; 1]	0.00143	-0.00140	0.00141	-0.00146	0.00156	-0.00169	0.00186	-0.00208

Table 19: Singularities for all differential approximants in D=8 in terms of $B_2\rho$, with the corresponding exponents immediately below. Defective approximants are marked with \dagger , and the singularities are listed from left to right in order of their modulus.

Approximant	Singularity / Exponent							
$[4, 3; 0]^{\dagger}$	-0.300	-1.18	-1.43					
	-5.14×10^{-7}	-0.781	2.23					
[3, 4; 0]	-1.09	-1.51	2.20	17.6				
	-0.300	1.80	0.00439	-1.51				
[4, 4; 0]	-0.788 -0.00578	$-1.35 \pm 0.185 i$ $0.711 \pm 0.688 i$	$-77.7 \\ 8.57$					
[5, 4; 0]	-0.804	$-1.36 \pm 0.204 \ i$	-14.2					
[0, 4, 0]	-0.00754	$0.708 \pm 0.569 \ i$	0.435					
[4, 5; 0]	-0.804	$-1.36 \pm 0.203 i$	-25.1	68.7				
[-, -, -]	-0.00747	$0.708 \pm 0.576 \ i$	1.69	-3.10				
[3, 2; 1]	-0.664	-5.50						
	2.84	0.156						
[2, 3; 1]	-0.643	-8.62	33.4					
	3.12	0.565	-1.95					
[3, 3; 1]	-0.653	-6.87	83.0					
	2.98	0.303	-6.50					
[4, 3; 1]	0.286	-0.590	-3.79					
[0 4 1]	3.83	4.83	0.246	20.4				
[3, 4; 1]	-0.622	2.12	-6.16 0.488	28.6				
[0, 0, 0]	3.64	0.175 452 .	0.400	-1.81				
[2, 2; 2]	-0.699 2.25	-39.8						
[3, 2; 2]	-0.621	-39.8 -2.84						
[9, 2, 2]	3.62	0.193						
[2, 3; 2]	-0.662	-11.7	36.2					
[/ - /]	2.81	0.630	-2.05					
[3, 3; 2]	-0.572	-1.73	-306.					
	4.59	0.0315	29.4					
[2, 2; 3]	-0.646	91.5						
	3.20	-8.73						
[3, 2; 3]	-0.574	-1.39						
[0 0 0]	4.23	-0.132	a= a					
[2, 3; 3]	-0.562 6.02	2.17 3.02	$27.6 \\ -1.69$					
[0, 0, 4]	-0.719	-2.16	-1.09					
[2, 2; 4]	1.03	-2.10 -0.0997						
[2, 2, 2; 0]	$-0.819 \pm 0.644 \ i$	0.0001						
[-, -, -, 0]	$-2.02 \mp 0.945 i$							
[3, 2, 2; 0]	-0.473	-2.89						
	10.8	-0.724						
[2, 3, 3; 0]	-0.546	$-5.37 \pm 0.814 i$						
	6.41	$4.71 \pm 18.5 i$						
[2, 2, 2; 1]	-0.636	-9.36						
	3.23	-0.531						

Table 20: Singularities for all Padé approximants in D=8 in terms of $B_2\rho$, with the corresponding residues immediately below. Defective approximants are marked with \dagger .

Approximant		Singula	arity / Residue	
[4/3]	-1.04 0.00358	-2.29 0.260	21.3 -2.04×10^{3}	
[3/4]	-1.16 0.00955	-4.39 4.26	$7.59 \pm 6.85 i$ $64.1 \mp 71.2 i$	
$[4/4]^{\dagger}$	-0.997 0.00227	-2.04 0.163	17.9 -1.00×10^{3}	-54.5 6.21×10^3
$[5/4]^{\dagger}$	$-0.708 \\ 2.33 \times 10^{-5}$	-1.14 0.00652	-2.46 0.315	21.1 -1.96×10^{3}
$[4/5]^{\dagger}$	-0.920 0.000914	-1.64 0.0568	-7.79 22.3	$10.5 \pm 8.30 \ i$ $145. \mp 163. \ i$

Table 21: Predicted coefficients for Padé and differential approximants which exactly reproduce the virial coefficients to B_9 or B_{10} in 8 dimensions. Defective approximants are marked with \dagger .

				dicted coeffic				
	B_{11}/B_2^{10}	B_{12}/B_2^{11}	B_{13}/B_2^{12}	B_{14}/B_2^{13}	B_{15}/B_2^{14}	B_{16}/B_2^{15}	B_{17}/B_2^{16}	B_{18}/B_2^{17}
$[4/4]^{\dagger}$	0.00241	-0.00239	0.00238	-0.00238	0.00238	-0.00239	0.00240	-0.00240
$[5/4]^{\dagger}$	0.00258	-0.00281	0.00325	-0.00396	0.00505	-0.00666	0.00898	-0.0123
$[4/5]^{\dagger}$	0.00254	-0.00265	0.00281	-0.00301	0.00325	-0.00351	0.00381	-0.00414
[4, 4; 0]	0.00257	-0.00275	0.00304	-0.00345	0.00399	-0.00468	0.00555	-0.00662
[5, 4; 0]	0.00256	-0.00271	0.00297	-0.00333	0.00379	-0.00437	0.00508	-0.00594
[4, 5; 0]	0.00256	-0.00271	0.00297	-0.00333	0.00379	-0.00437	0.00509	-0.00596
[3, 3; 1]	0.00253	-0.00267	0.00290	-0.00324	0.00370	-0.00431	0.00512	-0.00617
[4, 3; 1]	0.00255	-0.00272	0.00296	-0.00342	0.00382	-0.00498	0.00491	-0.00922
[3, 4; 1]	0.00255	-0.00271	0.00297	-0.00336	0.00389	-0.00460	0.00556	-0.00682
[3, 2; 2]	0.00255	-0.00269	0.00295	-0.00333	0.00386	-0.00457	0.00551	-0.00676
[2, 3; 2]	0.00253	-0.00266	0.00288	-0.00321	0.00365	-0.00424	0.00501	-0.00601
[3, 3; 2]	0.00256	-0.00273	0.00303	-0.00348	0.00411	-0.00499	0.00619	-0.00783
[2, 2; 3]	0.00253	-0.00267	0.00290	-0.00324	0.00371	-0.00434	0.00516	-0.00623
[3, 2; 3]	0.00256	-0.00274	0.00304	-0.00350	0.00415	-0.00506	0.00630	-0.00802
[2, 3; 3]	0.00256	-0.00272	0.00300	-0.00341	0.00399	-0.00479	0.00587	-0.00733
[2, 2; 4]	0.00255	-0.00271	0.00296	-0.00332	0.00380	-0.00443	0.00523	-0.00626
[3, 2, 2; 0]	0.00256	-0.00274	0.00306	-0.00353	0.00420	-0.00515	0.00648	-0.00834
[2, 3, 3; 0]	0.00256	-0.00273	0.00302	-0.00346	0.00407	-0.00492	0.00609	-0.00768
[2, 2, 2; 1]	0.00255	-0.00271	0.00297	-0.00335	0.00387	-0.00457	0.00549	-0.00671