Clase 23 Aplicaciones Adicionales

Sadiku, M. (2018). *Elements of Electromagnetics*. 7th Edition: pp. 585 –591 Abusleme A. (2021). IEE3453 – Diseño de Circuitos Integrados de RF

Javier Silva Orellana

jisilva8@uc.cl

Contexto

• Cerremos el Capítulo de Líneas de Transmisión con unos últimos comentarios.

Contenidos

- Línea Ranurada
- RF para ñoños

Línea Ranurada

- Corresponde a un cable coaxial con una ranura a partir de la cual puedo medir el voltaje a distintas distancias.
- A partir de las mediciones puedo determinar V_{min} y l_{min} , y con ello deducir $\Gamma(0)$ y Z_L para una carga desconocida.

• Tengo una Línea Ranurada de 50Ω .

- Paso 1: Cortocircuito el extremo de la línea y mido V(l).
- Paso 2: Repito el proceso, pero conectando la carga.

• Tengo una Línea Ranurada de 50Ω .

- Paso 1: Cortocircuito el extremo de la línea y mido V(l).
- Paso 2: Repito el proceso, pero conectando la carga.
- Paso 3: Determino λ , V_{max} , V_{min} y l_{min} .
- Paso 4: Determino Γ y Z_L .

• Tengo una Línea Ranurada de 50Ω .

- Paso 1: Cortocircuito el extremo de la línea y mido V(l).
- Paso 2: Repito el proceso, pero conectando la carga.
- Paso 3: Determino λ , V_{max} , V_{min} y l_{min} .
- Paso 4: Determino Γ y Z_L .

$$|\Gamma| = \frac{\text{ROE} - 1}{\text{ROE} + 1}$$

$$\theta_{\Gamma} = \pi + 2\beta l_{min}$$

$$Z_L = Z_0 \frac{1+\Gamma}{1-\Gamma}$$

• Tengo una Línea Ranurada de 50Ω .

• O puedo hacerlo por carta de Smith

De aquí en adelante

De aquí en adelante

RF Tapers

• Los cambios abruptos en el ancho de una pista pueden traducirse en cambios de impedancia, y por tanto generar reflexiones.

RF Tapers

• Solución:

Transiciones suaves (tapers) que equivalen a un ajuste gradual de impedancia.

RF vias

En RF todo irradia ondas EM.

• El RF que se genera en un lado del circuito puede ingresar como perturbaciones a otra parte de la placa (crosstalk).

• ¿Cómo lo evito?

RF vias

• Ofreciendo un camino corto hacia tierra.

Pistas capacitivas, pistas inductivas

- Otra forma de generar adaptaciones es variando el ancho y geometría de las pistas.
- Dependiendo de cómo ajustemos la forma de la pista, podemos generar **reactancias distribuidas**.

Pistas capacitivas, pistas inductivas

La importancia de la carga

• En general los dispositivos que irradian ondas RF tienen amplificadores operando a tope.

• Error brutal: Remover la antena...

La importancia de la carga

• Si desconectamos la antena tendremos un circuito abierto de $Z_L=\infty$.

• ¿Qué ocurre con Γ?

• ¿Hacia donde se va la onda?

La importancia de la carga

• También pasa en routers...

Líneas de Transmisión Monolíticas

Componentes Pasivos: Resistores

$$R_{\square} = \frac{1}{\sigma \delta} = \sqrt{\frac{\pi \mu f}{\sigma}}$$

• Ojito que las esquinas valen $0.56 R_{\square}$.

Componentes Pasivos: Resistores

• En el caso de configuraciones asimétricas.

$$R = \frac{L}{W} R_{\square}$$

Componentes Pasivos: Resistores

• En el caso de configuraciones asimétricas.

$$R = \frac{L}{W} R_{\square}$$

Componentes Pasivos: Capacitores

Componentes Pasivos: Inductores

Componentes Pasivos: Transformadores

¿Más sobre Electrónica de RF?

Resumen

- Cerramos los últimos tópicos en torno a LT.
- Conectamos con distintas aplicaciones y vimos algunas observaciones relevantes en el diseño de chips y PCBs.

Para más ñoñería ya saben a quién acudir.

Cerrando la clase de hoy

• La próxima semana inciaremos un nuevo capítulo.

Próxima Clase:

Guías de Ondas

Bibliografía:

Sadiku, M. (2018). Elements of Electromagnetics. 7th Edition: pp. 633 – 643.