Mathematical Models for Red Blood Cell

2018 Summer AM-SURE

Tianrui Xu, advised by Charles S. Peskin

Courant Institute of Mathematical Sciences, New York University

Red Blood Cell

1

Goal

Find the most $\underline{\text{simplest}}$ equation and use $\underline{\text{discrete}}$ methods to generate a $\underline{\text{biconcave}}$ shape from a perfect sphere.

Mathematical Modeling

Triangulated Surface

We start from a sphere (codes from Professor Peskin).

The more triangles we use, the more smooth the surface is.

Model Setup

Discovered by Canham in 1970, the biconcave shape requires the least amount of bending energy E.

- Minimize E.
- Minimize $\frac{dE}{dt}$, where t refers to time.
- Minimize $\frac{dE}{dt} + \frac{1}{2} \sum_{k} \frac{dX_{k}}{dt} \frac{dX_{k}}{dt}$, where X_{k} is the coordinate vector of the k^{th} point.

Constraints

- Area: Surface area should remain constant: $\frac{dA}{dt} = 0$.
- ullet Volume: Force the volume to decrease: $rac{dV}{dt}=rac{dV_0}{dt}$

Constraints

 $V_0(t) = V \min + (V \max - V \min)e^{-at}$, where V_{max} refers to the initial volume, V_{min} refers to the final volume, and a is a positive constant.

In summary:

$$\text{Minimize} \quad \frac{dE}{dt} + \frac{1}{2} \sum_{k} \frac{dX_k}{dt} \frac{dX_k}{dt}, \quad \text{subject to} \quad \frac{dV}{dt} = \frac{dV_0}{dt} \quad \text{and} \quad \frac{dA}{dt} = 0.$$

Translate the above equation into the following ODE equation:

$$\frac{dX_k}{dt} = -\frac{\partial E}{\partial X_k} - \lambda \frac{\partial V}{\partial X_k} - \mu \frac{\partial A}{\partial X_k}, \quad \text{subject to} \quad \frac{dV}{dt} = \frac{dV_0}{dt} \quad \text{and} \quad \frac{dA}{dt} = 0,$$

where λ and μ are lagrange multipliers for the constraints.

Calculation

Calculation

Volume

$$V = \sum_f V_f$$
, where $V_f = \frac{1}{6} X_{f_1} (X_{f_2} \times X_{f_3})$.

Surface area

 $A = \sum_{f} a_f, \text{ where } a_f = \frac{1}{2} (X_{f_2} - X_{f_1}) \times (X_{f_3} - X_{f_1}) \cdot n,$ where n is the normal vector to the surface f.

Calculation

On a smooth surface:

- (1) Bending energy $E = \int H^2 da$, where H and a represent mean curvature and area, respectively.
- (2) Mean curvature H of a surface is the rate of change of its area, per unit area, when this surface is moving in the normal direction to itself.

On discrete surface (face f):

- (1) Mean curvature h_f is the rate of change of face f's area, to its area, when face f is moving in the normal direction to itself.
- (2) $h_f = (da_f/dt) \cdot a_f^{-1}$, where a_f is the area of the face f.
- (3) Then $E = \int H^2 da \approx \sum_f h_f^2 a_f$.

Non-Smoothness

Refinement

Minimize $E+\sum_{e=1}^{\# \text{ of edges}} l_e^3$, where l_e represents the length of the e^{th} edge.

Limit the possibility that one edge will get extremely long compared to other edges, and therefore limit the possibility that triangles will get deformed.

This gives us

$$\frac{dX_k}{dt} = -\frac{\partial E}{\partial X_k} - \frac{\partial \sum_{e} I_{e}^3}{\partial X_k} - \lambda \frac{\partial V}{\partial X_k} - \mu \frac{\partial A}{\partial X_k}.$$

Results

At time t = 1.2,

Conclusion

- (1) Generate a shape that is close to biconcave, but not exactly the same.
- (2) Possible explanations for the instabilities.
- (3) Look into the future.

Acknowledgement

I would like to show my gratitude to my mentor Professor Charles S. Peskin for his great guidance and encouragement. It is his wisdom that shows me the light through difficulties.

I would also like to present my special thanks to Dr. Pejman Sanaei and Mr. Jason Kaye for their patient assitance and critiques of the research project.

I would also like to thank Professors Miranda Holmes-Cerfon and Aleksandar Donev for leading and supporting the undergraduate research program.

Finally, I would like to thank NYU Math Department for funding this research.

Reference

- Reece, J. B., Urry, L. A., Cain, M. L. 1., Wasserman, S. A., Minorsky, P. V., Jackson, R., and Campbell, N. A. (2014). *Campbell biology.* Tenth edition. Boston: Pearson.
- Charles S. Peskin. Matlab codes that generate a sphere.
- Charles S. Peskin. Notes on defining bending energy on a discrete surface.
- Canham, P.B. (1970). The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. *Journal of Theoretical Biology*, 26(1), 61-81. doi:10.1016/s0022-5193(70)80032-7.
- Sullivan, J.M. (2006). Curvatures of Smooth and Discrete Surfaces. *Discrete Differential Geometry Oberwolfach Seminars*, 175-188. doi:10.1007/978-3-7643-8621-4_9.