PRESENTATION OF WIND TURBINE MODEL AND SIMULATION

Automation in Regenerativen Energiesystemen

LAWAL IBRAHIM OKIKIOLA

Erasmus Mundus Joint Master's Degree Student in Dynamics of Renewable Based Power Systems

February 04, 2025.

Presentation Overview

- Mechanical structure dynamics: Drive train
- 2 Aerodynamics
- Tower and Blade
- 4 Control
- Conclusion

Drive Train and Equation

Figure: Drive Train Schematics

For the rotor:

$$\dot{\omega}_r = \frac{-k_s (n_g \theta_r - \theta_g) + d_s (n_g \omega_r - \omega_g) + T_r}{J_r}.$$
 (1)

For the generator:

$$\dot{\omega}_g = \frac{k_s (n_g \theta_r - \theta_g) - d_s (n_g \omega_r - \omega_g) - T_g}{J_g}.$$
 (2)

Additionally, the relationships for $\Delta \dot{\theta}_s$ and $\Delta \theta_s$ are:

$$\Delta\theta_s = n_g\theta_r - \theta_g. \tag{3}$$

$$\Delta \dot{\theta}_s = n_g \dot{\omega}_r - \dot{\omega}_g, \tag{4}$$

Figure: Drive Train Simulation

Aerodynamics Equations and Simulations

The equations for rotor torque (T_r) and thrust force (F_T) are given by:

$$T_r = \frac{1}{2} \rho \pi R^3 V_\infty^2 C_Q(\lambda, \beta), \tag{5}$$

$$F_T = \frac{1}{2} \rho \pi R^2 V_\infty^2 C_T(\lambda, \beta), \tag{6}$$

where:

- ullet ho is the air density,
- R is the rotor radius,
- ullet V_{∞} is the freestream velocity,
- $C_Q(\lambda, \beta)$ is the torque coefficient as a function of tip-speed ratio λ and pitch angle β ,
- $C_T(\lambda, \beta)$ is the thrust coefficient as a function of λ and β .

Figure: Aerodynamics Modeling

Tower and Blade Displacement

Mechanical structure dynamics of the turbine tower and blades

The equations for the tower and blade are as follows:

For the Tower:

$$F_T = S^2 y_T M_T + S y_T d_T + y_T K_T, (7)$$

$$S^{2}y_{T}M_{T} = F_{T} - Sy_{T}d_{T} - y_{T}K_{T}, (8)$$

$$\ddot{y}_T = \frac{1}{M_T} (F_T - d_T \dot{y}_T - y_T K_T), \tag{9}$$

where:

- y_T is the displacement of the tower,
- M_T is the effective of Nacelle-Tower Motion
- d_T is the damping coefficient of the tower,
- K_T is the stiffness of the tower,
- F_T is the force acting on the tower.

Figure: Tower Displacement

For the Blade:

$$F_T = S^2 y_B N M_B + S y_B d_B + y_B K_B, (10)$$

$$S^2 y_B N M_B = F_T - S y_B d_B - y_B K_B, \tag{11}$$

$$\ddot{y}_B = \frac{1}{NM_B} \left(F_T - d_B \dot{y}_B - y_B K_B \right), \tag{12}$$

where:

- y_B is the displacement of the blade,
- M_B is the effective mass of the blade,
- d_B is the damping coefficient of the blade,
- K_B is the stiffness of the blade,
- F_T is the force acting on the blade.
- N is the numbers of Blade.

Figure: Blade Displacement

Control Implementation considering different regions

Figure: Graphical representation of Wind Turbine Region

Three key aspects will be analyzed:

- **Optimization**: This applies when the wind speed is below the rated speed ($v < v_{rated}$).
- **Power Limitation**: This ensures that the power remains at the rated level when the wind speed exceeds the rated speed $(v > v_{rated})$.
- **Output** Load Mitigation: This focuses on maintaining structural efficiency

 $T_g \omega_g = \frac{1}{2} \rho \pi R^3 v^2 \frac{c_P}{\lambda} \omega_r.$

extension with
$$\frac{\omega_r^2}{\omega_r^2}$$

(13)

(14)

(15)

(16)

Using $\omega_g = n_g \omega_r$ and the extension with $\frac{\omega_r^2}{\omega_z^2} \frac{R^2}{R^2}$, we obtain:

For power optimization in Region 2, $P_g \approx P_r$, we get:

 $T_g n_g \omega_r = \frac{1}{2} \rho \pi R^5 \frac{v^2}{\omega^2 R^2} \frac{c_P}{\lambda} \omega_r^3.$

Here, $\frac{v^2}{\omega^2 R^2}$ simplifies to $\frac{1}{\lambda^2}$, leading to:

$$T_g n_g \omega_r = \frac{1}{2} \rho \pi R^5 \frac{1}{\lambda^2} \frac{c_P}{\lambda} \omega_r^3.$$

Finally, by substituting $\omega_r = \frac{\omega_g}{n_\sigma}$ and $\lambda = \lambda_{\text{opt}}$, we obtain:

$$T_g = f(\omega_g) = \frac{1}{2} \rho \pi R^5 \frac{c_{P,\text{max}}}{n_\sigma^3 \lambda_{\text{ont}}^3} \omega_g^2 = k_{\text{opt}} \omega_g^2,$$

where: $k_{\text{opt}} = \frac{1}{2} \rho \pi R^5 \frac{c_{P,\text{max}}}{n_{\text{s}}^3 \lambda_{\text{opt}}^3}. \tag{17}$

LAWAL IBRAHIM OKIKIOLA (Erasmus Mun Wind Turbine Simulation February 04, 2025.

Tg Implementations

The general equation:

$$y = mx + b$$

$$0 = \frac{0.45}{0.15} \cdot 0.6 + b$$

Solving for *b*:

$$b = -1.8$$

Where:

$$y = \frac{T_g}{T_{g, \mathrm{rat}}}$$
 and $x = \frac{\omega_r}{\omega_{\mathrm{rat}}}$

```
switch region
    case 1
        Tg = 0; % Region 1
    case 1.5
        Tg = (3*(wg/wg_rated) - 1.8)*Tg_max; % Region 1.5
    case 2
        Tg = k_Opt * wg^2; % Region 2
    case 2.5
        Tg = (5.5*(wg/wg_rated) - 4.61)*Tg_max; % Region 2.5
        otherwise
        Tg = 0; % Default value for other regions
```

end

Control of region 3

Figure: control scheme

Figure: PI control implemented on simulink

Actualization of KP and KI

1. Plant Transfer Function $(G_p(s))$:

$$G_p(s) = rac{rac{Keta}{J}}{s - rac{K\omega_r}{J}}$$

2. Controller Transfer Function $(G_c(s))$:

$$G_c(s) = K_p \left(s + \frac{K_i}{K_p} \right)$$

Transfer Functions:

With $a = \frac{K_p}{K_i}$, the transfer functions are:

1. Open-loop $(G_o(s))$:

$$G_o(s) = \frac{K_p \cdot b}{s}$$

2. Closed-loop $(G_{cl}(s))$:

$$G_{cl}(s) = \frac{K_p \cdot b}{s + K_p \cdot b}$$

$$K_p \cdot b_i = \frac{1}{\tau_{ref}}$$

$$K_p = \frac{1}{\tau_{ref} \cdot b}$$

$$K_i = \frac{a_i}{\tau_{ref} \cdot b_i}$$

Figure: implementation of Kp and Ki on matlab script

```
switch prev region
   case 1 % Region_1
        if wg > wg_R1_max
            turbineRegion = 1.5; % Region_1.5
        else
            turbineRegion = 1: % Region 1
        end
   case 2 % Region 1.5
        if wg > wg R1 5 max
            turbineRegion = 2; % Region 2
        elseif wg <= wg_R1_max
            turbineRegion = 1: % Region 1
        else
            turbineRegion = 1.5: % Region 1.5
        end
   case 3 % Region 2
        if wg > wg_R2_max && Tg > Tg_max
            turbineRegion = 2.5; % Region 2.5
        elseif wg <= wg R1 5 max
            turbineRegion = 1.5; % Region_1.5
        else
            turbineRegion = 2; % Region_2
        end
   case 4 % Region 2.5
        if wg > wg R2 5 max && Tg > Tg max
            turbineRegion = 3; % Region 3
        elseif wg <= (wg R2 max - dwg)
            turbineRegion = 2; % Region_2
        else
            turbineRegion = 2.5: % Region 2.5
        end
   case 5 % Region 3
        if wg <= wg_R2_5_max || Tg <= Tg_max
            turbineRegion = 2.5; % Region 2.5
        else
            turbineRegion = 3; % Region_3
        end
end
```

Selected Project Results

Figure: W_r and W_g at 10 m/s wind speed

Figure: W_r and W_g at 20 m/s wind speed

Figure: Tower and Blade Displacement

Figure: Results of rotor torque and thrust force scope

Figure: The Operating Regions

Figure: Torsion Angle

Operating Regions and Pitch angles

Figure: Plot of pitch for wind speed of 10 m/s.

Figure: Plot of pitch for wind speed of 20 m/s.

Conclusion

- This presentation covered key aspects of wind turbine modeling and simulation, focusing on mechanical structure dynamics, aerodynamics, tower and blade motion, and control strategies.
- Simulations provide insights into efficiency, power regulation, and load management, highlighting how different factors affect turbine performance.
- Proper control implementation ensures optimal energy extraction, structural stability, and longevity of turbine components.
- Future advancements in control techniques, materials and aerodynamics will further improve turbine performance and efficiency.
- Wind energy remains a key player in the transition to renewable energy. Continuous improvements in modeling and simulation will lead to more efficient, reliable and sustainable wind power solutions.