

Machine learning for linear and nonlinear signal equalization

Course 34242 Lecture 4

Darko Zibar dazi@dtu.dk

Agenda

- Basics of digital communication
- Machine learning for communication system optimization
- Linear and nonlinear channels
- ISI free communication
- Linear and nonlinear filters for equalization
- Learning algorithm for linear filters
- Learning algorithm for nonlinear filters

Reading material

- 1. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2006
 - Chapter 3 (pp. 137 143)
 - Chapter 5 (pp. 232 246)

- 2. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, 2016
 - Chapter 8

Optical transmission system

$$P_{out}(z) = P_{in}e^{-\alpha z}$$

$$P_{in} = GP_{out}(L)$$

lpha : fiber attenuation

z: variable (distance)

Multi-channel transmission system

Signal distortion in data-communication

Fiber-optic communication systems

Machine learning can be used to perform global optimization in the presence of system impairments

System Impairments

- Transmitter
 - DAC bandwidth limitations
 - DAC resolution
 - Chirp
 - Optical modulator nonlinearity (MZM, EAM, ring resonator)
- Optical fibre channel
 - Chromatic dispersion (ISI)
 - Kerr nonlinearity
 - Polarization mode dispersion
 - Optical amplifier noise
- Receiver
 - Photodiode bandwidth limitations
 - ADC resolution
 - Front-end noise

Next generation data-centre links

Next-generation will operate of links will operate > 800 Gb/s
Innovative DSP for compensation of strong ISI and component nonlinearity

Che et al., JLT 2023

How to decrease the capacity gap?

- Capacity of fibre-channel unknown
- Optimal transceiver unknown
- Optimal receiver architecture unknown
- Optimal modulation and pulse-shapes unknown

If something is complex, has no analytical solutions and it complex to optimize we turn to "the dark side"

End-to-end Learning in Optical Communication

- ➤ Geometric constellation shaping^[1-18]
 - [1] R. T. Jones, et. al., ECOC, 2018.
 - [2] R. T. Jones, et. al., ECOC, 2019.
 - [3] S. Li, et. al., ECOC, 2018.
 - [4] M. Schaedler, et. al., OFC, 2020.
 - [5] K. Gümüş, et. al., OFC, 2020.
 - [6] V. Talreja, et. al., ECOC, 2020.
 - [7] V. Neskorniuk, et. al., ECOC, 2021.
 - [8] O. Jovanovic, et. al., ECOC, 2021.
 - [9] V. Aref, et. al., OFC, 2022.
 - [10] A. Rode, et. al., OFC, 2022.
 - [11] O. Jovanovic, et. al., JLT, 2022.
 - [12] B. M. Oliveira, et. al., CLEO, 2022.
 - [13] X. Guan, et. al., CLEO, 2022.
 - [14] V. Neskorniuk, et. al., CLEO, 2022.
 - [15] A. Rode, et. al., ECOC, 2022.
 - [16] M. P. Yankov, et. al., ECOC, 2022.
 - [17] B. M. Oliveira, et. al., Optics Express, 2022.
 - [18] V. Neskorniuk, et. al., Optics Express, 2023.

- ➤ Waveforms for dispersive fiber^[19-21]
 - [19] B. Karanov, et. al., JLT, 2018.
 - [20] B. Karanov, et. al., Optics Express, 2019.
 - [21] B. Karanov, et. al., OFC, 2021.
- Waveforms for nonlinear frequency division multiplexing^[22,23]
 - [22] S. Gaiarin, et. al., CLEO, 2020.
 - [23] S. Gaiarin, et. al., JLT, 2021.
- ➤ Superchannel transmission^[24,25]
 - [24] J. Song, et. al., OFC, 2021.
 - [25] J. Song, et. al., JSTQE, 2022.
- Experimental test-bed using a generative model^[26] [26] B. Karanov, et. al., OFC, 2020.
- ➤ Gradient-free optimization for non-differentiable channels^[27,28]
 - [27] O. Jovanovic, et. al., JLT, 2021.
 - [28] J. Song, et al., ECOC, 2021.

Degrees of freedom for the optimization

End-to-end learning allows for joint optimization of the transmitter and receiver side DSP blocks

Long haul fiber-optic communication channel

Chromatic dispersion
$$\frac{dX(t)}{dz} = -\frac{\alpha}{2}X(t) - i\frac{\beta_2}{2}\frac{d^2X(t)}{dt^2} + i\gamma|X(t)|^2X(t)$$
 Nonlinear Kerr effect

Tx and Rx optimization

End-to-end learning requires computation of gradients through the system

All we need is the chain rule

$$y = f(w_2)$$
$$w_2 = g(w_1)$$
$$w_1 = h(x)$$

$$\frac{dy}{dx} = \frac{dy}{dw_2} \frac{dw_2}{dw_1} \frac{dw_1}{dx}$$

Linear and nonlinear channel models

Optical fiber channel model

Auxiliary channel model for the optical fiber

Chromatic dispersion

$$rac{dA}{dz} = -rac{lpha}{2}A - irac{eta_2}{2}rac{d^2A}{dt^2} + i\gamma|A|^2A$$
 Fiber loss Nonlinear Kerr effect

The nonlinear interference noise (NLIN) model:

Dual power constraint – nonobvious optimal characteristics and optimization strategies

R. Dar et al., Opt. Exp. 21(22) (2013), pp. 25685-25699

Optical fiber channel models

Chromatic dispersion
$$\frac{dA}{dz} = -\frac{\alpha}{2}A - i\frac{\beta_2}{2}\frac{d^2A}{dt^2} + i\gamma|A|^2A$$
 Fiber loss Nonlinear Kerr effect

	Additive white Gaussian noise (AWGN)	Nonlinear interference noise (NLIN)[1]	Split-step Fourier method (SSFM) [2]
Model output	Symbol observations		Complete WDM waveform
Modelling of channel memory	No	No	Yes
Modelling of modulation dependence	No	Yes	Yes
Computational cost	Low	Low	High

[1] R. Dar et al., Opt. Exp,2013.

[2] O. V. Sinkin et al., JLT, 2003.

Geometric constellation shaping

Tx NN finds a robust symbol mapping

RX NN reconstruct the transmitted symbols

Joint optimization of Tx and Rx neural networks leads to constellations that are robust to channel impairments

Cost function and relation to achievable information rate

- For classification problems (e.g. symbol detection), cross-entropy (CE) is commonly used

$$J_{CE}(\mathbf{W}) = \mathbb{E}_k \left[-\sum u_k \log s_k \right]$$

- For binary classification problems (e.g. bit demapping), log-likelihood (LL) is commonly used

$$J_{LL}(\boldsymbol{W}) = \mathbb{E}_k \left[-\sum [u_k \log s_k + (1 - u_k) \log(1 - s_k)] \right]$$

Relation to achievable information rate (AIR):

$$I(X;Y) = H(X) - H(X|Y) \ge H(X) - \widehat{H}(X|Y)$$

Achievable information rate when using decoder neural network

Autoencoders for geometric constellation shaping

System performance

Communication system for zero ISI

Total transfer function:

$$X(f) = H_{PS}(f)H_{D/A}(f)H_{ch}(f)H_{A/D}(f)H_{pd}(f)H_{MF}(f)$$

ISI-free condition:

Optimization of pulse-shaper and matched filter

Define the error: $e = (b_k - \hat{b}_k)^2$

$$\mathbf{W}_{ au+1}^{PS} = \mathbf{W}_{ au}^{PS} - \eta \frac{\partial e}{\partial \mathbf{W}_{ au}^{PS}} \ \mathbf{W}_{ au+1}^{MF} = \mathbf{W}_{ au}^{MF} - \eta \frac{\partial e}{\partial \mathbf{W}_{ au}^{MF}}$$

Back-to-back results

S. F. Nielsen, JLT 2024

Total transfer function

$$B(f) = \sum_{m=\infty}^{\infty} X(f + m/T) = C$$

After 2 km of transmission

S. F. Nielsen, JLT 2024

Summary

- Communication theory for linear channels well established
- Communication theory for non-linear channels not well established
- Many blocks within communication system are learnable
- Machine learning can help us learn models from data
- Significant advantages already demonstrated
- Efficient Gradient-free optimization needs to be developed for experiments

Discrete-time linear communications system model

$$y[k] = h[k] * x[k] + n[k] = \sum_{m=1}^{M} h[m]x[k-m] + n[k]$$

$$h[k] = \begin{cases} \frac{1}{2} \left[1 + \cos\left(\frac{2\pi}{W}(k-2)\right) \right] & \text{for } k = 1, 2, 3 \\ 0 & \text{otherwise} \end{cases}$$

Linear adaptive equalizer

Adaptable model parameters:

$$\mathbf{w} = [w_0, w_1, w_2, ... w_M]^T$$

The objective if to determine weight vector **W** by minimizing the error

Deriving the update algorithm

Weight vector updated using gradient descent:

$$\mathbf{w}[k+1] = \mathbf{w}[k] - \mu \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}$$

The output of the equalizer:

$$u[k] = [w_0, w_1, ..., w_M][y[k], y[k-1], ..., y[M-1]]^T = \mathbf{w}^T \mathbf{y}$$

Mean square error:

$$E[k] = -\frac{1}{2} \left(x[k] - \mathbf{w}^T \mathbf{y} \right)^2$$

Computing the derivative:

$$\frac{\partial E}{\partial \mathbf{w}} = -(x[k] - \mathbf{w}^T)\mathbf{y}$$

The update rule becomes:

$$\mathbf{w}[k+1] = \mathbf{w}[k] + \mu \mathbf{y}(x[k] - \mathbf{w}^T \mathbf{y}) = \mathbf{w}[k] + \mu \mathbf{y}e[k]$$

Nonlinear adaptive equalizer (time-delay NN)

Combining linear and nonlinear equalizer (1D CNN)

All we need is the chain rule

$$y = f(w_2)$$
$$w_2 = g(w_1)$$
$$w_1 = h(x)$$

$$\frac{dy}{dx} = \frac{dy}{dw_2} \frac{dw_2}{dw_1} \frac{dw_1}{dx}$$

Very simple example

$$x[k] \qquad w_0 \qquad f(\cdot) \qquad z \qquad w_1 \qquad e[k] = \frac{1}{2}(\hat{y}[k] - y[k])^2 = \frac{1}{2}(w^1z - y[k])^2$$

$$w_0[k+1] = w_0[k] - \mu \frac{de}{dw_0}$$

$$w_1[k+1] = w_1[k] - \mu \frac{de}{dw_1}$$

Update rules

$$a = w_0 x[k]$$

$$z = f(a)$$

$$e[k] = \frac{1}{2}(w^1 z - y[k])^2$$

$$\frac{de}{dw_1} = (w_1 z - y[k])z$$

$$\frac{de}{dw_0} = \frac{de}{dz} \frac{dz}{da} \frac{da}{dw_0} = (w_1 z - y[k])w_1 f'(a)x[k]$$

One hidden layer neural network

$$e[k] = \frac{1}{2}(w_{11}^2 z_1 + w_{12}^2 z_2 + w_{13}^2 z_3 - y[k])^2$$

$$e[k] = \frac{1}{2} \left(\sum_{j=0}^{3} w_{1j}^{(2)} z_j - y[k] \right)^2$$

$$w_{j1}^{(1)}[k+1] = w_{j1}^{(1)}[k] - \mu \frac{de}{dw_{j1}^{(1)}}$$

$$w_{1j}^{(2)}[k+1] = w_{1j}^{(2)}[k] - \mu \frac{de}{dw_{1j}^{(2)}}$$

$$\frac{de}{dw_{1j}^{(2)}} = \left(\sum_{j=0}^{3} w_{1j}^{(2)} z_j - y[k]\right) z_j$$

$$\frac{de}{dw_{j1}^{(1)}} = \frac{de}{dz_j} \frac{dz_j}{da_j} \frac{da_j}{dw_{j1}^{(1)}} = \left(\sum_{j=0}^{3} w_{1j}^{(2)} z_j - y[k]\right) w_{1j}^{(2)} f'(a_j) x_1[k]$$

One hidden layer neural network with biases


```
for i = 1 : L_iter
    for k = 1 : L_train
        compute e(k)
        grad = de(k)dw;
        W = W + eta*grad;
    end
    e(i) = mean(e.^2);
end
Can be done in one step
```

Pseudo code for training of neural networks

$$a_{j} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{i}[k]$$
$$z_{j} = f(a_{j})$$
$$\hat{y}[k] = \sum_{j=1}^{M} w_{1j}^{(2)} z_{j}$$

$$\frac{\frac{de}{dw_{1j}^{(2)}} = (\hat{y}[k] - y[k])z_j}{\frac{de}{dw_{ji}^{(1)}} = \frac{de}{dz_j}\frac{dz_j}{da_j}\frac{da_j}{dw_{ji}^{(1)}} = (\hat{y}[k] - y[k])w_{1j}^{(2)}f'(a_j)x_i[k]}$$

Learning functions with 1D NN

Nonlinear discrete-time communication channel with nonlinear equalization

$$y[k] = h[k] * x[k] + a \cdot (h[k] * x[k])^{2} + n[k]$$

Performance of nonlinear vs. linear equalizer

Convolutional nonlinear equalizer

In this lecture we have learned....

- Basics of digital communication
- How machine learning can be used to optimize the performance
- How to use the chain rule to derive learning algorithms
- How to derive learning algorithms for a single layer neural network
- How to derive learning algorithms for linear and nonlinear equalization
- The impact of linear and nonlinear equalization