only contraction operators and this is also the case considered by Yosida in his first paper. The extension to transition operators occurs in his second paper.

- ⁵ Hille, loc. cit., p. 232, formula (11.7.2).
- ⁶ See the references in footnotes 1 and 2. In the former, consult pages 391-394.
- ⁷ The construction here indicated is an application of a general method used by the author in, for instance, "Sur le problème abstrait de Cauchy," Compt. rend. Acad. Sci., Paris, 236, 1466–1467 (1953). Since all the functions x_{mn} (λ) are completely monotone for $\lambda > 0$, the functions $z_{mn}(t)$ will be non-negative, and Z(t) is a positive nul solution. The existence of positive nul solutions for related systems has been proved by W. Feller, loc. cit., using other methods.

AN APPLICATION OF HIGH-SPEED COMPUTING TO FERMAT'S LAST THEOREM

By D. H. Lehmer, Emma Lehmer, and H. S. Vandiver

UNIVERSITY OF CALIFORNIA AT BERKELEY AND UNIVERSITY OF TEXAS

Communicated November 9, 1953

Introduction.—The statement of Fermat (known as Fermat's Last Theorem), which dates from 1672, that

$$x^n + y^n = z^n, \qquad n > 2, \tag{1}$$

has no non-zero solutions in integers still awaits a proof or disproof. It is known that for a proof it is sufficient to consider the case of n = l, an odd prime.

With the assumption that xyz is not divisible by l (known as case (1)), very stringent criteria on (1) have been devised and it was shown by D. H. and Emma Lehmer¹ in 1941 that (1) is impossible for each $l \le 253,747,899$ in this case.

Without the restriction to case (1) the problem appears to be much more difficult and requires the consideration of each prime l individually. In this connection Kummer defined a prime l to be regular in case it does not divide any of the first (l-3)/2 Bernoulli numbers

$$B_1 = {1 \choose 6}, \qquad B_2 = {1 \choose 30}, \ldots$$

and gave a proof in 1850 that (1) is impossible for regular primes (Theorem I). Kummer in 1857, and 1874 also, found the eight *irregular* primes less than 164 and devised criteria which he applied to all such primes excepting 101, 103, 131, and 149. This, using his result on regular primes also, enabled him to prove Fermat's Last Theorem for all primes l < 164 with the exceptions just mentioned, and the additional exception l = 157 when his criteria failed.

During the years 1928–1936 a number of collaborators at the University of Texas under the direction of H. S. Vandiver examined the primes <619 and developed criteria (Theorem II) which proved Fermat's Last Theorem for the 36 primes which were found to be irregular <619 including l=157. At this point the calculations became prohibitively long and laborious for desk calculator work.

It is the object of this paper to show how this program has been carried out for all primes less than 2000 in a few hours using the high-speed calculating machine of the National Bureau of Standards known as the SWAC at the Institute for Numerical Analysis in Los Angeles, as coded by D. H. and Emma Lehmer. As before,

the calculations were in two parts: the determination of irregular primes, and the application of criteria to prove Fermat's Last Theorem for these primes. The first revealed the interesting fact that nearly half the primes <2000 are irregular. For the second part it was necessary to modify the criterion used by Vandiver to make it applicable for high-speed calculation. Some details of this will be discussed in what follows together with the presentation of the results in tabular form. Besides proving Fermat's Last Theorem for all l < 2000, these results have applications to the theory of cyclotomic fields which will be discussed by Vandiver in another paper.

Determination of the Regular and Irregular Primes < 2000.—The first of Kummer's results (1850) already referred to is specifically as follows:²

THEOREM I. If l is a given regular prime, then

$$x^l + y^l + z^l = 0 (2)$$

is impossible for rational integers x, y, and z, none zero.

Kummer's second criterion (1857) is not employed in this paper. However, all the criteria for (1) which have been obtained since and which are not subject to the restriction of case (I) have stemmed from it.

Consider the cyclotomic algebraic field, designated by K, or $K(\zeta)$, where ζ is a primitive lth root of unity with l as before an odd prime. Let $k_i = \zeta^{ri/2} - \zeta^{-ri/2}$ and $e_i = k_{i+1}/k_i$ with r a primitive root of l. Set

$$E_n(\zeta) = E_n = \prod_{i=0}^{(l-3)/2} e_i^{r-2 in}.$$
 (3)

With these definitions we may state the second criterion which we shall use as follows:

THEOREM II. Under the following assumption: none of the units E_a (defined in (3)) with $a = a_1, a_2, \ldots, a_s$ (see (4)) is congruent to an lth power of an integer in $K(\zeta)$ modulo \mathfrak{p} , where \mathfrak{p} is a prime ideal divisor of (p), with p a rational prime $< l^2 - l$ of the form 1 + kl; (2) is impossible in non-zero rational integers.

In testing the criteria of Theorems I and II, it is first necessary to determine if l is regular, and if it is not, to determine all the s distinct a_1, a_2, \ldots, a_s in the set 1, 2, 3, ..., (l-3)/2 such that

$$B_{a_1}, B_{a_2}, \ldots, B_{a_s} \tag{4}$$

are each divisible by l.

In order to obtain this information we must examine the first (l-3)/2 Bernoulli numbers B_n (modulo l). This is best done by using one of the many congruences expressing Bernoulli numbers modulo l as sums of like powers. Such a formula, which involves the least number of terms, is the following⁵

$$S_a = \sum_{l/6 < s < l/4} s^{2a-1} \equiv (-1)^a (2^{l-2a} - 1)(3^{l-2a} - 2^{l-2a} - 1)B_a/4a,$$

$$(l > 7, 2a < l-1). \quad (5)$$

The only drawback of this formula is that for some a's the factor

$$f_a = (2^{l-2a} - 1)(3^{l-2a} - 2^{l-2a} - 1)$$

is itself divisible by l, thus leaving the divisibility of B_a in doubt in these cases.

However, if $S_a \not\equiv 0 \pmod{l}$ for all a, then l is regular. The SWAC was programmed to calculate S_a (modulo l) for all $a = 1, 2, \ldots, (l-3)/2$ in succession and to punch out on cards the values of l and a for which $S_a \equiv 0 \pmod{l}$. The SWAC was also instructed to accumulate the sum

$$S = \sum_{a=1}^{\mu} S_a \pmod{l}, \qquad \mu = (l-1)/2,$$

and to test whether $S \equiv 0 \pmod{l}$, as it should be, before proceeding to the next prime l. If S failed to be congruent to zero, the SWAC was instructed to stop; such a contingency did not arise, however, and the operation was completely automatic. The output of this run, consisting of cards with values of l and a punched on them, was then fed back into the machine and the machine was asked to examine the factor f_a (modulo l). If this factor was not divisible by l, then the SWAC was instructed to punch out another card with the values of l and a together with a code word indicating that the prime l was irregular with index a. If $f_a \equiv 0 \pmod{l}$, however, the machine was instructed to try another congruence, l namely

$$S_a' = \sum_{l/6 < s < l/5} s^{2a-1} + \sum_{l/3 < s < 2l/5} s^{2a-1} \equiv (-1)^a f_a' B_a / 4a,$$

$$(l > 5, 2a < l-1)$$
 (6)

containing [l/10] terms; provided the factor

$$f_a' = 6^{l-2a} - 5^{l-2a} - 2^{l-2a} + 1$$

was not divisible by l. Then if S'_a turned out not to be divisible by l, neither was B_a and this particular output of run (I) was merely a false alarm due to the divisibility of f_a by l and was to be disregarded. On the other hand, if $S'_a \equiv 0 \pmod{l}$, then l is irregular with index a and this was recorded on an output card as before. However, if the factor f'_a was divisible by l as well as f_a , then uncertainty prevailed and it was necessary to resort to a much longer formula of [l/2] terms which, however, gives unequivocal results in all cases, namely⁵

$$S_a'' = \sum_{r=1}^{\mu} (l - 2r)^{2a} \equiv (-1)^{a-1} 2^{2a-1} l B_a \pmod{l^3}.$$
 (7)

Although this formula holds modulo l^3 , it was sufficient to carry out the calculations modulo l^2 . In each case it was tested as a check that $S''_a \equiv 0 \pmod{l}$ and a card was punched every time $S''_a \equiv 0 \pmod{l^2}$.

The output of run (II) was then a set of cards giving all the irregular primes with their indices of irregularity a_t . These will be found in the first two columns of our table. We shall call the number of indices of irregularity for a given l the degree of irregularity of l. The largest degree so far found is three.

For l < 619, these results were checked against those found by Vandiver and his collaborators.⁶ They were found to agree except that l = 389 and l = 613 were found to be irregular instead of regular, and the value of 2a = 338 (or a = 119) for l = 491, given in the table of the present paper, had not been previously found. Further tests showed the SWAC figures to be correct.

As to the frequency of irregular primes, there are 184 regular and 118 irregular primes less than 2000. The following distribution table may be of interest. We

divide the interval up to 2000 into eight equal parts and let 250k < l < 250(k+1), k = 0, 1, ..., 7.

	k = 0	1	2	3	4	5	6	7	TOTAL
No. of irregular primes	9	19	20	16	11	14	11	18	118
No. of primes	52	42	37	36	36	35	33	31	302
Percentages, irregular primes	17	45	54	44	31	40	33	58	39

Jensen⁷ proved that there exist an infinity of irregular primes of the form 4n + 3. There is nothing in the table to indicate that there is only a finite number of regular primes. It is well to note this situation, as a number of theorems in the theory of regular cyclotomic fields have been given which do not appear to extend to irregular fields.

If we consider only divisors of the numerators of Bernoulli numbers (in their lowest terms) which are prime to their indices, then a regular prime divides the numerator of no Bernoulli number. An irregular prime divides the numerators of an infinity of Bernoulli numbers.

Treatment of the Irregular Primes.—For this purpose we employ the criterion given in Theorem II. To use this on the SWAC it was necessary to replace the quantity E_a by another simpler quantity in K. For this we need the

LEMMA. Let t be any integer such that $t^k \not\equiv 1 \pmod{p}$ where p is a prime of the form $p = kl + 1 < l^2 - l$. Define Q_a by

$$Q_a = t^{-kd/2} \prod_{b=1}^{\mu} (t^{kb} - 1)^{b^{l-1-2a}},$$
 (8)

where $\mu = (l-1)/2$ and

$$d = 1^{l-2a} + 2^{l-2a} + \ldots + \mu^{l-2a}.$$

Then the unit E_a is congruent to the lth power of an integer in $K(\zeta)$ modulo a prime ideal dividing (p), if, and only if,

$$Q_a^k \equiv 1 \pmod{p}. \tag{9}$$

For proof let

$$R(q) = \zeta^{q} - \zeta^{-q}; \qquad A = \prod_{i=1}^{\mu} R(r^{i})^{r-2a(i-1)}; \qquad B = \prod_{j=0}^{\mu-1} R(r^{j})^{r-2aj}. \quad (10)$$

Then

$$E_a(\zeta^2) = A/B. \tag{11}$$

We first note that

$$B^{r^{2a}-1} = E_a(\zeta^2) \rho_1^i. \tag{12}$$

For, we have

$$A^{r-2a}=B\rho_2^l.$$

This follows if we note that $R(r^{\mu}) = -R(r^{0})$ since r is a primitive root of l and $r^{\mu} \equiv -1 \pmod{l}$, with $(-1) = (-1)^{l}$. From this we obtain $B^{r^{2a}-1} = (A/B)\rho_{2}^{l}$ and with (11) we get (12), where ρ_{1} and ρ_{2} are numbers in K, whose denominator, if any, can

be put in the form $(\zeta - 1)^h$, with h a positive rational integer. The same statement will hold for $\rho_3, \rho_4, \ldots, \rho_{18}$ in what follows.

Now also, in a similar way,

$$R(r^k) = -R(r^{k+\mu})$$

if $k = 0, 1, ..., \mu - 1$ and

$$R(r^{k})^{r-2ak} = R(r^{k+\mu})^{r-2ak} \rho_{3}^{l}$$

Now

$$r^{-2ak} \equiv r^{-2a(\mu+k)} \pmod{l},$$

since $r^{2\mu} \equiv 1 \pmod{l}$, and hence

$$R(r^k)^{r-2ak} = R(r^{k+\mu})^{r-2a(k+\mu)} \rho_4^l$$

Whence,

$$B^2 = \prod_{h=0}^{l-2} R(r^h)^{r-2ah} \rho_5^l,$$

and since, modulo l; $1, r, r^2, \ldots, r^{l-2}$ are congruent to the integers $1, 2, \ldots, l-1$ in some order

$$B^{2} = \prod_{n=1}^{l-1} R(n)^{n-2a} \rho_{6}^{l}. \tag{13}$$

We have

$$R(b) = -R(l-b), \qquad R(b)^{b-2a} = R(l-b)^{(l-b)-2a} \rho_7^l$$

whence, when we replace (-2a) by (l-1-2a) which only changes ρ_7 ,

$$\prod_{b=1}^{\mu} R(b)^{bl-1-2a} = \prod_{b=1}^{\mu} R(l-b)^{(l-b)l-1-2a} \rho_{8}^{l}.$$

Then, since

$$(l-b)^{l-1-2a} \equiv b^{l-1-2a} \pmod{l}$$

(13) gives

$$B^2 = \prod_{b=1}^{\mu} R(b)^{2b^{l-1-2a}} \rho_9^l.$$

Select c so that $2c \equiv 1 \pmod{l}$, then $B^{2c} = B\rho_{10}^{l}$, and similarly on the right so that

$$B = \prod_{b=1}^{\mu} R(b)^{b^{l-1-2a}} \rho_{11}^{l}. \tag{14}$$

Now using (12) and raising it to the *m*th power with $m(r^{2a}-1) \equiv 1 \pmod{l}$, noting that $(l, r^{2a}-1) = 1$, we have from (14)

$$\prod_{b=1}^{\mu} R(b)^{b^{l-1-2a}} = E_a(\zeta^2)^m \rho_{12}^l, \tag{15}$$

or

$$\zeta^{-d} \prod_{b=1}^{\mu} (\zeta^{2b} - 1)^{bl-1-2a} = E_a(\zeta^2)^m \rho_{12}^l.$$
 (16)

Setting $\zeta^{(l+1)/2}$ for ζ in (16) then gives

$$\zeta^{-d/2} \prod_{b=1}^{\mu} (\zeta^b - 1)^{bl-1-2a} = E_a(\zeta)^m \rho_{13}^l.$$
 (17)

We easily see, using the methods similar to those employed in obtaining (12) and (13), that

$$E_a(\zeta^r) = (E_a(\zeta))^{r^{2a}} \rho_{14}^l, \tag{18}$$

where r as before is a primitive root of l. Set $r^{r} \equiv n \pmod{l}$ for any n such that (n, l) = 1. Then repeated application of (18) gives

$$E_a(\zeta^{rv}) = E_a(\zeta)^{r2av} \rho_{15}^l$$

and

$$E_a(\zeta^n) = E_a(\zeta)^{n2a} \rho_{16}^l. \tag{19}$$

Then (17) gives

$$\zeta^{-nd/2} \prod_{b=1}^{\mu} (\zeta^{bn} - 1)^{bl-1-2a} = E_a(\zeta)^{n2a_m} \rho_{17}^l.$$
 (20)

If g is a primitive root of p, then consider the ideal

$$(g^k - \zeta, p) = \mathfrak{p} \tag{21}$$

which divides (p), where p = 1 + kl. Let t be a rational integer such that $t^k \not\equiv 1 \pmod{p}$. Set $t \equiv g^n$, mod p, then $n \not\equiv 0 \pmod{l}$; otherwise, $t^k \equiv 1 \pmod{p}$ when we note that $t^{p-1} \equiv 1 \pmod{p}$. Then $t^k \equiv g^{nk} \pmod{p}$; and using (21) $g^k \equiv \zeta \pmod{p}$ gives

$$t^k \equiv \zeta^n \pmod{\mathfrak{p}}.\tag{22}$$

Now from (20) we obtain, using (22),

$$t^{-kd/2} \prod_{b=1}^{\mu} (t^{kb} - 1)^{bl-1-2a} \equiv E_a(\zeta)^{n^{2a_m}} \rho_{18}^l \pmod{\mathfrak{p}}$$
 (23)

noting that the denominator of ρ_{17} , if any, may be put in the form $(1 - \zeta)^h$, prime to \mathfrak{p} . Hence, setting Q_a for the left-hand member, we find

$$Q_a^k \equiv E_a(\zeta)^{n2a_{mk}} \pmod{\mathfrak{p}}.$$

Noting that $(n^{2a}m, l) = 1$, we see that $E_a(\zeta)$ is congruent to an lth power in K, modulo \mathfrak{p} if, and only if,

$$Q_a^k \equiv 1 \pmod{p}$$
.

This proves the lemma.8

Then we may state the

Theorem III. Let Q_a be defined as in the lemma and let

$$B_{a_1}, B_{a_2}, \ldots, B_{a_n} \tag{24}$$

be the only Bernoulli numbers, with indices less than (l-1)/2, which are divisible by l. Then if

$$Q_{a_i}^k \not\equiv 1 \pmod{p}$$

holds for i = 1, 2, ..., s, Fermat's Last Theorem holds for the exponent l.

The above criterion was coded on the SWAC, which was instructed to calculate for each card giving an irregular prime l and its index a, first of all, the least prime p of the form kl + 1; it was then programmed to find out whether $2^k \equiv 1 \pmod{p}$ and was prepared to ask the same question about 3^k , ..., etc. if this were the case. However, in all cases tested $2^k \not\equiv 1 \pmod{p}$, so that 2 was used for t in the expression for Q in all cases. After these preliminary calculations, the SWAC proceeded to calculate d. This was done modulo l, then $2^{-kd/2}$ was calculated modulo p and was multiplied by the successive factors in the product; after each multiplication a reduction modulo p was performed by the SWAC. Finally the value of Q_a (modulo p) thus obtained was raised to the kth power \pmod{p} and compared with unity. Considering the complicated form of the expression for Q_a above, it was rather gratifying to be able to code this whole calculation into the high-speed memory of the SWAC and to be able to perform the test in less than three minutes for our largest prime tested. In all cases the test held for the smallest p tried and the values of p were much smaller than permitted in the Theorem. However, if for some l, p should exceed $l^2 - l$ one can have recourse to a Theorem recently proved by Inkeri⁹ to the effect that p can be $<^3/_2$ (l^2-l) in the statement of Theorems II and III.

Below is a table giving the values of l, 2a, p, Q_a and Q_a^k for all irregular l's < 2000. l is the odd prime exponent in the Fermat relation, p = 1 + kl, Q_a is the left-hand member of (23), and 2a is twice the index of the Bernoulli numbers defined in (24) (that is, for example, if l = 647, the table gives us the information that the set (24) for this value of l consists of B_{118} , B_{121} , and B_{277}). If a prime < 2000 does not appear in the column for l, this indicates that l is a regular prime.

2	2a	p	Q_{\bullet}	Q_a^k	l	2 a	p	Q_a	Q_4^k
37	32	149	146	81	35 3	186	4943	1508	3144
5 9	44	709	137	645	353	300	4943	1088	3660
67	58	26 9	73	180	379	100	454 9	111	4062
101	68	607	514	47	379	174	4549	784	1992
103	24	619	27 3	389	389	200	9337	1937	8328
131	22	2 63	91	1 2 8	401	382	3209	656	719
149	130	1193	420	178	409	126	1637	609	1506
157	62	1571	1293	102	42 1	240	42 11	3155	2825
157	110	1571	170	12 61	433	366	1733	772	496
2 33	84	467	27 6	55	461	196	2767	1756	1023
257	164	1543	1371	1258	463	130	5557	1850	5212
263	100	1579	1154	1385	467	94	280 3	1742	1536
2 71	84	1627	951	367	467	194	2803	2051	655
283	20	1699	1388	383	491	292	983	289	949
2 93	156	587	88	113	491	336	983	2 13	151
207	00		266	151	491	338	983	17	289
307	88 202	1229		151 260	52 3	400	5231	3924	3532
311	292	1867 2083	523 1561	360 1711	541	86	9739	5189	7221
347	280	4083	1901	7117	041	0 0	9139	9199	1221

	2a	p	Q_a	Q_a^k	· 1	2 a	p	Q_a	Q_a^k
547	270	5471	1797	3692	1151	968	6907	1825	5286
547	486	547 1	4814	1597	1153	802	25367	18794	18498
557	222	3343	49	204	1193	262	7159	4936	325
577	52	2 309	447	1285	1201	676	7207	5578	114
587	90	8219	4046	7886	1217	784	29209	16956	1782
587	92	8219	1960	126	1217	866	29209	3569	21587
593	22	1187	916	1034	1217	1118	29209	6021	13160
607	592	3643	2811	815	1229	784	2459	1408	510
613	522	6131	3872	513	1237	874			18934
617	20	4937	498	3740	1257 1279	518	19793 12791	5866 2027	18934 5662
617	174	4937	2952	832	1283	510	7699	259	6117
617	338	4937	3569	· 3592	1291	206	1 2 911	9593	7683
619	428	2477	1553	794	1 2 91	824	1 2 911	443	85
631	80	6311	1275	2592					
					1297	202	5189	2520	4344
631	226	6311	2939	1278	1297	220	5189	1535	4324
647	236	9059	8095	8931	1301	176	26021	21535	18702
6 4 7	242 554	9059 9059	3009	7667	1307	382	10457	5164	4993
647 653	334 48	9059 1307	5918 838	6916 385	1307	852	10457	1770	9922
					1319	304	23743	9120	3063
659	224	1319	42	445	1327	466	530 9	585	3740
673	408	2 693	2442	2170	1367	2 34	10937	9041	9634
673	502	2693	1740	1879	1409	358	28 19	2022	934
677	628	5417	811	372	1429	996	5717	4436	4539
683	32	1367	1332	1225	1439	574	287 9	252 9	1582
691	12	6911	5642	73	1483	224	14831	14248	2174
691	200	6911	3360	4497	1499	94	2999	2747	525
727	378	290 9	1627	812	152 3	- 1310	21323	6867	10522
751	290	4507	3689	1519	1559	862	3119	337	1285
757	514	1 2 113	525 6	6303	1609	1356	16091	12146	1078
761	260	1523	455	1 420	1613	172	9679	8955	4873
773	732	463 9	1332	3942	1619	560	1295 3	3483	9010
797	220	4783	1389	2097	1621	980	29179	15527	12268
809	330	1619	582	35 3	1637	718	62207	3233	53518
80 9	628	1619	1502	737	1663	270	6653	520	26 91
811	544	8111	382 3	62 31	1669	388	16691	12078	1513
821	744	6569	2809	1240	1669	1086	16691	8744	8989
827	102	11579	3683	5688	1721	30	34421	12804	14618
839	66	10069	4287	4868	1733	810	3467	1656	3406
877	868	14033	9707	11792	1733	942	3467	2234	1743
881	162	15859	10672	9493	1753 17 5 3	712	7013	223 4 1117	4910
887	418	5323	3952	4987	1759	1520	31663	13295	29437
9 2 9	520	7433	2849	6592	1777	1192	7109	5718	6072
929	820	7433	5250	7415	1787	1606	10723	3556	7206
953	156	1907	1736	636					
					1789	848	17891	9604	11296
971	166	5827	1579	1835	1789	1442	17891	12106	14937
1061 1091	474 888	6367 6 54 7	193 2 3844	4808 2117	1811 1811	550 698	3623 3623	3618 539	25 691
1117	794	6703	2639	60	1811	1520	3623	2898	681 29 0
1129	348	4517	2385	4122					
					1831	1274	10987	1860	2735
1151	534	6907	426 3	3614	1847	954	11083	3187	3360
1151	784	6907	5747	5121	1847	1016	11083	5462	1029

ı	2a	p	Q_a	Q_a^k	ı	2 <i>a</i>	\boldsymbol{p}	Q_a	Q_a^k
1847	1558	11083	1076	1262	1951	1656	42923	19738	13365
1871	1794	14969	8842	6002	1979	148	39581	19694	17972
1879	1260	7517	6650	121	1987	5 10	7949	7552	3677
1889	242	3779	1574	2231	1993	912	11959	8736	554 6
1901	1722	3803	100	2394	1997	772	87869	72402	32 194
1933	1058	23197	14251	7103	1997	1888	87869	87154	396
1933	1320	23197	11957	52 13					-

Irrespective of whether Fermat's Last Theorem is ever proved or disproved, the contents of the table given above constitute a permanent addition to our knowledge of cyclotomic fields, as its use will greatly simplify and facilitate the study of the units and ideals in such a field defined for any $l \leq 2000$.

- ¹ Bull. Am. Math. Soc., 47, 139-142 (1941).
- ² Jr. für Math., 40, 93-138 (1850); Jr. Math., 16, 454-498 (1851). An outline of the proof of this Theorem is given in the Am. Math. Monthly, 53, 569-571 (1946). This last paper will be referred to as F.
- ³ Abhandl. Akad. Wiss., Berlin, 41-74 (1857, 1858). See F, pp. 571-574 (1946). In F there are misprints in two places in the statement of (3). In the relation (17a), p. 568, the summation sign on the right should be a multiplication sign; and the quantity $r^{-2i\pi}$ should be an exponent of $e(\xi^{ri})$. Also, in the right-hand member of the equation at the top of p. 572, the addition sign should be a multiplication sign.
- ⁴ Trans. Am. Math. Soc., 31, 631, 638 (1929). The proof for case (I) was given in Bull. Am. Math. Soc., 40, 118 (1934). Cf. F, pp. 574-575.
- ⁵ The formula (5) was obtained by Mirimanoff, Jr. für Math., 128, 45–68 (1905), for the special case where l-1 is divisible by 12, and by Elizabeth T. Stafford and H. S. Vandiver for l general, these Proceedings, 16, 143 (1930), relation (9). The relation (6) was proved by Vandiver, Duke Math. Jr., 3, 570–574 (1937), relation (18). Formula (7) is due to Emma Lehmer, Ann. Math., 39, 354 (1938), relation (19). In (6) if there is no integral s satisfying the condition given in a summation, then we define the summation as zero.
- ⁶ Duke Math. Jr., 3 (4), 569-584 (1937); Ibid., 5, 418-427 (1939) and previous references there given.
- ⁷ Nyt Tidsskrift für Matematik (Afdeling B), p. 82 (1915) (in Danish). An outline of his proof is given in the "Report on the Theory of Algebraic Numbers, II," Natl. Research Council Bull. No. 62, p. 82 (1928).
- ⁸ If the so-called second factor of the class number of $K(\zeta)$ (cf. F, pp. 567-568) is divisible by l, then at least one of the E_{a_i} , $i = 1, 2, \ldots, s$ is the lth power of a unit in $K(\zeta)$. Cf. Bull. Am. Math. Soc., 35, 333-335 (1929). The procedure in the proof of our lemma yields various forms of this criterion which appear to be of value for theoretical purposes.
- ⁹ Ann. Acad. Sci. Fennicae, Series A, Helsinki, I, Mathematica-Physica, 60, 18 (1949). Inkeri's theorem referred to here includes another extension of Theorem II aside from the one mentioned.

GEODESIC FLOWS AND UNITARY REPRESENTATIONS

By F. I. MAUTNER

DEPARTMENT OF MATHEMATICS, THE JOHNS HOPKINS UNIVERSITY

Communicated by Marston Morse, November 9, 1953

Let S be a complete surface of constant negative curvature. It is well known and readily verified that the geodesic flow on S can be described as follows. Let G be the group of all real 2×2 matrices of determinant 1 and Γ the fundamental group of