

National University Of Computer & Emerging Sciences

Course Instructor	FAREEHA SULTAN,ASMA MASOOD,UROOJ, USAMA ANTULEY,NADEEM KHAN	Semester	FALL
Batch/Section(s)	Batch 2022(BSCS,BSSE,BSAI,BSCY)	Year	2022

Department	Department of Computer Science	Dept. Code	CS
Course Title	Calculus and Analytical Geometry	Course Code	MT 1003
Pre-requisite(s)	None	Credit Hrs.	3

PLO	Program Learning Outcome (PLO) Statement		Tools
		el	
01	An ability to apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems		Q, A, M, F
I = Introduction, R = Reinforcement, E = Evaluation.			
A = Assignment, $Q = Quiz$, $M = Midterm$, $F = Final$, $L = Lab$, $P = Project$, $W = Written Report$.			

No.	Course Learning Outcome (CLO) Statements	Tools
01	Solve algebraic equations and inequalities by using properties of absolute values.	Q1, M1
02	Analyze and identify the function and sketching the curve by using tools of calculus.	Q1, A1, M1
03	• Express the ideas of rate of change, derivatives and anti-derivatives using the concept of limits and continuity.	A1, M1, F
04	• Apply derivatives and integrals for solving different problems arising in daily life.	Q2, A2, M2, F
05	Identify and determine the behavior of sequence and series.	Q3, A3, F

Text Book(s)	Title	Calculus Early Transcendental 10 th Edition	
	Author	Howard Anton, IRL Bivens, Stephen Davis	
	Publisher	JOHN WILEY	
Ref. Book(s)	Title Thomas Calculus 14 Edition		
	Author	George. B. Thomas	
	Publisher	Pearson	

Week	Contents/Topics	Exercises/Questions	CLO
1 (22/8 to 26/8)	Interval, Inequality, Relation and Functions, One-One and onto function.	Appendix E (23-44) Appendix F (17-36)	01
2 (29/8 to 2/9)	vertical line test, Piecewise, Absolute value, Introduction to functions, Domain and Range, Symmetry, Even/odd function, Asymptote	0.1 (1-04, 7-10, 27,28) 0.2 (27-34,5363,66,67) 0.3 (17 to 19) 0.4 (9 to 16)	02
3 (5/9 to 9/9)	Concepts of limit. Evaluation of limits. Continuity and points of discontinuity. Types of discontinuity.	1.1 (1-16) 1.2 (1-32) 1.5 (1-6,11-22, 29,30,35,36)	03
4 (12/9 to 16/9)	Rules and techniques of differentiation. Product and quotient rule. Derivative of trigonometric and logarithm function,	2.3 (1-24, 41-47) 2.4 (1-24) 2.5 (1-24)	03
5 (19/9 to 23/9)	Chain rule Implicit differentiation. Indeterminate forms, L' Hospital Rule	2.6 (7-40) 3.1 (3-18,25-28) 3.6 (7-45)	03 04
6 (26/9 to 30/9)	SESSIONAL EXAM 1		
7 (3/10 to 7/10)	Application of derivatives, Role's and Mean Value's Theorem	3.4 (10-20), 4.8 (1-8)	04
8 (10/10 to 14/10)	Concavity, Increasing and Decreasing. Relative Extreme (1 st and 2 nd derivative test) Absolute Maxima and Minima	4.1 (15-30) 4.2 (7-12, 25-36)	04
9 (17/10 to 21/10)	Riemann sums	5.4 (35-48)	
10 (24/10 to 28/10)	Techniques of integration, Basic Integration, Integration by parts Reduction formula, Trigonometric substitution	7.1 (1-30), 7.2 (1-30, 61,62,63) 7.4 (1-25,37-48)	03
11 (31/10 to 4/11)	SESSIONAL EXAM	2	
12 (7/11 to 11/11)	Area bounded by the curves. Volume by Disk and washer method	6.1 (1-18), 6.2 (1-26)	04
13 (14/11 to 18/11)	Integration of Rational function by Partial fraction, $u = tan(x/2)$ substitution, Improper integrals.	7.5 (9-30), 7.6 (65-70) 7.8 (3-32)	03
14 (21/11 to 25/11)	Infinite Sequences and Series, Introduction to Sequences Infinite series, The integral test	9.1(7 to 19) 9.4(9 to 22)	05
15	Comparison tests, Absolute convergence, The ratio and root	9.5(5 to 20)	05

(28/11 to 2/12)	test
to 2/12)	
16	Revision
(5/12 to 9/12)	
to 9/12)	

Marks Distribution:

Particulars	% Marks
1. Assignments	15
2.Quizzes	05
3.SESSIONAL EXAM 1	15
4.SESSIONAL EXAM 2	15
5. Final Exam	50
Total:-	100

Important Instructions to be followed for this Course

- Be in classroom on time. Any student who arrives more than 5 minutes late in the class would be marked LATE. Anybody coming to class more than 15 minutes late will be marked ABSENT.
- Turn off your cell phones or any other electronic devices before entering the class.
- Maintain the decorum of the class room all the time.
- Avoid a conversation with your classmates while lecture is in progress.
- Submit your assignments on time, no assignment will be accepted after the deadline.

Instructions / Suggestions for satisfactory progress in this course:

- On average, most students find at least three hours outside of class for each class hour necessary for satisfactory learning.
- Chapters should be read and homework should be attempted before class.
- Do not get behind. You are encouraged to work with other students. Plus, I am always available during office hours to help you.
- The homework assigned is a minimum. You may always work extra hours on your own.
- Use the few minutes you usually have before the start of each class to review the prior meetings' notes and homework. This will save us valuable in-class time to work on new material.
- Develop a learning habit rather than memorizing. Work in groups, whenever appropriate.
- Apply the learned principles and gained knowledge.
- Be creative in thinking, but stick to the topic assigned for discussions, assignments and presentations.
- Always bring your **Work Book** and **Calculator** with you in the class.

Note: Students are welcome all the time in office to get	t help from	the Teacher.
---	-------------	--------------

Signature:	Date:
515Hdtd1c	Bute: