

INSTITUT FÜR STATISTIK

Ursula Berger, Cornelius Fritz, Göran Kauermann

Eine statistische Analyse des Effekts von verpflichtenden Tests an Schulen mit Präsenzunterricht im Vergleich zum Distanzunterricht

Technical Report Number 238, 2021 Department of Statistics University of Munich

http://www.statistik.uni-muenchen.de

Eine statistische Analyse des Effekts von verpflichtenden Tests an Schulen mit Präsenzunterricht im Vergleich zum Distanzunterricht

Dr. Ursula Berger Cornelius Fritz Prof. Dr. Göran Kauermann

Schlagworte: COVID-19, SARS-CoV-2, Schulschließungen, Dunkelziffer, Reihentestung

Merksätze:

- Die Situation nach der Osterferien in Bayern gleicht einem natürlichen Experiment und erlaubt es, den Effekt von Reihentestungen an Schulen zu quantifizieren.
- Reihentestungen an Schulen bei Präsenzunterricht können die Dunkelziffer unter Kindern deutlich reduzieren.
- Reihentestungen bei Präsenzunterricht können damit in Phasen hohen Infektionsgeschehen einen wichtigen Beitrag zur Pandemiebewältigung leisten.

Zusammenfassung

Ziel der Studie

Die Arbeit untersucht den Effekt der Maßnahme verpflichtender Covid-19 Tests für den Präsenzunterricht an Schulen. In Bayern gilt diese Testpflicht seit Ende der Osterferien 2021. Für die erste Woche nach den Osterferien ergibt sich ein natürliches Experiment, das uns erlaubt den Effekt der Testpflicht an Schule auf die Meldeinzidenz zu quantifizieren.

Methoden

Wir vergleichen die Änderungen der 7-Tage-Meldeinzidenz von Neuinfektionen pro 100000 Einwohner zwischen Kreisen mit und ohne Präsenzunterricht. Für Landkreise und kreisfreie Städte, deren Meldeinziden zum Stichtag unter 100 lag, konnte in Kalenderwoche 15 Präsenzunterricht in geteilten Klassen bei Testpflicht stattfinden. Dazu haben sich Schulkinder in den Klassen mit Antigen-Schnelltest getestet. Daten zu den Testergebnissen der Schnelltests an den Schulen liegen uns nicht vor. Bei positivem Testergebnis im Antigen-Schnelltest wurde der Verdachtsfall mit einem PCR-Test überprüft. Positive PCR-Testergebnisse liegen auf Kreisebene in den betrachteten Altersgruppen als Meldeinzidenzen vor. In den Kalenderwochen 13 und 14 fand in Bayern wegen der Osterferien kein Schulunterricht an Schulen statt. Berücksichtigt man eine Latenzzeit von etwa 3 Tagen und eine Meldedauer von 1-2 Tagen, so kann ein stärkerer Anstieg der Meldeinzidenzen in Kreisen mit Präsenzunterricht bei Testpflicht nicht (bzw. nur vernachlässigbar) auf Infektionen an Schulen zurückgeführt werden, sondern spiegelt eine Reduktion der Dunkelziffer durch die Testpflicht wider.

Ergebnisse

Die Meldeinzidenz erhöht sich in Kreisen mit Präsenzunterricht und Testpflicht an Schulen um den Faktor 4.5 bei 5-11 Jährigen bzw. 1.8 bei 12-20 Jährigen. Dieser Anstieg geht einher mit einer Reduktion der Dunkelziffer und ist signifikant im Vergleich zu Kreisen mit Distanzunterricht. Aufgrund der gegebenen Situation eines natürlichen Experiments ist diese Steigerung der Meldeinzidenz in der Altersgruppe der Schulkinder der Maßnahme den

Reihentests an Schulen mit Präsenzunterricht zuzuschreiben. Für denselben Zeitraum zeigen sich keinerlei Unterschiede in den Meldeinzidenzen für andere Altersgruppen.

Schlussfolgerung

Präsenzunterricht mit Testpflicht ändert die Rolle der Schulen in der Pandemie. Die Analysen zeigen, dass die Öffnung der Schulen mit einem verpflichtenden Testkonzept aus epidemiologischer Sicht von Vorteil ist, da damit die Dunkelziffer von COVID-19 Infektionen unter den Schülerinnen und Schülern drastisch gesenkt werden kann.

Einleitung

Das neue bundesweite Infektionsschutzgesetz [1] ("bundesweite Notbremse") zur Eindämmung der 3. Welle der COVID-19 Pandemie in Deutschland, das am 23. April 2021 in Kraft getreten ist, untersagt den Präsenzunterricht an Schulen ("Schulschließung") in Landkreisen oder kreisfreien Städten, wenn der vom Robert Koch-Institut (RKI) veröffentlichte 7-Tage-Inzidenz Wert, im folgenden Meldeinzidenz genannt, drei Tage in Folge den Wert von 165 gemeldeten COVID-19 Neuinfektionen je 100000 Einwohner überschreitet. In Bayern gelten zu diesem Zeitpunkt strengere Regeln, die einen Präsenzunterricht bereits ab einer Meldeinzidenz von 100 untersagen, mit Ausnahme von Abschlussklassen. Ziel dieser Maßnahmen ist es, Infektionen durch und über Schüler und Schülerinnen an Schulen zu unterbinden, die im Präsenzunterricht trotz der verfolgten Schutzmaßnahmen (Wechselunterricht in halbe Klassen bei einer Meldeinzidenz von 50-100, Maskenpflicht, etc.) erfolgen können. Empirisch ist es schwierig zu quantifizieren, welchen Einfluß Schulschließungen in Phasen hohen Infektionsgeschehens haben, da Schulschließungen, wie die meisten Maßnahmen, bisher stets innerhalb eines Maßnahmenpakets gemeinsam mit anderen Einschränkungen beschlossen wurden und somit keine Evaluation des Effekts einzelner Maßnahmen möglich ist.

Die Münchener "Vierenwächter" Studie veröffentlichte am 3. Februar 2021 erste Ergebnisse, die darauf hinweisen, dass offene Kindergärten und Grundschulen in dem Studienzeitraum zwischen Juni und November 2020 keinen nennenswerten Beitrag zur Pandemie liefern sofern passende Hygienemaßnahmen befolgt werden [2]. Bereits in der ersten Phase der Pandemie. also im zweiten Schulhalbjahr 2019/20, wiesen Covid-19-Ausbrüchen in deutschen Schulen darauf hin, dass Schulen wenig betroffen sind und zu diesem Zeitpunkt nur 0.5% aller Ausbrüche Schulen zugeordnet werden konnten [3]. Das European Centre for Disease Prevention and Control (ECDC) kommt in einer Studie zu COVID-19 bei Kindern und der Rolle der Schulumgebung auf das Infektionsgeschehen in den Ländern der EU/EWR und UK zu dem Ergebnis, dass Schulschließungen für sich genommen nicht ausreichen, um die Infektionsraten in der Bevölkerung zu verringern. Weiter gab es keine empirische Evidenz, dass die Öffnung der Schulen ab Mitte August die "treibende" Kraft hinter dem Anstieg der Infektionen in den EU-Ländern im Herbst gewesen ist. Auch für die Kinder selbst ist der Schulbesuch nicht die primäre Ursache für Ansteckungen [4]. Zur Anfälligkeit von Kindern für eine Infektion zeigt eine Seroprävalenz Studie aus Deutschland, dass sowohl Kinder im Vorschul- als auch im Schulalter für eine SARS-CoV-2-Infektion empfänglich sind [5]. Die Autoren einer repräsentativen Studie aus Österreich kommen zu dem Schluss, dass Schülerinnen und Schüler nur marginal weniger von COVID-19 Infektionen betroffen sind als Erwachsene [6]. Ähnliches wurde für

Großbritannien berichtet, wo in Zeiten offener Schulen und Universitäten (September/Oktober) neben der höchsten Infektionszahlen unter jungen Erwachsenen im Alter von 18-25 Jahren die zweithöchsten Infektionszahlen unter Jugendlichen im Alter 11-18 Jahren berichtet wurden und unter Grundschülern (5-11 Jahre) die Infektionszahlen ähnlich hoch lagen, wie unter den Erwachsenen mittleren Alters [7].

Die Diskussion um den Präsenzunterricht in Schulen und dessen Auswirkungen auf das Infektionsgeschehen hat mit verpflichtenden Selbsttest an Schulen bei Präsenzunterricht eine neue Dimension bekommen. Österreich hat im Februar 2021 die Schulen für Präsenzunterricht mit Testpflicht geöffnet und begleitet diese Maßnahme wissenschaftlich [8]. Die hierzu berichteten Anteile an positiven Schnelltest liegen bei Schulkindern bei ca. 0.1%, bei Lehr- und Verwaltungspersonal bei etwa 0.4%. Die positiven Fälle treten dabei fast nur als Einzelfälle auf und führen nur in sehr wenigen Fällen zu Sekundärinfektionen innerhalb der Klasse. Daher wurden auch kaum Schul-Ausbrüche beobachtet [9]. Das RKI empfiehlt in einer aktuellen Veröffentlichung Antigentests als ergänzendes Instrument in der Pandemiebekämpfung, da "regelmäßige und niederschwellige Testungen [...] dabei unterstützen, auch Infektionen ohne Krankheitssymptome zu erkennen. Infizierte Personen können so schneller erkannt, in Isolierung gebracht und ihre Kontakte frühzeitig nachvollzogen werden" [10]. Die Vorteile von häufigen und regelmäßigen Tests bei der Pandemiebekämpfung wurden auch bereits in unterschiedlichen Studien herausgestellt, wobei die Sensitivität der Tests keine zentrale Rolle spielt [11,12]. Reihentests können helfen, die Dunkelziffer zu reduzieren. In einer kürzlich veröffentlichten Analyse in Hessen konnten stark steigende Infektionszahlen bei Kindern auf das verpflichtende Testgeschehen zurückgeführt werden [13]. Unklar ist jedoch, um welchen Faktor die Dunkelziffer in der entsprechenden Bevölkerungsgruppe durch solche Screening-Maßnahmen reduziert werden kann.

Ziel unserer Studie ist es, die Effekte von verpflichtenden Tests für den Präsenzunterricht auf den Anstieg der Meldeinzidenzen nicht nur qualitativ zu diskutieren, sondern konkret zu quantifizieren und mit Hilfe von statistischer Inferenz nachzuweisen. Wir nutzen dazu die Situation in der Kalenderwoche 15 in Bayern, die aufgrund der vorangegangenen Osterferien einem natürlichen Experiment gleicht. In dieser Woche wurde erstmals vorgeschrieben, dass für die Teilnahme am Präsenzunterricht zweimal in der Woche COVID-19 Tests durchgeführt werden müssen. Präsenzunterricht mit Testpflicht konnte allerdings nur in Kreisen mit einer Meldeinzidenz unter 100 durchgeführt werden, in allen anderen Kreisen fand Distanzunterricht ohne Reihentestung statt.

Material und Methoden

Wir analysieren Meldeinzidenzen auf Kreisebene in Bayern, die aus der Zahl der durch PCR-Test bestätigten und an die lokalen Gesundheitsbehörden gemeldeten Neuinfektionen berechnet werden. Wir bestimmen daraus altersgruppenspezifische 7-Tage-Meldeinzidenzen pro 100000 Einwohner, also die Summe der Neuinfektionen, die in einem Landkreis bzw. einer kreisfreien Stadt für eine Altersgruppe innerhalb der letzten sieben Tage gemeldet wurden. Für unsere Analysen zum Effekt der Testpflicht in Schulen betrachten wir die 7-Tage-Meldeinzidenzen der Freitage der jeweiligen Kalenderwoche, ist die Meldeinzidenz Freitag dem denn zum einen am 9.4.2020

Entscheidungsgrundlage, ob Präsenzunterricht oder Distanzunterricht in der folgenden Woche KW 15 stattfinden darf oder nicht; zum anderen beinhalten Meldeinzidenzen von Freitag nur PCR-Tests die bis einschließlich Donnerstag durchgeführt worden sind. Für die betrachtete Kalenderwoche 15 mit Schulbeginn am Montag und bei einer angenommenen Latenzzeit von 3-4 Tagen [14, 15] bedeutet dies, dass bis Donnerstag durch PCR-Tests nachgewiesene Infektion weitestgehend nicht auf eine Infektion an der Schule zurückzuführen sind sondern vorher stattgefunden haben. Daten zu den gemeldeten Corona-Fällen in Bayern wurde von dem Landesamt für Gesundheit Lebensmittelsicherheit (LGL) zur Verfügung gestellt. Bis auf Meldeverzug von wenigen Tagen und einer anderen Altersklassifizierung entspricht diese Datengrundlage den an das RKI weitergegeben Daten. Die Ethikkommission der Bayerischen Landesärztekammer (BLAEK) hat den statistischen Auswertungen dieser anonymisierten personenbezogenen Meldedaten zugestimmt. Informationen zur altersspezifischen Populationsgröße pro Landkreis konnten wir der GENESIS Datenbank [16] des statistischen Bundesamtes entnehmen.

Aus den 7-Tage-Meldeinzidenzen der Freitage zweier aufeinanderfolgenden Kalenderwochen bestimmen wir für jeden Landkreis die wöchentlichen prozentualen Veränderungen. Sie gibt die Entwicklung der Meldeinzidenzen an. Um zu analysieren, inwieweit sich die Einführung von Reihentestung in Schulen auf die Entwicklung Meldeinzidenzen auswirkt, betrachten wir das Verhältnis der prozentualen Veränderungen der beiden Kalenderwochen KW 14 und KW 15. D.h. bezeichnet man mit I_t die Meldeinzidenz in Woche t, so betrachten wir den Quotienten

$$\frac{I_t/I_{t-1}}{I_{t-1}/I_{t-2}}.$$

Der entsprechende Wert lässt sich als Veränderung der Dynamik der Meldeinzidenzen interpretieren. Beispielsweise bedeutet ein Wert von 2, dass in der aktuellen Woche doppelt so viele Fälle gemeldet wurden wie aufgrund der Dynamik in der Vorwoche zu erwarten gewesen wäre. Bei einer gleichbleibenden Entwicklung in zwei aufeinanderfolgenden Wochen wäre der Wert gleich 1. Bei einer Reduzierung der Dunkelziffer durch die Testpflicht bei Präsenzunterricht würden wir einen stärkeren Anstieg in KW 15 erwarten, d.h. eine Zunahme in der Dynamik der Meldeinzidenzen, also einen Wert größer 1.

Nicht in allen Landkreisen und kreisfreien Städten konnte Präsenzunterricht stattfinden. Für unsere Analyse teilen wir daher die 96 Kreise Bayerns in zwei Gruppen: Die erste Gruppe umfasst alle 24 Kreise, für die das RKI am Freitag den 9. April 2021 eine 7-Tage-Meldeinzidenz unter 100 ausgewiesen hat. In diesen 24 Kreisen konnte in KW 15 Präsenzunterricht in Wechselkassen mit halbierter Klassengröße stattfinden. Dabei war es Pflicht, die Schüler mindestens zweimal pro Woche zu testen. In der zweiten Gruppe fassen wir Kreise zusammen, deren 7-Tage-Meldeinzidenz am 9. April 2021 den Schwellenwert von 100 überschritten hat. Diese Gruppe nutzen wir für unsere Kontrollgruppe. Dabei exkludieren wir 36 Kreise mit sehr hohen Meldeinzidenzen von über 200, und bilden die Kontrollgruppe aus 36 Kreisen mit Meldeinzidenzen zwischen 100 und 200, in denen in KW 15 kein Präsenzunterricht mit Testpflicht stattfand (siehe Tabelle 1).

Tabelle 1. Landkreise (LK) und kreisfreie Städte (SK) mit Präsenzunterricht und Testpflicht in KW 15 bzw. mit Distanzunterricht ohne Testpflicht und einer 7-Tage-Meldeinzidenz <200 in KW 15 (Kontrolle).

Wechsel/Präsenzunterricht mit Testpflicht	Kontrollgruppe:	
in KW 15	Distanzunterricht in KW 15	
(n = 22)	(n = 38)	
LK Aichach-Friedberg LK Bad Kissingen LK Bad Tölz-Wolfratshausen LK Bamberg LK Dillingen a.d.Donau LK Forchheim LK Landsberg a.Lech LK Main-Spessart LK Miesbach LK Miltenberg LK München LK Neumarkt i.d.OPf. LK Rosenheim LK Schweinfurt LK Starnberg SK Ansbach SK Aschaffenburg SK Bamberg SK Erlangen SK München SK Würzburg	LK Amberg-Sulzbach LK Aschaffenburg LK Augsburg LK Bayreuth LK Berchtesgadener Land LK Coburg LK Eichstätt LK Erding LK Erlangen-Höchstadt LK Freyung-Grafenau LK Fürstenfeldbruck LK Fürth LK Garmisch-Partenkirchen LK Kitzingen LK Kulmbach LK Lindau LK Neu-Ulm LK Neuburg-Schrobenhausen LK Neustadt a.d.Waldnaab LK Nürnberger Land LK Oberallgäu LK Passau LK Pfaffenhofen a.d.llm LK Regensburg LK Roth LK Schwandorf LK Tirschenreuth LK Weilheim-Schongau LK Weißenburg-Gunzenhausen LK Wunsiedel i.Fichtelgebirge LK Würzburg SK Coburg SK Ingolstadt SK Passau SK Rosenheim SK Schwabach SK Schwabach SK Schweinfurt SK Weiden i.d.OPf.	

Die einzelnen Schulen, an denen Präsenzunterricht mit halben Klasse stattgefunden hat, konnten dabei die Halbierung der Klassen in unterschiedlicher Form vornehmen - entweder tageweise oder wochenweise wechselnd. Bei tageweisen Wechsel wurde in KW 15 eine Volltestung aller Schüler und Schülerinnen durchgeführt, wobei jedes Kind mindestens

zweimal getestet wurde. In dem alternativen Modell mit wöchentlichem Wechsel wurde nur die Hälfte der Schulkinder jeweils zweimal getestet. Angaben dazu, welches Modell in den einzelnen Schulen durchgeführt wurde liegen uns nicht vor.

Der Fokus unserer Analysen liegt auf der Kalenderwoche 15. Die Datenlage für diese Woche kann als natürliches Experiment betrachtet werden, da alle Schulkinder in den zwei vorhergehenden Wochen bedingt durch die Osterferien nicht in der Schule gegangen sind. Nimmt man eine eine Latenzzeit von 3-4 Tagen an [14, 15], so sind PCR-bestätigte Neuinfektionen bei Schulkindern, die in KW 15 gemeldet wurden, nicht (oder zumindest nur in vernachlässigbarem Umfang) auf Infektionen an der Schule zurückzuführen, d.h. sie haben in einem Infektionsumfeld außerhalb der Schule stattgefunden. Vergleicht man damit die Neuinfektionen in der Altergruppe der Schulkinder in Kreisen mit Präsenzunterricht und Testpflicht mit der Kontrollgruppe, sind statistisch signifikante Unterschiede allein auf das unterschiedliche Testgeschehen bei den Schulkindern zurückzuführen. Wir vergleichen das oben definierte Verhältnis der prozentualen Veränderungen der Meldeinzidenzen in den beiden Gruppen mit (zweiseitigen) Wilcoxon Tests, stratifiziert nach Altersgruppen, für die Kalenderwochen KW 15. Zusätzlich wenden wir den Test auch auf KW 13 und KW 14 an.

Alle Analysen wurden mit dem Softwareprogramm R, Version 4.0.5 (2021-03-31) durchgeführt.

Daten: Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) Visualisierung und Analyse: CODAG LMU München

Abbildung 1: Verteilung der 7-Tage-Meldeinzidenzen pro Altersgruppe der ausgewählten Kreise in den Kalenderwochen 12-15 stratifiziert nach Kreisen mit Präsenzunterricht und Testpflicht (grün) und mit Distanzunterricht (rot) in KW 15.

Tabelle 2. Ergebnisse der (zweiseitigen) Wilcoxon-Tests auf Unterschied in der Veränderung der Meldeinzidenzen zwischen Kreisen mit Präsenzunterricht und Testpflicht in KW 15 und Kreise mit Distanzunterricht in KW 15, stratifiziert nach Kalenderwoche und Altersgruppe. In der jeweiligen Zeile ist die Effektstärke und der resultierende p-Wert angegeben.

Kalenderwoche	Altersgruppe	Quotient der Mediane (Präsenz / Distanz)	p-Wert
13	0-4	0.452	0.042*
13	5-11	0.625	0.060
13	12-20	1.080	0.712
13	21-39	1.065	0.933
13	40-65	1.080	0.642
13	>65	0.921	0.504
14	0-4	2.139	0.060
14	5-11	0.404	0.331
14	12-20	1.004	0.602
14	21-39	0.970	0.589
14	40-65	1.063	0.479
14	>65	1.320	0.485
15	0-4	0.942	0.869
15	5-11	3.277	0.014*
15	12-20	1.570	0.003**
15	21-39	1.043	0.517
15	40-65	1.050	0.790
15	>65	1.207	0.534

^{*}p < 0.05, ** p < 0.01

Daten: Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL)
Visualisierung und Analyse: CODAG LMU München

Abbildung 2: Verteilung der relative Veränderung der Meldeinzidenzen stratifiziert nach Kreisen mit Präsenzunterricht und Testpflicht in KW 15 (grün) und mit Distanzunterricht (rot) für die Kalenderwochen 13 bis 15.

Ergebnisse

In Abbildung 1 sind die Verteilungen der Meldeinzidenzen in den einzelnen Altersgruppen in den Wochen KW 12 bis KW 15 dargestellt. In den Altersgruppen der Schulkinder (5-11 und 12-20 Jahre) ist in den Kreisen mit Reihentestungen für den Präsenzunterricht (grüne Boxen) ein deutlicher Anstieg in KW 15 zu erkennen, der in den Vergleichskreisen ohne Reihentestung (rote Boxen) nicht zu sehen ist.

Abbildung 2 zeigt die Verteilung der relativen Unterschiede in der Entwicklung der Meldeinzidenzen, so wie oben als Quotient definiert, in der Log-Skala. In den Altersgruppen der Schulkinder bestätigt sich für KW 15 in den Kreisen mit Reihentestung für den Präsenzunterricht eine deutliche Steigerung der Infektionsdynamik im Vergleich zur

Vorwoche; die grüne Box (links) liegt in KW 15 deutlich über der 1. Das bedeutet, die Zahlen der gemeldeten, durch PCR-Test bestätigten Infektionen steigen bei Reihentestung wesentlich steiler an als erwartet. Dieser Zuwachs lässt sich quantifizieren. Bei den 5 - 11 Jährigen ist der Zuwachs im Median 4.46 mal so hoch (25% und 75% Quantil bei 1.15 und 10.39), bei den 12 - 20 Jährigen ist der Median des Zuwachses bei 1.82 (25% und 75% Quantil bei 1.33 und 3.35). Das heißt, wir erkennen unter den Schulkindern bei Testpflicht je nach Altersgruppe etwa zwei bis viermal mehr Infektionen, als wir es bei gleichbleibender Infektionsdynamik erwartet hätten. Bei den Kreisen mit Distanzunterricht und ohne Reihentestung ist ein solcher Anstieg nicht zu beobachten, d.h. die Dynamik in den Meldeinzidenzen ist hier weitestgehend unverändert. Hier liegt der Zuwachs im Median bei 1.36 für die 5 - 11 Jährigen und bei 1.16 für die 12 - 20 Jährigen. Die Interquartilsbox enthält dabei die 1, also keine Veränderung. Der Unterschied zwischen den beiden Gruppen ist für die beiden Altersgruppen der Schulkinder in KW 15 signifikant (p-Wert_{5-11,J} = 0.014 bzw. p-Wert_{12-20,J} = 0.003). Damit zeigt sich, dass in Kreisen mit Reihentestung für den Präsenzunterricht signifikant mehr Infektionen bei Schulkindern durch PCR-Tests nachgewiesen werden als erwartet, und sich dieser Anstieg signifikant von der Entwicklung der Meldeinzidenzen in Kreisen mit Distanzunterricht ohne Reihentestung unterscheidet. Die Unterschiede bei den Inzidenzen in anderen Altersgruppen sind für diese Woche nicht signifikant. Die entsprechenden p-Werte sind in Tabelle 2 gegeben, in der zusätzlich die Quotienten der Median der beiden Gruppen angegeben werden.

Diskussion

Schulschließungen und ihre negativen physischen, psychischen und pädagogischen Auswirkungen auf Kinder wurden bereits seit Beginn der COVID-19 Pandemie diskutiert und so besteht ein allgemeiner Konsens, dass Schulschließungen nur als letztes Mittel zur Eindämmung des Infektionsgeschehens COVID-19-Pandemie eingesetzt werden sollten [4, 17, 18]. Aktuelle Ergebnisse weisen darauf hin, dass das Risiko von Übertragungen unter Schulkindern im Schulumfeld gering ist [8, 19]. Darüber hinaus wird das Risiko eines schweren Infektionsverlauf bei Kindern als gering eingeschätzt [20]. Somit ist der zentrale Aspekt bei der Entscheidung für oder gegen Schulschließungen, deren Einfluss auf die Ausbreitung der Pandemie. Dieser Punkt gewinnt vor allem in Bezug auf die zum 12. April 2021 eingeführte Testpflicht an Schulen für die Teilnahme am Präsenzunterricht eine neue Bedeutung. In unseren Analysen untersuchen wir den Effekt der Testpflicht an Schulen auf die Dunkelziffer in einer Phase mit relativ hohen Infektionsgeschehen bei knapp unter 100 gemeldeten Neuinfektionen pro 100000 Einwohner innerhalb von sieben Tagen. Wir nutzen zur Quantifizierung des Effekts die Situation in Bayern in der Woche direkt nach den Osterferien, in der gemeldete Infektionen so gut wie ausschließlich auf Übertragungen während der Ferien zurückgehen, und nicht im Schulumfeld stattfanden. Unsere Ergebnisse zeigen, dass durch die Reihentestung an Schulen bei Präsenzunterricht die Dunkelziffer etwa um den Faktor 2, in jüngeren Altersgruppen sogar um den Faktor 4 reduziert werden kann. Das heißt, wir erkennen unter den Schulkindern bei Testpflicht zwischen zwei bis viermal mehr Infektionen, als ohne. Dabei handelt es sich bei den zusätzlich erkannten Infektionen überwiegend um symptomlose Infektionen, denn symptomatisch infizierte Kinder nehmen weitestgehend nicht am Unterricht teil [21]. Damit steht dem epidemiologischen Risiko von Präsenzunterricht in offenen Schulen ein epidemiologischer Nutzen durch die Testpflicht gegenüber, der vor allem in Phasen hohen Infektionsgeschehen von Bedeutung ist.

Unsere Analysen betrachten den epidemiologisch-statistische Nutzen von Schulöffnungen mit der zum 12. April 2021 eingeführten Testpflicht gegenüber Schulschließungen hinsichtlich einer Reduktion der Dunkelziffer bei relativ hohen Inzidenzzahlen. Dabei bleiben die in der Praxis realisierten Sensitivitäten und Spezifitäten der Selbsttests unberücksichtigt; wir untersuchen nur die beobachteten Meldeinzidenzen, die sich mit der Situation der Testpflicht ergeben haben. Kritik an der Testpflicht in Schulen, etwa [22], fokussiert andere Aspekte, die insbesondere bei geringem Infektionsgeschehen auch statistisch-epidemiologischer Sicht erneut diskutiert werden müssen, wie etwa der geringe Positive-Vorhersagewert bei geringen Infektionszahlen und der Umgang mit falsch-positiven Testergebnissen dieser Screeningmaßnahmen. Zu beachten ist auch, dass weitere Aspekte, wie z.B. eine möglicherweise durch Schulschließungen verursachte, verringerte Mobilität in der Gesamtbevölkerung, in unseren Betrachtungen nicht berücksichtigt ist.

Fazit

Schulöffnung für den Präsenzunterricht mit Testpflicht (unter Einhaltung notwendiger Hygienemaßnahmen und ggf. im Wechsel) kann helfen, symptomlose Infektionen aufzudecken um Infektionsketten zu unterbrechen und so einen Beitrag zur Pandemiebewältigung leisten.

Interessenkonflikt

Die Analysen sind mit finanzieller Unterstützung des bayerischen Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) durchgeführt. Die Autoren bedanken sich hierfür. Darüber hinaus erklären die Autoren, dass keine Interessenkonflikte vorliegen.

Literatur

- [1] Bundesgesetzblatt. Viertes Gesetz zum Schutz der Bevölkerung bei einer epidemischen Lage von nationaler Tragweite Teil I Nr. 18. Aufl. Bonn; 22.04.2021.
- [2] Dick E, Fingerle V, Eberle U et al. Weekly SARS-CoV-2 sentinel in primary schools, kindergartens and nurseries, June to November 2020, Germany. Medrxiv.(26.01.2021) DOI: 10.1101/2021.01.22.21249971
- [3] Otte im Kampe E, Lehfeld A, Buda S et al. Surveillance of COVID-19 school outbreaks, Germany, March to August 2020. Euro Surveill 2020; DOI: 10.2807/1560-7917.ES.2020.25.38.2001645
- [4] European Centre for Disease Prevention and Control. COVID-19 in children and the role of school settings in transmission first update. Stockholm: European Centre for Disease Prevention and Control; 23. December 2020.
- [5] Hippich M, Philipp Sifft P, Zapardiel-Gonzalo J et al. A public health antibody screening indicates a marked increase of SARS-CoV-2 exposure rate in children during the second wave. Med (2021), https://doi.org/10.1016/j.medj.2021.03.019

- [6] Willeit P, Krause R, Lamprecht B et al. Prevalence of RT-PCR-detected SARS-CoV-2 infection at schools: First results from the Austrian School-SARS-CoV-2 Study. Medrixiv (06.01.2021) DOI: 10.1101/2021.01.05.20248952
- [7] Flasche S, Edmunds J. The role of schools and school-aged children in SARS-CoV-2 transmission. The Lancet Infectious Diseases, vol 21, 3, 298-299; DOI: 10.1016/S1473-3099(20)30927-0
- [8] Bundesministerium für Bildung, Wissenschaft und Forschung. Wissenschaftliche Begleitung zum Eintritts-Selbsttest (anterio-nasaler Antigen-Schnelltest) an österreichischen Schulen. Im Internet:

https://www.bmbwf.gv.at/Themen/Forschung/Aktuelles/BeAntiGenT.html; Stand: 09.05.2021

[9] Bundesministerium für Bildung, Wissenschaft und Forschung. Evaluierung des SARS-CoV-2 Screenings mittels anterio-nasalen Antigen-Selbsttests an österreichischen Schulen. Im Internet:

https://www.bmbwf.gv.at/dam/jcr:f0184d0f-cec7-4b39-b55c-ee110f29d08a/NASTs_Bericht_K W_9_FINAL_2021_03_29.pdf; Stand: 09.05.2021

- [10] Seifried J, Böttcher S, von Kleist M et al. Antigentests als ergänzendes Instrument in der Pandemiebekämpfung, Robert Koch-Institut; DOI: 10.25646/8264
- [11] Larremore D, Wilder B, Lester E et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening, Science Advances Vol. 7, no. 1; DOI: 10.1126/sciadv.abd5393
- [12] Peeling R, Olliaro P, Boeras D, et al. Scaling up COVID-19 rapid antigen tests: promises and challenges, The Lancet Infectious Diseases; DOI 10.1016/S1473-3099(21)00048-7
- [13] Heudorf U, Gottschalk R. SARS-CoV-2 und die Schulen Was sagen die Daten? Hessisches Ärzteblatt; 2021, 6, 356 357.
- [14] Salzberger B, Buder F, Lampl B, et al. Epidemiologie von SARS-CoV-2-Infektion und COVID-19. Internist 61, 782–788 (2020). https://doi.org/10.1007/s00108-020-00834-9
- [15] Robert Koch-Institut. Epidemiologischer Steckbrief zu SARS-CoV-2 und COVID-19 (19.04.2021) Im Internet:

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html; Stand: 19.04.2021.

- [16] Die Datenbank des Statistischen Bundesamtes.(06.05.2021). Im Internet: https://www-genesis.destatis.de/genesis/online; Stand: 06.05.2021
- [17] Fore H. Children cannot afford another year of school disruption. Statement by UNICEF Executive Director Henrietta Fore, 12.01.2021. Im Internet:

https://www.unicef.org/press-releases/children-cannot-afford-another-year-school-disruption; Stand: 06.05.2021

[18] Kluge H. Schulbetrieb zu Zeiten von COVID-19: Eröffnungsansprache auf der hochrangigen Tagung über die Offenhaltung von Schulen und den Schutz aller Kinder angesichts rasch steigender COVID-19-Fallzahlen. WHO/Europa. Im Internet:

https://www.euro.who.int/de/health-topics/health-emergencies/coronavirus-covid-19/stateme nts/schooling-in-the-time-of-covid-19-opening-statement-at-high-level-meeting-on-keeping-s chools-open-and-protecting-all-children-amid-surging-covid-19-cases, Stand: 06.05.2021

[19] European Centre for Disease Prevention and Control. COVID-19 in children and the role of school settings in transmission. Stockholm: European Centre for Disease Prevention and Control; 06.08.2020.

[20] Berner R, Walger P, Simon A et al. Stellungnahme der Deutschen Gesellschaft für Pädiatrische Infektiologie (DGPI) und der Deutschen Gesellschaft für Krankenhaushygiene (DGKH): Hospitalisierung und Sterblichkeit von COVID-19 bei Kindern in Deutschland. Im Internet:

https://dgpi.de/stellungnahme-dgpi-dgkh-hospitalisierung-und-sterblichkeit-von-covid-19-bei-kindern-in-deutschland-18-04-2021; Stand 21.04.2021

[21] Bayerisches Staatsministerium für Unterricht und Kultus. Umgang mit Krankheits- und Erkältungssymptomen bei Kindern und Jugendlichen in Schulen - Informationen für Eltern und Erziehungsberechtigte – Stand: 21.04.2021. Im Internet: https://www.km.bayern.de/download/24702_210421-Merkblatt_Umgang-mit-Erk%C3%A4lt

https://www.km.bayern.de/download/24702_210421-Merkblatt_Umgang-mit-Erk%C3%A4ltungssymptomen.pdf

[22] Hübner J, Simon A, Dötsch J, et al. Stellungnahme der Deutschen Gesellschaft für Pädiatrische Infektiologie (DGPI), des Berufsverbands der Kinder- und Jugendärzte in Deutschland e.V. (BVKJ), der Deutsche Gesellschaft für Kinder- und Jugendmedizin (DGKJ), und der Deutschen Gesellschaft für Krankenhaushygiene (DGKH): Teststrategien zur COVID Diagnostik in Schulen. Im Internet:

https://dgpi.de/wp-content/uploads/2021/02/Stellungnahme-Schnelltests_final_logos_28_02_2021.pdf; Stand 28.02.2021