Predicción de Demanda Usando Redes Neuronales Proyecto Final

Alfonzo Gonzalez, Andrés Cabrales, José Ignacio Ibarra

4 Geeks Academy - Data Science y Machine Learning

1 de abril de 2025

Contexto de la Bodega

- Pertenciente a Empresa localizada en Ecuador
- Comercializador de insumos de maquinaria utilizados en la industria de alimentos
- Proveedores ubicados en Asia y Europa
- Transporte vía flete marítimo (2 a 3 meses)
- Compras periódicas de stock durante el año

Importancia del Problema

"...las empresas que utilizan análisis predictivo en sus operaciones logran reducir sus costos de inventario en un 30 % y mejorar la satisfacción del cliente en un 20 %."

Diagnóstico y Definición del Problema

Observaciones del Análisis Exploratorio

- Datos de compras y ventas entre 2021 y 2024
- 1,105 SKUs únicos en un total de 3,605 registros de transacciones
- 187 SKUs sin ventas en todo el periodo

Figura: Distribución de meses con ventas de cada SKU

Arquitectura: Preparación y Selección

- Variables de la Empresa por mes, año y SKU:
 - Cantidad compra
 - Total compra (\$)
 - Total venta (\$)
 - Precio unitario venta
 - Categoría: Producto de línea o Sobre pedido
 - Cantidad venta (variable objetivo)
- Variables del Macroentorno:
 - Precio petróleo brent
 - IPC Ecuador
 - PIB trimestral Ecuador

Metodología: Redes Neuronales

- ¿Por qué redes neuronales?
 - Modelan relaciones complejas (no lineales) entre variables.
 - Adaptación a grandes volúmenes de datos y variables
- Funcionamiento
 - Aprende patrones entre compras, ventas y factores externos.
 - Genera predicciones precisas de la demanda.
- Justificación:
 - Mejora significativa frente a métodos tradicionales como regresión o medias móviles.

Metodología: Esquema de Redes Neuronales

Figura: Diagrama Esquema de Redes Neuronales

Metodología: Modelo MLP-Regressor

- Parámetros seleccionados:
 - Capas ocultas: 8 capas con 100 neuronas cada una.
 - Funciones de activación: ReLU
 - Optimizadores: LBFGS Eficiente optimizando problemas de múltiples variables
 - Máximas iteraciones: 2000
 - Penalización de pesos (alpha): 1e-04

Explicación

Maximizamos la precisión optimizando los hiperparámetros usando - GridSearch & Cross Validation

Resultado

- Resultado obtenido: MAE = 12.39
- Significado:
 - Error absoluto promedio.
 - Diferencia entre predicciones y valores reales en términos absolutos.
- Interpretación:
 - Modelo con alta precisión.
 - Reducción significativa en sobrestock.
- Impacto: Optimización de inventarios y reducción de pérdidas.

Mejoras y Futuro del Modelo

- Datos Adicionales necesarios:
 - Temporada del año
 - Promociones o campañas realizadas
 - Competencia en el mercado
 - Tasa de cambio de divisas
 - Categorización de grupos de SKUs para facilitar analísis
- Mejoras:
 - Incrementar datos históricos.
 - Actualización continua del modelo
 - Inclusión de nuevos factores externos
 - Buscar modelos que expliquen la influencia individual de las variables

Referencias

Investing.com (2021 - 2024).

Datos históricos petróleo brent.

Online; accessed June 06, 2025.

Scikit-learn developers (2007 - 2025).

Mlpregressor.

Online; accessed Marzo 24, 2025.

Trading Economics (2024a).

Ecuador - pib.

Online; accessed Marzo 24, 2025.

Trading Economics (2024b).

Ecuador gdp growth rate.

Online; accessed June 10, 2024.

FinGracias por su Atención