FLOATING-POINT ERRORS AND COMPENSATION ALGORITHM

Ao XIE

Ingénierie des modèles et Simulation

Institut Supérieur d'Informatique, de Modélisation et de leurs Applications ntroduction

As the foundation of modern computing, floating point numbers play an important role in scientific computing, financial modeling and engineering. However, due to the limitations of binary representation, floating-point operations inherently introduce errors and may accumulate over multiple operations.

The representation of floating-point numbers follows the IEEE 754 standard[1], which defines a finite-precision binary floating-point format. For integers, an exact representation is possible based on this definition. However, for decimals, exact representation is not possible. For example, the binary representation of 0.1 is an infinite loop decimal. This limitation requires truncation of decimals, which introduces rounding errors[2].

In addition, floating-point endings have a limited number of bits, which limits the precision of floating-point numbers. When computing values with large magnitude differences, loss of valid digits may occur, known as catastrophic elimination[1].

In this context, this experiment will validate the precision error of floating point numbers themselves and use Kahan Algorithm[3] and its improved algorithm, the Neumaier [4], to try to reduce this error.

xperimental Data Set In total, three different forms of datasets were set up in this experiment to try to reproduce

In total, three different forms of datasets were set up in this experiment to try to reproduce the problems that arise during the computation of floating point numbers.

1 Random Dataset

The use of random numbers between 0 and 1 is used to simulate regular numerical distributions. This data is used to simulate scenarios of random number distributions that occur widely in real-world applications.

2 Uniform Dataset

Using the same decimals is used to validate that the algorithm handles the accumulation of uniformly distributed data. This data is used to simulate the errors generated during simple accumulation and also for the cases in the course.

3 Extreme Dataset

The use of alternating extremely large and extremely small values was used to test the stability of the algorithm when dealing with large spans of values.

A total of three different algorithms were used in this experiment to calculate the different errors they produce. These are the use of the Native method as the baseline model and the other two compensation algorithms.

1 Native Summation Algorithm

In this experiment, the most primitive cumulative approach was used as the baseline model for the experiment. The role of the baseline model is to verify the errors that can occur in floating-point numbers when computed without correction and whether the correction algorithm can correct these errors to make a reference.

2 Kahan Summation Algorithm

Kahan summation algorithm is a computational method proposed by William Kahan in 1965[3] for improving the accuracy of numerical calculations.

The core idea of this algorithm is to record the errors rounded off in each addition operation by introducing a compensation variable, and gradually compensate these errors back in subsequent calculations. The algorithm is shown in Algorithm 1.

```
Algorithm 1: Kahan Summation

Input: Array arr of size n
Output: Sum of the array with error compensation

1 Initialize sum \leftarrow 0.0, c \leftarrow 0.0 // Compensation for lost low-order bits

2 for i \leftarrow 1 to n do

3 | y \leftarrow arr[i] - c | // Correct the current value with compensation

4 t \leftarrow sum + y

5 c \leftarrow (t - sum) - y | // Update the compensation value

6 sum \leftarrow t

7 end

8 return sum
```

This algorithm is effective in compensating rounding errors without introducing a lot of extra operations and has a simple structure for easy completion.

3 Neumaier Summation Algorithm

An improved version of the Kahan summation algorithm was proposed by L. Neumaier in 1974[4] to address the stability and robustness of the Kahan summation algorithm in the face of summing over large spans of data.

The core idea of the Neumaier summation algorithm is to complete the compensation in the Kahan summation algorithm by means of dynamic compensation. Specifically, its by determining the relationship between the absolute size of the current sum and the cumulative value, and adjusted to the appropriate way of error compensation. Its specific implementation is shown in Algorithm 2.

```
Algorithm 2: Neumaier Summation
   Input: Array arr of size n
   Output: Sum of the array with enhanced error compensation
                                               // Enhanced compensation for
 1 Initialize sum \leftarrow 0.0, c \leftarrow 0.0
     rounding errors
 2 for i \leftarrow 1 to n do
       y \leftarrow \operatorname{arr}[i] - c
 3
       t \leftarrow sum + y
 4
       if |sum| \ge |y| then
           c \leftarrow c + (sum - t) + y
 6
        c \leftarrow c + (y - t) + sum
 8
       end
       sum \leftarrow t
10
11 end
12 return sum + c
```

This algorithm presents stronger robustness error compensation with a slight increase in computational complexity.

The main content of this section is to convert the above algorithms into C code and present the final results of the experiments in the form of tables. The experimental results will also be analyzed and summarized to compare the performance, accuracy and applicability of different algorithms in an intuitive way, so as to provide support and reference for the application of the algorithms in practical scenarios.

In addition to the baseline model, the experiments introduced the MPFR library[5] as a high-precision reference standard. In this case, the library is utilized to obtain theoretical results for the ideal case, which can be used as a reference standard for practical calculations.

1 Random Dataset

During the computation of random data, each result is computed using 1000 randomly generated random numbers between 0 and 1 and accumulated. The final results are shown in Table 1.

Table 1 - Cumulative test for random data

	MPFR	Native Result	Native Error	Kahan Result	Kahan Error	Neumaier Result	Neumaier Error	
1	498.54478	498.544783	0.0000000	498.544783	0.0000000	498.544783	0.0000000	
	381040729	8104075799	000002842	8104072957	00000000	810496539	000892441	
	5732	49	17	32	000	900	68	
2	479.816517	479.8165177	0.0000000	479.8165177	0.0000000	479.8165177	0.0000000	
	785106100	8510587291	000002273	851061002	00000000	8497422355	0013187673	
	291	7	74	91	000	9	2	
3	513.34893	513.348933	0.0000000	513.348933	0.0000000	513.348933	0.0000000	
	323217931	2321789788	000003410	2321793199	00000000	2321827305	000034106	
	9930	69	61	30	000	35	05	
4	505.26755	505.267555	0.0000000	505.267555	0.0000000	505.267555	0.0000000	
	514054912	1405491205	00000000	1405491205	00000000	140800936	0025181634	
	0551	51	000	51	000	897	6	
5	498.147556	498.147556	0.0000000	498.147556	0.0000000	498.147556	0.0000000	
	40278923	402789064	000001705	402789234	00000000	4026192159	001700186	
	4653	123	30	653	000	87	66	
6	506.18204	506.182040	0.0000000	506.182040	0.0000000	506.182040	0.0000000	
	024954792	2495477537	000001705	249547924	00000000	2495616235	000136992	
	4304	74	30	304	000	68	64	
7	487.139282	487.139282	0.0000000	487.1392828	0.0000000	487.1392828	0.0000000	
	80404735	804047297	0000056	040473546	00000000	041002758	000529212	
	4603	759	843	03	000	25	23	
8	494.90342	494.903422	0.0000000	494.903422	0.0000000	494.903422	0.0000000	
	212789852	1278982386	000002842	1278985228	00000000	1277885308	001099920	
	2831	14	17	31	000	15	15	
9	475.86066	475.860664	0.0000000	475.860664	0.0000000	475.860664	0.0000000	
	468239795	6823982941	000003410	6823979531	0000000	6822485117	001494413	
	3129	90	61	29	000	81	48	
10	485.70204	485.702045	0.0000000	485.702045	0.0000000	485.702045	0.0000000	
	52985083	298508608	000002273	298508380	00000000	298365760	0014262013	
	80711	084	74	711	000	573	8	

In fact, during the experiments in this section we try to use the MT random number generator[6] to get better random numbers for our experiments. But the generator was not used in the end due to the fact that the high resolution MT random numbers are close to uniformly distributed in the interval, a property that largely reduces the accumulation of rounding errors.

Based on the information in the table, it is easy to see that for random numbers between zero and one, the computational error of the baseline model is less than that of Neumaier algorithm when MPFR is used as the reference standard, but it shows less stability and accuracy relative to Kahan algorithm.

2 Uniform Dataset

For the uniform data test, since the results were the same for each experiment, data from 0.1 to 1.0 directly cumulative in order of 0.1 were used as the test data. The final test results are shown in Table 2.

Table 2 - Cumulative test for uniform data

	Data	MPFR	Native Result	Native Error	Kahan Result	Kahan Error	Meumaie r Result	Meumaie r Error
1	0.1	100.0000 0000000 0000000	99.99999 99999985 93125	0.00000 0000001 406875	100.0000 0000000 0000000	0.00000 000000 000000	100.0000 0000000 6153300	0.00000 0000006 153300
2	0.2	200.0000 0000000 0000000	199.99999 99999971 86251	0.00000 0000002 813749	200.0000 0000000 0000000	000000 000000 000000 0.00000 000000 0000000	200.0000 000001 2306600 300.0000 0000000 0170530	0.00000 0000012 306600 0.00000 0000000 170530
3	0.3	300.0000 0000000 0000000	300.0000 0000000 5627498	0.00000 0000005 627498	300.0000 0000000 0000000			
4	0.4	400.000 0000000 0000000 0	0000 9999999 0.000 0000 4372502 6274 0000 500.0000 0.000	0.00000 0000005 627498	400.0000 0000000 0000000	0.00000 000000 000000	400.0000 0000002 4613200	0.00000 0000024 613200
5	0.5	500.0000 0000000 0000000		0.00000 000000 000000	000000 0000000	0.00000 000000 000000	500.0000 0000000 0000000	0.00000 000000 000000
6	0.6	600.000 0000000 0000000 0	600.000 0000000 11254997	0.00000 00000112 54997	600.0000 0000000 0000000	0.00000 0000000 000000	600.0000 0000000 0341061	0.00000 0000000 341061
7	0.7	700.0000 0000000 0000000	700.0000 0000000 6366463	0.00000 0000006 366463	700.0000 0000000 0000000	0.00000 0000000 000000	700.0000 0000003 2059688	0.00000 000032 059688

	Data	MPFR	Native Result	Native Error	Kahan Result	Kahan Error	Meumaie r Result	Meumaie r Error
8	0.8	800.0000 0000000 0000000	799.9999 99999988 745003	0.00000 00000112 54997	800.0000 0000000 0000000	0.00000 000000 000000	800.0000 0000004 9226401	0.00000 0000049 226401
9	0.9	900.000 0000000 0000000 0	899.9999 99999984 879651	0.00000 00000151 20349	900.0000 0000000 0000000	0.00000 0000000 000000	900.0000 0000002 8762770	0.00000 0000028 762770
10	1.0	1000.000 0000000 0000000 0	1000.000 0000000 0000000 0	0.00000 000000 000000	1000.000 0000000 0000000 0	0.00000 000000 000000	1000.000 0000000 0000000 0	0.00000 000000 000000

According to the data in the table, it is still found that Kahan algorithm performs better for the baseline and Nermaie algorithm. And for decimal numbers that are easy to represent in binary (e.g., 0.5 and 1.0), no rounding error occurs.

3 Extreme Dataset

Based on the data obtained earlier, it can be seen that the results obtained by the Neumaier algorithm are not satisfactory, and this result does not have a significant impact in the above conclusions due to the fact that, according to its proposed conception, this algorithm is proposed in order to improve the accuracy when the data variance is large. Therefore in this subsection, an attempt will be made to correct this algorithm. Namely, the algorithm will include a comparison of the size for 1e6 and then two types of compensation will be added. For the experimental results after correcting this algorithm are shown in Table 3.

Table 3 - Cumulative test for extreme data

	MPFR	Native Result	Native Error	Kahan Result	Kahan Error	Neumaier Result	Neumaier Error
1	2944773162 291.7241210 937500000 00	2944773162 291.7426757 812500000 00	0.01855468 75000000 00	2944773162 291.7241210 937500000 00	0.0000000 0000000 000	2944773162 291.6704101 562500000 00	0.05371093 75000000 00
2	4699571328 440.020507 812500000 000	4699571328 439.992187 50000000 0000	0.02832031 25000000 00	4699571328 440.020507 812500000 000	0.0000000 0000000 000	4699571328 440.223632 812500000 000	0.20312500 00000000 00

	MPFR	Native Result	Native Error	Kahan Result	Kahan Error	Neumaier Result	Neumaier Error
3	420804428 8774.87500 00000000 00000	420804428 8774.89257 812500000 0000	0.017578125 00000000 0	420804428 8774.874511 718750000 000	0.0004882 812500000 00	420804428 8775.00830 078125000 0000	0.13330078 125000000 0
4	266736454 5043.21484 37500000 00000	266736454 5043.21289 06250000 00000	43.21289 0.00195312 250000 50000000		0.0000000 0000000 000	266736454 5043.182617 187500000 000	0.03222656 25000000 00
5	4274142913 011.098144 531250000 000	4274142913 011.0488281 25000000 000	0.04931640 62500000 00	4274142913 011.0981445 312500000 00	0.0000000 0000000 000	4274142913 011.1655273 437500000 00	0.06738281 25000000 00
6	248769964 9446.86425 781250000 0000	248769964 9446.82373 046875000 0000	46.82373 6875000 0.04052734 375000000	248769964 9446.86425 781250000 0000	0.0000000 00000000 000	248769964 9446.99267 578125000 0000	0.128417968 75000000 0
7	4094478017 414.7475585 937500000 00	4094478017 414.668457 031250000 000	0.07910156 25000000 00	4094478017 414.7475585 937500000 00	0.0000000 0000000 000	4094478017 414.663085 937500000 000	0.08447265 62500000 00
8	2717640620 071.469238 281250000 000	2717640620 071.4619140 62500000 000	0.00732421 875000000 0	2717640620 071.469238 281250000 000	0.0000000 0000000 000	2717640620 071.5678710 937500000 00	0.09863281 25000000 00
9	3735716926 05.8669433 593750000 00	3735716926 05.8659667 968750000 00	0.0009765 62500000 000	3735716926 05.8669433 593750000 00	0.0000000 00000000 000	3735716926 05.8804931 640625000 00	0.01354980 468750000 0
10	496396582 5884.91210 937500000 0000	496396582 5884.93164 06250000 00000	0.01953125 00000000 00	496396582 5884.911132 812500000 000	0.0009765 62500000 000	496396582 5885.09179 687500000 0000	0.17968750 00000000 00

According to the experimental results, despite the attempts to change the Neumaier algorithm, the performance results were still unsatisfactory and even performed worse than the baseline model. However, in this experiment, Kahan algorithm still gave relatively good results, and despite some small observable errors in some cases, the overall results were still better than the baseline model and Neumaier algorithm.

Onclusion

The purpose of this experiment is to compare the results obtained by the native summation method, Kahan summation algorithm and Neumaier summation algorithm.

And to use the results obtained from MPFR library as a reference ideal result for the data.

Based on the experimental results, it can be clearly concluded that the traditional method (i.e., the baseline model) produces a certain rounding error for the vast majority of fractional arithmetic operations from 0 to 1, and therefore this method has absolute limitations. At the same time, it can be seen that Kahan algorithm gets better performance in all three cases listed in the experiment. A small amount of error occurs only when there are large fluctuations in the size of the data.

The result of Neumaier algorithm in the experiment is not a normal result, and according to its proposed purpose, a third experiment was designed to verify its effect. However, for all three experiments, this algorithm did not give an excellent result in terms of error, and even in some experimental cases the error obtained was larger than the baseline model. This phenomenon occurs both before and after the algorithm correction, i.e., the possible problem is in the implementation of the algorithm.

Kahan algorithm continues to have a profound impact in currently popular fields, such as Amro Eldebiky et al. who proposed a technique for error compensation in simulation computation using a similar idea to reduce the impact of hardware noise on neural network training and inference[7], and Yifei Cheng et al. who proposed a technique to reduce communication overheads using a similar approach[8]. Therefore research based on this algorithm as well as its ideas is still of research value at the present time.

Bibliography

- [1] "754-2019 IEEE Standard for Floating-Point Arithmetic | IEEE Standard | IEEE Xplore," doi: 10.1109/IEEESTD.2019.8766229.
- [2] GoldbergDavid, "What every computer scientist should know about floating-point arithmetic," ACM Computing Surveys (CSUR), vol. 23, no. 1, 1991-03-01, doi: 10.1145/103162.103163.
- [3] KahanW., "Pracniques: further remarks on reducing truncation errors," *Communications of the ACM*, vol. 8, no. 1, 1965-01-01, doi: 10.1145/363707.363723.
- [4] A. Neumaier, "Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen," Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik, 1974, doi: 10.1002/ ZAMM.19740540106">10.1002/ZAMM.19740540106.
- [5] FousseLaurent, HanrotGuillaume, LefèvreVincent, PélissierPatrick, and ZimmermannPaul, "MPFR," ACM Transactions on Mathematical Software (TOMS), vol. 33, no. 2, 2007-06-01, doi: 10.1145/1236463.1236468.
- [6] MatsumotoMakoto and NishimuraTakuji, "Mersenne twister," ACM Transactions on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, 1998-01-01, doi: 10.1145/272991.272995.
- [7] A. Eldebiky, G. L. Zhang, G. Boecherer, B. Li, and U. Schlichtmann, "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression and Compensation," 2022/11/27, doi: 10.48550/arXiv.2211.14917.
- [8] Y. Cheng *et al.*, "Communication-Efficient Distributed Learning with Local Immediate Error Compensation," 2024/02/19, doi: 10.48550/arXiv.2402.11857.