

Zubin Dowlaty, Sangeet Moy Das, Shubhra Prakash July 2020

- ► The Enterprise Requirement for Complexity Science
- ► A Point of View Representation of a Complex System
- Use Case: Intelligent Reporting
- Demo

DIPP: Prescriptive Analytics, "what should we do", "our best action", "evaluate this policy change"

Correct Perspective

Why Prescriptive Analytics for the Enterprise?

Default view in Decision Sciences: Comfortable.. But Deceiving

Mechanical View / Complicated Mindset

- "Assembly Line", rules and recipes on components
- Complicated: Computer, Phone, Car, Rocket, Clocks
- The classic **Additive** regression model: $Y = a + B_{x1} + B_{x2} + e$
- Are the systems we manage so tame?
 - Mandelbrot, "Clouds are not spheres, mountains are not cones"
- The world is complex whether we like it or not –
 Get Real

1,090 views | Apr 20, 2019, 01:09pm

Our Entire AI Revolution Is Built On A Correlation House Of Cards

Kalev Leetaru Contributor ①

Al & Big Data

Lurrie about the broad intersection of data and soci

Getty Images GETTY

Examples of Complex Systems

Climate, Animals, Brains, Cells, Cities, Ecosystems, Supply Chains, Traffic, Economies, Firms & Customers

Agents, Feedback, No Central Coordinator, Emergent, Self Organize, Learning

First Principles: Complexity Science

Properties

- Simple components or **Agents** (simple relative to the whole system)
- Nonlinear Interactions among components usually caused by Feedback Loops
- No central control
- Emergent behaviors
 - Hierarchical(Layers) & Network design patterns
 - Information Processing
 - Dynamics: Study of continuing changing structure and behavior STATES & Self Organization
 - Learning / Evolutionary / Adaptation
- Study of Organisms (Ecology)
 - Computation model inspiration = Robotics (Sense, Plan, Act)

Use Case: Intelligent Reporting

- Dealing with Networks (organism)
 - Possible Unanticipated Consequences and difficult to predict
 - Novelty Detection key characteristic
 - Shannon Entropy "Surprise"

- Case = profile of a contextual set of inter-dependent variables, a situation of the case-object
- Start with a Robust Sensing Apparatus
 - Visualize states and trajectories of the caseobject

Robotics

- ► The Enterprise Requirement for Complexity Science
- A Point of View Representation of a Complex System
- Use Case: Intelligent Reporting
- Demo

Why complex system representation an issue?

- The intricate nature of complex systems currently poses great difficulty in an unsupervised representation across different domains
- Some of these existing problems include:
 - Organized Simplicity
 - Disorganized Complexity
 - Organized Complexity
- Now, how do we tackle these problems?

Emergence in a Complex System

"These new problems and the future of the world depends on many of them, requires science to make a third great advance, an advance that must be even greater than the nineteenth-century conquest of problems of organized simplicity of the twentieth-century victory over problems of disorganized complexity. Science must, over the next 50 years, learn to deal with these problems of organized complexity."

- Warren Weaver, 1948

- This is what emergence is all about; the overall effect of the interactions between all the components of the "organic whole"
- These changing interaction leads to a dynamic emergent behavior over time

Case Based Modeling for a Complex System

- Multiple behaviors emerge in a complex system
- Behaviors are divided into discrete cases based on structural similarity giving a condensed representation of the system
- The above process are repeated in a hierarchy for a microscopic view into the sub-behaviors of the system
- This is achieved using the following techniques from our <u>muHVT</u> package on CRAN:
 - Unsupervised learning (Vector Quantization),
 - Computational geometry (Voronoi regions) and
 - Multi-dimensional scaling (Sammon's Projection)

- ► The Enterprise Requirement for Complexity Science
- ► A Point of View Representation of a Complex System
- Use Case: Intelligent Reporting
- Demo

Vector Quantization

- VQ on a 1D Number Line
 - Compression technique, tries to reduce the number of bits being used to encode the numbers

- VQ on a 2D Plane
- 1. The plane above contains 4096 green dots which can be represented in 12 bits per data value
 - 2. These 4096 dots have been replaced by 16 green dots which can be represented in 4 bits per data value

Dimensionality Reduction

- Sammons projection
 - Projects points from a space of higher to lower dimensionality
 - Preserving the structure of inter-point distances in n-dimensional space.
 - Minimization of the error function involves distance between the points in original space and corresponding distance after projection

Voronoi Tessellations

Presence of geometric arrangements in nature

Hierarchical Voronoi Tessellations

- ► The Enterprise Requirement for Complexity Science
- ► A Point of View Representation of a Complex System
- Use Case: Intelligent Reporting
- Demo

Shiny interface for muHVT

