Affine Objects

Mohamed Hashi

April 21, 2016

1 Introduction

Hoi, dit is de introductie.

2.1 Basic Category Theory

Definition 1 (Over/Under categories). Let C and C' be categories. Let $F: C \to C'$ and $z \in C'$. Define the category C_z and C^z as

$$Obj(C_z) := \{(a, w) \mid a \in C, w : F(a) \to z\},$$

$$Hom((a, w), (b, v)) := \{f : a \to b \mid v \circ F(f) = w\},$$

and

$$Obj(C^z) := \{(a, w) \mid a \in C, w : z \to F(a)\},$$

$$Hom((a, w), (b, v)) := \{f : a \to b \mid F(f) \circ w = v\}.$$

We get faithfull functors $C_z \to C: (a, w) \to a$ and $C^z \to C: (a, w) \to a$. We will call both functors localization functors and denote them by u. We will suppress the functor F where there can be no confusion.

Definition 2 (Presheaf category). Let C be a category. Let $\alpha \in C$. Let $f: \alpha' \to \alpha$ We define

$$\hat{C} := [C^{op}, Set],$$

and the functor $h:C\to \widehat{C}$ as follows

$$a \mapsto \text{Hom}(-, a),$$

$$f \mapsto f \circ -.$$

This functor is fully faithfull by the Yoneda lemma.

2.2 Topology

Definition 3 (Sieve). Let C be a category and $a \in C$. A sieve S on a is a subpresheaf of h(a). Explicitely,

$$S(c) \subset Hom(c, a)$$

such that

$$fg \in S(Dom(g)), \forall f \in S(c), \forall g \in h(c).$$

The maximal sieve on a, which is h(a) itself, will be denoted by max(a).

Definition 4 (Grothendieck Topology). A Grothendieck topology \mathcal{T} is a family $\mathcal{T}(a)$ of 'covering' sieves for every $a \in C$ with the following conditions:

- $\max(\alpha) \in \mathfrak{T}(\alpha)$
- $f^*R \in \mathfrak{T}(\mathfrak{a}')$ if $R \in \mathfrak{T}(\mathfrak{a})$ for any $f : \mathfrak{a}' \to \mathfrak{a}$
- if $f^*R \in \mathfrak{I}(\alpha')$ for all $f \in S$ with $S \in \mathfrak{I}(\alpha)$ then $R \in \mathfrak{I}(\alpha)$

Remark. Note that if $f \in R$ then $f^*R = \max(\alpha')$. So if $R \subset S$ and R is covering then S is covering. Also $R \cap S$ is covering if and only if R and S are covering.

Definition 5 (Basis). Let C be a category with pullbacks. A Grothendieck pretopology \mathcal{B} is a collection $\mathcal{B}(a)$ of families $\{f_i:a_i\to a\}$ of 'covering' morphisms for every $a\in C$ with the following conditions.

- every isomorphism is a covering singleton family,
- (Stability) The pullback of a covering family is covering. If {f_i : a_i → a} is covering and g : b → a, then {f'_i : a_i ×_a b → b} is covering.
- (Transitivity) If $\{f_i: a_i \to a\}$ is covering and $\{f_{ij}: a_{ij} \to a_i\}$ for every i, then $\{f_{ij}: a_{ij} \to a\}$ is covering.

Generating a topology from a basis: take any sieve containing a covering family to be a covering sieve.

2.2.1 Sheaves

Definition 6 (Matching family). Let C be a category. Let \mathfrak{F} be a presheaf on on C. Let $a \in C$ be an object. Let R be a sieve on a.

A set $\{x_i\}_{i\in R}$ with $x_i \in \Gamma(\text{Dom}(i);\mathfrak{F})$ indexed by a sieve R and such that $x_{g\circ i}=\mathfrak{F}(g)(x_i)$ for any $g:b\to \text{Dom}(i)$ and $b\in C$ is called a 'matching family'.

Definition 7 (Matching family/Morphisms). Let C be a category. Let \mathfrak{F} be a presheaf on on C. Let $\mathfrak{a} \in C$ be an object. Let R be a sieve on \mathfrak{a} .

Define $\Gamma(R;\mathfrak{F})=\mathrm{Hom}(R,\mathfrak{F}).$ An element $\phi\in\Gamma(R;\mathfrak{F})$ is uniquely identified by the matching family $\{\phi(\mathfrak{i})\}_{\mathfrak{i}\in R}$ of images. Conversely, any matching family $\{x_{\mathfrak{i}}\}_{\mathfrak{i}\in R}$, with $x_{\mathfrak{i}}\in\Gamma(\mathrm{Dom}(\mathfrak{i});\mathfrak{F})$ indexed by R and such that $x_{g\circ\mathfrak{i}}=\mathfrak{F}(g)(x_{\mathfrak{i}})$ for any $g:b\to\mathrm{Dom}(\mathfrak{i})$ and $b\in C$, uniquely identifies a map $\phi:R\to\mathfrak{F}.$ Namely, take $\phi_{\mathfrak{a}}(y)=x_{\mathfrak{y}}.$

Definition 8 (Amalgamation). An amalgamation of a matching family $\{x_i\}_R$ is an element $x \in \Gamma(1;\mathfrak{F})$ such that $\mathfrak{F}(\mathfrak{i})(x) = x_\mathfrak{i}$.

When you consider the matching family as a morphism ϕ , an amalgamation is a morphism $\phi: h(\alpha) \to \mathfrak{F}$ that extends ϕ .

Definition 9 (Sheaves). Let (C, \mathcal{T}) be a site. Let $\mathfrak{F} \in \hat{C}$.

A presheaf that admits a unique amalgamation of every matching family is called a sheaf. The category Shv(C) is the full subcategory in \hat{C} all sheaves. Let i be the inclusion functor $Shv(C) \to \hat{C}$.

Definition 10 (Sheaves #2). Let (C, T) be a site. Let $\mathfrak{F} \in \hat{C}$. Let R be a sieve on $a \in C$.

We call \mathfrak{F} a sheaf if the map

$$\label{eq:sigma} \begin{split} \mathfrak{F}(\alpha) &\to \mathfrak{F}(R) \\ \alpha: x &\mapsto \{\mathfrak{F}(\mathfrak{i})(x)\}_{\mathfrak{i} \in R} \end{split}$$

is an isomorphism.

Definition 11 (Plus construction). Let (C, \mathcal{T}) be a site. Let $\alpha, \alpha' \in C$ and $f : \alpha \to \alpha'$. Let $\mathfrak{F} \in \hat{C}$. Define the functor $(-)^+ : \hat{C} \to \hat{C}$ as follows

On objects:

$$\mathfrak{F}^+(\alpha) = \frac{\{(R,\phi) \mid R \in \mathfrak{T}(\alpha), \phi \in \Gamma(R;\mathfrak{F})\}}{{}^{\sim}}\text{,}$$

$$\mathfrak{F}^+(f)([(R,\phi)])=[(f^*R,h(f)\phi)].$$

The eq. relation is defined as:

$$(R, \varphi) \sim (S, \varphi)$$

if $\phi = \varphi$ on some $Q \subset R \cap S$

Let $L:\mathfrak{F}\to\mathfrak{F}'$. Then

$$(L^{+})_{\mathfrak{a}}([(R, \varphi)]) = [(R, L \circ \varphi)]$$

This functor comes with a natural transformation $\omega: \mathrm{Id} \to (-)^+$ defined by

$$\omega_{\mathfrak{F},\mathfrak{a}}(x) = [(\max(\mathfrak{a}), y], y(\mathfrak{i}) = \mathfrak{F}(\mathfrak{i})(x).$$

Definition 12. Define $sh = (-)^+ \circ (-)^+$.

Lemma 13. Let Y = (C, T) be a site. The functor sh is left adjoint to the inclusion $Shv(Y) \to Shv(C)$ with unit

$$\omega^2: Id \xrightarrow{\omega} (-)^+ \xrightarrow{\omega} sh$$

Proof.

2.2.2 Relative topology

Definition 14 (Relative topology). Let (C, T) be a site. Let $a \in C$.

The topology $\mathfrak T$ induces a topology $\mathfrak T_a$ on C_a as follows. Let $f:b\to a\in C_a$. Let $R\in \mathfrak T(b)$. Define the sieve $R_f\subset h(f)$ as follows. Let $g:b'\to a\in C_a$

$$R_f(g) = \{p : b' \to b \in R(b') \mid g = f \circ p\}.$$

This is a sieve because if $p \in R_f(g)$ and $h: g' \to g$ arbitrary, then gh = fph so $ph \in R_f(gh)$.

Set
$$\mathfrak{T}_{\alpha}(f)=\{R_f:\ R\in\mathfrak{T}(b)\}.$$

Remark. Every sieve S on $f:b\to a$ can be considered as a sieve S' on b by defining $S'(b')=\bigcup_g S(g)$ with $g:b'\to b$. This is clearly a sieve. We have $S'_f=S$ and $(S_f)'=S$. Hence $S\in \mathfrak{T}(b)$ if and only if $S_f\in \mathfrak{T}_a(b)$.

Lemma 15. T_a defines a Grothendieck topology

Proof. We will prove the axioms one by one.

- Axiom 1

Let $p:b'\to b\in h(f)(g)$ with $g:b'\to a$. Then $g=f\circ p$ hence $p\in \max(b)_f(g)$ so $\max(b)_f=h(f)=\max(f)$. This proves that $\max(f)\in \mathcal{T}_a(f)$.

- Axiom 2

Let $p:b'\to b\in h(f)g$ with $g:b'\to a$. Let $R_f\in \mathcal{T}_a(f)$. We have to show that $p^*R_f\in \mathcal{T}_a(g)$. We will prove $p^*R_f=(p^*R)_q$, which implies the desired result.

Let $h \in p^*R_f(t)$ for some $t \in C_a$. Then $ph \in R_f(t)$, so $ph \in R(Dom(t))$ and t = fph. This implies $h \in p^*R(Dom(t))$ and since g = fp also that t = gh. Hence $h \in (p^*R)_g(t)$.

Let $h \in (p^*R)_g(t)$ for some $t \in C_a$. Then $h \in p^*R(Dom(t))$ and t = gh. So we get $ph \in R(Dom(t))$ and t = fph, so $ph \in R_f(t)$. Hence also $h \in p^*R_f(t)$.

- Axiom 3

Let $R_f \in \mathcal{T}_a(f)$. Let S_f be any sieve on f for some sieve S on b. Any sieve on f can be written as S_f for some S by the above remark Assume that $p^*S_f \in \mathcal{T}_a(g)$ for any $p:b'\to b\in R_f(g)$ with $g:b'\to a$.

By assumption $p^*S_f = (p^*S)_g$ is covering for any $p \in R_f(g)$, hence p^*S is covering for any $p \in R(b')$, hence S is covering so S_f is.

Lemma 16. Let C be a category. Let $a,b\in C$. Let $(x_i)_T$ be a matching family for some presheaf $\mathfrak F$ on b indexed by sieve T. For any $f:b\to a$ the family $(x_i)_{T_f}$ is matching again.

Proof. Let $u:C_a\to C$ be the localization functor. Only when a domain has an 'a' as subscript, is it taken in C_a .

We have $x_i \in \Gamma(\text{Dom}(i); \mathfrak{F})$. Hence also $x_i \in \Gamma(fi; \mathfrak{Fu}) = \Gamma(\text{Dom}(i)_{\mathfrak{a}}; \mathfrak{Fu})$, where now i is considered as a morphism in $C_{\mathfrak{a}}$. Note that

$$(\mathfrak{Fu})(\mathfrak{p})(x_i) = \mathfrak{F}(\mathfrak{p})(x_i) = x_{i \circ \mathfrak{p}}$$

for any $p: c \to Dom(i)$, since $(x_i)_T$ is a matching family in C.

Lemma 17. Let Y = (C, T). Let $a, b \in C$. Let $f : b \to a$. Sheafifying and restricting commute. In formula form

$$sh_b \circ *|_b \cong *|_b \circ sh_a.$$

Proof. <!- This proof is not improved from last time, left it out for now. Will rewrite it using new parts about relative topology. ->

2.3 Modules

Definition 18 (Presheaf modules). Let $Y = (C, \mathcal{T}, \mathfrak{O})$ be a ringed site. Let $R = \Gamma(1; \mathfrak{O})$. A presheaf module on Y is a presheaf of sets \mathfrak{F} on C together with a map of presheaves

$$\mathfrak{O} imes \mathfrak{F} o \mathfrak{F}$$

such that for every object $a \in C$ the map $\Gamma(a; \mathfrak{D}) \times \Gamma(a; \mathfrak{F}) \to \Gamma(a; \mathfrak{F})$ defines a $\Gamma(a; \mathfrak{D})$ -module structure on $\Gamma(a; \mathfrak{F})$.

A morphism

$$\mathfrak{F} o \mathfrak{G}$$

is a morphism of presheaf modules if

commutes. The category of presheaf modules on Y will be denoted PMod(Y).

Definition 19. Let M, N be an R-module. Let $f: b \to a \in C$. Let $g: M \to N \in R$ -Mod. Define

$$\lambda : R\text{-Mod} \rightarrow PMod(Y)$$

by

$$\lambda(M)(\alpha) = M \otimes_R \Gamma(\alpha; \mathfrak{O}),$$

 $\lambda(M)(f) : Id \otimes \mathfrak{O}(f),$
 $\lambda(g) = (\alpha : g \otimes Id).$

Lemma 20. Let $Y = (X, \mathcal{T}, \mathfrak{O})$ be a site. The functor λ is left adjoint to

$$\Gamma(1;-): \mathit{PMod}(Y) \to R\text{-Mod}$$

.

Proof. Let α be an object of C. Let M, N be R-modules. Let $\mathfrak{F}, \mathfrak{G} \in PMod(Y)$ be presheaf modules.

Let $\phi:\lambda(M)\to \mathfrak{G}$ be a morphism of presheaf modules. Let $\varphi:M\to \Gamma(1;\mathfrak{G})$ be a morphism of presheaf modules.

Define

$$\alpha = H_{M,\mathfrak{G}} : \text{Hom}(\lambda(M),\mathfrak{G}) \to \text{Hom}(M,\Gamma(1;\mathfrak{G}))$$

by

$$\alpha(\varphi) = \varphi_1$$

where ϕ_1 is the component of ϕ on the global sections.

Define

$$\beta = L_{M,\mathfrak{G}} : \text{Hom}(M,\Gamma(1;\mathfrak{G})) \to \text{Hom}(\lambda(M),\mathfrak{G})$$

by

$$\beta(\phi)_{\mathfrak{a}} = \phi \otimes_{R} \Gamma(\mathfrak{a}; \mathfrak{O}).$$

We will show that β and α are mutually inverse.

Let $d=\beta(\alpha(\phi))$. Let $m\otimes g\in M\otimes_R\Gamma(\alpha;\mathfrak{O})$. Let $p:\lambda(M)(1)\to\lambda(M)(\alpha)$ be the projection map. Let $q:\mathfrak{G}(1)\to\mathfrak{G}(\alpha)$ be the projection map. Then $d_\alpha(m\otimes g)=\phi_1(m)\otimes g$ and

$$\begin{split} \phi_{\alpha}(m\otimes g) &= g\phi_{\alpha}(m\otimes 1) \ \ \text{linearity} \\ &= g\phi_{\alpha}(p(m)) \\ &= gq(\phi_{1}(m)) \ \ \text{naturality of } \phi \\ &= g(\phi_{1}(m)\otimes 1) \\ &= \phi_{1}(m)\otimes g. \end{split}$$

Hence $d = \phi$. In words, the natural transformations from presheaves of the from $\lambda(M)$ are unique determined by their global sections component.

Let $d = \alpha(\beta(\phi))$. Let $m \in M$. Then $d(m) = (\phi \otimes_R R)(m) = \phi(m)$. Hence $d = \phi$, which makes H and L mutual inverses.

Naturality in M and &

Let $g: N \to M$ and $h: \mathfrak{F} \to \mathfrak{G}$. Let $\rho \in \text{Hom}(\lambda(N), \mathfrak{F})$. Let $k = H_{M,\mathfrak{G}}(h \circ \rho \circ \lambda(f))$. Let $l = h_1 \circ H_{N,\mathfrak{F}}(\rho) \circ f$.

Unfolding the definition for H shows that $k = h_1 \rho_1 f$ and $l = h_1 \rho_1 f$ as well. This proves naturality in M and \mathfrak{G} and the adjunction between λ and $\Gamma(1;-)$.

Definition 21. Define

$$\Lambda : R\text{-Mod} \rightarrow \text{Mod}(Y)$$

by $sh \circ \lambda$.

It follows from lemma .. that we have the adjunction $\Lambda \dashv \Gamma(1; -)$.

3 Caffine objects

3.1 Restrictive maps between caffine objects

Lemma 22. Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site. Let α be caffine. Let M be a $\Gamma(\alpha; \mathfrak{O})$ -module. The component $\omega^2 \lambda(M)$, α at α of the sheafification morphism $\omega^2_{\Lambda(M)}:\lambda(M)\to \Lambda(M)$ is equal to the unit of $\Lambda\dashv \Gamma(1;-)$ in C_α .

Proof. Consider the following maps, which you get by repeatedly calling on an adjunction.

$$Id:\Lambda(M)\to\Lambda(M)$$

$$\omega^2_{\Lambda(M)}:\lambda(M)\to\Lambda(M) \text{ use sheafification adjunction, see lemma }..$$

$$\omega^2_{\lambda(M),\alpha}M\to\Gamma(\alpha;\Lambda(\mathfrak{M})) \text{ take sections at }\alpha$$

We took the adjunct of Id wrt the sheafification adjunction as the first step. Then we took the adjunct of the result wrt the λ adjunction. Hence we get the adjunct of Id wrt the Λ adjunction. so the last map is actually the unit of the Λ adjunction. This map is an isomorphism because we assume α to be caffine.

Theorem 23 (Morphism between caffines is restrictive). Let $Y = (C, \mathcal{T}, \mathfrak{O})$. Let $f : b \to a \in C$ be a morphism between caffine objects, then f is restrictive.

Proof. Let \mathfrak{F} be a quasi-coherent module on Y_a . Let $M = \Gamma(a; \mathfrak{F})$. Since a is caffine, we have $\mathfrak{F} = \Lambda(M)$.

We have to show that the adjunct of f

$$\Gamma(\mathfrak{a};\mathfrak{F})\otimes_{\Gamma(\mathfrak{a};\mathfrak{D})}\Gamma(\mathfrak{b};\mathfrak{D})\to\Gamma(\mathfrak{b};\mathfrak{F})$$

is an isomorphism.

Consider

By a previous lemma, the left square commutes. By definition the two 'triangles' commute too and the outer square commute, hence the right square also commutes. Therefore $M \otimes \Gamma(b; \mathfrak{D}) \cong \Gamma(b; \mathfrak{F})$. This is the proof you wrote down friday.

The requirement is not to find any isomorphism but a specific one. So I think this is not enough and we need to do some bookkeeping and see if the witnessing isomorphism is our map.

Let i be the morphism of presheaves at $\lambda(M)$ of the natural transformation ω^2 coming with sh_α as defined in lemma ?. Let j be the morphism at $\lambda(M\otimes\Gamma(b;\mathfrak{O}))$ of the natural transformation ω^2 coming with sh_α as defined in lemma ? .

Consider

We have seen that the component j_b at b, the global component, is an isomorphism in lemma?. since b is caffine and that $s_{\lambda(M)}$ is an isomorphism as constructed in lemma?.

We will prove commutativity of the triangle. Let $g: c \to b \in Y_b$. Let $\mathfrak{M} = \lambda(M \otimes \Gamma(c; \mathfrak{D}))$. Let $x = m \otimes r \in \mathfrak{M}$.

3 Caffine objects

- TODO

Evaluating everything on the terminal object, in this case on b, shows that two out of three maps are isomorphisms, hence \mathfrak{i}_b is an isomorphism.