

BÀI GIẢNG HỆ TIN

THỐNG THÔNG BACH KHOA

Khoa Công Nghệ Thông Tin TS. Nguyễn Văn Hiệu

BÀI GIẢNG HỆ THỐNG THÔNG TIN VÀ ERP

Bài 5: HTTT RS

CH KHOA

Nội dung

- Giới thiệu
- Mục đích RS
- Biểu diễn dữ liệu
- Bài toán RS
- Phân loại phương pháp
- Chi tiết vài phương pháp
- Trao đổi

Tài liệu

- <u>Vấn đề</u>: "Information overload"
 - Trồng cây gì? Nuôi con gì?
 - Đọc sách nào? Xem phim gì? Mua Tablet nào?
 - Đi du lịch ở đâu ? Chọn tour nào?
 - Đi cùng ai?

Đọc sách nào ?

Mua tablet nào?

Giải pháp:

+ Cần decision support system => Cần recommendation system

- Khởi nguồn cảm hứng
 - Dữ liệu: 100 M rating (1-5 stars) from 480K users on 18K movies.

Dự đoán Bob "thích" dâu tây ?

Nguồn: Lester Mackey, 2009

- Giả định: Sở thích là "đồng liên quan" dự đoán khả năng anh thích đến Z?
 - Nếu em thích "đến" X, Y và Z
 - Nếu anh thích "đến" X và Y

• "Nổi tiếng": gợi ý bán hàng trực tuyến/ comment

Giới thiêu

"Nổi tiếng": gợi ý giải trí (music, video, movie)

Gợi ý theo Bought together

Gợi ý theo tag

Gợi ý theo keyword

Gợi ý theo new/ populator item

Mục đích RS

- Mục đích RS là dựa vào "sở thích" (thói quen/ nhu cầu/ năng lực,/...)
 trong quá khứ của user để dự đoán sở thích trong tương lai, từ đó
 đưa ra danh sách gợi ý tương ứng
- Tuỳ theo hệ thống, feedback từ user (để ước lượng mức độ thích) có thể khác nhau:

- Feedback "rõ ràng":
 + số 1, 2,..., 5.
 + like (1) / dislike(0)
 +
- Feedback "ngầm":
 + thời gian quan sát trên mỗi item
 + số lần kích chuột,
 +

Dữ liệu Feedback === > kỹ thuật gợi ý

Biểu diễn dữ liệu cho RS

		Items					
		1	2	***	i	***	m
	1	5	3		1	2	
	2		2				4
Users				5			
OBEIB	u	3	4	?	2	1	
	:					4	
	n			3	2		

•
$$\widehat{r}: U \times I \rightarrow R$$

- \hat{r}_{ni} : xếp hạng của người dùng u cho sản phẩm i
- Dự đoán giá trị cho các ô trống

Mô tả bài toán RS

- Gọi
 - U: user IDs

I: item IDs

R: rating

- \circ Tập dữ liệu $D: U \times I \times R$
- $\circ D^{Train} \subseteq D$

$$D^{Test} \subseteq D$$

- <u>Bài toán</u>: cho D^{Train} , $Tìm \hat{r} : U \times I \rightarrow R$:
- $\varepsilon(\hat{r},r)$ thỏa mản điều kiện cho trước với $(u,i,r) \in D^{Test}$.
- Ví dụ: nếu $\pmb{\varepsilon}$ là RMSE (root mean squared error) thì $\pmb{\varepsilon}(\pmb{\hat{r}}$, \pmb{r}) cần phải tối thiểu.

$$RMSE = \sqrt{\frac{\sum_{(u,i,r) \in \mathcal{D}^{test}} (r - \hat{r}_{(u,i)})^2}{|\mathcal{D}^{test}|}}$$

Dữ liệu ví dụ

Training data

user	Item	rating
1	21	1
1	213	5
2	345	4
2	123	4
2	768	3
3	76	5
4	45	4
5	568	1
5	342	2
5	234	2
6	76	5
6	56	4

Test data

user	Item	rating
1	62	?
1	96	?
2	7	?
2	3	?
3	47	?
3	15	?
4	41	?
4	28	?
5	93	?
5	74	?
6	69	?
6	83	?

Nhóm kỹ thuật gợi ý chính

Nhóm kỹ thuật gọi ý chính

Content-based filtering

Popular-based approach

Association rule approach

Lộc cộng tác (Collaborative filtering)

- Cộng tác = sử dụng dữ liệu của người khác
- kỹ thuật láng giềng (Neighborhood-based)
 - Cơ sở người dùng (user -base)
 - Cơ sở sản phẩm(item- base)

- kỹ thuật dự vào mô hình (model based)
 - Talent factor model
 - Matrix factorization model

· Vấn đề: Đánh giá của người dùng (user) với sản phẩm (item)

Giải pháp 1: User-base

Giải pháp 2: Item-base

Giải pháp 1: user-base

$$sim_{cosine}(u, u') = \frac{\sum_{i \in I_{uu'}} r_{ui} \cdot r_{u'i}}{\sqrt{\sum_{i \in I_{uu'}} r_{ui}^2} \sqrt{\sum_{i \in I_{uu'}} r_{u'i}^2}}$$

$$\hat{r}_{ui} = \frac{\sum_{u' \in K_u} sim(u, u') \cdot r_{u'i}}{\sum_{u' \in K_u} |sim(u, u')|}$$

Giải pháp 1: user-base

$$sim_{pearson}(u, u') = \frac{\sum_{i \in I_{uu'}} (r_{ui} - \bar{r}_{u})(r_{u'i} - \bar{r}_{u'})}{\sqrt{\sum_{i \in I_{uu'}} (r_{ui} - \bar{r}_{u})^2 \sum_{i \in I_{uu'}} (r_{u'i} - \bar{r}_{u'})^2}}$$

$$\hat{r}_{ui} = \overline{r}_u + \frac{\sum_{u' \in K_u} sim(u, u') \cdot (r_{u'i} - \overline{r}_{u'})}{\sum_{u' \in K_u} |sim(u, u')|}$$

Recommendation tasks: Example

Rating prediction from explicit feedback

How would Steve rate the Titanic movie?

	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Joe	1	4	5		3
Ann	5	1		5	2
Mary	4	1	2	5	
Steve	?	3	4		4

Item recommendation from implicit feedback

Which movie(s) Steve would like to see/buy?

Î	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Joe	1	1	1		1
Ann	1.	1		1	1
Mary	1	1	1	1	
Steve	?	1	1	?	1

Thank Tomas Horváth for this example!

User similarity: Example

Cosine similarity:

sim(u, u')	Joe	Ann	Mary	Steve
Joe	1.0	0.283	0.372	0.962
Ann	2-1	1.0	0.915	0.232
Mary	-	2=	1.0	0.254
Steve	S 77.2	1.770	5 -0 0	1.0

Pearson similarity:

sim(u, u')	Joe	Ann	Mary	Steve
Joe	1.0	-0.716	-0.762	-0.005
Ann		1.0	0.972	0.565
Mary	-	(- 2)	1.0	0.6
Steve	-			1.0

Prediction using 2 most similar users: Example

rating prediction using 2 most similar users:

$$K_{Steve,2}^{Titanic} = \{Mary, Ann\}$$

►
$$\bar{r}_{Steve} = \frac{11}{3} = 3.67$$
 $\bar{r}_{Mary} = \frac{12}{4} = 3$ $\bar{r}_{Ann} = \frac{13}{4} = 3.25$

Using Pearson sim:

$$\hat{r}_{ST} = \bar{r}_S + \frac{sim(S,M) \cdot (r_{MT} - \bar{r}_M) + sim(S,A) \cdot (r_{AT} - \bar{r}_A)}{|sim(S,M)| + |sim(S,A)|} = 3.67 + \frac{0.6 \cdot (4-3) + 0.565 \cdot (5-3.25)}{0.6 + 0.565} = 1.36$$

Giải pháp 2: item-base

$$\hat{r}_{ui} = \overline{r}_i + \frac{\sum_{i' \in K_i} sim(i, i') \cdot (r_{ui'} - \overline{r}_{i'})}{\sum_{i' \in K_i} |sim(i, i')|}$$

Giải pháp 2: item-base

$$sim_{pearson}(i, i') = \frac{\sum_{u \in U_{ii'}} (r_{ui} - \bar{r}_i)(r_{ui'} - \bar{r}_{i'})}{\sqrt{\sum_{u \in U_{ii'}} (r_{ui} - \bar{r}_i)^2} \cdot \sqrt{\sum_{u \in U_{ii'}} (r_{ui'} - \bar{r}_{i'})^2}}$$

$$\hat{r}_{ui} = \overline{r}_i + \frac{\sum_{i' \in K_i} sim(i, i') \cdot (r_{ui'} - \overline{r}_{i'})}{\sum_{i' \in K_i} |sim(i, i')|}$$

Giải pháp 1: User-base

1: procedure USERKNN-CF ($\overline{r_u}$, r, D^{train})

2: for u=1 to N do

3: Tính Sim_uu'

4: end for

5: Sort Sim uu'

6: for k=1 to K do

7: $K_u \leftarrow k$

8: end for

9: **for** i = 1 to M **do**

10: Tính $\widehat{r_{ui}}$

11: end for

12: end procedure

Giải pháp 2: Item-base

- **1. procedure** ITEMKNN-CF (u, r, D^{train})
- 2. for i=1 to M do
- 3. Tính Sim_{ii},
- 4. end for
- 5. Sort Sim_{ii},
- **6.** for i=1 to K do
- 7. $Ki \leftarrow k$
- 8. end for
- **9.** for u = 1 to N do
- 10. Tính \hat{u}_{i}
- 11.end for
- 12. end procedure

Vấn đề: COLD START PROBLEM

Vấn đề: COLD START PROBLEM

Giải pháp

$$\widehat{r_{ui}} = \alpha \, \widehat{r_{ui}}^i + (1 - \alpha) \, \widehat{r_{ui}}^u$$

$$\hat{r}_{ui} = \mu + b_u + b_i$$

$$\mu = \frac{\sum_{(u,i,r) \in \mathcal{D}^{train}} r}{|\mathcal{D}^{train}|}$$

$$b_{u} = \frac{\sum_{(u',i,r) \in \mathcal{D}^{train}|u'=u} (r - \mu)}{|\{(u',i,r) \in \mathcal{D}^{train}|u'=u\}|}$$

$$b_i = \frac{\sum_{(u,i',r) \in \mathcal{D}^{train}|i'=i} (r - \mu)}{|\{(u,i',r) \in \mathcal{D}^{train}\}|i'=i|}$$

Nhóm kỹ thuật chính

Mô hình nhân tố tiềm ẩn

kỹ thuật phân rã (matrix factorization) là một dạng của mô hình nhân tố tiềm ấn

Phân rã X thành 2 ma trận nhỏ hơn W và H sao cho ta có thể xây dựng lại X từ 2 ma trận con này

$$X \approx WH^T$$

$$W \in \mathbb{R}^{|U| \times K}; \quad H \in \mathbb{R}^{|I| \times K};$$

K: là số nhân tố tiềm ẩn (latent factors) $K \ll |U|, K \ll |I|$

Mô hình nhân tố tiềm ẩn

W và H có được bằng cách tối ưu hóa theo một điều kiện nào đó (như RMSE). Ở đây, hàm mục tiêu cần tối ưu là:

$$\mathcal{O}^{MF} = \sum_{(u,i) \in \mathcal{D}^{train}} (r_{ui} - \hat{r}_{ui})^2 = \sum_{(u,i) \in \mathcal{D}^{train}} \left(r_{ui} - \sum_{k=1}^K w_{uk} h_{ik} \right)^2$$

Kỹ thuật phân rã ma trận (matrix factorization)

- Tối ưu hóa bằng Gradient Descent
- Cho f: $R^n \to R$, tìm x sao cho f(x) nhỏ nhất
- Ý tưởng:
 - Từ giá tri x_0
 - Cập nhật x_1 ,

 - Cập nhật x_{n+1} : $f(x_{n+1}) \leq f(x_n)$

Kỹ thuật phân rã ma trận (matrix factorization)

- Tối ưu hóa bằng Gradient Descent
- Chọn hướng để cập nhật: $-\frac{\partial f}{\partial x}(x_n)$
- $x_{n+1} = x_n \beta \cdot \frac{\partial f}{\partial x}(x_n)$

$$\mathcal{O}^{MF} = \sum_{(u,i) \in \mathcal{D}^{train}} (r_{ui} - \hat{r}_{ui})^2 = \sum_{(u,i) \in \mathcal{D}^{train}} \left(r_{ui} - \sum_{k=1}^K w_{uk} h_{ik} \right)^2$$

$$\frac{\partial}{\partial w_{uk}} O^{MF} = -2(r_{ui} - \hat{r}_{ui}) h_{ik}$$

$$\frac{\partial}{\partial h_{ik}} O^{MF} = -2(r_{ui} - \hat{r}_{ui}) w_{uk}$$

$$w_{uk}^{new} = w_{uk}^{old} - \beta \cdot \frac{\partial}{\partial w_{uk}} O^{MF} = w_{uk}^{old} + 2\beta \cdot (r_{ui} - \hat{r}_{ui}) h_{ik}$$

$$h_{ik}^{new} = h_{ik}^{old} - \beta \cdot \frac{\partial}{\partial h_{ik}} O^{MF} = h_{ik}^{old} + 2\beta \cdot (r_{ui} - \hat{r}_{ui}) w_{uk}$$

$$\mathcal{O}^{MF} = \sum_{(u,i) \in \mathcal{D}^{train}} (r_{ui} - \hat{r}_{ui})^2 = \sum_{(u,i) \in \mathcal{D}^{train}} \left(r_{ui} - \sum_{k=1}^K w_{uk} h_{ik} \right)^2$$

$$\frac{\partial}{\partial w_{uk}} O^{MF} = -2(r_{ui} - \hat{r}_{ui}) h_{ik}$$

$$\frac{\partial}{\partial h_{ik}} O^{MF} = -2(r_{ui} - \hat{r}_{ui}) w_{uk}$$

$$w_{uk}^{new} = w_{uk}^{old} - \beta \cdot \frac{\partial}{\partial w_{uk}} O^{MF} = w_{uk}^{old} + 2\beta \cdot (r_{ui} - \hat{r}_{ui}) h_{ik}$$

$$h_{ik}^{new} = h_{ik}^{old} - \beta \cdot \frac{\partial}{\partial h_{ik}} O^{MF} = h_{ik}^{old} + 2\beta \cdot (r_{ui} - \hat{r}_{ui}) w_{uk}$$

$$\hat{r}_{ui} = \mathbf{w} \cdot \mathbf{h}^T = \sum_{k=1}^K w_{uk} h_{ik}$$

- Vấn đề: "Quá khớp" (overfitting)
- Giải pháp: thêm vào hàm mục tiêu một đại lượng gọi là Regularization
- Hàm mục tiêu cần tối ưu bây giờ là:

$$\mathcal{O}^{MF} = \sum_{(u,i) \in \mathcal{D}^{train}} \left(r_{ui} - \sum_{k=1}^K w_{uk} h_{ik} \right)^2 + \lambda \underbrace{\cdot \left(||W||_F^2 + ||H||_F^2 \right)}_{}$$

 $\lambda \in (0..1)$ và $||\cdot||_F$ là chuẩn Frobenius:

$$||\mathbf{W}||_F = \sqrt{\sum_{u=1}^{|U|} \sum_{k=1}^{K} |w_{uk}|^2}$$

- Vấn đề: "Quá khớp" (overfitting)
- Giải pháp: thêm vào hàm mục tiêu một đại lượng gọi là Regularization
 Với hàm mục tiêu mới, cập nhật giá trị cho w_{uk} và h_{ik} bằng:

$$w_{uk}^{new} = w_{uk}^{old} - eta \cdot rac{\partial}{\partial w_{uk}} \mathcal{O}^{MF} = w_{uk}^{old} + eta \cdot (2(r_{ui} - \hat{r}_{ui})h_{ik} - \lambda \cdot w_{uk})$$

$$h_{ik}^{new} = h_{ik}^{old} - \beta \cdot \frac{\partial}{\partial h_{ik}} \mathcal{O}^{MF} = h_{ik}^{old} + \beta \cdot (2(r_{ui} - \hat{r}_{ui})w_{uk} - \lambda \cdot h_{ik})$$


```
1: procedure MATRIXFACTORIZATION(\mathcal{D}^{train}, K, \beta, \lambda, stopping condition)
     // Let W[|U|][K] and H[|I|][K] be latent factors of users and items
          W \leftarrow \mathcal{N}(0, \sigma^2)
 2:
          H \leftarrow \mathcal{N}(0, \sigma^2)
 3:
 4:
          while (Stopping criterion is NOT met) do
               Draw randomly (u, i, r) from \mathcal{D}^{train}
5:
              \hat{r} \leftarrow 0
 6:
7:
               for k \leftarrow 1, \dots, K do
                   \hat{r} \leftarrow \hat{r} + W[u][k] \cdot H[i][k]
8:
               end for
9:
               e_{ii} = r - \hat{r}
10:
11:
               for k \leftarrow 1, \dots, K do
                     W[u][k] \leftarrow W[u][k] + \beta \cdot (e_{ui} \cdot H[i][k] - \lambda \cdot W[u][k])
12:
13:
                    H[i][k] \leftarrow H[i][k] + \beta \cdot (e_{ii} \cdot W[u][k] - \lambda \cdot H[i][k])
14:
               end for
15:
          end while
16:
          return {W, H}
17: end procedure
```

Cái tiến kỹ thuật phân rã ma trận

Hàm dự đoán

$$\hat{r}_{ui} = \mu + b_u + b_i + \sum_{k=1}^{K} w_{uk} h_{ik}$$

Cái tiến kỹ thuật phân rã ma trận

1. Procedure: ResultPrediction_BMF(D^{train} , K, β , λ , stopping condition)

Let $s \in S$ be a student, $i \in I$ a item, $p \in P$ a score

Let W[S|K] and H[I|K] be latent factors of students and tasks

Let $b_s[S]$ and $b_i[I]$ be students-bias and task-bias

$$2. \quad \mu \leftarrow \frac{\sum_{p \in D^{train}} p}{\left|D^{train}\right|}$$

- 3. for each student s do
- 4. $b_s[s] \leftarrow \frac{\sum_i (p_{si} \mu)}{|D_s^{train}|}$
- end for
- for each task i do

7.
$$b_i[I] \leftarrow \frac{\sum_{u} (p_{si} - \mu)}{|D_i^{train}|}$$

end for

- 9. $W \leftarrow N(0, \sigma^2)$
- 10. $H \leftarrow N(0, \sigma^2)$
- 11. while (Stopping criterion is NOT met) do
- 12. Draw randomly (s, i, p_{si}) from D^{train}
- 13. $\hat{\rho}_{si} \leftarrow \mu + b_s[s] + b_i[i] + \sum_{k}^{K} (W[s][k] * H[i][k])$
- $14. \quad e_{si} = p_{si} \hat{p}_{si}$
- 15. $\mu \leftarrow \mu + \beta * e_{si}$
- 16. $b_s[s] \leftarrow b_s[s] + \beta * (e_{si} \lambda * b_s[s])$
- 17. $b_i[i] \leftarrow b_i[i] + \beta * (e_{si} \lambda * b_i[i])$
- 18. for $k \leftarrow 1, \dots, K$ do
- 19. $W[s][k] \leftarrow W[s][k] + \beta * (2e_s * H[i][k] \lambda * W[s][k])$
- 20. $H[i][k] \leftarrow H[i][k] + \beta * (2e_{si} * W[s][k] \lambda * H[i][k])$
- 21. end for
- 22. end while
- 23. return $\{W, H, b_s, b_i, \mu\}$
- 24. end procedure.

Nhóm kỹ thuật RS chính

• 2D RS: $U \times I \rightarrow R$

• 3D RS: $U \times I \times C \rightarrow R$

Dữ liệu ngữ cảnh (contextual data)

Ngữ cảnh có thể:

Mùa Thời gian Nhiệt độ Ví trí Bạn đồng hành

Ngữ cảnh của aki-travel?

Giải pháp

RS: Pre-filtering

user	item	time	Bạn Đồng hành	Thời tiết	rate
1	2	Cuối tuần	Bạn bẻ	Trời nắng	4
1	5	Cuối tuần	Một mình	Trời âm u	1
1	3	Lễ - tết	Gia đinh	Trời trong xanh	5
2	2	Ngày trong tuần	Bạn bè	Trời nắng	2
2	1	Lễ - tết	Gia định	Trời trong xanh	3
3	5	Lễ - tết	Gia đình	Trời trong xanh	4
3	4	Cuối tuần	Bạn bè	Trời nắng	3
4	3	Lễ - tết	Gia đinh	Trời trong xanh	5

user	item	rate
1	3	5
2	1	3
3	5	4
4	3	5

- RS: Pre-filtering
- 2D:

Biased Matrix Factorization:

$$\hat{r}_{ui} = \mu + b_u + b_i + w_u \cdot h_i^T$$

SVD++ [Koren, 2008]:

$$\hat{r}_{ui} = \mu + b_u + b_i + \left(w_u + \frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} y_j\right) \cdot h_i^T$$

where N(u) is the set of implicit information by user u

RS Post - Filtering

A >> B >> C >> D,....

		Trionis Circuitation	
1.	Α	78.5	4.8
2.	В	14.3	4.6
3.	C	110.2	4.5
4.	D	33.4	4.1
5.	E	18.7	3.7
6.	F	2.4	3.5
7.	G	11.2	3.4
8.	Н	45.3	3.3
9.	I	24.5	2.9
10.	J	62.1	2.6

R < 20 km, thi. B >> E >> F >> G,...

```
1: procedure ContextAware-MF (D^{Train}, Iter, K, \beta, \lambda)
// W[|U|][K] và H[|I|][K] là 2 tham số cần tìm
2: W := N(0,σ²) //khởi tao giá tri theo phân phối chuẩn
3: H := N(0,σ²) //khởi tạo giá trị theo phân phối chuẩn
4: D<sup>TrainC</sup> = Pre-filtering(D<sup>Train</sup>)
5: for (iter:=1; iter <= Iter * |D TrainC|; iter++)
          Chọn ngẫu nhiên một dòng (u, i, rni) từ D<sup>TrainC</sup>
         \hat{r}_{ii} := 0
          for (k:=1; k<=K; k++)
         \hat{r}_{ui} := \hat{r}_{ui} + W[u][k] * H[i][k]
9:
10:
          end for
          e_{ui} = r_{ui} - \hat{r}_{ui}
11:
12:
          for (k:=1; k<=K; k++)
         W[u][k] := W[u][k] + \beta * (e_{ui} * H[i][k] - \lambda * W[u][k])
13:
          H[i][k] := H[i][k] + \beta * (e_{ui} * W[u][k] - \lambda * H[i][k])
14:
15:
          end for
          Break nếu đã hội tu
16:
17: end for
18: return {W, H}
19: Post-filtering(Tập kết quả được dự đoán dùng W, H)
```

20: end procedure

Vấn đề: + Di chuyển với tốc độ cao + Tốc độ mạng chậm Giải pháp?

Nhóm kỹ thuật chính

Multi _RMF

Multi RMF

Picture: adapted from [Lippert et al., 2008]

Objective function:

$$\mathcal{O}^{\mathsf{MRMF}} = \sum_{r=1}^{M} \sum_{(u,i) \in \mathbf{R}_r} \left((\mathbf{R}_r)_{ui} - \mathbf{w}_{r_1 u} \cdot \mathbf{w}_{r_2 i}^T \right)^2 + \lambda \left(\sum_{j=1}^{N} ||\mathbf{W}_j||_F^2 \right)$$

[Lippert et al., 2008, Singh and Gordon, 2008]

Multi_RMF

MF objective function:

$$\mathcal{O}^{MF} = \sum_{(u,i) \in \mathcal{D}^{train}} \left(r_{ui} - \mathbf{w}_u \cdot \mathbf{h}_i^T \right)^2 + \lambda(||W||_F^2 + ||H||_F^2)$$

$$= \sum_{(u,i) \in \mathcal{D}^{train}} \left(r_{ui} - \sum_{k=1}^{K} w_{uk} h_{ik} \right)^2 + \lambda(||W||_F^2 + ||H||_F^2)$$

MRMF objective function:

$$\mathcal{O}^{\mathsf{MRMF}} = \sum_{r=1}^{M} \sum_{(u,i) \in \mathbf{R}_r} \left((\mathbf{R}_r)_{ui} - \mathbf{w}_{r_1 u} \cdot \mathbf{w}_{r_2 i}^T \right)^2 + \lambda \left(\sum_{j=1}^{N} ||\mathbf{W}_j||_F^2 \right)$$

Multi- RMF có trọng số

Quan hệ chính (chứa thuộc tính cần dự đoán) có thể quan trọng hơn những quan hệ khác.

⇒ Cần có trọng số cao hơn

Multi _RMF có trọng số

Hàm mục tiêu:

$$\mathcal{O}^{\mathsf{WMRMF}} = \sum_{r=1}^{M} \Theta_{r} \sum_{(s,i) \in \mathbf{R}_{r}} \left((\mathbf{R}_{r})_{si} - \mathbf{w}_{r_{1}s} \cdot \mathbf{w}_{r_{2}i}^{\mathsf{T}} \right)^{2} + \lambda \left(\sum_{j=1}^{N} ||\mathbf{W}_{j}||_{F}^{2} \right)$$

Hàm trọng số:

$$\Theta_r = \begin{cases} 1, & \text{n\'eu } r \text{ là quan hệ chính} \\ \theta, & \text{n\'eu ngược lại } (0 < \theta \le 1) \end{cases}$$

Trong trường hợp xấu nhất (heta=1), WMRMF vẫn tương đương với MRMF

Multi _RMF có trọng số

```
1: procedure LEARNWMRMF(
               \mathbf{E}_1, \dots, \mathbf{E}_N: Thực thể; \mathbf{R}_1, \dots, \mathbf{R}_M: Quan hệ; \lambda:
      hằng số chính tắc hóa (regularization); β: Tốc đô học;
      K: Số nhân tố tiềm ẩn; \theta: trong số; Điều kiên dừng)
            for j \leftarrow 1 \dots N do
 2:
                    \mathbf{W}_i \leftarrow \text{Rút} \text{ ngẫu nhiên từ } \mathcal{N}(\mu, \sigma^2)
 3:
            end for
 4:
            for r \leftarrow 1 \dots M do
                    Khởi tạo \Theta_r sử dụng công thức (6)
            end for
 7:
             while (Điều kiện dừng chưa thỏa) do
                               mỗi quan hệ \mathbf{R}_r = \{(E_{1_r}; E_{2_r})\} in
       \{\mathbf{R}_1,\ldots,\mathbf{R}_M\} do
                          for l \leftarrow 1 \dots |\mathbf{R}_r|, do
10:
                                Lấy ngẫu nhiên bộ (s, i) trong \mathbf{R}_r \mathbf{W}_{r_1s} \leftarrow \mathbf{W}_{r_1s} - \beta \left( \frac{\partial \mathcal{O}_{si}^{\mathrm{WMRMF}}}{\partial \mathbf{W}_{r_1s}} \right) \mathbf{W}_{r_2i} \leftarrow \mathbf{W}_{r_2i} - \beta \left( \frac{\partial \mathcal{O}_{si}^{\mathrm{WMRMF}}}{\partial \mathbf{W}_{r_2i}} \right)
11:
12:
13:
                          end for
14:
                    end for
15:
16:
             end while
             return \{W_i\}_{i=1...N}
17:
18: end procedure
```

Tóm tắt

Trao đổi

https://github.com/IBM/elasticsearch-spark-recommender/blob/master/README.md#links

