Lecturer: Hieu Nguyen

BÀI TẬP CHƯƠNG 2

- 1. Thiết kế mạch thực hiện hàm: $v_o = 2V_1 + 3V_2 6V_3$ với yêu cầu chỉ được sử dụng 2 OPAMP.
 - a. Giả sử các OPAMP sử dụng là lí tưởng.
 - b. Giả sử cả 2 OPAMP có $V_{io}=100 \mu V, I_{io}=4 nA, I_{ib}=18 nA$.

Tìm ảnh hưởng của điều kiện không lý tưởng của OPAMP lên ngõ ra V_o .

- 2. Tìm công thức liên hệ giữa I_L và V_i (hình a) và giữa I_L và $V_1 V_2$ (hình b).
 - a. Giả sử OPAMP đang dùng là lí tưởng.
 - b. Giả sử cả 2 OPAMP có $V_{io}=100\,\mu V, I_{io}=4nA, I_{ib}=18nA$.

Tìm ảnh hưởng của điều kiện không lý tưởng của OPAMP lên ngõ ra I_{I} .

- 3. Cho mach điện như ở Hình 3.
 - a. Giả sử OPAMP lí tưởng. Tìm liên hệ giữa V_{o} với V_{1} và V_{2} .
 - b. Giả sử cả 2 OPAMP có $V_{io}=30\,\mu V, I_{io}=0, I_{ib}=20nA$.

Tìm ảnh hưởng của V_{io} lên ngõ ra V_{o} .

Tìm giá trị của R để có thể bỏ qua ảnh hưởng của dòng I_{ib} .

Hình 3

- 4. Cho mạch điện như ở Hình 4.
 - a. Giả sử OPAMP lí tưởng. Tìm hệ số khuếch đại $\frac{V_{o1}}{V_{IN}}$, $\frac{V_{o2}}{V_{o1}}$ và $\frac{V_{o2}}{V_{IN}}$
 - b. Giả sử cả 2 OPAMP có $V_{io}=12\mu V, I_{io}=12nA, I_{ib}=20nA$.

Tìm ảnh hưởng của V_{io} lên ngõ ra V_{o2} .

Tìm giá trị của R để có thể giảm thiếu tối đa ảnh hưởng của dòng I_{ib} và I_{ia}

5. Cho mạch OPAMP như Hình 5. Biết

$$V_1(t) = 2\sin(\omega t)$$
, $V_2(t) = -2V$ và $\frac{R_2}{R_1} = 3$.

Vẽ dạng sóng $v_o(t)$ trong các trường hợp sau:

- a. Giả sử OPAMP lí tưởng
- b. Giả sử OPAMP có $V_{OH} = 8.3V$ và $V_{OL} = -8.5V$, các thông số còn lại là lí tưởng.
- c. Giả sử OPAMP có $V_{OH} = 8.3V$ và $V_{OL} = -1.2V$, các thông số còn lại là lí tưởng.

Lecturer: Hieu Nguyen

- 6. Cho một tín hiệu cần xử lý dưới dạng điện áp, có tầm thay đổi từ 10 mV 30 mV.
 - a. Thiết kế mạch khuếch đại tín hiệu lên 100 lần.
 - b. Lựa chọn OPAMP (sv lựa chọn mã) và các linh kiện cần thiết để mạch hoạt động.
 - c. Mô phỏng mạch dùng Multisim (hoặc các chương trình tương tự).
- 7. Cho một tín hiệu cần xử lý dưới dạng dòng điện, có tầm thay đổi từ 1mA 10mA.
 - a. Thiết kế mạch cho ngõ ra tầm 100 mV 1 V.
 - b. Lựa chọn OPAMP và các linh kiện cần thiết để mạch hoạt động. *Lưu ý: xử lý các thông số không lý tưởng của OPAMP*. (Tham khảo datasheet)
- 8. Cho một tín hiệu cần xử lý dưới dang dòng điện, có tầm thay đổi từ 1mA 10mA.
 - a. Thiết kế mạch cho ngõ ra tầm 0V 5V.
 - b. Lựa chọn OPAMP và các linh kiện cần thiết để mạch hoạt động. Lưu ý: xử lý các thông số không lý tưởng của OPAMP. (Tham khảo datasheet)
- 9. Cho một tín hiệu cần xử lý ở dạng điện áp, có tầm thay đổi từ 40 mV 200 mV.
 - a. Thiết kế mạch cho ngõ ra tầm 4mA 20mA.
 - b. Lựa chọn OPAMP và các linh kiện cần thiết để mạch hoạt động. Lưu ý: xử lý các thông số không lý tưởng của OPAMP. (Tham khảo datasheet)

- 10. Thiết kế mạch dao động tạo sóng vuông đối xứng có chu kỳ 100KHz, chỉ dùng 1 OPAMP, các điện trở và tụ.
- 11. Thiết kế mạch Schmitt Trigger thực hiện đặc tuyến như ở hình 6a và 6b. (Mỗi hình 1 mạch, coi OPAMP là lý tưởng)

Hình 6b

Lecturer: Hieu Nguyen

12. Cho mạch điện như ở Hình 7a. OPAMP được cấp nguồn có $V_{OH}=3.3V$, $V_{OL}=-3V$. Các điện trở được chọn $R_1=2K$, $R_2=5K$, $R_3=4K$.

Cho dạng sóng $V_i(t)$ như ở Hình 7b. Vẽ dạng sóng ngõ ra Vo trong các trường hợp sau:

- a. $V_1=2V$, $V_{m1}=2V$, $V_{m2}=-3V$
- b. $V_1=4V$, $V_{m1}=1V$, $V_{m2}=-3V$

Hình 7b

13. Cho mạch điện như ở Hình 8a. OPAMP được cấp nguồn có $V_{OH}=3.3V$, $V_{OL}=-3V$. Các điện trở được chọn $R_1=2K$, $R_2=3K$, $R_3=4K$, $R_4=6K$.

Cho dạng sóng $V_i(t)$ như ở Hình 7b. Vẽ dạng sóng ngõ ra Vo trong các trường hợp sau:

- c. $V_1=2V$, $V_{m1}=2V$, $V_{m2}=-3V$
- d. $V_1=4V$, $V_{m1}=1V$, $V_{m2}=-3V$

Hình 8a

Hình 8b

Lecturer: Hieu Nguyen

14. Cho 3 dạng sóng $v_1(t)$, $v_2(t)$ và $v_3(t)$ như hình vẽ. Thiết kế mạch biến đổi sử dụng OPAMP có 2 ngõ vào là $v_1(t)$ và $v_2(t)$, mạch cho ngõ ra là dạng sóng $v_3(t)$. Giả sử OPAMP sử dụng là lý tưởng.

