

Reto 2 Interpolación-Ajuste de Curva

Eddy Herrera Daza

Problema

Dado un conjunto de valores asociados a variables climáticas, que están indexados en el tiempo y en el espacio, determinar numéricamente:

- □Los valores de la variable Y cada media hora en una estación de monitoreo seleccionada, utilizando interpolación ó ajuste de curvas
- □Los valores de la variable Y cada hora en una estación de monitoreo, utilizando los datos de una estación cercana

Objetivo

Tiempo: escala de hora

Posición: Latitud y Longitud

Variables:

- ✓ Temperatura
- √ Humedad relativa,
- ✓ Volumen de Iluvia, etc

Distribución Espacial

Estaciones climáticas cercanas la zona de Fortaleza en Brasil

Zona de Estudio

Fuentes

- Estación Monitoreo
- Radar Meteorológico
- J Satélite

Supuesto

LAS VARIABLES CLIMATICAS ADMITEN INTERPOLACION POLINOMICA LAS VARIABLES CLIMATICAS SE PUEDEN AJUSTAR A UN MODELO TEORICO

Base de Datos

1	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
1	Ano	Dia Juliano	Hora	Temp. Interna (°C)	Pressão Atmosférica(hP a)	Temp, do Ar 2m(°C)	Umidade Relativa do Ar 2m (%)	Velocidade do Vento 10m(m/s)	Direção do Vento 10m (graus)	Velocidade do Vento Máxima (m/s)	Direção da Velocidade do Vento Máxima (graus)	Precipitação Pluviométrica (mm)	Radiação Total (k
2	2013	91	800	29.28	971.97	19.84	75.7	0	0	0	319.1	0.2	1893.4
3	2013	91	900	31.9	972.2	23.14	69.01	0	0	0	323.7	0	5423.1
4	2013	91	1000	34.27	972.14	25.77	58.56	0	0	0	323.5	0.2	122.18
5	2013	91	1100	35.38	971.63	27.86	50.2	0	0	0	322.1	0.2	143.33
6	2013	91	1200	36.02	970.93	29.59	47.2	0	0	0	322	0	2511.5
7	2013	95	700	22.42	971.07	19.72	89.4	0	0	0	50.13	0.4	181.52
8	2013	95	800	27.98	971.85	23.43	74.4	0	0	0	50.13	0	3829.7
9	2013	95	900	30.75	972.35	24.52	71.6	0	0	0	50.22	0	5540.8
10	2013	95	1000	31.44	972.28	25.53	69.46	0	0	0	50.27	0	4393.3
11	2013	95	1100	35.08	971.75	28.44	56.61	0	0	0	49.99	0	4830.8
12	2013	95	1200	36.14	970.96	29.23	56.22	0	0	0	49.61	0.2	480.77
13	2013	95	1400	34.37	968.73	27.49	66.24	0	0	0	48 81	02	108 41
	• A	caraú Aiuab	a Araripe	Beberibe	Camocim	Crato For	taleza-UECE	Itatira Jat	í Pen Nivel	de zoom. Haga	clic para abrir e	l cuadro de diá	logo Zoor

Resultados Esperados

Datos INTERPOLADOS Datos ORIGINALES

Resultados Esperados

Métricas

$$EMC = \sqrt{\frac{\sum_{i=1}^{n} (Z^*(x) - Z(x))^2}{n}}$$

Donde:

 $Z^*(x)$ Valor estimado de la variable;

Z(x) Valor conocido de la variable; y,

Número de estaciones consideradas.

Otras Métricas

- ☐ Error Máximo
- ☐ Error Mínimo
- ☐ Error Media
- ☐ Error Absoluto
- ☐ índice de Jaccard

Enfoques

DETERMINÍSTICO

modelos mecánicos:
polígonos de Thiessen
(vecino más cercano),
red de triángulos
irregulares Distancia
inversa ponderada
Funciones polinomiales
(Spline) o de regresión
lineal y redes neuronales
(Sluiter, 2009; Hengl,
2009).

ESTOCASTICOS

Probabilísticos de tipo geoestadístico (como el Kriging),

Modelos Meteorológicos Mesoescalres

Modelos Guiados por datos

Modelos de Redes Neuronales Inteligencia Artificial

Localmente

Referencias

- ✓ Carballo, N.; T. F. Paredes y E. Guevara, Modelos matemáticos para la estimación de lluvias de diseño, 1ª Ed., Editorial Académica Española, Lexington KY, USA (2013)
- ✓ Garcia, J. Herrera, E. Clasificación Bayesiana de Hidrometeoros Orientados a la Estimación de la Cantidad Precipitada a partir de las Medidas de Radar
- ✓ Polarimétrico. Maestría en hidrositemas Pontificia Universidad Javeriana. 2013
- ✓ R. J. Moreano, "Sistema de Información para la Interpolación Espacial y Temporal de Datos sobre el Tiempo Atmosférico y el Clima del Ecuador" Proyecto de Titulación, EPN, 2008.
- ✓ . A. Nalder and R. W. Wien, "Spatial interpolation of climatic normal: Test a new method in the Canadian boreal forest", J. Agr. Forest Meteorol., vol 92 pp. 211- 225, 1998.

Gracias:

eherrera@javeriana.edu.co

