Function Notation Problems

1.
$$g(x)=x^2-6x+8$$

$$h(x)=1+g(x)$$

The functions g and h are defined above. What is the value of h(0)? (no calculator)

- A) 0
- B) 1
- C) 3
- D) 9

$$2. \quad f(x) = x(x+7)$$

The function f is defined above. If the function g is defined by g(x)=f(x)+7, what is the value of g(2)? (no calculator)

- A) 18
- B) 24
- C) 25
- D) 29
- 3. Functions g(x) and h(x) are graphed in the xy-plane. The graph y = g(x) is equivalent to the graph y = h(x) reflected over the x-axis. Which of the following correctly relates g(x) and h(x)? (no calculator)
 - $A) \quad g(x) = h(x)$
 - g(x) = -h(-x)
 - C) g(x) = -h(x)
 - D) g(x) = h(-x)

x	0	1	2	3	4
f(x)	3	4	-7	8	14

- 4. Consider the table shown above. What is the value of f(f(1))? (no calculator)
 - A) 14
 - B) 8
 - C) 7
 - D) -4

- 5. The graph of the function f is the graph of the function h stretched vertically by a factor of 4 and reflected over the x-axis. Which of the following correctly defines the function f? (no calculator)
 - A) f(x) = h(-4x)
 - B) f(x) = -4h(-x)
 - C) f(x) = 4h(-x)
 - D) f(x) = -4h(x)
- 6. Let $f(x)=x^2-x$ and let $g(x)=\frac{1}{x}$. Assuming x does not equal 0, which of the following is equivalent to f(g(x))? (no calculator)
 - A) $\frac{X}{X^2-1}$
 - B) 0
 - C) x
 - D) $\frac{1}{x^2} \frac{1}{x}$
- 7. Let f(x) = 4x 7. Which of the following is equivalent to f(f(x))? (no calculator)
 - A) 16x 28
 - B) 16x 35
 - C) 4x-7
 - D) 4x 35
- 8. Consider the table shown below. What is the value of $(g \circ f)(-1)$? (no calculator)

x	f(x)	g(x)
-2	-4	-7
-1	2	5
1	3	8
2	7	12

- A) 12
- B) 8
- C) 7
- D) 2

Function Notation Problems

9. Consider the table shown below. What is the value $(g \circ f)(-2)$? (no calculator)

X	f(x)	g(x)
-3	-6	-5
-2	1	3
1	4	8
0	2	12

- A) 1
- B) 3
- C) 4
- D) 8
- 10. $f(x)=x^2-16$

$$g(x)=x^2-6x+9$$

Given the following functions above find the

value of h(x) if $h(x) = \frac{f(x)}{(x+4)} - \frac{g(x)}{(x-3)}$. (no

calculator)

- A) -1
- B) $\frac{\left(x-4\right)^2}{\left(x+4\right)}$
- C) (x-4)(x-3)
- D) -7