УДК 576.893.192.1

АБСОРБЦИЯ Fe^{59} В КИШЕЧНИКЕ ЦЫПЛЯТ ПРИ КОКЦИДИОЗЕ, ВЫЗВАННОМ EIMERIA TENELLA

А. Е. Хованских, М. В. Крылов и И. С. Лудинова

Всесоюзный научно-исследовательский институт по болезням птиц, Ленинград

У цыплят, переболевших кокцидиозом, усиливается абсорбция ${
m Fe^{59}}$ в тонком отделе кишечника. Значительное увеличение концентрации радиожелеза установлено в тонком отделе кишечника, селезенке и особенно костном мозге. Повышенная потребность цыплят в железе обусловлена интенсивно развивающейся на фоне кокцидиоза анемией. В слепых отростках (место развития эндогенных стадий $E.\ tenella$) удельная активность ${
m Fe^{59}}$ уменьшается, что может быть объяснено интенсивными деструктивными процессами, протекающими в этом отделе кишечника.

Кокцидиозы наносят большой экономический ущерб животноводству. Для разработки эффективных методов профилактики и лечения кокцидиозов необходимо знание биохимических изменений, происходящих в организме животных при кокцидиозах. Раскрытие особенностей биохимических процессов требует применения современных биохимических и радиоизотопных методов исследований. Результаты подобных работ представляют большой интерес для расшифровки жизнедеятельности

паразита и рационализации методов борьбы с кокцидиозами.

Имеются данные об изменении содержания общего белка и белковых фракций в сыворотке крови у кроликов Данлэп (Dunlap et al., 1959), у цыплят Мартинович и Сенюв (Martynowicz and Seniow, 1956, 1957), Мачинский и Орехов (1968), Халиков (1968), Мусаев и Елчиев (1970). Количественные сдвиги содержания азота в печени у цыплят при кокцидиозе обнаружила в своих исследованиях Суркова (1971, 1972), изменение свободных аминокислот в цельной крови больных кокцидиозом цыплят установили Елчиев (1971), Мачинский и Орехов (1971), изменение активности кишечных фосфатаз отмечено в работах Рэя и Гила (Ray and Gill, 1954), Гила и Рея (Gill and Ray, 1954), Бейер (1963), Качановой (1970), Мусаева и Сурковой (1972), Сурковой (1972). Выявлено изменение содержания холестерина в сыворотке крови при экспериментальных кокцидиозах цыплят (Ибрагимова, 1971). Нарушение в обмене микроэлементов железа и цинка в различных органах и тканях цыплят при кокцидиозе, вызванном E. tenella, установлено нами с применением радио-активных изотопов Fe^{59} и Zn^{65} (Хованских с соавторами, 1972; Хованских с соавторами, 1973).

Изучение содержания микроэлементов в различных органах и тканях млекопитающих и птиц при кокцидиозах представляет практический и теоретический интерес. Установлено, что 66% общего количества железа организма птиц связано с гемоглобином эритроцитов, 20% — с миоглобином мышц, 7—10% — с белком ферритином и остальное количество входит в состав трансферрина и цитохромов. Известно, что гемоглобин является переносчиком кислорода, ферритин — включает запасное железо, трансферрин — транспортирует железо к тканям и эритроцитам, цитохромы участвуют в передаче электронов в дыхательной цепи. Коли-

чество железа, входящего в состав цитохромов, ничтожно и составляет несколько тысячных процента от общего его количества. Однако значение его в обменных процессах исключительно велико и все другие железосодержащие соединения в организме служат для правильного функционирования этих ферментов. Железо входит в состав флавиновых ферментов — сукцинатдегидрогеназы и ксантиноксидазы. Эти ферменты участвуют в превращении трехвалентного железа ферритина в растворимую двухвалентную форму.

Процесс всасывания железа из желудочно-кишечного тракта сложен. Клеточная мембрана практически непроницаема для свободных ионов железа. В клетках слизистой кишечника происходит образование металлобелкового комплекса — ферритина, в котором железо находится в трехвалентной форме. Затем перед проникновением в кровяное русло железо отделяется от ферритина, переходит в двухвалентную форму и проходит через клеточную мембрану кишечной стенки. Опыты с применением Fe⁵⁹ показали, что уровень абсорбции железа регулирует слизистая оболочка кишечника. При насыщении ее железом наступает блокада слизистой и абсорбция прекращается. По мнению Картрайта (Cartwright, 1947), Мура (Мооге, 1947), главным фактором, определяющим интенсивность всасывания, является истощение запасов железа в тканях, при котором абсорбция железа повышается.

Установлено, что в процессе паразитирования кокцидий *E. tenella* происходит повреждение стенок слепых отростков кишечника. Пораженными оказываются слизистая оболочка и более глубокие слои стенки кишечника.

Учитывая важное значение железа в организме и отсутствие данных о его всасывании при кокцидиозах, в задачу наших исследований входило изучение абсорбции Fe^{59} в кишечнике цыплят и его распределение в организме при экспериментальном кокцидиозе, вызванном E. tenella.

материалы и методика

Изучение абсорбции Fe^{59} в кишечнике цыплят и его распределение в организме проводили на 96 цыплятах 14-дневного возраста породы «русская белая» кросс линий А и С методом меченых атомов. Цыплят разделили на две группы. Одну группу цыплят заразили 10 тыс. ооцист *E. tenella*, другую, контрольную, заражению не подвергали.

Обеим группам цыплят перорально ввели радиоактивное железо

в дозе 5 мккюри на 100 г живого веса за один час до убоя.

Через 1, 2, 4, 6, 10 и 15 суток после заражения цыплят убивали. От 8 цыплят из подопытной и контрольной групп для исследования брали печень, селезенку, костный мозг, почки, верхнюю, среднюю, нижнюю части тонкого отдела кишечника и слепые отростки. Извлеченные органы отмывали от остатков крови в физиологическом растворе, подсушивали фильтровальной бумагой и определяли их вес.

Радиоактивность проб измеряли на сцинтилляционном гамма-спектрометре, состоявшем из монокристалла NaJ(Tl) с «колодцем», что создавало 4-п геометрию счета, ФЭУ-93, предусилителя, усилителя-дискриминатора и пересчетного прибора ПП-15. Полистероловую пробирку с исследуемой пробой помещали в «колодец» монокристалла NaJ(Tl), который устанавливали на приемное окно фотокатода ФЭУ-93.

Расчет активности вели на один грамм свежей ткани в имп./мин., учитывая при этом поправки на радиоактивный распад и эффективность счета. Полученные данные статистически обработаны по общепринятой методике.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При заражении *E. tenella* в кишечнике хозяина происходит нарушение абсорбции радиожелеза (табл. 1). В первые 24 часа после заражения цыплят (после внедрения спорозоитов в клетки слизистой оболочки

Таблица 1 Абсорбция Fe^{59} в кишечнике цыплят при кокцидиозе, вызванном *Eimeria tenella* (в $^{0}/_{0}$ от введенного количества на грамм сырого веса)

Отдел пищеварительного канала	Статисти- ческие показа- тели	Время после заражения цыплят, сутки											
		1		2		4		6		10		12	
		опыт	контроль	опыт	контроль	опыт	контроль	опыт	контроль	опыт	контроль	опыт.	контроль
Верхняя часть тонкого отдела кишечника	M	5.74	3.84	5.87	3.59	5.55	3.51	9.00	$\begin{vmatrix} 3.6 \\ < 0.01 \end{vmatrix}$	6.45	$\begin{vmatrix} 3.87 \\ < 0.01 \end{vmatrix}$	7.02	$\begin{vmatrix} 3.61 \\ < 0.01 \end{vmatrix}$
Средняя часть тонкого отдела кишечника	P M	4.24	$\begin{vmatrix} 2.11 \\ < 0.05 \end{vmatrix}$	7.14	$\begin{vmatrix} 2.41 \\ < 0.01 \end{vmatrix}$	7.32	$\begin{vmatrix} 2.31 \\ < 0.001 \end{vmatrix}$	10.73	$\begin{vmatrix} 2.25 \\ < 0.001 \end{vmatrix}$	7.45	$\begin{vmatrix} 2.43 \\ < 0.001 \end{vmatrix}$	5.11	$\begin{vmatrix} 2.60 \\ < 0.05 \end{vmatrix}$
Нижняя часть тонкого отдела кишечника	P M	1.46	$\begin{vmatrix} 0.99 \\ < 0.05 \end{vmatrix}$	3.32	1.08	6.51	$\begin{vmatrix} 1.16 \\ < 0.01 \end{vmatrix}$	4.32	$\begin{vmatrix} 1.17 \\ < 0.01 \end{vmatrix}$	3.40	$\begin{vmatrix} 1.19 \\ < 0.01 \end{vmatrix}$	2.52	$\begin{array}{ c c c c }\hline 1.16 \\ < 0.01 \\ \end{array}$
Сленые отростки	P	1.50	$\begin{vmatrix} 1.68 \\ >0.05 \end{vmatrix}$	1.89	$\begin{vmatrix} 1.71 \\ >0.05 \end{vmatrix}$	1.12	$\begin{array}{ c c c }\hline 1.80 \\ < 0.05 \\ \end{array}$	0.96	$\begin{vmatrix} 2.02 \\ < 0.01 \end{vmatrix}$	1.67	1.98 >0.05	2.01	$\begin{vmatrix} 2.04 \\ > 0.05 \end{vmatrix}$

 Π р и м е ч а н и е. M — средняя арифметическая, P — статистическая достоверно сть различий.

Таблица 2 Концентрация Fe^{59} в органах и тканях цыплят при кокцидиозе, вызванном *Eimeria tenella* (в $^0/_0$ от введенного количества на грамм сырого веса)

Органы и ткани	Стат. показа- тели	Время после заражения цыплят в сутках												
		1		2		4		6		10		15		
		опыт	контроль	опыт	контроль	опыт	контроль	опыт	контроль	опыт	контроль	опыт	контроль	
Печень	M P	2.06	$\begin{vmatrix} 1.56 \\ > 0.05 \end{vmatrix}$	2.08	$\begin{vmatrix} 1.66 \\ >0.05 \end{vmatrix}$	2.19	1.75 >0.05	3.50	$\begin{vmatrix} 1.73 \\ < 0.001 \end{vmatrix}$	4.87	$\begin{vmatrix} 1.61 \\ < 0.001 \end{vmatrix}$	6.86	$\begin{vmatrix} 1.71 \\ < 0.05 \end{vmatrix}$	
Селезенка	M P	1.06	$\begin{vmatrix} 2.08 \\ < 0.001 \end{vmatrix}$	4.19	$\begin{vmatrix} 2.15 \\ < 0.001 \end{vmatrix}$	3.67	$\begin{vmatrix} 2.17 \\ < 0.05 \end{vmatrix}$	4.59	$\begin{vmatrix} 2.16 \\ < 0.05 \end{vmatrix}$	3.29	2.18	2.28	$\begin{array}{c c} & 5.05 \\ 2.25 \\ > 0.05 \end{array}$	
Костный мозг	M P	1.96	$\begin{vmatrix} 1.66 \\ > 0.05 \end{vmatrix}$	35.01	$\begin{vmatrix} 1.71 \\ < 0.001 \end{vmatrix}$	17.08	$\begin{vmatrix} 1.66 \\ < 0.001 \end{vmatrix}$	61.40	1.91	35.01	1.81	20.56	$\begin{vmatrix} 1.76 \\ < 0.001 \end{vmatrix}$	
	M P	2.70	$\begin{vmatrix} 2.97 \\ > 0.05 \end{vmatrix}$	5.13	$\begin{array}{ c c c c }\hline 2.88 \\ < 0.01 \\ \end{array}$	6.71	$\begin{vmatrix} 3.11 \\ < 0.02 \end{vmatrix}$	4.66	$\begin{array}{ c c c c }\hline 3.26 \\ < 0.02 \\ \end{array}$	4.38	$\begin{vmatrix} 3.12 \\ > 0.05 \end{vmatrix}$	4.50	$\begin{vmatrix} 3.22 \\ > 0.05 \end{vmatrix}$	

 Π р и м е ч а н и е. M — средняя арифметическая; P — статистическая достоверность различий.

слепых отростков и роста трофозоитов) происходит увеличение абсорбции ${
m Fe^{59}}$ в средней и нижней части тонкого отдела кишечника соответственно в 2.0 и 1.4 раза (${
m P}<0.05$). В верхней части тонкого отдела кишечника и слепых отростках различия в концентрации радиожелеза между опытной и контрольной группами были недостоверны (${
m P}>0.05$).

Через 2 суток после заражения цыплят в период развития шизонтов первой генерации выявлено увеличение абсорбции радиожелеза в верхней — 1.6, средней — 3.0 и нижней 3.0 раза частях тонкого отдела кишечника (P < 0.01). Различия в концентрации Fe^{59} в слепых отростках между опытной и контрольной группами цыплят продолжали оставаться не-

достоверными ($\hat{P} > 0.05$).

Через 4 суток после заражения в период развития шизонтов второй генерации наблюдалось увеличение абсорбции Fe^{59} в верхней — 1.6, средней — 3.1 и нижней — 5.6 раза частях тонкого отдела кишечника (P < 0.01 - 0.001) и достоверное понижение концентрации Fe^{59} в слепых отростках — 1.6 раза (P < 0.05). Через 6 суток после заражения происходило увеличение концентрации радиожелеза в верхней — 2.5, средней — 4.6 и нижней — 3.7 раза частях тонкого отдела кишечника (P < 0.01 - 0.001) и понижение в слепых отростках — 2.1 раза (P < 0.01). Достоверное различие концентрации радиожелеза в тонком отделе кишечника сохраняется на 10-е и 15-е сутки после начала опыта (P < 0.01 - 0.05).

С целью более конкретного представления о распределении Fe⁵⁹ в организме больных цыплят была изучена концентрация радиожелеза в органах и тканях, играющих ведущую роль в метаболизме железа.

В организме больных кокцидиозом цыплят происходят значительные

сдвиги в содержании железа (табл. 2).

Так, в печени отмечено достоверное увеличение концентрации радиожелеза на 6-е, 10-е и 15-е сутки после заражения (P < 0.05-0.01), в почках увеличение концентрации Fe^{59} было установлено на 2-е, 4-е и 6-е сутки после заражения (P < 0.02-0.01). Подобная закономерность была отмечена в изменении концентрации радиожелеза в селезенке подопытных цыплят, но эти изменения отмечались уже через 24 часа после заражения цыплят и сохранялись по 10-й день включительно (P < 0.01-0.05).

m Hаиболее выраженные изменения в концентрации радиожелеза у больных цыплят были отмечены в костном мозге. Уже на 2-е сутки после заражения цыплят наблюдалось увеличение концентрации $m Fe^{59}$ в костном мозге — 20.4 раза, 4-е сутки — 10.2, 6-е сутки — 32.1, 10-е сутки — 19.3 и 15-е сутки — 11.6 раза (P < 0.001).

Таким образом, у больных кокцидиозом цыплят происходят значительные изменения в концентрации радиожелеза в органах и тканях. Максимальная абсорбция Fe^{59} в тонком отделе кишечника происходит на 6-е сутки после заражения. Пик подъема концентрации радиожелеза в селезенке и костном мозге также приходится на 6-е сутки. Это совпало с периодом наибольшей тяжести болезни и временем четкого проявления типичных клинических признаков кокцидиоза. Кроме того, в это же время установлено значительное уменьшение концентрации радиожелеза в слепых отростках. С исчезновением видимых клинических признаков болезни концентрация Fe^{59} постепенно приближалась к уровню контрольных цыплят. Однако в печени концентрация радиожелеза продолжала увеличиваться и на 15-е сутки после заражения была в 4^7 раза выше, чем у контрольных цыплят (P < 0.05). Следовательно, степень колебаний уровня радиожелеза в организме цыплят находится в тесной взаимосвязи со степенью тяжести течения болезни, оказывая существенное влияние на проявление функциональной деятельности организма.

Резюмируя изложенное, можно заключить, что активная абсорбция Fe^{59} в тонком отделе кишечника указывает на дефицит железа в больном организме. Понижение включения Fe^{59} в слепые отростки связано с поражением стенок кишечника. Значительное увеличение включения радиожелеза в костный мозг является показателем интенсивного эритро-

поэза. Увеличение этого показателя у больных цыплят обусловлено повышенной потребностью в железе при сохранении способности костного мозга продуцировать жизнеспособные эритроциты. Повышение концентрации Fe⁵⁹ обнаружено в печени и селезенке. Эти органы содержат запас эндогенного железа, который стойко удерживается в них. При наличии глубокой анемии у больных животных имеющийся резерв железа представляет как бы «неприкосновенный запас».

Известно также, что обмен железа у человека и животных имеет свое отличительное своеобразие, сущность которого заключается в том, что организм не выделяет железо. Количество его, поступившее в организм, там и остается. Следовательно, обмен железа регулируется не равновесием между выделением и поступлением, а тем, что всасывание его соответствует потребностям организма. Если нет потребности, то железо питательных веществ целиком выделяется перистальтикой и всасывания не происходит.

выводы

- 1. Концентрация радиожелеза в органах и тканях больных кокцидиозом цыплят значительно изменяется в динамике патологического про-
- 2. Результаты проведенных исследований показывают, что при кокцидиозе цыплят, вызванном E. tenella, происходит интенсивная абсорб-
- ция Fe⁵⁹ в тонком отделе кишечника и костном мозге. 3. Усиление процесса абсорбции Fe⁵⁹ в тонком отделе кишечника у больных кокцидиозом цыплят является одним из достоверных признаков дефицита железа в организме.
- 4. В период максимального проявления клинических признаков заболевания отмечено понижение концентрации радиожелеза в слепых отростках.
- 5. Результаты исследований могут служить обоснованием целесообразности применения железосодержащих соединений в комплексе с кокцидиостатиками при лечении кокцидиозов.

Литература

- Бейер Т. В. 1963. Цитохимическое исследование кишечных кокцидий кролика при разных условиях их существования в хозине. Автореф. канд. дисс., Л. Елчиев Я.Я. 1971. Белки и свободные аминокислоты сыворотки крови цыплят
- Елчиев Я. Я. 1971. Белки и свободные аминокислоты сыворотки крови цыплят при экспериментальных кокцидиозах (Е. tenella и Е. mitis). Матер. первого съезда всесоюзного общества протозоол., изд. «Элм», Баку: 210—211.

 Ибрагимова Г. Г. 1971. Изменение холестерина в сыворотке крови цыплят при экспериментальных кокцидиозах (Е. tenella и Е. mitis). Матер. первого съезда всесоюзн. общества протозоол., изд. «Элм», Баку: 212—213.

 Качанова С. П. 1970. Щелочная фосфатаза в жизненном цикле Е. tenella. Тр. Московск. вет. акад., 54: 171—173.

 Мачинский А. П. и Орехов В. С. 1968. Динамика общего белка и белковых фракций сыворотки крови цыплят при экспериментальном кокцидиозе. Уч. зап. Морд. гос. унив., 75 (1): 68—83.

 Мачинский А. П. и Орехов В. С. 1971. Динамика свободных аминокислот в цельной крови при кокцидиозах цыплят. Матер. первого съезда всесоюзн.

- в цельной крови при кокцидиозах цыплят. Матер. первого съезда всесоюзн. общества протозоол., изд. «Элм», Баку: 327—328. М у с а е в М. А. и Елчиев Я.Я.1970. Изменение белкового состава сыворотки
- крови цыплят при экспериментальных кокцидиозах (E. tenella, E. mitis). Паразитол., 4 (5): 494—500. Мусаев М. А. и Суркова А. М. 1972. Изменение активности кишечных фос-
- фатаз при экспериментальных кокцидиозах цыплят (E. tenella, E. mitis).
- Паразитол., 6 (1): 11—15. Суркова А. М. 1971. Изменение количества аминного азота в печени цыплят при
- экспериментальном кокцидиозе. Изв. АН АзССР, сер. биол., 1: 102—106. С у р к о в а А. М. 1972. Изменение содержания общего остаточного и белкового азота в печени цыплят при экспериментальном кокцидиозе. Паразитол., 6 (2): 171-
- С у р к о в а А. М. 1972. Изменение активности кишечных фосфатаз и некоторых азотистых компонентов ткани печени цыплят при экспериментальных кокцидиозах (E. tenella, E. mitis). Автореф. канд. дисс., Баку.

- Халиков Ф. Р. 1968. Динамика общего белка и белковых фракций сыворотки крови при кокцидиозе цыплят. Матер. 43-й научи. конф. аспирантов и студентов Московск. вет. акад., М.: 72—74.

 Хованских А. Е., Крылов М. В. и Крылов В. Ф. 1972. Обмен Zn-65
- в организме цыплят при кокцидиозе, вызванном Е. tenella. Паразитол., 6 (1): 8 - 10.
- анских А. Е., Крылов М. В., Лудинова И. С. и Тальдрик А. А. 1973. Включение железа-59 в различные органы и ткани цыплят Хованских при экспериментальном кокцидиозе, вызванном Е. tenella. Тр. ВНИТИП, 37:284—288.
- Cartwright G. 1947. Dietary factors concerned in erytropoesis. Blood. 2(3): 256-299.
- Dunlap I.S., Diskson W. M. and Johnson V. I. 1959. Ionographic studies of rabbits infected with Eimeria Stiedae. Amer. J. Veterin. Res., 20 (76):
- Gill B. S. and Ray H. N. 1954. Phosphatase and their significance in Eimeria tenella Railliet et Lucet, 1891. Indian J. Veterin. Sci. Animal Husbandry, 24: 239 - 244.
- Martynowicz T. and Seniov A. 1956. Protein spectre in the course of E. tenella superinvasion in Chickens. Zool. Polon., 7 (2): 209—217.

 Martynowicz T. and Seniov A. 1957. Protein spectre of Chickens in the course of E. tenella experimental invasion. Zool. Polon., 7 (4): 455—464.
- Moore C. 1947. Iron metabolism and hypochromic anemia. Simposia on nutrition of the Robert Goud Research Foundation. v. 1. Nutritional anemia. Cincinnati,
- Ohio, october 16-18: 117-144.

 Ray H. N. and Gill B. S. 1954. Preliminary observations on alcaline phosphatase in experimental Eimeria tenella infection on chicks. Ann. Trop. Med. and Parasitol., 48 (1): 8—10.

THE ABSORPTION OF Fe59 IN THE INTESTINE OF CHICKENS DURING COCCIDIOSIS CAUSED BY EIMERIA TENELLA

A. E. Khovanskikh, M. V. Krylov and I. S. Ludinova

SUMMARY

In chickens having had coccidiosis the absorption of Fe^{59} in the thin part of the intestine noticeably increases. A considerable rise in the concentration of Fe^{59} was observed in the thin part of the intestine, spleen and especially in the bone marrow. A hightened need of chickens for Fe is resulting from anemia intensively developing on a background of coccidiosis. In blind appendages (the place of the development of E. tenella endogenic stages) the specific activity of Fe⁵⁹ decreases that can be explained by intensive destructive processes in this part of the intestine.