Notes on 2023 SCMS Summer School Derived Categories, Kuznetsov components and Bridgeland Stability *

Xiaolong Liu

July 26, 2023

Abstract

We will introduce the derived category, Bridgeland moduli spaces for K3 category, for example the Kuznetsov components of cubic fourfolds, and stability conditions in families.

Contents

1	Introduction	2
2	Stablility of Coherent Sheaves	2
3	Moduli of Coherent Sheaves	4
4	Set Up for Bridgeland Stability	4
5	Calabi-Yau Category and Bridgeland Stability	4
6	Moduli of Objects in Derived Categories	4
In	Index	
References		6

^{*}This Course taught by Zili Zhang and Xiaolei Zhao in SCMS at 2023/07/17-2023/07/21, see https://scms.fudan.edu.cn/info/4503/5820.htm.

1 Introduction

First you need to read [1].

2 Stablility of Coherent Sheaves

Fix X be a smooth projective variety over \mathbb{C} and dim X = d with ample bundle $H = \mathcal{O}(1)$. Our goal is to construct the moduli space of (semi-)stable torsion-free coherent sheaves \mathscr{F} on X with fixed topological invariant (such as $\operatorname{ch}(\mathscr{F})$ or $\operatorname{rank}(\mathscr{F}), c_i(\mathscr{F})$ or $\operatorname{Hilbert}$ polynomial $P_H(\mathscr{F})$).

Example 2.1. If we not consider (semi-)stability, we may not have the bounded family. Consider $\{\mathscr{O}(n) \oplus \mathscr{O}(-n)\}$ on \mathbb{P}^1 , then this can not parametrized by a scheme of finite type.

Definition 2.1. Fix (X, H) as above and \mathscr{F} be a coherent torsion-free sheaf on it.

- (i) We define the slope $\mu_H(\mathscr{F}) := \frac{c_1(\mathscr{F}) \cdot H^{d-1}}{\operatorname{rank}(\mathscr{F})};$
- (ii) we call \mathscr{F} is μ_H -(semi)stable if for any $0 \subset \mathscr{E} \subset \mathscr{F}$ with $0 < \operatorname{rank} \mathscr{E} < \operatorname{rank} \mathscr{F}$ we have $\mu_H(\mathscr{E}) < (\leq)\mu_H(\mathscr{F})$;
- (iii) we consider the Hilbert polynomial $P(\mathscr{F},m) = \sum_{i=0}^d \alpha_i(\mathscr{F}) \frac{m^i}{i!}$, then we have $\alpha_d(\mathscr{F}) = \operatorname{rank}(\mathscr{F}) \cdot H^d$ and $\alpha_{d-1}(\mathscr{F}) = \frac{1}{2} \operatorname{rank}(\mathscr{F}) \operatorname{deg} T_X + \operatorname{deg} \mathscr{F}$. We define the reduced Hilbert polynomial is

$$p(\mathscr{F},m) = \frac{P(\mathscr{F},m)}{\alpha_d(\mathscr{F})} = \frac{m^d}{d!} + \frac{1}{H^d} \left(\frac{1}{2} \deg \mathscr{F} + \mu_H(\mathscr{F}) \right) \frac{m^{d-1}}{(d-1)!} + lower \ terms.$$

We define \mathscr{F} is (Gieseker-) H-(semi)stable if $0 \subseteq \mathscr{E} \subseteq \mathscr{F}$, then $p(\mathscr{E},m) < (\leq p(\mathscr{F},m)$.

Remark 2.2. • Easy to see that μ_H -stable $\Rightarrow H$ -stable $\Rightarrow H$ -ss $\Rightarrow \mu_H$ -ss;

• if dim X = 1, then μ_H -(semi)stable iff H-(semi)stable.

Lemma 2.3. We have the following (easy but important) statements:

(i) If \mathscr{F}, \mathscr{G} is H-ss with $p(\mathscr{F}) > p(\mathscr{E})$, then

$$\operatorname{Hom}(\mathscr{F},\mathscr{G}) = 0$$
:

(ii) if \mathscr{F},\mathscr{G} is H-stable with $p(\mathscr{F})=p(\mathscr{E}),$ then any $\phi:\mathscr{F}\to\mathscr{G}$ either zero or isomorphism.

Proof. Trivial. \Box

Definition 2.4. Fix $\mathscr{E} \in \mathrm{Coh}_{\mathrm{tf}}(X)$.

(i) A Harder-Narasimhan filtration (HN filtration) of $\mathscr E$ is

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_l = \mathcal{E}$$

 $\begin{array}{l} \textit{such that } \operatorname{gr}_i^{\operatorname{JH}}(\mathscr{E}) := \mathscr{E}_i/\mathscr{E}_{i-1} \ \textit{are H-ss and } p(\operatorname{gr}_i^{\operatorname{HN}}(\mathscr{E})) > p(\operatorname{gr}_{i+1}^{\operatorname{HN}}(\mathscr{E})) \ \textit{for all i.} \\ \textit{We define } p_{\max}(\mathscr{E}) := p(\operatorname{gr}_1^{\operatorname{HN}}(\mathscr{E})) \ \textit{and } p_{\min}(\mathscr{E}) := p(\operatorname{gr}_l^{\operatorname{HN}}(\mathscr{E})); \end{array}$

(ii) let $\mathscr E$ is H-ss, a Jordan-Hölder filtration (JH filtration) of $\mathscr E$ is

$$0 = \mathscr{E}_0 \subset \mathscr{E}_1 \subset \cdots \subset \mathscr{E}_l = \mathscr{E}$$

such that $\operatorname{gr}_i^{\operatorname{JH}}(\mathscr{E}) := \mathscr{E}_i/\mathscr{E}_{i-1}$ are H-stable and $p(\operatorname{gr}_i^{\operatorname{JH}}(\mathscr{E})) = p(\operatorname{gr}_j^{\operatorname{JH}}(\mathscr{E}))$ for all i,j. We define $\operatorname{gr}^{\operatorname{JH}}(\mathscr{E}) := \bigoplus_{i=1}^l \operatorname{gr}_i^{\operatorname{JH}}(\mathscr{E})$;

(iii) if \mathscr{E} is H-ss, we call \mathscr{E} is H-polystable if $\operatorname{gr}^{\operatorname{JH}}(\mathscr{E}) = \mathscr{E}$.

Theorem 2.5. Fix $\mathscr{E} \in \mathrm{Coh}_{\mathrm{tf}}(X)$.

- (i) There exists unique HN filtration of \mathcal{E} ;
- (ii) if $\mathscr E$ is H-ss, then there exists JH filtration of $\mathscr E$ but may not unique. In this case $\operatorname{gr}^{\operatorname{JH}}(\mathscr E)$ is unique.

Proof. See [2] Chapter 1. \Box

Remark 2.6. All of these are similar for μ_H -(semi)stable except for the uniqueness of $\operatorname{gr}^{JH}(\mathscr{E})$, this is right for up to codimension ≥ 2 .

Theorem 2.7. Let $\mathscr{E}_1, \mathscr{E}_2 \in \operatorname{Coh}_{\operatorname{tf}}(X)$ are μ_H -ss, then so is $\mathscr{E}_1 \otimes \mathscr{E}_2/torsion$.

Theorem 2.8 (Bogomolov Inequality). If dim X=2, $\mathscr{E}\in \mathrm{Coh}_{\mathrm{tf}}(X)$ with μ_H -ss and $r=\mathrm{rank}(\mathscr{E})$, then

$$\Delta(\mathscr{E}) := 2rc_2(\mathscr{E}) - (r-1)c_1^2(\mathscr{E}) \ge 0.$$

Proof. Consider the following steps:

- Step 1. We can assume \mathscr{E} is locally free.
- Step 2. We can assume $c_1(\mathscr{E}) = 0$.
- Step 3.
- Step 4. Show $\chi(X, S^n \mathscr{E}) \leq cn^r$.
- Step 5. Finish the proof.

- 3 Moduli of Coherent Sheaves
- 4 Set Up for Bridgeland Stability
- 5 Calabi-Yau Category and Bridgeland Stability
- 6 Moduli of Objects in Derived Categories

\mathbf{Index}

H-polystable, 3 μ_H -(semi)stable, 2 (Gieseker-) H-(semi)stable, 2

Harder-Narasimhan filtration, 3

Jordan-Hölder filtration, 3

reduced Hilbert polynomial, 2

slope, 2

References

- [1] Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.
- [2] Daniel Huybrechts and Manfred Lehn. *The geometry of moduli spaces of sheaves*. Cambridge University Press, 2010.