GAN vs VAE

Simonazzi Gian Marco
Corso di Fondamenti dell'Intelligenza Artificiale
A.A. 2023/24

Reti generative differenziabili

Definiscono una funzione g: $z \rightarrow x$ su dei parametri θ .

Chiamiamo variabili latenti i valori del vettore z.

Partendo da z (attraverso un suo campionamento) è possibile generare una distribuzione su x.

L'obiettivo è di ottenere la migliore approssimazione possibile, perciò vogliamo che la likelihood $\mathcal{L}(\theta \mid x)$ sia massima, ossia trovare

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \mathcal{L}(\theta \mid x)$$

Reti neurali generative

Trovare il parametro θ adatto è difficile, possiamo usare una rete neurale.

Ma anche con una rete, il training della rete non è banale: variabili latenti e meccanismi di probabilità.

Tra le soluzioni più importanti per questo problema troviamo:

- Variational AutoEncoders (VAE)
- Generative Adversarial Networks (GAN)

Variational Auto Encoders

Nel 2014, viene pubblicato l'articolo Auto-Encoding Variational Bayes (1).

Viene descritto un meccanismo simile agli auto-encoders:

- Encoder: prende un input e lo comprime
- Decoder: decomprime verso l'output

https://en.wikipedia.org/wiki/Variational_autoencoder#/media/File:VAE_Basic.png

Il caso generativo

Consideriamo un campione x da una distribuzione X.

Assumiamo che coinvolga una variabile latente z.

- 1. Si ottiene un campione di z da $p_{\theta}(z)$
- 2. Si genera x dalla distribuzione condizionata $p_{\theta}(x \mid z)$

I valori di θ e z non sono noti.

Si assume che

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x \mid z) dz \quad e \quad p_{\theta}(z \mid x) = p_{\theta}(x \mid z) p_{\theta}(z) / p_{\theta}(x)$$
 siano intrattabili.

Approssimazione di $p_{\theta}(z \mid x)$

Si introduce una approssimazione $q_{\phi}(z \mid x)$, basata sul parametro ϕ .

Possiamo definire le due componenti:

- 1. Encoder: $q_{\varphi}(z \mid x)$
- 2. Decoder: $p_{\theta}(x \mid z)$

Evidence lower bound (ELBO)

La log-likelihood $\log p_{\theta}(x)$ può essere riscritta come

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)})) + \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)})$$

con

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[-\log q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) + \log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) \right]$$

Siccome D_{KL} è positivo, possiamo dedurre che

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \ge \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)})$$

Infine possiamo definire l'equazione

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z})\right]$$

Distanza tra z trovata e originale

Reparameterization trick

I parametri θ e φ non possono ancora essere ottimizzati con SGD.

La variabile z impedisce la backpropagation.

Soluzione: si introduce una variabile stocastica $\epsilon \sim p(\epsilon)$

rendendo quindi $z = g_{\varphi}(\epsilon, x)$

Si noti che rimane vero $z \sim q_{\varphi}(z \mid x)$

Auto-Encoding Variational Bayes algorithm

Un campione *x* passa per encoder e decoder, producendo un output.

La loss utilizzata è la seguente

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) \simeq \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log((\sigma_j^{(i)})^2) - (\mu_j^{(i)})^2 - (\sigma_j^{(i)})^2 \right) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}^{(i,l)})$$

con

$$\mathbf{z}^{(i,l)} = \boldsymbol{\mu}^{(i)} + \boldsymbol{\sigma}^{(i)} \odot \boldsymbol{\epsilon}^{(l)}$$
 $\boldsymbol{\epsilon}^{(l)} \sim \mathcal{N}(0, \mathbf{I})$

Generative Adversarial Network

Questo metodo è stato proposto nel 2014 nel paper dello stesso nome (4).

Il training della rete generativa prevede due entità:

- Generatore: la rete generativa da addestrare.
- Detector: un classificatore che discrimina campioni veri da quelli generati.

 Discriminator input

 Target output

Il meccanismo di gioco

Il detector definisce la likelihood D(x) che x sia un campione vero. Il generatore definisce una funzione $G: z \mapsto x$.

Il detector vuole massimizzare $\log D(x)$ sugli x veri.

Il generatore vuole minimizzare log(1 - D(G(z))).

Questo meccanismo può essere sintetizzato come

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{ ext{data}}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z))]$$

Il training

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

Risultato ottimale

Si dimostra che il detector ottimale avrà $D_G(x) = \frac{1}{2}$

Con

$$p_g = p_{data}$$

E perciò si avrà il minimo del generatore

$$C(G) = \max_{D} V(G, D) = -\log 4$$

Differenze tra VAE e GAN - training

VAE	GAN
 Inferenza senza Markov Chain Monte Carlo 	Training senza inferenza
 Singola loss function di due componenti Tradeoff tra mixing e generazione Latent space più strutturato Generazione da latent space Obiettivo: generare campione simile all'originale 	 Due loss function da ottimizzare Sincronizzazione tra detector e generatore Latent space meno strutturato Generazione da rumore Obiettivo: generare campione verosimile

Riferimenti

- 1. <u>Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." *arXiv preprint arXiv:1312.6114* (2013).</u>
- 2. <u>Kingma, Diederik P., and Max Welling. "An introduction to variational autoencoders." Foundations and Trends® in Machine Learning 12.4 (2019): 307-392.</u>
- 3. <u>Doersch, Carl. "Tutorial on variational autoencoders." *arXiv* preprint arXiv:1606.05908 (2016).</u>
- 4. Goodfellow, Ian, et al. "Generative adversarial nets." *Advances in neural information processing systems* 27 (2014).