平成22年度 東京大学大学院

数理科学研究科 数理科学専攻 修士課程

専門科目B (筆記試験)

平成21年 9月1日 (火) 11:00 ~ 15:00

問題は全部で19題ある. その中から3題選んで解答すること.

- (1) 解答しようとする各問ごとに解答用紙を1枚使用すること. 各解答用紙の所定欄に各自の**氏名**, **受験番号**と解答する**問題の番号**を記入すること.
- (2) 各計算用紙の上部に各自の**受験番号**を明記すること. ただし氏名は記入してはならない.
- (3) 試験終了後に提出するものは、1題につき1枚、計**3枚の答案**、および**3枚の計算用紙**である. 着手した問題数が3題にみたない場合でも、氏名と受験番号のみを記入した白紙答案を補い、3枚とすること. 指示に反したもの、**答案が3枚でないものは無効**とする.
- (4) 解答用紙の裏面を使用する場合は、表面右下に「裏面使用」と明記すること.

B 第1問

多項式環 $\mathbb{Z}[S,T]$ の商環 $\mathbb{Z}[S,T]/(S^2-3S,T^2-6T,ST-3T)$ をAで表す.

- (1) 直積環への環の単射準同型 $g\colon A\to\mathbb{Z}^3$ を一つ定義し、商群 $\mathbb{Z}^3/g(A)$ の元の個数を求めよ.
- (2) A の素イデアルで2を含むものをすべて求めよ.
- (3) $A[\frac{1}{2}]$ の乗法群を、巡回群の直積に分解せよ.

B 第2問

多項式環 $R=\mathbb{C}[x,y,z,u,v]$ および $R'=\mathbb{C}[r,s,t]$ に対して、その \mathbb{C} 上の環準同型 $\varphi\colon R\to R'$ を

$$\varphi: x \mapsto r^2, y \mapsto s^2, z \mapsto rs, u \mapsto rt, v \mapsto st$$

によって定める. また, φ の核 (kernel) を I とする. 以下の問に答えよ.

- (1) Iは2次同次式からなる生成系を持つことを示せ.
- (2) R の極大イデアル m=(u,v,x-1,y,z) による局所化 R_m を考える. R_m のイデアル $J=ig(I+(u,v,x-1,x^5y^3-z^8)ig)R_m$

について, $\dim_{\mathbb{C}} R_m/J$ を求めよ.

B 第3問

L を有理数体 $\mathbb Q$ 上の 1 変数有理関数体 $\mathbb Q(X)$ とし,L の部分体 $\mathbb Q(X^3+\frac{1}{X^3})$ を K で表す.また L の K 上のガロア閉包を F とする.

- (1) 拡大次数 [L:K], [F:K] をそれぞれ求めよ.
- (2) F に含まれる K の 2 次拡大 M を全て求めよ .
- (3) F に含まれる K の 6 次ガロア拡大を全て求めよ .

B 第4問

4 次対称群を \mathfrak{S}_4 と書き、正整数 k に対して $\mathrm{GL}_k(\mathbb{C})$ で k 次の複素一般線形群を表す. 以下の問に答えよ.

- (1) \mathcal{G}_4 は $\mathrm{GL}_4(\mathbb{C})$ のある部分群と同型であることを示せ.
- (2) \mathfrak{S}_4 は $\mathrm{GL}_3(\mathbb{C})$ のある部分群と同型であることを示せ.
- (3) \mathfrak{S}_4 と同型になる $\mathrm{GL}_2(\mathbb{C})$ の部分群は存在しないことを示せ.

B 第5問

 \mathbb{R}^5 の部分集合 S を

$$S = \{ \mathbf{x} = (x_1, \dots, x_5) \in \mathbb{R}^5 \mid x_1^2 + x_2^2 + x_3^2 = 1, \ x_4 = x_5 = 0 \}$$

とする. $\mathbf{x}=(x_1,\dots,x_5)\in\mathbb{R}^5$ に対して $||\mathbf{x}||=\sqrt{x_1^2+\dots+x_5^2}$ と書く.非負実数 $r\geq 0$ に対して \mathbb{R}^5 の部分集合 X_r を

$$X_r = \left\{ \mathbf{x} \in \mathbb{R}^5 \mid \inf\{||\mathbf{x} - \mathbf{y}|| \mid \mathbf{y} \in S\} = r \right\}$$

により定め,相対位相を与える.

- (1) 部分集合 $X_{\frac{1}{2}}$ は \mathbb{R}^5 の部分多様体となることを証明せよ. また , $X_{\frac{1}{2}}$ は 2 次元球面 S^2 の直積 $S^2 \times S^2$ と微分同相であることを証明せよ .
- (2) 部分集合 X_2 は $S^2 imes S^2$ と同相か. 理由を付けて答えよ.

B 第6問

円周 $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ から平面 \mathbb{R}^2 への写像 $f: \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}^2$ を $f(\theta) = (\sin \theta, \sin 2\theta)$ で定義する. f の像を $f(S^1)$ と書き, 区間 [0,1] を I とおく.

- (1) 直積 $f(S^1) \times I$ 上の同値関係 \sim を, $(f(\theta),0) \sim (-f(\theta),1)$ で生成されるものとして定義する. ただし $-f(\theta)$ は平面 \mathbb{R}^2 上で原点について $f(\theta)$ と対称な点である. X を $f(S^1) \times I$ のこの同値関係による商空間とする. X の整係数ホモロジー群を求めよ.
- (2) 直積 $S^1 \times I$ 上の同値関係 \sim を $(\theta,0) \sim (-\theta,1)$ で生成されるものとして定義する. ただし $-\theta$ は $\mathbb{R}/2\pi\mathbb{Z}$ における表示である. Y を $S^1 \times I$ のこの同値関係による商空間とする. Y の整係数ホモロジー群を求めよ.
- (3) \widetilde{F} : $S^1 \times I \to f(S^1) \times I$ を $\widetilde{F}(\theta,u) = (f(\theta),u)$ で定義すると, \widetilde{F} は写像 F: $Y \to X$ を誘導することを示せ.
- (4) F が整係数ホモロジー群に誘導する準同型 F_* を求めよ.

B 第7問

 \mathbb{R}^2 上のベクトル場 X を

$$X(x,y) = x\frac{\partial}{\partial x} - y\frac{\partial}{\partial y}$$

により定め , $\varphi=\varphi(t;(x,y))\colon \mathbb{R} imes\mathbb{R}^2\to\mathbb{R}^2$ を X により生成されるフロー (1 径数変換群) とする.ここで (x,y) は \mathbb{R}^2 の通常の座標である.関数 $g\colon\mathbb{R}\to\mathbb{R}^2$ を $g(t)=\left(\cos\frac{\pi t}{2},\sin\frac{\pi t}{2}\right)$ により定める.

- (1) $f: \mathbb{R} \to \mathbb{R}$ を連続関数であって,任意の $t \in \mathbb{R}$ に対し f(1-t) = f(t) かつ f(t+1) = f(t) なるものとする.このとき,連続関数 $F: \mathbb{R}^2 \to \mathbb{R}$ であって,次の条件 (a) と (b) を同時に満たすものが存在することを示せ.
 - (a) $F \circ \varphi(t;(x,y))$ は $t \in \mathbb{R}$ に依存しない.
 - (b) $F \circ q = f$ が成り立つ.
- (2) $f\colon\mathbb{R}\to\mathbb{R}$ を C^1 級の関数であって,任意の $t\in\mathbb{R}$ に対し f(1-t)=f(t) かつ f(t+1)=f(t) なるものとする.このとき, C^1 級の関数 $F\colon\mathbb{R}^2\to\mathbb{R}$ であって,(1) の条件(a) と(b) を同時に満たすものが存在するための f に関する必要十分条件を求めよ.

B 第8問

関数 $f:\mathbb{R}^3 \to \mathbb{R}$ は C^∞ 級で,ある自然数 k が存在して,すべての $t\in\mathbb{R}$ について

$$f(tx, ty, tz) = t^k f(x, y, z)$$

が成立するとする.

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\}$$
$$S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

とおく . \mathbb{R}^3 のユークリッド計量から導かれる S^2 のリーマン計量に関する面積要素を ω で表す .

(1) 関数 f は

$$\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}\right)f = kf$$

を満たすことを示せ.

(2) 等式

$$\int_{S^2} kf\omega = \int_D \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right) dx \wedge dy \wedge dz$$

を示せ.

(3) $f(x,y,z) = ax^4 + by^4 + cz^4$ のとき、次の積分の値を a,b,c を用いて表せ.

$$\int_{S^2} f\omega$$

B 第9問

 \mathbb{R} 上の複素数値ルベーグ可測関数 f に対して、

$$||f||_2 = \left(\int_{\mathbb{R}} |f(x)|^2 dx\right)^{1/2}$$

とおく. φ を $\mathbb{R} \times \mathbb{R}$ 上で定義された複素数値有界連続関数とする. f,g をそれぞれ \mathbb{R} 上で定義された複素数値ルベーグ可測関数で, $\|f\|_2 < \infty$, $\|g\|_2 < \infty$ を満たすものとし, $\mathbb{R} \times \mathbb{R}$ 上の関数 F を

$$F(x,y) = \int_{\mathbb{R}} \varphi(t,y) f(x+t) g(t) dt$$

で定義する.

- (1) 関数 F は $\mathbb{R} \times \mathbb{R}$ 上で連続であることを示せ.
- (2) $i = \sqrt{-1}$ とする. $\varphi(t,s) = e^{-2\pi i t s}$ のとき、

$$\left(\int_{\mathbb{R}} \int_{\mathbb{R}} |F(x,y)|^2 \, dx \, dy\right)^{1/2} = \|f\|_2 \|g\|_2$$

が成り立つことを証明せよ.

B 第10問

 \mathbb{R} 上の実数値 C^1 級関数 f(x) は、

$$f(x+1) = f(x) < 1, \quad x \in \mathbb{R}$$

を満たすとし、集合 Ω を以下で定める.

$$\Omega = \{(x, y) \in \mathbb{R}^2 \mid f(x) < y < 1\}.$$

いま, Ω の閉包 $\bar{\Omega}$ 上の実数値 C^2 級関数 u(x,y) が次を満たすとする.

$$u(x+1,y) = u(x,y), \quad (x,y) \in \Omega,$$

$$\Delta u(x,y) = 0, \qquad (x,y) \in \Omega,$$

$$u(x,1) = c, \qquad x \in \mathbb{R},$$

$$|\nabla u(x,f(x))|^2 = f(x), \qquad x \in \mathbb{R}.$$

ただし、ここでcは与えられた定数であり、

$$\Delta u(x,y) = \frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y),$$
$$|\nabla u(x,f(x))|^2 = \left(\frac{\partial u}{\partial x}(x,f(x))\right)^2 + \left(\frac{\partial u}{\partial y}(x,f(x))\right)^2$$

である. また, $\bar{\Omega}$ 上の C^2 級関数とは, $\bar{\Omega}$ を含むある開集合上に C^2 級関数として拡張できる関数のことである.

- $(1) |\nabla u(x,y)|^2 y$ が Ω 上で劣調和関数であることを示せ.
- (2) すべての $x \in \mathbb{R}$ に対して

$$\frac{\partial |\nabla u|^2}{\partial y}(x,1) = 0$$

が成り立つことを示せ.

(3) すべての $(x,y) \in \Omega$ に対して $|\nabla u(x,y)|^2 \leq y$ が成り立つことを示せ.

B 第11問

複素平面の上半空間を $H = \{z \in \mathbb{C} \mid \text{Im} z > 0\}$ とおく.

(1) H 上の正則関数 f(z) を線積分

$$f(z) = \int_{[0,z]} \sqrt{\zeta} \sqrt{\zeta - 1} \, d\zeta$$

で定義する. ここで [0,z] は 0 を始点, z を終点とする線分であり, 平方根は, H 上で H に値をとる分枝を考える. f による H の像を求めよ.

(2) H 上の正則関数 g(z) を

$$g(z) = \int_{[0,z]} \sqrt{\tan \zeta} \, d\zeta$$

で定義する. ここで [0,z] は 0 を始点, z を終点とする線分であり, 平方根は, H 上で H に値をとる分枝を考える. g による H の像を求めよ.

B 第12問

以下, 現れる数はすべて実数であって, 考える関数は実数値であるとする.

(1) 数列 $\alpha_0, \alpha_1, \alpha_2, \dots$ は次を満たすとする.

$$\sum_{n=0}^{\infty} |\alpha_n| < \infty, \quad \sum_{n=0}^{\infty} \alpha_n e^{-n^2 t} = 0 \ (t > 0).$$

このとき、すべての n に対して $\alpha_n = 0$ であることを示せ.

(2) 熱方程式の初期値境界値問題

$$u_t(x,t) = u_{xx}(x,t) + \mu(t)f(x), \quad 0 < x < \pi, \ t > 0,$$

 $u_x(0,t) = u_x(\pi,t) = 0, \qquad t > 0,$
 $u(x,0) = 0, \qquad 0 < x < \pi$

を考える. ただし, $\mu\in C^1[0,\infty)$, $\mu(0)\neq 0$, $f\in C_0^\infty(0,\pi)$ とする. 古典解が一意的に存在するとして, それを f のフーリエ係数 $a_0=\frac{1}{\pi}\int_0^\pi f(y)\,dy$, $a_n=\frac{2}{\pi}\int_0^\pi f(y)\cos(ny)\,dy$, $n\geq 1$, を用いて表せ.

(3) x_0/π を無理数とする. すべての t>0 に対して $u(x_0,t)=0$ ならば, f(x)=0, $0< x<\pi$ が成り立つことを示せ.

注意: u が上の初期値境界値問題の古典解であるとは, u が $0 \le x \le \pi$, $0 \le t < \infty$ で連続, u_t , u_x , u_{xx} が $0 < x < \pi$, $0 < t < \infty$ で連続であって, u が上記の熱方程式ならびに境界条件, 初期条件を満足することを意味する.

7

B 第13問

関数 $\phi \in C^{\infty}(\mathbb{R})$ をその台が開区間 (a,b) $(0 < a < b < \infty)$ に含まれるものとし、関数 $\rho \in C^{\infty}(\mathbb{R})$ は、 $\rho(t) = 1$ $(t < -\frac{1}{2})$, $\rho(t) = 0$ $(t > \frac{1}{2})$ を満たすとする.さらに、 $\psi \in C^{\infty}(\mathbb{R}^n)$ が、 $\psi(x) = 0$ (|x| < 1), $\psi(x) = 1$ (|x| > 2) を満たすとし、 $x, \xi \in \mathbb{R}^n \setminus \{0\}$ に対して、 $\omega_x = x/|x|$ 、 $\omega_\xi = \xi/|\xi|$ とおく. \mathcal{S} を \mathbb{R}^n 上の急減少関数の全体とし、 $u \in \mathcal{S}$ に対して $\hat{u}(\xi)$ をそのフーリエ変換

$$\hat{u}(\xi) = \mathcal{F}u(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix\cdot\xi} u(x) \ dx$$

とする. 関数 $p(x,\xi)$ を

$$p(x,\xi) = \rho(\omega_x \cdot \omega_\xi) \psi(x) \phi(|\xi|)$$

と定め, $e^{-it|\xi|}p(x,\xi)$ ($t \in \mathbb{R}$) をシンボルに持つ擬微分作用素 P(t) を,

$$P(t)u(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i(x\cdot\xi - t|\xi|)} p(x,\xi)\hat{u}(\xi) \ d\xi \quad (u \in \mathcal{S})$$

と定義する. このとき, $s \ge \delta \ge 0$ に対して, 正定数 C が存在して, $t \ge 0$, $u \in S$ に対して,

$$\left\| (1+|x|^2)^{\delta/2} P(t) (1+|x|^2)^{-s/2} u \right\|_{L^2(\mathbb{R}^n)} \le C(1+t)^{-s+\delta} \|u\|_{L^2(\mathbb{R}^n)}$$

が成り立つことを示せ.

B 第14問

バーガース方程式

$$\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} + 2u \frac{\partial u}{\partial x} = 0$$

について,

(*)
$$u(x,t) = \frac{1}{P(x,t)} \frac{\partial P(x,t)}{\partial x}$$

の形の特殊解を考える. ただし, P(x,t) は, ある非負の整数 n に対して

$$P(\lambda x, \lambda^2 t) = \lambda^n P(x, t) \qquad (\lambda \in \mathbb{R})$$

を満たす2変数多項式とする.以下の問に答えよ.

- (1) n = 1, 2 の場合に, (*) の形の特殊解を求めよ.
- (2) n が 3 以上の自然数の場合に、(*) の形の特殊解をすべて求めよ.
- (3) 上の(1), (2) で得られた2変数多項式P(x,t)のうち,

$$\frac{\partial^n P}{\partial x^n} = n!$$

を満たすものを $p_n(x,t)$ で表し, $p_0=1$ とする. このとき, $\{p_n(x,t)\}$ を生成する母 関数

$$G(x,t;z) = \sum_{n=0}^{\infty} p_n(x,t) \frac{z^n}{n!}$$

を求めよ. ただし、z は展開のパラメータであり任意の複素数とする.

B 第15問

以下のような連立常微分方程式に対する初期値問題を考える.

$$\frac{dS(t)}{dt} = b_1 - (\mu_1 + \lambda_1(t))S(t),$$

$$\frac{dI(t)}{dt} = -(\mu_1 + \gamma)I(t) + \lambda_1(t)S(t),$$

$$\frac{dM(t)}{dt} = b_2 - (\mu_2 + \lambda_2(t))M(t),$$

$$\frac{dV(t)}{dt} = -\mu_2V(t) + \lambda_2(t)M(t),$$

$$S(0) > 0$$
, $I(0) \ge 0$, $M(0) > 0$, $V(0) \ge 0$.

ただし,

$$\lambda_1(t) = \frac{\alpha V(t)}{S(t) + I(t)}, \quad \lambda_2(t) = \frac{\beta I(t)}{S(t) + I(t)}$$

であり、 b_1 、 b_2 、 α 、 β 、 γ 、 μ_1 、 μ_2 はすべて正の実数である.以下では、この初期値問題が $0 < t < \infty$ において一意的な解をもつことを仮定してよい.

(1) \mathbb{R}^4 の集合 Ω を

$$\Omega = \left\{ (S, I, M, V) \in \mathbb{R}^4 \mid \frac{b_1}{\mu_1 + \gamma} \le S + I \le \frac{b_1}{\mu_1}, \quad M + V = \frac{b_2}{\mu_2} \right\}$$

と定義する. このとき, 初期値が Ω 内にある解軌道は任意の t>0 で Ω 内にとどまっていることを示せ.

(2) I=V=0 となる非負の平衡点を求めよ. それを E_0 とする. パラメータ R_0 を

$$R_0 = \frac{\alpha \beta b_2 \mu_1}{b_1 \mu_2^2 (\mu_1 + \gamma)}$$

と定義するとき, $R_0 < 1$ であれば E_0 は局所漸近安定であり, $R_0 > 1$ であれば不安定であることを示せ.

- (3) 平衡点 (S^*, I^*, M^*, V^*) が存在すると仮定して, $\lambda_1^* = \alpha V^*/(S^* + I^*)$, $\lambda_2^* = \beta I^*/(S^* + I^*)$ とおく. (S^*, I^*, M^*, V^*) を λ_1^* , λ_2^* を用いて表せ.
- (4) 以下の不等式が成り立つとする.

$$\mu_1 \ge \frac{\gamma \mu_2}{\mu_2 + \beta}.$$

このとき $R_0 > 1$ であれば、正の内部平衡点 (S, I, M, V がすべて正である平衡点) がただ一つ存在することを示せ.

B 第16問

- (1) n 次正定値エルミート行列 H と正数 r に対して、次の $(a)\sim(c)$ を示せ、ただし、I は n 次の単位行列、 $\rho(A)$ は行列 A のスペクトル半径を表す.
 - (a) rI + H は正則行列
 - (b) $(rI + H)^{-1}(rI H)$ はエルミート行列
 - (c) $\rho((rI+H)^{-1}(rI-H)) < 1$
- (2) 2 つの n 次正定値エルミート行列 H, L と正数 r, および $b \in \mathbb{C}^n$ に対して、ベクトルの列 $\{u_k\} \subset \mathbb{C}^n$ を

$$(rI + H)u_{k+1} = (rI - L)u_k + b,$$

 $(rI + L)u_{k+2} = (rI - H)u_{k+1} + b \quad (k = 0, 2, 4, ...)$

で定める. ただし, 初期値 $u_0\in\mathbb{C}^n$ は任意に定めるとする. このとき, $\{u_k\}$ が収束し, その極限が連立一次方程式 (H+L)u=b の解 u であることを示せ.

B 第17問

m,nを自然数とし、図のように平面上の点 P=(0,0), Q=(m,0), R=(m,n), S=(0,n)を頂点とする長方形を考える。Pを出発し、Rに至るような折れ線の経路全体の集合を $\Gamma_{m,n}$ で表す。ただし、折れ線を構成する各線分は整数格子点を結び、右または上に向かうものとする。また $\gamma\in\Gamma_{m,n}$ に対し、長方形 PQRS の内側で γ より左上の領域(図の影の部分)の面積を $A(\gamma)$ で表す。

このとき, q を不定元として

$$\sum_{\gamma \in \Gamma_{m,n}} q^{A(\gamma)} = \frac{(q)_{m+n}}{(q)_m(q)_n}$$

が成り立つことを証明せよ. ただし,

$$(q)_k = (q-1)(q^2-1)\cdots(q^k-1)$$

とする.

B 第18問

非決定的オートマトン $A=(\Sigma,Q,\delta,q_0,F)$ $(\Sigma:$ アルファベット, Q: 状態集合, $\delta:$ 遷移関係, $q_0:$ 初期状態, F: 受理状態の集合) に対して, 無限列 $\pi\in\Sigma^\mathbb{N}$ の集合 L(A) を次のように定める.

$$\pi \in L(A)$$
 \iff 無限遷移列 $q_0 \stackrel{\pi(0)}{\longrightarrow} q_1 \stackrel{\pi(1)}{\longrightarrow} \cdots$ が存在して、 $\{n \mid q_n \in F\}$ は無限集合.

いま $A=(\Sigma,Q,\delta,q_0,F)$ が与えられたとして、非決定的オートマトン $\tilde{A}=(\Sigma,\tilde{Q},\tilde{\delta},\tilde{q}_0,\tilde{F})$ を構成する.

$$\tilde{Q} = 2^Q \times 2^Q, \quad \tilde{q}_0 = (\emptyset, \{q_0\}).$$

 $\tilde{\delta}$ による遷移 $(X,Y) \stackrel{a}{\longrightarrow} (X',Y')$ は、次の 2 条件を満たすものとして定める.

- (i) $q_0 \in Y'$.
- (ii) 各 $q \in X \cup Y$ に対して、ある $q' \in X' \cup Y'$ があって、A における遷移 $q \xrightarrow{a} q'$ が存在し、さらに $q \in X$ または $(X = \emptyset$ かつ $q \in Y)$ のとき、 $q' \in X' \setminus F$ または $q' \in Y' \cap F$. このとき、 \tilde{F} を適切に定めた上で、次を示せ:

$$\pi \in L(\tilde{A})$$
 \iff すべての $n \in \mathbb{N}$ に対し, $\pi^{+n} \in L(A)$.

ここで、 π^{+n} は無限列 $\pi(n)$, $\pi(n+1)$, $\pi(n+2)$, ... を表す.

B 第19問

K は 2 以上の自然数, α は正の実数とする. (Ω,\mathcal{F},P) を確率空間とし, X_1,\ldots,X_K は独立な確率変数で

$$P(X_k > x) = x^{-\alpha}, \quad x > 1, \ k = 1, \dots, K$$

を満たすものとする. また x>0 に対して, N(x) は集合 $\{k\in\{1,\ldots,K\}\mid X_k>x\}$ の元の個数とする.

- (1) P(N(x) = m), x > 1, m = 0, ..., K を具体的に表せ.
- (2) 任意の a > 0 に対して

$$x^{\alpha}P(N(ax) > 2) \to 0 \qquad (x \to \infty)$$

となることを示せ. また.

$$x^{\alpha}P(N(ax)=1) \to Ka^{-\alpha} \qquad (x \to \infty)$$

となることを示せ.

(3)
$$x^{\alpha} P\left(\sum_{k=1}^{K} X_k > x\right) \to K \qquad (x \to \infty)$$

となることを示せ.