

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica.

UNIDAD DE APRENDIZAJE:

Teoría Electromagnética.

NIVEL: ||

PROPÓSITO DE LA UNIDAD DE APRENIDIZAJE:

Analiza los campos electromagnéticos variables en el tiempo, los parámetros constitutivos y las condiciones a la frontera, con base en las ecuaciones de Maxwell.

CONTENIDOS:

I.- Medios dieléctricos, magnéticos y condiciones de frontera.

II.- Ley de inducción de Faraday y ecuaciones de Maxwell.

III- Ecuación de onda para el campo electromagnético.

IV.- Propagación de ondas electromagnéticas.

ORIENTACIÓN DIDÁCTICA:

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje basado en problemas, aplicando los métodos analítico, deductivo, inductivo y analógico. Las técnicas y actividades utilizadas serán las siguientes: análisis y resolución de ejercicios individualmente y en equipo, organizadores gráficos, algoritmos computacionales, exposiciones, discusión guiada e indagación bibliográfica.

EVALUACIÓN Y ACREDITACIÓN:

La presente Unidad de Aprendizaje se evaluará a partir del esquema de portafolio de evidencias, el cual se conforma de: evaluación formativa, sumativa y rubricas de autoevaluación y coevaluación. Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos, con base en los lineamientos establecidos por la Academia.
- Acreditación en otra unidad académica del IPN u otra institución educativa, nacional o internacional, externa al IPN, con la cual se tenga convenio.

BIBLIOGRAFÍA:

- 1. Cheng D. K. (1998). Fundamentos de electromagnetismo para ingeniería (2ª Edición). México: Pearson Universitario. ISBN: 978-9684443273.*
- 2. Hayt W. H. & Buck J. A. (2005). Engineering electromagnetics with CD (7th. Edition). USA: McGraw Hill. ISBN: 978-0073104638.
- 3. Singh G. & Hiziroglu H. (2004). Electromagnetic field theory fundamentals (2ª Edition), UK: Cambridge University Press. ISBN: 978-0534955045.
- 4. Ulaby F. T., Michielssen E. & Ravaioli (2010). Fundamentals of applied electromagnetics (6th Edition). USA: Pearson Prentice Hall. ISBN: 978-0132139311.
- 5. Wangsness R. K. (1998). Campos electromagnéticos (1ª Edición). México: Limusa. ISBN: 978-9681813161.*
- * Libro clásico.

SECRETARÍA ACADÉMICA

UNIDAD ACADÉMICA: Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías

Avanzadas.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica.

SALIDA LATERAL: N/A.

ÁREA FORMACIÓN: Ciencias Básica.

MODALIDAD: Escolarizada.

UNIDAD DE APRENDIZAJE: Teoría Electromagnética. TIPO DE UNIDAD DE APRENDIZAJE:

1) Teórica/ Obligatoria. VIGENCIA: Junio 2009.

NIVEL: II.

CRÉDITOS: 9.0 TEPIC, 4.56 SATCA.

INTENCIÓN EDUCATIVA

Esta unidad de aprendizaje contribuye con el perfil de egreso del Ingeniero Mecatrónico; porque proporciona los fundamentos de los dispositivos basados en los fenómenos electromagnéticos presentes en varios sistemas mecatrónicos.

Asimismo, favorece las siguientes competencias: resolución de problemas, toma de decisiones, trabajo en equipo, presentación de la información; la creatividad y la responsabilidad.

Las unidades de aprendizaje precedentes son: Cálculo Vectorial, Ecuaciones Diferenciales, Electricidad y Magnetismo. Las consecuente es: Máquinas Eléctricas.

PROPÓSITO DE LA UNIDAD DE APRENIDIZAJE:

Analiza los campos electromagnéticos variables en el tiempo, los parámetros constitutivos y las condiciones a la frontera, con base en las ecuaciones de Maxwell.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 4.5

HORAS PRÁCTICA/SEMANA: 0.0

HORAS TEORÍA/SEMESTRE: 81.0

HORAS PRÁCTICA/SEMESTRE: 0.0

HORAS TOTALES/SEMESTRE: 81.0

APRENDIZAJE UNIDAD DE DISEÑADA POR: La Academia de Ciencias Básicas. Subdirección REVISADA POR: Académica APROBADA POR: Consejo Técnico Consultivo Escolar. INSTITUTO POLITEGNICO NACIONAL HINDA PREESIONAL INTERDISCIPLINANA Arodi Rafael Carvallo Arominguez Dominguez M. en Presidente del CTCE. 22 de Febrero de 2011

AUTORIZADO POR: Comisión de Programa Académicos del Consejo Company Consultivo del IPN.

DIRECCIÓN

DE EDUCACIÓN SUPERIOR

Ing. Rodrigo de Jesús Serrano

Domínguez. Secretario Técnico de la Comisión de Programas Académicos.

7 de Diciembre de 2011

SECRETARÍA ACADÉMICA

HOJA: 3

DE

N° UNIDAD TEMÁTICA: I

UNIDAD DE APRENDIZAJE: Teoría Electromagnética.

NOMBRE: Medios dieléctricos, magnéticos y condiciones de frontera. UNIDAD DE COMPETENCIA

Especifica los parámetros constitutivos y las condiciones de frontera en diferentes materiales con base a la estructura de la

No.	CONTENIDOS	Activi	RAS AD dades de cencia	Activi C Aprer	AS TAA idades ile idizaje nomo	CLAVE BIBLIOGRÁFICA
		Т	P	Т	Р	
1.1	Polarización.	1.5			_	
1.2 1.2.1	Densidades de carga ligada. Esfera uniformemente polarizada.	3.0		1.5		1B, 8C, 9B.
1.3	Vector de desplazamiento eléctrico.	1.5				
1.4 1.4.1 1.4.2 1.4.3	Clasificación de dieléctricos. Dieléctricos isotrópicos y lineales. Energía electrostática en términos del vector D . Condiciones de frontera para el campo Electrostático.	3.0		1.5		
1.5 1.5.1 1.5.2 1.5.3 1.5.4	Magnetización. Densidades de corriente de magnetización. Esfera uniformemente magnetizada. El vector H . Materiales magnéticos isotrópicos homogéneos y lineales.	1.5		3.0		
1.6 1.6.1 1.6.2 1.6.3	Condiciones electromagnéticas de frontera. Condiciones de frontera para campos magnetostáticos. Condiciones de frontera para el campo electrostático. Energía magnética y clasificación de materiales magnéticos.	3.0				
1.7	Circuitos magnéticos.	1.5				
	Subtotales:	15.0	0.0	6.0	0.0	

ESTRATEGIAS DE APRENDIZAJE

Encuadre del curso.

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje basado en problemas, aplicando el método analítico. Las técnicas y actividades utilizadas serán las siguientes: análisis y resolución de ejercicios individualmente y en equipo, exposiciones y discusión guiada.

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación diagnóstica Portafolio de evidencias:

evidencias:	
Ejercicios resueltos	25%
Exposición	10%
Mesa redonda	10%
Evaluación escrita	50%
Autoevaluación y coevaluación (rúbrica)	5%

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Teoría Electromagnética. HOJA: 4 DE 9

N° UNIDAD TEMÁTICA: II NOMBRE: Ley de inducción de Faraday y ecuaciones de Maxwell.

UNIDAD DE COMPETENCIA

Modela matemáticamente a los campos eléctricos y magnéticos dependientes del tiempo con base en las Leyes de Maxwell.

No.	CONTENIDOS	Activi	AS AD dades cencia	HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA	
		Т	Р	T	Р		
2.1 2.1.1 2.1.2 2.1.3	Ley de Faraday. Medios estacionarios. Medios en movimientos Motores eléctricos, generadores y transformadores.	7.5		3.0	,	2C, 3B, 5B.	
2.2	Inductancia y autoinductancia.	1.5		1.5			
2.3	Ecuación de continuidad.	1.5					
2.4 2.4.1	Densidad de corriente de desplazamiento. Ley de Ampere-Maxwell.	1.5					
2.5 2.5.1 2.5.2	Ecuaciones de Maxwell. Ecuaciones de Maxwell para medios isotrópicos y lineales. Teorema de Poyting.	3.0		6.0			
	Subtotales:	15.0	0.0	10.5	0.0		

ESTRATEGIAS DE APRENDIZAJE

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje basado en problemas, aplicando el método deductivo. Las técnicas y actividades utilizadas serán las siguientes: análisis y resolución de ejercicios individualmente y en equipo, organizadores gráficos y algoritmos computacionales.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Ejercicios resueltos	25%
Implementación de algoritmos de cómputo	10%
Secuencia de hechos	10%
Evaluación escrita	50%
Autoevaluación y coevaluación (rúbrica)	5%

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Teoría Electromagnética.

HOJA: 5

DE

N° UNIDAD TEMÁTICA: III

NOMBRE: Ecuación de onda para el campo electromagnético.

UNIDAD DE COMPETENCIA

Especifica las características de la onda plana armónica en materiales con base en las relaciones constitutivas de los campos electromagnéticos.

No.	CONTENIDOS	HORAS AD Actividades de Docencia		HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA	
		Т	Р	Т	Р		
3.1	Campos con dependencia armónica en el tiempo.	3.0		1.5		6B, 7C, 8C.	
3.2 3.2.1 3.2.2 3.2.3	Ecuación de onda para el campo eléctrico y magnético. Número de onda, longitud de onda y relación de dispersión. Sistema de mano derecha del campo electromagnético. Criterio para determinar medios dieléctricos no ideales con disipación y conductores.			4.5			
3.3 3.3.1 3.3.2	Resolución de la ecuación de onda para medios no conductores. Ondas electromagnéticas en espacio libre. Ondas electromagnéticas en medios dieléctricos	1.5		3.0			
3.4 3.4.1 3.4.2	Resolución de la ecuación de onda para medios conductores. Constante de atenuación, decibeles y profundidad pelicular. Impedancia intrínseca.	3.0		4.5			
3.4.3	Tangente de pérdida.						
	Subtotales:	7.5	0.0	13.5	0.0		

ESTRATEGIAS DE APRENDIZAJE

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje basado en problemas, aplicando los métodos inductivo y analógico. Las técnicas y actividades utilizadas serán las siguientes: análisis y resolución de ejercicios individualmente y en equipo, organizadores gráficos e indagación bibliográfica.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Ejercicios resueltos	25%
Reporte del análisis de fuentes bibliográficas	10%
Esquemas	10%
Evaluación escrita	50%
Autoevaluación y coevaluación (rúbrica)	5%

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Teoría Electromagnética. HOJA: 6 DE 9 N° UNIDAD TEMÁTICA: IV NOMBRE: Propagación de ondas electromagnéticas. UNIDAD DE COMPETENCIA

Explica la propagación del campo electromagnético para diferentes condiciones de frontera con base en los principios del electromagnetismo.

No.	CONTENIDOS HORAS AE Actividades Docencia			Activi c Aprer	S TAA dades le idizaje nomo	CLAVE BIBLIOGRÁFICA	
		Т	P	Т	Р		
4.1 4.2 4.2.1 4.2.2 4.2.3	Condiciones de frontera del campo electromagnético. Incidencia normal de ondas electromagnéticas. Incidencia normal en medios no conductores. Reflectancia y transmitancia. Incidencia normal en medios conductores.	1.5		1.5 4.5		4C, 8C, 9B.	
4.2.4 4.3 4.3.1 4.3.2 4.3.3	Coeficientes de reflexión y tansmisión. Incidencia oblicua. Polarización paralela y polarización perpendicular. Ecuaciones de Fresnel. Ángulo de Brewster.	1.5		4.5			
	Subtotales:	3.0	0.0	10.5	0.0		

ESTRATEGIAS DE APRENDIZAJE

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje basado en problemas, aplicando los métodos analítico y deductivo. Las técnicas y actividades utilizadas serán las siguientes: análisis y resolución de ejercicios individualmente y en equipo, discusión guiada e indagación bibliográfica.

EVALUACIÓN DE LOS APRENDIZAJES

Portafoli	0 40	avid	annina.
ruitaiuii	o ue	evide	HILIAS.

Ejercicios resueltos	25%
Reporte del análisis de fuentes bibliográficas	10%
Mesa redonda	10%
Evaluación escrita	50%
Autoevaluación y coevaluación (rúbrica)	5%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Teoría Electromagnética

HOJA:

7

DE 9

PERÍODO	LINIDAD	
PERIODO	UNIDAD	PROCEDIMIENTO DE EVALUACIÓN
1 -	l y II	Evaluación continua 50% Evaluación escrita 50%
2	III	Evaluación continua 50% Evaluación escrita 50%
3	IV	Evaluación continua 50% Evaluación escrita 50%
		Los porcentajes con los que cada unidad temática contribuyen a la evaluación final son: La unidad I aporta el 25% de la calificación final. La unidad III aporta el 25% de la calificación final. La unidad III aporta el 25% de la calificación final. La unidad IV aporta el 25% de la calificación final. Esta unidad de aprendizaje también se puede acreditar mediante: Evaluación de saberes previamente adquiridos con base en los lineamientos que establezca la Academia. Acreditación en otra unidad académica del IPN u otra institución educativa, nacional o internacional, externa al IPN, con la cual se tenga convenio.

SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Teoría Electromagnética.

HOJA:

9

CLAVE	В	С	BIBLIOGRAFÍA
1	Х		Cheng D. K. (1998). Fundamentos de electromagnetismo para ingeniería (2ª Edición). México: Pearson Universitario ISBN: 978-9684443273.*
2		×	Feynman R., Leighton R. B. & Sands M. (1998). Física. Vol. 2 Electromagnetismo y materia (1ª Edición). México: Alhambra Mexicana S. A. ISBN: 978-9684443495.*
3	X		Hayt W. H. & Buck J. A. (2005). Engineering electromagnetics with CD (7 th Edition). USA: McGraw Hill. ISBN: 978-0073104638.
4		x	Lorrain P., Corson D. R. & Lorrain F. (1988). Electromagnetic fields and waves (3 rd Edition). USA: W. H. Freeman and Company. ISBN: 978-0716718239.*
5	Х		Reitz J. R., Milford F. J. & Christy R. W. (2008). Foundations of electromagnetic theory (4 th Edition). USA: Addison Wesley. ISBN: 978-0321581747.
6	х		Sadiku M. N. O. (2009). Elements of electromagnetics (5 th Edition). USA: Oxford University Press. ISBN: 978-0195387759.
7		×	Singh G. & Hiziroglu H. (2004). Electromagnetic field theory fundamentals (2 nd Edition). UK: Cambridge University Press. ISBN: 978-0534955045.
8		X	Ulaby F. T., Michielssen E. & Ravaioli (2010). Fundamentals of applied electromagnetics (6 th Edition). USA: Pearson Prentice Hall. ISBN: 978-0132139311.
9	Χ		Wangsness R. K. (1998). Campos electromagnéticos (1ª Edición). México: Limusa. ISBN: 978-9681813161.*
			* Libro clásico.

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

200	_				 	
1	n	ΛТ	ne.	GEN	ΛІ	

UNIDAD ACADÉMICA:	UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica. NIVEL II

ÁREA DE FORMACIÓN: Institucional Científica Profesional Terminal y de Básica Integración

ACADEMIA: Ciencias Básicas UNIDAD DE APRENDIZAJE: Teoría Electromagnética

ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO: Licenciado o ingeniero en física o áreas afines con

maestría en ciencias o doctorado.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE: Analiza los campos electromagnéticos variables en el tiempo, los parámetros constitutivos y las condiciones a la frontera, con base en las ecuaciones de Maxwell.

2.-PERFIL DOCENTE:

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES
Fuerzas y Campos Eléctricos, Potencial Eléctrico y Capacitancia, Corriente y Resistencia, y Campos Magnéticos.	Docente en el nivel superior en física, o en electricidad o magnetismo o áreas afines.	En el análisis de fenómenos físicos, en la investigación, en la docencia, en la expresión oral y escrita.	Responsabilidad Tolerancia Honestidad Respeto Compromiso social y compromiso académico.

ELABORÓ

M. en C. Jorge Pérez Hernández Presidente de Academia M. en C. Jorge Fonseca Campos Enc. de la Subdirección Académica M. en C. Arodi Rafael Canvallo Döminguez Director de la Unidad Académica

DIRECCION