

# Laboratório 3 – Métodos de Otimização de Busca Local Inteligência Artificial para Robótica Móvel – CT-213

Aluno: Caio Graça Gomes

Professor: Marcos Ricardo Omena de Albuquerque Maximo

#### Introdução:

Nesse laboratório, teve-se por objetivo implementar três algoritmos de otimização baseados em busca local, foram eles: *Gradient Descent, Hill Climbing* e *Simulated Annealing*. O problema a ser resolvido foi a minimização do valor de uma função matemática de custo para encontrar o caminho que melhor ajusta um certo conjunto de pontos, sendo a função a ser minimizada análoga à do método dos mínimos quadrados (MMQ). No caso do teste, o problema foi encontrar o coeficiente de desaceleração de uma bola em movimento num campo de futebol de robôs. A bola em movimento perde energia devido a um fenômeno conhecido como *rolling friction*.

## Metodologia e descrição em alto nível dos algoritmos utilizados:

Para o problema em questão, deve-se determinar o coeficiente de desaceleração de uma bola num campo de futebol de robôs. Os robôs possuem câmeras que são capazes de determinar a posição (x, y) da bola no campo, o que permite o cálculo numérico da velocidade da bola.

Sabendo que na teoria a velocidade da bola em função do termo seria da forma  $v(t) = v_o - f \cdot t$ , podemos definir uma função custo  $J: \mathbb{R}^2 \to \mathbb{R}$  tal que  $J([v_0,f] = \sum\limits_{k=1}^n (v_0 + ft[k] - v[k])^2$ . Assim, queremos minimizar a função J otimizando os seguintes parâmetros  $\theta[0] = v_0$  e  $\theta[1] = f \Rightarrow \theta = [v_0 \ f]^T$ . Para isso foram utilizados três métodos de otimização de funções matemáticas.

#### 1) Gradient Descent:

O método do "Gradient Descent" para o problema em questão de baseou no seguinte algoritmo:

- 1) Fornecer uma estimativa inicial  $\theta_0$  para o ponto de minimização da função custo:
- 2) Calcular o gradiente da função custo no ponto  $\theta$  em questão;
- 3) Caminhar no sentido oposto ao vetor gradiente da função J por um hiperparâmetro  $\alpha$ . ( $\theta_{k+1} = \theta_k \alpha \cdot \nabla J$ );
- 4) Se a função custo J for menor que um dado  $\varepsilon$  ou a quantidade de iterações for maior que um dado número parar, caso contrário, voltar ao passo 2.

## 2) Hill Climbing:

O método do "Hill Climbing" para o problema em questão de baseou no seguinte algoritmo:

- 1) Fornecer uma estimativa inicial  $\theta_0$  para o ponto de minimização da função custo:
- 2) Analisar os vizinhos do ponto  $\theta$  em questão como um "grid" 8-conectado, ou seja os pontos que distam um hiperparâmetro  $\delta$  e a projeção das retas que ligam  $\theta$  a estes vizinhos formam um ângulo de  $k*\pi/4, k\in Z$ , com a horizontal;
- 3) Caminhar para o melhor vizinho de  $\theta$ , isto é, o vizinho de  $\theta$  que minimiza a função custo J. ( $\theta_{k+1}$  = melhor vizinho de  $\theta_k$ );
- 4) Se a função custo J for menor que um dado  $\varepsilon$  ou a quantidade de iterações for maior que um dado número parar, caso contrário, voltar ao passo 2.

#### 3) Simulated Annealing:

O método do "Simulated Annealing" para o problema em questão de baseou no seguinte algoritmo:

- 1) Fornecer uma estimativa inicial  $\theta_0$  para o ponto de minimização da função custo e definir uma função "schedule"  $T(i) = T_0/(1+\beta \cdot i^2)$  que fornece a "temperatura" na iteração i utilizando os hiperparâmetros  $T_0$  e  $\beta$ ;
- 2) Tomar um vizinho aleatório do  $\theta$  em questão, isto é, sortear de maneira uniforme um ângulo aleatório no intervalo  $[-\pi,\pi]$  e tomar o vizinho à uma distância de um hiperparâmetro  $\delta$  tal que a projeção da reta que ligam  $\theta$  a este vizinho forma o ângulo sorteado com a horizontal ;
- 3) Defina  $\Delta E = J(vizinho) J(\theta)$ . Se  $\Delta E < 0$ , caminhar para o vizinho ( $\theta_{k+1} = vizinho$  de  $\theta$ ).
- 4) Caso contrário, sortear uniformemente um número r no intervalo (0, 1), se  $r \leq exp(-\Delta E/T)$ , caminhar para o vizinho ( $\theta_{k+1}$  = vizinho de  $\theta$ );

5) Se a função custo J for menor que um dado  $\varepsilon$  ou a quantidade de iterações for maior que um dado número parar, caso contrário, voltar ao passo 2.

## Resultados:

Ao final da implementação do código obteve-se os seguintes resultados:



Figura 1: Caminho percorrido pelo *Gradient Descent* na função, com a estrela representando o ponto inicial e o "xis" vermelho representando o ponto final.



Figura 2: Caminho percorrido pelo *Hill Climbing* na função, com a estrela representando o ponto inicial e o "xis" vermelho representando o ponto final.



Figura 3: Caminho percorrido pelo *Simulated Annealing* na função, com a estrela representando o ponto inicial e o "xis" vermelho representando o ponto final.



Figura 4: Comparação entre os caminhos percorridos utilizando cada método.



Figura 5: Ajuste linear da velocidade da bola em função do tempo utilizando cada método (os ajustes estão muito próximos).

| Método | Gradient<br>Descent | Hill Climbing | Simulated<br>Annealing | Least Squares |
|--------|---------------------|---------------|------------------------|---------------|
| $v_0$  | 0.43337067          | 0.43341125    | 0.43397656             | 0.43337277    |
| f      | -0.10101846         | -0.10119596   | -0.10134529            | -0.10102096   |

Tabela 1: Comparação dos resultados obtidos de  $v_0$  e f pelos diferentes métodos

Assim, conclui-se que os três métodos foram extremamente eficientes na obtenção do f ao comparar-se com o método do "Least Squares", que obtém a solução ótima.No entanto, é válido ressaltar que o "Gradient Descent", o "Hill Climbing" e o "Simulated Annealing" só foram muito eficientes para o problema em questão, que possuía poucos mínimos locais. Para um problema cuja função oscila muito e tem muitos pontos de mínimo é provável que não se obtenha o mínimo global ao utilizar o "Gradient Descent" ou o "Hill Climbing", pois eles tendem a ficar "presos" em mínimos locais. Já o "Simulated Annealing" pode ser muito demorado a depender do problema.