Automation of Alignment and 3D Analysis for Neutron Scattering Experiments

Matthew Kilpatrick AI for Scattering – UMD

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0021551 and DE-SC0021555.

TOPAZ Single -crystal Diffractometer

- Located at ORNL and receives neutrons from the Spallation Neutron Source
- Samples can be measured with high precision for volumetric sampling in reciprocal space (momentum measurements)
 - Samples are rotated to measure all aspects of the lattice
 - Temperature control from 5 K- 450 K
 - Broad Q coverage

TOPAZ Single -crystal Diffractometer

Background & Motivation

Sample alignment

- Neutron production time is limited
- o Some activities require constant realignment, such as temperature scans
- User facilities especially face schedule constraints
- Machine learning (ML) is a key automation tool
- Alignment protocols vary between beamlines
 - Opportunity to employ & test models
 - Broad applications for sample alignment

UNet Architecture for Image Segmentation

Machine Learning for Sample Identification

- Supervised learning problem
 - Input images come from optical camera
 - Beamline scientist / expert identifies the sample mask
- Train neural network model to learn the image to mask relationship
- Find the sample CoM

Uncertainty Quantification

- During supervised training
 - Real error compared to human defined masks
- During testing and operations
 - Ground-truth data not available
 - Employ statistics from ensemble predictions
 - Variance between many trained models
- Takeaways
 - **Excellent CoM prediction**
 - Negligible ensemble spread with low uncertainty
 - Mask variance is restricted to edges

Controls Problem

- Pass images through ML model
 - Retrieve predicted mask & center of mass
 - Retrieve uncertainty measurement
- Evaluate quality of predictions/state of controls
- Pass values back to beamline controls
 - Sample/beam center of mass offsets
 - Human intervention needed?
- Retrain networks with feedback from cycle

Automated Alignment

```
rocess (press any key)
Beamline Processes:
         lightswitch cryo
         align cryo
         temp_ramp
Interface Actions:
        0) Exit
        1) Print beamline state
        2) Print beamline element state
        3) Time a beamline process
Please choose a beamline processes or interface action:
```


Analysis methods for TOPAZ data

- Mantid
 - Open source community developed application
 - Algorithms use raw data processed within 2D slices of the 3D data
- Some challenges faced by the community
 - Large datasets can be up to 100 Gb in size and current tools limit interactivity
 - Displaying data requires a high level of user interaction
 - 2D slices may miss key features of the diffraction data
 - May be slow to run due to optimization shortfalls
- Working collaboratively to leverage Mantid
 - Machine learning DBSCAN
 - Reduces user interaction
 - Automated Bragg peak identification
- Also improving the interactivity of the data viz
 - Close collaboration with the NVIDIA IndeX development team (Berlin)
- Working towards combination of 3D viz and automated analysis

https://www.mantidproject.org/

Analysis of Scattering Data for a Single Silicon Crystal

- Preprocessing the data
 - Measurements of the particles in momentum space
 - Looking for pockets of constructive interference
 - Measurements projected onto a 3D mesh
- DBSCAN is a density based clustering algorithm
 - Can identify oblong clusters and attribute data to noise if it doesn't match anything
 - Sparse background can be removed easily

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN

Comparison Cluster Identification with Mantid

Peak locations

Fast Fourier Transform (FFT) to calculate UB matrix (orientation matrix) and predict Miller indices

Limitations of Mantid peak finding

- Needs to be told how many peaks to look for
- Use the number of peaks that is found by DBSCAN

$$Q_{S}=2\pi\cdot UB\cdot egin{pmatrix} h \ k \ l \end{pmatrix}$$
Measured Peaks Calculated with FFT from Mantid Predicted Miller Indices

• What do we compare?

- UB matrix is not unique
 - Due to the symmetry of the Bragg peaks you can rotate the matrix and still predict the peaks in the proper location
- Miller indices are not unique
 - Due to the rotation of the UB matrix different hkl indices can map to the same peak
 - Confirm values are 'close' to an integer value
- Compare peak locations
 - Clean with Signatb-noise

https://docs.mantidproject.org/v4.0.0/algorithms/FindUBUsingFFT-v1.html https://docs.mantidproject.org/v4.0.0/concepts/Lattice.html#lattice

Quantifying the validity of Bragg peaks

- Calculate a Signtol-Noise for each matched peak
 - A Bragg peak should have a large S/N ratio
 - Background events result in a minimal ratio
 - Tunable cut to allow for optimized data cleaning

$$\frac{S}{N} = \frac{I_{\delta S}}{\sqrt{I_{\delta B}^2 + N_S}}$$

Silicon 10K and 300K unit cell (reduced) parameters

Good agreement

- Mantid and DBSCAN methods show the same lattice parameters for Silicon
- Standard deviation is comparable!

DBSCAN datasets

- Automated peak finding allows for similar results to Mantid only methods
- Files with only DBSCAN results are shifted from the normal results
- All lattice parameters agree with the theoretical value of Silicon

June 22, 2023

Silicon 10K and 300K

- Predict UB matrix with identified Bragg peaks
 - DBSCAN finds 100% of Bragg peaks within tolerance
 - Mantid finds 5565% of Bragg peaks within tolerance
 - Silicon 10K
 - 24 3D silicon datasets could not find a UB matrix with Mantid peaks
 - Silicon 300K
 - 2 3D silicon datasets could not find a UB matrix with Mantid peaks

ADARA Live Streaming into NVIDIA's IndeX

Summary

- Take the user out of the loop
 - Automated sample identification
 - Real time sample visualization and analysis
 - Information at your fingertips
- 3D visualization
 - Integrated on a single GPU
 - Interactive analysis
- Open-source collaboration
 - Applications to many real time 3D datasets
 - Broad applications to samples within a beamline

THANK YOU!

Acknowledgements

- Our ORNL partners
 - C. Hoffman, S. Calder, B. Vacaliuc, J. Taylor, J. Kohl, Z. Morgan, A. Savici,
 B. Krishna, R. Gregory & G. Taufer
- NVIDIA
 - M. Nienhaus, A. Kuhn, D. Tatulea, J. Mensmann, S. Roemer,
- RadiaSoft
 - D. Bruhwiler, E. Carlin, J. Edelen, M. Henderson, I. Pogorelov,
- DOE Office of Science, Basic Energy Sciences
 - SBIR and STTR Program, award # DE-SC0021555, DE-SC0021551

18