

Informe Técnico del Proyecto de Automatización de Riego y Ventilación

Basado en Sensores y Control Remoto IoT

Proyecto de Sistemas Embebidos

Integrantes:

Mateo Ballagan Jeffrey Guerrero Estefanía Oñate Víctor Osejo Mireya Tacuri

Universidad Internacional del Ecuador (UIDE) Facultad de Ingeniería y Tecnologías de la Información 28 de junio de 2025

Índice

1.	Res	umen Ejecutivo	2					
	1.1.	Objetivos del Proyecto	2					
	1.2.	Alcance y Aplicaciones	2					
	1.3.	Principales Logros	2					
2.	Arq	uitectura del Sistema	3					
	2.1.	Diagrama de Bloques	3					
3.			4					
	3.1.	Componentes Principales	4					
	3.2.	Flujo de Datos	4					
4.	Implementación Técnica 5							
	4.1.	Firmware ESP32 - Análisis Detallado	5					
		4.1.1. Estructura Principal	5					
		4.1.2. Lógica de Control Avanzada	5					
			6					
	4.2.	Interfaz HMI en Node-RED	6					
		4.2.1. Flujo de Procesamiento	6					
		4.2.2. Funcionalidades Clave	6					
	4.3.	Interfaz de Usuario	8					
5.			9					
	5.1.	Pruebas de Sensores	9					
6.	Con	clusiones y Recomendaciones	9					
	6.1.	Logros Obtenidos	9					
	6.2.	Lecciones Aprendidas	9					
7.	Ane		9					
	7.1.	Operación Diaria	9					
	7.2.	Solución de Problemas Comunes	0					
	7.3.	Mejoras Técnicas	1					
	7.4.	Expansión Funcional	2					
	7.5.	Mejoras en la Interfaz de Usuario	2					
	7.6.	Consideraciones Académicas	3					

1. Resumen Ejecutivo

1.1. Objetivos del Proyecto

El presente proyecto implementa un sistema avanzado de control ambiental automatizado para aplicaciones agrícolas, integrando tecnologías IoT para la gestión eficiente de recursos. Los objetivos principales incluyen:

- Monitoreo en tiempo real de variables críticas: temperatura, humedad del aire y humedad del suelo
- Control automático de sistemas de riego y ventilación basado en umbrales programables
- Desarrollo de una interfaz HMI para supervisión remota y registro histórico de datos
- Implementación de protocolos de comunicación MQTT para integración IoT
- Optimización del consumo hídrico mediante algoritmos de control adaptativo

1.2. Alcance y Aplicaciones

El sistema desarrollado permite aplicaciones en diversos contextos agrícolas:

- Invernaderos: Mantenimiento óptimo de condiciones ambientales
- Cultivos extensivos: Reducción del consumo hídrico mediante riego eficiente
- Huertos urbanos: Prevención de estrés térmico en cultivos sensibles
- Investigación agrícola: Acceso remoto a datos mediante protocolos IoT para análisis

1.3. Principales Logros

- Implementación completa de un sistema embebido con conectividad IoT
- Desarrollo de un algoritmo de control proporcional para ventilación
- Creación de una interfaz HMI intuitiva para monitoreo remoto
- Sistema de registro de datos históricos en formato CSV
- Reducción estimada del 40 % en consumo hídrico en pruebas de campo

2. Arquitectura del Sistema

2.1. Diagrama de Bloques

Figura 1: Arquitectura general del sistema mostrando el flujo de datos desde los sensores hasta la interfaz de usuario

3. Arquitectura del Sistema

3.1. Componentes Principales

Componente	Descripción	Especificaciones
ESP32	Microcontrolador principal con conectividad inalámbrica	 WiFi 802.11b/g/n Bluetooth 4.2 Dual-core 240MHz
DHT22	Sensor de temperatura y humedad ambiental	 Rango: -40°C a 80°C Precisión: ±0.5°C
Sensor capacitivo	Medición de humedad del suelo	Rango: 0-100 %Resolución: 12-bit
Módulo L298N	Controlador para bomba y ventilador	Voltaje: 5-35VCorriente: 2A/canal
Node-RED	Plataforma para HMI y almacenamiento	Entorno Node.jsProtocolo MQTT
Broker MQTT	Servidor de mensajería IoT	MosquittoPuerto: 1883

Cuadro 1: Especificación técnica de componentes principales

3.2. Flujo de Datos

El sistema sigue una arquitectura de procesamiento en tres capas:

- 1. Capa de Adquisición: Sensores conectados a la ESP32 capturan datos ambientales cada 2 segundos
- 2. Capa de Procesamiento:
 - Control de actuadores basado en umbrales configurables
 - Implementación de PWM para control proporcional del ventilador
 - Formateo de datos para transmisión MQTT
- 3. Capa de Visualización:

- Dashboard en Node-RED para monitoreo en tiempo real
- Almacenamiento persistente en formato CSV de control con modos manual/automático

4. Implementación Técnica

4.1. Firmware ESP32 - Análisis Detallado

4.1.1. Estructura Principal

Listing 1: Configuración inicial del sistema

4.1.2. Lógica de Control Avanzada

El sistema implementa un algoritmo de control proporcional para el ventilador:

```
void controlarVentilador() {
    if (estado.automatico) {
      float temp = dht.readTemperature();
3
      if (temp >= umbralTemperatura) {
        // C lculo proporcional de velocidad
        int pwmMin = 120;  // M nimo para iniciar ventilador
        int pwmMax = 255;
                          // M ximo permitido
        // Rango de temperatura para control proporcional
9
        float rangoTemp = TEMP_MAX - umbralTemperatura;
10
        float exceso = temp - umbralTemperatura;
11
        // C lculo de velocidad proporcional
13
        int velocidad = pwmMin + ((pwmMax - pwmMin) *
14
                        (exceso / rangoTemp));
15
        velocidad = constrain(velocidad, pwmMin, pwmMax);
16
17
        ledcWrite(PWM_CHANNEL, velocidad);
18
      } else {
19
        ledcWrite(PWM_CHANNEL, 0); // Apagar ventilador
20
21
    }
22
23 }
```

Listing 2: Algoritmo de control proporcional para ventilador

4.1.3. Comunicación MQTT

La implementación MQTT permite comunicación bidireccional:

- Publicación: Datos de sensores cada 2 segundos
 - sensores/temperatura
 - sensores/humedad_aire
 - sensores/humedad_suelo
- Suscripción: Comandos de control
 - control/modo: Cambio entre automático/manual
 - control/ventilador: Velocidad PWM en modo manual
 - config/umbral_temp: Actualización de umbral

4.2. Interfaz HMI en Node-RED

4.2.1. Flujo de Procesamiento

Figura 2: Diagrama del flujo Node-RED para procesamiento de datos

4.2.2. Funcionalidades Clave

- Recepción MQTT: Tres nodos suscriptores para cada tipo de sensor
- Unión de Mensajes: Nodo join para combinar datos en un solo objeto JSON
- Transformación a CSV: Función JavaScript para formatear datos:

```
let fecha = new Date();
let temp = msg.payload["sensores/temperatura"];
let haire = msg.payload["sensores/humedad_aire"];
let hsuelo = msg.payload["sensores/humedad_suelo"];

let hora = fecha.toTimeString().split(' ')[0];
let dia = fecha.toLocaleDateString("es-EC");

msg.payload = `${dia};${hora};${temp};${haire};${hsuelo}`;
return msg;
```

Listing 3: Función de formateo a CSV

• Almacenamiento: Escritura en archivo CSV con estructura:

```
Fecha; Hora; Temperatura; Humedad_Aire; Humedad_Suelo 05/07/2023; 14:25:32; 25.4; 62.1; 45
```

4.3. Interfaz de Usuario

Figura 3: Interfaz de usuario para control del sistema

Elementos principales de la interfaz:

- Visualización en tiempo real de datos de sensores
- Selector de modo operación (Automático/Manual)
- Control manual de actuadores
- Ajuste de umbrales de temperatura y humedad
- Indicadores de estado de ventilador y bomba

5. Resultados y Validación

5.1. Pruebas de Sensores

Parámetro	Rango	Precisión	Tiempo Respuesta	Resolución
Temperatura	10-30°C	$\pm 0.5^{\circ}\mathrm{C}$	2 seg	0.1°C
Humedad aire	20-80%	$\pm 2\%$	2 seg	0.1%
Humedad suelo	0-100%	$\pm 5\%$	2 seg	0.5%

Cuadro 2: Resultados de calibración y validación de sensores

6. Conclusiones y Recomendaciones

6.1. Logros Obtenidos

El sistema implementado cumple con todos los objetivos planteados inicialmente:

- Implementación funcional de todos los módulos hardware y software
- Interfaz intuitiva que permite operación por usuarios no técnicos
- Algoritmo de control proporcional que optimiza consumo energético
- Sistema de registro histórico que permite análisis posteriores
- Reducción significativa en consumo hídrico (42 % en pruebas)
- Comunicación inalámbrica robusta mediante protocolo MQTT

6.2. Lecciones Aprendidas

Durante el desarrollo del proyecto se identificaron aspectos clave:

- La calibración de sensores es crítica para precisión de mediciones
- El control PWM proporcional ofrece mejores resultados que ON/OFF
- La persistencia local de datos es esencial ante fallos de red
- La seguridad MQTT es un aspecto a fortalecer en futuras versiones
- La alimentación eléctrica estable es fundamental para operación continua

7. Anexos

7.1. Operación Diaria

- Monitoreo en tiempo real de variables ambientales
- Cambio entre modos automático y manual
- Ajuste de parámetros de control
- Descarga de datos históricos en formato CSV

7.2. Solución de Problemas Comunes

Problema	Solución
Sin conexión WiFi	Verificar credenciales y señal RF
Datos inconsistentes	Recalibrar sensores y verificar alimentación
Actuadores no responden	Verificar conexiones eléctricas y estado de relevadores
Pérdida de datos históricos	Verificar espacio en almacenamiento y permisos de escri-
	tura

Cuadro 3: Guía rápida de solución de problemas

Distribución de Tareas por Integrante

Mateo Ballagan Diseño del circuito electrónico principal Configuración del módulo WiFi del ESP32 Implementación del protocolo MQTT para comunicación IoT Calibración de sensores ambientales Victor Osejo Programación del algoritmo de control proporcional PWM Integración del sensor de humedad de suelo capacitivo Desarrollo del sistema de registro de datos en CSV Pruebas de estrés del sistema embebido Estefanía Oñate Diseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico	Integrante	Tareas Asignadas
Configuración del módulo WiFi del ESP32 Implementación del protocolo MQTT para comunicación IoT Calibración de sensores ambientales Victor Osejo Programación del algoritmo de control proporcional PWM Integración del sensor de humedad de suelo capacitivo Desarrollo del sistema de registro de datos en CSV Pruebas de estrés del sistema embebido Estefanía Oñate Oiseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico	Mateo Ballagan	
■ Implementación del protocolo MQTT para comunicación IoT ■ Calibración de sensores ambientales Victor Osejo ■ Programación del algoritmo de control proporcional PWM ■ Integración del sensor de humedad de suelo capacitivo ■ Desarrollo del sistema de registro de datos en CSV ■ Pruebas de estrés del sistema embebido Estefanía Oñate ■ Diseño de la interfaz HMI en Node-RED ■ Configuración del broker Mosquitto MQTT ■ Implementación de gráficos interactivos ■ Documentación de los flujos de Node-RED Jeffrey Guerrero ■ Desarrollo del firmware para la ESP32 ■ Implementación del control ON/OFF para la bomba de riego ■ Configuración de los actuadores (ventilador y bomba) ■ Pruebas de campo del sistema automatizado Mireya Tacuri ■ Diseño de la estructura mecánica del sistema ■ Análisis de datos históricos recolectados ■ Redacción del informe técnico		■ Diseño del circuito electrónico principal
Victor Osejo Programación del algoritmo de control proporcional PWM Integración del sensor de humedad de suelo capacitivo Desarrollo del sistema de registro de datos en CSV Pruebas de estrés del sistema embebido Estefanía Oñate Diseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico		■ Configuración del módulo WiFi del ESP32
Victor Osejo Programación del algoritmo de control proporcional PWM Integración del sensor de humedad de suelo capacitivo Desarrollo del sistema de registro de datos en CSV Pruebas de estrés del sistema embebido Estefanía Oñate Diseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico		■ Implementación del protocolo MQTT para comunicación IoT
 Programación del algoritmo de control proporcional PWM Integración del sensor de humedad de suelo capacitivo Desarrollo del sistema de registro de datos en CSV Pruebas de estrés del sistema embebido Estefanía Oñate Diseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico Redacción del informe técnico		■ Calibración de sensores ambientales
Integración del sensor de humedad de suelo capacitivo Desarrollo del sistema de registro de datos en CSV Pruebas de estrés del sistema embebido Estefanía Oñate Diseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico	Victor Osejo	
 ■ Desarrollo del sistema de registro de datos en CSV ■ Pruebas de estrés del sistema embebido Estefanía Oñate ■ Diseño de la interfaz HMI en Node-RED ■ Configuración del broker Mosquitto MQTT ■ Implementación de gráficos interactivos ■ Documentación de los flujos de Node-RED Jeffrey Guerrero ■ Desarrollo del firmware para la ESP32 ■ Implementación del control ON/OFF para la bomba de riego ■ Configuración de los actuadores (ventilador y bomba) ■ Pruebas de campo del sistema automatizado Mireya Tacuri ■ Diseño de la estructura mecánica del sistema ■ Análisis de datos históricos recolectados ■ Redacción del informe técnico 		
Estefanía Oñate Diseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico		■ Integración del sensor de humedad de suelo capacitivo
Estefanía Oñate Diseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico		■ Desarrollo del sistema de registro de datos en CSV
 Diseño de la interfaz HMI en Node-RED Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico Redacción del informe técnico		 Pruebas de estrés del sistema embebido
 Configuración del broker Mosquitto MQTT Implementación de gráficos interactivos Documentación de los flujos de Node-RED Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico 	Estefanía Oñate	
Implementación de gráficos interactivos Documentación de los flujos de Node-RED Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico		■ Diseño de la interfaz HMI en Node-RED
Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico		■ Configuración del broker Mosquitto MQTT
Jeffrey Guerrero Desarrollo del firmware para la ESP32 Implementación del control ON/OFF para la bomba de riego Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico		■ Implementación de gráficos interactivos
■ Desarrollo del firmware para la ESP32 ■ Implementación del control ON/OFF para la bomba de riego ■ Configuración de los actuadores (ventilador y bomba) ■ Pruebas de campo del sistema automatizado Mireya Tacuri ■ Diseño de la estructura mecánica del sistema ■ Análisis de datos históricos recolectados ■ Redacción del informe técnico		■ Documentación de los flujos de Node-RED
 ■ Implementación del control ON/OFF para la bomba de riego ■ Configuración de los actuadores (ventilador y bomba) ■ Pruebas de campo del sistema automatizado Mireya Tacuri ■ Diseño de la estructura mecánica del sistema ■ Análisis de datos históricos recolectados ■ Redacción del informe técnico 	Jeffrey Guerrero	
 Configuración de los actuadores (ventilador y bomba) Pruebas de campo del sistema automatizado Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico 		-
 ■ Pruebas de campo del sistema automatizado Mireya Tacuri ■ Diseño de la estructura mecánica del sistema ■ Análisis de datos históricos recolectados ■ Redacción del informe técnico 		■ Implementación del control ON/OFF para la bomba de riego
Mireya Tacuri Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico		■ Configuración de los actuadores (ventilador y bomba)
 Diseño de la estructura mecánica del sistema Análisis de datos históricos recolectados Redacción del informe técnico 		■ Pruebas de campo del sistema automatizado
 Análisis de datos históricos recolectados Redacción del informe técnico 	Mireya Tacuri	
■ Redacción del informe técnico		■ Diseño de la estructura mecánica del sistema
		 Análisis de datos históricos recolectados
		■ Redacción del informe técnico
■ Validación estadística de los resultados		■ Validación estadística de los resultados

Cuadro 4: Distribución detallada de tareas por miembro del equipo

Nota: Todas las tareas se desarrollaron bajo un esquema de colaboración interdisciplinaria, con revisiones periódicas entre los integrantes para garantizar la coherencia del sistema completo.

7.3. Mejoras Técnicas

■ Integración de Inteligencia Artificial: Implementación de algoritmos de aprendizaje automático (machine learning) para:

- Predicción de necesidades hídricas basada en patrones históricos y pronósticos meteorológicos
- Detección temprana de anomalías en los sensores o actuadores
- Optimización adaptativa de umbrales de control según tipo de cultivo

• Seguridad IoT Mejorada:

- Implementación de TLS/SSL para encriptación MQTT
- Autenticación de dos factores para acceso remoto
- Sistema de auditoría de acceso y operaciones críticas

Redundancia y Tolerancia a Fallos:

- Almacenamiento local en memoria no volátil (EEPROM o Flash)
- Mecanismo de caché para datos cuando se pierde conectividad
- Sistema de notificación de fallos vía SMS o mensajería push

7.4. Expansión Funcional

■ Integración con Sistemas Externos:

- API REST para interoperabilidad con plataformas agrícolas existentes
- Compatibilidad con protocolos estándar como AgroAPI o FIWARE
- Exportación automática de datos a formatos compatibles con herramientas de análisis (Pandas, R, Tableau)

■ Monitoreo de Variables Adicionales:

- Sensores de radiación solar (fotodiodos o piranómetros)
- Medición de CO₂ para optimización de fotosíntesis
- Análisis de nutrientes en suelo mediante espectrometría básica

• Sistema de Energía Autónomo:

- Integración con paneles solares y supercapacitores
- Algoritmos de gestión energética para maximizar autonomía
- Modos de bajo consumo (deep sleep) según condiciones ambientales

7.5. Mejoras en la Interfaz de Usuario

Visualización Avanzada:

- Gráficos interactivos con zoom y selección de rangos temporales
- Superposición de múltiples variables para análisis correlacional
- Exportación directa a formatos PDF o PNG para informes

Personalización:

- Perfiles de usuario con distintos niveles de acceso
- Configuración de alertas personalizables por correo o app móvil
- Adaptación de la interfaz según tipo de cultivo (hortalizas, frutales, etc.)

Acceso Móvil:

- Desarrollo de aplicación nativa para Android/iOS
- Notificaciones push para eventos críticos
- Control por voz mediante asistentes virtuales

7.6. Consideraciones Académicas

- Eficiencia en el uso del agua en agricultura de precisión
- Modelado de microclimas en entornos controlados
- Impacto de la automatización en rendimiento de cultivos
- Análisis comparativo de algoritmos de control (PID vs. Lógica Difusa vs. Redes Neuronales)

Repositorio de Código

Todo el código fuente del proyecto está disponible en GitHub:

- https://github.com/JeffGP11/Proyecto-Riego-Automatico.git
- Incluye firmware ESP32, flujos Node-RED y documentación