Классификацияға арналған сызықтық модельдер

https://www.theverge.com/2017/6/26/15876006/hot-dog-app-android-silicon-valley

Логистикалық регрессия

ML рецепті

- 1. Кейбір үлгіні ойлап көріңіз
- 2. Деректерді үлгіге енгізіп, болжам жасаңыз.
- 3. Болжамдар мен шынайы мәндер арасындағы шығынды есептеңіз.
- 4. Ең аз шығын келтіретін үлгі параметрлерін анықтаңыз.

Логистикалық регрессия - үлгі

• Регрессияға арналған сызықтық моделімізді еске түсіріңіз

$$\hat{y}_i = \sum_{j}^{p} x_{ij} \cdot \beta_j$$

- Біз мұны жіктеу үшін пайдалана алмаймыз, өйткені біз 0 немесе 1 болжауымыз керек.
- Олай болса, мұны 0 мен 1 арасында сквош етейік.

Логистикалық регрессия - үлгі

• Сызықтық үлгіні 0 мен 1 арасында сквош.

$$\hat{y}_{i} = \sum_{j}^{p} x_{ij} \cdot \beta_{j}$$

$$f(x_{i}) = \sum_{j}^{p} x_{ij} \cdot \beta_{j}$$

$$\hat{y}_{i} = \sigma(f(x_{i}))$$

$$\sigma(f(x_{i})) = \frac{1}{1 + e^{-f(x_{i})}}$$

ML рецепті

- 1. Кейбір үлгіні ойлап көріңіз
- 2. Деректерді үлгіге енгізіп, болжам жасаңыз.
- 3. Болжамдар мен шынайы мәндер арасындағы шығынды есептеңіз.
- 4. Ең аз шығын келтіретін үлгі параметрлерін анықтаңыз.

Логистикалық регрессия - жоғалту

$$\mathcal{L}\left(\vec{\beta}\right) = -\sum_{i=1}^{N} y_{i} \log \left(\sigma\left(\vec{\mathbf{x}}_{i} \cdot \vec{\beta}\right)\right)$$

Логистикалық регрессия - жоғалту

$$\mathcal{L}\left(\vec{\beta}\right) = -\sum_{i=1}^{N} y_{i} \log\left(\sigma\left(\vec{\mathbf{x}}_{i} \cdot \vec{\beta}\right)\right) + (1 - y_{i}) \log\left(1 - \sigma\left(\vec{\mathbf{x}}_{i} \cdot \vec{\beta}\right)\right)$$

Логистикалық регрессия - жоғалту

$$\mathcal{L}\left(\vec{\beta}\right) = -\sum_{i=1}^{N} y_{i} \log\left(\sigma\left(\vec{\mathbf{x}}_{i} \cdot \vec{\beta}\right)\right) + (1 - y_{i}) \log\left(1 - \sigma\left(\vec{\mathbf{x}}_{i} \cdot \vec{\beta}\right)\right)$$

The ML Recipe

- 1. Кейбір үлгіні ойлап көріңіз
- 2. Деректерді үлгіге енгізіп, болжам жасаңыз.
- 3. Болжамдар мен шынайы мәндер арасындағы шығынды есептеңіз.
- 4. Ең аз шығын келтіретін үлгі параметрлерін анықтаңыз.

$$\frac{\partial \mathcal{L}}{\partial \vec{\beta}} = \sum_{i=1}^{N} \left(y_i - \frac{1}{1 + e^{\left(\vec{\mathbf{x}}_i \cdot \vec{\beta} \right)}} \right) \vec{\mathbf{x}}_i$$

Логистикалық регрессия - Болжамдар

- Болжамдар 0 мен 1 аралығында.
- Оларды ықтималдық ретінде түсіндіруге болады.
- Ықтималдықтарды сыныптарға жіктеу үшін шекті таңдаймыз.

- 2 мүмкіндігі бар жіктеу мәселесін елестетіңіз.
- X1 және X2 кез келген мәндері үшін біздің
- модель 0 мен 1 арасындағы ықтималдықты болжайды.
- Шектен жоғары (төмен)
 болжамдар 1 (0) ретінде
 болжанады.
- Болжамдар аймағының бойымен өтетін сызық, онда болжау == шегі шешім шекарасы болып табылады.

 Мәселелер көбінесе сызықты емес.

- Мәселелер көбінесе сызықты емес.
- Ал сызықтық шешім шекаралары оларда жақсы жұмыс істемейді!

- Мәселелер көбінесе сызықты емес.
- Ал сызықтық шешім шекаралары оларда жақсы жұмыс істемейді!
- Сызықты емес мүмкіндіктерді жасауға болады:

$$\hat{y}_{i} = \beta_{0} + \beta_{1} \cdot X_{i1} + \beta_{2} \cdot X_{i2}
+ \beta_{3} \cdot X_{i1} \cdot X_{i2} + \beta_{4} \cdot X_{i1}^{2}
+ \beta_{5} \cdot X_{i2}^{2}$$

Сіздің табалдырық/шешім шекарасы - таңдау!

Шатасу матрицасы (confusion matrix)

Predicted Labels	False	True
True Labels		
False	204	41
True	16	198

Confusion Matrix

Predicted Labels True Labels	False	True
False	204	41
True	16	198

 X_2

100 -

Классификациялық бағалау Confusion Matrix

Predicted Labels True Labels	False	True
False	204	41
True	16	198

Confusion Matrix

Predicted Labels	False	True
True Labels		
False	204	41
True	16	198

False Negatives Осы жағындағы барлық қызғылт сары нүктелер

Confusion Matrix

Predicted Labels True Labels	False	True
False	204	41
True	16	198

$$accuracy = \frac{TP + TN}{N}$$
Жалпы деретер
 $precision = \frac{TP}{TP + FP}$
 $precall = \frac{TP}{TP}$

Confusion Matrix

Predicted Labels	False	True
True Labels		
False	204	41
True	16	198

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Дәлдік: үлгілердің барлығы үшін менің моделім оң деп болжаған, олардың қанша пайызы шын мәнінде оң болды?

Еске салыңыз: Менің деректерімдегі барлық оң мысалдардың ішінде менің моделім неше % оң болжады?

Confusion Matrix

Predicted Labels True Labels	False	True
False	204	41
True	16	198

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

F1 ұпайы: дәлдік пен еске түсірудің гармоникалық ортасы

$$F_{1} = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

$$= 2 \frac{precision \cdot recall}{precision + recall}$$

The ML Recipe

- 1. Кейбір үлгіні ойлап көріңіз
- 2. Деректерді үлгіге енгізіп, болжам жасаңыз.
- 3. Болжамдар мен шынайы мәндер арасындағы шығынды есептеңіз.
- 4. Ең аз шығын келтіретін үлгі параметрлерін анықтаңыз.
- 5. Жіктеу үлгісі болса, шекті таңдаңыз.
 - 1. Табалдырық таңдау!
 - 2. Бұл таңдау сіздің үлгіңіздің бөлігі болып табылады.
 - 3. Шатасу матрицасы бір шекті мәнге негізделген.

Классификациялық бағалау - шекті емес өлшемдер

- Қабылдағыштың жұмыс сипаттамасы (ROC) қисығы астындағы аудан
- (Кейде жай ғана AUC деп аталады)
- TPR = Recall = TP / (TP + FN)
- FPR = TP / (FP + TN)
- Жоғары және солға қарай жақсы
- Әрбір нүкте әртүрлі шекке сәйкес келеді
- Әдетте, шамамен ойыс.

Классификациялық бағалау - шекті емес өлшемдер

- Herisri AUROC 0,5.
- яғни кездейсоқ классификатор
- Жақсы, үлгі өнімділігінің жалпы өлшемі.
- Теңгерімсіздік кластарының әсерінің көп бөлігін азайтады.
- «Егер сіз кездейсоқ 1 роз және 1 теріс үлгіні салсаңыз, оларды дұрыс дәрежелеу ықтималдығы қандай?» деп түсіндіре алады.

Классификациялық бағалау - шекті емес өлшемдер

- Дәлдік қайта шақыру қисығының астындағы аумақ (PR қисығы)
- «Орташа дәлдік»
- Жоғары және оңға қарай жақсы.
- Нашар модельдер өте ойыс емес PR қисықтарын көрсетеді
- Шекті таңдау үшін пайдалы.

Көп класты классификация

Көп класты классификация

Көп класты жіктеу - one vs. all

- N сыныптары үшін N екілік классификаторларды жаттықтырыңыз.
- Әрбір N-сыныпты роз белгісі ретінде, қалған барлық сыныптарды теріс белгі ретінде қарастырыңыз.

Көп класты жіктеу - one vs. rest

 Жіктеуіштің максималды баллы болжамды белгіні береді.

Көп кластық классификация - Көпмүшелік

 Софтмакс немесе кросс энтропия деп те аталады

Көп кластық классификация - Көпмүшелік / Кросс энтропия

 $\mathcal{L}_{CE} = \sum_{i=1}^{N} \left(-\sum_{c=1}^{C} y_{ic} log \left(s \left(\overrightarrow{\mathbf{x}}_{i} \cdot \overrightarrow{\beta}_{c} \right) \right) \right)$

$$s\left(\overrightarrow{\mathbf{x_i}} \cdot \overrightarrow{\beta_{\mathbf{c}'}}\right) = \frac{e^{\overrightarrow{\mathbf{x_i}} \cdot \overrightarrow{\beta_{\mathbf{c}'}}}}{\sum_{c=1}^{C} e^{\overrightarrow{\mathbf{x_i}} \cdot \overrightarrow{\beta_{\mathbf{c}}}}}$$

Көп кластық классификация - Көпмүшелік / Кросс

энтропия

$$\mathcal{L}_{C\mathcal{E}} = \sum_{i=1}^{N} \left(-\sum_{c=1}^{C} y_{ic} log \left(s \left(\overrightarrow{\mathbf{x_i}} \cdot \overrightarrow{eta_c} \right) \right) \right)$$
 $s \left(\overrightarrow{\mathbf{x_i}} \cdot \overrightarrow{eta_{c'}} \right) = \frac{e^{\overrightarrow{\mathbf{x_i}} \cdot \overrightarrow{eta_{c'}}}}{\sum_{c=1}^{C} e^{\overrightarrow{\mathbf{x_i}} \cdot \overrightarrow{eta_c}}}$ ~ Ықтималдық үлгісі с' класына Softmax жатады

Көп класс классификациясы - OVR және көпмүшелік

Көп кластық классификацияны бағалау

Confusion Matrix

Predicted Labels True Labels	0	1	2	4
0	135	6	6	0
1	9	71	3	13
2	6	5	150	0
4	0	5	5	121

Көп кластық классификацияны бағалау

Дәлдік енді қиынырақ!

Екілік: 50/50 белгілер үшін кездейсоқ жіктеуіш 50% дәлдік алады

Multiclass: С белгілерінің бірдей саны үшін кездейсоқ жіктеуіш 1 / С дәлдігін алады 4 сынып үшін кездейсоқ жіктеуіш 25% дәлдік алады.

Көп кластық классификацияны бағалау

- Дәлдік, еске түсіру және F1 барлығының көп класс баламалары бар.
- Сіз оларды кез келген жеке сынып үшін есептей аласыз.

$$Precision_c = \frac{TP_c}{TP_c + FP_c}$$

• Барлық сыныптар бойынша есептеулер үшін:

Макроорташа: әрбір сынып үшін метриканы есептеп, содан кейін барлық сыныптар бойынша орташа мәнді алыңыз. $\sum_{c} T P_{c}$

$$Precision = \frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + FP_{c}}$$

 \circ Микроорташа: барлық сыныптар үшін алымдар мен бөлгіштерді есептеу. $\sum_c T P_c$

$$Precision = \frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + FP_{c}}$$