Autocorrelation figures

Debora 2024-02-29

Autocorrelation and duration of unfavorable events

- Strong autocorrelation: prolonged exposure to temperatures above or below the average
- Changes how temperatures are organized across time
- · Solid and dashed lines: unique thermal regimes with same average temperature

Thermal performance curves

Model selection: AICc score to choose model that best describes data

Frequency distribution of performance

H1: Away from optimal temperatures, frequency distribution of performance is bimodal in the strong autocorrelation treatment and unimodal in the no autocorrelation treatment

Expectations for the strong autocorrelation treatment:

H2: Timing of exposures

In relation to randomly varying control:

* Below optimal: cold start decreases performance

* Around optimal: no differences

* Above optimal: hot start decreases performance

Survival

H3: A hot start will impact survival when average temperatures are hot

Results

H1: Strong autocorrelation changes frequency distribution of performance away from optimal

Closer look at 37 °C results

H2: Does the timing of unfavorable conditions matter?

Reproduction: frond counts; Growth: surface area (cm²)

$$RGR = rac{log(measurement_{end}) - log(measurement_{start})}{time_{end} - time_{start}}$$

H3: Suvival impacts of a hot start

- Individual counts
- Binary categorization of fronds: 1 = living; 0 = dead

Duckweed survival at 37 °C

H3: Suvival analysis

