- **72.** Les següents relacions són relacions d'ordre. Comprova si són d'ordre total i si tenen màxim o mínim.
 - (a) La relació \preceq en $\mathbb N$ definida per $n \preceq m$ si i només si $n \mid m$.
 - **(b)** La relació \lesssim en el següent conjunt d'intervals $I = \{[-a,a] : a \in \mathbb{R}^+\}$ definida per $[-a,a] \lesssim [-b,b]$ si i només si $[-a,a] \subseteq [-b,b]$.
- 73. En el conjunt $\mathbb Z$ definim la relació \approx de la forma següent:

$$z_1 \approx z_2$$
 si i només si $z_1 + z_2$ és parell.

- (a) Demostra que \approx és una relació d'equivalència en \mathbb{Z} .
- **(b)** Dóna l'expressió de la classe d'equivalència d'un element $z \in \mathbb{Z}$ arbitrari.
- (c) Dóna la partició de Z que s'obté amb aquesta relació.
- **74.** Considera la següent relació \equiv en \mathbb{Q} : Si $a,b\in\mathbb{Q}$, $a\equiv b$ si i només si $a-b\in\mathbb{Z}$.
 - (a) Demostra que és una relació d'equivalència.
 - **(b)** Descriu la classe d'equivalència d'un $q \in \mathbb{Q}$ arbitrari.
 - (c) Troba les següents classes d'equivalència: $\overline{0}$, $\overline{1}$, $\overline{2/3}$, $\overline{5/3}$.
 - (d) Troba una manera de descriure el conjunt quocient, usant per a cada classe el representant que et sembli més adequat.
- **75.** Definim la següent relació \sim en el pla $\mathbb{R} \times \mathbb{R}$:

$$(x,y) \sim (x_1,y_1)$$
 si i només si $\begin{cases} x - x_1 = 3z, & \text{per algun } z \in \mathbb{Z}, \text{ i} \\ y - y_1 = 5t, & \text{per algun } t \in \mathbb{Z}. \end{cases}$

- (a) Demostra que \sim és una relació d'equivalència.
- **(b)** Formula com a conjunt la classe d'equivalència d'un punt $(a, b) \in \mathbb{R} \times \mathbb{R}$ arbitrari.
- (c) Escull un punt $(a,b) \in \mathbb{R} \times \mathbb{R}$ a l'atzar i dibuixa la seva classe d'equivalència en el pla $\mathbb{R} \times \mathbb{R}$.
- 76. Considera la relació G en el conjunt dels angles entre 0 i π del pla, definida per α G β si i només si $\alpha = \beta$ o $\left(\frac{\pi}{2} \alpha\right)\left(\frac{\pi}{2} \beta\right) > 0$. Demostra que és una relació d'equivalència i determina la partició associada.
- 77. Considera la relació \sim en $\mathbb Z$ definida per: $m \sim n$ si i només si m^2 i n^2 són congruents mòdul 4. Demostra que és una relació d'equivalència i determina el conjunt quocient.
- 78. Sigui E la relació definida en el conjunt de les successions convergents de nombres reals per: $\{a_n\}_{n\in\mathbb{N}}$ E $\{b_n\}_{n\in\mathbb{N}}$ si i només si per tot $\varepsilon>0$ existeix un $k\in\mathbb{N}$ tal que per tot $m\geqslant k$, $|a_m-b_m|<\varepsilon$. Demostra que és una relació d'equivalència i dóna una forma pràctica de descriure cadascuna de les classes i el conjunt quocient.

79. Sigui *T* la relació en el conjunt de polinomis $\mathbb{R}[x]$ definida per:

$$p(x)$$
 T $q(x)$ si i només si $p(x) - q(x) = s(x) \cdot x^2$ per algun $s(x) \in \mathbb{R}[x]$.

- (a) Demostra que és una relació d'equivalència.
- **(b)** Troba les classes d'equivalència dels polinomis $7x^3 + 3x^2 + 3x + 5$, $3x^2 + 5x + 3$ i 3x + 5.
- **(c)** Digues amb quin conjunt de polinomis es podria identificar de manera natural el conjunt quocient.
- **80.** Determina quines de les següents famílies de subconjunts d'R formen una partició del conjunt especificat en cada cas.
 - (a) $\{[n-1, n+1)\}_{n\in\mathbb{N}\setminus\{0\}}$ és partició de $[0, \infty)$?
 - **(b)** $\left\{ \left[2^n 1, 2^{n+1} 1 \right] \right\}_{n \in \mathbb{N}}$ és partició de $\left[0, \infty \right)$?
 - (c) La família dels intervals [p, p+2) de \mathbb{R} , tals que $p, p+2 \in \mathbb{N}$ i ambdós primers, és partició de $[3, \infty)$?
- **81.** Sigui $n \ge 2$ un natural fixat. Per a cada k = 0, ..., n-1 definim el conjunt

$$A_k = \{rn + k : r \in \mathbb{N}\} \subseteq \mathbb{N}.$$

Demostra que el conjunt $\{A_0, A_1, \dots, A_{n-1}\}$ és una partició de \mathbb{N} i determina la relació d'equivalència corresponent.

- **82.** Siguin A un conjunt i \asymp una relació en A. Demostra que \asymp és una relació d'equivalència en A si i només si compleix les següents propietats:
 - i) Per tot $a \in A$, $a \approx a$.
 - ii) Per tots $a, b, c \in A$, si $a \times b$ i $b \times c$ aleshores $c \times a$.
- **83.** Considera la relació "n és un factor primer de m" en el conjunt $\mathbb{N} \setminus \{0,1\}$. Determina si és reflexiva, simètrica, antisimètrica, transitiva, total.
- **84.** Les següents relacions són relacions d'ordre. Comprova si són d'ordre total i si tenen màxim o mínim.
 - (a) La relació d'ordre usual en el conjunt de tots els enters parells.
 - **(b)** La relació \leq en el següent conjunt d'intervals $J = \{[a,b] : a,b \in \mathbb{R} \text{ i } a < b\}$ definida per $[a,b] \leq [c,d]$ si i només si $[a,b] \subseteq [c,d]$.
- **85.** En el conjunt $\mathbb{Z} \times (\mathbb{N} \setminus \{0\})$ definim la següent relació:

$$(a,b)\bowtie(c,d)$$
 si i només si $ad=cb$.

Demostra que és una relació d'equivalència.

- **86.** Demostra que la família d'intervals de \mathbb{R} , $\big\{[n,n+1)\big\}_{n\in\mathbb{N}}$ és una partició de \mathbb{R} i digues quína és la relació d'equivalència associada.
- **87.** Determina les particions associades a les relacions d'equivalència següents en el conjunt dels noms dels dies de la setmana en català:
 - (a) Tenir el mateix nombre de lletres.
 - **(b)** Tenir el mateix nombre de vocals.
 - (c) Tenir la mateixa segona lletra.
 - (d) Tenir la mateixa tercera lletra.

Recorda que la Llista 5 també inclou problemes sobre relacions.