Natural Language Processing

Lecture 2: Words and Morphology

Tokenization

Input: raw text

Output: sequence of tokens normalized for

easier processing.

Dr. Smith said tokenization of English is "harder than you've thought." When in New York, he paid \$12.00 a day for lunch and wondered what it would be like to work for AT&T or Google, Inc.

Morphology

- Morpheme
- Inflectional morphology
- Irregularity
- Derivational morphology

Morphological Parsing

Input: a word

Output: the word's stem(s) and features expressed by other morphemes.

Example: geese \rightarrow goose +N +PI gooses \rightarrow goose +V +3P +Sg dog \rightarrow {dog +N +Sg, dog +V} leaves \rightarrow {leaf +N +PI, leave +V +3P +Sg}

Turkish Example

uygarlaştıramadıklarımızdanmışsınızcasına

```
"(behaving) as if you are among those whom we were not able to civilize"
uygar "civilized"
      "become"
+laş
       "cause to"
+tır
      "not able"
+ama
+dık past participle
+lar plural
       first person plural possessive ("our")
+ımız
       second person plural ("y' all")
+dan
+mış
       past
        ablative case ("from/among")
+sınız
+casına finite verb → adverb ("as if")
```

Four Solutions

- 1. Table
- 2. Trie
- 3. Finite-state automaton
- 4. Finite-state transducer

Finite-State Automaton

- Q: a finite set of states
- $q_0 \in Q$: a special start state
- $F \subseteq Q$: a set of final states
- Σ: a finite alphabet
- Transitions: $_{_{_{...}}}$ $_{_{_{_{...}}}} \subseteq \Sigma^{*}$ $_{_{_{_{...}}}}$ $_{_{...}}$

 Encodes a set of strings that can be recognized by following paths from q₀ to some state in F.

FSA for English Nouns

Figure 3.3 A finite-state automaton for English nominal inflection.

reg-noun	irreg-pl-noun	irreg-sg-noun	plural
fox	geese	goose	-S
cat	sheep	sheep	
aardvark	mice	mouse	

FSA for English Adjectives

Figure 3.5 An FSA for a fragment of English adjective morphology: Antworth's Proposal #1.

FSA for English Derivational Morphology

Figure 3.6 An FSA for another fragment of English derivational morphology.

Four Solutions

- 1. Table
- 2. Trie
- 3. Finite-state automaton
- 4. Finite-state transducer

Finite State Transducers

- Q: a finite set of states
- $q_0 \in Q$: a special start state
- $F \subseteq Q$: a set of final states
- Σ and Δ : two finite alphabets

Morphological Parsing with FSTs

reg-noun	irreg-pl-noun	irreg-sg-noun	plural
fox	geese	goose	-s
cat	sheep	sheep	
aardvark	mice	mouse	

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	g o:e o:e s e	goose
cat	sheep	sheep
aardvark	m o:i u: ϵ s:c e	mouse

Figure 3.13 A schematic transducer for English nominal number inflection T_{num} . The symbols above each arc represent elements of the morphological parse in the lexical tape; the symbols below each arc represent the surface tape (or the intermediate tape, to be described later), using the morpheme-boundary symbol $\hat{}$ and word-boundary marker #. The labels on the arcs leaving q_0 are schematic, and need to be expanded by individual words in the lexicon.

Note "same symbol" shorthand.

^ denotes a morpheme boundary.

denotes a word boundary.

English Spelling

Name	Description of Rule	Example
Consonant	1-letter consonant doubled before -ing/-ed	beg/begging
doubling		
E deletion	Silent e dropped before -ing and -ed	make/making
E insertion	e added after -s,-z,-x,-ch, -sh before -s	watch/watches
Y replacement	-y changes to -ie before -s, -i before -ed	try/tries
K insertion	verbs ending with $vowel + -c$ add $-k$	panic/panicked

The E Insertion Rule as a FST

Figure 3.17 The transducer for the E-insertion rule of (3.4), extended from a similar transducer in Antworth (1990). We additionally need to delete the # symbol from the surface string; this can be done either by interpreting the symbol # as the pair $\#:\epsilon$, or by postprocessing the output to remove word boundaries.

$$\epsilon \to e / \left\{ \begin{array}{c} s \\ x \\ z \end{array} \right\} \land _s \#$$

Combining FSTs

FST Operations

Figure 3.21 Intersection and composition of transducers.

Stemming ("Poor Man's Morphology")

Input: a word

Output: the word's stem (approximately)

Examples from the Porter stemmer:

- -sses \rightarrow -ss
- -ies \rightarrow i
- $-ss \rightarrow s$

no no

noah noah

nob nob

nobility nobil

nobis nobi

noble nobl

nobleman nobleman

noblemen noblemen

nobleness nobl

nobler nobler

nobles nobl

noblesse nobless

noblest noblest

nobly nobli

nobody nobodi

noces noce

nod nod

nodded nod

nodding nod

noddle noddl

noddles noddl

noddy noddi

nods nod