#### ПРАКТИЧЕСКАЯ РАБОТА №3

#### ТЕМА: «Расчет тележечного конвейера» (4 часа)

*Цель работы:* Ознакомление с устройством и принципом работы тележечных конвейеров, выполнение тягового расчета конвейера.

#### 3.1 Краткие теоретические сведения.

Тележечные литейные конвейеры служат основным транспортным устройством поточно-механизированных и автоматических формовочно-выбивных линий.

Тележечные напольные конвейеры применяются для перемещения опок, полуформ, форм от формовочных автоматов к различным функциональным устройствам в соответствии с технологическим процессом изготовления отливок. В АФЛ обычно используются тележечные конвейеры, аналогичные применяемым при механизированной формовке.

Литейные формы устанавливают на платформы конвейеров различными грузоподъемными средствами (пневматическими подъемниками, талями, кранами) или надвигают (или накатывают при платформах) с помощью пневматических толкателей. С формовочных автоматов формы перегружаются на конвейеры автоматически.

Тележечный конвейер состоит из одной тяговой цепи (k=1) замкнутого контура, к которой прикреплены тележки (платформы), движущиеся по направляющим путям на своих катках.

Для транспортирования тяжелых изделий применяются двух цепные (k=2) тележечные конвейеры.

Различают вертикально-замкнутые и горизонтально-замкнутые конвейеры.

Bертикально-замкнутые тележечные конвейеры применяются в формовочных автоматах и некоторых типах АФЛ.

Горизонтально—замкнутые конвейеры занимают большую площадь, но у этих конвейеров обе ветви могут быть рабочими, применяются в некоторых типах АЛЛ.



Рис. 3.1-Схема вертикально-замкнутого тележечного конвейера

|      |      |                |         |      | МиТОМ.ПТУМЦ.Пр.№3.2022.Отчет |                      |                  |  |  |  |
|------|------|----------------|---------|------|------------------------------|----------------------|------------------|--|--|--|
| Изм. | Лист | № докум.       | Подпись | Дата |                              |                      |                  |  |  |  |
| Выпо | лнил | Усиков Б.В.    |         |      | Практическая работа №3       | Л                    | Лит. Лист Листов |  |  |  |
| Пров | ерил | Астапенко И.В. |         |      | Практическая работа лез      |                      | 11               |  |  |  |
|      |      |                |         |      | «Расчет тележечного          | ГГТУ им. П.О. Сухого |                  |  |  |  |
|      |      |                |         |      | конвейера»                   |                      | гр. МЛ-41        |  |  |  |

## 3.2 Основные узлы тележечного конвейера их устройство и назначение

Вертикально—замкнутый тележечный конвейер (см. рис.6.1) состоит из следующих основных узлов и механизмов: приводной станции 1, натяжной станции 2, гибкого тягового органа - цепи 3 с прикрепленными к ней тележками 4 и сварного основания 5 с направляющими 6.

## 3.2.1 Приводная станция

Назначение приводной станции – сообщить конвейеру движение со скоростью, обеспечивающей заданную производительность.

Как правило, приводная станция состоит из электродвигателя, механических передач и ведущей звездочки или звездочек, если конвейер двух цепной. В качестве механических передач используются зубчатые или червячные редукторы в сочетании с ременными или цепными передачами. В конвейерах с непрерывным движением в состав приводной станции зачастую включают вариатор для плавного регулирования скорости конвейера.

Приводная станция располагается обычно, в конце трассы, в месте, где осуществляется окончательная выгрузка груза.

Основными параметрами приводной станции являются  $P_{\ni \partial}$  — мощность электродвигателя,  $n_{\ni \partial}$  — частота вращения вала электродвигателя,  $n_{3e}$  — частота вращения звездочки, передаточное отношение приводной станции  $u_{IIc}$ :

$$u_{IIc} = \frac{n_{\ni o}}{n_{\ni o}} , \qquad (3.1)$$

Лист

#### 3.2.2 Натяжная станция

Натяжная станция тележечного конвейера служит для создания первоначального натяжения цепи и компенсации вытяжки цепи вследствие ее износа во время эксплуатации.

Натяжные механизмы бывают постоянного действия – грузовые (рис. 3.2) и периодического действия – винтовые (рис. 3.3).

Винтовая натяжная станции (рис.3.3,*a*) состоит из ведомой звездочки 1 (если конвейер двух цепной, то двух звездочек), которую огибает цепь 2, подвижных ползунов 3, 4, в которых устанавливается ось 5 звездочки и винтов 6, 7 натяжного механизма. Винты натяжного устройства, перемещая, ползуны, создают натяжение тяговой цепи (цепей).

Винтовые натяжные устройства просты по конструкции, малогабаритны. Но требуют периодического наблюдения и подтягивания, так как натяжение цепи не остается постоянным, а уменьшается по мере эксплуатации конвейера.

Грузовые натяжные устройства обеспечивают постоянное натяжение за счет свободно висящего груза. Недостатками их являются достаточно большие габариты и достаточно большая масса груза.

|      |      |          |         |      | МиТОМ.ПТУМЦ.Пр.№3.2022.Отчет |
|------|------|----------|---------|------|------------------------------|
| Изм. | Лист | № докум. | Подпись | Дата | , · ·                        |

Величина перемещения ползуна (ход натяжки) принимается на 50-100 *мм* больше двух шагов цепи. Это делается для того, чтобы при большом износе цепи можно было уменьшить ее длину на два соседних звена.

У двух цепных конвейеров на натяжной станции одна из звездочек крепится на оси шпонкой, а вторая свободно вращается на оси. Это обеспечивает равномерное натяжение обоих цепей.

### 3.2.3 Тяговый орган

В качестве тягового органа в тележечных конвейерах используются одна или две тяговые цепи.

По ГОСТ 588-81 изготовляют пластинчатые тяговые цепи: втулочные; роликовые; катковые с ребордой (гребнем).

В тележечных конвейерах в качестве тягового органа часто используют приводные роликовые цепи типа ПРД ГОСТ 13568-97 (см. рисунок 3.4).



Рис. 6.2 - Грузовое натяжное устройство



Рис. 3.3 - Винтовые натяжные станции

Основными параметрами цепи являются:

- $t_{_{\mathcal{U}}}$  шаг цепи (расстояние между осями соседних шарниров),  $\mathit{мм}$ ;
- $Q_p$  разрушающая нагрузка, т.е. нагрузка, при которой цепь рвется,  $\kappa H;$

Значения этих параметров приведены в таблице 3.1.

Подбор стандартной цепи осуществляют следующим образом. Вначале ориентировочно выбирают цепь с наименьшей разрушающей нагрузкой, затем выполняют тяговый расчет конвейера, из которого определяют  $S_{\rm max}$  —

|      |      |          |         |      | МиТОМ.ПТУМЦ.Пр.№3.2022.Отчет |
|------|------|----------|---------|------|------------------------------|
| Изм. | Лист | № докум. | Подпись | Дата | ` '                          |

расчетную нагрузку:  $S_p = S_{\max}$  (при k=1) или  $S_p = S_{\max} \cdot 0,6$  (при k=2). Затем определяют коэффициент запаса прочности цепи:

$$Q_P/S_P \ge [n] , \qquad (3.2)$$

где [n] — коэффициент запаса прочности цепи, обычно принимаемый в пределах (6-15).

Далее, в таблицах ГОСТа выбирают цепь, у которой значение  $Q_p$  близко к расчетному.



Рис. 3.4 - Цепь типа ПРД

Таблица 3.1 - Цепи приводные длиннозвенные типа ПРД по ГОСТ 13568-97, размеры в *мм* 

| Обозначение<br>цепи | $t_{\mathcal{U}}$ | $B_{BH}$ , не менее | d     | $d_1$ | <i>h</i> Не бо | в  | Разрушающая нагрузка, <i>H</i> , не менее | Масса<br>1 м<br>цепи,<br>кг/м |
|---------------------|-------------------|---------------------|-------|-------|----------------|----|-------------------------------------------|-------------------------------|
| ПРД-31,75-22700     | 31,75             | 9,65                | 5.08  | 10,16 | 14,8           | 24 | 22700                                     | 0,60                          |
| ПРД-38,1-29500      | 38,1              | 12,7                | 5,96  | 11,91 | 18,2           | 31 | 29500                                     | 1,10                          |
| ПРД-38-             | 38,0              | 22,0                | 7,95  | 15,88 | 21,3           | 42 | 30000                                     | 1,87                          |
| 30000               | 38,0              | 22,0                | 7,95  | 15,88 | 21,3           | 47 | 40000                                     | 2,10                          |
| ПРД-38-<br>40000    | 50,8              | 15,88               | 7,95  | 15,88 | 24,2           | 39 | 50000                                     | 1,90                          |
| ПРД-50,8-<br>50000  | 63,5              | 19,05               | 9,55  | 19,05 | 30,2           | 46 | 70000                                     | 2,60                          |
| ПРД-63,5-<br>70000  | 76,2              | 25,4                | 11,12 | 22,23 | 36,2           | 57 | 100000                                    | 3,80                          |
| ПРД-76,2-<br>100000 |                   |                     |       |       |                |    |                                           |                               |

Для тяговых пластинчатых цепей профиль зуба звездочки выполняется по ГОСТ 592, а для приводных роликовых цепей по ГОСТ 591.

|      |      |          |         |      |                              | Ли |
|------|------|----------|---------|------|------------------------------|----|
|      |      |          |         |      | МиТОМ.ПТУМЦ.Пр.№3.2022.Отчет |    |
| Изм. | Лист | № докум. | Подпись | Дата | , ,                          | 4  |

#### 6.2.4 Звездочки

Ведущие и натяжные звездочки конвейера (рис. 3.3,*a*) изготовляют методом литья из стали Л35 или фрезеруют из листовой стали. В этом случае используются, среднеуглеродистые стали: сталь 40, сталь 50.

Диаметр делительной окружности звездочки рассчитывают по формуле

$$D_{3e} = \frac{t_u}{Sin(180^0/z)} , \qquad (3.3)$$

где z – число зубьев звездочки.

Минимальное число зубьев звездочки равно 8, принимается для цепей с шагом более 100 *мм*.

Для цепей с небольшими шагами число зубьев звездочки достаточно большое (20-30) *мм*. Ориентировочное число зубьев звездочки можно рассчитать по следующей зависимости:

$$z = \frac{4 \cdot t_T}{t_u} \cdot \tag{3.4}$$

#### 6.2.5 Тележки

Грузонесущим органом тележечных конвейеров является тележка. Размеры, конфигурация и устройство тележек во многом определяются характером транспортируемых грузов. Существует большое количество различных конструкций тележек.

На рис.3.5 в качестве примера приведен эскиз конструкции тележки. Тележка состоит из следующих основных частей: контейнера 1 (в некоторых учебниках применяют термины: короб, корпус или платформа); двух кронштейнов 2, с помощью которых контейнер соединяется с цепью 3 и четырех катков 4, которые катятся по специальным направляющим.

Платформа литейного тележечного конвейера изготавливается из чугуна или стали толщиной 40-120 мм.





Лист

Рис.3.5-Тележка

Кронштейны для соединения контейнера с цепью, обычно, изготавливаются стальными.

Катки изготовляют, обычно, из стали Диаметр катка принимают равным 60 *мм*, ширина катка равна 25 *мм*. Плотность стали:  $\rho = 7.8 \ e/cm^3$ .

Комплекс, состоящий из тягового и несущего органов, называется ходовой частью. Образец ходовой части без катков представлен на рис. 6.6.

|      |      |          |         |      | МиТОМ.ПТУМЦ.Пр.№3.2022.Отчет |
|------|------|----------|---------|------|------------------------------|
| Изм. | Лист | № докум. | Подпись | Дата | ` .                          |

Расстояние между тележками или шаг тележек  $t_{T}$  определяется с помощью зависимости:

$$t_T = \frac{3600 \cdot \mathbf{v} \cdot n}{Z},\tag{3.5}$$

Начертить по макету

где V – скорость транспортирования, M/C;

Z – штучная производительность, форм/час;

n— количество форме на тележке.



Рис. 3.6 – Ходовая часть тележечного конвейера

Окончательное значение  $t_{\scriptscriptstyle T}$  принимается из условия, что шаг тележек должен быть кратен двойному шагу цепи  $t_{\scriptscriptstyle u}$ 

$$t_T = 2 \cdot t_u \cdot i \tag{3.6}$$

где: i – любое целое число.

Зная ориентировочное значение шага тележек  $t_T$ , делят его на  $2t_\mu$  и округляют в сторону увеличения i до целого числа. Затем по формуле (3.6) определяют точное значение шага тележек  $t_T$ , m.

## 3.3 Тяговый расчет конвейера

- 1) В качестве тягового органа можно применять приводную цепь ПРД ГОСТ 13568-75 с шагами от 30 до 70 *мм* (рис.3.4 и таблица 3.1).
- 2) Выбрав конкретную цепь, с определенным шагом, уточняют шаг тележек  $t_T$  по формуле (6.6), затем уточняют скорость транспортирования груза по формуле (3.5).
- 3) Далее рассчитывают погонные нагрузки: от транспортируемого груза  $q_{\mathit{\Gamma}p}$  , от тележки  $q_{\mathit{T}}$  и от цепи  $q_{\mathit{u}}$  .

Масса одного погонного метра цепи  $m_{_{\!\mathit{U}}}$  приводится в ГОСТе (по табл.6.1).

Погонная нагрузка от цепи будет равна, H/M:

$$q_{u} = m_{u} \cdot g \tag{3.7}$$

где: g = 9.81 – ускорение свободного падения,  $M/c^2$ .

|      |      |          |         |      |                              | Лист |
|------|------|----------|---------|------|------------------------------|------|
|      |      |          |         |      | МиТОМ.ПТУМЦ.Пр.№3,2022.Отчет |      |
| Изм. | Лист | № докум. | Подпись | Дата | , .                          | О    |

Погонная нагрузка от транспортируемых изделий, т.е. от груза определяется по формуле, H/м:

$$q_{\Gamma p} = \frac{m_{\Gamma p} \cdot g}{t_{T}} \tag{3.8}$$

где:  $m_{\mathit{\Gamma}p}$  – масса формы с отливками в  $\,\kappa \varepsilon$ , приведена в задании.

По аналогичной формуле определяется погонная нагрузка от тележек, H/M:

$$q_T = \frac{m_T \cdot g}{t_T} \tag{3.9}$$

где:  $m_T$  – масса тележки в  $\kappa 2$ , приведена в задании.

Зная погонные нагрузки, можно переходить к тяговому расчету, т.е. к определению усилий натяжения в характерных точках трассы конвейера.

Расчетная схема трассы простейшего вертикально-замкнутого тележечного конвейера приведена на рисунке 3.7. Трасса, характерная для тележечных конвейеров легкой промышленности, состоит из двух прямолинейных горизонтальных участков (1-2) и (3-4) и двух криволинейных участков (2-3) и (4-1). Такие трассы имеют только 4 характерные точки.



Рис. 3.7 Расчетная схема трассы конвейера

Первая точка, точка в которой натяжение тягового органа минимально  $S_{\min}$  располагается в месте сбега цепи с приводной звездочки.

4) Так как длины заданных конвейеров небольшие (20-40)  $\emph{m}$ ., то величины минимального натяжения в точке 1 (рис.6.7) можно принимать в пределах от  $S_{\min}$  =1000...2500 H.

Используя правило, обхода вдоль трасы по характерным точкам, находят натяжение во всех других характерных точках.

5) Правило обхода трассы по характерным точкам выглядит так:

$$S_i = S_{(i-1)} \pm W_{L, i-(i-1)}$$
 (3.10)

где:  $S_i$  — натяжение цепи в искомой точке трассы, H;

 $S_{(i-1)}$  — натяжение цепи в предыдущей точке трассы, H;

|      |      |          |         |      |                              | Лис |
|------|------|----------|---------|------|------------------------------|-----|
|      |      |          |         |      | МиТОМ.ПТУМЦ.Пр.№3.2022.Отчет | 7   |
| Изм. | Лист | № докум. | Подпись | Дата | , 1                          | /   |

 $W_{L,\,i-(i-1)}$  — суммарная сила сопротивления на горизонтальном участке трассы между точками  $\,i\,$  и  $\,(i-1),\,H\,$ 

Величина потерь берется со знаком плюс, когда обход трассы ведут по ходу движения конвейера и со знаком минус, когда обход совершают против движения конвейера.

6) Учитывая вышеизложенное, натяжение тягового органа в точке 2 будет следующим:

$$S_2 = S_1 + W_{L_1 - L_2} \tag{3.11}$$

где:  $S_1 = S_{\min}$  и принимается, как уже упоминалось 1000 - 1500, H  $W_{L,1-2}$  — сила сопротивления на участке трассы (1—2), H.

7) Участок трассы (1–2) – это прямолинейный горизонтальный участок холостой ветви конвейера. Сила сопротивления на нем определяются так

$$W_{L,1-2} = (q_T + k \cdot q_u) \cdot L \cdot \omega , \qquad (3.12)$$

где  $q_T$  и  $q_u$  – погонные нагрузки от тележки и цепи, H/M;

k – количество тяговых цепей;

L – длина горизонтальной проекции участка (1–2), M;

 $\omega$  –коэффициент сопротивления движению тележки на прямолинейных участках трассы. Зависит от конструкции катков тележки и принимает значения от 0,03 до 0,08.

Если ходовая часть конвейера без катков, а скользит по настилу, то сила сопротивления это сила трения и для участка (1-2) определяется по зависимости:

$$W_{L,1-2} = (q_T + k \cdot q_u) \cdot L \cdot f, \qquad (3.13)$$

где f – коэффициент трения скольжения принимается равным 0,12.

Определяем натяжение цепи в точке 3. Так как участок (2–3) криволинейный, натяжение определятся с помощью коэффициента сопротивления на криволинейных участках  $\omega_I = 1 + \omega$ :

$$S_3 = S_2 \cdot \omega_1. \tag{3.14}$$

Определяем натяжение цепи в точке 4:

$$S_4 = S_3 + W_{L_{3-4}}. (3.15)$$

Участок (3–4) – прямолинейный горизонтальный участок рабочей ветви конвейера. Сопротивление на нем определяется по зависимости:

$$W_{L,3-4} = (q_{\Gamma_p} + q_T + k \cdot q_u) \cdot L \cdot \omega. \tag{3.16}$$

Если же ходовая часть скользит по настилу, то рассчитывается сила трения, т.е. вместо коэффициента сопротивления  $\omega$  используется коэффициент трения скольжения f.

|      |      |          |         |      |                              | Лист |
|------|------|----------|---------|------|------------------------------|------|
|      |      |          |         |      | МиТОМ.ПТУМЦ.Пр.№3,2022.Отчет | 0    |
| Изм. | Лист | № докум. | Подпись | Дата | , .                          | 8    |

### 3.4 Проверка правильности выбора цепи

Определив натяжение во всех характерных точках трассы, убеждаемся, что максимальное натяжение  $S_{\max}$  получилось в точке 4. По расчетной  $S_p$  и разрушающей нагрузке цепи  $Q_p$ , определяют коэффициент запаса прочности цепи [n] (см. формулу (6.2)).

Если коэффициент запаса прочности цепи получается в пределах 5 < [n] < 10, это означает, что цепь выбрана правильно. Если [n] > 10 — цепь не догружена, и для данного конвейера можно принять цепь с меньшей разрушающей нагрузкой, если такова имеется.

Если [n] < 5, цепь работает с перегрузкой, то необходимо заново выполнить тяговый расчет, приняв по таблице 6.1 цепь с большей разрушающей нагрузкой  $Q_n$ .

## 3.5 Определение мощности электродвигателя и передаточного отношения приводной станции

Зная натяжение цепи в характерных точках трассы, определяют окружное усиление  $F_t$  на ведущей звездочке конвейера:

$$F_{t} = (S_{Ha\delta} - S_{C\delta}) \cdot \omega_{1} . \tag{3.17}$$

Для простых трасс (см. рисунок 1, 8):

$$\begin{split} \boldsymbol{S}_{\boldsymbol{H}\!\boldsymbol{a}\boldsymbol{\delta}} &= \boldsymbol{S}_{\text{max}} = \boldsymbol{S}_{4} \; ; \\ \boldsymbol{S}_{\boldsymbol{C}\boldsymbol{\delta}} &= \boldsymbol{S}_{\text{min}} \; = \boldsymbol{S}_{1} \; . \end{split}$$

Вычислив окружную силу  $F_t$ , H и зная скорость транспортирования груза v, m/c можно определить мощность, которую необходимо подводить к валу ведущей звездочки, Bm:

$$P_{3e} = F_t \cdot v. \tag{3.18}$$

Зная мощность на валу приводной звездочки, определяют расчетную мощность электродвигателя, Bm:

$$P_{P_{90}} = \frac{1,25 \cdot P_{36}}{\eta_{TC}} , \qquad (3.19)$$

где  $\eta_{\rm \Pi c}$  — к.п.д. приводной станции. Так как структура приводной станции пока еще неизвестна, то ее к.п.д. можно принимать равным 0,8; 1,25 — коэффициент перегрузки.

Определив  $P_{P_{20}}$ , переходят непосредственно к подбору электродвигателя. Для приводных станций конвейеров рекомендуется применять трехфазные асинхронные электродвигатели. Подбор электродвигателя осуществляют по каталогу, в котором указывается номинальная мощность электродвигателей  $P_{20}$ , соблюдая условие  $P_{20} \ge P_{P_{20}}$ .

|      | ·    |          |         |      | МиТОМ.ПТУМЦ.Пр.№3.2022.Отчет |
|------|------|----------|---------|------|------------------------------|
| Изм. | Лист | № локум. | Полпись | Лата | • •                          |

Частоту вращения вала электродвигателя  $n_{\ni \partial}$ , рекомендуется выбирать в пределах от 750 до 1500 *об/мин*.

Выбрав типоразмер электродвигателя, его мощность и номинальную частоту вращения вала, приступают к определению передаточного отношения приводной станции по формуле (3.1).

Частоту вращения ведущей звездочки  $n_{3e}$  можно определить по формуле, o6/мин:

$$n_{36} = \frac{60 \cdot \mathbf{v}}{\pi \cdot D_{36}} \,, \tag{3.20}$$

где V – скорость транспортирования груза, M/c;

 $D_{3e}$  – диаметр делительной окружности звездочки, M.

Диаметр звездочки определяют по формуле (3.3), рассчитав число зубьев звездочки по выражению (3.4).

Полученные результаты расчетов сводятся в таблицу.

## 3.4 Выполнение работы

- 1. Ознакомиться с теоретическими сведениями.
- 2. Изучить устройств и принцип работы тележечного конвейера.
- 3. Произвести расчет тележечного конвейера.
- 4. Оформить отчет.

## 3.5 Содержание отчета

- 1. Цель работы.
- 2. Теоретические сведения.
- 3. Расчет тележечного конвейера.
- 4. Выводы по работе.

## 3.6 Контрольные вопросы

- 1. Какие типы тележечных конвейеров есть в литейном производстве?
- 2. Назначение и структура приводной станции.
- 3. Назначение и виды натяжных устройств.
- 4. Какие цепи применяют в тележечных конвейерах?
- 5. В чем заключается методика подбора цепи по разрушающей нагрузке?
  - 6. Из каких участков состоит трасса конвейера?
- 7. Где на трассе конвейера располагается точка с минимальным натяжением?
- 8. Как определятся передаточное отношение приводной станции? Какие выводы можно сделать из величины передаточного отношения?
  - 9. Что понимается под термином «погонная нагрузка»?
- 10. Как рассчитываются сопротивления на участках трассы конвейера?
  - 11. Как определяются натяжения в характерных точках трассы?
  - 12. Какова цель выполнения тягового расчета конвейера?

|      |      |          |         |      |                              | Лист |
|------|------|----------|---------|------|------------------------------|------|
|      |      |          |         |      | МиТОМ.ПТУМЦ.Пр.№3.2022.Отчет | 10   |
| Изм. | Лист | № докум. | Подпись | Дата | ` '                          | 10   |

# 3.7 Варианты заданий для выполнения тягового расчета конвейера

Исходные данные для выполнения тягового расчета тележечного конвейера приведены в таблице 3.2.

Трасса конвейера аналогична приведенной на рис.3.1. Точка с минимальным натяжением тягового органа  $S_{\min}$  совпадает с характерной точкой 1.

Верхняя ветвь конвейера участок (3-4) - рабочая, т.е. груженая, а нижняя - участок (1-2) - холостая, т.е. не нагруженная. Количество форме на тележке n=1.

Таблица 3.2-Исходные данные для расчета тележечного конвейера

| Техническая характери-                   |               | · · · · · · | Вариант            | •     |       |
|------------------------------------------|---------------|-------------|--------------------|-------|-------|
| стика                                    | 1             | 2           | 3                  | 4     | 5     |
| Масса формы с отливка-                   | 110/          | 150/        | 170/               | 200/  | 220/  |
| ми $m_{\Gamma_D}$ , (кг)                 | 72/           | 112/        | 136/               | 154/  | 196/  |
| $I_p$ , (i.e.)                           | 56            | 96          | 118                | 122   | 174   |
| Ориентировочный шаг                      |               | 0.00        | 0.07               |       | 4.00  |
| тележек $t_T$ ,(м)                       | 0,72          | 0,80        | 0,85               | 1,00  | 1,00  |
| Размеры тележки                          | 0,68×         | 0,78×       | 0,80×              | 0,94× | 0,96× |
| $l_T \times b_T \times c_T$ , (M)        | $0,60 \times$ | 0,75×       | $0.80 \times 0.10$ | 0,90× | 0,98× |
|                                          | 0,06          | 0,10        | 0,82 × 0,10        | 0,10  | 0,10  |
| Скорость транспортиро-                   | 0,60/         | 0,75/       | 0,70/              | 0,80/ | 0,50/ |
| вания форм $V$ , (м/мин)                 | 0,42/         | 0,85/       | 0,95/              | 1,04/ | 0,88/ |
| 1 1                                      | 054           | 087         | 0,82               | 0,78  | 0,66  |
| Высота конвейера $h$ ,                   | 0,85          | 0,80        | 0,90               | 0,70  | 0,75  |
| (M)                                      | 0,03          | 0,00        | 0,50               | 0,70  | 0,73  |
| Длина конвейера $L$ , $(M)$              | 20            | 25          | 30                 | 35    | 40    |
| Масса тележки $m_{\scriptscriptstyle T}$ | 110           | 0.5         | 122                | 07    | 110   |
| (кг)                                     | 112           | 85          | 122                | 97    | 118   |

| Изм. | Лист | № докум. | Подпись | Дата |
|------|------|----------|---------|------|