ENSIAS A.U. 2021/2022

TP Transmission de données : TP 3

Dans ce TP vous allez utiliser l'outil Simulink de Matlab pour réaliser une étude de la modulation MDF-2 ou BFSK.

I-Domaine Temporel:

1. Réalisez sous Simulink le schéma suivant :

- 2. Visualisez les signaux en entrée et en sortie du modulateur BFSK après une simulation de 0.005 secondes.
- 3. Vérifiez que ce que vous obtenez est conforme aux définitions vues en cours, c'est à dire, que c'est bien une modulation BFSK.

II-Domaine fréquentiel:

1. Réalisez sous Simulink le diagramme suivant :

2. Affichez la DSP du signal modulé après une simulation de 15 secondes.

- 3. Changez la fréquence de la porteuse et vérifiez que le spectre glisse avec ce changement.
 - 4. Agrandissez la séparation entre les fréquences qui codent 0 et 1 et vérifiez que la largeur de bande du signal modulé s'étale.

 Conclure.

Paramètres de blocs et de la simulation

Le bloc Bernoulli Binary Generator :

Probability of a zero: 0.5.

Sample time: 1/1200.

Le bloc M-FSK Modulator Passband:

M-ary number: 2.

Frequency separation: 1000.

Symbol period : 1/1200 la même que 'sample time' du générateur de Bernoulli

Baseband samples per symbol: 5.

Carrier frequency: 10000...

Output sample time: 1/30000.

Le bloc Spectrum Scope:

Buffer input à cocher

Buffer size: 1024.

Buffer overlap: 256.

Number of spectral averages : 20.

Axis properties à cocher

Minimum Y-limit: -40.

Maximum Y-limit: 20.