ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ

Χειμερινό εξάμηνο 2024-25 (ΜΥΥ104-ΠΛΥ104)

Κωνσταντίνος Σκιάνης Επίκουρος Καθηγητής

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

- 🗹 Ορισμοί Ιδιότητες Υπόχωροι
- 🗹 Γραμμική Εξάρτηση Ανεξαρτησία
- 🗹 Βάση Διάσταση
- 🗹 Γραμμικές Απεικονίσεις Αλλαγή Βάσης
- 🗹 Εσωτερικό Γινόμενο Ορθογωνιότητα

Ορισμός

Καρτεσιανό γινόμενο (Cartesian product) δύο συνόλων V και W καλείται ένα νέο σύνολο που αποτελείται από όλα τα διατεταγμένα ζεύγη στοιχείων των V και W, αντίστοιχα,

$$V \times W = \{(v, w); v \in V, w \in W\}.$$

Συμβολίζουμε,

$$V^n = \underbrace{V \times V \times \cdots \times V}_{n \text{ porfic}} = \{(v_1, v_2, \dots, v_n); v_i \in V, i = 1, 2, \dots, n\}.$$

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z); x, y, z \in \mathbb{R}\}$$

Ορισμός

Διανυσματικός χώρος (vector space ή linear space) επί του $\mathbb F$ (ή $\mathbb F$ -δ.χ.) καλείται ένα μη κενό σύνολο $V \neq \emptyset$ εφοδιασμένο με δύο πράξεις:

🚺 Πρόσθεση

$$+:V imes V o V$$
 , $(u,v)\mapsto u+v$, me tig akóloubeg idióthteg $orall\, u,v,w\in V$:

- (α) u + v = v + u (αντιμεταθετική)
- (β) (u + v) + w = u + (v + w) (προσεταιριστική)
- (γ) Υπάρχει ουδέτερο στοιχείο $\mathcal{O} \in V$ με $u + \mathcal{O} = u$
- (δ) Για κάθε $u \in V$ υπάρχει αντίθετο στοιχείο $-u \in V$ με $u + (-u) = \mathcal{O}$

2 Βαθμωτός Πολλαπλασιασμός

 $\cdot: \mathbb{F} \times V \to V$, $(k,v) \mapsto k \cdot v$, με τις ακόλουθες ιδιότητες $\forall \, u,v \in V$, $\, k_1,k_2 \in \mathbb{F}$:

- (α) $k_1(u+v)=k_1 u+k_1 v$ (επιμεριστική)
- (β) $(k_1 + k_2) u = k_1 u + k_2 u$ (επιμεριστική)
- $(\gamma) (k_1 k_2) u = k_1 (k_2 u)$
- (δ) Υπάρχει ουδέτερο στοιχείο $1 \in \mathbb{F}$ με $1 \, u = u$

Τα στοιχεία ενός δ.χ. V καλούνται διανύσματα (vectors).

Διάφορα γνωστά μας σύνολα αριθμών πληρούν τις παραπάνω ιδιότητες, π.χ. το $\mathbb R$ ή το $\mathbb C$ επί του $\mathbb R$. Αλλά δεν είναι μόνο αυτά!

Παρατηρήσεις

- f 1 Ένας δ.χ. V δεν είναι απαραίτητο να έχει στοιχεία αριθμούς.
- ② Οι πράξεις στους δ.χ. (πρόσθεση, πολλαπλασιασμός) δεν είναι απαραίτητα οι κλασσικές πράξεις των αριθμών. Εξαρτώνται κάθε φορά από τον δ.χ. V.
- ightharpoonup Ο χώρος $M_{m \times n}(\mathbb{F})$ των $m \times n$ πινάκων με στοιχεία από το \mathbb{F} εφοδιασμένος με τις πράξεις της πρόσθεσης πινάκων και του πολλαπλασιαμού αριθμού με πίνακα είναι \mathbb{F} -δ.χ.

Πράγματι, έστω οι πίνακες $A,B,C\in M_{m\times n}(\mathbb{F})$, και ο αντίστοιχος μηδενικός πίνακας $\mathcal{O}\in M_{m\times n}(\mathbb{F})$. Τότε από τις ιδιότητες της πρόσθεσης πινάκων ισχύουν οι ακόλουθες ιδιότητες:

- (α) A+B=B+A
- (β) (A + B) + C = A + (B + C)
- (γ) $A + \mathcal{O} = A$
- (δ) $A+(-A)=\mathcal{O}$ όπου $-A\in M_{m imes n}(\mathbb{F})$ ο αντίθετος του A

Επομένως επαληθεύονται οι ιδιότητες $1.(\alpha)-1.(\delta)$ του ορισμού του $\delta.\chi$. που αφορούν στην πρόσθεση.

Επιπλέον, για οποιουσδήποτε πίνακες, $A, B \in M_{m \times n}(\mathbb{F})$ και για οποιαδήποτε $k_1, k_2 \in \mathbb{F}$, ισχύουν οι ακόλουθες ιδιότητες από τον πολλαπλασιασμό αριθμού με πίνακα:

- (α) $k_1(A + B) = k_1 A + k_1 B$
- (β) $(k_1 + k_2) A = k_1 A + k_2 A$
- $(\gamma) (k_1 k_2) A = k_1 (k_2 A)$
- (δ) 1A = A

Επομένως επαληθεύονται οι ιδιότητες $2.(\alpha)$ - $2.(\delta)$ του ορισμού του $\delta.\chi$. που αφορούν στον βαθμωτό πολλαπλασιασμό.

Άρα ο χώρος $M_{m\times n}(\mathbb{F})$ των $m\times n$ πινάκων με στοιχεία από το \mathbb{F} εφοδιασμένος με τις πράξεις της πρόσθεσης πινάκων και του πολλαπλασιασμού αριθμού με πίνακα είναι $\delta.\chi$. επί του \mathbb{F} .

Ιδιότητες

Έστω V ένας \mathbb{F} -δ.χ. και $k \in \mathbb{F}$, $v \in V$. Τότε:

- $0 v = \mathcal{O}_V$
- **3** (-k) v = k (-v) = -(k v)

Ορισμός

Διανυσματικός υπόχωρος (vector subspace) ενός \mathbb{F} -δ.χ. V καλείται κάθε μη κενό υποσύνολο $U\subseteq V$ που είναι και το ίδιο \mathbb{F} -δ.χ. ως προς τις πράξεις του V.

Πρόταση

Aν V ένας $\mathbb F$ -δ.χ. και $U\subseteq V$, $U\neq\emptyset$, τότε το U είναι υπόχωρος του V <u>ανν</u> \forall $u,v\in U$, \forall $k,\ell\in\mathbb F$, ισχύει ότι:

$$k u + \ell v \in U. \tag{1}$$

ightharpoonup Ο χώρος $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}=\{(x,y);\,x,y\in\mathbb{R}\}$, εφοδιασμένος με τις γνωστές πράξεις της πρόσθεσης διανυσμάτων και του πολλαπλασιασμού αριθμού με διάνυσμα, είναι \mathbb{R} -δ.χ. (προσπαθήστε να το αποδείξετε με χρήση του ορισμού). Θα ελέγξουμε αν τα σύνολα,

(a)
$$U_1 = \{(u, u); u \in \mathbb{R}\},$$
 (b) $U_2 = \{(1, u); u \in \mathbb{R}\},$

είναι υπόχωροί του.

(α). Ας εξετάσουμε αν είναι υπόχωρος το σύνολο U_1 . Θα χρησιμοποιήσουμε την Σχέση (1) του θεωρήματος. Έστω (u_1,u_1) και (u_2,u_2) , δύο διανύσματα του U_1 , με $u_1,u_2\in\mathbb{R}$. Έστω και $k,\ell\in\mathbb{R}$. Τότε έχουμε:

$$k(u_1, u_1) + \ell(u_2, u_2) = (k u_1, k u_1) + (\ell u_2, \ell u_2) = (k u_1 + \ell u_2, k u_1 + \ell u_2) = (v, v),$$

με v=k $u_1+\ell$ $u_2\in\mathbb{R}$. Άρα k $(u_1,u_1)+\ell$ $(u_2,u_2)\in U_1$ και συνεπώς το U_1 είναι υπόχωρος του \mathbb{R}^2 . Γεωμετρικά, ο υπόχωρος U_1 είναι η ευθεία που απεικονίζεται στο ακόλουθο σχήμα:

(β). Αντίστοιχα εξετάζουμε και το σύνολο U_2 . Έστω $(1,u_1)$ και $(1,u_2)$, δύο διανύσματα του U_2 , με $u_1,u_2\in\mathbb{R}$. Έστω και $k,\ell\in\mathbb{R}$. Τότε έχουμε:

$$k(1, u_1) + \ell(1, u_2) = (k, k u_1) + (\ell, \ell u_2) = (k + \ell, k u_1 + \ell u_2).$$

Όμως, το διάνυσμα που προέκυψε θα είναι στοιχείο του U_2 μόνο όταν ισχύει η σχέση:

$$k + \ell = 1$$
,

και όχι για όλα τα $k,\ell\in\mathbb{R}$, όπως απαιτεί το θεώρημα. Άρα το σύνολο U_2 δεν είναι υπόχωρος του \mathbb{R}^2 . Γεωμετρικά, το U_2 είναι η ευθεία που απεικονίζεται στο ακόλουθο σχήμα:

Εναλλακτικά, θα μπορούσε κάποιος να φτάσει στο ίδιο συμπέρασμα αν παρατηρούσε ότι το σύνολο U_2 δεν περιέχει το ουδέτερο στοιχείο (0,0) (προσπαθήστε να το δείξετε μέσω του ορισμού).

Πρόταση

Έστω U, W, υπόχωροι ενός \mathbb{F} -δ.χ. V. Τότε ισχύουν τα ακόλουθα:

- **1** Το σύνολο $U + W = \{u + w; u \in U, w \in W\}$ είναι υπόχωρος του V.
- ② Το σύνολο $U \cap W = \{v; v \in U, v \in W\}$ είναι υπόχωρος του V.

Ορισμός

Έστω U, W, υπόχωροι ενός \mathbb{F} -δ.χ. V. Ο V καλείται ενθύ άθροισμα των υποχώρων U, W, αν ισχύει ότι:

$$V = U + W, \qquad U \cap W = \{\mathcal{O}_V\}.$$

Σε αυτή την περίπτωση ο υπόχωρος U καλείται **συμπλήρωμα** του W ως προς τον δ.χ. V και αντίστοιχα ο W είναι το συμπλήρωμα του U.

Προσοχή!

Η ένωση δύο υποχώρων δεν είναι πάντα υπόχωρος! Μπορείτε να σκεφτείτε ένα αντιπαράδειγμα?

Ορισμός

Γραμμικός συνδυασμός (linear combination) των διανυσμάτων v_1, v_2, \ldots, v_n , ενός \mathbb{F} -δ.χ. V καλείται ένα στοιχείο $v \in V$ αν υπάρχουν συντελεστές $k_1, k_2, \ldots, k_n \in \mathbb{F}$, τέτοιοι ώστε,

$$v = k_1 v_1 + k_2 v_2 + \cdots + k_n v_n.$$

Έστω τα ακόλουθα διανύσματα του \mathbb{R}^2 ,

$$\{v_1,v_2,v_3\}=\{(1,1),(0,1),(1,0)\}\,.$$

Τότε το διάνυσμα v = (3,4) μπορεί να γραφτεί ως,

$$v = 2 v_1 + 2 v_2 + v_3 = 2(1,1) + 2(0,1) + (1,0) = (3,4),$$

και άρα είναι γραμμικός συνδυασμός των v_1, v_2, v_3 , με συντελεστές $k_1=2$, $k_2=2$, $k_3=1$.

Ο γραμμικός συνδυασμός δεν είναι απαραίτητα μοναδικός. Εναλλακτικά, το v=(3,4) θα μπορούσε να γραφτεί και ως,

$$v = 5 v_1 - v_2 - 2 v_3.$$

Ορισμός

Γραμμική θήκη (linear span ή linear hull) ενός υποσυνόλου διανυσμάτων $K = \{v_1, v_2, \dots, v_n\} \subseteq V$, $K \neq \emptyset$, του \mathbb{F} -δ.χ. V, καλείται το σύνολο,

$$\mathrm{span}(K) = \{k_1 \, v_1 + k_2 \, v_2 + \cdots + k_n \, v_n\},\,$$

όλων των γραμμικών συνδυασμών των διανυσμάτων του Κ.

Αν επιπλέον κάθε στοιχείο του V είναι και στοιχείο του $\mathrm{span}(K)$, τότε λέμε ότι το K παράγει τον V ή, εναλλακτικά, ότι αποτελεί σύνολο γεννητόρων του V.

Προσοχή!

Παρατηρήστε ότι, σύμφωνα με τον ορισμό, η γραμμική θήκη είναι υπόχωρος του V.

► Έστω το σύνολο,

$$\mathcal{K} = \{\underbrace{(1,-1,-2)}_{\nu_1}, \underbrace{(5,-4,-10)}_{\nu_2}, \underbrace{(-3,1,0)}_{\nu_3}\} \subset \mathbb{R}^3.$$

Σύμφωνα με τον ορισμό, η κλειστή θήκη του Κ είναι το σύνολο,

$$\begin{aligned} \operatorname{span}(K) &= \{k_1 \ v_1 + k_2 \ v_2 + k_3 \ v_3; \ k_1, k_2, k_3 \in \mathbb{R}\} = \\ &= \{(k_1 + 5 \ k_2 - 3 \ k_3, \ -k_1 - 4 \ k_2 + k_3, \ -2 \ k_1 - 10 \ k_2); \ k_1, k_2, k_3 \in \mathbb{R}\} \end{aligned}$$

Για να ελέγξουμε αν το διάνυσμα v=(-4,3,14) ανήκει στο $\mathrm{span}(K)$, θα πρέπει να ελέγξουμε αν υπάρχουν κατάλληλα $k_1,k_2,k_3\in\mathbb{R}$, τέτοια ώστε το v να γράφεται ως γραμμικός συνδυασμός των διανυσμάτων v_1,v_2,v_3 , του K,

$$v = k_1 v_1 + k_2 v_2 + k_3 v_3$$
.

Δηλαδή, ισοδύναμα, θα πρέπει να βρούμε (αν υπάρχουν) κατάλληλα k_1,k_2,k_3 που να επαληθεύουν το σύστημα:

$$\begin{cases} k_1 + 5k_2 - 3k_3 = -4 \\ -k_1 - 4k_2 + k_3 = 3 \\ -2k_1 - 10k_2 = 14 \end{cases} \Leftrightarrow \cdots \Leftrightarrow \begin{cases} k_1 = 8 \\ k_2 = -3 \\ k_3 = -1 \end{cases}$$

▶ Έστω το σύνολο,

$$E=\{\underbrace{(1,0,0)}_{\nu_1},\underbrace{(0,1,0)}_{\nu_2}\}\subset\mathbb{R}^3.$$

 $\Theta \alpha$ ελέγξουμε αν παράγει τον $\delta.\chi.$ $\mathbb{R}^3.$

Για να παράγεται ο \mathbb{R}^3 από το E, θα πρέπει κάθε διάνυσμα $(x,y,z)\in\mathbb{R}^3$, να γράφεται ως γραμμικός συνδυασμός των v_1 , v_2 . Δηλαδή να υπάρχουν κατάλληλα $k_1,k_2\in\mathbb{R}$, τέτοια ώστε,

$$(x, y, z) = k_1 (1, 0, 0) + k_2 (0, 1, 0) \Leftrightarrow \begin{cases} x = k_1 \\ y = k_2 \\ z = 0 \end{cases}$$

Άρα το παραπάνω σύστημα έχει λύσεις μόνο όταν z=0. Προφανώς τα (x,y,z) με $z\neq 0$ δεν μπορούν να δοθούν ως γραμμικοί συνδυασμοί των v_1,v_2 . Άρα το σύνολο E δεν παράγει τον δ.χ. \mathbb{R}^3 .

Πρόταση

Αν V ένας \mathbb{F} -δ.χ. και $K=\{v_1,v_2,\ldots,v_n\}\subseteq V,\ K\neq\emptyset$, τότε το σύνολο $\mathrm{span}(K)$ είναι ο μικρότερος υπόχωρος του V που περιέχει τα διανύσματα v_1,v_2,\ldots,v_n . Δηλαδή, για κάθε άλλο υπόχωρο W που περιέχει τα διανύσματα αυτά, ισχύει ότι,

$$\operatorname{span}(K) \subseteq W$$
.

Ορισμός

Γραμμικώς ανεξάρτητα (linearly independent) καλούνται τα διανύσματα v_1, v_2, \ldots, v_n , ενός \mathbb{F} -δ.χ. V, αν ισχύει ότι:

$$k_1 v_1 + k_2 v_2 + \cdots + k_n v_n = \mathcal{O}_n \iff k_1 = k_2 = \cdots = k_n = 0,$$

με $k_1,k_2,\ldots,k_n\in\mathbb{F}$. Σε αντίθετη περίπτωση, τα διανύσματα καλούνται **γραμμικώς εξαρτημένα**. Αντίστοιχα, το σύνολο $K=\{v_1,v_2,\ldots,v_n\}$ καλείται γραμμικώς ανεξάρτητο ή εξαρτημένο αν τα v_1,v_2,\ldots,v_n , είναι γραμμικώς ανεξάρτητα ή εξαρτημένα.

Ιδιότητες

Τα διανύσματα v₁, v₂,..., v_n, είναι γραμμικώς εξαρτημένα αν κάποιο από αυτά μπορεί να γραφτεί ως γραμμικός συνδυασμός των υπολοίπων. Δηλαδή αν υπάρχει κάποιο v_i τέτοιο ώστε,

$$v_i = k_1 v_1 + \cdots + k_{i-1} v_{i-1} + k_{i+1} v_{i+1} + \cdots + k_n v_n$$

με κατάλληλα k_j .

- Το κενό σύνολο Ø θεωρείται πάντα γραμμικώς ανεξάρτητο.
- f 3 Το μηδενικό διάνυσμα \mathcal{O}_V είναι πάντα γραμμικώς εξαρτημένο.
- Κάθε μη-μηδενικό διάνυσμα μόνο του είναι γραμμικώς ανεξάρτητο.
- **Φ** Αν το σύνολο K είναι γραμμικώς ανεξάρτητο, τότε και κάθε υποσύνολο M με $M \subseteq K$ είναι γραμμικώς ανεξάρτητο.

▶ Να ελέγξετε ως προς την γραμμική εξάρτηση τα διανύσματα,

$$A_1=\left(\begin{array}{cc}1&2\\1&1\end{array}\right),\qquad A_2=\left(\begin{array}{cc}3&-1\\10&2\end{array}\right),\qquad A_3=\left(\begin{array}{cc}1&-5\\8&0\end{array}\right),$$

του δ.χ. $M_{2\times 2}(\mathbb{R})$.

Σύμφωνα με τον ορισμό, τα A_1,A_2,A_3 , είναι γραμμικώς ανεξάρτητα εφόσον για $k_1,k_2,k_3\in\mathbb{R}$ ισχύει ότι,

$$k_1 A_1 + k_2 A_2 + k_3 A_3 = \mathcal{O}_{2 \times 2} \iff k_1 = k_2 = k_3 = 0,$$

Έχουμε:

$$k_{1} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} + k_{2} \begin{pmatrix} 3 & -1 \\ 10 & 2 \end{pmatrix} + k_{3} \begin{pmatrix} 1 & -5 \\ 8 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} k_{1} & + & 3k_{2} & + & k_{3} & = & 0 \\ 2k_{1} & - & k_{2} & - & 5k_{3} & = & 0 \\ k_{1} & + & 10k_{2} & + & 8k_{3} & = & 0 \\ k_{1} & + & 2k_{2} & & = & 0 \end{cases}$$

Τώρα ελέγχουμε αν το σύστημα που προέκυψε έχει λύσεις. Πρόκειται για ομογενές σύστημα 4×3 και το επιλύουμε με χρήση επαυξημένου πίνακα:

$$(A|b) = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 2 & -1 & -5 & 0 \\ 1 & 10 & 8 & 0 \\ 1 & 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} (-2) & (-1) \\ 1 & 1 & 0 & 8 \\ 1 & 2 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & -7 & -7 & 0 \\ 0 & 7 & 7 & 0 \\ 0 & -1 & -1 & 0 \end{pmatrix} \stackrel{\div}{\div} (-7) \sim$$

$$\sim \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} (-1) & (-3) \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Ο πίνακας είναι σε ανηγμένη κλιμακωτή μορφή και παρατηρούμε ότι,

$$rank(A|b) = rank(A) = 2 \neq 3 = n,$$

άρα το σύστημα έχει άπειρες λύσεις και όχι μόνο την τετριμμένη $k_1=k_2=k_3=0.$ Συνεπώς τα A_1,A_2,A_3 , είναι γραμμικώς εξαρτημένα. \blacksquare

Ορισμός

① Χώρος γραμμών ενός πίνακα $A \in M_{m \times n}(\mathbb{F})$ καλείται ο υπόχωρος του δ.χ. \mathbb{F}^n που παράγεται από τις γραμμές r_1, r_2, \ldots, r_m , του A,

$$R(A) = \operatorname{span}(r_1, r_2, \ldots, r_m).$$

② Χώρος στηλών ενός πίνακα $A \in M_{m \times n}(\mathbb{F})$ καλείται ο υπόχωρος του δ.χ. \mathbb{F}^m που παράγεται από τις στήλες c_1, c_2, \ldots, c_n , του A,

$$C(A) = \operatorname{span}(c_1, c_2, \ldots, c_n).$$

Προφανώς ισχύει ότι $R(A) = C(A^T)$.

Πρόταση

Έστω ο πίνακας $A \in M_{m \times n}(\mathbb{F})$. Τότε ισχύει ότι:

- Γραμμοϊσοδύναμοι πίνακες έχουν ίδιους χώρους γραμμών.
- ② Αν $B\in M_{m\times n}(\mathbb{F})$ η κλιμακωτή μορφή του A, τότε οι μη-μηδενικές γραμμές του B είναι γραμμικώς ανεξάρτητα διανύσματα του \mathbb{F}^n .

Ορισμός

Βάση (base) ενός \mathbb{F} -δ.χ. V καλείται ένα υποσύνολό του $B\subseteq V$, αν ισχύουν οι ακόλουθες ιδιότητες:

- **①** Το B παράγει τον V, δηλαδή $V = \operatorname{span}(B)$.
- Το Β είναι γραμμικώς ανεξάρτητο.

To σύνολο
$$B=\{\underbrace{(1,0,0)}_{e_1},\underbrace{(0,1,0)}_{e_2},\underbrace{(0,0,1)}_{e_3}\}$$
 είναι μια βάση του $\mathbb{R}^3.$

Πράγματι, οποιοδήποτε διάνυσμα $(x,y,z)\in\mathbb{R}^3$, γράφεται ως:

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = x e_1 + y e_2 + z e_3,$$

άρα το B παράγει τον \mathbb{R}^3 . Επιπλέον:

$$k_1 \; e_1 + k_2 \; e_2 + k_3 \; e_3 = \mathcal{O} \; \Leftrightarrow \; (k_1, 0, 0) + (0, k_2, 0) + (0, 0, k_3) = (0, 0, 0) \; \Leftrightarrow \; k_1 = k_2 = k_3 = 0$$

Άρα το B είναι και γραμμικώς ανεξάρτητο, συνεπώς είναι βάση του $\mathbb{R}^3.$

Προτάσεις

- Φ Ένα πεπερασμένο σύνολο $B \subseteq V$ είναι βάση του \mathbb{F} -δ.χ. V ανν κάθε $v \in V$ γράφεται ως μοναδικός γραμμικός συνδυασμός διανυσμάτων του B. Οι συντελεστές αυτού του γραμμικού συνδυασμού καλούνται συνιστώσες του V ως προς την βάση B.
- ② Αν $B=\{v_1,v_2,\ldots,v_n\}$ μια βάση του $\mathbb F$ -δ.χ. V, τότε και κάθε άλλη βάση του V θα αποτελείται επίσης από n στοιχεία.

Ορισμός

Διάσταση (dimension) ενός \mathbb{F} -δ.χ. V καλείται το πλήθος των στοιχείων μιας βάσης του V και συμβολίζεται,

 $\dim_{\mathbb{F}} V$ $\acute{\eta}$ $\dim V$.

Aν $V = \{\mathcal{O}_V\}$, τότε dim V = 0.

▶ Να δειχθεί ότι το σύνολο,

$$E = \left\{\underbrace{\left(\begin{array}{cc}1&0\\0&0\end{array}\right)}_{E_1},\,\underbrace{\left(\begin{array}{cc}0&1\\0&0\end{array}\right)}_{E_2},\,\underbrace{\left(\begin{array}{cc}0&0\\1&0\end{array}\right)}_{E_3},\,\underbrace{\left(\begin{array}{cc}0&0\\0&1\end{array}\right)}_{E_4}\right\}$$

είναι βάση του δ.χ. $M_2(\mathbb{R})$ και να δοθεί η διάστασή του.

Έστω το τυχαίο διάνυσμα (πίνακας),

$$A = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in M_2(\mathbb{R}), \quad x, y, z, w \in \mathbb{R}.$$

Τότε προφανώς ισχύει ότι,

$$A = \begin{pmatrix} x & y \\ z & w \end{pmatrix} = x \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + w \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} =$$

$$= x E_1 + y E_2 + z E_3 + w E_4.$$

Άρα το E παράγει τον $M_2(\mathbb{R})$.

Επιπλέον, το Ε είναι γραμμικώς ανεξάρτητο. Πράγματι,

$$\textit{k}_1 \, \textit{E}_1 + \textit{k}_2 \, \textit{E}_2 + \textit{k}_3 \, \textit{E}_3 + \textit{k}_4 \, \textit{E}_4 = \mathcal{O}_2 \; \Leftrightarrow \;$$

$$k_1 \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \; + \; k_2 \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) \; + \; k_3 \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \; + \; k_4 \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \; \Leftrightarrow \;$$

$$\left(\begin{array}{cc} k_1 & 0 \\ 0 & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & k_2 \\ 0 & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & 0 \\ k_3 & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & 0 \\ 0 & k_4 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) \iff \left\{\begin{array}{cc} k_1 = 0 \\ k_2 = 0 \\ k_3 = 0 \\ k_4 = 0 \end{array}\right.$$

Άρα, εκ του ορισμού, έπεται ότι το σύνολο E είναι και γραμμικώς ανεξάρτητο. Επομένως αποτελεί βάση του δ.χ. $M_2(\mathbb{R})$. Επιπλέον, αφού η βάση E αποτελείται από 4 στοιχεία, έχουμε ότι,

$$\dim M_2(\mathbb{R})=4. \quad \blacksquare$$

Προσπαθήστε να γενικεύσετε τα παραπάνω και να δείξετε ότι,

dim
$$M_{m\times n}(\mathbb{R})=m\times n$$
.

Μεθοδολογία ΕΥΡΕΣΗΣ ΒΑΣΗΣ

Για να βρούμε μια βάση του δ.χ. $\mathrm{span}(S)$ που παράγεται από ένα σύνολο $S=\{s_1,s_2,\ldots,s_n\}$ διανυσμάτων του \mathbb{R}^m , ακολουθούμε τα εξής βήματα:

- 1 Σχηματίζουμε τον πίνακα $A = \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix}$ που περιέχει σε γραμμές τα διανύσματα του S οπότε και $\operatorname{span}(S) = \operatorname{span}(A)$
 - διανύσματα του S, οπότε και $\mathrm{span}(S)=\mathrm{span}(A)$.
- Κάνουμε γραμμοπράξεις στον Α ώστε να καταλήξουμε στην κλιμακωτή μορφή του, έστω Β. Από γνωστή πρόταση, αφού οι πίνακες Α και Β είναι γραμμοϊσοδύναμοι, θα έχουν ίδιους χώρους γραμμών, δηλαδή

$$\operatorname{span}(S) = \operatorname{span}(A) = \operatorname{span}(B).$$

③ Οι μη-μηδενικές γραμμές του κλιμακωτού πίνακα B αποτελούν μια βάση του $\mathrm{span}(B)$, άρα και των $\mathrm{span}(A)$, $\mathrm{span}(S)$. Επιπλέον,

$$\dim \, \mathrm{span}(S) = \dim \, \mathrm{span}(A) = \dim \, \mathrm{span}(B) = \mathrm{rank}(B).$$

► Έστω το σύνολο,

$$S = \{\underbrace{(1,2,4,-2)}_{\nu_1}, \underbrace{(2,3,1,-9)}_{\nu_2}, \underbrace{(3,4,-2,-16)}_{\nu_3}\}.$$

Να βρεθεί μια βάση και η διάσταση του $\mathrm{span}(S)$.

Βάζουμε τα διανύσματα v_1, v_2, v_3 , σε γραμμές σε ένα πίνακα A και τον φέρνουμε σε κλιμακωτή μορφή:

$$A = \begin{pmatrix} 1 & 2 & 4 & -2 \\ 2 & 3 & 1 & -9 \\ 3 & 4 & -2 & -16 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -3 \\ 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 4 & -2 \\ 0 & -1 & -7 & -5 \\ 0 & -2 & -14 & -10 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} \sim$$

$$\begin{pmatrix} 1 & 2 & 4 & -2 \\ 0 & 1 & 7 & 5 \\ 0 & -2 & -14 & -10 \end{pmatrix} \quad (2) \quad \sim \begin{pmatrix} 1 & 2 & 4 & -2 \\ 0 & 1 & 7 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B \quad (\text{κλιμακωτή μορφή})$$

Σύμφωνα με την μεθοδολογία μας, το σύνολο των μη-μηδενικών γραμμών του B, δηλαδή το,

$$S_B = \{(1,2,4,-2), (0,1,7,5)\},\$$

αποτελεί μια βάση του span(S) και επομένως,

$$\dim \operatorname{span}(S) = 2.$$

Πρόταση

Έστω V ένας \mathbb{F} -δ.χ. με dim V=n και ένα υποσύνολο $K\subseteq V$, $K\neq\emptyset$, με πληθάριθμο |K|=m. Τότε:

- (a) Aν m > n, το K είναι γραμμικώς εξαρτημένο.
- (b) Av m < n, to K δεν παράγει τον V.

Με απλά λόγια...

Η διάσταση ενός δ.χ. δίνει το μέγιστο πλήθος γραμμικώς ανεξάρτητων διανυσμάτων που μπορεί να περιέχει οποιοδήποτε υποσύνολο του δ.χ. και, ταυτόχρονα, δίνει το ελάχιστο πλήθος διανυσμάτων που απαιτούνται για να παράγεται ο χώρος.

Πρόταση

Έστω V ένας \mathbb{F} -δ.χ. με $\dim V=n$ και ένα υποσύνολο,

$$K = \{v_1, v_2, \ldots, v_p\} \subseteq V,$$

γραμμικώς ανεξάρτητο υποσύνολο (υποχρεωτικά $p\leqslant n$). Τότε υπάρχει βάση B του V που περιέχει το K.

Με απλά λόγια...

Κάθε γραμμικώς ανεξάρτητο υποσύνολο ενός δ.χ. περιέχεται σε μια βάση του.

Πρόταση

Έστω V ένας \mathbb{F} -δ.χ. με dim V=n. Τότε ένα υποσύνολο,

$$K = \{v_1, v_2, \ldots, v_n\} \subseteq V$$
,

είναι γραμμικώς ανεξάρτητο ανν παράγει τον V.

Με απλά λόγια...

Αν η διάσταση του δ.χ. είναι n, τότε κάθε υποσύνολο με n γραμμικώς ανεξάρτητα διανύσματα είναι και βάση του. Επίσης, και κάθε σύνολο με n στοιχεία που παράγει τον χώρο είναι και βάση του.

Πρόταση

Έστω V ένας \mathbb{F} -δ.χ. με dim V=n και U ένας υπόχωρος του V με dim U=m. Τότε:

- **①** dim U ≤ dim V

Με απλά λόγια...

Η διάσταση ενός δ.χ. είναι πάντα μεγαλύτερη ή ίση από την διάσταση κάθε υπόχωρού του και η ισότητα ισχύει μόνο αν ο υπόχωρος ταυτίζεται με τον δ.χ.

Προτάσεις

- Φ Αν $\{v_1, v_2, \ldots, v_n\}$ είναι n διανύσματα του \mathbb{R}^n και $A = (v_1 \ v_2 \ \ldots \ v_n)$ ο πίνακας που τα περιέχει σε στήλες, τότε τα διανύσματα αυτά είναι μια βάση του \mathbb{R}^n ανν $\det A \neq 0$.
- ② Έστω V ένας \mathbb{F} -δ.χ. πεπερασμένης διάστασης και U,W, δύο υπόχωροί του. Τότε,

$$\dim(U+W)=\dim U+\dim W-\dim(U\cap W).$$

ightharpoonup Έστω τα δυανύσματα του \mathbb{R}^3 ,

$$v_1 = (2,0,0), v_2 = (0,0,-3).$$

Να βρεθούν διανύσματα $u, w \in \mathbb{R}^3$, τέτοια ώστε το u να είναι γραμμικώς ανεξάρτητο με τα v_1, v_2 , ενώ το w να είναι γραμμικώς εξαρτημένο.

Έστω,

$$u = (u_1, u_2, u_3), \qquad w = (w_1, w_2, w_3),$$

τα ζητούμενα διανύσματα. Τότε, για να είναι τα v_1,v_2,u , γραμμικώς ανεξάρτητα, θα πρέπει ισοδύναμα να ισχύει ότι $\det A \neq 0$, όπου A ο πίνακας που τα περιέχει σε στήλες. Έχουμε:

$$A = \left(\begin{array}{ccc} 2 & 0 & u_1 \\ 0 & 0 & u_2 \\ 0 & -3 & u_3 \end{array}\right)$$

Επομένως,

$$\det A = \left| \begin{array}{ccc} 2 & 0 & u_1 \\ 0 & 0 & u_2 \\ 0 & -3 & u_3 \end{array} \right| = 2 \left| \begin{array}{ccc} 0 & u_2 \\ -3 & u_3 \end{array} \right| = 6 u_2$$

Άρα,

$$\det A \neq 0 \iff 6 u_2 \neq 0 \iff u_2 \neq 0$$

Δηλαδή, οποιοδήποτε διάνυσμα $u=(u_1,u_2,u_3)$ με $u_2\neq 0$ είναι γραμμικώς ανεξάρτητο με τα v_1,v_2 . Για παράδειγμα, ένα τέτοιο είναι το διάνυσμα,

$$u = (0, 1, 0).$$

Αντίστοιχα, για να είναι γραμμικώς εξαρτημένο το $w=(w_1,w_2,w_3)$, αρκεί η αντίστοιχη ορίζουσα να είναι ίση με μηδέν. Δηλαδή,

$$\det A = 0 \Leftrightarrow \left| \begin{array}{ccc} 2 & 0 & w_1 \\ 0 & 0 & w_2 \\ 0 & -3 & w_3 \end{array} \right| = 0 \Leftrightarrow 6 w_2 = 0 \Leftrightarrow w_2 = 0$$

Δηλαδή, οποιοδήποτε διάνυσμα $w=(w_1,w_2,w_3)$ με $w_2=0$ είναι γραμμικώς εξαρτημένο με τα v_1,v_2 . Για παράδειγμα, ένα τέτοιο είναι το διάνυσμα,

$$w = (1, 0, 1)$$
.

ightharpoonup Έστω V ένας δ.χ. με dim V=7 και U_1,U_2 , υπόχωροί του με dim $U_1=3$, dim $U_2=5$. Να προσδιοριστούν οι δυνατές τιμές του dim $(U_1\cap U_2)$.

Γνωρίζουμε από το θεώρημα ότι,

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2) = 3 + 5 - \dim(U_1 \cap U_2) = 8 - \dim(U_1 \cap U_2).$$

Επιπλέον, γνωρίζουμε ότι, αφού U_1, U_2 , υπόχωροι του V, θα είναι και το $U_1 + U_2$ υπόχωρος του V (από παλαιότερο θεώρημα), άρα,

$$\dim(U_1+U_2)\leqslant\dim V=7.$$

Επίσης, τα σύνολα U_1, U_2 , είναι υποσύνολα του $U_1 + U_2$, άρα,

$$\left. \begin{array}{l} \dim(U_1+U_2) \geqslant \dim U_1 \\ \dim(U_1+U_2) \geqslant \dim U_2 \end{array} \right\} \ \Rightarrow \ \left. \begin{array}{l} \dim(U_1+U_2) \geqslant 3 \\ \dim(U_1+U_2) \geqslant 5 \end{array} \right\} \ \Rightarrow \ \dim(U_1+U_2) \geqslant 5.$$

Από όλα τα παραπάνω έχουμε:

$$5\leqslant 8-\dim(U_1\cap U_2)\leqslant 7 \Leftrightarrow 3\geqslant \dim(U_1\cap U_2)\geqslant 1.$$

Άρα,

$$\dim(U_1 \cap U_2) = 1 \not \eta \ 2 \not \eta \ 3. \quad \blacksquare$$

Συσχέτιση με τα Γραμμικά Συστήματα

To $m \times n$ γραμμικό σύστημα,

$$\begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \cdots & + & a_{1n}x_n & = & b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & \cdots & + & a_{2n}x_n & = & b_2 \\ \vdots & & \vdots & & \ddots & & \vdots & & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \cdots & + & a_{mn}x_n & = & b_m \end{cases}$$

γράφεται και στην μορφ'η,

$$x_{1} \underbrace{\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}}_{v_{1}} + x_{2} \underbrace{\begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}}_{v_{2}} + \cdots + x_{n} \underbrace{\begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}}_{v_{n}} = \underbrace{\begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{pmatrix}}_{b}$$

Προφανώς, το σύστημα θα έχει λύση <u>ανν</u> το b γράφεται ως γραμμικός συνδυασμός των v_1, v_2, \ldots, v_n , δηλαδή ανν,

$$b \in \operatorname{span}(\{v_1, v_2, \ldots, v_n\}).$$

Γραμμικές Απεικονίσεις

Ορισμός

Γραμμική Απεικόνιση ανάμεσα σε δύο \mathbb{F} -δ.χ. U και V, καλείται μια απεικόνιση,

$$f: U \rightarrow V$$

αν $\forall u_1, u_2 \in U$ και $\lambda, \mu \in \mathbb{F}$, ισχύει ότι,

ή ισοδύναμα,

$$f(\lambda u_1 + \mu u_2) = \lambda f(u_1) + \mu f(u_2)$$

ightharpoonup Η απεικόνιση $f:\mathbb{R}\to\mathbb{R}$ με f(x)=2x είναι γραμμική, ενώ η $g:\mathbb{R}\to\mathbb{R}$ με g(x)=2x+1 δεν είναι.

Πράγματι, έστω $x, y \in \mathbb{R}$. Τότε,

$$f(\lambda x + \mu y) = 2(\lambda x + \mu y) = (2\lambda x) + (2\mu y) = \lambda (2x) + \mu (2y) = \lambda f(x) + \mu f(y).$$

Άρα, σύμφωνα με τον ορισμό, η f είναι γραμμική.

Αντιθέτως, για την g έχουμε,

$$g(\lambda x + \mu y) = 2(\lambda x + \mu y) + 1 = \lambda(2x) + \mu(2y) + 1,$$

ενώ,

$$\lambda g(x) + \mu g(y) = \lambda (2x + 1) + \mu (2y + 1) = \lambda (2x) + \mu (2y) + (\lambda + \mu).$$

Προφανώς οι παραπάνω σχέσεις δεν ταυτίζονται για όλα τα $\lambda,\mu\in\mathbb{R}$, άρα,

$$g(\lambda x + \mu y) \neq \lambda g(x) + \mu g(y),$$

και συνεπώς η g δεν είναι γραμμική.

ightharpoonup Η απεικόνιση $f:\mathbb{R}^3 o \mathbb{R}^2$ με $f(x,y,z)=(2\,x+3\,y,x+4\,y-z)$, είναι γραμμική.

Πράγματι,

$$f(\lambda(x_1, y_1, z_1) + \mu(x_2, y_2, z_2)) = f\left(\underbrace{\lambda x_1 + \mu x_2}_{\chi}, \underbrace{\lambda y_1 + \mu y_2}_{\chi}, \underbrace{\lambda z_1 + \mu z_2}_{z}\right) =$$

$$= \left(2(\lambda x_1 + \mu x_2) + 3(\lambda y_1 + \mu y_2), (\lambda x_1 + \mu x_2) + 4(\lambda y_1 + \mu y_2) - (\lambda z_1 + \mu z_2)\right) =$$

$$= (2\lambda x_1 + 2\mu x_2 + 3\lambda y_1 + 3\mu y_2, \lambda x_1 + 4\lambda y_1 - \lambda z_1 + \mu x_2 + 4\mu y_2 - \mu z_2)$$

Αντίστοιχα,

$$\lambda f(x_1, y_1, z_1) + \mu f(x_2, y_2, z_2) = \lambda (2x_1 + 3y_1, x_1 + 4y_1 - z_1) + \mu (2x_2 + 3y_2, x_2 + 4y_2 - z_2) =$$

$$= (2\lambda x_1 + 2\mu x_2 + 3\lambda y_1 + 3\mu y_2, \lambda x_1 + 4\lambda y_1 - \lambda z_1 + \mu x_2 + 4\mu y_2 - \mu z_2)$$

Προφανώς οι δύο σχέσεις ταυτίζονται, άρα η απεικόνιση είναι γραμμική. \blacksquare

Ορισμός

Πυρήνας (kernel) μιας γραμμικής απεικόνισης $f:U\to V$, ονομάζεται το σύνολο,

$$\ker f = \{u \in U; \ f(u) = \mathcal{O}_V\},\$$

δηλαδή είναι το σύνολο των στοιχείων του U που απεικονίζονται μέσω της f στο ουδέτερο στοιχείο του V.

Ορισμός

Εικόνα (image) μιας γραμμικής απεικόνισης $f:U\to V$, ονομάζεται το σύνολο,

$$\operatorname{Im} f = \{ v \in V; \ f(u) = v, \ \text{για κάποιο} \ u \in U \},$$

δηλαδή είναι το σύνολο των εικόνων των στοιχείων του U.

Ορισμός

Ταυτοτική καλείται η γραμμική απεικόνιση $1_V:V\to V$, με f(v)=v για κάθε $v\in V$.

Πρόταση

Ο πυρήνας $\ker f$ και η εικόνα $\operatorname{Im} f$ μιας γραμμικής απεικόνισης $f:U\to V$, είναι υπόχωροι των συνόλων U και V, αντίστοιχα.

Έστω $u, v \in \ker f$ και $\lambda, \mu \in \mathbb{F}$. Τότε,

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v) = \lambda \mathcal{O}_V + \mu \mathcal{O}_V = \mathcal{O}_V,$$

και επομένως $\lambda \, u + \mu \, v \in \ker f$. Οπότε, από γνωστό θεώρημα, έπεται ότι το $\ker f$ είναι υπόχωρος.

Προσπαθήστε να αποδείξετε το αντίστοιχο και για την εικόνα ${\rm Im}\,f$.

Ορισμοί

Έστω μια απεικόνιση f:U o V.

- lacktriangle Η f καλείται επί αν $\operatorname{Im} f = V$.
- ② H f καλείται ένα προς ένα (συμβολίζεται 1-1) αν \forall $v \in \text{Im } f$, $\exists !\ u \in U$, με f(u) = v ή, ισοδύναμα, αν

$$f(u_1) = f(u_2) \Rightarrow u_1 = u_2, \ \forall u_1, u_2 \in U,$$

δηλαδή όταν κάθε στοιχείο του V αποτελεί εικόνα ενός και μόνο στοιχείου του U.

- **3** Αν η f είναι γραμμική απεικόνιση και επί, τότε καλείται επιμορφισμός.

ightharpoonup Να δειχθεί ότι η απεικόνιση $f:\mathbb{R}^2 \to \mathbb{R}^2$, με f(x,y)=(2x-3y,x+4y), είναι γραμμική και να βρεθεί ο πυρήνας της. Στην συνέχεια να ελεγχθεί αν η f είναι ισομορφισμός.

Εργαστείτε με τον γνωστό τρόπο με χρήση του ορισμού, για να δείξετε ότι η f είναι γραμμική.

Για να βρούμε τον πυρήνα της f, πρέπει να βρούμε τα $(x,y)\in\mathbb{R}^2$ για τα οποία $f(x,y)=\mathcal{O}_{\mathbb{R}^2}=(0,0).$ Έχουμε:

$$f(x,y) = (0,0) \Leftrightarrow (2x - 3y, x + 4y) = (0,0) \Leftrightarrow \begin{cases} 2x - 3y = 0 \\ x + 4y = 0 \end{cases}$$

Το σύστημα είναι ομογενές 2 × 2, με ορίζουσα,

$$\det A = \left| \begin{array}{cc} 2 & -3 \\ 1 & 4 \end{array} \right| = 8 + 3 = 11 \neq 0.$$

Άρα έχει μοναδική λύση και αυτή, κατά τα γνωστά για τα ομογενή συστήματα, είναι η τετριμμένη, (x,y)=(0,0). Δηλαδή,

$$\ker f = \{(0,0)\}.$$

Για να είναι η f ισομορφισμός πρέπει να είναι επί και 1-1.

Για να είναι επί θα πρέπει ${\rm Im}\, f\equiv \mathbb{R}^2$, δηλαδή για κάθε $(a,b)\in \mathbb{R}^2$, θα πρέπει να υπάρχει $(x,y)\in \mathbb{R}^2$, με

$$f(x, y) = (2x - 3y, x + 4y) = (a, b).$$

Ισοδύναμα, θα πρέπει να έχει λύσεις το ακόλουθο σύστημα,

$$\begin{cases}
2x - 3y = a \\
x + 4y = b
\end{cases}$$

Επιλύουμε με χρήση επαυξημένου πίνακα:

$$\begin{pmatrix} 2 & -3 & a \\ 1 & 4 & b \end{pmatrix} \stackrel{\uparrow}{\downarrow} \sim \begin{pmatrix} 1 & 4 & b \\ 2 & -3 & a \end{pmatrix} \stackrel{(-2)}{\downarrow} \sim \begin{pmatrix} 1 & 4 & b \\ 0 & -11 & a - 2b \end{pmatrix} \div (-11) \sim$$

$$\left(\begin{array}{cc|c} 1 & 4 & b \\ 0 & 1 & \frac{2b-a}{11} \end{array}\right) \quad \stackrel{f_1}{(-4)} \quad \sim \left(\begin{array}{cc|c} 1 & 0 & \frac{4a-3b}{11} \\ 0 & 1 & \frac{2b-a}{11} \end{array}\right)$$

Το σύστημα έχει μοναδική λύση. Δηλαδή, για κάθε $(a,b)\in\mathbb{R}^2$, υπάρχει και μάλιστα μοναδικό,

$$(x,y)=\left(\frac{4a-3b}{11},\frac{2b-a}{11}\right)\in\mathbb{R}^2,$$

με f(x,y)=(a,b). Άρα η f είναι επί, αφού υπάρχει (x,y), και επιπλέον είναι 1-1, αφού αυτό είναι μοναδικό. Άρα η f είναι ισομορφισμός.

Προτάσεις

Έστω $f:U \to V$ μια γραμμική απεικόνιση και $\dim U = m$, $\dim V = n$.

① Aν $U = \operatorname{span}(u_1, \ldots, u_m)$, τότε,

$$\operatorname{Im} f = \operatorname{span}(f(u_1),\ldots,f(u_m)).$$

2 Για την διάσταση του U ισχύει ότι:

$$\dim U = \dim \ker f + \dim \operatorname{Im} f.$$

- 3 Οι δ.χ. U και V είναι ισόμορφοι $\underline{\alpha \nu \nu}$ dim $U = \dim V$.
- Φ Αν η f είναι ισομορφισμός και $B_U = \{u_1, \ldots, u_m\}$ μια βάση του U, το σύνολο των εικόνων των διανυσμάτων της B_U , $B_V = \{f(u_1), \ldots, f(u_m)\}$, είναι βάση του V.

ightharpoonup Να βρεθεί το dim ${
m Im}\, f$ της γραμμικής απεικόνισης $f:\mathbb{R}^2 o \mathbb{R}^2$, με $f(x,y)=(2\,x+8\,y,x+4\,y).$

Αξιοποιώντας το προηγούμενο θεώρημα, έχουμε:

$$\dim \operatorname{Im} f = \dim \mathbb{R}^2 - \dim \ker f = 2 - \dim \ker f$$
.

Άρα αρκεί να βρούμε το dim ker f. Έχουμε:

$$f(x,y) = (0,0) \Leftrightarrow (2x+8y,x+4y) = (0,0) \Leftrightarrow \begin{cases} 2x + 8y = 0 \\ x + 4y = 0 \end{cases} \Leftrightarrow x = -4y.$$

Δηλαδή,

$$\ker f = \{(-4y, y), y \in \mathbb{R}\} = \{y(-4, 1), y \in \mathbb{R}\}.$$

Προφανώς, μια βάση του $\ker f$ είναι το σύνολο $B=\{(-4,1)\}$ και άρα, $\dim \ker f=1$. Συνεπώς,

 $\dim \operatorname{Im} f = 1$.

Ορισμός

Έστω $f:U\to V$ μια γραμμική απεικόνιση και $S_U=\{u_1,\ldots,u_n\},\ S_V=\{v_1,\ldots,v_m\},\ βάσεις$ των $U,\ V,$ αντίστοιχα. Έστω ότι οι εικόνες $f(u_i)\in V,\ i=1,2,\ldots,n,$ δίνονται ως προς την βάση S_V ως εξής:

$$\begin{cases}
f(u_1) &= a_{11} v_1 + \cdots + a_{m1} v_m \\
f(u_2) &= a_{12} v_1 + \cdots + a_{m2} v_m \\
\vdots &\vdots &\vdots \\
f(u_n) &= a_{1n} v_1 + \cdots + a_{mn} v_m
\end{cases}$$

Πίνακας της γραμμικής απεικόνισης f ως προς τις βάσεις S_U , S_V , καλείται ο $m \times n$ πίνακας,

$$(f)_{S_U,S_V} = \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right) \begin{array}{cccc} \leftarrow & \text{suntelegates tou } v_1 \\ \leftarrow & \text{suntelegates tou } v_2 \\ \vdots & \vdots & \ddots & \vdots \\ \leftarrow & \text{suntelegates tou } v_m \end{array}$$

που περιέχει σε γραμμές τους συντελεστές του γραμμικού συνδυασμού καθενός διανύσματος $f(u_i)$. Ο πίνακας αυτός είναι **μοναδικός**.

Μεθοδολογία

Έστω $f:U\to V$ μια γραμμική απεικόνιση ανάμεσα στους χώρους U και V με $\dim U=n$, $\dim V=m$. Αν $(f)_{S_U,S_V}$ ο πίνακας της f ως προς τις βάσεις S_U και S_V , τότε η εικόνα ενός διανύσματος $x\in U$, με συνιστώσες $x=(x_1,x_2,\ldots,x_n)^\top$ ως προς την βάση S_U , δίνεται κατευθείαν εκφρασμένη ως προς την βάση S_V ως εξής:

$$f(x) = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = (f)_{S_U, S_V} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

ightharpoonup Έστω η γραμμική απεικόνιση $f:\mathbb{R}^3 o \mathbb{R}^2$ με

$$f(x, y, z) = (x + y + 2z, x + y),$$

και οι βάσεις,

$$S_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1}, \underbrace{(0,1,0)}_{e_2}, \underbrace{(0,0,1)}_{e_3}\}, \qquad S_{\mathbb{R}^2} = \{\underbrace{(1,0)}_{d_1}, \underbrace{(0,1)}_{d_2}\}.$$

Οι εικόνες των διανυσμάτων της $S_{\mathbb{R}^3}$ είναι οι εξής:

$$f(e_1) = f(1,0,0) = (1,1) = 1 d_1 + 1 d_2$$

 $f(e_2) = f(0,1,0) = (1,1) = 1 d_1 + 1 d_2$
 $f(e_3) = f(0,0,1) = (2,0) = 2 d_1 + 0 d_2$

Άρα ο πίνακας της f ως προς τις δύο βάσεις είναι,

$$(f)_{S_{\mathbb{R}^3},S_{\mathbb{R}^2}}=\left(egin{array}{ccc}1&1&2\\1&1&0\end{array}
ight).$$

Έστω το διάνυσμα,

$$x = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} \in \mathbb{R}^3$$

Η εικόνα του x μέσω της f στον δ.χ. \mathbb{R}^2 δίνεται ως εξής,

$$f(x) = (f)_{S_{\mathbb{R}^3}, S_{\mathbb{R}^2}} \ x = \left(\begin{array}{cc} 1 & 1 & 2 \\ 1 & 1 & 0 \end{array} \right) \left(\begin{array}{c} 2 \\ 0 \\ 5 \end{array} \right) = \left(\begin{array}{c} 12 \\ 2 \end{array} \right) \quad \blacksquare$$

Υπάρχει μια 1-1 και επί αντιστοιχία ανάμεσα στις γραμμικές απεικονίσεις και στους πίνακες!

Ορισμός

Έστω $1_U:U o U$ η ταυτοτική απεικόνιση,

$$1_U(u) = u, \quad \forall u \in U.$$

και dim U=n. Έστω και $B_1=\{u_1,\ldots,u_n\},\ B_2=\{v_1,\ldots,v_n\},$ δύο βάσεις του δ.χ. U. Προφανώς, οι εικόνες $f(u_i)$, δίνονται ως προς την βάση B_2 ως εξής:

Πίνακας αλλαγής βάσης από την B_1 στην B_2 , καλείται ο τετραγωνικός $n \times n$ πίνακας,

$$P_{B_1,B_2} = \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array}\right)$$

Μεθοδολογία ΕΥΡΕΣΗΣ ΠΙΝΑΚΑ ΑΛΛΑΓΗΣ ΒΑΣΗΣ

Για να υπολογίσουμε τους πίνακες αλλαγής βάσης P_{B_1,B_2} και P_{B_2,B_1} , ως προς δύο βάσεις, $B_1=\{u_1,u_2,\ldots,u_n\}$ και $B_2=\{v_1,v_2,\ldots,v_n\}$, ενός δ.χ. U, δουλεύουμε ως εξής:

Σχηματίζουμε τους πίνακες,

$$K = (u_1 \ u_2 \ \dots \ u_n), \qquad L = (v_1 \ v_2 \ \dots \ v_n),$$

που περιέχουν σε στήλες τα διανύσματα των B_1 και B_2 . Σύμφωνα με τους ορισμούς, θα ισχύει ότι,

$$K=L\,P_{B_1,B_2}.$$

Αφού οι πίνακες Κ, L, περιέχουν γραμμικώς ανεξάρτητα διανύσματαστήλες, θα αντιστρέφονται. Έτσι, μπορούμε να υπολογίσουμε τους πίνακες αλλαγής βάσης,

$$P_{B_1,B_2} = L^{-1} K, \qquad P_{B_2,B_1} = K^{-1} L.$$

Μεθοδολογία ΕΥΡΕΣΗΣ ΕΙΚΟΝΑΣ ΩΣ ΠΡΟΣ ΝΕΑ ΒΑΣΗ

Έστω $1_U:U\to U$ η ταυτοτική απεικόνιση, $1_U(u)=u$, $\forall\,u\in U$, με dim U=n. Έστω και B_1 , B_2 , δύο βάσεις του δ.χ. U και P_{B_1,B_2} ο πίνακας αλλαγής βάσης από την B_1 στην B_2 . Αν $x=(x_1,\ldots,x_n)^\top\in U$ ένα διάνυσμα δοσμένο ως προς την B_1 , τότε η εικόνα του ως προς την B_2 θα έχει συντεταγμένες,

$$\begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} = P_{B_1, B_2} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

ightharpoonup Έστω η γραμμική απεικόνιση $1_U:\mathbb{R}^2 o\mathbb{R}^2$, και οι βάσεις,

$$B_1 = \{(2,1),(1,1)\}, \qquad B_2 = \{(1,1),(1,-1)\}.$$

Για να βρούμε τους πίνακες αλλαγής βάσης από την B_1 στην B_2 και αντίστροφα, σχηματίζουμε αρχικά τους πίνακες,

$$K = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right), \qquad L = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right).$$

Ακολούθως, υπολογίζουμε τους αντίστροφούς τους, οι οποίοι στην περίπτωσή μας είναι,

$$K^{-1} = \left(\begin{array}{cc} 1 & -1 \\ -1 & 2 \end{array} \right), \qquad L^{-1} = \left(\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & 1/2 \end{array} \right).$$

Οπότε οι πίνακες αλλαγής βάσης είναι οι ακόλουθοι,

$$P_{B_1,B_2} = L^{-1} \; \mathsf{K} = \left(\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & 1/2 \end{array} \right) \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right) = \left(\begin{array}{cc} 3/2 & 1 \\ 1/2 & 0 \end{array} \right),$$

$$P_{B_2,B_1}=K^{-1}\,L=\left(\begin{array}{cc}1&-1\\-1&2\end{array}\right)\left(\begin{array}{cc}1&1\\1&-1\end{array}\right)=\left(\begin{array}{cc}0&2\\1&-3\end{array}\right).\quad\blacksquare$$

Έστω dim U=n, dim V=m, το σχήμα μετάβασης είναι:

$$\tilde{A} = P_{S_2S_1} A P_{B_1B_2}$$

Αν U = V και $S_1 = B_1$, $S_2 = B_2$, τότε:

$$\tilde{A} = P_{B_1 B_2}^{-1} A P_{B_1 B_2}$$

Ορισμός

'Ομοιοι (similar) καλούνται δύο πίνακες $A,B\in M_n(\mathbb{F})$, αν υπάρχει αντιστρέψιμος πίνακας $P\in M_n(\mathbb{F})$, τέτοιος ώστε,

$$B=P^{-1}\ A\ P.$$

Ο πίνακας P καλείται τότε πίνακας ομοιότητας (similarity matrix).

Ιδιότητες

Aν $A,B\in M_n(\mathbb{F})$ δύο όμοιοι πίνακες, τότε:

- ② trace A = trace B
- rank $A = \operatorname{rank} B$

▶ Να ελεγχθεί αν είναι όμοιοι οι πίνακες,

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \qquad B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

Για να είναι όμοιοι θα πρέπει να υπάρχει αντιστρέψιμος πίνακας P τέτοιος ώστε,

$$B = P^{-1} A P \Leftrightarrow P B = A P.$$

Έστω ότι υπάρχει τέτοιος πίνακας, $P = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. Έχουμε:

$$P B = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & x \\ 0 & z \end{pmatrix}$$

$$A P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}$$

Οι δύο πίνακες συμφωνούν όταν x=0, x=y, 0=0, z=0, δηλαδή,

$$P = \left(\begin{array}{cc} 0 & 0 \\ 0 & w \end{array}\right)$$

Όμως, αυτός ο πίνακας δεν είναι αντιστρέψιμος διότι,

$$\det P = \left| \begin{array}{cc} 0 & 0 \\ 0 & w \end{array} \right| = 0$$

Άρα δεν υπάρχει αντιστρέψιμος πίνακας και συνεπώς οι πίνακες A και B δεν είναι όμοιοι. \blacksquare

Ορισμός

Εσωτερικό Γινόμενο (inner product) καλείται μια απεικόνιση,

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{F}$$
 $(u, v) \mapsto \langle u, v \rangle$

για την οποία, $\forall u, v, w \in V$, $\forall a, b \in \mathbb{F}$,

- $\langle u, u \rangle = 0 \Leftrightarrow u = \mathcal{O}_V$

Αν $\mathbb{F} = \mathbb{R}$ ή \mathbb{C} , ο δ.χ. V με εσωτερικό γινόμενο καλείται Ευκλείδιος ή ορθομοναδιαίος δ.χ.

ightharpoonup Η απεικόνιση $\langle\cdot,\cdot
angle:\mathbb{R}^n imes\mathbb{R}^n o\mathbb{R}$, που ορίζεται ως,

$$\langle x,y\rangle=x_1\,y_1+x_2\,y_2+\cdots+x_n\,y_n,$$

με $x=(x_1,\ldots,x_n)^{\top}$, $y=(y_1,\ldots,y_n)^{\top}\in\mathbb{R}^n$, ως προς την ορθοκανονική βάση του \mathbb{R}^n ,

$$\textit{B} = \{\underbrace{(1,0,\ldots,0)}_{e_1},\underbrace{(0,1,\ldots,0)}_{e_2},\ldots,\underbrace{(0,0,\ldots,1)}_{e_n}\},$$

είναι ένα εσωτερικό γινόμενο.

Πράγματι, μπορούμε να επαληθεύσουμε τις ιδιότητες της απεικόνισης από τον ορισμό του εσωτερικού γινομένου:

(1) Έστω $z=(z_1,\ldots,z_n)^{ op}\in\mathbb{R}^n$ και $a,b\in\mathbb{R}$. Τότε,

$$\langle ax + by, z \rangle = \langle (ax_1 + by_1, \dots, ax_n + by_n), (z_1, \dots, z_n) \rangle$$

$$= (ax_1 + by_1) z_1 + \dots + (ax_n + by_n) z_n$$

$$= (ax_1 z_1 + \dots + ax_n z_n) + (by_1 z_1 + \dots + by_n z_n)$$

$$= a\langle x, z \rangle + b\langle y, z \rangle$$

(2) Γνωρίζουμε ότι στο $\mathbb R$ ισχύει ότι $x=\overline{x}$. Έτσι, έχουμε:

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n$$

$$= y_1 x_1 + \dots + y_n x_n$$

$$= \langle y, x \rangle$$

$$= \overline{\langle y, x \rangle}$$

(3) Για οποιοδήποτε $x \in \mathbb{R}^n$ έχουμε ότι:

$$\langle x, x \rangle = x_1 x_1 + \dots + x_n x_n$$

= $x_1^2 + \dots + x_n^2 \ge 0$

(4) Για οποιοδήποτε $x \in \mathbb{R}^n$ έχουμε ότι:

$$\langle x, x \rangle = 0 \Leftrightarrow x_1^2 + \dots + x_n^2 = 0 \Leftrightarrow x_1 = \dots = x_n = 0 \Leftrightarrow x = \mathcal{O}_V$$

'Αρα επιβεβαιώνονται όλες οι ιδιότητες του ορισμού και, συνεπώς, η δοθείσα απεικόνιση είναι εσωτερικό γινόμενο, το οποίο θα αποκαλούμε σύνηθες εσωτερικό γινόμενο του \mathbb{R}^n .

Ορισμοί

Έστω ένας \mathbb{F} -δ.χ. V με εσωτερικό γινόμενο.

① Μέτρο (norm) ενός διανύσματος $u \in V$ καλείται ο μη-αρνητικός αριθμός,

$$||u|| = \sqrt{\langle u, u \rangle}.$$

$$d(u,v) = \|u-v\|.$$

3 Μοναδιαίο (unitary) καλείται ένα διάνυσμα $u \in V$ αν,

$$||u||=1.$$

Προτάσεις

Έστω ένας \mathbb{F} -δ.χ. V με εσωτερικό γινόμενο. Τότε, $\forall\,u,v\in V$ και $a\in\mathbb{F}$ ισχύει ότι:

- ||a u|| = |a| ||u||
- $|\langle u, v \rangle| \le ||u|| ||v||$ (ανισότητα Cauchy-Schwarz)
- $||u+v|| \le ||u|| + ||v||$ (τριγωνική ανισότητα)

ightharpoonup Έστω τα ακόλουθα διανύσματα του \mathbb{R}^3 , με το σύνηθες εσωτερικό γινόμενο, ως προς την ορθοκανονική βάση,

$$u = (2, -1, 3)^{\top}, \qquad v = (1, -1, -2)^{\top}.$$

Τότε τα μέτρα τους είναι,

$$||u|| = \sqrt{u^\top u} = \sqrt{2^2 + (-1)^2 + 3^2} = \sqrt{14},$$

$$||v|| = \sqrt{v^\top v} = \sqrt{1^2 + (-1)^2 + (-2)^2} = \sqrt{6}.$$

Προφανώς κανένα από τα δύο δεν είναι μοναδιαίο διάνυσμα. Η απόστασή τους είναι,

$$d(u,v) = \|u-v\| = \|(2,-1,3)^{\top} - (1,-1,-2)^{\top}\| = \|(1,0,5)^{\top}\| = \sqrt{1^2 + 0^2 + 5^2} = \sqrt{26}.$$

Μπορούμε εύκολα να διαπιστώσουμε ότι:

$$|\langle u,v\rangle|=|2+1-6|=3<\sqrt{14}\sqrt{6}\simeq 9.1652=\|u\|\,\|v\|,$$

$$||u+v|| = ||(3,-2,1)|| = \sqrt{14} < \sqrt{14} + \sqrt{6} = ||u|| + ||v||.$$

Ορισμοί

Έστω ένας \mathbb{F} -δ.χ. V με εσωτερικό γινόμενο.

 $oldsymbol{0}$ Μεταξύ δύο διανυσμάτων $u,v\in V$ υπάρχει μοναδική γωνία $\vartheta\in [0,\pi]$ με,

$$\cos\vartheta = \left\{ \begin{array}{ll} \frac{\langle u,v\rangle}{\|u\|\,\|v\|}, & \text{an } \langle u,v\rangle \in \mathbb{R}, \\ \frac{\|\langle u,v\rangle\|}{\|u\|\,\|v\|}, & \text{an } \langle u,v\rangle \in \mathbb{C}. \end{array} \right.$$

2 Ένα διάνυσμα $u \in V$ καλείται **ορθογώνιο** προς ένα διάνυσμα $v \in V$ ανν,

$$\langle u, v \rangle = 0.$$

Επειδή και $\langle v,u \rangle = \overline{\langle u,v \rangle} = 0$, Τα δύο διανύσματα καλούνται **ορθογώνια** μεταξύ τους.

Προτάσεις

Έστω ένας \mathbb{F} -δ.χ. V με εσωτερικό γινόμενο και $u,v\in V$.

- $\mathbf{1}$ $\|u+v\|^2=\|u\|^2+\|v\|^2$, ανν $\langle u,v\rangle=0$ (Πυθαγόρειο θεώρημα).
- $||u+v||^2 + ||u-v||^2 = 2 ||u||^2 + 2 ||v||^2$ (Κανόνας του παραλληλογράμμου).

Ορισμός

Ορθοκανονικό (orthonormal) καλείται ένα σύνολο διανυσμάτων $S = \{v_1, \ldots, v_n\}$ ενός \mathbb{F} -δ.χ. V με εσωτερικό γινόμενο, αν ισχύει ότι:

- **1** $||v_i|| = 1, \forall i = 1, \ldots, n.$

Προτάσεις

Έστω ένας \mathbb{F} -δ.χ. V με εσωτερικό γινόμενο.

- **①** Αν $S = \{v_1, \dots, v_n\}$ ένα ορθοκανονικό υποσύνολο του V, τότε ισχύουν τα ακόλουθα:
 - (α) Το S είναι γραμμικώς ανεξάρτητο.
 - (β) Για κάθε $v \in V$, το διάνυσμα,

$$u = v - \langle v, v_1 \rangle v_1 - \langle v, v_2 \rangle v_2 - \cdots - \langle v, v_n \rangle v_n,$$

είναι ορθογώνιο προς όλα τα διανύσματα του 5.

② Αν ο δ.χ. V έχει πεπερασμένη διάσταση τότε έχει ορθοκανονική βάση.

Μέθοδος Gram-Schmidt

Έστω $B = \{v_1, \ldots, v_n\}$ μια βάση του \mathbb{F} -δ.χ. V με εσωτερικό γινόμενο. Τότε μπορούμε να κατασκευάσουμε μια *ορθοκανονική βάση* του V ως εξής:

Κατασκευάζουμε τα διανύσματα:

$$\begin{array}{rcl} u_1 & = & v_1 \\ u_2 & = & v_2 - \frac{\langle v_2, u_1 \rangle}{\|u_1\|^2} \; u_1 & \longrightarrow \text{probony tou } u_2 \; \text{epánus sto} \; u_1 \\ u_3 & = & v_3 - \frac{\langle v_3, u_1 \rangle}{\|u_1\|^2} \; u_1 - \frac{\langle v_3, u_2 \rangle}{\|u_2\|^2} \; u_2 \\ \vdots & & \vdots \\ u_n & = & v_n - \frac{\langle v_n, u_1 \rangle}{\|u_1\|^2} \; u_1 - \dots - \frac{\langle v_n, u_{n-1} \rangle}{\|u_{n-1}\|^2} \; u_{n-1} \end{array}$$

2 Παίρνουμε τα διανύσματα:

$$w_1 = \frac{1}{\|u_1\|} u_1, \quad \dots \quad , w_n = \frac{1}{\|u_n\|} u_n.$$

Το σύνολο $B' = \{w_1, \ldots, w_n\}$ είναι ορθοκανονική βάση του V.

ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ

Έστω dim V=2 και $B=\{v_1,v_2\}$ η βάση.

▶ Έστω η βάση

$$\textit{B} = \{\underbrace{(1,0,1)^{\top}}_{\textit{v}_{1}},\underbrace{(1,0,-1)^{\top}}_{\textit{v}_{2}},\underbrace{(0,3,4)^{\top}}_{\textit{v}_{3}}\}$$

του \mathbb{R}^3 με το σύνηθες εσωτερικό γινόμενο (επιβεβαιώστε ότι είναι βάση). Θα κατασκευάσουμε μια ορθοκανονική βάση από την B.

Ακολουθούμε την διαδικασία Gram-Schmidt. Αρχικά υπολογίζουμε τα διανύσματα,

$$u_1 = v_1, \qquad u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\|u_1\|^2} u_1, \qquad u_3 = v_3 - \frac{\langle v_3, u_1 \rangle}{\|u_1\|^2} u_1 - \frac{\langle v_3, u_2 \rangle}{\|u_2\|^2} u_2.$$

Έχουμε:

$$||u_1|| = ||v_1|| = \sqrt{v_1^{\top} v_1} = \sqrt{1^2 + 0^2 + 1^2} = \sqrt{2},$$

 $\langle v_2, u_1 \rangle = (1, 0, -1) (1, 0, 1)^{\top} = 0,$

επομένως,

$$u_2 = v_2 = (1, 0, -1)^{\top}, \qquad ||u_2|| = \sqrt{1^2 + 0^2 + (-1)^2} = \sqrt{2}.$$

Παρατηρήστε ότι τα δύο πρώτα διανύσματα u_1,u_2 , ταυτίζονται με τα v_1,v_2 , καθώς αυτά είναι ήδη κάθετα μεταξύ τους.

Επιπλέον έχουμε,

$$\langle v_3, u_1 \rangle = (0, 3, 4) (1, 0, 1)^{\top} = 4,$$

 $\langle v_3, u_2 \rangle = (0, 3, 4) (1, 0, -1)^{\top} = -4,$

οπότε και,

$$u_3 = (0, 3, 4)^{\top} - \frac{4}{2} (1, 0, 1)^{\top} + \frac{4}{2} (1, 0, -1)^{\top} = (0, 3, 0)^{\top},$$

 $||u_3|| = \sqrt{0^2 + 3^2 + 0^2} = \sqrt{9} = 3.$

Έτσι, σχηματίζεται η ορθοκανονική βάση $B'=\{w_1,w_2,w_3\}$, όπου,

$$\begin{array}{rcl} w_1 & = & \frac{1}{\|u_1\|} \, u_1 & = & \frac{1}{\sqrt{2}} \, (1,0,1)^\top, \\ \\ w_2 & = & \frac{1}{\|u_2\|} \, u_2 & = & \frac{1}{\sqrt{2}} \, (1,0,-1)^\top, \\ \\ w_3 & = & \frac{1}{\|u_3\|} \, u_3 & = & \frac{1}{3} \, (0,3,0) = (0,1,0)^\top. \end{array} \blacksquare$$