

Práctica 4 Variables aleatorias continuas

1. Ejercicio 1

Encuentre la esperanza y la varianza de una variable aleatoria \boldsymbol{X} usando

- la función de densidad $f(x)^{-1}$, y
- la función generatriz de momentos $M_X(t)$

para

- (a) $X \sim \text{exponencial con parametro } \lambda$.
- (b) $X \sim \text{uniforme en el intervalo } [a, b].$
- (c) $X \sim \text{Gamma con parametros } (\alpha, \lambda)$.

(d)
$$X \sim f(x; \theta) = \frac{1 + x\theta}{2} \text{ si } x \in [-1, 1] \text{ y con } \theta \in [-1, 1]$$

(e) $X \sim Pareto(\alpha, \lambda)$.

2. Ejercicio 2

Si X es una variable aleatoria exponencial con media $\frac{1}{\lambda}$, demostrar que $\mathbb{E}\left[X^k\right] = \frac{k!}{\lambda^k}$.

Ayuda: tenga en cuenta la función de densidad de una variable aleatoria Gamma.

3. Ejercicio 3

Sea X una variable aleatoria con función de densidad dada por

$$f(x) = [c^2x - 0.5c]I_{(0,1)}(x)$$

- (a) Encuentre el valor de la constante c.
- (b) Encuentre la mediana de la variable X y llámela $\tilde{\mu}_X$.
- (c) Defina una variable aleatoria $Y = a \cdot X + b$. Encuentre su función de densidad y su función de probabilidad acumulada con $a \neq 0$ y $b \neq 0$.
 - (d) Demuestre que si $\tilde{\mu}_X$ es la mediana de X entonces $\tilde{\mu}_Y = a\tilde{\mu}_X + b$ es la mediana de Y.
 - (e) ¿Es el resultado en (d) válido para otro percentil?

4. Ejercicio 4

Suponga que el ingreso en la Ciudad Autónoma de Buenos Aires es una variable aleatoria X, tal que $\ln X \sim \mathcal{N}\left(\mu,\sigma^2\right)$.

¹Esto es para repasar cálculo de esperanza y varianza de Variables Aleatorias continuas

- (a) Encuentre una expresión para el percentil 95. Tenga en cuenta que el percentil será función de μ y σ .
- (b) Encuentre la función densidad de *X*.

5. Ejercicio 5

Sea X el tiempo (en horas) que dedica un alumno a estudiar para un examen. Supongamos que la densidad de X es

$$f(x;\theta) = (\theta+1)x^{\theta}I_{(0,1)}(x)$$

y que sabemos que $\theta > -1$. Calcule la probabilidad de que un alumno estudie a lo sumo 15 minutos o al menos 45 minutos.

6. Ejercicio 6

La duración de un componente es una variable aleatoria X que se distribuye exponencial con parámetro λ .

- (a) Si el costo de operación por unidad de tiempo es c, de forma tal que el costo total es cX. ¿Cuál es el costo esperado de operar este componente durante su duración?
- (b) A diferencia del inciso anterior, suponga ahora que el costo de operación no es constante, sino que el costo total de operación: $c\left(1-\frac{1}{2}e^{aX}\right)$ con a<0, de forma tal que el costo de operación es menor a c cuando el componente es nuevo y va siendo cada vez más caro a medida que el componente es más antiguo. Calcule el costo esperado de operación.

7. Ejercicio 7

Sea U una variable aleatoria con distribución U(0,1).

- (a) Hallar la función de distribución y la función de densidad de la variable aleatoria X = aU, siendo a > 0. ¿Cuál es la distribución de X?
- (b) Hallar la función de distribución y la función de densidad de la variable aleatoria $X=-\frac{1}{\lambda}\ln(1-U)$ siendo $\lambda>0$ ¿Cuál es la distribución de X?
 - (c) Hallar la función de distribución y la función de densidad de la variable aleatoria $Y = U^5$.
 - (d) Hallar la función de distribución y la función de densidad de la variable aleatoria $X = \ln U$.
 - (e) Hallar la función de distribución y la función de densidad de la variable aleatoria $W = \frac{U}{U+1}$.

8. Ejercicio 8

Mostrar que si $X \sim \mathcal{N}(\mu, \sigma^2)$, entonces $Y = e^X$ tiene distribución lognormal y su función de densidad es

$$f(y,\mu,\sigma) = \frac{1}{\sigma y \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\ln y - \mu}{\sigma}\right)^2} I_{(0,\infty)}(y)$$

9. Ejercicio 9

Sea X una variable aleatoria tal que su función de densidad es $f_X(x) = 2\lambda x e^{-\lambda x^2} I_{(0,\infty)}(x)$. Hallar la función de densidad de la variable aleatoria $Y = X^2$. ¿A qué familia pertenece?

10. Ejercicio 10

Sea X una variable aleatoria con distribución normal estándar.

- (a) Considere el evento $\{X^2 < y\}$. ¿A qué evento donde aparece la variable X es equivalente?
- (b) Utilizando el inciso (a), encuentre $P(X^2 < y)$. Luego, demuestre que X^2 tiene una distribución chi-cuadrado con un grado de libertad.

11. Ejercicio 11

Sea U una variable aleatoria con distribución U(0,1). Demostrar que la variable $X=-2\ln(U)$ tiene distribución chi-cuadrado con dos grados de libertad.