Динамічне оперативне керування гнучкою виробничою системою в умовах невизначеності

Дьяков Сергій Олександрович

Науковий керівник:

к.т.н., проф. Ямпольський Леонід Стефанович

МЕТА РОБОТИ

підвищення ефективності роботи гнучкої виробничої системи шляхом збільшення рівня автоматизації процесів налаштування та функціонування складових системи оперативного управління.

ОБ'€КТ ДОСЛІДЖЕННЯ

процеси оперативного управління ГВС в умовах невизначеності.

ПРЕДМЕТ ДОСЛІДЖЕННЯ

показники оперативного управління ГВС, що безпосередньо впливають на функціонування системи в умовах невизначеності.

ЗАДАЧІ ДОСЛІДЖЕННЯ

- 1. Створити формалізовану модель процесу та синтезувати структуру системи динамічного оперативного керування (ДОК).
- 2. Створити класифікатор вирішальних динамічних показників СОУ.
- 3. Дослідити ГВС щодо можливих типів невизначених ситуацій, які можуть виникати у процесі функціонування.
- 4. Визначити логічну послідовність здійснення процесу вибору раціональних значень із класифікатора ВДП, за яких можливе адекватне обслуговування вимог та обмежень ГВС.
- 5. Синтезувати узагальнену концептуальну модель СОУ на основі створеної логічної послідовності налаштування вирішальних динамічних показників.
- 6. Обґрунтувати вибір методів прийняття рішень щодо визначення раціональних значень ВДП СОУ у процесі ДОК.
- 7. Розробити підхід до автоматизації процесу ДОК на основі обраних методів прийняття рішень в умовах невизначеності.
- 8. Створити алгоритмічне та програмне забезпечення системи ДОК на основі розробленого підходу.
- 9. Провести експериментальні дослідження та порівняти за обраними критеріями ефективності результати роботи СДОК ГВС.

Ієрархія рівнів та задач керування ГВС

Техніко-економічне планування; Адміністративний Економічне управління; Оперативне планування; Стратегічний Організаційне управління; Оперативна диспетчеризація; Тактичний Технологічне управління; Управління обладнанням; Виконавчий Локальне управління.

Вирішальні динамічні показники (ВДП) СОУ — такі показники, що безпосередньо впливають на здійснення процесу оперативного управління виробництвом в реальному часі в умовах невизначеності.

Динамічне оперативне керування (ДОК) ГВС — це процес налаштування на етапах підготовки та функціонування гнучкої виробничої системи таких значень вирішальних динамічних показників, що здатні задовольнити поточні вимоги та обмеження ГВС.

Структурно-функціональний аналіз системи оперативного управління ГВС

Основні функції системи оперативного управління ГВС в умовах невизначеності:

$$\mathbf{\Phi}_{\mathrm{COY}}
ightarrow \{\mathbf{\Phi}_{\mathrm{O\Pi}}, \mathbf{\Phi}_{\mathrm{OKoH}}, \mathbf{\Phi}_{\mathrm{OKop}}, \mathbf{\Phi}_{\mathrm{OД}}\},$$
 де

- ФОП функція оперативного планування;
- Ф_{ОКон}- функція оперативного контролю;
- Ф_{ОКор} функція оперативної корекції;
- ФОЛ функція оперативної диспетчеризації.

Узагальнюючі показники системи оперативного управління в умовах невизначеності:

$$m{P}_{
m BД\Pi} = \{m{P}_{
m O\Pi}$$
 , $m{P}_{
m OKoH}$, $m{P}_{
m OKop}$, $m{P}_{
m OД}\}$, де:

- $P_{\rm O\Pi}$ показник оперативного планування;
- $P_{\text{ОКон}}$ показник оперативного контролю;
- $P_{
 m OKop}$ показник оперативної корекції;
- $P_{\rm OJ}$ показник оперативної диспетчеризації.

Формалізація задачі динамічного оперативного керування:

$$D: p = P_{\text{COV}_i}: \{\Phi_{\text{ОП}} \lor \Phi_{\text{ОКон}} \lor \Phi_{\text{ОКор}} \lor \Phi_{\text{ОД}}\} \times L \times U, \text{ де:}$$

- p набір значень показників СОУ із множини P_{COY} ;
- $\{ \Phi_{\rm O\Pi} \lor \Phi_{\rm OKoh} \lor \Phi_{\rm OKop} \lor \Phi_{\rm OД} \}$ функціональні можливості СОУ;
- L вимоги та обмеження конкретної ГВС;
- U можливі типи невизначеностей, що характерні даній ГВС.

Структура системи динамічного оперативного керування ГВС

виробниче завдання;

Р – календарний план;

S – стан усього комплексу устаткування;

E - 3буджуючий вплив;

відхилення від планових термінів завершення технологічних операцій;

Одоп – локальні резерви часу виконання технологічних операцій;

Y — керуючі завдання;

V – мікрокоманди на виконання елементарних операцій;

K — сигнал зворотного зв'язку від обладнання;

Y = - інформація про завершення виконання завдання Y;

інформація про стан усього комплексу устаткування;

 $P_{O\Pi}$ — показник оперативного планування;

 P_{OKoh} — показник оперативного контролю;

 P_{OKop} — показник оперативної корекції;

 $P_{O\!I\!\!\!/}$ — показник оперативної диспетчеризації;

СУ АС – система управління автоматизованим складом;

СУ АТС – система управління автономним транспортним модулем;

СУ ГВМ — система управління гнучким виробничим модулем.

Класифікатор вирішальних динамічних показників

СОУ ГВС

• $P_{O\Pi}$ → Підхід до оперативного планування: реактивне; прогностичнореактивне; робастне прогностичнореактивне; робастне превентивне.

- **Р**_{ОКон} → Політика вибору часу перепланування: періодична; подієва; гібридна.
- $P_{\text{OKop}} \to \mathbf{Cтратегія}$ перепланування: повне перепланування; корекція плану.
- $P_{\text{ОД}}$ → Метод оперативної диспетчеризації: правила диспетчеризації; евристики; метаевристики; ситуаційне управління; мультиагентні системи.

Вимоги до процесу ДОК з боку ГВС

• Невизначеності (випадкові збурення) — події в реальному часі, які виникають у процесі функціонування системи можуть змінити її стан та/або впливають на її продуктивність.

Тип невизначеності	Невизначеність	Тип системи управління
	несправність машини	СОУ
Пов'язані з ресурсами	помилка оператора	СОУ
	відсутність або несправність інструмента	СОУ, АСАУ
	ліміти завантаження	СОУ, АСАУ
	затримки у доставці матеріалів	СОУ, АСАУ
	дефектність матеріалу	СОУ
Пов'язані з задачами	термінові операції	СОУ
	відміна операцій	СОУ
	зміни терміну виконання	СОУ
	невчасне надходження операцій	СОУ
	зміна пріоритету операцій	СОУ
	зміна тривалості виконання операцій	СОУ

Розглянуті обмеження процесу ДОК з боку ГВС

1. Компонувальні структури (схеми) ГВС:

- За типами організації матеріальних потоків:

- з централізованим складом;
- з проміжним накопичувачем;
- з комбінованою структурою.
- За взаємним розташуванням виробничих та обслуговувальних зон:

- фронтальна;
- поперечна;
- у дипольна;
- кутова;
- кругова
- комбінована.

2. Обчислювальна потужність апаратного забезпечення СОУ:

- низька;
- середня;
- висока.

3. Архітектури СОУ:

- централізовані;
- розподілені (окрім мультиагентних);
- мультиагентні (автономні та медіаторні).

Побудова логічної послідовності налаштування вирішальних динамічних показників СОУ

Концептуальна модель системи оперативного управління ГВС на основі Ф-функції

Загальна **Ф-функція** будь-якого виробничого процесу являє собою відповідність, що може бути записано декартовим добутком:

$$\Phi_{B\Pi} \subset \{M, E, I\} \times T \times B \times K$$

- об'єкти праці:
 - **М** матеріали;
 - **E** енергія;
 - **I** інформація;
- **В** способи впливу на об'єкти праці;
- T моменти часу впливу;
- **К** просторовими координатами об'єктів праці.

Концептуальною моделлю СОУ як об'єкта динамічного оперативного керування є Φ_{COV} -функція, що подається декартовим добутком множин:

$$\Phi_{\text{COY}} \subset \text{BH} \times \Pi_{\text{док}} \times \Pi \Psi_{\text{док}} \times C_{\text{док} \times} M_{\text{док}}$$

- ВН види невизначеностей;
- Π підходи до перепланування;
- ПЧ політика вбору часу перепланування;
- С стратегія перепланування;
- М метод диспетчеризації.

Повний функціональний орграф процесу вибору значень ВДП СОУ

Формування узагальненої моделі вибору вирішальних динамічних показників СОУ

- 1-й етап визначення реляційних відношень між окремими компонентами розробленої концептуальної моделі;
- 2-й eman кількісне визначення вагомості реляційних зв'язків між значеннями вирішальних динамічних показниками.

Визначення вагомості реляційних зв'язків між вирішальними динамічними показниками СОУ

При залученні експертів було проведено опитування оцінок ефективності поєднання значень вирішальних динамічних показників наведеними методами із визначенням степенів узгодженості:

0 – думки експертів неузгоджені, 1 – експерти дають однакові оцінки.

Метод ранжування:

$$\omega=rac{12\,S}{m^2(n^3-n)}$$
, ∂e : $S=\sum_{j=0}^n d_j^2$, $\gamma=rac{2\sum_{i=1}^n\sum_{j=1}^n C_{b_{ij}}^2}{C_m^2C_n^2}-1$, ∂e : $d_j=0$, $5m(n+1)-\sum_{i=1}^n x_{ij}$, $j=1,...,n$ $C_v^\gamma=rac{v!}{r!(v-r)!}$ - число v поєднань по r

Метод парних порівнянь:

$$\gamma = rac{2\sum_{i=1}^n\sum_{j=1}^n {C_{b_{ij}}^2 \over C_m^2 C_n^2}}{C_m^2 C_n^2} - 1$$
, де: $C_v^{\gamma} = rac{v!}{r!(v-r)!}$ - число у поєднань по r

$$\omega = 0.85$$

$$\gamma = 0,78$$

Мультиагентний підхід до автоматизації динамічного оперативного керування

Агент:

 $AG = (S, A, env, I, refine, action), _{Re}$

- \bullet S непорожня скінченна множина станів зовнішнього середовища;
 - А непорожня скінченна множина дій агента;
 - env: $S \times A \to 2S$ функція поведінки зовнішнього середовища;
 - \bullet I непорожня скінченна множина внутрішніх станів агента;
- $refine: I \times S \to I$ функція оновлення стану, що зіставляє попередньому внутрішньому стану і новому стану зовнішнього середовища новий внутрішній стан агента;
- *action*: $I \to A$ функція прийняття рішення, що зіставляє поточному внутрішньому стану агента деяку дію.

Мультиагентна система:

$$MAS = (S, AG, env), AG$$

- S кінцева множина станів зовнішнього середовища;
- $AG = \{ag1, \ldots, agn\}$ скінченна множина агентів;
- $env: S \times A_{ag1} \times \ldots \times A_{agn} \to 2S$ функція, що описує можливу реакцію зовнішнього середовища на дії агентів системи.

Гнучка інтелектуалізована мультиагентна конфігурація

Мультиагентна структура: Множина $A = \{A_1, ..., A_n\}$ зв'язаних між собою Φ CIA:

Фазі-перетворювач: Трансформує множину $U^{(x)} = \{U(X_1), ..., U(X_k)\}$ значень вхідних змінних $X = \{X_1, ..., X_k\}$, що відображають вимоги і обмеження ГВС у множину факторів $F^{(x)} = \{F_1^{(x)}, ..., F_l^{(x)}\}$, заданих на значеннях вхідних змінних з визначеними експертами ступенями приналежності $C^{(x)} = \{C_1^{(x)}, ..., C_l^{(x)}\}$.

Дефазі-перетворювач: Трансформує множину факторів $F^{(y)} = \{F_1^{(y)}, ..., F_p^{(y)}\}$ і визначених експертами ступенів приналежності $C^{(y)} = \{C_1^{(y)}, ..., C_p^{(y)}\}$ у множину $W^{(y)} = \{W(Y_1), ..., W(Y_k)\}$ значень умов сумісності $Y = \{Y_1, ..., Y_m\}$ поточної моделі СОУ із заданим на вході набором вимог та обмежень ГВС.

Гнучка інтелектуалізована мультиагентна система

Гнучка інтелектуалізована мультиагентна система – це сукупність ГІМАК АОП, в якій реалізується логічна послідовність налаштування вирішальних динамічних показників СОУ з такою послідовністю їх перебирання в просторі набору вирішальних динамічних показників, яка, будучи виконувана користувачем і/або внутрішнім ініціюючим джерелом, відтворює принципи агентно-орієнтованого підходу та автономно дозволяє виокремити модель/моделі СОУ, здатні задовольнити вимоги та обмеження ГВС.

Програмний комплекс на основі ГІМАС у складі системи динамічного оперативного керування ГВС

Задачі програмного комплексу:

- 1. Автоматизація процесу синтезу структури ГІМАС за заданими складовими та обмеженнями;
- 2. Інтелектуалізований вибір значень показників об'єкта динамічного керування, шляхом перебирання ІА умов виконання критеріїв обслуговуваності поточним вектором можливостей наявних вимог та обмежень;
- 3. Використання експертних знань, в тому числі у нечіткій формі, із забезпеченням механізмів фазифікації, дефазифікації та нечіткого виведення;
- 4. Передача результатів роботи до суміжних підсистем в уніфікованому форматі;
- 5. Забезпечення зручного та наочного відображення інформації кінцевому користувачу у вигляді графічного інтерфейсу;
- 6. Можливість підключення додаткових модулів для розширення функціональності системи.

Алгоритми роботи програмного комплексу на основі ГІМАС

Алгоритм налаштування програмного комплексу:

- Додавання користувачем вирішальних динамічних показників, наборів їх значень та послідовності налаштування.
 - Додавання користувачем додаткових обмежень.
 - Введення користувачем отриманих від експертів даних.
 - Автоматична генерація структури ГІМАС та ініціалізація АОП з усіма необхідними ІА для кожної класифікаційної ознаки.
 - Зберігання структури та налаштувань системи для повторного використання.

Алгоритм використання програмного комплексу:

• Введення користувачем або зчитування з заданої інформаційної підсистеми вхідних значень показників та обмежень.

• Реалізація ітераційної процедури ДОК за допомогою ГІМАС.

• Передача результатів до суміжних підсистем та виведення у зручній графічній формі.

1(

Експериментальне дослідження роботи СДОК ГВС з програмним комплексом на основі ГІМАС

- 1. Задавання значень вимог та обмежень для тестових ГВС:
 - а) обчислювальна потужність апаратного забезпечення СОУ;
 - **b)** архітектура СОУ;
 - с) структурно-компонувальна схема;
 - d) матриця часу переміщень ATM;
 - е) властиві види невизначеностей для ГВС.
- 2. Ініціалізація програмного комплексу на основі ГІМАС та налаштування усіх необхідних компонентів.
- 3. Визначення значень показників СОУ для обраних тестових ГВС за допомогою програмного комплексу із синтезованою ГІМАС.
- 4. Розробка імітаційної моделі ГВС з обраним методом оперативної диспетчеризації.
- 5. Розв'язання тестових задач на основі наборів технологічних операцій, що можуть бути виконані на тестових ГВС.
- 6. Вибір показників продуктивності ГВС та інтерпретація отриманих результатів.

Визначення вимог та обмежень тестових ГВС

- 1. Обчислювальна потужність апаратного забезпечення СОУ:
 - висока.
- 2. Архітектура СОУ:
 - централізована.
- 4. Невизначеності характерні для ГВС:
 - невизначеності, що пов'язані з ресурсами (несправність автономних транспортних модулів;

3. Структурно компонувальні схеми:

Структура 1

Час	L/U	M1	M2	M3	M4
L/U	0	6	8	10	12
M1	12	0	6	8	10
M2	10	6	0	6	8
M3	8	8	6	0	6
M4	6	10	8	6	0

Структура 2

Час	L/U	M1	M2	M3	M4
L/U	0	4	6	8	6
M1	6	0	2	4	2
M2	8	12	0	2	4
M3	6	10	12	0	2
M4	4	8	10	12	0

- М1 ГВМ токарних операцій; М2 ГВМ свердлильних операцій;
- М3 ГВМ фрезерувальних операцій; М4 ГВМ штампувальних операцій;

Програмний комплекс на основі ГІМАС

Результати роботи програмного комплексу:

- 1) Підхід до оперативного планування:
- прогностично-реактивний.
- 2) Стратегія перепланування:
- корекція плану.
- 3) Політика вибору часу перепланування:
- подієва.
- 4) Метод диспетчеризації:
- метод на основі мультиагентних систем.

Імітаційна модель ГВС з методом оперативної диспетчеризації на основі мультиагентної системи

Мультиагентна модель ГВС:

$$MAS_{\Gamma BC} = \{ag_{M} \times ag_{ATM}^{*} \times ag_{\Gamma BM}^{*} \times ag_{3}^{*}, S, env\},$$
de:

- agM агент-менеджер;
- ад*АТМ метаагент АТМ:
 - адДАТМ агент диспетчеризації АТМ;
 - agPATM arent pecypcib ATM;
- ад*ГВМ метаагент ГВМ:
 - адДГВМ агент диспетчеризації ГВМ;
 - адДГВМ агент ресурсів ГВМ;
- ад*3 метаагент системи замовлення:
 - agO agN агенти операцій.

Метод оперативної диспетчеризації на основі МАС: Розподіл задач транспортування з використанням CNet

Кожен *агент диспетчеризації АТМ* формує пропозицію на виконання задачі із робочого списку з найближчим часом початку:

$$ELT_{s} = min\{ELT_{i}\}$$

$$ELT_{i} = \begin{cases} t + \Delta t(CL, PCP_{i}), & t > EPT_{i} \\ t + max\{\Delta t(CL, PCP_{i}), (EPT_{i} - t)\}, & t \leq EPT_{i} \end{cases}$$

де:

 ELT_i — найближчий час початку опрацювання задачі i; CL — поточне розташування ATM;

 PCP_{i} — розташування точки початку обробки задачі i; t — поточний момент часу;

 $\Delta t(...,...)$ — час переміщення між двома точками; EPT_i — найближчий час можливого початку обробки задачі i.

Метод оперативної диспетчеризації на основі МАС: Розподіл задач транспортування з використанням СНВ

- Вхідні змінні:

Частота запитів

- Вихідна змінна:

- Продукційні правила:

No	Відстань	Час очікування	Частота запитів	Пріоритет
1	Далеко	Короткий	Висока	Низький
2	Далеко	Короткий	Середня	Середньо низький
3	Далеко	Короткий	Низька	Середній
•••	•••	•••	•••	•••
25	Близько	Довгий	Висока	Середній
26	Близько	Довгий	Середня	Високий
27	Близько	Довгий	Низька	Високий

Умови експериментальних задач для тестових ГВС

M1(8); M2(16); M4(12)
M1(20); M3(20); M2(18)

M3(12); M4(8); M1(15)

M4(24); M2(18)

M3(10); M1(15)

M1(10); M4(18)
M2(10); M4(18)

M1(10); M3(20)

M2(10); M3(15); M4(12);

M1(10); M2(15); M4(12);

M1(10); M2(15); M3(12);

M1(16); M3(15)
M2(18); M4(15)
M1(20); M2(10)
M3(15); M4(10)
M1(18); M2(10); M3(15); M4(17)

M4(11); M1(10); M2(7)
M3(12); M2(10); M4(8)

M2(7); M3(10); M1(9); M3(8)

M2(7); M4(8); M1(12); M2(6)

M1(9); M2(7); M4(8); M2(10); M3(8)

M2(10); M3(15); M4(8); M1(15)

4 набори технологічних операцій, що виконуються на ГВС1 та ГВС2 для розв'язання експериментальних задач (у дужках подано *час виконання* кожної операції), де:

- М1 ГВМ токарних операцій;
- M2 ГВМ свердлильних операцій;
- М3 ГВМ фрезерувальних операцій;
- M4 ГВМ штампувальних операцій;

Порівняльний аналіз результатів моделювання роботи ГВС зі значеннями вирішальних динамічних показників СОУ налаштованих за допомогою СДОК (1)

Приклад	MAS	FCFS	STD	STT	Зменшення періоду обробки, %
1-1	118	121	114	132	3.2
1-2	131	150	135	148	9
1-3	130	126	126	132	-1.6
1-4	186	198	208	225	11.3
2-1	86	98	92	106	12.5
2-2	74	106	92	102	25.7
2-3	102	104	104	104	1.9
2-4	117	143	139	167	21.3
Середнє значення:					10,4

Критерій продуктивності ГВС:

- період обробки.

Методи оперативної диспетчеризації:

- 1. Метод диспетчеризації на основі МАС;
- 2. Правило FCFS (First-Come-First-Served);
- 3. Правило STD (Shortest traveling distance);
- 4. Правило STT (Shortest traveling time).

Порівняльний аналіз результатів моделювання роботи ГВС зі значеннями вирішальних динамічних показників СОУ налаштованих за допомогою СДОК (2)

Критерій продуктивності ГВС:

- середній час простою АТМ.

Методи оперативної диспетчеризації:

- 1. Метод диспетчеризації на основі MAC з використанням CHB
- 2. Метод диспетчеризації на основі *MAC* з використанням *CNet* (-8%)
- 3. Правило диспетчеризації First-Come-First-Served (-12%)

Висновки

- 1. Створено формалізовану модель процесу та синтезовано структуру системи динамічного оперативного керування (СДОК).
- 2. Створено класифікатор вирішальних динамічних показників та їх можливих значень.
- 3. Синтезовано концептуальну модель СОУ як об'єкта динамічного керування на основі Ф-функції.
- 4. Розроблено узагальнену модель вибору вирішальних динамічних показників з використанням експертних методів ранжування та парних порівнянь.
- 5. Розроблено підхід до автоматизації динамічного оперативного керування на основі метаідентифікації із використанням гнучких інтелектуалізованих мультиагентних конфігурацій.
- 6. Створено алгоритмічне та програмне забезпечення СДОК у вигляді програмного комплексу на основі гнучкої інтелектуалізованої мультиагентної системи.
- 7. Здійснено вдосконалення мультиагентного методу оперативної диспетчеризації ГВС шляхом використання системи нечіткого виведення.
- 8. Результати моделювання роботи ГВС зі СДОК демонструють вищу продуктивність за обраними критеріями: тривалість періоду обробки на 10,4% та середній час простою АТМ на 8-12%.
- 9. Запропонований у роботі підхід до динамічного оперативного керування носить узагальнюючий характер та може бути застосований для динамічного корегування показників оперативного управління об'єктами різної природи.

29

Публікації:

• 10 наукових праць, у тому числі 6 статей у наукових фахових виданнях України, які включені до міжнародних наукометричних баз.

Апробація:

- Науково-технічна конференція "Автоматизація: проблеми, ідеї, рішення 2013", м. Київ;
- XXI Міжнародна конференція з автоматичного управління "Автоматика 2014", м. Київ;
- ІІІ Міжнародна науково-практична конференція "Інформаційні управляючі системи та технології", м. Одеса;
- Всеукраїнська науково-практична конференція "Електронні та мехатронні системи: теорія, інновації, практика", м. Полтава.