Zusammenfassung NuS I

René Zurbrügg

13. Dezember 2018

Elektrostatik

Elementarladung	e	$+1.602 \cdot 10^{-19}$	As
Dielektrizitätskonst.	ε_0	$8.854 \cdot 10^{-12}$	$\frac{A}{V}$
Magn. Permeabilität	μ_0	$4\pi \cdot 10^{-7}$	V A
Ruhemasse Elektron	$m_{0,e}$	$9.1094 \cdot 10^{-31}$	kg
Ruhemasse Proton	$m_{0,p}$	$1.6726 \cdot 10^{-27}$	kg
Lichtgeschwindigkeit	c_{Vak} .	$2.99792 \cdot 10^{8}$	m s

1.1 Ladungsdichten

- Linienladungsdichte: $\lambda = \frac{dQ}{dl} = \begin{bmatrix} \frac{As}{m} \end{bmatrix}, Q = \int_{l} \lambda dl$
- Flächenladungsdichte: $\sigma = \frac{dQ}{dA} = \begin{bmatrix} As \\ -2 \end{bmatrix}, Q = \iint_A \sigma dA$

1.2 Grundgrössen

- E-Feld einer Punktladung: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$ $\left[\frac{V}{m}\right]$
- Kraft mehre. zweier Ladungen: $\vec{F} = \frac{Q_1 Q_2}{4\pi \epsilon_0 r^2} \vec{e_r}$ [N]
- E-Feld Punktldgn: $\vec{E}(\vec{r_p}) = \frac{1}{4\pi\epsilon_0} \cdot \sum_k \frac{Q_k}{|\vec{r_p} \vec{r_k}|^2} \frac{\vec{r_p} \vec{r_k}}{|\vec{r_p} \vec{r_k}|^2}$
- E-Feld ∞ -langer Leiter: $E = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r_{\perp}}$
- Spannung, Innen-/Aussenleiter: $\vec{E}(\rho) = \frac{Q}{2\pi \varepsilon l} \frac{1}{\rho} \vec{e_\rho}$ $U = \int_{r_0}^{r_2} \vec{E}(\rho) d\vec{\rho} = \int_{r_0}^{r_2} \frac{Q}{2\pi \cdot \epsilon \cdot l} \frac{1}{\rho} d\rho = \frac{Q}{2\pi \cdot \epsilon \cdot l} \ln \left| \frac{r_2}{r_1} \right|$
- Leckstrom: $I = \int_{0}^{2\pi} \int_{0}^{l} \vec{J}(\rho) \rho dz d\phi = 2\pi \kappa \rho l E(\rho) \Rightarrow E(\rho) = \frac{1}{2\pi \kappa l} \frac{1}{\rho}$
- Elektr. Flussdichte $\vec{D}(\vec{r}) = \varepsilon_0 \cdot \varepsilon_r \cdot \vec{E}(\vec{r}) = \varepsilon \cdot \vec{E}(\vec{r})$ [As $\frac{As}{m^2}$]

1.2.1 Arbeit & Potential (1-33)

$$\begin{array}{ll} \textit{WP}_{1} \rightarrow \textit{P}_{2} & = - \int_{P_{1}}^{P_{2}} \vec{F} \cdot d\vec{s} & \text{weg-unabhängig} \\ \textit{We} & = - Q \int_{P_{1}}^{P_{2}} \vec{E} \cdot d\vec{s} & = Q \left(\phi(P_{2}) - \phi(P_{1}) \right) = - U_{12}Q \\ \rightarrow |W| & = \textit{Ws} = \textit{J}, |P| & = \frac{\textit{J}}{2} = \textit{W} \end{array}$$

Potential:

Oftmals
$$P_{ref} = \infty$$

$$\varphi(P_1) = \frac{W(P_{ref} \rightarrow P_1)}{Q_1} = - \int_{P_{ref}}^{P_1} \vec{E} \cdot d\vec{s} \quad [V]$$

1.2.2 Spannung

$$U_{12} = \varphi(P_1) - \varphi(P_2) = \int_{P_1}^{P_2} \vec{E} \cdot d\vec{s} = \frac{W_{12}}{Q}$$

1.3 Das Gauss'sche Gesetz (1-45)

E-Feldlinien von idealen Leitern, stehen senkrecht auf der

1.4 Kondensator (1-61)

$$C = \frac{Q}{U} = \frac{\iint_A \vec{D} \cdot d\vec{A}}{\int_{\vec{s}} \vec{E} \cdot d\vec{s}} = \frac{\iint_A \sigma dA}{\int_{\vec{s}} \vec{E} \cdot d\vec{s}} \quad [F] = \left[\frac{As}{V}\right]$$

Einfache Kondensatorentladung: $U = U_0 e^{\vec{RC}}$

• Plattenkondensator:
$$E = \frac{D}{\varepsilon} = \frac{\sigma}{\varepsilon} = \frac{Q}{\varepsilon A}, \quad U = Ed \rightarrow C = \frac{Q}{U} = \frac{\varepsilon A}{d}$$

Das Feld einer Platte ist E/2

• Kugel(schalen)kondensator: (1-62)(1-73)

$$U_{ab} = \int_{r_i}^{r_a} \vec{E} \cdot d\vec{s} = \frac{Q}{4\pi\varepsilon} \int_{r_i}^{r_a} \frac{1}{r^2} dr = \frac{Q}{4\pi\varepsilon} \frac{r_a - r_i}{r_a r_i} = \frac{Q}{C} \to C = 4\pi\varepsilon \frac{r_i r_a}{r_a - r_i}$$

- Vielschichtenkondensator aus n Platten: $C_{ges} = (2n - 1)C$
- Zylinderkondensator

$$C = \frac{Q}{\frac{R2}{R_1}} = \frac{2\pi\varepsilon l}{\ln\frac{R_2}{R_1}}$$

Für unendlich dünne Platten: $D = \sigma/2$

1.5 Energie im E-Feld (1-70)(1-72)

$$W_e = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QU = \frac{1}{2} CU^2 = \iiint_V \frac{1}{2} \vec{E} \cdot \vec{D} dV$$

2 Elektr., stationäres Strömungsfeld

$$\begin{split} I &= \frac{dQ}{dt} = \iint_A \vec{J} \cdot d\vec{A} \simeq \pm J \cdot A, \quad [I] &= A, \quad J = \frac{dI}{dA}, \quad [J] = \frac{A}{m^2} \\ \text{Stat. Strömungsfeld, wenn } I \text{ konst.: } \oiint_A \vec{J} \cdot d\vec{A} = 0 \text{ (1-86)} \end{split}$$

• Spezifische Leitfähigkeit:

Driftgeschw. $\vec{v}_{Drift} = -\mu_e \vec{E}$ wobei $\mu_e =$ "Beweglichkeit"

$$\kappa = (\mu_- q_- + \mu_+ q_+)$$
 =spez.Leitf., $[\kappa] = \frac{A}{V_{\text{tot}}} = \frac{1}{\Omega_{\text{tot}}}$

- Spezifischer Widerstand: $\rho_R = \frac{1}{\kappa}$, $[\rho_R] = \Omega m = \frac{Vm}{A}$
- Temperaturabhängigkeit:

 $\rho_R(T) = \rho_{R,20} \circ_C \left(1 + \alpha (T - 20 \circ C) \right)$

- Ohmsches Gesetzt: $U = R \cdot I$, $[R] = \frac{V}{A} = \Omega$ $\vec{J} = \kappa \vec{E}, \quad R = \frac{U}{I} = \frac{l}{\kappa A} = \frac{\rho_{R}l}{A} = \frac{\int_{S} \vec{E} \cdot d\vec{s}}{\kappa \prod_{i} \vec{F}_{i} \cdot d\vec{A}}$
- Leitwert: $G = \frac{1}{p}$ [G] = S (Siemens)

2.2 Sprungstellen bei Materialübergängen (1-99)

• Normalkomponenten.: $J_{n1=J_{n2}}$ $\kappa_1 E_{n1} = \kappa_2 E_{n2}$ Die Normalkomponente der Stromdichte ist stetig. • Tangentialkomp.: $E_{t1} = E_{t2}$

 $tan(\alpha_1)$ K2

α_i = Winkel zur Flächennormale, Die Tangentialkomponente des E-Feldes ist stetig.

2.3 Energie und Leistung (1-102)

$$egin{aligned} W_e &= \int_0^t P(au) d au \ ext{ und } P(t) = rac{dW_e}{dt} \ P &= UI = I^2 R = U^2/R \ ext{ Verlustleistungsdichte: } p_V = rac{dP}{dV} = ec{E} \cdot ec{J} \ P &= \iiint_V p_V dV = \iiint_V ec{E} \cdot ec{J} dV \end{aligned}$$

3 DC-Netzwerke

3.1 Spannungs- und Stromquellen

• Ideale Quellen:

- Reale Stromquelle Leerlaufspannung: U₀ = R_i · I₀
- Reale Spannungsquelle Kurzschlussstrom: $I_K = \frac{U_0}{R}$

Reale Spannungsquelle

Umwandlung: [U-Quelle] $U_0 = R_i \cdot I_0$ [I-Quelle]

- Kirchhoff'sche Maschenregel: $\sum_{Masche} U_k = 0$
- Kirchhoff'sche Knotenregel: ∑_{Knoten} I_k = 0
- Leistungsanpassung

Die Leistung wird maximiert, wenn gilt: $R_L = R_i$

Wechselwirkung Quelle Verbraucher

- Gleichmässige Energieabgabe ist nur bei identischen Quellen möglich.
- Leistungsabgabe von zusammengeschalteten Spannungsquellen ist unterschiedlich, wenn sie über versch. R_i oder
- Quellen können zu Verbrauchern werden.

3.2 Einfache Netzwerkberechnungen

- [R] Seriell:
- [R] Parallel: $\frac{1}{R_{ges}} = \sum_{i=1}^{n} \frac{1}{R_{i}}$ $n=2 \rightarrow R_{ges} = \frac{R_{1}R_{2}}{R_{1}+R_{2}}$
- $\frac{1}{C_{ges}} = \sum_{k=-1}^{n} \frac{1}{C_k}$ $n = 2 \rightarrow C_{ges} = \frac{C_1 C_2}{C_1 + C_2}$ [C] Seriell:
- [C] Parallel: $C_{ges} = \sum_{k=1}^{n} C_{k}$
- [L] Seriell:
- $\frac{1}{L_{ges}} = \sum_{n=1}^{\infty} \frac{1}{L_{1}}$ $n=2 \rightarrow L_{ges} = \frac{L_{1}L_{2}}{L_{1}+L_{2}}$ [L] Parallel:

3.3 Spannungs-/Stromteiler

Spannungsteiler

$$I_2 = U \frac{R_2}{R_1 + R_2}$$
 $I_2 = I \frac{R_1}{R_1 + R_2}$

Belasteter Spannungsteiler:

$$R'_2 = \frac{R_2 R_L}{R_2 + R_L} \rightarrow \frac{U_2}{U} = \frac{R'_2}{R_1 + R'_2} = \frac{R_2 R_L}{R_1 (R_2 + R_L) + R_2 R_L}$$

3.4 Wirkungsgrad

$$\eta = \frac{P_L}{P_{ges}} \cdot 100\% = \frac{I^2 R_L}{I^2 (R_i + R_L)} \cdot 100\% = \frac{R_L/R_i}{1 + R_L/R_i} \cdot 100\%$$

Umgeformt (1-140): $\eta = \left(1 - \frac{1}{l_{max}}\right) \cdot 100\%$

Bei der Leistungsanpassung beträgt der Wirkungsgrad 50%

3.5 Widerstandsmessung (1-131)

- Mit korrekter Spannungsmessung: $R = \frac{U_R}{I_P} = \frac{U_V}{I_A - I_V} = \frac{U_V}{I_A - U_V/R_V} = \frac{U_V R_V}{I_A R_V - U_V}$
- Mit korrekter Strommessung: $R = \frac{U_R}{I_R} = \frac{U_V - U_A}{I_A} = \frac{U_V - R_A I_A}{I_A}$

3.6 Superpositionsprinzip

Für jede Quelle das Netzwerk analysieren, die Anderen ausschalten, Resultate addieren.

- \bullet Spannungsquellen \rightarrow Kurzschliessen
- Stromquellen → Leerlauf

3.7 Stern-Dreieck-Transformation

$$\begin{array}{lll} \underline{R}_{AB} = & \underline{R}_A \underline{R}_B + \underline{R}_B \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_{AC} = & \underline{R}_A \underline{R}_B + \underline{R}_B \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_{AC} = & \underline{R}_A \underline{R}_B + \underline{R}_B \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_{BC} = & \underline{R}_A \underline{R}_B + \underline{R}_B \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_{AC} = & \underline{R}_A \underline{R}_B + \underline{R}_B \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_{AC} = & \underline{R}_A \underline{R}_B + \underline{R}_B \underline{R}_C \\ \underline{R}_{AC} + \underline{R}_A \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_A + \underline{R}_A \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_A + \underline{R}_A \underline{R}_C + \underline{R}_A \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_A + \underline{R}_A - \underline{R}_A \underline{R}_C + \underline{R}_A \underline{R}_C \\ \underline{R}_A + \underline{R}_A - \underline{R}_C + \underline{R}_A - \underline{R}_C \\ \underline{R}_A + \underline{R}_A - \underline$$

Falls die Widersätnde gleich sind, gilt: $R_{Drejeck} = 3R_{Stern}$ Galvanisierung

 $N_{Au} = \# Goldionen$ z = chemische Wertigkeite = Elementarladung

$\begin{array}{l} C = \frac{1}{2} \operatorname{Ereinatariang}_{A} \\ Q = z \cdot e \cdot N_{Au} \\ I = \frac{Q}{2} = \frac{z \cdot e \cdot N_{Au}}{I}, \quad J = \frac{I}{A}, \quad t = \frac{z \cdot e \cdot N_{Au}}{I} \\ t := \operatorname{Zeit}, \text{ bis Goldio. an Metall angelagert} \end{array}$

Dotierung

mehr freie Elektronen, höhere Leitfähiakeit $n = Dotierungsdichte (wieviel Ato/cm^3)$

N-Dot: mehr Phosphor desto

N-Dotierung P-Dotierung $q = \pm e \ (+ \ bei \ P, - \ bei \ Al)$

 $\vec{v_s} = Geschw. der Ladungsträger$

4 Magnetostatik

 Magnetfeld: Feldlinien von N nach S (innen S → N) Magnetfelder sind immer geschlossen.

- Mag. Flussdichte eines Leiters: $\vec{B} = \frac{\mu_0}{2\pi} \frac{I}{\rho}$, $[T] = [\frac{V_s}{m^2}]$ ρ Abstand zum Leiter
- ullet Mag. Feldstärke eines Leiters: $\vec{H}=rac{1}{\mu_0}\vec{B}=rac{1}{2\pi}rac{1}{
 ho},[H]=rac{A}{m}$
- Lorenzkraft (1-180): $\vec{F} = q\vec{v} \times \vec{B} = I\vec{l} \times \vec{B}$
- F auf Ladung (1-183): $\vec{F}_L = Q \cdot \vec{v} \times \vec{B}$ $\vec{F} = Q \cdot (\vec{E} + \vec{v} \times \vec{B})$

Analogie: Elektrisch, Magnetisch (1-209)

Analogie: Elektrisch, Wagnetisch (1-209)				
Grösse	Elektrisch	Magnetisch		
Leitfähigkeit	κ	μ		
Widerstand	$R = \frac{1}{\kappa \cdot A}$	$R_m = \frac{1}{\mu \cdot A}$		
Spannung	$U_{12} = \int_{P_1}^{P_2} \vec{E} \cdot d\vec{s}$	$V_{m12} = \int_{P_1}^{P_2} \vec{H} \cdot d\vec{s}$ = $R_{m12} \cdot \Phi_{12}$		
Strom/Fluss	$I = \iint_{A} \vec{J} \cdot d\vec{A}$ $= \iint_{A} \vec{E} \cdot d\vec{A}$	$\Phi = \iint_{A} \vec{B} \cdot d\vec{A}$ $= \mu \iint_{A} \vec{H} \cdot d\vec{A}$		
Ohm. Gesetzt	$U = R \cdot I$	$V_m = R_m \cdot \Phi$		
Maschengl.	$U_0 = \sum_{Masche} U_M$	$\Theta = \sum_{Masche} V_m$		
Knotengl.	$\sum_{Knoten} I = 0$	$\sum_{Knoten} \Phi = 0$		
Feldgrössen	Elektrisch Magnetisch			

C ZKnoren		oten
Feldgrössen	Elektrisch	Magnetisch
Intensität/Wirkung(Kraft)	Ē	$\vec{B} = \mu \vec{H}$
Quantität/Ursache(Ladung)	$\vec{D} = \varepsilon \vec{E}$	\vec{H}

4.1 Oersted'sches Gesetz (Durchfl.satz)(1-187)

$$N \cdot I_{eff} = \iint_{A} \vec{J} \cdot d\vec{A} = \Theta = \oint_{\partial A} \vec{H} \cdot d\vec{s} = \sum_{k} H_{k} I_{k} = \sum_{k} \frac{B_{k}}{\mu} I_{k}$$

Θ Durchflutung, N Windungszahl

Prinzip gilt insbesondere für N=1, sprich Einzelne Leiter

4.2 Verschiedene magnetische Komponenten

- ∞-langer Leiter (1-189): $\vec{H}(\rho) = \vec{e}_{\varphi} \cdot \frac{I}{2\pi} \begin{cases} \rho/R^2 & \rho \leq R \\ 1/\rho & \rho \geq R \end{cases}$
- Toroidspule (1-190): $NI = \Theta = \int_0^{2\pi} \vec{e}_{\varphi} H_{\varphi} \rho d\varphi = 2\pi \rho H_{\varphi}(\rho) \rightarrow \vec{H} = \frac{NI}{2\pi \rho} \vec{e}_{\varphi}$
- Reluktanzmodell: $H = \frac{NI}{I}\vec{e}_x$
- Spannung über Spule: Wenn sich die Spule bewegt, gilt nach dem Induktionsgesetz: $U_s = N \cdot \frac{d\Phi}{dr}$ Dies vereinfacht sich zu: $U_s = l_s \cdot B \cdot v$ mit l_s : Leiterlänge im B-Feld, v: Geschwindigkeit mit der sich die Spule über den Kern bewegt.

4.3 Reluktanzmodell (1-206)

- Magn. Spannung: $V_m = \int_{P_1}^{P_2} \vec{H} \cdot d\vec{s} = \Theta = NI \quad [\Theta] = A$
- Magn. Strom: $\Phi = \iint_A \vec{B} \cdot d\vec{A}$, $[\Phi] = Vs = Wb$ (Weber)
- Magn. Widerstand: $R_m = \frac{l}{uA}$, $[R_m] = \frac{1}{H} = \frac{A}{V_S}$
- \bullet Magnetische spezifische Leitfähigkeit: μ
- Magnetischer Leitwert: $\Lambda_m = \frac{1}{R_m}$, $[\Lambda_m] = \frac{V_S}{A}$
- Ohm'sches Gesetz: $V_m = R_m \Phi$, $[V_m] = A$

4.4 Magnetische Polarisation(1-199)

Magnetische Polarisation: $\vec{J_m} = \mu_0 \mu_r \vec{H} - \mu_0 \vec{H}$ Magnetisierung: $\vec{M} = \mu_r \vec{H} - \vec{H}$

Diamagnetismus:

Materialien, die das B-Feld schwächen, $\mu_r < 1$

Paramagnetismus: Materialien, die das B-Feld leicht stärken, $\mu_r > 1$

Ferromagnetismus: Nebenan die Hysteresekurve eines Ferrit Materials

Remanenz: oberer Schnittpunkt mit y-Achse, $\mu_r >> 1$, μ_r nicht konstant

Dauermagnete: Ferromagnetische Stoffe im Remanenzzu-

4.5 Sprungstellen bei Materialübergängen (1-205)

- $tan(\alpha_2)$ • Normalkomponenten: $B_{n1} = B_{n2}$ H_{n2} $tan(\alpha_1)$
- μ_1 $tan(\alpha_1)$ • Tangentialkomp.: $H_{t1} = H_{t2}$ $\tan(\alpha_2)$

4.6 Induktivität (1-211)

 $L = \frac{\Psi}{I} = \frac{N\Phi}{I} = \frac{N^2}{R}, \quad [L] = \frac{Vs}{A} = H \text{ (Henry)}$

- A_L -Wert: $L = N^2 A_L = N^2 \Lambda_m$, $A_L = \Lambda_m = \frac{1}{R} = [nH]$
- Generell: $L \cdot I = N \cdot \oiint \vec{B} \cdot d\vec{A} \simeq NB \cdot A$
- Toroidspule: $L = \frac{\Phi}{I} = \frac{N\Phi_A}{I} = N^2 \frac{\mu H}{2\pi} \ln \left(\frac{r_{aussen}}{r_{imorp}} \right) =$
- Luftspalt: $L = N^2 \frac{\mu_0 \mu_{rel} A}{l_m \mu_{rel} d} \approx N^2 \frac{\mu_0 A}{d}$ d Spaltgrösse
- Kraft Magnetfeld: $F_A = \frac{B^2}{2\mu_0}A$

4.7 Induktion und Selbstinduktion(1-249)

- Induktionsgesetz: $\oint_{\vec{s}} \vec{E} \cdot d\vec{s} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \iint_A \vec{B} \cdot d\vec{A}$ Fluss gemäss rechte Hand Regel durch Kontur s zählen
- Selbstinduktion: $u_L(t) = L \frac{di_L}{dt}$ (vgl. $i_C = C \frac{du_C}{dt}$)
- Energie: $W_m = W_L = \frac{1}{2}LI^2 = \frac{1}{2}\Phi I = \iiint_V \frac{1}{2}\vec{B} \cdot \vec{H}dV$

4.8 Bewegungsinduktion

- Induziertes E-Feld $\vec{E}_i = \vec{v} \times \vec{B} \rightarrow u_{ind} = \int_{I(t)} \vec{E}_i \cdot d\vec{s}$ $\rightarrow u_{ind} \simeq l_{eff}(t) \cdot E \cdot v$, $l_{eff}(t)$ Länge des Leiters im Magnetfeld wo $\vec{v} \perp \vec{B}$
- Veränderliche Fläche $u_{ind} \simeq \pm B \cdot \frac{d}{dt} (A(t))$

4.9 Transformatoren

Gegeninduktivität
$$L_{12} = \mathit{N}_1 \cdot \frac{\phi_{12}}{i_2} \simeq \mathit{L}_{21} = \mathit{M}$$

Selbstinduktivität
$$L_{11}=\mathit{N}_1\cdot rac{\phi_1}{i_1}\simeq \mathit{N}_1^{\ 2}\mu\cdot rac{A}{l}=rac{\mathit{N}_1^2}{\mathit{R}_m}$$

Spannungskoppelung

$$\begin{array}{ll} u_1 = L_{11} \frac{1}{d} i_1 - M \frac{d}{d} i_2 \\ u_2 = L_{22} \frac{1}{d} i_2 - M \frac{d}{d} i_1 \end{array} \quad \begin{array}{ll} u_1 = [L_{11} - M] \frac{d}{d} i_1 - M \frac{d}{d} (i_2 - i_1) \\ u_2 = [L_{22} - M] \frac{d}{d} i_2 - M \frac{d}{d} (i_1 - i_2) \end{array}$$

Ersatzschaltbild

Koppelfaltor
$$k_{21} = \frac{\phi_{21}}{\phi_{11}}, k_{12} = \frac{\phi_{12}}{\phi_{22}} \rightarrow k = \frac{M}{\sqrt{L_{11}L_{22}}}$$

Übersetzungsverhältniss $\pm \ddot{u} = \frac{up}{u} = \frac{Np}{N} = i_s i_p$ + Falls ϕ_1 und ϕ_2 entgegengesetzt fliessen, sonst

4.10 nicht-idealer Übertrager

- 1. Kupfermaterial in den Windungen: R_{11} , R_{22}
- 2. Reluktanzverlust $(\mu_r \neq \infty)$: $\ddot{u}M$
- 3. Streuung: Streuinduktivitäten, L_{s1}, L_{s2}

Vereinfachende Annahmen:

- Verlustfrei: $R_{11} = R_{22} = 0$
- Streufrei: $L_{11} \ddot{u}M = 0$ $\ddot{u}^2 L_{22} \ddot{u}M = 0$
- Kern ideal: $R_m = \infty$ $\ddot{u}M = 0$

Koppelfaktor: $k = \frac{M}{\sqrt{L_{11}L_{22}}}$

Widerstandstransformation

 R_L hinter Transformator $\Rightarrow R_L = \frac{u_p}{i_R} = \ddot{u}u_s \cdot \frac{\ddot{u}}{i_S} = \ddot{u}^2 \cdot R$ ohne Transformator

5 Allgemeines

Absoluter Fehler: $F = \Delta x = |x_{ist} - x_{mess}|$ Relativer Fehler $F_{rel} = \frac{\Delta x}{x_{int}} \cdot 100\%$

Kreis-Tangentengleichung: $a = \frac{v^2}{a}$

Beschleunigung: $a = \frac{F}{m}$

Kugel:
$$V = \frac{4}{3}\pi r^3, A = 4\pi r^2$$

Kreis:
$$A = \pi r^2$$
, $U = 2\pi r$

Auftriebskraft =
$$Fa = \rho_{Luft}Vg$$

Einheit

Karth. Koordinaten:
$$\vec{e}_{\varphi} = \frac{1}{\sqrt{x^2 + y^2}} (-y\vec{e}_x + x\vec{e}_y)$$

	Ellineit		ъ	ededitung	
\vec{B}	Vs/m^2	Magnetische Flussdichte			
С	As/V = F	Kapazität			
\vec{D}	As/m^2	Elektr. Flussdichte, el. Erregung			Erregung
\vec{E}	V/m	Elektrische Feldstärke			
G	$1/\Omega = A/V$	Elektr. Leitwert			
\vec{H}	A/m	1		ı. Feldstär	
I	A/m A			eichstrom	Ke
_	A			schlussstro	
I_K i	A	7			
				ängiger St	
\vec{J}	A/m^2			ert.) Stron	
\vec{J}	Vs/m^2			. Polarisat	
\vec{J}	Vsm	l l		Dipolmon	
k				ppelfaktor	
L	Vs/A		Inc	duktivität	
\vec{M}	A/m		Mag	netisierun	g
\vec{m}	Am^2	I N	lagnet	isches Moi	ment
N			Wii	ndungszah	l
P	VA = W		I	Leistung	
\vec{P}	As/m^2	Е	ielekt	r. Polarisa	tion
\vec{p}	Asm	F	lektr.	Dipolmon	nent
Q	As = C	L	adung	, Punktlad	lung
R	$V/A = \Omega$	0	hmsch	er Widers	tand
R_m	A/Vs		Magn	. Widersta	nd
U	V			chspannun	
и	V			nderliche l	
ü				zungsverhä	
V_m	A	M	agnet	ische Span	nung
W	VAs = J			Energie	
w	WAs/m^3			ergiedichte	
Φ	Vs			etischer Fl	
Λ_m	Vs/A	M		ischer Leit	
Θ	A			rchflutung	
Ψ	As			ektr. Fluss	
χ			Dielekt. & magn. Suszeptibilität		
ε	As/Vm	Di	Dielektrizitätskonstante		
ε_r			Dielektrizitätszahl		
φ		Phasenwinkel			
φ_e	V	Elektrostatisches Potential			
η		Wirkungsgrad			
κ	A/Vm	Spezifische Leitfähigkeit			
λ	As/m	Linienladungsdichte			
μ	Vs/Am		Permeabilität		
μ_e	m^2/Vs		Beweglichkeit der Ladungsträger		
ρ	As/m^3			ladungsdic	
ρ_R	Vm/A	Sp	Spezifischer Widerstand		
σ	As/m^2		Flächenladung		
ω	$1/s \cdot 2\pi$	Kreisfrequenz			
	NI	********		NI.	3374
<u> </u>	Name	Wert		Name	Wert

	Name	Wert		Name	Wert
T	Tera	10^{12}	p	Piko	10^{-12}
G	Giga	10 ⁹	n	nano	10^{-9}
M	Mega	10^{6}	μ	Mikro	10^{-6}
k	Kilo	10^{3}	m	Mili	10^{-3}
h	Hekto	10^{2}	с	Zenti	10^{-2}
da	Deka	10^{1}	d	Dezi	10^{-1}