# AKoS - Acoustic inspection of weld seams on safety-critical components as part of quality assurance

### Experiment Set-Up









### Data acquisition



### Carrying out the experiment

- Microphone signal
  - Setting the amplification of the respective microphone signals
    - Microphone Gefell 1 = MK301, Amplification "32"
    - Microphone Gefell 2 = MK201, Amplification "16"
- Data recording
  - Setting the start and end signal trigger via the welding current intensity
    - Start trigger: 5 A (≜ 0.05 V) with 1000 values (output unit: V -> 1 V ≜ 100 A)
    - End trigger: 1.5 A (≜ 0.015 V) with 1 value (output unit: V -> 1 V ≜ 100 A)





Welded wall made of 316L with 20 layers according to TU Ilmenau parameters

## Welding Parameters

| Parameter                      | Value      |  |  |
|--------------------------------|------------|--|--|
| Current intensity              | 151 A      |  |  |
| Voltage                        | 17,7 V     |  |  |
| Wire feed speed                | 5,3 m/min  |  |  |
| Welding speed                  | 300 mm/min |  |  |
| Layer height                   | 1,88 mm    |  |  |
| Stickout                       | 10 mm      |  |  |
| Intermediate layer temperature | 120°C      |  |  |
| Shielding gas                  | Cronigon 2 |  |  |
| Shielding gas quantity         | 14,0 l/min |  |  |

### Test Plan

- Wall geometry:
  - L = 140 mm
  - 50 layers
- 11 walls per material:
  - One OK wall per material wall
  - Per n.i.O. wall one defect type
  - Defect insertion in every 3rd layer
- Maximum of four walls per substrate plate:
  - Distance between walls: 50 mm
  - Position of the individual walls on the substrate plate numbered (1 4) in the documentation
- Welding strategy:
  - Alternating start and end points
  - One individual welding bead per shift
- Machine maintenance:
  - One new current contact tube and cleaned gas nozzle per wall
  - No preheating of the substrate plate
  - No cooling of the welding tab







### Defect Generation

#### Defect generation - shielding gas quantity

- Reduction of the supplied shielding gas quantity to 90%, 80%, 70% and 50% of the original gas flow to generate pores
- Only one percentage shielding gas volume reduction per wall
- Defect insertion in every 3rd layer

| Proportion of shielding gas [%] | Gas flow volume [l/min] |
|---------------------------------|-------------------------|
| 100 %                           | 14,0 l/min              |
| 90 %                            | 12,6 l/min              |
| 80 %                            | 11,2 l/min              |
| 70 %                            | 9,8 l/min               |
| 50 %                            | 7,0 l/min               |

#### Defect generation - oil application

- Applying oil to the weld bead surface to create pores
- Oil applied twice in every 3rd layer using a brush
- Oil used: "Drilling and cutting oil CUT+COOL" from Würth



Brush, oil used for application to the surface of the weld bead



Welded stainless steel wall with oil application in every 3rd layer

# CT Images



# Location - Time Assignment

- Determination of the pore position in individual weld layers in relation to the welding direction and starting point
- Coordinate transformation of the CT data to the desired format
  - Wall length: 140 mm
  - Z-jumps according to process specification
- Storage of the new coordinates in a pore\_data\_fit\_eng file with further information on the pores

| wand_ids - | layer 🔽 | postion[mm] | diameters[mm] 🔻 | class 💌 | pore_ids_ct 💌 |
|------------|---------|-------------|-----------------|---------|---------------|
| fit12      | 1       | 0,090133667 | 0,341915965     | oel     | 1471          |
| fit12      | 1       | 0,312820435 | 0,262490094     | oel     | 1458          |
| fit12      | 1       | 0,930549622 | 0,289895892     | oel     | 1466          |
| fit12      | 1       | 1,215770721 | 0,214100599     | oel     | 2973          |
| fit12      | 1       | 1,386878967 | 0,233853996     | oel     | 2948          |
| fit12      | 1       | 1,782306671 | 0,455848724     | oel     | 1384          |
| fit12      | 1       | 2,302837372 | 0,279549152     | oel     | 1227          |
| fit12      | 1       | 3,016521454 | 0,33439824      | oel     | 1508          |
| fit12      | 1       | 3,401790619 | 0,299553186     | oel     | 2633          |
| fit12      | 1       | 4,111740112 | 0,360378057     | oel     | 2841          |
| fit12      | 1       | 7,917797089 | 0,24103038      | oel     | 49            |
| fit12      | 1       | 8,564308167 | 0,319158494     | oel     | 380           |
| fit12      | 1       | 8,727844238 | 0,231251329     | oel     | 3954          |
| fit12      | 1       | 9,757575989 | 0,220645607     | oel     | 3498          |
| fit12      | 1       | 11,54088211 | 0,297485322     | oel     | 200           |
| fit12      | 1       | 12,27341461 | 0,214117676     | oel     | 188           |
| fit12      | 1       | 13,49700546 | 0,193814009     | oel     | 2640          |
| fit12      | 1       | 14,36072159 | 0,231259659     | oel     | 2637          |
| fit12      | 1       | 14,71836853 | 0,225679576     | oel     | 1331          |
| fit12      | 1       | 22,29267883 | 0,454162598     | oel     | 985           |
| fit12      | 1       | 25,09274674 | 0,271756113     | oel     | 1588          |
| fit12      | 1       | 36,48744965 | 0,264936179     | oel     | 1172          |
| fit12      | 1       | 39,14060974 | 0,454957008     | oel     | 2147          |
| fit12      | 1       | 39,42894936 | 0,214102387     | oel     | 2145          |
| fit12      | 1       | 39,47184563 | 0,387621462     | oel     | 2469          |

### Brief Evaluation

- Goal of targeted generation of pores only partially successful
- Main proportion of pores in start and end areas, only small pores in stable area
- Shielding gas variation shows contradictory behaviour



### Tasks to be Investigated

- Extended analyses pending of pore distribution
- Can we hear pores?
- Apply existing techniques to recognise the pores (using MFCC-features)