STATISTICS PROBLEMS: PERSONAL-OVERALL

May 2019

1. Consider the multiple linear regression model

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \beta + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix},$$

where $Y_1 \in \mathbb{R}^{n_1}$, $Y_2 \in \mathbb{R}^{n_2}$, X_1 is a $(n_1 \times p)$ matrix, X_2 is a $(n_2 \times p)$ matrix, $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ has rank p, and error terms ϵ_1 and ϵ_2 are independent of each other with

$$\epsilon_1 \sim N_{n_1}(0, \sigma^2 I_{n_1})$$
 and $\epsilon_2 \sim N_{n_2}(0, \rho \sigma^2 I_{n_2})$ $(\rho > 0)$

The unknown parameters are $\beta \in \mathbb{R}^p$ and σ^2 .

- 1. Treat ρ as a constant and driver the maximum likelihood estimates of β and σ^2 , denoted by $\hat{\beta}_{\rho}$ and $\hat{\sigma}_{\rho}^2$.
- 2. Suppose that X_1 has full rank p and X_2 has full rank $n_2 < p$. Prove that as ρ goes to zero, $\hat{\beta}_{\rho}$ converges to

$$\hat{\beta} + (X_1'X_1)^{-1} X_2' \left[X_2 (X_1'X_1)^{-1} X_2' \right]^{-1} \left(Y_2 - X_2 \hat{\beta} \right)$$

where $\hat{\beta} = (X_1'X_1)^{-1}X_1'Y_1$.

- 3. Interpret the above limit in some context of multiple linear regression with constraints on β .
- 2. Consider the simple linear regression

$$Y_i = \alpha + \beta X_i + \epsilon_i, \qquad i = 1, \dots, n.$$

Define quadratic function

$$Q(\alpha, \beta) = \sum_{i=1}^{n} (Y_i - \alpha - \beta X_i)^2.$$

Let $\hat{\alpha}$ and $\hat{\beta}$ be the estimators of α and β , which minimizes $Q(\alpha, \beta)$. Let $\hat{Y}_i = \hat{\alpha} + \hat{\beta}X_i$.

- 1. Find the gradient vector of \hat{Y}_i with respect to the vector $Y = (Y_1 \dots, Y_n)'$.
- 2. The degree of freedom, d_{LM} of the fitted model is defined to be the trace of matrix $\frac{\partial \hat{Y}}{\partial Y}$, where $\hat{Y} = (\hat{Y}_1 \dots, \hat{Y}_n)'$. Find d_{LM} . How is it related to the model?