Engineering Economics

Lecture 3

Er. Sushant Raj Giri

B.E. (Industrial Engineering), MBA

Lecturer

Department of Industrial Engineering

Chapter 4 Time Is Money

- Interest: The Cost of Money
- Economic Equivalence
- Development of Interest Formulas
- Unconventional Equivalence Calculations

Mrs. Rosalind Setchfield's Decision Problem

- She gave up annual lottery earnings of \$32,639 for 9 years with a lump sum payment of \$140,000.
- Did she make a right decision?

Take or Not to Take the Offer

Year	Installment	Year	Installment	Reduced
				/Payment $ackslash$
1988	\$65,277	1995	\$65,277	\$32,639
1989	65,277	1996	65,277	32,639
1990	65,277	1997	65,277	32,639
1991	65,277	1998	65,277	32,639
1992	65,277	1999	65,277	32,639
1993	65,277	2000	65,277	32,639
1994	65,277	2001	65,277	32,639
		2002	65,277	32,639 /
		2003	65,277	32,639
		2004	65,277	
		2005	65,277	
		2006	65,277	
		2007	65,277	

What Do We Need to Know?

- To make such comparisons (Ms. Rosalind Setchfield's decision problem), we must be able to compare the value of money at different point in time.
- To do this, we need to develop a method for reducing a sequence of benefits and costs to a single point in time. Then, we will make our comparisons on that basis.

Time Value of Money

- Money has a time value because it can earn more money over time (earning power).
- Time value of money is measured in terms of interest rate.
- Interest is the cost of money—a cost to the borrower and an earning to the lender

Repayment Plans

End of Year	Receipts	Payments	
		Plan 1	Plan 2
Year 0	\$20,000.00	\$200.00	\$200.00
Year 1		5,141.85	0
Year 2		5,141.85	0
Year 3		5,141.85	0
Year 4		5,141.85	0
Year 5		5,141.85	30,772.48
P = \$20,000, A = \$5,141.85, F = \$30,772.48			

Cash Flow Diagram

Figure 4.1 A cash flow diagram for plan 1 of the loan repayment example summarized in Table 4.1

Methods of Calculating Interest

- Simple interest: the practice of charging an interest rate only to an initial sum (principal amount).
- Compound interest: the practice of charging an interest rate to an initial sum and to any previously accumulated interest that has not been withdrawn.

Simple Interest

- P = Principal amount
- i = Interest rate
- *N* = Number of interest periods
- Example:

$$-P = 1,000$$

$$-i = 8\%$$

$$-N = 3$$
 years

End of Year	Beginning Balance	Interest earned	Ending Balance
0			\$1,000
1	\$1,000	\$80	\$1,080
2	\$1,080	\$80	\$1,160
3	\$1,160	\$80	\$1,240

Compound Interest

- P = Principal amount
- i = Interest rate
- *N* = Number of interest periods
- Example:

$$-P = 1,000$$

$$-i = 8\%$$

$$-N = 3$$
 years

End of Year	Beginnin g Balance	Interest earned	Ending Balance
0			\$1,000
1	\$1,000	\$80	\$1,080
2	\$1,080	\$86.40	\$1,166.4 0
3	\$1,166.40	\$93.31	\$1,259.7 1

Comparing Simple to Compound Interest

Figure 4.2 Two methods of calculating the balance when \$1000 at 8% interest is deposited for 3 years (Example 4.1)

Economic Equivalence

- What do we mean by "economic equivalence?"
- Why do we need to establish an economic equivalence?
- How do we establish an economic equivalence?

Economic Equivalence

- Economic equivalence exists between cash flows that have the same economic effect and could therefore be traded for one another.
- Even though the amounts and timing of the cash flows may differ, the appropriate interest rate makes them equal.

Figure 4.3 Which option would you prefer? (a) Two payments (\$20,000 now and \$50,000 at the end of 10 years) or (b) ten equal annual receipts in the amount of \$8000

\$50.000

Typical Repayment Plans for a Bank Loan of \$20,000

	Repayments		
	Plan 1	Plan 2	Plan 3
Year 1	\$5,141.85	0	\$1,800.00
Year 2	5,141.85	0	1,800.00
Year 3	5,141.85	0	1,800.00
Year 4	5,141.85	0	1,800.00
Year 5	5,141.85	\$30,772.48	21,800.00
Total of payments	\$25,709.25	\$30,772.48	\$29,000.00
Total interest paid	\$5,709.25	\$10,772.48	\$9,000.00
			15

- If you deposit *P* dollars today for *N* periods at *i*, you will have *F* dollars at the end of period *N*.
- F dollars at the end of period N is equal to a single sum P dollars now, if your earning power is measured in terms of interest rate i.

$$F = P(1+i)^N$$

0

$$P = F(1+i)^{-N}$$

P

Equivalence Between Two Cash Flows

- Step 1: Determine the base period, say, year 5.
- Step 2: Identify the interest rate to use.
- Step 3: Calculate equivalence value.

$$i = 6\%,$$
 $i = 8\%,$
 $i = 10\%,$

Example 4.5 Equivalence

Various dollar amounts that will be economically equivalent to \$3,000 in 5 years, given an interest rate of 8%

Figure 4.4 Various dollar amounts that will be economically equivalent to \$3000 in 5 years, given an interest rate of 8% (Example 4.3)

Equivalent Cash Flows are Equivalent at Any Common Point In Time

Figure 4.5 Selection of a base period for an equivalence calculation (Example 4.4)

Example 4.5 Equivalence Calculations with Multiple Payments

Figure 4.6 Equivalent cash flow diagram for Option 1 and Option 2 (excluding the common principal payment \$1,000 at the end of year 3) (Example 4.5)

$$F_3$$
 for \$100 at $n = 1$:\$100 $(1 + 0.10)^{3-1} = 121
 F_3 for \$100 at $n = 2$:\$100 $(1 + 0.10)^{3-2} = 110
 F_3 for \$100 at $n = 3$:\$100 $(1 + 0.10)^{3-3} = 100

Types of Cash Flows

- (a) Single cash flow
- (b) <u>Equal (uniform)</u> payment series
- (c) <u>Linear gradient</u> series
- (d) <u>Geometric</u> gradient series
- (e) <u>Irregular</u> payment series

Single Cash Flow Formula

- <u>Single payment</u>

 <u>compound amount</u>
 <u>factor</u> (growth factor)
- Given:

$$i = 10\%$$
 $N = 8 \text{ years}$
 $P = $2,000$

• Soln:

$$F = $2,000(1+0.10)^{8}$$
$$= $2,000(F / P,10\%,8)$$
$$= $4,287.18$$

Single Cash Flow Formula

- Single payment
 present worth factor
 (discount factor)
- Given:

$$i = 12\%$$
 $N = 5 \text{ years}$
 $F = \$1,000$

• Soln:

$$P = \$1,000(1+0.12)^{-5}$$
$$= \$1,000(P/F,12\%,5)$$
$$= \$567.40$$

Uneven Payment Series

$$P_1 = \$25,000(P/F,10\%,1)$$

 $P_2 = \$3,000(P/F,10\%,2)$
 $P_4 = \$5,000(P/F,10\%,4)$
 $P = P_1 + P_2 + P_4$
 $= \$28,622$

Figure 4.14 Decomposition of uneven cash flow series (Example 4.11)

Example 4.12 Calculating the Actual Worth of a Long-Term Contract

	Beginning	Contract	Prorated	Total
	of Season	Salary	Signing Bonus	Annual Payment
0	2001	\$ 21,000,000	\$ 2,000,000	\$ 23,000,000
1	2002	21,000,000	2,000,000	23,000,000
2	2003	21,000,000	2,000,000	23,000,000
3	2004	21,000,000	2,000,000	23,000,000
4	2005	25,000,000	2,000,000	27,000,000
5	2006	25,000,000		25,000,000
6	2007	27,000,000		27,000,000
7	2008	27,000,000		27,000,000
8	2009	27,000,000		27,000,000
9	2010	27,000,000		27,000,000

$$P = \$23M(P/F,6\%,1) + \$23M(P/F,6\%,2) + \dots + \$27M(P/F,6\%,9)$$
$$= \$215.75M$$

Equal Payment Series

Equal Payment Series Compound Amount Factor

Example 4.13:

- Given: A = \$3,000, N = 10 years, and i = 7%
- Find: *F*
- Solution: F = \$3,000(F/A,7%,10) = \$41,449.20

Sinking Fund Factor

Example 4.15:

- Given: F = \$5,000, N = 5 years, and i = 7%
- Find: *A*
- Solution: A = \$5,000(A/F,7%,5) = \$869.50

Capital Recovery Factor

$$A = P \frac{i(1+i)^{N}}{(1+i)^{N}-1}$$
$$= P(A/P,i,N)$$

Example 4.16:

- Given: P = \$250,000, N = 6 years, and i = 8%
- Find: *A*
- Solution: A = \$250,000(A/P,8%,6) = \$54,075

Equal Payment Series Present Worth Factor

$$P = A \frac{(1+i)^{N} - 1}{i(1+i)^{N}}$$
$$= A(P/A, i, N)$$

Example 4.18:

- Given: A = \$32,639, N = 9 years, and i = 8%
- Find: *P*
- Solution: P = \$32,639(P/A,8%,9) = \$203,893

Linear Gradient Series

Gradient Series as a Composite Series

Figure 4.27 Two types of linear gradient series as composites of a uniform series of N payments of A_1 and the gradient series of increments of constant amount G

Example 4.20

Method 1:

Method 2:

$$P = \$3,604.08 + \$1,599.20$$
$$= \$5,204$$

 $P_1 = \$1,000(P/A,12\%,5)$ = \\$3,604.80

Gradient series

 $P_2 = $250(P/G,12\%,5)$ = \$1,599.20

Geometric Gradient Series

Figure 4.32 A geometrically increasing or decreasing gradient series at a constant rate g

$$P = \begin{cases} A_1 \frac{1 - (1+g)^N (1+i)^{-N}}{i - g}, & \text{if } i \neq g \\ NA_1 / (1+i), & \text{if } i = g \end{cases}$$

Example 4.24 Geometric Gradient:

Find P, Given A_1,g,i,N

• Given:

g = 7% i = 12% N = 5 years $A_1 = $54,440$

• Find: *P*

Unconventional Equivalence Calculations

Situation 1: If you make 4 annual deposits of \$100 in your savings account which earns a 10% annual interest, what equal annual amount can be withdrawn over 4 subsequent years?

Unconventional Equivalence Calculations

Situation 2:

What value of *A* would make the two cash flow transactions equivalent if *i* = 10%?

Method 1: Establish economic equivalence at period 0

$$P_1 = P_2$$
 $2.1651A = 316.99

$$A = $146.41$$

Method 2: Establish economic equivalence at period 4

Summary

- Money has a time value because it can earn more money over time.
- Economic equivalence exists between individual cash flows and/or patterns of cash flows that have the same value. Even though the amounts and timing of the cash flows may differ, the appropriate interest rate makes them equal.
- The purpose of developing various interest formulas was to facilitate the economic equivalence computation.

Assignment 1

- Chapter 2: 2.1, 2.3
- Chapter 3: 3.3, 3.5
- Chapter 4: 4.1, 4.5, 4.7, 4.9, 4.13, 4.19, 4.22, 4.26, 4.35, 4.40, 4.45, 4.49, 4.52

End of Lecture 3