

AD-A101 272

BERGER ASSOCIATES INC. HARRISBURG PA
NATIONAL DAM INSPECTION PROGRAM, UPPER MT. HOLLY DAM (NDI NUMBER--ETC(U)
JUN 81 H JONGSMA

FLD 1
DACP31-81-C-0013
NL

UNCLASSIFIED

100
AD-1012

14

100
100

DTIC FILE COPY

122
122
122
122
ADA101214

LEVEL

1

SUSQUEHANNA RIVER BASIN
UPPER MT. HOLLY DAM
EATON - DIKEMAN OF KNOWLTON BROS.

NDI NO. PA-00583
DER NO. 21-001

CUMBERLAND COUNTY, PENNSYLVANIA
PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DTIC
SELECTED
JUL 10 1981

S D

PREPARED FOR
DEPARTMENT OF THE ARMY
Baltimore District, Corps of Engineers
Baltimore, Maryland 21203

BY
Berger Associates

Harrisburg, Pennsylvania 17105
Contract DACW31-81-C-0013

JUNE 1981

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

817 10 032

PREFACE

This report has been prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

DTIC
SELECTED
S JUL 10 1981 D

PHASE I REPORT
NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITIONS
AND RECOMMENDATIONS

Name of Dam: UPPER MT. HOLLY DAM

State & State No.: PENNSYLVANIA, 21-001

County: CUMBERLAND

Stream: MOUNTAIN CREEK

Date of Inspection: OCTOBER 16, 1980

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By Per DTIC Form 60	
Distribution/on file	
Availability Codes	
Dist	Avail and/or Special
A	

Based on the visual inspection, past performance and the available engineering data, the dam and its appurtenant structures appear to be in poor condition.

In accordance with the Corps of Engineers' evaluation guidelines, the size classification of this dam is small and the hazard classification is high. These classifications indicate that the Spillway Design Flood (SDF) should be in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. The recommended SDF for this structure is one-half the PMF. The spillway capacity is adequate for passing only 4 percent of the PMF peak inflow without overtopping the dam. The spillway is considered to be seriously inadequate, and the facility is classified as unsafe, non-emergency.

The following recommendations are presented for immediate action by the owner:

1. That a detailed hydrologic and hydraulic engineering analysis be made by a professional engineer with experience in the design and construction of dams to determine means for providing adequate spillway capacity.
2. That the upstream and downstream slopes and the crest be cleared of all trees, brush and weeds under the supervision of a professional engineer, experienced in the design and construction of dams. The embankment shall be maintained on a regular basis.
3. That after clearing, the right embankment be inspected for signs of seepage, sloughs and other indications of instability.

(1) Jun 21

(12) 17/1

UPPER MT. HOLLY DAM

NDI NO. PA-00583

DER NO. 21-001

EATON-DIKEMAN OF KNOWLTON BROTHERS

CUMBERLAND COUNTY

4. That the left embankment be widened and be provided with a protective vegetative cover.
5. That trees in the spillway riprap be removed and that the voids in the riprap be filled.
6. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged rainfall.
7. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.
8. That, in lieu of improving the facilities, the embankment be breached after obtaining a permit from the Bureau of Dam Safety, Obstruction and Storm Water Management, Pennsylvania Department of Environmental Resources.

(15) DNCW31-81-C-0013

SUBMITTED BY:

APPROVED BY:

BERGER ASSOCIATES, INC.
HARRISBURG, PENNSYLVANIA

DATE: June 5, 1981

(10)

JAMES W. PECK
Colonel, Corps of Engineers
Commander and District Engineer

DATE: 17 June 1981

(6) National Dam Inspection Program.
Upper Mt. Holly Dam (NDI Number PA-00583, DER Number 21-001),
Susquehanna River Basin, Cumberland County, Pennsylvania. Phase I Inspection Report,

OVERVIEW FROM LEFT ABUTMENT

UPPER MT. HOLLY DAM

Photograph No. 1

TABLE OF CONTENTS

	<u>Page</u>
SECTION 1 - <u>PROJECT INFORMATION</u>	
1.1 GENERAL	1
1.2 DESCRIPTION OF PROJECT	1
1.3 PERTINENT DATA	2
SECTION 2 - <u>ENGINEERING DATA</u>	
2.1 DESIGN	5
2.2 CONSTRUCTION	6
2.3 OPERATION	6
2.4 EVALUATION	6
SECTION 3 - <u>VISUAL INSPECTION</u>	
3.1 FINDINGS	8
3.2 EVALUATION	9
SECTION 4 - <u>OPERATIONAL PROCEDURES</u>	
4.1 PROCEDURES	11
4.2 MAINTENANCE OF DAM	11
4.3 MAINTENANCE OF OPERATING FACILITIES	11
4.4 WARNING SYSTEM	11
4.5 EVALUATION	11
SECTION 5 - <u>HYDROLOGY/HYDRAULICS</u>	
5.1 EVALUATION OF FEATURES	12
SECTION 6 - <u>STRUCTURAL STABILITY</u>	
6.1 EVALUATION OF STRUCTURAL STABILITY	15
SECTION 7 - <u>ASSESSMENT AND RECOMMENDATIONS</u>	
7.1 DAM ASSESSMENT	16
7.2 RECOMMENDATIONS	16
APPENDIX A - CHECK LIST OF VISUAL INSPECTION REPORT	
APPENDIX B - CHECK LIST OF ENGINEERING DATA	
APPENDIX C - PHOTOGRAPHS	
APPENDIX D - HYDROLOGY AND HYDRAULIC CALCULATIONS	
APPENDIX E - PLATES	
APPENDIX F - GEOLOGIC REPORT	

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

UPPER MT. HOLLY DAM

NDI NO. PA-00583
DER NO. 21-001

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

A. Authority

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspections of dams throughout the United States.

B. Purpose

The purpose of this inspection is to determine if the dam constitutes a hazard to human life and property.

1.2 DESCRIPTION OF PROJECT

A. Description of Dam and Appurtenances

Note: Pool elevation is shown on the U.S.G.S. quadrangle sheet at elevation 594. This elevation is used in this report as the spillway crest elevation. This compares to an elevation of 96.7 shown on Plate III, Appendix E, including the 3 inches of concrete topping.

Upper Mt. Holly Dam is an earthfill structure with a maximum embankment height of 13 feet. The dam was constructed in 1855 to provide power for water wheels at a mill located about 700 feet downstream of the dam. A 206 foot wide spillway is located near the left abutment. The embankment to the right of the spillway is about 420 feet long. The right abutment ties into a railroad bridge over the headrace. Three wooden slide gates control the flow to the downstream mill where the water is used for industrial purposes.

A non-operable wooden sluice gate is located at the left end of the spillway. The gate is blocked by debris.

B. Location

Borough of Mt. Holly Springs, Cumberland County
U.S.G.S. Quadrangle - Mt. Holly Springs, Pa. T. 8
S.
Latitude 40°-06.0', Longitude 77°-11.0'
Appendix E, Plates I & II

D. Size Classification: Small: Height - 13 feet
Storage - 140 acre-feet

D. Hazard Classification: High (Refer to Section 3.1.E.)

E. Ownership: Eaton Dikeman
Division of Knowlton Brothers
Mr. Philip H. Avery, President
Mt. Holly Springs, PA 17065

F. Purpose: Water Supply

G. Design and Construction History

The dam was constructed in 1855 by four gentlemen living in Mt. Holly Springs. The original spillway consisted of a planked weir. The structure was first inspected by a state representative in June 1914, and a report was prepared. Records indicate that the dam was breached by floods at least five times. Many repairs and improvements have been made over the years. Reference is made to Section II of this report for recorded modifications.

H. Normal Operating Procedures

Water for industrial use is regulated by the sluice gates in the headrace and by valves on the pipe intake at the mill. All inflow above the spillway crest is discharged over the spillway. The sluice gate in the left spillway abutment is not operable.

1.3 PERTINENT DATA

A. Drainage Area (square miles)

From files:	44.1
Computed for this report:	44.43
Use:	44.43

B. Discharge at Dam Site (cubic feet per second)
See Appendix D for hydraulic calculations.

Maximum known flood (estimated from records of U.S.G.S. gage on nearby Yellow Breeches Creek)	5447
---	------

Outlet works low pool outlet at pool Elev. 590	194
---	-----

Outlet works at pool level Elev. 594 (spillway crest)	309
--	-----

Spillway capacity at pool Elev. 596.7
(low point of dam)

2018

C. Elevation (feet above mean sea level)

Top of dam (design)	597.3
Top of dam (low point as surveyed)	596.7
Spillway crest (low flow notch)	594
Upstream portal invert	584.9
Downstream portal invert	584.2
Streambed at downstream toe of dam (estimate)	584

D. Reservoir (miles)

Length of normal pool	0.4
Length of maximum pool	0.5

E. Storage (acre-feet)

Spillway crest (Elev. 594 including siltation)	61
Top of dam (Elev. 596.7)	140

F. Reservoir Surface (acres)

Top of dam (Elev. 596.7)	43
Spillway crest (Elev. 594)	20

G. Dam

Refer to Plate III in Appendix E for plan and section.

Type: Homogeneous earthfill.

Length: 700 feet.

Height: 13 feet.

Top Width: Design - 12 feet; Survey - Varies.

Side Slopes:	Design	Surveyed
Upstream	2.5H to 1V	Irregular
Downstream	2H to 1V	Irregular

Zoning: None.

Cutoff: Unknown.

Grouting: None.

H. Outlet Facilities

Drawdown: 6' x 16' concrete arch.

Type: Outlet tunnel.

Location: Near left abutment.

Closure: 5' x 5' timber gate on downstream end.

Upstream
Invert: 584.9

Downstream
Invert: 584.2

Headrace

Type: Concrete slide gate structure.

Location: Near right abutment.

Closure: Three 5' x 5' timber gates.

Invert: 589.6

I. Spillway

Type: Uncontrolled, broad crested, concrete weir with low flow notch.

Length: 206 feet, including 16 foot long low flow notch.

Crest
Elevation: Low flow notch: 594.0
 Spillway: 594.2

Location: Near left end of dam.

J. Regulating Outlet

See Section 1.3.H.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

Engineering design data for the original Upper Mt. Holly Dam, which was constructed in 1855, do not exist. A report in the files of the Pennsylvania Department of Environmental Resources, dated June 1914, indicates that the dam was constructed by four persons by the names of Kempton, Given, McArgis and Mullen. The report states that the original dam had a planked spillway at the location of the existing spillway. This spillway failed in 1863 and was replaced with a masonry gravity section. An auxiliary 40 to 50 foot wide timber spillway was located near the railroad. This auxiliary spillway failed in 1889 and 1909. At the time of first PennDER inspection in 1914, the embankment had a top width of 12 feet and 2H to 1V side slopes. The report indicates that the dam site had been stripped of debris, boulders and muck prior to construction and that the spillway was founded on hardpan. This hardpan was at a varying depth of 2 to 10 feet below the creek bed.

The drawdown facility consisted of three 5' x 5" cast iron gates in the left spillway abutment. The report indicates that the dam was in poor condition. The timber auxiliary spillway was rotting, the gravity spillway was disintegrating and the embankment was overgrown and had an uneven crest. The total spillway capacity was approximately 3260 cfs. The required capacity was 175 cfs per sq. mile, or 7720 cfs. The owner was requested to repair the structure or to breach it.

Plans were prepared in October 1914 by Mr. C.A. Bryan, Carlisle, Pennsylvania, for repairs. These plans included the raising of the embankment profile from the existing 2.3 feet to 6.0 feet above the spillway crest. These plans were approved on May 15, 1915. Before any changes were made, the dam was breached by overtopping on August 21, 1915, over a length of 26 feet.

A report states that the breach had caused only minor damage in Mt. Holly Springs, although it was difficult to establish what additional damage had been caused by the failure of the dam. The breach showed that the embankment had been constructed mostly of a sandy material with only a slight mix of clay at the upstream side. A large amount of fist-sized stone was in the fill material.

The breach was filled in the fall of 1915 with "good material." However, the owners refused to implement other improvements. The new fill settled about ten inches over the next year. In June 1919, the dam breached again at the location of the auxiliary spillway. The breach was 43 feet wide and 9 feet deep. Considerable damage was reported in the Borough. The owners, who had acquired the dam just before the breach occurred, constructed a concrete gravity section in the breach. This wall, described as 4'-7" wide on top and about 13 feet high, was constructed without a permit. The top seven feet of the wall were

exposed and had sloping surfaces with a width of about seven feet at the ground elevation.

PennDER requested plans, which were submitted in 1922 (Plate III, Appendix E). After approval, all repairs were made. The repairs included the removal of brush and trees, the raising of the embankment to elevation 100.0, and the leveling of the spillway crest with three inches of concrete to elevation 96.7. The embankment was not raised to elevation 102.0, as shown on Plate III, Appendix E.

Inspection reports between 1924 and 1940 indicate that seepage occurred along the toe, that the crest was uneven and brush and trees were growing on the embankment. The abutment walls of the auxiliary spillway cracked and settled.

The dam was obtained by the present owners in 1940. In 1942, the area of the auxiliary spillway was backfilled to an elevation matching the top of the dam. It is unknown whether or not the gravity section was removed.

The overall condition of the facility deteriorated and PennDER suggested in 1952 to rebuild the facilities. The owners engaged the Gunite Construction Corporation, New York, New York, to gunite the spillway, as shown on Plate IV, Appendix E. All work was completed in December 1952, and the facilities were reported to be in good condition.

The last State inspection occurred in December 1959, and indicated that the dam was in fair condition. Brush on the embankment and seepage along the toe were reported.

2.2 CONSTRUCTION

Records of construction do not exist.

2.3 OPERATION

Records of operation are not maintained by the owner. The available inspection reports indicate that the dam was breached five times. Statements indicate that most failures occurred in the auxiliary spillway prior to actual overtopping of the embankment.

2.4 EVALUATION

A. Availability

The described history and design data of this dam are located in the files of PennDER, Harrisburg, Pennsylvania.

B. Adequacy

Because of the lack of engineering data, the assessment of the dam is based on the results of the visual inspection.

C. Operating Records

Operating records have not been maintained.

D. Post Construction Changes

Numerous alterations have been made to the original structure constructed in 1855. Reference is made to Section 2.1 of this report for a detailed description.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

A. General

The general appearance of Upper Mt. Holly Dam is poor. The earth embankment is overgrown with brush and trees and the slopes are uneven. The riprap at the downstream side of the spillway has several voids and several trees are growing in this area. The reservoir is silted for most of its storage area at normal pool elevation. The drawdown sluice gate leaks and is inoperable.

The visual inspection check list and sketches of the general plan and profile of the dam, as surveyed during the inspection, are presented in Appendix A of this report. Photographs of the facilities taken during the inspection are reproduced in Appendix C.

Messrs. Guise and Wardwell represented the owner and accompanied the inspectors on the day of inspection.

B. Embankment

Earthfill embankments are located to the left and right of the spillway. The left embankment is in poor condition. It has a very narrow crest (2 to 5 feet) without any protective cover. Many trees are located on this embankment (Photograph No. 2). The right embankment is also in a poor condition. The vertical profile is irregular, and a heavy growth of weeds, brush and trees cover the embankment (Photograph No. 9). Close inspection for seepage, sloughs and other signs of instability was not possible. It appeared that the downstream and upstream slopes were irregular.

It was not possible to survey a typical cross section. The embankment crest appears to be about nine feet above the downstream toe. The right embankment ties into a railroad embankment. The wingwall of a railroad bridge over the headrace has been extended with a concrete wall at the upstream side of the embankment (Photograph No. 10).

C. Appurtenant Structures

The spillway is located near the left abutment and consists of an 8.5 foot wide, broad crested weir. The original masonry weir has been gunited on the top and on part of the downstream side. Some seepage through the wall was detected about one to two feet below the crest. The gunited surface was in fair condition. Several cracks have developed. A low flow notch is located in the left half of the spillway (Photograph No. 6). The spillway abutments are in good condition. The right abutment has been gunited (Photograph No. 5).

The downstream side of the spillway is protected with hand laid riprap (Photograph No. 4). Several voids have developed in this surface and several trees are growing on this surface. Both conditions could cause further erosion of this protection.

A large (16' x 6') arch opening is located in the left spillway abutment on the upstream side. A part of the opening has been blocked off with concrete and the only drawdown opening is a 5 foot by 5 foot opening closed with a timber gate. The mechanism to open the gate has disappeared (Photograph No. 1), and the gate is inoperable. The timber gate leaks considerably (Photograph No. 7). The concrete abutment walls are in good condition.

Siltation of reservoir has reached a point one to two feet below the weir crest. The flow to the headrace is along the right abutment and passes under the railroad bridge. The race makes a 90 degree bend and after this bend the flow is controlled in a structure with three 5 foot by 5 foot timber gates. These gates appear to be in good condition. Flow release through these gates are limited to prevent flooding of the mill.

D. Reservoir Area

The reservoir has been silted for a large part. Fishermen report that there are still areas about six feet deep, but the larger area is only one to two feet deep. Large portions of the reservoir are overgrown with weeds.

The left side of the reservoir has a steep, wooded slope; the right side is flat.

Laurel Lake Dam is located about seven miles upstream from the dam. This dam (PA DER No. 21-25) is a concrete gravity dam having a 200 foot long ogee section spillway with 11.5 feet of freeboard. A Phase I inspection was completed on Laurel Lake Dam in 1979. This upstream reservoir was included in the computations in Appendix D.

E. Downstream Channel

A paper mill is located about 700 feet downstream from the dam. The stream runs through a wooded area and then through a narrow valley parallelling Route 34 and a railroad. The valley widens about 4,000 feet below the dam and the stream runs through the Borough of Mt. Holly Springs. A potential hazard to loss of life of more than a few exists downstream if the dam would fail. The hazard category for the Upper Mt. Holly Dam is considered to be "High."

3.2 EVALUATION

The overall evaluation of these facilities indicates that Upper Mt. Holly Dam is in poor condition. The growth of brush and trees on the embankment and in the downstream area of the spillway should be removed.

After this clearing, the embankment should be inspected for seepage and signs of instability. The embankment should be made level and should be protected against erosion with a good grass mat. The riprap at the downstream side of the spillway should be repaired.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

Upper Mt. Holly Dam was constructed for and is still used for industrial purposes. Maintenance procedures appear to be non-existent. The gates on the headrace appear to be operated only occasionally.

4.2 MAINTENANCE OF DAM

The inspection indicates that there is no maintenance performed on the embankment. Trees, brush and weed growth are not controlled.

4.3 MAINTENANCE OF OPERATING FACILITIES

The drawdown facility in the left spillway abutment has not been used in at least 10 years and is inoperable at the present time.

4.4 WARNING SYSTEM

There is no formally organized surveillance and downstream warning system in existence at the present time.

4.5 EVALUATION

Operational procedures for these facilities are non-existent. It is recommended that a regular maintenance procedure be developed for the dam, which should include the control of weed and brush growth on the embankment and the maintenance of the spillway.

A formal surveillance plan and downstream warning system should be developed for implementation during periods of heavy or prolonged precipitation.

SECTION 5 - HYDROLOGY/HYDRAULICS

5.1 EVALUATION OF FEATURES

A. Design Data

The hydrologic and hydraulic analysis available from PennDER for Upper Mt. Holly Dam was not very extensive. No unit hydrograph, design storm, design flood hydrograph, or flood routings were available. The PennDER files did contain discharge rating tables for the spillways and discharge outlets as they existed in 1914.

B. Experience Data

It was reported that the dam was overtopped several times and was breached on five occasions. However, there are no records of flood levels at Upper Mt. Holly Dam. Based on records of the U.S.G.S. stream gage on Yellow Breeches Creek at nearby Camp Hill, Pennsylvania, the maximum inflow to Upper Mt. Holly Dam occurred in September 1975. The estimated maximum inflow was 5447 cfs.

C. Visual Observations

It was noted that the 5 foot by 5 foot gate on the outlet conduit was inoperable. This gate was leaking badly (see Photograph No. 7). No other conditions were observed that would indicate that the appurtenant structures of the dam could not operate satisfactorily until the dam is overtopped. Upstream of Upper Mt. Holly Dam is Laurel Lake Dam, a recreational facility. This upstream impoundment was included in the computations contained in Appendix D.

D. Overtopping Potential

Upper Mt. Holly Dam has a total storage capacity of 140 acre-feet and an overall height of 13 feet above streambed. These dimensions indicate a size classification of "small." The hazard classification is "high" (see Section 3.1.E.).

The recommended Spillway Design Flood (SDF) for a dam having the above classifications is in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. Because of the small size of this dam, the recommended SDF is one-half the PMF. The SDF peak inflow is 32,938 cfs (see Appendix D for HEC-1 inflow computations).

Comparison of the estimated SDF peak inflow of 32,938 cfs with the estimated spillway discharge capacity of 2,018 cfs indicates that a potential for overtopping of the Upper Mt. Holly Dam exists.

An estimate of the storage effect of the reservoir and routing of the computed inflow hydrograph through the reservoir shows that this dam does not have the necessary storage available to pass the SDF without

overtopping. The spillway-reservoir system can pass a flood event equal to 4% of a PMF without overtopping based on the existing low point of the dam profile.

E. Dam Break Evaluation

A restaurant is located about 4,300 feet downstream from the dam. Just downstream of the restaurant is the residential area of Mt. Holly Springs. On the basis of the results of the dam break analysis, using the U.S. Army Corps of Engineers HEC-1 program, the water surface elevations in the vicinity of the restaurant have been compared for several conditions prior to and after a dam break (refer to Table 1, Appendix D). For an earth dam, it is estimated that 0.5 foot of overtopping would result in a breach. Calculations indicate that 6 percent of the PMF inflow would cause an overtopping of 0.5 foot. The increase in water levels downstream due to overtopping of 0.5 foot with no failure as compared to no overtopping would be 2.5 feet. While more property would be exposed to flooding, the increase in the hazard to loss of life is not considered significant. With failure, the breaching analysis indicates a rise of 2.6 feet above the flow level just prior to breach when considering a .25 hour time to complete the breach and 1.2 foot rise above flow level just prior to breach when considering a two hour time to complete the breach. The increase in hazard to loss of life and property damage is reflected not only in the increase in depth of water of 2.6 feet in the 15 minute breach and 1.2 feet in the two hour breach, but more significantly in the shorter time to reach the peak. Less time would be available to respond to the flooding under the breach conditions.

Being an earth embankment, it is judged that the breach would be completed between the 15 minute and the two hour period. The numerical difference of water levels is 1.4 feet. The property damage would be similar with either time of failure. The time factor, however, is most significant regarding loss of life. Calculations indicate that the water depth will increase at a rate of 2.6 feet in 30 minutes under the .25 hour breach condition.

One large manmade dam is located upstream of Upper Mt. Holly Dam. For this evaluation, this impoundment was not considered to have breached (see Appendix D).

On the basis of these calculations, it is concluded that the hazard to loss of life and property damage is significantly increased when the dam is overtopped and failed as compared to the condition just prior to failure.

Refer to Table 1, Appendix D, for comparison of flood water levels.

F. Spillway Adequacy

Calculations show that the spillway discharge capacity and reservoir storage capacity combine to handle 4% of the PMF (refer to Appendix D).

Since the spillway discharge and reservoir storage capacity cannot pass one-half of the PMF, the downstream hazard to loss of life is high, and this hazard is significantly increased when the dam fails as compared to just prior to failure; the spillway is therefore judged to be seriously inadequate.

The hydrologic analysis for this investigation was based upon existing conditions of the watershed. The effects of future development were not considered.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

A. Visual Observations

1. Embankment

The visual inspection of Upper Mt. Holly Dam did not detect any signs of seepage through the embankment. A heavy growth of brush and trees prevented close observation of the embankment. It appeared, however, that the upstream and downstream slopes are uneven. The left end of the embankment has a barren, narrow crest.

2. Appurtenant Structures

The spillway weir appears to be stable. The gunite surface has cracked and some seepage through the gravity section is occurring. To prevent future erosion, the trees in the downstream slope should be removed and the voids should be filled.

B. Design and Construction Data

Design and construction data for this dam are too limited to make an engineering evaluation. Reports indicate that the dam was breached at least five times. The first breach occurred at the main spillway, which consisted of a timber construction. This was replaced by the present masonry structure, which has since been capped with concrete. All other breaches occurred at the auxiliary spillway near the railroad. These breaches occurred by failure of the timber structure or by seepage along the smooth backface of the abutment of this spillway.

C. Operating Records

Operating records for this dam have not been maintained by the owner.

D. Post Construction Changes

Many construction changes have occurred since the completion of the dam in 1855. Reference is made to Section 2.1 of this report for the recorded history of these changes.

E. Seismic Stability

This dam is located in Seismic Zone 1, and it is considered that the static stability is sufficient to withstand minor earthquake-induced dynamic forces. No studies or calculations have been made to confirm this assumption.

SECTION 7 - ASSESSMENT AND RECOMMENDATIONS

7.1 DAM ASSESSMENT

A. Safety

The visual inspection indicates that Upper Mt. Holly Dam is in poor condition. Engineering and construction data are limited or non-existent. Reports indicate that five breaches have occurred. However, since the auxiliary spillway was replaced by an embankment, no other failures have been reported. Maintenance procedures are non-existent. Removal of trees and brush is recommended.

The hydrologic and hydraulic computations indicate that the combination of the storage capacity and the discharge capacity of the spillway are sufficient to pass only four percent of the PMF without overtopping the embankment. The recommended SDF is fifty percent of the PMF. Failure of the dam could occur with six percent of the PMF. The hazard to loss of life is significantly increased when the dam fails. The spillway is considered to be seriously inadequate and the facility is classified as unsafe, non-emergency.

B. Adequacy of Information

The visual inspection is considered to be sufficiently adequate for making a reasonable assessment of this dam.

C. Urgency

The recommendations presented below should be implemented immediately.

D. Additional Studies

A detailed hydrologic and hydraulic study is recommended to determine methods of improving the spillway capacity.

7.2 RECOMMENDATIONS

In order to assure the continued satisfactory operation of this dam, the following recommendations are presented for immediate implementation by the owner:

1. That a detailed hydrologic and hydraulic engineering analysis be made by a professional engineer with experience in the design and construction of dams to determine means for providing adequate spillway capacity.

2. That the upstream and downstream slopes and the crest be cleared of all trees, brush and weeds under the supervision of a professional engineer experienced in the design and construction of dams. The embankment shall be maintained on a regular basis.
3. That after clearing, the right embankment be inspected for signs of seepage, sloughs and other indications of instability.
4. That the left embankment be widened and be provided with a protective vegetative cover.
5. That trees in the spillway riprap be removed and that the voids in the riprap be filled.
6. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged rainfall.
7. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.
8. That, in lieu of improving the facilities, the embankment be breached after obtaining a permit from the Bureau of Dam Safety, Obstruction and Storm Water Management, Pennsylvania Department of Environmental Resources.

APPENDIX A

CHECK LIST OF VISUAL INSPECTION REPORT

APPENDIX A

CHECK LIST

PHASE I - VISUAL INSPECTION REPORT

PA DER # 21-001

NDI NO. PA-00583

NAME OF DAM Upper Mt. Holly Dam HAZARD CATEGORY High

TYPE OF DAM Earthfill with concrete overflow.

LOCATION South Middleton TOWNSHIP Cumberland COUNTY, PENNSYLVANIA

INSPECTION DATE 10/16/80 WEATHER Sunny TEMPERATURE 70's

INSPECTORS: H. Jongsma (Recorder) OWNER'S REPRESENTATIVE(s):

R. Shireman George E. Guise

A. Bartlett Bob Wardwell

J. Watson

NORMAL POOL ELEVATION: 594.0(U.S.G.S.) AT TIME OF INSPECTION: 594.0

BREAST ELEVATION: 596.7 (low point) POOL ELEVATION: 594.0+

SPILLWAY ELEVATION: 594.0 TAILWATER ELEVATION: _____

MAXIMUM RECORDED POOL ELEVATION: _____

GENERAL COMMENTS:

Earthfill dam on right side overgrown with weeds, brush and trees and has the appearance of no maintenance.

Concrete overflow section in fair condition.

Left end of embankment in poor condition.

VISUAL INSPECTION
EMBANKMENT

OBSERVATIONS AND REMARKS	
A. SURFACE CRACKS	None detectable in heavy brush.
B. UNUSUAL MOVEMENT BEYOND TOE	None detected.
C. SLOUGHING OR EROSION OF EMBANKMENT OR ABUTMENT SLOPES	None detected. Heavy brush prevents close inspection. Upstream and downstream slopes are uneven.
D. ALIGNMENT OF CREST: HORIZONTAL: VERTICAL:	Horizontal alignment appears to be good. The left end curves to mountainside. For vertical profile see Plate A-II.
E. RIPRAP FAILURES	No riprap.
F. JUNCTION EMBANKMENT & ABUTMENT OR SPILLWAY	Left embankment has only a narrow crest (2 to 5 feet). Right embankment ties in to railroad embankment.
G. SEEPAGE	None detected.
H. DRAINS	<u>None.</u>
J. GAGES & RECORDER	None.
K. COVER (GROWTH)	Left embankment bare and some trees. Right embankment overgrown with brush, weeds and trees.

VISUAL INSPECTION
OUTLET WORKS

OBSERVATIONS AND REMARKS	
A. INTAKE STRUCTURE	Concrete arch opening (16' x 6') at upstream side. Closed with timber gate.
B. OUTLET STRUCTURE	5' x 5' timber gate opening in concrete wall and is inoperable. Gate leaks badly. Some leakage adjacent to gate on right.
C. OUTLET CHANNEL	Channel with heavy, gunited walls, then natural stream.
D. GATES	Timber gate 5' x 5' (inoperable).
E. EMERGENCY GATE	Timber gate (inoperable).
F. OPERATION & CONTROL	Have not been operated in at least 10 years.
G. BRIDGE (ACCESS)	None. Close to left abutment which is accessable by car.

VISUAL INSPECTION
SPILLWAY

OBSERVATIONS AND REMARKS	
A. APPROACH CHANNEL	Direct from reservoir.
B. WEIR: Crest Condition Cracks Deterioration Foundation Abutments	A low flow notch in the left half of concrete overflow section. Broad crested weir in fair condition. Weir is gunitized on stone wall. Some seepage about one to two feet below crest. Some cracks in weir. Overflow section has hand laid riprap at downstream side. Seepage not detrimental to safety of structure.
C. DISCHARGE CHANNEL: Lining Cracks Stilling Basin	Riprapped steep section. Small stream and woods. Some trees on riprap.
D. BRIDGE & PIERS	None, except railroad bridge over mill race.
E. GATES & OPERATION EQUIPMENT	None, except three 5' x 5' gates on mill race.
F. CONTROL & HISTORY	Unknown. Left abutment was overtopped with Agnes.

VISUAL INSPECTION

OBSERVATIONS AND REMARKS	
<u>INSTRUMENTATION</u>	
Monumentation	None.
Observation Wells	None.
Weirs	None.
Piezometers	None.
Staff Gauge	None.
Other	None.
<u>RESERVOIR</u>	
Slopes	Left side steep, wooded. Right side flat.
Sedimentation	Reservoir silted up. Maximum depth about 6 feet. Large areas with only 1 or 2 feet of water at normal pool.
Watershed Description	Mostly wooded.
<u>DOWNTSTREAM CHANNEL</u>	
Condition	Wooded natural stream, narrow valley parallelling Route 34 and railroad.
Slopes	Stable.
Approximate Population	Over hundred.
No. Homes	Paper mill, Route 34, deer lodge, and Mt. Holly Springs.

APPENDIX B
CHECK LIST OF ENGINEERING DATA

APPENDIX B

CHECK LIST
ENGINEERING DATA

PA DER # 21-001

NDI NO. PA-00 583

NAME OF DAM Upper Mt. Holly Dam

ITEM	REMARKS
AS-BUILT DRAWINGS	None.
REGIONAL VICINITY MAP	U.S.G.S. Quadrangle - Mt. Holly Springs, Pa. See Plate II, Appendix E
CONSTRUCTION HISTORY	Constructed in 1855. Breached 5 times. Rebuilt and repaired several times. Auxiliary spillway built in 1919 and back-filled in 1942. Spillway gunited in 1952.
GENERAL PLAN OF DAM	See Plate III, Appendix E.
TYPICAL SECTIONS OF DAM	Plate III, Appendix E. Drawings of 1922. Never repaired in accordance with plans. No later plans available.
OUTLETS: PLAN DETAILS CONSTRAINTS DISCHARGE RATINGS	No plans.

ENGINEERING DATA

ITEM	REMARKS
RAINFALL & RESERVOIR RECORDS	No records.
DESIGN REPORTS	None.
GEOLOGY REPORTS	None.
DESIGN COMPUTATIONS: HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None.
MATERIALS INVESTIGATIONS: BORING RECORDS LABORATORY FIELD	None.
POST CONSTRUCTION SURVEYS OF DAM	Plans prepared in 1914 and 1922. Plans not used for reconstruction. Many inspection reports by PennDER.
BORROW SOURCES	Unknown.

ENGINEERING DATA

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	Gunitied spillway in 1952, raising crest 3". Embankment near railroad rebuilt after 5 breaches.
HIGH POOL RECORDS	No records.
POST CONSTRUCTION ENGINEERING STUDIES & REPORTS	No reports.
PRIOR ACCIDENTS OR FAILURE OF DAM Description: Reports:	Dam had a low overflow section with planks near railroad. Breaches occurred in 1863, 1889, 1909, 1915 and 1919 in this area.
MAINTENANCE & OPERATION RECORDS	No records.
SPILLWAY PLAN, SECTIONS AND DETAILS	None.

NDI NO. PA-00 583

ENGINEERING DATA

ITEM	REMARKS
OPERATING EQUIPMENT, PLANS & DETAILS	No operable operating equipment.
CONSTRUCTION RECORDS	No records.
PREVIOUS INSPECTION REPORTS & DEFICIENCIES	Inspection reports by PennDER. Refer to Section 2 of this report for discussion.
MISCELLANEOUS	

NDI NO. PA-00 583

CHECK LIST
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: Woodland

ELEVATION:

TOP NORMAL POOL & STORAGE CAPACITY: Elev. 594.0 Acre-Feet 61

TOP FLOOD CONTROL POOL & STORAGE CAPACITY: Elev. 596.7 Acre-Feet 140

MAXIMUM DESIGN POOL: Elev. 597.3

TOP DAM: Elev. 596.7

SPILLWAY:

a. Elevation 594

b. Type Concrete, broad crested weir with sloping face and low flow notch.

c. Width 206'

d. Length --

e. Location Spillover Near left abutment.

f. Number and Type of Gates None.

OUTLET WORKS:

a. Type 6' x 16' concrete arch tunnel with 5' x 5' timber gate.

b. Location Near left abutment.

c. Entrance inverts 584.9

d. Exit inverts 584.2

e. Emergency drawdown facilities 5' square timber gate.

HYDROMETEOROLOGICAL GAGES:

a. Type None.

b. Location

c. Records

MAXIMUM NON-DAMAGING DISCHARGE: 2018 cfs.

APPENDIX C
PHOTOGRAPHS

APPENDIX C

UPPER MT. HOLLY DAM
PA-00583

KEY MAP OF PHOTOGRAPHS

PLATE C-I

OVERVIEW OF SPILLWAY FROM RIGHT ABUTMENT - NO. 2

LEFT SPILLWAY ABUTMENT - NO. 3

PA-00583
Plate C-11

DOWNSTREAM ROCK PROTECTION OF SPILLWAY - NO. 4

RIGHT SPILLWAY ABUTMENT - NO. 5

PA-00583
Plate (-11)

LOW FLOW SECTION OF SPILLWAY - NO. 6

DOWNTSTREAM SIDE OUTLET STRUCTURE - NO. 7

PA-00583
Plate G-iv

OVERVIEW SPILLWAY FROM LEFT RESERVOIR BANK - NO. 8

DOWNTSTREAM SLOPE OF EMBANKMENT - NO. 9

PA-00583

Plate C-V

CHANNEL TO HEADRACE LOOKING UPSTREAM - NO. 10
NOTE: OVERGROWN EMBANKMENT

RESERVOIR OVERVIEW - NO. 11
NOTE: WEED GROWTH IN RESERVOIR

APPENDIX D
HYDROLOGY AND HYDRAULIC CALCULATIONS

APPENDIX D

SUMMARY DESCRIPTION
OF
FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION

The hydrologic and hydraulic evaluation for this inspection report has employed computer techniques using the Corps of Engineers computer program identified as the Flood Hydrograph Package (HEC-1) Dam Safety Version.

The program has been designed to enable the user to perform two basic types of hydrologic analyses: (1) the evaluation of the overtopping potential of the dam, and (2) the capability to estimate the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. A brief summary of the computation procedures typically used in the dam overtopping analysis is shown below.

- Development of an inflow hydrograph to the reservoir.
- Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- Routing of the outflow hydrograph(s) of the reservoir to desired downstream locations. The results provide the peak discharge and maximum stage of each routed hydrograph at the outlet of the reach.

The output data provided by this program permits the comparison of downstream conditions just prior to a breach failure with that after a breach failure and the determination as to whether or not there is a significant increase in the hazard to loss of life as a result of such a failure.

The results of the studies conducted for this report are presented in Section 5.

For detailed information regarding this program refer to the Users Manual for the Flood Hydrograph Package (HEC-1) Dam Safety Version prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

BY RLS DATE 10/30/80
CHKD. BY D.P. DATE 11/4/80
SUBJECT

BERGER ASSOCIATES

SHEET NO. 1 OF 9
PROJECT DO 590

UPPER MOUNT HOLLY DAM

SPILLWAY RATING

BROADCRESTED WEIR
WITH INCLINED CREST

C = 2.7 (ESTIMATED FROM KING'S HDBK.)

$$Q = C L_1 H_1^{3/2} + C L_2 H_2^{2/3} + C L_3 H_3^{3/2} + C L_4 H_4^{3/2}$$

$$H_1 = 596.7 - ((594.6 + 594.2)/2) = 2.3' \quad L_1 = 17.5'$$

$$H_2 = 596.7 - ((594 + 594.1)/2) = 2.65' \quad L_2 = 16'$$

$$H_3 = 596.7 - ((594.3 + 594.4)/2) = 2.35' \quad L_3 = 171'$$

$$H_4 = 596.7 - 595.8 = 0.9' \quad L_4 = 1.5'$$

$$Q = 2.7 \times 17.5 \times (2.3)^{3/2} + 2.7 \times 16 \times (2.65)^{2/3} + \\ 2.7 \times 171 \times (2.35)^{3/2} + 2.7 \times 1.5 \times (0.9)^{3/2}$$

$$= 2018 \text{ CFS}$$

BY BLS DATE 10/13/80
CHKD. BY DVE DATE 11/4/80
SUBJECT

BERGER ASSOCIATES

SHEET NO. 2 OF 9
PROJECT DO590

UPPER MOUNT HOLLY DAM

SPILLWAY RATING CURVE

597

596

595

594

TOP OF DAM
LOW POINT

0

5

10

15

20

25

DISCHARGE ~ 100 CFS

BY RLS DATE 10/31/80

CHKD. BY DATE

SUBJECT

BERGER ASSOCIATES

SHEET NO. 3 OF 9

PROJECT D0590

UPPER MOUNT HOLLY DAM

DISCHARGE THRU OUTLET WORKS

CONCRETE ARCH TUNNEL 6'X16' WITH 5'X5' WOODEN GATE

UPSTREAM INVERT = 584.9

$$Q = CA \sqrt{2gH}$$

C = 0.6 (KING'S HDBK.)

AT POOL ELEV. 594

$$H = 594 - 587.4 = 6.6'$$

$$Q = 0.6 \times 5 \times 5 \times (2 \times 32.2 \times 6.6)^{0.5}$$

$$= 309 \text{ CFS.}$$

AT LOW POOL ELEV. 590

$$H = 590 - 587.4 = 2.6'$$

$$Q = 0.6 \times 5 \times 5 \times (2 \times 32.2 \times 2.6)^{0.5}$$

$$= 194 \text{ CFS}$$

BY RLS DATE 2/25/81
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. A OF 9
PROJECT D0570

UPPER MOUNT HOLLY DAM

EMBANKMENT RATING

$$Q = CLH^{3/2}$$

$$C = 2.7 \text{ (KING'S HDBK.)}$$

AT ELEV 597

$$2.7 \times 5 \times (.15)^{1.5} = 1$$

$$2.7 \times 37 \times (.1)^{1.5} = 3$$

$$2.7 \times 75 \times (.05)^{1.5} = 2$$

$$2.7 \times 19 \times (.2)^{1.5} = 4$$

$$2.7 \times 19 \times (.1)^{1.5} = 1$$

$$\Sigma = 11 \text{ cfs}$$

AT ELEV 597.5

$$2.7 \times 10 \times (.4)^{1.5} = 7$$

$$2.7 \times 17 \times (.25)^{1.5} = 6$$

$$2.7 \times 11 \times (.45)^{1.5} = 9$$

$$2.7 \times 50 \times (.4)^{1.5} = 34$$

$$2.7 \times 100 \times (.45)^{1.5} = 82$$

$$2.7 \times 50 \times (.35)^{1.5} = 28$$

$$2.7 \times 150 \times (.5)^{1.5} = 143$$

$$2.7 \times 70 \times (.35)^{1.5} = 39$$

$$2.7 \times 4 \times (.1)^{1.5} = -$$

$$2.7 \times 6 \times (.1)^{1.5} = 1$$

$$2.7 \times 19 \times (.7)^{1.5} = 30$$

$$2.7 \times 26 \times (.35)^{1.5} = 15$$

$$2.7 \times 24 \times (.35)^{1.5} = 13$$

$$\Sigma = 407 \text{ cfs}$$

AT ELEV 598

$$2.7 \times 10 \times (.9)^{1.5} = 23$$

$$2.7 \times 20 \times (.7)^{1.5} = 32$$

$$2.7 \times 10 \times (.55)^{1.5} = 11$$

$$2.7 \times 10 \times (.45)^{1.5} = 8$$

$$2.7 \times 23 \times (.3)^{1.5} = 10$$

$$2.7 \times 33 \times (.25)^{1.5} = 11$$

$$2.7 \times 11 \times (.15)^{1.5} = 2$$

$$2.7 \times 11 \times (.95)^{1.5} = 28$$

$$2.7 \times 50 \times (.9)^{1.5} = 115$$

$$2.7 \times 100 \times (.95)^{1.5} = 250$$

$$2.7 \times 50 \times (.85)^{1.5} = 106$$

$$2.7 \times 150 \times (1)^{1.5} = 405$$

$$2.7 \times 70 \times (.85)^{1.5} = 148$$

$$2.7 \times 19 \times (1.2)^{1.5} = 67$$

$$2.7 \times 30 \times (.8)^{1.5} = 58$$

$$2.7 \times 42 \times (.6)^{1.5} = 53$$

$$\Sigma = 1327 \text{ cfs}$$

BY RLS DATE 2/25/81
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 5 OF 9
PROJECT DO 590

UPPER MOUNT HOLLY DAM

EMBANKMENT RATING (CONT.)

AT ELEV 598.5

$$2.7 \times 10 \times (1.4)^{1.5} = 45$$

$$2.7 \times 20 \times (1.2)^{1.5} = 71$$

$$2.7 \times 10 \times (1.05)^{1.5} = 29$$

$$2.7 \times 10 \times (.95)^{1.5} = 25$$

$$2.7 \times 23 \times (.8)^{1.5} = 44$$

$$2.7 \times 33 \times (.75)^{1.5} = 58$$

$$2.7 \times 11 \times (.65)^{1.5} = 16$$

$$2.7 \times 11 \times (1.45)^{1.5} = 52$$

$$2.7 \times 50 \times (1.4)^{1.5} = 224$$

$$2.7 \times 100 \times (1.45)^{1.5} = 471$$

$$2.7 \times 50 \times (1.35)^{1.5} = 212$$

$$2.7 \times 150 \times (1.5)^{1.5} = 744$$

$$2.7 \times 70 \times (1.35)^{1.5} = 297$$

$$2.7 \times 19 \times (1.7)^{1.5} = 113$$

$$2.7 \times 30 \times (1.3)^{1.5} = 120$$

$$2.7 \times 45 \times (1.05)^{1.5} = 131 \quad \Sigma = 2652$$

AT ELEV 599

$$\Sigma = 4269$$

AT ELEV 599.5

$$\Sigma = 6130$$

AT ELEV 600

$$\Sigma = 8208$$

AT ELEV 601

$$\Sigma = 12931$$

AT ELEV 603

$$\Sigma = 24310$$

AT ELEV 605

$$\Sigma = 37861$$

AT ELEV 608

$$\Sigma = 61622$$

BY RLS DATE 10/31/80
CHKD. BY DJR DATE 11/4/80
SUBJECT

UPPER MOUNT HOLLY DAM

BERGER ASSOCIATES

SHEET NO. 6 OF 9
PROJECT D 0590

MAXIMUM KNOWN FLOOD AT DAM SITE

THERE ARE NO RECORDS OF POOL LEVELS FOR THIS DAM.
BASED ON THE RECORDS OF THE GAGING STATION FOR
YELLOW BREECHES CREEK AT NEARBY CAMP HILL, PA.
(D.A. = 216 SQ. MI.) THE MAXIMUM DISCHARGE AT
THE GAGE OCCURRED IN SEPTEMBER, 1975 WHEN A
DISCHARGE OF 19300 CFS WAS OBSERVED. THE
MAXIMUM INFLOW TO UPPER MOUNT HOLLY DAM IS
ESTIMATED TO BE:

$$Q = \left(\frac{44.43}{216} \right)^{0.8} \times 19300$$

$$= 5447 \text{ CFS}$$

DESIGN FLOOD

SIZE CLASSIFICATION

MAXIMUM STORAGE = 120 ACRE-FEET

MAXIMUM HEIGHT = 13 FEET

SIZE CLASSIFICATION IS "SMALL"

HAZARD CLASSIFICATION

BOROUGH OF MOUNT HOLLY SPRINGS IS
LOCATED ALONG THE DOWNSTREAM CHANNEL.
USE "HIGH"

RECOMMENDED SPILLWAY DESIGN FLOOD

THE ABOVE CLASSIFICATIONS INDICATE USE OF
AN SDF IN THE RANGE OF ONE-HALF PMF TO
THE PROBABLE MAXIMUM FLOOD.

BY RLS DATE 2/26/81
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 7 OF 9
PROJECT DOR 72

UPPER MOUNT HOLLY DAM

UPSTREAM RESERVOIR

LAUREL LAKE DAM

D.A. = 23.57 SQ. MI.

(DATA FROM PHASE I INSPECTION REPORT)

250' LONG, 25' HIGH CONCRETE GRAVITY DAM

SPILLWAY = 200' LONG OGEE SECTION C = 3.8

STILLWAY ELEV. = 774.5

TOP OF DAM ELEV. = 786.0

NORMAL STORAGE = 160 AC-FT

MAXIMUM STORAGE = 896 AC-FT

MAXIMUM SPILLWAY CAPACITY = 32720 CFS

BY RLS DATE 2/27/51
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

UPPER MOUNT HOLLY DAM

SHEET NO. 8 OF 9
PROJECT D0590

SPILLWAY CAPACITY CURVE

BY RLS DATE 2/27/61
CHKD BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 9 OF 9
PROJECT DO 590

UPPER MOUNT HOLLY DAM

BREACH ASSUMPTIONS

BREACH WIDTH = 50'

SIDE SLOPES (EARTH EMBANKMENT) = 1:1

FAILURE TIME (EARTH EMBANKMENT) =
BETWEEN 15 MIN. AND 2 HR.
USE: .25 HR., .5 HR., 1 HR., 2 HR.

POOL LEVEL AT FAILURE: EARTH EMBANKMENT
SAY 0.5 FT OVER TOP OF DAM

UPSTREAM RESERVOIR:

LAUREL LAKE DAM = NOT OVERTOPPED BY 69% PMT
WILL NOT BREACH

SECTION AT DAMAGE CENTER

4300' DOWNSRAME OF DAM

**HYDROLOGY AND HYDRAULIC ANALYSIS
DATA BASE**

NAME OF DAM: Upper Mt. Holly Dam RIVER BASIN: Susquehanna

PROBABLE MAXIMUM PRECIPITATION (PMP) = 23.6 INCHES/24 HOURS⁽¹⁾

(FOR FOOTNOTES SEE NEXT PAGE)

STATION	1	2	3	4
STATION DESCRIPTION	LAUREL LAKE	LAUREL LAKE DAM	UPPER MOUNT HOLLY RESERVOIR	UPPER MOUNT HOLLY DAM
DRAINAGE AREA (SQUARE MILES)	23.57		20.86	
CUMULATIVE DRAINAGE AREA (SQUARE MILE)	23.57	23.57	44.43	44.43
ADJUSTMENT OF PMP FOR DRAINAGE AREA (%) ⁽²⁾	6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS Zone 6	98 107.5 117 130		98 107.5 117 130
SNYDER HYDROGRAPH PARAMETERS	ZONE ⁽³⁾ C_p/C_t ⁽⁴⁾ L (MILES) ⁽⁵⁾ L_{co} (MILES) ⁽⁵⁾ $T_p = C_t (L \cdot L_{co})^{0.3}$ (Hours)	15A .54/1.15 10.33 4.92 3.74		15A .54/1.15 7.88 3.90 3.21
SPILLWAY DATA	CREST LENGTH (FT.) FREEBOARD (FT.) DISCHARGE COEFFICIENT EXPONENT ELEVATION		200 11.5 3.8 1.5 774.5	206 2.7 2.7 1.5 594
AREA ⁽⁶⁾ (ACRES)	NORMAL POOL ELEV. _____ ELEV. _____	774.5 = 25 ⁽⁷⁾ 780 = 40 790 = 73		594 = 20 600 = 72 610 = 104
STORAGE (ACRE - FEET)	NORMAL POOL ⁽⁷⁾ ELEV. _____ ⁽⁸⁾ ELEV. _____ ⁽⁸⁾ ELEV. _____ ⁽⁸⁾	774.5 = 160 755.3 = 0		594 = 61 584.8 = 0

- (1) Hydrometeorological Report 33 (Figure 1), U.S. Army, Corps of Engineers, 1956.
- (2) Hydrometeorological Report 33 (Figure 2), U.S. Army, Corps of Engineers, 1956.
- (3) Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's Coefficients (C_p and C_t).
- (4) Snyder's Coefficients.
- (5) L = Length of longest water course from outlet to basin divide.
 L_{ca} = Length of water course from outlet to point opposite the centroid of drainage area.
- (6) Planimetered area encompassed by contour upstream of dam.
- (7) PennDER files.
- (8) Computed by conic method.

TABLE NO. 1
COMPARISON OF WATER SURFACE ELEVATIONS

UPPER MT. HOLLY DAM

PMF = 68,135 cfs SDF = 32,938 cfs

Crest Elevation (Low Point) - 596.7 Spillway Elevation - 594

<u>STAGE</u>	<u>CREST OF DAM ELEVATION</u>	<u>DEPTH</u>	<u>4300' D/S OF DAM*</u> <u>ELEVATION</u>
A. At Low Point in Embankment Crest	596.7	0	568.3
B. 6% PMF Overtopping No Breach	597.43	.73	570.8
C. 6% PMF Overtopping (.25 Hour Breach)	597.27	.57	573.4
D. 6% PMF Overtopping (2 Hour Breach)	597.31	.61	572.0

*Restaurant located about 4,300 feet downstream of Upper Mt. Holly Dam. Considered to be damage center. (This area is just upstream of the residential portion of Mt. Holly Springs.)

Condition C: (Time refers to elapsed time after start of storm). Time to reach breach elevation 598.2 at dam = 43.0 Hours. Water level 4300' downstream prior to breach = 570.8. Duration of breach = .25 Hours. Time for breach to peak 4300' downstream = .5 Hours. Peak elevation 4300' downstream due to breach = 573.4. Rate of increase in water level = 2.6' in 30 Minutes.

DRAINAGE AREA MAP

SCALE 1" = 1 MILE

— — — DRAINAGE AREA

— — — — — SUB-DRAINAGE AREA

— — STREAMS

MAP

AREA

AGE AREA

ATION IDENTIFICATION

UPPER MT. HOLLY DAM
PA - 00538

PLATE D-1

FLOOD HYDROGRAPH PACKAGE (HEC-1)

DAM SAFETY VERSION JULY 1978

LAST MODIFICATION 01 APR 80

1 A1 UPPER MOUNT HOLLY DAM **** MOUNTAIN CREEK
 2 A2 BOROUGH OF MOUNT HOLLY SPRINGS, CUMBERLAND COUNTY, PA.
 3 A3 NDI # PA-00533 PA DER # 21-1
 4 B 300 0 15 0 0 0 0 0 -4 0
 5 B1 5
 6 J 1 9 1
 7 J1 1 .75 .5 .25 .15 .1 .05 .03 .01
 8 K 1 1
 9 K1 INFLOW HYDROGRAPH - LAUREL LAKE SUBAREA
 10 M 1 1 23.57 44.43
 11 P 23.6 98 107.5 117 130
 12 T 1 .05
 13 W 3.74 .54
 14 X -1.5 -.05 2
 15 K 1 2 1
 16 K1 RESERVOIR ROUTING - LAUREL LAKE
 17 Y 1
 18 Y1 1 160 -1
 19 Y4 774.5 775.5 776.5 777.5 778.5 780 782 784 786 788
 20 Y5 0 760 2150 3950 6080 10078 16590 24189 32720 42090
 21 \$A 0 25 30 35.5 40 45.5 52 59 66.5 73.4
 22 \$E 755.3 774.5 776.5 778.5 780 782 784 786 788 790
 23 \$\$ 774.5
 24 \$D 786 3.05 1.5 150
 25 K 1 3 1
 26 K1 ROUTING THRU REACH 2 - 3
 27 Y 1
 28 Y1 1
 29 Y6 .1 .07 .1 700 730 7600 .0064
 30 Y7 0 730 100 720 200 710 850 700 860 700
 31 Y7 1100 710 1300 720 1600 730 1
 32 K 1 4
 33 K1 ROUTING THRU REACH 3 - 4
 34 Y 1
 35 Y1 1
 36 Y6 .1 .07 .1 660 690 10300 .0039
 37 Y7 0 690 100 680 150 670 300 660 310 660
 38 Y7 950 670 1120 660 1200 670 1
 39 K 1 5
 40 K1 ROUTING THRU REACH 4 - 5
 41 Y 1
 42 Y1 1
 43 Y6 .1 .07 .1 610 640 10600 .0047
 44 Y7 0 640 100 630 200 620 700 610 710 610
 45 Y7 740 620 770 630 800 640 1
 46 K 6
 47 K1 INFLOW HYDROGRAPH - UPPER MOUNT HOLLY SUBAREA
 48 M 1 1 20.86 44.43
 49 P 23.6 98 107.5 117 130
 50 T 1 .05
 1 51 W 3.21 .54
 52 X -1.5 -.05 2
 53 K 2 7 1

54 K1 COMBINE HYDROGRAPHS AT UPPER MOUNT HOLLY DAM
 55 K 1 8 1
 56 K1 RESERVOIR ROUTING - THRU UPPER MOUNT HOLLY DAM
 57 Y 1
 58 Y1 1 61 -1
 59 Y4 594 594.5 595 595.5 596 596.7 597 597.5 598 598.5
 60 Y4 599 599.5 600 601 603 605 608
 61 Y5 0 42 304 699 1193 2018 2425 3532 5222 7371
 62 Y5 9864 12649 15697 22490 38483 57217 89705
 63 \$A 0 20 72 104
 64 \$E 584.8 594 600 610
 65 \$\$ 594
 66 \$D 596.7
 67 K 99

1 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
ROUTE HYDROGRAPH TO	4
ROUTE HYDROGRAPH TO	5
RUNOFF HYDROGRAPH AT	6
COMBINE 2 HYDROGRAPHS AT	7
ROUTE HYDROGRAPH TO	8
END OF NETWORK	

 FLOOD HYDROGRAPH PACKAGE (HEC-1)
 DAM SAFETY VERSION JULY 1978
 LAST MODIFICATION 01 APR 80

RUN DATE* 81/02/26.
 TIME* 05.59.06.

UPPER MOUNT HOLLY DAM **** MOUNTAIN CREEK
 BOROUGH OF MOUNT HOLLY SPRINGS, CUMBERLAND COUNTY, PA.
 NDI # PA-00583 PA DER # 21-1

JOB SPECIFICATION

NQ	NHR	NMIN	IDAY	IHR	ININ	METRC	IPLT	IPRT	INSTAN
300	0	15	0	0	0	0	0	-4	0
JOFER RWT LROPT TRACE									
5 0 0 0									

MULTI-PLAN ANALYSES TO BE PERFORMED

NPLAN= 1 NRTIO= 9 LRTIO= 1

RTIOS= 1.00 .75 .50 .25 .15 .10 .05 .03 .01

***** ***** ***** ***** *****

SUB-AREA RUNOFF COMPUTATION

3

INFLOW HYDROGRAPH - LAUREL LAKE SUBAREA

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	ISTAGE	IAUTO
1	0	0	0	0	0	1	0	0

HYDROGRAPH DATA

IHYDG	IUHG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	23.57	0.00	44.43	0.00	0.000	0	0	0

PRECIP DATA

SPFE	PMS	R6	R12	R24	R48	R72	R96
0.00	23.60	98.00	107.50	117.00	130.00	0.00	0.00

TRSPC COMPUTED BY THE PROGRAM IS .846

LOSS DATA

LROPT	STRKR	DLTKR	RTIOL	ERAIN	STRKS	RTIOK	STRTL	CNSTL	ALSMX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

TP= 3.74 CP= .54 NTA= 0

RECEDITION DATA

STRTQ= -1.50 QRCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH100 END-OF-PERIOD ORDINATES, LAG= 3.73 HOURS, CP= .54 VOL= .99

37.	139.	285.	460.	655.	866.	1089.	1321.	1550.	1755.
1927.	2065.	2170.	2238.	2266.	2237.	2145.	2029.	1920.	1816.
1718.	1625.	1538.	1455.	1376.	1302.	1232.	1165.	1102.	1043.
987.	933.	883.	835.	790.	748.	707.	669.	633.	599.
567.	536.	507.	480.	454.	429.	406.	384.	363.	344.
325.	308.	291.	275.	261.	247.	233.	221.	209.	197.
187.	177.	167.	158.	150.	142.	134.	127.	120.	113.
107.	101.	96.	91.	86.	81.	77.	73.	69.	65.
62.	58.	55.	52.	49.	47.	44.	42.	40.	37.
35.	33.	32.	30.	28.	27.	25.	24.	23.	21.

END-OF-PERIOD FLOW

0	MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q	MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q

SUM	25.97	23.46	2.49	1423079.
(660.) (596.) (63.) (40297.11)				

*****	*****	*****	*****	*****
-------	-------	-------	-------	-------

4

HYDROGRAPH ROUTING

RESERVOIR ROUTING - LAUREL LAKE

	ISTAO 2	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JFRT 0	I NAME 1	I STAGE 0	IAUTO 0	
	ROUTING DATA									
	GLOSS 0.0	CLOSS 0.00	Avg 0.00	IRES 1	ISAME 0	IOPT 0	IPMP 0	LSTR 0		
	NSTPS 1	NSTDL 0	LAG 0	AMSKK 0.000	X 0.000	TSK 0.000	STORA 160.	ISPRAT -1		
STAGE	774.50	775.50	776.50	777.50	778.50	780.00	782.00	784.00	786.00	788.00
FLOW	0.00	760.00	2150.00	3950.00	6080.00	10078.00	16590.00	24189.00	32720.00	42090.00
SURFACE AREA=	0.	25.	30.	36.	40.	46.	52.	59.	67.	73.
CAPACITY=	0.	160.	215.	280.	337.	422.	520.	631.	756.	896.
ELEVATION=	755.	775.	777.	779.	780.	782.	784.	786.	788.	790.
	CREL 774.5	SPWID 0.0	COQW 0.0	EXPW 0.0	ELEV 0.0	COQL 0.0	CAREA 0.0	EXPL 0.0		
	DAM DATA									
	TOPEL 786.0	COQD 3.1	EXPD 1.5	DAHWID 150.						

PEAK OUTFLOW IS 36575. AT TIME 43.50 HOURS

PEAK OUTFLOW IS 27426. AT TIME 43.50 HOURS

PEAK OUTFLOW IS 18285. AT TIME 43.50 HOURS

PEAK OUTFLOW IS 9137. AT TIME 43.50 HOURS

PEAK OUTFLOW IS 5479. AT TIME 43.50 HOURS

PEAK OUTFLOW IS 3650. AT TIME 43.50 HOURS

PEAK OUTFLOW IS 1822. AT TIME 43.50 HOURS

K OUTFLOW IS 1094. AT TIME 43.50 HOURS

PEAK OUTFLOW IS 361. AT TIME 43.75 HOURS

HYDROGRAPH ROUTING

ROUTING THRU REACH 2 - 3

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	ISTAGE	IAUTO
3	1	0	0	0	0	1	0	0
ROUTING DATA								
QLOSS	CLOSS	Avg	IRES	ISAME	IOPT	IPMP	LSTR	
0.0	0.000	0.00	1	0	0	0	0	
NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT	
1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	700.0	730.0	7800.	.00640

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	730.00	100.00	720.00	200.00	710.00	850.00	700.00	860.00	700.00
1100.00	710.00	1300.00	720.00	1600.00	730.00				

STORAGE	0.00	22.69	85.12	187.27	329.16	510.78	732.13	987.35	1257.44	1540.91
	1837.78	2148.04	2471.69	2608.99	3163.15	3535.16	3925.03	4332.76	4738.35	5201.79
CUTFLOW	0.00	192.38	1122.34	3212.37	6814.52	12242.90	19786.34	31286.35	46026.29	63155.61
	82631.96	104428.53	128530.21	154873.49	183454.83	214433.76	247839.40	263704.36	322063.25	362951.98
STAGE	700.00	701.58	703.16	704.74	706.32	707.89	709.47	711.05	712.63	714.21
	715.79	717.37	718.95	720.53	722.11	723.68	725.26	726.84	728.42	730.00
FLOW	0.00	192.38	1122.34	3212.37	6814.52	12242.90	19786.34	31286.85	46026.29	63155.61
	82631.96	104428.53	128530.21	154873.49	183454.83	214433.76	247839.40	263704.36	322063.25	362951.98

MAXIMUM STAGE IS 711.6

MAXIMUM STAGE IS 710.5

MAXIMUM STAGE IS 709.1

MAXIMUM STAGE IS 707.0

MAXIMUM STAGE IS 705.7

MAXIMUM STAGE IS 704.9

MAXIMUM STAGE IS 703.6

MAXIMUM STAGE IS 703.0

MAXIMUM STAGE IS 701.8

HYDROGRAPH ROUTING

ROUTING THRU REACH 3 - 4

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPT	IAME	ISTAGE	IAUTO
4	1	0	0	0	0	1	0	0
ROUTING DATA								
GLOSS	CLOSS	AVG	IRES	ISAME	IOPT	IPMP	LSTR	
0.0	0.000	0.00	1	0	0	0	0	
NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISFRAT	
1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	660.0	690.0	10300.	.00390

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	690.00	100.00	680.00	150.00	670.00	300.00	660.00	310.00	660.00
950.00	670.00	1120.00	680.00	1200.00	690.00				

STORAGE	0.00 2139.99	27.02 2492.71	100.61 2858.39	220.77 3236.92	387.50 3826.58	600.80 4026.85	850.67 4437.73	1159.65 4859.23	1473.46 5291.33	1800.24 5734.04
OUTFLOW	0.00 57241.17	136.05 72234.86	786.24 88769.81	2242.54 106854.19	4748.53 126504.35	8521.67 147660.89	13761.91 170308.39	21746.29 194437.22	31962.67 220041.47	43807.78 247117.38
STAGE	660.00 675.79	661.58 677.37	663.16 678.95	664.74 680.53	666.32 682.11	667.39 683.58	669.47 685.26	671.05 686.84	672.63 688.42	674.21 690.00
FLOW	0.00 57241.17	136.05 72234.86	786.24 88769.81	2242.54 106854.19	4748.53 126504.35	8521.67 147660.89	13761.91 170308.39	21746.29 194437.22	31962.67 220041.47	43807.78 247117.38

MAXIMUM STAGE IS 673.2

MAXIMUM STAGE IS 671.9

MAXIMUM STAGE IS 670.3

MAXIMUM STAGE IS 668.0

MAXIMUM STAGE IS 666.5

MAXIMUM STAGE IS 665.5

MAXIMUM STAGE IS 664.1

MAXIMUM STAGE IS 663.4

MAXIMUM STAGE IS 662.0

HYDROGRAPH ROUTING

ROUTING THRU REACH 4 - 5

ISTAQ 5	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JPRT 0	I NAME 1	I STAGE 0	I AUTO 0
ROUTING DATA								
QLOSS 0.0	CLOSS 0.000	Avg 0.00	IRES 1	ISAME 0	IOPT 0	IPMP 0	LSTR 0	
NSTFS 1	NSTDL 0	LAG 0	AMSKK 0.000	X 0.000	TSK 0.000	STORA 0.	ISPRAT 0	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNUT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	610.0	640.0	10600.	.00470

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	640.00	100.00	630.00	200.00	620.00	700.00	610.00	710.00	610.00
740.00	620.00	770.00	630.00	600.00	640.00				

STORAGE	0.00 1482.97	19.92 1723.32	71.99 1971.55	156.22 2227.66	272.60 2491.67	421.13 2763.56	601.32 3043.33	809.27 3331.00	1025.95 3626.54	1250.52 3929.98
OUTFLOW	0.00 42467.75	108.96 53516.96	605.95 65679.78	1703.21 78943.47	3578.82 93299.06	6392.01 108740.48	10289.35 125263.94	16216.81 142867.47	23788.14 161550.54	32549.92 181313.89
STAGE	610.00 625.79	611.58 627.37	613.16 628.95	614.74 630.53	616.32 632.11	617.89 633.63	619.47 635.26	621.05 636.94	622.63 638.42	624.21 640.00
FLOW	0.00 42467.75	108.96 53516.96	605.95 65679.78	1703.21 78943.47	3578.82 93299.06	6392.01 108740.48	10289.35 125263.94	16216.81 142867.47	23788.14 161550.54	32549.92 181313.89

MAXIMUM STAGE IS 624.7

MAXIMUM STAGE IS 623.2

MAXIMUM STAGE IS 621.3

MAXIMUM STAGE IS 618.8

MAXIMUM STAGE IS 617.1

MAXIMUM STAGE IS 616.1

MAXIMUM STAGE IS 614.6

MAXIMUM STAGE IS 613.6

MAXIMUM STAGE IS 612.1

SUB-AREA RUNOFF COMPUTATION

8

INFLOW HYDROGRAPH - UPPER MOUNT HOLLY SUBAREA

ISTAQ	ICOMP	IECON	ITAFE	JPLT	JFRT	I NAME	I STAGE	I AUTO
6	0	0	0	0	0	1	0	0

HYDROGRAPH DATA										
IHYDG	IUHG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL	
1	1	20.86	0.00	44.43	0.00	0.000	0	0	0	

PRECIP DATA							
SFFE	FMS	R6	R12	R24	R48	R72	R96
0.00	23.60	98.00	107.50	117.00	130.00	0.00	0.00

TRSFC COMPUTED BY THE PROGRAM IS .846

LOSS DATA

LROPT	STRKR	BLTRK	RTIDL	ERAIN	STRNS	RTICK	STRTL	CNSTL	ALSMX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

RECESSION DATA

UNIT HYDROGRAPH 89 END-OF-PERIOD ORDINATES, LAG=						3.20 HOURS, CP= .54	VOL= 1.00		
47.	178.	364.	585.	831.	1094.	1371.	1641.	1876.	2095.
2207.	2300.	2339.	2299.	2183.	2045.	1916.	1796.	1632.	1576.
1477.	1384.	1297.	1215.	1138.	1066.	999.	936.	877.	822.
770.	721.	676.	633.	593.	556.	521.	488.	457.	428.
401.	376.	352.	330.	309.	290.	272.	254.	238.	223.
209.	196.	184.	172.	161.	151.	142.	133.	124.	116.
109.	102.	96.	90.	84.	79.	74.	69.	65.	61.
57.	53.	50.	47.	44.	41.	38.	36.	34.	32.
30.	28.	26.	24.	23.	21.	20.	19.	18.	

0 END-OF-PERIOD FLOW
 MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q

SUM 25.97 23.48 2.49 1261989.
 (660.)(596.)(63.)(35735.55)

COMBINE HYDROGRAPHS

COMBINE HYDROGRAPHS AT UPPER MOUNT HOLLY DAM

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JFRT	I NAME	ISTAGE	IAUTO
7	2	0	0	0	0	1	0	0

HYDROGRAPH ROUTING

9

RESERVOIR ROUTING - THRU UPPER MOUNT HOLLY DAM

	ISTAQ 8	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JPRT 0	I NAME 1	ISTAGE 0	IAUTO 0	
	ROUTING DATA									
	QLOSS 0.0	CLOSS 0.000	Avg 0.00	IRES 1	ISAME 0	IOPT 0	IPMP 0	LSTR 0		
	NSTPS 1	NSTDL 0	LAG 0	AMSKK 0.000	X 0.000	TSK 0.000	STORA 61.	ISPRAT -1		
STAGE	594.00	594.50	595.00	595.50	596.00	596.70	597.00	597.50	598.00	598.50
	599.00	599.50	600.00	601.00	603.00	605.00	608.00			
FLOW	0.00	42.00	304.00	699.00	1193.00	2018.00	2425.00	3532.00	5222.00	7371.00
	9864.00	12649.00	15697.00	22490.00	38483.00	57217.00	89705.00			
SURFACE AREA=	0.	20.	72.	104.						
CAPACITY=	0.	61.	321.	1196.						
ELEVATION=	585.	594.	600.	610.						
	CREL 594.0	SFWID 0.0	COQW 0.0	EXPW 0.0	ELEV 0.0	COOL 0.0	CAREA 0.0	EXPL 0.0		

DAM DATA			
TOPEL 596.7	COQD 0.0	EXPD 0.0	DAMWID 0.

PEAK OUTFLOW IS 68138. AT TIME 43.75 HOURS

PEAK OUTFLOW IS 50567. AT TIME 43.75 HOURS

PEAK OUTFLOW IS 32892. AT TIME 44.00 HOURS

PEAK OUTFLOW IS 15705. AT TIME 44.25 HOURS

PEAK OUTFLOW IS 9138. AT TIME 44.50 HOURS

PEAK OUTFLOW IS 5922. AT TIME 44.50 HOURS

PEAK OUTFLOW IS 2789. AT TIME 44.75 HOURS

PEAK OUTFLOW IS 1566. AT TIME 45.25 HOURS

PEAK OUTFLOW IS 465. AT TIME 46.00 HOURS

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIOS APPLIED TO FLOWS								
				RATIO 1 1.00	RATIO 2 .75	RATIO 3 .50	RATIO 4 .25	RATIO 5 .15	RATIO 6 .10	RATIO 7 .05	RATIO 8 .03	RATIO 9 .01
HYDROGRAPH AT	1 (61.05)	23.57	1 (1037.94)	36654. (27491.	27491. (778.45)	18327. (518.97)	9164. (259.48)	5498. (155.69)	3665. (103.79)	1833. (51.90)	1100. (31.14)	367. (10.38)
ROUTED TO	2 (61.05)	23.57	1 (1035.69)	36575. (27426.	27426. (776.61)	18285. (517.79)	9137. (258.74)	5479. (155.15)	3650. (103.36)	1822. (51.59)	1094. (30.97)	361. (10.22)
ROUTED TO	3 (61.05)	23.57	1 (1030.52)	36393. (27253.	27253. (771.71)	18089. (512.22)	9002. (254.89)	5376. (152.22)	3573. (101.19)	1769. (50.09)	1040. (29.46)	343. (9.71)
ROUTED TO	4 (61.05)	23.57	1 (1021.08)	36059. (26915.	26915. (762.15)	17774. (503.31)	8712. (246.70)	5166. (146.28)	3398. (96.22)	1656. (46.91)	966. (27.34)	307. (8.68)
ROUTED TO	5 (61.05)	23.57	1 (1013.67)	35797. (26695.	26695. (755.93)	17570. (497.54)	8506. (240.86)	5015. (142.00)	3277. (92.79)	1577. (44.65)	915. (25.92)	283. (8.02)
HYDROGRAPH AT	6 (54.03)	20.86	1 (1018.48)	35967. (26976.	26976. (763.86)	17984. (509.24)	8992. (254.62)	5395. (152.77)	3597. (101.85)	1798. (50.92)	1079. (30.55)	360. (10.18)
2 COMBINED	7 (115.07)	44.43	1 (1929.37)	68135. (50632.	50632. (1433.75)	32938. (932.69)	15714. (444.97)	9150. (259.10)	5924. (167.74)	2795. (79.14)	1574. (44.58)	466. (13.21)
ROUTED TO	8 (115.07)	44.43	1 (1929.47)	68138. (50567.	50567. (1431.89)	32892. (931.41)	15705. (444.71)	9138. (258.75)	5922. (167.69)	2789. (78.97)	1566. (44.35)	465. (13.15)

1

SUMMARY OF DAM SAFETY ANALYSIS

(1929.47) (444.71) (258.75)

PLAN 1	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM	
	ELEVATION	774.50	774.50	786.00
	STORAGE	160.	160.	631.
	OUTFLOW	0.	0.	32720.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	786.76	.76	677.	36575.	2.25	43.50	0.00
.75	784.76	0.00	560.	27426.	0.00	43.50	0.00
.50	782.45	0.00	443.	18285.	0.00	43.50	0.00
.25	779.65	0.00	323.	9137.	0.00	43.50	0.00
.15	778.22	0.00	270.	5479.	0.00	43.50	0.00
.10	777.33	0.00	241.	3650.	0.00	43.50	0.00
.05	776.26	0.00	208.	1822.	0.00	43.50	0.00
.03	775.74	0.00	193.	1094.	0.00	43.50	0.00
.01	774.97	0.00	172.	361.	0.00	43.75	0.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
-------	---------------------	---------------------	---------------

11

RATIO	FLOW,CFS	STAGE,FT	HOURS
1.00	36393.	711.6	43.75
.75	27253.	710.5	43.75
.50	18089.	709.1	43.75
.25	9002.	707.0	43.75
.15	5376.	705.7	44.00
.10	3573.	704.9	44.00
.05	1769.	703.6	44.25
.03	1040.	703.0	44.25
.01	343.	701.8	44.50

PLAN 1 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	36059.	673.2	44.00
.75	26915.	671.9	44.00
.50	17774.	670.3	44.25
.25	8712.	668.0	44.50
.15	5166.	666.5	44.75
.10	3398.	665.5	44.75
.05	1656.	664.1	45.25
.03	966.	663.4	45.50
.01	307.	662.0	46.00

PLAN 1 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	35797.	624.7	44.25
.75	26695.	623.2	44.50
.50	17570.	621.3	44.75
.25	8506.	618.8	45.25
.15	5015.	617.1	45.50
.10	3277.	616.1	45.75
.05	1577.	614.6	46.25
.03	915.	613.6	46.50
.01	283.	612.1	47.50

SUMMARY OF DAM SAFETY ANALYSIS

1 JAMES M. WOLLY DAW

PLAN 1	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	593.95	594.00	596.70
STORAGE	60.	61.	140.
OUTFLOW	0.	0.	2018.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	606.01	9.31	808.	68138.	38.75	43.75	0.00
.75	604.29	7.59	658.	50567.	33.25	43.75	0.00
.50	602.30	5.60	495.	32892.	23.25	44.00	0.00
.25	600.00	3.30	321.	15705.	17.75	44.25	0.00
.15	598.85	2.15	246.	9138.	14.25	44.50	0.00
.10	598.16	1.46	207.	5922.	11.50	44.50	0.00
.05	597.16	.46	159.	2789.	6.00	44.75	0.00
.03	596.32	0.00	126.	1566.	0.00	45.25	0.00
.01	595.20	0.00	0.	465.	0.00	46.00	0.00

DAM SAFETY VERSION JULY 1976

LAST MODIFICATION 01 APR 80

12

1 A1 UPPER MOUNT HOLLY DAM *** MOUNTAIN CREEK
2 A2 BOROUGH OF MOUNT HOLLY SPRINGS, CUMBERLAND COUNTY, PA.
3 A3 NDI # PA-00563 PA DER # 21-1
4 B 300 0 15 0 0 0 0 0 0 0 -4 0
5 B1 5
6 J 5 1 1
7 J1 .06
8 K 1 1
9 K1 INFLOW HYDROGRAPH - LAUREL LAKE SUBAREA
10 M 1 1 23.57 44.43 1
11 P 23.6 98 107.5 117 130
12 T 1 .05
13 W 3.74 .54
14 X -1.5 -.05 2
15 K 1 2 1
16 K1 RESERVOIR ROUTING - LAUREL LAKE
17 Y 1 1
18 Y1 1
19 Y4 774.5 775.5 776.5 777.5 778.5 780 782 784 786 788
20 Y5 0 760 2150 3950 6080 10078 16590 24129 32720 42090
21 \$A 0 25 30 35.5 40 45.5 52 59 66.5 73.4
22 \$E 755.3 774.5 776.5 778.5 780 782 784 786 788 790
23 \$\$ 774.5
24 \$D 786 3.05 1.5 150
25 K 1 3 1
26 K1 ROUTING THRU REACH 2 - 3
27 Y 1 1
28 Y1 1
29 Y6 .1 .07 .1 700 730 7800 .0064
30 Y7 0 730 100 720 200 710 850 700 860 700
31 Y7 1100 710 1300 720 1600 730
32 K 1 4 1
33 K1 ROUTING THRU REACH 3 - 4
34 Y 1 1
35 Y1 1
36 Y6 .1 .07 .1 660 690 10300 .0039
37 Y7 0 690 100 680 150 670 300 660 310 660
38 Y7 950 670 1120 680 1200 690
39 K 1 5 1
40 K1 ROUTING THRU REACH 4 - 5
41 Y 1 1
42 Y1 1
43 Y6 .1 .07 .1 610 640 10600 .0047
44 Y7 0 640 100 630 200 620 700 610 710 610
45 Y7 740 620 770 630 800 640
46 K 6 1
47 K1 INFLOW HYDROGRAPH - UPPER MOUNT HOLLY SUBAREA
48 M 1 1 20.86 44.43 1
49 P 23.6 98 107.5 117 130
50 T 1 .05
1 51 W 3.21 .54
52 X -1.5 -.05 2
53 K 2 7 1
54 K1 COMBINE HYDROGRAPHS AT UPPER MOUNT HOLLY DAM
55 K 1 8 1
56 K1 RESERVOIR ROUTING - THRU UPPER MOUNT HOLLY DAM
57 Y 1 1
58 Y1 1
59 Y4 594 594.5 595 595.5 596 596.7 597 597.5 598 598.5
60 Y4 599 599.5 600 601 603 605 608
61 YE 6 12 704 698 697 697 696 696 696 696

13

62	YS	9864	12647	15697	22490	38463	57217	89705
63	\$A	0	20	72	104			
64	\$E	584.8	594	600	610			
65	\$\$	594						
66	\$D	596.7						
67	\$B	50	1	588	.25	594	700	
68	\$B	50	1	588	.25	594	597.2	
69	\$B	50	1	588	.5	594	597.2	
70	\$B	50	1	588	1	594	597.2	
71	\$B	50	1	588	2	594	597.2	
72	K	1	9					1
73	K1			ROUTING THRU REACH 8 - 9				
74	Y			1	1			
75	Y1	1						
76	Y6	.1	.07	.1	560	590	4300	.0056
77	Y7	0	590	100	580	140	570	160
78	Y7	210	570	250	580	275	590	560
79	K	99						

1 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
ROUTE HYDROGRAPH TO	4
ROUTE HYDROGRAPH TO	5
RUNOFF HYDROGRAPH AT	6
COMBINE 2 HYDROGRAPHS AT	7
ROUTE HYDROGRAPH TO	8
ROUTE HYDROGRAPH TO	9
END OF NETWORK	

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION JULY 1978
LAST MODIFICATION 01 APR 80

RUN DATE* 81/02/26,
TIME* 13.31.50.

UPPER MOUNT HOLLY DAM **** MOUNTAIN CREEK
BOROUGH OF MOUNT HOLLY SPRINGS, CUMBERLAND COUNTY, PA.
NDI # PA-00583 PA DER # 21-1

JOB SPECIFICATION										
NO	NHR	NMIN	IDAY	IHR	IMIN	METRC	IPLT	IPRT	NSTAN	
300	0	15	0	0	0	0	0	-4	0	
			JOPER	NWT	LROPT	TRACE				
			5	0	0	0				

MULTI-PLAN ANALYSES TO BE PERFORMED
NPLAN= 5 NRTIO= 1 LRTIO= 1
RTIOS= .06

***** ***** ***** ***** *****

SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH - LAUREL LAKE SUBAREA

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPRT	INAME	ISTAGE	IAUTO
1	0	0	0	0	0	0	1	0

HYDROGRAPH DATA

IHYDG	IUHG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	23.57	0.00	44.43	0.00	0.000	0	1	0

PRECIP DATA

SPFE	PHS	R6	R12	R24	R48	R72	R96
0.00	23.60	98.00	107.50	117.00	130.00	0.00	0.00

TRSPC COMPUTED BY THE PROGRAM IS .846

LOSS DATA

LROPT	STRKR	BLTKR	RTOL	ERAIN	STRKS	RTICK	STRTL	CNSTL	ALSMX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

TP= 3.74 CP= .54 NTA= 0

RECEDITION DATA

STRTQ= -1.50 QRC5N= -.05 RTDOR= 2.00

UNIT HYDROGRAPH 100 END-OF-PERIOD ORDINATES, LAG= 3.73 HOURS, CP= .54 VOL= .99

37.	139.	285.	460.	655.	866.	1089.	1321.	1550.	1755.
1927.	2065.	2170.	2238.	2266.	2237.	2145.	2029.	1920.	1816.
1718.	1625.	1538.	1455.	1376.	1302.	1232.	1135.	1102.	1043.
987.	933.	893.	835.	790.	748.	707.	669.	633.	599.
567.	536.	507.	480.	454.	429.	406.	384.	363.	344.
325.	308.	291.	275.	261.	247.	233.	221.	209.	197.
187.	177.	167.	158.	150.	142.	134.	127.	120.	113.
107.	101.	96.	91.	86.	81.	77.	73.	69.	65.
62.	58.	55.	52.	49.	47.	44.	42.	40.	37.
35.	33.	32.	30.	28.	27.	25.	24.	23.	21.

END-OF-PERIOD FLOW

MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q	MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q
-------	-------	--------	------	------	------	--------	-------	-------	--------	------	------	------	--------

SUM 25.97 23.48 2.49 1423079.
 (.60.)(596.)(63.)(40297.11)

HYDROGRAPH ROUTING

15

RESERVOIR ROUTING - LAUREL LAKE

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JFRT	I NAME	ISTAGE	IAUTO
2	1	0	0	0	0	1	0	0

ALL PLANS HAVE SAME
ROUTING DATA

QLOSS	CLOSS	Avg	IRES	ISAME	IOPt	IPMP	LSTR
0.0	0.000	0.00	1	1	0	0	0

NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT
1	0	0	0.000	0.000	0.000	160.	-1

STAGE	774.50	775.50	776.50	777.50	778.50	780.00	782.00	784.00	786.00	788.00
-------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------

FLOW	0.00	760.00	2150.00	3950.00	6080.00	10078.00	16590.00	24187.00	32720.00	42090.00
------	------	--------	---------	---------	---------	----------	----------	----------	----------	----------

SURFACE AREA=	0.	25.	30.	36.	40.	46.	52.	59.	67.	73.
---------------	----	-----	-----	-----	-----	-----	-----	-----	-----	-----

CAPACITY=	0.	160.	215.	280.	337.	422.	520.	631.	756.	896.
-----------	----	------	------	------	------	------	------	------	------	------

ELEVATION=	755.	775.	777.	779.	780.	782.	784.	786.	788.	790.
------------	------	------	------	------	------	------	------	------	------	------

CREL	SPWID	COQW	EXPW	ELEV	COQL	CAREA	EXPL
774.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0

DAM DATA

TOPEL	COOD	EXPD	DAMWID
786.0	3.1	1.5	150.

PEAK OUTFLOW IS 2189. AT TIME 43.50 HOURS

***** , ***** , ***** , ***** , *****

HYDROGRAPH ROUTING

16

ROUTING THRU REACH 2 - 3

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JFRT	I NAME	ISTAGE	IAUTO
3	1	0	0	0	0	1	0	0

ALL PLANS HAVE SAME

ROUTING DATA

QLOSS	CLOSS	AVG	IRES	ISAME	IOFT	IPMP	LSTR
0.0	0.000	0.00	1	1	0	0	0
			NSTPS	NSTDL	LAG	AMSKK	TSK
			1	0	0	0.000	0.000
						STORA	ISPRAT
						0.	0

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	700.0	730.0	7800.	.00640

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	730.00	100.00	720.00	200.00	710.00	650.00	700.00	860.00	700.00
1100.00	710.00	1300.00	720.00	1600.00	730.00				

STORAGE	0.00	22.69	85.12	187.27	329.16	510.78	732.13	987.35	1257.44	1540.91
	1837.78	2148.04	2471.69	2808.99	3163.15	3535.16	3925.03	4332.76	4758.35	5201.79
OUTFLOW	0.00	192.38	1122.34	3212.37	6814.52	12242.90	19786.34	31286.85	46026.29	63155.61
	82631.96	104428.53	128530.21	154873.49	183454.83	214433.76	247839.40	283704.36	322063.25	362951.98
STAGE	700.00	701.58	703.16	704.74	706.32	707.89	709.47	711.05	712.63	714.21
	715.79	717.37	718.95	720.53	722.11	723.68	725.26	726.84	728.42	730.00
FLOW	0.00	192.38	1122.34	3212.37	6814.52	12242.90	19786.34	31286.85	46026.29	63155.61
	82631.96	104428.53	128530.21	154873.49	183454.83	214433.76	247839.40	283704.36	322063.25	362951.98

MAXIMUM STAGE IS 703.9

***** ***** ***** ***** *****
HYDROGRAPH ROUTING

17

ROUTING THRU REACH 3 - 4

ISTAQ	ICOMP	IECON	ITAFE	JFLT	JFRT	I NAME	ISTAGE	IAUTO
4	1	0	0	0	0	1	0	0

ALL PLANS HAVE SAME
ROUTING DATA

QLOSS	CLOSS	AVG	IRES	ISAME	IOPT	IPMP	LSTR	
0.0	0.000	0.00	1	1	0	0	0	
	NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT
	1	0	0	0.000	0.000	0.000	0.	0

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	660.0	690.0	10300.	.00390

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	690.00	100.00	680.00	150.00	670.00	300.00	660.00	310.00	660.00
950.00	670.00	1120.00	680.00	1200.00	690.00				

STORAGE	0.00	27.02	100.61	220.77	387.50	600.80	860.67	1157.65	1473.46	1800.24
	2139.99	2492.71	2858.39	3236.92	3626.58	4026.85	4437.73	4859.23	5291.33	5734.04
OUTFLOW	0.00	136.05	786.24	2242.54	4748.53	8521.67	13761.91	21746.29	31962.67	43807.78
	57241.17	72234.86	88769.81	106854.19	126504.35	147660.89	170308.39	194437.22	220041.47	247117.88
STAGE	660.00	661.58	663.16	664.74	666.32	667.89	669.47	671.05	672.63	674.21
	675.79	677.37	678.95	680.53	682.11	683.68	685.26	686.84	688.42	690.00
FLOW	0.00	136.05	786.24	2242.54	4748.53	8521.67	13761.91	21746.29	31962.67	43807.78
	57241.17	72234.86	88769.81	106854.19	126504.35	147660.89	170308.39	194437.22	220041.47	247117.88

MAXIMUM STAGE IS 664.5

***** ***** ***** ***** *****

***** ***** ***** ***** *****

HYDROGRAPH ROUTING

18

ROUTING THRU REACH 4 - 5

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	INAME	ISTAGE	IAUTO
5	1	0	0	0	0	1	0	0

ALL PLANS HAVE SAME
ROUTING DATA

GLOSS	CLOSS	AVG	IRES	ISAME	IOFT	IPMP	LSTR
0.0	0.000	0.00	1	1	0	0	0
NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT
1	0	0	0.000	0.000	0.000	0.	0

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	610.0	640.0	10600.	.00470

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	640.00	100.00	630.00	200.00	620.00	700.00	610.00	710.00	610.00
740.00	620.00	770.00	630.00	800.00	640.00				

STORAGE	0.00	19.92	71.99	156.22	272.60	421.13	601.82	809.27	1025.95	1250.52
	1482.97	1723.32	1971.55	2227.66	2491.67	2763.56	3043.33	3331.00	3626.54	3929.98
OUTFLOW	0.00	108.96	605.95	1703.21	3578.82	6392.01	10289.35	16216.81	23788.14	32549.92
	42467.75	53516.96	65679.78	78943.47	93299.06	108740.48	125263.94	142867.47	161550.54	181313.89
STAGE	610.00	611.58	613.16	614.74	616.32	617.89	619.47	621.05	622.63	624.21
	625.79	627.37	628.95	630.53	632.11	633.68	635.26	636.84	638.42	640.00
FLOW	0.00	108.96	605.95	1703.21	3578.82	6392.01	10289.35	16216.81	23788.14	32549.92
	42467.75	53516.96	65679.78	78943.47	93299.06	108740.48	125263.94	142867.47	161550.54	181313.89

MAXIMUM STAGE IS 614.9

***** ***** ***** ***** *****

SUB-AREA RUNOFF COMPUTATION

19

INFLOW HYDROGRAPH - UPPER MOUNT HOLLY SUBAREA

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	IAME	ISTAGE	IAUTO
6	0	0	0	0	0	1	0	0

HYDROGRAPH DATA										
IHYDG	IUNG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL	
1	1	20.86	0.00	44.43	0.00	0.000	0	1	0	

PRECIP DATA							
SPFE	PMS	R6	R12	R24	R48	R72	R96
0.00	23.60	98.00	107.50	117.00	130.00	0.00	0.00

TRSPC COMPUTED BY THE PROGRAM IS .846

LOSS DATA

LROPT	STRKR	DLTKR	RTIOL	ERAIN	STRKS	RTIOK	STRL	CNSTL	ALSHX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

TP= 3.21 CP= .54 NTA= 0

RECEDITION DATA

STRTO= -1.50 QRCMN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 89 END-OF-PERIOD ORDINATES, LAG= 3.20 HOURS, CP= .54 VOL= 1.00

47.	178.	364.	585.	831.	1094.	1371.	1641.	1876.	2065.
2207.	2300.	2339.	2299.	2183.	2045.	1916.	1796.	1682.	1576.
1477.	1384.	1297.	1215.	1138.	1066.	999.	936.	877.	822.
770.	721.	676.	633.	593.	556.	521.	488.	457.	428.
401.	376.	352.	330.	309.	290.	272.	254.	238.	223.
209.	196.	184.	172.	161.	151.	142.	133.	124.	116.
109.	102.	96.	90.	84.	79.	74.	69.	65.	61.
57.	53.	50.	47.	44.	41.	38.	36.	34.	32.
30.	28.	26.	24.	23.	21.	20.	19.	18.	

END-OF-PERIOD FLOW													
MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q	MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q

SUM	25.97	23.48	2.49	1261989.
(660.)	(596.)	(63.)	(35735.55)	

COMBINE HYDROGRAPHS

COMBINE HYDROGRAPHS AT UPPER MOUNT HOLLY DAM

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	IAME	ISTAGE	IAUTO
7	2	0	0	0	0	1	0	0

HYDROGRAPH ROUTING

RESERVOIR ROUTING - THRU UPPER MOUNT HOLLY DAM

ISTAQ	ICOKP	IECON	ITAPE	JPLT	JPRT	I NAME	ISTAGE	IAUTO
8	1	0	0	0	0	1	0	0

ALL PLANS HAVE SAME
ROUTING DATA

GLOSS	CLOSS	Avg	IRES	ISAME	IOPt	IPMP	LSTR
0.0	0.000	0.00	1	1	0	0	0

NSTPS	NSTDL	LAG	AMSNK	X	TSK	STORA	ISFRAT
1	0	0	0.000	0.000	0.000	61.	-1

STAGE	594.00	594.50	595.00	595.50	596.00	596.70	597.00	597.50	598.00	598.50
	599.00	599.50	600.00	601.00	603.00	605.00	608.00			
FLOW	0.00	42.00	304.00	699.00	1193.00	2018.00	2425.00	3532.00	5222.00	7371.00
	9864.00	12649.00	15697.00	22490.00	38483.00	57217.00	89705.00			

SURFACE AREA= 0. 20. 72. 104.

CAPACITY= 0. 61. 321. 1196.

ELEVATION= 585. 594. 600. 610.

CREL	SFWID	CORW	EXPW	ELEVU	COOL	CAREA	EXPL
594.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

DAM DATA

TOFEL	COQD	EXP0	DAMWID
596.7	0.0	0.0	0.

DAM BREACH DATA

BRWID	Z	ELBM	TFAIL	WSEL	FAILEL
50.	1.00	588.00	.25	594.00	700.00

PEAK OUTFLOW IS 3381. AT TIME 44.75 HOURS

BRWID	Z	ELBM	TFAIL	WSEL	FAILEL
50.	1.00	588.00	.25	594.00	597.20

BEGIN DAM FAILURE AT 43.00 HOURS

PEAK OUTFLOW IS 6635. AT TIME 43.25 HOURS

BRWID	Z	ELBM	TFAIL	WSEL	FAILEL
50.	1.00	588.00	.50	594.00	597.20

BEGIN DAM FAILURE AT 43.00 HOURS

PEAK OUTFLOW IS 5943. AT TIME 43.50 HOURS

DAM BREACH DATA
 BRWID Z ELBM TFAIL WSEL FAILEL
 50. 1.00 588.00 1.00 594.00 597.20

BEGIN DAM FAILURE AT 43.00 HOURS

PEAK OUTFLOW IS 5113. AT TIME 44.00 HOURS

DAM BREACH DATA
 BRWID Z ELBM TFAIL WSEL FAILEL
 50. 1.00 588.00 2.00 594.00 597.20

BEGIN DAM FAILURE AT 43.00 HOURS

PEAK OUTFLOW IS 4379. AT TIME 45.00 HOURS

HYDROGRAPH ROUTING

ROUTING THRU REACH 8 - 9

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPRT	INAME	ISTAGE	IAUTO
9	1	0	0	0	0	1	0	0

ALL PLANS HAVE SAME
ROUTING DATA

QLOSS	CLOSS	AVG	IRES	ISAME	IDFT	IPMP	LSTR
0.0	0.000	0.00	1	1	0	0	0
NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT
1	0	0	0.000	0.000	0.000	0.	0

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	560.0	590.0	4300.	.00560

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	590.00	100.00	580.00	140.00	570.00	160.00	560.00	190.00	560.00
210.00	570.00	250.00	580.00	275.00	590.00				

STORAGE	0.00	5.17	11.32	18.46	26.58	35.68	45.76	57.07	70.28	85.45
	102.60	121.71	142.79	165.91	191.85	220.87	252.97	283.14	326.39	367.71
OUTFLOW	0.00	104.99	345.33	706.46	1190.17	1801.85	2548.20	3559.53	4806.53	6249.73
	7903.93	9782.42	11897.63	14240.12	16932.79	19742.83	22985.20	26577.83	30539.33	34888.18
STAGE	560.00	561.58	563.16	564.74	566.32	567.89	569.47	571.05	572.63	574.21
	575.79	577.37	578.95	580.53	582.11	583.68	585.26	586.84	588.42	590.00
FLOW	0.00	104.99	345.33	706.46	1190.17	1801.85	2548.20	3559.53	4806.53	6249.73
	7903.93	9782.42	11897.63	14240.12	16932.79	19742.83	22985.20	26577.83	30539.33	34888.18

MAXIMUM STAGE IS 570.8

MAXIMUM STAGE IS 573.4

MAXIMUM STAGE IS 572.9

MAXIMUM STAGE IS 572.6

MAXIMUM STAGE IS 572.0

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	RATIOS APPLIED TO FLOWS		
			PLAN	RATIO	1 .06
HYDROGRAPH AT	1 23.57		1 2199.		
	(61.05)		(62.28)(
			2 2199.		
			(62.28)(
			3 2199.		
			(62.28)(
			4 2199.		
			(62.28)(
			5 2199.		
			(62.28)(
ROUTED TO	2 23.57		1 2189.		
	(61.05)		(62.00)(
			2 2189.		
			(62.00)(
			3 2189.		
			(62.00)(
			4 2189.		
			(62.00)(
			5 2189.		
			(62.00)(
ROUTED TO	3 23.57		1 2124.		
	(61.05)		(60.14)(
			2 2124.		
			(60.14)(
			3 2124.		
			(60.14)(
			4 2124.		
			(60.14)(
			5 2124.		
			(60.14)(
ROUTED TO	4 23.57		1 1994.		
	(61.05)		(56.47)(
			2 1994.		
			(56.47)(
			3 1994.		
			(56.47)(
			4 1994.		
			(56.47)(
			5 1994.		
			(56.47)(

ROUTED TO	5 23.57 (61.05)	1 1919. (54.35)(2 1919. (54.35)(3 1919. (54.35)(4 1919. (54.35)(5 1919. (54.35)(
HYDROGRAPH AT	6 20.86 (54.03)	1 2158. (61.11)(2 2158. (61.11)(3 2158. (61.11)(4 2158. (61.11)(5 2158. (61.11)(
2 COMBINED	7 44.43 (115.07)	1 3388. (95.94)(2 3388. (95.94)(3 3388. (95.94)(4 3388. (95.94)(5 3388. (95.94)(
ROUTED TO	8 44.43 (115.07)	1 3381. (95.73)(2 6635. (187.89)(3 5943. (168.27)(4 5113. (144.77)(5 4379. (124.00)(
ROUTED TO	9 44.43 (115.07)	1 3379. (95.68)(2 5477. (155.09)(3 5041. (142.74)(4 4750. (134.51)(5 4330. (122.61)(

SUMMARY OF DAM SAFETY ANALYSIS
CAVE CREEK DAM

25

PLAN 1

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	774.50	774.50	786.00
STORAGE	160.	160.	631.
OUTFLOW	0.	0.	32720.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	776.52	0.00	216.	2189.	0.00	43.50	0.00

PLAN 2

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	774.50	774.50	786.00
STORAGE	160.	160.	631.
OUTFLOW	0.	0.	32720.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	776.52	0.00	216.	2189.	0.00	43.50	0.00

PLAN 3

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	774.50	774.50	786.00
STORAGE	160.	160.	631.
OUTFLOW	0.	0.	32720.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	776.52	0.00	216.	2189.	0.00	43.50	0.00

PLAN 4

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	774.50	774.50	786.00
STORAGE	160.	160.	631.
OUTFLOW	0.	0.	32720.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	776.52	0.00	216.	2189.	0.00	43.50	0.00

PLAN 5

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
STORAGE	774.50	774.50	786.00
OUTFLOW	160.	160.	631.
	0.	0.	32720.

26

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	776.52	0.00	216.	2189.	0.00	43.50	0.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	2124.	703.9	44.00

PLAN 2 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	2124.	703.9	44.00

PLAN 3 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	2124.	703.9	44.00

PLAN 4 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	2124.	703.9	44.00

PLAN 5 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	2124.	703.9	44.00

PLAN 1 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1974.	664.5	45.25

PLAN 2 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1994.	664.5	45.25

PLAN 3 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1994.	664.5	45.25

PLAN 4 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1994.	664.5	45.25

PLAN 5 STATION .. 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1994.	664.5	45.25

PLAN 1 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1919.	614.9	46.00

PLAN 2 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1919.	614.9	46.00

PLAN 3 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1919.	614.9	46.00

PLAN 4 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	1919.	614.9	46.00

PLAN 5 STATION 5

	RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
--	-------	------------------	------------------	------------

1	.06	1919.	614.9	46.00
---	-----	-------	-------	-------

SUMMARY OF DAM SAFETY ANALYSIS

DRAFTED 10/10/2011 BY J. BROWN

PLAN 1

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
594.00	594.00	596.70	
61.	61.	140.	
0.	0.	2018.	

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	597.43	.73	171.	3381.	7.75	44.75	0.00

PLAN 2

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
594.00	594.00	596.70	
61.	61.	140.	
0.	0.	2018.	

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	597.27	.57	164.	6635.	1.76	43.25	43.00

PLAN 3

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
594.00	594.00	596.70	
61.	61.	140.	
0.	0.	2018.	

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	597.27	.57	164.	5943.	1.94	43.50	43.00

PLAN 4

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
594.00	594.00	596.70	
61.	61.	140.	
0.	0.	2018.	

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	597.29	.59	165.	5113.	2.29	44.00	43.00

PLAN 5

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
STORAGE	594.00	594.00	596.70
OUTFLOW	61.	61.	140.
	0.	0.	2018.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.06	597.31	.61	166.	4379.	2.96	45.00	43.00

PLAN 1 STATION 9

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	3379.	570.8	45.00

PLAN 2 STATION 9

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	5477.	573.4	43.50

PLAN 3 STATION 9

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	5041.	572.9	43.75

PLAN 4 STATION 9

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	4750.	572.6	44.00

PLAN 5 STATION 9

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.06	4330.	572.0	45.00

EOI ENCOUNTERED.
N>

APPENDIX E

PLATES

APPENDIX E

PROPOSED ALTERATIONS
FOR DAM
AT RINGS PENNA.
C A BRYAN CO
CARLISLE PENNA

PAIR SIDED WATER SURFACE
TYPICAL SECTION SHOWING PROPOSED METHOD OF TREATMENT OF PRESENT DAM SECTION
PRESENT WATER SURFACE THICKNESS

TYPICAL SECTION SHOWING PROPOSED METHOD OF TREATMENT OF PRESENT DAM SECTION
SCALE 1:1000

PA-00583
PLATE III

1139561

3" Lined Gunite

Gunite Construction Co.
26 Lexington St New York N.Y.
July 5, 1962

Please refer to Game
THE EATON-LIKEMAN CO.
Mount Holly Springs, Pa.

APPENDIX F
GEOLOGIC REPORT

APPENDIX F

AD-A101 272

BERGER ASSOCIATES INC. HARRISBURG PA
NATIONAL DAM INSPECTION PROGRAM. UPPER MT. HOLLY DAM (NDI NUMBER--ETC(U))
JUN 81 M JONGSMA

FLD 1

DACW31-81-C-0013

NL

UNCLASSIFIED

2 112
44-172

END
DATE
11-1981
7-4-81
ORIC

GEOLOGIC REPORT

BEDROCK - DAM AND RESERVOIR

This area overlies the Tomstown Dolomite which consists of a medium to dark gray, dense, finely crystalline dolomite and weathers to a buff and olive-gray color.

STRUCTURE

There exists a NE striking fault on the NW border of the reservoir, with the upthrown side to the north and the downthrown side to the south. Joints, which are moderately abundant and well developed, have a blocky pattern and dip between 45-85°. The Mountain Creek Syncline occurs along the SE border of the reservoir.

OVERBURDEN

The overburden is most probably a clayey residual soil resulting from the carbonate leaching of the parent bedrock.

AQUIFER CHARACTERISTICS

The Tomstown Dolomite has a low magnitude secondary porosity and little subsurface drainage, therefore seepage should be minimal.

DISCUSSION

According to available construction plans, the dam rests on bedrock. If such is the case, the Tomstown Dolomite provides a good quality foundation for heavy structures. However, as with any carbonate rock, sinkholes and bedrock pinnacles should be thoroughly investigated.

SOURCES OF INFORMATION

1. Freedman, J., 1967. Geology or a Portion of the Mt. Holly Springs Quadrangle, Adams and Cumberland Counties, Pennsylvania: Pennsylvania Geological Survey PR 169.
2. McGlade, W.G., et. al., 1972. Engineering Characteristics of the Rocks of Pennsylvania: Pennsylvania Geological Survey EG 1.

GEOLOGIC MAP - UPPER MT. HOLLY DAM

