

Weil conjectures

Weil conjectures

$$y^2 = x^3 \times hay \stackrel{\text{tp}}{\text{p}} \quad \text{Phymap} \quad \text{Mhymap} \quad \text{Mhyma$$

1 notar 'koruna e mogrephen pymn b

Inp.

ymemeckal.

 $x^{17} - 1 = 0$

2) Layccoba cymna
$$G(X)$$
, $y \in X$: $F_p \to \mathbb{L}^n$ - romonoponymonopon

(3) Kak to empoume
$$\frac{1}{2}$$
?

 $\frac{1}{2}$ $\frac{1$

Thump
$$(3)$$
 (3)

(a)
$$G^{2}(X) = G^{2-1}(X) = G$$

Доказа тельство кварратичного закона взаимности (Серр, стр. 17-18)

(1) Определим сумму Раусса $G(X) = \sum_{q=1}^{q-1} {a \choose q} \chi^a$ над F_p , гре $\chi \in F_p$ - первообразиот корень степени q из единици. Тогра $G(\chi)^2 = (-1)^{(q-1)/2} q \in F_p$ (2) $G(\chi)^{p-1} = {p \choose q}$ Троверенота премом выписление и (см. Серр, g-ва

1) Bbegenne & reopuso ruces

2 grebpara 20232.

3 p-gunckne yerone rucka \mathbb{Z}_p Oxpegereme $\mathbb{Z}_p = \lim_{N \to \infty} \mathbb{Z}_p \mathbb{Z}_p$