1

Circuits and Transforms

Gautam Singh

CONTENTS

1 Definitions	J	L
---------------	---	---

2 Laplace Transform 1

Abstract—This manual provides a simple introduction to Transforms

1 Definitions

1. The unit step function is

$$u(t) = \begin{cases} 1 & t > 0 \\ \frac{1}{2} & t = 0 \\ 0 & t < 0 \end{cases}$$
 (1.1)

2. The Laplace transform of g(t) is defined as

$$G(s) = \int_{-\infty}^{\infty} g(t)e^{-st} dt$$
 (1.2)

2 Laplace Transform

1. In the circuit, the switch S is connected to position P for a long time so that the charge on the capacitor becomes $q_1 \mu C$. Then S is switched to position Q. After a long time, the charge on the capacitor is $q_2 \mu C$.

Fig. 2.1

2. Find q_1 .

Solution: The equivalent circuit at steady-state when the switch is at P is shown alongside. Assuming the circuit to be grounded at G and

the relative potential at point X to be V, we use KCL at X and get

$$\frac{V-1}{1} + \frac{V-2}{2} = 0 \tag{2.1}$$

$$\implies V = \frac{4}{3} V \tag{2.2}$$

Hence,

$$q_1 = CV = \frac{4}{3} \,\mu\text{C}$$
 (2.3)

Fig. 2.2

3. Show that the Laplace transform of u(t) is $\frac{1}{s}$ and find the ROC.

Solution: We have,

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \int_0^\infty u(t)e^{-st}dt$$
 (2.4)

$$= \int_0^0 \frac{1}{2} e^{-st} dt + \int_0^\infty e^{-st} dt$$
 (2.5)

$$=\frac{1}{s}, \quad \Re(s) > 0 \tag{2.6}$$

4. Show that

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a}, \quad a > 0$$
 (2.7)

and find the ROC.

Solution: Note that by substituting s := s + a in (2.6), and considering $a \in \mathbb{R}$,

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \int_0^\infty u(t)e^{-(s+a)t}dt \qquad (2.8)$$
$$= \frac{1}{s+a}, \quad \Re(s) > -a \qquad (2.9)$$

5. Now consider the following resistive circuit transformed from Fig. 2.1 where

Fig. 2.3

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} V_1(s)$$
 (2.10)

$$2u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} V_2(s)$$
 (2.11)

Find the voltage across the capacitor $V_{C_0}(s)$. **Solution:** We see that

$$V_1(s) = \frac{1}{s}V_2(s) = \frac{2}{s}$$
 (2.12)

Now, labelling points G and X as in Fig. 2.2, we use KCL at X.

$$\frac{V - \frac{1}{s}}{R_1} + \frac{V - \frac{2}{s}}{R_2} + sC_0V = 0 \tag{2.13}$$

$$V\left(\frac{1}{R_1} + \frac{1}{R_2} + sC_0\right) = \frac{1}{s}\left(\frac{1}{R_1} + \frac{2}{R_2}\right)$$
 (2.14)

$$V(s) = \frac{\frac{1}{R_1} + \frac{2}{R_2}}{s\left(\frac{1}{R_1} + \frac{1}{R_2} + sC_0\right)}$$
(2.15)

$$= \frac{\frac{1}{R_1} + \frac{2}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2}} \left(\frac{1}{s} - \frac{1}{\frac{1}{C_0} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + s} \right)$$
(2.16)

6. Find $v_{C_0}(t)$. Plot using python.

Solution: Taking the inverse Laplace transform

in (2.16),

$$V(s) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{2R_1 + R_2}{R_1 + R_2} u(t) \left(1 - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}} \right)$$

$$(2.17)$$

$$= \frac{4}{3} \left(1 - e^{-\left(1.5 \times 10^6\right)t} \right) u(t) \tag{2.18}$$

The python code codes/2_6.py plots the graph below.

Fig. 2.4: $v_{C_0}(t)$ before the switch is flipped

Verify your result using ngspice.
 Solution: The ngspice script codes/2_7.cir simulates the given circuit and the generated plot is as below.

Fig. 2.5

3 Initial Conditions

1. Find q_2 in Fig. 2.1.

Solution: The equivalent circuit at steady state when the switch is at Q is shown below.

Since capacitor behaves as an open circuit, we use KCL at X.

$$\frac{V-0}{1} + \frac{V-2}{2} = 0 \implies V = \frac{2}{3} V$$
 (3.1)

and hence, $q_2 = \frac{2}{3} \mu C$.

2. Draw the equivalent s-domain resistive circuit w hen S is switched to position Q. Use variables R_1, R_2, C_0 for the passive elements.

3. $V_{C_0}(s) = ?$

Solution: Using KCL at node X in Fig. 3.2

$$\frac{V-0}{R_1} + \frac{V-\frac{2}{s}}{R_2} + sC_0\left(V - \frac{4}{3s}\right) = 0 \qquad (3.2)$$

$$\implies V_{C_0}(s) = \frac{\frac{2}{sR_2} + \frac{4C_0}{3}}{\frac{1}{2} + \frac{2}{s} + sC_0} \qquad (3.3)$$

4. $v_{C_0}(t) = ?$ Plot using python.

Solution: From (3.3),

$$V_{C_0}(s) = \frac{4}{3} \left(\frac{1}{\frac{1}{C_0} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + s} \right) + \frac{2}{R_2 \left(\frac{1}{R_1} + \frac{1}{R_2} \right)} \left(\frac{1}{s} - \frac{1}{\frac{1}{C_0} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + s} \right)$$
(3.4)

Taking an inverse Laplace Transform,

$$v_{C_0}(t) = \frac{4}{3}e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}}u(t) + \frac{2}{R_2\left(\frac{1}{R_1} + \frac{1}{R_2}\right)}\left(1 - e^{-\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{t}{C_0}}\right)u(t)$$
 (3.5)

Substituting values gives

$$v_{C_0}(t) = \frac{2}{3} \left(1 + e^{-\left(1.5 \times 10^6\right)t} \right) u(t) \tag{3.6}$$

The Python code codes/3_4.py plots the graph below.

Fig. 3.3: $v_{C_0}(t)$ after the switch is flipped

- Verify your result using ngspice.
 Solution: The ngspice script codes/3_5.cir simulates the given circuit and the generated
- 6. Find $v_{C_0}(0-)$, $v_{C_0}(0+)$ and $v_{C_0}(\infty)$. **Solution:** From the initial conditions,

plot is as below.

$$v_{C_0}(0-) = \frac{q_1}{C} = \frac{4}{3} V$$
 (3.7)

output after switching

Fig. 3.4

Using (3.6),

$$v_{C_0}(0+) = \lim_{t \to 0+} v_{C_0}(t) = \frac{4}{3} V$$
 (3.8)
$$v_{C_0}(\infty) = \lim_{t \to \infty} v_{C_0}(t) = \frac{2}{3} V$$
 (3.9)

$$v_{C_0}(\infty) = \lim_{t \to \infty} v_{C_0}(t) = \frac{2}{3} V$$
 (3.9)