

Timer Peripherals

Ravi Suppiah Lecturer, NUS SoC

KL25 Timer Peripherals

- PIT Periodic Interrupt Timer
 - Can periodically generate interrupts or trigger DMA (direct memory access) transfers
- TPM Timer/PWM Module
 - Connected to I/O pins, has input capture and output compare support
 - Can generate PWM signals
 - Can generate interrupts and DMA requests
- LPTMR Low-Power Timer
 - Can operate as timer or counter in all power modes (including low-leakage modes)
 - Can wake up system with interrupt
 - Can trigger hardware
- Real-Time Clock
 - Powered by external 32.768 kHz crystal
 - Tracks elapsed time (seconds) in 32-bit register
 - Can set alarm
 - Can generate 1Hz output signal and/or interrupt
 - Can wake up system with interrupt
- SYSTICK
 - Part of CPU core's peripherals
 - Can generate periodic interrupt

Timer/Counter Peripheral Introduction

- Common peripheral for microcontrollers
- Based on presettable binary counter, enhanced with configurability
 - Count value can be read and written by MCU
 - Count direction can often be set to up or down
 - Counter's clock source can be selected
 - Counter mode: count pulses which indicate events (e.g. odometer pulses)
 - Timer mode: clock source is periodic, so counter value is proportional to elapsed time (e.g. stopwatch)
 - Counter's overflow/underflow action can be selected
 - Generate interrupt
 - Reload counter with special value and continue counting
 - Toggle hardware output signal
 - Stop!

PERIODIC INTERRUPT TIMER

Periodic Interrupt Timer

- Generates periodic interrupts using a 32-bit counter
- Load start value (32-bit) from LDVAL
- Counter decrements with each clock pulse
 - Fixed clock source for PIT Bus Clock from Multipurpose Clock Generator - e.g. 24 MHz
- When timer value (CVAL) reaches zero
 - Generates interrupt
 - Reloads timer with start value

TIMER/PWM MODULE (TPM)

TPM - Timer/PWM Module

Core: Module counter

- Two clock options external or internal
- Prescaler to divide clock by I to 128
- I6-bit counter
 - Can count up or up/down
 - Can reload with set load value or wrap around (to FFFF or 0000)

Six channels

- 3 modes
 - Capture Mode: capture timer's value when input signal changes
 - Output Compare: Change output signal when timer reaches certain value
 - PWM: Generate pulse-width-modulated signal. Width of pulse is proportional to specified value.
- Each channel can generate interrupt, DMA request, hardware trigger on overflow
- One I/O pin per channel TPM_CHn

Timer Configuration

- Clock source
 - CMOD: selects internal or external clock
- Prescaler
 - PS: divide selected clock by 1, 2, 4, 8, 16, 32,64, 128
- Count Mode and Modulo
 - CPWMS: count up (0) or up and down (1)
 - MOD: 16-bit value up to which the counter counts
 - Up counting: 0, 1, 2, ... MOD, 0/Overflow, 1, 2, ... MOD
 - Up/down counting: 0, 1, 2, ... MOD, MOD-1/Interrupt, MOD-2, ... 2, 1, 0, 1, 2, ...
- Timer overflows when counter goes I beyond MOD value
- DMA: Enable DMA transfer on overflow
- TOF: Flag indicating timer has overflowed

Basic Counter Mode

- Count external events applied on input pin
 - Set CMOD = 10 to select external input
 - Set PS = 000 (unless division needed
- Timer overflow flag TOF set to 1 when counter goes by 1 beyond MOD value
- Can generate interrupt if TOIE is set

2-0 PS	Prescaler Factor
000	1
001	2
010	4
011	8
100	16
101	32
110	64
111	128

Count Mode and Modulo - Counting Up

Figure 31-79. Example of TPM Up Counting

- Counter increments with each clock tick
- When counter reaches MOD, at the end of the tick,
 - set TOF bit (timer overflow)
 - reset counter value to 0
- Frequency of overflows is timer clock frequency / (I + MOD)

Count Mode and Modulo - Counting Up and Down

Figure 31-80. Example of Up-Down Counting

- Two modes
 - Up-counting
 - Counter increments with each clock tick
 - When counter reaches MOD, set TOF bit (timer overflow) at the end of the tick, set to down-count mode
 - Down-counting
 - Counter decrements with each clock tick
 - When counter reaches 0, set to up-count mode
- Frequency of overflows is timer clock frequency / (2 * MOD)

TPM Configuration (TPMx_CONF)

- TRGSEL input trigger select
- CROT counter reload on trigger
- CSOO counter stop on overflow
- CSOT counter start on trigger
- GTBEEN external global time base enable (rather than LPTPM counter)
- DBGMODE let LPTPM counter increment during debug mode
- DOZEEN pause LPTPM when in doze mode

TPM Status (TPMx_STATUS)

 8	7	6	5	4	3	2	1	0
T0F	O)	39HO	CH4F	JEH0	CH2F	CH1F	J0H0
w1c			w1c	w1c	w1c	w1c	w1c	w1c
	_							

- TOF Counter has overflowed
- CHxF Channel event has occurred (event depends on mode)

Major Channel Modes

- Input Capture Mode
 - Capture timer's value when input signal changes
 - Rising edge, falling edge, both
 - How long after I started the timer did the input change?
 - Measure time delay
- Output Compare Mode
 - Modify output signal when timer reaches specified value
 - Set, clear, pulse, toggle (invert)
 - Make a pulse of specified width
 - Make a pulse after specified delay
- Pulse Width Modulation
 - Make a series of pulses of specified width and frequency

Channel Configuration and Value

Configuration: TPMx_CnSC

- CHF set when event occurs
- CHIE enable channel to generate an interrupt
- MSB:MSA mode select
- ELSB:ELSA edge or level select
- DMA enable DMA transfers
- Value:TPMx_CnV
 - I 6-bit value for output compare or input capture

Pulse-Width Modulation

- PWM signal characteristics
 - Period I/(modulation frequency)
 - On-time amount of time that each pulse is on (asserted)
 - Duty-cycle on-time/period
 - Adjust on-time (hence duty cycle) to represent the analog value

TPM Channel for PWM Mode

- Edge-aligned leading edges of signals from all PWM channels are aligned
 - Uses count up mode
 - Period = (MOD + I) cycles
 - Pulse width = (CnV) cycles
- MSnB:MSnA = 10, CPWMS = 0
 - ELSnB:ELSnA = 10 high-true pulses
 - ELSnB:ELSnA = $\times I$ low-true pulses

TPM Channel for PWM Mode

- Center-aligned centers of signals from all PWM channels are aligned
 - Uses count up/down mode
 - Period = 2*MOD cycles.
 - Pulse width = 2*CnV cycles
- MSnB:MSnA = I0, CPWMS = I
 - ELSnB:ELSnA = 10 high-true pulses
 - ELSnB:ELSnA = x1 low-true pulses

Let's Code It!

• We will review this week's Lab so you know what to prepare!

The End!

Now Let's Communicate!

