```
In [1]:
```

```
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
import pandas as pd
```

Aufgabe 1

```
In [2]:
```

```
def func1a(x): return -(x**5)
def func1b(x,y): return (25*(x**2) - 10*x*(y**2) + y**4)
```

```
In [3]:
```

```
n = 10
p = 4
y_interval = np.linspace(-n**p,n**p,100)
x_interval = np.linspace(-n,n,100)
```

Aufgabe 1a

In [4]:

```
plt.plot(x_interval, funcla(x_interval))
```

Out[4]:

[<matplotlib.lines.Line2D at 0x11c509f10>]

Aufgabe 1b

In [5]:

Aufgabe 2a

Die Funktion $f(x) = -x^5$ ist nicht koerziv auf $\mathbb{M} = (-\infty, 1)$. Gegenbeispiel: Die Folge $\{x^k\} = 1 - \frac{1}{k}$ mit $\lim_{k \to \infty} \{x^k\} = 1 \notin \mathbb{M}$ aber $\lim_{k \to \infty} \{f(x^k)\} = -1$

Aufgabe 2b

Die Funktion $f(x) = 25x^2 - 10x_1x_2 + x_2^4$ ist nicht koerziv auf \mathbb{R}^2 .

Gegenbeispiel: Die Folge $\{x^k\}=\{(\frac{k^2}{5},k)\}\implies f(x^k)=0\ \forall k\in\mathbb{N}\ \text{obwohl } \lim_{k\to\infty}\parallel x^k\parallel=\infty.$

Aufgabe 2c

Das Optimierungsproblem

$$\mathbb{P}: \min_{x \in \mathbb{R}} 25x^2 - 10x_1x_2 + x_2^4$$

ist lösbar. Wir haben:

$$f(x) = 25x_1^2 - 10x_1x_2^2 + x_2^4 = (5x_1 - x_2^2)^2 \ge 0$$

$$\bar{x} = 0 \in \mathbb{R}^2 \implies f(\bar{x}) = 0$$

$$\implies$$
 inf $f(x) = 0$

 $\implies \bar{x}$ is ein globale Minimalpunkt.

Aufgabe 2d

wir habe ein Gegenbeispiel:

$$f(x) = x^2 \text{ und } \psi(y) = e^{-y} \implies (\psi \circ f)(x) = -e^{-x^2} < 0 \ \forall \ x \in \mathbb{R}$$

und $\forall \{x^k\} \subset \mathbb{R} \implies (\psi \circ f)(x)$ nicht koerziv weil

$$\{x^k\} = \{k\} \text{ und } \lim_{k \to \infty} \|x^k\| = \infty \text{ aber}$$

$$\lim_{k\to\infty} (\psi \circ f)(x^k) = 0$$

In [112]:

```
def func_f(x): return x**2
def func_psi(y): return -np.exp(-(y))
```

Plot $f(x) = x^2$ is koerziv

In [109]:

plt.plot(x_interval, func_f(x_interval))

Out[109]:

[<matplotlib.lines.Line2D at 0x117967b20>]

Plot $\psi(e^{-y})$ streng monoton wachsende Funktion

```
In [110]:
```

```
plt.plot(x_interval, func_psi(x_interval))
```

Out[110]:

[<matplotlib.lines.Line2D at 0x117a9bd30>]

Plot $(\psi \circ f)(x)$ nicht koerziv

In [111]:

```
plt.plot(x_interval, func_psi(func_f(x_interval)))
```

Out[111]:

[<matplotlib.lines.Line2D at 0x117e08ac0>]

Aufgabe 3

Im ersten Schritt wird der Datensatz cities in Python geladen.

a) Das Problem ist konvex. Wie bewiesen in Aufgabe 4.5 ist die Norm-Funktion $\|\cdot\|$ konvex. Außerdem ist laut Aufgabe 4.1 die Summe von konvexen Funktionen multipliziert mit positiven Faktoren konve. Da $\lambda_i > 0$ ist somit $\lambda \|\cdot\|$ eine konvexe Funktion und die Summe von konvexen Funktionen $\sum_i (\lambda \|\cdot\|)_i$ ist auch konvex.

In [341]:

```
df = pd.read_excel('cities.xlsx')
df
```

Out[341]:

	Stadt	p1	p2	lambda
0	Berlin	13.388860	52.517037	4.877305e-02
1	Hamburg	10.000654	53.550341	4.696683e-02
2	München	11.575382	48.137108	4.520576e-02
3	Köln	6.959974	50.938361	4.348927e-02
4	Frankfurt am Main	8.682092	50.110644	4.181680e-02
75	Salzgitter	10.359315	52.150372	1.190748e-05
76	Moers	6.628430	51.451283	6.096632e-06
77	Siegen	8.022723	50.874980	2.572016e-06
78	Hildesheim	9.951305	52.152164	7.620790e-07
79	Gütersloh	8.378208	51.906400	9.525987e-08

80 rows × 4 columns

b) Plotten Sie die Koordinaten der Städte (x-Achse Längengrad, y-Achse Breitengrad)

In [378]:

```
plt.figure(figsize=(10,10))
plt.scatter(df['p1'], df['p2'], c='crimson')
plt.xlabel('p1', fontsize=15)
plt.ylabel('p2', fontsize=15)
plt.axis('equal')
plt.show()
```


c)

Optimierungsmodell Formen Sie das Problem \mathbb{P}^l_λ für $l=\infty$ in ein lineares Problem um und begründen Sie Ihre Umformulierungen.

$$\mathbb{P}: \min_{x \in \mathbb{R}^2} F(x) = \begin{bmatrix} \|z - p^1\|_{\infty} \\ \|z - p^2\|_{\infty} \\ \vdots \\ \|z - p^{80}\|_{\infty} \end{bmatrix} \text{ also } M \in \mathbb{R}^2 \text{ und}$$

$$f(z) = max_{i=1,...,80} ||z - p^i||_{\infty}.$$

Als Epigraphumformulierung erhält man das äquivalente Problem

$$\mathbb{P}_{epi}: \min_{z,\alpha} \text{ s.t } f(z) \leq \alpha,$$

wobei die Nebenbedingung von \mathbb{P}_{epi} ausgeschrieben

 $\max_{i=1,\dots,80} \|z-p^i\|_{\infty} \leq \alpha$ lautet. Da das Maximum von 80 Zahlen genau dann unter der Schranke α liegt, wenn alle 80 Zahlen unter α liegen, lässt sich diese Restriktion äquivalent zu

$$||z-p^i||_{\infty} \leq \alpha, i=1,\ldots,m,$$

umformulieren und wir erhalten die Äquivalenz von ${\mathbb P}$ zu

$$\mathbb{P}_{epi}: \min_{(z,\alpha)} \alpha \ s.t \ \|z-p^i\|_{\infty} \leq \alpha, i=1,\ldots,m.$$

Fassr man α als Radius auf, so versucht man also die Kugel mit Mittelpunkt \tilde{z} und minimalem Radius $\tilde{\alpha}$ zu finden, die alle Punkte p^1, \ldots, p^{80} enthält.

d) Optimierungsmodell

Hinweis: Für die Installation und den Umgang mit **gurobipy** oder **scipy** schauen Sie sich am besten die Einführungen im Ilias an.

Lösen Sie $P_{\boldsymbol{\lambda}}^l$ mit I=80 und $l=\infty$.

Geben Sie einen optimalen Standort x^* an und plotten Sie diesen in ihrem Plot aus Teil b).

In [352]:

```
from scipy.optimize import minimize
from numpy import linalg as LA

def min_func(x):
    ps = df[['p1','p2']].values
    lambda_vec = df['lambda'].values
    norm_vec = LA.norm(x - ps, np.inf, axis=1)
    return np.sum(norm_vec*lambda_vec)

x0 = [0,0]
sol = minimize(min_func, x0, method='Nelder-Mead', tol=1e-6)
```

In [376]:

