Onde elettromagnetiche

$$\mathbf{E}(t) \rightarrow \mathbf{B}(t) \rightarrow \mathbf{E}(t) \rightarrow \dots$$

E e **B** sono strettamente correlati, sono due aspetti di un'unica entità: il campo elettromagnetico

Le variazioni di **E** e **B** si propagano non istantaneamente, ma con **velocità finita**

Esempio: Una carica q in moto provoca una variazione «ritardata» di \mathbf{E} (e quindi di \mathbf{B})

Per $t < t^*$: $\mathbf{v} = 0$

$$\Rightarrow \mathbf{E} = \mathbf{E}_{os}$$

Per $t > t^*$: $\mathbf{v} \neq 0$

$$\Rightarrow$$
 E = **E**_{es} fino a $t = t^* + \Delta t$, dove: $\Delta t = d/c$

Per $t > t^* + \Delta t$, **E** varia.

La perturbazione di **E** si propaga con velocità finita pari a *c*.

La perturbazione di **E** provoca una perturbazione di **B**, che si propaga anch'essa con le stesse caratteristiche.

Onda = Perturbazione di un campo, che si propaga con velocità finita

Esempi:

- onde e.m. (**E** e **B**)
- onde acustiche in un gas (pressione)
- onde superficiali su un liquido (es. mare)
- onde elastiche nei solidi (posizione, trasversali e longitudinali)

Nello studio dell'induzione, «quasi stazionario» vuol dire che deve essere trascurabile la velocità di propagazione del campo sulle dimensioni del circuito

Onde in assenza di sorgenti

L'esistenza delle onde e.m. deriva dalle equazioni di Maxwell

Esiste una condizione per cui le equazioni per **E** ed **H** sono completamente simmetriche: supponiamo di essere nel vuoto (o in un mezzo lineare) e in assenza di sorgenti

$$\rho = 0$$
 $\mathbf{J} = 0$ $(\mathbf{D} = \varepsilon_0 \mathbf{E} \quad \mathbf{B} = \mu_0 \mathbf{H})$

Le equazioni diventano:

$$div \mathbf{E} = 0 \qquad rot \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$$
$$div \mathbf{H} = 0 \qquad rot \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Da cui:

$$rot(rot\mathbf{E}) = -rot\left(\mu_{0}\frac{\partial\mathbf{H}}{\partial t}\right) = -\frac{\partial}{\partial t}(\mu_{0} rot\mathbf{H}) =$$

$$= -\frac{\partial}{\partial t}\left(\varepsilon_{0}\mu_{0}\frac{\partial\mathbf{E}}{\partial t}\right) = -\varepsilon_{0}\mu_{0}\frac{\partial^{2}\mathbf{E}}{\partial t^{2}}$$

$$rot(rot\mathbf{E}) \equiv grad(div\mathbf{E}) - \nabla^{2}\mathbf{E} = -\nabla^{2}\mathbf{E}$$

Quindi:
$$-\nabla^2 \mathbf{E} = -\varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

3

Ponendo:
$$\varepsilon_0 \mu_0 = \frac{1}{c^2} \implies c = \sqrt{\frac{1}{\varepsilon_0 \mu_0}} = 3 \times 10^8 \,\text{m/s}$$

dove: $c = 3 \times 10^8 \text{ m/s} = \text{velocità della luce nel vuoto}$

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$
 Equazione delle onde

Procedendo in modo analogo per il vettore H, si ottiene:

$$\nabla^2 \mathbf{H} - \frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2} = 0$$

In un mezzo lineare, le equazioni sono formalmente identiche, con *v* al posto di *c*:

$$v^2 = \frac{1}{\varepsilon \mu}$$

In generale:

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = 0$$

Questa equazione è detta **equazione delle onde** perchè descrive il propagarsi di una qualsiasi perturbazione (onda) non solo elettromagnetica

Onde piane

Le **onde piane** sono un caso particolare, che a rigore non esiste, ma sono importanti perché:

- La descrizione analitica è semplice
- Sono approssimazione di molte situazioni pratiche
- Ogni onda può essere descritta come sovrapposizione di onde piane (Analisi di Fourier)

Supponiamo che sia:
$$\phi = \phi(x)$$
 $\Rightarrow \frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial z}$

$$\Rightarrow \frac{\partial^2 \phi}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = 0$$
 Equazione di **D'Alembert**

che ammette soluzioni del tipo:

$$\phi = f\left(t - \frac{x}{c}\right) + g\left(t + \frac{x}{c}\right)$$

come si può verificare per
$$\phi = f\left(t - \frac{x}{c}\right)$$
 (o per $\phi = g\left(t + \frac{x}{c}\right)$)

con la sostituzione: $\xi = t - \frac{x}{c}$ ($\xi = t + \frac{x}{c}$)

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial x} = -\frac{1}{c} \frac{\partial f}{\partial \xi}$$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial z} \frac{\partial \xi}{\partial z} = \frac{\partial f}{\partial z} \frac{\partial \xi}{\partial z}$$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial z} \frac{\partial \xi}{\partial z} = \frac{\partial f}{\partial z}$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} \left(-\frac{1}{c} \frac{\partial f}{\partial z}\right) = \frac{1}{c^2} \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial t} \left(\frac{df}{d\xi}\right) = \frac{\partial^2 f}{\partial \xi^2}$$

cioè la funzione f soddisfa l'equazione:

$$\frac{\partial^2 f}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0$$

Valutiamo f in (t_0, x_0) e $(t_0 + \Delta t, x_0 + \Delta x)$

$$f_{\scriptscriptstyle 0} = f\left(t_{\scriptscriptstyle 0} - \frac{x_{\scriptscriptstyle 0}}{c}\right) \qquad f_{\scriptscriptstyle 1} = f\left(t_{\scriptscriptstyle 0} + \Delta t - \frac{x_{\scriptscriptstyle 0}}{c} - \frac{\Delta x}{c}\right)$$

Se:

$$\Delta x = c\Delta t \implies \frac{\Delta x}{\Delta t} = c$$

La funzione f rimane invariata per un osservatore che si muove con velocità $c \Rightarrow f$ si propaga con velocità c.

La grandezza fisica rappresentata da funzioni con tali proprietà si definisce **onda elettromagnetica**

f si muove nel verso dell'asse ed è un'**onda progressiva**.
g si muove con verso opposta all'asse ed è un'**onda**regressiva.

Le soluzioni delle equazioni di Maxwell sono:

- campi statici
- onde e.m., che si propagano a velocità c

Maxwell ha previsto l'esistenza delle onde e.m.

Hertz (1888) ha verificato l'esistenza delle onde radio

Conferma sperimentale è anche il fatto che la luce, le onde radio, i raggi x, ecc. hanno velocità c

Esempio

Consideriamo una lamina indefinita nel piano yz, percorsa dalla corrente \mathbf{J} // y e costante $\forall t > 0$

J genera **B** uniforme e //z

7

La variazione di B genera E

La variazione di \mathbf{E} ($\varepsilon_{o}\partial\mathbf{E}/\partial t$) si somma a \mathbf{J} per generare \mathbf{B}

 \mathbf{E} e \mathbf{B} si propagano con velocità c in direzione x

- Il concetto di "propagazione" è contenuto nelle equazioni di Maxwell
- La dipendenza di **J** dal tempo ed il valore a regime determinano il valore dei campi **E** e **B**

Se all'istante t = T la corrente va a zero, si generano campi uguali e contrari, che annullano i precedenti

Un impulso di lunghezza cT si propaga con velocità c

Caratteristiche dell'onda sono:

- Direzione di propagazione // x
- E // y
- B // z

Le tre direzioni sono sempre ortogonali una all'altra.

Tutte le onde e.m. hanno le seguenti caratteristiche:

- E, B e la direzione di propagazione k formano una terna destra (onde trasversali)
- -E=cB

Esempio: filo indefinito percorso da corrente

Proprietà delle onde piane

Consideriamo un'onda elettromagnetica descritta dalle due equazioni:

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \nabla^2 \mathbf{B} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$$

Se i campi **E** e **B** sono costanti su tutti i punti di un piano, ad esempio il piano *xy* in un sistema cartesiano, cioè:

$$\frac{\partial \mathbf{E}}{\partial x} = \frac{\partial \mathbf{E}}{\partial y} = \frac{\partial \mathbf{B}}{\partial x} = \frac{\partial \mathbf{B}}{\partial y}$$

I campi dipendono solo dalla coordinata z.

L'onda descritta da due equazioni del tipo:

$$\frac{\partial^2 \mathbf{E}}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \frac{\partial^2 \mathbf{B}}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$$

e che soddisfa alle condizioni sopra indicate è un'onda piana

Da:
$$div \mathbf{E} = \frac{\partial E_{x}}{\partial x} + \frac{\partial E_{y}}{\partial y} + \frac{\partial E_{z}}{\partial z} = 0$$
$$div \mathbf{B} = \frac{\partial B_{x}}{\partial x} + \frac{\partial B_{y}}{\partial y} + \frac{\partial B_{z}}{\partial z} = 0$$

Consegue:

$$\frac{\partial E_z}{\partial z} = \frac{\partial B_z}{\partial z} = 0$$

cioè le componenti E_z e B_z sono costanti rispetto a z

$$(rot \mathbf{E})_z = \frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$$

$$(rot \mathbf{B})_z = \frac{\partial B_x}{\partial y} - \frac{\partial B_y}{\partial x} = \frac{\partial E_z}{\partial t}$$

consegue:

$$\frac{\partial E_z}{\partial t} = \frac{\partial B_z}{\partial t} = 0$$

 E_z e B_z sono costanti rispetto a t

Poichè E_z e B_z sono costanti sia rispetto a z che a t, non contribuiscono all'onda e possiamo assumerle uguali a zero

 \mathbf{E} e \mathbf{B} non variano in direzione z e sono ortogonali alla direzione di propagazione z

⇒ onda trasversale

Consideriamo le altre componenti di rot E e rot B:

$$(\operatorname{rot} \mathbf{E})_{x} = \frac{\partial E_{z}}{\partial y} - \frac{\partial E_{y}}{\partial z} = -\frac{\partial E_{y}}{\partial z} = -\frac{\partial B_{x}}{\partial t}$$

$$(\operatorname{rot} \mathbf{E})_{y} = \frac{\partial E_{x}}{\partial z} - \frac{\partial E_{z}}{\partial x} = \frac{\partial E_{x}}{\partial z} = -\frac{\partial B_{y}}{\partial t}$$

$$(\operatorname{rot} \mathbf{B})_{x} = \frac{\partial B_{z}}{\partial y} - \frac{\partial B_{y}}{\partial z} = -\frac{\partial B_{y}}{\partial z} = \mu_{0} \varepsilon_{0} \frac{\partial E_{x}}{\partial t}$$

$$(\operatorname{rot} \mathbf{B})_{y} = \frac{\partial B_{x}}{\partial z} - \frac{\partial B_{z}}{\partial z} = \frac{\partial B_{x}}{\partial z} = \mu_{0} \varepsilon_{0} \frac{\partial E_{y}}{\partial t}$$

E e B sono sempre presenti contemporaneamente

$$E_{x} = \phi_{x}(t - z/c)$$
 $E_{y} = \phi_{y}(t - z/c)$

$$E_{y} = \phi_{y} (t - z/c)$$

$$B_{x} = \psi_{x} (t - z/c)$$

$$B_{x} = \psi_{x}(t - z/c)$$
 $B_{y} = \psi_{y}(t - z/c)$

Dalle eq. per $(rot E)_x$ e $(rot B)_x$:

$$\frac{\partial E_{y}}{\partial z} = \frac{\partial B_{x}}{\partial t}$$

$$\frac{\partial E_{y}}{\partial z} = \frac{\partial B_{x}}{\partial t} \qquad \frac{\partial B_{y}}{\partial z} = -\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial t}$$

Posto: $\xi = t - z/c$

$$-\frac{1}{c}\frac{\partial \phi_{y}}{\partial \mathcal{E}} = \frac{\partial \psi_{x}}{\partial \mathcal{E}}$$

$$-\frac{1}{c}\frac{\partial \phi_{y}}{\partial \mathcal{E}} = \frac{\partial \psi_{x}}{\partial \mathcal{E}} \qquad -\frac{1}{c}\frac{\partial \psi_{y}}{\partial \mathcal{E}} = -\frac{1}{c^{2}}\frac{\partial \phi_{x}}{\partial \mathcal{E}}$$

risulta

$$\psi_{x} = -\frac{1}{c}\phi_{y} \qquad \psi_{y} = \frac{1}{c}\phi_{x}$$

$$\mathbf{E} \cdot \mathbf{B} = E_{x}B_{x} + E_{y}B_{y} = \phi_{x} \left(-\frac{1}{c}\phi_{y} \right) + \phi_{y} \left(\frac{1}{c}\phi_{x} \right) = 0$$

E e B sono sempre tra di loro ortogonali e alla direzione di propagazione

E, B e k formano una terna ortogonale

Inoltre:

$$\frac{\left|\mathbf{E}\right|^{2}}{\left|\mathbf{B}\right|^{2}} = \frac{\phi_{x}^{2} + \phi_{y}^{2}}{\phi_{x}^{2} + \phi_{y}^{2}} = c^{2}$$

$$|\mathbf{E}| = c |\mathbf{B}|$$

Il modulo di **E** è c volte il modulo di **B**