Lab 2: Wikipedia

Big Data Analysis

Quentin Vaucher, André Neto da Silva, Sylvain Renaud

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences and Arts Western Switzerland

Contents

1	Intr	oduction	2		
2	Attempt #1 : naive ranking				
	2.1	List of language ranked using naive ranking	2		
	2.2	Processing time using naive ranking	2		
3	Atte	empt #2 : ranking using inverted index	2		
	3.1	List of language ranked using inverted index	2		
	3.2	Processing time using inverted index	3		
4	Atte	empt #3: ranking using reduceByKey	3		
	4.1	List of language ranked using reduceByKey	3		
	4.2	Processing time using reduceByKey	4		
5	Com	nparison	4		
6	Full output		4		

1 Introduction

2 Attempt #1: naive ranking

2.1 List of language ranked using naive ranking

Rank	Language	Number of article
1	Java	2017
2	JavaScript	1738
3	C#	850
4	CSS	554
5	C++	555
6	Python	545
7	PHP	452
8	MATLAB	324
9	Perl	300
10	Ruby	287
11	Scala	161
12	Haskell	128
13	Objective-C	112
14	Clojure	60
15	Groovy	55

2.2 Processing time using naive ranking

Processing Part 1: naive ranking took **32125 ms**.

3 Attempt #2: ranking using inverted index

3.1 List of language ranked using inverted index

Rank	Language	Number of article
1	Java	2017

Rank	Language	Number of article
2	JavaScript	1738
3	C#	850
4	CSS	554
5	C++	555
6	Python	545
7	PHP	452
8	MATLAB	324
9	Perl	300
10	Ruby	287
11	Scala	161
12	Haskell	128
13	Objective-C	112
14	Clojure	60
15	Groovy	55

3.2 Processing time using inverted index

Processing Part 2: ranking using inverted index took **5965 ms**.

4 Attempt #3: ranking using reduceByKey

4.1 List of language ranked using reduceByKey

Rank	Language	Number of article
1	Java	2017
2	JavaScript	1738
3	C#	850
4	CSS	554
5	C++	555
6	Python	545
7	PHP	452

Rank	Language	Number of article
8	MATLAB	324
9	Perl	300
10	Ruby	287
11	Scala	161
12	Haskell	128
13	Objective-C	112
14	Clojure	60
15	Groovy	55

4.2 Processing time using reduceByKey

Processing Part 3: ranking using reduceByKey took 2847 ms.

5 Comparison

The final result is the same for all three attempts. Processing time varies.

Attempt	Method	Processing time (ms)
#1	Naive	32125
#2	Inverted index	5965
#3	reduceByKey	2847

Best performer is attempt #3 with reduceByKey option.

6 Full output

```
,161), (Haskell,128), (Objective-C,112), (Clojure,60), (Groovy,55))
4 Processing Part 1: naive ranking took 32125 ms.
5 Processing Part 2: ranking using inverted index took 5965 ms.
6 Processing Part 3: ranking using reduceByKey took 2847 ms.
```