150B/355B Introduction to Machine Learning for Social Science TA Section 3

Haemin Jee and Tongtong Zhang

January 26, 2018

Set up Logistic Regression

- Set up Logistic Regression
- 2 Logistic Regression in R

- Set up Logistic Regression
- 2 Logistic Regression in R
- 3 Model Evaluation

- Set up Logistic Regression
- 2 Logistic Regression in R
- 3 Model Evaluation
- 4 Exit Quiz (if time)

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Question: In this set up, what are possible values of the dependent variable?

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Question: In this set up, what are possible values of the dependent variable?

Answer: 0 or 1!

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Question: In this set up, what are possible values of the dependent variable?

Answer: 0 or 1!

$$Y_i = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$
 where Y_i is the predicted probability of an event / outcome happening.

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Question: In this set up, what are possible values of the dependent variable?

Answer: 0 or 1!

$$Y_i = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$

where Y_i is the predicted probability of an event / outcome happening.

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Question: In this set up, what are possible values of the dependent variable?

Answer: 0 or 1!

$$Y_i = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$
 where Y_i is the predicted probability of an event / outcome happening.

When we run a LPM in R, the fitted values (the \hat{Y}) are predicted probabilities.

$$\bullet$$
 odds(x) = $\frac{x}{1-x}$

- odds(x) = $\frac{x}{1-x}$
- log odds or logit(x) = $\log \frac{x}{1-x}$

- odds(x) = $\frac{x}{1-x}$
- log odds or logit(x) = $\log \frac{x}{1-x}$
- logistic function or inverse logit(x) = $\frac{1}{1+\exp(-x)}$

- odds(x) = $\frac{x}{1-x}$
- log odds or $logit(x) = log \frac{x}{1-x}$
- logistic function or inverse logit(x) = $\frac{1}{1+\exp(-x)}$
- logistic function or inverse logit(x) = $\frac{\exp(x)}{1+\exp(x)}$

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Let's call this p_i where i denotes an individual observation.

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Let's call this p_i where i denotes an individual observation.

$$\log(\frac{\hat{p}_i}{1 - \hat{p}_i}) = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Let's call this p_i where i denotes an individual observation.

$$\log(\frac{\hat{p}_i}{1 - \hat{p}_i}) = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$

Instead of modeling the *probability* of an event as a linear function of predictor variables (as we did in the LPM), we are modeling the logit of p as a linear function of predictor variables.

Goal: Predict a probability of an event or outcome happening, given some predictor variables.

Let's call this p_i where i denotes an individual observation.

$$\log(\frac{\hat{p}_i}{1 - \hat{p}_i}) = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$

Instead of modeling the *probability* of an event as a linear function of predictor variables (as we did in the LPM), we are modeling the logit of p as a linear function of predictor variables.

But what we are really interested in is the p - how do we get there?

Interpreting Logistic Regression

Question: How do we interpret β_1 in a logistic regression?

Interpreting Logistic Regression

Question: How do we interpret β_1 in a logistic regression?

Answer: A one unit increase in the value of X_1 results in a β_1 increase / decrease in the *log odds* of an event happening.

Interpreting Logistic Regression

Question: How do we interpret β_1 in a logistic regression?

Answer: A one unit increase in the value of X_1 results in a β_1 increase / decrease in the *log odds* of an event happening.

But we're usually interested in how a one unit change in X_1 will change the *probability* of something happening! How do we calculate that?

Why use LPM?

Why use LPM?

■ We are modeling probability directly - no need for transformation!

Why use LPM?

- We are modeling probability directly no need for transformation!
- That means easier interpretability

Why use LPM?

- We are modeling probability directly no need for transformation!
- That means easier interpretability
- No real difference in substantive results

Why use LPM?

- We are modeling probability directly no need for transformation!
- That means easier interpretability
- No real difference in substantive results

Why use Logistic Regression?

You will not get unreasonable predicted probabilities

Why use LPM?

- We are modeling probability directly no need for transformation!
- That means easier interpretability
- No real difference in substantive results

Why use Logistic Regression?

- You will not get unreasonable predicted probabilities
- We are making better model assumptions

Logistic regression

R Code!

Remember the big-picture goal of using LPM or Logistic Regression is to *classify* outcomes.

Remember the big-picture goal of using LPM or Logistic Regression is to *classify* outcomes.

Classification Process:

1 Run a model (LPM, Logistic Regression) of your choice

Remember the big-picture goal of using LPM or Logistic Regression is to *classify* outcomes.

- 1 Run a model (LPM, Logistic Regression) of your choice
- 2 Find predicted probabilities

Remember the big-picture goal of using LPM or Logistic Regression is to *classify* outcomes.

- I Run a model (LPM, Logistic Regression) of your choice
- 2 Find predicted probabilities
- Choose a threshold

Remember the big-picture goal of using LPM or Logistic Regression is to *classify* outcomes.

- I Run a model (LPM, Logistic Regression) of your choice
- 2 Find predicted probabilities
- Choose a threshold
- 4 Create binary classifications based on the probabilities and thresholds

Remember the big-picture goal of using LPM or Logistic Regression is to *classify* outcomes.

- I Run a model (LPM, Logistic Regression) of your choice
- 2 Find predicted probabilities
- 3 Choose a threshold
- 4 Create binary classifications based on the probabilities and thresholds
- Evalute your model(s)!

Accuracy: All of our correct guesses divided by all guesses

Accuracy: All of our correct guesses divided by all guesses

$$\label{eq:accuracy} \mathsf{Accuracy} = \frac{\mathsf{True}\;\mathsf{Yes} + \mathsf{True}\;\mathsf{No}}{\mathsf{True}\;\mathsf{Yes} + \mathsf{True}\;\mathsf{No} + \mathsf{False}\;\mathsf{Yes} + \mathsf{False}\;\mathsf{No}}$$

Accuracy: All of our correct guesses divided by all guesses

$$\mathsf{Accuracy} = \frac{\mathsf{True}\ \mathsf{Yes} + \mathsf{True}\ \mathsf{No}}{\mathsf{True}\ \mathsf{Yes} + \mathsf{True}\ \mathsf{No} + \mathsf{False}\ \mathsf{Yes} + \mathsf{False}\ \mathsf{No}}$$

Precision: Among all of our "Yes" guesses, how many were actually true "Yes"?

Accuracy: All of our correct guesses divided by all guesses

$$\mathsf{Accuracy} = \frac{\mathsf{True}\;\mathsf{Yes} + \mathsf{True}\;\mathsf{No}}{\mathsf{True}\;\mathsf{Yes} + \mathsf{True}\;\mathsf{No} + \mathsf{False}\;\mathsf{Yes} + \mathsf{False}\;\mathsf{No}}$$

Precision: Among all of our "Yes" guesses, how many were actually true "Yes"?

$$Precision = \frac{True \; Yes}{True \; Yes + False \; Yes}$$

Accuracy: All of our correct guesses divided by all guesses

$$\mathsf{Accuracy} = \frac{\mathsf{True}\;\mathsf{Yes} + \mathsf{True}\;\mathsf{No}}{\mathsf{True}\;\mathsf{Yes} + \mathsf{True}\;\mathsf{No} + \mathsf{False}\;\mathsf{Yes} + \mathsf{False}\;\mathsf{No}}$$

Precision: Among all of our "Yes" guesses, how many were actually true "Yes"?

$$Precision = \frac{True \ Yes}{True \ Yes + False \ Yes}$$

Recall: Among all the true Yes's, how many were we able to guess correctly?

Accuracy: All of our correct guesses divided by all guesses

$$\mathsf{Accuracy} = \frac{\mathsf{True}\;\mathsf{Yes} + \mathsf{True}\;\mathsf{No}}{\mathsf{True}\;\mathsf{Yes} + \mathsf{True}\;\mathsf{No} + \mathsf{False}\;\mathsf{Yes} + \mathsf{False}\;\mathsf{No}}$$

Precision: Among all of our "Yes" guesses, how many were actually true "Yes"?

$$Precision = \frac{True \ Yes}{True \ Yes + False \ Yes}$$

Recall: Among all the true Yes's, how many were we able to guess correctly?

$$Recall = \frac{True \ Yes}{True \ Yes + False \ No}$$

F Score

F Score

$$\label{eq:FScore} F \; \mathsf{Score} = \frac{2 \times \mathsf{Precision} \times \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

R Code!