Esame di Algebra e Geometria del 5/9/2019

Si risolvano i seguenti esercizi, <u>motivando tutti i passaggi e scrivendo le definizioni</u> che si ritengono opportune:

[.../6] 1. Sia
$$X = \{a, b, c, d\}$$
 e $Y = \{e, f, g\}$.

- Quanti elementi ha l'insieme $\mathcal{P}(\mathcal{P}(X) \times Y)$?
- Si consideri la funzione $g: X \to (X \cup Y)$ definita nel seguente modo:

$$g(a) = e$$
 $g(b) = a$ $g(c) = c$ $g(d) = g$.

La funzione g è iniettiva e/o suriettiva? Perché?

- \bullet Si scriva un esempio di relazione d'equivalenza su X, e le relative classi d'equivalenza.
- [.../4] 2. Scrivere la tabella moltiplicativa di \mathbb{Z}_6 e determinare gli elementi invertibili di \mathbb{Z}_6 . Che struttura algebrica è (\mathbb{Z}_6, \cdot) ?
- [.../4] 3. Date le matrici

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}$$

si calcoli il rango di A e di B, il prodotto righe per colonne $A \cdot B$ e il rango del prodotto $A \cdot B$.

- [.../4] 4. Dare la definizione di combinazione lineare, di sottospazio vettoriale e di base.
- [.../4] 5. Enunciare il teorema di Rouchè-Capelli. Dire se il seguente sistema ha soluzioni e quante ne ha, e calcolarle nel caso in cui esistano:

$$\begin{cases} x & -2y & -z & = 1 \\ -2x & +4y & +2z & = -2 \end{cases}$$

[.../6]6. Si consideri l'applicazione lineare $f:\mathbb{R}^3\to\mathbb{R}^3$ definita da

$$f(x, y, z) = (2x + y - z, y + 2z, z)$$
.

Trovare la dimensione di Im f e Ker f. Trovare inoltre gli autovalori di f, e per ogni autovalore la sua molteplicità algebrica e geometrica e l'autospazio corrispondente. Dire se esiste una base di \mathbb{R}^3 formata da autovettori di f.