1 Activation Functions

1.1 Linear Function

- $\bullet f(x) = x$
- $\bullet \frac{\partial f}{\partial x} = 1$

1.2 Relu

•
$$f(x) = \begin{cases} 0, & \text{dla } x < 0 \\ x, & \text{dla } x \ge 0 \end{cases}$$

$$\bullet \frac{\partial f}{\partial x} = \begin{cases} 0, & \text{dla } x < 0 \\ 1, & \text{dla } x \ge 0 \end{cases}$$

1.3 Sigmoid Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$\bullet \frac{\partial f}{\partial x} = \frac{e^x}{(1+e^x)^2}$$

1.4 Softmax Function

$$\bullet f(\mathbf{x})_i = \frac{e^{x_i}}{\sum_{j=1}^N e^{x_j}}$$

$$\bullet \ J = S_i(\delta_{ij} - S_j)$$

2 Loss Functions

2.1 Mean Squared Error

$$\bullet f(x,y) = \frac{1}{2}(y-x)^2$$

$$\bullet \frac{\partial f}{\partial x} = x - y$$

2.2 Logarithmic Loss

•
$$f(x,y) = -(y \ln x + (1-y) \ln 1 - x)$$

$$\bullet \frac{\partial f}{\partial x} = \frac{1-y}{1-x} - \frac{y}{x}$$

2.3 Categorical Cross-Entropy (Numerically stable)

•
$$f(x,y) = -y \ln(x + 10^{-100})$$

$$\bullet \frac{\partial f}{\partial x} = -\frac{y}{x+10^{-100}}$$

3 Neuron

3.1 Impulse

$$z = \mathbf{x} \times \mathbf{w} + b$$

 \mathbf{x} input tensor

 \mathbf{w} weights vector

b bias

3.2 Activation

$$a = \phi(z(\mathbf{x}))$$

 \mathbf{z} impulse

 ϕ activation function attached to layer

3.3 Weights actualization

$$\mathbf{w} = \mathbf{w} - \mathbf{\Delta}\mathbf{w}$$

 \mathbf{w} weights

 Δw actualization vector

3.4 Bias actualization

$$b = b - \Delta b$$

 \mathbf{b} bias

 Δb actualization scalar

4 Feed forward

4.1 For first layer

$$\mathbf{a^0} = \phi(\mathbf{x})$$

 ${f x}$ tensor with input data

4.2 For n-th layer

$$\mathbf{a^n} = \phi(\mathbf{a^{n-1}})$$

 a^n activation of all neurons in n-th layer collected in one vector

5 Backpropagation

5.1 Last layer error

$$\delta^{\mathbf{out}} = \frac{\partial C(a^{out})}{\partial a^{out}} \odot \frac{\partial \phi(z^{out})}{\partial z^{out}}$$

 ${f C}$ loss function

⊙ Hadamard product

5.2 N-th layer error

$$\delta^{\mathbf{n}} = \delta^{\mathbf{n+1}} \times (\mathbf{w}^{\mathbf{n+1}})^{\mathbf{T}} \odot \frac{\partial \phi(z^n)}{\partial z^n}$$

5.3 Update weights vector

$$\Delta \mathbf{w^n} = (\mathbf{a^{n-1}})^{\mathbf{T}} \times \delta^{\mathbf{n}}$$

5.4 Update bias scalar

$$\Delta b^n = \sum_{i=0}^k \delta_i^n$$