The reverse mathematics of ω -automata

Leonardo Pacheco TU Wien

September 9, 2023 Available at: leonardopacheco.xyz/slides/wakate2023.pdf

THE BIG FIVE

- ▶ Π_1^1 -CA₀
- ► ATR₀
- ► ACA₀
- ► WKL₀
- ► RCA₀

THE BIG FIVE AND AUTOMATA THEORY

- ▶ Π_2^1 -CA₀ ← complementation of tree-automata
- $ightharpoonup \Pi_1^1$ -CA₀
- ► ATR₀
- ► ACA₀
- ▶ WKL₀ $\not\Leftrightarrow$ Σ_2^0 -Ind \leftarrow complementation of ω -automata
- ► RCA₀
- ► $RCA_0^* \leftarrow definitions$

BÜCHI AUTOMATA

$$\mathcal{A} = \langle Q, \Sigma, q_i, \delta, F \rangle$$

- ► *Q* is a finite set of states
- $ightharpoonup \Sigma$ is a finite alphabet
- $ightharpoonup q_i$ is the initial state
- \triangleright δ is the transition relation
- ► *F* is the set of accepting states

The automaton \mathcal{A} accepts the infinite word $\alpha : \omega \to \Sigma$ iff there is a run ρ of \mathcal{A} on α where $\mathrm{Inf}(\rho) \cap F \neq \emptyset$.

BÜCHI AUTOMATA — EXAMPLE 1

A accepts $\alpha : \omega \to \{a,b\}$ iff a appears infinitely often in α .

BÜCHI AUTOMATA — EXAMPLE 2

A accepts $\alpha : \omega \to \{a, b\}$ iff a appears finitely often in α .

REVERSE MATHEMATICS

Theorem (Kołodziejczyk, Michalewski, Pradic, Skrzypczak¹)

The following are equivalent over RCA₀:

- $ightharpoonup \Sigma_2^0$ -Ind
- ► complementation of Büchi automata
- ► Ramsey's Theorem for pairs restricted to additive colorings
- *decidability of the MSO theory of* $\langle \mathbb{N}, \leq \rangle$

¹Kołodziejczyk, Michalewski, Pradic, Skrzypczak, "The logical strength of Büchi's decidability theorem"

MULLER AUTOMATA

$$\mathcal{A} = \langle Q, \Sigma, q_i, \delta, T \rangle$$

- ► *Q* is a finite set of states
- $ightharpoonup \Sigma$ is a finite alphabet
- $ightharpoonup q_i$ is the initial state
- \triangleright δ is the transition function
- ► *F* is the acceptance table

The automaton \mathcal{A} accepts the infinite word $\alpha : \omega \to \Sigma$ iff there is a run ρ of \mathcal{A} on α such that $Inf(\rho) \in T$.

MULLER AUTOMATA — EXAMPLE 1

A accepts $\alpha : \omega \to \{a,b\}$ iff a appears infinitely often in α .

MULLER AUTOMATA — EXAMPLE 2

A accepts $\alpha : \omega \to \{a,b\}$ iff a appears finitely often in α .

REVERSE MATHEMATICS

Theorem (McNaughton)

Buchi automata and Muller automata are equivalent.

Theorem (Das²)

"Certain formulations of McNaugton's theorem are not provable in RCA_0 ."

These formulations include all known proofs of the McNaughton theorem.

²Das, "On the logical complexity of cyclic arithmetic"

TREE AUTOMATA

$$\mathcal{A} = \langle Q, \Sigma, q_i, \delta, \Omega \rangle$$

- ► *Q* is a finite set of states
- ightharpoonup Σ is a finite alphabet
- $ightharpoonup q_i$ is the initial state
- \triangleright δ is the transition relation
- $ightharpoonup \Omega$ is a parity function

The automaton \mathcal{A} accepts the infinite tree $t:\{0,1\}^* \to \Sigma$ iff there is a run of \mathcal{A} on t where, on all paths, the infinitely often ocurring parity is even.

 \mathcal{A} accepts $t:\{0,1\}^* \to \Sigma$ iff a appears infinitely often in all branches of t.

$$q. \xrightarrow{\delta} q_{\delta}, q_{\delta}$$

Tree Automata — Example 2

 \mathcal{A} accepts $t: \{0,1\}^* \to \Sigma$ iff there is a branch of t where a appears finitely often.

REVERSE MATHEMATICS

Theorem (Kołodziejczyk, Michalewski³)

The following are equivalent over Π_2^1 **-CA**₀:

- ► complementation of non-deterministic tree automata
- decidability of the Π_3^1 fragment of the MSO theory of the infinite binary tree
- ► the positional determinacy of parity games
- ▶ the determinacy of $\forall n.(\Sigma_2^0)$ -Det Gale-Stewart games
- ▶ the reflection principle Π_3^1 -Ref(Π_2^1 -CA₀)

³Kołodziejczyk, Michalewski, "How unprovable is Rabin's decidability theorem?"

MORE ON AUTOMATA

See Luke Ong's lecture notes "Automata, Logic and Games" for more on infinite automata. Available at:

https://www.cs.ox.ac.uk/people/luke.ong/personal/publications/ALG14-15.pdf

See Perrin and Pin's book "Infinite Words" for much more on infinite automata.

THE BIG FIVE AND AUTOMATA THEORY

- ▶ Π_2^1 -CA₀ ← complementation of tree-automata
- $ightharpoonup \Pi_1^1$ -CA₀
- ► ATR₀
- ► ACA₀
- ▶ WKL₀ $\not\Leftrightarrow$ Σ_2^0 -Ind \leftarrow complementation of ω -automata
- ► RCA₀
- ▶ $RCA_0^* \leftarrow definitions$