# **Supplemental Material**

# Development and analysis of an *in vivo*-compatible metabolic network of *Mycobacterium tuberculosis*

Xin Fang, Anders Wallqvist, Jaques Reifman§

Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD 21702, USA

§Corresponding author

#### Email addresses:

XF: xfang@bioanalysis.org

AW: awallqvist@bioanalysis.org

JR: jaques.reifman@us.army.mil

# Index

| S1. Development of the <i>iNJ</i> 661m network                                          | 3  |
|-----------------------------------------------------------------------------------------|----|
| S2. Detailed description of the computation used to develop the <i>iNJ</i> 661v network | •  |
| S3. Supplemental Tables and Figure                                                      | 20 |
| Supplemental Table S1                                                                   | 20 |
| Supplemental Table S2                                                                   | 24 |
| Supplemental Table S3                                                                   | 35 |
| Supplemental Figure S1                                                                  | 36 |

# S1. Development of the *iNJ*661m network

Biotin is an important cofactor for metabolism; however, biotin synthesis in *iNJ*661 is not connected to other pathways in the network. To remedy this, we inserted two related reactions from GSMN-TB [1], added four small molecules (H<sub>2</sub>O, H<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, and O<sub>2</sub>) not accounted for by GSMN-TB into the two reactions, and inserted those reactions into the *iNJ*661m network. The first reaction provides for the synthesis of a precursor of biotin, pimeloyl-CoA, from acetyl-CoA:

$$H_2O + 4 \text{ acetyl-CoA} \rightarrow \text{pimeloyl-CoA} + 3 \text{ CoA} + \text{CO}_2 + \text{H}^+.$$
 (1)

In the biotin synthesis pathway, the reaction of adenosylmethionine-8-amino-7-oxononanoate transaminase converts *S*-adenosyl-L-methionine to *S*-adenosyl-4-methylthio-2-oxobutanoate. However, *iNJ*661 lacks a necessary reaction that does the opposite, and we needed to add the following reaction to *iNJ*661m:

2 NH<sub>4</sub><sup>+</sup> + 2 S-adenosyl-4-methylthio-2-oxobutanoate 
$$\rightarrow$$
 2 S-adenosyl-L-methionine + O<sub>2</sub>. (2)

According to the naming convention of enzymes, succinate dehydrogenase dehydrogenates succinate into fumarate, and fumarate reductase reduces fumarate into succinate. The functions of these two enzymes in the metabolic network of *Escherichia coli* follow this enzyme naming convention [2]. However, the reactions catalyzed by these two enzymes in *iNJ*661 have discrepancies in their directions. In *iNJ*661, succinate dehydrogenase catalyzes the following reactions:

fumarate + menaquinol 
$$8 \rightarrow$$
 menaquinone  $8 +$  succinate, (3)  
fumarate + 2-demethylmenaquinol  $8 \rightarrow$  2-demethylmenaquinone  $8 +$  succinate, and (4)

succinate + FAD 
$$\rightarrow$$
 FADH<sub>2</sub> + fumarate, (5)

where the first two reactions have the opposite directions with respect to fumarate as the last reaction. Fumarate reductase catalyzes the following reactions:

fumarate + 
$$FADH_2 \rightarrow FAD$$
 + succinate, and (6)

fumarate + menaquinol 
$$6 \leftrightarrow$$
 menaquinone  $6 +$  succinate, (7)

one of which is irreversible and one which is reversible. In the KEGG database, the conversion between succinate and fumarate in *Mycobacterium tuberculosis* is a reversible reaction that is catalyzed by either succinate dehydrogenase or fumarate reductase (EC-1.3.99.1) [3]. In GSMN-TB, both enzymes catalyze reversible conversions between succinate and fumarate [1]. Furthermore, the metabolic networks of *Pseudomonas aeruginosa* [4], *Staphylococcus aureus* [5], and *Saccharomyces cerevisiae* [6] include only succinate dehydrogenase catalyzing a reversible conversion between succinate and fumarate. Consequently, we altered the reactions of *Eqs. 3-7* to be reversible in the *iNJ*661m network.

The methylcitrate cycle exists in *M. tuberculosis* [7, 8], but it is not included in *iNJ*661. We added this pathway to *iNJ*661m by inserting two new metabolites, methylcitrate and methylisocitrate, and the following reactions:

propionyl-CoA + 
$$H_2O$$
 + oxaloacetate  $\rightarrow$  methylcitrate +  $CoA$  +  $H^+$ , (8)

$$methyl citrate \leftrightarrow methyl isocitrate, and$$
 (9)

$$methylisocitrate \rightarrow succinate + pyruvate.$$
 (10)

The first reaction is catalyzed by the gene product of *gltA1* (*Rv1131*) [8], the second reaction is catalyzed by the gene products of both *Rv1130* and *acn* (*Rv1475c*) together [8], and the third reaction is catalyzed by either the product of gene *icl1* (*Rv0467*) or that of gene *icl2* (*Rv1915*) [7-9]. The *iNJ*661 network already includes enzymes from four (*Rv1131*, *acn*,

*icl1*, and *icl2*) of the five genes above in reactions other than *Eqs.* 8-10. Because Rv1130 is not included, we added this gene to the *iNJ*661m network. Moreover, it has been reported that when vitamin  $B_{12}$  is present in the medium, the methylmalonyl pathway can bypass the methylcitrate cycle [10]. Because the *in vitro* medium studied here did not include this vitamin [11], we blocked the methylmalonyl pathway in *iNJ*661m.

From the TubercuList World-Wide Web Server [12], we found that the gene products of both fadB3 (Rv1715) and fadB2 (Rv0468) yield the same  $\beta$ -hydroxybutyryl-CoA dehydrogenase enzyme. However, fadB3 is not included in iNJ661, and, consequently, we added fadB3 to iNJ661m to serve as an alternative for fadB2.

*M. tuberculosis* grows in several different fatty acid media [9], suggesting that the pathogen is able to absorb different fatty acids from the host environment. However, uptake reactions for only three fatty acids (propionate, hexadecanoate, and octadecanoate) exist in *iNJ*661, so we added uptake reactions for other fatty acids to *iNJ*661m.

During the construction of iNJ661m, we slightly modified the biomass objective function from the original  $in\ vitro$  network [11]. Ions and cofactors required for cellular growth can be included in a biomass objective function [2, 13], and, because both Na<sup>+</sup> and K<sup>+</sup> play important roles in M. tuberculosis biochemical activities [14, 15], we included these ions in the biomass objective function. We set the coefficients for the two metabolites to  $10^{-6}$  mmol/gram dry weight, that is,  $10^{-6}$  millimoles per gram dry weight of M. tuberculosis. This is the same value as the one used in the iNJ661 network for vitamins and cofactors [11].

#### References

- 1. Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J: GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. *Genome Biol* 2007, 8:R89.
- 2. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. *Mol Syst Biol* 2007, 3:121.
- 3. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. *Nucleic Acids Res* 2008, 36:D480-484.
- 4. Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VA, Papin JA: Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. *J Bacteriol* 2008, 190:2790-2803.
- 5. Becker SA, Palsson BO: Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. *BMC Microbiol* 2005, 5:8.
- 6. Duarte NC, Herrgard MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. *Genome Res* 2004, 14:1298-1309.
- 7. Gould TA, van de Langemheen H, Munoz-Elias EJ, McKinney JD, Sacchettini JC: Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. *Mol Microbiol* 2006, 61:940-947.
- 8. Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD: Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. *Mol Microbiol* 2006, 60:1109-1122.
- 9. Munoz-Elias EJ, McKinney JD: Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. *Nat Med* 2005, 11:638-644.
- 10. Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V, Dawes SS: Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. *J Bacteriol* 2008, 190:3886-3895.
- 11. Jamshidi N, Palsson BO: Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. *BMC Syst Biol* 2007, 1:26.

- 12. Tuberculist Web Server, Pasteur Institute. http://genolist.pasteur.fr/TubercuList/
- 13. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. *Nat Rev Microbiol* 2009, 7:129-143.
- 14. Hase CC, Fedorova ND, Galperin MY, Dibrov PA: Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. *Microbiol Mol Biol Rev* 2001, 65:353-370, table of contents.
- 15. Epstein W: The roles and regulation of potassium in bacteria. *Prog Nucleic Acid Res Mol Biol* 2003, 75:293-320.

# S2. Detailed description of the computational procedures used to develop the iNJ661v network

The procedures and analyses described below (A-F) capture the logical flow of creating and testing the metabolic network modifications, while the optimization schemes (G and H) detail the specific modifications we made to the optimization models of Kamal and Maranas (Ref. 39 in the main text).

- **A. Main procedure** (Figure 1 in the main text)
- **B. FP correction procedure** (Figure 2 in the main text)
- **C. FN correction procedure** (Figure 3 in the main text)
- **D.** Assessment of a modification (Figure 4 in the main text)
- **E.** Analysis of combined modifications (Figure 5 in the main text)
- F. Nutrient uptake analysis
- G. Optimization scheme 1: FP corrections
- H. Optimization scheme 2: FN corrections

# **A. Main procedure** (Figure 1 in the main text)

Identify incorrect predictions of gene essentiality

For each incorrect prediction

If (the prediction is a false positive (FP) prediction)

FP correction procedure

Else

FN correction procedure

End\_if

End\_for

Analysis of combined modifications

Nutrient uptake analysis

Literature verification

#### **B. FP correction procedure** (Figure 2 in the main text)

```
//Examine consequences of deleting metabolites from the biomass [Figure 2 (I)]
NM = 1
// NM represents the number of metabolites deleted from biomass
NF = 0
// NF=0, no modification has been found, NF = 1 modification exists
While (NF = 0 \text{ AND NM} \le 16)
       List all possible deletions of NM metabolite(s) from the 16 vitamins and cofactors
       //This causes all single deletions to be considered first, then all possible double
       //deletions, etc.
       For each deletion
               If
                       (the deletion is adequate - see Assessment of a modification)
                       Record the deletion
                       NF = 1
                       //If a satisfactory modification is recorded, we will end the
                       //loop after considering all NM deletions
               End_if
       End for
        NM = NM + 1
End while
//Make irreversible reactions reversible and allow additional nutrient uptakes [Figure 2 (II)]
//The goal here is to find modification(s) compatible with changing a minimum number of
//reversible reactions and allowing a minimum number of nutrient uptakes to correct the FP
//predictions. To implement Optimization scheme 1: FP corrections, we need to
//specify 1) a set of reactions P that are potentially blocked or added to the network, 2)
//exactly what the function is that is minimized, and 3) what the growth cutoff is:
Let P contain both blocked uptake reactions (P1) and irreversible reactions with their
directions reversed (P2)
Set the function to be minimized to be min \sum_{j \in P1} y_j + 100 \sum_{j \in P2} y_j
//where j is a reaction index and y is binary variable (0/1) indicating whether the reaction is
//included or no. Since it is less desirable to change the direction of a reaction, we penalized
//these modifications by a factor of 100.
Set the cutoff v_{biomass}^{cut-off} to 0.2v_{biomass}^{wild-type}
//where v_{biomass}^{wild-type} represents the wild-type growth rate and was obtained flux balance
//analysis (FBA) of iNJ661m.
Optimization scheme 1: FP corrections
//The minimization model may generate more than one solution, and we need to consider
//each solution
For
       each modification found from the optimization model
               (the modification is adequate - see Assessment of a modification)
               Record the modification
       End if
End_for
```

## **C. FN correction procedure** (Figure 3 in the main text)

Find all reactions catalyzed by the product of the FN gene For each reaction // Check whether the reaction is associated with another TN gene(s) [the FN gene and TN gene(s) are jointly necessary for the reaction] The prediction can not be corrected for: Go to the next reaction End if // Check whether FN gene product has one or more isozyme(s) [isozyme(s) of the FN gene product catalyze the reaction] If Block the ability of isozyme(s) to catalyze the reaction (the blocking is adequate - see Assessment of a modification) Record the modification End if End if // Check whether the FN gene is in a dead-end pathway If [the reaction is in a pathway where some metabolite(s) cannot be produced or consumed] If (metabolite cannot be produced) [there exists blocked uptake reaction for the metabolite(s)] If Record allowing the uptake of the metabolite(s) End\_if End if (metabolite cannot be consumed) Record adding the metabolite(s) to biomass End if If (the modifications are adequate - see **Assessment of a modification**) //The modification includes all cumulative changes to the studied reaction, //including the isozyme(s) blocking Record the modification and go to the next reaction //If adequate medications are found the next section of suppressing reactions //is not performed End\_if End if //Suppress reaction(s) //The goal here is to find modification(s) associated with suppressing a minimum //number of reactions using **Optimization scheme 2: FN corrections**. //To implement **Optimization scheme 2: FN corrections**, we need to //specify 1) a set of reactions P that are potentially blocked and 2) what the growth //cutoff  $v_{biomass}^{cut-off}$  is: Let P contain all reactions in iNJ661m Set the growth rate limit for gene knockout to be  $0.2 v_{biomass}^{wild-type}$ //where  $v_{biomass}^{wild-type}$  represents the wild-type growth rate as obtained from FBA of //iNJ661m. A FN prediction becomes a TN prediction if the growth rate falls below //this limit.

# **Optimization scheme 2: FN corrections**

```
//The optimization procedure may generate more than one solution, and we need to //consider each

For (each modification found from the optimization model)

If (the modification is adequate - see Assessment of a modification)

Record the modification and go to the next reaction

End_if

End_for

End_for
```

## **D.** Assessment of a modification (Figure 4 in the main text)

```
Apply the modification to iNJ661m
Calculate wild-type growth rate from FBA of the modified network
       (wild-type growth rate \leq minimal growth rate)
// Note: minimal rate = 0.027 \text{ h}^{-1}
       The modification is inadequate
Else
       Delete the gene for the prediction from iNJ661m with the modification
       Calculate growth rate of the gene knockout
       //This case checks modifications generated by the FN correction procedure
              (the prediction is FN)
       If
                      (knockout growth rate > wild-type growth rate *20%)
              If
                      The modification is inadequate
              Else
                     If (any TN prediction becomes FP or any TP prediction becomes FN)
                             The modification is inadequate
                      Else
                             The modification is adequate
                      End_if
              End if
       End_if
       //This case checks modifications generated by the FP correction procedure
       If
              (the prediction is FP)
                      (knockout growth rate ≤ wild-type growth rate *20%)
                      The modification is inadequate
              Else
                     If (any TN prediction becomes FP or any TP prediction becomes FN)
                             The modification is inadequate
                      Else
                             The modification is adequate
                      End_if
              End if
       End_if
End_if
```

# **E.** Analysis of combined modifications (Figure 5 in the main text)

List all the network realizations of the modifications:

```
//Here, each network realization contains one modification for each incorrect prediction
For
       each network realization
               (any contradiction between modifications in the realization)
       If
               The network realization is inadequate
       Else
               Apply the modifications in to iNJ661m
                      (wild-type growth rate \leq minimal rate)
               //Note: minimal rate = 0.027 \text{ h}^{-1}
                      The network is inadequate
               Else
                      If
                              (incorrect predictions become correct)
                              If
                                     (any TP prediction becomes FN or any TN prediction
                                     becomes FP)
                                     The network is inadequate
                              Else
                                     Record the network as plausible
                              End_if
                      Else
                              The network is inadequate
                      End_if
               End_if
       End if
```

#### End for

Select networks with minimum adjustment from the set of plausible networks

//A minimum adjustment indicates a minimum number of irreversible reactions changed and //reactions suppressed

Record selected networks as adequate network realizations

# F. Nutrient uptake analysis

We only allowed selected nutrient uptakes that defined a minimal uptake set:

- (1) Uptakes of H<sub>2</sub>O and H<sup>+</sup>
- (2) Uptakes added in the **FP correction procedure** and **FN correction procedure**
- (3) Uptakes of small molecules:

```
CO and CO<sub>2</sub> for carbon (C);
```

NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup>, and NO<sub>3</sub><sup>-</sup> for nitrogen (N);

 $O_2$  for oxygen (O);

HPO<sub>4</sub><sup>2</sup>- for phosphorus (P);

SO<sub>4</sub><sup>2</sup> for sulphur (S);

Fe<sup>2+</sup> and Fe<sup>3+</sup> ions for iron (Fe);

K<sup>+</sup> for potassium (K);

Na<sup>+</sup> for sodium (Na).

We defined the extended set as uptake reactions that are not in the minimal set

//The small-molecule set was selected based on existing uptake reactions in iNJ661m and //chosen such that each molecule contained one specific element of the elements found in //the biomass objective function and the minimum number of other elements.

//Here, we sequentially corrected the proposed minimal uptake set if it:

- // 1) failed to maintain growth
- // 2) generated new FP predictions
- // 3) generated new FN predictions

#### // 1) Failure to maintain growth

**If** (wild-type growth rate < minimal rate)

//Note: minimal rate =  $0.027 \text{ h}^{-1}$ 

//The goal here is to add a minimum number of uptakes from the extended set using //Optimization scheme 1: FP corrections

Let *P* contain the extended reaction set defined above

Set the cutoff  $v_{biomass}^{cut-off}$  to the minimal rate (0.027 h<sup>-1</sup>)

//However, as no specific FP gene is considered, the constraint given in *Equation 2* //of the optimization scheme is removed

# **Optimization scheme 1: FP corrections**

#### End\_if

//2) Generation of new FP predictions

**If** (new FP prediction is generated)

//The goal here is to add a minimum number of uptakes from the extended set using //**Optimization scheme 1: FP corrections** 

Let *P* contain the extended reaction set defined above

Set the cutoff  $v_{biomass}^{cut-off}$  to  $0.2v_{biomass}^{wild-type}$ 

//where  $v_{biomass}^{wild-type}$  represents the wild-type growth rate and was obtained by FBA of //iNJ661m

#### **Optimization scheme 1: FP corrections**

#### End\_if

```
//3) Generatation of new FN predictions
If
        (new FN prediction is generated)
        //The goal here is to find modification(s) associated with suppressing a minimum
        //number of reactions using Optimization scheme 2: FN corrections.
        //To implement Optimization scheme 2: FN corrections, we need to
        //specify 1) a set of reactions P that are potentially blocked and 2) what the growth
        //cutoff v_{biomass}^{cut-off} is.
        Let P contain all reactions in the minimal set defined above
        Set the growth rate limit for gene knockout to be 0.2 v_{biomass}^{wild-type}
        //where v_{biomass}^{wild-type} represents the wild-type growth rate as obtained from FBA of
        //iNJ661m. A FN prediction becomes a TN prediction if the growth rate falls below
        //this limit.
        Optimization scheme 2: FN corrections
End if
// Find the minimal set of small-molecule uptakes
//Analyze each set of small-molecule uptakes, based on the C, N, O, S, P, K, and Na
//sets defined above, to find the minimum number of uptakes or combinations of
//uptakes from each set that can maintain wild-type growth and not generate any additional
//FP or FN predictions
        each element of C, N, O, S, P, K, and Na
For
        NSU = 0
        //NSU represents the number of small molecules whose uptakes are
        //allowed
        UR = 0
        //UR=0: no small molecule selection is recorded
        //UR=1: a small molecule selection(s) has been recorded
        While (UR = 0)
                List all possible selection(s) of NSU small molecule(s) for the element
                //For example, if the element is N and NSU = 1, the possible selections are
                //NH_4^+, NO_2^-, and NO_3^-; if the element is N and NSU = 2, the possible
                //selections are NH<sub>4</sub><sup>+</sup> and NO<sub>2</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup>, and NO<sub>2</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>
                For
                        each possible selection
                        Only allow uptakes of small molecules containing the element in the
                        selection (other small molecule uptakes for this particular element are
                        blocked) while other small molecule uptakes for other elements are
                        allowed
                             (wild-type growth rate > minimal rate) AND
                        If
                             (no new FP or FN prediction)
```

Record the selection

UR = 1

End\_if

NSU = NSU + 1

End for

End\_while

#### End\_for

List all possible combinations of the small-molecule selection(s)

//For each element, list the each possible selections and create a list of all possible //combinations of these selections. For example, if there is one selection possible for //element *X* and two selections possible for element *Y*, there are in total two ways these can //be combined

**For** each combined small-molecule selection

Among small-molecule uptakes, only allow uptakes of the small molecules in the selection

If (wild-type growth rate > minimal rate) AND (no new FP or FN prediction) Record the combined small-molecule selection as adequate

End\_if

#### End\_for

If no combined small-molecule selection is recorded as adequate, we restore all small-molecule uptakes

## G. Optimization scheme 1: FP corrections

This optimization scheme attempts to restore the biomass accumulation rate (or growth rate)  $v_{biomass}$  to be above a given cutoff  $v_{biomass}^{cut-off}$  by adding a minimum number of reactions to a network. If P represent the candidate reaction set that are considered for addition and  $y_j$  is a binary variable corresponding to the reactions j from the set P, whose values indicate addition (1) or no addition (0), we seek to the number of additions:

$$\min \sum_{i \in P} y_j , \qquad (1)$$

subject to the fluxes  $v_i$  in the set of reactions associated with the FP gene set to zero, i.e.:

s.t. 
$$v_i = 0$$
  $\forall j \in \text{set of reactions associated with the FP gene,}$  (2)

and the mass balance requirements summarized in *Equations 3-7*:

$$\sum_{i} S_{ij} V_{j} = 0, \qquad i = 1...M$$
(3)

 $\forall j \in \text{set of reactions in the network and } P$ 

$$v_{biomass} \ge v_{biomass}^{cut-off}$$
 (4)

$$LB_{i} \le v_{i} \le UB_{i}$$
  $\forall j \in \text{set of reactions in the network}$  (5)

$$LB_{j}y_{j} \le v_{j} \le UB_{j}y_{j}$$
  $\forall j \in \text{set of reactions in } P$  (6)

$$y_j = \{0,1\}$$
  $\forall j \in \text{set of reactions in } P$  (7)

where j represents the reaction indices,  $v_j$  indicates the flux for reaction j, i represents the metabolite indices,  $S_{ij}$  denotes the stoichiometric matrix, and M indicates the number of metabolites. LB and UB represent the lower bound and upper bound, respectively, and are taken directly from the iNJ661m network.

## H. Optimization scheme 2: FN corrections

This optimization scheme attempts to find modification(s) associated with suppressing a minimum number of reactions that can correct a FN gene prediction. The calculations are done at two levels: an outer level, where the state of the network is changed, in this case by blocking and unblocking a set of reactions; and an inner level, which maximizes the growth rate using the FBA of that particular state of the metabolic network. If the resultant growth rate is below the minimum growth threshold, the FN prediction is corrected.

For a FN prediction, we want to change the network in such a way as to reduce the biomass accumulation rate (or growth rate)  $v_{biomass}$  below a threshold value subject to the suppression of a number of candidate reactions from a given set P. The growth rate of the resultant network with the specified reactions suppressed is maximized using FBA, and network modifications that create accumulation rates less than a cutoff  $v_{biomass} < v_{biomass}^{cut-off}$  are proposed to fix the FN prediction. We initially solved the model when the number of removed reactions  $n^*$  was 1. If the resultant biomass growth was above the minimum growth limit,

$$v_{biomass} \ge v_{biomass}^{cut-off}$$
, we increased  $n^*$  until  $v_{biomass} < v_{biomass}^{cut-off}$ 

This is summarized in Equations (1-8), where P represents the set of candidate reactions that are to be suppressed and  $y_i$  is a binary variable corresponding to the reactions j in P, whose values indicate either suppression (0) or no suppression (1). The fluxes of reactions associated with FN gene set to zero (Equation 6). Given a particular set of values for  $y_i$  the inner optimization procedure (denoted as "[Inner]" below with its associated Equations (3-5) maximizes the biomass accumulation rate  $v_{biomass}$  using FBA. The procedure minimizes the results of the inner optimization model by systematically changing the values for  $y_i$ , i.e., for a different set of suppressed reactions from P.

$$\min \, \nu_{biomass} \tag{1}$$

s.t. 
$$\max v_{biomass}$$
 [Inner] (2)

$$\begin{bmatrix} \sum_{j} S_{ij} \nu_{j} = 0 & i = 1...M \\ LB_{j} \leq \nu_{j} \leq UB_{j} & \forall j \notin P \\ LB_{j} y_{j} \leq \nu_{j} \leq UB_{j} y_{j} & \forall j \in P \end{bmatrix}$$

$$(3)$$

$$(4)$$

$$(5)$$

$$\left| LB_{j} \le \nu_{j} \le UB_{j} \qquad \forall j \notin P \right| \tag{4}$$

$$\left| LB_{j}y_{j} \le v_{j} \le UB_{j}y_{j} \qquad \forall j \in P \right| \tag{5}$$

$$v_j = 0$$
  $\forall j \in \text{set of reactions associated with the FN gene}$  (6)

$$v_{j} = 0$$
  $\forall j \in \text{set of reactions associated with the FN gene}$  (6)  
 $\sum_{j} (1 - y_{j}) \le n^{*}$   $\forall j \in \text{set of reactions in } P$  (7)  
 $y_{j} = \{0,1\}$   $\forall j \in \text{set of reactions in } P$  (8)

$$y_i = \{0,1\}$$
  $\forall j \in \text{set of reactions in } P$  (8)

For the above equations, j represents the reaction indices,  $v_i$  indicates the flux for reaction j, i represents the metabolite indices,  $S_{ij}$  denotes the stoichiometric matrix, and M indicates the number of metabolites. LB and UB represent lower bound and upper bound, respectively, and are taken directly from the iNJ661m network.

# S3. Supplemental Tables and Figure

#### Supplemental Table S1. Summary of modifications to correct each gene essentiality prediction after Step II.

Of the 25 genes that were incorrectly predicted to be non-essential [false negative (FN)] under *in vivo* conditions, 18 genes were corrected and became essential after *Step II*. Of the 76 genes that were incorrectly predicted to be essential [false positive (FP)] under *in vivo* conditions, 24 genes were corrected and became non-essential after *Step II*. We classified the overall 42 (18 + 24) genes into 35 gene groups, defined as a group of genes whose products catalyze the same reaction(s).

| Gene<br>Group<br>No. | Gene<br>No. | Gene<br>Locus               | Gene<br>Name           | FP/FN          | Pathway                        | Function/Reaction                                                   | Modification to Correct the False Gene Essentiality Prediction                                                                                |
|----------------------|-------------|-----------------------------|------------------------|----------------|--------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | 1           | Rv1099c                     | Rv1099c                | FN             | Glycolysis/<br>gluconeogenesis | Convert fructose-1,6-<br>bisphosphate into fructose-6-<br>phosphate | (1) Blocked the uptake of glucose from the environment                                                                                        |
|                      |             |                             |                        |                |                                |                                                                     | (1) Blocked the function of the enzymes of fructose-bisphosphate aldolase and hexokinase                                                      |
|                      |             |                             |                        |                |                                |                                                                     | (2) Blocked the function of the enzymes of fructose-bisphosphatase and hexokinase                                                             |
| 2                    | 2           | Rv2702                      | ppgK                   | FN             | Glycolysis/<br>gluconeogenesis | Conversion between glucose-6-<br>phosphate and glucose              | (3) Blocked the conversion from maltose to glucose and blocked the uptake of glucose                                                          |
|                      |             |                             |                        |                |                                |                                                                     | (4) Blocked the conversion between maltose and trehalose and blocked the uptake of glucose                                                    |
|                      |             |                             |                        |                |                                |                                                                     | (5) Blocked the function of the enzymes of glucose-6-phosphate isomerase and hexokinase                                                       |
| 3                    | 3<br>4<br>5 | Rv1350<br>Rv1483<br>Rv2947c | fabG2<br>inhA<br>pks15 | FP<br>FP<br>FP | Fatty acid metabolism          | Synthesis of fatty acids                                            | (1) Allowed the uptakes of the following fatty acids: hexadecanoate, octadecanoate, octanoate, dodecanoate, arachidic acid, and hexacosanoate |
| 4                    | 6           | Rv2503c                     | scoB                   | FP             | Fatty acid metabolism          | Functions as 3-oxoacid CoA-transferase                              | (1) Let the reaction catalyzed by acetyl-CoA:acetoacetyl-CoA transferase be reversible                                                        |
| 5                    | 7           | Rv3229c                     | desA3                  | FN             | Fatty acid metabolism          | Palmitoyl-CoA desaturation                                          | (1) Blocked the synthesis of hexadecenoate                                                                                                    |

| 6  | 8  | Rv1185c | fadD21  | FN  | Fatty acid metabolism           | Synthesis of fatty acid-CoA                                                               | (1) Blocked the ability of fadD9 (Rv2590), fadD24 (Rv1529), and fadD23 (Rv3826) to catalyze the                                       |
|----|----|---------|---------|-----|---------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 0  | 0  | KVIIOSC | JuaD21  | TIN | ratty acid metabolism           | Synthesis of fatty acid-COA                                                               | synthesis of fatty acid-CoA                                                                                                           |
| 7  | 9  | Rv0098  | Rv0098  | FN  | Fatty acid metabolism           | Mycolic acid synthesis                                                                    | (1) Blocked the ability of $fabG1$ ( $Rv1483$ ) to catalyze the same reaction                                                         |
| 8  | 10 | Rv2483c | plsC    | FN  | Fatty acid metabolism           | Synthesis of 1,2-diacyl- <i>sn</i> -glycerol 3-phosphate (a phospholipid)                 | (1) Blocked the ability of $Rv2182c$ to catalyze the same reaction                                                                    |
| 9  | 11 | Rv1416  | ribH    | FP  | Vitamin and cofactor metabolism | Synthesis of riboflavin                                                                   | (1) Removed riboflavin and FMN from the biomass objective function                                                                    |
| 10 | 12 | Rv1412  | ribC    | FP  | Vitamin and cofactor metabolism | Synthesis of riboflavin                                                                   | (1) Removed riboflavin and FMN from the biomass objective function                                                                    |
| 11 | 13 | Rv2671  | ribD    | FP  | Vitamin and cofactor metabolism | Synthesis of a riboflavin precursor                                                       | (1) Removed riboflavin and FMN from the biomass objective function                                                                    |
| 12 | 14 | Rv2786c | ribF    | FP  | Vitamin and cofactor metabolism | Synthesis of flavin<br>mononucleotide (FMN) from<br>riboflavin                            | (1) Removed FMN from the biomass objective function                                                                                   |
| 13 | 15 | Rv2421c | Rv2421c | FP  | Vitamin and cofactor metabolism | Synthesis of deamino-NAD <sup>+</sup>                                                     | (1) Removed NAD and NADPfrom the biomass objective function                                                                           |
| 14 | 16 | Rv1596  | nadC    | FP  | Vitamin and cofactor metabolism | Functions as nicotinate-<br>nucleotide diphosphorylase                                    | (1) Removed NADand NADPfrom the biomass objective function                                                                            |
| 15 | 17 | Rv3215  | entC    | FP  | Vitamin and cofactor metabolism | Synthesis of isochorismate                                                                | (1) Removed menaquinol 8 from the biomass objective fucntion                                                                          |
| 16 | 18 | Rv1568  | bioA    | FN  | Vitamin and cofactor metabolism | Synthesis of a precursor of biotin                                                        | (1) Added biotinyl-5'-AMP to the biomass objective function                                                                           |
| 17 | 19 | Rv1569  | bioF    | FN  | Vitamin and cofactor metabolism | Synthesis of a precursor of biotin                                                        | (1) Added biotinyl-5'-AMP to the biomass objective function and blocked ability of $bioF2$ ( $Rv0032$ ) to catalyze the same reaction |
| 18 | 20 | Rv1589  | bioB    | FN  | Vitamin and cofactor metabolism | Synthesis of biotin                                                                       | (1) Added biotinyl-5'-AMP to the biomass objective function                                                                           |
| 19 | 21 | Rv2211c | gcvT    | FN  | Vitamin and cofactor metabolism | Conversion between 5-<br>formyltetrahydrofolate and<br>5,10-methenyltetrahydrofolate      | (1) Added the metabolite 5-formyltetrahydrofolate to the biomass objective function                                                   |
| 20 | 22 | Rv3001c | ilvC    | FP  | Amino acid<br>metabolism        | Synthesis of 2,3-dihydroxy-3-<br>methylbutanoate and 2,3-<br>dihydroxy-3-methylpentanoate | (1) Allowed the uptakes of isoleucine and valine                                                                                      |

| 21 | 23       | Rv3002c            | ilvN           | FP                                         | Amino acid<br>metabolism                                                                    | Synthesis of acetolactate                                      | (1) Allowed the uptake of valine                                                       |                                                                                        |
|----|----------|--------------------|----------------|--------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 22 | 24<br>25 | Rv2220c<br>Rv1878  | glnA1<br>glnA3 | FP<br>FP                                   | Amino acid                                                                                  | Synthesis of glutamine                                         | (1) Let the reaction of glutamate synthesis from glutamine be reversible               |                                                                                        |
| 22 | 26<br>27 | Rv2222c<br>Rv2860c | glnA2<br>glnA4 | FP<br>FP                                   | metabolism                                                                                  | Synthesis of glutamine                                         | (2) Let the conversion to CTP and glutamate from UTP and glutamine be reversible       |                                                                                        |
| 23 | 28       | Rv3754             | tyrA           | FP                                         | Amino acid<br>metabolism                                                                    | Functions as prephenate dehydrogenase                          | (1) Allowed the uptake of tyrosine                                                     |                                                                                        |
| 24 | 29       | Rv3042c            | serB2          | FN                                         | Amino acid<br>metabolism                                                                    | Remove a phosphate group from phosphoserine to produce serine  | (1) Blocked the ability of serB (Rv0505c) to catalyze the same reaction                |                                                                                        |
| 25 | 30       | Rv2231c            | cobC           | FN                                         | Amino acid<br>metabolism                                                                    | Convert glutamate into histidinol-phosphate                    | (1) Blocked the ability of hisC2 (Rv3772) and hisC (Rv1600) to catalyze the conversion |                                                                                        |
| 26 | 21       | D 2045             | 1 V            | I'N I                                      | _                                                                                           | dimycocerosate A a                                             | Transport phthiocerol dimycocerosate A and phenol                                      | (1) Added extracellular phthiocerol dimycocerosate A to the biomass objective function |
| 26 | 31       | FN                 | Transport      | phthiocerol dimycocerosate out of the cell | (2) Added extracellular phenol phthiocerol dimycocerosate to the biomass objective function |                                                                |                                                                                        |                                                                                        |
|    |          |                    |                |                                            |                                                                                             |                                                                | (1) Blocked the function of the enzyme of fructose-bisphosphate aldolase               |                                                                                        |
|    | 22       | D 1006             |                |                                            |                                                                                             | Transport of glucose,                                          | (2) Blocked the function of the enzyme of fructose-bisphosphatase                      |                                                                                        |
| 27 | 32<br>33 | Rv1236<br>Rv1237   | sugA<br>sugB   | FN                                         | Transport                                                                                   | maltoheptaose, maltose, ribose, trehalose, and xylose into the | (3) Blocked the function of the enzyme of glucose-6-phosphate isomerase                |                                                                                        |
|    | 34       | Rv1238             | sugC           |                                            |                                                                                             | cell                                                           | (4) Allowed the ribose uptake and blocked the inosine hydrolysis                       |                                                                                        |
|    |          |                    |                |                                            |                                                                                             |                                                                | (5) Allowed the xylose uptake,and added xylose to the biomass objective function       |                                                                                        |
| 20 | 25       | D 2226             | 1 (7)          | FNI                                        | T                                                                                           | Transport of K <sup>+</sup> and Na <sup>+</sup> into           | (1) Blocked the function of potassium ABC transporter                                  |                                                                                        |
| 28 | 35       | Rv3236c            | kefB           | FN                                         | Transport                                                                                   | the cell                                                       | (2) Blocked the function of the Na <sup>+</sup> antiporter                             |                                                                                        |
| 29 | 36       | Rv1699             | pyrG           | FP                                         | Nucleotide metabolism                                                                       | Synthesis of CTP from UTP                                      |                                                                                        |                                                                                        |
| 30 | 37       | Rv1385             | pyrF           | FP                                         | Nucleotide metabolism                                                                       | Functions as orotidine-5'-<br>phosphate decarboxylase          | (1) Allowed the uptake of cytidine                                                     |                                                                                        |
| 31 | 38       | Rv2139             | pyrD           | FP                                         | Nucleotide metabolism                                                                       | Functions as dihydroorotic acid dehydrogenase                  |                                                                                        |                                                                                        |

| 32 | 39 | Rv3393  | iunH    | FP | Nucleotide metabolism     | Hydrolysis of inosine                                 | (1) Let the reaction catalyzed by ribokinase be reversible                                                   |
|----|----|---------|---------|----|---------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 33 | 40 | Rv2465c | rpi     | FP | Pentose phosphate pathway | Functions as ribose-5-<br>phosphate isomerase         | (1) Allowed the secretion of D-arabinose                                                                     |
| 34 | 41 | Rv3628  | ppa     | FP | Multiple pathways         | Functions as inorganic diphosphatase                  | (1) Let the reaction catalyzed by nucleoside triphosphate tripolyhydrolase of deoxy-GTP (dGTP) be reversible |
| 35 | 42 | Rv3588c | Rv3588c | FN | Multiple pathways         | Conversion between carboxylic acid and carbon dioxide | (1) Blocked the ability of <i>Rv3273</i> to catalyze the same reaction                                       |

#### Supplemental Table S2. Synthetic essential gene pair predictions based on iNJ661m and iNJ661v.

Some gene pairs highlighted in color are those involving carbon metabolism (see Supplemental Fig. S1). The different colors refer to the underlying "reason" as to why the gene pairs were found to be essential in *iNJ*661v. Red gene pairs were located in glucose synthesis pathways, blue gene pairs were involved in the synthesis of 3-phospho-glycerate (3pg), and orange gene pairs contained two genes whose gene product catalyzed the same functions. In addition, green gene pairs contained at least one gene related to energy metabolism.

|        | Gene Pairs Only Predicted to Be Essential Using iNJ661v |      |         |      |                                                                                         |  |  |  |  |  |  |  |
|--------|---------------------------------------------------------|------|---------|------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Pair   | Ge                                                      | ne 1 | Ge      | ne 2 | Amatations                                                                              |  |  |  |  |  |  |  |
| Number | Locus                                                   | Name | Locus   | Name | Annotations                                                                             |  |  |  |  |  |  |  |
| 1      | <i>Rv3696c</i>                                          | glpK | Rv1436  | gap  |                                                                                         |  |  |  |  |  |  |  |
| 2      | <i>Rv3696c</i>                                          | glpK | Rv1437  | pgk  |                                                                                         |  |  |  |  |  |  |  |
| 3      | <i>Rv3696c</i>                                          | glpK | Rv0489  | gpm  |                                                                                         |  |  |  |  |  |  |  |
| 4      | <i>Rv3696c</i>                                          | glpK | Rv1023  | eno  |                                                                                         |  |  |  |  |  |  |  |
| 5      | <i>Rv3696c</i>                                          | glpK | Rv1098c | fum  |                                                                                         |  |  |  |  |  |  |  |
| 6      | Rv3696c                                                 | glpK | Rv1438  | tpi  | The gene <i>glpK</i> was necessary for the synthesis of glucose from glycerol.          |  |  |  |  |  |  |  |
| 7      | Rv3696c                                                 | glpK | Rv1837c | glcB | The genes gap, pgk, gpm, eno, fum, and glcB were necessary for the synthesis of glucose |  |  |  |  |  |  |  |
| 8      | Rv1438                                                  | tpi  | Rv1436  | дар  | from fatty acids.                                                                       |  |  |  |  |  |  |  |
| 9      | Rv1438                                                  | tpi  | Rv1437  | pgk  | The gene <i>tpi</i> was required in each pathway.                                       |  |  |  |  |  |  |  |
| 10     | Rv1438                                                  | tpi  | Rv0489  | gpm  |                                                                                         |  |  |  |  |  |  |  |
| 11     | <i>Rv1438</i>                                           | tpi  | Rv1023  | eno  |                                                                                         |  |  |  |  |  |  |  |
| 12     | Rv1438                                                  | tpi  | Rv1098c | fum  |                                                                                         |  |  |  |  |  |  |  |
| 13     | Rv1438                                                  | tpi  | Rv1837c | glcB |                                                                                         |  |  |  |  |  |  |  |

| 14 | Rv1837c | glcB    | Rv1436  | gap   |                                                                                                                                                                          |
|----|---------|---------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | Rv1837c | glcB    | Rv1437  | pgk   | The genes <i>fum</i> and <i>glcB</i> were necessary for the synthesis of 3pg, a precursor for serine                                                                     |
| 16 | Rv1098c | fum     | Rv1436  | gap   | synthesis, from fatty acids.  The genes <i>gap</i> and <i>pgk</i> were necessary for the synthesis of 3pg from glycerol.                                                 |
| 17 | Rv1098c | fum     | Rv1437  | pgk   |                                                                                                                                                                          |
| 18 | Rv0066c | icd2    | Rv3339c | icd1  | The products of both genes catalyzed the conversion from isocitrate to α-ketoglutarate.                                                                                  |
| 19 | Rv2476c | Rv2476c | Rv3858c | gltD  | $Rv2476c$ was necessary for a reaction converting $\alpha$ -ketoglutarate into glutamate.                                                                                |
| 20 | Rv2476c | Rv2476c | Rv3859c | gltB  | The genes $gltB$ and $gltD$ were necessary for another reaction converting $\alpha$ -ketoglutarate into glutamate.                                                       |
| 21 | Rv0468  | fadB2   | Rv1715  | fadB3 | Either $fadB2$ or $fadB3$ was necessary for the $\beta$ -oxidation of fatty acids.                                                                                       |
| 22 | Rv1552  | frdA    | Rv3316  | sdhC  |                                                                                                                                                                          |
| 23 | Rv1553  | frdB    | Rv3316  | sdhC  |                                                                                                                                                                          |
| 24 | Rv1554  | frdC    | Rv3316  | sdhC  |                                                                                                                                                                          |
| 25 | Rv1555  | frdD    | Rv3316  | sdhC  |                                                                                                                                                                          |
| 26 | Rv1552  | frdA    | Rv3317  | sdhD  |                                                                                                                                                                          |
| 27 | Rv1553  | frdB    | Rv3317  | sdhD  | The products of both <i>frdA-frdD</i> and <i>sdhA-sdhD</i> catalyzed the conversion between                                                                              |
| 28 | Rv1554  | frdC    | Rv3317  | sdhD  | succinate and fumarate. Alternative genes, $Rv0247c$ and $Rv0248c$ , could play the same role as $sdhB$ ; hence, it was not included in the listed essential gene pairs. |
| 29 | Rv1555  | frdD    | Rv3317  | sdhD  | β r                                                                                                                                                                      |
| 30 | Rv1552  | frdA    | Rv3318  | sdhA  |                                                                                                                                                                          |
| 31 | Rv1553  | frdB    | Rv3318  | sdhA  |                                                                                                                                                                          |
| 32 | Rv1554  | frdC    | Rv3318  | sdhA  |                                                                                                                                                                          |
| 33 | Rv1555  | frdD    | Rv3318  | sdhA  |                                                                                                                                                                          |

| 34 | Rv1161         | narG  | Rv1620c | cydC |                                                                                                 |
|----|----------------|-------|---------|------|-------------------------------------------------------------------------------------------------|
| 35 | Rv1162         | narH  | Rv1620c | cydC |                                                                                                 |
| 36 | Rv1163         | narJ  | Rv1620c | cydC |                                                                                                 |
| 37 | Rv1164         | narI  | Rv1620c | cydC |                                                                                                 |
| 38 | <i>Rv1737c</i> | narK2 | Rv1620c | cydC |                                                                                                 |
| 39 | Rv1161         | narG  | Rv1621c | cydD |                                                                                                 |
| 40 | Rv1162         | narH  | Rv1621c | cydD |                                                                                                 |
| 41 | Rv1163         | narJ  | Rv1621c | cydD |                                                                                                 |
| 42 | Rv1164         | narI  | Rv1621c | cydD | The genes <i>narG-narJ</i> and <i>narK2</i> were necessary components of the electron transport |
| 43 | <i>Rv1737c</i> | narK2 | Rv1621c | cydD | chain when nitrate was used to oxidize reduced NADH and FADH2.                                  |
| 44 | Rv1161         | narG  | Rv1622c | cydB | The genes $cydB$ - $cydD$ and $appC$ were necessary for the electron transport chain when $O_2$ |
| 45 | Rv1162         | narH  | Rv1622c | cydB | was used to oxidize NADH and FADH2.                                                             |
| 46 | Rv1163         | narJ  | Rv1622c | cydB |                                                                                                 |
| 47 | Rv1164         | narI  | Rv1622c | cydB |                                                                                                 |
| 48 | <i>Rv1737c</i> | narK2 | Rv1622c | cydB |                                                                                                 |
| 49 | Rv1161         | narG  | Rv1623c | аррС |                                                                                                 |
| 50 | Rv1162         | narH  | Rv1623c | аррС |                                                                                                 |
| 51 | Rv1163         | narJ  | Rv1623c | аррС |                                                                                                 |
| 52 | Rv1164         | narI  | Rv1623c | аррС |                                                                                                 |
| 53 | <i>Rv1737c</i> | narK2 | Rv1623c | аррС |                                                                                                 |
| 54 | Rv1161         | narG  | Rv1304  | atpB |                                                                                                 |
| 55 | Rv1161         | narG  | Rv1305  | atpE | The genes <i>narG-narJ</i> and <i>narK2</i> were necessary components of the electron transport |
| 56 | Rv1161         | narG  | Rv1306  | atpF | chain when nitrate was used to oxidize reduced NADH and FADH2.                                  |
| 57 | Rv1161         | narG  | Rv1307  | atpH | The gene products of <i>atpA-atpH</i> catalyzed synthesis of ATP.                               |
| 58 | Rv1161         | narG  | Rv1308  | atpA |                                                                                                 |

| 59         | Rv1161 | narG | Rv1309 | atpG |
|------------|--------|------|--------|------|
| 60         | Rv1161 | narG | Rv1310 | atpD |
| 61         | Rv1161 | narG | Rv1311 | atpC |
| 62         | Rv1162 | narH | Rv1304 | atpB |
| 63         | Rv1162 | narH | Rv1305 | atpE |
| 64         | Rv1162 | narH | Rv1306 | atpF |
| 65         | Rv1162 | narH | Rv1307 | atpH |
| 66         | Rv1162 | narH | Rv1308 | atpA |
| 67         | Rv1162 | narH | Rv1309 | atpG |
| 68         | Rv1162 | narH | Rv1310 | atpD |
| 69         | Rv1162 | narH | Rv1311 | atpC |
| 70         | Rv1163 | narJ | Rv1304 | atpB |
| 71         | Rv1163 | narJ | Rv1305 | atpE |
| 72         | Rv1163 | narJ | Rv1306 | atpF |
| 73         | Rv1163 | narJ | Rv1307 | atpH |
| 74         | Rv1163 | narJ | Rv1308 | atpA |
| 75         | Rv1163 | narJ | Rv1309 | atpG |
| 76         | Rv1163 | narJ | Rv1310 | atpD |
| 77         | Rv1163 | narJ | Rv1311 | atpC |
| <i>78</i>  | Rv1164 | narI | Rv1304 | atpB |
| <i>7</i> 9 | Rv1164 | narI | Rv1305 | atpE |
| 80         | Rv1164 | narI | Rv1306 | atpF |
| 81         | Rv1164 | narI | Rv1307 | atpH |
| 82         | Rv1164 | narI | Rv1308 | atpA |
| 83         | Rv1164 | narI | Rv1309 | atpG |
| 84         | Rv1164 | narI | Rv1310 | atpD |

The genes *narG-narJ* and *narK2* were necessary components of the electron transport chain when nitrate was used to oxidize reduced NADH and FADH2. The gene products of *atpA-atpH* catalyzed synthesis of ATP.

| 85  | Rv1164         | narI   | Rv1311 | atpC |                                                                                                                                                         |
|-----|----------------|--------|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86  | Rv1737c        | narK2  | Rv1304 | atpB |                                                                                                                                                         |
| 87  | Rv1737c        | narK2  | Rv1305 | atpE |                                                                                                                                                         |
| 88  | Rv1737c        | narK2  | Rv1306 | atpF | The genes <i>narG-narJ</i> and <i>narK2</i> were necessary components of the electron transport                                                         |
| 89  | Rv1737c        | narK2  | Rv1307 | atpH | chain when nitrate was used to oxidize reduced NADH and FADH2.                                                                                          |
| 90  | Rv1737c        | narK2  | Rv1308 | atpA | The gene products of <i>atpA-atpH</i> catalyzed synthesis of ATP.                                                                                       |
| 91  | Rv1737c        | narK2  | Rv1309 | atpG |                                                                                                                                                         |
| 92  | <i>Rv1737c</i> | narK2  | Rv1310 | atpD |                                                                                                                                                         |
| 93  | Rv1737c        | narK2  | Rv1311 | atpC |                                                                                                                                                         |
| 94  | Rv0191         | Rv0191 | Rv1304 | atpB |                                                                                                                                                         |
| 95  | Rv0191         | Rv0191 | Rv1305 | atpE |                                                                                                                                                         |
| 96  | Rv0191         | Rv0191 | Rv1306 | atpF |                                                                                                                                                         |
| 97  | Rv0191         | Rv0191 | Rv1307 | atpH |                                                                                                                                                         |
| 98  | Rv0191         | Rv0191 | Rv1308 | atpA |                                                                                                                                                         |
| 99  | Rv0191         | Rv0191 | Rv1309 | atpG |                                                                                                                                                         |
| 100 | Rv0191         | Rv0191 | Rv1310 | atpD | The gene products of <i>atpA-atpH</i> catalyzed synthesis of ATP.                                                                                       |
| 101 | Rv0191         | Rv0191 | Rv1311 | atpC | The gene product of $Rv0191$ transported lactate out of the cell.  The gene product of $nanT$ transported lactate and pyruvate into or out of the cell. |
| 102 | Rv1902c        | nanT   | Rv1304 | atpB | We noted that each of the gene pairs (94-109) involved one gene in <i>atpA-atpH</i> (ATP                                                                |
| 103 | Rv1902c        | nanT   | Rv1305 | atpE | synthesis). Therefore, we considered these gene pairs to be related to energy metabolism.                                                               |
| 104 | Rv1902c        | nanT   | Rv1306 | atpF |                                                                                                                                                         |
| 105 | Rv1902c        | nanT   | Rv1307 | atpH |                                                                                                                                                         |
| 106 | Rv1902c        | nanT   | Rv1308 | atpA |                                                                                                                                                         |
| 107 | Rv1902c        | nanT   | Rv1309 | atpG |                                                                                                                                                         |
| 108 | Rv1902c        | nanT   | Rv1310 | atpD |                                                                                                                                                         |
| 109 | Rv1902c        | nanT   | Rv1311 | atpC |                                                                                                                                                         |

| 110 | Rv2920c | amt  | Rv2391  | nirA  |                                                                                                                                                                       |
|-----|---------|------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 111 | Rv2920c | amt  | Rv0252  | nirB  |                                                                                                                                                                       |
| 112 | Rv2920c | amt  | Rv0253  | nirD  |                                                                                                                                                                       |
| 113 | Rv2920c | amt  | Rv1161  | narG  | The gene product of <i>amt</i> transported NH <sub>4</sub> <sup>+</sup> into the cell.                                                                                |
| 114 | Rv2920c | amt  | Rv1162  | narH  | The gene products of <i>nirA</i> , <i>nirB</i> , <i>nirD</i> , <i>narG-narJ</i> , and <i>narK2</i> were necessary for the synthesis of NH <sub>4</sub> <sup>+</sup> . |
| 115 | Rv2920c | amt  | Rv1163  | narJ  |                                                                                                                                                                       |
| 116 | Rv2920c | amt  | Rv1164  | narI  |                                                                                                                                                                       |
| 117 | Rv2920c | amt  | Rv1737c | narK2 |                                                                                                                                                                       |
| 118 | Rv1699  | pyrG | Rv1712  | cmk   | The gene product of $pyrG$ was necessary for the synthesis of CTP from UTP.<br>The gene product of $cmk$ was necessary for the synthesis of CTP from cytidine.        |
| 119 | Rv1098c | fum  | Rv2465c | rpi   | fum encoded fumarase, and was part of citric acid cycle.  rpi encoded ribose-5-phosphate isomerise.                                                                   |
| 120 | Rv2465c | rpi  | Rv1408  | rpe   | rpe, tal, and rpi encoded ribulose 5-phosphate 3-epimerase, transaldolase, and ribose-5-                                                                              |
| 121 | Rv2465c | rpi  | Rv1448c | tal   | phosphate isomerise, respectively. The three genes were part of pentose phosphate pathway.                                                                            |
| 122 | Rv2465c | rpi  | Rv1837c | glcB  | glcB encoded malate synthase, and was part of glyoxylate cycle.                                                                                                       |
| 123 | Rv2436  | rbsK | Rv3393  | iunH  | <i>rbsK</i> and <i>iunH</i> encoded ribokinase and inosine hydrolase, respectively, and were part of nucleotide metabolism.                                           |
| 124 | Rv2344c | dgt  | Rv3628  | ppa   | <i>dgt</i> encoded nucleoside triphosphate tripolyhydrolase. <i>ppa</i> encoded inorganic diphosphatase.                                                              |
| 125 | Rv0533c | fabH | Rv1350  | fabG2 |                                                                                                                                                                       |
| 126 | Rv0533c | fabH | Rv1484  | inhA  | fabH fabC2 inhA fac and phal5 anaded analysis for the synthesis of tatradeconasts                                                                                     |
| 127 | Rv0533c | fabH | Rv2524c | fas   | fabH, fabG2, inhA, fas, and pks15 encoded enzymes for the synthesis of tetradecanoate.                                                                                |
| 128 | Rv0533c | fabH | Rv2947c | pks15 |                                                                                                                                                                       |

| 129 | Rv2139 | pyrD | Rv3316 | sdhC |                                                                                                                                                                  |
|-----|--------|------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130 | Rv2139 | pyrD | Rv3317 | sdhD | pyrD encoded dihydroorotic acid dehydrogenase, and was part of pyrimidine metabolism. sdhA, sdhC, and sdhD encoded succinate dehydrogenase in citric acid cycle. |
| 131 | Rv2139 | pyrD | Rv3318 | sdhA | includonsin. sara i, sarre, and sarre encoded succinate denyarogenase in entre acid eyele.                                                                       |

# Gene Pairs Only Predicted to Be Essential Using iNJ661m

| Pair   | Gene 1 |      | Gene 2  |         | Annotations                                                                                                                                 |
|--------|--------|------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Number | Locus  | Name | Locus   | Name    |                                                                                                                                             |
| 1      | Rv1236 | sugA | Rv0946c | pgi     |                                                                                                                                             |
| 2      | Rv1237 | sugB | Rv0946c | pgi     |                                                                                                                                             |
| 3      | Rv1238 | sugC | Rv0946c | pgi     |                                                                                                                                             |
| 4      | Rv1236 | sugA | Rv1099c | Rv1099c |                                                                                                                                             |
| 5      | Rv1237 | sugB | Rv1099c | Rv1099c | The genes $sugA$ - $sugC$ were necessary for glucose uptake.  The genes $pgi$ , $Rv1099c$ , and $fba$ were necessary for glucose synthesis. |
| 6      | Rv1238 | sugC | Rv1099c | Rv1099c | The genes pgi, RV1055c, and jou were necessary for glucose syndresis.                                                                       |
| 7      | Rv1236 | sugA | Rv0363c | fba     |                                                                                                                                             |
| 8      | Rv1237 | sugB | Rv0363c | fba     |                                                                                                                                             |
| 9      | Rv1238 | sugC | Rv0363c | fba     |                                                                                                                                             |
| 10     | Rv1436 | gap  | Rv1304  | atpB    |                                                                                                                                             |
| 11     | Rv1437 | pgk  | Rv1304  | atpB    |                                                                                                                                             |
| 12     | Rv1438 | tpi  | Rv1304  | atpB    | The genes <i>gap</i> , <i>pgk</i> , and <i>tpi</i> were in the glycolysis pathway that synthesized ATP.                                     |
| 13     | Rv1436 | gap  | Rv1305  | atpE    | The gene products of <i>atpA-atpH</i> synthesized ATP from ADP and extracellular H <sup>+</sup> .                                           |
| 14     | Rv1437 | pgk  | Rv1305  | atpE    |                                                                                                                                             |
| 15     | Rv1438 | tpi  | Rv1305  | atpE    |                                                                                                                                             |

| 16 | Rv1436  | gap   | Rv1306  | atpF    |                                                                                                                                           |  |  |  |  |
|----|---------|-------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 17 | Rv1437  | pgk   | Rv1306  | atpF    |                                                                                                                                           |  |  |  |  |
| 18 | Rv1438  | tpi   | Rv1306  | atpF    | The genes <i>gap</i> , <i>pgk</i> , and <i>tpi</i> were in the glycolysis pathway that synthesized ATP.                                   |  |  |  |  |
| 19 | Rv1436  | gap   | Rv1307  | atpH    | The gene products of <i>atpA-atpH</i> synthesized ATP from ADP and extracellular H <sup>+</sup> .                                         |  |  |  |  |
| 20 | Rv1437  | pgk   | Rv1307  | atpH    |                                                                                                                                           |  |  |  |  |
| 21 | Rv1438  | tpi   | Rv1307  | atpH    |                                                                                                                                           |  |  |  |  |
| 22 | Rv1436  | gap   | Rv1308  | atpA    |                                                                                                                                           |  |  |  |  |
| 23 | Rv1437  | pgk   | Rv1308  | atpA    |                                                                                                                                           |  |  |  |  |
| 24 | Rv1438  | tpi   | Rv1308  | atpA    |                                                                                                                                           |  |  |  |  |
| 25 | Rv1436  | gap   | Rv1309  | atpG    |                                                                                                                                           |  |  |  |  |
| 26 | Rv1437  | pgk   | Rv1309  | atpG    |                                                                                                                                           |  |  |  |  |
| 27 | Rv1438  | tpi   | Rv1309  | atpG    | The genes <i>gap</i> , <i>pgk</i> , and <i>tpi</i> were in the glycolysis pathway that synthesized ATP.                                   |  |  |  |  |
| 28 | Rv1436  | gap   | Rv1310  | atpD    | The gene products of <i>atpA-atpH</i> synthesized ATP from ADP and extracellular H <sup>+</sup> .                                         |  |  |  |  |
| 29 | Rv1437  | pgk   | Rv1310  | atpD    |                                                                                                                                           |  |  |  |  |
| 30 | Rv1438  | tpi   | Rv1310  | atpD    |                                                                                                                                           |  |  |  |  |
| 31 | Rv1436  | gap   | Rv1311  | atpC    |                                                                                                                                           |  |  |  |  |
| 32 | Rv1437  | pgk   | Rv1311  | atpC    |                                                                                                                                           |  |  |  |  |
| 33 | Rv1438  | tpi   | Rv1311  | atpC    |                                                                                                                                           |  |  |  |  |
| 34 | Rv3236c | kefB  | Rv1029  | kdpA    |                                                                                                                                           |  |  |  |  |
| 35 | Rv3236c | kefB  | Rv1030  | kdpB    | The gene product of <i>kefB</i> transported potassium into the cell.                                                                      |  |  |  |  |
| 36 | Rv3236c | kefB  | Rv1031  | kdpC    | The gene products of <i>kdpA-kdpC</i> also transported potassium into the cell.                                                           |  |  |  |  |
| 37 | Rv3236c | kefB  | Rv2287  | yjcE    | The gene product of <i>kefB</i> transported sodium into the cell.  The gene product of <i>yjcE</i> also transported sodium into the cell. |  |  |  |  |
| 38 | Rv3042  | serB2 | Rv0505c | serB    | The gene products of both <i>serB</i> and <i>serB2</i> converted phosphoserine into serine.                                               |  |  |  |  |
| 39 | Rv2483c | plsC  | Rv2182c | Rv2182c | The products of both genes catalyzed the synthesis of 1,2-diacyl- <i>sn</i> -glycerol 3-phosphate (a phospholipid).                       |  |  |  |  |

| 40 | Rv1483  | fabG1   | Rv0098  | Rv0098 | The products of both genes catalyzed the synthesis of mycolic acid.                                                                                              |
|----|---------|---------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41 | Rv3588c | Rv3588c | Rv3273  | Rv3273 | Two enzymes from these two genes catalyzed the synthesis or degradation of H <sub>2</sub> CO <sub>3</sub> .                                                      |
| 42 | Rv3307  | deoD    | Rv3624c | hpt    | The genes <i>deoD</i> and <i>hpt</i> encoded purine-nucleoside phosphorylase and hypoxanthine phosphoribosyltransferase, respectively, during purine metabolism. |
| 43 | Rv3356c | folD    | Rv2945c | lppX   | Available biological and metabolic information is incomplete.                                                                                                    |

# Gene Pairs Predicted to Be Essential in both iNJ661m and iNJ661v

| Pair   | Ge      | ne 1    | Ge      | ne 2    | Annotations                                                                                                               |  |
|--------|---------|---------|---------|---------|---------------------------------------------------------------------------------------------------------------------------|--|
| Number | Locus   | Name    | Locus   | Name    |                                                                                                                           |  |
| 1      | Rv0070c | glyA2   | Rv1093  | glyA    | Both gene products functioned as glycine hydroxymethyltransferases during amino acid metabolism.                          |  |
| 2      | Rv1295  | thrC    | Rv1559  | ilvA    | The genes <i>thrC</i> , <i>thrB</i> , and <i>ilvA</i> encoded threonine synthase, homoserine kinase, and                  |  |
| 3      | Rv1296  | thrB    | Rv1559  | ilvA    | threonine deaminase, respectively, and were part of different amino acid metabolism pathways.                             |  |
| 4      | Rv1001  | arcA    | Rv1658  | argG    | The genes arcA, argG, and argH encoded arginine deiminase, argininosuccinate                                              |  |
| 5      | Rv1001  | arcA    | Rv1659  | argH    | synthase, and argininosuccinate lyase, respectively, and were part of different amino acid metabolism pathways.           |  |
| 6      | Rv2321c | rocD2   | Rv2427c | proA    | The products of read and read functioned together as emithing transaminess during                                         |  |
| 7      | Rv2322c | rocD1   | Rv2427c | proA    | The products of <i>rocD1</i> and <i>rocD2</i> functioned together as ornithine transaminase during amino acid metabolism. |  |
| 8      | Rv2321c | rocD2   | Rv2439c | proB    | The genes <i>proA</i> and <i>proB</i> encoded glutamate-5-semialdehyde dehydrogenase and                                  |  |
| 9      | Rv2322c | rocD1   | Rv2439c | proB    | glutamate-5-kinase, respectively, and were part of the urea cycle.                                                        |  |
| 10     | Rv1609  | trpE    | Rv2859c | Rv2859c | Both gene products functioned as anthranilate synthases during amino acid metabolism.                                     |  |
| 11     | Rv0728c | Rv0728c | Rv2996c | serA    | Both gene products functioned as phosphoglycerate dehydrogenases during amino acid metabolism.                            |  |
| 12     | Rv0337c | aspC    | Rv3565  | aspB    | Both gene products functioned as aspartate transaminases during amino acid metabolism.                                    |  |

| 13 | Rv0389  | purT    | Rv0956  | purN   | Both gene products functioned as the enzyme of phosphoribosylglycinamide formyltransferases during purine metabolism.                                                                                            |  |  |  |  |
|----|---------|---------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 14 | Rv0808  | purF    | Rv1602  | hisH   | Both gene products functioned as glutamine phosphoribosyldiphosphate amidotransferases during purine metabolism.                                                                                                 |  |  |  |  |
| 15 | Rv2754c | Rv2754c | Rv2764c | thyA   | Both gene products functioned as thymidylate synthases during pyrimidine metabolism.                                                                                                                             |  |  |  |  |
| 16 | Rv1712  | cmk     | Rv2883c | pyrH   | The gene <i>cmk</i> encoded cytidylate kinase and uridine monophosphate kinase during pyrimidine metabolism. The gene <i>pyrH</i> encoded uridylate kinase, which was active during nucleotide sugar metabolism. |  |  |  |  |
| 17 | Rv0295c | Rv0295c | Rv1373  | Rv1373 | Both gene products functioned as trehalose sulfotransferases during membrane metabolism.                                                                                                                         |  |  |  |  |
| 18 | Rv0489  | gpm     | Rv1436  | gap    | The genes <i>gpm</i> and <i>eno</i> encoded phosphoglycerate mutase and enolase, respectively, and                                                                                                               |  |  |  |  |
| 19 | Rv1023  | eno     | Rv1436  | gap    | were part of glycolysis/gluconeogenesis.                                                                                                                                                                         |  |  |  |  |
| 20 | Rv0489  | gpm     | Rv1437  | pgk    | The genes gap and pgk encoded glyceraldehyde-3-phosphate dehydrogenase and                                                                                                                                       |  |  |  |  |
| 21 | Rv1023  | eno     | Rv1437  | pgk    | phosphoglycerate kinase, respectively, were part of glycolysis/gluconeogenesis.                                                                                                                                  |  |  |  |  |
| 22 | Rv1408  | rpe     | Rv1445c | devB   | The genes <i>rpe</i> , <i>devB</i> , and <i>tal</i> encoded ribulose-5-phosphate 3-epimerase, 6-phosphogluconolactonase, and transaldolase, respectively, in the pentose phosphate                               |  |  |  |  |
| 23 | Rv1408  | rpe     | Rv1448c | tal    | pathway.                                                                                                                                                                                                         |  |  |  |  |
| 24 | Rv0112  | gca     | Rv1511  | gmdA   | Both gene products functioned as guanosine diphosphate-mannose dehydratases during sugar metabolism.                                                                                                             |  |  |  |  |
| 25 | Rv1739c | Rv1739c | Rv2397c | cysA   |                                                                                                                                                                                                                  |  |  |  |  |
| 26 | Rv1739c | Rv1739c | Rv2398c | cysW   | The gene product of $Rv1739c$ transported sulfate from environment.                                                                                                                                              |  |  |  |  |
| 27 | Rv1739c | Rv1739c | Rv2399c | cysT   | The products of <i>cysA</i> , <i>cysW</i> , <i>cysT</i> , and <i>subI</i> functioned together as another sulfate transporter.                                                                                    |  |  |  |  |
| 28 | Rv1739c | Rv1739c | Rv2400c | subI   | dansporter.                                                                                                                                                                                                      |  |  |  |  |
| 29 | Rv1604  | impA    | Rv2701c | suhB   | Both gene products functioned as myo-inositol 1-phosphatases during fatty acid metabolism.                                                                                                                       |  |  |  |  |
| 30 | Rv1822  | pgsA2   | Rv2746c | pgsA3  | Both gene products functioned as phosphatidylglycerol synthases during fatty acid metabolism and membrane metabolism.                                                                                            |  |  |  |  |

| 31 | Rv0649  | fadD37 | Rv2243  | fabD    | Both gene products functioned as malonyl-CoA-ACP transacylases during fatty acid metabolism.                      |
|----|---------|--------|---------|---------|-------------------------------------------------------------------------------------------------------------------|
| 32 | Rv1529  | fadD24 | Rv3826  | fadD23  | Both gene products functioned as fatty-acid-CoA ligases during fatty acid metabolism.                             |
| 33 | Rv0904c | accD3  | Rv3281  | accE5   | Both gene products were involved in the conversion between acetyl-CoA and malonyl-CoA during pyruvate metabolism. |
| 34 | Rv2682c | dxs    | Rv3379c | Rv3379c | Both gene products functioned as 1-deoxy-xylulose 5-phosphate synthases during polyprenyl metabolism.             |
| 35 | Rv1207  | folP2  | Rv3608c | folP    | Both gene products functioned as dihydropteroate synthases during vitamin and cofactor metabolism.                |

## Supplemental Table S3. Comparison of predicted gene essentiality using *iNJ*661v at different time points post-infection.

A true positive (TP) prediction refers to a gene correctly predicted to be essential, whereas a false negative (FN) prediction refers to a gene incorrectly predicted to be essential. A false positive (FP) prediction refers to a gene incorrectly predicted to be essential, whereas a true negative (TN) prediction refers to a gene correctly predicted to be non-essential. Sensitivity = TP/(TP + FN). Specificity = TN/(TN + FP). Matthews correlation coefficient =  $(TP \times TN - FP \times FN)/[(TP + FP)(TP + FN)(TN + FP)(TN + FN)]^{1/2}$ .

| Network         | Time Points           |           | Numb | er of Gene Ess | entiality Predi |     |             | Matthews    |                         |
|-----------------|-----------------------|-----------|------|----------------|-----------------|-----|-------------|-------------|-------------------------|
|                 | Post-Infection (week) | Threshold | TP   | FN             | FP              | TN  | Sensitivity | Specificity | Correlation Coefficient |
|                 | 1                     |           | 13   | 2              | 67              | 293 | 0.87        | 0.81        | 0.33                    |
| <i>iNJ</i> 661v | 2                     | ≤0.2      | 15   | 1              | 65              | 294 | 0.94        | 0.82        | 0.37                    |
| 11VJ001V        | 4                     | ≥0.2      | 17   | 3              | 63              | 292 | 0.85        | 0.82        | 0.37                    |
|                 | 8                     |           | 16   | 2              | 64              | 293 | 0.89        | 0.82        | 0.37                    |



**Supplemental Figure S1** 

# Supplemental Figure S1. Mapping of synthetic essential gene pairs in *iNJ*661v to carbon metabolism-related pathways.

Arrows indicate metabolic reactions. Text without frames represents metabolites, text within a rectangular frame indicates material obtained from the host environment, and text within a hexagonal frame represents a gene. Genes marked with one or more colors belong to one or more predicted essential gene pairs. The colors indicate the underlying "reason" as to why the gene pairs were found to be essential in *iNJ*661v as shown in Supplemental Table 2.