

BSM307 İşaretler ve Sistemler

Dr. Seçkin Arı

Konvolüsyon

İçerik

- Temel Sistem Özellikleri
- Doğrusal Zamanla Değişmez Sistemler
- Birim Darbe Cevabi

• $x[n] = \alpha^n u[n]$

• $x[n] = \alpha^n u[n]$

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]
- y[n] = ?

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]
- y[n] = x[n] * h[n]

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]
- y[n] = x[n] * h[n]
- n < 0 iken

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]
- y[n] = x[n] * h[n]
- n < 0 iken
 - ♦ Çakışma yok
- y[n] = 0

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]
- y[n] = x[n] * h[n]
- $n \ge 0$ iken

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]
- y[n] = x[n] * h[n]
- $n \ge 0$ iken
 - ♦ Çakışma 0-n arası
- $y[n] = \sum_{k=0}^{n} \alpha^k \cdot 1$
- y[n] =

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]
- y[n] = x[n] * h[n]
- $n \ge 0$ iken
 - ♦ Çakışma 0-n arası
- $y[n] = \sum_{k=0}^{n} \alpha^k \cdot 1$
- $\bullet \ y[n] = \frac{1 \alpha^{n+1}}{1 \alpha}$

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]

- n < 0 iken y[n] = 0
- $n \ge 0$ iken $y[n] = \frac{1-\alpha^{n+1}}{1-\alpha}$

- $x[n] = \alpha^n u[n]$
- h[n] = u[n]

- n < 0 iken y[n] = 0
- $n \ge 0$ iken $y[n] = \frac{1-\alpha^{n+1}}{1-\alpha}$

• $y[n] = \frac{1-\alpha^{n+1}}{1-\alpha}u[n]$

•
$$x[n] = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{diğer} \end{cases}$$

•
$$h[n] = \begin{cases} \alpha^n, & 0 \le n \le 6 \\ 0, & \text{diğer} \end{cases}$$

•
$$y[n] = ?$$

•
$$x[n] = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{diğer} \end{cases}$$

•
$$h[n] = \begin{cases} \alpha^n, & 0 \le n \le 6 \\ 0, & \text{diğer} \end{cases}$$

•
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

• n < 0 iken

•
$$x[n] = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{diğer} \end{cases}$$

•
$$h[n] = \begin{cases} \alpha^n, & 0 \le n \le 6 \\ 0, & \text{diğer} \end{cases}$$

•
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- n < 0 iken
 - ♦ Çakışma yok
- y[n] = 0

• $0 \le n \le 4$ iken

- $0 \le n \le 4$ iken
 - ♦ Çakışma,

- $0 \le n \le 4$ iken
 - ♦ Çakışma, 0-n arası

•
$$y[n] = \sum_{k=0}^{n} x[k]h[n-k]$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^{n-k}$$

- $0 \le n \le 4$ iken
 - ♦ Çakışma, 0-n arası

•
$$y[n] = \sum_{k=0}^{n} x[k]h[n-k]$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^{n-k}$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^n \alpha^{-k}$$

- $0 \le n \le 4$ iken
 - ♦ Çakışma, 0-n arası

•
$$y[n] = \sum_{k=0}^{n} x[k]h[n-k]$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^{n-k}$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^n \alpha^{-k}$$

•
$$y[n] = \alpha^n \sum_{k=0}^n \alpha^{-k}$$

- $0 \le n \le 4$ iken
 - ♦ Çakışma, 0-n arası

•
$$y[n] = \sum_{k=0}^{n} x[k]h[n-k]$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^{n-k}$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^n \alpha^{-k}$$

•
$$y[n] = \alpha^n \sum_{k=0}^n \alpha^{-k}$$

•
$$y[n] = \alpha^n \sum_{k=0}^n \left(\frac{1}{\alpha}\right)^k$$

- $0 \le n \le 4$ iken
 - ♦ Çakışma, 0-n arası

•
$$y[n] = \sum_{k=0}^{n} x[k]h[n-k]$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^{n-k}$$

•
$$y[n] = \sum_{k=0}^{n} 1 \cdot \alpha^n \alpha^{-k}$$

•
$$y[n] = \alpha^n \sum_{k=0}^n \alpha^{-k}$$

•
$$y[n] = \alpha^n \sum_{k=0}^n \left(\frac{1}{\alpha}\right)^k$$

•
$$y[n] = \alpha^n \frac{1 - \left(\frac{1}{\alpha}\right)^{n+1}}{1 - \frac{1}{\alpha}}$$

• $4 < n \le 6$ iken

- $4 < n \le 6$ iken
 - ◆ Çakışma,

- $4 < n \le 6$ iken
 - ♦ Çakışma, 0-4 arası
- $y[n] = \sum_{k=0}^{4} x[k]h[n-k]$

- $4 < n \le 6$ iken
 - ♦ Çakışma, 0-4 arası

•
$$y[n] = \sum_{k=0}^{4} x[k]h[n-k]$$

•
$$y[n] = \alpha^n \sum_{k=0}^4 \alpha^{-k}$$

- $4 < n \le 6$ iken
 - ♦ Çakışma, 0-4 arası

•
$$y[n] = \sum_{k=0}^{4} x[k]h[n-k]$$

•
$$y[n] = \alpha^n \sum_{k=0}^4 \alpha^{-k}$$

•
$$y[n] = \alpha^n \frac{1 - \left(\frac{1}{\alpha}\right)^5}{1 - \frac{1}{\alpha}}$$

• $6 < n \le 10$ iken

- $6 < n \le 10$ iken
 - ◆ Çakışma,

- $6 < n \le 10$ iken
 - ♦ Çakışma, n-6 4 arası

- $6 < n \le 10$ iken
 - ◆ Çakışma, n-6 4 arası
- $y[n] = \sum_{k=n-6}^{4} x[k]h[n-k]$

- $6 < n \le 10$ iken
 - ♦ Çakışma, n-6 4 arası
- $y[n] = \sum_{k=n-6}^{4} x[k]h[n-k]$
- $y[n] = \alpha^n \sum_{k=n-6}^4 \alpha^{-k}$
 - $\bullet l = k n + 6$

- $6 < n \le 10$ iken
 - ◆ Çakışma, n-6 4 arası

•
$$y[n] = \sum_{k=n-6}^{4} x[k]h[n-k]$$

•
$$y[n] = \alpha^n \sum_{k=n-6}^4 \alpha^{-k}$$

$$\bullet l = k - n + 6$$

•
$$y[n] = \alpha^n \sum_{l=0}^{10-n} \alpha^{-l-n+6}$$

- $6 < n \le 10$ iken
 - ◆ Çakışma, n-6 4 arası

•
$$y[n] = \sum_{k=n-6}^{4} x[k]h[n-k]$$

•
$$y[n] = \alpha^n \sum_{k=n-6}^4 \alpha^{-k}$$

$$\bullet l = k - n + 6$$

•
$$y[n] = \alpha^n \sum_{l=0}^{10-n} \alpha^{-l-n+6}$$

•
$$y[n] = \alpha^n \alpha^{-n+6} \sum_{l=0}^{10-n} \alpha^{-l}$$

- $6 < n \le 10$ iken
 - ♦ Çakışma, n-6 4 arası

•
$$y[n] = \sum_{k=n-6}^{4} x[k]h[n-k]$$

•
$$y[n] = \alpha^n \sum_{k=n-6}^4 \alpha^{-k}$$

$$\bullet l = k - n + 6$$

•
$$y[n] = \alpha^n \sum_{l=0}^{10-n} \alpha^{-l-n+6}$$

•
$$y[n] = \alpha^n \alpha^{-n+6} \sum_{l=0}^{10-n} \alpha^{-l}$$

•
$$y[n] = \alpha^6 \frac{1 - \left(\frac{1}{\alpha}\right)^{11 - n}}{1 - \frac{1}{\alpha}}$$

• 10 < n iken

- 10 < n iken
 - ♦ Çakışma yok.

- 10 < n iken
 - ♦ Çakışma yok.
- y[n] = 0

- n < 0 iken y[n] = 0
- $0 \le n \le 4$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}$
- $4 < n \le 6$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^5}{1 \frac{1}{\alpha}}$
- $6 < n \le 10$ iken $y[n] = \alpha^6 \frac{1 \left(\frac{1}{\alpha}\right)^{11 n}}{1 \frac{1}{\alpha}}$
- 10 < n iken y[n] = 0
- y[n] = ?

- n < 0 iken y[n] = 0

- $0 \le n \le 4$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}$ $4 < n \le 6$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^5}{1 \frac{1}{\alpha}}$ $6 < n \le 10$ iken $y[n] = \alpha^6 \frac{1 \left(\frac{1}{\alpha}\right)^{11 n}}{1 \frac{1}{\alpha}}$
- 10 < n iken y[n] = 0
- $y[n] = \left(\alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}\right) \left(\Box \Box \right)$

- n < 0 iken y[n] = 0

- $0 \le n \le 4$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}$ $4 < n \le 6$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^5}{1 \frac{1}{\alpha}}$ $6 < n \le 10$ iken $y[n] = \alpha^6 \frac{1 \left(\frac{1}{\alpha}\right)^{11 n}}{1 \frac{1}{\alpha}}$
- 10 < n iken y[n] = 0
- $y[n] = \left(\alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}\right) \left(u(n) \Box\right)$

- n < 0 iken y[n] = 0
- $0 \le n \le 4$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}$
- $4 < n \le 6$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^5}{1 \frac{1}{\alpha}}$
- $6 < n \le 10 \text{ iken } y[n] = \alpha^6 \frac{1 \left(\frac{1}{\alpha}\right)^{11 n}}{1 \frac{1}{\alpha}}$
- 10 < n iken y[n] = 0
- $y[n] = \left(\alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}\right) \left(u(n) u(n-5)\right) + \left(\alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^5}{1 \frac{1}{\alpha}}\right) ($

- n < 0 iken y[n] = 0
- $0 \le n \le 4$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}$
- $4 < n \le 6$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^5}{1 \frac{1}{\alpha}}$
- $6 < n \le 10 \text{ iken } y[n] = \alpha^6 \frac{1 \left(\frac{1}{\alpha}\right)^{11 n}}{1 \frac{1}{\alpha}}$
- 10 < n iken y[n] = 0

•
$$y[n] = \left(\alpha^n \frac{1 - \left(\frac{1}{\alpha}\right)^{n+1}}{1 - \frac{1}{\alpha}}\right) \left(u(n) - u(n-5)\right) + \left(\alpha^n \frac{1 - \left(\frac{1}{\alpha}\right)^5}{1 - \frac{1}{\alpha}}\right) \left(u(n-5) - u(n-7)\right) + \left(\alpha^6 \frac{1 - \left(\frac{1}{\alpha}\right)^{11-n}}{1 - \frac{1}{\alpha}}\right) (1)$$

- n < 0 iken y[n] = 0
- $0 \le n \le 4$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^{n+1}}{1 \frac{1}{\alpha}}$
- $4 < n \le 6$ iken $y[n] = \alpha^n \frac{1 \left(\frac{1}{\alpha}\right)^5}{1 \frac{1}{\alpha}}$
- $6 < n \le 10 \text{ iken } y[n] = \alpha^6 \frac{1 \left(\frac{1}{\alpha}\right)^{11 n}}{1 \frac{1}{\alpha}}$
- 10 < n iken y[n] = 0

•
$$y[n] = \left(\alpha^{n} \frac{1 - \left(\frac{1}{\alpha}\right)^{n+1}}{1 - \frac{1}{\alpha}}\right) \left(u(n) - u(n-5)\right) + \left(\alpha^{n} \frac{1 - \left(\frac{1}{\alpha}\right)^{5}}{1 - \frac{1}{\alpha}}\right) \left(u(n-5) - u(n-7)\right) + \left(\alpha^{6} \frac{1 - \left(\frac{1}{\alpha}\right)^{11-n}}{1 - \frac{1}{\alpha}}\right) \left(u(n-7) - u(n-11)\right)$$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- y[n] = ?

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken
 - ◆ Çakışma,

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken
 - ◆ Çakışma, -∞ n arası

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken
 - ◆ Çakışma, -∞ n arası
- $y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken
 - ♦ Çakışma, -∞ n arası
- $y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$
- $y[n] = \sum_{k=-\infty}^{n} 2^{k} 1$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken
 - ◆ Çakışma, -∞ n arası
- $y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$
- $y[n] = \sum_{k=-\infty}^{n} 2^k 1$
 - $\bullet l = -k + n$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken
 - ◆ Çakışma, -∞ n arası
- $y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$
- $y[n] = \sum_{k=-\infty}^{n} 2^{k} 1$
 - $\bullet l = -k + n$
- $y[n] = \sum_{l=\infty}^{0} 2^{n-l} 1$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken
 - ◆ Çakışma, -∞ n arası
- $y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$
- $y[n] = \sum_{k=-\infty}^{n} 2^k 1$
 - $\bullet l = -k + n$
- $y[n] = \sum_{l=\infty}^{0} 2^{n-l} 1$
- $y[n] = \sum_{l=0}^{\infty} 2^{n} 2^{-l} 1$

•
$$x[n] = 2^n u[-n]$$

- h[n] = u[n]
- n < 0 iken
 - Çakışma, -∞ n arası

•
$$y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$$

•
$$y[n] = \sum_{k=-\infty}^{n} 2^k 1$$

$$\bullet$$
 $l = -k + n$

•
$$y[n] = \sum_{l=\infty}^{0} 2^{n-l} 1$$

•
$$y[n] = \sum_{l=0}^{\infty} 2^{n} 2^{-l} 1$$

•
$$y[n] = 2^n \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l$$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- *n* < 0 iken

•
$$y[n] = 2^n \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l$$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken

•
$$y[n] = 2^n \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l$$

•
$$y[n] = 2^n \frac{1}{1 - \frac{1}{2}} = 2^{n+1}$$

- $\bullet \ x[n] = 2^n u[-n]$
- h[n] = u[n]
- $n \ge 0$ iken
 - ◆ Çakışma,

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- $n \ge 0$ iken
 - ♦ Çakışma, -∞ 0 arası

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- $n \ge 0$ iken
 - ◆ Çakışma, -∞ 0 arası
- $y[n] = \sum_{k=-\infty}^{0} x[k]h[n-k]$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- $n \ge 0$ iken
 - ◆ Çakışma, -∞ 0 arası
- $y[n] = \sum_{k=-\infty}^{0} x[k]h[n-k]$
- $y[n] = \sum_{k=-\infty}^{0} 2^{k} 1$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- $n \ge 0$ iken
 - ◆ Çakışma, -∞ 0 arası
- $y[n] = \sum_{k=-\infty}^{0} x[k]h[n-k]$
- $\bullet \ y[n] = \sum_{k=-\infty}^{0} 2^k \mathbf{1}$
 - $\bullet l = -k$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- $n \ge 0$ iken
 - ◆ Çakışma, -∞ 0 arası
- $y[n] = \sum_{k=-\infty}^{0} x[k]h[n-k]$
- $\bullet \ y[n] = \sum_{k=-\infty}^{0} 2^k \mathbf{1}$
 - $\bullet l = -k$
- $y[n] = \sum_{l=\infty}^{0} 2^{-l} 1$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- $n \ge 0$ iken
 - ♦ Çakışma, -∞ 0 arası
- $y[n] = \sum_{k=-\infty}^{0} x[k]h[n-k]$
- $\bullet \quad y[n] = \sum_{k=-\infty}^{0} 2^k \mathbf{1}$
 - $\bullet l = -k$
- $y[n] = \sum_{l=\infty}^{0} 2^{-l} 1$
- $y[n] = \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- $n \ge 0$ iken
 - ◆ Çakışma, -∞ 0 arası
- $y[n] = \sum_{k=-\infty}^{0} x[k]h[n-k]$
- $y[n] = \sum_{k=-\infty}^{0} 2^k \mathbf{1}$
 - $\bullet l = -k$
- $y[n] = \sum_{l=\infty}^{0} 2^{-l} 1$
- $y[n] = \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l = \frac{1}{1-\frac{1}{2}} = 2$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]

- n < 0 iken $y[n] = 2^n \frac{1}{1 \frac{1}{2}} = 2^{n+1}$
- $n \ge 0$ iken $y[n] = \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l = \frac{1}{1-\frac{1}{2}} = 2$

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken $y[n] = 2^n \frac{1}{1 \frac{1}{2}} = 2^{n+1}$
- $n \ge 0$ iken $y[n] = \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l = \frac{1}{1-\frac{1}{2}} = 2$
- y[n] =

- $x[n] = 2^n u[-n]$
- h[n] = u[n]
- n < 0 iken $y[n] = 2^n \frac{1}{1 \frac{1}{2}} = 2^{n+1}$
- $n \ge 0$ iken $y[n] = \sum_{l=0}^{\infty} \left(\frac{1}{2}\right)^l = \frac{1}{1-\frac{1}{2}} = 2$
- $y[n] = 2^{n+1}u[-n-1] + 2u[n]$

- Değişme Özelliği
 - $\star x[n] * h[n] = h[n] * x[n]$

- Değişme Özelliği
 - $\star x[n] * h[n] = h[n] * x[n]$
- Dağılma Özelliği

- Değişme Özelliği
 - $\star x[n] * h[n] = h[n] * x[n]$
- Dağılma Özelliği
- Birleşme Özelliği

- Dağılma Özelliği
- y[n] = ?

- Dağılma Özelliği
- y[n] = ?
- $y[n] = y_1[n] + y_2[n]$
- $y_1[n] = ?$
- $y_2[n] = ?$

- Dağılma Özelliği
- y[n] = ?
- $y[n] = y_1[n] + y_2[n]$
- $y_1[n] = x[n] * h_1[n]$
- $y_2[n] = x[n] * h_2[n]$

- Dağılma Özelliği
- y[n] = ?
- $y[n] = y_1[n] + y_2[n]$
- $y_1[n] = x[n] * h_1[n]$
- $y_2[n] = x[n] * h_2[n]$
- $y[n] = x[n] * h_1[n] + x[n] * h_2[n]$

- Dağılma Özelliği
- y[n] = ?
- $y[n] = y_1[n] + y_2[n]$
- $y_1[n] = x[n] * h_1[n]$
- $y_2[n] = x[n] * h_2[n]$
- $y[n] = x[n] * h_1[n] + x[n] * h_2[n]$

- Dağılma Özelliği
- y[n] = ?
- $y[n] = y_1[n] + y_2[n]$
- $y_1[n] = x[n] * h_1[n]$
- $y_2[n] = x[n] * h_2[n]$
- $y[n] = x[n] * h_1[n] + x[n] * h_2[n]$
- y[n] =
- h[n] = ?

- Dağılma Özelliği
- y[n] = ?
- $y[n] = y_1[n] + y_2[n]$
- $y_1[n] = x[n] * h_1[n]$
- $y_2[n] = x[n] * h_2[n]$
- $y[n] = x[n] * h_1[n] + x[n] * h_2[n]$
- y[n] =
- y[n] = x[n] * h(n)
- h[n] = ?

Dağılma Özelliği

•
$$y[n] = ?$$

•
$$y[n] = x[n] * h_1[n] + x[n] * h_2[n]$$

•
$$y[n] = x[n] * (h_1[n] + h_2[n])$$

- y[n] = x[n] * h(n)
- h[n] = ?

Dağılma Özelliği

• h[n] = ?

Dağılma Özelliği

•
$$y[n] = ?$$
• $y[n] = x[n] * h_1[n] + x[n] * h_2[n]$
• $y[n] = x[n] * (h_1[n] + h_2[n])$
• $y[n] = x[n] * h(n)$
• $x[n] * h[n] = x[n] * (h_1[n] + h_2[n])$
• $h[n] = ?$

Dağılma Özelliği

•
$$y[n] = ?$$
• $y[n] = x[n] * h_1[n] + x[n] * h_2[n]$
• $y[n] = x[n] * (h_1[n] + h_2[n])$
• $y[n] = x[n] * h(n)$
• $x[n] * h[n] = x[n] * (h_1[n] + h_2[n])$

 $h_1[n]$ $y_1[n]$ y[n] $h_2[n]$ $y_2[n]$ h[n]

- Birleşme Özelliği
 - $\star x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$
- y[n] = ?

- Birleşme Özelliği
 - $\star x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$
- $y[n] = y_1[n] * h_2[n]$
- $y_1[n] = ?$

• Birleşme Özelliği

$$\star x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

- $y[n] = y_1[n] * h_2[n]$
- $y_1[n] = x[n] * h_1[n]$
- y[n] = ?

- Birleşme Özelliği
 - $\star x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$
- $y[n] = y_1[n] * h_2[n]$
- $y_1[n] = x[n] * h_1[n]$
- $y[n] = x[n] * h_1[n] * h_2[n]$
- y[n] =
- h[n] = ?

Birleşme Özelliği

$$\star x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

- $y[n] = y_1[n] * h_2[n]$
- $y_1[n] = x[n] * h_1[n]$
- $y[n] = x[n] * h_1[n] * h_2[n]$
- y[n] = x[n] * h[n]
- h[n] = ?

Birleşme Özelliği

$$\star x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

- $y[n] = x[n] * h_1[n] * h_2[n]$
- y[n] = x[n] * h[n]
- $x[n] * h[n] = x[n] * h_1[n] * h_2[n]$
- h[n] = ?

Birleşme Özelliği

$$\star x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

- $y[n] = x[n] * h_1[n] * h_2[n]$
- y[n] = x[n] * h[n]
- $x[n] * h[n] = x[n] * h_1[n] * h_2[n]$
- h[n] = ?

• Birleşme Özelliği

$$\star x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

- $y[n] = x[n] * h_1[n] * h_2[n]$
- y[n] = x[n] * h[n]
- $x[n] * h[n] = x[n] * h_1[n] * h_2[n]$
- $h[n] = h_1[n] * h_2[n]$

- Hafızalılık
- Hafızasız
 - ♦ Sistem çıkışının, giriş işaretinin zamanın sadece o andaki bilgisine bağlı olması
- Hafızalı
 - ♦ Sistem çıkışının, giriş işaretinin ötelenmiş hallerine bağlı olması
- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$
- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$

- Hafızalılık
- Hafızasız
 - ♦ Sistem çıkışının, giriş işaretinin zamanın sadece o andaki bilgisine bağlı olması
- $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$
- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$
 - ullet Hafızasız: y[n], sadece x[n]' ye bağlı olması

Hafızalılık

- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$
 - ullet Hafızasız: y[n], sadece x[n]' ye bağlı olması
- $y[n] = \underbrace{\cdots + h[-1]x[n+1]}_{0} + h[0]x[n] + \underbrace{h[1]x[n-1]}_{0} + \cdots$
- $\forall n \neq 0$ iken h[n] = 0 olursa Hafızasız.

- Hafızalılık
- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$
 - ullet Hafızasız: y[n], sadece x[n]' ye bağlı olması
- $\forall n \neq 0$ iken h[n] = 0 olursa Hafızasız.

- Hafızalılık
- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$
 - ullet Hafızasız: y[n], sadece x[n]' ye bağlı olması
- $\forall n \neq 0$ iken h[n] = 0 olursa Hafızasız.
 - \bullet $h[n] = A\delta[n]$

- Hafızalılık
- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$
 - ullet Hafızasız: y[n], sadece x[n]' ye bağlı olması
- $\forall n \neq 0$ iken h[n] = 0 olursa Hafızasız.
 - \bullet $h[n] = A\delta[n]$
- $\exists n \neq 0$ iken $h[n] \neq 0$ olursa Hafızalı.
 - $h[n] \neq A\delta[n]$

• $h[n] = a^n u[n]$, Hafızalı mıdır?

- $h[n] = a^n u[n]$, Hafızalı mıdır?
- $n \neq 0$ iken h[n] = ?

- $h[n] = a^n u[n]$, Hafızalı mıdır?
- $n \neq 0$ iken $h[n] \neq 0$

- $h[n] = a^n u[n]$, Hafızalı mıdır?
- $n \neq 0$ iken $h[n] \neq 0$
 - n = 1 iken h[n] = a
 - n = 2 iken $h[n] = a^2$
 - **♦**

- $h[n] = a^n u[n]$, Hafızalı mıdır?
- $n \neq 0$ iken $h[n] \neq 0$
 - $\bullet n = 1 \text{ iken } h[n] = a$
 - n = 2 iken $h[n] = a^2$
 - *****
- Hafızalı

• $h[n] = \delta[n - n_0]$, Hafızalı mıdır?

- $h[n] = \delta[n n_0]$, Hafızalı mıdır?
- $n \neq 0$ iken h[n] = ?

- $h[n] = \delta[n n_0]$, Hafızalı mıdır?
- $n \neq 0$ iken h[n]

•
$$h[n] = \delta[n - n_0] = \begin{cases} 0, & n \neq n_0 \\ 1, & n = n_0 \end{cases}$$

- $h[n] = \delta[n n_0]$, Hafızalı mıdır?
- $n \neq 0$ iken h[n]
- $h[n] = \delta[n n_0] = \begin{cases} 0, & n \neq n_0 \\ 1, & n = n_0 \end{cases}$
 - $n_0 = 0$ ise

- $h[n] = \delta[n n_0]$, Hafızalı mıdır?
- $n \neq 0$ iken h[n]

•
$$h[n] = \delta[n - n_0] = \begin{cases} 0, & n \neq n_0 \\ 1, & n = n_0 \end{cases}$$

- $n_0 = 0$ ise Hafizasiz
- $n_0 \neq 0$ ise

- $h[n] = \delta[n n_0]$, Hafızalı mıdır?
- $n \neq 0$ iken h[n]

•
$$h[n] = \delta[n - n_0] = \begin{cases} 0, & n \neq n_0 \\ 1, & n = n_0 \end{cases}$$

- $n_0 = 0$ ise Hafizasiz
- $n_0 \neq 0$ ise Hafızalı

• h[n] = u[n], Hafızalı mıdır?

- h[n] = u[n], Hafızalı mıdır?
- $n \neq 0$ iken h[n] = ?

- h[n] = u[n], Hafızalı mıdır?
- $n \neq 0$ iken $h[n] \neq 0$

- h[n] = u[n], Hafızalı mıdır?
- $n \neq 0$ iken $h[n] \neq 0$
 - $\bullet n = 1 \text{ iken } h[n] = 1$
 - $\bullet n = 2 \text{ iken } h[n] = 1$
 - *****

- h[n] = u[n], Hafızalı mıdır?
- $n \neq 0$ iken $h[n] \neq 0$
 - $\bullet n = 1 \text{ iken } h[n] = 1$
 - $\bullet n = 2 \text{ iken } h[n] = 1$
 - *****
- Hafızalı

Sistem Özellikleri BURADA KALDIK 3.HAFTA SONU

- Nedensellik
- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$
 - Nedensel: y[n], sadece

Sistem Özellikleri

Nedensellik

- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$
 - ullet Nedensel: y[n], sadece x[n] ve/veya x[n-k] 'ya bağlı olması
- $y[n] = \underbrace{\cdots + h[-1]x[n+1]}_{0} + h[0]x[n] + h[1]x[n-1] + \cdots$
- $\forall n < 0$ iken h[n] = 0 ise Nedensel.

Sistem Özellikleri

Nedensellik

- $y[n] = \cdots + h[-1]x[n+1] + h[0]x[n] + h[1]x[n-1] + \cdots$
 - ullet Nedensel: y[n], sadece x[n] ve/veya x[n-k] 'ya bağlı olması
- $y[n] = \underbrace{\cdots + h[-1]x[n+1]}_{0} + h[0]x[n] + h[1]x[n-1] + \cdots$
- $\forall n < 0$ iken h[n] = 0 ise Nedensel.
- $\exists n < 0$ iken $h[n] \neq 0$ ise Nedensel değil.

- $h[n] = a^n u[n]$, Nedensel midir?
 - ♦ Hafızalı

- $h[n] = a^n u[n]$, Nedensel midir?
 - ♦ Hafızalı
- n < 0 iken h[n] = ?

- $h[n] = a^n u[n]$, Nedensel midir?
 - ♦ Hafızalı
- n < 0 iken h[n] = 0

- $h[n] = a^n u[n]$, Nedensel midir?
 - ♦ Hafızalı
- n < 0 iken h[n] = 0
 - n < 0 iken u[n] = 0

- $h[n] = a^n u[n]$, Nedensel midir?
 - ♦ Hafızalı
- n < 0 iken h[n] = 0
 - n < 0 iken u[n] = 0
- Nedensel

- $h[n] = \delta[n n_0]$, Nedensel midir?
 - \bullet $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız

- $h[n] = \delta[n n_0]$, Nedensel midir?
 - $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
- n < 0 iken h[n] = ?

Dr. Ari

- $h[n] = \delta[n n_0]$, Nedensel midir?
 - \bullet $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
- n < 0 iken h[n] = ?
- $\delta[n-n_0] = \begin{cases} 0, & n \neq n_0 \\ 1, & n = n_0 \end{cases}$

- $h[n] = \delta[n n_0]$, Nedensel midir?
 - \bullet $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
- n < 0 iken h[n] = ?
- $\delta[n-n_0] = \begin{cases} 0, & n \neq n_0 \\ 1, & n = n_0 \end{cases}$
- $n = n_0 < 0$ iken h[n] = 1
 - ♦ Nedensel değil.

- $h[n] = \delta[n n_0]$, Nedensel midir?
 - $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
- n < 0 iken h[n] = ?

•
$$\delta[n-n_0] = \begin{cases} 0, & n \neq n_0 \\ 1, & n = n_0 \end{cases}$$

- $n = n_0 < 0$ iken h[n] = 1
 - ♦ Nedensel değil.
- $n = n_0 \ge 0$ iken h[n] = 1
- n < 0 iken h[n] = 0
 - ♦ Nedensel.

- h[n] = u[n], Nedensel midir?
 - ♦ Hafızalı

- h[n] = u[n], Nedensel midir?
 - ♦ Hafızalı
- n < 0 iken h[n] = ?

- h[n] = u[n], Nedensel midir?
 - ♦ Hafızalı
- n < 0 iken h[n] = 0

- h[n] = u[n], Nedensel midir?
 - ♦ Hafızalı
- n < 0 iken h[n] = 0
 - n < 0 iken u[n] = 0

- h[n] = u[n], Nedensel midir?
 - ♦ Hafızalı
- n < 0 iken h[n] = 0
 - n < 0 iken u[n] = 0
- Nedensel

Sistem Özellikleri

- Kararlılık
- $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$ ise Kararlı.

Sistem Özellikleri

- Kararlılık
- $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$ ise Kararlı.
- $\sum_{n=-\infty}^{\infty} |h[n]| \to \infty$ ise Kararsız.

- $h[n] = a^n u[n]$, Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel

- $h[n] = a^n u[n]$, Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$

- $h[n] = a^n u[n]$, Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\sum_{n=-\infty}^{\infty} a^n u[n] = ?$

- $h[n] = a^n u[n]$, Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\bullet \ \sum_{n=0}^{\infty} a^n = \begin{cases} \infty, & a \ge 1 \end{cases}$

- $h[n] = a^n u[n]$, Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel

•
$$\sum_{n=-\infty}^{\infty} |h[n]| = ?$$

•
$$\sum_{n=0}^{\infty} a^n = \begin{cases} \infty, & |a| \ge 1 \\ \frac{1}{1-a} & |a| < 1 \end{cases}$$

- $h[n] = a^n u[n]$, Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$

•
$$\sum_{n=0}^{\infty} a^n = \begin{cases} \infty, & |a| \ge 1 \\ \frac{1}{1-a} & |a| < 1 \end{cases}$$

• $|a| \ge 1$ iken Kararsız

- $h[n] = a^n u[n]$, Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$

- $|a| \ge 1$ iken Kararsız
- |a| < 1 iken Kararlı

- $h[n] = \delta[n n_0]$, Kararlı mıdır?
 - $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
 - \bullet $n_0 \ge 0$ ise Nedensel, $n_0 < 0$ ise Nedensel değil

- $h[n] = \delta[n n_0]$, Kararlı mıdır?
 - $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
 - \bullet $n_0 \ge 0$ ise Nedensel, $n_0 < 0$ ise Nedensel değil
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$

- $h[n] = \delta[n n_0]$, Kararlı mıdır?
 - $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
 - \bullet $n_0 \ge 0$ ise Nedensel, $n_0 < 0$ ise Nedensel değil
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\sum_{n=-\infty}^{\infty} \delta[n-n_0] =$

- $h[n] = \delta[n n_0]$, Kararlı mıdır?
 - $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
 - \bullet $n_0 \ge 0$ ise Nedensel, $n_0 < 0$ ise Nedensel değil
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\sum_{n=-\infty}^{\infty} \delta[n-n_0] = 1$

- $h[n] = \delta[n n_0]$, Kararlı mıdır?
 - \bullet $n_0 \neq 0$ ise Hafızalı, $n_0 = 0$ ise Hafızasız
 - \bullet $n_0 \ge 0$ ise Nedensel, $n_0 < 0$ ise Nedensel değil
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\sum_{n=-\infty}^{\infty} \delta[n-n_0] = 1 < \infty$
- Kararlı

- h[n] = u[n], Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel

- h[n] = u[n], Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$

- h[n] = u[n], Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\sum_{n=-\infty}^{\infty} u[n] =$

- h[n] = u[n], Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\sum_{n=-\infty}^{\infty} u[n] = \sum_{n=0}^{\infty} 1$

- h[n] = u[n], Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\sum_{n=-\infty}^{\infty} u[n] = \sum_{n=0}^{\infty} 1 = \infty$

- h[n] = u[n], Kararlı mıdır?
 - ♦ Hafızalı
 - ♦ Nedensel
- $\sum_{n=-\infty}^{\infty} |h[n]| = ?$
- $\sum_{n=-\infty}^{\infty} u[n] = \sum_{n=0}^{\infty} 1 = \infty$
- Kararsız