Devoir à la maison n° 13

À rendre le 4 mars

I. Un exercice

Soit E un \mathbb{K} -espace vectoriel, soit E_1, \ldots, E_n, F des sous-espaces vectoriels de E vérifiant $E = E_1 \oplus \cdots \oplus E_n$.

Si $1 \leq i \leq n$, on pose $F_i = F \cap E_i$.

- 1) Justifier que F_1, \ldots, F_n sont des sous-espaces vectoriels de E.
- 2) Montrer que la somme $F_1 + \cdots + F_n$ est directe.
- 3) Comparer F et $F_1 + \cdots + F_n$.

II. Passage « à la limite » d'une suite de sev supplémentaires

On note E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} , muni de sa structure de \mathbb{R} -espace vectoriel usuelle. On identifiera un polynôme à sa fonction polynomiale associée, et l'on considérera donc que $\mathbb{R}[X]$ est un sous-espace vectoriel de E.

Soit $(a_i)_{i\in\mathbb{N}^*}$ une suite de nombres réels distincts deux à deux. Si $i\in\mathbb{N}^*$, on note

$$F_i = \{ f \in E \mid f(a_1) = \dots = f(a_i) = 0 \}$$

et

$$G_i = \mathbb{R}_{i-1}[X].$$

- 1) Montrer que chaque F_i est un sous-espace vectoriel de E.
- 2) Comparer pour chaque $i \ge 1 : F_i$ et F_{i+1} ; G_i et G_{i+1} .
- 3) Montrer que, pour chaque $i \ge 1$, F_i et G_i sont supplémentaires dans E.

On pose maintenant

$$F = \bigcap_{i \geqslant 1} F_i$$

et

$$G = \bigcup_{i \geqslant 1} G_i$$

- 4) Justifier que F et G sont des sous-espaces vectoriels de E.
- 5) Est-ce que F et G sont en somme directe? supplémentaires dans E?

— FIN —