1. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS

1.01	Rango	$R = x_{m\acute{a}x} - x_{m\acute{n}}$
1.02	Cantidad de intervalos	$k = 1 + 3, 3.\log n$
1.03	Longitud de intervalos	l = R/k
1.04	Media poblacional	$\mu = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$
1.05	(Media muestral)	$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$
1.06	Media ponderada	$\overline{x}_W = x_1.w_1 + x_2.w_2 + + x_n.w_n = \sum_{i=1}^n x_i.w_i$
1.07	Moda para datos agrupados	$Mo = x_{Mo} = L_{infMo} + l \cdot \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)$
1.08	Mediana para datos individuales	Si n es impar $\widetilde{x} = x_{\frac{n+1}{2}}$ $x_{\frac{n+1}{2}} = \frac{x_{\frac{n}{2}} + x_{\frac{n+2}{2}}}{2}$ Si n es par $\widetilde{x} = \frac{x_{\frac{n+1}{2}}}{2}$
1.09	Mediana para datos agrupados	Antes de calcular el valor de la mediana hay que conocer su ubicación: ${}^o\!Me = (n+1)/2$ $\widetilde{x} = Me = L_{inf\ Me} + l \cdot \left(\frac{n}{2} - F_{ant\ Me} \over f_{Me}\right)$
1.10	Percentiles para datos agrupados	Antes de calcular el valor del percentil k hay que conocer su ubicación: ${}^oP_k = k.(n+1)/100$ $P_k = L_{inf Pk} + l \cdot \left(\frac{\frac{k.n}{100} - F_{ant Pk}}{f_{Pk}}\right)$

Fórmulas 1 Estadística Técnica

1.11	Varianza poblacional	$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$
1.12	Varianza muestral	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$
1.13	Desviación estándar poblacional	$\sigma = \sqrt{\sigma^2}$
1.14	Desviación estándar muestral	$s = \sqrt{s^2}$
1.15	Coeficiente de variación poblacional	$CV = \frac{\sigma}{\mu}$
1.16	Coeficiente de variación muestral	$cv = \frac{s}{\bar{x}}$
1.17	Valor de Z poblacional	$z = \frac{x - \mu}{\sigma}$
1.18	Valor de Z muestral	$z = \frac{x - \overline{x}}{s}$
1.19	Rango intercuartílico	$RI = Q_3 - Q_1$
1.20	Referencias para armar el gráfico de cajas y extensiones	$REF1 = Q_1 - 3RI$ $REF2 = Q_1 - 1,5RI$ $REF3 = Q_3 + 1,5RI$ $REF4 = Q_3 + 3RI$
1.21	Covarianza	$S_{xy} = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{n}$
1.22	Coeficiente de correlación muestral	$r = \frac{n\sum_{i} x_{i} y_{i} - \left(\sum_{i} x_{i}\right) \left(\sum_{i} y_{i}\right)}{\sqrt{n\sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}} \sqrt{n\sum_{i} y_{i}^{2} - \left(\sum_{i} y_{i}\right)^{2}}}$
1.23	Coeficientes de la recta de regresión y = a + b.x	$a = \frac{\sum_{i=1}^{n} y_{i} - b \sum_{i=1}^{n} x_{i}}{n} ; b = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$

Fórmulas 2 Estadística Técnica