

Handling Data on OSG

Wednesday, August 9 Mats Rynge

Like all things

I always think of HTC/OSG usage as a spectrum:

Planning?

 Can't control a cluster like your laptop, where you can install any software and place files (until they flat-out don't fit)

 OSG: heterogeneity, borrowed resources (including network and disk), lack of on-the-fly troubleshooting

Benefits!

 On a cluster & OSG you can access 1000+ cores!

 Automate job tasks (with HTCondor)!

Doesn't burn up your laptop!

OSG User School 2023 4

Handling Data on OSG

- Overview / Things to Consider
- HTCondor File Transfer
- OSDF
- Shared File Systems

What is big large data?

- In reality, "big data" is relative
 - What is 'big' for you? Why?

What is big large data?

- In reality, "big data" is relative
 - What is 'big' for you? Why?

- Volume, velocity, variety!
 - think: a million 1-KB files, versus one 1-TB file

Determining In-Job Needs

- "Input" includes any files needed for the job to run
 - executable
 - transfer_input_files
 - data and software
- "Output" includes any files produced for the job that need to come back
 - output, error

Data Management Tips

- Determine your per-job needs
 - minimize per-job data needs
- Determine your batch needs
- Leverage HTCondor and OSG data handling features!

First! Try to minimize your data

- split large input for better throughput
- eliminate unnecessary data
- file compression and consolidation
 - job input: prior to job submission
 - job output: prior to end of job
 - moving data between your laptop and the submit server

'Large' data: The collaborator analogy

What method would you use to send data to a collaborator?

amount	method of delivery
words	email body
tiny – 100MB	email attachment (managed transfer)
100MB – GBs	download from Google Drive, Drop/Box, other web-accessible repository
TBs	ship an external drive (local copy needed)

Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway.

Andrew S. Tanenbaum (1981) - Professor Emeritus, Vrije Universiteit Amsterdam

Transfers

Large input in HTC and OSG

file size	method of delivery
words	within executable or arguments?
tiny – 1GB per file	HTCondor file transfer (up to 1GB total per job)
1GB – 10GB	OSDF (regional replication)
10 GB – TBs	shared file system (local copy, local execute servers)

Handling Data on OSG

- Overview / Things to Consider
- HTCondor File Transfer
- OSDF
- Shared File Systems and Other Options

Review: HTCondor Data Handling

Network bottleneck: the submit server

Network bottleneck: the submit server

Network bottleneck: the submit server

Hardware transfer limits

Handling Data on OSG

- Overview / Things to Consider
- HTCondor File Transfer
- OSDF
- Shared File Systems

Large input in HTC and OSG

file size	method of delivery
words	within executable or arguments?
tiny – 100MB per file	HTCondor file transfer (up to 1GB total per-job)
100MB – 1GB, shared	download from web server (local caching)
1GB – 20GB, unique or shared	Stash (regional replication)
10 GB - TBs	shared file system (local copy, local execute servers)

Using Stash for Input

regionally-cached repository managed by OSG Connect

Stash Usage on OSG

Lots of experiments use Stash

Stash Considerations

- Available at ~90% of OSG sites
- Regional caches on very fast networks
 - Recommended max file size: 20 GB
 - shared OR unique data
- Can copy multiple files totaling >10GB
- Just like HTTP proxy, change name when update files

Placing Files in Stash

• Place files in /public/username/ on osgconnect.net

regional cache

Obtaining Files in Stash

Use HTCondor transfer for other files

Obtaining Files in Stash

Download using stashcp command (available as an OASIS software module)

In the Submit File

```
transfer_input_files=stash://osgconnect/public/USERNAME/...
```


What's Different for Output?

- always unique (right?), so caching won't help
- files not associated with your local username
 - security barriers outside of local context
- security issues with world-writability
 - (versus okay world-readability for input)

Output for HTC and OSG

amount	method of delivery
words	within executable or arguments?
tiny – <u>1GB, total</u>	HTCondor file transfer
1GB - 20GB, unique or shared	Stash
20GB+, total	shared file system (local copy, local execute servers)

Output for HTC and OSG

amount	method of delivery
words	within executable or arguments?
tiny – <u>1GB, total</u>	HTCondor file transfer
1GB – 20GB, unique or shared	Stash
20GB+, total	shared file system (local copy, local execute servers)

Writing to stash

```
transfer_output_remaps = "Output.txt =
stash://osgconnect/public/<username>/Output.txt"
```


Other Considerations

- Only use these options if you MUST!!
 - Each comes with limitations on site accessibility and/or job performance, and extra data management concerns

file size	method of delivery
words	within executable or arguments?
tiny – 10MB per file	HTCondor file transfer (up to 1GB total per-job)
10MB – 1GB, shared	download from web server (local caching)
1GB - 10GB, unique or shared	Stash (regional replication)
10 GB - TBs	shared file system (local copy, local execute servers)

Other Considerations

- Only use these options if you MUST!!
 - Each comes with limitations on site accessibility and/or job performance, and extra data management concerns

file size	method of delivery
words	within executable or arguments?
tiny – 10MB per file	HTCondor file transfer (up to 1GB total per-job)
10MB – 1GB, shared	download from web server (local caching)
1GB - 10GB, unique or shared	Stash (regional replication)
10 GB - TBs	shared file system (local copy, local execute servers)

Cleaning Up Old Data

For Stash AND web proxies:

make sure to delete data when you no longer need it in the origin!!!

- Stash and VO-managed web proxy servers do NOT have unlimited space!
 - Some may regularly clean old data for you. Check with local support.

Handling Data on OSG

- Overview / Things to Consider
- HTCondor File Transfer
- Web Proxy
- Stash
- Shared File Systems

(Local) Shared Filesystems

- data stored on file servers, but network-mounted to local submit and execute servers
- Available on some submit servers
 - CHTC \(\strict{Yes} \)
 - OSG Connect X No

More details at the end of this presentation...

Filesystem Quotas

System	Location	Quota	Transfer Mechanism	
CHTC	/home	20 GB	HTCondor file transfer	
	/staging	20 GB 20 files total	Accessed directly from within job	
OSG Connect	/home	50 GB	HTCondor file transfer	
	/public	500 GB	Web Proxy, stashcp	

Tips:

- Choose data location and transfer carefully based on the size and type of the data
- Remove unnecessary files
- Configure workflow to discard unneeded intermediate files

To request increases contact:

• CHTC: chtc@cs.wisc.edu

OSG Connect: support@osgconnect.net

Quick Reference

Option	Input or Output?	File size limits	Placing files	In-job file movement	Accessibility?
HTCondor file transfer	Both	100 MB/file (in), 1 GB/file (out); 1 GB/tot (either)	via HTCondor submit node	via HTCondor submit file	anywhere HTCondor jobs can run
Web proxy	Shared input only	1 GB/file	Service specific - OSGConnect in /public/user/	HTTP download	anywhere, by anyone
Stash	Both	20 GB/file	via OSG Connect submit server	via stashcp command (and module)	OSG-wide (most sites), by anyone
Shared filesystem	Input, likely output	TBs (may vary)	via mount location (may vary)	use directly, or copy into/out of execute dir	local cluster, only by YOU (usually)

Required Exercises

- 1.1 Understanding a job's data needs
- 1.2 Using data compression with HTCondor file transfer
- 1.3 Splitting input (prep for large run in 2.1)
- 2.1 Using a web proxy for shared input
 - place the blast database on the web proxy
- 2.2 Stash for shared input
 - place the blast database in Stash
- OSG User School 2023 Stash for unique input

Bonus Exercises

- 3.1 Shared Filesystem for Large Input
- 3.2 Shared Filesystem for Large Output

Acknowledgments

 This work was supported by NSF grants OAC-1836650, and OAC-2030508

Additional Slides

Shared Filesystem Details

(Local) Shared Filesystems

- data stored on file servers, but network-mounted to local submit and execute servers
- use local user accounts for file permissions
 - Jobs run as YOU!
 - readable (input) and writable (output, most of the time)
- MOST perform better with fewer large files (versus many small files of typical HTC)

Shared FS Technologies

- via network mount
 - NFS
 - AFS
 - Lustre
 - /staging (may use NFS mount)
 - Isilon (may use NSF mount)
- distributed file systems (data on many exec servers)
 - HDFS (Hadoop)
 - CEPH

Shared FS Configurations

- Submit directories WITHIN the shared filesystem
 - most campus clusters
 - limits HTC capabilities!!
- Shared filesystem separate from local submission directories
 - supplement local HTC systems
 - treated more as a repository for VERY large data (>GBs)
- 3. Read-only (input-only) shared filesystem
 - Treated as a repository for VERY large input, only

Submit dir within shared FS


```
Shared FS

(submit dir)/

file.sub

input, software

log, error, output
```


Submit dir within shared FS

Separate shared FS

Separate shared FS - Input

Separate shared FS - Input

Separate shared FS - Input

Separate shared FS - Output

Separate shared FS - Output

Separate shared FS - Output

At UW-Madison (Ex. 3.1-3.2)

