II Proces ruchu Browna

 $B = \{B(t), \ t \ge 0\} = \{B_t, \ t \ge 0\}$ standardowy proces ruchu Browna dystrybuanta standardowego rozkładu normalnego,

Zadanie 2-1: Niech $0 \le r < s < t$. Sprawdź, czy zmienne losowe $2B_t - B_s$ oraz $B_t - 2B_s$ są niezależne od $B_s - B_r$.

Zadanie 2-2: Wyznaczyć funkcję kowariancji standardowego procesu ruchu Browna.

Zadanie 2-3: Niech $B_t^x = B_t + x$, $t \ge 0$. Wykaż, że funkcja gęstości $f_{B_t^x}(y) = \frac{1}{\sqrt{2\pi t}}e^{-\frac{1}{2t}(y-x)^2}$, $y \in \mathbb{R}$. Wyznacz funkcje wartości średniej oraz wariancji $m^{B^x}(t) = \mathbb{E} B_t^x$, $V^{B^x}(t) = \operatorname{Var} B_t^x$.

Zadanie 2-4: Niech $B_t^x = B_t + x$, $t \ge 0$. Wykaż, że $\mathbb{E}(B_t^x - B_s^x) = 0$, $\mathbb{E}(B_t^x - B_s^x)^2 = t - s$ oraz $\text{Var}(B_t^x - B_s^x)^2 = 2(t - s)^2$.

Zadanie 2-5: Wykaż, że dla dowolnej funkcji borelowskiej $g \colon \mathbb{R}^n \to \mathbb{R}$ oraz dowolnych $0 < t_1 < t_2 < \ldots < t_n < \infty, n \geq 2$, zachodzi

$$\mathbb{E}\,g(B_{t_1}^x,B_{t_2}^x,\ldots,B_{t_n}^x) = \int_{\mathbb{R}^n} g(y_1,y_2,\ldots,y_n) f_{B_{t_1}^x}(y_1) \prod_{j=2}^n f_{B_{t_j-t_{j-1}}^{y_{j-1}}}(y_j) dy_1 dy_2 \ldots dy_n$$

Zadanie 2-6: Dla standardowego procesu ruchu Browna wyznacz $P(B_s \ge 0, B_t \ge 0)$ (rozważ również szczególny przypadek s = 1, t = 2).

Zadanie 2-7: Wyznacz rozkład łączny wektora (B(1), B(2), B(3), B(4)).

Zadanie 2-8: Dla standardowego procesu ruchu Browna $\{B_t, t \geq 0\}$ znajdź rozkład $B_1 + B_2 + B_3 + \ldots + B_N$ dla ustalonej liczby $N \in \mathbb{N}$.

Zadanie 2-9: Wyznacz $P(\int_{0}^{1} B_{s}(\omega)ds > 1)$.

Zadanie 2-10: Niech $\{B(t): t \geq 0\}$ będzie standardowym ruchem Browna w \mathbb{R}^2 , tzn. rozważamy proces $B(t) = (B^1(t), B^2(t))$, którego współrzędne $B^i(t)$ są niezależnymi jednowymiarowymi standardowymi procesami ruchu Browna. Niech $D_R = \{z \in \mathbb{R}^2 \colon |z| < R\}$ będzie dyskiem o promieniu R > 0. Oblicz $P(B(t) \in D_R)$, gdzie t > 0.

Zadanie 2-11: Wykaż, że poniższe procesy są standardowymi procesami ruchu Browna:

(a)
$$X_t = -B_t$$
;

(b)
$$Y_t = B_{t+t_0} - B_{t_0}$$
 dla ustalonego $t_0 > 0$;

(c)
$$Z_t = \begin{cases} tB_{\frac{1}{t}} & t > 0\\ 0 & t = 0 \end{cases}$$
;

$$(d) \quad U_t = \begin{cases} B_t & 0 \le t \le t_0 \\ 2B_{t_0} - B_t & t > t_0 \end{cases}$$
 dla ustalonego $t_0 > 0$;

6

(e)
$$V_t = \frac{1}{\sqrt{\lambda}} B_{\lambda t}$$
 dla ustalonego $\lambda > 0$.

Zadanie 2-12: Niech $\{B_t, t \in [0, 1]\}$ będzie standardowym procesem ruchu Browna. Wykaż, że proces

$$X_t = (1+t)\left(B_{\frac{t}{1+t}} - \frac{t}{1+t}B_1\right), \quad t \ge 0$$

jest standardowym procesem ruchu Browna.

Zadanie 2-13: Udowodnij, że

$$\lim_{t\to\infty}\frac{B_t}{t}=0 \text{ p.n.}$$

Zadanie 2-14: Niech B_t^1 i B_t^2 będą dwoma niezależnymi procesami ruchu Browna. Pokazać, że proces $X_t = \left(B_t^1 + B_t^2\right)/\sqrt{2}$ jest także procesem ruchu Browna. Oblicz kowariancję procesów X_t i B_t^1 .

Zadanie 2-15: Zbadaj, które z podanych procesów są procesami gaussowskimi:

- (a) $X_t = B_t tB_1$, $0 \le t \le 1$;
- (b) $Y_t = B_t^2$;
- $\text{(c)} \quad Z_t = f(t)G \quad \text{ gdzie } f \colon [0,\infty) \to \mathbb{R} \text{ dowolna oraz } G \sim N(0,1);$
- (d) $U_t = \exp(B_t)$.

Zadanie 2-16: Niech $\{B_t, t \ge 0\}$ będzie standardowym procesem ruchu Browna. Wykaż, że

- (a) B_t ,
- (b) $B_t^2 t$,
- (c) dla dowolnego u, $\exp\left(uB_t \frac{u^2}{2}t\right)$ jest martyngałem względem filtracji naturalnej $\mathbb{F} = (\mathcal{F}_t)$, gdzie $\mathcal{F}_t = \sigma(\{B_s, 0 \le s \le t\})$.

Zadania

Własność Markowa i mocna własność Markowa, momenty stopu

Zadanie 2-17: Udowodnij własność Markowa procesu ruchu Browna.

Zadanie 2-18: Udowodnij mocną własność Markowa procesu ruchu Browna: (twierdzenie Dynkina-Hunta) niech τ będzie momentem stopu, ($P(\tau < \infty) = 1$), względem filtracji $\mathbb{F} = \{\mathcal{F}_t, \ t \geq 0\}$, $\mathcal{F}_t = \sigma(B(s), \ s \leq t)$ generowanej procesem ruchu Browna $\{B_t, \ t \geq 0\}$. Proces $\{B_t^\circ, \ t \geq 0\}$, $B_t^\circ = B_{t+\tau} - B_{\tau}$ jest procesem ruchu Browna niezależnym od $\mathcal{F}_{\tau} = \{A, \ \forall t \geq 0 \ A \cap \{\tau \leq t\} \in \mathcal{F}_t\}$.

Zadanie 2-19: Wykaż, że $\tau_a(\omega)=\inf\{t>0\colon B_t(\omega)=a\}$ jest momentem Markowa względem naturalnej filtracji.

Zadanie 2-20: Sprawdź, czy $\rho_0(\omega) = \sup\{0 \le t \le 1 : B_t(\omega) = 0\}$ jest momentem Markowa.

Zadanie 2-21: Zasada odbicia. Niech $\{B_t, t \geq 0\}$ będzie standardowym procesem ruchu Browna i niech τ będzie momentem stopu względem naturalnej filtracji $\{\mathcal{F}_t, t \geq 0\}$. Niech dany będzie proces

$$B_t^{\tau} := \begin{cases} B_t, & 0 \le t \le \tau, \\ 2B_{\tau} - B_t, & t \ge \tau \end{cases}.$$

Udowodnij, że $\{B_t^{\tau}, t \geq 0\}$ jest standardowym procesem ruchu Browna (tzw. procesem odbitym w τ).

Zadanie 2-22: (*) Podaj przykład procesu Markowa, który nie ma mocnej własności Markowa.

Zadanie 2-23: Niech $\tau_x = \inf\{t > 0, \ B_t = x\}$ oznacza czas pierwszego osiągnięcia wartości x. Niech a < x < b i niech $\tau = \min\{\tau_a, \tau_b\}$. Udowodnij, że $P(\tau < \infty \mid B_0 = x) = 1$ i $\mathbb{E}(\tau \mid B_0 = x) < \infty$.

Zadanie 2-24: Wykaż, że z prawdopodobieństwem 1 trajektorie ruchu Browna przechodzą przez dowolną liczbę rzeczywistą.

Zadania

Proces maksimum procesu ruchu Browna

Zadanie 2-25: Niech $\{B_t, t \ge 0\}$ będzie standardowym procesem ruchu Browna. Zdefiniujmy proces $\{M_t, t \ge 0\}$, tzw. proces maksimum,

$$M_t = \max_{0 \le s \le t} \{B_s\}.$$

Wykaż, że dla dowolnego $a>0, P(M_t>a)=2P(B_t>a)=P(|B_t|>a)=2\left(1-\Phi\left(\frac{a}{\sqrt{t}}\right)\right)$.

Zadanie 2-26: Niech $\{B_t, t \ge 0\}$ będzie standardowym procesem ruchu Browna. Zdefiniujmy proces $\{m_t, t \ge 0\}$, tzw. proces minimum,

$$m_t = \min_{0 \le s \le t} \{B_s\}.$$

Wykaż, że dla dowolnego a < 0, $P(m_t \le a) = 2P(B_t \ge -a) = 2P(B_t \le a)$.

Zadanie 2-27: Oblicz $P(\text{dla wszystkich } 0 \le t \le 1, \ B_t \le 0).$

Zadania

Zera procesu ruchu Browna

Zadanie 2-28: Niech $Z = \{t \ge 0, B_t = 0\}$ oznacza zbiór zer procesu ruchu Browna. Wykaż, że Z ma miarę Lebesgue'a równą zero.

Zadanie 2-29: Wykaż, że dla dowolnego $\varepsilon > 0$ proces ruchu Browna ma z prawdopodobieństwem 1 nieskończenie wiele zer na dowolnym przedziale $(0, \varepsilon)$.

Zadanie 2-30: Wykaż, że zbiór Z zer procesu ruchu Browna jest zbiorem doskonałym (domkniętym i wszędzie gęstym (bez punktów izolowanych)).

Zadanie 2-31: (Prawo arcusa sinusa) Niech $\{B_t, t \geq 0\}$ będzie standardowym procesem ruchu Browna. Prawdopodobieństwo, że proces nie ma zer na odcinku (a,b), 0 < a < b, wynosi $\frac{2}{\pi} \arcsin \sqrt{\frac{a}{b}}$. Zilustruj twierdzenie za pomocą symulacji komputerowych.

Zadania

Prawo iterowanego logarytmu

Rozważmy standardowy proces ruchu Browna $\{B(t),\ t\geq 0\}$. Mimo faktu, że dla dowolnego t i dowolnego otwartego zbioru $U\subset\mathbb{R}$ prawdopodobieństwo $P(B(t)\in U)>0$, to proces w długim czasie nie rośnie dowolnie szybko. W zadaniu 2-13 wykazaliśmy, że (prawo wielkich liczb) $\lim_{t\to\infty}\frac{B(t)}{t}=0$ p.n.

Pytamy teraz o asymptotyczną górną obwiednię procesu ruchu Browna, tj. o funkcję $\psi \colon (1,\infty) \to \mathbb{R}$,

$$\limsup_{t \to \infty} \frac{B(t)}{\psi(t)} = 1$$

Zadanie 2-32: (Prawo iterowanego logarytmu) Niech $\{B(t), t \geq 0\}$ będzie standardowym procesem ruchu Browna.

$$\limsup_{t \to \infty} \frac{B(t)}{\sqrt{2t \log \log t}} = 1 \ \textit{p.n.}, \qquad \liminf_{t \to \infty} \frac{B(t)}{\sqrt{2t \log \log t}} = -1 \ \textit{p.n.}$$

Zadanie 2-33: (Lokalne prawo iterowanego logarytmu) Niech $\{B(t), t \geq 0\}$ będzie standardowym procesem ruchu Browna.

$$\limsup_{t \to 0^+} \frac{|B(t)|}{\sqrt{2t \log \log \frac{1}{t}}} = 1 \ \textit{p.n.},$$

Zadania

Własności trajektorii – wahanie kwadratowe procesu ruchu Browna

Zadanie 2-34: Niech $\{B(t),\ t\geq 0\}$ będzie standardowym procesem ruchu Browna i niech $(\Pi_n)_{n\geq 1}$, będzie ciągiem (coraz drobniejszych) skończonych podziałów odcinka $[a,b],\ \Pi_n=\{a=t_0^n< t_1^n<\ldots< t_n^n=b\}$ takich, że $\lim_{n\to\infty}\delta_n=\lim_{n\to\infty}\max_i\{t_{i+1}^n-t_i^n\}=0$. Udowodnij, że istnieje granica w sensie średniokwadratowym (wahanie kwadratowe procesu ruchu Browna na [a,b])

$$[B]([a,b]) := \lim_{\delta_n \to 0^+} \sum_{i=0}^{n-1} (B(t_{i+1} - B(t_i))^2 = b - a.$$

Zadanie 2-35: (Wniosek z poprzedniego zadania) Wykaż, że prawie wszystkie trajektorie procesu ruchu Browna mają nieskończone wahanie. W ogólności, że dla każdego p < 2, p-wahanie jest nieskończone p.n.

Zadanie 2-36: Udowodnij, że prawie wszystkie trajektorie procesu ruchu Browna są nigdzie (lokalnie) hölderowsko ciągłe z wykładnikiem $\alpha > \frac{1}{2}$.

Zadanie 2-37: Niech $\{B(t), t \geq 0\}$ będzie standardowym procesem ruchu Browna. Udowodnij twierdzenie: dla dowolnego ciągu skończonych podziałów $(\Pi_n)_{n\geq 1}$ odcinka [0,t], $\Pi_n=\{0=t_0^n< t_1^n<\ldots< t_n^n=t\}$ takich, że $\sum_{n=1}^\infty \delta_n<\infty$,

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} (B(t_{i+1}^n) - B(t_i^n))^2 = t, p.n.$$

Zadanie 2-38: Niech $\{B_1(t), t \ge 0\}$ i $\{B_2(t), t \ge 0\}$ będą niezależnymi procesami ruchu Browna. Udowodnij, że ich kowariacja istnieje i jest tożsamościowo równa 0.

Zadanie 2-39: Oblicz wahanie i wahanie kwadratowe procesu Poissona.

Zadanie 2-40: Niech $\{B(t), t \in [0, T]\}$ będzie procesem ruchu Browna, a $\{N_t, t \in [0, T]\}$ procesem Poissona określonymi na wspólnej przestrzeni probabilistycznej (Ω, \mathcal{F}, P) . Znajdź [B, N]([s, t]).

Zadanie 2-41: Niech $\{B(t), t \ge 0\}$ będzie standardowym procesem ruchu Browna. Zdefiniujmy proces $\{H(t), t \ge 0\}$

$$H(t,\omega) = \int_0^t \sin(t-s)B(s,\omega)ds.$$

Czy proces $\{H(t),\ t\geq 0\}$ jest procesem gaussowskim? Czy trajektorie procesu $\{H(t),\ t\geq 0\}$ są różniczkowalne? Czy może są one klasy C^{∞} z prawdopodobieństwem 1?

9

Zadanie 2-42: Dla procesu $\{H(t), t \ge 0\}$ z poprzedniego zadania oblicz:

$$||H(t)||_{L^2(\Omega)}^2$$
, $[H](t)$, $V_H(t)$, $V_H^{3/2}(t)$.

Zadania

Most Browna

Zadanie 2-43: Niech $\{B(t), t \geq 0\}$ będzie standardowym procesem ruchu Browna. Wyznacz warunkowy rozkład wektora (B(s), B(t)) pod warunkiem B(1) = 0. Oblicz $\mathbb{E}(B(s)B(t) \mid B(1) = 0)$.

Zadanie 2-44: Niech $\{B(t),\ t \geq 0\}$ będzie standardowym procesem ruchu Browna i niech $0 < t_1 < t_2 < t_3 < t_4 < \infty$. Wyznacz warunkowy rozkład $(B(t_2), B(t_3))$ pod warunkiem $B(t_1) = B(t_4) = 0$. Oblicz warunkową korelację $B(t_2)$ i $B(t_3)$.

Zadanie 2-45: Niech $\{B(t), t \ge 0\}$ będzie standardowym procesem ruchu Browna. Określmy proces $\{X(t), t \in [0,1]\}$,

$$X(t) = x + B(t) - t(B(1) - y), t \in [0, 1].$$

Udowodnij, że X(t) jest gaussowskim procesem, o p.n. ciągłych trajektoriach, P(X(0) = x) = P(X(1) = y) = 1.