(b)
$$sgn(x) = 1 \text{ if } x > 0$$

 $sgn(x) = -1 \text{ if } x < 0$

$$\lim_{x\to 0+} sgn(x) \neq \lim_{x\to 0-} sgn(x)$$

Within every interval
$$(-\varepsilon, \varepsilon)$$
 for $\varepsilon > 0$, however small, $\sin \frac{1}{a}$ takes all the values in $[-1,1]$.

(a)
$$\lim_{n\to 0} \sqrt{n}$$
 $\sin \frac{1}{n} = 0$
 $0 > -1, < 1$

$$-1 < \omega \le \frac{1}{n} < 1$$
, $n \to 0 \Rightarrow n \omega \le \frac{1}{n} \xrightarrow{n \to 0} 0$.

$$x > 0, \quad \frac{x - |x|}{x} \Rightarrow \frac{x - x}{x} = 0$$

$$x < 0$$
, $\frac{x-|x|}{x} = \frac{x+x}{x} = 2$.

$$\frac{x-|x|}{x-x_0+\frac{x-|x|}{x}}+\lim_{x\to x_0-\frac{x}{x}}\frac{x-|x|}{x}.$$

If AT MERT BY We want to be if a 1+ soin exceeds M

The MERT Choose the next a ERT Much that him a=1. River soin a is
perundic thoroughout R, we can always find such a.

So, n'+ snin is unbounded. So, lim x 1+ suin does not exist.

I himse both national nos. and itrational nos. are dense ni R, for any $p \in \mathbb{R}$, \exists a sequence $\{n_n\}_{n \in \mathbb{N}}$ of national nos. and a sequence $\{n_n\}_{n \in \mathbb{N}}$ of irrational nos. that converges to p.

$$f(v_n) \xrightarrow{n \to \infty} f(v)$$

$$f(v_n) \xrightarrow{n \to \infty} f(v)$$

Without loss of querality, let's say $p \in \mathbb{Q}$.

Then Y E>OJ Such that |p-nm| < E Y m>N1.

Jake N= mare (N1, N2).

Then, $|p-nm| < \varepsilon + m > N_0$ $|p-1+nm| < \varepsilon + m > N_0$

- h

2 1-29m SZE 20 for artichary 8 20.

:4-12/

⇒ |2p-1 | <2 € for arbitrary €>0.

$$\Rightarrow 2p-1=0 \Rightarrow p=\frac{1}{2}$$