Algebra Poly Value

March 11, 2025

Problem. If P(x) denotes a polynomial of degree n such that $P(k) = \frac{k}{k+1}$ for $k = 0, 1, 2 \dots, n$, determine P(n+1).

Solution. Consider the (n+1) degree polynomial G(x) = (x+1)P(x) - x. Note that $0,1,2\ldots,n$ are roots of G(x), hence $G(x) = C\prod_{i=0}^{i=n}(x-i)$ where C is a constant. Now since (x+1)|G(x)+x. This means -1 is a root to G(x)+x, so G(-1)-1=0, i.e. G(-1)=1, so $C(-1)^{n+1}((n+1)!)=1$, hence $C=\frac{(-1)^{n+1}}{(n+1)!}$. Hence $P(n+1)=\frac{(G(n+1)+(n+1))}{n+2}=\frac{n+1+(-1)^{n+1}}{n+2}$

Exploration. N/A

Tags. Polynomial, Algebra, Interpolation