生存分析教程

安装所需要的库

取消自己没有安装的库的行注释即可 安装

```
In []:

# % pip install lifelines
# % pip install pandas
# % pip install matplotlib
```

初识lifelines

我所用的生存分析工具 都是借助lifelines 这个开源Python库 lifelines也提供了自己的教程文档 这里给出地址 https://lifelines.readthedocs.io/en/latest/index.html (https://lifelines.html (<a href="https:/

导入所需库

In [2]:

from lifelines import WeibullFitter
import pandas as pd
from matplotlib import pyplot as plt

Bad key "text.kerning_factor" on line 4 in

 $\label{lib-cond} D: \Users\LX\Anaconda 3 envs\pytorch\lib\site-packages\matplotlib\mpl-data\stylelib\c\\ lassic_test_patch.\ mplstyle.$

You probably need to get an updated matplotlibrc file from

http://github.com/matplotlib/matplotlib/blob/master/matplotlibrc.template (http://github.com/matplotlib/matplotlib/blob/master/matplotlibrc.template)

or from the matplotlib source distribution

简单实例

In [3]:

df = pd. read_csv(r'a区块生存分析. csv') # df = pd. read_csv(r'a区块生存分析. xls') #但此目录下并没有这个Excel文件哈df. head()

Out[3]:

	0	Т	Ε
0	PL19-3-A01ST1	817	1
1	PL19-3-A01	2240	1
2	PL19-3-A03ST3	2894	1
3	PL19-3-A05ST7	2027	1
4	PL19-3-A08ST4	698	1

这里读取了一个csv格式的表格, csv表格是一个轻量化的表格, 比起Excel 读取写入要更快一些, 但功能也更简单 读取Excel 的函数在上方的单元格中给出并注释。上方就是这个表的内容, 第一行就是指定表的列名。

	А	В	С	D
L	0	T	E	
2	PL19-3-A01ST1	817	1	
3	PL19-3-A01	2240	1	
1	PL19-3-A03ST3	2894	1	
5	PL19-3-A05ST7	2027	1	
5	PL19-3-A08ST4	698	1	
7	PL19-3-A09ST5	874	1	
3	PL19-3-A10ST1	1149	1	
9	PL19-3-A11ST1	2226	1	
0	PL19-3-A15ST3	1993	1	
1	PL19-3-A18ST4	1777	1	
2	PL19-3-A19ST2	2072	1	
3	PL19-3-A20ST2	2635	1	
4	PL19-3-A22ST6	425	1	

H

wbf=WeibullFitter()
wbf.fit(df['T'],df['E']) #对应上表的 T(时间) 和 E(事件) 也可以给这两列改名 表格 和这行代码

Out[4]:

felines.WeibullFitter:"Weibull_estimate", fitted with 25 total observations, 10 r
ight-censored observations>

In [5]: ▶

wbf.print_summary() # 给出拟合后的统计学信息 wbf.plot()# 画出的是累计风险 蓝线

wbf.plot_survival_function(label="survival function") #这个是我们常用的生存函数 黄线

model	I lifelines.WeibullFitter		
number of observations	25		
number of events observed	15		
log-likelihood	-126.70		
hypothesis	lambda_ != 1, rho_ != 1		

	coef	se(coef)	coef lower 95%	coef upper 95%	Z	р	-log2(p)
lambda_	2074.18	247.47	1589.15	2559.20	8.38	<0.005	54.04
rho	2.17	0.45	1.28	3.05	2.59	0.01	6.70

AIC 257.39

Out[5]:

<matplotlib.axes._subplots.AxesSubplot at 0x194d04b5278>

可以看到给出summary给出的两行参数 lambda 和rho 分别对应生存函数公式

$$S(t) = \exp\left(-\left(\frac{t}{\lambda}\right)^{\rho}\right), \lambda > 0, \rho > 0$$

第一列就是对应置信区间最中间的参数 其他的参数具体意义大家可以自行搜索

在已运行t2天的情况下生存概率为百分之五十的天数为t1

$$t_1 = \lambda \cdot \left(\left(\left(\frac{t_2}{\lambda} \right)^{\rho} - \ln \frac{1}{2} \right) \right)^{\frac{1}{\rho}}$$

最后一个公式是根据贝叶斯的概率公式推出P(t1|t2),然后反解出t1, ln1/2 的1/2对应的就是百分之五十的概率,可以根据需要更改。

In [9]:

```
#也可以通过下面的代码提取出需要的参数

k1 = wbf.summary['coef lower 95%']
k2 = [wbf.lambda_, wbf.rho_]
k3 = wbf.summary['coef upper 95%']
print(k1)
print(k2)
print(k3)
```

lambda_ 1589.152416 rho_ 1.283800

Name: coef lower 95%, dtype: float64 [2074.1753370820916, 2.1689197802356244]

1ambda_ 2559.198258 rho_ 3.054040

Name: coef upper 95%, dtype: float64

In [9]:

wbf.plot_cumulative_density() #给出的是累计密度 到3000天之前全部死亡 到1

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x19f18eb5668>

In [10]: ▶

wbf.plot_cumulative_hazard() #给出的累计风险 上下界是统计的置信区间 也是默认的plot 与第一个图片

Out[10]:

 $\mbox{\sc matplotlib.axes._subplots.AxesSubplot}$ at 0x19f18f56b70>

In [11]:

wbf.plot_density(label="density") #这是瞬时的密度

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x19f18fa6358>

wbf.plot_hazard(label="hazard") # 这是瞬时的风险

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x19f18eb3a90>

• 累计风险函数

+

0

$$H(t) = \left(\frac{t}{\lambda}\right)^{\rho}$$

$$h(t) = \frac{\rho}{\lambda} \left(\frac{t}{\lambda}\right)^{\rho - 1}$$

其他一些应用

1. 比较一些生存曲线

In [11]: ▶

```
from matplotlib import font manager
import pandas as pd
import os
from matplotlib import pyplot as plt
from lifelines import WeibullFitter
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
my font = font manager. FontProperties (fname='msyh.ttc')
def pyplot_oil(excel_dir):
    filelist=[]
    wellname list=[]
    for root, dirs, files in os.walk(excel_dir):
        for file in files:
            if os. path. splitext(file)[1]=='.xlsx':
                filelist.append(os.path.join(root, file))
                wellname list.append(os.path.splitext(file)[0])
    for data, wellname in zip(filelist, wellname list):
        globals()[str(wellname)]=pd.read excel(data)
    fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 10))
    wbf=WeibullFitter()
    for i in range(len(wellname list)):
        k=globals()[str(wellname_list[i])]
        wbf. fit(k['T'], k['E'])
        ax=wbf.plot_survival_function(label=str(wellname_list[i]))
        # plt. show()
    plt.show()
```

In [13]:

pyplot_oil("按油田分") pyplot_oil("按厂家分") pyplot_oil("故障类型")

其他参考资料

- 1. lifelines 官方api文档 https://lifelines.readthedocs.io/en/latest/References.html)
 https://lifelines.readthedocs.io/en/latest/References.html)
- 2. https://blog.csdn.net/sinat_26917383/article/details/119006906) 生存分析 blog 介绍了其他的生存分析方法和基础用例
- 3. https://blog.csdn.net/sinat_26917383/article/details/118929464?spm=1001.2014.3001.5501 生存分析 基础概念

In]:					M