Chapter 9

1		lb/ft ²		
	Point	σ	и	σ'
	A	0	0	0
	B	(5)(112) = 560	0	560
	C	560 + (6)(120) = 1280	(62.4)(6) = 374.4	905.6
	D	1280 + (8)(125) = 2280	374.4 + (62.4)(8) = 873.6	1406.4

The plot is given below.

	lb/ft ²		
Point	σ	и	σ'
\overline{A}	0	0	0
\boldsymbol{B}	(5)(100) = 500	0	500
C	500 + (10)(116) = 1660	(62.4)(10) = 624	1036
D	1660 + (9)(122) = 2758	624 + (62.4)(9) = 1185.6	1572.4

The plot is shown on the following page.

Problem 9.2

	kN/m ²		
Point	σ	и	σ′
\overline{A}	0	0	0
В	(3)(15) = 45	0	45
C	45 + (4)(16) = 109	(9.81)(4) = 39.24	69.76
D	109 + (5)(18) = 199	39.24 + (9.81)(5) = 88.29	110.71

The plot is shown below.

9.4
$$\gamma_{d \text{ (sand)}} = \frac{G_s \gamma_w}{1+e} = \frac{(2.62)(9.81)}{1+0.4} = 18.36 \text{ kN/m}^3$$

$$\gamma_{\text{sat(sand)}} = \frac{\gamma_w(G_s + e)}{1 + e} = \frac{(9.81)(2.68 + 0.6)}{1 + 0.6} = 20.11 \text{ kN/m}^3$$

$$\gamma_{\text{sat(clay)}} = \frac{\gamma_w(G_s + e)}{1 + e} = \frac{(9.81)(2.73 + 0.81)}{1 + 0.81} = 19.19 \text{ kN/m}^3$$

	kN/m ²		
Point	σ	и	σ'
\overline{A}	0	0	0
\boldsymbol{B}	(4)(18.36) = 73.44	0	73.44
C	73.44 + (5)(20.11) = 173.99	(9.81)(5) = 49.05	129.94
D	173.99 + (3)(19.19) = 231.56	49.05 + (9.81)(3) = 78.48	153.05

The plot is shown below.

9.5
$$\gamma_{d(\text{sand})} = \frac{G_s \gamma_w}{1+e} = \frac{(2.65)(9.81)}{1+0.6} = 16.25 \text{ kN/m}^3$$

$$\gamma_{\text{sat(sand)}} = \frac{\gamma_w(G_s + e)}{1 + e} = \frac{(9.81)(2.68 + 0.52)}{1 + 0.52} = 20.65 \text{ kN/m}^3$$

$$\gamma_{\text{sat(clay)}} = \frac{\gamma_w(G_s + e)}{1 + e} = \frac{(9.81)\left(\frac{1.1}{0.4} + 1.1\right)}{1 + 1.1} = 17.99 \text{ kN/m}^3$$

-	kN/m ²		
Point	σ	и	σ΄
\overline{A}	0	0	0
B	(4)(16.25) = 65	0	65
C	65 + (3)(20.65) = 126.95	(9.81)(3) = 29.43	97.52
D	126.95 + (1.5)(17.99) = 153.94	29.43 + (9.81)(1.5) = 44.158	109.79

The plot is shown below.

9.6 a.
$$\gamma_{d \text{ (sand)}} = \frac{G_s \gamma_w}{1+e} = \frac{(2.66)(9.81)}{1+0.52} = 17.17 \text{ kN/m}^3$$

$$\gamma_{\text{sat(clay)}} = \frac{(G_s + e)\gamma_w}{1 + e} = \frac{(2.75 + 1.0)(9.81)}{1 + 1.0} = 18.39 \text{ kN/m}^3$$

	kN/m ²		_
Depth (m)	σ	и	σ'
0	0	0	0
5	(17.17)(5) = 85.85	0	85.85
9	85.85 + (18.39)(4) = 159.41	(9.81)(4) = 39.24	120.17

b.
$$\gamma_{\text{sat(sand)}} = \frac{(G_s + e)\gamma_w}{1 + e} = \frac{(2.66 + 0.52)(9.81)}{1 + 0.52} = 20.52 \text{ kN/m}^3$$

$$\sigma = (5)(20.52) + (4)(18.39) = 176.16 \text{ kN/m}^2$$

$$u = (9)(9.81) = 88.29 \text{ kN/m}^2$$

$$\sigma' = 176.16 - 88.29 = 87.87 \text{ kN/m}^2$$

CHANGE IN σ' : 120.17 – 87.87 = **32.3 kN/m²**

c. Let the height of rise be h. So, at any time, at the bottom of the clay layer,

$$\sigma = (5 - h)(17.17) + (h)(20.52) + (4)(18.39) = 159.41 + 3.35h$$
$$u = (4 + h)(9.81) = 39.24 + 9.81h$$

$$\sigma' = (159.41 + 3.35h) - (39.24 + 9.81h) = 120.17 - 6.46h$$

CHANGE IN σ' : 15 = (120.17) – (120.17 – 6.46*h*); h = 2.32 m

9.7
$$\gamma_{\text{sat(clay)}} = \frac{(1+w)G_s\gamma_w}{1+wG_s} = \frac{(1+0.35)(2.72)(62.4)}{1+(0.35)(2.72)} = 117.4 \text{ lb/ft}^3$$

Let the depth of the excavation be H. So, $(20 - H)(117.4) - (12)(62.4) = 0 = \sigma'$.

 $H \approx 13.62 \text{ ft}$

$$9.8 \qquad \gamma_{\text{sat(clay)}} = \frac{(1900)(9.81)}{1000} = 18.64 \text{ kN/m}^3$$

$$\sigma_A = (7-5)(18.4) + h\gamma_w$$

$$u_A = 3\gamma_w$$

$$\sigma_A = (2)(18.64) + h(9.81) - (3)(9.81) = 0$$

h = 0.8 m

9.9
$$i = \frac{h}{H_2} = \frac{1.5}{2.5} = 0.6$$

$$q = kiA = \left(\frac{0.12}{100} \times 60 \text{ m/min}\right)(0.6)(0.45) = \mathbf{0.019 m^3/min}$$

9.10 a.
$$i = \frac{h}{H_2} = \frac{1.2}{2} = 0.6$$

$$q = kiA = (0.1)(0.6)(0.5 \times 100^{2} \text{ cm}^{2}) = 300 \text{ cm}^{3}/\text{sec}$$

b.
$$i_{cr} = \frac{\gamma'}{\gamma} = \frac{G_s - 1}{1 + e} = \frac{2.68 - 1}{1 + 0.55} = 1.08$$

Since $i < i_{cr}$, no boiling.

c.
$$i = i_{cr} = \frac{h}{H_2}$$
; $1.08 = \frac{h}{2}$

$$h = 2.16 \text{ m}$$

9.11 From Eq. (9.17),
$$FS = \frac{D\gamma'}{C_o \gamma_w (H_1 - H_2)}$$

$$D = 6 \text{ m}; \gamma' = 19 - 9.81 = 9.19 \text{ kN/m}^3; H_1 - H_2 = 5.6 - 2.2 = 3.4 \text{ m};$$

$$D/T = 6/10 = 0.6$$
. From Table 9.1, $C_o = 0.339$.

$$FS = \frac{(6)(9.19)}{(0.339)(9.81)(3.4)} = 4.88$$

9.12
$$\gamma_{d \text{ (sand)}} = \frac{G_s \gamma_w}{1+e} = \frac{(2.66)(62.4)}{1+0.5} = 110.66 \text{ lb/ft}^3$$

$$\gamma_{\text{sat(sand)}} = \frac{\gamma_w(G_s + Se)}{1 + e} = \frac{(62.4)[2.71 + (0.5)(0.75)]}{1 + 0.75} = 110 \text{ lb/ft}^3$$

$$\gamma_{\text{sat(clay)}} = \frac{\gamma_w(G_s + e)}{1 + e} = \frac{(62.4)(2.72 + 0.95)}{1 + 0.95} = 117.44 \text{ lb/ft}^3$$

	lb/ft ²		
Depth (ft)	σ	и	σ′
0	0	0	0
0	(110.66)(8) = 885.28	0	885.28
ð		(-0.5)(62.4)(4) = -124.8	1010.08
8 + 4 = 12	885.28 + (110)(4) = 1325.28	0	1325.28
12 + 7 = 19	1325.28 + (117.44)(7) = 2147.36	(7)(62.4) = 436.8	1710.56

The plot is given below.

9.13
$$\gamma_{d(\text{sand})} = \frac{(2.66)(9.81)}{1+0.5} = 17.4 \text{ kN/m}^3$$

$$\gamma_{\text{sat(sand)}} = \frac{(9.81)[2.71 + (0.65)(0.75)]}{1+0.75} = 17.92 \text{ kN/m}^3$$

$$\gamma_{\text{sat(clay)}} = \frac{(9.81)(2.72 + 0.95)}{1+0.95} = 18.46 \text{ kN/m}^3$$

	kN/m ²		
Depth (m)	σ	и	σ′
0	0	0	0
5	(17.4)(5) = 97	0	87
3	(17.4)(5) = 87	(-0.65)(9.81)(3) = -19.13	106.13
5 + 3 = 8	87 + (17.92)(3) = 140.76	0	140.76
8 + 3.5 = 11.5	140.76 + (18.46)(3.5) = 205.37	(3.5)(9.81) = 34.34	171.03

The plot is given.

