Computational Complexity Theory

Lecture 10: Savitch's theorem;

PSPACE-completeness;

Log-space reductions

Department of Computer Science, Indian Institute of Science

Recap: Time versus space

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is space constructible.

```
• Definition. L = DSPACE(log n)
NL = NSPACE(log n)
PSPACE = U DSPACE(n^c)
```

Recap: Time versus space

• Obs. DTIME(S(n)) \subseteq DSPACE(S(n)) \subseteq NSPACE(S(n)).

• Theorem. $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$, if S is

space constructible.

Recap: PATH is in NL

- PATH = {(G,s,t) : G is a directed graph having a path from s to t}.
- Obs. PATH is in NL.

Recap: UPATH is in L

UPATH = {(G,s,t) : G is an undirected graph having a path from s to t}.

EXP

• Theorem (Reingold 2005). UPATH is in L.

```
Is PATH in L?
If yes, then L = NL!
(will prove later)

PSPACE

NP

CO-NP
```

Recap: Space Hierarchy Theorem

Theorem. (Stearns, Hartmanis & Lewis 1965) If f and g are space-constructible functions and f(n) = o(g(n)), then SPACE(f(n)) ⊊ SPACE(g(n)).

• Proof. Homework.

• Theorem. L ⊊ PSPACE.

PSPACE = NPSPACE

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. Let $L \in NSPACE(S(n))$, and M be an NTM requiring O(S(n)) space to decide L. We'll show that there's a TM N requiring $O(S(n)^2)$ space to decide L.

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. Let $L \in NSPACE(S(n))$, and M be an NTM requiring O(S(n)) space to decide L. We'll show that there's a TM N requiring $O(S(n)^2)$ space to decide L.
- On input x, N checks if there's a path from C_{start} to C_{accept} in $G_{\text{M,x}}$ as follows: Let |x| = n.

- Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)
- Proof. (contd.) N computes m = O(S(n)), the no. of bits required to represent a configuration of M. It also finds out C_{start} and C_{accept} . Then N checks if there's a path from C_{start} to C_{accept} of length at most 2^m in $G_{\text{M,x}}$ recursively using the following procedure.
- REACH(C_1 , C_2 , i): returns I if there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$; 0 otherwise.

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Space constructibility of S(n) used here

- Proof. (contd.) N computes m = O(S(n)), the no. of bits required to represent a configuration of M. It also finds out C_{start} and C_{accept} . Then N checks if there's a path from C_{start} to C_{accept} of length at most 2^m in $G_{\text{M,x}}$ recursively using the following procedure.
- REACH(C_1 , C_2 , i): returns I if there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$; 0 otherwise.

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

```
Proof.
```

```
• REACH(C_1, C_2, i) {

If i = 0 check if C_1 and C_2 are adjacent.

Else, for every configurations C,

a_1 = \text{REACH}(C_1, C, i-1)

a_2 = \text{REACH}(C, C_2, i-1)

if a_1 = 1 \& a_2 = 1, return 1. Else return 0.
```

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

```
• Proof.

• REACH(C_1, C_2, i) {

If i = 0 check if C_1 and C_2 are adjacent.

Else, for every configurations C,

a_1 = \text{REACH}(C_1, C, i-1)

a_2 = \text{REACH}(C, C_2, i-1)

if a_1 = 1 & a_2 = 1, return 1. Else return 0.
```

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

```
Proof.
```

```
• REACH(C_1, C_2, i) {

If i = 0 check if C_1 and C_2 are adjacent.

Else, for every configurations C,

a_1 = \text{REACH}(C_1, C, i-1)

a_2 = \text{REACH}(C, C_2, i-1)

If a_1 = 1 \& a_2 = 1, return 1. Else return 0.
```

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

• Space complexity: $O(S(n)^2)$

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

• Space complexity: $O(S(n)^2)$

$$Time(i) = 2m.2.Time(i-1) + O(S(n))$$

• Time complexity: 2^{O(S(n)²)}

• Theorem. $NSPACE(S(n)) \subseteq DSPACE(S(n)^2)$, where S(n) is space constructible. (So, PSPACE = NPSPACE)

Proof.

$$Space(i) = Space(i-1) + O(S(n))$$

• Space complexity: $O(S(n)^2)$

$$Time(i) = 2m.2.Time(i-1) + O(S(n))$$

• Time complexity: 2^{O(S(n)²)}

Recall, NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))}). There's an algorithm with time complexity $2^{O(S(n))}$, but higher space requirement.

PSPACE-completeness

PSPACE-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ?

PSPACE-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ? ...use poly-time Karp reduction!
- Definition. A language L' is *PSPACE-hard* if for every L in PSPACE, L \leq_p L'. Further, if L' is in PSPACE then L' is *PSPACE-complete*.

A PSPACE-complete problem

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is P = PSPACE ? ...use poly-time Karp reduction!
- Example. L' = $\{(M, w, I^m) : M \text{ accepts } w \text{ using } m \text{ space}\}$

• Definition. A quantified Boolean formula (QBF) is a formula of the form

 A QBF is either <u>true</u> or <u>false</u> as all variables are quantified. This is unlike a formula we've seen before where variables were <u>unquantified/free</u>.

- Example. $\exists x_1 \exists x_2 ... \exists x_n \ \phi(x_1, x_2, ..., x_n)$
- The above QBF is true iff ϕ is satisfiable.

We could have defined SAT as

```
SAT = \{\exists x \phi(x) : \phi \text{ is a CNF and } \exists x \phi(x) \text{ is true} \} instead of
```

SAT = $\{\phi(x) : \phi \text{ is a CNF and } \phi \text{ is satisfiable}\}$

• Definition. A quantified Boolean formula (QBF) is a formula of the form

• Homework: By using auxiliary variables (as in the proof of Cook-Levin) and introducing some more \exists quantifiers at the end, we can assume w.l.o.g. that φ is a 3CNF.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

Theorem. TQBF is PSPACE-complete.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: Easy to see that TQBF is in PSPACE just think of a suitable <u>recursive procedure</u>. We'll now show that every L ∈ PSPACE reduces to TQBF via poly-time Karp reduction...

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Let M be a TM deciding L using S(n) = poly(n) space. We intend to come up with a poly-time reduction f s.t.

$$x \in L \quad \stackrel{f}{\longleftrightarrow} \psi_x$$
 is a true QBF

Size of ψ_x must be bounded by poly(n), where |x| = n

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Let M be a TM deciding L using S(n) = poly(n) space. We intend to come up with a poly-time reduction f s.t.

$$x \in L \quad \stackrel{f}{\longleftrightarrow} \psi_x \text{ is a true QBF}$$

Idea: Form ψ_x in such a way that ψ_x is true iff there's a path from C_{start} to C_{accept} in $G_{\text{M},x}$.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in G_{Mx} .

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$. Then, it forms a <u>semi-QBF</u> $\Delta_i(C_1,C_2)$, such that $\Delta_i(C_1,C_2)$ is true iff there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$.

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) f computes S(n) from n (recall, any poly function S(n) is time constructible). It also computes m = O(S(n)), the no. of bits required to represent a configuration in $G_{M,x}$. Then, it forms a <u>semi-QBF</u> $\Delta_i(C_1,C_2)$, such that $\Delta_i(C_1,C_2)$ is true iff there's a path from C_1 to C_2 of length at most 2^i in $G_{M,x}$.

The variables corresponding to the bits of C_1 and C_2 are unquantified/free variables of Δ_i

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(first attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \left(\Delta_{i-1}(C_{1},C) \wedge \Delta_{i-1}(C,C_{2})\right)$$

Issue: Size of Δ_i is **twice** the size of Δ_{i-1} !!

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(careful attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \forall D_{1} \forall D_{2}$$

$$\left(\left(\left(D_{1} = C_{1} \wedge D_{2} = C \right) \vee \left(D_{1} = C \wedge D_{2} = C_{2} \right) \right) \implies \Delta_{i-1}(D_{1},D_{2}) \right)$$

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) QBF $\Delta_i(C_1,C_2)$ is formed, recursively, as follows:

(careful attempt)

$$\Delta_{i}(C_{1},C_{2}) = \exists C \ \forall D_{1} \forall D_{2}$$

$$\left(\neg \left((D_{1} = C_{1} \land D_{2} = C) \lor (D_{1} = C \land D_{2} = C_{2}) \right) \lor \Delta_{i-1}(D_{1},D_{2}) \right)$$
Note: Size of $\Delta_{i} = O(S(n)) + Size$ of Δ_{i-1}

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_x = \Delta_m(C_{\text{start}}, C_{\text{accept}})$$

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{start}, C_{accept})$$

- But, we need to specify how to form $\Delta_0(C_1, C_2)$.
- Size of $\psi_{x} = O(S(n)^{2}) + Size of \Delta_{0}$

Natural PSPACE-complete problem

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_x = \Delta_m(C_{\text{start}}, C_{\text{accept}})$$

- But, we need to specify how to form $\Delta_0(C_1,C_2)$.
- Size of $\psi_{x} = O(S(n)^{2}) + Size of \Delta_{0}$

Remark: We can easily bring all the quantifiers at the beginning in $\Psi_{\mathbf{x}}$ (as in a prenex normal form).

Natural PSPACE-complete problem

 Definition. TQBF is the set of <u>true</u> quantified Boolean formulas.

- Theorem. TQBF is PSPACE-complete.
- Proof: (contd.) Finally,

$$\psi_{x} = \Delta_{m}(C_{start}, C_{accept})$$

- But, we need to specify how to form $\Delta_0(C_1, C_2)$.
- Size of $\psi_{\times} = O(S(n)^2) + Size of \Delta_0$??

Adjacent configurations

- Claim. There's an $O(S(n)^2)$ -size circuit $\phi_{M,x}$ on O(S(n)) inputs such that for every inputs C_1 and C_2 , $\phi_{M,x}(C_1, C_2) = I$ iff C_1 and C_2 encode two neighboring configurations in $G_{M,x}$.
- Proof. Think of a <u>linear time</u> algorithm that has the knowledge of M and x, and on input C_1 and C_2 it checks if C_2 is a neighbor of C_1 in $G_{M,x}$.

Adjacent configurations

- Claim. There's an $O(S(n)^2)$ -size circuit $\phi_{M,x}$ on O(S(n)) inputs such that for every inputs C_1 and C_2 , $\phi_{M,x}(C_1, C_2) = I$ iff C_1 and C_2 encode two neighboring configurations in $G_{M,x}$.
- Proof. Think of a <u>linear time</u> algorithm that has the knowledge of M and x, and on input C_1 and C_2 it checks if C_2 is a neighbor of C_1 in $G_{M,x}$. Applying ideas from the proof of Cook-Levin theorem, we get our desired $\phi_{M,x}$ of size $O(S(n)^2)$.

Size of Δ_0

- Obs. We can convert the circuit $\phi_{M,x}(C_1, C_2)$ to a quantified CNF $\Delta_0(C_1, C_2)$ by introducing auxiliary variables (as in the proof of Cook-Levin theorem).
- Hence, size of $\Delta_0(C_1, C_2)$ is $O(S(n)^2)$.
- Therefore, size of $\psi_x = O(S(n)^2)$.

Other PSPACE complete problems

 Checking if a player has a winning strategy in certain two-player games, like (generalized) Hex, Reversi, Geography etc.

Integer circuit evaluation (Yang 2000).

Implicit graph reachability.

 Check the wiki page: https://en.wikipedia.org/wiki/List_of_PSPACEcomplete_problems

NL-completeness

NL-completeness

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is L = NL?

NL-completeness

- Recall again, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is L = NL? ...poly-time (Karp) reductions are much too powerful for L.
- We need to define a suitable 'log-space' reduction.

$$x \xrightarrow{\text{Log-space TM}} f(x)$$

 Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.

...unless we restrict $|f(x)| = O(\log |x|)$, in which case we're severely restricting the power of the reduction.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output \underline{a} bit of f(x).

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is <u>implicitly log-space computable</u> if
 - 1. $|f(x)| \le |x|^c$ for some constant c,
 - 2. The following two languages are in L:

$$L_f = \{(x, i) : f(x)_i = I\}$$
 and $L'_f = \{(x, i) : i \le |f(x)|\}$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Definition: A language L_1 is <u>log-space reducible</u> to a language L_2 , denoted $L_1 \le_l L_2$, if there's an implicitly log-space computable function f such that

$$x \in L_1 \longrightarrow f(x) \in L_2$$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: Let f be the reduction from L_1 to L_2 , and g the reduction from L_2 to L_3 . We'll show that the function h(x) = g(f(x)) is implicitly log-space computable which will suffice as,

$$x \in L_1 \iff f(x) \in L_2 \iff g(f(x)) \in L_3$$

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ... Think of the following log-space TM that computes $h(x)_i$ from (x, i). Let
 - \triangleright M_f be the log-space TM that computes $f(x)_i$ from (x, j),
 - \triangleright M_g be the log-space TM that computes $g(y)_i$ from (y, i).

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j).

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).

stores M_g's current configuration

- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = $O(\log |f(x)|) + O(\log |x|)$.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). Space usage = $O(\log |x|)$.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...On input x, simulate M_g on (f(x), i) pretending that f(x) is there in some fictitious tape. During the simulation whenever M_g tries to read a j-th bit of f(x), postpone M_g 's computation and start simulating M_f on input (x, j). This shows L_h is in L.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).
- Claim: If $L_1 \le_l L_2$ and $L_2 \le_l L_3$ then $L_1 \le_l L_3$.
- Proof: ...Similarly, L'_h is in L and so h is implicitly log-space computable.

$$(x, i) \xrightarrow{\text{Log-space TM}} f(x)_i$$

- Issue: A log-space TM may not have enough space to write down the whole output f(x) in one shot.
- Solution: Have the log-space TM output a bit of f(x).

- Claim: If $L_1 \le L_2$ and $L_2 \in L$ then $L_1 \in L$.
- Proof: Same ideas. (Homework)