# CS 577 - Dynamic Programming

#### Marc Renault

Department of Computer Sciences University of Wisconsin – Madison

> Spring 2021 TopHat Join Code: 524741



# Dynamic Programming

DP

#### Dynamic Programming



Richard Bellman

It is "programming" that is "dynamic"!

DP WIS LIS SUBSET EDIT SP GAMES RNA\* ALIGN\* LS\* MAX SUBARRAY

#### Dynamic Programming



It is "programming" that is "dynamic"!

Richard Bellman

# Why "Dynamic Programming"?

#### Reasons for the name:

- In the 1950s, "programming" was about "planning" rather than coding.
- "Dynamic" is exciting Air Force director didn't like research and wanted pizzazz.
- "Dynamic" sounds better than "linear" (Re: rival Dantzig).

#### Dynamic Programming



It is "programming" that is "dynamic"!

Richard Bellman

#### What is it?

- Your new favourite algorithmic technique.
- Extreme Divide and Conquer
- Many sub-problems, but not quite brute-force.
- Dynamic in that it calculates a bunch of solutions from the "smallest" to the "largest".

# Weighted Interval Scheduling



#### **Problem Definition**

• Requests:  $\sigma = \{r_1, \cdots, r_n\}$ 



#### **Problem Definition**

- Requests:  $\sigma = \{r_1, \cdots, r_n\}$
- A request  $r_i = (s_i, f_i, v_i)$ , where  $s_i$  is the start time,  $f_i$  is the finish time, and  $v_i$  is the value.



#### **Problem Definition**

- Requests:  $\sigma = \{r_1, \cdots, r_n\}$
- A request  $r_i = (s_i, f_i, v_i)$ , where  $s_i$  is the start time,  $f_i$  is the finish time, and  $v_i$  is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.



#### **Problem Definition**

- Requests:  $\sigma = \{r_1, \cdots, r_n\}$
- A request  $r_i = (s_i, f_i, v_i)$ , where  $s_i$  is the start time,  $f_i$  is the finish time, and  $v_i$  is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule  $S: \forall r_i, r_i \in S, f_i \leq s_i \lor f_i \leq s_i$ .

DP **WIS** LIS Subset Edit SP Games RNA\* Align\* LS\* Max Subarray\*

#### WEIGHTED INTERVAL SCHEDULING



#### **Problem Definition**

- Requests:  $\sigma = \{r_1, \cdots, r_n\}$
- A request  $r_i = (s_i, f_i, v_i)$ , where  $s_i$  is the start time,  $f_i$  is the finish time, and  $v_i$  is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule  $S: \forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$ .

TH1: What is the value of the FF heuristic?



#### **Problem Definition**

- Requests:  $\sigma = \{r_1, \cdots, r_n\}$
- A request  $r_i = (s_i, f_i, v_i)$ , where  $s_i$  is the start time,  $f_i$  is the finish time, and  $v_i$  is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule  $S: \forall r_i, r_j \in S, f_i \leq s_j \lor f_j \leq s_i$ .

TH1: What is the value of the FF heuristic? 2.



#### **Problem Definition**

- Requests:  $\sigma = \{r_1, \cdots, r_n\}$
- A request  $r_i = (s_i, f_i, v_i)$ , where  $s_i$  is the start time,  $f_i$  is the finish time, and  $v_i$  is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule  $S: \forall r_i, r_i \in S, f_i \leq s_i \lor f_i \leq s_i$ .

TH1: What is the value of the FF heuristic? 2.

TH2: What is the optimal value?



#### **Problem Definition**

- Requests:  $\sigma = \{r_1, \cdots, r_n\}$
- A request  $r_i = (s_i, f_i, v_i)$ , where  $s_i$  is the start time,  $f_i$  is the finish time, and  $v_i$  is the value.
- Objective: Produce a *compatible* schedule *S* that has maximum value.
- Compatible schedule  $S: \forall r_i, r_i \in S, f_i \leq s_i \lor f_i \leq s_i$ .

TH1: What is the value of the FF heuristic? 2.

TH2: What is the optimal value? 3.

#### Recursive Procedure

**1** Assume  $\sigma$  ordered by finish time (asc).

#### Recursive Procedure

- Assume  $\sigma$  ordered by finish time (asc).
- **2** Find the optimal value in sorted  $\sigma$  of first j items:

#### Recursive Procedure

- Assume  $\sigma$  ordered by finish time (asc).
- **2** Find the optimal value in sorted  $\sigma$  of first j items:
  - Find largest i < j such that  $f_i \le s_j$ .

#### Recursive Procedure

- **1** Assume  $\sigma$  ordered by finish time (asc).
- **2** Find the optimal value in sorted  $\sigma$  of first j items:
  - Find largest i < j such that  $f_i \le s_j$ .
  - **2**  $opt(j) = max(opt(j-1), opt(i) + v_j)$

#### Recursive Procedure

- **1** Assume  $\sigma$  ordered by finish time (asc).
- **2** Find the optimal value in sorted  $\sigma$  of first j items:
  - Find largest i < j such that  $f_i \le s_j$ .
  - $\mathbf{OPT}(j) = \max(\mathsf{OPT}(j-1), \mathsf{OPT}(i) + v_j)$

# Proof of optimality.

By strong induction on j.

#### Recursive Procedure

- **1** Assume  $\sigma$  ordered by finish time (asc).
- **2** Find the optimal value in sorted  $\sigma$  of first j items:
  - Find largest i < j such that  $f_i \le s_j$ .
  - **2**  $\text{OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$

# Proof of optimality.

By strong induction on *j*.

**Base cases:** j = 0 or j = 1: Only 1 possible optimal solution.

#### Recursive Procedure

- **1** Assume  $\sigma$  ordered by finish time (asc).
- **②** Find the optimal value in sorted  $\sigma$  of first j items:
  - Find largest i < j such that  $f_i \le s_j$ .
  - **2**  $\text{Opt}(j) = \max(\text{Opt}(j-1), \text{Opt}(i) + v_j)$

# Proof of optimality.

By strong induction on j.

**Base cases:** j = 0 or j = 1: Only 1 possible optimal solution.

#### **Inductive step:**

- By ind hyp, we have opt for j 1 and opt for i.
- FF assures the dichotomy that the last interval is either in the solution or not.
- Take the max of whether or not a given interval is included.

#### Consider the Recursion

$$\text{OPT}(j) = \max(\text{OPT}(j-1), \text{OPT}(i) + v_j)$$



#### CONSIDER THE RECURSION

$$\text{Opt}(j) = \max(\text{Opt}(j-1), \text{Opt}(i) + v_j)$$



TH3: What is the asymptotic number of recursive calls with n jobs?

#### Consider the Recursion

$$\text{Opt}(j) = \max(\text{Opt}(j-1), \text{Opt}(i) + v_j)$$



TH3: What is the asymptotic number of recursive calls with n jobs?  $O(2^n)$ 

#### Memoizing the Recursion

#### Memoization

- Not a typo.
- Coined in 1989 by Donald Michie.
- Derived from latin "memorandum", meaning "to be remembered".

#### Memoizing the Recursion

#### Memoization

- Not a typo.
- Coined in 1989 by Donald Michie.
- Derived from latin "memorandum", meaning "to be remembered".

#### Basic Technique

- Calculate once: store the value in array and retrieve for future calls.
- Can be implemented recursively, but tends to be more natural as an iterative process.

# **Algorithm:** WeightIntDP

# **Algorithm:** WeightIntDP

```
Sort \sigma by finish time m[0] := 0 for j = 1 to n do \mid Find index i \mid m[j] = \max(m[j-1], m[i] + v_j) end
```

#### **DP** Solutions

- DP algorithms are formulaic.
- We understand how loops work.
- NO Pseudocode.

WIS LIS SUBSET EDIT SP GAMES RNA\* ALIGN\* LS\* MAX SUBARRAY

# Dynamic Program Solution

# Algorithm: WeightIntDP

```
Sort \sigma by finish time m[0] := 0 for j = 1 to n do \mid Find index i \mid m[j] = \max(m[j-1], m[i] + v_j) end
```

#### DP Solutions

- DP algorithms are formulaic.
- We understand how loops work.
- NO Pseudocode.

#### We want:

- Definitions required for algorithm to work
- Description of matrix
- Bellman Equation
- Location of solution, order to populate the matrix

Definitions required for algorithm to work

# Definitions required for algorithm to work

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that  $f_i \le s_j$ .

# Definitions required for algorithm to work

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that  $f_i \le s_j$ .

# Description of matrix

# Definitions required for algorithm to work

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that  $f_i \le s_j$ .

# Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted  $\sigma$ .

# Definitions required for algorithm to work

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that  $f_i \le s_j$ .

# Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted  $\sigma$ .

# **Bellman Equation**

# Definitions required for algorithm to work

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that  $f_i \le s_j$ .

# Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted  $\sigma$ .

# Bellman Equation

•  $m[j] = \max(m[j-1], m[i] + v_j)$ 

# Definitions required for algorithm to work

- $\sigma$  sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that  $f_i \le s_i$ .

# Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted  $\sigma$ .

# **Bellman Equation**

•  $m[j] = \max(m[j-1], m[i] + v_j)$ 

# Location of solution, order to populate

DP **WIS** LIS Subset Edit SP Games RNA\* Align\* LS\* Max Subarray\*

## Dynamic Program Solution

# Definitions required for algorithm to work

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j > i, i is the largest index such that  $f_i \le s_i$ .

# Description of matrix

• 1D array, where index j is the maximum value of a compatible schedule for the first j items in sorted  $\sigma$ .

# Bellman Equation

•  $m[j] = \max(m[j-1], m[i] + v_j)$ 

## Location of solution, order to populate

• The maximum value of a compatible schedule for the n jobs is found at m[n]. Populate from 1 to n.

#### ANALYZE THE ALGORITHM

#### **DP Solution**

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

## ANALYZE THE ALGORITHM

#### **DP Solution**

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

#### **DP Solution**

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

#### Runtime

• Preprocessing:

#### **DP Solution**

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
  - Sorting jobs:  $O(n \log n)$ .

#### **DP Solution**

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
  - Sorting jobs:  $O(n \log n)$ .
- Populate the matrix:

#### **DP Solution**

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
  - Sorting jobs:  $O(n \log n)$ .
- Populate the matrix:
  - Number of cells: TopHat 4

#### DP Solution

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
  - Sorting jobs:  $O(n \log n)$ .
- Populate the matrix:
  - Number of cells: O(n)

#### **DP Solution**

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
  - Sorting jobs:  $O(n \log n)$ .
- Populate the matrix:
  - Number of cells: O(n)
  - Cost per cell: TopHat 5

WIS LIS Subset Edit SP Games RNA\* Align\* LS\* Max Subarray

## Analyze the Algorithm

#### **DP Solution**

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

- Preprocessing:
  - Sorting jobs:  $O(n \log n)$ .
- Populate the matrix:
  - Number of cells: O(n)
  - Cost per cell: Finding i: O(n) linear search,  $O(\log n)$  binary search

P **WIS** LIS Subset Edit SP Games RNA\* Align\* LS\* Max Subarran

## ANALYZE THE ALGORITHM

#### **DP Solution**

- $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

#### Runtime

- Preprocessing:
  - Sorting jobs:  $O(n \log n)$ .
- Populate the matrix:
  - Number of cells: O(n)
  - Cost per cell: Finding i: O(n) linear search,  $O(\log n)$  binary search

#### Overall: TopHat 6

DP **WIS** LIS Subset Edit SP Games RNA\* Align\* LS\* Max Subarray\*

## Analyze the Algorithm

#### **DP Solution**

- $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

#### Runtime

- Preprocessing:
  - Sorting jobs:  $O(n \log n)$ .
- Populate the matrix:
  - Number of cells: O(n)
  - Cost per cell: Finding i: O(n) linear search,  $O(\log n)$  binary search

Overall:  $O(n^2)$  linear search,  $O(n \log n)$  binary search

## ANALYZE THE ALGORITHM

#### **DP** Solution

- $\bullet$   $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

#### What about the schedule S?

## ANALYZE THE ALGORITHM

#### **DP** Solution

- $\sigma$  sorted by finish time, ascending order.
- For a given job at index j, i < j is the largest index such that  $f_i \le s_j$ .
- Bellman Equation:  $m[j] = \max(m[j-1], m[i] + v_j)$

#### What about the schedule *S*?

Trace back from the optimal value:

• Job j is part of the optimal schedule from 1 to j iff  $v_i + \text{OPT}(i) \ge \text{OPT}(j-1)$ 

# Algorithm Template

- Preprocessing of data
- Populate the matrix:
  - Iterate over the cells in the correct order.
  - Understand the work done per cell.

# Algorithm Template

- Preprocessing of data
- Populate the matrix:
  - Iterate over the cells in the correct order.
  - Understand the work done per cell.

## Algorithm Guidelines

# Algorithm Template

- Preprocessing of data
- Populate the matrix:
  - Iterate over the cells in the correct order.
  - Understand the work done per cell.

## Algorithm Guidelines

• There are only a polynomial number of subproblems.

# Algorithm Template

- Preprocessing of data
- Populate the matrix:
  - Iterate over the cells in the correct order.
  - Understand the work done per cell.

## Algorithm Guidelines

- There are only a polynomial number of subproblems.
- 2 The solution to the larger problem can be efficiently calculated from the subproblems.

# Algorithm Template

- Preprocessing of data
- Populate the matrix:
  - Iterate over the cells in the correct order.
  - Understand the work done per cell.

## Algorithm Guidelines

- There are only a polynomial number of subproblems.
- 2 The solution to the larger problem can be efficiently calculated from the subproblems.
- Natural ordering of the subproblems from "smallest" to "largest".

#### **Problem**

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have  $A[i_k] < A[i_{k+1}]$  for all k.

#### **Problem**

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have  $A[i_k] < A[i_{k+1}]$  for all k.

#### Subsequence

• For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.

#### **Problem**

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have  $A[i_k] < A[i_{k+1}]$  for all k.

## Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
  - puddles: subsequence, substring (contiguous)
  - late train: subsequence, not substring (not contiguous)

#### **Problem**

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have  $A[i_k] < A[i_{k+1}]$  for all k.

## Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
  - puddles: subsequence, substring (contiguous)
  - late train: subsequence, not substring (not contiguous)

TH1: For an array of length *n*, how many subsequences?

#### Problem

- Given an integer array A[1..n].
- Find the longest increasing subsequence. That is, let i be a sequence of indexes, we have  $A[i_k] < A[i_{k+1}]$  for all k.

## Subsequence

- For a sequence *A*, a subsequence *S* is a subset of *A* that maintains the same relative order.
- Ex: I like watching the puddles gather rain.
  - puddles: subsequence, substring (contiguous)
  - late train: subsequence, not substring (not contiguous)

TH1: For an array of length n, how many subsequences?  $2^n$ 

#### Algorithm: LIS

**Input**: Integer k, and array of integers A[1..n].

**Output:** Return length of LIS where every value > k.

Exo: Complete the algorithm

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

end

```
Algorithm: LIS

Input: Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k. if n = 0 then return 0

else if A[1] \le k then

| return LIS(k, A[2..n])

else

| skip := LIS(k, A[2..n])

take := LIS(A[1], A[2..n]) + 1

return max\{skip, take\}
```

TH2: For an array A[1..n], how would you find the length of the LIS using the LIS(·) algorithm?

end

```
Algorithm: LIS

Input: Integer k, and array of integers A[1..n].

Output: Return length of LIS where every value > k. if n = 0 then return 0

else if A[1] \le k then

| return LIS(k, A[2..n])

else

| skip := LIS(k, A[2..n])

take := LIS(A[1], A[2..n]) + 1

return max\{skip, take\}
```

TH2: For an array A[1..n], how would you find the length of the LIS using the LIS(·) algorithm? LIS( $-\infty$ , A[1..n])

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return max{skip, take}
end
```

TH3: Run time of the algorithm for a length n array?

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

TH3: Run time of the algorithm for a length n array?  $O(2^n)$ 

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

TH3: Run time of the algorithm for a length n array?  $O(2^n)$  TH4: How many distinct recursive calls for a length n array?

```
Algorithm: LIS
Input: Integer k, and array of integers A[1..n].
Output: Return length of LIS where every value > k.
if n = 0 then return 0
else if A[1] \leq k then
   return LIS(k, A[2..n])
else
   skip := LIS(k, A[2..n])
   take := LIS(A[1], A[2..n]) + 1
   return \max\{skip, take\}
end
```

TH3: Run time of the algorithm for a length n array?  $O(2^n)$  TH4: How many distinct recursive calls for a length n array?  $O(n^2)$ 

# Dynamic Program for LIS

# Description of matrix

TH5: Number of dimensions of array?

# Dynamic Program for LIS

# Description of matrix

TH5: Number of dimensions of array? 2

## Dynamic Program for LIS

# Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

#### Dynamic Program for LIS

### Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

### **Bellman Equation**

$$L[i,j] = \begin{cases} 0, & \text{if } j \ge n \\ L[i,j+1], & \text{if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, & \text{otherwise} \end{cases}$$

DP WIS **LIS** Subset Edit SP Games RNA\* Align\* LS\* Max Subarray\*

### Dynamic Program for LIS

### Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

### Bellman Equation

$$L[i,j] = \begin{cases} 0, & \text{if } j \ge n \\ L[i,j+1], & \text{if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, & \text{otherwise} \end{cases}$$

## Solution and populating *L*

- Solution in L[0][1]; add  $A[0] = -\infty$ .
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.

DP WIS **LIS** Subset Edit SP Games RNA\* Align\* LS\* Max Subarray\*

### Dynamic Program for LIS

### Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

### Bellman Equation

$$L[i,j] = \begin{cases} 0, & \text{if } j \ge n \\ L[i,j+1], & \text{if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, & \text{otherwise} \end{cases}$$

## Solution and populating *L*

- Solution in L[0][1]; add  $A[0] = -\infty$ .
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.
- TH6: Run time:

DP WIS **LIS** Subset Edit SP Games RNA\* Align\* LS\* Max Subarray\*

### Dynamic Program for LIS

### Description of matrix

2D array L, where L[i,j] is the maximum LIS of A[j..n] with every item > A[i], i < j.

### Bellman Equation

$$L[i,j] = \begin{cases} 0, & \text{if } j \ge n \\ L[i,j+1], & \text{if } A[i] \ge A[j] \\ \max\{L[i,j+1], L[j,j+1] + 1\}, & \text{otherwise} \end{cases}$$

## Solution and populating *L*

- Solution in L[0][1]; add  $A[0] = -\infty$ .
- Populate j from n to 1; i from 0 to j 1 or j 1 to 0.
- Run time:  $O(n^2)$

# Subset and Knapsack

#### Problem Definition

• A single machine that we can use for time *W*.

#### **Problem Definition**

- A single machine that we can use for time *W*.
- A set of jobs:  $1, 2, \ldots, n$ .

#### **Problem Definition**

- A single machine that we can use for time *W*.
- A set of jobs:  $1, 2, \ldots, n$ .
- Each job has a run time:  $w_1, w_2, \ldots, w_n$ .

#### **Problem Definition**

- A single machine that we can use for time *W*.
- A set of jobs:  $1, 2, \ldots, n$ .
- Each job has a run time:  $w_1, w_2, \ldots, w_n$ .
- What is the subset *S* of jobs to run that maximizes  $\sum_{i \in S} w_i \leq W$ ?

#### **Problem Definition**

- A single machine that we can use for time *W*.
- A set of jobs:  $1, 2, \ldots, n$ .
- Each job has a run time:  $w_1, w_2, \ldots, w_n$ .
- What is the subset *S* of jobs to run that maximizes  $\sum_{i \in S} w_i \leq W$ ?

### **Greedy Heuristics**

#### **Problem Definition**

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, ..., n.
- Each job has a run time:  $w_1, w_2, \ldots, w_n$ .
- What is the subset *S* of jobs to run that maximizes  $\sum_{i \in S} w_i \leq W$ ?

### **Greedy Heuristics**

• Decreasing weights: TopHat D1

#### **Problem Definition**

- A single machine that we can use for time *W*.
- A set of jobs:  $1, 2, \ldots, n$ .
- Each job has a run time:  $w_1, w_2, \ldots, w_n$ .
- What is the subset *S* of jobs to run that maximizes  $\sum_{i \in S} w_i \leq W$ ?

#### **Greedy Heuristics**

• Decreasing weights:  $\{W/2 + 1, W/2, W/2\}$ 

#### **Problem Definition**

- A single machine that we can use for time *W*.
- A set of jobs: 1, 2, ..., n.
- Each job has a run time:  $w_1, w_2, \ldots, w_n$ .
- What is the subset *S* of jobs to run that maximizes  $\sum_{i \in S} w_i \leq W$ ?

#### **Greedy Heuristics**

- Decreasing weights:  $\{W/2 + 1, W/2, W/2\}$
- Increasing weights: TopHat D2

#### Problem Definition

- A single machine that we can use for time *W*.
- A set of jobs:  $1, 2, \ldots, n$ .
- Each job has a run time:  $w_1, w_2, \ldots, w_n$ .
- What is the subset *S* of jobs to run that maximizes  $\sum_{i \in S} w_i \le W$ ?

#### Greedy Heuristics

- Decreasing weights:  $\{W/2 + 1, W/2, W/2\}$
- Increasing weights: {1, W/2, W/2}

# DYNAMIC PROGRAMMING APPROACH

# 1D Approach

• if  $n \notin S$ , then v[n] = v[n-1]

- if  $n \notin S$ , then v[n] = v[n-1]
- if  $n \in S$ , then v[n] = ?

- if  $n \notin S$ , then v[n] = v[n-1]
- if  $n \in S$ , then v[n] = ?
  - Accepting *n* does automatically exclude other items.

## 1D Approach

- if  $n \notin S$ , then v[n] = v[n-1]
- if  $n \in S$ , then v[n] = ?
  - Accepting *n* does automatically exclude other items.

#### Need to consider more

To solve v[n], we need to consider:

# 1D Approach

- if  $n \notin S$ , then v[n] = v[n-1]
- if  $n \in S$ , then v[n] = ?
  - Accepting *n* does automatically exclude other items.

#### Need to consider more

To solve v[n], we need to consider:

• the best solution with n-1 previous items restricted by W, and

## 1D Approach

- if  $n \notin S$ , then v[n] = v[n-1]
- if  $n \in S$ , then v[n] = ?
  - Accepting *n* does automatically exclude other items.

#### Need to consider more

To solve v[n], we need to consider:

- the best solution with n-1 previous items restricted by W, and
- the best solution with n-1 previous items restricted by  $W-w_n$



- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - *w*: Max weight from 0 to *W*.

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

### 2D Approach

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

• v[0, w] := 0 for all w and v[i, 0] := 0 for all i

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

## 2D Approach

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

TH7: Running time to populate the matrix:

### 2D Approach

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

TH7: Running time to populate the matrix: O(nW)

## 2D Approach

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

TH7: Running time to populate the matrix: O(nW)

TH8: Is this polynomial?

## 2D Approach

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

TH7: Running time to populate the matrix: O(nW) TH8: Is this polynomial? No, *pseudo-polynomial* because of W which is unbounded.

### Matrix Visualization:



# Example Run:

$$W = 6$$
, items  $w_1 = 2$ ,  $w_2 = 2$ ,  $w_3 = 3$ 



**Initial values** 

### Example Run:

$$W = 6$$
, items  $w_1 = 2$ ,  $w_2 = 2$ ,  $w_3 = 3$ 





Filling in values for i = 1

# Example Run:

$$W = 6$$
, items  $w_1 = 2$ ,  $w_2 = 2$ ,  $w_3 = 3$ 



Filling in values for i = 1

Filling in values for i = 2

# Example Run:

$$W = 6$$
, items  $w_1 = 2$ ,  $w_2 = 2$ ,  $w_3 = 3$ 



2

3 Filling in values for i = 1

5

Filling in values for i = 2

Filling in values for i = 3

14/47

## 2D Approach

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

How can we recover the subset itself?

## Dynamic Programming Approach

# 2D Approach

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

How can we recover the subset itself?

TH9: Running time of recovery of subset:

## Dynamic Programming Approach

# 2D Approach

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + w_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

How can we recover the subset itself?

TH9: Running time of recovery of subset: O(n)

#### KNAPSACK EXTENSION



#### **Problem Definition**

• You are a thief with a knapsack that can carry *W* weight of goods.

#### KNAPSACK EXTENSION



#### Problem Definition

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items:  $1, 2, \ldots, n$ .

DP WIS LIS **Subset** Edit SP Games RNA\* Align\* LS\* Max Subarray\*

#### KNAPSACK EXTENSION



#### **Problem Definition**

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items:  $1, 2, \ldots, n$ .
- Each item has a weight:  $w_1, w_2, \ldots, w_n$ .
- Each item has a value:  $v_1, v_2, \ldots, v_n$ .

DP WIS LIS **Subset** Edit SP Games RNA\* Align\* LS\* Max Subarray\*

#### KNAPSACK EXTENSION



#### Problem Definition

- You are a thief with a knapsack that can carry *W* weight of goods.
- A set of items:  $1, 2, \ldots, n$ .
- Each item has a weight:  $w_1, w_2, \ldots, w_n$ .
- Each item has a value:  $v_1, v_2, \ldots, v_n$ .
- What is the subset *S* of items to steal that maximizes  $\sum_{i \in S} v_i$  with the constraint that  $\sum_{i \in S} w_i \leq W$ ?

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + v_i))$$

#### **DP Solution**

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + v_i))$$

• v[0, w] := 0 for all w and v[i, 0] := 0 for all i

- 2D Matrix:
  - *i*: Item indices from 0 to *n*.
  - w: Max weight from 0 to W.
- Indicator:  $x_{i,w} := 0$  if  $w_i > w$  and 1 otherwise.
- Bellman Equation:

$$v[i, w] = \max(v[i-1, w], x_{i,w} \cdot (v[i-1, w-w_i] + v_i))$$

- v[0, w] := 0 for all w and v[i, 0] := 0 for all i
- Solution value: v[n, W].

Edit

# EDIT DISTANCE

# EDIT DISTANCE

#### Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

## **EDIT DISTANCE**

#### Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY  $\rightarrow$  THUESDAY  $\rightarrow$  THURSDAY

#### EDIT DISTANCE

#### Problem

Minimum number of letter

- insertions: adding a letter,
- deletions: removing a letter,
- substitutions: replacing a letter

to change string A[1..m] to string B[1..n].

Ex: TUESDAY  $\rightarrow$  THUESDAY  $\rightarrow$  THURSDAY

Or, align and count mismatched letters

T UESDAY THURSDAY

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..i]:
  - Insertion: Edit(i, j) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion: Edit(i,j) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i,j-1) + 1$ .
  - Deletion: Edit(i, j) = TH1

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion: Edit(i, j) = Edit(i 1, j) + 1.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion: Edit(i, j) = Edit(i 1, j) + 1.
  - Substitution: Edit(i, j) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion: Edit(i, j) = Edit(i 1, j) + 1.
  - Substitution: Edit(i, j) = TH2

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$ .
  - Substitution:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + 1$ .

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$ .
  - Substitution:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$ .
  - Substitution: Edit $(i,j) = \text{Edit}(i-1,j-1) + A[i] \neq B[j]$
  - i = 0: Edit(i, j) =

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion: Edit(i,j) = Edit(i-1,j) + 1.
  - Substitution:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j-1) + A[i] \neq B[j]$
  - i = 0: Edit(i, j) = TH3

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$ .
  - Substitution: Edit $(i,j) = \text{Edit}(i-1,j-1) + A[i] \neq B[j]$
  - i = 0: Edit(i, j) = j.

- Let A[1..m] and B[1..n] be the 2 input strings.
- What is the edit distance for A[1..i] and B[1..j]:
  - Insertion: Edit(i, j) = Edit(i, j 1) + 1.
  - Deletion:  $\operatorname{Edit}(i,j) = \operatorname{Edit}(i-1,j) + 1$ .
  - Substitution: Edit $(i, j) = \text{Edit}(i 1, j 1) + A[i] \neq B[j]$
  - i = 0: Edit(i, j) = j.
  - j = 0: Edit(i, j) = i.

# Dynamic Program for Edit Distance

# Description of matrix

TH4: Number of dimensions of array?

DP WIS LIS SUBSET **EDIT** SP GAMES RNA\* ALIGN\* LS\* MAX SUBARRAY

# Dynamic Program for Edit Distance

# Description of matrix

TH4: Number of dimensions of array? 2

# Dynamic Program for Edit Distance

# Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

#### Dynamic Program for Edit Distance

## Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

# Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

DP WIS LIS Subset **Edit** SP Games RNA\* Align\* LS\* MaxSubarray\*

## Dynamic Program for Edit Distance

## Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

# Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

# Solution and populating *L*

- Solution in TopHat 5
- Set E[0,j] = i; E[i,0] = j; populate from 1 to n, 1 to m.

DP WIS LIS Subset **Edit** SP Games RNA\* Align\* LS\* Max Subarray\*

## Dynamic Program for Edit Distance

# Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

# Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

# Solution and populating *L*

- Solution in E[m, n]
- Set E[0,j] = i; E[i,0] = j; populate from 1 to n, 1 to m.
- TH6: Run time:

DP WIS LIS Subset **Edit** SP Games RNA\* Align\* LS\* Max Subarray\*

#### Dynamic Program for Edit Distance

# Description of matrix

2D array E, where E[i,j] is the edit distance for A[1..i] and B[1..j].

# Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

# Solution and populating *L*

- Solution in E[m, n]
- Set E[0,j] = i; E[i,0] = j; populate from 1 to n, 1 to m.
- Run time: O(mn)

#### SPACE SAVINGS

# Bellman Equation

$$E[i,j] = \begin{cases} i, & \text{if } j = 0\\ j, & \text{if } i = 0\\ \min\{E[i,j-1] + 1, E[i-1,j] + 1,\\ E[i-1,j-1] + A[i] \neq B[j]\}, & \text{otherwise} \end{cases}$$

#### How much space do we need?

- Notice that E[i][j] depends on E[i, j-1], E[i-1, j], and E[i-1, j-1].
- We only need previous and current row of matrix for calculations.

# Shortest Path

#### SHORTEST PATH

Going Negative

#### **Problem Definition**

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node s that has a path to every other node in V. For each edge e = (i, j),  $c_{ij}$  is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?

#### SHORTEST PATH

Going Negative

#### **Problem Definition**

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node s that has a path to every other node in V. For each edge e = (i, j),  $c_{ij}$  is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?



Richard Bellman



L R Ford Jr.

#### SHORTEST PATH

Going Negative

#### **Problem Definition**

We have a directed graph G = (V, E), where |V| = n and |E| = m and a node s that has a path to every other node in V. For each edge e = (i, j),  $c_{ij}$  is the weight of the edge, and the are no cycles with negative weight.

• What is the shortest path from *s* to each other node?

Why no negative cycles?



# **Algorithm:** *Dijkstra's*

Let *S* be the set of explored nodes.

For each  $u \in S$ , we store a distance value d(u).

Initialize  $S = \{s\}$  and d(s) = 0

while  $S \neq V$  do

Choose  $v \notin S$  with at least one incoming edge originating from a node in S with the smallest

$$d'(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e$$

Append v to S and define d(v) = d'(v).

end return S

Negative Problem

# Negative Problem

• Lose guarantee that minimum edge between S and  $V \setminus S$  is part of minimum path.

#### **Negative Problem**

• Lose guarantee that minimum edge between S and  $V \setminus S$  is part of minimum path.

Why not just boost all edges by max negative value plus a bit  $(\beta)$ ?

#### **Negative Problem**

• Lose guarantee that minimum edge between S and  $V \setminus S$  is part of minimum path.

# Why not just boost all edges by max negative value plus a bit $(\beta)$ ?

• A path with x edges: Cost increases  $x \cdot \beta$ .

#### **Negative Problem**

• Lose guarantee that minimum edge between S and  $V \setminus S$  is part of minimum path.

# Why not just boost all edges by max negative value plus a bit $(\beta)$ ?

- A path with x edges: Cost increases  $x \cdot \beta$ .
- Solution in new graph is not guaranteed to be optimal in original graph.

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

# Dynamic Program

• 2D matrix M of # edges in path  $\times$  vertices.

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path  $\times$  vertices.
  - M[i][v] is the shortest path from v to t using  $\leq i$  edges.

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path  $\times$  vertices.
  - M[i][v] is the shortest path from v to t using  $\leq i$  edges.
  - TH23: Where is the solution?

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path  $\times$  vertices.
  - M[i][v] is the shortest path from v to t using  $\leq i$  edges.
  - Solution: M[n-1][s]

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path  $\times$  vertices.
  - M[i][v] is the shortest path from v to t using  $\leq i$  edges.
  - Solution: M[n-1][s]
- Dichotomy:

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

- 2D matrix M of # edges in path  $\times$  vertices.
  - M[i][v] is the shortest path from v to t using  $\leq i$  edges.
  - Solution: M[n-1][s]
- Dichotomy:
  - Use  $\leq i 1$  edges.
  - Use  $\leq i$  edges.

WIS LIS SUBSET EDIT **SP** GAMES RNA\* ALIGN\* LS\* MAX SUBARRAY

#### Bellman-Ford

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

#### Dynamic Program

- 2D matrix M of # edges in path  $\times$  vertices.
  - M[i][v] is the shortest path from v to t using  $\leq i$  edges.
  - Solution: M[n-1][s]
- Dichotomy:
  - Use  $\leq i 1$  edges.
  - Use  $\leq i$  edges.

TH24: Build the Bellman equation.

#### Observation 1

If G has no negative cycles, then there exists a shortest path from s to t that is simple, and has at most n-1 edges.

# Dynamic Program

- 2D matrix M of # edges in path  $\times$  vertices.
  - M[i][v] is the shortest path from v to t using  $\leq i$  edges.
  - Solution: M[n-1][s]
- Dichotomy:
  - Use  $\leq i 1$  edges.
  - Use  $\leq i$  edges.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\},\$$

where  $c_{vw} = \infty$  if no edge from v to w.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

#### Worst Case: *n* nodes

• TH25: # of Cells:

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

#### Worst Case: *n* nodes

• # of Cells:  $O(n^2)$ .

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

#### Worst Case: *n* nodes

- # of Cells:  $O(n^2)$ .
- TH26: Cost per cell:

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

#### Worst Case: *n* nodes

- # of Cells:  $O(n^2)$ .
- Cost per cell: O(n).

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

#### Worst Case: *n* nodes

- # of Cells:  $O(n^2)$ .
- Cost per cell: O(n).
- Overall:  $O(n^3)$ .

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

#### Worst Case: *n* nodes

- # of Cells:  $O(n^2)$ .
- Cost per cell: O(n).
- Overall:  $O(n^3)$ .

#### Worst Case: *n* nodes, *m* edges

- For each node v, we only need to consider outgoing edges to w (denoted by  $\eta_v$ ).
- For every node v, we need to do this calculation for  $0 \le i \le n-1$  lengths.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

#### Worst Case: n nodes

- # of Cells:  $O(n^2)$ .
- Cost per cell: O(n).
- Overall:  $O(n^3)$ .

#### Worst Case: *n* nodes, *m* edges

- For each node v, we only need to consider outgoing edges to w (denoted by  $\eta_v$ ).
- For every node v, we need to do this calculation for  $0 \le i \le n-1$  lengths.
- Overall:  $O(n \sum_{v \in V} \eta_v) = O(mn)$ .

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

#### Worst Case: *n* nodes, *m* edges

• Overall:  $O(n \sum_{v \in V} \eta_v) = O(mn)$ .

# Space Saving: O(n).

- To build row *i*:
  - We only need i 1 values for each node.
  - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$  for each *i*.

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

# Worst Case: *n* nodes, *m* edges

• Overall:  $O(n \sum_{v \in V} \eta_v) = O(mn)$ .

# Space Saving: O(n).

- To build row *i*:
  - We only need i 1 values for each node.
  - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$  for each *i*.
- Recovery of actual path:

$$M[i][v] = \min\{M[i-1][v], \min_{w \in V}\{M[i-1][w] + c_{vw}\}\}$$

## Worst Case: *n* nodes, *m* edges

• Overall:  $O(n \sum_{v \in V} \eta_v) = O(mn)$ .

# Space Saving: O(n).

- To build row *i*:
  - We only need i 1 values for each node.
  - $M[v] = \min\{M[v], \min_{w \in V}\{M[w] + c_{vw}\}\}$  for each *i*.
- Recovery of actual path: An additional array *first*[v] that maintains the first hop from v to t.

# **NEGATIVE CYCLES**

#### Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is  $-\infty$ .

#### **NEGATIVE CYCLES**

#### Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is  $-\infty$ .

#### Observation 3

M[i][v] = M[n-1][v] for all i > n-1 and all nodes v if there are no negative cycles on the paths to t.

DP WIS LIS Subset Edit **SP** Games RNA\* Align\* LS\* Max Subarray\*

# NEGATIVE CYCLES

#### Observation 2

If there is a negative cycle along the path from s to t, then the shortest path is  $-\infty$ .

#### Observation 3

M[i][v] = M[n-1][v] for all i > n-1 and all nodes v if there are no negative cycles on the paths to t.

# Augmented Graph for Negative Cycle Finding

- Add a node *t* with an incoming edge from all other nodes with cost 0.
- Run Bellman-Ford from any node *s* to *t* until number of edges *n*.
- If, for some v,  $M[n][v] \neq M[n-1][v]$ , then there is a negative cycle.

# Dynamic Programming for Games

WIS LIS Subset Edit SP **Games** RNA\* Align\* LS\* Max Subarray

#### Dynamic Programming for Games

#### Games

- Some number of players (1 to many).
- Set of rules with some objective.
- Huge domain, started by Von Neumann, that spans many fields such as Economics, Math, Biology, and Computer Science.

WIS LIS Subset Edit SP **Games** RNA\* Align\* LS\* Max Subarray

#### Dynamic Programming for Games

#### Games

- Some number of players (1 to many).
- Set of rules with some objective.
- Huge domain, started by Von Neumann, that spans many fields such as Economics, Math, Biology, and Computer Science.

#### **DP** for Games

In many games, DP is a natural paradigm for an optimal strategy.

### Coins in a Line



DP WIS LIS Subset Edit SP **Games** RNA\* Align\* LS\* Max Subarray\*

### Coins in a Line

### Players

Two players:



Alice (Player A)



Bob (Player B)

#### Rules

- *n* (even) coins in a line; each coin has a value.
- Starting with Alice, each player will pick a coin from the head or the tail.

P WIS LIS Subset Edit SP **Games** RNA\* Align\* LS\* Max Subarray\*

### Coins in a Line

### Players

#### Two players:



Alice (Player A)



Bob (Player B)

#### Rules

- *n* (even) coins in a line; each coin has a value.
- Starting with Alice, each player will pick a coin from the head or the tail.
- Winner: Player with the max value at the end; winning player keeps the coins.

# Largest Coin

TopHat D1: Give a counter-example.

# Largest Coin

[1,3,6,3]

A: 3; [1,3,6]

B: 6; [1,3]

A: 6; [1]

B: 7; []

# Largest Coin

#### Even or Odd

```
[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3]
A: 6; [1,3,6]
B: 7; [1,3]
A: 9; [1]
B: 8; []
```

# Largest Coin

#### Even or Odd

```
[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3]
A: 6; [1,3,6]
B: 7; [1,3]
A: 9; [1]
B: 8; []
```

Alice can always win.

WIS LIS Subset Edit SP **Games** RNA\* Align\* LS\* Max Subarray

### GREEDY APPROACHES

### Largest Coin

#### Even or Odd

```
[1,3,6,3,1,3]
A: 3; [1,3,6,3,1]
B: 1; [1,3,6,3]
A: 6; [1,3,6]
B: 7; [1,3]
A: 9; [1]
B: 8; []

• Alice can always win.
```

• But are we optimal?

WIS LIS Subset Edit SP **Games** RNA\* Align\* LS\* Max Subarray\*

### Greedy Approaches

### Largest Coin

#### Even or Odd

[1,3,6,3,1,3]

A: 3; [1,3,6,3,1]

B: 1; [1,3,6,3]

A: 6; [1,3,6]

B: 7; [1,3]

A: 9; [1]

B: 8; []

• Alice can always win.

• But are we optimal? No

[1,3,6,3,1,3]

A: 3; [1,3,6,3,1]

B: 1; [3,6,3,1]

A: 4; [3,6,3]

B: 4; [6,3]

A: 10; [3]

B: 7; []

D. 1, [

TH D2: What is the natural dichotomy?

#### Head or Tail?

• Two players: Assume that Bob will play optimally.

#### Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
  - Coin array: C[i..j]
  - $\max\{c[i] + \text{BobOpt}(c[i+1..j]), c[j] + \text{BobOpt}(c[i..j-1])\}$

#### NATURAL DICHOTOMY

#### Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
  - Coin array: C[i..j]
  - $\max\{c[i] + \text{BobOpt}(c[i+1..j]), c[j] + \text{BobOpt}(c[i..j-1])\}$
- BobOpt(c[i..j]) := min{AliceOpt(c[i+1..j]), AliceOpt(c[i..j-1])}

#### Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
  - Coin array: C[i..j]
  - $\max\{c[i] + \text{BobOpt}(c[i+1..j]), c[j] + \text{BobOpt}(c[i..j-1])\}$
- BobOpt(c[i..j]) := min{AliceOpt(c[i+1..j]), AliceOpt(c[i..j-1])}

TH1: How many dimensions for DP array?

#### Head or Tail?

- Two players: Assume that Bob will play optimally.
- For Alice's *k*th turn:
  - Coin array: C[i..j]
  - $\max\{c[i] + \text{BobOpt}(c[i+1..j]), c[j] + \text{BobOpt}(c[i..j-1])\}$
- BobOpt(c[i..j]) := min{AliceOpt(c[i+1..j]), AliceOpt(c[i..j-1])}

TH1: How many dimensions for DP array? 2

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation: TopHat 2

- 2D array *M*:
  - M[i, j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$  for i = j 1.

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$  for i = j 1.
- Populate i from n 2 to 1; j from n to 3.

### Head or Tail DP

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$  for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: TH3

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$  for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]

### Head or Tail DP

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$  for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]
- Runtime: TH4

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$  for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]
- Runtime:  $O(n^2)$

DP WIS LIS Subset Edit SP **Games** RNA\* Align\* LS\* Max Subarray\*

### Head or Tail DP

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$

$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$  for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]
- Runtime:  $O(n^2)$
- Proof of correctness:

DP WIS LIS SUBSET EDIT SP **Games** RNA\* Align\* LS\* Max Subarray\*

### Head or Tail DP

- 2D array *M*:
  - M[i,j] is the maximum value possible for Alice when choosing from c[i..j], assuming Bob plays optimally.
- Bellman Equation:

$$M[i,j] = \max\{c[i] + \min\{M[i+2,j], M[i+1,j-1]\},\$$
$$c[j] + \min\{M[i+1,j-1], M[i,j-2]\}\}$$

- M[i, i] = c[i] for all i.
- $M[i,j] = \max\{c[i], c[j]\}$  for i = j 1.
- Populate i from n 2 to 1; j from n to 3.
- Solution: M[1, n]
- Runtime:  $O(n^2)$
- Proof of correctness: Strong induction on the cell population order..

# RNA SECONDARY STRUCTURE

#### RNA SECONDARY STRUCTURE



#### **Problem Definition**

- RNA tends to loop back on itself, forming base pairs.
- RNA alphabet:  $\{A, C, G, U\}$ .
- Valid pairs: (A, U) or (C, G).

WIS LIS Subset Edit SP Games RNA\* Align\* LS\* Max Subarray\*

#### RNA SECONDARY STRUCTURE



#### Problem Definition

- RNA tends to loop back on itself, forming base pairs.
- RNA alphabet:  $\{A, C, G, U\}$ .
- Valid pairs: (A, U) or (C, G).
- Input: n length string:  $B = b_1 b_2 \dots b_n$
- Output: Determine a secondary structure with maximum number of base pairs.

P WIS LIS Subset Edit SP Games RNA\* Align\* LS\* Max Subarray\*

#### RNA SECONDARY STRUCTURE



#### Secondary Structure

 $S = \{(i,j)\}$ , where i < j and  $i, j \in \{1, \dots, n\}$ , such that:

- No Sharp turns: i < j d for some constant d.
- All pairs are valid.
- **S** is a matching: no base appears more than once.
- **●** Non-crossing: For any  $(i,j), (i',j') \in S$ , we cannot have i < i' < j < j'.

# 1D Approach

• 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .

# 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .

# 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .
- Solution: m[n].

# 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .
- Solution: m[n].

# Recursive Sub-problems

Dichotomy:

# 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .
- Solution: m[n].

# Recursive Sub-problems

Dichotomy:

**1** *j* is not a pair: m[j] = m[j-1].

## 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .
- Solution: m[n].

## Recursive Sub-problems

- **1** *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
  - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].

## 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .
- Solution: m[n].

# Recursive Sub-problems

- **1** *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
  - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
  - Sub-problems:

# 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .
- Solution: m[n].

## Recursive Sub-problems

- **1** *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
  - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
  - Sub-problems:
    - Max pairs in [1, t 1]: m[t 1].

# 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .
- Solution: m[n].

# Recursive Sub-problems

- **1** *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
  - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
  - Sub-problems:
    - Max pairs in [1, t 1]: m[t 1].
    - **2** Max pairs in [t + 1, j 1]:

# 1D Approach

- 1D array m, where m[j] is the maximum # of pairs among:  $b_1b_2...b_j$ .
- No sharp turns: m[j] = 0 for  $j \le d + 1$ .
- Solution: m[n].

# Recursive Sub-problems

- **1** *j* is not a pair: m[j] = m[j-1].
- 2 j is paired with t < j d:
  - Non-crossing: No pairs between [1, t-1] and [t+1, j-1].
  - Sub-problems:
    - Max pairs in [1, t 1]: m[t 1].
    - **2** Max pairs in [t+1, j-1]: Restricted to  $b_{t+1}b_{t+2} \dots b_{j-1}$  which current DP does not calculate.

## 2D Approach

• 2D array m, where m[i][j] is the maximum # of pairs among:  $b_i b_{i+1} \dots b_j$ .

## 2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among:  $b_ib_{i+1}...b_j$ .
- No sharp turns: m[i][j] = 0 for  $i \ge j d$ .

## 2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among:  $b_i b_{i+1} \dots b_j$ .
- No sharp turns: m[i][j] = 0 for  $i \ge j d$ .
- Solution: TopHat 12

## 2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among:  $b_ib_{i+1}...b_j$ .
- No sharp turns: m[i][j] = 0 for  $i \ge j d$ .
- Solution: m[1][n].

## 2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among:  $b_i b_{i+1} \dots b_i$ .
- No sharp turns: m[i][j] = 0 for  $i \ge j d$ .
- Solution: m[1][n].

## Recursive Sub-problems

## 2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among:  $b_i b_{i+1} \dots b_j$ .
- No sharp turns: m[i][j] = 0 for  $i \ge j d$ .
- Solution: m[1][n].

## Recursive Sub-problems

#### Dichotomy:

**1** *j* is not a pair: m[i][j] = m[i][j-1].

## 2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among:  $b_ib_{i+1}...b_j$ .
- No sharp turns: m[i][j] = 0 for  $i \ge j d$ .
- Solution: m[1][n].

## Recursive Sub-problems

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- 2 j is paired with  $i \le t < j d$ 
  - $v_{ij}$  as indicator: 1 if valid pair, 0 otherwise
  - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].

## 2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among:  $b_i b_{i+1} \dots b_j$ .
- No sharp turns: m[i][j] = 0 for  $i \ge j d$ .
- Solution: m[1][n].

## Recursive Sub-problems

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- **2** j is paired with  $i \le t < j d$ 
  - $v_{ij}$  as indicator: 1 if valid pair, 0 otherwise
  - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
  - Sub-problems:
    - Max pairs in [i, t 1]: m[i][t 1].

## 2D Approach

- 2D array m, where m[i][j] is the maximum # of pairs among:  $b_i b_{i+1} \dots b_j$ .
- No sharp turns: m[i][j] = 0 for  $i \ge j d$ .
- Solution: m[1][n].

## Recursive Sub-problems

- *j* is not a pair: m[i][j] = m[i][j-1].
- 2 j is paired with  $i \le t < j d$ 
  - $v_{ij}$  as indicator: 1 if valid pair, 0 otherwise
  - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
  - Sub-problems:
    - Max pairs in [i, t 1]: m[i][t 1].
    - **2** Max pairs in [t+1, j-1]: m[t+1][j-1].

## 2D Approach

• 2D array m, where m[i][j] is the maximum # of pairs among:  $b_i b_{i+1} \dots b_j$ .

## Recursive Sub-problems

#### Dichotomy:

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- 2 j is paired with  $i \le t < j d$ 
  - $v_{ij}$  as indicator: 1 if valid pair, 0 otherwise
  - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
  - Sub-problems:
    - **1** Max pairs in [i, t 1]: m[i][t 1].
    - **2** Max pairs in [t+1, j-1]: m[t+1][j-1].

#### TopHat 13: What is the Bellman equation?

## 2D Approach

• 2D array m, where m[i][j] is the maximum # of pairs among:  $b_ib_{i+1}...b_j$ .

## Recursive Sub-problems

- **1** *j* is not a pair: m[i][j] = m[i][j-1].
- **2** j is paired with  $i \le t < j d$ 
  - $v_{ij}$  as indicator: 1 if valid pair, 0 otherwise
  - Non-crossing: No pairs between [i, t-1] and [t+1, j-1].
  - Sub-problems:
    - **1** Max pairs in [i, t 1]: m[i][t 1].
    - **2** Max pairs in [t+1, j-1]: m[t+1][j-1].

$$m[i][j] = \max (m[i][j-1], \max_{i \le t < j-d} \{v_{tj} \cdot (1+m[i][t-1]+m[t+1][j-1])\})$$

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

| i |   |   |   |   |
|---|---|---|---|---|
| 4 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 2 |
| j | 6 | 7 | 8 | 9 |

- # of cells: TH14
- Work per cell:

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

| i |   |   |   |   |
|---|---|---|---|---|
| 4 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 2 |
| j | 6 | 7 | 8 | 9 |

- # of cells:  $O(n^2)$ .
- Work per cell:

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

| i |   |   |   |   |   |
|---|---|---|---|---|---|
| 4 | Į | 0 | 0 | 0 | 0 |
| 3 | 3 | 0 | 0 | 1 | 1 |
| 2 | 2 | 0 | 0 | 1 | 1 |
| 1 |   | 1 | 1 | 1 | 2 |
| j |   | 6 | 7 | 8 | 9 |

- # of cells:  $O(n^2)$ .
- Work per cell: TH15

## RNA Secondary Structure Example

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

| i |   |   |   |   |
|---|---|---|---|---|
| 4 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 2 |
| j | 6 | 7 | 8 | 9 |

- # of cells:  $O(n^2)$ .
- Work per cell: O(n).

$$m[i][j] = \max \left( m[i][j-1], \max_{i \le t < j-d} \{ v_{tj} \cdot (1 + m[i][t-1] + m[t+1][j-1]) \} \right)$$

• B = ACCGGUAGU and d = 4

| i |   |   |   |   |
|---|---|---|---|---|
| 4 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 2 |
| j | 6 | 7 | 8 | 9 |

- # of cells:  $O(n^2)$ .
- Work per cell: O(n).
- Overall:  $O(n^3)$ .



- An alphabet *S*.
- Strings  $X = x_1x_2 \dots x_m$  and  $Y = y_1y_2 \dots y_n$  from S.
- A matching  $M = \{(i, j)\}$  of pairs without crossings, where  $i \in [1, m]$  and  $j \in [1, n]$ .



- An alphabet *S*.
- Strings  $X = x_1x_2 \dots x_m$  and  $Y = y_1y_2 \dots y_n$  from S.
- A matching  $M = \{(i, j)\}$  of pairs without crossings, where  $i \in [1, m]$  and  $j \in [1, n]$ .
- Cost:
  - Gaps (unmatched indexes) have a cost of  $\delta$ .
  - For each symbol pair  $p, q \in S$ ,  $\alpha_{pq}$  is the matching cost.



- An alphabet *S*.
- Strings  $X = x_1x_2...x_m$  and  $Y = y_1y_2...y_n$  from S.
- A matching  $M = \{(i, j)\}$  of pairs without crossings, where  $i \in [1, m]$  and  $j \in [1, n]$ .
- Cost:
  - Gaps (unmatched indexes) have a cost of  $\delta$ .
  - For each symbol pair  $p, q \in S$ ,  $\alpha_{pq}$  is the matching cost.
- Goal: Find the matching that minimizes the cost.



 $\delta = 3$ ;  $\alpha_{pp} = 0$ ;  $\alpha_{pq} = 1$ TopHat Q16: What is the cost of the matching: o-currence occurrence

- An alphabet *S*.
- Strings  $X = x_1 x_2 \dots x_m$  and  $Y = y_1 y_2 \dots y_n$  from S.
- A matching  $M = \{(i, j)\}$  of pairs without crossings, where  $i \in [1, m]$  and  $j \in [1, n]$ .
- Cost:
  - Gaps (unmatched indexes) have a cost of  $\delta$ .
  - For each symbol pair  $p, q \in S$ ,  $\alpha_{pq}$  is the matching cost.
- Goal: Find the matching that minimizes the cost.



 $\delta = 3$ ;  $\alpha_{pp} = 0$ ;  $\alpha_{pq} = 1$ TopHat Q17: What is the cost of the matching: o-curr-ance

- An alphabet *S*.
- Strings  $X = x_1 x_2 \dots x_m$  and  $Y = y_1 y_2 \dots y_n$  from S.
- A matching  $M = \{(i, j)\}$  of pairs without crossings, where  $i \in [1, m]$  and  $j \in [1, n]$ .
- Cost:
  - Gaps (unmatched indexes) have a cost of  $\delta$ .
  - For each symbol pair  $p, q \in S$ ,  $\alpha_{pq}$  is the matching cost.
- Goal: Find the matching that minimizes the cost.



 $\delta = 1$ ;  $\alpha_{pp} = 0$ ;  $\alpha_{pq} = 4$ TopHat Q18: What is the cost of the matching: o-currance occurrence

- An alphabet *S*.
- Strings  $X = x_1 x_2 \dots x_m$  and  $Y = y_1 y_2 \dots y_n$  from S.
- A matching  $M = \{(i, j)\}$  of pairs without crossings, where  $i \in [1, m]$  and  $j \in [1, n]$ .
- Cost:
  - Gaps (unmatched indexes) have a cost of  $\delta$ .
  - For each symbol pair  $p, q \in S$ ,  $\alpha_{pq}$  is the matching cost.
- Goal: Find the matching that minimizes the cost.



 $\delta = 1$ ;  $\alpha_{pp} = 0$ ;  $\alpha_{pq} = 4$ TopHat Q19: What is the cost of the matching: o-curr-ance

- An alphabet *S*.
- Strings  $X = x_1 x_2 \dots x_m$  and  $Y = y_1 y_2 \dots y_n$  from S.
- A matching  $M = \{(i, j)\}$  of pairs without crossings, where  $i \in [1, m]$  and  $j \in [1, n]$ .
- Cost:
  - Gaps (unmatched indexes) have a cost of  $\delta$ .
  - For each symbol pair  $p, q \in S$ ,  $\alpha_{pq}$  is the matching cost.
- Goal: Find the matching that minimizes the cost.

## DESIGNING NEEDLEMAN-WUNSCH ALGORITHM

## **Basic Dichotomy**

In optimal alignment M, either  $(m, n) \in M$  or  $(m, n) \notin M$ .

# **Basic Dichotomy**

In optimal alignment M, either  $(m, n) \in M$  or  $(m, n) \notin M$ .

#### Lemma 1

Let M be any alignment of X and Y. If  $(m, n) \notin M$ , then either the mth position of X, or the nth position of Y is not matched in M.

# **Basic Dichotomy**

In optimal alignment M, either  $(m, n) \in M$  or  $(m, n) \notin M$ .

#### Lemma 1

Let M be any alignment of X and Y. If  $(m, n) \notin M$ , then either the mth position of X, or the nth position of Y is not matched in M.

# **Basic Dichotomy**

In optimal alignment M, either  $(m, n) \in M$  or  $(m, n) \notin M$ .

#### Lemma 1

Let M be any alignment of X and Y. If  $(m, n) \notin M$ , then either the mth position of X, or the nth position of Y is not matched in M.

#### Proof.

• By way of contradiction, assume that

# **Basic Dichotomy**

In optimal alignment M, either  $(m, n) \in M$  or  $(m, n) \notin M$ .

#### Lemma 1

Let M be any alignment of X and Y. If  $(m, n) \notin M$ , then either the mth position of X, or the nth position of Y is not matched in M.

#### Proof.

• By way of contradiction, assume that  $(m, n) \notin M$ , and  $(m, j), (i, n) \in M$  for i < m and j < n.

# **Basic Dichotomy**

In optimal alignment M, either  $(m, n) \in M$  or  $(m, n) \notin M$ .

#### Lemma 1

Let M be any alignment of X and Y. If  $(m, n) \notin M$ , then either the mth position of X, or the nth position of Y is not matched in M.

- By way of contradiction, assume that  $(m, n) \notin M$ , and  $(m, j), (i, n) \in M$  for i < m and j < n.
- Contradicts the non-crossing requirement.

# Key Concepts for Optimality

- $\bullet$   $(m,n) \in M$ ; or
- 2 the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.

# Key Concepts for Optimality

- $\bullet$   $(m,n) \in M$ ; or
- the *m*th position of *X* is not matched; or
- the *n*th position of Y is not matched.
  - TH20: How many dimensions for the matrix?

# Key Concepts for Optimality

- **1**  $(m, n) \in M$ ; or
- 2 the *m*th position of *X* is not matched; or
- **3** the *n*th position of *Y* is not matched.
  - 2D matrix called A, where A[i][j] is alignment of minimum cost for  $x_1x_2...x_i$  and  $y_1y_2...y_j$ .

# Key Concepts for Optimality

- **1**  $(m, n) \in M$ ; or
- 2 the *m*th position of *X* is not matched; or
- **3** the *n*th position of *Y* is not matched.
  - 2D matrix called A, where A[i][j] is alignment of minimum cost for  $x_1x_2...x_i$  and  $y_1y_2...y_j$ .
  - TH21: Build the Bellman equation.

# Key Concepts for Optimality

- **1**  $(m, n) \in M$ ; or
- 2 the *m*th position of *X* is not matched; or
- **3** the *n*th position of *Y* is not matched.
  - 2D matrix called A, where A[i][j] is alignment of minimum cost for  $x_1x_2...x_i$  and  $y_1y_2...y_i$ .
  - $\bullet \ A[i][j] = \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$

# Key Concepts for Optimality

- **1**  $(m, n) \in M$ ; or
- 2 the *m*th position of *X* is not matched; or
- **3** the *n*th position of *Y* is not matched.
- 2D matrix called A, where A[i][j] is alignment of minimum cost for  $x_1x_2...x_i$  and  $y_1y_2...y_j$ .
- $A[i][j] = \min\{\alpha_{x_iy_i} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$
- Runtime: TH22

# Key Concepts for Optimality

- **1**  $(m, n) \in M$ ; or
- 2 the *m*th position of *X* is not matched; or
- the *n*th position of *Y* is not matched.
  - 2D matrix called A, where A[i][j] is alignment of minimum cost for  $x_1x_2...x_i$  and  $y_1y_2...y_i$ .
  - $A[i][j] = \min\{\alpha_{x_iy_i} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$
  - Runtime: O(mn).



## Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in  $G_{XY}$ . Then,  $\forall i,j f(i,j) = A[i][j]$ .



# Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in  $G_{XY}$ . Then,  $\forall i,j f(i,j) = A[i][j]$ .



#### Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in  $G_{XY}$ . Then,  $\forall i,j f(i,j) = A[i][j]$ .

## Proof.

By strong induction on



#### Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in  $G_{XY}$ . Then,  $\forall i,j f(i,j) = A[i][j]$ .

## Proof.

• By strong induction on (i + j).



#### Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in  $G_{XY}$ . Then,  $\forall i,j f(i,j) = A[i][j]$ .

- By strong induction on (i + j).
- Base case:



#### Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in  $G_{XY}$ . Then,  $\forall i,j f(i,j) = A[i][j]$ .

- By strong induction on (i + j).
- Base case: i + j = 0. We have f(0, 0) = 0 = A[0][0].
- Induction hypothesis: The claim holds for all pairs (i', j') such that i' + j' < i + j.



#### Theorem 2

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in  $G_{XY}$ . Then,  $\forall i,j f(i,j) = A[i][j]$ .

- By strong induction on (i + j).
- Base case: i + j = 0. We have f(0,0) = 0 = A[0][0].
- Induction hypothesis: The claim holds for all pairs (i', j') such that i' + j' < i + j.
- Inductive step:

$$f(i,j) = \min\{\alpha_{x_i y_j} + f(i-1,j-1), \delta + f(i-1,j), \delta + f(i,j-1)\}$$

$$= \min\{\alpha_{x_i y_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

$$= A[i,j]$$

$$A[i][j] = \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

• 
$$\delta = 2$$
;  $\alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 1 & \text{otherwise} \end{cases}$ 

| n |   |   |   |   |   |
|---|---|---|---|---|---|
| a |   |   |   |   |   |
| e |   |   |   |   |   |
| m |   |   |   |   |   |
| - |   |   |   |   |   |
|   | - | n | a | m | e |

$$A[i][j] = \min\{\alpha_{x_i y_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

• 
$$\delta = 2$$
;  $\alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 1 & \text{otherwise} \end{cases}$ 

| n | 8 | 6 | 5 | 4 | 6 |
|---|---|---|---|---|---|
| a | 6 | 5 | 3 | 5 | 5 |
| e | 4 | 3 | 2 | 4 | 4 |
| m | 2 | 1 | 3 | 4 | 6 |
| - | 0 | 2 | 4 | 6 | 8 |
|   | - | n | a | m | e |

$$A[i][j] = \min\{\alpha_{x_iy_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

• 
$$\delta = 2$$
;  $\alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 2 & \text{otherwise} \end{cases}$ 

| n |   |   |   |   |   |
|---|---|---|---|---|---|
| a |   |   |   |   |   |
| e |   |   |   |   |   |
| m |   |   |   |   |   |
| - |   |   |   |   |   |
|   | - | n | a | m | e |

$$A[i][j] = \min\{\alpha_{x_i y_j} + A[i-1][j-1], \delta + A[i-1][j], \delta + A[i][j-1]\}$$

• 
$$\delta = 2$$
;  $\alpha = \begin{cases} 0 & \text{if same letter} \\ 3 & \text{if vowel to consonant} \\ 2 & \text{otherwise} \end{cases}$ 

| n | 8 | 6 | 6 | 6 | 8 |
|---|---|---|---|---|---|
| a | 6 | 6 | 4 | 6 | 6 |
| e | 4 | 4 | 4 | 6 | 4 |
| m | 2 | 2 | 4 | 4 | 6 |
| - | 0 | 2 | 4 | 6 | 8 |
|   | - | n | a | m | e |

# Least Squares

# SEGMENTED LEAST SQUARES



# Problem Setup

- Set of n points:  $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$  on the plane.
- Suppose  $x_1 < x_2 < \cdots < x_n$ .
- Find L: y = ax + b that minimizes:  $\operatorname{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$ .

DP WIS LIS Subset Edit SP Games RNA\* Align\* **LS\*** Max Subarray\*

# SEGMENTED LEAST SQUARES



# Problem Setup

- Set of n points:  $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$  on the plane.
- Suppose  $x_1 < x_2 < \cdots < x_n$ .
- Find L: y = ax + b that minimizes:  $\operatorname{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$ .

#### Problem Formulation

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of  $Error(L, p_i) + C$  for all subsets, where C is a fixed cost per subset.

DP WIS LIS Subset Edit SP Games RNA\* Align\* **LS\*** Max Subarrav\*

# SEGMENTED LEAST SQUARES



# Problem Setup

- Set of n points:  $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$  on the plane.
- Suppose  $x_1 < x_2 < \cdots < x_n$ .
- Find L: y = ax + b that minimizes:  $\operatorname{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$ .

#### **Problem Formulation**

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of  $Error(L, p_i) + C$  for all subsets, where C is a fixed cost per subset.

DP WIS LIS Subset Edit SP Games RNA\* Align\* **LS\*** Max Subarrav\*

# SEGMENTED LEAST SQUARES



# Problem Setup

- Set of n points:  $P := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$  on the plane.
- Suppose  $x_1 < x_2 < \cdots < x_n$ .
- Find L: y = ax + b that minimizes:  $\operatorname{Error}(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$ .

#### **Problem Formulation**

- Partition the points (by *x*) into contiguous subsets.
- Minimize the sum of  $Error(L, p_i) + C$  for all subsets, where C is a fixed cost per subset.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

## Notes

•  $e_{i,j}$  is the min error for a partition from i to j.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

#### Notes

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

#### Notes

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

## Notes

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

# Complexity

# **DP Solution**

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

#### **Notes**

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

# Complexity

• Preprocess error calc  $e_{i,j}$  can be done in  $O(n^2)$ .

# **DP Solution**

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

#### Notes

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

# Complexity

- Preprocess error calc  $e_{i,j}$  can be done in  $O(n^2)$ .
- Number of cells: TH10

# **DP Solution**

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

#### **Notes**

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

# Complexity

- Preprocess error calc  $e_{i,j}$  can be done in  $O(n^2)$ .
- Number of cells: O(n).

## **DP SOLUTION**

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

#### Notes

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

## Complexity

- Preprocess error calc  $e_{i,j}$  can be done in  $O(n^2)$ .
- Number of cells: O(n).
- Work done for cell *j*: TH11

## **DP SOLUTION**

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

#### Notes

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

## Complexity

- Preprocess error calc  $e_{i,j}$  can be done in  $O(n^2)$ .
- Number of cells: O(n).
- Work done for cell j: O(j).

## **DP SOLUTION**

$$s[j] = \min_{1 \le i \le j} (e_{i,j} + C + s[i-1])$$

#### Notes

- $e_{i,j}$  is the min error for a partition from i to j.
- *C* is added each time as we are adding a new partition.
- s[i] is optimum up to point i.

## Complexity

- Preprocess error calc  $e_{i,j}$  can be done in  $O(n^2)$ .
- Number of cells: O(n).
- Work done for cell j: O(j).
- Overall:  $O(n^2)$ .

Max Subarray\*

# Max Subarray\*

DP WIS LIS SUBSET EDIT SP GAMES RNA\* ALIGN\* LS\* MAX SUBARRAY\*

## Max Subarray

## Problem

Given an array *A* of integers, find the contiguous subarray of *A* of maximum sum.

## Max Subarray

### Problem

Given an array *A* of integers, find the contiguous subarray of *A* of maximum sum.

#### Exercise – Teams of 3 or so

- Solve the problem in  $\Theta(n^2)$ .
- Solve the problem in  $O(n \log n)$ .
- Prove correctness and complexity.

# Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRAYS
Input: Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
      if sum(A[i..j]) > sum(M) then
        M := A[i..j]
       end
   end
end
return M
```

# Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRA
Input: Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
      if sum(A[i..j]) > sum(M
          M := A[i..j]
       end
   end
end
return M
```

## Analysis

 Correct: Checks all possible contiguous subarrays.

# Part 1: Give a $\Theta(n^2)$ solution.

```
Algorithm: CHECKALLSUBARRA
Input: Array A of n ints.
Output: Max subarray in A.
Let M be an empty array
for i := 1 to len(A) do
   for j := i to len(A) do
      if sum(A[i..j]) > sum(M
        M := A[i..j]
       end
   end
end
return M
```

## Analysis

- Correct: Checks all possible contiguous subarrays.
- Complexity:
  - Re-calculating the sum will make it  $O(n^3)$ . Key is to calculate the sum as you iterate.
  - For each i, check n i + 1 ends. Overall:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

# Part 2: Give an $O(n \log n)$ solution.

### **Algorithm:** MaxSubarray

**Input**: Array *A* of *n* ints. **Output:** Max subarray in *A*.

 $A_1 := MaxSubarray(Front-half of A)$ 

 $A_2 := MaxSubarray(Back-half of A)$ 

M := MidMaxSubarray(A)

**return** Array with max sum of  $\{A_1, A_2, M\}$ 

# Part 2: Give an $O(n \log n)$ solution.

## **Algorithm:** MaxSubarray

**Input**: Array A of n ints.

**Output:** Max subarray in *A*.

 $A_1 := MaxSubarray(Front-half of A)$ 

 $A_2 := MaxSubarray(Back-half of A)$ 

M := MidMaxSubarray(A)

**return** *Array with max sum of*  $\{A_1, A_2, M\}$ 

## Algorithm: MIDMAXSUBARRAY

**Input**: Array *A* of *n* ints.

**Output:** Max subarray that crosses midpoint *A*.

m := mid-point of A

 $L := \max \text{ subarray in } A[i, m-1] \text{ for } i = m-1 \rightarrow i$ 

 $R := \max \text{ subarray in } A[m,j] \text{ for } j = m \rightarrow n$ 

 $\textbf{return}\; L \cup R\; \textit{//} \; \; \textbf{subarray formed by combining} \; L \; \textbf{and} \; \; R.$ 

## Part 2: Give an $O(n \log n)$ solution.

#### **Algorithm:** MaxSubarray

**Input**: Array *A* of *n* ints. **Output:** Max subarray in *A*.

 $A_1 := MaxSubarray(Front-half of A)$  $A_2 := MaxSubarray(Back-half of A)$ 

M := MidMaxSubarray(A)

**return** *Array with max sum of*  $\{A_1, A_2, M\}$ 

## Analysis

- Correctness: By induction,  $A_1$  and  $A_2$  are max for subarray and M is max mid-crossing array.
- Complexity: Same recurrence as MergeSort.

## Max Subarray

## Problem

Given an array *A* of integers, find the contiguous subarray of *A* of maximum sum.

#### Exercise – Teams of 3 or so

- Solve the problem in  $\Theta(n^2)$ .
- Solve the problem in  $O(n \log n)$ .
- Prove correctness and complexity.
- With dynamic programming, solve the problem in O(n)!

#### **DP Solution**

- 1D array s, where s[i] contains the value of the max subarray ending at i. (O(n) cells)
- Bellman equation:  $s[i] = \max(s[i-1] + A[i], A[i])$ . (O(1) time)
- Solutions is:  $\max_{j} \{s[j]\}$ . (O(n) time)

#### **DP Solution**

- 1D array s, where s[i] contains the value of the max subarray ending at i. (O(n) cells)
- Bellman equation:  $s[i] = \max(s[i-1] + A[i], A[i])$ . (O(1) time)
- Solutions is:  $\max_{j} \{s[j]\}$ . (O(n) time)

## But we need the subarray not the value!

#### **DP Solution**

- 1D array s, where s[i] contains the value of the max subarray ending at i. (O(n) cells)
- Bellman equation:  $s[i] = \max(s[i-1] + A[i], A[i])$ . (O(1) time)
- Solutions is:  $\max_{j} \{s[j]\}$ . (O(n) time)

## But we need the subarray not the value!

• Use a parallel array that memoizes the starting index of the subarray ending at *i*:

$$start[i] = \begin{cases} start[i-1] & \text{if } s[i-1] + a[i] > a[i] \\ i & \text{, otherwise} \end{cases}$$

#### **DP Solution**

- 1D array s, where s[i] contains the value of the max subarray ending at i. (O(n) cells)
- Bellman equation:  $s[i] = \max(s[i-1] + A[i], A[i])$ . (O(1) time)
- Solutions is:  $\max_{j} \{s[j]\}$ . (O(n) time)

## But we need the subarray not the value!

• Use a parallel array that memoizes the starting index of the subarray ending at *i*:

$$start[i] = \begin{cases} start[i-1] & \text{if } s[i-1] + a[i] > a[i] \\ i & \text{, otherwise} \end{cases}$$

• Or, trace back from max value at index j until s[i] = A[i].

Appendix Reference:

# Appendix

Appendix References

# REFERENCES

PPENDIX REFERENCES

### Image Sources I



https://medium.com/neurosapiens/ 2-dynamic-programming-9177012dcdd



https://angelberh7.wordpress.com/2014/10/08/biografia-de-lester-randolph-ford-jr/



http://www.sequence-alignment.com/



https://medium.com/koderunners/genetic-algorithm-part-3-knapsack-problem-b59035



https://brand.wisc.edu/web/logos/

Appendix References

## IMAGE SOURCES II



https://www.pngfind.com/mpng/mTJmbx\_ spongebob-squarepants-png-image-spongebob-cartoo



https://www.pngfind.com/mpng/xhJRmT\_cheshire-cat-vintage-drawing-alice-in-wonderland