



#### INTRO TO QUANTUM COMPUTING

Week 12 Lab

# **QUANTUM MECHANICS - 2**

Corbin McElhanney

January 26, 2021

#### PROGRAM FOR TODAY

Canvas attendance quiz

Pre-lab zoom feedback

Lab content

Post-lab zoom feedback





# CANVAS ATTENDANCE QUIZ

Please log into Canvas and answer your lab section's quiz

Lab Number: 1 | Quiz Password: 3250

- Thinking back to the first semester, how would you describe your experience learning the <u>math</u> that was introduced?
- On a scale of 1-5, how did you feel about the <u>pace of the</u> math content?
- This quiz not graded, but counts for your lab attendance!





#### PRE-LAB ZOOM FEEDBACK

On a scale of 1 to 5, how would you rate your understanding of this week's content?

- 1 –Did not understand anything
- 2 Understood some parts
- 3 Understood most of the content
- 4 Understood all of the content
- 5 The content was easy for me/I already knew all of the content





# **LEARNING OBJECTIVES FOR LAB 12**

- Answered and unanswered questions in quantum mechanics
- Understanding measurement in quantum mechanics
  - Double-silt experiment with electrons
  - Which slit does the electron go through?
  - Classical vs quantum measurement
- Demystifying the Stern-Gerlach (SG) experiment
  - Electron spin
  - SG experiment setup
  - SG experiment examples
- Two-level systems\*









#### WHAT DO WE NOT KNOW?

#### The why questions

- Why do electrons seem to interfere with themselves in the double-slit experiment?
- Why can't we know for sure the results of some types of experiments?
- Why do electrons have spin?

•





#### WHAT DO WE KNOW?

• What are the **possible** results we can get in an experiment with electrons/atoms/ions etc.?

What is the probability of getting each of the possible results?

• How can we manipulate the probability of getting the result we want?

•





#### SO WHAT DO WE DO NOW?

#### Do the unanswered questions make you uncomfortable?

• Yes, and I need to know the answers – Become a physicist and work on the foundations of quantum theory



Albert Einstein



Fabiola Gianotti



Nima Arkani-Hamed





#### SO WHAT DO WE DO NOW?

#### Do the unanswered questions make you uncomfortable?

 Maybe, but I want to work on applications – Become a physicist/engineer and develop uses of quantum theory (such as quantum computing!)



Clarice D. Aiello



Subir Sachdev

....and some of the TAs!





#### SO WHAT DO WE DO NOW?

#### Do the unanswered questions make you uncomfortable?

• No, I just want to run Shor's algorithm – Become a quantum computer scientist!



**Peter Shor** 



Lov Grover



....and some of the TAs!





# MEASUREMENT IN COMPUTING

# Measurement is the final step of any computation (classical or quantum)









#### **DOUBLE-SLIT EXPERIMENT REVISITED**



- We can send the electrons oneby-one through the double slit
- We still get the interference pattern!

#### Screen







# WHICH PATH DOES THE MARBLE TAKE?



Did the gumballs go through the left slit or the right slit?





# WHICH PATH DOES THE ELECTRON TAKE?



Did the electrons go through the left slit or the right slit?





#### LET'S FIND OUT!



- If the left slit electron sensor senses an electron zipping by, it beeps
- If the right slit electron sensor senses an electron zipping by, it beeps





# LET'S FIND OUT



- As each electron goes through the slits, either the left slit or the right slit detector beeps
- Yay! We did it! We can now tell for sure which slit each electron goes through





# ...AND WHAT HAPPENS AT THE SCREEN?



What do you notice?





#### **MEASUREMENT CHANGES THE OUTCOME!!**

Without electron sensors



With electron sensors



- Trying to find out which slit the electrons went through changed the outcome of the experiment!
- Measurement changes the **state** of each electron





# WITH GUMBALLS

Without gumball sensors



With gumball sensors



No change in outcome of experiment if you check which slit the gumball takes





# **EVERYDAY LIFE VS QUANTUM**

Everyday life





Measurement does not affect the thing being measured – everyday objects

Measurement can affect the state of the thing being measured – quantum objects (qubits)





# **QUESTIONS?**

**Questions on content so far?** 





#### **ELECTRON SPIN**

- Fundamental properties of an electron (and other particles):
  - Mass
  - Charge
  - Magnetic field (spin)
- Spin does **not** correspond to actual spinning







# MEASURING SPIN – THE STERN GERLACH EXPT.

• Since spin corresponds to a small magnetic field, we can use another magnet to measure it!

 When measured, spin always has two directions – one along the direction of the magnetic field and one opposite to it





#### NOTE ON NOTATION

#### Measurement along z (vertical) axis:



axis: 
$$|0\rangle = |\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 basis = aka possible out comes 
$$|1\rangle = |\downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 "spin-down"

Measurement along x (horizontal) axis:



$$|+\rangle = | \rightarrow \rangle = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

$$|-\rangle \stackrel{\text{"spin-left"}}{=} \left( \begin{array}{c} 1/\sqrt{2} \\ -1/\sqrt{2} \end{array} \right)$$









Where does the electron go? z-axis S-G  $\vec{z}$  axis x-axis electron state: |0> (spin pointing up along z)





Where does the electron go? z-axis S-G  $\vec{z}$  axis x-axis electron state: |1> (spin pointing down along z)





Where does the electron go?













#### **KEY TAKEAWAYS**

- Measurement in the quantum world is different from everyday life
  - Measurement affects the state of the quantum system being measured
  - Results from different ways of measurement may not always agree
  - Interference pattern disappears if you try to find out which slit the electron takes!

- The Stern-Gerlach experiment measures the spin of the electron/quantum system
  - When measured, spin always has two directions one along the direction of the external magnetic field, and one opposite to the direction
  - The result depends on the orientation of the SG magnet!





#### **FURTHER READING AND RESOURCES**

- <a href="https://www.youtube.com/watch?v=b\_ddt6J1Bio">https://www.youtube.com/watch?v=b\_ddt6J1Bio</a> Series of videos introducing quantum mechanics
- <a href="https://www.youtube.com/watch?v=NW7VUFgwqg8">https://www.youtube.com/watch?v=NW7VUFgwqg8</a> Quantum systems might aid bird navigation
- <a href="https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/lecture-videos/lecture-1/">https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/lecture-videos/lecture-1/</a> Lecture on measurement and its implications, with analogies from our everyday experience
- <a href="https://cp3.irmp.ucl.ac.be/~maltoni/PHY1222/mermin\_moon.pdf">https://cp3.irmp.ucl.ac.be/~maltoni/PHY1222/mermin\_moon.pdf</a> Accessible paper on measurement, entanglement, and their implications





# **QUESTIONS?**

**Questions on content so far?** 





#### POST-LAB ZOOM FEEDBACK

**After this lab,** on a scale of 1 to 5, how would you rate your understanding of this week's content?

- 1 –Did not understand anything
- 2 Understood some parts
- 3 Understood most of the content
- 4 Understood all of the content
- 5 The content was easy for me/I already knew all of the content





# **OPTIONAL CONTENT**





#### TWO-LEVEL SYSTEMS

#### Why do we care about two-level systems in quantum computing?

- Qubits are two-level systems!
- Analogous to classical bits, than can be 0 or 1
- Wouldn't 3 or more-level systems be even better? Yes! But really hard to control more than 2 states in experiments





# 2 LEVEL-SYSTEMS AROUND US











# 2 LEVEL SYSTEMS IN THE QUANTUM WORLD

- Double-slit experiment
- Current in a superconducting circuit
- Electron spin







Image from Smelyanskiy et al., <a href="mailto:arXiv:1204.2821v2">arXiv:1204.2821v2</a> [quant-ph]





# **QUANTUM VS CLASSICAL 2 LEVEL SYSTEMS**

Classical



Either 1 or 0

ON: 1

OFF: 0

Quantum



Either 1, or 0, or a combination of both!

Only spin pointing down: |1>

Only spin pointing up: |0>

Combination of both:  $\alpha |1\rangle + \beta |0\rangle$ 





# **QUANTUM VS CLASSICAL 2 LEVEL SYSTEMS**

Classical



Quantum



Either 1 or 0

ON: 1

OFF: 0

Either 1, or 0, or a combination of both!

Only Shankar plays: |1>

Only Menuhin plays: |0>

Both play together:  $\alpha |1\rangle + \beta |0\rangle$ 



