Coursework 3: Graph Algorithms and Complexity Theory

Oskar Mampe

Tutorial Session: Thursday 1pm

In the graph below a matching is indicated by bold lines. The trees created will also have a bold line indicating a matching.

There are two M-unsaturated vertices, namely b2 and e6. Therefore, I initiate Edmond's algorithm starting by growing two alternative trees starting at these two vertices.

A blossom has been found. The blossom consists of vertices b2, a2, b1 and I shrink it to vertex α . This way, I obtain the following graph:

 α and e6 are M-unsaturated, so I start growing the two alternative trees again.

Another two blossoms have been found. One of them being containing α , b3, c3, c2, c1 I will shrink this to vertex β . The other blossom consists of e6, e5, e4, f4, f6 I will shrink this to vertex γ . The following graph is obtained:

The two M-unsaturated vertices left are β and γ . Therefore, the following alternative trees are grown:

I have found two blossoms. One of them being β , d1, d2 and the other β , b4, a4. Both of these can be shrunk to a single vertex δ . The following graph is then produced:

The two M-unsaturated vertices are δ and γ so the two alternative trees are created:

An augmenting path has been found. The path being $(\delta, e1, f2, \gamma)$. This can be further simplified, by first going around the first blossom $\{\beta, d2, d1\}$ and the second blossom $\{f4, f6, e6\}$, making the augmenting path $(\beta, d2, d1, e1, f2, f4, f6, e6)$. There is another blossom to traverse, for which I have chosen the path $\{\alpha, c1, c2\}$ as it is the only alternative path do d2. This makes the path now $(\alpha, c1, c2, d2, d1, e1, f2, f4, f6, e6)$. Finally, I traverse the last blossom $\{b2, a2, b1\}$ as it is the only alternative path to c1. Making the final path (b2, a2, b1, c1, c2, d2, d1, e1, f2, f4, f6, e6). I augment the mathicing along the path, and find this following matching:

This is the graph resulting from augmenting the matching along the path. Since there are no more M-unsaturated vertices the algorithm is stopped. The current matching is the maximum one.