Semantic Processing

(Part 2)

All Projects Due: Friday 12-2-05, Noon

Final: Monday, December 5, 2005, 10:15-12:05

Comprehensive

Recursive Type Definitions

```
type MyRec is record
f1: integer;
f2: array of MyRec;
end;
```


3

Testing Type Equivalence

Name Equivalence

- Stop when you get to a defined name
- Are the definitions the same (==)?

Structural Equivalence

- Test whether the type trees have the same shape.
- Graphs may contain cycles!

 The previous algorithm ("typeEquiv") will inifinite loop.
- Need an algorithm for testing "Graph Isomorphism"

PCAT

Recursion can occur in arrays and records.

PCAT uses Name Equivalence

Representing Recursive Types in PCAT

Type Conversions

```
var r: real;
    i: integer;
    ... r + i ...
```

During Type-checking...

- Compiler discovers the problem
- Must insert "conversion" code

Case 1:

No extra code needed.

```
i = p;  // e.g., pointer to integer conversion.
```

Case 2:

One (or a few) machine instructions

```
r = i; // e.g., integer to real conversion.
```

Case 3:

Will need to call an external routine

```
System.out.print ("i=" + i); // int to string
```

Perhaps written in the source language (an "upcall")

One compiler may use all 3 techniques.

Explicit Type Conversions

Example (Java):

i = r;

Type Error

Programmer must insert something to say "This is okay":

i = (int) r;

Language Design Approaches:

"C" casting notation

$$i = (int) r;$$

Function call notation

Keyword

i = realToInt r;

I like this:

- No additional syntax
- Fits easily with other user-coded data transformations

Compiler may insert:

- nothing
- machine instructions
- an upcall

Implicit Type Conversions ("Coercions")

Example (Java, PCAT):

r = i;

Compiler determines when a coercion must be inserted.

Rules can be complex.... Ugh!

Source of subtle errors.

My preference:

Minimize implicit coercions Require explicit conversions

Java Philosophy:

Implicit coercions are okay

when no loss of numerical accuracy.

byte \rightarrow short \rightarrow int \rightarrow long \rightarrow float \rightarrow double

Compiler may insert:

- nothing
- machine instructions
- an upcall

"Overloading" Functions and Operators

What does "+" mean?

• integer addition

16-bit? 32-bit?

• floating-point addition

Single precision? Double precision?

- string concatenation
- user-defined meanings

e.g., complex-number addition

Compiler must "resolve" the meaning of the symbols

Will determine the operator from types of arguments

i+i → integer addition

d+i → floating-point addition (and double-to-int coercion)

s+i → string concatenation (and int-to-string coercion)

17

19

Working with Functions

```
Want to say:
    var f: int \rightarrow real := ...;
    x := f(i);
Operators Syntax
    E \rightarrow E + E
         \rightarrow E * E
         \rightarrow E \bullet E
```

The "application" operator

Sometimes adjacency is used for function application

$$3N \equiv 3 * N$$
foo $N \equiv \text{foo} \cdot N$

Parsing Issues?

$$E \rightarrow EE$$

The programmer can always add parentheses:

foo
$$3 = foo (3) = (foo) 3$$

If the language also has tuples...

$$foo(4,5,6) \equiv (foo)(4,5,6)$$

AST:

Type Checking for Function Application

```
Syntax:
E \rightarrow E \cdot E
or:
E \rightarrow E E
or:
E \rightarrow E (E)
```

```
Type-Checking Code (e.g., in "checkApply")...

t1 = type of expr1;
t2 = type of expr2;
if t1 has the form "tDOMAIN → tRANGE" then
if typeEquals(t2, tDOMAIN) then
resultType = tRANGE;
else
error;
endIf
else
error
endIf
```

Curried Functions Traditional ADD operator: add: int \times int \rightarrow int ... add(3,4) ... Recall: function application is Right-Associative Curried ADD operator: \equiv int \rightarrow (int \rightarrow int) add: int \rightarrow int \rightarrow int ... add 3 4 ... Each argument is supplied individually, one at a time. add 3 $4 \equiv (add 3) 4$ Can also say: $f: int \rightarrow int$ f = add 3;... f 4 ...

Type Checking "apply"

"type" is a synthesized attribute

24

Type Checking "apply" "type" is a synthesized attribute apply type=(int→int) add type=int→(int→int) type=int This is the Result type

A Data Structure Example

Goal: Write a function that finds the length of a list.

Traditional Languages: Each parameter must have a single, unique type.

A Data Structure Example

Goal: Write a function that finds the length of a list.

Traditional Languages: Each parameter must have a single, unique type.

Problem: Must write a new "length" function for every record type!!!

... Even though we didn't access the fields particular to MyRec

Another Example: The "find" Function Passed: • A list of T's

• A function "test", which has type **T**→boolean

Returns: • A list of all elements that passed the "test" i.e., a list of all elements x, for which test(x) is true

This function should work for any type T.

Goal: Write the function once and re-use.

This problem is typical...

• Data Structure Manipulation

Want to re-use code...

- Hash Table Lookup Algorithms
- Sorting Algorithms
- B-Tree Algorithms etc.

...Regardless of the type of data being mainpulated.

```
The "ML" Version of "Length"
Background:
   Data Types:
                                                Type is:
         Int
         Bool
                                              List(Int)
         List(...)
   Lists:
                                                             Type is:
         [1,3,5,7,9]
                                                        List(List(Int))
         [[1,2], [5,4,3], [], [6]]
   Operations on Lists:
                                              Notation:
         head
                                                  x:T
                                              means: "The type of x is T"
            head([5,4,3]) \Rightarrow 5
            head: List(T)\rightarrowT
         tail
            tail([5,4,3]) \Rightarrow [4,3]
            tail: List(T) →List(T)
         nul1
            null([5,4,3]) \Rightarrow false
            null: List(T) →Bool
```

The "ML" Version of "Length" **Operations on Integers:** $5 + 7 = +(5,7) \Rightarrow 12$ "Constant" Function: +: IntxInt→Int Int ≡ →Int Constants: (A function of zero arguments) 0: Int 1: Int 2: Int fun length (x) = if null(x)then 0 else length(tail(x))+1 New symbols introduced here: $x: List(\alpha)$ length: List $(\alpha) \rightarrow Int$ No types are specified explicitly! No Declarations! ML infers the types from the way the symbols are used!!!

Predicate Logic Refresher

Logical Operators (AND, OR, NOT, IMPLIES)

Predicate Symbols

Function and Constant Symbols

Variables

Quantifiers

WFF: Well-Formed Formulas

$$\forall x. \sim P(f(x)) \& Q(x) \rightarrow Q(x)$$

Precedence and Associativity:

(Quantifiers bind most loosely)

$$\forall x. (((\sim P(f(x))) \& Q(x)) \rightarrow Q(x))$$

A grammar of Predicate Logic Expressions? Sure!

Type Expressions Basic Types Int, Bool, etc. Constructed Types \rightarrow , x, List(), Array(), Pointer(), etc. Type Expressions List(Int \times Int) \rightarrow List(Int \rightarrow Bool) Type Variables α , β , γ , α_1 , α_2 , α_3 , ... Universal Quantification: ∀ $\forall \alpha$. List(α) \rightarrow List(α) (Won't use existential quantifier, **∃**) Remember: ∀ binds loosely $\forall \alpha : (\text{List}(\alpha) \rightarrow \text{List}(\alpha))$ "For any type α , a function that maps lists of α 's to lists of α 's."

Type Expressions

Okay to change variables (as long as you do it consistently)...

```
\forall \alpha . Pointer(\alpha) \rightarrowBoolean \equiv \forall \beta . Pointer(\beta) \rightarrowBoolean
```

What do we mean by that?

Same as for predicate logic...

- Can't change α to a variable name already in use elsewhere
- Must change all occurrences of α to the same variable

We will use only universal quantification ("for all", ∀)
Will not use ∃

Okay to just drop the \forall quantifiers.

```
\forall \alpha . \forall \beta . (\text{List}(\alpha) \times (\alpha \rightarrow \beta)) \rightarrow \text{List}(\beta)
\equiv (\text{List}(\alpha) \times (\alpha \rightarrow \beta)) \rightarrow \text{List}(\beta)
\equiv (\text{List}(\beta) \times (\beta \rightarrow \gamma)) \rightarrow \text{List}(\gamma)
```

Practice

Given:

x: Int

y: Int→Boolean

What is the type of (x,y)?

Practice

```
Given:
    x: Int
    y: Int→Boolean

What is the type of (x,y)?
    (x,y): Int × (Int→Boolean)
```

Practice Given: x: Int y: Int→Boolean What is the type of (x,y)? $(x,y): Int \times (Int \rightarrow Boolean)$ Given: f: List(α) \rightarrow List(α) z: List(Int) What is the type of f(z)?

```
Practice
Given:
   x: Int
   y: Int→Boolean
What is the type of (x,y)?
    (x,y): Int \times (Int \rightarrow Boolean)
Given:
   f: List(\alpha) \rightarrowList(\alpha)
   z: List(Int)
What is the type of f(z)?
   f(z): List(Int)
```

```
Practice
Given:
   x: Int
   y: Int→Boolean
What is the type of (x,y)?
    (x,y): Int \times (Int \rightarrow Boolean)
Given:
   f: List(\alpha) \rightarrowList(\alpha)
    z: List(Int)
What is the type of f(z)?
    f(z): List(Int)
What is going on here?
   We "matched" \alpha to Int
We used a "Substitution"
    \alpha = Int
What do we mean by "matched"???
```

```
Practice
Given:
   x: Int
   y: Int→Boolean
What is the type of (x,y)?
    (x,y): Int \times (Int \rightarrow Boolean)
Given:
   f: List(\alpha) \rightarrowList(\alpha)
   z: List(Int)
What is the type of f(z)?
   f(z): List(Int)
What is going on here?
   We "matched" \alpha to Int
We used a "Substitution"
    \alpha = Int
What do we mean by "matched"???
    UNIFICATION!
```


Given: Two [type] expressions

Goal: Try to make them equal

Using: Consistent substitutions for any [type] variables in them

Result:

• Success plus the variable substitution that was used

plus the variable substitution that was u

• Failure

A Language With Polymorphic Functions

```
P \rightarrow D ; E
D \rightarrow D : D
    \rightarrow id : Q
Q \rightarrow \forall id \cdot Q
     \rightarrow T
T \rightarrow T \rightarrow T T
      \rightarrow T \times T
       \rightarrow List (T)
       → Int
       → Bool
       \rightarrow id
       \rightarrow (T)
    → id
       \rightarrow int
       \rightarrow E E
       \rightarrow (E, E)
       \rightarrow (E)
```

Examples of Expressions: 123

```
(x)
foo(x)
find(test,myList)
add(3,4)
```

A Language With Polymorphic Functions $P \rightarrow D : E$ $D \rightarrow D : D$ \rightarrow id : Q $Q \rightarrow \forall id \cdot Q$ \rightarrow T $T \rightarrow T \rightarrow T T$ \rightarrow T \times T \rightarrow List (T)**Examples of Types:** → Int Int \rightarrow Bool → Bool Bool \times (Int \rightarrow Bool) A Type Variable (<u>id</u>) \rightarrow id α \rightarrow (T) $\alpha \times (\alpha \rightarrow Bool)$ \rightarrow id $(((\beta \rightarrow Bool) \times List(\beta)) \rightarrow List(\beta))$ \rightarrow int $\rightarrow E E$ \rightarrow (E, E) \rightarrow (E)

A Language With Polymorphic Functions

```
P \rightarrow D : E
D \rightarrow D ; D
    \rightarrow <u>id</u> : Q
Q \rightarrow \forall id \cdot Q
                                   Examples of Quatified Types:
     \rightarrow T
                                        Int → Bool
T \rightarrow T \rightarrow T T
                                        \forall \alpha : (\alpha \rightarrow Bool)
      \rightarrow T \times T
                                        \forall \beta .(((\beta \rightarrow Bool) \times List(\beta)) \rightarrow List(\beta))
       \rightarrow List (T)
       → Int
       → Bool
       \rightarrow id
       \rightarrow (T)
     \rightarrow id
       \rightarrow int
      \rightarrow E E
      \rightarrow (E, E)
       \rightarrow (E)
```

A Language With Polymorphic Functions

```
P \rightarrow D : E
D \rightarrow D ; D
    \rightarrow <u>id</u> : Q
Q \rightarrow \forall id \cdot Q
     \rightarrow T
T \rightarrow T \rightarrow T T
      \rightarrow T x T
       \rightarrow List (T)
       → Int
       → Bool
       \rightarrow id
       \rightarrow (T)
     → id
       \rightarrow int
       \rightarrow E E
       \rightarrow (E, E)
       \rightarrow (E)
```

Examples of Declarations:

```
i: Int;

myList: List(Int);

test: \forall \alpha : (\alpha \rightarrow Bool);

find: \forall \beta : ((\beta \rightarrow Bool) \times List(\beta)) \rightarrow List(\beta))
```

A Language With Polymorphic Functions

```
P \rightarrow D : E
D \rightarrow D : D
    \rightarrow id : Q
Q \rightarrow \forall id \cdot Q
     \rightarrow T
T \rightarrow T \rightarrow T T
      \rightarrow T \times T
       \rightarrow List (T)
       → Int
       → Bool
       \rightarrow id
       \rightarrow (T)
      \rightarrow id
       \rightarrow int
       \rightarrow E E
       \rightarrow (E, E)
       \rightarrow (E)
```

```
An Example Program: myList: List(Int); test: \forall \alpha : (\alpha \rightarrow Bool); find: \forall \beta : ((\beta \rightarrow Bool) \times List(\beta)) \rightarrow List(\beta)); find (test, myList)
```

GOAL:

Type-check this expression given these typings!

Parse Tree (Annotated with Synthesized Types) apply find tuple test myList

Add known typing info:

```
myList: List(Int);
test: \forall \alpha : (\alpha \rightarrow Bool);
find: \forall \beta : (((\beta \rightarrow Bool) \times List(\beta)) \rightarrow List(\beta));
```


Parse Tree (Annotated with Synthesized Types) apply $type=\delta$ find tuple type= type=7 \rightarrow Bool)×List(β)) \rightarrow List(β ((B test myList type=List(Int) type=α →Bool **Tuple Node:** Match γ to $(\alpha \rightarrow Bool) \times List(Int)$

Unification of Two Expressions

Example:

```
t_1 = \alpha \times Int

t_2 = List(\beta) \times \gamma
```

Is there a substitution that makes $t_1 = t_2$?

```
"t<sub>1</sub> unifies with t_2"

if and only if there is a substitution S such that
S(t_1) = S(t_2)
```

Here is a substitution that makes $t_1 = t_2$:

```
\alpha \leftarrow \text{List}(\beta)
\gamma \leftarrow \text{Int}
```

Other notation for substitutions:

```
\{\alpha/\text{List}(\beta), \gamma/\text{Int}\}
```

Most General Unifier

There may be several substitutions.

Some are *more general* than others.

Example:

$$t_1 = \alpha \times Int$$

 $t_2 = List(\beta) \times \gamma$

Unifying Substitution #1:

 $\alpha \leftarrow \text{List}(\text{List}(\text{Bool})))$

 $\beta \leftarrow List(List(Bool))$

 $\gamma \leftarrow Int$

Unifying Substitution #2:

 $\alpha \leftarrow \text{List(Bool} \times \delta)$

 $\beta \leftarrow \text{Bool} \times \delta$

 $\gamma \leftarrow Int$

Unifying Substitution #3:

 $\alpha \leftarrow \text{List}(\beta)$

 $\gamma \leftarrow Int$

This is the

"Most General Unifier"

Unifying Two Terms / Types

Unify these two terms:

f(Z,Z)

Unification makes the terms identical.

Unifying Two Terms / Types

Unify these two terms:

f(Z,Z)

Unification makes the terms identical.

The substitution:

$$Y \leftarrow Z$$

$$Z \leftarrow g(a,X)$$

Unifying Two Terms / Types

Unify these two terms:

Unification makes the terms identical.

The substitution:

$$Y \leftarrow Z$$

$$Z \leftarrow g(a,X)$$

Merge the trees into one!

Unifying Two Terms / Types

Unify these two terms:

$$f(g(a,X),Y) \longrightarrow f(g(a,X),g(a,X))$$

Unification makes the terms identical.

The substitution:

$$Y \leftarrow Z$$

$$Z \leftarrow g(a,X)$$

Merge the trees into one!

Unifying Two Terms / Types

Unify these two terms:

$$f(g(a,X),Y) \longrightarrow f(g(a,X),g(a,X))$$

Unification makes the terms identical.

The substitution:

$$Y \leftarrow Z$$

$$Z \leftarrow g(a,X)$$

Merge the trees into one!

Same with unifying types!

$$(Int \times List(X)) \times Y$$

$$\mathbf{Z} \times \mathbf{Z}$$

Merging Sets Approach: Will work with sets of nodes. Each set will have a "representative" node. **Goal:** Merge two sets of nodes into a single set. When two sets are merged (the "union" operation)... make one representative point to the other! A Set of Nodes A Set of Nodes The representative The representative a

Representing Type Expressions Function domainType rangeType The "set" pointers will point toward the representative node. (Initialized to null.) CrossProd type1 type2 set Integer set TypeVar id "T1" or " α_1 " set

Merging Sets

 $Find(p) \rightarrow ptr$

Given a pointer to a node, return a pointer to the representative of the set containing p.

Just chase the "set" pointers as far as possible.

Union (p,q)

Merge the set containing p with the set containing q.

Do this by making the representative of one of the sets point to the representative of the other set. If one representative is a variable node and the other is not, always use the non-variable node as the representative of the combined, merged sets. In other words, make the variable node point to the other node.

The Unification Algorithm

```
function Unify (s', t': Node) returns bool
  s = Find(s')
  t = Find(t')
  if s == t then
    return true
  elseIf s and t both point to INTEGER nodes then
    return true
  elseIf s or t points to a VARIABLE node then
    Union(s,t)
  <u>elseif</u> s points to a node FUNCTION (s_1, s_2) and
          t points to a node FUNCTION (t_1, t_2) then
    Union(s,t)
    <u>return</u> Unify (s_1, t_1) <u>and</u> Unify (s_2, t_2)
  elseif s points to a node CROSSPROD (s_1, s_2) and
          t points to a node CROSSPROD (t_1, t_2) then
    Union(s,t)
                                                      Etc., for other
    <u>return</u> Unify(s_1, t_1) <u>and</u> Unify(s_2, t_2)
  elseIf ...
                                                    type constructors
  else
                                                   and basic type nodes
    return false
  endIf
```


Type-Checking with an Attribute Grammar

Lookup(string) → type

Lookup a name in the symbol table and return its type.

Fresh(type) → type

Make a copy of the type tree.

Replace all variables (consistently) with new, never-seen-before variables.

MakeIntNode() → type

Make a new leaf node to represent the "Int" type

MakeVarNode() → type

Create a new variable node and return it.

MakeFunctionNode(type₁, type₂) → type

Create a new "Function" node and return it.

Fill in its domain and range types.

MakeCrossNode(type₁, type₂) → type

Create a new "Cross Product" node and return it.

Fill in the types of its components.

Unify(type₁, type₂) \rightarrow bool

Unify the two type trees and return true if success.

Modify the type trees to perform the substitutions.

Type-Checking with an Attribute Grammar $E \rightarrow id$ E.type = Fresh(Lookup(id.svalue)); $\rightarrow int$ E.type = MakeIntNode(); $E_0 \rightarrow E_1 E_2$ p = MakeVarNode(); f = MakeFunctionNode(E₂.type, p); Unify(E₁.type, f); E_0 .type = p; $E_0 \rightarrow (E_1, E_2)$ $E_0.type = MakeCrossNode(E_1.type,$ E_2 .type); $E_0 \rightarrow (E_1)$ $E_0.type = E_1.type ;$

Conclusion

Theoretical Approaches:

- Regular Expressions and Finite Automata
- Context-Free Grammars and Parsing Algorithms
- Attribute Grammars
- Type Theory
 - Function Types
 - Type Expressions
 - Unification Algorithm

Make it possible to parse and check complex, high-level programming lanaguages!

Would not be possible without these theoretical underpinnings!

The Next Step?
Generate Target Code and Execute the Program!