

A Probability and Statistics Primer for Quantitative Finance

Week 3: Exploratory Data Analysis I

Jake Price

Instructor, Computational Finance and Risk Management University of Washington Slides originally produced by Kjell Konis

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation

Smooth Density Estimation

Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices

Plotting Faux Pas

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation
Smooth Density Estimation
Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Population, Sample

Population entire universe of possibilities to base our statistical study on Sample a subset of the population

Data: measurements on a sample of individuals from a population of interest

Population Technology stocks

Sample Technology stocks headquartered in Silicon Valley

Individual One particular technology firm (e.g., Google)

Datum Annualized dividend rate in 2014

We want to study a characteristic possessed by each individual in the population This characteristic is called a *statistical variable*

Types of Variables

A variable can be *quantitative* or *qualitative*

A quantitative variable can be discrete or continuous

Quantitative Discrete

- yearly number of insurance claims
- number of defaults in a CDO

Quantitative Continuous

- daily return on an asset
- risk-free interest rate

Qualitative Variables

A qualitative (categorial) variable can be nominal or ordinal

Qualitative Nominal

- Sector membership
- Asset class (e.g., fixed income, equities, ...)

Qualitative Ordinal

- Size (e.g., small cap, mid cap, large cap)
- Credit Rating (e.g., S&P, Moody's)

Often, quantitative variables are converted into qualitative variables for descriptive reasons

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation
Smooth Density Estimation
Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Exploratory Analysis of Qualitative Variables

Example: Industry Sectors of S&P 500 Component Stocks

- ► S&P Dow Jones Indices: S&P 500 stock market index
- ▶ 502 stocks (traded on American exchanges) issued by 500 large-cap companies
- ▶ Roughly 75 percent of USA equity market, by capitalization

Download (meta) data directly into R (source: Wikipedia 2015-03-14)

SP500info Data Frame

> head(SP500info, 5)

	Ticker	Security Sector
1	MMM	3M Company Industrials
2	ABT	Abbott Laboratories Health Care
3	ABBV	AbbVie Inc. Health Care
4	ACN	Accenture plc Information Technology
5	ATVI	Activision Blizzard Information Technology
		Subindustry CIK
1]	Industrial Conglomerates 66740
2		Health Care Equipment 1800
3		Pharmaceuticals 1551152
4	IT Cons	sulting & Other Services 1467373
5	Home	e Entertainment Software 718877

Categorical (or Factor) Data

```
> names(SP500info)
                                            "Subindustry"
[1] "Ticker" "Security" "Sector"
[5] "CTK"
> sapply(SP500info, class)
    Ticker Security Sector Subindustry
                                                      CTK
  "factor" "factor" "factor"
                                                "integer"
> Sectors <- SP500info$Sector</pre>
> levels(Sectors)
 [1] "Consumer Discretionary"
                                "Consumer Staples"
 [3] "Energy"
                                "Financials"
 [5] "Health Care"
                                "Industrials"
 [7] "Information Technology"
                                "Materials"
 [9] "Real Estate"
                                "Telecommunication Services"
[11] "Utilities"
```

Frequency Tables

- > Sector.freqs <- table(Sectors)</pre>
- > Sector.freqs

	Frequency
Consumer Discretionary	84
Consumer Staples	34
Energy	32
Financials	68
Health Care	62
Industrials	66
Information Technology	70
Materials	25
Real Estate	33
Telecommunication Services	3
Utilities	28

Pie Chart

> pie(Sector.freqs)

Bar Plot

- > bar.names <- abbreviate(names(Sector.freqs), minlength = 2)</pre>
- > barplot(Sector.freqs, ylab = "Frequency", names = bar.names)

Bar Plot

Better to plot relative frequencies

```
> barplot(Sector.freqs / sum(Sector.freqs), ylab = "Relative Frequency",
+ names = bar.names)
```


Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation Smooth Density Estimation Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Graphical Analysis of Quantitative Variables: Histograms

Example: 2012 Citigroup closing prices

```
> library(quantmod)
> getSymbols("C", from = "2012-01-01", to = "2012-12-31")
[1] "C"
> head(C)
```

> head(C)

```
C.Open C.High C.Low C.Close C.Volume C.Adjusted
2012-01-03
          27.13 28.51 27.13
                              28.33 58169500
                                              27.50680
2012-01-04
          28.04 28.38 27.62
                              28.17 41455000
                                              27.35145
2012-01-05
           27.66 29.18 27.47
                              28.51 66793300
                                              27,68157
2012-01-06
           28.66 29.06 28.01
                              28.55 48226900
                                              27.72041
           28.72 29.38 28.65
2012-01-09
                              29.08 35017900
                                              28,23501
           29.75 30.14 29.66
                              30.00 47710900
2012-01-10
                                              29, 12828
```

Graphical Analysis of Quantitative Variables: Histograms

```
> citi <- as.numeric(C1(C["2012-5"]))
> citi
[1] 33.60 32.70 32.48 31.60 31.67 31.32 30.45 30.65 29.35 28.14 27.79
[12] 26.92 26.41 26.01 26.25 26.92 27.15 26.66 26.47 27.02 26.00 26.51
```

For the rest of the example, use entire year of data

```
> citi <- as.numeric(Cl(C))</pre>
```

Histogram

Goal: a graphical display of the data to help us "feel what the data are like"

Group the data by splitting the range of the variable into k equal-length intervals

A histogram shows the number of observations in each group

Bin	Center	Frequency	Relative Frequency
24 – 26	25	11	0.044
26 - 28	27	43	0.173
28 - 30	29	38	0.153
30 - 32	31	19	0.076
32 - 34	33	48	0.193
34 - 36	35	38	0.153
36 - 38	37	39	0.157
38 - 40	39	12	0.048
40 – 42	41	1	0.004

Histogram (continued)

> hist(citi)

> hist(citi, freq = FALSE)

Histogram (continued)

Advantages

Works well for small and large sample sizes

Disadvantages

The principal disadvantages are:

- Loss of information from binning
- Difficult to choose the number of intervals
- Interpretation difficult, not necessarily unique

Remarks

There are improvements on the histogram; for example, the kernel density estimator

Histogram: Sensitivity to Bin Choice

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation Smooth Density Estimation Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Kernel Density Estimation

Histogram: split range of data into k intervals of equal-length

A histogram shows the number of observations in each interval

Bin	Center	Freq	Dens
24 - 26	25	12	0.024
26 - 28	27	42	0.084
÷	:	÷	:

Kernel Density Estimation

Zoom in on the first interval

For each data point in [24, 26), stack a rectangle centered at 25

- ► Rectangle width = 2
- Rectangle height = 1/2n
- ▶ Total area = 1

Kernel Density Estimation

Center each rectangle on a data point instead

Kernel

Call the rectangle associated with each data point a kernel

$$\mathcal{K}(x) = egin{cases} rac{1}{2} & -1 \leq x \leq 1 \\ 0 & ext{otherwise} \end{cases}$$

Kernel

Rectangle with area 1, width 2b, centered at x_i : $\frac{1}{b} K\left(\frac{x-x_i}{b}\right)$

Kernel Density Estimator

The kernel density estimator for a set of data points x_1, \ldots, x_n is

$$\hat{f}_b(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{b} K\left(\frac{x - x_i}{b}\right)$$

Kernel Density Estimation with R

> plot(density(citi, bw = 1, adjust = 1/sqrt(3), kernel = "rect"))

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation

Smooth Density Estimation

Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices

Plotting Faux Pas

Smooth Density Estimation

Observation: kernel density estimate looks a bit ratty

Square corners of the rectangular kernel \Longrightarrow kde not smooth

Mathematically, the kernel K can be any function where

$$\int_{-\infty}^{\infty} K(x) \, dx = 1$$

Desirable properties:

▶ Nonnegative: $K(x) \ge 0$ $x \in \mathbb{R}$

Symmetric: K(x) = K(-x) x > 0

In particular, the normal kernel satisfies these properties

$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Quick Math Review

Continuous

- Conceptually, a function is continuous if small changes in the input result in small changes to the output
- ▶ Rigorously, a function g is continuous on an interval (a, b) if

$$\lim_{x\to c}g(x)=c \qquad \forall c\in(a,b)$$

Smooth

- ► Conceptually, a function is smooth if it does not have any rough edges or corners
- ▶ A function g is *smooth* if its derivative g' is continuous
- Conceptually, a function is more smooth the more (continuous) higher order derivatives it has

Kernel Choice

Rectangular

$$K(x) = egin{cases} rac{1}{2} & |x| \leq 1 \\ 0 & ext{otherwise} \end{cases}$$

Triangular

$$\mathcal{K}(x) = egin{cases} 1 - |x| & |x| \leq 1 \ 0 & ext{otherwise} \end{cases}$$

Kernel Choice

Normal

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Epanechnikov

$$\mathcal{K}(x) = egin{cases} rac{3}{4\sqrt{5}}(1-rac{1}{5}x^2) & |x| \leq \sqrt{5} \ 0 & ext{otherwise} \end{cases}$$

Epanechnikov

Kernel Density Estimates by Kernel

Kernel Density Estimates by Kernel

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation

Smooth Density Estimation

Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices

Plotting Faux Pas

```
> plot(density(citi, bw = 1))
```


What happens when the bandwidth is too small or too big?

> plot(density(citi, bw = 0.01))

> plot(density(citi, bw = 10))

Difference is profound with equal scales

Smoothing

Bandwidth controls amount of smoothing

Too large a bandwidth results in over smoothing

Too small a bandwidth results in under smoothing

Have to choose the bandwidth so that the amount of smoothing is just right

Exploratory Data Analysis \implies you have to choose the amount of smoothing

Bandwidth Selection: $\frac{1}{4}$ to 2 in steps of $\frac{1}{4}$

Can use a histogram to guide choice

Suggests 1 < b < 1.25 about the right amount of smoothing

Automatic Bandwidth Selection

> plot(density(citi))

> plot(density(citi, bw = "SJ"))

Summary

Histogram

- Simple, rough estimate of the distribution of the data
- ► Can be difficult to choose the number of bins (intervals)

Kernel Density Estimation

- ► Generalization of histogram
- Can get smooth estimate of distribution
- ► Have to choose bandwidth (also can choose kernel)

Summary

What does it mean to "feel what the data are like?"

Histograms and kernel density estimates reveal:

- appearances of separation into groups
- skewness: trailing off farther in on direction than the other
- the presence of unexpectedly common values
- the location (or center) of the data
- the spread of the data relative to the center

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation Smooth Density Estimation Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Order Statistics

The k^{th} order statistic of a data set is equal to its k^{th} smallest value

Example data set with 5 points

$$x_1 = 28.33, x_2 = 28.17, x_3 = 28.51, x_4 = 28.55, x_5 = 29.08$$

The order statistics are denoted by

$$x_{(1)} = 28.17, \ x_{(2)} = 28.33, \ x_{(3)} = 28.51, \ x_{(4)} = 28.55, \ x_{(5)} = 29.08$$

In particular

$$\min(x_1, \dots, x_n) = x_{(1)}$$

 $\max(x_1, \dots, x_n) = x_{(n)}$
 $\operatorname{range}(x_1, \dots, x_n) = x_{(n)} - x_{(1)}$

Sample Quantiles

For a data set $\mathbf{x} = \{x_1, \dots, x_n\}$, the sample quantile of order $\alpha \in (0,1)$ is

$$\hat{q}_{\alpha}(\mathbf{x}) = x_{(\lceil n\alpha \rceil)}$$

Often used to split the data into equal-sized parts, two common examples

quartiles

$$\hat{q}_{0.25}(\mathbf{x})$$
 $\hat{q}_{0.50}(\mathbf{x})$ $\hat{q}_{0.75}(\mathbf{x})$ lower quartile median upper quartile

percentiles

$$\hat{q}_{0.01}(\mathbf{x})$$
 ... first percentile

Example: Calculation of Quantiles

Calculate the 0.29 quantile of the following sample

$$\mathbf{x} = \{28.33, 28.17, 28.51, 28.55, 29.08, 30.00, 31.27, 31.60\}$$

In this case

$$\lceil n\alpha \rceil = \lceil 8 \times 0.29 \rceil = \lceil 2.32 \rceil = 3 \implies \hat{q}(0.29) = x_{(3)} = 28.51$$

Can use quantile function in R:

```
> quantile(x, type = 1)
    0% 25% 50% 75% 100%
28.17 28.33 28.55 30.00 31.60
```

```
> quantile(x, probs = 0.29, type = 1)
   29%
28.51
```

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation Smooth Density Estimation Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Empirical Cumulative Distribution Function

The empirical cumulative distribution function for a data set $\mathbf{x} = \{x_1, \dots, x_n\}$ is

$$\hat{F}(x) = \frac{\text{number of data points less than or equal to } x}{n} = \frac{1}{n} \sum_{i=1}^{n} I_{\{x_i \le x\}}$$

where $I_{\{a\}}$ indicates of the occurrence of a

The empirical cumulative distribution function (ecdf) is a right-continuous step function that increases by $\frac{1}{n}$ at each data point x_i

The ecdf plots the fraction of the points in the data set x that are less than or equal to x as a function of x

Example: Empirical Cumulative Distribution Function

Consider the following data set of 12 points and their order statistics

Xi	1.94	1.93	1.33	0.76	1.69	1.82	1.81	1.22	1.81	1.28	1.18	1.73
$X_{(i)}$	0.76	1.18	1.22	1.28	1.33	1.69	1.73	1.81	1.81	1.82	1.93	1.94

> plot(ecdf(x))

ECDF Relationship to Density Estimates

- > hist(citi, freq = FALSE)
- > plot(ecdf(citi), add = TRUE)

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation Smooth Density Estimation Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Five-Number Summary

Given a data set \mathbf{x} , the following five numbers

$$\min(\mathbf{x}) = x_{(1)}, \ \hat{q}_{0.25}(\mathbf{x}), \ \hat{q}_{0.5}(\mathbf{x}), \ \hat{q}_{0.75}(\mathbf{x}), \ \max(\mathbf{x}) = x_{(n)}$$

comprise the *five-number summary* of \mathbf{x}

- Provides a simple, practical numeric summary of a distribution
- Provides the basis for a box plot

Concepts

- ▶ the *center* or *location* of the data
- ▶ the *bulk* of the data
- ► the *tails*

boxplot of **x**

Boxplot: Example

- Boxplots also useful for comparing grouped data
- ► For example, 2012 closing prices for Citigroup and AIG

Boxplot: Construction

Five-number summary for 2012 Citigroup Closing Prices

The 0.5-quantile provides the "center" of the boxplot

The box shows the middle half of the data

$$d = (\hat{q}_{0.75} - \hat{q}_{0.25}) = 6.57$$

$$\hat{q}(0.25) - 1.5d = 28.54 - 9.855 = 18.685$$

$$\hat{q}(0.75) + 1.5d = 35.11 + 9.855 = 44.965$$

Whiskers limits are the most extreme observations in the interval

$$[\hat{q}_{0.25} - 1.5d, \hat{q}_{0.75} + 1.5d]$$

Data beyond the whiskers are plotted individually

Example: Boxplot Construction

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation
Smooth Density Estimation
Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Plotting Best Practices

It is not easy to create good graphical displays of data (plots)

Default plots provided by standard software (e.g., Excel, R, etc.) often not very good

Some plotting best practices:

- ▶ Do not create the illusion of a trend when the *x*-axis is qualitative
- ▶ Put clear, concise labels on the axes, the legend, and the plot
- ▶ When comparing related quantities, use the same axes and intelligent positioning
- ► Changing the aspect ratio can reveal interesting features
- ▶ Design a plot so that departures from the expected appear as departures from linearity or distance from a *cloud* of data
- ▶ Try to show only the data No chart-junk

A Qualitative *x*-axis

A Qualitative x-axis with the Illusion of a Trend

Clear, Concise Labels

Clear, Concise Labels

CD	Consumer Discretionary	HC	Health Care	Tel	Telecommunication
CS	Consumer Staples	Ind	Industrials		Services
Е	Energy	ΙΤ	Information Technology	U	Utilities
Fin	Financials	Mat	Materials		

Same Axes, Intelligent Positioning

Same Axes, Intelligent Positioning

Another Possibility: **Same** Axes

Changing the Aspect Ratio Can Reveal Interesting Features

A toy example

```
> x \leftarrow seq(-1, 1, by = 0.1)
> y1 \leftarrow 0 + 1.0*x + rnorm(x, sd = 0.1)
> y2 \leftarrow 0 + 0.1*x + rnorm(x, sd = 0.01)
```

What happens when we plot y1 vs. x and y2 vs. x?

Changing the Aspect Ratio Can Reveal Interesting Features

Changing the Aspect Ratio Can Reveal Interesting Features

>
$$plot(x, y1, xlim = c(-1.1, 1.1),$$
 > $plot(x, y2, xlim = c(-1.1, 1.1),$ + $ylim = c(-1.1, 1.1))$ + $ylim = c(-1.1, 1.1))$

Outline

Types of Data

EDA for Qualitative Variables

Histograms

Kernel Density Estimation

Smooth Density Estimation Bandwidth Selection

Sample Quantiles

Empirical Cumulative Distribution Function

Boxplots

Plotting Best Practices
Plotting Faux Pas

Chart-Junk

E.g., plot of 5 numbers

Chart-Junk and Scale

Chart-Junk and **Scale**

Sotheby's / Christie's Worldwide Sales

Displaying the data on a *more honest* scale tells a different story

Sotheby's is crushing Christie's

Sotheby's / Christie's Worldwide Sales

References and Further Reading

- 1. The Visual Display of Quantitative Information (2nd Edition). E. Tufte. Graphics Press, 2001.
- 2. Envisioning Information. E. Tufte. Graphics Press, 1990.
- 3. CSE 512: http://courses.cs.washington.edu/courses/cse512/

COMPUTATIONAL FINANCE & RISK MANAGEMENT

UNIVERSITY of WASHINGTON

Department of Applied Mathematics

http://computational-finance.uw.edu