PATENT **SPECIFICATION**

(11)1 415 295

(21) Application Nos. 47926/71 and 47927/71

(23) Complete Specification filed 16 Oct. 1972 (44) Complete Specification published 26 Nov. 1975

(51) INT CL² C07C 59/26; A61K 31/19, 31/215, 31/395; C07C 103/178, 131/00, 69/67; C07D 295/18

(52) Index at acceptance

5

10

15

20

25

C2C 1175 1341 1530 1532 1562 1626 1731 215 21X 220 221 225 226 227 22Y 246 250 251 252 255 25Y 280 281 282 28X 290 29X 29Y 30Y 311 313 314 31Y 323 327 32Y 338 339 342 345 346 34Y 351 354 355 35X 35Y 360 361 362 364 365 366 367 368 36Y 371 373 37Y 388 389 396 401 40Y 464 491 496 500 50Y 574 583 584 588 58X 593 596 612 613 620 623 624 625 628 62X 634 635 638 63X 650 657 658 65X 662 665 668 66X 675 694 699 701 718 719 740 776 790 79Y BG BT KN KR KW LQ LZ MF MV QT RE RV UJ UL UQ UR

5

10

15

20

25

(72) Inventor ANDRÉ MIEVILLE

(54) SUBSTITUTED PHENOXY-ALKYL-CARBOXYLIC ACIDS AND DERIVATIVES THEREOF

We, ORCHIMED S.A., a Swiss Body corporate of c/o Me. Gumy, 8 Bd. de Perolles, 1700 Fribourg, Switzerland, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be substantially described in and by the following statement:-

This invention concerns p-carbonyl-phenoxy-carboxylic acids and derivatives thereof which result from transforming the p-oxo radical into oxime, acid, ester and amide radicals and from transforming the carboxylic acid radical into ester and amide

Our copending Patent Application Number 3085/70 (1 268 321) claims compounds having the formula

where Y is -OH, -OCH₃, -OC₂H₅, -OC₃H₇, NHOH, NR₁R₂, A represents a single bond or a divalent straight- or branched-chain C_{1-3} hydrocarbon radical, R' is a hydrogen atom or a phenyl group, and either X is = 0 or = NOH and R is a hydrogen atom or a phenyl, halophenyl, C_{1-3} alkyl, C_{1-3} ω -haloalkyl, and if X=0, R is hydroxyl, methoxy, ethoxy, propoxy, —NHOH or —NR₁R₂ group or R—CX represents a cyano group, each of R_1 and R_2 being a hydrogen atom or an alkyl or diethylamino alkyl group or R1 and R2 forming, together with the nitrogen atom to which they are attached, a substituted or unsubstituted heterocyclic group.

The present invention provides compounds having the general formula

but excluding those claimed in the said copending application, in which R^v and R" are identical or different and each represents H, CH_a, C₂H₅, C₆H₅, p—F—C₆H₆, p—Cl—C₄H₆, —R"'' and R"'', which may be identical or different, represent H, a halogen atom, preferably F, Cl or Br, a C_{1—s} alkyl group, CF₃, SCH₃, SOCH₃, SO₂CH₃, OCH₃, OCH₃, OH or C₄H₅; Rⁿ represents H, a C_{1—s} alkyl group, an aryl group an aryl group the aromatic residue of which is substituted by one or more CH₂, CF₃ or halogen atoms, a cycloalkyl group, OH, a C₁₋₄ alkoxy group, an aryloxy

: J

60

a) from transforming the p-oxo group into oxime X = NOR₀, b) from transforming the carboxylic acid group into ester and amide groups, and,

. . 60

c) from transforming both the p-oxo group into oxime and the carboxylic acid groups into ester and amide groups; and,

5

10

20

25

5

10

20

25

2) the p-carboxy-phenoxy-alkyl-carboxylic acids, hereafter called "diacids" and derivatives thereof which result from the transformation of one or the both carboxylic acid groups into ester and amide groups.

Among the compounds of the "p-carbonyl" type, R^{v1} represents H, C₁—C₈ alkyl, aryl preferably C₆H₃, p—Cl—C₆H₄ and p—F—C₆H₄.

Among the "diacid" type R^{v1} represents OH, C₁—C₆ alkoxy, aryloxy preferably phenoxy and p-chlorophenoxy, cycloalkyloxy preferably cyclopentyloxy, cyclohexyloxy, Δ^{1,2}-cyclohexenyloxy, NR₃R₄, NHCH₂CH₂NR₃R₄, or O-alkylene-NR₃R₄.

The para-carbonyl compounds of formula I in which X' is an oxygen atom and Y' is a hydroxyl group at a C alloyyl group may be preferably reacting a tomas

is a hydroxy group or a C_{1-3} alkoxy group may be prepared by reacting a parahydroxybenzoyl compound of the formula

in which Rvi, R" and R"" are defined as above with a halogen compound of the formula

in which Hal represents a halogen atom, Y" is a hydroxy group or a C_{1-3} alkoxy group and R' are as defined above, in an alkaline medium.

The carbonyl function >C=O may be converted into an oxime function or an ester or other ester or an amide function respectively, using a method known per-se for converting a carbonyl function to an oxime function or for converting a carboxylic or C₁₋₈ alkoxy ester function to an ester, other ester or amide function.

The following procedures may be used to prepare the compounds of formula I:

PROCEDURE A.

Preparation of acids, esters and amides of formula I, in which R" is a hydrogen atom and X' is an oxygen atom

a) A p-hydroxybenzoyl derivative having the formula

in which R₅ is a hydrogen atom or an alkyl or aryl group, particularly a p-chlorophenyl group, is reacted with an α -halogenated acid for the formula

or an a-halogenated ester of the formula

in order to obtain respectively a compound of the formula

4	23.22,000	
5	b) When R ₅ represents a hydrogen atom or an alkyl group, compound IVa may be esterefied using methyl or ethyl alcohol; the ester obtained may be condensed with an appropriate amine to produce a desired amide of formula I, or transesterified to synthesize an ester of formula I other than those already mentioned in procedures A (a) and A (b).	5
	c) When R ₅ represents an aryl radical, compound IVa may be converted by means of SOCl ₂ or PCl ₅ into the corresponding acid chloride which may be reacted with an appropriate amine, alcohol or amino alcohol, in accordance with a method known per se, in order to obtain respectively a desired amide, ester or amino ester of formula I.	
10	d) Compound IVb may be condensed with an appropriate amine in accordance with a method known per se to produce a desired amide of formula I or compound IVb may be transesterified to prepare other esters of formula I.	10
15	PROCEDURE A_1 Preparation of acids, esters and amides of formula I in which $R^v = R'' = CH_3$ and $X' = 0$	15
	a) An acetone-chloroform mixture or an α -halogenated ester of the formula Br—C(CH ₃) ₂ —CO ₂ Et (V), is reacted with compound IIa in an alkaline medium, in order to obtain respectively a compound of the formula	
	$R_{5} = C - C - C - C - C - C - C - C - C - C$	
20	b) Compound VIa can be esterified by means of a lower alcohol, for instance to give methyl, ethyl or iso-propyl ester, particularly when R ₅ is an alkyl group.	20
	c) Ester VIb can be amidified or transesterified, in accordance with methods known per se to produce respectively an amide or other ester of the formula I.	
25	d) When R _s is an aryl group, compound VIa may be converted into the corresponding acid chloride by means of SOCl ₂ or PCl ₅ and then, if desired, the acid chloride may be reacted with an appropriate amine, alcohol or amino-alcohol to produce an amide, ester or amino ester respectively of the formula I.	25
30	PROCEDURE B. Preparation of aldoximes and ketoximes of formula I, i.e. compounds of formula I in which X' = NOH or NOR _o .	30
	a) The compounds of formula I in which $X' = NOH$ may be prepared by treating corresponding compounds of the formula I in which $X' = O$ with hydroxylamine hydrochloride in a basic medium, preferably a pyridinic medium.	
35	b) The compounds of the formula I in which $X' = NOR_0$ may be prepared:—by condensing corresponding compounds of the formula I in which $X' = O$ in a basic (pyridine) medium, with a substituted hydroxylamine hydrochloride, such as:	3
	H ₂ N:-O-R ₀ , HCl,	
	from the compound of the formula I, in which $X' = NOH$, by the following reactions:	
	$-NOH \xrightarrow{LBu OK} -NOK \xrightarrow{X R_o} -NOR_o$	

The following examples are given to illustrate the invention and analogous methods of preparing compounds in accordance with the invention.

EXAMPLE 1.

4-(p-chlorobenzoyl)-phenoxy-acetic acid a) Preparation of 4-hydroxy-4'-chlorobenzophenone Phenol and p-chlorobenzoyl chloride are successively added at 0°C to a solution 5 of AlCl₃ in nitrobenzene (or a suspension of AlCl₃ in ligroine or dichloroethylene); the 5 resulting mixture is kept warm to 25°C for 17 hours, and hydrolysed; 4-hydroxy-4'chlorobenzophenone is then isolated by extraction using dilute sodium hydroxide and washing with hexane. b) 4-(p-chlorobenzoyl)-phenoxyacetic acid 10 A mixture of 1 mole of 4-hydroxy-4'-chlorobenzophenone, 2.2 moles of NaOH, 1.2 10 moles of CICH2-CO2H and 1300 cc of water, is refluxed for 7 hours. After acidification and extraction with NaHCO₂ have been conducted and followed by a second acidification, 4-(p-chlorobenzoyl)-phenoxyacetic acid is isolated. Its melting point is 152°C. 15 EXAMPLE 2. 15 N-(p-propionyl-phenoxyacetyl)-morpholine. This example illustrates the procedures A(b) and A(d) described above. a) Methyl p-propionyl-phenoxyacetate 1 mole of p-propionyl-phenoxyacetic acid is refluxed during 10 hours, with 100 cc 20 of MeOH and 300 cc of CHCl₃ or CH₂Cl₂ in the presence of sulfuric acid. The result-20 ing mixture is poured into water. The desired ester remains in the organic phase. It is washed once with dilute NaOH, then twice with water. Pure methyl p-propionylphenoxyacetate is thus isolated, with a yield of about 90%. MP: 59°C. b) 25 1 mole of the ester obtained in step (a) is refluxed for 8 hours with 2.5 moles of 25 morpholine. Then, 1 volume of water is added, and the product is left to crystallize in the cold state. The morpholinic amide is filtered off and recrystallized from alcohol (yield: 85%; melting point: 88°C). By using the procedure described in example 2, original compounds listed in table 30 III are prepared. 30 EXAMPLE 3. N-(p-benzoylphenoxyacetyl)-piperidine This example illustrates procedure A (c) described above 35 The piperidinoamide of p-benzoylphenoxy acetic acid is obtained by treating 1 35 mole of p-benzoylphenoxy acetic acid chloride with 2 moles of piperidine in benzene. By using the procedure described in example 3, original compounds listed in table IV are obtained. **EXAMPLE 4.** Para-propionhydroximoyl- phenoxy-acetyl-1-piperidine 40 40 1 mole of p-propionylphenoxyacetyl-1-piperidine is refluxed for 5 hours with 1.1 mole of NH2OH.HCl and 1.05 mole of pyridine. The desired oxime is precipitated in water and recrystallized from alcohol. Its melting point is 144°C. 45 45 By using the procedure described in example 4, original compounds listed in table V are obtained.

10

15

20

25

30

35

40

45

5

10

15

20

25

30

35

40

45

EXAMPLE 5. Preparation of para-(4-chlorobenzoyl)-phenoxy-isobutyric acid

1 mole of 4-hydroxy-4'-chlorobenzophenone is dissolved in anhydrous acetone and then 5 moles of powdered sodium hydroxide is added. The corresponding sodium phenate precipitates. Refluxing is effected, and then, 1,5 mole of CHCl₃ diluted with anhydrous acetone is added and the resulting mixture is refluxed for 10 hours. After cooling, water is added, the acetone is evaporated, the aqueous phase is washed with ether and acidified and the organic phase is re-dissolved in ether and extracted into a solution of bicarbonate. The bicarbonate solution is then acidified to obtain the desired acid, having a melting point of 185°C, with a yield of 75%.

By using the procedure described in example 5, original compounds listed in table

Esters and amides of the phenoxy-isobutyric acids prepared in accordance with the procedure of example 5 are produced in accordance with procedure A₁ described above. Esters and amides prepared in this manner are listed in table VII.

The compounds listed in table VII can be prepared in a manner similar to that described in the following example.

EXAMPLE 6.

Iso-propyl p-(4-chlorobenzoyl)-phenoxy-isobutyrate

ci-Co-Co-co-chi

(Code No. 178)

1 mole of the acid obtained in example 6 is converted into its acid chloride using thionyl chloride (2,5 moles). 1 mole of the acid chloride is then condensed with 1,05 mole of isopropyl alcohol in the presence of 0,98 mole of pyridine in an inert solvent such as benzene

Since traces of SO₂ (which has a bad smell) may be obtained from the thionyl chloride; it is preferable to avoid this disadvantage by carrying out the esterification directly.

Using procedure B described above, isobutyric acids, and esters and amides thereof prepared in example 5 are connected to the corresponding oxime compounds listed in table VIII.

The compounds of formula I in which R^n and Y' are both hydroxy groups may be prepared in accordance with the invention by a) reacting p-hydroxybenzoic acid which has the formula

with a halogeno carboxylic acid having the formula

in which Hal represents a halogen atom in an aqueous alkaline medium under reflux, and b) precipitating the resulting diacid in an acidic medium.

It is preferred to use one mole of p-hydroxy benzoic acid per mole of the halogeno

carboxylic acid.

The compounds of formula I in which at least one of R^{vi} and Y' is other than hydroxyl can be prepared in accordance with the invention by converting at least one of the acid functions of the diacid into an ester or amide function by a method known per-se for converting carboxylic acid groups to ester or amide groups.

20

25

The diacid, which has the formula

can be used directly:

a) for the synthesis of a diester of the invention in which $R^{vi} = Y'$,

b) to prepare an intermediary acid dichloride for which a diester or a diamide of the invention in which $R^{vl} = Y'$ can be synthesized, or

c) for the synthesis of a monoester of the invention; in this case the acid function carried by the oxyacetic chain, i.e. the group OCR'R"COOH, is esterified through the acid monochloride prepared with PCl₅ in C₆H₆ at 0°C.

The monoesters of the formula 10

10

5

can be synthesized in accordance with method c) or else by the action of ethyl bromoacetate:

on a para-carboxy-hydroxyphenone of the formula 15

15

in a heterogenous alkaline medium.

From the monoesters of the invention, particularly those of formula VIII above, there can be obtained, by using a method known per-se, monoamides of the invention, e.g. of the formula

20

or acid monochlorides, e.g. of the formula

The acid monochlorides can in turn be converted into symmetrical and asymmetrical diesters and amide-esters of the invention, e.g. of the formula

10

15

20

15

20

Finally, a symmetrical or asymmetrical diester of the invention, e.g. of the formula

can be converted to an amide ester of the invention, e.g. of the formula

By a simple modification of the reaction sequences described above it is possible to obtain the compounds of the invention in which one of R^{vi} CO— and —COY' is an amino-ester group and the other of R^{vi} CO— and —COY is an amide group, any substituents on the nitrogen atom of the amino-ester group being identical to or different from those on the nitrogen atom of the amide group. This is illustrated in the following reaction scheme in which

 N_1 and N_2

represent non-identical amino groups.

The following examples are given to illustrate the invention.

EXAMPLE 8. N-(p-carboxyphenoxy-acetyl)piperidine

H000- 0-CH₂-CO-H

A mixture of 1 mole of ethyl p-carboxy-phenoxy-acetate and 2,5 moles of piperidine is refluxed for 7 hours. Water is then added, and 1-p-carboxy-phenoxy-acetyl piperidine precipitates.

15

20

25

30

5

10

15

EXAMPLE 9.

Ethyl para-piperidinocarbonyl-phenoxy-acetate Operation is in accordance with the following reaction scheme:

$$\begin{array}{c} \text{MO}_2\text{C} & -\text{O}-\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5 \\ & \text{socl}_2 \\ & \text{cl}-\text{co} & -\text{O}-\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5 \\ & \text{piperidine} \\ & \text{N-co} & -\text{O}-\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5 \\ \end{array}$$

The amide ester product can be reacted with any amine, in accordance with the procedure described in Example 8, to produce a diamide.

The substances indicated in Tables I and II are prepared in accordance with the 5

procedure described in Example 8 or Example 9. The substances listed in Table I bis have been found to possess anti-tussive and

analgesic properties. The following Examples illustrate particular procedures for preparing the compounds number 96 and 99 appearing in Tables I and II respectively.

EXAMPLE 10. N-(p-carboxyphenoxy-acetyl)-piperidine

coded as No. 96

a) Ethyl p-carboxyphenoxy-acetate 1 mole of ethyl bromoacetate is reacted with 1 mole of p-hydroxybenzoic acid in the presence of 2 moles of K₂CO₃ in acctone, methyl-ethylketone, dioxan or tetra-hydro-

furan, for 48 hours, at the reflux temperature of the organic solvent to obtain ethyl p-20 carboxyphenoxy-acetate.

b) N-(p-carboxy-phenoxy-acetyl)piperidine

The preceding ester (1 mole) is heated under reflux with piperidine (3 moles) in a chlorinated solvent, for 6 hours. Water is added to precipitate N-(p-carboxyphenoxy-acetyl)piperidine after condensation is complete.

> EXAMPLE 11. 25 N-(p-ethoxycarbonyl-phenoxy-acetyl) piperidine

coded as No. 99 Ethyl p-carboxy-phenoxy-acetate is esterified in ethanol and chloroform in the presence of sulphuric acid. N-(p-ethoxycarbonyl-phenoxy-acetyl)piperidine is obtained by condensation of 1 mole of the resulting diester (ethyl p-ethoxycarbonyl-30 phenoxy-acetate) with 3 moles of piperidine in an inert solvent for 7 hours at the boiling temperature of said solvent.

		Activity found	Anti-inflammatory Anti-tussive	Ξ.	:	:	· :	÷	
		v		18 000 17 000	12 000 15 000	17 000 16 000	14 000 11 000	20 000 16 000	15 000 12 000
	U.V	λ Μαχ.(πμ)	209 248	210 249	208 251	209 248	207 237	208	207 241
	n-1	ν-C-Υ' =0	1660	1640	1690	1640	1760	1660	1760
,	I.R. cr	ν-C-R ^{vi} Π O	1630	1.700	1,640	1700	1630	1630	1620
20-0-C		M.P.	168	190	265	183	06	181	116
\\ \rightarrow \frac{1}{2} - \(\pi \)		Υ,		Ç	-NH2	Ç	-0C,Hs	Q	-0C,H,
	_	R."	E	Œ	Ħ	Ħ	Ξ	ж	Н
		RV	н	н	ж	æ	#	=	Ħ
		R ^{vi}	-NH ₂	Н0-	-NH ₂	Н0-	Ç	-NH,	Q
		Code No.	100	96	106	112	116	138	145
	$\rho_{\alpha} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2$		$R^{\nu} = \begin{pmatrix} \rho^{\nu} - c_{-} - c_{-} - v^{\nu} \\ \rho^{\nu} - c_{-} - c_{-} - v^{\nu} \end{pmatrix}$ $\frac{1.R. \text{ cm}^{-1}}{\nu - C - R^{\nu} i} \frac{U.V.}{\nu - C - Y'}$ $R^{\nu} = \begin{pmatrix} R^{\nu} & Y' & 0.V \\ 0.C & 0 & \lambda \text{ Max. (mµ)} \end{pmatrix} \epsilon$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rvi Rv R" Y' N.P. $\frac{h^{3} L^{2} - e^{-L^{2} L^{2}}}{0}$ $\frac{h^{3} L^{2}}{0}$ $\frac{h^{3}$	Ryi Ry R" Y' $\frac{\rho^{N-C}}{\sqrt{C}}$	Ryi Ry R" Y' $^{\mu N-c}$ $^{\mu N-c$	Ryi Ry Ry Ry $\frac{1}{12}$ $\frac{1}{12$

Activity found

: .

:

:

:

Anti-tussive, analgesic, cardiovascular 27 000 19 000 16 000 20 000 36 000 22 000 17 500 20 000 18 000 19 000 34 000 17 000 U.V. λ Max.(mμ) 210 253 208 255 208 253 207 254 213 252 21*7* 256 ×-0-2 √-0-2 1760 1.760 1760 1760 1770 1760 I.R. cm-1 v-C-R^{vi} 1710 1710 1710 1710 1710 1710 TABLE I (Continued) M.P. 182 169 108 190 140 75 1043 -0C,H, -0C₂H; -0C,H, -0C,H, × 1-0-012-012-N R" Ή Ξ Ξ Ξ Ξ Ξ 24 . # Ξ Ξ Ξ H I , HCI R_{Yi} -0-CH,-CH,-1 Code No.

200

225

293

201

294

Ŧ
ne
ıtin
Ö
_
щ
B
₹

			ļ			I.R. cm ⁻¹	1-1	U.V.		
Code No.	R ^{vi}	RV	R."	Υ,	M.P.	νC-R ^{vi} νC-Υ΄	ν-c-Υ' 0	λ Μαχ.(πμ)	ę	Activity found
310	Н0-	сн, сн,	CH,	Н0-	175	1690	1700	210 253	15 000 19 000	Antitussive, cardiovascular, normolipemiant
	-0-CH CH,	æ	CH,	Сн, Сн, -0-сн		1710	1760	ı	ı	Ξ
	-o-che-che-th	CH,	сн,	CH, CH, -0-ch-ch-r	136	1710	1730	209 253	15 000 15 000	

		Activity found	Antitussive	:	:	:	Antitussive, analgesic. cardiovascular	
		۶	13 000 18 000	19 000 19 000	20 000 20 000	19 000 20 000	37 000 23 000	23 000 21 000
	U.V.	λ Μαχ.(πμ)	216 267	210 253	209 252	209	210 255	209
	cm-1	ν-C-Υ' 	1650	1650	1660	1660	1660	1660
.Е II 6 6 6 6	I.R. cm-1	O-7-0	1720	1710	1700	1710	1710	1720
TABLE II		M.P.	61	104	72	110	162	85
57.4 0		, λ	Qu-	Ç	Q	Q	٢	Ç
		Rvi	-0C ₂ H ₃	-0CH,	-0C;Hs	-осн,	o-cig-cig-if	-0-CH ₂ -CH ₂ -N HCl
-		Code No.	66	105	120	139	205	204

		Activity found	Antitussive, analgesic, cardiovascular		:	:	:	:
		ų	30 000 20 000	36 000 23 000	32 000 16 000	34 000 21 600	27 000 30 000	32 000 18 000
	U.V.	λ Мах.(mμ)	210 254	210 255	207	209	211 242	212 250
	п-1	v-C-Y	1660	1660	1660	1660	1660	1660
IABLE II (Continued)	І.К. ст-1	v-C-R ^{vi}	1710	1710	1710	1710	1710	1710
וו וו		M.P.	160	139	100	138	162	168
IAB		γ,	Ç	Ç		Ç	Ç	NH-CH ₂ -CH ₂ -N , fumarate
		R vi	o - cH_2 - cH_2 - d	o-che-che-H	o-cne-cne-t	o-cHg-CHg-H	-0-012-012-01-013	o-ch-ch-h
		Code No.	221	222	228	235	249	311

TABLE II (Continued)

÷.

Antitussive, analgesic, cardiovascular Activity found : 31 000 22 000 30 000 22 000 30 000 23 000 30 000 20 000 u.v. λ Max. $(m\mu)$ 212 253 211 252 211 252 212 252 , , , , , , , 1660 1660 1660 1660 I.R. cm-1 V-C-RVI 1710 1710 1710 1710 .Ω C.P. 134 150 134 142 γ, R_{4i}. Code No. 314 313 312

TABLE II (Continued)

•

	Activity, discovered	Antitussive and psychotropic	• .	\$	<u> </u>	•	:
U.V.	Ų	18 000 18 000	18 000 18 000	18 000 24 000	17 500 17 500	18 000 17 000	18 500 18 000
Ü.	λ Мах.	213 267	214 266	210 263	214 266	214	214
1-1	v-C- O amide	1650	1650	1665	1660	 enlarged peak 	enlarged peak
I.R. cm ⁻¹	v-C- ketone	1680	1680	1700	1680	1670 enl	1660 en
	M.P.	82	92	130	107	88	80
	Υ',	· Ç	\bigcirc	√	Ç	(Z,
	Rv	Н	Ħ	Ħ	Ħ	#	五
	R'''	н	Ħ	E	Ħ .	#	н
	R."	н	Ħ	ĸ	Œ	Ħ	н
	R ^{vi}	CH,-(CH,),	CH3,-(CH2)3	CH,	сн, – сн,	CH,-CH,	H,C CH H,C
	Code No.	124	126	184	134	136	148

Activity discovered

:

:

159

164

157

:

Antitussive and psychotropic 19 000 18 000 19 000 18 500 19.000 18.000 18 000 18 000 19 000 15 000 22 000 15 000 U.V. λ Max. 214 267 214 268 214 267 213 267 211 257 214 266 O amide enlarged peak 1650 1660 1640 1650 1650 I.R. cm-1 V-C--O ketone 1660 TABLE III (Continued) 1670 1670 1665 1680 1670 M.P. 75 4 . 73 86 66 134 λ RV Ξ Ξ Ξ Ή Ξ Ξ R "" Ξ Ξ Ξ Ξ Ξ Ξ R. Ξ I I I Ξ I Rvi CH,-(CH,), CH,-(CH2), Br-CH, H,C H,C Code No.

149

151

		Activity discovered	Antitussive, psychotropic and analgesic	2		:	a ·	:	
	V.	,	14 000 18 500	14 000 18 500	24 000 18 500	14 000 17 500	14 000 16 000	19 000 16 000	
	U.V.	λ Мах.	214 266	215 268	212 268	215 268	212 268	210 265	
		ν-C- Ο amide	enlarged peak	1640	1640	1630	1645	1650	·
TABLE III (Continued)	I.R. cm-1	v-C- O ketone	1660 enla	1680	1670	1680	1670	1670	·
OC III		M.P.	106	66	170	167	125	1117	137
TABLE		, , _X	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HIM	MI CH3 CH4	NH-NH,		\bigcirc	Q
		R	#	五	Ξ	Ħ	Ħ	Ħ	н
		R.	н	ĸ	Ħ	Н	E	E	æ
		۳	# ·	Ħ	н	H	Ħ	3-сн,	3-0CH,
		R ^{vi}	CH,	Ġ,	CH,	CH,	CH,	CH,	CH,
		Code No.	202	203	216	218	219	223	

3LE III (Continued)

		Activity discovered	Antitussive, psychotropic and analgesic	:	•	: :	:	:	:
	U.V.	v	15 000 17 000	29 000 17 000	27 000 16 000	22 000 13 000	23 000 13 000	25 000 15 000	23 000 15 000
	n	λ Max.	210 262	245 273	244 270	214 267	214 267	213 268	214
		ν-C- amide	1665	1660	1660	1650	1660	1660	1660
TABLE III (Continued)	I.R. cm	v-C- O ketone	1705	1660	1660	1670	1680	1680	1660
		°C.P.	104	86	109	64	119	82	88
TABLE		Υ'		Ç		Ç		Ç	
		Rv	Н	Ξ	Ξ	Ħ	Ħ	н	н
		R ""	Н	E .	I	-3 CH,	–3 CH ₃	–5 CH ₃	–5 CH,
		R."	н	O _i	\bigcirc	-2 CH,	-2 CH,	-2 CH,	-2 CH,
		Rvi	CH,	CH,	CH,	CH,	CH,	CH,	cH,
		Code No.	256	246	263	287	254	260	286

TABLE III (Continued)

	.a	o iio						
	Activity discovered	Antitussive, psychotropic and analgesic	=		:		:	:
U.V.	ý	19 000 16 000	20 000 17 000	15 000 9 000	40 000 16 000	ſ	ł	1
n	А Мах.	21 <i>7</i> 269	209	302	249 27 <u>6</u>	l	1	l
1	v-C- ∥ Ö amide	1660	1660	1660	1650	1660	1660	1650
I.R. cm-1	v-C-	1680	1680	1630	1670	1660	1660	1670
	M.P.	29	107	125	128	130	95	96
	Υ'	Ç.		Ç		Q	Ö	Ç
	۳ ₄	Œ	н	Ħ	Ħ	ж	н	н
	R ""	Ξ	Ξ	н	Н	Ħ	5 CH,	–5 CH,
	R."	–2 CH,	-2 CH,	-3 OCH,	–3 SCH,	-3 SCH,	-2 C ₂ H ₈	–2 C,Hs
	Rvi	CH,	CH,	CH,	CH,	CH3	Ġ,	CH,
	Code No.	261	264	271	27.5	306	309	318

Antitussive, psychotropic and analgesic Activity discovered : 13 000 17 000 1 U.V. у Мах. 215 265 ı 0 amide 1660 I.R. cm-1 v-C-O ketone 1660 ι TABLE III (Continued) M.P. 140 90 NH-CH-CH,SH CO₂H λ, R^v Ξ Ξ R ''' Ξ Ξ –2 Br R." Ξ R^{Vi} 품 CH, Code No.

(-o-
- 20

	Activity discovered	Antitussive and psychotropic	â	£	:	2	-
U.V.	و	22 000 18 000	20 000 16 000	41 000 40 000	22 000 19 000	14 000 15 000	16 000 17 500
Ü.	Л Мах.	211 283	211 283	211 255	245 280	210	210
m ⁻¹	ν-C- O amide	1650	1650		1650	1660	02
I.R. cm ⁻¹	ν-C- ∥ O ketone	1670	1675	1650	1680	1690	1650
	M.P. °C	104	129	140	130	116	130
	γ,	Q.			Ş⊪	VHH → HH	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	R''''	Æ	Ħ	Ħ	Ħ	#	H
	R"	н	Ħ	斑	æ	Œ	н
	R ^{vi}	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\Diamond	\bigcirc
	Code No.	128	129	131	168	167	174

TABLE IV (Continued)

		ğ	
	Activity discovered	Antitussive and psychotropic	:
u.v	پ	25 000 18 000	26 000 19 000
n	λ Мах.	208 288	207 286
;m−1	ν-C- Ο amide	1645	1645
I.R. cm ⁻¹	ν-C- ketone	1665	1665
	M.P.	140	130
	, λ	Q ₁ -	Q
	R ""	н	Ξ
	R."	н	I
	R ^{vi}		
	Code No.	237	248

TABLE V

	ty red	ŧ ο.				
1	Activity discovered	Sedative, antiinflam- matory, analgesic and anti- tussive	:	:	:	=
U.V.	v	45 000 40 500	22 000 18 000	26 000 16 000	19 500 16 000	22 000 18 000
Ū.	А Мах.	211 255	212 257	212 240	212 258	211 257
I.R. cm ⁻¹	ν-C- αmide λ Max.	1640	1645	1650	1645	1660
I.R.	ν OH oxime	3250	3250	3250	3250	0088.
	M.P.	172	147	136	159	144
	Υ,	p Q	Ç	Q	Ç	Ç-
	ک	王	H	Ħ	æ	Ħ
	R'''	Œ	Ħ	=	5 25	æ
	R."	æ	Ħ	H	#	ж
	% °	ж	Ħ	æ	#	ж
	R ^{vi}	0	CH,-CH,-CH,	\bigcirc	132 СН,-СН,-СН,	сн,—сн,
	Code No.	125	127	130	132	135

		Activity discovered	Sedative,	matory, 19 000 analgesic 15 000 and anti- tussive	:	•	:		:	:
	U.V.	J		19 000 15 000					18 000	21 000 21 000
		А Мах.		212 268					212 243	
	I.R. cm ⁻¹	v-C-	1635	1650	1635		1640		1635	1640
	I.R	ν OH oxime	3300	3350	3300		3300		3150	3200
_		M.P.	150	144	124		147		142	132
TABLE V (Continued)		Υ,	Q	Ç	Ç)	Ç	Q
TAI		R.	缸	エ	Ξ		Ξ		Ξ	Ξ
		R.""	Ħ	Ħ	I		Ħ		Ħ	н
		R,"	н	=	Ħ		Ħ		Ξ.	æ
		L	н	H	н		н		ш	н
		R ^{vi}	CH,-CH,	CH³-(CH³)³	н,с	H,C	H,C CH-CH,	щ, С,		CH,-(CH,),
		Code No.	1,47	152	155		156		160	161

	ı	Activity discovered	Sedative, antiinflam- matory, analgesic and anti- tussive		:	:	:	Active on the CNS
	u.v.	¥	18 000 10 000	29 000 16 000	27 000 19 000	25 000 18 000	15 000 15 000	29 000 17 500
	n	λ Мах.	210	215	212 238	210	240	209 254
	I.R. cm ⁻¹	ν-C- 0 amide λ Max.	1660	1630	1630	1640	1640	1660
	I.R.	ν OH oxime	3350	3350	3350	3200	3250	3250
		M.P.	170	182	184	200	194	216
E V (Continued)		ķ	Q	Q	Ç	₩ _{HH}	₩.	110 SH
TABLE V		۳ <u>۷</u>	I	斑	五	ж	I	Ħ
		R'''	Ħ	Ħ	m .	E	E	Ħ
		R""	ĸ	Ħ	Ή	Ħ	Ħ	H
		జం	æ	ж	ж	ш	#' :	#
٠		R ^{vi}	H,C	BrCH,	\bigcirc	\bigcirc	\bigcirc	CH,
•		Code No.	177	179	181	183	185	214

		Activity	discovered	Antitussive and psycho- tropic	.	:	:	:		:
	U.V.		w	24 000 9 000	23,000 21,000	21 000 19 000	25 000 17 000	22 000	40 000 15 000	30 000 30 000
	ر		А Мах.	210	210	210 257	211 241	211	212 255	208
	cm ⁻¹)= 	Ö amide	1650	1620	1640	1640	1640	1630	1640
٠	I.R.	л ОН.	oxime	3300	3200	3300	3300	3300	3250	3200
		Δ. Σ	ပွ	142	130	162	202	133	164	153
TABLE V (Continued)			λ,				Ų.			_\-
BLE		<u>:</u>	Σ _α	Ħ	н	Ħ	н	Ξ	Ξ	æ
TA		;	R ""	Ħ	Ħ	# .		Ξ	-6 CH,	H
			"	-3 CH,		Œ	#	-3 CH,	-2 CH,	
		÷	Ro	ш	Ħ	н	ж .	Œ	æ -	H
			R ^{VI}	CH,	Ŧ	сн,	\bigcirc	сн,	сн,	CH,
		Code	Š	220	236	279	295	258	245	247

_
ed
inu
Continu
C
ت
>
LE V (
>

		Activity discovered	Antitussive and psycho- tropic	:	:	:	:	:	:	:
	U.V.		27 000 29 500	28 000	24 000	27 000 17 000	25 000 17 000	25 000	23 000	11 000 4 000
	ר	А Мах.	211 242	212	212	212 258	213 259	225	223	245 282
	I.R. cm ⁻¹	ν-C- Ο amide	1640	1640	1640	1640	1630	1640	1640	1630
	I.R.	ν OH oxime	3200	3250	3250	3250	3250	3200	3250	3250
		M.P.	166	149	166	200	188	163	167	154
		Χ,	Q	Ç	\bigcirc	Ç	\bigcirc	Ç		Ç
Ì	-	Α. >	Ξ.	Œ	Ξ	五.	出	H	Œ	H
		R'''	н	-3 CH,	-3 GB,	. #	æ	Ħ	Ħ	#
		R."	Q	–2 CH,	-2 CH3	-2 CH,	-2 CH;	–3 SCH,	-3 SCH	-3 осн,
		జ	II	ш	æ	Ħ		Щ	Ħ	ж
		R ^{vi}	GH,	CH,	CH,		H	œ,	.	GH,
		Code No.	250	262	252	255	257	274	265	284

Code R°I R° R°I Y°I M.P. o.C. I.S. orino I.S. orino I.S. orino I.V. orino Activitys 283 CH, H -3 OCH, H AC 7 Y M.P. o.C. Activitys Activitys 390 CH, H -2 CH; H AC 140 3250 1640 245/2 11000 Artivitys 292 CH, H -2 CH; H AC 140 3250 1640 213 26 000 Artivitys 281 CH, H -2 CH; H AC 140 3250 1640 213 26 000 Artivitys 281 CH, H AC H AC 140 3250 1640 213 26 000 Artivitys 281 CH, H AC H AC AC 125 - 1640 213 26 000 Artivitys 281 CH, H H	361			_							
TABLE V (Continued) CH ₁ R ₀ R ₁ R ₁ R ₂ R ₁ R ₁ R ₂ R ₁ R ₂ R ₁ R ₂ R ₂ R ₂ R ₃ R ₄ R ₂ R ₄ R ₄ R ₄ R ₄ R ₄ CH ₄ C			Activity	aiscovered	Antitussive and psycho- tropic		*			:	:
TABLE V (Continued) I.R. cm ⁻¹		l.V.			11 000 4 000	26 000	26 000	36 000	24 000 20 000	23 000 20 000	35 000 20 000
TABLE V (Continued) Ryi Ro, R'' R'' R'' R'' R'' R'' R'' Y' Continued CH, H —3 OCH, H H —4 CH, H H A — A —		n	_	_	245 283	213	213	213	213	210 260	21:1 262
TABLE V (Continued) R, i R, ii R, i		. cm_1	~C~ ∥ ∥	O amide	1640	1630	1640		1640	1640	1630
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I.R	но и	OXIIII	3300	3250	3250	l .	l	l	1
CH ₃ CH ₄ CH ₅ CH ₄ CH ₄ CH ₅ CH ₇ CH	ļ		Ω.Ω	ر	153	140	146	125	130	110	125
CH ₃ CH ₄ CH ₅ CH ₄ CH ₄ CH ₅ CH ₇ CH	E V (Continued)		• }	1		Ç	Ċ	Q	Ç		
CH ₃ CH ₄ CH ₅ CH ₄ CH ₄ CH ₅ CH ₇ CH	ABL		<u>ک</u>	2	Ξ	Ħ	王	Ħ	王	H	Ŧ
CH ₃ CH ₄ CH ₄ CH ₄ CH ₄ CH ₅ (CH ₅) _P -A Amatate CH ₇ (CH ₅) _P -A Amatate CH ₇ (CH ₅) _P -A Amatate			2	۷ ا	н	-5 CH,	−5 CH,	x	Œ	Ħ	Ħ
CH, Ro CH, H CH, H CH, Chipe-t CH, (Chipe-t CH, (Chip			0	4	–3 осн,	–2 CH;	–2 CH,	–3 CH;	ĸ	н	н
v .			٥	Λο	H		•	tate ((cHe)z-A	сн,-снон-сн,он	(CHp)e-t
Code No: 283 281 292 277 277					CH,	СН,	Ġ,	G,	ť	Ġ,	CH,
			Code	Š	283	300	292	281	251	277	280

		Activity discovered	Antitussive and psycho- tropic	:	<u>.</u>
•	U.V.	ę			
	Ü.	А Мах.			
	I.R. cm ⁻¹	ν-C- amide λ Max.	1630	1660	1620
	I.R.	ν OH oxime	3300	I	3250
		M.P.	195	126	126
TABLE V (Continued)	·	Υ,	Qu-		Et Et
BLE		R v	H	Œ	Ħ
TA		R.""	-2 C,H, -5 CH,	Ħ	Œ
		R""	–2 C ₂ H _s	Ħ	. ¤
		R _o .	н	ť	ш
		R vi	GH,	, CH,	CH,
		Code No.	317	320	

I VI	043 -0-0-0-04
BLE	# E 5
TABI	700

_						<u> </u>
	Activity discovered	Normolipemiant	ź	:	=	•
U.V.	و	13 000 19 000	13 000 17 000	15 000 17 000	I	13 000 16 000
ח	д Мах.	215	259 294	222 271	ı	. 258 294
-1	v-C- 0 acid	1720	1710	1735	1710	1740
I.R. cm ⁻¹	v-C- ketone	1670	1640	1640	1660	1630
	M.P.	62	184	86	106	140
	RV	CH,	ĠĦ,	Ġ,	CH,	C,H,
	R‴	æ	π .	.–3 СН,	Q ₁	E
	R ^{vi}	CH3-CH2-CH2	\bigcirc_{p}	CH,	, CH	\bigcirc_{p}
	Code No.	198	153	243		305

					I.K. cm-1	ပု =-o	U.V.	· ·	
Code No.	Rvi	R"	, χ,	B.P. or M.P.	ketone	ester or amide	у Мах.	U	Activity discovered
140	сн,	Ħ	0-сн,	M.P 62	1670	1730	215 267	12 000 17 000	Normolipemiant
162	\bigcirc	ж	0-CH,	M.P. # 89	1660	1740	207 284	13 000 12 000	:
163	<i>a</i>	æ	0-СН,	M.P. = 79	1665	1735	208 285	19 000 18 000	:
170	Ç	m	Ç	M.P. = 160	1650	1620	208	24 000 .18 000	
171	Ç	Ħ	Q	M.P. = 148	1650	1640	210 285	25 000 20 000	:
190	0	щ	O-CH CH,	M.P. = 84	1660	1730	207 284	18 500 18 000	:

		Activity discovered	Normolipemiant and cardio- vascular	Normolipemiant	Normolipemiant and cardio- vascular	Normolipemiant	:	
	U.V.	į	44 000 20 000	32 000 12 000	33 000 17 000	35 000 18 000	. (33 000 16 000
	Ü.	λ Мах.	282	212	208	209	1	207
	ر_ م	ester or amide	1740	1740	1740	1740	1760	1745
(1	I.R. cm ⁻¹ ν-C-	ketone	1655	1670	1650	1660	1645	1650
TABLE VII (Continued)		B.P. or M.P.	M.P 118	M.P. = 134	M.P. = 115	M.P. = 62	M.P. = 135	M.P. = 120
TABI		χ,	0-cHg-CHg-H	0-CH2-CH2-A	o-cyc-chz-H	O-CH ₂ -CH ₂ -N , Et maleate	o o	O-CH2-CH2-H fumatale
		R."	н .	æ	#	н	æ	ж.
		Rvi		÷.	\bigcirc	\bigcirc	ް	$\Diamond_{\mathcal{D}}$
	-	Code No.	209	210	211	212	217	229

		Activity discovered	Normolipemiant	:	:	:	:	£
·	U.V.		22 000 17 500	26 000 14 000	12 000 16 000	12 500 16 000	20 000 19 000	20 000 16 000
:	Ü.	λ Мах.	206 286.	208	214	212 267	259 285	208
	O=0	ester or amide	1730	1730	1740	1740	1740	1740
	I.R. cm ¹	ketone	1650	1645	1675	1675	1660	1645
VII (Continued)		B.P. or M.P. °C	M.P. = 104	M.P. = 116	M.P. = 72	M.P. = 118	M.P. = 144	M.P. = 145
TABLE		, λ	O-CH ₂ -CH ₂ -N HCl	o-Oty-Oty-H	0-CH ₂ -CH ₂ -N , HCl	0-042-042-N	0-042	0-CH2-CH2-H
•		R."	н	æ	ж	т	, H	1 11
-		Rvi	\bigcirc_{p}	\bigcirc	CH ₃ -(CH ₃) ₃	CH3-(CH3)3	Ç	Ç
		Code No.	230	231	232	233	238	239

		Activity discovered	Normolipemiant	:				÷
	۷.	v	17 000 15 500	16 000 16 200	17 000 16 200	22 700 18 000	17 000 16 500	
	u.v.	λ Мах.	208 267	208 267	208	211 257	207	l
	ი ი=0	ester or amide	1745.	1740	1730	1730	1740	1720
TABLE VII (Continued)	I.R. cm ⁻¹ v-C ₁	ketone	1680	1680	1680	1660	1640	1650
		M.P. or B.P.	B.P. o. os = 132	B.P. o. os = 136	B.P.0.0s = 139		M.P. = 80	BP ₁ = 198
TABL		, λ	0-CH,	0-C ₂ H ₃	0-CH CH,	O-CH CH,	CH, 0-CH,-0,C-C-CH, CH,	CH, O-CH
			-3 CH,	-3 CH3	-3 CH,	-3 CH,	Ħ	–3 SCH,
		R ^{vi}	£	GH,	CH,	Ç _p	Q _B	CH,
		Code No.	240	241	242	253	297	·

•		Activity discovered	Normolipemiant	:	
	٧.	É	1	ţ	
	U.V.	λ Мах.	·	1	
	ე=0	ester or amide	1720	1710	
TABLE VII (Continued)	I.R. cm 1 1 C C	ketone	1690	1660	
		M.P. or B.P.	M.P 86	M.P. = 95	
		γ,	O-CH CH,	O-CH CH,	
		"	-3 SO,CH,	Ç	
		R ^v i	.	CH,	
		Code No.			

1				I.R.	I.R. cm ⁻¹	U.V.	۷.
•			2	но л	-C- ester		
	R ^{vi}	Åτ		oxime	0 amide	λ Мах.	u
	CH,	0-C2Hs	106	3200	1730		
	CH,	0-CH,	102	3200	1730		
-	\bigcirc	Ç	184	3260	1620	210 247	32 000 20 000
	\bigcirc		17.5	3280	1620	211 246	31 000 20 000
	0	0-642-642-4	139	3300	1740	ı	I

10

15

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

We make no claim to the compounds claimed in the specification of our prior copending Application No. 3085/70 (1,268,321), which are defined at the beginning of the specification. Subject to this disclaimer,

WHAT WE CLAIM IS:— 1. A phenoxy-alkyl-carboxylic compound of the general formula:

RV-C-PI

in which each of R" and R', which may be identical or different, is a hydrogen atom or a methyl, ethyl, phenyl, p-chlorophenyl or p-fluorophenyl group; each of R" and R"", which may be identical or different, is a hydrogen or halogen atom or a C₁₋₅ alkyl, CF₃, SCH₃, SOCH₃, SO₂CH₃, OCH₃, OH, C₄H₅ or substituted phenyl group; R" is a hydrogen atom, a C₁₋₈ alkyl group, an aryl group optionally containing one or more nuclear substituents selected from methyl and trifluoromethyl groups and halogen atoms, nuclear substituents selected from methyl and trinuoromethyl groups and halogen atoms, a cycloalkyl, hydroxyl or C_{1-4} alkoxy group, an aryloxy group optionally containing one or more nuclear substituents, or a cycloalkoxy, cycloalkenyloxy, NR_4R_4 , $NHCH_2CH_2NR_4R_4$ or O-alkylene- NR_4R_4 group; Y' is a hydroxy, C_{1-4} alkoxy, $-NR_4R_4$, $-NHCH_2CH_2NR_3R_4$ or O-alkylene- NR_3R_4 group; X' represents O or NOR_0 ; R_0 is a hydrogen atom or a C_{3-5} alkyl, $-CH_2CH_2NR_4R_4$ or $-CH_2CHOHCH_2OH$ group; and each of R_4 and R_4 , which may be identical or different, is a hydrogen atom, a C_{1-5} alkyl or C_{3-7} cycloalkyl group or an aryl group optionally containing one or more nuclear substituents selected from halogen atoms and optionally containing one or more nuclear substituents selected from halogen atoms and methyl and trifluoromethyl groups, or R, and R, together with the nitrogen atom to wanted they are attached represent an optionally substituted 5- to 7-membered heterocyclic ring which may contain a second heteroatom selected from O, S and N, or radical of formula —NH(CH₂)₄CH(NH₂)COOH or —NH—CH(COOH)—CH₂SH, with the provisos that if R''' and R''' are not both hydrogen, then R'' is methyl or p-chlorophenyl, and that if Y' is hydroxy or alkoxy, R'' is hydrogen or C₁₋₆ alkyl and one of R'' and R' is hydrogen, the other of R'' and R' is methyl or ethyl which they are attached represent an optionally substituted 5- to 7-membered hetero-R" and R' is hydrogen, the other of R" and R' is methyl or ethyl.

2. A compound according to Claim 1, in which each of R" and R' is a hydrogen atom or a methyl or phenyl group, each of R" and R" is a hydrogen or chlorine atom

or a methyl, trifluoromethyl or methoxy group, R^{*i} is a straight- or branched-chain C_{1-a} alkoxy group or a hydroxyl, amino, monoalkylamino, di $(C_{1-a}$ alkyl)amino, piperi-C₁₋₄ alkoxy group or a hydroxyl, amino, monoakylamino, αl(C₁₋₅ alkyl)amino, piperatino, morpholino, azepino, pyrrolidino, piperazino, N'-p-chlorophenylpiperazino, aminoalkoxy, mono- or dialkylaminoalkoxy, piperidino alkoxy, morpholinoalkoxy, azepinoalkoxy, piperazinoalkoxy, aryloxy, p-chlorophenoxy cyclohexyloxy, Δ¹-cyclohexenyloxy, or NHCH₂CH₂NR₃R₄ group; Y' is a hydroxyl, C₁₋₄ alkoxy, NR₅R₄, —NHCH₂CH₂NR₃R₄, O—C₁₋₆ alkylene-NR₃R₄ or cycloalkylamino group or an aryleng substituents selected from amino group optionally containing one or more nuclear substituents selected from chlorine atoms and methyl and trifluoromethyl groups; X' represents O, and either each of R₃ and R₄ is a hydrogen atom or a C₁₋₅ alkyl group, or R₅ and R₄, together with the nitrogen atom to which they are attached, represent an optionally substituted 5- to 7- membered heterocyclic ring, which may contain a second heteroatom selected from O, S and N, or radical of formula NH(CH₂)₄CH(NH₂)COOH or —NH—CH(COOH)—CH₂SH.

3. A compound according to Claim 2, in which R' is a phenoxy group.

4. A compound according to Claim 1, in which each of R" and R' is a hydrogen atom or a methyl or phenyl group, each of R" and R" is a hydrogen or chlorine atom or a methyl, trifluoromethyl or methoxy group, R' is a hydrogen atom, a straight- or branched-chain C_{1-3} alkyl group, or an aryl, p-chlorophenyl, cyclohexyl or Δ'-cyclohexenyl group, Y' is a hydroxyl, C_{1-4} alkoxy, —NR₃R₄, —NHCH₂CH₂NR₃R₄, O—C₁₋₄ alkylene-NR₃R₄ or cycloalkylamino group or an arylamino group optionally containing one or more nuclear substituents selected from chlorine atoms and methyl and trifluoromethyl groups, Ro is a hydrogen atom or a C1-5 alkyl or CH2CH2NR3R4 group, and R5 and R4 are as defined in Claim 2, with the provisos set forth in Claim 1.

5. A compound according to claim 4, in which R" is a phenyl group.
6. A compound according to claim 1, in which each of R" and R" is a fluorine, chlorine or bromine atom.

7. A compound according to Claim 1 or 6, in which Y' is a C1_4 alkoxy group.

	2)12000	
	8. A compound according to claim 1, 6 or 7, in which R ₀ is a C ₁₅ alkyl group. 9. A compound according to claim 1, 6, 7 or 8, in which NR ₃ R ₄ is amino, monoor dialkylamino, morpholino, thiomorpholino, pyrrolidino, piperidino, azepino, piperazino, N-p-chlorophenyl-piperazino, N-methylpiperazino, 4-methylpiperidino, anilino,	
5	2,3-dimethylanilino, p-chloroanilino, O-trifluoromethylanilino, p-trifluoromethylanilino,	5
	cyclohexylamino, cyclopentylamino or N-methylanilino.	
	 N-(p-propionyl-phenoxyacetyl)-morpholine. 	
	 N-(p-benzoyl-phenoxyacetyl)-piperidine. 	
	 N-(p-propionhydroximoyl-phenoxyacetyl)-piperidine. 	
10	13. Isopropyl p-(4-chlorobenzoyl)-phenoxy-isobutyrate.	10
	14. ρ-(4-chlorobenzoyl)-phenoxy-isobutyric acid.	
	15. N-(p-carboxyphenoxy-acetyl)-piperidine.	
	16. Ethyl p-piperidinocarbonyl-phenoxy-acetate.	
	17. N-(p-ethoxycarbonyl-phenoxy-acetyl)-piperidine.	
15	18. An acid addition salt of a compound according to any one of claims 1—9.	15
	19. A compound according to claim 1 or 18 substantially as hereinbefore described.	
	20. A therapeutical composition comprising a pharmaceutically effective amount	
	of at least one compound according to any one of claims 1, 6-9, 18 and 19.	
	21. A therapeutical composition comprising a pharmaceutically effective amount	
20	of at least one compound according to any one of claims 2, 3 and 15—17.	20
	22. A therapeutical composition comprising a pharmaceutically effective amount	
	of at least one compound according to any one of claims 4, 5 and 10-14.	

For the Applicants, D. YOUNG & CO., Chartered Patent Agents, 9 & 10 Staple Inn, London WCIV 7RD.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1975. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

一門以上 子面電車