3.3 Normal Random Variables

Normal pdf

A continuous random variable X is ${\bf normal}$ or ${\bf Gaussian}$ with mean μ and variance σ^2 if its pdf is

$$f_X(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}.$$

We write $X \overset{ extstyle v}{\sim} N(\mu, \sigma^2)$.

Normal pdf

Mean of a normal

Variance of a normal

The normal is special

The standard normal random variable has mean 0 and variance 1.

Normality is preserved by linear transformation

If
$$X \sim N(0,1)$$
 and $Y = \mu + \sigma X$, then $Y \sim N(\mu,\sigma^2)$.

The pdf of a standard normal is denoted by $\phi(x)$ and the cdf by $\Phi(x)$.

Example 3.7

The annual snowfall at a location is modeld as a $N(60,20^2)$ random variable.

What is the probability that this year's snowfall will be at least 80 inches?

Example 3.8 Signal detection

A binary message is transmitted as a signal s, which is either -1 or +1. The communication channel corrupts the transmission with additive normal noise with mean 0 and variance σ^2 . The receive concludes that the signal -1 was transmitted if x<0 or +1 if $x\geq0$.

What is the probability of error if $\sigma = 1$?

Example 3.8 (cont)

Example 3.8 (cont)

The signal detection scheme.