3. Sea $f: [-1,1] \to \mathbb{R}$ Una función continua verificando que $-1 \le f(x) \le 1$ para todo $x \in [-1,1]$. Prueba que hay algún $c \in [-1,1]$ tal que $f(c) = c^3$.

$$\frac{1}{2} \cos(\alpha) = \frac{1}{2} (1) - 1 + \frac{1}{2} (1) = 0$$

$$\frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

$$\frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

$$\frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

$$\frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

$$\frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

$$\frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

$$\frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

$$\frac{1}{2} (1) - \frac{1}{2} (1) - \frac{$$

5. Sea $f:[a,b] \to \mathbb{R}$ una función creciente y continua en [a,b] tal que $a \leqslant f(x) \leqslant b$ para todo $x \in [a,b]$. Prueba que la sucesión $\{x_n\}$ definida por:

$$x_1=f(a),\quad x_{n+1}=f(x_n)\quad {\rm para\ todo\ }n\!\in\!\mathbb{N}$$

Equippe
$$a:$$

$$\begin{cases} \{x_n\} \rightarrow u \in [a,b] \\ \{u\} = u \end{cases}$$

 $a \leq x_3 \Rightarrow cono f es area con k \Rightarrow f con = x_1 \leq f(x_1) = x_2 \Rightarrow be defined for (a succession to area con k).$

Si consideranos el conjunto A= } nen: xn < xn+1 }

$$1 \in A \implies x_1 \le x_2$$

$$1 \in A \implies x_n \le x_{n+1} \implies 1 \in A$$

$$1 \in A \implies x_n \le x_{n+1} \implies 1 \in A$$

Luego & verifica que la sucesión $\{x_n\}$ es creción $\{x_n\}$ $\to u \le b$ a $\le u \le b$ Tamado umites en $\{x_{n+1} = p(x_n) \Rightarrow |u=f(u)|\}$ Definición de cantinuadad con $\{x_n\}$

9. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y creciente. Prueba que para todo conjunto acotado y no vacío, $A \subset \mathbb{R}$, se verifica que $\sup f(A) = f(\sup A)$.

$$\alpha = ap A$$
, $\alpha = ap x = A \Rightarrow x \leq A \Rightarrow x \leq A$

atra farna:

$$\lambda = \sup_{\alpha = \delta} f(A) < f(\alpha)$$

$$= \sum_{\alpha = \delta} f(A) < f(\alpha)$$

$$= \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon = \sum_{\alpha = \delta} f(A) - f(\alpha) < \varepsilon =$$

le llega a una contradicción de que no puede ser monor estricto

8. Sea $f:[a,b] \to \mathbb{R}$ continua, pongamos $M=\max f([a,b]), \ m=\min f([a,b])$ y supongamos que f(a)=f(b) y que m < f(a) < M. Prueba que f toma todo valor de [m,M] en al menos dos puntos de [a,b].

Luego, f ([a, xo]U[yo, b]) = [m, M]

edrojesto educados nos

6. Sea $f:]0,1[\to \mathbb{R}$ la función definida para todo $x \in]0,1[$ por $f(x)=\frac{2x-1}{x(x-1)}$. Calcula el conjunto imagen f(]0,1[).

una frow racional (meros en el o y el 1); par lo que, an particular, será continua andicho intervalo (Io, 12). Como está definida en un intervalo, f(20,11) = 3 es un intervalo.

M>0 , $n_0 \in \mathbb{N}$ $/n > n_0 \Rightarrow \left(\frac{1}{n}\right) > M$

$$\left\{1-\frac{1}{n}\right\} \qquad \left\{\left(1-\frac{1}{n}\right) = \frac{1-\frac{2}{n}}{\left(1-\frac{1}{n}\right)\left(-\frac{1}{n}\right)} = \frac{2-n}{1-\frac{1}{n}} \longrightarrow -\infty \qquad \text{on entances}$$

Jn, 6 N / n≥n, f(1- 1/2) < m => Jno está minorado Lego J = 1R -

- 7. Sea $f:]-1,1] \to \mathbb{R}$ la función dada para todo $x \in]-1,1]$ por $f(x) = \sqrt{\frac{1-x}{\sqrt{1+x}}}$.
 - a) Calcula, haciendo uso del teorema del valor intermedio que debes enunciar, el conjunto f(]-1,1]).
 - b) Calcula, usando un resultado sobre continuidad y monotonía que debes enunciar, el conjunto f([-1/2, 1/2]).

f es continua par ser composición de funciones continuas. J = f (]-1,17), J \subset \mathbb{R}_{δ}

Consideranos (a sposior
$$\left\{-\Delta + \frac{1}{n^2}\right\} \Rightarrow \left\{\left(-1 + \frac{1}{n^2}\right) = \sqrt{n\left(2 - \frac{1}{n^2}\right)} \rightarrow +\infty \Rightarrow \right\}$$

=) El intervalo
$$\mathcal{J}$$
 ro seta mayorado \mathcal{J} $\mathcal{J} \subseteq \mathbb{R}_0^+$ =) $\mathcal{J}(\mathbb{I}^{-1},1\mathbb{I}) = \mathbb{Z}_0,+\infty\mathbb{Z}$

So
$$x, y \in [-\frac{1}{2}, \frac{1}{2}]$$
 \Rightarrow $f(x) \neq f(y)$ equivale a give $f(x) = f(y) \Rightarrow x = y$

$$f(\frac{1}{2}) = \frac{1}{12} \cdot \frac{1}{12} = \frac{1}{13}$$

$$f(-\frac{1}{2}) = \sqrt{\frac{3}{2}} \cdot \sqrt{2} = \sqrt{3}$$

$$\frac{1}{2}\left(\frac{1}{2}\right) = \frac{1}{12} \cdot \frac{1}{13} = \frac{1}{13}$$

1 ([-1. 1. 1])= [= 1. 13] (faro que esto se crifique hour que prober que les invection)

$$\frac{1-x}{\sqrt{1+x}} = \frac{1-y}{\sqrt{1+y}} \iff (1-x)^{2} (1-x)^{2}$$

10. Sea $f:[a,b] \to \mathbb{R}$ una función estrictamente creciente verificando que a < f(x) < b para todo $x \in [a,b]$. Definamos $x_1 = a$, y $x_{n+1} = f(x_n)$ para todo $n \in \mathbb{N}$. Prueba que $\{x_n\}$ converge a un número $\beta \in]a,b]$ tal que $\beta = \sup f([a,\beta[)])$. Además $\beta \in f(\beta)$. Si suponemos que f es continua en β entonces $\beta = f(\beta)$.

$$x_1 = a < f(a) = x_2$$
 { x_n } x_n

$$a \leqslant x \leqslant B \Rightarrow \exists n_0 \in \mathbb{N}$$
 $a \leqslant x \leqslant x_{n_0} \leqslant B \Rightarrow f(x) \leqslant f(x_{n_0}); x_{n_0}, x \leqslant B \Rightarrow B \Rightarrow un mayorank$ de $f(Ea, BE)$. Luego $sup_{a} f(Ea, BE) \leqslant B$