153 分钟学会 R

刘思喆

2008年12月13日

文档结构

- 1. 前言
- 2. 基础知识
- 3. 输入输出
- 4. 数据处理
- 5. 数学运算
- 6. 字符操作
- 7. 日期时间
- 8. 绘图相关
- 9. 统计模型
- 10. 其他

Getting Started:

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.

CRAN: Comprehensive R Archive Network

CTAN: Comprehensive T_EX Archive Network

获取资料

- http://cran.r-project.org/other-docs.html
- 统计之都 bbs

推荐阅读

- 1. R for beginner
- 2. An Introduction to R
- 3. 153
- 4. Modern Applied Statistics with S

R 使用 cpu 不能超过 50%

这是 Windows 下任务管理器的误导,它将多个 CPU 看作是单个 CPU,同时计算使用比例。而 R 是单线程计算软件,它不能同时 使用 2 个以上的 CPU。当你的计算机应用的是双核技术,你会 发现 CPU 应用会定格在 50% 上。

获得在线帮助

- ?
- help.search()
- RSiteSearch()

在 2.5.0 版本中, R 引入了命令自动补全功能, 使用 Tab 键能自动补全 R 命令; 或使用第二次 Tab 后, 返回所有可能的补全命令列表。

R 的内存使用

R 的工作内存大小的设定值为 32Mb 到 3Gb 间的任意数值。但需要提示的是: Windows 平台可用最大有效内存为 2Gb, 也就是说,实际上 R 的工作内存区间为 32Mb 至 2Gb。

Windows 下升级 R,但不想重装 packages

update.packages()

R 初始加载的包

包	描述
stats	常用统计函数
graphics	基础绘图函数
grDevices	基础或 grid 图形设备
utils	R 工具函数
datasets	基础数据集
methods	用于R对象和编程工具的方法和类的定义
base	基础函数
-	

获得 R 命令的源码

- 1.
- 2. methods(foo)
- 3. *.tar.gz

读取其他软件录入的文件

foreign 包, 它可以读取 Minitab, S, SAS, SPSS, Stata, Systat, dBase 保存的数据

R 读取 Excel

- 另存为 csv 文件, read.csv() 读入;
- 加载 RODBC 包,使用 odbcConnectExcel() 函数;
- xlsReadWrite 包中的 read.xls 函数。

R 输出 T_EX 文本

- 1. Hmisc 包中的 latex()
- 2. xtable 包中的 xtable()
- 3. quantreg 包中的 latex.table()

R 处理缺失值

- is.na()
- NA,TRUE,FALSE

两个数据框是否相等

如果每个元素都相同,那么这两个数据框也相同

```
1 a1 <- data.frame(num = 1:8,lib = letters[1:8])
a2 <- a1
3 a2[[3,1]] <- 2 -> a2[[8,2]]
any(a1!=a2) # all(a1 == a2)
5 indentical(a1,a2)
which(a1!=a2, arr.ind = TRUE)
```

去除相同的行

```
x \leftarrow c(9:20, 1:5, 3:7, 0:8)
(xu \leftarrow x[!duplicated(x)])
unique(x) \# is more efficient
```

如何对不规则数组进行统计分析?

```
1 attach (warpbreaks)
 tapply (breaks, list (wool, tension), mean)
3 aggregate (breaks, list (wool, tension), mean)
 ## from the help
5 aggregate(state.x77,
          list (Region = state.region,
               Cold = state.x77[,"Frost"] > 130),
          mean)
```

随机抽取

随机组合 1,,n	sample(n)
随机组合向量 x , $length(x) > 1$	sample(x)
bootstrap	sample(x,replace=T)
非放回的从 x 中抽取 n 项	sample(x,n)
放回的从 x 中抽取 n 项	sample(x,n,replace=T)
以概率 p ,放回的从 x 中抽取 n 项	sample(x,n,replace=T,prob=p)

如何进行复数计算?

```
x < -1 + 1i \# x < -complex(1,1)
2 Mod(x) ; Conj(x)
```

求矩阵的特征值和特征向量的函数是什么?

已知
$$A = \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & -2 \\ 2 & -2 & -1 \end{bmatrix}$$
 试求 $B = (\frac{1}{2}A^{-1}) + E$ 的特征值。

$$\begin{array}{lll} A <& & \mathsf{matrix} \big(\, \mathsf{c} \big(\, -1 \, , 2 \, , 2 \, , \, -1 \, , \, -2 \, , 2 \, , \, -2 \, , \, -1 \big) \, , 3 \, , 3 \big) \\ {}_2 \, \mathsf{m} <& & \mathsf{solve} \big(\, 0 \, . \, 5 \, *A \big) \, \, + \, \, \, \mathsf{diag} \big(\, \mathsf{c} \, \big(\, 1 \, \, , \, 1 \, \big) \big) \\ & \mathsf{eigen} \, \big(\mathsf{m} \big) \\ \end{array}$$

这里还使用了函数 solve(),这个函数用于运算

$$_{1} a\%*\%x = b$$

而得到x,当然也可以用来求矩阵的逆。

求立方根如何运算?

x^(1/3)。在 R 里面 sqrt() 函数可以计算开平方,故新手容易推测开立方也有函数。事实上 R 里面使用 ^ 来作幂函数运算。 ^ 不但是运算符号,还可以看作是函数:

$$_{1}$$
 "^"(x , 1/3)

在 R 中的运算符号包括:

R 中的运算符号

数学运算	+,-,*,/,^,%%,,%/%	加、减、乘、除、乘方、余数、整除
逻辑运算	>,<,>=,<=,==,!=	大于, 小于, 大于等于, 小于等于, 等于, 不等于

如何求矩阵各行 (列) 的均值?

- apply()
- rowMeans(),colMeans()

如何计算组合数或得到所有组合?

choose() 用于计算组合数 $\binom{n}{k}$,函数 combn() 可以得到所有元素的组合。使用 factorial() 计算阶乘。

如何模拟高斯(正态)分布数据?

使用 rnorm(n, mean, sd) 来产生 n 个来自于均值为 mean, 标准 差为 sd 的高斯 (正态) 分布的数据。在 R 里面通过分布前增加 字母 ' \mathbf{C} ' 表示概率密度函数,' \mathbf{P} ' 表示累积分布函数,' \mathbf{C} ' 表示分位数函数,' \mathbf{F} ' 表示产生该分布的随机数。这些分布具体可以参考第 26 页中 "R 的分布函数",或 R-intro 中的 Probability distributions 章节

R 的分布函数

分布	R 函数	附加参数	默认参数	
beta	beta	shape1(lpha), shape2(eta)		
二项	binom	size(n),prob(p)		
χ^2	chisq	df		
均匀	unif	min(a),max(b)	min = 0, max = 1	
指数	exp	rate	rate = 1	
F	f	$df1(r_1), df2(r_2)$		
伽玛	gamma	shape(lpha),scale(heta)	scale = 1	
超几何	hyper	$m = N_1, n = N_2, k = n$		
正态	norm	$mean(\mu),sd(\sigma)$	mean = 0, sd = 1	
泊松	pois	$lamda(\lambda)$		
t	t	df		
威布尔	weibull	shape(lpha), scale(heta)	scale = 1	

对大小写敏感么?

R 中有很多基于 Unix 的包,故 R 对大小写是敏感的。可以使用 tolower()、toupper()、casefold() 这类的函数对字符进行转化。

```
1 x <- "MiXeD cAsE 123"
chartr("iXs", "why", x)
3 chartr("a-cX", "D-Fw", x)
tolower(x)
5 toupper(x)</pre>
```

日期可以做算术运算么?

一般我们需要使用 as.Date(), as.POSIXct() 函数将读取的日期(字符串)转化为 "Date" 类型数据, "Date" 类型数据可以进行算术运算。

如何将日期表示为"星期日,22七月2007"?

使用 format() 函数。

1 format((Sys.Date(), format="%A, %d %B %Y")

具体 format 参数可以参考 help(strptime) 的 details 部分。

如何在同一画面画出多张图?

- 绘图参数: par(mfrow = c(2,2)) 或 par(mfcol = c(2,2));
- 更为强大功能的 layout函数,它可以设置图形绘制顺序和 图形大小;
- split.screen()函数。

如何在已有图形上加一条水平线

使用低水平绘图命令 abline(),它可以作出水平线 (y 值 h=)、垂线 (x 值 v=) 和斜线 (截距 a=, 斜率 b=)。

R中的绘图命令可以分为"高水平"(High_level)、"低水平(Low_level)"和"交互式"(Interactive)三种绘图命令。

简要地说,"高水平" 绘图命令可以在图形设备上绘制新图;"低水平" 绘图命令将在已经存在图形上添加更多的绘图信息,如点、线、多边形等;使用"交互式"绘图命令创建的绘图,可以使用如鼠标这类的定点装置来添加或提取绘图信息。在已有图形上添加信息当然要使用"低水平"绘图命令。

常用的绘图设备都有哪些?

	名称	描述
屏幕	x11	X 窗口
显示	windows	Windows 窗口
文件设备	postscript	ps 格式文件
	pdf	pdf 格式文件
	pictex	供LATEX使用的文件
	png	png 格式文件
	jpeg	jpeg 格式文件
	bmp	bmp 格式文件
	xfig	供 XFIG 使用的图形格式
	win.metafile	emf 格式的文件

为什么 R 不能显示 8 种以上的颜色?

当绘图参数 col 使用数字来代替颜色名时会有这种情形, 这是因为 R 内置调色板默认为 8 种颜色:

```
palette()
barplot(rnorm(15, 10 , 3) , col = 1:15)
palette(rainbow(15))
barplot(rnorm(15, 10 , 3) , col = 1:15)
palette("default")
```

如何用不同的颜色来代表数据?

高级绘图函数一般都有 col 参数可以设置。对于像 barplot() 这类图形,可以使用"颜色组"(color sets) 来设置颜色,颜色组包括如下几类:

描述
彩虹色(ナナナナナナ)
红色至黄色(ナナナナナナ)
绿色、棕色至白色(ナナナナナナ)
深蓝色至浅棕色(ナナナナナナ)
浅蓝到白色,浅紫色(************************************
灰色(ナナナナナ)

网格 (lattice) 绘图和普通绘图有什么区别?

网格(lattice)绘图实际上是 S-plus 中 Trellis 绘图在 R 中的实现,是多元数据可视化的方法。网格绘图相对于普通绘图来说,是一种拥有"固定格式"的绘图方式,当然它相对来说较难修改。适合对分属不同类数据绘图:

函数	说明
xyplot(y~x)	双变量散点图
$dotplot(y^*x)$	Cleveland 点图 (逐行逐列累加图)
$barchart(y^{x})$	y 对 x 的条形图
$stripplot(y^*x)$	一维图, x 必须是数值型, y 可以是因子
$bwplot(y^x)$	箱线图
histogram(~x)	直方图

如何在 R 的绘图中加入数学公式或希腊字符?

在 word 里如何使用 R 生成的高质量绘图?

矢量绘图的效果是最好的,比如 eps、pdf,而不是位图 (png、jpg、tiff等)。在 word 里面,可以使用 eps,虽然在屏幕上显示不是很好,但打印效果却不错。

如何使用逐步回归?

在 R 里,可以使用计算逐步回归的 step()函数。它以计算 AIC 信息统计量为准则,选取最小的 AIC 信息统计量来达到逐步回归的目的。

如何做聚类分析?

- kmeans()
- hlust()
- cluster 包

如何做主成分分析?

- 1. princomp()
- 2. loadings()
- 3. screeplot()

如何对样本数据进行正态检验?

比较常见的方法: shapiro.test(), ks.test()(Kolmogorov-Smirnov 检验), jarque.bera.test() (需要 tseries 包)。或者参考专门用作正态检验的 normtest 包, fBasics 包中的相关函数。这几个包(包括基础包)大概提供了十几种检验函数。

假设检验?

bartlett.test	方差齐次性检验	binom.test	二项检验
chisq.test	χ^2 检验	cor.test	相关性检验
fisher.test	Fisher 精确检验	friedman.test	Friedman 秩和检验
kruskal.test	Kruskal-Wallis 秩和检验	mcnemar.test	McNemar 检验
pairwise.t.test	均值的多重比较	PP.test	Phillips-Perron 检验
var.test	方差比检验	wilcox.test	Wilcoxon 秩和检验

logistic 回归相关函数是?

logistic 回归是关于响应变量为 0-1 定性变量的广义线性回归问题,这里需要使用广义线性模型 glm() 函数,且广义线性模型的分布族为二项分布。

广义线性模型中的常用分布族

分布	函数	模型
高斯 (Gaussian) ¹	$E(y) = x^T \beta$	普通线性模型
二项 (Binomial)	$E(y) = \frac{\exp(x^T \beta)}{1 + \exp(x^T \beta)}$	Logistic 模型和概率单位 (probit) 模型
泊松 (Poission)	$E(y) = \exp\left(x^T \beta\right)$	对数线性模型

如何求 Spearman 等级(或 kendall)相关系数

cor() 函数默认为求出 Person 相关系数,修改其 method 参数即可求得 Kendall au 和 Spearman 秩相关系数。

cor(longley , method = "spearman")

名称	方法	用途(条件)
Pearson	线性	正态总体假定
Kendall $ au$	协同	非参数检验
Spearman	样本秩	非参数检验

如何使用时间序列相关模型?

R 中使用 arima(x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0)) 对模型进行拟合:

如何做判别分析?

参考 MASS 包中的 Ida() 函数(Fisher Linear Discriminant Analysis)和 qda() 函数。

R 有类似于 SPSS 的界面么?

安装包 Rcmdr,加载包后,使用命令

Commander ()

调出可供使用的图形使用界面。由于这个图形使用界面需要若干基础包外的其他函数,故还需要包 car、effects、abind、Imtest、multcomp、relimp、RODBC、rgl 的支持。

Sweave 是用来做什么的?

Sweave 提供了一种为"混排 T_EX 文本和 S 编码"生成文档的机制。单个的 Sweave 文档中既包含 T_EX 文本又包含 S 编码,通过编译最终形成的文档包含:

- TEX 文档的编译输出;
- S 编码和 (或);
- S 编码的代码输出(文本、图形)。

它的文档形成过程:

Sweave 文档 $\xrightarrow{\text{Sweave(in R)}}$ T_EX 文档 $\xrightarrow{\text{LATEX}}$ 最终 pdf 文档

如何释放 R 运行后占用的内存?

因为 R 是在内存中运算, 所以当 R 读入了体积比较大的数据后, 即使删除了相关对象, 内存空间仍不能释放。gc() 函数虽然主要用来报告内存使用情况, 但是一个重要的用途便是释放内存。

用什么文本编辑器比较好?

比较常用的是 Tinn-R ,RWinEdt ² ,ESS(Emacs Speaks Statistics) ,甚至任意一款编辑器,如 UltraEdit³,这些都支持 R 语法的高亮显示。如果是 Windows 桌面环境下的用户,对这些不是很了解,记事本也不失为一种选择。

²下载、安装 WinEdt 后,在 R 中安装 RWinEdt 包即可使用

³需要下载、修改 wordfile

Thanks