Tutorial 7: Solutions

Q1. (i).
$$3p(x) = 3(1 - x + 3x^2) = 3 - 3x + 9x^2$$

 $p(x) + 2q(x) = 1 - x + 3x^2 + 2(2 - x^2) = 5 - x + x^2$

(ii).
$$3\mathbf{u} = 3(1, -1, 3) = (3, -3, 9)$$

 $\mathbf{u} + 2\mathbf{v} = (1, -1, 3) + 2(2, 0, -1) = (5, -1, 1)$

We see that under the operations of scalar multiplication and vector addition the polynomials $a + bx + cx^2$ behave as the 3-tuples (a, b, c).

(iii).
$$(-1)A = -1 \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ 0 & 1 \end{bmatrix}$$

$$-A + B = \begin{bmatrix} -2 & -1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ 2 & 1 \end{bmatrix}$$

(iv).
$$(-1)\mathbf{u} = -(2, 1, 0, -1) = (-2, -1, 0, 1)$$

 $-\mathbf{u} + \mathbf{v} = (-2, -1, 0, 1) + (-1, 0, 2, 0) = (-3, -1, 2, 1)$

We see that under the operations of scalar multiplication and vector addition the matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and the 4-tuples (a, b, c, d) are in one-to-one correspondence.

Q2. (i). These equations are equivalent to the augmented matrix

$$\left[\begin{array}{cc|cc|c} 1 & 1 & -1 & 0 \\ 2 & 1 & 0 & 0 \end{array}\right] \begin{array}{cc|cc|c} R_2 - 2R_1 \end{array} \sim \left[\begin{array}{cc|cc|c} 1 & 1 & -1 & 0 \\ 0 & -1 & 2 & 0 \end{array}\right] \begin{array}{cc|cc|c} R_1 + R_2 \\ -R_2 \end{array} \sim \left[\begin{array}{cc|cc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \end{array}\right]$$

There is no leading entry for c, so we set c=t and then a=-t, b=2t. Hence the analogous subspace of \mathcal{P}_2 is $\{-t+2tx+tx^2,\ t\in\mathbb{R}\}$

(ii). These equations are equivalent to the augmented matrix

$$\left[\begin{array}{ccc|c} 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{array}\right] \quad R_1 + R_2 \quad \sim \left[\begin{array}{ccc|c} 1 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{array}\right]$$

There is no leading entry for b or d. Set b = s, d = t and then a = -s - 3, d = -2t. Hence the analogous subspace of $M_{2,2}$ consists of matrices

$$\begin{bmatrix} -s - 3t & s \\ -2t & t \end{bmatrix} = s \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + t \begin{bmatrix} -3 & 0 \\ -2 & 1 \end{bmatrix}$$

with $s, t \in \mathbb{R}$.

- (iii). From the working of Q2(i), a basis for the subspace of \mathbb{R}^3 is $\{(-1,2,1)\}$. The corresponding basis for the subspace of \mathcal{P}_2 is $\{-1+2x+x^2\}$.
- (iv). From the working of Q2(ii), a basis for the subspace of \mathbb{R}^4 is $\{(-1,1,0,0),(-3,0,-2,1)\}$. The corresponding basis for the subspace of $\mathcal{M}_{2,2}$ is

$$\left\{ \left[\begin{array}{cc} -1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} -3 & 0 \\ -2 & 1 \end{array} \right] \right\}$$

- **Q3**. (i). The condition is a + d = 1 this does not form a subspace as $0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ has a trace of 0 and so is not in this set.
 - (ii). The condition is a+d=0. Since $\operatorname{trace}\left(\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]\right)=0$ then the set is non empty. let $A=\left[\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right]$ and $B=\left[\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right]$ with $\operatorname{trace}(A)=a_1+d_1=0$ and $\operatorname{trace}(B)=a_2+d_2=0$ then

$$\operatorname{trace}(A+B) = \operatorname{trace} \left[\begin{array}{cc} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{array} \right] = a_1 + a_2 + d_1 + d_2 = a_1 + d_1 + a_2 + d_2 = 0 + 0 = 0$$

so this is closed under scalar addition.

$$\operatorname{trace}(\alpha A) = \operatorname{trace} \left[\begin{array}{cc} \alpha a_1 & \alpha b_1 \\ \alpha c_1 & \alpha d_1 \end{array} \right] = \alpha a_1 + \alpha d_1 = \alpha (a_1 + d_1) = \alpha 0 = 0$$

so this is closed under scalar multiplication. This set is therefore a subspace.

- (iii). Let p(x) = 1 and $q(x) = x^2$ the discriminants of p(x) and q(x) are 0 but $p(x) + q(x) = 1 + x^2$ has a discriminant of -4 and so this set is not closed under scalar addition and so not a subspace.
- (iv). They are symmetric if c=b. As $\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$ has b=c=0 then the set is non empty.

let
$$A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$ with $b_1 = c_1$ and $b_2 = c_2$ then

$$(A+B) = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix}$$
 and $b_1 + b_2 = c_1 + c_2$

so this is closed under scalar addition.

$$\alpha A = \begin{bmatrix} \alpha a_1 & \alpha b_1 \\ \alpha c_1 & \alpha d_1 \end{bmatrix}$$
 and $\alpha b_1 = \alpha c_1$

so this is closed under scalar multiplication. This set is therefore a subspace.

- **Q4**. (i). As \mathcal{B} has 4 polynomials and the dimension of \mathcal{P}_4 is 5 then \mathcal{B} is not a basis for \mathcal{P}_4 .
 - (ii). We need the equation

$$x \begin{bmatrix} 1 & -2 \\ -2 & 0 \end{bmatrix} + y \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + z \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

to have a unique solution for all a, b and d. This gives the system of equations represented by the matrix

$$\begin{bmatrix} 1 & 0 & 2 & a \\ -2 & 1 & 3 & b \\ -2 & 1 & 3 & b \\ 0 & 0 & 5 & d \end{bmatrix} \xrightarrow{R_2 + 2R_1} \sim \begin{bmatrix} 1 & 0 & 2 & a \\ 0 & 1 & 7 & b + 2a \\ 0 & 1 & 7 & b + 2a \\ 0 & 0 & 5 & d \end{bmatrix} \xrightarrow{R_4} \sim \begin{bmatrix} 1 & 0 & 2 & a \\ 0 & 1 & 7 & b + 2a \\ 0 & 0 & 5 & d \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

this has a unique solution for all a, b and d and so \mathcal{B}' is a basis for all symmetric 2×2 matrices.

- **Q5**. (i). As this is the standard basis for \mathcal{P}_3 we can read off $[\mathbf{a}]_{\mathcal{B}} = (2, -1, 0, 1)$
 - (ii). Let

$$a\left[\begin{array}{cc} -1 & -1 \\ 0 & 0 \end{array}\right] + b\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] + c\left[\begin{array}{cc} 0 & -2 \\ 2 & 4 \end{array}\right] + d\left[\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array}\right] = \left[\begin{array}{cc} 3 & -2 \\ 0 & 4 \end{array}\right]$$

this gives the system represented by the augmented matrix

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 3 \\ -1 & 1 & -2 & 0 & -2 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 4 & -1 & 4 \end{bmatrix} R_2 - R_1 \sim \begin{bmatrix} -1 & 0 & 0 & 0 & 3 \\ 0 & 1 & -2 & 0 & -5 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 4 & -1 & 4 \end{bmatrix} R_3 - R_2$$

$$\sim \begin{bmatrix}
1 & 0 & 0 & 0 & | & -3 \\
0 & 1 & -2 & 0 & | & -5 \\
0 & 0 & 4 & 0 & | & 5 \\
0 & 0 & 4 & -1 & | & 4
\end{bmatrix}
\begin{bmatrix}
R_2 + \frac{1}{2}R_3 \\
R_3/4
\end{bmatrix}
\sim \begin{bmatrix}
1 & 0 & 0 & 0 & | & -3 \\
0 & 1 & 0 & 0 & | & -\frac{5}{2} \\
0 & 0 & 1 & 0 & | & \frac{5}{4} \\
0 & 0 & 0 & 1 & | & 1
\end{bmatrix}$$

Reading off the solution for a, b, c and d we have $[\mathbf{a}]_{\mathcal{B}} = (-3, -\frac{5}{2}, \frac{5}{4}, 1)$.