Pikim reis

IOI 2023 korraldajad on suures jamas! Nad unustasid planeerida ekskursiooni Ópusztaszerisse. Äkki pole veel liiga hilja...

Ópusztaszeris on N vaatamisväärsust, nummerdatud 0 kuni N-1. Mõned vaatamisväärsuste paarid on ühendatud *kahesuunaliste* **teedega**. Iga vaatamisväärsuste paari vahel on ülimalt üks tee. Korraldajad *ei tea*, missuguste vaatamisväärsuste vahel on teed.

Ütleme, et Ópusztaszeri teedevõrgu **tihedus** on **vähemalt** δ , kui iga 3 eri vaatamisväärsuse vahel on vähemalt δ teed. Teiste sõnadega on iga vaatamisväärsuste kolmiku (u,v,w) jaoks (kus $0 \le u < v < w < N$) paaride (u,v), (v,w) ja (u,w) hulgas vähemalt δ paari vahel teed.

Korraldajad teavad positiivset täisarvu D, mis näitab, et teedevõrgu tihedus on vähemalt D. Pane tähele, et D väärtus ei saa olla suurem kui 3.

Korraldajad saavad **helistada** Ópusztaszeri telefonioperaatorile, et saada infot kindlate vaatamisväärsuste vaheliste teede kohta. Igas kõnes peab välja tooma kaks mittetühja vaatamisväärsuste massiivi $[A[0],\ldots,A[P-1]]$ ja $[B[0],\ldots,B[R-1]]$. Vaatamisväärsused peavad olema paarikaupa erinevad, s.t.

- $A[i] \neq A[j]$ iga i ja j korral, kus $0 \leq i < j < P$;
- $B[i] \neq B[j]$ iga i ja j korral, kus $0 \le i < j < R$;
- $A[i] \neq B[j]$ iga i ja j korral, kus $0 \le i < P$ ja $0 \le j < R$.

Igas kõnes annab operaator teada, kas leidub tee, mis ühendab mingit vaatamisväärsust hulgast A mingi vaatamisväärsusega hulgast B. Täpsemini käib operaator läbi kõik $0 \le i < P$ ja $0 \le j < R$ paarid ning kui leidub paar, kus A[i] ja B[j] vahel on tee, siis tagastab operaator true ja vastasel juhul false.

Reis pikkusega l on paarikaupa erinevate vaatamisväärsuste jada $t[0], t[1], \ldots, t[l-1]$, kus iga i jaoks vahemikus 0 ja l-2 (kaasaarvatud) on vaatamisväärsuste t[i] ja t[i+1] vahel tee. Reisi pikkusega l nimetame **pikimaks reisiks**, kui ei leidu reisi pikkusega l+1.

Sinu ülesanne on operaatorile kõnesid tehes aidata korraldajatel leida pikim reis Ópusztaszeris.

Realisatsioon

Lahendusena tuleb realiseerida funktsioon

int[] longest_trip(int N, int D)

- *N*: vaatamisväärsuste arv Ópusztaszeris.
- *D*: teedevõrgu garanteeritud miinimumtihedus.
- Funktsioon peab tagastama pikimat reisi väljendava massiivi $t = [t[0], t[1], \dots, t[l-1]].$
- Seda funktsiooni võidakse ühes testis käivitada korduvalt.

Ülaltoodud funktsioon võib kutsuda välja funktsiooni

bool are_connected(int[] A, int[] B)

- *A*: mittetühi erinevate vaatamisväärsuste massiiv.
- B: mittetühi erinevate vaatamisväärsuste massiiv.
- A ja B peavad olema ühisosata.
- Funktsioon tagastab true, kui leiduvad kaks vaatamisväärsust, üks hulgast A ja teine hulgast B, mille vahel on tee. Vastasel juhul tagastab see false.
- Funktsiooni are_connected võib välja kutsuda ülimalt $32\,640$ korda iga funktsiooni longest_trip väljakutse kohta ja kokku ülimalt $150\,000$ korda.
- Sellele funktsioonile üle kõigi väljakutsete antud massiivide A ja B kogupikkus ei tohi ületada $1\,500\,000$.

Hindaja **ei ole adaptiivne**. Iga esitust hinnatakse samade testidega. Kõigis testides on N ja D väärtused ning omavahel teedega ühendatud vaatamisväärsuste paarid on kindlaks määratud enne funktsiooni longest_trip iga käivitust.

Näited

Näide 1

Vaatame juhtu, kus N=5, D=1 ja teedevõrk on toodud järgmisel joonisel:

Funktsioon longest_trip kutsutakse välja järgmisel viisil:

longest_trip(5, 1)

Funktsioon longest_trip võib kutsuda funktsiooni are_connected järgmisel viisil:

Väljakutse	Paarid, mille vahel on teed	Tagastatav väärtus
are_connected([0], [1, 2, 4, 3])	$\left(0,1 ight)$ ja $\left(0,2 ight)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	puuduvad	false

Pärast neljandat väljakutset on selge, et *mitte ükski* paaridest (1,4), (0,4), (1,3) ja (0,3) ei ole teega ühendatud. Kuna teedevõrgu tihedus on vähemalt D=1, siis näeme, et kolmikust (0,3,4) peab paari (3,4) vahel olema tee. Sarnaselt peab vaatamisväärsuste 0 ja 1 vahel olema tee.

Nüüd saab järeldada, et t=[1,0,2,3,4] on reis pikkusega 5, ja pikemat reisi ei ole olemas. Seega võib longest_trip tagastada [1,0,2,3,4].

Vaatame teist juhtu, kus N=4, D=1 ja vaatamisväärsuste vahelised teed on toodud järgmisel joonisel:

Funktsiooni longest_trip kutsutakse välja järgmiselt:

Selles olukorras on pikima reisi pikkus 2. Seega võib pärast mõningaid funktsiooni are_connected väljakutseid funktsioon longest_trip tagastada kas [0,1], [1,0], [2,3] või [3,2].

Näide 2

Alamülesandes 0 on ka teine näidistest, kus on N=256 vaatamisväärsust. See test on leitav ülesande abifailide pakis, mille saab alla laadida võistlussüsteemist.

Piirangud

- 3 < N < 256.
- Väärtuste N summa üle kõigi longest_trip väljakutsete ei ületa üheski testis $1\,024$.
- 1 < D < 3.

Alamülesanded

- 1. (5 punkti) D = 3.
- 2. (10 punkti) D = 2.
- 3. (25 punkti) D=1. Olgu l^\star pikima reisi pikkus. Funktsioon longest_trip ei pea tagastama reisi pikkusega l^\star . Piisab, kui tagastada reis pikkusega vähemalt $\left\lceil \frac{l^\star}{2} \right\rceil$.
- 4. (60 punkti) D = 1.

Alamülesandes 4 määrab punktisumma funktsiooni are_connected väljakutsete arv ühe $longest_trip$ väljakutse jooksul. Olgu q maksimaalne $longest_trip$ väljakutsete arv iga testjuhu jaoks selles alamülesandes. Selle alamülesande eest saadud punktisumma arvutatakse järgmiselt:

Tingimus	Punkte
$2750 < q \leq 32640$	20
$550 < q \le 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Kui mõne testjuhu korral ei vasta are_connected väljakutsete arv osas "Realisatsioon" kirjeldatud piirangutele või kui longest_trip poolt tagastatud massiiv on väär, saab lahendus vastava alamülesande eest 0 punkti.

Hindamisprogramm

Olgu C juhtumite arv, s.t. funktsiooni longest_trip väljakutsete arv. Hindamisprogramm loeb sisendit järgmises vormingus:

• rida 1: *C*

Järgnevad C juhtumi kirjeldused.

Hindamisprogramm loeb iga juhtumi kirjeldust järgmises vormingus:

- rida 1: ND
- $\operatorname{rida} 1 + i$ (kus $1 \leq i < N$): $U_i[0] \ U_i[1] \ \dots \ U_i[i-1]$

Iga U_i ($1 \le i < N$) on massiiv pikkusega i, mis kirjeldab teedega ühendatud vaatamisväärsuste paare. Iga i ja j jaoks, kus $1 \le i < N$ ja $0 \le j < i$:

- kui vaatamisväärsuste j ja i vahel on tee, siis on $U_i[j]$ väärtus 1;
- kui vaatamisväärsuste j ja i vahel ei ole teed, siis on $U_i[j]$ väärtus 0.

Iga juhtumi korral kontrollib hindamisprogramm enne longest_trip väljakutset, kas teedevõrgu tihedus on vähemalt D. Kui ei, siis kuvatakse sõnum Insufficient Density ja programm lõpetab töö.

Kui hindamisprogramm tuvastab suhtlusprotokolli rikkumise, siis on hindamisprogrammi väljund Protocol Violation: <MSG>, kus <MSG> on üks järgmistest veateadetest:

- ullet invalid array: funktsiooni are_connected väljakutses on vähemalt üks massiividest A ja B kas
 - o tühi,
 - \circ sisaldab elementi, mis ei ole täisarv lõigust 0 kuni N-1 (kaasa arvatud) või
 - o sisaldab sama elementi vähemalt kaks korda.
- non-disjoint arrays: funktsiooni are_connected väljakutses ei ole A ja B ühisosata.
- too many calls: funktsiooni are_connected väljakutsete arv ületab ühe longest_trip väljakutse jaoks $32\,640$ või kokkuvõttes $150\,000$.
- too many elements: funktsioonile are_connected sisendiks antud vaatamisväärsuste koguarv on suurem kui $1\,500\,000$.

Vastasel juhul olgu funktsiooni longest_trip tagastatava massiivi elemendid selle juhtumi jaoks $t[0], t[1], \ldots, t[l-1]$, kus l on mittenegatiivne. Hindamisprogramm kuvab selle juhtumi jaoks kolm rida järgmises vormingus:

- rida 1:l
- rida 2: t[0] t[1] ... t[l-1]
- rida 3: funktsiooni are_connected väljakutsete arv selle juhtumi jaoks.

Lõpuks kuvab näidishindaja:

ullet rida $1+3\cdot C$: suurim are_connected väljakutsete arv üle kõigi longest_trip väljakutsete.