Infinite Computable

Not a new concept

What does infinite mean?

• The concept of infinity exists in our minds

Does infinity actually exist?

What does actually mean?

Is it a physical embodiment?

Between any two locations in space there is a third location?

Or after every **moment** in time there is a next moment?

Cogito

• As a concept, no doubt it (infinity) exists

This is why it was given a name in the first place

• The same applies for:

circle

straight line

Even a point

Almost everything

Can computers handle infinity?

What do you mean by handle?

What do you mean by computers?

Alright, computers are Turing Machines

Can Turing Machines handle infinity?

- Still, what do you mean by handle?
- Do you mean save (encode) the whole set in the TM's memory?
- Well, they have infinite tapes.

Can a **PHYSICAL** computer handle ∞?

Can a physical computer handle an infinite set?

If you mean save all of it, then according the physics we know so far,
 NO

We don't need to save a whole set

Computability is about answering membership questions

Example

• The set of numbers divisible by 5 exists as a concept

• You can write a program, which can work for any given natural input, to tell us if the given number is divisible by 5 or not.

Simply, look at the first digit from the right and check if it is 0 or 5.

Did we forget something?

• What does it mean to be given a number

What if the number is too large to be saved as an input

Might take forever to find where it starts

TM's are the best

 Tell me about a better way to talk about computers with arbitrary capacity

• TM's for physical computers, are like the Circle for the sun

• The first is an ideal concept which smoothens a physical entity

 Or maybe the second is a rough physical manifestation of an ideal reality

Final words on infinite sets

 Handling infinity is problematic regardless of the whole computers talk

Even problematic regardless of any physical realizations

Check The axiom of choice

Sets

• Set: Collection of objects (distinct)

Note that this is an informal definition. If interested in some formalism, and why it is needed, look into axiomatic set theory (would be a whole new course).

• Those objects inside a set can be sets themselves (sets of sets)

• Fun fact: natural numbers can be interpreted as sets

Functions

- Formally, a function f from a set X to a set Y is the set of ordered pairs
 (x, y) such that x is in X, y is in Y and every element in x is the first
 component for exactly one ordered pair.
- Informally, a function is a process, and what we mentioned above is called the graph of the function
- X above is called the domain
- A sequence (or string) is a function with domain $\mathbb N$

Finite and Infinite Sets

• Informally, a set is finite if you can count it and finish

• Formally, S is finite if there exists a natural number n, and an injective function $f: S \to \{0,1,\ldots,n\}$

A set is infinite if it is not finite.

Or equivalently: S is infinite if there is an injective function $g: \mathbb{N} \to S$

Cardinality

• Two sets are said to have the same cardinality (equinumerous) if there is a bijection between them

• The cardinality of a set A is denoted by |A|

 A Cardinality is actually an equivalence class of the relation of equinumerosity

Comparing Cardinalities

• $|A| \le |B|$ if there is an injection (injective function) from A to B.

• Such injection could be a bijection, in which case we have |A| = |B|

• For every set S, the set P(S) (of all subsets of S) has a strictly larger cardinality than S. I.e. |S| < |P(S)| (there is no bijection)

Some sets are more infinite than others

•
$$|\mathbb{N}| < |P(\mathbb{N})| < |P(P(\mathbb{N}))| < \cdots$$

- A set A is countable if $|A| \leq |\mathbb{N}|$ (so it can be finite or infinite)
- A set A is uncountable if it is not countable.

In other words, if there is an injection of the natural numbers into A, but no injection of A into the natural numbers.

Clearly uncountable is always infinite

The Continuum Hypothesis (just for fun)

• Can you find a set |A| such that $|\mathbb{N}| < |A| < |P(\mathbb{N})|$?

Ans: Yes and No

• Don't mix computable, countable, uncountable, not computable

• Uncomputable = non-computable = not computable

• In the realm of computability, WLOG, we will only be dealing with countable sets (subsets of \mathbb{N})

 Recall, recursive functions and Turing machines deal with objects which can be coded as natural numbers

Back to where we finished last lecture

 We saw how we can give programs numbers (e.g. via Gödel numbering)

• We let P_e denote the e^{th} Turing program, and φ_e the corresponding partial computable function (in one variable)

• This implies that the set of all Turing Machines is countably infinite (infinite and countable)

The Universal Turing Machine

• There exists a TM U which if given input (e, x) it runs the eth TM with input x.

Follows from CT

Infinite Computable

• A set is infinite computable if it is infinite and also computable

• Red V neck T-shirt: A T-shirt which is red and has a V neck

Infinite Computable is Diophantine

• Indeed, Diophantine = C.E.

• Computable >> C.E.

Thus, Computable >> Diophantine

Infinite & Computable >> Diophantine

The empty set is computable

• It is finite and every finite set is computable (why?)

 Or more directly: the characteristic function of the empty set is the zero function which is in computable (even more, it is initial in PRIM) Prove that: If A is computable, then it is c.e. (decidable >> listable) Proof1:

 I_A is computable (given).

Recall: a set is c.e. if it is empty or is the range of a computable function. If A is empty, then it is c.e. (implication holds by definition).

Assume $A \neq \emptyset$. We want to find a computable function f such that range(f) = A.

Since A is non-empty, there must be some $a \in A$. Fix such an a. Let f be the function defined as follows

$$f(x) = \begin{cases} x & \text{if } I_A(x) = 1\\ a & \text{if } I_A(x) = 0 \end{cases}$$

Proof2:

We describe a program that enumerates A which by CT can be mimicked by a Turing machine.

```
 \begin{array}{l} {\rm i} = 0 \\ {\rm c} = 0 \\ \\ {\rm While \ i==0:} \\ {\rm if \ } I_A(c) = 1{\rm :\ \#this\ runs\ a\ sub-program} \\ {\rm \ print(c)} \\ {\rm \ c=c+1} \end{array}
```

C.E. but not Computable (FINALLY)

Let
$$K = \{x : \varphi_x(x) \downarrow \}$$

• Show that *K* is c.e. (Think)

• Show that *K* is NOT computable

- Assume towards a contradiction that K is computable.
- Consider the following function:

$$f(x) = \begin{cases} undefined & if \ x \in K \\ 0 & o.\ w \end{cases}$$

This *f* is partial computable because it can be mimicked by a TM:

- 1. we can computably decide if x is in K or not.
- 2. If x is in K, go in an infinite loop
- 3. If x is not in K, output 0

• But then, f must have a Gödel number, say e. I.e. $f = \varphi_e$

- If $e \in K$, then $\varphi_e(e) = f(e) \uparrow$ i.e. $e \notin K$ (contradiction)
- If $e \notin K$, then $\varphi_e(e) = f(e) = 0$ i.e. $\varphi_e(e) \downarrow$ i.e. $e \in K$ (contradiction)

What can you say about \overline{K} ?

Remarks

ullet There are uncountably many non-computable subsets of ${\mathbb N}$

 This is because there are only countably many computable sets (why?)

• The same applies to the bigger class of c.e. sets. There are only countably many such sets.

• This means that the class of c.e. sets is very small

More about c.e. sets

 We defined a set to be c.e. if it is empty or the range of a computable function

 One can also show it is the range of a partial computable function (exercise)

One can also show it is the domain of a partial computable function

All are equivalent definitions

Proof:

Let A be a c.e. set

If A is empty, then A is the domain of the empty function given by the program which doesn't halt on any input

If A is not empty, then it is the range of a computable function, say $A = \{f(0), f(1), f(2), ...\}$.

Let $\varphi(x) = \mu y[f(y) = x]$. Then $dom(\varphi) = A$

Computable Relations

- Recall, a binary relation over sets X, Y is a subset of the Cartesian product $X \times Y$
- More generally, an n-ary relation over sets X_1, \dots, X_n is a subset of $X_1 \times \dots \times X_n$
- An *n*-ary relation on $\mathbb N$ is one for which $X_1=\cdots=X_n=\mathbb N$
- A relation on $\mathbb N$ is computable if it is computable as a set
- We say a relation is c.e. if it is c.e. as a set.

Example

• $R = \{(x, y, z) \in \mathbb{N}^3 : x < y \text{ and } z = 2x\}$

We have R(1,2,2), R(0,3,0), R(10,11,20)But $\neg R(0,2,2)$, $\neg R(0,0,0)$, $\neg R(10,11,11)$

Here ¬ means negation

- R is clearly computable. There's a program which when given any tuple (a,b,c) it can decide if R(a,b,c) or $\neg R(a,b,c)$
- Note that we can regard relations as Boolean valued functions

• $R_2 = \{(x, e) \in \mathbb{N}^2 : \varphi_e(x) \downarrow \}$

Not computable (why?)

But it is c.e. because if $R_2(x,e)$ then you can confirm that computably

Special Cases

Note that a function is a binary relation

A non-empty subset of X is a unary (1-ary) relation on X.

There are 0-ary relations (TRUE and FALSE)

 There is the empty relation Ø which is the same as FALSE (holds for nothing)

Deeper analysis of $\varphi_e(x) \downarrow$

• Recall that $\varphi_e(a) \downarrow$ means that the partial computable function φ_e is defined at a, or equivalently, that the program P_e halts when given a as an input

• Consider now the following new notation $\varphi_{e,s}(x) \downarrow$. It means the computation halts within s steps (or stages)

• $\varphi_e(x) \downarrow \text{iff } \exists s \ \varphi_{e,s}(x) \downarrow$

• Note that, for any fixed s the relation $\{(e,x): \varphi_{e,s}(x)\downarrow\}$ is computable unlike $\{(e,x): \varphi_e(x)\downarrow\}$ as we mentioned before

• Actually, the following ternary relation is computable $\{(e,s,x): \varphi_{e,s}(x)\downarrow\}$

• In general, one can prove that:

A relation R(x, y) is c.e. iff there exists a computable relation C(a, x, y) such that for all x, y

$$R(x,y) \iff \exists a \ C(a,x,y)$$

The Arithmetical Hierarchy

• We use Σ_1^0 to denote the class of relations (formulas) obtained as $\exists \bar{a} \ C(\bar{a}, \bar{x})$ using some computable relation C

• Π_1^0 denotes the class of relations (formulas) obtained as $\forall \bar{a} \ C(\bar{a}, \bar{x})$ using some computable relation C

• Note that if a set is Σ^0_1 then its complement is Π^0_1 , and vice versa

Going higher

• Π_2^0 denotes the class of relations (formulas) obtained as $\forall \bar{a} \exists \bar{b} \ C(\bar{a}, \bar{b}, \bar{x})$ using some computable relation C Or equivalently $\forall \bar{a} \ D(\bar{a}, \bar{x})$ for some Σ_1^0 relation D

• Σ^0_2 denotes the class of relations (formulas) obtained as $\exists \bar{a} \forall \bar{b} \ C(\bar{a}, \bar{b}, \bar{x})$ using some computable relation C

In general

• Π^0_{n+1} denotes the class of relations (formulas) obtained as $\forall \bar{a} \ D(\bar{a}, \bar{x})$ for some Σ^0_n relation D

• Σ_{n+1}^0 denotes the class of relations (formulas) obtained as $\exists \bar{a} \ D(\bar{a}, \bar{x})$ for some Π_n^0 relation D

• Note that, for all n, $\Sigma_n^0 \cup \Pi_n^0 \subsetneq \Sigma_{n+1}^0 \cap \Pi_{n+1}^0$

Recall we mentioned that

A relation R(x, y) is c.e. iff there exists a computable relation C(a, x, y) such that for all x, y

$$R(x,y) \iff \exists a \ C(a,x,y)$$

• This means that C.E. = Σ_1^0

• BTW, Computable = $\Sigma_0^0 = \Pi_0^0$

The Normal Form Theorem for C.E. Sets

• The following are equivalent:

- A is c.e.
- A is Σ_1^0
- A = W_e for some $e \in \mathbb{N}$

Relative Computability

• We have just seen that C.E. = Σ_1^0

• How about Σ_2^0 ? Or more generally, Σ_{n+1}^0 ?

Are they c.e. in some sense w.r.t. some higher level?

 Indeed, it is all about the computable function which enumerates the set

Oracle Machines and Relative Computability

• A set A is Σ_2^0 means that it is either empty or the range of a Σ_1^0 function f

More clearly, f can be computed with a program which has access to,
 e.g., the set K we described earlier

Such program is given the knowledge of the indicator function of K