О специализации

математических формул и утверждений

Андрей П. Немытых Институт программных систем РАН г. Переславль-Залесский

Совместное рабочее совещание ИПС РАН и МГТУ имени Н.Э. Баумана по функциональному языку программирования Рефал

17 июня 2023 г., Москва

Неформальный смысл

Любые вычислений являются символьными:

- Даже когда мы вычисляем приближенное значение в точке интересующей нас функции.
 - Мы заранее договариваемся о том, что считать погрешностью этого вычисления.
 - И саму погрешность тоже вычисляем символьно.
- Обычно, под символьными вычислениями имеют в виду в том или ином смысле автоматизированные вычисления.
 - Например, когда используют некоторый навык и лист бумаги — в качестве дисковой памяти.

Автоматизированные символьные вычисления

Примеры:

- Компьютерная алгебра.
- Оптимизация программ. Преобразование программ.
 - Один из методов: «Специализация программ».

Специализация программ по контексту использования

В простейшем случае пробует решать задачу:

Дано определение (программа) частичной функции $f(x,y): N \times M \rightarrow D$ и $x_0 \in N$

Требуется построить определение $\mathbf{f}_{\mathbf{x}_0}(\mathbf{y})$ частичной подфункции $\mathbf{f}(\mathbf{x_0},\mathbf{y}):\mathbf{M}
ightharpoonup \mathbf{D}$ такое, что для всех $\mathbf{y} \in \mathbf{M}$

$$time([[f_{x_0}(y)]]) \le time([[f(x_0, y)]])$$

- Здесь в знаке ≤ − спекуляция. Задача тривиальная.
- Если изменить условие на:
 - для всех $\mathbf{y} \in \mathbf{M} \operatorname{time}(\llbracket f_{x_0}(y) \rrbracket) < \operatorname{time}(\llbracket f(x_0, y) \rrbracket)$
- тогда, в общем случае, задача является алгоритмически неразрешимой. Рефал 2023

Специализация

- Любое упражнение по математике для студентов является задачей по специализации некоторой теоремы (утверждения).
- Специализация теоремы (следствие) не всегда является упрощением формулировки этой теоремы — по контексту её использования.

Пример

Пусть π есть длина окружности, диаметр которой равен 1.

<u>Те</u>орема

$$\pi/4 = 1 - 1/3 + 1/5 - 1/7 + \dots$$

Следствие

 $\pi = 3,1415926535897932384626433832795028841971693993751$ 332083814206171776691473035982534904287554687311595...

- Условие студенческой задачи должно быть поставлено на языке, которым владеет студент, — понимать который его уже научили.
- Для компьютера задачу на специализацию можно ставить только на том языке программирования, которому ранее уже обучили этот компьютер.
- Более простое и информативное описание условия задачи даёт больше возможностей для успешного решения задачи.

Пусть дан специализатор Ѕрес программ, написанных на языке программирования \mathcal{L} . Можно поставить задачу на специализацию так, что Spec будет пытаться:

- компилировать программы на языке \mathcal{M} в язык \mathcal{L} ;
 - насколько эффективным получится результат компиляции — это отдельный вопрос.
- верифицировать недетерминированный коммуникационный протокол;
- описывать множества решений некоторых классов уравнений в словах.

Специализации математических формул и утверждений

Рассмотрим

- вариации двух идей А. В. Корлюкова о постановке таких задач на специализацию;
- результаты их решения посредством специализатора SCP4, который по недоразумению называется «суперкомпилятором»;
- задачи на специализацию будут ставиться на языке программирования Рефал.

Понятие критерия делимости

Пусть $N=\overline{d_nd_{n-1}\dots d_0}$ - натуральное число, где $d_n>0$ и $0\leq d_i\leq 9$, заданное в десятичной системе счисления.

Простейший «критерий делимости» N на натуральное число \mathbf{q} : нужно разделить N на \mathbf{q} , тогда «N делится на \mathbf{q} тогда и только тогда, когда остаток от этого деления равен $\mathbf{0}$ ».

Определение

Критерии делимости определяют факт делимости одного натурального ${\bf N}$ числа на другое ${\bf q}$, не выполняя соответствующего деления ${\bf N}$ на ${\bf q}$, в терминах свойств цифр числа ${\bf N}$. Критерии делимости проще, чем прямое деление ${\bf N}$ на ${\bf q}$.

Критерий делимости в системе счисл. по основанию 10

Нижеследующее равенство (формулу), являющееся критерием равенства остатков результатов двух сумм при делении их на натуральное число **q**, обычно принято называть критерием делимости $\mathbb{N} \ni \mathbf{N} = \overline{\mathbf{d_n d_{n-1} \dots d_0}}$ на $\mathbf{q} \in \mathbb{N}$.

$$(\sum_{k=0}^n 10^k \mathbf{d}_k)\% \mathbf{q} = (\sum_{k=0}^n (10^k\% \mathbf{q}) \mathbf{d}_k)\% \mathbf{q}$$

Это равенство верно для всех $\mathbf{N} \in \mathbb{N}$ и параметризовано \mathbf{q} . Правая часть этого равенства удовлетворяет требованиям критерия делимости, отмеченным выше.

Критерий делимости в системе счисл. по основанию β

 $\mathbb{N} \ni \mathbf{N} = \overline{\mathbf{d_n d_{n-1} \dots d_0}}$ ha $\mathbf{q} \in \mathbb{N}$.

Для системы счисления по основанию β критерий будет выглядеть аналогично:

$$(\sum_{k=0}^n \beta^k \mathbf{d}_k)\% \mathbf{q} = (\sum_{k=0}^n (\beta^k\% \mathbf{q}) \mathbf{d}_k)\% \mathbf{q}$$

Здесь уже два параметра: β и \mathbf{q} .

- \bullet $(\sum_{k=0}^{n} (\beta^{k}\%\mathbf{q})\mathbf{d_{k}})\%\mathbf{q}$ суть программа вычисления остатка от деления $N \in \mathbb{N}$ на $q \in \mathbb{N}$;
 - эта программа, написанная на языке алгебры, имеет три аргумента (входа): конечную последовательность цифр делимого N, основание системы счисления β и делитель \mathbf{q} ;

Критерий делимости в системе счисл. по основанию 10

- Следуя А. В. Корлюкову, переведем программу $(\sum_{k=0}^{n} (10^k \% \mathbf{q}) \mathbf{d_k}) \% \mathbf{q}$ на язык Рефал и будем специализировать её по конкретным значениям параметра $\mathbf{q}_{\mathbf{0}}$.
- Результаты, аналогичные полученным в этих экспериментах, будут получаться и при специализации результата трансляции программы $(\sum_{k=0}^{n} (\beta^{k} \% \mathbf{q}) \mathbf{d_{k}}) \% \mathbf{q}$ на язык Рефал по конкретным значениям пары параметров (β_0 , q_0).

Вариант А. В. Корлюкова:

```
ENTRY Go \{ e.ds = <divide #s.q (e.ds)>; \}
\operatorname{divide} \{ \text{ s.q (e.ds)} = < \operatorname{div } 10 \text{ s.q (e.ds)} >; \}
```

```
div {
s.m s.res s.q ( ) = s.res; /*(\sum_{k=0}^{n} 10^k d_k)\%q = */
 s.m s.res s.q (e.ds s.d)
        /*((((10*(10^{i-1}\%q))\%q)d_i + \sum_{k=0}^{i-1}(10^k\%q)d_k))\%q*/
                < * s.m 10 > : s.p
                , < \% s.p s.q>: s.M
                , <* s.d s.m>: s.D
                , <+ \text{s.res s.D}>: \text{s.R}
                         = < div s.M s.R s.q (e.ds)>;
```

Система переписывания термов:

```
ENTRY Go \{ e.ds = <divide #s.q (e.ds)>; \}
divide \{ s.q (e.ds) = < div 10 s.q (e.ds) >; \}
```

```
div {
 s.m s.res s.q ( ) = s.res; /* (\sum_{k=0}^{n} 10^k d_k)\%q = */
 s.m s.res s.q (e.ds s.d)
            /*((((10*(10^{i-1}\%q))\%q)d_i + \sum_{k=0}^{i-1}(10^k\%q)d_k))\%q*/
       = \langle \text{div} \langle \% \rangle \langle \text{s.m.} 10 \rangle \text{s.q} \rangle \langle \text{s.res} \langle \text{s.d.s.m} \rangle \rangle \text{s.q.} (\text{e.ds}) >;
```

Система переписывания термов в расширенном синтаксисе Рефала-5:

```
ENTRY Go \{ ds_e = < divide \#q_s (ds_e) > ; \}
\operatorname{divide} \left\{ \mathsf{q_s} \left( \mathsf{ds_e} \right) = < \operatorname{div} \ 10 \ \mathsf{q_s} \left( \operatorname{ds_e} \right) > ; \right\}
```

```
div {
 {\tt m_s \; res_s \; q_s \; (\;) = res_s;} \qquad /* \; (\sum_{k=0}^n 10^k d_k)\% q = */
 m_s res_s q_s (ds_e d_s)
       /* ((((10*(10^{i-1}\%q))\%q)d_i + \sum_{k=0}^{i-1} (10^k\%q)d_k))\%q */
       = \langle \text{div} \langle \% \langle * m_s 10 \rangle q_s \rangle \langle + \text{res}_s \langle * d_s m_s \rangle \rangle q_s (ds_e) \rangle;
```

Вариант А.В. Корлюкова:

```
$ENTRY Go { e.ds = <divide #s.q (e.ds)>; }
divide { s.q (e.ds) = <div 1 0 s.q (e.ds)>; }
```

```
div {
s.m s.res s.q ( ) = s.res; /* (\sum_{k=0}^{n} 10^{k} d_{k})\% q = */
s.m s.res s.q (e.ds s.d)
        /* ((((10*(10^{i-1}\%q))\%q)d_i + \sum_{k=0}^{i-1} (10^k\%q)d_k))\%q */
                < * s.m 10 > : s.p
                , < \% s.p s.q>: s.M
                , <* s.d s.m>: s.D
                , <+ s.res s.D>: s.R
                       = < div < Const s.M > s.R s.q (e.ds) > ;
Const \{ e.x = e.x; \}
```

```
$ENTRY Go { e.ds = <divide 3 (e.ds)>; }
```

Остаточная программа, построенная суперком. SCP4:

```
$ENTRY Go {  = 0; \\ e.41 \text{ s.}101 = <F13 \text{ (e.}41) \text{ s.}101>; } \\ F13 \left\{ \qquad /* \sum_{k=0}^{n} d_{k} : 3 */ \\ ( ) \text{ s.}101 = \text{ s.}101; \\ (e.41 \text{ s.}104) \text{ s.}101 \\ \qquad , <Add \text{ (s.}101) \text{ s.}104>: \text{ s.}110 \\ \qquad = <F13 \text{ (e.}41) \text{ s.}110>; } \\ \}
```

```
$ENTRY Go { e.ds = <divide 10 (e.ds)>; } divide { s.q (e.ds) = <div 1 0 s.q (e.ds)>; }
```

Остаточная программа, построенная суперком. SCP4:

```
$ENTRY Go { e.ds = <divide 6 (e.ds)>; }
```

Остаточная программа, построенная суперком. SCP4:

```
$ENTRY Go {
            = 0;
e.41 s.101 = \langle F13 (e.41) s.101 \rangle;
                        /* 4 \times \sum_{k=1}^{n} d_k + d_0 : 6 * /
F13 {
() s.101 = s.101;
(e.41 s.104) s.101
                , <Mul (s.104) 4>: s.109
                , < Add (s.101) s.109 >: s.112
                       = <F13 (e.41) s.112>;
```

```
$ENTRY Go { e.ds = <divide 37 (e.ds)>; }
```

```
<u>$ENTRY Go</u> {.....}
                    /* \sum_{\mathbf{k=0}}^{\mathbf{n/3}} (26 	imes \mathbf{d_{3k+2}} + 10 	imes \mathbf{d_{3k+1}} + \mathbf{d_{3k}}) \stackrel{:}{.} \mathbf{37} \ ^*/
F13 {
( ) s.101 = s.101;
(e.41 \text{ s.}104) \text{ s.}101, < Mul (s.104) 10 >: s.109
                , < Add (s.101) s.109 >: s.112 = < 02 (e.41) s.112 >; }
O2 {
() s.112 = s.112;
(e.41 s.115) s.112, <Mul (s.115) 26>: s.120
                 < Add (s.112) s.120 >: s.123 = < 01 (e.41) s.123 >; 
O1 {
() s.123 = s.123;
(e.41 s.126) s.123, <Add (s.123) s.126>: s.132
                     = <F13 (e.41) s.132>; }
```

Примеры

Примеры критериев делимости $\overline{d_n d_{n-1} \dots d_0}$ на

$$\begin{array}{ll} 6 & 4 \times \sum_{k=1}^n d_k + d_0 & 6 \end{array}$$

$$\bullet \ 6674 \stackrel{:}{.} 6 \Leftrightarrow (4(6+6+7)+4) = 80 \stackrel{:}{.} 6 \Leftrightarrow 32 \stackrel{:}{.} 6 \Leftrightarrow 14 \stackrel{:}{.} 6$$

$$\bullet \ \ \mathbf{2022} \ \vdots \ \mathbf{6} \Leftrightarrow (\mathbf{4(2+2)+2}) = \mathbf{18} \ \vdots \ \mathbf{6} \Leftrightarrow \mathbf{12} \ \vdots \ \mathbf{6} \Leftrightarrow \mathbf{6} \ \vdots \ \mathbf{6}$$

37:
$$\sum_{k=0}^{n/3} (26 \times d_{3k+2} + 10 \times d_{3k+1} + d_{3k})$$
: 37

•
$$2023 : 37 \Leftrightarrow (2+20+3) = 25 : 37$$

•
$$18446744073709551615$$
 $37 \Leftrightarrow 1010$ $37 \Leftrightarrow 11$ 37

12:
$$4 \times \sum_{k=2}^{n} d_k + 10 \times d_1 + d_0$$
 : 12

999:
$$\sum_{k=0}^{n/3} (100 \times d_{3k+2} + 10 \times d_{3k+1} + d_{3k})$$
 999

Основные понятия

Пусть $\mathbf{F} \varsubsetneq \mathbf{M} \varsubsetneq \mathbf{K}$ и эти множества суть алгебраические поля. Говорят, что поле \mathbf{F} есть подполе поля \mathbf{K} , если арифметика в поле \mathbf{F} совпадает с арифм. поля \mathbf{K} (на его подмножестве \mathbf{F}). В частности, поле \mathbf{F} замкнуто относительно его арифм. операций.

Определение

Подполе $\mathbf{M}\varsubsetneq\mathbf{K}$ поля \mathbf{K} называется конечным расширением поля \mathbf{F} в поле \mathbf{K} , если \mathbf{F} есть подполе поля \mathbf{M} ($\mathbf{F}\varsubsetneq\mathbf{M}$) и \mathbf{M} является конечномерным линейным пространством над полем \mathbf{F} .

Пусть дано поле \mathbf{P} , тогда над \mathbf{P} определено кольцо многочленов от \mathbf{n} переменных $\mathbf{P}[\mathbf{x_1},\dots,\mathbf{x_n}]$. Коэффициенты этих многочленов принадлежат полю \mathbf{P} .

Алгебраически замкнутыме поля

Определение

Поле ${f K}$ называется алгебраически замкнутым, если любой многочлен ненулевой степени из ${f K}[{f x}]$ имеет хотя бы один корень из ${f K}.$

Далее будем предполагать, что поле ${\bf K}$ является алгебраически замкнутым.

Число $\alpha \in \mathbf{K}$ называется алгебраическим над подполем $\mathbf{F} \varsubsetneq \mathbf{K}$, если оно является корнем некоторого многочлена из $\mathbf{F}[\mathbf{x}]$.

• $\forall \beta \in \mathbf{F}, \, \beta$ является алгебраическим над $\mathbf{F}.$

Определение

Если любое $\alpha \in \mathbf{K}$, алгебраическое над \mathbf{F} , принадлежит \mathbf{F} , тогда поле \mathbf{F} называется алгебраически замкнутым подполем в поле \mathbf{K} .

Алгебраически порожденные расширения полей

$\mathbf{F}\varsubsetneq\mathbf{M}\varsubsetneq\mathbf{K}$

- Наименьшее подполе M, содержащее подмножество $S \subsetneq K$ и F, обозначается M(S) и называется полем, порождённым множеством S над полем F.
- Расширения поля, порождённые одним элементом, называются простыми расширениями.

Определение

Расширение ${\bf M}$ поля ${\bf F}$ называется алгебраически порождаетным, если оно порождается конечным множеством алгебраических элементов поля ${\bf F}$.

Алгебраически порожденные расширения полей

Пусть характеристика поля ${f F}$ равна нулю.

Теорема

Любое конечное расширение поля ${f F}$ является алгебраически порожденным.

Теорема

Любое конечное расширение поля ${\bf F}$ можно построить посредством конечной последовательности простых алгебраических расширений.

$$F=M_0\varsubsetneq M_1\varsubsetneq\ldots\varsubsetneq M_{n-1}\varsubsetneq M_n=M$$

Вопросы

Пусть характеристика поля \mathbf{F} равна нулю.

Теорема

Любое конечное расширение поля **F** можно построить посредством конечной последовательности простых алгебраических расширений.

$$F=M_0\varsubsetneq M_1\varsubsetneq\ldots\varsubsetneq M_{n-1}\varsubsetneq M_n=M$$

- Что значит построить поле конечное расширение другого поля?
- Зачем нужны конечные расширения полей?

Зачем нужны конечные расширения полей

- Современный подход к теории Галуа заключается в изучении автоморфизмов расширения произвольного поля при помощи группы Галуа, соответствующей данному расширению.
- Эварист Галуа излагал свою теорию в других терминах.

Теория Галуа позволяет решать задачи:

- Какие алгебраические уравнения от одной переменной разрешимы в радикалах?
 - Т.е. их корни можно выразить используя только сложение, вычитание, умножение, деление и извлечение корня.
- Какие геометрические фигуры можно построить циркулем и линейкой?
- Имеет ли функция первообразную, которая выражается через элементарные функции?
 - Например, интеграл $\int \frac{\sin(x)}{x} dx$ не берётся в элементарных функциях.

Зачем нужны конечные расширения полей

- Современный подход к теории Галуа заключается в изучении автоморфизмов расширения произвольного поля при помощи группы Галуа, соответствующей данному расширению.
- Эварист Галуа излагал свою теорию в других терминах.

Построить поле - конечное расширение другого поля

Процедура

построения расширения данного поля, позволяющая добавить в него корень многочлена $\mathbf{p}(\mathbf{x})$, - это взятие факторкольца кольца многочленов над этим полем по главному идеалу, порожденному $\mathbf{p}(\mathbf{x})$.

Простые числа и неприводимые многочлены

Аналогом простого числа в кольце целых чисел является неприводимый многочлен в кольце многочленов.

- Простое число ${f q}$ не делится на другие целые числа, кроме $-{f q}$ и ${f 1},\,-{f 1}.$
- Неприводимый многочлен $\mathbf{p}(\mathbf{x}) \in \mathbf{F}[\mathbf{x}]$ не делится на другие многочлены из $\mathbf{F}[\mathbf{x}]$, кроме \mathbf{c} и $\mathbf{c} \times \mathbf{p}(\mathbf{x})$, где $\mathbf{c} \in \mathbf{F}$ и $\mathbf{c} \neq \mathbf{0}$.

Простые числа и неприводимые многочлены

Аналогом простого числа в кольце целых чисел является неприводимый многочлен в кольце многочленов.

- Факторкольцо \mathbb{Z}/\mathbf{q} кольца целых чисел \mathbb{Z} по простому числу \mathbf{q} является полем.
 - Элементы \mathbb{Z}/\mathbf{q} суть остатки от деления на \mathbf{q} .
- Факторкольцо ${\bf F}[{\bf x}]/{\bf p}({\bf x})$ кольца ${\bf F}[{\bf x}]$ по неприводимому многочлену ${\bf p}({\bf x})$ является полем.
 - ullet Элементы $\mathbf{F}[\mathbf{x}]/\mathbf{p}(\mathbf{x})$ суть остатки от деления на $\mathbf{p}(\mathbf{x})$.

Что значит построить поле - конечное расширение другого поля

Процедура

построения расширения данного поля, позволяющая добавить в него корень многочлена $\mathbf{p}(\mathbf{x})$, - это взятие факторкольца кольца многочленов над этим полем по главному идеалу, порожденному $\mathbf{p}(\mathbf{x})$.

- Факторкольцо ${\bf F}[{\bf x}]/{\bf p}({\bf x})$ кольца ${\bf F}[{\bf x}]$ по неприводимому многочлену ${\bf p}({\bf x})$ является полем.
 - Элементы $\mathbf{F}[\mathbf{x}]/\mathbf{p}(\mathbf{x})$ суть остатки от деления на $\mathbf{p}(\mathbf{x})$.

Даны поле ${\bf F}$ и многочлен ${\bf q}({\bf x})\in {\bf F}[{\bf x}]$, неприводимый над ${\bf F}$. Построить арифметику остатков от деления многочленов на ${\bf q}({\bf x})$.

Процедура

построения расширения данного поля, позволяющая добавить в него корень многочлена $\mathbf{p}(\mathbf{x})$, - это взятие факторкольца кольца многочленов над этим полем по главному идеалу, порожденному $\mathbf{p}(\mathbf{x})$.

- Факторкольцо $\mathbf{F}[\mathbf{x}]/\mathbf{p}(\mathbf{x})$ кольца $\mathbf{F}[\mathbf{x}]$ по неприводимому многочлену $\mathbf{p}(\mathbf{x})$ является полем.
 - ullet Элементы $\mathbf{F}[\mathbf{x}]/\mathbf{p}(\mathbf{x})$ суть остатки от деления на $\mathbf{p}(\mathbf{x})$.

Пример

Пусть поле \mathbf{F} не содержит корни уравнения $\mathbf{x^2} + \mathbf{1} = \mathbf{0}$.

- \Rightarrow Многочлен $\mathbf{x^2} + \mathbf{1} = \mathbf{0}$ является неприводимым над полем \mathbf{F} .
- \Rightarrow факторкольцо $\mathbf{M} = \mathbf{F}[\mathbf{x}]/(\mathbf{x^2} + \mathbf{1})$ является полем.

Поле ${\bf M}$ содержит корень уравнения ${\bf x^2}+{\bf 1}={\bf 0}$ — образ многочлена ${\bf x}$ при отображении факторизации.

Постановка задачи

 $\mathbf{F}\varsubsetneq\mathbf{M}\varsubsetneq\mathbf{K}$, характеристика поля \mathbf{F} равна нулю.

Теорема

Любое конечное расширение поля ${f F}$ можно построить посредством конечной последовательности простых алгебраических расширений.

$$F = M_0 \varsubsetneq M_1 \varsubsetneq \ldots \varsubsetneq M_{n-1} \varsubsetneq M_n = M$$

- Факторкольцо $\mathbf{F}[\mathbf{x}]/\mathbf{p}(\mathbf{x})$ кольца $\mathbf{F}[\mathbf{x}]$ по неприводимому многочлену $\mathbf{p}(\mathbf{x})$ является полем.
 - ullet Элементы $\mathbf{F}[\mathbf{x}]/\mathbf{p}(\mathbf{x})$ суть остатки от деления на $\mathbf{p}(\mathbf{x})$.

Даны поля \mathbf{F}, \mathbf{K} и многочлен $\mathbf{q}(\mathbf{x}) \in \mathbf{F}[\mathbf{x}]$ неприводимый над \mathbf{F} . Построить арифметику остатков от деления многочленов на $\mathbf{q}(\mathbf{x})$.

Равномерность конструкции

 $\mathbf{F}\varsubsetneq\mathbf{M}\varsubsetneq\mathbf{K},$ характеристика поля \mathbf{K} равна нулю.

Теорема

Любое конечное расширение поля ${f F}$ можно построить посредством конечной последовательности простых алгебраических расширений.

$$F = M_0 \varsubsetneq M_1 \varsubsetneq \ldots \varsubsetneq M_{n-1} \varsubsetneq M_n = M$$

Процедура

построения расширения данного поля конструктивна и равномерна по множеству подполей **F** поля **K** характеристики **0**.

Даны поля \mathbf{F}, \mathbf{K} и многочлен $\mathbf{q}(\mathbf{x}) \in \mathbf{F}[\mathbf{x}]$ неприводимый над \mathbf{F} . Построить арифметику остатков от деления многочленов на $\mathbf{q}(\mathbf{x})$.

Постановка задачи

 $\mathbf{F}\varsubsetneq\mathbf{M}\varsubsetneq\mathbf{K}$, поле \mathbf{K} нулевой характеристики алгебраически замкнуто.

- $\mathbf{F} = \mathbb{Q}, \ \mathbf{K} = \mathbb{C}$
- Факторкольцо $\mathbb{Q}[\mathbf{x}]/\mathbf{p}(\mathbf{x})$ кольца $\mathbb{Q}[\mathbf{x}]$ по неприводимому многочлену $\mathbf{p}(\mathbf{x})$ является полем.
 - Элементы $\mathbb{Q}[\mathbf{x}]/\mathbf{p}(\mathbf{x})$ суть остатки от деления на $\mathbf{p}(\mathbf{x})$.

Дан многочлен $\mathbf{q}(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}]$ неприводимый над \mathbb{Q} . Построить арифметику остатков от деления многочленов на $\mathbf{q}(\mathbf{x})$.

Постановка задачи №1 на специализацию

 $\mathbf{F} \subsetneq \mathbf{M} \subsetneq \mathbf{K}$, поле \mathbf{K} нулевой характеристики алгебраически замкнуто.

- $\mathbf{F} = \mathbb{O}, \ \mathbf{K} = \mathbb{C}$
- Многочлен $\mathbf{q_0}(\mathbf{x}) = \mathbf{x^2} + \mathbf{1} \in \mathbb{Q}[\mathbf{x}]$ неприводим над \mathbb{Q} .
- ullet Факторкольцо $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2}+\mathbf{1})$ кольца $\mathbb{Q}[\mathbf{x}]$ по неприводимому многочлену $\mathbf{x^2} + \mathbf{1}$ является полем.
 - ullet Элементы $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2}+\mathbf{1})$ суть остатки от деления на $x^2 + 1$.

Описаны в виде программы на языке Рефал:

- функции арифметики в поле Q;
- ullet для произвольного поля ${f F}$ характеристики ${f 0}$ конструкции кольца $\mathbf{F}[\mathbf{x}]$ и простого расширения произвольного поля \mathbf{F} характеристики 0. Рефал 2023 39 / 54

Постановка задачи №1 на специализацию

 $\mathbf{F}\varsubsetneq\mathbf{M}\varsubsetneq\mathbf{K}$, поле \mathbf{K} нулевой характеристики алгебраически замкнуто.

- $\mathbf{F} = \mathbb{Q}, \ \mathbf{K} = \mathbb{C}$
- ullet Многочлен $\mathbf{q_0}(\mathbf{x}) = \mathbf{x^2} + \mathbf{1} \in \mathbb{Q}[\mathbf{x}]$ неприводим над \mathbb{Q} .
- Факторкольцо $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2}+\mathbf{1})$ является полем. Элементы $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2}+\mathbf{1})$ суть остатки от деления на $\mathbf{x^2}+\mathbf{1}$.

Описаны в виде программы FieldExt.ref + Q.ref на языке Peфan:

Q.ref: функции арифметики в поле \mathbb{Q} ;

.eldExt.ref: для произвольного поля ${f F}$ характеристики ${f 0}$ конструкции кольца ${f F}[{f x}]$ и простого расширения произвольного поля ${f F}$ характеристики ${f 0}$.

Функции арифметики в поле $\mathbb Q$ объявлены внешними для модуля FieldExt.ref.

Постановка задачи №1 на специализацию

Факторкольцо $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2+1})$ является полем. Элементы кольца $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2+1})$ суть остатки от деления на $\mathbf{x^2+1}$.

Описаны в виде программы FieldExt.ref + Q.ref на языке Peфan:

Q.ref: функции арифметики в поле $\mathbb{Q};$

.eldExt.ref: $rac{orall$ поля ${f F}$ характеристики ${f 0}$ конструкции кольца ${f F}[{f x}]$ и простого расширения $rac{orall}{\sqrt{}}$ поля ${f F}$ характеристики ${f 0}$.

Функции ариф. в $\mathbb Q$ объявлены внешними для модуля FieldExt.ref.

Начальная конфигурация из модуля FieldExt.ref:

Факторкольцо $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2+1})$ является полем. Элементы кольца $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2+1})$ суть остатки от деления на $\mathbf{x^2+1}$.

Описаны в виде программы FieldExt.ref + Q.ref на языке Peфал:

Q.ref: функции арифметики в поле \mathbb{Q} ;

.eldExt.ref: $rac{orall$ поля ${f F}$ характеристики ${f 0}$ конструкции кольца ${f F}[{f x}]$ и простого расширения $rac{orall}{}$ поля ${f F}$ характеристики ${f 0}$.

Функции ариф. в $\mathbb Q$ объявлены внешними для модуля FieldExt.ref.

Начальная конфигурация из модуля FieldExt.ref:

$$<$$
F_Arith Inv $((\#b_e) (\#a_e)) (\overline{x^2 + 1})>$

Деление в кольце $\mathbf{F}[\mathbf{x}]$ по модулю неприводимого $\mathbf{q}(\mathbf{x})$

$$\mathbf{p_1}(\mathbf{x}),\mathbf{p_2}(\mathbf{x}),\mathbf{q}(\mathbf{x}) \in \mathbf{F}[\mathbf{x}],\mathbf{p_2}(\mathbf{x}) \neq \mathbf{0}$$

$$\mathbf{p_1}(\mathbf{x})/\mathbf{p_2}(\mathbf{x}) \mod (\mathbf{q}(\mathbf{x})) = \mathbf{p_1}(\mathbf{x}) \times (\mathbf{1}/\mathbf{p_2}(\mathbf{x})) \mod (\mathbf{q}(\mathbf{x}))$$

Деление в кольце $\mathbf{F}[\mathbf{x}]$ по модулю неприводимого $\mathbf{q}(\mathbf{x})$

$$\mathbf{p_1}(\mathbf{x}), \mathbf{p_2}(\mathbf{x}), \mathbf{q}(\mathbf{x}) \in \mathbf{F}[\mathbf{x}], \mathbf{p_2}(\mathbf{x}) \neq \mathbf{0}$$

$$\mathbf{p_1}(\mathbf{x})/\mathbf{p_2}(\mathbf{x}) \mod (\mathbf{q}(\mathbf{x})) = \mathbf{p_1}(\mathbf{x}) \times (\mathbf{1}/\mathbf{p_2}(\mathbf{x})) \mod (\mathbf{q}(\mathbf{x}))$$

Теорема (алгоритм) Евклида

 $\forall \mathbf{u}(\mathbf{x}), \mathbf{v}(\mathbf{x}) \in \mathbf{F}[\mathbf{x}]$, где $\mathbf{u}(\mathbf{x}) \neq \mathbf{0}, \mathbf{v}(\mathbf{x}) \neq \mathbf{0}$, существуют $\mathbf{g}(\mathbf{x}), \mathbf{h}(\mathbf{x}) \in \mathbf{F}[\mathbf{x}]$ такие, что

$$\mathbf{u}(\mathbf{x}) \times \mathbf{g}(\mathbf{x}) + \mathbf{v}(\mathbf{x}) \times \mathbf{h}(\mathbf{x}) = \gcd(\mathbf{u}(\mathbf{x}), \mathbf{v}(\mathbf{x}))$$

$$\exists\, \mathbf{g}(\mathbf{x}), \mathbf{h}(\mathbf{x}) \in \mathbf{F}[\mathbf{x}].\ \mathbf{p_2}(\mathbf{x}) \times \mathbf{g}(\mathbf{x}) + \mathbf{q}(\mathbf{x}) \times \mathbf{h}(\mathbf{x}) = \gcd(\mathbf{p_2}(\mathbf{x}), \mathbf{q}(\mathbf{x}))$$

 $\mathbf{q}(\mathbf{x})$ неприводимый, следовательно, $\gcd(\mathbf{p_2}(\mathbf{x}), \mathbf{q}(\mathbf{x})) = \mathbf{1}$.

Имеем: $\mathbf{p_2}(\mathbf{x}) \times \mathbf{g}(\mathbf{x}) + \mathbf{q}(\mathbf{x}) \times \mathbf{h}(\mathbf{x}) = \mathbf{1}$.

Следовательно, $(\mathbf{p_2}(\mathbf{x}) \times \mathbf{g}(\mathbf{x})) \mod (\mathbf{q}(\mathbf{x})) = 1$.

Откуда: $(\mathbf{p_2^{-1}}(\mathbf{x}) = \mathbf{g}(\mathbf{x})) \mod (\mathbf{q}(\mathbf{x})).$

Факторкольцо $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2+1})$ является полем. Элементы кольца $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2+1})$ суть остатки от деления на $\mathbf{x^2+1}$.

Описаны в виде программы FieldExt.ref + Q.ref на языке Peфал:

Q.ref: функции арифметики в поле \mathbb{Q} ;

.eldExt.ref: $rac{orall$ поля ${f F}$ характеристики ${f 0}$ конструкции кольца ${f F}[{f x}]$ и простого расширения $rac{orall}{\sqrt{}}$ поля ${f F}$ характеристики ${f 0}$.

Функции ариф. в $\mathbb Q$ объявлены внешними для модуля FieldExt.ref.

Начальная конфигурация из модуля FieldExt.ref:

$$<$$
F_Arith Inv $((\#b_e) (\#a_e)) (\overline{x^2 + 1})>$

Начальная конфигурация из модуля FieldExt.ref:

$$<$$
F_Arith Inv $((\#b_e)\ (\#a_e))\ (\overline{\ _x^2+1_{\lrcorner}}\)>$

```
<code>$ENTRY formulai {</code> (b_e) a_e = [(-b_e/(b_e^2 + a_e^2))x + (a_e/(b_e^2 + a_e^2))]; }
```

- Грубая схема кодировка.
- $a_e, b_e \in \mathbb{Q}$.
- Первое приближение.

Подзадача №1-1 на специализацию

Функции ариф. в $\mathbb Q$ объявлены внешними для модуля FieldExt.ref. Их определения и свойства недоступны для SCP4.

Hачальная конфигурация из модуля FieldExt.ref:

```
$EXTERN Q Div, Q Mul, Q Sub, Q Add;
         <F Arith Inv ((\#b_e)(\#a_e))(\overline{x^2+1})>
```

```
$ENTRY formulai {
(b_e) \ a_e = [(-1/b_e)/(1-a_e(0-(a_e/b_e))/b_e)x + (-1/b_e)/(1-a_e(0-(a_e/b_e))/b_e)x]
               (0 - (0 + 1 \times ((0 - (a_e/b_e))/b_e)))/(1 - a_e(0 - (a_e/b_e))/b_e)^{\mathsf{T}};
```

- Кодировка.
- $a_e, b_e \in \mathbb{Q}$; Q Div = /, Q Mul = \times , Q Sub = -, Q Add = +;
- Приближение.

Остаточная программа:

```
$EXTERN Q Div, Q Mul, Q Sub, Q Add;
* p(x) = ((b) (a)) = b*x+a – многочлен; требуется вычислить 1/p(x)
$ENTRY formulai \{ (b_e) \ a_e = \langle C1 \ (b_e) \ (a_e) \ \langle Q \ Div \ (1) \ b_e \rangle \rangle; \}
C1 { (e.1) (e.2) e.x1 =
                           /* 0 - (a/b) = -a/b */
          <C2 (e.1) (e.2) (e.x1) <Q Sub (0) <Q Mul (e.2) e.x1>>>; }
* e.x4 = (0-(a/b))/b = -a/b^2; e.x6 = 1 - a(0-(a/b))/b = 1 - (-a^2/b^2),
* e.y3 = (-1/b)/(1 - a(0-(a/b))/b) = -b/(b^2 + a^2)
C6 { (e.x4) (e.x6) e.y3 = /* \text{ e.y4} = 0 \cdot (0 + 1*((0 \cdot (a/b))/b)) = a/b^2 */
     <C7 (e.x6) (e.y3) <Q Sub (0) <Q Add (0) <Q Mul (1) e.x4>>>>;
Ć7
                 /* (0-(0+1*((0-(a/b))/b)))/(1 - a(0-(a/b))/b)
                   = (a/b^2)/(1 + a^2/b^2) = a/(b^2 + a^2) */
(ex6) (ey3) ey4, < Q Div (ey4) ex6>: ey7 = (ey3) (ey7); }
* 1/p(x) = (-1/b)/(1-a(0-(a/b))/b) (0-(0+1*((0-(a/b))/b)))/(1-a(0-(a/b))/b)
```

Остаточная программа:

```
$EXTERN Q Div, Q Mul, Q Sub, Q Add;
* p(x) = ((b) (a)) = b*x+a – многочлен; требуется вычислить 1/p(x)
<u>$ENTRY formulai</u> \{ (b_e) \ a_e = \langle C1 \ (b_e) \ (a_e) \ \langle Q \ Div \ (1) \ b_e \rangle \rangle; \ \}
C1 { (e.1) (e.2) e.x1 =
                           /* 0-(a/b) = -a/b */
          <C2 (e.1) (e.2) (e.x1) <Q Sub (0) <Q Mul (e.2) e.x1>>>; }
* e.x4 = (0-(a/b))/b = -a/b^2; e.x6 = 1 - a(0-(a/b))/b = 1 - (-a^2/b^2),
* e.y3 = (-1/b)/(1 - a(0-(a/b))/b) = -b/(b^2 + a^2)
C6 { (e.x4) (e.x6) e.y3 = /* \text{ e.y4} = 0 - (0 + 1*((0 - (a/b))/b)) = a/b^2 */
     <C7 (e.x6) (e.y3) <Q Sub (0) <Q Add (0) <Q Mul (1) e.x4>>>>;
                 /* (0-(0+1*((0-(a/b))/b)))/(1 - a(0-(a/b))/b)
                   = (a/b^2)/(1 + a^2/b^2) = a/(b^2 + a^2) */
(ex6) (ey3) ey4, < Q Div (ey4) ex6>: ey7 = (ey3) (ey7); }
* 1/p(x) = (-1/b)/(1-a(0-(a/b))/b) (0-(0+1*((0-(a/b))/b)))/(1-a(0-(a/b))/b)
```

Постановка задачи №2 на специализацию

 $\mathbf{F}\varsubsetneq\mathbf{M}\varsubsetneq\mathbf{K},$ характеристика поля \mathbf{F} равна нулю.

- $\mathbf{F} = \mathbb{Q}, \ \mathbf{K} = \mathbb{C}$
- Многочлен $\mathbf{q_0}(\mathbf{x}) = \mathbf{x^2} \mathbf{2} \in \mathbb{Q}[\mathbf{x}]$ неприводим над \mathbb{Q} .
- Факторкольцо $\mathbb{Q}[\mathbf{x}]/(\mathbf{x}^2-\mathbf{2})$ кольца $\mathbb{Q}[\mathbf{x}]$ по неприводимому многочлену $\mathbf{x}^2-\mathbf{2}$ является полем.
 - Элементы $\mathbb{Q}[\mathbf{x}]/(\mathbf{x^2}-\mathbf{2})$ суть остатки от деления на $\mathbf{x^2}-\mathbf{2}$.

Описаны в виде программы на языке Рефал:

- функции арифметики в поле Q;
- для произвольного поля ${\bf F}$ характеристики ${\bf 0}$ конструкции кольца ${\bf F}[{\bf x}]$ и простого расширения произвольного поля ${\bf F}$ характеристики ${\bf 0}$.

Подзадача №2× на специализацию

Начальная конфигурация из модуля FieldExt.ref:

$$<\!\!F_Arith\ Mul\ \left(\left({_\#}c_e\right)\left({_\#}d_e\right)\right)\left(\left({_\#}a_e\right)\left({_\#}b_e\right)\right)\ \left(\ \overline{{_\bot}x^2-2_\bot}\right)\!>$$

```
<code>$ENTRY formula2m {</code>  (c_e)~(d_e)~(a_e)~b_e = \lceil (d_ea_e + c_eb_e)x + (d_eb_e + 2c_ea_e) \rceil~;  }
```

- Грубая схема кодировка.
- $a_e, b_e, c_e, d_e \in \mathbb{Q}$.
- Первое приближение.

Подзадача №2× на специализацию

Начальная конфигурация из модуля FieldExt.ref:

$$<$$
F_Arith Mul $((\#c_e) (\#d_e)) ((\#a_e) (\#b_e)) (\overline{x^2-2})>$

```
 \begin{array}{l} \texttt{SENTRY formula2m } \{ \\ (c_e)(d_e)(a_e) \ b_e = [((d_e a_e + c_e b_e) - 0 \times (c_e a_e)) \\ x + (d_e b_e - (-2((c_e a_e)/1)))]; \\ \} \end{array}
```

- Кодировка.
- $$\begin{split} \bullet & \ a_e, b_e, c_e, d_e \in \mathbb{Q}; \\ & \ \mathbb{Q}_\texttt{Div} = /, \ \mathbb{Q}_\texttt{Mul} = \times, \ \mathbb{Q}_\texttt{Sub} = -, \ \mathbb{Q}_\texttt{Add} = +; \end{split}$$
- Приближение.

Подзадача №2× на специализацию

Остаточная программа:

```
<u>$EXTERN Q</u> Div, Q Mul, Q Sub, Q Add;
/* p(x) = ((c) (d)) = c*x+d, q(x) = ((a) (b)) = a*x+b – многочлены;
   требуется вычислить p(x)q(x) */
$ENTRY formula2m1 {
                                                               /* e.v3 = c*a */
\overline{(\mathtt{c_e})\ (\mathtt{d_e})\ (\mathtt{a_e})\ \mathtt{b_e}} = <\!\!\mathtt{C1}\ (\mathtt{c_e})\ (\mathtt{d_e})\ (\mathtt{a_e})\ (\mathtt{b_e}) <\!\!\mathtt{Q}\underline{\quad} \mathtt{Mul}\ (\mathtt{c_e})\ \mathtt{a_e}\!\!>>;\; \}
C1 { (e.2) (e.3) (e.4) (e.5) e.y3 = /* e.y6 = d*a*/
                 <C2 (e.2) (e.3) (e.5) (e.y3) <Q Mul (e.3) e.4>>; }
* e.y9 = (c*a)/1 = c*a; e.y8 = d*b, e.y7 = d*a + c*b
C5 { (e.y7) (e.y8) e.y9 = /* e.z6 = (d*a + c*b) - 0*(c*a) */
           <C6 (e.y8) (e.y9) <Q Sub (e.y7) <Q Mul (0) e.y9>>>; }
C6 { (e.y8) (e.y9) e.z6 /* (d*b) -(-2*((c*a)/1)) = d*b + 2*c*a */
         \overline{\ \ , < Q \ \text{Sub} (ey8)} < Q \ \text{Mul} ('-'2) \ e.y9>>: ez7 = (e.z6) (ez7); \}
/* p(x)q(x) = (((d*a + c*b)-0*(c*a)) (d*b-(-2*((c*a)/1))))
             = ((d*a + c*b) (d*b + 2*c*a)) */
```

Постановка задачи

 $\mathbf{F}\varsubsetneq\mathbf{M}\varsubsetneq\mathbf{K}$, характеристика поля $\mathbf{F}=\mathbf{p},\mathbf{p}\ne\mathbf{0}$.

• Следовательно, **р** простое. Все теоремы остаются верными. Теоретические конструкции технически усложняются.

Любое конечное поле изоморфно полю Галуа $\mathbb{F}_{\mathbf{p}^n}$, состоящему из \mathbf{p}^n элементов, где \mathbf{p} простое. Для любых $\mathbf{p}, \mathbf{n} \in \mathbb{N}$, где \mathbf{p} простое, существует поле Галуа $\mathbb{F}_{\mathbf{p}^n}$. Характеристика поля $\mathbb{F}_{\mathbf{p}^n}$ равна \mathbf{p} .

Постановка задачи

$$\mathbf{F} = \mathbb{F}_{\mathbf{p^n}}, \mathbf{K} = \mathbb{Z}_{\mathbf{p}}(\mathbf{x})$$

• Где $\mathbb{Z}_{\mathbf{p}}(\mathbf{x})$ есть поле рациональных функций с коэффициентами по модулю \mathbf{p} . Элементы $\mathbb{Z}_{\mathbf{p}}(\mathbf{x})$ суть выражения вида $\mathbf{r}(\mathbf{x})/\mathbf{q}(\mathbf{x}); \mathbf{r}(\mathbf{x}), \mathbf{q}(\mathbf{x}) \in \mathbb{Z}_{\mathbf{p}}[\mathbf{x}], \mathbf{q}(\mathbf{x}) \not\equiv \mathbf{0}.$

А. В. Корлюков проводил эксперименты с SCP4. См. каталог demo в дистрибутиве SCP4.