Math 414: HW1

jozsef.morrissey

February 17, 2016

Exercise 4.7

Given an S-formula that can be uniquely determined. suppose the removal ignoring rule F4 also results in a unique decomposition.

For The formula:

$$\mathcal{X} := \exists v_0 P v_0 \wedge Q v_1$$

$$SF_{1}(\mathcal{X}) = \{\exists v_{0} P v_{0} \land Q v_{1}\} \cup Sf(P v_{0} \land Q v_{1})$$

$$SF(P v_{0} \land Q v_{1}) = \{P v_{0} \land Q v_{1}\} \cup SF(P v_{0}) \cup SF(Q v_{1})\}$$

$$SF(P v_{0}) = \{P v_{0}\}$$

$$SF(Q v_{1}) = \{Q v_{1}\}$$

Then...

$$SF_1(\mathcal{X}) = \{\exists v_0 P v_0 \land Q v_1, P v_0 \land Q v_1, P v_0, Q v_1\}$$

or

$$SF_1(\mathcal{X}) = \{\mathcal{X}, Pv_0 \wedge Qv_1, Pv_0, Qv_1\}$$

Another decomposition yealeds...

$$SF_2(\mathcal{X}) = \{\exists v_0 P v_0 \land Q v_1\} \cup Sf(\exists v_0 P v_0) \cup Sf(Q v_1)$$
$$SF(\exists v_0 P v_0) = \{\exists v_0 P v_0\} \cup SF(P v_0)$$
$$SF(Q v_1) = \{Q v_1\}$$
$$SF(P v_0) = \{P v_0\}$$

 $\qquad \qquad \text{Then...}$

$$SF_2(\mathcal{X}) = \{\exists v_0 P v_0 \land Q v_1, \exists v_0 P v, P v_0, Q v_1\}$$

or

$$SF_2(\mathcal{X}) = \{\mathcal{X}, \exists v_0 Pv, Pv_0, Qv_1\}$$

clearly

$$SF_2(\mathcal{X}) = \{\mathcal{X}, \exists v_0 P v, P v_0, Q v_1\} \neq SF_1(\mathcal{X}) = \{\mathcal{X}, P v_0 \land Q v_1, P v_0, Q v_1\}$$

This is a contradiction, therefore removing the parenthesis rule F4 can result in S-formulas without a unique decomposition.

Exercise 4.8

Definition:

- F1) If t_1 and t_2 are S-terms, then $t_1 \equiv t_2$ is an S-P-formula.
- F2) If $t_1, ..., t_n$ are S-terms and R is an n-ary relation symbol in S, then $Rt_1, ...t_n$ is an S-P-formula.
 - F3) If φ is an S-formula, then $\neg \varphi$ is also an S-formula.
- F4) If φ and ψ are S-P-formulas, then $\wedge \varphi \psi$, $\vee \varphi \psi$, $\rightarrow \varphi \psi$, and $\leftrightarrow \varphi \psi$ are also S-P-formulas.
- F5) If φ is an S-P-formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are also S-P-formulas.

Sets

```
A = \{v_1, v_2, \ldots\} \qquad \text{(variables)}
B = \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}
C = \{\forall, \exists\}
D = \{\equiv\}
E = \{(,)\}
\mathcal{R} = \text{set of n-array relation symbols}
\mathcal{F} = \text{set of function symbols}
\mathcal{C} = \text{set of constants}
\mathcal{A}' = \mathcal{C} \cup \mathcal{F} \cup \mathcal{R} \cup a \cup b \cup c \cup d \cup e
S = \text{is a symbol set}
\mathcal{A}'_{\mathcal{S}} = \mathcal{A}' \cup S
```

\mathbf{SF}

Let SF be a function that takes a formula and assigns it to sub-formulas, φ & ψ be formulas, and let $a \in A, b \in B, c \in C$.

SF is defined by:

(I)
$$SF(v_1 \equiv v_2) := \{v_1 \equiv v_2\}$$
 (F1)
(II) $SF(Rt_1...t_2) := \{Rt_1...t_2\}$ (F2)
(III) $SF(\neg\varphi) := \{\neg\varphi\} \cup SF(\varphi)$ (F3)
(IV) $SF(z\varphi\psi) := \{b\varphi\psi\} \cup SF(\varphi) \cup SF(\psi)$ (F4)
(V) $SF(zx\varphi) := \{ca\varphi\} \cup SF(\varphi)$ (F5)

4.8.1

Given a formula φ , $SF(\varphi)$ is unique.

Proof

Base cases:

$$SF(v_1 \equiv v_2) := \{v_1 \equiv v_2\}$$
 (I)
 $SF(Rt_1...t_2) := \{Rt_1...t_2\}$ (II)

Inductive Hypothisis:

For all formulas \mathcal{X} , where n \downarrow 1 and $|SF(\mathcal{X})| < n$, $SF(\mathcal{X})$ is unique.

Inductive step:

Let \mathcal{X}^* be such that $|SF(\mathcal{X}^*)| = n$

Case 1:

$$\mathcal{X}^* = \neg \varphi$$
$$SF(\mathcal{X}^*) = \{ \neq \varphi \} \cup SF(\varphi) \quad \text{(F3)}$$

Since $SF(\varphi)$ falls under the inductive hypothesis $SF(\mathcal{X}^*)$ is unique.

Case 2:

$$\mathcal{X}^* = b\varphi\psi$$
$$SF(\mathcal{X}^*) = \{b\varphi\psi\} \cup SF(\varphi) \cup SF(\psi) \quad (F4)$$

Since $SF(\varphi)$ and $SF(\psi)$ fall under the inductive hypothesis $SF(\mathcal{X}^*)$ is unique.

Case 3:

$$\mathcal{X}^* = ca\psi$$
$$SF(\mathcal{X}^*) = \{ca\psi\} \cup SF(\psi) \quad \text{(F4)}$$

Since $SF(\psi)$ falls under the inductive hypothesis $SF(\mathcal{X}^*)$ is unique.

Lemma 4.8.2

Given two groups of formulas, $\varphi_1, ..., \varphi_n$ and $\varphi'_1, ..., \varphi'_m$, with $\varphi_1 ... \varphi_n = \varphi'_1 ... \varphi'_m$, then n = m and for every i $\varphi_i = \varphi'_i$ for all $0 < i \le n$.

Proof

Suppose we have $\varphi_1,...,\varphi_n$ and $\varphi_1',...,\varphi_m'$ wich are all formulas and $\varphi_1...\varphi_n=$

Suppose we have $\varphi_1, ..., \varphi_n$ and $\varphi_1, ..., \varphi_m$ when as an initial suppose $\varphi_1...\varphi_m'$.

By theorem 4.8.1 φ_1 and φ_1' has a unique set of sub formulas. suppose $\varphi_1 \neq \varphi_1'$, then $\varphi_1 = \varphi_1'\zeta$ or $\varphi_1' = \varphi_1\zeta$ which contradics theorem 4.8.1 therefore $\varphi_1 = \varphi_1'$.

A similar argument can be applied to φ_2 through φ_n . Suppose n != m, and WOLOG assume $n_i m$, then $= \varphi_{n+1}' ... \varphi_m'$ which doesn't make sence therefor n = m