253 Shers Xu 1205525 HW1 P VK-H1-VK-V 1 (a) = ht [4 ht] + ht O(ht) = Vt + O(ht) VK+1, L-V K-1, b = = 1/2 [V/L + Vx hr + 21/hr + Og(hr)] - zha [VKL - Vx hx + zh + OB (hx3)] $0 = 0 + 0 = \sqrt{x} + 0 \cdot (h_x^2)$ 01= a. 0, so Ext = Vt + O2 (ht) + a Vx + O1 (hx) = Oz (ht) + O'(h2) = O (ht, h2) Since V++aVx=0 Stability (VK, I+) = aht. VK-1, L + VK, L - aht. VK+1, L So $e_{(j)}^{(j)} \exp(ijkhx) = \lambda e_{(j)}^{(j)} \exp[ij(khx)] + e_{(i)}^{(j)} \exp[ij(khx)] - \lambda e_{(j)}^{(j)} \exp[ij(khx)] + \sum_{\substack{a=aht\\2x}} (k+1)hx$ So $e_{(j)}^{(j)} = \lambda \exp(ijhx) + \sum_{\substack{a=aht\\2x}} (ijhx) + \sum_{\substack{a=aht\\2x}} (ijhx)$ $|S(j)| > |When <math>\theta \neq |KX, \lambda>0$ unstable

ŀ

```
(6) () V12, 64 - VK, 6
               Valxx, to) 1 +2 Vitl(x, to) ht +6 Vitt (xx, to). ht +0(ht
                  ( VkH, ltj - VKH, LH)
             = Zhx VK, L + Vx k, L hx + Ykktht + Zi Vxx kt ha + III Vxt K L hrht
                  tiVet Kult + 31 Vxxx his + 21 Vxxx his ht + 21 Vxtt hx ht + 31 Vxxx his ht
                are concelled = to [ Vx hx + Vxt hxht + 3] Vxxx hx + 21 Vxtt hx ht ]
                + O2(ha, ht ha, ht ha, ht)
                       VK+1, 6-VK+, 6
                 = 2hx [ Vyx + Vx hx + \frac{1}{2} Vxxx h\frac{1}{2}] \ - \frac{1}{2hx} [ Vyx - Vx hx + \frac{1}{2} Vxxx h\frac{1}{2}] + \frac{1}{2hx} D_8(h\frac{1}{2}).
                 = hx [ Vx hx + = [ Vxxx h] + O3(h) =
            Now we combine everything:
               Ty= Vt + = Vtt ht + 5 Vttt ht + O(ht)
02=2.02
                   +avx + を Vxt ht. + を Vxxx hま + な Yxtt ht + Oz (hま, ht h子, ht hx, ht) + Oz (hま)
0/3= 0 03
                  = (V++aVx) + = ht (Vtt +aVxt) + O4(ht) + O5(ht, ht)
                     06( h=3, hth2, hthx, ht) (
             We know V++avx=0, V++ +avxt=(V++avx)+=0+=0
               So Txt = O4 (ht) + O6 (h3, ht h3, ht h3, ht h) + O(ht, h3)
```

253 Sheng Xu HWI P3 @ Sterbility For C-N. = aht /kt, iti + /k. Iti + aht /v+1. Lt = aht /k. Iti + Vk. Iti + aht /v+1. Lt = aht /k. Iti + Vk. Iti + V So $S(j) = 1 - iz\lambda Sin\theta$. $(\lambda - \frac{aht}{4h\tau} > 0)$ $1 + iz\lambda Sin\theta$. $(\lambda - \frac{aht}{4h\tau} > 0)$ So |S(j)| = | unconditionally Stable 1 Add one step jumped: - \ e (j) exp [ij(x+1)hx]+ e (j) exp[ij(k+x]+ \ e (j) exp[ij(k+1)hx]
= \ Q . (j) exp [ij(k+1)hx]+ e (j) exp [ij(k+x]-\ e (j) exp[ij(k+1)hx] A short note: For Question 1

Both Method are good with Consistency.

The FSCT has truncation error $O(h_t,\,h_x^{\,2})$, so when $h_t{\to}0,\,h_x{\to}0$, error goes to 0.

The C-N has truncation error $O(h_t^2, h_x^2)$, so when $h_t \rightarrow 0$, $h_x \rightarrow 0$, error goes to 0.

Problem 2 Sum_up Sheng Xu

	Discontinuous	C ₀	C∞
FSCT	Unstable	Unstable	Unstable
	0.5 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1	0 01 02 03 04 05 08 07 08 09 1	3 2 1 1 1 1 2 2 3 04 05 06 07 08 09 1
1 st Upwind	Stable with dissipation	Stable with dissipation	Stable
CFL	0.5 0.4 0.5 0.5 0.5 0.2 0.5 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	09 00 00 00 00 00 00 00 00 00 00 00 00 0	08 04 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 st Upwind	Unstable	Unstable	Unstable
non-CFL	2 4 4 4 6 6 6 07 08 09 1	05- 05- 05- 05- 05- 05- 05- 05- 05- 05-	10 ⁸⁸ 108 06 04 02 0 02 04 04 06 08 08 09 11 0 01 02 03 04 05 06 07 08 09 1
Crank-Nich	Stable with Dispersion	Stable with dissipation	Stable
olson	0.5 0.1 0.2 0.3 0.4 0.6 0.8 0.7 0.8 0.9	09 00 08 08 09 04 03 03 00 01 02 03 04 06 05 07 08 09 1	08 04 02 02 04 05 06 08 08 08 08 08 08 08 08 08 08 08 08 08
BSCT	Stable with Dispersion	Stable with Dispersion	Stable
	05	030 070 060 661 641 033 022 013 0 61 122 53 04 68 56 07 68 59	08 04 02 02 03 04 06 08 08 08 08 08 08 08 08 08 08 08 08 08

Functions	Discontinuous		Co		C [∞]
	F=0	when -1≤ x <-0.5	F=2x+2	when x≤ -0.5	cos(3x)
		0≤ x < 0.5	F=-2x	when -0.5≤x<0	
	F=0.5	when -0.5≤ x < 0	F=2x	when 0≤x<0.5	
		0.5≤x<1	F=2-2x	when 0.5≤ x≤1	

Conclusion:

All stable methods exhibit certain dissipation with C^{∞} functions. FSCT and First Order Upwind method without CFL are never stable.

For Discontinuity and C^1 functions, both implicit methods(C-N and BSCT) exhibits dispersion, making pictures less smooth. BSCT is more effected in C^1 function, while C-N is more effected in Discontinuity function.