COMS 3003A HW 8

DMITRY SHKATOV

Due 1 May, 2024

Reading: Leary & Kristiansen, Chapter 1.

- 1. Consider the standard model of arithmetic ω , i.e. the set of natural numbers with the usual relations and operations. We assume that the language of arithmetic has been extended, using definitions, with binary predicate letters < and \le (see HW 7 for details). Determine if the following sentences are true or false in ω :
 - (a) $\forall x \exists y \, x < y$;
 - (b) $\forall y \exists x \, x < y;$
 - (c) $\exists x \forall y \, x \leqslant y$;
 - (d) $\exists y \forall x \, x + y = x;$
 - (e) $\exists x \forall y \, x + y = x$;
 - (f) $\exists x \forall y \neg (S(y) = x)$;
 - (g) $\exists y \forall x \neg (S(y) = x)$.
- 2. For each of the following formulas, find a model where the formula is true and a model where the formula is false:
 - (a) $\forall x R(x,x)$;
 - (b) $\forall x \forall y (R(x,y) \rightarrow R(y,x));$
 - (c) $\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z));$
 - (d) $\forall x \forall y (R(x,y) \rightarrow \exists z (R(x,z) \land R(z,y)));$
 - (e) $\exists x P(x) \rightarrow \forall x P(x)$;
 - (f) $\forall x \exists y R(x,y)$;
 - (g) $\exists x \forall y R(y, x)$;
 - (h) $\forall x \exists y R(x, y) \rightarrow \exists x \forall y R(y, x);$
 - (i) $\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \land \forall x \exists y R(x,y) \land \neg R(x,x).$

- 3. Find out, for each of the following formulas, whether it is valid, i.e. true in every model, or not. Prove your claim.
 - (a) $\forall x P(x) \land \forall x Q(x) \rightarrow \forall x (P(x) \land Q(x));$
 - (b) $\forall x (P(x) \lor Q(x)) \to \forall x P(x) \lor \forall x Q(x);$
 - (c) $\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x));$
 - (d) $\exists x (P(x) \lor Q(x)) \to \exists x P(x) \lor \exists x Q(x);$
 - (e) $\exists x \forall y R(y, x) \rightarrow \forall x \exists y R(x, y);$
 - (f) $\forall x (P(x) \to Q(x)) \to (\forall x P(x) \to \forall x Q(x)).$
- 4. (a) Write a sentence φ without = that has the following properties:
 - φ is true in every model with a single individual;
 - for every $n \ge 2$, there exists a model with n individuals where φ is false.
 - (b) Write a formula with = that is true precisely in models with two individuals.
 - (c) Write a formula with = that is true precisely in models with n individuals.
 - (d) Does there exist a formula without = that is true precisely in models with two individuals?
 - (e) Write a formula without = that is satisfiable only in models with infinite domains.
 - (f) Write a formula without = that is true in every model with a finite domain.
- 5. Let \mathfrak{M} be a model, let α and β be assignments in \mathfrak{M} , and let φ be a sentence (i.e., a formula without free occurrences of variables). Prove, by induction on φ , that $\mathfrak{M} \models \varphi[\alpha]$ if, and only if, $\mathfrak{M} \models \varphi[\beta]$.