(19)日本国特許庁 (JP)

許 公 報_(B2) (12)特

(11)特許番号

第2649271号

(45)発行日 平成9年(1997)9月3日

(24) 登録日 平成 9年(1997) 5月16日

(51) Int. Cl. 6 G02B 6/28

識別記号 庁内整理番号 FΙ

G02B 6/28

6/293

請求項の数1

(全5頁)

(21)出願番号 特願平1-92233 (73) 特許権者 999999999 株式会社フジクラ (22) 出願日 平成1年(1989)4月12日 東京都江東区木場1丁目5番1号 (72)発明者 田谷 浩之 (65)公開番号 特開平2-271307 千葉県佐倉市六崎1440番地 藤倉電線株 (43)公開日 平成2年(1990)11月6日 式会社佐倉工場内 (72)発明者 山田 剛 審判番号 平7-21317千葉県佐倉市六崎1440番地 藤倉電線株 式会社佐倉工場内 (74)代理人 弁理士 国平 啓次 合議体 審判長 片寄 武彦 審判官 綿貫 章

最終頁に続く

(54) 【発明の名称】定偏波光ファイバカブラの製造方法

(57)【特許請求の範囲】

【請求項1】2本の定偏波光フアイバについて応力付与 部の位置合せを行う工程と、応力付与部の位置合せを行 った前記2本の定偏波光フアイバの一部分を融着延伸す る工程、とを含む定偏波光フアイバカプラの製造方法に おいて、

前記応力付与部の位置合せ工程を、次の操作、

すなわち、前記2本の定偏波光フアイバについて、それ ぞれ片側に光源を置き、反対側から観察してファイバ像 の輝度分布のプロファイルを求め、当該輝度分布のプロ 10 ので、特に融着延伸型の光カプラに関するものである。 ファイルが、両方とも、

前記定偏波光フアイバと同じ種類の定偏波光ファイバに ついて、予め、片側に光源を置き、反対側の、当該定偏 波光フアイバの応力付与部の主軸方向に対して、0度又 は45度又は90度の方向から観察するとき得られる特有の

フアイバ像の輝度分布のプロファイルの中の1つと同じ になるように、前記2本の定偏波光フアイバを回転させ る操作、

によって行うことを特徴とする、定偏波光フアイバカブ ラの製造方法。

【発明の詳細な説明】

審判官 東森 秀朋

[産業上の利用分野]

この発明は、光の偏波方向を保持したままで光の分岐 や合流を行う偏波保持型の光ファイバカブラに関するも [従来の技術]

融着延伸型の定偏波光力ブラは、次のようにして製造 する。

(1) まず第2a図のように、2本の定偏波光フアイバ12 A,Bについて応力付与部14の位置合せを行う(主軸15が

平行になるようにする)。

なお、16はコア、18でクラッドである。

- (2) それらの一部20を加熱融着し(第2b図)、かつ延 伸して、定偏波光フアイバカプラ10にする(第2c図)。
- (3) 応力付与部14の位置合せのために、従来は第3図 に示すような測定系を構成していた。

すなわち、定偏波光フアイバ12A, Bを、クラッド18と 同じ屈折率のマッチングイル22内に浸して、クラッド18 表面における光の屈折を無くしておき、下側に光源24を 置き、上側から顕微鏡26で観察する。

応力付与部14はクラッド18と屈折率が異るため、光源 24から出た光が応力付与部14とクラッド18との境界で屈 折し、顕微鏡26で応力付与部14の像を観察することがで きる。

この像を見ながら定偏波光フアイバ12A, Bを回転させ て、位置合せを行う。

[発明が解決しようとする課題]

従来の方法では、①応力付与部14の観察のためにマッ チングイルを満たした容器が必要、②位置合せ後はマッ チングイルの拭きとりが必要になる、などの欠点があ

[課題を解決するための手段]

特に応力付与部の位置合せ工程を次の操作によって行

なおこの操作方法は、直ぐ後で述べるように、定偏波 光フアイバの片側に光源を置き、反対側から観察すると き、得られるフアイバ像の輝度分布のプロファイルは、 観察方向が、ファイバ応力付与部の主軸方向に対して、 0度のときと、45度のときと、90度のときに、それぞれ 特有のプロファイルを持つという現象を利用するもので 30 きるようにしておく。 ある。

そして、第1図のように、上記と同じ種類の定偏波光 フアイバ12A、12Bの片側に光源を置き、反対側から観察 して得られるフアイバ像の輝度分布のプロファイル(イ メージセンサ28を使った画像処理により得られる)が、 上記のように0度又は45度又は90度の中の任意1方向か ら光線を照射して得た輝度分布の特有のプロファイルと 同じになるように、

定偏波光フアイバ12A、12Bを回転させることにより、応 力付与部の位置合わせを行う。

[その説明]

[1] 利用する現象:

本発明は、次の現象を利用する。

第4図のように、定偏波光フアイバ12の片側に光源24 を置き、反対側からイメージセンサ(たとえばTVカメ ラ)28で観察すると、応力付与部14の位置により、ファ イバ像の見え方が異る(特願昭62-307193号参照)。 すなわち、

(1) 第5a図のように、主軸15の方向から観察すると、

ようになり、その輝度のプロファイルは第5c図のように

この場合の特徴は、中心aにコア像がハッキリ見られ ることである。

なお、その外側は、順に、やや暗い(b)、やや明る い (c)、さらに暗い (d)、非常に明るい (e)、暗 い(f)となっている。

(2) それから定偏波光フアイバ12を回転していって、 第6a図のように、主軸15に対して45度の方向から観察す 10 ると、光フアイバの像は第6b図のようになり、その輝度 のプロファイルは第6c図のようになる。

この場合の特徴は、中心aが明るく、その両側のbが 暗いことである。

なお、その外側は、順に、やや明るい(c)、暗い (d) となっている。

(3) さらに定偏波光フアイバ12を回転させて、第7a図 のように、主軸15に対して直角方向から観察すると、光 フアイバの像は第7b図のようになり、その輝度のプロフ ァイルは第7c図のようになる。

20 この場合の特徴は、中心aが暗く、その両側のbが明 るいことである。

なお、その外側は、順に、やや暗い(c)、やや明る い(d)、暗い(e)となっている。

なお、以上は、PANDA型の場合であるが、その他の型 の定偏波光ファイバの場合も、プロファイルは異なる が、それぞれ特有の型が観察される。

[2] 応力付与部位置合せ装置の概略:

第1図のように、平行に置いた2本の定偏波光フアイ バ12A、Bを、モータ30によって、それぞれ個別に回転で

上記のように定偏波光フアイバ12A、Bのフアイバ像を イメージセンサ (TVカメラ) 28によって得、それをコン ピュータ32で画像処理する。

そして、定偏波光フアイバ12A,Bの輝度のプロファイ ルが、両方とも同じになるように(たとえば両方とも、 第5c図のプロファイルになるように)、コンピュータ32 でもモータ30を回転させる。

以上のようにすると、マッチングイル22を必要とせず に、自動的に応力付与部の位置合せを行うことができ 40 る。

[3] 融着延伸について:

通常のカプラ製造においては、上記のように応力付与 部の位置合せ後、融着部をバーナーで加熱しながら引張 って、融着部を細くし、光の結合が起きるようにする。

この過程もコンピュータ32の制御で行えば、定偏波カ プラ製造過程の全体をコンピュータ制御により自動的に 行うことができる。

「発明の効果」

2本の定偏波光フアイバについて、それぞれ片側に光 TVカメラ28によって得られる光フアイバの像は第5b図の 50 源を置き、反対側から観察してフアイバ像の輝度分布の

プロファイルを求め、当該輝度分布のプロファイルが、 両方とも、前記定偏波光フアイバと同じ種類の定偏波光 ファイバについて、予め、片側に光源を置き、反対側 の、当該定偏波光フアイバの応力付与部の主軸方向に対 して、0度又は45度又は90度の方向から観察するとき得 られる特有のフアイバ像の輝度分布のプロファイルの中 の1つと同じになるように、前記2本の定偏波光フアイ バを回転させる操作によって、応力付与部の位置合せを 行うので、次の効果がある。

(1) 応力付与部の像を顕微鏡で直接観察する方式と異 10 なり、クラッド表面における光の屈折は無関係になる。 そのため、マッチングオイルを使用して、クラッド表面 における光の屈折を無くする必要がない。

それ故、光ファイバをマッチングオイルの中に入れた り、後で拭き取る工程が無くなり、作業性が非常に良く

(2) コンピュータを使用して一連のカプラ製造過程を 自動化できる。

【図面の簡単な説明】

第1回は本発明の実施に使用する装置例の概略説明図、 第2a図~第2c図は、定偏波光フアイバカプラの一般的製 造方法を工程順に示した説明図、

6

第3図は従来の応力付与部の位置合せ方法の説明図、

第4図は本発明において利用する光フアイバ像観察方法 の説明図、

第5a図~第7c図は本発明の原理の説明図で、第5a図と第 6a図と第7a図は、観察方向の説明図、

第5b図と第6b図と第7b図は、光フアイバ像の説明図、

第5c図と第6c図と第7c図は、輝度分布プロファイルの説

【第3図】

10: 定偏波光フアイバカプラ、15: 主軸

12: 定偏波光フアイバ、14: 応力付与部

16: コア、18: クラッド

20:一部、22:マッチングイル

24: 光源、26: 顕微鏡

28:イメージセンサ (TVカメラ)

30:モータ、32:コンピュータ

10:定保波光ファイバカブラ 15:主軸

12:定個放光ラアイバ 14:応力付手部

16:37 18:クラッド 22:マッチングイル 20:一部

24:光杁 26:面做粉

28: イメージセンサ (TYカメラ)

30: モーダ 32:コンピューダ

【第2a図】

【第7c図】

フロントページの続き

(72)発明者 吉沼 幹夫

千葉県佐倉市六崎1440番地 藤倉電線株

式会社佐倉工場内

(56)参考文献 特開 昭60-83906 (JP, A)