

המחלקה למדעי המחשב

24/07/2025

09:00-12:00

חדו"א 2 למדמ"ח

מועד ב' ד"ר מרינה ברשדסקי ד"ר ירמיהו מילר ד"ר זהבה צבי תשפ"ה סמסטר ב'

בהצלחה!

השאלון מכיל 6 עמודים (כולל עמוד זה וכולל דף נוסחאות). סדר התשובות הינו חשוב. הסבירו היטב את מהלך הפתרון. תשובה ללא הסבר (גם נכונה) לא תתקבל.

חומר עזר:

- מחשבון (ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן).
 - דפי הנוסחאות המצורפים לשאלון המבחן.

הנחיות למדור בחינות שאלוני בחינה

• לשאלון הבחינה יש לצרף מחברת.

יש לענות על השאלות באופן הבא:

- שאלות 1,2,3 יש לענות על כל השאלות.
- שאלות 4,5,6 יש לענות שתי שאלות בלבד מתוך שלוש.
- שאלות 7,8 יש לענות על שאלה אחת בלבד מתוך שתיים.

שאלות 3-3 חובה

שאלה 1 (24 נקודות) נתונה הפונקציה

$$z(x,y) = \frac{x^3}{3} + xy^2 + 5$$

- א) (**12 נק')** מצאו אקסטרמומים לוקליים של פונקציה זו ובררו את סוגן.
 - 2 בתחום ברדיוס ע"י עיגול ברדיוס (ב12) בתחום בתחום ברדיוס

$$D = \{(x, y)|x^2 + y^2 \le 4\}$$

מצאו את הערך הגודל ביותר ואת הערך הקטן ביותר של הפונקציה הנתונה.

שאלה 2 (18 נקודות)

א) (9 נק') שרטטו את תחום האינטגרציה, שנו את סדר האינטגרציה באינטגרל

$$\int_{-2}^{2} dx \int_{x^2}^{x+9} xy \, dy$$

ב) (9 נק") חשבו אינטגרל של סעיף א' בשני דרכים לפי נתון ואחרי שינוי סדר האינטגרציה. (כך בדקו תשובה נכונה).

שאלה 3 (18 נקודות)

א) (9 נק') מצאו פתרון כללי של המשוואה הבא:

$$\begin{cases} (2x-1)dy = (y+1)dx, \\ y(5) = 0 \end{cases}$$

ב) (9 נק") מצאו תחום התכנסות של טור

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$$

4-6 תענו על 2 מתוך 3 מתוך מתוך

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** ז'בוטינסקי 84, 77245 | www.sce.ac.il | חיי**ג: ≋כוסבוסס**

שאלה 4 (12 נקודות)

א) (6 נק') חשבו בעזרת אינטגרל כפול את נפח הגוף החסום ע"י המשטחים:

$$x + y + z = 3$$
, $x^2 + y^2 = 1$, $z = 0$.

ב) (6 נק') פתרו את המשוואה הדיפרנציאלית:

$$y' \cot x + y - 2 = 0.$$

שאלה 5 (12 נקודות) נתונה פונקציה:

$$z = \frac{xy}{x^2 - y}$$

 $x=2,\;y=3$ רשום משוואת המישור המשיק לגרף של פונקציה זו בנקודה שבה (6 נק') רשום

-בך M(2,3) האם קיים כיוון a היוצא מנקודה (6 נק") האם קיים כיוון

$$? \frac{dz}{da}(M) = 25$$

מתכנס.

שאלה 6 (12 נקודות) מצאו את תחום ההתכנסות של הטור

$$\sum_{n=1}^{\infty} \frac{3^n x^n}{2^n + 1} .$$

7-8 פתור אחת מבין השאלות

שאלה 7 (16 נקודות) מצאו את הנקודות על המשטח

$$x^2 + y^2 + z^2 = 55$$

כך שמישורים המשיקים למשטח זה בנקודות האלה יהיו מקבילים למישור הנתון על ידי המשוואה

$$2x - \frac{1}{3}y - \sqrt{2}z - 2 = 0.$$

משטח אשר קרובה ביותר למשטח את הנקודה א x+y-z=2 על המישור (16) אשר אשר אישר א שאלה שאלה אות שאלה אלה אישר למשטח

$$x^2 + y^2 + z^2 + 4y + 3 = 0.$$

המכללה האקדמית להנדסה סמי שמעון

פתרונות

שאלה 1

א) (12 נק") התנאי ההכרחי לנקודת קיצון הוא:

$$\begin{cases}
f_x = x^2 + y^2 \stackrel{!}{=} 0, \\
f_y = 2xy \stackrel{!}{=} 0,
\end{cases}$$

נקבל את נקודות קריטיות (0,0), כעת נבדוק את המבחן הדלטה:

$$f''_{xx} = 2x$$
, $f''_{yy} = 2y$, $f''_{xy} = 2y$.

לכן בנקודה (0,0):

$$f_{xx}''(0,0) = 0$$
, $f_{yy}''(0,0) = 0$, $f_{xy}''(0,0) = 0$, $\Rightarrow \Delta(0,0) = 0$

לפיכך המבחן דלטה לא נותן תשובה ז"א לא אפשרי להסיק אם סוגה של הנקודת קריטית (0,0).

ב) (12 נק')

נמצא את הנקודות המועמדות לקיצון של פונקצית המטרה בכפוך לאילוץ גמצא את הנקודות לגרנז' המתאימה הינה $x^2+y^2-4=0.$

$$L(x, y, \lambda) = \frac{x^3}{3} + xy^2 + 5 - \lambda(x^2 + y^2 - 4)$$

$$\begin{cases} f_x = x^2 + y^2 - 2\lambda x = 0, \\ f_y = 2xy - 2\lambda y = 0, \\ x^2 + y^2 - 4 = 0 \end{cases}$$

פתרון של מערכת נותנת נקודות הבאות:

 $(-\sqrt{2},\sqrt{2}), (\sqrt{2},-\sqrt{2}), (-2,0), (2,0), (-\sqrt{2},-\sqrt{2}), (\sqrt{2},-\sqrt{2})$. הקיצון המוחלט נעשה ע"י חיפוש ערך של פונקציה.

$$z(-\sqrt{2}, \sqrt{2}) = 1.23, \quad z(\sqrt{2}, -\sqrt{2}) = 8.77, \quad z(-2, 0) = 2.33, \quad z(2, 0) = 7.67,$$

$$z(0,0) = 5$$
, $z(-\sqrt{2}, -\sqrt{2}) = 1.23$, $z(\sqrt{2}, -\sqrt{2}) = 8.77$

תשובה:

$$z_{max}(\sqrt{2}, \sqrt{2}) = z_{max}(\sqrt{2}, -\sqrt{2}) = 8.77$$
$$z_{min}(-\sqrt{2}, \sqrt{2}) = z_{min}(-\sqrt{2}, -\sqrt{2}) = 1.23$$

<u>שאלה 2</u>

(9 נק') (א

:כאשר, $D = D_1 \cup D_2 \cup D_3$ ביחס ל-3, מתחלק ל-3, כאשר הפוכים הפוכים לצירים הפוכים

$$D_1 = \{0 \le y \le 4 , -\sqrt{y} \le x \le \sqrt{y}\}$$

$$D_2 = \{4 \le y \le 7 \ , \ -2 \le x \le 2\}$$

$$D_3 = \{7 \le y \le 11 \ , \ y - 9 \le x \le 2\}$$

לכן האינטגרל, בסדר ההפוך של המשתנים x,y הוא

$$\iint_{D} xy \, dx dy = \iint_{D_{1}} xy \, dx dy + \iint_{D_{2}} xy \, dx dy + \iint_{D_{3}} xy \, dx dy$$
$$= \int_{0}^{4} dy \int_{-\sqrt{y}}^{\sqrt{y}} xy dx + \int_{4}^{7} dy \int_{-2}^{2} xy dx + \int_{7}^{11} dy \int_{y-9}^{2} xy dx$$

ב) (9 נק') חישוב של האינטגרל:

$$\int_{-2}^{2} dx \int_{x^{2}}^{x+9} xy , dy = \int_{-2}^{2} dxx \left[\frac{y^{2}}{2} \right]_{x^{2}}^{x+9}$$

$$= \frac{1}{2} \int_{-2}^{2} dx \left(x (x+9)^{2} - x^{5} \right)$$

$$= \frac{1}{2} \int_{-2}^{2} dx \left(x^{3} + 18x^{2} + 81x - x^{5} \right)$$

$$= \frac{1}{2} \left[\frac{x^{4}}{4} + 6x^{3} + \frac{81}{2}x^{2} - \frac{x^{6}}{6} \right]_{-2}^{2}$$

$$= \frac{1}{2} (2)(6)(2^{3})$$

$$= 48 .$$

שאלה 3

(9 נק') (א

ב) (9 נק')

שאלה <u>4</u> (12 נקודות)

(6 נק')

בחינה של המשוואות מראה שמדובר בשטח שחסום מתחת לגרף הפונקציה f(x,y)=3-x-y מעל לתחום בחינה שחסום מאלי מאחר ומדובר בקוארדינטות מארדינטות הישוב בקוארדינטות מארדינטות היעקוביאן: $D=\left\{(x,y)\in\mathbb{R}^3\;\middle|\;x^2+y^2\leq 1\right\}$ פולריות כאשר חשוב לא לשכוח את היעקוביאן:

$$V = \iint_{D} (3 - x - y) dx dy$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{1} dr \, r \left(3r - r \cos \theta - r \sin \theta\right)$$

$$= \int_{0}^{2\pi} d\theta \left[\frac{3}{2}r^{2} - \frac{r^{3}}{3} \left(\cos \theta + \sin \theta\right)\right]$$

$$= 3\pi$$

כאשר השוויון האחרון הסתמך על כך שהאינטגרל של סינוס וקוסינוס לאורך מחזור שלם הוא אפס.

ב) (6 נק')

$$y' \cot x = 2 - y$$

$$\frac{1}{2 - y}y' = \frac{1}{\cot x} = \tan x$$

$$\int \frac{1}{2 - y}y' dx = \int \tan x dx$$

$$\int \frac{1}{2 - y}dy = \int \tan x dx$$

$$-\ln|2 - y| = -\ln(\cos x) + C$$

$$\ln|2 - y| = \ln(\cos x) - C$$

$$2 - y = e^{-C}\cos x$$

$$y = 2 - e^{-C}\cos x$$

$$y = A\cos x + 2$$

.כאשר $A\in\mathbb{R}$ קבוע

שאלה 5 (12 נקודות)

היא $M(x_0,y_0)$ בנקודה בנקודה רמה רמה למשטח המישור המשיק המישור המשואת הנוסחה אנוסחה למשואת המישור המשיק למשטח המישור המשיק א

$$z'_x(M)(x - x_0) + z'_y(M)(y - y_0) - (z - z_0) = 0$$

הנגזרות הן

$$z'_x = \frac{y}{x^2 - y} - \frac{2x^2y}{(x^2 - y)^2} = -\frac{y(x^2 + y)}{(x^2 - y)^2} \quad \Rightarrow \quad z'_x(M) = -21 \ ,$$

$$z'_y = \frac{xy}{(x^2 - y)^2} + \frac{x}{x^2 - y} = \frac{x^3}{(x^2 - y)^2} \quad \Rightarrow \quad z'_y(M) = 8 \ ,$$

ובנקודה M הערך של הפונקציה עצמה הוא

$$z_0 = z(2,3) = 6$$
.

יא: $x=2,\ y=3$ היא: משוואת המישור המשיק לגרף של פונקציה זו בנקודה שבה

$$-21(x-2) + 8(y-3) - (z-6) = 0 \implies -21x + 8y - z + 24 = 0$$
.

מתקיים M מתקיים $a \neq 0$ ובכל נקודה א מתקיים (6 מק') ראשית, נזכיר כי לכל וקטור

$$-|\nabla z(M)| \le \frac{dz(M)}{d\vec{a}} \le |\nabla z(M)|$$

:הסעיף הקודם מתריים עבור הוקטור ונבדוק האם תנאי וובדוק האם וונבדוק האם |
abla z(M)| נחשב את

$$\nabla z(M) = (z'_x(M), z'_y(M)) = (-21, 8) \quad \Rightarrow \quad |\nabla z(M)| = |(-21, 8)| = \sqrt{505}$$
.

7"%

$$-\sqrt{505} \le \frac{dz(M)}{d\vec{a}} \le \sqrt{505}$$

לכל וקטור $ec{a} \neq 0$ ולכל נקודה d בפרט, d בפרט, d בפרט, לכן לא קיים וקטור d עבורו d בפרט, d בפרט, d בפרט, לכל וקטור d בפרט, הארך הזה לא בתחום המותר.

שאלה 6 (12 נקודות)

נרשום את הטור בצורה

$$\sum_{n=1}^{\infty} a_n x^n \ , \qquad a_n = \frac{3^n}{2^n + 1} \ .$$

רדיוס התכנסות:

לפי הנוסחת דלמבר לרדיוס התכנסות:

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}}$$

$$= \lim_{n \to \infty} \frac{\left(\frac{3^n}{2^n + 1}\right)}{\left(\frac{3^{n+1}}{2^{n+1} + 1}\right)}$$

$$= \lim_{n \to \infty} \left(\frac{3^n}{3^{n+1}}\right) \left(\frac{2^{n+1} + 1}{2^n + 1}\right)$$

$$= \frac{1}{3} \lim_{n \to \infty} \left(\frac{\left(\frac{2^{n+1} + 1}{2^{n+1}}\right)}{\left(\frac{2^n + 1}{2^{n+1}}\right)}\right)$$

$$= \frac{1}{3} \lim_{n \to \infty} \left(\frac{\left(1 + \frac{1}{2^{n+1}}\right)}{\left(\frac{1}{2} + \frac{1}{2^{n+1}}\right)}\right)$$

$$= \frac{1}{3} (2) = \frac{2}{3}.$$

 $-\frac{2}{3} < x < \frac{3}{3}$ לכן הטור מתכנס לכל

$$x=rac{2}{3}$$
 קצה

10

$$\sum_{n=1}^{\infty} \left(\frac{3^n}{2^n + 1} \right) x^n \quad \stackrel{x = \frac{2}{3}}{=} \quad \sum_{n=1}^{\infty} \left(\frac{2^n}{2^n + 1} \right) > \sum_{n=1}^{n} \left(\frac{2^n}{2^n + 2^n} \right) = \sum_{n=1}^{n} \frac{1}{2}$$

 $x=rac{2}{3}$ אשר מתבדר בקצה הטוואה השוואה מבחן לפי מבחן אשר

$$x=rac{-2}{3}$$
 קצה

$$\sum_{n=1}^{\infty} \left(\frac{3^n}{2^n+1}\right) x^n \quad \stackrel{x=\frac{-2}{3}}{=} \quad \sum_{n=1}^{\infty} \left(\frac{(-2)^n}{2^n+1}\right) = \sum_{n=1}^n a_n \;, \quad a_n = \frac{(-1)^n 2^n}{2^n+1} \;.$$

$$.x = -\frac{2}{3} \; \text{ הטור מתבדר בקצה} \; \Leftrightarrow \lim_{n \to \infty} a_n \neq 0 \; \Leftrightarrow \; \lim_{n \to \infty} |a_n| \neq 0$$

תשובה סופית:

$$x \in \left(-\frac{2}{3}, \frac{2}{3}\right)$$
 :תחום התכנסות

שאלה <u>7</u> (16 נקודות)

.P(0,0,0) שמרכזו בראשית הצירים $\sqrt{55}$ שמרכזו מרדיוס $x^2+y^2+z^2=55$

 $2x-rac{1}{3}y-\sqrt{2}z-2=0$ תהיינה P_1,P_2 הנקודות על המשטח שבהן המישורים המשיקים מקבילים למישור הנתון $\vec{n}=\left(2,-rac{1}{3},-\sqrt{2}
ight)$ אזי הוקטור הנורמל של המישור הוא

 P_2 -ו וות הנקודות הישר המחבר המחבר M(t) יהי

 π הישר היה עובר דרך מרכז הכדור ומקביל לוקטור הנומרל של המישור הנתון

$$M(t) = (0,0,0) + t\vec{n} = \left(2t, -\frac{1}{3}t, -\sqrt{2}t\right).$$

הישר משוואת אותם אנחנו נציב את כדי למצוא עם המשטח. כדי למצוא איתם אל משוואת חיתוך של הישר M(t) אל משוואת הישר במשוואת המשטח:

$$(2t)^2+rac{t^2}{9}+2t^2=55 \quad \Rightarrow \quad 55t^2=55 \quad \Rightarrow \quad t=\pm 1 \; .$$
 מכאך
$$P_1=M(t=1)=\left(2,-rac{1}{3},-\sqrt{2}
ight) \; , \qquad P_2=M(t=-1)=\left(-2,rac{1}{3},\sqrt{2}
ight) \; .$$

שאלה 8 (16 נקודות)

ניתן לרשום את המשטח בצורה קנונית:

$$x^2 + (y+2)^2 + z^2 = 1$$

.P(0,-2,0) שהיא בנקודה 1 שמרכזו שהיא בדור שהיא

אותה נקודה על המישור הקרובה ביותר למשטח היא גם הנקודה על המישור הקרובה ביותר למרכז הכדור אותה נקודה על המישור הקרובה ביותר למרכז הכדור P(0,-2,0), אשר היא ההיטל של הנקודה P(0,-2,0) ביחס למישיר הזה.

 P,P_0 הנקודות הישר העובר העובר לכן לכן לכן המשוואת הישר המישור המישור המישור המישור המישור לכן לכן המישור הוא המישור המישור

$$M(t) = P + t\vec{n} = (0, -2, 0) + t(1, 1, -1)$$
,

כלומר

$$x = t, \quad y = -2 + t, \quad z = -t$$
.

כדי למצוא את P_0 נציב את משוואת הישיר במשוואת כדי

$$t+(-2+t)-(-t)=2$$
 \Rightarrow $3t=4$ \Rightarrow $t_0=\frac{4}{3}$.
$$P_0=M\left(t_0=\frac{4}{3}\right)=\left(\frac{4}{3},\frac{-2}{3},\frac{-4}{3}\right)$$
 לכן