Block-Stochastic model

M. Mitrović Dankulov and A. Alorić

January 17, 2023

Outline

- Motivation
- Stochastic-Block model
- Generating networks with SBM
- Community detection with SBM

Real networks: mesoscopic heterogeneities

Community detection algorithms: some

- Ravasz algorithm similarity bottom-up approach
- Girvan-Newman centrality betweenness centrality up-to-bottom approach
- Maximization of modularity:
 - Greedy algorithm
 - Louvain algorithm
- Infomap, OSLOM, etc.

Algorithm benchmarking

Grivan-Newman (GN) benchmark - predefined size of communities,
 Erods-Renyi graphs, p_{in} and p_{out}

• Lancichinetti-Fortunato-Radicchi (LFR) Benchmark - community size $P(N_c) \sim N_c^{-\xi}$, degree distribution $P(k_i) \sim k_i^{-\gamma}$, $\mu = \frac{k^{\rm ext}}{k^{\rm ext} + k^{\rm int}}$

• Can we find a model that is random but has community strucutre?

Stochastic-Block model

- Stochastic-Block model (SBM) is a simple graph, defined by a set of parameters $\theta = (c, \vec{z}, \mathcal{M})$:
 - c number of communities
 - \vec{z} is a vector of size N (number of nodes), where element z_i shows community membership of nodes i
 - \mathcal{M}_{rs} an element shows a probability that node from community r is connected to community s
 - $\forall i, j, A_{ij} = 1$ if \mathbb{M}_{rs} , $A_{ij} = 0$ otherwise

• For c == 1, $M_{rs} == p$ - ER graph

ullet Networks within the community are ER graphs - \mathcal{M}_{rs} for r=s

 Different connectivity between communities unlike GN benchmark model

SBM: properties

- It is a undirected binary but can be easly generalized to be directed
- ullet Network is modular, and it depends on c and ${\cal M}$
- Degree distribution is a combination of Poisson distributions
- ullet Small world dimeter and shortest average path grow logarithmically with N
- Unclustered clustering coefficient decreases with growth of network
- Giant component is comparable to network size for not too sparse networks

SBM: properties

• In SBM edges are mutually independent

 Nodes in the same community are e stochastically equivalent, they have the same connectivity patterns with other nodes

 A community in the SBM is a group of nodes with the same rules for connecting to nodes in other groups

SBM: generation

- 1. We set $\theta = (c, \vec{z}, \mathcal{M})$
- 2. We start with network G of N disconnected nodes
- ullet 3. For a pair of nodes i and j we draw random number ξ_{ij}
- ullet 4. If $\xi_{ij} \geq \mathcal{M}_{z_i z_j}$ we generated an edge between i and j
- Repeat steps 3. and 4. until we cover all nodes

SBM:exmaple

$$c = 3$$
;

$$z =$$

$$\mathcal{M} = \begin{pmatrix} 0.3 & 0.02 & 0.05 \\ 0.02 & 0.7 & 0.03 \\ 0.05 & 0.03 & 0.5 \end{pmatrix}$$

SBM: varitation

- SBM has large number of parameters very flexible and can create large number of connectivity patterns
- Assortative pattern: $\mathcal{M}rs = q$ if r! = s, and $\mathcal{M}rr = p_r$ where $\vec{p} = (p_1, \dots, p_c) == p$
- One parameter model $p_1 == p_2 == \ldots == p_c$, $N_i = \frac{N}{c}$, c=2 and we fix < k >
- In one parameter model p and p are not independents; if we increase p we need to decrease q in order to keep fixed < k >; $p = \frac{< k > + \frac{\epsilon}{2}}{N}$ and $q = \frac{< k > \frac{\epsilon}{2}}{N}$; by varying ϵ we change network connectivity

SBM one parameter: example

$$N = 30, < k >= 5, c = 2$$

 $\epsilon = 2$

$$p = 0.2; q = 1.333$$

$$p = 2.667; q = 0.067$$

Degree corrected SBM

- SB model creates ER graph with mesoscopic heterogeneities
- Degree corrected SBM (DC-SBM) creates graph with specified degree structure and mesoscopic heterogeneities
- DC-SBM parameters: $\theta(c, \vec{z}, \vec{k}, \mathcal{M})$
- \vec{k} is expected degree sequence
- \mathcal{M} is not a probability matrix but a counting matrix: $\mathcal{M}_{rs} = \sum_{i,j} A_{ij} \delta_{z_i,r} \delta_{z_j,s}$ number of edges between r and s; if r == s then it is doble number of edges
- DC-SBM is a multigraph A_{ij} equals the number of links between nodes

DC-SBM: generation

- ullet Groups can behave as super-nodes; degree of a group $k_r = \sum_i k_i \delta_{z_i,r}$
- Node propensity $\gamma_i = \frac{k_i}{k_{z_i}}$

• $\forall i>j$ $A_{ij}=A_{ji}=Poisson(\gamma_i\gamma_j\mathcal{M}_{z_iz_j})$ - expected number of edges between nodes i and j

DC-SBM: generation

- Generate DC-SBM network:
 - 1. Compute group level degree k_r
 - 2. Compute node propensity γ_r
 - 3. Start with network of N disconnected nodes
 - 4. For i > j generate random nuber ξ from $Poisson(\gamma_i \gamma_j \mathcal{M}_{z_i z_j})$
 - 5. If $\xi > 0$ create undirected edge between i and j
 - 6. Repeat 4. and 5. until you cover all pairs of nodes

DC-SBM: example

Zachary's Karate Club network c = 2: N = 34

$$\vec{k} = [16, 9, 10, 6, 3, 4, 4, 4, 5, 2, 3, 1, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 3, 3, 2, 4, 3, 4, 4, 6, 12, 17]$$

$$\mathcal{M} = \begin{pmatrix} 70 & 11 \\ 11 & 64 \end{pmatrix}$$

Statistical inference

- Probabilistic generative model $Pr(G|\theta)$
- When we know or set θ we are able by tosing a coin for each pair of nodes i and j to generate network G
- ER networks $\theta = p$
- SBM $\theta = (c, \vec{z}, \mathcal{M})$ or DC-SBM $\theta = (c, \vec{z}, \vec{k}, \mathcal{M})$
- We set θ and generate network using $Pr(\theta)$
- Inference is to find θ based on network data

Statistical inference

- Based on network G we can infer a model $Pr(G|\hat{\theta})$ to:
 - To generate synthetic data
 - If parameters have a meaning we can discover principles that drive network evolution
 - Can give us insights about network organization (community structure, mixing patterns)
 - Compare competing network models
 - Node and edge attribute prediction; edge prediction

Likelihood

- $Pr(G|\theta)$ defines a probability distribution for network occurrence for given θ
- $\mathcal{L}(G|\theta)$ likelihood function that represents probability of random network realizations conditional on particular values of θ
- ullet We use maximum value of $\mathcal{L}(G| heta)$ to estimate the value of $\hat{ heta}$
- $oldsymbol{\hat{ heta}}$ is our best estimate of model parameters

Likelihood for SBM

$$\mathcal{L}(G|\vec{z},\mathcal{M}) = \prod_{i,j} Pr(i \to j|\vec{z},\mathcal{M})$$

$$= (\prod_{(i,j)\in E} Pr(i \to j|\vec{z},\mathcal{M})) (\prod_{(i,j)\notin E} (1 - Pr(i \to j|\vec{z},\mathcal{M})))$$

$$= (\prod_{(i,j)\in E} \mathcal{M}_{z_iz_j}) (\prod_{(i,j)\notin E} (1 - \mathcal{M}_{z_iz_j}))$$

$$(1)$$

Maximum likelihood estimate for SBM

- $e_{rs} = \sum_{i < j} A_{ij} \delta_{z_i r} \delta_{z_j s}$ and $n_{rs} = \sum_{i < j} \delta_{z_i r} \delta_{z_j s}$
- $\mathcal{L}(G|\vec{z},\mathcal{M}) = \prod_{r,s} (\mathcal{M}_{rs})^{e_{rs}} (1-\mathcal{M}_{rs})^{n_{rs}-e_{rs}}$
- $\hat{\mathcal{M}}_{rs} = \frac{e_{rs}}{n_{rs}}$ this is the best estimate
- Log-likelihood $\ln(\mathcal{L}(G|\vec{z},\mathcal{M})) = \sum_{r,s} e_{rs} \ln \frac{e_{rs}}{n_{rs}} + (n_{rs} e_{rs}) \ln \frac{n_{rs} e_{rs}}{n_{rs}}$

Maximum likelihood estimate for SBM: example

e_{rs}/n_{rs}	red	blue
red	3/3	1/9
blue	1/9	3/3

$$\mathcal{L} = 0.043304...$$

 $\ln \mathcal{L} = -3.1395...$

Bad

e_{rs}/n_{rs}	red	blue
red	4/6	2/8
blue	2/8	1/1

$$\mathcal{L} = 0.000244...$$

 $\ln \mathcal{L} = -8.3178...$

Likelihood DC-SBM

$$\mathcal{L}(G|\vec{z},\gamma,\mathcal{M}) = \prod_{i,j} Poisson(\gamma_i \gamma_j \mathcal{M}_{z_i z_j})$$

$$= \prod_{i < j} \frac{(\gamma_i \gamma_j \mathcal{M}_{z_i z_j})^{A_{ij}}}{A_{ij}!} \exp(-\gamma_i \gamma_j \mathcal{M}_{z_i z_j}) \cdot (2)$$

$$\cdot \prod_{i} \frac{(\frac{1}{2} \gamma_i^2 \mathcal{M}_{z_i z_i})^{A_{ii}/2}}{(A_{ii}/2)!} \exp(-\frac{1}{2} \gamma_i^2 \mathcal{M}_{z_i z_i})$$

Maximum likelihood estimate for DC-SBM

$$\hat{\gamma}_i = \frac{k_i}{k_{z_i}}$$

•
$$\hat{\mathcal{M}}_{rs} = \omega_{rs}$$

•
$$\omega_{rs} = \sum_{i,j=1}^{N} A_{ij} \delta_{z_i r} \delta_{z_j s}$$
 and $k_r = \sum_s \omega_{rs} = \sum_i k_i \delta_{z_i r}$

$$ullet$$
 In $\mathcal{L}=\sum_{r,s}\omega_{rs}\lnrac{\omega_{rs}}{k_rk_s}$

Finding a good partition

• By finding the estimates of SBM and DC-SBM model parameters on \vec{z} we have only solved part of the problem

ullet We need to find the "good" partition or we need to find $ec{z}$

 Potential algorithms: Markov chain Monte Carlo, expectation-maximization, belief propagation, etc.

• Locally greedy heuristic (LGH), a generalized Kernighan-Lin algorithm for solving the minimum-cut graph partitioning problem

LGH: initialization

• Create \vec{z}_0 by assigning each node to a one of the c partitions uniform at random

ullet Calculate and record its log-likelihood $L_0=\mathcal{L}_0$

• Set t = 1 and set all nodes to be unfrozen

LGH: run a phase

- Phase lasts until t < N all nodes become frozen
- ullet Copy last partition from step t-1 $z_t=z_{t-1}$
- For each of the n-t unfrozen nodes in step t:
 - s is the curent group of node i
 - We move node i to group $r \in \{1, 2, ..., c\} s$ and calculate log-likelihood for that new partition and remember it as $(i, L^i_{s \to r}, r)$
 - of $(i, L^i_{s \to r}, r)$ keep the one with the most positive log-likelihood and store it in a set
 - reset z_t (move i back to s)
- **Greedy choice** of the (n-t) combinations (i, L, r), one for each unfrozen node, select the one with the most positive L
- Freez that node: set group of node i to be r, set L_t to be a new log-likelihood, and move to step t+1

LGH: evaluate the phase

• Among the (n+1) log-likelihoods L_0, \ldots, L_n identify the largest L^* and corresponding partition $\vec{z^*}$

• If $L^* \leq L_0$ then keep $\vec{z_0}$ and STOP

• If $L^* > L_0$ set $\vec{z_0} = \vec{z^*}$, $L_0 = L^*$ and start a new phase

LGH is only guaranteed to converge on a local optimum

• To be sure, you need to run this algorithm several times; the more the better

Number of communities - c

So far c was a free parameter

• Model regularizations: as we increase c the better the model should fit the data; if model for c is not much better than one for c-1 it is not worth it; there are many different ways to regularize a model

Community detection dilema

How we define what communities and the choice of an algorith have an enormous influence on what communities we find

```
Source: https://aaronclauset.github.io/courses/5352/csci5352_F22_L8.pdf
```

Further reading

Aaron Clauset Lecture notes:

- Lecture 7: https://aaronclauset.github.io/courses/5352/ csci5352_F22_L7.pdf
- Lecture 8: https://aaronclauset.github.io/courses/5352/csci5352_F22_L8.pdf