CS 189: Homework 2

William Guss 26793499 wguss@berkeley.edu

February 18, 2016

1.

2.

- 3. Let A be a positive definite matrix in $\mathbb{R}^{n \times n}$.
 - (a) Cionsider the following derrivation:

$$x^{T}Ax = x^{T} \begin{bmatrix} \sum_{j}^{n} a_{1j}x_{j} \\ \vdots \\ \sum_{j}^{n} a_{nj}x_{j} \end{bmatrix} = \sum_{i}^{n} \sum_{j}^{n} a_{ij}x_{i}x_{j}.$$
 (1)

(b)

Theorem 1. If A is positive definite, then the diagonals of A are positive.

Proof. Suppose that there is negative value on the diagonal, say a_{qq} . Then let $x=e_q$. If we apply the quadratic form we get $e_qA^Te_q=a_qq<0$. This contradicts the positive semidefiniteness of A.

- 4. Short Proofs.
 - (a) Assume problem (b).

Lemma 1. If A is a matrix with eigen values λ_n $A + \gamma I$ has eigenvalues $\gamma + \lambda_n$

Proof. If λ_n is an eigenvalue, then $Av_n = \lambda_n v_n$ for a corresponding eigenvector v. Furthermore

$$(A + \gamma I)v = Av + \gamma Iv = \lambda_n v + \gamma v = (\lambda_n + \gamma)$$
 (2)

which implies that $\lambda_n + \gamma$ is an eigen value of $A + \gamma I$. This completes the proof. \square

Theorem 2. If A is positive semidefinite and $\gamma > 0$, then $A + \gamma I$ is positive definite.

Proof. If A is positive definite then by the logic of the proof of (b),

$$x^T A x = \sum_{i} \lambda_i (x_i^T e_i)^2 \ge 0.$$
(3)

It follows that some $\lambda \geq 0$ since $x \neq 0$. Therefore by the previous lemma adding γ to the diagonal adds γ to every eigenvalue implying that all eigen values are positive. By (b), $A + I\gamma$ is positive definite therefore.

(b) Lolololol!

Theorem 3. A is positive definite if and only if all of its eigen values are more than θ .

Proof. Iff A is positive semidefinite then it is symmetric. Using spectral theorem we have that

$$x^{T}Ax = \sum_{i} (x^{T}e_{i})e_{i}^{T}Ax = \sum_{i} = x^{T}e_{i}e_{i}^{T}\lambda e_{i}^{T}x$$

$$= \sum_{i} \lambda_{i}(x^{T}e_{i})^{2} > 0$$

$$(4)$$

which is true if and only if all λ_i are more than 0.

(c)

Theorem 4. If A is positive definite then it is invertible.

Proof. The invertible matrix theorem states that a matrix is invertible if and only if all of its eigen values are more than 0. By the previous theorem if A is positive definite then all of its eigen values are positive and so it is invertible. \square

(d)

Theorem 5. If A is positive definite then there exist n linearly independent vectors so that $A_{ij} = x_i^T x_j$.

Proof. The statement of the theorem is true if and only if $A = B^T B$ where B is invertible. By spectral theorem we have that $A = U \Lambda U^T$ where $\Lambda = diag(\lambda_1, \ldots, \lambda_n)$. Furthermore $U^{-1} = U^T$. Let $\Omega = diag(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})$. Then, $\Omega^2 = \Lambda$. Let $W^T = U\Omega$ and $W = \Omega U^T$. So we have that W is still an orthonormal matrix and so $A = W^T W$. This completes the proof.

5. DERIVATIONS: (Assuming theorems from Math 105

(a) Consider the following derivation

$$\frac{\partial(x^T a)}{\partial x} = \frac{\partial(x)}{\partial x}^T a + \left(\frac{\partial(a)}{\partial x}\right)^T x = a.$$
 (5)

(b) Consider the following derivation

$$\frac{\partial(x^T A x)}{\partial x} = \frac{\partial(x^T)}{\partial x} A x + \frac{\partial(A x)}{\partial x}^T X = A x + A x^T \tag{6}$$

- (c) Consider the following derivation
- (d)

Theorem 6. If $x \in \mathbb{R}^n$

$$||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$
 (7)

Proof. Squaring the first two terms of the inequality shows that $||x||_2^2$ has fewer terms than $||x||_1$.

Now define the following vector, e, so that $e_i = 1$ if x_i is positive and $e_i = -1$ if x is negative. Then $\langle x, e \rangle = \sum_i |x_i| = ||x||_1$.

Cauchy schwartz says that $\langle x,e\rangle \leq \|x\| \|e\| = \|x\|_2 \sqrt{n}$. This completes the proof. \Box