ROOT LOCUS DIAGRAM

Thursday, November 26, 2020

9:04 AM

4) Å	ssymptotes:
1) /1	La Assymptates are the root locus branches which
appro ch	es to the 'so'
	L. The no. of assymptotes = N = P-Z
	p = No. of poles
	Z = No. of Zeros.
	Lo lingle of assymptotes = $8 = (29 + 1) \times 180$ -2
	where q: 0, 1, 2,3 ···
	La Assymptotes are symmetrical about the real axis.
NOTE:	Assymptotes gives the direction zeros when P>Z,
	, , , ,
5) C	Centroid: (o):
	Le Centroid is nothing but the intersection point
c	of assymptotes on the real axis.
	of = Summation of Real part of poles - Sum of R.P. of Zen
	P-Z
	ER.P. of poles - ER.P. of zeros
	P-Z
WOTE IS	Centroid may be located anywhere on the axis, it may
σ	r may not be on the root locus branch.
1	find the angle of assymptotes & centroids to the given
(gstem.
	$G(S) + G(S) = \frac{K}{S(S+5)(S+10)}$
Sa	8/11; No. of poles 10. P = 3
	$-1 - 2 \times 0$
	: N= P-Z= 3
	

6.	Breakpoint: The pt. at which two or more noof locus branches meets.
	meets.
	Break away point: - The pt at which the roof lows branches leaves the real axis.
	Break in point:- The pt. at which the root locus branches enters into real axis.
	Wheneng the root locus branches enters or leaves the real axis they always do so at an angle of (± 180)
	where 'n' is the no. of poles or no. of not locus branches at that Break Point.
	finding the existance of Break points:-
	cases: Whenever there exist two adjecently placed poles and in bet there exist root locus branch then there
	should exist at least one Break away point in Leph ridge- country placed poles. RL NRL NRL
4	BAP
6×(find the No. of Break away points. $9(5) N(1) = \frac{K}{5(5+2)(5+4)(5+6)}$ $0^{\frac{1}{2}} = \frac{2BAP}{4}$

	find the co-ordinates of Breakforth.
	G(S) M(s) = K(s+4) S (s+2)
63) N;	As poles & zeros both are present, follow the procedure.
NOT	E: For CE - 1 LET convert the O.L.T.F. into C.LT.F.
' _	
	pt step -> s2+ 2 s+ K(s+4) = 0
	$2^{\text{rd}} \text{ shap } \rightarrow k = \frac{-s^2 - 2s}{s}$
	5+4
	3 ^d step - $\frac{dk}{ds} = 0$; $\frac{(s+4)(-2s-2) - (-s^2-2s)1}{(s+4)^2} = 0$
	$-5 (5+4)(-25-2) - (-5^2-28) = 0$
	$-25^2 - 83 - 25 - 8 + 5^2 + 25 = 0$
	$-7 - 5^2 - 85 - 8 = 0$
	Amstep - S1 = -1.17, S2 = -6.82
	vadid valid
00	X>>>
2	-662 -A -2 J
	BENR BAR
7.	Intersection point with imaginary axis:-
	Air oo
	X
	× -

45 To 1	. Form the C.E.
2	Write the Routh tabulas form.
3	3. Find the Knowind value.
	1. Form Auxillary Eq. & the soots of Auxillary eq. will give valid & invalid intersection ptr.
NUT	E: For valid intersection pt, Knazginal shall be tre.
G	: Oi- find the infersection pt. with imaginary axis.
	$9(5) + (5) = \frac{1}{5(5+2)(5+4)}$
	5(5+2) (5+4)
	$s_0^n = s(s+2)(s+4) + k = 0$
	$(s^2 + 2s)(s+4) + k = 0$
	s3+ +s2+ 4s2+ 85+ 15 =0
	s3+6s2+8s+K=0-
	For system to be marginally stable
	intend prod = axt, prod
	1.e. 48 = Kmazginal
	Routh Tabella for:-
	s ³ / 1 8
	s^2 6 $\kappa \rightarrow A \cdot Eq^2 = 6s^2 + \kappa = 0$
	5^{1} $48-16$ $65^{2}+49=0$
	60 6
	$S^{2} = -48$ $S^{2} = -48$ G
	Valid int. pt s2: -8
	S=tj\8
8.	Lingle of Departure and Angle of assival:
	X504·

	- Angle of deportus (pd) is calculated at complex conjugate poles and angle of arrival (pa) is calculated at complex
	Conjugate zero
	Angle of Departure (pd):-
	It gives that with what angle the
	pole deposits or leaves from initial position.
	$\phi_d = 180 + LG(s)q(s)$ at the ing complex pole.
	or. \$d = 180° - \$
	Where \$ = (\(\frac{2}{p} - \frac{2}{p} \)
	Dugle of assival (pa):
	If gives that with what angle
	the pole arriver or terminates near the complex zero
	\$a = 180-LGG)M(1) at the ing complem Ze
	ØV
	\$a = 180 + \$
	Ø = Z\$ p - Z\$Z
B	G: Calculate the angle of departure at a complex pole. $G(S) + G(S) = \frac{K(S+2)(S+4)}{(S^2+2S+2)}$
~ 3	RL (S+1+j) (S+1-j)
	2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	(3+1+)) = (3+1+))

