

Lecture

Search Problem Formulation

Formulation

- 1. Initial State
- 2. Action Space
- 3. Transition function
- 4. Goal test function
- 5. Cost function

State Space

Search Problem

> Search Algorithm

Search Tree

Uninformed - Search Strategies

Strategy 1: Dept-First Search (DFS) "Highest-level" selected

3. Time complexity

O(b^m)

b = number of

O(b^m)

M = maximum depth

4. Space complexity

(bm)

Frontier		Search Tree	Explored Set		
Node	Level	(\$)	State		
1 5	0	(b) (e) (P)	S ₁		
2 d 6 e	1		d 2 b 3		
P 3 b	2		۸ 4		
C	2	CXG	C 5		
4 a	3 2				
r	2	Plan: S > e > r > f > 6			
f b	3	cost: 4 steps			

Strategy 2: Breadth-First Search (BFS) "Lowest-level" selected

- 1. Completedness b 1s finite, Yes b is intinite, No
- 2. Optimality
 Yes *Shortest but
 Not always minimum
 cost
- 3. Time complexity
 5: shortest
- 4. Space complexity

 (bs)

Frontier		Search Tree	Explored Set
Node	Level	(5)	State
1 23456 1 23456 1 23456	0 1 1 1 2 2 2 2 2	Plan: 5 -> e -> r -> 9 Cost: 4 steps	S 1 2 3 4 5 C

Strategy 3: Iterative - Deepening Search (IDS)

DFS Combining BFS

Not Uptimal Optimal (shortest)
Memory: O(bm)
Memory: O(bm)

Iterative - Deepening Survolu

Round 1: Run a DFS with depth limit 1,
if no solution... (go next Round)

Round 2: Run a DFS with depth limit 2,
if no solution... (go next Round)

Round n: Run a DFS with depth limit n + step

(TO 00)

1. Completedness

BFS: b is finite, Yes

end Leutre 3

2. Optimality

3. Time complexity

Quiz Renun

4. Space complexity

DES: 0 (pw)

Strategy 3: Herative - Deepening Search (IDS)

Where we need to stop?

Ans: Care Depth Unit / Depth bound

Depth	Front	tier	Search Tree	Explored Set
(IMI)	Node	Level	©.	State
U			()	S
1	S	Ozero	G @ P Goal	Sdep
2,	d e P	1	do it unti maxi num if will s	<i>†</i> "

Strategy 4: Uniform Cost Search (UCS) "lowest gon"

selected

7. Completedness

2. Optimality

(minimum cost)

3. Time complexity

4. Space complexity

Frontier		Search Tree	Explored Set
Node	g cn)	3 (5) 1	State
5 1	0	1 63 60 P	5 1
de	3	(b) 4) (c) (1) (b) 5)	Pı
e 3 P 4	9 1	l like the state of the state o	43
9 5	15		b ₄
e	312 = 5		C ₅
		plan: s ->d ->e->r-	→f -> g
		Cost: 11	

Informed Search Strategies

Uninformed search

Informed search

Heuristic Function: h(s) - heuristic cost h*(s) - estimated cost

- Informed search
- estimate agent -> goal
- not the best solution

$$g(A \rightarrow C) = 5, h(c) = 40$$

$$g(A \rightarrow C) = 5, h(c) = 40$$

Example: Heuristic Function for Pathfinding

Euclidean distance

$$N(S) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Manhattan distance

$$h(s) = |x_1 - x_2| + |y_1 - y_2|$$

1. Completed ress	
yes No	* bad heuristic
2. Optimality	

Frontier		Search Tree	Explored Set
Node	h(5)	(S) State	
S ₁	7	J E P	S
4	4.5 1.5	(F) (G)	e ₂
e ₂	6	E	r ₃
rs h	2.5	<u>©</u>	t .
n t ₄	1.5	Man: S -> e -> r ->	f - 6 6 ₅
`4 65		Cost: 7+1.5+2.5+1.5	
• 5		= (2.5	

Uniform Cost Search (UCS)

Greedy-best First Search (GS)

f(n) = g(n) + h(s of n)

Strategy 6: A* Search

Lowest fins

	State	N(S)	State	h(s)	L
	S	7	+	1.5	
	\ a	4	n	3	
	Ь	5.5	P	Ь	
	C	2	9	4.5	
1	٩	4.5	r	2.5	
f(n) = g(n) + h(s)	e	1.5	6	0	
~			\bot		_

1. Completed ress Yes

2. Optimality

Yes

3. Time Complexity

() (be)

4. Space Complexity

(b (b)

Frontier	Search Tree	Explored Set
Node f(n)	S	State
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.5	S ₁ P ₂ d ₃ e ₄

Sunnery

- 1. Initial State
- 2. Possible autions
- 3. Transition function
- 4. G.al test function
- 5. Cost function

- 1. DFS Highest level
- 2. BFS Lowet level
- 3. 1PS
- 4. UCS Lovest gcn)
- 5.65 Louist his)
- 6. Ax Lovest fin)

L Admissibility Consistoncy