(variational) Bayesian inference

J. Daunizeau

ICM, Paris, France TNU, Zurich, Switzerland

Overview of the talk

- ✓ Introduction to Bayesian inference
- ✓ The variational approach to approximate Bayesian inference
- ✓ VBA toolbox

Overview of the talk

- ✓ Introduction to Bayesian inference
- ✓ The variational approach to approximate Bayesian inference
- ✓ VBA toolbox

Probability theory: basics

Degree of plausibility desiderata:

should be represented using real numbers	(D1)
--	------

- ☐ should conform with intuition (D2)
- ☐ should be consistent (D3)

→ normalization:

$$\sum_{a} P(a) = 1$$

 \rightarrow marginalization:

$$P(b) = \sum_{a} P(a,b)$$

 \rightarrow conditioning :

$$P(a,b) = P(a|b)P(b)$$

$$= P(b|a)P(a)$$

Deriving the likelihood function

- Model of data with unknown parameters:

$$y = f(\theta)$$

e.g., GLM:
$$f(\theta) = X\theta$$

- But data is noisy: $y = f(\theta) + \varepsilon$

$$y = f(\theta) + \varepsilon$$

- Assume noise/residuals is 'small':

$$p(\varepsilon) \propto \exp\left(-\frac{1}{2\sigma^2}\varepsilon^2\right)$$

→ Distribution of data, given fixed parameters:

$$p(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-f(\theta))^2\right)$$

Probabilistic model inversion

Posterior inference on model parameters

Likelihood: $p(y|\theta,m)$

Prior: $p(\theta|m)$

Bayes rule: $p(\theta|y,m) = \frac{p(y|\theta,m) p(\theta|m)}{p(y|m)}$

Bayesian model comparison

Principle of parsimony:

« plurality should not be assumed without necessity »

Model evidence:

$$p(y|m) = \int p(y|\theta,m)p(\theta|m)d\theta$$

"Occam's razor":

Bayesian versus frequentist hypothesis testing

• define the null, e.g.: $H_0: \theta = 0$

- estimate parameters (obtain test stat.)
- apply decision rule, i.e.:

if
$$P(t > t * | H_0) \le \alpha$$
 then reject H0

• define two alternative models, e.g.:

$$m_0: p(\theta|m_0) = \begin{cases} 1 & \text{if } \theta = 0\\ 0 & \text{otherwise} \end{cases}$$
$$m_1: p(\theta|m_1) = N(0, \Sigma)$$

apply decision rule, e.g.:

if
$$\frac{P(m_0|y)}{P(m_1|y)} \ge \alpha$$
 then accept m_0

Bayesian model comparison

classical (null) hypothesis testing

Group-level model selection

Family-level inference

 $P(m_1|y) = 0.04$

 $P(m_2|y) = 0.01$

 $P(m_2|y) = 0.25$

 $P(m_2|y) = 0.7$

model selection error risk:

$$P(e=1|y) = 1 - \max_{m} P(m|y)$$
$$= 0.3$$

Family-level inference

 $P(f_2|y) = 0.95$

model selection error risk:

$$P(e=1|y) = 1 - \max_{m} P(m|y)$$
$$= 0.3$$

family inference (pool statistical evidence)

$$P(f|y) = \sum_{m \in f} P(m|y)$$

$$P(e=1|y) = 1 - \max_{f} P(f|y)$$
$$= 0.05$$

Priors and the bias-variance trade-off

Type, role and impact of priors

- Types of priors:
 - ✓ Explicit priors on model parameters (e.g., Gaussian)
 - ✓ Implicit priors on *model functional form* (e.g., evolution & observation functions)
 - ✓ Choice of "interesting" data features (e.g., response magnitude vs response profile)
- Role of explicit priors (on model parameters):
 - ✓ Resolving the *ill-posedness* of the inverse problem
 - ✓ Avoiding overfitting (cf. generalization error)

- Impact of priors:
 - ✓ On parameter posterior distributions (cf. "shrinkage to the mean" effect)
 - ✓ On model evidence (cf. "Occam's razor")

Overview of the talk

- ✓ Introduction to Bayesian inference
- ✓ The variational approach to approximate Bayesian inference
- ✓ VBA toolbox

Why do we need approximations?

The Laplace approximation

$$t(\theta) = \ln p(y|\theta, m) + \ln p(\theta|m)$$

$$\approx t(\hat{\theta}) + (\theta - \hat{\theta})^{\mathrm{T}} \frac{\partial t}{\partial \theta|_{\hat{\theta}}} + \frac{1}{2} (\theta - \hat{\theta})^{\mathrm{T}} \frac{\partial^{2} t}{\partial \theta^{2}|_{\hat{\theta}}} (\theta - \hat{\theta})$$

$$\xrightarrow{-H(\hat{\theta})}$$

$$\ln p(y|m) = \ln \int \exp(t(\theta)) d\theta$$

$$\approx t(\hat{\theta}) + \frac{p}{2} \ln 2\pi - \frac{1}{2} \ln |H(\hat{\theta})|$$

$$F_{\text{Laplace}}$$

The Free energy lower bound

$$F = \left\langle \ln p(y|\theta, m) + \ln p(\theta|m) \right\rangle_{q} + S(q)$$

$$= \left\langle \ln p(y|\theta, m) \right\rangle_{q} - KL \left(p(\theta|m) ; q(\theta) \right)$$

$$= \ln p(y|m) - KL \left(p(\theta|y, m) ; q(\theta) \right)$$

VB and the Free Energy

$$\ln p(y|m) = F(q) + KL(p(\theta|y,m);q(\theta))$$

ightarrow VB: maximize the free energy F(q) w.r.t. the approximate posterior $q(\theta)$ under some (e.g., mean field, Laplace) simplifying constraint

The mean-field approximation

$$F = \left\langle \ln p(y|\theta, m) + \ln p(\theta|m) \right\rangle_q + S(q)$$

$$q(\theta) \approx q_1(\theta_1) q_2(\theta_2)$$

$$\frac{\delta F}{\delta q_2} = 0 \Rightarrow q_2(\theta_2) \propto \exp\left(\ln p(y|\theta, m) + \ln p(\theta|m)\right)$$

The frequentist limit to the model evidence

$$F = \left\langle \ln p(y|\theta, m) + \ln p(\theta|m) \right\rangle_{q} + S(q)$$

$$\xrightarrow{\frac{p(\theta) \to 1}{\text{flat priors}}} \left\langle \ln p(y|\theta, m) \right\rangle_{q} + S(q)$$

$$\xrightarrow{\frac{q(\theta) \to \delta(\hat{\theta})}{\text{point mass approximation}}} \ln p(y|\hat{\theta}, m)$$
frequentist log-likelihood

BIC and **AIC**

→ BIC: Laplace approximation at the asymptotic limit

$$\Sigma \xrightarrow{n \to \infty} \frac{1}{n} I_p$$

$$F_{\text{Laplace}} \xrightarrow{n \to \infty} \ln p \left(y \middle| \hat{\theta}, m \right) - \frac{p}{2} \ln n$$
BIC

→ AIC: approximation to a frequentist KL-divergence risk!

$$AIC = \ln p(y|\hat{\theta}, m) - p$$

Overview of the talk

- ✓ Introduction: Bayesian inference
- ✓ The variational approach to approximate Bayesian inference
- ✓ VBA toolbox

The three core mathematical problems of VBA

Selection error rate and the Laplace-Chernoff risk

$$b_{LC}(u) = 1 - \frac{1}{2} \log \left(\frac{\Delta g(u)^2}{4\tilde{Q}(u)} + 1 \right) \quad \text{if} \quad \tilde{Q}_1(u) \approx \tilde{Q}_2(u) \equiv \tilde{Q}(u)$$

VBA: model structure

- evolution parameters
- stochastic innovations variance

VBA: how to?

- ✓ You need to provide:
 - The data
 - The system's inputs (can be left blank)
 - The observation and evolution functions (the latter can be left blank)
 - The model dimensions

- ✓ You can specify (otherwise VBA uses defaults):
 - The priors (mean and covariances)
 - Inversion options (free-energy tolerance, display flag, etc...)

Model inversion diagnostics (I)

Model inversion diagnostics (II)

Model improvement

Statistical features

- ✓ Mediation analysis (Sobel test, Monte-Carlo sampling)
- ✓ Cross-validation (balanced accuracy, PRESS, etc...)
- ✓ Missing data handling
- ✓ Sparse estimation (approximate lasso)
- ✓ Autoregressive and/or state-dependent noise
- ✓ Arbitrary likelihood functions (e.g., reaction time distributions...)
- ✓ Mixed-effects modelling (empirical priors based upon group statistics)
- ✓ Clustering and Dirichlet processes
- ✓ On-line adaptive experimental designs
- **√** ...

VBA's (growing) library of models

- ✓ Learning models (Q-learning, hierarchical Bayesian learning, etc...)
- ✓ Decision models (delay/risk/effort discounting, etc...)
- ✓ Neural systems models (DCM, Hodgkin-Huxley, Fitz-Hugh-Nagumo, etc...)
- ✓ Dynamical systems models (double-well, Lorenz attractor, Henon map, etc...)
- **√** ...
- ✓ Recursive Theory of Mind
- ✓ Spiking models for calcium imaging
- ✓ Race models and other variants of diffusion-drift models
- **√** ...

Acknowledgements

✓ Karl J Friston, Klaas E Stephan

✓ Lionel Rigoux

✓ members of the MBB team