In [3]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

In [6]: data = pd.read_csv('Indicators.csv')

In [7]: data.size

Out[7]: 33938748

In [8]: | data.head()

Out[8]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
0	Arab World	ARB	Adolescent fertility rate (births per 1,000 wo	SP.ADO.TFRT	1960	1.335609e+02
1	Arab World	ARB	Age dependency ratio (% of working-age populat	SP.POP.DPND	1960	8.779760e+01
2	Arab World	ARB	Age dependency ratio, old (% of working-age po	SP.POP.DPND.OL	1960	6.634579e+00
3	Arab World	ARB	Age dependency ratio, young (% of working-age	SP.POP.DPND.YG	1960	8.102333e+01
4	Arab World	ARB	Arms exports (SIPRI trend indicator values)	MS.MIL.XPRT.KD	1960	3.000000e+06

In [9]: india_data = data[data['CountryCode'].str.contains('IND')]

In [10]: india_data.head()

Out[10]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
11561	India	IND	Adolescent fertility rate (births per 1,000 wo	SP.ADO.TFRT	1960	103.938000
11562	India	IND	Age dependency ratio (% of working-age populat	SP.POP.DPND	1960	76.559538
11563	India	IND	Age dependency ratio, old (% of working-age po	SP.POP.DPND.OL	1960	5.403730
11564	India	IND	Age dependency ratio, young (% of working-age	SP.POP.DPND.YG	1960	71.155808
11565	India	IND	Agriculture, value added (% of GDP)	NV.AGR.TOTL.ZS	1960	42.561131

In [11]: population_indicator = india_data[india_data['IndicatorName'].str.contains('Popul

In [12]: population_indicator.head()

Out[12]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
11758	India	IND	Population, total	SP.POP.TOTL	1960	449661874.0
36711	India	IND	Population, total	SP.POP.TOTL	1961	458691457.0
64254	India	IND	Population, total	SP.POP.TOTL	1962	468054145.0
92704	India	IND	Population, total	SP.POP.TOTL	1963	477729958.0
121503	India	IND	Population, total	SP.POP.TOTL	1964	487690114.0

In [13]: co2emission_indicator = india_data[india_data['IndicatorName'].str.contains('CO2

In [14]: | co2emission_indicator.head()

Out[14]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
11577	India	IND	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	1960	0.268161
36513	India	IND	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	1961	0.284292
64049	India	IND	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	1962	0.306519
92493	India	IND	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	1963	0.322533
121290	India	IND	CO2 emissions (metric tons per capita)	EN.ATM.CO2E.PC	1964	0.308900

```
In [15]: mask = population_indicator['Year']<=2011
    population_indicator = population_indicator[mask]</pre>
```

```
In [16]: print(population_indicator['Year'].max() , co2emission_indicator['Year'].max())
    print(population_indicator['Year'].min() , co2emission_indicator['Year'].min())
```

2011 2011 1960 1960

```
In [17]: plt.plot(population_indicator['Value'] ,co2emission_indicator['Value'])
    plt.xlabel(population_indicator['IndicatorName'].iloc[0]+' (Billion)', size = 15)
    plt.ylabel(co2emission_indicator['IndicatorName'].iloc[0])
    plt.title('Population vs CO2 Emission')
    plt.show()
```



```
In [58]: population_indicator = india_data[india_data['IndicatorName'].str.contains('Popul
```

In [19]: population_indicator.tail()

Out[19]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
4929882	India	IND	Population growth (annual %)	SP.POP.GROW	2010	1.374351
5111651	India	IND	Population growth (annual %)	SP.POP.GROW	2011	1.328401
5287334	India	IND	Population growth (annual %)	SP.POP.GROW	2012	1.285832
5453470	India	IND	Population growth (annual %)	SP.POP.GROW	2013	1.251191
5585598	India	IND	Population growth (annual %)	SP.POP.GROW	2014	1.226730

```
In [20]: plt.plot(population_indicator['Year'],population_indicator['Value'])
    plt.xlabel('Year', size=15)
    plt.ylabel(population_indicator['IndicatorName'].iloc[0])
    plt.title('Population growth')
    plt.show()
```



```
In [41]: population_indicator = india_data[india_data['IndicatorName'].str.contains('Popul
```

```
In [22]: plt.plot(population_indicator['Year'],population_indicator['Value'])
    plt.xlabel('Year', size=13)
    plt.ylabel(population_indicator['IndicatorName'].iloc[0]+'(Billion)', size = 13)
    plt.title('Population Rise')
    plt.show()
```



```
In [23]: natural_resources_depletion = india_data[india_data['IndicatorName'].str.contains
```

In [24]: natural_resources_depletion.head()

Out[24]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
328934	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1970	1.779013
394096	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1971	1.554959
463093	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1972	1.527562
532794	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1973	2.138715
602684	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1974	2.537905

In [25]: mask = population_indicator['Year']>=1970
 population_indicator = population_indicator[mask]
 population_indicator = population_indicator[:-1]

In [26]: print(population_indicator['Year'].min(),population_indicator['Year'].max())
print(natural_resources_depletion['Year'].min(),natural_resources_depletion['Year'].min()

1970 2013 1970 2013

In [27]: | natural_resources_depletion.head()

Out[27]:

	CountryName	CountryCode	IndicatorName	IndicatorCode	Year	Value
328934	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1970	1.779013
394096	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1971	1.554959
463093	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1972	1.527562
532794	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1973	2.138715
602684	India	IND	Adjusted savings: natural resources depletion	NY.ADJ.DRES.GN.ZS	1974	2.537905

```
In [28]: plt.plot(population_indicator['Value'],natural_resources_depletion['Value'])
    plt.ylabel('natural_resources_depletion(% of GNI)',size=10)
    plt.xlabel(population_indicator['IndicatorName'].iloc[0]+'(Billon)',size = 13)
    plt.title('Population growth')
    plt.show()
```



```
In [29]: co2_from_transport = india_data[india_data['IndicatorName'].str.contains('CO2 emi
```



```
In [55]: lif_exp = india_data[india_data['IndicatorName'].str.contains('Life expectancy at
In [59]: population_indicator = population_indicator[:-1]
    print(population_indicator['Year'].min(), population_indicator['Year'].max())
    print(lif_exp['Year'].min(), lif_exp['Year'].max())

1960 2013
1960 2013
In [60]: plt.lotp(population_indicator['Value'],lif_exp['Value'])
    plt.ylabel(lif_exp['IndicatorName'].iloc[0],size=10)
    plt.xlabel(population_indicator['IndicatorName'].iloc[0]+'(Billon)',size = 13)
    plt.title('Graph')
    plt.show()
```


In []: