6. Prepare a report like below:

Take Interarrival times = exponential with mean 1/3

Take Service times = exponential with mean 1/4

Run the Simulation for 3 cases: num_delays until 10, 50 and 100 customers.

And fill up the following table for each case.

For, delay count = 10

Performance	FIFO	LIFO	SJF
Measure			
Average Delay	0.029999	1.059999	0'059999
Expected Number of Customers in the queue	0.061224	0'06122	0.006247
Expected Utilization of the server-1	0.2094	0.5094	0'05198
Expected Utilization of the server-2	0.4694	0.46939	0'047897

Submission Instructions:

1. There will be 2 submission links. In one link, you have to upload your code (.py file) and you have to upload your report(.pdf) on another link.

6. Prepare a report like below:

Take Interarrival times = exponential with mean 1/3

Take Service times = exponential with mean 1/4

Run the Simulation for 3 cases: num_delays until 10, 50 and 100 customers.

And fill up the following table for each case.

For, num-delays until 50

Performance Measure	FIFO	LIFO	SJF
Average Delay	0'0598	0.0221	0.0221
Expected Number of Customers in the queue	0'1196	0.1101	0.00 44 0
Expected Utilization of the server-1	0.4649	0.4609	6.01843
Expected Utilization of the server-2	0.3281	0.3321	0.0133

Submission Instructions:

1. There will be 2 submission links. In one link, you have to upload your code (.py file) and you have to upload your report(.pdf) on another link.

6. Prepare a report like below:

Take Interarrival times = exponential with mean 1/3

Take Service times = exponential with mean 1/4

Run the Simulation for 3 cases: num_delays until 10, 50 and 100 customers.

And fill up the following table for each case.

For num-delans until 100					
Performance	FIFO	LIFO	SJF		
Measure					
Average Delay	0.1017	6.1111	0'1111		
Expected Number of Customers in the queue	0,2479	0.2708	6,0066		
Expected Utilization of the server-1	0.5443	0.3381	0.01312		
Expected Utilization of the server-2	013843	0.3906	0.0095		

Submission Instructions:

1. There will be 2 submission links. In one link, you have to upload your code (.py file) and you have to upload your report(.pdf) on another link.