陈舟车 715班 202028014728006·

中国种学院大学

University of Chinese Academy of Sciences

10. 未解系统的状态变量解析(t), Xi(t).
[xi] = [0 1][xi] + [2] U 解,已知系统矩阵十二一之子 故e*+= L+[(sI-A)+] #(SI-A)-1= (5+2)(5+1)(5+1) (5+2) (5+1) · 支中(SI-A)= [3 -1 2. 5+3 1 e At = [((SI - A) -1) $= 2e^{-t} - e^{-2t} - e^{-t} - e^{-2t}$ -le-t+le=t -e-t/le=1 系统在初始状态的系输入同时作用下的状态运动表达式和 $+ \int_{0}^{t} \left[\frac{2e^{-(t-t)} - e^{2(t-t)}}{-2e^{-(t-t)} + 2e^{-2(t-t)}} - e^{-(t-t)} + 2e^{-2(t-t)} \right] \left[\frac{1}{2} \right] e^{-t} d\tau$ 14te-t-2e-t+2e-2t + e-t-e-2t -4+e-++4e-+-4e-++(-e-+2e-2+) 故, 经的状态空量为 [NH)]=[(4t-1)e-t+e-2t. (-4t+) e-t-2e-2t 页 第

中国种学院大学

University of Chinese Academy of Sciences

L 已知不致差分方程:
y(k+2) +3y(k+1) +2y(k) =2u(k+1) +3u(k).
此写出离散 动态方程,
所: 盛对上述给出的基分方程: 做 七交接, 可律:
$z^2 y(z) + 3z y(z) + 2y(z) = 2z u(z) + 3u(z)$
$\frac{1}{1}\frac{y(t)}{y(t)} = \frac{2t+3}{2^2+32+12}$
/ y(z) = (2++3)X(z),
U(t) = (22+32+4) x(t),
(x,(k)=x(k), x(k*)= x2(k)=x1(k+1).
故可得如下状态注:
$ \begin{bmatrix} \chi_{1}(k+1) & 0 & 1 \\ \chi_{2}(k+1) & -2 & -3 \end{bmatrix} \begin{bmatrix} \chi_{1}(k) & 1 \\ \chi_{2}(k) & 1 \end{bmatrix} $
$y(k) = \begin{bmatrix} 3 & 2 \end{bmatrix} \begin{bmatrix} \chi(k) \end{bmatrix}$
$\begin{bmatrix} \chi_2(k) \end{bmatrix}$

年 月 日 第 页

中国种学院大学

University of Chinese Academy of Sciences

16. 试成下面连续系统的离散无状态方程

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \quad T=2$$

$$\hat{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \hat{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$=\begin{bmatrix} 1 & t \end{bmatrix}$$

$$H = \int_{0}^{T} \left[\int_{0}^{t} \frac{t}{t} \right] dt \cdot \left[\int_{0}^{t} \right] = \int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt \cdot \left[\int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt \right] = \int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt = \left[\int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt = \left[\int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt \right] = \int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt = \left[\int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt + \left[\int_{0}^{t} \frac{t}{t} \right] dt = \left[\int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt + \left[\int_{0}^{t} \frac{t}{t} \right] dt = \left[\int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt + \left[\int_{0}^{t} \frac{t}{t} \right] dt = \left[\int_{0}^{2} \left[\int_{0}^{t} \frac{t}{t} \right] dt + \left[\int_{0}^{t} \frac{t}{t} \right] dt + \left[\int_{0}^{t} \frac{t}{t} \right] dt + \left[\int_{0}^{t} \frac{t}{t} \right] dt = \left[\int_{0}^{t} \frac{t}{t} \right] dt + \left[\int_{0}^{t} \frac{t}{t} \right] dt +$$

$$\mathcal{D}(x) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \times (k) + \begin{bmatrix} 2 \\ 2 \end{bmatrix} u(k)$$

年 月 日 第 页