Experiment 00

Followed this srsRAN tutorial to perform an S1 handover

Running Tests

- 1. Copy configs/ to ~/.config/srsran/.
- 2. Run the enb1, enb2 and ue (see srsRAN/README.md file). This is simplified if you have a tmux session named main with a pane named nodes. This allows you to run start_nodes.sh (and variants) and stop_nodes.sh. This does not start the grc.
- 3. Start gnuradio with uav_experiments.grc, OR compile to python with grcc uav_experiments.grc and run with python3

Test 1 (using rr_enb1.conf and rr_enb2.conf)

- 1. Set enb1 multiply constant to a value such that the connected ue gives a -68dBm RSRP.
- 2. Increment the enb2 multiply constant, noting down its Neighbour RSRP given by the UE
- 3. Note when handover occurs.
- 4. Save the data in a csv, and run Graph.ipynb

Results

As with the paper @powellHandoverExperimentsUAVs2021, handover occurs when the neighbour RSRP is 3dB higher than the serving RSRP. This leads us to conclude that the standard hyteresis margin is 3dB in srsRAN.

Handover Experiments Paper Figure 4:

Fig. 4: S1 handover using ZMQ from local BS to neighbor.

Personal Results

Test 2 (updating hysteresis key)

Hypothesis: The hysteresis filed in the rr.conf files sets the hysteresis of the enb nodes

- 1. Create rr_enb(1|2)_hyst(1|5).conf files, with the only change being setting the hysteresis value to 1 and 5 respectively
- 2. Set enb1 multiply constant to a value such that the connected ue gives a -68dBm RSRP.
- 3. Increment the enb2 multiply constant, noting down its Neighbour RSRP given by the UE
- 4. Note when handover occurs.
- 5. Save the data in a csv, and run Graph.ipynb

Results

In the case where hysteresis is 1, handover still only occures when neighbour is 3dB higher. In the case where hysteresis is 5, handover occures at a 5dB margin.

New Hypothesis: Handover occures at 3dB, or the hysteresis value, whichever is higher.

Test 3 (changing source)

Hypothesis: In the code there must be a 3dB offset to the added **hysteresis** value We are specifically looking at an A3 event. In the srsRAN_4G codebase, we find this code:

srsue/src/stack/rrc/rrc_meas.cc:864

Here we can see there are multiple confounding variables. Variables suffixed with n are related to the target cell, -s related to source cell. Of is a frequency specific offset, and Oc is a cell specific offset. To determine which of the variables is at play, Off the A3 offset is set to zero (Off = 0;) and Test 1 is reran

Results

We now see handover occurring the moment the target cell has a higher RSRP. On further examination, the A3 offset is specified in the rr.conf file under a3_offset = 6. What is not currently understood is why the offset is halved in the code, along with the Hysteresis on line 794

```
double hyst = 0.5 * report_cfg.trigger_type.event().hysteresis;
```

Furthermore, the code seems to exist in the <u>srsue</u> component, however handover is triggered by the enb. To investigate further.

where \$\$\begin{aligned}\text{Of} &= \text{Frequency Offset} \text{Target} - \text{Frequency Offset}\\text{Source} \ \text{Oc} &= \text{Cell Offset} \text{Target} - \text{Cell Offset}\\text{Source}\\end{aligned}\$\$ for the default setup, \$\text{Of}=0\$ and \$\text{Oc}=0\$

For the rest of the project, we will assume that A3 Offset, Of, and Oc are set to zero (or included in Hysteresis).

• [] TODO: Use cell specific offsets in the ML network outputs

Bibliograph

[1] K. Powell, A. Yingst, T. F. Rahman, and V. Marojevic, 'Handover Experiments with UAVs: Software Radio Tools and Experimental Research Platform', in Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization, in WiNTECH'21. New York, NY, USA: Association for Computing Machinery, Oct. 2021, pp. 39–45. doi: 10.1145/3477086.3480841.