1. Пример работы алгоритма быстрого возведения в степень с модульной арифметикой

$$x = a^{z} \mod m$$

 $a = 3, z = 7, m = 5$
 $3^{7} * \mod 5 = 3 * 3^{6} \mod 5 = 3 * (3^{3})^{2} \mod 5 = 3 * (3 * 3^{2})^{2} \mod 5 = 2$

а1 (основание степени)	z (степень)	х (результат)	Шаги выполнения
3	7	1	0
3	6	$(1*3) \mod 5 = 3$	1
$(3*3) \mod 5 = 4$	3	3	2
4	2	$(3*4) \mod 5 = 2$	3
$(4*4) \mod 5 = 1$	1	2	4
1	0	$(2 * 1) \mod 5 = 2$	5

$$x = 3^7 * mod 5 = 2$$

2. Пример поиска случайного первообразного корня

Задано простое p = 13.

Ищем простые делители: p - 1 = 12 = 2 * 2 * 3.

Простые делители: 2 и 3.

Число будет первообразным корнем, если $g^{\frac{p-1}{q}} \not\equiv 1 \bmod p$, где g – возможный первообразный корень, а q – простой делитель.

_			Первообразный
g			корень
2	$2 \land (12/2) \mod 13 = 12$	$2 \land (12/3) \mod 13 = 3$	да
3	3 ^ (12/2) mod 13 = 1	$3 \land (12/3) \mod 13 = 3$	нет
4	$4 \land (12/2) \mod 13 = 1$	$4 \land (12/3) \mod 13 = 9$	нет
5	5 ^ (12/2) mod 13 = 12	$5 \land (12/3) \mod 13 = 1$	нет
6	6 ^ (12/2) mod 13 = 12	$6 \land (12/3) \mod 13 = 9$	да
7	7 ^ (12/2) mod 13 = 12	$7 \land (12/3) \mod 13 = 9$	да
8	8 ^ (12/2) mod 13 = 12	$8 \land (12/3) \mod 13 = 1$	нет
9	9 ^ (12/2) mod 13 = 1	$9 \land (12/3) \mod 13 = 9$	нет
10	$10 \land (12/2) \mod 13 = 1$	$10 ^(12/3) \mod 13 = 3$	нет
11	11 ^ (12/2) mod 13 = 12	11 ^ (12/3) mod 13 = 3	да
12	12 ^ (12/2) mod 13 = 1	$12 ^(12/3) \mod 13 = 1$	нет

Первообразные корни: 2, 6, 7, 11.

3. Пример работы расширенного алгоритма Евклида с взаимно простыми числами

$$x_1*a + y_1*b = HOД (a, b),$$

 $a = 123, b = 101, (a, b) = 1$

Итерация	q	ao	aı	X 0	X1	y ₀	y 1
0	-	123	101	1	0	0	1
1	1	101	22	0	1	1	-1
2	4	22	13	1	-4	-1	5
3	1	13	9	-4	5	5	-6
4	1	9	4	5	-9	-6	11
5	2	4	1	-9	23	11	-28
6	4	1	0	23	-101	-28	123

$$x_1 = 23$$
, $y_1 = -28$;
 $23 * 123 + (-28) * 101 = 1$.