

Datastores

MATLAB® for Data Processing and Visualization

Duy NGUYEN Engineering Development Group

■ Import data efficiently in MATLAB using datastores

- Import data efficiently in MATLAB using datastores
- Specify variables and types to read

- Import data efficiently in MATLAB using datastores
- Specify variables and types to read
- Import and merge data from multiple sources

- Import data efficiently in MATLAB using datastores
- Specify variables and types to read
- Import and merge data from multiple sources
- Visualize data with 2- and 3-dimensional customized plots

Underlying issues

■ Huge file sizes

- Huge file sizes
- Thousands of files in multiple subfolders

- Huge file sizes
- Thousands of files in multiple subfolders
- Arbitrary, non sequential file names

- Huge file sizes
- Thousands of files in multiple subfolders
- Arbitrary, non sequential file names
- Header lines, lines that are comments

- **■** Huge file sizes
- Thousands of files in multiple subfolders
- Arbitrary, non sequential file names
- Header lines, lines that are comments
- Different delimiters

- **■** Huge file sizes
- Thousands of files in multiple subfolders
- Arbitrary, non sequential file names
- Header lines, lines that are comments
- Different delimiters
- Different data types

- **■** Huge file sizes
- Thousands of files in multiple subfolders
- Arbitrary, non sequential file names
- Header lines, lines that are comments
- Different delimiters
- Different data types
- Whitespaces

- **■** Huge file sizes
- Thousands of files in multiple subfolders
- Arbitrary, non sequential file names
- Header lines, lines that are comments
- Different delimiters
- Different data types
- Whitespaces
- ..

■ A datastore is a particular type of MATLAB object

- A datastore is a particular type of MATLAB object
 - ▶ It is used to read a single file or a collection of files or data

- A datastore is a particular type of MATLAB object
 - ▶ It is used to read a single file or a collection of files or data
- A datastore acts as a reference to a data source

- A datastore is a particular type of MATLAB object
 - ▶ It is used to read a single file or a collection of files or data
- A datastore acts as a reference to a data source
 - Data must have the same structure and formatting

- A datastore is a particular type of MATLAB object
 - ▶ It is used to read a single file or a collection of files or data
- A datastore acts as a reference to a data source
 - Data must have the same structure and formatting
- Datastores are especially useful when:

- A datastore is a particular type of MATLAB object
 - ▶ It is used to read a single file or a collection of files or data
- A datastore acts as a reference to a data source
 - Data must have the same structure and formatting
- Datastores are especially useful when:
 - Each file in the collection might be too large to fit in memory

- A datastore is a particular type of MATLAB object
 - ▶ It is used to read a single file or a collection of files or data
- A datastore acts as a reference to a data source
 - Data must have the same structure and formatting
- Datastores are especially useful when:
 - ► Each file in the collection might be too large to fit in memory
 - Files in the collection have arbitrary names

TabularTextDatastore

Text files containing column-oriented data

■ ImageDatastore

Image files

TabularTextDatastore

Text files containing column-oriented data

ImageDatastore

Image files

■ KeyValueDatastore

Key-value pair data

■ TabularTextDatastore

Text files containing column-oriented data

ImageDatastore

Image files

KeyValueDatastore

Key-value pair data

■ DatabaseDatastore

Data from a relational database

■ US National Hurricane Center: http://weather.unisys.com/hurricane/atlantic

Number	Timestamp	Latitude	Longitude	Country	
	## 1 ALLI	SON M = 55 S	SNBR = 1303		
1	05-Jun-2001 12:0	0 27.5	95	N/A	
1	05-Jun-2001 18:0	0 28.5	95.3	N/A	
1	06-Jun-2001 00:0	0 29.3	95.3	United States	
1	06-Jun-2001 06:0	0 30.1	95.2	United States	
		:			
## 2 BARRY M = 24 SNBR = 1304					
2	02-Aug-2001 12:0	0 25.7	84.8	N/A	
2	02-Aug-2001 18:0	0 26.2	84.9	N/A	
2	03-Aug-2001 00:0	0 26.4	85.6	N/A	
		:			

Number	Timestamp	Pressure			
## 1	ALLISON M = 55 SNBR	= 1303			
1	05-Jun-2001 12:00	1007			
1	05-Jun-2001 18:00	1002			
1	06-Jun-2001 00:00	1003			
1	06-Jun-2001 06:00	1006			
:					
## 2 BARRY M = 24 SNBR = 1304					
2	02-Aug-2001 12:00	1011			
2	02-Aug-2001 18:00	1010			
2	03-Aug-2001 00:00	1007			
:					

Number	Timestamp	Windspeed				
## :	1 ALLISON M = 55 SN	IBR = 1303				
1	05-Jun-2001 12:0	0 46				
1	05-Jun-2001 18:0	0 58				
1	06-Jun-2001 00:0	0 52				
1	06-Jun-2001 06:0	0 35				
:						
## 2 BARRY M = 24 SNBR = 1304						
2	02-Aug-2001 12:0	0 35				
2	02-Aug-2001 18:0	0 52				
2	03-Aug-2001 00:0	0 46				
:						

Table: Saffir-Simpson hurricane scale

Category	Wind speed
Tropical Depression (TD)	0 – 38 mph
Tropical Storm (TS)	39 – 73 mph
Category 1 Hurricane	74 – 95 mph
Category 2 Hurricane	96 – 110 mph
Category 3 Hurricane	111 – 130 mph
Category 4 Hurricane	131 – 155 mph
Category 5 Hurricane	≥ 156 mph

How do I create a datastore?

Use datetime to compare dates and times stored as strings

Use categorical variables to represent discrete categories

How do I import data types directly?

Most commonly used format strings for the TextscanFormats property

Conversion specifiers

- '%f' Floating point number (double)
- '%q' String (cell array of char)
- '%D'
 Date (datetime)
- '%C' Category (categorical)
- '%d' Signed integer (int32)
- '%u' Unsigned integer (uint32)
- '%c' Single character (char)

Select appropriate data types to reduce memory consumption

Table: Memory consumption

	Before	After	Memory (%)
Using datetime:	726 KB	76 KB	89%
Using categorical arrays:	573 KB	8 KB	98%
Whole table (4892 \times 5):	1416 KB	201 KB	86%

How can I select the columns of data I want to import?

How do I merge data?

What are the differences between outerjoin and innerjoin functions?

C = innerjoin(A, B)

C = outerjoin(A, B, 'MergeKeys', true)

C = outerjoin(A, B, 'MergeKeys', true, 'Type', 'Left')

C = outerjoin(A, B, 'MergeKeys', true, 'Type', 'Right')

How do I import data from different files?

Categories and set operations

Categories and set operations

countries = setdiff(categories(data.Country), 'N/A')

How do I rename and merge categories?

How do I rename and merge categories?

data.Location = mergecats(data.Country,ctry, 'Land')
data.Location = renamecats(data.Location, 'N/A', 'Sea')

How do I perform calculations with missing data?

1 Number	2 Timestamp	3	4 Windspeed	5	6	
Number	12-Aug-1955 06:00:00	Country	Windspeed 104	Pressure NaN	Location	
3	12-Aug-1955 12:00:00		81		Sea	
3	12-Aug-1955 12:00:00		121		Sea	
2	12-Aug-1955 18:00:00		75		Land	
3	12-Aug-1955 18:00:00		121	NaN		
3	13-Aug-1955 00:00:00		69		Sea	
3	13-Aug-1955 00:00:00		121	NaN		>> mean(data.Pressure)
2	13-Aug-1955 06:00:00		58		Sea	<pre>>> mean(data.Pressure)</pre>
3	13-Aug-1955 06:00:00		121	969		į
2	13-Aug-1955 12:00:00		52	_	Sea	
2	13-Aug-1955 12:00:00		121		Sea	▼
3	13-Aug-1955 18:00:00		40	-	land	37 - 37
2	13-Aug-1955 18:00:00		121		Sea	NaN
2	-		35		Land	-{
3	14-Aug-1955 00:00:00		121	_	Sea	
2	14-Aug-1955 06:00:00		29		Land	
3	14-Aug-1955 06:00:00		121		Sea	
2	14-Aug-1955 12:00:00		29		Land	
	14-Adg-1933 12.00.00	Carraga	25		Lanu	4
		/	-1 - L	_ 🔻 ,		
	>> mea	an (aat	a . 1	re	ssure,'omitnan')
				0.0	21	7681
				9:	JI.	100T

How do I locate and remove missing data?

How do I locate and remove missing data?

■ badrows = any(ismissing(data), 2) data(badrows, :) = []

How do I discretize continuous data?

How do I discretize continuous data?

■ SSscale = [0 39 74 96 111 130 157 Inf]
catnames = {'TD', 'TS', '1', '2', '3', '4', '5'}
data.HurrCat = discretize(data.Windspeed, SSscale, 'Categorical', catnames)

How do I find unique groups of data?

How do I find unique groups of data?

■ [Group, BC] = findgroups(mytable(:, {'B', 'C'}))

How do I extract useful statistics from my grouped data?

How do I extract useful statistics from my grouped data?

output = splitapply(@min, mytable(:,'D'), Group)