

Programación Declarativa

Ingeniería Informática Cuarto curso, Primer cuatrimestre

Escuela Politécnica Superior de Córdoba Universidad de Córdoba Curso académico: 2023 - 2024

Práctica número 1.- Introducción al lenguaje Scheme

Observaciones:

o Sólo se han de presentar los ejercicios marcados con un **asterisco** (*), que deberán estar **contenidos en un mismo fichero**.

O IMPORTANTE:

- Todas las funciones deberán tener un <u>comentario de cabecera</u> con la siguiente estructura:
 - Nombre de la función
 - Objetivo
 - Descripción de la solución (salvo que se deduzca de forma inmediata)
 - Significado de los parámetros de entrada.
 - Significado del resultado que devuelve.
 - Funciones auxiliares a las que llama.
- Ejemplos de ejecución de las funciones
 - Después de cada función, se debe poner unos o varios comentarios con ejemplos de ejecución de dicha función.
 - Por ejemplo, si la función es *(cuadrado x)*
 - ;; (cuadrado 2)
 - ;; (cuadrado (cuadrado 2))
- 1. **Constantes y literales:** teclea las siguientes constantes y literales (creados con la forma especial **quote** o con la comilla simple) y comprueba el resultado devuelto por el intérprete de *Scheme*:
 - ; Los comentarios comienzan con el símbolo de "punto y coma"

#t ;; constante lógica de **verdadero**

3 ;; número entero 20.5 ;; número real

"ejemplo de cadena" ;; se utilizan comillas dobles para delimitar las cadenas

"dato ;; no debes olvidar las comillas de cierre

'dato ;; se utiliza la comilla **simple** para crear un literal

(quote dato) ;; también se puede utilizar quote para crear un literal

dato ;; la variable **dato** no es un literal

;; y producirá un **error** porque posee no todavía un valor

'#t ;; las constantes lógicas también son literales

(**quote** #t)

'3 ;; los números también son literales

(quote 3)

```
'20.5
(quote 20.5)
(quote "ejemplo de cadena") ;; una cadena también es un literal

(+ 2 3) ;; expresión aritmética con notación prefija
' (+ 2 3) ;; la expresión aritmética se convierte en un literal y "no" se evalúa

(quote (+ 2 3)) ;; la expresión aritmética se convierte en un literal y "no" se evalúa
'(a b c) ;; lista de literales
(quote '(a b c)) ;; otra forma de crear una lista de literales
'(Ana Luis Juan) ;; lista de literales
(quote (Ana Luis Juan)) ;; otra forma de crear una lista de literales
```

2. Teclea las siguientes expresiones aritméticas y comprueba los resultados.

; **Siempre** se debe **separar** el operador de los argumentos (+ 2 3)

;; Si no se separa el operador del argumento, se producirá un **error** (+2 3)

(+ 0.1)	(+ 0.001)	(+ 0.00000001)	(+ 3)
(+ 34)	(+ 3 4 5)	(+ 3 4.)	(+ 3 4.0)
(+)			
(- 2)	(- 10 2)	(- 10 3 1)	(- 10 3. 1)
(* 2)	(* 2 3 4)	(* 2.0 3 4)	(*)
(/ 5)	(/ 5.)	(/ 10 2)	(/ 8 3)
(/ 8. 3)	(/ 8 3.0)		

```
;; Aproximación racional al número \pi (/ 355 113)
```

;; Aproximación al número π con seis decimales exactos. (/ 355.0 113)

;; Se divide el primer argumento por el producto de los demás $(/60 \ 3 \ 5 \ 4)$

;; Combinación de operadores (/ (* 9 4 3) (+ 3 2))

3. Escribe la siguiente expresión aritmética con notación prefija:

$$\bullet \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

4. Utiliza la forma especial define para declarar las siguientes variables y asignarles los

valores que se indican:

Variable	Valor		
iva	18		
mayor-edad	18		
meses	12		
Х	2.5		
у	-12.3		
Z	$2 x + y^3$		
partido1	36.5		
partido2	30.75		
blanco	2.55		
nulo	0.34		
;; comprueba si el intérprete admite variables acentuadas			
abstención	100 - partido1 - partido2 - blanco - nulo		
celsius	19.5		
fahrenheit	32.0 + (9.0/5.0) celsius		

5. ¿Qué ocurre si se aplica **set!** sobre una variable no definida previamente? Por ejemplo:

(**set**! votantes 23732)

6. Define las siguientes variables y escribe en *Scheme* las expresiones asociadas a las **funciones matemáticas predefinidas** que se indican:

Variable	Valor	
a	1	
b	2	
С	-3	
pi	(acos -1.0)	

Función	Significado	Ejemplo	Scheme
(abs x)	Valor absoluto de x	abs (a² - b²)	
(sqrt x)	Raíz cuadrada de x	$\sqrt{b^2-4ac}$	
(square x)	Cuadrado de x	(3a-2b+c) ²	No existe
(exp x)	Exponencial de x	e^{2a}	
(log x)	Logaritmo neperiano de x	log(e ^a)	
(expt x y)	Potencia: x ^y	(2a-b) ^c	
(sin x)	Seno de x	sin(2 pi)	
(cos x)	Coseno de x	cos(pi/2)	
(tan x)	Tangente de x	tan(2 pi)	
(asin x)	Arco seno de x	asin(- 0.5)	
(acos x)	Arco coseno de x	acos(0.5)	
(atan x)	Arco tangente de x	atan(1.0)	
(atan x y)	Arco tangente de x/y	atan(a/b)	
(max x ₁ x ₂)	Máximo de x ₁ x ₂	max(a,b,c)	
(min x ₁ x ₂)	Mínimo de x ₁ x ₂	min(2a,3b,4c)	
(gcd x ₁ x ₂)	Máximo común divisor	gcd(12,15,-18)	
(lcm x ₁ x ₂)	Mínimo común múltiplo	lcm(12,15,-18)	

Función	Significado	Ejemplo	Scheme
(floor x)	Mayor entero no más grande que x	floor(-2.7)	
		floor(7.5)	
(ceiling x)	Menor entero no más pequeño que x	ceiling(-2.7)	
		ceiling(7.5)	
(truncate x)	Entero más próximo a x cuyo valor absoluto no es más grande que el valor absoluto de x	truncate(-2.7)	
		truncate(7.5)	
(round x)	Entero más próximo a x; redondeando a un número par si x está justo entre dos enteros.	round(-2.5)	
		Round(7.5)	
(modulo x y)	Resto de la división entera (Signo del divisor)	modulo (12, 5)	
		modulo(12, -5)	
		modulo(-12, 5)	
(quotient x y)	Cociente de la división entera	quotient(12,5)	
(remainder x y)	Resto de la división entera (Signo del dividendo)	remainder(12, 5)	
		remainder(12,-5)	
		remainder(-12,5)	

7. (*) Codifica funciones que permitan calcular el valor del término general de las siguientes sucesiones numéricas:

a.
$$a_n = C \left(1 + \frac{i}{100}\right)^n$$

• Esta sucesión numérica permite calcular la cantidad que se obtiene al depositar una cantidad C durante n años con un interés del i%.

b.
$$a_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$$

o Comprueba que a_n es el n-ésimo término de la sucesión de Fibonacci.

c.
$$b_n = \frac{a_{n+1}}{a_n}$$

- o Donde a_n es el n-ésimo término de la sucesión de Fibonacci.
- o Comprueba que b_n converge hacia el número áureo: φ = 1.6180339887...
- 8. (*) Codifica funciones de conversión entre las siguientes unidades de medida:
 - a. Millas a kilómetros.
 - 1 milla = 1,60934 kilómetros
 - b. Kilómetros a millas.
 - c. Grados Celsius a grados Fahrenheit.
 - Ejemplos: 0° C \rightarrow 32°F, 100° C \rightarrow 212°F
 - d. Grados Fahrenheit en grados Celsius.
- 9. Cálculo de la fecha del Domingo de Pascua o Domingo de Resurrección.
 - Codifica una función que utilice el algoritmo de Meuus-Jones-Butcher para calcular el día y mes del Domingo de Resurrección de un año y mostrarlos por pantalla.
 - Por ejemplo, el Domingo de Resurrección del año 2024 será el 31 de marzo.

- Referencias
 - Date of Easter.
 - Wikipedia.
 - https://en.wikipedia.org/wiki/Date_of_Easter#Meeus.2FJones.2FButcher_G regorian algorithm. Consultado el 12 de septiembre de 2023
 - Algorithm For Calculating The Date Of Easter Sunday
 - https://dzone.com/articles/algorithm-calculating-date
 - Consultado el 12 de septiembre de 2023
 - Pseudocódigo

```
int Y = year;
int a = Y \% 19;
int b = Y / 100;
int c = Y \% 100;
int d = b / 4;
int e = b % 4;
int f = (b + 8) / 25;
int g = (b - f + 1) / 3;
int h = (19 * a + b - d - g + 15) \% 30;
int i = c / 4;
int k = c \% 4;
int L = (32 + 2 * e + 2 * i - h - k) \% 7;
int m = (a + 11 * h + 22 * L) / 451;
int month = (h + L - 7 * m + 114) / 31;
int day = ((h + L - 7 * m + 114) \% 31) + 1;
```

Observaciones

- o Al codificar en scheme el algoritmo, se debe tener en cuenta las operaciones deben ser con números enteros. Debido a ello, se debe usar quotient y modulo para calcular el cociente y el resto de la división entera.
- o El identificador "e" es una constante en el lenguaje Scheme: número "e" de Euler. Por tanto, se debe cambiar su nombre en le pseudocódigo anterior.
- 10. (*) Dado un polígono regular de "n" lados de longitud "l", codifica funciones que permitan calcular los siguientes valores:
 - a. Perímetro = n * l

 - b. Ángulo central: $\alpha = \frac{360^{\circ}}{n}$ c. $Apotema = \frac{l}{2 \tan(\frac{\alpha}{2})}$
 - d. Área = $\frac{perímetro*apotema}{c}$
- 11. (*) Codifica las siguientes funciones que calculan áreas de figuras geométricas del plano:
 - a. areaTriangulo
 - o Calcula el área del triángulo a partir de sus lados usando la fórmula de Herón.
 - área = $\sqrt{s(s-a)(s-b)(s-c)}$
 - donde s es el semiperímetro: $s = \frac{a+b+c}{2}$
 - b. areaRombo
 - o Calcula el área del rombo a partir de sus diagonales.
 - c. areaTrapecio
 - o Calcula el área del trapecio a partir de sus bases y altura.

- área = (b1+b2)/2 × h
 donde b₁ y b₂ son las bases y h es la altura del trapecio.
- 12. (*) Codifica las siguientes funciones de distancias entre puntos del plano:
 - a. **D2:** distancia euclidiana o distancia L_2 entre dos puntos $P_1 = (x_1, y_1)$ y $P_2 = (x_2, y_2)$.

D2(
$$P_1$$
, P_2)= $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

b. D1: distancia de Manhattan, distancia de la ciudad de los bloques o distancia L1 entre dos puntos $P_1 = (x_1, y_1) y P_2 = (x_2, y_2)$.

D1(
$$P_1$$
, P_2)= $|x_2-x_1|+|y_2-y_1|$

c. Dmax: distancia de ajedrez, distancia de Chebyshev o distancia L∞ entre dos puntos $P_1 = (x_1, y_1) y P_2 = (x_2, y_2).$

Dmax
$$(P_1, P_2)=max(|x_2-x_1|, |y_2-y_1|)$$

- 13. (*) Codifica la siguiente función que calcula el área del triángulo plano a partir de sus vértices:
 - areaTrianguloVertices
 - o La función debe recibir como argumentos a las coordenadas de los vértices.
 - Utiliza las siguientes funciones auxiliares:
 - areaTriangulo: área del triángulo conocidos sus lados (ejercicio 11).
 - D2: distancia euclidiana entre dos vértices (ejercicio 12).
- 14. (*) Utiliza la forma especial let para codificar una función que calcule el área de un rombo a partir de sus vértices.
 - areaRomboVerticesLet
 - o La función recibirá como argumentos las coordenadas de los vértices del rombo.
 - o Utiliza los comentarios para indicar en qué "orden relativo" se han de introducir las coordenadas de los puntos del rombo para formar las diagonales.
 - Utiliza las siguientes funciones auxiliares:
 - areaRombo: área del rombo conocidas sus diagonales (ejercicio 11).
 - D2: distancia euclidiana entre dos vértices (ejercicio 12).
- 15. (*) Codifica las siguientes funciones:
 - a. Función denominada distanciaPuntoRecta
 - Ha de calcular la distancia de un punto $P = (x_0, y_0)$ a una recta r = a x + b y + c = 0mediante la siguiente fórmula

$$d(P,r) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

- b. Utiliza la especial *let* para codificar la función denominada forma distanciaPuntoRecta2
 - \circ La función ha de calcular la distancia de un punto P = (x_0, y_0) a la recta que pasa por otros dos puntos $P_1 = (x_1, y_1)$ y $P_2 = (x_2, y_2)$.
 - Sugerencia:
 - En primer lugar, determina los coeficientes de la recta r = a x + b y + c = 0 que pasa por los puntos P_1 y P_2 .
 - A continuación, utiliza la función del apartado "a".
- 16. (*) Utiliza la forma especial let para codificar una función que calcule el área de un trapecio a partir de sus vértices
 - areaTrapecioLetVertices
 - La función recibirá como argumentos las coordenadas de los vértices del
 - Utiliza los comentarios para indicar en qué "orden relativo" se han de

introducir las coordenadas de los puntos del trapecio para formar las bases.

- o Utiliza las siguientes funciones auxiliares:

 - **D2:** distancia euclidiana entre dos puntos o vértices. **distanciaPuntoRecta2:** distancia de un punto a una recta definida por dos
 - areaTrapecio: área del trapecio conocidas las bases y la altura.