SPECIFICATION

MULTILAYER CHIP VARISTOR

TYPE: AVFC 5 S 05 Q 050

January 29, 2004

AMOTECH CO., LTD.

17-2, JAMWON-DONG, SEOCHO-GU, SEOUL, KOREA

DESIGNED CHECKED APPROVED

Revision record

Date	Content	Page

1. ELECTRICAL SPECIFICATON

1-1 TEST CONDITION

Varistor voltage In = 1 mA DC Leakage current Vdc = 5.5 V DC

Capacitance f = 1MHz, Vrms = 0.5 V

Insulation resistance after reflow soldering V = 3.6 V DC

Soldering paste: Tamura (Japan) RMA-20-21L

Reflow soldering condition Stencil : SUS, 120 $\,\mu\mathrm{m}$ thickness

Soldering profile : 220 $\,^{\circ}$ C, 5 sec.

1-2 ELECTRICAL SPECIFICATION

Maximum allowable continuous DC voltage	5	V
Varistor voltage / nominal voltage / breakdown voltage	10~14	V
Nonlinearity coefficient	> 10	
Leakage current at continuous DC voltage	< 20	uA
Response time	< 1	ns
Capacitance measured at 1MHz	50	pF
Capacitance tolerance	-30to +30	%
Insulation resistance	> 10	$M\Omega$
Operating ambient temperature	-55 to +125	${}^{\mathbb{C}}$
Storage temperature	-55 to +150	${\mathbb C}$

1-3 EQUIVALENT CIRCUIT

1-4 FREQUENCY CHARATERISTICS

FIG 1. FREQUENCY vs. INSERTION LOSS CURVE

1-5 ESD PROTECTION EFFICIENCY

- Contact 8kV ESD strike

FIG 2. ESD Curve INPUT (IEC61000-4-2 standard waveform)

FIG 3. ESD Curve OUTPUT

1-6 Reliability testing procedures

Reliability parameter	Test	Test methods and remarks	Test requirement
Pulse current capability	Imax 8/20 μs	IEC 1051-1, Test 4.5. 10 pulses in the same direction at 2 pulses per minute at maximum peak current	d Vn /Vn ≤ 10% no visible damage
Electrostatic discharge capability	ESD C=150 pF, R=330 Ω	IEC 61000-4-2 Each 10 times in positive/negative direction in 10 sec at 8KV contact discharge (Level 4)	d Vn /Vn ≤ 10% no visible damage
Environmenta I reliability	Thermal shock	IEC 68-2-14 Condition for 1 cycle Step 1 : Min. -40° C, 30 ± 3 min. Step 2 : Max. +125 $^{\circ}$ C, 30 ± 3 min.	d Vn /Vn ≤ 5% no visible damage
	Low temperature	Number of cycles: 30 times	d Vn /Vn ≤ 5% no visible damage
	High temperature	IEC 68-2-2 Place the chip at 125 ± 5 °C for 1000 ± 24 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 5% no visible damage
	Heat resistance	$\frac{\text{IEC 68-2-3}}{\text{Apply the rated voltage for }1000\pm48\text{hrs}}$ at $85\pm3\%$. Remove and place for $24\pm2\text{hrs}$ at room temp. condition, then measure	d Vn /Vn ≤ 5% no visible damage
	Humidity resistance	IEC 68-2-30 Place the chip at $40\pm2\%$ and 90 to 95% humidity for 1000 ± 24 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage
	Pressure cooker test	Place the chip at 2 atm, 120 °C, 85%RH for 60 hrs. Remove and place for 24 ± 2hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage
	Operating life	Apply the rated voltage for 1000±48hrs at 125±3℃. Remove and place for 24± 2hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage

Mechanical Reliability	Solderability	$\frac{\text{IEC 68-2-58}}{\text{Solder bath method, } 230 \pm 5 ^{\circ}\text{C}, 2\text{s}}$	At least 95% of terminal electrode is covered by new solder
	Resistance to	IEC 68-2-58	d $ Vn /Vn \le 5\%$
	soldering heat	Solder bath method, $260\pm5\%$, 10 ± 0.5 s, $270\pm5\%$, 3 ± 0.5 s	no visible damage
	Bending strength	IEC 68-2-21	d Vn /Vn ≤ 5%
		Warp:2mm, Speed:0.5mm/sec, Duration: 10sec. The measurement shall be made with board in the bent position	no visible damage
	Adhesive strength	IEC 68-2-22	Strength>10 N
		Applied force on SMD chip by fracture from PCB	no visible damage

2. Material Specification

Body ZnO based ceramics

Internal electrode Silver – Palladium

External electrode Silver – Nickel – Tin

Thickness of Ni/Sn plating layer Nickel $> 1 \mu m$, Tin $> 2 \mu m$

3. Dimension Specification

Unit: mm

4. Package Specification

4-1 Paper carrier tape package

	Α	В	С	D	Е	F	G	Н	J	T	T1
Spec.	1.550	2.30	8.00	3.50	1.75	2.00	2.00	4.00	1.55	0.60	0.1
Tolerance	±0.05	± 0.05	±0.10	±0.05	±0.05	±0.05	±0.05	±0.10	±0.03	±0.05	Max.

4-1 Material for package

4-1-1 Paper carrier tape

Laminated virgin pulp

4-1-2 Top tape

Polyester film

4-1-3 Bottom tape

Adhesive coated paper

4-1-4 Plastic reel

GPPS (General Purpose Poly Styrene) resin

4-1-5 Plastic bag

PE (Poly ethylene)

4-2 Reel package

4-3 Box package

4-3-1 Small box

85 (W) x 85 (D) x 65 (T) (mm)

5 reel (4,000 ea/reel \times 5 reel = 20,000 ea)

4-3-2 Medium box

195 (W) x 335 (D) x 205 (T) (mm)

5 small box (20,000 ea/small box \times 5 small box = 100,000 ea)

4-3-3 Large box

370 (W) x 400 (D) x 275 (T) (mm)

14 small box (20,000 ea/small box \times 14 small box = 280,000 ea)

5. Soldering Recommendations

5-1 Soldering profile

5-1-1 Sn/Pb solder paste

5-1-2 Pb free solder paste

5-2 Soldering guidelines

- Our chip varistors are designed for reflow soldering only. Do not use flow soldering
- Use Sn / Pb / Ag (62 / 36 / 2) or equivalent solder.
- Use non-activated flux (CI content 0.2% max.)
- Follow the recommended soldering conditions to avoid varistor damage.

5-3 Solder pad layout

6. Storage condition

- Storage environment must be at an ambient temperature of 25~35 $\,^\circ\!\mathbb{C}\,$ and an ambient humidity of 40~60 % RH
- Chip varistors can experience degradation of termination solderability when subjected to high temperature of humidity, or if exposed to sulfur or chlorine gases.
- Avoid mechanical shock (ex. Falling) to the chip varistor to prevent mechanical cracking inside of the ceramic dielectric due to its own weight.
- Use chips within 6 months.
 If 6 months of more have elapsed, check solderability before use.

7. DESCRIPTION ABOUT PACKAGE LABEL

AMOTECH CO., LTD.

5B 1L Namdong industrial complex 617, Namchon-Dong, Namdong-Gu, Incheon, Korea

Metal Oxide Varistor

Type: AVFC 5S 05 Q 050 Lot: S020AP04A05AA Quantity: 4,000 pcs Date: 2004/01/25

AVFC 5S 05 Q 050

AVFC: Feedthru Type EMI ESD filter

5: Maximum continuous working voltage - Vdc

S: Varistor voltage tolerance – S is special order

05 : Chip size - 05 is 0508 (1.25 x 2.00 mm) size

Q: Configuration - Q means Quad array (4 element)

050 : Capacitance - 050 means 50 pF

Lot: S020AP04A05AA

S: Tape casting machine indication – S means first machine

Machine name	Machine name 1 st machine		3 rd machine		
Class	Α	В	С		

020 : Ceramic tape batch number

A: Printer type – A means Tepiko printer/stacker

		Printing machine				
		1 st machine	2 nd machine	3 rd machine		
Stacking machine	1 st machine	А	В	С		
	2 nd machine	D	Е	F		
	3 rd machine	G	Н	I		

P : Production type – P means mass production

04 : Production year - 2004

A: Production month – A means January

Month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Class	Α	В	С	D	Е	F	G	I	I	J	K	L

05: Production date

AA: Sequence of stacking – AA means first stacking

Qunatity: 4,000 pcs

- Quantity of shipping chip varistor

Date: 2004/01/25

- Shipping date: January 27, 2004

8. Manufacturer and Place

8-1. Manufacturer

Amotech Co., Ltd.

8-2. Manufacturing place

5B 1L, Namdong Industrial complex, 617 Namchondong, Namdonggu, Incheon, Korea

9. Comment

We notice your company when we change design, manufacturing condition and raw material.