

Spectroscopic and Microscopic Characterization of Contaminant Uptake and Retention by Carbonates in the Soil and Vadose Zone

DOE Environmental Management Science Program

Richard J. Reeder (PI, SUNY-Stony Brook)

Wayne P. Hess (co-PI, EMSL, PNNL)

Kenneth M. Beck (co-PI, EMSL, PNNL)

Nicholas S. Fisher (co-PI, SUNY-Stony Brook)

5-6 November 2001 Workshop

Cooperating Scientists, Post-docs, and Students:

Steve Heald (scientist, PNNL; PNC-CAT, APS)
Robert Peale (professor, UCF)
Tony Lanzirotti (scientist; U Chicago; NSLS)
Sandra Withers (grad student, UCF)
Evert Elzinga (post-doc, SUNY-Stony Brook)
Ashaki Rouff, Young Lee, Vasso Alexandratos
(grad students, SUNY-Stony Brook)

Collaborations:

C. Drew Tait, David Morris (scientists, LANL) Lynne Soderholm (scientist, ANL)

Relevance to DOE-EMSP Mission

Calcium carbonate occurs as a locally important mineral in soils and the vadose zone at the Hanford Site and at other sites in the DOE complex. What role does CaCO₃ play in the uptake and sequestration of toxic metals and radionuclides?

Distribution and occurrence of CaCO₃ (Hanford)

- Primarily calcite; pedogenic origin
- Surface coatings on clastic grains
- Caliche, calcrete (hardpan)
- Disseminated particles, nodules

Coatings and high surface-area components may exert much greater influence on uptake than reflected by volume

Uptake and Sequestration by Calcite

- Common constituent in soils, sediments
- Moderate solubility (pH, P_{CO2}, solid solution)
- Highly reactive; rapid growth/dissolution kinetics
- Rapid surface recrystallization and/or exchange
- Coprecipitation, adsorption, surface precipitation all important (continuum of states?)
- Extensive impurity substitution in bulk
- Rapid crystallization increases K_d (co-ppt.) for incompatible species (e.g., Sr, Cs, U, Cr)
- Strong surface control on uptake/incorporation

Methodology

Uptake/release are molecular processes

Contaminant "speciation"

 XAFS, XANES, luminescence, optical spectroscopies (NSLS, APS)

Micro-spatial distribution

• μ-XAS/XRF (NSLS, APS, ALS)

Batch experiments

- Adsorption (radiotracers)
- Coprecipitation

Materials

- Model systems
- Natural samples

Research completed:

- UO₂²⁺ coprecipitation with calcite [f (pH)]
 Systematics; rate effect; micro-distribution
 Speciation, surface site preferences
- REE³⁺ coprecipitation with calcite
 Analog for An³⁺ radionuclides
- Sr²⁺ and Pb²⁺ uptake on natural caliche Micro-distribution, heterogeneous
- Cu²⁺ and Zn²⁺ adsorption on calcite Speciation, surface site preferences

Research underway:

- UO₂²⁺ adsorption on calcite [f(loading)]
 Surface speciation (XAFS)
- REE³⁺ adsorption on calcite Speciation, kinetics
- Cs⁺ and Pb²⁺ sorp/desorp on calcite [f (pH, I)]
 Systematics, radiotracers, speciation (XAFS)
- CrO₄²⁻ coprecipitation with calcite
 Micro-distribution, coordination, redox

REE³⁺ Uptake by Calcite

- Analogs for trivalent actinides (Am³⁺, Cm³⁺)
- REE³⁺ strongly partitioned into calcite K_d (co-ppt) = $10^2-10^{3.5}$
- Heterovalent substitution. Charge compensation mechanism via Na+ co-substitution (Zhong and Mucci 1995)
- Fm. of Nd-Ca carbonate phase (Carroll 1993)
- Highly particle reactive: K_d (ads) > 10³
- Aqueous speciation carbonate complexes

Questions:

- Mode of REE³⁺ incorporation
- Local structure of heterovalent impurity
- Mechanism of charge compensation
- Role of adsorption, surface speciation

Approach:

- Coprecipitation of individual REE³⁺ with calcite with controlled solution chemistry
- Characterize local structure (EXAFS)
- Characterize REE site symmetries using optical and IR spectroscopy

EXAFS Spectroscopy

- X11A, X18B (NSLS)
- Fluorescence detection (13 element Ge detector)
- L₃-edges
 - Limited k range (LREE)
 - Multielectron excitations?

L_3 -edge EXAFS – Fourier Transforms

Selected XAFS Fit Results

Calcite:Yb3+			
	R	CN	σ^2
Yb-O	2.24	7.5	0.008
Yb-C	3.14	6*	0.010
Yb-O	3.27	6*	0.011
Yb-Ca	4.04	6*	0.015

First shell REE-O distances in calcite (EXAFS)

Corner-sharing topology in calcite

Ca octahedron in calcite

- Nd-O and Sm-O distances suggest 7-fold coord.
- Dy-O and Yb-O distances consistent with 6-fold
- Coord. differences supported by bondvalence sums

Comparison with REE-O in lanthanide sesquioxides

Optical Spectroscopy – Nd³+ in Calcite

- Optical spectroscopy can distinguish different Nd³⁺ crystal field environments
- Neodymium chloride and Neodymium carbonate phases are absent in Nd:CaCO₃ samples grown from solution
- Nd:CaCO₃ shows high degree of inhomogenous broadening and no line sharpening below 80 K
- There is a broad, continuous distribution of crystal field environments for Nd³⁺ in calcite.

Conclusions:

- LREE coordinated to 7 oxygens in Ca* site
 - Bidentate CO₃ ligation
 - Extra OH or OH₂ ligand
- HREE coordinated to 6 oxygens in Ca site
- Some disruption of structure in higher shells
- Multiple crystal-field environments (Nd)

Implications:

- REE³⁺ strongly taken up by calcite (An³⁺?)
- Local defect structure(s) for Nd, Sm (An³⁺?)
- Increased energetics, solubility (?)
- Difference in charge compensation mechanism for L/H REE (?)
- Effect on K_d and long-term retention (?)

Octahedral coord. in calcite

Bi- and monodentate CO₃ ligation in [Nd₂(CO₃)₈] anion (Bond et al., 2000)

Coprecipitation of uranyl with calcite – Coordination and surface controls on K_{r} 100 Calcite 1014 surface $Ca_{Tot} = 10 \text{ mM}$ Method I solution $C_{Tot} = 10 \text{ mM}$ 600 $U_{Tot} = 50 \,\mu\text{M}$ 80 Calcite saturation index UO₂(CO₃)₃⁴⁻ Percent species 500 60 400 Y (µm) 40 300 UO₂(CO₃)₂² 20 200 Ca₂UO₂(CO₃)₃ UO₂CO₃ -1 100 -PNC-CAT (APS) 0 pН 100 200 300 400 700 500 600 X (µm) 2 U L_3 -edge **XAFS** Results Fourier transform magnitude **Bidentate** Aragonite UO₂(CO₃)₃⁴-(aq) Method II calcite or Method I calcite 0 2 0 3 Monodentate and Bidentate R(Å)

Uranyl Sorption on Calcite

- Complex sorption/desorption behavior shown: initial uptake followed by desorption (Morse et al., 1984); possible scavenging of CO₃²⁻ (?)
- Uranyl uptake by adsorption at low [U(VI)]; surface precipitation occurs at higher [U(VI)] and high pH (Carroll and others, 1991, 1992)
- Adsorption studies on silicates show surface complex varies with solution pH: inner-sphere at near-neutral pH and outer-sphere at low pH

Present work: evaluate sorption complexes at calcite surface [f (loading, pH)]

Method:

- Calcite suspension equilibrated at log P(CO₂) = -3.5 (eq. pH = 8.28)
- U(VI) concentrations: 50 and 500 uM (undersat. w.r.t. rutherfordine, schoepite)
- U(VI) added w/ and w/o additional CO₃²⁻ (pH constant)
- Wet pastes extracted for EXAFS (APS-BESSRC)
- EXAFS analysis in progress

Uranyl adsorption complexes - EXAFS

- Sorption complex similar to triscarbonate species but with shorter U-O_{eq} dist. and possible disorder and/or weak splitting in equatorial shell.
- No obvious U-Ca backscattering; expected at 3.5 Å;
 MS contribution at 3.6 Å
- Pronounced splitting in eq. shell only in 500 mM (no CO₃); ppt?
- U-O_{eq} slightly longer in sorbed species than in than in co-ppt.

Adsorbed uranyl shows weak interaction at calcite surface.

Implications for Understanding Attenuation and Remediation

- Potential for uptake of UO₂²⁺ by calcite via coprecipitation, adsorption, and possibly surface precipitation. Significant Ln³⁺ uptake.
- Adsorbed UO₂²⁺ complex shows only slight or no splitting of eq. shell.
 Possible inner-sphere complex, but stability unclear as yet.
- Contaminant uptake on carbonates is very heterogeneous.
 Surface characteristics are important on several length scales.
- Retention of co-ppt contaminants dependent on stability of (dilute) solid solutions.
- Retention of adsorbed contaminants dependent on stability of surface complex (and solution composition).

Work planned for the final year:

- Complete work on uranyl adsorption
- REE adsorption on calcite
- Influence of surface loading; transition b/t adsorption and surface (co-)precipitation
- CrO₄²⁻, Sr²⁺ coprecipitation with calcite
- Predictive capability and applications