期末大作业: 文献中的实验方法和数据分析方法学习汇报

源文件为ipynb格式。

源文件链接:

GitHub Mosazh_AEDSA

Gitee Mosah AEDSA

参考文献 Recognition of Banana Fusarium Wilt Based on UAV Remote Sensing原文见附录。

Letter

Recognition of Banana Fusarium Wilt Based on UAV Remote Sensing

Huichun Ye ^{1,2,3}, Wenjiang Huang ^{1,2,3,*}, Shanyu Huang ⁴, Bei Cui ^{1,2,3}, Yingying Dong ^{1,2}, Anting Guo ^{1,5}, Yu Ren ^{1,5} and Yu Jin ⁶

- ¹ Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; yehc@radi.ac.cn (H.Y.); cuibei@radi.ac.cn (B.C.); dongyy@radi.ac.cn (Y.D.); guoat@aircas.ac.cn (A.G.); renyu@aircas.ac.cn (Y.R.)
- ² Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- ³ Key Laboratory of Earth Observation of Hainan Province, Sanya 572029, China
- Chinese Academy of Agricultural Engineering Planning & Design, Beijing 100125, China; s08020406@cau.edu.cn
- ⁵ University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronics and Information Engineering, Anhui University, Hefei 230601, China; ahuJingy@163.com
- * Correspondence: huangwj@radi.ac.cn

参考文献中主要使用了二分类逻辑回归 (Binary Logistic Regression)此方法来进行对于数据的统计分析,评估了 VIs 与受镰刀菌枯萎病感染或未感染植株之间的空间关系。

文献中使用了BLR方法来确定建立**香蕉枯萎病识别模型**的最佳**敏感光谱波段**或**植被指数**,以及评估不同图像分辨率对香蕉镰刀菌枯萎病识别精度的影响,为卫星数据的大规模应用提供参考。

参考文献中使用的八种VIs

Vegetation Index	Description	Formulation	Sensitive Parameter
NVDI	Normalized difference vegetation index	$rac{R_{NIR} - R_{red}}{R_{NIR} + R_{red}}$	Leaf area index, green biomass
NDRE	Normalized difference red edge index	$rac{R_{NIR}{-}R_{RE}}{R_{NIR}{+}R_{RE}}$	Leaf area index, green biomass
CI_{green}	Green chlorophyll index	$rac{R_{NIR}}{R_{green}{-}1}$	Chlorophyll content

Vegetation Index	Description	Formulation	Sensitive Parameter
CI_{RE}	Red-edge chlorophyll index	$rac{R_{NIR}}{R_{RE}-1}$	Chlorophyll content
SIPI	Structural independent pigment index	$rac{R_{NIR} - R_{blue}}{R_{NIR} - R_{red}}$	Pigment content
$SIPI_{RE}$	Red-edge structural independent pigment index	$rac{R_{RE} - R_{blue}}{R_{RE} - R_{red}}$	Pigment content
CARI	Carotenoid index	$rac{R_{RE}}{R_{green}-1}$	Carotenoid content
ARI	Anthocyanin reflectance index	$rac{1}{R_{green}} - rac{1}{R_{RE}}$	Anthocyanin content

不同植被指数的逻辑回归模型

VI	Logistic Regression	OA* of the Fitting (%)	Validation Dataset 1		Validation Dataset 2	
	Equation		OA (%)	Kappa	OA (%)	Kappa
NDVI	$y = -11.851 \times NDVI + 5.373$	86.3	83.3	0.66	62.9	0.22
NDRE	$y = -15.775 \times NDRE + 1.802$	90.5	87.5	0.75	65.7	0.39
CIgreen	$y = -4.144 \times \text{CI}_{\text{green}} + 3.118$	89.5	87.5	0.74	74.3	0.47
CI_{RE}	$y = -6.110 \times CI_{RE} + 1.935$	91.6	91.7	0.83	80.0	0.59
CARI	$y = -9.966 \times CARI + 3.172$	62.1	66.7	0.35	60.0	0.21
ARI	$y = -7.247 \times ARI + 5.326$	75.8	83.3	0.66	68.6	0.37

由于无法获取到原始数据,故在本次作业中使用了Iris 鸢尾花数据集采用BLR进行数据分析

二分类逻辑回归模型构建

二分类逻辑回归是一种统计分析方法,用于建立一个二元因变量与一个或多个自变量之间的关系模型。它是一种广义线性模型,用于 预测二元因变量的概率。在研究中,二元逻辑回归常用于解决分类问题,例如预测疾病的发生与否、判断某个事件是否发生等。该模

型通过估计自变量与因变量之间的关系系数,从而预测因变量的概率。

BLR其实际分析上是研究X对于Y的影响,而且Y为二分类数据,比如是否愿意购买产品,是否喜欢,是否购买直播带货商品等。数字1代表YES,数字0代表NO。而且X对于Y的影响时,数学模型可构建如下:

$$\ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m$$

经过简单变换,可以转换为:

$$P=rac{1}{1+e^{-(eta_0+eta_1X_1+eta_2X_2+\cdots+eta_mX_m)}}$$

优点:

- 1. 实现简单。逻辑回归的参数可以用极大似然估计法进行求解,算法本身非常简单。
- 2. 速度快。逻辑回归计算量小, 训练速度快。
- 3. 输出结果易于理解。逻辑回归的输出结果是概率,易于解释。
- 4. 容易扩展。逻辑回归可用于多分类问题和不平衡数据集。

缺点:

- 1. 只适用于线性可分的问题。当特征之间存在非线性关系时,Logistic回归的效果会受到限制。
- 2. 对异常值敏感。由于Logistic回归使用了sigmoid函数,对于异常值非常敏感。
- 3. 容易欠拟合。当特征与目标变量之间的关系非常复杂时, Logistic回归很容易出现欠拟合现象

Iris数据集数据处理

Iris数据集共有150个样本,目标变量为花的类别其都属于鸢尾属下的三个亚属(target),分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。

四个特征,分别是花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)、花瓣宽度(petal width)。

初始化

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

plt.rc("font",family='KaiTi') #指定中文字体,不然会乱码
#%matplotlib inline是Jupyter Notebook的魔术命令,用于在 Notebook 中以行内方式显示 matplotlib 绘图
%config InlineBackend.figure_format = 'retina' #绘制高清图像
%matplotlib inline
```

导入数据

```
# 从文件中读取iris数据集
iris_features = pd.read_csv('iris/iris.data', header=None, names=['sepal length', 'sepal width', \
                                                        'petal length', 'petal width', 'class'])
# 提取目标变量
iris_class = iris_features['class']
iris_target = np.repeat(np.arange(3), 50)
iris_target = iris_target.astype(int) # 将数据类型转换为整数类型
# 显示前几行数据
print(iris_features.head(),"\n")
## 查看数据的整体信息
iris_features.info()
## 查看每个类别数量
pd.Series(iris_target).value_counts()
   sepal length sepal width petal length petal width
                                                               class
                                                    0.2 Iris-setosa
0
            5.1
                         3.5
                                       1.4
1
            4.9
                         3.0
                                       1.4
                                                    0.2 Iris-setosa
2
                                      1.3
            4.7
                         3.2
                                                    0.2 Iris-setosa
3
            4.6
                         3.1
                                      1.5
                                                    0.2 Iris-setosa
4
            5.0
                         3.6
                                      1.4
                                                    0.2 Iris-setosa
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
    Column
                 Non-Null Count Dtype
    -----
                   -----
___
     sepal length 150 non-null
                                   float64
 0
 1
     sepal width
                 150 non-null float64
                                  float64
     petal length 150 non-null
 2
 3
     petal width
                  150 non-null
                                   float64
 4
     class
                  150 non-null
                                   object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
0
     50
1
     50
     50
Name: count, dtype: int64
## 对于特征进行一些统计描述
iris_features.describe()
```

	sepal length	sepal width	petal length	petal width
count	150.000000	150.000000	150.000000	150.000000

	sepal length	sepal width	petal length	petal width
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

可视化

条形图与散点图

箱型图

可以透过上图大致看出鸢尾花品种与 *花萼长度*(sepal length)、*花萼宽度*(sepal width)、*花瓣长度*(petal length)、*花瓣宽度*(petal width) 四个特征之间的关系。

模型建立与预测

二分类预测

```
## 划分为训练集和测试集
 from sklearn.model selection import train test split
 # 删除 "class" 列
 iris_all = iris_all.drop(columns=["class"])
 ## 选择其类别为0和1的样本 (不包括类别为2的样本)
 iris_features_part = iris_all.iloc[:100]
 iris_target_part = iris_target[:100]
 # 训练集测试集7/3分
 x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, \
                                                  test_size = 0.3, random_state = 2020)
 ## 从sklearn中导入逻辑回归模型
 from sklearn.linear_model import LogisticRegression
 clf = LogisticRegression(random_state=0, solver='lbfgs')
 # 训练模型
 clf.fit(x_train, y_train)
 ## 查看其对应的βm,β0
 print(clf.coef_, clf.intercept_)
 [[ 0.52127713 -0.73985831 2.05323254 0.86609499]] [-6.91417548]
可知建立的模型可表示为:
                   Y = \ln\left(\frac{P}{1 - P}\right) = -6.9142 + 0.5213X_1 - 0.7399X_2 + 2.0532X_3 + 0.8661X_4
 ## 预测模型
 train_predict = clf.predict(x_train)
 test_predict = clf.predict(x_test)
 from sklearn import metrics
 # 计算精确度、召回率和 F1 指数
 precision = metrics.precision_score(y_test, test_predict)
 recall = metrics.recall_score(y_test, test_predict)
 f1_score = metrics.f1_score(y_test, test_predict)
 print('Precision: {:.2f}'.format(precision))
 print('Recall: {:.2f}'.format(recall))
 print('F1 Score: {:.2f}'.format(f1_score))
```

Precision: 1.00 Recall: 1.00 F1 Score: 1.00

指标	数值
Precision	1.00
Recall	1.00
F1-Score	1.00

```
## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)

# 可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
```


可知,使用sklearn.linear_model建立的二分类模型可以很好的基于鸢尾花的四项特征进行分类。

附录

Recognition of Banana Fusarium Wilt Based on UAV Remote Sensing