APS1070

Foundations of Data Analytics and Machine Learning
Winter 2021

Week 5:

- Linear Algebra
- Analytical Geometry
- Data Augmentation

Announcements

Mid-term assessment logistics

- Platform: Crowdmark
- Mock Assessment is available now (emailed to you) to get familiar with the logistics. It will not be graded. Due date Feb 10 at 9:00am.
- > Some practice problems and solutions from past semesters are on Quercus
- Material in midterm:
 - Week 1 to 5 of Lectures, Tutorials 1 and 2, Project 1, Reading assignments 1-4.

Mid-term assessment logistics

- Midterm Assessment Distribution: Tuesday, Feb 15 at 9am (Toronto time)
- Deadline for Submitting the Assessment: Wednesday, Feb 16 at 3pm (Toronto time)
 - A countdown starts as soon as you access the assessment (2.5 hours available as per course schedule)
 - 30 minutes are already added to the countdown time for contingency. No excuses.
- Time needed for writing answers: about 90 minutes
- Late submission or no submission: 0 mark (as per syllabus).
- Use course material + online resources NO HELP FROM OTHERS!! No Piazza.
- If needed, make assumptions and answer the questions. Do not contact us to ask.
- In case of a logistic problem, you can email Sinisa, Samin and Ali during your assessment. There is no guarantee that we can respond before your time runs out.

Slide Attribution

These slides contain materials from various sources. Special thanks to the following authors:

- Marc Deisenroth
- Mark Schmidt
- Jason Riordon

Last Time

- Looked into assessing model performance
 - Probability Theory
 - Gaussians
 - Confusion Matrix
 - > ROCs

- Data Processing to the Rescue
 - Data Augmentation (today)
 - Dimensionality Reduction (next week)

What do these datasets have in common?

ML Performance Benchmarks

								L
Method	Depth	Params	C10	C10+		C100	C100+	
Network in Network [22]	-	-	10.41	8.81	Т	35.68	-	Γ
All-CNN [32]	-	-	9.08	7.25		-	33.71	
Deeply Supervised Net [20]	-	-	9.69	7.97		-	34.57	
Highway Network [34]	-	-	-	7.72		-	32.39	
FractalNet [17]	21	38.6M	10.18	5.22	Т	35.34	23.30	П
with Dropout/Drop-path	21	38.6M	7.33	4.60		28.20	23.73	
ResNet [11]	110	1.7M	-	6.61		-	-	
ResNet (reported by [13])	110	1.7M	13.63	6.41	Т	44.74	27.22	Г
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	T	37.80	24.58	Г
	1202	10.2M	-	4.91		-	-	
Wide ResNet [42]	16	11.0M	-	4.81	T	-	22.07	Г
	28	36.5M	-	4.17		-	20.50	
with Dropout	16	2.7M	-	-		-	-	
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	T	35.58*	24.33	Г
	1001	10.2M	10.56*	4.62		33.47*	22.71	
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	Ť	27.55	24.42	Г
DenseNet $(k = 12)$	100	7.0M	5.77	4.10		23.79	20.20	
DenseNet $(k = 24)$	100	27.2M	5.83	3.74		23.42	19.25	
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	Ť	24.15	22.27	Г
DenseNet-BC $(k=24)$	250	15.3M	5.19	3.62		19.64	17.60	
DenseNet-BC $(k=40)$	190	25.6M	-	3.46		-	17.18	
								Г

- ➤ C10+ and C100+ highlight the error rates after data augmentation
- Data augmentation found to consistently lower the error rates!

Error rates of popular neural networks on the Cifar 10 and Cifar 100 datasets. (Source: DenseNet)

Agenda

- Linear Algebra
 - Scalars, Vectors, Matrices
 - Solving Systems of Linear Equations
 - Linear Independence
 - Linear Mappings
- Analytic Geometry
 - Norms, Inner Products, Lengths, etc.
 - ➤ Angles and Orthonormal Basis

Data Augmentation

Today's Theme:

Data Processing

Linear Algebra

Readings:

Chapter 2.1-5 MML Textbook

Systems of Linear Equations

- > The solution space of a system of two linear equations with two variables can be geometrically interpreted as the intersection of two lines
- intersection of planes in three variables

System in three variables – solution is at intersection

System with 2 equations and three variables – solution is typically a line

Matrix Representation

- Used to solve systems of linear equations more systematically
- Compact notation collects coefficients into vectors, and vectors into matrices:

$$x_1 \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Matrix Notation

A matrix has m x n elements (with $m, n \in \mathbb{N}$, and a_{ij} , i=1,...,m; j=1,...,n) which are ordered according to a rectangular scheme consisting of m rows and n columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m}^{1} a_{ij} \in \mathbb{R}$$

- ➤ By convention (1 by n)-matrices are called **rows** and (m by 1)-matrices are called **column**s. These special matrices are also called row/column vectors.
- > (1 by 1)-matrices are referred to as scalars

Addition and Scalar Multiplication

Vector addition:

$$a + b = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \end{bmatrix}$$

Scalar multiplication:

$$\alpha b = \alpha \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \alpha b_1 \\ \alpha b_2 \end{bmatrix}$$

Addition and Scalar Multiplication

 \triangleright Matrix addition: The **sum of two matrices** $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times n}$ is defined as the element-wise sum:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

 \triangleright Scalar multiplication of **a matrix** $A \in \mathbb{R}^{m \times n}$ is defined as:

$$\alpha * A = \begin{bmatrix} \alpha * a_{11} & \dots & \alpha * a_{1n} \\ \vdots & & \vdots \\ \alpha * a_{m1} & \dots & \alpha * a_{mn} \end{bmatrix}$$

Matrix Multiplication

> We can multiply a matrix by a column vector:

$$Ax = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \end{bmatrix}$$

We can multiply a matrix by a row vector:

$$x^{T}A = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11}x_{1} + a_{21}x_{2} + a_{31}x_{3} & a_{12}x_{1} + a_{22}x_{2} + a_{32}x_{3} & a_{13}x_{1} + a_{23}x_{2} + a_{33}x_{3} \end{bmatrix}$$

In general, we can multiply matrices A and B when the number of columns in A matches the number of rows in B:

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} & a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \end{bmatrix}$$

Example: Matrix Multiplication

For two matrices:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 3}, B = \begin{bmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 2},$$

> we obtain:

$$AB = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix} \in \mathbb{R}^{2 \times 2},$$

$$BA = \begin{bmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 4 & 2 \\ -2 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

Basic Properties

- > A few properties:
 - > Associativity:

$$\forall A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q} : (AB)C = A(BC)$$

Distributivity:

$$\forall A, B \in \mathbb{R}^{m \times n}, C, D \in \mathbb{R}^{n \times p}$$
: $(A + B)C = AC + BC$
$$A(C + D) = AC + AD$$

Inner Product and Outer Product

> The inner product between vectors of the same length is:

$$a^Tb = \sum_{i=1}^n a_ib_i = a_1b_1 + a_2b_2 + \ldots + anbn = \gamma \qquad \qquad \text{The inner product is a scalar}$$

> The outer product between vectors of the same length is:

$$ab^T = \begin{bmatrix} a_1b_1 & a_1b_2 & \dots & a_1b_n \\ a_2b_1 & a_2b_2 & \dots & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_nb_1 & a_nb_2 & \dots & a_nb_n \end{bmatrix}$$
 The outer product is a matrix

Identity Matrix

> We define the **identity matrix** as shown:

$$I_n := \begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Any matrix multiplied by the identity will not change the matrix:

Inverse

- If square matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ have the property that $AB = I_n = BA$. Then B is called the inverse of A and denoted by A⁻¹.
- > Example, these matrices are inverse to each other:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 4 & 5 \\ 6 & 7 & 7 \end{bmatrix}, \qquad B = \begin{bmatrix} -7 & -7 & 6 \\ 2 & 1 & -1 \\ 4 & 5 & -4 \end{bmatrix}$$

We'll look at how to calculate the inverse later

Transpose

- ➤ Transpose definition: For $A \in \mathbb{R}^{m \times n}$ the matrix $B \in \mathbb{R}^{n \times m}$ with $b_{ij} = a_{ii}$ is called transpose of A. We write $B = A^T$.
- **Symmetric Matrix**: A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$.
- Some useful identities:

$$AA^{-1} = I = A^{-1}A$$

 $(AB)^{-1} = B^{-1}A^{-1}$
 $(A + B)^{-1} \neq A^{-1} + B^{-1}$
 $(A^T)^T = A$
 $(A + B)^T = A^T + B^T$
 $(AB)^T = B^T A^T$

Solving Systems of Linear Equations

Given A and b, we want to solve for x:

$$Ax = b \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$$

- Key to solving a system of linear equations are elementary transformations that keep the solution set the same, but that transform the equation system into a simpler form.
 - 1. Exchange of two equations (rows in the matrix)
 - 2. Multiplication of an equation (row) with a constant
 - 3. Addition of two equations (rows)
- This leads us to Gaussian Elimination (aka row reduction)

Triangular Linear Systems

Consider a square linear system with an upper triangular matrix (non-zero diagonals):

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

We can solve this system bottom to top using substitution:

$$a_{33}x_3 = b_3$$

$$a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$x_3 = \frac{b_3}{a_{33}}$$

$$x_2 = \frac{b_2 - a_{23}x_3}{a_{22}}$$

$$x_1 = \frac{b_1 - a_{13}x_3 - a_{12}x_2}{a_{11}}$$

Example: Gaussian Elimination

Gaussian elimination uses elementary row operations to transform a linear system into a triangular system:

$$2x_1 + x_2 + x_3 = 5
4x_1 - 6x_2 = -2
-2x_1 + 7x_2 + 2x_3 = 9$$

$$\begin{bmatrix}
2 & 1 & 1 & 5 \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{bmatrix}$$

- Add <u>-2 times first row</u> to second
- Add <u>1 times first row</u> to third

$$2x_1 + x_2 + x_3 = 5
-8x_2 - 2x_3 = -12
8x_2 + 3x_3 = 14$$

$$\begin{bmatrix}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{bmatrix}$$

$$2x_1 + x_2 + x_3 = 5$$

$$-8x_2 - 2x_3 = -12$$

$$x_3 = 2$$

Row Echelon form

Row Echelon Form

- The first non-zero coefficient from the left (the "leading coefficient") is always to the right of the first non-zero coefficient in the row above.
- Rows consisting of all zero coefficients are at the bottom of the matrix.

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
 Row Echelon form

Example: Reduced Echelon Form

We can simplify this even further:

$$2x_1 + x_2 + x_3 = 5
-8x_2 - 2x_3 = -12
x_3 = 2$$

$$\begin{bmatrix}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 0 & 1 & 2
\end{bmatrix}$$

- Divide first row by 2
- Divide 2nd row by -8

$$\begin{array}{c}
 x_1 + 0.5x_2 + 0.5x_3 = 2.5 \\
 x_2 + 0.25x_3 = 1.5 \\
 x_3 = 2
 \end{array}
 \qquad
 \begin{bmatrix}
 1 & 0.5 & 0.5 & 2.5 \\
 0 & 1 & 0.25 & 1.5 \\
 0 & 0 & 1 & 2
 \end{bmatrix}$$

- Add <u>-0.25 times third row</u> to second row
- > Add <u>-0.5 times third row</u> to first row
- Add <u>-0.5 times second row</u> to first row

$$x_1 = 1$$
 $x_2 = 1$
 $x_3 = 2$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
Reduced row Echelon form

The coefficient matrix could be non-square Example 2.6 from MML book (reading assignment 4):

Four equations and five unknowns

Alternative Method: Inverse Matrix

- ➤ We can also solve linear systems of equations by applying the inverse.
- The solution to Ax = b can be obtained by multiplying by A^{-1} to isolate for x.

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$I_n x = A^{-1}b$$

$$x = A^{-1}b$$

Note that A^{-1} will cancel out A only if multiplied from the left-hand side, otherwise we have $A^{-1}xA$

Calculating an Inverse Matrix

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Write down the augmented matrix with the identity on the right-hand side

$$\begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

> Apply Gaussian elimination to bring it into reduced row-echelon form.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & -1 & 2 & -2 & 2 \\ 0 & 1 & 0 & 0 & | & 1 & -1 & 2 & -2 \\ 0 & 0 & 1 & 0 & | & 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 & | & -1 & 0 & -1 & 2 \end{bmatrix} \text{ The desired inverse is given as its right-hand side.}$$

We can verify that this is indeed the inverse by performing the multiplication
$$AA^{-1}$$
 and observing that we recover I_n .

$$A^{-1} = \begin{bmatrix} -1 & 2 & -2 & 2 \\ 1 & -1 & 2 & -2 \\ 1 & -1 & 1 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

What can go wrong?

- Applying Gaussian Elimination (row reduction) does not always lead to a solution.
- > Singular Case: When we have a 0 in a pivot column. This is an example of a matrix that is not invertible.
- For example:

> To understand this better it helps to consider matrices from a geometric perspective.

Several Interpretations

Given A and b, we want to solve for x:

$$Ax = b \qquad \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

- This can be given several interpretations:
 - > By rows: x is the intersection of hyper-planes:

$$2x - y = 1$$
$$x + y = 5$$

> By columns: x is the linear combination that gives b:

$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

> Transformation: x is the vector transformed to b:

$$T(x) = b$$

Geometry of Linear Equations

> By Rows:

Find intersection of hyperplanes

> By Columns:

Find linear combination of columns

What can go wrong?

> By rows:

No intersection

Infinite intersection

What can go wrong?

> By columns:

Solutions to Ax=b

- Q: In general, when does Ax=b have a unique solution?
- A: When b is in the columnspace of A, and the columns of A are linearly independent

Q: What does it mean to be independent?

Linear Dependence

- > A set of vectors is either linearly dependent or linearly independent.
- ➤ A vector is linearly dependent on a set of vectors if it can be written as a linear combination of them:

$$c = \alpha_1 b_1 + \alpha_2 b_2 + \dots \alpha_n b_n$$

- We say that c is "linearly dependent" on $\{b_1, b_2, ..., b_3\}$, and that the set $\{c,b_1, b_2, ..., b_3\}$ is "linearly dependent"
- \triangleright A set is linearly dependent iff the zero vector can be written as a combination of the vectors $\{b_1, b_2, ..., b_3\}$:

$$\exists_{\alpha} \neq 0, s.t. 0 = \alpha_1 b_1 + \alpha_2 b_2 + \dots \alpha_n b_n = \{b_1, b_2, \dots, b_n\} dependent$$

Linear Independence

- ➤ If a set of vectors is not linearly dependent, we say it is linearly independent
- \triangleright The zero vector **cannot** be written as a combination of independent vectors unless all coefficients α are set to zero:

$$0 = \alpha_1 b_1 + \alpha_2 b_2 + \dots \alpha_n b_n = \alpha_i = 0 \ \forall_i$$

If the vectors are independent, then there is no way represent one of the vectors as a combination of the others.

Linear Dependence vs Independence

 \triangleright Q: Determine independence in R^2 for the following.

Linear Independence

- \triangleright Consider we have a set of three vectors $\{x_1, x_2, x_3\} \in \mathbb{R}^4$
- To check whether they are linearly dependent, we solve: $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 = 0$
- We write the vectors x_i , i = 1, 2, 3, as the columns of a matrix and **apply elementary row operations** until we identify the pivot columns.
- All column vectors are linearly independent if and only if all columns are pivot columns. If there is at least one non-pivot column the vectors are linearly dependent.

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, x_1 = \begin{bmatrix} -1 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_2 x_3 = 0$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & -2 \\ -3 & 0 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$

...

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Vector Space

➤ A vector space is a set of objects called "vectors", with closed operations "addition" and "scalar multiplication" satisfying certain axioms:

```
1. x + y = y + x
```

2.
$$x + (y + z) = (x + y) + z$$

- 3. exists a zero vector "0" s.t. \forall_x , x + 0 = x
- 4. \forall_x , exists an additive inverse "-x", s.t. x + (-x) = 0
- 5. 1x = x
- 6. $(c_1c_2)x = c_1(c_2x)$
- 7. c(x+y) = cx + cy
- 8. $(c_1 + c_2)x = c_1x + c_2x$
- \triangleright Examples: \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^n

Subspace

> Subspaces generated in R²:

set of vectors
$$\mathcal{A} = \{x_1, \dots, x_k\} \subseteq \mathcal{V}$$

The set of all linear combinations of vectors in \mathcal{A} is called the span of \mathcal{A} . If \mathcal{A} spans the vector space V, write $V = span[\mathcal{A}]$ or $V = span[x_1, ..., x_k]$

Basis

- > The vectors that span a subspace are not unique
- ➤ However, the minimum number of vectors needed to span a subspace is unique
- > This number is called the dimension or rank of the subspace
- > A minimal set of vectors that span a subspace is called a basis for the space
- The vectors in a basis must be linearly independent, otherwise we could remove one and still span space

Basis

 \triangleright Basis in vector space $V \in \mathbb{R}^2$:

independent set
of vectors that
span V is called
a basis of V

Example Bases

 \triangleright In \mathbb{R}^3 , the **canonical/standard basis** is:

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

 \triangleright Two different bases of \mathbb{R}^3 are:

$$\mathcal{B}_{1} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \quad \mathcal{B}_{2} = \left\{ \begin{bmatrix} 0.5 \\ 0.8 \\ 0.4 \end{bmatrix}, \begin{bmatrix} 1.8 \\ 0.3 \\ 0.3 \end{bmatrix}, \begin{bmatrix} -2.2 \\ -1.3 \\ 3.5 \end{bmatrix} \right\}$$

Linear Mapping/Transformation

- Earlier, we saw that vectors are objects that can be added together and multiplied by a scalar, and the resulting object is still a vector
- Now, we do the same for vector spaces
- **Linear Mapping**: For vector spaces V, W, a mapping $\phi: V \to W$ is called a linear mapping (or linear transformation) if:

$$\forall x, y \in V \ \forall \lambda, \psi \in \mathbb{R}: \ \Phi(\lambda x + \psi y) = \lambda \Phi(x) + \psi \Phi(y)$$

It turns out that we can represent linear mappings as matrices. Recall that we can also collect a set of vectors as columns of a matrix. When working with matrices, we have to keep in mind what the matrix represents: a linear mapping or a collection of vectors.

Linear Mapping/Transformation

➤ A vector has different coordinate representations depending on which coordinate system or basis is chosen.

Example: two different coordinate systems defined by two sets of basis vectors.

Source: Eli Bendersky

Example: Change of Basis Matrix

$$U = [2 \ 3]^T [4 \ 5]^T$$

 $[f]_v = [2 \ 4]^T$
 $[f]_u = ?$

Examples of Transforms

≻Rotation

➤ Horizontal Mirror

➤ Vertical Mirror

© 2019 MathsIsFun.com v0.81

▶ Combination of Transformations

Source: mathisfun.com

Short Break

Analytical Geometry

Readings:

Chapter 3.1-5,8,9 MML Textbook

Norms

- > A norm is a scalar measure of a vector's length.
- The most important norm is the Euclidean norm and for $x \in \mathbb{R}^n$ is defined as:

$$||x||_2 \coloneqq \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^T x}$$

computes the Euclidian distance of x from the origin.

Euclidean norm is also known as the L2 norm

Norms

> For different norms, the red lines indicate the set of vectors with norm 1.

Dot product

> Dot product:

$$x^{T}y = \sum_{i=1}^{n} x_{i}y_{i}$$

$$a_{1} \cdot b_{1} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 5 \end{bmatrix} = (1 \cdot 3) + (7 \cdot 5) = 38$$

 \triangleright Commonly, the dot product between two vectors a, b is denoted by a^Tb or $\langle a,b\rangle$.

Lengths and Distances

Consider an inner product space.

> Then

$$d(x,y) \coloneqq \|x - y\| = \sqrt{\langle x - y, x - y \rangle}$$

is called the distance between x and y for $x, y \in V$.

➤ If we use the dot product as the inner product, then the distance is called Euclidean distance.

Angles

- \succ The angle θ between two vectors x, y is computed using the inner product.
- For Example: Let us compute the angle between $x = [1,1]^T \in \mathbb{R}^2$ and $y = [1,2]^T \in \mathbb{R}^2$
- Using the dot product as the inner product we get:

$$\cos \theta = \frac{\langle x, y \rangle}{\sqrt{\langle x, x \rangle \langle y, y \rangle}} = \frac{x^T y}{\sqrt{x^T x y^T y}} = \frac{3}{\sqrt{10}}$$

Then the angle between the two vectors is $\cos^{-1}(\frac{3}{\sqrt{10}}) \approx 0.32 rad$, which corresponds to approximately 18° .

Orthogonality

- Orthonormal = Orthogonal and unit vectors
- \triangleright Orthogonal Matrix: A square matrix $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if and only if its columns are orthonormal so that

$$AA^T = I = A^T A$$

which implies that

$$A^{-1}=A^T,$$

i.e., the inverse is obtained by simply transposing the matrix.

Orthonormal Basis

- In n-dimensional space, we need n basis vectors that are linearly independent, if these vectors are orthogonal, and each has length 1, it's a special case: **orthonormal basis**
- ightharpoonup Consider an n-dimensional vector space V and a basis $\{b_1,\dots,b_n\}$ of V. If

$$\langle b_i, b_j \rangle = 0 \text{ for } i \neq j$$

 $\langle b_i, b_i \rangle = 1$

for all i, j = 1, ..., n then the basis is called an orthonormal basis (ONB). Note that $\langle b_i, b_i \rangle = 1$ implies that every basis vector has length/norm 1.

If only $\langle b_i, b_j \rangle = 0$ for $i \neq j$ is satisfied, then the basis is called an orthogonal basis.

Orthonormal Basis

 \triangleright The canonical/standard basis for a Euclidean vector space \mathbb{R}^n is an orthonormal basis, where the inner product is the dot product of vectors.

 \triangleright Example: In \mathbb{R}^2 , the vectors:

$$b_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad b_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix},$$

form an orthonormal basis since $b_1^T b_2 = 0$ and $||b_1|| = 1 = ||b_2||$.

Orthogonal Projections

Figure 3.9

Orthogonal projection (orange dots) of a two-dimensional dataset (blue dots) onto a one-dimensional subspace (straight line).

> Projections are linear transformations, project to lower dimensional feature space

Orthogonal Projections

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \boldsymbol{b} .

> The projection is defined

$$\pi_U(\mathbf{x}) = \lambda \mathbf{b} = \mathbf{b} \frac{\mathbf{b}^T \mathbf{x}}{\|\mathbf{b}\|^2} = \frac{\mathbf{b} \mathbf{b}^T}{\|\mathbf{b}\|^2} \mathbf{x}$$

Example: Orthogonal Projections

Compute the projection of $x = [1,2]^T \in \mathbb{R}^2$ onto $b = [1,1]^T \in \mathbb{R}^2$

$$\pi_U(\mathbf{x}) = \frac{\mathbf{b}\mathbf{b}^T}{\|\mathbf{b}\|^2}\mathbf{x}$$

Projection Matrix

We can also use a projection matrix, which allows us to project any vector x onto the subspace defined by π .

ction matrix, which allows us to the subspace defined by
$$\pi$$
.
$$\pi_U(x) = \frac{bb^T}{\|b\|^2} x$$

$$\pi_U(x) = \frac{\|bb^T\|}{\|b\|^2} x$$

 \triangleright Note that bb^T will be a symmetric matrix

Example: Applying Projection Matrix

ightharpoonup Compute the projection matrix for $b=[1,1]^T\in\mathbb{R}^2$

$$P_{\pi} = \frac{oldsymbol{b} oldsymbol{b}^T}{\|oldsymbol{b}\|^2}$$

Examples in Google Colab

Data Augmentation

Non-Representative Data

➤ Everything our algorithms learn comes form the data used to train them.

If the data is of **poor quality, unbalanced** or **not representative** of the task we want to solve, then how are our algorithms going to learn to generalize?

Capacity and Training

Deep learning algorithms have the capacity to classify real images in various orientations and scales.

➤ If you train your algorithms on perfectly processed samples, then they won't know how to predict anything but perfectly cropped images.

Data Augmentation

- Use linear algebra to perform common transformations to supplement datasets
 - Translation, Scaling, Rotation, Reflection
 - Noise, Light and Colour Intensity
 - Many more...

GAN Fake Celebrities

Source: Viridian Martinez

> Advanced:

➤ Generative models (i.e., Deep learning) to create new images with similar characteristics

Source: kaggle.com

Test Time Data Augmentation

- You can also apply data augmentation to better evaluate your performance on test examples.
- ➤ Great way to assess limitations of your model to images of different rotations, scales, noise, etc.

Data Augmentation in Google Colab

Next Time

- Week 5 Tutorial 2 on Anomaly Detection
 - Project 2 Overview
- Feb 15-16 Midterm (no lecture)
- Q&A Session on Thur. Feb 17
- Project 2 is due on Feb 28th
- Week 7 Dimensionality Reduction
 - Curse of Dimensionality
 - Eigendecomposition
 - Singular Value Decomposition
 - Principle Component Analysis