COMP5930M-Scientific Computation

Coursework 1

Daolin Sheng ml192ds

COMP5930M-Scientific Computation

- 1. A floating sphere
 - (a). Nonlinear function and MATLAB implementation
 - (b). The initial bracket plus justification for its validity
 - (c). Two correct solutions plus the number of iterations
 - (d). number of solutions and corresponding initial guesses

2. Chemical engineering

- (a). Nonlinear system for the steady-state problem and MATLAB code
- (b). Jacobian matrix for the steady-state problem and MATLAB code
- (c). Numerical solution and values of |F|
- (d). Discreised time-dependent equations
- (e). Jacobian matrix for the time-dependent problem, behaviour for limit values of times step

3. Control of a robot arm

- (a) System of equations
- (b) Implement in MATLAB code
- (c) two correct solutions, figures
- (d) Implement in MATLAB code about the path and the tracing function, and the table of angles

1. A floating sphere

(a). Nonlinear function and MATLAB implementation

- The weight of water $W_w=\rho_w V_{cap}=\pi H^2(a-\frac{H}{3})$ and the weight of the sphere $W_s=\frac{4}{3}\,\pi\rho_s a^3$.
- Because of $W_w=W_s$, so the nonlinear equation $F_{a,\rho_s}(H)=W_w-W_s=0$. the nonlinear equation is down for given values of a and ρ_s :

$$F_{a,\rho_s}(H) = \pi H^2(a - \frac{H}{3}) - \frac{4}{3}\pi\rho_s a^3 = 0$$

• The implementation of MATLAB:

(b). The initial bracket plus justification for its validity

• the initial bracket: $[0 + \delta, 3a - \delta], \delta = 10^{-6}$

Because the H_L and H_R must meet the following conditions:

```
\circ (1). 0 < H < 3a, due to the W_w > 0
```

- $\circ (2). F(x_L)F(x_R) \leq 0$
- (3). The F(H) can be get a maximum at the point 2a, So, the suitable value can be $[0+\delta,2a], \delta=10^{-6}$ OR $[2a,3a-\delta], \delta=10^{-6}$ must be find a H to fit the F(H)=0.

(c). Two correct solutions plus the number of iterations

- In given values a = 1 and $p_s = 0.45$,
- In Bisection method, the initial bracket $[10^{-6}, 3 10^{-6}]$, the solution is : H = 0.9332 and the number of iteration is 22.

- In Newton Method, the init guess $x_0 = 1.0$, the solution is : H = 0.9332 and the number of iteration is 3.
- As the following figure:

fx >>

```
>> bisection(@fun_sphere, 1e-6, 2-1e-6, 1e-6, 100)
    i
        x_i
                     |F(x_i)|
    0
        1.00000000
                     2.09e-01
    1
        0.50000050
                    1.23e+00
    2
        0.75000025
                     5.60e-01
    3
        0.87500013
                     1.81e-01
    4
        0.93750006
                     1.33e-02
    5
        0.90625009
                      8.42e-02
    6
        0.92187508
                     3.55e-02
    7
        0.92968757
                     1.11e-02
    8
                     1.12e-03
        0.93359382
    9
                     4.98e-03
        0.93164069
   10
        0.93261725
                    1.93e-03
   11
        0.93310554 4.02e-04
   12
        0.93334968
                    3.61e-04
   13
        0.93322761
                    2.04e-05
   14
        0.93328864
                     1.70e-04
   15
        0.93325812
                     7.51e-05
   16
        0.93324286
                     2.73e-05
   17
        0.93323524
                     3.47e-06
   18
        0.93323142
                     8.46e-06
                    2.50e-06
   19
        0.93323333
   20
        0.93323428 4.85e-07
   21
        0.93323428
                     4.85e-07
 ans =
    列 1 至 8
      1.0000
                0.5000
                         0.7500
                                   0.8750
                                             0.9375
                                                       0.9063
                                                                0.9219
                                                                          0.9297
    列 9 至 16
      0.9336
                0.9316
                         0.9326
                                   0.9331
                                             0.9333
                                                       0.9332
                                                                0.9333
                                                                          0.9333
    列 17 至 21
      0.9332
                0.9332
                         0.9332
                                   0.9332
                                             0.9332
fx >>
 >> newtonSys(@fun_sphere, @dfun_sphere, 1.0, 1e-6, 100)
    k
        |F(x_k)|
    a
           0.209
         0.00031
    1
     2
        2.06e-09
 Converged
 ans =
     0.9332
```

(d). number of solutions and corresponding initial guesses

• By changing the initial guess x_0 , can be get 2 solutions, the first one is:

• H = 0.9332, the second one is H = 2.7645.

• if the initial guess $x_0 = 0.5$, the solution is : **0.9332**.

• if the initial guess $x_0 = 2.5$, the solution is : **2.7645**.

2. Chemical engineering

(a). Nonlinear system for the steady-state problem and MATLAB code

For the case n=5 reactors, the nonlinear equation system F(U)=0.

(b). Jacobian matrix for the steady-state problem and MATLAB code

(c). Numerical solution and values of |F|

- In case the n =5 with the following the parameters: V = 1.0, G = 35.0, k=0.6, a0=
 6.0.
- The values of |F| at each iterations:

```
iterations: |f(x)|
0 6.000000
1 1.379973
2 0.078314
3 0.000231
4 0.000000
5 0.000000
the solutions:
5.4844
5.0476
4.6732
```

4.3490 4.0656

(d). Discreised time-dependent equations

• the time-dependent concentrations $a_i(t)$.

(1).
$$\frac{da_i}{dt} = -\beta a_i^2 + a_{i-1} - a_i$$
 , for $t > 0$; and $a_i = a(t_i)$

- Implicit Euler approximation for (2). $\frac{da_i}{dt} = f(u)$
- and the backward Euler(implicit) method is: (3). $\frac{a_{i+1}-a_i}{\Delta t}=f(u_{i+1})$
- So we can get this formual:
- $F_i(U) = \frac{a_{i+1} a_i}{\Delta t} + \beta a_{i+1}^2 + a_{i+1} a_i = 0$ given an initial $a_i(0) = a_i^0$ for i = 1, ..., n.

(e). Jacobian matrix for the time-dependent problem, behaviour for limit values of times step

• the Jacpbian matix is:

$$\begin{bmatrix} \frac{\partial F_i}{\partial a_i} \\ \frac{\partial F_i}{\partial a_{i+1}} \end{bmatrix} = \begin{bmatrix} -1 - \frac{1}{\Delta t} \\ 1 + \frac{1}{\Delta t} + 2\beta a_{i+1} \end{bmatrix}$$

- when $(\Delta t \to 0)$, the Jacobian matrix is trend to $[-1; \infty]$, this reactor is unsteady-state.
- when $(\Delta t \rightarrow \infty)$, and this reactor is steady-state.

3. Control of a robot arm

(a) System of equations

- The system of nonlinear equations in the form F(x) = 0.
- Base on the equations of the location of the free end (loc_x, loc_y) and $(x_1, x_2) = (\theta, \phi)$:

$$loc_x = cos(\theta) + cos(\phi)$$

$$loc_{y} = sin(\theta) + sin(\phi)$$

• So, **x** is the vector $\{x_1, x_2\}$, **F** is a set $\{F_1(\mathbf{x}), F_2(\mathbf{x})\}$ nonlinear equations:

$$F_1(x_1, x_2) = cos(x_1) + cos(x_2) - loc_x$$

$$F_2(x_1, x_2) = \sin(x_1) + \sin(x_2) - \log_y$$

• Find (x_1^*, x_2^*) such that $F_1(x_1^*, x_2^*) = 0$ and $F_2(x_1^*, x_2^*) = 0$.

$$cos(x_1) + cos(x_2) - loc_x = 0$$

$$sin(x_1) + sin(x_2) - loc_y = 0$$

(b) Implement in MATLAB code

the matlab filename: fun_arm.m

```
    function f = fun_arm(x, locx, locy)
    % Systems of nonlinear equations for control of a robot arm
    % system of 2 nonlinear equations
    % function f_x = fun_arm(x, locx, locy)
    %
    % Input: x - current solution
    % locx - current location x
    % locy - current location y
    %
    % Output: f - final function value
    f = [cos(x(1)) + cos(x(2)) - locx; sin(x(1)) + sin(x(2)) - locy];
    end
```

The Jacobian function: **Jfun_arm(x)**:

(c) two correct solutions, figures

• Case i, the initial x_0 for Newton method, when x_0 at location $(x_1,x_2)=(-1,1)$ the solution is: $(\theta,\phi)=(x_1,x_2)=(-0.4240,1.9948)$ the figure:

• Case ii, the initial x_0 for Newton method, when x_0 at location $(x_1, x_2) = (2, 0)$ the solution is: $(\theta, \phi) = (x_1, x_2) = (1.9948, -0.4240)$

the figure:

(d) Implement in MATLAB code about the path and the tracing function, and the table of angles

1. the traceFn is the function defining the path. the code: filename: traceFn.m

2. The matlab filename: "traceArm.m"

```
1. function t_out = traceArm(traceFn,nSteps, x0)
      % Input:
      step = 2 / (nSteps -1);
      i = 1;
      step_list = [];
      t = [];
      x_list = [];
      y_list = [];
      theta_list = [];
      phi_list = [];
      for st = -1:step:1
           [locx, locy] = feval(traceFn, st)
           [xx, f] = newtonSys2(@fun_arm, @Jfun_arm, x0, 1e
  -10, 100, locx, locy);
          t = [t st];
          step_list = [step_list i];
          x_list = [x_list locx];
          y_list = [y_list locy];
          theta_list = [theta_list xx(1,:)];
          phi_list = [phi_list xx(2,:)];
          i = i + 1;
      nSteps = step_list';
      nT = t';
      nLocx = x_list';
```

```
35.  nLocy = y_list';
36.  Theta = theta_list';
37.  Phi = phi_list';
38.  t_out = table(nSteps,nT, nLocx, nLocy,Theta,Phi);
39.
40. end
```

3. In case the **x0:** (0.5, 0.5), the θ and ϕ at each step, following down:

	1	2	3	4	5	6	7
	nSteps	nT	nLocx	nLocy	Theta	Phi	
1	1	-1	-1	-0.4985	-1.7012	2.6260	
2	2	-0.9000	-0.9000	-0.6457	-1.5354	2.7801	
3	3	-0.8000	-0.8000	-0.7632	48.8708	53.1839	
4	4	-0.7000	-0.7000	-0.8463	-3.2513	-1.2724	
5	5	-0.6000	-0.6000	-0.8917	-1.1596	3.1166	
6	6	-0.5000	-0.5000	-0.8975	3.1728	5.2354	
7	7	-0.4000	-0.4000	-0.8636	-7.2129	-3.0794	
8	8	-0.3000	-0.3000	-0.7912	-0.7993	3.2160	
9	9	-0.2000	-0.2000	-0.6833	-0.6487	3.2208	
10	10	-0.1000	-0.1000	-0.5442	-0.4620	3.2402	
11	11	0	0	-0.3794	3.3325	6.0923	
12	12	0.1000	0.1000	-0.1955	28.8571	31.7787	
13	13	0.2000	0.2000	1.6658e-04	-1.4698	1.4715	
14	14	0.3000	0.3000	0.1998	-0.8020	1.9772	
15	15	0.4000	0.4000	0.3955	-0.5059	2.0655	
16	16	0.5000	0.5000	0.5794	-0.3193	2.0370	
17	17	0.6000	0.6000	0.7442	-0.1802	1.9647	
18	18	0.7000	0.7000	0.8833	-0.0715	1.8728	
19	19	0.8000	0.8000	0.9912	0.0114	1.7721	
20	20	0.9000	0.9000	1.0636	0.0684	1.6686	
21	21	1	1	1.0975	0.0977	1.5660	
22							

The path of free end of arm.

The newtonSys2 function

```
    function [ x,f ] = newtonSys2( fnon, fjac, x0, tol, maxI t,locx,locy)
    3. % Basic Newton algorithm for systems of nonlinear equations
    4. % function [ x,f ] = newtonSys( fnon, fjac, x0, tol, maxit)
    5. % Input: fnon - function handle for nonlinear system
    6. % fjac - function handle for Jacobian matrix
    7. % x0 - initial state (column vector)
    8. % tol - convergence tolerance
    9. % maxIt - maximum allowed number of iterations
    10. % Output: x - final point
    11. % f - final function value
    12.
    13. fprintf(' x | f(x)|\n')
```

```
15. n = length(x0);
17. x = x0;
18. f = feval(fnon,x,locx, locy); % initial function val
19. normf = norm(f);
20. it = 0;
21. fprintf(' %d %12.6f\n',it,norm(f));
23. while (normf>tol) && (it<maxIt)</pre>
25. J = feval(fjac, x); % build Jacobian
    delta = -J\f; % solve linear system
    xkp = x;
     xk = x + delta;
    x = x + delta; % update x
    f = feval(fnon,x, locx, locy);  % new function values
    normf = norm(f);
     it = it + 1;
     % Print the new estimate and function value.
    fprintf(' %d %12.6f\n',it,normf)
43. if( it==maxIt)
44. fprintf(' WARNING: Not converged\n')
45. else
46. fprintf(' SUCCESS: Converged\n')
```