浙江理工大学 2009 - 2010 学年 第二学期 《高等数学 B》期末试卷 (A) 卷

班级	学号			_ 姓名				
题号 一 二		三			总分			阅卷人
	(1) (2)	(3)	(4)	(5)	(6)	(7)		
得分								
一. 选择题(本题共 5 小	题, 每小题	5分	, 满匀	分 25	分)			
(1) 设 α 为常数且 α	> 0, 则级数	数 $\sum_{n=\infty}^{\infty}$	(-1)	n(1 -	- cos	$\frac{\alpha}{n}$)()	
(A) 发散		n=1						
(C) 绝对收敛	` '		有关					
(2) $\int_0^1 dx \int_0^{1-x} f(x, y)$			1320					
(A) $\int_0^1 dy \int_0^{1-x} f$			$\frac{1}{2} dy$	\int_0^{y-1}	f(x, y)	y)dx		
(C) $\int_0^1 dy \int_0^{1+y} f$			•	, 0				
(3) 二元函数 z = f(x)			•	, 0			该点可	微的(
(A) 充分条件	(B) 必要条	件						
(C) 充要条件	(D) 既非充	分又	非必	要条值	牛			
(4) 设 $0 \le a_n < \frac{1}{n}$ (n	$=1,2,\cdots$,则	下列约 n=x	及数□	申肯定	定收敛	文的是(()
$(A) \sum_{n=1}^{n=\infty} a_n (B)$	$\sum_{n=1}^{\infty} (-1)^n$	a_n (C	$\binom{n}{n} \sum_{n=1}^{\infty}$	$\sqrt{a_n}$	(Γ)	$\sum_{n=1}^{\infty}$	$(-1)^n$	a_n^2
$\int \frac{1}{x^2}$	$\frac{xy}{2+y^2}, \qquad x^2$	$x^{2} + y^{2}$	$\neq 0$	न्तर	大匠	H (0	0) H C	() (
(5) 设 $f(x,y) = \begin{cases} \overline{x} \\ 0 \end{cases}$	x^2	$x^{2} + y^{2}$	= 0	,则	仕原	点 (0	,0) 处 f	(x,y) (
(A) 连续且偏导								
(C) 连续且偏导	数存在	(D)	不连续	卖且值	扁导数	数不存	字在	
二. 填空题(本题共 5 小	题, 每小题	[4分	, 满匀	分 20	分)			
(1) 级数 $\sum_{n=1}^{\infty} \frac{(1+x)^n}{3^{n-1}\sqrt{n}}$	的收敛半径	是				_, 收益	汝域是_	
n-1								
$(2) \sum_{n=1}^{n=\infty} \frac{(2)^n}{n!} = \underline{\qquad}$								
(3) 设 $z = e^{\sin(xy)}$,则								
$(4) 曲线 y = x^2 与 y$	= x + 2 M	围成的	的面和	只为_				

- (5) 方程 $(x 2xy y^2)dy + y^2dx = 0$ 的通解为_____
- 三. 解答题 (55分)
 - (1) 计算 $\iint_D x^2 e^{-y^2} dx dy$,其中 D 是以 (0,0),(1,1)),(0,1) 为顶点的三角形. (8 分)

(2) 求曲面 $z=8-x^2-y^2$ 和 $z=x^2+y^2$ 所围形体的体积.(8 分)

(3) 判断级数 $\sum_{n=1}^{n=\infty} \frac{\cos n\pi}{\sqrt{4n^2-1}}$ 的敛散性, 如果收敛, 判断是绝对收敛还是条件收敛.(8分)

(4) 将 $\ln(1-x-2x^2)$ 展开成 x 的幂级数.(9 分)

(5) 求 $y'' + y = \sin x$ 的通解 (8 分)

(6) 己知 $u + e^u = xy$,求 $\frac{\partial^2 u}{\partial y \partial x}$.(8 分)

(7) 设 $a_n > 0$ $(n = 1, 2, \dots)$, $\{a_n\}$ 单调减, 级数 $\sum_{n=1}^{n=\infty} (-1)^n a_n$ 发散, 判断级数 $\sum_{n=1}^{n=\infty} (\frac{1}{1+a_n})^n$ 的敛散性. (6 分)