Formale Sprachen und Automaten Abgabe 1

Marcel Ebert, Pascal Dettmers, Claude (???)
TU Berlin

November 17, 2019

Aufgabe 1. Mengengrundlagen

a. Gib die mit gelb gekennzeichnete Menge mit nur zwei Mengenoperationen an:

$$M = (A \setminus B) \triangle C$$

b. Berechne: $((\{1,3\} \times \{1\})) \cup \{1,3,1\} \setminus \{(1,3),1,2\}$

$$\begin{split} M &= ((\{1,3\} \times \{1\})) \cup \{1,3,1\} \setminus \{(1,3),1,2\} \\ &\stackrel{\mathrm{Def.} \times}{=} (\{(1,1),(3,1)\} \cup \{1,3,1\} \setminus \{(1,3),1,2\}) \\ &\stackrel{\mathrm{Def.} \cup}{=} (\{(1,1),(3,1),1,3\} \setminus \{(1,3),1,2\}) \\ &\stackrel{\mathrm{Def.} \setminus}{=} \{(1,1),(3,1),3\} \end{split}$$

 $\textbf{c.} \quad \text{Berechne: } (\{\emptyset,2\} \cup \{\{\emptyset\}\}) \cap \mathcal{P}(\{\{\emptyset\},2\})$

$$\begin{split} M &= (\{\emptyset,2\} \cup \{\{\emptyset\}\}) \cap \mathcal{P}(\{\{\emptyset\},2\}) \\ &\stackrel{\mathrm{Def.}\cup}{=} \{\emptyset,\{\emptyset\},2\} \cap \mathcal{P}(\{\{\emptyset\},2\}) \\ &\stackrel{\mathrm{Def.}\mathcal{P}}{=} \{\emptyset,\{\emptyset\},2\} \cap \{\emptyset,\{\{\emptyset\}\},\{2\},\{\{\emptyset\},2\}\} \\ &\stackrel{\mathrm{Def.}\cap}{=} \{\emptyset\} \end{split}$$

Aufgabe 2. Mengenbeweise

a. Beweise oder widerlege: Für alle Mengen A und B gilt: $(A \cap B) \cap A = B \cap A$ Wir beweisen die Aussage. Seien A, B beliebige Mengen.

$$(A \cap B) \cap A = B \cap A$$

$$\stackrel{\text{Def.} \cap}{=} \qquad \{x \mid x \in \{y \mid y \in A \land y \in B\} \land x \in A\}$$

$$\stackrel{\text{Komm.}}{=} \qquad \{x \mid x \in \{y \mid y \in B \land y \in A\} \land x \in A\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad \{x \mid (x \in B \land x \in A) \land x \in A\}$$

$$\stackrel{\text{Assoz.}}{=} \qquad \{x \mid x \in B \land (x \in A \land x \in A)\}$$

$$\stackrel{\text{Idem.}}{=} \qquad \{x \mid x \in B \land x \in A\}$$

$$\stackrel{\text{Def.} \cap}{=} \qquad B \cap A$$

Somit gilt die Aussage.

b. Beweise oder widerlege: Für alle Mengen A und B gilt: $A \cup (A \setminus B) = A$

Wir beweisen die Aussage. Seien A, B beliebige Mengen.

$$A \cup (A \setminus B) = A$$

$$\stackrel{\text{Def.} \cup}{=} \qquad \{x \mid x \in A \lor x \in (A \setminus B)\}$$

$$\stackrel{\text{Def.} \wedge}{=} \qquad \{x \mid x \in A \lor x \in \{y \mid y \in A \land y \notin B\}\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad \{x \mid x \in A \lor (x \in A \land x \notin B)\}$$

$$\stackrel{\text{Distri.}}{=} \qquad \{x \mid (x \in A \lor x \in B) \land (x \in A \land x \in A)\}$$

$$\stackrel{\text{Idem.oder}}{=} \qquad \{x \mid (x \in A \lor x \in B) \land x \in A\}$$

$$\stackrel{\text{Absorp.}}{=} \qquad \{x \mid x \in A\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad A$$

Somit gilt die Aussage.

c. Beweise oder widerlege: Für alle Mengen A und B gilt: $(B \cup A) \cap B = A \cap B$ Wir widerlegen die Aussage durch Angabe eines geeigneten Gegenbeispiels. Wir wählen $A \triangleq \{1,2\}, B \triangleq \{2,3\}.$

Somit gilt die Aussage nicht.

Aufgabe 3. Wahrheitstabellen

a. Beweise oder widerlege nur mit Hilfe einer Wahrheitstabelle oder eines (Gegen-) Beispiels, dass $\neg q \land ((r \leftrightarrow (r \rightarrow \bot)) \lor q)$ kontradiktorisch ist.

q				\bigwedge^{\vee}							
F	F	W	F	F F	F	F	F	W	F	F	F
F	$ \mathbf{w} $	W	F	F	w	F	W	F	F	F	F
W	F	F	W	F	F	F	F	W	F	W	W
W	$ \mathbf{w} $	F	W	F	w	F	W	F	F	W	w

Der Hauptjunktor wird immer zu F ausgewertet. Also ist die Formel kontradiktorisch.

b. Beweise oder widerlege nur mit Hilfe einer Wahrheitstabelle oder eines (Gegen-) Beispiels, $((s \land \neg q) \to r) \lor r \equiv r \lor (s \to q).$

q	r	s	((s	^	_	(q)	\rightarrow	r)	$\begin{array}{ c c }\hline \\ \\ \hline \\ \\ \hline \end{array}$	r	r	$\bigg \stackrel{\downarrow}{\diamondsuit}$	(s	\rightarrow	q)
F	F	F	F	F	W	F	W	F	W	F	F	W	F	W	F
F	F	$ \mathbf{w} $	w	W	w	F	F	F	F	F	F	F	w	F	F
F	W	F	F	F	W	F	W	W	W	$ \mathbf{w} $	w	W	F	w	F
F	W	\mathbf{w}	W	W	W	F	W	W	W	$ \mathbf{w} $	W	W	W	F	F
W	F	F	F	F	F	W	W	F	W	F	F	W	F	w	w
W	F	w	W	F	F	W	W	F	W	F	F	W	w	w	w
W	W	F	F	F	F	W	W	W	W	$ \mathbf{w} $	w	W	F	w	w
W	W	W	w	F	F	W	W	W	W	W	W	W	W	W	W

Die beiden Hauptjunktoren werden in jeder Zeile zum selben Wert ausgewertet. Also sind die beiden Formeln äquivalent.

Aufgabe 4. Logische Äquivalenz

a. Gib an: eine Formel, die logisch äquivalent zu \bot ist und nur \neg und \lor als Operatoren enthält. $\neg(q \lor \neg q) \equiv \bot$

b. Beweise nur mit Hilfe von Äquivalenzumformungen, dass $q \wedge (r \to s)$ und $\neg (r \vee \neg q) \vee (s \wedge q)$ logisch äquivalent sind.

$$\begin{array}{ccc} & & q \wedge (r \rightarrow s) \\ & & q \wedge (\neg r \vee s) \\ & & & q \wedge (\neg r \vee s) \\ & & & & (\neg r \wedge q) \vee (s \wedge q) \\ & & & & & (r \vee \neg q) \vee (s \wedge q) \\ & & & & & & (r \vee \neg q) \vee (s \wedge q) \end{array}$$

Aufgabe 5. Variablenbelegungen

a. Beweise ausschließlich mit Hilfe von Argumenten über eine oder mehrere Variablenbelegungen, dass $q \to \neg (r \land s) \equiv \neg q \lor (r \to \neg s)$.

Damit wird $q \to \neg(r \land s)$ genau dann zu W ausgewertet, wenn $\neg q \lor (r \to \neg s)$ zu W ausgewertet wird. Also sind die beiden Formeln äquivalent.

b. Beweise oder widerlege ausschließlich mit Hilfe von Argumenten über eine oder mehrere Variablenbelegungen, dass $\neg(\neg q \lor (s \land r)) \lor (q \leftrightarrow (s \land r))$ allgemeingültig ist.

Betrachte die Belegung β mit $\beta(q)=F$ und $\beta(r)=\beta(s)=W.$ Dann ist

$$\llbracket \neg (\neg q \lor (s \land r)) \lor (q \leftrightarrow (s \land r)) \rrbracket = F$$

Damit ist die Formel nicht allgemeingültig (da es eine Belegung gibt, unter der die Formel zu F ausgewertet wird).

Aufgabe 6. Prädikatenlogik

$$\begin{split} \mathbf{L.} \quad \text{Beweise: } & \left((\exists y. P_1(y) \to P_2(y)) \land (\forall x. P_1(x)) \right) \to \exists z. P_2(z) \land P_1(z) \\ \text{Annahme (A1): } & \left((\exists y. P_1(y) \to P_2(y)) \land (\forall x. P_1(x)) \right) \\ \text{Zu Zeigen (Z1): } & \exists z. P_2(z) \land P_1(z) \\ \text{Annahme (A2): } & \exists y. P_1(y) \to P_2(y) \end{split}$$

```
Annahme (A3): \forall x.P_1(x)
```

Wähle
$$x \triangleq y$$
 in A3

Annahme (A4):
$$P_1(y)$$

Sei x (beliebig aber fest) in A2

Annahme (A5):
$$P_1(y) \rightarrow P_2(y)$$

Aus A4 und A5 folgt A6

Annahme (A6):
$$P_2(y)$$

Wähle
$$z \triangleq y$$
 in Z1

Zu Zeigen (Z2):
$$P_2(y) \wedge P_1(y)$$

Teil 1: Zu Zeigen (Z1.1):
$$P_2(y)$$

Teil 2: Zu Zeigen (Z2.1):
$$P_1(y)$$

Aufgabe 7. Widerspruch und Kontraposition

a. Ziehe, durch die schrittweise Anwendung logischer Äquivalenzen, alle Negationen inder folgenden Formel soweit wie möglich nach Innen. Begründe jeden Schritt.

b. Gib an: Den ersten Schritt, d.h. die erste Zeile, eines Beweises per Widerspruch für die Aussage $\neg(\exists x.P_1(x)) \rightarrow (\forall y.P_2(y) \land P_3(y))$.

Widerspruchs Annahme:

$$\neg(\exists x. P_1(x)) \to (\forall y. P_2(y) \land P_3(y)) \equiv \neg(\neg(\exists x. P_1(x)) \to (\forall y. P_2(y) \land P_3(y))) \to \bot$$

c. Gib an: Den ersten Schritt, d.h. die erste Zeile, eines Beweises per Kontraposition für die Aussage $\neg(\exists x.P_1(c)) \rightarrow (\forall y.P_2(y) \land P_3(y))$.

Zu Zeigen:
$$\neg(\forall y.P_2(y) \land P_3(y)) \rightarrow \neg\neg(\exists x.P_1(x))$$

Aufgabe 8. Induktion

L. Beweise per Induktion $\forall n \in \mathbb{N}_7.n \mod 2 = 1$.

Hinweis H1: $(n+m) \bmod r = ((n \bmod r)(m \bmod r)) \bmod r$

Sei

$$P(n) \triangleq (n \bmod 2 = 1)$$

Wir verwenden das Induktionsschema:

$$(P(7) \land (\forall n \land \mathbb{N}_7.P(n) \rightarrow P(n+10))) \rightarrow (\forall x \in \mathbb{N}_7.P(x))$$

IA (P(7)):

$$7 \bmod 2 = 1$$

Sei $n \in \mathbb{N}_7$.

IV (P(n)):

$$n \bmod 2 = 1$$

IS
$$(P(n+10))$$
: Zu Zeigen: $(n+10) \bmod 2 = 1$
$$(n+10) \mod 2 \stackrel{\text{H1}}{=} ((n \mod 2) + (10 \mod 2)) \mod 2$$

$$= ((n \mod 2) + 0) \mod 2$$

$$= 1 \mod 2$$

$$= 1$$

Nach unserem Induktionsschema gilt nun $\forall x \in \mathbb{N}_7.P(x)$ was äquivalent zur ursprünglichen Aussage ist. Damit ist die Aussage bewiesen.