Klausur zur Quantenmechanik II

WS 2006/2007, Prof. W. Weise

Dienstag, 13. Februar 2006, HS 1, Physik Department, TU München

NAME: GRUPPE:

Matrikelnummer: ID:

Aufgabe	1	2	3	\sum
Punkte	12	18	20	50

Die Klausur besteht aus **3 Aufgaben**. Bitte bearbeiten Sie **jede Aufgabe** auf einem **separaten** Blatt!

Bitte geben Sie auf **allen** Blättern
Ihren Namen
und den Buchstaben für Ihre Übungsgruppe an!

Sie haben zur Bearbeitung 120 Minuten Zeit.

Viel Erfolg!

Aufgabe K1 (12 Punkte)

Ein nichtrelativistisches Teilchen mit Masse m und Impuls $\hbar \vec{k} = \vec{p} = p\vec{e}_z$ werde gestreut an einem kugelsymmetrischen Potential

$$V(r) = \frac{g^2}{r}e^{-\mu r}$$

mit Konstanten $\mu > 0$ und g.

a) (3 Punkte) Die Lösung des Streuproblems für ein solches Potential (mit asymptotisch auslaufenden Kugelwellen) ist gegeben durch

$$\psi^{(+)}(\vec{k};\vec{r}) = e^{i\vec{k}\cdot\vec{r}} - \frac{2m}{\hbar^2} \int d^3r' \frac{1}{4\pi} \frac{e^{ik|\vec{r}-\vec{r}'|}}{|\vec{r}-\vec{r}'|} V(r') \psi^{(+)}(\vec{k};\vec{r}').$$

Begründen Sie, daß dieser Ausdruck sich für $|\vec{r}| \to \infty$ folgendermaßen verhält:

$$\psi^{(+)}(\vec{k}; \vec{r}) \cong e^{i\vec{k}\cdot\vec{r}} - \frac{e^{ikr}}{r} \frac{m}{2\pi\hbar^2} \int d^3r' e^{-i\vec{k}'\cdot\vec{r}'} V(r') \psi^{(+)}(\vec{k}; \vec{r}'), \quad \vec{k}' = k \frac{\vec{r}}{|\vec{r}|}$$

$$= e^{i\vec{k}\cdot\vec{r}} + \frac{e^{ikr}}{r} f_{\vec{k}}(\theta, \varphi).$$

- b) (1 Punkt) Wie lautet die Bornsche Näherung für die Streuamplitude? Geben Sie $f_{\vec{k}}(\theta,\varphi)$ in Bornscher Näherung an.
- c) (6 Punkte) Berechnen Sie den differentiellen Wirkungsquerschnitt $\frac{d\sigma}{d\Omega}$ in Bornscher Näherung als Funktion des Streuwinkels θ mit $\vec{k} \cdot \vec{k}' = k^2 \cos \theta$. **Hinweis:** $1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}$.
- d) (2 Punkte) Betrachten Sie den Grenzfall mit $\mu \to 0$. Welcher physikalische Streuprozeß wird durch dieses Ergebnis beschrieben? Wie verhält sich der differentielle Wirkungsquerschnitt in diesem Fall für kleine Streuwinkel θ ?

Aufgabe K2 (18 Punkte)

Gegeben sei ein System von N nicht-wechselwirkenden Fermionen mit Spin $\frac{1}{2}$ in einem Volumen \mathcal{V} . Der Vielteilchenzustand $|\Phi_0\rangle = |\dots N_{\vec{k},\nu}\dots\rangle$ sei der normierte Grundzustand des Systems, dabei ist $N_{\vec{k},\nu}$ die Besetzungszahl des Zustandes mit Impuls \vec{k} und Spinquantenzahl ν , $N = \sum_{\nu} \sum_{\vec{k}} N_{\vec{k},\nu}$.

- a) (1 Punkt) Wie lauten die Antivertauschungsrelationen für die Erzeugungsund Vernichtungsoperatoren $a_{\vec{k},\nu}^{\dagger}$ und $a_{\vec{k}',\nu'}$ für Teilchen in den Impulseigenzuständen \vec{k} , \vec{k}' mit Spinquantenzahlen $\nu,\nu'=\pm\frac{1}{2}$?
- b) (2 Punkte) Wie wirken die Operatoren $a_{\vec{k},\nu}$ respektive $a_{\vec{k},\nu}^{\dagger}$ auf einen normierten Vielteilchenzustand $|\ldots N_{\vec{k},\nu}\ldots\rangle$? Welche Werte kann $N_{\vec{k},\nu}$ annehmen?
- c) (3 Punkte) Fermionische Feldoperatoren mit vorgegebener Spinprojektionsquantenzahl $\nu=\pm\frac{1}{2}$ werden wie folgt definiert:

$$\hat{\Psi}_{\nu}(\vec{r}) = \frac{1}{\sqrt{\mathcal{V}}} \sum_{\vec{k}} e^{i\vec{k}\cdot\vec{r}} a_{\vec{k},\nu} \quad , \qquad \hat{\Psi}^{\dagger}_{\nu}(\vec{r}) = \frac{1}{\sqrt{\mathcal{V}}} \sum_{\vec{k}} e^{-i\vec{k}\cdot\vec{r}} a_{\vec{k},\nu}^{\dagger}$$

Zeigen Sie: Die Feldoperatoren $\hat{\Psi}_{\nu}(\vec{r})$ und $\hat{\Psi}^{\dagger}_{\nu}(\vec{r})$ genügen der Antivertauschungsrelation

$$\left\{ \hat{\Psi}_{\nu}(\vec{r}), \hat{\Psi}^{\dagger}_{\nu'}(\vec{r}') \right\} = \delta_{\nu\nu'} \, \delta^{(3)}(\vec{r} - \vec{r}').$$

d) (1 Punkte) Berechnen Sie den Erwartungswert

$$\langle \Phi_0 | a_{\vec{k},\nu}^{\dagger} a_{\vec{k}',\nu'} | \Phi_0 \rangle.$$

e) (9 Punkte) Berechnen Sie mit diesem Ergebnis die Einteilchen-Korrelationsfunktion

$$\frac{n}{2}g_{\nu\nu'}^{(1)}(\vec{r}) = \langle \Phi_0 | \hat{\Psi}_{\nu}^{\dagger}(\vec{r}) \hat{\Psi}_{\nu'}(\vec{0}) | \Phi_0 \rangle, \quad n = \left(\frac{N}{\mathcal{V}}\right).$$

Zeigen Sie, daß mit $r = |\vec{r}|$ gilt:

$$g_{\nu\nu'}^{(1)}(r) = \delta_{\nu\nu'} \frac{3}{(k_{\rm F}r)^3} (\sin k_{\rm F}r - (k_{\rm F}r)\cos k_{\rm F}r).$$

Hinweise: Verwenden Sie, daß im Grenzfall eines großen Volumens $\mathcal{V} \to \infty$ gilt $\sum_{\nu} \frac{1}{\mathcal{V}} \sum_{\vec{k}} \to \sum_{\nu} \int \frac{d^3k}{(2\pi)^3}$. Für die Teilchendichte n gilt im Grundzustand $n = \frac{1}{3\pi^2} k_{\rm F}^3$, wobei $p_{\rm F} = \hbar k_{\rm F}$ der Fermiimpuls ist.

f) (2 Punkte) Skizzieren und interpretieren Sie das Ergebnis. Wodurch ist die auftretende Längenskala festgelegt?

3

Aufgabe K3 (20 Punkte)

Verwenden Sie im Folgenden rationalisierte Einheiten, d.h. $\hbar = c = 1$.

Ausgangspunkt sei der Hamiltonoperator $H = \vec{\alpha} \cdot \vec{p} + \beta m$ eines freien Dirac-Teilchens mit Masse m und Ladung e.

- a) (3 Punkte) Berechnen Sie den Kommutator $[H, \vec{L}]$, wobei $\vec{L} = \vec{r} \times \vec{p}$ der Bahndrehimpulsoperator ist. Was bedeutet das Ergebnis?
- b) (2 Punkte) Aufgrund der Rotationsinvarianz der freien Dirac-Gleichung erwartet man, daß der Drehimpuls erhalten ist. Wie läßt sich das mit dem Ergebnis aus a) vereinbaren? Wie lautet der erhaltene Drehimpuls?

Das Dirac-Teilchen bewege sich nun in einem zeitlich und räumlich konstanten magnetischen Feld $\vec{B} = B_0 \vec{e}_z$ mit zugehörigem Vektorpotential $\vec{A}(\vec{r}) = \frac{1}{2} \vec{B} \times \vec{r}$. Für das elektrische Potential gelte $\phi = 0$.

- c) (3 Punkte) Wie lautet jetzt der Dirac-Hamiltonoperator, der die Bewegung des Teilchens im Magnetfeld beschreibt? Leiten Sie aus der zeitunabhängigen Dirac-Gleichung $H\psi=E\psi$ mit dem Ansatz $\psi=\binom{\varphi}{\chi}$ das gekoppelte Gleichungssystem für die zweikomponentigen Spinoren φ und χ ab.
- d) (6 Punkte) Eliminieren Sie die χ -Komponenten und zeigen Sie, daß φ im nichtrelativistischen Grenzfall der folgenden Pauli-Gleichung genügt (W=E-m):

$$\frac{1}{2m} \left[\left(\vec{p} - e\vec{A} \right)^2 - e\vec{\sigma} \cdot \vec{B} \right] \varphi = W\varphi$$

- e) (4 Punkte) Zeigen Sie, daß mit dem angegebenen Vektorpotential gilt $\vec{A} \cdot \vec{p} + \vec{p} \cdot \vec{A} = \vec{B} \cdot \vec{L}$. Bestimmen Sie den entsprechenden Wechselwirkungsterm in der Pauli-Gleichung aus d).
- f) (2 Punkte) Bestimmen Sie aus dem Vergleich der Kopplungsterme mit $\vec{L} \cdot \vec{B}$ und $\vec{S} \cdot \vec{B}$ den Spin-g-Faktor des Teilchens.

Hinweise:

$$\begin{split} \vec{\alpha} &= \left(\begin{array}{cc} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{array} \right), \quad \beta &= \left(\begin{array}{cc} \mathbbm{1} & 0 \\ 0 & -\mathbbm{1} \end{array} \right), \quad [\sigma^i, \sigma^j] = 2i \, \epsilon^{ijk} \sigma^k, \quad \{\sigma^i, \sigma^j\} = 2 \, \delta^{ij} \\ (\vec{a} \cdot \vec{\sigma}) \left(\vec{b} \cdot \vec{\sigma} \right) &= \vec{a} \cdot \vec{b} + i \vec{\sigma} \cdot (\vec{a} \times \vec{b}), \quad \epsilon^{ijk} \epsilon^{lmk} = \delta^{il} \delta^{jm} - \delta^{im} \delta^{jl} \end{split}$$