Letione 21: Prodotti Scalari (Parte II)

In questa letione V denota sempre uno spatio vettoriale reale munito di un prodotto scalare definito positivo.

Norma

Def 8.11. La <u>norma</u> di un vettore ve $V \in \mathcal{X}$ numero reale $\|V\| = \sqrt{\langle V, V \rangle}$

Questo va interpretata come la lunghezza del vettore v.

Prop 8.1.2 (1) ||v|| >0; se v \ = 0 allora ||v|| >0.

(2) $\|\lambda v\| = \|\lambda\| \cdot \|v\|$

(3) | (v,w)| \le ||v|| ||w|| Canchy - Schwarz

(4) ||v+w|| < ||v|| + ||w|| disingnaglianza \(\Delta \)

Dim: (1) II vII > 0 dalla definitione. Se v \(\) 0 allo a \(\varphi_{\infty} \rangle > 0 \) perché \(\langle \cdot, \tau \rangle \) è definito positivo. Allom \(\varphi \varphi \varphi \varphi \rangle \varphi \rangle

(2) $\|\lambda v\| = \sqrt{\langle \lambda v, \lambda v \rangle} = \sqrt{\lambda^2 \langle v, v \rangle} = \sqrt{\lambda^2} \sqrt{\langle v, v \rangle}$ = $|\lambda| \cdot \|v\|$.

(3) Considerama a,b $\in \mathbb{R}$ e notion o $0 \le \|av + bw\|^2 = \langle av + bw, av + bw \rangle$ $= a^2 \langle v, v \rangle + b^2 \langle w, w \rangle + 2ab \langle v, w \rangle$ $= a^2 \|v\|^2 + b^2 \|w\|^2 + 2ab \langle v, w \rangle$.

In particular per $a = \|w\|^2$, $b = -\langle v, w \rangle$ $0 \le \|w\|^4 \|v\|^2 + \langle v, w \rangle^2 \|w\|^2 - 2\|w\|^2 \langle v, w \rangle^2$

 $= \|w\|^4 \|v\|^2 - \|w\|^2 \langle v, w \rangle^2$

 $(4) \quad \|w\|^{2} \langle yw\rangle^{2} \leq \|w\|^{4} \|v\|^{2}$ $\text{Sew} \neq 0 \quad \langle y,w\rangle^{2} \leq \|w\|^{2} \|v\|^{2} \quad \text{[Invice Se } w=0 \; , \; (3) \text{ vale in modo burio.]}$ $(4) \quad \|v+w\|^{2} = \langle v+w,v+w\rangle = \|v\|^{2} + \|w\|^{2} + 2\langle yw\rangle \quad \text{(3)} \quad \text{(3)} \quad \|v\|^{2} + \|w\|^{2} + 2\|v\| \cdot \|w\| \quad \text{(3)} \quad \text{(4)} \quad \|v\|^{2} + \|w\|^{2} + 2\|v\| \cdot \|w\| \quad \text{(3)} \quad \text{(4)} \quad \|v\|^{2} + \|w\|^{2} + 2\|v\| \cdot \|w\| \quad \text{(3)} \quad \text{(4)} \quad \|v\|^{2} + \|w\|^{2} + 2\|v\| \cdot \|w\| \quad \text{(4)} \quad \text{(5)} \quad \text{(4)} \quad \text{(5)} \quad \text{(6)} \quad \text{(6)}$

[Esempi: Solo in leabne?]

Angoli

Def: Langolo fra due vethor $v, w \in V$ non nulli è il numero $s \in (0,T]$ per cui $\cos s = \frac{\langle v, w \rangle}{\|v\| \cdot \|w\|}$ 1

Cauchy-Schwarz implica che il numero a destra $\tilde{e} \in [-1,1]$, allora esiste un unico $2 \in [0,T]$ per cui $\cos 2 = \frac{\langle v,u \rangle}{\|v\|\cdot\|w\|}$

Chiamiamo 2 acuto, retto o ottuso

Se è $\langle \frac{\pi}{2}, =\frac{\pi}{2}, \rangle = 0$ Questo è equivalente a $\langle v, w \rangle$ positivo, zero, negativo (rispediivamente).

One vettori sono ortogonali (x)(v,w) = 0 = 2 retto.

Distante

Siano P,Q due punts in $V (= 1R^n)$. Denotiamo $\overrightarrow{PQ} = Q - P$. $[\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}]$

La distanza fra due punti P.QEV è il numero d(P,Q) = 11 PQ 11 = 11 Q-P1

[d direnter anche chiamato metrica.]

Prop g. 1.13: Per P.Q. REV Valgono

(1). d(P,Q)>0; se P+Q allon d(P,Q)>0.

 $(2) d(P_{\ell}Q) = d(Q_{\ell}P)$

(3) $d(P,R) \leq d(P,Q) + d(Q,R)$. dis. \triangle

Dim: (1) 2 (2) seguono dalle proprietà della norma.

(3) d(P,R) = ||PR| = ||PQ + QR|

< 11 PQ 11 + 11 QR1 + d(P,Q) + d(Q,R).

Projezione ortogonale

Sia WEV un rethore non nullo. U= Span(w). la retta / il sottospazio generata/o da w.

V Si decompone in una somma diretta

V= U @ UL

(Ogni uttore v è somma di NEU & vie UI, v=u+v.) Questa somma diretta induce allora una projetibre pu: V-eU (o pw: V-eU) chiamata projetione ortogonale.

Prop 8.1.14: $p_{w}(v) = \frac{\langle v, w \rangle}{\|w\|^2} \cdot w$

Dim: Il retore V si sonve in modo unico come $V = p_W(v) + v'$ con $v' \in U^+$.

Visho che $p_{w}(v) \in U = Span(w)$ dobbiamo avere $p_{w}(v) = k \cdot w$ per qualche $k \in \mathbb{R}$.

$$() (v-kw, w) = 0$$

$$() (v,w) - k(w,w) = 0$$

$$(=) \quad K = \frac{\langle v, w \rangle}{\langle w, w \rangle} = \frac{\langle v, w \rangle}{\|w\|^2}.$$

Il coefficiente $k = \frac{\langle v, w \rangle}{\langle w, w \rangle}$ chiamiamo coeff. di Fourier.

Prop 8.1.16: Sin (come sempre) V uno spazio vettonale con pr. scalare definito positivo e sin $B = \{v_1, ..., v_n\}$ una base formata da vettori ortogonali. Per qualsinsi VeV vale $V = p_{V_1}(v) + + p_{V_n}(v) = \frac{\langle v_1 v_n \rangle}{\|v_1\|^2} v_1 + + \frac{\langle v_1 v_n \rangle}{\|v_n\|^2} v_n$.

Dim: Sappiano che $V = \lambda_1 V_1 + \dots + \lambda_n V_n$ Nobbiamo dimostrare che di sono i coeff. di Fourier.

Prendendo il prodotto scalare con Vi otteniamo

offeniamo
$$\langle V, V_{i} \rangle = \langle \lambda_{1} V_{1} + \dots + \lambda_{n} V_{n}, V_{i} \rangle$$

$$= \lambda_{1} \langle V_{1}, V_{i} \rangle + \dots + \lambda_{n} \langle V_{n}, V_{i} \rangle$$
base
ortogonale
$$= \lambda_{i} \langle V_{i}, V_{i} \rangle + \dots + \lambda_{n} \langle V_{n}, V_{i} \rangle$$

$$\langle V_{i}, V_{i} \rangle = 0$$
Se $i \neq j$

$$(\Rightarrow) \lambda_{i} = \frac{\langle V_{i}, V_{i} \rangle}{\langle V_{i}, V_{i} \rangle} = \frac{\langle V_{i}, V_{i} \rangle}{\|V_{i}\|^{2}}$$

Come possiamo ottenere una base ortogonale di uno spassio retroriale?

Algoritmo di Gram-Schmidt

Sia V uno spaob vettori de con pr. scalare def. positivo.

Siano V1,..., VKEV rettori lin. indipendenti. Vogliamo restituire questi rettori on W1,..., WKEV tale de .) W1,..., WK sono lin. indipendenti.

- ·) Span (v1,..., VK) = Span (W1,..., WK).
- .) War. Wa sono ortugonali.

L'algoritmo funziona così:

$$\begin{cases} W_{1} = V_{1} \\ W_{2} = V_{2} - \rho_{W_{1}}(v_{2}) \\ W_{3} = V_{3} - \rho_{W_{1}}(V_{3}) - \rho_{W_{2}}(V_{3}) \\ \vdots \\ W_{k} = V_{k} - \rho_{W_{1}}(V_{k}) - \dots - \rho_{W_{k-1}}(V_{k}) \end{cases}$$

 $W_2 \qquad \forall V_n = W_1$ (Esemplo: solo in leasione?)