Networks with Signed Edges

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

http://cs224w.stanford.edu

How the Class Fits Together

Observations

Models

Algorithms

Small diameter, Edge clustering

Patterns of signed edge creation

Viral Marketing, Biogosphere, Memetracking

Scale-Free

Densification power law, Shrinking diameters

Strength of weak ties, Core-periphery Erdös-Renyi model, Small-world model

Structural balance, Theory of status

Independent cascade model, Game theoretic model

Preferential attachment, Copying model

Microscopic model of evolving networks

Kronecker Graphs

Decentralized search

Models for predicting edge signs

Influence maximization, Outbreak detection, LIM

PageRank, Hubs and authorities

Link prediction, Supervised random walks

Community detection: Girvan-Newman, Modularity

Signed Networks

- Networks with positive and negative relationships
- Our basic unit of investigation will be signed triangles
- First we talk about undirected networks then directed
- Plan for today:
 - Model: Consider two soc. theories of signed nets
 - Data: Reason about them in large online networks
 - Application: Predict if A and B are linked with + or -

Signed Networks

- Networks with positive and negative relationships
- Consider an <u>undirected complete graph</u>
- Label each edge as either:
 - Positive: friendship, trust, positive sentiment, ...
 - Negative: enemy, distrust, negative sentiment, ...
- Examine triples of connected nodes A, B, C

Theory of Structural Balance

- Start with the intuition [Heider '46]:
 - Friend of my friend is my friend
 - Enemy of enemy is my friend
 - Enemy of friend is my enemy
- Look at connected triples of nodes:

Consistent with "friend of a friend" or "enemy of the enemy" intuition

Inconsistent with the "friend of a friend" or "enemy of the enemy" intuition

Balanced/Unbalanced Networks

- Graph is balanced if every connected triple of nodes has:
 - All 3 edges labeled +, or
 - Exactly 1 edge labeled +

Unbalanced

Balanced

Local Balance → Global Factions

- Balance implies global coalitions [Cartwright-Harary]
- If all triangles are balanced, then either:
 - The network contains only positive edges, or
 - Nodes can be split into 2 sets where negative edges only point between the sets

Analysis of Balance

Example: International Relations

- International relations:
 - Positive edge: alliance
 - Negative edge: animosity
- Separation of Bangladesh from Pakistan in 1971: <u>US supports Pakistan</u>. Why?
 - USSR was enemy of China
 - <u>C</u>hina was enemy of <u>I</u>ndia
 - India was enemy of Pakistan
 - <u>U</u>S was friendly with <u>C</u>hina
 - China vetoedBangladesh from U.N.

1872-1881

1882

1890

1891-1894

1904

1907

Balance in General Networks

So far we talked about complete graphs

Balanced?

Def 1: Local view

Fill in the missing edges to achieve balance

Def 2: Global view

Divide the graph into two coalitions

The 2 definitions

are equivalent!

Is a Signed Network Balanced?

- Graph is balanced if and only if it contains no cycle with an odd number of negative edges
- How to compute this?
 - Find connected components on + edges
 - If we find a component of nodes on +edges that contains a −edge ⇒ Unbalanced
 - For each component create a super-node
 - Connect components A and B if there is a negative edge between the members
 - Assign super-nodes to sides using BFS

Signed Graph: Is it Balanced?

Positive Connected Components

Reduced Graph on Super-Nodes

BFS on Reduced Graph

- Using BFS assign each node a side
- Graph is unbalanced if any two super-nodes are assigned the same side

Exploring Real Data

Real Large Signed Networks

- Each link A→B is explicitly tagged with a sign:
 - Epinions: Trust/Distrust
 - Does A trust B's product reviews?
 (only positive links are visible)
 - Wikipedia: Support/Oppose
 - Does A support B to become Wikipedia administrator?
 - Slashdot: Friend/Foe
 - Does A like B's comments?
 - Other examples:
 - Online multiplayer games

	Epinions	Slashdot	Wikipedia
Nodes	119,217	82,144	7,118
Edges	841,200	549,202	103,747
+ edges	85.0%	77.4%	78.7%
edges	15.0%	22.6%	21.2%

Balance in Our Network Data

- Does structural balance hold?
 - Compare frequencies of signed triads in real and "shuffled" data

	Triad	Epinions		Wikipedia		Palanca	
	ITIAU	P(T)	P _o (T)	P(T)	P _o (T)	Balance	
ced	+ +	0.87	0.62	0.70	0.49	√	
Balanced		0.07	0.05	0.21	0.10	✓	
Unbalanced	+ +	0.05	0.32	0.08	0.49	√	
		0.007	0.003	0.011	0.010	×	

P(T) fraction of a triads

 $P_0(T)$ triad fraction if the signs would be random

Global Structure of Signed Nets

- Intuitive picture of social network in terms of densely linked clusters
- How does structure interact with links?
- Embeddedness of link (A,B): Number of shared neighbors

Global Factions: Embeddedness

- Embeddedness of ties:
 - Positive ties tend to be more embedded
- Positive ties tend to be more clumped together
 - Public display of signs (votes) in Wikipedia further attenuates this

Global Structure of Signed Nets

	Size		Clustering		Component	
	Nodes	Edges	Real	Rnd	Real	Rnd
Epinions: —	119,090	123,602	0.012	0.022	0.308	0.334
Epinions: +	119,090	717,027	0.093	0.077	0.815	0.870
Slashdot: –	82,144	124,130	0.005	0.010	0.423	0.524
Slashdot: +	82,144	425,072	0.025	0.022	0.906	0.909
Wikipedia: –	7,115	21,984	0.028	0.031	0.583	0.612
Wikipedia: +	7,115	81,705	0.130	0.103	0.870	0.918

Clustering:

- +net: More clustering than baseline
- –net: Less clustering than baseline
- Size of max. component:
 - +/-net: Smaller than the baseline

Evolving Directed Networks

New setting:

Links are directed and created over time

- How many \(\triangle \) are now explained by balance?
 - Only half (8 out of 16)
- Is there a better explanation? Yes. Status.

16 signed directed triads

(in directed networks people traditionally applied balance by ignoring edge directions)

Alternate Theory: Status

- Status in a network [Davis-Leinhardt '68]
 - \bullet A $\xrightarrow{+}$ B :: B has **higher** status than A
 - A → B :: B has lower status than A
 - (Note the notion of status is now implicit)
 - Apply this principle transitively over paths
 - Can replace each A $\xrightarrow{-}$ B with A $\xleftarrow{+}$ B
 - Obtain an all-positive network with same status interpretation

Status vs. Balance

Status and balance give different predictions!

Status vs. Balance

At a global level:

- Status ⇒ Hierarchy
 - All-positive directed network should be (approximately) acyclic

 Balance ignores directions and implies that subgraph of negative edges should be (approximately)
 bipartite

Theory of Status

- Edges are directed and created over time
 - X has links to A and B
 - Now, A links to B (triad A-B-X)
 - How does sign of A→B depend signs from/to X? P(A⁺→B | X) vs. P(A⁺→B)
- We need to formalize:
 - 1) Links are embedded in triads:
 Triads provide context for signs
 - 2) Users are <u>heterogeneous</u> in their linking behavior

1) Context: 16 Types

Link A→B appears in context X:

 $A \longrightarrow B \mid X$

16 possible contexts:

2) Heterogeneity in linking behavior

- Users differ in frac. of + links they give/receive
- For a user U:
 - Generative baseline: Frac. of + given by U
 - Receptive baseline: Frac. of + received by U

Basic question:

- How do different link contexts cause users to deviate from their baselines?
 - Link contexts as modifiers on a person's predicted behavior
 - Surprise: How much behavior of A/B deviates from his/her baseline when A/B is in context X

Computing Surprise

 Surprise: How much behavior of user deviates from baseline in context X

- **Baseline:** For every user A_i : $p_g(A_i)$... **generative baseline** of A_i
 - Fraction of times A_i gives a plus
- Context: $(A_1, B_1 | X_1), ..., (A_n, B_n | X_n)$... all instances of triad context X
 - (A_i, B_i, X_i) ... an instance where when user A_i links to user B_i the triad of type X is created.
 - Say k of those triads closed with a plus
 - k out of n times: $A_i \xrightarrow{+} B_i$

Computing Surprise

- Surprise: How much behavior of user deviates from baseline in context X
 - Generative surprise of context X:

$$s_g(X) = \frac{k - \sum_{i=1}^{n} p_g(A_i)}{\sqrt{\sum_{i=1}^{n} p_g(A_i)(1 - p_g(A_i))}}$$

- p_g(A_i) ... generative baseline of A_i
- Context X: (A₁, B₁ | X₁),..., (A_n, B_n | X_n)
- k of instances of triad X closed with a plus edges
- Receptive surprise is similar, just use p_r(A_i)

Status: Two Examples

- Assume status is at work
- What happens?

Gen. surprise of A: – Rec. surprise of B: –

Gen. surprise of A: – Rec. surprise of B: –

Joint Positive Endorsement

- X positively endorses A and B
- Now A links to B

A puzzle:

- In our data we observe:
 Fraction of positive links deviates
 - Above generative baseline of A: S_g(X) >0
 - Below receptive baseline of B: $S_r(X) < 0$
- Why?

A Story: Soccer Team

- Ask every node: How does skill of B compare to yours?
 - Build a signed directed network
- We haven't asked A about B
- But we know that X thinks
 A and B are both better than him
- What can we infer about A's answer?

A Story: Soccer Team

A's viewpoint:

- Since B has positive evaluation,B is high status
- Thus, evaluation A gives is more likely to be positive than the baseline

How does A evaluate B?

A is evaluating someone who is better than avg.

→ A is more positive than average

A Story: Soccer Team

B's viewpoint:

- Since A has positive evaluation,A is high status
- Thus, evaluation B receives is less likely to be positive than the baseline

How is B evaluated by A?

B is evaluated by someone better than average.

→ They will be more negative to B than average

Y B A

Sign of A→B deviates in different directions depending on the viewpoint!

Consistency with Status

- Determine node status:
 - Assign X status 0
 - Based on signs and directions of edges set status of A and B
- + X 0 + + 1 A B +1

Status-consistent if:

Gen. surprise > 0

Rec. surprise < 0

- Surprise is status-consistent, if:
 - **G**en. surprise is status-consistent if it has **same** sign as status of B
 - Rec. surprise is status-consistent
 if it has the opposite sign from the status of A
- Surprise is balance-consistent, if:
 - If it completes a balanced triad

Status vs. Balance (Epinions)

Predictions:

t_i	count	P(+)	$S_g(t_i)$	$S_r(t_i)$	B_g	B_r	S_g	S_r
t_1	178,051	0.97	95.9	197.8	√	√	√	\checkmark
t_2	45,797	0.54	-151.3	-229.9	✓	\checkmark	\checkmark	
t_3	246,371	0.94	89.9	195.9	\checkmark	\checkmark	•	\checkmark
t_4	25,384	0.89	1.8	44.9	0	0	\checkmark	\checkmark
t_5	45,925	0.30	18.1	-333.7	0	\checkmark	\checkmark	\checkmark
t_6	11,215	0.23	-15.5	-193.6	0	0	\checkmark	\checkmark
t_7	36,184	0.14	-53.1	-357.3	✓	\checkmark	\checkmark	\checkmark
t_8	61,519	0.63	124.1	-225.6	✓	0	\checkmark	\checkmark
t_9	338,238	0.82	207.0	-239.5	√	0	\checkmark	\checkmark
t_{10}	27,089	0.20	-110.7	-449.6	\checkmark	\checkmark	\checkmark	\checkmark
t_{11}	35,093	0.53	-7.4	-260.1	0	0	\checkmark	\checkmark
t_{12}	20,933	0.71	17.2	-113.4	0	✓	\checkmark	\checkmark
t_{13}	14,305	0.79	23.5	24.0	0	0	\checkmark	\checkmark
t_{14}	30,235	0.69	-12.8	-53.6	0	0	\checkmark	
t_{15}	17,189	0.76	6.4	24.0	0	0		\checkmark
t_{16}	4,133	0.77	11.9	-2.6	✓	0	\checkmark	•
Number of correct predictions			8	7	14	13		

Mistakes:

Status vs. Balance

- At a global level:
 - Balance ⇒ Coalitions
 - Status ⇒ Hierarchy
- Observations:
 - No evidence for global balance beyond the random baselines
 - Real data is 80% consistent vs. 80% consistency under random baseline
 - Evidence for global status beyond the random baselines
 - Real data is 80% consistent, but 50% consistency under random baseline

Predicting Edge Signs

Edge sign prediction problem

- Given a network and signs on all but one edge, predict the missing sign
- Friend recommendation:
 - Predicting whether you know someone vs. Predicting what you think of them

Predicting Edge Signs

- Problem Formulation:
 - Predict sign of edge (u,v)
- Class label:
 - +1: positive edge
 - -1: negative edge
- Learning method:
 - Logistic regression

$$P(+|x) = \frac{1}{1 + e^{-(b_0 + \sum_{i=0}^{n} b_i x_i)}}$$

Each feature "votes" for/against a positive edge.

- Dataset:
 - Balanced: 50% +edges
- Evaluation:
 - Accuracy
- Features for learning:
 - Next slide

Features for Learning

For each edge (A,B) create a set of features:

- Triad counts of edge (A,B):
 - In what types of triads does our red-edge participate in?

Edge Sign Prediction

- Classification Accuracy:
 - Epinions: 93.5%
 - Slashdot: 94.4%
 - Wikipedia: 81%
- Signs can be modeled from local network structure alone!
 - Trust propagation model of [Guha et al. '04] has 14% error on Epinions
- Triad features perform less well for less embedded edges
- Wikipedia is harder to model:
 - Votes are publicly visible

Balance and Status: Complete Model

Feature	Bal	Stat	Epin	Slashd	Wikip
const			-0.2	0.02	-0.2
● +>● +> ●	1	1	0.5	0.9	0.3
● +>● - >●	-1	0	-0.5	-0.9	-0.4
● - >● + >●	-1	0	-0.4	-1.1	-0.3
● - >● - >●	1	-1	-0.7	-0.6	-0.8
O +>O<+	1	0	0.3	0.4	0.05
+ > - -	-1	1	-0.01	-0.1	-0.01
● - → ● < + •	-1	-1	-0.9	-1.2	-0.2
<u>-</u> → ○ < ○	1	0	0.04	-0.07	-0.03
<+ ○ +> ○	1	0	0.08	0.4	0.1
● < + ● ->●	-1	-1	-1.3	-1.1	-0.4
 + →	-1	1	-0.1	-0.2	0.05
	1	0	0.08	-0.02	-0.1
○ <+ ○ <+ ○	1	-1	-0.09	-0.09	-0.01
○ <+ ○ <- ○	-1	0	-0.05	-0.3	-0.02
○ <- ○ <+ ○	-1	0	-0.04	-0.3	0.05
○ <- ○ <- ○	1	1	-0.02	0.2	-0.2

Generalization

- Do people use these very different linking systems by obeying the same principles?
 - How generalizable are the results across the datasets?

All23	Epinions	Slashdot	Wikipedia
Epinions	0.9342	0.9289	0.7722
Slashdot	0.9249	0.9351	0.7717
Wikipedia	0.9272	0.9260	0.8021

Nearly perfect generalization of the models even though networks come from very different applications!

Negative information helps?

- Suppose we are only interested in predicting whether there is a positive edge or no edge
- Does knowing negative edges help? YES!

Features	Epinions	Slashdot	Wikipedia
Positive edges	0.5612	0.5579	0.6983
Positive and negative edges	0.5911	0.5953	0.7114

Summary

- Signed networks provide insight into how social computing systems are used:
 - Status vs. Balance
 - Role of embeddedness and public display
 - More evidence that networks are globally organized based on status
- Sign of relationship can be reliably predicted from the local network context
 - ~90% accuracy sign of the edge
 - People use signed edges consistently regardless of particular application
 - Near perfect generalization of models across datasets