

FLORIS DEN HENGST BETA > CS > AI > LEARNING & REASONING HYBRID INTELLIGENCE CENTRE F.DEN.HENGST@VU.NL

Guideline-informed reinforcement learning for mechanical ventilation in critical care

Al & Health Meetup 12-10-2023

Mechanical ventilation in intensive care

40% of all ICU patients

~50 000 patients daily in USA

How to ventilate optimally? How to ventilate safely?

Promises and challenges of reinforcement learning for healthcare

Treatment consists of decisions *over time*

Success of decisions not immediately clear

Find best treatment rather than most likely treatment

Abundance of *data*

Single metric for success

Learn from scratch

Mechanical ventilation as a sequential decision-making problem

Based on existing work by Peine et al.

States space: 46 features

- demographics
- vital signs
- lab measurements

clustered into 650 states k-means clustering

4h time windows

Action spaces: 3 dimensions

- PEEP
- FiO2
- tidal volume

binned into 7³ = 343 discrete actions

Reward: 90day mortality

The ARDSnet protective lung ventilation guideline

Developed in the ARDSnet ARMA trial, extended to all MV patients

Describes allowable treatment actions and target values

$$\varphi_1 := FiO_2 \in [0.3, 0.5) \land PEEP = 5$$
 $\varphi_2 := FiO_2 \in [0.4, 0.6) \land PEEP \in [4, 8]$
 $\varphi_3 := FiO_2 \in [0.5, 0.7) \land PEEP \in [8, 10]$

...

TABLE 1. SUMMARY OF VENTILATOR PROCEDURES.*

Variable	GROUP RECEIVING TRADITIONAL TIDAL VOLUMES	GROUP RECEIVING LOWER TIDAL VOLUMES
Ventilator mode	Volume assist-control	Volume assist-control
Initial tidal volume (ml/kg of predicted body weight)†	12	6
Plateau pressure (cm of water)	≤50	≤30
Ventilator rate setting needed to achieve a pH goal of 7.3 to 7.45 (breaths/min)	6-35	6-35
Ratio of the duration of inspiration to the duration of expiration	1:1-1:3	1:1-1:3
Oxygenation goal	PaO ₂ , 55-80 mm Hg, or SpO ₂ , 88-95%	PaO ₂ , 55-80 mm Hg, or SpO ₂ , 88-95%
Allowable combinations of FiO, and PEEP	0.3 and 5	0.3 and 5
(cm of water)‡	0.4 and 5	0.4 and 5
	0.4 and 8	0.4 and 8
	0.5 and 8	0.5 and 8
	0.5 and 10	0.5 and 10
	0.6 and 10	0.6 and 10
	0.7 and 10	0.7 and 10
	0.7 and 12	0.7 and 12
	0.7 and 14	0.7 and 14
	0.8 and 14	0.8 and 14
	0.9 and 14	0.9 and 14
	0.9 and 16	0.9 and 16
	0.9 and 18	0.9 and 18
	1.0 and 18	1.0 and 18
	1.0 and 20	1.0 and 20
	1.0 and 22	1.0 and 22
	1.0 and 24	1.0 and 24
Weaning	By pressure support; re- quired by protocol when FiO ₂ ≤0.4	By pressure support; re- quired by protocol when FiO ₂ ≤0.4

^{*}PaO₂ denotes partial pressure of arterial oxygen, SpO₂ oxyhemoglobin saturation measured by pulse oximetry, FiO₂ fraction of inspired oxygen, and PEEP positive end-expiratory pressure.

[‡]Further increases in PEEP, to 34 cm of water, were allowed but were not required.

[†]Subsequent adjustments in tidal volume were made to maintain a plateau pressure of ≤50 cm of water in the group receiving traditional tidal volumes and ≤30 cm of water in the group receiving lower tidal volumes.

Safe reinforcement learning – policy level

We use an action filter:

$$\mathcal{A}_S \subseteq \mathcal{A} : \{ a \in \mathcal{A} | \vee_i a \models \varphi_i \}$$

we can apply the safety filter after training

$$\pi_{\mathcal{C}}(a|s) = \begin{cases} \frac{\pi(a|s)}{\sum_{a' \in \mathcal{A}_s} \pi(a'|s)} & \text{if } a \in \mathcal{A}_s \\ 0 & \text{otherwise} \end{cases}$$

Safe reinforcement learning – Q-function

We use an action filter:

$$\mathcal{A}_{S} \subseteq \mathcal{A} : \{ a \in \mathcal{A} | \vee_{i} a \models \varphi_{i} \}$$

we can apply the safety filter during training

$$\widehat{Q}(s,a) \leftarrow \begin{cases} \widehat{Q}(s,a) + \alpha \left[r + \gamma \max_{a' \in \mathcal{A}_S} \widehat{Q}(s',a') - \widehat{Q}(s,a)\right] & \text{if } a \in \mathcal{A}_S \\ -\infty & \text{otherwise} \end{cases}$$

Guideline-informed reward shaping

$$\varphi_1 \coloneqq Pplat \le 30$$
 $\varphi_2 \coloneqq pH \in (7.2, 7.5)$

...

Desirability function
$$F: \mathcal{X} \to \{0, 1\}$$
 for states
$$F \subseteq \mathcal{X}: \{x \in \mathcal{X} \mid \Lambda_i \ x \models \varphi_i\}$$

Reward shaping

$$R'(x, a, x') = R(x, a, x') + \gamma c F(x') - c F(x)$$

with some scalar $c \in \mathbb{R}^+$ to balance original and shaping rewards

Retrospective study design

Number of ICUs	5
Acquisition timespan	2001-2012
Patients	7659
Ventilation events	8799
Age	65.67 (53.19-76.44) years
Body weight	86.24 ± 24.89 kg
Ideal body weight	63.38 ± 12.93 kg
Sex, female	3813 (43.33%)
Sex, male	4986 (56.67%)
90-day mortality	34.50%
in-hospital mortality	25.73%
	·

Retrospective evaluation with off-policy evaluation

Inverse propensity scoring PH-WIS

adjust for differences between the learned and clinician's solution

depends only on data high variance

Model-based FQE

a model is learned to estimate performance of the learned solution

requires proper estimation low variance

Hybrid

combination of the previous

Evaluating the approaches

reinforcement learning / stochastic reinforcement learning / deterministic observed imitation learning

unconstrained safe, after learning safe, during learning

expected rewards

- model-based
- inverse propensity
- hybrid

safety

 probability of unsafe
 effective sample size action

design effect

Learned policies are more varied

Comparable, but safer

Discussion

A reinforcement learning framework to optimize clinical decision-making with observational data and existing knowledge

strict guideline compliance

outperforms clinicians in a model-based evaluation problematic model-free evaluation: differences in decision-making

user-specified compliance different use cases rate

multiple objectives

Thank you

Martijn Otten

Paul Elbers

Vincent François-Lavet

Mark Hoogendoorn

Frank van Harmelen

Questions

Appendix

Inverse Propensity Scoring returns are weighted to adjust for differences evaluation and behavior policies

Model-based

Hybrid

Combination of previous

a model is learned to estimate Q values of the behavior policy

per-horizon weighted importance sampling

per-horizon weighted doubly robust

$$\rho_t^{tr} = \prod_{i=1}^t \frac{\pi_e(a_i^{tr}|s_i^{tr})}{\pi_b(a_i^{tr}|s_i^{tr})}.$$

$$\widehat{Q}_k = \min_{\theta} \frac{1}{N} \sum_{i=1}^N \sum_{t=0}^{\tilde{T}} (\widehat{Q}_{k-1}(x_t^i, a_t^i; \theta) - y_t^i)^2$$

$$W_l = \frac{|\{tr_i|T_i=l\} \in D|}{n}$$

$$y_t^i \equiv r_t^i + \gamma \mathbb{E}_{\pi_e} \widehat{Q}_{k-1}(x_{t+1}^i, \cdot; \theta)$$

$$\hat{V}_{\pi_e}^{\text{PHWIS}}(D) = \sum_{l \in \mathcal{L}} W_l \sum_{\{tr_i | T_i = l\}} \sum_{t=0}^{T_i - 1} \frac{\rho_t^{(i)}}{\sum_{\{tr_i | T_i = l\}} \rho_t^{(i)}} \gamma^t \ r_t^{(i)}$$

C. Voloshin, H. M. Le, N. Jiang, Y. Yue, Empirical study of off-policy policy evaluation for reinforcement learning. Thirty-fifth Conference on Neural Information Processing Systems, 2021

The intensive care unit

closely monitored

> public datasets available

highly controlled

life or death scenarios

intensive care

Space	Variable	Guideline	Constraint	#	
State	Pplat pH RR SpO ₂	≤ 30 $7.3 - 7.45$ $6 - 35$ $88 - 95\%$	$ \leq 30 $ $ \in (7.2, 7.5) $ $ \leq 35 $ $ \geq 88 $		
Action	Vt_{set} FiO_2 and	6 (initial) 0.3 and 5 0.4 and 5	≤ 8.5 FiO ₂ $\in [0.3, 0.5) \land PEEP = 5$	$arphi_5 \ arphi_6$	
	PEEP	0.4 and 8 0.5 and 8	$FiO_2 \in [0.4, 0.6) \land PEEP \in [4, 8]$	φ_7	
		0.5 and 10 0.6 and 10	$FiO_2 \in [0.5, 0.7) \land PEEP \in [8, 10]$	$arphi_8$	
		0.7 and 10 0.7 and 12 0.7 and 14	$FiO_2 \in [0.7, 0.8) \land PEEP \in [10, 14]$	$arphi_9$	
		0.8 and 14 0.9 and 14 0.9 and 16	$FiO_2 \in [0.8, 0.9) \land PEEP = 14$ $FiO_2 \in [0.9, 1.0) \land PEEP \in [14, 18]$	$arphi_{10}$	
		0.9 and 18 1.0 and 18 1.0 and 20	$FiO_2 = 1.0 \qquad \land PEEP \in [18, 24]$	$arphi_{11}$	
		1.0 and 20 1.0 and 22 1.0 and 24			

Variable	Imputation	% Missing		g
	window (h)	Initial	1^{st} Step	2^{nd} Step
Age IBW Height Weight ICU readmission Elixhauser-vanWalraven		0.0 16.8 16.8 14.4 0.0 77.2	0.0 16.8 16.8 14.4 0.0 77.2	0.0
SOFA SIRS GCS HR SysBP MeanBP DiasBP ShockIndex RR SpO ₂ TempC	24 24 * * * * * * *	0.0 0.0 19.0 1.4 2.5 1.9 2.5 3.2 1.8 2.2 9.4	0.0 0.0 1.5 0.6 0.6 0.6 0.7 0.6 0.6 1.2	0.0
FiO_2 Vt_{set}	8	33.7 26.1 33.8	25.3 16.6 25.4	0.0
IV Urine output Fluid Balance Plateau Pressure Vasopressors (dosage) PaO ₂ /FiO ₂ ratio	8 8 8 8 24 *	14.1 14.5 3.6 80.1 88.4 98.3	5.7 11.6 2.4 7.8 74.8 55.7	0.0

Va	riable	Imputation	% Missing			
		window (h)	Initial	1^{st} Step	2^{nd} Step	
	Potassium	*	95.4	4.2		
	Sodium	*	95.5	3.9		
	Chloride	*	95.5	3.4		
	Glucose	*	95.7	4.8		
	BUN	*	95.5	2.6		
	Creatinine	*	95.5	2.6		
	Magnesium	*	95.5	7.0		
	Calcium	*	95.9	11.3		
	Ionized Calcium	8	96.4	56.8		
$\mathbf{t}_{\mathbf{s}}$	Calculated Carbon Dioxide†	*	83.2	9.7		
lab measurements	Bilirubin	*	94.0	42.4		
ren	Albumin	*	98.4	51.4		
rsm	Hemoglobin	*	98.9	3.0	0.0	
nea	WBC	*	95.8	2.9		
p n	Platelet	*	95.6	2.5		
la	PTT	*	96.3	8.5		
	PT	*	96.2	8.0		
	INR	*	96.2	8.0		
	PH	*	93.9	8.9		
	PaO_2	*	97.8	45.8		
	$PaCO_2\dagger$	*	94.4	12.7		
	Base Excess	*	94.5	13.0		
	Bicarbonate	*	95.6	3.4		
	Lactate	*	96.3	21.2		

Variable	#	Range	Variable	#	Range	Variable	#	Range
Vt_{set}	1 2 3 4 5 6	[0, 2.5) $[2.5, 5)$ $[5, 7.5)$ $[7.5, 10)$ $[10, 12.5)$ $[12.5, 15)$	PEEP	1 2 3 4 5 6	[0,5) [5,7) [7,9) [9,11) [11,13) [13,15)	${ m FiO_2}$	1 2 3 4 5 6	[20, 30) [30, 35) [35, 40) [40, 45) [45, 50) [50, 55)
	1	$[15,\infty)$			$[15,\infty)$		1	$[55,\infty)$

Table A.6: Action discretization: all actions variables were binned into seven bins. Each combination of bins for all variables was then mapped to a single action, resulting in a total of $7^3 = 343$ discrete actions.

		PHWIS		PHWDR	
Algorithm	Compliance	Statistic	<i>p</i> -value	Statistic	<i>p</i> -value
IL	Unconstrained	209.0	0.999	16.0	0.000
	Policy	107.0	0.536	16.0	0.000
QL_D	Unconstrained	_	_	210.0	1.0
	Policy	0.0	0.125	210.0	1.0
	Q-function	_	_	210.0	1.0
QL_S	Unconstrained	93.0	0.337	16.0	0.000
	Policy	80.0	0.184	14.0	0.000
	Q-function	128.0	0.806	25.0	0.000

Table A.7: One-tailed significance test results for the listed policy having a *lower* mean expected return than observed in the test set obtained with Wilcoxon's signed-rank test. Results for QL_D Unconstrained and QL_D Q-function are missing due to an expected sample size of zero.

4.1. Formalisation of guidelines

We consider a set of l variables $\mathcal{V}: \{\nu_1, \ldots, \nu_l\}$ to describe patient states and treatment decisions and a finite set of m ranges to describe allowable ranges $\mathcal{R} = \left\{ \nu_1 \in [v_{\min}^{(1)}, v_{\max}^{(1)}], \ldots, \nu_1 \in [v_{\min}^{(i)}, v_{\max}^{(i)}], \ldots, \nu_j \in [v_{\min}^{(m)}, v_{\max}^{(m)}] \right\}$ for these variables. We consider each clause φ as a subset of the power set of ranges $\varphi \subseteq 2^{\mathcal{R}}$. We require that all values fall within the provided bounds in φ to comply to that clause. Formally, a set of measurements $\{\nu_1 = v_1, \ldots, \nu_n = v_n\} \models \varphi \iff \bigwedge_{j=0}^{|\varphi|} \left(v_i \in \left[v_{\min}^{(j)}, v_{\max}^{(j)}\right] \vee \nu_i \neq \nu_j\right)$ where $|\varphi|$ denotes the number of ranges in φ . Note that multiple ranges can be assigned to a single variable ν within the guideline \mathcal{R} but that these ranges should overlap.