CS 672 Basic Performance Modeling Concepts

Dr. Daniel A. Menascé
http://www.cs.gmu.edu/faculty/menasce.html
Department of Computer Science
George Mason University

© 1999-2001 Menascé. All Rights Reserved.

Outline

- ☐Single Queue
- □ Computation of Service Times
- □Service Demands
- □Operational Laws

 $\ @\ 1999-2001$ Menascé. All Rights Reserved.

Computing Disk Service Times

$$s_d = ContrTime + P_{miss}(Seek + Latency + TransferT)$$

$$TransferT = \frac{BlockSize}{TransferRate}$$

© 1999-2001 Menascé. All Rights Reserved.

5

Computing Disk Service Times Types of Workloads

Random Workload:

10, 201, 15, 1023, 45, 39, 782

Sequential Workload:

© 1999-2001 Menascé. All Rights Reserved.

Computing Disk Service Times

Random Workload:

$$P_{miss} = 1$$
 $RunLength = 1$
 $SeekTime = S_{rand}$
 $Latency = 1 / 2 \times Re \ volutionTime$

© 1999-2001 Menascé. All Rights Reserved.

7

Computing Disk Service Times

Sequential Workload:

$$P_{miss} = 1 / RunLength$$

$$SeekTime = S_{rand} / RunLength$$

$$Latency = \frac{1/2 + (RunLength - 1)[(1 + U_d)/2]}{RunLength} \times$$

RevolutionTime

$$U_d = \boldsymbol{I}_d \times S_D$$

© 1999-2001 Menascé. All Rights Reserved.

Disk Arrays **A**1 A2 A3 PA **A**4 B3 **B2 B**4 **B**1 PΒ **C**1 PC C3 C4 C2D2PD D4 D1 D3E1 E2 E3 PE E4 © 1999-2001 Menascé. All Rights Reserved. 9

Network Service Times

18 B (with trailer) 20 B 20 B

Frame Header He	IP TCP Header	Client Request	Frame Trailer
--------------------	---------------	----------------	------------------

MTU=1500 bytes

Client Message Size = 2500 bytes

No Datagrams = $\lceil 2500 / (1500 - 20 - 20) \rceil = 2$

Total Overhead = 2 * (18+20+20)=116 bytes

Message Service Time = [2500+116]*8/10,000,000=0.02098 sec

© 1999-2001 Menascé. All Rights Reserved.

15

Web Page Download Times

- □Depend on
 - > type of HTTP protocol used
 - > page parameters
 - > network parameters
 - > TCP parameters

16

© 2003 D. A. Menascé. All Rights Reserved.

Lower Bound on Page Download Time

- ■PageSize: size, in bytes, of all objects of a page, including the HTTP header (290 bytes).
- ■B: effective network bandwidth (in bps)
- □RTT: network round trip time (in sec)
- ■NObj: Number of embedded objects in a page.

© 2002 D. A. Menascé. All Rights Reserved.

Lower Bound on Page Download Time

■Non-persistent connection

$$PDT_{NP} > (NObj + 1) \times (2 \times RTT) + \frac{PageSize}{B}$$

□ Persistent connection

$$PDT_{P} > RTT + (NObj + 1) \times RTT + \frac{PageSize}{B}$$

© 2002 D. A. Menascé. All Rights Reserved.

21

Page Download Time Example: Simple Page

- □HTML page = 15,650 bytes
- ☐HTTP header = 290 bytes
- □10 images of 4,200 bytes each
- \square RTT = 0.05 sec
- $\square B = 125,000 \text{ bytes/sec}$

$$PDT_{NP} > 11 \times 2 \times 0.05 + \frac{15,650 + 11 \times 290 + 10 \times 4,200}{125,000} = 1.59$$
 sec

$$PDT_P > 0.05 + 11 \times 0.05 + \frac{15,650 + 11 \times 290 + 10 \times 4,200}{125,000} = 1.09$$
 sec

© 2002 D. A. Menascé. All Rights Reserved.

Page Download Time Example: Elaborate Page

- □HTML page = 15,650 bytes
- ☐HTTP header = 290 bytes
- □20 images of 20,000 bytes each
- \square RTT = 0.05 sec
- $\square B = 125,000 \text{ bytes/sec}$

$$PDT_{NP} > 21 \times 2 \times 0.05 + \frac{15,650 + 21 \times 290 + 20 \times 20,000}{125,000} = 5.47$$
 sec

$$PDT_{P} > 0.05 + 21 \times 0.05 + \frac{15,650 + 21 \times 290 + 20 \times 20,000}{125,000} = 4.47 \quad \text{sec}$$

© 2002 D. A. Menascé. All Rights Reserved.

23

TCP Throughput

- □Depends on:
 - ➤ Packet Loss Ratio
 - ➤ Round Trip Time
 - ➤ Wm: Maximum Receiver Window Size (advertised by the receiver at connection establishment time)
 - >TCP timeout
 - ➤ Network Bandwith
 - ➤ Maximum Segment Size

© 2002 D. A. Menascé. All Rights Reserved.

Important take home!

- ☐ Service demands are <u>important</u> parameters for performance models
- ☐ Service demands are easy to measure. Service times are much harder to obtain!
- ☐ Service demands are associated with a type of request and a resource.
- ☐ Service demands are measured in time units (e.g., sec, msec)
- ☐ Service demands are load independent!
- ☐ More on this to come ...

29

Service Demand

Service demand at the CPU = s1 + s2 + s3Service demand at the disk = s4 + s5

Waiting time Service time

© 1999-2000 D. A. Menascé. All Rights Reserved.

Queuing Basic Concepts

- ☐ Total time spent by a request during the jth visit to a resource i:
 - ➤ Service time (S_i): period of time a request is receiving service from resource *i*, such as CPU or disk.
 - Maiting time (W_i^j) : the time spent by a request waiting access to resource i

© 1999-2001 Menascé. All Rights Reserved.

Basic Queuing Concepts

 \square Service Demand (D_i) is the sum of all service times for a request at resource *i*

$$D_{scpu} = S_{scpu}^1 + S_{scpu}^2$$

 \square Queuing Time (Q_i) is the sum of all waiting times for a request at resource *i*

$$Q_{scpu} = W_{scpu}^1 + W_{scpu}^2$$

© 1999-2001 Menascé. All Rights Reserved.

35

Basic Queuing Concepts

 \square Residence Time (R'_i) at resource *i* is the sum of service demand plus queuing time.

$$R'_i = Q_i + D_i$$

 \square Response time (R_r) of a request r is the sum of that request's residence time at all resources.

$$R_{server} = R'_{cpu} + R'_{disk}$$

© 1999-2001 Menascé. All Rights Reserved.

Notation (1)

- □V_i: average number of visits to queue *i* by a request;
- $\square S_{i:}$ average service time of a request at queue *i* per visit to the resource;
- $\square \lambda_i$ average arrival rate of requests to queue *i*
- $\Box D_i$ service demand of a request at queue i,
- $\Box D_i = V_i \times S_i$

© 1999-2001 Menascé. All Rights Reserved.

Notation (2)

- \square N_{i:} average number of requests at queue *i*, waiting or receiving service from the resource
- $\square X_{i:}$ average throughput of queue i, i.e. average number of requests that complete from queue i per unit of time
- □X_{o:} average system throughput, defined as the number of requests that complete per unit of time.

© 1999-2001 Menascé. All Rights Reserved.

39

Basic Performance Results

Utilization Law

 \Box The utilization (U_i) of resource i is the fraction of time that the resource is busy.

$$U_i = X_i * S_i = \lambda_i * S_i$$

© 1999-2001 Menascé. All Rights Reserved.

Example of Utilization Law: iostat in Unix

r/s	w/s	Kr/s	Kw/s	svc_t_(msec)
0.8	7.4	6.2	131.2	136.7
0.2	4.4	1.6	113.6	61
1	14.8	8	438.4	61.3
13	1.2	128	134.4	16.8
0.2	0	1.6	0	12.4
0	0.2	0	25.6	40.9
0	0	0	0	0
0	4	0	28.6	116
0	0	0	0	0
0	0	0	0	0
3	0	24	0	11.4
0	0.6	0	35.2	35.2
0	0	0	0	0
0	0.2	0	1.6	17.3
1.30	2.34	12.10	64.90	36.36

$$X_{disk} = 1.3 + 2.34 = 3.64$$
 IOs/sec

$$U_{disk} = X_{disk} \times S_{disk} = 3.64 \times 0.03636 = 13.24\%$$

41

Utilization Law: example

- □ A network segment transmits 1,000 packets/sec. Each packet has an average transmission time equal to 0.15 msec.
- □What is the utilization of the LAN segment?

© 1999-2001 Menascé. All Rights Reserved.

Utilization Law: example

- □ A network segment transmits 1,000 packets/sec. Each packet has an average transmission time equal to 0.15 msec.
- □What is the utilization of the LAN segment?

$$U_{LAN} = X_{LAN} * S_{LAN} = 1,000 * 0.00015 = 0.15 = 15\%$$

© 1999-2001 Menascé. All Rights Reserved.

43

Basic Performance Results

Forced Flow Law

■By definition of the average number of visits V_i, each completing request has to pass V_i times, on the average, by queue *i*. So, if X_o requests complete per unit of time, V_i*X_o requests will visit queue *i*.

$$X_i = V_i * X_o$$

© 1999-2001 Menascé. All Rights Reserved.

Forced Flow Law: example

- □ Database transactions perform an average of 4.5 I/O operations on the database server. During a one-hour monitoring period, 7,200 transactions were executed.
- ☐ What is the average throughput of the disk?
- ☐ If each I/O takes 20 msec on the average, what is the disk utilization?

© 1999-2001 Menascé. All Rights Reserved.

45

Forced Flow Law: example

- ☐ Database transactions perform an average of 4.5 I/O operations on the database server. During a one-hour monitoring period, 7,200 transactions were executed.
- What is the average throughput of the disk?
- ☐ If each I/O takes 20 msec on the average, what is the disk utilization?

$$X_{server} = 7,200 / 3,600 = 2 \text{ tps}$$

 $X_{disk} = V_{disk} * X_{server} = 4.5 * 2 = 9 \text{ tps}$
 $U_{disk} = X_{disk} * S_{disk} = 9 * 0.02 = 0.18 = 18\%$

© 1999-2001 Menascé. All Rights Reserved.

Basic Performance Results

Service Demand Law

 \Box The service demand D_i is related to the system throughput and utilization by the following:

$$D_i = V_i * S_i = (X_i/X_0)(U_i/X_i) = U_i / X_0$$

© 1999-2001 Menascé. All Rights Reserved.

47

Example of Service Demand Law: vmstat

in	sy	cs	us	sy	idle
119	65	24	1	0	99
296	2491	289	13	6	81
260	5586	213	44	7	49
326	2822	474	21	7	72
352	1913	271	13	4	83
304	2058	280	17	5	78
275	3072	506	21	7	72
322	3340	417	18	8	74
301	2000	201	9	3	87
261	1952	282	10	4	86
251	1870	220	9	4	87
412	4646	763	33	12	54
	76.83				

Interval: 12*5sec= 60 sec Number of Requests:

 $U_{cpu} = 1 - 0.7683 = 0.232 = 23.2\%$

 $X_0 = 20 / 60 = 0.333$ requests/sec

$$D_{cpu} = \frac{U_{cpu}}{X_0} = 0.232 / 0.333 = 0.695 \text{ sec}$$

Service Demand Law: example

- □ A Web server running on top of a Unix system was monitored for 10 minutes. It was observed that the CPU was 90% busy during the monitoring period. The number of HTTP requests counted in the log was 30,000.
- ☐ What is the CPU service demand of an HTTP request?

© 1999-2001 Menascé. All Rights Reserved.

49

Service Demand Law: example

- □ A Web server running on top of a Unix system was monitored for 10 minutes. It was observed that the CPU was 90% busy during the monitoring period. The number of HTTP requests counted in the log was 30,000.
- ☐ What is the CPU service demand of an HTTP request?

$$U_{cpu} = 90\% \\ X_{server} = 30,000 \ / \ (10*60) = 50 \ requests/sec \\ D_{cpu} = V_{cpu} \ ^* S_{cpu} = U_{cpu} \ / \ X_{server} = 0.90 \ / \ 50 = 0.018 \ sec$$

© 1999-2001 Menascé. All Rights Reserved.

Basic Performance Results

☐ The average number of customers in a "black box" is equal to average time each customer spends in the "box" times the throughput of the "box".

$$N = R * X$$

© 1999-2001 Menascé. All Rights Reserved.

51

Little's Law Example I

- □ An NFS server was monitored during 30 min and the number of I/O operations performed during this period was found to be 32,400. The average number of active requests (N_{reg}) was 9.
- ☐ What was the average response time per NFS request at the server?

© 1999-2001 Menascé. All Rights Reserved.

Little's Law Example I

- □ An NFS server was monitored during 30 min and the number of I/O operations performed during this period was found to be 32,400. The average number of active requests (N_{reg}) was 9.
- ☐ What was the average response time per NFS request at the server?

"black box" = NFS server
$$X_{server} = 32,400 / 1,800 = 18 \text{ requests/sec}$$
 $R_{req} = N_{req} / X_{server} = 9 / 18 = 0.5 \text{ sec}$

© 1999-2001 Menascé. All Rights Reserved.

53

Little's Law Example II

- ☐ The average delay experienced by a packet when traversing a network segment is 50 msec. The average number of packets that cross the network per second is 512 packets/sec (network throughput).
- ☐ What is the average number of packets in transit in the network?

© 1999-2001 Menascé. All Rights Reserved.

Little's Law Example II

- ☐ The average delay experienced by a packet when traversing a network segment is 50 msec. The average number of packets that cross the network per second is 512 packets/sec (network throughput).
- ☐ What is the average number of packets in transit in the network?

"black box" = network segment
$$N_{packets} = R_{packet} * X_{network}$$

$$N_{packets} = 0.05 * 512 = 25.6 packets$$

© 1999-2001 Menascé. All Rights Reserved.

55

Little's Law Example III

- ☐ The disk of a Web server receives requests at a rate of 20 requests/sec. The average disk service time, considering both random and sequential requests, is 8.02 msec.
- ☐ What is the average disk utilization?

© 1999-2001 Menascé. All Rights Reserved.

Little's Law Example III

- ☐ The disk of a Web server receives requests at a rate of 20 requests/sec. The average disk service time, considering both random and sequential requests, is 8.02 msec.
- ☐ What is the average disk utilization?

"black box" = disk
$$\lambda_{disk} = X_{disk} = 20 \text{ requests/sec}$$

$$S_{request} = 0.00802 \text{ sec}$$

$$U_{disk} = S_{request} * X_{disk} = 0.00802 * 20 = 16.04\%$$

© 1999-2001 Menascé. All Rights Reserved.

Response Time Law Example

□A database server is capable of processing 20 requests/sec. The average think time is 15 sec. What is the maximum number of client machines that can be supported so that the average response time does not exceed 2 seconds?

© 1999-2001 Menascé. All Rights Reserved.

65

Response Time Law Example

- □ A database server is capable of processing 20 requests/sec. The average think time is 15 sec. What is the maximum number of client machines that can be supported so that the average response time does not exceed 2 seconds?
- $\square Z = 15 \text{ sec}, X_0 = 20 \text{ req/sec}. So,$

© 1999-2001 Menascé. All Rights Reserved.

Summary of Basic Results

- Basic Concept of Queuing Theory and Operational Analysis
 - terminology and notation
 - service time and service demand
 - waiting time and queuing time
- Basic Performance Results and Examples
 - utilization law: $U_i = X_i * S_i$
 - forced flow law: X_i = V_i * X₀
 - service demand law: $D_i = V_i * S_i = U_i / X_0$
 - Little's Law: N = R * X
 - Response Time Law: $R = M/X_0 Z$

© 1998-9 Menascé. All Rights Reserved.