Relational Algebra

Carla Teixeira Lopes

Bases de Dados Mestrado Integrado em Engenharia Informática e Computação, FEUP

Based on Jennifer Widom slides

Division operator

Operator: /

Identifies the attribute values from a relation that are paired with all of the values from another relation

The division is to the Cartesian product (x) what the division is to multiplication in arithmetic

Necessary to answer queries with "all"

Cross-product and division

Division is the opposite of the cross-product

R1
A
4
8

R3

Α	В
A	3
4	1
4	7
8	3
8	1
8	7

R3 / R2 = R1

R3 / R1 = R2

R			
Α	В	С	D
а	b	С	d
а	b	е	f
b	С	е	f
е	d	С	d
е	d	е	f
а	b	d	е

Reorder the columns in R so the last ones are the ones in S

Order tuples in R by the first columns

Each R sub-tuple is part of the result if the sub-tuple of the last columns contains the divisor

Reorder the columns in R so the last ones are the ones in S

R			
Α	В	С	D
а	b	С	d
а	b	е	f
b	С	е	f
е	d	С	d
е	d	е	f
а	b	d	е

	S		
,	C	D	_ 2
	С	d	= ?
	е	f	

Order R by the first columns

R			
Α	В	C	D
а	b	С	d
а	b	е	f
b	С	е	f
е	d	С	d
е	d	е	f
а	b	d	е

<u> </u>			
Α	В	С	D
а	b	C	d
а	b	е	f
а	b	d	е
b	С	е	f
е	d	С	d
е	d	е	f

Each R sub-tuple is part of the result if the sub-tuple of the last columns contains the divisor

R					S			R/S	
Α	В	С	D	,	С	D	_	Α	В
а	b	С	d	/	С	d	_	а	b
а	b	е	f		е	f		е	d
а	b	d	е						
b	С	е	f						
е	d	С	d						
е	d	е	f						

Example

Which members are enrolled in all sports?

EnrolledIn

Member	Sport	Payment
6078	GM	25
5819	КВ	30
4526	КВ	30
4526	SW	20
3955	КВ	30
3955	SW	20
3955	GM	25
9876	КВ	0

Sports

ID	Name
KB	Kickbox
SW	Swimming
GM	Gimnastics

Example

Which members are enrolled in all sports?

EnrolledIn

Member	Sport	Payment
6078	GM	25
5819	КВ	30
4526	КВ	30
4526	SW	20
3955	КВ	30
3955	SW	20
3955	GM	25
9876	КВ	0

ID	Name
KB	Kickbox
SW	Swimming
GM	Gimnastics

Sports

 $A = \pi_{Member,Sport} EnrolledIn$

, F	<u> </u>
Sport	
GM	
КВ	
КВ	
SW	
КВ	
SW	
GM	
КВ]
	KB KB SW KB SW GM

 $B = \pi_{ID} Sports$

ID

KB

SW

GM

A/B

Member 3955

$$R(a_1, ..., a_n, b_1, ..., b_m)$$

 $S(b_1, ..., b_m)$

$$R/S = \Pi_{a1,...,an}(R) - \Pi_{a1,...,an}[(\Pi_{a1,...,an}(R) \times S) - R]$$

$$R/S = \Pi_{a1,...,an}(R) - \Pi_{a1,...,an}[(\Pi_{a1,...,an}(R) \times S) - R]$$

R

Member	Sport
5819	КВ
4526	КВ
4526	SW
3955	КВ
3955	SW
3955	GM

S

ID
КВ
SW
GM

 $T_{a1...an}(R)$

u = j 1111 j u 11 1 1 1
Member
5819
4526
3955

All tuples from the first n attributes of R

$$R/S = \Pi_{a1,...,an}(R) - \Pi_{a1,...,an}[(\Pi_{a1,...,an}(R) \times S) - R]$$

$\Pi_{a1,,an}(R)$		
Member		
5819		
4526		
3955		

П	21 2n	(R)	Х	S
11	a1,,an	('')	/\	_

Member	ID
5819	КВ
5819	SW
5819	GM
4526	КВ
4526	SW
4526	GM
3955	КВ
3955	SW
3955	GM

All combinations of the first n attributes of R with the tuples of S

$$R/S = \Pi_{a1,...,an}(R) - \Pi_{a1,...,an}[(\Pi_{a1,...,an}(R) \times S) - R]$$

П	a1an	(R)	Χ	S
	d I dII	\/		

Member	ID
5819	КВ
5819	SW
5819	GM
4526	КВ
4526	SW
4526	GM
3955	КВ
3955	SW
3955	GM

R

Member	Sport
5819	КВ
4526	КВ
4526	SW
3955	КВ
3955	SW
3955	GM

$$\Pi_{a1,...,an}$$
 (R) x S - R

Member	ID
5819	SW
5819	GM
4526	GM

All combinations of the first n attributes of R with the tuples of S excluding the tuples that are present in R

$$R/S = \Pi_{a1,...,an}(R) - \Pi_{a1,...,an}[(\Pi_{a1,...,an}(R) \times S) - R]$$

$\Pi_{a1,,an}$	(R) x	S-	R
----------------	-------	----	---

Member	ID
5819	SW
5819	GM
4526	GM

R

S

Member	Sport
5819	KB
4526	KB
4526	SW
3955	КВ
3955	SW
3955	GM

KB SW

$\Pi_{a1,,an}[(\Pi_{a1,,a}$	n (R)	\times S) -	· R]
-----------------------------	-------	---------------	------

Member	
5819	
4526	

First n attributes of all combinations of the first n attributes of R with the tuples of S excluding the tuples that are present in R

$$R/S = \Pi_{a1,...,an}(R) - \Pi_{a1,...,an}[(\Pi_{a1,...,an}(R) \times S) - R]$$

R

Member	Sport
5819	КВ
4526	КВ
4526	SW
3955	КВ
3955	SW
3955	GM

 $\Pi_{a1,\dots,an}[(\Pi_{a1,\dots,an}(R)\times S)-R]$

Member	
5819	
4526	

 $\Pi_{\text{a1,...,an}}(R) - \Pi_{\text{a1,...,an}}[(\Pi_{\text{a1,...,an}}(R) \times S) - R]$

Member 3955

Rename operator

Changes the schema, not the instance

General Notation

$$\rho_{R(A_1,\ldots,A_n)}(E)$$

Abbreviated notation to only change the relation name $\rho_R(E)$

Abbreviated notation to only change attribute names $\rho_{A_1,\ldots,A_n}(E)$

Example

Student

sID	sName	GPA	HS

 $\rho_{Student2(ID,Name,Grade,HighSchool)}(Student)$

Student2

ID	Name	Grade	HighSchool

Rename operator in use

To unify schemas for set operators

List of colleges and student names

 $\rho_{C(name)}(\pi_{cName}College) \cup \rho_{C(name)}(\pi_{sName}Student)$

College

cName	state	enr

Student

sID	sName	GPA	HS

Rename operator in use

For disambiguation in "self-joins"

Pairs of colleges in the same state

$$\sigma_{state=state}(College \times College) ?$$

$$\sigma_{s1=s2}(\rho_{c_1(n_1,s_1,e_1)}(College) \times \rho_{c_2(n_2,s_2,e_2)}(College))$$

$$\rho_{c_1(n_1,s_1,e_1)}(College) \bowtie \rho_{c_2(n_2,s_2,e_2)}(College) ?$$

$$\rho_{c_1(n_1,s,e_1)}(College) \bowtie \rho_{c_2(n_2,s_2,e_2)}(College)$$

College

cName	state	enr

Rename operator in use

Pairs of different colleges in the same state

$$\sigma_{n_1 \neq n_2}(\rho_{c_1(n_1,s,e_1)}(College) \bowtie \rho_{c_2(n_2,s,e_2)}(College))$$

Pairs of **different** colleges in the same state without repeated pairs

$$\sigma_{n_1 > n_2}(\rho_{c_1(n_1,s,e_1)}(College) \bowtie \rho_{c_2(n_2,s,e_2)}(College))$$

College

cName	state	enr
MIT	Massachusetts	NULL
Stanford	California	NULL
Berkeley	California	NULL

Agenda

Introduction to Relational Algebra

Operators

Alternate notations

Extensions to Relational Algebra

Assignment statements

Pairs of different colleges in the same state

$$\sigma_{n_1 < n_2}(\rho_{c_1(n_1,s,e_1)}(College) \bowtie \rho_{c_2(n_2,s,e_2)}(College))$$

Alternative notation

C1: =
$$\rho_{c_1(n_1,s,e_1)}(College)$$

$$C2:=\rho_{c_2(n_2,s,e_2)}(College)$$

$$CP := C1 \bowtie C2$$

$$Answ:=\sigma_{n_1 < n_2} CP$$

College

cName	state	enr

Expression trees

GPAs of students applying to CS in CA

 $\pi_{GPA}(\sigma_{major='CS' \land state='CA'}(Student \bowtie Apply \bowtie College))$

College

cName	state	enr

Student

sID	sName	GPA	HS

Apply

sID	cName	major	dec

Expressions can get complex

Agenda

Introduction to Relational Algebra

Operators

Alternate notations

Extensions to Relational Algebra

Arithmetic expressions in projections

Student

sID	sName	GPA	HS
12	Mary	3.5	90
23	John	3.8	50
31	Jane	3.9	1000

List the student ids with the GPA increased in 0.2

 $\pi_{SID,new=GPA+0.2}$ Student

In the parameters of the projection

Left side can only be the name of a new attribute

Right side can only involve attributes of the involved relation

Aggregation operators cnt, sum, avg, max, min

$$\pi_{cnt(*)} R$$

Relation with 1 tuple and 1 attribute containing the number of tuples in R

College

cName	state	enr
MIT	Massachusetts	30000
Stanford	California	20000
Berkeley	California	10000
Harvard	Massachusetts	NULL

$$\pi_{cnt(B)} R$$

Relation with 1 tuple and 1 attribute containing the number of tuples in R with non-null values in B

College

cName	state	enr
MIT	Massachusetts	30000
Stanford	California	20000
Berkeley	California	10000
Harvard	Massachusetts	NULL

 $\pi_{cnt(enr)}$ College

cnt(enr)

 $\pi_{max(B)} R$

Relation with 1 tuple and 1 attribute containing the maximum value in B

College

cName	state	enr
MIT	Massachusetts	30000
Stanford	California	20000
Berkeley	California	10000
Harvard	Massachusetts	NULL

 $\pi_{A,\max(B)}$ R

Relation with 1 tuple per each value of A and 2 attributes: the value of A and the maximum value of B for that value of A

College

cName	state	enr
MIT	Massachusetts	30000
Stanford	California	20000
Berkeley	California	10000
Harvard	Massachusetts	NULL

 $\pi_{state,max(enr)}$ College

state	max(enr)
Massachusetts	30000
California	20000

Relational Algebra Operators Summary

Core operators

R $\sigma_{condition}E$ $\pi_{A_1,...,A_n}E$ $E_1 \times E_2$ $E_1 \cup E_2$ $E_1 - E_2$ $\rho_{R(A_1,...,A_n)}(E)$

Derived operators

$$E_1 \bowtie E_2$$

$$E_1 \bowtie_{\theta} E_2$$

$$E_1 \cap E_2$$

$$E_1 \bowtie_{E_2} E_2$$

$$E_1 / E_2$$

Parentheses are used for disambiguation

Kahoot time!

Any doubts?

Readings

Jeffrey Ullman, Jennifer Widom, A first course in Database Systems 3rd Edition

Section 2.4 – An Algebraic Query Language

Section 5.2 – Extended Operators of Relational Algebra