

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 18 martie 2017

CLASA a XII-a

Problema 1. Fie $f, g: [0,1] \to \mathbb{R}$ funcții continue, astfel încât $f(x)g(x) \ge 4x^2$, oricare ar fi $x \in [0,1]$. Arătați că cel puțin unul dintre numerele

$$\left| \int_0^1 f(x) \, \mathrm{d}x \right|, \quad \left| \int_0^1 g(x) \, \mathrm{d}x \right|$$

este mai mare sau egal cu 1.

Gazeta Matematică

Problema 2. Fie (G, \cdot) un grup şi fie m şi n două numere naturale nenule, prime între ele. Arătați că, dacă funcțiile $f: G \to G$, $f(x) = x^{m+1}$, şi $g: G \to G$, $g(x) = x^{n+1}$, sunt endomorfisme surjective, atunci grupul G este comutativ.

Problema 3. Determinați cel mai mic număr real a, care îndeplinește condiția

$$a \geq \sum_{k=1}^{n} a_k \cos(a_1 + \cdots + a_k),$$

oricare ar fi numărul natural nenul n și oricare ar fi numerele reale strict pozitive a_1, \ldots, a_n , a căror sumă este cel mult π .

Problema 4. Fie $(A, +, \cdot)$ un inel cu $0 \neq 1$ şi care îndeplineşte simultan următoarele două condiții:

- (1) A nu este corp;
- (2) $x^2 = x$, oricare ar fi elementul neinversabil $x \, din \, A$.

Arătați că:

- (a) a + x este neinversabil, oricare ar fi a şi x din A, a inversabil şi x nenul şi neinversabil;
- (b) $x^2 = x$, oricare ar fi $x \, din \, A$.

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.