

Object Detection - 음식 탐지 및 분류

BOAZ 18기 / 분석 박규연 백채은 이기원 / 시각화 김성경 / 엔지니어링 김인섭

CONTENTS

01 주제 선정 계기

02 데이터 소개 및 수집

03 모델소개및모델링

04 결과 및 아쉬운점

05 향후 발전 가능성

♀

해시태그자동 라벨링 서비스?

음식사진찍기

SNS 사진 업로드

해시태그 달기

01 주제 선정 계기

해시대그 자동 라벨링 서비스

- 1. 사진의 음식이 무엇인지 인식하기 위해서 YOLO를 이용한 음식 탐지 프로그램 개발
- 2. 많은 종류의 음식 중, 프로토 타입 개발을 위해 특정한 메뉴만을 세분화 해서 개발
- 3. 각 메뉴들 간 구분하기 어려운 <mark>면 종류의 음식</mark>으로 특정

 → 토핑의 유무와 면의 질감, 굵기 등으로 판별해야 하므로 어렵다고 판단.
- 4. 면을 구분할 수 있다면 다른 음식 메뉴들을 수월하게 구분할 수 있을 것이라고 생각.

UFC FOOD 100 Dataset

02 **데이터 소개**

▼ 이미지 파일 (.jpg)

총 100가지 음식 사진과 음식 위치에 대한 어노테이션 존재 (바운딩 박스의 4개의 모서리 좌표값 형태)

▲ 텍스트 파일 (.txt)

02 **데이터 수집**

데이터 라벨링

- 기존의 어노테이션 값을 이용해 바운딩 박스의 중앙좌표, width, height를 구하고 YOLO 학습에 알맞은 형태로 라벨링 진행.
- Before [image-number] [top-left-X] [top-left-Y] [bottom-right-X] [bottom-right-Y]
- After
 [object-class-id] [center-X] [center-Y] [width] [height]
- 이 때, YOLO는 한 이미지 파일에 대해 동일한 이름의 .txt 파일을 자동으로 검색.
 ex) ramen.jpg ↔ ramen.txt

03 모델 소개

YOLO

- 이미지 내의 물체들을 찾아
 바운딩 박스와 가장 높은 확률의 클래스를 찾는다. (중앙 상단)
- 2. 각 그리드셀에서 물체의 확률과 IOU 값을 비교해 가장 높은 확률을 가진 해당 그리드셀의 클래스를 확정. (중앙 하단)
- 3. 확정된 클래스의 확률이 일정한 값(threshold) 이상의 그리드셀을 이용해 바운딩 박스를 그린다. (우측 사진)

Small YOLOv5s

Medium YOLOv5m

Large YOLOv5I

XLarge YOLOv5x

14 MB_{FP16} 2.2 ms_{V100} 36.8 mAP_{coco}

41 MB_{FP16} 2.9 ms_{V100} 44.5 mAP_{coco}

90 MB_{FP16} 3.8 ms_{V100} 48.1 mAP_{coco}

168 MB_{FP16} 6.0 ms_{V100} 50.1 mAP_{coco}

사이즈가 작을수록 가볍고, 성능이 떨어지지만 탐지 속도가 빠름.

음식 탐지는 자율주행 만큼의 real time detection을 요구하지 않으므로 학습 시간이 부담스럽지 않으면서 s보다는 성능이 좋은 YOLOv5m으로 선정.

03 모델링

parameter

6가지 음식 기준

names:

- udon
- soba
- ramen
- noodle
- fried noodle
- spaghetti

train

!python train.py --img 400 --batch 16 --epochs 50 --data

'<u>/content/drive/MyDrive/ObjectDetection/data/noodle_data.yaml</u>' --cfg ./models/yolov5m.yaml --weights yolov5m.pt --name noodle_yolov5m_results

Epoch 46/49	gpu_mem 3.67G Class all	box 0.02078 Images 218	obj 0.01179 Labels 218	0.01336 P	R	416: 100% 55/55 [00:23<00:00, 2.31it/s]	2.57it/s]
Epoch 47/49	gpu_mem 3.67G Class all	box 0.01986 Images 218		0.01248 P	R	_size 416: 100% 55/55 [00:24<00:00, 2.27it/s] mAP@.5 mAP@.5:.95: 100% 7/7 [00:02<00:00, 0.87 0.621	2.42it/s]
Epoch 48/49	gpu_mem 3.67G Class all	box 0.01941 Images 218		0.01198 P	R	_size 416: 100% 55/55 [00:23<00:00, 2.30it/s] mAP@.5 mAP@.5:.95: 100% 7/7 [00:02<00:00, 0.88 0.632	2.38it/s]
Epoch 49/49	gpu_mem 3.67G Class all	box 0.0197 Images 218	obj 0.01109 Labels 218	0.0126 P	R	416: 100% 55/55 [00:24<00:00, 2.27it/s]	2.49it/s]

0.935

50 epochs completed in 0.394 hours.

udon

Optimizer stripped from runs/train/noodle_yolov5m_results/weights/last.pt, 42.1MB Optimizer stripped from runs/train/noodle_yolov5m_results/weights/best.pt, 42.1MB

Validating runs/train/noodle_yolov5m_results/weights/best.pt...
Fusing layers...

YOLOv5m	summary: 290	layers, 2	?0873139 para	meters, O gi	radients		
	Class	lmage	s Labels	P	R	mAP@.5	mAP@.5:.95
	all	21	8 218	0.815	0.837	0.882	0.642

0.854

spaghetti

udon & soba

- ✓ 실제 이미지 detection 결과, 탐지가 잘 되는 것을 볼 수 있다.
- ✓ 불닭볶음면 같은 경우에는 이미지와 비슷한 <mark>스파게티</mark>와 fried noodle로 인식 되는 것을 확인할 수 있었다.

04 **아쉬운점**

✓ 모든 면 종류의 음식을 적용한 것이 아니기 때문에 불닭볶음면 등 라벨링에서 벗어나는 음식은 한계가 있음.

✓ Epoch, Image Size 등의 영향을 많이 받으므로 train 할 때 충분한 시간을 통해 학습하면 더 좋은 결과 도출이 가능할 것이라 예상.

발전 가능성

- ✓ 객체 탐지 모델 중 YOLO는 많은 분야에서 활용되고 있으며 현재도 계속 발전하고 있음.
- ✓ 추후 충분한 학습을 거쳐 면 요리 뿐만 아닌 다양한 음식 탐지를 통해 많은 사람들이 서비스를 이용할 수 있을 것이라 생각.

Dataset: http://foodcam.mobi/dataset100.html

lcons: https://www.flaticon.com/free-icons/

<u>Images: google.com</u>

SQUARESPACE.COM/LOGO, ICONS BY THE NOUN PROJECT

THANK YOU

BOAZ 18기 / 분석 박규연 백채은 이기원 / 시각화 김성경 / 엔지니어링 김인섭