SMU - Bayesian Networks Assignment

Ondřej Hubáček

April 2018

1 Submission and evaluation

- 1. Each student works individually.
- 2. The way of submission:
 - (a) https://cw.felk.cvut.cz/brute/
 - (b) deadline: Mon 30.4.2018 23:59
 - (c) archive structure (username.zip):
 - i. a file username.pdf with the report
 - ii. a file username.bif with the selected model
 - iii. a directory src with the .py files that underline the solution
- 3. Up to 13 points can be obtained for this assignment:
 - (a) 10 points for the report and the functional source code
 - (b) 3 points for performance reached by the model the joint distribution that underlines your network will be compared with the original one
 - (c) there is a 3 point penalty for each commenced day of delay

2 Task

- 1. Get familiar with pgmpy https://github.com/pgmpy/pgmpy.
- 2. Study the input dataset crash_sample_2018.csv.
- 3. Manually construct a baseline network structure that you find best for the given domain.
- 4. Check if the following statements hold for your model (draw information flow diagram) and discuss if the findings make intuitive sense:
 - (a) Season ⊥ NoFatalities | NoJourneys
 - (b) Weather ⊥ NoAccidents | RoadCond

- (c) Season \perp Weekend | NoAccidents
- 5. Think about dealing with the input data, in particular focus on:
 - (a) the asset of splitting on train and test data to obtain a model that does not overfit the input data
 - (b) the ways of the missing data treatment implement estimation of the missing values by EM+MLE
- 6. Learn the quantitative parameters (CPTs) of the baseline network from the training data and interpret them.
 - (a) The interpretation shall prove that you can read the parameters and understand their meaning.
 - (b) It is enough to analyze and explain one node/CPT with a proper number of parents (2-3).
- 7. Evaluate the baseline model and try to improve it using HillClimbing routine (or another structure learning algorithm) and handcrafted knowledge.
- 8. Train the final network using the whole dataset and report Jensen-Shannon divergence and total variation distance.
- 9. Save the final network into the file username.bif
- 10. Write a brief (max 2 pages) report containing:
 - (a) diagram and description of the baseline network
 - (b) information flow diagram and brief discussion if the findings from (4) hold
 - (c) interpretation of CPT from (6b)
 - (d) how you derived the final network
 - (e) Jensen-Shannon divergence and total variation distance from (8)