

数字逻辑电路

主讲老师:王亚芳

一进制的算术运算

本节主要内容

- 无符号二进制的算术运算
- 有符号二进制数的表示(原码、反码和补码)
- 补码的加减运算
- 溢出(判别及解决方法)

学习完本节, 你能

- 了解无符号二进制数的加、减、乘、除四 种运算规则
- 掌握有符号二进制数原码、反码和补码的 表示
- 掌握补码的加减运算规则
- 掌握溢出的判别及解决方法

算术运算

- > 当0和1表示数量大小时,两个二进制数可以进行算术运算;
- 二进制数的加、减、乘、除四种运算的运算规则与十进制类似,区别 在于进位或借位规则不同。

逢二进一、借一当二

1、二进制加法

> 无符号二进制的加法规则:

进位位

例

计算两个二进制数1010和0101的和。

2、二进制减法

> 无符号二进制的减法规则:

借位位

计算两个二进制数1010和0101的差。

0-0=0 , 1-1=0 , 1-0=1 0-1=11

1010-0101=0101

3、二进制乘法

> 无符号二进制的乘法规则:

$$0 \times 0 = 0$$
 , $0 \times 1 = 0$, $1 \times 0 = 0$ $1 \times 1 = 1$

计算两个二进制数1010和0101的积。

	1	1	0	0	1	0
0	0	0	0			
	1	0	1	0		
		0	0	0	0	
			1	0	1	0
		<u>×</u>	0	1	0	1
			1	0	1	0

所以 1010×0101=110010

4、二进制除法

> 无符号二进制的除法规则:

$$0 \div 1 = 0$$
 , $1 \div 1 = 1$

▶ 注:除数不能为0,否则无意义。

计算两个二进制数1010和111之商。

1 1.....余数

有符号二进制数的表示

数字系统只能识别和处理用0、1表示的二进制形式的数据, 在计算机内部如何表示正、负数?

有符号的二进制数表示:

二进制数的最高位表示符号位,且用0表示正数,用1表示负数。 其余部分用原码的形式表示数值位。

$$(+11)_D = (0\ 1011)_B$$

$$(-11)_D = (1\ 1011)_B$$

有符号二进制数的表示

原码的表示:

- ▶ 正数的符号位用0表示,负数的符号位用1表示;
- > 数值用其绝对值的二进制数形式表示。
- ◆ 反码的表示:
- > 正数的反码和原码相同;
- ▶ 负数的反码:符号位不变,数值位取反。
- ◆ 补码的表示:
- > 正数的补码和原码相同;
- > 负数的补码:符号位不变,数值位取反后加1(反码加1)。

有符号二进制数的表示

分别计算出A=+5和B=-5的4位二进制的原码、反码和补码。

解:A和B的绝对值均为5。除最高位为符号位外,还有3位为数值位。

$$A_{\mathbb{R}}=0 \ 101$$
 $B_{\mathbb{R}}=1 \ 101$

$$A_{\boxtimes} = 0.101$$
 $B_{\boxtimes} = 1.010$

$$A_{kh}=0 \ 101$$
 $B_{kh}=1 \ 011$

有符号二进制的表示

4位二进制原码、反码、补码对照表

十进	二进制数					
制数	原码	反码	补码			
-8			1000			
-7	1111	1000	1001			
-6	1110	1001	1010			
-5	1101	1010	1011			
-4	1100	1011	1100			
-3	1011	1100	1101			
-2	1010	1101	1110			
-1	1001	1110	1111			
-0	1000	1111	0000			

十进制	二进制数					
数	原码	反码	补码			
+0	0 0 0 0	0 0 0 0	0000			
+1	0001	0001	0001			
+2	0010	0010	0 0 1 0			
+3	0011	0011	0011			
+4	0100	0100	0100			
+5	0101	0101	0101			
+6	0110	0110	0110			
+7	0111	0111	0111			

有符号二进制数的算术运算

减法运算的原理:减去一个正数相当于加上一个负数 A-B=A+(-B) , 对 (-B)求补码,然后进行加法运算。

试用4位二进制补码计算5-2。

解:因为 $(5-2)_{\stackrel{.}{\uparrow}}=(5)_{\stackrel{.}{\uparrow}}+(-2)_{\stackrel{.}{\uparrow}}$

=0101+1110

=0011

所以 5-2=3

$$\begin{array}{c}
0 & 1 & 0 & 1 \\
+ & 1 & 1 & 1 & 0 \\
\hline
 \begin{bmatrix} 1 \end{bmatrix} & 0 & 0 & 1 & 1 \\
\end{array}$$

自动丢弃 ↓

补码的加减运算

试用4位二进制补码计算5+7。

解:因为(5+7)补=(5)补+(7)补

=0101+0111

=1100

4位有符号数所能表示的补码数 的最大值为+7

溢出

溢出

如何判断是否产生溢出?

当方框中的进位位与和数的符号位(即 b_3 位)相反时,则运算结果是错误的,产生溢出。

溢出

解决溢出的办法:进行位扩展

小结:

- 同 与十进制数类似,二进制数也有加、减、乘、 除四种运算;
- □ 有符号的二进制数的原码、反码、补码的表示方法;
- № 常用补码来进行有符号数的加减运算;
- "溢出"仅发生在两个同符号的数相加的情况。解决方法:位的扩展。

