Wiederholung für das Abitur im Fach Mathematik

Kurvendiskussion

Übersicht

- 1. Definitionsbereich:
- 2. Symetrie:
 - (a) Achsensymetrie: f(x) = f(-x)
 - (b) Punktsymetrie: f(-x) = -f(x)
- 3. Achsenschnittpunkt:
 - (a) y-Achse: f(0)
 - (b) x-Achse/Nullstellen: f(x) = 0
- 4. Extrempunkte:
 - (a) Notwendige Bedingung: f'(x) = 0
 - (b) Hinreichende Bedingung: $f'(x) = 0 \& f''(x) \neq 0$
 - (c) Hochpunkt: f''(x) < 0
 - (d) Tiefpunkt: f''(x) > 0
- 5. Wendepunkte:
 - (a) Notwendige Bedingung: f''(x) = 0
 - (b) Hinreichende Bedingung: $f''(x) = 0 \& f'''(x) \neq 0$
 - (c) Links-Rechts-Wendepunkt: f'''(x) < 0
 - (d) Rechts-Links-Wendepunkt: f'''(x) > 0

6. Sattelpunkt:

(a) Notwendige Bedingung: f'(x) = 0

(b) Hinreichende Bedingung: f''(x) = 0

Nullstellen

PQ-Formel

$$x_{1,2} = -\frac{P}{2} \pm \sqrt{\frac{p^2}{4} - 4}$$

Quadratische Ergänzung

binomische Formeln:

1.
$$(a+b)^2 = 2a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = 2a^2 - 2ab + b^2$$

3.
$$(a+b)^2 * (a-b)^2 = a^2 - b^2$$

Wendepunkte

1. Notwendige Bedingung: f''(x) = 0

2. Hinreichende Bedingung: $f'''(x) = + \neq 0 \rightarrow rechts-links-Wendepunkt$

3. Einsetzen in f(x): f(x) = a

Vektoren

Skalarprodukt

$$\vec{AB} \cdot \vec{AC} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1 \cdot y_1 + x_2 \cdot y_2 + x_3 \cdot y_3$$

Wenn das Skalarprodukt:

- \bullet = 0 ist \rightarrow Die Vektoren liegen **orthogonal** zueinander/90°
- $\bullet \neq 0 \mathrm{ist} \rightarrow \mathrm{Die}$ Vektoren liegen **nicht** orthogonal zue
inander

Lage zweier Geraden zueinander bestimmen Mittelpunkt einer Geraden bestimmen

$$\vec{m} = \frac{1}{2} * (\vec{b} + \vec{c}) = \frac{1}{2} * \left(\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix} \right)$$

Längenformel eines Vektors

$$\sqrt{a^2 + b^2 + c^2}$$

Beispiel:

$$\sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3$$

Punktprobe

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k * \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \to \begin{vmatrix} a_1 + b_1 * k = c_1 \\ a_2 + b_1 * k = c_2 \\ a_3 + b_1 * k = c_3 \end{vmatrix} \to \begin{vmatrix} k = x \\ k = y \\ k = z \end{vmatrix}$$

Beispiel:

$$\begin{pmatrix} -2\\3\\1 \end{pmatrix} + k * \begin{pmatrix} 2\\-5\\7 \end{pmatrix} = \begin{pmatrix} -12\\23\\-34 \end{pmatrix} \to \begin{vmatrix} -2+2*k = -12\\3-5*k = 23\\1+7*k = -34 \end{vmatrix} \to \begin{vmatrix} k=-5\\k=-4\\k=-5 \end{vmatrix}$$

Stochastik

Empirische Standardabweichung

$$\overline{s} = \sqrt{p_1 \cdot (x_1 - \overline{x})^2 + p_2 \cdot (x_2 - \overline{x})^2 + p_3 \cdot (x - \overline{x})^3 + \dots}$$

Erwartungswert

$$E(x) = 1 \cdot P(X = 1) + 2 \cdot P(X = 2) + 3 \cdot P(X = 3) + \dots$$

Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$
binomPDF: $P(X=Y) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$

binomCDF:
$$P(X \le Y) = p(x = y) + p(x = y - 1) + ... + p(x = y - y)$$

Vier-Felder-Tafel

	В	\overline{B}	
A	Wahrscheinlichkeit AB	Wahrscheinlichkeit $A\overline{B}$	Wahrscheinlichkeit A
\overline{A}	Wahrscheinlichkeit $\overline{A}B$	Wahrscheinlichkeit \overline{AB}	Wahrscheinlichkeit \overline{A}
	Wahrscheinlichkeit B	Wahrscheinlichkeit \overline{B}	1

Beispiel:

	В	\overline{B}	
A	0.21	0.49	0.7
\overline{A}	0.06	0.24	0.3
	0.27	0.73	1

Sigma-Regeln

Intervalle abschätzen für sigma

90

Erwartungswert

$$\mu = n \cdot p$$

Standardabweichung

$$\sigma = \sqrt{n \cdot p \cdot (1 - p)}$$

Sigma-Regeln andwenden

- 1. Gegeben: n, p
- 2. $\mu = n \cdot p$
- 3. $\sigma = \sqrt{n \cdot p \cdot (1-p)} \rightarrow \text{Wenn } \sigma \not \in 3 \text{ ist:}$
 - (a) $1.64 \cdot \sigma = d$
 - (b) $\mu d \le X \le \mu + d$

- (c) $P(\mu + d(aufrunden) < X < \mu + d(abrunden))$
- (d) $P(\mu + d(abrunden) < X < \mu + d(aufrunden))$
- (e) Hinweis: Dies kann mit dem binomCDF befehl des CAS berechnet berechnet werden.
- (f) Das Ergebnis welches am nächsten über 0.9 liegt ist das bessere Ergebnis

Beispiel:

- 1. Gegeben: n = 920, p = 58
- 2. $\mu = 920 \cdot 0.58 = 533.6$
- 3. $\sigma = \sqrt{920 \cdot 0.58 \cdot (0.42)} = 14.9703 \rightarrow \text{Wenn } \sigma \text{ is 3 ist:}$
 - (a) $1.64 \cdot 14.9703 = 24.5513$
 - (b) $533.6 24.5513 \le X \le 533.5 + 24.5513 \to 509.0487 \le X \le 558.1513$
 - (c) P(510 < X < 558) = 0.8982
 - (d) P(509 < X < 559) = 0.9114
 - (e) \rightarrow Das richtige Ergebnis ist $P(509 \le X \le 559)$

Bearbeitung einer Textaufgabe in der Klausur

- 1. f(x) f'(x) f''(x) f'''(x) hinschreiben und im CAS definieren
- 2. Worfür steht x bzw. t, Wofür steht f(x) bzw. $A(t) \to \text{Was}$ bedeutet f'(x) bzw. A'(x)
- 3. Teilaufgaben genau lesen: Ist x **gegeben** oder **gesucht**? Ist f(x) **gegeben** oder **gesucht**?