STT-2920 Automne 2015 Minitest 3

PRÉNOM EN GROSSES LETTRES CARRÉES :
NOM DE FAMILLE EN GROSSES LETTRES CARRÉES :
MATRICULE:
Les trois questions concernent le scénario suivant :
Un panier contient 3 boules. Les boules sont numérotées 1, 2, 3. On fait 24 tirages avec remises à partir de ce panier. On pose $T = \sum_{k=1}^{24} X_k$, où X_k dénote le numéro de la boule obtenue au k^e tirage.
Numéro 1. Complétez la phrase suivante :
L'espérance et l'écart-type de la variable aléatoire T sont respectivement 48 et \dots
Justification:
Numéro 2. Avec l'aide de l'inégalité de Chebyshev, obtenez une borne inférieure pour $\mathbb{P}[40 < T < 56]$.
Réponse :
Justification:

Numéro 3. Avec l'aide du théorème limite central, obtenez une approximation pour $\mathbb{P}[T \ge 52]$. Soyez aussi précis que possible. Exprimez votre réponse avec une précision de 4 décimales.

Réponse : _____

Justification:

$\Phi(z)$	22	
0.8000	0.841	
0.9000	1.282	
0.9500	1.645	
0.9750	1.960	
0.9800	2.054	
0.9900	2.326	
0.9950	2.576	
0.9975	2.807	
0.9990	3.091	
0.9995	3.291	

					_		_	_							_					_			_		_									_	-	
3.5	3.4	ಬ	3.2	3.1	3.0	2.9	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	11	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0	23
0.9998 0.9998	0.9997	0.9995	0.9993	0.9990	0.9987	0.9981	0.9974	0.9965	0.9953	0.9938	0.9918	0.9893	0.9861	0.9821	0.9772	0.9713	0.9641	0.9554	0.9452	0.9332	0.9192	0.9032	0.8849	0.8643	0.8413	0.8159	0.7881	0.7580	0.7257	0.6915	0.6554	0.6179	0.5793	0.5398	0.5000	0.00
0.9998 0.9998	0.9997	0.9995	0.9993	0.9991	0.9987	0.9982	0.9975	0.9966	0.9955	0.9940	0.9920	0.9896	0.9864	0.9826	0.9778	0.9719	0.9649	0.9564	0.9463	0.9345	0.9207	0.9049	0.8869	0.8665	0.8438	0.8186	0.7910	0.7611	0.7291	0.6950	0.6591	0.6217	0.5832	0.5438	0.5040	0.01
0.9998 0.9999	0.9997	0.9995	0.9994	0.9991	0.9987	0.9982	0.9976	0.9967	0.9956	0.9941	0.9922	0.9898	0.9868	0.9830	0.9783	0.9726	0.9656	0.9573	0.9474	0.9357	0.9222	0.9066	0.8888	0.8686	0.8461	0.8212	0.7939	0.7642	0.7324	0.6985	0.6628	0.6255	0.5871	0.5478	0.5080	0.02
0.9998 0.9999	0.9997	0.9996	0.9994	0.9991	0.9988	0.9983	0.9977	0.9968	0.9957	0.9943	0.9925	0.9901	0.9871	0.9834	0.9788	0.9732	0.9664	0.9582	0.9484	0.9370	0.9236	0.9082	0.8907	0.8708	0.8485	0.8238	0.7967	0.7673	0.7357	0.7019	0.6664	0.6293	0.5910	0.5517	0.5120	0.03
0.9998 0.9999	0.9997	0.9996	0.9994	0.9992	0.9988	0.9984	0.9977	0.9969	0.9959	0.9945	0.9927	0.9904	0.9875	0.9838	0.9793	0.9738	0.9671	0.9591	0.9495	0.9382	0.9251	0.9099	0.8925	0.8729	0.8508	0.8264	0.7995	0.7704	0.7389	0.7054	0.6700	0.6331	0.5948	0.5557	0.5160	0.04
0.9998 0.9999	0.9997	0.9996	0.9994	0.9992	0.9989	0.9984	0.9978	0.9970	0.9960	0.9946	0.9929	0.9906	0.9878	0.9842	0.9798	0.9744	0.9678	0.9599	0.9505	0.9394	0.9265	0.9115	0.8944	0.8749	0.8531	0.8289	0.8023	0.7734	0.7422	0.7088	0.6736	0.6368	0.5987	0.5596	0.5199	0.05
0.9998 0.9999	0.9997	0.9996	0.9994	0.9992	0.9989	0.9985	0.9979	0.9971	0.9961	0.9948	0.9931	0.9909	0.9881	0.9846	0.9803	0.9750	0.9686	0.9608	0.9515	0.9406	0.9279	0.9131	0.8962	0.8770	0.8554	0.8315	0.8051	0.7764	0.7454	0.7123	0.6772	0.6406	0.6026	0.5636	0.5239	0.06
0.9998 0.9999	0.9997	0.9996	0.9995	0.9992	0.9989	0.9985	0.9979	0.9972	0.9962	0.9949	0.9932	0.9911	0.9884	0.9850	0.9808	0.9756	0.9693	0.9616	0.9525	0.9418	0.9292	0.9147	0.8980	0.8790	0.8577	0.8340	0.8078	0.7794	0.7486	0.7157	0.6808	0.6443	0.6064	0.5675	0.5279	0.07
0.9998 0.9999	0.9997	0.9996	0.9995	0.9993	0.9990	0.9986	0.9980	0.9973	0.9963	0.9951	0.9934	0.9913	0.9887	0.9854	0.9812	0.9761	0.9699	0.9625	0.9535	0.9429	0.9306	0.9162	0.8997	0.8810	0.8599	0.8365	0.8106	0.7823	0.7517	0.7190	0.6844	0.6480	0.6103	0.5714	0.5319	0.08
0.9998 0.9999	0.9998	0.9997	0.9995	0.9993	0.9990	0.9986	0.9981	0.9974	0.9964	0.9952	0.9936	0.9916	0.9890	0.9857	0.9817	0.9767	0.9706	0.9633	0.9545	0.9441	0.9319	0.9177	0.9015	0.8830	0.8621	0.8389	0.8133	0.7852	0.7549	0.7224	0.6879	0.6517	0.6141	0.5753	0.5359	0.09

FONCTION DE RÉPARTITION DE LA LOI NORMALE STANDARD