# Deep reference prior

## CIFAR10

Semi-supervised learning

## Setting:

#### Data

use 250 labels, i.e., 25 per class

#### Optimization

- nesterov SGD, Ir=K \* 0.03, weight\_decay = 5e-4 / K (not apply to BN and prior)
- cosine schedule without warmup (follow repo code for comparison)
- mix-precision training

#### Hyper-params (baseline)

• alpha=0.05, gamma=0.5, tau=1/3, ema\_decay=0.999

#### Augmentation

- Labeled: Horizontal flip + crop + normalize
- Unlabeled weak: Horizontal flip + crop + normalize
- Unlabeled strong: Horizontal flip + crop + RandAugment(n=2,m=10) + normalize
- Test: normalize

### **Evaluation:**

acc: deep prior accuracy(ensemble on probability not prediction) ema acc: deep prior accuracy with ema params

All acc is computed on the full test set

### Results:

Default hyper-params: alpha=0.05, gamma=0.5, tau=1/3, ema\_decay=0.999, epoch=50

## 1.Test train-able prior (uniform vs allow backprop):

|                  | асс   | ema acc | loss  | H_y   | H_yw  | ce_loss |
|------------------|-------|---------|-------|-------|-------|---------|
| Trainable prior  | 0.809 | 0.809   | 0.111 | 0.141 | 0.105 | 0.0002  |
| Uniform prior    | 0.792 | 0.824   | 0.132 | 0.455 | 0.139 | 0.0013  |
|                  | 0.809 | 0.834   | 0.132 | 0.455 | 0.139 | 0.0012  |
| UniformPrior avg | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |

Uniform prior (prior is not train-able) outperforms -> no need to weight particles

2.Test H\_yw computation (n\_order=2 vs n\_order=1)

We are currently computing H\_yw as if n\_order is 1, but theoretically they should be same.

## 3.Test H\_y computation

|              | асс   | ema acc | loss  | Н_у   | H_yw  | ce_loss |
|--------------|-------|---------|-------|-------|-------|---------|
| default      | 0.785 | 0.819   | 0.129 | 0.385 | 0.134 | 0.0006  |
| use weak_aug | 0.794 | 0.822   | 0.147 | 0.163 | 0.138 | 0.0012  |

Try to use only weak augment to see the benefit from strong augment.

### 4.Test mix\_up

Mixup alpha=beta=0.75 -> run for ~20 epochs, hurts performance

### 5.Test bn momentum

Increase from 0.001 to 0.1 to see the difference. (Not improve, but not hurt too much)

|                   | асс   | ema acc | loss  | H_y   | H_yw  | ce_loss |
|-------------------|-------|---------|-------|-------|-------|---------|
| default(bn=0.001) | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |
| bn=0.01           | 0.803 | 0.821   | 0.131 | 0.452 | 0.138 | 0.0011  |
| bn=0.1            | 0.812 | 0.813   | 0.141 | 0.433 | 0.146 | 0.0001  |

Increasing BN slightly hurts, but did not observ the "very large effect on accuracy" mentioned in the paper

### 6.Test tricks

Ablation study of each trick

### 6.1 Gradient stopping

|              | асс   | ema acc | loss  | Н_у   | H_yw  | ce_loss |
|--------------|-------|---------|-------|-------|-------|---------|
| default      | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |
| No grad stop | 0.277 | 0.332   | 0.007 | 0.636 | 0.354 | 0.0028  |

When using backprop on weak augment, progress has stagnated since epoch 2. But the gap is too larg?

## 6.2 Jensen's inequality

|           | асс   | ema acc | loss  | H_y   | H_yw  | ce_loss |
|-----------|-------|---------|-------|-------|-------|---------|
| default   | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |
| No jensen | 0.10  | 0.10    | NaN   |       |       |         |

At epoch 7, everything is still fine and ema acc ~0.45. It corrupted later when H\_yw becoomes zero.

#### 6.3 Label threshold

|               | асс   | ema<br>acc | loss  | H_y   | H_yw  | ce_loss | mask_ratio |
|---------------|-------|------------|-------|-------|-------|---------|------------|
| default(0.95) | 0.801 | 0.829      | 0.132 | 0.455 | 0.139 | 0.0012  | 0.894      |
| thresh = 0.99 | 0.813 | 0.832      | 0.108 | 0.473 | 0.119 | 0.0013  | 0.864      |
| thresh = 0.9  | 0.809 | 0.823      | 0.142 | 0.449 | 0.147 | 0.0013  | 0.946      |
| thresh = 0    | 0.775 | 0.815      | 0.203 | 0.360 | 0.202 | 0.0018  | 1.0        |

High threshold helps, but the difference is small.

### 6.4 EMA decay

|                | асс   | ema acc | loss  | Н_у   | H_yw  | ce_loss |
|----------------|-------|---------|-------|-------|-------|---------|
| default(0.999) | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |

| decay = 0.99 | 0.797 | 0.819 | 0.130 | 0.454 | 0.137 | 0.0013 |
|--------------|-------|-------|-------|-------|-------|--------|
| decay = 0.9  | 0.819 | 0.815 | 0.131 | 0.460 | 0.139 | 0.0010 |

Slow update makes it more stable.

## 7.Test hyper-params

Ablation study of each hyper-param

## 7.1 Alpha

|               | асс   | ema acc | loss   | H_y   | H_yw  | ce_loss |
|---------------|-------|---------|--------|-------|-------|---------|
| default(0.05) | 0.801 | 0.829   | 0.132  | 0.455 | 0.139 | 0.0012  |
| alpha=0.1     | 0.810 | 0.835   | 0.095  | 0.546 | 0.138 | 0.0012  |
| alpha=0.2     | 0.715 | 0.740   | -0.266 | 1.608 | 0.083 | 0.0019  |
| alpha=0.5     | 0.142 | 0.155   | -1.261 | 2.280 | 0.017 | 0.0019  |

### 7.2 Tau

|              | acc   | ema acc | loss  | Н_у   | H_yw  | ce_loss |
|--------------|-------|---------|-------|-------|-------|---------|
| default(1/3) | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |
| tau = 0.1    | 0.697 | 0.749   | 0.138 | 0.398 | 0.153 | 0.0033  |
| tau=0.5      | 0.806 | 0.836   | 0.137 | 0.486 | 0.127 | 0.0011  |

## 7.3 n\_order

|             | асс   | ema acc | loss  | H_y   | H_yw  | ce_loss |
|-------------|-------|---------|-------|-------|-------|---------|
| default(2)  | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |
| n_order = 1 | 0.813 | 0.826   | 0.093 | 0.462 | 0.105 | 0.0004  |
| n_order = 4 | 0.816 | 0.820   | 0.102 | 0.292 | 0.105 | 0.0004  |

## 7.4 weight\_decay

|               | асс   | ema acc | loss  | Н_у   | H_yw  | ce_loss |
|---------------|-------|---------|-------|-------|-------|---------|
| default(1e-4) | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |
| wd = 5e-5     | 0.806 | 0.818   | 0.089 | 0.442 | 0.101 | 0.0001  |
| wd = 5e-4     | 0.816 | 0.820   | 0.102 | 0.292 | 0.105 | 0.0004  |

# 8 Augmentation

# 8.1 num\_ops

|            | асс   | ema acc | loss  | Н_у   | H_yw  | ce_loss | mask_ratio |
|------------|-------|---------|-------|-------|-------|---------|------------|
| default(2) | 0.801 | 0.829   | 0.132 | 0.455 | 0.139 | 0.0012  |            |
| num_ops=4  | 0.852 | 0.862   | 0.189 | 0.455 | 0.189 | 0.0011  | 0.924      |
| num_ops=6  | 0.872 | 0.896   | 0.242 | 0.484 | 0.238 | 0.0009  | 0.909      |
| num_ops=8  | 0.846 | 0.884   | 0.027 | 1.652 | 0.105 | 0.0019  | 0.303      |



n=2,m=10: left=strong, right=weak



n=4,m=10: left=strong, right=weak



n=6,m=10: left=strong, right=weak Observation: Images tolerate different levels of augmentation before distrotion

## 8.2 magnitude

|              | асс   | ema<br>acc | loss  | Н_у   | H_yw  | ce_loss | mask_ratio |
|--------------|-------|------------|-------|-------|-------|---------|------------|
| default(10)  | 0.801 | 0.829      | 0.132 | 0.455 | 0.139 | 0.0012  |            |
| magnitude=5  | 0.687 | 0.745      | 0.110 | 0.538 | 0.123 | 0.0022  | 0.911      |
| magnitude=20 | 0.884 | 0.896      | 0.227 | 0.457 | 0.224 | 0.0009  | 0.927      |



n=2,m=10: left=strong, right=weak



n=2,m=20: left=strong, right=weak



n=2,m=30: left=strong, right=weak

Observation: Similar as num\_ops, magnitude should not exceed a certain threshold

### 8.3 n\_ops & magnitude

n\_ops sampled uniformly from [n1,n2], magnitude samled from [m1, m2] default = ([2,2], [10,10])

|                | асс   | ema<br>acc | loss  | Н_у   | H_yw  | ce_loss | mask_ratio |
|----------------|-------|------------|-------|-------|-------|---------|------------|
| default        | 0.801 | 0.829      | 0.132 | 0.455 | 0.139 | 0.0012  |            |
| n=4, m=15      | 0.879 | 0.896      | 0.308 | 0.490 | 0.297 | 0.0013  | 0.907      |
| [2,4], [10,20] | 0.868 | 0.880      | 0.276 | 0.487 | 0.269 | 0.0016  | 0.912      |
| [2,5], [15,25] | 0.861 | 0.886      | 0.443 | 0.521 | 0.419 | 0.0015  | 0.899      |

### 9. Final Run

#### Epoch=200

Group v1(default): alpha=0.05, gamma=0.5, tau=1/3, ema\_decay=0.999,

Group v2: alpha=0.05, gamma=0.5, tau=1/3, ema\_decay=0.999, nops=[2,5], magni=[15,25] Group v3: alpha=0.05, gamma=0.5, tau=1/3, ema\_decay=0.999, nops=[3,5], magni=[15,25] Group v4: alpha=0.05, gamma=0.5, tau=2/3, ema\_decay=0.999, nops=[3,5], magni=[15,25]

#### Result

| асс | ema<br>acc | loss | H_y | H_yw | ce_loss | mask_ratio |
|-----|------------|------|-----|------|---------|------------|
|     |            |      |     |      |         |            |

| v1 | 0.866 | 0.883 | 0.054  | 0.379 | 0.067 | 0.0003 | 0.985 |
|----|-------|-------|--------|-------|-------|--------|-------|
| v2 | 0.928 | 0.940 | 0.287  | 0.437 | 0.277 | 0.0004 | 0.958 |
| v3 | 0.846 | 0.913 | 0.016  | 1.745 | 0.101 | 0.0008 | 0.297 |
| v4 | 0.846 | 0.899 | -0.068 | 1.973 | 0.061 | 0.0008 | 0.227 |

#### Observations:

- V2 gives the best ema val acc of 0.939 (0.056 improvement compared to v1), telling us stronger augmentation helps
- V3 reached a max ema val acc of 0.915 at epoch=113, but then began to drop rapidly.
- V4 copies V3 but increases Tau to ⅔, i.e., giving strong augment less weight, but particles still corrupted halfway

### Analysis

V1 - V2 - V4

H\_y grows up





- Particles are more diverse
- Mask ratio drops



```
p_w = prob_weak_augment  # shape: (bz,n_label,K)

p_s = prob_strong_augment  # shape: (bz,n_label,K)

pw_max = p_w.max(dim=1)[0]

ps_max = p_s.max(dim=1)[0]

pw_max_mean = pw_max.mean() # fig 2
```

```
pw_max_std = pw_max.mean() # fig 3
ps_max_mean = ps_max.mean() # fig 4
ps_max_std = ps_max.mean() # fig 5
```

- Particles are less confident (in terms of weak augment)
- Particles corrupt



 Corrupted particles brought down ema acc (compared to v2, but its log is missing, will fill it later), but it remains high as long as some are still valid



```
# outs is softmax probs, shape: (n_val, n_label, K)
label_preds = outs[range(len(outs)), labels, :]
label_ema_preds = ema_outs[range(len(ema_outs)), labels]
mean_diff = np.abs((label_preds[:, i]) - label_ema_preds).mean()
```

o Corrupted particles start to make random predictions

## Explan & Todo:

#### Explain:

- Stronger augmentation captures more variation ("nuance") to improve performance
- Too strong augment produces unrealistic images, noise finally disrupts the training process

#### Todo:

• Use particle corruption as indication of augmentation being too strong?