激光物理-面向考试复习

- 我们学了什么?
 - 概念题
 - 相互作用的三种方式
 - 自发辐射
 - 受激辐射
 - 受激吸收
 - 谱线加宽分类
 - 均匀加宽
 - 自然加宽
 - 寿命加宽
 - 压力加宽-碰撞加宽
 - 热声子加宽
 - 非均匀加宽
 - 多普勒加宽
 - 晶格随机缺陷加宽
 - 综合加宽
 - 强均匀加宽
 - 强非均匀加宽
 - 横模选模方式
 - 光阑法
 - 聚焦光阑法
 - 腔内望远镜法
 - 纵模选模方式
 - 短腔法
 - 法布里-珀罗标准具法
 - 三反射镜法
 - 稳频技术
 - 被动式稳频
 - 采用膨胀系数小的材料制作
 - 恒温控制
 - 限振
 - 稳定电流
 - 主动式稳频

- lamb凹陷稳频法
- 饱和吸收法稳频
- 如何准直激光?
 - 单透镜法x
 - 望远镜法√
- 调Q技术
 - 电光调Q
 - 声光调Q
 - 染料盒调Q
- 传统激光器的组成部分
 - 工作物质
 - 物质有适当的能级结构,能够实现量子数反转
 - 激励能源
 - (泵浦)把大量粒子激励到激光上能级
 - 光学谐振腔
 - 选模,实现光学正反馈
- 计算题
 - 几种加宽
 - 均匀
 - 自然加宽:

$ullet$
 $\Delta
u_N = rac{1}{2\pi au}$

- 碰撞加宽
 - ullet $\Delta
 u_L = lpha p$
 - 其中α是碰撞系数
- 非均匀:
 - 多普勒效应

$$\nu = \sqrt{\frac{1 + v/c}{1 - v/c}} \nu_0$$

- 多普勒线宽
 - $7.16 imes10^{-7}\sqrt{T/\mu_{mol}}\cdot
 u_0$
- 稳定腔
 - $0 < g_1 g_2 \le 1$

•
$$g_1 = 1 - \frac{L}{R_1}$$

• 横模纵模的选择

• 構模

$$\omega_{0s}=\sqrt{rac{L\lambda}{\pi}}$$

纵模

•
$$\Delta
u_q = rac{qc}{2\mu L}$$

- 高斯光束相关公式
 - 高斯光束焦参数

$$^ullet f = rac{\sqrt{L(R_1-L)(R_2-L)(R_1+R_2-L)}}{R_1+R_2-2L}$$

腰粗

$$egin{array}{c} ullet \ \omega_{0s} = \sqrt{rac{L\lambda}{2\pi}} \end{array}$$

• 腰斑位置

$$egin{aligned} ullet z_1 &= rac{L(R_2-L)}{(L-R_1)+(L-R_2)} \ ullet z_2 &= rac{-L(R_1-L)}{(L-R_1)+(L-R_2)} \end{aligned}$$

• 远场发散角

•
$$2\theta = \frac{2\lambda}{\pi\omega_0}$$

• 速率方程

$$ullet rac{dn_2}{dt} = W_{12}n_1 - W_{21}n_2 - A_{21}n_2 - \omega_{21}n_2$$

- 简答题
 - 你如何理解小功率状态?
 - 什么是增益饱和?
 - 均匀介质和非均匀介质
- 最后四道例题
 - 1. 腔长为0.5m的氩离子激光器,发射中心频率 $u_0 = 5.85 \times 10^{14} \text{Hz}$, 荧光线宽 $\Delta \nu = 6 \times 10^8 \text{Hz}$, 问它可能存在几个纵模?相应的q值为多少(设 μ =1)

$$ullet$$
 $\Delta
u_q = (N-1)rac{c}{2\mu L} = 3 imes 10^8$ Hz

• N = 3

•
$$q = 2\nu_0 nL/c = 1.95 \times 10^6$$

• 2. He-Ne激光器辐射632.8nm光波,其方形镜对称共焦腔,腔长L=0.2m。腔内同时存在 TEM_{00} , TEM_{11} , TEM_{22} 横模。若在腔内接近镜面处加小孔光阑选取横模,试问:如只使 TEM_{00} 模振荡,光阑孔径应多大?

$ullet$
 $\omega_{0s}=\sqrt{rac{L\lambda}{\pi}}=0.0002m=0.2mm$

•
$$(\omega_{1s}=\sqrt{2m+1}\omega_{0,s})$$

- 3.激光器的谐振腔由一面曲率半径为1m的凸面镜和曲率半径为2m的凹面镜组成,工作物质长0.5m,其折射率为1.52,求腔长L在什么范围内是稳定腔
 - 这题主要用了一个等效长度的概念, L'=0.5/1.52+x. 之后带入 $0< g_1g_2 \leq 1$ 即可. 注意凹透镜的R是负的就可以了...
 - $L \in (1.17, 2.17)m$

•

- 4. He-Ne激光器的中心频率 $u_0=4.74\times 10^{14}$ Hz, 荧光线宽 $\Delta \nu=1.5\times 10^9$ Hz.如果腔长L=1m,问可能输出的纵模数为若干?为获得单纵模输出,腔长最长为多少?
 - n = 11
 - L'<0.1m