FUDAN SOE SUMMER SCHOOL INTRODUCTION TO AI

Probabilistic Reasoning and Decision Making

Day 10 – EM for Noisy-OR, Hidden Markov Model (HMM)

EM for Learning Noisy-OR model

All variables are binary

Complete the formula below:

Problem: From complete data $\{(x_1^{(t)}, x_n^{(t)}, \dots, x_n^{(t)}, y^{(t)})\}_{t=1}^T$, estimate $p_i \in [0,1]$.

Problem: From (complete) data $\{(x_1^{(t)}, x_n^{(t)}, \dots, x_n^{(t)}, y^{(t)})\}_{t=1}^T$, estimate $p_i \in [0,1]$.

$$P(Y = 1 | x_1, x_2, ..., x_n) = 1 - \prod_{i=1}^{n} (1 - p_i)^{x_i}$$

Problem: From (complete) data $\{(x_1^{(t)}, x_n^{(t)}, \dots, x_n^{(t)}, y^{(t)})\}_{t=1}^T$, estimate $p_i \in [0,1]$.

$$P(Z_i = 0|X_i = 0) = 1$$

 $P(Z_i = 1|X_i = 1) = p_i$

What is $P(Y = 1 | x_1, x_2, ..., x_n)$ in this alternate model?

First show that $P(Y = 1|\vec{x}) = \sum_{\vec{z}} P(Y = 1|\vec{z}) P(\vec{z}|\vec{x})$

Problem: From (complete) data $\{(x_1^{(t)}, x_n^{(t)}, \dots, x_n^{(t)}, y^{(t)})\}_{t=1}^T$, estimate $p_i \in [0,1]$.

$$P(Z_i = 0|X_i = 0) = 1$$

 $P(Z_i = 1|X_i = 1) = p_i$

What is $P(Y = 1 | x_1, x_2, ..., x_n)$ in this alternate model?

$$P(Y = 1|\vec{x}) = \sum_{\vec{z}} P(Y = 1|\vec{z}) P(\vec{z}|\vec{x})$$

When is the term in the red box 0?

- A. When at least one z_i is 0
- B. When all z_i s are 0
- C. You can't tell from the information given

Problem: From (complete) data $\{(x_1^{(t)}, x_n^{(t)}, \dots, x_n^{(t)}, y^{(t)})\}_{t=1}^T$, estimate $p_i \in [0,1]$.

$$P(Z_i = 0|X_i = 0) = 1$$

 $P(Z_i = 1|X_i = 1) = p_i$

$$P(Y = 1|\vec{x}) = \sum_{\vec{z}} P(Y = 1|\vec{z}) P(\vec{z}|\vec{x})$$

Problem: From (complete) data $\{(x_1^{(t)}, x_n^{(t)}, \dots, x_n^{(t)}, y^{(t)})\}_{t=1}^T$, estimate $p_i \in [0,1]$.

$$P(Z_i = 0|X_i = 0) = 1$$

 $P(Z_i = 1|X_i = 1) = p_i$

What is $P(Y = 1 | x_1, x_2, ..., x_n)$ in this alternate model?

$$P(Y = 1|\vec{x}) = \sum_{\vec{z}} P(Y = 1|\vec{z}) P(\vec{z}|\vec{x}) = \sum_{\vec{z} \neq 0} P(\vec{z}|\vec{x}) =$$

A.
$$P(\vec{z} = 0|\vec{x})$$

B.
$$1 - P(\vec{z} = 0 | \vec{x})$$

C.
$$P(\vec{z}|\vec{x}=0)$$

D.
$$1 - P(\vec{z}|\vec{x} = 0)$$

E. None of these

Problem: From (complete) data $\{(x_1^{(t)}, x_n^{(t)}, \dots, x_n^{(t)}, y^{(t)})\}_{t=1}^T$, estimate $p_i \in [0,1]$.

$$P(Z_i = 0|X_i = 0) = 1$$

 $P(Z_i = 1|X_i = 1) = p_i$

What is $P(Y = 1 | x_1, x_2, ..., x_n)$ in this alternate model?

$$P(Y = 1|\vec{x}) = \sum_{\vec{z}} P(Y = 1|\vec{z}) P(\vec{z}|\vec{x}) = \sum_{\vec{z} \neq 0} P(\vec{z}|\vec{x}) = 1 - P(\vec{z} = 0|\vec{x})$$

Learning
$$P(Z_i = 1 | X_i = 1) = p_i$$
 using EM

■ If we had fully observed data:

Learning $P(Z_i = 1 | X_i = 1) = p_i$ using EM

$$\widehat{count}(Z_i = 1, X_i = 1) = \sum_{t=1}^{T} P(Z_i = 1, X_i = 1 | \vec{x}^{(t)}, y^{(t)})$$

Learning $P(Z_i = 1 | X_i = 1) = p_i$ using EM: Calculate $P(Z_i = 1 | \vec{x}^{(t)}, y^{(t)})$ with current params

$$P(Z_i = 0|X_i = 0) = 1$$

 $P(Z_i = 1|X_i = 1) = p_i$

$$P(Z_i = 0 | X_i = 0) = 1$$

$$P(Z_i = 1 | X_i = 1) = \sum_{t=1}^{T} P(Z_i = 1, X_i = 1 | \vec{x}^{(t)}, y^{(t)}) = \sum_{t=1}^{T} x_i^{(t)} P(Z_i = 1 | \vec{x}^{(t)}, y^{(t)})$$

$$P(Z_i = 1 | X_i = 1) = p_i$$

$$P(Z_i = 1 | \vec{x}^{(t)}, y^{(t)}) = \frac{P(Y = y^{(t)} | Z_i = 1) P(Z_i = 1 | \vec{x}^{(t)})}{P(Y = y^{(t)} | \vec{x}^{(t)})}$$

Which of the following is NOT a true statement?

A.
$$P(Y = y^{(t)}|Z_i = 1) = 0$$
 when $y^{(t)} = 0$

B.
$$P(Y = y^{(t)}|Z_i = 1) = 1$$
 when $y^{(t)} = 1$

C.
$$P(Z_i = 1 | \vec{x}^{(t)}) = 1$$
 when $x_i^{(t)} = 1$

D.
$$P(Z_i = 1 | \vec{x}^{(t)}) = 0$$
 when $x_i^{(t)} = 0$

E. More than one of the above is NOT true

Learning $P(Z_i = 1 | X_i = 1) = p_i$ using EM: Calculate $P(Z_i = 1 | \vec{x}^{(t)}, y^{(t)})$ with current params

$$P(Z_i = 0|X_i = 0) = 1$$

 $P(Z_i = 1|X_i = 1) = p_i$

$$P(Z_i = 0 | X_i = 0) = 1$$

$$P(Z_i = 1 | X_i = 1) = \sum_{t=1}^{T} P(Z_i = 1, X_i = 1 | \vec{x}^{(t)}, y^{(t)}) = \sum_{t=1}^{T} x_i^{(t)} P(Z_i = 1 | \vec{x}^{(t)}, y^{(t)})$$

$$P(Z_i = 1 | \vec{x}^{(t)}, y^{(t)}) = \frac{P(Y = y^{(t)} | Z_i = 1) P(Z_i = 1 | \vec{x}^{(t)})}{P(Y = y^{(t)} | \vec{x}^{(t)})}$$

Learning $P(Z_i = 1 | X_i = 1) = p_i$ using EM: Update rule

$$P(Z_i = 0|X_i = 0) = 1$$

 $P(Z_i = 1|X_i = 1) = p_i$

$$\widehat{count}(Z_i = 1, X_i = 1) = \sum_{t=1}^{T} \left[\frac{p_i y^{(t)} x_i^{(t)}}{1 - \prod_{i=1}^{n} (1 - p_i)^{x_i^{(t)}}} \right]$$

$$p_i \leftarrow \frac{\widehat{count}(Z_i = 1, X_i = 1)}{\widehat{count}(X_i = 1)} = \frac{p_i}{T_i} \sum_{t=1}^{T} \left[\frac{y^{(t)} x_i^{(t)}}{1 - \prod_{i=1}^{n} (1 - p_i)^{x_i^{(t)}}} \right]$$

Markov chains (Beyes Net) (1st order)

State
$$(s_1)$$
 (s_2) (s_3) (s_3)

Two simplifying assumptions:

1. Finite Context

Finite Context
$$P(St|S_1,...S_{t-1}) = P(St|S_{t-1}) \text{ makes CPTs very small}$$

Position Invariance

$$P(S_{t+1}=j|S_{t}=i) = P(S_{t+k+1}=j|S_{t+k}=i)$$

$$= CPTs$$

Bayes Net

Hidden Markov Models (HMMs): An extension of Markov chains

True or False: An HMM is a polytree.

A. True

B. False

finite context
$$P(S_1 | S_1 - ... S_{t-1}) = P(S_t | S_{t-1})$$

 $P(Q_1 | S_1 - ... S_t) = P(Q_1 | S_t)$

position invariant $P(S_{t+1}|S_t) = P(S_{t+k+1}|S_{t+k})$ $P(O_t|S_t) = P(O_t|S_{t+k})$ $P(O_t|S_t) = P(O_t|S_{t+k})$

HMM examples

■ HMMs for language: If the hidden states are words, what might the

observations be? States

Al > is > four > but > maths

Leavy

Sound waves ~ M ~ ~ ~ ~ ~

HMMs for Robotics: If the hidden states are the robot's orientation and location, what might the observations be?

HMMs for biology: if the hidden states are status of genes in DNA, what might the observations be?

Stale: Jene or not

obsend: GATC Sequence

Conditional Independence in an HMM

Is the statement below true (A) or false (B)? $P(S_t|S_{t-1}) = P(S_t|S_{t-1},O_t)$

Conditional Independence in an HMM

Is the statement below true (A) or false (B)?

$$P(S_2, S_3, ..., S_T | S_1) = \prod_{t=2}^T P(S_t | S_{t-1})$$

Parameters of the HMM

Which of the following is NOT a parameter of this model?

- A. $P(S_t|S_{t+1})$
- B. $P(S_1)$
- C. $P(O_t|O_{t-1})$
- D. $P(O_t|S_t)$
- E. More than one of these is NOT a parameter of the model

HMM Key Questions

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

- 1. How to compute $P(o_1, o_2, o_3, \dots o_T)$
- 2. How to compute the most likely state sequence given observations

- 3. How to update beliefs for real-time monitoring
- How to learn HMMs from data

How to compute $P(o_1, o_2, o_3, \dots o_T)$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$P(o_1, o_2, o_3, \dots o_T) = \sum_{\vec{s}} P(s_1 \dots s_T, o_1 \dots o_T)$$

Use the structure of the HMM to factor this joint probability

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

Let
$$\alpha_{it} \leftarrow P(o_1, \dots o_{t_i}, s_t = i)$$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

Let
$$\alpha_{it} \leftarrow P(o_1, ... o_{t_i}, s_t = i)$$

 $P(o_1, o_2, o_3, ... o_T) =$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

Let
$$\alpha_{it} \leftarrow P(o_1, \dots o_t, s_t = i)$$

$$P(o_1, o_2, o_3, \dots o_T) = \sum_{i=1}^n P(o_1, \dots o_T, s_T = i) = \sum_{i=1}^n \alpha_{iT}$$
 $\alpha_{jt+1} =$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

Let
$$\alpha_{it} \leftarrow P(o_1, \dots o_t, s_t = i)$$

$$P(o_1, o_2, o_3, \dots o_T) = \sum_{i=1}^n P(o_1, \dots o_T, s_T = i) = \sum_{i=1}^n \alpha_{iT}$$

$$\alpha_{jt+1} = \sum_{i=1}^n \alpha_{it} a_{ij} b_{jo_{t+1}}$$

$$\alpha_{i1} =$$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

Let
$$\alpha_{it} \leftarrow P(o_1, \dots o_t, s_t = i)$$

$$P(o_1, o_2, o_3, \dots o_T) = \sum_{i=1}^n P(o_1, \dots o_T, s_T = i) = \sum_{i=1}^n \alpha_{iT}$$

$$\alpha_{jt+1} = \sum_{i=1}^n \alpha_{it} a_{ij} b_{jo_{t+1}}$$

$$\alpha_{i1} = \pi_i b_{io_1}$$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

Is the following equality true? (and why or why not?) A. Yes B. No

$$\arg\max_{\vec{s}} \left(P(s_1 \dots s_T | o_1 \dots o_T) \right) = \arg\max_{\vec{s}} \left(P(s_1 \dots s_T, o_1 \dots o_T) \right)$$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

What does ℓ_{it}^* mean, in English?

- A. The log probability of the most likely set of states $s_1 \dots s_{t-1}$, s_t given observations $o_1 \dots o_t$
- B. The state that is most likely at time *t*
- C. The log probability of the most likely set of states $s_1 \dots s_{t-1}$, s_t that ends in state $s_t = i$ and explains observations $o_1 \dots o_t$
- D. The log probability of only state $s_t = i$ that explains observations $o_1 \dots o_t$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

Viterbi algorithm:

- 1. Fill in an n x T table with the values of ℓ_{it}^* from left to right. Fill in a second table to keep track of best i's at each time t at the same time.
- 2. Backtrack through the second table from right to left to determine which state *i* at time *t* led to the best outcome at time *t*+1

	1	2	 t-1	t	t+1	 Т
1						
•••						
n						

$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define $\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$

$$\ell_{j,t+1}^{*} =$$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

 $b_{io_k} = P(O_t = o_k | S_t = i)$
 $\pi_i = P(S_1 = i)$

$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define $\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$

$$\ell_{j,t+1}^* = \max_{i} \{\ell_{it}^* + \log a_{ij}\} + \log b_{jo_{t+1}}$$

$${\ell_{i1}}^*$$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

 $b_{ik} = P(O_t = k | S_t = i)$
 $\pi_i = P(S_1 = i)$

$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

$$\begin{aligned} {\ell_{i1}}^* &= \log \left[\pi_i b_{io_1} \right] \\ {\ell_{jt+1}}^* &= \max_i \{ {\ell_{it}}^* + \log a_{ij} \} + \log b_{jo_{t+1}} \end{aligned}$$

	1	2		t-1	t	t+1		Т		
1										
n										

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

Viterbi algorithm:

- 1. Fill in an n x T table with the values of ℓ_{it}^* from left to right. Fill in a second table to keep track of best i's at each time t at the same time.
- 2. Backtrack through the second table from right to left to determine which state *i* at time *t* led to the best outcome at time *t*+1

	1	2	 t-1	t	t+1	 Т
1						
n						

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

Viterbi algorithm:

- 1. Fill in an n x T table with the values of ℓ_{it}^* from left to right. Fill in a second table to keep track of best i's at each time t at the same time.
- 2. Backtrack through the second table from right to left to determine which state *i* at time *t* led to the best outcome at time *t*+1

	1	2	 t-1	t	t+1	 Т
1						
n						

Viterbi alg. to find
$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

$$\ell_{i1}^{*} = \log[\pi_i b_{io_1}]$$

$$\ell_{jt+1}^{*} = \max_{i} \{\ell_{it}^{*} + \log a_{ij}\} + \log b_{jo_{t+1}}$$

$$\underset{i}{\operatorname{argmax}} \{\ell_{it}^* + \log a_{ij}\}$$

Consider the value in the shaded box. How does its value depend on the values from the previous column (at time t)?

- A. It is a weighted sum of all of the values from the previous column
- B. It uses only one of the values from the previous column
- C. It does not use any of the values from the previous column

1				/\					
		4		<u> </u>	_	111		—	
L			 •••	ſ-T	t	t+1	•••	ı	
	1								
						${\ell_{jt+1}}^*$			
1	n								

	1	2	 t-1	t	t+1	 Т
1						
					${\ell_{jt+1}}^*$	
n						

Viterbi alg. to find $(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$

Define $\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$

$$\ell_{i1}^{*} = \log[\pi_i b_{io_1}]$$

$$\ell_{jt+1}^{*} = \max_{i} \{\ell_{it}^{*} + \log a_{ij}\} + \log b_{jo_{t+1}}$$

 $\Phi_{jt+1} \leftarrow \underset{i}{\operatorname{argmax}} \{\ell_{it}^* + \log a_{ij}\}$

	_							
	1	2	:	t-1	t	t+1	•••	Т
1								
						${\ell_{jt+1}}^*$		
n								

	1	2	•••	t-1	t	t+1	 Т
1							
						Φ_{jt+1}	
n							

Viterbi alg. to find
$$(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

$$\ell_{i1}^{*} = \log[\pi_i b_{io_1}]$$

$$\ell_{jt+1}^{*} = \max_{i} \{\ell_{it}^{*} + \log a_{ij}\} + \log b_{jo_{t+1}}$$

Define $\Phi_{jt+1} = \arg$	$\max_{i} \{\ell_{it}^* + \log a_{ij}\}$
-----------------------------	--

TWO tables:

- 1. Table of ℓ_{i1}^* , filled in from left to right
- 2. Table of $\Phi_{i,t}$, filled in from left to right at the same time (column 1 will be empty)

	1	2	:	t-1	t	t+1	:	Т	
1									
•••						${\ell_{jt+1}}^*$			
					1				
n									

	1	2	 t-1	t	t+1	 T
1						
•••					$\Phi_{j,t+1}$	
n					-	

...

Viterbi alg. to find $(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

	1	2	 t-1	t	t+1	 Т
1						
					${\ell_{jt+1}}^*$	
n						

Define
$$\Phi_{j,t+1} = \underset{i}{\operatorname{argmax}} \{\ell_{it}^* + \log a_{ij}\}$$

	1	2	 t-1	t	t+1	 Т
1						
					$\Phi_{j,t+1}$	
n						

Once both tables are filled in with values, how can you find $(s_1^*, s_2^*, ..., s_T^*)$?

- A. Tracing a path from left to right (forward: starting at column 1) in the ℓ_{it}^* table
- B. Tracing a path from left to right (forward: starting at column 1) in the $\Phi_{j,t}$ table
- C. Tracing a path from right to left (backward: starting at column T) in the $\,{\ell_{it}}^*$ table
- D. Tracing a path from right to left (backward: starting at column T) in the $\Phi_{j,t}$ table

Viterbi alg. to find $(s_1^*, s_2^*, ..., s_T^*) = \arg \max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

	1	2	 t-1	t	t+1	 Т
1						
					${\ell_{jt+1}}^*$	
n						

Define $\Phi_{j,t+1} = \underset{i}{\operatorname{argmax}} \{\ell_{it}^* + \log a_{ij}\}$

	1	2	 t-1	t	t+1	:	Т
1							
					$\Phi_{j,t+1}$		
n							

To recover $(s_1^*, s_2^*, ..., s_T^*)$:

Viterbi alg. to find $(s_1^*, s_2^*, ..., s_T^*) = \arg\max_{\vec{s}} (P(s_1 ... s_T, o_1 ... o_T))$

Define
$$\ell_{it}^* = \max_{s_1...s_{t-1}} \log P(s_1 ... s_{t-1}, s_t = i, o_1 ... o_t)$$

	1	2	 t-1	t	t+1	 Т
1						
					${\ell_{jt+1}}^*$	
n						

Define $\Phi_{j,t+1} =$	$argmax\{\ell_{it}^*\}$	$+\log a_{ij}$
-------------------------	-------------------------	----------------

	1	2	 t-1	t	t+1	 Т
1						
					$\Phi_{j,t+1}$	
n						

Complete Viterbi algorithm:

- 1. Create two n x T tables
- 2. Fill in both tables from leftmost column (t=1) to rightmost column (t=T) [using recursive formula for ℓ_{jt+1}^* and $\Phi_{j,t+1}$
- 3. Recover path:
 - 1. Let $s_T^* = \operatorname{argmax}_{i} \ell_{it}^*$
 - 2. For t=T-1 to 1, $s_t^* = \Phi_{s_{t+1}^*,t+1}$

HMM Key Questions

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$S_t \in \{1, 2, ..., n\}$$

 $O_t \in \{1, 2, ..., m\}$

- 1. How to compute $P(o_1, o_2, o_3, \dots o_T) \leftarrow \text{LAST WEEK (running time?)}$
- 2. How to compute the most likely state sequence given observations \leftarrow LAST TIME (running time?)
- 3. How to update beliefs for real-time monitoring
- 4. How to learn HMMs from data

Calculating $P(S_t = j | o_1, ..., o_t)$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

 $b_{io_k} = P(O_t = o_k | S_t = i)$
 $\pi_i = P(S_1 = i)$

$$S_t \in \{1, 2, ..., n\}$$

 $O_t \in \{1, 2, ..., m\}$

True (A) or False (B): $P(S_t = j | o_1, ..., o_t) = P(S_t = j | o_t)$

Calculating $P(S_t = j | o_1, ..., o_t)$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$S_t \in \{1, 2, ..., n\}$$

 $O_t \in \{1, 2, ..., m\}$

$$q_{j,t} = P(S_t = j | o_1, ..., o_{t-1}, o_t)$$

Calculating $P(S_t = j | o_1, ..., o_t)$

$$a_{ij} = P(S_t = j | S_{t-1} = i)$$

$$b_{io_k} = P(O_t = o_k | S_t = i)$$

$$\pi_i = P(S_1 = i)$$

$$S_t \in \{1, 2, ..., n\}$$

 $O_t \in \{1, 2, ..., m\}$

$$q_{j,t} = P(S_t = j | o_1, ..., o_{t-1}, o_t)$$