Université de Savoie Licence 2^eannée

MATH326: Mathématique pour les sciences 3

Fiche nº 3 — Intégrales Généralisées

Exercice 1. Déterminer la nature des intégrales suivantes et, lorsqu'elles convergent, les calculer :

i)
$$I_{1} = \int_{0}^{+\infty} e^{-x} dx$$
; iv) $I_{4} = \int_{0}^{1} \frac{e^{x}}{x} dx$; vii) $I_{7} = \int_{0}^{+\infty} \frac{dx}{\sqrt{x}(x+1)}$; ii) $I_{2} = \int_{0}^{\pi/2} \tan(x) dx$; v) $I_{5} = \int_{0}^{1} \ln x dx$; viii) $I_{8} = \int_{0}^{+\infty} \frac{\arctan x}{1+x^{2}} dx$. iii) $I_{6} = \int_{0}^{+\infty} x e^{-x} dx$;

Exercice 2. Déterminer la nature des intégrales suivantes

i)
$$I_1 = \int_0^{+\infty} \frac{\sqrt{t}\cos(t^2)}{e^t - 1} dt$$
; iv) $I_4 = \int_{-\infty}^{+\infty} \frac{x}{1 + x^2} dx$; ii) $I_2 = \int_0^1 \frac{dx}{\ln x \sin x} dx$; v) $I_5 = \int_0^1 \frac{1}{\ln(1 + x + \sqrt{x})} dx$. iii) $I_3 = \int_0^{+\infty} e^{-x^2} \cos x \, dx$;

Exercice 3. Soit $\alpha > 0$. Étudier la convergence et l'absolue convergence de $\int_{1}^{+\infty} \frac{e^{ix}}{x^{\alpha}} dx$.

Exercice 4. Soit p > 0.

- 1) Montrer que $\int_0^{+\infty} e^{-pt} \sin t \, dt$ est convergente et calculer sa valeur. Indication : $\sin t$ est la partie imaginaire de e^{it} .
- 2) Soit $u:[0,+\infty[\longrightarrow \mathbf{R}$ une fonction continue, T-périodique. Montrer que $\int_0^{+\infty} e^{-pt}u(t) dt$ converge et calculer sa valeur en fonction de $\int_0^T e^{-pt}u(t) dt$.

Exercice 5. Montrer que les intégrales $\int_0^{\pi/2} \ln(\sin x) dx$ et $\int_0^{\pi/2} \ln(\cos x) dx$ sont convergentes et calculer leur valeur.

1 2012/2013