Complex Analysis Qualifying Exam Notes

D. Zack Garza

Wednesday 15th July, 2020

Contents

1 Preface				2			
2	The	Theorems					
3	Stuff						
		3.0.1	Fundamental Theorem of Algebra: Argument Principle	4			
		3.0.2	Fundamental Theorem of Algebra: Rouche's Theorem	5			
		3.0.3	Fundamental Theorem of Algebra: Liouville's Theorem	5			
		3.0.4	Fundamental Theorem of Algebra: Open Mapping Theorem	5			
4	Арр	endix		6			
	4.1	Things	s to know well:	6			
	4.2	Theore	ems	6			
		4.2.1	The Argument Principle	6			
		4.2.2	Rouche	6			
	4.3	Misc F	Prereq	7			
	4.4	Useful	Techniques	8			
	4.5		les	8			
	4.6	Pithy	Statements	8			
	4.7	Precise	e Refinements	9			
			initions orems				
	2.1	Theore	em – Summation by Parts	2			
	2.2	Theore	em – Morera's Theorem	2			
	2.3	Theore	em – Cauchy Integral Formula	2			
	2.4	Theore	em – Cauchy's Inequality	2			
	2.5	Theore	em – Liouville	3			
	2.6	Theore	em – Argument Principle	3			
	2.7		em – Green's	3			
	2.8		em – Rouche	3			

2.9	Theorem – Open Mapping	3
2.10	Theorem – Maximum Modulus	1
2.11	$\label{thm:condition} Theorem-Casorati-Weierstrass \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	1
2.12	Theorem – Cayley Transform	1
2.13	Theorem – Continuation Principle	1
2.14	Theorem – Schwarz Reflection	1
2.15	Theorem – Schwarz Lemma	1
4.1	Theorem – Statement 1	3
4.2	Theorem – Statement 1	3

1 Preface

References

• Simon

2 Theorems

Theorem 2.1(Summation by Parts).

Define the forward difference operator $\Delta f_k = f_{k+1} - f_k$, then

$$\sum_{k=m}^{n} f_k \Delta g_k + \sum_{k=m}^{n-1} g_{k+1} \Delta f_k = f_n g_{n+1} - f_m g_m.$$

Note: compare to
$$\int_a^b f \, dg + \int_a^b g \, df = f(b)g(b) - f(a)g(a)$$
.

Theorem 2.2 (Morera's Theorem).

If f is continuous on a domain Ω and $\int_T f = 0$ for every triangle $T \subset \Omega$, then f is holomorphic.

Theorem 2.3 (Cauchy Integral Formula).

Suppose f is holomorphic on Ω , then

$$f(z) = \frac{1}{2\pi i} \oint_{\partial \Omega}$$

and

$$\frac{\partial^n f}{\partial z^n}(z) - \frac{n!}{2\pi i} \oint_{\partial \Omega} \frac{f\xi}{(\xi - z)^{n+1}} d\xi.$$

Theorem 2.4 (Cauchy's Inequality).

For $z_o \in D_R(z_0) \subset \Omega$, we have

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{\|f\|_{C_R}}{R^{n+1}} R d\theta = \frac{n! \|f\|_{C_R}}{R^n}.$$

Theorem 2.5(Liouville).

If f is entire and bounded, f is constant.

Theorem 2.6 (Argument Principle).

?

Theorem 2.7 (Green's).

If $\Omega \subseteq \mathbb{C}$ is bounded with $\partial\Omega$ piecewise smooth and $f,g \in C^1(\overline{\Omega})$, then

$$\int_{\partial\Omega} f \, dx + g \, dy = \iint_{\Omega} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA.$$

Theorem 2.8(Rouche).

If f, g are analytic on a domain Ω with finitely many zeros in Ω and $\gamma \subset \Omega$ is a closed curve surrounding each point exactly once, where |q| < |f| on γ , then f and f + g have the same number of zeros.

Example 2.1.

- Take $P(z) = z^4 + 6z + 3$.
- On |z| < 2:
 - Set $f(z) = z^4$ and g(z) = 6z + 3, then $|g(z)| \le 6|z| + 3 = 15 < 16 = |f(z)|$.
 - So P has 4 zeros here.
- On |z| < 1:

 - Set f(z) = 6z and $g(z) = z^4 + 3$. Check $|g(z)| \le |z|^4 + 3 = 4 < 6 = |f(z)|$.
 - So P has 1 zero here.

Example 2.2.

- Claim: the equation $\alpha z e^z = 1$ where $|\alpha| > e$ has exactly one solution in \mathbb{D} .
- Set $f(z) = \alpha z$ and $g(z) = e^{-z}$.
- Estimate at |z|=1 we have $|g|=\left|e^{-z}\right|=e^{-\Re(z)}\leq e^1<|\alpha|=|f(z)|$
- f has one zero at $z_0 = 0$, thus so does f + g.

Theorem 2.9 (Open Mapping).

Any holomorphic non-constant map is an open map.

Theorem 2.10 (Maximum Modulus).

If f is holomorphic and nonconstant on an open region Ω , then |f| can not attain a maximum on Ω . If Ω is bounded and f is continuous on $\overline{\Omega}$, then $\max |f|$ occurs on $\partial \Omega$.

Conversely, if f attains a local maximum at $z_0 \in \Omega$, then f is constant on Ω .

Theorem 2.11 (Casorati-Weierstrass).

If f is holomorphic on $\Omega \setminus \{z_0\}$ where z_0 is an essential singularity, then for every $V \subset \Omega \setminus \{z_0\}$, f(V) is dense in \mathbb{C} .

Theorem $2.12(Cayley\ Transform)$.

The fractional linear transformation given by $F(z) = \frac{i-z}{i+z}$ maps $\mathbb{D} \longrightarrow \mathbb{H}$ with inverse $G(w) = i\frac{1-w}{1+w}.$

Theorem 2.13 (Continuation Principle).

If f is holomorphic on a bounded connected domain Ω and there exists a sequence $\{z_i\}$ with a limit point in Ω such that $f(z_i) = 0$, then $f \equiv 0$ on Ω .

Theorem 2.14(Schwarz Reflection).

If f is continuous and holomorphic on \mathbb{H}^+ and real-valued on \mathbb{R} , then the extension defined by $F(z) = \overline{f(\overline{z})}$ for $z \in \mathbb{H}^-$ is a well-defined holomorphic function on \mathbb{C} .

Note: $\mathbb{H}^+, \mathbb{H}^-$ can be replaced with any region symmetric about a line segment $L \subseteq \mathbb{R}$.

Theorem 2.15 (Schwarz Lemma).

If $f: \mathbb{D} \longrightarrow \mathbb{D}$ is holomorphic with f(0) = 0, then

1. $|f(z)| \le |z|$ for all $z \in \mathbb{D}$ 2. $|f'(0)| \le 1$. Moreover, if $|f(z_0)| = |z_0|$ for any $z_0 \in \mathbb{D}$ or |f'(0)| = 1, then f is a rotation

3 Stuff

3.0.1 Fundamental Theorem of Algebra: Argument Principle

- Let $P(z) = a_n z^n + \cdots + a_0$ and g(z) = P'(z)/P(z), note P is holomorphic
- Since $\lim_{|z| \to \infty} P(z) = \infty$, there exist an R > 0 such that P has no roots in $\{|z| \ge R\}$.
- Apply the argument principle:

$$N(0) = \frac{1}{2\pi i} \oint_{|\xi|=R} g(\xi) d\xi.$$

- Check that $\lim_{|z \longrightarrow \infty|} zg(z) = n$, so g has a simple pole at ∞
- Then g has a Laurent series $\frac{n}{z} + \frac{c_2}{z^2} + \cdots$
- Integrate term-by-term to get $N(\tilde{0}) = n$.

3.0.2 Fundamental Theorem of Algebra: Rouche's Theorem

- Let $P(z) = a_n z^n + \cdots + a_0$
- Set $f(z) = a_n z^n$ and $g(z) = P(z) f(z) = a_{n-1} z^{n-1} + \dots + a_0$, so f + g = P. Choose $R > \max\left(\frac{|a_{n-1}| + \dots + |a_0|}{|a_n|}, 1\right)$, then

$$\begin{split} |g(z)| &\coloneqq |a_{n-1}z^{n-1} + \dots + a_1z + a_0| \\ &\le |a_{n-1}z^{n-1}| + \dots + |a_1z| + |a_0| \quad \text{by the triangle inequality} \\ &= |a_{n-1}| \cdot |z^{n-1}| + \dots + |a_1| \cdot |z| + |a_0| \\ &= |a_{n-1}| \cdot R^{n-1} + \dots + |a_1|R + |a_0| \\ &\le |a_{n-1}| \cdot R^{n-1} + |a_{n-2}| \cdot R^{n-1} + \dots + |a_1| \cdot R^{n-1} + |a_0| \cdot R^{n-1} \quad \text{since } R > 1 \implies R^{a+b} \ge R^a \\ &= R^{n-1} \left(|a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0| \right) \\ &\le R^{n-1} \left(|a_n| \cdot R \right) \quad \text{by choice of } R \\ &= R^n |a_n| \\ &= |a_n z^n| \\ &\coloneqq |f(z)| \end{split}$$

• Then $a_n z^n$ has n zeros in |z| < R, so f + g also has n zeros.

3.0.3 Fundamental Theorem of Algebra: Liouville's Theorem

- Suppose p is nonconstant and has no roots, then $\frac{1}{n}$ is entire
- Write $g(z) := \frac{p(z)}{z^n} = a_n \left(\frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right)$
- Outside a disc:
 - Note $\lim_{z \to \infty} = 0$ for the parenthesized terms, so there exists an R large enough such that $|g(z)| \geq \frac{1}{2}|a_n|$
 - Then $|p(z)| \geq \frac{R^n}{2} |a_n|$ implies $\frac{1}{n}$ is bounded in |z| > R
- Inside a disc:
 - p is continuous with no roots so p is bounded below on |z| < R.
 - -p is continuous on a compact set and thus achieves a min A
 - Set $B = \min(A, \frac{R^n}{2} |a_n|)$, then $p \ge B$ on |z| < R.
- Thus p is bounded below everywhere and thus $\frac{1}{n}$ is bounded above everywhere, thus bounded.
- Thus $\frac{1}{n}$ is constant, forcing p to be constant.

3.0.4 Fundamental Theorem of Algebra: Open Mapping Theorem

- p induces a continuous map $\mathbb{CP}^1 \longrightarrow \mathbb{CP}^1$
- The continuous image of compact space is compact;
- Since the codomain is Hausdorff space, the image is closed.

- p is holomorphic and non-constant, so by the Open Mapping Theorem, the image is open.
- Thus the image is clopen in \mathbb{CP}^1 .
- The image is nonempty, since $p(1) = \sum a_i \in \mathbb{C}$
- \mathbb{CP}^1 is connected
- But the only nonempty clopen subset of a connected space is the entire space.
- So p is surjective, and $p^{-1}(0)$ is nonempty.
- So p has a root.

4 Appendix

$$dz = dx + i \ dy$$

$$d\bar{z} = dx - i \ dy$$

$$f_z = f_x = i^{-1} f_y$$

$$\int_0^{2\pi} e^{i\ell x} dx = \begin{cases} 2\pi & (\ell = 0) \\ 0 & (\ell \neq 0) \end{cases}.$$

- Holomorphic: once complex differentiable in neighborhoods of every point.
- Analytic: equal to its Taylor series expansion

Collection of facts used on problem sets

4.1 Things to know well:

- Cauchy Integral Formula
- Estimates for derivatives, mean value theorem
- Rouché's theorem
- Casorati-Weierstrass
- The 8 types of conformal maps

4.2 Theorems

4.2.1 The Argument Principle

Theorem 4.1(Statement 1).

For f meromorphic in γ° ,

$$\Delta_{\gamma} \arg f(z) = 2\pi (Z_f - P_f).$$

4.2.2 Rouche

Theorem 4.2(Statement 1).

Suppose f = g + h with $g \neq 0, \infty$ on γ with |g| > |h| on γ . Then

$$\Delta_{\gamma} \arg(f) = \Delta_{\gamma} \arg(h)$$
 and $Z_f - P_f = Z_g - P_g$.

4.3 Misc Prereq

Standard forms of conic sections:

- Circle: $x^2 + y^2 = r^2$ Ellipse: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$
- Hyperbola: $\left(\frac{x}{a}\right)^2 \left(\frac{y}{b}\right)^2 = 1$
 - Rectangular Hyperbola: $xy = \frac{c^2}{2}$.
- Parabola: $-4ax + y^2 = 0$

Mnemonic: Write $f(x,y) = Ax^2 + Bxy + Cy^2 + \cdots$, then consider the discriminant $\Delta =$

- $\Delta < 0 \iff \text{ellipse}$
 - $-\Delta < 0$ and $A = C, B = 0 \iff$ circle
- $\Delta = 0 \iff \text{parabola}$
- $\Delta > 0 \iff \text{hyperbola}$

Completing the square:

$$x^{2} - bx = (x - s)^{2} - s^{2}$$
 where $s = \frac{b}{2}$
 $x^{2} + bx = (x + s)^{2} - s^{2}$ where $s = \frac{b}{2}$.

Useful Properties

- $\Re(z) = \frac{1}{2}(z + \bar{z})$ and $\Im(z) = \frac{1}{2i}(z \bar{z})$. $z\bar{z} = |z|^2$ $\cos(\theta) = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$ $\sin(\theta) = \frac{1}{2i}(e^{i\theta} e^{-i\theta})$.

Useful Series

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

$$\log(z) = \sum_{i=0}^{\infty} (-1)^j \frac{(z-a)^j}{j}$$

Cauchy-Riemann Equations

$$u_x = v_y$$
 and $u_y = -v_x$
 $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

4.4 Useful Techniques

Showing a function is constant:

- Write f = u + iv and use Cauchy-Riemann to show $u_x, u_y = 0$, etc.
- Show that f is entire and bounded.

Showing a function is zero: Show f is entire, bounded, and $\lim_{z \to \infty} f(z) = 0$.

Deriving Polar Cauchy-Riemann: See walkthrough here. Take derivative along two paths, along a ray with constant angle θ_0 and along a circular arc of constant radius r_0 . Then equate real and imaginary parts. See problem set 1.

Computing Arguments: Arg(z/w) = Arg(z) - Arg(w).

The sum of the interior angles of an *n*-gon is $(n-2)\pi$, where each angle is $\frac{n-2}{n}\pi$.

4.5 Residues

If p is a simple pole, $\operatorname{Res}(p,f) = \lim_{z \to p} (z-p)f(z)$. Example: Let $f(z) = \frac{1}{1+z^2}$, then $\operatorname{Res}(i,f) = \frac{1}{2i}$.

Green's Theorem: Todo

$$\frac{\partial}{\partial z} \sum_{j=0}^{\infty} a_j z^j = \sum_{j=0}^{\infty} a_{j+1} z^j.$$

4.6 Pithy Statements

- Little Picard: f misses at most one point and is a homeomorphism onto its image.
- Baire's Theorem: The intersection of open dense sets is open.
- Casorati-Weierstrass: The image of a disc punctured at an essential singularity is dense in \mathbb{C} .
- Open Mapping: Holomorphic functions preserve open sets.
- Argument Principle: The logarithmic derivative measures the difference of zeros and poles.
- Liouville: Bounded entire functions are constant.
- Maximum Modulus: Holomorphic functions take extrema only on boundaries.
- Cauchy Inequalities: The *n*th Taylor coefficient is at most $\sup_{|z|=R} |f|/R^n$.
- Cauchy's Theorem: Integrals of holomorphic functions vanish.
- Morera: Integrals vanishing along every rectangle implies holomorphic.
- Schwarz Reflection: ???
- Identity Theorem: Two functions agreeing on a set with a limit point are equal on a domain.

• The ring of holomorphic functions on a domain in \mathbb{C} has no zero divisors (by the identity principle).

4.7 Precise Refinements

Cauchy Inequality: Given $z_0 \in \Omega$, pick the largest disc $D_R(z_0) \subset \Omega$ and let $C_R = \partial D_R$. Using the integral formula, defining $||f||_{C_R} = \max_{|z-z_0|=R} |f(z)|$

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{\|f\|_{C_R}}{R^{n+1}} R \ d\theta = \frac{n! \|f\|_{C_R}}{R^n}.$$

Basics

- Show that $\frac{1}{z}\sum_{k=1}^{\infty}\frac{z^k}{k}$ converges on $S^1\setminus\{1\}$ using summation by parts.
- Show that any power series is continuous on its domain of convergence.
- Show that a uniform limit of continuous functions is continuous.

??

- Show that if f is holomorphic on \mathbb{D} then f has a power series expansion that converges uniformly on every compact $K \subset \mathbb{D}$.
- Show that any holomorphic function f can be uniformly approximated by polynomials.
- Show that if f is holomorphic on a connected region Ω and $f' \equiv 0$ on Ω , then f is constant on Ω .
- Show that if |f| = 0 on $\partial \Omega$ then either f is constant or f has a zero in Ω .
- Show that if $\{f_n\}$ is a sequence of holomorphic functions converging uniformly to a function f on every compact subset of Ω , then f is holomorphic on Ω and $\{f'_n\}$ converges uniformly to f' on every such compact subset.
- Show that if each f_n is holomorphic on Ω and $F := \sum f_n$ converges uniformly on every compact subset of Ω , then F is holomorphic.
- Show that if f is once complex differentiable at each point of Ω , then f is holomorphic.