数论与拓扑:一段"挠曲"的关系

Nicolas Bergeron

我们对于自然数,或者更一般地说对有理数是熟悉的,然而它们不足以求解所有多项式方程. 因此,长期以来我们习惯于将"数"的概念扩及代数数. 我们将探讨其中最简单的一类,即二次无理数. 对后者的了解已相当深入,但是全体代数数的世界仍十分神秘,而 Kronecker (克罗内克) 的梦想是透过一些自然的解析函数予以显式的描述,这一梦想迄今只实现了一小部分. 最近这一梦想大拓疆域: 某些"双曲"空间的拓扑开始起作用. 特别是,现在知道一些 挠 (torsion) 同调类可用于描述某一型代数数. 而且数论与几何的某些类比表明这样的挠类相当之多!

1. 二次无理数

著名的公式

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

将二次多项式方程

$$aX^2 + bX + c = 0 \quad (a, b, c \in \mathbb{Q})$$

$$\tag{1}$$

的解表达成 判别式 (discriminant) $D=b^2-4ac$ 的平方根 \sqrt{D} 的有理函数. Plato (柏拉图) 在对话录《泰阿泰德篇 (Theaetetus)》中将以下发现归于年轻的 Theaetetus (泰阿泰德): 若 D 为自然数,则除非 D 是整数的平方,否则 \sqrt{D} 必为无理数. 于是判别式的平方根起初被视为求方程 (1) 有理解的一个障碍. 然而一如后来发生在复数上的情形,平方根 \sqrt{D} 很快就从一个单纯的障碍被拔擢到 数 (nombre) 的地位. 这是代数数论的滥觞.

二次无理数 (irrationnel quadratique), 或者二次代数整数,不外是二次多项式 (1) 当 a=1 而 b,c 为整数时的根. 如果 d 是整数,或正或负,无平方因子,对之可赋予一个特别的二次无理数 τ_d : 若 d 模 4 余 1, 则 $\tau_d=\frac{1}{2}(1+\sqrt{d})$, 否则 $\tau_d=\sqrt{d}$. 这是代数整数: 第 1 种情形下 τ_d 是多项式 $X^2-X+\frac{1}{4}(1-d)$ 的根,而在第 2 种情形下 τ_d 是 X^2-d 的根. 人们挑出这些代数整数是因为所有二次代数整数都可以表成 1 和某个 τ_d 的整系数线性组合.

一如 \mathbb{Z} , 由 1 和 τ_d 的整系数线性组合所成之集合

$$\mathbb{Z}[\tau_d] = \{a + b\tau_d : a, b \in \mathbb{Z}\}\$$

译自: SMF-Gazette des Mathématiciens n°151, Janvier 2017, Théorie des nombres et topologie: une relation 《tordue》, Nicolas Bergeron, figure number 3. ©2017 SMF-Gazette des Mathématiciens, All rights reserved. Reprinted with permission. SMF-Gazette des Mathématiciens 与作者授予译文出版许可.

作者是法国第六大学教授,是算术流形的专家,尤其擅长拓扑和谱.他的邮箱地址是nicolas.bergeron@imj-prg.fr.

对加,减,乘保持稳定;这叫做一个环,记为 \mathcal{O}_d . 所以每个二次无理数都属于某个 \mathcal{O}_d .

例 1 对应于 d=-1 的环一般称为 Gauss (高斯) 整数 (entiers) 环. 它由实部虚部都是整数的复数所构成. 因此它们是由单位正方形组成的平面铺砌的顶点. 每个方形的面积都等于 $1=\frac{1}{9}\sqrt{|4d|}$.

例 2 当 d=-3, 在 \mathcal{O}_{-3} 中的复数是由正三角形组成的平面铺砌的顶点. 每个三角形的面积都等于 $\frac{\sqrt{3}}{2}=\frac{1}{2}\sqrt{|d|}$.

我们称 Oa 的 判别式 为整数

$$D = \begin{cases} d & \text{ ät } d \equiv 1 \pmod{4} \\ 4d, & \text{ 其它情形}. \end{cases}$$

这也是以 τ_a 为根的二次首一多项式的判别式; 平方根 $\sqrt{|D|}$ 等于由 \mathcal{O}_a 给出的平面铺砌 其基本铺片面积的两倍.

我们既然有了一些新的环 (由复数组成), 就可以探究它们的结构. 我们特别感兴趣的是 \mathcal{O}_d 的 单位 ($unit\acute{e}s$). 一般说来,一个由复数构成的环 A 中的单位意指一个 A 中的数u, 使得逆元 1/u 也属于 A. 在相对整数环 \mathbb{Z} 中,单位是 ± 1 . 不难验证 \mathcal{O}_{-1} 的单位是 ± 1 和 $\pm i$ 这 4 个元素. 每个单位给出的乘法都诱导方形铺砌的一个 对称 ($sym\acute{e}trie$). 同理, \mathcal{O}_{-3} 有 6 个单位,它们也诱导三角铺砌的对称.

花絮 1 不可约元和类数

在一个由复数构成的环 A 中,如果一个元素既不是单位元,又不能写成 A 中两个非单位元之积,则称之为 不可约 (irréductible) 的.

在相对整数环 \mathbb{Z} 中,不可约元是 $\pm p$,其中 p 是素数,而算术基本定理说每个严格大于 1 的自然数都能唯一地分解为素数之积.我们也说 \mathbb{Z} 是 唯一分解环.

取定无平方因子的整数 d, 判断 \mathcal{O}_d 是不是唯一分解环是一个根本问题,并导向了 理想 $(id\acute{e}al)$ 的概念. 例如在 \mathcal{O}_{-5} 中有两种写法 $9=3\times 3=(2+\sqrt{-5})(2-\sqrt{-5})$ 将其分解为不可约元之积. 然而 9 生成的理想本身则能唯一地分解为素理想之积. 这导因于 3 生成的理想又能分解为理想 $(3,1+\sqrt{-5})$ 和 $(3,1-\sqrt{-5})$ 的积,两者皆是素理想却非 主 (principaux) 理想,换言之无法由 \mathcal{O}_{-5} 中单一的

元素来生成. 在一个复数构成的环中,非主理想的存在性正是唯一分解性的障碍. 一如既往,原先被视为阻碍的理想变成了数. 这些数也可以相乘,并且包含"寻常的数",即 \mathcal{O}_d 的元素 1 ,后者等同于它们生成的主理想. 所有理想所成集合与主理想集的差异由一个有限群来估量,称作 理想类群 (le groupe des classes d'idéaux),其基数记为 h_d . 因此整数 h_d 等于 1 当且仅当 \mathcal{O}_d 是唯一分解环.

2. 单位群

在 \mathcal{O}_d 中的单位集 \mathcal{O}_d^{\times} 对乘法和取逆保持稳定,我们说它构成 \mathbb{C}^{\times} 的子群. 每个交换群 H 都分解为同构于 \mathbb{Z}^r 的自由交换群和一个有限群之积 \mathbb{Z}^n

$$H = H_{\dot{\mathbf{H}}} \times H_{\dot{\mathbf{A}}},$$

后者称为它的 挠部分 (partie torsion).

群 \mathcal{O}_d^{\times} 根据 d 的正负而有很大不同. 如果 d 严格正,则群 \mathcal{O}_d^{\times} 无穷,它的自由部分同构于 \mathbb{Z} , 而挠部分同构于 $\mathbb{Z}/2\mathbb{Z}$, 等于 ± 1 . 相反地,如果 d 严格负,群 $\mathcal{O}_d^{\times} = (\mathcal{O}_d^{\times})_{\frac{1}{12}}$ 是由 \mathcal{O}_d^{\times} 中所有单位根组成的有限(循环)群;它的基数当 d=-1 时等于 4,当 d=-3 时等于 6,在其它情形等于 2.

当 d 严格正时,群 \mathcal{O}_d^{\times} 因而等于

$$\{\pm \varepsilon_d^n : n \in \mathbb{Z}\}\,$$

其中 $\varepsilon_d \in \mathcal{O}_d^{\times}$ 是严格大于 1 的极小单位; 称作 基本单位 (unité fondamentale). 确定 ε_d 本质上相当于解 Pell-Fermat (佩尔 – 费马) 方程; 见花絮 2. 然而 ε_d 相对于 d 的性状仍是相当神秘的. 其大小,或确切地说是 $\ln \varepsilon_d$,称为 \mathcal{O}_d 的 调整子 (régulateur).

花絮 2 Pell-Fermat 方程

这是以 $(X,Y) \in \mathbb{Z}^2$ 为未知量的方程

$$X^2 - dY^2 = \pm 1$$
.

解此方程基本上相当于确定 ε_d . 例如 $\varepsilon_2 = 1 + \sqrt{2}$ 对应于方程 $X^2 - 2Y^2 = \pm 1$ 的最小解 (X,Y) = (1,1).

归于 Archimedes (阿基米德) 的 群牛问题 (problème des boeufs) 暗示着 Pell-Fermat 方程的研究古已有之. 但无论如何 Pell 都与此无关. 即便 Fermat 对此确有研究 —— 他曾就特例 d=61 向英国数学家提出挑战 —— 首个确定 "Pell-Fermat 方程"解集合的一般方法应当归于 12 世纪的印度数学家 Bhaskara (婆什迦罗). 此外,Bhaskara 选择特例 d=61 来演示其方法. 这不只是巧合: 尽管这点并不明显,从方程 (2) 可以推得除了判别式 D,影响 ε_d 大小最重要的因素是 h_d^{-1} ,而 $h_{61}=1$ 正好极小. 因此 "摸索" 方程 $X^2-61Y^2=\pm1$ 的最小解是格外冗长的 (相对于 d 的大小). 显然 Fermat 并不打算便宜他的英国 "朋友" 们.

¹⁾ 精确到乘以单位.—— 译注

⁽²⁾ 一般要求 (2) 一般要求 (2) 是有限生成交换群. 可以证明 (2) 总是有限生成的.—— 译注

当 d=2 时 $\ln \varepsilon_2$ 有一个漂亮的解析表达式, 读者可以用计算器来作实验 "检验" 之:

$$\frac{\ln(1+\sqrt{2})}{\sqrt{2}} = 1 - \frac{1}{3} - \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \dots + \pm \frac{1}{n} + \dots,$$

其中n 跑遍奇数,而 $\frac{1}{n}$ 前面的符号当 $n \equiv 1$ 或 7 (mod 8) 时为正,当 $n \equiv 3$ 或 5 (mod 8) 时为负. 对一般的 ε_d 也有类似表达式,但它涉及类数 h_d (见花絮 1), 这是 Dirichlet (狄利克雷) 的 类数公式 (formule du nombre de classes).

● 当 d 严格正时, 我们有

$$h_d \cdot \frac{\ln \varepsilon_d}{\sqrt{D}} = \sum_{n>0} \pm \frac{1}{n},\tag{2}$$

其中n 跑遍与判别式D 互素的整数集,而符号 \pm 只和n 模D 的余数相关.

• 当 d 严格负时不再有调整子,但这时 $(\mathcal{O}_d^{\times})_{ls}$ 可能更大. 我们得到:

$$\frac{h_d}{\left| \left(\mathcal{O}_d^{\times} \right)_{\cancel{R}} \right| \cdot \sqrt{D}} = \sum_{n>0} \pm \frac{1}{n}. \tag{3}$$

借助公式 (3), 可以证明当 d 趋近 $-\infty$ 时 h_d 趋近于无穷. 特别地, 仅存在有限多个严格负的 d 使得 \mathcal{O}_d 是唯一分解环. 相反地, 我们仍不知是否有无穷多个 d>0 使得 $h_d=1$. 事实上, 当 d 趋近 $+\infty$ 时, 很难在 (2) 中分离 h_d 与调整子 $\ln \varepsilon_d$ 的贡献.

3. 矩阵推广

单位群 \mathcal{O}_d^{\times} 与 $\mathrm{GL}_1(\mathcal{O}_d)$ 相同.推而广之,透过考察矩阵群 $\mathrm{GL}_n(\mathcal{O}_d)$ 可以继续探索 \mathcal{O}_d 的结构.给定群 Γ ,可定义一个交换群如下,称为它的交换化,是商

$$\Gamma^{\mathrm{ab}} = \Gamma / \langle xyx^{-1}y^{-1} | x, y \in \Gamma \rangle$$
.

对群 $\mathrm{GL}_n(\mathcal{O}_d)^{\mathrm{ab}}$ 的考察导向了 K- 理论中与环 \mathcal{O}_d 相系的群,其中第一个群本质上捕捉了 Gauss 消元法在何种程度上能施于 \mathcal{O}_d 上矩阵. 简单起见在此只讨论 2×2 矩阵,然而 另加同余条件. 换言之,我们不只针对群 $\mathrm{SL}_2(\mathcal{O}_d)$,还更广泛地对考虑以下子群的交换化

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathcal{O}_d) \middle| N \mid c \right\}, \quad (N \in \mathcal{O}_d).$$

和先前一样, 群 $\Gamma_0(N)^{ab}$ 的结构将随着 d 的正负而大有不同.

当 d 严格正

此时每个群 $\Gamma_0(N)^{\rm ab}$ 都有限而且是 "小" 的. 这点可以联系于当 d 严格正时环 \mathcal{O}_d 有无穷多个单位这一事实: 若 $u\in\mathcal{O}_d^{\times}$ 是单位,实际上可考虑矩阵

两者都属于群 $\Gamma_0(N)$. 它们的交换子 [x,y] 等于

$$xyx^{-1}y^{-1} = \begin{pmatrix} 1 & u^2 - 1 \\ 0 & 1 \end{pmatrix}.$$

所有这些交换子生成的群因之是"大"的,而商

$$\Gamma_0(N)^{\mathrm{ab}} = \Gamma_0(N) / \langle xyx^{-1}y^{-1} | x, y \in \Gamma_0(N) \rangle$$

则"小".

当 d 严格负

那么单位群 \mathcal{O}_d^{\times} 有限,而 35 年前 Elstrodt, Grunewald 和 Mennicke 就注意到 (借助 实验) 当 N 大时 (就范数而言),群 $\Gamma_0(N)^{\mathrm{ab}}$ 显得具有低秩的自由部分和大的挠部分. 以下是最近 Şengün 在 d=-1 情形获得的资料:

- 若 N=41+56i, 我们有 $\Gamma_0(N)^{\mathrm{ab}}\simeq \mathbb{Z}/4078793513671\mathbb{Z}\oplus \mathbb{Z}/292306033\mathbb{Z}\oplus \cdots;$
- 若 N=118+175i, 我们有 $\Gamma_0(N)^{\mathrm{ab}}\simeq\mathbb{Z}\oplus T$, 其中 T 有限,其基数 $>10^{310}$.

当 N 大时, $\Gamma_0(N)^{ab}_{k}$ 的基数的素因子有趋于庞大的倾向,其分布似乎是随机的.

这一现象还远未被理解. 除了眼见巨大素数涌现而生的单纯喜悦, 我们还有理由来试着进一步了解这一观察. 实际上, 由 Scholze 最近的力作可以推出对 $\Gamma_0(N)^{ab}$ 中所有同构于 $\mathbb{Z}/p\mathbb{Z}$ 的因子, 可以赋予一个新的代数数环 (\mathcal{O}_d 的一个扩张), 使其算术性质由 $\Gamma_0(N)^{ab}$ 的 p- 挠类确定. 举例来说: 这个新的代数数环其判别式的素因子都是 Np 的素因子.

现在,为了进一步了解 $\Gamma_0(N)^{ab}$ 中何以有充裕的挠元,我们自然地被引向考虑某些 "双曲空间". 且来解释这一联系.

4. 同余双曲流形

当 d < 0 时,群 $\mathrm{SL}_2(\mathcal{O}_d)$ 被称为 Bianchi (比安基) 群. 这是群 $\mathrm{SL}_2(\mathbb{C})$ 的一些离散子群,于是它们自然地 (正常地) 作用在三维空间

$$\mathbb{H}^3 = \{ (z, y) \in \mathbb{C} \times \mathbb{R} : y > 0 \}$$

上,相应的变换保持 双曲度量 ($métrique\ hyperbolique$) $\frac{1}{y}\sqrt{|dz|^2+dy^2}$. 所以每个群 $\mathrm{SL}_2(\mathcal{O}_d)$ 都如此给出 \mathbb{H}^3 的一个相应铺砌,如图 3.

图 3 对应于 $SL_2(\mathbb{Z}[i])$ 的铺砌的一个基本铺片 ©图片来自 J. Leys

这些铺片对双曲度量的体积有限 (相同). 称 $SL_2(\mathcal{O}_d)$ 为 $SL_2(\mathbb{C})$ 中的 格 (réseau). 这样一个格的复杂度由铺片体积所测量. 群 $\Gamma_0(N)$ 仅是 $SL_2(\mathbb{C})$ 中的 同余 (congruences) 格的一些特例. 事实上,空间 \mathbb{H}^3 在大部分其它同余格的作用下都有紧的商空间.

紧商为直觉构筑了一个好的指引. 然而, 许多模型提示了对于一个随机的紧商 $\Gamma \setminus \mathbb{H}^3$, \cdot 116 ·

群 Γ^{ab} 挠部的基数是 Γ 的复杂度的指数函数. 源于算术的商往往倾向于尽可能按随机方式行事. 与 Akshay Venkatesh 一起, 我们提出了以下更精确的猜想.

猜想 1 $\, \diamond \, (\Gamma_N)_{N \in \mathbb{N}} \, \,$ 为 $\mathrm{SL}_2(\mathbb{C})$ 中的一列 同余格, 使得复杂度 $V_N := \mathrm{vol}(\Gamma_N \setminus \mathbb{H}^3)$ 随着 N 趋于无穷. 那么我们有

$$\lim_{N \to \infty} \frac{\ln |(\Gamma_N^{\rm ab})_{\cline{R}}|}{V_N} = \frac{1}{6\pi}.$$

施于列 $(\Gamma_0(N))$, 这个猜想蕴涵当 N 不可约并趋向无穷时, $\Gamma_0(N)^{\rm ab}_{\c R}$ 的基数是 $|N|^2$ 的指数函数. Şengün 的资料倾向于肯定这一猜想,并给出断言的常数 $1/6\pi$.

5. 迈向证明?

公式 (2) 和 (3) 的右式是 \mathbb{C} 上亚纯函数 $s\mapsto \zeta_d(s)$ 在 s=1 处的值,该函数在绝对收敛范围 $\mathrm{Re}(s)>1$ 内等于 $\sum_{n>0}\pm\frac{1}{n^s}$. 和 Riemann zeta 函数一样,函数 $\zeta_d(s)$ 可由 Euler (欧拉) 乘积 $\zeta_d(s)=\prod_{\mathfrak{p}}\left(1-\frac{1}{\mathrm{N}(\mathfrak{p})^s}\right)$ 定义,其中乘积取遍 \mathcal{O}_d 的素理想,而 $\mathrm{N}(\mathfrak{p})$ 表示理想 \mathfrak{p} 的范数.此函数还满足一个函数方程,由之导出 $\zeta_d(s)$ 在 s=0 处的消没次数等于单位群 \mathcal{O}_d^x 的秩 $m.^{1)}$ 而且公式 (2), (3) 可以改述如下

$$\frac{1}{m!}\zeta_d^{(m)}(0) = -\frac{h_d R_d}{\left| (\mathcal{O}_d^{\times})_{\frac{1}{K}} \right|},\tag{4}$$

其中当 d 负时 $R_d = 1$, 而当 d 正时 $R_d = \ln \varepsilon_d$.

对所有紧双曲商 $M = \Gamma \setminus \mathbb{H}^3$ 也有类似公式. 它含有一个自然的 zeta 函数,这是由以下 Euler 乘积定义的 Ruelle (吕埃尔) zeta 函数

$$R(s) = \prod_{\gamma} \left(1 - e^{-s\ell(\gamma)} \right),\,$$

其中 γ 跑遍 M 的 素闭测地线 (primières) 集, 也就是排除掉多次环绕的闭测地线, 而 $\ell(\gamma)$ 表示 γ 的长度. 函数 R(s) 在复平面 $\mathbb C$ 上有亚纯延拓, 在 0 处的消没次数是一个仅依赖于 M 的拓扑的整数 m (它等于 $4-2b_1(M)$, 其中 $b_1(M)$ 是 M 的第一个 Betti 数), 而根据 Ray-Singer (雷 - 辛格), Cheeger, Müller (马勒) 和 Fried 的深刻工作,

$$\frac{1}{m!}R^{(m)}(0) = \frac{R_1(M)^4 \text{vol}(M)^2}{\left| (\Gamma^{ab})_{\frac{1}{100}} \right|^2},\tag{5}$$

其中 $R_1(M)$ — 同样称为调整子 — 通过双曲度量测定了 Γ^{ab} 自由部分的复杂度.

我们感兴趣的项是 $(\Gamma^{ab})_{\dot{R}}$ 的基数,它扮演的角色和 (4) 中的类数 h_d 相似,而 $R_1(M)$ 与 vol(M) 则近于调整子 R_d .

当 M "接近"于空间 \mathbb{H}^3 —— 当 M 为大体积的同余流形时便是如此 —— 可以证明 $\frac{1}{m!}R^{(m)}(0)$ 等于 $e^{(-\frac{1}{3\pi}+o(1))\operatorname{vol}(M)}$. 在许多具有数论兴趣的情形下调整子 $R_1(M)$ 是平凡的,而与 Venkatesh 一起,我们证明了与猜想 1 相近的一些结果. 于是我们得到许多挠类,而根据前述的 Scholze 定理,它们截出一些代数数环.

¹⁾ 当 d 负时 m=0, 当 d 正时 m=1.

原注

一般情形下调整子 $R_1(M)$ 非平凡,没理由说当 M 接近 \mathbb{H}^3 时它在 (5) 中的贡献可以忽略. 尽管如此,与 Şengün 和 Venkatesh 一起,我们在种种具有代表性的情形下证明了在沿着一个 同余 列 (M_N) 时, $R_1(M_N)$ 的贡献基本可以忽略. 所以我们期待 (5) 的右式等于 $\left|\Gamma_{\stackrel{\cap}{k}}^{\text{ab}}\right|^{-2}e^{o(\text{vol}(M))}$,因而

$$\ln \left| \Gamma_{\frac{1}{2}}^{ab} \right| = \frac{1}{6\pi} \text{vol}(M) + o(\text{vol}(M)).$$

尚需一些新思想才能完整证明猜想 1, 然而这已然是一个 (稀有的) 情形: 在一个 "类数公式" 形态的解析式中, 我们得以分离 "挠" 项和 "调整子" 项的贡献.

此外还得进一步理解 $\left|\Gamma_0(N)_{\dot{R}}^{ab}\right|$ 的素因子如何分布. 这是另一个故事,它或将我们领向 p- 进表示的理论...

延伸阅读

首先,下面是几本代数数论的基础书籍:

- Davenport, H. The Higher Arithmetic: An Introduction to the Theory of Numbers. Cambridge University Press.
- Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers. Oxford University Press.

想更上一层楼,可以参阅:

- Borevich, Z. I. and Shafarevich, I. R. Number Theory. Academic Press.
- Cassels, J. and Fröhlich, A. Algebraic Number Theory. Academic Press.
- Serre, J.-P. Cours d'arithmétique, PUF.
 关于三维双曲几何及其与数论的联系,我们推荐:
- Elstrodt, J. Grunewald, F. and Mennicke, J. Groups Acting on Hyperbolic Space. Springer.
- Maclachlan, C. and Reid, A. The Arithmetic of Hyperbolic 3-Manifolds. Springer. 至于本文提到的近期工作,可以参考笔者在第七届欧洲数学大会论文集中的文章以及下述文献.
 - Bergeron, N. and Venkatesh, A. The asymptotic growth of torsion homology for arithmetic groups. J. Inst. Math. Jussieu, 12(2): 391–447, 2013.
 - Bergeron, N., Haluk Sengun, M. and Venkatesh, A. Torsion homology growth and cycle complexity of arithmetic manifolds. Duke Math. J. 165 (2016) n° 9, 1629–1693.
 - Scholze, P. On torsion in the cohomology of locally symmetric varieties. Ann. of Math. (2), 182(3): 945–1066, 2015.

(李文威 译 姚景齐 校)