СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

ДЪРЖАВЕН ИЗПИТ ЗА ПОЛУЧАВАНЕ НА ОКС "БАКАЛАВЪР ПО ИНФОРМАТИКА" 22-23.03.2008 г.

ЧАСТ І (ПРАКТИЧЕСКИ ЗАДАЧИ)

Време за работа - 3 часа

Драги абсолвенти:

- Попълнете факултетния си номер на всички страници;
- За всяка от задачите, ползвайте за чернова и за решение само листите, на които е изписано условието на съответната задача.

Изпитната комисия ви пожелава успешна работа

Задача 1. (5 т.) Ако, в резултат на успешна компилация на зададения по-долу код на C, е създаден изпълним файл с име progA и в текущата директория има текстов файл fileA.txt със съдържание

```
xyz123-y
111bbb
Zzzzzz5yyyyy
```

напишете вдясно какво ще се изведе на стандартния изход в случай на успешно изпълнение на **progA** след стартиране с командния ред

```
./progA fileA.txt
#include
              <stdio.h>
#include
              <fcntl.h>
main(int argc, char *argv[])
       int fd, i = 0, j;
       char c;
       if ( (fd = open (argv[1], O RDONLY) ) == -1 )
       { printf ("\n Cannot open %s ", argv[1]); exit(1);
       while ( read (fd, &c, 1) )
              ++i;
              if (c = = '\n')
               \{ if (i < 10) \}
                    for (j = i; j < 15; j++)
                      write(1,"$",1);
                  i=0;
               write(1,&c,1);
       close(fd);
}
```

Задача 2. (5 т.) Да се провери пълно ли е множеството от двоични функции А:

- a) $A = (L \Gamma M) \Gamma (S \setminus T_0)$

Задача 3. (4 т.) Даден е крайният детерминиран автомат А:

$$A = <\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}, \{x, y, z\}, q_0, \delta, \{q_0, q_3, q_4, q_6, q_7, \} >$$

с функция на преходите δ , зададена чрез таблицата:

	X	v	Z	
\mathbf{q}_0	\mathbf{q}_1	\mathbf{q}_1	q_4	
\mathbf{q}_1	q_0	$\mathbf{q_2}$	\mathbf{q}_{2}	
$\mathbf{q_2}$	\mathbf{q}_3	\mathbf{q}_1	\mathbf{q}_1	
\mathbf{q}_3	\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_4	
\mathbf{q}_4	\mathbf{q}_{5}	$\mathbf{q_2}$	\mathbf{q}_3	
q ₅	\mathbf{q}_7	q ₈	\mathbf{q}_{5}	
\mathbf{q}_{6}	q_5	\mathbf{q}_1	\mathbf{q}_7	
\mathbf{q}_7	\mathbf{q}_{2}	q ₂	\mathbf{q}_{6}	
$\mathbf{q_8}$	\mathbf{q}_{6}	q ₈	\mathbf{q}_{6}	

Да се построи минимален детерминиран краен автомат, еквивалентен на дадения.

22.03.2008г.	ЛИ ОКСБ	акапавър"	по Инфог	оматика.	СУ-ФМИ	фак. №	стр.	4/18	8
 03. _ 0001.	HI ONO ,,D	anasiabbp		Jivia i vika,		φan. H≥	CIP.	T/ I (J

ЧЕРНОВА ЗА ЗАДАЧИ 2 и 3

Задача 4. (6 т.)

В базата данни със схема:

Classes (class, type, country, numGuns, bore, displacement)

Ships (name, class, launched)

Battles (name, date)

Outcomes (ship, battle, result)

се съхранява информация за кораби и тяхното участие в битки по време на Втората Световна Война.

Всеки кораб е построен по определен стереотип, определящ класа на кораба. Обикновено класът носи името на първия построен кораб от този клас.

- Таблицата Classes съдържа информация за име на класа, тип ('bb' за бойни кораби и 'bc' за бойни крайцери), страната, която строи такива кораби, броя на основните оръдия, калибъра им (диаметъра на отвора на оръдието в инчове) и водоизместимостта (тегло в тонове).
- Таблицата **Ships** съдържа информация за име на кораб, име на неговия клас и годината, в която корабът е пуснат на вода.
- Таблицата Battles съхранява имена и дати на провеждане на битки.
- Таблицата Outcomes съдържа информация за резултатата от участието на даден кораб в дадена битка (потънал 'sunk', повреден 'damaged', победил 'ok').

(1) <u>(1 т)</u> Посочете заявката, която извежда имената на всички кораби, в чието име се среща низа **king** (независимо с малки или големи букви)

```
a) SELECT ss.name
    FROM ships ss
    WHERE LOWER(ss.name) = '%king%';
b) SELECT ss.name
    FROM ships ss
    WHERE ss.name LIKE 'king%';
    SELECT ss.name
    FROM ships ss
    WHERE LOWER(ss.name) LIKE '%king%';
c) SELECT ss.name
    FROM ships ss
    WHERE ss.name
    FROM ships ss
    WHERE ss.name LIKE '*king*';
```

(2) <u>(3т)</u> Посочете заявката, която извежда имената на класовете, за които няма кораб, пуснат на вода след 1921 г. Ако за класа няма пуснат никакъв кораб, той също трябва да излезе в резултата.

```
a) SELECT c.class
  FROM classes c
  WHERE NOT EXISTS
     ( SELECT 1
       FROM ships t
       WHERE t.class=c.class AND t.launched > 1921);
b) SELECT c.class
  FROM classes c
  WHERE ALL (SELECT t.name
              FROM ships t
              WHERE t.class=c.class AND t.launched <= 1921);
c) SELECT t.class
  FROM ships t
  GROUP BY t.class
  HAVING MAX(t.launched)<=1921;</pre>
d) SELECT c.class
  FROM classes c
  LEFT JOIN ships t ON t.class = c.class
  WHERE t.launched > 1921;
```

(3) (2т) Посочете заявката, която извежда броя на потъналите японски кораби за всяка проведена битка с поне един потънал японски кораб:

```
a) SELECT battle, COUNT(s.name)
  FROM classes c
  JOIN ships s ON s.class = c.class
  JOIN outcomes o ON s.name = o.ship
  WHERE c.country = 'Japan' AND o.result = 'sunk';
b) SELECT battle, COUNT(*)
  FROM classes c
  JOIN ships s ON s.class = c.class
  JOIN outcomes o ON s.name = o.ship
  WHERE c.country = 'Japan' AND o.result = 'sunk'
  GROUP BY battle;
c) SELECT battle, COUNT(s.name)
  FROM classes c
  JOIN ships s ON s.class = c.class
  JOIN outcomes o ON s.name = o.ship
  WHERE c.country = 'Japan'
  GROUP BY battle
  HAVING o.result = 'sunk';
d) SELECT battle, COUNT(s.name)
  FROM outcomes o
  LEFT JOIN ships s ON s.name = o.ship AND o.result ='sunk'
  LEFT JOIN classes c ON s.class = c.class AND
                         c.country = 'Japan'
  GROUP BY battle;
```

Задача 5. (4 т.) Нека р е предикат, дефиниран със следните клаузи на Пролог:

1) (2 т.) Кой от изброените списъци не може да е отговор на целта

?-p(a, [b, a, b], L).

- a) L = [a, b, a, b]
- f(x) = [b, a, b, a]
- B) L = [a, b, b, a]
- Γ) L = [b, a, a, b]

2) (2 т.) Кой от изброените списъци е отговор на целта

?- p(a, L, [b, a, b]).

- a) L = [a, b, a, b]
- f(b) = [b, a, b]
- B) L = [a, b]
- Γ) L = [b, b]

Задача 6. (2 т.) Коя от изброените формули е тавтология?

- a) $\forall X \exists Y p(X, Y) \Rightarrow \exists Y \forall X p(X, Y)$
- 6) $\forall X \exists Y p(X, Y) \Leftrightarrow \exists Y \forall X p(X, Y)$
- B) $\exists Y \forall X p(X, Y) \Rightarrow \forall X \exists Y p(X, Y)$
- $\Gamma) \exists Y \forall X \ p(X, Y) \Leftrightarrow \forall X \exists Y \ p(X, Y)$

Задача 7. (**5 т.**) Нека Γ е оператор, преработващ частични функции над целите числа, който се дефинира по следния начин:

$$\Gamma(f)(x) \cong if \ x > 100$$
 then $x - 10$ else $f(f(x + 11))$.

Докажете, че за най-малката му неподвижна точка f_Γ е изпълнено условието:

$$\forall x \in \mathbb{Z}(x \leq 100 \& !f_{\Gamma}(x) \Rightarrow f_{\Gamma}(x) = 91).$$

Задача 8. (4 т.)

Нека имаме процедурата **drawCircle** за рисуване на окръжност с център (0,0). За да се спести от изчисляването на координатите на рисуваните пиксели, тя пресмята координатите само на 45 точки от дъга 0, която е 1/8 от цялата окръжност. За всяка пресметната точка $\mathbf{P}(\mathbf{x},\mathbf{y})$ от дъга 0 процедурата рисува осем пиксела – по един от всяка дъга.

В дефиницията на тази процедура командата plot(x,y) рисува точка P(x,y) от дъга 0, а plot(-x,-y) рисува съответната точка от дъга 4. Определете и попълнете в таблицата коя дъга се рисува от всяка от останалите шест команди plot.


```
void drawCircle;
{ int i;
  int x;
  int y;
  for ( i=0; i<45; i++ )
    X = <изчисляване на X координатата>;
    у = <изчисляване на Y координатата>;
    plot(x, y);
    plot(y,x);
    plot(-x, y);
    plot(-y,x);
    plot(x, -y);
    plot(y, -x);
    plot(-x, -y);
    plot(-y,-x);
  }
}
```

Команда:	Рисува дъга:
plot(x,y)	0
plot(y,x)	
plot(-x,y)	
plot(-y,x)	
plot(x,-y)	
plot(y,-x)	
plot(-x,-y)	4
plot(-y,-x)	

22.03.2008г. ДИ ОКС "Бакалавър" по Информатика, СУ-ФМИ фак. № стр. 9/18
Задача 9. (3 т.) Като използвате единствено процедурите cons, car и cdr (и техните производни) чрез обръщения към l напишете израз, който: 1. конструира дадения списък, където l=(one two three):
a) (one (two three))
б) (one (two) three)
в) ((one two three))
2. има оценка стойността Harry, ако l има вида: a) (Ann and Harry)
6) (((Ann)) and ((Harry)))
Задача 10. (4 т.) Оценете изразите:
((lambda (x y) (x y 8))(lambda (x y) (/ x y)) 2)
(accumulate + 1 (filter even? '(1 44 73 12 16 7)))
(let* ((x (list (lambda (x) (x 3 4))))

Задача 11. (8 т.) Дадено е пространство от състояния представено чрез ориентиран граф (фиг. 2), където S е начално състояние, а G1, G2 и G3 са целеви състояния. Дъгите са насочени и за всяка от тях е зададено теглото й. За всяко от състоянията (вътре във възела заедно с името) е зададена евристична оценка до целевите състояния.

	Коя цел е достигната	Кои състояния са обходени в процеса на търсенето
Iterative Deepening		
Breadth-First Search		
Hill Climbing		
<i>A</i> *		

фиг. 2

Задача 12. (5 т.) Даден е следният програмен фрагмент, написан на езика С++

а) Какъв ще бъде резултатът от изпълнението на фрагмента?

b) Предложете нов вариант на този фрагмент, който за матрица В (предполага се, че нейните елементи вече са въведени) намира и извежда сумата на всички елементи, до срещането на нулев елемент, ако в матрицата има такъв.

Задача 13. (5 т.) Дадена е свързана опашка, елементите на която се описват със структурата:

```
struct QElem
    int
           data
    QElem * next;
};
Самата опашка е представена посредством указатели към първия и последния си
елемент:
struct Queue
{
    QElem * front;
    QElem * rear;
};
Дадена е и следната функция за инициализиране
void initialize (Queue* queue)
{
    queue->front = 0;
    queue->rear = 0;
```

а) (2 т.) Да се напише функцията

void enqueue(Queue* queue, int data);

която добавя елемента data в опашката.

б) (2 т.) Да се напише функцията

int dequeue(Queue* queue, int* data);

която премахва елемент от опашката и записва стойността му в data. Връща 0 ако не е успяла да премахне елемента и 1 ако е успяла.

в) (1 т.) Да се напише функцията

void uninitialize(Queue* queue);

която премахва всички елементи на опашката.

Задача 14. (3 т.) Даден е едносвързан списък, елементите на който се описват със структурата:

```
struct ListElem
{
    double    data;
    ListElem * next;
};
```

Да се напише функция

int insert(ListElem * start, double key, double data); която вмъква в списъка с начало сочено от start елемент с данни data след всяко срещане на елемент с данни key. Връща броя на вмъкнатите елементи.

Задача 15. (6 т.)Задача Дадено е двоично наредено дърво, елементите на което се описват със структурата:

```
struct TreeNode
{
    int        data;
    TreeNode * left;
    TreeNode * right;
};
```

За всеки елемент в лявото му поддърво се съдържат елементи по-малки или равни на този елемент, а в дясното - по-големи или равни.

а) (3 т.) Да се напише функция

```
double processEven(const TreeNode * root);
```

която извежда в нарастващ ред всички четни елементи на дървото с корен сочен от root и като резултат връща средно аритметичното им.

б) (3 т.) Да се напише функция

void print(const TreeNode * root, int k);

която извежда на екрана всички елементи на дървото с корен сочен от root, които са на дълбочина k. Приемаме, че коренът има дълбочина 0.

Задача 16. (13 т.) Дадена е следната програма на C++, която е компилирана с MS Visual Studio 6.0. Моля попълнете в съответните полета какво се отпечатва на екрана като резултат от изпълнението на съответните конструкции.

В полетата, обозначени със "свързване", попълнете вида на свързването на съответния метод ("С" – статично, "Д" – динамично).

```
#include <iostream.h>
class Base {
public:
         Base () {cout << "Base\n";}
virtual void f ()</pre>
                   cout << "Base::f()\n";</pre>
                   g();
                                                                                        Свързване:
                                                                                                           a)
                   h();
                                                                                        Свързване:
         virtual void g () {cout << "Base::g()\n";}
void h () {cout << "Base::h()\n";}
~Base () {cout << "Base::~Base()\n";}</pre>
};
class Der1 : public Base {
         Der1 () {cout << "Der1\n";}
void g () {cout << "Der1::g()\n";}
void h () {cout << "Der1::h()\n";}
virtual ~Der1 () {cout << "Der1::~Der1()\n";}</pre>
class Der2 : public Der1 {
public:
         void f ()
                   cout << "Der2::f()\n";</pre>
                   g();
                                                                                       Свързване:
                                                                                                           в)
                   h();
                                                                                       Свързване:
                                                                                                           <u>r)</u>
         void h () {cout << "Der2::h()\n";}
~Der2 () {cout << "Der2::~Der2()\n";}</pre>
void main ()
                                                                                      д)
        Der1 d1;
                                                                                      e)
        Der2 d2;
                                                                                      ж)
        Base *bp = new Der2;
                                                                                      3)
        Der1 *d1p = new Der2;
                                                                                       Свързване:
                                                                                                           и)
        bp->f ();
```

Задача 17. (9 т.) Дадена следната програма, компилирана с Visual Studio 6.0, реализираща йерархията на фиг. 3. Какъв е изходът от програмата?

```
#include <iostream.h>
class Top {
public:
      Top () {cout << "Top::Top() \n"; }</pre>
      Top (int x) {cout << "Top::Top("<<x<<") \n"; }</pre>
};
class Middle1: virtual public Top {
public:
      Middle1():Top(1) {cout << "Middle1::Middle1()\n";}</pre>
};
class Middle2: virtual public Top {
public:
      Middle2():Top(2) {cout << "Middle2::Middle2()\n";}</pre>
};
class Middle3: public Top {
public:
      Middle3():Top(3) {cout << "Middle3::Middle3()\n";}</pre>
class Bottom : public Middle1,
                      public Middle2,
                     public Middle3 {
public:
      Bottom () {cout<<"Bottom::~Bottom()";}</pre>
} ;
void main () {
      Bottom b;
}
```


Задача 18. (9 т.) Дадена е следната програма, компилирана с Microsoft Visual Studio 6.0. Попълнете празните полета с изхода, предизвикан от съответните програмни конструкции.

<pre>#include <iostream.h></iostream.h></pre>
class A {
public:
A () {cout << "A::A()\n";}
A (const A&) {cout << "A::A(const A&) \n";}
A (int) {cout << "A::A(int)\n";}
operator int () {cout<<"A::operator int()\n"; return 0;}
~A () {cout << "A::~A()\n";}
<pre>};</pre>
<pre>void f (A) {cout << "f(A) \n";}</pre>
<pre>void g (const A&) {cout << "f(const A&) \n";}</pre>
<pre>void h (int) {cout << "f(int) \n";}</pre>
A i () {cout << "i() \n"; return A();}
<pre>void main () {</pre>
A a;
a)
f(a);
б)
f(0);
B)
g (a) ;
r)
h(a);
д)
a = i();
e)
}
ж)