SEMINAR NOTES: COMMUTATIVE ALGEBRAS

ZOU HAITAO

Contents

1. Rings and Ideals

1

1. Rings and Ideals

Definition 1.1. A ring R is a set with two maps (addition) $+: R \times R \to R$, (mutiplication) $\times: R \times R \to R$ (denote +(x,y) by x+y and $\times(x,y)$ by $x\times y$)that satisfy following properties

- (1) R is a abelian group with respect to addition, its identity is denoted by 0;
- (2) R is a monoid with identity $1 \in R$ with respect to multiplication;
- (3) $z \times (x+y) = z \times x + z \times y$ and $(x+y) \times z = x \times z + y \times z$ for any given x, y, z.

We typically write xy for $x \times y$.

In a ring R, if 1 = 0, then R has only one elements, it is trival and called **zero ring**. Denoted zero ring by 0.

Definition 1.2. Let A and B be two rings. 1_A and 1_B are their identities. A ring homomorphism from A to B is a map $f: A \to B$, which preserves both addition and multiplication structure, that means, for any $x, y \in A$

$$f(x+y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$
$$f(1_A) = 1_B$$