Tutorial 1 Recurrence: Divide and Conquer Strategy and Analysis

Wenzhong Li lwz@dislab.nju.edu.cn

1. Math Background

- P21-27
- Harmonic Series: $\sum_{i=1}^{n} \frac{1}{i} \approx \ln(n) + \gamma$
- Arithmetic-Geometric Series: $\sum_{i=1}^{k} i2^i = (k-1)2^{k+1} + 2$
- Stirling's Formula: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Example: Asymptotic order:

$$lgn, n^{\epsilon}(\epsilon > 0), c^{n}(c > 0), n!$$

Proof $a^n(a>0)=o(n!)$

$$\lim_{n\to\inf}\frac{a^n}{n!}=\lim_{n\to\inf}\frac{a^n}{\sqrt{2\pi n}(\frac{n}{e})^n}=0$$

(Here we use the Stirling Formular $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$)

- P52 Theorem 1.13
- Polynomial Series: $\sum_{i=1}^{n} i^{d} \sim \theta(n^{d+1})$
- Geometric Series: $\sum_{i=a}^{b} r^i \sim \theta(\text{largest})$
- Logarithmic Series: $\sum_{i=1}^{n} \log(i) \sim \theta(n \log(n))$
- Polynomial- logarithmic Series:

$$\sum_{i=1}^{n} i^{d} \log(i) \sim \theta(n^{d+1} \log(n))$$

Example: Maximum Subsequence Sum

- The problem: Given a sequence S of integer, find the largest sum of a consecutive subsequence of S. (0, if all negative items)
 - An example: -2, 11, -4, 13, -5, -2; the result 20: (11, -4, 13)

```
A brute-force algorithm:

MaxSum = 0;

for (i = 0; i < N; i++)

for (j = i; j < N; j++)

{

ThisSum = 0;

for (k = i; k <= j; k++)

ThisSum += A[k];

if (ThisSum > MaxSum)

MaxSum = ThisSum;

}

return MaxSum;
```


More Precise Complexity

The total cost is $\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1$

$$\sum_{i=1}^{j} 1 = j - i + 1$$

$$\sum_{j=i}^{n-1} (j-i+1) = 1+2+...+(n-i) = \frac{(n-i+1)(n-i)}{2}$$

$$\sum_{i=0}^{n-1} \frac{(n-i+1)(n-i)}{2} = \sum_{i=1}^{n} \frac{(n-i+2)(n-i+1)}{2}$$

$$= \frac{1}{2} \sum_{i=1}^{n} i^{2} - (n + \frac{3}{2}) \sum_{i=1}^{n} i + \frac{1}{2} (n^{2} + 3n + 2) \sum_{i=1}^{n} 1$$

$$= \frac{n^3 + 3n^2 + 2n}{6}$$

Decreasing the number of loops

An improved algorithm

```
MaxSum = 0;
for (i = 0; i < N; i++)
{
    ThisSum = 0;
    for (j = i; j < N; j++)
    {
        ThisSum += A[j];
        if (ThisSum > MaxSum)
            MaxSum = ThisSum;
     }
}
return MaxSum;
```


Power of Divide-and-Conquer

Divide-and-Conquer: the Procedure

```
Center = (Left + Right) / 2;
 MaxLeftSum = MaxSubSum(A, Left, Center); MaxRightSum = MaxSubSum(A, Center + 1, Right);
 MaxLeftBorderSum = 0; LeftBorderSum = 0;
 for (i = Center; i >= Left; i--)
  LeftBorderSum += A[i];
  if (LeftBorderSum > MaxLeftBorderSum) MaxLeftBorderSum = LeftBorderSum;
                                                        Note: this is the core part of the
 MaxRightBorderSum = 0; RightBorderSum = 0;
                                                        procedure, with base case and
 for (i = Center + 1; i \le Right; i++)
                                                         wrap omitted.
  RightBorderSum += A[i];
  if (RightBorderSum > MaxRightBorderSum) MaxRightBorderSum = RightBorderSum;
 return Max3(MaxLeftSum, MaxRightSum,
     MaxLeftBorderSum + MaxRightBorderSum);
```

A Linear Algorithm

```
ThisSum = MaxSum = 0;
 for (j = 0; j < N; j++)
  ThisSum += A[j];
  if (ThisSum > MaxSum)
   MaxSum = ThisSum;
  else if (ThisSum < 0)
   ThisSum = 0;
 return MaxSum;
```

the sequence

This is an example of "online algorithm"

Negative item or subsequence cannot be a prefix of the subsequence we want.

Comparison

- Brute force
 - \bigcirc O(n³)
- Improved brute force
 - \Box O(n²)
- Divide and Conquer
 - □ O(n log n)
- Double pointer
 - □ O(n)

2. Analysis to Recurrence

- Recursive Algorithm and Recurrence equation
- How to analyze?
 - Guess and Proving
 - Recursion tree

Guess and Proving

- Example: T(n)=2T((n/2))+n
- Guess
 - \Box $T(n) \in O(n)$?
 - $T(n) \le cn$, to be proved for c large enough
 - \Box $T(n) \in O(n^2)$?
 - $T(n) \le cn^2$, to be proved for c large enough
 - $\Box T(n) \in O(n\log n)?$
 - $T(n) \le cn \log n$, to be proved for c large enough

Try to prove $T(n) \le cn$: $T(n) = 2T(\lfloor n/2 \rfloor) + n \le 2c(\lfloor n/2 \rfloor) + n$ $\le 2c(n/2) + n = (c+1)n$, Fail!

However:

$$T(n) = 2T(\lfloor n/2 \rfloor) + n \ge 2c \lfloor n/2 \rfloor + n$$
$$\ge 2c[(n-1)/2] + n = cn + (n-c) \ge cn$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2(c \lfloor n/2 \rfloor \log (\lfloor n/2 \rfloor)) + n$$

$$\leq cn \log (n/2) + n$$

$$= cn \log n - cn \log 2 + n$$

$$= cn \log n - cn + n$$

$$\leq cn \log n \quad \text{for } c \geq 1$$

Recursion Tree

2.1 T(n)=bT(n/c)+f(n)

- Master Theorem
- Loosening the restrictions on f(n)
 - □ Case 1: $f(n) \in O(n^{E-\varepsilon})$, (ε >0), then:

$$T(n) \in \Theta(n^E)$$

□ Case 2: $f(n) \in \Theta(n^E)$, as all node depth contribute about equally:

$$T(n) \in \Theta(f(n)\log(n))$$

□ case 3: $f(n) \in \Omega(n^{E+\varepsilon})$, (ε >0), and $f(n) \in O(n^{E+\delta})$, ($\delta \ge \varepsilon$), then:

$$T(n) \in \Theta(f(\underline{n}))$$

This is regular condition, we can use $bf(n/c) \le rf(n)$ (r<1) instead

The positive ε is critical, resulting gaps between cases as well

Recursion Tree for

$$T(n)=bT(n/c)+f(n)$$

- Examples
- (1) T(n)=4T(n/2)+n
 case 1,T(n) ∈ ⊕ (n²)
- (2) $T(n)=4T(n/2)+n^2$ case $2,T(n) \subseteq \Theta$ (n^2 Ign)
- (3) T(n)=4T(n/2)+n³ case 3, T(n) $\subseteq \Theta$ (n³)
- (4) T(n)=4T(n/2)+n²/lgn
 none of the three cases, gap

2.2 T(n)=bT(n-c)+f(n) (P139)

If
$$b=1$$
,

$$T(n) pprox rac{1}{c} \int_0^n f(x) dx$$

(1) if f(n) is polynomial n^{α} , then $T(n) \in \Theta(n^{\alpha+1})$

(2) if $f(n) = \log(n)$ then $T(n) \in \Theta(n \lg n)$

2.3 $T(n)=r_1T(n-1)+r_2T(n-2)$

- Characteristic Equation
- If the characteristic equation $x^2 r_1 x r_2 = 0$ of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has two distinct roots s_1 and s_2 , then

$$a_n = us_1^n + vs_2^n$$

where *u* and *v* depend on the initial conditions, is the explicit formula for the sequence.

$$f_1 = us_1 + vs_2$$
 and $f_2 = us_1^2 + vs_2^2$

3. Divide and Conquer

Basic Strategy

- Divide: devide the problem into smaller instances of the same problem
- Conquer: solve the smaller problem recursively
- Combine: combine the solutions to obtain the solution for the original input

Example: Matrix Multiplication

Input:
$$A = [a_{ij}], B = [b_{ij}].$$

Output: $C = [c_{ii}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Standard Algorithm – by definition

Run time = Θ (n³)

```
for i \leftarrow 1 to n
do for j \leftarrow 1 to n
do c_{ij} \leftarrow 0
for k \leftarrow 1 to n
do c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}
```

Divide-and-conquer Algorithm

Idea: n*n matrix = 2*2 of (n/2) * (n/2) sub-matrices:

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = A_{11} B_{11} + A_{12} B_{21}$$
 $C_{12} = A_{11} B_{12} + A_{12} B_{22}$
 $C_{21} = A_{21} B_{11} + A_{22} B_{21}$
 $C_{22} = A_{21} B_{12} + A_{22} B_{22}$

- Analysis:
- 8 muls of (n/2)*(n/2) submatrices
- 4 adds of (n/2)*(n/2) submatrices
- $T(n)=8T(n/2)+n^2$
- Still, $T(n)=O(n^3)$.
- No improvement!

Strassen Algorithm

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$M_{1} = A_{11}(B_{12} - B_{22})$$

$$M_{2} = (A_{11} + A_{12})B_{22}$$

$$M_{3} = (A_{21} + A_{22})B_{11}$$

$$C_{12} = M_{1} + M_{2}$$

$$M_{4} = A_{22}(B_{21} - B_{11})$$

$$C_{21} = M_{3} + M_{4}$$

$$C_{12} = M_{1} + M_{2}$$

$$C_{12} = M_{1} + M_{2}$$

$$C_{12} = M_{1} + M_{2}$$

$$C_{21} = M_{3} + M_{4}$$

$$C_{21} = M_{3} + M_{4}$$

$$C_{21} = M_{3} + M_{4}$$

$$C_{22} = M_{5} + M_{1} - M_{3} - M_{7}$$

$$M_{5} = (A_{11} - A_{21})(B_{11} + B_{12})$$

$$M_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$$

- Analysis:
- 7 muls of (n/2)*(n/2) submatrices
- 18 adds of (n/2)*(n/2) submatrices
- T(n)=7T(n/2)+n²
- T(n)=O(n^{log(7)})=O(n^{2.81}).
- Great improvement!

Example: Number of Valid Strings

- String to be transmitted on the channel
 - Length n
 - Consisting of symbols 'a', 'b', 'c'
 - □ If "aa" exists, cannot be transmitted
 - E.g. strings of length 2: 'ab', 'ac', 'ba', 'bb', 'bc', 'ca', 'cc', 'cb'
- Number of valid strings ?

Divide and conquer

$$\Box$$
 f(1)=3, f(2)=8

Analysis of the D&C solution

Characteristic equation

$$x^2 - 2x - 2 = 0$$

Solution

$$f(n) = \frac{2 + \sqrt{3}}{2\sqrt{3}} (1 + \sqrt{3})^n + \frac{-2 + \sqrt{3}}{2\sqrt{3}} (1 - \sqrt{3})^n$$