Final Project for PHYSICS 67

For the final project, I learned more about model fitting using a very simple constant model. In particular, I practiced taking the first and second derivatives of a summation expression (i.e., the χ^2 value) in order to derive closed-form expressions for the minimum value and uncertainty.

First Derivative

Recall that
$$\chi^2=\sum_i\left(rac{n_i-p_0}{\sigma_i}
ight)^2$$
. Thus, $rac{d}{dp_0}\chi^2=\sum_i2\left(rac{n_i-p_0}{\sigma_i}
ight)\left(-rac{1}{\sigma_i}
ight)=-2\sum_irac{n_i-p_0}{\sigma_i^2}$.

Second Derivative

From above,
$$\frac{d}{dp_0}\chi^2=-2\sum_i rac{n_i-p_0}{\sigma^2}.$$
 Thus, $\frac{d^2}{dp_0^2}=2\sum_i rac{1}{\sigma_i^2}.$

Discussion I

By visual inspection, the plots I came up with by deriving the closed-form expressions for the first- and second-derivatives match the ones produced using numerical methods for derivative computation.

Optimizing χ^2

$$egin{aligned} rac{d}{dp_0}\chi^2 &= 0 \ -2\sum_i rac{n_i-p_0}{\sigma_i^2} &= 0 \ \sum_i rac{n_i-p_0}{\sigma_i^2} &= 0 \ \sum_i rac{n_i}{\sigma_i^2} - \sum_i rac{p_0}{\sigma_i^2} &= 0 \ \sum_i rac{n_i}{\sigma_i^2} - p_0\sum_i rac{1}{\sigma_i^2} &= 0 \ \sum_i rac{n_i}{\sigma_i^2} &= p_0\sum_i rac{1}{\sigma_i^2} \ p_0 &= \sqrt{2irac{n_i}{\sigma_i^2}} \ \hline \sum_i rac{n_i}{\sigma_i^2} &= \sqrt{2irac{n_i}{\sigma_i^2}} \ \hline \sum_i rac{1}{\sigma_i^2} \ \hline \end{pmatrix}$$

Solving for the Uncertainty

Note that $\Delta\chi^2=a(\delta p_0)^2$ where $a=\frac{1}{2}\frac{d^2}{dp_0^2}\chi^2\approx 0.23$. Furthermore, note that $a\sigma_{p_0}^2=1$. Solving for σ_{p_0} gives us $\sigma_{p_0}=0.877$.

Discussion II

The expressions obtained for p_0 and σ_{p_0} are exactly those obtained from inverse variance weighting!