Project 2 Proposal

Marina Dunn

July 27, 2020

1 Introduction

Near-Earth objects (NEOs) are any small extraterrestrial bodies, mainly comets and asteroids, whose orbit around the Sun brings them gravitationally close to Earth. Recently, the NEO comet NEOWISE, can be seen visibly in the night sky as it passed close to Earth on its orbit, and will not do so again for almost another 70,000 years. There are hundreds of thousands of NEOs, and while they are interesting objects for scientific observation and study, they also sometimes pose a risk. Since the discovery of NEOs, scientists have realized the danger a collision with potentially hazardous asteroids (PHAs) could present, such as the Cretaceous—Paleogene extinction event, and have launched initiatives to discover and monitor them more closely. In space, hundreds of thousands of kilometers is a hairline margin. The Jet Propulsion Laboratory's Center for NEO Studies (CNEOS) was created from NASA's Planetary Defense Coordination Office to assess the trajectories of these comets and asteroids, and encourage ideas about methods to deflect them. We use a dataset from CNEOS to research the attributes of asteroids (size, shape, orbit), and make inferences on potential NEOs in the solar system, and those possibly around other Sun-like stars.

2 Background

We utilized data from the Small-Body Database (SBDB) organized by the Jet Propulsion Laboratory, a national research facility operated by the California Institute of Technology. Our dataset contains characteristics about both near-earth and potentially hazardous asteroids, which help us understand their formation and evolution, possibly around similar type stars as well. There are approximately 990,040 rows and 25 columns.

The following are common fields used to describe Solar System bodies that we may use for analysis:

- i: measure of inclination, or how far above or below object is from the ecliptic plane (in degrees)
- e: eccentricity is a measure of how much an elliptical orbit deviates from a circular orbit (unitless)
- a: the semi-major axis in Astronomical Units (AU), or the distance to object from the Sun

- q: perihelion distance in Astronomical Units (AU), the distance when the object is closest to the Sun in its orbit
- Q: aphelion distance in Astronomical Units (AU), the distance when the object is farthest to the Sun in its orbit
- H: absolute magnitude, or how bright the object is from a designated distance
- Diameter of the object if known (in kilometers)

We use the pandas package to filter and group the data to see spatially where clusters of the asteroids reside, and what kinds of asteroids are most prominent. We will also show what it means for a NEO to be potentially hazardous. We will compare the results with various academic papers to see what kinds of trends exist for known asteroids and discuss what factors are still unknown.

References

- [1] Binzel R. P., DeMeo F. E., Turtelboom E. V., Bus S. J., Tokunaga A., Burbine T. H., Lantz C., Polishook D., Carry B., Morbidelli A., Birlan M., Vernazza P., Moskovitz N., Slivan S. M., Thomas C. A., Rivkin A. S., Hicks M. D., Dunn T., Reddy V., Sanchez J. A., Granvik M. and Kohout T. Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS, 2020, Icarus, 324, 41-76, 2009; arXiv:2004.05090. DOI: 10.1016/j.icarus.2018.12.035.
- [2] Joseph R. Masiero, Patrice Smith, Lean D. Teodoro, A. K. Mainzer, R. M. Cutri, T. Grav and E. L. Wright. Physical Properties of 299 NEOs Manually Recovered in Over Five Years of NEOWISE Survey Data, 2020; arXiv:2003.14406.
- [3] P. S. Zain, G. C. de Elía and R. P. Di Sisto. New multi-part collisional model of the main belt: The contribution to near-Earth asteroids, 2020, A&A 639, A9 (2020); arXiv:2005.12858. DOI: 10.1051/0004-6361/202037458.

Figure 1: A visual representation of perihelion and aphelion distance for an object in solar orbit. Both are functions of the semi-major axis and eccentricity. These common characteristics are usually more constrained than size or composition because they can more easily be observed/calculated. (Taken from http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html)

full name				node	Peri	a	0	per_y	data am	condition code	n obs used in del obs used	n don obs used	н	diameter	extent s	Ihedo r	nt ner	SM RV	LIR II	R spec B	sner
Oumuamua (A/2017 U1)	-1.27234500742808	1 201122706102270	122 7417062847200			0.2559115812959120	4	her."3	80	condition_code	207	II_GOP_GOS_GSEG	22.08	diameter	extent a	ioedo i	7.937	JM DY	00 8	apec_b	apec
1927 LA)	3.344071475534310				341.10951009		4 450714900710000	6 11525207505409	34		3		11.0			_	11001	-		+	+
1935 UZ)	2.15751129807725				281.1885944073110	1.615350129193600		3.16911369505468	- 4	9	2		11.0			-		-		+	+
(1937 CK)	2.320183991729070					2.001337762368600		3.53420584906365	31		2					_		-		+	+
(1939 RR)	2.9046747	0.1374220209903290	13.13929	322.99733	64.83753	2.1678040		4.95056142039699	27		2		12.0			_		-		+	+
(1942 RH)	2.257215529562660					1.929188618262130			10		4		13.8			_		-		+	+
(1960 SB1)	3.008002289914820	0.5308469322101570			218.6315135877750	1.411213502232410			4	9	6		17,222					_		+	+
(1979 MW5)	3.188524902735170		9.393654454063780		161.0505076533200				-	9	3		16.05			-		-		+	+
(1979 XB)	2.228139446564490	0.7084572219505030				0.6495979641330820			- 4	9	18		18.6			_	_	-		+	+
(1981 EG6)	2.906377618262230	0.2989181959012170				2.037608464003610		4.95491561807045	38				17,267			_		-		+	+
(1961 EN35)	2.380254360475430	0.2113372345003600			12.35113202318250		2.883290734425730		14114		127		17.3			_		-		+	+
(1961 EN33)	2.595755343685970					1.950535352421860		4.18219075225249	30		6		15.0			_		-		+	+
(1961 EO47)	3.648792355329230					1.127210258594570			12766		72		18,1			_		-		+	+
									7852		67		19,3		_	-	_	_		+	+-
(1983 LC) (1983 QC)	2.601034380379270					0.7412237491705240			12535		40		18,1		_	-	_	_		+	+-
	2.591031874791200					1.465162457739900					149				_	-	_	_		+	+-
(1984 QL1) (1986 JE)	3.294906455853890	0.4999418774269300			201.0043938122210				12722		149		15.6		_	-	_	_		+	+-
(1986 JE) (1986 NA)	1.932941554517340					1.778326963233340			10029		30		19.8		_	-	_	-		+	+-
(1986 NA) (1988 NE)	2.248372276224350	0.4423411157180490							9961	0	98		19.8		-	-		-		+	+
	3.008234328399450				46.72065460401960	1.963377561362300			11495		323		16.7		-	-		-		+	+
(1988 PF1)															-	-	-	-	-	+	+
(1988 RH9)	2.632904501594110				39.58564549995120	1.834357056071170			11		21		11.063			-	-	-	-	-	-
(1989 AZ)	1.647604427109200	0.4682069333121280				0.8761846109809170			6971		129 0	1	19.6			-	_	-	-	-	-
(1989 FR)	3.20293682723145					2.399049928092880		5.7323244265832	2	_	6		13.163		_	-	-	-	-	+	-
(1990 OK5)	3.1671807	0.0485816	16.48233	149.24058	82.29764	3.0133140		5.63660310718686		0	49		16.4		-	-	_	-	-	-	-
(1990 UN)	1.709865162751570								15		22		23.5		_	-	_	-	-	-	-
(1991 BA)	2.187712559985850					0.7153261860329260				9	7		28.6		_	-	_	-		+	-
(1991 GK)	2.417390449983160	0.4066086997546850					3.400322437650210		8	9	12		19.902			-	_	-		+	-
(1991 GO)	1.925133070302190					0.6640851583988040			8788		86		20.0			_		-	-	+	+
(1991 JR)	1.405706233823010				206.9996952548830		1.772546440595870	1.66667168946647	11		20		23.4			_		_		-	-
(1991 RN28)	2.2459528	0.2330746	6.20213	152.94720	205.86183	1.7224782		3.36596156057495		2	35		19.2			_				+	\perp
(1991 RY42)	2.966777845281970				13.44846083555730	2.451354394774850			10454		85		16.4			_				+-	\perp
(1991 SU3)	2.567553082425470				238.5768693998040	2.204180127161410			9725		105		16.9			_				+	\perp
(1991 TD17)	2.570402582484360	0.1484707764242460							10176		111		16.9							-	\perp
(1991 TE17)	2.326659004491470	0.249197324632289	7.526461125908240	201.9250069604900	112.9535731996240	1.746861805240570	2.906456203742370	3.54901070060184	10183	0	109		17.9								

Figure 2: A small sample portion of initial dataset before adjustments.