- CC1-S1 -

- 2018-2019

CORRECTION - ANALYSE -

Exercice 1

Déterminer la nature et la somme éventuelle des séries de terme général :

1.

$$u_n = e^{\frac{1}{n}} - e^{\frac{1}{n+2}}$$

$$\forall n \in \mathbb{N}^*, \ U_n = \sum_{k=1}^n u_k = \sum_{k=1}^n e^{\frac{1}{k}} - \sum_{k=1}^n e^{\frac{1}{k+2}} = \sum_{k=1}^n e^{\frac{1}{k}} - \sum_{k=3}^{n+2} e^{\frac{1}{k}} = e^1 + e^{\frac{1}{2}} - e^{\frac{1}{n+1}} - e^{\frac{1}{n+2}}. \text{ Ainsi } \lim_{n \to +\infty} U_n = e + \sqrt{e}.$$

On conclut que, par définition, $\sum e^{\frac{1}{n}} - e^{\frac{1}{n+2}}$ converge et $\sum_{n=1}^{+\infty} e^{\frac{1}{n}} - e^{\frac{1}{n+2}} = e + \sqrt{e}$.

2.

$$w_n = a^{2n+1}, \quad a \in \mathbb{R}$$

$$\forall n \in \mathbb{N}, \ V_n = \sum_{k=0}^n v_k = a \sum_{k=0}^n (a^2)^k.$$

On reconnaît la somme partielle d'indice n d'une série géométrique de raison a^2 . Par conséquent :

Si
$$a^2 < 1$$
 alors $\sum a^{2n+1}$ converge et $\sum_{n=0}^{+\infty} a^{2n+1} = \frac{a}{1-a^2}$.

Si $a^2 \ge 1$ alors $\sum a^{2n+1}$ diverge.

Exercice 2

Montrer que la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n}}$ est convergente.

Pour cela, si on nomme U_n la somme partielle d'indice n, on étudiera (U_{2n}) et (U_{2n+1}) .

Posons $\forall n \in \mathbb{N}^*, \ U_n = \sum_{k=1}^n u_k$. Soit $n \in \mathbb{N}^*$.

- D'une part,
$$U_{2n+2} - U_{2n} = u_{2n+2} + u_{2n+1} = \frac{(-1)^{2n+2}}{\sqrt{2n+2}} + \frac{(-1)^{2n+1}}{\sqrt{2n+1}} = \frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{2n+1}} < 0$$
 et (U_{2n}) est décroissante.

- D'autre part,
$$U_{2n+3} - U_{2n+1} = u_{2n+3} + u_{2n+2} = \frac{(-1)^{2n+3}}{\sqrt{2n+3}} + \frac{(-1)^{2n+2}}{\sqrt{2n+2}} = \frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{2n+3}} > 0$$
 et (U_{2n+1}) est croissante.

- Enfin,
$$|U_{2n+1} - U_{2n}| = |u_{2n+1}| = \frac{1}{\sqrt{2n+1}}$$
, donc $\lim_{n \to +\infty} |U_{2n+1} - U_{2n}| = 0$.

De ces trois points, on conclut que (U_{2n}) et (U_{2n+1}) sont adjacentes, puis qu'elles convergent vers la même limite et enfin, que ce dernier point implique que (U_n) est convergente. Donc par définition, $\sum \frac{(-1)^n}{\sqrt{n}}$ converge.

Exercice 3

 $(a_n)_{n\in\mathbb{N}^*}$ désigne une suite de réels non nuls. On définit les suites (u_n) et (p_n) par

$$\forall n \in \mathbb{N}^*, \ p_n = \prod_{k=1}^n a_k = a_1 a_2 \cdots a_n$$
 et $a_n = 1 + u_n$

Lorsque la suite (p_n) converge, on note p sa limite.

1. Donner un exemple de suite (a_n) telle que (p_n) converge vers 0.

Par exemple $(a_n)_{n\in\mathbb{N}^*}$ suite constante égale à $\frac{1}{2}$ donne $\forall n\in\mathbb{N}^*,\ p_n=\left(\frac{1}{2}\right)^{n-1}$ et $(p_n)_{n\in\mathbb{N}^*}$ tend bien vers 0.

 $\mathrm{Sp\'{e}}\ \mathrm{PT}$

2. Montrer que si (p_n) converge vers une limite p non nulle, alors (a_n) converge vers 1.

 $\forall n \in \mathbb{N}^*, \ a_n \neq 0 \text{ donc } \forall n \in \mathbb{N}^*, \ p_n \neq 0.$ Et comme $\forall n \geq 2, \ a_n = \frac{p_n}{p_{n-1}}$, en passant à la limite qui existe puisque $p \neq 0$, on obtient bien $\lim_{n \to +\infty} a_n = \frac{p}{n} = 1$.

3. On suppose dans cette question que

$$\exists n_0 \in \mathbb{N}^*, \ \forall n \ge n_0, \ a_n > 0$$
 et on pose $\forall n > n_0, \ q_n = \prod_{k=n_0+1}^n a_k$

a. Pour $n > n_0$, exprimer q_n en fonction de p_n et de p_{n_0} .

$$\forall n > n_0, \ p_n = \prod_{k=1}^n a_k = \prod_{k=1}^{n_0} a_k \prod_{k=n_0+1}^n a_k = p_{n_0} q_n \text{ puis } \forall n > n_0, \ q_n = \frac{p_n}{p_{n_0}}.$$

b. Montrer que si la série $\sum_{n>n_0} \ln(a_n)$ converge alors la suite (p_n) converge puis que $p \neq 0$.

$$\forall n > n_0, \ \ln(q_n) = \sum_{k=n_0+1}^n \ln(a_k).$$

Comme la série $\sum \ln{(a_n)}$ converge, la suite de ses sommes partielles converge, et donc $(\ln(q_n))$) admet une

limite finie l. La continuité de la fonction exponentielle implique que (q_n) converge e^l qui est un réel non nul. Enfin, comme $\forall n > n_0, \ p_n = p_{n_0}q_n$, on conclut que (p_n) converge vers $p = p_{n_0}e^l$ qui est non nul car $p_{n_0} \neq 0$.

c. On suppose que la suite des sommes partielles de la série $\sum_{n\geq n_0} \ln(a_n)$ diverge vers $+\infty$ ou $-\infty$. Que peut-on dire dans ces deux cas du comportement de la suite (p_n) ?

- Si la série $\sum \ln{(a_n)}$ diverge vers $+\infty$, la suite de ses sommes partielles diverge vers $+\infty$, et donc $(\ln{(q_n)})$ diverge vers $+\infty$. Puis par composition, (q_n) diverge vers $+\infty$.

Comme $\forall n > n_0, \ p_n = p_{n_0}q_n$, on conclut que (p_n) diverge vers $+\infty$ ou $-\infty$ selon le signe de $p_{n_0} \neq 0$.

- Si la série $\sum_{n\geq n_0} \ln{(a_n)}$ diverge vers $-\infty$, la suite de ses sommes partielles diverge vers $-\infty$, et donc $(\ln{(q_n)})$

diverge vers $-\infty$. Puis par composition, (q_n) converge vers 0. Comme $\forall n > n_0, \ p_n = p_{n_0}q_n$, on conclut que (p_n) converge vers 0 par produit.

4. On suppose dans cette question que $\forall n \in \mathbb{N}^*, u_n \geq 0$.

Démontrer que la suite (p_n) converge vers p > 0, si et seulement si la série $\sum u_n$ converge.

Soit
$$n \in \mathbb{N}^*$$
. $u_n \ge 0$ implique $a_n \ge 1$ et $p_n > 0$ puis $\ln(p_n) = \sum_{k=1}^n \ln(1 + u_k)$.

 \Rightarrow Si on suppose que (p_n) converge vers p non nul, alors p étant un réel strictement positif et tous les termes de la suite étant strictement positifs, $(\ln(p_n))$ converge vers $\ln(p)$. Donc la suite des sommes partielles de la série $\sum \ln (1 + u_n)$ est convergente et son terme général tend vers 0. Donc (u_n) tend elle-même vers 0, et on peut écrire $\ln (1 + u_n) \underset{n \to +\infty}{\sim} u_n$.

Or tous les termes étant positifs, les séries correspondantes sont de même nature et $\sum u_n$ converge.

 \Leftarrow Si on suppose maintenant que $\sum u_n$ converge, alors (u_n) tend encore vers 0, donc l'équivalent précédent reste valable et la série $\sum \ln{(1+u_n)}$ converge pour les mêmes raisons. Puis, la suite $(\ln(p_n))$ converge vers une limite l et (p_n) converge enfin vers $p = e^l$ qui vérifie bien p > 0.

Spé PT Page 2 sur 3

- 5. On suppose dans cette question que la série $\sum u_n$ converge.
 - **a.** Montrer que si la série $\sum u_n^2$ converge, alors la suite (p_n) converge et $p \neq 0$.

$$\sum u_n \text{ converge donc } (u_n) \text{ converge vers } 0 \text{ et ainsi } \ln(a_n) = \ln(1+u_n) \underset{n\to+\infty}{=} u_n - \frac{u_n^2}{2} + \underbrace{\circ \left(u_n^2\right)}_{n}.$$

Comme par hypothèse, $\sum u_n^2$ converge, alors $\sum \epsilon_n$ converge et donc, par linéarité, $\sum \ln{(a_n)}$ converge et par le 3.b, on conclut que (p_n) converge vers $p \neq 0$.

b. Montrer que si la série $\sum u_n^2$ diverge, alors la suite (p_n) converge et p=0.

De la même manière, $\sum u_n$ converge donc (u_n) converge vers 0 et ainsi

$$\ln(a_n) = \ln(1+u_n) = u_n \underbrace{-\frac{u_n^2}{2} + \circ(u_n^2)}_{\epsilon_n}$$
. Comme par hypothèse, $\sum u_n^2$ diverge, alors $\epsilon_n \sim -\frac{u_n^2}{2}$ implique que $\sum \epsilon_n$ diverge vers $-\infty$ et donc, par linéarité, $\sum \ln(a_n)$ diverge vers $-\infty$ et par le 3.c, on conclut que (p_n) converge vers 0 .

- 6. Etudier la convergence et déterminer alors la limite éventuelle de (p_n) dans les cas suivants :
 - **a.** $a_n = 1 + \frac{1}{n}$

 $\forall n\geq 1,\ u_n=\frac{1}{n}\geq 0\ \mathrm{donc}\ \sum u_n\ \mathrm{diverge}\ \mathrm{et}\ \mathrm{d'après}\ \mathrm{le}\ 4.,\ (p_n)\ \mathrm{diverge}\ (\mathrm{vers}\ +\infty).$ On peut aussi montrer (avec un télescopage) que $\forall n\geq 1,\ p_n=n+1.$

b.
$$a_n = 1 + \frac{(-1)^n}{\sqrt{n}}$$

 $\forall n \geq 1, \ u_n = \frac{(-1)^n}{\sqrt{n}}$ donc d'après l'exercice 2, $\sum u_n$ converge. De plus $\forall n \geq 1, \ u_n^2 = \frac{1}{n}$ et $\sum u_n^2$ diverge. Donc d'après la question 5.b, (p_n) converge vers 0.

Spé PT Page 3 sur 3