

Власов Александр Александрович ИУ5-63Б Вариант 6

Корреляционный анализ набора данных о поступлении

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

Загрузка данных

```
In [2]: # Загружаем данные
df = pd.read_csv('Admission_Predict_Verl.1.csv')
print("Размер датасета:", df.shape)
df.head()
```

Размер датасета: (500, 9)

Out[2]:			GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
	0	1	337	118	4	4.5	4.5	9.65	1	0.92
	1	2	324	107	4	4.0	4.5	8.87	1	0.76
	2	3	316	104	3	3.0	3.5	8.00	1	0.72
	3	4	322	110	3	3.5	2.5	8.67	1	0.80
	4	5	314	103	2	2.0	3.0	8.21	0	0.65

Проверка на пропуски в данных

```
In [3]: # Проверяем наличие пропусков
print("Количество пропусков в каждой колонке:")
print(df.isnull().sum())
```

```
Количество пропусков в каждой колонке:
,Serial No. 0
,GRE Score 0
,TOEFL Score 0
,University Rating 0
,SOP 0
,LOR 0
,CGPA 0
,Research 0
,Chance of Admit 0
,dtype: int64
```

Корреляционный анализ

```
In [4]: # Создаем корреляционную матрицу
    correlation_matrix = df.corr()

# Строим тепловую карту корреляций
    plt.figure(figsize=(12, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
    plt.title('Koppeляционная матрица признаков')
    plt.show()

# Выводим корреляции с целевой переменной
    print("\nKoppeляции с Chance of Admit:")
    correlations_with_target = correlation_matrix['Chance of Admit '].sort_values(
    print(correlations_with_target)
```


Выводы

,Research

,Serial No.

1. Анализ пропусков:

,Name: Chance of Admit , dtype: float64

- В данных отсутствуют пропущенные значения, что является хорошим показателем качества датасета.
- 2. Корреляционный анализ:

0.545871

0.008505

• Самую сильную положительную корреляцию с целевой переменной (Chance of Admit) имеют:

- CGPA (Средний балл)
- GRE Score (Результат GRE)
- TOEFL Score (Результат TOEFL)
- Умеренную положительную корреляцию показывают:
 - University Rating (Рейтинг университета)
 - SOP (Мотивационное письмо)
 - LOR (Рекомендательные письма)
- Research (Наличие исследовательского опыта) имеет слабую положительную корреляцию
- 3. Выводы для построения моделей машинного обучения:
 - Датасет хорошо подходит для построения моделей ML, так как:
 - Отсутствуют пропущенные значения
 - Присутствуют сильные корреляции с целевой переменной
 - Признаки имеют разную степень влияния на целевую переменную
 - При построении моделей особое внимание стоит уделить признакам с сильной корреляцией
 - Возможно возникновение мультиколлинеарности между GRE Score и TOEFL Score