1. Create a hierarcy structure of problem					
2. Create Comparison					
3. Making Comparison Matrix					
	Response Tim	Throughput	Availability	Reliability	Cost
Response Time	1	1	0.1667	0.125	0.3333
Throughput	1	1	0.1429	0.1111	0.1667
Availability	6	7	1	1	7
Reliability	8	9	1	1	9
Cost	3	6	0.1429	0.1111	1
4. Compute Priority Vector.					
4.1 First, sum each column of reciprocal matrix.					
sum	19.00	24.00	2.45	2.35	17.50
4.2 Divide each element of the matrix with the sum of its	column				
	Response Tim	Throughput	Availability	Reliability	Cost
Response Time	0.0526	0.0417	0.0680	0.0533	0.0190
Throughput	0.0526	0.0417	0.0583	0.0473	0.0095
Availability	0.3158	0.2917	0.4077	0.4260	0.4000
Reliability	0.4211	0.3750	0.4077	0.4260	0.5143
Cost	0.1579	0.2500	0.0583	0.0473	0.0571
4.3 Then normalized principal eigen vector can be obtain	ned by averaging across the row (w)				
Response Time		0.0469	0.045		
Throughput		0.0419	0.0371		
Availability	0.2	0.3682	0.3791		
Reliability		0.4288	0.444		
Cost		0.1141	0.0974		
		ori val	updated val		
Check consistency using principal eigen value					

Principal eigen value is obtained from the summation of	f product between each element of	eigen vector and sum of c	columns of reciprocal matrix	
n = 5				
lambdaMax (LM)	sum(w_i*rec_matrix)	5.42		
Degree of consistency (Consistensy Ration) : CI	(LM-n)/(n-1)	0.11		
We use table ratio index (RI)				
Since n=5 therefore	RI	1.12		
Consitency Ratio (CR)	CI/RI	0.09415168527		
If the value of consistency is smaller than or equal to 10	%, therefore the subjective judgen	nent is consistent		