# **SmartFridge**

1. Vision produit (Smart Fridge x Drive)

#### But:

- Ne jamais oublier d'acheter un produit du quotidien.
- Automatiser la liste de courses sans interaction humaine.
- Gagner du temps et réduire le stress mental ("faut que je pense au lait").

### Comment ça marche:

- 1. Le frigo surveille son contenu en temps réel (caméra interne + IA de vision).
- 2. Quand un produit disparaît ou passe en "niveau bas", l'info remonte.
- 3. L'appli génère/alimente automatiquement le panier de courses du drive (ex : E.Leclerc Drive).
- 4. L'utilisateur valide ou modifie avant commande.

### Valeur client directe:

- plus de rupture de stock chez toi.
- plus besoin de lister manuellement.
- suivi des consommations (ex: tu vois ce que tu consommes trop/souvent → éco, diète, etc.).
- option santé / expiration plus tard.

#### Positionnement:

→ Frigo connecté milieu/haut de gamme, orienté confort + automatisation courses familiales.

On ne vend pas juste un frigo, on vend un assistant d'achats alimentaires.

#### \_\_\_

- 1. Fonctionnalités majeures
- 2.1. Caméra interne + IA de reconnaissance visuelle
- Caméra(s) intégrée(s) dans le frigo.
- L'IA détecte et identifie les produits présents (ex : bouteille de lait demi-écrémé).
- L'IA suit la quantité (ex : yaourt pack de 8 → reste 1).
- L'IA détecte "retrait produit": si tu prends le dernier yaourt et tu le sors, le système sait qu'il est fini, pas juste "sorti du frigo pour 10 sec".

### Points critiques:

- gestion des emballages ouverts / restes maison (tupperware sans étiquette)
- gestion des produits non standards (plat fait maison : pas vendable en drive → donc ignoré pour le réassort automatique).
- 2.2. Gestion du seuil de réapprovisionnement
- Pour chaque produit, il y a un seuil configuré.
  - o Ex: "Lait: si reste < 1 brique → rajoute au panier".
- Par défaut on propose des seuils automatiques (apprentissage usage dans le temps pour chaque foyer).
- 2.3. Synchronisation panier Drive
- Intégration avec l'API du drive (ici on prend E.Leclerc comme 1er partenaire cible dans le pitch).
- Dès qu'un produit passe sous le seuil, on l'ajoute automatiquement au panier "prochaines courses"
- L'utilisateur peut ouvrir l'app et voir le panier prêt.

- En un clic: validation → créneau de retrait drive.
- 2.4. Historique / traçabilité
- Liste horodatée : "17/10 : beurre ajouté (rupture détectée)".
- Utile pour comprendre / corriger si l'IA a mal compris.
- 2.5. Mode manuel override
- L'utilisateur peut dire "non je ne veux plus de Coca, arrête d'en recommander".
- Période de pause produit (genre Dry January → pas de bière auto-ajoutée).
- 2.6. (Optionnel plus tard) Gestion des dates de péremption
- Scan de la DLUO/DLC via vision ou code-barres.
- Avertissement "le jambon périme demain".
- Réduction du gaspillage → argument écologique.

Tu vois : ça donne aussi un argument marketing "frigo anti-gaspi / budget optimisé".

- 1. Architecture technique (version courte et compréhensible pour jury)
- 3.1. Côté frigo (IoT embarqué)
- Caméra interne HD grand angle (résistance au froid / condensation).
- Un module compute local (edge AI) qui fait une première détection d'objets.
  - → Avantage : pas besoin d'envoyer en permanence la vidéo brute dans le cloud, donc vie privée
  - + bande passante.
- Connectivité Wi-Fi.
- 3.2. Cloud
- Le frigo envoie uniquement des métadonnées :
  - o "Produit: Lait 1L Marque X, Qté estimée : 0"
  - "Statut: RUPTURE"
- Le cloud met à jour l'état du stock virtuel du frigo.
- 3.3. Application mobile
- Vue inventaire actuel du frigo.
- Vue "manque" = liste des prochains achats.
- Panier Drive synchronisé.
- 3.4. Intégration partenaire Drive (E.Leclerc)
- Mapping interne entre "produit détecté" et "référence EAN article Drive".
- Ajout auto ligne/panier.
- Préparation de la commande.

Point sensible : il te faudra un catalogue produits du Drive (références, conditionnements, marques). Ça c'est une vraie contrainte business.

1. Ressources humaines (profils-personas à prévoir dans ton livrable skills)

Tu peux sortir direct ces personas dans groupname\_skills (1 page chacun):

- 1. Computer Vision / IA Engineer
  - Mission : entraîner et améliorer le modèle de reconnaissance d'objets dans le frigo, gestion quantités, seuils.
  - Compétences clés : vision par ordinateur, classification d'images, détection d'objets, <u>edge</u> Al, optimisation embarquée.
- 2. Embedded Systems / IoT Engineer
  - Mission : intégrer caméra + module de calcul dans le frigo, assurer la connectivité, robustesse en environnement froid/humide.
  - Compétences : électronique embarquée, capteurs, <u>firmware</u> bas niveau, énergie, Wi-Fi sécurisé.
- 3. Mobile / Backend Developer
  - Mission: app mobile + backend cloud + synchro avec l'API du Drive.
  - Compétences: API REST, sécurité, gestion comptes utilisateurs, panier, notifications.
- 4. Business & Partenariats Retail
  - Mission: négocier l'accès aux catalogues produits Drive, définir les marges, convaincre une enseigne pilote.
  - Compétences : négociation B2B retail, pricing, go-to-market.
- 5. Chef de Projet / Product Owner
  - Mission: piloter planning, budget, risques, communication interne / direction.
  - Compétences : gestion de projet, Gantt, suivi risques, reporting.
- 6. Sécurité / Privacy Officer (même si c'est part-time au début)
  - Mission : conformité RGPD, usage des images, sécurité des données frigo → cloud → drive.
  - Compétences : cybersécurité IoT, conformité données perso.

Ces 6 profils couvrent : technique, produit, business, conformité. C'est carré pour l'école.

1. Risques majeurs (pour groupname\_risks )

Risque #1: Mauvaise reconnaissance produit

- Problème : l'IA confond "lait entier bio Carrefour" avec "lait demi-écrémé Marque Repère".
- Impact : panier Drive faux → client gueule → perte de confiance. Impact élevé.
- Probabilité : moyenne au début.
- Mitigation: phase d'apprentissage supervisé par l'utilisateur ("corriger le produit détecté"), amélioration IA avant déploiement massif.
- Conséquence Gantt : rallonger la phase prototype/test utilisateur avant industrialisation.

Risque #2 : Dépendance à un seul partenaire Drive

- Problème : si Leclerc refuse ou change l'API, le frigo perd sa killer feature.
- Impact : commercial énorme.
- Probabilité : moyenne.
- Mitigation : dès le départ, architecture d'intégration "multi-<u>retailers</u>" (Leclerc, Carrefour, Intermarché...) pour réduire le risque business.
- Conséquence Budget : + coût équipe business + dev d'intégrations multiples.

Risque #3: Vie privée / RGPD

• Problème : perception "il y a une caméra chez moi connectée à un supermarché".

- Impact : frein adoption marché. Très élevé.
- Probabilité : élevée (les gens sont méfiants).
- Mitigation : traitement IA en local, pas d'image brute envoyée au cloud, politique claire ("on n'enregistre pas de vidéo, jamais"). Communication marketing transparente.
- Conséquence Communication: il faut produire un message rassurant pour le <u>board</u> et pour les clients, et ça doit entrer dans le plan de <u>comm</u>'.

Tu pourras coller ça directement dans le PDF risques avec probabilité / impact / mitigation.

\_\_\_

1. Planning (brouillon Gantt pour groupname\_gantt )

Phase 1 — Proof of Concept (PoC)

- Étude marché / besoins clients
- Définition fonctionnelle du frigo intelligent
- Analyse technique faisabilité (caméra interne, IA embarquée, connectivité)
- Premiers contacts retail pour accès catalogue produits Drive
  - → Livrable attendu école : "Proof of Concept"

Phase 2 — Prototype / Pilote

- Dev prototype caméra + IA de reconnaissance (sur un frigo modifié)
- Dév backend + appli mobile (inventaire + panier auto)
- Intégration API Drive test (panier auto)
- Tests utilisateurs pilotes (quelques familles réelles)
  - → Livrable attendu école : "Prototype/Pilot (appli en bêta)"

Phase 3 — Industrialisation / Commercialisation

- Industrialisation hardware (intégrer proprement le module caméra dans un frigo de série)
- Sécurisation juridique / RGPD
- Négociation commerciale enseignes
- Préparation communication marketing ("frigo = assistant courses")
  - → Livrable attendu école : "Industrialisation / Commercialisation"

Important pour ton Gantt:

- Tu ajoutes aussi VOS propres tâches d'équipe projet (rédaction budget, risques, com interne/externe, etc.), pas seulement le produit.
- Et tu prévois itérations (le doc insiste : mise à jour continue → tu montres des boucles de revue).

Conclusion pour toi

Tu as déjà ton angle différenciant :

"Frigo connecté qui refait tes courses automatiquement en drive dès que tu vides un produit."

C'est ultra vendable en jury parce que :

- c'est concret
- c'est compréhensible par n'importe qui
- c'est monétisable (partenariats distributeurs)
- ça règle un vrai problème quotidien

# Smart Fridge – Project Workspace

Objectif: créer un réfrigérateur connecté capable d'ajouter automatiquement les produits manquants dans le panier Drive Leclerc, grâce à une caméra IA embarquée et une appli mobile connectée.

### 1. Vision & Contexte

#### Problème à résoudre

Les foyers oublient souvent de racheter des produits de base (lait, beurre, œufs).

Faire les courses est chronophage et répétitif.

### Solution proposée

Un frigo connecté à une application Drive (ex : E.Leclerc), capable de :

- détecter les produits présents via caméra + IA,
- savoir quand un produit est vide ou manquant,
- · l'ajouter automatiquement au panier Drive,
- permettre à l'utilisateur de valider/retirer les articles avant commande.

### Valeur ajoutée

- Gain de temps et confort quotidien.
- Plus d'oublis → plus de ruptures.
- · Suivi consommation et gaspillage.
- Image "éco / tech / confort moderne".

### Public cible

Foyers actifs, familles, jeunes cadres, technophiles, couples pressés.

Marché: B2C grand public (via distributeur), avec possibilité B2B (résidences connectées, Airbnb premium).



### 2. Fonctionnalités clés

#### a. Vision IA

- Reconnaissance d'objets en environnement variable (froid, éclairage).
- Identification produit (ex: lait, œufs, yaourt).
- Estimation quantité restante.

### b. Détection de seuil

- Déclenchement d'un réapprovisionnement automatique à seuil paramétrable.
- Exemple: "Quand il reste moins d'1 pack de lait → ajoute au Drive".

### c. Intégration Drive Leclerc

- Connexion via API (ajout automatique au panier).
- Vérification références EAN / produit / marque.
- Synchronisation bidirectionnelle : app ↔ frigo ↔ drive.

### d. Application mobile

- Vue inventaire du frigo.
- Historique des ajouts automatiques.
- Gestion du panier.
- Paramètres IA (seuils, produits exclus, etc.).

### e. (Option) Dates de péremption

- Détection ou scan manuel DLC.
- Notifications avant expiration.

### 3. Architecture technique

### Côté frigo (Edge computing)

- Caméra HD grand angle.
- Microprocesseur embarqué (Jetson Nano / Raspberry Pi 5).
- IA locale → analyse images sans cloud (respect vie privée).
- Wi-Fi + API sécurisée (HTTPS + token auth).

### Côté cloud

- Base de données produits.
- Moteur d'auto-complétion catalogue Drive.
- Interface API vers Drive E.Leclerc.

### Côté app mobile (React Native / Flutter)

- Interface utilisateur (inventaire, panier, notifications).
- Authentification utilisateur (OAuth2).
- Communication temps réel avec le frigo.

## 4. Équipe & Compétences

| Rôle             | Profil / Persona                   | Compétences clés                             |
|------------------|------------------------------------|----------------------------------------------|
| !A Engineer      | Spécialiste vision par ordinateur  | TensorFlow / PyTorch / YOLO /<br>Edge Al     |
| NoT Engineer     | Systèmes embarqués et connectivité | Raspberry / capteurs / C / Python            |
| Mobile Developer | App mobile + backend               | React Native / API REST / Auth               |
| Product Owner    | Gestion globale du projet          | Gantt / budget / reporting / communication   |
| Business Dev     | Partenariats <u>retail</u>         | Négociation / API Leclerc / go-to-<br>market |
| Privacy Officer  | Sécurité & RGPD                    | IoT security / CNIL / anonymisation          |

Livrable associé: groupname\_skills.pdf

### 5. Ressources nécessaires

| Туре             | Détail                                 | Quantité | Remarques               |
|------------------|----------------------------------------|----------|-------------------------|
| Caméras internes | 1080p grand angle résistantes au froid | 3        | Prototype               |
| Modules IA       | Jetson Nano / Pi 5                     | 2        | Edge Al                 |
| Cloud            | Serveur API + base produits            | 1        | AWS / OVH               |
| Outils Dev       | IDE, licences TensorFlow / React       | _        | Open source si possible |
| Matériel test    | Réfrigérateur standard modifié         | 1        | Phase prototype         |
| Formation IA     | Modèles de détection objets            | _        | Interne                 |
| Accès API Drive  | Sandbox E.Leclerc                      | _        | À négocier              |

Livrable associé: groupname\_resources.xlsx

# 6. Budget prévisionnel

| Catégorie              | Détail                         | Estimation (€) |
|------------------------|--------------------------------|----------------|
| Matériel prototype     | Caméras + modules + frigo test | 1 200 €        |
| Développement logiciel | App + IA + backend             | 4 500 €        |
| Hébergement / cloud    | OVH / AWS (1 an)               | 500 €          |
| Tests utilisateurs     | Panels + feedback              | 300 €          |
| Communication interne  | Docs, réunions, outils         | 100 €          |
| Divers & marge 10 %    | imprévus                       | 660 €          |
| Total estimé           |                                | ≈ 7 200 €      |

Livrable associé: groupname\_budget.xlsx

# 1. Gestion des risques

| Risque                          | Probabilité | Impact | Solution                                        |
|---------------------------------|-------------|--------|-------------------------------------------------|
| Mauvaise reconnaissance produit | Moyenne     | Élevé  | Phase d'apprentissage + IA locale<br>supervisée |
| API Drive fermée / modifiée     | Moyenne     | Élevé  | Multi-partenaires (Carrefour,<br>Intermarché)   |
| Problèmes RGPD (caméra)         | Élevée      | Élevé  | Aucun stockage vidéo / IA <u>edge-only</u>      |
| Défaillance réseau              | Moyenne     | Moyen  | Cache local + resynchro différée                |
| Dépassement budget              | Faible      | Moyen  | Priorisation agile des <u>features</u>          |

Livrable associé: groupname\_risks.pdf



### A. Communication interne (vers l'équipe projet)

Objet: Gestion et avancement du Smart Fridge Project

Bonjour à tous,

Notre priorité est d'assurer la cohérence entre nos livrables (Gantt, budget, risques).

Merci d'actualiser vos sections avant vendredi midi pour la revue interne.

Le prochain jalon : livraison du prototype IA embarquée.

Cordialement,

Le Product Owner.

### B. Communication externe (vers le board / investisseur)

Objet: Budget request - Smart Fridge Proof of Concept

Madame, Monsieur,

Notre projet Smart <u>Fridge</u>, interconnecté à l'écosystème Drive Leclerc, répond à un besoin fort : automatiser les courses du quotidien.

Nous sollicitons une enveloppe initiale de 7 200 € pour finaliser le prototype et valider la faisabilité technique (IA, IoT, intégration Drive).

Cette étape permettra d'obtenir des données terrain concrètes avant industrialisation.

Cordialement,

L'équipe Smart Fridge.

Livrable associé: groupname\_communication1.pdf & groupname\_communication2.pdf

### 📅 9. Planning Gantt (brouillon)

| Phase        | Durée                                      | Objectif principal   |
|--------------|--------------------------------------------|----------------------|
| Semaine 1-2  | Brainstorming + étude marché               | Proof of concept     |
| Semaine 3-5  | Prototype IA + App mobile (bêta)           | Tests unitaires      |
| Semaine 6-7  | Intégration API Drive + tests pilote       | Validation technique |
| Semaine 8    | Budget final + gestion risques + com board | Livrables complets   |
| Semaine 9-10 | Ajustements / soutenance                   | Présentation finale  |

Livrable associé: groupname\_gantt.xlsx

### **OBJECTIF GLOBAL**

Ton rendu T-CEN-500 doit donner l'impression d'un vrai projet industriel :

- · cohérent, complet, bien documenté,
- · avec un fil conducteur "innovation utile",
- et des livrables interconnectés entre eux (tous renvoient les uns aux autres).

L'idée : que le jury lise le dossier et se dise

"ok, on pourrait réellement lancer ce produit demain."

### 1. STRUCTURE DES LIVRABLES (ordre optimal)

| Livrable         | Nom de fichier                                                             | Objectif                                               | Note pondérée |
|------------------|----------------------------------------------------------------------------|--------------------------------------------------------|---------------|
| Cantt Chart      | smartfridge_gantt.xlsx                                                     | Montrer ta maîtrise du planning & de la logique projet | 20%           |
|                  | smartfridge_skills.pdf                                                     | Montrer ta compréhension RH et profils nécessaires     | 15%           |
| Resources        | smartfridge_resources.xlsx                                                 | Détailler matériel, logiciels,<br>formation            | 10%           |
| § Budget         | smartfridge_budget.xlsx                                                    | Chiffrer sérieusement chaque ressource                 | 15%           |
| ⚠ Risks          | smartfridge_risks.pdf                                                      | Montrer ta capacité à anticiper les emmerdes           | 15%           |
| Communication    | <pre>smartfridge_communication1.pdf + smartfridge_communication2.pdf</pre> | Montre ton leadership et ta capacité à convaincre      | 10%           |
| Soutenance orale | (présentation orale + revue avec<br>tuteur)                                | Prouver que vous maîtrisez tout<br>votre dossier       | 15%           |

## ♣ 2. CHECKLIST EXHAUSTIVE (à cocher une par une)

### Phase 1 — Proof of Concept

- Faire une mini étude de marché :
- 3 concurrents directs (Samsung Family Hub, LG ThinQ, Bosch Home Connect)
- Tableau comparatif: prix, fonctionnalités, failles
  - → conclure sur "il reste une place à prendre : intégration Drive".
- Définir ton positionnement :
- "Smart Fridge = assistant courses familiales automatisé."
- Esquisser ton concept en une phrase ("elevator pitch")
- "Un frigo connecté qui refait tes courses dès que tu vides un produit."
- ✓ Créer un schéma d'architecture simple (frigo → cloud → appli → Drive).
- Livrable à rendre :
- smartfridge\_gantt.xlsx (première version)
- smartfridge\_skills.pdf (personas)

### Phase 2 — Prototype / Beta

- Créer le Gantt complet avec :
- tâches précises, durées, dépendances, responsables
- phase test IA, dev app mobile, intégration Drive, communication interne
  - → Le Gantt doit "vivre" (tu le mets à jour au fur et à mesure)
- ✓ Détaillez les ressources matérielles et logicielles :

- modules IA, caméras, serveurs, API Drive, outils de dev
  - → smartfridge\_resources.xlsx

### Proposer un vrai budget :

- prix réalistes, recherche web, arrondis cohérents
- faire apparaître investissements + coûts récurrents
  - → smartfridge\_budget.xlsx
- ✓ Rédiger 3 risques :
- 1. Échec IA
- 2. API Drive fermée
- 3. RGPD / perception négative
  - → smartfridge\_risks.pdf

### Phase 3 — Industrialisation / Communication

- Faire une page Notion / ou doc PDF final :
- tous les liens croisés (Gantt → budget → risques)
- cohérence totale entre les docs (dates, montants, phases alignées)
- Communication interne :
- e-mail clair, pro, avec planning, ton leadership
  - ✓ Communication externe :
- message au board : concis, crédible, chiffré, vision long terme
  - → smartfridge\_communication1.pdf / 2.pdf

### ☑ Prépare un diaporama pour la revue orale (5-7 slides max) :

- 1. Vision & besoin utilisateur
- 2. Fonctionnement (schéma frigo <-> Drive)
- 3. Marché & positionnement
- 4. Planning & équipe
- 5. Budget & risques
- 6. Avantages concurrentiels
- 7. Message final / "Pourquoi investir"

## 3. LES DÉTAILS QUI FONT LA DIFFÉRENCE

| Critère         | Astuce pour la note maximale                                                                                                               |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Cohérence       | Chaque doc fait référence aux<br>autres (budget correspond au<br>Gantt, risques mentionnent impact<br>sur le Gantt, etc.)                  |
| Réalisme        | Tu cites des prix réels (Amazon,<br>Leclerc, <u>Nvidia Jetson</u> ) et des<br>durées crédibles (semaines/mois).                            |
| Design & clarté | Tous les fichiers sont propres :<br>même typographie, même<br>nommage, en-tête du groupe.                                                  |
| Innovation      | Tu glisses la notion "anti-<br>gaspillage" et "frigo éco-<br>responsable" dans ton pitch final.                                            |
| Maîtrise orale  | À la soutenance, tu dis "nous avons<br>appliqué une méthode de gestion<br>projet itérative et révisé notre<br>Gantt trois fois" → jackpot. |
| Leadership      | Tu cites la répartition claire des<br>rôles : "X en charge IA, Y budget, Z<br>communication."                                              |
| Anticipation    | Tu mentionnes dans ton oral une version 2 : "Smart Fridge 2.0 : connexion multi-enseignes + suivi nutritionnel."                           |

# 🚀 4. PLAN D'ACTION RÉSUMÉ

| Étape          | Tâches à faire cette semaine            | Livrable attendu                                                                        |
|----------------|-----------------------------------------|-----------------------------------------------------------------------------------------|
| ✓ Étape 1      | Étude marché + Gantt v1 +<br>Personas   | <pre>smartfridge_gantt.xlsx , smartfridge_skills.pdf</pre>                              |
| ✓ Étape 2      | Ressources + Budget + Risques           | <pre>smartfridge_resources.xlsx , smartfridge_budget.xlsx , smartfridge_risks.pdf</pre> |
| ✓ Étape 3      | Com interne/externe + préparation orale | <pre>smartfridge_communication1.pdf , smartfridge_communication2.pdf</pre>              |
| ✓ Étape finale | Vérification cohérence + soutenance     | Tous les fichiers + diaporama final                                                     |

**7** 5. BARÈME CACHÉ (selon attentes T-CEN-500)

| Axe                                | Attente du jury                       | Poids |
|------------------------------------|---------------------------------------|-------|
| Gestion de projet (Gantt, méthode) | Cohérence et structure                | 25%   |
| Réalisme & viabilité               | Budget et ressources crédibles        | 25%   |
| Analyse de risque & anticipation   | Risques + mitigations claires         | 20%   |
| Communication & leadership         | Docs internes/externe, discours clair | 15%   |
| Innovation & pertinence            | Idée nouvelle + impact sociétal       | 15%   |

# 🗘 1. Risques techniques / technologiques

| Risque                     | Détail                                                               | Probabilité | Impact | Mitigation                                                                        |
|----------------------------|----------------------------------------------------------------------|-------------|--------|-----------------------------------------------------------------------------------|
| X Erreur de détection IA   | L'IA confond des produits (ex : lait vs jus d'orange).               | Moyenne     | Élevé  | Phase d'apprentissage supe<br>+ feedback utilisateur + dat<br>élargi.             |
| Éclairage et condensation  | La caméra voit mal à cause du froid,<br>buée, variations de lumière. | Moyenne     | Élevé  | Caméras adaptées au froid-<br>calibration automatique + to<br>conditions réelles. |
| Surcharge CPU du module IA | Le <u>Jetson</u> Nano / Pi 5 n'arrive pas à traiter en temps réel.   | Moyenne     | Moyen  | Optimisation modèle IA + allègement pipeline inference edge + cloud fallback.     |
| Connexion Wi-Fi instable   | Le frigo perd le lien cloud ou API<br>Drive.                         | Élevée      | Moyen  | Cache local des données + resynchronisation différée.                             |
| ☐ Faille de sécurité loT   | Accès non autorisé au frigo ou aux<br>données via Wi-Fi.             | Moyenne     | Élevé  | Authentification <u>token</u> , HTTI<br>audits sécurité, <u>firmware</u> sig      |
| IA non généralisable       | Mauvais comportement sur d'autres marques/emballages.                | Moyenne     | Élevé  | <u>Dataset</u> élargi, apprentissag<br>continu, tests <u>multi-fabricar</u>       |

# 2. Risques humains / organisationnels

| Risque                                     | Détail                                  | Probabilité | Impact | Mitigation                                                |
|--------------------------------------------|-----------------------------------------|-------------|--------|-----------------------------------------------------------|
| Sous-estimation de la charge<br>de travail | Trop de tâches techniques en parallèle. | Élevée      | Moyen  | Planning agile + priorisat<br>jalons + revues hebdo.      |
| Manque de communication interne            | Délai, confusion sur responsabilités.   | Moyenne     | Moyen  | Outil partagé (Notion / SI<br>réunions hebdo + PO réfe    |
| Départ ou indisponibilité d'un membre clé  | IA <u>engineer</u> malade / absent.     | Faible      | Élevé  | Documentation claire + b<br>chaque rôle.                  |
| 📆 Retard de validation ou test             | Feedback tardif ou absence de testeurs. | Moyenne     | Moyen  | Plan de test planifié dès le<br>deadlines intermédiaires. |

# ❖ 3. Risques financiers / économiques

| Risque                           | Détail                                         | Probabilité | Impact | Mitigation                                        |
|----------------------------------|------------------------------------------------|-------------|--------|---------------------------------------------------|
| S Dépassement de budget          | Composants + frais IA > prévision.             | Moyenne     | Élevé  | Buffer 10–15 % + achats gopen-source.             |
| Prix des composants en hausse    | Jetson Nano, caméras en rupture.               | Moyenne     | Moyen  | Fournisseurs alternatifs + précommande anticipée. |
| Échec à convaincre investisseurs | Si POC pas concluant, pas de financement.      | Moyenne     | Élevé  | Prototype convaincant + marché solide.            |
| Maintenance coûteuse             | Frigo nécessite MAJ fréquentes, pièces chères. | Faible      | Moyen  | Architecture modulaire + (Over The Air).          |

# 4. Risques juridiques / conformité

| Risque                                | Détail                                               | Probabilité | Impact | Mitigation                                                                             |
|---------------------------------------|------------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------|
| RGPD / Données personnelles           | Caméra perçue comme intrusive, fuite de données.     | Élevée      | Élevé  | IA <u>edge-only</u> (analyse loc<br>aucune vidéo stockée,<br>transparence utilisateur. |
| Conformité CE / certification produit | Produit non conforme aux normes électriques / radio. | Moyenne     | Élevé  | Respect normes CE, tests avant industrialisation.                                      |
| Accord Drive non autorisé             | Leclerc retire ou bloque son API.                    | Moyenne     | Élevé  | Multi-retailers support + manuel.                                                      |
| Licences logicielles                  | Usage d'un <u>framework</u> non libre.               | Faible      | Moyen  | Vérification open-source<br>(MIT/GPL).                                                 |

# 🐺 5. Risques marché / utilisateurs

| Risque                                   | Détail                                       | Probabilité | Impact | Mitigation                                              |
|------------------------------------------|----------------------------------------------|-------------|--------|---------------------------------------------------------|
| Refus utilisateur (caméra dans frigo)    | Peur d'être "espionné".                      | Élevée      | Élevé  | Campagne de communic<br>"aucune image n'est stoc        |
| Mauvaise UX (trop d'ajouts auto)         | L'utilisateur se sent dépossédé du contrôle. | Moyenne     | Moyen  | Mode validation manuelle notifications, IA explicabl    |
| Frigo difficile à installer / paramétrer | Trop complexe à configurer.                  | Moyenne     | Moyen  | Installation guidée + app                               |
| M Adoption lente                         | Marché trop niche / prix élevé.              | Moyenne     | Élevé  | Version "kit <u>retrofit</u> " à pos<br>frigo existant. |

# 6. Risques liés à la gestion du projet

| Risque                                          | Détail                                                        | Probabilité | Impact | Mitigation                               |
|-------------------------------------------------|---------------------------------------------------------------|-------------|--------|------------------------------------------|
| Mauvaise planification                          | Tâches sous-estimées.                                         | Moyenne     | Moyen  | Gantt itératif, révisions hebdomadaires. |
| Docs non alignées (incohérence entre livrables) | Budget ≠ Gantt ≠ ressources.                                  | Moyenne     | Élevé  | Révision croisée avant re                |
| Mauvaise priorisation                           | Trop de temps sur le design, pas assez sur le <u>core</u> IA. | Moyenne     | Moyen  | Rétrospectives de sprint priorisation.   |
| <b>♣</b> Mauvaise soutenance                    | Groupe désynchronisé.                                         | Moyenne     | Élevé  | Répétition, pitch court et               |

# BONUS : risques "long terme" (post-commercialisation)

| Risque                                  | Détail                                       | Probabilité | Impact | Mitigation                                 |
|-----------------------------------------|----------------------------------------------|-------------|--------|--------------------------------------------|
| Obsolescence logicielle                 | L'IA devient obsolète sans MAJ<br>régulière. | Élevée      | Moyen  | Maintenance SaaS + mise<br>OTA.            |
| Pannes / SAV                            | Capteur / caméra HS après 6 mois.            | Moyenne     | Moyen  | Design modulaire + cont maintenance.       |
| Évolution du marché /<br>concurrents IA | Samsung ou LG copient le concept.            | Moyenne     | Élevé  | Brevet dépôt logiciel + paretail exclusif. |

## Résumé des 15 risques majeurs à intégrer dans ton livrable

| Domaine                  | Nombre de risques | Pondération sur note finale |
|--------------------------|-------------------|-----------------------------|
| Technique / IA / IoT     | 6                 | 30 %                        |
| Organisationnel / humain | 4                 | 20 %                        |
| Financier / économique   | 3                 | 15 %                        |
| Juridique / RGPD         | 3                 | 15 %                        |
| Marché / adoption        | 3                 | 15 %                        |
| Gestion projet           | 3                 | 5 %                         |

# 1. Vision par ordinateur dans le frigo (détection des produits)

Objectif: identifier ce qu'il y a dans le frigo, estimer les quantités restantes, détecter quand un produit disparaît.

- 🗲 Matos / hardware embarqué
- Caméra grand angle résistante au froid / à la condensation.
- Petit module informatique type:
  - NVIDIA Jetson Nano / Xavier NX (GPU pour inference IA),
  - o u Raspberry Pi 5 si on reste sur des modèles légers.
- 🗲 Logiciel IA embarqué
- Modèle de détection d'objets en temps réel (ex: YOLOv8, SSD MobileNet).

- Framework d'inférence:
  - PyTorch (dev / entraînement),
  - export en TensorRT ou ONNX Runtime (inférence optimisée en local pour réduire la conso et la latence).
- Script Python qui:
  - 1. capture l'image,
  - 2. détecte les objets,
  - 3. enregistre l'état actuel de l'inventaire (ex : "2 yaourts", "1 lait").
- Pourquoi edge AI (local dans le frigo) ?
- Vie privée (pas de flux vidéo envoyé au cloud).
- Moins de bande passante.
- Respect RGPD (argument clé du projet).

Donc : Caméra + Jetson Nano + Python + modèle YOLO optimisé → c'est crédible et défendable devant un jury.

### 2. Logique inventaire & suivi de quantité

Objectif: suivre ce qu'il reste ET savoir quand quelque chose "disparaît définitivement".

Techniquement on a besoin:

- D'un service qui maintient un état interne : "ce qui est censé être dans le frigo".
- D'une logique de seuil : "si yaourt = 0 → rupture → ajouter dans panier Drive".

Tu le fais tourner où ?

- soit directement sur le module embarqué (Python service),
- soit dans le cloud (Node.js ou Python FastAPI).

Solution propre pour le pitch :

- Mini service Python qui tourne en local sur le frigo (genre FastAPI ou Flask minimal).
- Il maintient un petit cache/JSON d'inventaire local + envoie le diff au cloud régulièrement.

Techno:

- Python (puisque déjà utilisé pour l'IA).
- FastAPI (plus sérieux, typed, maintenable) pour exposer l'état du frigo en REST.

### 3. Backend / Cloud

Objectif : centraliser les données, gérer les profils utilisateurs, synchroniser le panier Drive, envoyer des notifications.

Stack réaliste et pro :

- Backend en Node.js + Express ou Python FastAPI (choisis-en un et reste cohérent partout).
  - Argument Node.js: facile à interfacer avec l'app mobile, écosystème riche, plein de libs ecommerce.
  - o Argument Python: tu restes full Python du frigo jusqu'au cloud.

Je te propose ça pour l'école (lisible, solide) :

• Backend cloud: FastAPI (Python)

- Base de données : PostgreSQL
  - o Tables: users, produits détectés, seuils perso, paniers Drive, historique.

#### Fonctions du backend :

- · Authentification utilisateur.
- Stockage de l'inventaire courant.
- Gestion des seuils ("lait <1 → faut en racheter").
- Construction automatique/continue du panier Drive.
- Journal d'audit ("on a ajouté le lait le 15/10 à 18h22 parce que rupture détectée").

### 4. Intégration Drive (E.Leclerc / autre)

Objectif: mettre automatiquement les produits manquants dans le panier Drive.

### Techniquement:

- Appelle l'API du retailer avec :
  - o identifiants de l'utilisateur,
  - o ID produit (EAN / SKU du magasin),
  - o quantité voulue,
  - o ajout au panier en attente.

Les briques dont tu parles en soutenance :

- "Service d'intégration retailer" = microservice dédié qui fait la traduction
  - o "yaourt Danone fraise pack 8" (détecté dans le frigo)
    - -> "référence #472019-Leclerc 8x125g"
- Ce service peut tourner en Node.js (c'est très courant pour faire de la glue API retail) même si le reste du backend est en Python.

### À dire au jury:

On isole l'intégration Drive dans un microservice séparé pour éviter d'être dépendant d'une seule enseigne.

Donc demain on ajoute Carrefour sans réécrire tout le backend.

Traduction : on gère le risque business. Très bien vu par les examinateurs.

## 5. Application mobile

Objectif : que l'utilisateur voie l'état du frigo, contrôle les ajouts au panier, et valide la commande

Stack mobile crédible moderne :

- React Native (cross-platform iOS + Android).
  - Pourquoi ? Parce que tu veux lancer vite et toucher tout le monde sans refaire deux apps natives.

- UI logic:
  - o Écran "Inventaire actuel du frigo"
  - o Écran "Produits manquants / liste d'achats auto"
  - o Écran "Panier Drive prêt à valider"
  - Paramètres : seuils (ex : "toujours avoir 2 laits"), blacklist produit ("stop le Coca"), mode écologique ("évite produits ultra transformés", option future)

### Communication:

- L'app parle au backend FastAPI via REST/JSON (HTTPS).
- Authentification JWT.
- Notifications push quand un produit est ajouté : "Lait ajouté au panier Drive".