1. Perhatikan diagram berikut!

Di dalam 2 bejana di atas masing-masing berisis zat cair yang perbandingan masa jeninya ho_A : $ho_B=$ 5:4 . Titik pada bejana A yag mempunyai tekanan sama dengan titik P pada bejana B adalah titik

- A. (5), $h_5 = 8 \text{cm}$
- $(2), h_2 = 16$ cm
- B. (4), $h_4 = 10$ cm
- E. (1), $h_1 = 20$ cm
- C. (3), $h_3 = 12$ cm
- 2. Air di dalam tabung mempunyai masa jenis 1 gram cm³. Tekanan hidrostatis di titik B (lihat pada gambar), bila titik B berada pada kedalaman 20 cm dari permukaan dan g=10 m/s^2 adalah . . .
 - (A.) $2 \times 10^3 \text{ N/m}^2$
 - B. $3 \times 10^3 \text{ N/m}^2$
 - C. $4 \times 10^3 \text{ N/m}^2$
 - D. $5 \times 10^3 \text{ N/m}^2$
 - E. $6 \times 10^3 \text{ N/m}^2$

jawab

$$p_h = \rho . g. h$$

 $p_h = 1000.10.0, 2$
 $p_h = 2 \times 10^3 \text{ N/m}^2$

- 3. Bendungan menampung air setinggi 80 meter. (massa jenis air 1000 kg/m³, g = 10 m/s²). Besar tekanan hidrostatis pada suatu titik yang berada di 60 m di bawah permukaan air adalah . . .
 - A. $6 \times 10^4 \text{ N/m}^2$
- \bigcirc 6 ×10⁵ N/m²
- B. $8 \times 10^4 \text{ N/m}^2$
- E. $8 \times 10^5 \text{ N/m}^2$
- C. $2 \times 10^5 \text{ N/m}^2$

jawab

untuk menghitung tekanan hidrostatis menggunakan persamaan $p_h = \rho g.h$ di mana h adalah kedalaman dari permukaan. maka jawaban soal ini adalah

$$p_h = \rho g.h$$

 $p_h = 1000.10.60$
 $p_h = 6 \times 10^5 \text{ N/m}^2$

- 4. Seorang penyelam memeriksa kerangka kapal laut pada kedalaman 15 m di bawah permukaan air. Bila g=9.8m/s² dan massa jenis air laut 1100 kg/m³, maka tekanan hidrostatis yang dialami penyelam adalah . . .
 - A. 161.700 N/m^2
- D. 719 N/m^2
- B. 16.500 N/m^2
- E. 147 N/m^2
- C. 10.780 N/m^2
- 5. Gambar bejana berhubungan yang berisi air. hidrostatis yang paling besar berada di titik
 - A. P

D. S (E.) T

- B. Q
- C. R

6. Dua buah bejana A dan B diisi dengan zat cair yang berbeda massa jennisnya terlihat seperti gambar. Perbandingan massa jenis zat cair di A dibandingkan dengan massa jenis zat cair di B adalah 3:4.

Titik di tabung B yang mempunyai tekanan yang sama dengan tekanan pada dasar tabung A adalah

- (A.) P
- B. Q
- C. R
- D. S
- E. T

jawab

Pada soal ditanyakan adalah lokasi (kedalaman) di B yang tekanannya sama saat kedalama A adalah 80.

$$p_A = p_B$$
 $\rho_A.g.h_A = \rho_B.g.h_B$
 $3.10.80 = 4.10.h_B$
 $60 = h_B$

Jadi kedalaman B di 60 dari permukaan, yakni di titik P.

- 7. Raksa pada bejana berhubungan mempunyai selisih 2 cm (massa jenis 13,6 g/cm³). Kaki sebelah kiri berisi zat cair yang tingginya 25 cm, berarti massa jenis zat cair itu adalah .
 - A. 800 kg/m^3
 - B. 1030 kg/m^3
 - C.) 1088 kg/m³
 - D. 1300 kg/m^3
 - E. 1360 kg/m^3

iawab

Untuk mengerjakan soal ini, raksa memiliki tinggi 2cm dan tinggi zat cair 25 cm.Besarnya tekanan pada titik perbatasan dengan titik di kaki kanan tabung adalah sama.

$$p_r = p_c$$
 $ho_r.g.h_r =
ho_c.g.h_c$
 $13600.10.2 =
ho_c.10.25$
 $ho_c = 1088 \text{ kg/m}^3$

- 8. Pada gambar di bawah, pipa berbentuk U diisi air dan oli (ρ_{air} $= 1 \text{ g/cm}^3$, $ho_{oli} = 0.8 \text{ g/cm}^3$). Selisih tinggi permukaan air dan oli adalah . . .
 - A. 1,6 cm
 - B. 3,2 cm
 - C. 4 cm
 - D. 5 cm
 - E. 16 cm
- 9. Perhatikan gambar berikut ini!

Bila diketahui $m_B=6$ ton dan $g=10~{\rm m/s^2}$ maka massa beban A (m_A) adalah . . .

A. 2 kg

D. 5 kg

B. 3 kg

E. 6 kg

C. 4 kg

Modul Bunyi bintangpelajar.com

- 10. Pengisap P mempunyai luas penampang 0,75 cm² yang bergerak bebas tanpa gesekan sehingga dapat menekan pegas sejauh Δx . Jika konstanta pegas 75 N/m dan massa jenis zat cair 500 kg/m³, maka Δx adalah. . . .
 - A. 0,4 cm
 - B. 0,5 cm
 - C. 0,6 cm
 - D. 0,7 cm
 - E. 1 cm

