基于ST官方电机开发套件 FOC5.3库调试经验分享

原创:mmuuss586-游名

技术群: 123768874

2019年1月

- FOC5.3和FOC5.0、FOC5.1、FOC5.2等区别:
- 1、支持更多型号的芯片和板子,比如开始支持STM32G的芯片和对应板子;
- 2、软件界面上有些变化,更简洁。

FULL库版本和普通版本的区别:

full版本区别:开放了弱磁,mtpa及前馈的源代码。

FULL版本申请:

到ST官网,用企业邮箱申请。

实验平台 硬件: P-NUCLEO-IHM001或P-NUCLEO-IHM002开发套件:

请事先下载安装软件:

- 1) STM32 PMSM FOC Software Development Kit MC library (5.3.2及以上版本):
- 2) STM32CubeMX 4.26及以上版本;
- 3) KEIL MDK 5.0 及以上版本。

按照图示接线:

左边接插件接电源(左正右负),接电源之前最好将电源调整到12V左右;

右边接插件:接电机线(电机线 任意接,接错的话电机正反转方 向可能是反的);

首次拆开开发套件(板子已预装程序):上电后且接上USB线,按套件底板的蓝色按钮,电机会正常转,再按下电机停止运行(如果电机不能转,请先按下黑色复位按钮,再按蓝色运行按钮)。

打开MotorControl Workbench软件

ST Motor Control Workbench

STM32™ Motor Control SDK v5.3 plug-and-spin with STM32Cube™

打开如下图所示

life, auamented

MC SDK5.3电机参数识别 使用ST MC Workbench GUI上的专用按钮(Motor Profiler)或 直接打开安装文件运行ST的电机参数测量工具。

打开后如下图所示

点击SelectBoards选择相应的板子,选择: NUCLEO-F302R8+X-NUCLEO-IHM07M1 3Sh

打开后如下图,请选择Connect先连接(如连接不上则按下板子的 黑色复位按钮)

点击连接后,出现如下图是否需要升级固件(可以选择升级)

Warning: Firmware upgrade required

In order to proceed, I need to upgrade the firmware of the connected Control Board.

Upgrade Firmware

Cancel

点升级固件后,如下图并等待升级完成(升级完成后后自动关闭)

ST-Link

- ST-Link Connection 6
- Executes a Full chip erase operation 6
- Reset 6

升级完后如下图所示,将鼠标放到Disconnect上即可看到版本号, 在Pole Pairs 处输入电机极对数7. 其它参数默认(也可修改)

SM-PMSM参数示例

输入电机极对数7后, Start Profile按钮有效点击即可测试电机参数

点击测试电机参数后等待测试完成(也可停止测试)

测试完成后如下图所示(测试不成功的话就重新测试下),测试成功的话Save和Play按钮功能有效,测试完成后同个电机每次的参数有有些差异,但差别不大

0.6 Vrms/kRPM

256.6 nN·m·s2

点击Save保存电机参数后如下图,输入名字后保存即可(路径不可选,保存在默认路径下),通过MotorControl Workbench生成库的电流环PID参数相关根据电机参数算出来的

点击Play后,再点击Start即可让电机转动,通过调节中间箭头调节转速,点Stop按钮停止转动,点Done按钮关闭界面(如电机在转动则停止转动),如遇干扰等原因连接不成功,可点左下角按钮重新连接。由于是高速电机,加速度和目标转速不要设置过低,否则转不起来。

关闭电机并退出电机测试回到Workbench主界面,点击New Project新建工程,选MC Kit并选择相应的板子和配套的电机参数(也可自定义)

点击OK跳到工程硬件配置窗口界面,如下图所示,可更改相关默认参数

所有参数设置完成后或不设置,点击生成按钮生成相应的工程文件 (向下箭头)

点击OK按钮后如下图所示,可修改工程名和选型路径等

点击保存按钮后如下图所示,可生成相关的软件工程(MDK或IAR)

生成完后如下图所示,会显示Completed

 ΣS Project generation Settings Generation . . . Name (personne cero_com er or or or recom, m ... \Inc\pmsm motor parameters.h ... \Inc\power_stage_parameters.h ...\Src\stm32f30x mc it.c ... \Inc\mc parameters.h ...\Src\mc_parameters.c ...\Src\ui task.c ...\Inc\ui task.h ...\Src\user interface.c ... \Inc\user interface.h ...\Src\stm32f3xx it.c ... \Inc\stm32f3xx it.h ...\Src\stm32f3xx_hal msp. c ...\Inc\stm32f3xx hal conf.h ...\Inc\main.h ...\Src\main.c Completed

找到刚才生成的文件夹下的工程文件,打开MDK工程,如下图所示

优化等级设置成最高(设的太低,FOC库会运行报错,导致电机转不起来),并编译下工程

在mc_api.c中有一系列函数来实现对电机的控制,主要调用mc_api.c里的一些函数

mc_api.c中常用函数

- MC_StartMotor1
- ◆MC_StopMotor1
- MC_ProgramSpeedRampMotor1
- MC_ProgramTorqueRampMotor1
- MC_GetMecSpeedReferenceMotor1
- MC_GetMecSpeedAverageMotor1
- ◆MC GetSTMStateMotor1
- ♦MC GetOccurredFaultsMotor1
- MC_AcknowledgeFaultMotor1
- MC_GetImposedDirectionMotor1

```
MC StartMotor1(); //电机启动
如果Motor1为IDLE状态,该命令立即执行启动电机,返回值true,
反之返回命令丢弃返回false。
bool MC StartMotor1(void)
    return MCI StartMotor( pMCI[M1] );
MC StopMotor1(); //电机停止
如果Motor1为RUN或START状态、该命令立即执行停止电机、反之
被丢弃。
bool MC StopMotor1(void)
    return MCI StopMotor(pMCI[M1]);
```

```
MC ProgramSpeedRampMotor1(3000/6,2000); //设置为速度模式,设置速度指令
调用此函数后hDurationms设置时间内当前速度变化到hFinalSpeed设置的目标速
度
void MC ProgramSpeedRampMotor1(int16 t hFinalSpeed, uint16 t
hDurationms )
     MCI ExecSpeedRamp( pMCI[M1], hFinalSpeed, hDurationms );
MC ProgramTorqueRampMotor1(2000,2000); //设置为转矩模式,设置转矩指令
调用此函数后hDurationms设置时间内当前转矩变化到hFinalTorque设置的目标转
矩
void MC ProgramTorqueRampMotor1(int16 t hFinalTorque, uint16 t
hDurationms )
     MCI ExecTorqueRamp(pMCI[M1], hFinalTorque, hDurationms);
                                                           30
```

```
Motor1Speed=MC GetMecSpeedReferenceMotor1();
                                           //获取Motor1
当前指令的机械转速,数字量1代表0.1HZ
int16 t MC GetMecSpeedReferenceMotor1(void)
    return MCI GetMecSpeedRef01Hz(pMCI[M1]);
Motor1SpeedAverage=MC GetMecSpeedAverageMotor1();
                                                  //获取
Motor1当前指令的平均机械转速,数字量1代表0.1HZ
int16 t MC GetMecSpeedAverageMotor1(void)
    return MCI GetAvrgMecSpeed01Hz(pMCI[M1]);
```

```
Motor1State=MC_GetSTMStateMotor1(); //获取Motor1状态机的电机
状态
State_t MC_GetSTMStateMotor1(void)
{
    return MCI_GetSTMState( pMCI[M1] );
}
```

State	Code	Simple Description						
IDLE	0	Idle						
START	4	In start up process						
START RUN	5	In start up process						
RUN	6	Run normal						
ANY_STOP	7	Stop						
STOP	8	Stop						
STOP IDLE	9	Stop						
FAULT_NOW	10	Fault						
FAULT OVER	11	Fault						

```
Motor1Faults=MC_GetOccurredFaultsMotor1();//获取Motor1发生过的
故障代码
uint16_t MC_GetOccurredFaultsMotor1(void)
{
return MCI_GetOccurredFaults( pMCI[M1] );
Fault List
```

State	Code	Simple Description					
MC_NO_ERROR	0x0000	No fault					
MC NO FAULTS	0x0000	No fault					
MC FOC DURATION	0x0001	FOC calculation time out					
MC OVER VOLT	0x0002	Bus over voltage					
MC UNDER VOLT	0x0004	Bus under voltage					
MC OVER TEMP	8000x0	Over temperature					
MC START UP	0x0010	Start up failure					
MC SPEED FDBK	0x0020	Speed feedback is not reliable					
MC BREAK IN	0x0040	Hardware break in					
MC SW ERROR 0x008		Software fault					

```
MC AcknowledgeFaultMotor1();//清除电机故障错误
调用此函数前,如果电机发生故障。电机停留在FAULT OVER状态,
并保留故障代码。调用后,状态机清除故障代码记录,并恢复到IDLE
状态。
bool MC AcknowledgeFaultMotor1( void )
    return MCI FaultAcknowledged(pMCI[M1]);
Motor1Dir=MC GetImposedDirectionMotor1();//返回最后一个指令设
置的电机方向,如果最终的速度或转矩指令为负数返回-1,否则返回1
int16 t MC GetImposedDirectionMotor1(void)
    return MCI GetImposedMotorDirection(pMCI[M1]);
```

main函数while循环代码示例:

- 1、电机以3000rpm运行,加速时间为2S;
- 2、程序启动电机运行,运行速度为3000rpm,在10S后停止转动;
- 3、电机停止前,读取电机相关参数(方向、速度、故障等);
- 4、电机故障处理;
- 5、停止1S后电机重新运行,速度依然是3000rpm,不过速度为-3000rpm;
- 6、以上过程重复操作。

参考代码截图

```
/* USER CODE BEGIN 3 */
   MC_ProgramSpeedRampMotor1(3000/6,2000):
                                            //速度模式,设定电机速度为3000转(单位0.1HZ),加速度为2S
                                            //电机启动-----
    MC StartMotor1():
                                            //延时2S
   HAL Delay (2000);
    //MC ProgramTorqueRampMotor1(2000, 2000):
                                             //力矩模式,设定时间2S内,当前转矩变换为目标转矩
    HAL Delay (8000);
                                            //延时8S
    Motor1Speed=
                                            //获取当前指令的机械转速
     MC GetMecSpeedReferenceMotor1();
   Motor1SpeedAverage=
                                            //获取当前指令的平均机械转速
     MC GetMecSpeedAverageMotor1();
   Motor1Dir=MC_GetImposedDirectionMotor1(); //返回最后一个指令设置的电机方向
Motor1State=MC_GetSTMStateMotor1(); //MOTOR状态机的电机状态
   Motor1Faults=MC_GetOccurredFaultsMotor1()://MOTOR发生过的故障代码if((Motor1State==10)||(Motor1State==11))
                                            //出错的话先清除电机错误
     MC AcknowledgeFaultMotor1();
    else:
                                            //电机停止
   MC StopMotor1():
                                            //延时1S
    HAL Delay(1000);
   MC_ProgramSpeedRampMotor1(-3000/6,2000): //速度模式,设定电机速度为-3000转(单位0.1HZ),加速度为2S
   MC StartMotor1();
                                            //电机启动----mc_api.c
    HAL Delay(2000);
                                            //延时2S
                                              //力矩模式,设定时间2S内,当前转矩变换为目标转矩
    //MC_ProgramTorqueRampMotor1(2000, 2000);
                                            //延时8S
    HAL Delay (8000);
   Motor1Speed=
     MC_GetMecSpeedReferenceMotor1();
                                            //获取当前指令的机械转速
   Motor1SpeedAverage=
   MC_GetMecSpeedAverageMotor1(); // 获取当前指令的平均机械转速
Motor1Dir=MC_GetImposedDirectionMotor1();//返回最后一个指令设置的电机方向
         Motor1State=MC_GetSTMStateMotor1();
                                                  //MOTOR状态机的电机状态
    Motor1Faults=MC_GetOccurredFaultsMotor1()://MOTOR发生过的故障代码
   if ((Motor1State==10) | (Motor1State==11))
```

打开MotorControl Workbench观察相关参数和电机运行曲线

点Monitor按钮观察电机相关参数

点开后如下图所示

点击connect按钮先进行连接,如连接不上按下板 子上黑色复位按钮或更换串口端口号先进行测试。 连接后如下图所示(可以看到SDK 5.3版本)

点Basic界面,可以看到板子的一些参数,也可以对板子进行启动、 停止、清除故障等操作

点Advaced界面,可以看到PID一些参数以及速度或转矩模式,也可以对板子进行启动、停止、清除故障及模式切换等操作

点Registers界面,可以看到PID、寄存器等相关参数以及最后读取参数时间等

ld	Name	Unit	Value	Min	Max	Period	Type	Mode	Enable	Last read
0x00	Target motor		0	0	255	0	U8	RW	V	never
0x01	Flags		0	0	4294967	200	U32	R	V	2019-01-06 14:1
0x02	Status		4	0	255	200	U8	R	V	2019-01-06 14:1
0x03	Control mode		1	0	255	500	U8	RW	V	2019-01-06 14:0
0x04	Speed reference	RPM	-3000	-15000	15000	200	S32	R	V	2019-01-06 14:1
0x05	Speed Kp		3955	0	65535	0	U16	RW	7	2019-01-06 14:0
0x06	Speed Ki		1271	0	65535	0	U16	RW	V	2019-01-06 14:0
0x07	Speed Kd		0	0	65535	0	U16	RW	V	never
0x08	Torque reference (Iq)		986	-32768	32767	0	S16	RW	V	2019-01-06 14:0
0x09	Torque Kp		964	0	65535	0	U16	RW	V	2019-01-06 14:0
0x0A	Torque Ki		196	0	65535	0	U16	RW	V	2019-01-06 14:0
0x0B	Torque Kd		0	0	65535	0	U16	RW	V	never
0x0C	Flux reference (Id)		0	-32768	32767	0	S16	RW	7	never
0x0D	Flux Kp		964	0	65535	0	U16	RW	7	2019-01-06 14:0
0x0E	Flux Ki		196	0	65535	0	U16	RW	V	2019-01-06 14:0
0x0F	Flux Kd		0	0	65535	0	U16	RW	V	never
0x10	Observer C1		-1380	-32768	32767	0	S16	RW	V	2019-01-06 14:0
0x11	Observer C2		3473	-32768	32767	0	S16	RW	V	2019-01-06 14:0
0.10	C 1 OI C1			22700	22707	0	010	DIM	Im1	

点Configuration界面,可以对一些参数进行重新配置及重新装载

点Plotter按钮,观察电机的转速运行曲线

打开后如下图所示

可以通过放大、缩小、拖动等操作对电机的运行曲线看的更清晰些

以上内容仅供参考 感谢观看

技术交流QQ群: 123768874