1. [3 valores] Escreva explicitamente:

(a) A matriz relativamente à base $\mathcal{B}=(u,v)$ de \mathbb{R}^2 dada por u=(1,0) e v=(1,1) da transformação linear $T:\mathbb{R}^2\to\mathbb{R}^2$ definida por

$$T(x,y) = (3x - y, x).$$

- (b) A matriz da rotação de \mathbb{R}^3 em torno do vetor $e_3=(0,0,1)$ e de ângulo $2\pi/3$.
- (c) A matriz de uma isometria linear de \mathbb{R}^2 que não é uma rotação.
- (d) Uma matriz $A \in \mathcal{M}_{2\times 2}(\mathbb{C})$ não real que é simultanemente hermítica e unitária.
- 2. [3,5 valores] Considere a equação diferencial (\mathcal{E}) $y'' 2y' + y = xe^x$, $x \in \mathbb{R}$.
 - (a) Determine a solução geral da equação homogénea associada à equação (\mathcal{E}) .
 - (b) Determine uma solução particular da equação (\mathcal{E}) e escreva a sua solução geral.
- 3. [1 valor] Escreva uma equação diferencial linear homogénea de 2ª ordem cuja solução general seja dada por

$$y(x) = Ae^x \cos x + Be^x \sin x, A, B \in \mathbb{R}.$$

- 4. [4,5 valores] Considere a matriz $A = \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}$.
 - (a) Justifique que A é diagonalizável sobre $\mathbb R$ e complete, justificando, a seguinte igualdade:

$$A = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4} \end{pmatrix}$$

- (b) Calcule e^{tA} , para $t \in \mathbb{R}$, e^{tA} .
- (c) Usando a alínea anterior, determine a solução do sistema

$$\begin{cases} x'(t) &= y(t) \\ y'(t) &= 4x(t) \end{cases}$$
 com a condição inicial
$$\begin{cases} x(0) &= 2 \\ y(0) &= 0. \end{cases}$$

Represente graficamente a curva solução no espaço de fases \mathbb{R}^2 . Poderá começar por verificar que esta curva está contida na curva de equação $4x^2-y^2=16$.

5. [3 valores] Identifique e represente graficamente a cónica de \mathbb{R}^2 definida pela seguinte equação:

$$5x^2 - 8xy + 5y^2 = 9.$$

- 6. [2,5 valores] Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas.
 - (a) A matriz $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ é diagonalizável sobre \mathbb{R} .
 - (b) Seja $\mathcal{B} = (u, v)$ uma base ortonormada de \mathbb{R}^2 e seja $w \in \mathbb{R}^2$. As coordenadas α , β de w na base \mathcal{B} são dadas por $\alpha = (u|w)$ e $\beta = (v|w)$.
 - (c) Existe uma isometria linear $T: \mathbb{R}^n \to \mathbb{R}^n$ que admite 0 como valor próprio.
- 7. [2,5 valores] Considere o conjunto de matrizes $T = \{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{R} \}$.
 - (a) Verifique que T é um subgrupo do grupo multiplicativo

$$GL_2(\mathbb{R}) = \{ A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \mid \det(A) \neq 0 \}.$$

(b) Verifique que $\varphi : \mathbb{Z} \to T$ dado por $\varphi(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ é um homomorfismo injetivo de grupo do grupo aditivo $(\mathbb{Z}, +)$ para o grupo multiplicativo (T, \cdot) .