Alternativni pristupi u izgradnji sistema baza podataka

Ugrađene i temporalne baze podataka

Sistemi baza podataka, dr Vladimir Dimitrieski

1

Sadržaj

- Ugrađene baze podataka
- Temporalne baze podataka

3

Ugrađene baze podataka

- Motivacija
 - o razvoj mobilnih i specijalizovanih uređaja
 - ograničene mogućnosti hardvera
 - specifične softverske platforme
 - zahtev za organizacijom podataka
 - količina podataka ima trend stalnog rasta
 - o tradicionalni sistemi baza podataka
 - nisu pogodni za upotrebu na ovim uređajima
 - nedovoljno jak hardver
 - nisu podržani od strane softverske platforme

- Ugrađene baze podataka
 - engl. embedded database
 - o softverska biblioteka
 - povezana sa klijentskom aplikacijom
 - koriste isti adresni prostor
 - aplikacija postaje jedinstvena programska celina
 - o rad sa malim brojem korisnika

5

Ugrađene baze podataka

- Osnovne karakteristike i zahtevi
 - o minimizacija memorijskih zahteva
 - sistemi imaju skromne memorijske resurse
 - dva aspekta
 - memorijski otisak
 - o engl. memory footprint
 - o memorija koju baza zauzima bez podataka
 - prekoračenje podacima
 - o engl. data overhead
 - o nesvrsishodna potrošnja resursa ili vremena potrebnog za pribavljanje traženog podatka

- Osnovne karakteristike i zahtevi
 - o redukovanje alokacije resursa
 - ugrađena BP mora odgovoriti na ograničenja postavljena od strane tehnologije ugrađenog sistema u kojem egzistira
 - obezbediti integritet i kontinuiran rad
 - prilagoditi resurse trenutnim ograničenjima
 - o predefinisani limiti
 - o trenutno dostupni resursi
 - ručno konfigurisanje upravljanja resursima je neprihvatljivo

7

7

Ugrađene baze podataka

- Osnovne karakteristike i zahtevi
 - brzina izvršavanja i predvidivost performansi
 - varijacije u frekvenciji pristupa i dostupnosti resura
 - ugrađena BP mora biti u mogućnosti da se prilagodi svakoj situaciji
 - sprovode se temeljni test slučajevi
 - ugrađuju se mehanizmi za brz oporavak
 - brzina izvršavanja je od ključnog značaja
 - veliki broj ugrađenih sistema obrađuje podatke u realnom vremenu
 - u cilju postizanja što boljih performansi, ugrađena BP tipično mora koristiti sve raspoložive resurse namenskog hardvera

- Osnovne karakteristike i zahtevi
 - visoka pouzdanost i raspoloživost
 - ne postoji administrator kao kod tradicionalnih SBP
 - ugrađena BP sama inicira pojedine operacije
 - o indeksiranje, pravljenje rezervne kopije, podešavanje parametara sistema
 - o iniciranje operacija može biti delegirano aplikaciji
 - potrebna je brza reakcija na greške
 - procedura oporavka podataka mora biti vrlo brzo pokrenuta

9

9

Ugrađene baze podataka

- Osnovne karakteristike i zahtevi
 - o interoperabilnost, prenosivost i podrška različitih operativnih sistema
 - ugrađeni sistemi poseduju namenske operativne sisteme
 - ugrađena BP mora da podržava takav operativni sistem
 - interoperabilnost sa drugim sistemima BP
 - prenosivost na druge hardverske platforme

- Osnovne karakteristike i zahtevi
 - upotreba fleš memorije
 - primarni medijum za skladištenje podataka u mobilnim uređajima i uređajima specijalizovane namene
 - trajna memorija, razumnog kapaciteta po prihvatljivoj ceni
 - nema mehaničkih delova
 - koji prouzrokuju kašnjenja
 - manja potrošnja energije od hard diskova

11

11

Ugrađene baze podataka

- Kriterijumi izbora odgovarajućeg sistema ugrađene BP
 - izbor platforme
 - podržani operativni sistem
 - izvorni kôd baze podataka
 - o zauzeće resursa
 - o ocena performansi
 - konkurentnost i skalabilnost
 - o zahtevani servisi

- Tipovi ugrađenih baza podataka
 - o BP integrisane sa aplikacijom na klasičnim računarskim platformama
 - o BP integrisane u mobilne uređaje i uređaje specijalizovane namene

13

13

Ugrađene baze podataka

- BP integrisane sa aplikacijom na klasičnim računarskim platformama
 - o tradicionalni sistemi
 - K/S arhitekture
 - aplikacija preko servera komunicira sa BP
 - o BP integrisane sa aplikacijom
 - BP je ugrađena u aplikaciju
 - kao softverska komponenta
 - visoke performanse
 - smanjena kompleksnost komunikacije
 - mali broj korisnika BP

- BP integrisane sa aplikacijom na klasičnim računarskim platformama
 - o implementacija BP integrisane sa aplikacijom
 - referenciranjem softverske biblioteke
 - koja sadrži implementaciju baze podataka
 - jednostavna ponovna iskoristivost implementacije BP
 - proširenje izvornog koda aplikacije
 - kodom koji implementira BP
 - eliminiše potrebu za postojanjem eksterne softverske biblioteke
 - o pojednostavljena distribucija i instalacija

15

15

Ugrađene baze podataka

• Tradicionalna arhitektura sistema BP

• Arhitektura sistema BP integrisane sa aplikacijom

17

17

Ugrađene baze podataka

- BP integrisane u mobilne uređaje i uređaje specijalizovane namene
 - o uređaji striktnih hardverskih ograničenja
 - o aplikacije namenjenje za rešavanje specifičnih problema
 - o potreba za ugrađenim bazama podataka
 - o prednosti
 - redukovanje troškova razvoja
 - poboljšanje kvaliteta dizajna ugrađenih sistema
 - lakše održavanje i povećana pouzdanost

- BP integrisane u mobilne uređaje i uređaje specijalizovane namene
 - koriste se u
 - mobilnom računarstvu
 - inteligentnim uređajima i ugrađenim sistemima
 - smart karticama

19

19

Ugrađene baze podataka

- Pregled postojećih ugrađenih BP
 - Berkley DB
 - najpopularnija NoSQL ugrađena BP
 - softverska biblioteka
 - visoke performanse sa podacima tipa ključ-vrednost
 - napisana u C-u
 - poseduje API-je za većinu modernih programskih jezika
 - podržana većina modernih OS-a
 - visoka konkurentnost i skalabilnost
 - hiljade simultanih upravljačkih niti
 - veličina BP do 256 terabajta
 - memorijski otisak 700 KB 1.6 MB

- Pregled postojećih ugrađenih BP
 - Hamster DB
 - mala NoSQL ugrađena BP tipa ključ-vrednost
 - napisana u C/C++-u
 - poseduje API-je za Javu, Python, .Net i Erlang
 - podržana većina modernih OS-a
 - o Google Android i Apple iOS
 - visoka konkurentnost i skalabilnost
 - memorijski otisak 600 KB

21

21

Ugrađene baze podataka

- Pregled postojećih ugrađenih BP
 - o Raptor DB
 - vrlo mala NoSQL ugrađena BP
 - u formi perzistentnog rečnika podataka
 - realizovana kao softverska biblioteka
 - dizajnirana za podatke u JSON formatu
 - prihvata i sve ostale vrste podataka
 - dizajnirana samo da dodaje podatke
 - poseduje istorijske/duplicirane podatke
 - visoka konkurentnost i skalabilnost
 - memorijski otisak 40 KB

- Pregled postojećih ugrađenih BP
 - SQLite
 - softverska biblioteka
 - zasnovana na relacionom modelu podataka
 - podržava transakcioni režim i očuvanje ACID svojstava
 - nema potrebu za podešavanjem ili administriranjem
 - smeštena u jedinstvenu datoteku
 - moguć prenos na bilo koju platformu
 - napisana u C-u
 - poseduje API-je za C i C++
 - podržana većina modernih OS-a
 - visoka skalabilnost
 - veličina BP do reda veličine terabajta
 - veliki objekti reda veličine gigabajta
 - memorijski otisak 200 KB 350 KB

23

23

Ugrađene baze podataka

- Pregled postojećih ugrađenih BP
 - PicoDBMS
 - baza podataka za smart kartice
 - podržava moćan podskup SQL standarda
 - vrši autentifikaciju korisnika
 - dozvoljava pristup isključivo dozvoljenom sadržaju
 - koristi EEPROM
 - · kao primarnu memoriju

25

Temporalne baze podataka

- Temporalne baze podataka
 - 。 sve baze podataka koje poseduju vreme kao aspekt u organizovanju podataka
 - o uvode temporalne koncepte
 - na nivou baze podataka
 - aplikacije koriste ove temporalne koncepte

- Reprezentacija vremena
 - o vreme je **uređeni niz trenutaka** u **granularnosti** definisanoj od strane aplikacije
 - kronon
 - minimalna granularnost za neku aplikaciju
 - svi događaji u okviru kronona se posmatraju kao istovremeni događaji
 - u realnom sistemu to ne mora da bude slučaj

27

27

Temporalne baze podataka

- Kalendar
 - o organizuje vreme u različite vremenske jedinice
 - lakše za rukovanje
 - npr. minut, sat, dan, mesec, itd.
 - o omogućava merenje vremena od neke početne tačke
 - razlikuje se u zavisnosti od kulture, npr:
 - Gregorijanski kalendar
 - Kineski kalendar
 - Islamski kalendar

- Vremenski tipovi u SQL-u
 - DATE
 - godina, mesec i dan
 - YYYY-MM-DD
 - o TIME
 - sat, minut i sekund
 - HH:MM:SS
 - TIMESTAMP
 - kombinacija TIME i DATE
 - YYYY-MM-DD HH:MM:SSS

29

29

Temporalne baze podataka

- Vremenski tipovi u SQL-u
 - o INTERVAL
 - relativni vremenski period
 - 10 dana
 - 250 minuta
 - o PERIOD
 - fiksirani vremenski period
 - fiksirana početno vreme
 - 10 dana od 1. januara 2013. do 10. januara 2013. godine

- Vrste događaja u temporalnim BP
 - jedinični događaji (činjenice)
 - obuhvataju jedinstveni vremenski trenutak
 - u definisanoj granularnosti
 - o događaji (činjenice) koji traju
 - obuhvataju određen vremenski period
 - · definisan početnom i krajnjom tačkom u vremenu
 - o obuhvata i sve trenutke između
 - u definisanoj granularnosti

31

31

Temporalne baze podataka

- Interpretacija vremena u BP
 - o kako interpretiramo vreme povezano sa podacima u BP
 - podaci predstavljaju događaje ili činjenice
 - validno vreme
 - vreme kada se događaj zbio
 - vreme kada je činjenica bila tačna
 - u realnom svetu
 - transakciono vreme
 - vreme kada je podatak upisan u bazu podataka
 - vreme kada je informacija validna u sistemu

- Interpretacija vremena u BP
 - o validno vreme i transakciono vreme nazivaju se vremenskim dimenzijama
 - o moguće i ostale interpretacije vremena
 - korisnički definisano vreme
 - korisnik
 - daje semantiku interpretaciji
 - programira aplikaciju da je podrži

33

33

Temporalne baze podataka

- Interpretacija vremena u BP
 - o pristupi implementiranju temporalnih baza podataka
 - verzionisanje torki
 - kod relacionih sistema
 - dodaje se vreme svakoj torki
 - prilikom promene torke kopiraju se i atributi koji nisu promenjeni
 - verzionisanje atributa
 - kod sistema koji podržavaju složene objekte
 - o objektno-orijentisane BP
 - o objektno-relacione BP

- Interpretacija vremena u BP
 - o podela baza podataka u odnosu na vremenske dimenzije
 - baze podataka sa validnim vremenom
 - sadrže samo validno vreme
 - baze podataka sa transakcionim vremenom
 - sadrže samo transakciono vreme
 - bitemporalne baze podataka
 - sadrže i validno i transakciono vreme

35

35

Temporalne baze podataka

- Relaciona baza podataka primer
 - o šeme relacije Radnik i Departman
 - o torke predstavljaju **trenutno stanje** entiteta u realnom svetu

- Relaciona baza podataka primer
 - Radnik

Departman

37

37

Temporalne baze podataka

- BP sa validnim vremenom
 - o zahtev za praćenjem istorije promena nad nekim entitetom
 - o uvode se početno i krajnje vreme validnosti entiteta u realnom svetu
 - obeležja s nazivima: Vpv i Vkv
 - o trenutno stanje entiteta u temporalnim BP sa validnim vremenom
 - temporalna konstanta **NOW** se dodeljuje obeležju Vkv
 - označava trenutno vreme
 - o uzimajući u obzir napredovanje vremena

- BP sa validnim vremenom
 - o primarni ključ šeme relacije sa validnim vremenom
 - vreme početka validnosti (Vpv)
 - ostala obeležja koja jedinstveno identifikuju entitet
 - o ukoliko su netemporalna obeležja u primarnom ključu podložna promenama
 - umesto njih se uvodi jedno obeležje koje predstavlja surogatni ključ
 - njemu se pridružuje Vpv

39

39

Temporalne baze podataka

- BP sa validnim vremenom primer
 - o Radnik_VV

Departman_VV

4

- BP sa validnim vremenom
 - brisanje torki
 - torci koja se briše se upisuje vrednost Vkv obeležja
 - torka se zatvara
 - logičko brisanje
 - dodavanje torki
 - upisivanjem nove torke u relaciju
 - Vkv dobija vrednost NOW

41

41

Temporalne baze podataka

- BP sa validnim vremenom
 - ažuriranje torki
 - "staroj" torci se upisuje vrednost Vkv obeležja
 - zatvorena (istorijska) torka
 - upisuje se nova torka sa izmenjenim vrednostima
 - Vpv označava vreme izmene entiteta u ralnom svetu
 - Vkv sadrži promenljivu NOW

- BP sa validnim vremenom
 - tipovi ažuriranja
 - proaktivno ažuriranje
 - ažuriranje se obavlja **pre** promene u realnom sistemu
 - početno vreme se postavlja na datum u budućnosti
 - retroaktivno ažuriranje
 - ažuriranje se obavlja **nakon** promene u realnom sistemu
 - početno vreme se postavlja na datum u prošlosti
 - simultano ažuriranje
 - ažuriranje se obavlja **paralelno** sa promenom u realnom sistemu
 - početno vreme se postavlja na trenutni datum
 - o ne postoji informacija o promeni stanja baze podataka

43

43

Temporalne baze podataka

• BP sa validnim vremenom – primer

Ime	JMBG	Pit	DepID	RukJMBG	Vpv	Vkv
Petar	0901251	25000	5	9851244	2002-06-15	2003-05-31
Petar	0901251	30000	5	9851244	2003-06-01	NOW
Marko	3654211	25000	4	9851244	1999-08-20	2001-01-31
Marko	3654211	30000	5	9851244	2001-02-01	2010-03-31
Marko	3654211	40000	5	9851244	2010-04-01	NOW
Dejan	9851244	28000	4	3241545	2001-05-01	2002-08-10
Ivan	3241545	38000	5	NULL	2014-08-01	NOW

• BP sa validnim vremenom – primer

Naziv	DepID	RukJMBG	Vpv	Vkv
E1	4	9851244	2001-09-20	NOW
E2	5	9851244	2001-09-20	2002-03-31
E2	5	3241545	2002-04-01	NOW

45

45

Temporalne baze podataka

- BP sa transakcionim vremenom
 - o zahtev za praćenjem promene stanja sistema BP
 - o svakoj torci se pridružuje vremenski otisak
 - za početak transakcije (Vpt)
 - za kraj transakcije (Vkt)
 - uobičajeni tip podataka je TIMESTAMP
 - rollback baze podataka
 - moguća primena operacija logičkog poništavanja (logički *rollback*, tj. *flashback*)
 - u cilju vraćanja stanja određenog dela baze podataka u stanje željenog vremenskog trenutka

- BP sa transakcionim vremenom
 - o trenutno stanje entiteta u temporalnim BP sa transakcionim vremenom
 - temporalna konstanta **UNTIL CHANGED** (UC) se dodeluje obeležju Vkt
 - označava trenutno transakciono vreme
 - dok torku ne promeni neka druga transakcija
 - o primarni ključ šeme relacije sa validnim vremenom
 - vreme početka transakcije (Vpt)
 - ostala obeležja koja jedinstveno identifikuju entitet

47

47

Temporalne baze podataka

- BP sa validnim vremenom primer
 - o Radnik_TV

Departman_TV

4

- Bitemporalne baze podataka
 - o zahtev za praćenjem promene stanja sistema BP kao i promene podataka u realnom svetu
 - svaka šema relacije sadrži obe vremenske dimenzije
 - o primarni ključ bitemporalne šeme relacije
 - vreme početka transakcije (Vpt)
 - vreme početka validnosti (Vpv)
 - ostala obeležja koja jedinstveno identifikuju entitet
 - o trenutno stanje entiteta u bitemporalnim BP
 - Vkv ima vrednost NOW
 - Vkt ima vrednost UC

49

49

Temporalne baze podataka

- BP sa validnim vremenom primer
 - Radnik BT

o Departman_BT

50

- Bitemporalne baze podataka
 - o modifikacija torki
 - nijedno obeležje se fizički **ne menja** osim Vkv i Vkt
 - za svaku izmenu se dodaje nova torke
 - nova verzija entiteta
 - postupak modifikacije
 - elementi modifikacije
 - trenutna verzija torke **v** koja se modifikuje
 - \circ v[Vkv] = *NOW*
 - \circ v[Vkt] = *UC*
 - transakcija T koja modifikuje torku
 - o **TS(T)** vremenski otisak transakcije T
 - VT trenutak u vremenu kada je entitet promenio stanje u relanom sistemu
 - VT- trenutak neposredno pre VT

51

51

Temporalne baze podataka

- Bitemporalne baze podataka
 - postupak modifikacije
 - koraci modifikacije
 - dodati novu torku v₂ u relaciju
 - ∘ v₂ je kopija torke v
 - $v_2[Vkv] = VT-$
 - $v_2[Vpt] = TS(T)$
 - $v_2[Vkt] = UC$
 - 2. dodati novu torku v_3 u relaciju
 - v₃ je kopija torke v
 - $v_3[Vpv] = VT$
 - $v_3[Vkv] = NOW$
 - o modifikuju se vrednosti polja koja se menjaju
 - $v_3[Vpt] = TS(T)$
 - $v_3[Vkt] = UC$

- Bitemporalne baze podataka
 - postupak modifikacije
 - koraci modifikacije
 - 3. $v_2[Vkt] = TS(T)$
 - $\,\blacksquare\,\,$ torka v_3 predstavlja trenutnu verziju entiteta u bazi podataka

53

53

Temporalne baze podataka

- Bitemporalne baze podataka
 - o brisanje torki
 - logičko brisanje torke v
 - dodaje se nova torka v₂
 - kopija torke v
 - $v_2[Vpt] = TS(T)$
 - $v_2[Vkv] = VT$
 - v[Vkt] = TS(T)
 - dodavanje torki
 - lacktriangle dodaje se nova torka \mathbf{v}_n
 - $v_n[Vpt] = TS(T)$
 - $v_n[Vkt] = UC$
 - $v_n[Vpv] = VT$
 - $v_n[Vkv] = NOW$

• BP sa validnim vremenom – primer

lme	JMBG	Pit	DepID	RukJMBG	Vpv	Vkv	Vpt	Vkt
Petar	0901251	25000	5	9851244	2002-06-15	NOW	2002-06-08, 13:05:58	2003-06-04, 08:56:12
Petar	0901251	30000	5	9851244	2002-06-15	2003-05-31	2003-06-04, 08:56:12	UC
Petar	0901251	30000	5	9851244	2003-06-01	NOW	2003-06-04, 08:56:12	UC
Dejan	9851244	28000	4	3241545	2001-05-01	NOW	2001-04-27, 16:22:05	2002-08-12, 10:11:07
Dejan	9851244	28000	4	3241545	2001-05-01	2002-08-10	2002-08-12, 10:11:07	UC
Ivan	3241545	38000	5	NULL	2003-08-01	NOW	2003-07-28, 09:25:37	UC

5

55

Temporalne baze podataka

• BP sa validnim vremenom – primer

lme	JMBG	Pit	DepID	RukJMBG	Vpv	Vkv	Vpt	Vkt
Marko	3654211	25000	4	9851244	1999-08-20	NOW	1999-08-20, 11:18:23	2001-01-07, 14:33:02
Marko	3654211	30000	5	9851244	1999-08-20	2001-01-31	2001-01-07, 14:33:02	UC
Marko	3654211	40000	5	9851244	2001-02-01	NOW	2001-01-07, 14:33:02	2002-03-28, 09:23:57
Marko	3654211	25000	4	9851244	2001-02-01	2002-03-31	2002-03-28, 09:23:57	UC
Marko	3654211	30000	5	9851244	2002-04-01	NOW	2002-03-28, 09:23:57	UC

-

• BP sa validnim vremenom – primer

Naziv	DepID	RukJMBG	Vpv	Vkv	Vpt	Vkt
E1	4	9851244	2001-09-20	NOW	2001-09-20, 13:14:55	UC
E2	5	9851244	2001-09-20	NOW	2001-09-15, 14:52:12	2002-03-28, 09:23:57
E2	5	3241545	2001-09-20	2002-03-31	2002-03-28, 09:23:57	UC
E2	5	3241545	2002-04-01	NOW	2002-03-28, 09:23:57	UC

57

57

Temporalne baze podataka

- Bitemporalne baze podataka
 - o načini implementacije bitemporalnih relacija
 - jedna relacija
 - sve torke pripadaju jednoj relaciji
 - dve relacije
 - trenutno aktuelne torke pripadaju jednoj relaciji
 - istorijske torke u drugoj

- Interpretacija vremena u BP
 - verzionisanje atributa
 - jedan složeni objekat se koristi kako objedinio sve vremenske promene
 - atribut zavisan od vremena
 - svaki atribut koji se menja u toku vremena
 - vrednosti su mu verzionisane dodavanjem temporalnih atributa
 - o validno vreme, transakciono vreme ili bitemporalni
 - atribut nezavisan od vremena
 - svaki atribut koji se ne menja u toku vremena
 - ne sadrže temporalne atribute

59

59

Temporalne baze podataka

- Interpretacija vremena u BP
 - verzionisanje atributa
 - atributi se menjaju nezavisno jedni od drugih
 - nema potrebe za kopiranjem celog objekta
 - o već samo atributa koji se menjaju
 - poseban atribut za definisanje validnosti celog objekta
 - atribut koji opisuje životni vek
 - o označava periode validnosti objekta kao celine
 - kako u realnom svetu tako i u sistemu baze podataka
 - o logičko brisanje objekta se obavlja zatvaranjem životnog veka
 - postavljanje vremena u Vkv i Vtv atribut
 - ograničenje
 - svaki vremenski period važenja atributa mora biti podskup životnog veka objekta

• Interpretacija vremena u BP

```
class TEMPORAL_PLATA
   attribute Date
                           Vpv;
   attribute Date
                           Vkv;
   attribute float
                           Plata;
};
class TEMPORAL_DEPARTMAN
   attribute Date
                                  Vpt;
   attribute Date
                                  Vkv;
   attribute DEPARTMAN_VT
                           Dep;
};
```

61

Temporalne baze podataka

• Interpretacija vremena u BP

• Interpretacija vremena u BP

```
class RADNIK_VT
( extent RADNICI )
{
  attribute list< TEMPORAL_ZIVOTNI_VEK > Zivotni_vek;
  attribute string Ime;
  attribute string JMBG;
  attribute list<TEMPORAL_SALARY> Plt_istorija;
  attribute list<TEMPORAL_DEPT> Dep_istorija;
  attribute list <TEMPORAL_SUPERVISOR> Ruk_istorija;
};
```

63

63

Temporalne baze podataka

- TSQL jezik
 - o obuhvata proširenja SQL-a
 - za rad nad bazama podataka sa temporalnim proširenjima
 - o tradicionalni uslovi selekcije
 - obuhvataju samo trenutna stanja entiteta
 - temporalni uslovi selekcije
 - obuvataju sva stanja entiteta
 - trenutna i istorijska stanja
 - uključuje se i vremensko obeležje
 - čist vremenski uslov
 - obuhvata samo vremenska obeležja

- TSQL jezik
 - temporalni uslovi selekcije
 - selektuje torke koje su validne
 - u trenutku u vremenu T
 - u vremenskom periodu [T₁, T₂]
 - o skup trenutaka u vremenu između T₁ i T₂
 - uključujući T₁ i T₂
 - Alenova algebra
 - o obuhvata skup operacija nad vremenskim podacima

65

65

Temporalne baze podataka

• TSQL jezik – operacije

- TSQL jezik operacije
 - o rezultat operacija nad vremenskim intervalima može biti
 - vremenski trenutak
 - vremenski period
 - temporalni element
 - boolean vrednost

67

67

Temporalne baze podataka

- TSQL jezik operacije
 - o temporalni element
 - skup disjunktnih vremenskih perioda
 - lacksquare za svaka dva perioda $[T_1, T_2]$ i $[T_3, T_4]$ važi
 - $[T_1, T_2] \cap [T_3, T_4] = \emptyset$
 - T₃ nije naredni trenutak u vremenu nakon T₂
 - o u datoj granularnosti
 - T₁ nije naredni trenutak u vremenu nakon T₄
 - o u datoj granularnosti

- TSQL jezik primer
 - o čist vremenski uslov
 - Prikazati sve verzije entiteta radnik koje su bile validne u bilo kom trenutku u 2011 godini.

```
SELECT *
FROM Radnik T
WHERE [7.Vpv, 7.Vkv] OVERLAPS [2011-01-01, 2011-12-31]
```

69

69

Temporalne baze podataka

- TSQL jezik primer
 - o uslov sa atributima i vremenom
 - Prikazati sve verzije entiteta radnik koje su bile validne u bilo kom trenutku u 2011 godini. Radnici moraju da pripadaju departmanu 5.

- TSQL jezik
 - o omogućava kreiranje temporalnih relacija
 - o opcione AS klauzule CREATE TABLE naredbe
 - AS VALID STATE <GRANULARITY>
 - relacija sa validnim vremenom, vreme izraženo kroz periode
 - AS VALID EVENT <GRANULARITY>
 - relacija sa validnim vremenom, vreme izraženo kroz trenutke u vremenu
 - AS TRANSACTION
 - relacija sa transakcionim vremenom, vreme izraženo kroz periode
 - AS VALID STATE <GRANULARITY> AND TRANSACTION
 - bitemporalna relacija, vreme izraženo kroz periode
 - AS VALID EVENT <GRANULARITY> AND TRANSACTION
 - bitemporalna relacija, vreme izraženo kroz trenutke u vremenu

71

71

Temporalne baze podataka

- Podaci o vremenskim serijama
 - o engl. Time Series Data
 - o vremenska serija
 - predefinisana sekvenca trenutaka u vremenu
 - specijalan slučaj validnih vremenskih podataka
 - trenuci predefinisani u nekom kalendaru
 - koriste se u finansijskim aplikacijama

- Podaci o vremenskim serijama
 - SUBP-ovi
 - moraju da omoguće upravljanje serijama podataka
 - operacije nad vremenskim podacima
 - definisanje kalendara
 - kreiranje kalendara na osnovu koga će se definisati vremenska serija

73

73

Reference

- Tiwari S, "Professional NoSQL", John Wiley & Sons, Inc., SAD, 2011
- Todorić B, "*Primena specijalizovanih baza podataka u oblasti upravljanja dokumentima*", Master rad, FTN, 2012.
- Elmasri R, Navathe S B, "Fundamentals of Database Systems", Šesto izdranje, Addison-Wesley, SAD, 2011
 - o poglavlje 26