AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) An object lens, comprising:
- a first optical system that obtains a magnified image of an object;
- a second optical system that guides dark field illumination light to the object;
- a barrel that contains the first optical system and the second optical system and has an optical path around the first optical system for the dark field illumination light, the barrel having a hold member that has a cylindrical surface and holds the first optical system; and
- a shield mechanism that is disposed on the optical path and that varies [[the]]an incident area of the dark field illumination light to shield the dark field illumination light[[.]].

wherein the shield mechanism includes a plurality of shield plates layered in the direction of the optical axis of the first optical system, the shield plates being opened/closed by rotating about the optical axis so as to vary the incident area of the dark field illumination, and

wherein each of the shield plates includes:

a first fit portion that has a ring shape and fits the surface of the hold member so that each of the shield plates can be opened/closed; and

a second fit portion that fits an adjacent shield plate and causes the shield plates to be rotated together while the first fit portion fits the surface of the hold member so that the shield plates are opened/closed.

- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Currently Amended) The object lens as set forth in claim[[3]] 1, wherein the second fit portion-has includes:
- a fit protrusion that is disposed on the upside of each of the shield plates and that fits the upper adjacent shield plate, and

Docket No.: OMY-0056

Application No. 10/568,424 Amendment dated March 23, 2009 Reply to Office Action of December 22, 2008

a guide groove that is disposed on the underside of each of the shield plates and that fits the fit protrusion of the lower adjacent shield plate and guides the fit protrusion when each of the shield plates is opened/closed.

5. (Currently Amended) The object lens as set forth in claim[[3]]1, wherein the second fit portion has includes:

a fit protrusion that is disposed on the underside of each of the shield plates and that fits the lower adjacent shield plate, and

a guide groove that is disposed on the upside of each of the shield plates and that fits the fit protrusion of the upper adjacent shield plate and guides the fit protrusion when each of the shield plates is opened/closed.

6. (Currently Amended) The object lens as set forth in claim[[3]]1, wherein when each of the shield plates that are fit are rotated so that the incident area becomes the minimum, the shield plates overlap each other for a predetermined area.

7. (Currently Amended) The object lens as set forth in claim[[2]]1, wherein at least one of the shield plates-has includes a handle member that protrudes from the barrel.

8. (Currently Amended) The object lens as set forth in claim[[3]] 1, wherein the shield mechanism-has includes:

a first shield plate group of the shield plates, the first shield plate group being rotatable together; and

a second shield plate group of the shield plates, the second shield plate group being rotatable together, the second shield plate group being operable independently from the first shield plate group.

9. (Withdrawn) A condenser, comprising:

Application No. 10/568,424 Amendment dated March 23, 2009 Reply to Office Action of December 22, 2008

a diaphragm mechanism that restricts dark field illumination light in a ring shape;

a condenser lens that guides the dark field illumination light restricted by the diaphragm mechanism to an object; and

an shield mechanism that varies the incident area of the dark field illumination light that enters the condenser lens so as to shield the dark field illumination light.

10. (Withdrawn) The condenser as set froth in claim 9,

wherein the shield mechanism has a plurality of shield plates and layered in the direction of the optical axis of the condenser lens, the shield plates can be opened/closed by rotating about the optical axis so as to vary the incident area of the dark field illumination.

11. (Withdrawn) The condenser as set forth in claim 10,

further comprising:

a rotation shaft that rotates the shield plates,

wherein each of the shield plates has:

a first fit portion that fits the rotation shaft so that each of the shield plates can be opened/closed; and

a second fit portion that causes each of the shield plates to be rotated together while the first fit portion fits the hold member so that the shield plates are opened/closed.

12. (Withdrawn) The condenser as set forth in claim 11,

wherein the second fit portion has:

a fit protrusion that is disposed on the upside of each of the shield plates and that fits the upper adjacent shield plate, and

a guide groove that is disposed on the underside of each of the shield plates and that fits the fit protrusion of the lower adjacent shield plate and guides the fit protrusion when each of the shield plates is opened/closed.

13. (Withdrawn) The condenser as set forth in claim 11,

Application No. 10/568,424 Docket No.: OMY-0056

Amendment dated March 23, 2009
Reply to Office Action of December 22, 2008

wherein the second fit portion has:

a fit protrusion that is disposed on the underside of each of the shield plates and that fits the lower adjacent shield plate, and

a guide groove that is disposed on the upside of each of the shield plates and that fits the fit protrusion of the upper adjacent shield plate and guides the fit protrusion when each of the shield plates is opened/closed.

14. (Withdrawn) The condenser as set forth in claim 11,

wherein when each of the shield plates that are fit are rotated so that the incident area becomes the minimum, the shield plates overlap each other for a predetermined area.

15. (Withdrawn) The condenser as set forth in claim 10,

wherein at least one of the shield plates has a handle member with which the shield plates are opened/closed.

16. (Withdrawn) The condenser as set forth in claim 11, wherein the shield mechanism has:

a first shield plate group of the shield plates, the first shield plate group being rotatable together; and

a second shield plate group of the shield plates, the second shield plate group being rotatable together, the second shield plate group being operable independently from the first shield plate group.

8