$11n_{20} (K11n_{20})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{16} + 2u^{15} + \dots + 2b - 1, -2u^{16} + 6u^{15} + \dots + 2a + 5, u^{17} - 3u^{16} + \dots - 2u + 1 \rangle$$

$$I_2^u = \langle u^2a + b + a, -u^2a + a^2 - au - a - u, u^3 + u^2 + 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 23 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{16} + 2u^{15} + \dots + 2b - 1, -2u^{16} + 6u^{15} + \dots + 2a + 5, u^{17} - 3u^{16} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{16} - 3u^{15} + \dots + 4u - \frac{5}{2} \\ \frac{1}{2}u^{16} - u^{15} + \dots + 2u + \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{3}{2}u^{16} - \frac{9}{2}u^{15} + \dots + \frac{11}{2}u - 3 \\ u^{16} - \frac{5}{2}u^{15} + \dots + 12u^{3} + \frac{7}{2}u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{14} - u^{13} + \dots + 4u + \frac{3}{2} \\ -\frac{1}{2}u^{16} + u^{15} + \dots - u + \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{16} + 5u^{15} + \dots - 5u + \frac{9}{2} \\ -\frac{3}{2}u^{16} + 5u^{15} + \dots - 5u + \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$u^{16} - \frac{3}{2}u^{15} + \frac{13}{2}u^{14} - \frac{15}{2}u^{13} + \frac{33}{2}u^{12} - 19u^{11} + 23u^{10} - \frac{67}{2}u^9 + 24u^8 - \frac{81}{2}u^7 + 22u^6 - 17u^5 + 12u^4 + 13u^3 + \frac{19}{2}u + \frac{1}{2}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{17} + 4u^{16} + \dots + 3u + 1$
c_2	$u^{17} + 2u^{16} + \dots + 3u - 1$
c_3, c_9	$u^{17} + u^{16} + \dots - 96u - 64$
c_5	$u^{17} - 4u^{16} + \dots + 557u + 137$
c_6, c_8	$u^{17} - 3u^{16} + \dots + 2u - 1$
c_7, c_{10}, c_{11}	$u^{17} + 3u^{16} + \dots - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{17} + 2y^{16} + \dots + 3y - 1$
c_2	$y^{17} + 30y^{16} + \dots + 3y - 1$
c_3, c_9	$y^{17} + 35y^{16} + \dots + 9216y - 4096$
<i>C</i> 5	$y^{17} + 58y^{16} + \dots - 518053y - 18769$
c_{6}, c_{8}	$y^{17} - 31y^{16} + \dots - 14y - 1$
c_7, c_{10}, c_{11}	$y^{17} + 13y^{16} + \dots - 14y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.219268 + 0.999289I		
a = 1.80602 - 0.25255I	-1.31705 + 3.54605I	2.16487 - 2.95335I
b = 0.77227 - 1.25221I		
u = 0.219268 - 0.999289I		
a = 1.80602 + 0.25255I	-1.31705 - 3.54605I	2.16487 + 2.95335I
b = 0.77227 + 1.25221I		
u = 1.052720 + 0.047013I		
a = 0.092101 - 0.115408I	15.8539 + 3.8626I	6.39661 - 2.12816I
b = -0.02224 - 2.20267I		
u = 1.052720 - 0.047013I		
a = 0.092101 + 0.115408I	15.8539 - 3.8626I	6.39661 + 2.12816I
b = -0.02224 + 2.20267I		
u = -0.095288 + 1.269800I		
a = 0.670660 + 0.619159I	-4.44298 - 1.97657I	-3.41444 + 3.62302I
b = 0.689025 + 0.075156I		
u = -0.095288 - 1.269800I		
a = 0.670660 - 0.619159I	-4.44298 + 1.97657I	-3.41444 - 3.62302I
b = 0.689025 - 0.075156I		
u = -0.228042 + 0.683004I		
a = -1.181530 + 0.437561I	0.22550 - 1.43526I	4.15937 + 3.64291I
b = -0.295357 + 0.574121I		
u = -0.228042 - 0.683004I		
a = -1.181530 - 0.437561I	0.22550 + 1.43526I	4.15937 - 3.64291I
b = -0.295357 - 0.574121I		
u = -0.710942		
a = -0.587793	1.69761	6.54340
b = -0.244243		
u = -0.281522 + 1.323870I		
a = -0.413372 + 0.348973I	-2.51924 - 3.59257I	1.69678 + 1.62034I
b = -0.121248 + 0.378439I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.281522 - 1.323870I		
a = -0.413372 - 0.348973I	-2.51924 + 3.59257I	1.69678 - 1.62034I
b = -0.121248 - 0.378439I		
u = 0.55805 + 1.32231I		
a = -1.54225 + 1.32872I	11.91540 + 1.84478I	3.96952 - 0.75367I
b = -0.28772 + 2.07576I		
u = 0.55805 - 1.32231I		
a = -1.54225 - 1.32872I	11.91540 - 1.84478I	3.96952 + 0.75367I
b = -0.28772 - 2.07576I		
u = 0.50759 + 1.37481I		
a = 1.54834 - 1.48310I	11.4057 + 9.4106I	3.33658 - 4.76975I
b = 0.23471 - 2.13882I		
u = 0.50759 - 1.37481I		
a = 1.54834 + 1.48310I	11.4057 - 9.4106I	3.33658 + 4.76975I
b = 0.23471 + 2.13882I		
u = 0.122694 + 0.403191I		
a = -1.68607 + 0.58270I	0.106087 - 1.407490I	0.91901 + 2.91397I
b = 0.152683 + 0.763557I		
u = 0.122694 - 0.403191I		
a = -1.68607 - 0.58270I	0.106087 + 1.407490I	0.91901 - 2.91397I
b = 0.152683 - 0.763557I		

II. $I_2^u = \langle u^2 a + b + a, -u^2 a + a^2 - au - a - u, u^3 + u^2 + 2u + 1 \rangle$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2}a - au \\ -2u^{2}a - au - 2a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2}a - au \\ -2u^{2}a - au - 2a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + a - 2u - 1 \\ -u^{2}a - a - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{2}a - a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2a au + 3u^2 + 5a + 3u + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^3$
c_3, c_9	u^6
c_4	$(u^2 - u + 1)^3$
c_{6}, c_{8}	$(u^3 - u^2 + 1)^2$
	$(u^3 + u^2 + 2u + 1)^2$
c_{10}, c_{11}	$(u^3 - u^2 + 2u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2 + y + 1)^3$
c_3, c_9	y^6
c_{6}, c_{8}	$(y^3 - y^2 + 2y - 1)^2$
c_7, c_{10}, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 0.206350 + 1.132320I	-3.02413 - 4.85801I	-1.45566 + 6.64456I
b = -0.500000 + 0.866025I		
u = -0.215080 + 1.307140I		
a = -1.083790 - 0.387453I	-3.02413 - 0.79824I	2.09851 - 0.12339I
b = -0.500000 - 0.866025I		
u = -0.215080 - 1.307140I		
a = 0.206350 - 1.132320I	-3.02413 + 4.85801I	-1.45566 - 6.64456I
b = -0.500000 - 0.866025I		
u = -0.215080 - 1.307140I		
a = -1.083790 + 0.387453I	-3.02413 + 0.79824I	2.09851 + 0.12339I
b = -0.500000 + 0.866025I		
u = -0.569840		
a = 0.377439 + 0.653743I	1.11345 - 2.02988I	5.85715 + 4.49037I
b = -0.500000 - 0.866025I		
u = -0.569840		
a = 0.377439 - 0.653743I	1.11345 + 2.02988I	5.85715 - 4.49037I
b = -0.500000 + 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2} + u + 1)^{3})(u^{17} + 4u^{16} + \dots + 3u + 1)$
c_2	$((u^2 + u + 1)^3)(u^{17} + 2u^{16} + \dots + 3u - 1)$
c_3, c_9	$u^6(u^{17} + u^{16} + \dots - 96u - 64)$
c_4	$((u^2 - u + 1)^3)(u^{17} + 4u^{16} + \dots + 3u + 1)$
c_5	$((u^2 + u + 1)^3)(u^{17} - 4u^{16} + \dots + 557u + 137)$
c_{6}, c_{8}	$((u^3 - u^2 + 1)^2)(u^{17} - 3u^{16} + \dots + 2u - 1)$
C ₇	$((u^3 + u^2 + 2u + 1)^2)(u^{17} + 3u^{16} + \dots - 2u - 1)$
c_{10}, c_{11}	$((u^3 - u^2 + 2u - 1)^2)(u^{17} + 3u^{16} + \dots - 2u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^3)(y^{17} + 2y^{16} + \dots + 3y - 1)$
c_2	$((y^2 + y + 1)^3)(y^{17} + 30y^{16} + \dots + 3y - 1)$
c_3,c_9	$y^6(y^{17} + 35y^{16} + \dots + 9216y - 4096)$
<i>C</i> ₅	$((y^2 + y + 1)^3)(y^{17} + 58y^{16} + \dots - 518053y - 18769)$
c_{6}, c_{8}	$((y^3 - y^2 + 2y - 1)^2)(y^{17} - 31y^{16} + \dots - 14y - 1)$
c_7, c_{10}, c_{11}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{17} + 13y^{16} + \dots - 14y - 1)$