1001011101111000001

10100110100010ZO 1011110001110

0011011000111111010100 第五章 网络层

于网规划

子网 (Subnet)

- □ 局域网不断增长,越来越难于管理,必须将它分割成子网
- □ 一个网络被分隔成几个部分(子网),但是在外界看来,该 网络仍被看成一个整体 (体现在路由表例上,就是外部的路 由器只对应一条路由)
- □ 这也允许不同的子网在一个组织内部连接起来

子网实例

Computer Science: 10000000 11010000 1 xxxxxxx xxxxxxx

Electrical Eng.: 10000000 11010000 00 xxxxxx xxxxxxx

Art: 10000000 11010000 011 xxxxx xxxxxxxx

分组怎么知道该发送给哪个子网?

- □ 主/边界路由器 和外部联系
- □ 主路由器从外部接收分组,向内部转发,它怎样知道往哪里 转呢?即如何知道内部的网络结构呢?
 - ▶维护一张表?
 - >一种机制:子网掩码

子网掩码

- □ 路由器使用子网掩码决定分组往哪个子网转发
- □ 子网掩码可用点分十进制表示(1表示网络位, 0表示主机位), 也可用"/网络位数+子网位数"表示
 - >255.255.255.224
 - >202.10.23.102/27

上子网掩码

- □ 路由器采用 "AND"操作(目的IP和子网掩码),得到目的 网络地址
- □ 使用这种机制,路由器不必记录全部主机的IP地址,缩减了 路由器的规模

The AND Function

子网掩码

- □ 缺省的子网掩码
 - ➤ A: 255.0.0.0 (8位网络位)
 - /8
 - ➤ B: 255.255.0.0 (16位网络位)
 - /16
 - ➤ C: 255.255.255.0 (24位网络位)
 - /24

一些子网地址的分析

□ A network addr.: 10.0.0.0 10/8

broadcast addr.: 10.255.255.255

host addr.: 10.0.0.1~10.255.255.254

□ B network addr.: 166.111.0.0 166.111/16

broadcast adr.: 166.111.255.255

host addr.: 166.111.0.1~166.111.255.254

□ C network addr.: 212.111.1.0 212.111.1/24

broadcast addr.: 212.111.1.255

host addr.: 212.111.1.1~212.111.1.254

——网络地址、广播地址和主机地址

第一个主机和最后一个地址

一 什么是子网规划?

- □ 划分子网实际上建立了一个由网络、子网和主机构成的三级 层次结构
- □ 根据用户需求,划分出合适数量和规模的子网

规划要求基于每个子网的规模、每个子网的主机数量和主机地址的分配方式进行决策。

增加了子网后的地址模样

NETWORK

SUBNET

HOST

Network

Network

Network

SM Host

 $2\,{\overset{7}{2}}\,{\overset{6}{2}}\,{\overset{5}{2}}\,{\overset{4}{2}}\,{\overset{3}{2}}\,{\overset{2}{2}}\,{\overset{1}{2}}\,{\overset{0}{2}}$

2222222

7 6 5 4 3 2 1 0

 $\begin{smallmatrix} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \end{smallmatrix}$

Octet(8 bits)

Octet(8 bits)

Octet(8 bits)

Octet(8 bits)

1 1 0 0 0 0 0 0

00000101

00100010

00001011

Subnet Field

•

New Host Field

子网位从何而来?

- □ 构建子网是通过从网络地址的主机部分借位来进行
 - ▶广播地址: 主机部分为全 "1"的 IP 地址。
 - ▶子 主机部分为全 "0"的 IP 地址。

如何进行子网规划?

□ 子网规划:将大网络分割成小网络

Address Class	Size of Default Host Field	Maxi mum Number of Subnet Bits
A	24	22
В	16	14
C	8	6

- □ 借位原则
 - ▶从主机域的高位开始借位;
 - ▶主机域至少保留 2 位。

创建4个子网

□ 借用2个位可以创建4个子网。

> 22 = 4 个子网

4个子网的规模

	Network	192.	168.	1.	00	00	0000	192.168.1.0
Net 0	First	192.	168.	1.	00	00	0001	192.168.1.1
	Last	192.	168.	1.	00	11	1110	192.168.1.62
	Broadcast	192.	168.	1.	00	11	1111	192.168.1.63
	Network	192.	168.	1.	01	00	0000	192.168.1.64
Net 1	First	192.	168.	1.	01	00	0001	192.168.1.65
	Last	192.	168.	1.	01	11	1110	192.168.1.126
	Broadcast	192.	168.	1.	01	11	1111	192.168.1.127
	Network	192.	168.	1.	10	00	0000	192.168.1.128
Net 2	First	192.	168.	1.	10	00	0001	192.168.1.129
	Last	192.	168.	1.	10	11	1110	192.168.1.190
	Broadcast	192.	168.	1.	10	11	1111	192.168.1.191


```
R1 (config) #interface gigabitethernet 0/0
R1 (config-if) #ip address 192.168.1.1 255.255.255.192
R1 (config-if) #exit
R1 (config) #interface gigabitethernet 0/1
R1 (config-if) #ip address 192.168.1.65 255.255.255.192
R1 (config-if) #exit
R1 (config) #interface serial 0/0/0
R1 (config-if) #ip address 192.168.1.129 255.255.255.192
```

注意

- □ 规划子网时需要考虑两个因素:
 - ▶所需的子网数量
 - ▶所需主机地址的数量
- □ 确定可用主机数量的公式 2n-2
 - ▶2n (其中n为剩余的主机位的数量)用于计算主机数量
 - ▶-2 在每个子网中不能使用子网ID和广播地址
- □ 借位规则

(从主机域的高位开始借位; 主机域至少保留 2 位。)

按照主机要求划分子网

11000000 10101000 00000001 hhhhhhhh

Subnet ID Bits	Host ID Bits	Number of Subnets	Number of Hosts per Subnets	Bit Pattern
0	8	1	254	hhhhhhhh
1	7	2	126	shhhhhhh
2	6	4	62	sshhhhhh
3	5	8	30	sss <mark>hhhhh</mark>
4	4	16	14	ssss <mark>hhhh</mark>
5	3	32	6	sssss <mark>hhh</mark>
6	2	64	2	sssssshh

按照网络要求划分子网

- □ 计算子网数量
 - ➤公式 2ⁿ (其中n是借用的位数)

小结

- □ 子网让两层IP地址结构变成了3层
 - ▶网络、子网和主机
- □ 子网掩码
 - ▶点分十进制(255.255.255.224)
 - ➤网络位 (/27)
- □ 按位"与",确定网络地址

小结

- □ A\B\C三类地址的缺省子网掩码
 - >A:255.0.0.0(/8)
 - ►B:255.255.0.0(/16)
 - >C:255.255.255.0(24)
- □ 通过向主机位借位来创建子网
- □ 借位原则
 - ▶高位开始借
 - ▶至少保留2位主机位

思考题

- □ 为什么要划分子网?
- □ 子网规划的任务是什么?
- □ 怎么来创建子网?
- □ 子网掩码码有什么用?
- □ A、B、C三类地址的缺省掩码是什么?
- □ 子网规划的借位原则是怎样的?
- □ 子网规划时要考虑什么因素?

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!