OX SIGNAL PROCESSING FOR COMPUTER-ENGINEERS À SHOET INTRODUCTION TO ÀNALOGITILITEES. A FILTER" is a System which can eliminate specific parts of a signal while other parts are left (almost) X SYSTEN Y=X' In our context, this system consists of an electrical circuit with resistors capacitors, inductors, and eventually active components such as OpAmps. The input is an electrical signal denoted x(t). The system h(t) modify x(t) into an output y(t) = f(x(t)) = h(t) * x(t). X(t) + y(t) - y(t)

Since XIt), y(t), and htt) are all continuous- time functions, the filter is denoted a Continuous-time filter, or an
time functions, the filter is denoted
a Continuous-time filter or an
analog filter, i.e., a specific circuit topology with an input - and an output terminal pair.
topology with an input - and an output
terminal pair. R
An example: TXH) C= y(4)

We know from premious discussions-that a continuous-time system hlt) which is excited with an impulse ofth, responds with its impulse response

$$\chi(t) = \delta(t)$$
 $h(t)$ $\chi(t) = h(t)$

tor any given input x(t) the response can be calculated by the Convolution integral

$$y(t) = \int x(\tau) \cdot h(t-\tau) d\tau$$

$$\tau = -\infty$$

	S
0	BUTTERWORTH APPROXIMATION
-142	
	In the ideal situation, we would like
	to design a "Brickwall Filter", i.e., a
	In the ideal situation, we would like to design a "Brickwall Filter" i.e., a filter which has an auphitude response such as: 1 (Lowpuss)
	such as; Alties
	1 (1+(j2)) (Low pass)
	2
	This is: H(je) = 1 12/220 This is: H(je) = 0 otherwise
	This is: H(je) = 1
	Orfortunalely, such a filter exists only as a mathematical definition - it cannot be implemented physically.
	and a mother antical delicition - it
	carnot be implemented physically
0	
	Therefore, we want to find an approximation
	Therefore, we want to find an approximation to the ideal amplitude response, Hije
The state of the s	ever vetter though, we may use [High]
	Decause this is rational function
	Ever better though, we may use High because this is rational function of in 12, which may be an advantage when we have to find the poles in High.
0	are viewe to the points (1)
15	

Therefore, let's défine the squared amplitude response

 $|H(jQ)|^2 = \frac{A_0}{1+F(\Omega^2)}$

Where Ao is the DC.gain (D=0).

tind an expression for F(s2) such that

F(Q2) K1 OKQKQp $F(Q^2) \Rightarrow 1$ Q > Q

One possible solution could be

F(12) = 12n, where n denotes

the FILTER ORDER

 $H(jQ) = \frac{1}{1+Q^{2n}}$ $A_0=1.$ This function is known as the squared amplitude response for the normalized with order Butterworth Lowpass Filter It has the following characteristics; H(jo) = 1 (oas) for all n. e | H(j·1) = /2 for all n. $||H(j,1)| = \sqrt{2}$ The frequency Q=1 is known as the cut-off frequency (på dansk "knock-frekvers")
or just the "3 dB frequency".

	S.
	Other terms
	HI2 & Stopbard
Once	bard
lac	1 2
	The common time to the Raid wall little
	The approximation to the Brickwall filter beconnes better as n increases;
0	
	assume n >> n2
	@ In the passbard; I << I2"
	o In the stop band. 2201 >> 12002
	applying this in H(12) = This we
0	clearly less Hast the approximation to
	clearly see that the approximation to the Brickwall filter becomes veller the larger the filter order n is.
	the larger the filter order n is.
	•
0	

		7.
	Similarly, we may rewrite Hije) in terms of a Taylor series?	
	$ H_{ij}\Omega = \frac{1}{\sqrt{1+\Omega^{2n}}} = 1 - \frac{1}{2}\Omega + \frac{3}{9}\Omega - \frac{5}{16}$	6n 2 °
0_	$\frac{\partial^{k} H(j\Omega)}{\partial^{k} \Omega} = 0, k=1,2,$	20-1
	ard	111111111111111111111111111111111111111
0	$\frac{\partial^{k} H(j\Omega) }{\partial^{k}\Omega} = \frac{1}{2} \qquad k=2n$	
	So, all derivatives for k=1,02n are equal to 0 (for Q=0), except for one, which is a constant.	
	one, which is a constant.	238
	MAXIMAL FLAT AMPLITUDE RESPONSE	-
	MANUEL MESTAGE	

In order to solve this issue, we use the "Teansition BAND RELATION". H(je) Lells us something about the steepness of the curve. TRANSITION BAND = 1.5 (according to the example) $\frac{2n}{2s} = \frac{2s}{2s} = (1.5)^{2n}$ 761. The order however, 8.761... = 9 For this value of n, we can now Ip and Is.

 $Q^{2n} = 10^{-1}$ Specs fulfilled at Q_p . $Q_p = 10^{-1} = 0.928...$ and since $Q_p = 1.5$, we find that Q = 1.5.0,928 ... = 1.392... We need however to check whether the specifications are fulfilled at Q for 1=9. $\alpha_{s} = 20 \log \left(\frac{A_{o}}{A_{2}}\right)$ = 20. log 1/2, = 10. log (1+ 12n) = 25,84 dB | n=9 2=1.52p

Amplitude response Dranger function.

[Hij 2) Dollar Krown. For a complex number, we have; $|x|^2 = x \cdot \overline{x} \quad (n \times x \cdot x^*)$ H(jQ) = H(jQ). H(je) Assuming now that we evaluate the transfer function H(s) on the frequency axis s=j2, then we have; H(je) = H(s) = H(s) | s=jq Since we know |H(je)|2, we can now find H(s).

 $|H(j\Omega)|^{2} = \frac{1}{1+\Omega^{2n}} = H(s) \cdot H(-s)$ $|S=j\Omega|$ $|S=j\Omega|$ $|S=j\Omega|$ $|S=j\Omega|$ H(s).H(-s) = 1 1+(-1)s2n Q(s).Q(-s) = 1+(-1), sn We now search for the roots in this polynomia;

1+(-1) - s = 0 le is an integer.

We now select the poles located in the left half of the s-plane, Since these poles represent a STARLE System His) ?