CHAPTER 1

BASIC CONCEPT

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C", Computer Science Press, 1992.

How to create programs (Waterfall Model)

Requirements

Analysis

Design: Architecture Design

Detailed Design – Data Type · Algorithm

User Interface Design (option)

Coding and Refinement

Verification and Testing

Maintain

Algorithm

Definition

An *algorithm* is a finite set of instructions that accomplishes a particular task.

Criteria

- Input ≥ 0
- Output ≥ 1
- Definiteness: clear and unambiguous
- Finiteness: terminate after a finite number of steps
- Effectiveness: instruction is basic enough to be carried out

Recursion

Definition:

函數(程式)中包含有自身呼叫的敘述

種類:

Direct Recursion, Indirect Recursion, and Tail Recursion

優缺點(與 Iteration比較):

優: 容易設計、方便閱讀、節省 code space

缺: 執行時對 stack space 之需求較高、執行效率較差

考題型態:

數學類(N!、費式數列)、資料結構類(Binary tree traversal、Quick sort)、其他(河內塔、直線切割平面)

Recursion

型態:

數學類(N!、費式數列)、資料結構類(Binary tree traversal、Quick sort)、其他(河內塔、直線切割平面)

技巧:

找出(a)終止條件(b)遞迴關係

if (a) then (結束 or 回傳值) else return (b)

Data Type

Data Type

A *data type* is a collection of *objects* and a set of *operations* that act on those objects.

ex)

Integer: Data type

Collection of objects: -n, -(n-1), ..., 0, 1, 2 ... n

Set of operations: $+, -, \times, \div, > \dots$

Abstract Data Type

An *abstract data type(ADT)* is a data type that is organized in such a way that the **specification** of the objects and the operations on the objects is separated from the representation of the objects and the **implementation** of the operations.

- ex) Sack is an ADT
 - specification of the objects:
 - 1. a set of elements
 - 2. top pointer
 - 3. stack size
 - the specification of the operations:
 - 1. push (i, s)
 - 2. pop (s) \rightarrow i

ex) Sack is an ADT

representation of the objects:

Array

top: integer=0

size: integer=n

Link-list

top: pointer=nil

no size limit

ex) Sack is an ADT

the implementation of the operations

push(i, s)

if stack full then error new t

else t^data=i

top=top+1 t^link=top

push(i, s)

s[top]=i top=t

Performance Analysis or Measurement?

Performance Measurement (machine dependent)

Performance Analysis (machine independent)

- space complexity: storage requirement
 fixed space requirements: code space, simple type variable, fixed size structure variable, constant
 variable space requirements: structure parameters, recursion
- time complexity: computing time

Time Complexity compute the step count

Introduce variable count into programs

Tabular method

- Determine the total number of steps contributed by each statement
 - step per execution × frequency
- add up the contribution of all statements

Iterative summing of a list of numbers

*Program 1.12: Program 1.10 with count statements (p.23)

```
float sum(float list[], int n)
  float tempsum = 0; count++; /* for assignment */
  int i;
  for (i = 0; i < n; i++)
     count++; /*for the for loop */
     tempsum += list[i]; count++; /* for assignment */
  count++; /* last execution of for */
  return tempsum;
  count++; /* for return */
                                    2n + 3 steps
```

Tabular Method

*Figure 1.2: Step count table for Program 1.10 (p.26)

Iterative function to sum a list of numbers steps/execution

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum $= 0$;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

Recursive summing of a list of numbers

*Program 1.14: Program 1.11 with count statements added (p.24) float rsum(float list[], int n) count++; /*for if conditional */ if (n) { count++; /* for return and rsum invocation */ return rsum(list, n-1) + list[n-1]; count++; return list[0];

2n+2

Recursive Function to sum of a list of numbers

*Figure 1.3: Step count table for recursive summing function (p.27)

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, n-1)+list[n-1];	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

Tabular Method

```
for (i=1; i<n, i++)
{
    a=(b+c)*d/e
}
```

```
for (i=1; i<n, i++)
{
   T1=b+c
   T2=T1*d
   T3=T2/e
}
```

n?

3n?

Asymptotic Notation (O)

Definition

f(n) = O(g(n)) iff there exist two positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$.

Examples

- -2n+3=
- -2n+3=
- $-3n^2+2n+3=$

Theorem (p.36)

If
$$f(n) = a_m n^m + a_{m-1} n^{m-1} + ... + a_1 n + a_0 \text{ for } f(n) = O(n^m)$$

Asymptotic Notation (O) (upper bound)

Examples

$$- n^3 + n \log n + 5n^2$$

$$-n^6+100n^7+5000n^9+2^n$$

$$- n^2 + n^2 \log n + 5$$

Basic Principle

O(1): constant

O(logn)

O(n): linear

O(nlogn)

O(n²): quadratic

 $O(n^3)$: cubic

 $O(2^n)$: exponential

 $O(\frac{n^{\frac{n}{2}}}{2})$

O(n!)

 $O(n^n)$

*Figure 1.7:Function values (p.42)

Instance characteristic #									
Time	Name	1	2	4	8	16	32		
1	Constant	1	1	1		1	1		
log n	Logarithmic	0	1	2	3	4			
n	Linear	1	2	4	8	16	32		
$n \log n$	Log linear	0	2	8	24	64	160		
n ²	Quadratic	1	4	16	64	256	1024		
n^3	Cubic	1	8	64	512	4096	32768		
2 ⁿ	Exponential	2	4	16	256	65536	4294967296		
n!	Factorial	1	2	24	40326	20922789888000	26313 x 10 ⁵³		

*Figure 1.8:Plot of function values(p.43)

*Figure 1.9:Times on a 1 billion instruction per second computer(p.44)

n $f(n)=n$		Time for $f(n)$ instructions on a 10^9 instr/sec computer								
	$f(n) = \log_2 n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=n^4$	$f(n)=n^{10}$	$f(n)=2^n$				
10	.01µs	.03µs	.1µs	1µs	10µs	10sec	1µs			
20	.02µs	.09µs	.4μs	8µs	160µs	2.84hr	1ms			
30	.03µs	.15µs	.9µs	27µs	810µs	6.83d	1sec			
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3min			
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d			
100	.10µs	.66µs	10µs	1ms	100ms	3171yr	4*10 ¹³ yr			
1,000	1.00µs	9.96µs	1ms	1sec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr			
10,000	10.00µs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr				
100,000	100.00µs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr				
1,000,000	1.00ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr				

 μs = microsecond = 10^{-6} seconds

 $ms = millisecond = 10^{-3} seconds$

sec = seconds

min = minutes

hr = hours

d = days

yr = years

L'hospital Rule

Ex) $n^{0.01n}$ V.S. $(1.001)^n$

如果所有的嘗試都失敗 為何不使用計算機? (一般的研究所考試均允許使用計算機)

屏科大87)

 $A:(1.001)^n$, $B:n^{0.000\ln}$, $C:2^{\log n}$, D:n!, $E:n\log n$,

(a) D最高 (b) C最低 (c) B高於A (d) E低於A (e) 以上皆是

D>B>A>E>C

中原資工89)

Arrange the following function into asymptotic asceding order n, 2^n , 192, $n \log n$, \sqrt{n} , n!

192, \sqrt{n} , n, $n \log n$, 2^n , n!

輔大資管90)

Which of the following statements is not correct?

- (a) 20 is O(1)
- (b) n(n-1)/2 is $O(n^2)$
- (c) max(n^3 , $10n^2$) is O(n^3)
- (d) $15n^4 + 10n^3 + 100n^2 + 2^n$ is O(n^4)
- (e) If p(x) is any k^{th} degree polynomial with a positive leading coefficient, then p(n) is $O(n^k)$

(d)

中原資工90)

List the functions below from lowest to highest order n, $n-2n^3+5n^5$, $\sqrt{6n}$, $\log(\log n)$, O(1), 2n!

$$O(1)$$
, $\log(\log n)$, $\sqrt{6n}$, n , $n-2n^3+5n^5$, $2n!$

台大電機89)

Ordering by asymptotic growth rates in asceding order $(\log n)!$, (n+1)!, $\log(n!)$, $4^{\log n}$, $(\frac{3}{2})^n$

$$(\log n)! = O((\log n)^{\log n})$$

$$\log(n!) = O(n\log n)$$

$$4^{\log n} = n^2$$

$$\log(n!)$$
, $4^{\log n}$, $(\frac{3}{2})^n$, $(\log n)!$, $(n+1)!$

交大資科)

比較 $(1.001)^n$, $n^{0.0001n}$, $2^{\log n}$, n!, $n \log n$ 之大小

 $2^{\log n}$, $n \log n$, $(1.001)^n$, $n^{0.000 \ln n}$, n!

Asymptotic Notation (Ω) (Lower bound)

Definition

 $f(n) = \Omega(g(n))$ iff there exist two positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$.

Examples

$$-3n+3=\Omega(n)$$
 /* $3n+3 \ge 2n$ for $n\ge 1$ */

$$-62^{n}+n^{2}=\Omega(2^{n})$$
 /* $62^{n}+n^{2}\geq 62^{n}$ for $n\geq 1$ */

Asymptotic Notation (θ)

Definition

 $f(n) = \theta(g(n))$ iff there exist three positive constants c_1 , c_2 and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all n, $n \ge n_0$.

Examples

$$-3n+2=\Omega(n)$$
 /* $3n+2 \ge 3n$ for $n\ge 2$ */

$$-3n+2=O(n)$$
 /* $3n+2 \le 4n$ for $n\ge 2$ */

成大電機)

Let
$$f(n) = \sum_{i=1}^{n} \log i$$
, show that $f(n) = O(n \log n)$

Show that the following statements are correct

(a)
$$n^2 + 10^{100} n \in O(n^2)$$

(b)
$$\sum_{i=1}^{n} i^2 \in O(n^3)$$

(c)
$$n! \in O(n^n)$$

屏科大)

Which of the following statements is correct?

$$(a) \sum_{i=1}^{n} i^2 \in O(n^3)$$

(b)
$$n^3 \cdot 2^n + 6 \cdot n^2 \cdot 3^n = O(n^2 \cdot 2^n)$$

(c)
$$n^k + n + n^k \log n = \theta(n^k \log n)$$

(d)
$$10n^3 + 15n^4 + 100n^2 \cdot 2^n = O(n^2 \cdot 2^n)$$

(e)
$$\log(n!) = \Omega(\log(n^n))$$

For
$$i=1$$
 to n do
For $k=(i+1)$ to n do
 $x=x+1$

以 x=x+1 之執行次數當 T(n),求 T(n)

For i=1 to n do

For j=i to n do

For k=j to n do

x=x+1

以 x=x+1 之執行次數當 T(n), 求 T(n)

For k=1 to n do For i=0 to k-1 do For j=0 to k-1 do x=x+1

以 x=x+1 之執行次數當 T(n), 求 T(n)

$$T(n)=2T(n-1)+T(1), T(1)=1$$
 $Rightarrow T(n)$

$$T(n)=T(n/2)+T(1), T(1)=1$$
 $Rightarrow T(n)$

$$T(n)=2T(n/2)+n, T(1)=1$$
 R

$$T(n)=T(n-1)+n, T(1)=1$$
 $Rightarrow T(n)$

$$T(n)=T(n-1)+T(n-2), T(0)=0, T(1)=1$$
 $Rightarrow T(n)$