

Erfassung biometrischer Daten mithilfe von Smartphones zur Emotionsbestimmung

Torben Brenner und Lukas Seemann

28.11.2017 - 28.05.2018

Inhaltsverzeichnis

In	halts	verzeichnis									Ι
Al	bkürz	zungsverzeic	hnis							11	\mathbf{I}
Al	bild	ungsverzeic	nis							I	V
Ta	belle	nverzeichni								7	V
Li	sting	S								7	V
1	Einl 1.1 1.2 1.3	Zielsetzung						 			1 2 2
2	The	oretische G	undlagen								3
	2.1 2.2	Umgang mit 2.2.1 Indiz	biometrischen Date	en				 			3 3 3
	2.3	Emotionen . 2.3.1 Defin	tion					 			4
	2.4	Emotions and 2.4.1 Puls 2.4.2 Haut 2.4.3 Gesic	llagen der Emotion zien	iderstand .			· · · · · · · · · · · · · · · · · · ·	 	 		4 6 6 8 8
	2.5	Hardware zu 2.5.1 Smar	erhalten	metrischen	Daten			 			8 8 9
3	Kon	zept								1	2
	3.1 3.2 3.3	Priorisierung Übertragung Auswertung 3.3.1 Kaus	der Erfassungsmög biometrischer Date der Indikatorscores ditätsregeln	en in Indikat zur Emotion	torscore nsbestir	s nmur	 ng 	 		. 1 . 1 . 1	2 3 4
	3.4	Ionic Framev 3.4.1 Aufb	u und Einsatz des	 Frameworks	· · · · · · · · · · · · · · · · · · ·			 		. 1 . 1	5 5
	3.5	Architektur 3.5.1 Backe	le für die Verwendu ler mobilen Applika ndlogik end	ation				 		. 1 . 1	6 6 8

4	\mathbf{Um}	setzung des Prototypen emoTrix	21
	4.1	MockUps	21
	4.2	Datenerfassung in Form von Emotionstests	21
		4.2.1 GSR-Test	21
	4.3	Auswertung der Testergebnisse	25
	4.4	Benutzeroberfläche der App	25
5	Sch	luss	26
	5.1	Anwendungsszenarien	26
	5.2	Fazit	26
	5.3	Ausblick	26
Li	terat	turverzeichnis	27
\mathbf{A}	nhän	$\mathbf{g}\mathbf{e}$	30

Abkürzungsverzeichnis

 ${f DAG}$ Directed acyclic graph

EDA Elektrodermale Aktivität

GHz Gigahertz

GSR Galvanic Skin Response

Abbildungsverzeichnis

1	Fiktives Beispiel eines DAGs
2	Rad der Emotionen - Robert Plutchick
3	Reaktion des Körpers auf Stress und Entspannung
4	Positionsmöglichkeiten der EDA-Messung
5	GSR-Sensor mit Finger-Elektroden
6	Ablauf der Erstellung von Indikatorscores
7	Ablauf der Ausführung von Kausalitätsregeln
8	Ionic Framework - Logo
9	Architektur der App
10	Geplantes Frontend der App
11	Arduino UNO R3 (links) und Grove Base Shield
12	HC-05-Bluetooth-Modul für Arduino

Tabellenverzeichnis

1	Priorisierung der Erfassungsmöglichkeiten	12
Listi	ings	
1	Quellcode des Arduinos	23
2	IS Code	25

1 Einleitung

In diesem Kapitel wird zunächst die Motivation für die Studienarbeit beschrieben. Im Anschluss daran werden die Ziele der Arbeit definiert, um schließlich die Vorgehensweise zur Erreichung dieser Ziele aufzustellen.

1.1 Motivation

Lukas Seemann

Smartphones sind aus dem Alltag vieler Menschen nicht mehr wegzudenken. Nach Prognosen der Statista GmbH nutzen im Jahr 2018 57 Millionen Menschen in Deutschland ein Smartphone. Weltweit betrachtet vergrößert sich die Nutzerzahl für 2018 auf ungefähr 2,53 Milliarden Personen. Hierbei muss der Unterschied zwischen Smartphones und normalen Mobiltelefonen, die als Hauptfunktionalität das Telefonieren besitzen, hervorgehoben werden. Die 2,53 Milliarden Smartphone-Nutzer machen circa 53,3% aller Mobiltelefonnutzer weltweit aus. Smartphones unterscheiden sich von Mobiltelefonen in der Anzahl der Funktionalitäten, die bei Smartphones die übliche Nutzung eines Telefons bei Weitem überschreiten. Um diese zusätzlichen Funktionalitäten bereitzustellen, werden in Smartphones heutzutage viele Arten von Sensoren eingebaut und verwendet, um Daten zu erfassen. Hierzu zählen beispielsweise

- GPS-Sensoren zur Positionsbestimmung,
- Touchscreens zur einfachen Bedienung des Smartphones,
- Beschleunigungssensoren zur automatischen Ausrichtung des Bildschirms,
- Fingerabdrucksensoren zur Authentifizierung des Nutzers und
- Helligkeitsensoren zur Anpassung der Bildschirmhelligkeit.⁴

Diese Auflistung ist nur ein kleiner Ausschnitt der Technologien, die in der heutigen Zeit verwendet werden. Ein Potenzial, das sich hieraus ergibt jedoch nicht sehr häufig genutzt wird, ist die Erfassung von biometrischen Daten mithilfe dieser Sensoren. Bei biometrischen Daten handelt es sich um menschliche Merkmale, die als Grundlage für verschiedene Arten von Analysen herangezogen werden können. In der Biometrie gängige Verfahren sind beispielsweise

- die Pulsmessung,
- die Gesichtserkennung und
- die Spracherkennung.

Die Studienarbeit betrachtet verschiedene Möglichkeiten mithilfe von Smartphone-Sensoren und eventuell zusätzlicher Hardware, biometrische Daten zu erfassen, diese zu analysieren und so dieses selten genutzte Potenzial auszuschöpfen.

 $^{^{1}\}mathrm{Sta}18\mathrm{a}.$

 $^{^2}$ Sta18c.

 $^{^3}$ Sta18b.

⁴Vgl. Bie14.

1.2 Zielsetzung Torben Brenner & Lukas Seemann

Das Ziel dieser Studienarbeit ist es, Möglichkeiten zu erkunden, mit Smartphones biometrische Daten zu erfassen. Dabei werden in das Smartphone integrierte Sensoren, über zusätzliche Hardware angeschlossene Sensoren und die Interaktion des Nutzers mit seinem Smartphone betrachtet. Diese erfassten Daten werden anschließend für Analysen verwendet, die Rückschlüsse auf die Emotionen des Nutzers zulassen Als finales Produkt soll eine mobile Anwendung für Smartphones entstehen, die den Nutzer verschiedene Tests anbietet, anhand denen die aktuelle Gemütslage beziehungsweise die Emotion des Nutzers bestimmt werden können.

1.3 Vorgehensweise

Lukas Seemann

Um die definierten Ziele der Arbeit zu erreichen, unterteilt sich die Arbeit im Folgenden in vier weitere Kapitel.

Im nächsten Kapitel werden zunächst wichtige theoretischen Grundlagen behandelt, die für das Verständnis der Arbeit notwendig sind. Hierzu zählen Definitionen zu den Themen Biometrie, Emotion, Emotionserkennung und die Auswertung von biometrischen Daten. Außerdem werden technische Themen wie die Grundlagen zu Smartphones, Sensoren und mobilen Applikation thematisiert.

Im dritten Kapitel wird das Konzept der mobilen Anwendung beschrieben. Nachdem festgelegt wurde, welche Art von Art von Daten mithilfe des Smartphones erfasst werden sollen, wird geplant, wie die Daten erfasst werden. In diesem Schritt wird auch bestimmt, ob zusätzliche Hardware benötigt wird oder ob ein handelsübliches Smartphone ausreicht. Im Anschluss daran wird konzipiert, nach welchem Prinzip die erfassten Daten ausgewertet werden. Der letzte Schritt ist der Entwurf eines Entscheidungsalgorithmus, der aus den ausgewerteten Daten eine Emotion des Nutzers bestimmen kann.

Im vierten Kapitel steht die Umsetzung des Konzepts als mobile Applikation im Mittelpunkt. Als erstes wird hierbei die Architektur der App beschrieben. Anschließend werden die konkrete Umsetzung im Ionic-Framework thematisiert und somit im Detail auf den geschriebenen Quellcode eingegangen.

Im Schluss wird ein Fazit zum Ergebnis geliefert und weitere mögliche Schritte des Projekts dargestellt.

2 Theoretische Grundlagen

2.1 Biometrie

TORBEN BRENNER

Bei der Biometrie handelt es sich um eine Wissenschaft, welche sich mit der Vermessung von biologischen Merkmalen beschäftigt.

Die Ergebnisse dieser Messungen können dann dazu verwendet werden, Individuen zu beschreiben und zu identifizieren. Dieser Bereich der Biometrie wird auch als biometrische Erkennungsverfahren beschrieben. Eine andere Facette der Biometrie, die biometrische Statistik, beschäftigt sich mit der Auswertung der erfassten Daten um diese zur Analyse zu nutzen.

Mit der biometrischen Statistik, werden wir uns in dieser Studienarbeit beschäftigen, um die Merkmale, die mittels Smartphone erfasst werden, auszuwerten und damit Rückschlüsse auf die Emotionen eines Menschen zu ermöglichen. **TODO: Schreibe hier über biometrische Charaktersitika: Einmaligkeit, Konsistenz, Messbarkeit, Universalität**

2.2 Umgang mit biometrischen Daten Torben Brenner

Eine Problematik, mit der wir uns in dieser Arbeit beschäftigen müssen, ist der Umstand das biometrische Daten nicht immer einen direkten Schluss auf einen Emotion zulassen. So lässt ein hochfrequenter Puls keinen direkten Schluss auf die Emotion zu die ein Individuum gerade empfindet. Er kann maximal ein Indiz für verschiedene Emotionen sein, z. Bsp. Wut oder Angst. Um mit diesem Umstand umzugehen benötigen wir zwei neue Begriffe die im folgenden genauer erläutert werden.

2.2.1 Indiz

Ein Indiz ist im allgemeinen Sprachgebrauch ein Anzeichen für einen Umstand, an dem sich ein Zustand oder eine Entwicklung absehen lässt⁵. In unserer Arbeit, sehen wir Daten die wir von den Sensoren bekommen, als Indizien an. Ein Indiz macht es wahrscheinlicher bzw. unwahrscheinlicher das ein Individuum eine bestimmte Emotion verspürt.

2.2.2 Kausalität

Als Kausalität wird im allgemeinen der Zusammenhang zwischen Ursache und Wirkung verstanden. In der Physik ist die Kausalität ein grundlegendes Prinzip, welches besagt, "daß in der Natur nichts ohne Grund passiert, d.h. zu jedem Ereignis (Wirkung) ein anderes (Ursache) existiert, das a) in seiner Vergangenheit liegt und b) zwingende Voraussetzung für das Eintreten der Wirkung ist"⁶.

⁵Vgl. Dud18.

⁶Sav18.

In dieser Arbeit werden wir ebenfalls versuchen, kausale Zusammenhänge zwischen Reaktionen des Körpers und den gerade empfundenen Emotionen zu ermitteln. Ein Werkzeug um kausale Zusammenhänge darzustellen ist in der Literatur der Kausale Graph (im englischen directed acyclic graph). ⁸ Die Grafik zeigt ein fiktives Beispiel für einen kausalen

Abbildung 1: Fiktives Beispiel eines DAGs⁷

Graphen. In diesem Beispiel von Thoemmes wird dargestellt das Bindungsstil, Geschlecht, Stressoren und Gene Einfluss auf Depressionen haben. Wichtig ist, dass alle Annahmen die in einem solchen Graph gemacht werden theoretisch begründet werden müssen. Ist dies nicht der Fall, dürfen sie kritisiert und infrage gestellt werden⁹.

2.3 Emotionen

2.3.1 Definition Torben Brenner

Da wir uns in dieser Arbeit primär mit der Erkennung von Emotionen beschäftigen wollen, ist es wichtig den Begriff Emotion zu definieren. Schwarzer-Petruck beschreibt in ihrem Werk Emotionen und pädagogische Professionalität eine Emotion als "ein komplexes Muster körperlicher und mentaler Veränderungen als Antwort auf eine als persönlich
bedeutsam wahrgenommene Situation"¹⁰. Das Muster umfasst laut Schwarzer-Petruck die
Aspekte des kognitiven Prozess, die Gefühle, eine Verhaltensreaktion und eine physiologische Erregung.

2.3.2 Grundlagen der Emotionserkennung TORBEN BRENNER

Nach dem nun geklärt ist was unter einer Emotion verstanden wird, stellt sich die Frage wie man diese erkennen kann. Das Problem hierbei ist, dass es eine große Anzahl an

⁸Vgl. Tho11, Kausale Graphen - DAGs.

 $^{^9\}mathrm{Vgl.}$ Tho
11, S.3 Kausale Graphen - DAGs.

¹⁰Sch13, S.51 Z.20ff.

Emotionen gibt, laut Hokuma¹¹ sind es 34.000 unterschiedliche Emotionen. Diese verschiedenen Emotionen lassen sich nur schwer erfassen und unterscheiden, weshalb ein Weg gefunden werden muss die Emotionen einzuteilen. Diese Einteilung wurde bereits von Robert Plutchick vorgenommen und herausgekommen sind dabei acht primäre Emotionen: Freude, Traurigkeit, Akzeptanz, Ekel, Angst, Wut, Überraschung und Erwartung. Mit diesen acht Emotionen hat Plutchick das Rad der Emotionen gebildet(siehe Abbildung).

Abbildung 2: Rad der Emotionen - Robert Plutchick¹²

Das Rad stellt die primären Emotionen dabei in Relation, wobei die Kombinationen zwischen zwei Emotionen im Raum zwischen diesen steht und Emotionen die gegensätzlich

¹¹Vgl. Hok17, Absch. 1.

¹²Vgl. Hok17.

wirken, z. Bsp. Traurigkeit und Freude, jeweils auch gegenüberliegend auf dem Rad sind. Außerdem wird die Stärke einer Emotion durch deren nähe zum Zentrum des Rads gekennzeichnet, z. Bsp. Wut zu toben¹³.

In der Literatur gibt es neben dem Model von Plutchick auch das Gevena Emotion Wheel. Dieses Modell betrachtet die Emotionen nicht in acht primären Hauptkategorien, sondern unterscheidet zwischen 20 Emotionen anhand von zwei Parametern, die Valenz und die Kontrolle. Die Kontrolle bezeichnet, wie stark Individuum eine Situation kontrollieren kann. Die Valenz sagt aus ob eine Situation für das Individuum eher angenehm oder unangenehm ist.

Beide Modelle können dafür genutzt werden um Emotionen auszuwerten, wobei hier zu diskutieren ist welches Modell besser geeignet ist.

2.4 Emotionsindizien

2.4.1 Puls

In diesem Abschnitt beschäftigen wir uns mit dem Puls als ein Indiz für verschiedene Emotionen. Hierbei wird der als der biologische Puls gesehen, das heißt "die in Abhängigkeit vom Herzrhythmus (Herzmechanik) erfolgende Schwankung von Blutstrom, Blutdruck oder Blutvolumen im Blutkreislaufsystem (Blutgefäßsystem, Blutkreislauf)" ¹⁴. Neben dieser Defioniton wird im Lexikon der Biologie auch folgende Definition genannt: "die vom Herzschlag bewirkte, rhythmisch auftretende Druckwelle (Pulsschlag) in den Arterien" ¹⁵, welche den Puls als ateriellen Puls definiert.

Die Messung des Pulses wird auch als Sphygmologie bezeichnet.

2.4.2 Hautleitfähigkeit/Hautwiderstand

Lukas Seemann

Die menschliche Haut verfügt über "aktive als auch passive elektrische Eigenschaften, die sich auf Strukturen und Fuktionen der Haut und der in ihr enthaltenen Organe zurückführen lässt."¹⁶ Diese elektrischen Phänomene der Haut sind in wissenschaftlichen Kreisen unter dem Sammelbegriff elektrodermale Aktivität (kurz EDA) bekannt.¹⁷ Eine elektrodermale Aktivität, die sich sehr gut als Indikator für Emotionen eignet, ist die Hautleitfähigkeit. Hierzu wird mit einer externen Stromquelle mit geringer Spannung gemessen, wie gut die Haut eines Probanden diesen Strom leitet.¹⁸ Häufig wird anstand der Hautleitfähigkeit auch der Hautwiderstand gemessen. Diese beiden Indizien stehen in einer negativ proportionalen Beziehung. Dies bedeutet, je höher der Widerstand der

¹³Vgl. Hok17, Absch. Elements of the Wheel.

 $^{^{14}}$ Spe18.

 $^{^{15}\}mathrm{Spe}18.$

¹⁶Bou88, S. 2.

¹⁷Vgl. Bou88, S. 2.

¹⁸Vgl. Moe07, S.77.

Haut ist, desto niedriger ist die Leitfähigkeit und umgekehrt. Letzten Endes sagen beide Indizien dasselbe aus, unterscheiden sich aber in der Betrachtungsrichtung.¹⁹

Die Hautleitfähigkeit wird anhand der Menge von Schweiß an den Ausgängen der Schweißdrüßen bestimmt, die sich über den gesamten Körper veteilen. Je mehr Schweiß, der elektrisch sehr gut leitend ist, sich auf der Haut befindet, umso größer ist die Hautleitfähigkeit. Am besten eignen sich Stellen, an denen die Schweißdrüsen sehr dicht angeordnet sind und die somit sehr schweißsensibel sind. Dies ist zum Beispiel an den Handinnenflächen beziehungsweise Fingerinnenseiten der Fall, die sich deshalb sehr gut für solche Messungen eignen.²⁰

Abbildung 3: Reaktion des Körpers auf Stress und Entspannung²¹

"Die Aktivation beschreibt das Ausmaß der physiologischen Aktiviertheit oder Wachheit eines Menschen"²². Unter Aktivitation versteht man bei Menschen generell jede Art von emotionaler Erregung. Hierzu zählen unter anderem Wut, Aufregung, Schreckmomente oder auch extreme Freude. In Abbildung 3 ist die Reaktion des Körpers auf Stress (darausfolgend auch Aktivation) und auf Entspannung dargestellt. Die Schweißprodukation wird über das unwillkürliche Nervensystem gesteuert. Dieses besteht aus Sympathikus der für die Bereitstellung von Energie und Arbeitsleistungs zustöndig ist, und dem Para-

¹⁹Vgl. Die06, S. 28.

²⁰Vgl. Moe07, S.77.

²¹Dil13, S. 200.

²²Die06, S. 28.

sympathikus, der zur Erholung und Wiederherstellung von Körperfunktionen dient.²³ Bei Stress oder Aufregung wird der Sympathikus aktiviert, was eine versträkt Schweißproduktion und somit auch eine erhöhte Hautleitfähigkeit hervorruft. Außerdem wird die Herz- und Atemfrequenz erhöht und der Rhymtmus dieser ist unregelmäßig. Die Reaktion auf ein Ereignis, das emotionale Erregung hervorruft, lässt sich meistens innerhalb von einer bis vier Sekunden anhand der Änderung der Hautleitfähigkeit feststellen.²⁴

Bei Entspannung hingegen wird der Parasympathikus aktiviert, was zu einer verminderten Aktivität der Schweißdrüßen führt. Die Hautleitfähigkeit sinkt somit auch. Des Weiteren werden Herz- und Atem verlangsamt und gelangen wieder in einen normalen Rhymthmus.

Der Vorteil der Messung der Hautleitfähigkeit ist, dass diese unwillkürlich gesteutert wird und somit keine willentliche Mitarbeit des Probanden erfodert. Da die Aktivierung des Sympathikus automatisch geschieht, kann der Proband die Messung nicht verfälschen.

Ein Nachteil des Verfahren ist, dass die Hautleitfähigkeit nur Rückschlüsse auf den Grad der Aktiviation schließen lässt, jedoch nicht gesagt werden kann, ob es sich um positive oder negative Reaktionen handelt. Die Wut über ein Ereignis würde zum selben Ergebnis führen, wie die übermäßige Freude über ein Ereignis. Aus diesem Grund müssen zur genauen Emotionsbestimmung weitere Indizien herangezogen werden.²⁵

2.4.3 Gesichtszüge

2.4.4 Tippverhalten

TORBEN BRENNER

Besitzer eines Smartphones verwenden dieses für die verschiedensten Lebensaufgaben. Neben der Hauptaufgabe, dem telefonieren, wird das Smartphone sowohl zum Nachrichten schreiben als auch für das Bilder machen verwendet. Dabei lassen sich theoretisch Daten wie die Tippgeschwindigkeit erfassen, oder aber auch mit Einwilligung des Nutzers der Text versendeter Nachrichten analysieren.

2.5 Hardware zur Erfassung von biometrischen Daten

2.5.1 Smartphones

TORBEN BRENNER

Ein Smartphone differenziert sich durch mehrere Aspekte von einem herkömmlichen Telefon. Der erste Unterschied, so wie alten mobil Telefonen, ist das Telefonieren ohne direkten Kabelanschluss an das Netz oder zusätzliche Basisstation.

Wodurch es sich aber von den eben genannten mobil Telefonen unterscheidet, ist die Leistungsfähigkeit der einzelnen Komponenten. So besitzen heutige Smartphones häufig

²³Vgl. Lie14, S. 5.

²⁴Vgl. Sch14, S. 130f.

²⁵Vgl. Moe07, S.77.

Prozessoren mit Acht Kernen und Leistungen ab 1,7 GHz pro Kern. Neben der Leistungsfähigkeit des Prozessors ist auch die Menge des verbauten Hauptspeichers gewachsen. Die wenigsten Smartphones besitzen heute noch weniger als 2 Gigabyte Arbeitsspeicher. Diese stärkeren Komponenten ermöglichen das ausführen komplexer Anwendungen und außerdem Multitasking. Das lässt beim Vergleich mit der Definiton eines Computers es auch zu, zu behaupten das Smartphones ebenfalls Computer sind. **TODO:** das hier mit quellen und bezug auf die beiden definitionen

Der Hauptunterschied ist aber die Menge der verbauten Sensoren. Wie Kai Biermann auf Zeit Online schreibt, ermöglichen diese es einem Smartphone zu sehen, fühlen und hören²⁶. In diesem Artikel beschreibt Biermann die enormen Möglichkeiten die diese Sensoren ermöglichen. So ermöglicht ein Smartphone die Navigation per Positionsbestimmung, das Mikrofon das hören und die Handykamera ermöglicht dem Smartphone das sehen. Gerade weil Smartphone Kameras immer besser werden sind die Möglichkeiten zur Gesichtserkennung deutlich gestiegen, wie zuletzt Apple mit dem IPhone X zeigte, das Emotionen über die Kamera erkennt und diese auf die sogenannten Animojis überträgt.

TODO: Finde Quelle für diese Aussage

Wie bereits erwähnt, sind in Smartphones sehr viele unterschiedliche Sensoren verbaut. Diese ermöglichen es dem Smartphone den Zustand seiner Umwelt zu erfassen und somit auch Informationen über den Nutzer in Form von Daten zu erhalten.

So gibt es aktuell so gut wie keine Smartphones mehr, die ohne einen Kamera oder Gyrosensor auf den Markt kommen. Die Kamera, kann z. Bsp. zum analysieren der Gesichtsgeometrie einer Person verwendet werden. Der Gyrosensor bietet verschiedene Möglichkeiten Informationen über eine Person zu erfassen, so könnte er zum einen zur Erfassung des Gangstils (engl. automatic gait recognition) verwendet werden oder unterstützend bei der Analyse des Tippverhaltens wirken. So könnte analysiert werden, mit welcher Stärke ein Nutzer seine Nachrichten eingibt was unter anderem ein Indiz für Aggression, also Wut wäre.

2.5.2 Sensoren

TORBEN BRENNER & LUKAS SEEMANN

Sensoren dienen zur Erfassung eines physikalischen Zustandes und der Transformation dieses Zustandes in einen Impuls der verarbeitet werden kann²⁷. In der Computertechnik, dienen Sensoren häufig dazu, den physikalischen Zustand verständlich für einen Computer zu machen, in dem dieser in einen Datensatz umgewandelt wird.

Die bereits in Kapitel 2.4.2 beschriebene elektrodermale Aktivität kann mithilfe von EDA-Sensoren gemessen werden. Diese Art von Sensoren sind üblicherweise nicht in Smartphones eingebaut, weswegen die Hautleitfähigkeit mit externer Hardware gemessen werden muss

²⁶Vgl. Bie14, S. 1 Abs. 2.

²⁷Vgl. Web18.

Die für heute eher unübliche Messungsart der elektrodermalen Aktivität stellt die endosomatische Messung dar. Indem winizige Elektroden in die Haut eingestochen werden, kann die Aktivität der Nerven in der Haut gemessen werden.²⁸ Hierbei handelt es sich jedoch nicht um eine Messung der Hauteleitfähigkeit sondern um eine Messung des Hautpotenzials.

Bei der exosomatischen Messung hingegen wird ein schwacher Strom von ungefähr 0.5 Volt an die Haut angelegt. Die Spannung wird hierbei konstant gehalten, wodurch die Leitfähigkeit der Haut gemessen werden kann. Hierbei gemessen wird entweder in der Einheit Siemens für den elektrischen Leitwert oder in Ohm für den Widerstand. Die Elektroden des Sensor sind meistens aus Silber oder Silberchlorid und werden meist an zwei Stellen der nicht dominanten Hand angebracht.²⁹ Wie in Abbildung? dargestellt gibt es verschiedenen Möglichkeiten der Handinnenfläche, die gut geeignet sind, (#1, #2 oder #3).

Abbildung 4: Positionsmöglichkeiten der EDA-Messung³⁰

 $^{^{28}\}mathrm{Vgl.}$ Sch
12, Folie 25.

²⁹Vgl. Sch12, Folie 25.

³⁰Sch12, Folie 25.

Diese Art von Sensoren sind die heutzutage übliche Vorgehensweise bei EDA-Messungen. Häufig sind sie auch unter dem Namen GSR-Sensor³¹ bekannt und darunter im Internet erhältlich. GSR-Sensoren sind als Modul für den Mikrocontroller Arduino verfügbar.³² Dies stellt eine Möglichkeit dar, einem mobilen Endgerät die Sensordaten zum Beispiel über Bluetooth oder WiFi zur Verfügung zu stellen. In Abbildung ? ist ein GSR-Sensor inklusive der Elektroden für die Fingerinnenseiten, der mit Arduinos kompatibel ist, abgebildet.

Abbildung 5: GSR-Sensor mit Finger-Elektroden³³

³¹GSR: Galvanic Skin Response

 $^{^{32} {\}it beispiels weise} :$ Gro18.

 $^{^{33}}$ Gro18.

3 Konzept

Hier wird ein Konzept mit Mock Ups und Architektur entstehen

3.1 Priorisierung der Erfassungsmöglichkeiten Lukas Seemann

Im Anschluss an die Auswahl der Erfassungsmöglichkeiten werden diese Möglichkeiten nun priorisiert. In der folgenden Tabelle (Tabelle 1) ist die Priosierung abgebildet.

Priorität	Indiz	Sensor	Im Smartphone?	
1	Hautleitfähigkeit	GSR/EDA-Sensor	NEIN	
2	Puls	Kamera	JA	
3	Puls	Externe Sensoren	NEIN	
4	Tippverhalten	Touchscreen	JA	
5	Gesicht	Kamera	JA	
5	Stimme	Mikrofon	JA	

Tabelle 1: Priorisierung der Erfassungsmöglichkeiten

In der ersten Spalte ist die Priorität dargestellt. Je niedriger die Zahl ist, desto höher ist die Erfassungsmöglichkeit priorisiert. Die Möglichkeiten werden in der Reihenfolge der hier dargestellten Priorisierung thematisiert und letzten Endes in den Prototyp der mobilen Applikation integriert, um Daten zu erfassen. Je nachdem wie viel Zeit die einzelnen Features benötigen, können mehr und mehr Möglichkeiten der Datenerfassung in die App eingebaut werden, wenn sie noch im Zeitrahmen der Studienarbeit umsetzbar sind. Bei den einzelnen Möglichkeiten werden das Indiz, anhand dessen Rückschlüsse auf eine Emotion gemacht werden kann, und ein Sensor, der Daten zum Indiz für die App erfassen soll, aufgelistet. In der letzen Spalte ist festgehalten, ob der benötigte Sensor in den meisten aktuellen Smartphones bereits enthalten ist oder nicht.

Die höchste Priorität hat das Indiz der Hautleitfähigkeit, die mithilfe von GSR- beziehungsweise EDA-Sensoren erfasst werden kann. Diese Art von Sensoren befinden sich nicht in handelsüblichen Smartphones, weshalb man hierzu externe Sensoren mit dem Handy verbinden muss.

. . .

3.2 Übertragung biometrischer Daten in IndikatursconsenenANN

Die von den Smartphone-internen und externen Sensoren zurückgeliefert Daten müssen in der App einheitlich verarbeitet werden. Die zurückgelieferten Daten sind unterschiedlich und meistens selbst nicht aussagend. Mit dem im Theorieteil erklärten Hintergrundwissen ist es jedoch möglich, die Daten zu interpretieren.

Im Umfeld der App soll diese Interpretation mithilfe von Indikatoren geschehen. Ein Indikator ist in diesem Kontext ein Anzeichen, das für die Emotionsbestimmung herangezogen werden kann. Es existieren einerseits Indikatoren, die sich nur für die Bestimmung einer Emotion eignen, und andererseits auch Indikatoren, die für mehrere Emotionen ausschlaggebend sind. Folgende Indikatoren sind für die Umsetzung geplant:

- stress.
- happyIndicator,
- sadIndicator,
- angryIndicator und
- suprisedIndicator.

In Abbildung? ist der Ablauf der Bestimmung von Indikatorscores abbgebildet. Unabängig davon, welcher Sensor verwendet wird, seine Daten müssen immer auf diese Indikatoren abgebildet werden. Für jeden Sensor muss dabei ein Bereich bestimmt werden, wann immer eine neue Auswertung der Sensordaten zu den sogenannten Indikatorscores geschieht. Eine Auswertung kann generell dann durchgeführt werden, wenn genug Daten vorhanden sind, die aussagekräftig für die Indikatoren sind. Dies ist von Sensor zu Sensor unterschiedlich und muss dementsprechend berücksichitgt werden.

Bei einer Auswertung werden die einzelnen Indikatoren mit Scores von null bis eins versehen, sodass man pro Auswertung der Sensordaten mehrere Indikatorscores erhält. Die Logik für das Setzen der Indikatorscores muss mithilfe von Mappern umgesetzt werden. Für jeden Sensor muss dafür ein individueller Mapper existieren. Die Mapper werden immer dann aufgerufen, wenn genügend Daten des Sensors vorhanden sind.

Abbildung 6: Ablauf der Erstellung von Indikatorscores

3.3 Auswertung der Indikatorscores zur EmotidnskæstSidenmang

Aus den angesammelten Indikatorscores muss nun entschieden werden, welche Emotion am wahrscheinlichsten beim Benutzer der App vorliegt. Diese Auswertung der Indikatorscores zu konkreten Emotionen lässt sich in zwei Bestandteile aufteilen: die Menge der Kausalitätsregeln und den Entscheidungsalgorithmus. Als Ergebnis wird pro Emotion

ein Emotionscore erwartet, der angibt, inwiefern die Emotion beim User zum getesteten Zeitpunkt vorliegt.

3.3.1 Kausalitätsregeln

Lukas Seemann

Eine Kausalitätsregel erwartet eine Menge von Indikatorscores als Eingabe und wendet basierend auf den Indikatorscores Effekte auf die vorhandenen Emotionscores an. Die Indikatoren werden also je nach ihren Werten in verschiedene Emotionen übersetzt.

Eine Kausalitätsregel besteht immer aus einer Bedingung und einer Score-Transformation. Eine Bedingung betrifft einen oder maximal zwei Indikatorscores und legt fest, wann die Score-Transformation der Kausalitätsregel ausgeführt wird. Die Score-Transformation beschreibt Effekte, die auf die Emotionscores angewandt werden. Beispielsweise würde einer hoher Score des Stress-Indikators zu positiven Effekten für die Emotionen happy, angry und suprised führen. In Abbildung? ist der Ablauf der Ausführung einer solchen Kausalitätsregeln gezeigt. Die Formulierung von realitätsgetreuen Kausalitätsregeln ist ausschlaggebend dafür, wie präzise die Anwendung letzten Endes die Emotionen bestimmmen kann.

Abbildung 7: Ablauf der Ausführung von Kausalitätsregeln

3.3.2 Entscheidungsalgorithmus

TORBEN BRENNER

Ziel der Anwendung ist es, basierend auf zuvor aufgenommenen Daten eine Entscheidung zu fällen, welche Emotion der Nutzer der Anwendung aktuell empfinden könnte. Die Entscheidung muss dabei die verschiedenen Ergebnisse der Auswertungsebene einbeziehen und aus diesen auf eine Emotion schließen. Deshalb muss eine Einheitliche Datenstruktur entwickelt werden, über die die Auswertungsebene die Daten zur Verfügung stellt. Die Entscheidung könnte hierbei über ein *Scoring* entstehen. Dieses *Scoring* müsste dabei auf der Auswertungsebene stattfinden, wobei jeder der Auswertungsalgorithmen ein

Scoring für die verschiedenen Emotionen angeben muss. Am Ende könnten z. Bsp. die verschiedenen Scorings addiert und die Emotion mit dem höchsten Scoring ausgewählt werden.

3.4 Ionic Framework

In diesem Kapitel wird das Ionic Framework, das für die Umsetzung der mobilen Applikation verwendet wird, vorgestellt und die Gründe für die Verwendung aufgezeigt.

3.4.1 Aufbau und Einsatz des Frameworks

Lukas Seemann

Ionic ist ein unter der MIT License stehendes Open-Source-Framework, das zur Entwicklung von plattformübergreifenden, mobilen Applikationen dient. Mit Ionic entwickelte Apps sind damit unter anderem auf Endgeräten lauffähig, die die Betriebssysteme Android, iOS und Windows Phone benutzen.³⁴

Abbildung 8: Ionic Framework - Logo 35

Aktuell befindet sich das Framework in der Version 3.9.2³⁶ und befindet sich in stetiger Weiterentwicklung. Das Ionic Framework basiert wiederum auf Angular, einem Framework für die Entwicklung von Web-Applikationen. Dementsprechend nutzen Ionic-Anwendungen in der Web-Entwicklung etablierte Technologien wie HTML 5, CSS und JavaScript.³⁷ Wie auch im Angular Framework, wird auch die Programmiersprache Type-Script verwendet, die auf JavaScript aufbaut, sich in der Syntax sehr stark mit JavaScript ähnelt und zusätzliche Optionen zur Typisierung von Variablen oder Funktionen anbietet.³⁸

Ionic-Anwendungen sind im Wesentlichen normale Webanwendungen, die von jedem JavaScript-fähigen Browser ausgeführt werden können. Während mithilfe von Ionic das Frontend der Anwendung festgelegt wird, kann anschließend mit Apache Cordova die Plattformunabhängigkeit umgesetzt werden. Apache Cordova bewirkt, dass sich die Webanwendungen wie native Android-, iOS- oder Windows Phone-Applikationen anfühlen.

 $[\]overline{^{34}}$ Ion18c.

 $^{^{35}}$ Wik18.

 $^{^{36}}$ Vgl. Ion17.

³⁷Vgl. Ion18a.

³⁸Vgl. Til17.

Egal auf welcher Plattform die Ionic-Anwendung installiert wird, es wird die selbe Code-Basis verwendet. Diese wird dann vor dem Installieren von Cordova so angepasst, dass sie auf den Endgeräten ausgeführt werden können.³⁹

3.4.2 Gründe für die Verwendung

Lukas Seemann

Das Ionic Framework bietet eine Möglichkeit mit nur einer Code-Basis, eine plattformübergreifende Applikation zu erstellen. Dies erspart einiges an Entwicklungsaufwand, da nicht jede Plattform einzeln entwickelt werden muss. Außerdem wird einem Großteil der Smartphone-Nutzer die Nutzung der erstellten App ermöglicht und ist nicht nur für Android- oder Apple-Nutzer beschränkt.

Dadurch dass Applikationen des Ionic Frameworks eigenständige Webanwendungen sind, können diese problemlos von allen Browsern interpretiert und ausgeführt. Dies ist ein großer Vorteil für das Debuggen von Code, da hierfür kein Emulator oder Endgerät verwendet werden muss. Stattdessen kann die Anwendung im Browser ausgeführt und debuggt werden.

Außerdem wurden bereits in anderen Projekten und im privaten Bereiche Erfahrungen mit dem Ionic Framework gemacht, sodass keine Einarbeitung bei den Entwicklungsarbeiten notwendig ist. Dies spart wiederum Zeit, die effektiv für das Entwickeln genutzt werden kann.

3.5 Architektur der mobilen Applikation

In diesem Kapitel wird die Architektur der mobilen Applikation beschrieben. Die Architektur wird in Front- und Backend der App unterteilt.

3.5.1 Backendlogik

Lukas Seemann

Zunächst wird explizit auf das Backend beziehungsweise die Hintergrundlogik der App eingegangen. Für das oben beschriebene Konzept bietet sich eine Umsetzung mit Javascript Klassen an, aus welchem Grund ein UML-Diagramm angefertigt werden kann. Dieses ist in Abbildung ? gezeigt.

Die Klassen sind in der Abbildung blau dargestellt. Typescript bietet die Möglichkeit, eigene Typen zu definieren. Diese Typen verfügen über Attribute, jedoch keine Methoden und sind in der Abbildung grün dargestellt.

Die App verfügt über eine abstrakte Klasse Sensor, die zwei Methoden definiert. Jeder Sensor, der später Daten für die App liefern soll, muss diese abstrakte Sensor-Klasse erweitern. Dabei muss jeder Sensor die mapper-Funktion überschreiben, die die Sensordaten in

 $^{^{39}}$ Ion18b.

Abbildung 9: Architektur der App

mehrere IndicatorScores umwandelt. Auf diese Weise muss jeder Sensor seinen individuellen Mapper implementieren. Der IndicatorScore ist als Typ definiert worden, der einerseits einen Indicator und einen Score als Attribut hat. Indicator wiederum ist ein eigener Typ, der nur die definierten Indikatoren (stress, happyIndicator, sadIndicator, angryIndicator, suprisedIndicator) als String zulässt. Da die Implementierung des IndicatorScore-Types sehr trivial ist, wurde sie aus Übersichtsgründen nicht in die Abbildung aufgenommen. Die onSensorData-Funktion ist bereits vordefiniert und muss dementsprechdend nicht überschrieben werden. Diese Funktion führt lediglich den Mapper aus, wenn genug Sensordaten für eine Auswertung vorhanden sind, und fügt die resultierenden IndicatorScores zum Decider hinzu.

Die Decider-Klasse ist der Hauptbestandteil der App, da sie die Bestimmung der Emotion durchführt. Die Decider-Klasse ist als Singleton anzusehen, da es pro laufende Aunwendung nur einen Decider geben kann. Der Decider verfügt über ein data-Array, das allen Input der Sensoren enthält. Konkret handelt es sich hierbei um die Indicatorscores, die die Sensoren ermittelt haben, erweitert mit einem Timestamp für den Zeitpunkt der Ankunft. Nach und nach wird dieses Array mit den IndicatorScores der verschiedenen Sensoren gefüllt. Dies wird mit der Funktion addIndicatorScores() realisiert, die von den Sensoren mit der onSensorData-Funktioen aufgerufen wird.

Der Decider verfügt außerdem über ein Array von CausalityRules. Die CausalityRule-Klasse ist die Implementierung der oben beschriebenen Kausalitätsregel. Eine Causality-Rule besitzt immer eine Condition (Bedinung) und eine Menge von ScoreTransformationen.

Eine Condition wurde als eigener Typ definiert und ist eine Funktionen, die einen IndicatorScore (optional auch zwei) als Input hat und auf einen Boolean-Wert abbildet. So kann eine Bedingung realisiert werden, die je nach Erfüllung true oder false zurückgibt. Eine ScoreTransformation ist ebenfalls ein eigener Typ, der eine Funktion definiert. Diese Funktion erhält als Input die vorhandenen Emotionscores, wendet auf diesen Effekte an und gibt die modifizierten Emotionscores zurück.

Die execute-Funktion der CausalityRule führt alle hinterlegten ScoreTransformations aus, wenn die Condition von den IndicatorScores erfüllt worden ist.

Um die Decider-Klasse weiter zu verstehen, muss zunächst der Typ Emotionscore erklärt werden. Dieser ist ähnlich wie der IndicatorScore aufgebaut. Zunächst wird eine Emotion angegeben, die dem Typ Emotion entsprechen muss. Der String muss dementsprechend mit den definierten Emotionen (happy, sad, angry, suprised) übereinstimmen. Anschließend folgt eine Nummer, die den Score angibt.

Die Decider hat ein resultData-Array, das mehrere Emotionscores enthält und die Timestamp der IndicatorScores, aus denen die Emotionscores erzeugt wurden. Dieses Array wird mithilfe der decide-Funktion gefüllt. Wenn die decide-Funktion ausgeführt wird, wird anschließend für alle im data-Array vorhandenen Timestamps die assumeEmotion()-Funktion ausgeführt. Als Parameter erhält diese Methode eine Timestamp und filtert alle IndicatorScores aus dem data-Array zu diesem Zeitpunkt. Für alle auf diese Weise gefilterten Indicatorscores wird anschließend die executeCausalityRules()-Funktion ausgeführt. Diese Funktion wiederum iteriert über alle vorhandenen CausalityRules und führt diese auf Basis der IndicatorScores aus. So erhält man am Ende Emotionscores. Diese erhalten die Timestamp, die bei assumeEmotion() mitgegeben wurde und werden in das resultData-Array gespeichert. Hat man die assumeEmotion-Funktion für alle Timestamps ausgeführt, ist das result-Array komplett gefüllt und die Emotionsbestimmung abgeschlossen.

3.5.2 Frontend

Nachdem bereits das Backend beschrieben wurde, wird nun das Frontend der App thematisiert. Unter dem Frontend werden die Screens der App verstanden, die der User bei Nutzung der App aufrufen kann. Diese Screens werden bei Ionic Pages genannt und bestehen meist aus folgenden Bestandteilen:

• Eine Typescript-Datei (.ts),

- eine HTML-Datei (.html) und
- eine CSS-Datei (.scss).

In der Typescript-Datei wird die Anwendungslogik umgesetzt, außerdem erfolgt dort der Zugriff auf die Backendkomponenten wie zum Beispiel den Decider, die durch das Ionic Framework als sogenannte Provider bereitgestellt werden. Die HTML-Datei beschreibt den Aufbau der GUI der Page, wohingegen die CSS-Datei das Design der Page beschreibt. In Abbildung? ist zu sehen, über welche Pages die App verfügen soll, welchen Zweck diese haben und wie sie miteinander in Verbindung stehen.

Abbildung 10: Geplantes Frontend der App

Für die App sollen nach und nach sogenannte Emotionstest entwickelt werden. Unter einem Emotionstest versteht man im Kontext dieses Projekts die Messung eines Sensors, die Rückschlüsse auf die Emotion zulassen. Ein Emotionstest liefert aus Backend-Sicht immer eine Menge von Indikatorscores zurück. Pro Emotionstest muss eine Page der App angelegt werden, auf der der Test gestartet werden kann und so die Sensormessdaten eingesammelt werden können.

Zwangsläufig verfügt die App über eine HomePage, auf die der User beim Starten der App gelangt. Über diesen Screen kann der User zu den einzelnen TestPages gelangen, um die Tests durchzuführen. Von den TestPages kann der User entweder durch Abschließen der Tests oder durch manuelles Navigieren und Unterbrechen des Test zurück zum Homescreen gelangen. Um dem User anzuzeigen, welche Test er schon durchgeführt hat, wird außerdem eine Statusübersicht zu den Tests auf der HomePage zu sehen sein. Des Weiteren muss der User die Möglichkeit haben, die Auswertung der Indicatorscores zu Emotionen starten zu können. Wählt der User diese Option, werden alle Indicatorscores,

die sich zu diesem Zeitpunkt im data-Array des Deciders befinden für die Auswertung verwendet.

Für das Ergebnis der Auswertung und somit die Emotionsbestimmung muss ebenfalls eine eigene Page existieren, worauf der User nach Abschluss der Auswertung gelangt. Der User kann von diesem Screen wieder zurück zum Homescreen gelangen, um erneut Emotionstests zu starten.

4 Umsetzung des Prototypen emoTrix

Hier werden Dinge umgesetzt.

4.1 MockUps

4.2 Datenerfassung in Form von Emotionstests

4.2.1 GSR-Test Lukas Seemann

Die Erfassungsmöglichkeit mit der höchsten Priorität war die Messung der Hautleitfähigkeit mithilfe von EDA- beziehungsweise GSR-Sensoren. Da dies nicht mit im Smartphone enthaltenen Sensoren möglich war, wurde zusätzlich ein Arduino-Mikrocontroller benötigt, um die Messung durchzuführen. Zunächst wird die Entwicklung auf dem Arduino-Board mit allen zusätzlichen Modulen beschrieben. Im Anschluss daran wird thematisiert, wie das Arduino-Board mit der App verbunden wurde.

Für das Projekt wurde ein Arduino UNO R3 Board verwendet. Dieser kann mit Stromzufuhr über ein Netzteil oder per USB betrieben werden. Als Sensor wurde ein GSR Sensor des Grove-Toolkits verwendet, der bereits in Abbildung 5 gezeigt wird. Am Sensor selbst werden die Elektroden für die Finger angebracht. Da ein handelsübliches Arduino UNO R3 Board nicht über den benötigten Anschluss für den Grove GSR-Sensor verfügt, muss zusätzlich noch ein Grove Base Shield angebracht werden. Dieses kann auf das Arduino Board aufgesteckt werden und erweitert es um viele verschiedene Anschlüsse, unter anderem für Sensoren.

Abbildung 11: Arduino UNO R3 (links) und Grove Base Shield⁴²

⁴⁰Vgl. Ard18a.

⁴¹Vgl. Gro18.

⁴²Bilder von: Sou18; Rei18.

Mit diesen Komponenten werden die vom Sensor zurückgelieferten Daten an den Arduino geleitet. Von dort aus müssen die Daten, an die mobile Applikation weitergeleitet werden. Aus diesem Grund muss an das Arduino Board ein Bluetooth-Modul angebracht werden, das Daten senden und empfangen kann. Das Empfangen von Daten ist notwendig, um die Messung zu Starten, wohingegen das Senden für die Übermittlung der Sensordaten benötigt wird. Heutige Smartphones verfügen meistens immer über eine Bluetooth-Schnittstelle, aus welchem Grund Bluetooth gut für die Übertragung geeignet ist. Eine weitere Möglichkeit wäre die Übertragung über WiFi gewesen. Das Arduino-Board wurde mit einem HC05-Bluetooth-Modul erweitert, welches Daten senden und empfangen kann. Dieses ist in Abbildung? zu sehen.

Abbildung 12: HC-05-Bluetooth-Modul für Arduino⁴³

Die Beschreibung der Entwicklungsarbeiten wird in zwei Teile aufgespalten. Der erste Teil ist der Quellcode des Arduinos, der zweite Teil die Entwicklung des Emotionstest in der emoTrix-App.

In Listing? ist der Quellcode des Arduinos abgebildet. In Zeile 1 wird die SofwareSerial-Bibliothek eingebunden, die eine Verwendung der Pins des Arduinos für verschiedene Module ermöglicht. In Zeile 2 wird dem Arduino mitgeteilt, dass auf den Pins 10 und 11 ein Bluetooth-Modul angeschlossen ist und eine Konstante (GSR) festgelegt, die auf den Anschluss A0 des Grove Shields verweist, an dem der GSR Sensor angeschlossen ist.

Generell besteht der Programmcode des Arduinos immer aus zwei Bestandteilen: einem Setup-Block und einem Loop-Block. Der Setup-Block wird einmalig beim Einschalten des Arduinos ausgeführt. Danach wird der Loop-Block solange wiederholt, bis der Arduino ausgeschalten wird.

```
#include <SoftwareSerial.h>
  Software Serial BTserial (10, 11); const int GSR=A0;
| int sensorValue=0; int gsr_average=0;
  boolean measuring = false; char BTString;
  void setup(){
    BTserial.begin(9600);
  void loop(){
    BTString = BTserial.read();
    if(BTString = 'S'){
      measuring = true;
13
    if(BTString = 'F')
      measuring = false;
17
    if (measuring) {
      long sum=0;
      for (int i=0; i<10; i++){
        sensorValue=analogRead(GSR);
21
        sum += sensorValue; delay(5);
      gsr_average = sum/10;
      BTserial.print(gsr_average); BTserial.println(";");
27
```

Listing 1: Quellcode des Arduinos

In Zeile 7 innerhalb des Setup-Blocks wird die Geschwindigkeit der seriellen Datenübertragung der Ports des Arduinos, die mit dem Bluetooth-Modul verbunden sind. Hierbei wird die Geschwindigkeit auf 9600 Bits pro Sekunde gesetzt. ⁴⁴ Dies entspricht der üblich verwendeten Geschwindigkeit und hat in Tests sehr gut funktioniert.

Der Loop-Block beginnt in Zeile 11 mit dem Auslesen der Daten, die über das Bluetooth-Modul empfangen werden. Die Variable BTSTring wird mit diesen Daten beschrieben. Die App muss zum Starten der App den String S (für Start) per Bluetooth übertragen. Ist dies der Fall, wird die Variable measuring auf true gesetzt. Mit dem String F (für Finished) kann die App dem Arduino das Stopsignal für die Messung geben. Demenstprechend wird measuring auf false gesetzt. Dies ist in den Zeilen 15 bis 17 umgesetzt. In Zeile 18 wird über die measuring-Variable überprüft, ob gemessen werden soll. Wenn ja, wird eine Variable für die Summe von 10 Messdaten initialisiert. Anschließend wer-

den in Abstand von 5 Millisekunden 10 Messungen durchgeführt. In Zeile 21 wird die

 $^{^{44}}$ Vgl. Ard18b.

eigentliche Messung des Sensors durchgeführt. Der hier verwendete GSR-Sensor liefert die aktuell gemessene Stromspannung an der Haut als Integer-Wert zurück. Alle 10 Messungen werden nach und nach aufaddiert. Dies geschieht in der for-Schleife in den Zeilen 20 bis 23. Anschließend wird die Summe durch 10 geteilt, sodass man den Durchschnitt aller 10 Werte erhält. Dieses Verfahren wird durchgeführt, da die Messdaten des Sensors Schwankungen aufweisen, die dadurch eliminiert werden können. In Zeile 25 wird schließlich der Messwert auf den Port des Bluetooth-Moduls geschickt und damit versendet. Als Trennzeichen zum nächsten Wert wird ein Semikolon angehängt.

Wenn die Messung gestartet wurde, erhält die mobile Applikation also alle 50 Millisekunden vom Arduino per Bluetooth einen Integer-Wert, der der Stromspannung auf der Haut des Nutzer entspricht.

```
| this.bluetoothSerial.connect(address).subscribe((data) <math>\Rightarrow  {
    found.status = "connected";
    console.log("Connection successful: " + data)
  \} , (error) => \{
    found.status = "disconnected";
    console.log(error);
7 });
9 this. bluetooth Serial. subscribe (";"). subscribe (
    function (data) {
      self.value = data.substring(0, data.length - 1);
      if(self.time\%10 == 0){
         self.addData(self.lineChart, self.time, self.value);
13
         if(self.time!=0){
           var data: any = {value: self.value, oldValue: self.oldValue};
           self.GsrSensor.onSensorData(data);
17
         self.oldValue = self.value;
      self.time++;
    }, function (error){
      console.log(error);
23 });
startMeasuring(){
    this.bluetoothSerial.write('S').then((data: any) => { })
    . catch ((e) \Rightarrow \{
      console.log(e);
    });;
  stopMeasuring(){
    this.bluetoothSerial.write('F').then((data: any) => {})
    . \mathbf{catch}((e) \Rightarrow \{
      console.log(e);
    });
```

Listing 2: JS Code

TODO Beschreiben des Codes

4.3 Auswertung der Testergebnisse

4.4 Benutzeroberfläche der App

5 Schluss

Hier werden wir darauf eingehen was erreicht wurde was nicht und weshalb nicht.

- 5.1 Anwendungsszenarien
- 5.2 Fazit
- 5.3 Ausblick

Literatur

- [Ard18a] Arduino. ARDUINO UNO REV3. 2018. URL: https://store.arduino.cc/arduino-uno-rev3 (besucht am 13.05.2018).
- [Ard18b] Arduino. begin(). 2018. URL: https://www.arduino.cc/en/serial/begin (besucht am 14.05.2018).
- [Bie14] Kai Biermann. "Smartphone Mächtige Sensoren". In: Zeit Online (28. Mai 2014). URL: http://www.zeit.de/digital/mobil/2014-05/smartphone-sensoren-iphone-samsung (besucht am 15.04.2018).
- [Bou88] Wolfram Boucsein. Elektrodermale Aktivität: Grundlagen, Methoden und Anwendungen. Springer-Verlag Berlin Heidelberg GmbH, 1988. ISBN: 978-3-662-06969-1.
- [Die06] Franziska Dietz. Psychologie 1: Methodische Grundlagen und biopsychologische Modelle. Marburg: MEDI-LEARN Verlag, 2006. ISBN: 978-3-938802-02-1.
- [Dil13] Deborah Bacon Dilts Robert Dilts Judith DeLozier. NLP II die neue Generation: Strukturen subjektiver Erfahrung die Erforschung geht weiter. Paderborn: Junfermann Verlag GmbH, 2013. ISBN: 9783955712433.
- [Dud18] Indiz, das. Deutsch. Duden. 13. Apr. 2018. URL: https://www.duden.de/rechtschreibung/Indiz (besucht am 13.04.2018).
- [Gro18] Grove. Grove GSR Sensor. 2018. URL: http://wiki.seeedstudio.com/ Grove-GSR_Sensor/ (besucht am 07.05.2018).
- [Hok17] Hokuma. Plutchik's Wheel of Emotions: What is it and How to Use it in Counseling? The Wheel of Emotions. English. 14. Dez. 2017. URL: https://positivepsychologyprogram.com/emotion-wheel/#what (besucht am 13.04.2018).
- [Ion17] Dan Bucholtz. *Ionic Release Notes.* 8. Nov. 2017. URL: https://github.com/ionic-team/ionic/releases/tag/v3.9.2 (besucht am 22.04.2018).
- [Ion18a] Ionic Framework. Core Concepts. 2018. URL: https://ionicframework.com/docs/intro/concepts/ (besucht am 22.04.2018).
- [Ion18b] Ionic Framework. *Ionic Docs CLI*. 2018. URL: https://ionicframework.com/docs/cli/ (besucht am 22.04.2018).
- [Ion18c] Ionic Framework. Ionic Framework. 2018. URL: https://ionicframework.com/framework (besucht am 22.04.2018).
- [Lie14] Julia Müller Alexandra Liedl Christine Knaevelsrud. Trauma und Schmerz:

 Manual zur Behandlung traumatisierter Schmerzpatienten. Stuttgart: KlettCotta, 2014. ISBN: 9783608267266.

- [Moe07] Thorsten Möll. Messung und Wirkung von Markenemotionen: Neuromarketing als neuer verhaltenswissenschaftlicher Ansatz. Wiesbaden: Deutscher Universitäts-Verlag, Aug. 2007. ISBN: 978-3-8350-0897-7.
- [Rei18] Reichelt Elektronik. ARD SHD BASE V2. 2018. URL: https://www.reichelt.de/Entwicklerboard-Zubehoer/ARD-SHD-BASE-V2/3/index.html?

 ACTION=3&GROUPID=8244&ARTICLE=191204 (besucht am 13.05.2018).
- [Sav18] Kausalität. Deutsch. Spektrum akademischer Verlag, Heidelberg. 15. Apr. 2018. URL: https://www.spektrum.de/lexikon/physik/kausalitaet/7841 (besucht am 15.04.2018).
- [Sch12] Dipl. Math. Michael Wand Prof. Dr. Tanja Schultz. Biosignale und Benutzerschnittstellen Elektrodermale Aktivität (EDA). Universität Bremen, WS Vorlesung 2012/2013: Cognitive Systems Lab, 2012.
- [Sch13] Myriam Schwarzer-Petruck. Emotionen und pädagogische Professionalität. Springer VS, Wiesbaden, Dez. 2013. Kap. Was sind Emotionen? ISBN: 978-3-658-04619-4.
- [Sch14] Ralf Stürmer Jennifer Schmidt. Erfolgreiches Marketing durch Emotionsforschung: Messung, Analyse, Best Practice. Freiburg: Haufe-Lexware GmbH & Co. KG, 2014. ISBN: 978-3-648-04894-8.
- [Sou18] Souq.com. Arduino Uno R3. 2018. URL: https://uae.souq.com/ae-en/arduino-uno-r3-6186780/i/ (besucht am 13.05.2018).
- [Spe18] Spektrum.de. Puls. Spektrum.de. 15. Apr. 2018. URL: https://www.spektrum.de/lexikon/biologie/puls/54932 (besucht am 15.04.2018).
- [Sta18a] Statista GmbH. Anzahl der Smartphone-Nutzer in Deutschland in den Jahren 2009 bis 2018 (in Millionen). Bitkom Research; comScore. 2018. URL: https://de.statista.com/statistik/daten/studie/198959/umfrage/anzahl-der-smartphonenutzer-in-deutschland-seit-2010/ (besucht am 15.04.2018).
- [Sta18b] Statista GmbH. Prognose zum Anteil der Smartphone-Nutzer an den Mobiltelefonnutzern weltweit von 2014 bis 2020. eMarketer. 2018. URL: https://de.statista.com/statistik/daten/studie/556616/umfrage/prognosezum-anteil-der-smartphone-nutzer-an-den-mobiltelefonnutzernweltweit/ (besucht am 15.04.2018).
- [Sta18c] Statista GmbH. Prognose zur Anzahl der Smartphone-Nutzer weltweit von 2012 bis 2020 (in Milliarden). eMarketer. 2018. URL: https://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/ (besucht am 15.04.2018).

- [Tho11] F. Thoemmes. Ausgewählte Kausalitätstheorien im Vergleich. English. Institut für Erziehungswissenschaft Abteilung Empirische Bildungsforschung und Pädagogische Psychologie, 2011. URL: https://www.human.cornell.edu/sites/default/files/HD/qml/Thoemmes_2011.pdf (besucht am 15.04.2018).
- [Til17] Janna Tillmann. Was ist eigentlich Typescript? t3n News. 15. Sep. 2017. URL: https://t3n.de/news/eigentlich-typescript-859869/ (besucht am 22.04.2018).
- [Web18] Merriam-Webster. sensor. Merriam-Webster. 4. Apr. 2018. URL: https://www.merriam-webster.com/dictionary/sensor (besucht am 15.04.2018).
- [Wik18] Wikipedia. Ionic Logo. 2018. URL: https://de.wikipedia.org/wiki/Ionic_ (Framework)#/media/File:Ionic_Logo.svg (besucht am 22.04.2018).

Anhänge