Statistical Machine Learning Methods for High-dimensional Neural Population Data Analysis

Yuanjun Gao

Department of Statistics Columbia University

Overview

TODO: add a diagram for statistical criticizing

TODO: add a page for spike train

Table of Contents

- Neural Population Data Analysis with Latent Variable Models
 - Generalized count linear dynamical system
 - Linear dynamical neural population models through nonlinear embeddings
- Region of Interest Detection for Calcium Imaging Data
- Maximum Entropy Flow Networks

Table of Contents

- Neural Population Data Analysis with Latent Variable Models
 - Generalized count linear dynamical system
 - Linear dynamical neural population models through nonlinear embeddings
- Region of Interest Detection for Calcium Imaging Data
- Maximum Entropy Flow Networks

State space models

- $\mathbf{x}_t \in \mathbb{N}^n$: spike counts; $\mathbf{z}_t \in \mathbb{R}^m$: latent variables
- Joint distribution

$$p(\mathbf{x}, \mathbf{z}) = \underbrace{p(\mathbf{z}_1)}_{\text{Initial distribution}} \underbrace{\prod_{t=1}^{T-1} p(\mathbf{z}_{t+1} | \mathbf{z}_t)}_{\text{Transition model}} \underbrace{\prod_{t=1}^{T} p(\mathbf{x}_t | \mathbf{z}_t)}_{\text{Observation model}}$$

 Common input; Dynamical view of motor data (TODO: elaborate this line)

State space models: multiple trials

- r = 1, ..., R: trial number
- $\mathbf{x}_{rt} \in \mathbb{N}^n$: spike counts; $\mathbf{z}_{rt} \in \mathbb{R}^m$: latent variables
- Joint distribution

$$p(\mathbf{x}, \mathbf{z}) = \prod_{r=1}^{R} \left[\underbrace{p(\mathbf{z}_{r1})}_{\text{Initial distribution}} \underbrace{\prod_{t=1}^{T-1} p(\mathbf{z}_{r(t+1)} | \mathbf{z}_{rt})}_{\text{Transition model}} \underbrace{\prod_{t=1}^{T} p(\mathbf{x}_{rt} | \mathbf{z}_{rt})}_{\text{Observation model}} \right]$$

Common parameterization and our extensions

 Common assumptions for latent dynamics: linear Gaussian dynamical system (LDS)

$$\mathbf{z}_1 \sim \mathcal{N}(\mu_1, Q_1)$$
 $\mathbf{z}_{t+1} | \mathbf{z}_t \sim \mathcal{N}(A\mathbf{z}_t, Q)$

Common observation models:

$$\mathbf{x}_t | \mathbf{z}_t \sim \underbrace{\mathcal{N}(C\mathbf{z}_t + d, \Sigma)}_{ ext{model mismatch}} ext{ or } \underbrace{ ext{Poisson}\left(\exp(C\mathbf{z}_t + d)
ight)}_{ ext{equal dispersion}}$$

- Our extensions for observation model:
 - Generalized count distribution (GCLDS) (Gao et al. 2015)
 - Flexible nonlinear observation (fLDS) (Gao et al. 2016)

Table of Contents

- Neural Population Data Analysis with Latent Variable Models
 - Generalized count linear dynamical system
 - Linear dynamical neural population models through nonlinear embeddings
- Region of Interest Detection for Calcium Imaging Data
- Maximum Entropy Flow Networks

Motivation

Doubly stochastic Poisson model implies overdispersion

$$\left. egin{array}{ll} \mathbf{z} & \sim p(\mathbf{z}) \\ \mathbf{x} & \sim \mathsf{Poisson}(f(\mathbf{z})) \end{array}
ight.
ight.$$

 Need a more flexible distribution to separate firing rate variability with noise variability.

$$var(\mathbf{x}) = \underbrace{var(E(\mathbf{x}|\mathbf{z}))}_{\text{firing rate variability}} + \underbrace{E(var(\mathbf{x}|\mathbf{z}))}_{\text{noise variability}}$$

Generalized count distribution family

Generalized count (GC) distribution family

$$p_{\mathsf{Poisson}}(x;\lambda) \propto \frac{\exp{\{\log{\lambda} \cdot x\}}}{x!}, \quad x \in \mathbb{N}$$
 \Downarrow $p_{\mathcal{GC}}(x;\theta,g(\cdot)) \propto \frac{\exp(\theta \cdot x + g(x))}{x!}, \quad x \in \mathbb{N}$

where $\theta \in \mathbb{R}$, $g(\cdot) : \mathbb{N} \to \mathbb{R}$.

- Parameterizes all the count distributions redundantly.
- Given $g(\cdot)$, θ controls the expectation.
- g(·) controls the "shape" of the distribution.
 Convex/concave g(·) implies over/under-dispersion.

Model formulation

 Linear dynamical systems with generalized count observation

$$egin{aligned} \mathbf{z}_{r1} &\sim \mathcal{N}(\mu_1, Q_1) \ \mathbf{z}_{r(t+1)} | \mathbf{z}_{rt} &\sim \mathcal{N}(A\mathbf{z}_{rt}, Q) \ x_{rti} &\sim \mathcal{GC}(c_i^T \mathbf{z}_{rt}, g_i(\cdot)), i = 1, ..., n \end{aligned}$$

- Practical considerations
 - Set $g_i(k) = -\infty$ for k > K to facilitate computation;
 - Ridge penalty on the 2nd difference of $g_i(\cdot)$ to avoid overfitting;
 - Set $g_i(0) = 0$ without loss of generality.

Variational Bayes Expectation Maximization (VBEM)

- x: data, z: latent variables, θ: model parameters,
- Often hard to compute $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$ and $p_{\theta}(\mathbf{z}|\mathbf{x})$.
- Approximate the posterior by a tractable distribution family.

$$p_{\theta}(\mathbf{z}|\mathbf{x}) pprox q(\mathbf{z}) \in \mathcal{Q}$$

Optimize a lower bound of log likelihood, or ELBO

$$\begin{aligned} \mathsf{ELBO}(\theta,q) &= \int \left[\log p_{\theta}(\mathbf{x},\mathbf{z}) - \log q(\mathbf{z}) \right] q(\mathbf{z}) d\mathbf{z} \\ &= \log p_{\theta}(\mathbf{x}) - \mathsf{KL}(q(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x})) \leq \log p_{\theta}(\mathbf{x}) \end{aligned}$$

Variational Bayes Expectation Maximization (VBEM)

- VBEM: Optimize ELBO(θ , q) $\leq \log p_{\theta}(\mathbf{x})$ iteratively
 - E-step: For a fixed θ , optimize q
 - M-step: For a fixed q, optimize θ
- VBEM for GCLDS
 - We set q to be multivariate Gaussian
 - We derive a looser but tractable ELBO
 - E-step: fast Laplace approximation initialization + dual optimization
 - M-step: convex optimization + analytical solution

Experiments

 For both simulated and real dataset, we compare GCLDS with PLDS (Poisson observation model)

	Mean	Variance	Likelihood
PLDS	✓	Х	Х
GCLDS	✓	\checkmark	✓

Real data analysis: data

Variance and mean of spike counts

- Center-out reaching experiments
- Multi-electrode array recording
- Strong under-dispersion

Real data analysis: algorithms

- Main algorithms to be compared
 - PLDS: Poisson observation
 - GCLDS-full: Generalized count observation, individual $g(\cdot)$ across neurons
- Two control cases for GCLDS
 - GCLDS-linear: truncated linear $g(\cdot)$ (truncated Poisson)
 - GCLDS-simple: $g(\cdot)$ shared across neurons (up to a linear function)

Real data analysis: single neuron fit

Real data analysis: population fit

• Leave-one-neuron-out prediction

Conclusion and discussion

Summary

- Incorporated generalized count family into state space models.
- Developed VBEM algorithm.
- Observed superior fitted result on real neural data.

Extensions

- $g(\cdot)$ vary across time?
- Share information of g(⋅) across neurons? (hierarchical model?)
- Generative models for under-dispersion?

Table of Contents

- Neural Population Data Analysis with Latent Variable Models
 - Generalized count linear dynamical system
 - Linear dynamical neural population models through nonlinear embeddings
- Region of Interest Detection for Calcium Imaging Data
- Maximum Entropy Flow Networks

Motivation

- Neural activities lie in a low-dimensional nonlinear manifold rather than a linear subspace
- Flexible observation model makes the state space model more expressive

Model formulation: fLDS

Linear dynamical systems with nonlinear link and count observation

$$egin{aligned} \mathbf{z}_{r1} \sim & \mathcal{N}(\mu_1, Q_1) \ \mathbf{z}_{r(t+1)} | \mathbf{z}_{rt} \sim & \mathcal{N}(A\mathbf{z}_{rt}, Q) \ & x_{rti} \sim & \operatorname{Poisson}(\mathbf{f}_i(\mathbf{z}_{rt})) \text{ (PfLDS)} \ & \operatorname{or} \mathcal{GC}(\mathbf{f}_i(\mathbf{z}_{rt}), g_i(\cdot)) \text{ (GCfLDS)} \end{aligned}$$

where f_i is a nonlinear function parameterized by a neural network

- Linear dynamics: simple, tractable, interpretable
- Nonlinear observation: flexibility

Inference algorithm: AEVB (high level idea)

- Auto-encoding Variational Bayes (AEVB)
- Learn a mapping (recognition model) from data to the approximate posterior distribution of latent variable.
- Jointly optimize the generative model parameters and recognition model parameters.
- Naturally incorporate stochastic optimization to handle large datasets.

Inference algorithm: AEVB (algorithm)

Decompose ELBO by trials

$$\mathsf{ELBO}(\theta, q) = \sum_{r=1}^{R} \int \left[\log p_{\theta}(\mathbf{x}_r, \mathbf{z}_r) - \log q(\mathbf{z}_r) \right] q(\mathbf{z}_r) d\mathbf{z}_r$$

• Map data \mathbf{x}_r to $q(\mathbf{z}_r)$ by a parameterized function

$$q(\mathbf{z}_r) = q_{\phi}(\mathbf{z}_r; \mathbf{x}_r) = \mathcal{N}\left(\mu_{\phi}(\mathbf{x}_r), \Sigma_{\phi}(\mathbf{x}_r)\right)$$

• Learn both θ and ϕ by optimizing ELBO

$$\mathsf{ELBO}(\theta, \phi) = \sum_{r=1}^R \int \left[\log p_\theta(\mathbf{x}_r, \mathbf{z}_r) - \log q_\phi(\mathbf{z}_r; \mathbf{x}_r) \right] q_\phi(\mathbf{z}_r; \mathbf{x}_r) d\mathbf{z}_r$$

Do stochastic optimization with gradient of a single trial

Inference algorithm: AEVB (important details)

Specific parameterization of the recognition model

$$q(\mathbf{z}_r) = q_{\phi}(\mathbf{z}_r; \mathbf{x}_r) = \mathcal{N}\left(\mu_{\phi}(\mathbf{x}_r), \Sigma_{\phi}(\mathbf{x}_r)\right)$$

- Block tri-diagonal precision matrix that agrees with Markovian structure
- · Potentially useful to perform filtering in an online fashion
- Reparameterization trick for stochastic optimization
 - · Easy implementation
 - Low variance

Experiments

	Mean	Variance	Likelihood	Concise representation
PLDS	✓	Х	Х	Х
GCLDS	✓	✓	✓	×
PfLDS	✓	X	X	✓
GCfLDS	✓	✓	✓	✓

Firing rate

Real data analysis: Primate motor cortex

Real data analysis: Primate motor cortex

• Latent projection with 2 latent dimensions

Real data analysis: Primate motor cortex

One-step-ahead predictive performance

Conclusion and discussion

Summary

- Incorporated nonlinear observation into state space models.
- Developed AEVB algorithm (flexible and scalable).
- Obtain concise latent representation.
- Future work
 - Better stochastic optimization scheme
 - Interpretable nonlinearity
 - · Application on more complex datasets

Table of Contents

- Neural Population Data Analysis with Latent Variable Models
 - Generalized count linear dynamical system
 - Linear dynamical neural population models through nonlinear embeddings
- Region of Interest Detection for Calcium Imaging Data
- Maximum Entropy Flow Networks

Introduction: calcium imaging data

TODO: incorporate a video?

Model formulation: idea

- $X \in \mathbb{R}^{N \times T}$ represents the calcium imaging data, where each column is a (vectorized) frame that contains N pixels
- Decompose X into a product of K spatial component and temporal component

$$X = D \cdot A^T + \text{noise}$$

- $D = [D_1, ..., D_K] \in \mathbb{R}^{N \times K}$ represents the neuron shapes
- $A = [A_1, ..., A_K] \in \mathbb{R}^{T \times K}$ is the neural activities
- Further exploit structure of the components (localized neuron shapes)

Model formulation: objective

Structured matrix factorization

minimize
$$\|X - DA^T\|_2^2 + f_D(D)$$
, subject to $D_k \in \mathcal{D}_w^+; k = 1, \dots, K$, $\|A_k\|_2 \le c_k$,

- \mathcal{D}_w^+ : non-negative vectors whose nonzero values is within a $w \times w$ window
- $f_D(D)$ regularizes the neuron shape (discussed later)
- $||A_k||_2 \le c_k$ avoids degenerate solution

Greedy algorithm

- Scan the each frame of the video with a small Gaussian kernel
- At iteration k, given the current residue (unexplained by existing ROI)
 - Greedy identification: Identify the location p_k where the Gaussian kernel explains most of the data (across time)
 - Shape fine tuning: Locally optimize the spatial and temporal component
 - Residue update: Subtract the newly identified ROI

Shape fine tuning

 Given current residue R, an identified center pixel p_k, denote S_k as a w × w window centered at p_k

$$\begin{aligned} & \underset{D_k,A_k}{\text{minimize}} & & \|R - D_k A_k^T\|^2 + f(D_k), \\ & \text{subject to} & & D_{kp} \geq 0, p \in \mathcal{S}_k, \\ & & & D_{kp} = 0, p \notin \mathcal{S}_k, \\ & & & & \|A_k\|_2 \leq c_k, \end{aligned}$$

- $f(D_k) = \sum_{i=1}^3 \lambda_i f_i(D_k)$
 - $f_1(D_k) = \sum_p \tau_{(p,p_k)} |D_{kp}|$ encourages sparsity
 - $f_2(D_k) = \sum_{p} (D_{kp} G_{p_k})^2$ encourage Gaussian shape
 - $f_3(D_k) = \sum_{p_1 \text{ and } p_2 \text{ are neighbors}} (D_{kp_1} D_{kp_2})^2$ encourages smoothness
- Optimize D_k and A_k by block coordinate descent

Real data analysis: sample patch, no shape regularization

Real data analysis: sample patch, shape regularization

Conclusion and discussion

Summary

- Formulating calcium imaging ROI detection as a structure matrix factorization problem
- · Greedy algorithm with shape regularization
- Fast ROI detection algorithm
- Future work
 - · More spatial and temporal structure
 - Overlapping neuron
 - Online ROI detection
 - Motion correction, background elimination

Table of Contents

- Neural Population Data Analysis with Latent Variable Models
 - Generalized count linear dynamical system
 - Linear dynamical neural population models through nonlinear embeddings
- Region of Interest Detection for Calcium Imaging Data
- Maximum Entropy Flow Networks

Maximum entropy principle

• Entropy: for a continuous distribution with density $p(\mathbf{z})$ where $\mathbf{z} \in \mathbb{R}^d$, the entropy is defined as

$$H(p) = -\int p(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z}.$$

A popular measure of diversity and information content.

 Maximum entropy principle: Subject to some given prior knowledge (moment/support constraints), the distribution that makes minimal additional assumptions is that which has the largest entropy of any distribution obeying those constraints

Maximum entropy problem

Maximum entropy problem

$$p^*=$$
 maximize $H(p)$ subject to $E_{\mathbf{Z}\sim p}[T(\mathbf{Z})]=0$ $\mathrm{supp}(p)=\mathcal{Z},$

where $T(\mathbf{z}) = (T_1(\mathbf{z}), ..., T_m(\mathbf{z})) : \mathcal{Z} \to \mathbb{R}^m$ is the vector of known statistics, and \mathcal{Z} is the given support.

Application example: neuroscience

Application example: texture modeling

Gibbs distribution

 Under standard regularity conditions, the maximum entropy problem can be solved by Lagrange multipliers, yielding an exponential family p* of the form (Gibbs distribution):

$$p^*(\mathbf{z}) \propto e^{<\eta, T(\mathbf{z})>} \mathbb{1}(\mathbf{z} \in \mathcal{Z})$$

- Identifying $\eta \in \mathbb{R}^m$ can be hard in high-dimensional setting.
- Sampling from the distribution can be hard. MCMC methods can take long to mix.
- Question: is there a better way to do this?

Idea: normalizing flow

 Considering a family of smooth and invertible transformation (normalizing flow)

$$\mathcal{F} = \{ f_{\phi} : \mathbb{R}^d \to \mathbb{R}^d, \phi \in \mathbb{R}^q \}$$

• Identify a transformation $f_{\phi^*} \in \mathcal{F}$ that transforms a simple distribution p_0 to approximate the maximum entropy distribution.

$$\phi^*=$$
 maximize $H(p_\phi)$ subject to $E_{\mathbf{Z}_0\sim p_0}[T(f_\phi(\mathbf{Z}_0))]=0$ $\mathrm{supp}(p_\phi)=\mathcal{Z}.$

where $p_{\phi}(\mathbf{z})$ is the distribution of $f_{\phi}(Z_0)$ for $Z_0 \sim p_0$.

$$ho_\phi(\mathbf{z}) =
ho_0(f_\phi^{-1}(\mathbf{z})) |\det(J_\phi(\mathbf{z}))|^{-1}$$

Augmented Lagrangian method

 Denote R(φ) = E (T(f_φ(Z₀))) ∈ ℝ^m, augmented Lagrangian method minimizes the objective

$$L(\phi; \lambda, c) = -H(p_{\phi}) + \lambda^{\top} R(\phi) + \frac{c}{2} ||R(\phi)||^{2}$$

for a sequence of $\lambda \in \mathbb{R}^m$ and $c \ge 0$.

Update rule: at iteration k, given λ_k and c_k, suppose φ_k optimizes L(φ; λ_k, c_k), update λ and c by

$$\begin{aligned} \lambda_{k+1} = & \lambda_k + c_k R(\phi_k) \\ c_{k+1} = \begin{cases} \beta c_k & ||R(\phi_k)|| > \gamma ||R(\phi_{k-1})|| \\ c_k & \text{otherwise} \end{cases} \end{aligned}$$

for some $\gamma \in (0,1)$, $\beta > 1$

Augmented Lagrangian method in stochastic setting

• Denote $R(\phi) = E\left(T(f_{\phi}(\mathbf{Z}_0))\right) \in \mathbb{R}^m$, augmented Lagrangian method minimizes the objective

$$L(\phi; \lambda, c) = -H(p_{\phi}) + \lambda^{\top} R(\phi) + \frac{c}{2} ||R(\phi)||^{2}$$

for a sequence of $\lambda \in \mathbb{R}^m$ and $c \geq 0$.

• Here $R(\phi) = E\left(T(f_{\phi}(\mathbf{Z}_0))\right) \in \mathbb{R}^m$ is intractable, but we can approximate with a sampled version.

$$R(\phi) pprox rac{1}{n} \sum_{i=1}^{n} T(f_{\phi}(\mathbf{z}^{(i)})), \mathbf{z}^{(i)} \sim p_0$$

We can then optimize the objective by stochastic gradient descent.

Simulation: Dirichlet

Application: Texture modeling

Conclusion and discussion

Summary

- Solve maximum entropy problem by optimizing a normalizing flow
- Combining augmented Lagrangian optimization with stochastic optimization
- · Promising result on simulation and real data
- Future work
 - Normalizing flow structure
 - Better constrained stochastic optimization algorithm

Table of Contents

- Neural Population Data Analysis with Latent Variable Models
 - Generalized count linear dynamical system
 - Linear dynamical neural population models through nonlinear embeddings
- Region of Interest Detection for Calcium Imaging Data
- Maximum Entropy Flow Networks

fLDS: AEVB form (backup)

MEFN: Normalizing flow structures (backup)