Algebra I Homework 3

Nutan Nepal

October 27, 2022

(5.4 - 8) Assume that x, y both commute with [x, y]. Show that $(xy)^n = x^n y^n [y, x]^{\binom{n}{2}}$ for any positive integer n.

We first note that yx = xy[y, x] = x[y, x]y = [y, x]xy. Assume that the statement

$$P(k): (xy)^k = x^k y^k [y, x]^{\binom{k}{2}}$$

is true for some integer k > 1. Then,

- (5.5 11) Classify groups of order 28.
 - (6.1 6) Show that if G/Z(G) is nilpotent then G is nilpotent.
- (6.3 7) Show that the quaternion group Q_8 can be presented by $\{a,b|\ a^2=b^2,a^{-1}ba=b^{-1}\}.$
- (7.1 8) Find the center of the real Hamiltonian Quaternions \mathbb{H} . Prove that $\{a + bi | a, b \in R\}$ is a subring of \mathbb{H} which is a field but is not contained in the center of \mathbb{H} .
- (7.1 13) An element $a \in R$ is called nilpotent if $x^m = 0$ for some $m \in \mathbb{Z}^+$.
 - (a) Show that if $n = a^k b$ for some integers a, b, then ab is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.
 - (b) If $a \in \mathbb{Z}$, show that the element $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ iff every prime divisor of n is also a divisor of a. In particular, find all nilpotent elements of $\mathbb{Z}/72\mathbb{Z}$.

- (c) Let R be the ring of functions from a nonempty set X to a field F. Prove that R contains no nilpotent elements.
- (7.2 7) Show that the center of the ring $M_n(R)$ is $R \cdot I$, where $I = diag(1, \ldots, 1)$.
- (7.3 4) Find all ring homomorphisms from \mathbb{Z} to $\mathbb{Z}/30\mathbb{Z}$. In each case, describe the kernel and the image.
- (7.3 18) Prove that the intersection $I \cap J$ of ideals I, J of a ring R is also an ideal of R. Let $\{I_{\alpha}\}_{{\alpha}\in S}$ be a collection of ideals of R. Show that $\bigcap_{{\alpha}\in S}I_{\alpha}$ is an ideal of R.
- (7.3 29) Let R be a commutative ring. Prove that the set of nilpotent elements of R form an ideal—called the nilradical $\mathfrak{N}(R)$.