Abnormal Gait Diagnosis with wearable device

Zhaoxi Zhang Mechanical Engineering

Outline:

- Background
 - o Data from wearable device
 - Importance of gait abnormalities
- Motivation
 - Telemedicine
 - o Potential
- Project Components
 - o Hardware
 - o Algorithm
 - Future work: Interface

• Importance of gait

- Importance of gait
- Popularity of wearable devices

- Importance of gait
- Popularity of wearable device
- Willingness to share data

- Importance of gait
- Popularity of wearable device
- Willingness to share data
- Project potential influence
 - Shorten diagnosis time
 - Cost saving

Hardware

- 9 DOF IMU and Force Sensor on Shoe insole
 - Acceleration on x,y,z axes
 - Angular acceleration around x,y,z axes
 - Voltage to represent force

Hardware

- Four Categories
 - Tendem Gait
 - o Inward
 - Outward
 - o Normal

- Four Categories
 - o Tendem Gait
 - Inward
 - Outward
 - o Normal

- Four Categories
 - O Tendem Gait
 - o Inward
 - Outward
 - Normal

- Four Categories
 - Tendem Gait
 - o Inward
 - Outward
 - Normal

- Gait Phase State Machine
- Feature Engineering and classification algorithm
- Long Short Term Memory Recurrent Neural Network for classification

- State Machine Approach:
 - o Four Gait Phases
 - Stance
 - Heel Off
 - Swing
 - Heel Strike
 - Normal Gait Transition:
 - T1: ST to HO
 - T2: HO to SW
 - T3: SW to HS
 - T4: HS to ST
 - Non-walking Transition:
 - T5: HO to ST
 - Abnormal Gait Transition:
 - T6: ST to SW
 - T7: SW to ST

- Feature Engineering
 - O Dimension Reduction: Principal Component Analysis (PCA)
 - o Distribution Feature: Histogram
 - Frequency Feature: FFT

- Feature Engineering
 - Dimension Reduction: Principal Component Analysis (PCA)
 - O Distribution Feature: Histogram
 - Frequency Feature: FFT

Long Short-Term Memory RNN

Outward

- Feature Engineering
- + Logistic Regression

- Feature Engineering
- + SVM Platt Scaling

LSTM RNN

Interface

- Use instructions with caveats
- Interpretable diagnosis result
 - o diagnosis results
 - Example videos of certain abnormality to help understanding
 - Potential solution
 - Caveats

Summary

- Importance of gait abnormality
- Hardware and experiement
- Algorithm and experiment
- Futhure work: interface

Collaboration

• The gait phase state machine approach is implemented collaboratively with YuanKai Zhu.

Reference

- B. Minor, Lloyd. Stanford Medicine 2017 Health Trends Report: Harnessing the Power of Data in Health. 2017, Stanford Medicine 2017 Health Trends Report: Harnessing the Power of Data in Health, med.stanford.edu/content/dam/sm/sm-news/documents/StanfordMedicineHealthTrendsWhitePaper2017.pdf.
- I. P. Pappas and et al., "A reliable gait phase detection system," IEEE Transactions on neural systems and rehabilitation engineering, no. 9.2, pp. 113-125, 2001.
- Zhang, Yinlong, et al. "PCA & HMM based arm gesture recognition using inertial measurement unit." Proceedings of the 8th International Conference on Body Area Networks. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2013.
- Lipton, Zachary C., et al. "Learning to diagnose with LSTM recurrent neural networks." arXiv preprint arXiv:1511.03677 (2015).
- Verghese, Joe, et al. "Neurological gait abnormalities and risk of falls in older adults." Journal of neurology 257.3 (2010): 392-398.
- Latif, Siddique, Muhammad Usman, and Junaid Qadir Rajib Rana. "Abnormal Heartbeat Detection Using Recurrent Neural Networks." arXiv preprint arXiv:1801.08322 (2018).

Github: https://github.com/vacous/GaitDiagnosisML

Thank You