a) (i) As
$$y = \times \beta + \epsilon$$
, we get

$$\hat{\beta} = Ay = A(\times \beta + \epsilon) = A \times \beta + A \epsilon$$
As A, \times , and β are fixed and $E(\epsilon) = 0$, we find
$$E(\hat{\beta}) = A \times \beta + A E(\epsilon) = A \times \beta$$

$$Var(\hat{\beta}) = E((\hat{\beta} - E(\hat{\beta}))(\hat{\beta} - E(\hat{\beta}))')$$

$$= E(A \epsilon (A \epsilon)')$$

$$= E(A \epsilon (A \epsilon)')$$

$$= A G(\epsilon \epsilon') A'$$

$$= A G^{2} I A'$$

$$= G' A A'$$
(ii) Unbiased $E(\hat{\beta}) = A \times \beta = \beta$ for all β

$$A \times = I$$
, or
$$D \times = (A - A_{0}) \times = A \times - A_{0} \times = I - (X \times)^{-1} \times^{1} \times = I - I = 0$$
iii) $A A' = (D + A_{0})(D + A_{0})'$

$$= D D' + A_{0}D' + D A'_{0} + A_{0}A'_{0}$$

$$= D D' + A_{0}A'_{0} = D D' + A_{0}A'_{0}$$

$$= D D' + (X \times)^{-1} \times^{1} \times^{1} \times^{1} \times^{1}$$

$$= D D' + (X \times)^{-1} \times^{1} \times^{1} \times^{1} \times^{1}$$

b) As var(b) =
$$G^2(X^1X)^{-1}$$
, we get var($\hat{\beta}$) = G^2AA' = $G^2(DD' + (X^1X)^{-1})$ = $G^2DD' + G^2(X^1X)^{-1} = G^2DD' + Var(b)$

c) var($\hat{\beta}$) - var(\hat{b}) = G^2DD'

PSD As G^2SD

D ($L(X)$) matrix

b' ($L(X)$) matrix

c ($L(X)$) vector

d = $L(X)$ vector with components $L(X)$, ..., $L(X)$

0'
$$(n \times \omega)$$
 matrix

 $c (u \times i)$ vector

 $d = D'c (n \times i)$ vector with components $d_1, ..., d_1$
 $c'DD'c = (D'c)'D'c = d'd = \sum_{i=1}^{n} d_i^2 \ge 0$

Thus shows that DD' is pSD
 $d)$ Let c be the $(u \times i)_{J}$ -th unit vector, $c = 0$
 c'_{J} (var $(\beta)_{J}$) - var $(b)_{J}$ c'_{J} c'_{J}