CSC 230: COMPUTER ARCHITECTURE AND ASSEMBLY LANGUAGE Instructor: Watheq El-Kharashi

Midterm Fall 2000			
Stude	ent Name:		
Regis	stration Number: Lab Section: LF		
This	is a closed book exam Time: 50 minutes Total: 40 marks		
1) [5 Marks] State whether each of the following statements is true or false:		
•	The 8-bit two's complement representation of -15_{10} is 11110001_2 . True		
•	2's complement representation has different representations for +0 and -0. False		
•	The single precision IEEE floating point standard format has different representations for $+0$ and -0 . True		
•	In 2's complement addition, overflow can only occur when adding two negative numbers.		
•	Single bit parity allows for the detection and correction of single bit errors. False		
2) [4	Marks] For the single precision IEEE floating point representation for 13.5 ₁₀		
•	What is the value of the sign bit: _0		
•	What is the actual value stored for the exponent (in decimal): _130_		
•	What is the actual value stored for the mantissa (in binary):_1011_		
	(ignore trailing zeros)		
•	What is the complete 32 bit representation (in hex) of the number:_41580000		
	3 Marks] How many fetch operations does the 6811 have to perform as it executes each f the following instructions?		
•	LDAA # \$242		
•	LDAA \$243		
•	LDAA \$24, X3		
4) [10 marks] Consider the following program:		
	P EQU 6 Q RMB 1 ORG \$C000 MAIN LDAA #P LDAB #1 LOOP TSTA BEQ DONE ASLB ; ARITHEMTIC SHIFT LEFT ACC B DECA		

a) [1 Mark] Circle the correct value that is stored in Q upon reaching the STOP instruction.

$$Q = 10^6$$
 $Q = 2^6$ $Q = 10^{-6}$ $Q = 2^{-6}$ $2*6$

b) [6 Marks] Show the listing file (.lst) generated by the assembler

0001	0006		P	EQU	6
0002	0000		Q	RMB	1
0003	c000			ORG	\$C000
0004	c000	86 06	MAIN	LDAA	#P
0005	c002	c6 01	LDAB	#1	
0006	c004	4d	LOOP	TSTA	
0007	c005	27 04	BEQ	DONE	
8000	c007	58	ASLB		
0009	c008	4a	DECA		
0010	c009	20 f9	BRA	LOOP	
0011	c00b	d7 00	DONE	STAB	Q
0012	c00d	cf	STOP		
0013	c00e			END	

c) [3 Marks] Show the symbol table generated by the assembler for this program.

DONE	C00B
LOOP	C004
MAIN	C000
P	0006
Q	0000

5) [10 Marks] Perform each of the following operations using 8 bit 2's complement numbers and show the condition code flag settings that will result. As shown all operations are to be done as additions.

Decimal	Answer (show values in binary)	С	V	N	Z
11 – 11	_0000 1011_ + _1111 0101_ = _0000 0000_	1	0	0	1
-127-1	_1000 0001_ + _111111111_ = _(1) 1000 0000_	1	0	1	0

6) **[8 Marks]** Write a complete 6811 assembly language program that sums the even integers from 2 to 26 inclusive leaving the sum in ACCA upon completion of the program.

	ORG	\$6000
	CLRA	
	LDAB	#2
LOOP	ABA	
	INCB	
	INCB	
	CMPB	#26
	BLE	LOOP
	STOP	

END

End of Midterm