Funktionalanalysis

Jan Fuhrmann

Wintersemester 2023/24

Inhaltsverzeichnis

1.	Grundlagen: Topologie normierter Vektorräume	7				
	1.1. Definition und grundlegende Eigenschaften	8				
	1.2. Vollständigkeit und Kompaktheit					
2.	Hilberträume und die Sätze von Riesz					
	2.1. Skalarprodukte und Hilberträume	27				
	2.2. Orthogonale Projektionen, erster Satz von Riesz					
	2.3. Stetige lineare Funktionale, zweiter Satz von Riesz	39				
	2.4. Fourierentwicklung in Hilberträumen	44				
3.	Funktionalanalytische Grundprinzipien	55				
	3.1. Lineare Operatoren	55				
	3.2. Der Satz von Baire					
	3.3. Das Prinzip der gleichmäßigen Beschränktheit	65				
	3.4. Offene Abbildungen, abgeschlossene Graphen					
	3.5. Der Fortsetzungssatz von Hahn-Banach					
Α.	Das Lebesgue-Integral	83				

Literatur:

Zu den Themen unseres Kurses

Prinzipiell können Sie jedes Lehrbuch zur (linearen) Funktionalanalysis begleitend zur Vorlesung konsultieren. Die folgende Liste enthält eine Auswahl von Büchern, die ich selbst mehr oder weniger regelmäßig nutze.

- W. Alt, Lineare Funktionalanalysis, 6. Auflage, Springer (2012) (online verfügbar via Uni-Bibliothek, auch englisch: "Linear Functional Analysis")
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer (2011)
- J. B. Conway, A Course in Functional Analysis, 2nd edition, Springer (2007)
- M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press (1972)
- F. Riesz, B. Sz.-Nagy, Vorlesungen über Funktionalanalysis, 4. Auflage, Harri Deutsch (1982)

 (auch englisch "Functional Analysis", französisch "Leçons d'analyse fonctionnelle")
- D. Werner, Funktionalanalysis, 8. Auflage, Springer (2018) (online verfügbar via Uni-Bibliothek)
- E. Zeidler, Applied Functional Analysis Applications to Mathematical Physics, Springer (1995)
- E. Zeidler, Applied Functional Analysis Main Principles and Their Applications, Springer (1995)

Zum Nachschlagen von Vorkenntnissen

Zum Nachschlagen, Wiederholen oder Vertiefen der benötigten Vorkenntnisse können Sie auf eine riesige Auswahl von Lehrbüchern der Analysis und (linearen) Algebra zurück greifen. Die hier aufgeführten begleiten mich (ggf. in anderen Auflagen) zuverlässig seit meinem eigenen Studium.

- M. Artin, Algebra, Springer (1993) (Vektorräume und lineare Abbildungen)
- K. Königsberger, Analysis 2, 5. Auflage (2004) (Metrische und topologische Räume, Lebesgue-Integral)
- W. Rudin, Analysis, 5. Auflage, De Gruyter Oldenbourg (2022) (Metrische und topologische Räume, Lebesgue-Integral)

Notation:

Viele unserer Aussagen gelten für reelle ebenso wie für komplexe Vektorräume, und wir bezeichnen mit \mathbb{K} stets einen der Körper \mathbb{R} oder \mathbb{C} .

Für reelle Zahlen a, b bezeichnen $a \wedge b$ das Minimum und $a \vee b$ das Maximum von a und b. Diese Schreibweise erweist sich insbesondere für reellwertige Funktionen als nützlich, indem etwa $f \wedge g$ als punktweises Minimum von f und g gelesen wird.

Für eine Abbildung $f: V \to W$ zwischen Vektorräumen V und W bezeichnen wir mit $\ker f = \{v \in V : f(v) = 0_W\}$ den Kern und mit $\operatorname{im} f = \{f(v) : v \in V\}$ das Bild von f. Letzteres ergibt natürlich auch für Abbildungen zwischen allgemeinen Mengen Sinn.

Mit $(v_n)_n$ werden wir stets Folgen von Elementen v_n einer gegebenen Menge V bezeichnen. Es handelt sich also einfach um eine Kurzschreibweise für $(v_n)_{n\in\mathbb{N}} = (v_n)_{n=1}^{\infty} = (v_1, v_2, \dots)$.

Für eine beliebige Teilmenge A einer gegebenen Grundmenge Ω bezeichnen wir mit $\mathbf{1}_A:\Omega\to\mathbb{R}$ die durch

$$\mathbf{1}_{A}(x) := \begin{cases} 1 & \text{für } x \in A, \\ 0 & \text{für } x \in \Omega \backslash A \end{cases}$$

gegebene Indikatorfunktion¹.

Sind V ein K-Vektorraum, $v \in V$, $A \subset V$ und $\alpha \in K$, so schreiben wir

$$v + A := \{v + w : w \in A\}, \quad \alpha A := \{\alpha w : w \in A\}$$

für die Translation von A um v bzw. die Multiplikation von A mit α .

Ferner bezeichnen wir mit 0_V den Nullvektor im Vektorraum V, lassen das Subskript V aber auch gelegentlich weg, wenn aus dem Kontext klar ist, welches Nullelement gemeint ist.

Ist V ein K-Vektorraum und $A \subset V$ eine nicht leere Teilmenge, so bezeichnen wir mit

$$\langle A \rangle = \left\{ \sum_{j=1}^{n} \alpha_j v_j : n \in \mathbb{N}, \ \alpha_1, \dots, \alpha_n \in \mathbb{K}, \ v_1, \dots, v_n \in A \right\}$$

die lineare Hülle von A.

 $^{^1}$ In der Analysis finden Sie dafür oft auch die Bezeichnung charakteristische Funktion unter dem Namen $\chi_A.$

In dieser Vorlesung befassen wir uns mit linearer Funktionalanalysis, also vor allem mit linearen Räumen und Abbildungen zwischen diesen. Aus der Analysis 2 wissen wir, dass lineare Abbildungen $f: \mathbb{R}^n \to \mathbb{R}^m$ bzw. $f: \mathbb{C}^n \to \mathbb{C}^m$ notwendigerweise bezüglich der euklidischen Topologie stetig und sogar unter jeder Norm (beliebig oft) differenzierbar sind. Im Kern werden wir uns mit der Verallgemeinerung dieser Beobachtung auf den unendlichdimensionalen Fall beschäftigen, werden aber schnell sehen, dass bereits die Stetigkeit nicht mehr notwendigerweise garantiert ist. Auch andere uns bekannte Aussagen lassen sich nicht direkt verallgemeinern. Folgende aus dem endlichdimensionalen Fall bekannte Aussagen werden wir genauer untersuchen müssen:

- Auf einem endlichdimensionalen \mathbb{K} -Vektorraum V erzeugen alle Normen die gleiche Topologie.
- In einem endlichdimensionalen normierten Vektorraum sind abgeschlossene und beschränkte Mengen kompakt¹. Insbesondere sind abgeschlossene Einheitskugeln kompakt.
- Lineare Unterräume eines endlichdimensionalen normierten Vektorraums sind abgeschlossen (bzgl. der von der Norm erzeugten Topologie).
- Eine lineare Abbildung $f: \mathbb{K}^n \to \mathbb{K}^n$ ist genau dann injektiv, wenn sie surjektiv ist. Genauer gilt für lineare Abbildungen $f: V \to W$ die Dimensionsformel

$$\dim_{\mathbb{K}} V = \dim_{\mathbb{K}} (\ker f) + \dim_{\mathbb{K}} (\operatorname{im} f).$$

In gewissem Sinn mag das zwar noch richtig sein, wenn wir auf beiden Seiten ∞ als Wert zulassen, aber die Aussagekraft für einen der Summanden auf der rechten

¹Für die euklidischen n-dimensionalen Räume \mathbb{K}^n ist das der Satz von Heine-Borel. Nach dem vorherigen Punkt gilt das dann auch unter allen Normen auf \mathbb{K}^n .

Seite ist rechte gering, wenn der andere Summand und die linke Seite unendlich sind.

1.1. Definition und grundlegende Eigenschaften

Wir beginnen mit einer Erinnerung an das Konzept normierter linearer Räume. Dabei handelt es sich um eine spezielle Klasse metrischer Räume, die Sie in der Analysis 2 kennen gelernt haben. Diese wiederum hatten wir als spezielle topologische Räume identifiziert. Viele der hier angegebenen Definitionen und Aussagen sollten Ihnen also bekannt vorkommen. Falls das nicht der Fall ist, können Sie gern in den einschlägigen Lehrbüchern zur Analysis 2 oder elementarer Topologie nachschlagen.

Definition 1.1. Ein <u>normierter linearer Raum</u> (oder <u>normierter Vektorraum</u>) ist ein \mathbb{K} -Vektorraum V zusammen mit einer Norm $\|\cdot\|: V \to [0,\infty)$ derart, dass für alle $v,w \in V$ und $\alpha \in \mathbb{K}$

- (i) $v = 0_V \iff ||v|| = 0$ (Definitheit)
- (ii) $\|\alpha v\| = |\alpha| \|v\|$ (Homogenität)
- (iii) $||v+w|| \le ||v|| + ||w||$ (Dreiecksungleichung)

gelten.

Da Normen nur auf Vektorräumen Sinn ergeben (wir brauchen die Addition in V inklusive der Null und die Multiplikation mit Skalaren), sprechen wir manchmal kurz von normierten Räumen und wissen dann sofort, dass es sich um normierte lineare Räume handeln muss.

Bemerkung. In der Analysis 2 haben wir gelernt, dass jeder normierte lineare Raum $(V, \|\cdot\|)$ vermöge

$$d(v, w) = ||v - w||, \qquad v, w \in V,$$

auch ein metrischer Raum ist. Umgekehrt hatten wir aber gesehen, dass auf jeder nicht leeren Menge etwa die diskrete Metrik definiert werden konnte, auch wenn gar keine lineare Struktur vorlag.

Bemerkung. Ist in Punkt (i) nur die Implikation $v = 0 \implies ||v|| = 0$ erfüllt, kann ||v|| also auch für nicht triviale Vektoren verschwinden, so heißt $||\cdot||$ eine Halbnorm (oder Seminorm). Die Menge $N = \{v \in V : ||v|| = 0\}$ ist dann wegen der Homogenität und der Dreiecksungleichung ein Vektorraum, und wir erhalten durch Faktorisierung einen Vektorraum V/N, auf dem $||\cdot||$ zu einer Norm wird². Sie kennen diese Konstruktion aus der Maßtheorie von der Konstruktion der Räume $L_p(\mu)$.

²Genauer ist für jede Restklasse v + N durch $||v + N|| = \inf_{w \in N} ||v + w||_V$ eine Norm definiert.

Die üblichen Verdächtigen \mathbb{K}^n zusammen mit den p-Normen

$$||v||_p = \begin{cases} \left(\sum_{k=1}^n |v_k|^p\right)^{\frac{1}{p}} & \text{für } p \in [1, \infty), \\ \max_{k=1, \dots, n} |v_k| & \text{für } p = \infty \end{cases}$$

kennen wir schon. Das verallgemeinern wir schnell auf die natürlichen unendlichdimensionalen Versionen.

Beispiel 1. Mit $\mathbb{K}^{\mathbb{N}}$ bezeichnen wir den Vektorraum der \mathbb{K} -wertigen Zahlenfolgen $v = (v_k)_{k \geq 1}$. Wir sehen sofort, dass \mathbb{K}^n mit dem linearen Unterraum der spätestens nach n Gliedern abbrechenden Folgen identifizierbar ist. Jedes $x = (x_1, \dots, x_n)^T \in \mathbb{K}^n$ liefert nämlich eine eindeutige Folge $v \in \mathbb{K}^{\mathbb{N}}$:

$$v_k = \begin{cases} x_k & \text{für } k = 1, \dots, n, \\ 0 & \text{für } k > n. \end{cases}$$

Dass Summen und skalare Vielfache solcher abbrechenden Folgen wieder spätestens bei n abbrechen, ist offensichtlich, also handelt es sich tatsächlich um einen linearen Unterraum.

 $Auf \mathbb{K}^{\mathbb{N}}$ definieren wir analog zu den bekannten p-Normen

$$||v||_p := \begin{cases} \left(\sum_{k=1}^{\infty} |v_k|^p\right)^{\frac{1}{p}} & \text{für } p \in [1, \infty), \\ \sup_{k \in \mathbb{N}} |v_k| & \text{für } p = \infty \end{cases}$$

und stellen sofort fest, dass wir im allgemeinen nicht davon ausgehen können, dass $||v||_p \in [0,\infty)$ gilt, wie es sich für eine Norm gehört. Das führt uns zur Definition der Räume der zur pten Potenz (absolut) summierbaren (bzw. im Fall $p=\infty$: der beschränkten) Folgen:

$$\ell_p^{\mathbb{K}} := \left\{ v \in \mathbb{K}^{\mathbb{N}} : ||v||_p < \infty \right\}.$$

Versehen mit $\|\cdot\|_p$ wird $\ell_p^{\mathbb{K}}$ zu einem normierten Vektorraum. Wir rechnen das für den Fall $p=\infty$ nach, für $p<\infty$ können Sie das als Übung unter Verwendung der Rechenregeln für absolut konvergente Reihen und einiger Eigenschaften der Potenzfunktionen selbst überprüfen.

Die Endlichkeit der Norm haben wir durch die Definition von $\ell_{\infty}^{\mathbb{K}}$ erzwungen, die müssen wir also nicht mehr untersuchen.

Zunächst ist die triviale Folge $0 \in \mathbb{K}^{\mathbb{N}}$ natürlich beschränkt, also ist $0 \in \ell_{\infty}$ (wir lassen das \mathbb{K} oft weg, wenn entweder klar oder unerheblich ist, welcher Körper gemeint ist), und es gilt $||0||_{\infty} = \sup_{k} |0| = 0$. Ist umgekehrt $v \neq 0$, so existiert ein k_0 mit $v_{k_0} \neq 0$, und dann ist $||v||_{\infty} \geq |v_{k_0}| > 0$. Das zeigt die Definitheit.

Für $v \in \ell_{\infty}$ und $k \in \mathbb{N}$ gilt $|v_k| \leq ||v||_{\infty}$. Ist nun $\alpha \in \mathbb{K}$, so folgt $|(\alpha v)_k| = |\alpha| ||v_k| \leq |\alpha| ||v||_{\infty}$, also $||\alpha v|| \leq |\alpha| ||v||_{\infty}$ und insbesondere $\alpha v \in \ell^{\infty}$. Umgekehrt führen wir die Annahme $||\alpha v||_{\infty} < |\alpha| ||v||_{\infty}$, d.h., $||\alpha v||_{\infty} = |\alpha| ||v||_{\infty} - \delta$ für ein $\delta > 0$ zum Widerspruch.

Wäre $\alpha = 0$, so stünde hier $0 = 0 - \delta$, was völlig unmöglich ist. Ist aber $|\alpha| > 0$, so fänden wir nach der Definition des Supremums ein k_0 derart, dass

$$|v_{k_0}| \ge ||v||_{\infty} - \frac{\delta}{2|\alpha|}, \quad also \quad ||v||_{\infty} \le |v_{k_0}| + \frac{\delta}{2|\alpha|}$$

wäre. Damit berechnen wir nach unserer Annahme:

$$|\alpha||v_{k_0}| \leq |\alpha| \|v\|_{\infty} - \delta \leq |\alpha| \left(|v_{k_0| + \frac{\delta}{2|\alpha|}}\right) - \delta = |\alpha| |v_{k_0}| - \frac{\delta}{2},$$

was auch ein Widerspruch ist. Damit haben wir auch die Homogenität gezeigt. Zur Dreiecksungleichung stellen wir fest, dass für jedes $k \in \mathbb{N}$

$$|(v+w)_k| = |v_k + w_k| \le |v_k| + |w_k| \le ||v||_{\infty} + ||w||_{\infty}.$$

Nehmen wir das Supremum über alle k, so erhalten wir sofort die Dreiecksungleichung, die uns auch nochmal sichert, dass die Summe zweier beschränkter Folgen wieder beschränkt ist.

Wir haben also gezeigt, dass ℓ_{∞} tatsächlich ein Vektorraum ist und $\|\cdot\|_{\infty}$ eine Norm darauf darstellt.

Bemerkung. Die Konstruktion der Räume ℓ_p folgt einem allgemeinen Konzept. Ist auf einem Vektorraum V eine Abbildung $\|\cdot\|: V \to [0, \infty]$ definiert, die bis auf die Endlichkeit alle Eigenschaften einer Norm hat, so nennen wir $\|\cdot\|$ eine Quasinorm und stellen fest, dass wegen der Homogenität und der Dreiecksungleichung $\overline{W} = \{v \in V : \|v\| < \infty\}$ ein Untervektorraum von V ist, auf dem $\|\cdot\|$ eine Norm ist.

Man beachte den Unterschied zum endlichdimensionalen Fall. Bei weitem nicht alle Folgen $v \in \mathbb{K}^{\mathbb{N}}$ gehören zu einem der Räume ℓ_p , und die Räume enthalten nicht die gleichen Folgen als Elemente³. Schließlich sind unendliche Summen bzw. Suprema unendlicher Mengen nicht zwingend endlich. Das ist auch schon die Grundlage der in den einführenden Bemerkungen erwähnten scheiternden Verallgemeinerungen von Aussagen aus der endlichdimensionalen linearen Algebra bzw. Analysis 2.

Bemerkung. In Erinnerung an die Maßtheorie (aus der höheren Analysis oder Wahrscheinlichkeitstheorie) stellen wir fest, dass es sich bei den ℓ_p -Räumen um Spezialfälle der $L_p(\mu)$ -Räume handelt, den Räumen (von Äquivalenzklassen) jener messbaren Funktionen $f:\Omega\to\mathbb{K}$, für die

$$||f||_p := \begin{cases} \left(\int_{\Omega} |f|^p \, \mathrm{d}\mu \right)^{\frac{1}{p}} & \text{für } p \in [1, \infty), \\ \operatorname{ess\,sup}_{x \in \Omega} |f(x)| & \text{für } p = \infty \end{cases}$$

endlich ist. Die Räume ℓ_p hatten wir als Spezialfälle für $\Omega = \mathbb{N}$, versehen mit der Potenzmenge als σ -Algebra und dem Zählma β als Ma β erkannt. Die Folgenräume haben die

³Sie rechnen leicht nach, dass $\ell_p \subsetneq \ell_q$ für p < q gilt. Denken Sie etwa an eine durch $v_k = k^{-r}$ gegebene Folge, wobei r > 0 so gewählt ist, dass rp < 1 < rq gilt.

angenehme Eigenschaft, dass man auf die Identifizierung fast überall übereinstimmender Funktionen verzichten kann, da es bezüglich des Zählmaßes keine nicht trivialen Nullmengen gibt. Jede der Äquivalenzklassen besteht also aus genau einem Repräsentanten. In dieser Vorlesung werden wir uns nicht explizit mit Maß- und Integrationstheorie beschäftigen, aber in vielen Situationen auf das Lebesgue-Integral zurück greifen. Neben den Folgenräumen werden diese L_p -Räume für das Lebesgue-Maß auf einer offenen Menge $\Omega \subset \mathbb{R}^n$ sowie deren Abkömmlinge eine wichtige Rolle spielen. Die nötigen Aussagen werden wir im Anhang A sammeln; dort können Sie jederzeit nachschlagen.

Auch hier haben wir uns wieder auf lineare Unterräume des ursprünglichen Raums messbarer Funktionen (genauer: Äquivalenzklassen solcher) zu beschränken, auf denen die Normen endlich sind.

Notation. Wenn wir vom normierten Vektorraum ℓ_p oder $L_p(\mu)$ bzw. $L_p(\Omega)$ sprechen, meinen wir – sofern nicht ausdrücklich anders gesagt – den mit der natürlichen Norm $\|\cdot\|_p$ versehenen Raum. Die Norm gehört also, anders als im endlichdimensionalen Fall, praktisch zum Raum selbst.

Vom üblichen Betrag in \mathbb{R} kennen wir folgende Aussage, deren Beweis wir aus der Analysis 1 praktisch wortgleich übernehmen können.

Lemma 1.2 (Dreiecksungleichung nach unten). Ist $(V, \|\cdot\|)$ ein normierter Vektorraum, so gilt $|\|v\| - \|w\|| \le \|v - w\|$ für alle $v, w \in V$.

Beweis. Übung (siehe Analysis 1).

Folgende Definition dürfte eine Wiederholung sein, aber der Vollständigkeit halber müssen wir sie hier noch einmal angeben.

Definition 1.3. In einem normierten Vektorraum $(V, \|\cdot\|)$ definieren wir zu $v \in V$ und r > 0 die offene Kugel vom Radius r um v durch

$$B_r(v) = \{ w \in V : ||v - w|| < r \},\$$

und die abgeschlossene Kugel vom Radius r um v durch

$$\bar{B}_r(v) = \{ w \in V : ||v - w|| < r \}.$$

Die offene bzw. abgeschlossene Einheitskugel in V sind durch

$$B_V = B_1(0_V)$$
 bzw. $\bar{B}_V = \bar{B}_1(0_V)$

gegeben.

Wie in jedem metrischen Raum⁴ erlauben uns die offenen Kugeln die Definition offener Mengen.

⁴In einem metrischen Raum wird eine offene Kugel durch $B_r(v) = \{w \in V : d(v, w) < r\}$ definiert.

Definition 1.4. Eine Teilmenge $U \subset V$ eines normierten Vektorraums $(V, \| \cdot \|)$ heißt <u>offen</u>, falls zu jedem $v \in V$ ein r > 0 derart existiert, dass $B_r(v) \subset U$ gilt. Die Familie \mathcal{T} der offenen Mengen ist die von $\| \cdot \|$ erzeugte Topologie über V.

Manchmal schreiben wir $\mathcal{T}_{\|\cdot\|}$ für die von $\|\cdot\|$ erzeugte Topologie. Das wird spätestens dann relevant, wenn wir verschiedene Normen oder auch gar nicht von einer Norm erzeugte Topologien auf einem gegebenen Vektorraum betrachten.

Dass es sich bei den so definierten Systemen offener Mengen tatsächlich um Topologien handelt, besagt das folgende Lemma, dessen Aussagen gerade die definierenden Eigenschaften eines Systems offener Mengen (also einer Topologie) sind.

Lemma 1.5. Für die von $\|\cdot\|$ erzeugte Topologie \mathcal{T} über einem normierten Vektorraum V gelten:

- (i) $\emptyset \in \mathcal{T}$, $V \in \mathcal{T}$ (die leere Menge und der gesamte Raum sind stets offen)
- (ii) Ist \mathcal{I} eine beliebige (nicht leere) Indexmenge und sind $U_i \in \mathcal{T}$, $i \in \mathcal{I}$, so ist $\bigcup_{i \in \mathcal{I}} U_i \in \mathcal{T}$ (beliebige Vereinigungen offener Mengen sind offen)
- (iii) Sind $U_1, U_2 \in \mathcal{T}$, so ist $U_1 \cap U_2 \in \mathcal{T}$ (endliche Durchschnitte offener Mengen sind offen)

Beweis. Übungsblatt 0

Selbstverständlich sind (nach Dreiecksungleichung) alle offenen Kugeln offen (also in \mathcal{T}), wie Sie sich schnell überzeugen. Wir werden gleich sehen, dass auch der Begriff der abgeschlossenen Kugel durchaus sinnvoll gewählt ist.

Definition 1.6. Die Norm $\|\cdot\|$ auf dem Vektorraum V heißt stärker als die Norm $|[\cdot]|$ auf V, wenn die von $|[\cdot]|$ erzeugte Topologie in der von $\|\cdot\|$ erzeugten enthalten ist. Zwei Normen $\|\cdot\|$, $|[\cdot]|$ auf dem gleichen Vektorraum heißen <u>äquivalent</u>, wenn sie die gleiche Topologie erzeugen.

Zwei Normen sind also äquivalent, wenn jede der beiden stärker als die andere ist.

Lemma 1.7. Zwei Normen $\|\cdot\|$, $|[\cdot]|$ auf einem Vektorraum sind genau dann äquivalent, wenn Konstanten $C \ge c > 0$ derart existieren, dass für alle $v \in V$

$$c||v|| \le ||v|| \le C||v|| \tag{1.1}$$

gilt.

Beweis. Zum Beweis der Äquivalenz der Normen genügt es zu zeigen, dass in jeder offenen Kugel bezüglich $\|\cdot\|$ eine offene Kugel bezüglich $|[\cdot]|$ liegt und umgekehrt. Dann finden wir nämlich zu einer Menge U und einem $v \in U$ stets genau dann eine in U liegende ε -Kugel bezüglich $\|\cdot\|$ um v, wenn wir eine solche bezüglich $\|[\cdot]|$ finden.

Zu $\varepsilon > 0$ und $v \in V$ gilt

$$B_{\varepsilon,|[\cdot]|}(v) = \{w: |[v-w]| < \varepsilon\} \subset \{w: c\|v-w\| < \varepsilon\} = B_{\frac{\varepsilon}{c},\|\cdot\|}(v)$$

und umgekehrt $B_{\varepsilon,\|\cdot\|}(v) \subset B_{C\varepsilon,\|\cdot\|}(v)$, wie verlangt.

Zur Notwendigkeit der Bedingung nehmen wir an, wir hätten zu jedem $C_n = n$ ein $v_n \in V$ derart, dass $|[v_n]| > n ||v_n||$ ist, dass also die rechte Ungleichung nicht gilt. Dank der Homogenität beider Normen gilt dann auch für $w_n := \frac{v_n}{\|v_n\|}$ (man beachte, dass die v_n notwendigerweise von 0 verschieden sind):

$$|[w_n]| > n \left\| \frac{v_n}{\|v_n\|} \right\| = n.$$

Die Einheitskugel $U = B_{1,|[\cdot]|}(0)$ ist offen in $(V,|[\cdot]|)$, also nach Annahme der Äquivalenz auch in $(V,\|\cdot\|)$. Zu $0 \in U$ müssten wir also ein $\varepsilon > 0$ derart finden, dass $B_{\varepsilon,\|\cdot\|}(0) \subset U$ gilt. In $B_{\varepsilon,\|\cdot\|}(0)$ liegen nun aber alle $\frac{\varepsilon}{2}w_n$, also gilt für alle n:

$$\frac{\varepsilon}{2}w_n \in B_{\varepsilon,\|\cdot\|}(0) \subset U = B_{1,|[\cdot]|}(0), \quad \text{ also } \quad \frac{\varepsilon}{2}|[w_n]| \le 1.$$

Das steht aber für $n > \frac{2}{\varepsilon}$ im Widerspruch zu $|[w_n]| > n$.

Völlig symmetrisch führen wir auch die Annahme, die linke Ungleichung gälte nicht, zu einem Widerspruch. \Box

In diesem Beweis haben wir einige sehr mächtige Tricks benutzt, die Beweise zu normierten Vektorräumen oft erleichtern. Zum einen haben wir uns im zweiten Teil auf Kugeln um den Ursprung beschränkt. Das funktioniert, weil V dank der Vektorraumstruktur überall lokal gleich aussieht. Die Kugel $B_{\varepsilon}(0)$ unterscheidet sich also nicht von $B_{\varepsilon}(v)$. Tatsächlich liegt ja w genau dann in $B_{\varepsilon}(v)$, wenn w-v in $B_{\varepsilon}(0)$ liegt. Zweitens haben wir benutzt, dass Kugeln eines gegebenen Radius wegen der Homogenität einfach durch Aufblähen oder Schrumpfen aus solchen mit Radius 1 hervorgehen: $v \in B_1(0) \iff \varepsilon v \in B_{\varepsilon}(0)$, d.h.:

$$B_{\varepsilon}(w) = \{ w + \varepsilon v : v \in B_1(0) \}.$$

Das Studium der Einheitskugel eines normierten Vektorraums verrät uns also schon alles über, was wir über Kugeln in diesem Raum wissen müssen, insbesondere charakterisiert die Einheitskugel die Norm und die von ihr erzeugte Topologie vollständig. Da Kugeln auch Umgebungen eindeutig charakterisieren, erhalten wir insbesondere folgende Aussage.

Korollar 1.8. Die Normen $\|\cdot\|$ und $|[\cdot]|$ auf dem Vektorraum V sind genau dann äquivalent, wenn für jede Folge $(v_n)_n$ in V gilt:

$$\lim_{n \to \infty} ||v_n|| = 0 \quad \iff \quad \lim_{n \to \infty} |[v_n]| = 0.$$

Beweis. Übung.

Man erinnere sich daran, dass Konvergenz bzgl. einer Topologie über V bedeutet:

$$v_n \to v$$
 : \iff Für jede Umgebung U von v ex. $n_0 \in \mathbb{N}$ mit $v_n \in U$ f.a. $n \ge n_0$.

Eine Umgebung von v ist im topologischen Sinn einfach eine Menge U, die eine offene Menge W mit $v \in W \subset U$ enthält. In normierten Räumen können wir uns um kugelförmige Umgebungen beschränken, also:

$$v_n \to v \iff \text{ für alle } \varepsilon > 0 \text{ ex. } n_0 \in \mathbb{N} \text{ mit } v_n \in B_{\varepsilon}(v) \text{ für alle } n \geq n_0.$$

Äquivalente Topologien ergeben also für genau die gleichen Folgen Konvergenz (mit gleichem Grenzwert). \Box

Da wir normierte Vektorräume als spezielle topologische Räume identifiziert haben, können wir uns über Stetigkeit unterhalten. Dabei benutzen wir ohne Beweis, dass in normierten Vektorräumen wie in allen metrischen Räumen ε - δ -Stetigkeit (wie auch Folgenstetigkeit, aber dafür brauchen wir noch Grenzwerte) äquivalent zur topologischen Definition (Urbilder offener Mengen unter stetigen Funktionen sind offen) ist.

Korollar 1.9. Die Norm auf einem normierten Vektorraum ist eine stetige Abbildung $\|\cdot\|: V \to \mathbb{R}$, wenn wir \mathbb{R} mit seinem Standardbetrag versehen.

Beweis. Das ist gerade die Aussage der Dreiecksungleichung nach unten. \Box

Ebenso schnell rechnen wir folgende Aussage nach.

Lemma 1.10. Ist $(V, \|\cdot\|)$ ein normierter \mathbb{K} -Vektorraum, so sind die Vektorraumoperationen

$$(v, w) \mapsto v + w \ (V \times V \to V), \qquad (\alpha, v) \mapsto \alpha v \ (\mathbb{K} \times V \to V)$$

stetig bezüglich $\|\cdot\|$.

Beweis. Zu gegebenem $\varepsilon > 0$ gilt für $v, w, \tilde{v}, \tilde{w} \in V$ mit $||v - \tilde{v}||, ||w - \tilde{w}|| < \delta = \frac{\varepsilon}{2}$:

$$|||\tilde{w} + \tilde{v}|| - ||w + v||| < ||(\tilde{w} + \tilde{v}) - (w + v)|| < ||\tilde{w} - w|| + ||\tilde{v} - v|| < 2\delta = \varepsilon.$$

Die Addition ist also sogar gleichmäßig stetig. Analog gilt zu gegebenen $\alpha \in \mathbb{K}, v \in V$ und $\varepsilon > 0$ für $\tilde{\alpha} \in \mathbb{K}, \tilde{v} \in V$ mit

$$\|\tilde{v} - v\|, |\tilde{\alpha} - \alpha| < \delta = \frac{\varepsilon}{2(1 + |\alpha| + \|v\|)} \wedge \frac{\sqrt{\varepsilon}}{2}$$
:

$$\begin{split} \|\tilde{\alpha}\tilde{v} - \alpha v\| &= \|(\tilde{\alpha}\tilde{v} - \tilde{\alpha}v) + (\tilde{\alpha}v - \alpha v)\| \\ &\leq \|\tilde{\alpha}(\tilde{v} - v)\| + \|(\tilde{\alpha} - \alpha)v\| \\ &= |\tilde{\alpha} - \alpha + \alpha|\|\tilde{v} - v\| + |\tilde{\alpha} - \alpha|\|v\| \\ &< (\delta + |\alpha|)\delta + \delta\|v\| < \delta^2 + \delta(1 + |\alpha| + \|v\|) \\ &\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Die Aussage dieses Lemmas bedeutet schlicht, dass V unter der von der Norm erzeugten Topologie ein topologischer Vektorraum ist.

Wir erinnern auch noch an die Definition abgeschlossener Mengen. In einem topologischen Raum (X, \mathcal{T}) heißt eine Teilmenge $A \subset X$ abgeschlossen, wenn ihr Komplement $X \setminus A$ offen ist. In metrischen Räumen und erst recht in normierten Vektorräumen haben wir eine oft deutlich leichter zu überprüfende Bedingung. Dazu müssen wir noch die Konzepte konvergenter Folgen wiederholen, die wir bereits angedeutet haben.

Definition 1.11. Eine Folge $(v_n)_n$ in einem metrischen Raum (V,d) heißt <u>Cauchyfolge</u>, falls für alle $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ derart existiert, dass $d(v_n, v_m) < \varepsilon$ für alle $n, m \ge n_0$ gilt. Die Folge $(v_n)_n$ heißt <u>konvergent</u>, falls ein $v \in V$ derart existiert, dass $\lim_{n \to \infty} d(v, v_n) = 0$ gilt. In diesem Fall heißt v der <u>Grenzwert</u> der Folge, und wir schreiben $\lim_{n \to \infty} v_n = v$ oder $v_n \to v$ für $n \to \infty$.

^aWir erinnern uns, dass eine Folge in einem metrischen Raum höchstens einen Grenzwert haben kann.

An dieser Stelle ist eine kleine Warnung angebracht. Haben wir auf einer gegebenen Menge verschiedene Metriken, so muss die Konvergenz bezüglich einer Metrik keineswegs die bezüglich der anderen implizieren. Wir hatten bereits festgestellt: Sollten zwei Metriken (bzw. im Fall normierter linearer Räume zwei Normen) für genau die gleichen Folgen Konvergenz (gegen die gleichen Grenzwerte) liefern, so bedeutet das, dass sie die gleiche Topologie erzeugen, also äquivalent sind. Diese Aussage formulieren wir nochmal in anderer Form als ein Lemma, das ebenfalls nur der Wiederholung dient.

Lemma 1.12. Eine Teilmenge $A \subset V$ eines metrischen Raums (V, d) ist genau dann abgeschlossen, wenn für jede konvergente Folge $(v_n)_n$ in A der Grenzwert $v = \lim_{n \to \infty} v_n$ ebenfalls in A liegt.

Das liefert auch eine geeignete Definition des Abschlusses von Teilmengen metrischer Räume.

Definition 1.13. Ist $M \subset V$ Teilmenge des metrischen Raums (V, d), so bezeichnen wir den Abschluss \overline{M} von M (in (V, d)) als die Menge aller Grenzwerte von Folgen in M:

$$\bar{M} = \{v \in V : \lim_{n \to \infty} v_n = v \text{ für eine Folge } (v_n)_n \text{ mit } v_n \in M \text{ für alle } n\}.$$

Selbstverständlich ist \bar{M} damit abgeschlossen, und es gilt $M \subset \bar{M}$ (man betrachte konstante Folgen). Genauer ist \bar{M} die nach Mengeninklusion kleinste abgeschlossene Teilmenge von V, die M enthält⁵:

$$\overline{M} = \bigcap_{M \subset A \subset V, A \text{ abgeschl.}} A$$

⁵Unsere Definition stimmt also mit der Definition des Abschlusses für allgemeine topologische Räume überein.

Eine weitere nützliche Charakterisierung des Abschlusses nähert sich dem Problem über kleine Abstände. Der Abschluss einer Menge ist die Menge aller Berührungsspunkte von M. Das sind all jene Punkte, für die jede (ε -)Umgebung mindestens einen Punkt aus M enthält.

Lemma 1.14. Der Abschluss \overline{M} einer Teilmenge $M \subset V$ eines metrischen Raums (V, d) ist durch

$$\bar{M} = \{v \in V : \text{ F\"{u}r alle } \varepsilon > 0 \text{ existiert ein } w \in M \text{ mit } d(v, w) < \varepsilon.\}$$

gegeben.

Beweis. Übungsblatt 0

Auch hier haben wir wieder gute Nachrichten mit Blick auf normierte Vektorräume.

Lemma 1.15. (i) Sind U ein Untervektorraum eines Vektorraums V und $\|\cdot\|$ eine Norm auf V, so ist auch \bar{U} ein Untervektorraum von V.

(ii) In einem normierten Vektorraum $(V, \|\cdot\|)$ gilt für alle $v \in V$ und $\varepsilon > 0$:

$$\bar{B}_{\varepsilon}(v) = \overline{B_{\varepsilon}(v)}.$$

Beweis. Übung (man überprüfe für (i), dass \bar{U} unter den Vektorraumoperationen abgeschlossen ist).

Bemerkung. Eine beliebige Menge M mit mindestens zwei Elementen, versehen mit der diskreten Metrik, zeigt sofort, dass Aussage (ii) in allgemeinen metrischen Räumen nicht gelten muss.

1.2. Vollständigkeit und Kompaktheit

Dank der Dreiecksungleichung ist natürlich jede konvergente Folge in einem metrischen Raum eine Cauchyfolge. Wir hatten auch schon eine Bezeichnung für jene metrischen Räume eingeführt, in denen die Umkehrung gilt.

Definition 1.16. Ein metrischer Raum (V,d) heißt <u>vollständig</u>, falls jede Cauchyfolge in V (gegen einen in V liegenden Grenzwert) konvergiert.
Ein vollständiger normierter Vektorraum heißt <u>Banachraum</u>.

Beispiel 2. Sie überzeugen sich schnell, dass \mathbb{R}^n und \mathbb{C}^n unter allen p-Normen $\|\cdot\|_p$, $p \in [1, \infty]$, zu Banachräumen werden. Kraft Isomorphie ist dann jeder endlichdimensionale normierte \mathbb{K} -Vektorraum ein Banachraum.

Mit der durch d(x,y) = |x-y| gegebenen Metrik ist der Raum \mathbb{Q} der rationalen Zahlen hingegen nicht vollständig. Denken Sie etwa an die durch $x_n = (1 + \frac{1}{n})^n$ gegebene Cauchyfolge. Das erklärt auch, warum wir nur \mathbb{R} - und \mathbb{C} -Vektorräume betrachten. Über nicht vollständigen Körpern würde es uns schwer fallen, vollständige Vektorräume zu finden.

Beispiel 3. Erfreulicherweise sind die Räume $\ell_p^{\mathbb{K}}$ unter ihren natürlichen Normen $\|\cdot\|_p$ $(p \in [1, \infty])$ wie ihre endlichdimensionalen Geschwister auch Banachräume. Wir zeigen das hier für den Fall $p = \infty$, der Fall $p \in [1, \infty)$ ist eine (konzeptionell nicht schwierige, aber für p > 1 recht rechenintensive) Übung.

Angenommen, wir hätten eine $\|\cdot\|_{\infty}$ -Cauchyfolge $(v^{(k)})_k$ beschränkter Folgen. Zu gegebenem $\varepsilon > 0$ finden wir also ein k_0 derart, dass für alle $k, l \geq k_0$ und alle $n \in \mathbb{N}$

$$|v_n^{(k)} - v_n^{(l)}| \le ||v^{(k)} - v^{(l)}|| < \varepsilon$$

gilt. Zu festem n ist damit $(v_n^{(k)})_k$ eine Cauchyfolge in \mathbb{K} , die einen Grenzwert v_n hat. Die Folge $v=(v_n)_n$ dieser Grenzwerte ist dann beschränkt und erfüllt $\|v^{(k)}-v\|_{\infty}\to 0$ für $k\to\infty$. Ist nämlich k_0 zu gegebenem $\varepsilon>0$ wie oben gewählt, so gilt für $k\geq k_0$ und alle $n\in\mathbb{N}$:

$$|v_n^{(k)} - v_n| = \lim_{l \to \infty} \underbrace{|v_n^{(k)} - v_n^{(l)}|}_{<\varepsilon f. \ l \ge k_0} \le \varepsilon.$$

Das gilt für alle n:

$$||v^{(k)} - v||_{\infty} = \sup_{n} |v_n^{(k)} - v_n| \le \varepsilon \quad \text{für } k \ge k_0.$$

Allgemeiner sind die Räume $L_p(\mathbb{R}^n)$ (oder noch allgemeiner $L_p(\mu)$) der zur pten Potenz integrierbaren ($p \in [1, \infty)$) bzw. wesentlich beschränkten ($p = \infty$) (Äquivalenzklassen von) Funktionen ebenfalls Banachräume. Das haben wir in der Maßtheorie gezeigt (siehe Theorem A.21), also wird es hier nur erwähnt. Wieder sind die Folgenräume nur Spezialfälle, die sich für das Zählmaß über der Grundmenge \mathbb{N} als "Integrationsgebiet" ergeben.

Beispiel 4. Mit $c_{00}^{\mathbb{K}}$ bezeichnen wir den Raum der abbrechenden Folgen in \mathbb{K} :

$$c_{00}^{\mathbb{K}}:=\left\{(a_n)_n\in\mathbb{K}^{\mathbb{N}}:\ es\ existiert\ ein\ n_0\in\mathbb{N}\ mit\ a_n=0\ f\"ur\ alle\ n>n_0
ight\}.$$

Da alle abbrechenden Folgen beschränkt sind und Summen sowie Vielfache abbrechender Folgen abbrechen, handelt es sich um einen linearen Unterraum von $\ell_{\infty}^{\mathbb{K}}$. Versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$ ist c_{00} aber keineswegs abgeschlossen. Wir finden nämlich eine Cauchyfolge $(v^{(k)})_k$, die wir folgendermaßen definieren:

$$v_n^{(k)} := \begin{cases} \frac{1}{n} & \text{für } n \le k, \\ 0 & \text{sonst,} \end{cases}$$

d.h., das kte Folgeglied ist jene Zahlenfolge, deren erste k Einträge $1, \frac{1}{2}, \ldots, \frac{1}{k}$ sind, gefolgt von Nullen. Dass es sich bei $(v^{(k)})$ um eine Cauchyfolge handelt sehen wir schnell. Zu $\varepsilon > 0$ wählen wir $k_0 \in \mathbb{N}$ derart, dass $\frac{1}{k_0} < \varepsilon$ ist. Dann stimmen $(v^{(k)})$ und $(v^{(l)})$ für $k,l \geq k_0$ bis zum $(k \wedge l)$ ten Folgeglied überein. Ist ohne Beschränkung der Allgemeinheit $k > l \geq k_0$, so ist also

$$||v^{(k)} - v^{(l)}||_{\infty} = \left|\frac{1}{l+1} - 0\right| \le \frac{1}{k_0 + 1} < \varepsilon.$$

Nun überzeugen wir uns aber, dass

$$v = (v_n)_n \in \mathbb{K}^{\mathbb{N}}, \quad v_n = \frac{1}{n} \text{ für alle } n \in \mathbb{N}$$

die einzig mögliche Grenzfolge ist. Nehmen wir an, es gäbe eine andere Grenzfolge $w=(w_n)_n$, so wäre $w_N\neq v_N=\frac{1}{N}$ für ein $N\in\mathbb{N}$. Zu $\varepsilon=\frac{1}{2}|w_N-\frac{1}{N}|$ gälte dann für alle $k\geq N$:

$$v_N^{(k)} = \frac{1}{N}, \quad also: \quad ||v^{(k)} - w||_{\infty} \ge \left|\frac{1}{N} - w_N\right| = 2\varepsilon > \varepsilon,$$

also kann w unmöglich Grenzwert der Folge $(v^{(k)})_k$ sein. Die Grenzfolge v bricht aber keineswegs ab, gehört also nicht zu c_{00} .

Das Lebesgue-Integral

In diesem Anhang sammeln wir ohne jegliche Beweise einige Aussagen aus der Maßtheorie, die wir für unsere Betrachtungen benötigen.

Definition A.1. Eine $\underline{\sigma}$ -Algebra über einer nicht leeren Menge Ω ist ein System \mathcal{F} von Teilmengen von Ω derart, dass

- $\emptyset \in \mathcal{F}$
- $A \in \mathcal{F} \implies A^c \in \mathcal{F} \ (A^c = \Omega \backslash A \ ist \ das \ Komplement \ von \ A)$
- $A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_{k>1} A_k \in \mathcal{F}.$

Die zu \mathcal{F} gehörenden Mengen nennen wir <u>messbare Mengen</u>, das Paar (Ω, \mathcal{F}) heißt messbarer Raum.

Lemma A.2 (und Definition). Ist \mathcal{E} eine beliebige Familie von Teilmengen von Ω , so existiert eine kleinste σ -Algebra

$$\sigma(\mathcal{E}) = \bigcap_{\mathcal{F} \ \sigma ext{-}Algebra, \mathcal{E} \subset \mathcal{F}} \mathcal{F},$$

die \mathcal{E} enthält. Diese wird als von \mathcal{E} erzeugte σ -Algebra bezeichnet.

Die auf dem \mathbb{R}^n vom System der offenen Menge erzeugte σ -Algebra heißt Borelsche σ -Algebra und wird als \mathcal{B}_n bezeichnet¹. Sie wird auch von der Familie aller halboffenen Quader

$$(a,b] = (a_1,b_1] \times \cdots \times (a_n,b_n], \quad a = (a_1,\ldots,a_n)^T, b = (b_1,\ldots,b_n)^T \in \mathbb{R}^n$$

 $^{^1}$ Allgemeiner heißt für jeden topologischen Raum die von den offenen Mengen erzeugte $\sigma\textsc{-}$ Algebra Borelsche $\sigma\textsc{-}$ Algebra.

erzeugt.

Definition A.3. Ein <u>Maß</u> auf einer σ -Algebra \mathcal{F} über der Menge Ω ist eine Abbildung $\mu: \mathcal{F} \to \infty$ derart, dass

- $\mu(\emptyset) = 0$
- $\mu\left(\bigcup_{k\geq 1} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k)$ für beliebige paarweise disjunkte $A_1, A_2, \dots \in \mathcal{F}$.

Zusammen heißt $(\Omega, \mathcal{F}, \mu)$ dann ein Maßraum.

Satz A.4 (und Definition). Auf der Borelschen σ -Algebra \mathcal{B}_n existiert genau ein Maß β^n , das für alle Quader (a,b] mit $a \leq b$

$$\beta^n((a,b]) = \text{vol}_n((a,b]) = (b_1 - a_1) \cdots (b_n - a_n)$$

erfüllt.

Allgemeiner wird jedes Maß μ auf der Borelschen σ -Algebra $\mathcal{B}(X)$ über einem topologischen Raum X als Borelmaß bezeichnet. Ein solches heißt regulär, wenn alle kompakten Mengen endliches Maß haben und für alle $A \in \mathcal{B}(X)$

$$\mu(A) = \sup\{\mu(K) : K \subset A \text{ kompakt}\} = \inf\{\mu(U) : U \supset A \text{ offen}\}$$
(A.1)

gilt, also jede messbare Menge bezüglich μ beliebig gut von innen durch kompakte und von außen durch offene Mengen approximiert werden kann.

Satz A.5. Das Ma β β^n aus Satz A.4 ist ein reguläres Borelma β über dem mit seiner (euklidischen) Standardtopologie versehenen \mathbb{R}^n .

Definition A.6. In einem Maßraum $(\Omega, \mathcal{F}, \mu)$ heißt $N \in \mathcal{F}$ eine $(\mu$ -)Nullmenge, wenn $\mu(N) = 0$ ist. Der Maßraum $(\Omega, \mathcal{F}, \mu)$ heißt vollständig, wenn alle Teilmengen von Nullmengen messbar sind (also zu \mathcal{F} gehören):

$$B \subset N \in \mathcal{F}, \ \mu(N) = 0 \implies B \in \mathcal{F}.$$

Satz A.7 (und Definition). Ist $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, so ist durch

$$\tilde{\mathcal{F}} := \{ A \cup B : A \in \mathcal{F}, B \subset N \text{ für eine Nullmenge } N \in \mathcal{F} \}$$

eine σ -Algebra über Ω gegeben, auf der durch

$$\tilde{\mu}(A \cup B) = \mu(A)$$
, falls $A \in \mathcal{F}, B \subset N$ für eine Nullmenge N

ein Maß definiert ist^a. Für $A \in \mathcal{F}$ gilt $\tilde{\mu}(A) = \mu(A)$, und der vollständige Maßraum $(\Omega, \tilde{\mathcal{F}}, \tilde{\mu})$ heißt die <u>Vervollständigung von $(\Omega, \mathcal{F}, \mu)$ </u>.

^adessen Definition wohlgemerkt nicht von der Wahl von A und B abhängt. Ist nämlich für ein $A' \in \mathcal{F}$ und ein $B' \subset N'$ mit einer Nullmenge N' $A \cup B = A' \cup B'$, so gilt $\mu(A) = \mu(A')$.

Satz A.8 (und Definition). Der Maßraum $(\mathbb{R}^n, \mathcal{B}_n, \beta^n)$ ist nicht vollständig. Seine Vervollständigung bezeichnen wir mit $(\mathbb{R}^n, \mathfrak{M}_n, \lambda^n)$ und nennen λ^n das n-dimensionale Lebesgue-Maß. Die Elemente von \mathfrak{M}_n heißen (Lebesgue-)messbare Teilmengen des \mathbb{R}^n .

Bislang haben wir nur das Konzept des Volumens von Quadern auf beliebige messbare Mengen erweitert. Da Quader aber eine wesentliche Rolle bei der Definition des Riemannintegrals spielten, sollte uns das bei der Definition eines allgemeineren Integralbegriffs helfen. Dazu brauchen wir zunächst Funktionen, über deren Integral wir uns Gedanken machen können.

Definition A.9. Sind (Ω, \mathcal{F}) , (Ω', \mathcal{F}') messbare Räume, so nennen wir die Abbildung $f: \Omega \to \Omega'$ $(\mathcal{F}-\mathcal{F}'-)$ messbar, falls $f^{-1}(A') \in \mathcal{F}$ für alle $A' \in \mathcal{F}'$ gilt.

Wir befassen uns vor allem mit reell- oder komplexwertigen Funktionen auf dem \mathbb{R}^n und wählen dabei auf dem Urbildraum die Lebesguesche σ -Algebra \mathfrak{M}_n und auf dem Bildraum die Borelsche. Dabei wollen unseren Funktionen aber auch erlauben, unendliche Werte anzunehmen. Solche Funktionen $f: \Omega \to \overline{\mathbb{R}} (= \mathbb{R} \cup \{-\infty, \infty\})$ bezeichnen wir als numerische Funktione. Dabei versehen wir $\overline{\mathbb{R}}$ mit der aus Mengen der Form $A, A \cup \{\infty\}, A \cup \{-\infty\}, A \cup \{-\infty, \infty\}$ bestehenden σ -Algebra $\overline{\mathcal{B}}_1$.

Definition A.10. Eine Funktion $f : \mathbb{R}^n \to \mathbb{R}$ heißt messbar, wenn sie \mathfrak{M}_n - \mathcal{B}_1 -messbar ist.

Eine numerische Funktion $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ heißt messbar, wenn sie \mathfrak{M}_n - $\bar{\mathcal{B}}_1$ -messbar ist.

Nicht nur für auf dem \mathbb{R}^n , sondern für auf allgemeinen messbaren Räumen definierte (numerische) Funktionen gilt:

Lemma A.11. Eine (numerische) Funktion f auf einem messbaren Raum (Ω, \mathcal{F}) ist genau dann $(\mathcal{F}-\mathcal{B}_1-bzw. \mathcal{F}-\bar{\mathcal{B}}_1-)$ messbar, wenn für alle $c \in \mathbb{R}$

$$\{f \le c\} = \{x \in \Omega : f(x) \le c\} \in \mathcal{F}$$

gilt.

Die messbaren reellwertigen Funktionen bilden einen Vektorraum:

Lemma A.12. Sind f_1, f_2, \ldots messbare reellwertige Funktionen auf (Ω, \mathcal{F}) , so sind auch

- $\alpha f + g \ f \ddot{u} r \ \alpha \in \mathbb{R}$
- |f|, f^+ , f^- (wobei $f^+(x) = \max\{f(x), 0\}$, $f^- = \max\{-f(x), 0\}$)
- $\sup_k f_k$, $\inf_k f_k$
- $\limsup_{k\to\infty} f_k$, $\liminf_{k\to\infty} f_k$

(jeweils punktweise verstanden) messbare (numerische) Funktionen.

A. Das Lebesgue-Integral

Insbesondere sind also punktweise Grenzwerte (sofern existent) messbarer Funktionen wieder messbar. Das nutzen wir zur Definition des Integrals aus.

Definition A.13. Als <u>Treppenfunktion</u> bezeichnen wir eine messbare Funktion $f: \Omega \to \mathbb{R}$, die nur endlich viele Werte annimmt:

$$f = \sum_{k=1}^{N} c_k \mathbf{1}_{A_k}, \quad A_1, \dots, A_N \in \mathcal{F}, \ c_1, \dots, c_N \in \mathbb{R}.$$

Das <u>Integral</u> einer Treppenfunktion $f = \sum_{k=1}^{N} c_k \mathbf{1}_{A_k}$ über Ω bezüglich μ ist als

$$\int_{\Omega} f \, \mathrm{d}\mu := \sum_{k=1}^{N} c_k \mu(A_k)$$

definiert^a, falls $\mu(A_k) < \infty$ für alle k = 1, ..., N gilt. In diesem Fall heißt $f(\mu)$ integrierbar.

^aDabei ist $\mathbf{1}_A$ die Indikatorfunktion der Menge A, also $\mathbf{1}_A(x) = 1$ für $x \in A$ und $\mathbf{1}_A(x) = 0$ für $x \notin A$. Der Wert des Integrals hängt nicht von der konkreten Darstellung der Treppenfunktion f ab.

Lemma A.14. Ist f eine nicht negative, messbare, numerische Funktion auf $(\mathbb{R}^n, \mathfrak{M}_n, \lambda^n)$, so existiert eine (punktweise) monoton wachsende Folge $(f_k)_k$ von Treppenfunktionen, die punktweise gegen f konvergiert.

Definition A.15. Für eine nicht negative, messbare, numerische Funktion auf $(\mathbb{R}^n, \mathfrak{M}_n, \lambda^n)$ definieren wir das (Lebesgue-)Integral als

$$\int_{\mathbb{R}^n} f \, \mathrm{d}\lambda^n := \lim_{k \to \infty} \int_{\mathbb{R}^n} f_k \, \mathrm{d}\lambda^n,$$

wobei $(f_k)_k$ eine monoton gegen f konvergierende Folge integrierbarer Treppenfunktionen ist.

In der Regel schreiben wir $\int_{\mathbb{R}^n} f \, \mathrm{d}x$ statt $\int_{\mathbb{R}^n} f \, \mathrm{d}\lambda^n$, unsere Integrale sind also immer, sofern nicht anders gesagt, Lebesgue-Integrale. Wir bemerken, dass diese Definition nicht von der Wahl der konkreten Folge von Treppenfunktionen abhängt und dass das Integral durchaus den Wert ∞ annehmen kann.

Für allgemeine numerische Funktionen zerlegen wir f in $f^+ - f^-$ und definieren:

Definition A.16. Für eine messbare numerische Funktion auf $(\mathbb{R}^n, \mathfrak{M}_n, \lambda^n)$ definieren wir

$$\int_{\mathbb{R}^n} f \, \mathrm{d}x = \int_{\mathbb{R}^n} f^+ \, \mathrm{d}x - \int_{\mathbb{R}^n} f^- \, \mathrm{d}x,$$

falls mindestens eines der Integrale auf der rechten Seite endlich ist. Sind sogar beide dieser Integrale (und damit auch die linke Seite) endlich, so nennen wir f (Lebesgue-)integrierbar (über \mathbb{R}^n).

Für eine messbare Menge $\Omega \subset \mathbb{R}^n$ und eine messbare numerische Funktion f definieren wir

$$\int_{\Omega} f \, \mathrm{d}x := \int_{\mathbb{R}^n} f \mathbf{1}_{\Omega} \, \mathrm{d}x,$$

falls das Integral von $f\mathbf{1}_{\Omega}$ im obigen Sinne existiert. Ist dieses Integral endlich, so nennen wir f integrierbar über Ω .

Die Definition gilt auch für beliebige Maßräume, allerdings muss man dann schon für Treppenfunktionen den Wert ∞ für das Integral erlauben, da man im allgemeinen keine Folge *integrierbarer* Treppenfunktionen finden wird, die monoton gegen f konvergiert.

Wollen wir Aussagen über die Elemente eines Maßraums treffen, so erweist sich folgende Sprechweise oft als nützlich. Wir sagen, eine Eigenschaft gelte $(\mu$ -)fast überall auf Ω , wenn eine μ -Nullmenge N derart existiert, dass die fragliche Eigenschaft für alle $x \in \Omega \setminus N$ gilt.

Satz A.17 (und Definition). Die numerischen Funktionen $f, g : \Omega \to \mathbb{R}$ seien messbar. Dann gilt

• f ist genau dann integrierbar, wenn |f| integrierbar ist, und es gilt die Dreiecksungleichung für Integrale:

$$\left| \int_{\Omega} f \, \mathrm{d}\mu \right| \leq \int_{\Omega} |f| \, \mathrm{d}\mu.$$

- Monotonie: Gilt $f \leq g$ fast überall $\implies \int_{\Omega} f \, d\mu \leq \int_{\Omega} g \, d\mu$, falls beide Integrale (in \mathbb{R}) existieren.
- Sind f und g integrierbar, so ist auch $\alpha f + g$ für alle $\alpha \in \mathbb{R}$ integrierbar und $\int_{\Omega} \alpha f + g \, d\mu = \alpha \int_{\Omega} f \, d\mu + \int_{\Omega} g \, d\mu$. Die integrierbaren reellwertigen Funktionen bilden also einen (reellen) Vektorraum, den wir $\mathcal{L}_1(\mu)$ nennen, und das Integral ist eine lineare Abbildung $\int_{\Omega} \cdot d\mu : \mathcal{L}_1(\mu) \to \mathbb{R}$.
- Gilt f = g fast überall und existiert eines der Integrale $\int_{\Omega} f \, d\mu$ oder $\int_{\Omega} g \, d\mu$, so existieren beide Integrale und stimmen überein. Ferner gilt dann $\int_{\Omega} |f g| \, d\mu = 0$.

Die letzte Aussage erlaubt die Definition des Raums L_1 .

Definition A.18. Auf der Menge der messbaren numerischen Funktionen $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ definieren wir die Äquivalenzrelation \sim durch

$$f \sim q : \iff f = q \text{ fast "überall"}.$$

Mit $L_1(\mathbb{R}^n)$ bezeichnen wir den Raum all jener Äquivalenzklassen, die einen integrierbaren Repräsentanten enthalten. Analog definieren wir $L_1(\Omega)$ für messbare Mengen $\Omega \subset \mathbb{R}^n$.

Wir bemerken, dass jede Äquivalenzklasse aus $L_1(\mathbb{R}^n)$ auch einen reellwertigen Repräsentanten $f \in \mathcal{L}_1(\mathbb{R}^n)$ enthält. Oft werden wir die Äquivalenzklasse $[f] \in L_1(\mathbb{R}^n)$ kurz als f schreiben und von L_1 -Funktionen sprechen. Analog erhalten wir auch die Räume $L_p(\mathbb{R}^n)$, oder allgemeiner $L_p(\mu)$, für $p \geq 1$. Die entsprechenden Definitionen sind

$$\mathcal{L}_p(\mu) = \left\{ f : \Omega \to \bar{R} : f \text{ messbar }, \int |f| \, \mathrm{d}\mu < \infty \right\}$$

für $p \in [1, \infty)$ und

$$\mathcal{L}_{\infty}(\mu) = \{ f : \Omega \to \bar{R} : f \text{ messbar }, \exists C \geq 0 : |f(\omega)| \leq C \text{ für } \mu\text{-fast alle } \omega \in \Omega \}.$$

Dann fassen wir wieder alle fast überall übereinstimmenden Funktionen zu einer Äquivalenzklasse zusammen und erhalten die Räume L_p .

Aus der Definition haben wir sofort die Normen

$$||f||_p := \left(\int_{\Omega} |f|^p \, \mathrm{d}\mu \right)^{\frac{1}{p}}, \qquad ||f||_{\infty} := \underbrace{\inf\{C > 0 : |f(\omega)| \le C \text{ fast "überall}\}}_{=: \mathrm{ess \, sup}|f(\omega)|}$$

abgelesen.

Lemma A.19 (Hölder-Ungleichung). Sind $p, p' \in (1, \infty)$ mit $\frac{1}{p} + \frac{1}{p'} = 1$ oder p = 1, $p' = \infty$, so gilt für $f \in L_p(\mu)$, $g \in L_{p'}(\mu)$:

$$||fg||_1 \le ||f||_p ||g||_{p'},$$

insbesondere: $fg \in L_1(\mu)$.

Die Hölder-Ungleichung wird zum Beweis der Minkowski-Ungleichung benutzt.

Lemma A.20 (Minkowski-Ungleichung). Für $f, g \in L_p(\mu), p \in [1, \infty), gilt$

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Theorem A.21 (Vollständigkeitssatz von Riesz-Fischer). Die Räume $(L_p(\mu), \|\cdot\|_p)$ sind Banachräume für $p \in [1, \infty]$.

Satz A.22 (parameterabhängige Integrale). Für den Maßraum $(\Omega, \mathcal{F}, \mu)$ und die offene Menge $U \subset \mathbb{R}^p$ sei $f: \Omega \times U \to \mathbb{R}$ gegeben. Für $\theta \in U$ definieren wir $f_{\theta}: \Omega \to \mathbb{R}$ durch $f_{\theta}(\omega) := f(\omega, \theta)$ und nehmen $f_{\theta} \in \mathcal{L}^1(\mu)$ für alle $\theta \in U$ an. Dann können wir $g: U \to \mathbb{R}$ durch

$$g(\theta) := \int_{\Omega} f_{\theta} \, \mathrm{d}\mu$$

definieren. Wir nehmen ferner an, es existiere ein $h \in L^1(\mu)$ mit $|f(\omega, \theta)| \leq h(\omega)$ für alle $\theta \in U$ und fast alle $\omega \in \Omega$. Dann gilt:

- (i) Sind die Funktionen $\theta \mapsto f(\omega, \theta)$ (von U nach \mathbb{R}) für alle $\omega \in \Omega$ stetig bei $\theta^* \in U$, so ist g stetig bei θ^* .
- (ii) Sind die Funktionen $\theta \mapsto f(\omega, \theta)$ für jedes $\omega \in \Omega$ stetig differenzierbar und existiert ein $k \in L^1(\mu)$ mit $|\partial_{\theta_i} f(\omega, \theta)| \leq k(\omega)$ für alle $\theta \in U$, fast alle $\omega \in \Omega$ und alle $i = 1, \ldots, p$, so ist auch g stetig differenzierbar auf U und:

$$\partial_{\theta_j} g(\theta) = \int_{\Omega} \partial_{\theta_j} f(\cdot, \theta) \, \mathrm{d}\mu \quad \text{für alle } \theta \in U, \ j = 1, \dots, p.$$