Partial translation of JP 2004-226775A: paragraph 0036 to paragraph 0040 (pages 6-7), paragraph 0042 (page 7), paragraph 0047 (page 7), Fig. 8 (page 10), and Fig. 9 (A) (page 10) [0036]

The image pickup element drive system 30 in this preferred embodiment comprises, as shown in Fig. 8, an image pickup element unit 32, a holding member 34, a fixing member 16, and an actuator 18.

[0037]

The image pickup element unit 32 is composed of a sheet-like image pickup element stand 32A, and an image pickup element 32B provided with a light receiving face on the side of incidence of the light placed on that image pickup element stand 32A. The image pickup element 32B is placed at the center of the image pickup element stand 32A, and the image pickup element stand 32A is provided with a holding bar 32C on which is mounted the holding member 34.

[0038]

The holding member 34 is composed of a pair of sheet-like elastic members 34A, 34B. The elastic members 34A, 34B are disposed in parallel to each other. One end of the respective elastic members 34A, 34B is fixed to the fixing position P of the fixing member 16, and the other end is mounted at the holding position H of the holding bar 32C. Fig. 9 (A) is a drawing showing the image pickup element drive system 30 as seen from the direction of normal line J of the light receiving face of the image pickup element 32B. As shown in Fig. 9 (A), the holding bar 32C is mounted in a way to be parallel to the normal line J, on the side opposite to the fixing

member 16 of the image pickup element stand 32A. The elastic members 34A, 34B mounted on the holding bar 32C are disposed along the lateral side of the image pickup element unit 32.

[0039]

In this preferred embodiment, the shortest distance between the image pickup element unit 32 and the fixing position P (hereinafter referred to as "distance S4"), and the distance between the fixing position P and the holding position H (hereinafter referred to as "distance S5") are given in the relation of distance S5 > distance S4.

[0040]

The actuator 18 is composed of a piezo-electric element in which piezo-electric elements are laminated in the same direction as the normal line J (laminated piezo-electric element), and produces a displacement in the direction of the normal line J (the direction toward the side of incidence of the light is called direction X2, and the opposite side is called direction Y2). The tip part of the actuator 18 is disposed on the side opposite to the holding bar 32C of the image pickup element stand 32A, and the other end portion is fixed to a non-illustrated fixing unit, so that it may exercise a force in the direction of the normal line J against the image pickup element unit 32. [0042]

When a voltage is applied to the actuator 18 from a non-illustrated circuit, the actuator 18 is displaced in the direction X2. As a result, a force in the direction X2 acts on the lens unit 12, and the image pickup element unit 32 moves to the position Z2, as shown in Fig. 9. At that time, the position of the image pickup element unit 32 is deviated in the direction

parallel to the normal line J (see Fig. 9 (B)). This deviation depends on the distance between the fixing position P2 and the holding position H2, as mentioned earlier. According to the present preferred embodiment, this deviation may be reduced thanks to the relation given as distance S5 > distance S4. Moreover, the distance S5 may be further extended with a compact design, compared with a case in which the holding member 34 is disposed at a position where the distance S4 becomes equal to the distance S5.

[0047]

Furthermore, to increase the holding strength at the holding member 34, 2 pairs of holding member 34 may be provided.

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-226775 (P2004-226775A)

最終頁に続く

		F 1		(43) 公	開日	平成16年8月12日(2004.8.12)			
(51) Int.C1. ⁷						テーマコート		(参考)	
GO2B	7/08	GO2B	7/08	В		2H0	44		
GO3B	5/08	GO3B	5/08			5BC	147		
G06T	1/00	GO6T	1/00	420H		5 C C	22		
HO4N	5/225	HO4N	5/225	D					
			審査請	求 未請求	請求項	質の数 6	OL	(全 12	頁)
(21) 出願番号 (22) 出願日		特願2003-15609 (P2003-15609)	(71) 出願人	0000052	01				. 2
		平成15年1月24日 (2003.1.24)		富士写具	富士写真フイルム株式会社				
				神奈川県	中国足	丙市中沼	210	学地	
			(74) 代理人	. 1000790	49				
				弁理士	中島	淳			
			(74) 代理人	. 1000849	95				
				弁理士	加藤	和詳			
			(74) 代理人	. 1000852	79				
				弁理士	西元	勝一			
			(74) 代理人	. 1000990	25				
				弁理士	福田	浩志			
			(72) 発明者	太田名	S/樹				
				埼玉県韓	埼玉県朝霞市泉水3丁目11番46号 富				

(54) 【発明の名称】レンズ駆動装置、及び撮像素子駆動装置

(57)【要約】

【課題】レンズをレンズの光軸方向に移動させる際の光 軸のズレや、撮像素子をこの撮像素子の受光面の法線方 向に移動させる際の前記法線のズレを抑制可能なレンズ 駆動装置、及び撮像素子駆動装置を提供する。

【解決手段】弾性部材14A、14Bは、互いに平行に 配置されており、弾性部材14A、14Bの各々の一端 は固定部材16の固定位置Pに固定され、他端は保持凸 部12Cの保持位置Hに取り付けられている。保持凸部 12 Cは、レンズ12 Bの光軸 L方向からみて、固定位 置Pとレンズ12Bの中心Oとを結ぶ直線を直線Mとす ると、鏡胴12A上部のレンズ12Bを挟んで固定位置 Pと逆側部分を直線Mと直交する方向へ突出されて形成 されている。保持凸部12℃に取り付けられる弾性部材 14A、14Bは、鏡胴12Aの側面に沿って配置され ている。

【選択図】 図2

士写真フイルム株式会社内

【特許請求の範囲】

【請求項1】

光を所定位置に結像可能な1又は複数のレンズを備えたレンズユニットと、

前記レンズユニットの外側に配置された固定部材と、

一端が前記固定部材の固定位置に固定されると共に他端が前記レンズユニットの保持位置に取り付けられ、前記固定位置を中心に回動可能に前記レンズユニットを保持する保持部材と、

前記レンズユニットに対して前記レンズの光軸方向の力を作用させるアクチュエータと、 を備え、

前記光軸方向からみて、前記固定位置と前記保持位置との間の保持距離が、前記レンズユニットと前記固定位置との間の最短距離よりも長くなるように前記保持位置が配置された、レンズ駆動装置。

【請求項2】

前記保持部材を複数備え、この各々の保持部材が前記光軸方向に離間して互いに平行に配置されていることを特徴とする請求項1に記載のレンズ駆動装置。

【請求項3】

前記保持位置は、前記保持距離が前記固定位置と前記レンズユニットの中心との間の距離よりも長くなる位置とされていることを特徴とする請求項1または請求項2に記載のレンズ駆動装置。

【請求項4】

光を受光する受光面を有する撮像素子を備えた撮像素子ユニットと、

前記撮像素子ユニットの外側に配置された固定部材と、

一端が固定部材の固定位置に固定されると共に他端が前記撮像素子ユニットの保持位置に取り付けられ、前記固定位置を中心に回動可能に前記撮像素子ユニットを保持する保持部材と、

前記撮像素子ユニットに対して前記受光面の法線方向の力を作用させるアクチュエータと

を備え、

前記法線方向からみて、前記固定位置と前記保持位置との間の保持距離が、前記撮像素子と前記固定位置との間の最短距離よりも長くなるように前記保持位置が配置された、撮像素子駆動装置。

【請求項5】

前記保持部材を複数備え、この各々の保持部材が前記法線方向に離間して互いに平行に配置されていることを特徴とする請求項4に記載の撮像素子駆動装置。

【請求項6】

前記保持位置は、前記保持距離が前記固定位置と前記撮像素子ユニットの中心との距離よりも長くなる位置とされていることを特徴とする請求項4または請求項5に記載の撮像素子駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、レンズ駆動装置、及び撮像素子駆動装置に係り、特に、光軸方向ヘレンズを移動可能なレンズ駆動装置、または、撮像素子の受光面の法線方向へ撮像素子を移動可能な 撮像素子駆動装置に関する。

[0002]

【従来の技術】

光を結像させるためのレンズをレンズの光軸方向に移動させる際には、一般に、光軸が傾かないように移動させることが好ましい。そのため、例えば特許文献1では、図11に示すように、レンズ210の光軸L1方向に離間した一対のばね部材212が設けられ、ばね部材212により駆動の際のレンズ210の光軸方向が保持されている。

20

10

30

JU

[0003]

しかしながら、バネ部材 2 1 0 では光軸の傾きを抑制することはできても、光軸を平行に保ったままレンズ 2 1 0 の位置がずれてしまう。

[0004]

また、光を受光する撮像素子をこの撮像素子の受光面の法線方向に移動させる際にも上記レンズの場合と同様の問題が生じる。

[0005]

【特許文献1】

特開平5-210861号公報

[0006]

【発明が解決しようとする課題】

本発明は、上記事実を考慮して成されたものであり、レンズをレンズの光軸方向に移動させる際の光軸のズレや、撮像素子をこの撮像素子の受光面の法線方向に移動させる際の前記法線のズレを抑制可能なレンズ駆動装置、及び撮像素子駆動装置を提供することを目的とする。

[0007]

【課題を解決するための手段】

上記目的を達成するために、請求項1に記載のレンズ駆動装置は、光を所定位置に結像可能な1又は複数のレンズを備えたレンズユニットと、前記レンズユニットの外側に配置された固定部材と、一端が前記固定部材の固定位置に固定されると共に他端が前記レンズユニットの保持位置に取り付けられ、前記固定位置を中心に回動可能に前記レンズユニットを保持する保持部材と、前記レンズユニットに対して前記レンズの光軸方向の力を作用させるアクチュエータと、を備え、

前記光軸方向からみて、前記固定位置と前記保持位置との間の保持距離が、前記レンズユニットと前記固定位置との間の最短距離よりも長くなるように前記保持位置が配置されたものである。

[0008]

本発明のレンズ駆動装置では、アクチュエータからレンズユニットに対して光軸方向の力が作用されると、レンズユニットは光軸方向の成分をもって移動する。このとき、レンズユニットを保持する保持部材は固定位置を中心に回動するため、レンズの光軸がズレる。この光軸のズレは、固定位置と保持位置との間の保持距離に依存する。すなわち、図12に示すように、レンズユニット50の移動方向をX10とすると、保持距離S12と保持距離S10に対応する変位量ΔN1>保持距離S12に対応する変位量ΔN1>保持距離S12に対応する変位量ΔN1>保持距離S12に対応する変位量ΔN1とは小さい。そこで、保持距離が長いほど、光軸のズレは小さい。そこで、保持距離が長いほど、光軸のズレは小さい。そこで、保持距離が長くは変となり、コンパクトな設計とすることができない。そこで、保持位置を、前記保持距離が固定位置とレンズユニットとの間の最短距離よりも長くなる位置に配置する。

[0009]

この構成によれば、固定位置とレンズユニットとの間の最短距離を短く保ったまま保持距離を長くすることができ、コンパクトな設計でレンズをレンズの光軸方向に移動させる際のレンズの光軸のズレを抑制することができる。

[0010]

なお、本発明のレンズ駆動装置は、請求項2に記載のように、前記保持部材を複数備え、 この各々の保持部材が前記光軸方向に離間して互いに平行に配置されていることを特徴と することもできる。

[0011]

この構成によれば、複数の保持部材が光軸方向に離間して互いに平行に配置されているので、保持部材が平行リンクとして機能する。したがって、レンズユニットの移動の際の回

10

20

30

転が抑制され、光軸の傾きを抑制することができる。

[0012]

また、本発明のレンズ駆動装置の前記保持位置は、請求項3に記載のように、前記保持距離が前記固定位置と前記レンズの中心との間の距離よりも長くなる位置であることが好ましい。

[0013]

本発明の撮像素子駆動装置は、請求項4に記載のように、光を受光する受光面を有する撮像素子を備えた撮像素子ユニットと、前記撮像素子ユニットの外側に配置された固定部材と、一端が固定部材の固定位置に固定されると共に他端が前記撮像素子ユニットの保持位置に取り付けられ、前記固定位置を中心に回動可能に前記撮像素子ユニットを保持する保持部材と、前記撮像素子ユニットに対して前記受光面の法線方向の力を作用させるアクチュエータと、を備え、前記法線方向からみて、前記固定位置と前記保持位置との間の保持距離が、前記撮像素子と前記固定位置との間の最短距離よりも長くなるように前記保持位置が配置されたものである。

[0014]

本発明の撮像素子駆動装置では、アクチュエータから撮像素子ユニットに対して撮像素子受光面の法線方向の力が作用されると、撮像素子ユニットは前記法線方向の成分をもって移動する。このとき、撮像素子ユニットを保持する保持部材は固定位置を中心に回動するため、前記法線がズレる。この法線のズレは、前述のレンズ駆動装置で説明したように、固定位置と保持位置との間の保持距離に依存する。そこで、保持距離を長くすれば法線のズレを小さくすることができるが、単に保持部材の長さを長くして保持距離を長くしたのでは、広いスペースが必要となり、コンパクトな設計とすることができない。そこで、保持位置を、前記保持距離が固定位置と撮像素子ユニットとの間の最短距離よりも長くなる位置に配置する。

[0015]

この構成によれば、固定位置と撮像素子ユニットとの間の最短距離を短く保ったまま保持 距離を長くすることができ、コンパクトな設計で撮像素子を前記法線方向に移動させる際 の法線のズレを抑制することができる。

[0016]

なお、本発明の撮像素子駆動装置は、請求項 5 に記載のように、前記保持部材を複数備え、この各々の保持部材が前記法線方向に離間して互いに平行に配置されていることを特徴とすることもできる。

[0017]

この構成によれば、複数の保持部材が光軸方向に離間して互いに平行に配置されているので、保持部材が平行リンクとして機能する。したがって、撮像素子ユニットの移動の際の回転が抑制され、前記法線の傾きを抑制することができる。

[0018]

また、本発明の撮像素子駆動装置の保持位置は、請求項 6 に記載のように、前記保持距離が前記固定位置と前記撮像素子の中心との距離よりも長くなる位置とされているのが好ましい。

[0019]

【発明の実施の形態】

[第1実施形態]

以下、図面を参照して本発明に係るレンズ駆動装置の実施形態について説明する。本発明のレンズ駆動装置は、例えば、カメラの焦点調節、ズームのためにレンズを移動させる場合に適用可能である。

[0020]

本実施形態におけるレンズ駆動装置 1 0 は、図 1 に示すように、レンズユニット 1 2 、保持部材 1 4 、固定部材 1 6 、及びアクチュエータ 1 8 を備える。

[0021]

50

10

20

30

レンズユニット12は、1又は複数のレンズ12B、及び、レンズ12Bをカバーする円筒形状の鏡胴12Aから構成されている。鏡胴12Aは、保持部材14が取り付けられる保持凸部12Cを備える。

[0022]

保持部材14は、一対の板状の弾性部材14A、14Bで構成されている。弾性部材14A、14Bは、互いに平行に配置されている。弾性部材14A、14Bの各々の一端は固定部材16の固定位置Pに固定され、他端は保持凸部12Cの保持位置Hに取り付けられている。保持凸部12Cは、図2(A)に示すように、レンズ12Bの光軸L方向からみて、固定位置Pとレンズ12Bの中心Oとを結ぶ直線を直線Mとすると、鏡胴12A上部のレンズ12Bを挟んで固定位置Pと逆側部分を直線Mと直交する方向へ突出されて形成されている。保持凸部12Cに取り付けられる弾性部材14A、14Bは、鏡胴12Aの側面に沿って配置されている。

[0023]

本実施形態において、レンズユニット12と固定位置Pとの間の最短距離(以下「距離S1」という)、固定位置Pと保持位置Hとの間の距離(以下「距離S2」という)とは、距離S2>距離S1となっている。

[0024]

アクチュエータ18は、レンズ12Bの光軸Lと同方向に積層された圧電素子(積層型圧電素子)で構成されており、光軸Lの方向(光の入射側に向かう方向をX方向、その逆側をY方向という)に、変位可能とされている。アクチュエータ18の先端部は保持凸部12Cの光が入射される側と逆側に配置され、他端部は図示しない固定部に固定されて、レンズユニット12に対して光軸L方向の力を作用可能とされている。

[0025]

レンズユニット12の光が入射される側と逆側には、撮像素子20が配置されている。

[0026]

次に、本実施形態の作用について説明する。

[0027]

図示しない回路からアクチュエータ18に電圧が印加されると、アクチュエータ18がX方向へ変位する。これにより、レンズユニット12に対してX方向の力が作用されて、レンズユニット12は、図2に示すように、Z位置へ移動される。このとき、レンズユニット12の位置は、光軸Lと直交するZ2方向にズレている(図2(B)参照)。このズレは、前述のように、固定位置Pと保持位置Hとの間の距離に依存する。本実施形態によれば、距離S2>距離S1とされているので、このズレを小さくすることができる。また、図13に示すように、距離S1=距離S2となる位置に保持部材14を配置した場合と比較して、コンパクトな設計で距離S2を長くすることができる。

[0028]

なお、本実施形態では、保持部材14を一対の弾性部材14A、14Bにより構成したが、保持部材14は、1枚の弾性部材で構成することもできる。特に2枚の弾性部材で構成することにより、保持部材14が平行リンクとして機能してレンズユニット12の移動の際の回転が抑制され、光軸Lの傾きを抑制することができる。

[0029]

また、本実施形態では、アクチュエータに積層型圧電素子を用いた例について説明したが、アクチュエータとしては、図3(A)に示すように、バイモルフ22を用いることもできる。この場合には、バイモルフ22の一端を固定部材16に固定し、他端を保持凸部12Cの下側に配置する。そして、バイモルフ22を光軸L方向に変位させることによりレンズユニット12を移動させることができる。

[0030]

さらに、アクチュエータとして、図3 (B) に示すように、コイルバネに帯状の圧電素子が巻き回されて構成された螺旋形状圧電素子24を用いることもできる。この場合には、螺旋形状圧電素子24の一端部を保持凸部12Cの光が入射される側と逆側に配置し、他

10

30

20

40

端部を図示しない固定部に固定する。そして、螺旋形状圧電素子24を光軸L方向に変位 させることによりレンズユニット12を移動させることができる。

$\{0031\}$

また、保持部材14の保持位置 H は、上記実施形態の例に限定されるものではなく、図4(A)に示すように、レンズユニット12の固定位置 P と逆側の直線 M と交わる位置 H 1とすることもできる。また、図4(B)に示すように、レンズ12Bの中心 O を通る直線 M と直交する直線 M 1 と交わるレンズユニット12の位置 H 2 とすることもできる。

[0032]

なお、固定位置 P と保持位置 H との間の保持距離 S 2 は、固定位置 P とレンズ 1 2 B の中心 O との間の距離 S 3 (図 2 (A) 参照) よりも長いことが好ましい。

[0033]

さらに、図4 (C) に示すように、保持部材14を長方形形状とし、固定部材16の位置を直線M1と平行に保持凸部12C側に配置して、構成することもできる。

[0034]

さらに、保持部材14での保持強度を高めるため、図5に示すように、保持部材14を2組設けることもできる。この場合、図6(A)に示すように、1つの保持部材14Kを図4(A)と同様に配置し、他の保持部材14Jを保持部材14Kを光軸L方向からみて反転させ、保持部材14Kからレンズ12Bの中心〇の周りに90°回転させた位置に配置する。このとき、保持部材14Kと保持部材14Jとは、光軸L方向からみて重なり合う部分がある(図6(A)斜線部分)。

[0035]

ところで、保持部材14Kを構成する弾性部材14K1と弾性部材14K2との光軸L方向の間隔R1、及び、保持部材14Jを構成する弾性部材14J1と弾性部材14J2との光軸L方向の間隔R2は、その長さが広いほどレンズユニット12が移動する際の安定性が高く、光軸Lの傾きを抑制できる。前記の重なり合う部分について、図7に示すように、光軸Lと直交する方向から見て、弾性部材14K1と14K2とが隣り合い、弾性部材14K1と14K2とが隣り合い、弾性部材14K1と14K2とが隣り合い、弾性部材14K1と14K2とが隣り合い、弾性部材14K1と1と14 日、R2が狭くなってしまう。そこで、光軸Lと直交する方向から見て、図6(B)に示すように、弾性部材14K2の撮化14K1と弾性部材14K2との間に弾性部材14J1を配置し、弾性部材14K2の撮像素子20側に弾性部材14J2を配置する。このように弾性部材14K1、14K2、14J1、14J2を配置することによって、限定されたの範囲内に弾性部材を配置する場合の間隔R1、R2を広くすることができる。

[第2実施形態]

次に、本発明に係る撮像素子駆動装置の実施形態について説明する。本発明の撮像素子駆動装置は、例えば、カメラの焦点調節のために撮像素子を移動させる場合に適用可能である。本実施形態では、第1実施形態と同様の部分については同一の符号を付して詳細な説明は省略する。

[0036]

本実施形態の撮像素子駆動装置30は、図8に示すように、撮像素子ユニット32、保持部材34、固定部材16、及びアクチュエータ18を備える。

[0037]

撮像素子ユニット32は、板状の撮像素子台32A、及びこの撮像素子台32A上に載置され光が入射される側に受光面を備える撮像素子32Bにより構成されている。撮像素子32Bは、撮像素子台32Aの中央部に載置され、撮像素子台32Aは、保持部材34が取り付けられる保持棒32Cを備える。

[0038]

保持部材34は、一対の板状の弾性部材34A、34Bで構成されている。弾性部材34A、34Bは、互いに平行に配置されている。弾性部材34A、34Bの各々の一端は固定部材16の固定位置Pに固定され、他端は保持棒32Cの保持位置Hに取り付けられている。図9(A)は、撮像素子駆動装置30を撮像素子32Bの受光面の法線J方向から

20

10

30

40

みた図である。図9(A)に示すように、保持棒32Cは、撮像素子台32Aの固定部材16と逆側に、法線Jと平行になるように取り付けられている。保持棒32に取り付けられる弾性部材34A、34Bは、撮像素子ユニット32の側辺に沿って配置される。

[0039]

本実施形態において、撮像素子ユニット32と固定位置Pとの間の最短距離(以下「距離 S 4」とする)、固定位置Pと保持位置Hとの間の距離(以下「距離 S 5」とする)と、距離 S 5 > 距離 S 4 となっている。

[0040]

アクチュエータ 1 8 は、圧電素子が法線 J と同方向に積層された圧電素子(積層型圧電素子)で構成されており、法線 J の方向(光の入射側に向かう方向を X 2 方向、その逆側を Y 2 方向という)される方向に変位を発生させる。アクチュエータ 1 8 の先端部は撮像素子台 3 2 A の保持棒 3 2 C と逆側に配置され、他端部は図示しない固定部に固定されて、撮像素子ユニット 3 2 に対して法線 J 方向の力を作用可能とされている。

[0041]

撮像素子ユニット32の光が入射される側には、図示していないが、レンズユニットが配置されている。

次に、本実施形態の作用について説明する。

[0042]

図示しない回路よりアクチュエータ18に電圧が印加されると、アクチュエータ18がX2方向へ変位する。これにより、レンズユニット12に対してX2方向の力が作用されて、撮像素子ユニット32は、図9に示すように、Z2位置へ移動される。このとき、撮像素子ユニット32の位置は、法線Jと平行な方向にズレている(図9(B)参照)。このズレは、前述のように、固定位置P2と保持位置H2との間の距離に依存する。本実施形態によれば、距離S5>距離S4とされているので、このズレを小さくすることができる。また、距離S4=距離S5となる位置に保持部材34を配置した場合と比較して、コンパクトな設計で距離S5を長くすることができる。

[0043]

なお、保持棒32Cの位置は、上記実施形態の例に限定されず、図10(A)に示すように、上記実施形態の保持棒32Cと固定位置P2との間の位置であってもよい。また、固定部材16の位置は、図10(B)に示すように。撮像素子ユニット32の一辺の中央部に最も近づく位置であってもよい。

[0044]

なお、固定位置 P と保持位置 H との間の保持距離 S 5 は、固定位置 P とレンズ 1 2 B の中心 O との間の距離 S 6 (図 9 (A)参照)よりも長いことが好ましい。

[0045]

また、保持棒32は必ずしも必要ではなく、撮像素子台32Aに直接保持部材34を取り付けることもできる。

[0046]

また、アクチュエータとしては、図3(A)に示すような、バイモルフ22を用いること も、図3(B)に示すような、螺旋形状圧電素子24を用いることもできる。

[0047]

さらに、保持部材34での保持強度を高めるため、保持部材34を2組設けることもできる。

[0048]

【発明の効果】

以上説明したように、本発明のレンズ駆動装置によれば、レンズの光軸方向からみた固定位置と保持位置との間の保持距離が、固定位置との間の最短距離よりも長くされているので、固定位置とレンズユニットとの間の最短距離を短く保ったままで保持距離を長くすることができ、コンパクトな設計でレンズをレンズの光軸方向に移動させる際の光軸のズレを抑制することができる。

20

30

40

[0049]

また、本発明の撮像素子駆動装置によれば、撮像素子の受光面の法線方向からみた固定位置と保持位置との間の保持距離が、撮像素子ユニットと固定位置との間の最短距離よりも長くされているので、固定位置と撮像素子ユニットとの間の最短距離を短く保ったままで保持距離を長くすることができ、コンパクトな設計で撮像素子を前記法線方向に移動させる際の法線のずれを抑制することができる。

【図面の簡単な説明】

- 【図1】第1実施形態のレンズ駆動装置の斜視図である。
- 【図2】(A)は、第1実施形態のレンズ駆動装置を光の入射方向からみた図であり、(
- B)は、レンズ駆動装置を光の入射方向と直交する方向からみた図である。
- 【図3】第1実施形態のアクチュエータの変形例である。
- 【図4】第1実施形態の保持部材の取付位置の変形例である。
- 【図5】第1実施形態の変形例である。
- 【図6】第1実施形態で、保持部材を2つ配置した図である。
- 【図7】保持部材を2つ配置した際の他の例である。
- 【図8】第2実施形態の撮像素子駆動装置の斜視図である。
- 【図9】(A)は、第2実施形態の撮像素子駆動装置を撮像素子の受光面の法線方向からみた図であり、(B)は、レンズ駆動装置を前記法線方向と直交する方向からみた図である。
- 【図10】第2実施形態の保持部材の取付位置の変形例である。
- 【図11】従来例の図である。
- 【図12】保持部材の長さとズレ量の関係を説明する図である。
- 【図13】保持位置と固定位置とが最短距離になる場合の図である。

【符号の説明】

- 10 レンズ駆動装置
- 12B レンズ
- 12 レンズユニット
- 14 保持部材
- 14A、14B 弹性部材(保持部材)
- 16 固定部材
- 18 アクチュエータ
- 22 バイモルフ (アクチュエータ)
- 24 螺旋形状圧電素子(アクチュエータ)
- 30 撮像素子駆動装置
- 3 2 B 撮像素子
- 32 撮像素子ユニット
- 3 4 保持部材
- 3 4 A 、 3 4 B 弹性部材 (保持部材)
- H、H2 保持位置
- P、P2 固定位置

40

30

10

[図1]

【図2】

【図3】

(B)

[図4]

【図5】

【図6】

【図7】

【図10】

【図12】

【図13】

【図11】

フロントページの続き

(72)発明者 内田 亮宏

埼玉県朝霞市泉水3丁目11番46号 富士写真フイルム株式会社内

F ターム(参考) 2HO44 DA01 DB04 DD01

5B047 BB04 BC02 BC05 CA17

5C022 AB45 AC54 AC74