Social Media & Text Analysis

lecture 5 - natural language processing (part 3): POS tagging, chunking, named entity recognition

Instructor: Wei Xu

Website: socialmedia-class.org

[Recap] NLP Pipeline

NLP Pipeline

Part-of-Speech (POS) Tagging

Cant	MD
wait	VB
for	IN
the	DT
ravens	NNP
game	NN
tomorrow	NN
	:
go	VB
ray	NNP
rice	NNP
!!!!!!!	•

Penn Treebank POS Tags

1. CC	Coordinating conjunction	25. TO	to
2. CD	Cardinal number	26. UH	Interjection
3. DT	Determiner	27. VB	Verb, base form
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. present
8. JJR	Adjective, comparative	32. VBZ	Verb, 3rd ps. sing. present
9. jjs	Adjective, superlative	33. WDT	wh-determiner
10. LS	List item marker	34. WP	wh-pronoun
11. MD	Modal	35. WP\$	Possessive wh-pronoun
12. NN	Noun, singular or mass	36. WRB	wh-adverb
13. NNS	Noun, plural	37. #	Pound sign
14. NNP	Proper noun, singular	38. \$	Dollar sign
15. NNPS	Proper noun, plural	39	Sentence-final punctuation
16. PDT	Predeterminer	40. ,	Comma
17. POS	Possessive ending	41. :	Colon, semi-colon
18. PRP	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43.)	Right bracket character
20. RB	Adverb	44. "	Straight double quote
21. RBR	Adverb, comparative	45. ′	Left open single quote
22. RBS	Adverb, superlative	46. "	Left open double quote
23. RP	Particle	47. ′	Right close single quote
24. SYM	Symbol (mathematical or scientific)	48. "	Right close double quote
24. UIIVI	Symbol (mathematical of scientific)	70.	ragin close double quote

Part-of-Speech (POS) Tagging

- Words often have more than one POS:
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB

 POS tagging problem is to determine the POS tag for a particular instance of a word.

Source: adapted from Chris Manning

Twitter-specific Tags

- #hashtag
- @metion
- url
- email address
- emoticon
- discourse marker
- symbols
- ...

Source: Gimpel et al.

Notable Twitter POS Taggers

- Gimpel et al., 2011
- Ritter et al., 2011

- Derczynski et al, 2013
- Owoputi et al. 2013

Source: Derczynski, Ritter, Clark, Bontcheva "Twitter Part-of-Speech Tagging for All: Overcoming Sparse and Noisy Data" RANLP 2013

Chunking

Cant	VP
wait	VI
for	PP
the	
ravens	NP
game	
tomorrow	NP
go	VP
ray	NP
rice	INF
!!!!!!!	

Chunking

- recovering phrases constructed by the part-of-speech tags
- a.k.a shallow (partial) parsing:
 - full parsing is expensive, and is not very robust
 - partial parsing can be much faster, more robust, yet sufficient for many applications
 - useful as input (features) for named entity recognition or full parser

Named Entity Recognition(NER)

Cant	
wait	
for	
the	
ravens	ORG
game	
tomorrow	
go	
ray	PER
rice	FEN
!!!!!!!!	•

ORG: organization

PER: person

LOC: location

NER: Basic Classes

	:
Cant	
wait	
for	
the	
ravens	ORG
game	
tomorrow	
go	
ray	PER
rice	ΓĽŇ
!!!!!!!	•

ORG: organization

PER: person

LOC: location

NER: Rich Classes

Source: Baldwin, de Marneffe, Han, Kim, Ritter, Xu Shared Tasks of the 2015 Workshop on Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition

NER: Genre Differences

	News	Tweets
PER	Politicians, business leaders, journalists, celebrities	Sportsmen, actors, TV personalities, celebrities, names of friends
LOC	Countries, cities, rivers, and other places related to current affairs	Restaurants, bars, local landmarks/areas, cities, rarely countries
ORG	Public and private companies, government organisations	Bands, internet companies, sports clubs

Notable Twitter NE Research

- Liu et al., 2011
- Ritter et al., 2011

- Owoputi et al. 2013
- Plank et al, 2014
- Cherry & Guo, 2015

System	P	R	F_1
COTRAIN-NER (10 types)	0.55	0.33	0.41
T-NER(10 types)	0.65	0.42	0.51
COTRAIN-NER (PLO)	0.57	0.42	0.49
T-NER(PLO)	0.73	0.49	0.59
Stanford NER (PLO)	0.30	0.27	0.29

Table 12: Performance at predicting both segmentation and classification. Systems labeled with PLO are evaluated on the 3 MUC types *PERSON*, *LOCATION*, *ORGA-NIZATION*.

Tool: twitter_nlp

Tool: twitter_nlp


```
xuwei@proteus100[twitter nlp]$ export TWITTER NLP=./
xuwei@proteus100[twitter nlp]$
xuwei@proteus100[twitter nlp]$ echo "Had a great time in New York w my
love :) ! " | python python/ner/extractEntities2.py
Had/O a/O great/O time/O in/O New/B-ENTITY York/I-ENTITY w/O my/O love/
0:)/0!/0
Average time per tweet = 3.04769945145s
xuwei@proteus100[twitter nlp]$
xuwei@proteus100[twitter nlp]$ echo "Had a great time in New York w my
love :) ! " | python python/ner/extractEntities2.py --pos --chunk
Had/O/VBD/B-VP a/O/DT/B-NP great/O/JJ/I-NP time/O/NN/I-NP in/O/IN/B-PP
New/B-ENTITY/NNP/B-NP York/I-ENTITY/NNP/I-NP w/O/IN/B-PP my/O/PRP$/B-NP
 love/O/NN/I-NP :)/O/UH/B-INTJ !/O/./I-INTJ
Average time per tweet = 5.49846148491s
xuwei@proteus100[twitter nlp]$
```

10 tag encoding

Cant	VP	
wait		
for	PP	
the		
ravens	NP	
game		
tomorrow	NP	
tomorrow 	NP	
tomorrow go	NP VP	
	VP	
go		
go ray	VP	

10 tag encoding

Cant	VP	VP	
wait		VP	
for	PP	PP	
the		NP	
ravens	NP	NP	
game		NP	
tomorrow	NP	NP	
		O	
go	VP	VP	
ray	NP	NP	
rice	IVI	NP	
!!!!!!!!		O	

10 tag encoding

Cant	VD	VP	B-VP
wait	VP	VP	I-VP
for	PP	PP	B-PP
the		NP	B-NP
ravens	NP	NP	I-NP
game		NP	I-NP
tomorrow	NP	NP	B-NP
		0	Ο
go	VP	VP	B-VP
ray	NP	NP	B-VP
rice	INF	NP	I-VP
!!!!!!!		Ο	Ο

I: Inside

O: outside

B: Begin

BIO allows separation of adjacent chunks/entities

[Recap] Classification Method:

Supervised Machine Learning

Source: NLTK Book

[Recap] Classification Method:

Supervised Machine Learning

- Input:
 - a document d
 - a fixed set of classes $C = \{C_1, C_2, ..., C_j\}$
 - a training set of *m* hand-labeled documents (d1, C1), ..., (dm, Cm)

- Output:
 - a learned classifier γ : $d \rightarrow c$

[Recap] Classification Method:

Supervised Machine Learning

- Naïve Bayes
- Logistic Regression
- Support Vector Machines (SVM)

•

[Recap] Naïve Bayes

Conditional Independence Assumption:

features P(ti|c) are independent given the class c

$$P(t_{1},t_{2},...,t_{n} | c)$$

$$= P(t_{1} | c) \cdot P(t_{2} | c) \cdot ... \cdot P(t_{n} | c)$$

Source: adapted from Dan jurafsky

[Recap] Bag-of-Words

positional independence assumption:

- features are the words occurring in the document and their value is the number of occurrences
- word probabilities are position independent

Classification Method:

Supervised Machine Learning

- Naïve Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- •
- Hidden Markov Model (HMM)
- Conditional Random Fields (CRF)

•

sequential models

Classification Method:

Sequential Supervised Learning

- Input:
 - rather than just individual examples $(w_1 = the, c_1 = DT)$
 - a training set consists of *m* sequences of labeled examples (X1, Y1), ..., (Xm, Ym)

 $x_1 = <the back door> and y_1 = <DT JJ NN>$

- Output:
 - a learned classifier to predict label sequences $\gamma: x \to y$

Features for Sequential Tagging

- Words:
 - current words
 - previous/next word(s) context
- Other linguistic information:
 - word substrings
 - word shapes
 - POS tags
- Contextual Labels
 - previous (and perhaps next) labels

word shapes

Varicella-zoster	Xx-xxx
mRNA	xxxx
CPA1	XXXd

Features for Sequential Tagging

- Words:
 - current words
 - previous/next word(s) context
- Other linguistic information:
 - word substrings
 - word shapes
 - POS tags
- Contextual Labels
 - previous (and perhaps next) labels

Correlated!

Graphical Models

Graphical Models

Hidden Markov Model

$$p(\mathbf{Y},\mathbf{X}) = \prod_{n=1}^{N} p(y_n | y_{n-1}) p(\mathbf{x}_n | y_n)$$

Conditional Random Field

GENERATIVE

Twitter Challenge

2m 2ma 2mar 2mara 2maro 2marrow 2mor 2mora 2moro 2morow 2morr 2morro 2morrow 2moz 2mr 2mro 2mrrw 2mrw 2mw tmmrw tmo tmoro tmorrow tmoz tmr tmro tmrow tmrrow tmrrw tmrw tmrww tmw tomaro tomarow tomarro tomarrow tomm tommarow tommarrow tommoro tommorow tommorrow tommorw tommrow tomo tomolo tomoro tomorow tomorro tomorrw tomoz tomrw tomz

An Unsupervised Learning Method:

Brown Clustering

- Input:
 - a (large) corpus of documents

- Output:
 - 1. a partition of words into word clusters
 - 2. (generalization of 1) a hierarchical word clustering

Brown Clustering

• Example Clusters (from Brown et al. 1992)

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays June March July April January December October November September August people guys folks fellows CEOs chaps doubters commies unfortunates blokes down backwards ashore sideways southward northward overboard aloft downwards adrift water gas coal liquid acid sand carbon steam shale iron great big vast sudden mere sheer gigantic lifelong scant colossal man woman boy girl lawyer doctor guy farmer teacher citizen American Indian European Japanese German African Catholic Israeli Italian Arab pressure temperature permeability density porosity stress velocity viscosity gravity tension mother wife father son husband brother daughter sister boss uncle machine device controller processor CPU printer spindle subsystem compiler plotter John George James Bob Robert Paul William Jim David Mike anyone someone anybody somebody

Hierarchical Word Clustering

bit string representation:

Hierarchical Word Clustering

mailman	10000011010111
salesman	100000110110000
bookkeeper	1000001101100010
troubleshooter	
bouncer	10000011011000111
technician	1000001101100100
janitor	1000001101100101
saleswoman	1000001101100110
	1000001101100110
 Nike	10110111001001010111100
Maytag	101101110010010101111010
Generali	101101110010010101111011
Gap	10110111001001010111110
Harley-Davidson	
Enfield	1011011100100101011111110
genus	1011011100100101011111111
Microsoft	101101110010010111000
Ventritex	10110111001001011000
Tractebel	101101110010010110010
Synopsys	1011011100100101100110
WordPerfect	101101110010010110011
	1011011100100101101000
John	101110010000000000
Consuelo	10111001000000000
Jeffrey	10111001000000001
Kenneth	101110010000000010
Phillip	1011100100000001100
WILLIAM	10111001000000011010
** ILLIANI	101110010000000011011

10111001000000001110

Timothy

 Example Clusters (from Miller et al. 2014)

Hierarchical Word Clustering

mailman salesman bookkeeper troubleshooter bouncer technician janitor saleswoman

10000011010111 100000110110000 1000001101100010 10000011011000110 10000011011000111 1000001101100100 1000001101100101 1000001101<mark>100110</mark>

 Example Clusters (from Miller et al. 2014)

Nike Maytag Generali Gap

Harley-Davidson Enfield

genus Microsoft Ventritex Tractebel

Synopsys WordPerfect

John Consuelo Jeffrey Kenneth Phillip WILLIAM Timothy

10110111001001010111100 101101110010010101111010 101101110010010101111011 10110111001001010111110 101101110010010101111110 1011011100100101011111110 1011011100100101<mark>01111111</mark> 101101110010010111000 1011011100100101<mark>10010</mark> 1011011100100101100110 1011011100100101<mark>100111</mark> 1011011100100101101000

1011100100000000000

101110010000000001

101110010000000010

10111001000000001100

101110010000000011010

1011100100000000 11011

101110010000000011110

word cluster features (bit string prefix)

Brown Clustering

- The Intuition:
 - similar words appear in similar contexts
 - more precisely:

similar words have similar distributions of words to their immediate left and right

Brown Clustering

 The algorithm — maximize the Quality function that score a given partitioning C:

$$Quality(C) = \sum_{i=1}^{n} \log e(w_i | C(w_i)) q(C(w_i) | C(w_{i-1}))$$

$$= \sum_{c=1}^{k} \sum_{c'=1}^{k} p(c,c') \log \frac{p(c,c')}{p(c)p(c')} + G$$

- n(c):count of class c seen in the corpus
- n(c,c'): counts of c' seen following c

$$p(c,c') = \frac{n(c,c')}{\sum_{c,c'} n(c,c')} \qquad p(c,c') = \frac{n(c)}{\sum_{c} n(c)}$$

Summary

Thank You!

Instructor: Wei Xu

www.cis.upenn.edu/~xwe/

Course Website: socialmedia-class.org