Τεχνητή Νοημοσύνη ΙΙ

Παύλος Πέππας

Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Η Γαλλία ανήκει στην ΕΕ.

Τα ΒΜΜ κατασκευάζονται στην Γαλλία

Όλα αμάξια κατασκευάζονται στην ΕΕ παίρνουν αμόλυβδη.

Το αμάξι του Γιάννη είναι ΒΜΜ.

Η Γαλλία ανήκει στην ΕΕ.

VI

Τα ΒΜΜ κατασκευάζονται στην Γαλλία

VI

Όλα αμάξια κατασκευάζονται στην ΕΕ παίρνουν αμόλυβδη.

V

Το αμάξι του Γιάννη είναι ΒΜΜ.

Το αμάξι του Γιάννη παίρνει αμόλυβδη.

| -

Η Γαλλία ανήκει στην ΕΕ.

VI

Τα ΒΜΜ κατασκευάζονται στην Γαλλία

VI

Όλα αμάξια κατασκευάζονται στην ΕΕ παίρνουν αμόλυβδη.

V

Το αμάξι του Γιάννη είναι ΒΜΜ.

Το αμάξι του Γιάννη παίρνει αμόλυβδη.

| -

Η Γαλλία ανήκει στην ΕΕ.

VI

Τα ΒΜΜ κατασκευάζονται στην Γαλλία

VI

Όλα αμάξια κατασκευάζονται στην ΕΕ παίρνουν αμόλυβδη.

VI

Το αμάξι του Γιάννη είναι ΒΜΜ.

Η Γαλλία ανήκει στην ΕΕ.

Τα ΒΜΜ κατασκευάζονται στην Γαλλία

Όλα αμάξια κατασκευάζονται στην ΕΕ παίρνουν αμόλυβδη.

(EE1) Av $A \le B$ $\kappa \alpha \iota B \le C$, $\tau \acute{o} \tau \epsilon A \le C$.

- (EE1) Av $A \le B$ $\kappa \alpha \iota B \le C$, $\tau \acute{o} \tau \epsilon A \le C$.
- (EE2) Aν A \vDash B τότε A \le B.

- (EE1) Av $A \le B$ $\kappa \alpha \iota B \le C$, $\tau \acute{o} \tau \epsilon A \le C$.
- (EE2) Aν $A \models B$ τότε A ≤ B.
- (EE3) $A \le A \land B \ \acute{\eta} \ B \le A \land B.$

- (EE1) Av $A \le B$ $\kappa \alpha \iota B \le C$, $\tau \acute{o} \tau \epsilon A \le C$.
- (EE2) Aν $A \models B$ τότε A ≤ B.
- (EE3) $A \le A \land B \ \dot{\eta} \ B \le A \land B.$
- (EE4) Aν $K \nvDash \bot$, τότε $A \notin K$ ανν A ≤ B, για κάθε B ∈ L.

- (EE1) Av $A \le B$ $\kappa \alpha \iota B \le C$, $\tau \acute{o} \tau \epsilon A \le C$.
- (EE2) Aν $A \models B$ τότε A ≤ B.
- (EE3) $A \le A \land B \ \acute{\eta} \ B \le A \land B$.
- (EE4) Aν $K \nvDash \bot$, τότε $A \notin K$ ανν A ≤ B, για κάθε B ∈ L.
- (EE5) Aν A ≤ B για κάθε A \in L, τότε \models B

- (EE1) Av $A \le B$ $\kappa \alpha \iota B \le C$, $\tau \acute{o} \tau \epsilon A \le C$.
- (EE2) Aν $A \models B$ τότε A ≤ B.
- (EE3) $A \le A \land B \ \acute{\eta} \ B \le A \land B$.
- (EE4) Aν $K \nvDash \bot$, τότε $A \notin K$ ανν A ≤ B, για κάθε B ∈ L.
- (EE5) Aν A ≤ B για κάθε A \subset L, τότε \vdash B

(C-) $A \leq B \quad \alpha \nu \nu \quad A \notin K-(A \wedge B)$

- (EE1) Av $A \le B$ $\kappa \alpha \iota B \le C$, $\tau \acute{o} \tau \epsilon A \le C$.
- (EE2) Aν $A \models B$ τότε A ≤ B.
- (EE3) $A \le A \land B \ \acute{\eta} \ B \le A \land B$.
- (EE4) Aν $K \nvDash \bot$, τότε $A \notin K$ ανν A ≤ B, για κάθε B ∈ L.
- (EE5) Aν A ≤ B για κάθε A \subset L, τότε \vdash B
- (C-) $A \leq B \quad \alpha \nu \nu \quad A \notin K-(A \wedge B)$
- (E-) $B \in (K-A)$ $\alpha \vee \nu B \in K \kappa \alpha \iota A < A \vee B \text{ or } \models A$

Θεώρημα Αναπαράστασης

Ορισμός: Το Κ' είναι **υπόλοιπο** του Κ ως προς p ανν Κ' \nvDash p, και επιπλέον, για κάθε Κ'' τέτοιο ώστε $\mathsf{K}' \subseteq \mathsf{K}'' \subseteq \mathsf{K}$, $\mathsf{K}'' \models \mathsf{p}$.

Ορισμός: Το Κ' είναι **υπόλοιπο** του Κ ως προς p ανν Κ' $\not\models$ p, και επιπλέον, για κάθε Κ'' τέτοιο ώστε $K' \subseteq K$, $K'' \models$ p.

Λήμμα: Το υπόλοιπο μιας θεωρίας είναι θεωρία.

Ορισμός: Το Κ' είναι **υπόλοιπο** του Κ ως προς p ανν Κ' $\not\models$ p, και επιπλέον, για κάθε Κ'' τέτοιο ώστε $K' \subseteq K$, $K'' \models$ p.

Λήμμα: Το υπόλοιπο μιας θεωρίας είναι θεωρία.

Λήμμα: Η τομή δύο θεωριών είναι θεωρία.

Με **Κ**⊥**p** συμβολίζουμε το σύνολο όλων των υπολοίπων του Κ ως προς p.

Full-Meet Συστολή

Θεώρημα: Η full-meet συστολή ικανοποιεί τα αξιώματα (K-1) – (K-8).

Full-Meet Συστολή

Θεώρημα: Η full-meet συστολή ικανοποιεί τα αξιώματα (K-1) – (K-8).

Θεώρημα: Έστω – η full-meet συστολής, και * η συνάρτηση που προκύπτει από την – μέσω Levi Identify (δηλ. K*φ = (K - ¬φ)+φ). Τότε για κάθε πρόταση ψ τέτοια ώστε ¬ψ ∈ K, $K*ψ = \{x : ψ ⊨ x \}$.

Partial Meet Συστολή

Έστω \leq μια οποιαδήποτε προ-διάταξη σε θεωρίες. Ορίζουμε την partial meet συστολής - με βάση την \leq ως $\mathbf{K} - \mathbf{\varphi} = \cap \{ \mathbf{K'} \in \mathbf{K} \perp \mathbf{\varphi} : \mathbf{\gamma} \in \mathbf{K} \perp \mathbf{\varphi} , \mathbf{K''} \leq \mathbf{K'} \}.$

Θεώρημα Αναπαράστασης

Relevance-Sensitive Belief Revision

Μια μη-διαισθητική συνάρτηση AGM:

$$K^*A = \begin{cases} K+A, & \alpha \vee \neg A \notin K \\ \{x: A \models x\}, & \alpha \vee \neg A \in K \end{cases}$$

$$K^*A = \begin{cases} X+A & X \neq X \\ X+A & X \neq X \end{cases}$$

 $A = (a \wedge b \wedge e) \vee (a \wedge \neg b \wedge e) = a \wedge e$

(P) If K = Cn(X,Y), $L_X \cap L_Y = \emptyset$ and $A \in L_X$, then $(K^*A) \cap L_Y = K \cap L_Y$.

Diff(w,r) = το σύνολο των μεταβλητών με διαφορετικές αποτιμήσεις στους w και r.

e.g., Diff(
$$\neg$$
abc, $a\neg$ bc) = {a, b}

Diff(w,r) = το σύνολο των μεταβλητών με διαφορετικές αποτιμήσεις στους w και r.

e.g., Diff(
$$\neg$$
abc, $a\neg$ bc) = {a, b}

(SP) If Diff(w,r) \subset Diff(w,z) then r < z.

Diff(w,r) = το σύνολο των μεταβλητών με διαφορετικές αποτιμήσεις στους w και r.

e.g., Diff(
$$\neg$$
abc, $a\neg$ bc) = {a, b}

(SP) If Diff(w,r) \subset Diff(w,z) then r < z.

e.g.

Diff(w,r) = το σύνολο των μεταβλητών με διαφορετικές αποτιμήσεις στους w και r.

e.g., Diff(
$$\neg$$
abc, $a\neg$ bc) = {a, b}

(SP) If Diff(w,r) \subset Diff(w,z) then r < z.

e.g.

(P) If K = Cn(X,Y), $L_X \cap L_Y = \emptyset$ and $A \in L_X$, then $(K^*A) \cap L_Y = K \cap L_Y$.

 $a \rightarrow c$ $dv \neg a$ $g \rightarrow e$ $b \lor f$ K

$$r = \{ a, b, \neg c, d, g, e, f \}$$

$$r = \{ a, b, \neg c, d, g, e, f \}$$

$$r = \{a, b, \neg c, d, g, e, f\}$$
 \Rightarrow Diff(K, r) = $\{a, c, d\}$

$$r = \{a, b, \neg c, d, g, e, f\}$$
 \Rightarrow Diff(K, r) = $\{a, c, d\}$

(SP) If Diff(w,r) \subset Diff(w,z) then r < z.

$$r = \{a, b, \neg c, d, g, e, f\}$$
 \Rightarrow Diff(K, r) = $\{a, c, d\}$

- (SP) If Diff(w,r) \subset Diff(w,z) then r < z.
 - (Q1) If Diff(K,r) \subset Diff(K,z) and Diff(K,r) \cap Diff(r,z) = \emptyset then r < z.
 - (Q2) If Diff(K,r) = Diff(K,z) and Diff(K,r) \cap Diff(r,z) = \emptyset then $r \approx z$.

$$r = \{a, b, \neg c, d, g, e, f\}$$
 \Rightarrow Diff(K, r) = $\{a, c, d\}$

- (SP) If Diff(w,r) \subset Diff(w,z) then r < z.
 - (Q1) If Diff(K,r) \subset Diff(K,z) and Diff(K,r) \cap Diff(r,z) = \emptyset then r < z.
 - (Q2) If Diff(K,r) = Diff(K,z) and Diff(K,r) \cap Diff(r,z) = \emptyset then $r \approx z$.

$$K = Cn(a \equiv b, c)$$

Θεώρημα Αναπαράστασης

P. Peppas, "Belief Revision", Handbook of Knowledge Representation, 2008.