

Cámaras y visibilidad

Modelo de cámara virtual
Trasformación de la vista
Trasformación proyectiva
Visibilidad
Interacción con la cámara

Modelo de cámara virtual

Visión 3D

Visión 3D real

- Visión estéreo
- Convergencia visual
- Enfoque
- Campo de visión
- Perspectiva
- Sensibilidad

Visión 3D simulada

- Intenta simular la visión real mediante el símil de una cámara fotográfica
 - Campo de visión: volumen de la vista
 - Estereoscopía: monoscopía dual
 - Perspectiva: tamaño inversamente proporcional a la distancia
 - Enfoque: Emborronado artificial de la imagen
 - Sensibilidad: Regulación de la luminosidad de la imagen
- La cámara virtual permite simular efectos no reales

Tipo de cámara

- Sistema de referencia de la cámara o vista
- Tipo de la cámara
 - Viene dado por el volumen de la vista (frustum)
 - El frustum se delimita por 6 planos referidos al sistema de referencia de al cámara
 - Cámara ortográfica: Ortoedro
 - Cámara perspectiva: Pirámide truncada

$$\vec{e}^T = [\vec{u} \quad \vec{v} \quad \vec{w} \quad \dot{e}]$$

Cámara ortográfica

Parámetros del frustum

- ancho
- alto
- cerca
- lejos

planos delimitadores

$$\vec{u}$$
 $l = -ancho/2$
 $r = ancho/2$
 \vec{v}
 $b = -alto/2$
 $t = alto/2$
 \vec{v}
 $n = -cerca$
 \vec{v}
 $f = -lejos$

constructor

CamaraOrtografica(1,r,b,t,n,f);

Cámara perspectiva

Parámetros del frustum

- ángulo vertical de apertura
- razón de aspecto
- cerca, lejos

rectángulo en
el plano cercano

$$t = cerca \cdot tan(fovy/2)$$

 $b = -t$
 $r = ar \cdot t$
 $l = -r$
 $n = -cerca$
 $f = -lejos$

razón de aspecto

$$\frac{w}{h} = \frac{tg(\frac{1}{2}\Theta_w)}{tg(\frac{1}{2}\Theta_h)}$$

constructor

CamaraPerspectiva(fovy,ar,cerca,lejos);

Posición y orientación de la cámara

- Parámetros para situar la cámara
 - e: posición del ojo
 - poi: punto de interés, hacia dónde se mira
 - up: vertical subjetiva
- Las coordenadas de los parámetros se indican en el sistema de referencia del mundo

Sistema de referencia de la vista

$$\vec{e}^T = [\vec{u} \quad \vec{v} \quad \vec{w} \quad \dot{e}]$$

$$\vec{w} = (\dot{e} - \dot{poi}).$$
 normalizado $\vec{u} = (\overrightarrow{up} \times \overrightarrow{w}).$ normalizado $\vec{v} = \overrightarrow{w} \times \vec{u}$

Cadena de trasformaciones M-V-P-D

Trasformación de la vista

Trasformación de la vista (V)

- Dadas las coordenadas de un punto en el sistema del mundo real queremos conocer sus coordenadas en el sistema de la cámara
- La matriz V es la composición de un traslación y un giro

$$V = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

giro para bases traslación para coincidentes

orígenes coincidentes

 $\overrightarrow{\boldsymbol{w}}^T$

 \vec{e}^T

$$\dot{p} = \overrightarrow{w}^T p = \overrightarrow{e}^T V p$$

Inversa de la trasformación de la vista

 Coordenadas del mundo conocidas las de la vista

 $\dot{p} = \overrightarrow{w}^T V^{-1} p_e = \overrightarrow{e}^T p_e$

 Operación inversa: giro inverso y traslación inversa

$$V^{-1} = \begin{bmatrix} 1 & 0 & 0 & e_x \\ 0 & 1 & 0 & e_y \\ 0 & 0 & 1 & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 & e_x \\ 0 & 1 & 0 & e_y \\ 0 & 0 & 1 & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ v_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{T} = \begin{bmatrix} u_x & v_x & w_x & e_x \\ u_y & v_y & w_y & e_y \\ u_z & v_z & w_z & e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Trasformación proyectiva

Trasformación proyectiva

- Sistema canónico de la proyección
- Transformación proyectiva
- Proyección: (x,y,z)
- Vista proyectiva a ortográfica

Trasformación proyectiva ortográfica

- Frustum canónico: cubo de lado 2 centrado en el origen
- Trasformación del frustum ortográfico al canónico

frustum ortográfico

frustum canónico

Matriz de proyección ortográfica

- Traslación para que coincidan los centros de los ortoedros
- Escalado al cubo canónico

$$P_{orto} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -\frac{(r+l)}{2} \\ 0 & 1 & 0 & -\frac{(r+l)}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{(r+l)}{(r-l)} \\ 0 & \frac{2}{t-b} & 0 & -\frac{(t+b)}{(t-b)} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Las coordenadas del punto proyectado son las coordenadas (x,y) después de aplicar P

Matriz de proyección ortográfica

 Cuando el volumen de la vista está centrado (r=-l; t=-b) la matriz de proyección ortográfica se reduce a:

$$P_{orto} = \begin{bmatrix} \frac{1}{r} & 0 & 0 & 0\\ 0 & \frac{1}{t} & 0 & 0\\ 0 & 0 & \frac{2}{n-f} & \frac{-(n+f)}{(n-f)}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Proyección perspectiva

 En la proyección perspectiva el tamaño es inversamente proporcional a la distancia al observador

Trasformación proyectiva perspectiva

 Convertimos el volumen de la vista perspectiva en un ortoedro deformando los objetos

- A. La ordenación en distancia se conserva
- B. Lo que estaba dentro sigue dentro y al revés
- La proyección ortográfica es la misma que la proyección en perspectiva
- 2. Aplicamos la división perspectiva
 - 1. La trasformación entre ambos volúmenes no se puede realizar aplicando una única matriz
 - 2. Se necesita normalizar la cuarta coordenada

Matriz perspectiva-ortográfica

condiciones

$$x:$$
 $y:$ $z:$ $z:$ $x = \frac{r}{n}z \Rightarrow x' = r$ $y = \frac{t}{n}z \Rightarrow y' = t$ $z \to 0^- \Rightarrow z' \to \infty$ $z = n \Rightarrow z' = n$ $z = f \Rightarrow z' = f$

trasformación

$$(x, y, z, 1) \rightarrow (\frac{1}{z}nx, \frac{1}{z}ny, \frac{1}{z}((n+f)z - nf), 1)$$

Matriz perspectiva-ortográfica

- No podemos usar una matriz directa para la trasformación
- Aplicaremos una matriz proyectiva y después la división perspectiva

Trasformación al cubo canónico

- Una vez en ortográfica trasformaremos al cubo canónico
- Usaremos la matriz de proyección ortográfica con el volumen de la vista centrado
- $P_{orto}M_{po} = \begin{bmatrix} \frac{n}{r} & 0 & 0 & 0\\ 0 & \frac{n}{t} & 0 & 0\\ 0 & 0 & \frac{n+f}{n-f} & \frac{-2fn}{n-f}\\ 0 & 0 & 1 & 0 \end{bmatrix}$

 La división perspectiva puede hacerse después de esta trasformación

coordenadas del punto en el sistema del cubo canónico coordenadas del punto en el sistema de cámara ortográfica
$$p''$$

$$\vec{c}^T r = \vec{c}^T P_{orto} p = \vec{c}^T P_{orto} \frac{1}{p''_w} M_{po} q = \vec{c}^T \frac{1}{p''_w} P_{orto} M_{po} q$$
coordenadas del punto antes de deformar en el sistema de cámara perspectiva

Trasformación del marco

- Se hace corresponder la ventana de proyección con el marco de representación en el dispositivo
- El marco es un rectángulo de wxh píxeles. Las coordenadas enteras caen en el centro de los píxeles
- Se recupera la isotropía si las relaciones de aspecto son equivalentes
- Es la composición de un escalado y una traslación (2D)

Cadena de trasformaciones M-V-P-D

$$\vec{\boldsymbol{d}}^T \boldsymbol{p}' = \vec{\boldsymbol{d}}^T \frac{1}{p_w''} \boldsymbol{p}'' = \vec{\boldsymbol{d}}^T \frac{1}{p_w''} \boldsymbol{D} \boldsymbol{P}_{orto} \boldsymbol{M}_{po} \boldsymbol{V} \boldsymbol{M} \boldsymbol{p}$$

Visibilidad

Visibilidad

- ¿Qué objetos son visibles una vez elegida y situada la cámara?
- Por eficiencia, sería deseable solo muestrear aquellas partes visibles (etapa de rasterización)
- No son visibles si:
 - No están dentro del volumen de la vista: proceso de recortado (clipping)
 - Es un polígono de una superficie cerrada que da la espalda al observador: eliminación de caras traseras (culling)
 - Es un polígono diferente al caso anterior pero está tapado por otro: visibilidad por cercanía (visibility)

¿Dentro del frustum?

- El proceso de recortado consiste en eliminar las partes o el total de un polígono respecto a un volumen
- Nuestro volumen es el de la vista
 - Es convexo
 - Después de la trasformación perspectiva es el cubo canónico
- El recortado se suele realizar antes de la división perspectiva, en el espacio 4D (espacio de recortado)
- Los atributos por vértice se dividen por la z y se interpolan linealmente: a'= -a/z
- Los polígonos resultantes se teselan a triángulos

Condiciones de interioridad de un punto al hipercubo

$$w > x > -w &$$
 $w > y > -w &$
 $w > z > -w$
Ojo: si w < 0 es al revés

¿Está de espaldas?

Eliminación de caras traseras

- Simplemente se comprueba la normal en el sistema de referencia de la cámara. Si n_z <0 es trasera.
- Sólo sirve para cuerpos sólidos y opacos
- Conveniente cuando se usa representación alámbrica

Delante y detrás

Dos soluciones

- Pre-ordenamiento (pintor)
- Sin importar el orden (z-buffer)

Z-Buffer

- En combinación con el proceso de rasterización se mantiene un buffer de profundidad para los fragmentos procesados descartando aquellos que están más alejados que el actual
- Aliasing espacial
- Aliasing numérico (Z-fighting)

Interacción con la cámara

Desplazamiento (panning)

- Movimiento de la cámara paralelamente al plano de proyección manteniendo la dirección central de la vista
- Se mantiene
 - La base del sistema de referencia de la vista \vec{u} , \vec{v} , \vec{w}
 - Vectores \overrightarrow{up} y \overrightarrow{look}
 - El volumen de la vista
- Cambia
 - El origen del sistema de referencia de la vista $(e\dot{y}e)$ mediante una traslación en \vec{u} , \vec{v}
 - El punto de interés (poi)

Acercar/Alejar (zoom)

- Consiste en aumentar o disminuir el tamaño de los objetos en la imagen final
- Se consigue
 - Variando la distancia entre la cámara y el punto de interés
 - Se varía la posición del ojo $(e\dot{y}e)$ en el eje \overrightarrow{w}
 - Todo lo demás se mantiene
 - Variando campo de vista vertical
 - Varía el fovy sin modificar la distancia entre la cámara y el motivo
 - Todo lo demás se mantiene

Orbitar

- La cámara se mueve sobre una esfera imaginaria que envuelve al motivo
- Varía
 - La posición y orientación de la cámara
- Se mantiene
 - El punto de interés, el frustum y la distancia entre el ojo y el motivo
- Tipos de movimientos
 - Arriba/abajo
 - Giro alrededor del eje \vec{u} en el sistema de referencia del mundo
 - Izquierda/derecha
 - Giro alrededor del eje \vec{v} en el sistema de referencia del mundo
- A veces se intercambian los sentidos de giro (inspección)

Giro de cabeza

- El observador inspecciona su entorno sin moverse del sitio
- Se mantiene
 - La posición de la cámara y el frustum
- Varía
 - La orientación de la cámara (ejes $\vec{u}, \vec{v}, \vec{w}$)
- Tipos de movimientos
 - Bajar/levantar la cabeza
 - Giro alrededor de \vec{u} en el sistema de referencia de la cámara
 - Mirar a derecha/izquierda
 - Giro alrededor de \vec{v} en el sistema de referencia de la cámara
 - Inclinar la cabeza hacia los hombros
 - Giro alrededor de \overrightarrow{w} en el sistema de referencia de la cámara

Desenfoque

- Consiste en fijar una distancia al motivo que se desea ver nítido y desenfocar (hacer borroso) los objetos conforme de alejan del motivo principal
- En gráficos por computador se mueve ligeramente la cámara manteniendo el plano enfocado como sección del frustum

