Lecture 8 - Alpha-Beta Pruning

The number of game states that minimax search has to examine is exponential $O(b^m)$. Can we get the correct minimax decision without looking at every state in the game tree? Yes.

Alpha-beta pruning:

 α is the alue of the best (i.e. highest-value) choice we have found so far at any choice point along the path for MAX.

 β is the best of the best (lowest-value) choice we have found so far at any choice point along the path for MIN.

Start with $(v, -\infty, \infty)$ for (α, β) where v is a temporary value. α and β values are passed in the minimax call: minimax (s, α, β) . For MAX, we prune if $v \ge \beta$. For MIN, we prune if $v \le \alpha$. We cannot do this for the first call, only for the second onwards. This is best demonstrated through an example. Hard concept to grasp.

Properties:

- Complete? Yes, assuming finite state space.
- Optimal? Yes, assuming optimal opponent
- Time complexity? $O(b^m)$, but $O(b^{\frac{m}{2}})$ if we have optimal ordering of nodes when pruning
- Space complexity? O(bm).

Pseudo-code for implementation:

```
function Alpha-Beta-Search(state) returns an action
   v \leftarrow \text{Max-Value}(state, -\infty, \infty)
return the action in Actions(state) with value v.
function Max-Value(state, \alpha, \beta) returns a utility value
   if Terminal-Test(state) then return Utility(state)
   v \leftarrow -\infty
   for each a in Actions(state) do
      v \leftarrow \operatorname{Max}(v, \operatorname{Min-Value}(\operatorname{Result}(s, a), \alpha, \beta))
      if v \ge \beta then return v
      \alpha \longleftarrow \operatorname{Max}(\alpha, v)
return v
function Min-Value(state, \alpha, \beta) returns a utility value
   if Terminal-Test(state) then return Utility(state)
   v \longleftarrow +\infty
   for each a in Actions(state) do
      v \leftarrow \operatorname{Min}(v, \operatorname{Max-Value}(\operatorname{Result}(s, a), \alpha, \beta))
      if v \leq \alpha then return v
      \beta \longleftarrow \operatorname{Min}(\beta, v)
return v
```