DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

EVALUATION SCHEME & SYLLABUS

FOR

OPEN ELECTIVES I (VI SEMESTER)

AS PER

AICTE MODEL CURRICULUM [Effective from the Session: 2020-21]

B.Tech. VI Semester

OPEN ELECTIVE-I

KOE-061	REAL TIME SYSTEMS
KOE-062	EMBEDDED SYSTEM
KOE-063	INTRODUCTION TO MEMS
KOE-064	OBJECT ORIENTED PROGRAMMING
KOE-065	NUMERICAL TECHNIQUES
KOE066	GIS & REMOTE SENSING
KOE-067	UNDERSTANDING THE HUMAN BEING COMPREHENSIVELY- HUMAN ASPIRATIONS AND ITS FULFILLMENT

KOE-061 REAL TIME SYSTEMS

Unit	Topics	Lectures
I	Introduction	8
	Definition, Typical Real Time Applications: Digital Control, High Level	
	Controls, Signal Processing etc., Release Times, Dead-lines, and Timing	
	Constraints, Hard Real Time Systems and Soft Real Time Systems,	
	Reference Models for Real Time Systems: Processors and Resources,	
	Temporal Parameters of Real Time Workload, Periodic Task Model,	
	Precedence Constraints and Data Dependency.	
II	Real Time Scheduling	8
	Common Approaches to Real Time Scheduling: Clock Driven Approach,	
	Weighted Round Robin Approach, Priority Driven Approach, Dynamic	
	Versus Static Systems, Optimality of Effective-Deadline-First (EDF) and	
	Least-Slack-Time-First (LST) Algorithms, Rate Monotonic Algorithm,	
	Offline Versus Online Scheduling, Scheduling Aperiodic and Sporadic jobs	
	in Priority Driven and Clock Driven Systems.	
III	Resources Sharing	8
	Effect of Resource Contention and Resource Access Control (RAC), Non-	
	preemptive Critical Sections, Basic Priority-Inheritance and Priority-Ceiling	
	Protocols, Stack Based Priority- Ceiling Protocol, Use of Priority-Ceiling	
	Protocol in Dynamic Priority Systems, Preemption Ceiling Protocol, Access	
	Control in Multiple-Module Resources, Controlling Concurrent Accesses to	
	Data Objects.	
IV	Real Time Communication	
	Basic Concepts in Real time Communication, Soft and Hard RT	
	Communication systems, Model of Real Time Communication, Priority-	
	Based Service and Weighted Round-Robin Service Disciplines for Switched	
	Networks, Medium Access Control Protocols for Broadcast Networks,	
	Internet and Resource Reservation Protocols.	
V	Real Time Operating Systems and Databases	8
	Features of RTOS, Time Services, UNIX as RTOS, POSIX Issues,	
	Characteristic of Temporal data, Temporal Consistency, Con-currency	
	Control, Overview of Commercial Real Time databases.	

Text Books:

1. Real Time Systems – Jane W. S. Liu, Pearson Education Publication.

Reference Books:

- 1. Real Time Systems Mall Rajib, Pearson Education
- 2. Real-Time Systems: Scheduling, Analysis, and Verification Albert M. K. Cheng, Wiley.

Course Outcomes: At the end of this course students will demonstrate the ability to:

- 1. Describe concepts of Real-Time systems and modeling.
- 2. Recognize the characteristics of a real-time system in context with real time scheduling.
- 3. Classify various resource sharing mechanisms and their related protocols.
- 4. Interpret the basics of real time communication by the knowledge of real time models and protocols.
- 5. Apply the basics of RTOS in interpretation of real time systems.

KOE-062 EMBEDDED SYSTEM

COURSE OBJECTIVE: *After completion of the course student will be able to:*

- 1. Attain the knowledge of embedded system and its development environment.
- 2. Gain the knowledge of RTOS based embedded system design and its applications.

COURSE OUTCOME: *After completion of the course student will be able to:*

- **CO1:** Understand the basics of embedded system and its structural units.
- **CO3:** Analyze the embedded system specification and develop software programs.
- **CO3:** Evaluate the requirements of the programming embedded systems, related software architecture.
- **CO3:** Understand the RTOS based embedded system design.
- **CO3:** Understand all the applications of the embedded system and designing issues.

KOE-062 EMBEDDED SYSTEM		
Unit	Торіс	Lectures
1	Introduction to Embedded Systems: Introduction to Embedded Systems – The build process for embedded systems- Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.	8
2	Embedded Networking: Embedded Networking: Introduction, I/O Device Ports & Buses— Serial Bus communication protocols — RS232 standard — RS422 — RS485 — CAN Bus -Serial Peripheral Interface (SPI) — Inter Integrated Circuits (I2C) —need for device drivers.	8
3	Embedded Firmware Development Environment: Embedded Product Development Life Cycle objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object oriented Model.	8
4	RTOS Based Embedded System Design: Introduction to basic concepts of RTOS-Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non preemptive scheduling, Task communication shared memory, message passing-, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, 4C/OS-II, RT Linux.	8
5	Embedded System Application Development: Design issues and techniques Case Study of Washing Machine- Automotive Application- Smart card System Application.	8

Text Books:

- 1. Wayne Wolf, "Computers as Components: Principles of Embedded Computer System Design", Elsevier, 2006.
- 2. Michael J. Pont, "Embedded C", Pearson Education, 2007.
- 3. Steve Heath, "Embedded System Design", Elsevier, 2005.
- 4. Muhammed Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinlay, "The 8051
- 5. Microcontroller and Embedded Systems", Pearson Education, Second edition, 2007.

KOE-063 INTRODUCTION TO MEMS

COURSE OBJECTIVE: *After completion of the course student will be able to:*

- 1. Understand the Basic concept of MEMS, Mechanics of Beam and Diaphragm Structures, Air Damping and Electrostatic Actuation.
- 2. Know the knowledge of Thermal Effects and the Applications of MEMS in RF.

COURSE OUTCOME: *After completion of the course student will be able to:*

- CO1: Understand the Basic concept of MEMS Fabrication Technologies, Piezoresistance Effect, Piezoelectricity, Piezoresistive Sensor.
- CO2: Explain Mechanics of Beam and Diaphragm Structures.
- CO3: Understand the Basic concept of Air Damping and Basic Equations for Slide-film Air Damping, Couette-flow Model, Stokes-flow Model.
- CO4: Know the concept of Electrostatic Actuation.
- CO5: Understand the applications of MEMS in RF

KOE-063 INTRODUCTION TO MEMS		
Unit	Торіс	Lectures
1	Introduction to MEMS: MEMS Fabrication Technologies, Materials and Substrates for MEMS, Processes for Micromachining, Characteristics, Sensors/Transducers, Piezoresistance Effect, Piezoelectricity, Piezoresistive Sensor.	8
2	Mechanics of Beam and Diaphragm Structures: Stress and Strain, Hooke's Law. Stress and Strain of Beam Structures: Stress, Strain in a Bent Beam, Bending Moment and the Moment of Inertia, Displacement of Beam Structures Under Weight, Bending of Cantilever Beam Under Weight.	8
3	Air Damping: Drag Effect of a Fluid: Viscosity of a Fluid, Viscous Flow of a Fluid, Drag Force Damping, The Effects of Air Damping on Micro-Dynamics. Squeeze-film Air Damping: Reynolds' Equations for Squeeze-film Air Damping, Damping of Perforated Thick Plates. Slide-film Air Damping: Basic Equations for Slide-film Air Damping, Couette-flow Model, Stokes-flow Model.	8
4	Electrostatic Actuation: Electrostatic Forces, Normal Force, Tangential Force, Fringe Effects, Electrostatic Driving of Mechanical Actuators: Parallel-plate Actuator, Capacitive sensors. Step and Alternative Voltage Driving: Step Voltage Driving, Negative Spring Effect and Vibration Frequency.	8
5	Thermal Effects: Temperature coefficient of resistance, Thermo-electricity, Thermocouples, Thermal and temperature sensors. Applications of MEMS in RF MEMS Resonator Design Considerations, One-Port Micromechanical Resonator Modeling Vertical Displacement Two-Port Microresonator Modeling, Micromechanical Resonator Limitations.	8

Text & Reference Books:

- 1. G. K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K. N. Bhat and V. K. Atre, "Micro and smart systems", Wiley India, 2010.
- 2. S.M. Sze, "Semiconductor Sensors", John Wiley & Sons Inc., Wiley Interscience Pub.
- 3. M.J. Usher, "Sensors and Transducers", McMillian Hampshire.
- 4. RS Muller, Howe, Senturia and Smith, "Micro sensors", IEEE Press.

KOE-064 OBJECT ORIENTED PROGRAMMING

COURSE OBJECTIVE: After completion of the course student will be able to:

- 1. Understand the Basic concept of Object Orientation, object identity and Encapsulation.
- 2. Know the knowledge of Basic Structural Modeling, Object Oriented Analysis and C++ Basics.

COURSE OUTCOME: After completion of the course student will be able to:

- CO1: Understand the Basic concept of Object Orientation, object identity and Encapsulation.
- CO2: Understand the Basic concept of Basic Structural Modeling.
- CO3: Know the knowledge of Object oriented design, Object design.
- CO4: Know the knowledge of C++ Basics.
- CO5: Understand the Basics of object and class in C++.

KOE-064 OBJECT ORIENTED PROGRAMMING		
Unit	Торіс	Lectures
1	Introduction: The meaning of Object Orientation, object identity, Encapsulation, information hiding, polymorphism, generosity, importance of modelling, principles of modelling, object oriented modelling, Introduction to UML, conceptual model of the UML, Architecture.	8
2	Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams. Class & Object Diagrams: Terms, concepts, modelling techniques for Class & Object Diagrams. Collaboration Diagrams: Terms, Concepts, depicting a message, polymorphism in collaboration Diagrams, iterated messages, use of self in messages. Sequence Diagrams: Terms, concepts, depicting asynchronous messages with/without priority, call-back mechanism, broadcast messages. Basic Behavioural Modeling: Use cases, Use case Diagrams, Activity Diagrams, State Machine, Process and thread, Event and signals, Time diagram, interaction diagram, Package diagram. Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams	8
3	Object Oriented Analysis: Object oriented design, Object design, Combining three models, Designing algorithms, design optimization, Implementation of control, Adjustment of inheritance, Object representation, Physical packaging, Documenting design considerations. Structured analysis and structured design (SA/SD), Jackson Structured Development (JSD). Mapping object oriented concepts using non-object oriented language, Translating classes into data structures, Passing arguments to methods, Implementing inheritance, associations encapsulation. Object oriented programming style: reusability, extensibility, robustness, programming in the large. Procedural v/s OOP, Object oriented language features. Abstraction and Encapsulation.	8
4	C++ Basics: Overview, Program structure, namespace, identifiers, variables, constants, enum, operators, typecasting, control structures C++ Functions: Simple functions, Call and Return by reference, Inline functions, Macro Vs. Inline functions, Overloading of functions, default arguments, friend functions, virtual functions	8
5	Objects and Classes: Basics of object and class in C++, Private and public members, static data and function members, constructors and their types, destructors, operator overloading, type conversion. Inheritance: Concept of Inheritance, types of inheritance: single, multiple, multilevel, hierarchical, hybrid, protected members, overriding, virtual base class Polymorphism: Pointers in C++, Pointes and Objects, this pointer, virtual and pure virtual functions, Implementing polymorphism	8

Text Books:

- 1. James Rumbaugh et. al, "Object Oriented Modeling and Design", PHI
- 2. Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Language User Guide", Pearson Education
- 3. Object Oriented Programming with C++, E Balagurusamy, TMH

Reference Books:

- 1. R. S. Salaria, Mastering Object Oriented Programming with C++, Khanna Publishing House
- 2. C++ Programming, Black Book, Steven Holzner, dreamtech
- 3. Object Oriented Programming in Turbo C++, Robert Lafore, Galgotia
- 4. Object Oriented Programming with ANSI and Turbo C++, Ashok Kamthane, Pearson
- 5. The Compete Reference C++, Herbert Schlitz, TMH
- 6. C++ and Object Oriented Programming Paradigm, PHI
- 7. C++: How to Program, 9th Edition, Deitel and Deitel, PHI

KOE 065 NUMERICAL TECHNIQUES

COURSE OBJECTIVE: Students undergoing this course are expected to-

1. Understand about the basics of numerical techniques and its applications to Engineering Problems.

COURSE OUTCOME: After completion of the course student will be able to-

- CO1: Understand about the basics of Ordinary Differential Equations, Separable equations, Equations made separable by change of variables.
- CO2: Retrieve the information content of Power series method.
- CO3: Apply problem specific Bessel's equation, Bessel Functions to engineering applications.
- CO4: Understand about the basics of matrix, Eigen values and eigen vectors.
- CO5: Analysis of Stage wise Processes by the Calculus of Finite Differences, Countercurrent Liquid- Liquid Extraction.

KOE 065 NUMERICAL TECHNIQUES		
Unit	Торіс	Lectures
1	Ordinary Differential Equations, Separable equations, Equations made separable by change of variables, Homogeneous Equations, Equations with first order and first degree with linear coefficients, Exact equations, Linear equation of first order, Bernoulli's equation, Other integrating factors, Integration of Exact equations, Equations of first order and higher degree, Clairaut's equation, Singular solutions, Equations with missing terms, General properties of Linear equations, Linear equations with constant coefficients, Determination of the complementary function, exponential functions, Determination of the particular integral, the Euler equation, Simultaneous Linear Differential equations.	8
2	Power series method, theory of the power series method, Legendre's equation, Legendre's Polynomials, Frobenius Method.	8
3	Bessel's equation, Bessel Functions Jv(x), Bessel Functions Jv(x) for any $v \ge 0$. Gamma Function, Solution J-v(x) of the Bessel Equation, Backbones of Bessel's Theory, Jv(x) with $v = \pm 1/2, \pm 3/2, \pm 5/2$.	8
4	Definition of matrix, Some special definitions and operations involving matrices, Determinants, Theorems on determinants, Inverse of a matrix, Orthogonal and unitary matrix. Orthogonal vectors, System of linear equations, Systems on n equations with n unknowns, Cramer's Rule, Eigen values and eigen vectors.	8
5	Analysis of Stage wise Processes by the Calculus of Finite Differences, Countercurrent Liquid-Liquid Extraction, Solution of Difference Equations, Stirred-Tank Reactor System, Distillation in a Plate Column, Unsteady-state Operation, Starting a Stirred-tank Reactor, Rate at which a Plate Absorber Approaches Steady State.	8

Text & Reference books:

- 1. Mickley, Reid and Sherwood, "Applied Mathematics in Chemical Engineering", Tata McGraw Hill, New Delhi (1981).
- 2. E. Kreyszig, "Advanced Engineering Mathematics", 8th edition, John Wiley and Sons (1999).
- 3. M. R. Spiegel, "Advanced Mathematics for Engineers and Scientists", Schaum Outline Series, McGraw Hill, (1971).
- 4. Chandrika Prasad, Reena Garg, "Advanced Engineering Mathematics", Khanna Publishing house

KOE 066 GIS & REMOTE SENSING

COURSE OBJECTIVE: Students undergoing this course are expected to-

1. Understand about the principles of GIS, Remote Sensing, Spatial Systems, and its applications to Engineering Problems.

COURSE OUTCOME: *After completion of the course student will be able to-*

- CO1: Understand about the principles of Remote Sensing and its advantages and limitations.
- CO2: Retrieve the information content of remotely sensed data.
- CO3: Apply problem specific remote sensing data for engineering applications.
- CO4: Analyze spatial and attribute data for solving spatial problems.
- CO5: Create GIS and cartographic outputs for presentation

KOE-066 GIS & REMOTE SENSING		
Unit	Topic	Lectures
1	Basic component of remote sensing (RS), advantages and limitations of RS, possible use of RS techniques in assessment and monitoring of land and water resources; electromagnetic spectrum, energy interactions in the atmosphere and with the Earth's surface; major atmospheric windows; principal applications of different wavelength regions; typical spectral reflectance curve for vegetation, soil and water, spectral signatures.	8
2	Different types of sensors and platforms; contrast ratio and possible causes of low contrast; aerial photography; types of aerial photographs, scale of aerial photographs, planning aerial photography- end lap and side lap; stereoscopic vision, requirements of stereoscopic photographs; air-photo interpretation- interpretation elements;	8
3	Photogrammetry- measurements on a single vertical aerial photograph, measurements on a stereo-pair- vertical measurements by the parallax method; ground control for aerial photography; satellite remote sensing, multispectral scanner- whiskbroom and push-broom scanner; different types of resolutions; analysis of digital data- image restoration; image enhancement; information extraction, image classification, unsupervised classification, supervised classification, important consideration in the identification of training areas, vegetation indices.	8
4	Microwave remote sensing. GI Sand basic components, different sources of spatial data, basic spatial entities, major components of spatial data, Basic classes of map projections and their properties.	8
5	Methods of data input into GIS, Data editing, spatial data models and structures, Attribute data management, integrating data (map overlay) in GIS, Application of remote sensing and GIS for the management of land and water resources.	8

Text & Reference Books:

- 1. Reddy Anji, M. 2006. Textbook of Remote Sensing and Geographical Information Systems. BS Publications, Hyderabad.
- 2. Elangovan, K. 2006. GIS Fundamentals Applications and Implementations. New India Publication Agency, New Delhi.
- 3. George Joseph. 2005. Fundamentals of Remote Sensing. 2nd Edition. Universities Press (India) Private Limited, Hyderabad.
- 4. Jensen, J.R. 2013. Remote Sensing of the Environment: An Earth Resource Perspective. Pearson Education Limited, UK.
- 5. Lillesand, T., R.W. Kiefer and J. Chipman. 2015. Remote Sensing and Image Interpretation. 7th Edition, John Wiley and Sons Singapore Pvt. Ltd., Singapore.
- 6. Sabins, F.F. 2007. Remote Sensing: Principles and Interpretation. Third Edition, Waveland Press Inc., Illinois, USA.

KOE-067 UNDERSTANDING THE HUMAN BEING COMPREHENSIVELY – HUMAN ASPIRATIONS AND ITS FULFILLMENT

Course Objectives:

- 1. To help the students having the clarity about human aspirations, goal, activities and purpose of life
- 2. To facilitate the competence to understand the harmony in nature/existence and participation of human being in the nature/existence.
- 3. To help the students to develop the understanding of human tradition and its various components.

Course Methodology:

- 1. The methodology of this course is exploration and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.
- 2. It is free from any dogma or set of do's and don'ts related to values.
- 3. It is a process of self-investigation and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a proposal and the students are facilitated and encouraged to verify it in their own right, based on their Natural Acceptance and subsequent Experiential Validation.
- 4. This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student leading to continuous self-evolution
- 5. This self-exploration also enables them to critically evaluate their preconditioning and present beliefs

	KOE-067 UNDERSTANDING THE HUMAN BEING COMPREHENSIVELY-		
	HUMAN ASPIRATIONS AND ITS FULFILLMENT		
Unit	Торіс	Lectures	
1	Introduction: The basic human aspirations and their fulfillment through Right understanding and Resolution; All-encompassing Resolution for a Human Being, its details and solution of problems in the light of Resolution.	8	
2	Understanding Human being and its expansion: The domain of right understanding starts from understanding the human being (the knower, the experience and the doer); and extends up to understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).	8	
3	Activities of the Self: Understanding the human being comprehensively is the first step and the core theme of this course; human being as co-existence of the self and the body; the activities and potentialities of the self; Reasons for harmony/contradiction in the self.	8	
4	Understanding Co-existence with other orders: The need and the process of inner evolution (through self-exploration, selfawareness and self-evaluation)- particularly awakening to activities of the Self: Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to comprehensive knowledge about the existence).	8	
5	Expansion of harmony from self to entire existence: Understanding different aspects of All-encompassing Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being with All-encompassing Resolution covering all four dimensions of human endeavour viz., realization, thought, behavior and work (participation in the larger order) leading to harmony at all levels from self to Nature and entire Existence.	8	

Reference Books:

- A Foundation Course in Human Values and Profession Ethics (Text Book and Teachers' Manual), R. R. Gaur, R. Sangal, G. P. Bagaria (2010), Excel Books, New Delhi [ISBN 978-8-174-46781-2]
- 2. Avartansheel Arthshastra, A. Nagraj, Divya Path Sansthan, Amarkantak, India
- 3. Economy of Permanence (a quest for social order based on non-violence), J. C. Kumarappa (2010), Sarva-Seva-Sangh-Prakashan, Varansi, India
- 4. Energy and Equity, Ivan Illich (1974), The Trinity Press, Worcester & Harper Collins, USA
- 5. Ishandi Nau Upnishad, Shankaracharya, Geeta press, Gorakhpur,
- 6. Manav Vyavahar Darshan, A. Nagraj, Divya Path Sansthan, Amarkantak, India
- 7. Manaviya Sanvidhan, A. Nagraj, Divya Path Sansthan, Amarkantak, India