

Master in **Computer Vision** Barcelona

Module 3: Machine learning for computer vision

Project: Bag of Visual Words Image Classification

Lecturer: Marçal Rossinyol, marcal@cvc.uab.es

S01 discussion

- Number of keypoints in SIFT
 - The more the merrier
- Dense SIFT
 - nobody tried different scales!
 - A couple of groups didn't manage to get it working (i.e. they obtained worse results)
- Codebook sizes / k-nn value
- k-nn and distances
 - Just slight differences found
 - Which distance would work better for HISTOGRAMS?
- Dimensionality reduction
- Precompute stuff, store to disk!

S02

- We'll start with BoVW computed with Dense SIFT with a large enough codebook size
- We'll normalize descriptors
 - o L2-norm, Power-norm, etc..
- Cross-validation
 - Sklearn functions: StratifiedkFold, GridsearchCV
- Spatial Pyramids
- SVM and kernels
 - Use sklearn standardScaler to project every dimension to [0, 1]!
 - linear kernel
 - RBF kernel
 - our own histogram intersection kernel
- OPTIONAL: Fisher Vectors (http://yael.gforge.inria.fr/tutorial/tuto_imgindexing.html)

Cross Validation

Spatial Pyramids

Spatial Pyramids

Histogram Intersection kernel

def histogramIntersection(M, N):

$$K_{int}(A,B) = \sum_{i=1}^{m} \min\{a_i, b_i\}.$$

return K_int

Tasks to do

Improve the BoVW code with:

- Dense SIFT (with tiny steps and different scales!)
- L2-norm power norm
- **SVM** classifier
- StandardScaler
- Cross-validation
- Linear, RBF and histogram intersection kernels
- **Spatial Pyramids**
- Fisher Vectors (OPTIONAL)

Deliverable

- A single Python notebook file per group reporting all the work done,
 - with the different experiments,
 - o code,
 - o plots,
 - o explanations, etc.
 - EVERYTHING EXECUTED!

- To deliver by Monday 16th @ 10 A.M. by email (<u>marcal@cvc.uab.es</u>)
 - Please, state clearly your group.

Warning: provided code might not work out of the box depending on the used versions (OpenCV, numpy, sklearn...) do not panic, and RTFM read the documentation

