Time-Series Data Augmentation for Deep Learning: A Survey

Authors: Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, XueWang, Huan Xu

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Survey Track

Presenter: Abdullah Mamun

Date: Mar 9, 2023

Time Series Data Augmentation for Deep Learning: A Survey

Qingsong Wen¹, Liang Sun¹, Fan Yang², Xiaomin Song¹, Jingkun Gao^{3*}, Xue Wang¹, Huan Xu²

¹DAMO Academy, Alibaba Group, Bellevue, WA, USA

²Alibaba Group, Hangzhou, China

³Twitter, Seattle, WA, USA
qingsong.wen, liang.sun, fanyang.yf, xiaomin.song, xue.w, huan.xu}@al

{qingsong.wen, liang.sun, fanyang.yf, xiaomin.song, xue.w, huan.xu}@alibaba-inc.com, jingkung@twitter.com

347 citations as of today

Purpose of the presentation:

A brief overview on the existing data augmentation techniques for time-series data.

Why Augmentation?

- "The success of deep learning relies heavily on a large size of training data to avoid overfitting."
- "Unfortunately, many time series tasks do not have enough labeled data."
- "The labeled data of many real-world time series applications may be limited such as classification in medical time series and anomaly detection."

Challenges of time-series data augmentation

- "The intrinsic properties of time series data are not fully utilized in current data augmentation methods."
- "One unique property of time series data is the so-called temporal dependency."
- "This becomes more complicated when we model multivariate time series where we need to consider the potentially complex dynamics of these variables across time."

What is discussed in this paper?

Data augmentation methods for not only

- time-series classification, but also for
- time-series forecasting, and
- anomaly detection.

Also, a taxonomy of different types of augmentations (as shown in the figure).

Time domain – window cropping

- "It is a subsample method to randomly extract continuous slices from the original time series.
- The length of the slice is a tunable parameter.
- For classification problem, the labels of sliced samples are the same as the original time series.
- For anomaly detection problem, the anomaly label will be sliced along with value series."

Time domain – window warping

- "This method selects a random time range, then compresses (down sample) or extends (up sample) it, while keeps other time range unchanged."
- "Window warping would change the total length of the original time series, so it should be conducted along with window cropping for deep learning models."

Time domain – flipping

- Flipping generates the new sequence x_1', \cdots, x_N' by flipping the sign of original time series x_1, \cdots, x_N . Here, $x_t' = -x_t$.
- "The labels are still the same, for both anomaly detection and classification, assuming we have symmetry between up and down directions."

Time domain – noise injection

- Noise injection is a method by injecting small amount of noise/outlier into time series without changing the corresponding labels.
- This includes injecting
 Gaussian noise, spike, step like trend, and slope-like trend,
 etc.

Frequency domain – Amplitude and Phase Perturbation (APP)

anomaly detection by convolutional neural network. Specifically, for the input time series x_1, \dots, x_N , its frequency spectrum $F(\omega_k)$ through Fourier transform is calculated as:

$$F(\omega_k) = \frac{1}{N} \sum_{t=0}^{N-1} x_t e^{-j\omega_k t} = A(\omega_k) \exp[j\theta(\omega_k)]$$
 (1)

where $\omega_k = \frac{2\pi k}{N}$ is the angular frequency, $A(\omega_k)$ is the amplitude spectrum, and $\theta(\omega_k)$ is the phase spectrum. For perturbations in amplitude spectrum $A(\omega_k)$, the amplitude values of randomly selected segments are replaced with Gaussian noise by considering the original mean and variance in the amplitude spectrum. While for perturbations in phase spectrum $\theta(\omega_k)$, the phase values of randomly selected segments are added by an extra zero-mean Gaussian noise in the phase spectrum. The amplitude and phase perturbations

Frequency domain – AFFT and IAFFT

- Surrogate data to improve the classification performance of rehabilitative time series in deep neural network.
- (AAFT) and the iterated AAFT (IAAFT)
- The main idea is to perform random phase shuffle in phase spectrum after Fourier transform and then perform rank-ordering of time series after inverse Fourier transform.
- The generated time series from AAFT and IAAFT can approximately preserve the temporal correlation, power spectra, and the amplitude distribution of the original time series.

Time-Frequency domain — STFT

- Short Fourier transform (STFT) to generate time-frequency features for sensor time series, and conduct data augmentation on the time-frequency features
- Two augmentation techniques are proposed. One is the local averaging based on a defined criteria with the generated features appended at the tail end of the feature set. Another is the shuffling of feature vectors to create variation in the data.

Time-series classification with and without Augmentation

Dataset: Alibaba cloud monitoring system

Different noises are injected and tested for robustness

Augmentation methods: cropping, warping, and flipping

Outlier injection	w/o aug	w/ aug	Improvement
spike	96.26%	96.37%	0.11%
step	93.70%	95.62%	1.92%
slope	95.84%	96.16%	0.32%

Table 1: Accuracy improvement from data augmentation under outlier injection in time series classification.

Time-series forecsating with and without Augmentation

 Datasets: Electricity, Traffic, m4-hourly, m4-daily, m4-weekly

Dataset	DeepAR			Transformer		
	w/o aug	w/ aug	ARI	w/o aug	w/ aug	ARI
electricity	0.87	0.97	1.92%	1.04	1.11	-2%
traffic	0.66	0.80	-12%	0.70	0.91	-16%
m4-hourly	6.33	5.35	56%	7.77	7.87	38%
m4-daily	4.88	4.48	10%	7.85	7.38	37%
m4-weekly	12.00	9.34	76%	6.62	7.09	23%

Table 3: Time seires forecasting improvement from data augmentation based on MASE.

Time-series anomaly detection with and without Augmentation

Dataset: Yahoo!

 Algorithms: Raw, Decomposed, Decomposed with augmentation

Augmentations: flipping, cropping, label expansion, and APP based augmentation in frequency domain

Algorithm	Precision	Recall	F1
U-Net-Raw	0.473	0.351	0.403
U-Net-DeW	0.793	0.569	0.662
U-Net-DeWA (w/ aug)	0.859	0.581	0.693

Table 2: Time series anomaly detection improvement from data augmentation based on precision, recall, and F1 score.

https://abdullah-mamun.com a.mamun@asu.edu