IOT Sensor Blinding

By: Alex Winstead (awinstead2015@my.fit.edu), Xuchao (Steven) Jiang (xjiang2017@my.fit.edu), Cole Clements (cclements2016@my.fit.edu), Jeremy Gluck (jgluck2016@my.fit.edu), Todd St. Onge (tstonge2016@my.fit.edu)

Progress Summary

Task	Completion %	To Do	
Setup/Build IoT Lab	100%	Done	
Collect Data	95%	Collect doorbell data	
Parse Data	100%	All Parsers are built and implemented at scale.	
Create Machine learning models	60%	RF Classifier model is working but needs to be further refined.	

Milestone 5

Goals for Milestone 5

- Task 1: Further Develop machine learning models
 - Use TensorFlow
 - Look at other classifier type regression models.
 - Fine tune the features.
 - Explore adding alternate features (Bidirectional data transfer statistics)
- Task 2: Continue collecting data.
 - Look at places where more data would increase model accuracy.
- Task 3: Begin using case testing
 - Create simulated tests of different iot devices and let the model try to classify them.

Developing Machine Learning Models

- Using SciKit Learn instead of TensorFlow
- Will be looking at other classifier type regression models.
- Fine tune the features.
- Adding alternate features like
 Bidirectional data transfer statistics.

```
In [564]: | import sklearn as sk
              from sklearn.ensemble import RandomForestClassifier
              from sklearn.model selection import train test split
              X = data[['Time','Length','Device August','Device Yale','Device Schlage']] # Features
              y=data['Full Label'] # Labels
              # Split dataset into training set and test set
              X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
In [565]: M from sklearn.ensemble import RandomForestClassifier
              #Create a Gaussian Classifier
              clf=RandomForestClassifier(n estimators=100)
              #Train the model using the training sets y pred=clf.predict(X test)
              clf.fit(X_train,y_train)
              y_pred=clf.predict(X_test)
In [566]: ▶ #Import scikit-learn metrics module for accuracy calculation
              from sklearn import metrics
              # Model Accuracy, how often is the classifier correct?
              print("Accuracy:", metrics.accuracy score(y test, y pred))
```

Accuracy: 0.71875

Continue Collecting Data

- Door lock data were completely collected and classified.
- The data collected include lock actions, unlock actions, and doing nothing.
- The data were parsed into csv files for machine learning.
- Camera data has been collected.

Begin Using Case Testing

 By combining captures of different locks performing different actions we can use our model and record its accuracy.

Accuracy Stats

Average: 62.71%

o High: 71.875%

o Low: 50.0%

Student Design Poster and E-Book

• The Poster and E-Book are still being made for the new due date of April 27th.

Conference Paper

- CSET still being held August 12-14 until further notice
- Researched related works

Task Matrix for Milestone 5

	Alex	Cole	Jeremy	Steven	Todd	Left to do
Data Collection	0%	30%	0%	60%	0%	10%
Machine Learning	60%	0%	0%	0%	0%	40%
Use Case Testing	50%	0%	0%	0%	0%	50%
Conference Paper	0%	0%	20%	0%	10%	70%
E-Book and Poster	5%	0%	70%	0%	70%	(50%) (95%)

Further Work

IoT Lab Closure

- The IoT Lab has been closed due to the COVID-19 Outbreak.
- This restricts the use of the lab through VPNs only.

Milestone 6

- Task 1: Finalize model and identifying lab devices
 - o Perform any final tuning to the model.
- Task 2: Write Paper and prep for Conference
 - Ready materials.
- Task 3: Student Design Showcase

Questions?