Т. В. Родина, Е. С. Трифанова

ЗАДАЧИ И УПРАЖНЕНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ – I

для напр. «Прикладная математика и информатика»

Учебное пособие

под редакцией проф. И. Ю. Попова

Санкт-Петербург 2011

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Т.В. Родина, Е.С. Трифанова ЗАДАЧИ И УПРАЖНЕНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ - I

(для напр. «Прикладная математика и информатика»)

Учебное пособие

Под редакцией проф. И.Ю. Попова

Санкт-Петербург

2011

Т.В. Родина, Е.С.Трифанова Задачи и упражнения по математическому анализу I (для спец. «Прикладная математика и информатика»). Учебное пособие. – СПб: СПбГУ ИТМО, 2011. –208с.

Предлагаемое пособие предназначено для студентов ЕНФ и ФИТИП специальности «Прикладная математика и информатика». В пособии представлены задачи по математическому анализу, соответствующие курсу лекций, читаемых для студентов этой специальности в первом семестре. В начале каждого параграфа дан подробный разбор методов решения приводимых в пособии задач. Пособие может быть использовано студентами других специальностей, желающими углубить свои знания в области математического анализа.

Авторы выражают глубокую признательность проф. И.Ю.Попову, доц. И.В. Сейферт, Е.В.Костюченко за внимательное отношение к работе и ряд ценных замечаний.

Рекомендовано к печати Ученым советом естественнонаучного факультета, 26.04.2011, протокол №4

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования и науки Российской Федерации была утверждена Программа развития государственного образовательного учреждения высшего профессионального образования «Санкт-Петербургский государственный университет информационных технологий, механики и оптики» на 2009–2018 годы.

© Санкт-Петербургский государственный университет информационных технологий, механики и оптики, 2011

©Т.В.Родина, Е.С.Трифанова, 2011

Содержание

§1	BBI	ЕДЕНИЕ	5
	1.1	Множества	5
	1.2	Логическая символика	7
	1.3	Метод математической индукции	9
	1.4	Сочетания. Бином Ньютона	19
§2	ФУНКЦИИ И ОТОБРАЖЕНИЯ		
	2.1	Числовая функция	24
	2.2	Построение графиков функций элементарными методами	36
	2.3	Полярные координаты	46
	2.4	Отображения множеств. Мощность множеств.	53
	2.5	Ограниченность числовых множеств.	55
	2.6	Метрическое пространство. Множества в метрических пространствах.	61
§3	ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ		
	3.1	Числовая последовательность. Способы задания. Монотонность	62
	3.2	Предел последовательности	66
	3.3	Числовые ряды	81
§ 4	ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ		89
	4.1	Определения предела функции	89
	4.2	Непрерывность функции в точке	94
	4.3	Вычисление пределов функций с помощью арифметических свойств пределов.	95
	4.4	Вычисление пределов функций с помощью замечательных пределов.	98
	4.5	Эквивалентность функций в точке. Вычисление пределов функций с помощью эквивалентных бесконечно малых	99

	4.6	Сравнение функций. Символы Ландау и их использование при вычислении пределов	105		
	4.7	Непрерывность функции и точки разрыва	113		
	4.8	Асимптоты	116		
	4.9	Непрерывность и равномерная непрерывность функции на множестве.	118		
§ 5	ПРОИЗВОДНАЯ И СВОЙСТВА ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЙ				
	5.1	Производная функции	122		
	5.2	Дифференциал функции	131		
	5.3	Геометрическое приложение производной	133		
	5.4	Производные и дифференциалы высших порядков	137		
	5.5	Основные теоремы о дифференцируемых функциях	143		
	5.6	Формула Тейлора	146		
	5.7	Правило Лопиталя	153		
§6	ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ				
	6.1	Монотонность функции	158		
	6.2	Экстремумы функции	159		
	6.3	Наибольшие и наименьшие значения функции	165		
	6.4	Выпуклость функции и точки перегиба	168		
	6.5	Полное исследование функций	171		
§7	BEI	КТОРНАЯ ФУНКЦИЯ	188		
ОТВЕТЫ 190					
ПТА	питература 20				

§1 ВВЕДЕНИЕ

1.1 Множества

Множества будем обозначать большими латинскими буквами A, B, X, Y, а их элементы — буквами a, b, x, y. Если элемент a содержится в множестве A, то этот факт записывается так: $a \in A$. Если каждый элемент множества A является элементом множества B, то будем говорить, что множество A является **подмножеством** множества B и писать $A \subset B$. Если $A \subset B$ и $B \subset A$, то A = B.

Пустым множеством называется множество \varnothing , не содержащее ни одного элемента. **Универсальным множеством** называется множество U, содержащее в качестве подмножеств все множества (в рамках данной задачи).

Для двух множеств A и B определены следующие операции:

- *объединение* $A \cup B$ множество, состоящее из элементов, принадлежащих хотя бы одному из множеств A или B;
- **пересечение** $A \cap B$ множество, состоящее из элементов, принадлежащих одновременно обоим множествам A и B;
- *разность* $A \setminus B$ множество, состоящее из элементов, принадлежащих множеству A и не принадлежащих множеству B;
- **дополнение** $A^d = U \setminus A$ множество, состоящее из элементов, не принадлежащих множеству A.

Упражнения

1.1. Даны два множества: $A = \{-5, -4, -2, -1, 0, 1, 3, 5, 7, 9, 10\}$, $B = \{-5, -4, -3, -1, 0, 1, 2, 4, 6, 8, 10\}$. Найти множества

a) $A \cup B$;

b) $A \cap B$:

- c) $A \setminus B$;
- **d)** $A \triangle B$ (симметрическая разность, $A \triangle B = (A \setminus B) \cup (B \setminus A)$).
- **1.2.** Множество A состоит из натуральных чисел, делящихся на 4, множество B из натуральных чисел, делящихся на 10, и множество C из натуральных чисел, делящихся на 75. Из каких чисел состоит множество $A \cap B \cap C$?
- **1.3.** Пусть A множество решений неравенства $\frac{1-x}{x+5} > 0$, а B множество решений неравенства $\frac{5-x}{x+2} < 0$. С помощью каких операций над множествами A и B образуются решения

а) системы
$$\begin{cases} \frac{1-x}{x+5} > 0; \\ \frac{5-x}{x+2} < 0; \end{cases}$$
 b) совокупности
$$\begin{cases} \frac{1-x}{x+5} > 0; \\ \frac{5-x}{x+2} < 0? \end{cases}$$

- Построить на координатной плоскости множества точек, координаты ко-1.4. торых удовлетворяют равенствам **a)** $x^2 + (y^2 - 1)^2 = 0$; **b)** $x^2 \cdot (y^2 - 1)^2 = 0$.
- 1.5. Построить на координатной плоскости множества точек, координаты которых удовлетворяют равенству $\frac{(x^2+y^2-1)(x-y)^2}{(x^2+y^2-1)^2+(x-y)^2}=0.$
- Доказать включения: 1.6.

a)
$$(A \cap C) \cup (B \cap D) \subset (A \cup B) \cap (C \cup D);$$
 c) $A \setminus C \subset (A \setminus B) \cup (B \setminus C).$

c)
$$A \setminus C \subset (A \setminus B) \cup (B \setminus C)$$
.

b)
$$(B \setminus C) \setminus (B \setminus A) \subset A \setminus C$$
;

- Следует ли из равенства $A \setminus B = C$, равенство $A = B \cup C$? А наоборот? 1.7.
- 1.8. Доказать равенства:

a)
$$A \setminus (A \setminus B) = A \cap B$$
;

d)
$$A \triangle B = (A \cup B) \setminus (A \cap B);$$

b)
$$(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C);$$

b)
$$(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C);$$
 e) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C);$

c)
$$A \cap (B \setminus A) = \emptyset$$
;

$$\mathbf{f)} \qquad A\triangle (B\triangle C) = (A\triangle B)\triangle C.$$

Пусть A и B - произвольные подмножества универсального множества U. 1.9. Доказать равенства:

a)
$$A \setminus B = A \cap B^d$$
;

c)
$$(A \cup B) \cap (A^d \cup B^d) = A \cup B$$
;

b)
$$(A \setminus B)^d = A^d \cup B$$
;

d)
$$A \triangle U = A^d$$

- **1.10.** Пусть $A \subset U$, $B \subset U$. Найти множество $X \subset U$, удовлетворяющее уравнению $(X \cup A)^d \cup (X \cup A^d) = B$.
- **1.11.** Пусть множества A, B и C такие, что $B \subset A \subset C$. Найти множество X, удовлетворяющее системе $\begin{cases} A \cap X = B, \\ A \cup X = C. \end{cases}$

1.12. Пусть множества A, B и C такие, что $B \subset A$ и $A \cap C = \emptyset$. Найти множество X, удовлетворяющее системе $\begin{cases} A \setminus X = B, \\ X \setminus A = C. \end{cases}$

Декартовым или **прямым произведение** множеств A и B называется множество $A \times B$, элементами которого являются всевозможные упорядоченные пары (a,b), где $a \in A$, $b \in B$.

1.13. Пусть $A = \{0,1,2\}$, $B = \{1,2,3,4\}$. Из каких элементов состоят множества:

a) $A \times B$;

c) $(A \times B) \cap (B \times A)$;

b) $B \times A$;

d) $(A \cap B) \times (B \cap A)$?

1.14. Пусть множества X = [a,b], Y = [c,d] - отрезки числовой прямой. Что представляет собой множество

a) $X \times Y$;

b) $X \times Y \times X$?

1.15. Верны ли утверждения:

 $\mathbf{a)} \quad A \times A = A \; ;$

b) $A \subset A \times A$?

1.16. Что представляет собой множество $A \times B$, если $A = \{(x,y) | x^2 + y^2 = 1\}$, $B = \mathbb{R}$?

1.17. Доказать тождество $(A \times C) \cup (B \times C) = (A \cup B) \times C$. Проверить соответствующее равенство для пересечения.

1.2 Логическая символика

Пример 1.1. Сформулируйте словесно и докажите или опровергните следующее утверждение $\forall x \in \mathbb{N}, \exists y \in \mathbb{Q}: x \cdot y = 100$.

 \odot Это утверждение звучит так: «Для любого натурального числа x существует рациональное число y такое, что произведение xy равно 100». Утверждение является истинным, так как число y = 100/x удовлетворяет соотношению $x \cdot y = 100$ для любого натурального x и это число является рациональным.

Пример 1.2. Сформулируйте и докажите или опровергните следующее утверждение $\forall x, y, z \in \mathbb{R} \ (x > y) \Rightarrow (x \cdot z > y \cdot z)$.

 \odot Это утверждение звучит так: «Для любых трех вещественных чисел x, y и z верно, что если x > y тогда $x \cdot z > y \cdot z$ ». Это утверждение ложно, так как

найдутся такие вещественные числа, например, x = 5, y = 3, z = -1, что 5 > 3 - истинно, но $5 \cdot (-1) > 3 \cdot (-1)$ - ложно.

Пример 1.3. Верно ли утверждение: $\exists n \in \mathbb{N} \ \forall a \in \mathbb{N} \ a^n : 2$? Сформулируйте и запишите с помощью кванторов его отрицание.

 \odot Утверждение звучит так: «Существует такое натуральное число n, что любое натуральное число a, возведенное в степень n делится нацело на 2». Очевидно, что это утверждение неверно, так как, например, 3^n не делится на 2 ни при каком натуральном n.

Отрицание этого утверждения или утверждение, противоположное данному будет звучать так: «Какое бы натуральное число n мы ни взяли (для любого натурального n) найдется натуральное число a, что a в степени n не будет делиться на 2», т.е. $\forall n \in \mathbb{N} \ \exists a \in \mathbb{N} \ a^n/2$.

Замечание. При построении отрицания утверждения квантор \forall заменяется на \exists и наоборот.

Упражнения

- **1.18.** Сформулируйте словами и докажите или опровергните следующие утверждения:
 - a) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x + y = 0$;
 - **b)** $\forall a \in \mathbb{N}, \forall b \in \mathbb{N} \quad \exists c \in \mathbb{N}: a-b=c;$
 - c) $\forall a \in \mathbb{N}, \ \forall b \in \mathbb{N} \ \exists c \in \mathbb{N} \cup \{0\}: \ |a-b| = c;$
 - **d)** $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} : x \cdot y = 0$;
 - e) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : \frac{y}{x} = 2;$
 - **f)** $\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}: \ \frac{y}{x} = \pi?$
- **1.19.** Будет ли условие А «необходимым» для выполнения условия В, «достаточным» или «необходимым и достаточным»? Свяжите условия А и В, используя слова «если ..., то ...» или «тогда и только тогда».
 - **a)** $A = \{$ две данные прямые лежат в одной плоскости $\}, B = \{$ две данные прямые пересекаются $\};$
 - **b)** $A = \{$ каждое из чисел x, y делится на $5\}, B = \{$ сумма чисел x + y делится на $5\};$

- **c)** $A = \{$ число делится на 100 $\}, B = \{$ число делится на 1000 $\};$
- **d)** $A = \{$ число делится на $8\}, B = \{$ число делится на 4 и на $2\};$
- **e)** $A = \{$ число делится на $6\}, B = \{$ число делится на 2 и на $3\};$
- **f)** $A = \{x < 0\}, B = \{\exists y : x + y > 0\};$
- **g)** $A = \{a^2 \le 4\}, B = \{a \le 2\};$ **h)** $A = \{\sin x > 0\}, B = \{0 < x < \pi\};$
- **i)** $A = \{$ стороны четырехугольника ABCD попарно равны $\}, B = \{$ четырехугольник ABCD - параллелограмм $\}$;
- **j)** $A = \{$ два угла треугольника ABC равны по $60^{\circ}\}$, $B = \{$ треугольник ABC - равносторонний $\}$;
- **k)** $A = \{$ четырехугольник является ромбом $\}, B = \{$ диагонали четырехугольника делят его углы пополам .
- 1.20. Сформулируйте и запишите с помощью кванторов ∀, ∃ утверждение, противоположное данному:
 - a) $\forall x > 0 \ \forall y > 0$: x y > 0;
 - **b)** $\forall x. \forall v. x > v \Rightarrow x^2 > v^2$:
 - c) $\forall a, \forall b, \exists c : a > b \Rightarrow a < b + c :$
 - **d)** $\forall n \in \mathbb{N}$. $\exists a, b, c, d \in \mathbb{N} \cup \{0\}$: $n = a^2 + b^2 + c^2 + d^2$.
- 1.21. Запишите утверждение без кванторов отрицания:
 - a) $\neg (\forall x : x^2 > 0)$; b) $\neg \forall x, y > 0 \quad x y > 0$; c) $\neg \exists x \in \mathbb{Q} : x^2 = 2$;
 - **d)** $\forall m,n \in \mathbb{N}$ $(m=2^n) \Rightarrow$ число 2^m+1 простое.

1.3 Метод математической индукции

Пример 1.4. Доказать, что для любого натурального числа n выполняется равенство $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{n}$.

В этом примере нужно доказать, что

$$1^2 = \frac{1 \cdot 2 \cdot 3}{6}$$
 (данное равенство при $n = 1$),

$$1^2 + 2^2 = \frac{2 \cdot 3 \cdot 5}{6}$$
 (данное равенство при $n = 2$), $1^2 + 2^2 + 3^2 = \frac{3 \cdot 4 \cdot 7}{6}$ (данное равенство при $n = 3$)

и так далее, т.е. можно сказать, что требуется доказать <u>последовательность</u> равенств.

Для решения таких задач часто применяется *метод математической индукции*, основанный на *принципе математической индукции*:

Если в последовательности утверждений

- а) первое утверждение верно;
- б) за каждым верным утверждением следует верное утверждение,

то каждое утверждение этой последовательности верно.

Принцип математической индукции называют также аксиомой математической индукции.

Для того чтобы воспользоваться этим принципом нужно

- а) проверить непосредственно, что первое утверждение является верным;
- б) предположив, что утверждение верно при n=k, доказать, что оно является верным при n=k+1.

Первая часть доказательства называется *базой индукции*, а вторая - *индукци- онной теоремой* или *индукционным шагом* (переходом).

Применим теперь этот метод для решения примера 1.4.

$$\odot$$
 а) База индукции. $1^2 = \frac{1 \cdot 2 \cdot 3}{6}$ - верно.

б) Индукционная теорема. Допустим, что утверждение верно при n=k, т.е. допустим, что верно равенство $1^2+2^2+3^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}$.

Требуется доказать, что утверждение верно при n = k + 1, т.е. будет верным равенство

$$1^{2} + 2^{2} + 3^{2} + \dots + (k+1)^{2} = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

или, что тоже самое,

$$1^{2} + 2^{2} + 3^{2} + ... + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

Доказательство.

$$1^{2} + 2^{2} + 3^{2} + \dots + (k+1)^{2} = \left(1^{2} + 2^{2} + \dots + k^{2}\right) + \left(k+1\right)^{2} = \frac{k(k+1)(2k+1)}{6} + \left(k+1\right)^{2} = \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6} = \frac{(k+1)(2k^{2} + k + 6k + 6)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}.$$

Пользуясь принципом математической индукции, можем заключить, что данное равенство выполняется для любого натурального n.

Следует отметить, что обе части метода математической индукции существенны. Рассмотрим еще два примера.

Пример 1.5. $n^2 + n + 17$ - простое число при любом натуральном n.

© При n=1 получим: 19 — простое число. Это утверждение верно. Более того, если мы подставим n=2,3,4,...15, то будем получать простые числа. Из этого нельзя сделать вывод, что выражение n^2+n+17 дает простое число при любом натуральном n. При n=16 мы получим число 289, которое не является простым (289=17²). Таким образом, без доказательства индукционной теоремы, нельзя сказать, что утверждение верно при любом натуральном n.

Пример 1.6. Докажем, что все натуральные числа равны между собой.

⊙ Для этого докажем теорему:

Пусть при n = k верно равенство k = k + 1. Тогда оно верно при n = k + 1, т.е. верно равенство k + 1 = k + 2.

Доказательство очевидно. Возьмем равенство k = k + 1 и прибавим к каждой его части по 1. Получим k + 1 = k + 2, что и требовалось доказать.

Порочность этого доказательства состоит в том, что была доказана только индукционная теорема и не установлена база. Очевидно, при n=1 равенство 1=2 не будет верным, и пользоваться принципом математической индукции нельзя.

•

Метод математической индукции часто применяется тогда, когда ответ заранее неизвестен, но его можно «угадать», т.е. высказать предположение, каков будет ответ.

Пример 1.7. Вычислить
$$\arctan \frac{1}{2} + \arctan \frac{1}{8} + ... + \arctan \frac{1}{2n^2}$$
.

 \odot Вычислим сумму двух слагаемых: $\arctan \frac{1}{2} + \arctan \frac{1}{8}$.

Для этого вычислим

$$tg\left(\arctan\frac{1}{2} + \arctan\frac{1}{8}\right) = \frac{tg\arctan\frac{1}{2} + tg\arctan\frac{1}{8}}{1 - tg\arctan\frac{1}{2} \cdot tg\arctan\frac{1}{8}} = \frac{\frac{1}{2} + \frac{1}{8}}{1 - \frac{1}{2} \cdot \frac{1}{8}} = \frac{2}{3},$$

следовательно, учитывая, что выполняется неравенство

$$0 < \arctan \frac{1}{2} + \arctan \frac{1}{8} < \frac{\pi}{2},$$

$$1 \qquad 1 \qquad 2$$

получим:

$$\arctan \frac{1}{2} + \arctan \frac{1}{8} = \arctan \frac{2}{3}$$
.

Вычислим сумму трех слагаемых:

$$\arctan \frac{1}{2} + \arctan \frac{1}{8} + \arctan \frac{1}{18} = \arctan \frac{2}{3} + \arctan \frac{1}{18}$$
.

Тогда

$$tg\left(arctg\frac{2}{3} + arctg\frac{1}{18}\right) = \frac{\frac{2}{3} + \frac{1}{18}}{1 - \frac{2}{3} \cdot \frac{1}{18}} = \frac{3}{4},$$

и угол $\arctan \frac{1}{2} + \arctan \frac{1}{8} + \arctan \frac{1}{18}$ лежит в первой четверти, следовательно, сумма трех слагаемых равна $\arctan \frac{3}{4}$.

Таким образом, разумно высказать предположение, что сумма n слагаемых будет равна $\arctan \frac{n}{n+1}$. Для доказательства того, что это предположение верно, применим метод математической индукции, причем база индукции уже установлена и осталось только доказать индукционную теорему. Допустим, что верно равенство

$$\arctan \frac{1}{2} + \arctan \frac{1}{8} + \dots + \arctan \frac{1}{2k^2} = \arctan \frac{k}{k+1}$$
.

Докажем, что тогда будет верным равенство

$$\arctan \frac{1}{2} + \arctan \frac{1}{8} + \dots + \arctan \frac{1}{2(k+1)^2} = \arctan \frac{k+1}{k+2}.$$

Доказательство.

$$\arctan \frac{1}{2} + \arctan \frac{1}{8} + \dots + \arctan \frac{1}{2(k+1)^2} = \left(\arctan \frac{1}{2} + \arctan \frac{1}{8} + \dots + \arctan \frac{1}{2k^2}\right) + \arctan \frac{1}{2(k+1)^2} = \arctan \frac{k}{k+1} + \arctan \frac{1}{2(k+1)^2}.$$

Так как

$$tg\left(\arctan\frac{k}{k+1} + \arctan\frac{1}{2(k+1)^2}\right) = \frac{\frac{k}{k+1} + \frac{1}{2(k+1)^2}}{1 - \frac{k}{k+1} \cdot \frac{1}{2(k+1)^2}} = \frac{\left(2k(k+1) + 1\right)2(k+1)^3}{2(k+1)^2\left(2(k+1)^3 - k\right)} = \frac{k+1}{k+2}$$

и угол $\operatorname{arctg} \frac{k}{k+1} + \operatorname{arctg} \frac{1}{2(k+1)^2}$ лежит в первой четверти, то

$$\arctan \frac{k}{k+1} + \arctan \frac{1}{2(k+1)^2} = \arctan \frac{k+1}{k+2}.$$

Наше предположение доказано. •

Рассмотрим еще несколько примеров применения метода математической индукции.

Пример 1.8. Доказать, что сумма кубов трех последовательных натуральных чисел делится на 9.

- \odot a) Сумма $1^3 + 2^3 + 3^3 = 36$ делится на 9.
- б) Предположим, что сумма $k^3 + (k+1)^3 + (k+2)^3$ делится на 9. Докажем, что сумма $(k+1)^3 + (k+2)^3 + (k+3)^3$ тоже делится на 9.

Действительно,

$$(k+1)^{3} + (k+2)^{3} + (k+3)^{3} = (k^{3} + (k+1)^{3} + (k+2)^{3}) + ((k+3)^{3} - k^{3}) =$$

$$= (k^{3} + (k+1)^{3} + (k+2)^{3}) + 3((k+3)^{2} + (k+3)k + k^{2}) =$$

$$= (k^{3} + (k+1)^{3} + (k+2)^{3}) + 9(k^{2} + 3k + 3)$$

и, так как каждое слагаемое последней суммы делится на 9, то и данное выражение делится на 9.

В силу принципа математической индукции выражение $n^3 + \left(n+1\right)^3 + \left(n+2\right)^3$ будет делиться на 9 при любом натуральном n.

Пример 1.9. Числовая последовательность задана рекуррентной формулой $a_n = 3a_{n-1} + 1$, $n \ge 2$. Доказать, что $a_n = \frac{1}{2} \left(5 \cdot 3^{n-1} - 1 \right)$, если $a_1 = 2$.

- \odot a) При n=1 получим $a_1 = \frac{1}{2} (5 \cdot 3^0 1) = 2$.
- б) Предположим, что $a_k = \frac{1}{2} \left(5 \cdot 3^{k-1} 1 \right)$. Докажем, что $a_{k+1} = \frac{1}{2} \left(5 \cdot 3^k 1 \right)$.

Действительно, согласно данной рекуррентной формуле $a_{k+1} = 3a_k + 1$. Тогда, используя условие индукционной теоремы, получим

$$a_{k+1} = 3 \cdot \frac{1}{2} (5 \cdot 3^{k-1} - 1) + 1 = \frac{1}{2} (5 \cdot 3^k - 3 + 2) = \frac{1}{2} (5 \cdot 3^k - 1).$$

Пример 1.10. Доказать, что при любом натуральном n справедливо неравенство

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$$
.

- б) Предположим, что верно неравенство $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + ... + \frac{1}{\sqrt{k}} \ge \sqrt{k}$ и докажем, что тогда будет верным неравенство

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \ge \sqrt{k+1} .$$

Воспользовавшись условием теоремы, получим неравенство

$$\left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}}\right) + \frac{1}{\sqrt{k+1}} \ge \sqrt{k} + \frac{1}{\sqrt{k+1}}$$

и, если мы докажем, что верно неравенство $\sqrt{k} + \frac{1}{\sqrt{k+1}} \ge \sqrt{k+1}$, то требуемое будет доказано.

Для доказательства последнего неравенства умножим обе его части на $\sqrt{k+1}$ (так как это выражение положительно, то умножение приведет к равносильному неравенству). Получим $\sqrt{k(k+1)} + 1 \ge k + 1 \Leftrightarrow \sqrt{k(k+1)} \ge k$. Так как последнее неравенство очевидно, то требуемое доказано. \bullet

Приведем два обобщения метода математической индукции.

1) Очевидно, что первое утверждение в данной последовательности утверждений не обязательно должно иметь место при n=1. Оно может быть верным при любом другом целом n, например $n=k_0$. Тогда метод математической индукции доказывает, что данная последовательность утверждений верна для всех n, начиная с k_0 .

Пример 1.11. Доказать, что $11^{n+2} + 12^{2n+1}$:133 при $n \ge 0$.

- \odot а) При n = 0 получим $11^2 + 12^1 = 121 + 12 = 133:133$.
- б) Предположим, что $11^{k+2} + 12^{2k+1}$: 133. Докажем, что $11^{k+3} + 12^{2k+3}$: 133. Чтобы воспользоваться индукционным предположением (т.е. условием индукционной теоремы), преобразуем выражение

$$11^{k+3} + 12^{2k+3} = 11 \cdot 11^{k+2} + 12^{2} \cdot 12^{2k+1} = 11 \cdot 11^{k+2} + 144 \cdot 12^{2k+1} = 11 \cdot 11^{k+2} + (11+133) \cdot 12^{2k+1} = 11 \cdot (11^{k+2} + 12^{2k+1}) + 133 \cdot 12^{2k+1}.$$

Так как оба слагаемых делятся на 133, то сумма тоже делится на 133. •

2) Иногда удобно индукционную теорему формулировать в следующем виде: «если утверждение верно при всех $n_0 \le n \le k$, то оно будет верно при n = k + 1».

Пример 1.12. Числовая последовательность определяется рекуррентной формулой

$$a_{n+1}=a_1a_n-a_0a_{n-1},\quad a_1=3,\ a_0=2$$
 . Доказать, что $a_n=2^n+1$.
 \odot а) При $n=0$ и при $n=1$ получим $a_0=2^0+1=2$ и $a_1=2^1+1=3$.

б) Предположим, что равенство $a_n = 2^n + 1$ верно при всех $0 \le n \le k$, $k \ge 1$. Докажем, что оно будет верным и при n = k + 1, т.е. что $a_{k+1} = 2^{k+1} + 1$. Для доказательства воспользуемся данным рекуррентным соотношением, в которое можно подставить выражения для a_k и a_{k-1} :

$$a_{k+1} = a_1 a_k - a_0 a_{k-1} = 3 \cdot \left(2^k + 1\right) - 2 \cdot \left(2^{k-1} + 1\right) = 3 \cdot 2^k + 3 - 2^k - 2 = 2 \cdot 2^k + 1 = 2^{k+1} + 1.$$

•

- 3) Сформулируем два полезных утверждения, которые применяются при доказательстве неравенств методом математической индукции:
- а) Если даны две последовательности a_n и b_n , и выполняются условия $a_1 > b_1$ и $a_{n+1} b_{n+1} \ge a_n b_n$, $n \in \mathbb{N}$, то для любого натурального числа n верно неравенство $a_n > b_n$.
- **б)** Если даны две последовательности a_n и b_n , и выполняются условия $a_1>b_1>0$ и $\frac{a_{n+1}}{b_{n+1}}\!\geq\!\frac{a_n}{b_n}\!>\!0, \quad n\!\in\!\mathbb{N}$, то для любого натурального числа n верно неравенство $a_n>b_n$.

Еще раз рассмотрим пример 1.10.

Доказать, что при любом натуральном n справедливо неравенство

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \ge \sqrt{n}$$
.

 \odot Для доказательства данного неравенства воспользуемся первым утверждением. Пусть $a_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}}$ и $b_n = \sqrt{n}$. Тогда неравенство $a_1 \ge b_1$ очевидно, и остается только доказать, что для любого натурального n будет верно неравенство $a_{n+1} - b_{n+1} \ge a_n - b_n$, которое равносильно неравенству $a_{n+1} - a_n \ge b_{n+1} - b_n$.

В нашем примере $a_{n+1}-a_n=\frac{1}{\sqrt{n+1}},\ b_{n+1}-b_n=\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$.

Неравенство $\frac{1}{\sqrt{n+1}} > \frac{1}{\sqrt{n+1} + \sqrt{n}}$ очевидно, следовательно, верно и данное неравенство. ●

Пример 1.13. Доказать неравенство $(2n)! > \frac{4n}{n+1} (n!)^2$, n > 1.

 \odot Пусть $a_n=(2n)!,\ b_n=\frac{4n}{n+1}(n!)^2$. Тогда $a_2=24,\ b_2=\frac{32}{3}$ и неравенство $a_2>b_2$ верно. Докажем теперь, что для любого натурального n>1 будет вер-

ным неравенство $\frac{a_{n+1}}{b_{n+1}} \ge \frac{a_n}{b_n}$, которое равносильно неравенству $\frac{a_{n+1}}{a_n} \ge \frac{b_{n+1}}{b_n}$. Со-

ставим отношения

$$\frac{a_{n+1}}{a_n} = \frac{(2n+2)!}{(2n)!} = (2n+1)(2n+2), \quad \frac{b_{n+1}}{b_n} = \frac{(4n+4)(n+1)((n+1)!)^2}{4n(n+2)(n!)^2} = \frac{(n+1)^4}{n(n+2)}.$$

Неравенство

$$(2n+1)(2n+2) \ge \frac{(n+1)^4}{n(n+2)}$$

равносильно неравенству

$$2n(2n+1)(n+2) \ge (n+1)^3$$
,

справедливость которого проверяется непосредственно. Следовательно, данное неравенство тоже верно. •

Пример 1.14. Неравенство Бернулли.

Доказать неравенство $(1+x)^n \ge 1 + nx$, если x > -1, $n \in \mathbb{N}$.

- \odot а) При n=1 получим верное неравенство: $1+x \ge 1+x$.
- б) Предположим, что при n = k и x > -1 верно неравенство: $(1+x)^k \ge 1 + kx$. Умножим обе его части на (1+x). (Эта величина в силу условия на x будет положительной.) Получим $(1+x)^{k+1} \ge (1+kx)(1+x) = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x$. Следовательно, исходное неравенство будет верным и для n = k+1 и, в силу принципа математической индукции, для любого натурального числа n.

Пример 1.15. Неравенство между средним арифметическим и средним геометрическим.

Для любых неотрицательных чисел $a_1, a_2, ..., a_n$ выполняется неравенство

$$\frac{a_1 + a_2 + \ldots + a_n}{n} \ge \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n}.$$

Замечание. Величина $\frac{a_1+a_2+...+a_n}{n}$ называется *средним арифметическим* чисел $a_1,a_2,...,a_n$, а величина $\sqrt[n]{a_1\cdot a_2\cdot...\cdot a_n}$ их *средним геометрическим*.

- \odot а) При n=2 неравенство будет иметь вид $\frac{a_1+a_2}{2} \ge \sqrt{a_1a_2}$. Для доказательства последнего неравенства, перенесем все его члены в одну сторону и преобразуем к виду $\left(\sqrt{a_1}-\sqrt{a_2}\right)^2 \ge 0$, что очевидно. База доказана.
- б) Индукционную теорему докажем, предполагая, что все числа a_i строго положительны и сначала для случая, когда произведение данных чисел равно единице. Т.е. допустим, что при n=k из равенства $a_1 \cdot a_2 \cdot ... \cdot a_k = 1$ следует не-

равенство $a_1+a_2+...+a_k \ge k$. Докажем, что тогда из равенства $a_1\cdot a_2\cdot ...\cdot a_{k+1}=1$ будет следовать неравенство $a_1+a_2+...+a_{k+1}\ge k+1$.

Возможны два случая.

- 1) Все a_i равны единице. Тогда неравенство превращается в равенство и, очевидно, верно.
- 2) Не все числа a_i равны единице. Тогда среди них найдутся, по крайней мере два числа, одно из которых будет больше единицы, а второе меньше. Допустим, что это числа a_k и a_{k+1} . Тогда, используя индукционное предположение, получим

$$a_1 + a_2 + \dots + a_k + a_{k+1} = (a_1 + a_2 + \dots + a_k a_{k+1}) + a_k + a_{k+1} - a_k a_{k+1} \ge k + 1 + a_k + a_{k+1} - a_k a_{k+1} - 1 = k + 1 + (a_k - 1)(1 - a_{k+1}).$$

Так как числа a_k-1 и $1-a_{k+1}$ одного знака, то их произведение положительно, следовательно, $a_1+a_2+...+a_{k+1}\geq k+1$, что и требовалось доказать.

Если произведение чисел a_i не равно единице, то применим доказанное неравенство к числам $b_i = \frac{a_i}{\sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n}}$. Тогда $b_1 \cdot b_2 \cdot \ldots \cdot b_n = 1$ и по доказанному $b_1 + b_2 + \ldots + b_n \geq n$, что равносильно требуемому неравенству. \blacksquare

Упражнения

- **1.22.** Найти сумму первых n нечетных чисел: 1+3+5+...+(2n-1).
- **1.23.** Найти произведение чисел $\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{(2n-1)^2}\right)$.
- **1.24.** Доказать тождество $\frac{1^2}{1 \cdot 3} + \frac{2^2}{3 \cdot 5} + \dots + \frac{n^2}{(2n-1)(2n+1)} = \frac{n(n+1)}{2(2n+1)}.$
- **1.25.** Доказать тождество $1 \cdot 1! + 2 \cdot 2! + ... + n \cdot n! = (n+1)! 1$.
- **1.26.** Доказать тождество $1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2$.
- 1.27. Доказать тождество

$$\frac{1}{2} - \frac{2}{2^2} + \frac{3}{2^3} - \frac{4}{2^4} + \dots + \left(-1\right)^{n-1} \frac{n}{2^n} = \frac{1}{9} \left(2 + \left(-1\right)^{n-1} \frac{3n+2}{2^n}\right).$$

1.28. Доказать тождество

$$\frac{x}{1-x^2} + \frac{x^2}{1-x^4} + \frac{x^4}{1-x^8} + \dots + \frac{x^{2^{n-1}}}{1-x^{2n}} = \frac{1}{1-x} \cdot \frac{x-x^{2^n}}{1-x^{2^n}}, \quad |x| \neq 1.$$

1.29. Доказать тождество
$$\underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}_{n \ \kappa o p h e \check{u}} = 2 \cos \frac{\pi}{2^{n+1}}$$
.

- **1.30.** Доказать, что при всех натуральных n > 1 справедливо равенство $\frac{1}{\log_a 2 \log_a 4} + \frac{1}{\log_a 4 \log_a 8} + \ldots + \frac{1}{\log_a 2^{n-1} \log_a 2^n} = \left(1 \frac{1}{n}\right) \log_2^2 a, (a > 0, a \neq 1).$
- **1.31.** Последовательность a_n задана рекуррентно: $a_1 = 0.5$ и для любого натурального n выполняется $(2-a_n)a_{n+1}=1$. Найти формулу общего члена.
- **1.32.** Пусть a_n **последовательность Фибоначчи**, т.е. $a_1 = a_2 = 1$ и $a_n = a_{n-1} + a_{n-2}, \ n \ge 3$. Докажите, что последовательность a_n обладает свойствами **a)** $a_1^2 + a_2^2 + ... + a_n^2 = a_n \cdot a_{n+1};$ **b)** $a_{n+1}^2 a_n \cdot a_{n+2} = (-1)^n;$ **c)** $a_1 + a_2 + ... + a_n = a_{n+2} 1;$ **d)** $a_1 + a_3 + ... + a_{2n-1} + a_{2n}.$
- **1.33.** Последовательность u_n задана рекуррентно $u_1=-5,\ u_{n+1}=u_n+10n+5$. Докажите, что $u_n=5n^2-10,\ n\in\mathbb{N}$.
- **1.34.** Последовательность a_n задана рекуррентно:

$$a_1 = 2$$
, $a_2 = 2\cos x$, $a_n = 2a_{n-1}\cos x - a_{n-2}$, $n > 2$.

Найти формулу общего члена последовательности.

- **1.35.** Последовательность задана рекуррентно: $a_1 = 1$, $a_n = a_{n-1} \cos x + \cos (n-1)x$, $n \ge 2$. Найти общий член последовательности.
- **1.36.** Доказать, что при всех $n \in \mathbb{N}$ многочлен $n \cdot (2n^2 3n + 1)$ делится на 6.
- **1.37.** Доказать, что при всех $n \in \mathbb{N}$ число $6^{2n-2} + 3^{n+1} + 3^{n-1}$ делится на 11.
- **1.38.** Докажите, что при всех $n \in \mathbb{N}$ число $4^n + 15n 1$ делится на 9.
- **1.39.** Докажите, что число $2^{n+5} \cdot 3^{4n} + 5^{3n+1}$ делится на 37 при всех целых $n \ge 0$.
- **1.40.** Доказать, что при всех $n \in \mathbb{N}$ число $2^{3^n} + 1$ делится на число 3^{n+1} .
- **1.41.** Последовательность задана формулой общего члена: $a_n = 7^n + 12n$. Докажите, что при делении любого члена последовательности на 18 получится остаток 1.
- **1.42.** Доказать, что любое целое число рублей, большее 7, можно уплатить без сдачи монетами, достоинством в 3 и 5 рублей.
- **1.43.** Доказать, что n различных прямых, проведенных на плоскости через одну точку, делят плоскость на 2n частей.
- **1.44.** Доказать, что при любом натуральном n > 1 верно неравенство

$$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} > \frac{13}{24}$$

1.45. Докажите, что при всех натуральных n верно неравенство

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$$
.

1.46. Докажите, что при всех натуральных n > 1 верно неравенство

$$\frac{n}{2} < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n - 1} < n$$
.

1.47. Докажите, что при всех натуральных n верно неравенство

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}}.$$

- **1.48.** Доказать, что при любом натуральном n > 2 верно $2^n n! < n^n$.
- **1.49.** При каких натуральных n верно неравенство $2^n > n^2$?
- **1.50.** Доказать, что для n > 2 верно $n^{n+1} > (n+1)^n$.
- **1.51.** Пусть $x_1, x_2, ..., x_n$ произвольные числа. Доказать неравенство

$$|x_1 + x_2 + \ldots + x_n| \le |x_1| + |x_2| + \ldots + |x_n|$$
.

1.52. Доказать, что при $|x| \le 1$ и любом $n \in \mathbb{N}$ верно неравенство

$$\left(1+x\right)^n+\left(1-x\right)^n\leq 2^n.$$

- **1.53.** Для положительных чисел $a_1, a_2, ..., a_n$ доказать неравенства между
 - а) средним гармоническим и средним геометрическим:

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \ldots a_n} ;$$

b) средним арифметическим и средним квадратичным:

$$\frac{a_1 + a_2 + \ldots + a_n}{n} \le \sqrt{\frac{a_1^2 + a_2^2 + \ldots + a_n^2}{n}}.$$

1.3 Сочетания. Бином Ньютона

При работе с биномом Ньютона (см. пар.2, гл.1) часто приходится вычислять сочетания C_n^k сразу для всех значений k от 0 до n. Это удобно делать с помощью *треугольника Паскаля*.

Если записать сочетания C_n^k для последовательных значений n в виде треугольной таблицы,

то легко заметить, что, в силу свойства сочетаний $C_{n-1}^{k-1} + C_{n-1}^k = C_n^k$, все внутренние элементы каждой строки, кроме первой можно получить сложением соответствующих элементов предыдущей строки. Так как элементы первой строки и крайние элементы всех остальных строк равны 1, то в числах этот треугольник будет выглядеть следующим образом. В написанной таблице получены сочетания из двух, из трех и из четырех. Для упрощения вычислений полезно отметить, что в каждой строке элементы, равноотстоящие от концов строки равны между собой.

Пример 1.16. Доказать равенство $\sum_{n=0}^{\infty} C_n^k = 2^n$.

 \odot Подставим в формулу Бинома Ньютона a = b = 1. Получим

$$2^{n} = (1+1)^{n} = C_{n}^{0} + C_{n}^{1} + C_{n}^{2} + \dots + C_{n}^{n} = \sum_{k=0}^{n} C_{n}^{k}.$$

Равенство доказано.

Пример 1.17. В разложении $(\sqrt{a} + \sqrt[4]{a})^{20}$ найти слагаемое, содержащее a^7 .

$$\odot$$
 Запишем k -ый член разложения бинома Ньютона:
$$C_{20}^k \left(\sqrt[4]{a}\right)^{20-k} \left(\sqrt[4]{a}\right)^k = C_{20}^k \cdot a^{\frac{20-k}{2} + \frac{k}{4}} = C_{20}^k \cdot a^{\frac{10-\frac{k}{4}}{4}}.$$

Следовательно, $10 - \frac{k}{4} = 7$. Тогда находим k = 12, а коэффициент при нем равен

$$C_{20}^{12} = \frac{20!}{12! \cdot 8!} = \frac{13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8} = 2 \cdot 3 \cdot 5 \cdot 13 \cdot 17 \cdot 19 = 125 \ 970.$$

Ответ: $125\ 970\ a^7$.

Пример 1.18. Найти сумму $S(n) = \sum_{k=0}^{n} (k+1)C_n^k$.

© Первый способ. Вначале раскроем скобки и воспользуемся равенством из примера 1:

$$S(n) = \sum_{k=0}^{n} kC_n^k + \sum_{k=0}^{n} C_n^k = \sum_{k=1}^{n} kC_n^k + 2^n.$$

Распишем сочетания ПО определению И воспользуемся равенством $k! = k \cdot (k-1)!$ верным при всех целых $k \ge 1$:

$$kC_n^k = \frac{k \cdot n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} = \frac{n \cdot (n-1)!}{(k-1)!((n-1)-(k-1))!} = nC_{n-1}^{k-1}.$$

Тогда, пользуясь результатом примера 3.1, получаем

$$S(n) = n \sum_{k=1}^{n} C_{n-1}^{k-1} + 2^{n} = n \cdot 2^{n-1} + 2^{n} = (n+2) \cdot 2^{n-1}.$$

Второй способ. Слагаемые данной суммы расположим в виде треугольной таблицы (рис. слева).

$$C_{n}^{0}$$
 C_{n}^{0} C_{n}^{0} ... C_{n}^{0} C_{n}^{0} ... C_{n}^{0} ... C_{n}^{1} ... C_{n}^{1} ... C_{n}^{1} ... C_{n}^{n} ... C_{n}^{n} ... C_{n}^{n} ... C_{n}^{n} ... C_{n}^{n} ... C_{n}^{n} ... C_{n}^{n}

Дополним эту таблицу до квадратной (рис. справа) и заметим, что в последней таблице сумма элементов, стоящих под главной диагональю, равна сумме элементов, стоящих над ней.

Сумма всех элементов квадратной таблицы равна $S_1 = (n+1)2^n$, сумма диагональных элементов $S_2 = 2^n$. Поэтому

$$S(n) = \frac{S_1 + S_2}{2} = \frac{(n+2)2^n}{2} = (n+2) \cdot 2^{n-1}$$
.

Пример 1.19. Найти сумму $S(n) = \sum_{k=0}^{n} (C_n^k)^2$.

 \odot Заметим, вначале, что $\left(C_n^k\right)^2 = C_n^k \cdot C_n^{n-k}$. Рассмотрим тождество $\left(1+x\right)^n \left(1+x\right)^n = \left(1+x\right)^{2n}$. Раскроем скобки по формуле бинома Ньютона и выпишем коэффициенты при x^n в левой и правой частях:

$$C_n^0 C_n^n + C_n^1 C_n^{n-1} + \dots + C_n^n C_n^0 = C_{2n}^n$$

Выражение слева есть искомая сумма, значит $S(n) = C_{2n}^{n}$.

Упражнения

1.54. Найти *n* из уравнения:

a)
$$C_{n-3}^2 = 21$$
; **b)** $C_n^3 = \frac{5n(n-3)}{4}$; **c)** $12C_n^1 + C_{n+4}^2 = 162$.

1.55. Доказать тождества:

a)
$$C_r^m \cdot C_m^k = C_r^k \cdot C_{r-k}^{m-k};$$

b) $C_n^{k-1} + 2C_n^k + C_n^{k+1} = C_{n+2}^{k+1}, \quad k \ge 1;$
c) $\sum_{k=0}^n (-1)^k C_n^k = 0;$
d) $\sum_{k=1}^n (2k-1)^2 = C_{2n+1}^3;$
e) $\sum_{k=0}^n (-1)^{k-1} k C_n^k = 0;$

f)
$$\sum_{k=0}^{s} C_n^k C_m^{s-k} = C_{m+n}^s;$$

h)
$$\sum_{0}^{n} (-1)^{k} 7^{n-k} C_{n}^{k} = 7^{n}$$
.

g)
$$\sum_{k=0}^{n} \frac{2^{k+1} C_n^k}{k+1} = \frac{3^{n+1} - 1}{n+1};$$

1.56. Найти сумму:

$$\mathbf{a)} \quad \sum_{k=0}^{n} \frac{C_n^k}{k+1};$$

d)
$$\sum_{k=0}^{n} C_{2n}^{2k}$$
;

b)
$$\sum_{k=1}^{n} (k-1)C_n^k$$
;

e)
$$\sum_{k=1}^{n} C_{2n}^{2k-1}$$
;

c)
$$\sum_{k} C_n^k$$
 по всем четным k ;

f)
$$\sum_{k=0}^{n} (-1)^k (C_n^k)^2$$
.

- **1.57.** Написать разложение $(\sqrt{2} + \sqrt{3})^6$.
- **1.58.** Написать разложение $(1 \sqrt{5})^7$.

1.59. Найти коэффициент многочлена:

a)
$$(1+x^2)^{10}$$
 при x^8 ;

c)
$$(x^2 - x + 1)^3$$
 при x^3 ;

b)
$$\left(2 - \frac{x^3}{3}\right)^7$$
 при x^9 ;

d)
$$(1+2x-3x^2)^4$$
 при x^3 и x^4 .

- **1.60.** В разложении $(a+b)^n$ найти n, если сумма всех биномиальных коэффициентов равна 4096.
- **1.61.** Найти член биномиального разложения $\left(ax + x^{-1/4}\right)^n$, не содержащий x, если сумма всех коэффициентов с нечетными индексами равна 512.
- **1.62.** В разложении $\left(\frac{1}{\sqrt[3]{a^2}} + \sqrt[4]{a^3}\right)^{17}$ найти слагаемое, не содержащее a.

- **1.63.** Сумма коэффициентов трех первых слагаемых (первым считается x^{2n}) разложения $\left(x^2 \frac{2}{x}\right)^n$ равна 97. Найдите член суммы, содержащий x^4 .
- **1.64.** Найти рациональную часть выражения: **a)** $\left(\sqrt{3} + \sqrt[3]{2}\right)^5$; **b)** $\left(\sqrt{7} \sqrt{3}\right)^8$.
- **1.65.** Найти коэффициент при x^9 в выражении $(1+x)^9 + (1+x)^{10} + ... + (1+x)^{14}$.
- **1.66.** Найти наибольшее значение суммы $(1+x)^{36} + (1-x)^{36}$ при $|x| \le 1$.
- **1.67.** Найти пятый член разложения $(2x\sqrt{x} \sqrt[3]{x})^8$.
- **1.68.** Найти средний член разложения $\left(2x + \frac{y}{2}\right)^{8}$.
- **1.69.** Найти наибольший член разложения **a)** $\left(1+\sqrt{2}\right)^{50}$, **b)** $\left(\sqrt{2}+\sqrt{3}\right)^{101}$.
- **1.70.** Найти наибольший коэффициент многочлена: **a)** $\left(\frac{1}{2} + \frac{3}{2}x\right)^4$; **b)** $(2x+1)^{10}$.
- **1.71.** Пусть $(2+\sqrt{3})^n = a_n + b_n\sqrt{3}$. Вычислить $a_n^2 3b_n^2$.
- **1.72.** Доказать неравенство $(1+x)^n > 1 + C_n^k x^k$, x > 0, k = 1, 2, ...n.
- **1.73.** Доказать неравенство $2 < \left(\frac{n+1}{n}\right)^n < 3$.

§2 ФУНКЦИИ И ОТОБРАЖЕНИЯ

2.1 Числовая функция

Напомним, как выглядят графики основных элементарных функций.

а) Линейная функция y = kx + b.

Графиком линейной функции является прямая. Она пересекает оси координат в точках A(-b/k, 0) и B(0, b) при $k \neq 0$. Если k = 0, то прямая параллельна оси *OX*. Если b = 0, то прямая проходит через начало координат. Коэффициент k равен тангенсу угла наклона прямой к положительному направлению оси абсцисс и называется угловым коэффициентом прямой.

b) Степенная функция $v = x^{\alpha}$.

График степенной функции имеет различный вид в зависимости от значения степени α . Рассмотрим разные случаи.

A)
$$\alpha = n \ (n \ge 2)$$
, n — натуральное число.

Функция определена при любом х. При четном n она является четной, т.е. график симметричен относительно оси ОУ, при нечетном n — нечетной, симметрия относительно начала координат.

Б) $\alpha = -n$, n – натуральное число. Функция определена при всех $x \neq 0$. Четность/нечетность определяется также, как и для пункта А.

B)
$$\alpha = \frac{m}{n}$$
, m и n – взаимно-простые на-

туральные числа (т.е. дробь несократима).

При нечетном n функция определена при всех x, а при четном n только при $x \ge 0$.

$$\Gamma$$
) $\alpha = -\frac{m}{n}$, m и n — взаимно-простые на-

 Γ) $\alpha = -\frac{m}{n}$, m и n — взаимно-простые на-

туральные числа.

При нечетном n функция определена при всех $x \neq 0$, а при четном n только при x > 0.

с) Показательная функция

$$y = a^x \quad (a > 0, a \neq 1).$$

Функция определена при всех x. При a>1 функция является возрастающей, а при a<1 - убывающей.

d) Логарифмическая функция

$$y = \log_a x \ (a > 0, \ a \neq 1).$$

Функция определена при x>0. При a>1 функция является возрастающей, а при a<1 - убывающей.

e) Тригонометрические функции $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$.

Функции $y = \sin x$ и $y = \cos x$ определены при всех x и являются периодическими с периодом 2π .

Функция $y=\operatorname{tg} x$ определена при всех $x\neq \frac{\pi}{2}+\pi k,\ k\in\mathbb{Z}$ и является периодической с периодом π .

Функция $y=\operatorname{ctg} x$ определена при всех $x\neq \pi k,\ k\in\mathbb{Z}$ и является периодической с периодом π .

f) Обратные тригонометрические функции $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \arctan x$.

Функции $y = \arcsin x$ и $y = \arccos x$ определены при $-1 \le x \le 1$. Множество значений функций такие:

$$-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}, \quad 0 \le \arccos x \le \pi.$$

Функция $y = \operatorname{arctg} x$ определена при всех x и принимает значения $-\frac{\pi}{2} < \operatorname{arctg} x < \frac{\pi}{2}$. Имеет две горизонтальные асимптоты $y = \pm \frac{\pi}{2}$.

Функция $y = \operatorname{arcctg} x$ определена при всех x и принимает значения $0 < \operatorname{arcctgx} < \pi$. Имеет две горизонтальные асимптоты $y = 0, \ y = \pi$.

Пример 2.1. Найти область изменения функции

a)
$$y = \frac{x^2 + 5}{x}$$
; c) $y = \sqrt{4x^2 - 2x + 1}$;
b) $y = \frac{2x^2 + 3x - 3}{x^2 - x + 1}$; d) $y = \ln \frac{x + 1}{x - 1}$, $x \in [-5, -1)$.

 $x^2 - x + 1$ x - 1 \Rightarrow **a)** Первый способ. Область изменения функции или множество ее значений, это множество таких чисел $\{y\}$, для которых найдется значение аргу-

мента x, такое что f(x) = y. Следовательно, равенство $y = \frac{x^2 + 5}{x}$ можно рассматривать как уравнение относительно переменной x, причем задача состоит в том, чтобы определить, при каких значениях y это уравнение имеет хотя бы одно решение. Решая это уравнение, приходим к квадратному уравнению $x^2 - xy + 5 = 0$, $x \neq 0$. Это уравнение имеет решения, если $D = y^2 - 20 \ge 0$, т.е., если $|y| \ge \sqrt{20}$. Ответ $E(f) = \left(-\infty, -\sqrt{20}\right] \cup \left[\sqrt{20}, +\infty\right)$.

Второй способ. Эта функция нечетная, поэтому ее достаточно исследовать только для положительных значений x. Ее область изменения будет симметрична относительно нуля.

Для положительных значений x применим неравенство между средним арифметическим и средним геометрическим: $y = \frac{x^2+5}{x} = x + \frac{5}{x} \ge 2\sqrt{x \cdot \frac{5}{x}} = 2\sqrt{5}$. Это неравенство точное, так как равенство достигается при x, удовлетворяющих условию $x = \frac{5}{x}$, поэтому для положительных значений x значения функции будут составлять промежуток $\left[2\sqrt{5}, +\infty\right)$, а для отрицательных, соответственно, промежуток $\left(-\infty, -2\sqrt{5}\right]$.

b) Так же, как и в предыдущей задаче, посмотрим, при каких значениях y имеет решения уравнение $y = \frac{2x^2 + 3x - 3}{x^2 - x + 1}$. Решая его, получим квадратное уравнение $x^2(y-2) - x(y+3) + y + 3 = 0$, которое имеет корни, если

 $D = (y+3)^2 - 4(y+3)(y-2) = (y+3)(11-3y) \ge 0$. Это условие будет выполнено, если $y \in \left[-3, \frac{11}{3}\right]$.

с) Первый способ. Исследуем уравнение $y=\sqrt{4x^2-2x+1}$. Отметив, что значения y должны быть только неотрицательными, возведем равенство в квадрат и придем к уравнению $4x^2-2x+\left(1-y^2\right)=0$, которое имеет решения, если $D=4-16\left(1-y^2\right)=16y^2-12\geq 0$. С учетом условия $y\geq 0$, получаем $y\geq \frac{\sqrt{3}}{2}$. Второй способ. Квадратный трехчлен $4x^2-2x+1$ имеет минимум в точке $x=\frac{1}{4}$, равный $\frac{3}{4}$. Следовательно, $4x^2-2x+1\geq \frac{3}{4}$ и $y=\sqrt{4x^2-2x+1}\geq \frac{\sqrt{3}}{2}$.

d) Выделим целую часть дроби: $\frac{x+1}{x-1} = 1 + \frac{2}{x-1}$. Тогда, так как $-5 \le x < -1$, то $-6 \le x - 1 < -2 \Rightarrow -\frac{1}{3} \ge \frac{2}{x-1} > -1 \Rightarrow \frac{2}{3} \ge 1 + \frac{2}{x-1} > 0$. Окончательно получим: $\ln\left(1 + \frac{2}{x-1}\right) \le \ln\frac{2}{3}$.

Пример 2.2. Имеет ли данная функция обратную?

a)
$$f(x) = 2x + \sqrt{x^2 + 3} + 2\sqrt[3]{x^3 + 1}$$
; **d)** $f(x) = \log_2(x^2 - 2x + 3)$;

b)
$$f(x) = x^2 \cdot \operatorname{sign} x$$
;

e)
$$f(x) = \log_2(x^2 - 2x + 3), x \in [1, +\infty).$$

c)
$$f(x) = \begin{cases} \frac{1}{x}, & x < 0; \\ e^{-\frac{1}{x}}, & x > 0; \end{cases}$$

 \odot Функция будет иметь обратную, если она удовлетворяет условию: $\forall x_1, x_2 \in D(f)$ $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. Графически это означает, что каждая прямая, параллельная оси OX пересекает график функции не более одного раза. Это условие, очевидно, выполняется, если функция строго монотонна на всей своей области определения.

а) Данная функция определена на всей вещественной оси и строго монотонна. Следовательно, она имеет обратную.

b)
$$x^2 \cdot \text{sign } x = \begin{cases} x^2, & x > 0 \\ 0, & x = 0 \end{cases}$$
. Эта функция строго монотонна на всей оси и, $-x^2, x < 0$

следовательно, имеет обратную.

- **c)** Данная функция не является монотонной на своей области определения, более того, она убывает, если x < 0 и возрастает, если x > 0. Однако, она имеет обратную, так как каждое значение f(x) встречается ровно один раз (см. рисунок).
- **d)** Квадратный трехчлен $x^2 2x + 3$ имеет симметричные значения относительно x = 1. Поэтому для любых значений аргумента вида $x_{1,2} = 1 \pm t$ будет выполнено $f(x_1) = f(x_2)$, и обратной

функции не существует. Отметим, что данная функция возрастает на промежутке $[1,+\infty)$ и убывает на промежутке $(-\infty,1]$.

е) На промежутке $[1,+\infty)$ квадратный трехчлен $x^2 - 2x + 3$ возрастает и, следовательно, данная функция строго возрастают. Поэтому обратная функция существует. ●

Пример 2.3. Имеет ли данная функция обратную? Если да, то найти ее и построить график.

a)
$$f(x) = \frac{2x-3}{x+2}$$
;

c)
$$f(x) = \cos x$$
, $x \in [\pi/2, 3\pi/2]$;

b)
$$f(x) = \ln(x - \sqrt{x^2 - 1});$$

d) $f(x) = \cos x, \ x \in [\pi, 2\pi].$

 \odot В этом примере для исследования вопроса о существовании обратной функции поступим иначе. Рассмотрим равенство f(x) = y как уравнение относительно x. Если это уравнение имеет единственное решение для любого $y \in E(f)$, то обратная функция существует, если решений больше одного хотя бы при одном значении $y \in E(f)$, то обратной функции не существует.

а) Для данной функции $D(f) = \mathbb{R} \setminus \{-2\}$, $E(f) = \mathbb{R} \setminus \{2\}$. Решим уравнение $\frac{2x-3}{x+2} = y$, где $y \neq 2$. После несложных y = f(x) преобразований, получим: x(2-y) = 2y + 3. Это уравнение имеет единственное решение относительно x, поэтому обратная функция существует и задается аналитически формулой $x = \frac{2y+3}{2-y}$. Заменяя букву x на y, а букву y на x, получим

 $g(x) = \frac{2x+3}{2-x}$. График такой функции будет симметричен графику данной

функции относительно прямой y = x (см. рис.). Заметим, что графики функций

$$y = \frac{2x-3}{x+2}$$
 и $x = \frac{2y+3}{2-y}$ будут совпадать.

b) Здесь $D(f) = [1, +\infty)$. Уравнение $y = \ln(x - \sqrt{x^2 - 1})$ приводится к виду $2xe^y = e^{2y} + 1$ и дает единственное решение $x = \frac{e^y + e^{-y}}{2}$, которое и является функцией, обратной данной. Так как при $x \ge 1$ выполняется $0 < x - \sqrt{x^2 - 1} \le 1$, то $y \le 0$. Записываем обратную в стандартном виде

 $g(x) = \frac{e^x + e^{-x}}{2} = \text{ch } x$, $x \in (-\infty, 0]$. Получаем $E(f) = (-\infty, 0]$ и строим графики (см. рис.).

- **c)** Решая уравнение $y = \cos x$ на промежутке $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, получим 2 решения: $x = \arccos y$ и $x = 2\pi \arccos y$. Таким образом, данная функция не имеет обратной.
- **d)** Аналогично предыдущему, решая уравнение $y = \cos x$ на промежутке $[\pi, 2\pi]$, получим одно решение: $x = 2\pi \arccos y$. Это и есть функция, обратная данной. Делаем замену обозначений и строим графики (см. рис.). •

Пример 2.4. Доказать, что функции f(x) и g(x) взаимно обратны.

a)
$$f(x) = \frac{1}{x+2}$$
, $x \in (-2, +\infty)$; $g(x) = \frac{1-2x}{x}$, $x \in (0, +\infty)$.

b)
$$f(x) = \ln \frac{e^x + 1}{e^x - 1}, x \in (0, +\infty), g(x) = \ln \frac{e^x + 1}{e^x - 1}, x \in (0, +\infty).$$

c)
$$f(x) = \sin x, \ x \in \left[\frac{5\pi}{2}, 3\pi \right], \ g(x) = 3\pi - \arcsin x, \ x \in [0,1].$$

 \odot Чтобы проверить будут ли две функции f и g взаимно обратными, достаточно проверить, что D(f) = E(g), E(f) = D(g) и выполнено одно из равенств f(g(x)) = x или g(f(x)) = x.

а) Найдем области определения и изменения данных функций: $D(f) = (-2, +\infty), \ E(f) = (0, +\infty), \ D(g) = (0, +\infty), \ E(g) = (-2, +\infty).$ Далее вычислим $f(g(x)) = \frac{1}{\frac{1-2x}{x}+2} = \frac{x}{1-2x+2x} = x$, т.е. функции взаимно обратны.

b) Аналогично, $D(f) = (0, +\infty)$, $E(f) = (0, +\infty)$, $D(g) = (0, +\infty)$, $E(g) = (0, +\infty)$ и

$$f(g(x)) = \ln \frac{e^{\ln \frac{e^x + 1}{e^x - 1}} + 1}{e^{\ln \frac{e^x + 1}{e^x - 1}} - 1} = \ln \frac{\frac{e^x + 1}{e^x - 1} + 1}{\frac{e^x + 1}{e^x - 1} - 1} = \ln \frac{2e^x}{2} = x.$$

c)
$$D(f) = \left[\frac{5\pi}{2}, 3\pi\right], E(f) = \left[0,1\right], D(g) = \left[0,1\right], E(g) = \left[\frac{5\pi}{2}, 3\pi\right]$$
 If $f(g(x)) = \sin(3\pi - \arcsin x) = \sin(\arcsin x) = x$.

Пример 2.5. Вычислить a) $\arcsin(\sin 1)$; b) $\arcsin(\sin 10)$; c) $\arcsin(\sin(-7))$.

 \odot **a)** Пусть $\arcsin(\sin 1) = \alpha$, где α - угол, удовлетворяющий двум условиям: $\sin \alpha = \sin 1$ и $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$.

Очевидно, на этом промежутке есть единственный угол, удовлетворяющий первому условию: $\alpha = 1$ радиан.

b) Аналогично, пусть $\arcsin(\sin 10) = \alpha$, где α - угол, удовлетворяющий двум условиям: $\sin \alpha = \sin 10$ и $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$. Угол в 10 радиан лежит в третьей четверти и имеет такой же синус, что и угол $3\pi - 10$, лежащий в четвертой четверти на промежутке $\left[-\frac{\pi}{2}, 0\right]$. поэтому $\alpha = 3\pi - 10$.

c) Обозначим $\arcsin(\sin(-7)) = \alpha$. Тогда $\sin \alpha = \sin(-7)$ и $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$. Угол -7 радиан лежит в четвертой четверти, но не на промежутке $\left[-\frac{\pi}{2},0\right]$. На этот промежуток попа-

дает угол $2\pi - 7$. Поэтому $\alpha = 2\pi - 7$. \bullet

Пример 2.6. Вычислить **a**) $arccos(cos(2arctg(\sqrt{2}-1)); b) arctg \frac{1}{7} + 2arcsin \frac{1}{\sqrt{10}};$

c) $\arcsin \frac{4}{5} + \arcsin \frac{5}{13} + \arcsin \frac{16}{65}$; d) $\arctan \frac{1+x}{1-x} - \arctan x$.

 \odot **a)** Пусть $\operatorname{arctg}\left(\sqrt{2}-1\right)=\alpha$. Тогда $\operatorname{tg}\alpha=\sqrt{2}-1$ и $\alpha\in\left[0,\frac{\pi}{2}\right)$, так как тангенс этого угла положителен. Используя выражение косинуса двойного угла через тангенс простого, получим

$$\cos 2\alpha = \frac{1 - \lg^2 \alpha}{1 + \lg^2 \alpha} = \frac{-2 + 2\sqrt{2}}{4 - 2\sqrt{2}} = -\frac{1}{\sqrt{2}},$$

при этом угол 2α лежит на промежутке $[0,\pi)$, поэтому $2\alpha = \frac{3\pi}{4}$ и $\arccos(\cos(2\alpha)) = \frac{3\pi}{4}$.

b) Положим $\arctan \frac{1}{7} = \alpha$ и $\arcsin \frac{1}{\sqrt{10}} = \beta$. Тогда $\tan \alpha = \frac{1}{7}$ и $\alpha \in \left[0, \frac{\pi}{2}\right]$, а $\sin \beta = \frac{1}{\sqrt{10}}$ и $\beta \in \left[0, \frac{\pi}{4}\right]$, так как на промежутке $\left[0, \frac{\pi}{2}\right]$ синус возрастает и $\frac{1}{\sqrt{10}} < \frac{\sqrt{2}}{2} = \sin \frac{\pi}{4}$. Тогда $\alpha + 2\beta \in \left[0, \pi\right]$. Если вычислить косинус этого угла, то угол определится однозначно. Вычисляем косинус:

$$\cos(\alpha + 2\beta) = \cos\alpha \cdot \cos 2\beta - \sin\alpha \cdot \sin 2\beta.$$

Так как

$$\cos\alpha = \frac{1}{\sqrt{\lg^2\alpha + 1}} = \frac{7}{5\sqrt{2}}, \quad \sin\alpha = \sqrt{1 - \cos^2\alpha} = \frac{1}{5\sqrt{2}}, \quad \cos2\beta = 1 - 2\sin^2\beta = \frac{4}{5} \quad \text{и}$$

$$\sin2\beta = \sqrt{1 - \cos^22\beta} = \frac{3}{5}, \text{ то } \cos(\alpha + 2\beta) = \frac{7}{5\sqrt{2}} \cdot \frac{4}{5} - \frac{1}{5\sqrt{2}} \cdot \frac{3}{5} = \frac{1}{\sqrt{2}} \quad \text{и } \alpha + 2\beta = \frac{\pi}{4}.$$

$$\mathbf{c}) \quad \text{Положим } \arcsin\frac{4}{5} = \alpha \quad \text{и } \arcsin\frac{5}{13} = \beta. \quad \text{Тогда } \sin\alpha = \frac{4}{5} \quad \text{и } \alpha \in \left[0, \frac{\pi}{2}\right), \quad \text{а}$$

$$\sin\beta = \frac{5}{13} \quad \text{и } \beta \in \left[0, \frac{\pi}{2}\right]. \quad \text{Следовательно, } \alpha + \beta \in \left[0, \pi\right] \quad \text{и угол можно определить}$$

однозначно с помощью вычисления косинуса:

$$\cos(\alpha+\beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta = \sqrt{1 - \left(\frac{4}{5}\right)^2} \sqrt{1 - \left(\frac{5}{13}\right)^2} - \frac{4}{5} \cdot \frac{5}{13} = \frac{16}{65}.$$

Положим также $\arcsin\frac{16}{65} = \gamma$. Так как $\gamma \in \left[0, \frac{\pi}{2}\right]$ и $\alpha + \beta \in \left[0, \frac{\pi}{2}\right]$, то $\alpha + \beta + \gamma \in \left[0, \pi\right]$. Тогда

$$\cos(\alpha + \beta + \gamma) = \cos\gamma \cdot \cos(\alpha + \beta) - \sin\gamma \cdot \sin(\alpha + \beta) =$$

$$= \sqrt{1 - \left(\frac{16}{65}\right)^2} \cdot \frac{16}{65} - \frac{16}{65} \cdot \sqrt{1 - \left(\frac{16}{65}\right)^2} = 0 \text{ M } \alpha + \beta + \gamma = \frac{\pi}{2}.$$

d) Пусть $\arctan \frac{1+x}{1-x} = \alpha$ и $\arctan x = \beta$. Тогда

$$tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha \cdot tg \beta} = \frac{\frac{1+x}{1-x} - x}{1 + \frac{1+x}{1-x}x} = \frac{1+x-x+x^2}{1-x+x+x^2} = 1.$$

Определим промежуток, где находится угол $\alpha - \beta$. Если x > 1, то $\alpha \in \left(-\frac{\pi}{2}, 0\right)$ и $\beta \in \left(0, \frac{\pi}{2}\right)$. Отсюда $\alpha - \beta \in \left(-\pi, 0\right)$ и, следовательно $\alpha - \beta = -\frac{3\pi}{4}$. Если $x \le -1$, то $\alpha \in \left(-\frac{\pi}{2}, 0\right]$ и $\beta \in \left(-\frac{\pi}{2}, 0\right)$. Отсюда $\alpha - \beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ и, следовательно $\alpha - \beta = \frac{\pi}{4}$. И, наконец, если -1 < x < 1, то $\alpha \in \left(0, \frac{\pi}{2}\right)$ и $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Тогда $\alpha - \beta \in \left(-\frac{\pi}{2}, \pi\right)$ и $\alpha - \beta = \frac{\pi}{4}$.

Пример 2.7. Доказать тождества

a)
$$\arcsin x + \arccos x = \frac{\pi}{2}$$
;

c) $\cos(2\arccos x) = 2x^2 - 1;$

b) $\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}$;

d) $\arccos \frac{1-x^2}{1+x^2} = 2|\arctan x|$.

 \odot **а)** Первый способ. Пусть $\arcsin x = \alpha$ и $\arccos x = \beta$. Тогда $\sin \alpha = x$, $\cos \beta = x$ и $\alpha \in \left[0, \frac{\pi}{2}\right]$, $\beta \in \left[0, \frac{\pi}{2}\right]$, если $0 \le x \le 1$ и $\alpha \in \left[-\frac{\pi}{2}, 0\right]$, $\beta \in \left[\frac{\pi}{2}, \pi\right]$, если $-1 \le x \le 0$. В том и другом случае $\alpha + \beta \in \left[0, \pi\right]$. Отсюда $\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta = \sqrt{1 - x^2} \cdot x - x \cdot \sqrt{1 - x^2} = 0$. Следовательно, $\alpha + \beta = \frac{\pi}{2}$.

Второй способ. Введем те же обозначения, что и в первом способе, и докажем равенство $\alpha = \frac{\pi}{2} - \beta$. По определению функций $\arcsin x$ и $\arccos x$ углы α и $\frac{\pi}{2} - \beta$ лежат на промежутке $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. и $\sin \alpha = x$, и $\sin \left(\frac{\pi}{2} - \beta \right) = \cos \beta = x$. Поэтому верно равенство $\alpha = \frac{\pi}{2} - \beta$.

- **b)** Этот пример решается так же, как и предыдущий. Решим его только вторым способом. Пусть $\arctan x = \alpha$, $\arctan x = \beta$. Докажем, что $\alpha = \frac{\pi}{2} \beta$. По определению функций $\arctan x$ и $\arctan x$ имеем: $\tan x = x$ имеем: $\tan x = x$ и $\cot x = x$ имеем: $\tan x = x$ и $\cot x = x$ и $\cot x = x$ имеем: $\tan x = x$ и $\cot x = x$ $\cot x = x$ и $\cot x = x$ $\cot x = x$
- c) Пусть $\arccos x = \alpha$. Тогда $\cos \alpha = x$ и $\cos(2\alpha) = 2\cos^2 \alpha 1 = 2x^2 1$.

d) Пусть $x \ge 0$. Тогда $\left| \arctan x \right| = \arctan x = \alpha \in \left[0, \frac{\pi}{2} \right]$. Отсюда $\cos 2\alpha = \frac{1 - \operatorname{tg}^2 \alpha}{1 + \operatorname{tg}^2 \alpha} = \frac{1 - x^2}{1 + x^2}$. Так как $2\alpha \in \left[0, \pi \right)$, то $2\alpha = \arccos \frac{1 - x^2}{1 + x^2}$.

Теперь рассмотрим $x \le 0$. Тогда $\left| \arctan x \right| = -\arctan x = \alpha \in \left[0, \frac{\pi}{2} \right]$ и далее аналогично предыдущему.

Пример 2.8. При каких значениях x верны равенства

a)
$$\arccos \sqrt{1-x^2} = \arcsin x$$
; b) $\arctan x = \arctan \frac{1}{x}$; c) $\arctan x = \arctan \frac{1}{x} - \pi$?

- \odot **a)** Если $0 \le x \le 1$, то $\arcsin x = \alpha \in \left[0, \frac{\pi}{2}\right]$, $\cos \alpha = \sqrt{1-x^2}$, поэтому $\alpha = \arccos\sqrt{1-x^2}$ и данное равенство верно. Если $-1 \le x \le 0$, то $\arcsin x = \alpha \in \left[-\frac{\pi}{2}, 0\right]$. Но на этом промежутке угол, называемый арккосинусом, лежать не может, поэтому данное равенство там не верно.
- **b)** Аналогично, если x > 0, то $\arctan x = \alpha \in (0, \frac{\pi}{2})$, $\tan \alpha = x$ и $\cot \alpha = \frac{1}{x}$. Поэтому $\alpha = \arctan \frac{1}{x}$ и данное равенство верно. Если x < 0, то $\arctan x = \alpha \in (-\frac{\pi}{2}, 0)$, и равенство не может быть выполненным, так как угол, называемый арккотангенсом, не может лежать на указанном промежутке.
- **c)** Очевидно, $\operatorname{tg}(\operatorname{arctg} x) = x$ и $\operatorname{tg}(\operatorname{arcctg} \frac{1}{x} \pi) = \operatorname{tg}(\operatorname{arcctg} \frac{1}{x}) = x$ при любых значениях x. Посмотрим, на каких промежутках лежат данные углы. Если x > 0, то $\operatorname{arctg} x \in \left(0, \frac{\pi}{2}\right)$, $\operatorname{arcctg} \frac{1}{x} \pi \in \left(-\pi, -\frac{\pi}{2}\right)$ и равенства между ними быть не может. Если x < 0, то $\operatorname{arctg} x \in \left(-\frac{\pi}{2}, 0\right)$ и $\operatorname{arcctg} \frac{1}{x} \pi \in \left(-\frac{\pi}{2}, 0\right)$. В этом случае углы будут равны. \bullet

При исследовании функций, надо обязательно найти ее область определения, область изменения и отметить ее свойства, такие как четностьнечетность, периодичность, монотонность и экстремумы.

Для нахождения области изменения можно использовать график, если он уже построен, но нужно уметь находить эту область и прямыми способами.

Упражнения

2.1. Найти область определения функции

a)
$$y = \sqrt{2 - x - x^2} + \frac{1}{\sqrt{1 - |x|}}$$
;

b)
$$y = \log_2 x^2$$
 u $y = 2\log_2 x$;

c)
$$y = \log_{3+x}(x^2 - 1);$$

$$\mathbf{d)} \quad y = \frac{\sqrt{1 - x^2}}{\arcsin(1 - x)};$$

e)
$$y = \arcsin \frac{1}{x-1}$$
;

f)
$$y = \lg(\pi - 2 \operatorname{arcctg} x)$$
.

Найти область изменения функции 2.2.

a)
$$y = -2x^2 + x + 1$$
;

b)
$$y = 5 - 12x - 2x^2, x \in [-4,1];$$

c)
$$y = \frac{x^2}{x^2 + 4}$$
;

d)
$$y = 1 - 2\cos x, \ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right];$$

e)
$$y = \sin^4 x + \cos^4 x$$
;

$$\mathbf{f)} \ \ y = \arccos|x|;$$

g)
$$y = \arctan \frac{2x}{x^2 + 1}$$
;

$$\mathbf{h)} \quad y = \frac{1 + \sin x}{\sin x};$$

i)
$$y = \cos(\arcsin x)$$
;

j)
$$y = 2^{x^2 + 5x - 6}$$
;

j)
$$y = 2^{x^2 + 5x - 6}$$
;
k) $y = \sqrt{8 - 2x - x^2}$;

1)
$$y = \sqrt{4^x - 16^x}$$
;

$$\mathbf{m)} \quad y = \sqrt{\ln \sin x} \ .$$

2.3. Исследовать функцию на четность-нечетность

a)
$$y = \sqrt{1 + x - x^2} + \sqrt{1 - x + x^2}$$
;

g)
$$y = \frac{1}{2^x} - \frac{1}{2^{-x}};$$

b)
$$y = x^3 \cdot |x|$$
;

c)
$$v = x^4 - 3x + 5$$
:

h)
$$y = \lg(x + \sqrt{1 + x^2});$$

d)
$$y = \frac{4 - x^2}{3 + x}$$
;

$$i) y = \lg \frac{2+x}{2-x};$$

e)
$$v = \arcsin x^2$$
;

$$\mathbf{j)} \qquad y = \operatorname{tg} x + \operatorname{tg} \left(-x \right).$$

$$f) \quad y = \arccos(\cos x);$$

Будет ли указанная функция периодической? Если да, укажите главный 2.4. период.

a)
$$y = 2\sin x - 1$$
;

b)
$$y = \sin(2x-1)$$
;

c)
$$y = \sin^2(x+1)$$
;

d)
$$y = \sin^2(x+1)$$
;

$$d(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}; \end{cases}$$

$$f) \quad y = \sin x + \sin 2x + \sin 3x;$$

$$\mathbf{g}) \quad y = \cos x \cdot \cos\left(\sqrt{3}x\right).$$

2.5. Существует ли функция, обратная данной?

a)
$$f(x) = 3^{2x-x^2}, x \in [1,+\infty);$$

b)
$$f(x) = \arccos(|x|-1), x \in [-1,2];$$

c)
$$f(x) = \lg x, \ x \in [0,\pi], \ x \neq \frac{\pi}{2};$$

c)
$$f(x) = \lg x, \ x \in [0, \pi], \ x \neq \frac{\pi}{2};$$
 e) $f(x) = \sqrt[3]{x + \sqrt{x^2 - 1}} + \sqrt[3]{x - \sqrt{x^2 - 1}}.$

d)
$$f(x) = \sin^2 x, x \in [2\pi, 3\pi];$$

2.6. Существует ли функция, обратная данной? Если да, то найти ее и построить графики обеих функций.

$$a) \quad f(x) = \operatorname{ch} x;$$

e)
$$f(x) = \frac{1}{\cos x}, x \in [-\pi, 0];$$

b)
$$f(x) = \cosh x, x \in [0, +\infty);$$

f)
$$f(x) = -e^{(x^2-1)/2}, x \le 0.$$

d)
$$f(x) = x^2 - \{x^2\};$$

c) f(x) = x|x| + 3x;

2.7.Доказать, что функции f(x) и g(x) взаимно обратны:

a)
$$f(x) = x^2 + 1$$
, $x \le 0$, $g(x) = -\sqrt{x-1}$, $x \ge 1$;

b)
$$f(x) = \arctan \frac{1}{x^2}$$
, $x < 0$, $g(x) = -\frac{1}{\sqrt{\lg x}}$, $x \in (0, \frac{\pi}{2})$.

2.8. Вычислить

a)
$$\arcsin(\sin 20)$$
; d) a

d)
$$arccos(cos(-14))$$
:

d)
$$arccos(cos(-14));$$
 g) $arctg(ctg(-25));$

b)
$$\arcsin(\cos 5)$$
;

b)
$$\arcsin(\cos 5)$$
; **e)** $\arccos(\sin(-3))$; **h)** $\operatorname{arcctg}(\operatorname{tg}(-2))$;

h)
$$arcctg(tg(-2));$$

c)
$$arccos(cos17)$$
; f) $arctg(tg7)$;

f)
$$arctg(tg7)$$
;

i)
$$\operatorname{arcctg}(\operatorname{ctg}(-7))$$
.

2.9.Вычислить

a)
$$\arctan(3+2\sqrt{2})-\arctan(\frac{\sqrt{2}}{2})$$
; d) $\arctan(x+\arctan(\frac{1}{x}))$

d)
$$\arctan x + \arctan \frac{1}{x}$$
;

b)
$$2 \arctan x + \arcsin \frac{2x}{1+x^2}, x > 1;$$

b)
$$2 \arctan x + \arcsin \frac{2x}{1+x^2}, x > 1;$$
 e) $\arctan \frac{1}{3} + \arctan \frac{1}{5} + \arctan \frac{1}{7} + \arctan \frac{1}{8}.$

c)
$$4 \operatorname{arctg} \frac{1}{5} - \operatorname{arctg} \frac{1}{239}$$
;

2.10. Докажите тождества

a)
$$\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}}$$
;

b)
$$\operatorname{arcctg} x = \operatorname{arccos} \frac{x}{\sqrt{1+x^2}}$$
;

c)
$$\arcsin x - \arcsin y = \arccos\left(\sqrt{1-x^2}\sqrt{1-y^2} + xy\right)$$
 при $x > y$;

d)
$$\arctan x + \arctan \frac{1-x}{1+x} = \begin{cases} \pi/4, & x > -1; \\ -3\pi/4, & x < -1. \end{cases}$$

2.11. При каких значениях x верно равенство

a)
$$\arctan x = \arccos \frac{1}{\sqrt{1+x^2}}$$
;

b)
$$\arcsin x = \arccos \sqrt{1 - x^2}$$
;

c)
$$\arctan x = \pi - \arcsin \frac{1}{\sqrt{1+x^2}}$$
?

- **2.12.** Доказать, что сумма $\arcsin x + 3\arccos x + \arcsin \left(2x\sqrt{1-x^2}\right)$ при $x^2 < \frac{1}{2}$ не зависит от x.
- **2.13.** Вычислить $\arccos x + \arccos\left(\frac{x}{2} + \frac{1}{2}\sqrt{3 x^2}\right), \ \frac{1}{2} \le x \le 1$.
- **2.14.** Доказать, что при нецелом x верно $\frac{2x-1}{2} \frac{1}{\pi} \operatorname{arctg} \left(\operatorname{tg} \frac{2x-1}{2} \pi \right) = [x].$

2.2 Построение графиков функций элементарными методами

Пример 2.9. Построить график функции y = [x], где [x] - **целая часть х.** (Эта функция называется **антье от** x (от фр. entier — целое число)).

© Целое число n называется **целой ча- стью** числа x и обозначается n = [x], если вы- полняется условие $n \le x < n+1$. Например,

$$[2.3] = 2$$
; $[-4/3] = -2$; $[-\pi] = -4$.

Пример 2.10. Построить график функции $y = \{x\}$, где $\{x\}$ - дробная часть числа x.

Пример 2.11. Построить график *функции знака* y = sign x *(сигнум)*.

© Функция сигнум определяется следую-

щим образом: $sign x = \begin{cases} 1, & x > 0, \\ 0, & x = 0, \text{ (см. рис.)} \\ -1, & x < 0. \end{cases}$

Теперь рассмотрим особенности построения графиков сложных функций.

Пример 2.12. Построить графики функций

- **a)** $y = 2^{|x|}$; **b)** $y = \log_2(x^2 4x + 5)$; **c)** $y = 3^{\sin x}$; **d)** $y = \arctan \frac{1}{x}$; **e)** $y = \arccos \frac{1}{x}$;
- **f)** $y = \text{sign}(2\cos x)$; **g)** $y = [2\cos x]$; **h)** $y = \arcsin(\sin x)$.

 \odot **a)** Эта функция определена для всех вещественных значений x и четная. Ее график будет симметричен относительно оси OY, поэтому достаточно исследовать поведение этой функции только для $x \ge 0$. Для этих значений x будет $y = 2^x$. Поэтому строим ту часть графика функции $y = 2^x$, которая находится справа от оси OY, и отображаем построенную линию на левую часть плоскости (см. рис.).

b) Рассмотрим сначала квадратный трехчлен $x^2 - 4x + 5$. Выделим из него полный квадрат: $x^2 - 4x + 5 = (x - 2)^2 + 1$, откуда видно, что, во-первых, график квадратного трехчлена симметричен относительно прямой x = 2 и, во-вторых, для всех значений x будет $x^2 - 4x + 5 \ge 1$.

Отсюда следует, что $\log_2(x^2-4x+5)$ существует для всех значений аргумента x и неотрицателен. Кроме того, график этой функции тоже симметричен относительно прямой x=2 и его достаточно построить только для $x\geq 2$.

Для этих значений x трехчлен $x^2 - 4x + 5$ является возрастающей функцией, данная логарифмическая функция тоже является возрастающей. Суперпозиция двух возрастающих функций также возрастающая функция. Так как y(2) = 0, то данная функция на промежутке $[2,+\infty)$ возрастает от нуля до $+\infty$. Строим эту кривую и отображаем ее влево от прямой x = 2 (см. рис.).

c) Функция определена на всей вещественной оси. Так как синус – функция периодичная, то данная функция тоже периодичная с периодом 2π . Поэтому построим ее график только на промежутке от нуля до 2π .

Функция 3^t возрастающая и на тех промежутках, где $\sin x$ возрастает, сложная функция $3^{\sin x}$ тоже возрастает, а там, где $\sin x$ убывает, сложная функция $3^{\sin x}$ убывает. Таким образом, на промежутке $\left[0,\frac{\pi}{2}\right]$ данная функция возрастает от

1 до 3 и на промежутке $\begin{bmatrix} 3\pi/2, 2\pi \end{bmatrix}$ она возрастает от $\frac{1}{3}$ до 1, а на промежутке $\begin{bmatrix} \pi/2, 3\pi/2 \end{bmatrix}$ данная функция убывает от 3 до $\frac{1}{3}$. Это позволяет нам построить график функции:

d) Функция определена для всех вещественных значений x, кроме x=0. Функция $\arctan t$ возрастающая, а функция 1/x убывает на промежутках $(-\infty,0)$ и $(0,+\infty)$. Поэтому сложная функция $\arctan t$ убывает на каждом из указанных промежутков. При этом на промежутке $(-\infty,0)$ она изменяется от нуля до $-\pi/2$ (не принимая этих значений), а на промежутке $(0,+\infty)$ она меняется от $\pi/2$ до

нуля (так же не принимая этих значений). График приведен на рисунке.

Замечание. Данная функция нечетная, поэтому ее можно было исследовать только на промежутке $(0,+\infty)$.

е) Данная функция определена для тех значений x, для которых $|1/x| \le 1$, т. е. на промежутках $(-\infty,-1]$ и $[1,+\infty)$. Функция агссоѕ t убывающая, 1/x убывает на каждом из промежутков $(-\infty,-1]$ и $[1,+\infty)$, поэтому их суперпозиция возрастает на каждом из этих промежутков. На промежутке $(-\infty,-1]$ она меняется от $\pi/2$ до π , а на промежутке $[1,+\infty)$ - от 0 до $\pi/2$. Построим график данной функции (см. рис.).

f) Построим сначала график функции $y = 2\cos x$ - пунктирная линия. Для иксов, при которых построенный график выше оси OX, значения функции $y = \text{sign}(2\cos x)$ равно единице. Там, где график ниже оси OX – минус единице. И в нулях функции $y = 2\cos x$ значение $y = \text{sign}(2\cos x)$ равно нулю.

g) Возьмем график функции $y = 2\cos x$. Применяя к этому графику операцию взятия целой части, получим искомый график.

h) Функция определена на всей вещественной прямой и периодична с периодом 2π . Кроме того она нечетная, поэтому построим ее график сначала только на промежутке $\left[0,\pi\right]$. На промежутке $\left[0,\frac{\pi}{2}\right]$ выполняется равенство $\arcsin(\sin x) = x$, а на промежутке $\left[\frac{\pi}{2},\pi\right]$ равенство $\arcsin(\sin x) = \arcsin(\sin x) = \arcsin(\sin(\pi - x)) = \pi - x$.

Поэтому строим график функции $y = \begin{cases} x, & x \in \left[0, \frac{\pi}{2}\right]; \\ \pi - x, & x \in \left[\frac{\pi}{2}, \pi\right]; \end{cases}$ и распространяем его

сначала на промежуток $[-\pi,0]$ по нечетности, а затем на всю вещественную ось по периодичности. \bullet

II. Теперь рассмотрим преобразования графиков известных функций. Пусть уже известен график функции y = f(x). Изучим, как изменяется этот график при определенном преобразовании функции f(x) или её аргумента x.

1. Сдвиги вдоль координатных осей.

Пусть известен график функции y=f(x) и требуется построить график функции y=f(x-a)+b. Преобразуем последнее равенство к виду y-b=f(x-a). Вводя обозначения $x-a=x_1$ и $y-b=y_1$, получим равенство, задающее новую функцию в виде $y_1=f(x_1)$. Известно, что системы координат, связанные равенствами $x-a=x_1$ и $y-b=y_1$ имеют сонаправленные коорди-

натные оси и точка O_1 - начало системы $X_1O_1Y_1$ имеет координаты (a,b) в системе XOY. Поэтому можно на одной плоскости построить систему XOY, затем найти на этой плоскости точку $O_1(a,b)$ и провести через нее новые координатные оси, сонаправленные старым осям. Теперь достаточно построить известный график функции y=f(x) относительно новых осей.

Пример 2.13. Построить графики функций

a)
$$y = \cos x + 1$$
; **b)** $y = \cos(x + 0.5)$; **c)** $y = \frac{2x - 1}{x + 2}$.

 \odot **а)** Введем новые координаты по формулам $x_1 = x$ и $y_1 = y - 1$, и на координатной плоскости *XOY* построим новые координатные оси, сонаправленные со старыми и имеющие начало в точке (0,1). Далее, рисуем график косинуса x по отношению к новым осям. Этот же график можно получить из исходного сдвигом вдоль оси ординат на 1 единицу вверх.

b) Введем новые координаты по формулам $x_1 = x + 0,5$ и $y_1 = y$. Новые оси будут иметь начало в точке (-0,5;0). Теперь остается построить график косинуса по отношению к новой системе.

Для построения исходного графика можно график функции $y = \cos x$ сместить вдоль оси абсцисс на 0.5

единиц влево.

c) Преобразуем дробь $\frac{2x-1}{x+2}$, выделяя из нее целую часть: $\frac{2x-1}{x+2} = \frac{2x+4-5}{x+2} = 2 + \frac{-5}{x+2}$, и введем новые координаты по формулам

 $x_1 = x + 2$ и $y_1 = y - 2$. В новых координатах функция будет иметь вид $y_1 = \frac{-5}{x_1}$. Графиком такой функции является гипербола. Строим новую систему координат с началом в точке (-2,2) и данную гиперболу по отношению к этой системе. Для более точного построения можно определить точки пересечения гиперболы со старыми координатными осями $(0,-\frac{1}{2})$ и $(\frac{1}{2},0)$.

2. Симметричное отражение относительно осей ОХ и ОҮ.

График функции y = -f(x) получается из графика функции y = f(x) симметричным отражением относительно оси абсцисс, а график функции y = f(-x) получается из графика функции y = f(x) симметричным отражением относительно оси ординат.

3. Растяжение и сжатие вдоль оси ОҮ.

Рассмотрим функцию $y = k \cdot f(x)$ при $k \neq 1$. Если k > 1, то для построения её графика нужно растянуть вдоль оси ОУ в k раз график функции y = f(x). Если 0 < k < 1, то график функции y = f(x)

нужно сжимать вдоль оси ОУ в $\frac{1}{k}$ раз.

Если k < 0, то вначале можно сделать отражение относительно оси ОХ и потом сжимать или растягивать вдоль оси ОУ.

При всех указанных растяжениях и сжатиях точки графика, лежащие на оси абсцисс, остаются неподвижными.

4. Растяжение и сжатие вдоль оси ОХ.

Рассмотрим функцию y = f(kx), $k \ne 1$. При k > 1 график этой функции получается из исходного сжатием вдоль оси OX к оси OY в k раз. При 0 < k < 1 исходный график требуется растягивать в 1/k раз вдоль оси OX. При отрицательных k вначале надо отразить график относительно оси ординат.

5. Модуль функции.

Рассмотрим построение графика функции y = |f(x)|. Часть графика функции y = f(x), лежащая выше оси абсцисс, остается неизменной, а часть, лежащую ниже оси ОХ, требуется отразить относительно оси ОХ. Таким образом, результирующий график должен весь лежать в верхней полуплоскости, так как $|f(x)| \ge 0$.

6. Модуль аргумента.

График функции y = f(|x|) строится по графику функции y = f(x) следующим образом. Все точки, лежащие левее оси ОУ, исчезают. Точки, находящиеся правее ОУ остаются на месте, и вся правая часть отражается относительно оси ОУ налево. Таким образом, получаем график, симметричный относительно оси ординат.

$$y = \left| \frac{5 + 2x}{x + 3} \right|.$$

график функции $f(x) = 2 - \frac{1}{x+3}$ нужно построить систему координат с началом (-3,2) и на ней построить гиперболу y = -1/x и выполнить преобразование y = |f(x)|, то есть, часть графика, лежащую ниже оси ОУ симметрично отобра-

Пример 2.15. Построить график функции $y = \arctan \frac{2x}{1-x^2}$.

 \odot Для начала заметим, что функция является нечетной. Это означает, что ее график будет симметричным относительно начала координат. Построим график функции $f(x) = \frac{2x}{1-x^2}$. Для этого представим ее в виде суммы двух дробей: $\frac{2x}{1-x^2} = -\frac{1}{x-1} - \frac{1}{x+1}$. Графиками функций $f_1(x) = -\frac{1}{x-1}$ и $f_2(x) = \frac{1}{x+1}$ являются гиперболы (см. рис.). Для получения графика функции f(x) необходимо построить «разность» $f(x) = f_1(x) - f_2(x)$ (см. рис.) Теперь к полученному

графику нужно «применить» функцию $\operatorname{arctg}(x)$ (см. график $\operatorname{arctg}(x)$). Вспомним, что функция $\operatorname{arctg}(x)$ является возрастающей. Это означает, что при возрастании аргумента f(x) значения функции также будут возрастать. Также учтем, что при $x \to +\infty$ $\operatorname{arctg}(x) \to \frac{\pi}{2}$, а при $x \to -\infty$ $\operatorname{arctg}(x) \to -\frac{\pi}{2}$. Значит, вблизи точек $x = \pm 1$ значение функции $y = \operatorname{arctg} \frac{2x}{1-x^2}$ будут приближаться к точкам $y = \pm \frac{\pi}{2}$ (см. рис.) \bullet

Пример 2.16. Построить график функции $y = \frac{1}{|x+2|-|x-2|}$.

 \odot *Первый способ*. Построим график функции f(x) = |x+2| - |x-2|. Для этого построим графики $f_1(x) = |x+2|$, $f_2(x) = |x-2|$ и «вычтем» их (см. рис.). Далее нужно к полученному графику

применить преобразование $\frac{1}{f(x)}$

Так как функция 1/x является убывающей (при x>0 и x<0), то возрастающий участок графика заменится на убывающие. При этом вблизи точки f(x)=0 значения функции y будут стремиться к бесконечности с таким же знаком. Участки, на которых f(x) постоянна заменятся на участки постоянного значения функции y.

Второй способ. Раскроем знаки модулей, для этого разобьем числовую ось на три промежутка $(-\infty; -2)$, (-2; 2) и $(2; +\infty)$. Получаем

$$\frac{1}{|x+2|-|x-2|} = \begin{cases} -\frac{1}{4}, & x \in (-\infty; -2), \\ \frac{1}{2x}, & x \in (-2; 2), \\ \frac{1}{4}, & x \in (2; \infty). \end{cases}$$

Упражнения

Построить графики функций:

2.15.
$$y = 12x - 4x^2 - 5$$
;

2.23.
$$y = \frac{|x| + 6}{|x| - 4}$$
;

2.29.
$$y = \frac{3-2|x|}{|x|-1}$$
;

2.16.
$$y = |12x - 4x^2 - 5|$$
;

2.24.
$$y = \frac{|x+6|}{x-4}$$
;

2.30.
$$y = \frac{|3-2x|}{x-1}$$
;

2.17.
$$y = 12|x| - 4x^2 - 5$$
;
2.18. $y = |12|x| - 4x^2 - 5|$;

2.25.
$$y = \frac{x+6}{|x-4|}$$
;

2.31.
$$y = \frac{1}{x^2 + 1}$$
;

2.19.
$$y = |2x-5|(2x-1)$$
;

2.26.
$$y = \frac{|x|+6}{|x-4|}$$
;

2.32.
$$y = \frac{1}{x^2 + 2x + 2}$$
;

2.20.
$$y = \frac{x+6}{x-4}$$
;

2.27.
$$y = \frac{3-2x}{x-1}$$
;

2.33.
$$y = \frac{4}{x^2 - 4}$$
;

2.21.
$$y = \left| \frac{x+6}{x-4} \right|$$
;

2.28.
$$y = \left| \frac{3 - 2x}{x - 1} \right|$$
;

2.34.
$$y = \frac{x^2 + 3}{x^2 + 1}$$
;

2.22.
$$y = \frac{|x|+6}{|x|-4}$$
;

2.28.
$$y = \left| \frac{3 - 2x}{x - 1} \right|$$

2.35.
$$y = \frac{x^3 - 4x}{(x+1)^2 (x-1)^3}$$
;

2.38.
$$y = \left| \frac{1}{x^2 + 8x + 12} \right|$$
;

2.36.
$$y = \frac{\sqrt[3]{(x+2)^2(x-3)}}{\sqrt[5]{(x+1)^4(x-2)^3}\sqrt{x+5}};$$

2.39.
$$y = \frac{2|x|}{x^2 + 1}$$
;

2.40.
$$y = |x-2| + |x| + |x+2|$$
;

2.37.
$$y = \frac{1}{x^2 - 4x + 3}$$
;

2.41.
$$y = \frac{1}{|x| - |x - 1|}$$
;

2.42.
$$y = \sqrt{2x+3}$$
;

2.46.
$$y = 3^{1/x}$$
;

2.50.
$$y = \log_2(4x + 8)$$
;

2.43.
$$y = 1 - \sqrt[3]{2x - 3}$$
;

2.47.
$$y = 2^{\frac{1}{x-1}}$$
;

2.51.
$$y = \log_2(4x^2 + 8);$$

2.44.
$$y = \frac{1}{\sqrt[3]{4x-2}}$$
;

2.48.
$$v = 5^{\frac{1}{x^2+1}}$$
;

2.52.
$$y = \log_3(4x^2 - 4x + 5);$$

2.45.
$$y = x + \frac{1}{x}$$
;

2.49.
$$y = 4^{\sin x}$$
;

2.53.
$$y = \log_3 |\sin x|$$
;

2.54.
$$y = \log_{0.5}(\cos^2 x);$$

2.55.
$$y = \left[\log_{1/2} x^2\right];$$
2.64. $y = 3\left|\sin\left(2x + \frac{\pi}{3}\right)\right| - 2;$
2.73. $y = \arccos\frac{1-x^2}{1+x^2};$
2.56. $y = \sin^2 x - 1;$
2.57. $y = \cos^2 x + \sin 2x;$
2.65. $y = 3\sin\left[\left(2x + \frac{\pi}{3}\right)\right] - 2;$
2.74. $y = \frac{1}{\arctan \left(\|x\| - 1\right)};$
2.58. $y = x + \sin x;$
2.66. $y = x + \operatorname{sign} \sin x;$
2.75. $y = \arctan\left(x - \left[x\right]\right);$
2.59. $y = x \cdot \sin x;$
2.67. $y = \arcsin\frac{1}{x};$
2.76. $y = \arctan \left(x - \left[\arctan \left(x\right]\right);$
2.60. $y = \frac{\sin x}{x};$
2.68. $y = \arccos(\cos x);$
2.77. $y = \frac{2^{1/x}}{1+2^{1/x}};$
2.69. $y = \arccos(\cos x);$
2.78. $y = \left[1/x\right];$
2.79. $y = \operatorname{sign}\left(x^3 - 4x\right);$
2.62. $y = \left|3\sin\left(2x + \frac{\pi}{3}\right) - 2\right|;$
2.71. $y = \arctan\left(\frac{x+1}{x+2};$
2.80. $y = \operatorname{sign}\left(\frac{2-x}{2+x};$
2.63. $y = 3\sin\left(2|x| + \frac{\pi}{3}\right) - 2;$
2.75. $y = \arctan\left(x^3 - 4x\right);$
2.77. $y = \frac{2^{1/x}}{1+2^{1/x}};$
2.79. $y = \operatorname{sign}\left(x^3 - 4x\right);$
2.80. $y = \operatorname{sign}\left(\frac{2-x}{2+x};$
2.63. $y = 3\sin\left(2|x| + \frac{\pi}{3}\right) - 2;$
2.75. $y = \arctan\left(x^3 - 4x\right);$
2.77. $y = \frac{2^{1/x}}{1+2^{1/x}};$
2.79. $y = \operatorname{sign}\left(x^3 - 4x\right);$
2.80. $y = \operatorname{sign}\left(x^3 - 4x\right);$
2.81. $y = \max\left(x^3, \frac{1}{x}\right);$
2.82. $y = \min\left(\cos x, \cos 2x\right).$

2.3 Полярные координаты

Кроме декартовых координат используют и другие координаты точки на плоскости или в пространстве. В частности, на плоскости часто пользуются полярными координатами.

Будем говорить, что на плоскости заданы *полярные координаты*, если заданы

- 1) точка O, называемая *полюс*;
- 2) луч с началом в этой точке, называемый полярной полуосью;
- 3) отрезок, длина которого объявляется равной единице;
- 4) направление вращения полярной полуоси вокруг полюса.

Тогда каждой точке плоскости M можно сопоставить два числа (см. рис.):

 $r\,$ - длина вектора $\mathit{OM}\,$ - $\mathit{paduyc}\,$ и

 φ - угол между вектором \overrightarrow{OM} и полярной полуосью — **полярный угол** (положительный, если он отсчитывается в направлении вращения полуоси и отрицательный, если против).

Числа r и φ , соответствующие данной точке, будем называть **полярны- ми координатами** этой точки.

Очевидно, что каждой паре чисел (r, φ) , $r \ge 0$ соответствует единственная точка на плоскости, но каждой точке можно сопоставить бесконечное множество углов вида $\{\varphi_0 + 2\pi n, n \in \mathbb{N}\}$, где φ_0 - какой-нибудь угол, соответствующий данной точке. Иногда для взаимной однозначности соответствия точек плоскости и пар полярных координат (r, φ) полагают, что φ лежит в пределах одного оборота полярной полуоси, например, что $0 \le \varphi < 2\pi$ или $-\pi < \varphi \le \pi$.

Часто на одной и той же плоскости вводят полярную и декартову системы координат, где начало декартовой системы совпадает с полюсом, положительная полуось OX совпадает с полярной полуосью и совпадают единицы длины

и направление отсчета угла. Такие системы будем называть согласованными системами. Для каждой точки плоскости существуют две пары координат (x,y) и (r,φ) , между которыми существует очевидная зависимость:

$$\begin{cases} r = \sqrt{x^2 + y^2}, \\ \lg \varphi = y/x, \end{cases}$$
 или
$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi. \end{cases}$$

Пример 2.17. На плоскости заданы согласованные полярная и декартова системы координат. Найти полярные координаты точек, если известны их декартовы координаты. (Считать, что $-\pi < \phi \le \pi$).

a)
$$A(2,2)$$
; **b)** $B(5,0)$; **c)** $C(-5,0)$; **d)** $D(0,0)$; **e)** $E(-1,\sqrt{3})$; **f)** $F(-3,-4)$.

😊 а) Вычислим радиус и тангенс полярного угла:

$$r = \sqrt{x^2 + y^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$
, $tg \varphi = y/x = 1$.

Так как точка A находится в первой четверти, то $\varphi=\pi/4$. Таким образом, полярные координаты точки A будут $\left(2\sqrt{2},\pi/4\right)$.

- **b)** Здесь можно использовать графические соображения: длина вектора \overrightarrow{OB} равна 5 и угол, который составляет вектор с полярной полуосью, равен нулю, поэтому полярные координаты точки B(5,0).
- **c)** Аналогично, используя графические соображения, получим $C(5,\pi)$.
- **d)** Длина вектора \overrightarrow{OD} равна нулю. Что касается угла, то угол в данной ситуации не определен. Будем считать, что этой точке соответствует любой угол.

е) $r = \sqrt{1+3} = 2$, $\lg \varphi = y/x = -\sqrt{3}$. Так как точка E находится во второй четверти, то $\varphi = 2\pi/3$.

f) $r = \sqrt{9+16} = 5$, $\lg \varphi = 4/3$. Так как точка F находится в третьей четверти, то $\varphi = \arctan \frac{4}{3} - \pi$. (см. рис.) \bullet

Пример 2.18. На плоскости заданы согласованные полярная и декартова системы координат. Найти декартовы координаты точек, если известны их полярные координаты. **a)** $M\left(2,\frac{\pi}{6}\right)$; **b)** $N\left(4,-\frac{5\pi}{6}\right)$.

 \odot **a)** Координаты вычисляем по формулам: $x = r\cos \varphi = 2\cos\frac{\pi}{6} = \sqrt{3}$, $y = r\sin \varphi = 2\sin\frac{\pi}{6} = 1$.

b) Аналогично
$$x = r\cos\varphi = 4\cos\left(-\frac{5\pi}{6}\right) = -2\sqrt{3}$$
 и $y = r\sin\varphi = 4\sin\left(-\frac{5\pi}{6}\right) = -2$.

Функция $r = r(\varphi)$ задает кривую на плоскости. Рассмотрим несколько примеров построения таких кривых.

Пример 2.19. Построить кривую $r = 2\phi$ (спираль Архимеда).

 \odot Заметим, что в силу определения $r \ge 0$, поэтому аргумент φ изменяется на промежутке $[0,+\infty)$, т.е. вращение полярной полуоси происходит только в положительном направлении и при этом радиус точки возрастает с ростом угла φ . Вычислим координаты нескольких точек:

φ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$	2π	$9\pi/4$
r	0	$\pi/3 \approx 1$	$\pi/2 \approx 1.5$	$2\pi/3 \approx 2$	$\pi \approx 3$	$2\pi \approx 6$	$3\pi \approx 9,4$	$4\pi \approx 12,5$	$9\pi/2 \approx 14$

Теперь по этим точкам строим кривую. •

Пример 2.20. Построить кривую $r = \sin 3\phi$ (Трехлепестковая роза).

 \odot Из условия $r \ge 0$ следует, что кривая определена в секторах $0 \le \varphi \le \pi/3$, $2\pi/3 \le \varphi \le \pi$ и $4\pi/3 \le \varphi \le 5\pi/3$, причем, очевидно, что в каждом секторе кривая выглядит одинаково, поэтому достаточно построить ее только в одном секторе.

Составим таблицу значений радиуса для углов, находящихся в первом секторе.

φ	0	$\pi/18$	$\pi/12$	$\pi/9$	$\pi/6$	$2\pi/9$	$\pi/4$	$5\pi/18$	$\pi/3$
r	0	0,5	$\sqrt{2}/2 \approx 0.7$	$\sqrt{3}/2 \approx 0.9$	1	$\sqrt{3}/2 \approx 0.9$	$\sqrt{2}/2 \approx 0.7$	0,5	0

По этим точкам построим кривую. Лучи $\varphi = 0$ и $\varphi = \pi/3$ являются касательными к кривой.

Пример 2.21. Построить кривую $(x^2 + y^2)^2 = a^2(x^2 - y^2)$, a > 0, перейдя к полярным координатам. (Лемниската Бернулли).

© Положим $x = r\cos\varphi$, $y = r\sin\varphi$. Тогда уравнение кривой примет вид $r^4 = a^2r^2\cos2\varphi$ или $r = a\sqrt{\cos2\varphi}$. Кривая определена в секторах $-\pi/4 \le \varphi \le \pi/4$ и $3\pi/4 \le \varphi \le 5\pi/4$, причем, как и в предыдущем примере, она одинаково выглядит в каждом из этих секторов.

Составим таблицу значений в секторе $-\pi/4 \le \varphi \le \pi/4$:

φ	$-\pi/4$	$-\pi/6$	$-\pi/8$	$-\pi/12$	0	$\pi/12$	$\pi/8$	$\pi/6$	$\pi/4$
r	0	$a/\sqrt{2}$	$a/\sqrt[4]{2}$	$a\sqrt[4]{3}/\sqrt{2}$	а	$a\sqrt[4]{3}/\sqrt{2}$	$a/\sqrt[4]{2}$	$a/\sqrt{2}$	0

Теперь кривую можно построить. •

Пример 2.22. Построить кривую $x^4 + y^4 = x^2 + y^2$, перейдя к полярным координатам.

 \odot Полагая, $x = r\cos\varphi$, $y = r\sin\varphi$, получим

$$r = \frac{1}{\sqrt{\cos^4 \varphi + \sin^4 \varphi}} = \frac{1}{\sqrt{1 - \frac{1}{2}\sin^2 2\varphi}}.$$

Очевидно, что r существует для любого значения φ и период данной функции равен $\pi/2$. Кроме того, заметим, что график функции $\sin^2 2\varphi$ будет симметричен относительно прямой $\varphi=\pi/4$. Поэтому достаточно проследить изменение радиуса в промежутке от нуля до $\pi/4$:

φ	0	$\pi/12$	$\pi/8$	$\pi/6$	$\pi/4$
r	1	$\sqrt{8/7} \approx 1,07$	$\sqrt{4/3} \approx 1,16$	$\sqrt{8/5} \approx 1,27$	$\sqrt{2} \approx 1,41$

Теперь строим кривую в секторе от нуля до $\pi/4$, отображаем ее симметрично относительно луча $\varphi = \pi/4$ и поворачиваем полученную кривую на угол $\pi/2$ три раза, пока не получим замкнутую кривую.

Упражнения

2.83. Построить точки в полярной системе координат и найти их согласованные декартовы координаты:

a)
$$A(1,\pi/4)$$
;

d)
$$D(3,7\pi/6)$$
;

g)
$$G(6,0)$$
;

b)
$$B(2,-\pi/3);$$
 e) $E(7,-\pi);$

e)
$$E(7,-\pi)$$
;

h)
$$H(0,\sqrt{\pi});$$

c)
$$C(\sqrt{2}, 3\pi/4);$$

f)
$$F(2,7\pi/2);$$

i)
$$I(2,-\pi/2)$$
.

2.84. Найти полярные координаты точек, заданных в согласованной декартовой системе:

a)
$$A(3,4)$$
;

d)
$$D(-\sqrt{2}, -\sqrt{2});$$

g)
$$G(-\sqrt{6}, \sqrt{2});$$

b)
$$B(-4,3)$$
;

e)
$$E(1,-\sqrt{3});$$

h)
$$H(-1,-2)$$
;

c)
$$C(0,-2);$$

e)
$$E(1, -\sqrt{3})$$

i)
$$I(2,-1)$$
.

f) F(-1,0); 2.85. Нарисовать кривую, заданную в полярных координатах

a)
$$r = 1$$
;

e)
$$r = 1 + \cos \varphi$$
;

h)
$$r = \varphi^2 - \pi^2$$
;

b)
$$r = \cos 3\varphi$$
;

$$f) r = \cos 4\varphi;$$

i)
$$r = a\sqrt{\varphi}$$
;

c)
$$r = e^{\varphi}$$
;
d) $r = \pi/\varphi$;

$$\mathbf{g)} \ r = \left| \sin 2\varphi \right|;$$

j)
$$\varphi = (r-1)^2$$
.

2.86. Записать в полярных координатах уравнения, задающие следующие множества точек:

- а) окружность с центром в полюсе;
- **b)** прямая, проходящая через полюс;
- с) окружность, проходящая через полюс, с центром на полярной полуоси;

- d) окружность, проходящая через полюс, с центром на прямой, перпендикулярной полярной полуоси;
- е) прямая, параллельная полярной полуоси;
- f) прямая, перпендикулярная полярной полуоси;
- **g)** прямая, составляющая угол α с полярной полуосью и находящаяся на расстоянии $p(p \neq 0)$ от полюса.
- 2.87. Перевести уравнения кривых из полярных координат в согласованные им декартовы и нарисовать кривые:

a)
$$r = R$$
:

b)
$$\varphi = const$$
;

$$\mathbf{c)} \ r = \frac{a}{\sin \varphi};$$

d)
$$r = a \sin \varphi$$
;

e)
$$r = a \cos \varphi$$
;

$$f) r = \frac{a\cos\varphi}{\sin^2\varphi};$$

$$\mathbf{g)} \ r = \frac{1}{\cos(\varphi - \pi/4)};$$

$$\mathbf{h)} \ r = \frac{3}{1 - \cos \varphi};$$

i)
$$r = 8\sin(\pi/3 - \varphi)$$
;

j)
$$r^2 \sin 2\varphi = 2a^2$$
;

$$\mathbf{k}) \ r = \frac{9}{5 - 4\cos\varphi} \, .$$

2.88. Построить улитку Паскаля $r = 1 - a \sin \varphi$ при

a)
$$a = 1$$
;

b)
$$a = 1/2$$
;

c)
$$a = 2$$
.

2.89. Построить кривую $r = \sin k\varphi$ при

a)
$$k = 1/2$$
;

b)
$$k = 2/3$$
; **c)** $k = 3/2$; **d)** $k = 1/5$.

c)
$$k = 3/2$$

d)
$$k = 1/5$$

- **2.90.** Для эллипса $\frac{x^2}{25} + \frac{y^2}{16} = 1$ написать уравнение в полярных координатах, считая, что полярная полуось сонаправлена с осью абсцисс, а полюс находится в левом фокусе.
- **2.91.** Для правой ветви гиперболы $\frac{x^2}{16} \frac{y^2}{9} = 1$ написать уравнение в полярных координатах, считая, что полярная полуось сонаправлена с осью абсцисс, а полюс находится в правом фокусе.
- 2.92. Перевести уравнения к полярным координатам и построить кривую:

a)
$$(x^2 + y^2 - 2ax)^2 = 4a^2(x^2 + y^2);$$

b)
$$(x^2 + y^2)^3 = (x^2 - y^2)^2$$
;

c)
$$(x^2 + y^2)^3 = 4x^2y^2$$
;

d)
$$(x^2 + y^2 - x)^2 = 4(x^2 + y^2);$$

e)
$$4a^2y^2 = (x^2 + y^2)(y+a)^2$$
;

f)
$$(x^2 + y^2)y^2 = a^2x^2$$
.

2.4 Отображения множеств. Мощность множеств

Пример 2.23. Доказать, что множество всех последовательностей, содержащих только нули и единицы, несчетно.

© Допустим, что такое множество счетно. Тогда каждой последовательности из этого множества сопоставим натуральное число (ее номер). Докажем, что существует последовательность, не совпадающая ни с одной из пронумерованных. Пусть первый член новой последовательности не равен первому члену последовательности с номером 1, второй член не равен второму члену последовательности с номером 2 и, вообще, *п*-ый член новой последовательности не равен *п*-ому члену последовательности с номером п. Тогда составленная таким образом новая последовательность отличается от каждой из представленных хотя бы одним элементом, а, значит, не совпадает ни с одной из них. Следовательно, множество последовательностей, содержащих только нули и единицы, несчетно. ●

Упражнения

$$f_1(x) = (2x-1)^2$$
, $f_2(x) = \sin \pi x$, $f_3(x) = 2x - x^2$,
 $f_4(x) = \frac{2}{\pi} \arctan x$, $f_5(x) = \frac{4}{\pi} \arctan x$, $f_6(x) = \frac{1}{16} + \frac{3x}{2} - x^2$.

- **2.94.** Пусть $f(x) = x^2 2x$. Найти
 - a) $f((1,+\infty)), f([0,2]), f((0,3]);$
 - **b)** $f^{-1}([0,+\infty)), f^{-1}([-1,+\infty)), f^{-1}((0,1)), f^{-1}(\{-1,0,3\}).$
- **2.95.** Построить функцию $f: R \xrightarrow{\text{на}} R$, для которой
 - а) множество $f^{-1}(y)$ состоит из одного числа, если $y \ne 1$ и из двух числа, если y = 1;
 - **b)** для любого y множество $f^{-1}(y)$ состоит из двух чисел.
- **2.96.** Отображение \mathbb{R} в \mathbb{R} задано формулой f(x) = ax + 1. Найдите значения параметра a, при котором
 - a) f([0,2])=[1,5];

 $\mathbf{d)} \quad f((-\infty,1)) \subset (0,3);$

b) $f^{-1}((3,6)) = (-2,-5);$

e) $f([-1,1]) \subset [1-a,3-a]$.

- c) $f([0,+\infty))=(-\infty,1];$
- **2.97.** Пусть $X \subset D(f)$. Как соотносятся множества X и $f^{-1}(f(X))$?

- **2.98.** Пусть $X \subset E(f)$. Как соотносятся множества X и $f(f^{-1}(X))$?
- **2.99.** Построить отображение множества \mathbb{R} <u>на</u> множество $(-\infty; 0)$.
- **2.100.** Построить отображение множества \mathbb{R} <u>на</u> множество $(a; +\infty)$.
- **2.101.**Построить взаимно однозначное отображение множества \mathbb{R} в множество $(a; +\infty)$.
- **2.102.**Построить взаимно однозначное отображение между множествами [0;1] и [a;b].
- **2.103.**Построить взаимно однозначное отображение множества [0; 1] на (0; 1).
- **2.104.**Построить взаимно однозначное отображение между множествами (0;1) и \mathbb{R} .
- **2.105.**Построить взаимно однозначное отображение между множествами [0;1] и \mathbb{R} .
- **2.106.**Построить взаимно однозначное отображение между точками данной окружности и точками, лежащими на сторонах данного треугольника.
- **2.107.**Студент, решая вопрос об эквивалентности множеств чисел отрезков [-1,1] и [0,1], рассмотрел функцию $f(x) = x^2$, которая отображает первый отрезок на второй. Заметив, что это отображение не является взаимно однозначным, он сделал вывод, что отрезки не эквивалентны. Прав ли он?
- **2.108.** Установите взаимно однозначное соответствие между отрезками [-1,1] и [0,1].
- **2.109.**Является ли данное множество счетным? Если да, то указать какуюнибудь биекцию это множества на \mathbb{N} .
 - а) множество чисел, делящихся нацело на 3;
 - **b)** множество чисел, имеющих остаток 2 при делении на три;
 - **c)** множество матриц размером 2×2 , элементы которых принадлежат интервалу (0;1);
 - **d)** множество матриц размером 2×2 с рациональными элементами;
 - е) множество квадратных матриц с рациональными элементами;
 - **f)** множество прямоугольников на плоскости, вершины которых имеют целые координаты;
 - **g)** множество прямоугольников, имеющих диагональю отрезок [0; 1];
 - **h)** множество треугольников, вписанных в данную окружность.
- **2.110.**Докажите, что множество всех многочленов с рациональными коэффициентами счетно.
- **2.111.**Докажите, что множество всех алгебраических чисел счетно. (*Алгебраическим числом* называется число, которое может быть корнем многочлена с целыми коэффициентами).
- **2.112.**Докажите, что множество всех интервалов (a,b) с рациональными концами a и b счетно.

- **2.113.**Доказать, что произвольный набор попарно непересекающихся интервалов не более чем счетен.
- **2.114.**Пусть $A \subset \mathbb{R}$ несчетное множество. Доказать, что существует несчетное ограниченное подмножество этого множества.
- **2.115.**Доказать, что произвольное множество точек на плоскости, расстояние между любыми двумя из которых превосходит некоторое фиксированное число a > 0, не более чем счетно.

2.5 Ограниченность числовых множеств

Пример 2.24. Доказать, что множество $\left\{a_n = \frac{2n+1}{n+1}, \ n \in \mathbb{N}\right\}$ ограничено.

 \odot Выделим целую часть $a_n=\frac{2(n+1)-1}{n+1}=2-\frac{1}{n+1}$. Так как n>0 , значит $0<\frac{1}{n+1}<1$, следовательно, $1<2-\frac{1}{n+1}<2$, откуда следует ограниченность a_n .

Пример 2.25. Доказать, что последовательность $a_n = \frac{2n+3}{3n+2} + \frac{3n+2}{2n+3}, n \in \mathbb{N}$, ограничена.

© Напомним, что последовательность ограничена, если ограничено множество ее значений. Таким образом, эта задача ничем не отличается от предыдущей.

Воспользуемся неравенством между средним арифметическим и средним

геометрическим: $\frac{a+b}{2} \ge \sqrt{ab}$, где $a = \frac{2n+3}{3n+2}$, $b = \frac{3n+2}{2n+3}$. Получим

 $a_n \ge 2\sqrt{\frac{2n+3}{3n+2} \cdot \frac{3n+2}{2n+3}} = 2$. Также имеем

$$a = \frac{\frac{2}{3}(3n+2) + \frac{5}{3}}{3n+2} = \frac{2}{3} + \frac{5/3}{3n+2} \le \frac{2}{3} + \frac{1}{3} = 1, \ b = \frac{\frac{3}{2}(2n+3) - \frac{5}{2}}{2n+3} = \frac{3}{2} - \frac{\frac{5}{2}}{2n+3} < \frac{3}{2}.$$

Следовательно, $a_n < \frac{5}{2}$, и множество чисел $\{a_n\}$ ограничено. \blacksquare

Пример 2.26. Доказать, что последовательность $a_n = \frac{(-1)^n n + 100}{2^n}, n \in \mathbb{N}$, ограничена.

© Оценим модуль числителя и знаменатель:

$$\left| (-1)^n n + 100 \right| \le \left| (-1)^n n \right| + \left| 100 \right| = n + 100, \ 2^n = (1+1)^n > n$$

в силу неравенства Бернулли. Значит, $\left|a_n\right| < \frac{(n+100)}{n} = 1 + \frac{100}{n} < 1 + 100 = 101$, то есть множество $\{a_n\}$ ограничено. \blacksquare

Пример 2.27. Доказать, что множество значений функции $f(x) = 5^{\cos x}$ ограничено. (В этом случае говорят, что функция ограничена).

 \odot Данная функция периодична с периодом 2π , следовательно ее достаточно исследовать на ограниченность только на периоде. На промежутке $[0,\pi]$ она убывает от 5 до 1/5, а на промежутке $[\pi,2\pi]$ возрастает от 1/5 до 5. Следовательно, $1/5 \le f(x) \le 5$.

Пример 2.28. Доказать, что множество значений функции

$$f(x) = \log_4(x^2 + 3) - \log_2(1 + |x|)$$

ограничено.

© Преобразуем функцию к виду $f(x) = \log_2 \frac{\sqrt{x^2 + 3}}{1 + |x|}$. Данная функция четна, поэтому ее можно исследовать только на промежутке $[0, +\infty)$. Разделим этот промежуток на два: [0,1] и $(1, +\infty)$. На первом промежутке числитель $\sqrt{3} \le \sqrt{x^2 + 3} \le 2$, знаменатель $2 \ge 1 + |x| \ge 1$, поэтому дробь $\frac{\sqrt{3}}{2} \le \frac{\sqrt{x^2 + 3}}{1 + |x|} \le 2$ и $\log_2 \frac{\sqrt{3}}{2} \le \log_2 \frac{\sqrt{x^2 + 3}}{1 + |x|} \le 1$.

На втором промежутке преобразуем дробь к виду $\frac{\sqrt{x^2+3}}{1+|x|} = \frac{\sqrt{1+\frac{3}{x^2}}}{1+\frac{1}{x}}$. Тогда числитель $1 \le \sqrt{1+\frac{3}{x^2}} \le 2$, знаменатель $1 \le 1+\frac{1}{x} \le 2$, дробь $\frac{1}{2} \le \frac{\sqrt{1+\frac{3}{x^2}}}{1+\frac{1}{x}} \le 2$, следовательно, $-1 \le \log_2 \frac{\sqrt{x^2+3}}{1+|x|} \le 1$. На всей вещественной оси значения функции будут ограничены единицей сверху и наименьшим из чисел $\log_2 \frac{\sqrt{3}}{2}$ и (-1) снизу, т.е. $-1 \le f(x) \le 1$.

Пример 2.29. Сформулировать, что означает, что множество неограниченно.

© Требуется сформулировать отрицание определения ограниченного множества.

Множество будет *неограниченно сверху*, если <u>какое бы число</u> M мы ни взяли, найдется элемент множества x такой, что для него выполняется неравенство x > M, и множество *неограниченно снизу*, если <u>какое бы число</u> m мы ни взяли, найдется элемент множества y такой, что для него выполняется неравенство y < m.

Соответственно, множество будем называть *неограниченным*, если оно неограниченно сверху или снизу. ●

Пример 2.30. Доказать, что множество $\left\{a_n = \frac{1-n^4}{n^3+5}, \ n \in \mathbb{N}\right\}$ неограниченно.

⊙ Преобразуем элемент множества:

$$\left|a_n\right| = n \frac{\left|1/n - n^3\right|}{n^3 + 5} = n \frac{n^3 + 5 - 5 - 1/n}{n^3 + 5} = n \left(1 - \frac{5 + 1/n}{n^3 + 5}\right).$$

Имеем при $n \ge 2$: $5 + \frac{1}{n} < 6$, $n^3 + 5 \ge 13$, значит $\frac{5 + 1/n}{n^3 + 5} < \frac{6}{13}$. Тогда $|a_n| > \frac{7}{13}n$.

Для любого положительного числа M возьмем $n > \frac{13}{7}M$, например,

$$n = \left\lceil \frac{13}{7} M \right\rceil + 1$$
. Тогда $|a_n| > M$ и, значит, данное множество неограниченно. •

Пример 2.31. Доказать, что множество $\left\{a_n = 2^{\left(-1\right)^n n}, \ n \in \mathbb{N}\right\}$ неограниченно.

$$\odot$$
 Очевидно, что $a_n = \begin{cases} 2^n, & n = 2k, k \in \mathbb{N} \\ \frac{1}{2^n}, & n = 2k - 1, k \in \mathbb{N} \end{cases}$

Если взять произвольное число M>0, то очевидно, что неравенство $2^n>M$ будет выполнено, если $n>\log_2 M$. Таким образом всегда найдется элемент множества с четным номером, который будет больше взятого M и множество неограниченно сверху.

С другой стороны, $a_n > 0$, $\forall n \in \mathbb{N}$, т.е. множество ограниченно снизу. • **Пример 2.32.** Найти точные верхнюю и нижнюю границы множества

$$\left\{a_n = \frac{2^n - 1}{2^{n+1} + 1} \cdot \arcsin\frac{\left(-1\right)^n}{2}, n \in \mathbb{N}\right\}.$$

© Рассмотрим подмножества данного множества, одно из которых состоит из элементов a_n с нечетными номерами, а второе из элементов с четными номерами. Элементы этих множеств образуют две монотонные последовательности. При $n = 2k, k \in \mathbb{N}$:

$$a_{2k} = \frac{2^{2k} - 1}{2^{2k+1} + 1} \cdot \arcsin \frac{1}{2} = \frac{2^{2k} - 1}{2 \cdot 2^{2k} + 1} \cdot \frac{\pi}{6} = \frac{\pi}{6} \cdot \left(\frac{1}{2} - \frac{3/2}{2 \cdot 2^{2k} + 1}\right).$$

Так как 2^{2k} возрастает, то $\frac{3/2}{2 \cdot 2^{2k} + 1}$ убывает, и a_{2k} возрастает. Значит inf $a_{2k} = a_2 = \frac{\pi}{18}$. Очевидно, что $a_{2k} < \frac{\pi}{12}$. Докажем, что $\sup a_{2k} = \frac{\pi}{12}$, то есть, докажем, что $\forall \varepsilon > 0 \ \exists k_0 \ a_{2k_0} > \frac{\pi}{12} - \varepsilon$. Рассмотрим неравенство $\frac{\pi}{6} \cdot \left(\frac{1}{2} - \frac{3/2}{2 \cdot 2^{2k} + 1}\right) > \frac{\pi}{12} - \varepsilon$. Оно равносильно неравенству $\frac{3/2}{2 \cdot 2^{2k} + 1} < \varepsilon$ $\Leftrightarrow k > \frac{1}{2} \log_2 \left(\frac{\pi}{8\varepsilon} - \frac{1}{2}\right)$. Значит, можно взять $k_0 = \left[\frac{1}{2} \log_2 \left(\frac{\pi}{8\varepsilon} - \frac{1}{2}\right)\right] + 1$.

Теперь рассмотрим нечетные n. При $n=2k-1, k\in\mathbb{N}$ имеем

$$a_{2k-1} = \frac{2^{2k-1}-1}{2^{2k}+1} \cdot \arcsin\left(-\frac{1}{2}\right) = \frac{2^{2k-1}-1}{2 \cdot 2^{2k-1}+1} \cdot \left(-\frac{\pi}{6}\right) = -\frac{\pi}{6} \cdot \left(\frac{1}{2} - \frac{3/2}{2 \cdot 2^{2k-1}+1}\right).$$

Эта последовательность убывает, значит $\sup a_{2k-1} = a_1 = -\frac{\pi}{30}$. Аналогично предыдущему случаю доказывается, что $\inf a_{2k-1} = -\frac{\pi}{12}$. Сравнивая точные границы двух подпоследовательностей, получаем $\inf a_n = -\frac{\pi}{12}$, $\sup a_n = \frac{\pi}{12}$.

Упражнения

2.116.Доказать ограниченность данных последовательностей $(n \in \mathbb{N})$:

a)
$$a_n = \frac{2n^2 + 1}{2 + n^2}$$
;

b)
$$a_n = \frac{n^2 + 2n - 1}{n^2 - 3}, n \ge 2;$$

c)
$$a_n = \frac{1-n}{\sqrt{n^2+1}};$$

d)
$$a_n = \frac{2n + \cos \pi n}{3n - 1};$$

e)
$$a_n = \frac{n+1}{n^2+1}$$
;

f)
$$a_n = \frac{n-3}{2n+1} + \frac{2n+1}{n-3}$$
;

g)
$$a_n = \sqrt{n^2 + 1} - n$$
;

h)
$$a_n = \frac{2^n + 1}{3^n - 5}$$
;

i)
$$a_n = \frac{5^{2n+1} + 2^n}{1 - 25^n}$$
;

$$\mathbf{j)} \quad a_n = \frac{\lg n - 1}{\lg n + 1};$$

k)
$$a_n = \log_2(3n-1) - \log_2(n+1);$$

1)
$$a_n = \frac{n^2}{2^n};$$

m)
$$a_n = \sum_{k=1}^n \frac{1}{k(k+1)};$$

o)
$$a_n = \sum_{k=1}^n \frac{1}{k!};$$

n)
$$a_n = \sum_{k=1}^n \frac{1}{k^2};$$

p)
$$a_n = \sum_{k=1}^n k \cdot 2^{-k}$$
.

2.117.Доказать неограниченность данных последовательностей $(n \in \mathbb{N})$:

a)
$$a_n = (-1)^n n$$
;

e)
$$a_n = \frac{n - n^4}{(n+1)^3}$$
;

h)
$$a_n = \frac{3^n - 5^n}{1 + 3^n}$$
;

b)
$$a_n = n^2 - n + 1$$
;

$$a_n = \sqrt{n^4 + n^3 + 1} - \frac{\sqrt{4 + n^3 + 1}}{\sqrt{4 + n^3 + 1}}$$

$$\mathbf{i)} \quad a_n = \sqrt[n]{n!} \; ;$$

c)
$$a_n = \frac{1-n}{\sqrt{n+1}};$$

f)
$$a_n = \sqrt{n^4 + n^3 + 1} -$$
 i) $a_n = \sqrt[n]{n!}$; $-\sqrt{n^4 - n^3 + 1}$;

j)
$$a_n = \frac{2^n}{n}$$
;

d)
$$a_n = n^{\cos \pi n}$$
;

g)
$$a_n = 3^n - 2^n$$
;

$$\mathbf{k)} \ a_n = \frac{n+1}{\log_2 n} \, .$$

2.118. Доказать ограниченность множеств значений функций:

a)
$$f(x) = \frac{x^2}{2x^4 + 1}$$
;

c)
$$f(x) = 2^{1-|x|}$$
;

b)
$$f(x) = \frac{x^3}{x^4 + 1}$$
;

d)
$$f(x) = \ln(1 + \sin 2x)$$
.

2.119. Исследовать функцию на ограниченность, ограниченность сверху, ограниченность снизу:

a)
$$f(x) = 2^{1/(x-1)}, x \in \mathbb{R} \setminus \{1\};$$

c)
$$f(x) = \lg x + \operatorname{ctg} x, \ x \in (\pi/2, \pi);$$

b)
$$f(x) = 2^x + 2^{2-x}, x \in \mathbb{R}$$
;

d)
$$f(x) = x \sin x, x \in \mathbb{R}$$
.

2.120.Найти значения $a, b, 0 \le b < a$, при которых данная последовательность ограничена $(n \in \mathbb{N})$:

59

a)
$$x_n = \sqrt{n^a + n^b + 1} - \sqrt{n^a - n^b + 1}$$
; **b)** $x_n = \sqrt[3]{n^a - n^b + 1} - \sqrt[3]{n^a + 1}$.

b)
$$x_n = \sqrt[3]{n^a - n^b + 1} - \sqrt[3]{n^a + 1}$$

- **2.121.**Доказать, что множество $\left\{a_n: a_1=2, \ a_{n+1}=\frac{a_n^4+1}{5a_n}, \ n\in\mathbb{N}\right\}$ ограничено.
- **2.122.**Доказать, что множество $\left\{x_n: x_1=a, x_2=b, x_{n+1}=\frac{x_{n-1}+x_n}{2}, n\in\mathbb{N}\right\}$ ограничено.
- **2.123.**Доказать, что множество $\left\{a_n: a_1=-4, a_2=3, a_{n+1}=a_n+\frac{3a_{n-1}}{4}, n\in\mathbb{N}\right\}$ неограниченно.
- **2.124.**Доказать неограниченность последовательности $a_n = \sum_{k=1}^n (-1)^{k+1} k^2$, $n \in \mathbb{N}$.
- **2.125.**Пусть $\{a_n\}$: $a_1 = 3$, $a_{n+1} = 0.5a_n^2 1$, $n \in \mathbb{N}$. Доказать, что эта последовательность ограничена снизу, но неограниченна сверху.
- 2.126. Найти точные нижнюю и верхнюю границы данных последовательностей:

a)
$$a_n = \frac{n-1}{n}$$
;

$$\mathbf{e)} \ a_n = n^{\cos \pi n} \, ;$$

b)
$$a_n = \frac{(-1)^n}{n} + \frac{1 - (-1)^n}{2}$$
;

f)
$$a_n = \frac{(-1)^n - n}{1 + 3n} \operatorname{arctg} \frac{(-1)^n}{\sqrt{3}};$$

c)
$$a_n = 2 - \frac{n}{n+1} \cos \pi n$$
;

g)
$$a_n = \frac{2n-1}{2n+1} \cos \frac{2\pi n}{3};$$

d)
$$a_n = \frac{2n-5}{5n-2}\sin\frac{\pi n}{2};$$

h)
$$a_n = 1 + 2 \cdot (-1)^{n+1} + 3 \cdot (-1)^{\frac{n(n-1)}{2}}$$
.

2.127.Найти $\sup_{X} f(x)$, $\inf_{X} f(x)$, $\max_{X} f(x)$ и $\min_{X} f(x)$

a)
$$f(x) = \frac{x}{\sqrt{1+x^2}}, X = \mathbb{R};$$

c)
$$f(x) = \log_3 \frac{3}{x} \cdot \log_3(27x), X = (0, +\infty);$$

b)
$$f(x) = \{x\}, X = \mathbb{R};$$

d)
$$f(x) = \operatorname{arcctg} 1/x, x \in \mathbb{R} \setminus \{0\}$$
.

2.128.Показать, что множество всех правильных рациональных дробей вида m/n, где $m,n\in\mathbb{N},\ m< n$, не имеет наименьшего и наибольшего элементов. Найти точные нижнюю и верхнюю грани этого множества.

2.6 Метрическое пространство. Множества в метрических пространствах

 ${\it Mempuческим\ npocmpaнcmsom}$ называется такое множество X , для любых двух элементов x и y которого определено неотрицательное число $\rho(x,y)$, называемое расстоянием или метрикой, удовлетворяющее трем условиям:

- 1. $\rho(x,y)=0 \Leftrightarrow x=y$;
- 2. $\rho(x,y) = \rho(y,x)$ для $\forall x,y \in X$ (аксиома симметрии);
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ для $\forall x,y,z \in X$ (аксиома треугольника).
- **2.129.** Пусть X произвольное множество. Будет ли X метрическим пространством, если метрику определить следующим образом: $\rho(x,y) = \begin{cases} 0, & x = y; \\ 1, & x \neq y. \end{cases}$
- **2.130.**Пусть $X = \mathbb{R}$. Будут ли следующие функции задавать метрику в X?
 - a) $\rho(x,y) = |\arctan y|$; d) $\rho(x,y) = \min(1,|x-y|)$;
 - **b)** $\rho(x,y) = |\sin(x-y)|$;
- **e)** $\rho(x,y) = \sqrt{x-y}$.
- c) $\rho(x,y) = (x^2 + 3y^2)|x-y|$;
- **2.131.** Пусть $A \subset \mathbb{R}^n$ бесконечное множество. Доказать, что если расстояние между двумя любыми точками множества A не меньше, чем 1, то множество A счетно.
- **2.132.**Пусть $A = \bigcup_{i=1}^n A_i$, где каждое множество $A_i \subset \mathbb{R}$ содержит только изолиро-
- ванные точки. Доказать, что A счетное множество. 2.133. Привести пример множества, не являющегося ни открытым, ни замкнутым.
- 2.134. Привести пример множества, являющегося одновременно и открытым и замкнутым.
- 2.135. Является ли замкнутым множеством множество рациональных чисел, лежащих на отрезке [0,1]?
- 2.136. Найти множество предельных точек множества иррациональных чисел, больших, чем a.
- **2.137.**Пусть $X \subset \mathbb{R}$ и X' множество предельных точек множества X . Привести примеры множества X, так чтобы
 - **a)** X = X';

- **d)** $X' \setminus X \neq \emptyset$ $\mathcal{U}(X \setminus X' \neq \emptyset)$;
- **b)** $X' \subset X$, $X \setminus X' \neq \emptyset$;
- e) $X \cap X' = \emptyset$;
- c) $X \subset X', X' \setminus X \neq \emptyset$:
- f) $\sup X \in X \setminus X'$.
- 2.138. Привести пример множества, имеющего
 - а) одну предельную точку;
- **b)** три предельные точки.
- 2.139. Может ли множество, все точки которого изолированные, иметь предельную точку?
- **2.140.**Доказать, что если $X \subset X'$, то X не содержит изолированных точек.

§3 ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

3.1 Числовая последовательность. Способы задания. Монотонность

Пример 3.1. Найти формулу общего члена для последовательности, заданной рекуррентно.

a)
$$x_1 = -1$$
, $x_n = x_{n-1} + \frac{1}{n(n-1)}$, $n > 1$; **b)** $x_1 = a$, $x_n = \frac{x_{n-1}}{2n-1}$, $n > 1$.

 \odot **а)** Выпишем равенство $x_n = x_{n-1} + \frac{1}{n(n-1)}$ для всех значений n от n до

двух и сложим полученные равенства. Получим

 $x_n = x_1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n}$. Для преобразования полученной суммы каж-

дую дробь запишем в виде $\frac{1}{(k-1)k} = \frac{k-(k-1)}{(k-1)k} = \frac{1}{k-1} - \frac{1}{k}$. Тогда

$$x_n = x_1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} = x_1 + 1 - \frac{1}{n} = -\frac{1}{n}$$

b) Запишем рекуррентное соотношение в виде $\frac{x_n}{x_{n-1}} = \frac{1}{2n-1}$, выпишем получен-

ное равенство для всех значений n от n до двух и перемножим полученные равенства. Получим

$$\frac{x_n}{x_1} = \frac{1}{2n-1} \cdot \frac{1}{2n-3} \cdot \frac{1}{2n-5} \cdot \dots \cdot \frac{1}{3} = \frac{1}{(2n-1)!!},$$

откуда
$$x_n = \frac{a}{(2n-1)!!}$$
.

Пример 3.2. Найти формулу общего члена возвратной последовательности.

a)
$$x_1 = 4$$
, $x_2 = 2$, $x_n = x_{n-1} + 2x_{n-2}$, $n > 2$;

b)
$$x_1 = 3$$
, $x_2 = 9$, $x_n = 3x_{n-1} - \frac{9}{4}x_{n-2}$, $n > 2$;

c)
$$x_1 = 3$$
, $x_2 = 0$, $x_n = 2x_{n-1} - 4x_{n-2}$, $n > 2$.

 \odot Напомним, что *возвратной* называется последовательность, у которой каждый член, начиная с (k+1)-го является линейной комбинацией предыдущих k членов. В данной задаче мы будем рассматривать возвратные последовательности, где k=2.

а) Сначала будем искать последовательность, удовлетворяющую соотношению $x_n = x_{n-1} + 2x_{n-2}$ в виде $x_n = \lambda^n$, $(\lambda \neq 0)$. Подставляя λ^n в рекуррентное соотношение и сокращая на λ^{n-2} , получим квадратное уравнение $\lambda^2 - \lambda - 2 = 0$.

Корнями этого уравнения будут вещественные числа $\lambda_1=-1$ и $\lambda_2=2$, и поэтому рекуррентному соотношению будут удовлетворять две последовательности $x_n^{(1)}=\lambda_1^n=\left(-1\right)^n$ и $x_n^{(2)}=\lambda_2^n=2^n$. Тогда последовательность $x_n=C_1x_n^{(1)}+C_2x_n^{(2)}$ тоже удовлетворяет этому соотношению. Подберем константы C_1 и C_2 так, чтобы x_1 и x_2 были равны заданным значениям. Для этого надо решить систему уравнений

$$\begin{cases} x_1 = C_1 x_1^{(1)} + C_2 x_1^{(2)} = (-1)C_1 + 2C_2 = 4; \\ x_2 = C_1 x_2^{(1)} + C_2 x_2^{(2)} = (-1)^2 C_1 + 2^2 C_2 = C_1 + 4C_2 = 2. \end{cases}$$

Решая ее, получим $C_2 = 1$, $C_1 = -2$ и $x_n = 2 \cdot (-1)^{n+1} + 2^n$.

b) Поступая аналогично пункту a), получим квадратное уравнение $\lambda^2 - 3\lambda + \frac{9}{4} = 0$, которое имеет два равных корня $\lambda_1 = \lambda_2 = \frac{3}{2}$. Возьмем

$$x_n^{(1)}=\lambda_1^n=\left(\frac{3}{2}\right)^n$$
 и $x_n^{(2)}=n\lambda_1^n=n\left(\frac{3}{2}\right)^n$. То, что вторая последовательность удов-

летворяет рекуррентному соотношению, легко проверить непосредственной подстановкой. Подберем константы C_1 и C_2 так, чтобы первые два члена последовательности $x_n = C_1 x_n^{(1)} + C_2 x_n^{(2)}$ были равны данным. Для этого решим систему

$$\begin{cases} x_1 = C_1 x_1^{(1)} + C_2 x_1^{(2)} = \frac{3}{2} C_1 + \frac{3}{2} C_2 = 3; \\ x_2 = C_1 x_2^{(1)} + C_2 x_2^{(2)} = \frac{9}{4} C_1 + 2 \cdot \frac{9}{4} C_2 = \frac{9}{4} C_1 + \frac{9}{2} C_2 = 9. \end{cases}$$

Получим $C_1 = 0$, $C_2 = 2$ и $x_n = 2n \cdot \left(\frac{3}{2}\right)^n$.

c) Поступая аналогично, приходим к квадратному уравнению $\lambda^2 - 2\lambda + 4 = 0$, которое имеет два комплексных корня $\lambda_{1,2} = 1 \pm i\sqrt{3} = 2\left(\cos\left(\pm\frac{\pi}{3}\right) + i\sin\left(\pm\frac{\pi}{3}\right)\right)$.

Решение задачи будем искать в виде

$$x_n = C_1 \lambda_1^n + C_2 \lambda_2^n = 2^n \left(C_1 \left(\cos \frac{\pi n}{3} + i \sin \frac{\pi n}{3} \right) + C_2 \left(\cos \frac{-\pi n}{3} + i \sin \frac{-\pi n}{3} \right) \right),$$

где C_1 и C_2 подберем так, чтобы первые два члена последовательности были равны заданным числам. Решая систему

$$\begin{cases} x_1 = 2\left(C_1\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) + C_2\left(\cos\frac{-\pi}{3} + i\sin\frac{-\pi}{3}\right)\right) = 3; \\ x_2 = 4\left(C_1\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) + C_2\left(\cos\frac{-2\pi}{3} + i\sin\frac{-2\pi}{3}\right)\right) = 0, \end{cases}$$

получим

$$C_1 = \frac{\sqrt{3}}{4} \left(\sqrt{3} - i\right) = \frac{\sqrt{3}}{2} \left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right),$$
 и $C_2 = \frac{\sqrt{3}}{4} \left(\sqrt{3} + i\right) = \frac{\sqrt{3}}{2} \left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right).$

Окончательно

$$x_{n} = \sqrt{3} \cdot 2^{n-1} \left(\cos \frac{\pi (2n-1)}{6} + i \sin \frac{\pi (2n-1)}{6} + \cos \frac{-\pi (2n-1)}{6} + i \sin \frac{-\pi (2n-1)}{6} \right) =$$

$$= \sqrt{3} \cdot 2^{n} \cos \frac{\pi (2n-1)}{6}. \quad \bullet$$

Пример 3.3. Доказать, что последовательность $x_n = \sqrt{n+3} - \sqrt{n+2}$ строго убывает.

 \odot Составим разность $x_{n+1}-x_n=\sqrt{n+4}-2\sqrt{n+3}+\sqrt{n+2}$. Для того чтобы доказать, что последовательность убывающая, надо показать, что эта разность отрицательна.

Выполним последовательность равносильных преобразований:

$$\sqrt{n+4} + \sqrt{n+2} < 2\sqrt{n+3} \Leftrightarrow 2n+6+2\sqrt{(n+2)(n+4)} < 4(n+3) \Leftrightarrow \sqrt{n^2+6n+8} < n+3 \Leftrightarrow n^2+6n+8 < n^2+6n+9$$
.

Так как последнее неравенство верно, то исходное тоже верно и последовательность строго убывает.

Замечание. То, что последовательность строго убывает можно доказать и иначе. Если преобразовать член последовательности $x_n = \frac{1}{\sqrt{n+3} + \sqrt{n+2}}$, то ясно, что с увеличением n член последовательности x_n убывает. \bullet

Пример 3.4. Доказать, что последовательность $t_n = \left(1 + \frac{1}{2n}\right)^n$ возрастает.

 \odot Очевидно, что все члены последовательности положительны. Составим отношение $\frac{t_{n+1}}{t_n} = \left(\frac{2n+3}{2n+2}\right)^{n+1} \left(\frac{2n}{2n+1}\right)^n$ и докажем, что это отношение больше единицы. Используя неравенство Бернулли, получим

$$\frac{t_{n+1}}{t_n} = \left(\frac{2n+3}{2n+2}\right)^{n+1} \left(\frac{2n}{2n+1}\right)^{n+1} \left(\frac{2n+1}{2n}\right) = \left(\frac{n(2n+3)}{(n+1)(2n+1)}\right)^{n+1} \left(\frac{2n+1}{2n}\right) = \left(1 - \frac{1}{(n+1)(2n+1)}\right)^{n+1} \left(\frac{2n+1}{2n}\right) > \left(1 - \frac{n+1}{(n+1)(2n+1)}\right) \left(\frac{2n+1}{2n}\right) = \left(\frac{2n}{2n+1}\right) \left(\frac{2n+1}{2n}\right) = 1.$$

Упражнения

3.1. Какие из чисел a и b являются членами последовательности? Если данное число является членом последовательности, укажите номер этого члена.

a)
$$x_n = \sqrt[3]{n^3 - 20n + 2} - n$$
, $a = -2$, $b = 2$; **b)** $x_n = \frac{n^2 + 7}{2n}$, $a = 3$, $b = 4$.

3.2. Подобрать формулу общего члена последовательности, первыми членами которой будут указанные числа:

c)
$$\left\{1; \frac{3}{4}; \frac{5}{9}; \frac{7}{16}; \frac{9}{25}; ...\right\};$$

d)
$$\left\{\frac{1}{2}; \frac{1}{2}; \frac{3}{8}; \frac{1}{4}; \frac{5}{32}; \dots \right\};$$

- **e)** {2; 12; 36; 80; 150; ...}.
- 3.3. Найти формулу общего члена последовательности, заданной рекуррентно.

a)
$$x_n = x_{n-1} + \frac{1}{2^{n-1}}, x_0 = a, a \in \mathbb{R}, n \in \mathbb{N};$$
 d) $x_1 = 0, x_n = \frac{x_{n-1} + 1}{n}, n > 1;$

d)
$$x_1 = 0, x_n = \frac{x_{n-1} + 1}{n}, n > 1;$$

b)
$$x_0 = 1$$
, $x_1 = 0$, $x_n = \frac{x_{n-2}}{n(n-1)}$, $n > 1$;
e) $x_1 = a$, $x_n = (n+1)(x_{n-1}+1)$, $n > 1$;
f) $x_1 = 1$, $x_n = 5x_{n-1} + 3 \cdot 2^{n-1}$, $n > 1$.

e)
$$x_1 = a, x_n = (n+1)(x_{n-1}+1), n > 1;$$

f)
$$x_1 = 1$$
, $x_n = 5x_{n-1} + 3 \cdot 2^{n-1}$, $n > 1$.

c)
$$x_1 = \frac{1}{2}, \ x_n = \frac{1}{2 - x_{n-1}}, \ n > 1;$$

3.4. Найти формулу общего члена возвратной последовательности.

a)
$$x_1 = 0$$
, $x_2 = 3$, $x_n = \frac{5}{2}x_{n-1} - x_{n-2}$, $n > 2$;

b)
$$x_1 = 5$$
, $x_2 = 7$, $x_n = 2x_{n-1} + 3x_{n-2}$, $n > 2$;

c)
$$x_1 = 4$$
, $x_2 = 12$, $x_n = 4x_{n-1} - 4x_{n-2}$, $n > 2$;

d)
$$x_1 = 3$$
, $x_2 = 6$, $x_n = \frac{4}{3}x_{n-1} - \frac{4}{9}x_{n-2}$, $n > 2$;

e)
$$x_1 = 0$$
, $x_2 = 8$, $x_n = -4\sqrt{3}x_{n-1} - 16x_{n-2}$, $n > 2$;

f)
$$x_1 = 2$$
, $x_2 = 2$, $x_n = 2x_{n-1} - 2x_{n-2}$, $n > 2$.

3.5. Исследовать последовательность на монотонность:

a)
$$x_n = 3^n - 2^n$$
;

e)
$$x_1 = 6, \ x_{n+1} = \sqrt{10 + x_n}, \ n \in \mathbb{N};$$

b)
$$x_n = \lg(n^2 + 5n + 6) - 2\lg n$$
;

f)
$$x_{n+1} = 2x_n - x_n^2, n \in \mathbb{N}, x_1 \in (0,1);$$

c)
$$x_n = \lg(4n^2 - 1) - 2\lg n$$
;

g)
$$x_{n+1} = 2x_n - x_n^2, n \in \mathbb{N}, x_1 \in (1,2).$$

d)
$$x_n = \frac{2}{7} \cdot \frac{5}{12} \cdot \dots \cdot \frac{3n-1}{5n+2};$$

3.6.Доказать, что последовательность $x_n = \frac{2 + x_n^2}{2x}$, $x_1 > 0$ убывающая.

3.7.Пусть
$$x_n = \left(1 + \frac{1}{n}\right)^n$$
 и $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$. Доказать, что

- **а)** последовательность y_n убывает;
- **b)** имеет место неравенство $x_n < e < y_n$;

c) имеет место неравенство
$$\frac{1}{n+1} < \ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$$
.

3.8.Пусть
$$x_{n+1} = \frac{1}{1+x_n}$$
 $n \in \mathbb{N}$, $x_1 = \frac{1}{2}$. Доказать, что подпоследовательность $\{x_{2k}\}$ убывает, а подпоследовательность $\{x_{2k+1}\}$ возрастает.

3.2 Предел последовательности

Напомним определение предела числовой последовательности:

Число A называется **пределом** последовательности $\{a_n\}$, если для любого положительного числа ε найдется такой номер n_0 , начиная с которого, все члены последовательности удовлетворяют условию $|a_n-A|<\varepsilon$. Этот факт записывают так: $\lim_{n\to\infty} a_n = A$ или $a_n \xrightarrow[n\to\infty]{} A$. Таким образом,

$$\lim_{n\to\infty}a_n=A\iff\forall\,\varepsilon>0\quad\exists n_0\in\mathbb{N}\quad\forall\,n\in\mathbb{N},\ n\geq n_0:\ \left|a_n-A\right|<\varepsilon.$$

Отметим, что данное определение не дает возможности вычислять пределы, оно позволяет только ответить на вопрос, будет ли взятое число пределом данной последовательности.

Пример 3.5. Доказать, что
$$\lim_{n\to\infty} \frac{2\ln n - 1}{3\ln n + 1} = \frac{2}{3}$$
.

© Пусть число $\varepsilon > 0$. Найдем, для каких членов последовательности будет выполняться неравенство $\left| \frac{2\ln n - 1}{3\ln n + 1} - \frac{2}{3} \right| < \varepsilon$. Преобразуя это неравенство и учитывая, что для любого натурального числа n выполнено неравенство $3\ln n + 1 > 0$, получим $\frac{5}{3(3\ln n + 1)} < \varepsilon$, откуда $\ln n > \frac{5}{9\varepsilon} - \frac{1}{3}$. Отсюда следует, что нужное нам неравенство будет выполнено для всех натуральных чисел, удовлетворяющих неравенству $n > e^{\frac{5}{9\varepsilon} - \frac{1}{3}}$ и, если положить $n_0 = \left[e^{\frac{5}{9\varepsilon} - \frac{1}{3}} \right] + 1$, то для

всех номеров
$$n \ge n_0$$
 будет выполнено $\left| \frac{2 \ln n - 1}{3 \ln n + 1} - \frac{2}{3} \right| < \varepsilon$.

Пример 3.6. Доказать, что
$$\lim_{n\to\infty} \left(\sqrt{n^2 - n} - n \right) = -\frac{1}{2}$$
.

© Так же, как в предыдущем примере, попробуем найти номера тех членов последовательности, для которых будет выполнено неравенство

$$\left|\sqrt{n^2-n}-n+\frac{1}{2}\right|<\varepsilon$$
 при произвольном $\varepsilon>0$. В данном случае процесс решения

этого неравенства довольно трудоемкий, поэтому воспользуемся тем, что нам требуется найти какой-нибудь номер n_0 (вовсе не самый первый), начиная с которого это неравенство будет выполнено. Поэтому оценим модуль, стоящий в неравенстве, следующим образом:

$$\left|\sqrt{n^2 - n} - n + \frac{1}{2}\right| = \left|\frac{-\frac{1}{4}}{\sqrt{n^2 - n} + n - \frac{1}{2}}\right| = \frac{1}{4\sqrt{n^2 - n} + 4n - 2} = \frac{1}{4\sqrt{n(n-1)} + 4n - 2} < \frac{1}{4\sqrt{(n-1)^2} + 4n - 2} = \frac{1}{8n - 6}.$$

Если найти номер n_0 , начиная с которого последняя дробь будет меньше ε , то для этих же номеров будет выполнено и исходное неравенство. Решая неравенство $\frac{1}{8n-6} < \varepsilon$, получим $n > \frac{1}{8\varepsilon} + \frac{3}{4}$, откуда следует, что можно взять $n_0 = \left\lceil \frac{1}{8\varepsilon} + \frac{3}{4} \right\rceil + 1$.

Пример 3.7. Доказать, что
$$\lim_{n\to\infty} \frac{1}{\sqrt[3]{n^2-26n+24}+n} = 0$$
.

$$\odot$$
 Решить неравенство $\left| \frac{1}{\sqrt[3]{n^2 - 26n + 24} + n} \right| < \varepsilon$ технически довольно

трудно, и, как и в предыдущем примере, мы попытаемся оценить модуль данного выражения каким-нибудь другим более простым выражением, предел которого также будет равен нулю. Опять воспользуемся тем, что мы не ищем первый номер n_0 , начиная с которого выполняется нужное неравенство. Поэтому

будем рассматривать n > 25. Тогда $\sqrt[3]{n^2 - 26n + 24} > 0$ и, следовательно,

$$\left| \frac{1}{\sqrt[3]{n^2 - 26n + 24} + n} \right| = \frac{1}{\sqrt[3]{n^2 - 26n + 24} + n} < \frac{1}{n}.$$

Очевидно, что неравенство $\left| \frac{1}{\sqrt[3]{n^2 - 26n + 24} + n} \right| < \varepsilon$ выполнено, если $n > \frac{1}{\varepsilon}$ и од-

новременно
$$n > 25$$
, т.е. можно положить $n_0 = \max\left(26, \left[\frac{1}{\varepsilon}\right] + 1\right)$.

Напомним, что число a не будет пределом последовательности a_n , если $\exists \varepsilon_0 > 0 \ \forall n_0 \in \mathbb{N} \ \exists n \geq n_0 \ |a_n - a| \geq \varepsilon_0$.

Пример 3.8. Доказать, что последовательность $x_n = \frac{1}{n} + (-1)^n$ не имеет предела.

 \odot Возьмем сначала a=1 и докажем, что оно не может быть пределом данной последовательности. Составим $|x_n-1|=\left|(-1)^n+\frac{1}{n}-1\right|$. Какое бы $n_0\in\mathbb{N}$ мы ни взяли, всегда найдется нечетное число $n\geq n_0$, при котором будет выполняться неравенство $|x_n-a|=\left|-2+\frac{1}{n}\right|\geq 1$, т.е. $\varepsilon_0=1$.

Аналогично, если взять a=-1, то $|x_n+1|=\left|2+\frac{1}{n}\right|\geq 2$ для все четных n. Если взять a такое, что $a\neq 1$ и $a\neq -1$, то, полагая $\min\left(|a+1|,|a-1|\right)=c$, получим $|x_n-a|=\left|\left(-1\right)^n+\frac{1}{n}-a\right|\geq \left|\left(-1\right)^n-a\right|-\frac{1}{n}\geq c-\frac{1}{n}$. Какое бы число $n_0\in\mathbb{N}$ мы ни

взяли, можно найти номер n так, чтобы было выполнено $n \ge n_0$ и $n > \frac{2}{c}$. Для

таких значений n справедливо $|x_n - a| \ge \frac{c}{2} = \varepsilon_0$.

Таким образом, никакое число не может быть пределом этой последовательности. ●

Последовательность $\left\{a_n\right\}$ называется *бесконечно большой* или $\lim_{n\to\infty}a_n=\infty$, если $\forall M>0$ $\exists n_0\in\mathbb{N}$ $\forall n\in\mathbb{N},\ n\geq n_0:\ \left|a_n\right|>M$. Можно говорить, что $\lim_{n\to\infty}a_n=+\infty$ или $\lim_{n\to\infty}a_n=-\infty$. Тогда последнее неравенство в определении бесконечно большой последовательности нужно поменять на неравенство $a_n>M$ или $a_n<-M$, соответственно.

Пример 3.9. Доказать, что $\lim_{n\to\infty} (an+b) = +\infty$, если a > 0 и $\lim_{n\to\infty} (an+b) = -\infty$, если a < 0.

 \odot Пусть M>0. Докажем, что найдется номер, начиная с которого все члены последовательности будут удовлетворять неравенству an+b>M, если a>0 и неравенству an+b<-M, если a<0.

Первое неравенство имеет очевидное решение $n>\frac{M-b}{a}$, что означает, что оно выполняется, начиная с $n_0=\left[\frac{M-b}{a}\right]+1$. Аналогично, второе неравенство выполняется для членов последовательности с номерами $n>\frac{-M-b}{a}$, и можно положить $n_0=\left[\frac{-M-b}{a}\right]+1$, что и требовалось доказать.

Пример 3.10. Доказать, что $\lim_{n \to \infty} a^n = +\infty$, если a > 1.

⊚ Найдем номера тех членов последовательности, для которых выполнено неравенство $a^n > M$, где M - произвольное положительное число. Решая это неравенство, получим $n>\log_a M$. Если взять $n_0=\left\lceil \log_a M \right\rceil+1$, то все члены последовательности, номера которых $n \ge n_0$ будут удовлетворять неравенству $a^n > M$.

Пример 3.11. Доказать, что $\lim_{n\to\infty} n^{\alpha} = +\infty$, если $\alpha > 0$.

 \odot Решим неравенство $n^{\alpha} > M$, где M - произвольное положительное число. Тогда $n > M^{1/\alpha}$ и данное неравенство будет выполнено для членов последовательности с номерами $n \ge n_0 = \left| M^{1/\alpha} \right| + 1$.

Последовательность $\{a_n\}$ называется **бесконечно малой**, если $\lim a_n = 0$.

В теоретическом курсе (гл.2, пп. 1.2, 1.8) приведен ряд примеров бесконечно малых последовательностей:

$$x_n = \frac{1}{n}, \ x_n = a^n, \quad (|a| < 1), \ x_n = \frac{n^m}{a^n}, \ (m \in \mathbb{N}, a > 1), \ x_n = \frac{a^n}{n!}, \ a > 0.$$

Для решения задач на вычисление пределов, эти результаты желательно запомнить.

Кроме того, для вычисления пределов мы будем пользоваться свойствами бесконечно малых, арифметическими свойствами пределов и некоторыми результатами, полученными в теоретическом курсе (гл.2, пар. 1-4):

- 1. Сумма конечного числа бесконечно малых последовательностей есть бесконечно малая.
- 2. Произведение бесконечно малой на ограниченную последовательность есть бесконечно малая последовательность.
- 3. Последовательность, обратная к бесконечно большой, есть бесконечно малая и наоборот.
- 4. Если две последовательности сходятся, то
 - а) предел их суммы (разности) равен сумме (разности) их пределов;
 - b) предел их произведения равен произведению их пределов;
 - с) предел их частного равен частному их пределов (если предел знаменателя отличен от нуля).
- **5.** Если $\lim_{n\to\infty} x_n = a$, то $\lim_{n\to\infty} \sqrt[k]{x_n} = \sqrt[k]{a}$.
- **6.** Для любого $a \neq 0$ справедливо $\lim_{n \to \infty} \sqrt[n]{a} = 1$. **7.** Если $\lim_{n \to \infty} x_n = a \neq 0$, то $\lim_{n \to \infty} \sqrt[n]{x_n} = 1$.
- **8.** $\lim \sqrt[n]{n} = 1$.

9. Если $\lim_{n\to\infty}\alpha_n=0$, то $\lim_{n\to\infty}(1+\alpha_n)^{1/\alpha_n}=e$, где $e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$. (Этот предел будем называть *вторым замечательным пределом*).

Пример 3.12. Вычислить $\lim_{n\to\infty}\frac{\arctan\left(\left(-1\right)^n n\right)}{n^2+1}$.

© Выражение, предел которого мы ищем, представляет собой произведение дроби $\frac{1}{n^2+1}$ на $\operatorname{arctg}\left(\left(-1\right)^n n\right)$. Так как знаменатель дроби есть бесконечно большая, то дробь стремится к нулю. Для второго множителя справедливо неравенство: $\left|\operatorname{arctg}\left(\left(-1\right)^n n\right)\right| < \frac{\pi}{2}$. Таким образом, наше выражение является произведением бесконечно малой на ограниченную, и его предел равен нулю. ●

Пример 3.13. Вычислить
$$\lim_{n\to\infty} \frac{2+\frac{3}{n}-3\cdot\left(\frac{1}{3}\right)^n}{\left(\frac{2}{5}\right)^n-3}$$
.

⊙ Применим арифметические свойства пределов:

$$\lim_{n \to \infty} \frac{2 + \frac{3}{n} - 3 \cdot \left(\frac{1}{3}\right)^n}{\left(\frac{2}{5}\right)^n - 3} = \frac{\lim_{n \to \infty} \left(2 + \frac{3}{n} - 3 \cdot \left(\frac{1}{3}\right)^n\right)}{\lim_{n \to \infty} \left(\left(\frac{2}{5}\right)^n - 3\right)} = \frac{\lim_{n \to \infty} 2 + \lim_{n \to \infty} \frac{3}{n} - \lim_{n \to \infty} \left(3 \cdot \left(\frac{1}{3}\right)^n\right)}{\lim_{n \to \infty} \left(\frac{2}{5}\right)^n - \lim_{n \to \infty} 3} = \frac{\lim_{n \to \infty} 2 + \lim_{n \to \infty} \frac{3}{n} - \lim_{n \to \infty} \left(3 \cdot \left(\frac{1}{3}\right)^n\right)}{\lim_{n \to \infty} \left(\frac{2}{5}\right)^n - \lim_{n \to \infty} 3} = \frac{2 + 0 - 0}{0 - 3} = -\frac{2}{3}.$$

Пример 3.14. Вычислить $\lim_{n\to\infty} \frac{\left(-1\right)^n - \left(\frac{3}{4}\right)^n}{\frac{5}{n} - \left(-1\right)^n}$.

 \odot Мы не можем здесь поступить так же, как и предыдущем примере, так как не существует предела последовательности $\left(-1\right)^n$. Но мы можем преобразовать данное выражение так, чтобы можно было воспользоваться арифметическими свойствами пределов:

$$\lim_{n \to \infty} \frac{\left(-1\right)^n - \left(\frac{3}{4}\right)^n}{\frac{5}{n} - \left(-1\right)^n} = \lim_{n \to \infty} \frac{\left(-1\right)^n \left(1 - \left(-1\right)^n \left(\frac{3}{4}\right)^n\right)}{\left(-1\right)^n \left(\frac{\left(-1\right)^n \cdot 5}{n} - 1\right)} = \lim_{n \to \infty} \frac{1 - \left(-1\right)^n \left(\frac{3}{4}\right)^n}{\frac{\left(-1\right)^n \cdot 5}{n} - 1} = -1.$$

Чаще всего требуется вычислить пределы выражений, компоненты которых не являются сходящимися последовательностями, т.е. не имеют конечного предела. Такие выражения называются *неопределенностями*. Как уже говорилось в теоретическом курсе (гл.2, п.2.5), бывают следующие типы неопределенностей:

$$\frac{\infty}{\infty}$$
, $\frac{0}{0}$, $0 \cdot \infty$, $\infty - \infty$, 1^{∞} , 0^{0} , ∞^{0} .

Чтобы вычислить предел от неопределенного выражения, нужно избавиться от неопределенности. Покажем на примерах, как это делается для неопределенностей различных видов.

Пример 3.15. Найти $\lim_{n\to\infty} \frac{n^2 - 4n}{3n^2 + n + 1}$.

© Легко видеть, что числитель и знаменатель данной дроби — бесконечно большие при $n \to \infty$, поэтому данное выражение является неопределенностью типа $\frac{\infty}{\infty}$. При этом старшие степени многочленов, стоящих в числителе и знаменателе одинаковы и равны 2. Разделим числитель и знаменатель дроби на старшую степень $n - n^2$ и воспользуемся тем, что получившиеся дроби 4/n, 1/n, $1/n^2$ - бесконечно малые:

$$\lim_{n \to \infty} \frac{n^2 - 4n}{3n^2 + n + 1} = \lim_{n \to \infty} \frac{1 - \frac{4}{n}}{3 + \frac{1}{n} + \frac{1}{n^2}} = \frac{1}{3}.$$

Пример 3.16. Найти $\lim_{n\to\infty} \frac{\sqrt{n^2+1}+\sqrt[3]{8n^3}-n}{n-\sqrt[4]{n^3+16}}$.

⊙ Вынесем старший член многочлена из-под каждого корня:

$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 1} + \sqrt[3]{8n^3 - n}}{n - \sqrt[4]{n^3 + 16}} = \lim_{n \to \infty} \frac{n\sqrt{1 + \frac{1}{n^2} + 2n \cdot \sqrt[3]{1 - \frac{1}{8n^2}}}}{n - n^{\frac{3}{4}} \cdot \sqrt[4]{1 + \frac{16}{n^3}}} =$$

(сократим числитель и знаменатель на n)

$$= \lim_{n \to \infty} \frac{\sqrt{1 + \frac{1}{n^2}} + 2 \cdot \sqrt[3]{1 - \frac{1}{8n^2}}}{1 - \frac{1}{n^{\frac{1}{4}}} \cdot \sqrt[4]{1 + \frac{16}{n^3}}} =$$

(переходим к пределу почленно, используя вышеуказанные пределы) = 3. ●

Пример 3.17. Найти
$$\lim_{n\to\infty} \frac{3n^5-3^{n+2}+2^n}{n^3+3^n}$$
.

 \odot Числитель дроби представляет собой неопределенность типа $\infty - \infty$, но, так как $\lim_{n \to \infty} \frac{n^5}{3^{n+2}} = 0$ и $\lim_{n \to \infty} \frac{2^n}{3^{n+2}} = 0$, то для больших значений n второй член числителя существенно больше, чем первый или третий. В таком случае, мы будем говорить, что второй член разности является бесконечно большой более высокого порядка, чем первый или третий. Аналогично, в знаменателе второе слагаемое будет бесконечно большой более высокого порядка, чем первый. В числителе и знаменателе вынесем за скобки бесконечно большие больших порядков. Тогда

$$\lim_{n\to\infty} \frac{3n^5 - 3^{n+2} + 2^n}{n^3 + 3^n} = \lim_{n\to\infty} \frac{3^{n+2} \left(3 \cdot \frac{n^5}{3^{n+2}} - 1 + \frac{2^n}{3^{n+2}}\right)}{3^n \left(\frac{n^3}{3^n} + 1\right)} = \lim_{n\to\infty} 9 \cdot \frac{3 \cdot \frac{n^5}{3^{n+2}} - 1 + \frac{2^n}{3^{n+2}}}{\frac{n^3}{3^n} + 1} = -9 \cdot \bullet$$

Пример 3.18. Найти $\lim_{n\to\infty} \frac{5^{n+1} + n!(n+2)}{10^n - (n+1)!}$.

 \odot Так же, как и в предыдущем примере, определим бесконечно большие наибольшего порядка в числителе и знаменателе. Используя известный предел, получим $\lim_{n\to\infty}\frac{5^{n+1}}{n!(n+2)}=\lim_{n\to\infty}\frac{10^n}{(n+1)!}=0$. Вынося за скобку эти бесконечно

большие, вычислим искомый предел:

$$\lim_{n\to\infty} \frac{5^{n+1} + n!(n+2)}{10^n - (n+1)!} = \lim_{n\to\infty} \frac{n!(n+2)}{(n+1)!} \cdot \frac{\frac{5^{n+1}}{n!(n+2)} + 1}{\frac{10^n}{(n+1)!} - 1} = -1. \quad \bullet$$

Пример 3.19. Найти $\lim_{n\to\infty} \frac{\sqrt[n]{n^2} - 3\sqrt[n]{n} + 2}{\sqrt[n]{n} - 1}$.

 \odot Так как $\lim_{n\to\infty} \sqrt[n]{n}=1$, то пределы числителя и знаменателя равны нулю, и мы имеем неопределенность типа $\frac{0}{0}$. Числитель представляет собой квадратный трехчлен относительно $\sqrt[n]{n}$. Раскладывая его на множители, получим

$$\lim_{n \to \infty} \frac{\sqrt[n]{n^2 - 3\sqrt[n]{n} + 2}}{\sqrt[n]{n - 1}} = \lim_{n \to \infty} \frac{\left(\sqrt[n]{n} - 1\right)\left(\sqrt[n]{n} - 2\right)}{\sqrt[n]{n} - 1} = \lim_{n \to \infty} \left(\sqrt[n]{n} - 2\right) = -1.$$

(Сокращение числителя и знаменателя на общий множитель возможно, так как ни при каком значении n общий множитель не обращается в нуль). \bullet

Пример 3.20. Найти $\lim_{n\to\infty} \left(\sqrt{n^2 + n} - \sqrt{n^2 - n} \right)$.

 \odot Неопределенности вида $\infty - \infty$ и $0 \cdot \infty$ рекомендуется превратить в дроби типа $\frac{\infty}{\infty}$ или $\frac{0}{0}$. Здесь имеем неопределенность вида $\infty - \infty$. Умножим и разделим данное выражение на «сопряженное». Тогда

$$\lim_{n \to \infty} \left(\sqrt{n^2 + n} - \sqrt{n^2 - n} \right) = \lim_{n \to \infty} \frac{\left(n^2 + n \right) - \left(n^2 - n \right)}{\sqrt{n^2 + n} + \sqrt{n^2 - n}} = \lim_{n \to \infty} \frac{2n}{\sqrt{n^2 + n} + \sqrt{n^2 - n}} = \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}} = 1. \quad \bullet$$

Пример 3.21. Найти $\lim_{n\to\infty} \left(\frac{2n+1}{2n+3}\right)^{3n}$.

 \odot Легко видеть, что $\lim_{n\to\infty}\frac{2n+1}{2n+3}=\lim_{n\to\infty}\left(1-\frac{2}{2n+3}\right)=1$. Это означает, что

данное выражение является неопределенностью вида 1^{∞} , и, для вычисления искомого предела, воспользуемся вторым замечательным пределом.

Для этого преобразуем выражение следующим образом:

$$\left(\frac{2n+1}{2n+3}\right)^{3n} = \left(\left(1 + \frac{-2}{2n+3}\right)^{-\frac{2n+3}{2}}\right)^{-\frac{3n\cdot 2}{2n+3}}.$$

Используя то, что $\lim_{n\to\infty} \left(1 + \frac{-2}{2n+3}\right)^{\frac{-2n+3}{2}} = e$, $\lim_{n\to\infty} \frac{-3n\cdot 2}{2n+3} = -3$

 $\lim_{n\to\infty}x_n^{y_n}=a^b$, если $\lim_{n\to\infty}x_n=a$ и $\lim_{n\to\infty}y_n=b$, где a и b - конечные числа, не рав-

ные нулю, получим $\lim_{n\to\infty} \left(\frac{2n+1}{2n+3}\right)^{3n} = e^{-3}$.

Пример 3.22. Найти $\lim_{n\to\infty} \left(\frac{2n+1}{4n-3}\right)^{2n+3}$.

 $\lim_{n\to\infty} \frac{2n+1}{4n-3} = \lim_{n\to\infty} \frac{2+\frac{1}{n}}{4-\frac{3}{n}} = \frac{1}{2}$, показатель степени 2n+3 - бесконечно

большая положительного знака. Таким образом, это выражение не является неопределенностью – легко доказать, что оно является бесконечно малой (дока-

жите самостоятельно). Ответ
$$\lim_{n\to\infty} \left(\frac{2n+1}{4n-3}\right)^{2n+3} = 0$$
.

Пример 3.23. Найти $\lim_{n\to\infty} \sqrt[n]{5^{n+2} \cdot n^3 + 9}$.

 \odot Имеем неопределенность вида ∞^0 . Вынесем из-под корня наибольшее слагаемое:

$$\lim_{n\to\infty} \sqrt[n]{5^{n+2}\cdot n^3+9} = \lim_{n\to\infty} 5\cdot \sqrt[n]{25}\cdot \sqrt[n]{n^3}\cdot \sqrt[n]{1+\frac{9}{5^{n+2}n^3}} = 5 \ .$$
 Здесь мы пользовались тем, что
$$\lim_{n\to\infty} \sqrt[n]{25} = 1 \ , \qquad \lim_{n\to\infty} \sqrt[n]{n} = 1 \qquad \text{и}$$

$$\lim_{n\to\infty} \sqrt[n]{1+\frac{9}{5^{n+2}n^3}} = 1 \ (\text{нет неопределенности}). \ \bullet$$

Для доказательства существования предела можно использовать *признак Вейеритрасса* (гл.2, п.3.2): если последовательность не убывает (не возрастает), начиная с некоторого номера, и ограничена сверху (снизу), то она имеет предел.

Пример 3.24. Доказать, что существует предел последовательности, заданной рекуррентно $x_1 = \frac{1}{6}$, $x_{n+1} = \frac{4}{3}x_n - x_n^2$, $n \ge 1$ и вычислить его.

© Вначале докажем, что данная последовательность имеет предел. Воспользуемся признаком Вейерштрасса. Для установления монотонности рассмотрим разность

смотрим разность
$$x_{n+1}-x_n=\frac{1}{3}x_n-x_n^2=x_n\left(\frac{1}{3}-x_n\right)$$
. Эта разность положительна, если $x_n\in\left(0;\frac{1}{3}\right)$. Рассмотрим функцию $f(x)=\frac{4}{3}x-x^2$. Заметим, что $f(0)=0$, $f\left(\frac{1}{3}\right)=\frac{1}{3}$ и $f(x)$ является строго возрастающей на промежутке $\left(0;\frac{1}{3}\right)$. Таким образом, если $x\in\left(0;\frac{1}{3}\right)$, то и $f(x)\in\left(0;\frac{1}{3}\right)$. Так как $x_1=\frac{1}{6}\in\left(0;\frac{1}{3}\right)$, то отсюда следует, что $\forall n\ x_n\in\left(0;\frac{1}{3}\right)$. Тогда разность $x_{n+1}-x_n=x_n\left(\frac{1}{3}-x_n\right)>0$, то есть последовательность возрастает. Кроме того, так как $f\left(x\right)\leq\frac{4}{9}$, то $x_n\leq\frac{4}{9}$, $\forall n\in\mathbb{N}$, т.е. последовательность ограничена сверху. Следовательно, по признаку Вейерштрасса, она имеет предел, который мы обозначим C . Переходя в рекуррентном соотношении к пределу, получим $C=\frac{4}{3}C-C^2$, откуда $C=0$ или $C=\frac{1}{3}$. Заметим, что $C=0$ не подходит, так как члены последовательности положительны и возрастают с ростом номера. Ответ: $\lim_{n\to\infty}x_n=\frac{1}{3}$.

Для доказательства существования предела или для доказательства того, что последовательность не имеет предела можно использовать критерий Коши (гл.2, п.4.3):

Последовательность сходится тогда и только тогда, когда она фундаментальна, т.е. $\forall \varepsilon > 0 \quad \exists n_0 \in N \quad \forall n \in N, \ n \geq n_0, \ \forall m \in N \quad \left| x_{n+m} - x_n \right| < \varepsilon$.

Пример 3.25. Доказать, что последовательность $\{x_n\}$ сходится, если $x_1=1$, $x_n=x_{n-1}+\frac{(-1)^{n-1}}{n!},\ n\geq 2$.

© Заметим, что данная последовательность не является монотонной. Воспользуемся критерием Коши. Запишем

$$\Delta = \left| x_{n+p} - x_n \right| = \left| \frac{(-1)^{n-1}}{n!} + \frac{(-1)^n}{(n+1)!} + \dots + \frac{(-1)^{n+p-1}}{(n+p)!} \right| =$$

$$= \frac{1}{n!} \left| 1 - \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} - \dots + \frac{(-1)^p}{(n+1)(n+2)\dots(n+p)} \right| \le$$

(так как модуль суммы не больше суммы модулей)

$$\leq \frac{1}{n!} \left(1 + \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+1)(n+2)\dots(n+p)} \right)$$

Каждое слагаемое можно оценить членом геометрической прогрессии:

$$\frac{1}{(n+1)(n+2)...(n+k)} \leq \frac{1}{(n+1)^k},$$

тогда

$$\Delta \leq \frac{1}{n!} \left(1 + \frac{1}{n+1} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+1)^p} \right) = \frac{1}{n!} \cdot \frac{1 - \frac{1}{(n+1)^{p+1}}}{1 - \frac{1}{n+1}} \leq \frac{1}{n!} \cdot \frac{1}{1 - \frac{1}{n+1}} = \frac{n+1}{n \cdot n!} \leq \frac{2}{n!}$$

Так как $\lim_{n\to\infty}\frac{2}{n!}=0$, то для любого $\varepsilon>0$, начиная с некоторого номера, будет

верно: $\frac{2}{n!} < \varepsilon$, то есть $\{x_n\}$ - фундаментальна, а значит, она сходится. \bullet

Для доказательства расходимости последовательности a_n нужно показать, что $\exists \varepsilon_0 > 0 \ \forall n_0 \in N \ \exists n \geq n_0 \ \exists m \in N \ \left| a_{n+m} - a_n \right| \geq \varepsilon_0$

Пример 3.26. Доказать, что последовательность $x_n = \frac{1}{n} + (-1)^n$ расходится.

© Мы уже рассматривали эту последовательность в примере 4, но теперь проведем доказательство того, что она не имеет предела другим способом.

Найдем разность между двумя последовательными членами последова-

тельности
$$\left|a_{n+1}-a_n\right| = \left|\left(-1\right)^{n+1} + \frac{1}{n+1} - \left(-1\right)^n - \frac{1}{n}\right| \ge 2 - \frac{1}{n(n+1)} \ge 1 = \varepsilon_0$$
.

Пример 3.27. Доказать, что последовательность $x_n = \frac{1}{2^2} + \frac{2}{3^2} + \dots + \frac{n}{(n+1)^2}$ расходится.

Рассмотрим

$$\left|x_{n+p} - x_n\right| = \frac{n+p}{(n+p+1)^2} + \frac{n+p-1}{(n+p)^2} + \dots + \frac{n+1}{(n+2)^2} \ge \frac{n+1}{(n+p+1)^2} \cdot p.$$

Последнее неравенство верно, так как числитель каждой дроби не меньше n+1, а знаменатель не превосходит n+p+1, причем число дробей равно p.

Если теперь взять
$$p=n$$
, то получим $\left|x_{2n}-x_{n}\right| \ge \frac{n(n+1)}{\left(2n+1\right)^{2}} \xrightarrow[n\to\infty]{} \frac{1}{4}$. Это означа-

ет, что последовательность не является фундаментальной, следовательно, она расходится. ●

Пример 3.28. Найти $\overline{\lim_{n\to\infty}} x_n$ и $\underline{\lim_{n\to\infty}} x_n$ для последовательности

$$x_n = \frac{n\sin(\pi n/2) + 3}{n+1}.$$

© Выделим следующие подпоследовательности:

при
$$n = 2k$$
 имеем $x_n = \frac{3}{n+1}$, значит, $\lim_{k \to \infty} x_{2k} = 0$;

при
$$n = 4k + 1$$
 имеем $x_n = \frac{n+3}{n+1}$, значит, $\lim_{k \to \infty} x_{4k+1} = 1$;

при
$$n = 4k + 3$$
 имеем $x_n = \frac{3-n}{n+1}$, значит, $\lim_{k \to \infty} x_{4k+3} = -1$.

Таким образом, множество частичных пределов $\{-1, 0, 1\}$, следовательно, $\varliminf_{n\to\infty} x_n = -1$, $\varlimsup_{n\to\infty} x_n = 1$.

Упражнения

3.9. Доказать по определению предела, что

a)
$$\lim_{n\to\infty} \frac{2n+1}{4n-1} = \frac{1}{2}$$
;

c)
$$\lim_{n\to\infty} \frac{n^2+1}{2^n-3} = 0$$
;

b)
$$\lim_{n\to\infty} \frac{2+(-1)^n}{n} = 0$$
;

d)
$$\lim_{n \to \infty} \left(\sqrt[3]{n^3 - 27n^2} - n \right) = -9$$
.

3.10. Доказать по определению, что число A не является пределом последовательности $\{a_n\}$:

a)
$$a_n = \frac{n}{n^2 + 1}$$
, $A = 1$;

c)
$$a_n = 3 + (-1)^n$$
, $A = 2$.

b)
$$a_n = \frac{n-1}{\sqrt{n+1}}, A = 0;$$

3.11. Доказать по определению, что последовательность $\{a_n\}$ расходится:

a)
$$a_n = (-1)^n n$$
;

c)
$$a_n = 2^{(-1)^n - 1}$$
;

b)
$$a_n = \frac{3^n}{1+2^n}$$
;

d)
$$a_n = \sin n$$
;

e)
$$a_n = \left\{ \frac{(-1)^n}{n} \right\}$$
, где $\{x\} = x - [x]$ - дробная часть числа x .

3.12. Верно ли, что число A является пределом последовательности $\{x_n\}$, если

a)
$$\exists n_0 \in \mathbb{N} \quad \forall \varepsilon > 0 \quad \forall n \ge n_0 : |x_n - A| < \varepsilon$$
;

b)
$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \exists n \ge n_0, \ n \in \mathbb{N} : \quad |x_n - A| < \varepsilon ?$$

3.13. Привести пример последовательностей $\{x_n\}$ и $\{y_n\}$, имеющих одно и то же множество значений и таких, что

а)
$$\{x_n\}$$
 и $\{y_n\}$ сходятся, но их пределы не равны;

b)
$$\{x_n\}$$
 сходится, а $\{y_n\}$ расходится.

3.14. Доказать, что последовательность $\{a_n\}$ - бесконечно большая:

a)
$$a_n = 3n^3 - 2n^2 + 5n - 3$$
;

c)
$$a_n = \frac{n! + (n-1)!}{n(n+1)}$$
.

b)
$$a_n = \sqrt[5]{7n^3 - 5n^2}$$
;

a)
$$\lim_{n\to\infty} \frac{3n^2 + 2n - 1}{4n^2 + 1}$$
;

c)
$$\lim_{n\to\infty} \frac{n^3+8}{n^4-16}$$
;

b)
$$\lim_{n\to\infty} \frac{1-n^2}{1-n+n^2}$$
;

d)
$$\lim_{n \to \infty} \frac{1 + 2n^2 + n^4}{n - n^3}$$
.

3.16. Доказать, что, если $P_k(n)$, $Q_m(n)$ - многочлены степени k и m, соответст-

венно, то
$$\lim_{n \to \infty} \frac{P_k(n)}{Q_m(n)} = 0$$
, если $k < m$; $\lim_{n \to \infty} \frac{P_k(n)}{Q_m(n)} = \infty$, если $k > m$, и

 $\lim_{n\to\infty}\frac{P_k(n)}{O_k(n)}$ равен отношению старших коэффициентов многочленов, если

$$k=m$$
.

3.17. Найти пределы:

a)
$$\lim_{n\to\infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3}$$
;

c)
$$\lim_{n\to\infty} \left(\frac{n^2}{n+1} - \frac{n^3}{n^2+1} \right)$$
;

b)
$$\lim_{n\to\infty} \frac{(n+2)^{100} - n^{100} - 200n^{99}}{n^{98} - 10n^4 + 1};$$
 d) $\lim_{n\to\infty} \left(\frac{1+2+\ldots+n}{n+2} - \frac{n}{2}\right).$

$$\mathbf{d)} \lim_{n \to \infty} \left(\frac{1 + 2 + \ldots + n}{n + 2} - \frac{n}{2} \right).$$

3.18. Найти пределы:

a)
$$\lim_{n\to\infty} \frac{\sqrt[3]{n^3 + 2n + 1}}{n + 2}$$
;

c)
$$\lim_{n\to\infty} \frac{\sqrt[4]{n^5+3} - \sqrt[3]{n^2+1}}{\sqrt[5]{n^4+1} - \sqrt{n^3+1}}$$
.

b)
$$\lim_{n\to\infty} \frac{\sqrt[3]{(n+1)^2}}{\sqrt[4]{n^3+1}};$$

3.19. Найти пределы:

a)
$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$$
;

c)
$$\lim_{n\to\infty} \left(\sqrt[3]{n^3 + n^2 + 1} - \sqrt[3]{n^3 + 1} \right)$$
;

b)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + 3n} - \sqrt{n^2 - n} \right);$$

d)
$$\lim_{n\to\infty} \left(\sqrt[3]{n+2} - 2\sqrt[3]{n+1} + \sqrt[3]{n} \right)$$
.

3.20. Найти пределы:

a)
$$\lim_{n\to\infty} \frac{5-0.5^n}{0.2^n-2}$$
;

d)
$$\lim_{n\to\infty} \frac{2^{2n+1}-4^{n+1}+1}{4^{n-1}-3^n};$$

b)
$$\lim_{n\to\infty}\frac{2^n-1}{2^n+1};$$

e)
$$\lim_{n\to\infty} \frac{2^n + 3^{-n}}{2^{-n} - 3^n}$$
;

c)
$$\lim_{n\to\infty} \frac{2^n+1}{3^n+1}$$
;

f)
$$\lim_{n\to\infty} \frac{(-9)^n - 2^n}{7^{n+1} - (-1)^{n+1} 9^{n+2}}$$
.

3.21. Используя предел $\lim_{n\to\infty}\frac{n}{a^n}=0$, a>1, доказать, что

$$\mathbf{a)} \quad \lim_{n \to \infty} \frac{\log_a n}{n} = 0;$$

b)
$$\lim_{n \to \infty} \frac{\log_a n}{n^b} = 0, \ b > 0.$$

3.22. Найти пределы

$$\mathbf{a)} \lim_{n\to\infty} \frac{\log_2(n-3)}{n+5};$$

c)
$$\lim_{n\to\infty} \frac{2n + \log_5(n+1)}{\log_5(5^{n+2}-n)}.$$

b)
$$\lim_{n\to\infty} \frac{\log_3(n^2-2n+3)-\log_3(n+5)}{\log_3(n^4+1)+\log_3(n^2-1)};$$

3.23. Найти пределы:

a)
$$\lim_{n\to\infty}\frac{n!}{(n+1)!-n!};$$

c)
$$\lim_{n\to\infty} \frac{\left(-5\right)^n}{(n+1)!}$$
;

b)
$$\lim_{n\to\infty} \frac{(n+2)! + (n+1)!}{(n+2)! - (n+1)!};$$

d)
$$\lim_{n\to\infty} \frac{7^{n+2} + n \cdot n!}{(-2)^n - (n+1)!}$$
.

3.24. Пусть a_n общий член, а S_n сумма первых n членов арифметической прогрессии ($d \neq 0$). Найти **a**) $\lim_{n \to \infty} \frac{S_n}{n^2}$; **b**) $\lim_{n \to \infty} \frac{S_n}{a^2}$.

78

3.25. Найти пределы:

a)
$$\lim_{n\to\infty} \frac{\sqrt[n]{8}-1}{\sqrt[n]{16}-1};$$

b)
$$\lim_{n\to\infty} \frac{\sqrt[n]{2^{n+1}}-2}{\sqrt[n]{4}-1};$$

3.26. Найти пределы:

$$\mathbf{a)} \lim_{n\to\infty} \sqrt[n^2]{10} \; ;$$

b)
$$\lim_{n\to\infty} \sqrt[3n]{5n}$$
;

a)
$$\lim_{n \to \infty} \sqrt[n]{5^n + 3^n - 2^n}$$

b)
$$\lim_{n \to \infty} \sqrt[n]{4^{n+1} - n \cdot 3^n}$$

c)
$$\lim_{n\to\infty} \left(\frac{3}{1-\sqrt[n]{8}} - \frac{5}{1-\sqrt[n]{32}} \right);$$

d)
$$\lim_{n\to\infty} \frac{\sqrt[n]{a^m} - 1}{\sqrt[n]{a^k} - 1}, \ a > 1, k, m \in \mathbb{N}.$$

c)
$$\lim_{n\to\infty} \frac{1+2\sqrt[n]{3}}{2+2\sqrt[n]{3}n}$$

d)
$$\lim_{n\to\infty} \frac{\sqrt[n]{n^5} + \sqrt[n]{5}}{5\sqrt[n]{n^3} - 3\sqrt[n]{2n}}$$
.

3.27. Найти пределы

a)
$$\lim_{n\to\infty} \sqrt[n]{5^n + 3^n - 2^n}$$
;

b)
$$\lim_{n\to\infty} \sqrt[n]{4^{n+1} - n \cdot 3^n}$$

$$\mathbf{c)} \lim_{n \to \infty} \sqrt[n]{\frac{3n-5}{2n+1}};$$

d)
$$\lim_{n \to \infty} \sqrt[n]{\frac{3n^2 - 2n + 5}{n^4 - 3}}$$
; **f)** $\lim_{n \to \infty} \sqrt[n]{\frac{5}{n} + \frac{2}{3^n}}$.

a)
$$\lim_{n \to \infty} \sqrt[n]{5^n + 3^n - 2^n}$$
; **c)** $\lim_{n \to \infty} \sqrt[n]{\frac{3n - 5}{2n + 1}}$; **e)** $\lim_{n \to \infty} \sqrt[n]{\frac{n^3 + 6^n}{2n + 5^n}}$; **b)** $\lim_{n \to \infty} \sqrt[n]{4^{n+1} - n \cdot 3^n}$;

$$\mathbf{f)} \lim_{n\to\infty} \sqrt[n]{\frac{5}{n} + \frac{2}{3^n}}.$$

3.28. Найти пределы:

a)
$$\lim_{n\to\infty} \left(\frac{4n-3}{4n+5}\right)^{2n+2}$$
;

b)
$$\lim_{n\to\infty} \left(\frac{5n+3}{5n-2}\right)^{3-4n}$$
;

c)
$$\lim_{n\to\infty} \left(\frac{3n^2+5}{3n^2+2n-1}\right)^{3n+1}$$
;

$$\mathbf{d)} \lim_{n\to\infty} \left(\frac{2n+1}{5n-3}\right)^{2n};$$

$$e) \lim_{n\to\infty} \left(\frac{3n-1}{2-5n}\right)^{5-n};$$

f)
$$\lim_{n\to\infty} \left(\frac{7n+3}{5n-2}\right)^{3-2n}$$
;

g)
$$\lim_{n\to\infty} \left(\frac{2n^2-n+3}{2n^2+n-2}\right)^{n^2}$$
;

h)
$$\lim_{n\to\infty} \left(\frac{n^2-1}{n^2+3}\right)^{3n}$$
;

i)
$$\lim_{n\to\infty} \left(\frac{3^n+2^n}{3^n}\right)^{\frac{3^{n+1}+n}{2^{n-1}}};$$

j)
$$\lim_{n\to\infty} \left(1 + \frac{1}{3^n}\right)^{n!}$$
.

3.29. Найти пределы

a)
$$\lim_{n\to\infty} \frac{1+a+a^2+\ldots+a^n}{1+b+b^2+\ldots+b^n} \ (|a|<1,|b|<1);$$

b)
$$\lim_{n\to\infty} \left(\frac{1^2}{n^3} + \frac{2^2}{n^3} + \dots + \frac{(n-1)^2}{n^3} \right);$$

c)
$$\lim_{n\to\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n} \right)$$
.

- **3.30.** Доказать, что последовательность $x_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1}$ сходится.
- **3.31.** Доказать, что последовательность $x_n = \frac{1}{2} + \frac{1}{2 \cdot 4} + \dots + \frac{1}{2 \cdot 4 \dots (2n)}$ сходится.
- **3.32.** Доказать, что последовательность $x_n = \frac{10}{1} \cdot \frac{11}{3} \dots \frac{n+9}{2n-1}$ сходится.
- **3.33.** Доказать, что последовательность $x_n = \left(1 \frac{1}{2}\right)\left(1 \frac{1}{4}\right)...\left(1 \frac{1}{2^n}\right)$ сходится.
- **3.34.** Доказать, что последовательность $x_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} \ln n$ сходится. (Предел этой последовательности называют *постоянной Эйлера*).
- **3.35.** Доказать, что последовательность 0,7; 0,77; 0,777; ... сходится. Чему равен ее предел?
- **3.36.** Доказать, что последовательность $x_n = \frac{\sin 1}{2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{2^n}$ сходится.
- **3.37.** Доказать, что последовательность $x_n = \frac{\cos 1!}{1 \cdot 2} + \frac{\cos 2!}{2 \cdot 3} + \dots + \frac{\cos n!}{n(n+1)}$ сходится.
- **3.38.** Доказать, что последовательность $x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$ сходится.
- **3.39.** Найти множество частичных пределов, $\overline{\lim}_{n\to\infty} x_n$ и $\underline{\lim}_{n\to\infty} x_n$ для последовательности $\{x_n\}$, если
 - **a)** $x_n = (-1)^n \frac{2n+1}{n}$;

d) $x_n = \frac{(-1)^{n+1}}{n} - \frac{1 + (-1)^n}{2}$;

b) $x_n = \cos \frac{\pi n}{3}$;

e) $x_n = \sqrt[n]{1 + 2^{n(-1)^n}}$;

- $\mathbf{c)} \quad x_n = \left(\cos\frac{\pi n}{2}\right)^{n+1};$
- **f)** $x_n = \frac{1}{2} \left(n 2 3 \left\lceil \frac{n-1}{3} \right\rceil \right) \left(n 3 \left\lceil \frac{n-1}{3} \right\rceil \right)$, [x] целая часть x.
- **3.40.** Найти множество частичных пределов последовательности $\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \dots$ (всевозможные правильные несократимые дроби вида $\frac{k_n}{n}$, где $n \in \mathbb{N}$ и $1 < k_n < n$.

- **3.41.** Последовательность $\{x_n\}$ такова, что $x_1 = 0$, $x_{2k} = \frac{x_{2k-1}}{2}$, $x_{2k+1} = 1 + x_{2k}$, $k \in \mathbb{N}$. Найти $\overline{\lim}_{n \to \infty} x_n$ и $\underline{\lim}_{n \to \infty} x_n$.
- **3.42.** Привести пример числовой последовательности, имеющей своими частичными пределами данные числа $a_1, a_2, ..., a_p$.
- 3.43. Привести пример числовой последовательности:
 - а) не имеющей конечных частичных пределов;
 - **b)** имеющей единственный конечный частичный предел, но не являющейся сходящейся;
 - с) имеющей бесконечное множество частичных пределов;
 - **d)** имеющей своим частичным пределом любое вещественное число.

3.3 Числовые ряды

Пример 3.29. Найти сумму ряда $\sum_{n=2}^{\infty} \ln \left(1 - \frac{1}{n^2} \right)$ или установить его расходимость.

Составим частную сумму ряда:

$$S_{n} = \sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^{2}}\right) = \ln\left(\left(1 - \frac{1}{2^{2}}\right)\left(1 - \frac{1}{3^{2}}\right)\left(1 - \frac{1}{4^{2}}\right) ...\left(1 - \frac{1}{n^{2}}\right)\right) =$$

$$= \ln\left(\frac{2^{2} - 1}{2^{2}} \cdot \frac{3^{2} - 1}{3^{2}} \cdot \frac{4^{2} - 1}{4^{2}} \cdot ... \cdot \frac{n^{2} - 1}{n^{2}}\right) =$$

$$= \ln\left(\frac{(1 \cdot 3)(2 \cdot 4)(3 \cdot 3) ...(n - 1)(n + 1)}{2^{2} \cdot 3^{2} \cdot 4^{2} \cdot ... \cdot n^{2}} = \ln\frac{n + 1}{2n}.$$

Переходя к пределу при $n \to \infty$, получим сумму ряда $S = \ln \frac{1}{2}$.

Пример 3.30. Найти сумму ряда $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}$ или установить его расходимость.

 \odot Общий член данного ряда $a_n = \frac{1}{\sqrt[n]{n}}$. Известно, что $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n}} = 1$, поэтому можно найти номер n_0 такой, что $\forall n \geq n_0$ выполняется неравенство $a_n \geq \frac{1}{2}$. Возьмем некоторое натуральное число m и оценим частную сумму ряда $S_{n_0+m} > \frac{1}{\binom{n_0+1}{n_0+1}} + \frac{1}{\binom{n_0+1}{n_0+2}} + \ldots + \frac{1}{\binom{n_0+m}{n_0+m}} \geq \frac{m}{2}$. Отсюда следует, что при $m \to \infty$ частная сумма ряда стремится к бесконечности и ряд расходится. \bullet

Замечание. Предыдущий пример можно решить проще. Так как $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n}} = 1$, то необходимое условие сходимости ряда не выполняется и, следовательно, ряд расходится.

Пример 3.31. Пользуясь критерием Коши, доказать, что ряд $\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$ сходится.

 \odot При некотором натуральном значении n и произвольном натуральном значении m оценим модуль разности

$$\left|S_{n+m} - S_n\right| = \left|\frac{\cos(n+1)}{2^{n+1}} + \frac{\cos(n+2)}{2^{n+2}} + \dots + \frac{\cos(n+m)}{2^{n+m}}\right| \le \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{n+m}} = \frac{1}{2^{n+1}} \cdot \frac{1 - \left(\frac{1}{2}\right)^m}{1 - \frac{1}{2}} < \frac{1}{2^n}.$$

Очевидно, что, взяв произвольное положительное число ε , можно найти номер n_0 , начиная с которого будет справедливо $\left|S_{n+m}-S_n\right|<\varepsilon$, откуда следует, что ряд сходится. \bullet

Пример 3.32. Пользуясь критерием Коши, доказать, что ряд $\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$ расходится.

 \odot Нам нужно доказать, что условие критерия Коши не выполняется, т.е., что существует число $\varepsilon_0>0$ такое, что, какой бы номер n_0 мы ни взяли, найдутся натуральные числа $n>n_0$ и m, для которых выполняется неравенство $\left|S_{n+m}-S_n\right|\geq \varepsilon_0$. Возьмем некоторое натуральное число n и положим m=n. Тогда справедливо

$$|S_{2n} - S_n| = \ln \frac{n+2}{n+1} + \ln \frac{n+3}{n+2} + \dots + \ln \frac{2n+1}{2n} = \ln \frac{2n+1}{n+1}.$$

Так как $\lim_{n\to\infty} \frac{2n+1}{n+1} = 2$, то $\lim_{n\to\infty} \ln \frac{2n+1}{n+1} = \ln 2 > 0$ (этот факт следует из непрерывности логарифмической функции и будет доказан позже).

Следовательно, существует номер \overline{n} , начиная с которого $\ln \frac{2n+1}{n+1} \ge \varepsilon_0$, где ε_0 - некоторое положительное число (по теореме отделимости последова-

тельности от нуля). Отсюда, какой бы номер n_0 мы ни взяли, если взять $n \ge \max\left\{n_0, \overline{n}\right\}$, то будет справедливо неравенство $\left|S_{2n} - S_n\right| \ge \varepsilon_0$, следовательно, ряд расходится. \bullet

Замечание. Общий член ряда можно было бы оценить с помощью известного неравенства $\ln\left(1+\frac{1}{n}\right) > \frac{1}{n+1}$. Тогда

$$|S_{2n} - S_n| > \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n+1} > \frac{n-1}{2n+1}$$

и, так как $\lim_{n\to\infty}\frac{n-1}{2n+1}=\frac{1}{2}>0$, то, начиная с некоторого номера n_0 , будет справедливо неравенство $\left|S_{2n}-S_n\right|>\varepsilon_0$.

Чтобы для исследования рядов на сходимость применять признаки сравнения, нужно иметь некоторый запас «эталонных» рядов, т.е. рядов, сходимость которых уже известна. В качестве таких рядов будем использовать

- а) геометрическую прогрессию $\sum_{n=0}^{\infty} aq^n$, про которую мы знаем, что она сходится, если 0 < q < 1 (речь идет только о рядах с положительными членами) и расходится, если q > 1;
- **b)** *обобщенный гармонический ряд*, т.е. ряд вида $\sum_{n=1}^{\infty} \frac{1}{n^s}$, который сходится, если s > 1 и расходится, если $s \le 1$ (см. гл.1, п. 5.2).

В дальнейшем мы получим еще некоторые классы рядов, которые можно использовать, как «эталонные».

Пример 3.33. Используя признаки сравнения, исследовать ряд $\sum_{n=6}^{\infty} \frac{n}{(n-5)2^n}$ на сходимость.

 \odot Запишем общий член ряда в виде произведения $a_n = \frac{n}{n-5} \cdot \frac{1}{2^n}$ и оценим первый множитель: $\frac{n}{n-5} = 1 + \frac{5}{n-5} \le 6$. Тогда $a_n \le \frac{6}{2^n} = b_n$. Ряд $\sum_{n=6}^{\infty} b_n$ схо-

дится, так как это геометрическая прогрессия, следовательно, сходится и данный ряд. ●

Замечания

- **1.** Оценку первого множителя можно было произвести более грубо, используя то, что $\lim_{n\to\infty}\frac{n}{n-5}=1$. Например можно сказать, что, начиная с некоторого номера, выполняется неравенство $\frac{n}{n-5}\leq 2$. Тогда, начиная с этого номера, справедливо неравенство $a_n\leq \frac{2}{2^n}$ и этого достаточно, чтобы утверждать, что ряд сходится.
- 2. Напомним, что все приводимые рассуждения справедливы только для рядов с положительными членами (хотя бы, начиная с некоторого номера).

Пример 3.34. Используя признаки сравнения, исследовать ряд $\sum_{n=1}^{\infty} \frac{2n+5}{3n^2\sqrt{n-1}+n}$ на сходимость.

 \odot Возьмем ряд с общим членом $b_n = \frac{1}{n^{\frac{3}{2}}}$. Он сходится, как обобщенный гармонический ряд с показателем $s = \frac{3}{2} > 1$. С другой стороны,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(2n+5)n^{\frac{3}{2}}}{3n^2\sqrt{n-1}+n} = \frac{2}{3},$$

следовательно, данный ряд тоже сходится.

Замечание. Для выяснения того, что можно взять в качестве b_n , были взяты старшие степени n в числителе и знаменателе и составлено их отношение $\frac{n}{n^2\sqrt{n}} = \frac{1}{n^{\frac{3}{2}}}.$

Пример 3.35. Используя признаки сравнения, исследовать ряд $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ на сходимость.

© Все члены данного ряда, начиная со второго, удовлетворяют очевидному неравенству $a_n = \frac{\ln n}{n} > \frac{1}{n} = b_n$. Ряд $\sum_{n=3}^{\infty} b_n$ расходится, поэтому данный ряд расходится.

Пример 3.36. Используя признак сравнения, исследовать ряд $\sum_{n=2}^{\infty} \frac{\ln n}{n\sqrt{n+1}}$ на сходимость.

 \odot Вспомним (упр. 3.21.b), что $\lim_{n\to\infty}\frac{\ln n}{n^{\alpha}}=0$ для любого положительного числа α . Отсюда следует, что для достаточно больших n (номер n_0 , начиная с которого это выполняется, зависит от α) выполняется неравенство $\ln n < n^{\alpha}$.

Возьмем $\alpha = \frac{1}{3}$, тогда существует номер члена ряда, начиная с которого

$$\ln n < n^{\frac{1}{3}}$$
 и $a_n < \frac{n^{\frac{1}{3}}}{n\sqrt{n}} = \frac{1}{n^{\frac{7}{6}}}$. Так как $\frac{7}{6} > 1$, то ряд сходится. \bullet

Пример 3.37. Используя признак сравнения, исследовать ряд $\sum_{n=1}^{\infty} \frac{n^{100}}{2^n}$ на сходимость.

 \odot Здесь вспомним, что $\lim_{n \to \infty} \frac{n^k}{a^n} = 0$ для любого числа k и любого числа a > 1, поэтому можно сказать, что, начиная с некоторого n, будет выполняться неравенство $n^{100} < \sqrt{2}^n$. Тогда, начиная с этого номера можно оценить общий член данного ряда: $a_n = \frac{n^{100}}{2^n} < \frac{\sqrt{2}^n}{2^n} = \frac{1}{\sqrt{2}^n} = b_n$. Ряд $\sum_{n=n_0}^{\infty} b_n$ сходится, следовательно, данный ряд тоже сходится. \bullet

Пример 3.38. Используя признаки сравнения, исследовать ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ на сходимость.

© Воспользуемся третьим признаком сравнения. Ряд $\sum_{k=1}^{\infty} \frac{2^k}{2^k \ln 2^k} =$

 $=\sum_{k=1}^{\infty}\frac{1}{k\ln 2}$ расходится, как гармонический ряд, умноженный на константу. Следовательно, исходный ряд тоже расходится.

Пример 3.39. Используя признаки сравнения, исследовать ряд

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)\ln^2(n+2)}$$
 на сходимость.

© Сначала воспользуемся вторым признаком сравнения рядов и сравним данный ряд с рядом $\sum_{n=2}^{\infty} \frac{1}{2n \ln^2 n}$. Из равенства

$$\lim_{n \to \infty} \left(\frac{1}{(2n-1)\ln^2(n+2)} : \frac{1}{2n\ln^2 n} \right) = 1$$

следует, что эти ряды либо оба сходятся, либо оба расходятся. Для исследования второго ряда воспользуемся третьим признаком. Ряд

$$\sum_{k=1}^{\infty} \frac{2^k}{2^{k+1} \ln^2 2^k} = \frac{1}{2 \ln^2 2} \sum_{k=1}^{\infty} \frac{1}{k^2}$$

сходится, следовательно, сходятся все рассматриваемые ряды.

Пример 3.40. Используя признаки сравнения, исследовать ряд $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$ на сходимость.

$$\odot$$
 Напишем оценку: $\frac{1}{(\ln n)^{\ln n}} = \frac{1}{e^{\ln n \cdot \ln \ln n}} = \frac{1}{n^{\ln \ln n}} < \frac{1}{n^2}$,

которая справедлива, начиная с некоторого номера (так как, начиная с некоторого номера, $\ln \ln n > 2$). Следовательно, по второму признаку сравнения ряд сходится. \bullet

Упражнения

3.44. Найти сумму ряда или доказать, что он расходится (по определению).

a)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n-1}}{2^{n-1}} + \dots;$$

b)
$$\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n} + \dots;$$

c)
$$\frac{1}{3\cdot 4} + \frac{1}{4\cdot 5} + \dots + \frac{1}{(n+2)(n+3)} + \dots$$
;

d)
$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)} + \dots;$$

e)
$$\sum_{n=1}^{\infty} \frac{1}{16n^2 - 8n - 3}$$
;

g)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$
;

f)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)};$$

h)
$$\sum_{n=1}^{\infty} \frac{3n+4}{n(n+1)(n+4)}$$
;

i)
$$1+\frac{2}{3}+\frac{3}{5}+\ldots+\frac{n}{2n-1}+\ldots;$$

j)
$$1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \dots + \frac{1}{n!} + \dots;$$

$$\mathbf{k)} \quad \sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right);$$

1)
$$0.01 + \sqrt{0.01} + \sqrt[3]{0.01} + \sqrt[4]{0.01} + \dots$$
;

m)
$$\sum_{n=1}^{\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} \right)$$
.

3.45. Доказать, что если члены ряда $\sum_{n=1}^{\infty} a_n$ представимы в виде $a_n = b_{n+1} - b_n$ и

существует конечный предел $\lim_{n\to\infty}b_n=b$, то ряд $\sum_{n=1}^\infty a_n$ сходится. Чему

равна его сумма?

3.46. Проверить, выполняется ли необходимое условие сходимости для следующих рядов. Сделать вывод о сходимости ряда (где это возможно).

$$\mathbf{a)} \sum_{n=0}^{\infty} \frac{n+1}{n+2};$$

$$\mathbf{d)} \sum_{n=2}^{\infty} \frac{\sqrt{n}}{\ln n};$$

$$\mathbf{g}) \sum_{n=1}^{\infty} \frac{n^n}{n!}.$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+1} + \sqrt{2n-1}}$$
;

e)
$$\sum_{n=1}^{\infty} (-1)^n n$$
;

c)
$$\sum_{n=2}^{\infty} \sqrt[n]{0,0001}$$
;

f)
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$$
;

3.47. Пользуясь критерием Коши доказать сходимость или расходимость следующих рядов:

a)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$
;

c)
$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2}$$
;

b)
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n(n+1)}, \ \alpha \in \mathbb{R};$$

$$\mathbf{d)} \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + n}}.$$

3.48. Используя признаки сравнения, исследовать положительные ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{3 + (-1)^n}{5^{n+1}}$$
;

k)
$$\sum_{n=1}^{\infty} \ln \frac{2n^2 + 1}{2n^2 + 2}$$
;

b)
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^{n+1}}{n+1}$$
;

$$1) \sum_{n=1}^{\infty} \ln \left(\frac{2n+2}{2n+1} \right);$$

c)
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2 + n + 1}$$
;

$$\mathbf{m}) \sum_{n=2}^{\infty} \frac{1}{(n-1)\sqrt{\ln(n+1)}};$$

$$\mathbf{d)} \sum_{n=1}^{\infty} \frac{\cos(\pi/4n)}{\sqrt{4n^2-1}};$$

$$\mathbf{n})\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}\cdot\ln 2n};$$

e)
$$\sum_{n=1}^{\infty} n^3 e^{-n}$$
;

o)
$$\sum_{n=2}^{\infty} \frac{1}{(n+1)^2 \ln n}$$
;

f)
$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{(n^2 + 1)^2}$$
;

$$\mathbf{p})\sum_{n=1}^{\infty}\frac{\ln^2 n}{n^3};$$

g)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{(2n-1)(2n+1)}}$$
;

$$\mathbf{q})\sum_{n=1}^{\infty}\left(\frac{n+3}{n+2}\right)^{2n};$$

h)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt[3]{n^5 - 3n + 4}}$$
;

r)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^{n^2}}$$
;

i)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n!(n+2)}$$
;

$$s) \sum_{n=2}^{\infty} \frac{1}{(\ln \ln n)^{\ln \ln n}};$$

j)
$$\sum_{n=1}^{\infty} \frac{\sqrt{2n+1} - \sqrt{2n-1}}{n}$$
;

$$\mathbf{t)} \sum_{n=1}^{\infty} \frac{7^n}{5^n n}.$$

3.49. При каких значениях $\alpha \in \mathbb{R}$ сходятся ряды:

$$\mathbf{a)} \sum_{n=2}^{\infty} \frac{1}{n \ln^{\alpha} n};$$

c)
$$\sum_{n=1}^{\infty} \frac{n}{\alpha^n}$$
, $\alpha > 0$;

b)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^{\alpha}+1};$$

d)
$$\sum_{n=1}^{\infty} \frac{\alpha n^{\alpha-1}}{\sqrt{1+n^{\alpha}}}?$$

§4 ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ

4.1 Определения предела функции

Пример 4.1. Доказать по определению предела функции по Коши, что $\lim_{x\to 3} \frac{x^2-9}{x-3} = 6.$

 \odot Пусть $\varepsilon > 0$. Составим неравенство $\left| \frac{x^2 - 9}{x - 3} - 6 \right| < \varepsilon$ и посмотрим, суще-

ствует ли проколотая окрестность точки $x_0=3$, входящая во множество решений этого неравенства. Предполагая, что $x\neq 3$, сокращаем дробь и получаем неравенство $|x-3|<\varepsilon$. Это означает, что, если взять $\delta=\varepsilon$, то для всех значений x, удовлетворяющих условиям $|x-3|<\delta$ и $x\neq 3$, будет выполняться неравен-

ство
$$\left| \frac{x^2 - 9}{x - 3} - 6 \right| < \varepsilon$$
, что и означает, что $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6$.

Пример 4.2. Доказать по определению предела функции по Коши, что $\lim_{x\to 2} \frac{2x^2 - x - 6}{x^2 - 3x + 2} = 7.$

 \odot Аналогично предыдущему, составим неравенство $\left| \frac{2x^2 - x - 6}{x^2 - 3x + 2} - 7 \right| < \varepsilon$ и, предполагая, что $x \ne 2$, сократим дробь. Получим неравенство $\left| \frac{2x + 3}{x - 1} - 7 \right| < \varepsilon$, которое равносильно неравенству $\left| \frac{5x - 10}{x - 1} \right| < \varepsilon$.

Так как нам требуется не точное решение этого неравенства, а только доказательство существования некоторой δ -окрестности, лежащей во множестве решений неравенства (не обязательно наибольшего радиуса), то будем рассматривать только те значения x, которые удовлетворяют неравенству $x>\frac{3}{2}$. Тогда

$$|x-1| > \frac{1}{2}$$
 $|x-1| < \frac{5|x-2|}{1/2} = 10|x-2|$.

Если положить $\delta = \min\left(\frac{1}{2}, \frac{\varepsilon}{10}\right)$, то для всех значений x, удовлетворяющих условиям $|x-2| < \delta$ и $x \neq 2$ будет выполняться неравенство $\left|\frac{2x^2-x-6}{x^2-3x+2}-7\right| < \varepsilon$, что и требовалось доказать.

Пример 4.3. Доказать по определению предела функции по Коши, что $\lim_{x\to 0} 3^x = 1$.

 \odot Составим неравенство $|3^x - 1| < \varepsilon$ и найдем множество его решений:

$$\left|3^{x}-1\right|<\varepsilon\Leftrightarrow 1-\varepsilon<3^{x}<1+\varepsilon\Leftrightarrow\begin{cases} \log_{3}\left(1-\varepsilon\right)< x<\log_{3}\left(1+\varepsilon\right), & ecnu\ 0<\varepsilon<1;\\ x<\log_{3}\left(1+\varepsilon\right), & ecnu\ \varepsilon\geq1. \end{cases}$$

Если положить $\delta = \min(-\log_3(1-\varepsilon), \log_3(1+\varepsilon))$, когда $0 < \varepsilon < 1$, и $\delta = \log_3(1+\varepsilon)$, когда $\varepsilon \ge 1$, то для всех значений x из проколотой окрестности точки 0 будет выполняться неравенство $|3^x - 1| < \varepsilon$.

Пример 4.4. Доказать по определению предела функции по Коши, что $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$.

 \odot Составим неравенство $\left| \arctan x - \frac{\pi}{2} \right| < \varepsilon$. Оно выполнено на всей вещественной оси, если $\varepsilon \ge \pi$. Предполагая что $\varepsilon < \pi$, найдем множество его решений:

$$\left| \arctan x - \frac{\pi}{2} \right| < \varepsilon \Leftrightarrow \frac{\pi}{2} - \arctan x < \varepsilon \Leftrightarrow \arctan x > \frac{\pi}{2} - \varepsilon \Leftrightarrow x > \operatorname{tg} \left(\frac{\pi}{2} - \varepsilon \right).$$

Если положить $\sigma = \operatorname{tg}\left(\frac{\pi}{2} - \varepsilon\right)$, то для всех $x > \sigma$ будет выполняться неравенст-

BO
$$\left| \arctan x - \frac{\pi}{2} \right| < \varepsilon$$
.

Пример 4.5. Доказать по определению предела функции по Коши, что $\lim_{x\to -\infty} \frac{x^3 + 2x}{x^2 - 3x + 2} = -\infty.$

 \odot Составим неравенство $\frac{x^3+2x}{x^2-3x+2}<-M$, где M>0 и попытаемся найти число $\sigma>0$ такое, что для всех значений $x<-\sigma$ это неравенство будет выполнено. Рассматривая только отрицательные значения x, получим

$$\frac{x^2+2}{x^2-3x+2} = 1 - \frac{3|x|}{x^2-3x+2}.$$

Тогда (для x < 0) выполняется неравенство $\frac{3|x|}{x^2 - 3x + 2} < \frac{3|x|}{x^2} = \frac{3}{|x|}$. Отсюда, если

взять x < -6, то получим, что $\frac{3|x|}{x^2 - 3x + 2} < \frac{1}{2}$. Тогда $\frac{x^2 + 2}{x^2 - 3x + 2} > \frac{1}{2}$ и, следова-

тельно, для этих же значений x верно $\frac{x^3+2x}{x^2-3x+2} < \frac{x}{2}$. Положим теперь $\sigma = \max\left(6,\ 2M\right)$. Тогда, если $x < -\sigma$, то $\frac{x^3+2x}{x^2-3x+2} < -M$.

Пример 4.6. Доказать по определению предела функции по Коши, что $\lim_{x\to 1-0}\frac{x^2-x}{|x-1|}=-1\,.$

© Составим неравенство $\left| \frac{x^2 - x}{|x - 1|} + 1 \right| < \varepsilon$, где $\varepsilon > 0$. Нам требуется доказать, что существует число $\delta > 0$ такое, что это неравенство выполнено для всех x, удовлетворяющих неравенству $-\delta < x - 1 < 0$.

Так как
$$x < 1$$
, то
$$\left| \frac{x^2 - x}{|x - 1|} + 1 \right| < \varepsilon \Leftrightarrow \left| \frac{x^2 - x}{-(x - 1)} + 1 \right| < \varepsilon \Leftrightarrow |x - 1| < \varepsilon .$$

Полагая $\delta = \varepsilon$, получим, что для всех значений x, удовлетворяющих неравенству $-\delta < x-1 < 0$, выполняется неравенство $\left| \frac{x^2 - x}{|x-1|} + 1 \right| < \varepsilon$.

Пример 4.7. Доказать по определению предела функции по Коши, что $\lim_{x\to 1+0}\frac{x}{x^2-3x+2}=-\infty\,.$

© Составим неравенство $\frac{x}{x^2-3x+2} < -M$, где M > 0. Надо доказать, что можно найти число $\delta > 0$ такое, что это неравенство выполняется для всех x, удовлетворяющих неравенству $0 < x-1 < \delta$. Будем рассматривать значения x, лежащие в промежутке $\left(1,\frac{3}{2}\right)$. Тогда верно: $\frac{1}{2} < 2-x < 1$ и $\frac{x}{2-x} > 1$. Следовательно, $-\frac{x}{x^2-3x+2} = \frac{x}{(x-1)(2-x)} = \frac{1}{x-1} \cdot \frac{x}{2-x} > \frac{1}{x-1}$.

Если положить $\delta = \min\left(\frac{1}{2}, \frac{1}{M}\right)$, то для всех значений x, удовлетворяющих

неравенству $0 < x - 1 < \delta$ выполнено неравенство $\frac{x}{x^2 - 3x + 2} < -M$.

Пример 4.8. Доказать по определению предела функции по Гейне, что $\lim_{x\to +\infty} \frac{x^s}{a^x} = 0, \ s>0, \ a>1 \ .$

 a^x \odot Пусть $\{x_n\}$ - некоторая последовательность такая, что $\lim_{n\to\infty} x_n = +\infty$.

Нам надо доказать, что $\lim_{n\to\infty}\frac{x_n^s}{a^{x_n}}=0$. Для каждого n найдем целое число k_n та-

кое, что $k_n \le x_n < k_n + 1$. Тогда последовательности $y_n = \frac{k_n^s}{a^{k_n}}$ и $z_n = \frac{(k_n + 1)^s}{a^{k_n + 1}}$ являются подпоследовательностями последовательности $\frac{m^s}{a^m}$, которая сходится к нулю при $m \to \infty$. Так как $\frac{y_n}{a} < \frac{x_n^s}{a^{x_n}} < az_n$, то $\lim_{n \to \infty} \frac{x_n^s}{a^{x_n}} = 0$.

Замечание. При доказательстве данного утверждения допущена некоторая неточность. Строго говоря, последовательности y_n и z_n могут не быть подпоследовательности можно последовательность x_n не обязана быть монотонной. Но эти последовательности можно получить из некоторых подпоследовательностей последовательности $\frac{m^s}{a^m}$ путем перестановки их членов, и легко доказать, что, если последовательность имеет предел, то последовательность, полученная путем перестановки ее членов сходится и имеет тот же предел.

Пример 4.9. Доказать по определению предела функции по Гейне, что $\lim_{x\to 0} 3^{1/x}$ не существует.

 \odot Возьмем последовательности $x_n^{(1)} = \frac{1}{n} \to 0$ и $x_n^{(2)} = -\frac{1}{n} \to 0$. Тогда $\lim_{n \to \infty} 3^{1/x_n^{(1)}} = \lim_{n \to \infty} 3^n = +\infty$, а $\lim_{n \to \infty} 3^{1/x_n^{(2)}} = \lim_{n \to \infty} 3^{-n} = 0$. Так как эти пределы не равны, то данного предела функции не существует.

Упражнения

4.1. Доказать данные утверждения по определению предела функции по Коши:

a)
$$\lim_{x\to 2} (2x+1) = 5$$
;

d)
$$\lim_{x \to 1} 5^x = 5$$

b)
$$\lim_{x \to -3} \frac{x^3 + 3x^2}{x + 3} = 9$$
;

e)
$$\lim_{x\to 2} \frac{x^2-x-2}{2x^2-3x-2} = \frac{3}{5}$$
;

c)
$$\lim_{x\to 3} \frac{x-3}{x^2-5x+6} = 1$$
;

$$\mathbf{f)} \quad \lim_{x \to 0} \cos x = 1$$

4.2.Дано $\lim_{x\to 1} f(x) = 10$. Доказать с помощью определения по Коши, что $\lim_{x\to 2} \sqrt{f\left(\frac{2}{x}\right) - 1} = 3$.

4.3. Доказать данные утверждения по определению предела функции по Коши:

$$\mathbf{a)} \lim_{x\to\infty}\frac{1}{x}=0;$$

b)
$$\lim_{x\to\infty} \frac{x^2+x+1}{x^2+4} = 1;$$

c)
$$\lim_{x \to +\infty} 2^{-x} = 0$$
;

d)
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}} = -1$$
;

$$e) \quad \lim_{x\to 0}\frac{1}{x}=\infty;$$

f)
$$\lim_{x\to 2} \frac{x^2+1}{x^2-4} = \infty;$$

g)
$$\lim_{x\to 0} 3^{1/x^2} = +\infty$$
;

h)
$$\lim_{x\to 3} \frac{1-x}{(3-x)^2} = -\infty$$
.

4.4. Доказать данные утверждения по определению предела по Коши

a)
$$\lim_{x\to 1-0} 5^{1/x-1} = 0$$
;

b)
$$\lim_{x \to 3+0} \frac{\left| x^3 - 3x^2 \right|}{x - 3} = 9$$
;

c)
$$\lim_{x\to 1+0} 5^{\frac{1}{x-1}} = +\infty$$
;

e)
$$\lim_{x \to -\infty} \left(x - \sqrt{x^2 - 3} \right) = -\infty;$$

f)
$$\lim_{x \to +\infty} \left(x - \sqrt{x^2 - 3} \right) = 0;$$

g)
$$\lim_{x \to +\infty} \frac{5x - x^3}{x - 3} = -\infty$$
.

d)
$$\lim_{x \to 3-0} \frac{x+2}{x^2-5x+6} = -\infty$$
;

4.5. Сформулируйте следующие факты на языке окрестностей:

- **a)** функция f(x) в точке x_0 имеет конечный предел;
- **b)** число A не является пределом функции f(x) в точке x_0 ;
- **c)** функция f(x) не имеет конечного предела в точке x_0 ;
- **d)** предел функции f(x) при $x \to \infty$ не равен бесконечности.
- **e)** в точке x_0 функция f(x) не имеет ни конечного, ни бесконечного предела.

4.6. Сформулируйте на языке последовательностей следующие факты:

- **а)** число A является пределом функции f(x) в точке x_0 ;
- **b)** функция f(x) в точке x_0 имеет конечный предел;
- **c)** число A не является пределом функции f(x) в точке x_0 ;
- **d)** функция f(x) не имеет конечного предела в точке x_0 ;
- **e)** предел функции f(x) в точке x_0 равен минус бесконечности;
- **f)** в точке x_0 функция f(x) не имеет ни конечного, ни бесконечного предела.

4.7.Доказать с помощью определения предела по Гейне, что $\lim_{x\to\infty}\frac{\log_a x}{x^s}=0,\ a>1,\ s>0\,.$

4.8.Докажите, что данные пределы не существуют:

a)
$$\lim_{x\to 0} \cos\frac{1}{x}$$
;

b)
$$\lim_{x\to\infty} \sin x$$

c)
$$\lim_{x\to 0} 2^{1/x}$$
;

d) $\lim_{x \to +\infty} \{x\}$, где $\{x\} = x - [x]$ - дробная часть числа x;

e)
$$\lim_{x\to 0} \operatorname{sign}\left(\sin\frac{1}{x}\right)$$
.

4.9. Приведите пример двух функций f(x) и g(x), не имеющих предела в точке x_0 так, чтобы следующие функции имели конечные пределы в точке x_0 :

a)
$$f(x) + g(x)$$
; **b)** $f(x)g(x)$; **c)** $\frac{f(x)}{g(x)}$.

4.2 Непрерывность функции в точке

Напомним, что функция называется **непрерывной в точке** x_0 , если она определена в этой точке и $\lim_{x\to x_0} f(x) = f(x_0)$.

Естественно, доказать, что данная функция непрерывна в заданной точке, можно, используя определение предела функции по Коши, т.е. на языке « $\varepsilon-\delta$ ».

Пример 4.10. Доказать по определению предела, что функция $f(x) = \sqrt{x}$ непрерывна в каждой точке $x_0 > 0$ и непрерывна справа в точке $x_0 = 0$.

 \odot Для доказательства непрерывности в точке $x_0>0$ требуется доказать, что $\lim_{x\to x_0} \sqrt{x} = \sqrt{x_0}$. Рассмотрим модуль разности:

$$0 \le \left| \sqrt{x} - \sqrt{x_0} \right| = \frac{\left| x - x_0 \right|}{\sqrt{x} + \sqrt{x_0}} \le \frac{1}{\sqrt{x_0}} \left| x - x_0 \right|.$$

Задав произвольное число $\varepsilon>0$, получим, что $\left|\sqrt{x}-\sqrt{x_0}\right|<\varepsilon$, если $\left|x-x_0\right|<\delta$, где $\delta=\min\left(\varepsilon\sqrt{x_0}\,,\,x_0\right)$, т.е. $\lim_{x\to x_0}\sqrt{x}=\sqrt{x_0}$. Обратите внимание на то, что δ зависит от взятой точки x_0 .

Докажем непрерывность справа в точке $x_0=0$. Для этого требуется доказать, что $\lim_{x\to +0} \sqrt{x}=0$. Возьмем $\varepsilon>0$. Рассмотрим неравенство $\left|\sqrt{x}-0\right|<\varepsilon$, равносильное неравенству $0\le x<\varepsilon^2$. Если взять $\delta=\varepsilon^2$, то из неравенства $0\le x<\delta$ следует неравенство $\left|\sqrt{x}-0\right|<\varepsilon$, следовательно, $\lim_{x\to +0} \sqrt{x}=0$.

В дальнейшем мы будем использовать утверждение, доказанное в теоретическом курсе: все элементарные функции непрерывны в каждой точке своей области определения.

Пример 4.11. Пусть $\lim_{x \to x_0} u(x) = a$, a > 0 и $\lim_{x \to x_0} v(x) = b$. Доказать, что $\lim_{x \to x_0} u(x)^{v(x)} = a^b$.

 \odot Напомним, что $u(x)^{v(x)} = e^{v(x)\ln u(x)}$. Поэтому, в силу непрерывности показательной и логарифмической функций, получим

$$\lim_{x \to x_0} u(x)^{v(x)} = \lim_{x \to x_0} e^{v(x)\ln u(x)} = e^{\lim_{x \to x_0} (v(x)\ln u(x))} = e^{\lim_{x \to x_0} v(x)\ln \left(\lim_{x \to x_0} u(x)\right)} = e^{\ln a} = a^b. \quad \bullet$$

Упражнения

- **4.10.** Сформулировать на языке окрестностей $(\varepsilon \delta)$ следующие факты:
 - **a)** функция f(x) непрерывна в точке x_0 ;
 - **b)** функция f(x) не является непрерывной в точке x_0 ;
 - **c)** функция f(x) непрерывна слева (справа) в точке x_0 ;
 - **d)** функция f(x) не является непрерывной слева (справа) в точке x_0 ;
 - **e)** функция f(x) является непрерывной на множестве E;
 - **f)** функция f(x) не является непрерывной на множестве E.
- 4.11. Сформулировать на языке последовательностей следующие факты:
 - **а)** функция f(x) непрерывна в точке x_0 ;
 - **b)** функция f(x) не является непрерывной в точке x_0 ;
 - **c)** функция f(x) непрерывна слева (справа) в точке x_0 ;
 - **d)** функция f(x) не является непрерывной слева (справа) в точке x_0 .
- **4.12.** Доказать по определению предела, что функция f(x) непрерывна в точке x_0 :

a)
$$f(x) = x^2, x_0 = 3;$$

c)
$$f(x) = |x|, x_0 \in \mathbb{R}$$
.

b)
$$f(x) = \frac{1}{x}, x_0 = -1;$$

- 4.13. Доказать по определению предела, что
 - а) функция $f(x) = \sqrt[4]{1-x}$ непрерывна в каждой точке $x_0 < 1$ и непрерывна слева в точке $x_0 = 1$;
 - **b)** функция $f(x) = x \cdot [x]$ непрерывна справа в каждой точке $x_0 \in \mathbb{Z}$.
- **4.14.** Функция f(x) непрерывна в точке x_0 , и в любой окрестности этой точки имеются как положительные значения функции, так и отрицательные. Найти $f(x_0)$.

4.3 Вычисление пределов функций с помощью арифметических свойств пределов

Рассмотрим, как применяются арифметические свойства пределов для вычисления пределов неопределенных выражений. При вычислениях будем пользоваться свойствами основных элементарных функций, а также известными пределами:

$$\lim_{x \to +\infty} \frac{x^{s}}{a^{x}} = 0, \quad s > 0, \quad a > 1; \qquad \lim_{x \to +\infty} \frac{\log_{a} x}{x^{s}} = 0, \quad s > 0, \quad a > 1.$$

Сначала рассмотрим случай, когда $x \to \infty$

Пример 4.12. Найти предел функции
$$f(x) = \frac{x^2 + 2x - 3}{3x^2 - 2x - 1}$$
 при $x \to \infty$.

 \odot Слагаемое, содержащее старшую степень числителя, равно x^2 . Будем называть это слагаемое *главной частью* числителя. (В дальнейшем понятие

главной части будет определено строго). Аналогично, главная часть знаменателя равна $3x^2$.

Вынесем в числителе и знаменателе главные части за скобки. Используя теорему об арифметических свойствах предела и тот факт, что функция, обратная бесконечно большой, является бесконечно малой, получим

$$\lim_{x \to \infty} \frac{x^2 + 2x - 3}{3x^2 - 2x - 1} = \lim_{x \to \infty} \frac{x^2 \left(1 + \frac{2}{x} - \frac{3}{x^2}\right)}{3x^2 \left(1 - \frac{2}{3x} - \frac{1}{3x^2}\right)} = \frac{\lim_{x \to \infty} \left(1 + \frac{2}{x} - \frac{3}{x^2}\right)}{\lim_{x \to \infty} 3\left(1 - \frac{2}{3x} - \frac{1}{3x^2}\right)} = \frac{1}{3}.$$

Пример 4.13. Найти $\lim_{x\to +\infty} \frac{3^{x+1} - 5 \cdot 2^x + 101x^{10}}{3^x + 7 \cdot 2^{x+2}}$.

 \odot Главная часть числителя (т.е. слагаемое, существенно большее остальных) равна 3^{x+1} , а главная часть знаменателя 3^x .

Вынесем главные части за скобки. Используя арифметические свойства пределов и известные пределы, получим

$$\lim_{x \to +\infty} \frac{3^{x+1} - 5 \cdot 2^x + 101x^{10}}{3^x + 7 \cdot 2^{x+2}} = \lim_{x \to +\infty} \frac{3^{x+1} \left(1 - \frac{5}{3} \left(\frac{2}{3}\right)^x + 101 \cdot \frac{x^{10}}{3^{x+1}}\right)}{3^x \left(1 + 28 \cdot \left(\frac{2}{3}\right)^x\right)} = 3. \quad \bullet$$

Пример 4.14. Найти
$$\lim_{x \to +\infty} \frac{\log_2(x^{10} - 3x^3) + \log_2(2^x + x^5)}{\log_3(2^{x+1} - 5x^7)}$$
.

© Для того чтобы найти главные части числителя и знаменателя, выполним следующие преобразования:

$$\frac{\log_{2}(x^{10} - 3x^{3}) + \log_{2}(2^{x} + x^{5})}{\log_{3}(2^{x+1} - 5x^{7})} = \frac{\log_{2}\left(x^{10}\left(1 - \frac{3}{x^{7}}\right)\right) + \log_{2}\left(2^{x}\left(1 + \frac{x^{5}}{2^{x}}\right)\right)}{\log_{3}\left(2^{x+1}\left(1 - \frac{5x^{7}}{2^{x+1}}\right)\right)} = \frac{10\log_{2}x + \log_{2}\left(1 - \frac{3}{x^{7}}\right) + x + \log_{2}\left(1 + \frac{x^{5}}{2^{x}}\right)}{(x+1)\log_{3}2 + \log_{3}\left(1 - \frac{5x^{7}}{2^{x+1}}\right)}.$$

Теперь видно, что в числителе главная часть равна x, а в знаменателе $(x+1)\log_3 2$. Вынося их за скобки, получим

$$\lim_{x \to +\infty} \frac{\log_2\left(x^{10} - 3x^3\right) + \log_2\left(2^x + x^5\right)}{\log_3\left(2^{x+1} - 5x^7\right)} = \lim_{x \to +\infty} \frac{x\left(1 + 10\frac{\log_2 x}{x} + \frac{\log_2\left(1 - \frac{3}{x^7}\right)}{x} + \frac{\log_2\left(1 + \frac{x^5}{2^x}\right)}{x}\right)}{x} = \lim_{x \to +\infty} \frac{1}{(x+1)\log_3 2} \left(1 + \frac{\log_3\left(1 - \frac{5x^7}{2^{x+1}}\right)}{(x+1)\log_3 2}\right) = \frac{1}{\log_3 2} = \log_3 2.$$

Пример 4.15. Найти $\lim_{x\to\infty} \left(\sqrt[3]{x^3 + x^2 + 1} - x \right)$.

 \odot Неопределенности вида $\infty - \infty$ рекомендуется превратить в дробь. Для этого умножим и разделим исходное выражение на неполный квадрат суммы и воспользуемся формулой для суммы кубов:

$$\lim_{x \to \infty} \left(\sqrt[3]{x^3 + x^2 + 1} - x \right) = \lim_{x \to \infty} \frac{x^3 + x^2 + 1 - x^3}{\sqrt[3]{x^3 + x^2 + 1}^2 + x\sqrt[3]{x^3 + x^2 + 1} + x^2} = \lim_{x \to \infty} \frac{x^2 \left(1 + \frac{1}{x^2} \right)}{x^2 \left(\left(\sqrt[3]{1 + \frac{1}{x} + \frac{1}{x^3}} \right)^2 + \sqrt[3]{1 + \frac{1}{x} + \frac{1}{x^3}} + 1 \right)} = \frac{1}{3}. \quad \bullet$$

Пример 4.16. Найти $\lim_{x\to\infty} \frac{\sin 5x}{x}$.

Теперь рассмотрим случай, когда $x \to x_0$, где x_0 – число.

Пример 4.17. Вычислить $\lim_{x\to -1} \frac{x^2 + 2x - 3}{3x^2 - 2x - 1}$.

 \odot Данная дробь определена в точке $x_0 = -1$. Поэтому, используя непрерывность элементарных функций, получаем

$$\lim_{x \to -1} \frac{x^2 + 2x - 3}{3x^2 - 2x - 1} = \frac{(-1)^2 + 2 \cdot (-1) - 3}{3 \cdot (-1)^2 - 2 \cdot (-1) - 1} = -1. \quad \bullet$$

Пример 4.18. Вычислить $\lim_{x\to 1} \frac{x^2 + 2x - 3}{3x^2 - 2x - 1}$.

 \odot При $x \to 1$ числитель и знаменатель дроби стремятся к нулю (неопределенность вида 0/0) и терема о пределе частного неприменима. Отметим, что числитель и знаменатель дроби являются многочленами, для которых точка $x_0 = 1$ является корнем. Это означает, что эти многочлены раскладываются на множители и разность x-1 является их общим множителем. Поэтому

$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{3x^2 - 2x - 1} = \lim_{x \to 1} \frac{(x+3)(x-1)}{(3x+1)(x-1)} = \lim_{x \to 1} \frac{x+3}{3x+1} = \frac{4}{4} = 1.$$

Сокращение на x-1 возможно, так как по определению предела $x \neq x_0$.

Пример 4.19. Вычислить $\lim_{x\to -1/3} \frac{x^2+2x-3}{3x^2-2x-1}$.

 \odot Числитель данной дроби при $x \to -1/3$ стремится к -32/9, а знаменатель стремится к нулю. Значит, $\lim_{x \to -1/3} \frac{x^2 + 2x - 3}{3x^2 - 2x - 1} = \infty$.

Пример 4.20. Найти $\lim_{x\to 3} \frac{\sqrt{x+1} - 2\sqrt{x-2}}{x^2 - 9}$.

 \odot Имеем неопределенность $\frac{0}{0}$. Умножим числитель и знаменатель дроби

на
$$\sqrt{x+1} + 2\sqrt{x-2}$$
 и преобразуем: $\lim_{x \to 3} \frac{\sqrt{x+1} - 2\sqrt{x-2}}{x^2 - 9} =$

$$= \lim_{x \to 3} \frac{x+1-4(x-2)}{\left(x^2-9\right)\left(\sqrt{x+1}+2\sqrt{x-2}\right)} = \lim_{x \to 3} \frac{-3\left(x-3\right)}{\left(x-3\right)\left(\sqrt{x+1}+2\sqrt{x-2}\right)} = \frac{-3}{6 \cdot 4} = -\frac{1}{8}.$$

4.4 Вычисление пределов функций с помощью замечательных пределов

Вычислять пределы неопределенных выражений, содержащих трансцендентные функции часто удобно, используя замечательные пределы:

$$\lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = 1; \qquad \lim_{\alpha \to 0} (1 + \alpha)^{1/\alpha} = e; \qquad \lim_{\alpha \to 0} \frac{e^{\alpha} - 1}{\alpha} = 1;$$

$$\lim_{\alpha \to 0} \frac{\ln(1 + \alpha)}{\alpha} = 1; \qquad \lim_{\alpha \to 0} \frac{(1 + \alpha)^{s} - 1}{\alpha} = s; \qquad \lim_{\alpha \to 0} \frac{1 - \cos \alpha}{\alpha^{2}} = \frac{1}{2};$$

$$\lim_{\alpha \to 0} \frac{\arcsin \alpha}{\alpha} = 1; \qquad \lim_{\alpha \to 0} \frac{\operatorname{tg} \alpha}{\alpha} = 1; \qquad \lim_{\alpha \to 0} \frac{\arctan \alpha}{\alpha} = 1.$$

Пример 4.21. Найти $\lim_{x\to 0} \frac{\sin 5x}{x}$.

•

© Имеем неопределенность вида $\frac{0}{0}$. Преобразуем выражение к первому замечательному пределу: $\lim_{x\to 0} \frac{\sin 5x}{x} = 5 \cdot \lim_{x\to 0} \frac{\sin 5x}{5x} = 5 \cdot \lim_{t\to 0} \frac{\sin t}{t} = 5$, здесь t = 5x и $t\to 0$ при $t\to 0$. Сравните с примером 4.16. \bullet Пример 4.22. Найти $\lim_{x\to 0} \frac{\arcsin 3x - \sin 2x}{3 \operatorname{arctg} 5x + \operatorname{tg} 3x}$.

 $x \rightarrow 0$ 3 arctg 5x + tg 3x© Имеем неопределенность вида $\frac{0}{0}$. Преобразуем выражение следую-

щим образом: $\frac{\arcsin 3x - \sin 2x}{3 \arctan 5x + \tan 3x} = \frac{3 \frac{\arcsin 3x}{3x} - 2 \frac{\sin 2x}{2x}}{15 \frac{\arctan 5x}{5x} + 3 \frac{\tan 2x}{3x}}.$

Тогда, используя арифметические свойства пределов и замечательные пределы, получим

$$\lim_{x \to 0} \frac{\arcsin 3x - \sin 2x}{3 \arctan 5x + \tan 3x} = \frac{3 \lim_{x \to 0} \frac{\arcsin 3x}{3x} - 2 \lim_{x \to 0} \frac{\sin 2x}{2x}}{15 \lim_{x \to 0} \frac{\arctan 5x}{5x} + 3 \lim_{x \to 0} \frac{\tan 2x}{3x}} = \frac{3 - 2}{15 + 3} = \frac{1}{18}.$$

Пример 4.23. Найти $\lim_{x\to\infty} \left(\frac{2x^2+3}{2x^2-1}\right)^{x^2}$.

 \odot Имеем неопределенность 1^{∞} . Преобразуем данное выражение ко второму замечательному пределу $\lim_{\alpha \to 0} (1+\alpha)^{1/\alpha} = e$:

$$\lim_{x \to \infty} \left(\frac{2x^2 - 3}{2x^2 - 1} \right)^{x^2} = \lim_{x \to \infty} \left(1 - \frac{2}{2x^2 - 1} \right)^{x^2} = \lim_{x \to \infty} \left[\left(1 - \frac{2}{2x^2 - 1} \right)^{-\frac{2x^2 - 1}{2}} \right]^{-\frac{2x^2}{2x^2 - 1}} = \left[\lim_{\alpha \to 0} \left(1 + \alpha \right)^{1/\alpha} \right]^{\lim_{x \to \infty} -\frac{2x^2}{2x^2 - 1}} = e^{-1} .$$
 Здесь $\alpha = -\frac{2}{2x^2 - 1}$.

4.5 Эквивалентность функций в точке. Вычисление пределов функций с помощью эквивалентных бесконечно малых

Напомним, что две функции f(x) и g(x) называются эквивалентными в точке x_0 , если в некоторой проколотой окрестности этой точки выполняется равенство f(x) = h(x)g(x), где $\lim_{x \to x_0} h(x) = 1$.

Тот факт, что функции f(x) и g(x) эквивалентны в точке x_0 обозначают следующим образом: $f(x) \sim g(x)$ при $x \to x_0$.

Если в этой окрестности функция g(x) не обращается в ноль, то эквивалентность $f(x) \sim g(x)$ при $x \to x_0$ означает, что $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$.

В теоретическом курсе мы получили некоторый набор эквивалентных бесконечно малых функций при $\alpha \to 0$:

$$sin \alpha \sim \alpha;
arcsin \alpha \sim \alpha;
tg \alpha \sim \alpha;
arctg \alpha \sim \alpha;
e^{\alpha} - 1 \sim \alpha \ln b;
ln(1+\alpha) \sim \alpha;
log_b(1+\alpha) \sim \frac{\alpha}{\ln b};
(1+\alpha)^s - 1 \sim s\alpha;
e^{\alpha} - 1 \sim \alpha;$$

Эквивалентные функции удобно использовать при вычислении пределов: при вычислении пределов частного или произведения компоненту дроби или сомножитель можно заменить эквивалентной функцией (теорема 3.6.2).

Пример 4.24. Найти
$$\lim_{x\to 0} \frac{1-\cos 3x}{\arctan 2x \cdot \log_2(1-4x)}$$
.

© Так как при $x \to 0$ верны эквиваленты: $1 - \cos 3x \sim \frac{9x^2}{2}$, $\arctan 2x \sim 2x$,

$$\log_2(1-4x) \sim -\frac{4x}{\ln 2}$$
, то получим

$$\lim_{x \to 0} \frac{1 - \cos 3x}{\arctan 2x \cdot \log_2(1 - 4x)} = \lim_{x \to 0} \frac{9x^2 \cdot \ln 2}{2 \cdot 2x \cdot (-4x)} = \frac{9 \ln 2}{16}.$$

Пример 4.25. Найти $\lim_{x\to 0} \frac{\sqrt[4]{1+4x} - \sqrt[5]{1-10x}}{\arcsin 2x + \arctan 3x}$.

⊚ Преобразуем числитель:

$$\lim_{x \to 0} \frac{\sqrt[4]{1+4x} - \sqrt[5]{1-10x}}{\arcsin 2x + \arctan 3x} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[5]{1-10x} - 1\right)}{\arcsin 2x + \arctan 3x}.$$

При
$$x \to 0$$
 имеем: $\sqrt[4]{1+4x} - 1 \sim \frac{1}{4} \cdot 4x = x$, $\sqrt[5]{1-10x} - 1 \sim -2x$, $\arcsin 2x \sim 2x$

и $\arcsin 3x \sim 3x$, но непосредственно заменять имеющиеся функции эквивалентными нельзя (функции стоят в сумме и разности, а не в произведении или частном). Разделим числитель и знаменатель исходной дроби на x и воспользуемся арифметическими свойствами предела и замечательными пределами:

$$\lim_{x \to 0} \frac{\sqrt[4]{1+4x} - \sqrt[5]{1-10x}}{\arcsin 2x + \arctan 3x} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[5]{1-10x} - 1\right)}{\frac{x}{\arcsin 2x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[5]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[5]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[5]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[5]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[5]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{\arctan 3x}{x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{1}{1-10x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{1}{1-10x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{1}{1-10x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{1}{1-10x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{1}{1-10x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{1}{1-10x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right) - \left(\sqrt[4]{1-10x} - 1\right)}{\frac{x}{x} + \frac{1}{1-10x}} = \lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right)$$

$$= \frac{\lim_{x \to 0} \frac{\left(\sqrt[4]{1+4x} - 1\right)}{x} - \lim_{x \to 0} \frac{\left(\sqrt[5]{1-10x} - 1\right)}{x}}{\lim_{x \to 0} \frac{\arcsin 2x}{x} + \lim_{x \to 0} \frac{\arctan 3x}{x}} = \frac{\lim_{x \to 0} \frac{x}{x} - \lim_{x \to 0} \frac{-2x}{x}}{\lim_{x \to 0} \frac{2x}{x} + \lim_{x \to 0} \frac{3x}{x}} = \frac{1+2}{2+3} = \frac{3}{5}.$$

Пример 4.26. Найти $\lim_{x\to\pi/4} \operatorname{ctg} 2x \cdot \operatorname{ctg} \left(\frac{\pi}{4} - x \right)$.

 \odot Здесь имеем неопределенность вида $0\cdot\infty$. Введем новую переменную $t=x-\pi/4$. При $x\to\pi/4$ $t\to0$. Получим

$$\lim_{x \to \pi/4} \operatorname{ctg} 2x \cdot \operatorname{ctg} \left(\frac{\pi}{4} - x \right) = \lim_{t \to 0} \operatorname{ctg} \left(\frac{\pi}{2} + 2t \right) \operatorname{ctg} \left(-t \right) = \lim_{t \to 0} \frac{\operatorname{tg} 2t}{\operatorname{tg} t} = \lim_{t \to 0} \frac{2t}{t} = 2. \quad \bullet$$

Пример 4.27. Найти $\lim_{x\to 0} (\operatorname{ch} x)^{1/\sin x^2}$

 \odot Имеем неопределенность 1^{∞} . Можно действовать таким же способом, как в примере 23, но рассмотрим другой прием. Воспользуемся основным логарифмическим тождеством $\left(a=e^{\ln a}=\exp\ln a\right)$ и непрерывностью показательной функции:

$$\lim_{x \to 0} (\operatorname{ch} x)^{1/\sin x^{2}} = \lim_{x \to 0} \exp \ln (\operatorname{ch} x)^{1/\sin x^{2}} = \exp \lim_{x \to 0} \frac{\ln (\operatorname{ch} x)}{\sin x^{2}} = \exp \lim_{x \to 0} \frac{\operatorname{ch} x - 1}{x^{2}} = \exp \lim_{x \to 0} \frac{2 \operatorname{sh}^{2} x / 2}{x^{2}}.$$

Заметим, что $\sinh t = \frac{e^t - e^{-t}}{2} = \frac{e^{2t} - 1}{2e^t} \sim t$ при $t \to 0$. Тогда окончательно получим

$$\lim_{x \to 0} (\operatorname{ch} x)^{1/\sin x^2} = \exp \lim_{x \to 0} \frac{2(x/2)^2}{x^2} = \exp \left(\frac{1}{2}\right) = \sqrt{e} . \bullet$$

Пример 4.28. Исследовать ряд $\sum_{n=1}^{\infty} \ln \frac{1+n^2}{n^2}$ на сходимость.

 \odot Общий член ряда $a_n = \ln \frac{1+n^2}{n^2} = \ln \left(1+\frac{1}{n^2}\right) \sim \frac{1}{n^2}$. Так как ряд с общим членом $b_n = \frac{1}{n^2}$ сходится, то по второму признаку сравнения данный ряд тоже сходится.

Упражнения

4.15. Найти пределы:

a)
$$\lim_{x \to \infty} \frac{x^2 + 9x + 100}{3x^2 - 11x}$$
; b) $\lim_{x \to \infty} \frac{(x+1)(x-2)(x+3)(x-4)}{(2x+1)^4}$;

c)
$$\lim_{x\to\infty} \frac{(6x-1)^5}{(2x+1)^3(1-3x)^2}$$
;

f)
$$\lim_{x\to\infty} \left(\frac{3x^2}{2x+1} - \frac{(2x-1)(3x^2+x+2)}{4x^2} \right);$$

d)
$$\lim_{x \to \infty} \frac{\left(1 - x^{11} + x^{13}\right)^3}{\left(1 - x^4\right)^{10}};$$

g)
$$\lim_{x \to \infty} \frac{(ax+1)^k}{x^k + b}, \quad k \in \mathbb{Z}, \ a, b \in \mathbb{R} \setminus \{0\}.$$

e)
$$\lim_{x \to \infty} \left(\frac{x^3 + 3x^2}{x^2 + 1} - x \right);$$

4.16. Найти постоянные
$$a$$
 и b из условия $\lim_{x\to\infty} \left(\frac{x^2+1}{x+1}-ax-b\right) = 0$.

4.17. Найти пределы:

a)
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - \sqrt{x^3 + x^4}}}{\sqrt{x^2 + 16}}$$
;

c)
$$\lim_{x\to\infty} \frac{\sqrt{x^2+4}-2|x|}{\sqrt[3]{x^2+2}+|x|}$$
;

b)
$$\lim_{x\to\infty} \frac{\sqrt{9x^2+1} - \sqrt[3]{8x^2-1}}{\sqrt[4]{16x^4+1} - \sqrt[5]{x^4-1}};$$

d)
$$\lim_{x \to \infty} \frac{\sqrt[3]{1 + 4/x} - \sqrt[4]{1 + 3/x}}{1 - \sqrt[5]{1 - 5/x}}$$
.

4.18. Найти пределы (если указано, что $x \to \pm \infty$, то нужно рассмотреть два случая: $x \to +\infty$ и $x \to -\infty$):

$$\mathbf{a)} \lim_{x \to \infty} \left(\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right);$$

$$\mathbf{d)} \quad \lim_{\to \pm \infty} \left(x + \sqrt{\frac{x^3 + 2x^2}{x + 1}} \right);$$

b)
$$\lim_{x\to\pm\infty} \left(\sqrt{x^2+2x}-x\right);$$

e)
$$\lim_{x \to \infty} \sqrt[3]{x} \left(\sqrt[3]{(x+4)^2} - \sqrt[3]{(x-1)^2} \right);$$

c)
$$\lim_{x \to \pm \infty} \left(\sqrt{x^2 + 2x + 1} - \sqrt{x^2 - 4x + 1} \right);$$

f)
$$\lim_{x \to \infty} x^{3/2} \left(\sqrt{x+2} - 2\sqrt{x+1} + \sqrt{x} \right);$$

$$\mathbf{g)} \lim_{x \to +\infty} \left(\sqrt[n]{(x+1)(x+2)...(x+n)} - x \right), \ n \in \mathbb{N}.$$

4.19. Найти постоянные a и b из условия

a)
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - x + 1} - ax - b \right) = 0$$
;

b)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x + 1} - ax - b \right) = 0$$
.

4.20. Найти пределы:

a)
$$\lim_{x\to 2} \frac{x^2-4x+1}{2x+1}$$
;

d)
$$\lim_{x\to 2} \frac{x^3-8}{x^3-3x-2}$$
;

b)
$$\lim_{x \to \pi/4} \frac{1 + \sin 2x}{1 - \cos 4x}$$
;

e)
$$\lim_{x \to 3} \frac{x^3 - 5x^2 + 3x + 9}{x^3 - 8x^2 + 21x - 18}$$
;

c)
$$\lim_{x\to 3} \frac{x^2-9}{x^2-2x-3}$$
;

f)
$$\lim_{x\to 0} \frac{x^9 + 5x^4 + 6x^3}{x^{11} - 3x^8 - 2x^3}$$

4.21. Найти пределы:

a)
$$\lim_{x\to 0} \frac{(1+x)^5 - (1+5x)}{x^2 + x^5}$$
;

b)
$$\lim_{x\to 0} \frac{(1+nx)^m - (1+mx)^n}{x^2}, \ n,m \in \mathbb{N};$$

c)
$$\lim_{x\to 1}\frac{x^m-1}{x^n-1}$$
, $n,m\in\mathbb{N}$;

d)
$$\lim_{x \to 1} \frac{x^{n+1} - (n+1)x + n}{(x-1)^2}, \ n \in \mathbb{N}.$$

4.22. Найти пределы:

a)
$$\lim_{x \to 1} \left(\frac{3}{1 - x^3} + \frac{1}{x - 1} \right);$$

b)
$$\lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right), \ m, n \in \mathbb{N}.$$

4.23. Найти пределы:

a)
$$\lim_{x\to 5} \frac{\sqrt{2x+16}-x-1}{15-3x}$$
;

e)
$$\lim_{x\to 0} \frac{\sqrt[3]{x+27} + \sqrt[3]{x-27}}{x+2\sqrt[3]{x^4}};$$

b)
$$\lim_{x\to 0} \frac{\sqrt[3]{x+8}-2}{x}$$
;

f)
$$\lim_{x\to 7} \frac{\sqrt{x+2} - \sqrt[3]{x+20}}{\sqrt[4]{x+9} - 2}$$
;

c)
$$\lim_{x\to 2} \frac{\sqrt{7+2x-x^2}-\sqrt{1+x+x^2}}{2x-x^2}$$
;

$$\mathbf{g)} \quad \lim_{x \to 0} \frac{\sqrt[m]{ax+1} - \sqrt[n]{bx+1}}{x}, \ m, n \in \mathbb{N}$$

d)
$$\lim_{x \to -8} \frac{\sqrt[3]{x+9} + x + 7}{\sqrt[3]{2x+15} + 1}$$
;

4.24. К чему стремятся корни квадратного уравнения $ax^2 + bx + c = 0$, если коэффициент a стремится к нулю, а коэффициенты b, $b \ne 0$ и c постоянны?

4.25. Найти пределы:

a)
$$\lim_{x\to 0} \frac{\sin ax}{\sin bx}$$
, $b \neq 0$;

$$\mathbf{d)} \lim_{x \to 0} x \cot 7x;$$

b)
$$\lim_{x \to 0} \frac{\operatorname{tg} 5x}{\operatorname{arctg} 2x};$$

e)
$$\lim_{x\to 0} \frac{\sin 6x}{\sin 2x - \sin 5x}$$
;

c)
$$\lim_{x\to 0} \frac{2^x - 1}{10^x - 1}$$
;

f)
$$\lim_{x\to 0} \frac{\arcsin^2 x^2}{\cos 2x^2 - 1}$$
;

g) $\lim_{x\to 0} \frac{4\sin(\pi/6+x)\sin(\pi/6+2x)-1}{\sin x}$.

4.26. Найти пределы:

a)
$$\lim_{x\to\pi} \frac{\sin 2x}{\sin 3x}$$
;

e)
$$\lim_{x\to 1/4} \frac{1-\operatorname{ctg}\pi x}{\ln\operatorname{tg}\pi x}$$
;

b)
$$\lim_{x \to \pi/4} \operatorname{tg} 2x \cdot \operatorname{tg} \left(\frac{\pi}{4} - x \right);$$

f)
$$\lim_{x \to \pi/6} \frac{\cos(2\pi/3 - x)}{\sqrt{3} - 2\cos x};$$

c)
$$\lim_{x \to \pi/6} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}$$
;

g)
$$\lim_{x\to\pi/4} \frac{\cos x - \sin x}{\cos 2x}$$
.

d) $\lim_{x\to 10} \frac{\lg x - 1}{x - 10};$

4.27. Найти пределы:

$$\mathbf{a)} \quad \lim_{x \to a} \frac{\sin x - \sin a}{x - a};$$

b)
$$\lim_{x\to 0} \frac{\text{tg}(a+x)\text{tg}(a-x)-\text{tg}^2 a}{\text{tg}^2 x}$$
;

c)
$$\lim_{x\to 0} \frac{\cos(a+2x) - 2\cos(a+x) + \cos a}{x^2}$$
.

4.28. Найти пределы:

a)
$$\lim_{x\to 0} \frac{\arctan x^2}{\sqrt{2} - \sqrt{1 + \cos x}};$$

b)
$$\lim_{x\to 0} \frac{\sqrt[5]{1+\sin 3x}-1}{\cos(\pi/2-x)\cos x};$$

c)
$$\lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{1 - \cos \sqrt{x}};$$

$$\mathbf{d)} \quad \lim_{x \to 0} \frac{\sin x - \operatorname{tg} x}{x^3};$$

e)
$$\lim_{x\to 0} \left(\frac{2}{\sin 2x \sin x} - \frac{1}{\sin^2 x} \right);$$

4.29. Найти пределы:

a)
$$\lim_{x\to\infty}\frac{\sin 2x}{x};$$

b)
$$\lim_{x\to\infty}\frac{\operatorname{arctg} x}{x}$$
;

c)
$$\lim_{x\to\infty} \frac{2x-\sin x}{3x+\sin x}$$
;

$$\mathbf{d)} \quad \lim_{x \to \infty} x \sin \frac{2}{x};$$

4.30. Найти пределы:

a)
$$\lim_{x\to 2} \frac{e^x - e^2}{(x-4)e^x + xe^2}$$
;

b)
$$\lim_{x \to +0} \frac{\arccos(1-x)}{\sqrt{x}};$$

4.31. Найти пределы:

$$\mathbf{a)} \quad \lim_{x \to \infty} \left(\frac{x}{2x+1} \right)^{x^2};$$

$$\mathbf{b)} \quad \lim_{x \to \infty} \left(\frac{x-2}{x+1} \right)^{1/x};$$

4.32. Найти пределы:

a)
$$\lim_{x\to 0} (\cos\sqrt{x})^{1/x}$$
;

$$\mathbf{b)} \quad \lim_{x \to 1} (1 + \sin \pi x)^{\cot \pi x};$$

f)
$$\lim_{x\to 0} \frac{2^x - 3^x}{4^{2x} - 5^{2x}}$$
;

g)
$$\lim_{x\to 0} \frac{e^{x^2} - \cos x}{\sqrt{1 + \sin x^2} - 1}$$
;

h)
$$\lim_{x\to 0} \frac{\ln\cos 2x}{\ln\cos x}$$
;

$$\mathbf{i)} \lim_{x\to 0} \frac{e^{\sin 3x} - e^{\sin x}}{x\cos^2 x}.$$

e) $\lim_{x\to\infty} x^2 \ln \cos \frac{\pi}{x}$;

$$\mathbf{f)} \lim_{x\to\infty} \left(\sin\sqrt{x^2+1} - \sin\sqrt{x^2-1} \right);$$

g)
$$\lim_{x \to \infty} x \left(\arctan \frac{x+1}{x+2} - \frac{\pi}{4} \right);$$

$$\mathbf{h)} \lim_{x \to \infty} x^2 \left(e^{\frac{1}{x}} - e^{\frac{1}{x+1}} \right).$$

c)
$$\lim_{x \to -1} \frac{\sqrt{\pi} - \sqrt{\arccos x}}{\sqrt{x+1}}.$$

c)
$$\lim_{x\to\infty} \left(\frac{2x-1}{2x+1}\right)^{3x-1};$$

d)
$$\lim_{x \to \infty} \left(\frac{3x^2 - x + 1}{2x^2 + x + 1} \right)^{\frac{x^3}{1 - x}}$$
.

c)
$$\lim_{x\to 0} \left(\frac{1+ \lg x}{1+ \sin x} \right)^{\sin^{-3} x}$$
;

$$\mathbf{d)} \quad \lim_{x \to \pi/4} (\operatorname{tg} x)^{\operatorname{tg} 2x};$$

$$\mathbf{g)} \lim_{x \to +0} \left(\ln \left(x + e^x \right) \right)^{1/\arctan x};$$

e)
$$\lim_{x\to\infty} \left(\sin\frac{1}{x} + \cos\frac{1}{x} \right)^x$$
;

h)
$$\lim_{x \to 1} \left(4^x - \sqrt{x+8} \right)^{\text{tg} \frac{\pi x}{2}}$$
;

f)
$$\lim_{x\to 0} \left(\frac{xe^x + 1}{x\pi^x + 1} \right)^{1/x^2}$$
;

$$i) \lim_{x\to 0} \left| th \, x \right|^{\sinh 2x}.$$

4.33. Найти пределы:

a)
$$\lim_{x \to -0} \frac{\ln(2x^2 - x)}{\ln(x^4 + x^2 - x)}$$
;

c)
$$\lim_{x \to +\infty} \frac{\ln(x^2 - 4x + 4)}{\ln(x^{10} + 5x^7 + 2)}$$
;

b)
$$\lim_{x \to 1} \frac{\ln(2x^2 - x)}{\ln(x^4 + x^2 - x)};$$

$$\mathbf{d)} \lim_{x \to \infty} \left(x^2 - \ln \cot x^2 \right);$$

e)
$$\lim_{x \to +\infty} \frac{\ln\left(4 + 5e^{6x}\right)}{\ln\left(1 + 2e^{3x}\right)}.$$

4.34. Найти пределы (a и b – положительные вещественные числа):

a)
$$\lim_{x\to a} \frac{a^{a^x} - a^{x^a}}{a^x - x^a};$$

c)
$$\lim_{x\to 0} \frac{\left(a^x - b^x\right)^2}{a^{x^2} - b^{x^2}}, \ a \neq b;$$

$$\mathbf{b)} \quad \lim_{x \to a} \frac{x^x - a^a}{x - a};$$

d)
$$\lim_{x\to 0} \left(\frac{a^x + b^x}{2}\right)^{1/x^2}$$
; **e)** $\lim_{x\to b} \frac{a^x - a^b}{x - b}$.

4.35. Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n+2}} \sin \frac{1}{n};$$

d)
$$\sum_{n=1}^{\infty} n^2 \operatorname{tg}^2 \frac{1}{\sqrt{n^3}};$$

b)
$$\sum_{n=1}^{\infty} \arctan \frac{n+2}{2n^2+5n-1};$$

e)
$$\sum_{n=1}^{\infty} \arccos \frac{n^3+1}{n^3}$$
;

c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(e^{\frac{n}{3n^2-5}} - 1 \right);$$

$$\mathbf{f)} \quad \sum_{n=1}^{\infty} \operatorname{arcctg} \frac{1-n^3}{n+5}.$$

4.6 Сравнение функций. Символы Ландау и их использование при вычислении пределов

Напомним некоторые определения.

1. Будем говорить, что f(x) = O(g(x)) при $x \to x_0$, где функции f(x) и g(x) определены в некоторой проколотой окрестности точки x_0 , если в этой окрестности выполняется равенство f(x) = h(x)g(x), где $|h(x)| \le C$.

Если при $x \to x_0$ справедливо одновременно f(x) = O(g(x)) и g(x) = O(f(x)), то будем говорить, что при $x \to x_0$ функции f(x) и g(x) одного порядка. Очевидно, что, если функции эквивалентны при $x \to x_0$, то они одного порядка.

На практике особый интерес представляет случай, когда функции f(x) и g(x) бесконечно малые или бесконечно большие и $g(x) = (x - x_0)^n$, n > 0 в случае, когда они бесконечно малые, и $g(x) = \frac{1}{(x - x_0)^n}$, n > 0, когда они бесконечно большие. В этом случае мы будем говорить, что функция f(x) - бесконечно малая (или бесконечно большая) **порядка** n.

Если f(x) - бесконечно малая (или бесконечно большая) в точке x_0 функция и $f(x) \sim g(x)$, то функцию g(x) будем называть главной частью функции f(x) при $x \to x_0$.

2. Будем говорить, что при $x \to x_0$ функция f(x) является **бесконечно малой по сравнению с функцией** g(x) $\Big(f(x) = o\big(g(x)\big)\Big)$, если в некоторой проколотой окрестности точки x_0 справедливо равенство f(x) = h(x)g(x), где $\lim_{x \to x_0} h(x) = 0$.

Если при этом функция g(x) - бесконечно малая в точке x_0 , то будем говорить, что f(x) более высокого порядка малости по сравнению c(g(x)).

Если g(x) не обращается в нуль в некоторой проколотой окрестности точки x_0 , то равенство f(x) = o(g(x)) равносильно тому, что $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$.

Если $f(x) \sim g(x)$ при $x \to x_0$, то f(x) = g(x) + o(g(x)) в точке x_0 .

3. Если функции f(x) и g(x) - бесконечно большие при $x \to x_0$ и $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$ (или $\lim_{x \to x_0} \frac{g(x)}{f(x)} = 0$), то будем говорить, что f(x) **бесконечно**

большая более высокого порядка по сравнению cg(x) (пишут g(x) = o(f(x))). Пример 4.29. Доказать, что f(x) = O(g(x)) при $x \to x_0$, если

a)
$$f(x) = \cos x$$
, $g(x) = \arccos 2x$, $x_0 = 0$;

b)
$$f(x) = (x-1)^2 \left(5 + \sin\frac{1}{x-1}\right), \quad g(x) = (x-1)^2 + (x-1)^3, \quad x_0 = 1.$$

 \odot **а)** Функция g(x) отлична от нуля в проколотой окрестности нуля. Найдем $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{\cos x}{\arccos 2x} = \frac{2}{\pi}$. Так как этот предел существует, конечен и отличен от нуля, то f(x) = O(g(x)).

b) Здесь предел $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ не существует. Поэтому поступим другим образом.

Представим функцию f(x) в виде f(x) = h(x)g(x), где

$$h(x) = \frac{(x-1)^2 \left(5 + \sin\frac{1}{x-1}\right)}{\left(x-1\right)^2 + \left(x-1\right)^3} = \frac{5 + \sin\frac{1}{x-1}}{x}, \ x \neq 1.$$

Возьмем окрестность точки 1 радиуса $\frac{1}{2}$: $\frac{1}{2} < x < \frac{3}{2}$. Тогда для этих значе-

ний x и $x \ne 1$ получим $\left| h(x) \right| = \frac{5 + \sin \frac{1}{x - 1}}{x} \le \frac{6}{\frac{1}{2}} = 12$. Это означает, что функция

h(x) ограничена и f(x) = O(g(x)).

Пример 4.30. Доказать, что f(x) = o(g(x)) при $x \to 0$, если

a)
$$f(x) = x^3 - 2x^4$$
, $g(x) = \sin^2 2x$; **b)** $f(x) = x^2 \sin \frac{2}{x}$, $g(x) = x \sin \frac{1}{x}$.

 \odot **a)** Существует окрестность нуля, в пределах которой $g(x) \neq 0$, если $f(x) = x^3 - 2x^4 = x^3(1-2x)$

$$x \neq 0$$
. Вычислим $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{x^3 - 2x^4}{\sin^2 2x} = \lim_{x \to 0} \frac{x^3 (1 - 2x)}{(2x)^2} = 0$. Это означает, что

f(x) = o(g(x)).

b) Здесь функция g(x) обращается в нуль в любой окрестности нуля. Поэтому предыдущее рассуждение невозможно. Представим функцию f(x) в виде

$$f(x) = x^2 \sin \frac{2}{x} = 2x \cos \frac{1}{x} \cdot x \sin \frac{1}{x} = h(x)g(x),$$

где $h(x) = 2x \cos \frac{1}{x} \to 0$ при $x \to 0$. Отсюда следует, что f(x) = o(g(x)).

Пример 4.31. Для функции $f(x) = \sqrt[3]{x + 8\sqrt{x}}$ указать эквивалентную ей функцию g(x) вида $g(x) = Ax^k$ **a)** при $x \to +0$; **b)** при $x \to +\infty$.

 \odot **a)** Сначала определим показатель степени k таким образом, чтобы $\lim_{x\to 0} \frac{f(x)}{x^k} = A \neq 0$. Для этого вынесем из-под корня наименьшую степень x :

$$f(x) = \sqrt[3]{x + 8\sqrt{x}} = x^{1/6} \left(\sqrt[3]{\sqrt{x} + 8}\right).$$

Тогда $\lim_{x\to 0} \frac{f(x)}{x^{1/6}} = \lim_{x\to 0} \sqrt[3]{\sqrt{x}+8} = 2$. Следовательно, $\lim_{x\to +0} \frac{f(x)}{2x^{1/6}} = \lim_{x\to +0} \sqrt[3]{\frac{\sqrt{x}}{8}+1} = 1$ и $f(x)\sim 2x^{1/6}$ при $x\to +0$.

b) При $x \to +\infty$ вынесем из-под корня наибольшую степень x:

$$f(x) = \sqrt[3]{x + 8\sqrt{x}} = x^{\frac{1}{3}} \cdot \sqrt[3]{1 + \frac{8}{\sqrt{x}}}$$
. Тогда $\lim_{x \to +\infty} \frac{f(x)}{x^{\frac{1}{3}}} = \lim_{x \to +\infty} \sqrt[3]{1 + \frac{8}{\sqrt{x}}} = 1$, откуда при $x \to +\infty$ $f(x) \sim x^{\frac{1}{3}}$.

Пример 4.32. Доказать асимптотическую формулу

$$\sqrt{x^2 + 2bx + c} = x + b + O(1/x)$$
при $x \to +\infty$.

© Рассмотрим разность и преобразуем ее

$$\sqrt{x^2 + 2bx + c} - (x+b) = \frac{c-b^2}{\sqrt{x^2 + 2bx + c} + (x+b)} = \frac{(c-b^2)x}{\sqrt{x^2 + 2bx + c} + (x+b)} \cdot \frac{1}{x}.$$

Так как функция $h(x) = \frac{\left(c - b^2\right)x}{\sqrt{x^2 + 2bx + c} + \left(x + b\right)} \to \frac{c - b^2}{2}$ при $x \to +\infty$, то она яв-

ляется ограниченной, и, следовательно, $\sqrt{x^2 + 2bx + c} - (x + b) = O\left(\frac{1}{x}\right)$.

Пример 4.33. Найти
$$\lim_{x\to 0} \frac{\sqrt[3]{\cos 4x} - \sqrt[3]{\cos 5x}}{x^3 + \ln(1-x^2)}$$
.

 \odot Используем тот факт (теорема 3.6.3), что эквивалентность функций f(x) и g(x) в точке означает, что в этой точке f(x) = g(x) + o(g(x)).

Так как при $x \to 0$ имеем: $\ln(1-x^2) \sim -x^2$,

$$\sqrt[3]{\cos 4x} - 1 = \sqrt[3]{1 + (\cos 4x - 1)} - 1 = \frac{1}{3}(\cos 4x - 1) = -\frac{1}{3} \cdot 2\sin^2 2x \sim -\frac{8}{3}x^2$$

и, аналогично,

$$\sqrt[3]{\cos 5x} - 1 \sim -\frac{1}{3} \cdot \frac{25}{2} x^2$$
, to

$$\ln\left(1-x^2\right) = -x^2 + o\left(x^2\right),\,$$

$$\sqrt[3]{\cos 4x} = 1 - \frac{8}{3}x^2 + o(x^2), \qquad \sqrt[3]{\cos 5x} = 1 - \frac{25}{6}x^2 + o(x^2).$$

Отмечая, что $x^3 = o(x^2)$, получим

$$\lim_{x \to 0} \frac{\sqrt[3]{\cos 4x} - \sqrt[3]{\cos 5x}}{x^3 + \ln(1 - x^2)} = \lim_{x \to 0} \frac{1 - \frac{8}{3}x^2 - 1 + \frac{25}{6}x^2 + o(x^2)}{-x^2 + o(x^2)} = \lim_{x \to 0} \frac{\frac{3}{2} + o(x^2)/x^2}{-1 + o(x^2)/x^2} = -\frac{3}{2}.$$

Пример 4.34. Функцию $f(x) = \operatorname{tg}^2(e^{\sin^3 \sqrt{x}} - 1) + \ln \sqrt{\cos 3x}$ представить в виде $f(x) = Ax^k + o(x^k)$ при $x \to 0$.

© Данная функция представляет собой сумму двух сложных функций. Рассмотрим каждое слагаемое в отдельности. Напишем цепочку равенств для первого слагаемого:

$$\sin^{3} \sqrt{x} = \left(\sqrt{x} + o\left(x^{\frac{1}{2}}\right)\right)^{3} = x^{\frac{3}{2}} + o\left(x^{\frac{3}{2}}\right),$$

$$e^{\sin^{3} \sqrt{x}} - 1 = e^{x^{\frac{3}{2}} + o\left(x^{\frac{3}{2}}\right)} - 1 = x^{\frac{3}{2}} + o\left(x^{\frac{3}{2}}\right),$$

$$tg^{2}\left(e^{\sin^{3} \sqrt{x}} - 1\right) = tg^{2}\left(x^{\frac{3}{2}} + o\left(x^{\frac{3}{2}}\right)\right) = \left(x^{\frac{3}{2}} + o\left(x^{\frac{3}{2}}\right)\right)^{2} + o\left(x^{3}\right) = x^{3} + o\left(x^{3}\right)$$

и для второго:

$$\cos 3x = 1 - \frac{9}{2}x^2 + o(x^2),$$

$$\sqrt{\cos 3x} = \sqrt{1 - \frac{9}{2}x^2 + o(x^2)} = 1 - \frac{1}{2} \cdot \frac{9}{2}x^2 + o(x^2) = 1 - \frac{9}{4}x^2 + o(x^2),$$

$$\ln \sqrt{\cos 3x} = \ln\left(1 - \frac{9}{4}x^2 + o(x^2)\right) = -\frac{9}{4}x^2 + o(x^2).$$

Окончательно,

$$f(x) = \operatorname{tg}^{2}\left(e^{\sin^{3}\sqrt{x}} - 1\right) + \ln\sqrt{\cos 3x} = x^{3} + o\left(x^{3}\right) - \frac{9}{4}x^{2} + o\left(x^{2}\right) = -\frac{9}{4}x^{2} + o\left(x^{2}\right). \quad \bullet$$

Упражнения

4.36.Выбрать пары функций f(x) и g(x) так, чтобы было выполнено:

- **1)** f(x) = O(g(x)); **2)** g(x) = O(f(x)); **3)** функции f(x) и g(x) были одного порядка.
- a) $f(x) = 3^x$, g(x) = 10 + x, $x \to 0$;
- **b)** $f(x) = \frac{5}{x^2}, g(x) = \operatorname{ctg} x, x \to 0;$
- **c)** f(x) = xd(x), g(x) = x, где $d(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$ функция Дирихле, $x \to 0$;
- **d)** $f(x) = 2^x 1$, $g(x) = x \operatorname{sign} \sin \frac{1}{x}$, $x \to 0$;
- e) $f(x) = x \arctan \frac{1}{x}$, g(x) = x, $x \to 0$;

f)
$$f(x) = x \arctan \frac{1}{x}$$
, $g(x) = x$, $x \to \infty$;

g)
$$f(x) = x \cos \frac{1}{x}, g(x) = x, x \to 0;$$

h)
$$f(x) = x \cos \frac{1}{x}$$
, $g(x) = x$, $x \to \infty$;

i)
$$f(x) = \ln(x^2 + 2^x)$$
, $g(x) = x$, $x \to +\infty$;

j)
$$f(x) = \ln(x^2 + 2^x), g(x) = x, x \to -\infty;$$

k)
$$f(x) = x \sin \frac{2}{x}$$
, $g(x) = x \sin \frac{1}{x}$, $x \to 0$.

4.37. Выбрать пары функций f(x) и g(x) так, чтобы:

1)
$$f(x) = o(g(x))$$
; 2) $g(x) = o(f(x))$:

a)
$$f(x) = \sqrt{1 - 2x + 4x^2} + x - 1$$
, $g(x) = x$, $x \to 0$;

b)
$$f(x) = (x^3 + 3x) \ln(x + 3) - x^3 \ln x$$
, $g(x) = x^3$, $x \to +\infty$;

c)
$$f(x) = \frac{\arctan x}{x}$$
, $g(x) = \arcsin \frac{2x+3}{4x^3+x}$, $x \to \infty$;

d)
$$f(x) = \ln x$$
, $g(x) = \ln(e^{-1/x} + \sin x)$, $x \to +0$.

4.38. Доказать, что при $x \to x_0$ верны равенства:

a)
$$o(O(f)) = o(f)$$
;

d)
$$o(f) \cdot O(f) = o(f^2)$$
.

b)
$$O(o(f)) = o(f);$$

e)
$$C \cdot O(f) = O(f)$$
;

c)
$$o(f) + O(f) = O(f);$$

f)
$$C \cdot o(f) = o(f)$$
.

4.39. Функции f(x) и g(x) определены в некоторой окрестности точки x_0 . Доказать, что в этой точке выполняются равенства

a)
$$o(f)o(g) = o(fg)$$
;

d)
$$f \cdot o(g) = o(fg)$$
;

b)
$$O(f)o(g) = o(fg);$$

e)
$$O(f)O(g) = O(fg)$$
.

c)
$$f \cdot O(g) = O(fg)$$
;

4.40. Выполнить действия

a)
$$(1+x+x^2+o(x^2))(1-x+x^2+o(x^2));$$

b)
$$\left(x - \frac{x^3}{3} + o(x^4)\right) \left(x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)\right);$$

c)
$$(x + o(x))^3 (1 - x^2 + o(x^2))^2$$
.

4.41. Найти, если это возможно, следующие пределы

a)
$$\lim_{x\to 0} \frac{2x^2 + 3x^3 + o(x^3)}{3x^2 - 4x^4 + o(x^4)}$$
;

b)
$$\lim_{x \to 0} \frac{\left(x + 5x^3 + o(x^3)\right)\left(3x - 2x^2 + o(x^2)\right)}{x^2 + x^3 + o(x^3)};$$

c)
$$\lim_{x\to 0} \frac{3x^2 + 4x^3 + o(x^2)}{x^3 - 5x^4 + o(x^4)}$$
;

d)
$$\lim_{x \to 0} \frac{x^3 + x^5 + o(x^2)}{x^2 + 3x^3 + o(x^2)}$$
.

- **4.42.** Найти главную часть функции $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_k x^{n-k}$, n > k > 0 **a)** при $x \to 0$; **b)** при $x \to \infty$.
- **4.43.** Найти функцию g(x) вида $g(x) = Ax^k$ такую, что $f(x) \sim g(x)$ при $x \to 0$:

a)
$$f(x) = 5\sin^2 x^2 - 6x^5$$
;

d)
$$f(x) = 1 - x^4 - \cos x^2$$
;

b)
$$f(x) = (x+2)(3x^5-4x^3+x);$$

e)
$$f(x) = \text{tg } 2x - 2\sin x$$
.

c)
$$f(x) = \sqrt{x^4 + 9} + 2x^2 - 3$$
;

4.44. Найти функцию g(x) вида $g(x) = Ax^k$ такую, что $f(x) \sim g(x)$ при $x \to x_0$:

a)
$$f(x) = \frac{x+1}{x^4+1}, x_0 = \infty;$$

b)
$$f(x) = \sqrt[3]{x^2 - x} + \sqrt{x}$$
, $x_0 = +\infty$;

c)
$$f(x) = \frac{1}{\sqrt{x+2} - \sqrt{x+1}}, x_0 = +\infty$$
;

d)
$$f(x) = \frac{\sqrt{x}}{\sqrt{x+2} - 2\sqrt{x+1} + \sqrt{x}}, \ x_0 = +\infty.$$

4.45. Найти функцию g(x) вида $g(x) = Ax^k$ такую, что $f(x) \sim g(x)$ при $x \to x_0$:

a)
$$f(x) = 1 - \cos x \sqrt{\cos 2x}$$
, $x_0 = 0$;

b)
$$f(x) = \frac{\arctan x}{x^2 + x + 1}$$
, $x_0 = 0$, $x_0 = +\infty$;

c)
$$f(x) = \frac{\sin(1/(x+1))}{\sqrt[3]{x+\sqrt{x}}}, x_0 = 0, x_0 = \infty;$$

d)
$$f(x) = \sqrt{1-2x} - \sqrt[3]{1-3x}$$
, $x_0 = 0$.

4.46. Найти главные части вида Ax^k для функций

a)
$$(\cos x)^{\sin x} - e^{\sin^3 x}$$
 при $x \to 0$;

b)
$$\operatorname{tg}(\sin x) - \sin(\sin x) + \sqrt{\cos \ln \cos \sqrt{x}} - 1$$
 при $x \to +0$.

4.47. Найти функцию g(x) вида $g(x) = A(x-1)^k$ такую, что $f(x) \sim g(x)$ при $x \to 1$:

a)
$$f(x) = x^3 - 3x + 2$$
;

b)
$$f(x) = \ln x$$
;

c)
$$f(x) = \sqrt[3]{1 - \sqrt{x}}$$
;

d)
$$f(x) = \sqrt{\frac{1+x}{1-x}}$$
; **e)** $f(x) = \frac{1}{\sin \pi x}$;

$$e) \ f(x) = \frac{1}{\sin \pi x};$$

f)
$$f(x) = x^x - 1$$
.

4.48. Доказать следующие асимптотические равенства:

- a) $25x x\sin x = O(x)$ при $x \to \infty$;
- **b)** $x = O(25x x\sin x)$ при $x \to \infty$;
- c) $\arctan \frac{1}{x} = O(1) \text{ при } x \to 0;$
- **d)** $\sqrt{x^2 + 1} |x| = O(1/x)$ при $x \to \infty$;
- e) $x \sin \frac{1}{x} = O(|x|)$ при $x \to 0$.

4.49. Доказать следующие асимптотические равенства:

a)
$$a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n = a_0 x^n + o(x^n)$$
 при $x \to \infty$, $n \in \mathbb{N}$;

b)
$$a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n = a_n + o(1)$$
 при $x \to 0$, $n \in \mathbb{N}$;

c)
$$\sqrt{x^2 + x} = x + o(1)$$
 при $x \to +\infty$;

d)
$$\sqrt{x^2 + x} = x + o(x^2)$$
 при $x \to -\infty$; **e)** $\ln(1 + e^x) = o(1)$ при $x \to -\infty$;

e)
$$\ln(1+e^x) = o(1)$$
 при $x \to -\infty$;

f)
$$(\sqrt{1+2x}-1)$$
ctg² $x^3 = o(1/x^6)$ при $x \to 0$;

g)
$$\sqrt{1+4x} = 1+2x-2x^2+o(x^2)$$
 при $x \to 0$.

4.50. Вычислить пределы

a)
$$\lim_{x\to 0} \frac{\operatorname{tg} 2x - 3 \arcsin 4x + \sin^2 x}{\sin 5x - 5 \arctan 7x + \cos 3x - 1}$$

a)
$$\lim_{x\to 0} \frac{\operatorname{tg} 2x - 3 \arcsin 4x + \sin^2 x}{\sin 5x - 5 \arctan 7x + \cos 3x - 1};$$

b) $\lim_{x\to 0} \frac{\sqrt[3]{1 + \arcsin^2 x} - \sqrt[6]{1 - \arcsin x^2}}{\sqrt{\cos 2x} - \sqrt[3]{\cos 3x}};$

c)
$$\lim_{x\to 0} \frac{1-\cos x\sqrt[4]{\cos 2x}}{x^2}$$
;

d)
$$\lim_{x\to 0} \frac{\sqrt[5]{1+2x}-1-\sin x^2}{\ln \frac{e^x+1}{2}}$$
;

e)
$$\lim_{x\to 0} \frac{\sqrt[3]{\cos x} - e^{\sin^2 x}}{\ln \cos x}$$
;

i)
$$\lim_{x\to 0} \frac{1-\sqrt{\cos x}\sqrt[3]{\cos 2x}\sqrt[4]{\cos 3x}}{e^{\lg^2 x}-\cos x}$$
;

f)
$$\lim_{x\to 0} \frac{\sin \sqrt[5]{x + 32\sqrt{x}} + \ln(1 + \sqrt{2x})}{\arcsin^2 \sqrt[20]{x + 3x\sqrt{x}}};$$

g)
$$\lim_{x \to 0} \frac{\sqrt{\cos \frac{5x}{2}} - \sqrt[4]{1 + \arcsin x}}{(1+x)^{3/5} - \cos^{3/2} x};$$

h)
$$\lim_{x \to 0} \frac{\sqrt{1 + x \sin 2x \cos 5x} - (x^2 - 1)^2}{\ln(x - 3x^3 + 5x^5) - \ln x}$$
;

j)
$$\lim_{x \to 0} \left(1 + \cos x + e^{tg^2 x} - 2\sqrt{1 + x^4} \right)^{\frac{x}{\arctan x^3}}$$
; **k)** $\lim_{x \to 1} \frac{\cos \pi x + e^{\cos^2 \frac{\pi x}{2}}}{2 - \sqrt[4]{12 + 8x - 4x^2}}$.

4.51. Исследовать ряды на сходимость

a)
$$\sum_{n=1}^{\infty} \left(\ln \cos \frac{1}{n} + tg^3 \frac{1}{n} \right);$$

b)
$$\sum_{n=1}^{\infty} \left(e^{\frac{1}{n^2}} - \cos \frac{1}{n} \right);$$

c)
$$\sum_{n=1}^{\infty} \left(\cos \frac{1}{n} - \frac{\sqrt{n^2 - 2n}}{n} \right);$$

$$\mathbf{d}) \sum_{n=1}^{\infty} \left(e^{\frac{1}{n} \cos \frac{1}{n}} - 1 \right)^2.$$

4.7 Непрерывность функции и точки разрыва

Если точка x_0 является предельной точкой области определения функции, но в этой точке функция не является непрерывной, то эту точку будем называть **точкой разрыва** функции.

Для классификации точек разрыва полезно вспомнить «расширенное» определение непрерывности функции в точке:

Функция f(x) называется **непрерывной в точке** x_0 , где x_0 - предельная точка области определения функции, если выполнены три условия:

- 1) $x_0 \in D(f)$, т.е. существует значение $f(x_0)$;
- 2) существуют конечные односторонние пределы $\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0)$

$$\operatorname{H} \lim_{x \to x_0 - 0} f(x) = f(x_0 - 0);$$

3) эти пределы равны между собой и равны значению функции в этой точке: $f(x_0 - 0) = f(x_0 + 0) = f(x_0)$.

Это определение позволяет нам разбить множество точек разрыва функции на три типа:

- 1) В точке x_0 существуют односторонние пределы $f(x_0 0)$ и $f(x_0 + 0)$, которые равны между собой, но $f(x_0 0) = f(x_0 + 0) \neq f(x_0)$ или значение $f(x_0)$ вообще не существует. Такие точки называются устранимыми точками разрыва.
- 2) В точке x_0 существуют односторонние пределы $f(x_0-0)$ и $f(x_0+0)$, но они не равны между собой. Тогда точку x_0 будем называть **точкой разрыва первого рода** или **точкой конечного разрыва** и говорить, что в той точке функция терпит **скачок**, равный $h = f(x_0+0) f(x_0-0)$.
- 3) В точке x_0 не существует хотя бы одного конечного одностороннего предела. Тогда точку x_0 будем называть **точкой разрыва второго рода**.

Пример 4.35. Исследовать функцию $f(x) = \frac{2^{1/x} - 1}{2^{1/x} + 1}$ на непрерывность.

 \odot Данная функция является элементарной и определена везде, кроме точки $x_0 = 0$. Поэтому точка $x_0 = 0$ - точка разрыва функции.

Определим тип этой точки. Для этого найдем односторонние пределы данной функции при $x \to 0$, учитывая, что $\lim_{x \to -0} 2^{1/x} = 0$, $\lim_{x \to +0} 2^{1/x} = +\infty$. Тогда $\lim_{x \to -0} f(x) = -1$, $\lim_{x \to +0} f(x) = 1$. Значит, $x_0 = 0$ - точка разрыва первого рода (конечный разрыв). Скачок функции в этой точке равен h = 1 - (-1) = 2.

Пример 4.36. Исследовать функцию $f(x) = \frac{1}{\ln x^2}$ на непрерывность.

© Функция не определена в точках $x_{1,2}=\pm 1$, $x_3=0$. Во всех других точках функция непрерывна. Так как $\lim_{x\to 0} f(x)=0$, то точка $x_3=0$ является точкой устранимого разрыва. Функция $g(x)=\begin{cases} f(x), & x\neq 0,\\ 0, & x=0, \end{cases}$ является непрерывной в точке $x_3=0$. В точках $x_{1,2}=\pm 1$ имеем бесконечной разрыв (разрыв 2-го рода), так как $\lim_{x\to 1} f(x)=\infty$ и $\lim_{x\to -1} f(x)=\infty$.

Пример 4.37. Исследовать функцию $f(x) = 3x + \sin \frac{1}{x-1}$ на непрерывность.

 \odot Функция непрерывна в любой точке вещественной прямой, кроме точки $x_0 = 1$, где она не определена. Так как пределы $\lim_{x \to 1 \pm 0} f(x)$ не существуют, то эта точка является точкой разрыва второго рода.

Упражнения

4.52.Доказать, что функция f(x) не является непрерывной на \mathbb{R} . В каких точках нарушается непрерывность? Указать тип точек разрыва.

a)
$$f(x) = \begin{cases} 2x - 1, & x > 0, \\ x^2, & x \le 0; \end{cases}$$
 c) $f(x) = \lg x;$ **d)** $f(x) = \left[\frac{1}{1 + x^2}\right].$

4.53.Найти точки разрыва функции f(x), установить их тип, найти скачки функции в точках конечного разрыва, доопределить до непрерывной функции в точках устранимого разрыва.

a)
$$f(x) = \begin{cases} x+3, & x < 1, \\ (x+1)^2, & 1 \le x \le 3, \\ 1+4x, & x > 3; \end{cases}$$
 c) $f(x) = \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1};$
b) $f(x) = \frac{|x+4|}{x^2-16};$ e) $f(x) = \sin x \sin \frac{1}{x};$
f) $f(x) = 2^{1/x}.$

4.54.Найти точки разрыва функции f(x), установить их тип:

a)
$$f(x) = \frac{\frac{1}{x} - \frac{1}{x+1}}{\frac{1}{x-1} - \frac{1}{x}};$$

c)
$$f(x) = \frac{1}{\lg x}$$
;
d) $f(x) = \frac{1}{\ln|x-1|}$;

b)
$$f(x) = \frac{\cos(\pi x/2)}{x^3 - x^2}$$
;

e)
$$f(x) = \operatorname{sign} \cos x$$
;

f)
$$f(x) = \operatorname{arcctg}(1/x^2)$$
.

4.55.Найти значение параметра a, при котором функция f(x) будет непрерывной на своей области определения:

a)
$$f(x) = \begin{cases} x \cot 2x, & x \neq 0, |x| < \pi/2, \\ a, & x = 0; \end{cases}$$
 b) $f(x) = \begin{cases} \frac{c^x - 1}{x}, & x \neq 0, c > 0, \\ a, & x = 0; \end{cases}$

b)
$$f(x) = \begin{cases} \frac{c^x - 1}{x}, & x \neq 0, \ c > 0, \\ a, & x = 0; \end{cases}$$

c)
$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0, \\ a, & x = 0; \end{cases}$$

c)
$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0, \\ a, & x = 0; \end{cases}$$
 d) $f(x) = \begin{cases} (\pi + 2x) \operatorname{tg} x, -\pi < x < 0, & x \neq -\pi/2, \\ a, & x = -\pi/2. \end{cases}$

4.56. При каких a и b функция $f(x) = \begin{cases} (x-1)^3, x \le 0, \\ ax+b, & 0 < x < 1, \text{ непрерывна на } \mathbb{R}? \\ \sqrt{x}, & x \ge 1 \end{cases}$

4.57. Исследовать на непрерывность и построить график функции y = f(x):

a)
$$f(x) = \lim_{n \to \infty} \frac{1}{1 + x^n} (x \ge 0);$$

d)
$$f(x) = \lim_{n \to \infty} \frac{x^{n+2}}{\sqrt{2^{2n} + x^{2n}}} \ (x \ge 0);$$

b)
$$f(x) = \lim_{n \to \infty} (x \arctan(n \cot x))$$

a)
$$f(x) = \lim_{n \to \infty} \frac{1}{1 + x^n} \quad (x \ge 0);$$
 d) $f(x) = \lim_{n \to \infty} \frac{x^{n+2}}{\sqrt{2^{2n} + x^{2n}}} \quad (x \ge 0);$ **b)** $f(x) = \lim_{n \to \infty} (x \arctan(n \cot x));$ **c)** $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + x^n} \quad (x \ge 0);$ **e)** $f(x) = \lim_{t \to +\infty} \frac{\ln(1 + e^{xt})}{\ln(1 + e^t)}.$

4.58.Доказать, что функция Дирихле $d(x) = \begin{cases} 1, x \in \mathbb{Q}, \\ 0, x \notin \mathbb{Q} \end{cases}$ разрывна в каждой точке.

4.59.Доказать, что функция $f(x) = x \cdot d(x) = \begin{cases} x, x \in \mathbb{Q}, \\ 0, x \notin \mathbb{O}. \end{cases}$ непрерывна в точке x = 0и разрывна в остальных точках.

4.60. Найти точки, в которых функция $f(x) = \begin{cases} x^2 - 1, & x \notin \mathbb{Q}, \\ 0, & x \in \mathbb{O} \end{cases}$ непрерывна.

4.61. Доказать, что функция Римана $f(x) = \begin{cases} \frac{1}{n}, & x = \frac{m}{n}, \\ 0, & x \notin \mathbb{Q}, \end{cases}$ где m и n — взаимно

простые числа, разрывна при каждом рациональном значении х и непрерывна при каждом иррациональном значении х.

4.62.Пусть функция f(x) непрерывна на \mathbb{R} , $a,b \in \mathbb{R}$, a < b. Доказать, что функция $g(x) = \begin{cases} f(x), & a \le f(x) \le b, \\ a, & f(x) < a, \end{cases}$ также непрерывна на \mathbb{R} .

4.63.Исследовать на непрерывность сложные функции f * g и g * f, где $f(x) = 2 - |2x - 2| \text{ и } g(x) = \begin{cases} x, & x \in \mathbb{Q}, \\ 2 - x, & x \notin \mathbb{Q}. \end{cases}$

4.8 Асимптоты

•

Прямая x = a называется вертикальной асимптотой графика функции y = f(x), если хотя бы один из односторонних пределов функции при $x \to a$ равен бесконечности: $\lim_{x\to a\pm 0} f(x) = \infty$.

Прямая y = kx + b называется **наклонной асимптомой** графика функции y = f(x), если при $x \to \pm \infty$ функция представима в виде f(x) = kx + b + o(1).

Пример 4.38. Найти асимптоты графика функции $f(x) = \frac{x^2 + x + 1}{x^2 + x + 1}$.

© Область определения данной функции $D(f) = (-\infty,1) \cup (1,+\infty)$. Так как $\lim_{x\to 1} f(x) = \infty$, то прямая x=1 является вертикальной асимптотой. Для нахождения наклонной асимптоты выделим в рациональной дроби целую часть:

$$f(x) = \frac{(x-1)(x+2)+3}{x-1} = x+2+\frac{3}{x-1}$$
.

Так как $\frac{3}{x-1} \to 0$ при $x \to \infty$, то функция представима в виде f(x) = x + 2 + o(1)при $x \to \infty$. Следовательно, прямая y = x + 2 является наклонной асимптотой.

Пример 4.39. Найти асимптоты графика функции $f(x) = \sqrt{\frac{x^3}{x \perp A}}$.

 \odot Область определения данной функции $D(f) = (-\infty, -4) \cup [0, +\infty)$. Так как $\lim_{x\to -4-0} f(x) = +\infty$, то прямая x = -4 является вертикальной асимптотой. Будем искать наклонные асимптоты в виде y = kx + b. Если они сущест-

вуют, то (см. гл. 4, п. 7.5)

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{1}{x} \sqrt{\frac{x^3}{x+4}} = \lim_{x \to \infty} \frac{|x|}{x} \sqrt{\frac{x}{x+4}}.$$

Следовательно, при
$$x \to +\infty$$
: $k_1 = \lim_{x \to +\infty} \sqrt{\frac{x}{x+4}} = 1$,

$$k_1 = \lim_{x \to +\infty} \sqrt{\frac{x}{x+4}} = 1,$$

$$b_{1} = \lim_{x \to +\infty} \left(f(x) - k_{1}x \right) = \lim_{x \to +\infty} \left(x \sqrt{\frac{x}{x+4}} - x \right) = \lim_{x \to +\infty} x \cdot \frac{1}{2} \cdot \frac{-4}{x+4} = -2.$$

При $x \to -\infty$:

$$k_2 = \lim_{x \to -\infty} -\sqrt{\frac{x}{x+4}} = -1, \ b_2 = \lim_{x \to -\infty} \left(f\left(x\right) - k_2 x \right) = \lim_{x \to -\infty} \left(-x\sqrt{\frac{x}{x+4}} + x \right) = 2.$$

Таким образом, наклонные асимптоты y = x - 2 при $x \to +\infty$ и y = -x + 2 при $x \to -\infty$.

Пример 4.40. Найти асимптоты кривой, заданной параметрически: $x(t) = \frac{t^2}{1-t}$,

$$y(t) = \frac{4t}{t^2 - 1}.$$

 \odot Заметим, что данные функции не определены при t=1 и t=-1. Рассмотрим их пределы при $t \to \pm 1$ и $t \to \infty$.

При $t \to -1$: $x(t) \to -\frac{1}{2}$, $y(t) \to \infty$. Следовательно, прямая $x = -\frac{1}{2}$ является вертикальной асимптотой.

При $t \to 1$: $x(t) \to \infty$, $y(t) \to \infty$. Проверим наличие наклонной асимптоты:

$$k = \lim_{t \to 1} \frac{y(t)}{x(t)} = \lim_{t \to 1} \frac{4t(t-1)}{t^2(t^2-1)} = 2,$$

$$b = \lim_{t \to 1} (y(t) - kx(t)) = \lim_{t \to 1} \left(\frac{4t}{t^2 - 1} - \frac{2t^2}{t - 1} \right) = -3.$$

Следовательно, прямая y = 2x - 3 - наклонная асимптота.

При $t \to \infty$: $x(t) \to \infty$, $y(t) \to 0$. Следовательно, прямая y = 0 - горизонтальная асимптота кривой. •

Упражнения

4.64. Найти асимптоты графика функции y = y(x):

a)
$$y = \frac{2x+1}{x-3}$$
;

d)
$$y = \frac{x^3}{(x+1)^2}$$
;

b)
$$y = \frac{x^2 + 8x - 6}{x}$$
;

e)
$$y = x + \frac{x^2}{x^2 + 1}$$
;

c)
$$y = \sqrt{x+1} - \sqrt{x-1}$$

f)
$$y = \frac{x^3 - 3ax^2 + a^3}{x^2 - 3bx + 2b^2}$$
.

4.65. Найти асимптоты графика функции y = y(x):

a)
$$y = \frac{x^2}{|x|+1}$$
;

c)
$$y = \sqrt[3]{x^3 - 6x}$$
;

e)
$$y = \sqrt{x^2 - 1} - x$$
.

b)
$$y = \sqrt{x^2 - 4}$$
;

d)
$$y = \sqrt{\frac{x^3}{x-2}}$$
;

4.66. Найти асимптоты графика функции y = y(x):

a)
$$y = e^{-1/x}$$
;

e)
$$y = \ln(1 + e^x);$$

i)
$$y = \arcsin \frac{1}{r^2}$$
;

b)
$$y = 2^{-1/x^2}$$
;

f)
$$y = |x + 2|e^{-1/x}$$
;

j)
$$y = x \arctan x$$
.

c)
$$y = x^2 e^x$$
;

g)
$$y = x \operatorname{th} x$$
;

d)
$$y = x + \frac{\ln x}{x}$$
;

h)
$$y = 2 + \cos(2/x)$$
;

4.67. Найти асимптоты кривой, заданной параметрически:

a)
$$x = \frac{2t}{1-t^2}, \ y = \frac{t^2}{1-t^2};$$

d)
$$x = t^3 + 3t + 1$$
, $y = t^3 - 3t + 1$;
e) $x = t^3 - 3\pi$, $y = t^3 - \arctan t$;

b)
$$x = \frac{t^4}{1-t^3}, y = \frac{t^3}{1-t^3};$$

f)
$$x = t \ln t$$
, $y = t \ln (t+1)$;

$$t = \frac{1 - t^3}{t^3} \quad v = \frac{t^3 - 2t^2}{t^3 + 2t^2}$$

g)
$$x = 2\cos t$$
, $y = \tan 2t$;

c)
$$x = \frac{t^3}{t^2 + 1}, \ y = \frac{t^3 - 2t^2}{t^2 + 1};$$

h)
$$x = \frac{1}{\sin t}, \ y = \frac{1}{\sin 2t}.$$

4.9 Непрерывность и равномерная непрерывность функции на

Непрерывные функции, заданные на замкнутых промежутках, обладают рядом важных свойств:

- 1. Функция, непрерывная на отрезке, ограничена на этом отрезке;
- 2. Если функция непрерывна на отрезке, то на этом отрезке найдутся точки, в которых функция достигает наибольшего и наименьшего на этом отрезке значений;
- 3. Если функция непрерывна на отрезке и на концах его принимает значения разных знаков, то найдется внутренняя точка отрезка, в которой функция принимает нулевое значение;
- **4.** Если функция f(x) непрерывна на некотором промежутке и принимает там значения, равные A и B, то для любого числа C, лежащего между A и B, найдется точка, лежащая внутри этого промежутка, в которой f(x) = C.

Первые два утверждения называются теоремами Вейерштрасса, два последних - теоремами Коши о промежуточном значении непрерывной функции.

Пример 4.41. Доказать, что функция $f(x) = \frac{1}{\sqrt{x}}$ равномерно непрерывна на интервале (1, 4), но не является равномерно непрерывной на интервале (0, 1).

 \odot Заметим, что данная функция непрерывна на интервале (0, ∞).

Пусть $x_1, x_2 \in (1, 4)$. Тогда имеем

$$|f(x_1) - f(x_2)| = \left| \frac{1}{\sqrt{x_1}} - \frac{1}{\sqrt{x_2}} \right| = \frac{|\sqrt{x_2} - \sqrt{x_1}|}{\sqrt{x_1 x_2}} = \frac{|x_1 - x_2|}{\sqrt{x_1 x_2} \left(\sqrt{x_1} + \sqrt{x_2}\right)} \le \frac{|x_1 - x_2|}{2}.$$

Значит, если взять $\delta = 2\varepsilon$, то из неравенства $|x_1 - x_2| < \delta$ будет следовать неравенство $|f(x_1) - f(x_2)| < \varepsilon$. Следовательно, функция f(x) равномерно непрерывна на интервале (1,4).

Докажем, что эта функция не является равномерно непрерывной на интервале (0,1). Возьмем $x'=\frac{1}{n^2}$ и $x''=\frac{2}{n^2}$, где $n\in\mathbb{N},\,n\geq 2$. Тогда имеем $\left|f\left(x_1\right)-f\left(x_2\right)\right|=\left(1-\frac{\sqrt{2}}{2}\right)n\geq 2-\sqrt{2}>\frac{1}{2}$. Тогда, если взять $\varepsilon=\frac{1}{2}$, то какое бы число δ мы ни взяли, найдется число n такое, что $\left|x'-x''\right|=\frac{1}{n^2}<\delta$, но при этом $\left|f\left(x_1\right)-f\left(x_2\right)\right|\geq \varepsilon$.

Упражнения

- **4.68.** Функция f(x) непрерывна на отрезке [a,b]. Определим функции $m(x) = \min_{x \in [a,x]} f(x)$ и $M(x) = \max_{x \in [a,x]} f(x)$. Доказать, что функции m(x) и M(x) непрерывны на [a,b].
- **4.69.**Пусть функции f(x) и g(x) непрерывны на множестве D . Введем функции $m(x) = \min\{f(x),g(x)\}$ и $M(x) = \max\{f(x),g(x)\}$.Доказать, что функции m(x) и M(x) также непрерывны на D .

4.70.Пусть
$$f(x) = \begin{cases} \sin(1/x), x \neq 0, \\ 0, & x = 0. \end{cases}$$
 Доказать, что

- а) на любом промежутке вида [-a,b], где $a>0,\ b>0$, функция принимает все промежуточные значения между f(-a) и f(b), но не является непрерывной;
- **b)** функция, обладающая свойством, сформулированном в а) не может иметь точек разрыва первого рода.
- **4.71.** Функция f(x) непрерывна на $[a, +\infty)$ и существует конечный $\lim_{x \to +\infty} f(x)$. Доказать, что функция f(x) ограничена на $[a, +\infty)$.
- **4.72.**Доказать, что уравнение $x^5 3x = 1$
 - а) имеет хотя бы один корень на промежутке (1; 2);
 - **b)** имеет не менее трех корней на \mathbb{R} .

- **4.73.** Доказать, что данное уравнение относительно x имеет и при том единственное решение:
 - a) $x \cdot 2^x = 1$;

- c) $x^2 \arctan x = a$. $a \ne 0$.
- **b)** $x = \varepsilon \sin x + a$, $0 < \varepsilon < 1$;
- **4.74.** Доказать, что уравнение $2^x = 4x$ имеет по крайней мере два действитель-
- **4.75.** Доказать, что уравнение $x \sin x = 0.5$ имеет бесконечно много решений.
- **4.76.** Доказать, что существует бесконечно много функций y = f(x), определенных на (a; b) и удовлетворяющих уравнению $y^2 = 1$.
- **4.77.** Пусть f(x) непрерывная и положительная на (a; b) функция. Доказать, что существует единственная непрерывная на (a; b) функция $y = \varphi(x)$, удовлетворяющая уравнению $v^2 = f(x)$ и условию, что в некоторой точке $x_0 \in (a; b) \varphi(x_0) > 0$.
- **4.78.**Доказать, что уравнение $\frac{a_1}{x-b_1} + \frac{a_2}{x-b_2} + \dots + \frac{a_n}{x-b_n} = 0$, где $a_i > 0$, i = 1, 2, ..., n и $b_1 < b_2 < ... < b_n$, имеет по одному вещественному корню в каждом из интервалов (b_i, b_{i+1}) , i = 1, 2, ..., n-1.
- **4.79.**Сформулировать на языке " $\varepsilon \delta$ " утверждение: функция f(x) непрерывна на множестве X, но не является равномерно непрерывной на X.
- **4.80.** Доказать, что функция f(x) = 1/x равномерно непрерывна на интервале
- **4.81.** Показать, что функция f(x) = 1/x непрерывна на интервале (0,1), но не является равномерно непрерывной на этом интервале.
- **4.82.** Показать, что функция $f(x) = \sin x^2$ непрерывна и ограничена на \mathbb{R} , но не является равномерно непрерывной на \mathbb{R} .
- **4.83.** Показать, что неограниченная функция $f(x) = x + \sin x$ равномерно непрерывна на \mathbb{R} .
- **4.84.** Является ли равномерно непрерывной функция $f(x) = x^2$ на следующих интервалах (a – любое положительное число):
 - **a)** (-a; a);

- **b)** $(-\infty; +\infty)$?
- **4.85.** Доказать, что функция f(x) равномерно непрерывна на множестве X:
- c) $f(x) = x \sin(1/x)$, $X = (0; \pi]$;
- **a)** f(x) = 3x + 1, $X = \mathbb{R}$; **b)** $f(x) = \sqrt[3]{x}$, X = [0, 8];
- **d)** $f(x) = \sqrt{x+1}, \ X = [-1; +\infty).$
- **4.86.**Доказать, что функция f(x) не является равномерно непрерывной на множестве X:
 - a) $f(x) = \cos(1/x)$, X = (0, 1];
- c) $f(x) = \sqrt{x^3 + 1}$, $X = [-1; +\infty)$;
- **b)** $f(x) = \ln x$, X = (0, 1);

d)
$$f(x) = \frac{x^4}{x^2 + 1}, X = \mathbb{R}.$$

4.87.Исследовать функции на равномерную непрерывность на множестве X:

a)
$$f(x) = \frac{x}{4 - x^2}, X = [-1; 1];$$

b)
$$f(x) = e^{-\arcsin x}, X = [-1; 1];$$

c)
$$f(x) = e^{-x}, X = \mathbb{R};$$

d)
$$f(x) = \operatorname{arctg} x, \ X = \mathbb{R};$$

e)
$$f(x) = \begin{cases} 1 - x^2, & -1 \le x \le 0, \\ 1 + x, & 0 < x \le 1, \end{cases}$$
 $X = [-1; 1];$

f)
$$f(x) = \cos x \cos \frac{\pi}{x}, X = (0, 1);$$

g)
$$f(x) = x \sin x, \ X = [0; +\infty);$$

h)
$$f(x) = \ln x$$
, $X = (1, +\infty)$.

4.88. Показать, что функция $f(x) = \frac{|\sin x|}{x}$ равномерно непрерывна на каждом интервале $(-\pi; 0)$ и $(0; \pi)$ по отдельности, но не является равномерно непрерывной на их объединении $(-\pi; 0) \cup (0; \pi)$.

§5 ПРОИЗВОДНАЯ И СВОЙСТВА ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЙ

5.1 Производная функции

Напомним, что производной функции в некоторой точке называется предел отношения приращения этой функции к вызвавшему его приращению аргумента, когда последнее стремится к нулю. Таким образом,

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Пример 5.1. По определению производной найти производную функции $f(x) = \frac{1}{\sin 3x}$ в произвольной точке $x_0 \neq \pi n$.

 \odot Возьмем приращение аргумента Δx . Тогда соответствующее ему приращение функции будет равно

$$\Delta f(x_0) = \frac{1}{\sin 3(x_0 + \Delta x)} - \frac{1}{\sin 3x_0} = \frac{\sin 3x_0 - \sin 3(x_0 + \Delta x)}{\sin 3(x_0 + \Delta x)\sin 3x_0} = \frac{-2\sin \frac{3\Delta x}{2}\cos 3\left(x_0 + \frac{\Delta x}{2}\right)}{\sin 3(x_0 + \Delta x)\sin 3x_0}.$$

Таким образом,

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{3\Delta x}{2}}{\Delta x} \frac{\cos 3\left(x_0 + \frac{\Delta x}{2}\right)}{\sin 3\left(x_0 + \Delta x\right)\sin 3x_0} = -\frac{3\cos 3x_0}{\sin^2 3x_0}.$$

Для дифференцирования функций используют таблицу производных от простейших элементарных функций и правила дифференцирования.

Таблица производных

$$(C)' = 0; (\ln x)' = \frac{1}{x}; (\arctan x)' = \frac{1}{1+x^2};$$

$$(x^{\alpha})' = \alpha x^{\alpha-1}; (\sin x)' = \cos x; (\arctan x)' = -\frac{1}{1+x^2};$$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}; (\cos x)' = -\sin x; (\sinh x)' = \cosh x;$$

$$(\frac{1}{x})' = -\frac{1}{x^2}; (\tan x)' = \frac{1}{\cos^2 x}; (\cosh x)' = \sinh x;$$

$$(a^x)' = a^x \ln a; (\cot x)' = -\frac{1}{\sin^2 x}; (\coth x)' = \frac{1}{\cosh^2 x};$$

$$(e^x)' = e^x; (\arctan x)' = \frac{1}{\sqrt{1-x^2}}; (\coth x)' = -\frac{1}{\sinh^2 x}.$$

$$(\log_a x)' = \frac{1}{x \ln a}; (\operatorname{arccos} x)' = -\frac{1}{\sqrt{1-x^2}};$$

Правила дифференцирования арифметических действий:

1.
$$(u+v)'=u;$$

$$2. \quad (uv)' = u'v + uv';$$

$$3. \quad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Правило дифференцирования сложной функции:

$$f(t(x))' = f'_t(t(x))t'(x).$$

Правило дифференцирования обратной функции:

$$y_x'(x) = \frac{1}{x_y'}$$

Пример 5.2. Найти производную функции $y = \frac{2}{\sqrt[3]{x}} - 3x^2 \log_3 x + \frac{e^x}{5\sqrt{x}}$.

© Будем пользоваться правилами дифференцирования арифметических операций:

$$y' = 2\left(x^{-1/3}\right)' - 3\left(x^2 \log_3 x\right)' + \frac{1}{5}\left(\frac{e^x}{\sqrt{x}}\right)' =$$

$$= 2\left(-\frac{1}{3}\right)x^{-4/3} - 3\left(\left(x^2\right)' \log_3 x + x^2 \left(\log_3 x\right)'\right) + \frac{1}{5}\frac{\left(e^x\right)'\sqrt{x} - e^x\left(\sqrt{x}\right)'}{\sqrt{x^2}} =$$

$$= -\frac{2}{3x\sqrt[3]{x}} - 3\left(2x \log_3 x + \frac{x}{\ln 3}\right) + \frac{e^x(2x-1)}{10x\sqrt{x}}. \quad \bullet$$

Пример 5.3. Найти производную функции $y = 2^{\sqrt{\arctan 3x}}$

© Применим правило дифференцирования сложной функции:

$$y' = 2^{\sqrt{\arctan 3x}} \ln 2 \cdot \left(\sqrt{\arctan 3x}\right)' = 2^{\sqrt{\arctan 3x}} \ln 2 \cdot \frac{1}{2\sqrt{\arctan 3x}} \cdot \left(\arctan 3x\right)' = 2^{\sqrt{\arctan 3x}} \ln 2 \cdot \frac{1}{2\sqrt{\arctan 3x}} \cdot \left(\arctan 3x\right)' = 2^{\sqrt{\arctan 3x}} \ln 2 \cdot \frac{1}{2\sqrt{\arctan 3x}} \cdot \frac{1}{1+9x^2} \cdot \left(3x\right)' = \frac{3\ln 2}{2} \cdot \frac{2^{\sqrt{\arctan 3x}}}{\sqrt{\arctan 3x}} \cdot \frac{1}{1+9x^2} \cdot \left(3x\right)' = \frac{3\ln 2}{2} \cdot \frac{2^{\sqrt{\arctan 3x}}}{\sqrt{\arctan 3x}} \cdot \frac{1}{1+9x^2} \cdot \left(3x\right)' = \frac{3\ln 2}{2} \cdot \frac{2^{\sqrt{\arctan 3x}}}{\sqrt{\arctan 3x}} \cdot \frac{1}{1+9x^2} \cdot \left(3x\right)' = \frac{3\ln 2}{2} \cdot \frac{2^{\sqrt{\arctan 3x}}}{\sqrt{\arctan 3x}} \cdot \frac{1}{1+9x^2} \cdot \left(3x\right)' = \frac{3\ln 2}{2} \cdot \frac{2^{\sqrt{\arctan 3x}}}{\sqrt{\arctan 3x}} \cdot \frac{1}{1+9x^2} \cdot \frac{1}{1+9x^2} \cdot \left(3x\right)' = \frac{3\ln 2}{2} \cdot \frac{2^{\sqrt{\arctan 3x}}}{\sqrt{\arctan 3x}} \cdot \frac{1}{1+9x^2} \cdot \frac{1}{1+9$$

Пример 5.4. Найти производную функции $y = (x+1)^{(x+2)}$.

© Данная функция является показательно-степенной. Найдем логарифмическую производную:

$$\ln y = (x+2)\ln(x+1), \ \frac{y'}{y} = \ln(x+1) + \frac{x+2}{x+1}.$$

Тогда

$$y' = y \left(\ln(x+1) + \frac{x+2}{x+1} \right) = (x+1)^{(x+2)} \left(\ln(x+1) + \frac{x+2}{x+1} \right).$$

Пример 5.5. Найти производную обратного гиперболического синуса $y = \operatorname{arsh} x$.

 \odot Функция arsh x является обратной к функции sh x. Тогда по правилу дифференцирования обратной функции имеем

$$y'_x = \frac{1}{x'_y} = \frac{1}{(\sinh y)'_y} = \frac{1}{\cosh y} = \frac{1}{\sqrt{1 + \sinh^2 y}} = \frac{1}{\sqrt{1 + x^2}}.$$

Пример 5.6. Найти производную функции y = y(x), заданной неявно уравнением $xy^2 + x^2y = e^{x+y}$.

 \odot Продифференцируем данное уравнение, считая y функцией от x:

$$y^{2} + 2xy \cdot y' + 2xy + x^{2} = e^{x+y} (1+y')$$

Найдем из полученного уравнения y':

$$y' = \frac{y^2 + 2xy + x^2 - e^{x+y}}{e^{x+y} - 2xy} . \quad \bullet$$

Пример 5.7. Найти производную $y_{x}^{'}$ функции, заданной параметрически

$$x(t) = \operatorname{ctg} 2t$$
, $y(t) = \frac{2\cos 2t - 1}{2\cos t}$.

Тогда
$$y_x' = \frac{y_t}{x_t'} = \sin^3 t \left(4\cos^2 t + 3 \right)$$
.

Пример 5.8. Найти производную $y_x^{'}$ функции, заданной уравнением $r = a(1 + \cos \varphi), \ \varphi \in (0, \pi), \ r \neq r$ и φ - полярные координаты точки (x, y).

© Зададим данную функцию параметрически:

$$x = r \cos \varphi = a(1 + \cos \varphi) \cos \varphi, \quad y = r \sin \varphi = a(1 + \cos \varphi) \sin \varphi.$$

Тогда
$$y_x' = \frac{y_{\varphi}'}{x_{\varphi}'} = \frac{a(-\sin^2\varphi + (1+\cos\varphi)\cos\varphi)}{a(-\sin\varphi\cos\varphi - (1+\cos\varphi)\sin\varphi)} = -\frac{\cos 2\varphi + \cos\varphi}{2\sin 2\varphi + \sin\varphi} = -\operatorname{ctg}\frac{3\varphi}{2}$$
.

Упражнения

5.1.Вычислить производную функции y = f(x) в точке x_0 по определению.

a)
$$f(x) = x^3, x_0 = 1;$$

c)
$$f(x) = \frac{1}{x}, x_0 = a, a \neq 0;$$

b)
$$f(x) = 1 + \sqrt{x}$$
, $x_0 = 4$;

d)
$$f(x) = 2\cos(3x-1), x_0 = 1 + \pi/6;$$

e)
$$f(x) = 2^x$$
, $x_0 = 0$;

5.2. Найти производные функций:

a)
$$y = 2x^4 + x^3 + 3x^2 - 5x + 4$$
;

b)
$$y = ax^4 + bx^3 + cx^2 + dx + e$$
;

c)
$$y = x^2 + x^{-2}$$
;

d)
$$y = \sqrt{x} + x\sqrt{x} - \sqrt[3]{x}$$
;

e)
$$y = x^3 \cdot \sqrt[3]{x^2} + 2x^5 \cdot \sqrt{x}$$
;

5.3. Найти производные функций:

a)
$$y = (x^2 + x - 1)(x^2 - x + 1);$$

b)
$$y = (ax^2 + bx + c)(dx^2 + ex + f);$$

c)
$$y = x \sin x$$
;

d)
$$y = (1 - 2x) \operatorname{tg} x$$
;

e)
$$y = x^2 \arccos x - x \arcsin x + 1$$
;

5.4. Найти производные функций:

a)
$$y = \sin^2 x$$
;

b)
$$y = \sin x^2$$
;

c)
$$y = \cos 3x - \sin 2x + \tan \frac{x}{2}$$
;

d)
$$y = \frac{\cos^3 x - \cos x^3}{3}$$
;

e)
$$y = \frac{1}{x^2 + 5x - 4}$$
;

5.5. Найти производные функций:

a)
$$y = \sqrt{2x^2 + \sqrt{x^2 + 1}}$$
;

b)
$$y = \sqrt[13]{9 + 7\sqrt[5]{2x}}$$
;

c)
$$y = \sqrt[3]{\frac{1-x^3}{1+x^3}}$$
;

5.6. Найти производные функций:

a)
$$y = \sin(\cos^2 x)\cos(\sin^2 x)$$
;

b)
$$y = \frac{\cos x}{2\sin^2 x}$$
;

f)
$$f(x) = \ln |x|, x_0 = a, a \neq 0.$$

f)
$$y = \frac{1}{x} + \frac{\ln 2}{\sqrt{x}} - \frac{3}{x\sqrt[3]{x}};$$

g)
$$y = x^{\sqrt{2}} + x\sqrt{2} + \sqrt{3}$$
;

h)
$$y = \frac{x + \sqrt{x}}{x^2} + \frac{3x}{5}$$
.

$$\mathbf{f)} \quad y = \frac{ax+b}{cx+d}, \ c \neq 0;$$

g)
$$y = \frac{x^2 - 6x + 5}{2x^2 + x - 1}$$
;

h)
$$y = \frac{\log_2 x}{3 - 2^x}$$
;

$$i) \quad y = \frac{x \arctan x}{1 + x^2}.$$

$$\mathbf{f)} \quad y = \frac{1}{\sqrt{\arctan^3 4x}};$$

g)
$$y = (1-5x)^{11}$$
;

h)
$$y = \ln \arcsin x$$
;

i)
$$v = e^{x^2/2} + e^{-x^2/2}$$
:

j)
$$y = \cosh^2 x - \sinh^2 x$$
;

k)
$$y = \sin 2 \cdot \cos x^3 \cdot \lg \sqrt{x}$$
.

d)
$$y = \frac{1}{\sqrt{1 + x^4} \left(x^2 + \sqrt{1 + x^4} \right)};$$

e)
$$y = \frac{\sqrt{x^3} + \sqrt{xa^2} - \sqrt{x^2a} - \sqrt{a^3}}{\sqrt[4]{a^5} + \sqrt[4]{ax^4} - \sqrt[4]{a^4x} - \sqrt[4]{x^5}}.$$

c)
$$y = \sec^2 \frac{x}{a} + \csc^2 \frac{x}{a}$$
;

d)
$$y = \ln \lg \frac{x}{2}$$
;

e)
$$y = e^{-x} \left(\frac{1 - x^2}{2} \sin x - \frac{(1 + x)^2}{2} \cos x \right);$$

f)
$$y = e^{ax} \frac{a \sin bx - b \cos bx}{\sqrt{a^2 + b^2}}$$
.

5.7. Найти производные функций:

a)
$$y = \left(\frac{a}{b}\right)^x \left(\frac{b}{x}\right)^a \left(\frac{x}{a}\right)^b$$
, $(a,b>0)$; **d)** $y = \frac{1}{2\sqrt{6}} \ln \frac{x\sqrt{3} - \sqrt{2}}{x\sqrt{3} + \sqrt{2}}$;

d)
$$y = \frac{1}{2\sqrt{6}} \ln \frac{x\sqrt{3} - \sqrt{2}}{x\sqrt{3} + \sqrt{2}}$$
;.

e)
$$y = \ln(x + \sqrt{x^2 + 1});$$

b)
$$y = x^{a^a} + a^{x^a} + a^{a^x}, (a > 0);$$

c)
$$y = \ln(\ln(\ln x));$$

f)
$$y = x \ln^2 \left(x + \sqrt{1 + x^2} \right) - 2\sqrt{1 + x^2} \ln \left(x + \sqrt{1 + x^2} \right) + 2x$$
;

$$\mathbf{g)} \ y = \ln \sqrt{\frac{1 - \sin x}{1 + \sin x}} \ ;$$

h)
$$y = \log_2 x \cdot \log_x e + \log_2 x \cdot \ln 2$$
.

5.8. Найти производные функций:

$$a) y = \arccos \frac{1-x}{\sqrt{2}};$$

b)
$$y = \sqrt{x} - \arctan \sqrt{x}$$
;

c)
$$y = x \arcsin \sqrt{\frac{x}{1+x}} + \arctan \sqrt{x} - \sqrt{x}$$
;

d)
$$y = \arccos \frac{1}{x}$$
;

e)
$$y = \arcsin(\sin x)$$
;

f)
$$y = \frac{2}{\sqrt{a^2 - b^2}} \arctan\left(\sqrt{\frac{a - b}{a + b}} \operatorname{tg} \frac{x}{2}\right);$$

g)
$$y = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\arcsin\frac{x}{a}$$
;

h)
$$y = \operatorname{arcctg} \frac{a - 2x}{2\sqrt{ax - x^2}}$$
;

i)
$$y = \operatorname{arctg} e^x - \ln \sqrt{\frac{e^{2x}}{e^{2x} + 1}}$$
.

5.9.Вычислить производную функции y = f(x) в точке x_0 .

a)
$$y = (x-a)(x-b)(x-c), x_0 = a;$$

b)
$$y = x(x-1)(x-2)...(x-2009)(x-2010), x_0 = 2010;$$

c)
$$y = (2 - x^2)\cos x + 2x\sin x$$
, $x_0 = 0$;

d)
$$y = (1+x)\sqrt{2+x^2}\sqrt[3]{3+x^3}$$
, $x_0 = 0$.

5.10. Найти производные функций, используя логарифмическое дифференцирование:

a)
$$v = x^{x}$$
:

d)
$$y = x^{x^x}$$
;

f)
$$y = (\ln x)^{\ln x}$$
;

b)
$$y = x^{7/\ln x}$$
;

e)
$$y = \left|\sin x\right|^{\cos x}$$
;

g)
$$y = (\cosh x)^{e^x}$$
.

c)
$$y = x^{e^x}$$
;

5.11. Найти производные функций, используя логарифмическое дифференцирование:

a)
$$y = x\sqrt{\frac{1-x}{1+x}}$$
; **c)** $y = \sqrt[4]{\frac{x(x-1)^3(x-2)^5}{(2x+1)^7(3x+1)^9}}$.
b) $y = (x-a_1)^{b_1}(x-a_2)^{b_2}...(x-a_n)^{b_n}$;

- **5.12.** Найти производную функции $y = \ln\left(\cos^2 x + \sqrt{1 + \cos^4 x}\right)$, введя промежуточную переменную $u = \cos^2 x$.
- **5.13.** Используя подходящую промежуточную переменную, найти производные функций

a)
$$y = \arccos^2 x \left(\ln^2 \arccos x - \ln \arccos x + \frac{1}{2} \right);$$

b)
$$y = \frac{1}{2} \operatorname{arctg} \sqrt[4]{1 + x^4} + \frac{1}{4} \ln \frac{\sqrt[4]{1 + x^4} + 1}{\sqrt[4]{1 + x^4} - 1}$$
.

5.14. Вычислить производные функций:

1)
$$y = 2x\sqrt{x} - \frac{1}{x} + 5$$
; 2) $y = \frac{x+1}{5} + \frac{5}{x+1}$; 3) $y = x^2(3x^3 - 7x^2 + 4x - 1)$; 4) $y = \sqrt{2}xe^{x-1}$;

5)
$$y = \frac{\sqrt{2x+1}}{\sqrt{3}}$$
; 6) $y = \frac{2}{\sqrt[5]{(x+1)^2}}$; 7) $y = \left(x^2 - \frac{x}{2} + 1\right)^{10}$; 8) $y = 2x \cdot \sqrt[3]{x} + x^{\sqrt{2}} - \frac{2}{x\sqrt{x}}$;

9)
$$y = 3^{\ln^2(1+e^{-x})}$$
; 10) $y = a^x x^a$; 11) $y = x^3(x^2 - 1)^4$; 12) $y = \frac{x}{1-x^4}$; 13) $y = \frac{x-1}{x+1}$;

14)
$$y = \frac{3x^2 - x + 1}{2 - 3x + x^3}$$
; 15) $y = \sqrt{\frac{x}{x - 5}}$; 16) $y = \sqrt{x(x + 1)(x + 2)}$; 17) $y = \sqrt{x\sqrt{x\sqrt{x}}}$;

18)
$$y = \sqrt[3]{\frac{\left(1 + x^{3/4}\right)^2}{x^{3/2}}}$$
; 19) $y = \sqrt[4]{4 + \sqrt[3]{3 + \sqrt{2 + x}}}$; 20) $y = \frac{1}{(x+2)\sqrt{x^2 + 4x + 5}}$;

21)
$$y = 2^x + \frac{1}{3^x} - \sqrt{2}^{4x}$$
; 22) $y = 5^{x^2+1} \cdot (x^2+1)^5$; 23) $y = 19^{x^{19}} x^{19}$;

24)
$$y = 4^{1-x} \log_4(1-x)$$
; 25) $y = \frac{x^3}{3} \ln x - \frac{1}{9} x^3$; 26) $y = x + \frac{1}{\sqrt{2}} \ln \frac{x - \sqrt{2}}{x + \sqrt{2}} + a^{\pi^{\sqrt{2}}}$;

27)
$$y = x^2 \sin x + 2x \cos x - 2 \sin x$$
; 28) $y = \sqrt{\sin^3 2x}$; 29) $y = \frac{1}{\cos^2 x}$;

30)
$$y = \frac{\cos\left(\operatorname{tg}\frac{1}{3}\right) \cdot \sin^2 15x}{15\cos 30x}$$
; 31) $y = \frac{1}{\left(1 + x^2\right)\sqrt{1 + x^2}}$; 32) $y = \cos ax \cdot \sin bx$;

33)
$$y = \operatorname{tg} x + \operatorname{tg}^{3} x + \frac{3}{5} \operatorname{tg}^{5} x + \frac{1}{7} \operatorname{tg}^{7} x$$
; 34) $y = \operatorname{ctg} \pi x + \frac{\cos \pi x}{2 \sin^{3} \pi x}$;

$$35) y = -\frac{\cos x}{2\sin^2 x} + \frac{1}{2}\ln t g \frac{x}{2}; 36) y = \frac{\sin x}{2\cos^2 x} - \frac{1}{2}\ln t g \left(\frac{\pi}{4} - \frac{x}{2}\right);$$

$$37) y = \frac{\sin(2\ln x) - \cos(2\ln x)}{x^2}; 38) y = \frac{e^{\alpha x} (\alpha \sin \beta x - \beta \cos \beta x)}{\alpha^2 + \beta^2};$$

$$39) y = e^{\sin x} \left(x - \frac{1}{\cos x}\right); 40) y = \ln \frac{\ln x}{\sin(1/x)}; 41) y = \frac{x^4}{4} \left(\ln^2 x - \frac{1}{2}\ln x + \frac{1}{8}\right);$$

$$42) \ln \frac{x^2 + 1 + \sqrt{x^4 + 3x^2 + 1}}{x}; 43) y = \log_2 x + \log_3 x^3 - 2\log_4 \sqrt{x + 1};$$

$$44) y = \ln \left(x + \sqrt{x^2 + a^2}\right); 45) y = \ln \sqrt{\frac{1 - \sin x}{1 + \sin x}}; 46) y(x) = \frac{\ln(\cot x + \cot \alpha)}{\sin \alpha};$$

$$47) y(\alpha) = \frac{\ln(\cot x + \cot \alpha)}{\sin \alpha}; 48) y(x) = \frac{1}{2a} \left(\ln \frac{\sqrt{a^2 + x^2}}{a + x} - \frac{a}{a + x}\right);$$

$$49) y(a) = \frac{1}{2a} \left(\ln \frac{\sqrt{a^2 + x^2}}{a + x} - \frac{a}{a + x}\right); 50) y = (x - 2)\sqrt{1 + e^x} - \ln \frac{\sqrt{1 + e^x} - 1}{\sqrt{1 + e^x} + 1};$$

$$51) y = \frac{x^2 \ln x}{a + bx^2} - \frac{1}{b} \ln \sqrt{a + bx^2}; 52) y = \ln \left(\frac{x + 3}{x + 2}\right)^2 - \frac{2x + 5}{(x + 2)(x + 3)}; 53) y = \arcsin \frac{1}{x};$$

$$54) y = \arccos^3 \sqrt{1 - x}; 55) y = \arccos \frac{2 - x}{x\sqrt{2}}; 56) y = \frac{1}{\sqrt{3}} \arctan \left(\frac{x\sqrt{3}}{1 - x^2};$$

$$57) y = \sqrt{\arctan \left(\frac{x}{a} + b\right)}; 58) y = \frac{1}{2} (x - 4)\sqrt{8x - x^2 - 7} - 9\arccos \sqrt{\frac{x - 1}{6}};$$

59)
$$y = \frac{1}{2} \sqrt{\frac{1}{x^2} - 1 - \frac{\arccos x}{2x^2}}$$
; 60) $y = \arcsin(\sin x - \cos x) + \ln(\sin x + \cos x + \sqrt{\sin 2x})$;

61)
$$y = \frac{2(\sqrt{2^x - 1 - \arctan \sqrt{2^x - 1}})}{\ln 2}$$
; 62) $y = \arccos(\sin x^4 - \cos x^4)$;

63)
$$y = x \ln\left(\sqrt{1-x} + \sqrt{1+x}\right) + \frac{1}{2}\left(\arcsin x - x\right)$$
; 64) $y = \frac{x}{2} + \arctan\frac{e^x}{2} - \ln\sqrt{\frac{e^x}{e^x + 1}}$;

65)
$$y = \frac{x}{4} (10 - x^2) \sqrt{4 - x^2} + 6 \arcsin \frac{x}{2}$$
; 66) $y = \operatorname{arcctg} \frac{1}{\sqrt{\operatorname{ctg}(1/x^2)}}$;

67)
$$y = \frac{x\sqrt{1-x^2}}{1+x^2} - \frac{3}{\sqrt{2}} \operatorname{arcctg} \frac{x\sqrt{2}}{\sqrt{1-x^2}}$$
; 68) $y = x^2 \operatorname{arctg} \frac{x}{1+\sqrt{1-x^2}}$;

69)
$$y = x \arctan (1 + x^2) - \frac{1}{2} \arctan (1 + x^2) - \frac{1}{2} \arctan (1/x)$$
;

71)
$$y = 3^{2^x \cdot \log_3 \arctan 3x} \ln(2 + \sqrt{3});$$
 72) $y = \sin 6 \cdot x \cdot \cos^2(1 - \arccos \frac{1}{2x - 1});$

73)
$$y = \frac{2}{3} (4x^2 - 4x + 3) \sqrt{x^2 - x} + (2x - 1)^4 \arcsin \frac{1}{2x - 1}$$
;

74)
$$y = \arcsin(e^{-4x}) + \ln(e^{4x} + \sqrt{e^{8x} - 1});$$
 75) $y = xe^{1-x}\log_4(x^2 - x + 1);$

76)
$$y = \ln \cos \arctan \frac{e^x - e^{-x}}{2}$$
; 77) $y = \arctan \left(\frac{\cos x}{\sqrt[4]{\cos 2x}}\right)$; 78) $y = \sqrt[3]{\frac{x - 5}{\sqrt[5]{x^2 + 25}}}$;

79)
$$y = \frac{\arcsin\sqrt{x}}{\sqrt{x}} + \ln\sqrt{\frac{1+\sqrt{1-x}}{1-\sqrt{1-x}}}$$
; 80) $y = \log_x(x^2+1)$;

81)
$$y = x \log_{\arctan(x^2+1)} (1 + \cot^2 x)$$
; 82) $y = \frac{3^x (4 \sin 4x + \ln 3 \cdot \cos 4x)}{16 + \ln^2 3}$; 83) $y = x^{1-x}$;

84)
$$y = \left(1 + \frac{1}{x}\right)^x$$
; 85) $y = \left(1 - x\right)^{\left(1 - x\right)^{\left(1 - x\right)^{\left(1 - x\right)}}$; 86) $y = \left(x \sin x\right)^{8 \ln(x \sin x)}$;

87)
$$y = (\arccos \cos^2 x)^{\arccos^2 x}$$
; 88) $y = x^{\lg(1+\sin^2 x)}$; 89) $y = \log_2 x \cdot \log_x e + \log_2 x \cdot \ln 2$;

90)
$$y = (\arctan x + \arctan x)^{\sqrt{4 - 2\sin^2 x}}$$
; 91) $y = \tan x \cdot x^{\tan x} \cdot (\tan x)^x$;

92)
$$y = x^{-\arctan^2 \lg \ln(1+\sqrt{x})}$$
; 93) $y = \sqrt[3]{\frac{x(x+1)(x+2)^5}{\sqrt{x}(x^2-1)}}$; 94) $y = x^x \cdot 2^x \cdot x^2 \cdot \sqrt{x^x+2^x+x^2}$;

95)
$$y = \frac{\ln^x \left(x^{16} \sin^2 x\right)}{\sqrt{\arctan^2 x}}$$
; 96) $y = \frac{\sinh^2 5x - \cosh^2 5x}{x}$; 97) $y = \tanh x + \frac{\sqrt{2}}{4} \ln \frac{1 + \sqrt{2} \tanh x}{1 - \sqrt{2} \tanh x}$;

98)
$$y = (\sinh x + \cosh x)^{3\arcsin^2 \sinh 2x}$$
; 99) $y = \frac{x \sinh^3 1/x}{\sqrt{\cosh^2 x + 1}}$;

100)
$$y = \frac{1}{\arctan x \cdot \tanh^{-1} x^2 + \arctan^{-2} x}$$
.

5.15. Пусть f(x) - дифференцируемая на $\mathbb R$ функция. Найти y'(x), если

$$\mathbf{a)} \quad y = f\left(x^2\right);$$

$$\mathbf{c)} \quad y = \ln |f(x)|;$$

b)
$$y = f^2(x)$$
;

d)
$$y = f(\arcsin f(x)).$$

5.16. Пусть $\varphi(x)$ и $\psi(x)$ - дифференцируемые на $\mathbb R$ функции. Найти y'(x), если

a)
$$y = \sqrt{\varphi^2(x) + \psi^2(x)}$$
;

c)
$$y = (\varphi(x))^{\psi(x)}$$
;

b)
$$y = \log_{\varphi(x)} \psi(x)$$
;

$$\mathbf{d)} \quad y = \varphi(\sin^2 x) + \psi(\cos^2 x).$$

- **5.17.** Показать, что функция $f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0, \\ 0, & x = 0 \end{cases}$ имеет разрывную производную.
- **5.18.** При каких a функция $f(x) = \begin{cases} |x|^a \sin(1/x), x \neq 0, \\ 0, x = 0 \end{cases}$ в точке x = 0
 - а) непрерывна;
 - **b)** дифференцируема;
 - с) непрерывно-дифференцируема (т.е. имеет непрерывную производную)?
- **5.19.** При каких a и b функция $f(x) = \begin{cases} |x|^a \sin(1/|x|^b), x \neq 0, \\ 0, x = 0 \end{cases}$ в точке x = 0
 - а) непрерывна;
 - **b)** дифференцируема;
- с) непрерывно-дифференцируема (т.е. имеет непрерывную производную)?
- **5.20.** Найти односторонние производные функции f(x) в точке x_0 .

 - **a)** $f(x) = x|x|, x_0 = 0;$ **b)** $f(x) = [x]\sin \pi x, x_0 = 2;$ **c)** $f(x) = \sqrt{1 e^{-x^2}}, x_0 = 0;$ **d)** $f(x) = \begin{cases} \frac{x}{1 + e^{1/x}}, & x \neq 0, \\ 0, & x = 0, \end{cases}$
- **5.21.** Показать, что функция $f(x) = \begin{cases} x \sin 1/x, x \neq 0, \\ 0, x = 0 \end{cases}$ непрерывна в точке $x_0 = 0$,

но не имеет в этой точке односторонних производных.

- **5.22.** Пусть $f(x) = \begin{cases} x^2, & x \le x_0, \\ ax + b, & x > x_0. \end{cases}$ Как следует выбрать коэффициенты a и b, чтобы функция f(x) была дифференцируемой в точке x_0 ?
- **5.23.** Часть кривой $y = \frac{m^2}{|x|} (|x| > c)$ дополнить параболой $y = a + bx^2 (|x| \le c)$,

т.е. найти коэффициенты a и b так, чтобы получилась гладкая кривая.

5.24. Найти многочлен наименьшей степени g(x) такой, чтобы функция f(x)была: 1) непрерывна на всей прямой, 2) дифференцируема на всей прямой,

a)
$$f(x) = \begin{cases} \frac{5x}{4+x^2}, & |x| \ge 1, \\ g(x), & |x| < 1; \end{cases}$$
 b) $f(x) = \begin{cases} x^2 e^{-2x}, & |x| \le 1, \\ g(x), & |x| > 1. \end{cases}$

- **5.25.** Найти производную функции y = y(x), определяемой уравнением $y^3 + 3y = x$, в точке $x_0 = 4$.
- **5.26.** Найти производную обратной функции в точке x_0 :

a)
$$x = y + y^5/5$$
, $x_0 = 6/5$;

c)
$$x = 0.1y + e^{0.1y}$$
, $x_0 = 1$;

b)
$$x = 2y - \cos y/2$$
, $x_0 = -1/2$;

d)
$$x = 2y^2 - y^4$$
, $0 < y < 1$, $x_0 = 3/4$.

5.27. Найти производные обратной функции:

a)
$$y = x + \ln x \ (x > 0);$$

c)
$$y = \cosh x \ (x > 0);$$

b)
$$y = \frac{x^2}{1 + x^2}$$
;

d)
$$y = \operatorname{th} x$$
.

5.28. Найти y'_x в точке $x_0 = 0$ для функции y = y(x), заданной параметрически, если $x(t) = -1 + 2t - t^2$, $y(t) = 2 - 3t + t^3$.

5.29. Найти y'_x для функции y = y(x), заданной параметрически:

a)
$$x(t) = \sin^2 t$$
, $y(t) = \cos^2 t$;

b)
$$x(t) = a \cos t$$
, $y(t) = b \sin t$;

c)
$$x(t) = a(t - \sin t), \ y(t) = a(1 - \cos t);$$

d)
$$x(t) = (t-1)^2 (t-2), y(t) = (t-1)^2 (t-3);$$

e)
$$x(t) = \ln \sin \frac{t}{2}$$
, $y(t) = \ln \sin t$.

5.30. Для функции y = y(x), заданной параметрически x(t) = 2t + |t|, $y(t) = 5t^2 + 4t |t|$, вычислить производную y_x' в точке $x_0 = 0$.

5.31. Найти y'_x для функции y = y(x), заданной неявно:

a)
$$x^2 + 2xy - y^2 = 2x$$
;

b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
;

c)
$$x^2 - 4xy + 4y^2 + 4x - 3y - 7 = 0$$
, $x < 2y - 1$;

d)
$$\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$$
;

e)
$$e^{y} + xy = e$$
.

5.32. Найти y'_x для функции y = y(x), заданной в полярных координатах

$$\left(\rho = \sqrt{x^2 + y^2}, \operatorname{tg} \varphi = \frac{y}{x}\right)$$
:

a)
$$\rho = a\varphi$$
 (спираль Архимеда);

b)
$$\rho = a(1 + \cos \varphi)$$
 (кардиоида);

c)
$$\rho = ae^{m\varphi}$$
 (логарифмическая спираль);

d)
$$\rho = a\sqrt{\cos 2\varphi}$$
.

5.2 Дифференциал функции

Функция f(x) называется **дифференцируемой в точке** $x_0 \in D(f)$, если ее приращение в этой точке можно представить в виде $\Delta f(x_0) = A\Delta x + o(\Delta x)$, где A - некоторая константа. Обозначается дифференциал символом $df(x_0)$ или просто df.

Если функция дифференцируема в точке, то произведение $A\Delta x$ называется **дифференциалом функции** в этой точке.

Известно (теорема 4.1.1), что, функция одной переменной дифференцируема тогда и только тогда, когда она имеет конечную производную, и при этом $A = f'(x_0)$. Таким образом, $df(x_0) = f'(x_0) \Delta x$. Приращение аргумента в этой формуле принято записывать в виде dx, тогда $df(x_0) = f'(x_0) dx$. Замечательно, что эта формула остается верной, если переменная x является функцией некоторой третьей переменной (следствие теоремы 4.2.3).

Так как разность $\Delta f(x_0) - df(x_0)$ есть $o(\Delta x)$, то при малых значениях Δx она близка к нулю, что можно использовать для приближенных вычислений.

Пример 5.9. Вычислить приближенно
$$f(0,15)$$
, если $f(x) = \sqrt{\frac{2-x}{2+x}}$.

 \odot Заметим, что легко вычислить значение данной функции в нуле. Поэтому положим $x_0=0$. Тогда $\Delta x=x-x_0=0,15-0=0,15$ и

$$df(0) = f'(0)\Delta x = -\frac{1}{2} \cdot 0.15 = -0.075$$
.

Окончательно, $f(x) = f(0) + \Delta f(0) \cong f(0) + df(0) = 1 + 0,075 = 1,075$.

Упражнения

5.33.Найти дифференциал функции y = y(x) в указанных точках:

a)
$$y = \frac{1}{x} + \ln \frac{x-1}{x}$$
, $x_0 = -1$; c) $y = \frac{x^2 2^x}{x^x}$, $x_1 = 1$, $x_2 = 2$.

b)
$$y = \arctan \frac{\ln x}{x}, x_1 = \frac{1}{e}, x_2 = e;$$

5.34. Найти дифференциалы

a)
$$d\left(\frac{1}{e^x} + \ln x\right)$$
; c) $d\left(\frac{\ln x}{\sqrt{x}}\right)$;

b)
$$d(\sin x - x \cos x)$$
; **d)** $d(\arccos \frac{1}{|x|})$.

5.35.Найти дифференциал функции y = y(x), заданной неявно или параметрически в точке (x_0, y_0) :

a)
$$y^3 - y = 6x^2$$
, $(1, 2)$;
b) $y^5 + x^4 = xy^2$, (x_0, y_0) ;
d) $4xy^3 + \ln \sqrt[3]{\frac{x}{x+y}} = 0$, $(1, 0)$;

e)
$$xy - \sqrt[3]{xy^2 + 6} = 0$$
, (2,1);

f)
$$x = (t-1)^2(t-2), y = (t-1)^2(t-3), (4, 0);$$

g)
$$x = e^t/t$$
, $y = (t-1)^2 e^t$, $\left(-2/\sqrt{e}, 9/(4\sqrt{e})\right)$.

5.36.Найти дифференциал функции y, считая известными дифференциалы функций u и v:

a)
$$y = u^2 v$$
;

c)
$$y = \operatorname{arctg} \frac{u}{v}$$
;

e)
$$y = \frac{1}{\sqrt{u^2 + v^2}}$$
.

b)
$$y = \frac{u}{v^2}$$
;

d)
$$y = u^{v}$$
;

5.37.Найти:

a)
$$\frac{d}{d(x^3)}(x^3-2x^6-x^9);$$

$$\mathbf{d)} \ \frac{d(\sin x)}{d(\cos x)};$$

b)
$$\frac{d(\operatorname{tg} x)}{d(\operatorname{ctg} x)}$$
;

e)
$$\frac{d(\arcsin x)}{d(\arccos x)}$$
.

$$\mathbf{c)} \quad \frac{d}{d(x^2)} \left(\frac{\sin x}{x} \right);$$

5.38.Вычислить приближенно, заменяя приращение функции ее дифференциалом

a)
$$\sqrt[3]{1,02}$$
;

d) arctg 1,05;

b)
$$\sqrt[3]{124}$$
 :

e) lg11;

c)
$$\sin 29^{\circ}$$
;

f) $\ln \lg 47^{\circ}15'$.

5.39.Доказать приближенную формулу $\sqrt[n]{a^n + x} \approx a + \frac{x}{na^{n-1}} \quad (a > 0)$, где $|x| \ll a$.

5.3 Геометрическое приложение производной

Если в точке $x_0 \in D(f)$ функция f(x) имеет конечную производную, то в этой точке существует касательная к графику этой функции, уравнение которой будет иметь вид:

$$y_{kac}(x) = f(x_0) + f'(x_0)(x - x_0).$$

Прямую, проходящую через точку касания $(x_0, f(x_0))$, перпендикулярно касательной, будем называть *нормалью* к графику функции. Очевидно, уравнение нормали в этом случае будет

$$y_{nor}(x) = f(x_0) - \frac{1}{f'(x_0)}(x - x_0).$$

Если в заданной точке функция непрерывна, но производная бесконечна, то уравнения касательной и нормали к графику функции в соответствующей точке будут иметь вид $x = x_0$ и $y = f(x_0)$ соответственно.

Если функция не имеет производной в точке $x_0 \in D(f)$, но имеет там односторонние производные, то можно говорить об односторонних касательных.

Пример 5.10. К графику функции $y = x^2$ написать уравнения

- **а)** касательной и нормали так, чтобы точка касания имела абсциссу $x_0 = 1$;
- **b)** касательных, проходящих через точку (2, 1).
- \odot **а)** Воспользуемся уравнением касательной $y-y_0=f'(x_0)(x-x_0)$. Имеем: $y_0=x_0^2=1$, $f'(x_0)=2x\big|_{x=x_0=1}=2$. Тогда уравнение касательной имеет вид y=1+2(x-1) или y=2x-1. Угловой коэффициент нормали найдем из условия перпендикулярности прямых: $k_{kac}\cdot k_{nor}=-1$, т.е. $k_{nor}=-\frac{1}{2}$. Тогда

уравнение нормали имеет вид
$$y = 1 + -\frac{1}{2}(x-1)$$
 или $y = -\frac{1}{2}x + \frac{3}{2}$.

надлежит касательной, следовательно, $x_0^2 = 1 + 2x_0(x_0 - 2)$. Отсюда находим $x_0 = 2 \pm \sqrt{3}$. Получаем уравнения двух касательных к параболе, проходящих через точку (2,1): $y = 1 + 2(2 \pm \sqrt{3})(x-2)$.

Пример 5.11. Найти угол между левой и правой касательными в угловой точке кривой $y = \sqrt{1 - e^{-a^2 x^2}}$, a > 0.

 \odot Найдем производную $y' = \frac{a^2 x e^{-a^2 x^2}}{\sqrt{1 - e^{-a^2 x^2}}}$. Она существует во всех точках

кроме $x_0 = 0$. Значит, точка $x_0 = 0$ может являться угловой точкой кривой. Вычислим односторонние производные в этой точке:

134

$$y'_{\pm}(0) = \lim_{x \to \pm 0} \frac{a^2 x e^{-a^2 x^2}}{\sqrt{1 - e^{-a^2 x^2}}} = a^2 \lim_{x \to \pm 0} \frac{x}{\sqrt{1 - e^{-a^2 x^2}$$

Получаем $y'_{+}(0) = a$, $y'_{-}(0) = -a$. Таким образом, угловые коэффициенты правой и левой касатель-

ных в точке $x_0 = 0$ равны $k_1 = a$ и $k_2 = -a$. Тогда тангенс угла между ними найдем по формуле $\operatorname{tg} \varphi = \left| \frac{k_1 - k_2}{1 + k_1 k_2} \right| = \frac{2a}{1 + a^2}$. Окончательно, $\varphi = \operatorname{arctg} \frac{2a}{1 + a^2}$ (см. рисунок).

Пример 5.12. Пусть $\rho = \rho(\varphi)$ - уравнение кривой в полярной системе координат. В точке $\varphi = \varphi_0$ проведена касательная. Доказать, что тангенс угла β между касательной и прямой, содержащей радиус-вектором точки касания равен $\operatorname{tg} \beta = \frac{\rho(\varphi_0)}{|\rho'(\varphi_0)|}$.

 \odot Обозначим угол наклона касательной к полярной оси за α . Тогда $\beta = |\alpha - \varphi_0|$. Найдем

5.40. Написать уравнения касательной и нормали к графику функции y = f(x), проведенных в точке с абсциссой x_0 :

a)
$$y = x^3$$
, $x_0 = 2$;

b)
$$y = \text{arctg } 2x, \ x_0 = 0;$$

c)
$$y = \frac{x^3 + 2x^2}{(x-1)^2}$$
, $x_0 = -2$;

d)
$$y = |x-1|\sqrt[3]{x+2}$$
, $x_0 = 6$.

- **5.41.** В какой точке касательная к параболе $y = x^2$:
 - **а)** параллельна прямой y = 4x 5;
 - **b)** перпендикулярна к прямой 2x 6y + 5 = 0;
 - **c)** образует с прямой 3x y + 1 = 0 угол в 45° ?
- **5.42.** Найти углы, под которыми график функции y = f(x) пересекает ось абсщисс:

a)
$$y = \sin 4x$$
;

d)
$$x^2 + y^2 + 2y - 9 = 0$$
;

b)
$$y = \ln |x|$$
;

c)
$$y = \frac{(x-1)(x+2)}{(x+1)(x-2)}$$
;

e)
$$x(t) = \frac{3at}{t^3 + 1}, y(t) = \frac{3at^2}{t^3 + 1}, -1 < t < \frac{1}{2}.$$

5.43. Доказать, что парабола $y = a(x - x_1)(x - x_2)$ пересекает ось абсцисс под углами, дающими в сумме 180° .

5.44. Написать уравнение касательной к графику функции y = f(x), заданной неявно или параметрически, проведенной в указанной точке:

a)
$$x^2 - xy + 2y^2 + x - y - 14 = 0$$
, $(1, -2)$;

b)
$$2x^4 - y^2 - x^2 + 2y = 0$$
, $x_0 = \sqrt{2}/2$;

c)
$$x(t) = e^{-t} \sin t$$
, $y(t) = e^{-t} \cos t$, $t_0 = 0$;

d)
$$x(t) = \pi t - \sin \pi t$$
, $y(t) = t - \arctan t$, $(\pi; 1 - \pi/4)$.

- **5.45.** Написать уравнение касательной к эллипсу $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ в точке (x_0, y_0) , лежащей на эллипсе.
- **5.46.** Написать уравнение нормали к гиперболе $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ в точке (x_0, y_0) , лежащей на гиперболе.
- 5.47. Найти углы между кривыми:

a)
$$y = \sqrt{2} \sin x$$
, $y = \sqrt{2} \cos x$;

c)
$$y = x^2 \ln x$$
, $y = 4 - 4x^2$;

b)
$$y = \frac{x^2}{2}$$
, $y = \frac{1}{1+x^2}$;

d)
$$y = \frac{x^2}{2}$$
, $y = \frac{1}{1+x^2}$;

e)
$$x(t) = t^3 + 3t$$
, $y(t) = (t+1)\ln(t+1)$, $y = -\frac{x}{1+x^2}$;

f)
$$y = 4 + 2\sqrt[3]{x-2}$$
, $y = 2x$;

g)
$$\rho = a$$
, $\rho^2 = 2a^2 \cos 2\varphi$;

h)
$$\rho = 5a\cos\varphi$$
, $\rho = a(4-3\cos\varphi)$;

i)
$$y = \varphi(x)$$
, $y = \varphi(x)\sin \pi x$, где $\varphi(x)$ - дифференцируемая функция на $\mathbb R$.

- **5.48.** Найти значение параметра R такое, чтобы окружности $x^2 + y^2 = 1$ и $(x-2)^2 + y^2 = R^2$ были ортогональны (пересекались под прямым углом).
- **5.49.** Доказать, что семейства парабол $y^2 = p^2 2px$ и $y^2 = q^2 + 2qx$, $p, q \neq 0$ образуют ортогональную сетку, т.е. кривые этих семейств пересекаются под прямыми углами.
- **5.50.** Доказать, что семейства гипербол $x^2 y^2 = a^2$ и xy = b, $p, q \neq 0$ образуют ортогональную сетку.
- **5.51.** Найти угол между двумя окружностями одного радиуса, если центр одной из них лежит на другой.
- **5.52.** При каком соотношении между коэффициентами a, b и c парабола $y = ax^2 + bx + c$, $a \ne 0$ касается оси OX?
- **5.53.** При каком *a* парабола $y = ax^2$ касается кривой $y = \ln x$?
- **5.54.** Найти угол между левой и правой касательными в угловых точках кривых:

a)
$$y = \sqrt[3]{x^2}$$
;

b)
$$y = \sqrt{\ln(1+9x^2)}$$
;

c)
$$y = \arccos \frac{2}{e^{2x} + e^{-2x}}$$
; d) $y = \arccos(\sin x), x \in [-2\pi, 2\pi].$

- **5.55.** Доказать, что у астроиды $x^{2/3} + y^{2/3} = a^{2/3}$ длина отрезка любой касательной, заключенного между осями координат, постоянна.
- **5.56.** Доказать, что отрезок касательной к гиперболе xy = a, заключенный между осями координат, делится точкой касания пополам.
- **5.57.** Написать уравнение касательной к кривой $y = x^3 + 3x^2 5$, перпендикулярной прямой 2x 6y + 1 = 0.
- **5.58.** Написать уравнение касательной к гиперболе $y = \frac{x+9}{x+5}$, проходящей через начало координат.
- **5.59.** Написать уравнение касательной к линии, заданной уравнением $x^2(x+y) = a^2(x-y)$, проходящей через начало координат.
- **5.60.** Написать уравнения касательных к окружности $x^2 + y^2 = 2$, проведенных через точку (2,0).
- **5.61.** Доказать, что касательная к логарифмической спирали $\rho = ae^{m\varphi}$ образует постоянный угол с радиус-вектором точки касания.
- **5.62.** Найти угол между касательной и полярным радиусом точки касания у лемнискаты $\rho^2 = a^2 \cos 2\varphi$.

5.4 Производные и дифференциалы высших порядков

Пусть функция f(x) дифференцируема на промежутке (a,b). Тогда ее производная f'(x) является функцией на этом промежутке, и, если эта функция дифференцируема на нем, то можно говорить о производной (f'(x))', которая называется *второй производной (производной второго порядка)* данной функции и обозначается f''(x) или $\frac{d^2f}{dx^2}$.

Аналогично, с помощью рекуррентного соотношения определяется производная любого порядка $f^{(n)}(x) = \left(f^{(n-1)}(x)\right)'$, $n \in \mathbb{N}$. Под производной нулевого порядка понимается сама функция.

Для вычисления производных от суммы и произведения двух функций используют правила:

1)
$$(u+v)^{(n)} = u^{(n)} + v^{(n)}$$
;

2)
$$(u \cdot v)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}$$
.

Последнее правило называют формулой Лейбница.

Также с помощью рекуррентного соотношения определяется дифференциал функции произвольного порядка: $d^n f = d \left(d^{n-1} f \right)$.

Пример 5.13. Найти производную *n*-го порядка функции $y = \log_2(5x+1)$.

⊙ Найдем несколько первых производных:

$$y' = \frac{5}{(5x+1)\ln 2}, \ y'' = \frac{5^2(-1)}{(5x+1)^2\ln 2}, \ y''' = \frac{5^3(-1)(-2)}{(5x+1)^3\ln 2}, \ y^{IV} = \frac{5^4(-1)(-2)(-3)}{(5x+1)^4\ln 2}.$$

Естественно предположить, что

$$y^{(n)} = \frac{5^n(-1)(-2)(-3)\dots(-n+1)}{(5x+1)^n \ln 2} = \frac{5^n(-1)^{n-1}(n-1)!}{(5x+1)^n \ln 2}$$

Докажем это предположение методом математической индукции. При $n=1,\,2,\,3,\,4$ формула верна. Предположим, что она верна при n=k, т.е.

$$y^{(k)} = \frac{5^k (-1)^{k-1} (k-1)!}{(5x+1)^k \ln 2}$$
. Тогда при $n = k+1$ имеем:

$$y^{(k+1)} = \left(y^{(k)}\right)' = \left(\frac{5^k (-1)^{k-1} (k-1)!}{\left(5x+1\right)^k \ln 2}\right)' = \frac{5^k (-1)^{k-1} (k-1)!}{\ln 2} \cdot \frac{5 \cdot (-k)}{\left(5x+1\right)^{k+1}} = \frac{5^{k+1} (-1)^k k!}{\left(5x+1\right)^k \ln 2}$$

и, следовательно, формула верна и при n = k + 1. Отсюда вытекает ее справедливость при всех натуральных значениях n.

Пример 5.14. Функция y = y(x) задана параметрически: $x(t) = \arcsin t$,

$$y(t) = \ln(1-t^2)$$
. Найти производную второго порядка $\frac{d^2y}{dx^2}$.

⊙ Найдем вначале первую производную

$$y'_x = \frac{dy}{dx} = \frac{y'_t(t)}{x'_t(t)} = -\frac{2t}{\sqrt{1-t^2}}$$
.

Эта функция также задана параметрически. Значит, для нахождения второй производной будем использовать правило дифференцирования параметрически

заданной функции:
$$\frac{d^2y}{dx^2} = \frac{(y'_x)'_t}{x'_t} = -\frac{2}{1-t^2}$$
.

Пример 5.15. Функция y = y(x) задана неявно уравнением $e^{x+y} = xy$. Найти $\frac{d^2y}{dx^2}$.

 \odot Продифференцируем данное уравнение по переменной x, считая y функцией от x:

$$e^{x+y}(1+y')=y+xy'$$
.

Отсюда найдем $y' = \frac{y - e^{x+y}}{e^{x+y} - x}$. Продифференцируем еще раз:

$$e^{x+y}(1+y')^2 + e^{x+y}y'' = 2y' + xy''$$

и выразим
$$y'' = \frac{2y' - e^{x+y} (1+y')^2}{e^{x+y} - x}$$
.

После подстановки выражения для y' и упрощения, используя исходное ра-

венство, получим
$$y'' = -\frac{y((x-1)^2 + (y-1)^2)}{x^2(y-1)^3}$$
.

Пример 5.16. Найти производную *n*-ого порядка функции $y = x^2 \sin ax$.

⊚ Воспользуемся формулой Лейбница (теорема 4.3.1):

$$\left(x^2 \sin ax\right)^{(n)} = C_n^0 x^2 \left(\sin ax\right)^{(n)} + C_n^1 \left(x^2\right)' \left(\sin ax\right)^{(n-1)} + C_n^2 \left(x^2\right)'' \left(\sin ax\right)^{(n-2)}.$$
 Oc-

тальные слагаемые равны нулю, так как $\left(x^2\right)^{(k)}=0$ при $k\geq 3$. Для нахождения производной n-ого порядка используем формулу

$$(\sin x)^{(n)} = \sin(x + \pi n/2).$$

Тогда имеем

$$(\sin ax)^{(n)} = a^n \sin(ax + \pi n/2),$$

$$(\sin ax)^{(n-1)} = a^{n-1} \sin(ax + \pi (n-1)/2) = -a^{n-1} \cos(ax + \pi n/2),$$

$$(\sin ax)^{(n-2)} = a^{n-2} \sin(ax + \pi (n-2)/2) = -a^{n-2} \sin(ax + \pi n/2).$$

Окончательно, получаем

$$\left(x^2\sin ax\right)^{(n)} =$$

 $= x^2 a^n \sin(ax + \pi n/2) - 2nxa^{n-1}\cos(ax + \pi n/2) - n(n-1)a^{n-2}\sin(ax + \pi n/2)$. **● Пример 5.17.** Найти $f^{(n)}(0)$, если $f(x) = \arctan x$.

 \odot Найдем первую производную данной функции: $f'(x) = \frac{1}{1+x^2}$. Отсюда $f'(x)(1+x^2)=1$ Воспользовавшись формулой Лейбница, продифференцируем последнее равенство n-1 раз. Получим

$$f^{(n)}(x)(1+x^2)+2x(n-1)f^{(n-1)}(x)+(n-1)(n-2)f^{(n-2)}(x)=0$$
. Подстав-

ляя в последнее равенство x=0, получим рекуррентное соотношение

$$f^{(n)}(0)+(n-1)(n-2)f^{(n-2)}(0)=0$$

Так как f''(0) = 0, то из этого соотношения следует, что $f^{(2k)}(0) = 0$, $k \in \mathbb{N}$.

Для получения производной нечетно порядка вычислим f'(0)=1. Тогда из рекуррентной формулы следует

$$f^{(3)}(0) = -2 \cdot 1 \cdot f'(0) = -2!,$$

$$f^{(5)} = 4 \cdot 3 \cdot 2 = 4!.$$

С помощью индукции легко доказать, что $f^{(2k-1)} = (-1)^{k+1} (2k-2)!, k \in \mathbb{N}$.

Пример 5.18. Найти дифференциал второго порядка функции $y = (2x + 1) \ln x$, если **a)** x — независимая переменная; **b)** x является функцией некоторой независимой переменной.

😊 а) По определению второго дифференциала находим

$$d^{2}y = d(dy) = d\left(2\ln x dx + 2dx + \frac{dx}{x}\right) = 2d\ln x dx + d\left(\frac{1}{x}\right) dx = \frac{2}{x} dx^{2} - \frac{1}{x^{2}} dx^{2} =$$

$$= \frac{2x - 1}{x^{2}} dx^{2}.$$

b) Так как x не является независимой переменной, то теперь $d^2x \neq 0$. Тогда имеем:

$$d^{2}y = d(dy) = d\left(2\ln x dx + 2dx + \frac{dx}{x}\right) =$$

$$= 2d\ln x dx + 2\ln x d^{2}x + 2d^{2}x + d\left(\frac{1}{x}\right) dx + \frac{d^{2}x}{x} = \frac{2x - 1}{x^{2}} dx^{2} + \left(2\ln x + 2 + \frac{1}{x}\right) d^{2}x. \quad \bullet$$

Упражнения

5.63. Найти производные указанного порядка следующих функций:

a)
$$y = (x^2 + 1)^3$$
, $y'' = ?$
b) $y = xe^{x^2}$, $y'' = ?$
e) $y = \frac{1}{1 - x}$, $y^V = ?$
f) $v = x^3 \ln x$, $v^{IV} = ?$

c)
$$y = x^{2}$$
, $y'' = ?$
g) $y = x^{2}$ in x , $y'' = ?$
g) $y = x^{2}$, $y'' = ?$

c)
$$y = \sqrt{a^2 - x^2}$$
, $y'' = ?$
d) $y = \cos^2 x$, $y''' = ?$

h)
$$y = (3x+5)^2(2x^2+1)(x+7)^2$$
, $y^{VI} = ?$

i)
$$y = x\sqrt{1+x^2} + \ln(x+\sqrt{1+x^2}), \ y^{IV} = ?$$

j)
$$y = x^2 e^{2x}$$
, $y^{(50)} = ?$

5.64. Найти дифференциал второго порядка, считая x независимой переменной:

a)
$$y = (1 + x + x^2)e^{-x};$$
 c) $y = x(\sin \ln x + \cos \ln x);$
b) $y = 3x - 1 + \tan 4x;$ **d)** $y = \sqrt{1 - x^2} \arcsin x.$

5.65. Найти производную второго порядка, считая известными первые и вторые производные функций u и v:

a)
$$y = \frac{u}{v}$$
;
b) $y = u \sin(u + v)$;
c) $y = \arctan(v/u)$;
d) $y = u^v$.

5.66. Найти дифференциал второго порядка, считая известными первые и вторые дифференциалы функций u и v:

a)
$$y = \frac{u + 2v}{v}$$
;

c)
$$y = u^2 + ue^v$$
;

b)
$$y = u \ln v$$
;

d)
$$y = e^{uv}$$
.

5.67. Для функции y = f(x), заданной параметрически, найти производную указанного порядка:

a)
$$x(t) = t^3$$
, $y(t) = t^2$, $y''_{rr} = ?$

b)
$$x(t) = e^{\alpha t} \cos \beta t$$
, $y(t) = e^{\alpha t} \sin \beta t$, $y''_{xx} = ?$

c)
$$x(t) = \frac{t+t^3}{1+t^4}$$
, $y(t) = \frac{t-t^3}{1+t^4}$, $y''_{xx} = ?$

d)
$$x(t) = a\cos t + (at + b)\sin t$$
, $y(t) = a\sin t - (at + b)\cos t$, $y''_{xx} = ?$

e)
$$x(t) = a\cos^5 t$$
, $y(t) = a\sin^5 t$, $\frac{d^3 y}{dx^3} = ?$

f)
$$x(t) = a \cos t$$
, $y(t) = b \sin t$, $\frac{d^4 y}{dx^4} = ?$

g)
$$x(t) = a(t - \sin t), \ y(t) = a \cos t, \ \frac{d^4 y}{dx^4} = ?$$

h)
$$x(t) = \cos t - \ln \cot \frac{t}{2}$$
, $y(t) = \sin t$, $\frac{d^3 y}{dx^3} = ?$

5.68. Для функции y = f(x), заданной неявно, найти производную указанного порядка:

a)
$$b^2x^2 + a^2y^2 = a^2b^2$$
, $\frac{d^2y}{dx^2} = ?$ **c)** $y = \sin(x+y)$, $\frac{d^2y}{dx^2} = ?$

c)
$$y = \sin(x+y), \quad \frac{d^2y}{dx^2} = ?$$

b)
$$x^2 + y^2 = R^2$$
, $\frac{d^3y}{dx^3} = ?$

d)
$$y^2 = \exp(x^4 - y^2), \quad \frac{d^2y}{dx^2} = ?$$

- 5.69. Вывести формулы для второй и третьей производной обратной функции $x = f^{-1}(y)$, если известны производные функции y = f(x).
- **5.70.** Показать, что данная функция y = f(x) удовлетворяет данному дифференциальному уравнению:

a)
$$y = C_1 e^{-x} + C_2 e^{-2x}, \quad y'' + 3y' + 2y = 0;$$

b)
$$y = \sin(m \arcsin x), \quad (1-x^2)y'' - xy' + m^2y = 0;$$

c)
$$y = (x + \sqrt{x^2 + 1})^n$$
, $(1 + x^2)y'' + xy' - n^2y = 0$;

d)
$$y = e^{-x} \cos x$$
, $y^{IV} + 4y = 0$.

5.71. Доказать равенства:

a)
$$(\sin ax)^{(n)} = a^n \sin\left(ax + \frac{\pi n}{2}\right);$$
 b) $(\cos ax)^{(n)} = a^n \cos\left(ax + \frac{\pi n}{2}\right).$

5.72. Найти производную n-ого порядка данной функции:

a)
$$y = \sqrt{x}$$
;

e)
$$y = \frac{1}{ax + b}$$
;

$$\mathbf{g)} \ y = \sin 2x + \cos 3x;$$

a)
$$y = \sqrt{x}$$
;
b) $y = e^{ax}$;

$$e) y - \frac{1}{ax + b}$$

$$\mathbf{h)} \ y = \sin^2 x.$$

$$\mathbf{c)} \ \ y = xe^x;$$

c)
$$y = xe^x$$
; f) $y = \frac{1}{\sqrt{1 - 2x}}$;

- **d)** $v = x \ln x$;
- **5.73.** Найти производную n-ого порядка данной функции:

a)
$$y = \frac{1+x}{1-x}$$

a)
$$y = \frac{1+x}{1-x}$$
; **d)** $y = \frac{1}{x^2 - 3x + 2}$;

g)
$$y = \cos^3 x$$
;
h) $y = \sin^4 x + \frac{1}{2} \sin^2 x + \frac{1}{2} \sin$

b)
$$y = \frac{ax + b}{cx + d}$$

b)
$$y = \frac{ax + b}{cx + d}$$
; **e)** $y = \frac{x}{\sqrt[3]{1 + x}}$;

h)
$$y = \sin^4 x + \cos^4 x$$
;
i) $v = e^x \cos x$:

c)
$$y = \frac{2x}{x^2 - 1}$$
; **f)** $y = \sin^3 x$;

$$\mathbf{f)} \ \ y = \sin^3 x$$

j)
$$y = (x^2 + 2x + 2)e^{-x}$$
.

5.74. Показать, что данная функция y = f(x) удовлетворяет данному дифференциальному уравнению:

a)
$$y = \cos(m \ln x)$$
, $x^2 y^{(n+2)} + (2n+1)xy^{(n+1)} + (n^2 + m^2)y^{(n)} = 0$;

b)
$$y = \arctan x$$
, $y^{(n)} = (n-1)!\cos^n y \cdot \sin \left(ny + \frac{\pi n}{2} \right)$.

5.75. Найти $\frac{d^n y}{dx^n}$ для функции, заданной параметрически:

a)
$$x(t) = a\cos^2 t$$
, $y(t) = b\sin^2 t$

a)
$$x(t) = a\cos^2 t$$
, $y(t) = b\sin^2 t$; **c)** $x(t) = t^2 - t + 1$, $y(t) = t^2 + t + 1$;

b)
$$x(t) = \cos t$$
, $y(t) = \cos nt$;

d)
$$x(t) = \frac{t}{t+1}$$
, $y(t) = \frac{2t^2 + t}{(t+1)^2}$.

5.76. Определить, производные какого порядка существуют для функции y = f(x) в точке $x_0 = 0$, и вычислить их:

a)
$$y = \begin{cases} 1 - \cos x, & x < 0, \\ \ln(1+x) - x, & x \ge 0; \end{cases}$$

d)
$$y = \begin{cases} x^2, & x \in \mathbb{Q}, \\ -x^2, & x \not\in \mathbb{Q}; \end{cases}$$

b)
$$y = \begin{cases} 2x \cos x, & x < 0, \\ \sin 2x, & x \ge 0; \end{cases}$$

a)
$$y = \begin{cases} 1 - \cos x, & x < 0, \\ \ln(1+x) - x, & x \ge 0; \end{cases}$$
b) $y = \begin{cases} 2x \cos x, & x < 0, \\ \sin 2x, & x \ge 0; \end{cases}$
e) $y = \begin{cases} x^2, & x \in \mathbb{Q}, \\ -x^2, & x \ne \mathbb{Q}; \end{cases}$
e) $y = \begin{cases} x^{100} \sin(1/x), & x \ne 0, \\ 0, & x = 0; \end{cases}$

c)
$$y = \begin{cases} \sin 2x, & x = 0, \\ \sin x, & x < 0, \\ x - \sin x, & x \ge 0; \end{cases}$$

f)
$$y = \begin{cases} e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

5.77. Производная *n*-ого порядка функции e^{-x^2} имеет вид $e^{-x^2}H_n(x)$, где $H_n(x)$ - полином, называемый *полиномом Чебышева-Эрмита*. Докажите следующие равенства:

a)
$$H_{n+1}(x) + 2xH_n(x) + 2nH_{n-1}(x) = 0$$
;

b)
$$H_n(x) - H'_{n-1}(x) + 2xH_{n-1}(x) = 0$$
;

c)
$$H''_n(x) - 2xH'_n(x) + 2nH_n(x) = 0$$
.

5.78. *Полиномы Лагерра* $L_n(x)$ определяются равенством $\left(x^n e^{-x}\right)^{(n)} = e^{-x} L_n(x)$. Доказать следующие равенства:

a)
$$xL''_n(x) + (1-x)L'_n(x) + nL_n(x) = 0$$
;

b)
$$L_{n+1}(x) - (2n+1-x)L_n(x) + n^2L_{n-1}(x) = 0$$
.

5.79. *Полиномы Лежандра* $P_n(x)$ определяются равенством:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
. Доказать следующие равенства:

a)
$$(x^2-1)P_n''(x)+2xP_n'(x)-n(n+1)P_n(x)=0$$
;

b)
$$(n+1)P_{n+1}(x)-(2n+1)xP_n(x)+nP_{n-1}(x)=0$$
.

5.5 Основные теоремы о дифференцируемых функциях

Напомним формулировки трех теорем, которые называют *теоремами о среднем* или *французскими теоремами*.

Теорема Ролля. Если функция f(x) непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и имеет на концах отрезка равные значения f(a) = f(b), то внутри интервала (a,b) существует точка c, в которой f'(c) = 0.

Геометрически это означает, что, если функция удовлетворяет условиям теоремы, то на графике этой функции существует точка такая, что касательная, проведенная в этой точке к графику функции, будет параллельна оси абсцисс.

Теорема Лагранжа. Если функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), то внутри интервала (a,b) существует

точка
$$c$$
, в которой $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Следствие. Если функция непрерывна и дифференцируема на некотором промежутке и в каждой точке этого промежутка ее производная равна нулю, то функция постоянна на этом промежутке.

Теорема Коши. Если функции f(x) и g(x) непрерывны на отрезке [a,b], дифференцируемы на интервале (a,b), причем $g'(x) \neq 0$, $x \in (a,b)$, то внутри

интервала
$$(a,b)$$
 существует точка c , в которой $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Пример 5.19. Доказать, что если многочлен n-ой степени $P_n(x)$ имеет n действительных корней, то его производные $P_n'(x), P_n''(x), \dots, P_n^{(n-1)}(x)$ имеют только действительные корни.

© Заметим, что производная многочлена n-ой степени есть многочлен степени n-1. Предположим, что все корни многочлена $P_n(x)$ различны. Тогда по теореме Ролля (4.4.2) между каждой парой его корней есть корень его производной, значит, $P_n'(x)$ имеет n-1 действительный корень. Применяя теорему Ролля к $P_n'(x)$ получим, что $P_n''(x)$ имеет n-2 действительных корней и т.д. Если же многочлен $P_n(x)$ имеет корень кратности k, то его производная имеет этот же корень кратности k-1. \blacksquare

Пример 5.20. Доказать, что *многочлен Лежандра* $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left(\left(x^2 - 1 \right)^n \right)$ имеет n действительных корней, лежащих в интервале (-1; 1).

© Рассмотрим многочлен $U_{2n}(x) = (x^2 - 1)^n$. Он имеет два корня $x_1 = 1$, $x_2 = -1$ кратности n. Так как $P_n(x) = \frac{1}{2^n n!} \frac{d^n U_{2n}(x)}{dx^n}$, то, согласно предыдущему примеру, многочлен $P_n(x)$ имеет n действительных корней, расположенных между x_1 и x_2 , т.е. в интервале (-1;1).

Пример 5.21. Доказать неравенство $|\sin x - \sin y| \le |x - y|$.

 \odot Применим теорему Лагранжа к функции $\sin x$: $\sin x - \sin y = (x - y)\cos \xi$, где ξ лежит между x и y. Тогда $\left|\sin x - \sin y\right| = \left|x - y\right| \cdot \left|\cos \xi\right| \le \left|x - y\right|$.

Пример 5.22. Доказать тождество $\arcsin x + \arccos x = \frac{\pi}{2}$, $|x| \le 1$.

© Рассмотрим функцию $f(x) = \arcsin x + \arccos x$. Ее производная на промежутке [-1,1] равна $f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0$. Следовательно, на всем этом промежутке функция постоянна. Чтобы найти эту постоянную, вычислим значение этой функции в какой-нибудь точке, например, x = 0: $f(0) = \frac{\pi}{2}$. Следовательно, $f(x) = \frac{\pi}{2}$, $x \in [-1,1]$.

Упражнения

5.80. Что можно сказать о корнях производной многочлена

$$x(x-1)(x-2)(x-3)(x-4)$$
?

- **5.81.** Пусть функция f(x) дифференцируема в конечном или бесконечном интервале (a;b) и $\lim_{x\to a+0} f(x) = \lim_{x\to b-0} f(x)$. Доказать, что найдется точка $c \in (a; b)$, что f'(c) = 0.
- **5.82.** Доказать, что все корни *многочлена Лагерра* $L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$ положительны.
- Чебышева-Эрмита **5.83.** Доказать, все корни многочлена $H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$ положительны.
- 5.84. Доказать неравенства:
 - **a)** $py^{p-1}(x-y) \le x^p y^p \le px^{p-1}(x-y)$, если 0 < y < x, p > 1;
 - **b)** $|\arctan a \arctan b| \le |a b|$;
 - c) $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$, если 0 < b < a;
 - **d)** $\frac{x}{1+x} < \ln(1+x) < x$, если x > 0;
 - **e)** $e^x > ex$, если x > 1.
- **5.85.** Доказать, что если функция f(x) удовлетворяет условиям теоремы Ролля на отрезке [a,b] и не является постоянной, то на этом отрезке найдутся такие точки ξ_1 и ξ_2 , что $f'(\xi_1) \cdot f'(\xi_2) < 0$.
- **5.86.** Доказать, что если функция f(x) дифференцируема при x > a и $\lim_{x \to +\infty} f'(x) = 0$, to $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.
- **5.87.** Доказать, что если функции f(x) и g(x) n раз дифференцируемы, $f^{(k)}(x_0) = g^{(k)}(x_0), k = \overline{0, n-1}$ и $f^{(n)}(x) = g^{(n)}(x)$ при $x > x_0$, то справедливо неравенство f(x) > g(x) при $x > x_0$.
- **5.88.** Доказать неравенства:

a)
$$e^x > 1 + x$$
, $x \neq 0$;

b)
$$x - \frac{x^2}{2} < \ln(1+x) < x, x > 0.$$

5.89. Доказать тождества

a)
$$\arctan x + \arctan x = \frac{\pi}{2}$$
;

a)
$$\arctan x + \arctan x = \frac{\pi}{2}$$
; b) $\arcsin x = \arctan x = \frac{x}{\sqrt{1 - x^2}}$, $|x| < 1$;

c)
$$\arctan x + \arctan \frac{1-x}{1+x} = \begin{cases} \pi/4, & x \in (-1, +\infty); \\ -3\pi/4, & x \in (-\infty, -1). \end{cases}$$

5.90. Установить множество, на котором выполняется тождество, и доказать его

a)
$$2 \arctan x + \arcsin \frac{2x}{1+x^2} = \pi$$
; **b)** $\arccos \frac{1-x^2}{1+x^2} = 2 \arctan x$.

5.6 Формула Тейлора

Пусть функция f(x) определена в некоторой окрестности точки x_0 и имеет в этой точке производную n-го порядка. Тогда в этой окрестности имеет место равенство $f(x) = P_n(x) + R_n(x)$, которое называется формулой Тейлора. Здесь

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

- многочлен, который называется *многочленом Тейлора* данной функции в точке x_0 , а $R_n(x)$ - *остаточный член* формулы Тейлора. Из теоретического курса (теоремы 4.5.2, 4.5.3) известно:

1)
$$R_n(x) = o((x-x_0)^n);$$

2) если функция в окрестности точки x_0 имеет производную (n+1)-го

порядка, то
$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$
.

Первое представление остаточного члена называется *остаточным членом в* форме Пеано, а второе - *остаточным членом в форме Лагранжа*.

Формулу Тейлора можно использовать для приближенных вычислений, тогда остаточный член позволяет оценить точность этих вычислений.

Если в формуле Тейлора положить $x_0 = 0$, то эту формулу принято называть формулой Маклорена, а соответствующий многочлен — многочленом Маклорена.

Выпишем здесь формулы Маклорена для основных элементарных функций:

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + R_n(x)$$
;

2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + R_{2n}(x);$$

3.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + R_{2n+1}(x);$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + R_n(x);$$

5.
$$(1+x)^s =$$

$$= 1 + sx + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \dots + \frac{s(s-1)\dots(s-n+1)}{n!}x^n + R_n(x).$$

Пример 5.23. Разложить функцию $f(x) = \frac{1}{x}$ по степеням двучлена x+3 до члена, содержащего $(x+3)^3$.

© Запишем формулу Тейлора и возьмем $x_0 = -3$:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + o((x - x_0)^3).$$

Имеем

$$f(-3) = -\frac{1}{3}; \qquad f'(-3) = -\frac{1}{x^2}\Big|_{x=-3} = -\frac{1}{9};$$
$$f''(-3) = \frac{2}{x^3}\Big|_{x=-3} = -\frac{2}{27}; \ f'''(-3) = -\frac{6}{x^4}\Big|_{x=-3} = -\frac{2}{27}.$$

Получаем

$$\frac{1}{x} = -\frac{1}{3} - \frac{1}{9}(x+3) - \frac{1}{27}(x+3)^2 - \frac{1}{81}(x+3)^3 + o((x+3)^3).$$

Пример 5.24. Используя формулы Маклорена для основных элементарных функций, написать формулу Маклорена с $o(x^n)$ для функции $f(x) = 2^{3x-1}$.

⊙ Будем использовать формулу Маклорена для экспоненты:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}).$$

Преобразуем исходную функцию $2^{3x-1} = \frac{1}{2} \cdot e^{3x \ln 2}$ и введем переменную

$$t = 3x \ln 2$$
. Тогда $2^{3x-1} = \frac{1}{2}e^t = \frac{1}{2}\sum_{k=0}^n \frac{t^k}{k!} + o(t^n) = \sum_{k=0}^n \frac{3^k (\ln 2)^k}{2 \cdot k!} x^k + o(x^n)$.

Пример 5.25. Используя формулы Маклорена для основных элементарных функций, написать формулу Маклорена с $o(x^n)$ для функции $f(x) = \ln(3 + 5x - 2x^2)$.

© Будем использовать формулу Маклорена для логарифмической функции:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^n).$$

Разложим квадратный трехчлен на множители и воспользуемся свойством логарифма:

$$\ln\left(3+5x-2x^2\right) = \ln\left(3\left(1+2x\right)\left(1-\frac{x}{3}\right)\right) = \ln 3 + \ln\left(1+2x\right) + \ln\left(1-\frac{x}{3}\right).$$

Теперь для каждого логарифма применим формулу Маклорена, взяв в качестве новых переменных 2x и $\left(-\frac{x}{3}\right)$:

$$\ln\left(1+2x\right) = \sum_{k=1}^{n} (-1)^{k-1} \frac{2^k x^k}{k} + o\left(x^n\right),$$

$$\ln\left(1-\frac{x}{3}\right) = \sum_{k=1}^{n} (-1)^{k-1} \frac{(-1)^k x^k}{k3^k} + o\left(x^n\right) = -\sum_{k=1}^{n} \frac{x^k}{k3^k} + o\left(x^n\right).$$

Складывая подобные слагаемые, получаем окончательно:

$$\ln\left(3 + 5x - 2x^2\right) = \ln 3 + \sum_{k=1}^{n} \left((-1)^{k-1} 2^k - \frac{1}{3^k}\right) \frac{x^k}{k} + o\left(x^n\right). \quad \bullet$$

Пример 5.26. Используя формулы Маклорена для основных элементарных функций, написать формулу Тейлора в точке $x_0 = -1$ с $o\left(\left(x - x_0\right)^n\right)$ для функ-

ции
$$f(x) = \frac{x^2 + 2x - 13}{x^2 + x - 6}$$
.

 \odot Сведем задачу к написанию формулы Маклорена. Для этого введем новую переменную $t=x-x_0=x+1$. Тогда

$$f(x) = f(t-1) = \frac{(t-1)^2 + 2(t-1) - 13}{(t-1)^2 + (t-1) - 6} = \frac{t^2 - 14}{t^2 - t - 6}.$$

Теперь представим полученную дробь в виде суммы многочлена и простейших дробей:

$$\frac{t^2 - 14}{t^2 - t - 6} = 1 + \frac{t - 8}{(t + 2)(t - 3)} = 1 + \frac{2(t - 3) - (t + 2)}{(t + 2)(t - 3)} = 1 + \frac{2}{t + 2} - \frac{1}{t - 3}.$$

Теперь воспользуемся формулой Маклорена для функции

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n) = \sum_{k=0}^n x^k + o(x^n).$$

Имеем

$$\frac{2}{t+2} = \frac{1}{1-(-t/2)} = \sum_{k=0}^{n} \left(-\frac{t}{2}\right)^{k} + o\left(t^{n}\right) = 1 + \sum_{k=1}^{n} \frac{(-1)^{k}}{2^{k}} t^{k} + o\left(t^{n}\right),$$

$$-\frac{1}{t-3} = \frac{1}{3} \cdot \frac{1}{1-(t/3)} = \frac{1}{3} \sum_{k=0}^{n} \frac{1}{3^{k}} t^{k} + o\left(t^{n}\right) = \frac{1}{3} + \sum_{k=1}^{n} \frac{1}{3^{k+1}} t^{k} + o\left(t^{n}\right).$$

Осталось привести подобные слагаемые и вернуться к переменной x:

$$\frac{x^2 + 2x - 13}{x^2 + x - 6} = 1 + 1 + \sum_{k=1}^{n} \frac{(-1)^k}{2^k} t^k + o\left(t^n\right) + \frac{1}{3} + \sum_{k=1}^{n} \frac{1}{3^{k+1}} t^k + o\left(t^n\right) =$$

$$= \frac{7}{3} + \sum_{k=1}^{n} \left(\frac{(-1)^k}{2^k} + \frac{1}{3^{k+1}}\right) t^k + o\left(t^n\right) = \frac{7}{3} + \sum_{k=1}^{n} \left(\frac{(-1)^k}{2^k} + \frac{1}{3^{k+1}}\right) (x+1)^k + o\left((x+1)^n\right). \quad \bullet$$

Пример 5.27. Используя формулы Маклорена для основных элементарных функций, написать формулу Маклорена с $o(x^n)$ для функции $f(x) = (2x - 5)e^x$.

© Раскроем скобки и напишем формулу Маклорена для экспоненты:

$$f(x) = 2xe^{x} - 5e^{x} = 2x\sum_{k=0}^{n} \frac{x^{k}}{k!} - 5\sum_{k=1}^{n} \frac{x^{n}}{n!} = 2\sum_{k=0}^{n} \frac{x^{k+1}}{k!} - 5\sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}).$$

Чтобы объединить полученные два ряда в один, перенумеруем слагаемые в первом ряде, обозначив k+1=m:

$$\sum_{k=0}^{n} \frac{x^{k+1}}{k!} = \sum_{m=1}^{n+1} \frac{x^{m}}{(m-1)!}.$$

Вернувшись для удобства в первом ряде опять к индексу, получим

$$f(x) = 2\sum_{k=1}^{n+1} \frac{x^k}{(k-1)!} - 5\sum_{k=0}^n \frac{x^k}{k!} + o(x^n).$$

Теперь члены рядов с одинаковыми номерами являются подобными слагаемыми, кроме (n+1)-го члена первого ряда и нулевого члена второго ряда — их выпишем отдельно. Получим

$$f(x) = -5 + \frac{2x^{n+1}}{n!} + \sum_{k=1}^{n} \left(\frac{2}{(k-1)!} - \frac{5}{k!} \right) x^k + o(x^n).$$

Так как $\frac{2x^{n+1}}{n!} = o(x^n)$, то окончательно

$$f(x) = -5 + \sum_{k=1}^{n} \left(\frac{2}{(k-1)!} - \frac{5}{k!} \right) x^k + o(x^n).$$

Пример 5.28. Вычислить предел $\lim_{x\to 0} \frac{\operatorname{tg} \sin x - \ln\left(x + \sqrt[3]{1 + x^2}\right) - \frac{x^2}{6}}{\operatorname{th}(x - x^3) - x}$.

© Запишем и упростим формулы Маклорена для имеющихся функций:

$$\operatorname{tg} \sin x = \sin x + \frac{\sin^3 x}{3} + o\left(\sin^3 x\right) = \left(x - \frac{x^3}{6} + o\left(x^3\right)\right) + \frac{1}{3}\left(x - \frac{x^3}{6} + o\left(x^3\right)\right)^3 + \\
+ o\left(x^3\right) = x - \frac{x^3}{6} + \frac{x^3}{3} + o\left(x^3\right) = x + \frac{x^3}{6} + o\left(x^3\right), \\
\ln\left(x + \sqrt[3]{1 + x^2}\right) = \ln\left(x + 1 + \frac{x^2}{3} + o\left(x^2\right)\right) = \left(x + \frac{x^2}{3} + o\left(x^2\right)\right) - \frac{1}{2}\left(x + \frac{x^2}{3} + o\left(x^2\right)\right)^2 + \\
+ \frac{1}{3}\left(x + \frac{x^2}{3} + o\left(x^2\right)\right)^3 + o\left(\left(x + \frac{x^2}{3} + o\left(x^2\right)\right)^3\right) = \left(x + \frac{x^2}{3}\right) - \frac{1}{2}\left(x^2 + \frac{2x^3}{3}\right) + \frac{x^3}{3} + o\left(x^3\right) + o\left(x^3\right$$

$$+o(x^{3}) = x - \frac{x^{2}}{6} + o(x^{3}),$$

$$th(x-x^{3}) = (x-x^{3}) - \frac{1}{3}(x-x^{3})^{3} + o((x-x^{3})^{3}) = x - x^{3} - \frac{1}{3}(x^{3} + o(x^{3})) + o(x^{3}) =$$

$$= x - \frac{4}{3}x^{3} + o(x^{3}).$$

Тогда числитель исходной дроби равен

$$tg \sin x - \ln\left(x + \sqrt[3]{1 + x^2}\right) - \frac{x^2}{6} = x + \frac{x^3}{6} - \left(x - \frac{x^2}{6}\right) - \frac{x^2}{6} + o\left(x^3\right) = \frac{x^3}{6} + o\left(x^3\right),$$
а знаменатель
$$th\left(x - x^3\right) - x = -\frac{4}{3}x^3 + o\left(x^3\right).$$

Окончательно,

$$\lim_{x \to 0} \frac{\operatorname{tg} \sin x - \ln\left(x + \sqrt[3]{1 + x^2}\right) - \frac{x^2}{6}}{\operatorname{th}\left(x - x^3\right) - x} = \lim_{x \to 0} \frac{\frac{1}{6}x^3 + o\left(x^3\right)}{-\frac{4}{3}x^3 + o\left(x^3\right)} = -\frac{1/6}{4/3} = -\frac{1}{8}.$$

Рассмотрим еще раз задачу нахождения наклонных асимптот графика функции (пример 4.39).

Пример 5.29. Найти наклонные асимптоты графика функции $f(x) = \sqrt{\frac{x^3}{x+4}}$.

⊙ Запишем функцию в виде

$$f(x) = \sqrt{\frac{x^3}{x+4}} = |x| \left(1 - \frac{4}{x+4}\right)^{1/2}$$

и применим формулу Маклорена для бинома. Тогда при $x \to \infty$

$$f(x) = |x| \left(1 - \frac{2}{x+4} + o\left(\frac{1}{x}\right)\right).$$

Следовательно, при $x \to +\infty$ получим f(x) = x - 2 + o(1), а при $x \to -\infty$ это соотношение даст f(x) = -x + 2 + o(1). Значит, функция имеет две наклонные асимптоты при $x \to +\infty$ y = x - 2, при $x \to -\infty$ y = -x + 2.

Упражнения

- **5.91.** Разложить многочлен $x^3 3x^2 + 2x + 1$ по степеням двучлена x 1.
- **5.92.** Разложить многочлен $x^4 5x^3 + x^2 3x + 4$ по степеням двучлена x 4.
- **5.93.** Разложить многочлен $x^5 + 10x^2 + 15x + 6$ по степеням двучлена x + 1.
- **5.94.** Разложить многочлен $(x^2 3x + 1)^3$ по степеням x.

- **5.95.** Пусть f(x) многочлен четвертой степени, f(2) = -1, f'(2) = 0, f''(2) = 2, f'''(2) = -12, $f^{IV}(2) = 24$. Найти f(-1), f'(0), f''(1).
- **5.96.** Разложить функцию e^x по степеням двучлена x+1 до члена, содержащего $(x+1)^3$ включительно.
- **5.97.** Разложить функцию $\frac{x}{x-1}$ по степеням двучлена x-2 до члена, содержащего $(x-2)^3$ включительно.
- **5.98.** Разложить функцию $\frac{1}{\sqrt{x}}$ по степеням двучлена x-1 до члена, содержащего $(x-1)^3$ включительно.
- **5.99.** Разложить функцию e^{2x-x^2} по степеням x до члена, содержащего x^5 включительно.
- **5.100.**Написать формулу Маклорена для функции данных функций с $o(x^5)$:
 - a) tgx;

c) $\arcsin x$;

b) arctg x;

- d) th x.
- **5.101.**Используя формулы Маклорена для основных элементарных функций, написать формулу Маклорена с $o(x^n)$ для данной функции:
 - a) $\sin 2x$;

e) $\sqrt{1+4x}$;

i) 3^{2-x}

b) e^{5x+1} ;

f) $\frac{1}{\sqrt{4+5x}}$;

j) $\sin^2 x$; k) $x \cos^2 x$.

- c) $\cos\left(4x+\frac{\pi}{2}\right)$;
- g) $\ln(2+3x)$;

d) $\frac{1}{1+2x}$;

- **h**) $\log_2(4-7x)$;
- **5.102.**Используя формулы Маклорена для основных элементарных функций, написать формулу Маклорена с $o(x^n)$ для данной функции:
 - a) $\ln \frac{2-3x}{3+2x}$;

- **d)** $\sin\left(\frac{\pi}{4} \frac{x}{2}\right)$;
- $\mathbf{g)}\,\frac{\sin x}{x}.$

- **b)** $\ln(x^2 + 3x + 2)$;
- e) $\cos^3 x$;
- **c)** $\lg(2+x-x^2);$
- **f)** $e^{x}(1-e^{2x});$
- **5.103.**Используя формулы Маклорена для основных элементарных функций, написать формулу Маклорена с $o(x^n)$ для данной функции:
 - **a)** $\frac{x}{1+x^2}$;

- **b)** $\frac{1}{(x+1)(x-2)}$;
- c) $\frac{3x+5}{x+2}$;

d)
$$\frac{x^2}{2x-3}$$
;

f)
$$\frac{x^2+4x-1}{x^2+2x-3}$$
;

h)
$$\frac{x^2}{1-x^4}$$
.

e)
$$\frac{2x+5}{x^2+5x+4}$$
;

g)
$$\frac{1-2x^2}{2+x-x^2}$$
;

5.104. Используя формулы Маклорена для основных элементарных функций, написать формулу Маклорена с $o(x^n)$ для данной функции:

a)
$$(x+1)e^{x}$$
;

c)
$$e^{3x} + xe^{-3x}$$
;

b)
$$\cos 2x + x \sin x$$
;

d)
$$(2x+1)\ln(2x+1)$$
.

5.105. Написать формулу Маклорена до указанного члена включительно:

a)
$$e^{2x-x^2}$$
 до x^4 ;

c)
$$\ln \cos x$$
 до x^4 ;

b)
$$\frac{x}{e^x - 1}$$
 до x^4 ;

c)
$$\ln \cos x$$
 до x^4 ;
d) $\sqrt{1-2x+x^3} - \sqrt[3]{1-3x+x^3}$ до x^3 .

5.106.Написать многочлен Тейлора порядка n для функции y = y(x) в точке x_0 и оценить модуль разности этого многочлена и функции на указанном отрезке:

a)
$$y = \sqrt[3]{x}$$
, $x_0 = -8$, $[-9, -7]$, $n = 4$; **c)** $y = xe^{-x}$, $x_0 = 1$, $[0, 2]$, $n = 6$;

c)
$$y = xe^{-x}$$
, $x_0 = 1$, $[0, 2]$, $n = 6$;

b)
$$y = \operatorname{tg} x$$
, $x_0 = 0$, $[-\pi/6, \pi/6]$, $n = 5$;

b)
$$y = \operatorname{tg} x$$
, $x_0 = 0$, $[-\pi/6, \pi/6]$, $n = 5$; **d)** $y = x \ln(1+x)$, $x_0 = 2$, $[1, 3]$, $n = 4$.

5.107.Написать многочлен Тейлора третьего порядка для функции y = y(x), заданной неявно, в указанной точке $A(x_o, y_0)$:

a)
$$v^3 - x^2v + x^5 = 1$$
, $A(1,0)$;

b)
$$x^4 - 4ax^2y + 2ay^3 + a^2y^2 = 0$$
, $A(a,a)$, $a > 0$;

c)
$$x \cos y + y \cos x = 2x$$
, $A(0,0)$.

5.108. Вычислить пределы:

a)
$$\lim_{x\to 0} \frac{\operatorname{tg} x - x}{\sin x - x}$$
;

b)
$$\lim_{x\to 0} \frac{3\cos x + \arcsin x - 3\sqrt[3]{1+x}}{\ln(1-x^2)}$$
;

c)
$$\lim_{x\to 0} \frac{(1+x)^{1/x}-e}{x}$$
;

$$\mathbf{d)} \lim_{x \to 0} \frac{\cos\left(\frac{\pi}{2}\cos x\right)}{\sin\left(\sin^2 x\right)};$$

e)
$$\lim_{x\to 0} \frac{(1+x)^x - 1}{x^2}$$
;

f)
$$\lim_{x\to 0} \frac{e^x - \sqrt[3]{1+3x+9x^2/2}}{x^3}$$
.

5.109. Вычислить пределы:

a)
$$\lim_{x\to 0} \frac{\sqrt{1+2 \lg x} - e^x + x^2}{\arcsin x - \sin x}$$
;

b)
$$\lim_{x\to 0} \frac{e^{\sin x} + \ln(1-\sin x) - 1}{\tan x - \arctan x};$$

c)
$$\lim_{x\to 0} \frac{e^{e^x-1} - \frac{1}{1-x}}{\ln\left(\frac{1+x}{1-x}\right) - 2\sin x};$$

d)
$$\lim_{x\to 0} \frac{\ln\left(\sqrt{1+x^2}-x\right)+\operatorname{tg} x}{x\left(\operatorname{ch} x-e^{x^2}\right)};$$

e)
$$\lim_{x\to 0} \frac{e^{\sin x} - \sqrt{1+x^2} - \arcsin x}{\sinh(x-x^2) - \ln\sqrt{1+2x}};$$

5.110. Вычислить пределы:

a)
$$\lim_{x\to 0} (\operatorname{ch} x)^{1/\sin^2 x}$$
;

b)
$$\lim_{x\to 0} \left(\frac{\sin x}{\arcsin x}\right)^{1/x^2}$$
;

c)
$$\lim_{x\to 0} \left(\frac{1}{e}(1+x)^{1/x} + \frac{2x}{4+5x}\right)^{\operatorname{ctg}^2 x}$$
;

5.111. Вычислить пределы:

a)
$$\lim_{x \to +0} \left(1 + \frac{1}{\sin x} - \frac{1}{\arcsin x} \right)^{1/x + \ln^2 x}$$
;

b)
$$\lim_{x \to \pi/4} \frac{\ln \operatorname{ctg} x + 2x - \pi/2}{(1 - \operatorname{tg} x)^3}$$
;

5.112.Исследовать ряды на сходимость

a)
$$\sum_{n=1}^{\infty} \sqrt{\arcsin \frac{1}{n} - \sin \frac{1}{n}};$$

b)
$$\sum_{n=1}^{\infty} \left(e^{\frac{1}{n}} - \cos \frac{1}{\sqrt{n}} \right)^2;$$

f)
$$\lim_{x\to 0} \frac{\arctan(3+x^3) - \arctan(2+\cos x)}{\ln(1+x) - e^x + 1}$$
.

d)
$$\lim_{x\to\infty} e^{-x^2/3} \left(\frac{x}{2} \ln \frac{x+1}{x-1} \right)^{x^4}$$
;

e)
$$\lim_{x \to +\infty} e^{-x^2/2} \left(\frac{\sqrt{x^2 + 2x} - \sqrt{x^2 - 2x}}{2} \right)^{x^4}$$
;

f)
$$\lim_{x\to 0} (\cos x + x^2 \sqrt{x + 1/4})^{(x+e)/\arcsin x^3}$$
.

c)
$$\lim_{x\to 0} \left(\frac{1}{(x+1) \sin x} - \frac{\ln(1+x)}{x^2} \right);$$

d)
$$\lim_{x \to \infty} x \left(e^{1/x} + (2e)^{1/x} - 2 \right).$$

c)
$$\sum_{n=1}^{\infty} \sqrt[3]{\ln\left(1+tg\frac{1}{n}\right)-\arctan\frac{2n-1}{2n^2}};$$

$$\mathbf{d)} \sum_{n=1}^{\infty} \sin^2 \left(\pi \sqrt{n^2 + 1} \right).$$

5.7 Правило Лопиталя

Сформулируем несколько теорем (см. §6 гл.4), которые в совокупности называются *правилом Лопиталя*.

1. Если функции f(x) и g(x) дифференцируемы в проколотой окрестности точки x_0 , $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$, $g'(x) \neq 0$ в окрестности точки x_0 и суще-

ствует $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = A$, то существует $\lim_{x\to x_0} \frac{f(x)}{g(x)} = A$.

2. Если функции f(x) и g(x) дифференцируемы в проколотой окрестности точки x_0 , $\lim_{x \to x_0} g(x) = \infty$ и существует $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A$, то существует $\lim_{x \to x_0} \frac{f(x)}{g(x)} = A$.

3. Если функции f(x) и g(x) дифференцируемы в окрестности бесконечности, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$ и существует $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = A$, то существует $\lim_{x \to \infty} \frac{f(x)}{g(x)} = A$.

4. Если функции f(x) и g(x) дифференцируемы в окрестности бесконечности, $\lim_{x\to\infty} g(x) = \infty$ и существует $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = A$, то существует $\lim_{x\to\infty} \frac{f(x)}{g(x)} = A$.

Пример 5.29. Вычислить предел $\lim_{x\to 1} \frac{x^{10}-10x^2+9x}{2x^5+3x^2-4x-1}$.

 \odot Функции $f(x) = x^{10} - 10x^2 + 9x$ и $g(x) = 2x^5 + 3x^2 - 4x - 1$ являются бесконечно малыми при $x \to 1$, дифференцируемы, и существует

$$\lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{\left(x^{10} - 10x^2 + 9x\right)'}{\left(2x^5 + 3x^2 - 4x - 1\right)'} = \lim_{x \to 1} \frac{10x^9 - 20x + 9}{10x^4 + 6x - 4} = -\frac{1}{12}.$$

Тогда применимо правило Лопиталя (гл.4, п.6.1) и

$$\lim_{x \to 1} \frac{x^{10} - 10x^2 + 9x}{2x^5 + 3x^2 - 4x - 1} = -\frac{1}{12}. \quad \bullet$$

Пример 5.30. Вычислить предел $\lim_{x\to 0} \frac{x\cos x - \sin x}{\sinh^2 x \cdot \ln(1+x)}$.

© Вначале используем асимптотические равенства при $x \to 0$: $\sinh x \sim x$, $\ln(1+x) \sim x$. Теперь воспользуемся правилом Лопиталя:

$$\lim_{x \to 0} \frac{x \cos x - \sin x}{\sinh^2 x \cdot \ln(1+x)} = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3} = \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{3x^2} = -\lim_{x \to 0} \frac{\sin x}{3x} = -\frac{1}{3}.$$

Пример 5.31. Вычислить предел $\lim_{x\to +0} \frac{\ln x}{1+2\ln \sin x}$.

 \odot Функции $f(x) = \ln x$ и $g(x) = 1 + 2 \ln \sin x$ стремятся к бесконечности. Их производные существуют при x > 0, и предел

$$\lim_{x \to +0} \frac{(\ln x)'}{(1+2\ln\sin x)'} = \lim_{x \to +0} \frac{1}{2x \cot x} = \lim_{x \to +0} \frac{\tan x}{2x} = \frac{1}{2}$$

существует. Значит, можем воспользоваться правилом Лопиталя (гл.4, п.6.2):

$$\lim_{x \to +0} \frac{\ln x}{1 + 2\ln \sin x} = \lim_{x \to +0} \frac{\left(\ln x\right)'}{\left(1 + 2\ln \sin x\right)'} = \frac{1}{2} . \bullet$$

Пример 5.32. Вычислить предел $\lim_{x \to +0} \sqrt{x} \ln x$.

© Преобразуем неопределенность вида $0 \cdot \infty$ к виду $\frac{\infty}{\infty}$: $\sqrt{x} \ln x = \frac{\ln x}{x^{-1/2}}$. Тогда, пользуясь правилом Лопиталя, получим

$$\lim_{x \to +0} \sqrt{x} \ln x = \lim_{x \to +0} \frac{\left(\ln x\right)'}{\left(x^{-1/2}\right)'} = \lim_{x \to +0} \frac{x^{-1}}{-\frac{1}{2}x^{-3/2}} = \lim_{x \to +0} \left(-2\sqrt{x}\right) = 0.$$

Пример 5.33. Вычислить предел $\lim_{x\to 0} \left(\frac{1}{x \arctan x} - \frac{1}{x^2} \right)$.

 \odot Преобразуем неопределенность вида $\infty - \infty$ к виду $\frac{0}{0}$, и воспользуемся эквивалентностью $\arctan x \sim x$ при $x \to 0$:

$$\lim_{x \to 0} \left(\frac{1}{x \arctan x} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{x - \arctan x}{x^2 \arctan x} = \lim_{x \to 0} \frac{x - \arctan x}{x^3}.$$

Теперь применяя правило Лопиталя, получим:

$$\lim_{x \to 0} \left(\frac{1}{x \arctan x} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{\left(x - \arctan x \right)'}{\left(x^3 \right)'} = \lim_{x \to 0} \frac{1 - \frac{1}{1 + x^2}}{3x^2} = \lim_{x \to 0} \frac{1}{3\left(1 + x^2 \right)} = \frac{1}{3} \cdot \bullet$$

Пример 5.34. Вычислить предел $\lim_{x\to\infty} (3^x + x^2)^{1/x}$.

 \odot Имеем неопределенность ∞^0 . Прологарифмируем исходную функцию и воспользуемся правилом Лопиталя:

$$\lim_{x \to \infty} \left(3^x + x^2\right)^{1/x} = \lim_{x \to \infty} \exp\left(\frac{\ln\left(3^x + x^2\right)}{x}\right) = \exp\lim_{x \to \infty} \frac{\left(\ln\left(3^x + x^2\right)\right)'}{x'} = \exp\lim_{x \to \infty} \frac{3^x \ln 3 + 2x}{3^x + x^2}$$

Для вычисления предела $\lim_{x\to\infty} \frac{3^x \ln 3 + 2x}{3^x + x^2}$ опять воспользуемся правилом Лопи-

таля (все условия выполнены): $\lim_{x \to \infty} \frac{3^x \ln 3 + 2x}{3^x + x^2} = \lim_{x \to \infty} \frac{3^x \ln^2 3 + 2}{3^x \ln 3 + 2x}.$

Если
$$x \to -\infty$$
, то $3^x \to 0$ и $\lim_{x \to -\infty} \frac{3^x \ln^2 3 + 2}{3^x \ln 3 + 2x} = 0$. Тогда $\lim_{x \to -\infty} \left(3^x + x^2\right)^{1/x} = e^0 = 1$.

Если $x \to +\infty$, то $3^x \to +\infty$ и

$$\lim_{x \to +\infty} \frac{3^x \ln^2 3 + 2}{3^x \ln 3 + 2x} = \lim_{x \to +\infty} \frac{3^x \ln^3 3}{3^x \ln^2 3 + 2} = \lim_{x \to +\infty} \frac{3^x \ln^4 3}{3^x \ln^3 3} = \ln 3.$$

Тогда $\lim_{x \to \infty} (3^x + x^2)^{1/x} = e^{\ln 3} = 3$.

Пример 5.35. Вычислить предел $\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x} + 2 \sin x}{x}$.

⊙ Отношение производных числителя и знаменателя равно

$$2x\sin\frac{1}{x} - \cos\frac{1}{x} + 2\cos x$$

и не имеет предела при $x \to 0$. Следовательно, правило Лопиталя неприменимо. Воспользуемся свойствами пределов:

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x} + 2 \sin x}{x} = \lim_{x \to 0} x \sin \frac{1}{x} + \lim_{x \to 0} \frac{2 \sin x}{x} = 0 + 2 = 2. \quad \bullet$$

Упражнения

5.113. Вычислить пределы, используя правило Лопиталя (если оно применимо):

a)
$$\lim_{x\to 1} \frac{5x^3 + 3x - 8}{x^4 - 7x + 6}$$
;

f)
$$\lim_{x\to 3} \frac{\ln(x^2-8)}{2x^2-5x-3};$$

b)
$$\lim_{x \to 1} \frac{x^{20} - 2x + 1}{x^{30} - 2x + 1}$$
;

$$\mathbf{g)} \quad \lim_{x\to 0} \frac{\operatorname{ch} 2x - 1}{x^2};$$

c)
$$\lim_{x \to -1} \frac{x^4 + x^3 - 3x^2 - 5x - 2}{x^4 + 2x^3 - 2x - 1}$$
;

$$\mathbf{h)} \quad \lim_{x \to 0} \frac{\ln(1+x) - x}{\mathsf{tg}^2 x};$$

d)
$$\lim_{x \to 1} \frac{ax^{a+2} - (a+1)x^{a+1} + x}{(x-1)^2}$$
;

i)
$$\lim_{x \to 0} \frac{(x+1)\ln(x+1) - x}{e^x - x - 1};$$

$$\arcsin x - \arctan x$$

e)
$$\lim_{x \to 1} \frac{a(1-x^b)-b(1-x^a)}{(1-x^a)(1-x^b)}$$
, $ab \neq 0$;

$$\mathbf{j)} \quad \lim_{x \to 0} \frac{\arcsin x - \arctan x}{\ln(1 + x^3)}.$$

5.114. Вычислить пределы, используя правило Лопиталя (если оно применимо):

$$\mathbf{a)} \quad \lim_{x \to +0} \frac{\ln x}{\ln \sin x};$$

d)
$$\lim_{x\to 0} \left(\frac{1}{\tan x} - \frac{1}{e^x - 1} \right);$$

b)
$$\lim_{x \to \pi/2 + 0} \operatorname{ctg} x \ln(x - \pi/2);$$

e)
$$\lim_{x\to 0} \left(\frac{1}{r^2} - \operatorname{ctg}^2 x\right)$$
;

c)
$$\lim_{x\to 0} \sin x \ln \cot x$$
;

$$\mathbf{f)} \quad \lim_{x \to \pi/2} \left(\operatorname{tg} x + \frac{2}{2x - \pi} \right);$$

$$\mathbf{g)} \quad \lim_{x \to \pi/2} \left(x \operatorname{tg} x + \frac{\pi}{2 \cos x} \right);$$

h)
$$\lim_{x \to +\infty} (\pi - 2 \operatorname{arctg} x) \ln x;$$

i)
$$\lim_{x \to +\infty} \frac{\frac{\pi}{2} - \operatorname{arctg} x}{\frac{1}{2} \ln \frac{x - 1}{x + 1}};$$

$$\mathbf{j)} \quad \lim_{x \to +0} x \ln \ln \frac{1}{x}.$$

5.115. Вычислить пределы, используя правило Лопиталя (если оно применимо):

$$\mathbf{a)} \quad \lim_{x \to 1} x^{1/(x-1)};$$

b)
$$\lim_{x\to 0} (\cos x)^{1/x^2}$$
;

$$\mathbf{c)} \quad \lim_{x \to +\infty} \left(x + 2^x \right)^{1/x};$$

$$\mathbf{d)} \quad \lim_{x \to \pi - 0} (\sin x)^{\pi - x};$$

e)
$$\lim_{x\to 0} (x+2\sqrt{x})^{1/\ln x}$$
;

f)
$$\lim_{x \to -\infty} \left(\frac{1}{\pi} \operatorname{arcctg} x \right)^x$$
;

$$\mathbf{g)} \quad \lim_{x \to +0} (\ln \operatorname{ctg} x)^{\operatorname{tg} x};$$

$$\mathbf{h)} \quad \lim_{x \to a} \left(2 - \frac{x}{a} \right)^{\lg \frac{\pi x}{2a}};$$

$$\mathbf{i)} \quad \lim_{x \to +0} x^{x^x - 1}$$

5.116. Показать, что данные пределы не могут быть вычислены по правилу Лопиталя. Найти их, если они существуют.

$$\mathbf{a)} \quad \lim_{x \to 0} \frac{x^3 \sin(1/x)}{\sin^2 x};$$

$$\mathbf{b)} \quad \lim_{x \to \infty} \frac{\sin 2x + 2x + 2}{(\sin 2x + 2x)e^{\sin x}}.$$

§6 ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ

6.1 Монотонность функции

Пусть функция f(x) дифференцируема на промежутке (a,b) и f'(x) > 0. Тогда на этом промежутке функция строго возрастает.

Для того чтобы дифференцируемая на промежутке (a,b) функция возрастала (нестрого) необходимо и достаточно, чтобы на этом промежутке выполнялось неравенство $f'(x) \ge 0$.

Аналогично, условие f'(x) < 0 является достаточным для строгого убывания дифференцируемой на промежутке функции, а условие $f'(x) \le 0$ - необходимым и достаточным для нестрого убывания.

Пример 6.1. Найти промежутки монотонности функции $f(x) = x^5(x-2)^2$.

© Найдем производную функции $f'(x) = x^4(x-2)(7x-10)$. Эта производная неотрицательна на промежутках $\left(-\infty, \frac{10}{7}\right)$ и $(2, +\infty)$ и отрицательна на интервале $\left(\frac{10}{7}, 2\right)$, следовательно, функция возрастает на каждом из промежутков $\left(-\infty, \frac{10}{7}\right)$ и $(2, +\infty)$, и убывает на промежутке $\left(\frac{10}{7}, 2\right)$.

Пример 6.2. Исследовать функцию $y = |x|^{\alpha} e^{-x^2}$, $\alpha > 0$ на монотонность.

$$\odot$$
 Заметим, что $(|x|)' = \operatorname{sign} x$, $x \neq 0$ и $x = |x| \operatorname{sign} x$. Найдем производную: $y' = e^{-x^2} \left(\alpha |x|^{\alpha - 1} \operatorname{sign} x - 2x |x|^{\alpha} \right) = e^{-x^2} |x|^{\alpha - 1} \left(\alpha - 2x^2 \right) \operatorname{sign} x$.

Так как $e^{-x^2}|x|^{\alpha-1}>0$, то знак производной зависит от знака произведения $\left(\alpha-2x^2\right)$ sign x. А именно, y'>0 при $x\in\left(-\infty,-\sqrt{\alpha/2}\right)\cup\left(0,\sqrt{\alpha/2}\right)$ и y'<0 при $x\in\left(-\sqrt{\alpha/2},0\right)\cup\left(\sqrt{\alpha/2},+\infty\right)$. Следовательно, функция возрастает на каждом из промежутков $\left(-\infty,-\sqrt{\alpha/2}\right)$ и $\left(0,\sqrt{\alpha/2}\right)$ и убывает на каждом из промежутков $\left(-\sqrt{\alpha/2},0\right)$ и $\left(\sqrt{\alpha/2},+\infty\right)$.

Упражнения

6.1. Исследовать функцию на монотонность:

a)
$$y = (x-2)^5 (2x+1)^4;$$

b) $y = \frac{10}{4x^3 - 9x^2 + 6x};$
c) $y = x\sqrt{ax - x^2};$
d) $y = x^{\alpha}e^{-x}, x > 0, \alpha > 0;$
e) $y = e^{\pi x}\cos \pi x;$
f) $y = \frac{\sqrt{1+|x+2|}}{1+|x|}.$

6.2 Экстремумы функции

Точку $x_0 \in D(f)$ будем называть **точкой локального максимума** (или просто точкой максимума) функции, если существует такая окрестность этой точки, что для всех значений x из этой окрестности верно неравенство $f(x_0) \ge f(x)$.

Аналогично, точку $x_0 \in D(f)$ будем называть **точкой локального мини- точки** функции, если существует такая окрестность этой точки, что для всех значений x из этой окрестности верно неравенство $f(x_0) \le f(x)$.

Если в найденной окрестности выполняется одно из неравенств $f(x_0) > f(x)$ или $f(x_0) < f(x)$ при $x \neq x_0$, то точку x_0 можно называть **точ-кой строгого максимума** или **минимума**.

Точки максимума и минимума называют *точками экстремума* функции, а значения функции в этих точках - *экстремальными значениями*.

Будем считать, что функция f(x) определена на промежутке (a,b), непрерывна на нем и дифференцируема во всех точках этого промежутка за исключением, может быть, отдельных изолированных точек. Тогда, если функция имеет экстремум в точке x_0 , то либо f'(x) = 0, либо в этой точке не существует конечной производной. Это *необходимое условие экстремума*.

Точки $x_0 \in D(f)$, где производная функции равна нулю или не существует, называются *критическими точками* функции. Критические точки, в которых производная равна нулю, называются *стационарными*.

Существует два достаточных условия экстремума:

1. Если точка $x_0 \in (a,b)$ - критическая и существует окрестность $(x_0 - \delta, x_0 + \delta)$ такая, что f'(x) > 0 при $x \in (x_0 - \delta)$, и f'(x) < 0 при $x \in (x_0 + \delta)$, то точка x_0 является точкой строгого максимума функции.

Аналогично, если критическая точка $x_0 \in (a,b)$ имеет окрестность, в которой f'(x) < 0 слева от точки и f'(x) > 0 справа от нее, то эта точка является точкой строгого минимума.

2. Если функция имеет в точке x_0 производные до n-го порядка включительно и $f'(x_0) = f'(x_0) = \dots = f^{(n-1)}(x_0) = 0$, а $f^{(n)}(x_0) \neq 0$, то, если n четно, то в точке x_0 функция имеет строгий экстремум, причем максимум, если $f^{(n)}(x_0) < 0$ и минимум, если $f^{(n)}(x_0) > 0$. Если же n нечетно, то экстремума нет.

Для нахождения экстремумов функции надо сначала найти ее критические точки, а затем исследовать их с помощью одного из достаточных условий.

Пример 6.3. Найти экстремумы функции
$$y = \frac{(x-1)^3}{(x+1)^2}$$
.

 \odot Данная функция не определена при x = -1. Найдем производную

$$y' = \frac{3(x-1)^2(x+1)^2 - 2(x+1)(x-1)^3}{(x+1)^4} = \frac{(x-1)^2(3x+1)}{(x+1)^3}.$$

Стационарными точками являются x = 1 и x = -1/3. При x = -1 y' не существует, но, так как эта точка не входит в область определения функции, то она не является критической. Исследуем знак производной и отметим характер монотонности функции на каждом промежутке:

При $x \in (-\infty, -1) \cup (-1/3, 1) \cup (1, +\infty)$ y' > 0, а при $x \in (-1, -1/3)$ y' < 0. Следовательно, в точке x = -1/3 функция имеет минимум и y(-1/3) = -16/3. В точке x = 1 экстремума нет, так как функция не меняет характер монотонности.

Пример 6.4. Исследовать функцию $f(x) = (x+2)^4 \sqrt[3]{(x-1)^2}$ на экстремумы.

© Отметим, что областью определения функции является множество всех вещественных чисел. Найдем производную данной функции:

$$f'(x) = \frac{2(x+2)^3(7x-4)}{3\sqrt[3]{x-1}}.$$

Функция имеет три критические точки: две стационарные, где производная равна нулю: x = -2 и x = 4/7, и одну критическую точку x = 1, где конечной производной не существует. Эти точки делят вещественную ось (область определения функции) на четыре промежутка. Определяя знаки производной на каждом из промежутков, и используя первое достаточное условие экстремума, заключаем, что в точке x = 4/7 функция имеет максимум, а в точках x = -2 и x = 1 - минимумы.

Заметим, что максимум и минимум в точке x = -2 - гладкие, т.е. касательная к графику функции в этих точках параллельна оси абсцисс, а минимум в точке x = 1 - острый, т.е. касательная к графику функции, проведенная в этой точке, перпендикулярна оси абсцисс. \bullet

Замечания

- **1.** При использовании первого достаточного условия экстремума обычно определяется знак производной не в окрестности критической точки, а на всем промежутке между критическими точками, поэтому при полном исследовании функции обычно объединяют исследование на монотонность и экстремумы.
- 2. Условие смены знака производной является только достаточным для существования экстремума в критической точке. Приведем пример функции, которая

имеет экстремум в точке x_0 , и такой, что в любой окрестности этой точки существуют интервалы, где функция убывает и интервалы, где она возрастает.

Пример 6.5. Будет ли функция
$$f(x) = \begin{cases} x^2 \left(2 + \cos \frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0 \end{cases}$$
 иметь экстремум

в точке x = 0?

 \odot Очевидно, что для всякого $x \neq 0$ выполнено неравенство f(x) > 0. Поэтому в точке x = 0 функция имеет минимум (строгий). Так как функция четна, то достаточно исследовать ее на монотонность только при x > 0.

Найдем производную данной функции при $x \neq 0$:

$$f'(x) = 4x + 2x\cos\frac{1}{x} + \sin\frac{1}{x}$$
.

В точках
$$x = \frac{2}{\pi(2k+1)}$$
, $k > 0$ производная равна $\frac{8}{\pi(2k+1)} + (-1)^k$ и будет

положительной при четных k и отрицательной при нечетных k. Так как эта производная непрерывна при x>0, то в любой окрестности точки x=0 вида $(0,\delta)$ найдется промежуток, где функция возрастает, и промежуток, где функция убывает, т.е. точка x=0 не является точкой смены монотонности функции.

Пример 6.6. Будет ли точка x = -1 точкой экстремума функции

$$f(x) = (x+1)^n \cdot e^{-x}, \quad n \in \mathbb{N}, \quad n > 1$$
?

© По формуле Лейбница (теорема 4.3.1) получаем:

$$f^{(m)}(x) = e^{-x} \sum_{k=0}^{m} (-1)^{n-k} C_m^k n(n-1) ... (n-k+1) (x+1)^{n-k}, \quad m = 1, 2, ... n.$$

Отсюда следует, что

$$f'(-1) = f''(-1) = \dots = f^{(n-1)}(-1) = 0$$
 и $f^{(n)}(-1) = n!e$.

Согласно второму достаточному условию экстремума, точка x = -1 является точкой минимума функции, если n четно и не имеет экстремума, если n нечетно. \bullet

Пример 6.7. Исследовать функцию y = f(x), заданную параметрически $x = 1 + \operatorname{ctg} t$, $y = \frac{\cos 2t}{\sin t}$, $0 < t < \pi$ на монотонность и экстремумы.

© Сначала проверим, будут ли данные параметрические уравнения задавать функцию. Для этого найдем производную переменной x по параметру: $x'_t = -\frac{1}{\sin^2 t} < 0$. Отсюда следует, что с изменением параметра t переменная x монотонна (убывает) и, следовательно, данные уравнения определяют функцию y(x). Областью определения этой функции является вся вещественная ось.

Для нахождения экстремума, найдем производную y_x' :

$$y'_t = \frac{-2\sin 2t\sin t - \cos 2t\cos t}{\sin^2 t} \Rightarrow y'_x = 2\sin 2t\sin t + \cos 2t\cos t = \cos t\left(1 + 2\sin^2 t\right).$$

Производная равна нулю при $t = \frac{\pi}{2}$. В этой точке $x = x \left(\frac{\pi}{2}\right) = 1$, $y = y \left(\frac{\pi}{2}\right) = -1$.

Учитывая монотонность переменной x, получим, что при $t > \frac{\pi}{2}$ выполняются

неравенства x < 1 и $y_x' < 0$, а при $t < \frac{\pi}{2}$ будут выполнены неравенства x > 1 и $y_x' > 0$. Следовательно, на промежутке $x \in (-\infty, 1)$ функция убывает, на промежутке $x \in (1, +\infty)$ возрастает, а в точке x = 1, соответствующей значению параметра $t = \frac{\pi}{2}$, имеет минимум, причем минимальное значение равно -1.

Пример 6.8. Исследовать функцию y = f(x), заданную неявно $x^4 - y^4 = x^2 - 2y^2$, y > |x| на экстремумы.

 \odot *Первый способ*. Заметим, что всегда y > 0. Найдем производную y_x' :

$$4x^{3} - 4y^{3} \cdot y'_{x} = 2x - 4y \cdot y'_{x} \implies y'_{x} = \frac{x(1 - 2x^{2})}{2y(1 - y^{2})}.$$

Производная может равняться нулю при x=0, $x=\pm\sqrt{1/2}$ и не существовать при y=1. Найдем соответствующие точки на кривой: при x=0 получим $y=\sqrt{2}$; при $x=\pm\sqrt{1/2}$ $y=\pm\sqrt{1\pm\sqrt{3}/2}$, но условию y>|x| удовлетворяет только значение $y=\sqrt{1+\sqrt{3}/2}$; при y=1 получим уравнение $x^4-x^2+1=0$, которое не имеет решения, следовательно, такой точки на кривой нет.

Найдем вторую производную:

$$y_{xx}'' = \frac{\left(1 - 6x^2\right)y\left(1 - y^2\right) - x\left(1 - 2x^2\right)\left(1 - 3y^2\right)y'}{2y^2\left(1 - y^2\right)^2}$$

и подставим туда координаты критических точек:

$$x = 0, \ y = \sqrt{2}, \ y' = 0 \Rightarrow y'' = -\frac{\sqrt{2}}{4} < 0;$$

$$x = \pm \sqrt{1/2}, \ y = \sqrt{1 + \sqrt{3}/2}, \ y' = 0 \Rightarrow y'' = \frac{-2 \cdot \sqrt{1 + \frac{\sqrt{3}}{2} \left(-\frac{3}{4}\right)}}{2\left(1 + \frac{\sqrt{3}}{2}\right) \cdot \frac{3}{4}} > 0.$$

Следовательно, в точке x=0 функция имеет максимум, а в точках $x=\pm\sqrt{1/2}$ - минимумы.

Второй способ. Положим y = tx, тогда из исходного уравнения получим параметрическое задание данной функции:

$$x = \pm \sqrt{\frac{1 - 2t^2}{1 - t^4}}, \quad y = \pm t\sqrt{\frac{1 - 2t^2}{1 - t^4}}.$$

Так как y>0, то знак параметра t должен совпадать со знаком переменной x, а так как переменные x и y входят в исходное уравнение только в четных степенях, то данная функция четна, и ее можно исследовать только на промежутке x>0.

Сначала найдем область изменения параметра t , которая определяется из системы неравенств

$$\begin{cases} \frac{1-2t^2}{1-t^4} \ge 0, \\ t\sqrt{\frac{1-2t^2}{1-t^4}} > \sqrt{\frac{1-2t^2}{1-t^4}}. \end{cases}$$

Решая эту систему получим $t \in (1, +\infty)$.

Производная от функции x(t): $x'(t) = \frac{-2t\left(t^4 - t^2 + 1\right)}{\sqrt{\frac{1-2t^2}{1-t^4}\left(1-t^4\right)^2}} < 0$, следователь-

но, данные параметрические уравнения действительно определяют функцию y(x).

Вычислим производную этой функции:

$$y_x' = -\frac{1 - 4t^2 + t^4}{2t(t^4 - t^2 + 1)}.$$

При t>1 существует одна критическая точка $x=\sqrt{1/2},\ y=\sqrt{1+\sqrt{3}/2}$, соответствующая значению $t=\sqrt{2+\sqrt{3}}$. Если $t\in\left(1,\sqrt{2+\sqrt{3}}\right)$, то $x\in\left(\sqrt{1/2},+\infty\right)$ и $y_x'>0$, а если $t\in\left(\sqrt{2+\sqrt{3}},+\infty\right)$, то $x\in\left(0,\sqrt{1/2}\right)$ и $y_x'<0$. Значит, в точке $x=\sqrt{1/2}$ функция имеет минимум и аналогичный минимум (за счет четности) будет в точке $x=-\sqrt{1/2}$. При $t\to+\infty$ получим $x(t)\to0$, $y(t)\to\sqrt{2}$. Эта точка удовлетворяет исходному уравнению и справа от нее функция убывает, а слева возрастает, следовательно, в этой точке она имеет максимум.

Упражнения

6.2. Найти экстремумы данных функций:

a)
$$y = x^3 - 12x$$
;

b)
$$y = x^3 (8-x)$$
;

c)
$$y = a + (x - b)^4$$
;

d)
$$y = (x-4)^4 (x+3)^3$$
;

e)
$$y = \frac{x}{1 + x^2}$$
;

$$\mathbf{f)} \ \ y = x \ln x;$$

g)
$$y = x^3 e^{-4x}$$
;

h)
$$y = \sin^3 x + \cos^3 x$$
.

6.3. Исследовать функцию на монотонность и экстремумы

a)
$$y = x + \sqrt{3 - x}$$
;

c)
$$y = \max \{7x - 6x^2, |x^3|\}.$$

b)
$$y = |x-5|(x-3)^3$$
;

6.4. Исследовать функцию, заданную параметрически, на монотонность и экстремумы

a)
$$x = t + e^t, y = 3t - t^3$$
;

b)
$$x = \frac{t^3}{t^2 + 1}, y = \frac{t^3 - 2t^2}{t^2 + 1};$$

c)
$$x = \ln \sin \frac{t}{2}$$
, $y = \ln \sin t$, $t \in (0, \pi)$;

d)
$$x = \frac{2e^t}{t-1}, y = \frac{te^t}{t-1}, t \le 2$$
.

6.5. Исследовать функцию y = f(x), заданную неявно, на экстремумы

a)
$$x^4 - y^4 = 4x^2y$$
, $|y| \le |x|$;

c)
$$3x^2 + 10xy + 3y^2 + 8 = 0$$
, $|y| < |x|$;

b)
$$4x^3 + xy^2 = 8xy$$
, $|y| \le 2|x|$;

d)
$$x^4 + y^4 = 4xy$$
, $|y| > |x|$.

6.6. Пусть $f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, $g(x) = \begin{cases} xe^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$.

Доказать, что

a)
$$f^{(n)}(0) = g^{(n)}(0) = 0, n \in \mathbb{N};$$

- **b)** f(x) имеет строгий минимум в точке x = 0, g(x) в точке x = 0 не имеет экстремума.
- **6.7.** По данному графику функции y = y(x) получить вид графика ее производной y'(x):

6.8. По графику производной y'(x) получить вид графика функции y = y(x):

- **6.9.** Исследовать функцию $f(x) = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}\right) \cdot e^{-x}$, $n \in \mathbb{N}$ на экстремумы.
- 6.10. Решить уравнения

a)
$$xe^x + e^{-x} + \frac{x^2}{2} = 1;$$
 b) $e^x + e^{-x} + 2x \arctan(1 + x^2) = 2.$

6.3 Наибольшие и наименьшие значения функции

Если на отрезке задана дифференцируемая функция и отрезок можно разбить на конечное число частей, на каждой из которых функция будет монотонна, то, очевидно, на каждой из этих частей функция будет достигать наибольшего и наименьшего значений на концах. Поэтому можно вычислить эти значения и среди них найти самое большое и самое маленькое. Концы эти частей совпадают с критическими точками или с концами отрезка, поэтому можно, не исследуя функцию на монотонность, сразу вычислить значения функции в критических точках (лежащих на исходном отрезке) и в концах отрезка, а затем выбрать среди вычисленных значений самое большое и самое маленькое.

Если промежуток, на котором рассматривается функция, не замкнут, то либо находят предельные значения функции, либо исследуют ее на монотонность.

Пример 6.9. Найти наибольшее и наименьшее значение функции на указанном промежутке: **a)** $y = x^4 - 8x^2 + 3$, $x \in [-1,3]$; **b)** $y = \frac{x^2 + 1}{x^2 + x + 1}$, $x \in \mathbb{R}$.

 \odot **а)** Чтобы найти критические точки, вычислим производную: $y' = 4x^3 - 16x = 4x(x-2)(x+2)$. В точках x = 0 и $x = \pm 2$ производная y' = 0, но точка $x = -2 \notin [-1,3]$. Следовательно, наибольшее и наименьшее значение функции может достигаться только в четырех точках: x = 0, x = 2, x = -1, x = 3. Вычислим значения функции в этих точках: y(0) = 3, y(2) = -13, y(-1) = -4, y(3) = 12. Таким образом, наибольшее значение функции равно 12, а наименьшее -(-13).

b) Данная функция непрерывна на всей оси. Найдем производную $y' = \frac{x^2-1}{\left(x^2+x+1\right)^2}$. При $x=\pm 1$ y'=0. Найдем значения функции в этих точках и

пределы на бесконечности: y(-1) = 2, y(1) = 2/3, $\lim_{x \to +\infty} y = \lim_{x \to -\infty} y = 1$. Тогда наибольшее значение функции равно 2, а наименьшее -2/3.

Пример 6.10. Доказать неравенство $x^{\alpha} \ge 1 + \alpha \ln x$, если x > 0, $\alpha > 0$.

© Рассмотрим функцию $f(x) = x^{\alpha} - \alpha \ln x - 1$ и исследуем ее на экстремумы. Производная $f' = \alpha x^{\alpha - 1} - \frac{\alpha}{x} = \frac{\alpha \left(x^{\alpha} - 1\right)}{x}$. Так как x > 0 и $\alpha > 0$, то стационарная точка x = 1, причем при $x \in (0,1)$ f' < 0, а при $x \in (1,+\infty)$ f' > 0. Следовательно, в точке x = 1 функция имеет минимум, который является наименьшим значением функции. Таким образом, при всех x > 0 $f(x) \ge f(1) = 0$, то есть $x^{\alpha} - \alpha \ln x - 1 \ge 0$.

Пример 6.11. Найти наименьший объем конуса, описанного около шара радиуса R.

© Пусть высота конуса равна h, радиус основания - r. Сделаем рисунок в плоскости, содержащей ось конуса. Объем конуса $V = \frac{1}{3}\pi r^2 h$. Получим выражение для объема конуса как функцию переменной h. Известно, что радиус вписанной в треугольник окружности $R = \frac{2S}{P}$, где S и P - площадь и периметр треугольника, соответственно. Так как S = hr, $P = 2\left(r + \sqrt{h^2 + r^2}\right)$, то получаем зависимость между h h и r:

$$R = \frac{hr}{r + \sqrt{h^2 + r^2}} = \frac{h}{1 + \sqrt{1 + h^2/r^2}},$$

Из которой выразим r^2 : $r^2 = hR^2/(h-2R)$. Тогда подставляя выражение для r^2 в формулу для объема конуса, получим функцию зависимости объема от высоты конуса:

$$V(h) = \frac{1}{3}\pi R^2 \frac{h^2}{h - 2R}$$
.

Область определения этой функции: $h \in (2R, +\infty)$. Теперь задачу можно переформулировать следующим образом: требуется найти наименьшее значение функции V(h) при $h \in (2R, +\infty)$. Найдем производную:

$$V'(h) = \frac{1}{3}\pi R^2 \cdot \frac{h(h-4R)}{(h-2R)^2}.$$

Она равна нулю при h = 4R и при переходе через эту точку меняет знак с минуса на плюс. Других критических точек на промежутке $(2R, +\infty)$ нет. Следовательно, в точке h = 4R достигается наименьшее значение функции V(h), рав-

HOR
$$V(4R) = \frac{8}{3}\pi R^3$$
. Other: $V_{\min} = \frac{8}{3}\pi R^3$.

Упражнения

6.11. Найти наибольшее и наименьшее значение функции на указанном промежутке

a)
$$y = x^3 - 6x^2 + 9, x \in [-1, 2];$$

b)
$$y = x^5 - 5x^4 + 5x^3 + 1, x \in [-1, 2];$$

c)
$$y = \frac{1+x^4}{1+x^2}, x \in [-1,1];$$

d)
$$y = x - 2\sqrt{x}, x \in [0,5];$$

e)
$$y = |x^2 + 2x - 3| + \frac{3}{2} \ln x, \ x \in \left[\frac{1}{2}, 2\right];$$

f)
$$y = (x-3)e^{|x+1|}, x \in [-2,4];$$

g)
$$y = x^x$$
, $x \in (0,1]$;

h)
$$y = 2 \operatorname{tg} x - \operatorname{tg}^2 x, x \in [0, \pi/2);$$

i)
$$y = \cos^2 x + \cos^2 (x + \pi/3) - \cos x \cos (x + \pi/3), x \in \mathbb{R}$$

$$\mathbf{j)} \ \ y = 2 \arctan x + \arcsin \frac{2x}{1+x^2}, \ x \in \mathbb{R}.$$

6.12. Определить число вещественных корней уравнений:

a)
$$12x^4 - 14x^3 - 3x^2 - 5 = 0$$
;

c)
$$2x^3 - 3ax^2 + 1 = 0$$
;

b)
$$x^4 - 4ax^3 - 2 = 0$$
:

d)
$$ax = \ln x$$

6.13. Доказать неравенства:

a)
$$\ln(1+x) > \frac{x}{x+1}, x > 0;$$

b)
$$e^x > 1 + \ln(1+x), x > 0;$$

c)
$$\cos x \ge 1 - \frac{x^2}{2}$$
;

d)
$$\sin x + \lg x > 2x$$
, $0 < x < \pi/2$;

$$\mathbf{e)} \left(\frac{\sin x}{x} \right)^3 \ge \cos x, \ 0 < |x| \le \frac{\pi}{2};$$

f)
$$x - \frac{x^3}{3} < \arctan x < x - \frac{x^3}{6}, \ 0 < x \le 1.$$

- **6.14.** Число 8 представить в виде суммы двух слагаемых так, чтобы сумма их кубов была наименьшей.
- **6.15.** Число 36 представить в виде произведения двух множителей так, чтобы сумма их квадратов была наименьшей.
- **6.16.** Из углов листа бумаги размером 8×5 см² вырезают одинаковые квадраты так, чтобы согнув лист получить коробку (без крышки) наибольшей вместимости. Чему равна сторона вырезаемого квадрата?
- **6.17.** Объем правильной треугольной призмы равен V. Какова должна быть сторона основания, чтобы полная площадь поверхности призмы была наименьшей?
- **6.18.** Найти отношение радиуса к высоте прямого кругового цилиндра, имеющего при фиксированном объеме наименьшую полную поверхность.
- **6.19.** Найти наибольший объем цилиндра, вписанного в шар радиуса R.

- **6.20.** Найти наибольший объем цилиндра, вписанного в конус, имеющий радиус основания R и высоту H.
- **6.21.** Найти наименьший объем конуса, описанного около полушара радиуса R .
- **6.22.** Найти наибольший объем цилиндра, ось которого пересекает под прямым углом ось данного цилиндра радиуса R, а основания касаются боковой поверхности данного цилиндра.
- **6.23.** Из сектора круга фиксированного радиуса свертывается коническая воронка. При каком центральном угле сектора она имеем наибольший объем?
- **6.24.** Две точки равномерно движутся по осям координат со скоростями v_1 и v_2 . Найти кратчайшее расстояние между точками, если в начальный момент их координаты равнялись (a,0) и (0,b).
- **6.25.** От канала шириной a под прямым углом отходит канал шириной b. Стенки каналов прямолинейны вплоть до вершины угла. Найти наибольшую длину бревна (бесконечно тонкого), которое можно сплавлять по этим каналам из одного в другой.
- **6.26.** Через точку (a,b) провести прямую так, чтобы длина ее отрезка, заключенного между осями координат, была наименьшей.
- **6.27.** На параболе $y^2 = 2 px$ найти точку, ближайшую к точке (a,0).
- **6.28.** Найти наименьшую площадь треугольника, образованного касательной к эллипсу $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ и осями координат.
- **6.29.** На вертикальной стене находится картина, причем нижний ее край расположен выше уровня глаз наблюдателя, стоящего напротив, на *a*, а верхний на *b*. На каком расстоянии от стены должен стоять наблюдатель, чтобы угол, под которым он видит картину, оказался наибольшим?
- **6.30.** Завод A нужно соединить шоссейной дорогой с прямолинейной железной дорогой, на которой расположен поселок B. Расстояние AC от завода до железной дороги равно a, а расстояние BC до поселка равно b. Стоимость перевозок грузов по шоссе в k раз (k > 1) выше стоимости перевозок по железной дороге. В какую точку D отрезка BC нужно провести шоссе от завода, чтобы стоимость перевозок грузов от завода A к поселку B была наименьшей?

6.4 Выпуклость функции и точки перегиба

Функцию будем называть *выпуклой вниз* на промежутке (a,b), если $\forall x_1, x_2 \in (a,b)$ выполняется неравенство $f\left(\frac{x_1+x_2}{2}\right) \leq \frac{f\left(x_1\right)+f\left(x_2\right)}{2}$ и, аналогично, функцию будем называть *выпуклой вверх* на (a,b), если $\forall x_1, x_2 \in (a,b)$

выполняется неравенство $f\left(\frac{x_1+x_2}{2}\right) \ge \frac{f(x_1)+f(x_2)}{2}$. Геометрически, это озна-

чает, что график функции выпуклой вниз лежит не выше хорды, соединяющей точки графика с абсциссами x_1 и x_2 , а график функции выпуклой вверх — не ниже такой же хорды.

Если неравенства в определении выпуклости строгие, то говорят о строгой выпуклости.

Достаточным условием выпуклости вниз (вверх) дважды дифференцируемой функции является условие $f''(x) \ge 0$ ($f''(x) \le 0$), выполненное на промежутке (a,b).

Если в точке x_0 существует производная (т.е. существует касательная к графику этой функции), и при переходе через эту точку функция меняет характер выпуклости, то эту точку будем называть **точкой перегиба** функции. Очевидно, что точки перегиба надо искать там, где f''(x) = 0 или не существует (но сама функция в этой точке существует, непрерывна и имеет производную конечную или бесконечную).

Пример 6.12. Найти интервалы выпуклости и точки перегиба функции $y = \frac{x}{\sqrt[3]{x^2 - 1}}$.

© Для нахождения интервалов выпуклости и точек перегиба требуется исследовать знак второй производной данной функции. Найдем ее:

$$y' = \frac{1}{3} \cdot \frac{x^2 - 3}{\sqrt[3]{(x^2 - 1)^4}}, \ y'' = -\frac{2}{9} \cdot \frac{x(x+3)(x-3)}{\sqrt[3]{(x^2 - 1)^7}}.$$

Отметим точки x = 0, $x = \pm 1$ и $x = \pm 3$ на числовой оси и определим знаки y'' на получившихся интервалах.

Получаем: y'' > 0 при $x \in (-\infty, -3) \cup (-1, 0) \cup (1, 3)$ и y'' < 0 при $x \in (-3, -1) \cup (0, 1) \cup (3, +\infty)$. Точки x = 0 и $x = \pm 3$ являются точками перегиба, так как в этих точках функция определена и меняет характер выпуклости. Точки $x = \pm 1$ не являются точками перегиба, так как в этих точках функция не определена.

Пример 6.13. Будет ли точка x = 0 точкой перегиба функции $f(x) = \sin \sqrt[3]{x}$?

© Вычислим производные данной функции:

$$f'(x) = \frac{\cos\sqrt[3]{x}}{3\sqrt[3]{x^2}}, \quad f''(x) = -\frac{\sqrt[3]{x}\sin\sqrt[3]{x} + 2\cos\sqrt[3]{x}}{9\sqrt[3]{x^5}}.$$

В точке x = 0 первая производная бесконечна, а вторая при переходе через эту точку меняет знак. Следовательно, эта точка является точкой перегиба. \bullet

Пример 6.14. Будет ли точка x = 0 точкой перегиба функции

$$f(x) = \begin{cases} x^2 - x, & x \le 0, \\ -x^2, & x > 0 \end{cases}$$

© Вычислим две первые производные данной

функции:
$$f'(x) = \begin{cases} 2x - 1, & x < 0, \\ -2x, & x > 0, \end{cases}$$
 и $f''(x) = \begin{cases} 2, & x < 0, \\ -2, & x > 0. \end{cases}$

В точке x = 0 вторая производная меняет знак, однако, эта точка не является точкой перегиба, так как в ней не существует первая производная и, следовательно, не существует касательная (см. рис.). \bullet

 \odot Функция $f(x) = e^x$ выпукла вниз на всей области своего определения. Данное неравенство представляет собой определение выпуклости.

Упражнения

6.31. Найти интервалы выпуклости и точки перегиба функции:

a)
$$y = 2x^4 - 3x^2 + x - 1$$
;

b)
$$y = \frac{1}{1 - x^2}$$
;

c)
$$y = \sqrt[3]{x+1}$$
;

$$\mathbf{d)} \ y = x + \sin x \ ;$$

e)
$$y = e^{-x^2}$$
;

f)
$$y = \frac{10}{x} \ln \frac{x}{10}$$
;.

$$\mathbf{g)} \ y = \operatorname{arctg} \frac{1}{x};$$

h)
$$y = e^{\arctan x}$$
;

i)
$$y = e^{\sqrt[3]{x}}$$

6.32. Найти точки перегиба функции:

a)
$$y = \frac{x^2}{(x-1)^3}$$
;

b)
$$y = \sqrt[3]{x^2} - \sqrt[3]{x^2 - 4}$$
;

c)
$$y = \frac{\ln x}{\sqrt{x}}$$
;

d)
$$y = e^{-2x} \sin^2 x$$
;

e)
$$y = \frac{|x-1|}{x^2}$$
;

f)
$$y = \frac{x^4}{(x+1)^3}$$
.

6.33.Доказать, что график функции $y = \frac{x+1}{x^2+1}$ имеет три точки перегиба, лежащие на одной прямой.

- **6.34.**Доказать, что точки перегиба графика функции $y = \frac{\sin x}{x}$ лежат на кривой, заданной неявно уравнением $y^2(4+x^2) = 4x^2$.
- 6.35. Найти точки перегиба кривой, заданной параметрически:

a)
$$x(t) = t^2$$
, $y(t) = t^3 + 3t$;

b)
$$x(t) = \frac{t^2}{t-1}, y(t) = \frac{t^3}{t-1}.$$

6.36.Доказать неравенства:

a)
$$\left(\frac{x+y}{2}\right)^n \le \frac{x^n+y^n}{2}, \ x \ge 0, \ y \ge 0, \ n \in \mathbb{N};$$

b)
$$\frac{x \ln x + y \ln y}{x + y} > \ln \frac{x + y}{2}, \quad x > 0, y > 0, x \neq y;$$

c)
$$\sqrt{\sin x \cdot \sin y} \le \sin \frac{x+y}{2}$$
, $x, y \in (0, \pi)$.

6.5 Полное исследование функций

Приведем наиболее удобный план полного исследования функции:

- 1. Найти область определения функции;
- 2. Выяснить, обладает ли функция свойствами четности/нечетности, периодичности;
- 3. Найти производную, промежутки монотонности, точки экстремумов;
- 4. Найти вторую производную, участки выпуклости/вогнутости, точки перегиба;
- 5. Найти асимптоты графика функции (или показать, что их нет);
- 6. Если возможно, определить точки пересечения графика функции с осями координат;
- 7. Построить график функции на основании результатов исследования.

Пример 6.16. Исследовать функцию $y = (x-1)^2(x+2)$ и построить ее график.

© Данная функция определена на всей вещественной оси, не является ни четной, ни нечетной, ни периодичной. Найдем ее производную:

$$y' = 2(x-1)(x+2) + (x-1)^2 = 3(x-1)(x+1).$$

В точках $x_1 = -1$ и $x_2 = 1$ производная обращается в ноль. Отметим эти точки на числовой прямой и выясним знаки производной на получившихся промежутках:

Следовательно, функция y(x) возрастает на каждом из промежутков $(-\infty, -1)$ и $(1, +\infty)$ и убывает на (-1, 1). В точке $x_1 = -1$ функция имеет максимум, причем y(-1) = 4, а в точке $x_2 = 1$ - минимум, y(1) = 0.

Найдем вторую производную:

$$y'' = 3(x+1+x-1) = 6x$$
.

На промежутке $(-\infty,0)$ y''<0, значит, график функции имеет выпуклость вверх, а на промежутке $(0,+\infty)$ y''>0, и график имеет выпуклость вниз. Следовательно, точка $x_3 = 0$ является точной перегиба и y(0) = 2.

Так как функция определена на всей вещественной оси, то вертикальных асимптот ее график не имеет. Выясним, существуют ли наклонные асимптоты. Так как

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(x-1)^2(x+2)}{x} = \infty,$$

Строим график.

Пример 6.17. Исследовать функцию
$$y = \frac{x^2(x-1)}{(x+1)^2}$$
 и построить ее график.

⊙ Данная функция определена на всей вещественной оси, кроме точки $x_0 = -1$, не является ни четной, ни нечетной, ни периодичной. Найдем ее производную:

$$y' = \frac{\left(3x^2 - 2x\right)\left(x+1\right)^2 - 2\left(x+1\right)x^2\left(x-1\right)}{\left(x+1\right)^4} = \frac{x\left(x^2 + 3x - 2\right)}{\left(x+1\right)^3}.$$

Производная (как и сама функция) не существует в точке $x_0 = -1$, обращается в ноль в точках $x_1 = 0$, $x_2 = \frac{-3 - \sqrt{17}}{2} \approx -3.6$, $x_3 = \frac{-3 + \sqrt{17}}{2} \approx 0.6$. Отметим их на числовой прямой и расставим знаки производной

Функция
$$y(x)$$
 возрастает на каждом из промежутков $\left(-\infty,\frac{-3-\sqrt{17}}{2}\right)$, $(-1,0)$ и $\left(\frac{-3+\sqrt{17}}{2},+\infty\right)$ и убывает на каждом из промежутков $\left(\frac{-3-\sqrt{17}}{2},-1\right)$ и $\left(0,\frac{-3+\sqrt{17}}{2}\right)$. В точках $x_1=0$ и $x_2=\frac{-3-\sqrt{17}}{2}$ функция имеет максимумы, причем $y(0)=0$, $y\left(\frac{-3-\sqrt{17}}{2}\right)\approx -8.8$, а в точке $x_3=\frac{-3+\sqrt{17}}{2}$ - минимум, $y\left(\frac{-3+\sqrt{17}}{2}\right)\approx -0.1$.

Найдем вторую производную:

$$y'' = \frac{\left(3x^2 + 6x - 2\right)\left(x + 1\right)^3 - 3\left(x + 1\right)^2\left(x^3 + 3x^2 - 2x\right)}{\left(x + 1\right)^6} = \frac{10x - 2}{\left(x + 1\right)^4}.$$

y'' = 0 при x = 0, 2. Отметим точки $x_0 = -1$ и $x_4 = 0, 2$ на числовой оси:

Получаем, что график функции имеет выпуклость вверх на промежутках $(-\infty,-1), (-1;0,2)$ и выпуклость вниз на $(0,2;+\infty)$. Точка $x_4=0,2$ является точкой перегиба.

Найдем асимптоты графика. Рассмотрим пределы при $x \to -1$:

$$\lim_{x \to -1-0} \frac{x^2(x-1)}{(x+1)^2} = \lim_{x \to -1+0} \frac{x^2(x-1)}{(x+1)^2} = -\infty.$$

Следовательно, прямая x = -1 является вертикальной асимптотой.

Пусть наклонная асимптота графика имеет уравнение y(x) = kx + b. Тогда

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x(x-1)}{(x+1)^2} = 1,$$

$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \left(\frac{x^2(x-1)}{(x+1)^2} - x \right) = -3.$$

Так как оба предела конечны, то существует наклонная асимптота y(x) = x - 3.

Найдем точки пересечения с осями координат: (0,0), (1,0). Строим график. \bullet

Пример 6.18. Исследовать функцию $y = \sqrt{\frac{(x-1)^2}{x^3}}$ и построить ее график.

© Область определения данной функции: $x \in (0, +\infty)$. Функция не является ни четной, ни нечетной, ни периодичной. Найдем ее производную при x > 0, $x \ne 1$:

$$y' = \frac{1}{2} \frac{x^{3/2}}{\sqrt{(x-1)^2}} \frac{2(x-1)x^3 - 3x^2(x-1)^2}{x^6}.$$

Заметим, что $\frac{x-1}{\sqrt{(x-1)^2}} = \frac{x-1}{|x-1|} = \text{sign}(x-1)$ при $x \neq 1$. Тогда

$$y' = \frac{3-x}{2x^{5/2}} \operatorname{sign}(x-1).$$

В точке $x_0 = 1$ производная y' не существует. Найдем односторонние производные (см. следствие 4 из теоремы 4.4.3 (т. Лагранжа)):

$$y'_{-}(1) = \lim_{x \to 1-0} \left(-\frac{3-x}{2x^{5/2}} \right) = -1, \quad y'_{+}(1) = \lim_{x \to 1+0} \frac{3-x}{2x^{5/2}} = 1.$$

Следовательно, в точке $x_0 = 1$ односторонние касательные к графику функции будут проходить под углами в 45°.

Отметим точки $x_0 = 1$ и $x_1 = 3$ на числовой оси и расставим знаки производной.

На интервалах (0,1) и $(3,+\infty)$ функция убывает, на (1,3) - возрастает. В точке $x_1=3$ функция имеем гладкий максимум и $y(3)=\frac{2}{\sqrt{27}}\approx 0,4$, а в точке $x_0=1$ функция имеет острый минимум и y(1)=0.

Вторая производная при x > 0, $x \ne 1$:

$$y'' = \frac{1}{2} \cdot \frac{-x^{5/2} - \frac{5}{2}x^{3/2}(3 - x)}{x^5} \operatorname{sign}(x - 1) = \frac{3}{4} \cdot \frac{x - 5}{x^{7/2}} \operatorname{sign}(x - 1).$$

В точке $x_2 = 5$ y'' = 0. Отметим точки $x_0 = 1$ и $x_2 = 5$ на оси:

График функции имеет выпуклость вниз на интервалах (0,1), $(5,+\infty)$ и выпуклость вверх на (1,5). Точка $x_2=5$ является точкой перегиба.

Так как
$$\lim_{x \to +0} y(x) = \lim_{x \to +0} \sqrt{\frac{(x-1)^2}{x^3}} = +\infty$$
,

то ось ординат x = 0 является односторонней вертикальной асимптотой графика функции. Так как

$$\lim_{x \to +\infty} y(x) = \lim_{x \to +\infty} \sqrt{\frac{(x-1)^2}{x^3}} = 0,$$

то ось абсцисс y = 0 является горизонтальной асимптотой.

График функции пересекает ось абсцисс в точке (1,0) и не пересекает ось ординат. Строим график. \bullet

Пример 6.19. Исследовать функцию $y = x\sqrt{|x^2 - 1|}$ и построить ее график.

 \odot Данная функция определена на всей числовой прямой и является нечетной. Найдем производную при $x \neq \pm 1$ (заметим, что производная модуля |x| при $x \neq 0$ равна функции знака sign x):

$$y' = \sqrt{|x^2 - 1|} + \frac{x^2}{\sqrt{|x^2 - 1|}} \operatorname{sign}(x^2 - 1) = \frac{|x^2 - 1| + x^2 \operatorname{sign}(x^2 - 1)}{\sqrt{|x^2 - 1|}}.$$
Так как $|x^2 - 1| = (x^2 - 1)\operatorname{sign}(x^2 - 1)$, то

$$y' = \frac{2x^2 - 1}{\sqrt{|x^2 - 1|}} \operatorname{sign}(x^2 - 1), \ x \neq \pm 1.$$

Отметим на числовой оси нули производной и точки, в которых она не существует:

Функция возрастает на каждом из промежутков $(-\infty,-1)$, $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$, $(1,+\infty)$ и убывает на каждом из промежутков $\left(-1,-\frac{1}{\sqrt{2}}\right)$, $\left(\frac{1}{\sqrt{2}},1\right)$. В точке $x_1=-\frac{1}{\sqrt{2}}$ функция имеем гладкий минимум, причем $y\left(-\frac{1}{\sqrt{2}}\right)=-\frac{1}{2}$. В точке

 $x_2 = \frac{1}{\sqrt{2}}$ функция имеет гладкий максимум и $y\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2}$. Точки $x_{3,4} = \pm 1$ являются точками острых экстремумов и y(-1) = y(1) = 0. Найдем односторонние производные в этих точках:

$$y'(-1) = y'_{+}(1) = +\infty, \quad y'_{+}(-1) = y'_{-}(1) = -\infty.$$

Следовательно, в точках $x_{3,4} = \pm 1$ касательные к графику проходят вертикально.

Найдем вторую производную:

$$y'' = \frac{4x\sqrt{|x^2 - 1|} - (2x^2 - 1)\frac{x}{\sqrt{|x^2 - 1|}}\operatorname{sign}(x^2 - 1)}{|x^2 - 1|} \operatorname{sign}(x^2 - 1) = \frac{x(2x^2 - 3)}{|x^2 - 1|^{3/2}}.$$

Отметим точки $x_0=0$, $x_{3,4}=\pm 1$ и $x_{5,6}=\pm \sqrt{\frac{3}{2}}$ на оси:

График функции имеет выпуклость вверх на интервалах $\left(-\infty, -\sqrt{\frac{3}{2}} \right)$, $\left(0, 1 \right)$

и
$$\left(1,\sqrt{\frac{3}{2}}\right)$$
 и выпуклость вниз на интервалах

$$\left(-\sqrt{\frac{3}{2}},-1\right)$$
, $\left(-1,0\right)$ и $\left(\sqrt{\frac{3}{2}},+\infty\right)$. Точки $x_0=0$

и $x_{5,6} = \pm \sqrt{\frac{3}{2}}$ являются точками перегиба, — -1

причем

$$y(0) = 0$$
, $y(\sqrt{\frac{3}{2}}) = \frac{\sqrt{3}}{2}$, $y(-\sqrt{\frac{3}{2}}) = -\frac{\sqrt{3}}{2}$.

Вертикальных и наклонных асимптот график

не имеет. Заметим, что при $x \to \infty$ $y(x) \sim x^2$. Строим график. \bullet

Пример 6.20. Исследовать функцию $y = (x-2)e^{-\frac{1}{x}}$ и построить ее график.

 \odot Данная функция определена на всей вещественной оси, кроме точки $x_0=0$, не является ни четной, ни нечетной, ни периодичной. Найдем ее производную:

$$y' = e^{-1/x} \left(1 + \frac{x-2}{x^2} \right) = \frac{(x-1)(x+2)}{x^2} e^{-1/x}$$

Отметим нули производной и точку $x_0 = 0$ на числовой прямой:

Функция возрастает на каждом из интервалов $(-\infty, -2)$, $(1, +\infty)$ и убывает на каждом из интервалов (-2, 0), (0, 1). Точки $x_1 = -2$ и $x_2 = 1$ являются точками максимума и минимума, соответственно, причем $y(-2) = -4\sqrt{e} \approx -6, 6$, $y(1) = -e^{-1} \approx -0, 4$.

Найдем вторую производную:

$$y'' = e^{-1/x} \left(\frac{1}{x^2} \cdot \frac{(x-1)(x-2)}{x^2} + \frac{(2x+1)x^2 - 2x(x^2 + x - 2)}{x^4} \right) = \frac{5x-2}{x^4} e^{-1/x}.$$

Отметим точки $x_0 = 0$ и $x_3 = 0,4$ на числовой прямой:

График функции имеет выпуклость вверх на интервалах $(-\infty,0)$ и (0;0,4) и выпуклость вниз на $(0,4;+\infty)$.

Найдем асимптоты графика. Так как

$$\lim_{x \to +0} (x-2)e^{-1/x} = 0, \ \lim_{x \to -0} (x-2)e^{-1/x} = +\infty,$$

то прямая x = 0 является односторонней вертикальной асимптотой.

Пусть наклонная асимптота графика имеет уравнение y(x) = kx + b. Тогда

$$k = \lim_{x \to \infty} \frac{x-2}{2} e^{-1/x} = 1,$$

$$b = \lim_{x \to \infty} \left((x-2)e^{-1/x} - x \right) = -2 + \lim_{x \to \infty} x \left(e^{-1/x} - 1 \right) =$$

$$= -2 + \lim_{x \to \infty} x \left(-\frac{1}{x} \right) = -2 - 1 = -3.$$
 Так как оба предела конечны, то существует наклонная асим-

дела конечны, то существует наклонная асимптота y(x) = x - 3.

Точки пересечения графика с осью абсцисс: (2,0). Ось ординат график не пересекает. Строим график.

●

Пример 6.21. Исследовать функцию $y = \ln \left| \frac{x-1}{x+1} \right| + \frac{6}{x+1}$ и построить ее график.

 \odot Функция определена для любого действительного аргумента, кроме точек $x=\pm 1$, не является ни четной, ни нечетной, ни периодичной. Найдем ее производную, учитывая, что $\left(\ln|x|\right)'=1/x$:

$$y' = \frac{1}{x-1} - \frac{1}{x+1} - \frac{6}{(x+1)^2} = \frac{4(2-x)}{(x-1)(x+1)^2}.$$

Отметим точки $x_{1,2} = \pm 1$ и $x_3 = 2$ на числовой прямой.

Функция убывает на каждом из промежутков $(\infty,-1)$, (-1,1), $(2,+\infty)$ и возрастает на (1,2). В точке $x_3=2$ функция имеет максимум и $y(2)=2-\ln 3\approx 0,9$. Найдем вторую производную:

$$y'' = -\frac{1}{(x-1)^2} + \frac{1}{(x+1)^2} + \frac{12}{(x+1)^3} = \frac{2(x-3)(2x-1)}{(x-1)^2(x+1)^3}.$$

Отметим точки $x_{1,2} = \pm 1$, $x_4 = \frac{1}{2}$ и $x_5 = 3$ на оси.

График функции имеет выпуклость вверх на интервалах $\left(-\infty,-1\right),\left(\frac{1}{2},1\right),\left(1,3\right)$ и выпуклость вниз на интервалах $\left(-1,\frac{1}{2}\right),\left(3,+\infty\right)$. Точки $x_4=\frac{1}{2}$ и $x_5=3$ являются точками перегиба, причем $y\left(\frac{1}{2}\right)=4-\ln 3\approx 2,9$, $y\left(3\right)=\frac{3}{2}-\ln 2\approx 0,8$.

Найдем асимптоты графика. Так как

$$\lim_{x \to \infty} y(x) = \lim_{x \to \infty} \left(\ln \left| \frac{x-1}{x+1} \right| + \frac{6}{x+1} \right) = 0,$$

то ось абсцисс (y=0) является горизонтальной асимптотой.

Исследуем поведение функции вблизи точек $x_{1,2}=\pm 1$, а именно, найдем односторонние пределы при $x\to \pm 1$. При $x\to -1-0$ имеем неопределенность вида $\infty-\infty$:

$$\lim_{x \to -1-0} y(x) = \lim_{x \to -1-0} \left(\ln|x-1| + \ln\left|\frac{1}{x+1}\right| + \frac{6}{x+1} \right).$$

Так как $\lim_{x\to -1-0} \ln |x-1| = \ln 2$, то интерес представляет

$$\lim_{x \to -1-0} \left(\ln \left| \frac{1}{x+1} \right| + \frac{6}{x+1} \right).$$

Введем новую переменную $t = -\frac{1}{x+1}$. При $x \to -1-0$ $t \to +\infty$. Тогда имеем

$$\lim_{x \to -1-0} \left(\ln \left| \frac{1}{x+1} \right| + \frac{6}{x+1} \right) = \lim_{t \to +\infty} \left(\ln t - 6t \right) = \lim_{t \to +\infty} \ln \frac{t}{e^{6t}} = -\infty.$$

Следовательно, и $\lim_{x\to -1-0} f(x) = -\infty$. Рассмотрим правосторонний предел, который представляет собой сумму положительных бесконечно больших:

$$\lim_{x \to -1+0} y(x) = \lim_{x \to -1+0} \left(\ln \left| \frac{x-1}{x+1} \right| + \frac{6}{x+1} \right) = +\infty.$$

Следовательно, прямая x = -1 является вертикальной асимптотой. При $x \to 1$ соответствующий предел также не содержит неопределенности:

$$\lim_{x \to 1} y(x) = \lim_{x \to 1} \left(\ln \left| \frac{x - 1}{x + 1} \right| + \frac{6}{x + 1} \right) = -\infty,$$

Следовательно, прямая x = 1 также является вертикальной асимптотой. Исследуем точки пересечения с осями координат. Имеем y(0) = 6. Точки пере-

сечения с осью ОХ найти сложно, так

как уравнение
$$\ln \left| \frac{x-1}{x+1} \right| + \frac{6}{x+1} = 0$$
 не

разрешимо. Но можно заметить, что

так как
$$y\left(\frac{1}{2}\right) = 4 - \ln 3 > 0,$$

$$y(2) = 2 - \ln 3 > 0$$
, а $\lim_{x \to 1} y(x) = -\infty$, и функция непрерывна на $(1/2,1)$

функция непрерывна на (1/2,1) и(1,2), то на этих промежутках у нее есть нули. В силу монотонности функции на каждом промежутке нуль единственный. Строим график. ●

Пример 6.22. Исследовать функцию $y = \arccos \frac{2x}{1+x^2} - \frac{x}{2}$ и построить ее график.

 \odot Функция определена и непрерывна на всей вещественной оси, так как неравенство $\left|\frac{2x}{1+x^2}\right| \le 1$ верно для любого $x \in \mathbb{R}$. Функция не является ни четной, ни нечетной, ни периодичной. Найдем ее производную

$$y' = -\frac{1}{2} - \frac{2(1+x^2-2x^2)}{\left(1+x^2\right)^2 \sqrt{1-\frac{4x^2}{\left(1+x^2\right)^2}}} = -\frac{1}{2} + \frac{2\operatorname{sign}(x^2-1)}{1+x^2} \text{ при } x \neq \pm 1.$$

При
$$x^2 - 1 > 0$$
 sign $(x^2 - 1) = 1$ и $y' = -\frac{1}{2} + \frac{2}{1 + x^2} = \frac{3 - x^2}{2(1 + x^2)}$.

При
$$x^2 - 1 < 0$$
 sign $(x^2 - 1) = -1$ и $y' = -\frac{1}{2} - \frac{2}{1 + x^2} = -\frac{(5 + x^2)}{2(1 + x^2)} < 0$.

Сделаем рисунок:

Функция убывает на каждом из промежутков $\left(-\infty,-\sqrt{3}\right), \left(-1,1\right), \left(\sqrt{3},+\infty\right)$ и возрастает на каждом из промежутков $\left(-\sqrt{3},-1\right), \left(1,\sqrt{3}\right).$ Точки $x_1=-\sqrt{3}$ и $x_2=1$ являются точками минимума, а $x_3=-1$ и $x_4=\sqrt{3}$ - точками максимума, причем $y\left(-\sqrt{3}\right)=\frac{5\pi}{6}+\frac{\sqrt{3}}{2}\approx 3.5$, $y\left(1\right)=-0.5$, $y\left(\sqrt{3}\right)=\frac{\pi}{6}-\frac{\sqrt{3}}{2}\approx -0.3$, $y\left(-1\right)=\pi+0.5\approx 3.6$.

Найдем односторонние производные в точках $x=\pm 1$: $y'_-(-1)=y'_+(1)=0,5$; $y'_+(-1)=y'_-(1)=-1,5$. Следовательно, экстремумы в точках $x_2=1$ и $x_3=-1$ - острые. Найдем вторую производную:

$$y'' = -\frac{4x\operatorname{sign}(x^2 - 1)}{\left(1 + x^2\right)^2}.$$

Отметим ее знаки на числовой прямой

График функции имеет выпуклость вверх на интервалах (-1,0), $(1,+\infty)$ и выпуклость вниз на $(-\infty,-1)$ и (0,1). Точка $x_5=0$ является точкой перегиба, и $y(0)=\pi/2$.

Найдем наклонную асимптоту, заданную уравнением y(x) = kx + b:

$$k = \lim_{x \to \infty} \left(\frac{1}{x} \arccos \frac{2x}{1+x^2} - \frac{1}{2} \right) = -\frac{1}{2}, \ b = \lim_{x \to \infty} \left(\arccos \frac{2x}{1+x^2} - \frac{x}{2} + \frac{x}{2} \right) = \frac{\pi}{2}.$$

Следовательно, прямая $y(x) = -\frac{1}{2}x + \frac{\pi}{2}$ является асимптотой графика. График пересекает ось ординат в точке $(0,\pi/2)$. Точка пересечения с осью абсцисс находится в интервале (0,1), так как $f(0) = \pi/2 > 0$ и f(1) = -0.5 < 0. Строим график.

Пример 6.23. Исследовать функцию $y = x \arctan x - \left(\frac{\pi}{4} + \frac{1}{2}\right) x$ и построить ее график.

© Функция определена на всей вещественной оси, не является ни четной, ни нечетной, ни периодичной. Найдем ее производную:

$$y' = -\left(\frac{\pi}{4} + \frac{1}{2}\right) + \arctan x + \frac{x}{1 + x^2}$$
.

Заметим, что при $x_0 = 1$ $y'(x_0) = 0$. Существуют ли еще нули производной, выясним чуть позже. Найдем вторую производную:

$$y'' = \frac{1}{1+x^2} + \frac{1+x^2-2x^2}{\left(1+x^2\right)^2} = \frac{2}{\left(1+x^2\right)^2}.$$

Имеем y''(x) > 0 для любого $x \in \mathbb{R}$. Это означает, что график функции имеет выпуклость вниз, а также, что первая производная является возрастающей функцией, а значит, не может иметь более одного нуля. Отметим знаки производной на числовой прямой:

$$\frac{- + y'}{1 + x}$$

Следовательно, функция убывает на интервале $(-\infty,1)$ и возрастает на интервале $(1,+\infty)$.

Вертикальных асимптот нет. Найдем наклонные асимптоты. Так как функция $\arctan x$ имеет разные пределы при $x \to +\infty$ и $x \to -\infty$, то рассмотрим эти два случая по отдельности. Имеем

$$k_1 = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\arctan x - \frac{\pi}{4} - \frac{1}{2} \right) = \frac{\pi}{4} - \frac{1}{2},$$

$$b_1 = \lim_{x \to +\infty} \left(x \arctan x - \left(\frac{\pi}{4} + \frac{1}{2} \right) x - \left(\frac{\pi}{4} - \frac{1}{2} \right) x \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(\arctan x - \frac{\pi}{2} \right) = \lim_{x \to +\infty} x \left(-\frac{\pi}{2} \right) = \lim_{x \to +\infty} x$$

$$= \lim_{x \to +\infty} \frac{\arctan x - \pi/2}{1/x} = \lim_{x \to +\infty} \frac{\left(\arctan x - \pi/2\right)'}{\left(1/x\right)'} = -\lim_{x \to +\infty} \frac{x^2}{1 + x^2} = -1.$$

Значит, при $x \to +\infty$ имеется асимптота $y(x) = \left(\frac{\pi}{4} - \frac{1}{2}\right)x - 1$.

Аналогично, при $x \to -\infty$ имеем $k_2 = \lim_{x \to -\infty} \left(\arctan x - \frac{\pi}{4} - \frac{1}{2} \right) = -\frac{3\pi}{4} - \frac{1}{2}$,

$$b_2 = \lim_{x \to -\infty} \left(x \arctan x - \left(\frac{\pi}{4} + \frac{1}{2} \right) x - \left(-\frac{3\pi}{4} - \frac{1}{2} \right) x \right) = \lim_{x \to -\infty} x \left(\arctan x + \frac{\pi}{2} \right) = -1.$$

Следовательно, при $x \to -\infty$ имеется асимптота $y(x) = \left(-\frac{3\pi}{4} - \frac{1}{2}\right)x - 1$.

Найдем точки пересечения с осями координат. График функции проходит через начало координат (0,0). Координата еще одной точки пересечения с осью абсцисс находится из урав-

нения $\arctan x = \frac{\pi}{4} + \frac{1}{2}$, а именн

 $x_1 = \operatorname{tg}\left(\frac{\pi}{4} + \frac{1}{2}\right) \approx 3,4$. Строим график. •

Пример 6.24. Исследовать кривую, заданную

параметрически: $x(t) = t^3 - 3t$, $y(t) = \left(\frac{t-1}{t}\right)^2$ и построить ее.

 \odot Параметр t принимает любые значения, кроме нуля. Найдем сначала асимптоты кривой. Заметим, что $x \to \pm \infty$ при $t \to \pm \infty$. Для нахождения наклонной асимптоты требуется вычислить пределы

$$k = \lim_{t \to \infty} \frac{y(t)}{x(t)} = \lim_{t \to \infty} \frac{(t-1)^2}{t^2(t^3 - 3t)} = 0, \ b = \lim_{t \to \infty} \left(\frac{t-1}{t}\right)^2 = 1.$$

Следовательно, прямая y=1 является асимптотой. Заметим также, что $y\to +\infty$, а $x\to 0$ при $t\to 0$. Значит, прямая x=0 - асимптота кривой.

Найдем производные функций x(t) и y(t):

$$x'_t(t) = 3(t^2 - 1), \ y'_t(t) = \frac{2(t - 1)}{t^3},$$

и отметим на числовых прямых участки их монотонности.

Вычислим характерные точки. При t=-1: $M_1(2,4)$; при t=1: $M_2(-2,0)$. Составим таблицу поведения функций x(t) и y(t) для интервалов изменения параметра t:

t	x(t)	y(t)		
$(-\infty,-1)$	возрастает от -∞ до 2	возрастает от 1 до 4		
(-1,0)	убывает от 2 до 0	возрастает от 4 до +∞		
(0,1)	убывает от 0 до -2	убывает от +∞ до 0		
$(1,+\infty)$	возрастает от -2 до +∞	возрастает от 0 до 1		

Производная $y'_x = \frac{2}{3t^3(t+1)}$ не обращается в нуль. Но при t = -1 она об-

ращается в бесконечность, следовательно, производная обратной функции $x_y'(t=-1)=0$. Это означает, что точка $M_1(2,4)$ является гладким экстремумом обратной функции, и касательная в этой точке параллельна оси ординат.

При t=1 $y_x'(t=1)=\frac{1}{3}$. Это означает, что ветви кривой в точке $M_2(-2,0)$ имеют общую касательную.

Исследуем кривую на выпуклость. Найдем вторую производную:

$$y_{xx}'' = \frac{(y_x')_t'}{x_t'} = -\frac{2}{9} \cdot \frac{4t+3}{t^4(t+1)^3(t-1)}.$$

Отметим промежутки выпуклости:

и вычислим координаты точки при $t = -\frac{3}{4}$: $M_3\left(\frac{117}{64}, \frac{49}{9}\right)$, которая является точ-

кой перегиба. Строим кривую. Стрелочками отмечено направление возрастания параметра t. \bullet

Пример 6.25. Построить кривую, заданную уравнением $x(x^2 + y^2) = x^2 - y^2$.

 \odot Зададим кривую параметрически. Введем параметр t, положив y = tx.

Тогда
$$x(t) = \frac{1-t^2}{1+t^2}$$
, $y(t) = \frac{t(1-t^2)}{1+t^2}$. Эти функции определены для любого $t \in \mathbb{R}$.

Заметим, что значения функции $x(t) \in (-1,1]$. Следовательно, наклонной асимптоты у кривой нет. Найдем вертикальную асимптоту. Заметим, что $y \to \pm \infty$, а $x \to -1$ при $t \to \mp \infty$. Значит, прямая x = -1 является асимптотой кривой. Най-

дем производные
$$x'_t(t) = -\frac{4t}{\left(1+t^2\right)^2}, \ y'_t(t) = -\frac{t^4+4t^2-1}{\left(1+t^2\right)^2},$$

и отметим на числовых прямых участки их монотонности.

Вычислим характерные точки. При t=0: $M_1(1,0)$; при $t=-\sqrt{-2+\sqrt{5}}$: $M_2(0,6;-0,3)$, при $t=\sqrt{-2+\sqrt{5}}$: $M_3(0,6;0,3)$ (координаты точек M_2 и M_3 приблизительные). Составим таблицу поведения функций x(t) и y(t) для интервалов изменения параметра t:

t	x(t)	y(t)
$\left(-\infty, -\sqrt{-2+\sqrt{5}}\right)$	возрастает от -1 до 0,6	убывает от +∞ до -0,3
$(-\sqrt{-2+\sqrt{5}},0)$	возрастает от 0,6 до 1	возрастает от -0,3 до 0

$\left(0,\sqrt{-2+\sqrt{5}}\right)$	убывает от 1 до 0,6	возрастает от 0 до 0,3
$\left(\sqrt{-2+\sqrt{5}},+\infty\right)$	убывает от 0,6 до -1	убывает от 0,3 до -∞

Производная функции y по переменной x равна $y'_x = \frac{t^4 + 4t^2 - 1}{4t}$. Она обращается в нуль в точках M_2 и M_3 $\left(t = \mp \sqrt{-2 + \sqrt{5}}\right)$, и равна бесконечности в точке $M_1(t=0)$. Так как функция y(t) меняет характер монотонности при переходе через эти точки, в этих точках имеются экстремумы (минимум и максимум, соответственно). При переходе через точку M_1 функция x(t) меняет характер монотонности, и в этой точке также имеется максимум, но для функции

Найдем вторую производную:

x = x(y) (касательная параллельна оси ординат).

$$y_{xx}'' = \frac{(y_x')_t'}{x_t'} = -\frac{(3t^4 + 4t^2 + 1)(1 + t^2)^2}{16t^3}.$$

Заметим, что числитель этой дроби всегда положителен. Отметим промежутки выпуклости:

Заметим, что кривая трижды пересекает ось абсцисс (см. изменение непрерывной функции y(t)). При этом точка (0,0) проходится дважды (при t = -1 и t = 1). Такая точка называется точкой самопересечения.

Строим график. •

Упражнения

Провести полное исследование функции y = f(x) и построить график (6.37 – 6.44).

6.37.

a)
$$y = x(x-1)^3$$
;

c)
$$y = \frac{x}{1 + x^2}$$
;

c)
$$y = \frac{x}{1+x^2}$$
; e) $y = \frac{x^3}{3-x^2}$;

b)
$$y = (x^2 - 1)^3$$
;

d)
$$y = \frac{x}{1 - x^2}$$
;

d)
$$y = \frac{x}{1 - x^2}$$
; **f)** $y = \frac{x^4}{x^3 - 1}$;

g)
$$y = \frac{1+x^2}{1+(x-2)^2}$$

g)
$$y = \frac{1+x^2}{1+(x-2)^2}$$
; **h)** $y = (x+1)(\frac{x-1}{x-2})^2$; **i)** $y = (\frac{x+1}{x-1})^4$.

$$i) \quad y = \left(\frac{x+1}{x-1}\right)^4$$

6.38.

a)
$$y = x + \sqrt{x^2 - 1}$$

a)
$$y = x + \sqrt{x^2 - 1}$$
; **d)** $y = \frac{8x}{\sqrt{x^2 - 4}}$; **b)** $y = \sqrt{x^2 - x^3}$;

f)
$$y = \frac{4x}{\sqrt{1+x^2}} - \frac{x}{2}$$
;

b)
$$y = \sqrt{x^2 - x^3}$$
;

c)
$$y = x(x+1)^{3/2}$$
;

c)
$$y = x(x+1)^{3/2}$$
; e) $y = \frac{\sqrt{x^2 - 4x}}{2 - x}$;

g)
$$y = \sqrt{\frac{(x+6)^2}{x^2-4}}$$
.

6.39.

a)
$$y = \sqrt[3]{1-x^3}$$

b)
$$y = \sqrt[3]{x(3-x)^2} - x$$
;

c)
$$y = \sqrt[3]{6x^2 - x^3}$$
;

d)
$$y = \frac{x}{\sqrt[3]{x+1}}$$
;

e)
$$y = \frac{x}{\sqrt[3]{(x-2)^2}}$$
.

6.40.

a)
$$y = |x|\sqrt{1-x^2}$$
;

b)
$$y = 4 \frac{\sqrt{|x-1|}}{|x-2|};$$

c)
$$y = \frac{\sqrt{1+|x-2|}}{1+|x|}$$
;

d)
$$y = \sqrt[3]{x^2 |2 - x|}$$
.

6.41.

a)
$$y = xe^{-x}$$
;

b)
$$v = xe^{-x^2/2}$$
;

$$\mathbf{c)} \ \ y = \exp\left(\frac{1-x}{1+x}\right);$$

e)
$$y = \frac{\ln^2 x}{x}$$
.

d)
$$y = x - \ln(1 + x)$$
;

6.42.

a)
$$y = \sin x - \sin^2 x$$
;

b)
$$y = \cos x \cos 2x$$
;

c)
$$y = \frac{\cos 2x}{\cos x}$$
;

$$\mathbf{d)} \ \ v = 2x - \mathsf{tg} \, x \, .$$

6.43.

a)
$$y = 2x + 4 \operatorname{arcctg} x$$
;

b)
$$y = \arcsin \frac{1 - x^2}{1 + x^2} - \frac{2x}{17}$$
;

c)
$$y = \frac{1}{\operatorname{arcctg} x}$$
;

$$\mathbf{d)} \quad y = \frac{3x}{2} - \arccos\frac{1}{x};$$

e)
$$y = \frac{x}{2} - \arctan x$$
.

6.44.

a)
$$v = x^x, x > 0$$
:

b)
$$y = (1+x)^{1/x}$$
.

6.45. Исследовать кривую, заданную параметрически, и построить ее.

a)
$$x(t) = t^3 + 2t^2 + t$$
, $y(t) = t^3 - 3t + 2$;

b)
$$x(t) = \frac{1}{t(t+1)}, y(t) = \frac{(t+1)^2}{t};$$

c)
$$x(t) = \frac{t^2}{t^2 - 1}, y(t) = \frac{t^2 + 1}{t + 2};$$

d)
$$x(t) = \frac{1}{t-t^2}, y(t) = \frac{1}{t-t^3};$$

e)
$$x(t) = te^{t}, y(t) = te^{-t};$$

f)
$$x(t) = 2t + \ln|t-1|, y(t) = t + \ln|t-1|;$$

g)
$$x(t) = 2\cos t - \cos 2t$$
, $y(t) = 2\sin t - \sin 2t$;

h)
$$x(t) = \cos t + t \sin t$$
, $y(t) = \sin t - t \cos t$;

i)
$$x(t) = \cos 2t, y(t) = \cos 3t;$$

j)
$$x(t) = \sin 2t, \ y(t) = \sin 3t.$$

6.46. Построить кривую, задав ее параметрически.

a)
$$x^4 - y^4 = 4x^2y$$
;

d)
$$(x+y)(x-y)^2 = 1;$$

b)
$$(x + y)^3 = xy$$
;

e)
$$x^{2/3} + y^{2/3} = 1$$
;

c)
$$(x+y)^4 = x^2 + y^2$$
;

f)
$$x^{4/3} - y^{4/3} = 1$$
.

§ 7 ВЕКТОРНАЯ ФУНКЦИЯ

Векторная функция скалярного аргумента $\vec{r} = \vec{r}(t) = (x(t), y(t), z(t))$ задает некоторую кривую в пространстве.

Пример 7.1. Представить параметрически кривую, получающуюся при пересечении сферы $x^2 + y^2 + z^2 = R^2$ и цилиндра $x^2 + y^2 = Rx$. Эта кривая называется *кривой Вивиани* (см. рис.).

 \odot Заметим, что из равенства $x^2 + y^2 = Rx$ следует, что $x \in [0,R]$. Положим $x = R \sin^2 t$. Тогда

$$y^{2} = Rx - x^{2} = R\sin^{2}t \left(1 - \sin^{2}t\right) = R\sin^{2}t\cos^{2}t,$$

$$z^{2} = R^{2} - x^{2} - y^{2} = R^{2} - Rx = R^{2}\cos^{2}t.$$

Пользуясь тем, что кривая симметрична относительно плоскостей XOY и XOZ, можем получить следующую параметризацию кривой:

$$x = R\sin^2 t$$
, $y = R\sin t \cos t$, $z = R\cos t$, $t \in [0, 2\pi]$.

Вектор, составленный из производных координат векторной функции $\vec{r}'(t) = (x'(t), y'(t), z'(t))$ является *касательным* вектором к кривой, заданной векторной функцией, направленным в сторону возрастания параметра.

Пример 7.2. Найти уравнения касательной прямой и нормальной плоскости к кривой, заданной параметрически: $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $z = 4a\sin\frac{t}{2}$ в точке $t_0 = \pi/2$.

 \odot Найдем точку $M_0 \left(x_0, y_0, z_0 \right)$ на кривой, соответствующую значению $t_0 = \pi/2$: $x_0 = a \left(\frac{\pi}{2} - 1 \right)$, $y_0 = a$, $z_0 = 2a\sqrt{2}$. Найдем касательный вектор

$$\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k} = a(1 - \cos t)\vec{i} + a\sin t\vec{j} + 2a\cos\frac{t}{2}\vec{k}.$$

При $t=\pi/2$ имеем $\vec{r}'(t_0)=a\vec{i}+a\vec{j}+a\sqrt{2}\vec{k}$. В качестве касательного вектора возьмем вектор $\vec{l}=\vec{i}+\vec{j}+\sqrt{2}\vec{k}$ и запишем уравнение касательной в каноническом виде:

$$\frac{x - a(\pi/2 - 1)}{1} = \frac{y - a}{1} = \frac{z - 2a\sqrt{2}}{\sqrt{2}}.$$

Касательный вектор $\vec{l} = \vec{i} + \vec{j} + \sqrt{2}\vec{k}$ является также вектором нормали нормальной плоскости. Поэтому, ее уравнение имеет вид

$$(x-a(\pi/2-1))+(y-a)+\sqrt{2}(z-2a\sqrt{2})=0$$
, или $x+y+\sqrt{2}z=a(4+\pi/2)$.

Упражнения

- 7.1. Найти предел вектор-функции:
 - **a)** $\vec{r}(t) = \frac{\sin t}{t} \vec{i} + \frac{1-t}{1-t^2} \vec{j} + t \ln|t| \vec{k}$ при $t \to 0$;

b)
$$\vec{r}(t) = \frac{\sin t}{t-\pi} \vec{i} + \frac{\ln(t/\pi)}{\pi-t} \vec{j} + t \vec{k}$$
 при $t \to \pi$.

- **7.2.** Найти уравнение касательной к годографу вектор-функции в точке t_0 :
 - **a)** $\vec{r}(t) = t\vec{i} + t^2\vec{j} + t^3\vec{k}$;
 - **b)** $\vec{r}(t) = \sin t \vec{i} + \cos t \vec{j} \vec{k}$, $t_0 = \pi/2$;
 - **c)** $\vec{r}(t) = t\sqrt{1+t^2} \vec{i} + t \vec{j} + (t+1) \vec{k}$, $t_0 = 0$.
- **7.3.** Написать уравнения касательной прямой и нормальной плоскости к кривой, заданной параметрически, в данной точке:
 - **a)** x = t, $y = t^2$, $z = t^3$, (1,1,1);
 - **b)** $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$, $t_0 = 0$.
- **7.4.** Найти уравнение нормальной плоскости в произвольной точке кривой, полученной при пересечении двух цилиндров $x^2 + y^2 = 1$, $y^2 + z^2 = 1$ ($y_0 \neq \pm 1$).
- **7.5.** Доказать, что все нормальные плоскости кривой Вивиани (см. пример 7.1) проходят через начало координат.
- **7.6.** В каких точках касательная к кривой $x = 3t t^3$, $y = 3t^2$, $z = 3t + t^3$ параллельна плоскости 3x + y + z + 2 = 0?
- **7.7.** Найти нормальную плоскость кривой, полученной при пересечении поверхностей $x^2 + y^2 = z$, x = y, перпендикулярную прямой x = y = z.
- **7.8.** Найти косинусы углов, которые образует с осями координат касательная к кривой $x^2=2az$, $y^2=2bz$, $a,b\in\mathbb{R}$.
- **7.9.** Найти касательные к кривой Вивиани (см. пример 7.1), параллельные плоскости y = 0.

ОТВЕТЫ И УКАЗАНИЯ

1.19. a) $A \leftarrow B$; b) $A \Rightarrow B$. 1.20.a) $\exists x > 0 \ \exists y > 0$: $x - y \le 0$; b) $\exists x, \exists y, x > y$ и $x^2 < y^2$. 1.21. a) $\exists x : x^2 \le 0$; b) $\exists x, y > 0 : x - y \le 0$. 1.22. $1 + 3 + 5 + ... + (2n - 1) = n^2$. Это равенство можно проиллюстрировать следующим образом. Рассмотрим квадрат со стороной равной 1(см. рис.). Достроим его до квадрата со стороной равной 2. При этом мы добавили 3 таких же квадрата. Теперь дополним его до квадрата со стороной равной 3 (добавили 5 маленьких квадратиков) и т.д. Площадь итогового квадрата со стороной n равна количеству единичных квадратиков внутри него, то есть, сумме первых n нечетных чисел. 1.23. (1+2n)/(1-2n). 1.31. $a_n = n/(n+1)$. 1.32. $a_n = n/(n+1)$. 1.34. $a_n = 2\cos(n-1)x$. **1.52.**Воспользуйтесь неравенством (предварительно доказав его): $(1+x)^{k+1} + (1-x)^{k+1}$ $\leq (1+|x|)[(x+1)^k+(1-x)^k]$. **1.54. a)** 10; **b)** 7; **c)** 8. **1.55. a)** по определению; **b)** по определению; **c)** в формуле бинома Ньютона взять a = 1, b = -1; d) по индукции. **1.56. a)** $(2^{n+1}-1)/(n+1)$; **b**) $(n-2)2^{n-1}+1$; **c**) 2^{n-1} ; **d**) 2^{2n-1} ; **e**) 2^{2n-1} ; **f**) 0 при нечетном n, $(-1)^{n/2}C_n^{n/2}$ при четном n. **1.57.** $485+198\sqrt{6}$; **1.58.** $1856-832\sqrt{5}$; **1.59.** a) 210; b) -560/27; c) -7; d) -40, -74. **1.60.** 12. **1.61.** $45a^2$. **1.62.** C_{17}^8 . **1.63.** $1120x^4$. **1.64.** a) 60; b) 67456. **1.65.** 1144. **1.66.** 2^{36} **. 1.67.** $1120x^{\frac{22}{3}}$ **.1.68.** $70x^4y^4$ **.1.69.** a) $C_{50}^{29}\left(\sqrt{2}\right)^{29}$;b) $C_{101}^{44}2^{22}\left(\sqrt{3}\right)^{57}$. **1.70.** a) 6,75; b) $C_{10}^3 \cdot 2^7$. **1.71.** 1. **2.9.** a) $\pi/4$; b) π ; c) $\pi/4$; d) $\pi/2$, если x > 0 и $-\pi/2$, если x < 0; е) $\pi/4$. 2.13. $\pi/3$. 2.85. см. рис. ниже. 2.85. а) r = R; b) $\varphi = C$, $\varphi = C + \pi$; c) $r = 2R\cos\varphi$; d) $r = 2R\sin\varphi$; e) $r = a/\sin\varphi$; f) $r = a/\cos\varphi$; g) $r = p/\sin(\alpha - \varphi)$. 2.87. **a)** окружность $x^2 + y^2 = R^2$; **b)** луч $y = x \lg \varphi$, попадающий в ту же четверть, что и φ ; **c)** прямая y = a; **d**) окружность $x^2 + y^2 = ay$; **e**) окружность $x^2 + y^2 = ax$; **f**) парабола $y^2 = ax$; **g)** прямая $x + y = \sqrt{2}$; **h)** парабола $y^2 = 9 + 6x$; **i)** окружность $x^2 + y^2 - 4\sqrt{3}x + 4y = 0$; **j**) гипербола $xy = a^2$; **k**) эллипс $(x-4)^2/25 + y^2/9 = 1$. **2.88**, **2.89.** см. рис. ниже. **2.90.** $r = 16/(5-3\cos\varphi)$. **2.91.** $r = 9/(4-5\cos\varphi)$. **2.92. а)** кардиоида $r = 2a(1 + \cos \varphi)$; **b**) $r = |\cos 2\varphi|$; **c**) $r = |\sin 2\varphi|$; **d**) улитка Паскаля $r = 2 + \cos \varphi$; **e**) конхоида Никомеда $r=\pm 2a-a/\sin\varphi$ (см. рис. ниже); **f)** каппа $r=|a\operatorname{ctg}\varphi|$ (см. рис. ниже). **2.120**. a) $a \ge 2b$; b) $a \ge 1,5b$. **2.126**.a)0, 1; b)0, 1; c) 1, 3; d) -1; 0,4; e) inf $a_n = 0$, sup a_n He существует; **f**) $-\pi/18$, $\pi/12$; **g**)-0,5; 1; **h**) -4, 6. **2.128**. inf $\{m/n\} = 0$, sup $\{m/n\} = 1$.

3.1. a) a = -2 при n = 5; **b)** b = 4 при n = 1 и n = 7. **3.3. a)** $x_n = a + 2 - 2^{1-n}$; **b)** $x_{2k-1} = 0$, $x_{2k} = 1/(2k)!$, $k \in \mathbb{N}$; **c)** $x_n = n/(n+1)$; **d)** $x_1 = 0$,

```
x_n = (1!+2!+3!+...(n-1)!)/n!; e) x_1 = a, x_n = (n+1)! (\frac{a}{2} + \frac{1}{2!} + \frac{1}{3!} + ... + \frac{1}{n!}); f)
x_n = 3 \cdot 5^{n-1} - 2^n. 3.4. a) x_n = 2^n - 2^{2-n}; b) x_n = 3^n + 2 \cdot (-1)^{n+1}; c) x_n = 2^n (n+1); d)
x_n = 9(2/3)^n (n-0.5); e) x_n = 4^n \cos((5n+4)\pi/6); f) x_n = (\sqrt{2})^{n+1} \cos(\pi(n-1)/4).
3.15. a) 3/4; b)-1; c) 0; d) -\infty . 3.17. a) 4;b) 19800; c) -1; d) -0.5. 3.18. a) 1; b)0; c)0. 3.19. a) 0;
b)2; c)1/3; d) 0. 3.20.a)-2.5; b)1; c)0; d)-8; e)0; f)1/81. 3.22.a)0; b)1/6; c)2. 3.23.a)0; b)1; c)0; d)-
1. 3.24.a)3/4; b)1; c)-1; d)m/k. 3.25.a)1; b)1. 3.26.a)5; b)4; c)1; d)1. 3.28.a)e^{-4}; b) e^{-4}; c) e^{-3};
d)0; e)\infty; f)0; g)0; h)1; i)e^6; j)\infty. 3.29. a)(1-b)/(1-a); b) 1/3; c) 3. 3.30. Указание. Огра-
ничить и просуммировать. 3.32. Указание. Воспользоваться признаком Вейерштрасса. 3.35,
3.36, 3.37. Указание. Воспользоваться критерием Коши. 3.38. Указание. Воспользоваться
критерием Коши и неравенством \frac{1}{n^2} < \frac{1}{n-1} - \frac{1}{n}. 3.39. a) 2, -2; b) -1, -0.5, 0.5, 1; c) 0, 1, -1; d)
0, -1; e) 2, 1; f) 0, 1. 3.40. Любое число из [0, 1]. 3.41. 2, 1. 3.44.a)2/3; b)3; c)1/3; d)1/3; e) 1/6;
f)1/4; g) 1; h) 31/18; i) pacx.; j) e-1; k) pacx.; l)pacx.; m) 1-\sqrt{2}. 3.45. b-b_1. 3.46. a) pacx.; c)
pacx.; d) pacx.; e) pacx.; f) pacx.; g) pacx. 3.47.a) pacx.; b) cx.; c) cx.; d) pacx. 3.48.a) cx.; b)
pacx.; c)cx.; d) pacx.; e)cx.; f)cx.; g) pacx.; h) pacx.; i)cx.; j)cx.;k)cx.; l) pacx.; m) pacx.;n) pacx.;
o)cx.; p)cx.; q) pacx.; r)cx.; s) pacx.; t) pacx. 3.49. a) \alpha > 1; b) \alpha > 2; c) \alpha > 1; d) \alpha < 0.
4.14. 0. 4.15. a) 1/3; b) 1/16; c) 108; d) 0; e) 3; f) -0.5; g) a^k, k > 0; 0, k < 0; \frac{1}{1+h}, k = 0.
4.16. a = 1, b = -1. 4.17.a) \sqrt{3}; b) 3/2; c)-1; d) 7/12. 4.18.a)0; b) 1, если x \to +\infty и +\infty,
если x \to -\infty; c) 3, если x \to +\infty и -3, если x \to -\infty; d) +\infty, если x \to +\infty и -\frac{1}{2}, если
x \to -\infty; e) 10/3; f) -1/4; g) \frac{n+1}{2}. 4.19.a) a = 1, b = -1/2; b) a = -1, b = 1/2. 4.20. a) -
0.6; b)1; c)1.5; d) 4/3; e)4; f)-3. 4.21.a)10; b) nm(m-n)/2; c) m/n; d) n(n+1)/2. 4.22.a)1;
b) (m-n)/2. 4.23. c) \sqrt{7}/4; d)2; e) 2/27; f) 4\frac{4}{27}; g) \frac{a}{m} - \frac{b}{n}. 4.25.a) a/b; b)2.5;
c) \lg 2; d) 1/7; e)-2; f)-0.5; g) 3\sqrt{3}. 4.26.a) -2/3; b)0,5; c)-3; d) 0,1/\ln 10; e)1; f)1; g) \sqrt{2}/2.
4.27.a) \cos a; b) -\cos 2a/\cos^4 a; c) -\cos a. 4.28.a) 4\sqrt{2}; b)0,6; c)0; d)-0,5; e)0,5;
f) (\ln 2 - \ln 3)/(4\ln 2 - 2\ln 5); g)3; h)4; i)2. 4.29.a)0; b)0; c) 2/3; d)2; e) -\pi^2/2; f)0; g)-0,5;
h)1. 4.30.a) \infty; b) \sqrt{2}; c) 1/\sqrt{2\pi}. 4.31.a)0; b)1; c) e^{-3}; d)0. 4.32.a) 1/\sqrt{e}; b) 1/e; c) \sqrt{e}; d)
1/e; e) e; f) e/\pi; g)0; h) exp\left(-\frac{2}{\pi}\left(4\ln 4 - \frac{1}{6}\right)\right); i)1. 4.33.a)1; b)0,6; c)0,2; d) ln 2; e)2.
```

```
4.34.a) a^{a^a} \ln a; b) a^a \ln ea; c) \ln (a/b); d) \sqrt{ab}; e) a^b \ln a. 4.41.a) a_k x^{n-k}; b) a_0 x^n.
4.35.a)cx.; b)pacx.; c)cx. 4.43.a) 5x^4; b) 6x^5; c) 2x^2; d) -x^4/2; e) 3x^3. 4.44.a) x^{-3}; b)
x^{2/3}; c) 2\sqrt{x}; d) -4x^2. 4.45.a) 3x^2/2; b) x, \pi/2x^2; c) \sin 1 \cdot x^{-1/6}, x^{-4/3}; d) x^2/2. 4.46.a)
-1.5x^3; b) -x^2/16.4.47.a) 3(x-1)^2; b) x-1; c) -\sqrt[3]{x-1}/\sqrt[3]{2}; d) \sqrt{2}(1-x)^{-1/2}; e)
-\frac{1}{\pi} \cdot \frac{1}{x-1}; f) x-1. 4.48.a) 1/3; b) 1; c) 1; d) 0, 8; e) 7/3; f) 2; g) -5/12; h) -1; i) 49/36; j) \sqrt{e};
k) 6\pi^2. 4.52.a) x=0 –конечный разрыв; b) x=0 - устранимый; c) x=\frac{\pi}{2}+\pi k, k\in\mathbb{Z} -
бесконечные разрывы; d) x=0 - устранимый. 4.53.a) x_0=3,\ h=-3; b) x_1=-4 - конечный
разрыв, h=-1/4 , x_2=4 - бесконечный разрыв; c) x_0=0 - устранимый разрыв,
\lim_{x\to 0} f(x) = \frac{3}{2}; d) x_0 = 0 - устранимый разрыв, \lim_{x\to 0} f(x) = 1, x_k = \pi k, k \in \mathbb{Z} \setminus \{0\} - бес-
конечные разрывы; e) x_0 = 0 - устранимый разрыв, \lim_{x \to 0} f(x) = 0; f) x_0 = 0 - бесконечный
разрыв. 4.54.a) x_1 = 0, x_2 = 1 - устранимые разрывы, x_3 = -1 - бесконечный разрыв; b)
x_1 = 0 - бесконечный разрыв, x_2 = 1 - устранимый разрыв; c) x_0 = 1 - бесконечный разрыв;
d) x_1 = 0, x_2 = 2 - бесконечные разрывы, x_3 = 1 - устранимый разрыв; e)
x_k = \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z} - конечные разрывы; f) x_0 = 0 - устранимый разрыв. 4.55.a)0,5; b) \ln c;
c)0; d)-2. 4.56. a=2,b=-1. 4.57.a) y=1, если 0 \le x < 1; y=0.5, если x=1; y=0, если
x > 1; b) y = \pi x/2, если \pi k < x < \pi k + \pi/2; y = 0, если x = \pi k; y = -\pi x/2, если
\pi k + \pi/2 < x < \pi k + \pi, k \in \mathbb{Z}; c) y = 1, если 0 \le x \le 1; y = x, если x > 1; d) y = 0, если
0 \le x < 2; y = 2\sqrt{2}, если x = 2; y = x^2, если x > 2; е) y = 0, если x < 0; y = x, если
x \ge 0 . 4.60. \pm 1 . 4.63. f * g непрерывна на \mathbb{R} , g * f непрерывна в точках 0,5 и 1,5.
4.80.а)да; b)нет. 4.83.а)да; b)да; c)нет; d)да; e)да; f)нет; g)нет; h)да. 4.64.а) x = 3, y = 2; b)
x = 0, y = x + 8; c) y = 0; d) x = -1, y = x - 2; e) y = x + 1; f) x = b, x = 2b,
y = x - 3a + 3b. 4.65. a) y = -x - 1, y = x - 1; b) y = -x, y = x; c) y = x; d) x = 2,
y = -x - 1, y = x + 1; e) y = 0, y = -2x. 4.66. a) x = 0, y = 1; b) y = 1; c) y = 0; d)
x = 0, y = x; e) y = 0, y = x; f) x = 0, y = -x - 1, y = x + 1; g) y = -x, y = x; h) y = 3;
i) y = 0; j) y = -1 - \pi x/2, y = -1 + \pi x/2. 4.67. a) y = -0.5(x+1), y = 0.5(x-1); b)
y = -1, y = x + 1/3; c) y = x - 2; d) Het acumitor; e) y = x + 6\pi, y = x; f) y = x + 1; g)
x = -\sqrt{2}, x = \sqrt{2}; h) x = 1, x = -1, y = x/2, y = -x/2.
```

5.5.a)
$$\frac{1+4\sqrt{x^2+1}}{2\sqrt{2x^2+\sqrt{x^2+1}}} \cdot \frac{x}{\sqrt{x^2+1}}; b) \frac{14}{65} \frac{1}{\sqrt[3]{(9+7\sqrt[3]{2x})^{12}}}; c) \frac{2x^2}{x^6-1} \sqrt[3]{1-x^3}; d)$$

$$-\frac{2x}{\sqrt{(1+x^4)^3}}; e) -\frac{1}{4\sqrt[4]{x^3}} \cdot 5.6.a) - \sin 2x \cos(\cos 2x); b) -\frac{1+\cos^2 x}{2\sin^3 x}; e) -\frac{16\cos\frac{2x}{a}}{a\sin^3\frac{2x}{a}}; d)$$

$$\frac{1}{\sin x}; e) x^2 e^{-x} \sin x; f) \sqrt{a^2+b^2} e^{ax} \sin bx \cdot 5.7. a) y \left(\ln\frac{a}{b} - \frac{a-b}{x}\right); b)$$

$$a^a x^{a^a-1} + ax^{a-1} a^{x^a} \ln a + a^x a^{a^a} \ln^2 a; e) \frac{1}{x \ln x \ln(\ln x)}; d) \frac{1}{3x^2-2}; e) \frac{1}{\sqrt{x^2+1}}; f)$$

$$\ln^2 \left(x + \sqrt{1+x^2}\right); g) \frac{1}{\cos x}; h) \frac{1}{x} \cdot 5.8. a) \frac{1}{\sqrt{1+2x-x^2}}; b) \frac{\sqrt{x}}{2(1+x)}; e) \arcsin \sqrt{\frac{x}{1+x}}; d)$$

$$\frac{1}{|x|\sqrt{x^2-1}}; e) \sin(\cos x); f) \frac{1}{a+b\cos x}; g) \sqrt{a^2-x^2}; h) \frac{1}{\sqrt{ax-x^2}}; h\frac{e^x-1}{e^{2x}+1} \cdot 5.9. a)$$

$$(a-b)(a-c); b) -2010!; e) e; d) \sqrt[6]{72} \cdot 5.10.a) x^x (1+\ln x); b) e; e^x x^{e^x} (1/x+\ln x); d)$$

$$x^{x^x} x^{x-1} \left(x \ln^2 x + x \ln x + 1\right); e) |\sin x|^{\cos x} \left(\cos x \cot x - \sin x \ln|\sin x|\right);$$

$$f) (\ln x)^{\ln x} (1+\ln \ln x)/x; g) (chx)^{e^x} e^x (\ln chx + tgx) \cdot 5.11. a) x \sqrt{\frac{1-x}{1+x}} \cdot \frac{1-x-x^2}{x(1-x^2)}; b)$$

$$\sum_{i=1}^n \frac{b_i}{x-a_i}; e) y = \sqrt[4]{\frac{x(x-1)^3(x-2)^5}{(2x+1)^7(3x+1)^9}} \cdot \frac{1}{4} \left(\frac{1}{x} + \frac{3}{x-1} + \frac{5}{x-2} - \frac{14}{2x+1} - \frac{27}{3x+1}\right). 5.12.$$

$$-\frac{\sin 2x}{\sqrt{1+\cos^4 x}} \cdot 5.13.a) - \frac{2}{\sqrt{1-x^2}} \arccos x \cdot \ln \arccos x; b) - \frac{1}{x^4 \sqrt{(1+x^4)^3}} \cdot 5.15.a)$$

$$2xf'(x^2); b) 2f(x)f'(x); e) \frac{f'(x)}{f(x)}; d) \frac{f'(\arcsin f(x)) \cdot f'(x)}{\sqrt{1-f^2(x)}} \cdot 5.16.a)$$

$$\frac{\varphi(x)\varphi'(x) + \psi'(x)\psi'(x)}{\psi'(x) \ln \varphi(x)}; b) \frac{\psi'(x)}{\psi(x)} \frac{1}{\ln \varphi(x)} - \frac{\varphi'(x) \ln \psi(x)}{\varphi(x) \ln^2 \varphi(x)}; e)$$

$$(\varphi(x))^{\psi(x)} \left(\psi'(x) \ln \varphi(x) + \frac{\psi(x)\varphi'(x)}{\varphi(x)}\right); d) \sin 2x \left(\varphi'(\sin^2 x) - \psi'(\cos^2 x)\right). 5.18.a)$$

$$a > 0; b) a > 1; e) a > 2.5.19.a) a > 0, b - mo6oe; b) a > 1, b - mo6oe; e) a > 1, b < a - 1.$$

5.20.a)0; b)
$$\pi$$
, 2π ; c)-1,1; d)1, 0. 5.22. $a = 2x_0$, $b = -x_0^2$; 5.23. $a = 1,5m^2/c$, $b = -0,5m^2/c^3$; 5.24.a) x , $-0,2x^3+1,2x$; b) $-x\sin 2 + \cot 2$, $(-0,75e^2-0,25e^2)x^3+e^2x^2+(0,75e^{-2}+0,25e^2)x-\sin 2$; 5.26.a)0,5; b)0,5; c)5; d) $\sqrt{2}/2$; 5.27.a) $x'(y) = x/(x+1)$; b) $x'(y) = 0,5x^3/y^2$; c) $x'(y) = 1/\sqrt{y^2-1}$; d) $x'(y) = 1/(1-y^2)$; 5.28. -3. 5.29.a)-1; b) $-(\cot y)/a$; c) $\cot y/a$; c) $\cot y/a = 1/a$; d) $y/a = \frac{2\cos t}{1+\cos t}$; 5.30.0. 5.31.a) $y/a = \frac{1-x-y}{x-y}$; b) $y/a = \frac{b^2x}{a^2y}$; c) $y/a = \frac{4y-2x-4}{8y-4x-3}$; d) $y/a = \frac{x+y}{x-y}$; e) $y/a = \frac{y}{x+e^y}$; 5.32.a) $\cot y/a$; d) $\cot y/a$; d) $\cot y/a$; d) $\cot y/a$; d) $\cot y/a$; e) \cot

$$\pi/2 + 2\varphi \cdot 5.63.\mathbf{a}) \ 6 \left(5x^4 + 6x^2 + 1 \right); \ \mathbf{b}) \ 2e^{x^2} \left(3x + 2x^3 \right); \ \mathbf{c}) \ -a^2 \left(a^2 - x^2 \right)^{-5/2}; \ \mathbf{d}) \ 4\sin 2x; \ \mathbf{e}) \ 120 \left(1 - x \right)^{-6}; \ \mathbf{f}) \ 6/x; \ \mathbf{g}) \ x^x \left(\left(\ln x + 1 \right)^2 + 1/x \right); \ \mathbf{h}) \ 12960; \ \mathbf{i}) \ -6x \left(1 + x^2 \right)^{-5/2}; \ \mathbf{j}) \ 2^{49} e^{2x} \left(2x^2 + 100x + 1225 \right); \ 5.64.\mathbf{a}) \ \left(1 - 3x + x^2 \right) e^{-x} dx^2; \ \mathbf{b}) - 32\sin 4x \cos^{-3} 4x dx^2; \ \mathbf{c}) \ -\frac{2\sin \ln x}{x} dx^2; \ \mathbf{d}) - \left(\frac{\arcsin x}{\sqrt{1 - x^2} \left(1 - x^2 \right)} + \frac{x}{1 - x^2} \right) dx^2; \ 5.65.\mathbf{c}) \ \left(u^2 + v^2 \right) \left(uv'' - vu''' \right) + 2uv \left(u' \right)^2 + 2 \left(v^2 - u^2 \right) u'v' - 2uv \left(v' \right)^2; \ \mathbf{d}) \ \left(u^2 + v^2 \right)^2 \$$

$$v^v \left(\frac{v}{u} u'' + \ln u \cdot v'' + \frac{v(v - 1)}{u^2} \left(u' \right)^2 + \frac{2 \left(v \ln u + 1 \right)}{u} u'v' + \ln^2 u \left(v' \right)^2 \right). \ 5.66.\mathbf{b}) \ln v d^2 u + \frac{2}{v} du dv + \frac{u}{v} d^2 v - \frac{u}{v^2} dv^2; \ \mathbf{d}) \ e^{ivv} \left(u d^2 v + 2 du dv + v d^2 u + \left(u dv + v du \right)^2 \right). \ 5.67.\mathbf{a}) - \frac{2}{9t^4}; \ \mathbf{b}) \frac{\left(\alpha^2 + \beta^2 \right) \beta e^{-\alpha u}}{\left(\alpha \cos \beta t - \beta \sin \beta t \right)^3}; \ \mathbf{c}) - \frac{12t \left(1 + t^4 \right)^4}{\left(1 - t^2 \right)^3 \left(1 + 4t^2 + t^4 \right)}; \ \mathbf{d}) \frac{1}{(at + b) \cos^3 t}; \ \mathbf{c}) \ - \frac{3}{25a^2} \cdot \frac{8 - 7\cos^2 t}{\sin t \cos^{31} t}; \ \mathbf{f}) - \frac{3b}{a^4} \cdot \frac{5 - 4\sin^2 t}{\sin^7 t}; \ \mathbf{g}) \frac{1}{16a^3} \cdot \frac{7 - 6\sin^2 t/2}{\sin^{10} t/2}; \ \mathbf{h}) \frac{\sin t \left(1 + 3\sin^2 t \right)}{\cos^7 t}. \ 5.68.\mathbf{a}) - \frac{b^4}{a^2 y^3}; \ \mathbf{b}) - \frac{3R^3 x}{y^5}; \ \mathbf{c}) - \frac{v}{\left(1 - \cos(x + y) \right)^3}; \ \mathbf{d}) \$$

$$\frac{2x^2 y \left(3y^4 + 2y^2 (3 - x^4) + 2x^4 + 3 \right)}{\left(y^2 + 1 \right)^3} \cdot 5.69. \ x'' = - \frac{f'''}{(f')^3}, \ x''' = \frac{3(f''')^2 - f' f''''}{(ax + b)^{n+1}}; \ \mathbf{D}}{\left(f'' \right)^5} \cdot 5.72.\mathbf{a}) \$$

$$\left(-1 \right)^{n-1} \frac{1 \cdot 3 \cdot 5 \dots (2n - 3)}{2^n x^{n-1/2}}; \ \mathbf{b}) \ a^n e^{ax}; \ \mathbf{c}) \ e^x \left(x + n \right); \ \mathbf{d}) \ \left(-1 \right)^n n! \left(\frac{1}{(ax + b)^{n+1}}; \ \mathbf{D} \right) \$$

$$\frac{1 \cdot 3 \cdot 5 \dots (2n - 1)}{(1 - 2x)^{n+1/2}}; \ \mathbf{g}) \ 2^n \sin \left(2x + \frac{\pi n}{2} \right) + 3^n \cos \left(3x + \frac{\pi n}{2} \right); \ \mathbf{h}) \ 2^{n-1} \sin \left(2x + \frac{\pi (n - 1)}{(ax + b)^{n+1}}; \ \mathbf{d} \right) \$$

$$5.73.\mathbf{a}) \ \frac{2 \cdot n!}{(1 - x)^{n+1}}; \ \mathbf{b}) \ \left(-1 \right)^{n-1} \frac{(ad - bc) c^{n-$$

$$\begin{aligned} &(-1)^n n! \left(\frac{1}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right); \mathbf{c}) \cdot (-1)^{n+1} \frac{1 \cdot 4 \dots (3n-5)(3n+2x)}{3^n (1+x)^{n+1/3}}; \mathbf{f}) \\ &\frac{3}{4} \sin \left(x + \frac{\pi n}{2} \right) - \frac{3^n}{4} \sin \left(3x + \frac{\pi n}{2} \right); \mathbf{g}) \cdot \frac{3}{4} \cos \left(x + \frac{\pi n}{2} \right) + \frac{3^n}{4} \cos \left(3x + \frac{\pi n}{2} \right); \mathbf{h}) \\ &4^{n-1} \cos \left(4x + \frac{\pi n}{2} \right); \mathbf{i}) \cdot \mathbf{e}^x 2^{n/2} \cos \left(x + \frac{\pi n}{4} \right); \mathbf{j}) \cdot (-1)^n e^{-x} \left(x^2 - 2(n-1)x + (n-1)(n-2) \right). \\ &5.75.\mathbf{a}) \cdot y' = -b/a, \quad y^{(n)} = 0, \quad n \geq 2; \mathbf{b}) \cdot 2^{n-1} n!; \mathbf{c}) \cdot \frac{(-1)^{n-1} 2^n \cdot 1 \cdot 3 \cdot 5 \dots (2n-3)}{(2t-1)^{2n-1}}; \mathbf{d}) \\ &y' = 2x + 1, \quad y'' = 2, \quad y^{(n)} = 0, \quad n \geq 3 \cdot 5.76.\mathbf{a}) \cdot y'(0) = 0, \quad y''(0) = 0, \quad y'''(0) = 0, \quad y'''(0) = 1, \\ &y'' \cdot (0) = 2, \quad y'''(0) = 0, \quad y''''(0) \text{ ne cymecrtsyer; } \mathbf{e}) \cdot y'(0) = 0, \quad y'''(0) = 0, \quad y''''(0) = 0, \\ &y'' \cdot (0) = 0, \quad y^{V} \cdot (0) \text{ ne cymecrtsyer; } \mathbf{d}) \cdot y'(0) = 0, \quad y'''(0) \text{ ne cymecrtsyer; } \mathbf{e}) \cdot y^{(n)}(0) = 0, \\ &n \leq 50, \quad y^{(51)}(0) \text{ ne cymecrtsyer; } \mathbf{f}) \cdot y^{(n)}(0) = 0, \quad n \in \mathbb{N}. \quad 5.82. \quad \forall kazanue. \text{ Применить результата задачи } 5.81 \cdot \mathbf{k} \text{ функции } f(x) = x^n e^{-x} \cdot 5.87. \quad \forall kazanue. \text{ Воспользоваться результатом } \\ &\text{предыдущей задачи.} \quad 5.91. \quad (x-1)^3 - (x-1) + 1 \cdot 5.92. \\ &(x-4)^4 + 11(x-4)^3 + 37(x-4)^2 + 21(x-4) - 56 \cdot 5.93. \\ &(x+1)^5 - 5(x+1)^4 + 10(x+1)^3 \cdot 5.94. \quad x^6 - 9x^5 + 30x^4 - 45x^3 + 30x^2 - 9x + 1 \cdot 5.95. \\ &(x+1)^5 - 5(x+1)^4 + 10(x+1)^3 \cdot 5.94. \quad x^6 - 9x^5 + 30x^4 - 45x^3 + 30x^2 - 9x + 1 \cdot 5.95. \\ &(x+1)^5 - 5(x+1)^4 + \frac{1}{e}(x+1) + \frac{1}{2e}(x+1)^2 + \frac{1}{6e}(x+1)^3 + o\left((x+1)^3\right) \cdot 5.97. \\ &2 - (x-2) + (x-2)^2 - (x-2)^3 + o\left((x-2)^3\right) \cdot 5.98. \\ &1 - \frac{1}{2}(x-1) + \frac{3}{8}(x-1)^2 - \frac{5}{16}(x-1)^3 + o\left((x-1)^3\right) \cdot 5.99. \\ &1 + 2x + x^2 - \frac{2}{3}x^3 - \frac{5}{6}x^4 - \frac{1}{15}x^5 + o\left(x^5\right) \cdot 5.100.\mathbf{a}) \times + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^5\right). \\ &5.101.\mathbf{a}) \sum_{k=0}^n \frac{(-1)^k 2^{2k+1}}{(2k+1)!} \times x^{2k+1} + o\left(x^{2n+1}\right); \mathbf{b}) \sum_{k=0}^n \frac{e \cdot 5^k}{k!} x^k + o\left(x^n\right); \mathbf{e}) \end{aligned}$$

$$\begin{split} &1 + 2x + \sum_{k=2}^{n} \frac{(-1)^{k+1}(2k-3)!!2^{k}}{k!} x^{k} + o\left(x^{n}\right); \ \mathbf{f}, \ \frac{1}{2} + \sum_{k=1}^{n} \frac{(-1)^{k}5^{k}(2k-1)!!}{2 \cdot 8^{k}k!} x^{k} + o\left(x^{n}\right); \ \mathbf{g}) \\ &\ln 2 + \sum_{k=1}^{n} \frac{(-1)^{k+1}3^{k}}{k2^{k}} x^{k} + o\left(x^{n}\right); \ \mathbf{h}) \ 2 - \sum_{k=1}^{n} \frac{7^{k}}{k4^{k} \ln 2} x^{k} + o\left(x^{n}\right); \ \mathbf{i}) \\ &\sum_{k=0}^{n} \frac{9 \cdot (-1)^{k} \left(\ln 3\right)^{k}}{k!} x^{k} + o\left(x^{n}\right); \ \mathbf{j}) \sum_{k=1}^{n} \frac{(-1)^{k+1}4^{k}}{2 \cdot (2k)!} x^{2k} + o\left(x^{2n}\right); \ \mathbf{k}) \\ &x + \sum_{k=1}^{n} \frac{(-1)^{k}4^{k}}{2 \cdot (2k)!} x^{2k+1} + o\left(x^{2n+1}\right). \ \mathbf{5.102.a}) \ln \frac{2}{3} + \sum_{k=1}^{n} \frac{(-4)^{k}-9^{k}}{k6^{k}} x^{k} + o\left(x^{n}\right); \ \mathbf{b}) \\ &\ln 2 + \sum_{k=1}^{n} \frac{(-1)^{k-1} \left(1 + 2^{-k}\right)}{k} x^{k} + o\left(x^{n}\right); \ \mathbf{c}) \log 2 + \sum_{k=1}^{n} \frac{(-1)^{k-1}-2^{-k}}{k\ln 10} x^{k} + o\left(x^{n}\right); \ \mathbf{d}) \\ &\sum_{k=0}^{n} \frac{\sqrt{2}(-1)^{k}}{2^{2k+1} \cdot (2k)!} x^{2k} + \sum_{k=0}^{n} \frac{\sqrt{2}(-1)^{k+1}}{4^{k+1} \cdot (2k+1)!} x^{2k+1} + o\left(x^{2n+1}\right); \ \mathbf{c}) \\ &\sum_{k=1}^{n} \frac{(-1)^{k} \left(3 + 9^{k}\right)}{4 \cdot (2k)!} x^{2k} + o\left(x^{2n}\right); \ \mathbf{f}) \sum_{k=0}^{n} \frac{1-3^{k}}{k!} x^{k} + o\left(x^{n}\right); \ \mathbf{g}) \sum_{k=0}^{n} \frac{(-1)^{k}}{(2k+1)!} x^{2k} + o\left(x^{2n}\right). \\ &\mathbf{5.103.a}) \sum_{k=0}^{n} (-1)^{k} x^{2k+1} + o\left(x^{2n+1}\right); \ \mathbf{b}) \sum_{k=0}^{n} \frac{1}{3} \left((-1)^{k+1} - 2^{-(k+1)} \right) x^{k} + o\left(x^{n}\right); \ \mathbf{c}) \\ &\frac{5}{2} + \sum_{k=1}^{n} \frac{(-1)^{k}}{2^{k+1}} x^{k} + o\left(x^{n}\right); \ \mathbf{d}) - \frac{9}{4} - \frac{3}{2} x - \sum_{k=2}^{n} \frac{2^{k}}{3^{k-1}} x^{k} + o\left(x^{n}\right); \ \mathbf{e}) \\ &\sum_{k=0}^{n} (-1)^{k} \left(1 + 4^{-(k+1)}\right) x^{k} + o\left(x^{n}\right); \ \mathbf{f}) \frac{1}{3} + \sum_{k=1}^{n} \left((-1)^{k} 3^{-(k+1)} - 1 \right) x^{k} + o\left(x^{n}\right); \ \mathbf{g}) \\ &\frac{1}{2} + \sum_{k=1}^{n} \frac{1}{3} \left((-1)^{k+1} - 7 \cdot 2^{-(k+1)} \right) x^{k} + o\left(x^{n}\right); \ \mathbf{h}) \sum_{k=0}^{n} x^{4k+2} + o\left(x^{4n+2}\right). \ \mathbf{5.104.a}) \\ &1 + \sum_{k=1}^{n} \frac{k+1}{k!} x^{k} + o\left(x^{n}\right); \ \mathbf{h}) 1 + \sum_{k=1}^{n} \frac{(-1)^{k} \left(4^{k} - 2k\right)}{k!} x^{2k} + o\left(x^{4}\right); \ \mathbf{e}) - \frac{x^{2}}{2} - \frac{x^{4}}{12} + o\left(x^{4}$$

$$-2+\frac{1}{12}(x+8)+\frac{1}{9\cdot32}(x+8)^2+\frac{5}{2^8}(x+8)^3+\frac{5}{3^5\cdot2^{10}}(x+8)^4, |R(x)|\leq \frac{22\cdot\sqrt[3]{7}}{3^6\cdot7^5}; \ \mathbf{b})$$

$$x+\frac{1}{3}x^3+\frac{2}{15}x^5, |R(x)|\leq \frac{1}{45}\cdot\frac{2^6}{27\sqrt{3}}\left(\frac{\pi}{6}\right)^6\cdot\frac{189}{8}; \ \mathbf{c})$$

$$\frac{1}{e}-\frac{1}{2e}(x-1)^2+\frac{1}{3e}(x-1)^3-\frac{1}{8e}(x-1)^4+\frac{1}{30e}(x-1)^5-\frac{1}{144e}(x-1)^6, |R(x)|\leq \frac{1}{6!}; \ \mathbf{d})$$

$$2\ln 3+\left(\ln 3+\frac{2}{3}\right)(x-2)+\frac{1}{2}\cdot\frac{4}{9}(x-2)^2+\frac{1}{6}\cdot\frac{5}{27}(x-2)^3+\frac{1}{24}\cdot\frac{4}{27}(x-2)^4, |R(x)|\leq \frac{6}{5!}\cdot\frac{6}{32}\cdot5.107.\mathbf{a})\ 5(x-1)+130(x-1)^3; \ \mathbf{b})$$

$$a+(x-a)-\frac{1}{4a}(x-a)^2-\frac{1}{8a^2}(x-a)^3; \ \mathbf{c})\ x+x^3\cdot5.108.\mathbf{a})\cdot2; \ \mathbf{b})^{7/6}; \ \mathbf{c})-e/2; \ \mathbf{d})\ \pi/4;$$

$$\mathbf{c}^{11}; \ \mathbf{f}^{1,5}\cdot5.109.\mathbf{a}^{1,2}; \ \mathbf{b}\cdot\mathbf{b}^{2/3}; \ \mathbf{c})^{1/6}; \ \mathbf{c}^{1,5}\cdot\mathbf{f}^{3/2}; \ \mathbf{c}^{1,6}\cdot\mathbf{f}^{3/2}; \ \mathbf{c}^{1,6}\cdot\mathbf{c}^{1,6}\cdot\mathbf{f}^{3/2}; \ \mathbf{c}^{1,6}\cdot\mathbf{f}^{3/2}; \ \mathbf{c}^{1,6}\cdot\mathbf{f}^{3/2}; \ \mathbf{c}^{1,6}\cdot\mathbf{f}^{3/2}; \ \mathbf{c}^{1,6}\cdot\mathbf{f}^{3/2}; \ \mathbf{c}^{1,6}\cdot\mathbf{f$$

c) $y(-0.5 \ln 2) = 0$ - максимум; d) при $t = \frac{1 - \sqrt{5}}{2}$ - максимум, $t = \frac{1 + \sqrt{5}}{2}$ - минимум. **6.5.а)** y(0) = 0 - минимум; **b)** y(0) = 0 - минимум; **c)** максимум в точке $x = 5/\sqrt{6}$, минимум в точке $x = -5/\sqrt{6}$; **d)** максимум в точке $x = \sqrt[8]{3}$, минимум в точке $x = -\sqrt[8]{3}$. **6.10. a)** x = 0; **b)** x = 0. **6.11. a)** 9, -7; **b)** 2, -10 **c)** 1, $2\sqrt{2} - 2$; **d)** $5 - 2\sqrt{5}$, -1; **e)** $5 + \frac{3}{2} \ln 2$, 0; **f)** e^5 , $-e^3$; **g**) 1, $e^{-\mathrm{l}/e}$; **h**) 1, наименьшего нет; **i**) 3/4 , 3/4 ; **j**) π , $-\pi$. **6.12. a**)два; **b**)два; **c**) при a < 1 - один, a > 1 - три, a = 1 - два; **d)** при a > 1/e - нет корней, 0 < a < 1/e - два, $a \le 0$ один, a = 1/e - один. **6.14.**4+4. **6.15**. 6×6.6**.16**. 1см. **6.17**. $\sqrt[3]{4V}$. **6.18**. 0,5. **6.19**. $\frac{4\pi R^3}{3\sqrt{3}}$. **6.20**. $\frac{4\pi}{27}R^2H \cdot \textbf{6.21.} \frac{\sqrt{3}}{2}\pi R^3 \cdot \textbf{6.22.} \frac{2R}{\sqrt{3}} \cdot \textbf{6.23.} \ 2\pi\sqrt{2/3} \cdot \textbf{6.24.} \frac{|av_2 - bv_1|}{\sqrt{v_1^2 + v_2^2}} \cdot \textbf{6.25.} \left(a^{2/3} + b^{2/3}\right)^{3/2}.$ **6.26.** $\operatorname{tg} \varphi = \sqrt[3]{b/a}$, φ - угол наклона прямой. **6.27.** x = a - p/2 , если a > p/2 , x = 0 , если $a \leq p/2$. **6.28.** ab . **6.29.** \sqrt{ab} . **6.30.** $BD = b - a/\sqrt{k^2-1}$, если $b > a/\sqrt{k^2-1}$, BD = 0 , если $b \le a/\sqrt{k^2-1}$. **6.31. a)** $\left(-1/2,1/2\right)$ - выпукла вверх, $\left(-\infty,-1/2\right),\left(1/2,\infty\right)$ - выпукла вниз, $x=\pm 1/2$ - точки перегиба; **b**) $\left(-\infty,-1\right),\left(1,\infty\right)$ - выпукла вверх, $\left(-1,1\right)$ - выпукла вниз, точек перегиба нет; **c**) $(-\infty, -1)$ - выпукла вниз, $(-1, \infty)$ - выпукла вверх, x = -1 точка перегиба; **d**) $(2\pi k, \pi(2k+1))$ - выпукла вверх, $(\pi(2k+1), 2\pi(k+1))$ - выпукла вниз, $x = \pi k$ - точки перегиба, $k \in \mathbb{Z}$; е) $\left(-\infty, -1/\sqrt{2}\right), \left(1/\sqrt{2}, \infty\right)$ - выпукла вниз, $\left(-1/\sqrt{2}\,,1/\sqrt{2}\,\right)$ - выпукла вверх, $x=\pm 1/\sqrt{2}\,$ - точки перегиба; **f**) $\left(0,10e\sqrt{e}\,\right)$ - выпукла вверх, $(10e\sqrt{e},\infty)$ - выпукла вниз, $x=10e\sqrt{e}$ - точка перегиба; **g**) $(-\infty,0)$ - выпукла вверх, $(0,\infty)$ - выпукла вниз, точек перегиба нет; **h**) $(-\infty,1/2)$ - выпукла вниз, $(1/2,\infty)$ выпукла вверх, x=1/2 - точка перегиба; i) $\left(-\infty,0\right)$, $\left(8,\infty\right)$ - выпукла вниз, $\left(0,8\right)$ - выпукла вверх, x=0, x=8 - точки перегиба. **6.32.** a) $x=-2\pm\sqrt{3}$; b) $x=\pm2$; c) $x=e^{8/3}$; d) $x = \frac{\pi}{12} (6k + (-1)^k), k \in \mathbb{Z}$; **e)** x = 3; **f)** точек перегиба нет. **6.35. a)** (1,4), (1,-4); **b)** (0,0), (4,8), (9/2,27/2).**6.37.** а) $D(f) = \mathbb{R}$, y(1/4) = -27/256 - минимум, точки перегиба (1/2, -1/16), (1,0); b) $D(f) = \mathbb{R}$, четная, y(0) = -1 - минимум. Точки перегиба $(\pm 1,0)$, $(\pm \sqrt{5}/5, -64/125)$.

Асимптот нет; c) $D(f) = \mathbb{R}$, нечетная, y(1) = 0.5 - максимум, y(-1) = -0.5 - минимум, точки перегиба $(-\sqrt{3}, -\sqrt{3}/4), (0,0), (\sqrt{3}, \sqrt{3}/4),$ асимптота y = 0; **d**) $D(f) = \mathbb{R} \setminus \{-1,1\}$, нечетная, экстремумов нет, точка перегиба (0,0) . Асимптоты $x=\pm 1$, y = 0; e) $D(f) = \mathbb{R} \setminus \{-\sqrt{3}, \sqrt{3}\}$, нечетная, y(3) = -4,5 - максимум, y(-3) = 4,5 - минимум, точка перегиба (0,0) . Асимптоты $x=\pm\sqrt{3}$, x+y=0 ; f) $D(f)=\mathbb{R}\setminus\{1\}$, y(0) = 0 - максимум, $y(\sqrt[3]{4}) = 4\sqrt[3]{4}/3$ - минимум. Точка перегиба $(-\sqrt[3]{2}, -2\sqrt[3]{2}/3)$. Асимптоты x=1, y=x; **g)** $D(f)=\mathbb{R}$, $y(1-\sqrt{2})=3-2\sqrt{2}$ - минимум, $y(1+\sqrt{2})=3+2\sqrt{2}$ - максимум. Точки перегиба $\left(-\sqrt{3},2-\sqrt{3}\right),\left(\sqrt{3},2+\sqrt{3}\right),\left(3,5\right)$. Асимптота y = 1; **h**) $D(f) = \mathbb{R} \setminus \{2\}$, y(0) = 1/4 - максимум, y(1) = 0, y(5) = 32/3 минимумы. Точка перегиба (5/7,16/185). Асимптоты x=2, y=x+3; i) $D(f) = \mathbb{R} \setminus \{1\}$, y(-1) = 0 - минимум. Точка перегиба (-4,81/625) . Асимптоты y = 1 , x=1. **6.38.** а) $D(f)=(-\infty,-1]\cup[1,+\infty)$. Убывает на $(-\infty,-1]$, возрастает на $[1,+\infty)$. Выпукла вверх. Асимптоты y=2x при $x\to +\infty$, y=0 при $x\to -\infty$; **b)** $D(f)=(-\infty,1]$. $y(2/3) = 2/(3\sqrt{3})$ - максимум, y(0) = 0 - острый минимум, y(1) = 0 - гладкий минимум; c) $D(f) = [-1, +\infty)$, $y(-2/5) = -6\sqrt{15}/125$ - минимум. Точка перегиба $\left(-4/5, -4/(25\sqrt{5})\right)$; **d**) $D(f) = (-\infty, -2) \cup (2, +\infty)$, нечетная. Убывает на $(-\infty, -2)$ и $(2,+\infty)$. Асимптоты $y=8, x=\pm 2$; е) $D(f)=(-\infty,0]\cup [4,+\infty)$. Убывающая. Асимптоты y = -1 при $x \to +\infty$, y = 1 при $x \to -\infty$; **f)** $D(f) = \mathbb{R}$, нечетная. $y(-\sqrt{3}) = -3\sqrt{3}/2$ - минимум, $y(\sqrt{3}) = 3\sqrt{3}/2$ - максимум. Точка перегиба (0,0). Асимптоты y = -(x-8)/2 при $x \to +\infty$, y = -(x+8)/2 при $x \to -\infty$; **g**) $D(f) = (-\infty, -2) \cup (2, +\infty)$. y(-6) = 0 - острый минимум. Асимптоты y = 1, $x = \pm 2$. **6.39.** а) $D(f) = \mathbb{R}$, убывает, точки перегиба (1,0), (0,1). Асимптота x+y=0; b) $D(f) = \mathbb{R}$. y(3) = -3 - острый минимум, y(1/3) = 1 - максимум. Точка перегиба (0,0) . Асимптота y = -2; c) $D(f) = \mathbb{R}$, $y(4) = 2\sqrt[3]{4}$ - максимум, y(0) = 0 - минимум. Точка перегиба (6,0). Асимптота x+y=2; **d)** $D(f)=\mathbb{R}\setminus\{-1\}$. $y(-1,5)=3\sqrt[3]{2}/2$ - минимум. Точка перегиба $\left(-3,3\sqrt[3]{4}/2\right)$. Асимптота x=-1; е) $D(f)=\mathbb{R}\setminus\{2\}$. $y(6)=3/\sqrt[3]{2}$ -

минимум. Точка перегиба $(12,12/\sqrt[3]{100})$. Асимптота x=2. **6.40.** a) D(f)=[-1,1], четная. y(0) = 0 - острый минимум, $y(\pm \sqrt{2}/2) = 1/2$ - максимумы; **b**) $D(f) = \mathbb{R} \setminus \{2\}$. y(1) = 0 - острый максимум, y(0) = -2 - минимум. Точки перегиба $(\pm 2\sqrt{3}/3, -\sqrt{2\sqrt{3}})$. Асимптоты y=0, x=2; c) $D(f)=\mathbb{R}$. $y(0)=\sqrt{3}$ - острый максимум, $y(3)=\sqrt{2}/4$ гладкий максимум, y(2) = 1/3 - острый минимум. Точка перегиба $((9+4\sqrt{3})/3, \sqrt[4]{3}/4)$. Асимптота y = 0; **d**) $D(f) = \mathbb{R}$. y(0) = 0, y(2) = 0 - острые минимумы, $y(4/3) = 2\sqrt[3]{4}/3$ - максимум. Асимптоты y = x - 2/3 при $x \to +\infty$, y = -x + 2/3 при $x \to -\infty$. Выпуклость вверх. **6.41. a)** $D(f) = \mathbb{R}$, $y(1) = e^{-1}$ - максимум, точка перегиба $(2,2e^{-2})$, асимптота y=0; **b**) $D(f)=\mathbb{R}$, нечетная, $y(1)=1/\sqrt{e}$ - максимум, $y(-1) = -1/\sqrt{e}$ - минимум. Точки перегиба (0,0), $(\sqrt{3},\sqrt{3}e^{-3/2})$, $(-\sqrt{3},-\sqrt{3}e^{-3/2})$. Асимптота y=0; c) $D(f)=\mathbb{R}\setminus\{-1\}$. Асимптоты y=1/e, x=-1 при $x\to -1+0$, y(-1-0)=0. Точка перегиба $\left(-2,e^{-3}\right)$; **d)** $D(f)=\left(-1,+\infty\right),\ y(0)=0$ - минимум, точек перегиба нет. Асимптота x=-1; е) $D(f)=(0,+\infty)$. y(1)=0 - минимум, $y(e^2)=4/e^2$ максимум. Точки перегиба при $x = e^{\left(3\pm\sqrt{5}\right)/2}$. Асимптоты y = 0, x = 0. **6.42. a)** $D(f) = \mathbb{R}$, периодическая с периодом 2π . $y(\pi/6+2\pi k)=y(5\pi/6+2\pi k)=1/4$ - максимумы, $y(\pi/2 + \pi k) = 0$ - минимумы. Точки перегиба при $x = \arcsin((1 + \sqrt{33})/8) + 2\pi k$, $x = \pi (2k+1) - \arcsin((1+\sqrt{33})/8), x = \pi (2k+1) + \arcsin((\sqrt{33}-1)/8),$ $x=2\pi k-rcsinrac{\sqrt{33-1}}{\circ}$, $k\in\mathbb{Z}$; **b)** $D(f)=\mathbb{R}$, периодическая с периодом 2π , четная. На отрезке $[0,\pi]$: y(0)=1, $y(\pi-\arcsin\sqrt{5/6})=2/(3\sqrt{6})$ - максимумы, $y(\arcsin\sqrt{5/6}) = -2/(3\sqrt{6}), \ y(\pi) = -1$ - минимумы, точки перегиба при $x = \arccos \sqrt{13/18}$, $x = \pi/2$, $x = \pi - \arccos \sqrt{13/18}$; c) $D(f) = \mathbb{R} \setminus \{\pi/2 + \pi k, k \in \mathbb{Z}\}$, периодическая с периодом 2π , четная. На интервале $(-\pi/2,3\pi/2)$: y(0) = 1 - максимум, $y(\pi) = -1$ - минимум. Асимптоты $x = \pi/2 + \pi k, k \in \mathbb{Z}$; **d)** $D(f) = \mathbb{R} \setminus \{\pi/2 + \pi k, k \in \mathbb{Z}\}$, нечетная. $y(\pi/4+\pi k)=\pi/2+2\pi k$ - максимумы, $y(3\pi/4+\pi k)=3\pi/2+2\pi k+1$ -

минимумы, $k \in \mathbb{Z}$. Точки перегиба $(\pi k, 2\pi k)$, $k \in \mathbb{Z}$. Асимптоты $x = \pi/2 + \pi k$, $k \in \mathbb{Z}$. **6.43. a)** $D(f) = \mathbb{R}$. $y(-1) = 3\pi - 2$ - максимум, $y(1) = \pi + 2$ - минимум. Точка перегиба $(0,2\pi)$. Асимптоты y = 2x при $x \to +\infty$, $y = 2x + 4\pi$ при $x \to -\infty$; **b)** $D(f) = \mathbb{R}$. $y(0) = \pi/2$ - острый максимум, минимум при x = -4. Асимптота $y = -\frac{2x}{17} - \frac{\pi}{2}$; **c)** $D(f) = \mathbb{R}$. Выпуклость вниз. Асимптоты $y = 1/\pi$ при $x \to -\infty$, y = x при $x \to +\infty$; **d)** $D(f) = (-\infty, -1] \cup [1, +\infty)$. Максимум при $x = -2\sqrt{3}/3$, минимум при $x = 2\sqrt{3}/3$. Асимптота $y = (3x - \pi)/2$; **e)** $D(f) = \mathbb{R}$, нечетная. $y((2 - \pi)/4) = 1$ - максимум, $y((\pi - 2)/4) = -1$ -минимум. Точка перегиба (0,0). Асимптоты $y = (x + \pi)/2$ при $x \to -\infty$, $y = (x - \pi)/2$ при $x \to +\infty$. **6.44.** a) $D(f) = (0, +\infty)$. Минимум при x = 1/e. y(+0) = 1. Выпуклость вниз; **b)** $D(f) = (-1,0) \cup (0, +\infty)$, $y(\pm 0) = e$. Выпуклость вниз. Асимптоты x = -1, y = 1.

7.1.a)
$$\vec{i} + \vec{j}$$
; b) $-\vec{i} - \vec{j}/\pi + \pi \vec{k}$. 7.2. a) $x - t_0 = (y - t_0^2)/(2t_0) = (z - t_0^3)/(3t_0^2)$; b) $x = 1$, $z = -1$; c) $x = y = z - 1$. 7.3. a) $x - 1 = (y - 1)/2 = (z - 1)/3$, $x + 2y + 3z - 6 = 0$; b) $x = y + 1 = z$, $x + y + z = 2$. 7.4. $x/x_0 + y/y_0 + z/z_0 = 1$. 7.6. $(-2,12,14)$, $(-2,3,-4)$. 7.7. $8(x + y + z) = 5$. 7.8. \sqrt{a}/c , \sqrt{b}/c , $\sqrt{2z_0}/c$, fig. $c = \sqrt{a + b + 2z_0}$. 7.9. $x + (-1)^m z\sqrt{2} = (0,5 + (-1)^n)R$, $2y = (-1)^n R$, $m, n = 0,1$.

ЛИТЕРАТУРА

- **1.** Т.В.Родина, Е.С.Трифанова. Курс лекций по математическому анализу I для напр. «Прикладная математика и информатика». Учебное пособие. СПбГУ ИТМО, 2010.
- **2.** Л.Д.Кудрявцев и др. Сборник задач по математическому анализу. Том 1. Физматлит, 2003.
- 3. И.А.Виноградова, С.Н.Олехник, В.А.Садовничий. Задачи и упражнения по математическому анализу. Дрофа, 2004.
- **4.** Б.П.Демидович. Сборник задач и упражнений по математическому анализу. ACT, 2009.
- **5.** Г.М.Фихтенгольц. Курс дифференциального и интегрального исчисления, Том 1, Лань, 2009.
- **6.** А.М.Тер-Крикоров, М.И.Шабунин. Курс математического анализа, Физматлит, 2003.
- 7. Л.Д.Кудрявцев. Курс математического анализа. Том 1. Дрофа, 2006.

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования и науки Российской Федерации была утверждена Программа развития государственного образовательного учреждения высшего профессионального образования «Санкт-Петербургский государственный университет информационных технологий, механики и оптики» на 2009–2018 годы.

КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Кафедра высшей математики (ВМ) была организована в 1931 году. Первым заведующим кафедрой был профессор Г.Д. Гродский. С конца 1936 года кафедрой ВМ заведовал профессор И.П. Натансон, известный специалист по теории функций действительной переменной. В 1944 году заведующим кафедрой ВМ становится профессор В.А. Тартаковский (1901-1973), замечательный математик и педагог. Владимир Абрамович Тартаковский является одним из крупнейших советских алгебраистов. Им получены пользующиеся мировой известностью результаты по проблеме тождества в теории бесконечных групп. Известность получили также его работы по использованию теоретикочисловых методов в теории изгибания поверхностей, теории диофантовых уравнений.

Обладая исключительной энергией, В.А. Тартаковский уделял много внимания научной и общественной работе. Ещё в тридцатые годы он в составе комиссии Наркомпроса участвовал в разработке программы по математике для средней школы. В течение долгого времени был членом президиума учебнометодического совета при Министерстве высшего и среднего специального образования СССР, входил в комиссию по реформе математического образования в стране. Был одним из инициаторов проведения среди школьников Ленинграда первой математической олимпиады. В.А. Тартаковский участвовал в организации Ленинградского отделения математического института им. В.А. Стеклова и был первым его директором.

В разное время на кафедре ВМ преподавали академик В.И. Смирнов, член-корреспонпент АН АН СССР Д.К. Фаддеев, проф. И.С. Соминский, проф. Ф.И. Харшиладзе, проф. А.Ф. Андреев, проф. Ю.В. Аленицын, проф. И.А. Молотков. В 1979 году кафедру возглавил доктор технических наук, профессор В.Г. Дегтярёв, специалист по теории устойчивости и теории движения косми-

ческих аппаратов. С 1997 года кафедрой руководит доктор физикоматематических наук, профессор И.Ю. Попов, в область научных интересов которого входят теория рассеяния, теория операторов, моделирование сложных физических систем.

Кафедра ВМ осуществляет обучение студентов всех специальностей университета по дисциплине "Высшая математика" и читает ряд специальных дисциплин математического цикла. Кафедра ведет подготовку бакалавров и магистров по направлению "Прикладная математика и информатика". Кафедра ВМ является самой большой кафедрой в университете по числу преподавателей. Среди её сотрудников 7 докторов и 19 кандидатов наук. Преподаватели кафедры активно участвуют как в фундаментальных исследованиях по математике и теоретической физике, так и в прикладных научно-технических исследованиях, принимают активное участие в работе российских и международных научных конференций, выступают с докладами и преподают за рубежом. За последние 5 лет сотрудниками кафедры опубликовано более 300 работ в отечественных и зарубежных научных изданиях. Областью научных интересов профессора А.Г.Петрашеня является теория взаимодействия излучения с веществом, оптика и спектроскопия. Профессор В.П. Смирнов – специалист по теории твёрдого тела и применению теории групп в квантовой механике. Профессор Жук В.В. – один из ведущих в мире ученых в области дифференциальных уравнений. Профессор В.Ю. Тертычный занимается теорией оптимального управления механическими системами. Профессор Уздин В.М. является известным специалистом в физике магнитных наносистем. Профессор Мирошниченко Г.П. активно занимается изучением взаимодействия излучения с веществом.

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, которым присвоена категория «Национальный исследовательский университет». Министерством образования и науки Российской Федерации была утверждена Программа развития государственного образовательного учреждения высшего профессионального образования «Санкт-Петербургский государственный университет информационных технологий, механики и оптики» на 2009–2018 годы.

КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Кафедра высшей математики (ВМ) была организована в 1931 году. Первым заведующим кафедрой был профессор Г.Д. Гродский. С конца 1936 года кафедрой ВМ заведовал профессор И.П. Натансон, известный специалист по теории функций действительной переменной. В 1944 году заведующим кафедрой ВМ становится профессор В.А. Тартаковский (1901-1973), замечательный математик и педагог. Владимир Абрамович Тартаковский является одним из крупнейших советских алгебраистов. Им получены пользующиеся мировой известностью результаты по проблеме тождества в теории бесконечных групп. Известность получили также его работы по использованию теоретикочисловых методов в теории изгибания поверхностей, теории диофантовых уравнений.

Обладая исключительной энергией, В.А. Тартаковский уделял много внимания научной и общественной работе. Ещё в тридцатые годы он в составе комиссии Наркомпроса участвовал в разработке программы по математике для средней школы. В течение долгого времени был членом президиума учебнометодического совета при Министерстве высшего и среднего специального образования СССР, входил в комиссию по реформе математического образования в стране. Был одним из инициаторов проведения среди школьников Ленинграда первой математической олимпиады. В.А. Тартаковский участвовал в организации Ленинградского отделения математического института им. В.А. Стеклова и был первым его директором.

В разное время на кафедре ВМ преподавали академик В.И. Смирнов, член-корреспонпент АН АН СССР Д.К. Фаддеев, проф. И.С. Соминский, проф. Ф.И. Харшиладзе, проф. А.Ф. Андреев, проф. Ю.В. Аленицын, проф. И.А. Молотков. В 1979 году кафедру возглавил доктор технических наук, профессор В.Г. Дегтярёв, специалист по теории устойчивости и теории движения косми-

ческих аппаратов. С 1997 года кафедрой руководит доктор физикоматематических наук, профессор И.Ю. Попов, в область научных интересов которого входят теория рассеяния, теория операторов, моделирование сложных физических систем.

Кафедра ВМ осуществляет обучение студентов всех специальностей университета по дисциплине "Высшая математика" и читает ряд специальных дисциплин математического цикла. Кафедра ведет подготовку бакалавров и магистров по направлению "Прикладная математика и информатика". Кафедра ВМ является самой большой кафедрой в университете по числу преподавателей. Среди её сотрудников 7 докторов и 19 кандидатов наук. Преподаватели кафедры активно участвуют как в фундаментальных исследованиях по математике и теоретической физике, так и в прикладных научно-технических исследованиях, принимают активное участие в работе российских и международных научных конференций, выступают с докладами и преподают за рубежом. За последние 5 лет сотрудниками кафедры опубликовано более 300 работ в отечественных и зарубежных научных изданиях. Областью научных интересов профессора А.Г.Петрашеня является теория взаимодействия излучения с веществом, оптика и спектроскопия. Профессор В.П. Смирнов - специалист по теории твёрдого тела и применению теории групп в квантовой механике. Профессор Жук В.В. – один из ведущих в мире ученых в области дифференциальных уравнений. Профессор В.Ю. Тертычный занимается теорией оптимального управления механическими системами. Профессор Уздин В.М. является известным специалистом в физике магнитных наносистем. Профессор Мирошниченко Г.П. активно занимается изучением взаимодействия излучения с веществом.

Татьяна Васильевна Родина Екатерина Станиславовна Трифанова

Задачи и упражнения по математическому анализу - I (для направления «Прикладная математика и информатика») Учебное пособие

В авторской редакции

Дизайн Е.С. Трифанова

Верстка Т.В. Родина, Е.С. Трифанова

Редакционно-издательский отдел Санкт-Петербургского государственного университета информационных технологий, механики и оптики

Зав. РИО Н.Ф. Гусарова

Лицензия ИД № 00408 от 05.11.99

Подписано к печати 18.03.2010

Заказ № 2207

Тираж 100

Отпечатано на ризографе

Редакционно-издательский отдел

Санкт-Петербургского государственного университета информационных технологий, механики и оптики 197101, Санкт-Петербург, Кронверкский пр., 49

