

RU⁽¹¹⁾ 2 017 695 ⁽¹³⁾ C1

(51) M⊓K⁵ C 03 C 13/02

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 5036916/33, 13.04.1992
- (46) Дата публикации: 15.08.1994
- (56) Ссылки: **1.** Патент Франции N **1435073**, кл. С 03 С, опубл. 1968.2. Патент США N 4534796, кл. 106-99, опубл. 1985.
- (71) Заявитель: Научно-производственное объединение "Стеклопластик"
- (72) Изобретатель: Трофимов Н.Н., Хазанов В.Е., Доброскокин Н.В., Шаина 3.И., Трофимов А.Н.
- (73) Патентообладатель: Акционерное общество "НПО "Стеклопластик"

S တ

ဖ

(54) СТЕКЛО ДЛЯ ПРОИЗВОДСТВА СТЕКЛОВОЛОКНА

(57) Реферат:

Использование: для армирования конструкционных стеклопластиков, аэронавтике, применяемых В аэрокосмической технике, в индустрии спорта и отдыха. Сущность изобретения: стекло для стекловолокна содержит в мас.%: оксид кремния 57 - 60 БФ SiO₂; оксид алюминия 24 - 26 БФ Al₂O₃; оксид магния 4 - 9 БФ MgO;

оксид кальция 6 - 10 БФ СаО; оксид титана 0,4 - 0,8 БФ TiO_2 ; оксид циркония 0,07 -0,15 БФ ZrO₂ ; оксид железа 0,2 - 0,45 БФ Fe $_2O_3$; оксид натрия 0,05 - 0,3 БФ Na $_2O$; оксид калия 0,05 - 0,3 БФ K_2 О . Прочность волокна 3800 - 4100 МПа, температура формования 1340 - 1390°C, вязкость при температуре формования $10^{3,1}$ - $10^{3,5}$ Π_3 , 2

-1-

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 017 695 ⁽¹³⁾ C1

(51) Int. Cl.⁵ C 03 C 13/02

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 5036916/33, 13.04.1992

(46) Date of publication: 15.08.1994

(71) Applicant:
NAUCHNO-PROIZVODSTVENNOE
OB"EDINENIE "STEKLOPLASTIK"

- (72) Inventor: TROFIMOV N.N., KHAZANOV V.E., DOBROSKOKIN N.V., SHAINA Z.I., TROFIMOV A.N.
- (73) Proprietor:

 AKTSIONERNOE OBSHCHESTVO "NPO
 "STEKLOPLASTIK"

(54) GLASS FOR FIBER GLASS MAKING

(57) Abstract:

FIELD: glass industry. SUBSTANCE: glass has, wt.-%: silica (SiO₂) 57-60; alumina (Al₂O₃) 24-26; magnesium oxide (MgO) 4-9; calcium oxide (CaO) 6-10; titanium oxide (TiO₂) 0.4-0.8; zirconium oxide (ZrO₂) 0.07-0.15; ferric oxide (Fe₂O₃) 0.2-0.45; sodium oxide

(Na $_2\text{O})$ 0.05-0.3; potassium oxide (K $_2\text{O})$ 0.05-0.3. Properties: fiber strength is 3800-4100 MPa, forming point is 1340-1390 C, viscosity at forming point is $10^{3,1}\text{--}\ 10^{3,5}\ \Pi$ Poise. Glass is used for reinforcement of structural fiber glass plastics. EFFECT: enhanced quality of material. 2 tbl

Изобретение относится к составам стекол для производства высокопрочного волокна, в частности непрерывного, которое может быть для изготовпения использовано конструкционных стеклопластиков, применяемых в промышленности высоких технологий, таких как аэронавтика, аэрокосмическая техника, ядерная промышленность, а также индустрия спорта и отдыха.

Анализ современных и перспективных технологических требований к стеклянным волокнам показывает, что главным критерием, определяющим достижение новых качественных характеристик и создание нового поколения изделий, является не только повышение отдельных показателей, таких как температуроустойчивость, прочность, модуль упругости, заданы диэлектрические свойства, высокая стойкость к усталости, старению, коррозии и, главным образом, их сочетание, т.е. создание многофункциональных стеклянных волокон.

Известен состав стекла [1], включающий, мас.%: SiO_2 - 50-65; Al_2O_3 - 20-30; MgO - 5-20; CaO - 2-10.

Модуль упругости указанного стекла составляет 86000 МПа, а прочность стекловолокна 3600 МПа.

Недостатком состава марки R является высокая температура формования волокна, определяемая содержанием SiO Al_2O_3 (соответственно 60 и 25 мас. %), которая приводит к значительному снижению срока службы платиновых стеклоплавильных сосудов. Следует отметить, что стоимость стекловолокна в значительной степени определяется расходом платиновых металлов на выработку волокна. Кроме того, основные физико-механические показатели (модуль упругости И прочность) стекловолокна состава R ниже известного стекла ВМП (а. с. N 1630233, кл. С 03 C 13/00, 1987) -95000 и 4500 МПа соответственно.

Недостатками стекла ВМП является низкая вязкость и высокая кристаллизационная способность при формовании волокна.

Наиболее близким к предложенному по технической сущности и свойствам является техническое решение [2], включающее: SiO_2 25-54%; Al_2O_3 20-40%; MgO 24-40%; ZrO_2 1-5%; P_2O_5 0-10%; TiO_2 0-10%; P_2O_3 0-2%.

Недостатками этого стекла является то, что для его производства необходимы дорогостоящие сырьевые материалы, такие как жженая магнезия, фосфоро- и боросодержащие материалы. Кроме того, применение фосфора и бора ухудшает экологическую обстановку при высокотемпературной варке этого стекла. Низкое содержание SiO2 при высоких концентрациях MgO и Al 2O3 приводит к значительному повышению температуры формования и снижению вязкости, что значительно затрудняет процесс формования непрерывного волокна.

Цель изобретения - синтез высокопрочного высокомодульного стеклянного волокна из дешевого отечественного сырья, обладающего повышенной вязкостью, пониженной

кристаллизационной способностью и пониженной температурой формования, что обеспечивает возможность формования высокопрочных высокомодульных стеклянных волокон на многофильерных стеклоплавильных сосудах (400-, 800-фильерных) при увеличенных сроках службы последних.

Поставленная цель достигается тем, что стекло для производства стекловолокна, включающее SiO_2 , Al_2O_3 , MgO, TiO_2 , ZrO_2 , дополнительно содержит CaO, Fe_2O_3 , Na_2O , K_2O при следующем соотношении компонентов, мас.%: SiO_2 57-60 Al_2O_3 24-26 MgO 4-9 CaO 6-10 TiO_2 0,4-0,8 ZrO_2 0,07-0,15 Fe_2O_3 0,2-0,45 K_2O 0,05-0,3 Na_2O 0,05-0,3

Причем CaO + MgO вводится через природное дешевое сырье - доломит, что обеспечивает возможность формования непрерывных стеклянных волокон с высокими значениями прочности на многофильерных стеклоплавильных сосудах.

Введение диоксида титана в пределах 0,4-0,8 мас.% и оксида железа (0,2-0,45 мас. %) приводит к увеличению скорости твердения стекла, т.е. улучшению формуемости волокна в процессе выработки. Введение малых добавок двуоксида циркония приводит к повышению прочности волокна. Введение добавок щелочных оксидов натрия и калия в количестве от 0,05 до 0,3 мас.% понижает кристаллизационную способность стекла и, следовательно, температуру формования волокна, что приводит к увеличению срока службы многофильерных стеклоплавильных сосудов.

Стекло получают по обычной технологии. Для облегчения стекловарения, снижения энергозатрат на производство стекла и снижения стоимости получаемого материала в качестве сырьевых материалов принимается комплексное сырье: каолин и доломит.

Применение комплексного сырья вместо чистых оксидов элементов позволяет улучшить технологические характеристики.

Конкретные составы стекол приведены в табл. 1.

Свойства стекол приведены в табл. 2.

Стекла обладают улучшенными технологическими свойствами и позволяют получать непрерывные высокопрочные высокомодульные стеклянные волокна путем формования на многофильерных (400-600-фильерных) стеклоплавильных

агрегатах, рассчитанных на многотоннажное производство.

Из составов стекла выработаны опытные партии комплексных нитей при устойчивом процессе формования, получены опытные партии армирующих материалов в виде ровингов, тканей и крученых нитей.

Изобретение может быть использовано для производства высокопрочных стеклянных волокон для армирования конструкционных композитов.

Технико-экономическая эффективность от использования стекла заключается в значительном улучшении технологических характеристик стекла при использовании недефицитных дешевых сырьевых материалов, таких как доломит и каолин.

Себестоимость стекловолокнистых

-3-

60

45

материалов из предлагаемого состава стекла дополнительно содержит СаО, Fe₂O₃, K₂O и 30-40% ниже себестоимости Na₂O при следующем соотношении стекловолокнистых материалов из стекла компонентов, мас.%: прототипа. SiO₂ 57 - 60 Срок службы стеклоплавильных сосудов Al₂O₃ 24 - 26 при выработке волокна из стекла MgO 4 - 9 предлагаемого состава увеличивается в TiO₂ 0,4 - 0,8 1,1-1,3 раза, что ведет к экономии ZrO₂ 0,07 - 0,15 платиновых металлов. CaO 6 - 10 Формула изобретения: Fe₂O₃ 0,2 - 0,45 СТЕКЛО ДЛЯ ПРОИЗВОДСТВА 10 **K**₂O 0,05 - 0,3 СТЕКЛОВОЛОКНА, включающее SiO_2 , Al_2O_3 , Na₂O 0,05 - 0,3 MgO, TiO₂, ZrO₂, отличающееся тем, что оно 15 20 25 30 35 40 45 50 55

60

ဖ

Оксиды, мас.%	Пример							
	1	2	3	4	5			
SiO ₂	60,00	58,50	59,60	57,50	57,00			
Al ₂ O ₃	24,00	25,00	26,00	25,50	26,00			
MgO	9,00	6,00	4,00	6,20	6,23			
CaO	6,00	9,00	8,50	9,25	10,00			
TiO ₂	0,40	0,60	0,60	0,45	0,40			
Fe ₂ O ₃	0,20	0,35	0,40	0,45	0,20			
ZrO ₂	0,10	0,10	0,10	0,15	0,07			
Na ₂ O	0,10	0,30	0,30	0,20	0,05			
K ₂ O	0,20	0,15	0.30	0,30	0,05			

Таблица 2

Свойство	Состав стекла					
	1	2	3	4	5	
Модуль упругости, МПа	90000	92000	91000	91000	90000	82000
Проч њ ость волокна, МПа	3600	4000-4200	3900	4000	3600	3000
Температура формо- вания, ^о С	1390	1350	1360	1340	1370	1440
Вязкость при темпе- ратуре формования, пуаз	10 ^{3,5}	10 ^{3,4}	10 ^{3,2}	10 ^{3,1}	10 ^{3,1}	10 ^{2,1}

R ⊂

0

6 9 5

C 1