

## RAJARATA UNIVERSITY OF SRILANKA

## **FACULTY OF APPLIED SCIENCES**

B.Sc. (General) Degree

Second Year-Semester II Examination-March/April 2014

## **MAP 2202 - REAL ANALYSIS II**

Answer FOUR Questions Only TimeAllowed: Two hours

1. (a) Determine whether the following series are convergent or divergent. Specify the test you use in each part.

i. 
$$\sum_{n=0}^{\infty} \left( \frac{n^2+1}{2n^2-1} \right)^n$$

ii. 
$$\sum_{n=0}^{\infty} \frac{2^{3n}}{3^{2n-1}}$$

iii. 
$$\sum_{n=0}^{\infty} ne^{-n^2}$$

iv. 
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

$$v. \quad \sum_{n=1}^{\infty} \frac{n^3}{3^n}$$

(b) Find the radius of convergence and interval of convergence of the series:

i. 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$$

ii. 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$$

If k is a positive integer, find the radius of convergence of the series  $\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} x^n$ .

2. (a) Show that a constant function is Riemann integrable.

(b) If 
$$f(x) = x^3$$
 is defined on  $[0, a]$ , show that  $\int_0^a f(x) dx = \frac{a^4}{4}$ .

3. (a) Determine if the following limits exist or not. If they do exist give the value of the limit.

i. 
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4+3y^4}$$

ii. 
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$$

iii. 
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2 y}{x^2 + 2y^2}$$

iv. 
$$\lim_{(x,y)\to(1,2)} \frac{5x^2y}{x^2+y^2}$$

(b) Determine whether the function is continuous at the stated point.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} & ; if(x,y) \neq (0,0) \\ 0 & ; if(x,y) = (0,0) \end{cases}$$

- 4. (a) Find the maxima and minima of the function  $z = x^2 + xy + y^2 y$ .
  - (b) Find the minimum and maximum of the function  $f(x, y, z) = x^2 y^2 + 2z^2$  on the surface of the sphere defined by the equation  $x^2 + y^2 + z^2 = 1$ .
  - (c) A jewel box is to be constructed of material that costs \$1 per square inch for the bottom, \$2 per square inch for the sides, and \$5 per square inch for the total volume is to be 96 in.<sup>3</sup> what dimensions will minimize the total cost of construction?

5. Assuming the validity of differentiation under the integral sign,

i. Show that 
$$\int_{0}^{\pi/2} \frac{\log(1 + \cos\alpha \sin x)}{\cos x} dx = \frac{1}{2} \left( \frac{\pi^2}{4} - \alpha \right)$$

ii. Given 
$$\int_{0}^{x} \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$$
. Show that

$$\int_{0}^{x} \frac{dx}{\left(x^{2} + a^{2}\right)^{2}} = \frac{1}{2a^{3}} \tan^{-1} \frac{x}{a} + \frac{x}{2a^{2}(x^{2} + a^{2})}$$

- 6. (a) Evaluate the integral  $\iint_{R} (x y^2) dx dy$  over the region  $R = \{(x, y) | 2 \le x \le 3, 1 \le y \le 2\}$ .
  - (b) Evaluate the integral  $\iint_R (x^2 + y^2) dx dy$ , where R is bounded by the lines

$$y = x$$
,  $y = x + a$ ,  $y = a$ ,  $y = 2a$   $(a > 0)$ .

