KALKULATOR NERACA AIR METEOROLOGIS UNTUK MATLAB (KANAMET)

Emilya Nurjani (1) dan Andung Bayu Sekaranom (1,2)

Departemen Geografi Lingkungan Fakultas Geografi Universitas Gadjah Mada
 Pusat Studi Bencana Universitas Gadjah Mada

DAFTAR ISI

1.	URAIAN SINGKAT PROGRAM KOMPUTER KANAMET2
2.	KONSEP DASAR DARI ALGORITMA PROGRAM2
3.	MANUAL PENGGUNAAN KANAMET4
4.	TAUTAN WEBSITE KANAMET8
SOL	JRCE CODE KANAMET10
	DAFTAR TABEL
Tab	el 1. Pendugaan Available Water Capacity Berdasarkan Kombinasi Jenis Tanah dan Vegetasi3
	DAFTAR GAMBAR
Gan Gan Gan c	nbar 1. Contoh matriks data curah hujan bulanan pada MATLAB yang digunakan sebagai input data. Contoh diatas adalah untuk data dengan panjang 50 tahun dimana masing-masing baris menunjukan data per-tahun dan dibagi kedalam 12 bulan untuk masing-masing kolom
Gan Gan Gan t Gan	data curah hujan yang akan dihitung
r Gan Gan r	nbar 8. Perintah pada MATLAB untuk memanggil program komputer perhitungan neraca air meteorologis sebagai fungsi
Gan	nbar 11. Tampilan dari laman website program komputer KANAMET pada github9

1. URAIAN SINGKAT PROGRAM KOMPUTER KANAMET

'Kalkulator Neraca Air Meteorologis untuk MATLAB (KANAMET)' merupakan sebuah program yang dapat dijalankan pada MATLAB untuk menghitung neraca air meteorologis pada suatu wilayah. Neraca air meterologis dihitung dengan masukan/input data berupa curah hujan dan termperatur bulanan, dan kapasitas air tersedia yang didasarkan pada tipe tanah dan ketebalan zona perakaran. Untuk menjalankan program komputer ini, pengguna/user harus mempersiapkan data-data yang dibutuhkan pada MATLAB dan kemudian memanggil program komputer yang dijelaskan diatas sebagai fungsi yang terintegrasi dengan MATLAB. Hasil dari program tersebut adalah tabel/matriks pada MATLAB yang menunjukan surplus/defisit sumberdaya air meteorologis pada wilayah yang dianalisis.

2. KONSEP DASAR DARI ALGORITMA PROGRAM

Dalam proses sirkulasi air, penjelasan mengenai hubungan antara aliran ke dalam (*inflow*) dan aliran keluar (*outflow*) di suatu daerah untuk suatu periode tertentu disebut neraca air (*water balance*). Dalam hal-hal tertentu, beberapa anasir dapat diabaikan. Jika periode perhitungan neraca air diambil 1 tahun dan daerah yang dipelajari luas, maka mengingat variasi meteorologisjuga berulang dalam siklus 1 tahun, kadar kebasahan tanah juga berulang dalam siklus 1 tahun.

Neraca air menurut fungsi meteorologis sangat diperlukan untuk mengevaluasi ketersediaan air hujan di suatu wilayah, terutama untuk mengetahui kapan dan seberapa besar surplus dan defisit yang terjadi di wilayah yang ditinjau. Neraca air ini dikembangkan oleh Thornthwaite dan Mather (1957). Air hujan yang jatuh di permukaan tanah, sebagian menjadi lengas tanah (soil moisture), airtanah (groundwater) dan sebagian akan menjadi aliran permukaan (surface runoff). Persentase ketiga komponen tersebut tidak tetap, tergantung pada banyak factor seperti jenis tanah (terutama tekstur) tataguna lahan (kedalaman perakaran). Kemampuan tanah untuk menyimpan air (water holding capacity - WHC) dapat diduga tanpa mengadakan pengukuran langsung, sedangkan lengas tanah akan selalu berubah tergantung pada evapotranspirasi dan curah hujan.

Bulan dinyatakan basah apabila curah hujan lebih besar daripada evapotranspirasi potensial, dan sebaliknya, bulan dinyatakan kering jika curah hujan lebih kecil daripada evapotranspirasi potensial. Lengas tanah yang dipakai untuk evapotranspirasi aktual (EA) disebut soil moisture use, sedang selisih antara evapotranspirasi aktual dan hujan disebut soil moisture deficit. Hasil perhitungan neraca air dapat digunakan untuk menghitung indeks-indeks iklim. Menurut Thornthwaite (1985) ada tida parameter indeks iklim, yaitu moisture index (Im), humidity index (Ih) dan aridity index (Ia). Im digunakan untuk menyatakan indeks iklim secara keseluruhan, Ih digunakan untuk menyatakan indeks iklim dari aspek surplus air dan Ia digunakan untuk aspek defisit air.

Data yang dibutuhkan dalam perhitungan neraca air adalah data curah hujan bulanan, temperature bulanan, evapotranspirasi potensial bulanan, tekstur tanah dan penggunaan lahan (jenis vegetasi) yang digunakan untuk menghitung lengas tanah tersedia.

Langkah-langkah perhitungan secara manual

- a. Mempersiapkan data evapotranspirasi potensial
- b. Menghitung selisih antara curah hujan bulanan (P) dan Ep (P-EP)
- c. Menghitung APWL (accumulated potential water loss), dengan cara:

- Nilai atau hasil (P EP) bernilai negative yang pertama setelah (P EP) positif diturunkan sebagai harga mutlak dari APWL pertama
- Nilai APWL pertama dijumlahkan dengan |(P EP)| negatif berikutnya merupakan nilai
 APWL kedua, dan seterusnya sampai nilai (P EP) negative habis
- Apabila (P EP) bernilai positif, maka APWL bernilai nol
- d. Menentukan nilai Sto (water holding capacity) yang merupakan fungsi dari tekstur tanah dan kedalaman zona perakaran (mm/m) berdasarkan Tabel 1.

Sto = WHC = Air tersedia (mm/m) x zona akar (m) x luas wilayah (desimal)

Tabel 1. Pendugaan Available Water Capacity Berdasarkan Kombinasi Jenis Tanah dan Vegetasi

	Air tersedia	Tebal Zone	Lengas
Tipe tanah	(Available water)	Perakaran	tanah
Tipe tunun	(mm . m ⁻¹)	(m)	tertahan (m)
Tanaman berakar dangkal	()	(112)	(11)
Pasir halus	100	0,50	50
Lempung berpasir halus	150	0,50	75
Lempung berdebu	200	0,62	125
Lempung berliat	250	0,40	100
Liat	300	0,25	75
Tanaman berakar sedang			
Pasir halus	100	0,75	75
Lempung berpasir halus	150	1,00	150
Lempung berdebu	200	1,00	200
Lempung berliat	250	0,80	200
Liat	300	0,60	150
Tanaman berakar dalam			
Pasir halus	100	1,00	100
Lempung berpasir halus	150	1,00	150
Lempung berdebu	200	1,25	250
Lempung berliat	250	1,00	250
Liat	300	0,67	200
Orchad			
Pasir halus	100	1,50	150
Lempung berpasir halus	150	1,67	250
Lempung berdebu	200	1,50	300
Lempung berliat	250	1,00	250
Liat	300	0,67	200
Hutan tua tertutup			
Pasir halus	100	2,50	250
Lempung berpasir halus	150	2,00	300
Lempung berdebu	200	2,00	400
Lempung berliat	250	1,60	400
Liat	300	1,17	350

e. Menghitung nilai soil moisture storage (St), yaitu:

• St = Sto X e –(APWL/Sto) jika APWL \neq 0

• St = Sto jika APWL = 0

- f. Menghitung ΔSt tiap bulannya
 - ΔSt = St bulan yang bersangkutan St bulan yang lalu
 - Untuk bulan Januari dikurangi bulan Desember
- g. Menghitung evapotranspirasi aktual (EA)
 - Untuk bulan basah (P>EP), maka EA = EP
 - Untuk bulan kering (P<EP), maka EA = P + $|\Delta St|$
- h. Menghitung surplus air (S)

S =
$$(P - EP) - \Delta St$$

i. Menghitung defisit air (D)

$$D = EP - EA$$

j. Menggambar grafik curah hujan (P), EA dan EP untuk menentukan bulan-bulan surplus, defisit dan soil moisture use.

3. MANUAL PENGGUNAAN KANAMET

a. Persiapan data

Terdapat tiga data yang perlu dipersiapkan di MATLAB yang akan digunakan sebagai input pada program komputer ini. Data tersebut meliputi data curah hujan bulanan, data evapotranspirasi potensial, dan data water holding capacity (WHC). Adapun persiapan dari data yang akan dianalisis dengan program komputer tersebut adalah sebagai berikut:

i. Data curah hujan bulanan Merupakan matrik 2 dimensi yang didefinisikan pada MATLAB dengan jumlah baris (dimensi pertama) menunjukan jumlah tahun dan jumlah kolom (dimensi kedua) menunjukan bulan. Sebagai contoh lihat Gambar 1 dan Gambar 2.

Gambar 1. Contoh matriks data curah hujan bulanan pada MATLAB yang digunakan sebagai input data. Contoh diatas adalah untuk data dengan panjang 50 tahun dimana masing-masing baris menunjukan data per-tahun dan dibagi kedalam 12 bulan untuk masing-masing kolom.

					Bulan ja	anuari hii	ngga dese	ember					
		monthly_rain	×										
	I ===	50x12 single											
		1	2	3	4	5	6	7	8	9	10	11	12
	1	337.3551	237.8525	177.7755	184.2122	119.7980	11.3324	9.5592	0.8029	1.8914	11.0390	87.2662	228.2598
	2	348.1055	262.5812	314.4241	340.1565	51.0421	111.8602	81.0960	86.1195	10.0189	177.8128	238.5603	402.1484
	3	377.9816	300.4559	321.7930	90.1738	27.0196	33.7504	0.1790	0.8757	1.8568	28.5531	67.8055	185.6644
	4	214.3900	177.1817	286.4367	231.6835	193.1194	100.0252	10.8958	48.7013	138.4814	431.9024	237.6987	228.6452
	5	443.7404	290.0652	259.9550	126.5420	97.1341	27.1121	10.4938	1.3628	18.6992	3.5270	161.6639	339.6563
	6	300.1761	279.0246	389.1095	146.0360	79.7889	88.0123	7.5406	2.8679	42.5758	174.0615	247.0089	446.9334
Tahun pertama	7	422.2741	345.4022	211.0177	154.4081	44.8472	1.3067	1.9918	3.1672	7.4186	32.8499	174.2661	414.9881
	8	387.2719	341.9586	402.7755	223.0419	378.2755	245.9088	177.4650	189.9115	56.7259	107.0182	223.1961	321.8500
hingga terakhir	9	242.2386	294.9817	226.3669	173.4019	96.2465	48.2516	11.4596	5.1305	10.0733	75.7451	150.2294	257.1266
	10	274.5103	202.9417	250.6204	188.0016	233.6694	104.9628	45.9788	5.2927	43.4333	113.8585	261.5999	402.5692
	11	349.3065	481.5347	364.0969	206.1040	248.2829	113.9221	28.3052	27.1688	93.7679	225.1175	272.9078	360.8729
	12	402.3207	305.6592	333.0126	180.3780	161.6596	4.0446	18.2576	19.5278	2.6069	39.1816	172.8807	394.5664
	13	385.6139	326.4288	318.9633	231.2008	323.2368	70.3796	102.5385	73.8274	144.9967	158.3960	217.7665	309.9144
	14	312.1696	241.0844	201.7705	209.7126	143.2747	17.9885	61.4227	111.2018	122.2198	214.1480	198.4091	153.9682
	15	159.2591	230.1105	330.5253	178.0340	201.3249	34.2857	42.7602	37.4785	191.0037	403.0536	256.6473	294.2344
	16	330.5030	142.9227	320.1295	146.8109	43.0025	10.1026	3.6100	21.7460	11.6619	161.7559	268.6761	161.8792
	17	348.7424	308.6647	290.2971	163.9637	63.5713	123.3827	1.9948	1.1516	8.3683	11.6564	137.8961	209.5392
	18	245.3433	188.0666	303.0394	107.8686	211.5860	376.0006	231.6742	115.1557	98.1871	197.0665	157.1804	394.4347
	19	445.1962	281.2643	394.5750	329.8909	434.6574	135.2446	20.2878	44.0444	37.7069	92.3370	191.6205	391.5132
	20	281.7426	218.0488	244.9723	280.4372	90.6584	19.6052	21.1116	55.8669	18.7987	150.9131	311.9608	266.7465
	21	268.4000	322.6466	264.2168	226.3844	126.9108	139.0708	186.1157	54.4547	150.9837	188.8666	462.1500	349.3709
	22	401.5827	273.2843	308.1565	177.4174	21.2949	13.0810	3.6916	0.4142	0.3462	1.1272	45.2486	339.4182
	23	366.0025	245.6198	210.0392	268.2607	324.0269	27.4059	2.9133	1.1055	6.0183	226.1328	536.3163	325.7881

Gambar 2. Contoh input data curah hujan bulanan yang perlu dipersiapkan pada MATLAB yang akan digunakan sebagai input dalam program komputer untuk menghitung neraca air meteorologis

ii. Data evapotranspirasi potensial

Merupakan matrik 2 dimensi yang didefinisikan pada MATLAB dengan jumlah baris (dimensi pertama) menunjukan jumlah tahun dan jumlah kolom (dimensi kedua) menunjukan bulan. Ukuran dari matriks tersebut harus sama dengan data curah hujan bulanan yang telah disebutkan pada contoh diatas. Untuk lebih jelasnya, lihat Gambar 3 dan Gambar 4.

Gambar 3. Contoh matriks data evapotranspirasi potensial pada MATLAB yang digunakan sebagai input data. Contoh diatas adalah untuk data dengan panjang 50 tahun dimana masing-masing baris menunjukan data per-tahun dan dibagi kedalam 12 bulan untuk masing-masing kolom sama dengan data curah hujan yang akan dihitung.

	newPET ×)										
<u></u>	0x12 double											
	1	2	3	4	5	6	7	8	9	10	11	12
1	131.8670	132.6526	149.8641	144.2245	142.7678	119.4736	108.6344	105.8863	115.6651	142.2812	148.7215	140.8822
2	127.2241	115.2029	139.9790	132.8091	145.9954	129.0816	118.3934	116.3395	127.8864	147.9049	146.3538	133.9016
3	121.7359	114.9406	131.3909	146.9962	150.8561	132.7348	117.0500	110.6514	127.4102	157.5388	165.9323	146.8461
4	155.5380	141.0495	139.1435	142.2833	143.9101	123.2463	122.5375	126.8837	130.1040	121.7903	126.5829	139.3126
5	116.5294	123.0054	132.3417	140.9254	144.0285	134.0260	119.3805	125.7328	140.2881	170.1617	155.9114	145.3827
6	138.7176	122.4913	136.7726	137.0472	138.2072	119.4620	119.4795	114.5522	121.6785	139.2510	136.8332	134.6460
7	130.7106	122.4913	137.4156	137.0472	138.2072	119.4620	113.1906	114.5522	121.6785	139.2510	136.8332	134.6460
8	130.7106	122.4913	137.4156	137.0472	138.2072	119.4620	113.1906	114.5522	121.6785	139.2510	136.8332	134.6460
9	130.7106	122.4913	137.4156	137.0472	138.2072	119.4620	113.1906	114.5522	121.6785	139.2510	136.8332	134.6460
10	130.7106	122.4913	137.4156	137.0472	138.2072	119.4620	113.1906	114.5522	121.6785	139.2510	136.8332	134.6460
11	130.7106	122.4913	137.4156	137.0472	138.2072	119.4620	113.1906	114.5522	121.6785	139.2510	136.8332	134.6460
12	130.7106	122.4913	137.4156	137.0472	138.2072	119.4620	113.1906	114.5522	121.6785	139.2510	136.8332	134.6460
13	140.3532	136.8576	133.3914	143.6260	129.9228	130.3568	113.1906	130.7153	124.6941	150.8037	136.8332	135.0748
14	122.4899	116.6371	134.9832	137.0472	140.3752	121.8132	117.7162	115.4601	122.3094	136.8936	132.3121	132.6872
15	130.7106	123.4766	131.7595	136.9314	138.2072	120.4636	120.3473	125.3761	124.6399	121.3051	125.6951	129.8988
16	122.1339	123.2222	132.2242	138.9271	138.1604	115.5056	111.6420	122.1693	129.3501	135.0114	131.8232	146.1812
17	130.5997	116.2714	129.4576	141.9853	146.7170	120.6407	109.6624	111.9985	120.7166	154.7134	155.3186	136.0627
18	129.3885	127.6141	139.4659	140.0092	140.7733	112.6396	110.9854	122.2840	113.4650	135.4688	133.5380	131.9966
19	136.2821	131.4199	138.6911	142.1878	135.0281	119.4620	113.1906	113.4328	124.5765	138.2663	146.9498	133.9653
20	127.9931	119.2716	133.0493	133.0611	144.1263	118.8628	121.0620	115.1007	123.4289	132.7094	130.3342	127.4785
21	117.6730	117.1206	134.7549	128.5752	121.8837	119.2859	106.6596	115.1176	117.2827	136.4392	121.7042	126.2816
22	119.7044	115.4296	127.1706	125.2717	126.3737	111.7481	103.3139	98.4117	113.9732	139.2779	151.7262	140.2543
23	134.0277	126.3758	148.8447	133.0181	127.1420	114.9892	107.2489	110.8656	120.9180	129.5516	119.6582	126.0248

Gambar 4. Contoh input data evapotranspirasi potensial yang perlu dipersiapkan pada MATLAB yang akan digunakan sebagai input dalam program komputer untuk menghitung neraca air meteorologis

iii. Data water holding capacity (WHC)

Data WHC, disebut juga dengan STO, merupakan data skalar yang terdiri dari 1 nilai yang ditentukan dari Tabel 1. Nilainya dapat bervariasi dari 100 hingga 300. Nilai WHC tersebut dapat langsung dideklarasikan di MATLAB sebagai parameter input pada program komputer yang akan dijalankan.

Gambar 5. Contoh nilai STO yang didefinisikan pada MATLAB dengan nilai 150.

b. Menjalankan program

Program komputer ini dapat dipanggil melalui MATLAB dengan mendeklarasikan fungsi untuk memanggil program perhitungan neraca air meteorologis tersebut. Langkah langkahnya adalah sebagai berikut

Program komputer ini tersimpan dalam bentuk script yang bernama 'waterbalance.m'.
 Pastikan program komputer yang bernama 'waterbalance.m' telah tersimpan pada direktori MATLAB

Gambar 6. Contoh program komputer yang tersimpan dalam bentuk script pada 'waterbalance.m' dan telah terbuka pada current folder MATLAB

ii. Persiapkan ketiga data (curah hujan bulanan, evapotranspirasi potensial, dan STO) untuk dimasukan dalam analisis waterbalance.

Gambar 7. Data curah hujan bulanan, evapotranspirasi potensial, dan STO yang didefinisikan pada MATLAB sebagai input program komputer

iii. Panggil program dengan mengetikan perintah pada MATLAB. Tentukan pula variabel yang akan menjadi luaran/output dari fungsi yang dipanggil. Sebagai contoh ditampilkan pada gambar berikut:

Gambar 8. Perintah pada MATLAB untuk memanggil program komputer perhitungan neraca air meteorologis sebagai fungsi

 Melihat luaran/output program
 Variabel luaran t dapat langsung ditampilkan di MATLAB sesuai dengan nama variabel luaran yang telah ditentukan saat program tersebut dipanggil. Sebagai contoh ditampilkan pada Gambar 9

Gambar 9. Contoh luaran dari program komputer KANAMET yang dapat dilihat pada MATLAB.

						Bulan Ja	nuari hin	gga Dese	ember				\rightarrow	
		1	output ×											
		H	50x12 single											
			1	2	3	4	5	6	7	8	9	10	11	12
		1	205.4881	105.1998	27.9114	39.9877	-1.6723	-42.0260	-68.8200	-88.7980	-105.2428	-126.8596	-60.4021	-60.5424
		2	220.8813	147.3783	174.4452	207.3474	-24.6010	-8.5825	-21.6651	-20.1155	-93.2288	-99.4588	92.2066	268.2469
		3	256.2457	185.5153	190.4021	-9.5231	-66.1169	-77.2543	-104.2876	-104.2395	-122.6440	-127.7041	-97.6753	-110.6929
		4	58.8520	36.1322	147.2932	89.4002	49.2092	-1.7081	-44.1959	-53.3873	-105.3764	310.1121	111.1158	89.3326
un pertama		5	327.2110	167.0599	127.6133	-0.6681	-10.3049	-56.0983	-83.6593	-111.0403	-115.8558	-163.5565	-142.7364	194.2736
gga terakhir		6	161.4585	156.5333	252.3369	8.9888	-10.0322	-12.2300	-68.6108	-91.1724	-71.4986	-104.2394	110.1758	312.2874
00		7	291.5634	222.9109	73.6021	17.3608	-23.8582	-74.2748	-92.0288	-102.2406	-109.8332	-104.4318	-110.6600	280.3420
		8	256.5612	219.4673	265.3599	85.9947	240.0683	126.4468	64.2743	75.3593	-12.2350	-13.4217	14.8342	187.2040
		9	111.5280	172.4904	88.9513	36.3547	-5.3580	-28.3518	-66.9926	-90.8830	-102.5463	-60.6746	-131.2325	122.4806
	- 1	10	143.7997	80.4505	113.2048	50.9544	95.4622	-0.6787	-18.0312	-64.2534	-61.1772	-21.5109	-4.1900	267.9232
		11	218.5958	359.0434	226.6813	69.0568	110.0758	-0.1011	-22.4129	-51.1387	-20.1270	-26.0731	136.0747	226.2269
		12	271.6100	183.1679	195.5970	43.3308	23.4524	-34.9076	-62.3461	-77.7070	-108.3410	-95.7585	-109.4082	259.9204
		13	245.2607	189.5712	185.5719	87.5748	193.3140	-10.5405	-3.7584	-27.3232	-65.5926	7.5923	80.9334	174.8396
		14	189.6797	124.4473	66.7873	72.6654	2.8994	-28.8984	-32.8022	-2.8145	-0.0597	-22.6369	66.0971	21.2810
		15	28.5484	106.6339	198.7657	41.1026	63.1177	-20.6242	-43.4843	-65.5732	-55.6172	281.7485	130.9522	164.3356
		16	208.3691	19.7005	187.9052	7.8837	-24.6970	-65.2559	-87.8100	-91.0678	-112.3522	-118.7771	136.8528	15.6981
		17	218.1427	192.3933	160.8395	21.9784	-19.3164	-61.0873	-30.8424	-72.6205	-93.9251	-132.8991	-16.7242	-70.8544
		18	115.9548	60.4525	163.5735	-3.2101	41.8822	263.3611	120.6888	-0.1667	-1.4264	40.7847	23.6424	262.4381
		19	308.9141	149.8444	255.8839	187.7032	299.6293	15.7826	-23.6468	-39.4850	-64.5193	-38.4147	-84.3535	257.5480
	\ \ \ /	20	153.7495	98.7772	111.9230	147.3760	-8.4912	-48.4226	-73.5925	-50.1542	-95.2138	-122.4619	181.6266	139.2680
	V	21	150.7270	205.5260	129.4619	97.8092	5.0271	19.7849	79.4561	-10.7675	-16.1944	52.4275	340.4458	223.0893
	*	22	281.8782	157.8547	180.9859	52.1457	-29.5275	-62.7828	-80.9075	-88.4760	-108.1411	-135.2363	-105.4977	50.1118
		23	231.9748	119.2440	61.1945	135.2426	196.8849	-21.2421	-62.4050	-88.1063	-104.1573	-44.0869	416.6581	199.7633

Gambar 10. Contoh hasil analisis neraca air meterologis dari KANAMET yang ditampilkan pada MATLAB menghasilkan data bulanan dengan jumlah sesuai dengan periode waktu yang didefinisikan pada data curah hujan bulanan dan evapotranspirasi potensial

4. TAUTAN WEBSITE KANAMET

Program komputer KANAMET dapat diakses pada tautan berikut: https://github.com/andungbayu/kanamet . Program yang akan diperbarui (*update*) kedepannya juga akan dibagikan melalui tautan yang sama.

Gambar 11. Tampilan dari laman website program komputer KANAMET pada github


```
1
     function output=waterbalance(monthly precip, monthly PET, sto)
 2
 3
 4
     % begin linearize data
 5
     monthly precip=transpose (monthly precip);
 6
     monthly_PET=transpose (monthly_PET);
 7
     monthly precip=monthly precip(:);
 8
    monthly PET=monthly PET(:);
 9
10
     % calculate P-PET
11
     diff_P_PET=monthly_precip-monthly_PET;
12
13
     % calculate monthly AWL difference
14
     mAWL=zeros(size(diff P PET));
15
     mAWL(diff P PET>=0)=\overline{0};
16
    mAWL(diff P PET<0) = abs(diff P PET(diff P PET<0));</pre>
17
18
    % calculate AWL
19 AWL=zeros(size(mAWL));
20 for i=2:length(mAWL),
21
         if mAWL(i-1) == 0 && mAWL(i) > 0,
22
             AWL(i) = mAWL(i);
23
         elseif mAWL(i-1)>0 && mAWL(i)>0,
2.4
             AWL(i) = mAWL(i) + AWL(i-1);
25
         elseif mAWL(i-1)>0 && mAWL(i)==0,
26
              AWL(i)=0;
27
         end
28
    end
29
30
    % calculate St
31
    St=zeros(size(AWL));
32
    for i=1:length(AWL),
33
         if AWL(i)==0,
34
             St(i) = sto;
35
         else
36
             St(i)=sto.*exp(-1*(AWL(i)./sto));
37
         end
38
     end
39
40
     % calculate deltaSt
41
   deltaSt=zeros(size(St));
42
    for i=1:length(St),
43
         if i==1,
44
             deltaSt(i) = St(i) - St(length(St));
45
         else
46
             deltaSt(i) = St(i) - St(i-1);
47
         end
48
     end
49
50
     % calculate EA
51
    EA=zeros(size(deltaSt));
52
    for i=1:length(deltaSt),
53
         if diff P PET(i)>=0,
54
             EA(i)=monthly PET(i);
55
56
             EA(i)=monthly_precip(i)+abs(deltaSt(i));
57
         end
58
     end
59
60
     % calculate surplus deficit
61
     surplus=(monthly_precip-monthly_PET) -deltaSt;
62
     %deficit=monthly PET-EA;
63
64
    % create output
65 nyear=length(surplus)./12;
     output=reshape(surplus,[12,nyear]);
67
     output=transpose(output);
68
69
     end
```