类型	外发
日期	2018/1/22
版本	Ver : 01.10
部门	工程部

蓝牙+GPRS 版(AC) 共享单车锁(硬件) 接口协议

目录

系统总体框架及协议说明	3
1.1 编写目的	3
1.2 共享单车锁系统框图	3
1.3 通信包格式	3
1.4 数据加密过程	4
1.5 APP 与车锁的通信流程	4
1.6 使用的 UUID	
1.7 命令详述及示例	
1.7.1 获取通信 KEY 指令(0x11)	5
1.7.2 开锁指令(0x21)	
1.7.3 上锁指令(0x22)	
1.7.4 查询锁状态(0x31)	
1.7.5 获取未上传数据(0x51)	
1.7.6 清除车锁中的未上传数据(0x52)	
2.0 TCP 通信协议说明	
2.1 TCP 指令列表	
2.1.1 开锁指令 (L0)	
2.1.2 关锁指令 (L1)	
2.1.3 定位指令 (D0)	
2.1.4 签到指令 (Q0)	
2.1.5 心跳指令 (H0)	
2.1.6 获取锁信息指令 (S5)	
2.1.7 寻车响铃指令 (S8)	
2.1.8 固件版本指令 (G0)	
2.1.9 报警指令 (W0)	
2.1.10 获取 SIM 卡 ICCID 号指令 (I0)	
2.1.11 获取 MAC 地址指令 (M0)	
2.1.12 设置设备 KEY 指令 (KO)	
2.1.13 自动上报当前版本 (U0)	
附录一: 蓝牙加密,解密过程	
附录二: CRC16 计算代码	26

系统总体框架及协议说明

1.1 编写目的

本文档协议用于描述本公司所设计生产的系列蓝牙锁和服务器或者 APP 之间的通信协议。

1.2 共享单车锁系统框图

1.3 通信包格式

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数,数据发送方产生,用于加密数据
2	KEY	通信秘钥,由车锁随机产生,APP 通过(0x11)命令获得
3	CMD	命令字
4	LEN	数据长度
5	DATA	数据
5+LEN	CRC	CRC 之前数据经过加密后的 CRC16 校验值
6+LEN		

1.4 数据加密过程

加密组成: 随机数、KEY。

加密过程:

- 1、产生随机数 NUM
- 2、产生随机数变种 NUM_1 = NUM + 0x32
- 3、把 NUM 1 填充到数据的第 1 字节
- 4、用 NUM 分别异或([^]) NUM 之后, CRC 之前的明文数据并把结果对应回填
- 5、把CRC 之前数据做CRC16 校验,校验值填到CRC位置。

见附录一

1.5 APP 与车锁的通信流程

- 1. APP 与车锁建立蓝牙连接
- 2. APP 向车锁发送(0x11)指令获取通信秘钥 KEY
- 3. 车锁返回通信秘钥 KEY, APP 需保存秘钥, 用于后续通信
- 4. APP 与车锁进行通信

注: 秘钥 KEY 只在 APP 与车锁建立蓝牙连接时重新获取,此后通信保持不变

1.6 使用的 UUID

Service UUID:0783b03e-8535-b5a0-7140-a304d2495cb7

该 service 下的 characteristic

characteristic UUID	操作类型	说明
0783b03e-8535-b5a0-7140-a304d2495cba	Write	向硬件写指令
0783b03e-8535-b5a0-7140-a304d2495cb8	Notify	硬件返回的信息

注册通知时,需要用到的 characteristic 下 descriptor 的 UUID: 00002902-0000-1000-8000-00805f9b34fb

1.7 命令详述及示例

1.7.1 获取通信 KEY 指令(0x11)

1.7.1.1 APP->车锁

App 连接到蓝牙设备,首先要获取到与蓝牙设备通信的 KEY DATA 中的设备识别 KEY,是蓝牙设备唯一识别的 ID,当连接上蓝牙设备在 5 秒内没有发送获取通信 KEY 指令,或者设备识别 KEY 发送错误,蓝牙设备会自动断开与 app 的连接。

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	0x00
3	CMD	0x11
4	LEN	0x08
5-12	DATA	设备识别 KEY, 8 字节 (默认为"yOTmK50z")
13	CRC	CRC 之前数据经过加密后的 CRC16 校验值(0-12)
14		

1.7.1.2 车锁->APP

设备收到获取通信 KEY 指令后,在 DATA 中返回用于通信的 KEY

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x11
4	LEN	0x01
5	DATA	秘钥(KEY),用于通信的 KEY
6	CRC	CRC 之前数据经过加密后的 CRC16 校验值(0-5)
7		

1.7.2 开锁指令(0x21)

1.7.2.1 APP->车锁

开锁时 DATA 中传入用户 ID(4字节)和开锁时的时间戳(4字节)。

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x21
4	LEN	0x09
5-8	DATA	APP 端用户 ID 号
9-12	DATA	开锁时间戳 4 字节,高位在前
13	DATA	开锁类型(0:围栏内开锁,1:围栏外开锁)
14	CRC	CRC 之前数据经过加密后的 CRC16 校验值
15		

1.7.2.2 车锁->APP

设备执行开锁动作后,会在 DATA 中返回开锁状态

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x21
4	LEN	0x05
5	DATA	返回值 0:开锁成功 1:开锁失败
6-9	DATA	开锁时间戳 4 字节, 高位在前
10	CRC	CRC 之前数据经过加密后的 CRC16 校验值
11		

1.7.2.3 APP->车锁

APP 收到锁发出的开锁指令状态指令后,回复锁

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x21
4	LEN	0x00
6	CRC	CRC 之前数据经过加密后的 CRC16 校验值
7		

1.7.3 上锁指令(0x22)

1.7.3.1 车锁->APP

设备上锁操作后,在 DATA 上传上传状态和骑行时间。

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x22
4	LEN	0x09
5	DATA	0:上锁成功 1:上锁失败
6-9	DATA	开锁时间戳
10-13	DATA	骑行时间 4 字节(单位:分钟)
14	CRC	CRC 之前数据经过加密后的 CRC16 校验值
15		

1.7.3.2 APP->车锁

App 接受到上锁指令后回复,不回复则会产生旧数据

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x22
4	LEN	0x00
5	CRC	CRC 之前数据经过加密后的 CRC16 校验值
6		

1.7.4 查询锁状态(0x31)

1.7.4.1 APP->车锁

可以获取到锁开关状态, 电池电量, 是否有旧数据等信息。

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x31
4	LEN	0x00
5	CRC	CRC 之前数据经过加密后的 CRC16 校验值
6		

1.7.4.2 车锁->APP

设备接受到查询状态后,会在 DATA 中返回当前开关状态,电池电量,是否有旧数据等信息。

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x31
4	LEN	0x07
5		锁状态 0: 开锁 1: 关锁
6	DATA	电池电量 例: 37(十进制) 为 3.7V
7		是否有未上传数据 0: 有 1: 没有
8-11		时间戳4字节
12	CRC	CRC 之前数据经过加密后的 CRC16 校验值
13		

1.7.5 获取未上传数据(0x51)

注:此数据为用户关锁后未上传到 APP 或服务器的数据,包含用户 ID 及用车时间,用于结费。

1.7.5.1 APP->车锁

App 在获取设置状态时,如果发现有旧数据,可以获取到旧数据,上传至服务器。

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x51
4	LEN	0x00
5	CRC	CRC 之前数据经过加密后的 CRC16 校验值
6		

1.7.5.2 车锁->APP

旧数据,即上次骑行结束后未上传到服务器的数据,包括开锁时间戳,骑行时间,用户 ID

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x51
4	LEN	0x012
5-8	DATA	用户开锁时使用的时间戳
9-12	DATA	用户骑行时间 单位:分钟
13-16	DATA	用户 ID
17	CRC	CRC 之前数据经过加密后的 CRC16 校验值
18		

1.7.6 清除车锁中的未上传数据(0x52)

1.7.6.1 APP->车锁

App 将旧数据上传至服务器后,可以清除设备中存储的旧数据

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x52
4	LEN	0x00
5	CRC	CRC 之前数据经过加密后的 CRC16 校验值
6		

1.7.6.2 车锁->APP

设备在 DATA 中返回旧数据的清除状态

字节	项	说明
0	STX	数据头/帧头 固定值: 0xFE
1	NUM	随机数
2	KEY	通信秘钥
3	CMD	0x52
4	LEN	0x01
5	DATA	返回值: 0: 成功 1: 失败
6	CRC	CRC 之前数据经过加密后的 CRC16 校验值
7		

2.0 TCP 通信协议说明

2.1 TCP 指令列表

1 开锁指令 (L0) 2 关锁指令 (L1)

3 定位指令 (D0)

4 签到指令 (Q0)

5 心跳指令 (HO) 6 获取锁信息指令 (S5)

7 响铃指令 (S8)

8 固件版本指令 (G0)

9 报警指令 (W0)

10 获取 SIM 卡 ICCID 号指令(IO)

11 获取蓝牙设备 MAC 地址指令(M0)

12 设置设备 KEY 指令(KO)

13 自动上报固件版本(U0)

2.1.1 开锁指令 (L0)

2.1.1.1 服务器发给锁

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:L0
9	SPACER	间隔符:,
10	VALU	开锁(0)
11	SPACER	间隔符:,
12	VALU	用户 ID
13	SPACER	间隔符:,
14	VALU	开锁时间戳(秒的时间戳,10位)
15	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,OM,863725031194523,170619195455,L0,0,20,1497689816#<LF>

2.1.1.2 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 00000000000
7	SPACER	间隔符: ,
8	CMD	命令代码:L0
9	SPACER	间隔符:,
10	VALU	开锁(0)/关锁(1)
11	SPACER	间隔符:,
12	VALU	用户 ID
13	SPACER	间隔符:,
14	VALU	开锁时间戳(秒的时间戳,10位)
15	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,OM,863725031194523,001497689816,L0,0,20,1497689816#<LF>

2.1.1.3 服务器应答

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符: ,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 00000000000
7	SPACER	间隔符:,
8	CMD	命令代码:Re
9	SPACER	间隔符:,
10	VALU	服务器回应对应的指令代码 L0
11	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,OM,863725031194523,001497689816,Re,L0#<LF>

2.1.2 关锁指令 (L1)

2.1.2.1 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符:,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:L1
9	SPACER	间隔符:,
10	VALU	用户 ID, 4 字节, 此处放字符串形式
11	SPACER	间隔符:,
12	VALU	开锁时间戳
13	SPACER	间隔符:,
14	VALU	骑行时间,4字节数据,此处放字符串形式(单位:分钟)
15	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,OM,863158022988725,000000000000,L1,1,1497689816,20#<LF>

2.1.2.2 服务器应答

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符:,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 00000000000
7	SPACER	间隔符:,
8	CMD	命令代码:Re
9	SPACER	间隔符:,
10	VALU	服务器回应对应的指令代码 L1
11	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,OM,863725031194523,0000000000000,Re,L1#<LF>

2.1.3 定位指令 (D0)

2.1.3.1 服务器发给锁

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符:,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 00000000000
7	SPACER	间隔符:,
8	CMD	命令代码:D0
9	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,OM,863725031194523,000000000000,D0#<LF>

2.1.3.2 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:D0
9	VALU	预留位置
10	SPACER	间隔符:,
11	VALU	GPS 定位数据:
12	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例:

D0,0,124458.00,A,2237.75314,N,11408.62621,E,0.066,,151216,,,A#<LF>说明:

^{*}CMDR,863725031194523,0000000000000,

0,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,< 10>,<11>,<12>#

- <1> UTC 时间, hhmmss(时分秒)格式
- <2> 定位状态, A=有效定位, V=无效定位
- <3> 纬度 ddmm. mmmm(度分)格式(前面的 0 也将被传输)
- 〈4〉 纬度半球 N(北半球)或 S(南半球)
- <5> 经度 dddmm. mmmm(度分)格式(前面的 0 也将被传输)
- 〈6〉经度半球 E(东经)或 W(西经)
- <7> 地面速率(000.0~999.9节,前面的0也将被传输)
- <8> 地面航向(000.0~359.9 度,以真北为参考基准,前面的0也将被传输)
- <9> UTC 日期, ddmmyy(日月年)格式
- <10> 磁偏角(000.0~180.0度,前面的0也将被传输)
- <11> 磁偏角方向, E(东)或 W(西)
- <12> 模式指示(A=自主定位,D=差分,E=估算,N=数据无效)

注: 6.0 版本后, 7-卫星个数, 8-HDOP, 10-天线高程, 11-单位 M

注: 会出现如下无效定位格式

*CMDR,863725031194523,000000000000, D0,0,033724.00,V,,,,,,120517,,,N#

*CMDR,863725031194523,000000000000,D0,

0,062102.362,V,,,,,0.06,277.72,120517,,,N#

2.1.3.2 服务器应答

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符: ,
8	CMD	命令代码:Re
9	SPACER	间隔符:,
10	VALU	服务器回应对应的指令代码 DO
11	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,OM,863725031194523,000000000000,Re,D0#<LF>

2.1.4 签到指令 (Q0)

2.1.4.1 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符: ,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符: ,
8	CMD	命令代码:Q0
9	SPACER	间隔符:,
10	VALU	电量
11	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,OM,863725031194523,000000000000,Q0,410#<LF>

2.1.5 心跳指令 (H0)

2.1.5.1 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符:,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:H0
9	SPACER	间隔符:,
10	VALU	锁状态(0-开,1-关锁)
11	SPACER	间隔符:,
12	VALU	电量
13	SPACER	间隔符:,
14	VALU	GSM 信号值
15 = m	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,OM,863158022988725,161201150000,H0,1,400,24#<LF>

2.1.6 获取锁信息指令 (S5)

2.1.6.1 服务器发给锁

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符:,
6	TIME	锁当前时间:年月日时分秒(保留数据),目前是填充000000000000000000000000000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:S5
9	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,OM,863725031194523,0000000000000,S5#<LF>

2.1.6.2 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符:,
6	TIME	锁当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:S5
9	SPACER	间隔符:,
10	VALU	电池电量
11	SPACER	间隔符:,
12	VALU	gsm信号值
13	SPACER	间隔符:,
14	VALU	预留参数
15	SPACER	间隔符:,
16	VALU	当前锁状态(0:开锁, 1: 关锁)
17	SPACER	间隔符:,
18	VALU	预留参数
19	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,XX,863158022988725,000000000000,S5,410,31,00,1,0#<LF>

2.1.7 寻车响铃指令 (S8)

2.1.7.1 服务器发给锁

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	锁当前时间:年月日时分秒(保留数据),目前是填充 000000000000000000000000000000000000
7	SPACER	间隔符: ,
8	CMD	命令代码:S8
9	SPACER	间隔符:,
10	VALU	响的秒数
11	SPACER	间隔符:,
12	VALU	预留参数
13	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,OM,863725031194523,000000000000,S8,5,0#<LF>

2.1.7.2 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符: ,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符: ,
8	CMD	命令代码:S8
9	SPACER	间隔符:,
10	VALU	响的秒数
11	SPACER	间隔符:,
12	VALU	预留参数
13	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,XX,863158022988725,000000000000,S8,05,0#<LF>

2.1.8 固件版本指令 (G0)

2.1.8.1 服务器发给锁

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 00000000000
7	SPACER	间隔符: ,
8	CMD	命令代码:G0
9	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,XX,863158022988725,0000000000000,G0#<LF>

2.1.8.2 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:G0
9	SPACER	间隔符:,
10	VALU	版本号
11	SPACER	间隔符:,
12	VALU	编译时间
13	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,XX,863158022988725,000000000000,G0,V1.0,May 17 2017#<LF>

2.1.9 报警指令 (W0)

2.1.9.1 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 00000000000
7	SPACER	间隔符:,
8	CMD	命令代码:WO
9	SPACER	间隔符:,
10	VALU	报警状态
11	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,XX,863158022988725,000000000000,W0,1#<LF>

2.1.9.2 服务器发给锁

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符: ,
8	CMD	命令代码:Re
9	SPACER	间隔符:,
10	VALU	wo
11	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,XX,863158022988725,000000000000,Re,W0#<LF>

2.1.10 获取 SIM 卡 ICCID 号指令 (I0)

2.1.10.1 服务器发给锁

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符: ,
2	CODE	设备代码
3	SPACER	间隔符: ,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符: ,
8	CMD	命令代码:10
9	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,XX,863158022988725,0000000000000,I0#<LF>

2.1.10.2 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符:,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:10
9	SPACER	间隔符:,
10	VALU	ICCID 号
11	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,XX,863158022988725,000000000000,I0,800602B8001050000281#<LF>

2.1.11 获取 MAC 地址指令 (M0)

该指令在固件版本大于 2.7 时有效

2.1.11.1 服务器发给锁

序号	项	说明						
	HEX	两个字节的保留位: 0xFF, 0xFF						
0	STX	数据头/帧头 固定值: *CMDS						
1	SPACER	间隔符:,						
2	CODE	设备代码						
3	SPACER	间隔符:,						
4	IMEI	锁的 IMEI 号						
5	SPACER	间隔符: ,						
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 00000000000						
7	SPACER	间隔符:,						
8	CMD	命令代码:MO						
9	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>						

示例: *CMDS,XX,863158022988725,000000000000,M0#<LF>

2.1.11.2 锁发给服务器

序号	项	说明								
0	STX	数据头/帧头 固定值: *CMDR								
1	SPACER	间隔符:,								
2	CODE	设备代码								
3	SPACER	间隔符:,								
4	IMEI	锁的 IMEI 号								
5	SPACER	间隔符:,								
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000								
7	SPACER	间隔符:,								
8	CMD	命令代码:MO								
9	SPACER	间隔符:,								
10	VALU	设备蓝牙 MAC 地址								
11	END	命令结束符:# <lf></lf>								

示例: *CMDR,XX,863158022988725,000000000000,M0,80:8E:00:01:00:0A#<LF>

2.1.12 设置设备 KEY 指令 (K0)

2.1.12.1 服务器发给锁

序号	项	说明							
	HEX	5个字节的保留位: 0xFF, 0xFF							
0	STX	据头/帧头 固定值: *CMDS							
1	SPACER	间隔符: ,							
2	CODE	设备代码							
3	SPACER	间隔符:,							
4	IMEI	锁的 IMEI 号							
5	SPACER	可隔符:,							
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 00000000000							
7	SPACER	间隔符:,							
8	CMD	命令代码:K0							
9	SPACER	间隔符:,							
10	VALU	读写标志,1[设置],0[读取]							
11	SPACER	间隔符: ,							
12	VALU	设置的 KEY[当读写标志位是 0,填充 0]							
13	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>							

示例: *CMDS,XX,863158022988725,000000000000,K0,1,newkey21#<LF>

2.1.12.2 锁发给服务器

序号	项	说明
0	STX	数据头/帧头 固定值: *CMDR
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符: ,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:K0
9	SPACER	间隔符:,
10	VALU	设备 KEY
11	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDR,XX,863158022988725,000000000000,K0,newkey21#<LF>

^{*}CMDS,XX,863158022988725,000000000000,K0,0,0,0#<LF>

2.1.13 自动上报当前版本 (U0)

2.1.13.1 锁发给服务器

锁会每隔1天向服务器发送一次当前版本信息。

序号	项	说明
	HEX	两个字节的保留位: 0xFF, 0xFF
0	STX	数据头/帧头 固定值: *CMDS
1	SPACER	间隔符:,
2	CODE	设备代码
3	SPACER	间隔符:,
4	IMEI	锁的 IMEI 号
5	SPACER	间隔符:,
6	TIME	当前时间:年月日时分秒(保留数据),目前是填充 000000000000
7	SPACER	间隔符:,
8	CMD	命令代码:U0
9	SPACER	间隔符:,
10	VALU	版本号
11	SPACER	间隔符:,
12	VALU	设备类型
13	SPACER	间隔符:,
14	VALU	版本编译时间
15	END	命令结束符:# <lf>(<lf> is "\n" in java code)</lf></lf>

示例: *CMDS,XX,863158022988725,000000000000,U0,15,A1,May 4 2017#<LF>

备注:

- * 本协议是根据用户产品功能需求定制;
- * 本协议部分细节可能会需根据系统实际运营场景调整;

附录一: 蓝牙加密,解密过程

1.加密: 以 app 向锁获取操作 KEY, 0x11 指令为例。

item	index	hex(original)	hex(+0x32)	hex(xor 34)	calc CRC
data2	0	FE	FE	FE	FE
num	1	34	66 66		66
key	2	0	0	34	34
cmd	3	11	11	25	25
len	4	8	8	3C	3C
data	5	79	79	4D	4D
data	6	4F	4F	7B	7B
data	7	54	54	60	60
data	8	6D	6D	59	59
data	9	4B	4B	7F	7F
data	10	35	35	1	1
data	11	30	30	4	4
data	12	7A	7A	4E	4E
crc	13				B4
crc	14				F6

2.解密:以锁向 app 返回操作的 KEY 为例

item	index	hex	step1	step2	step3	step4	step5	step6
stx	0	FE	FE	FE		FE	FE	FE
num	1	3C				3C	3C	A(3C-32)
key	2	F5				F5	F5	FF(F5^A)
cmd	3	1B				1B	1B	11(1B^A)
len	4	0B		0B	1(B^(3C-32))	0B	0B	1(B^A)
data (key)	5	F5				F5	F5	FF(F5^A)
crc	6	7C				7C	7C	
crc	7	C1				C1	C1	
?	8	0(IF HAVE)						
?	9	A(IF HAVE)						
?	10	B(IF HAVE)						
?	11	C(IF HAVE)						
?	12	D(IF HAVE)						
?	13	E(IF HAVE)						

Step1:找到 FE 所在下标地址

Step2:找到 len 所在位置

Step3:解密 len 的值,加密值异或处理后的随机数即 1=0x0B^(0x3C-0x32)

Step4:根据指令的起始位置和长度,获取到所以指令

Step5:检测 CRC 值

Step6:解析指令,获取需要的值。

附录二: CRC16 计算代码

public class CRCUtil {

static byte[] t_crc16_h={

0x00, (byte) 0xC1, (byte) 0x81, 0x40, 0x01, (byte) 0xC0, (byte) 0x80, 0x41, 0x01, (byte) 0xC0, (byte) 0x80, 0x41, 0x00, (byte) 0xC1, (byte) 0x81, 0x40, 0x01, (byte) 0xC0, (byte) 0x80, 0x41, 0x00, (byte) 0xC1, (byte) 0x81, 0x40, 0x00, (byte) 0xC1, (byte) 0x81, 0x40, 0x01, (byte) 0xC0, (byte) 0x80, 0x41, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01,(byte) 0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00,(byte) 0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01,(byte) 0xC0,(byte) 0x80, 0x41, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01,(byte) 0xC0, (byte)0x80, 0x41, 0x00,(byte) 0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x01,(byte) 0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00,(byte) 0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x01, (byte) 0xC0, (byte) 0x80, 0x41, 0x00, (byte) 0xC1, (byte)0x81, 0x40, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40, 0x01, (byte)0xC0, (byte)0x80, 0x41, 0x01, (byte)0xC0,


```
(byte)0x80, 0x41, 0x00, (byte)0xC1, (byte)0x81, 0x40
};
static byte[] t crc16 I={
     0x00, (byte) 0xC0, (byte) 0xC1, 0x01, (byte) 0xC3, 0x03, 0x02, (byte) 0xC2, (byte) 0xC6, 0x06,
     0x07, (byte) 0xC7, 0x05, (byte) 0xC5, (byte) 0xC4, 0x04, (byte) 0xCC, 0x0C, 0x0D, (byte) 0xCD,
     0x0F, (byte) 0xCF, (byte) 0xCE, 0x0E, 0x0A, (byte) 0xCA, (byte) 0xCB, 0x0B, (byte) 0xC9, 0x09,
     0x08, (byte) 0xC8, (byte) 0xD8, 0x18, 0x19, (byte) 0xD9, 0x1B, (byte) 0xDB, (byte) 0xDA, 0x1A,
     0x1E, (byte) 0xDE, (byte) 0xDF, 0x1F, (byte) 0xDD, 0x1D, 0x1C, (byte) 0xDC, 0x14, (byte) 0xD4,
     (byte) 0xD5, 0x15, (byte) 0xD7, 0x17, 0x16, (byte) 0xD6, (byte) 0xD2, 0x12, 0x13, (byte) 0xD3,
     0x11, (byte) 0xD1, (byte) 0xD0, 0x10, (byte) 0xF0, 0x30, 0x31, (byte) 0xF1, 0x33, (byte) 0xF3,
     (byte) 0xF2, 0x32, 0x36, (byte) 0xF6, (byte) 0xF7, 0x37, (byte) 0xF5, 0x35, 0x34, (byte) 0xF4,
     0x3C, (byte) 0xFC, (byte) 0xFD, 0x3D, (byte) 0xFF, 0x3F, 0x3E, (byte) 0xFE, (byte) 0xFA, 0x3A,
     0x3B, (byte) 0xFB, 0x39, (byte) 0xF9, (byte) 0xF8, 0x38, 0x28, (byte) 0xE8, (byte) 0xE9, 0x29,
     (byte) 0xEB, 0x2B, 0x2A, (byte) 0xEA, (byte) 0xEE, 0x2E, 0x2F, (byte) 0xEF, 0x2D, (byte) 0xED,
     (byte) 0xEC, 0x2C, (byte) 0xE4, 0x24, 0x25, (byte) 0xE5, 0x27, (byte) 0xE7, (byte) 0xE6, 0x26,
     0x22, (byte) 0xE2, (byte) 0xE3, 0x23, (byte) 0xE1, 0x21, 0x20, (byte) 0xE0, (byte) 0xA0, 0x60,
     0x61, (byte) 0xA1, 0x63, (byte) 0xA3, (byte) 0xA2, 0x62, 0x66, (byte) 0xA6, (byte) 0xA7, 0x67,
     (byte) 0xA5, 0x65, 0x64, (byte) 0xA4, 0x6C, (byte) 0xAC, (byte) 0xAD, 0x6D, (byte) 0xAF, 0x6F,
     0x6E, (byte) 0xAE, (byte) 0xAA, 0x6A, 0x6B, (byte) 0xAB, 0x69, (byte) 0xA9, (byte) 0xA8, 0x68,
     0x78, (byte) 0xB8, (byte) 0xB9, 0x79, (byte) 0xBB, 0x7B, 0x7A, (byte) 0xBA, (byte) 0xBE, 0x7E,
     0x7F, (byte) 0xBF, 0x7D, (byte) 0xBD, (byte) 0xBC, 0x7C, (byte) 0xB4, 0x74, 0x75, (byte) 0xB5,
     0x77, (byte) 0xB7, (byte) 0xB6, 0x76, 0x72, (byte) 0xB2, (byte) 0xB3, 0x73, (byte) 0xB1, 0x71,
     0x70, (byte) 0x80, 0x50, (byte) 0x90, (byte) 0x91, 0x51, (byte) 0x93, 0x53, 0x52, (byte) 0x92,
     (byte) 0x96, 0x56, 0x57, (byte) 0x97, 0x55, (byte) 0x95, (byte) 0x94, 0x54, (byte) 0x9C, 0x5C,
     0x5D, (byte) 0x9D, 0x5F, (byte) 0x9F, (byte) 0x9E, 0x5E, 0x5A, (byte) 0x9A, (byte) 0x9B, 0x5B,
     (byte) 0x99, 0x59, 0x58, (byte) 0x98, (byte) 0x88, 0x48, 0x49, (byte) 0x89, 0x4B, (byte) 0x8B,
     (byte) 0x8A, 0x4A, 0x4E, (byte) 0x8E, (byte) 0x8F, 0x4F, (byte) 0x8D, 0x4D, 0x4C, (byte) 0x8C,
     0x44, (byte) 0x84, (byte) 0x85, 0x45, (byte) 0x87, 0x47, 0x46, (byte) 0x86, (byte) 0x82, 0x42,
     0x43, (byte) 0x83, 0x41, (byte) 0x81, (byte) 0x80, 0x40
};
public static int calcCRC(byte[] data){
     return calcCRC(data,0,data.length);
```

```
}
public static int calcCRC(byte[] data,int offset,int len){
      return calcCRC(data,offset,len,0xffff);
}
public static int calcCRC(byte[] data,int offset,int len,int preval){
      int ucCRCHi =(preval & 0xff00)>>8;
```



```
int uccrclo = preval& 0x00FF;
int ilndex;
for(int i=0;i<len;i++){
        ilndex = (uccrclo^data[offset+i]) &0x00FF;
        uccrclo = uccrcHi^t_crc16_h[ilndex];
        uccrcHi = t_crc16_l[ilndex];
}
return ((uccrcHi&0x00FF)<<8)|(uccrclo&0x00FF) &0xFFFF;
}</pre>
```