Example: $A = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1(3) & 1(1) & 1(4) \\ -1(3) & -1(1) & -1(4) \\ -2(3) & 2(1) & 2(4) \end{bmatrix}$ ~ Every row is a multiple of the 1st row. $\begin{bmatrix} 1 & 1/3 & 4/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = R$ Cone pivot column, one leading 1 Funfact : You can write any A as a linear combination of "outer products": A=U,V,T+UZV_T+--+ULV_T The rank r is the <u>minimum</u> number of outer products required to add up to r. Let's see how to do this using LU decomposition = $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} Row 2 - 14 \\ Row 1 \\ \hline 1 & 8 \\ \hline 1 & 8 \\ \hline 1 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ \hline 1 & 2 \\ \hline 1 & 2 \\ \hline 1 & 2 \\ \hline 2 & 3 \\ \hline 2 & Row 3 - 12 \\ \hline 2 & Row 2 - 14 \\ \hline 1 & 2 \\ \hline 3 & Row 3 - 12 \\ \hline 2 & Row 2 - 14 \\ \hline 1 & 2 & 3 \\ \hline 2 & Row 3 - 12 \\ \hline 2 & Row 2 - 14 \\ \hline 1 & 2 & 3 \\ \hline 2 & Row 3 - 12 \\ \hline 2 & Row 3 - 12 \\ \hline 2 & Row 3 - 12 \\ \hline 2 & Row 2 - 14 \\ \hline 3 & Row 3 - 12 \\ \hline 2 & Row 3 - 12 \\ \hline 3 & Row 3 - 12 \\ \hline 4 & Row 3 - 12 \\ \hline 2 & Row 3 - 12 \\ \hline 3 & Row 3 - 12 \\ \hline 4 & Row 3 - 12 \\ \hline 5 & Row 3 - 12 \\$ $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 1 & 0 & 0 \end{bmatrix}$ U has rank=2 -> A has rank 2-> A=U,V,T+U2V2T? In fact, can write $U = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -3 & -6 \end{bmatrix}$ (no need for 3/ d row is all o) $\rightarrow A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix}$ $= \left(\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -3 & 6 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0$ $= \left[\frac{1}{4}\right]\left[123\right] + \left[\frac{1}{3}\right]\left[0-3-6\right]$

on the other hand, any nullspace vector is a linear combination of "special solutions": $\begin{cases} x_1 + 2x_2 = 0 & x_1 = -2x_2 \\ x_3 + 2x_4 = 0 & x_3 = -2x_4 \end{cases} = \begin{cases} -2x_2 \\ x_2 \\ -2x_4 \\ x_1 \end{cases} = \begin{cases} -2x_2 \\ 0 \\ 0 \end{cases} + x_4 \begin{cases} 0 \\ 0 \\ -2 \end{cases}$ So here is the complete solution to AZ=To: All solutions look like $\overline{X} = \overline{X}p + \overline{X}n = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + X_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + X_4 \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$ Xp\$0,50 plane of solutions two free variables meons solutions form doesn't contain 0 (not a subspace) a plane in IR4. The solution plane is parallel to NIA). For this matrix A, R has a row of O's, means AZ=b has no solution for most To's. Ingeneral: If rank of A < #rows of A, then AZ= b usually has no solutions (i.e., most b's one not in ((A), so C(A) is smaller than IRM) Problem 3.3.1 $A = \begin{bmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ Find a condition on b_1, b_2, b_3 for solutions of $A\bar{x} = \bar{b}$ to exist $A\overline{X} = \overline{b} \rightarrow \begin{bmatrix} 2 & 4 & 6 & 4 & | & b_1 \\ 2 & 5 & 7 & 6 & | & b_2 \\ 2 & 3 & 5 & 2 & | & b_3 \end{bmatrix}} \xrightarrow{Row 2 - Row 1} \begin{bmatrix} 2 & 4 & 6 & 4 & | & b_1 \\ 0 & 1 & 1 & 2 & | & b_2 - b_1 \\ 0 & -1 & -1 & -2 & | & b_3 - b_4 \end{bmatrix} \xrightarrow{Row 3 + Row 2}$ $\begin{bmatrix} 2 & 4 & 6 & 4 & | & b_1 \\ 0 & 1 & 1 & 2 & | & b_2 - b_1 \\ 0 & 0 & 0 & 0 & | & -2b_1 + b_2 + b_3 \end{bmatrix} \xrightarrow{\frac{1}{2}Rov1} \begin{bmatrix} 1 & 2 & 3 & 2 & | & \frac{1}{2}b_1 \\ 0 & 1 & 1 & 2 & | & b_2 - b_1 \\ 0 & 0 & 0 & 0 & | & -2b_1 + b_2 + b_3 \end{bmatrix} \xrightarrow{Rov1} \begin{bmatrix} 1 & 0 & 1 - 2 & | & \frac{5}{2}b_1 - 2b_2 \\ 0 & 1 & 1 & 2 & | & b_2 - b_1 \\ 0 & 0 & 0 & 0 & | & -2b_1 + b_2 + b_3 \end{bmatrix} \xrightarrow{Rov1} \begin{bmatrix} 1 & 0 & 1 - 2 & | & \frac{5}{2}b_1 - 2b_2 \\ 0 & 1 & 1 & 2 & | & b_2 - b_1 \\ 0 & 0 & 0 & 0 & | & -2b_1 + b_2 + b_3 \end{bmatrix} \xrightarrow{Rov1} \begin{bmatrix} 1 & 0 & 1 - 2 & | & \frac{5}{2}b_1 - 2b_2 \\ 0 & 1 & 1 & 2 & | & b_2 - b_1 \\ 0 & 0 & 0 & 0 & | & -2b_1 + b_2 + b_3 \end{bmatrix}$ Solutions exist only if [-261+62+63=0] This is the equation of a plane in IR3, and this plane is exactly the column space CCA).

If b is in C(A) (Which means -2b1+b2+b3=0), then there are (7) many solutions. Null space: Take $b_1 = b_2 = b_3 = 0$ (note -2(0)+0+0=0) $\frac{x_1 = -x_3 + 2x_4}{x_2 = -x_3 - 2x_4}$ (2 free voriables, x_3 and x_4) $\begin{cases} x_1 + x_3 - 2x_4 = 0 \\ x_2 + x_3 + 2x_4 = 0 \end{cases}$ $N(A) = \text{all vectors like} \begin{vmatrix} -x_3 + 2x_4 \\ -x_3 - 2x_4 \end{vmatrix} = x_3 \begin{vmatrix} -1 \\ -1 \end{vmatrix} + x_4 \begin{vmatrix} 2 \\ -2 \\ 0 \end{vmatrix}$ special solutions Now take $b = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$. Is b in b C(A)? Check= -2(4)+3+5 = 0 In this case, get equations $\begin{cases} x_1 + x_3 - 2x_4 = \frac{5}{2}(4) - 2(3) = 4 \\ x_2 + x_3 + 2x_4 = 3 - 4 = -1 \end{cases}$ One particular solution: set x3=x4=0, get x1=4, x2=-1 50 $\overline{x}_p = \begin{bmatrix} 4\\ -1\\ 0 \end{bmatrix}$. All solutions: $\overline{X} = \overline{X}_p + \overline{X}_n = \begin{bmatrix} 4\\ -1\\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1\\ -1\\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2\\ -2\\ 0\\ 1 \end{bmatrix}$ plane of solutions parallel to N(A) again. In these examples, N(A) was a plane (non-zero) so we got a whole plane of solutions for AX=b (or no solution if b 15 not in C(A)). I.e., N(A) tells you the max number of solutions AZ = b can have. Question: When we do [A | b] Elimination > [R | d], what are the basic possibilities for R? OR has a leading I in every row and every column. (2) R has a leading 1 in every row, but not every column. (3) R has a leading I in every column, but not every row.

(4) R has leading I's missing from both rows and columns

We just sow examples of Coise (4): For most 5, Ax=6 has no

solution, but if 6 is in C(A), then Ax=6 has infinitely many solutions,