

Kapitel 6: Mobilfunk-Netze LTE & weitere Entwicklung

CASE_SMN WS 2023/2024

Vorlesung "Sicherheit moderner Netze"

04.12.2023

Mobilfunk-Systeme der 4. Generation

→ LTE, 4G

Long Term Evolution (LTE)

- Der Mobilfunkstandard der vierten Generation ist LTE (Long Term Evolution)
- Hauptziel:
 - Noch höhere Datenraten, hohe Flexibilität
 - Ergänzung zur UMTS / GSM: Nutzung der GPRS Architektur ("Migration" der Netze zu LTE, aber gleichzeitig volle Nutzung von UMTS, GSM/EDGE)
 - Volle Nutzung von IP bis zum Mobilen Endgerät, Migration zum All-IP Netze (auch für Voice, IP auch auf der Luft-Schnittstelle)

Warum?

- Ständig steigender Bandbreitenbedarf und Anzahl der mobilen Nutzer
- Noch höhere Datenraten über die Luftschnittstelle
- Extrem hohe Flexibilität der Funkstrecke:
 - Sehr hohe Datenraten bei kurzer Entfernung / geringen Störungen
 - Geringere, anpassbare Datenraten bei größeren Entfernungen / Störungen / hoher Last in der Funkzelle
- Ziel: All IP-Netz (mit Mobil und Festnetz-Zugang)

Anforderung an einen "guten" Funkkanal

Verzerrung der Funksignal entsteht durch:

- Unterschiedliche Laufzeiten bei verschiedenen Frequenzen,
- Verzerrungen (auch Frequenzabhängig)
- Reflektionen und Dämpfung
- → Ein breitbandiges Signal kann nur schlecht übertragen werden

Lösung:

- Aufteilung des verfügbaren Spektrum in viele, schmale "Sub-Carrier" => "Frequenzmultiplex"
- Die **schmalen Signale** werden weniger gestört durch die genannten Effekte wenn Guard-Bands dazwischen sind.
- Orthogonale Modulation: Benachbarte Carrier stören sich nicht
- => Bandbreitengewinn
- Störungen einzelner Sub-Carrier können kompensiert werden.
- Bandbreite eines Subcarrier: 321,5 kHz bei WLAN, 15 kHz bei LTE

Long Term Evolution (LTE) Funkkanal

Anforderungen an den Funkkanal bei LTE:

- Nutzung unterschiedlich breiter Kanäle (1,4; 3; 5; 10; 15 und 20 MHz)
- Sehr effiziente Modulation
- Adaptives Verfahren zum Ausgleich schwankender Funkstrecken (unterschiedlicher Ausbreitungsbedingungen)
- Kurze Reaktionszeiten für interaktive Nutzung (Web-Surfen, VoIP)
- Modulationsverfahren: OFDM (Orthogonal Frequency Division Multiplexing)
 - Signal wird gleichzeitig auf viele Subträger moduliert:
 Parallele Übertragung vieler schmalbandiger Signale (= Subcarrier)
 - Die schmalbandigen Signale werden durch unterschiedliche Laufzeiten nur wenig gestört, also kaum Multipath-Fading.
 - Gute Anpassung an die verfügbare Bandbreite und Störverhalten.
 - Modulation der Nutzsignale auf die einzelnen Träger mit QAM (Quadratur-Amplituden-Modulation) abhängig von der Qualität der Übertragungsstrecke
 4 QAM ... 16 QAM ... 64 QAM (64 Symbole => 6 Bit)
 - Anpassung an unterschiedliche Bedingungen durch Auswahl / Anzahl der Subcarrier

LTE-Übertragungstechnik: Ressource-Blöcke

- LTE nutzt skalierbare und individuelle Kanäle (Subcarrier). Das Frequenzspektrum wird somit geteilt.
- OFDM teilt das zur Verfügung stehende Frequenzband (z.B. 1,4; 5, 10, 15 oder 20 MHz) in viele schmale **Subcarrier zu je 15 kHz** auf.
 - LTE kann unterschiedlich große Frequenzbänder effizient nutzen durch die Anzahl der Subcarrier:
 - 10 MHz Band => 600 Subcarrier
 - 20 MHz Band => 1200 Subcarrier
 - Die Subcarrier werden in Gruppen und Zeitblöcken zusammengefasst und jeweils einem Endgerät bei Bedarf zur Nutzdatenübertragung zugewiesen. Dabei erfolgt eine Anpassung an:
 - gewünscht Datenrate der Anwendung
 - Bandbreitenbedarf in der Funkzelle
 - Qualität der Funkverbindungen / Umgebungseinflüsse bestimmt das gewählte Modulationsverfahren 4 QAM → 64 QAM je Subcarrier

Prinzip von OFDM (Downstream)

OFDM:

Eingangs-Bitfolge wird parallelisiert. Modulation der einzelnen Teile auf Subcarrier (hier: a bis e)

Inverse Fast Fourier Transformation (I-FFT):

Abbildung der zeitbasierten parallelen Signale als Amplitude un Phase auf unterschiedlichen Frequenzen (Subcarrier, im 15 kHz Abstand)

Modulation bei LTE: OFDM

OFDM (Orthogonal Frequency Division Multiplexing)

Modulation bei LTE: OFDM

OFDM (Orthogonal Frequency Division Multiplexing)

LTE-Übertragungstechnik: Ressource Grid

[Quelle: Sauter, 2018

LTE: Vergleich Uplink - Downlink

- Downlink: Orthogonal Frequency Division Multiple Access (OFDMA)
- **Uplink:** Single Carrier Frequency Division Multiple Access (SC-FDMA)
 Einträgerzugriffsverfahren, sehr ähnlich zu OFDMA.
 SC-FDMA benötigt geringere Leistungsschwankungen (Peak Average) und erlaubt dadurch einfacher Leistungsverstärker. Zusätzlich ergibt sich noch ein geringerer Energieverbrauch im Smartphone.

LTE-Frequenzen -1-

- Frequenzen für LTE (in D):
 - 800 MHz Band für großflächige Versorgung mit Internet-Access, "Digitale Dividende"
 - Nutzung der ehemaligen TV-Kanäle

Versteigerung vom Mai 2010:

Nutzer	Uplink	Downlink	Preis	
Deutsche Telekom	852–862 MHz	811–821 MHz	1,153 Mrd. €	
Vodafone	842–852 MHz	801–811 MHz	1,210 Mrd. €	
O ₂	832–842 MHz	791–801 MHz	1,212 Mrd. €	

Je 10 MHz!!

LTE-Frequenzen -2-

- Frequenzen für LTE (in D):
 - 2,6 GHz Band: 20 MHz für hohe Datenraten (bei begrenzter Reichweite)

Versteigerung vom Mai 2010:

Nutzor	F	requenzduplex (FDD	Zeitduplex (TDD)		
Nutzer	Uplink	Downlink	Preis	Uplink+Downlink	Preis
Deutsche Telekom	2520–2540 MHz	2640–2660 MHz	76,228 Mio. €	2605–2610 MHz	8,598 Mio. €
Vodafone	2500–2520 MHz	2620–2640 MHz	73,464 Mio. €	2580–2605 MHz	44,96 Mio. €
E-Plus	2540–2550 MHz	2660–2670 MHz	36,67 Mio. €	2570–2580 MHz	16,502 Mio. €
O ₂	2550–2570 MHz	2670–2690 MHz	71,415 Mio. €	2610–2620 MHz	16,458 Mio. €

[Quelle: BNetzA, Wikipedia, 4/2019]

LTE-Frequenzen -3-

- Frequenzen für LTE (in D):
 - Außerdem beginnen die Mobilfunk-Betreiber die vorhandenen Frequenzen mit LTE zu Nutzen: Beispiel 1800 MHz Band

- BNetzA hat die Nutzung der schon vergebenen Bänder mit neuer Funktechnik gestattet, sofern die benachbarten Frequenzen (z.B. mit GSM oder UMTS) nicht gestört werden
- "Refarming" => neue Zuordnung der Frequenzen eines Netzbetreibers zu den nachgefragten Mobilfunktechnologien, die Frequenzzuteilung ist nicht mehr an eine Technologie gebunden.
- Technisch Konsequenz im Netz: "Single RAN" (RAN = Radio Access Network); Software defined Radio mit dem leicht ein Wechsel der Mobilfunktechnologie möglich ist.
- Schon heute wird 3G (UMTS) allmählich reduziert (weniger Spektrum/Bandbreite) zu Gunsten von LTE
- 2G (GSM) wird als Basis-Versorgung in Europa aber bleiben für eine sicheren Sprachdienst

Frequenzspektrum in den Bereichen 700 MHz, 800 MHz, 900 MHz, 1,5 GHz, 1,8 GHz, 2 GHz, 2,6 GHz und 3,5 GHz

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/OffentlicheNetze/Mobilfunk/DrahtloserNetzzugang/Projekt2016/Frequenzen700bis1800_pdf.pdf?__blob=publicationFile&v=3

Versteigerung der Frequenzen 2019:

Im Bereich bei 2 GHz

Bandlage 01.01.2026 bis 31.12.2040

Im Bereich bei 3,6 GHz

Bandlage im Bereich 3,6 GHz

	Drillisch Netz AG	Telefónica Germany GmbH & Co. OHG	Telekom Deutschland GmbH	Vodafone GmbH
2 GHz	2 x 10 MHz	2 x 10 MHz	2 x 20 MHz	2 x 20 MHz
3.6 GHz	50 MHz	70 MHz	90 MHz	90 MHz
Summe	70 MHz	90 MHz	130 MHz	130 MHz

Die Auktion endetet nach 497 Runden bei 6.549.651.000 €.

[Quelle: www.bundesnetzagentur.de 8/2019]

LTE: **Evolved** UTRAN

4

- Alle Radio-Funktionen (Luftschnittstelle) sind in der Basisstation konzentriert
 - "eNodeB" => evolved NodeB
 - Enthält alle Funktionen der Luftschnittstelle, kein RNC mehr erforderlich
 - Schnittstellen zum Core-Netz (S1)
 - Für Signalisierung zum MME (Management Mobility Entity)
 - Für Nutz-Daten zum S-GW (Serving-Gateway)
 - Schnittstellen zu anderen eNodeB (X2): Direkter Austausch der eNodeB untereinander für Handover, Leistungsregelung, Interferenzen,...
- Trennung von Signalisierung und Nutzdaten.
- Transport nur auf IP

UTRAN - UMTS Terrestrial Radio Access Network

Funkteil eines LTE-Netzes: eNodeB

Aufgaben eines eNodeB:

- Steuerung der Luft-Schnittstelle (Air-Interface)
- User Management und die Aufteilung der Ressourcen auf dem Air Interface an mehrere gleichzeitige Teilnehmer ("Paketvermittlung" durch Zuteilen der Ressource-Blöcke eines Subframes)
- Sicherstellung von Quality of Service (QoS)-Attributen für einzelne Verbindungen, z.B.:
 - maximale Verzögerungszeit
 - Bereitstellung einer minimalen Bandbreite in Abhängigkeit des Nutzerprofils.
- Mobilitätsmanagement
- Interferenzmanagement, also die Reduktion des Einflusses der eigenen Sendetätigkeit auf die Übertragungen der Nachbarstationen.

LTE-Netzarchitektur: EPC

Neue Struktur des Core Netze **Evolved Packet Core (EPC)**:

- MME: Mobility
 Management Entity
- S-GW: Serving-Gateway zur
 Weiterleitung der IP-Nutzdaten
- PDN-GW: Packet Data Network Gateway
- S-GW + PDN-GW =
 Service-Architecture Evolution-Gateway
 (SAE)
- **HSS**: Home Subscriber Server
- PCRF: Policy and Charging Rules Function

EPC Elemente: MME

- **MME**: Mobility Management Entity
 - Für die Benutzerverwaltung im LTE-Netz
 - Nur Signalisierung zwischen eNodeB und Core Netz

Aufgaben einer MME

- Authentifizierung: Nach Meldung des LTE-Endgeräts fordert MME die Authentifizierungsinformationen von der Datenbank des Home Subscriber Server (HSS) an. MME erhält dann u.a. die Daten zur Verschlüsselung am Air Interface.
- Aufbau der Bearer (Nutz-Kanäle), Steuerung der IP-Tunnel zwischen eNodeB und Gateway
- Mobility Management: Deaktivierung des Air Interfaces und des Tunnels (nach 20...30 sec Inaktivität)
- Unterstützung des Handover (falls kein X2 Interface zwischen den beteiligten eNodeB vorhanden ist)
- Interworking mit UMTS- oder GSM-Netzen: MME kann bei Bedarf ein Endgerät an ein anderes Mobilfunknetz abgeben.

EPC Elemente: SAE, Serving-Gateway, PDN-Gateway

- SAE: SAE-GW: Service Architecture Evolution-Gateway Logisch unterteilt in:
- S-GW: Serving Gateway (~ Router mit speziellen Funktionen)
 - Steuert den Nutzverkehr in einem bestimmten, definierten Gebiet
 - Weiterleitung der Nutzdaten (IP) vom eNodeB zum PDN-Gateway im IP-Tunnel
 - Vergleichbar mit SGSN
- PDN-GW: Packet Data Network-Gateway
 - Übergang vom LTE-Netz (EPC) zum Internet / Firmennetz
 - Vergabe von IP-Adressen an die Endgeräte
 - Aufbau und Verwaltung der IP-Tunnel für die Nutzdaten
 - Vergleichbar mit GGSN

Weitere Elemente im LTE-Netz

- HSS: Home Subscriber Server
 - Authentifizierung und Autorisierung der Nutzer
 - Aufgaben und Funktion vergleichbar mit HLR
 - Verwendet modernere Protokolle
 - Enthält die geheimen Schlüssel der Nutzer
- PCRF: Policy and Charging Rules Function
 - IP-Verkehr muss generell überwacht und begrenzt werden
 - Policies definieren z.B. die max. Bandbreite (je Dienst), welche Dienste oder Applikationen genutzt werden können
 - z.B. welche Dienste sind aktiviert / bestellt (subskribiert) sind.
- In den Netzelementen, z.B. im eNodeB, S-GW / P-GW:
 - Überwachung des Verkehrs am "Policy Enforcement Point"
 - Flow Based Charging, mit charging control und online credit control, für service data flows und application traffic.
 - Bsp.: Begrenztes Datenvolumen (500 MB Monat), Max. Gebühren im Ausland,...

LTE-Advanced (Rel. 10 und weitere) → 5G

2014 beginnt die Einführung der nächsten Weiterentwicklung von LTE, die aber voll kompatibel zum bestehenden LTE-Netz ist:

"LTE Advanced"

- Anforderungen an LTE Advanced sind:
 - Gesteigerte Spitzendatenraten von DL 1 Gbps, UL 1 Gbps
 - Höhere spektrale Effizienz von 16bps/Hz in Rel. 8 bis 30 bps/Hz in Rel. 10
 - Höhere Anzahl gleichzeitig aktiver Nutzer
 - Höhere Datenraten am Zellrand, z.B. für DL 2x2 MIMO mindestens 2,4 bps/Hz/Zelle
- Die wichtigsten neuen Funktionen, die mit LTE Advanced eingeführt werden:
 - Carrier Aggregation, Frequenzband-übergreifende Nutzung eines Endgeräts
 - Verbesserte Nutzung von Multi-Antennentechniken (z.B. 8x8 MIMO im DL)
 - Unterstützung von Relay Nodes (RN).

5G oder was kommt nach LTE / 4G?

Was ist 5G Mobilfunk?

5G ist in allen Medien, aber was ist völlig neu? (ein erster Blick drauf)

Eine neue Luftschnittstelle (Funktechnik)?

Bisher: 2G = TDM mit 22,8 kbit/s Kanälen,

3G = CDMA mit flexiblen TDM-Kanälen (=> Spreizcode)

4G = OFDM mit All-IP für Sprache und Daten

5G => weiterhin OFDM und All-IP

■ Ein neuer Netzkern (Core-Netz)?

Bisher: 2G = TDM-Leitungsvermittelte Sprache (wie Telefon)

+ GPRS-Erweiterung (IP)

3G = Soft Switching (IP-Transport für Sprache und Daten im Core)

4G = All IP-Netz mit Evolved Packet Core

5G = weiterhin all-IP

https://www.telekom.com/de/konzern/themenspecials/special-5g https://www.youtube.com/watch?v=c3bkMfYM9rQ#action=share

https://www.golem.de/news/netzwerke-warum-5g-nicht-das-bessere-wi-fi-ist-1912-145178.html

Für was ist 5G Mobilfunk?

eMBB – Enhanced Mobile Broadband

Da das 5G-Netz um ein Vielfaches schneller ist als sein Vorgänger LTE, ermöglicht es neue Anwendungen wie Enhanced Mobile Broadband oder kurz eMBB. Dieser Anwendungsbereich stellt eine **extrem hohe Datenra**te zur Verfügung. Somit unterstützt das 5G-Mobilfunknetz Dienste mit hohen Breitbandanforderungen. Zu diesen zählen Virtual und Augmented Reality.

mMTC – Massive Machine Type Communications

Der neue Mobilfunkstandard macht nicht nur Dienste mit hohen Breitbandanforderungen möglich, sondern optimiert ebenfalls die Machine-to-Machine-Kommunikation und das Internet der Dinge (IoT). Dafür sorgt das Anwendungsprofil mMTC: Denn mittels Massive Machine Type Communication wird eine riesige Anzahl von Geräten oder Komponenten miteinander vernetzt. Low-Cost- und Low-Energy-Geräte kommunizieren mittels mMTC an den verschiedensten Orten effizient mobil über 5G. Typische Anwendungsbereiche für diese Technik sind unter anderem:

- Smart Cities,
- Logistik,
- Smart Agriculture,...

uRLLC – Ultra-Reliable and Low-Latency Communications

Zeitkritische Anwendungen mit geringster Latenzzeit – auch das macht die 5G-Technologie möglich. Dienste, die besonders kurze Antwortzeiten von 1 ms benötigen und nicht ausfallen dürfen, werden dank Ultra-Reliable and Low-Latency Communications möglich. Beispiele dafür sind:

- Autonomes Fahren
- Automatische Fahrassistenten
- Predictive Maintenance (dient zur proaktiven Instandhaltung von Maschinen)
- Car-to-Car-Kommunikation

"5G Enables New Capabilities Beyond Mobile Broadband"

4

→ Das 5G-Versprechen

"5G Enables New Capabilities Beyond Mobile Broadband"

→ Das 5G-Versprechen

Ziele von 5 G:

- Viel höhere Datenraten
- Sehr geringe Latenzzeit => sehr schnelle Reaktionen, Realzeit Steuerung
- Unterstützung von IoT => sehr geringe Datenraten, große Reichweite, wenig Energie

flexible | scalable | automated | cloud native

software centric | dynamic network slicing

Entwicklung der Mobilfunk-Standards / -Generationen

• The first 3GPP standards focused on providing voice and MBB data solution. Although Machine Type Communications (MTC) is possible, the technologies were not optimized for this

© 2019 Nokia

[Quelle: Nokia Vortrag an THI 7/19, © 2019 Nokia]

5 Kern-Elemente die 5G Anforderungen ermöglichen

- Spektrum in höheren Frequenzen => geringere Reichweite aber hohe Bandbreite => kleine Zellen
- Kleine Funk-Zellen => Sichtverbindung => höherer Modulationen sind möglich (bis zu 256 QAM)
- Gleichzeitige Nutzung mehrerer Frequenzbänder => Carrier Aggregation, Einbinden WiFi (LAA)
- Edge Computing => Verarbeitung der Daten nahe an der Quelle im Netz

Mehrfache Antennen und Beam Forming

Three main principles exists for transmitting signals over multiple antenna 3GPP combines these different principles into different transmission modes (next slide).

Höherer Durchsatz: Carrier Aggregation und MiMo

Carrier Aggrgation:

Bündeln von Kanälen in unterschiedlichen Frequenzbändern

Auch in Kombination mit WiFi

=> Licensed Assisted Access

Und MiMo / Massive MiMO / Beamforming

Höhere Modulation, abhängig von der Entfernung

- Sehr hohe Datenraten bei guter Verbindung (~ Sichtverbindung)
- Anpassung der Modulation an die Entfernung von Basisstation

Welche Frequenzen werden für 5G vergeben

Global snapshot of 5G spectrum

Around the world, there is a pattern of band allocation

					EXI	← Existing band	
<10	GHz 30	GHz 4GH	lz 5GH	z	24-28GHz	37-40GHz	64-71GHz
600MHz (2x35MHz)	2.5GHz (LTE B41)	3.5GHz (150MHz)		5.9–7.1GHz	27.5-28.35GHz	37-37.6GHz 37.6-40GHz	64-71GHz
600MHz (2x35MHz)	I 	3.5GHz (150MHz)		5.9–7.1GHz	27.5-28.35GHz	37-37.6GHz 37.6-40GHz	64-71GH:
700MHz ◆ →	1 	3.4–3.8GHz		5.9-6.4GHz	24.5-27.5GHz		1 1 1 1
	1 1 1	3.4–3.8GHz			26GHz, 28GHz		1 1 1
	[3.4–3.7GHz			26GHz, 28GHz ← - ▶		[
		3.46 –3.8GHz			26GHz ◆ - ▶	1	[[]
	 	3.6–3.8GHz					1 1 1
		3.3 –3.6GHz	4.8 −5GHz		24.5-27.5GHz	37.5-42.5GHz	[[]
	 	3.4–3.7GHz			26.5-29.5GHz		1
		3.6-4.2GHz	4.4–4.9GHz		27.5-29.5GHz		
	 	3.4–3.7GHz			28GHz ◆ - ▶	39GHz ◆ - ▶	1 1 1

Neue Frequenzbänder für 5G. Die bestehenden Frequenzen werden auch von 4G / 5G genutzt werden.

New 5G band

→Licensed

Frequenz-Nutzung heute bei DT

Frequenz-Nutzung geplant bei DT

Versorgung eines Dorfs: 1. im Low-Band

[Quelle: Vortrag Dirk Wössner zu 5G, DT, 11/19, © 2019 Deutsche Telekom]

Versorgung eines Dorfs: 2. zusätzlich mid-Band

Versorgung eines Dorfs: 3. Ergänzung high-Band

Netzabdeckung DT

2019:

- Flächenabdeckung LTE: 87 %
- Pop-Coverage: (Bewohnte Gebiete): 97,9%
- 30.000 Standorte (Funkmasten)

2025:

- Flächenabdeckung 5G: 90 %
- Pop-Coverage: (Bewohnte Gebiete): 99%
- 40.000 Standorte (Funkmasten)
- Abdeckung der wichtigen Verkehrswege (Auflage aus der Lizenzvergabe)

Der Netz Core bei 5G

Im Netz Core (5G Next Gen Core) werden die aktuellen Prinzipien eingesetzt

- Virtualisierung
- Cloud Architektur

Virtualized packet core

- · Inefficient resource utilization
- · Inflexible capacity scaling
- Inflexible resiliency

Cloud-native packet core

- · Cloud native architecture
- Multi-access connectivity
- Cellular IOT optimizations
- · Connectionless services

5G NGC

- New network functions
- New QoE mechanisms
- Expanded network slicing
- · Evolved connectionless services

Cloud-native architecture to deliver massive scalability, performance, flexibility and reliability to meet the economics of IoT/MTC and broadband evolution, and a foundation for 5G

Full automation and self-optimization

Unterschiedliche (sich widersprechende) Eigenschaften für unterschiedliche Anwendungen:

- Extrem Hohe Bandbreiten
- Extrem kurze Verzögerung (Latenzzeit)
- Extreme Zuverlässigkeit (=> Industrie 4.0)
- Sehr geringe Datenraten, hohe Reichweiten und geringer Energieverbrauch (IoT)

Network Slicing

Figure 1. Network slicing partitions common network infrastructure into multiple, logical, end-to-end, virtual network instances to provide customized virtual private services

https://www.youtube.com/watch?v=d8kNqdQeApU&feature=youtu.be

Network Slicing: Anpassung an die unterschiedlichen Anforderungen

Today's network serving all services and devices

Vertical slicing for Service verticals, device segment and customer segments Vertical and horizontal Slicing for Service specific customization

Network Slicing: Logische Aufteilung des Netzes nach

- Anwendungen / Anforderungstypen (vertikal)
- Unterschiedlichen Kunden einer Branche / Industrie (horizontal)

Kriterien: Latency, throughput, redundancy, mobility, security, coverage, TCO (Dadurch bleiben auch die Nutzer / Technologien pro Slice besser beherrschbar)

