BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 14

Independent Random Variables	2
Independence	
Checking independence	
Example	5
Example: Buffon's Needle	6
Example (cont.)	
Expectations of Independent RVs	8
Proof	
Bivariate Transformations	10
Functions of random vectors	11
Discrete RVs	
Sum of two independent Poissons	
cont	14
Bivariate Transformations of Continuous RVs	15
Continuous RVs	16
Rotation of a bivariate normal vector	
cont	
Functions of independent random variables	
Extensions of previous example	
Ratio of two independent normals	
cont	
Sum of Two Independent RVs	23
Sum of Two Independent RVs	
Sum of two independent Poissons	
Characteristic Function	
Sum of two independent Poissons	
Sum of Two Independent Normals	
Sum of two independent gammas	29

Independence

The random variables X and Y are said to be *independent* if for any two Borel sets A and B,

$$P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$$

All events defined in terms of X are independent of all events defined in terms of Y.

Using the Kolmogorov axioms of probability, it can be shown that X and Y are independent if and only if $\forall (x,y)$ (except possibly for sets of prob. 0)

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

or in terms of *pmfs* (discrete) and *pdf*'s (continuous)

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

* Check previous examples.

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 3 / 29

Checking independence

- 1. A necessary condition for independence of *X* and *Y* is that their joint pdf/pmf has positive probability on a rectangular domain.
- 2. If the domain is rectangular, one can try to write the joint pdf/pmf as a product of functions of x and y only.

Lemma C-B 4.2.7: Let (X,Y) be a bivariate random vector with joint pdf or pmf f(x,y). Then X and Y are independent if and only if there exist functions g(x) and h(y) such that for every $x \in \mathbb{R}$ and $y \in \mathbb{R}$,

$$f(x,y) = g(x)h(y)$$

Proof:

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 4 / 29

Example

Two points are selected randomly on a line of length a so as to be on opposite sides of the mid-point of the line. Find the probability that the distance between them is less than a/3.

Solution:

Let X be the coordinate of a point selected randomly in [0,a/2] and Y the coordinate of a point selected randomly in [a/2,a]. Assume X and Y are independent and uniform over its interval. The joint density is:

$$f_{X,Y}(x,y) = 4/a^2$$
, $0 \le x \le a/2$, $a/2 \le y \le a$

Hence, the solution is

$$P(Y - X < a/3) = \int_{a/6}^{a/2} \int_{a/2}^{a/3 + x} \frac{4}{a^2} dy dx = 2/9$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 5 / 29

Example: Buffon's Needle

A table is ruled with lines distance 1 unit apart. A needle of length $L \le 1$ is thrown randomly on the table. What is the probability that the needle intersects a line?

Solution: Define two random variables:

- X: distance from low end of the needle to the nearest line above
- θ : angle from the vertical to the needle.

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 6 / 29

Example (cont.)

By "random", we assume X and θ are independent, and

$$X \sim U(0,1)$$
 and $\theta \sim U[-\pi/2,\pi/2]$.

This means that

$$f_{X,\Theta}(x,\theta) = 1/\pi, \qquad 0 \le x \le 1, \quad -\pi/2 \le \theta \le \pi/2$$

For the needle to intersect a line, we need $X < L \cos(\theta)$. So,

$$P(\text{needle intersects a line}) = P(X < L\cos(\theta))$$

$$= \int_{-\pi/2}^{\pi/2} \int_{0}^{L\cos\theta} \frac{1}{\pi} dx d\theta$$

$$= \frac{2L}{\pi}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 7 / 29

Expectations of Independent RVs

Theorem C-B 4.2.10 Let X and Y be independent rvs.

• For any $A \subset \mathcal{R}$ and $B \subset \mathcal{R}$,

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

i.e. the events $\{X \in A\}$ and $\{Y \in B\}$ are independent. (C-B write it as a theorem, we took it as definition.)

• Let g(x) be a function only of x and h(y) be a function only of y. Then

$$\mathsf{E}(g(X)h(Y)) = (\mathsf{E}g(X))(\mathsf{E}h(Y))$$

Example: X, Y indep.

$$\mathsf{E}(X^2Y^3) = (\mathsf{E}X^2)(\mathsf{E}Y^3)$$

$$\mathsf{E}(Y^2Y^3) \neq (\mathsf{E}Y^2)(\mathsf{E}Y^3)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 8 / 29

Proof

$$\begin{split} \mathsf{E}(g(X)h(Y)) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{X,Y}(x,y)dx\,dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{X}(x)f_{Y}(y)dx\,dy \\ &= \left(\int_{-\infty}^{\infty} g(x)f_{X}(x)dx\right)\left(\int_{-\infty}^{\infty} h(y)f_{Y}(y)dy\right) \\ &= (\mathsf{E}\,g(X))(\mathsf{E}\,h(Y)) \end{split}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 9 / 29

Bivariate Transformations

10/29

Functions of random vectors

Let (X,Y) be a bivariate rv with known distribution. Define (U,V) by

$$U = g_1(X, Y), \qquad V = g_2(X, Y)$$

Probability mapping: For any Borel set $B \subset \mathbb{R}^2$,

$$P[(U, V) \in B] = P[(X, Y) \in A]$$

where A is the inverse mapping of B, i.e.

$$A = \{(x, y) \in \mathbb{R}^2 : (g_1(x, y), g_2(x, y)) \in B\}$$

The inverse is well defined even if the mapping is not bijective.

Example: Let $g_1(x, y) = x$, $g_2(x, y) = x^2 + y^2$.

BIOS 660/BIOS 672 (3 Credits)

Notes 14 – 11 / 29

Discrete RVs

Suppose that (X,Y) is a discrete rv, i.e. the pmf is positive on a countable set \mathcal{A} . Then (U,V) is also discrete and takes values on a countable set \mathcal{B} . Define

$$A_{uv} = \{(x, y) \in \mathcal{A} : g_1(x, y) = u, g_2(x, y) = v\}$$

Then

$$f_{U,V}(u,v) = P(U=u,V=v) = \sum_{(x,y)\in A_{uv}} f_{X,Y}(x,y)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 12 / 29

Sum of two independent Poissons

Let $X \sim Po(\lambda_1)$, $Y \sim Po(\lambda_2)$, independent, and define

$$U = X + Y, \qquad V = Y$$

- (X,Y) takes values in $\mathcal{A} = \{0,1,2,\dots\}^2$.
- (U, V) takes values on $\mathcal{B} = \{(u, v): v = 0, 1, 2, ..., u = v, v + 1, v + 2, ...\}.$
- For a particular (u, v), $A_{uv} = \{(x, y) \in \mathcal{A} : x + y = u, y = v\} = (u v, u)$.

The joint pmf of U and V is

$$f_{U,V}(u,v) = f_{X,Y}(u-v,v) = \frac{e^{-\lambda_1} \lambda_1^{u-v}}{(u-v)!} \frac{e^{-\lambda_2} \lambda_2^v}{v!}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 13 / 29

cont.

The distribution of U = X + Y is the marginal

$$f_{U}(u) = \sum_{v=0}^{u} \frac{e^{-\lambda_{1}} \lambda_{1}^{u-v}}{(u-v)!} \frac{e^{-\lambda_{2}} \lambda_{2}^{v}}{v!}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{u!} \sum_{v=0}^{u} {u \choose v} \lambda_{1}^{u-v} \lambda_{2}^{v}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{u!} (\lambda_{1}+\lambda_{2})^{u}$$

We obtain that U is Poisson with parameter $\lambda = \lambda_1 + \lambda_2$.

BIOS 660/BIOS 672 (3 Credits)

Notes 14 – 14 / 29

Bivariate Transformations of Continuous RVs

15 / 29

Continuous RVs

Suppose (X, Y) is continuous and the joint transformation

$$u = g_1(x, y), \qquad v = g_2(x, y)$$

is one-to-one and differentiable. Define the inverse mapping

$$x = h_1(u, v), \qquad y = h_2(u, v)$$

Then

$$f_{UV}(u,v) = f_{XY}(h_1(u,v), h_2(u,v)) |J(u,v)|$$

where J(u,v) is the Jacobian of the transformation $(x,y) \to (u,v)$ given by

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 16 / 29

Rotation of a bivariate normal vector

Let $X \sim N(0,1), Y \sim N(0,1)$, independent. Define the rotation

$$U = X\cos\theta - Y\sin\theta$$

$$V = X\sin\theta + Y\cos\theta$$

for fixed θ . Then $U \sim N(0,1)$, $V \sim N(0,1)$, independent.

Proof: The range of (X,Y) is \mathbb{R}^2 . The range of (U,V) is \mathbb{R}^2 . Need the inverse transformation

$$X = U\cos\theta + V\sin\theta$$

$$Y = -U\sin\theta + V\cos\theta$$

with Jacobian

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix} = 1$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 17 / 29

cont.

The joint pdf of (X, Y) is

$$f_{XY}(x,y) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} \cdot \frac{1}{\sqrt{2\pi}}e^{-y^2/2} = \frac{1}{2\pi}e^{-(x^2+y^2)/2}$$

The joint pdf of (U, V) is

$$f_{UV}(u,v) = \frac{1}{2\pi} e^{-[(u\cos\theta + v\sin\theta)^2 + (-u\sin\theta + v\cos\theta)^2]/2} \cdot |1|$$
$$= \frac{1}{2\pi} e^{-(u^2 + v^2)/2} = \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \cdot \frac{1}{\sqrt{2\pi}} e^{-v^2/2}$$

so $U \sim N(0,1)$, $V \sim N(0,1)$, independent.

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 18 / 29

Functions of independent random variables

Theorem C-B 4.3.5: Let X and Y be independent rvs. Let $g: \mathbb{R} \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$ be functions. Then the random variables U = g(X) and V = h(Y) are independent.

Proof:

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 19 / 29

Extensions of previous example

• Suppose $X \sim N(0, \sigma^2)$, $Y \sim N(0, \sigma^2)$, independent

$$U = a(X\cos\theta - Y\sin\theta)$$

$$V = a(X\sin\theta + Y\cos\theta)$$

Then $U \sim N(0, a^2\sigma^2)$, $V \sim N(0, a^2\sigma^2)$, independent.

• Above, take $\theta = \pi/4$, $a = \sqrt{2}$:

$$U = \sqrt{2}(X/\sqrt{2} - Y/\sqrt{2}) = X - Y$$

$$V = \sqrt{2}(X/\sqrt{2} + Y/\sqrt{2}) = X + Y$$

We get $U \sim N(0, 2\sigma^2)$, $V \sim N(0, 2\sigma^2)$, independent.

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 20 / 29

Ratio of two independent normals

Let $X \sim N(0,1)$, $Y \sim N(0,1)$, independent. The ratio X/Y has the Cauchy distribution.

Proof: Define the variables

$$U = X/Y, \qquad V = Y$$

with inverse

$$X = UV, \qquad Y = V$$

The Jacobian is

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} v & u \\ 0 & 1 \end{vmatrix} = v$$

The range of (X,Y) is \mathbb{R}^2 . The range of (U,V) is \mathbb{R}^2 .

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 21 / 29

cont.

The joint pdf of (X, Y) is

$$f_{XY}(x,y) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} \cdot \frac{1}{\sqrt{2\pi}}e^{-y^2/2} = \frac{1}{2\pi}e^{-(x^2+y^2)/2}$$

The joint pdf of (U, V) is

$$f_{UV}(u,v) = \frac{1}{2\pi} e^{-[(uv)^2 + v^2]/2} \cdot |v| = \frac{|v|}{2\pi} e^{-(u^2 + 1)v^2/2}$$

The marginal of U is

$$f_U(u) = \int_{-\infty}^{\infty} f_{UV}(u, v) \, dv = 2 \int_{0}^{\infty} \frac{v}{2\pi} e^{-(u^2 + 1)v^2/2} \, dv$$
$$= \frac{1}{\pi} \int_{0}^{\infty} e^{-(u^2 + 1)z} \, dz = \frac{1}{\pi (u^2 + 1)}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 22 / 29

Sum of Two Independent RVs

Suppose *X* and *Y* are independent. What is the distribution of Z = X + Y?

In general:

$$F_Z(z) = P(X + Y \le z) = P(\{(x, y) \text{ such that } x + y \le z\})$$

Various approaches:

- Bivariate transformation method (continuous and discrete)
- Discrete convolution

$$f_Z(z) = \sum_{x+y=z} f_X(x) f_Y(y) = \sum_x f_X(x) f_Y(z-x)$$

- Continuous convolution (C-B Section 5.2)
- Mgf/cf method (continuous and discrete)

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 24 / 29

Sum of two independent Poissons

Define X,Y to be two independent random variables having Poisson distributions with parameters $\lambda_i, i = 1, 2$. Then:

$$f_{X,Y}(x,y) = \frac{e^{-\lambda_1} \lambda_1^x}{x!} \frac{e^{-\lambda_2} \lambda_2^y}{y!} \qquad x,y = 0, 1, 2, \dots$$

The distribution of S = X + Y is

$$f_{S}(s) = \sum_{x=0}^{s} \frac{e^{-\lambda_{1}} \lambda_{1}^{x}}{x!} \frac{e^{-\lambda_{2}} \lambda_{2}^{s-x}}{(s-x)!}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{s!} \sum_{x=0}^{s} {s \choose x} \lambda_{1}^{x} \lambda_{2}^{s-x}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{s!} (\lambda_{1}+\lambda_{2})^{s}$$

Thus *S* is Poisson with parameter $\lambda = \lambda_1 + \lambda_2$.

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 25 / 29

Characteristic Function

Theorem 4.2.12 Let X and Y be independent rvs with characteristic functions $\phi_X(\cdot)$ and $\phi_Y(\cdot)$, respectively. Then the characteristic function of Z = X + Y is

$$\phi_Z(\theta) = \phi_X(\theta) \, \phi_Y(\theta)$$

Proof:

$$\phi_Z(\theta) = \mathsf{E} \exp(iZ\theta) = \mathsf{E} \exp[i(X+Y)\theta]$$

= $\mathsf{E} \exp(iX\theta) \exp(iY\theta) = \mathsf{E} \exp(iX\theta) \mathsf{E} \exp(iY\theta)$
= $\phi_X(\theta) \phi_Y(\theta)$

Corollary If X and Y independent and Z = X - Y,

$$\phi_Z(\theta) = \phi_X(\theta) \, \phi_Y(-\theta)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 26 / 29

Sum of two independent Poissons

Suppose $X \sim \text{Poisson}(\lambda_X)$ and $Y \sim \text{Poisson}(\lambda_Y)$ and put Z = X + Y. Then, $Z \sim \text{Poisson}(\lambda_X + \lambda_Y)$.

Proof:

$$\phi_{Z}(\theta) = \exp \left[\lambda_{X} \left(e^{\theta} - 1\right)\right] \exp \left[\lambda_{Y} \left(e^{\theta} - 1\right)\right]$$
$$= \exp \left[\left(\lambda_{X} + \lambda_{Y}\right) \left(e^{\theta} - 1\right)\right]$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 27 / 29

Sum of Two Independent Normals

Suppose $X \sim N(\mu_x, \sigma_x^2)$ and $Y \sim N(\mu_y, \sigma_y^2)$ and X and Y are independent and Z = X + Y then

$$Z \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

Proof

$$\phi_Z(\theta) = \exp\left(i\,\mu_x \theta - \frac{1}{2}\sigma_x^2 \theta^2\right) \,\exp\left(i\,\mu_y \theta - \frac{1}{2}\sigma_y^2 \theta^2\right)$$
$$= \exp\left[i\,(\mu_x + \mu_y)\theta - \frac{1}{2}(\sigma_x^2 + \sigma_y^2)\theta^2\right]$$

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 28 / 29

Sum of two independent gammas

Suppose $X \sim \Gamma(\alpha_y, \beta)$ and independently $Y \sim \Gamma(\alpha_y, \beta)$ and put Z = X + Y. Then, $Z \sim \Gamma((\alpha_x + \alpha_y), \beta)$

Proof:

$$\phi_Z(\theta) = \left(\frac{1}{1-\beta\theta}\right)^{\alpha_x} \left(\frac{1}{1-\beta\theta}\right)^{\alpha_y}$$
$$= \left(\frac{1}{1-\beta\theta}\right)^{\alpha_x+\alpha_y}$$

Remember that

- If $\alpha=1$ we have an exponential with parameter β . If $\alpha=n/2$ and $\beta=2$, we have a $\chi^2(n)$ (with n d.f.). The above result states that $\chi^2(n_1)+\chi^2(n_2)=\chi^2(n_1+n_2)$.

BIOS 660/BIOS 672 (3 Credits)

Notes 14 - 29 / 29