Sequential circuits

Dr. E. Paul Braineard

V

SAMRAT B

Good Evening Sir

good evening sir

Good evening sir

Good evening sir

Outline

- Latches
- Flip-Flops
 - SR
 - D
 - JK
 - T
- Timers

- Set
- Reset
- Monostable
- Bistable
- Astable

Sequential circuits

- Combinational circuit + storage element in the feedback path
- Storage element (Memory)
 - Device capable of storing binary information
- State
 - The binary information stored in these elements at any given time

Sequential circuits

67 manay call

• Combinational circuit + storage element in the feedback path

• Storage element (Memory)

• Device capable of storing binary information

- State
 - The binary information stored in these elements at any given time

Dr. E. Paul Braineard

W.

Paul Brain

3

Synchronous Sequential circuit

Block diagram of Synchronous Sequential circuit

Timing diagram of clock pulses

Synchronous Sequential circuit

Latches and flipflop

- Storage elements that operate with signal levels are referred to as latches
 - Latches are said to be level sensitive devices

• Those controlled by a clock transition are flip-flops.

• Flip-flops are edge-sensitive devices.

SR Latch with NOR gates

S	R	Q	Q'	
1	0	1	0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
0	0	1	0	(after S = 1, R = 0)
0	1	0	1	
0	0	0	1	(after $S = 0, R = 1$)
1	1	0	0	(forbidden)
	atricings Linguage Biber			

Dr. E. Paul Braineard

SHUBHAM SHANDILYA

SR Latch with NOR gates

S R	Q Q'	
$\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}$	1 0 1 0 (a	after S = 1, R = 0)
0 1	0 1	
1 1	0 0 (after $S = 0, R = 1$) forbidden)

SR Latch with NAND gates

SR Latch with control input

	En	S	R	Next state of Q
	0	X	X	No change
	1	0	0	No change
	1	0	1	Q = 0; reset state
	1	1	0	Q = 1; set state
r	1	1	1	Indeterminate

(b) Function table

- In either case, when En returns to 0, the circuit remains in its current state.
- An indeterminate condition occurs when all three inputs are equal to 1

