

A Study of the Impact of Interest Rate Risk on Community Banks

MAY 2023

Cleon Demiao Sun Manikandan Palaniappan Niharika Patil Yilin Lyu Zeinab Yasmine Soumahoro

As of yesterday, the interest rate stands at more than 5% at a 16-year high affecting economic activity and inflation

Agenda

- 1 Introduction
- **2** Data Collection
- **3** Exploratory Data Analysis
- 4 Model design, construction and validation
- **5** Conclusion and Discussion

1. Introduction

- Hypothesis
- Literature Review
- Study Design

1.1 - Hypothesis

- Our research aims to investigate the impact of interest rate changes on community banks' performance indicators.
- Additionally, we will explore the correlation between interest rates and **community bank failures**.
- As a result, we hypothesize that certain key factors, influenced by interest rates, could serve as **predictors for bank failures**.

1.2 - Literature Review and Model Selection

Timothy B. Bell, 1997

This study examined the performance of two different effective methodologies in **predicting** bank failures, traditional statistical models, and artificial neural networks.

Rebel A. Cole and Lawrence J. White, 2012

This study aimed to identify the determinants of bank failures, using a combination of **traditional** and portfolio variables identified based on CAMELS framework.

Justin Yiqiang Jin, Kiridaran Kanagaretnam, and Gerald J. Lobo 2011

This study. identified that bank failure through auditor type, auditor industry specialization, Tier 1 capital ratio, the proportion of securitized loans, growth in loans, and loan mix.

1.3.1 - Study Design

1.3.2 - Study Design

2. Data Collection

- Data Sources
- Data Collection and Cleaning

2.1 - Data Sources

FDIC Bank Financials

- Approximately 0.7 million rows
- Basic quarterly financial information filed by the banks for the period 2003

FDIC Bank Failures

- Date and Identifiers of community banks failed historically
- Nearly 500 rows for period 1990 - 2022

Federal Funds Rate

- Historical data of federal funds rate between 1950 to 2022
- Averaged for each quarter

- 2022

2.2 - Data Collection/Cleaning

Step 1: Obtained data .csv files from the sources. Scraped FDIC Bank Financials for Community Banks using Python and HTTP get requests.

Step 2: Cleaned and summarized each of the datasets before combining using Python and Jupyter Notebooks

Step 3: Combined all the datasets using Python and visualized them

3. Exploratory Data Analysis

3.1 - Community Banks are heavily concentrated in 4 states

- There are **4,750 community banks** in the country with more than 29,000 branches
- Community banks are heavily concentrated in Texas, Illinois, Minnesota and Iowa
- States along the **East Coast** tend to have a higher number of community banks in contrast to the West coast

3.2 - Average Interest Rates have seen a steep rise from 2022 Q2

Interest Rates, stable until 2022 Q1, tends to be increasing steeply since 2022 Q2

3.3 - Trend between Rising Interest Rates and Community Bank Failures

4. Model design, construction and validation

4.1 - Overall Methodology

- 1. Given the CSBS role, Which is important to look at?
- 2. What is the impact of IR?
- 3. Can we predict what is important?

Question

Given the CSBS role, Which is important to look at?

What is the impact of IR? Can we predict what is important?

Model Result

Model 2.1: Model 1.1: Feature Selection Measuring **Impact** 1. Selected K Features Model 2.2: Model 1.2: Predicting **Failure Prediction** Selected Features 3. Predicted Selected 4. Impact of IR 2. Failure Prediction **Features**

Model 1 Which is important to look at?

Input Data for Model 1.1

	-6	Ba	ank with Failure	e Record		
	2003/01					2022/
Bank A	6 Quarters	10	Failure			
Bank B				6 Quarters		Failure
Bank C	6 Quarters		Failure			
Bank D		6 Quarters		Failure		
Bank E			6 Quarters		Failure	
Bank F		6 Quarters		Failure		
		Duii	k without Failu	II C ILCCOI G		
	2003/01					2022
Bank A	2003/01 Random Select	ted Continuous 6Q				2022/
and the second	S 0 5 50	ted Continuous 6Q				ted Continuous 6Q
Bank A Bank B Bank C	S 0 5 50		d Continuous 6Q			
Bank B Bank C	S 0 5 50		d Continuous 6Q			
Bank B	S 0 5 50	Random Selecte	d Continuous 6Q	ted Continuous 6Q		ted Continuous 6Q

4.2 - Model 1.1: Outcome

Features that can best predict bank failures in 6 quarters with 97% accuracy.

Feature Type	Feature Selected	Feature Name		
Profitability	ROA	Return on Asset		
Security	SCMTGBKR	Mortgage-backed securities, ratio		
Asset	ASSTLTR	Long-Term Assets (5+ years) - QBP Ratio		
	LNATRES	Allowance for Loans Loss Adjusted		
Loan & Credit Risk Managent .	RB2LNRESR	Illowance for Loans and Leases in Tier 2 Ratio		
	ILNDOMQR	Domestic Office Loans, Domestic, Quarterly Ratio		
	LNLSNETR	Loans and Leases-Net Ratio		
Leverage or Debt	RBC1AAJ	Leverage Ratio-Primary Component Analysis		
Levels.	total_loans_equity	Total Loans / Equity		

Model 1.2: Diagnostics - ROC curve

ROC when quarter=6

ROC when quarter=12

4.2 - Model 2

- Identify Bank health metrics which are significantly affected by interest rate
- How well can we predict the selected metrics from model 1 based on various financial metrics.

Model 2 - What is the impact of IR? Can we predict what is important?

GLM with Time Fixed Effect and Clustered SE for Time:

$$Y_{it+1} = lpha + eta_1 * IR_t + eta_2 * \Delta IR_t + eta_3 * Bank_{it} + eta_4 * Year + \epsilon_{it}$$

GLM with Time and State Fixed Effects:

$$Y_{it+1} = \alpha + eta_1 * IR_t + eta_2 * \Delta IR_t + eta_3 * Bank_{it} + eta_4 * Year + eta_5 * St + \epsilon_{it}$$

Model 2.1 Five features significantly impacted by IR

GLM with Time Fixed Effect and Clustered SE for Time:

$$Y_{it+1} = lpha + eta_1 * IR_t + eta_2 * \Delta IR_t + eta_3 * Bank_{it} + eta_4 * Year + \epsilon_{it}$$

Y	Independent	Coefficient	SE	Z	P> Z
RBC1AAJ	AVG_IR	0.1257	0.05	2.507	0.012
ILNDOMQR	AVG_IR	0.1507	0.02	7.432	0
LNLSNETR	AVG_IR	-1.5926	0.27	-5.906	0
ASSTLTR	DELTA_IR	0.5573	0.173	3.215	0.001
ROA	AVG_IR	-0.0578	0.015	-3.941	0

Model 2.2 Three features can be predicted

GLM with Time and State Fixed Effects:

$$Y_{it+1} = lpha + eta_1 * IR_t + eta_2 * \Delta IR_t + eta_3 * Bank_{it} + eta_4 * Year + eta_5 * St + \epsilon_{it}$$

Dependent Variable	R-square on Training Dataset	MSE on Testing Dataset	R-squared on Testing Dataset
LNATRES (Allowance for Loans Loss Adjusted)	86%	15271431.56	0.833
RB2LNRESR (Allowance for Loans and Leases in Tier 2 Ratio)	53.09%	0.04	0.439
LNLSNETR (Loans and Leases Net Ratio)	94.66%	217.86	0.329

Question Model Result

Given the CSBS role, Which is important to look at?

What is the impact of IR? Can we predict what is important?

Model 1.1: Model 2.1: **Measuring Impact** Feature Selection 1. Selected Features Model 2.2: Model 1.2: Predicting Selected Failure Features Prediction 3.Predicted Selected 4. Impact of IR 2. Failure Prediction Features

Predicting Failures Based on Predicted Features and Simulating the IR Impact on Failure

5. Conclusion &Discussion

5.1 Limitation for current work

Data Collection

- In-depth information about individual banks can provide valuable insights.
 - o cash flow analysis
 - o managerial data
 - business model
 - external market factors

Computational Ability

 Leveraging cloud computing can facilitate modeling of high-dimensional data for advanced exploratory analysis.

5.2 Scope for Future work

- Explore other method to study interest rate impact
 - Difference in Differences
 - Regression Discontinuity

- Improvements for the existing models
 - Expansion of the period of training data for the model
 - Adding features for the dataset

- Other implementation for the current model
 - Identifying the period during which the bank's financial stability is at its weakest.

5.3 Conclusion

- We are able to identify the key variables to predict bank failure
- 3 bank features that are significantly affected by the interest rate.
- We summarized the states with most number of failed banks post our final classification step and the banks with most likely risk of failures.
- We can look at the change of the key variables impacted by interest for the banks with the highest predicted probability of failure.
- We will chart the design of a survival model that will help identify failure window horizon as a future step

Top 5 risky banks identified

States with highest risk of bank failure

Thank you

Any questions?

References

- Bell, Timothy B. "Neural Nets or the Logit Model? A Comparison of Each Model's Ability to Predict Commercial Bank Failures." International Journal of Intelligent Systems in Accounting, Finance & Management, vol. 6, no. 3, Sept. 1997, pp. 249–264, https://doi.org/10.1002/(sici)1099-1174(199709)6:3%3C249::aid-isaf125%3E3.o.co;2-h. Accessed 16 Mar. 2023.
- Cole, Rebel A., and Lawrence J. White. "Déjà vu All over Again: The Causes of U.S. Commercial Bank Failures This Time Around." Journal of Financial Services Research, vol. 42, no. 1-2, 14 Sept. 2011, pp. 5–29, https://doi.org/10.1007/s10693-011-0116-9.
- Glaze, Andrew. "Council Post: How Rising Interest Rates Can Hurt—or Help—Businesses." Forbes, 31 Jan. 2023, www.forbes.com/sites/forbesfinancecouncil/2023/01/31/how-rising-interest-rates-can-hurt-or-help-businesses/?sh=14fb90a424fo. Accessed 22 Apr. 2023.

Appendix

Model 1 Feature Correlation (Quarter = 6)

8.2 Model 1 Feature Correlation (Quarters = 12)

Long term assets ratio - Top 5 risky banks

Return on Assets - Top 5 risky banks

