$10 \ge 8 = 2^3$; $4^2 + 1 = 17 \ge 16 = 2^4$ 3. We must show that for all positive integers x it is not true that $x^3 = 100$. Case (i): If $x \le 4$, then $x^3 \le 64$, so $x^3 \ne 100$. Case (ii): If $x \ge 5$, then $x^3 \ge 125$, so $x^3 \ne 100$. 5. If $x \le y$, then

If $x \ge 5$, then $x^3 \ge 125$, so $x^3 \ne 100$. 5. If $x \le y$, then $\max(x, y) + \min(x, y) = y + x = x + y$. If $x \ge y$, then $\max(x, y) + \min(x, y) = x + y$. Because these are the only two cases, the equality always holds. 7. Because |x-y| = |y-x|,

P true. 19. The equation |a-c| = |b-c| is equivalent to the disjunction of two equations: a-c=b-c or a-c=-b+c. The first of these is equivalent to a=b, which contradicts the assumptions made in this problem, so the original equation is equivalent to a-c=-b+c. By adding b+c to both sides and dividing by 2, we see that this equation is equivalent to c=(a+b)/2. Thus, there is a unique solution. Furthermore, this c is an integer, because the sum of the odd integers a and b is even. 21. We are being asked to solve n=(k-2)+(k+3)

Because n is odd, n-1 is even, so k is an integer. 23. If x is itself an integer, then we can take n=x and $\epsilon=0$. No other solution is possible in this case, because if the integer n is greater than x, then n is at least x+1, which would make $\epsilon \geq 1$. If x is not an integer, then round it up to the next integer, and call that integer n. Let $\epsilon=n-x$. Clearly $0 \leq \epsilon < 1$; this is the only ϵ that will work with this n, and n cannot be any larger, because ϵ is constrained to be less than 1. 25. The harmonic

1, respectively, so it is always a 0, 1, 5, or 6. 31. Because $n^3 > 100$ for all n > 4, we need only note that n = 1, n = 2, n = 3, and n = 4 do not satisfy $n^2 + n^3 = 100$. 33. Because