NEURAL NETWORKS 101

Varadharajan Mukundan ThoughtWorks

Artificial Neural Networks (ANN)

- Network of neurons (fundamental computational unit)
- Biologically inspired, massively parallel distributed computational model
- Generic, flexible models
 - Requires less / no feature engineering
 - Ability to generate feature representation (Auto Encoders)
- Applications
 - Computer vision
 - Function approximation (time series analysis)
 - Collaborative filtering / Recommender Systems (Netflix Prize)
 - Robotics
 - General BI Problems
 - NLP

Neuron

Slide Credit: Andrew L. Nelson

AND Gate (Perceptron)

X1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

Input Layer Output Layer

$$Net = \sum_{i} w_{i} x_{i}$$

$$y = f(Net) = \begin{cases} 1 & \text{if Net} > 2\\ 0 & \text{otherwise} \end{cases}$$

AND Gate (Perceptron)

X1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

Input Layer Output Layer

$$Net = \sum_{i} w_{i} x_{i}$$
$$y = f(Net) = \begin{cases} 1 & if \ Net > 0 \\ 0 & otherwise \end{cases}$$

Digit Recognizer

Digit Recognizer

- Two implementations
 - Single layer Perceptron with step function
 - Single layer Perceptron with sigmoidal function
- Image scaled to 28×28 square matrix with values between 0 and 1
 - O represents black
 - 1 represents white
- Both the networks trained for 10 epochs

Digit Recognizer - I

$$\Delta w = -\frac{dE}{dw} = (t_n - y_n)x_n$$

$$w = w + \alpha \Delta w$$

- Single Layer step Perceptron
- W = 785 X 10 Matrix
- Objective: Find optimal weight to minimize error
- X Input vector, y Output according to perceptron, t - original output

$$Net = \sum_{i} w_{i}x_{i}$$

$$y = f(Net) = \begin{cases} 1 & if \ Net > 0 \\ 0 & otherwise \end{cases}$$

$$E = \frac{1}{2} \sum_{n} \left(t_n - y_n \right)^2$$

Digit Recognizer - II

- Single Layer step Perceptron
- W = 785 X 10 Matrix
- Objective: Find optimal weight to minimize error
- X Input vector, y Output according to perceptron, t - original output

$$\frac{dy}{dNet} = -\left(\frac{1}{\left(1 + e^{-Net}\right)^{-2}} \cdot - e^{-Net}\right) = y(1 - y)$$

$$\Delta w = -\frac{dE}{dw} = \frac{dE}{dy} \cdot \frac{dy}{dNet} \cdot \frac{\partial Net}{\partial w} = (t_n - y_n)(y_n)(1 - y_n)x_n$$

$$E = \frac{1}{2}\sum_{n}(t_n - y_n)^2$$

$$w = w + \alpha \Delta w$$

$$Net = \sum_{i} w_{i} x_{i}$$
$$y = f(Net) = \frac{1}{1 + e^{-Net}}$$

$$E = \frac{1}{2} \sum_{n} \left(t_n - y_n \right)^2$$

Digit Recognizer – I & II

- Initialize w = rand(795, 10)
- Repeat for n epochs
 - For each data point in training set
 - $\langle \times 0, \times 1, \times 2, \dots, \times 784 \rangle = \langle 1, \dots, \rangle$; $t = \langle 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 \rangle$
 - Apply activation function and get 'y'
 - Apply weight learning rule and update weights accordingly
- Error percentage for 1'st implementation after 10 epochs ~= 20%
- Error percentage for 2'nd implementation after 10 epochs ~= 8%

Collaborative Filtering

- Recommend a set of movies based on 'User Rating x Movie' Matrix.
- Uncovers latent / hidden feature vectors
- Reference Algorithms
 - LDA
 - Mixture Models / neighborhood Models
 - Matrix Factorizations

Collaborative Filtering

Slide Credit: Learning from Data course

Collaborative Filtering

- Scenario
 - 7 Movies, 10 Users preferences
 - Preference in binary format
 - 1 : Like
 - 0 : No Information / Not prefer
- Algorithm: Restricted Boltzmann Machine (RBM)
- Limited synthetic data might the performance of RBM
 - But good enough to illustrate the algorithm

Restricted Boltzmann Machine (RBM)

- Stochastic, probabilistic, binary, two layer Neural Network
- Hidden units represents Latent Features
 - First hidden unit might represent / cluster action movies
 - Second hidden unit might represent / cluster oscar movies
- Contrastive Divergence (CD) is used for training RBMs

Contrastive Divergence

- Two phase training for each data point
 - Phase 1 : Reality Phase
 - Phase 2 : Dreaming phase

Image Credit: imonad.com

Reality Phase

$$Net = \sum_{i} w_{i} x_{i}$$

$$S = f(Net) = \frac{1}{1 + e^{-Net}} > \phi$$

$$P(n_{1}, n_{2}) = S_{n_{1}} S_{n_{2}}$$

- Set up the input units to user preferences
- Calculate Net
- Apply sigmoidal threshold function to get the state of hidden units
- Calculate P(n1,n2) being a |hidden units | X |visible units+1 | matrix

Dreaming Phase

$$Net = \sum_{i} w_{i} x_{i}$$

$$S = f(Net) = \frac{1}{1 + e^{-Net}} > \phi$$

$$N(n_{1}, n_{2}) = S_{n_{1}} S_{n_{2}}$$

$$\Delta w = P(n_{1}, n_{2}) - N(n_{1}, n_{2})$$

$$w = w + \alpha \Delta w$$

- Similar to reality phase, but consider the states from reality phase and determine the states of visible units
- Calculate N(n1,n2) similar to P(n1,n2)
- Update weights based on the weight update rule
- Repeat both the phase for each data point for n epochs

References

That's All Folks

• Code @ github.com/varadharajan/geek-night