

imx6qdl-mtp.dtsi#L351

MIPI

Purism Copyright 2018 GNU GPLv3			eric.kuzmenko@puri.sm angus.ainslie@puri.sm nicole.faerber@puri.sm				
			Sheet: /MIPI/ File: mipi.sch				
Size: A4 Date: 2018-06-18 KiCad E.D.A. kicad 4.0.7				Rev: v0.1.0 Id: 11/24			
h			5	<u>'</u>			

Buttons & LED

Use PWM2_PWMSAR to set the compare value (duty cycle)
Use PWM2_PWMCR[15:4] to set the PRESCALER (frequency)
Use PWM2_PWMPR to set the top of the counter (frequency)

Sensors

Proximity & Ambient Light

Reference: https://www.vishay.com/docs/84307/designingvcnl4040.pdf http://www.vishay.com/docs/84931/vcnl4040sensorboardfiles.pdf

9-Axis IMU

+Ω,	Write	11010	1 1	0	11010	110 (D6h)	
	Table 20. Magnetic sensor SAD+Read/Write patterns						
	Command	SAD[6:2]	SAD[1] = SDO/SA1	SAD[0]	R/W	SAD+R/W	
	Read	00111	0	0	1	00111001 (39h)	
7	Write	00111	0	0	0	00111000 (38h)	
$\vee \rightarrow +\Omega_{\mathbf{V}}$	Read	00111	1	0	1	00111101 (3Dh)	
Ť	Write	00111	1	0	0	00111100 (3Ch)	

Smart Card

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=EVB-SEC1110

Haptic Motor

When the motor is off both terminals are at GND Motor will have wire leads with a 2-pin Molex or Boom Precision connector installed (by request) Metal housing is floating thick adhesive layer underneath (not connected to either pin)

Haptic/Vibration Motor Copyright 2018 GNU GPLv3

eric.kuzmenko@puri.sm angus.ainslie@puri.sm nicole.faerber@puri.sm christian.schilmoeller@puri.sm

Sheet: /Haptic Motor/ File: haptic.sch

Size: A4 Date: 2018-06-18 Rev: v0.1.0 KiCad E.D.A. kicad 4.0.7 ld: 24/24