A Two Level Dependent Session Type Theory

Qiancheng Fu^1 and Hongwei Xi^1

¹Boston University

February 22, 2023

1 Syntax

```
variables
                       x, y, z
channels
                       c, d
                                                                     U \mid L
        sorts
                        s, r, t
                                                                    + | -
        roles
                       m, n, A, B, C
      _{\rm terms}
                                                         ::= x \mid c \mid s
                                                                     \Pi_t(x:A).B \mid \Pi_t\{x:A\}.B \mid \Sigma_t(x:A).B \mid \Sigma_t\{x:A\}.B
                                                                     \lambda_t(x:A).m \mid \lambda_t\{x:A\}.m \mid \langle m,n\rangle_t \mid \{m,n\}_t
                                                                     m \ n \mid m \ \{n\} \mid \mathbf{R}_{[z]A}^{\Sigma}(m, [x, y]n) \mid \mu(x : A).m
1 | () | 2 | true | false | \mathbf{R}_{[z]A}^{2}(m, n_1, n_2)
                                                                     \mathsf{T}\,A\mid \mathsf{return}\ m\mid \mathsf{let}\ x \Leftarrow m\ \mathsf{in}\ n
                                                                     proto |\operatorname{end} \rho | \rho(x:A).B | \rho\{x:A\}.B | \rho \operatorname{Ch} A
                                                                      \operatorname{fork}(x:A).m \mid \operatorname{recv} m \mid \operatorname{\underline{recv}} m \mid \operatorname{send} m \mid \operatorname{\underline{send}} m
                                                                      close m \mid \text{wait } m
                                                                     x \mid c \mid \lambda_t(x:A).m \mid \lambda_t\{x:A\}.m \mid \langle u,v \rangle_t \mid \{v,m\}_t
     values
                                                                      () | true | false | return v | let x \Leftarrow v in m
                                                                      \operatorname{fork}(x:A).m \mid \operatorname{recv} v \mid \operatorname{\underline{recv}} v \mid \operatorname{send} v \mid \operatorname{\underline{send}} v
                                                                      \operatorname{send} u v \mid \operatorname{\underline{send}} v \mid m \mid \operatorname{close} v \mid \operatorname{wait} v
                                                                      \langle m \rangle \mid p \mid q \mid \nu cd.p
   process
                     o, p, q
```

2 Static Fragment

Sort Order

$$\overline{\mathbf{U} \sqsubseteq s}$$
 $\overline{\mathbf{L} \sqsubseteq \mathbf{L}}$

Static Context

$$\frac{\Gamma \vdash \qquad \Gamma \vdash A : s \qquad x \in \mathit{fresh}(\Gamma)}{\Gamma, x : A \vdash}$$

Core Typing

Data Typing

Monadic Typing

$$\frac{\Gamma \vdash A : s}{\Gamma \vdash \Tau A : \mathsf{L}} \qquad \frac{\Gamma \vdash m : A}{\Gamma \vdash \mathsf{return} \ m : \Tau A} \qquad \frac{\Gamma \vdash B : s}{\Gamma \vdash \mathsf{let} \ x \Leftarrow m \ \mathsf{in} \ n : \Tau B}$$

Session Typing

3 Dynamic Fragment

Dynamic Context

$$\frac{\Gamma;\Delta \vdash \qquad \Gamma \vdash A:s \qquad x \in \mathit{fresh}(\Gamma)}{\Gamma,x:A;\Delta,x:_s A \vdash} \qquad \qquad \frac{\Gamma;\Delta \vdash \qquad \Gamma \vdash A:s \qquad x \in \mathit{fresh}(\Gamma)}{\Gamma,x:A;\Delta \vdash}$$

Context Merge

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \qquad x \in \mathit{fresh}(\Delta)}{(\Delta_1, x :_U A) \cup (\Delta_2, x :_U A) = (\Delta, x :_U A)}$$

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \qquad x \in \mathit{fresh}(\Delta)}{(\Delta_1, x :_L A) \cup \Delta_2 = (\Delta, x :_L A)}$$

$$\frac{\Delta_1 \cup \Delta_2 = \Delta \qquad x \in \mathit{fresh}(\Delta)}{\Delta_1 \cup (\Delta_2, x :_L A) = (\Delta, x :_L A)}$$

Context Constraint

$$\frac{\Delta \triangleright \mathbf{U}}{\Delta, x :_{\mathbf{U}} A \triangleright \mathbf{U}} \qquad \qquad \frac{\Delta \triangleright \mathbf{L}}{\Delta, x :_{s} A \triangleright \mathbf{L}}$$

Core Typing

$$\frac{\epsilon; \Gamma, x : A; \Delta, x :_s A \vdash \Delta \triangleright \mathbf{U}}{\epsilon; \Gamma, x : A; \Delta, x :_s A \vdash x : A} \qquad \frac{\Theta; \Gamma, x : A; \Delta, x :_s A \vdash m : B}{\Theta; \Gamma; \Delta \vdash \lambda_t (x : A).m : \Pi_t (x : A).B}$$

$$\frac{\Theta; \Gamma, x : A; \Delta \vdash m : B}{\Theta; \Gamma; \Delta \vdash \lambda_t \{x : A\}.m : \Pi_t \{x : A\}.B} \qquad \frac{\epsilon; \Gamma, x : A; \Delta, x :_U A \vdash m : A}{\epsilon; \Gamma; \Delta \vdash \mu (x : A).m : A} \stackrel{\Delta \triangleright \mathbf{U}}{\Delta}$$

$$\frac{\Theta; \Gamma; \Delta \vdash h : \Pi_t (x : A).B}{\Theta; \Gamma; \Delta \vdash h : \lambda_t \{x : A\}.B} \qquad \frac{\epsilon; \Gamma, x : A; \Delta, x :_U A \vdash m : A}{\epsilon; \Gamma; \Delta \vdash \mu (x : A).m : A} \stackrel{\Delta \triangleright \mathbf{U}}{\Delta}$$

$$\frac{\Theta; \Gamma; \Delta \vdash h : \Pi_t \{x : A\}.B}{\Theta; \Gamma; \Delta \vdash h : A} \qquad \frac{\Theta; \Gamma; \Delta \vdash h : \Pi_t \{x : A\}.B}{\Theta; \Gamma; \Delta \vdash h : A} \qquad \frac{\Gamma \vdash \Sigma_t \{x : A\}.B : t}{\Theta; \Gamma; \Delta \vdash h : A} \qquad \frac{\Phi; \Gamma; \Delta \vdash m : \Pi_t \{x : A\}.B}{\Theta; \Gamma; \Delta \vdash h : B[m/x]}$$

$$\frac{\Gamma \vdash \Sigma_t \{x : A\}.B : t}{\Theta; \Gamma; \Delta \vdash \{x : A\}.B} \qquad \frac{\Gamma \vdash m : A}{\Theta; \Gamma; \Delta \vdash h : B[m/x]}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta; \Gamma; \Delta \vdash h : A; \Sigma_t \{x : A\}.B}$$

$$\frac{\Phi; \Gamma; \Sigma_t \vdash m : \Sigma_t \{x : A\}.B}{\Phi; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Delta_1 \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Phi; \Gamma; \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, z : \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.B}$$

$$\frac{\Gamma, \Sigma_t \{x : A\}.B \vdash C : s}{\Theta_1; \Gamma; \Sigma_t \vdash h : \Sigma_t \{x : A\}.$$

Data Typing

$$\frac{\Gamma; \Delta \vdash \Delta \triangleright \mathbf{U}}{\epsilon; \Gamma; \Delta \vdash (): 1}$$

$$\frac{\Gamma; \Delta \vdash \Delta \triangleright U}{\epsilon; \Gamma; \Delta \vdash \text{true} : 2}$$

$$\frac{\Gamma; \Delta \vdash \Delta \triangleright U}{\epsilon; \Gamma; \Delta \vdash \text{false} : 2}$$

$$\frac{\Gamma, z: 2 \vdash A: s \qquad \Theta_1; \Gamma; \Delta_1 \vdash m: 2 \qquad \Theta_2; \Gamma; \Delta_2 \vdash n_1: A[\text{true}/z] \qquad \Theta_2; \Gamma; \Delta_2 \vdash n_2: A[\text{false}/z]}{\Theta_1 \cup \Theta_2; \Gamma; \Delta_1 \cup \Delta_2 \vdash \mathbf{R}^2_{[z]A}(m, n_1, n_2): A[m/z]}$$

Monadic Typing

$$\frac{\Theta; \Gamma; \Delta \vdash m : A}{\Theta; \Gamma; \Delta \vdash \text{return } m : TA}$$

$$\frac{\Gamma \vdash B : s \qquad \Theta_1; \Gamma; \Delta_1 \vdash m : \operatorname{T} A \qquad \Theta_2; \Gamma, x : A; \Delta_2, x :_r A \vdash n : \operatorname{T} B}{\Theta_1 \cup \Theta_2; \Gamma; \Delta_1 \cup \Delta_2 \vdash \operatorname{let} x \Leftarrow m \text{ in } n : \operatorname{T} B}$$

Session Typing

$$\frac{\Gamma; \Delta \vdash \quad \epsilon \vdash A : \text{proto} \quad \quad \Delta \triangleright \mathbf{U}}{c :_{\mathbf{L}} \; \rho \text{Ch} \, A; \Gamma; \Delta \vdash c : \rho \text{Ch} \, A}$$

$$\frac{\Theta; \Gamma; \Delta \vdash m : \rho_1 \operatorname{Ch} (\rho_2(x : A).B) \qquad \rho_1 \operatorname{xor} \rho_2 =?}{\Theta; \Gamma; \Delta \vdash \operatorname{recv} m : \operatorname{T} (\Sigma_{\operatorname{L}}(x : A).\rho_1 \operatorname{Ch} B)}$$

$$\frac{\Theta; \Gamma; \Delta \vdash m : \rho_1 \operatorname{Ch} (\rho_2(x : A).B) \qquad \rho_1 \operatorname{xor} \rho_2 =!}{\Theta; \Gamma; \Delta \vdash \operatorname{send} m : \Pi_L(x : A). \operatorname{T} (\rho_1 \operatorname{Ch} B)}$$

$$\frac{\Theta; \Gamma; \Delta \vdash m : \rho_1 \operatorname{Ch} \left(\operatorname{end} \rho_2 \right) \qquad \rho_1 \operatorname{xor} \rho_2 =?}{\Theta; \Gamma; \Delta \vdash \operatorname{wait} m : \operatorname{T} 1}$$

$$\frac{\Theta; \Gamma, x : +\operatorname{Ch} A; \Delta, x :_{\operatorname{L}} + \operatorname{Ch} A \vdash m : \operatorname{T} 1}{\Theta; \Gamma; \Delta \vdash \operatorname{fork}(x : A).m : \operatorname{T} (-\operatorname{Ch} A)}$$

$$\frac{\Theta; \Gamma; \Delta \vdash m : \rho_1 \operatorname{Ch} (\rho_2 \{x : A\}.B) \qquad \rho_1 \operatorname{xor} \rho_2 =?}{\Theta; \Gamma; \Delta \vdash \underline{\operatorname{recv}} \, m : \operatorname{T} (\Sigma_{\operatorname{L}} \{x : A\}.\rho_1 \operatorname{Ch} B)}$$

$$\frac{\Theta; \Gamma; \Delta \vdash m : \rho_1 \operatorname{Ch} \left(\rho_2 \{x : A\} . B \right) \qquad \rho_1 \operatorname{xor} \rho_2 = !}{\Theta; \Gamma; \Delta \vdash \operatorname{\underline{send}} m : \Pi_{\operatorname{L}} \{x : A\} . \operatorname{T} \left(\rho_1 \operatorname{Ch} B \right)}$$

$$\frac{\Theta; \Gamma; \Delta \vdash m : \rho_1 \operatorname{Ch} (\operatorname{end} \rho_2) \qquad \rho_1 \operatorname{xor} \rho_2 =!}{\Theta; \Gamma; \Delta \vdash \operatorname{close} m : T 1}$$

Process Fragment

Process Typing

$$\frac{\Theta;\epsilon;\epsilon\vdash m:\mathrm{T}\,\mathrm{I}}{\Theta\vdash\langle m\rangle}$$

$$\frac{\Theta_1 \vdash p \qquad \Theta_2 \vdash q}{\Theta_1 \cup \Theta_2 \vdash p \mid q}$$

$$\frac{\Theta; \epsilon; \epsilon \vdash m : \mathsf{T} \, \mathsf{1}}{\Theta \vdash \langle m \rangle} \qquad \qquad \frac{\Theta_1 \vdash p \qquad \Theta_2 \vdash q}{\Theta_1 \cup \Theta_2 \vdash p \mid q} \qquad \qquad \frac{\Theta, c :_\mathsf{L} \; \rho \mathsf{Ch} \, A, d :_\mathsf{L} \; \neg \rho \mathsf{Ch} \, A \vdash p}{\Theta \vdash \nu c d. p}$$

Structural Congruence

Structural congruence is the least congruence relation with the following properties.

$$p \mid q \equiv q \mid p$$

$$p \mid q \equiv q \mid p \qquad \qquad o \mid (p \mid q) \equiv (o \mid p) \mid q \qquad \qquad p \mid \langle \text{return } () \rangle \equiv p$$

$$p \mid \langle \text{return } () \rangle \equiv p$$

$$\nu cd.p \mid q \equiv \nu cd.(p \mid q)$$

$$\nu cd.p \equiv \nu dc.p$$

$$\nu cd.p \mid q \equiv \nu cd.(p \mid q)$$
 $\nu cd.p \equiv \nu dc.p$ $\nu cd.\nu c'd'.p \equiv \nu c'd'.\nu cd.p$

Reductions

$$\frac{p \Rightarrow q}{o \mid p \Rightarrow o \mid q}$$

$$\frac{p \Rightarrow q}{\nu cd.p \Rightarrow \nu cd.q}$$

$$\frac{m \rightsquigarrow m'}{\langle m \rangle \Rrightarrow \langle m' \rangle}$$

let
$$x \Leftarrow \text{return } v \text{ in } m \rangle \Rightarrow \langle m[v/x] \rangle$$

$$\overline{\langle \text{let } x \Leftarrow \text{ return } v \text{ in } m \rangle \Rightarrow \langle m[v/x] \rangle} \qquad \overline{\langle \text{let } x \Leftarrow \text{ fork } (y:A).m \text{ in } n \rangle \Rightarrow \nu cd. (\langle n[c/x] \rangle \mid \langle m[d/y] \rangle)}$$

$$\frac{\nu cd.(\langle \text{let } x \Leftarrow \text{ send } c \text{ } v \text{ in } n_1 \rangle \mid \langle \text{let } y \Leftarrow \text{ recv } d \text{ in } n_2 \rangle) \Rightarrow}{\nu cd.(\langle \text{let } x \Leftarrow \text{ return } c \text{ in } n_1 \rangle \mid \langle \text{let } y \Leftarrow \text{ return } \langle v, d \rangle_L \text{ in } n_2 \rangle)}$$

$$\begin{array}{c} \nu c d. (\langle \operatorname{let} x \Leftarrow \operatorname{\underline{send}} c \ \{m\} \ \operatorname{in} \ n_1 \rangle \mid \langle \operatorname{let} y \Leftarrow \operatorname{\underline{recv}} d \ \operatorname{in} \ n_2 \rangle) \Rrightarrow \\ \nu c d. (\langle \operatorname{let} x \Leftarrow \operatorname{\underline{return}} c \ \operatorname{in} \ n_1 \rangle \mid \langle \operatorname{\underline{let}} y \Leftarrow \operatorname{\underline{return}} \ \{m, d\}_L \ \operatorname{\underline{in}} \ n_2 \rangle) \end{array}$$

$$\overline{\nu cd.(\langle \text{let } x \Leftarrow \text{close } c \text{ in } m \rangle \mid \langle \text{let } y \Leftarrow \text{wait } d \text{ in } n \rangle)} \Rightarrow \\
\langle \text{let } x \Leftarrow \text{return } () \text{ in } m \rangle \mid \langle \text{let } x \Leftarrow \text{return } () \text{ in } n \rangle$$