Candidates Name: Fatema Akter

: 00154713

Assignment Title : Hanwell Pest Control

Examination Cycle: September 2015

ID No

Module Title

NCC Level-5DC Diploma in Computing

Database Design and Development

: Database Design and Development

Candidate attempting to gain an unfair advantage or colluding in anyway whatsoever (other than on joint assignments) are liable to be disqualified. Plagiarism is an offence.					
Expected candidate time allocation: 35 to 40 hours					
Mark	Moderated Mark	Final Mark			
Marker's comment:					
Moderator's commen	t:				

Statement of Confirmation of Own Work

Programmed /qualification name:

Student Declaration:

Student Signature:

I have read and understood the NCC Education's policy on Academic Dishonesty and Plagiarism.				
I can confirm the following deta	ails:			
Student ID/Registration number	: 00154713			
Name	: Fatema Akter			
Center Name	: Daffodil Institute of Information Technology.			
Module Name	: Database Design and Development			
Assignment Title	: Hanwell Pest Control			
Number of Words	: 1254			
I confirm that this is my own and that I have not plagiarized any part of it. I have also noted the assessment criteria and pass mark for assignments.				
Due Date:				
Submitted Date:				

Table of Contents

Introduction:	4
Task-1	5
(1)Parts of Design:	5
(2) Data Dictionary:	7
Task-2	8
Implementation and data:	8
(3) Create all the tables using SQL. Show your Create scripts and the finis tables:	
(4) Input data on all the jobs and the details of those jobs. Give a listing of this:	12
(5) Input data for the members of staff including those listed in the scenario assign staff to jobs. Give a listing of this:	
(6) Input data on the equipment and materials that are used on a job. Give a list of this:	_
Queries:	16
(7) All the jobs and which staff have worked on them:	16
(8) That selects the equipment and materials that are used on jobs of type 'William's Nest:	•
(9) All the jobs that Muhammad Ya has worked on:	17
(10) All jobs that have taken place in Essex :	17
(11) Counts the number of jobs that have used Wainscot Seals:	18
(12) Produces the output that could be used to prepare an invoice:	18
Task-3	20
(13)Derived Data:	20
SQL code for Derived data:	20
Task-4:	22
Evaluation:	22
Conclusion:	23
Bibliography	24

Introduction:

The given scenario is based on Han well pest Control Company in London. The assignment has four tasks. such as,task-1:entity relationship normalized model to 3rd normal form and data dictionary ,task-2:implementation and data and queries,task-3:derived data as well as task-4:evaluation. For this assignment I have applied knowledge of various Database Design and Development skills to solve the problems described in the assignments scenario. I have tried my best to fulfill all the requirement of the assignment.

Task-1

(1)Parts of Design:

To analysis data, Relationship and constrains, the generally use graphical representation is ER model. It is one type of high level data mode.

Here Record of a few name of entity:

- assignjob
- customer
- Equipment
- Job
- Job rate
- Job Type
- jobstaff
- Staff

Diagram of Relationship Entity:

Figure No-1.1: Diagram of Relationship Entity.

Entity Relationship Model:

Figure No-1.2: Diagram of Entity Relationship Model.

(2) Data Dictionary:

Data dictionary contains the Meta data that means data about data. The diagram of the database is stored here.

Entity Name	Attributes	Length	Key	Туре
assignjob	id	Long Integer	Primary Key	AutoNumber
	IDcustomer	Long Integer	Foreign Key	Number
	IDjob	Long Integer	Foreign Key	Number
Customer	IDcustomer	Long Integer	Primary Key	Number
	Customername	255	No	Text
	Customer address	255	No	Text
	Country	255	No	Text
Equipment	IDEquipment	Long Integer	Primary Key	Number
	equipmentname	255	No	Text
	costing	Long Integer	No	Number
Job	IDjob	Long Integer	Primary Key	Number
	IDjobtype	Long Integer	Foreign Key	Number
	Dailyrateofpay	Long Integer	No	Number
	workerdays	255	No	Text
JobEquipment	ID	Long Integer	Primary Key	AutoNumber
	IDjob	Long Integer	Foreign Key	Number
	IDEquipment	255	Foreign Key	Number
Job Type	IDJobtype	Long Integer	Primary Key	Number
	jobtype	255	No	Text
	cost	Long Integer	No	Number
jobstaff	id	Long Integer	Primary Key	AutoNumber
	IDjob	Long Integer	Foreign Key	Number
	IDstaff	255	Foreign Key	Text
Staff	IDstaff	255	Primary Key	Text
	Staffname	255	No	Text
	phone	255	No	Text

Figure No-1.3: Table of Data Dictionary.

(Begg, n.d.)

Task-2

Implementation and data:

(3) Create all the tables using SQL. Show your Create scripts and the finished tables:

Create script for assignjob

```
CREATE TABLE [assignjob] (
[id] INT NOT NULL IDENTITY,
[IDcustomer] INT NOT NULL,
[IDjob] INT NOT NULL,
PRIMARY KEY ([id])
)
```

Table for assignjob

Figure No-2.1: Table for assignjob

Create script for Customer

```
CREATE TABLE [Customer] (
[IDcustomer] INT NOT NULL DEFAULT 0,
[customer name] NVARCHAR(255),
[customer address] NVARCHAR(255),
[Country] NVARCHAR(255),
PRIMARY KEY ([IDcustomer])
```


Figure No-2.2: Table for Customer

Create script for Equipement

```
CREATE TABLE [Equipement] (

[IDEquipment] INT NOT NULL DEFAULT 0,

[equipmentname] NVARCHAR(255),

PRIMARY KEY ([IDEquipment])
)
```

Table foe Equipement

	## Equipement						
Z		IDEquipmen ▼	equipmentname 🔻	costing	T /		
	+	1	Heavy duty traps		50		
	+	2	Wainscot seals		40		
	+	3	poison		60		
	+	4 Steam fumigatorPrimary Key			100		
				30			

Figure No-2.3: Table for Equipement

Create script for Job

```
CREATE TABLE [Job] (
  [IDjob] INT NOT NULL,
  [IDjobtype] INT DEFAULT 0,
  [dailyrateofpay] INT DEFAULT 0,
  [workerdays] NVARCHAR(255),
  PRIMARY KEY ([IDjob])
)
```

Table for Job

Figure No-2.4: Table for Job

Create script for Job Type

```
CREATE TABLE [Job Type] (
   [IDJobtype] INT NOT NULL DEFAULT 0,
   [jobtype] NVARCHAR(255),
   [cost] INT,
   PRIMARY KEY ([IDJobtype])
)
```

Table for Job Type

Figure No-2.5: Table for Job Type

Create script for JobEquipment

```
CREATE TABLE [JobEquipment] (
   [ID] INT NOT NULL IDENTITY,
   [IDjob] INT,
   [IDEquipment] INT,
   PRIMARY KEY ([ID])
)
```

Table for JobEquipment

Figure No-2.6: Table for JobEquipment

Create script for jobstaff

```
CREATE TABLE [jobstaff] (
[id] INT NOT NULL IDENTITY,
[IDjob] INT NOT NULL,
[IDstaff] NVARCHAR(255) NOT NULL,
PRIMARY KEY ([id])
)
```

Table for jobstaff

jobstaff							
	id ▼	IDjob	~	IDstaff	-		
	1		28434	S100			
	2		28434	S801			
	3		28434	S20			
	7		29000	S11			
	8		29001	S100			
	9		28501	S801			
	10		28501	S100			

Figure No-2.7: Table for jobstaff

Create script for Staff

```
[IDstaff] NVARCHAR(255) NOT NULL,
[staff name] NVARCHAR(255),
[Phone] NVARCHAR(255),
PRIMARY KEY ([IDstaff])
```

Create script for Staff

Figure No-2.8: Table for Staff

(4) Input data on all the jobs and the details of those jobs. Give a listing of this:

Here I use insert values command to input the data in the table:

Insert value for Customer table

```
INSERT INTO [Customer] ([IDcustomer], [customer name], [customer address], [Country]) VALUES (1, N'Arnold Layne', N'23 Wroxton Road, SE15', N'London')

INSERT INTO [Customer] ([IDcustomer], [customer name], [customer address], [Country]) VALUES (2, N'Emily pink', N'Moonstance House, Andover, Hants, HA3', N'Hampshi

INSERT INTO [Customer] ([IDcustomer], [customer name], [customer address], [Country]) VALUES (3, N'Floyd Barret', N'23 Goring Street, EG4', N'Essex')
```

Output Result:

Figure No-2.9: Table for Customer

Insert value for Job table

```
INSERT INTO [Job] ([IDjob], [IDjobtype], [dailyrateofpay], [workerdays]) VALUES (28434, 1, 100, N'1')
INSERT INTO [Job] ([IDjob], [IDjobtype], [dailyrateofpay], [workerdays]) VALUES (29000, 3, 250, N'2')
INSERT INTO [Job] ([IDjob], [IDjobtype], [dailyrateofpay], [workerdays]) VALUES (28501, 2, 75, N'2')
INSERT INTO [Job] ([IDjob], [IDjobtype], [dailyrateofpay], [workerdays]) VALUES (29001, NULL, NULL, NULL)
```


Figure No-2.10: Table for Job

Insert value for Job Type table

```
INSERT INTO [Job Type] ([IDJobtype], [jobtype], [cost]) VALUES (1, N'Rats', 100)
INSERT INTO [Job Type] ([IDJobtype], [jobtype], [cost]) VALUES (3, N'Wasp Nest', 250)
INSERT INTO [Job Type] ([IDJobtype], [jobtype], [cost]) VALUES (2, N'Mice', 75)
```

Output Result:

Figure No-2.11: Table for Job Type

(5) Input data for the members of staff including those listed in the scenario and assign staff to jobs. Give a listing of this:

Insert value for assignjob table

```
INSERT INTO [assignjob] ([id], [IDcustomer], [IDjob]) VALUES (1, 1, 28434)
INSERT INTO [assignjob] ([id], [IDcustomer], [IDjob]) VALUES (2, 2, 29000)
INSERT INTO [assignjob] ([id], [IDcustomer], [IDjob]) VALUES (3, 3, 28501)
```


Figure No-2.12: Table for assignjob

Insert value for Staff table

```
INSERT INTO [Staff] ([IDstaff], [staff name], [Phone]) VALUES (N'S100', N'Ronald Smith', N'+441234567444')
INSERT INTO [Staff] ([IDstaff], [staff name], [Phone]) VALUES (N'S801', N'Muhammad Ya', N'+441234567455')
INSERT INTO [Staff] ([IDstaff], [staff name], [Phone]) VALUES (N'S20', N'Curtis Stand', N'+441234567432')
INSERT INTO [Staff] ([IDstaff], [staff name], [Phone]) VALUES (N'S11', N'Manny Sinclair', N'+441234567000')
```

Output Result:

Figure No-2.13: Table for Staff

Insert value for jobstaff table

```
INSERT INTO [jobstaff] ([id], [IDjob], [IDstaff]) VALUES (1, 28434, N'S100')
INSERT INTO [jobstaff] ([id], [IDjob], [IDstaff]) VALUES (2, 28434, N'S801')
INSERT INTO [jobstaff] ([id], [IDjob], [IDstaff]) VALUES (3, 28434, N'S20')
INSERT INTO [jobstaff] ([id], [IDjob], [IDstaff]) VALUES (7, 29000, N'S11')
INSERT INTO [jobstaff] ([id], [IDjob], [IDstaff]) VALUES (8, 29001, N'S100')
INSERT INTO [jobstaff] ([id], [IDjob], [IDstaff]) VALUES (9, 28501, N'S801')
INSERT INTO [jobstaff] ([id], [IDjob], [IDstaff]) VALUES (10, 28501, N'S100')
```


Figure No-2.14: Table for jobstff

(6) Input data on the equipment and materials that are used on a job. Give a listing of this:

Insert value for Equipement table

```
INSERT INTO [Equipment] ([IDEquipment], [equipmentname]) VALUES (1, N'Heavy duty traps')
INSERT INTO [Equipment] ([IDEquipment], [equipmentname]) VALUES (2, N'Wainscot seals')
INSERT INTO [Equipment] ([IDEquipment], [equipmentname]) VALUES (3, N'poison')
INSERT INTO [Equipment] ([IDEquipment], [equipmentname]) VALUES (4, N'Steam fumigator')
INSERT INTO [Equipment] ([IDEquipment], [equipmentname]) VALUES (5, N'Light traps')
```

Output Result:

Figure No-2.15: Table for Equipement

Insert value for JobEquipment table

```
INSERT INTO [JobEquipment] ([ID], [IDjob], [IDEquipment]) VALUES (1, 28434, 1)
INSERT INTO [JobEquipment] ([ID], [IDjob], [IDEquipment]) VALUES (2, 28434, 2)
INSERT INTO [JobEquipment] ([ID], [IDjob], [IDEquipment]) VALUES (3, 28434, 3)
INSERT INTO [JobEquipment] ([ID], [IDjob], [IDEquipment]) VALUES (4, 29000, 4)
INSERT INTO [JobEquipment] ([ID], [IDjob], [IDEquipment]) VALUES (5, 28501, 5)
INSERT INTO [JobEquipment] ([ID], [IDjob], [IDEquipment]) VALUES (6, 28501, 2)
```


Figure No-2.16: Table for JobEquipment

Queries:

(7) All the jobs and which staff have worked on them:

SQL code for selected all the jobs which staff have worked on them.

```
SELECT Job.IDjob, [Job Type].jobtype, Staff.IDstaff, Staff.[staff name]
FROM ([Job Type] INNER JOIN Job ON [Job Type].[IDJobtype] = Job.[IDjobtype])
INNER JOIN (Staff INNER JOIN jobstaff ON Staff.[IDstaff] = jobstaff.[IDstaff]) ON Job.[IDjob] = jobstaff.[IDjob];
```

Table for queries number seven

Figure No-2.17: Table for seven

(8) That selects the equipment and materials that are used on jobs of type 'Wasp Nest:

SQL code for the equipment and materials that are used on jobs of type 'Wasp Nest.

```
SELECT [Job Type].jobtype, Equipement.IDEquipment, Equipement.equipmentname

FROM ([Job Type] INNER JOIN Job ON [Job Type].IDJobtype = Job.IDjobtype)

INNER JOIN (Equipement INNER JOIN JobEquipment ON Equipement.IDEquipment = JobEquipment.IDEquipment) ON Job.IDjob = JobEquipment.IDjob

WHERE ((([Job Type].jobtype)="Wasp Nest"));
```

Table for queries number Eight

Figure No-2.18: Table for eight

(9) All the jobs that Muhammad Ya has worked on:

SQL code for all the jobs that Muhammad Ya has worked on

```
SELECT Staff.[staff name], Job.IDjob, [Job Type].jobtype

FROM ([Job Type] INNER JOIN Job ON [Job Type].[IDJobtype] = Job.[IDjobtype])

INNER JOIN (Staff INNER JOIN jobstaff ON Staff.[IDstaff] = jobstaff.[IDstaff]) ON Job.[IDjob] = jobstaff.[IDjob]

WHERE (((Staff.[staff name])="Muhammad Ya"));
```

Table for queries number nine

Figure No-2.19: Table for nine

(10) All jobs that have taken place in Essex:

SQL code for all jobs that have taken place in Essex.

```
SELECT Customer.Country, Job.IDjob, [Job Type].jobtype

FROM ([Job Type] INNER JOIN Job ON [Job Type].IDJobtype = Job.IDjobtype)

INNER JOIN (Customer INNER JOIN assignjob ON Customer.IDcustomer = assignjob.IDcustomer) ON Job.IDjob = assignjob.IDjob

WHERE (((Customer.Country)="Essex"));
```

Table for queries number ten

Figure No-2.20: Table for ten

(Anon., n.d.)

(11) Counts the number of jobs that have used Wainscot Seals:

SQL code for Counts the number of jobs that have used Wainscot Seals

```
SELECT DISTINCTROW Equipement.IDEquipment, Equipement.equipmentname, Count(*) AS [Count Of Job]

FROM Job INNER JOIN (Equipement INNER JOIN JobEquipment ON Equipement.IDEquipment = JobEquipment.IDEquipment) ON Job.IDjob = JobEquipment.IDjob

GROUP BY Equipement.IDEquipment, Equipement.equipmentname

HAVING (((Equipement.equipmentname)="Wainscot seals"));
```

Table for gueries number eleven

Figure No-2.21: Table for eleven

(12) Produces the output that could be used to prepare an invoice:

SQL Code for Produces the output that could be used to prepare an invoice

```
SELECT Job.IDjob, [Job Type].jobtype, Job.dailyrateofpay, Job.workerdays,
([dailyrateofpay]*[workerdays]) AS Subtotal, ([Subtotal]*20/100) AS VAT, ([Subtotal]+[VAT]) AS Total
FROM [Job Type] INNER JOIN Job ON [Job Type].[IDJobtype] = Job.[IDjobtype]
WHERE (((Job.IDjob)=28501));
```

Table for Queries number twelve

Figure No-2.22: Table for twelve

Queries code for twelve numer

```
SELECT Job.IDjob, Job Type.jobtype, Job.dailyrateofpay,
Job.workerdays, (dailyrateofpay*workerdays) AS Subtotal,
((dailyrateofpay*workerdays)*20/100) AS VAT,
((dailyrateofpay*workerdays)+((dailyrateofpay*workerdays)*20/100)) AS Total
FROM Job Type INNER JOIN Job ON Job Type.IDJobtype = Job.IDjobtype
WHERE (((Job.IDjob)=28501));
```

Figure No-2.23: code for twelve

(Benyon-Davis, n.d.)

Task-3

(13) Derived Data:

(13) As per the requirement of Han well pest Control Company the database need to be extended. The charge information needs to be included. The charge is for per day by day for all jobtypes. Such as, 180 pounds for Rats jobtype, 168 pounds for Mice jobtype and 240 pounds for Wasp Nest jobtype.

SQL code for Derived data:

```
SELECT DISTINCTROW Job.IDjob, [Job Type].jobtype, Job.workerdays, Sum(Equipment.costing) AS EquipmentCost, Count(*)

AS totaleui, ([workerdays]*[EquipmentCost]) AS SubTotal, ([SubTotal]*20/100) AS vat, ([SubTotal]+[vat]) AS Total

FROM ([Job Type] INNER JOIN Job ON [Job Type].[IDJobtype] = Job.[IDjobtype])

INNER JOIN (Equipment INNER JOIN JobEquipment ON Equipment.[IDEquipment] = JobEquipment.[IDEquipment]) ON Job.[IDjob] = JobEquipment.[IDjob]

GROUP BY Job.IDjob, [Job Type].jobtype, Job.workerdays, ([workerdays]*[EquipmentCost]), ([SubTotal]*20/100), ([SubTotal]+[vat]);
```

Queries table for thirteen

	₽ 13							
4	IDjob ▼	jobtype 🕶	workerdays 🕶	EquipmentCos -	totaleui 🕶	SubTotal -	vat →	Total 🕶
	28434	Rats	1	150	3	150	30	180
	28501	Mice	2	70	2	140	28	168
	29000	Wasp Nest	2	100	1	200	40	240

Figure No-3.1: Table thirteen

Queries code for alter table Equipement:

```
--alter code
alter table Equipement
add costing double (18,2)
```

Figure No-3.2: Queries code for alter table Equipement

Queries code for update

```
update Equipement set costing=50 where IDEquipment=1;
update Equipement set costing=40 where IDEquipment=2;
update Equipement set costing=60 where IDEquipment=3;
update Equipement set costing=100 where IDEquipment=4;
update Equipement set costing=30 where IDEquipment=5;
```

Figure No-3.3: Queries code for update

Queries code

```
SELECT DISTINCTROW Job.IDjob, Job Type.jobtype, Job.workerdays,
Sum(Equipement.costing) AS EquipmentCost,
Count(*) AS totaleui, (workerdays*(Sum(Equipement.costing))) AS SubTotal,
((workerdays*(Sum(Equipement.costing)))*20/100) AS vat,
((workerdays*(Sum(Equipement.costing)))+((workerdays*(Sum(Equipement.costing)))*20/100)) AS Total
FROM (Job Type INNER JOIN Job ON Job Type.IDJobtype = Job.IDjobtype)
INNER JOIN (Equipement INNER JOIN JobEquipment ON Equipement.IDEquipment = JobEquipment.IDEquipment)
ON Job.IDjob = JobEquipment.IDjob
GROUP BY Job.IDjob, Job Type.jobtype, Job.workerdays;
```

Figure No-3.4: code for Queries

Show all tables:

Figure No-3.5: All tables

(Dietrich, n.d.)

Task-4:

Evaluation:

At last in task- 4 I have discussed every one tasks performed to complete the database as asked. Here I have designed a table that shows the requirements of the company and the achievement taken to fulfill the requirements.

Requirement	Performed tasks	Remarks
Design Entity Relationship model	Entity Relationship model is designed	Performed
	and add in task-1	
Data dictionary creating	Described data dictionary in task-1	Performed
Creating all the table using SQL	Described all the table in task-1	Performed
Created scripts and finished table	Described created scripts and finish	Performed
	table in task-2	_
Create Input data on all the jobs	Described input data all jobs and	Performed
and the details of those jobs.	details of those jobs in task-2	
Create Input data for the	Described input data members of staff	Performed
members of staff and assign staff	and assign staff to jobs in task-2	
to jobs.	Described input data aguisment and	Dorformond
Create Input data on the equipment and materials that are	Described input data equipment and materials that are used on a job in	Performed
used on a job.	task-2	
Create queries all the jobs and	Described all jobs and which staff have	Performed
which staff have worked on them	worked on them in task-2	1 CHOIIICG
Create quires the equipment and	Described equipment and materials	Performed
materials that are used on jobs of	that are used on jobs of type 'Wasp	
type 'Wasp Nest'	Nest' in task-2	
Create quires all the jobs that	Described all jobs that Muhammad Ya	Performed
Muhammad Ya has worked on.	has worked on in task-2	
Create quires Shows all jobs that	Described all jobs that have taken	Performed
have taken place in Essex	place in Essex in task-2	
Create quires counts the number	Described counts the number of jobs	Performed
of jobs that have used Wainscot	that have used Wainscot Seals in task-	
Seals	2	
Create quires include a	Described a calculation for VAT	
calculation for VAT charged on a	charged on a job in task-2	
Croots guiros addition to	Described addition to observing per day	Dorformod
Create quires addition to	Described addition to charging per day	Performed
charging per day by job type.	by job type in task-3	

(education, 2011)

Conclusion:

The database is designed to complete the requirements of Hanewll pest control. In task-1 ER diagram and data dictionary is designed and in task 2 using SQL the database is designed and implemented. All other asked records are also added here. Queries are in addition added here. Task- 3 is about the derived data. at last in task- 4 I have performed an analysis to make sure that how much I have succeed to whole the requirements of Hanewll pest control company. I have tried my best to fulfill all the requirement of the assignment.

Bibliography

Anon., n.d. [Online] Available at: http://beginner-sql-tutorial.com/sql-subquery.htm Retrieved 01-June-2011 [Accessed 14 july 2015].

Begg, C.a., ed., n.d. Database Systems a Practical Approach to Design, implementation and Management.

Benyon-Davis, ed., n.d. Database Systems.

Dietrich, S.W., ed., n.d. Understanding Relational Database Query Languages.

education, N., ed., 2011. UK: Database Design and Development Student Guide.