STAC32

Applications of Statistical Methods

Ken Butler

April 20, 2017

Section 1

Some R stuff

Preamble

```
library(tidyverse)
## Loading tidyverse:
                      qqplot2
## Loading tidyverse:
                     tibble
## Loading tidyverse:
                     tidyr
                     readr
## Loading tidyverse:
## Loading tidyverse:
                     purrr
## Loading tidyverse:
                     dplyr
## Conflicts with tidy packages
## filter(): dplyr, stats
## lag(): dplyr, stats
```

Reading the data

```
jumping=read_delim("/folders/myfolders/jumping.txt",delim=" ")
## Parsed with column specification:
## cols(
## group = col_character(),
## density = col_integer()
## )
glimpse(jumping)
## Observations: 30
## Variables: 2
## $ group <chr> "Highjump", "Highjump", "Highjump", "Highjump", "Highj...
## $ density <int> 650, 622, 626, 626, 631, 622, 643, 674, 643, 650, 611,...
```

A boxplot

Mean density by group

```
jumping %>%
  group_by(group) %>%
  summarize(m=mean(density), sd=sd(density))

## # A tibble: 3 × 3

## group m sd

## <chr> <dbl> <dbl>
## 1 Control 601.1 27.36360

## 2 Highjump 638.7 16.59351

## 3 Lowjump 612.5 19.32902
```

Section 2

The same thing in SAS

and now in SAS

Read in data:

```
proc import
  datafile='/folders/myfolders/jumping.txt'
   dbms=dlm
   out=rats
   replace;
  delimiter=' ';
  getnames=yes;
```

The dataset

proc print;

Obs	group	density	
1	Highjump	650	
2	Highjump	622	
3	Highjump	626	
4	Highjump	626	
5	Highjump	631	
6	Highjump	622	
7	Highjump	643	
8	Highjump	674	
9	Highjump	643	
10	Highjump	650	
11	Control	611	
12	Control	621	
13	Control	614	
14	Control	593	
15	Control	593	
16	Control	653	
17	Control	600	
18	Control	554	
19	Control	603	
20	Control	569	
21	Lowjump	635	
22	Lowjump	605	
23	Lowjump	638	
24	Lowjump	594	
25	Lowjump	599	
26	Lowjump	632	
27	Lowjump	631	
28	Lowjump	588	
29	Lowjump	607	
30	Lowjump	596	
	<i>J</i> 1		

Mean density by group

```
proc means;
  var density;
  class group;
```

The MEANS Procedure

Analysis Variable : density

			•		•	
group	N Obs	N	Mean	Std Dev	Minimum	Maximum
Control	10	10	601.1000000	27.3636011	554.0000000	653.0000000
Highjump	10	10	638.7000000	16.5935061	622.0000000	674.0000000
Lowjump	10	10	612.5000000	19.3290225	588.0000000	638.0000000

Code for boxplot

```
proc sgplot;
  vbox density / category=group;
```

The boxplot

