§2.2 矩阵的 Jordan 标准形

定义: 形式为

$$J_{\lambda_{i},r} = \begin{pmatrix} \lambda_{i} & 1 & & \\ & \lambda_{i} & \dots & \\ & & \dots & 1 \\ & & & \lambda_{i} \end{pmatrix}_{r \times r}$$

的 $r(r \ge 1)$ 阶方阵称为一个Jordan 块. 其中 λ 是实数或复数.

由若干个 (包括单个)Jordan 块构成的对角块矩阵 $J = \text{diag}\{J_{\lambda_1,r_1},J_{\lambda_2,r_2},...,J_{\lambda_s,r_s}\}$ 称为Jordan 矩阵.

例如

$$\begin{pmatrix} -2 & 1 & & \\ & -2 & 1 & \\ & & -2 \end{pmatrix}, \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}, \begin{pmatrix} 1-i & 1 & \\ & 1-i \end{pmatrix}$$

都是 Jordan 块 (每个 Jordan 块也可以看作单个 Jordan 块的 Jordan 矩阵).

特别的, 如 $(2)_{1\times 1}$, $(3)_{1\times 1}$ 是 1 阶的 Jordan 块, 因此对角矩阵是 1 阶 Jordan 块组成的 Jordan 矩阵.

再例如
$$J = \begin{pmatrix} 1 & 1 & & & & \\ & 1 & & & & \\ & & -2 & & & \\ & & & -2 & 1 \\ & & & & -2 \end{pmatrix}$$
,是由

$$J_{1,2} = \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix}, J_{-2,1} = (-2), J_{-2,2} = \begin{pmatrix} -2 & 1 \\ & -2 \end{pmatrix}$$

组成的 Jordan 矩阵. 即 $J = diag\{J_{1,2}, J_{2,1}, J_{-2,2}\}$.

我们将说明:复数域上任一方阵都相似于一个 Jordan 矩阵,其中 Jordan 块的个数为方阵线性无 关的特征向量的个数.

例 1 考虑方阵 A 的对角化问题

$$A = \left(\begin{array}{rrr} -3 & 3 & -2 \\ -7 & 6 & -3 \\ 1 & -1 & 2 \end{array}\right).$$

解: A 的特征多项式是

$$\det(\lambda I_3 - A) = (\lambda - 1)(\lambda - 2)^2$$

两个特征值为 $\lambda_1 = 1$, $\lambda_2 = 2$ (二重).

关于 $\lambda_1 = 1$ 的一个特征向量可由 (A - I)x = 0 解出, 得 $x_1 = (1, 2, 1)^T$. 代数重数 = 几何重数 =1.

关于 $\lambda_2 = 2$ 的特征向量由 (A - 2I)x = 0 解出,

由于
$$A - 2I = \begin{pmatrix} -5 & 3 & -2 \\ -7 & 4 & -3 \\ 1 & -1 & 0 \end{pmatrix}$$
 的秩为 2, 则解

空间的维数为 1, 即 $\lambda_2 = 2$ 的线性无关的特征向量最多只有一个, 可有 $x_2 = (-1, -1, 1)^T$.

即 $\lambda_2 = 2$ 对应的几何重数 $\dim E_{\lambda_2} = 1 < 2$ 代数 重数, 故 A 不能对角化.

(若方阵 A 能够对角化, 则 k 重特征值 λ 对应的 n 阶方阵 $(A - \lambda_2 I_n)$ 的秩应该为 n - k.)

由 (A-2I) 的 "秩过大" 注意到: 考虑矩阵乘积,

$$\operatorname{rank}(A - 2I)^2 \le \operatorname{rank}(A - 2I)$$

考虑求解下述齐次线性方程组

$$(A - 2I)^{2}x = \begin{pmatrix} 2 & -1 & 1 \\ 4 & -2 & 2 \\ 2 & -1 & 1 \end{pmatrix} x = 0$$

这里 $rank(A - 2I)^2 = 1$, 故 $dimN((A - 2I)^2) = 2$, 即方程组有两个线性无关的解.

又由于 $N((A-2I)) \subset N((A-2I)^2)$, 所以之前的 $\lambda_2 = 2$ 的特征向量 $x_2 = (-1, -1, 1)^T$ 也是解向量.

另一与 x_2 线性无关的解可取 $x_3 = (-1, -2, 0)^T$. 这里 x_3 满足

$$(A-2I)x_3=x_2$$

 $Ax_3 = x_2 + 2x_3$.

或 则有

$$A(x_1, x_2, x_3) = (x_1, 2x_2, x_2 + 2x_3)$$

$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & & \\ & 2 & 1 \\ & 0 & 2 \end{pmatrix}.$$

上式可简写为

$$AP = PJ$$
,

其中
$$P = (x_1, x_2, x_3) = \begin{pmatrix} 1 & -1 & -1 \\ 2 & -1 & -2 \\ 1 & 1 & 0 \end{pmatrix}$$

$$J = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$
 为 Jordan 矩阵.

由 $\overrightarrow{AP} = PJ$, 则 $P^{-1}AP = J$, 即方阵 A 相似于 Jordan 矩阵 J.

之后说明结论的一般性:即使不能对角化的矩阵 A 在复数域上也相似于一个 Jordan 矩阵.

或说,一个复数域上的线性变换在某组基下的矩阵表示是一个 Jordan 矩阵.

特征值的 k 级根向量

定义: 设 λ_0 是方阵 A 的特征值. 对于向量 x, 若存在正整数 k, 使得

$$(A - \lambda_0 I)^k x = 0, \quad (A - \lambda_0 I)^{k-1} x \neq 0$$

则称为 x 为 A 关于 λ_0 的 k 级<mark>根向量</mark>(或广义特征向量). 简称 x 为 λ_0 的 k 级根向量.

特别的, λ_0 的特征向量是 λ_0 的 1 级根向量.

例: 之前的 x_2 和 x_3 分别为 $\lambda_2 = 2$ 的 1 级和 2 级根向量.

定理: 设 λ_0 是方阵 A 的特征值, 则 A 关于 λ_0 的不同级的根向量是线性无关的.

证明: 设 x_i $(1 \le i \le p)$ 是 A 关于 λ_0 的 i 级根向量, 要证明 $x_1, x_2, ..., x_p$ 线性无关.

设有等式

$$a_1x_1 + ... + a_px_p = 0.$$

用 $(A - \lambda_0 I)^{p-1}$ 左乘等式两边, 得:

$$a_1(A - \lambda_0 I)^{p-1} x_1 + ... + a_p(A - \lambda_0 I)^{p-1} x_p = 0.$$

证明 (续): 因为 x_i 是 A 关于 λ_0 的 i 级根向量

$$(A-\lambda_0 I)^{p-1}x_i = 0, (1 \le i \le p-1), \quad (A-\lambda_0 I)^{p-1}x_p \ne 0.$$

则原式变为 $a_p(A - \lambda_0 I)^{p-1} x_p = 0$, 即 $a_p = 0$. 同时我们有

$$a_1x_1 + \dots + a_{p-1}x_{p-1} = 0.$$

再用 $(A - \lambda_0 I)^{p-2}$ 左乘等式两边, 得 $a_{p-1} = 0$.

继续类似的步骤可得 $a_1 = a_2 = ... = a_p = 0$. 即 $x_1, x_2, ..., x_p$ 线性无关.

定理: 方阵 *A* 关于不同特征值的根向量是线性无关的.

证明: 设 λ_i ($1 \le i \le s$) 是 A 的特征值, 而 x_i ($1 \le i \le s$) 是关于 λ_i 的 n_i 级根向量, 要证明 $x_1, x_2, ..., x_s$ 线性无关.

设有等式

$$a_{1}x_{1} + ... + a_{s}x_{s} = 0.$$
用 $(A - \lambda_{1}I)^{n_{1}-1}(A - \lambda_{2}I)^{n_{2}}...(A - \lambda_{s}I)^{n_{s}}$ 左乘两边:
$$a_{1}(A - \lambda_{1}I)^{n_{1}-1}(A - \lambda_{2}I)^{n_{2}}...(A - \lambda_{s}I)^{n_{s}}x_{1}$$

$$= a_{1}(A - \lambda_{2}I)^{n_{2}}...(A - \lambda_{s}I)^{n_{s}}(A - \lambda_{1}I)^{n_{1}-1}x_{1}$$

$$= 0.$$

证明 (续): 其中 $y = (A - \lambda_1 I)^{n_1 - 1} x_1 \neq 0$, 且满足 $(A - \lambda_1 I) y = (A - \lambda_1 I)^{n_1} x_1 = 0$, 即 y 是 A 关于 λ_1 的特征向量. 则上式变为

$$a_1(\lambda_1 - \lambda_2)^{n_2}...(\lambda_1 - \lambda_s)^{n_s} y = 0$$

由于特征值 $\lambda_1, \lambda_2, ..., \lambda_s$ 是不同的, 且 $y \neq 0$, 则上式左边为零必有 $a_1 = 0$.

用类似的方法同样可以证明 $a_2 = a_3 = ...a_s = 0$. 即向量组 $x_1, x_2, ..., x_s$ 线性无关.

根空间

定义: 设 λ_0 是 A 的 k 重特征值, 则 $(A - \lambda_0 I)^k$ 的零空间

$$N((A - \lambda_0 I)^k) = \{x | (A - \lambda_0 I)^k x = 0\}$$

称为 A 关于 λ_0 的根空间, 记为 N_{λ_0} .

- N_{λ₀} 是 λ₀ 的所有不同级数 (不会超过 k 级) 的根向量张成的线性空间, 且 N_{λ₀} 是 A 的不 变子空间.
- λ_0 的特征子空间包含在 λ_0 的根空间中, 即 $V_{\lambda_0} \subset N_{\lambda_0}$.

• N_{λ_0} 中的 λ_0 的根向量的最高级数可能小于 λ_0 的代数重数 k.

比如,
$$A = diag\{(2), \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}\}$$
, 特征值 $\lambda = 2$ 的代数重数为 3, 但根向量的最高级数为 2, 小于 3.

• 由上,我们称 N_{λ_0} 中根向量的最高级数 r 为 λ_0 的指标. 从而

$$N_{\lambda_0} = N((A - \lambda_0 I)^k) = N((A - \lambda_0 I)^r).$$

这里 λ_0 的指标 r 小于等于 λ_0 的代数重数 k. 之后, 将讨论 λ_0 的指标与 λ_0 对应的 Jordan 块的 关系.

定理: 设 n 阶方阵 A 的特征值多项式为

$$f(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} ... (\lambda - \lambda_s)^{n_s}$$

其中 $\lambda_1, \lambda_2, ..., \lambda_s$ 是 A 的所有不同的特征值, 而 $n_1, n_2, ..., n_s$ 是相应的代数重数, 则有

$$N_{\lambda_1} \oplus N_{\lambda_2} \oplus ... \oplus N_{\lambda_s} = \mathbb{C}^n$$

证明: 由之前两个关于根向量线性无关性的定理,

$$N_{\lambda_1} + N_{\lambda_2} + ... + N_{\lambda_s} = N_{\lambda_1} \oplus N_{\lambda_2} \oplus ... \oplus N_{\lambda_s} \subset \mathbb{C}^n$$

还需证明 $\dim N_{\lambda_1} + \dim N_{\lambda_2} + ... + \dim N_{\lambda_s} \geq n$.

证明 (续): 又因为

$$f(A) = (A - \lambda_1 I)^{n_1} (A - \lambda_2 I)^{n_2} ... (A - \lambda_s I)^{n_s} = O.$$

利用
$$A_1A_2...A_k = 0 \Rightarrow \sum_{i=1}^k (n - \mathsf{rank}A_i) \geq n$$

$$\sum_{i=1}^{s} (n - \operatorname{rank}(A - \lambda_{i}I)^{n_{i}}) \geq n$$

又因为
$$n - \operatorname{rank}(A - \lambda_i I)^{n_i} = N((A - \lambda_i I)^{n_i}),$$

$$\operatorname{dim} N_{\lambda_1} + \operatorname{dim} N_{\lambda_2} + ... + \operatorname{dim} N_{\lambda_s} \geq n.$$

从而
$$N_{\lambda_1} \oplus N_{\lambda_2} \oplus ... \oplus N_{\lambda_s} = \mathbb{C}^n$$
.

这个定理告诉我们, \mathbb{C}^n 总可以写成 A 的不同特征 值 λ_i 的根空间 N_{λ_i} 的直和, 从而方阵 A 必定相似于一个对角块矩阵 B. 即 $B = P^{-1}AP$.

为了求得方阵 B, 以及由 A 变换到 B 的矩阵 P, 我们需要确定每个根空间 N_{λ_i} 的基, 即求解 λ_i 的各级根向量.

首先, λ_i 的 1 级根向量 (即特征向量) 满足

$$(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x} = 0$$

解空间的维数为 $n - \text{rank}(A - \lambda_i I)$, 若 $n - \text{rank}(A - \lambda_i I) < n_i$, 则存在 λ_i 的 2 级根向量. 而 2 级根向量满足 $(A - \lambda_i I)^2 x = 0$, $(A - \lambda_i I) x \neq 0$

- 一般的. A 关于 λ_i 的各级根向量满足:
 - 1. 首先, λ_i 的 1 级根向量 (即特征向量) 来自 $(A \lambda_i I)x = 0$ 的解空间 (除去零向量);
 - 2. 对于 $1 < k \le r$, 这里 r 是 λ_i 的指标, λ_i 的 k 级根向量的集合为 $(A \lambda_i I)^k x = 0$ 的解空间除去 $(A \lambda_i I)^{k-1} x = 0$ 的解空间;
 - 3. 直到 k = r, λ_i 的所有根向量的集合为 $(A \lambda_i I)^r x = 0$ 的解空间除去零向量.

按照 k 由小到大的顺序, 可以依此找到 λ_i 的 k 级根向量, 由线性无关性, 即找到了根空间 N_{λ_i} 的基.

这样求解根向量得到的对角块矩阵未必是 Jordan 矩阵, 除非我们将 k 级根向量和 (k-1) 级根向量 联系起来.

若 x 是 λ_i 的 k 级 $(k \ge 2)$ 根向量, 则

$$(A - \lambda_i I)^k x = 0, \quad (A - \lambda_i I)^{k-1} x \neq 0.$$

我们设 $y = (A - \lambda_i I)x$, 则

$$(A - \lambda_i I)^{k-1} y = 0, \quad (A - \lambda_i I)^{k-2} y \neq 0,$$

则 y 是 k-1 级根向量.

这里 $Ax = y + \lambda_i x$, 如果在基中 y 排在 x 前面, 则 Ax 对应的坐标表示为 $(...,1,\lambda_i,...)^T$, 刚好为 Jordan 矩阵的对应列.

例 3 求方阵 A 的根向量

$$A = \left(\begin{array}{ccc} 3 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{array}\right).$$

 \mathbf{M} : 由于 $\det(\lambda I - A) = (\lambda - 2)^3$, 故 A 有三重特征值 2. 又因齐次线性方程组

$$(A - 2I)x = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1 \end{pmatrix} x = 0$$

的系数矩阵 A - 2I 的秩为 1, 则线性无关的特征 向量个数为 3 - 1 = 2, 可取为 $x_1 = (0, 1, 0)^T$, $x_2 = (1, 0, -1)^T$.

解 (续): $\lambda = 2$ 的几何重数为 2, 小于代数重数 3. 故存在一个 2 级根向量. 这里我们通过 $(A - 2I)x_3 = y$ 求解二级根向量 x_3 , 其中 y 是一级根向量, 这里可写为

$$y = c_1 x_1 + c_2 x_2$$

= $c_1 (0, 1, 0)^T + c_2 (1, 0, -1)^T$
= $(c_2, c_1, -c_2)^T$.

则方程组 $(A - 2I)x_3 = y$ 写作

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_3^{(1)} \\ x_3^{(2)} \\ x_3^{(3)} \end{pmatrix} = \begin{pmatrix} c_2 \\ c_1 \\ -c_2 \end{pmatrix}$$

解 (续): 当且仅当 $c_1 = 0$ 时, 方程组 $(A-2I)x_3 = y$ 存在解 $x_3 = (x_3^{(1)}, x_3^{(2)}, c_2 - x_3^{(1)})^T$, 或者可以写为

$$x_3 = x_3^{(1)}(1,0,-1)^T + x_3^{(2)}(0,1,0)^T + c_2(0,0,1)^T$$

= $x_3^{(1)}x_1 + x_3^{(2)}x_2 + c_2(0,0,1)^T$.

因为 x_3 与 x_1, x_2 线性无关, 必须要求 $c_2 \neq 0$.

简单起见,我们取
$$x_3^{(1)} = x_3^{(2)} = 0$$
 和 $c_2 = 1$,则 $x_3 = (0,0,1)^T$,满足 $(A-2I)x_3 = y = x_2$. 这时 $N_{\lambda=2} = \text{span}\{x_1, x_2, x_3\}$.

注意: 当我们求得 $\lambda = 2$ 的一级根向量 $x_1 = (0, 1, 0)^T$ 和 $x_2 = (1, 0, -1)^T$, 以及二级根向 量 $x_3 = (0, 0, 1)^T$, 且有

$$Ax_1 = 2x_1, Ax_2 = 2x_2, Ax_3 = x_2 + 2x_3.$$

设 $P = (x_1, x_2, x_3)$, 则

$$AP = (2x_1, 2x_2, x_2 + 2x_3) = (x_1, x_2, x_3) \begin{pmatrix} 2 & & \\ & 2 & 1 \\ & 0 & 2 \end{pmatrix}.$$

即相似变换而得的对角矩阵 B 为 Jordan 矩阵.

例 4 设方阵 A 为

$$A = \left(\begin{array}{rrr} -4 & 1 & 4 \\ -12 & 4 & 8 \\ -6 & 1 & 6 \end{array}\right).$$

求可逆矩阵 P 使 P-1AP 为 Jordan 矩阵.

 \mathbf{M} : $\det(\lambda I - A) = (\lambda - 2)^3$, 故 A 有三重特征值 2.

$$(A - 2I)x = \begin{pmatrix} -6 & 1 & 4 \\ -12 & 2 & 8 \\ -6 & 1 & 4 \end{pmatrix} x = 0$$

的系数矩阵 A - 2I 的秩为 1, 则线性无关的特征 向量个数为 3 - 1 = 2, 可取为例如 $x_1 = (4, 4, 5)^T$, $x_2 = (5, 2, 7)^T$.

解 (续): 这里线性无关的特征向量个数为 2, 小于代数重数 3. 故存在且只存在 1 个二级根向量. 将通过 $(A-2I)x_3 = y$ 求解二级根向量 x_3 , 其中 y是一级根向量, 这里可写为

$$y = c_1x_1 + c_2x_2$$

= $c_1(4, 4, 5)^T + c_2(5, 2, 7)^T$
= $(4c_1 + 5c_2, 4c_1 + 2c_2, 5c_1 + 7c_2)^T$.

则方程组 $(A-2I)x_3 = y$ 写作

$$\begin{pmatrix} -6 & 1 & 4 \\ -12 & 2 & 8 \\ -6 & 1 & 4 \end{pmatrix} \begin{pmatrix} x_3^{(1)} \\ x_3^{(2)} \\ x_3^{(3)} \end{pmatrix} = \begin{pmatrix} 4c_1 + 5c_2 \\ 4c_1 + 2c_2 \\ 5c_1 + 7c_2 \end{pmatrix}$$

解(续): 我们对增广矩阵作初等变换进行求解

$$\begin{pmatrix} -6 & 1 & 4 & 4c_1 + 5c_2 \\ -12 & 2 & 8 & 4c_1 + 2c_2 \\ -6 & 1 & 4 & 5c_1 + 7c_2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -6 & 1 & 4 & 4c_1 + 5c_2 \\ 0 & 0 & 0 & -4c_1 - 8c_2 \\ 0 & 0 & 0 & c_1 + 2c_2 \end{pmatrix}$$

则由后两行知 $c_1 = -2c_2$,代入第一行得 $-6x_3^{(1)} + x_3^{(2)} + 4x_3^{(3)} = -3c_2$,即 x_3 的三个分量中任一个可由另两个表示出来,简单起见,可以取 $x_3^{(2)} = -3c_2 + 6x_3^{(1)} - 4x_3^{(3)}$.

解 (续): 此时

$$x_3 = (x_3^{(1)}, -3c_2 + 6x_3^{(1)} - 4x_3^{(3)}, x_3^{(3)})^T$$

= $x_3^{(1)} (1, 6, 0)^T + x_3^{(3)} (0, -4, 1)^T - 3c_2(0, 1, 0)^T$

且 x_3 应与 $x_1 = (4,4,5)^T$, $x_2 = (5,2,7)^T$ 线性无关可验证:

 $(1,6,0)^T = \frac{7}{3}x_1 - \frac{5}{3}x_2$, $(0,-4,1)^T = \frac{4}{3}x_2 - \frac{5}{3}x_1$, 但 $(0,1,0)^T$ 不能由 x_1 和 x_2 线性表出. 从而为了 x_3 是线性无关的根向量, 必有 $c_2 \neq 0$ (则 $c_1 \neq 0$).

简单起见,我们可以取 $c_2 = -\frac{1}{3}$. $x^{(1)} = x^{(3)} = 0$, 即

$$x_3 = (0, 1, 0)^T$$
, $y = (A - 2I)x_3 = (1, 2, 1)^T$

解 (续): 此时 $y = (-\frac{2}{3})x_1 + (-\frac{1}{3})x_2$, 与 x_1 线性无关, 即 $N_{\lambda=2} = \operatorname{span}\{x_1, x_2, x_3\} = \operatorname{span}\{x_1, y, x_3\}$,

为了得到的对角块矩阵为 Jordan 矩阵, 我们令

$$P = (x_1, y, x_3) = \begin{pmatrix} 4 & 1 & 0 \\ 4 & 2 & 1 \\ 5 & 1 & 0 \end{pmatrix},$$

$$AP = (2x_1, 2y, y + 2x_3) = (x_1, y, x_3) \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

= PJ

例 5 设方阵 A 为

$$A = \left(\begin{array}{cccc} 3 & 1 & 1 & 1 \\ -4 & -1 & -1 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 0 \end{array}\right).$$

求可逆矩阵 $P \neq P^{-1}AP$ 为 Jordan 矩阵. 解: 由于 $det(\lambda I - A) = (\lambda - 1)^4$, 故 A 有四重特征值 1. 此时齐次线性方程组

$$(A - I)x = \begin{pmatrix} 2 & 1 & 1 & 1 \\ -4 & -2 & -1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix} x = 0$$

的系数矩阵 A-I 的秩为 2.

解 (续): 此时线性无关的特征向量个数为 4-2=2, 小于代数重数 4. 故存在二级根向量. 取两个线性无关的特征向量 $x_1 = (1,-2,0,0)^T$ 和 $x_2 = (0,0,1,-1)^T$. 将通过 (A-I)x = y 求解二级根向量 x. 其中 y 是一级根向量, 这里可写为

$$y = c_1x_1 + c_2x_2$$

= $(c_1, -2c_1, c_2, -c_2)^T$.

则方程组 (A - I)x = y 写作

$$\begin{pmatrix} 2 & 1 & 1 & 1 \\ -4 & -2 & -1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} x^{(1)} \\ x^{(2)} \\ x^{(3)} \\ x^{(4)} \end{pmatrix} = \begin{pmatrix} c_1 \\ -2c_1 \\ c_2 \\ -c_2 \end{pmatrix}$$

解(续): 我们对增广矩阵作初等变换进行求解

$$\begin{pmatrix} 2 & 1 & 1 & 1 \mid & c_{1} \\ -4 & -2 & -1 & -1 \mid & -2c_{1} \\ 0 & 0 & 1 & 1 \mid & c_{2} \\ 0 & 0 & -1 & -1 \mid & -c_{2} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 2 & 1 & 1 & 1 \mid c_{1} \\ 0 & 0 & 0 & 0 \mid 0 \\ 0 & 0 & 1 & 1 \mid c_{2} \\ 0 & 0 & 0 & 0 \mid 0 \end{pmatrix}$$

则由后两行知 $x^{(3)} + x^{(4)} = c_2$,代入第一行得 $2x^{(1)} + x^{(2)} = c_1 - c_2$,即 x 的四个分量中有两个可由另两个表示出来,简单起见,可以取 $x^{(2)} = c_1 - c_2 - 2x^{(1)}$ 和 $x^{(4)} = c_2 - x^{(3)}$.

解 (续): 此时

$$x = (x^{(1)}, c_1 - c_2 - 2x^{(1)}, x^{(3)}, c_2 - x^{(3)})^T$$

= $x^{(1)}(1, -2, 0, 0)^T + x^{(3)}(0, 0, 1, -1)^T$
+ $c_1(0, 1, 0, 0)^T + c_2(0, -1, 0, 1)^T$

因为 x 应与 $x_1 = (1, -2, 0, 0)^T$, $x_2 = (0, 0, 1 - 1)^T$ 线性无关, 则 c_1 和 c_2 至少有一个不为零.

而 $y = (A - I)x = c_1(1, -2, 0, 0)^T + c_2(0, 1, 1, -1)^T$. 因为 $(1, -2, 0, 0)^T$ 和 $(0, 1, 1, -1)^T$ 线性无关,而 线性无关的向量的原像必然线性无关,则必可以 找到两个线性无关的二级根向量.

解(续):已知

$$x = x^{(1)}x_1 + x^{(3)}x_2 + c_1(0, 1, 0, 0)^T + c_2(0, -1, 0, 1)^T,$$

$$y = (A - I)x = c_1(1, -2, 0, 0)^T + c_2(0, 1, 1, -1)^T.$$

令
$$y = x_1 = (1, -2, 0, 0)^T$$
, 此时 $c_1 = 1, c_2 = 0$. 同时取 $x^{(1)} = x^{(3)} = 0$, 则对应的 $x_3 = (0, 1, 0, 0)^T$.

若令
$$y = (0, 1, 1, -1)^T$$
, 此时 $c_1 = 0, c_2 = 1$. 同时 取 $x^{(1)} = x^{(3)} = 0$, 则对应的 $x_4 = (0, -1, 0, 1)^T$.

解 (续): 由 $N_{\lambda=1} = \text{span}\{x_1, x_2, x_3, x_4\} = \text{span}\{x_1, x_3, (A-I)x_4, x_4\},$ 为了得到的对角块矩阵为 Jordan 矩阵, 我们令

$$P = (x_1, x_3, (A - I)x_4, x_4) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -2 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

$$AP = P \begin{pmatrix} 1 & 1 & & \\ 0 & 1 & & \\ & & 1 & 1 \\ & & 0 & 1 \end{pmatrix} = PJ.$$

一般由若干个 Jordan 块组成的 Jordan 矩阵, 常将对应同样对角线元素 λ_i 的 Jordan 块放在一起, 组成一个关于 λ_i 的子 Jordan 矩阵. 如

前者可看作有 2 个子 Jordan 矩阵, 4 个 Jordan 块, 后者可看作有 3 个子 Jordan 矩阵, 5 个 Jordan 块.

考虑 Jordan 块
$$J_{\lambda_i,r} = \begin{pmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \dots & & \\ & & \dots & 1 & \\ & & & \lambda_i \end{pmatrix}_{r \times r}$$

- 最小多项式 $m_{J_{\lambda_i,r}}(\lambda) = (\lambda \lambda_i)^r$.
- 由 Jordan 块 $J_{\lambda_i,s_1}, J_{\lambda_i,s_2}, ..., J_{\lambda_i,s_k}$ 组成的 Jordan 子矩阵的最小多项式为 $(\lambda \lambda_i)^s$, 这 里 $s = \max\{s_1, s_2, ..., s_k\}$.
- 若 A 相似于 $J_{\lambda_i,r}$, 且 x 为 A 关于 λ_i 的 r 级根向量, 设 $P = ((A \lambda_i I)^{r-1} x, (A \lambda_i I)^{r-2} x, ..., (A \lambda_i I) x, x),$ 则 $AP = PJ_{\lambda_i,r}$, 即 $P^{-1}AP = J_{\lambda_i,r}$.

关于矩阵 A 的 Jordan 标准形:

- 1. A 的Jordan 标准形中子 Jordan 矩阵的数目等于 A 的不同特征值的数目;
- 2. 关于 λ_i 的子 Jordan 矩阵的阶数等于 λ_i 的根空间的维数, 即 λ_i 的代数重数;
- 3. 关于 λ_i 的子 Jordan 矩阵中Jordan 块的个数等于 λ_i 的线性无关的特征向量的个数, 即 λ_i 特征子空间的维数, 或 λ_i 的几何维数;
- 4. 关于 λ_i 的子 Jordan 矩阵中Jordan 块的最大 阶数等于 λ_i 的指标, 即 λ_i 的根向量的最高级数.

求 A 的 Jordan 标准形 (课程要求计算三阶情况, 更一般流程如下):

1. 按照 k 从 1 到 r 的顺序 (r 为 λ 的指标), 利 用 $(A - \lambda)^k x = 0$, 求出 λ 的 k 级根向量所张 成的子空间. 设最多有 m_k 个线性无关的 λ 的 k 级根向量.

注意: 对于 k < r 有 $m_k \ge m_{k+1}$, 且 $m_1 + m_2 + ... + m_r = \dim N_\lambda = \lambda$ 的几何重数.

2. 从 λ 的 r_i 级根向量中取一个最大线性无关向量组, 设为 $\mathcal{B} = \{x_1, x_2, ..., x_{m_r}\}$.

- 3. 若 \mathcal{B} 中已含有 λ_i 的 k 级 (这里 $1 < k \le r$) 根向量 $x_{k_1}, x_{k_2}, ..., x_{k_{m_k}}$, 则计算 $(A \lambda I)x_{k_1}, (A \lambda I)x_{k_2}, ..., (A \lambda I)x_{k_{m_k}}$, 这些 都是 λ 的 k 1 级根向量, 将它们分别添加 在 \mathcal{B} 中 $x_{k_1}, x_{k_2}, ..., x_{k_{m_k}}$ 的前面, 再另外找到 $m_{k-1} m_k$ 个线性无关的 λ 的 k 1 级根向量, 添加到 \mathcal{B} 中的最前面.
- 4. 对于 k 从 r-1 到 2, 重复第三步.
- 5. 对于 A 的每一个特征值, 重复以上四步.

例 (Jordan 块的乘方): 设

$$J = \begin{pmatrix} -2 & 1 & & \\ & -2 & 1 & \\ & & -2 & 1 \\ & & & -2 \end{pmatrix}.$$

求 J⁵.

 \mathbf{M} : 一个 Jordan 块可以写成对角部分和幂零部分的和 J = -2I + N, 其中

$$N = \left(\begin{array}{ccc} 0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 1 \\ & & & 0 \end{array} \right).$$

解(续): 幂零矩阵 N满足:

$$N^2 = \begin{pmatrix} 0 & 0 & 1 \\ & 0 & 0 & 1 \\ & & 0 & 0 \\ & & & 0 \end{pmatrix}, N^3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ & 0 & 0 & 0 \\ & & & 0 & 0 \\ & & & & 0 \end{pmatrix}, N^4 = O.$$

因单位矩阵 / 和任意方阵的乘法可交换顺序, 故

$$J^{5} = (-2I + N)^{5} = \sum_{i=0}^{5} C_{5}^{i} (-2I)^{5-i} N^{i}$$

这里 n 中取 i 个的组合数 $C_n^i = \frac{n!}{i!(n-i)!}$

解(续): 幂零矩阵 N满足:

$$N^2 = \begin{pmatrix} 0 & 0 & 1 \\ & 0 & 0 & 1 \\ & & 0 & 0 \\ & & & 0 \end{pmatrix}, N^3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ & 0 & 0 & 0 \\ & & & 0 & 0 \\ & & & & 0 \end{pmatrix}, N^4 = O.$$

因单位矩阵 / 和任意方阵的乘法可交换顺序, 故

$$J^{5} = (-2I + N)^{5} = \sum_{i=0}^{5} C_{5}^{i} (-2I)^{5-i} N^{i}$$

这里从 n 中取 i 个对应的组合数为 $C_n^i = \frac{n!}{i!(n-i)!}$

解(续):则

$$J^{5} = (-2I)^{5} + 5 \cdot (-2I)^{4}N + 10 \cdot (-2I)^{3}N^{2} + 10 \cdot (-2I)^{2}N^{3} + 5 \cdot (-2I)N^{4} + N^{5} = (-2)^{5}I + 5(-2)^{4}N + 10(-2)^{3}N^{2} + 10(-2)^{2}N^{3} = \begin{pmatrix} (-2)^{5} & 5(-2)^{4} & 10(-2)^{2} & 10(-2) \\ & (-2)^{5} & 5(-2)^{4} & 10(-2)^{2} \\ & & (-2)^{5} & 5(-2)^{4} \end{pmatrix}.$$

Jordan 块 (Jordan 矩阵则不一定) 的乘方在每条 对角线上元素相同!