Ayudantía 1 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

14 de marzo de 2023

Problema 1. Demuestre que todos los subgrupos de \mathbb{Z} son de la forma $n\mathbb{Z}$ para algún $n \in \mathbb{Z}$. Si $m, n \in \mathbb{Z}$ son enteros distintos, determine bajo qué condiciones sobre m y n se verifica que $n\mathbb{Z}$ es subgrupo de $m\mathbb{Z}$.

Problema 2. Sean $(G, \cdot_G), (H, \cdot_H)$ grupos. Definimos el *producto directo* de G, H como el grupo cuyo conjunto subyacente es

$$G \times H = \{(g,h)|g \in G, h \in H\}$$

junto con la ley de composición

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot_G g_2, h_1 \cdot_H h_2) \qquad \forall g_1, g_2 \in G, \forall h_1, h_2 \in H$$

- 1. Demuestre que $G \times H$ es un grupo.
- 2. Muestre que $G \times H$ es abeliano si y solo si G y H son ambos abelianos.
- 3. Sean $g \in G, h \in H$ elementos de orden finito. Pruebe que el orden de (g,h) es el mínimo común múltiplo entre |g| y |h|.
- 4. Suponga que G, H son grupos finitos cíclicos. Muestre que $G \times H$ es cíclico si y sólo si mcd(|G|, |H|) = 1.
- 5. Dé un ejemplo de un producto directo $G \times H$ el cual contenga un subgrupo que no sea de la forma $K \times L$ con K, L subgrupos de G, H respectivamente.

Problema 3. Sea G un grupo y $\{H_i\}_{i\in I}$ colección arbitraria de subgrupos de G.

- 1. Pruebe que la intersección $\bigcap_{i \in I} H_i$ sigue siendo un subgrupo de G.
- 2. Si H_1, H_2 son subgrupos de G, demuestre que $H_1 \cup H_2$ es subgrupo si y solo si $H_1 \subseteq H_2$ o bien $H_1 \supseteq H_2$.
- 3. Si $H_1 \subseteq H_2 \subseteq \ldots$ una cadena ascendente de subgrupos de G, demuestre que $\bigcup_{n \in \mathbb{N}^{\geq 1}} H_i$ es subgrupo de G.

Problema 4. Muestre que no existe un morfismo de grupos sobreyectivo $f:(\mathbb{Q},+) \twoheadrightarrow (\mathbb{Q}^{>0},\times)$.

Definición. Sea G un grupo. Definimos el grupo de automorfismos de G, denotado por Aut(G) como el conjunto

$$Aut(G) = \{f : G \to G | f \text{ es automorfismo}\}\$$

junto con la composición de funciones como ley de grupo.

Problema 5. Considere n > 1 y el grupo de enteros módulo n, denotado por $\mathbb{Z}/n\mathbb{Z}$. Demuestre que $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Indicación: Muestre en primer lugar que el orden de un elemento $x \in \mathbb{Z}/n\mathbb{Z}$ es $n/\operatorname{mcd}(x,n)$.