Quantum Computing

Bill Silver
Computer Science Department
Bowdoin College

Physics of Computation Conference Endicott House MIT May 6-8, 1981

1 Freeman Dyson 13 Frederick Kantor 25 Robert Suaya 37 George Michaels 2 Gregory Chaitin 14 David Leinweber 26 Stan Kugell 38 Richard Feynman 3 James Crutchfield 15 Konrad Zuse 27 Bill Gosper 39 Laurie Lingham 4 Norman Packard 16 Bernard Zeigler 28 Lutz Priese 40 Thiagarajan 5 Panos Ligomenides 17 Carl Adam Petri 39 Madhu Gupta 41 ? 6 Jerome Rothstein 18 Anatol Holt 30 Paul Benioff 42 Gerard Vichniac 7 Carl Hewitt 19 Roland Vollmar 31 Hans Moravec 43 Leonid Levin 20 Hans Bremerman 8 Norman Hardy 32 Ian Richards 44 Lev Levitin 9 Edward Fredkin 21 Donald Greenspan 33 Marian Pour-El 45 Peter Gacs 10 Tom Toffoli 22 Markus Buettiker 34 Danny Hillis 46 Dan Greenberger 11 Rolf Landauer 23 Otto Floberth 35 Arthur Burks 12 John Wheeler 24 Robert Lewis 36 John Cocke

Source: https://mitendicotthouse.org/physics-computation-conference/

Worldwide R&D in 2015

Source: The Economist, Here, There, and Everywhere, March 2017

Popular Press

As China Leads Quantum Computing Race, U.S. Spies Plan for a World with Fewer Secrets

BY FRED GUTERL ON 12/14/20 AT 5:00 AM EST

Quantum Taxonomy, Abridged

A Quantum Computer

Highlights

Machine state

- qubit: two-state unit of information
- state of n qubits is N = 2ⁿ-dimensional complex vector
- 2 constraints: unit length, unobservable global phase
- 2N 2 = 2(N 1) degrees of freedom
- superposition of N basis states

Evolution

- rotation and/or reflection of state vector
- N x N matrix multiply
- quantum parallelism

Observation

 squared magnitude of vector component is probability of observing the corresponding basis state

Quantum State

Qubit State

$${c_0 \choose c_1} = c_0 {1 \choose 0} + c_1 {0 \choose 1}$$
$$c_0 |0\rangle + c_1 |1\rangle$$

$$|c_0|^2 + |c_1|^2 = 1$$

$$\begin{pmatrix} a_0 e^{i\phi_0} \\ a_1 e^{i\phi_1} \end{pmatrix} \qquad \begin{aligned} a_0^2 + a_1^2 &= 1 \\ &\left(\cos\left(\frac{\theta}{2}\right) e^{i\phi_0} \\ \sin\left(\frac{\theta}{2}\right) e^{i\phi_1} \end{pmatrix} \end{aligned}$$

$$e^{i\phi_0} \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i(\phi_1 - \phi_0)} \end{pmatrix}$$

$$\begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i\phi} \end{pmatrix}$$

2(N-1) = 2 degrees of freedom

Bloch Sphere

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$$

By Smite-Meister - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5829358

Three-Qubit State

 2^3 = 8-dimensional complex vector space

$$|\psi\rangle = egin{pmatrix} c_{000} \\ c_{001} \\ c_{010} \\ c_{011} \\ c_{100} \\ c_{101} \\ c_{110} \\ c_{111} \end{pmatrix}$$

$$\begin{split} |\psi\rangle &= c_{000}|000\rangle + c_{001}|001\rangle + c_{010}|010\rangle + c_{011}|011\rangle + \\ &c_{100}|100\rangle + c_{101}|101\rangle + c_{110}|110\rangle + c_{111}|111\rangle \end{split}$$

2(N-1) = 14 degrees of freedom

n-Qubit State

 2^n = N-dimensional complex vector space

$$\begin{pmatrix} c_{0...0} \\ c_{0...1} \\ \vdots \\ c_{1...1} \end{pmatrix}$$

$$c_{0...0}|0...0\rangle + c_{0...1}|0...1\rangle + \cdots + c_{1...1}|1...1\rangle$$

2(N-1) degrees of freedom

Two Qubits

Considered Separately

$$|\psi_{\alpha}\rangle = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$$

2 degrees of freedom

$$|\psi_{eta}
angle = inom{eta_0}{eta_1}$$
 2 degrees of freedom

Considered Together

$$|\psi_c\rangle = \begin{pmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{11} \end{pmatrix}$$

6 degrees of freedom

Entanglement!

Two Independent Qubits

$$|\psi_{\alpha}\rangle = {\alpha_0 \choose \alpha_1} \qquad |\psi_{\beta}\rangle = {\beta_0 \choose \beta_1}$$

$$|\psi_{\alpha}\psi_{\beta}\rangle = {\alpha_0 \choose \alpha_1} \otimes {\beta_0 \choose \beta_1} = {\alpha_0 \choose \beta_1 \choose \beta_1} = {\alpha_0 \choose \beta_1 \choose \alpha_1 \choose \beta_1} = {\alpha_0 \beta_0 \choose \alpha_0 \beta_1 \choose \alpha_1 \beta_0 \choose \alpha_1 \beta_1}$$
tensor product

An Entangled State

$$|\psi_{Bell}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} =? \begin{pmatrix} \alpha_0\beta_0\\\alpha_0\beta_1\\\alpha_1\beta_0\\\alpha_1\beta_1 \end{pmatrix}$$

Quantum Evolution

Conjugate Transpose

- transpose vector or matrix
- replace every element with its complex conjugate

$$\begin{pmatrix}
\cos\left(\frac{\theta}{2}\right) \\
\sin\left(\frac{\theta}{2}\right)e^{i\phi}
\end{pmatrix}^{\dagger} = \left(\cos\left(\frac{\theta}{2}\right) \\
\sin\left(\frac{\theta}{2}\right)e^{-i\phi}\right)$$

$$\begin{pmatrix} e^{i\pi/4} & e^{-i\pi/4} \\ e^{-i\pi/4} & e^{i\pi/4} \end{pmatrix}^{\dagger} = \begin{pmatrix} e^{-i\pi/4} & e^{i\pi/4} \\ e^{i\pi/4} & e^{-i\pi/4} \end{pmatrix}$$

$$|\psi\rangle^{\dagger} = \langle\psi|$$

Inner Product

Function of two vectors that is

- scalar-valued
- linear
- independent of basis

Defines geometry of space

- length
- angle
- distance

$$a^{\dagger}b \quad \langle a||b\rangle \implies \langle a|b\rangle$$

Length:

$$(\cos(\frac{\theta}{2}) \quad \sin(\frac{\theta}{2})e^{-i\phi}) \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i\phi} \end{pmatrix}$$
$$= \cos^2(\frac{\theta}{2}) + \sin^2(\frac{\theta}{2}) = 1$$

Quantum Evolution Rules

- Preserves geometry of complex vector space
- Rotation/reflection of state vector
- Unitary operator $U:UU^{\dagger}=U^{\dagger}U=I$

$$\langle U\psi_1|U\psi_2\rangle$$

$$= (U\psi_1)^{\dagger} (U\psi_2)$$

$$= (\psi_1^{\dagger}U^{\dagger}) (U\psi_2)$$

$$= \psi_1^{\dagger} (U^{\dagger}U)\psi_2$$

$$= \psi_1^{\dagger} \psi_2 = \langle \psi_1|\psi_2\rangle$$

The Gate Model

- Rotate initial state vector to one with high probability of observing desired result
- Small steps that can be
 - understood by designer
 - implemented by hardware
- Steps are "gates", by analogy with classical digital logic
- Universal gate set
 - achieve any rotation/reflection by composition
 - quantum machine language

Logical Not

$$A \longrightarrow \overline{A} \qquad A = !A$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} X & |0\rangle = |1\rangle \\ \binom{0}{1} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} X & |1\rangle = |0\rangle \\ \binom{0}{1} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Logical OR

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} =
\begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix} =
\begin{pmatrix}
0 \\
1 \\
0 \\
0
\end{pmatrix}$$

$$F = A \mid B$$

$$OR \mid BA \rangle = \mid BF \rangle$$

$$\begin{array}{cccc}
& & \text{OR } |10\rangle = |11\rangle \\
\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix}$$

Universal Computation?

Reversible

- Logical not, xor
- Two's complement +, –
- Swap

Irreversible

- · Logical and, or
- Multiplication
- Sort
- Assignment, copy

Universal Combinatorial Logic

f(x_i) is any Boolean function of n Boolean variables x_i

This circuit is a unitary operation and so can always be realized.

Unitary Logical OR

$$\begin{pmatrix}
\mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\
0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
c_{000} \\
c_{001} \\
c_{010} \\
c_{011} \\
c_{100} \\
c_{101} \\
c_{110} \\
c_{010} \\
c_{011} \\
c_{110} \\
c_{010} \\
c_{011}
\end{pmatrix}$$

Single-Qubit Pauli Gates

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad X \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Y \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad Z \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$Z\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$$

rotations by π around Bloch sphere axes

Pauli Gates

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i\phi} \end{pmatrix} = \begin{pmatrix} \sin(\frac{\theta}{2}) \\ \cos(\frac{\theta}{2})e^{-i\phi} \end{pmatrix}$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Y \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i\phi} \end{pmatrix} = \begin{pmatrix} \sin(\frac{\theta}{2}) \\ \cos(\frac{\theta}{2})e^{i(\pi-\phi)} \end{pmatrix}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad Z \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i\phi} \end{pmatrix} = \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i(\pi+\phi)} \end{pmatrix}$$

Hadamard Gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H\begin{pmatrix}1\\0\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix} = |+\rangle \qquad H|0\rangle = |+\rangle$$

$$H\begin{pmatrix} 0\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix} = |-\rangle \quad H|1\rangle = |-\rangle$$

Controlled NOT

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_{00} \\ c_{01} \\ c_{10} \\ c_{11} \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{11} \\ c_{10} \\ c_{01} \end{pmatrix}$$

Bell State

Toffoli Gate

Universal Gate Set

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sqrt{X} = \begin{pmatrix} e^{i\pi/4} & e^{-i\pi/4} \\ e^{-i\pi/4} & e^{i\pi/4} \end{pmatrix}$$

$$RZ(\phi) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$$

$$Y = RZ\left(\frac{\pi}{2}\right) \cdot X \cdot RZ\left(-\frac{\pi}{2}\right)$$

$$Z = RZ(\pi)$$

$$H = RZ\left(\frac{\pi}{2}\right) \cdot \sqrt{X} \cdot RZ\left(\frac{\pi}{2}\right)$$

Phase Kickback

$$q_{0} \stackrel{\text{(1)}}{=} \begin{array}{c} |0\rangle \\ |1\rangle \\ |1\rangle$$

Phase Kickback

Quantum Oracle: Mark Winner

Grover's Algorithm

Search unordered list of N elements in $O(\sqrt{N})$

Amplitude Amplification is Unitary

$$A = \frac{1}{N} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \qquad |\psi'\rangle = A|\psi\rangle - (|\psi\rangle - A|\psi\rangle)$$
$$= (2A - I)|\psi\rangle$$

$$(2A - I)^{\dagger}(2A - I)$$

$$= (2A^{\dagger} - I^{\dagger})(2A - I)$$

$$= (2A - I)(2A - I)$$

$$= 4AA - 4AI + I$$

$$= 4A - 4A + I$$

$$= I$$

 x_k = amplitude of N-1 non-winning components after iteration k y_k = amplitude of one winning component after iteration k

Oracle:
$$|\psi_k\rangle = x_k \left(\sum_{i \neq \omega} |i\rangle\right) - y_k |w\rangle$$

$$A = \frac{(N-1)x_k - y_k}{N}$$

$$x_{k+1} = 2\frac{(N-1)x_k - y_k}{N} - x_k$$
 $y_{k+1} = 2\frac{(N-1)x_k - y_k}{N} + y_k$

$$x_{k+1} = x_k - \frac{2(x_k + y_k)}{N}$$

$$y_{k+1} = 2\frac{(N-1)x_k - y_k}{N} + y_k$$

$$y_{k+1} = 2x_k + y_k - \frac{2(x_k + y_k)}{N}$$

Grover: 8 Qubits, N = 256

			4-31000-270-2190	Carlo Alexander
Iteration	2(x+y)/N	X	у	P(correct)
0		0.0625	0.0625	0.0039
1	0.0010	0.0615	0.1865	0.0348
2	0.0019	0.0596	0.3076	0.0946
3	0.0029	0.0567	0.4239	0.1797
4	0.0038	0.0530	0.5336	0.2847
5	0.0046	0.0484	0.6350	0.4032
6	0.0053	0.0430	0.7264	0.5276
7	0.0060	0.0370	0.8064	0.6503
8	0.0066	0.0304	0.8739	0.7637
9	0.0071	0.0234	0.9277	0.8607
10	0.0074	0.0159	0.9670	0.9352
11	0.0077	0.0083	0.9913	0.9826
12	0.0078	0.0005	1.0000	0.9999
13	0.0078	-0.0074	0.9931	0.9862
14	0.0077	-0.0151	0.9706	0.9422
15	0.0075	-0.0225	0.9331	0.8706
16	0.0071	-0.0296	0.8809	0.7760

$$x_k = \frac{\cos(\omega k + \phi)}{\sqrt{N - 1}}$$

$$y_k = \sin(\omega k + \phi)$$

$$x_{k+1} = x_k - \frac{2(x_k + y_k)}{N}$$
$$= x_k \frac{N-2}{N} - y_k \frac{2}{N}$$

$$x_{k+1} = \frac{\cos(\omega(k+1) + \phi)}{\sqrt{N-1}}$$

$$x_{k+1} = x_k - \frac{2(x_k + y_k)}{N}$$

$$= \frac{\cos(\omega k + \phi)\cos(\omega) - \sin(\omega k + \phi)\sin(\omega)}{\sqrt{N-1}}$$

$$= x_k \frac{N-2}{N} - y_k \frac{2}{N}$$

$$= x_k \cos(\omega) - y_k \frac{\sin(\omega)}{\sqrt{N-1}}$$

$$cos(\omega) = \frac{N-2}{N}$$
 $sin(\omega) = \frac{2\sqrt{N-1}}{N}$

$$x_k = \frac{\cos(\omega k + \phi)}{\sqrt{N - 1}}$$

$$y_k = \sin(\omega k + \phi)$$

$$y_{k+1} = 2x_k + y_k - \frac{2(x_k + y_k)}{N}$$
$$= x_k \frac{2(N-1)}{N} + y_k \frac{N-2}{N}$$

$$y_{k+1} = \sin(\omega(k+1) + \phi)$$

$$= \sin(\omega k + \phi)\cos(\omega) + \cos(\omega k + \phi)\sin(\omega)$$

$$= y_k \cos(\omega) + x_k \sqrt{N-1}\sin(\omega)$$

$$cos(\omega) = \frac{N-2}{N}$$
 $sin(\omega) = \frac{2\sqrt{N-1}}{N}$

$$\cos(\omega) = \frac{N-2}{N} \qquad \sin(\omega) = \frac{2\sqrt{N-1}}{N}$$
$$\sin\left(\frac{\omega}{2}\right) = \sqrt{\frac{1-\cos(\omega)}{2}}$$
$$= \sqrt{\frac{1-\frac{N-2}{N}}{2}}$$
$$= \frac{1}{\sqrt{N}}$$

$$\omega = 2\sin^{-1}\left(\frac{1}{\sqrt{N}}\right)$$

$$x_k = \frac{\cos(\omega k + \phi)}{\sqrt{N - 1}}$$

$$y_k = \sin(\omega k + \phi)$$

$$x_0 = y_0$$

$$\frac{\cos(\phi)}{\sqrt{N - 1}} = \sin(\phi)$$

$$\frac{1 - \sin^2(\phi)}{N - 1} = \sin^2(\phi)$$

$$\sin^2(\phi) = \frac{1}{N}$$

$$\phi = \sin^{-1}\left(\frac{1}{\sqrt{N}}\right) = \frac{\omega}{2}$$

$$y_k = \sin(\omega k + \phi)$$

$$= \sin\left(\omega k + \frac{\omega}{2}\right)$$

$$= \sin\left[\omega\left(k + \frac{1}{2}\right)\right]$$

$$\omega \left(k + \frac{1}{2} \right) \approx \frac{\pi}{2}$$

$$2\sin^{-1} \left(\frac{1}{\sqrt{N}} \right) \left(k + \frac{1}{2} \right) \approx \frac{\pi}{2}$$

$$k = \text{round} \left(\frac{\pi}{4\sin^{-1} \left(\frac{1}{\sqrt{N}} \right)} - \frac{1}{2} \right)$$

$$\left[\frac{\pi}{4\sin^{-1}\left(\frac{1}{\sqrt{N}}\right)}\right]$$

$$pprox \left[\frac{\pi}{4} \sqrt{N} \right]$$

$$A = \frac{1}{N} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

$$=\frac{1}{N}\begin{pmatrix}1\\1\\\vdots\\1\end{pmatrix}(1 \quad 1 \quad \cdots \quad 1)$$

$$=|\psi_0\rangle\langle\psi_0|$$

$$2A - I$$

$$2|\psi_{0}\rangle\langle\psi_{0}| - I$$

$$2(H^{\otimes n}|0^{\otimes n}\rangle)(\langle 0^{\otimes n}|H^{\otimes n}) - I$$

$$H^{\otimes n}(2|0^{\otimes n})\langle 0^{\otimes n}| - I)H^{\otimes n}$$

$$H^{\otimes n}[2(X^{\otimes n}|1^{\otimes n}\rangle)(\langle 1^{\otimes n}|X^{\otimes n}) - I]H^{\otimes n}$$

$$H^{\otimes n}X^{\otimes n}(2|1^{\otimes n})\langle 1^{\otimes n}| - I)X^{\otimes n}H^{\otimes n}$$

$$2|1^{\otimes n}\rangle\langle 1^{\otimes n}|-I$$

$$2\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 \end{pmatrix}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\vdots \qquad \vdots \qquad Z = HXH$$

A Quantum Computer

Grover

Quantum Observation

Rules

- Every observable has associated Hermitian $H=H^{\dagger}$
- H has real eigenvalues and orthonormal eigenvectors
- Observation chooses eigenvector/eigenvalue pair
- Probability of choice $|e\rangle$, λ in state $|\psi\rangle$ is length squared of projection of $|e\rangle$ onto $|\psi\rangle$
- Measurement is λ
- $|\psi\rangle$ collapses to $|e\rangle$

Z Measurement Basis

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

eigenvalue	eigenvector		
1	$\binom{1}{0}$		
-1	$\binom{0}{1}$		

Measurement & Collapse of Entangled State

	initial	Measure qubit 0		
basis	amplitude	P(0) = 2/3	P(1) = 1/3	
000>	0	0	0	
001⟩	$1/\sqrt{3}$	0	1	
010⟩	$1/\sqrt{3}$	$1/\sqrt{2}$	0	
011⟩	0	0	0	
100⟩	$1/\sqrt{3}$	$1/\sqrt{2}$	0	
101⟩	0	0	0	
110⟩	0	0	0	
111>	0	0	0	

Testing Grover

4-Qubit Test Oracle

4-Qubit Test Oracle

4-Qubit Test Oracle

Select |010>

Visual Studio Demo

- Python code
 - Multi-X
 - Oracle
 - Grover
 - scaffolding
- Circuit display
- Simulation various N
- Simulation with noise model

Grover Results

Grover Parameters			Probability of Correct Result				
Qubits	Winner	N	Iters	Theory	Sim	Sim w/noise	Real Hardware
2	00	4	1	1.000	1.000	0.854^{1}	0.884^{1}
3	101	8	2	0.945	0.943	0.376^{1}	0.200^{1}
4	0101	16	3	0.961	0.961	0.056^2	
6	101010	64	6	0.997	0.998	0.016^2	
8	01010101	256	12	1.000	1.000		

¹Santiago QV32 ²Melbourne QV16

Real Hardware

Trapped Ion Qubits

Superconducting Qubits

Qubit Comparisons

1 Qubit and 2 Qubit Fidelity and Gate Speed

source: MIT xPro

IBM Quantum Computer

IBM Quantum Experience Demo

- Circuit composer
 - Bell state
 - QASM
- Grover job result
 - histogram
 - circuits: original, transpiled
 - QASM
- ibmq_santiago & ibmq_manhattan
 - basis gates
 - topology
 - graph view

IBMQ Machine Summary

machine	qubits	QV	Gate time (μs)	T1 (μs)	T2 (μs)	CX error %
Yorktown	5	8	0.462	48	37	1.89
Santiago	5	32	0.471	115	86	0.67
Montreal	27	128	0.424	104	82	1.40

Montreal

Quantum Threshold Theorem

- "A quantum computer with a physical error rate below a certain threshold can, through application of quantum error correction schemes, suppress the logical error rate to arbitrarily low levels." 1
- Make a reliable logical qubit from a flock of unreliable physical qubits
- Current estimates: >1000 physical qubits needed to make one reliable logical qubit