

LEAVING CERTIFICATE EXAMINATION, 2011

MATHEMATICS - ORDINARY LEVEL

	PAPER 2 (300 marks)
MONDAY,	13 JUNE – MORNING, 9:30 to 12:00
Attempt FIVE question	ons from Section A and ONE question from Section B . Each question carries 50 marks.
Answer	will be lost if all necessary work is not clearly shown. rs should include the appropriate units of measurement, relevant.

SECTION A Attempt FIVE questions from this section.

- 1. (a) (i) Calculate the area of the rectangle shown in the diagram.
 - (ii) Hence, calculate the area of the shaded region.

(b) The sketch shows a section of a wall that is to be painted.

At equal intervals of $1 \cdot 2$ m along the bottom of the wall, perpendicular measurements are made to the uneven edge, as shown on the sketch.

- (i) Use Simpson's rule to estimate the area of the section of the wall.
- (ii) How many litres of paint are required to paint the section of the wall, if 1 litre of paint covers an area of $2 \cdot 2$ m²? Give your answer correct to the nearest litre.
- (c) A solid object consists of a cylinder with hemispherical ends, as shown. The cylinder and hemispheres have the same radius.

The volume of each hemisphere is 144π cm³.

- (i) Find the radius of each hemisphere.
- (ii) The total volume of the object is 720π cm³.

Find d, the length of the object.

- 2. (a) Verify that the point (2, -4) is on the line 3x y = 10.
 - **(b)** P(2, 8), Q(4, -1) and R(6, 0) are three points.
 - (i) Find the slope of PR.
 - (ii) Show that PR is perpendicular to RQ.
 - (iii) Find the equation of *RQ*.
 - (iv) Find the co-ordinates of the point at which RQ intersects the y-axis.
 - (c) A(-1, -6), B(6, 8) and C(2, 5) are three points.
 - (i) Find the area of the triangle ABC.
 - (ii) Find the co-ordinates of two possible points D on the x-axis such that area of triangle ABD = area of triangle ABC.
- 3. (a) A circle has equation $x^2 + y^2 = 81$.
 - (i) Write down the co-ordinates of the centre of the circle.
 - (ii) Find the radius of the circle.
 - **(b)** The circle c has equation $(x-3)^2 + (y+1)^2 = 17$.
 - (i) Verify that the point (7, -2) is on c.
 - (ii) On a co-ordinate diagram, mark the centre of c and draw c.
 - (iii) Find, using algebra, the co-ordinates of the two points at which c intersects the x-axis.
 - (c) The points A(-1, 2), B(-3, -4), C(3, -6) and D(5, 0) are the vertices of a square.

The sides of the square are tangents to the circle *s*, as shown.

- (i) Find the co-ordinates of the centre of s.
- (ii) Find the equation of s.
- (iii) The circle $(x+4)^2 + y^2 = 10$ is the image of *s* under the translation $(p, q) \rightarrow (6, 5)$. Find the value of *p* and the value of *q*.

4. (a) In the diagram, the line *l* passes through the point *A* and is parallel to *BC*.

- (i) Find x.
- (ii) Find y.
- **(b)** Prove that the sum of the lengths of any two sides of a triangle is greater than that of the third side.
- (c) The triangle ORS is the image of the triangle OPQ under an enlargement of centre O. |OQ| = 6, |QS| = 9 and |RS| = 6.

- (i) Find the scale factor of the enlargement.
- (ii) Find |PQ|.
- (iii) Given that the area of the triangle OPQ is $7 \cdot 2$ square units, find the area of the triangle ORS.
- (iv) Find the area of the quadrilateral *PRSQ*.

5. (a) Use the sine rule to calculate the value of x in the diagram.

8 x 30°

Give your answer correct to the nearest integer.

(b) In the triangle ABC, |BC| = 6 cm, $|\angle ABC| = 90^{\circ}$, $|\angle CAB| = \theta$ and $\sin \theta = \frac{3}{5}$.

- (i) Find |AC|.
- (ii) Find |AB|.
- (iii) Verify that $\cos^2 \theta + \sin^2 \theta = 1$.
- (c) PQRS is a quadrilateral with diagonal [SQ]. |RS| = 62, |SQ| = 35, $|\angle SQR| = 82^{\circ}$, $|\angle SPQ| = 60^{\circ}$, |SP| = 3x and |PQ| = 8x.

- (i) Find $|\angle QRS|$, correct to the nearest degree, given that $0^{\circ} \le |\angle QRS| \le 90^{\circ}$.
- (ii) Find the value of x.

6. (a) (i) Find 4!

(ii) Simplify
$$\frac{6(5!)}{5(4!)}$$
.

(b) The letters in the word FERMAT are arranged taking all of the letters each time.

How many different arrangements are possible if

- (i) there are no restrictions
- (ii) the arrangements begin with the letter F
- (iii) the arrangements begin with the letter F and end with a vowel
- (iv) the two vowels are together?
- (c) The table below shows how the students in a school usually travel to school.

	Walk	Cycle	Other
Boys	157	123	166
Girls	184	91	172

- (i) A student is picked at random.

 What is the probability that the student is a boy?
- (ii) A student is picked at random.
 What is the probability that the student walks to school?
- (iii) A boy is picked at random.

 What is the probability that he cycles to school?
- (iv) A girl is picked at random.
 What is the probability that she does not walk to school?

- 7. (a) Calculate the mean of the numbers 8, 6, 1, 3, 7, 8, 2.
 - (b) An information evening was held at a school. The number of people who entered the school during 20 minute intervals, beginning at 18:00, is given in the following table:

Time	18:00 -	18:20 -	18:40 -	19:00 -	19:20 -	19:40 -
	18:20	18:40	19:00	19:20	19:40	20:00
Number of people	35	55	190	140	110	70

[Note: 18:20 - 18:40 means 18:20 or later, but before 18:40, etc.]

(i) Copy and complete the following cumulative frequency table:

Time	Before 18:20	Before 18:40	Before 19:00	Before 19:20	Before 19:40	Before 20:00
Number of people						

- (ii) Draw the cumulative frequency curve (ogive).
- (iii) Use your curve to estimate the interquartile range.
- (c) The histogram represents the marks obtained by candidates in an examination.

(i) Copy and complete the following frequency table:

Marks	20 - 30	30 - 40	40 - 60	60 - 90	90 - 100
Number of candidates	4				

- (ii) The mean mark was 60. Taking the mid-interval values of the completed frequency table, find the standard deviation, correct to the nearest integer.
- (iii) Find the maximum possible number of candidates whose marks were within one standard deviation of the mean.

SECTION B

Attempt ONE question from this section.

8. The points P, Q, R and S lie on a circle, centre O. $|\angle SPQ| = 65^{\circ}$.

- Find the value of x. (i)
- (ii) Find the value of y.
- Prove that if [AB] and [CD] are chords of a circle and the lines AB and CD meet at the **(b)** point K, where K is inside the circle, then $|AK| \cdot |KB| = |CK| \cdot |KD|$.
- The line QS is a tangent to the circle c. (c) [RS] is a diameter of the circle. [QR] cuts the circle at P. |OP| = 8 and $|OS| = 4\sqrt{5}$.

- $\overrightarrow{OM} = 3\overrightarrow{i} 4\overrightarrow{j}$ and $\overrightarrow{ON} = \overrightarrow{i} + 2\overrightarrow{j}$, where O is the origin. 9. Plot the points M and N on a co-ordinate diagram.
 - $\overrightarrow{OP} = 5\overrightarrow{i} + 3\overrightarrow{j}$ and $\overrightarrow{OQ} = -4\overrightarrow{i} + \overrightarrow{j}$, where O is the origin.
 - Express $2\overrightarrow{OP} \overrightarrow{OQ}$ in terms of \vec{i} and \vec{j} . (i)
 - Express \overrightarrow{PQ} in terms of \overrightarrow{i} and \overrightarrow{j} . (ii)
 - (iii) Find the real numbers k and t such that $k \overrightarrow{OP} + t \overrightarrow{OQ} = 6\vec{i} + 7\vec{j}$.
 - (c) *OABC* is a parallelogram. X is a point on [CB] such that |CX| : |XB| = 2 : 1. Y is the mid-point of [AB].

Express, in terms of \overrightarrow{OA} and \overrightarrow{OC} ,

- OB, (i)
- \overrightarrow{OX} , (ii)
- (iii) \overrightarrow{OY} ,
- (iv) \overrightarrow{XY} .

- 10. (a) (i) Write out the first three terms in the expansion of $(1+x)^4$ in ascending powers of x.
 - (ii) Calculate the value of the third term when x = 0.2.
 - **(b)** (i) Find S, the sum to infinity of the geometric series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$
 - (ii) The sum to infinity of another geometric series is also S. The common ratio of the series is 0.4. Find the first term.
 - (c) (i) Equipment costing €15 000 depreciates at the compound rate of 12% per annum. Find the value of the equipment at the end of seven years, correct to the nearest euro.
 - (ii) A company invests €15 000 in equipment at the beginning of each year for seven consecutive years. The equipment depreciates at the compound rate of 12% per annum.

Using the formula for the sum of the first *n* terms of a geometric series, find the total value of the machinery at the end of the seven years, correct to the nearest euro.

11. (a) The diagram shows the lines l: 2x + 3y - 6 = 0, h: x - 3 = 0 and k: y - 2 = 0.

Write down the three inequalities that together define the shaded region in the diagram.

(b) A garage is starting a van rental business. The garage will rent out two types of vans, small vans and large vans.

To set up the business, each small van costs €20 000 and each large van costs €40 000. The garage has at most €800 000 to purchase the vans.

Each small van requires 18 m² of parking space and each large van requires 24 m² of parking space. The garage has at most 576 m² of parking space available for the vans.

- (i) Taking x as the number of small vans and y as the number of large vans, write down two inequalities in x and y and illustrate these on graph paper.
- (ii) The garage charges €40 a day to rent a small van and €50 a day to rent a large van. How many of each should the garage rent to maximise rental income, assuming that all vans are rented.
- (iii) The garage incurs daily expenses of €12 for each van. Calculate the maximum daily profit from renting the vans.

Blank Page

Blank Page

Blank Page