IN THE CLAIMS

Listing of Claims:

1	Claim 1 (currently amended) A method for stack memory protection comprising the
2	steps of:
3	generating new memory page attributes for a page table used to manage memory,
4	each of said new memory page attributes identifying a block of memory as a new class
5	of memory, each of said new memory page attributes generated by a corresponding new
6	load/store instruction;
7	assigning, by an operating system or a processor, a selected one of said new
8	memory page attributes to a selected block of memory, said selected block of memory
9	used as a new class of memory corresponding to said selected new memory page
10	attribute;
11	blocking normal load /stores to a memory block having one of said new memory
12	page attributes; and
13	blocking a first new load/store to a memory block with one of said new memory
14	page attributes not corresponding to said first new load/store.
1	Claim 2 (currently amended) The method of claim 1, wherein said new classes of
2	memory comprise stack memory with corresponding stack memory load/store
3	instructions.
1	Claim 3 (currently amended) The method in claim 2, wherein a first error condition is
2	generated whenever normal load/stores are attempted to stack memory having a first or
3	a second stack memory attribute with corresponding first or second stack memory
4	load/store instructions.
1	Claim 4 (currently amended) The method in claim 2, wherein a second error condition
2	is generated whenever [[said]] stack memory load/stores are attempted to said memory
3	not having said first or second stack memory attribute.

1	Claim 5 (original) The method in claim 2, wherein a third error condition is generated
2	whenever a stack memory load/store for a first memory stack is attempted to a second
3	memory stack, said third error condition also generated if a stack memory load/store for
4	said second memory stack is attempted to said first memory stack.
1	Claim 6 (original) The method of claim 2, wherein said stack memory load/store
2	instructions are executed on a CPU comprising an IA64 architecture.
1	Claim 7 (currently amended) The method of claim 5, wherein said first memory stack
2	is a processor stack, said processor stack used by a processor to load and store hardware
3	register contents during program execution, said processor stack [[stacks]] is transparent
4	to a programmer or a compiler.
1	Claim 8 (original) The method of claim 7, wherein said processor stack is an IA64
2	register stack.
1	Claim 9 (original) The method of claim 5, wherein said second memory stack is a
2	program stack, said program stack used by a programmer or a compiler in managing
3	program flow.
1	Claim 10 (original) A processor comprising stack memory protection circuitry, said
2	processor using blocks of memory as stack memory, said stack memory protection
3	circuitry comprising:
4	a stack memory attribute circuit, said stack memory attribute circuit operable to
5	generate memory attributes, said memory attributes associated with each memory block
6	designated as a memory stack;
7	a page table attribute storage circuit, said page table attribute circuit operable to
8	store and associate one of said stack memory attributes with a block of memory
9	designated as stack memory;
10	a stack memory allocation circuit, said stack memory allocation circuit operable
11	to identify a block of memory as a stack memory and associate said memory block with

12	one of said stack memory attributes, said stack memory attributes stored in a memory
13	page table; and
14	a stack memory instruction execution circuit, said stack memory instruction
15	execution circuit operable to decode load/store instructions to memory blocks, said stack
16	memory instruction execution circuit granting stack memory load and stores to memory
17	blocks having a required stack memory attribute and not granting stack memory load and
18	stores to memory blocks not having said required stack memory attribute.
1	Claim 11 (original) The processor in claim 10, wherein a first error condition is
2	generated whenever normal load/stores are attempted to stack memory having a first or
3	a second stack memory attribute.
1	Claim 12 (original) The processor in claim 10, wherein a second error condition is
2	generated whenever said stack memory load/stores are attempted to memory not having
3	a stack memory attribute.
1	Claim 13 (original) The processor in claim 10, wherein a third error condition is
2	generated whenever a stack memory load/store for a first memory stack is attempted to
3	a second memory stack, said third error condition also generated if a stack memory
4	load/store for said second memory stack is attempted to said first memory stack.
1	Claim 14 (original) The processor of claim 10, wherein said stack memory load and
2	store instructions are executed on a CPU comprises an IA64 architecture.
1	Claim 15 (original) The processor of claim 13, wherein said first memory stack is a

Claim 15 (original) The processor of claim 13, wherein said first memory stack is a processor stack, said processor stack used by a processor to load and store hardware register contents during program execution, said processor stacks transparent to a programmer or a compiler.

Claim 16 (original) The processor of claim 13, wherein said second memory stack is a program stack, said program stack used by a programmer or a compiler in managing program flow.

1	Claim 17 (original) A data processing system, comprising:
2	a central processing unit (CPU);
3	shared random access memory (RAM);
4	read only memory (ROM);
5	an I/O adapter; and
6	a bus system coupling said CPU to said ROM, said RAM said display adapter,
7	wherein said CPU, said CPU comprising stack memory protection circuitry, said stack
8	memory protection circuitry comprising:
9	a stack memory attribute circuit, said stack memory attribute circuit
10	operable to generate memory attribute, said memory attribute associated with each
11	memory block designated as a memory stack;
12	a page table attribute storage circuit, said page table attribute circuit
13	operable to store and associate said stack memory attribute with a block of memory
14	designated as stack memory;
15	a stack memory allocation circuit, said stack memory allocation circuit
16	operable to identify a block of memory as a stack memory and associate said memory
17	block with a stack memory attribute, said stack memory attribute stored in a memory
18	page table; and
19	a stack memory instruction execution circuit, said stack memory
20	instruction execution circuit operable to decode load/store instructions to memory blocks,
21	said stack memory instruction execution circuit granting stack memory load and stores
22	to memory blocks having a stack memory attribute and not granting stack memory load
23	and stores to memory blocks not having said stack memory attribute.
1	Claim 18 (original) The data processing system in claim 17, wherein a first error
2	condition is generated whenever normal load/stores are attempted to stack memory
3	having a first or a second stack memory attribute.

1	Claim 19 (original) The data processing system in claim 17, wherein a second error
2	condition is generated whenever said stack memory load/stores are attempted to memory
3	not having a stack memory attribute.
1	Claim 20 (original) The data processing system in claim 17, wherein a third error
2	condition is generated whenever a stack memory load/store for a first memory stack is
3	attempted to a second memory stack, said third error condition also generated if a stack
4	memory load/store for said second memory stack is attempted to said first memory stack.
1	Claim 21 (original) The data processing system of claim 17, wherein said stack memory
2	load and store instructions are executed on a CPU comprising an IA64 architecture.
1	Claim 22 (original) The data processing system of claim 20, wherein said first memory
2	stack is a processor stack, said processor stack used by a processor to load and store
3	hardware register contents during program execution, said processor stacks transparent
4	to a programmer or a compiler.
1	Claim 23 (original) The data processing system of claim 20, wherein said second
2	memory stack is a program stack, said program stack used by a programmer or a
3	compiler in managing program flow.
1	Claim 24 (currently amended) A computer program product embodied in a machine
2	readable medium, including an operating system and a compiler for a processor system,
3	comprising; a program of instructions for performing the program steps of:
4	generating new memory page attributes for a page table used to manage memory,
5	each of said new memory page attributes identifying a block of memory as a new class
6	of memory, each of said new memory page attributes generated by a corresponding new
7	load/store instruction;
8	assigning, by an operating system or a processor, a selected one of said new
9	memory page attributes to a selected block of memory, said selected block of memory
10	used as a new class of memory corresponding to said selected new memory page
11	attribute;

12	blocking normal load /stores to a memory block having one of said new memory
13	page attributes; and
14	blocking a first new load/store to a memory block with one of said new memory
15	page attributes not corresponding to said first new load/store.
1	Claim 25 (original) The computer program product of claim 24, wherein said new
2	classes of memory comprise stack memory.
1	Claim 26 (original) The computer program product in claim 25, wherein a first error
2	condition is generated whenever normal load/stores are attempted to stack memory
3	having a first or a second stack memory attribute.
1	Claim 27 (original) The computer program product in claim 25, wherein a second error
2	condition is generated whenever said stack memory load/stores are attempted to memory
3	not having said stack memory attribute.
1	Claim 28 (original) The computer program product in claim 25, wherein a third error
2	condition is generated whenever a stack memory load/store for a first memory stack is
3	attempted to a second memory stack, said third error condition also generated if a stack
4	memory load/store for said second memory stack is attempted to said first memory stack.
1	Claim 29 (original) The computer program product of claim 25, wherein said stack
2	memory load/store instructions are executed on a CPU comprising an IA64 architecture.
1	Claim 30 (original) The computer program product of claim 29, wherein said first
2	memory stack is a processor stack, said processor stack used by a processor to load and
3	store hardware register contents during program execution, said processor stacks
4	transparent to a programmer or a compiler.
1	Claim 31 (original) The computer program product of claim 30, wherein said processor
2	stack is an IA64 register stack.

1	Claim 32 (original) The computer program product of claim 28, wherein said second
2	memory stack is a program stack, said program stack used by a programmer or a
3	compiler in managing program flow.
1	Claim 33 (original) A method of managing a memory device comprising the steps of:
2	partitioning said memory device into a plurality of memory spaces on an
3	as-needed basis; and
4	associating a memory attribute with each memory space; said memory attribute
5	determining a use of each of said memory spaces.
1	Claim 34 (original) The method of claim 33, wherein a particular memory attribute has
2	corresponding load/store instruction.
1	Claim 35 (original) The method of claim 34, wherein a load/store instruction associated
2	with a first memory attribute causes an error condition if attempted on a memory space
3	with a second memory attribute.
1	Claim 36 (original) The method of claim 33, wherein each of said memory attributes
2	are stored in a memory page table, said memory page table used to manage said memory
3	device.