Um estudo empírico de PRNGs utilizados em *shell scripts* (Versão Estendida)

João Otávio Massari Chervinski¹, Vinicius Nunez¹, Diego Kreutz¹

¹Laboratório de Estudos Avançados (LEA) Universidade Federal do Pampa (UNIPAMPA)

{joaootaviors, viniciuslopes.vn}@gmail.com, kreutz@unipampa.edu.br

Abstract. Pseudorandom number generators, a.k.a. PRNGs, are essential to the inner workings of many systems such as games, simulation algorithms, and security mechanisms. As a way to contribute to the use of PRNGs in practice, this work aims to investigate the quality and performance of the PRNGs most commonly used in practice by shell scripts developers on GNU/Linux systems. Our results indicate a lack of understanding and technical knowledge in security (and the importance of PRNGs) on the part of programmers and developers who are responsible for systems quality and security.

Resumo. Geradores de números pseudo-aleatórios, mais conhecidos como PRNGs, são essenciais para o bom funcionamento de sistemas como jogos, ambientes de simulação e mecanismos de segurança. Como forma de contribuir na conscientização do uso de PRNGs na prática, este trabalho tem como objetivo investigar a qualidade e o desempenho dos PRNGs mais utilizados na prática por desenvolvedores de shell scripts em ambientes GNU/Linux. As análises realizadas apontam uma falta de informação e conhecimento técnico sobre segurança (e a importância dos PRNGs) por parte dos programadores e responsáveis pela qualidade ou segurança dos sistemas.

1. Introdução

Os PRNGs (*Pseudo-Random Number Generators*), ou geradores de números pseudo-aleatórios, são ferramentas essenciais para o funcionamento de uma grande gama de sistemas, como jogos, sistemas de sorteio, sistemas de simulação como o algoritmo de Monte Carlo e os algoritmos genéticos, urnas eletrônicas, sistemas de criptografia, geração de chaves, entre outros. Na maioria dos casos de uso, uma das características mais imprescindíveis para um PRNG é apresentar uma distribuição dos valores pseudo-aleatórios o mais próxima possível de uma distribuição uniforme. Dito de forma diferente, a qualidade do gerador impacta diretamente no resultado dos sistemas que fazem uso dos números pseudo-aleatórios.

Apesar de a distribuição uniforme ser um dos principais parâmetros para aplicações mais simples, como sistemas de sorteio e simulação, existem vários outros métodos estatísticos que são aplicados a PRNGs para determinar a qualidade do gerador para casos mais críticos, como mecanismos e protocolos de criptografia. Para que um PRNG possa ser considerado apropriado para o uso em aplicações

onde os mecanismos de segurança são um aspecto essencial, ele deve passar por uma bateria de testes empíricos que servem de subsídio para determinar a qualidade do gerador [Luizi et al. 2010, Chugunkov and Muleys 2014, Maksutov et al. 2018, Prokofiev et al. 2018, Kreutz et al. 2017, Kreutz et al. 2018]. É importante ressaltar também que não basta somente escolher um PRNG seguro. Para gerar resultados de qualidade, a função de inicialização do PRNG deve ser utilizada corretamente, pois mesmo funções criptograficamente seguras são suscetíveis à ataques que afetam negativamente a imprevisibilidade dos resultados gerados [Indarjani et al. 2014, Inayah et al. 2013]. Um exemplo prático do tipo de problema que pode ser causado por PRNGs de baixa qualidade é a revelação de um estudo empírico de larga escala, que detectou chaves criptográficas fracas em dispositivos de rede de mais de 27 fabricantes de hardware [Heninger et al. 2012]. Como forma de evitar este tipo de problema em dispositivos de redes programáveis, estudos recentes propõe a centralização lógica de fontes de entropia de alta qualidade para alimentar e garantir PRNGs robustos [Kreutz et al. 2017, Kreutz et al. 2018].

Avaliar a qualidade de um PRNG é uma tarefa difícil e não existe uma solução única para o problema [Janke 2002, Kreutz et al. 2017]. Este é um dos principais motivos pelos quais especialistas em segurança recomendam aos programadores não apostarem em seus próprios PRNGs [Stark 2017]. Para dar uma ideia da dimensão do problema, mesmo bibliotecas criptográfica tradicionais (e.g. OpenSSL) tem sido alvo de incidentes de segurança graves ligados à baixa qualidade dos PRNGs utilizados na prática [Kim et al. 2013, OpenSSL.org 2016]. Uma das melhores formas de avaliar empiricamente um PRNG é através de exaustivos testes estatísticos [Bahi et al. 2011, Luizi et al. 2010, Kreutz et al. 2018]. Para ajudar nesta tarefa, existem diferentes ferramentas de análise automatizada, como a *Dieharder* [Brown et al. 2013] e a *NIST Statistical Test Suite* [NIST 2017], que é composta por uma bateria de testes rigorosos para testar a qualidade de PRNGs para fins de aplicação em sistemas criptográficos.

Como dito anteriormente, PRNGs são utilizados para diversos fins, como sistemas de sorteio. Para a realização dos sorteios de brindes, alguns eventos utilizam *shell scripts* que realizam a seleção dos ganhadores a partir de uma lista de inscritos e da geração de números pseudo-aleatórios. A utilização de linguagens de *scripting* é interessante pelo fato de existirem várias opções nativas aos sistemas GNU/Linux, potencializarem a alta produtividade, serem práticas para a automação de tarefas e oferecerem várias alternativas práticas de PRNGs. Este é o caso do sistema de sorteio de brindes, baseado em Bourne-Again Shell (BASH), do clube Parceria Indoor de Alegrete-RS, o estudo de caso deste trabalho (a versão 0.1 do código está disponível no Anexo C).

Ao selecionar um PRNG sem uma análise prévia da qualidade do mesmo, é difícil garantir que o sorteio será justo e confiável. É importante que o desenvolvedor do *script* utilize um PRNG de boa qualidade para não favorecer um sub-conjunto de participantes do sorteio. Na prática, um PRNG de baixa qualidade pode gerar números pseudo-aleatórios distantes de uma distribuição uniforme e/ou tendenciosos, ou seja, números que irão beneficiar determinados participantes do sorteio (exemplo: os participantes com os maiores números do intervalo de sorteio).

Dado o contexto apresentado, os objetivos principais deste trabalho são:

 (o_1) pesquisar os PRNGs mais utilizados na prática por desenvolvedores que utilizam

- shell scripts;
- (o_2) reproduzir e avaliar os geradores utilizando métodos estatísticos recomendados na literatura;
- (0₃) auxiliar na escolha adequada de PRNGs para aplicações que necessitem de resultados transparentes e confiáveis, como sistemas de sorteios de brindes;
- (o_4) classificar e recomendar geradores de acordo com o cenário de aplicação.

Para concluir o primeiro objetivo, foram realizadas pesquisas na *web* para levantar informações sobre os geradores mais utilizados, onde a frequência com a qual cada gerador aparece foi um fator decisivo na escolha. No caso do segundo item, foram implementados os geradores selecionados no item anterior. Além disso, os números pseudoaleatórios dos geradores foram avaliados utilizando métodos estatísticos (e.g. distribuição uniforme, desvio padrão) e ferramentas como a *Dieharder*.

As principais contribuições deste trabalho podem ser resumidas em:

- (c_1) conscientização e exemplificação do impacto de PRNGs de baixa qualidade em sistemas diversos;
- (c₂) identificação dos PRNGs mais utilizados na prática por desenvolvedores de *shell scripts*;
- (c_3) classificação dos PRNGs selecionados de acordo com a qualidade segundo diferentes critérios, métodos e ferramentas estatísticas disponíveis na literatura;
- (c_4) identificação e caracterização de uma análise de baixa confiabilidade de PRNGs;
- (c_5) discussão da importância da avaliação e escolha cuidadosa de PRNGs de qualidade:
- (c_6) identificação do PRNG mais adequando para o *script* de sorteio de brindes utilizado pelo clube Parceria Indoor.

O restante do trabalho está divido da seguinte maneira. Na Seção 2 são discutidos os trabalhos relacionados. Logo em seguida, na Seção 3, são apresentados os métodos de seleção e os PRNGs avaliados. Nas Seções 4 e 5 são apresentadas as ferramentas utilizadas na codificação e os resultados obtidos, respectivamente. Por fim, as considerações finais são apresentadas na Seção 6.

2. Trabalhos Relacionados

Existem diferentes estudos que realizam análises da qualidade de PRNGs utilizando técnicas variadas, como distribuição binomial [Luizi et al. 2010], visualização multidimensional da distribuição de números gerados [Prokofiev et al. 2018], diferentes métodos gráficos [Prokofiev et al. 2017, Chugunkov and Muleys 2014], entre várias outras análises baseadas em diferentes métodos estatísticos [Dodis et al. 2013, Kreutz et al. 2017, Kreutz et al. 2018, SCHAATHUN 2015, Haramoto 2009]. Apesar de existirem métodos baseados em visualização e outras técnicas gráficas, os métodos mais amplamente utilizados e aceitos são os estatísticos. O próprio NIST, que é um das principais entidades internacionalmente reconhecidas pelas recomendações técnicas na área de segurança, disponibiliza um pacote de testes estatísticos, conhecido como *NIST Statistical Test Suite* [NIST 2017], para avaliação da qualidade de PRNGs.

Em resumo, a maioria dos trabalhos encontrados na literatura investiga aspectos qualitativos de um ou um subconjunto específicos de PRNGs [Luizi et al. 2010, SCHAATHUN 2015, Chugunkov and Muleys 2014, Kreutz et al. 2018, Haramoto 2009,

Dodis et al. 2013]. Como exemplo, há trabalhos que avaliam PRNGs denominados *splittable* (S-PRNG) [SCHAATHUN 2015]. O foco desses PRNGs é o desempenho, explorando paralelismo em nível de algoritmo e hardware, e o desafio é garantir as propriedades do gerador nesse contexto. Outros trabalhos avaliam algoritmos específicos, como BBS, ANSI X 9.17, LCG e QCG-II [Luizi et al. 2010]. Em resumo, nenhum dos trabalhos encontrados na literatura realiza uma análise da qualidade dos PRNGs utilizados na prática, em especial no que diz respeito à programação *shell scripting*, que é o foco deste trabalho.

3. Seleção dos PRNGs

Como método de selecionar as principais soluções utilizadas na prática, por desenvolvedores de *shell scripts*, para a geração de números pseudo-aleatórios, foram realizadas pesquisas em três plataformas de busca distintas, Google Search (https://www.google.com), DuckDuckGo (https://www.duckduckgo.com) e Bing (https://www.bing.com). Dos resultados obtidos nas buscas, foram selecionados os 44 primeiros sites e fóruns de discussão contendo código de geradores de números pseudo-aleatórios. Nesses 44 sites foram identificados 4 geradores, sendo que em alguns sites haviam discussões e exemplos de código de múltiplos geradores. Os 4 geradores e as respectivas frequências de utilização, segundo os 44 sites, são: RANDOM (81.81%), URANDOM (25%), SHUF (11.36%) e DATE_N (2.27%). Além dos 4 geradores, foram implementadas outros 3 geradores (RANDOM_DATE, DATE_AMD, SHUF_URANDOM) com base em recomendações de desenvolvedores locais e combinação de geradores encontrados nos sites. A seguir são apresentadas as características de cada um dos 7 geradores.

- (g₁) RANDOM: RANDOM é uma função interna do interpretador de comandos BASH que gera um número pseudo-aleatório no intervalo de 0 à 32767. Segundo a documentação da função, esse PRNG não deve ser utilizado para geração de números criptograficamente seguros. Entretanto, esta função foi encontrada em 81.81% dos sites e fóruns de desenvolvedores como um PRNG referência para geração de números pseudo-aleatórios para os mais diversos tipos de aplicações.
- (g₂) DATE_N: O comando date +%N retorna o número de nanossegundos decorridos entre o segundo atual e o próximo levando em consideração a hora atual do sistema. A função retorna valores no intervalo de 0 à 999999999. Como pode ser observado, este intervalo já é muito maior que o intervalo da função RANDOM.
- (g₃) RANDOM_DATE: Este gerador combina valores de saída dos geradores RAN-DOM e DATE_N para gerar uma única saída pseudo-aleatória.
- (g_4) DATE_AMD: Este gerador também utiliza o comando date para combinar os valores do ano, mês, dia e nanossegundos (decorridos do segundo atual até o próximo) para gerar um valor pseudo-aleatório.
- (g_5) SHUF: O comando shuf, utilizado pelo gerador, permite gerar uma quantia qualquer de números pseudo-aleatórios dentro de um intervalo definido pelo usuário.
- (g₆) URANDOM: /dev/urandom é um tipo especial de arquivo do sistema operacional que funciona como uma fonte de entropia que fornece bits pseudo-aleatórios. Diferentemente do /dev/random, este gerador apresenta a característica de ser não-bloqueante, ou seja, se não houver entropia o suficiente para gerar bits pseudo-aleatórios de qualidade, a geração não será interrompida e como consequência os valores gerados possuirão menos entropia.

(g₇) SHUF_URANDOM: Este gerador é idêntico ao SHUF, porém, a única diferença é que ele utiliza alguns bits lidos do arquivo /dev/urandom para inicializar o gerador de permutações de números pseudo-aleatórios.

4. Implementação

Os geradores descritos na Seção 3 foram codificados em um único *shell script*, parametrizável, que foi utilizado para geração e posterior análise dos números pseudo-aleatórios. O *shell script* desenvolvido permite a seleção da quantidade de números a serem gerados, o intervalo ao qual os números gerados pertencerão e o PRNG que será utilizado para gerá-los. O código do *shell script* dos geradores está disponível em anexo, no Anexo A.

Para a análise dos dados foi utilizada a linguagem de programação Python em sua versão 3.6.3 e a biblioteca *matplotlib*. O código utilizado para gerar os gráficos e analisar os dados está disponível no Anexo B. Após a geração dos números pseudo-aleatórios, o programa Python organiza o conjunto de dados gerado por cada um dos PRNGs em intervalos (também conhecidos como *bins*) para exibição em um histograma e realiza o cálculo do desvio padrão e do erro padrão dos intervalos. Além disso, o programa Python também oferece a opção de realizar um *benchmark* dos PRNGs. Um *benchmark* consiste em executar o PRNG selecionado por um número de vezes definido pelo usuário e calcular a média do desvio padrão e do erro padrão considerando os resultados de todas as iterações.

5. Resultados

Com o intuito de avaliar e classificar os PRNGs, foram realizadas quatro análises distintas:

- (a₁) Visualização e discussão da distribuição dos valores de cada PRNG em um histograma e análise dos valores de desvio e erro padrão em cada caso. Para esta análise foram gerados 10.000 números em um intervalo fechado de 0 à 1000.
- (a_2) Análise da média do desvio padrão e do erro padrão para 40 execuções de cada PRNG. Os geradores foram executados utilizando o *benchmark* do programa Python descrito na Seção 4 com os mesmos parâmetros do item (a_1) .
- (a₃) Análise de desempenho dos PRNGs. Aferição do tempo de execução de cada gerador para 100.000 números em um intervalo fechado de 0 à 10.000.
- (a_4) Avaliação da qualidade dos geradores, para aplicação em sistemas criptográficos, utilizando a bateria de testes padrão da ferramenta Dieharder, que executa todos os testes disponíveis utilizando parâmetros pré-definidos. Os mesmos 100.000 números do item (a_3) foram utilizados como entrada para a avaliação dos geradores com ferramenta Dieharder.

Os resultados apresentados a seguir foram coletados em uma máquina com o sistema operacional Ubuntu 16.04.5 LTS (kernel Linux 4.15.18), processador Core i5-7500 Quad-Core 3.4 Ghz, 16 GB de memória RAM DDR4 2133Mhz e disco rígido de 1 TB de armazenamento e 7200 RPM. Na análise (a_1), o intervalo de números gerados foi dividido em 20 barras (bins) em cada um dos histogramas, cada uma representando um intervalo de 50 números. Considerando uma distribuição totalmente uniforme, os PRNGs deveriam gerar 500 números em cada um dos 20 bins, ou algo próximo disto. Os histogramas apresentados a seguir representam os números gerados por cada um dos PRNGs na primeira análise.

A Figura 1 apresenta o histograma para o PRNG RANDOM, que é o mais frequentemente utilizado pelos desenvolvedores segundo os resultados apresentados na Seção 3. O desvio padrão dos números gerados foi de 19,27 e o erro padrão para cada uma das barras do histograma foi de 4,31. Como pode ser observado nas Tabelas 1 e 2, o RANDOM não foi o melhor dos geradores. Segundo os resultados apresentados, considerando aplicações como *scripts* de sorteio de brindes, o gerador SHUF é uma melhor alternativa em termos de qualidade e desempenho. O gerador DATE_N, cujo histograma é apresentado na Figura 2, apresentou um desvio padrão maior do que a função RANDOM, com 22,38 e um erro padrão de 5,0.

Figura 1. Histograma do PRNG RANDOM

Figura 2. Histograma do PRNG DATE_N

As figuras 3, 4, 5, 6 e 7 apresentam os histogramas dos geradores RAN-DOM_DATE (desvio padrão de 21,88 e erro padrão de 4,88), DATE_AMD (desvio padrão de 22,23 e erro padrão de 4,97), SHUF (desvio padrão de 17,55 e erro padrão de 3,82), SHUF_URANDOM (desvio padrão de 23,18 e erro padrão de 5,18) e URANDOM (desvio padrão de 23,0 e erro padrão de 5,1), respectivamente. Como pode ser observado,

o SHUF teve o melhor desempenho, em termos de distribuição uniforme dos números gerados, entre os geradores avaliados.

Figura 3. Histograma do PRNG RANDOM_DATE

Figura 4. Histograma do PRNG DATE_AMD

Apesar dos dados da análise (a_1) permitir a visualização da dispersão dos resultados dos PRNGs em relação ao resultado esperado em uma distribuição totalmente uniforme, foi observado que a análise é de baixa confiabilidade uma vez que ocorrem oscilações a cada execução dos PRNGs. A análise (a_2) tem como objetivo apresentar uma avaliação de maior confiabilidade através da utilização de um *benchmark* mais robusto para avaliar os PRNGs, como resumido na Tabela 2. Como pode ser observado, este é outro fator que precisa ser levado em consideração na análise de PRNGs. A ordem de classificação dos geradores muda completamente quando comparada com os resultados apresentados na Tabela 1. Tomando como exemplo o RANDOM, ele passa da segunda para a penúltima posição. Já o SHUF continua entre os três melhores geradores.

A análise (a_3) mede o desempenho dos PRNGs considerando a geração de 100.000 números pseudo-aleatórios. Os resultados da (a_2) e (a_3) são apresentados na Tabela 2.

Figura 5. Histograma do PRNG SHUF

Figura 6. Histograma do PRNG SHUF_URANDOM

Como pode ser observado, há uma diferença significativa entre os geradores. O SHUF, por exemplo, apresenta boa qualidade e o menor tempo de execução, sendo um candidato forte para sistemas que precisam gerar milhares de números pseudo-aleatórios.

Outro ponto a ser observado na análise (a_3) é o fato do gerador SHUF_URANDOM ser muito mais rápido que o gerador URANDOM, embora ambos utilizem a mesma fonte de entropia. Isso deve-se a quantidade de entropia a qual cada um dos geradores precisa coletar. Enquanto o gerador SHUF_URANDOM acessa o arquivo /dev/urandom apenas uma vez, antes de iniciar a geração dos números pseudo-aleatórios, o gerador URANDOM acessa o arquivo para cada número gerado, impactando significativamente no tempo de execução. Já o gerador DATE_N possui um desempenho e qualidade inferiores aos demais geradores.

Nos resultados pode-se observar que o RANDOM possui uma qualidade e um desempenho inferiores ao SHUF. Isto significa que o SHUF, um comando projetado espe-

Figura 7. Histograma do PRNG URANDOM

Tabela 1. Desvio padrão e erro padrão dos PRNGs segundo a análise (a_2).

PRNG	Desvio Padrão	Erro Padrão
SHUF	17,55	3,82
RANDOM	19,27	4,31
RANDOM_DATE	21,88	4,88
DATE_AMD	22,23	4,97
DATE_N	22,38	5,0
URANDOM	23,0	5,1
SHUF_URANDOM	23,18	5,18

cificamente para gerar números pseudo-aleatórios para intervalos definidos pelo usuário, apesar de aparecer em apenas 11.36% dos sites e fóruns técnicos, é uma opção a ser considerada pelo programadores.

Finalmente, a análise (a_4) visa explorar a qualidade dos PRNGs com base na bateria de testes padrão da ferramenta Dieharder. A ferramenta executa 114 testes estatísticos sobre o conjunto de números pseudo-aleatórios gerados por um PRNG. Alguns dos testes são repetidos diferentes vezes, porém com parâmetros distintos. Neste trabalho, estes testes são considerados distintos, pois avaliam diferentes propriedades estatísticas. Para cada um dos 114 testes, o gerador recebe um veredito, PASS indicando sucesso, WEAK indi-

Tabela 2. Desvio padrão, erro padrão e tempo de execução dos PRNGs

PRNG	Desvio Padrão Médio	Erro Padrão Médio	Tempo (100.000 números)
RANDOM_DATE	20,654	4,721	2m59,990s
DATE_AMD	21,672	4,846	9m49,676s
SHUF	21,915	4,900	0,066s
URANDOM	22,141	4,951	2m20,869s
SHUF_URANDOM	22,362	5,000	0,045s
RANDOM	22,854	5,110	0,997s
DATE_N	23,232	5,194	2m56,915s

cando que podem haver problemas, mas não necessariamente uma falha devido a natureza mutável dos valores de entrada, e *FAILED* indicando uma falha.

A Tabela 3 apresenta os resultados da avaliação com a ferramenta *Dieharder* de acordo com o número de testes aprovados. Como pode ser observado, para sistemas criptográficos, o gerador URANDOM é o mais recomendado uma vez que passou 113 testes e possui um tempo de execução menor que o DATE_AMD e o DATE_N (como mostra a Tabela 2). Apesar de o RANDOM ter se saído ligeiramente melhor que o SHUF, é importante ressaltar que o RANDOM gera números pseudo-aleatórios em um intervalo muito limitado (0 à 32767), o que o torna uma opção limitada para sistemas que necessitam intervalos maiores e, em especial, sistemas criptográficos. Neste último caso, o RANDOM é absolutamente desencorajado, uma vez que pode comprometer toda a segurança do sistema devido a limitação do intervalo de número. Além disso, segundo as estatísticas apresentadas, a distribuição uniforme do RANDOM é pior que a do SHUF, o que o torna uma opção menos adequada para sistemas de sorteio, por exemplo.

Vale enfatizar que os PRNGs não falharam nenhum dos testes da ferramenta *Dieharder*. Isso mostra que todos os geradores geram sequências de números com um nível de qualidade aceitável para aplicações básicas, como a escolha pseudo-aleatória de caracteres de uma string ou índices de um vetor. No caso de sistemas de segurança, o URANDOM é o gerador recomendado. Na verdade, ao invés do /dev/urandom, em sistemas onde a segurança é crítica, deve-se priorizar o /dev/random (que é bloqueante, ou seja, espera o sistema ter entropia o suficiente antes de retornar), como é o caso da geração de chaves do GnuGPG e do OpenSSH. É importante ressaltar que os resultados gerados pela ferramenta *Dieharder* podem variar de acordo com a sequência de números gerada e também de acordo com a quantidade de números. Caso um teste necessite de

Tabela 3. Resultados da análise com a ferramenta Dieharder

PRNG	Testes aprovados (PASS)	Testes indecisivos (WEAK)
URANDOM	113	1
DATE_AMD	113	1
DATE_N	113	1
SHUF_URANDOM	112	2
RANDOM	111	3
SHUF	109	5
RANDOM_DATE	108	6

mais números do que o arquivo de entrada possui, a ferramenta reutiliza os números a partir do início do arquivo e pode repetir essa ação várias vezes, o que pode prejudicar os resultados do PRNG.

6. Considerações Finais

Em geral, desenvolvedores utilizam PRNG sem dar a devida atenção às características do gerador sendo utilizado, o que pode prejudicar tanto o desempenho quanto a segurança da aplicação. Este trabalho apresentou o primeiro estudo empírico dos PRNGs mais utilizados na prática por desenvolvedores de *shell scripts* em ambientes GNU/Linux.

De acordo com resultados e discussões da Seção 5, os PRNGs SHUF e URAN-DOM são os mais recomendados para aplicações gerais e sistemas criptográficos, respectivamente. O SHUF possui uma boa qualidade e um ótimo desempenho quando comparado aos demais geradores. Apesar de ser pouco utilizado, o SHUF é um forte candidato a substituir o RANDOM, o PRNG mais utilizado na prática. Vale ressaltar que o RAN-DOM pode ser utilizado na prática, para coisas simples (e.g. selecionar aleatoriamente um caracter de uma string) sem nenhuma restrição. Entretanto, caso a aplicação necessite de desempenho ou números dentro de um intervalo grande ou valores pseudo-aleatórios de qualidade para serem utilizados em mecanismos criptográficos, o RANDOM é definitivamente desencorajado. Além disso, os resultados indicam que é recomendado substituir o RANDOM, na implementação do *shell scripts* de sorteio de brindes (ver código no Anexo C) do clube Parceria Indoor, pelo SHUF, uma vez que este último gera distribuições mais uniforme de números pseudo-aleatórios. Outros geradores, como DATE_AMD, são robustos segundos as análises, porém o tempo de execução é significativamente alto.

As análises apresentadas neste paper classificaram os PRNGs mais utilizados na implementação de *shell scripts* de acordo com características de qualidade dos resultados, dispersão dos valores em torno da distribuição uniforme, tempo de execução e qualidade

para uso em mecanismos de segurança (e.g. geração de chaves). Os resultados e discussões mostram que há diferentes *trade-offs* (e.g. qualidade versus desempenho) que devem ser observados pelos programadores na hora de desenvolver uma aplicação.

Referências

- Bahi, J. M., Fang, X., Guyeux, C., and Wang, Q. (2011). Evaluating quality of chaotic pseudo-random generators: Application to information hiding. *arXiv* preprint *arXiv*:1112.1201.
- Brown, R. G., Eddelbuettel, D., and Bauer, D. (2013). Dieharder: A random number test suite. *Open Source software library, under development, URL http://www. phy. duke. edu/~ rgb/General/dieharder. php.*
- Chugunkov, I. and Muleys, R. (2014). Pseudorandom numbers generators quality assessment using graphic tests. In *Proceedings of the 2014 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference*, pages 8–13.
- Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., and Wichs, D. (2013). Security analysis of pseudo-random number generators with input:/dev/random is not robust. In *Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security*, pages 647–658. ACM.
- Haramoto, H. (2009). Automation of statistical tests on randomness to obtain clearer conclusion. In L' Ecuyer, P. and Owen, A. B., editors, *Monte Carlo and Quasi-Monte Carlo Methods* 2008, pages 411–421, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A. (2012). Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. In *USENIX Security Symposium*, volume 8, page 1.
- Inayah, K., Sukmono, B. E., Purwoko, R., and Indarjani, S. (2013). Insertion attack effects on standard prngs ansi x9. 17 and ansi x9. 31 based on statistical distance tests and entropy difference tests. In *2013 International Conference on Computer, Control, Informatics and Its Applications (IC3INA)*, pages 219–224. IEEE.
- Indarjani, S., Supriyatno, G., Nugraha, A., and Astawa, I. M. M. (2014). Insertion attack effects on some prngs based on nist randomness tests tool: Case study on ansi-x9. 17, ansix9. 31, dragon and rabbit algorithms. In *Computer, Control, Informatics and Its Applications (IC3INA)*, 2014 International Conference on, pages 181–186. IEEE.
- Janke, W. (2002). Pseudo random numbers: Generation and quality checks. *Lecture Notes John von Neumann Institute for Computing*, 10:447.
- Kim, S. H., Han, D., and Lee, D. H. (2013). Predictability of Android OpenSSL's pseudo random number generator. In *Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security*, CCS '13, pages 659–668, New York, NY, USA. ACM.
- Kreutz, D., Yu, J., Ramos, F. M. V., and Esteves-Verissimo, P. (2017). ANCHOR: logically-centralized security for Software-Defined Networks. *ArXiv e-prints*.
- Kreutz, D., Yu, J., Ramos, F. M. V., and Esteves-Verissimo, P. (2018). ANCHOR: logically-centralized security for Software-Defined Networks. *ACM Transactions on Privacy and Security (TOPS)*. Under minor review. Expected publication by 2019.

- Luizi, P., Cruz, F., and van de Graaf, J. (2010). Assessing the quality of pseudo-random number generators. *Computational Economics*, 36(1):57–67.
- Maksutov, A. A., Goryushkin, P. N., Gerasimov, A. A., and Orlov, A. A. (2018). Prng assessment tests based on neural networks. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 339–341.
- NIST (2017). NIST statistical test suite.
- OpenSSL.org (2016). OpenSSL security advisory [10 nov 2016].
- Prokofiev, A. O., Chirkin, A. V., and Bukharov, V. A. (2018). Methodology for quality evaluation of prng, by investigating distribution in a multidimensional space. In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 355–357.
- Prokofiev, A. O., Denisov, D. V., and Chirkin, A. V. (2017). The distribution in space test for quality evaluation of pseudorandom numbers generators. In 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 529–532.
- SCHAATHUN, H. G. (2015). Evaluation of splittable pseudo-random generators. *Journal of Functional Programming*, 25:e6.
- Stark, P. B. (2017). Don't bet on your random number generator.

A. Código do shell script dos PRNGs

```
#!/bin/bash
# v0.1
usage() {
    echo ""
    echo "Usage: $0 <y_start> <y_end> <n_numbers>
    echo ""
    echo "<generator> = RANDOM | RANDOM_DATE | DATE_N |
     → DATE AMD | SHUF | SHUF URANDOM | URANDOM"
    echo ""
    echo "Example 1: ./$0 0 100 10000 RANDOM"
    echo "Example 2: ./$0 0 100 10000 DATE_N"
    echo "Example 3: ./$0 0 100 10000 SHUF"
    echo ""
   exit
}
[ "$1" ] && [ "$2" ] && [ "$3" ] && [ "$4" ] || { usage; }
Y_START=$1
Y_END=$2
X RANGE=$3
GENERATOR=$4
error(){
    echo "$1"
    exit
}
int_error(){
   error "Sorry integers only! Invalid value $1"
   exit
}
if ! [[ "$Y_START" = ^ [0-9]+$ ]]
then
    int_error "$Y_START"
fi
if ! [[ "$Y_END" = ^ [1-9][0-9]+$ ]]
then
    int_error "$Y_END"
fi
if ! [[ "$X_RANGE" = ^ [1-9][0-9]+$ ]]
```

```
then
    int_error "$X_RANGE"
fi
if [[ "$GENERATOR" != "RANDOM" && "$GENERATOR" !=
 → "RANDOM_DATE" && "$GENERATOR" != "DATE_N" &&
 → "$GENERATOR" != "DATE AMD" && "$GENERATOR" != "SHUF"
 → && "$GENERATOR" != "SHUF_URANDOM" && "$GENERATOR" !=
 → "URANDOM" ]]
then
   error "ERROR: invalid GENERATOR $GENERATOR!"
fi
if [ "$GENERATOR" = "SHUF" ]
    shuf -i $Y_START-$Y_END -r -n $X_RANGE
elif [ "$GENERATOR" = "SHUF_URANDOM" ]
then
    shuf -i $Y_START-$Y_END -r -n $X_RANGE
     → --random-source=/dev/urandom
else
    Y_RANGE = $((Y_END - Y_START + 1))
    for i in `seq 0 $X RANGE`
    do
        case $GENERATOR in
                "RANDOM")
            Y=$((RANDOM%Y_RANGE))
                        ;;
                "RANDOM DATE")
            Y_TMP=$((RANDOM%Y_RANGE))
            Y=`date +%N | sed

    's/^.*\(.....\)$/\1/;s/^0*//'`

            Y=$((Y%Y_RANGE))
            Y=$((Y+Y TMP))
            Y=$((Y%Y_RANGE))
                "DATE_N")
            Y=`date +%N | sed
             → 's/^.*\(.....\)$/\1/;s/^0*//'`
            Y=$((Y%Y_RANGE))
                        ;;
                "DATE AMD")
            A= date +%Y | sed 's/^0*//^*
            M= date +%m | sed 's/^0*//^*
            D= date +%d | sed 's/^0*//^
            Y=`date +%N | sed
             → 's/^.*\(.....\)$/\1/;s/^0*//'`
```

```
Y=$((Y+A+M+D))
Y=$((Y%Y_RANGE))
;;
"URANDOM")
Y=`od -An -N4 -tu4 < /dev/urandom`
Y=$((Y%Y_RANGE))
;;
esac
Y=$((Y+Y_START))
echo $Y
done
fi</pre>
```

B. Código do programa Python: geração e análise de dados

```
# *-* coding: utf-8 *-*
# v0.1
import sys, os
import numpy as np
import matplotlib.pyplot as plt
from bisect import bisect_left
# Lista de prngs válidos para o benchmark
VALID_PRNGS = ['RANDOM', 'RANDOM_DATE', 'DATE_N', 'DATE__|
 → AMD', 'SHUF', 'SHUF_URANDOM', 'URANDOM']
def plot_histogram(data, n_bins, prng_name, std_error,
 → output_file):
    ''' Gera o histograma para os valores do arquivo de
     → entrada '''
    x_start = int(data[0])
    x_{end} = int(data[len(data)-1])
    x_label = "Valores gerados ({} bins)".format(n_bins)
    plt.xticks(np.arange(0, 1001, step=100))
    \# x_{label} = "X^{u}" + str(x_{start}) + "," + str(x_{end}) +
     plt.xlabel(x_label)
    plt.ylabel('Qtd. de números gerados em cada grupo') #
     → Legenda eixo y
    plt.title("Distribuição de valores da função
     → {}".format(prng_name)) # Legenda eixo x
    y_{end} = len(data) / n_bins
    y_{end} = int(y_{end} * 1.2)
    y, binEdges = np.histogram(data, bins = n_bins)
```

```
bincenters = 0.5*(binEdges[1:]+binEdges[:-1])
    # plt.bar(bincenters, y, width=0.05, color='black',
     → yerr= std_deviation, joinstyle='bevel')
    plt.errorbar(bincenters, y, color='black', yerr=

    std_error, fmt='none', capsize=2.5)
    plt.hist(data, bins, histtype='bar', ec='black',

    color='green')

    plt.axis([x_start, x_end, 0, y_end]) # x_start, x_end,

    y_start, y_end

    plt.grid(True, linestyle='dotted', color='black') #
     → Grade desenhada sobre o gráfico
    # plt.legend('Desvio Padrão -
     → {}'.format(std_deviation), loc = 4, fancybox= True)
    plt.savefig(output file)
    plt.show(block = False)
def read_data(filename):
    ''' Lê os dados do arquivo de entrada'''
   myfile = open(filename, "r")
    data = [] # Valores lidos do arquivo de números gerados
    for val in myfile.read().split():
        data.append(int(val)) # Carrega os valores lidos do
         → arquivo pra lista 'data'
    myfile.close()
    return data
def calc_error(data, n_bins, bins):
    ''' Conta os valores em cada bin e realiza o cálculo de
     → desvio e erro padrão '''
    idxs = [bisect_left(data, x) for x in sorted(bins)]
    bin_data = [data[x:y] for x,y in zip([0]+idxs,
     → idxs+[len(data)]) if x!=y] # Cria uma lista onde
     → cada sublista é um bin
    uniform_dist = len(data) / n_bins
    total\_sum = 0
    for i in range(len(bin_data) - 1):
        total_sum += (len(bin_data[i]) - uniform_dist) ** 2
    std_deviation = (total_sum / n_bins) ** (1/2) # Desvio
     → padrão
    std_error = std_deviation / (n_bins ** (1/2)) # Erro
     → padrão (Desvio padrão dividido pela raiz quadrada
     → do número de amostras)
```

```
def benchmark(prng, iterations):
    deviation list = []
    error_list = []
    n bins = 20 # Número de bins
    for i in range(iterations): # Gera um novo arquivo
     → <iterations> vezes
        os.system('rm benchmark.txt 2> /dev/null') # Apaga
         → o arquivo da iteração anterior
        os.system('./bash_PRNGs.sh 0 1000 10000 {} >>
         → benchmark.txt'.format(prng)) # Gera os números
         → e salva no arquivo benchmark.txt
        data = read_data('benchmark.txt') # Lê os números
         → gerados
        count, bins, ignored = plt.hist(data, n_bins,

    facecolor='green')

        data.sort(key=int)
        std_deviation, std_error = calc_error(data, n_bins,
         → bins) # Calcula o erro pra iteração atual
        deviation_list.append(std_deviation) # Coloca o
         → desvio atual na lista de desvios
        error_list.append(std_error) # Coloca o erro atual
         → na lista de erros
    average_std_deviation =

    "{:.3f}".format(sum(deviation list) /
     → len(deviation_list)) # Calcula a média dos desvios
    average_std_error = "{:.3f}".format(sum(error_list) /
     → len(error_list)) # Calcula a média dos erros
    print(15 * '-')
    print("PRNG: {}\nIterations: {}\nAverage standard
     → deviation: {}\nAverage standard error:
     → {}".format(prng, iterations, average_std_deviation,
     → average_std_error))
    print(15 * '-')
def main():
    if len(sys.argv) != 4:
        print("[+] Read the input file and run a single
         → time outputting standard deviation, error and

    a histogram.")
```

```
print("Usage: ./" + sys.argv[0] + "
     → <input_file.txt> <output_file.png>
     → prng_name>")
   print()
   print("[+] Use the given PRNG to generate <number>
     → files and calculate the average standard

→ deviation and standard error.")
   print("Usage: ./" + sys.argv[0] + " benchmark
     → <number> <prng_name>")
   raise SystemExit()
elif sys.argv[1] == 'benchmark':
    if sys.argv[3] in VALID PRNGS:
       benchmark(sys.argv[3], int(sys.argv[2]))
   else:
       print("Please choose one of the following
        → PRNGS: \n{}".format(",
        elif len(sys.argv) == 4:
   input_file = sys.argv[1]
   output_file = sys.argv[2]
   prnq_name = sys.arqv[3]
   data = read_data(input_file)
   n_bins = 20 # Número de bins
   count, bins, ignored = plt.hist(data, n_bins,

→ facecolor='green')
   data.sort(key=int)
   std_deviation, std_error = calc_error(data, n_bins,
     → bins)
   print("{:.3f}; {:.3f}".format(std_deviation,

    std_error))
    # plot_histogram(data, n_bins, prng_name,

    std_error, output_file)

    # for i in range(len(bin_data) - 1):
    # print("bin {}: {}".format(i,
     → len(bin_data[i]))) # Exibe a quantidade de
     → valores em cada bin
```

C. Código do shell script de sorteio de brindes

```
#!/bin/bash
# v0.1
[ $1 ] && [ -f $1 ] || { echo "Uso: $0 <inscritos.txt>";
 → exit; }
ARQUIVO=$1
TOTAL=`wc -l ARQUIVO \mid sed 's/[^0-9]*//q'
LISTA=.lista.srt
LISTA_TMP=.lista.tmp
ARQUIVO_TMP=.arquivo.tmp
RESULTADOS=resultados.txt
sed '/^[^a-zA-Z]/d' $ARQUIVO > $ARQUIVO_TMP; mv
 → $ARQUIVO_TMP $ARQUIVO
gera_lista_numerada() {
    NUMERO=1
    [ ! -f $LISTA ] || { rm -f $LISTA; }
    while read NOME
    do
        FORMATADO=`printf "%03d" $NUMERO`
        printf "$FORMATADO: $NOME\n"
        printf "$FORMATADO:$NOME\n" >> $LISTA
        NUMERO=$ ((NUMERO+1))
    done < $ARQUIVO</pre>
}
gerar_linha_marcadora(){
    for c in `seq 1 50`
    do
        echo -n "="
    done
    echo ""
echo "PARCERIA INDOOR" > $RESULTADOS
echo "DATA: "`date +%d/%m/%Y` >> $RESULTADOS
echo "LISTA GERAL DE INSCRICOES" >> $RESULTADOS
gerar_linha_marcadora > $ARQUIVO_TMP
gera_lista_numerada >> $ARQUIVO_TMP
gerar_linha_marcadora >> $ARQUIVO_TMP
```

```
cat $ARQUIVO_TMP
cat $ARQUIVO_TMP >> $RESULTADOS
echo "Precione <Enter> para iniciar o sorteio!"
read X
clear
N_SORTEIO=1
while [ 1 ]
do
   NUMERO=$((RANDOM%TOTAL+1))
    GANHADOR=`printf "%03d" $NUMERO`
    NOME=`grep -w "$GANHADOR" $LISTA | cut -d":" -f2`
    if [ ! -z "$NOME" ]
    then
        gerar_linha_marcadora > $ARQUIVO_TMP
        printf "SORTEIO DE NUMERO: $N_SORTEIO" >>

    $ARQUIVO_TMP

        printf " ("`date +%d/%m/%Y` >> $ARQUIVO_TMP
        echo -n " as "`date +%H:%M:%S` >> $ARQUIVO_TMP
        echo ")" >> $ARQUIVO_TMP
        N SORTEIO=$((N SORTEIO+1))
        printf "\n\tNUMERO SORTEADO: $NUMERO\n" >>

→ $ARQUIVO_TMP

        grep -v -w "$GANHADOR" $LISTA > $LISTA_TMP
        mv $LISTA_TMP $LISTA
        printf "\tGANHADOR: $NOME\n" >> $ARQUIVO_TMP
        cat $ARQUIVO TMP
        gerar_linha_marcadora
        PRESENTE=X
        while [ "$PRESENTE" != "S" ] && [ "$PRESENTE" !=

→ "N" ]

        do
            printf "\nO ganhador esta presente? (informe S
             → ou N)? "
            read PRESENTE
        done
        if [ "$PRESENTE" = "S" ]
        then
            printf "\tPRESENTE NO SORTEIO: SIM\n\n" >>

→ $ARQUIVO TMP

            printf "\tPRESENTE NO SORTEIO: NAO\n\n" >>

→ $ARQUIVO_TMP

        fi
```

```
gerar_linha_marcadora >> $ARQUIVO_TMP
        cat $ARQUIVO_TMP >> $RESULTADOS
        FALTAM=`wc -l $LISTA \mid sed 's/[^0-9]*//g'`
        if [ $FALTAM -le 0 ]
        then
            break
        fi
        CONTINUAR=X
        while [ "$CONTINUAR" != "" ] && [ "$CONTINUAR" !=
         → "F" ] && [ "$CONTINUAR" != "I" ]
        do
            printf "\nPrecione: \n\n"
            printf "\t<Enter> para continuar (sortear um
            → novo numero)\n"
            printf "\t<I> para incluir todos novamente no

    sorteio\n"

            printf "\t<F> para finalizar\n\n"
            printf "Escolha uma das alternativas: "
            read CONTINUAR
        done
        if [ "$CONTINUAR" = "F" ]
        then
            break
        elif [ "$CONTINUAR" = "I" ]
            gera_lista_numerada
        fi
        clear
    fi
done
rm -f $LISTA_TMP $LISTA $ARQUIVO_TMP
```