A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESH*

JIANXING HAN[†] AND MINGHUA CHEN[‡]

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 8 **Key words.** example, LATEX
- 9 **MSC codes.** ????????????????
- 10 **1. Introduction.** For $\Omega = (0, 2T), 1 < \alpha < 2$

11 (1.1)
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}}u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

12 where

$$(1.2) \qquad (-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

14

16

2

3

15 (1.3)
$$\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$$

- 2. Preliminaries: Numeric scheme and main results.
 - 2.1. Numeric Format.

17 (2.1)
$$x_i = \begin{cases} T\left(\frac{i}{N}\right)^r, & 0 \le i \le N \\ 2T - T\left(\frac{2N-i}{N}\right)^r, & N \le i \le 2N \end{cases}$$

where $r \geq 1$. And let

19 (2.2)
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let $\{\phi_j(x)\}_{j=1}^{2N-1}$ be standard hat functions, which are basis of the piecewise linear function space

$$\phi_{j}(x) = \begin{cases} \frac{1}{h_{j}}(x - x_{j-1}), & x_{j-1} \leq x \leq x_{j} \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_{j} \leq x \leq x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

And then, define the piecewise linear interpolant of the true solution u to be

24 (2.4)
$$\Pi_h u(x) := \sum_{j=1}^{2N-1} u(x_j) \phi_j(x)$$

^{*}Submitted to the editors DATE.

[†]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (hanjx2023@mail.lzu.edu.cn).

[‡]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (chen@mail.lzu.edu.cn).

For convience, we denote 25

26 (2.5)
$$I^{2-\alpha}u(x) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha}u(y)dy$$

and

28 (2.6)
$$D_h^2 u(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} u(x_{i-1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) u(x_i) + \frac{1}{h_{i+1}} u(x_{i+1}) \right)$$

Now, we discretise (1.1) by replacing u(x) by a continuous piecewise linear func-29

30 tion

31 (2.7)
$$u_h(x) := \sum_{j=1}^{2N-1} u_j \phi_j(x)$$

whose nodal values u_i are to be determined by collocation at each mesh point x_i for 32

i = 1, 2, ..., 2N - 1: 33

34 (2.8)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) := -\kappa_{\alpha} D_h^2 I^{2-\alpha} u_h(x_i) = f(x_i) =: f_i$$

Here.

36 (2.9)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{i=1}^{2N-1} -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i) \ u_j = \sum_{i=1}^{2N-1} a_{ij} \ u_j$$

where

38 (2.10)
$$a_{ij} = -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i)$$
 for $i, j = 1, 2, ..., 2N - 1$

We have replaced $(-\Delta)^{\alpha/2}u(x_i) = f(x_i)$ in (1.1) by $-\kappa_{\alpha}D_h^{\alpha}u_h(x_i) = f(x_i)$ in 39

(2.8), with truncation error

41 (2.11)
$$\tau_i := -\kappa_\alpha \left(D_h^\alpha \Pi_h u(x_i) - \frac{d^2}{dx^2} I^{2-\alpha} u(x_i) \right) \quad \text{for} \quad i = 1, 2, ..., 2N - 1$$

where
$$-\kappa_{\alpha}D_{h}^{\alpha}\Pi_{h}u(x_{i}) = \sum_{j=1}^{2N-1} -\kappa_{\alpha}D_{h}^{\alpha}\phi_{j}(x_{i})u(x_{j}) = \sum_{j=1}^{2N-1} a_{ij}u(x_{j}).$$
The discrete equation (2.8) can be written in matrix form

43

44 (2.12)
$$AU = F$$

where $A = (a_{ij}) \in \mathbb{R}^{(2N-1)\times(2N-1)}$, $U = (u_1, \dots, u_{2N-1})^T$ is unknown and $F = (f_1, \dots, f_{2N-1})^T$. 45

46

We can deduce a_{ij} . 47

$$a_{ij} = -\kappa_{\alpha} D_{h}^{2} I^{2-\alpha} \phi_{j}(x_{i})$$

$$= -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \tilde{a}_{i-1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

where 49

$$\tilde{a}_{ij} = I^{2-\alpha}\phi_i(x_i)$$

$$= \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_{j-1}|^{3-\alpha}}{h_j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) |x_i - x_j|^{3-\alpha} + \frac{|x_i - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

2.2. Regularity of the true solution. For any $\beta>0$, we use the standard notation $C^{\beta}(\Omega), C^{\beta}(\mathbb{R})$, etc., for Hölder spaces and their norms and seminorms. When no confusion is possible, we use the notation $C^{\beta}(\Omega)$ to refer to $C^{k,\beta'}(\Omega)$, where k is the greatest integer such that $k<\beta$ and where $\beta'=\beta-k$. The Hölder spaces $C^{k,\beta'}(\Omega)$ are defined as the subspaces of $C^k(\Omega)$ consisting of functions whose k-th order partial derivatives are locally Hölder continuous[1] with exponent β' in Ω , where $C^k(\Omega)$ is the set of all k-times continuously differentiable functions on open set Ω .

59 DEFINITION 2.1 (delta dependent norm [2]). ...

Theorem 2.2. Let $f \in C^{\beta}(\Omega), \beta > 2$ be such that $||f||_{\beta}^{(\alpha/2)} < \infty$, then for l = 0, 1, 2

63 (2.15)
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \begin{cases} x^{-l-\alpha/2}, & \text{if } 0 < x \le T \\ (2T-x)^{-l-\alpha/2}, & \text{if } T \le x < 2T \end{cases}$$

THEOREM 2.3 (Regularity up to the boundary [2]). Let Ω be a bounded domain, and $\beta > 0$ be such that neither β nor $\beta + \alpha$ is an integer. Let $f \in C^{\beta}(\Omega)$ be such that $\|f\|_{\beta}^{(\alpha/2)} < \infty$, and $u \in C^{\alpha/2}(\mathbb{R}^n)$ be a solution of (1.1). Then, $u \in C^{\beta+\alpha}(\Omega)$ and

68 (2.16)
$$||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left(||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$$

COROLLARY 2.4. Let u be a solution of (1.1) where $f \in L^{\infty}(\Omega)$ and $||f||_{\beta}^{(\alpha/2)} < \infty$. Then, for any $x \in \Omega$ and l = 0, 1, 2, 3, 4

71 (2.17)
$$|u^{(l)}(x)| \le ||u||_{\beta+\alpha}^{(-\alpha/2)} \begin{cases} x^{\alpha/2-l}, & \text{if } 0 < x \le T \\ (2T-x)^{\alpha/2-l}, & \text{if } T \le x < 2T \end{cases}$$

And in this paper bellow, without special instructions, we allways assume that

73 (2.18)
$$f \in L^{\infty}(\Omega) \cap C^{\beta}(\Omega)$$
 and $||f||_{\beta}^{(\alpha/2)} < \infty$, with $\alpha + \beta > 4$

2.3. Main results. Here we state our main results; the proof is deferred to section 3 and section 4.

Let's denote $h = \frac{1}{N}$, we have

THEOREM 2.5 (Local Truncation Error). If u(x) is a solution of the equation (1.1) where f satisfy the regular condition (2.18), then there exists $C_1(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$ and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$, such that the truncation error (2.11) satisfies

$$|\tau_{i}| := |-\kappa_{\alpha} D_{h}^{\alpha} \Pi_{h} u(x_{i}) - f(x_{i})|$$

$$\leq C_{1} h^{\min\{\frac{r_{\alpha}}{2}, 2\}} \begin{cases} x_{i}^{-\alpha}, & 1 \leq i \leq N \\ (2T - x_{i})^{-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

$$+ C_{2}(r - 1)h^{2} \begin{cases} |T - x_{i-1}|^{1-\alpha}, & 1 \leq i \leq N \\ |T - x_{i+1}|^{1-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

81

76

51

52

53

56

58

60

64

- Theorem 2.6 (Global Error). The discrete equation (2.8) has sulction and there 82
- exists a positive constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$ such that the error between the numerial solution U with the exact solution $u(x_i)$ satisfies 83

85 (2.20)
$$\max_{1 \le i \le 2N-1} |u_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

- That means the numerial method has convergence order $\min\{\frac{r\alpha}{2}, 2\}$.
 - 3. Local Truncation Error.
- **3.1.** Proof of Theorem 2.5. The truncation error of the discrete format can 88 89

(3.1)

$$-\kappa_{\alpha} D_{h}^{\alpha} \Pi_{h} u(x_{i}) - f(x_{i}) = -\kappa_{\alpha} (D_{h}^{2} I^{2-\alpha} \Pi_{h} u(x_{i}) - \frac{d^{2}}{dx^{2}} I^{2-\alpha} u(x_{i}))$$

$$= -\kappa_{\alpha} D_{h}^{2} I^{2-\alpha} (\Pi_{h} u - u)(x_{i}) - \kappa_{\alpha} (D_{h}^{2} - \frac{d^{2}}{dx^{2}}) I^{2-\alpha} u(x_{i})$$

91

90

87

- THEOREM 3.1. There exits a constant $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$ such that 92
- (3.2) $\left| -\kappa_{\alpha} (D_h^2 \frac{d^2}{dx^2}) I^{2-\alpha}(x_i) \right| \le Ch^2 \begin{cases} x_i^{-\alpha/2 2/r}, & 1 \le i \le N \\ (2T x_i)^{-\alpha/2 2/r}, & N \le i \le 2N 1 \end{cases}$
- *Proof.* Since $f \in C^2(\Omega)$ and 94
- $\frac{d^2}{dx^2}(-\kappa_{\alpha}I^{2-\alpha}(x)) = f(x), \quad x \in \Omega,$ 95
- we have $I^{2-\alpha} \in C^4(\Omega)$. Therefore, using equation (A.3) of Lemma A.1, for $1 \le i \le$ 96
- 2N-1, we have

$$-\kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}(x_{i}) = \frac{h_{i+1} - h_{i}}{3}f'(x_{i}) + \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} f''(y) \frac{(y - x_{i-1})^{3}}{3!} dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} f''(y) \frac{(y - x_{i+1})^{3}}{3!} dy\right)$$

where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. By Lemma B.2 and Theorem 2.2 we have 1.

$$\left| \frac{h_{i+1} - h_i}{3} f'(x_i) \right| \le \frac{C(r-1) \|f\|_{\beta}^{(\alpha/2)}}{3} h^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N - 1\\ 0, & i = N\\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i \le 2N - 1 \end{cases}$$

- 2. See Proof 23, there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that
- $\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \int_{x_{i-1}}^{x_i} f''(y) \frac{(y x_{i-1})^3}{3!} dy + \frac{1}{h_{i+1}} \int_{x_i}^{x_{i+1}} f''(y) \frac{(y x_{i+1})^3}{3!} dy \right)$ $\leq Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \leq i \leq N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i < 2N - 1 \end{cases}$
- Summarizes, we get the result.

104 And define

105 (3.7)
$$R_i := D_h^2 I^{2-\alpha} (u - \Pi_h u)(x_i)$$

We have some results about the estimate of R_i

THEOREM 3.2. For $1 \le i < N/2$, there exists $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

108 (3.8)
$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i) + \ln(N)), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}x_{i}^{-1-\alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

THEOREM 3.3. For $N/2 \le i \le N$, there exists constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$

111 such that

109

112 (3.9)
$$R_{i} \leq C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

And for $N < i \le 2N - 1$, it is symmetric to the previous case.

114 Combine Theorem 3.1, Theorem 3.2 and Theorem 3.3, the proof of Theorem 2.5

115 completed.

We prove Theorem 3.2 and Theorem 3.3 in next subsections below.

3.2. Proof of Theorem 3.2.

117 (3.10)
$$D_h^2 I^{2-\alpha} (u - \Pi_h u)(x_i) = D_h^2 (\int_0^{2T} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy)$$

118 For convience, let's denote

119 (3.11)
$$T_{ij} = \int_{x_{i-1}}^{x_j} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy, \quad i = 0, \dots, 2N, \ j = 1, \dots, 2N$$

120 Also for simplicity, we denote

Definition 3.4.

121 (3.12)
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

122 then

124

123 (3.13)
$$R_i = \sum_{j=1}^{2N} S_{ij}$$

LEMMA 3.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

127 (3.14)
$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 x_i^{-\alpha/2-2/r}$$

128 *Proof.* Let

$$K_y(x) = \frac{|y - x|^{1 - \alpha}}{\Gamma(2 - \alpha)}$$

130 For $\max\{2i+1,i+3\} \le j \le N$, by Lemma C.1 and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{y^{-1 - \alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} y^{-\alpha/2 - 2/r - 1} dy$$

132 Therefore,

$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le \frac{C}{\alpha/2 + 2/r} 2^{r(-\alpha/2-2/r)} h^2 x_i^{-\alpha/2-2/r}$$

134

Lemma 3.6. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le 136$ i < N/2,

137 (3.17)
$$\sum_{j=N+1}^{2N} S_{ij} \le \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

138 Proof. For $1 \le i < N/2, N+1 \le j \le 2N-1$, by equation (C.2) and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} y^{-1 - \alpha} dy$$

$$\leq Ch^2 T^{-1 - \alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

140

$$\sum_{j=N+1}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{x_N}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{(\alpha/2-2/r+1)} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{(\alpha/2-2/r+1)} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

142 And by Lemma A.3

143
$$S_{i,2N} \le CT^{-1-\alpha} h_{2N}^{\alpha/2+1} = CT^{-\alpha/2} h^{r\alpha/2+r}$$

144 And when $\alpha/2 - 2/r + 1 \ge 0$,

$$h^{r\alpha/2+r} \le h^2$$

146 Summarizes, we get the result.

147 For i = 1, 2.

LEMMA 3.7. By Lemma C.5, Lemma 3.5 and Lemma 3.6 we get

$$R_{1} = \sum_{j=1}^{3} S_{1j} + \sum_{j=4}^{2N} S_{1j}$$

$$\leq Ch^{2}x_{1}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

150

$$R_{2} = \sum_{j=1}^{4} S_{2j} + \sum_{j=5}^{2N} S_{2j}$$

$$\leq Ch^{2}x_{2}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

For $3 \le i < N/2$, we have a new separation of R_i , Let's denote $k = \lceil \frac{i}{2} \rceil$.

153

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{2i-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2i} + T_{i-1,2i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2i} \right)$$

$$+ \sum_{j=2i+1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

155

Lemma 3.8. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le 157$ $i \le N, k = \lceil \frac{i}{2} \rceil$

158 (3.22)
$$|I_1| = |\sum_{j=1}^{k-1} S_{ij}| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 x_i^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

159 Proof. by Lemma A.3, Lemma C.3

160 (3.23)
$$S_{i1} \le Cx_1^{\alpha/2}x_1x_i^{-1-\alpha} = Cx_1^{\alpha/2+1}x_i^{-1-\alpha} = CT^{\alpha/2+1}h^{r\alpha/2+r}x_i^{-1-\alpha}$$

161 For $2 \le j \le k-1$, by Lemma C.1 and Lemma C.3

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{x_i^{-1 - \alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 x_i^{-1 - \alpha} \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} dy$$

163 Therefore,

$$I_{1} = \sum_{j=1}^{k-1} S_{ij} = S_{i1} + \sum_{j=2}^{k-1} S_{ij}$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{2^{-r} x_{i}} y^{\alpha/2 - 2/r} dy$$

165 But

171

166 (3.26)
$$\int_{x_1}^{2^{-r}x_i} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r}x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0\\ \ln(2^{-r}x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0\\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

167 So we have

168 (3.27)
$$I_{1} \leq \begin{cases} \frac{C}{\alpha/2 - 2/r + 1} h^{2} x_{i}^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} x_{i}^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0\\ \frac{C}{|\alpha/2 - 2/r + 1|} h^{r\alpha/2 + r} x_{i}^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases} \square$$

Definition 3.9. For convience, let's denote

170 (3.28)
$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

Theorem 3.10. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

173 $3 \le i < N/2, k = \lceil \frac{i}{2} \rceil$,

174 (3.29)
$$I_3 = \sum_{i=k+1}^{2i-1} V_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

To estimete V_{ij} , we need some preparations.

LEMMA 3.11. For $y \in (x_{i-1}, x_i)$, we can rewrite

177 (3.30)
$$y = x_{i-1} + \theta h_i = (1 - \theta)x_{i-1} + \theta x_i =: y_i^{\theta}, \ \theta \in (0, 1)$$

178 by Lemma A.2,

$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_0^1 (u(y_j^{\theta}) - \Pi_h u(y_j^{\theta})) \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j d\theta$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} h_j^3 u''(y_j^{\theta}) \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^2 u'''(\eta_{j1}^{\theta}) - (1-\theta)^2 u'''(\eta_{j2}^{\theta})) d\theta$$

- 180 where $\eta_{j1}^{\theta} \in (x_{j-1}, y_j^{\theta}), \eta_{j2}^{\theta} \in (y_j^{\theta}, x_j).$
- Now Let's construct a series of functions to represent T_{ij} .

Definition 3.12.

182 (3.32)
$$y_{j-i}(x) = (x^{1/r} + Z_{j-i})^r, \quad Z_{j-i} = T^{1/r} \frac{j-i}{N}$$

183

184 (3.33)
$$y_{j-i}^{\theta}(x) = (1-\theta)y_{j-1-i}(x) + \theta y_{j-i}(x)$$

185

186 (3.34)
$$h_{i-i}(x) = y_{i-i}(x) - y_{i-i-1}(x)$$

187 Now, we define

188 (3.35)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

189

190 (3.36)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

191 And now we can rewrite T_{ij}

192 Lemma 3.13. For $2 \le i \le N, 2 \le j \le N$,

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{j-i}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} Q_{j-i}^{\theta}(x_{i}) \left[\theta^{2} u^{\prime\prime\prime}(\eta_{j,1}^{\theta}) - (1-\theta)^{2} u^{\prime\prime\prime}(\eta_{j,2}^{\theta})\right] d\theta$$

194 Immediately, we can see from (3.28) that

195 Lemma 3.14. For
$$3 \le i, j \le N - 1$$
,

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,1}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

To estimate V_{ij} , we first estimate $D_h^2 P_{j-i}^{\theta}(x_i)$, but By Lemma A.1,

198 (3.39)
$$D_h^2 P_{i-i}^{\theta}(x_i) = P_{i-i}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

- By Leibniz formula, we calculate and estimate the derivations of $h_{i-i}^3(x)$, $u''(y_{i-i}^\theta(x))$
- 200 and $\frac{|y_{j-i}^{\theta}(x)-x|^{1-\alpha}}{\Gamma(2-\alpha)}$ separately.
- Firstly, we have
- Lemma 3.15. There exists a constant C = C(T,r) such that For $3 \le i \le N$
- 203 $1, \lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\}, \xi \in (x_{i-1}, x_{i+1}),$

$$204 (3.40) h_{i-i}^3(\xi) \le Ch^2 x_i^{2-2/r} h_i$$

205 (3.41)
$$(h_{i-1}^3(\xi))' \le C(r-1)h^2 x_i^{1-2/r} h_i$$

$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

- 207 The proof of this theorem see Lemma C.6 and Lemma C.7
- Second,
- Lemma 3.16. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For
- 210 $3 \le i \le N 1, \lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\}, \xi \in (x_{i-1}, x_{i+1}),$

211 (3.43)
$$u''(y_{i-i}^{\theta}(\xi)) \le Cx_i^{\alpha/2-2}$$

212 (3.44)
$$(u''(y_{j-i}^{\theta}(\xi)))' \le Cx_i^{\alpha/2-3}$$

213 (3.45)
$$(u''(y_{i-i}^{\theta}(\xi)))'' < Cx_i^{\alpha/2-4}$$

- 214 The proof of this theorem see Proof 29
- 215 And Finally, we have
- Lemma 3.17. There exists a constant $C = C(T, \alpha, r)$ such that For $3 \leq i \leq r$
- 217 $N-1, \lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\}, \xi \in (x_{i-1}, x_{i+1}),$

218 (3.46)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

219 (3.47)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-1}$$

220 (3.48)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

221 where
$$y_j^{\theta} = \theta x_{j-1} + (1 - \theta)x_j$$

The proof of this theorem see Proof 30 222

223

LEMMA 3.18. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For 224

225
$$3 \le i \le N - 1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\},\$$

226 (3.49)
$$D_h^2 P_{j-i}^{\theta}(x_i) \le Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

227 where
$$y_{j}^{\theta} = \theta x_{j-1} + (1 - \theta)x_{j}$$

Proof. Since Lemma A.1 228

229 (3.50)
$$D_h^2 P_{j-i}^{\theta}(x_i) = P_{j-i}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

From (3.35), using Leibniz formula and Lemma 3.15, Lemma 3.16 and Lemma 3.17□ 230

231

LEMMA 3.19. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for 232

233

$$\begin{array}{ll} 233 & 3 \leq i \leq N-1. \\ 234 & For \left\lceil \frac{i}{2} \right\rceil \leq j \leq \min\{2i-1,N-1\}, \end{array}$$

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

And for $\lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i, N\},\$

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_{i}} \right) \\
\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

where $\eta_i^{\theta} \in (x_{j-1}, x_j)$. 238

proof see Proof 31 239

240

LEMMA 3.20. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for 241

242
$$3 \le i \le N-1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\},\$$

$$V_{ij} \le Ch^2 \int_0^1 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j d\theta$$

$$= Ch^2 \int_{x_{i-1}}^{x_j} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} dy$$

- 244 *Proof.* Since Lemma 3.14, by Lemma 3.18 and Lemma 3.19, we get the result 245 immediately. \square
- Now we can prove Theorem 3.10 using Lemma 3.20, $k = \lceil \frac{i}{2} \rceil$

$$I_{3} = \sum_{k+1}^{2i-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{2i-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{2i-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

- Now we study I_2, I_4 .
- Lemma 3.21. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that for
- 250 $3 \le i \le N 1, k = \lceil \frac{i}{2} \rceil,$

251
$$I_2 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

252 And for
$$3 \le i < N/2$$
,

$$I_{4} = \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2i} + T_{i-1,2i-1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,2i} \right) \le Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

254 *Proof.* In fact.

$$(3.57) \qquad \frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k}$$

$$= \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) + \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) + (\frac{1}{h_{i+1}} - \frac{1}{h_i}) T_{i,k}$$

 $\,$ While, by Lemma A.2 and Lemma B.1 $\,$

$$(3.58) \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) = \int_{x_{k-1}}^{x_k} (u(y) - \Pi_h u(y)) \frac{|x_{i+1} - y|^{1-\alpha} - |x_i - y|^{1-\alpha}}{h_{i+1} \Gamma(2 - \alpha)} dy$$

$$\leq h_k^2 \max_{\boldsymbol{\eta} \in (x_{k-1}, x_k)} |\boldsymbol{u}''(\boldsymbol{\eta})| \int_{x_{k-1}}^{x_k} \frac{|\xi - y|^{-\alpha}}{\Gamma(1 - \alpha)} dy, \quad \xi \in (x_i, x_{i+1})$$

$$\leq C h^2 x_k^{2-2/r} x_{k-1}^{\alpha/2-2} h_k |x_i - x_k|^{-\alpha}$$

$$\leq C h^2 x_i^{-\alpha/2-2/r} h_k$$

258 Thus,

259 (3.59)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} |T_{i+1,k} - T_{i,k}| \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

260 From Lemma 3.13 (3.60)

$$\frac{1}{h_{i+1}}(T_{i+1,k+1} - T_{i,k}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} d\theta
+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,1}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,1}^{\theta})}{h_{i+1}} d\theta
- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,2}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,2}^{\theta})}{h_{i+1}} d\theta$$

262 and

263 (3.61)
$$D_h P_{k-i}^{\theta}(x_i) := \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} = P_{k-i}^{\theta'}(\xi), \quad \xi \in (x_i, x_{i+1})$$

- 264 Similar with Lemma 3.18, from Lemma 3.13, using Leibniz formula, by Lemma C.6,
- 265 Lemma 3.16 and Lemma 3.17 we get

$$|D_h P_{k-i}^{\theta}(x_i)| \le Ch^2 x_i^{-\alpha/2 - 2/r} h_k$$

267 And with Lemma 3.19, we can get

268 (3.63)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} |T_{i+1,k+1} - T_{i,k}| \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

269 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,k} \le h_i^{-3} h^2 x_i^{1-2/r} h_k C h_k^2 x_{k-1}^{\alpha/2-2} |x_k - x_i|^{1-\alpha}$$

$$\le C h^2 x_i^{-\alpha/2-2/r}$$

271 Summarizes, we have

272 (3.65)
$$I_2 \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

- The case for I_4 is similar.
- Now combine Lemma 3.7, Lemma 3.8, Lemma 3.21, Theorem 3.10, Lemma 3.5 and Lemma 3.6, we get Theorem 3.2.

3.3. Proof of Theorem 3.3. For $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$, we have

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{N-1} + \sum_{j=N}^{N+1} + \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2N-\lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N-\lceil \frac{N}{2} \rceil}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2N-\lceil \frac{N}{2} \rceil + 1} \right)$$

$$+ \sum_{j=2N-\lceil \frac{N}{2} \rceil + 2}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3}^{1} + I_{3}^{2} + I_{3}^{3} + I_{4} + I_{5}$$

- We have estimate I_1 in Lemma 3.8 and I_2 in Lemma 3.21. We can control I_3 in similar with Theorem 3.10 by Lemma 3.20 where $2i-1 \ge N-1$
- Lemma 3.22. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$,

$$I_{3} = \sum_{j=k+1}^{N-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{N-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{N-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

Let's study I_5 before I_4 .

289

284 (3.68)
$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij}$$

- 285 Similarly, Let's define a new series of functions
- Definition 3.23. For $i < N, j \ge N$, with no confusion, we also denote in this section

288 (3.69)
$$y_{j-i}(x) = 2T - (Z_{2N-j+i} - x^{1/r})^r, \quad Z_{2N-j+i} = T^{1/r} \frac{2N - j + i}{N}$$

290 (3.70)
$$y_{j-i}'(x) = (2T - y_{j-i}(x))^{1-1/r} x^{1/r-1}$$

291 (3.71)
$$y_{j-i}''(x) = \frac{1-r}{r} (2T - y_{j-i}(x))^{1-2/r} x^{1/r-2} Z_{2N-j+i}$$

(3.72)292

293

294 (3.73)
$$y_{j-i}^{\theta}(x) = (1-\theta)y_{j-i-1}(x) + \theta y_{j-i}(x)$$

295

296 (3.74)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

297

298 (3.75)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

299

300 (3.76)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Now we have, for $i < N, j \ge N + 2$, 301

 $V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$ $= \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$ $+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$ 302 $-\int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i}+h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1,1}^{\theta})}{h_{i}} \right) d\theta$ $-\int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1,2}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$ $+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i)u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$

Similarly, we first estimate 303

304 (3.78)
$$D_h^2 P_{j-i}^{\theta}(\xi) = P_{j-i}^{\theta''}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

Combine lemmas Lemma C.8, Lemma C.9 and Lemma C.10, we have 305

LEMMA 3.24. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le i < N, \ N+2 \le j \le 2N-\lceil \frac{N}{2} \rceil+1$, $\xi \in (x_{i-1}, x_{i+1})$, we have 306

$$|P_{j-i}^{\theta}|''(\xi)| \leq Ch_{j}h^{2}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}) + |y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})^{2} + (r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha})$$

Lemma 3.25. There exists a constant
$$C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$$
 such that For

311
$$N/2 \le i < N$$
, $\xi \in (x_{i-1}, x_{i+1})$, we have for $N+1 \le j \le 2N-\lceil \frac{N}{2} \rceil$

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_j^{\theta})}{h_{i+1}} \right)$$

$$\leq Ch^2 h_j (|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_j^{\theta}| + h_N))$$

313 for
$$N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1$$

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_{i+1}} \right) \\ \leq Ch^{2}h_{j}(|y_{i}^{\theta} - x_{i}|^{1-\alpha} + |y_{i}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{N}))$$

- 315 The proof see Proof 35.
- Combine (3.77), Lemma 3.24 and Lemma 3.25, we have
- THEOREM 3.26. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

318
$$N/2 \le i < N, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1$$

$$V_{ij} \leq Ch^2 \int_{x_{j-1}}^{x_j} (|y - x_i|^{1-\alpha} + |y - x_i|^{-\alpha} (|2T - x_i - y| + h_N) + |y - x_i|^{-1-\alpha} (|2T - x_i - y| + h_N)^2 + (r-1)|y - x_i|^{-\alpha}) dy$$

- We can esitmate I_5 Now.
- THEOREM 3.27. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For
- 322 $N/2 \le i < N$, we have

323 (3.83)
$$I_5 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij} \le Ch^2 + C(r-1)h^2|T - x_{i-1}|^{1-\alpha}$$

Proof.

$$I_{5} = \sum_{j=N+2}^{2N-\lceil\frac{N}{2}\rceil} V_{ij}$$

$$\leq Ch^{2} \int_{x_{N+1}}^{x_{2N-i}} + \int_{x_{2N-i}}^{x_{2N-\lceil\frac{N}{2}\rceil}} (|y-x_{i}|^{1-\alpha} + |y-x_{i}|^{-\alpha} (|2T-x_{i}-y|+h_{N}) + |y-x_{i}|^{-1-\alpha} (|2T-x_{i}-y|+h_{N})^{2} + (r-1)|y-x_{i}|^{-\alpha}) dy$$

$$= J_{1} + J_{2}$$

325 While
$$x_{N+1} \le y \le x_{2N-i} = 2T - x_i$$
,

326 (3.85)
$$T - x_{i-1} \le x_{N+1} - x_i \le y - x_i \le x_{2N-i} - x_i \le 2(T - x_{i-1})$$

327 and

328 (3.86)
$$2T - x_i - y + h_N < 2T - x_i - x_{N+1} + h_N = T - x_i < T - x_{i-1}$$

329 So

$$J_{1} \leq Ch^{2}(x_{2N-i} - x_{N+1})(|T - x_{i-1}|^{1-\alpha} + (r-1)|T - x_{i-1}|^{-\alpha})$$

$$\leq Ch^{2}(|T - x_{i-1}|^{2-\alpha} + (r-1)|T - x_{i-1}|^{1-\alpha})$$

$$\leq Ch^{2}T^{2-\alpha} + C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha}$$

331 Otherwise, when $x_{2N-i} \leq y \leq x_{2N-\lceil \frac{N}{2} \rceil}$

332 (3.88)
$$x_i + y - 2T + h_N \le y - x_i$$

333

334 (3.89)
$$J_{2} \leq Ch^{2} \int_{x_{2N-i}}^{(2-2^{-r})T} |y-x_{i}|^{1-\alpha} + (r-1)|y-x_{i}|^{-\alpha}$$

$$\leq Ch^{2} (T^{2-\alpha} + (r-1)|x_{2N-i} - x_{i}|^{1-\alpha})$$

$$= Ch^{2} + C(r-1)h^{2}|T-x_{i}|^{1-\alpha} \leq Ch^{2} + C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha}$$

Summarizes two cases, we get the result.

This manuscript is for review purposes only.

- For I_4 , we have
- THEOREM 3.28. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that, for
- 338 $N/2 \le i \le N-1$

$$V_{iN} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,N+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,N} + \frac{1}{h_i} T_{i-1,N-1} \right)$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

- 340 Proof. We use the similar skill in the last section, but more complicated. for
- 341 j = N, Let

342 (3.91)
$$Ly_{N-1-i}(x) = (x^{1/r} + Z_{N-1-i})^r, \quad Z_{N-1-i} = T^{1/r} \frac{N-1-i}{N}$$

343

344 (3.92)
$${}_{0}y_{N-i}(x) = \frac{x^{1/r} - Z_{i}}{Z_{1}}h_{N} + T, \quad Z_{i} = T^{1/r}\frac{i}{N}, x_{N} = T$$

345 and

346 (3.93)
$$Ry_{N+1-i}(x) = 2T - (Z_{N-1+i} - x^{1/r})^r, \quad Z_{N-1+i} = T^{1/r} \frac{N-1+i}{N}$$

347 Thus,

348
$$Ly_{N-1-i}(x_{i-1}) = x_{N-2}, \quad Ly_{N-1-i}(x_i) = x_{N-1}, \quad Ly_{N-1-i}(x_{i+1}) = x_N$$

349
$$_{0}y_{N-i}(x_{i-1}) = x_{N-1}, \quad _{0}y_{N-i}(x_{i}) = x_{N}, \quad _{0}y_{N-i}(x_{i+1}) = x_{N+1}$$

350
$$Ry_{N+1-i}(x_{i-1}) = x_N, \quad Ry_{N+1-i}(x_i) = x_{N+1}, \quad Ry_{N+1-i}(x_{i+1}) = x_{N+2}$$

351 Then, define

352 (3.94)
$$Ly_{N-i}^{\theta}(x) = \theta_L y_{N-1-i}(x) + (1-\theta)_0 y_{N-i}(x)$$

353 (3.95)
$$Ry_{N+1-i}^{\theta}(x) = \theta_0 y_{N-i}(x) + (1-\theta)_R y_{N+1-i}(x)$$

354

355 (3.96)
$$Lh_{N-i}(x) = {}_{0}y_{N-i}(x) - {}_{L}y_{N-1-i}(x)$$

356 (3.97)
$$Rh_{N+1-i}(x) = Ry_{N+1-i}(x) - {}_{0}y_{N-i}(x)$$

357 We have

358 (3.98)
$$Ly_{N-1-i}'(x) = Ly_{N-1-i}^{1-1/r}(x)x^{1/r-1}$$

359 (3.99)
$$Ly_{N-1-i}''(x) = \frac{1-r}{r} Ly_{N-1-i}^{1-2/r}(x) x^{1/r-2} Z_{N-1-i}$$

360 (3.100)
$${}_{0}y_{N-i}'(x) = \frac{1}{r} \frac{h_{N}}{Z_{1}} x^{1/r-1}$$

361 (3.101)
$${}_{0}y_{N-i}''(x) = \frac{1-r}{r^{2}} \frac{h_{N}}{Z_{1}} x^{1/r-2}$$

362 (3.102)
$$Ry_{N+1-i}'(x) = (2T - Ry_{N+1-i}(x))^{1-1/r}x^{1/r-1}$$

363 (3.103)
$$Ry_{N+1-i}''(x) = \frac{1-r}{r} (2T - Ry_{N+1-i}(x))^{1-2/r} x^{1/r-2} Z_{N-1+i}$$

364

365 (3.104)
$${}_{L}P_{N-i}^{\theta}(x) = ({}_{L}h_{N-i}(x))^{3} \frac{|{}_{L}y_{N-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''({}_{L}y_{N-i}^{\theta}(x))$$

366 (3.105)
$${}_{R}P_{N+1-i}^{\theta}(x) = ({}_{R}h_{N+1-i}(x))^{3} \frac{|{}_{R}y_{N+1-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''({}_{R}y_{N+1-i}^{\theta}(x))$$

367 (3.106)
$${}_{L}Q_{N-i}^{\theta}(x) = ({}_{L}h_{N-i}(x))^{4} \frac{|{}_{L}y_{N-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

368 (3.107)
$${}_{R}Q_{N+1-i}^{\theta}(x) = ({}_{R}h_{N+1-i}(x))^{4} \frac{|{}_{R}y_{N+1-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Similar with Lemma 3.13, we can get for l = -1, 0, 1,

$$T_{i+l,N+l} = \int_0^1 -\frac{\theta(1-\theta)}{2} {}_L P_{N-i}^{\theta}(x_{i+l}) d\theta + \int_0^1 \frac{\theta(1-\theta)}{3!} {}_L Q_{N-i}^{\theta}(x_{i+l}) (\theta^2 u'''(\eta_{N+l,1}^{\theta}) - (1-\theta)^2 u'''(\eta_{N+l,2}^{\theta})) d\theta$$

371 (3.109)

$$T_{i+l,N+1+l} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} {}_{R}P_{N+1-i}^{\theta}(x_{i+l}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} {}_{R}Q_{N+1-i}^{\theta}(x_{i+l}) (\theta^{2}u'''(\eta_{N+1+l,1}^{\theta}) - (1-\theta)^{2}u'''(\eta_{N+1+l,2}^{\theta})) d\theta$$

373 So we have (3.110)

$$V_{i,N} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_{hL}^{2} P_{N-i}^{\theta}(x_{i}) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1})u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1})u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

N+1 is similar.

377

We estimate $D_{hL}^{2}P_{N-i}^{\theta}(x_{i}) = {}_{L}P_{N-i}^{\theta}(\xi), \xi \in (x_{i-1}, x_{i+1}),$

Lemma 3.29.

378 (3.111)
$$Lh_{N-i}^3(\xi) \le Ch_N^3 \le Ch^3$$

379 (3.112)
$$Rh_{N+1-i}^3(\xi) \le Ch_N^3 \le Ch^3$$

380 (3.113)
$$(Lh_{N-i}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

381
$$(3.114)$$
 $(Rh_{N+1-i}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$

382 (3.115)
$$(Lh_{N-i}^3(\xi))'' \le C(r-1)h^2$$

383 (3.116)
$$({}_{R}h_{N+1-i}^{3}(\xi))'' \le C(r-1)h^{2}$$

Proof.

384 (3.117)
$$Lh_{N-i}(\xi) \le 2h_N, \quad Rh_{N+1-i}(\xi) \le 2h_N$$

385

$$(Lh_{N-i}^{l}(\xi))' = l_{L}h_{N-i}^{l-1}(\xi)(_{0}y_{N-i}'(\xi) - _{L}y_{N-1-i}'(\xi))$$

$$= l_{L}h_{N-i}^{l-1}(\xi)x_{i}^{1/r-1}(\frac{1}{r}\frac{h_{N}}{Z_{1}} - _{L}y_{N-1-i}^{1-1/r}(\xi))$$

387 while (3.119)

$$\left| \frac{1}{r} \frac{h_N}{Z_1} - _L y_{N-1-i}^{1-1/r}(\xi) \right| = \left| \frac{1}{r} \frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1} - \eta^{1-1/r} \right| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r} \left| (\frac{N-t}{N})^{r-1} - (\frac{N-s}{N})^{r-1} \right| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r} \left| 1 - (\frac{N-2}{N})^{r-1} \right| \leq C T^{1-1/r} (r-1) \frac{2}{N}$$

389 Thus,

390 (3.120)
$$(Lh_{N-i}^{l}(\xi))' \le C(r-1)h_{N}^{l-1}x_{i}^{1/r-1}h$$

$$(Rh_{N+1-i}^{l}(\xi))' = l_R h_{N+1-i}^{l-1}(\xi) (Ry_{N+1-i}'(\xi) - 0y_{N-i}'(\xi))$$

$$= l_R h_{N+1-i}^{l-1}(\xi) x_i^{1/r-1} ((2T - Ry_{N+1-i}(\xi))^{1-1/r} - \frac{1}{r} \frac{h_N}{Z_1})$$

392 Similarly, (3.122)

$$|(2T - Ry_{N+1-i})^{1-1/r} - \frac{1}{r} \frac{h_N}{Z_1}| = |\eta^{1-1/r} - \frac{1}{r} \frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1}| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r} |(\frac{N-s}{N})^{r-1} - (\frac{N-t}{N})^{r-1}| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r} |(\frac{N-2}{N})^{r-1} - 1| \leq CT^{1-1/r} (r-1) \frac{2}{N}$$

$$(Lh_{N-i}^{3}(\xi))'' = 3_L h_{N-i}^2(\xi)_L h_{N-i}''(\xi) + 6_L h_{N-i}(\xi) (Lh_{N-i}'(\xi))^2$$

$$\leq Ch_N^2 \frac{1-r}{r} x_i^{1/r-2} (\frac{1}{r} \frac{h_N}{Z_1} - Ly_{N-1-i}^{1-2/r}(\xi) Z_{N-1-i}) + Ch_N(r-1)^2 h^2 x_i^{2/r-2}$$

$$\left| \frac{h_N}{rZ_1} - L y_{N-1-i}^{1-2/r}(\xi) Z_{N-1-i} \right| \le T^{1-1/r} + C x_N^{1-2/r} x_N^{1/r} = C T^{1-1/r}$$

397 So

$$(Lh_{N-i}^{3}(\xi))'' \le Ch_{N}^{2} \frac{1-r}{r} x_{i}^{1/r-2} + C(r-1)^{2} h_{N} x_{i}^{2/r-2} h^{2}$$

$$\le C(r-1)h_{N}^{2}$$

399 $Rh_{N+1-i}^3(\xi)$ is similar.

Lemma 3.30.

400 (3.125)
$$u''(Ly_{N-i}^{\theta}(\xi)) \le Cx_{N-2}^{-\alpha/2-2} \le C$$

401
$$(3.126)$$
 $(u''(_L y_{N-i}^{\theta}(\xi)))' \leq C$

402 (3.127)
$$(u''({}_{L}y_{N-i}^{\theta}(\xi)))'' \le C$$

Proof.

$$(u''(_{L}y_{N-i}^{\theta}(\xi)))' = u'''(_{L}y_{N-i}^{\theta}(\xi))_{L}y_{N-i}^{\theta}'(\xi)$$

$$\leq C(\theta_{L}y_{N-1-i}'(\xi) + (1-\theta)_{0}y_{N-i}'(\xi))$$

$$\leq Cx_{i}^{1/r-1}(\theta_{L}y_{N-1-i}^{1-1/r}(\xi) + (1-\theta)\frac{h_{N}}{rZ_{1}})$$

$$\leq Cx_{i}^{1/r-1}x_{N}^{1-1/r}$$

404 And
$$(3.129) \qquad \qquad \square$$

$$(u''(_{L}y_{N-i}^{\theta}(\xi)))'' = u''''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))_{L}y_{N-i}^{\theta'}(\xi)$$

$$\leq Cx_{i}^{2/r-2}x_{N}^{2-2/r} + C\frac{r-1}{r}x_{i}^{1/r-2}(\theta x_{N}^{1-2/r}Z_{N-1-i} + (1-\theta)\frac{h_{N}}{rZ_{1}})$$

$$\leq Cx_{i}^{2/r-2} + C(r-1)x_{i}^{1/r-2}T^{1-1/r}$$

Lemma 3.31.

406 (3.130)
$$|Ly_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

407 (3.131)
$$(|_L y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

408 (3.132)
$$(|_L y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_N^{\theta} - x_i|^{-\alpha} + |y_N^{\theta} - x_i|^{1-\alpha}$$

Proof.

$$(3.133) (Ly_{N-i}^{\theta}(\xi) - \xi)' = (\theta(Ly_{N-1-i}(\xi) - \xi) + (1 - \theta)(0y_{N-i}(\xi) - \xi))'$$

$$= \theta(Ly_{N-1-i}'(\xi) - 1) + (1 - \theta)(0y_{N-i}'(\xi) - 1)$$

$$= \theta\xi^{1/r-1}(Ly_{N-1-i}^{1-1/r}(\xi) - \xi^{1-1/r}) + (1 - \theta)\xi^{1/r-1}(\frac{h_N}{rZ_i} - \xi^{1-1/r})$$

410

$$(Ly_{N-i}^{\theta}(\xi) - \xi)'' = \theta(Ly_{N-1-i}''(\xi)) + (1 - \theta)({}_{0}y_{N-i}''(\xi))$$

$$= \frac{1 - r}{r} \xi^{1/r - 2} (\theta_{L}y_{N-1-i}^{1 - 2/r}(\xi)Z_{N-1-i} + (1 - \theta)\frac{h_{N}}{rZ_{1}}) \le 0$$

413 (3.135)
$$|(_L y_{N-i}^{\theta}(\xi) - \xi)''| \le C(r-1)\xi^{1/r-2}T^{1-1/r}$$

414 We have known

415 (3.136)
$$C|x_{N-1} - x_i| \le |Ly_{N-1-i}(\xi) - \xi| \le C|x_{N-1} - x_i|$$

416 If
$$\xi \leq x_{N-1}$$
, then $({}_{0}y_{N-i}(\xi) - \xi)' \geq 0$, so

417 (3.137)
$$C|x_N - x_i| \le |x_{N-1} - x_{i-1}| \le |Ly_{N-i}^{\theta}(\xi) - \xi| \le |x_{N+1} - x_{i+1}| \le C|x_N - x_i|$$

- If i = N 1 and $\xi \in [x_{N-1}, x_N]$, then $y_{N-i}(\xi) \xi$ is concave, bigger than its two
- 419 neighboring points, which are equal to h_N , so

420 (3.138)
$$h_N = |x_N - x_{N-1}| \le |y_{N-i}(\xi) - \xi| \le |x_{N+1} - x_{N-1}| = 2h_N$$

421 So we have

422 (3.139)
$$|Ly_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

423 While

424 (3.140)
$$Ly_{N-1-i}^{1-1/r}(\xi) - \xi^{1-1/r} \le (Ly_{N-1-i}(\xi) - \xi)\xi^{-1/r}$$

425 and (3.14)

$$\left|\frac{h_N}{rZ_1} - \xi^{1-1/r}\right| \le \max\{\left|\frac{h_N}{rZ_1} - x_{i-1}^{1-1/r}\right|, \left|\frac{h_N}{rZ_1} - x_{i+1}^{1-1/r}\right|\}$$

$$426 \qquad \qquad \leq \max \begin{cases} T^{1-1/r} - x_{i-1}^{1-1/r} \leq |x_N - x_{i-1}| T^{-1/r} \leq C|x_N - x_i| \\ |x_{i+1}^{1-1/r} - x_{N-1}^{1-1/r}| \leq |x_{i+1} - x_{N-1}| |x_{N-1}^{-1/r} \leq C|x_N - x_i| \end{cases}$$

427 So we have

428
$$(3.142)$$
 $(_L y_{N-i}^{\theta}(\xi) - \xi)' \le C|y_N^{\theta} - x_i|$

429

$$(|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = |_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-\alpha}(_{L}y_{N-i}^{\theta}(\xi) - \xi)'$$

$$\leq |y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

431 Finally,

$$(|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-\alpha}(_{L}y_{N-i}^{\theta}(\xi) - \xi)''$$

$$+ \alpha(\alpha - 1)|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-1-\alpha}((_{L}y_{N-i}^{\theta}(\xi) - \xi)')^{2} \quad \Box$$

$$\leq C(r-1)|y_{N}^{\theta} - x_{i}|^{-\alpha} + C|y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

By the three lemmas above, for $N/2 \le i \le N-1$, we have

Lemma 3.32.

(3.145)

$$D_{hL}^{2} P_{N-i}^{\theta}(x_{i}) = {}_{L} P_{N-i}^{\theta}{}''(\xi) \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq C h^{3} |y_{N}^{\theta} - x_{i}|^{1-\alpha} + C(r-1)(h^{3}|y_{N}^{\theta} - x_{i}|^{-\alpha} + h^{2}|y_{N}^{\theta} - x_{i}|^{1-\alpha})$$

Lemma 3.33.

436 (3.146)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{{}_{L}Q_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1}^{\theta}) - {}_{L}Q_{N-i}^{\theta}(x_i)u'''(\eta_{N}^{\theta})}{h_{i+1}} \right) \\ \leq Ch^3 |y_N^{\theta} - x_i|^{1-\alpha}$$

437 And immediately, For $N/2 \le i \le N-2$

$$V_{iN} \leq C \int_{x_{N-1}}^{x_N} h^2 |y - x_i|^{1-\alpha} + C(r-1)h^2 |y - x_i|^{-\alpha} + h|y - x_i|^{1-\alpha} dy$$

$$\leq Ch^2 h_N |T - x_i|^{1-\alpha} + C(r-1)h^2 |x_{N-1} - x_i|^{1-\alpha} + Chh_N |T - x_i|^{1-\alpha}$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

But expecially, when i = N - 1,

$$V_{N-1,N} = \int_{0}^{1} -\frac{\theta^{2-\alpha}(1-\theta)}{2} \frac{2}{h_{N-1} + h_{N}} \left(\frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - (\frac{1}{h_{N-1}} + \frac{1}{h_{N}}) h_{N}^{4-\alpha} u''(y_{N}^{\theta}) + \frac{1}{h_{N}} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1}) u'''(\eta_{N+1,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i}) u'''(\eta_{N,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1}) u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1}) u'''(\eta_{N,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i}) u'''(\eta_{N,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1}) u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

while combine Lemma 3.29

$$\frac{2}{h_{N-1} + h_N} \left(\frac{1}{h_{N-1}} h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - \left(\frac{1}{h_{N-1}} + \frac{1}{h_N} \right) h_N^{4-\alpha} u''(y_N^{\theta}) + \frac{1}{h_N} h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right)$$

$$= D_h^2 (h_{N-1 \to N}^{4-\alpha} (x_i) u''(y_{N-1 \to N}^{\theta} (x_i)))$$

$$\leq C h_N^{4-\alpha} + C(r-1) h_N^{3-\alpha} \leq C h^{4-\alpha} + C(r-1) h^2 |T - x_{N-1-1}|^{1-\alpha}$$

Similarly with
$$j = N + 1$$
.

$$I_6$$
, I_7 is easy. Similar with Lemma 3.21 and Lemma 3.6, we have

446

Theorem 3.34. There is a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

448
$$N/2 \le i \le N$$

(3.150)

$$I_{6} = \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2N - \lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N - \lceil \frac{N}{2} \rceil}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,2N - \lceil \frac{N}{2} \rceil + 1} \right)$$

$$\leq Ch^{2}$$

450 *Proof.* In fact, let $l = 2N - \lceil \frac{N}{2} \rceil + 1$

$$\frac{1}{h_i}(T_{i-1,l} + T_{i-1,l-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}})T_{i,l}
= \frac{1}{h_i}(T_{i-1,l} - T_{i,l}) + \frac{1}{h_i}(T_{i-1,l-1} - T_{i,l}) + (\frac{1}{h_i} - \frac{1}{h_{i+1}})T_{i,l}$$

452 While, by Lemma A.2

$$\frac{1}{h_{i}}(T_{i-1,l} - T_{i,l}) = \int_{x_{l-1}}^{x_{l}} (u(y) - \Pi_{h}u(y)) \frac{|x_{i-1} - y|^{1-\alpha} - |x_{i} - y|^{1-\alpha}}{h_{i}\Gamma(2-\alpha)} dy$$

$$\leq C \int_{x_{l-1}}^{x_{l}} h_{l}^{2}u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy$$

$$\leq C h_{l}^{3} x_{l-1}^{\alpha/2-2} T^{-\alpha}$$

$$\leq C h_{l}^{3}$$

454 Thus,

455 (3.153)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l} - T_{i,l}) \le Ch_l^2$$

456 For

(3.154)

$$457 \quad \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{h_{l-1}^3 |y_{l-1}^\theta - x_{i-1}|^{1-\alpha} u''(\eta_{l-1}^\theta) - h_l^3 |y_l^\theta - x_i|^{1-\alpha} u''(\eta_l^\theta)}{h_i} d\theta$$

458 And Similar with Lemma 3.19, we can get

$$459 \quad (3.155) \quad \frac{h_{l-1}^3 |y_{l-1}^{\theta} - x_{i-1}|^{1-\alpha} u''(\eta_{l-1}^{\theta}) - h_l^3 |y_l^{\theta} - x_i|^{1-\alpha} u''(\eta_l^{\theta})}{(h_i + h_{i+1}) h_i} \le C h_l^2 |y_l^{\theta} - x_i|^{1-\alpha} u''(\eta_l^{\theta})$$

460 So

461 (3.156)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) \le Ch^2$$

462 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

463 (3.157)
$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,l} \le h_i^{-3} h^2 x_i^{1-2/r} h_l C h_l^2 x_{l-1}^{\alpha/2-2} |x_l - x_i|^{1-\alpha} < C h^2$$

464 Summarizes, we have

465 (3.158)
$$I_6 \le Ch^2$$

466 And

Lemma 3.35. There is a constant $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2\leq 468$ $i\leq N$,

$$I_{7} = \sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N} S_{ij}$$

$$\leq \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} \ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

470 *Proof.* For $i \leq N, j \geq 2N - \lceil \frac{N}{2} \rceil + 2$, we have

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} |y - x_{i+1}^{-1-\alpha} dy$$

$$\leq Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

472

$$\sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{(2-2^{-r})T}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0 \\ \ln(2^{-r}T) - \ln(h_{2N}), & \alpha/2-2/r+1=0 \\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0 \\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0 \\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

Now we can conclude a part of the theorem Theorem 3.3 at the beginning of this section.

476~ By Lemma 3.8 Lemma 3.21 Lemma 3.22 Theorem 3.28 Theorem 3.27 Theorem 3.34 Lemma 3.35 , we have

THEOREM 3.36. there exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for N/2 < i < N,

$$R_{i} = \sum_{j=1}^{7} I_{j}$$

$$\leq C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

And what we left is the case i = N. Fortunately, we can use the same department of R_i above, and it is symmetric. Most of the item has been esitmated by Lemma 3.8 and Theorem 3.34, we just need to consider I_3 , I_4 .

484

Theorem 3.37. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

486 (3.162)
$$I_3 = \sum_{j=\lceil \frac{N}{2} \rceil + 1}^{N-1} V_{Nj} \le Ch^2 + C(r-1)h^2 |T - x_{N-1}|^{1-\alpha}$$

487 Proof. Definition 3.38. For $N/2 \le j < N$, Let's define

488 (3.163)
$$y_j(x) = \left(\frac{Z_1}{h_N}(x - x_N) + Z_j\right)^r, \quad Z_j = T^{1/r} \frac{j}{N}$$

We can see that is the inverse of the function $_{0}y_{N-i}(x)$ defined in Theorem 3.28.

490 (3.164)
$$y'_j(x) = y_j^{1-1/r}(x) \frac{rZ_1}{h_N}$$

491 (3.165)
$$y_j''(x) = y_j^{1-2/r}(x) \frac{r(r-1)Z_1}{h_N}$$

With the scheme we used several times, we can get

LEMMA 3.39. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le j < N, \xi \in [x_{N-1}, x_{N+1}],$

495 (3.166)
$$h_i(\xi)^3 \le Ch^3$$

496
$$(3.167)$$
 $(h_i^3(\xi))' \le C(r-1)h^3$

497 (3.168)
$$(h_i^3(\xi))'' \le C(r-1)h^3$$

498

499 (3.169)
$$u''(y_i^{\theta}(\xi)) \le C$$

500 (3.170)
$$(u''(y_j^{\theta}(\xi)))' \le C$$

501 (3.171)
$$(u''(y_i^{\theta}(\xi)))'' \le C$$

502

503 (3.172)
$$|\xi - y_j^{\theta}(\xi)|^{1-\alpha} \le C|x_N - y_j^{\theta}|^{1-\alpha}$$

504 (3.173)
$$(|\xi - y_i^{\theta}(\xi)|^{1-\alpha})' \le C|x_N - y_i^{\theta}|^{1-\alpha}$$

505 (3.174)
$$(|\xi - y_i^{\theta}(\xi)|^{1-\alpha})'' \le C|x_N - y_i^{\theta}|^{1-\alpha} + C(r-1)|x_N - y_i^{\theta}|^{-\alpha}$$

Lemma 3.40. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le j < N$,

508 (3.175)
$$V_{Nj} \le Ch^2 \int_{x_{i-1}}^{x_j} |x_N - y|^{1-\alpha} + (r-1)|x_N - y|^{-\alpha} dy$$

509 Therefore,

$$I_{3} \leq Ch^{2} \int_{x_{\lceil \frac{N}{2} \rceil}}^{x_{N-1}} |x_{N} - y|^{1-\alpha} + (r-1)|x_{N} - y|^{-\alpha} dy$$

$$\leq Ch^{2} (|T - x_{N-1}|^{2-\alpha} + (r-1)|T - x_{N-1}|^{1-\alpha})$$

For
$$j = N$$
,
LEMMA 3.41.

$$V_{N,N} = \frac{1}{h_N^2} \left(T_{N-1,N-1} - 2T_{N,N} + T_{N+1,N+1} \right) \le Ch^2 + C(r-1)h^2 |T - x_{N-1}|^{1-\alpha}$$

$$V_{N,N} = \int_0^1 -\frac{\theta(1-\theta)^{2-\alpha}}{2} \frac{1}{h_N^2} \left(h_{N-1}^{4-\alpha} u''(y_{N-1}^{\theta}) - 2h_N^{4-\alpha} u''(y_N^{\theta}) + h_{N+1}^{4-\alpha} u''(y_{N+1}^{\theta}) \right) d\theta$$

$$+ \int_0^1 \frac{\theta^3 (1 - \theta)}{3!} \frac{1}{h_N} \left(\frac{Q_{N \to N}^{\theta}(x_{N+1}) u'''(\eta_{N+1,1}^{\theta}) - Q_{N \to N}^{\theta}(x_i) u'''(\eta_{N,1}^{\theta})}{h_N} \right) d\theta$$

$$-\int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N})u'''(\eta_{N,1}^{\theta}) - Q_{N\to N}^{\theta}(x_{N-1})u'''(\eta_{N-1,1}^{\theta})}{h_{N}} \right) d\theta$$

$$-\int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N+1})u'''(\eta_{N+1,2}^{\theta}) - Q_{N\to N}^{\theta}(x_{N})u'''(\eta_{N,2}^{\theta})}{h_{N}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta (1 - \theta)^3}{3!} \frac{1}{h_N} \left(\frac{Q_{N \to N}^{\theta}(x_N) u'''(\eta_{N,2}^{\theta}) - Q_{N \to N}^{\theta}(x_{N-1}) u'''(\eta_{N-1,2}^{\theta})}{h_N} \right) d\theta$$

So combine Lemma 3.8, Theorem 3.34, Theorem 3.37, Lemma 3.41 We have 514 Lemma 3.42.

515 (3.179)
$$R_N \le C(r-1)h^2|T-x_{N-1}|^{1-\alpha} + \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0\\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

and with Theorem 3.36 we prove the Theorem 3.3

- 517 4. Convergence analysis.
- **4.1. Properties of some Matrices.** Review subsection 2.1, we have got (2.10).
- Definition 4.1. We call one matrix an M matrix, which means its entries are
- 520 positive on major diagonal and nonpositive on others, and strictly diagonally dominant
- 521 in rows.
- Now we have
- LEMMA 4.2. Matrix A defined by (2.12) where (2.13) is an M matrix. And there
- 524 exists a constant $C_A = C(T, \alpha, r)$ such that

525 (4.1)
$$S_i := \sum_{j=1}^{2N-1} a_{ij} \ge C_A (x_i^{-\alpha} + (2T - x_i)^{-\alpha})$$

526 Proof. From (2.14), we have

$$\sum_{i=1}^{2N-1} \tilde{a}_{ij} = \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_0|^{3-\alpha} - |x_i - x_1|^{3-\alpha}}{h_1} + \frac{|x_{2N} - x_i|^{3-\alpha} - |x_{2N-1} - x_i|^{3-\alpha}}{h_{2N}} \right)$$

- 528 Let
- 529 (4.3) $g(x) = g_0(x) + g_{2N}(x)$
- 530 where

531
$$g_0(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x-x_0|^{3-\alpha} - |x-x_1|^{3-\alpha}}{h_1}$$

532
$$g_{2N}(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x_{2N} - x|^{3-\alpha} - |x_{2N-1} - x|^{3-\alpha}}{h_{2N}}$$

533 Thus

$$-\kappa_{\alpha} \sum_{i=1}^{2N-1} \tilde{a}_{ij} = g(x_i)$$

535 Then

$$S_{i} := \sum_{j=1}^{2N-1} a_{ij}$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= D_{h}^{2} g_{0}(x_{i}) + D_{h}^{2} g_{2N}(x_{i})$$

537 When i = 1

$$D_{h}^{2}g_{0}(x_{1}) = \frac{2}{h_{1} + h_{2}} \left(\frac{1}{h_{2}}g_{0}(x_{2}) - (\frac{1}{h_{1}} + \frac{1}{h_{2}})g_{0}(x_{1}) + \frac{1}{h_{1}}g_{0}(x_{0}) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_{1}^{3-\alpha} + h_{2}^{3-\alpha} + 2h_{1}^{2-\alpha}h_{2} - (h_{1} + h_{2})^{3-\alpha}}{(h_{1} + h_{2})h_{1}h_{2}}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_{1}^{3-\alpha} + h_{2}^{3-\alpha} + 2h_{1}^{2-\alpha}h_{2} - (h_{1} + h_{2})^{3-\alpha}}{(h_{1} + h_{2})h_{1}^{1-\alpha}h_{2}} h_{1}^{-\alpha}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{1 + (2^{r} - 1)^{3-\alpha} + 2(2^{r} - 1) - (2^{r})^{3-\alpha}}{2^{r}(2^{r} - 1)} h_{1}^{-\alpha}$$

539 but

540 (4.6)
$$1 + (2^r - 1)^{3-\alpha} + 2(2^r - 1) - (2^r)^{3-\alpha} > 0$$

541 While for $i \geq 2$

$$D_h^2 g_0(x_i) = g_0''(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

$$= -\kappa_\alpha \frac{|\xi - x_0|^{1-\alpha} - |\xi - x_1|^{1-\alpha}}{\Gamma(2-\alpha)h_1}$$

$$= \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} |\xi - \eta|^{-\alpha}, \quad \eta \in [x_0, x_1]$$

$$\geq \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} x_{i+1}^{-\alpha} \geq \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} 2^{-r\alpha} x_i^{-\alpha}$$

543 So

$$544 \quad (4.8) \qquad \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_0(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_0(x_i) + \frac{1}{h_i} g_0(x_{i-1}) \right) \ge C x_i^{-\alpha}$$

545 symmetricly,

$$\begin{array}{l}
(4.9) & \square \\
\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_{2N}(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_{2N}(x_i) + \frac{1}{h_i} g_{2N}(x_{i-1}) \right) \ge C(\alpha, r) (2T - x_i)^{-\alpha}
\end{array}$$

547 Let

548 (4.10)
$$g(x) = \begin{cases} x, & 0 < x \le T \\ 2T - x, & T < x < 2T \end{cases}$$

549 And define

550 (4.11)
$$G = \operatorname{diag}(q(x_1), ..., q(x_{2N-1}))$$

551 Then

LEMMA 4.3. The matrix B := AG, the major diagnal is positive, and nonpositive

on others. And there is a constant C_{AG} , $C = C(\alpha, r)$ such that

$$554 \quad (4.12) \quad M_i := \sum_{j=1}^{2N-1} b_{ij} \ge -C_{AG}(x_i^{1-\alpha} + (2T-x_i)^{1-\alpha}) + C \begin{cases} |T-x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

Proof.

$$b_{ij} = a_{ij}g(x_j) = -\kappa_\alpha \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{a}_{i+1,j} - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) \tilde{a}_{i,j} + \frac{1}{h_i} \tilde{a}_{i-1,j} \right) g(x_j)$$

556 Since

$$557 \quad (4.13) \qquad \qquad g(x) \equiv \Pi_h g(x)$$

558 by **??**, we have

$$\tilde{M}_{i} := \sum_{j=1}^{2N-1} \tilde{b}_{ij} = \sum_{j=1}^{2N-1} \tilde{a}_{ij} g(x_{j})$$

$$= \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} \Pi_{h} g(y) dy = \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} g(y) dy$$

$$= \frac{-2}{\Gamma(4-\alpha)} |T - x_{i}|^{3-\alpha} + \frac{1}{\Gamma(4-\alpha)} (x_{i}^{3-\alpha} + (2T - x_{i})^{3-\alpha})$$

$$:= w(x_{i}) = p(x_{i}) + q(x_{i})$$

560 Thus,

563

564

$$M_{i} := \sum_{j=1}^{2N-1} b_{ij} = \sum_{j=1}^{2N-1} a_{ij} g(x_{j})$$

$$= -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{M}_{i+1} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) \tilde{M}_{i} + \frac{1}{h_{i}} \tilde{M}_{i-1} \right)$$

$$= D_{h}^{2} (-\kappa_{\alpha} p)(x_{i}) - \kappa_{\alpha} D_{h}^{2} q(x_{i})$$

562 for $1 \le i \le N - 1$, by Lemma A.1 (4.16)

$$D_h^2(-\kappa_{\alpha}p)(x_i) := -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} p(x_{i+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) p(x_i) + \frac{1}{h_i} p(x_{i-1}) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(2 - \alpha)} |T - \xi|^{1 - \alpha} \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\geq \frac{2\kappa_{\alpha}}{\Gamma(2 - \alpha)} |T - x_{i-1}|^{1 - \alpha}$$

$$(4.17)$$

$$D_{h}^{2}(-\kappa_{\alpha}p)(x_{N}) := -\kappa_{\alpha} \frac{2}{h_{N} + h_{N+1}} \left(\frac{1}{h_{N+1}} p(x_{N+1}) - (\frac{1}{h_{N}} + \frac{1}{h_{N+1}}) p(x_{N}) + \frac{1}{h_{N}} p(x_{N-1}) \right)$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4 - \alpha)h_{N}^{2}} h_{N}^{3-\alpha}$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4 - \alpha)} (T - x_{N-1})^{1-\alpha}$$

Symmetricly for $i \geq N$, we get

567 (4.18)
$$D_h^2(-\kappa_{\alpha}p)(x_i) \ge \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

568 Similarly, we can get

$$D_h^2 q(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} q(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) q(x_i) + \frac{1}{h_i} q(x_{i-1}) \right)$$

$$\leq \frac{2^{r(\alpha - 1) + 1}}{\Gamma(2 - \alpha)} (x_i^{1 - \alpha} + (2T - x_i)^{1 - \alpha}), \quad i = 1, \dots, 2N - 1$$

570 So, we get the result.

Notice that

572 (4.20)
$$x_i^{-\alpha} \ge (2T)^{-1} x_i^{1-\alpha}$$

573 We can get

THEOREM 4.4. There exists a real $\lambda = \lambda(T, \alpha, r) > 0$ and $C = C(T, \alpha, r) > 0$

such that $B := A(\lambda I + G)$ is an M matrix. And

576 (4.21)
$$M_i := \sum_{j=1}^{2N-1} b_{ij} \ge C(x_i^{-\alpha} + (2T - x_i)^{-\alpha}) + C \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

577 Proof. By Lemma 4.2 with C_A and Lemma 4.3 with C_{AG} , it's sufficient to take

578 $\lambda = (C + 2TC_{AG})/C_A$, then

579 (4.22)
$$M_i \ge C \left((x_i^{-\alpha} + (1 - x_i)^{-\alpha}) + \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases} \right)$$

4.2. Proof of Theorem 2.6. For equation

581 (4.23)
$$AU = F \Leftrightarrow A(\lambda I + G)(\lambda I + G)^{-1}U = F$$
 i.e. $B(\lambda I + G)^{-1}U = F$

582 which means

583 (4.24)
$$\sum_{j=1}^{2N-1} b_{ij} \frac{\epsilon_j}{\lambda + g(x_j)} = -\tau_i$$

584 where $\epsilon_i = u(x_i) - u_i$.

585 And if

$$|\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| = \max_{1 \le i \le 2N-1} |\frac{\epsilon_i}{\lambda + g(x_i)}|$$

Then, since $B = A(\lambda I + G)$ is an M matrix, it is Strictly diagonally dominant. Thus,

$$|\tau_{i_0}| = |\sum_{j=1}^{2N-1} b_{i_0,j} \frac{\epsilon_j}{\lambda + g(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_j}{\lambda + g(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

$$= \sum_{j=1}^{2N-1} b_{i_0,j} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

$$= M_{i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

By Theorem 2.5 and Theorem 4.4,

We knwn that there exists constants $C_1(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$,

and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

592 (4.27)
$$|\frac{\epsilon_i}{\lambda + g(x_i)}| \le |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| \le C_1 h^{\min\{\frac{r\alpha}{2}, 2\}} + C_2(r-1)h^2$$

A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MES \$B

593 as
$$\lambda + g(x_i) \le \lambda + T$$

594 So, we can get

595 (4.28)
$$|\epsilon_i| \le C(\lambda + T)h^{\min\{\frac{r\alpha}{2}, 2\}}$$

- The convergency has been proved.
- 597 Remarks:

598 **5. Experimental results.**

599 **5.1.**
$$f \equiv 1$$
.

5.2. $f = x^{\gamma}, \gamma < 0$. Appendix A. Approximate of difference quotients.

LEMMA A.1. If $g(x) \in C^2(\Omega)$, there exists $\xi \in (x_{i-1}, x_{i+1})$ such that

$$D_h^2 g(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right)$$

$$= g''(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

$$(A.2) \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} g''(y) (y - x_{i-1}) dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} g''(y) (x_{i+1} - y) dy \right)$$

And if $g(x) \in C^4(\Omega)$, then

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= g''(x_{i}) + \frac{h_{i+1} - h_{i}}{3} g'''(x_{i}) + \frac{1}{4!} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} g''''(\eta_{1}) + h_{i+1}^{3} g''''(\eta_{2}))$$

607 where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}].$ Proof.

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in (x_{i-1}, x_i)$$

$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in (x_i, x_{i+1})$$

610 Substitute them in the left side of (A.1), we have

$$\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right) \\
= \frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2)$$

Now, using intermediate value theorem, there exists $\xi \in [\xi_1, \xi_2]$ such that

$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

614 For the second equation, similarly

615
$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \int_{x_{i-1}}^{x_i} g''(y)(y - x_{i-1})dy$$

$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \int_{x_i}^{x_{i+1}} g''(y)(x_{i+1} - y)dy$$

617 And the last equation can be obtained by

$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$g(x_{i+1}) = g(x_i) + h_{i+1}g'(x_i) + \frac{h_{i+1}^2}{2}g''(x_i) + \frac{h_{i+1}^3}{3!}g'''(x_i) + \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

620 Expecially,

$$\int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy = \frac{h_i^4}{4!} g''''(\eta_1)$$

$$\int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy = \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

where $\eta_1 \in (x_{i-1}, x_i), \eta_2 \in (x_i, x_{i+1})$. Substitute them to the left side of (A.3), we can

624 LEMMA A.2. Denote
$$y_j^{\theta} = (1 - \theta)x_{j-1} + \theta x_j, \theta \in (0, 1),$$

625 (A.5)
$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in (x_{j-1}, x_j)$$

626 (A 6)

627
$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!} h_j^3 (\theta^2 u'''(\eta_1) - (1-\theta)^2 u'''(\eta_2))$$

628 where
$$\eta_1 \in (x_{j-1}, y_i^{\theta}), \eta_2 \in (y_i^{\theta}, x_j).$$

629 *Proof.* By Taylor expansion, we have

630
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in (x_{j-1}, y_j^{\theta})$$

631
$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in (y_j^{\theta}, x_j)$$

632 Thus

633

$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = u(y_j^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_j)$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2(\theta u''(\xi_1) + (1 - \theta)u''(\xi_2))$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2 u''(\xi), \quad \xi \in [\xi_1, \xi_2]$$

634 The second equation is similar,

635
$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{\theta^3 h_j^3}{3!} u'''(\eta_1)$$

636
$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{(1 - \theta)^3 h_j^3}{3!} u'''(\eta_2)$$

637 where
$$\eta_1 \in (x_{j-1}, y_j^{\theta}), \eta_2 \in (y_j^{\theta}, x_j)$$
. Thus

$$u(y_{j}^{\theta}) - \Pi_{h}u(y_{j}^{\theta}) = u(y_{j}^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(y_{j}^{\theta}) + \frac{\theta(1 - \theta)}{3!}h_{j}^{3}(\theta^{2}u'''(\eta_{1}) - (1 - \theta)^{2}u'''(\eta_{2}))$$

639 LEMMA A.3. For $x \in [x_{j-1}, x_j]$

$$|u(x) - \Pi_h u(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

641 If $x \in [0, x_1]$, with Corollary 2.4, we have

642 (A.8)
$$|u(x) - \Pi_h u(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2}$$

643 Similarly, if $x \in [x_{2N-1}, 1]$, we have

644 (A.9)
$$|u(x) - \Pi_h u(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} x_1^{\alpha/2}$$

Lemma A.4.

645 (A.10)
$$b^{1-\theta}|a^{\theta}-b^{\theta}| \le |a-b|$$
 (also $a^{1-\theta}|a^{\theta}-b^{\theta}| \le |a-b|$), $a,b \ge 0, \ \theta \in [0,1]$

Appendix B. Inequality. For convenience, we use the notation and \simeq . That $x_1 \simeq y_1$, means that $c_1x_1 \leq y_1 \leq C_1x_1$ for some constants c_1 and c_1 that are independent of mesh parameters.

649

LEMMA B.1.

650 (B.1)
$$h_i \simeq \begin{cases} hx_i^{1-1/r}, & 1 \le i \le N \\ h(2T - x_i)^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

651 Since, $i^r - (i-1)^r \simeq i^{r-1}$, for $i \ge 1$

652

653 LEMMA B.2. There is a constant $C=2^{|r-2|}r(r-1)T^{2/r}$ such that for all $i\in\{1,2,\cdots,2N-1\}$

655 (B.2)
$$|h_{i+1} - h_i| \le Ch^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

Proof.

656
$$h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

657 For i = 1,

658
$$h_2 - h_1 = T(2^r - 2) \left(\frac{1}{N}\right)^r = (2^r - 2)T^{2/r}h^2x_1^{1 - 2/r}$$

659 For $2 \le i \le N-1$, by Lemma A.1, we have

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2}, \quad \eta \in \left[\frac{i-1}{N}, \frac{i+1}{N}\right]$$
$$= C(r-1)h^2 x_i^{1-2/r}$$

661 Summarizes the inequalities, we can get

662 (B.3)
$$|h_{i+1} - h_i| \le 2^{|r-2|} r(r-1) T^{2/r} h^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

- 663 Appendix C. Proofs of some technical details.
- 664 Additional proof of Theorem 3.1. For $2 \le i \le N-1$,

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

$$\leq C \frac{2}{h_i + h_{i+1}} (h_i^3 x_{i-1}^{-2-\alpha/2} + h_{i+1}^3 x_i^{-2-\alpha/2})$$

$$\leq 2C (h_i^2 x_{i-1}^{-2-\alpha/2} + h_{i+1}^2 x_i^{-2-\alpha/2})$$

There is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

667
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le C h^2 x_i^{-\alpha/2 - 2/r}, \quad 2 \le i \le N - 1$$

668 For i = 1, by (A.4)

665

$$\frac{1}{4!} \frac{2}{h_1 + h_2} (h_1^3 f''(\eta_1) + h_2^3 f''(\eta_2))$$

$$= \frac{2}{h_1 + h_2} \left(\frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy + \frac{1}{4!} h_2^3 f''(\eta_2) \right)$$

670 We have proved above that

$$\frac{2}{h_1 + h_2} h_2^3 f''(\eta_2) \le C h^2 x_1^{-\alpha/2 - 2/r}$$

and we can get

$$\int_{0}^{x_{1}} f''(y) \frac{y^{3}}{3!} dy \le C \frac{1}{3!} \int_{0}^{x_{1}} y^{1-\alpha/2} dy$$

$$= C \frac{1}{3!(2-\alpha/2)} x_{1}^{2-\alpha/2}$$

674 sc

675
$$\frac{2}{h_1 + h_2} \frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy = \frac{C2^{1-r}}{3!(2 - \alpha/2)} x_1^{-\alpha/2} = \frac{C2^{1-r}}{3!(2 - \alpha/2)} T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

676 And for i = N, we have

$$\frac{2}{h_N + h_{N+1}} (h_N^3 f''(\eta_1) + h_{N+1}^3 f''(\eta_2))$$

$$= h_N^2 (f''(\eta_1) + f''(\eta_2))$$

$$\le r^2 T^{2/r} h^2 x_N^{2-2/r} 2C x_{N-1}^{-2-\alpha/2}$$

$$\le 2r^2 T^{2/r} C 2^{-r(-2-\alpha/2)} h^2 x_N^{-\alpha/2-2/r}$$

Finally, $N+1 \le i \le 2N-1$ is symmetric to the first half of the proof, so we can

679 conclude that

680
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N \le i \le 2N - 1 \end{cases}$$

Lemma C.1. By a standard error estimate for linear interpolation, and Corol-

lary 2.4, There is a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 for $2 \le j \le N$,

683 (C.1)
$$|u(y) - \Pi_h u(y)| \le Ch^2 y^{\alpha/2 - 2/r}, \quad \text{for } y \in [x_{j-1}, x_j]$$

symmetricly, for $N < j \le 2N - 1$, we have

685 (C.2)
$$|u(y) - \Pi_h u(y)| \le Ch^2 (2T - y)^{\alpha/2 - 2/r}$$

LEMMA C.2. There is a constant $C = C(\alpha, r)$ such that for all $1 \le i < N/2$,

687 $\max\{2i+1, i+3\} \le j \le 2N$, we have

688 (C.3)
$$D_h^2 K_y(x_i) \le C \frac{y^{-1-\alpha}}{\Gamma(-\alpha)}, \quad y \in [x_{j-1}, x_j]$$

689 *Proof.* Since $y \ge x_{j-1} > x_{i+1}$, by Lemma A.1, if j - 1 > i + 1

$$D_h^2 K_y(x_i) = K_y''(\xi) = \frac{|y - \xi|^{-1 - \alpha}}{\Gamma(-\alpha)}, \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq \frac{(y - x_{i+1})^{-1 - \alpha}}{\Gamma(-\alpha)}$$

$$\leq (1 - (\frac{2}{3})^r)^{-1 - \alpha} \frac{y^{-1 - \alpha}}{\Gamma(-\alpha)}$$

LEMMA C.3. There is a constant $C = C(\alpha, r)$ such that for all $3 \le i \le N, k =$

692 $\left[\frac{i}{2}\right], 1 \leq j \leq k-1 \text{ and } y \in [x_{j-1}, x_j], \text{ we have }$

693 (C.4)
$$D_h^2 K_y(x_i) \le C \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

694 *Proof.* Since $y \le x_i < x_{i-1}$, by Lemma A.1,

$$D_{h}^{2}K_{y}(x_{i}) = \frac{|\xi - y|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq \frac{(x_{i-1} - x_{j})^{-1-\alpha}}{\Gamma(-\alpha)} \leq \frac{(x_{i-1} - x_{k-1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq ((\frac{2}{3})^{r} - (\frac{1}{2})^{r})^{-1-\alpha} \frac{x_{i}^{-1-\alpha}}{\Gamma(-\alpha)}$$

696

Lemma C.4. While $0 \le i < N/2$, By Lemma A.3

$$|T_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} \frac{|x_i - y|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2} \left| x_i^{2-\alpha} - |x_i - x_1|^{2-\alpha} \right|$$

$$\le C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2+2-\alpha} = C \frac{1}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \quad 0 < 2 - \alpha < 1$$

699 For $2 \le j \le N$, by Lemma A.2 and Corollary 2.4

$$|T_{ij}| \leq \frac{C}{4} \int_{x_{j-1}}^{x_j} h_j^2 x_{j-1}^{\alpha/2-2} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$\leq \frac{C}{4\Gamma(3-\alpha)} h_j^2 x_{j-1}^{\alpha/2-2} \left| |x_j - x_i|^{2-\alpha} - |x_{j-1} - x_i|^{2-\alpha} \right|$$

LEMMA C.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

702 (C.7)
$$\sum_{j=1}^{3} S_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

703

704 (C.8)
$$\sum_{i=1}^{4} S_{2i} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

705

Proof.

$$S_{1j} = \frac{2}{x_2} \left(\frac{1}{x_1} T_{0j} - \left(\frac{1}{x_1} + \frac{1}{h_2} \right) T_{1j} + \frac{1}{h_2} T_{2j} \right)$$

707 So, by Lemma C.4

$$S_{11} \le \frac{2}{x_2 x_1} 4 \frac{C}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \le C x_1^{-\alpha/2}$$

709 710

$$S_{12} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_2^2 x_1^{\alpha/2-2} \left(x_2^{2-\alpha} + 2h_2^{2-\alpha} + h_2^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

711712

$$S_{13} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_3^2 x_2^{\alpha/2-2} \left(x_3^{2-\alpha} + 2x_3^{2-\alpha} + h_3^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

713 But

714
$$x_1^{-\alpha/2} = T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

715 i = 2 is similar.

716

Lemma C.6. There exists a constant C = C(T, r, l) such that For $3 \le i \le N$ 717 $1, \lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\},\$ 718

719 when
$$\xi \in (x_{i-1}, x_{i+1})$$
,

720 (C.9)
$$(h_{j-i}^3(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j$$

721

722 (C.10)
$$(h_{i-i}^4(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_i^2$$

Proof. From (3.32)723

724 (C.11)
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

725 (C.12)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

For $\xi \in (x_{i-1}, x_{i+1})$ and $2 \le k \le j \le \min\{2i - 1, N - 1\}$, using Lemma B.1 726

727
$$\xi \simeq x_i \simeq x_j$$

728

729
$$h_{j-i}(\xi) \simeq h_j \simeq h x_j^{1-1/r} \simeq h x_i^{1-1/r}$$

730 (C.13)
$$h'_{j-i}(\xi) = y'_{j-i}(\xi) - y'_{j-i-1}(\xi) \\ = \xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi))$$

Since 731

$$y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi) \le x_{j+1}^{1-1/r} - x_{j-2}^{1-1/r}$$

$$= T^{1-1/r}N^{1-r}((j+1)^{r-1} - (j-2)^{r-1})$$

$$\le C(r-1)j^{r-2}N^{1-r}$$

$$= C(r-1)hx_j^{1-2/r}$$

Therefore, 733

734 (C.15)
$$h'_{j-i}(\xi) \le Cx_i^{1/r-1}(r-1)hx_j^{1-2/r} \simeq (r-1)hx_i^{-1/r}$$

for l = 3, 4735

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h'_{j-i}(\xi)$$

$$\leq Ch_{j-i}^{l-1}(\xi)(r-1)hx_{i}^{-1/r}$$

$$\simeq Ch_{j}^{l-2}hx_{j}^{1-1/r}(r-1)hx_{i}^{-1/r}$$

$$\simeq C(r-1)h^{2}x_{i}^{1-2/r}h_{j}^{l-2}$$

Meanwhile, we can get 737

738 (C.17)
$$h_{j-i}^3(\xi) \simeq h_j^3 \le Ch^2 x_i^{2-2/r} h_j$$

739 (C.18)
$$h_{i-i}^4(\xi) \simeq h_i^4 \le Ch^2 x_i^{2-2/r} h_i^2$$

This manuscript is for review purposes only.

740

Lemma C.7. There exists a constant C = C(T, r, l) such that For $3 \le i \le N$

742 $1, \lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\},\$

743 when $\xi \in (x_{i-1}, x_{i+1})$,

744 (C.19)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_i$$

Proof.

745 (C.20)
$$(h_{j-i}^3(\xi))'' = 6h_{j-i}(\xi)(h'_{j-i}(\xi))^2 + 3h_{j-i}^2(\xi)h''_{j-i}(\xi)$$

746 By (C.15)

747 (C.21)
$$h_{j-i}(\xi)(h'_{j-i}(\xi))^2 \le Ch_j(r-1)^2 h^2 x_i^{-2/r}$$

748 For the second partial

$$h_{j-i}''(\xi) = y_{j-i}''(\xi) - y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (y_{j-i}^{1-2/r}(\xi) Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi) Z_{j-i-1})$$

$$= \frac{1-r}{r} \xi^{1/r-2} ((y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi)) Z_{j-i} + y_{j-i-1}^{1-2/r}(\xi) Z_1)$$

750 but

$$|y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi)| \le |x_{j+1}^{1-2/r} - x_{j-2}^{1-2/r}|$$

$$= T^{1-2/r}N^{2-r}|(j+1)^{r-2} - (j-2)^{r-2}|$$

$$\le C|r - 2|N^{2-r}j^{r-3}$$

$$= C|r - 2|hx_j^{1-3/r}$$

752 So we can get

753 (C.24)
$$|h_{j-i}''(\xi)| \le C(r-1)x_i^{1/r-2}(|r-2|hx_i^{1-3/r}x_i^{1/r} + x_i^{1-2/r}h)$$

$$\le C(r-1)hx_i^{-1-1/r}$$

754 Summarizes, we have

755 (C.25)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

756 proof of Lemma 3.16. From (3.32)

757 (C.26)
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

758 (C.27)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

759 Since

$$y_{j-i}^{\theta}(\xi) \simeq x_j \simeq x_i$$

761 We have known

762 (C.28)
$$u''(y_{i-i}^{\theta}(\xi)) \le C(y_{i-i}^{\theta}(\xi))^{\alpha/2-2} \simeq x_i^{\alpha/2-2} \simeq x_i^{\alpha/2-2}$$

763

$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$

$$\leq Cx_{i}^{\alpha/2-3}\xi^{1/r-1}y_{j-i}^{1-1/r}(\xi)$$

$$\simeq x_{i}^{\alpha/2-3}x_{i}^{1/r-1}x_{i}^{1-1/r} = Cx_{i}^{\alpha/2-3}$$

765

$$(u''(y_{j-i}^{\theta}(\xi)))'' = u''''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^{2} + u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-4} + Cx_{i}^{\alpha/2-3}\frac{r-1}{r}x_{i}^{1-2/r}x_{i}^{1/r-2}Z_{|j-i|+1}$$

$$\leq Cx_{i}^{\alpha/2-4} + C\frac{r-1}{r}x_{i}^{\alpha/2-3}x_{i}^{-1-1/r}x_{i}^{1/r}$$

$$= Cx_{i}^{\alpha/2-4}$$

Proof of Lemma 3.17.

767 (C.31)
$$|y_{j-i}^{\theta}(\xi) - \xi| = |\theta(y_{j-i-1}(\xi) - \xi) + (1 - \theta)(y_{j-i}(\xi) - \xi)|$$
$$= \theta|y_{j-i-1}(\xi) - \xi| + (1 - \theta)|y_{j-i}(\xi) - \xi|$$

where $y_{j-i-1}(\xi) - \xi$ and $y_{j-i}(\xi) - \xi$ have the same sign (≥ 0 or ≤ 0), independent

769 with ξ

Since
$$|y_{j-i}(\xi) - \xi| = \operatorname{sign}(j-i)(y_{j-i}(\xi) - \xi)$$
 is increasing with ξ , (C.32)

771
$$\left(\frac{i-1}{i}\right)^r |x_j - x_i| \le |x_{j-1} - x_{i-1}| \le |y_{j-i}(\xi) - \xi| \le |x_{j+1} - x_{i+1}| \le \left(\frac{i+1}{i}\right)^r |x_j - x_i|$$

772 we have

773 (C.33)
$$|y_{i-1}(\xi) - \xi| \simeq |x_i - x_i|$$

774 Similarly, $|y_{j-1-i}(\xi) - \xi| \simeq |x_{j-1} - x_i|$. Thus, with (C.31), (C.33) and (3.30) we get

775 (C.34)
$$|y_{j-i}^{\theta}(\xi) - \xi| \simeq |y_j^{\theta} - x_i|$$

Next, since $|y_{j-i}^{\theta}(\xi) - \xi| = \text{sign}(j - i - 1 + \theta)(y_{j-i}^{\theta}(\xi) - \xi)$, so we can derivate it.

777 (C.35)
$$|(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'| = (\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}|(y_{j-i}^{\theta}(\xi))' - 1|$$

778 While, similar with (C.31), we have

779 (C.36)
$$|(y_{j-i}^{\theta}(\xi))' - 1| = (1 - \theta)|y_{j-i-1}'(\xi) - 1| + \theta|y_{j-i}'(\xi) - 1|$$

780 By Lemma A.4 and (C.33), we have

781 (C.37)
$$|y'_{j-i}(\xi) - 1| = \xi^{1/r-1} |y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$
$$\leq \xi^{-1} |y_{j-i}(\xi) - \xi|$$
$$\simeq x_i^{-1} |x_j - x_i|$$

782 So similar with (C.34), we can get

783 (C.38)
$$|(y_{i-i}^{\theta}(\xi))' - 1| \le Cx_i^{-1}|y_i^{\theta} - x_i|$$

784 Combine with (C.34), we get

785 (C.39)
$$|(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'| \le C|y_j^{\theta} - x_i|^{-\alpha} x_i^{-1} |y_j^{\theta} - x_i| = C|y_j^{\theta} - x_i|^{1-\alpha} x_i^{-1} |y_j^{\theta} - x_i| = C|y_j^{\theta} - x_i|^{1-\alpha} x_i^{-1} |y_j^{\theta} - x_i|^{1-\alpha} |y_j^{\theta} - x_i|^{1-$$

786 Finally, we have

787 (C.40)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1}((y_{j-i}^{\theta}(\xi))' - 1)^{2}$$
$$+ \operatorname{sign}(j - i - 1 + \theta)(1 - \alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi))''$$

788 For

789 (C.41)
$$(y_{i-i}^{\theta}(\xi))'' = (1-\theta)y_{i-i-1}''(\xi) + \theta y_{i-i}''(\xi)$$

790 and

791 (C.42)
$$y_{j-i}''(\xi) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$
$$\simeq \frac{1-r}{r} x_j^{1-2/r} x_i^{1/r-2} Z_{j-i}$$

792 while by Lemma A.4

793 (C.43)
$$|Z_{j-i}| = |x_i^{1/r} - x_i^{1/r}| \le |x_j - x_i|x_i^{1/r-1}$$

794 we have

795 (C.44)
$$|y_{i-i}''(\xi)| \le C(r-1)x_i^{-2}|x_j - x_i|$$

796 Therefore

797 (C.45)
$$|(y_{j-i}^{\theta}(\xi))''| \le C(r-1)x_i^{-2}|y_j^{\theta} - x_i|$$

798 Then, combine with (C.38),

799 (C.46)
$$|(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})''| \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

proof of Lemma 3.19. For $\lceil \frac{i}{2} \rceil \le j \le \min\{2i-1, N-1\}$

$$(C.47) \qquad \frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

$$= \frac{Q_{j-i}^{\theta}(x_{i+1}) - Q_{j-i}^{\theta}(x_{i})}{h_{i+1}}u'''(\eta_{j+1}^{\theta}) + Q_{j-i}^{\theta}(x_{i})\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

802 Since mean value theorem

803 (C.48)
$$\frac{Q_{j-i}^{\theta}(x_{i+1}) - Q_{j-i}^{\theta}(x_i)}{h_{i+1}} = Q_{j-i}^{\theta'}(\xi), \quad \xi \in (x_i, x_{i+1})$$

804 From (3.36) and Leibniz rule, by Lemma C.6 and Lemma 3.17, we have

805 (C.49)
$$|Q_{j-i}^{\theta'}(\xi)| \le Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{1-2/r} h_j^2$$

And by Definition 3.12 and Lemma B.1 806

807 (C.50)
$$Q_{j-i}^{\theta}(x_i) = h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} \simeq Ch^2 x_i^{2-2/r} \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j^2$$

With $\eta_i^{\theta} \in (x_{i-1}, x_i)$ 808

809
$$u'''(\eta_{j+1}^{\theta}) \le C(\eta_{j+1}^{\theta})^{\alpha/2-3} \simeq x_j^{\alpha/2-3} \simeq x_i^{\alpha/2-3}$$

and 810

$$\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}} = u''''(\eta) \frac{\eta_{j+1}^{\theta} - \eta_{j}^{\theta}}{h_{i+1}}$$

$$\leq C \eta^{\alpha/2 - 4} \frac{x_{j+1} - x_{j-1}}{h_{i+1}} = C \eta^{\alpha/2 - 4} \frac{h_{j+1} + h_{j}}{h_{i+1}}$$

$$\simeq x_{j}^{\alpha/2 - 4} \simeq x_{i}^{\alpha/2 - 4}$$

So we have 812

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$
813 (C.51)
$$\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{1-2/r} h_{j}^{2} x_{i}^{\alpha/2-3} + Ch^{2} x_{i}^{2-2/r} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} h_{j}^{2} x_{j-1}^{\alpha/2-4}$$

$$= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}^{2}$$

while $h_j \simeq h_i$, substitute into the inequality above, we get the goal

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j}^{\theta})}{h_{i+1}} \right)$$
815 (C.52)
$$\leq \frac{1}{h_i} Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j h_i$$

$$= Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

While, the later is similar. 816

817

Lemma C.8. There exists a constant C = C(T,r) such that For $N/2 \le i < N$, $N+2 \le j \le 2N-\lceil \frac{N}{2} \rceil+1,\ l=3,4$, $\xi \in (x_{i-1},x_{i+1})$, we have

820 (C.53)
$$h_{j-i}^{l}(\xi) \le Ch_{j}^{l} \le Ch^{2}h_{j}^{l-2}$$

821 (C.54)
$$(h_{j-i-1}^{l}(\xi))' \le C(r-1)h^2 h_j^{l-2}$$

822 (C.55)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 h_j$$

Proof.

(C.56)
$$(h_{j-i}(\xi))' = y_{j-i}'(\xi) - y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1} ((2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}) \le 0$$

824 Thus.

825 (C.57)
$$Ch_{j} \le h_{j-1}(\xi) \le h_{j-i}(x_{i-1}) = h_{j-1} \le Ch_{j}$$

826 So as $4^{-r}T \le 2T - x_i \le T, 2^{-r}T \le x_i \le T$, we have

827 (C.58)
$$h_{i-1}^{l}(\xi) \le Ch_{i}^{l} \le Ch^{2}(2T - x_{j})^{2-2/r}h_{i}^{l-2} \le Ch^{2}h_{i}^{l-2}$$

828 Since

$$|(2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}|$$

$$= |(Z_{2N-(j-i)} - \xi^{1/r})^{r-1} - (Z_{2N-(j-1-i)} - \xi^{1/r})^{r-1}|$$

$$= (r-1)Z_1(Z_{2N-(j-i-\gamma)} - \xi^{1/r})^{r-2} \quad \gamma \in [0, 1]$$

$$\leq C(r-1)h(2T - x_j)^{1-2/r}$$

830 we have

831 (C.60)
$$|(h_{j-i}(\xi))'| \le C(r-1)h(2T-x_j)^{1-2/r}x_i^{1/r-1}$$

832 And

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h_{j-i}'(\xi)$$

$$\leq C(r-1)h_{j}^{l-1}h(2T-x_{j})^{1-2/r}x_{i}^{1/r-1}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}(2T-x_{j})^{2-3/r}x_{i}^{1-1/r}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}$$

$$(C.62) \qquad (D.62) \qquad (C.62) \qquad (D.62) \qquad ($$

835

Lemma C.9. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

837
$$N/2 \le i < N, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1, \xi \in (x_{i-1}, x_{i+1}), \text{ we have}$$

838 (C.63)
$$u''(y_{i-i}^{\theta}(\xi)) \le C$$

839 (C.64)
$$(u''(y_{i-i}^{\theta}(\xi)))' \le C$$

840 (C.65)
$$(u''(y_{i-i}^{\theta}(\xi)))'' \le C$$

Proof.

841 (C.66)
$$x_{i-2} \le y_{i-i}^{\theta}(\xi) \le x_{i+1} \Rightarrow 4^{-r}T \le 2T - y_{i-i}^{\theta}(\xi) \le T$$

842 Thus, for l = 2, 3, 4,

843 (C.67)
$$u^{(l)}(y_{i-i}^{\theta}(\xi)) \le C(2T - y_{i-i}^{\theta}(\xi))^{\alpha/2 - l} \le C$$

844 and

$$(y_{j-i}^{\theta}(\xi))' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1}(\theta(2T - y_{j-1-i}(\xi))^{1-1/r} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-1/r})$$

$$\leq C(2T - x_{j-2})^{1-1/r} \leq C$$

846 With

847 (C.69)
$$Z_{2N-j-i} \le 2T^{1/r}$$

848 (C. 70)

$$(y_{j-i}^{\theta}(\xi))'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T-y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)} + (1-\theta)(2T-y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)})$$

$$\leq C(r-1)$$

850 Therefore,

(C.71)
$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$
$$< C$$

852

853 (C.72)
$$(u''(y_{j-i}^{\theta}(\xi)))'' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^2 + u''''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq C + C(r-1) = C$$

854

LEMMA C.10. There exists a constant $C = C(T, \alpha, r)$ such that

856 (C.73)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

857 (C.74)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_j^{\theta}| + h_N)$$

(C.75)

858
$$(|y_{j-i}^{\theta'}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_j^{\theta} - x_i|^{-\alpha} + C|y_j^{\theta} - x_i|^{-1-\alpha}(|2T - x_i - y_j^{\theta}| + h_N)^2$$

Proof.

859 (C.76)
$$(y_{j-i}^{\theta}(\xi) - \xi)' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i}'(\xi) - 1$$

860

861 (C.77)
$$|y_{j-i}'(\xi) - 1| = \xi^{1/r-1} |(2T - y_{j-i}(\xi))^{1-1/r} - \xi^{1-1/r}|$$
$$\leq \xi^{1/r-1} |2T - \xi - y_{j-i}(\xi)| \xi^{-1/r}$$

862

863 (C.78)
$$|2T - \xi - y_{j-i}(\xi)| \le \max \begin{cases} |2T - x_{i-1} - x_{j-1}| \\ |2T - x_{i+1} - x_{j+1}| \end{cases}$$
$$\le |2T - x_i - x_j| + h_{i+1} + h_j$$

$$(y_{j-i}^{\theta}(\xi) - \xi)'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T - y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)}) \le 0$$

866 It's concave, so

867 (C.80)
$$y_{j-i}(\xi) - \xi \ge \min\{x_{j+1} - x_{i+1}, x_{j-1} - x_{i-1}\} \ge C(x_j - x_i)$$

868 We have

869 (C.81)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

870

871 (C.82)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'$$

$$\leq C|y_{i}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{i}^{\theta}| + h_{i+1} + h_{j-1})$$

872 (C.83)

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi) - \xi)'' + \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-1-\alpha}(y_{j-i}^{\theta}'(\xi) - 1)^{2}$$

$$\leq C(r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha} + C|y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{i+1} + h_{j-1})^{2}$$

Proof. From (3.23), by Lemma C.8 and Lemma C.10, we have $\xi \in [x_i, x_{i+1}]$

875 (C.84)
$$Q_{j-i}^{\theta'}(\xi) \le Ch^2 h_j^2((r-1)|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha}(|2T - x_i - y_j^{\theta}| + h_N))$$

876

877 (C.85)
$$Q_{j-i}^{\theta}(\xi) \le Ch^2 h_j^2 |y_j^{\theta} - x_i|^{1-\alpha}$$

878 So use the skill in Proof 31 with Lemma C.9

879 (C.86)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \qquad \square$$

$$\leq Ch^2 h_j (|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_j^{\theta}| + h_N))$$

Acknowledgments. We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement.

882 REFERENCES

- 883 [1] D. GILBARG AND N. S. TRUDINGER, *Poisson's Equation and the Newtonian Potential*, 884 Springer Berlin Heidelberg, Berlin, Heidelberg, 1977, pp. 50–67, https://doi.org/10.1007/978-3-642-96379-7_4, https://doi.org/10.1007/978-3-642-96379-7_4.
- 886 [2] X. ROS-OTON AND J. SERRA, The dirichlet problem for the fractional laplacian: Regular-887 ity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 888 pp. 275–302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://www. 889 sciencedirect.com/science/article/pii/S0021782413000895.