Lista 3

Problem 5 Let M be a manifold and $\omega \in \Omega^k(M)$. Suppose that $\pi : M \to B$ is a surjective submersion with connected fibers. We say that ω is *basic* (with respect to π) if there exists a form $\overline{\omega} \in \Omega^k(B)$ such that $\pi^*\overline{\omega} = \omega$.

- a. Show that ω is basic iff $i_X\omega=0$ and $\mathcal{L}_X\omega=0$ for all vector fields X tangent to the fibers of π . In particular, if ω is closed, show that it is basic if $\ker(T\pi)\subseteq\ker\omega$ (pointwise in M).
- b. Suppose that ω is a closed 2-form on M and $\ker(T\pi) = \ker \omega$. Show that $\omega = \pi^* \overline{\omega}$ and $\overline{\omega} \in \Omega^2(B)$ is symplectic.

c.

Solution.

a. Primeiro note que se X é tangente às fibras de π , a projeção de X é zero já que o espaço tangente a um ponto é vazio. Daí a implicação \implies é imediata.

Para ← vamos provar primeiro localmente

(Ver StackExchange) Para ← o mais natural é definir uma forma em B como

$$\overline{\omega}(\pi_*X_1,\ldots,\pi_*X_k) := \omega(X_1,\ldots,X_1)$$

assim o pullback dela está dado por

$$\pi^*\overline{\omega}(X_1,\ldots,X_n)=\omega(\pi_*X_1,\ldots,\pi_*X_n)$$

mais não é imediato para mim que isso faz sentido, pois devo comprovar todo campo vetorial em B pode ser visto como o pushforward de um campo vetorial em

$$\overline{\omega}(\pi_*X_1,\ldots,\pi_*X_k):=\omega(X_1,\ldots,X_1)$$

Devemos mostrar que $\overline{\omega}$ está bem definida.

 $\bullet \ \pi_*X_1=\pi_*X_1' \implies \omega(X_1,X_2,\ldots,X_k)=\omega(X_1',X_2,\ldots,X_k).$ Isso segue de que