

TIPL 4301 TI Precision Labs – ADCs

Created by Art Kay, Luis Chioye Presented by Peggy Liska

Time Domain vs. Frequency Domain

Time Domain

Vout

→ Vin1

→ Vin2

Frequency Domain

Infinite Series for a Triangle Wave

Time Domain

Frequency Domain

Dynamic Characteristics

Signal to Noise Ratio (SNR)

Signal to Noise Ratio (SNR)

Measured Ratio:

$$SNR(V/V) = \frac{V_S}{V_N}$$

Measured dB:

$$SNR(dB) = 20 \cdot log\left(\frac{V_S}{V_N}\right)$$

Ideal ADC SNR:

$$SNR(dB) = 6.02 \cdot N + 1.76$$

Where N is the number of bits e.g. N = 10 for a 10 bit converter

Ideal SNR calculation from Resolution

According to the previous equation:

$$SNR = 6.02N + 1.76 dB$$

ADC Resolution N (bits)	Levels (2 ^N)	SNR (dB)
8	256	49.92
10	1024	61.96
12	4096	74.00
14	16384	86.04
16	65536	98.08
18	262144	110.12
20	1048576	122.16

Nonlinearity

Total Harmonic Distortion (THD), SINAD

Total Harmonic Distortion (THD), THD+N, SINAD

$$THD(\%) = \sqrt{\frac{\sum_{i=2}^{10} V_i^2}{V_S^2}} \cdot 100$$

$$THD(dB) = 20 \cdot log\left(\sqrt{\frac{\sum_{i=2}^{10} V_i^2}{V_S^2}}\right)$$

$$(THD + N)(dB) = 20 \cdot log \left(\sqrt{\frac{\sum_{i=2}^{10} V_i^2 + V_N^2}{V_S^2}} \right)$$

$$SINAD(dB) = 20 \cdot log \left(\sqrt{\frac{{V_S}^2}{\sum_{i=2}^{10} {V_i}^2 + {V_N}^2}} \right)$$

Total Harmonic Distortion (THD), THD+N

Thanks for your time! Please try the quiz.

© Copyright 2017 Texas Instruments Incorporated. All rights reserved.

TIPL 4301 TI Precision Labs – ADCs

Created by Art Kay

- 1. (T/F) The FFT shown below could be the spectrum for a 1kHz square wave.
 - a) True
 - b) False

- 2. (T/F) Any periodic waveform can be represented as an infinite series of sinusoidal waveforms.
 - a) True
 - b) False
- 3. An ideal 12 bit converter will _____.
 - a) Not have any noise
 - b) Have quantization noise
 - c) Have non-linearity due to quantization
- 4. Non-linearity is directly related to _____.
 - a) Noise
 - b) Distortion
 - c) SFDR
 - d) Numerical limitations of the FFT

- 5. What is the SNR for an ideal 16 bit converter?
 - a) 61.96dB
 - b) 74dB
 - c) 98.08dB
 - d) 110.12dB
- 6. For the IEEE ADC test standard, how many harmonics are used in the THD calculation?
 - a) 5, from 1 to 5
 - b) 9 harmonics, from 2 through 10
 - c) This depends on the level of distortion. For high distortion signals more harmonics are used.
 - d) The IEEE spec doesn't specify number of harmonics.

Solutions

- 1. (T/F) The FFT shown below could be the spectrum for a 1kHz square wave.
 - a) True
 - b) False

- 2. (T/F) Any periodic waveform can be represented as an infinite series of sinusoidal waveforms.
 - a) True
 - b) False
- 3. An ideal 12 bit converter will _____.
 - a) Not have any noise
 - b) Have quantization noise
 - c) Have non-linearity due to quantization
- 4. Non-linearity is directly related to _____.
 - a) Noise
 - b) Distortion
 - c) SFDR
 - d) Numerical limitations of the FFT

- 5. What is the SNR for an ideal 16 bit converter?
 - a) 61.96dB
 - b) 74dB
 - c) 98.08dB
 - d) 110.12dB
- 6. For the IEEE ADC test standard, how many harmonics are used in the THD calculation?
 - a) 5, from 1 to 5
 - b) 9 harmonics, from 2 through 10
 - c) This depends on the level of distortion. For high distortion signals more harmonics are used.
 - d) The IEEE spec doesn't specify number of harmonics.