PRELIMINARY DATASHEET 5/29/97

AD9071

The AD9071 is a monolithic sampling analog—to—digital converter with an on—chip track—and—hold circuit and TTL digital interfaces. The product operates at a 100 Msps conversion rate with outstanding dynamic performance over its full operating range.

The ADC requires only a single –5V supply and an encode clock for full–performance operation. The digital outputs are TTL compatible. An Out–of–Range output (OR) indicates that a conversion result is outside the operating range. The output data are held at saturation levels during an out–of–range condition.

The input amplifier supports single-ended interfaces. An internal +2.5V reference is included in the SOIC-packaged device (an external voltage reference is required for the DIP version).

Fabricated on an advanced BiCMOS process, the AD9071 is available in a plastic SOIC package specified over the industrial temperature range (-40°C to +85°C).

FEATURES

10-Bit, 100Msps ADC

Low Power: 600 mW at 100 Msps

On-Chip Track/Hold

230 MHz Analog Bandwidth

SINAD = 54dB @ 41MHz

On-Chip Reference

1Vp-p Analog Input Range

Single +5V Supply Operation

APPLICATIONS

Digital Communications Signal Intelligence Digital Oscilloscopes

Digital Oscilloscopes
Spectrum Analyzers

Medical Imaging

Radar

HDTV

REV. 1 © Analog Devices, Inc., 1996

AD9071—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (Vcc = 5V, ENCODE = 100 Msps)

Parameter	Temp	Test Level	Min	AD9071B Typical	R Max	Units
RESOLUTION				10		bits
DC ACCURACY						
Differential Nonlinearity	+25°C	I		±0.6	+1.25/-1.0	LSB
,	Full	VI		±0.7	+1.5/-1.0	LSB
Integral Nonlinearity	+25°C	I		±0.6	±1.5	LSB
and grant to mand that y	Full	VI		±0.9	_1.5	LSB
No Missing Codes	Full	VI		Guarantee	ed.	
Gain Error ¹	+25°C	I		±1	±4	% FS
Outil Error	Full	VI		-1	<u> </u>	% FS
Gain Tempco ¹	Full	V		115		ppm/°C
ANALOG INPUT	1 un	•		113		ррии С
Input Voltage Range	Full	V		±512		mV p–p
(with respect to AIN\)	1 411	•		±312		ш, Б-Б
Common Mode Voltage	Full	V		2.5±0.2		v
Input Offset Voltage	+25°C	Ï		±7	±18	$^{\prime}_{ m mV}$
input Office voltage	Full	I		±8	±10	mV
Input Resistance	+25°C	I	10	40		kΩ
input Resistance	Full	I	10	40		kΩ
Input Capacitance	+25°C	V		3		pF
Input Capacitance Input Bias Current	+25°C	I		75	200	μA
input Bias Current	Full	I		75 75	200	ľ
Amalaa Danduuidth Eull Dawan	1	V		230		μA
Analog Bandwidth, Full Power	+25°C	V		230		MHz
REFERENCE OUTPUT	E 11	3.77	2.4	2.5	2.6	v
Output Voltage	Full	VI	2.4	2.5	2.6	1.
Temperature Coefficient	Full	V		170		ppm/°C
SWITCHING PERFORMANCE	F211	377	100			Μ
Maximum Conversion Rate	Full	VI	100		40	Msps
Minimum Conversion Rate	Full	IV	1.5		40	Msps
Encode Pulse Width High (t _{EH})	+25°C +25°C	IV	4.5		13	ns
Encode Pulse Width Low (t _{EL})	+25°C	IV V	4.5	0.85	13	ns
Aperture Delay (t _A)	+25°C	V		2.5		ns
Aperture Uncertainty (Jitter) Output Valid Time (t _V) ²	Full	V VI	1.0	2.3		ps rms
Output Vand Time (tv) Output Propagation Delay $(t_{PD})^2$	Full	VI	1.0	3.2	5.0	ns
Output Rise Time (t_R)	Full	VI		3.2	3.0	ns
Output Kise Time (t_R) Output Fall Time (t_F)	Full	VI		3		ns
	Full	VI		3		ns
DIGITAL INPUTS	F11	137	2.0			X.7
Logic "1" Voltage	Full	IV	2.0		0.0	V V
Logic "0" Voltage	Full	IV			0.8	
Logic "1" Current	Full	VI VI			±10	μA
Logic "0" Current	Full			2	±10	μA
Input Capacitance	+25°C	V		3		pF
DIGITAL OUTPUTS	1711	777	V O1			X.
Logic "1" Voltage	Full	VI	V_{CC} -0.1		0.1	V V
Logic "0" Voltage	Full	VI		Officet Dire	0.1	ľ
Output Coding			Offset Binary			
POWER SUPPLY	1711	777	90	120	150	L A
V_{EE} Supply Current ($V_{CC} = 5V$)	Full	VI	80	120	150	mA
Power Dissipation ³	Full	VI	400	600	750	mW
Power Supply Sensitivity ⁴	+25°C	I		0.005	0.012	V/V

Parameter	Temp	Test Level	Min	AD9071BR Typical	Max	Units
DYNAMIC PERFORMANCE 5						
Transient Response	+25°C	V		3		ns
Overvoltage Recovery Time	+25°C	V	4			ns
Signal-to-Noise Ratio (SNR)						
(Without Harmonics)						
$f_{IN} = 10.3 \text{ MHz}$	+25°C	I	55	57		dB
	Full	V		56		dB
$f_{1N} = 41 \text{ MHz}$	+25°C	I	54	56		dB
	Full	V		55		dB
Signal-to-Noise Ratio (SINAD)						
(With Harmonics)						
$f_{1N} = 10.3 \text{ MHz}$	+25°C	I	54	56		dB
	Full	V		55		dB
$f_{IN} = 41 \text{ MHz}$	+25°C	I	51	54		dB
	Full	V		53		dB
Effective Number of Bits						
$f_{IN} = 10.3 \text{ MHz}$	+25°C	I	8.8	9.2		bits
$f_{IN} = 41 \text{ MHz}$	+25°C	I	8.5	8.9		bits
2nd Harmonic Distortion						
$f_{1N} = 10.3 \text{ MHz}$	+25°C	I	63	70		dBc
$f_{IN} = 41 \text{ MHz}$	+25°C	I	58	63		dBc
3rd Harmonic Distortion						
$f_{1N} = 10.3 \text{ MHz}$	+25°C	I	65	71		dBc
$f_{1N} = 41 \text{ MHz}$	+25°C	I	57	61		dBc
Two-Tone Intermod Distortion (IMD)						
$f_{IN} = 10.3 \text{ MHz}$	+25°C	v		70		dBc
$f_{1N} = 41 \text{ MHz}$	+25°C	v		60		dBc
		'	•			•

NOTES

- 1. Gain error and gain temperature coefficient are based on the ADC only (with a fixed 2.5V external reference).
- 2. t_V and t_{PD} are measured from the threshold crossing of the ENCODE input to the 50% levels of the digital outputs. The output ac load during test is 10pF.
- 3. Power dissipation is measured under the following conditions: § 100 Msps, analog input is -1 dBfs at 10.3 MHz. Power dissipation does not include the current of the external ECL pulldown resistors that set the current in the ECL output followers.
- 4. A change in input offset voltage with respect to a change in V_{cc}.
- 5. SNR / harmonics based on an analog input voltage of -1.0 dBfs referenced to a 1.024V full-scale input range.
- **6.** Typical thermal impedance for the R style (SOIC) 28-pin package: $\Theta_{IC} = 23^{\circ}\text{C/W}$, $\Theta_{CA} = 48^{\circ}\text{C/W}$, $\Theta_{IA} = 71^{\circ}\text{C/W}$.

ORDERING GUIDE

Model	Temperature Range	Package Option
AD9071BR	-40°C to +85°C	R-28
AD9071/PCB	+25°C	Evaluation Board

EXPLANATION OF TEST LEVELS

Test Level

- I 100% production tested.
- II 100% production tested at +25°C and sample tested at specified temperatures.
- III Sample tested only.
- IV Parameter is guaranteed by design and characterization testing.
- V Parameter is a typical value only.
- VI 100% production tested at +25°C; guaranteed by design and characterization testing for industrial temperature range.

ABSOLUTE MAXIMUM RATINGS*

V _{CC}	6 V
Analog Inputs	V_{CC} +1V to -1.0 V
Digital Inputs	V _{CC} to 0.0 V
VREF IN, VREF OUT	V _{CC} to 0.0 V
Digital Output Current	10 mA
Operating Temperature	55°C to +125°C
Storage Temperature	65°C to +150°C
Maximum Junction Temperature	+175°C
Maximum Case Temperature	+150°C

^{*} Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

AD9071

PIN DESCRIPTIONS

Pin Number		
AD9071BR	Name	Function
1, 7, 12, 21, 23	GND	Ground
2, 8, 11	V_{CC}	Analog Power Supply. Nominally 5.0V
20, 22	V_{DD}	Digital Power Supply. Nominally 5.0V
3	VREF OUT	Internal Reference Output (2.5V typical); Bypass with 0.1µF to V _{CC}
4	VREF IN	Reference Input for ADC (2.5V typical)
5	COMP	Internal Amplifier Compensation. 0.1µF GND
6	REF BYPASS	Reference Bypass Node. 0.1µF to GND
9	AIN\	Analog Input – Complement
10	AIN	Analog Input – True
13	ENCODE	Encode Clock for ADC (ADC Samples on Rising Edge of ENCODE)
15-19, 24-28	D9-D0	Digital outputs of ADC. D9 is the MSB. Data is offset binary
14	OR	Out of Range output. Goes HIGH when the converted sample is more
		positive than 3FFh or more negative than 000h (offset binary coding)

Figure 1. Timing

			Offset	
Step	$A_{IN} - A_{IN}$	Code	Binary	0
				R
1024	≥ 0.512 V	>511	11 1111 1111	1
1023	0.511 V	511	11 1111 1111	0
1022	0.510 V	510	11 1111 1110	0
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
513	0.001 V	1	10 0000 0001	0
512	0.000 V	0	10 0000 0000	0
511	-0.001 V	-1	01 1111 1111	0
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
1	–0.511 V	-511	00 0000 0001	0
0	–0.512 V	-512	00 0000 0000	0
-1	≤-0.513 V	<512	00 0000 0000	1

Table 1. Output Coding