USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

V Semester B. E. Examinations Nov/Dec-19

Electronics and Communication Engineering

DIGITAL VLSI DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	The input condition of a <i>CMOS</i> inverter for <i>PMOS</i> to work in saturation	
		and NMOS to work in linear region is	01
	1.2	In a Hi-skewed inverter, the value of $\frac{\beta_n}{\beta_p}$ is	01
	1.3	Due to high vertical field strength, carriers are attracted more towards the channel edge and cause collision with the oxide interface	
		that results in, is a type of second order effect.	01
	1.4	For a unit size CMOS inverter, the switching threshold voltage is	
		,	01
	1.5	The NMOSFET is driving the gate of PMOS FET as shown in Fig 1.5,	
		Calculate the V_{out} . Given $V_{tn} = +0.5V$, $V_{tp} = -0.5V$.	
		3V /	
			
		$3V$ \bullet	
		° 3V • Vout	
		Fig 1.5	01
	1.6	Name the photoresist which is initially soluble and becomes insoluble	
		when exposed to <i>UV</i> light.	01
	1.7	What is the name of process involved in growing a single crystal film	
		on the silicon surface by subjecting to an elevated temperature and a	
		source of dopant material?	01
	1.8	Silicon dioxide is used in the <i>IC</i> fabrication process for	0.1
	1.0	and	01
	1.9	The process used to cut the wafers from ingots of a single crystal	
		silicon that have been pulled from a crucible melt of pure molten	0.1
		silicon.	01

1.10	Identify the logic function for the circuit shown in fig 1.10	
1.11	Fig 1.10 A ring oscillator is constructed from an odd number of inverters, as	01
	shown in fig 1.11. Estimate the frequency of an N-stage ring	
	oscillator. If there are 29 stages and the inverter is constructed in a 65nm process with $\tau = 3ps$, calculate the frequency of oscillation.	
	oblini process with $i = sps$, calculate the frequency of oscillation.	
	Fig 1.11	02
1.12	In stick diagram of $CMOS$ process n and P transistors are separated by	0.1
1.13	using For the circuit shown in Fig 1.13, the maximum allowable logic	01
1.10	delay= ps and the minimum logic contamination delay = ps. Assume that flip-flops have a set up time of 36ps, hold time of 40ps, propagation delay of 90ps, and contamination delay of 25ps and are operated at a clock frequency of 1GHz with zero clock skew.	
	$D \longrightarrow \begin{array}{c} \overset{\text{clk}}{\overset{\text{clk}}}{\overset{\text{clk}}{\overset{clk}}}}{\overset{\text{clk}}{\overset{clk}}}}{\overset{clk}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	
	Fig 1.13	02
1.14	In <i>DRAM</i> , the information is degraded over time due to	01
1.15	To ensure both read and write stability in SRAM; The NMOS pull down	
	transistor must be sized as compared to access transistors and a <i>PMOS</i> transistor must be sized	02
1.16	Realize all 0's detector circuit of 4-bit word using pseudo-NMOS logic.	04
2.23	Size them by assuming that the <i>NMOS</i> is $4 \times$ times stronger than $pMOS$.	02

PART-B

		OR	
		path delay incurred in it.	06
	С	Realize Wallace tree multiplier with a block diagram. Show the worst	
	b	Sketch a 4 input CVSL XOR/XNOR gate.	04
		$\left(\frac{\omega}{L}\right)_p = 3$ and $\left(\frac{\omega}{L}\right)_n = 1$. Estimate the logical effort and parasitic delays.	06
		and size the transistors appropriately to get equal propagation delay as that of a minimum sized inverter with	
3	a	Implement the function $Y = \overline{(A.(B+C)+D.E)}$ using static <i>CMOS</i> logic	
2		T. 1	
		operation by indicating regions of operation of each transistor.	08
	b	Draw the CMOS inverter transfer characteristics and explain its	
2	a	Explain VLSI design flow with necessary flow diagram.	08

4	а	What is monotonicity problem in dynamic <i>CMOS</i> logic? Explain how domino logic overcomes this problem?	10				
	b	Construct a full adder using transmission gate logic. Comment about the transistors count with respect to static <i>CMOS</i> version.					
5	a b	Show the <i>CMOS</i> implementation of a <i>NOR</i> based <i>SR</i> Latch. Explain its operation with truth table and evaluate the load capacitance at the output node. Give its rise time expression. Calculate the minimum allowable logic delay for all the 3 static sequencing method with a neat graph.					
		OR					
6	a b	Realize <i>CMOS</i> clocked <i>JK</i> latch based on <i>AOI</i> implementation. Determine the minimum clock period at which the circuit in Fig 6b will operate correctly for each of the following logic delays. Assume there is zero clock skew and that the latch delays are accounted for in the propagation delay. Use data from table 6b i) = $300ps$; = $400ps$; = $200ps$; = $350ps$ ii) = $300ps$; = $400ps$; = $400ps$; = $550ps$ iii) = $300ps$; = $900ps$; = $200ps$; = $350ps$	04				
		clk					
		Fig 6b					
	С	Table 6b : Timing parameters for sequential circuits set up clk-to-Q delay D-Q delay contamination hold delay time Flip flops 65ps 50ps n/a 35ps 30ps Latches 25ps 50ps 40ps 35ps 30ps For the path shown in Fig 6(c), calculate the borrow time required through different latches and check any set up time violation occurs. Assume that there is zero clock skew and that the latch delays are accounted for in the propagation delay. Given tsu_flop= 65ps, tsu_latch= $30ps$ and clock period, $Tc = 1000ps$ $\Delta 1 = 300ps$; $\Delta 2 = 600ps$; $\Delta 3 = 400ps$; $\Delta 4 = 550ps$	08				
		Fig 6(c)	04				

7	а	Using 6T SRAM cell and appropriate waveforms, explain the read/write operation of it. Also discuss how the cell stability conditions are used in the design.	10
	b	Realize a 4-word by 6-bit <i>ROM</i> using Pseudo – <i>nMOS</i> pull –ups with the following contents. word0: 010101 word1: 011001 word2: 100101	
		word3: 101010	06
8	а	With a neat sketch, explain shallow trench isolation.	06
	b	What are layout design rules and explain the basic rules used in	
		λ –based design rules? Design a minimum sized inverter layout based	
		on the rules mentioned above. Also calculate the area for the inverter	
		layout.	10