## Statistical Inference

B. Statistical Data Science 2nd Year Indian Statistical Institute

Teacher: Soham Sarkar

## Exercise Series 2

**Exercise 1.** Suppose that we have a random sample  $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} f_{\theta}$ . We write **X** (or, **X**<sub>n</sub> to emphasize on the sample size) to denote the entire sample  $(X_1, \ldots, X_n)$ . For the following scenarios, find the distribution  $p_{\theta}(\mathbf{x})$  (pdf/pmf) of **X**. Identify sufficient statistics for the unknown parameter  $\theta$ .

- (a)  $f_{\theta} = \mathsf{Bernoulli}(p), \ \theta = p.$
- (b)  $f_{\theta} = \mathsf{Poisson}(\lambda), \ \theta = \lambda.$
- (c)  $f_{\theta} = \mathsf{Geometric}(p), \ \theta = p.$
- (d)  $f_{\theta} = \mathsf{Uniform}(\theta, 1), \ \theta < 1.$   $f_{\theta} = \mathsf{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}.$
- (e)  $f_{\theta} = \text{Normal}(0, \sigma^2), \ \theta = \sigma^2. \ f_{\theta} = \text{Normal}(\mu, \sigma^2), \ \theta = (\mu, \sigma^2).$
- (f)  $f_{\theta} = \mathsf{Cauchy}(\theta, 1), \ \theta \in \mathbb{R}. \ f_{\theta} = \mathsf{Cauchy}(0, \theta), \ \theta > 0. \ f_{\theta} = \mathsf{Cauchy}(\mu, \sigma), \ \theta = (\mu, \sigma).$
- (g)  $f_{\theta} = \mathsf{Laplace}(\theta, 1), \ \theta \in \mu. \ f_{\theta} = \mathsf{Laplace}(0, \theta), \ \theta > 0. \ f_{\theta} = \mathsf{Laplace}(a, b), \ \theta = (a, b).$
- (h)  $f_{\theta} = \mathsf{Normal}(\theta, \theta^2)$ .  $f_{\theta} = \mathsf{Normal}(\theta, \theta)$ .

Exercise 2. Let  $X_1 \sim \mathsf{Uniform}(\theta - 1, \theta)$ ,  $X_2 \sim \mathsf{Uniform}(\theta, \theta + 1)$  and  $X_3 \sim \mathsf{Uniform}(\theta + 1, \theta + 2)$  be three independent random variables. Find a bivariate sufficient statistic for  $\theta$  based on  $X_1, X_2, X_3$ .

**Exercise 3.** Let  $X_1, \ldots, X_n$  be independent random variables with  $X_i$  having pdf

$$f_{\theta,i}(x) = \begin{cases} \frac{1}{2i\theta} & \text{if } -i(\theta-1) < x < i(\theta+1), \\ 0 & \text{otherwise.} \end{cases}$$

Write down the joint pdf  $p_{\theta}(\mathbf{x})$  of  $X_1, \ldots, X_n$ . Find a bivariate sufficient statistic for  $\theta$ .

Exercise 4. Let  $\theta_1, \theta_2, \theta_3, \theta_4$  be parameters satisfying  $\theta_1 < \theta_3$  and  $\theta_2 < \theta_4$ . Denote by  $R_{(\theta_1, \theta_2), (\theta_3, \theta_4)}$  the rectangular region with lower left corner  $(\theta_1, \theta_2)$  and upper right corner  $(\theta_3, \theta_4)$  (see the figure on the next page).

For  $\theta = (\theta_1, \theta_2, \theta_3, \theta_4)$ , let  $f_{\theta}(x, y)$  be the pdf of the uniform distribution on  $R_{(\theta_1, \theta_2), (\theta_3, \theta_4)}$ . That is

$$f_{\theta}(x,y) = \begin{cases} c & \text{if } (x,y) \in R_{(\theta_1,\theta_2),(\theta_3,\theta_4)}, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Determine the value of c.

Let  $(X_1, Y_1), \ldots, (X_n, Y_n)$  be i.i.d. bivariate observations with density  $f_{\theta}(x, y)$ .



- (b) Derive the joint pdf of the random sample  $(X_1, Y_1), \ldots, (X_n, Y_n)$ .
- (c) Find a four-dimensional sufficient statistic for  $\theta = (\theta_1, \theta_2, \theta_3, \theta_4)$ .

Exercise 5. The blood groups of human beings are determined by the presence/absence of two different antigens, A and B. The following chart shows the determination of the four blood groups, A, B, AB and O, depending on the antigens.

|                   | Antigen A present | Antigen A absent |
|-------------------|-------------------|------------------|
| Antigen B present | Blood group AB    | Blood group B    |
| Antigen B absent  | Blood group A     | Blood group O    |

Let  $p_A$ ,  $p_B$ ,  $p_{AB}$  and  $p_0$  denote the probabilities of a (randomly selected) person having blood group A, B, AB, or O, respectively. Suppose that we select 500 people at random and note down their blood groups.

- (a) Formulate a statistical model for this data.
- (b) Let  $N_{\mathtt{A}}, N_{\mathtt{B}}, N_{\mathtt{AB}}$  and  $N_{\mathtt{O}}$  be the number of people (out of 500) having blood groups A, B, AB and O, respectively. Show that  $N_{\mathtt{A}}, N_{\mathtt{B}}, N_{\mathtt{AB}}, N_{\mathtt{O}}$  are jointly sufficient for  $p_{\mathtt{A}}, p_{\mathtt{B}}, p_{\mathtt{AB}}, p_{\mathtt{O}}$ .
- (c) Let  $q_A$  denote the probability of the antigen A being present. Similarly,  $q_B$  denotes the probability of the antigen B being present. Moreover, we believe that the presence/absence of the two antigens do not affect each other. How would you modify your model to take this additional piece of information into account? Also, find sufficient statistics for  $q_A$  and  $q_B$  in this updated model.