TP 10: Revisions

Exercice 1 (Bézier curves). Write the function $f(x) = 4x^3 - 6x^2 + 3x + 1$ for $x \in [0, 1]$ as a cubic Bézier curve.

Figure 1: Graph of $f(x) = 4x^3 - 6x^2 + 3x + 1$ for $x \in [0, 1]$.

Exercice 2 (B-spline curves). Given a degree k, control polygon $\mathbf{d}_0, \dots, \mathbf{d}_n$, and a knot vector (a non-decreasing sequence) $t_0 \le t_1 \le \dots \le t_m$ with m = n + k + 1, the *B-spline curve* $\mathbf{S}(t)$ is defined as

$$\mathbf{S}(t) = \sum_{i=0}^n \mathbf{d}_j \mathbf{N}_j^k(t), \quad t \in [t_k, t_{m-k}).$$

The N_i^k are the recursively-defined *B-spline basis functions*:

$$N_{j}^{0}(t) = \begin{cases} 1 & t \in [t_{j}, t_{j+1}) \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad N_{j}^{k}(t) = \underbrace{\frac{t - t_{j}}{t_{j+k} - t_{j}}}_{w_{j,k}(t)} N_{j}^{k-1}(t) + \underbrace{\frac{t_{j+k+1} - t}{t_{j+k+1} - t_{j+1}}}_{1 - w_{j+1,k}(t)} N_{j+1}^{k-1}(t).$$

(De Boor algorithm). Fix a parameter $t \in [t_i, t_{i+1}) \subset [t_k, t_{m-k})$. For $j = i - k, \dots, i$, set $\mathbf{d}_j^0 = \mathbf{d}_j$. Compute

$$\mathbf{d}_{j}^{r+1} = (1 - w_{j,k-r}) \, \mathbf{d}_{j-1}^{r} + w_{j,k-r} \mathbf{d}_{j}^{r}$$

for r = 1, ..., k and j = i - k + r, ..., i. The weights are computed as follows:

$$w_{j,k-r} = \frac{t - t_j}{t_{j+k-r} - t_j}.$$

The curve point is $\mathbf{S}(t) = \mathbf{d}_{i}^{k}$.

Consider these five control points in \mathbb{R}^2 (see Figure 2 on the next page):

$$\mathbf{d}_0 = \begin{bmatrix} -1 \\ 4 \end{bmatrix} \quad \mathbf{d}_1 = \begin{bmatrix} -3 \\ 0 \end{bmatrix} \quad \mathbf{d}_2 = \begin{bmatrix} 3 \\ -3 \end{bmatrix} \quad \mathbf{d}_3 = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \quad \mathbf{d}_4 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

We are given four uniform knot vectors:

$$\begin{split} \mathbf{T}_1 &= (t_0, \dots, t_6) = (0, 1, 2, 3, 4, 5, 6) \,, \\ \mathbf{T}_2 &= (t_0, \dots, t_7) = (0, 1, 2, 3, 4, 5, 6, 7) \,, \\ \mathbf{T}_3 &= (t_0, \dots, t_8) = (0, 1, 2, 3, 4, 5, 6, 7, 8) \,, \\ \mathbf{T}_4 &= (t_0, \dots, t_9) = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) \end{split}$$

Together with the control points \mathbf{d}_i , each knot vector \mathbf{T}_i defines a unique B-spline curve $\mathbf{S}_i(t)$.

- (i) For each knot vector T_i : what is the *degree k* of the corresponding B-spline curve S_i ?
- (ii) For each knot vector T_j : (approximately) plot the corresponding B-spline basis functions N_i^k for $i=0,\ldots,4$. What is the support for each basis function N_i^k ? (Support refers to the parameter interval where the function is non-zero.)
- (iii) For each curve S_i : what is the domain the interval of definition?
- (iv) For each curve S_j : (approximately) plot the curve; to that end, you can use the grid provided in Figure 2. What is the degree of smoothness between curve's segments?
- (v) For the quadratic curve: evaluate the curve point t = 4.5 using the De Boor algorithm.
- (vi) For the quadratic curve: what is the curve's tangent vector at the point computed in the previous question? (t = 4.5)

Consider now the knot vector

$$T_5 = (t_0, \dots, t_9) = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1).$$

- (vii) What are the basis functions N_i^0 ?
- (viii) What are the basis functions N_0^4, \dots, N_4^4 for a quartic curve defined by $\textbf{d}_0, \dots, \textbf{d}_4$ and T_5 ?

Figure 2: The control points \mathbf{d}_i . You can use use this figure to plot the B-spline curves $\mathbf{S}_i(t)$.

