SYNERGIES BETWEEN OPEN SOURCE AND PROPRIETARY SOFTWARE

Modeling Mobility Conference • September 16, 2025

Andrew Rohne • Vince Bernardin

Transportation & Mapping SolutionsMaptitude • TransCAD • TransModeler

Synergy: The interaction or cooperation of two or more organizations, substances, or other agents to produce a combined effect greater than the sum of their separate effects.

MOTIVATION

WHAT IF...

INTEGRATION - NOT REPLICATION

- ActivitySim and TransCAD are both flexible and extensible modeling systems
 - Call TransCAD functionality from Python
 - Call Python libraries & functionality from TransCAD
- Freedom to use individual components from ActivitySim together with components from TransCAD
- Minimalist approach to replacing ActivitySim code with TransCAD calls – only where it offers a computational or methodological advantage

COMPUTATIONAL EFFICIENCY

EFFICIENCY

- No exporting (huge time saver!)
- Access all data in network and ABM
 - Call matrices as needed,
 no need to hold in memory
- Works to reduce resource needs
- Leverage both the benefits of ActivitySim & TransCAD
 - Open-source contributions from consortium
 - Proprietary contributions from Caliper

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

Initial focus on RAM requirements

- SANDAG with 5,000 TAZ plus MAZ/TAPs needs minimum 512 GB of RAM
- RAM required to deal with over a thousand matrices (primarily transit skim matrices) loaded into memory at the beginning of the model, their primary use being tour mode choice
- Replaced existing native python ActivitySim tour mode choice model with python script using TransCAD NL procedure and matrices implementing the same tour mode choice specification
- Reproduce native ActivitySim results with similar runtime but only 16 GB RAM!

Runtime

Plan to test distributed computing

TRANSCAD'S POPULATION SYNTHESIS

- Most new travel models in the US, whether trip-based or activity-based, use a population synthesizer
- TransCAD's developed our own FAST
 Iterative Proportional Updating algorithm
 - Household and Person level controls
 - Controls at multiple levels of geography
 - Subarea re-synthesis
 - More stable than PopulationSim
 - Can synthesize I million people a minute!!!

USER EXPERIENCE Caliper®

TRANSCAD ACTIVITYSIM GUI

SANDAG MODE CHOICE PARAMETERS

SANDAG MODE CHOICE PARAMETERS

DISTRICT FLOWS DASHBOARD

MODE SUMMARY DASHBOARD

walk

carpool

drivealone

ASSIGNMENT DASHBOARD

Total Link Flow 9,118,435

VMT by Class

Average Speed by Class

VHT by Class

Medium-High congestion mileage: VOC [0.75, 0.90)

86.4 miles (1.2%)

High congestion mileage: VOC [0.90, 1.00)

29.5 miles (0.4%)

Severe congestion mileage: VOC ≥ 1

25.2 miles (0.4%)

REPRESENTATIVE REALIZATION

• How many simulations are needed to ensure Monte Carlo results are stable and converged to the analytic solution?

- How many simulations are needed to ensure Monte Carlo results are stable and converged to the analytic solution?
- The answer is given by Hoeffding's inequality

- How many simulations are needed to ensure Monte Carlo results are stable and converged to the analytic solution?
- The answer is given by Hoeffding's inequality
- Let's say for the change in destinations to be within 1% error in a DC choice model with 2,000 zones?

- How many simulations are needed to ensure Monte Carlo results are stable and converged to the analytic solution?
- The answer is given by Hoeffding's inequality
- Let's say for the change in destinations to be within 1% error in a DC choice model with 2,000 zones?

226,000 runs

AN INCONVENIENT TRUTH

• The Law of Large Numbers requires LARGE NUMBERS

• Fixing a random seed DOES NOT reduce simulation variation,

only hides it

 We do not have the computational resources to do real Monte Carlo simulation of an activity-based model.

So, what should we do?

REPRESENTATIVE REALIZATION

The most likely single set of choices with the correct shares chosen of each alternative.

REPRESENTATIVE REALIZATION

- The most likely single set of choices with the correct shares chosen of each alternative.
- In other words, most-likely, least biased realization

REPRESENTATIVE REALIZATION

- The most likely single set of choices with the correct shares chosen of each alternative.
- In other words, most-likely, least biased realization
- In math,

$$Max LL = \sum_{i,j,k} ln(P_{ij}\delta_{ijk})$$

Subject to

$$Min Bias = \sum_{i} \left(\sum_{i} P_{ij} - \sum_{i} \frac{\sum_{k} \delta_{ijk}}{K} \right)^{2}$$

BOTH CRITERIA ARE NECESSARY

- Not simply the most likely realization
 - The most likely realization is where everyone chooses their most likely alternative (i.e., everyone drives)

- There are many, many unbiased realizations
 - Where the share of people choosing each alternative is equal to the shares given by the analytic solution
- But the most likely unbiased realization is practically unique

ON-GOING WORK

- Testing a variety of heuristic algorithms
 - Rigorous Myopic
 - Shadow-Pricing
 - Top-Down
- Exploring the mathematical properties

MOST LIKELY OUTCOME

 You can entirely eliminate random number draws and have 100% confidence that a single run of your activity-based model gives you exactly the right solution

- It will probably take marginally longer (compared to current, improper practice)
 - Probably less than twice as long
 - Hopefully much less than twice as long

CONTACTS

Vince Bernardin, PhD | Vice-President vince@caliper.com | +1 812-459-3500

Andrew Rohne | Sr. Planner/Engineer andrew@caliper.com | +1 513-314-9901

