Mathematical Tools Solutions to Problem Set 7

1 Multivariate Calculus ¹

- 1. A vector-valued function is a function where $f: \mathbb{R} \to \mathbb{R}^m$. For example, $\vec{r} = \vec{f}(t)$. A scalar field takes a vector as input and gives a scalar as output. Scalar fields can be visualized in two ways. The first takes weights w_1, w_2 as making a horizontal plane, then plots the scalar values for loss L in the third dimension. Each cross-section of this bowl-like shape has the same scalar function output value. These lines are called **level curves**. A contour plot is very similar to a topographic map. We take our weights w_1, w_2 as our two axes and draw contour lines or level curves to indicate depth.
- 2. (a) $f(3,2) = \frac{\sqrt{3+2+1}}{3-1} = \frac{\sqrt{2}}{2}$. The expression for f makes sense if the denominator is not 0 and the quantity under the square root sign is nonnegative. So the domain of f is:

$$D = \{(x, y)|x + y + 1 \ge 0, x \ne 1\}$$

The inequality $x + y + 1 \ge 0$, or $y \ge -x - 1$, describes the points that lie on or above the line y = -x - 1, while $x \ne 1$ means that the points on the line x - 1 must be excluded from the domain.

(b) $f(3,2) = 3\ln(2^2 - 3) = 3\ln 1 = 0$. Since $\ln(y^2 - x)$ is defined only when $y^2 - x > 0$, that is $x < y^2$, the domain of f is $D = \{(x,y)|x < y^2\}$. This is the set of points to the left of the parabola $x = y^2$.

 $^{^1}$ All problems and solutions are taken from [1]

3. The domain of g is

$$D = \{(x,y)|9 - x^2 - y^2 \ge 0\} = \{(x,y)|x^2 + y^2 \le 9\}$$

Which is the disk with center (0,0) and radius 3. THe range of g is

$$\{z|z=\sqrt{9-x^2-y^2\geq 9}\}=\{(x,y)\in D\}$$

Since z is a positive square root, $z \ge 0$. Also because $9-x^2-y^2 \le 9$, we have $\sqrt{9-x^2-z^2} \le 3$, so the range is $\{z|0 \le z \le 3\} = [0,3]$.

4. The point (1,3) lies partway between the level curves with z-values 70 and 80. We estimate that (and similarly for (4,5)):

$$f(1,3) \approx 73$$

$$f(4,5) \approx 56$$

5. The level curves are

$$6 - 3x - 2y = k$$
 or $3x + 2y + (k - 6) = 0$

This is a family of lines with slope $-\frac{3}{2}$. The four particular level curves with k=-6,0,6, and 12 are 3x+2y-12=0, 2x+2y-6=0, 3x+2y=0, and 3x+2y+6=0. They are sketched below. The level curves are equally spaces parallel lines because the graph of f is a plane.

6. The level curves are

$$\sqrt{9-x^2-y^2} = k$$
 or $x^2 + y^2 = 9 - k^2$

This is a family of cocentric circles with center (0,0) and radius $\sqrt{9-k^2}$. The cases k=0,1,2,3 are shown below.

2 Derivatives and Gradients

1. Partial derivatives are defined as follows:

$$\frac{\delta f}{\delta x_k} \equiv \lim_{\Delta x_k \to 0} \frac{f(x_1, \dots, x_k + \Delta x_k, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{\Delta x_k}$$

The **gradient** is essentially a vector containing the partial derivatives of some function. It is a vector field defined as the following:

$$\nabla f = \begin{bmatrix} \frac{\delta f}{\delta x_1} \\ \vdots \\ \frac{\delta f}{\delta x_n} \end{bmatrix}$$

If we take an infinitesimally small step h in the u direction, we're taking the **directional derivative**.

- 2. We can take the derivative of that partial derivative function. This is called the **second partial derivative**. If we organize these second order partial derivatives into a matrix, that matrix is called a **Hessian**, where each i, j entry is equivalent to the j, i entry. This matrix of partial derivatives is called a **Jacobian**. To make things clear by comparison, the Jacobian of a vector field is analogous to the gradient of a scalar field is analogous to the derivative of a real valued function. **Critical points**, also termed stationary points, are the minima, maxima, and saddle points of functions. We can find these points within some spread of data.
- 3. Let $f(x,y)=\frac{x^2-y^2}{x^2+y^2}$. First let's approach (0,0) along the x-axis. Then y=0 gives $f(x,0)=\frac{x^2}{x^2}=1$ for all $x\neq 0$, so

$$f(x,y) \to 1$$
 as $(x,y) \to (0,0)$ along the x-axis

We now approach along the y-axis by putting x=0. Then $f(0,y)=\frac{-y^2}{y^2}=-1$ for all $y\neq 0$, so

$$f(x,y) \to -1$$
 as $(x,y) \to (0,0)$ along the y-axis

Since f has two deferment limits along two different lines, the given limit does not exist.

4. If y = 0 then $f(x,0) = \frac{0}{x^2} = 0$. Therefore

$$f(x,y) \to 0$$
 as $(x,y) \to (0,0)$ along the x-axis

If x = 0 then $f(0, y) = \frac{0}{y^2} = 0$, so

$$f(x,y) \to 0$$
 as $(x,y) \to (0,0)$ along the y-axis

Although we have obtained identical limits along the axes, that does not show that the given limit is 0. Let's now approach (0,0) along another line, say y = x. For all $x \neq 0$

$$f(x,y) = \frac{x^2}{x^2 + x^2} = \frac{1}{2}$$

Therefore

$$f(x,y) \to \frac{1}{2}$$
 as $(x,y) \to (0,0)$ along $y = x$

Since we have obtained different limits along different paths, the given limit does not exist.

5. Holding y constant and differentiating with respect to x, we get

$$f_x(x,y) = 3x^2 + 2xy^3$$

and so

$$f_x(2,1) = 3 \times 2^2 + 2 \times 2 \times 1^3 = 16$$

Holding x constant and differentiating with respect to y, we get

$$f_y(x,y) = 3x^2y^2 - 4y$$
$$f_y(2,1) = 3 \times 2^2 \times 1^2 - 4 \times 1 = 8$$

6. We have

$$f_x(x,y) = -2x$$
 $f_y(x,y) = -4y$
 $f_x(1,1) = -2$ $f_y(1,1) = -4$

The graph of f is the paraboloid $z=4-x^2-2y^2$ and the vertical plane y=1 intersects it in the parabola $z=2-x^2, y=1$. The slope of the tangent line to this parabola at the point (1,1,1) is $f_x(1,1)=-2$. Similarly the curve C_2 in which the plane x=1 intersects the paraboloid is the parabola $z=3-2y^2, x=1$, and the slope of the tangent line at (1,1,1) is $f_x(1,1)=-4$.

7. Using the Chain Rule for functions of one variable, we have

$$\frac{\partial f}{\partial x} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial x} \left(\frac{x}{1+y}\right) = \cos\left(\frac{x}{1+y}\right) \cdot \frac{1}{1+y}$$
$$\frac{\partial f}{\partial y} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial y} \left(\frac{x}{1+y}\right) = -\cos\left(\frac{x}{(1+y)^2}\right) \cdot \frac{1}{1+y}$$

8. We first compute the needed second-order partial derivatives

$$u_x = e^x \sin y \quad u_y = e^x \cos y$$
$$u_{xx} = e^x \sin y \quad u_{yy} - e^x \sin y$$
$$u_{xx} + u_{yy} = e^x \sin y - e^x \sin y = 0$$

Therefore u is a harmonic function.

9. Let $f(x,y) = 2x^2 + y^2$. Then

$$f_x(x,y) = 4x$$
 $f_y(x,y) = 2y$
 $f_x(1,1) = 4$ $f_y(1,1) = 2$

We use the following formula to find the tangent plane at (1, 1, 3): Tangent to the surface z = f(x, y) at point (x_0, y_0, z_0) is given by

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Therefore

$$z - 3 = 4(x - 1) + 2(y - 1)$$
$$z = 4x + 2y - 3$$

10. The partial derivatives are

$$f_x(x,y) = e^{xy} + xte^{xy}$$
 $f_y(x,y) = x^2e^{xy}$
 $f_x(1,0) = 1$ $f_y(1,3) = 1$

Both f_x and f_y are continuous functions, so f is differentiable, The linearization is

$$L(x,y) = f(1,0) + f_x(1,0)(x-1) + f_y(1,0)(y-0)$$

= 1 + 1(x - 1) + 1 \cdot y = x + y

The corresponding approximation is

$$xe^{xy} \approx x + y \Rightarrow f(1.1, -0.1) \approx 1.1 - 0.1 = 1$$

Compare this with the actual value of $f(1.1, -0.1) = 1.1e^{-0.11} \approx 0.98542$.

11. (a)

$$dx = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = (2x + 3y)dx + (3x - 2y)dy$$

(b) Putting x=2, $dx=\Delta x=0.05$, y=3, and $dy=\Delta y=-0.04$ we get $dz=[2(2)+3(3)]\times 0.05+[3(2)-2(3)]\times (-0.04)=0.65$

The increment of z is

$$\Delta z = f(2.05, 2.96) - f(2, 3)$$

$$[(2.05)^2 + 3(2.05)(2.96) - (2.96)^2] - [2^2 + 3(2)(3) - 3^2]$$

$$= 0.6449$$

Notice that $\Delta z \approx dz$ but dz is easier to compute.

12. The volume V of a cone with base radius r and height h is $V = \pi r^2 \frac{h}{3}$. So the differential of V is

$$dV = \frac{\partial V}{\partial r}dr + \frac{\partial V}{\partial h}dh = \frac{2\pi rh}{3}dr + \frac{\pi r^2}{3}dh$$

Since each error is at most 0.1 cm, we have $|\Delta r| \leq 0.1$, $|\Delta h| \leq 0.1$. To estimate largest error in the volume we take the largest error in the measurement of r and of h. Therefore we take dr = 0.1 and dh = 0.1 along with r = 10, h = 25. This gives

$$dV = \frac{500\pi}{3}(0.1) + \frac{100\pi}{3}(0.1) = 20\pi$$

Thus the maximum error in the calculated volume is about $20\pi \text{cm}^3 \approx 63\text{cm}^3$.

13. The Chain Rule gives

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial t}\frac{dy}{dt}$$
$$-(2xy + 3y^4)(2\cos 2t) + (x^2 + 12xy^3)(-\sin t)$$

It's not necessary to substitute the expressions for x and y in terms of t. We simply observer that when t=0, we have $x=\sin 0=0$ and $y=\cos 0=1$. Therefore

$$\frac{dz}{dt}|_{t=0} = (0+3)(2\cos 0) + (0+0)(-\sin 0) = 6$$

14. Again by Chain Rule we have

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = (e^x \sin y)(t^2) + (e^x \cos y)(2st)$$
$$= t^2 e^{st^2} \sin(s^2) + 2st e^{st^2} \cos(s^t)$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} = (e^x \sin y)(2st) + (e^x \cos y)(s^2)$$
$$= 2st e^{st^2} \sin(s^2t) + s^2 e^{st^2} \cos(s^t)$$

15.

$$\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial u} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial u} + \frac{\partial w}{\partial t}\frac{\partial t}{\partial u}$$
$$\frac{\partial w}{\partial v} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial v} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial v} + \frac{\partial w}{\partial t}\frac{\partial t}{\partial v}$$

16. Let $x=s^2-t^2$ and $y=t^2-s^2$. Then g(s,t)=f(x,y) and the Chain Rule gives:

$$\frac{\partial g}{\partial s} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s} = \frac{\partial f}{\partial x}(2s) + \frac{\partial f}{\partial y}(-2s)$$
$$\frac{\partial g}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial f}{\partial x}(-2t) + \frac{\partial f}{\partial y}(2t)$$

Therefore

$$t\frac{\partial g}{\partial s} + s\frac{\partial g}{\partial t} = (2st\frac{\partial f}{\partial x} - 2st\frac{\partial f}{\partial y}) + (-2st\frac{\partial f}{\partial x} + 2st\frac{\partial f}{\partial y}) = 0$$

17.

$$D_{u}f(x,y) = f_{x}(x,y)\cos\frac{\pi}{6} + f_{y}(x,y)\sin\frac{\pi}{6}$$
$$(3x^{2} - 3y)\frac{\sqrt{3}}{2} + (-3x + 8y)\frac{1}{2}$$
$$\frac{1}{2}[3\sqrt{3}x^{2} - 3x + (8 - 3\sqrt{3})y]$$

Therefore

$$D_{\mathbf{u}}f(1,2) = \frac{1}{2}[3\sqrt{3}(1)^2 - 3(1) + (8 - 3\sqrt{3})(2)] = \frac{13 - 3\sqrt{3}}{2}$$

- 18. (a) $\nabla f(x,y) = \langle f_x, f_y \rangle = \langle \cos x + y e^{ex}, x e^{xy} \rangle \Rightarrow \nabla f(0,1) = \langle 2, 0 \rangle$
 - (b) $\nabla f(x,y) = \langle f_x, f_y \rangle = \langle \cos x + y e^{ex}, x e^{xy} \rangle$.
 - (c) $\nabla f(x.y) = \langle 2xy^3, 3x^2y^2 4 \rangle$.
 - (d) $\nabla f(x, y, z) = \langle \sin yz, xz \cos yz, xy \cos yz \rangle$.
- 19. (a) We first compute the gradient vector

$$\nabla f 9x, y = \langle e^y, xe^y \rangle \Rightarrow \nabla f (2, 0) = \langle 1, 2 \rangle$$

The unit vector in the direction of $\vec{PQ} = \langle -\frac{3}{2}, 2 \rangle$ is $\boldsymbol{u} = \langle -\frac{3}{5}, \frac{4}{5} \rangle$ so the rate of change of f in the direction from P to Q is

$$D_{\mathbf{u}}f(2,0) = \nabla f(2,0).\mathbf{u} = \langle 1, 3 \rangle \cdot \langle -\frac{3}{5}, \frac{4}{5} \rangle = 1$$

(b) f increases fastest in the direction of the gradient vector $\nabla f(2,0) = \langle 1,2 \rangle$. The maximum rate of change is

$$|\nabla f(2,0)| = |\langle 1,2 \rangle| = \sqrt{5}$$

3 Optimization

- 1. Since $f_x = -2x$ and $f_y = 2y$, the only critical point is (0,0). Notice that for points on the x-axis we have y = 0, so $f(x,y) = -x^2 < 0$ (if $x \neq 0$). However, for points on the y-axis we have x = 0, so $f(x,y) = y^2 > 0$ (if $y \neq 0$). Thus every disk with center (0,0) contains points where f takes positive values as well as points where f takes negative values. Therefore f(0,0) = 0 can't be an extreme value for f, so f has no extreme value.
- 2. We first locate the critical points

$$f_x = 4x^3 - 4y$$
 $f_y = 4y^3 - 4x$

Setting these partial derivatives equal to 0, we obtain the equations

$$x^3 - y = 0 \quad \text{and} \quad y^3 - x = 0$$

To solve these equations we substitute $y=x^3$ from the first equation to the second one. This gives

$$0 = x^9 - x = x(x^8 - 1) = x(x - 1)(x + 1)(x^2 + 1)(x^4 + 1)$$

so there are these real roots: x = 0, 1, -1. The three critical points are (0,0), (1,1), and (-1,-1). Next we calculate the second partial derivatives and D(x,y)

$$f_{xx} = 12x^2$$
 $f_{xy} = -4$ $f_{yy} = 12y^2$ (1)

$$D(x,y) = f_{xx}f_{yy} - f_{xy}^2 = 144x^2y^2 - 16$$
 (2)

Since D(0,0) = -16 < 0 the origin is a saddle point. Since D(1,1) = 128 > 0 and $f_{xx}(1,1) = 12 > 0$ then f(1,1) = -1 is a local minimum. Similarly since D(-1,-1) = 128 > 0 and $f_{xx}(-1,-1) = 12 > 0$ then f(-1,-1) = -1 is also a local minimum.

3. The first order partial derivatives are

$$f_x = 20xy - 10x - 4x^3 \quad f_y = 12x^2 - 8y - 8y^3$$

So to find the critical points we need to solve the equations

$$2x(10y - 5 - 2x^2) = 0$$
$$5x^2 - 4y - 4y^3 = 0$$

From the first equation we see that either

$$x = 0$$
 or $10y - 5 - 2x^2 = 0$

In the first case x=0 second equation becomes $-4y(1+y^2)=0$ so y=0 and we have the critical point (0,0). In the second case $10y-5-2x^2=0$ we get $x^2=5y-2.5$ and putting in into the second equation we have to solve the cubic equation $4y^3-21y+12.5=0$. Using a graphing calculator to compute the graph of the above function we get

$$y \approx -2.5452$$
 $y \approx y = 0.6468$ $y \approx 1.8985$

The corresponding x values are $x=\pm\sqrt{5y-2.5}$. If $y\approx-2.5452$ then x has no corresponding real values. If $y\approx0.6468$ then $x=\pm0.8567$. If $y\approx1.8984$ then $x\approx\pm2.6442$. The we have a total of five critical points and (0,0) is local maximum, $(\pm2.64,1.90)$ is also local maximum, and $(\pm0.86,0.65)$ is a saddle point.

4. The distance from any point (x, y, z) to the point (1, 0, -2) is $d = \sqrt{(x-1)^2 + y^2 + (z+2)^2}$. But if (x, y, z) lies on the plane x + 2y + z = 4 then z = 4 - x - 2y and so we have $d = \sqrt{(x-1)^2 + y^2 + (6-x-2y)^2}$. We can minimize d by minimizing the simpler expression

$$d^2 = f(x, y) = (x - 1)^2 + y^2 + (6 - x - 2y)^2$$

By solving the equations

$$f_x = 2(x-1) - 2(6-x-2y) = 4x + 4y - 14 = 0$$

$$f_y = 2y - 4(6-x-2y) = 4x + 10y - 24 = 0$$

we find that the only critical point is $(\frac{11}{6}, \frac{5}{3})$. Since $f_{xx} = 4$, $f_{xy} = 4$, and $f_{yy} = 10$, we have $D(x, y) = f_{xx}f_{yy} - f_{xy}^2 = 24 > 0$ and $f_{xx} > 0$ so f has a local minimum at this point where the distance is $d = \frac{5}{6}\sqrt{6}$.

- 5. Let the length, width, and height of the box be x, y, and z, the volume then is V=xyz. We can express V as a function of just two variables x and y by using the fact that the area of the four sides and the bottom of the box is 2xz + 2yz + xy = 12. Again by computing partial derivatives and we need to solve the following $12 2xy x^2 = 0$ and $12 2xy y^2 = 0$ which gives x, y = 2, z = 1 and hence $V = 2 \cdot 2 \cdot 1 = 4$. So the maximum volume of the box is $4m^3$.
- 6. The only critical point is (1,1) because it has to satisfy $f_x = 2x 2y = 0$ and $f_y = -2x + 2 = 0$ and we have f(1,1) = 1. On the boundary we have $f(x,0) = x^2$ when $0 \le x \le 3$; f(3,y) = 9 4y when $0 \le y \le 2$; $f(x,2) = x^2 4x + 4$ when $0 \le x \le 3$; and f(0,y) = 2y when $0 \le y \le 2$ with maximum value f(0,2) = 4 and minimum value f(0,0) = 0. Thus on the boundary, the minimum and maximum are 0, 9. Finally we compare these values with the critical point in which f(1,1) = 1 and therefore the absolute maximum of the function f on D is f(3,0) and the absolute minimum is f(0,0) = f(2,2) = 0.
- 7. We use Lagrange multipliers and solve $\nabla f = \lambda \nabla g$ and g(x,y) = 1 which can be written as

$$f_x = \lambda g_x$$
 $f_y = \lambda g_y$ $g(x, y) = 1$

or

$$2x = 2x\lambda$$
 $4y = 2y\lambda$ $x^2 + y^2 = 1$

From the first equation we have x=0 or $\lambda=1$. If x=0 then the third equation gives $y=\pm 1$. If $\lambda=1$ then y=0 from the second equation so then the third equation gives $x=\pm 1$. Therefore f has possible extreme values at (0,1), (0,-1), (1,0), (-1,0). Evaluating f at these points we get

$$f(0,1) = 2$$
 $f(0,-1) = 2$ $f(1,0) = 1$ $f(-1,0) = 1$

Therefore the maximum value of f on the circle $x^2 + y^2 = 1$ is $f(0, \pm 1) = 2$ and the minimum value is $f(\pm 1, 0) = 1$.

References

[1] James Stewart. Single variable calculus: Early transcendentals. Cengage Learning, 2011.