

UNIVERSIDADE FEDERAL DE PELOTAS BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO TEC2/TEC4: REDES MULTIMÍDIA (RMM)

Unidade 11 **Suporte de Rede para Multimídia**

Prof. Guilherme Corrêa

gcorrea@inf.ufpel.edu.br

Suporte de Rede para MM

Approach	Granularity	Guarantee	Mechanisms	Complex	Deployed?
Making best	All traffic	None or	No network	low	everywhere
of best effort	treated	soft	support (all at		
service	equally		application)		
Differentiated	Traffic	None of	Packet market,	med	some
service	"class"	soft	scheduling,		
			policing.		
Per-	Per-	Soft or hard	Packet market,	high	little to
connection	connection	after flow	scheduling,		none
QoS	flow	admitted	policing, call		
			admission		

Dimensionar Redes de Melhor Esforço

- estratégia: empregar capacidade de enlace suficiente para que congestionamento não ocorra e tráfego multimídia flua sem atrasos ou perdas
 - baixa complexidade dos mecanismos de rede (usa rede de "melhor esforço" atual)
 - custos altos de grande largura de banda

desafios:

- dimensionamento da rede: quanta largura de banda é "suficiente?"
- estimativa de demanda do tráfego da rede: necessário para determinar quanta largura de banda é "suficiente" (para esta demanda de tráfego)

Múltiplas Classes de Serviço

- por enquanto: fazendo o melhor do serviço de melhor esforço
 - modelo de serviço "tamanho único"
- alternativa: múltiplas classes de serviço
 - particionar tráfego em classes
 - rede trata classes diferentes de tráfego de forma diferente (analogia: serviço VIP versus serviço normal)
- granularidade: serviço diferenciado entre múltiplas classes, não entre conexões individuais
- histórico: campo de cabeçalho ToS (IP)

Múltiplas Classes de Serviço: Cenário

Cenário 1: HTTP e VoIP no enlace

- exemplo: ligação VoIP (a I Mbps) e HTTP compartilham enlace de I.5 Mbps
 - rajadas HTTP podem congestionar roteador e causar perda de áudio
 - queremos dar prioridade ao áudio e não ao HTTP

Princípio l

marcação de pacotes necessária para o roteador distinguir entre classes diferentes + nova política para roteador tratar os pacotes de acordo com as classes

Princípios para garantir QoS (mais)

- se a aplicação se "comportar mal" (VoIP envia taxa maior que a inicialmente declarada)
 - restrição: forçar remetente a aderir às alocações de largura de banda
- marcar e regular na borda da rede

Princípio 2

fornecer proteção (isolamento) entre as classes

Princípios para garantir QoS (mais)

alocar largura de banda fixa (não-compartilhável) para o fluxo: uso ineficiente de largura de banda se os fluxos não usam sua alocação

Princípio 3

ao prover isolamento entre classes, deseja-se usar recursos da forma mais eficiente possível

- escalonamento: escolhe próximo pacote a ser enviado no enlace
- * FIFO (first in first out): envia na ordem de chegada na fila
 - exemplo do mundo real?
 - política de descarte: se pacote chega em uma fila cheia, quem deve ser descartado?
 - descarte no fim: descarta pacote que chega
 - prioridade: descarta/remove com base em prioridades
 - aleatório: descarta/remove aleatoriamente

9

escalonamento de prioridade: envia pacote na fila com maior prioridade

- múltiplas classes, com prioridades diferentes
 - classe pode depender de marcação ou outras informações de cabeçalho, ex.: IP fonte/dest, números de portas, etc.
 - exemplo no mundo real?

Varredura Cíclica:

- múltiplas classes
- varre ciclicamente as filas das classes, enviando um pacote completo de cada classe (se disponível)
- exemplo no mundo real?

Varredura Cíclica Ponderada (WFQ):

- princípio da varredura cíclica
- cada classe recebe uma quantidade ponderada de serviço em cada ciclo
- exemplo no mundo real?

Mecanismos de Restrição

objetivo: limitar tráfego para não exceder parâmetros declarados

Três critérios usados geralmente:

- taxa média (longo prazo): quantos pacotes podem ser enviados por unidade de tempo
 - 100 pacotes por segundo
 - 6000 pacotes por minuto
- * taxa de pico: ex.: taxa média limitada a 6000 pacotes por min (ppm) e taxa de pico limitada a 1500 por segundo
- * tamanho da rajada (máx): número máximo de pacotes enviados consecutivamente (sem período inativo)

Mecanismos de Restrição

Balde furado: limita entrada a um tamanho de rajada e uma taxa média específica

- balde pode conter até b permissões
- Permissões geradas a uma taxa de r permissões/seg enquanto o balde não está cheio
- em um intervalo t: número de pacotes admitidos é menor ou igual a (r*t + b)

Mecanismos de Restrição e QoS

balde furado e WFQ combinados para prover garantia de limite superior no atraso, isto é: garantia de qualidade de serviço (QoS)!

Serviços Diferenciados

- queremos classes de serviços "qualitativas"
 - "comportamento como um fio"
 - distinção de serviços: Platinum, Ouro, Prata
- escalabilidade: funções simples no núcleo da rede, funções relativamente complexas na borda da rede (hospedeiros)
 - sinalização e manutenção de estado de roteador por fluxo é difícil quando há um grande número de fluxos

Arquitetura Diffserv

roteador de borda:

gerenciamento do tráfego por fluxo

 marca pacotes como in-profile e out-profile

roteador de núcleo: 🗪

- gerenciamento de tráfego por classe
- buffer e escalonamento baseados na marcação da borda
- preferência a pacotes in-profile

Marcação de Pacotes no Diffserv

- pacote é marcado no campo Type of Service (ToS) do IPv4 e Traffic Class do IPv6
- 6 bits usados para Differentiated Service Code Point (DSCP)
 - determina tipo de prioridade que o pacote vai receber
 - 2 bits atualmente sem uso

Garantias de QoS por conexão

 fato básico e inegável: não podemos suportar demandas de tráfego além da capacidade do enlace

- Princípio 4 chamada de admissão: fluxo declara suas necessidades, rede pode bloquear chamada (ex.: sinal ocupado) se não pode atender requisitos

Universidade Federal de Pelotas Bacharelado em Ciência da Computação Bacharelado em Engenharia de Computação TEC2/TEC4: REDES MULTIMÍDIA (RMM)

Unidade 11 **Suporte de Rede para Multimídia**

Prof. Guilherme Corrêa

gcorrea@inf.ufpel.edu.br