Near Triple Arrays

Alexey Gordeev

Umeå University, Sweden

Based on joint work with Klas Markström and Lars-Daniel Öhman

August 25, 2025

$(r \times c, v)$ -triple array

r imes c table, v symbols each used e times, no repetitions in rows/columns, $|\mathsf{row} \cap \mathsf{row}| = \lambda_{rr}$, $|\mathsf{column} \cap \mathsf{column}| = \lambda_{cc}$, $|\mathsf{row} \cap \mathsf{column}| = \lambda_{rc}$

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

$(r \times c, v)$ -triple array

r imes c table, v symbols each used e times, no repetitions in rows/columns, $|\mathsf{row} \cap \mathsf{row}| = \lambda_{rr}$, $|\mathsf{column} \cap \mathsf{column}| = \lambda_{cc}$, $|\mathsf{row} \cap \mathsf{column}| = \lambda_{rc}$

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

$(r \times c, v)$ -triple array

 $r \times c$ table, v symbols each used e times, no repetitions in rows/columns, $|\operatorname{row} \cap \operatorname{row}| = \lambda_{rr}$, $|\operatorname{column} \cap \operatorname{column}| = \lambda_{cc}$, $|\operatorname{row} \cap \operatorname{column}| = \lambda_{rc}$

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

$(r \times c, v)$ -triple array

 $r \times c$ table, v symbols each used e times, no repetitions in rows/columns, $|\mathsf{row} \cap \mathsf{row}| = \lambda_{rr}$, $|\mathsf{column} \cap \mathsf{column}| = \lambda_{cc}$, $|\mathsf{row} \cap \mathsf{column}| = \lambda_{rc}$

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

$(r \times c, v)$ -triple array

r imes c table, v symbols each used e times, no repetitions in rows/columns, $|\mathsf{row} \cap \mathsf{row}| = \lambda_{rr}$, $|\mathsf{column} \cap \mathsf{column}| = \lambda_{cc}$, $|\mathsf{row} \cap \mathsf{column}| = \lambda_{rc}$

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

$(r \times c, v)$ -triple array

r imes c table, v symbols each used e times, no repetitions in rows/columns, $|\mathsf{row} \cap \mathsf{row}| = \lambda_{rr}$, $|\mathsf{column} \cap \mathsf{column}| = \lambda_{cc}$, $|\mathsf{row} \cap \mathsf{column}| = \lambda_{rc}$

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- Statistically optimal as experimental designs
- \diamond Latin square = $(n \times n, n)$ -TA, Youden rectangle = $(r \times n, n)$ -TA

$(r \times c, v)$ -triple array

r imes c table, v symbols each used e times, no repetitions in rows/columns, $|\mathsf{row} \cap \mathsf{row}| = \lambda_{rr}$, $|\mathsf{column} \cap \mathsf{column}| = \lambda_{cc}$, $|\mathsf{row} \cap \mathsf{column}| = \lambda_{rc}$

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- Statistically optimal as experimental designs
- \diamond Latin square = $(n \times n, n)$ -TA, Youden rectangle = $(r \times n, n)$ -TA

$$e = \lambda_{rc} = \frac{rc}{v}, \quad \lambda_{rr} = \frac{c(e-1)}{r-1}, \quad \lambda_{cc} = \frac{r(e-1)}{c-1}$$

• admissible $(r \times c, v)$: $e, \lambda_{rc}, \lambda_{rr}, \lambda_{cc} \in \mathbb{Z}$, $\max(r, c) \le v \le rc$

$$(r \times c, v) \text{-} \text{near triple array} \qquad \qquad \text{G.-Markstr\"om-\"Ohman 25}$$
 each symbol used $\lfloor e \rfloor$ or $\lceil e \rceil$ times, no repetitions in rows/columns, $|\text{row} \cap \text{row}| = \lfloor \lambda_{rr} \rfloor$ or $\lceil \lambda_{rr} \rceil$, $|\text{column} \cap \text{column}| = \lfloor \lambda_{cc} \rfloor$ or $\lceil \lambda_{cc} \rceil$, $|\text{row} \cap \text{column}| = |\lambda_{rc}|$ or $\lceil \lambda_{rc} \rceil$

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

```
(r \times c, v) \text{-near triple array} \qquad \qquad \textbf{G.-Markstr\"om-\"Ohman 25} each symbol used \lfloor e \rfloor or \lceil e \rceil times, no repetitions in rows/columns, |\operatorname{row} \cap \operatorname{row}| = \lfloor \lambda_{rr} \rfloor or \lceil \lambda_{rr} \rceil, |\operatorname{column} \cap \operatorname{column}| = \lfloor \lambda_{cc} \rfloor or \lceil \lambda_{cc} \rceil, |\operatorname{row} \cap \operatorname{column}| = \lfloor \lambda_{rc} \rfloor or \lceil \lambda_{rc} \rceil
```

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

```
(r \times c, v) \text{-} \textbf{near triple array} \qquad \qquad \textbf{G.-Markstr\"om-\"Ohman 25} each symbol used \lfloor e \rfloor or \lceil e \rceil times, no repetitions in rows/columns, |\mathsf{row} \cap \mathsf{row}| = \lfloor \lambda_{rr} \rfloor \text{ or } \lceil \lambda_{rr} \rceil, \ |\mathsf{column} \cap \mathsf{column}| = \lfloor \lambda_{cc} \rfloor \text{ or } \lceil \lambda_{cc} \rceil, \\ |\mathsf{row} \cap \mathsf{column}| = \lfloor \lambda_{rc} \rfloor \text{ or } \lceil \lambda_{rc} \rceil
```

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

```
(r \times c, v) \text{-near triple array} \qquad \qquad \textbf{G.-Markström-\"Ohman 25} each symbol used \lfloor e \rfloor or \lceil e \rceil times, no repetitions in rows/columns, |\mathsf{row} \cap \mathsf{row}| = \lfloor \lambda_{rr} \rfloor \text{ or } \lceil \lambda_{rr} \rceil, \ |\mathsf{column} \cap \mathsf{column}| = \lfloor \lambda_{cc} \rfloor \text{ or } \lceil \lambda_{cc} \rceil, \\ |\mathsf{row} \cap \mathsf{column}| = \lfloor \lambda_{rc} \rfloor \text{ or } \lceil \lambda_{rc} \rceil
```

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

$$(r \times c, v) \text{-} \text{near triple array} \qquad \qquad \text{G.-Markstr\"om-\"Ohman 25}$$
 each symbol used $\lfloor e \rfloor$ or $\lceil e \rceil$ times, no repetitions in rows/columns,
$$|\mathsf{row} \cap \mathsf{row}| = \lfloor \lambda_{rr} \rfloor \text{ or } \lceil \lambda_{rr} \rceil, \ |\mathsf{column} \cap \mathsf{column}| = \lfloor \lambda_{cc} \rfloor \text{ or } \lceil \lambda_{cc} \rceil, \\ |\mathsf{row} \cap \mathsf{column}| = \lfloor \lambda_{rc} \rfloor \text{ or } \lceil \lambda_{rc} \rceil$$

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

```
(r \times c, v) \text{-} \text{near triple array} \qquad \qquad \text{G.-Markstr\"om-\"Ohman 25} each symbol used \lfloor e \rfloor or \lceil e \rceil times, no repetitions in rows/columns, |\text{row} \cap \text{row}| = \lfloor \lambda_{rr} \rfloor \text{ or } \lceil \lambda_{rr} \rceil, \ |\text{column} \cap \text{column}| = \lfloor \lambda_{cc} \rfloor \text{ or } \lceil \lambda_{cc} \rceil, \\ |\text{row} \cap \text{column}| = \lfloor \lambda_{rc} \rfloor \text{ or } \lceil \lambda_{rc} \rceil
```

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

$(r \times c, v) \text{-near triple array} \qquad \qquad \textbf{G.-Markström-\"Ohman 25}$ each symbol used $\lfloor e \rfloor$ or $\lceil e \rceil$ times, no repetitions in rows/columns, $|\mathsf{row} \cap \mathsf{row}| = \lfloor \lambda_{rr} \rfloor \text{ or } \lceil \lambda_{rr} \rceil, \ |\mathsf{column} \cap \mathsf{column}| = \lfloor \lambda_{cc} \rfloor \text{ or } \lceil \lambda_{cc} \rceil, \\ |\mathsf{row} \cap \mathsf{column}| = \lfloor \lambda_{rc} \rfloor \text{ or } \lceil \lambda_{rc} \rceil$

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

- No admissibility conditions
- \diamond NTA = TA for TA-admissible $(r \times c, v)$

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

$$(5 \times 6, 10)$$
-TA

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

$$(5 \times 6, 10)$$
-TA

1

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

$$(5 \times 6, 10)$$
-TA

1 2

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

 $(5\times 6,10)\text{-TA}$

Column design

1	2	3	4	5	6
2	3	1	7	8	9
4	10	8	6	9	1
7	6	10	8	2	5
10	9	5	3	4	7

$$(5 \times 6, 10)$$
-TA

Column design

Row design

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

 $(4 \times 6, 9)$ -NTA

Column design

Row design

1	2	3	4	5	6
2	3	4	7	8	9
5	1	7	9	6	8
7	8	6	1	4	2

 $(4 \times 6, 9)$ -NTA

Column design

Now design


```
3 \times 4 ++-+++++
3 \times 5
3 \times 6
3 \times 7
3 \times 8
3 \times 9
3 \times 10
3 \times 11
3 \times 12
3 \times 13
3 \times 14
3 \times 15
4 \times 4
4 \times 5
4 \times 6
4 \times 7
4 \times 8
4 \times 9
4 \times 10
4 \times 11
4 \times 12
5 \times 5
5 \times 6
5 \times 7
5 \times 8
5 \times 9
5 \times 10
6 \times 6
6 \times 7
6 \times 8
7 \times 7
```


- $\diamond~(3 \times c, v)$ -NTA exist for all v when $c \geq 6$ G.-Markström-Öhman 25
- \diamond Conjecture: $(r \times c, v)$ -NTA exist for all v when $c \ge r(r-1)$

- $\diamond~(3 \times c, v)$ -NTA exist for all v when $c \geq 6$ G.-Markström-Öhman 25
- ♦ **Conjecture:** $(r \times c, v)$ -NTA exist for all v when $c \ge r(r-1)$
- \diamond Question: arrays with $|\mathsf{row} \cap \mathsf{row}| \in [x, x+2]$, etc., exist for all r, c, v?

ullet Balanced grid: each pair of symbols appears together in μ rows+columns

- ullet Balanced grid: each pair of symbols appears together in μ rows+columns
- **4** $v \ge r + c 1$ for TA Bailey-Heidtmann 94, Bagchi 98, MPWY 05
- **B** $v \le r + c 1$ for BG MPWY 05
- **⊙** TA \Leftrightarrow BG when v = r + c 1

MPWY 05 + McSorley 05

- Balanced grid: each pair of symbols appears together in μ rows+columns
- **Q** $v \ge r + c 1$ for TA Bailey-Heidtmann 94, Bagchi 98, MPWY 05
- **B** $v \le r + c 1$ for BG MPWY 05
- **●** TA \Leftrightarrow BG when v = r + c 1 MPWY 05 + McSorley 05
- Near balanced grid: ... in $\lfloor \mu \rfloor$ or $\lceil \mu \rceil$ rows+columns

$$\begin{array}{ll} (r\times c,v)\text{-array:} & \# \begin{pmatrix} \text{pair of rows/columns} \\ \text{both contain same} \\ \text{pair of symbols} \end{pmatrix} \begin{array}{l} \geq S_{\text{NTA}} = S_{\text{NTA}}(r,c,v) \\ \geq S_{\text{NBG}} = S_{\text{NBG}}(r,c,v) \end{array}$$

- ullet Balanced grid: each pair of symbols appears together in μ rows+columns
- **a** $v \ge r + c 1$ for TA Bailey-Heidtmann 94, Bagchi 98, MPWY 05
- **⊚** TA \Leftrightarrow BG when v = r + c 1 MPWY 05 + McSorley 05
- Near balanced grid: ...in $\lfloor \mu \rfloor$ or $\lceil \mu \rceil$ rows+columns

$$\begin{array}{ll} (r\times c,v)\text{-array:} & \# \begin{pmatrix} \text{pair of rows/columns} \\ \text{both contain same} \\ \text{pair of symbols} \end{pmatrix} \begin{array}{l} \geq S_{\text{NTA}} = S_{\text{NTA}}(r,c,v) \\ \geq S_{\text{NBG}} = S_{\text{NBG}}(r,c,v) \end{array}$$

♦ Implies ♠, ฿, ♠

Enumeration of TA

• *isotopism* = row + column + symbol permutations

		0	10	10	1.4	1 -	20
	v	6	10	12	14	15	20
	$r \times c$	3×4	5×6	4×9	7×8	6×10	5×16
To	tal #	0	7	1	684782	270119	26804
	1				682054	263790	26714
	2				1266	5280	
	3		2	1	1277	260	90
	4		1		98	579	
	5					1	
	6		1		48	69	
	7				2		
	8				12	88	
	10				12	2	
	12		2		9	17	
I A t. I			4		9		
Aut	16					11	
	18					1	
	20					4	
	21				8		
	24				7	9	
	36					2	
	48					4	
	60		1				
	120					1	
	168				1	_	
					1	1	
	720					1	

Enumeration of TA

• *isotopism* = row + column + symbol permutations

			10	10			20
	v	6	10	12	14	15	20
	$r \times c$	3×4		4×9	7×8	6×10	5×16
To	tal #	0	7	1	684782	270119	26804
	1				682054	263790	26714
	2				1266	5280	
	3		2	1	1277	260	90
	4		1		98	579	
	5					1	
	6		1		48	69	
	7		_		2		
	8				12	88	
	10				12	2	
	12		2		9	17	
1.4 4.1	16		4		9		
Aut						11	
	18					1	
	20					4	
	21				8		
	24				7	9	
	36					2	
	48					4	
	60		1				
	120					1	
	168				1		
	720					1	
	.20					-	

0	1	2	3	4	5	6	7	8	9
1	0	3	2	5	4	10	11	12	13
6	10	7	11	8	12	0	2	4	14
9	13	12	8	11	7	14	5	3	0
11	7	10	6	9	13	3	1	14	4
12	8	9	13	10	6	5	14	1	2

$(6 \times 10, 15)$ -TA with |Aut| = 720

0	1	2	3	4	5	6	7	8	9
1	0	3	2	5	4	10	11	12	13
6	10	7	11	8	12	0	2	$_4$	14
9	13	12	8	11	7	14	5	3	0
11	7	10	6	9	13	3	1	14	4
12	8	9	13	10	6	5	14	1	2

0	1	2	3	4	5	6	7	8	9
1	0	3	2	5	4	10	11	12	13
6	10	7	11	8	12	0	2	$_4$	14
9	13	12	8	11	7	14	5	3	0
11	7	10	6	9	13	3	1	14	4
12	8	9	13	10	6	5	14	1	2

0	1	2	3	4	5	6	7	8	9
1	0	3	2	5	4	10	11	12	13
6	10	7	11	8	12	0	2	4	14
9	13	12	8	11	7	14	5	3	0
11	7	10	6	9	13	3	1	14	4
12	8	9	13	10	6	5	14	1	2

0	1	2	3	4	5	6	7	8	9
1	0	3	2	5	4	10	11	12	13
6	10	7	11	8	12	0	2	$_4$	14
9	13	12	8	11	7	14	5	3	0
11	7	10	6	9	13	3	1	14	4
12	8	9	13	10	6	5	14	1	2

$(6 \times 10, 15)$ -TA with |Aut| = 720

0	1	2	3	4	5	6	7	8	9
1	0	3	2	5	4	10	11	12	13
6	10	7	11	8	12	0	2	$_4$	14
9	13	12	8	11	7	14	5	3	0
11	7	10	6	9	13	3	1	14	4
12	8	9	13	10	6	5	14	1	2

0	1	2	3	4	5	6	7	8	9
1	0	3	2	5	4	10	11	12	13
6	10	7	11	8	12	0	2	4	14
9	13	12	8	11	7	14	5	3	0
11	7	10	6	9	13	3	1	14	4
12	8	9	13	10	6	5	14	1	2

$$(6 \times 10, 15)$$
-TA with $|\operatorname{Aut}| = 720$

0	1	2	3	4	5	6	7	8	9
1	0	3	2	5	4	10	11	12	13
6	10	7	11	8	12	0	2	4	14
9	13	12	8	11	7	14	5	3	0
11	7	10	6	9	13	3	1	14	4
12	8	9	13	10	6	5	14	1	2

- "intercalate-dense"
- part of infinite series of intercalate-dense TA

Nilson 22

$$(6 \times 10, 15)$$
-TA with $|Aut| = 120$

0	1	2	3	4	5	6	7	8	9
1	0	3	4	5	2	10	11	12	13
6	11	0	8	14	13	9	12	3	2
8	13	14	11	0	6	5	4	7	10
10	9	7	14	12	1	11	2	5	8
12	7	10	1	9	14	3	6	13	4

• intercalate partition

$$(6 \times 10, 15)$$
-TA with $|\operatorname{Aut}| = 120$

0	1	2	3	4	5	6	7	8	9
1	0	3	4	5	2	10	11	12	13
6	11	0	8	14	13	9	12	3	2
8	13	14	11	0	6	5	4	7	10
10	9	7	14	12	1	11	2	5	8
12	7	10	1	9	14	3	6	13	4

• intercalate partition

$$(6 \times 10, 15)$$
-TA with $|Aut| = 120$

0	1	2	3	4	5	6	7	8	9
1	0	3	4	5	2	10	11	12	13
6	11	0			13	9	12	3	2
8	13	14	11	0	6	5	4	7	10
10	9	7	14	12	1	11	2	5	8
12	7	10	1	9	14	3	6	13	4

• intercalate partition

$(7 \times 8, 14)$ -TA with |Aut| = 168

0	1	2	3	4	5	6	7
1	8	3	9	5	10	7	11
2	12	13	8	3	1	11	6
7	5	9	2	6	12	13	10
8	0	5	7	13	11	4	12
10	6	11	4	8	2	9	0
13	9	0	12	10	4	1	3

• line of Fano plane \leftrightarrow four 3×2 Latin subrectangles

$(7 \times 8, 14)$ -TA with |Aut| = 168

0	1	2	3	4	5	6	7
1	8	3	9	5	10	7	11
2	12	13	8	3	1	11	6
7	5	9	2	6	12	13	10
8	0	5	7	13	11	4	12
10	6	11	4	8	2	9	0
13	9	0	12	10	4	1	3

• line of Fano plane \leftrightarrow four 3×2 Latin subrectangles