17th October 2016 VREF Conference on Urban Freight 2016

Data stories from urban loading bays

The use of timestamp data to analyse delivery vehicles at large urban establishments

Presented by Giacomo Dalla Chiara

Research team

Lynette Cheah (PI) Ngai-Man Cheung Ding Jiatao Costas Courcoubetis Sun Xin Guo Ziqi

- I. Motivation
- 2. Data background
- 3. Data stories
- 4. Conclusion

I. Motivation Urban logistics initiatives

CHALLENGES

- Goods vehicles generate sizeable externalities 17% of vehicle population*
 - (* statistics from Singapore) 40% km travelled*
- Freight movement is adversely affected by urban congestion
- Location-specific congestion → Large urban Freight Traffic Generators
 (LTGs) Jaller et al. (2015)

POSSIBLE SOLUTIONS

- Urban logistics initiatives can reduce freight traffic and improve freight distribution efficiency at LTGs.
 - Off-site consolidation, Centralised receiving station, pricing ...
 - Need for data and models to (i) understand freight delivery and quantify externalities, (ii) evaluate urban logistics initiatives.

I. Motivation

The Singapore urban logistics initiative

Plans to boost efficiency of logistics sector

Transforming the domestic logistics sector

A slate of measures to boost Singapore's logistics industry were unveiled yesterday, including a pilot programme to make deliveries to shopping malls more efficient.

These moves will inject a much-needed dose of technology into the domestic logistics sector

I. Motivation

Project phases and objectives

Data collection

Data visualisation

Model a "typical" Loading Bay

Evaluate urban logistics solutions

2. Data background

2. Data background System description

We analyse goods vehicles delivering at large urban retail malls

- service road,
- parking facilities,
- in-mall stores.

2. Data background Data collection methods

Automatic data collection

- road-side video recordings
- parking gate data

Manual data collection

- driver survey
- vehicle observations

- → timestamp data on vehicle activities: arrival time, exit time, handling, dwell time, queueing time ...
- ⇒ shipment size, vehicle type, vehicle loading, no. helpers ...

	no. stores	days	hours	vehicles observed
Mall A	160	3	6am - 6pm	1809 GVs
Mall B	173	2	6am - 6pm	2120 GVs
Mall B - gate data		6 months	24h	709574* (* include passenger vehicles)

Goods vehicles arrival patterns

Mall A			Mall B	
Wed 24 June	Thu 25 June	Fri 26 June	Thu 21 Jan	Fri 22 Jan
597	459	596	950	937

Good vehicle hourly arrival rates by time of the day.

Good vehicle cumulative arrivals by time of the day.

3. Data stories Number of goods vehicles in the system

Step plot: system entries (step-up) and exits (step-down) over time of the day.

3. Data stories Number of goods vehicles in the loading bay

Step plot: loading bay entries (step-up) and exits (step-down) over time of the day. Source: A, B malls.

Parking location choices and handling time

Handling time distribution by parking location choice at Mall A.

Handling time distribution by parking location choice at Mall B.

How congestion influences parking choice?

A. Fraction of goods vehicle parking in the loading bay vs. queue length (no. vehicles queueing). Source: Mall A.

B. Fraction of goods vehicle parking in the loading bay vs. queue length (no. vehicles queueing). Source: Mall B.

Loading bay handling time distribution

Empirical distribution of handling times. Source: Mall B, gates data.

Mean	31.1 min
Ist quartile	II.2 min
Median	20.1 min
3rd quartile	37.2 min

4. Conclusion

Data collection

Data visualisation

Model a
"typical"
Loading Bay

Evaluate urban logistics solutions

- modeling opportunities:
 - behavioural models (parking choice)
 - queueing (arrival process and service time distribution)

mobility.sutd.edu.sg/loadingbays

Prof. Lynette Cheah website

mobility.sutd.edu.sg/loadingbays

Thank you

Queueing times

Empirical cumulative distributions of queueing times. Source: malls A, B.

	Mall A	Mall B
Mean	7.2 min	5.6 min
Ist quartile	1.3 min	I min
Median	5.1 min	3.5 min
3rd quartile	10.7 min	8.6 min

3. Data collection: automatic video processing

3. Data collection: variables observed

VIDEO

MANUAL

TRAFFIC DATA

· vehicle plate

park choice

entry & exit times

VEHICLE OBSERVATIONS

- vehicle plate
- side plate
- vehicle loading
- car model
- refrigerated
- no. of helpers
- logo

SHIPMENT OBSERVATIONS

- handling time
- pick-up/delivery size
- · commodity type

DRIVER SURVEY

- store name
- employer type
- routing (no. stops, reloading, origin)
- decisions (ERP, gasoline refilling, decision makers, working hours etc.)

STORE DATA

- Store features: floor, industry type, area, storage space, opening time, store name
- **Supply chain features**: no. branches, industry type, type of carrier used, type of distribution ...
- *other data sources include corporate websites and a retailer survey.

3. Data collection: site maps

