ÁLGEBRA 1

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS 4

4.1. Si A y B son anillos conmutativos, probar que el conjunto producto cartesiano $A \times B$, con las operaciones

$$(a, a') + (b, b') = (a + b, a' + b'), (a, a')(b, b') = (ab, a'b').$$

es efectivamente un anillo conmutativo. Se llama el "anillo producto cartesiano" de A y B. Escribir las tablas de sumar y multiplicar del anillo producto $\mathbb{Z}_2 \times Z_2$.

4.2. En el conjunto \mathbb{Z} definimos las operaciones de suma \oplus y producto \otimes por

$$a \oplus b = a + b - 1$$
,

$$a \otimes b = a + b - ab$$
.

Así, por ejemplo, $2 \oplus 3 = 4$ y $2 \otimes 3 = -1$. ¿Es \mathbb{Z} un anillo conmutativo con estas operaciones?

4.3. En $\mathbb{Z} \times \mathbb{Z}$ definimos las operaciones

$$(a, a') + (b, b') = (a + b, a' + b'),$$

$$(a, a') \cdot (b, b') = (ab, ab' + a'b).$$

¿Es $\mathbb{Z} \times \mathbb{Z}$ un anillo conmutativo con estas operaciones?

- **4.4.** Escribir las tablas de sumar y multiplicar de los anillos \mathbb{Z}_5 y \mathbb{Z}_6 .
- **4.5.** Efectuar los siguientes cálculos en el anillo $\mathbb{Z}[\sqrt{3}]$:

$$(3+2\sqrt{3})+(4-5\sqrt{3}), \quad (3+2\sqrt{3})(4-5\sqrt{3}), (2-\sqrt{3})^3.$$

- **4.6.** ¿Cuáles de los siguientes son subanillos de los anillos indicados?
 - $(i) \{a \in \mathbb{Q} \mid 3a \in \mathbb{Z}\} \subseteq \mathbb{Q},$
 - (ii) $\{m+2n\sqrt{3} \mid m,n\in\mathbb{Z}\}\subseteq\mathbb{R}$.
- **4.7.** Determinar las unidades del anillo definido por el conjunto $\mathbb{Z} \times \mathbb{Z}$, con las operaciones (a, a') + (b, b') = (a + b, a' + b') y $(a, a') \cdot (b, b') = (ab, ab' + a'b)$ (ver el Ejercicio 3).
- **4.8.** Encontrar todas las unidades de los anillos \mathbb{Z}_6 , \mathbb{Z}_7 y \mathbb{Z}_8 .

4.9. Efectuar las siguientes operaciones en el anillo $\mathbb{Z}_5[X]$

$$(3+4X+X^2+2X^3)+(3+4X+4X^4+3X^3),\\(3+4X+X^2+2X^3)(3+4X+4X^4+3X^3),\\(2-4X+X^2-2X^3)+(3-4X+4X^2-3X^3),\\(2-4X+X^2-2X^3)(3-4X+4X^2-3X^3).$$

- **4.10.** Si $p(X) \in \mathbb{Z}_5[X]$ es cualquiera de los cuatro polinomios obtenidos al realizar el ejercicio anterior, calcular p(1) y p(-1) en cada caso.
- **4.11.** Sea R un anillo y sea $a \in R$ un elemento invertible. Demostrar que la aplicación $f_a: R \to R$ dada por $f_a(x) = axa^{-1}$ es un automorfismo de R.
- **4.12.** Dado un anillo R, demostrar que existe un único homomorfismo de anillos de \mathbb{Z} en R.
- **4.13.** Demostrar que si A es un anillo de característica n, entonces existe un único homomorfismo de anillos de \mathbb{Z}_n en A que es inyectivo.
- **4.14.** Dados dos números naturales n y m, dar condiciones para que exista un homomorfismo de anillos de \mathbb{Z}_n en \mathbb{Z}_m .
- **4.15.** Dado un morfismo de anillos $f:A\longrightarrow B$, ¿la imagen directa de un subanillo de A es subanillo de B? ¿la imagen inversa de un subanillo de B es subanillo de A?
- 4.16. Razonar si las siguientes afirmaciones son verdaderas o falsas:
- i) Existe un único homomorfismo de anillos de \mathbb{Z} en $\mathbb{Z}_2 \times \mathbb{Z}_7$ que es sobreyectivo.
- ii) \mathbb{Z}_{1457} es un cuerpo.
- iii) De \mathbb{Z}_7 en \mathbb{Z}_{14} hay exactamente 7 homomorfismos de anillos.