The Structure of Human Olfactory Space

by Alexei A. Koulakov, Brian E. Kolterman, Armen G. Enikolopov, and Dmitry Rinberg

ODORANTS INCLUDED IN THE ANALYSIS

The following odorants were used from the Atlas of Odor Character profiles.

```
41
      1423-46-7
                    Cyclocitral: iso-Cyclocitral
42
      55704-78-4
                    Cyclodithalfarol
43
                    Cyclohexanedione: 1,2-Cyclohexanedione
      765-87-7
44
      108-93-0
                    Cyclohexanol
45
      80-71-7
                    Cyclotene
46
      67634-23-5
                    Cyclotropal
                    Decadienal: 2,4-trans-trans-Decadienal
47
      25152-84-5
48
      91-17-8
                    Decahydro Naphthalene
49
                    Dibutyl Amine
      111-92-2
                    Diethyl Sulfide
50
      352-93-2
                    Dimethyl Benzyl Carbinyl Butyrate
51
      10094-34-5
52
                    Dimethyl Phenyl Ethyl Carbinol
      103-05-9
53
      5910-89-4
                    Dimethyl Pyrazine: 2,3-Dimethyl Pyrazine
                    Dimethyl Pyrazine: 2,5-Dimethyl Pyrazine
54
      123-32-0
                    Dimethyl Pyrrole: 2,5-Dimethyl Pyrrole
55
      625-84-3
                    Dimethyl Trisulfide
56
      3658-80-8
57
      4747-07-3
                    Diola
                    Diphenyl Oxide
58
      101-84-8
59
      105-54-4
                    Ethyl Butyrate
                    Ethyl Propionate
60
      105-37-3
                    2-Ethyl Pyrazine (Lower Concentration)
61
      13925-00-3
62
      13925-00-3
                    2-Ethyl Pyrazine (Higher Concentration)
63
                    Eucalyptol
      470-82-6
64
      97-53-0
                    Eugenol
65
                    Floralozone
      67634-15-5
66
      6413-10-1
                    Fructone
67
      98-01-1
                    Furfural
68
                    Furfuryl Mercaptan
      98-02-2
69
      88683-93-6
                    Grisalva
70
      90-05-1
                    Guaiacol
71
      111-71-7
                    Heptanal
72
      111-70-6
                    Heptanol: 1-Heptanol
73
                    Hexanal
      68-25-1
74
                    Hexanoic acid
      142-62-1
75
      111-27-3
                    Hexanol: 1-Hexanol
76
      623-37-0
                    Hexanol: 3-Hexanol
77
      6728-26-3
                    Hexenal: trans-1-Hexenal
78
      111-26-2
                    Hexyl Amine (Lower Concentration)
79
      111-26-2
                    Hexyl Amine (Higher Concentration)
                    Hexyl Cinnamic Aldehyde
80
      101-86-0
81
      90-87-9
                    Hydratropic Aldehyde Dimethyl Acetal
82
                    Hydroxy Citronellal
      107-75-5
83
      120-72-9
                    Indole
84
      67801-36-9
                    Indolene
85
      75-47-8
                    lodoform
86
                    Ionone: beta-Ionone (Lower Concentration)
      14901-07-6
87
      14901-07-6
                    Ionone: beta-Ionone (Higher Concentration)
88
      79-69-6
                    Irone: alpha-Irone
      126-91-0
89
                    Linalool
90
      138-86-3
                    Limonene: d-Limonene
```

```
91
      31906-04-4
                    Lyral
92
                    Maritima
      67258-87-1
93
                    Melonal
      106-72-9
                    Menthol: I-Menthol
94
      2216-51-5
95
                    Methoxy-Naphthalene: 2-Methoxy Naphthalene
      93-04-9
96
      134-20-3
                    Methyl Anthranilate
                    Methyl Acetaldehyde Dimethyl Acetal
97
      462-95-3
                    Methyl Furoate
98
      1334-76-5
99
                    Methyl-iso-Borneol: 2-Methyl-iso-Borneol
      2271-428
                    Methyl Quinoline: para-Methyl Quinoline
100
      491-35-0
                    Methyl iso-Nicotinate
101
      2459-09-8
                    Methyl Salicylate
102
      119-36-8
103
      2432-51-1
                    Methyl Thiobutyrate
104
      1222-05-5
                    Musk Galaxolide
                    Musk Tonalid
105
      1508-02-1
106
      37677-14-8
                    Myracaldehyde
107
      143-13-5
                    Nonyl Acetate
108
      4674-50-4
                    Nootkatone
109
      111-87-5
                    Octanol: 1-Octanol
110
                    Octenol: 1-Octen-3-OL
      3391-86-4
111
      109-52-4
                    Pentanoic Acid
112
      591-80-0
                    Pentenoic Acid: 4-Pentenoic Acid
113
      103-82-2
                    Phenyl Acetic Acid
114
      536-74-3
                    Phenyl Acetylene
                    Phenyl Ethanol (Lower Concentration)
115
      60-12-8
                    Phenyl Ethanol (Higher Concentration)
116
      60-12-8
117
      78-59-1
                    Phorone: iso-Phorone
118
                    Pinene: alpha-Pinene
      80-56-8
119
      105-66-8
                    Propyl Butyrate
                    Propyl Quinoline: iso-Propyl Quinoline
120
      135-79-5
                    Propyl Sulfide
121
      111-47-7
                    Pyridine
122
      110-86-1
123
      94-59-7
                    Safrole
124
      69460-08-8
                    Sandiff
125
      115-71-9
                    Santalol
126
      83-34-1
                    Skatole
127
                    Terpineol, mostly alpha-Terpineol
      10482-56-1
128
      110-01-0
                    Tetrahydro Thiophene
129
      91-61-2
                    Tetraquinone
                    Thienopyrimidine
130
      36267-71-7
131
      123-93-3
                    Thioglycolic Acid
                    Thiophene
132
      110-02-1
133
      89-83-8
                    Thymol
134
      529-20-4
                    Tolualdehyde: ortho-Tolualdehyde
135
      108-88-3
                    Toluene (Lower Concentration)
136
                    Toluene (Higher Concentration)
      108-88-3
137
      75-50-3
                    Trimethyl Amine
                    Undecalactone: gamma-Undecalactone
138
      104-67-6
139
      112-38-9
                    Undecylenic Acid
140
                    Valeraldehyde: iso-Valeraldehyde
      590-86-3
```

tone

PERCEPTUAL DESCRIPTORS

1 2 3 4 5 6 7 8 9 10	FRUITY, CITRUS LEMON GRAPEFRUIT ORANGE FRUITY, OTHER THAN CITRUS PINEAPPLE GRAPE JUICE STRAWBERRY APPLE (FRUIT) PEAR
11 12	CANTALOUPE, HONEY DEW MELON PEACH (FRUIT)
13	BANANA
14	FLORAL
15	ROSE VIOLETS
16 17	LAVENDER
18	COLOGNE
19	MUSK
20 21	PERFUMERY FRAGRANT
22	AROMATIC
23	HONEY
24	CHERRY (BERRY)
25 26	ALMOND NAIL POLISH REMOVER
27	NUTTY (WALNUT ETC)
28	SPICY
29	CLOVE
30 31	CINNAMON LAUREL LEAVES
32	TEA LEAVES
33	SEASONING (FOR MEAT)
34 35	BLACK PEPPER GREEN PEPPER
36	DILL
37	CARAWAY
38	OAK WOOD, COGNAC
39 40	WOODY, RESINOUS CEDARWOOD
41	MOTHBALLS
42	MINTY, PEPPERMINT
43	CAMPHOR
44 45	EUCALIPTUS CHOCOLATE
46	VANILLA
47	SWEET
48	MAPLE SYRUP

49	CARAMEL
50	MALTY
51	RAISINS
52	MOLASSES
53	COCONUT
54	ANISE (LICORICE)
55	ALCOHOLIC
56	ETHERISH, ANAESTHETIC
57	CLEANING FLUID
58	GASOLINE, SOLVENT
59	TURPENTINE (PINE OIL)
60	GERANIUM LEAVES
61	CELERY
62	FRESH GREEN VEGETABLES
63	CRUSHED WEEDS
64	CRUSHED GRASS
65	HERBAL, GREEN, CUT GRASS
66	RAW CUCUMBER
67	HAY
68	GRAINY (AS GRAIN)
69	YEASTY
70 71	BAKERY (FRESH BREAD)
71 72	SOUR MILK
72 73	FERMENTED (ROTTEN) FRUIT BEERY
73 74	SOAPY
7 4 75	LEATHER
76	CARDBOARD
77	ROPE
78	WET PAPER
79	WET WOOL, WET DOG
80	DIRTY LINEN
81	STALE
82	MUSTY, EARTHY, MOLDY
83	RAW POTATO
84	MOUSE
85	MUSHROOM
86	PEANUT BUTTER
87	BEANY
88	EGGY (FRESH EGGS)
89	BARK, BIRCH BARK
90	CORK
91	BURNT, SMOKY
92	FRESH TOBACCO SMOKE
93	INCENSE
94 05	COFFEE STALE TORACCO SMOKE
95 06	STALE TOBACCO SMOKE BURNT PAPER
96 97	BURNT MILK
97	

BURNT RUBBER

- 99 TAR
- 100 CREOSOTE
- 101 DISINFECTANT, CARBOLIC
- 102 MEDICINAL
- 103 CHEMICAL
- 104 BITTER
- 105 SHARP, PUNGENT, ACID
- 106 SOUR, VINEGAR
- 107 SAUERKRAUT
- 108 AMMONIA
- 109 URINE
- 110 CAT URINE
- 111 FISHY
- 112 KIPPERY (SMOKED FISH)
- 113 SEMINAL, SPERM
- 114 NEW RUBBER
- 115 SOOTY
- 116 BURNT CANDLE
- 117 KEROSENE
- 118 OILY, FATTY
- 119 BUTTERY, FRESH BUTTER
- 120 PAINT
- 121 VARNISH
- 122 POPCORN
- 123 FRIED CHICKEN
- 124 MEATY (COOKED, GOOD)
- 125 SOUPY
- 126 COOKED VEGETABLES
- 127 RANCID
- 128 SWEATY
- 129 CHEESY
- 130 HOUSEHOLD GAS
- 131 SULFIDIC
- 132 GARLIC, ONION
- 133 METALLIC
- 134 BLOOD, RAW MEAT
- 135 ANIMAL
- 136 SEWER
- 137 PUTRID, FOUL, DECAYED
- 138 FECAL (LIKE MANURE)
- 139 CADAVEROUS (DEAD ANIMAL)
- 140 SICKENING
- 141 DRY, POWDERY
- 142 CHALKY
- 143 LIGHT
- 144 HEAVY
- 145 COOL, COOLING
- 146 WARM

LIST OF PHYSICO-CHEMICAL PARAMETERS USED

A more detailed description of the parameters is given at the bottom of the list.

С 1 2 Н 3 O 4 Ν 5 S 6 I 7 8 molecular_weight 9 molecular_volume 10 molecular length molecular_width 11 12 molecular_depth 13 density 14 surface area 15 Log_Kow_fragments 16 **HLB** 17 solubility_parameter 18 dispersion 3D 19 polarity_3D 20 hydrogen_bond_3D 21 hydrogen_bond_acceptor hydrogen_bond_donor 22 23 dipole moment debye 24 hydrophilic_surface_area 25 water_of_hydration boiling_point_C 26 27 vapor_pressure_torr 28 MR 29 parachor 30 connectivity_0 31 connectivity_1 32 connectivity_2 33 connectivity_3 34 connectivity_4 35 valence_0 36 valence 1 37 valence_2 38 valence 3 39 valence_4 40 kappa 2 41 log_water_solubility Log_P__atom_based 42 43 Z_chain_length glass_transition_temperature 44 45 melt_transition_temperature

water_content_30_RH

46

- 47 water_content_50_RH
- 48 water_content_70_RH
- 49 water_content_90_RH
- 50 water content 100 RH
- 51 molar volume
- 52 Surface_tension
- 53 Viscosity_cp_at_25C
- 54 Surface_tension_in_water
- 55 Critical Temperature K
- 56 Critical Pressure bar
- Normal_Boiling_Point_K 57
- 58 Normal Freezing Point K
- 59 Enthalpy_of_formation
- 60 Gibbs_energy_of_formation
- 61 enthalpy_of_vaporization
- 62 enthalpy_of_fusion
- 63 liquid_viscosity
- 64 heat capacity 25C
- 65 Effective_number_of_torsional_bonds
- hydrogen_bond_number 66
- 67 Entropy_of_boiling_JKmol
- Heat capacity change on boiling JKmol 68
- 69 CIM 1
- 70 CIM₂
- 71 CIM₃
- 72 CIM₄
- 73 CIM 5
- 74 CIM 6
- 75 CIM 7
- 76 CIM 8
- 77 CIM₉
- 78 CIM 10
- 79 Polar_surface_area
- 80 C₁C
- 81 C₁H
- 82 C10
- 83 C₁N
- 84 C1S
- 85 C1I
- 86 C₁L
- 87 H10
- H₁N 88
- 89 H1S
- 90 S1S
- 91 C₂C 92 C2O
- 93 C2N
- 94 C3C
- 95 C3N
- 96 C1C1C

97 C2C1C 98 C1C1H 99 C2C1H 100 C3C1H 101 C1C10 102 C1C2O 103 C2C1O 104 C1C1N C1C2N 105 C1C3N 106 C2C1N 107 108 C1C1S 109 C2C1S 110 C2C1L 111 C101C 112 C101H 113 C1N1C 114 C2N1C 115 C1N1H 116 C1S1C 117 **C1S1S** 118 H1C10 119 H1C2O 120 H1C1N 121 H1C2N 122 H1C1S 123 01C10 124 O2C1O 125 01C1S 126 S1S1S

<u>Parameters 1-7:</u> These parameters represent atom counts per molecule [C (carbon) through L (chlorine)].

<u>Parameters 8-79:</u> These parameters were calculated by the Molecular Modeling Pro software (ChemSW, Fairfield, CA, USA). The algorithms for calculating these parameters are described below:

Calculations made by Molecular Modeling Pro:

Mass, size

- Molecular weight
- Van der Waals volume (calculated with geometry)
- Molar volume (van Krevelen type method)
- Surface area (calculated with geometry)
- Length, width, depth (current, maximum and minimum calculated by geometry)
- Density (proprietary method for small molecules)
- Mass Percent

Partition coefficients, hydrophobicity, solubility etc.

- Log water octanol partition coefficient (4 methods, Fragment addition generally following the methods of Hansch and Leo, atom based generally following Ghose and Crippen, charge and atom based, and Q Log P after N. Bodor and P. Buchwald, J. Phys. Chem. B, 1997, 101: 3404-3412)
- HLB (hydrophilic lipophilic balance, proprietary method)
- Hydrophilic surface area (proprietary method)
- Percent hydrophilic surface area (proprietary method)
- Polar surface area (J. Med. Chem. 43: 3714-3717)
- Hydration number
- Water solubility (after Klopman et.al. J. Chem. Inf. Comput. Sci. 32:474 and S. Yalkowsky, J. Pharm Sci., 70:971)
- Olive oil gas partition coefficient (after Klopman et.al. J. Med. Chem. 43: 3714-3717)

Properties used in QSAR

- Sterimol properties (L1, B1, B2, B3, B4, B5 and 3 more)
- Hammett Sigma (sigma para, meta, sigma induction (SIND), sigma star)(proprietary method)
- MR (molar refractivity after Ghose and Crippen)

Dipole moment and other charge related properties

- Dipole moment (Modified methods based on Del Re method: G. Del Re, J. Chem. Soc. 4031 (1958); D. Poland and H.A. Scheraga, Biochemistry 6: 3791 (1967); Coefficients modified in MAP 4.0 to take into account pi contributions; PEOE method: J. Gasteiger and M. Marsili, Tetrahedron 36:3219 (1980); MPEOE (DQP) method: K.T. No, J.A. Grant and H.A. Scheraga, J. Phys. Chem. 94:4732 (1990) and K.T. No, J.A. Grant, M.S. Jhou and H.A. Scheraga, J. Phys. Chem. 94: 4740 (1990); J.M. Park, K.T. No, M.S. Jhou and H.A. Scheraga, J. Comp. Chem. 14:1482 (1993). Semi-empirical Quantum Mechanics methods in CNDO and MOPAC are alternative methods used by MMP to calculate dipole moment.
- Partial charge (many methods see Dipole moment)
- HOMO/LUMO (via CNDO or MOPAC)
- Hydrogen bond acceptor and donor from charge calculations

Connectivity indices

- Randic, Hall, Kier type connectivity indices 0-4
- Randic, Hall, Kier type valence indices 0-4
- Kier type Kappa shape index 2
- Wiener index
- Chemically Intuitive Molecular Index (F. Burden, Quant. Struct.-Act.Relat. 16:309-314 (1997))

Thermodynamics

- Critical temperature, pressure and volume (after Joback and Reid)
- Normal boiling and freezing point (after Joback and Reid)
- Enthalpy of formation, ideal gas at 298 K (after Joback and Reid)
- Gibbs energy of formation, ideal gas, unit fugacity at 298 K
- Enthalpy of vaporization at the boiling point (after Joback and Reid)
- Enthalpy of vaporization at the boiling point (after Joback and Reid)
- Enthalpy of fusion (after Joback and Reid)
- Liquid viscosity (after Joback and Reid)
- Heat capacity, ideal gas (after Joback and Reid)
- Effective number of torsional bonds (tau) (after S. Yalkowsky et.al.)
- Hydrogen Bond Number (after S. Yalkowsky et.al.)
- Entropy of boiling (after S. Yalkowsky et.al.)

- Effective number of torsional bonds (tau) (after S. Yalkowsky et.al.)
- Heat capacity change on boiling (after S. Yalkowsky et.al.)
- Vapor pressure (after S. Yalkowsky et.al.)
- Vapor pressure (after The Handbook of Chemical Property Estimation Methods)
- Boiling point (after The Handbook of Chemical Property Estimation Methods)
- Parachor (after The Handbook of Chemical Property Estimation Methods)

More properties are available through the MOPAC program included., such as heat of formation, ionization potential and many more.

Polymer and Surfactant properties

- Solubility parameter
- 3-D solubility parameters (dispersion, polarity and hydrogen bonding)
- Water content of polymers at different relative humidities
- Melt transition temperature
- Glass transition temperature
- Chain length (van Krevelen Z)
- Surface tension of liquids
- Surface tension in water
- Molecular weight, molar volume, van der Waals volume, surface area (listed above)
- HLB, hydrophilic surface area, % hydrophilic surface area (listed above)

Parameters 80-95: Number of pairs per molecule (C1C or C-C through C3N or C≡N)

<u>Parameters 96-126:</u> Number of triples per molecule (C1C1C stands for C-C-C, while S2S1S represents S=S-S). All triples observed had linear topology. No loops were observed in triples.

PCA ANALYSIS OF THE PHYSICO-CHEMICAL PARAMETER SPACE

We have conducted a basic PCA analysis of the previously enumerated physical parameters for the odorants used in the AOCP database (Dravnieks dataset). This analysis was performed without using any of the perceptual information contained in the AOCP database. As such, it reflects the structure of the physico-chemical space alone. The results are shown in Supplementary Figure 1. Figure 1A shows that 3 PCA dimensions cover nearly 80% of the variance. Figures 1B-1D show the weight with which each parameter contributes to each PCA dimension. The parameters contributing the most to the first 2 PCA dimensions are those which count the number of carbon atom pairs and triples (including double bonds). That these contributions dominate is to be expected given these values are directly related to the chemical formula of each molecule and as such, act as good discriminators. The third PCA dimension involves a much more complicated combination of parameters which do not suggest any immediate interpretation. PCA dimensions of molecules' properties are expected to be strongly dependent by the choice of these properties and may reflect the redundancies in this choice. Redundant properties or their combinations are expected to contribute strongly to the principal components. That these results are different from those in found in the main text (Table 1) is due to the fact that in the main analysis we sought correlations between the parameters and the perceptual dimensions on the basis of multiple linear regression, which is a different form of analysis from PCA. The interpretation of this difference is that the olfactory system discriminates molecules based on features which are more subtle than the dominant ones shown by PCA. We also show below that PCA dimensionality of the semantic space used in AOCP database is sufficiently high (~60D), which implies that semantic descriptors used by database are not overly redundant.

Supplementary Figure 1. PCA of odorant physico-chemical parameters. (A) Fraction of variance explained vs. number of included PCA dimensions. (B), (C) & (D) Weights of individual physico-chemical parameters contributing to the first 3 PCA dimensions. The horizontal axis also contains markings indicating the corresponding block of molecular parameters: element counts (C1), Molecular modeling Pro physico-chemical parameters (PHYS CHEM), pairs counts (C2), and triples counts (C3). CIM is the block of ten Burden chemical intuitive indexes.

Supplementary Figure 2. Equilibrating the density of the odorants in two dimensions. Left: the original set of odorants projected onto a flat 2D space and Delaunay triangulated. Right: the same set of odorants after relaxing the elastic energy of edges that are assumed to be springs with unit equilibrium length and the same elastic coefficient. The transformation (arrow) was constrained to be of second order as in equation (1) of the main text. The final two coordinates were studied for correlations with the structural and physico-chemical parameters (Table 1, Supplementary figure 3).

Supplementary Figure 3. The results of greedy algorithm for elevation (A) and azimuth (B) variables on the 2D fit to psychophysical data. Pearson correlation coefficient is shown as a function of the number of physico-chemical/structural parameter (see above). Three iterations are shown for each parameter by three lines with dots. The parameters yielding maximal correlation on each iteration are shown by the red dots. Some parameters are highlighted, such as Carbon count (R=0.50), hydrophilic surface area (R=0.33), and water of hydration (R=0.33). Horizontal axis also contains markings indicating the corresponding block of parameters included: element counts (C1), Molecular modeling Pro physico-chemical parameters (PHYS CHEM), pairs counts (C2), and triples counts (C3). CIM is the block of ten Burden chemical intuitive indexes.

THE PERCEPTUAL SPACE OF MIXTURES

List of 15 mixtures from the AOCP database used in the analysis

01 Cedartone MIXTURE OF HYDROCARBONS FROM AMERICAN CEDARWOOD ACETYLATED

02 CedroneS MIXTURE OF OXYGENATED CEDARWOOD HYDROCARBONS

03 Cinnamon Bark Oil (Ceylon) MAJOR COMPONENTS: CINNAMALDEHYDE EUGENOL ACETEUGENOL

04 Cinnamon Leaf Oil (Ceylon) MAJOR COMPONENT: EUGENOL

05 Clove Bud Oil MÁJOR COMPONENTS: EUGENOL
06 Eucalyptus Oil MAJOR COMPONENT: CITRONELLAL
07 Garlic Oil MAJOR COMPONENTS: ALLICIN

08 Oenantic Ether MIXTURE OF ETHYL ESTERS OF THE FATTY ACIDS ISOLATED FROM COCONUT OIL

09 Onion Oil MAJOR COMPONENTS: ORGANIC SULFIDES
10 Patchouli Oil MAJOR COMPONENT: PATCHOULI ALCOHOL

11 Perfume "Charlie" COMMERCIAL PERFUME

12 Phenoxaflor A FRAGRANCE COMPOUND WITH ROSE CHARACTER

13 Pyrroline + Pyrrolidone (mixture) 3-Pyrroline

14 Rosemarel MIXTURE OF COMPOUNDS A AND B COMPOUND A: BETA-PINENE EPOXIDE

15 Spearmint Oil MAJOR COMPONENT: L-CARVONE

ANALYSIS OF THE SEMANTIC SPACE

As stated in the main article, the dimensionality of the olfactory space was determined using the results of odorant profiling in which a set of 146 semantic perceptual descriptors were used. The methodology of this study is outlined in (Dravnieks, 1982). They create odor profiles by presenting an odor to a participant and have them rate each of the 146 semantic descriptors by applicability. Using a large number of participants allows for the calculation of the percentage of applicability for a given descriptor to a particular odorant. They find this method generates odor profiles that give high correlations (p < 0.001) when confronted by the results of an earlier study using a nearly independent set of participants. This stability of the odor profiles in the Dravnieks catalog makes their results an excellent basis for the study we present in the main article. However, there is an important question that needs to be answered about how independent these semantic descriptors are.

If the descriptors were essentially synonymous, the low dimensionality of the olfactory space could be attributed to the dependencies between descriptors. The redundancy between descriptors could render the semantic space spanned by them low dimensional, imposing low dimensionality on the odorant space. On the face of things, the descriptor space in the Dravnieks catalog has 146 dimensions. However, if the perceptual descriptors used in this psychophysical study are related to one another (in a semantic sense), the dimensionality of the semantic space may be considerably lower. Therefore, here we will study the dimensionality of the semantic space of the descriptors used in the AOCP catalog. We will argue that the dimensionality of the semantic space spanned by these descriptors is substantially larger than the dimensionality of the olfactory space based on the study of texts found by web searches, as described below.

To evaluate the lower bound on the dimensionality of semantic space we employed a "bag-of-words" technique in this analysis (Manning and Schütze, 1999). For each perceptual descriptor (PD), a Google search was performed. Links provided by the search were collected for a given number of result pages. Each link was then followed and all formatting strings were removed (scripts, html tags, etc.). What is left over was the main text of the website. Of course, some of the search results link to pages that cannot be treated in this manner (e.g. flash sites, Word docs, pdfs etc.). These links were excluded from this analysis. The "bag-of-words" for the PD was constructed by saving a specified number of words surrounding each instance of the PD in the website text (contextual window). As we are only interested in comparing substantive words between different PDs, all closed-class words (i.e.

articles, pronouns, prepositions etc.) were then removed. Performing this process over many search results allowed us to calculate the probability of finding a given word within the specified contextual window for the PD of interest. After completing the procedure for the entire list of PDs we created a probability matrix where columns corresponded to one PD and the rows to the entire set of words found for all 146 PDs. Performing principle component analysis on this matrix allowed us to calculate the variance covered for the number of Euclidean "dimensions" included.

We carried out this analysis using a mean of 50 different websites for each of the 146 PDs with a contextual window of 20 words. The mean number of words (not unique) for each PD is found to be ~13000. The number of unique words is about a factor of 10 less. The results of the analysis can be seen in Supplementary Figure 4. The dimensionality of the PD semantic space found using this method is approximately 28 times larger than that found for the olfactory space. For example, the (non-jackknife) variance covered by the curved 2-D manifold is approximately 56% (Figure 1E, main text). The same amount of variance can be explained by including 56 dimensions of the semantic space (Supplementary Figure 4). We conclude that the semantic space spanned by the descriptors used in (Dravnieks, 1985) is substantially higher dimensional than the space formed by the odorants.

To verify that this result is statistically stable we reduced the number of websites included by a factor of two (from 50 to 25 for each PD). After conducting the same PCA analysis, we find that the amount of variance covered as a function of the number of included dimensions is very similar to the full analysis (Supplementary Figure 4, green dashed line). The number of dimensions corresponding to 56% variance is 55 (vs. 56 for the analysis with full dataset, as described above). We conclude that the estimate for the dimensionality of the semantic space of PD used by the AOCP is stable with respect to the statistical variability in the search data. The dimensionality of the semantic space is therefore substantially larger than the dimensionality of olfactory space. Although 56% of variance of olfactory data can be explained by 2 curved dimensions, the same amount of variance in the semantic space can be accounted for by 56 dimensions.

As an additional check we have run the same analysis, however, this time including the word 'olfaction' in the search for each PD. This method is expected to bias the searches toward the texts that have relevance to olfaction and analyze the descriptors in the olfactory context. This method of sampling is expected therefore to lower the dimensionality of the semantic space. It is not clear if this method of sampling can isolate the influence of context from the effects of olfactory percepts that, as we know from the main text, can be viewed as low-dimensional. Despite these limitations, we expect that the searches related to olfaction can provide the lower bound for the dimensionality of the semantic space relevant to olfaction. Supplementary Figure 5 shows the result of this analysis. The effect of requiring each PD search to have a bias toward olfaction has the expected result of reducing the overall dimensionality of the PD space. However, this dimensionality is still approximately 22-24 times larger than that of the olfactory space found in the main article. More precisely, at the level of 56% of the variance, the olfactory space can be accounted for by a 2D curved manifold (nonjackknifed data is used here, as PCA of the semantic space is not jackknifed). The same amount of variance is captured by 47 dimensions of the semantic data. When only 50% of the websites are used, the dimensionality at 56% variance level can be estimated to be 44. We conclude that the semantic space is 22-24 times higher dimensional than the olfactory space. The correlations in the olfactory space reported in the main text are therefore not caused by a poverty of diversity in the semantic space.

Supplementary Figure 4. The dimensionality of semantic space. Percent variance explained vs. number of included PCA dimensions for the semantic space of the 146 perceptual descriptors used in the psychophysical study (blue line). The red line shows the variance captured by the 2-D curved surface found in the main analysis. The intersection is at 56 dimensions. The dimensionality of the semantic space spanned by descriptors is therefore 28 times larger than the dimensionality of the olfactory space. The green dashed line shows the results of PCA with 50% of data used (25 vs. 50 web pages per PD).

Supplementary Figure 5. Percent variance vs. number of included PCA dimensions for the semantic space of the 146 perceptual descriptors plus the term "olfaction" (blue line). The red line shows the variance captured by the 2-D curved surface found in the main analysis. The intersection is at 47 dimensions. The green dashed line shows the results of PCA with 50% of data used (25 vs. 50 web pages per PD). The intersection with the red line is at 44 dimensions.

OTHER METHODS OF ANALYSIS

Here we applied other published methods to embed the perceptual data into a low-dimensional subspaces. These methods include Isomap (Tenenbaum et al., 2000) and locally linear embedding (LLE) (Roweis and Saul, 2000). We argue here that these methods give similar results to the method used by us. Because several elements needed for our purposes are not developed in these two methods, we employed the method of non-linear regression described in the main article. Here we report the results of applying both Isomap and LLE.

Isomap (IM)

In this method the shortest path between every two points is first calculated on the basis of the graph that includes K nearest neighbors. Because only proximal points are used in evaluating the distances, this "geodesic" distance is expected to perform better for the data in which large distances are inaccurate. The classical MDS algorithm is then performed with this set of pair-wise distances to establish the coordinates of points in the embedded space. We downloaded the algorithm from the authors' website (http://waldron.stanford.edu/~isomap/). The results of applying this algorithm to the AOCP database are shown in the Supplementary Figure 6. As shown in Supplementary Figure 6A. the 3D embedding can account for 87% of variance in the data (note here that this number does not pertain to the original perceptual data but to the variability of "geodesic" distances calculated on the graph of nearest neighbors, see below). The 3D embedding is shown in Supplementary Figure 6B. It is clear that the odorant in the plane defined IM dimensions 1 versus 2 show a configuration similar to the letter "C" reported in the main text (cf. Figure 1B). The IM dimension number 1 can therefore be mapped upon perceptual dimension number one (pleasantness, elevation on the 2D manifold) reported in the main text and found by our method. To confirm this, we show in Supplementary Figure 6D the plot of elevation coordinate versus IM dimension 1 that displays the high level of correlation (R=0.94). We therefore interpret the first Isomap dimension as elevation in our method on embedding. The IM dimension number 3 can be mapped upon the second perceptual dimension (azimuth or hydrophobicity). Indeed, as we show in Supplementary Figure 6F, the two variables show a high degree of correlation (R=0.74). These identifications are further shown by the color coded elevation and azimuth in Supplementary Figures 7C and E respectively. We argue that our method of analysis gives results similar to Isomap (Tenenbaum et al., 2000).

Although the results of Isomap embedding are quite impressive (Supplementary Figure 6A), several features of this algorithm may require further development. First, the included variances are calculated on the basis of geodesic distances, and, as such, do not reflect directly the included variance in the original data. Because the geodesics are evaluated on the subspace of restricted dimensionality, variability within the subspace is expected to be lower than that in the original data. Second, it is not clear how to establish a mapping between the direct space and the embedded space. For the forward mapping (direct space -> embedded space) one could just rerun the algorithm for every new point added. The reverse mapping is not clear. This reverse mapping is used in our analysis to validate the results of embedding. Indeed, by removing the odorants from the database, calculating the embedding, and finding the smallest distance between the embedded space and the removed point (jackknife analysis) we were able to determine whether our embedding generalizes on odorants not included in the database. The calculations require a model for the position of the embedded space in the original data space, i.e. the reverse mapping. These limitations restrict embedding quality control within the Isomap method.

Supplementary Figure 6. The results of analysis of the same dataset using the Isomap algorithm. (A) The fraction of variance explained by Isomap as a function of the number of included dimensions. The fraction is calculated on the basis of geodesic pairwise distances. (B) The embedding in 3D can that can explain 87% of data. The red color represents the first perceptual dimension identified in the main paper. The data points reside near a letter "C" as in the main paper (Figure 1B). The links between points represent connections to the nearest neighbors (K=7) used to calculated the shortest pairwise distances (geodesics). (C) The view on the same set of points from the direction of Isomap (IM) dimension 2. IM dimension 1 clearly correlates with the first perceptual dimension discussed in the main paper (redness of points). (D) This is confirmed by high degree of correlation between two variables. (E) Similarly, IM dimension 3 correlates with the second perceptual dimension (azimuth). (F) The correlation between these two variables obtained from different analyses is high. The correlation between IM dimension 2 and azimuth is lower (R=0.20, not shown). We conclude that IM yields similar results to our analysis with IM dimensions 1 and 3 identified with elevation and azimuth coordinates respectively.

Local Linear Embedding (LLE)

In this algorithm a set of weights is found that relates each point to K of its nearest neighbors. The weights are found by minimizing the squared error between the position of the point and the linear weighted sum of the neighbors. The weights are expected to carry information about local neighborhoods in the dataset. The low dimensional embedding is then found that minimizes the same error for points of lower dimensionality by optimizing their positions with the weights fixed (Roweis and Saul, 2000). Because the sets of weights are the same for high and low dimensional data, the local neighborhood relationships are expected to be preserved approximately by the algorithm.

We applied the LLE algorithm to the AOCP dataset (Supplementary Figure 7). The algorithm was downloaded from the author's website (http://www.cs.nyu.edu/~roweis/lle/code.html). We used K=20 of nearest neighbors, as recommended by (Roweis and Saul, 2000). The results of these calculations agree to a large degree with the results presented in the main article. Thus the LLE dimension 1 correlates strongly with the first perceptual dimension identified in the main article (elevation or pleasantness, Supplementary Figure 7 A and B). The second LLE dimension is correlated strongly with the second perceptual dimension identified in the main article (azimuth or hydrophobicity). We conclude therefore that the non-linear embedding method used in the main paper yields similar results to a related embedding method (LLE).

There are several ways how the LLE algorithm could be further extended to facilitate application to olfactory data. First, the embedding provides no quality control; the variance in the data accounted for is not available using this method. Second, similarly to Isomap, no mapping from the embedded space to the original data space is provided. It is therefore not possible to evaluate the embedding quality for novel odorants that were not included in the calculation of the embedding space. The validation of the results of this embedding is not readily possible.

Supplementary Figure 7. The results of analysis of the AOCP dataset using Locally Linear Embedding (LLE) algorithm. (A) The embedding of the AOCP dataset into 2D space. The dots represent individual odorants positioned in the 2D embedded space by the LLE algorithm. The degree of red color represents the first perceptual dimension identified in the main paper. K=20 neighbors were used in LLE algorithm. No data about the fraction of variance of data covered by the embedding is provided by the algorithm. The first perceptual dimension appears to correlate with LLE dimension 1. (B) The high correlation between the first perceptual dimension (elevation) and LLE dimension 1 is confirmed by the high Pearson correlation coefficient (R=0.88). (C) The same embedding with the degree of green color representing the second perceptual dimension identified in the main study. (D) The correlation between the second perceptual dimension (azimuth) and the second dimension identified by LLE is high (R=0.59). On the basis of these findings we conclude that 2D LLE yields similar results to our analysis with LLE dimensions 1 and 2 identified with elevation and azimuth coordinates respectively.

DETAILED METHODS

Preparation of responses for analysis. Responses to 144 odorants were obtained from Ref. [(Dravnieks, 1985)] and represented in a set of 146D vectors $\vec{r_i}$ (i=1...144). We used percent used (PU) set of responses from Ref [(Dravnieks, 1985)]. PU describes the fraction of about 150 observers that thought that a given descriptor applies to an odorant. We verified that our conclusions do not change substantially if other parameters are used instead of PU, such as PA.

All computations were performed using MATLAB (Mathworks, Inc.) Before applying PCA we normalized response vectors to have unit length in terms of the L_2 measure. This implies that the vectors resided on a unit sphere in 146D. This reduced somewhat the dimensionality of the dataset to 145D. The normalization step was intended to equalize the odorants in their perceived intensity or concentration. We verified that our conclusions do not change qualitatively if other measures (L_2 through L_9) are used for normalization. We noticed some deterioration of the fits beyond this range. For further analysis the data were centered so that the mean response to each semantic descriptor is zero. This step resulted in the response matrix \hat{R} that contained responses to individual odorants in its columns. It was therefore 146 (number of descriptors, height) by 144 (number of odorants, width). The elements in the rows are centered i.e. have zero mean.

Principal component analysis (PCA). The matrix of responses was represented as $R^T = USV^T$ using SVD algorithm. Here U and V are 144 by 144 and 146 by 146 orthogonal matrices ($V^TV = U^TU = I$) and S is the 144 by 146 diagonal matrix. The principal components are contained in the columns of 144 by 146 matrix $Y = R^TV$. Thus, the first three columns of Y were used to visualize data in Figures 1A and B. The variance explained by each PC is equal to the diagonal elements of diagonal matrix S. In Figure 1E the cumulative variance is shown as a fraction of total variance ($\sum_{ij} R_{ij}^2$). The first n columns of the orthogonal matrix

V represent a projection operator P_n onto the n-D PCA space. The PC loadings can be found as the coefficients in the columns of matrix V.

The inverse participation ratio. This measure is commonly used to evaluate how many parameters contribute to data in a threshold-free manner (Eriksen et al., 2003). Thus, here we wanted to evaluate how many perceptual descriptors contribute to PC1 and PC2 of the data. To this end we calculated the participation ratio for the loading of each PC

$$P_{n} = \sum_{i} V_{in}^{4} . {(1.1)}$$

We then calculated the inverse participation ratios as $iP_n=1/P_n$. These variables describe how many semantic descriptors contribute to each PC. Indeed, assume that d descriptors contribute to a PC uniformly. Assume that other descriptors do not contribute. This implies that the value of each descriptor loading is $1/\sqrt{d}$ due to normalization ($\sum_i V_{in}^2 = 1$). The value of the participation ratio is then $P_n = 1/d$, while the inverse participation ratio is $iP_n = 1/P_n = d$, i.e. describes accurately the number of non-zero loadings. For the olfactory data the number of contributing loadings was found to be $iP_1 \simeq 17$, $iP_2 \simeq 23$, and $iP_3 \simeq 26$. This means, for example, that 17 semantic descriptors contributed substantially to the first principal components (pleasantness).

Approximating odorant response with curved spaces. Each odorant vector $\vec{r_i}$ was approximated with the 'projected' vector $\vec{p_i}$. Here index i enumerates the odorants while each vector contains 146 components corresponding to semantic descriptors. The projected vectors were sought in the form

$$\vec{p}_{i} = \vec{A} + \sum_{\alpha=1}^{D} \vec{B}_{\alpha} x_{\alpha i} + \sum_{\alpha=1}^{D} \sum_{\beta=1}^{D} \vec{C}_{\alpha \beta} x_{\alpha i} x_{\beta i} . \tag{1.2}$$

Here \vec{A} , \vec{B}_{α} , and $\vec{C}_{\alpha\beta}$ are odorant-independent parameters of the surface. Parameters $\vec{C}_{\alpha\beta}$ allowed the surface to be curved. Parameters $x_{\alpha i}$ define positions of odorants on the surface. D is the number of parameters per odorant which is the dimensionality of the surface. The manifold defined by this equation is D-dimensional. In Figure 2 we used D=2, while in Figure 4 the dimensionality was varied. To find \vec{A} , \vec{B}_{α} , $\vec{C}_{\alpha\beta}$, and $x_{\alpha i}$ we minimized $\sum_i \|\vec{r}_i - \vec{p}_i\|^2$ using the conjugate gradient algorithm (CGA). The set of parameters $x_{\alpha i}$ was determined therefore as the nearest points on the curved manifold. The nearest points define 'projections' onto the curved manifold. The remaining variance for approximation is estimated as $\sum_i \|\vec{r}_i - \vec{p}_i\|^2$.

To remove possible ambiguity in the data, the initial set of nearest points on the surface was determined from the PCA projection. The initial nearest points for the elevation coordinate were chosen to match PC1 of given odorant. The initial azimuth coordinate was chosen to be a linear combination of PC2 and PC3 with coefficients 0.96 and 0.29 respectively. When looking from this rotated direction, the projection of the surface did not have folds and the parameterization (1.2) was expected to yield accurate results. In the n-D surface case the initial coordinates were chosen to be the remaining PCs. Before running CGA to optimize the surface, the nearest points on the surface were found for each odorant individually using CGA. The optimal surface was then found using 20 iteration of CGA with both parameters of the surface and the positions of nearest points subject to optimization. We verified that 50 iterations of CGA did not improve the result by more than 1% of variance. Finally, the nearest points for each odorant individually were fine tuned by running CGA on the positions of these points. The positions of projected onto the curved surface odorant responses \vec{p}_i were the results of this step.

Jackknife procedure. Approximating human sensory responses with higher dimensional curved manifolds is confounded by a dramatic increase in the number of parameters of fit. Because the number of parameters increases as a second power of the number of dimensions in our quadratic regression, for a moderately low-dimensional manifold we find that we can perfectly fit all of the experimental data (Figure 4A, dashed line). To avoid this overfitting problem we employed the jackknife technique, in which we remove a single odorant from the perceptual database, obtain a high-dimensional fit with the curved surface (1.2) for the responses to the remaining compounds, and calculate the distance between the fitted manifold and the removed odorant. By applying this procedure for all odorants in the database sequentially we evaluated a variance of the approximation with curved manifolds. The remaining variance does not vanish for spaces of high dimensionality due to overfitting (Figure 4A, solid line).

The natural system of coordinates of the 2D surface was used to equilibrate the density of odorants (grid in Figure 3). The odorants were projected onto the 2D plane and the Delaunay triangulation was calculated. The edges of triangulation were replaced with elastic strings of unit equilibrium length and a coordinate transformation was found that minimizes the elastic energy of the strings. The coordinate transformation was constrained to the form used above [equation (1.2)] with the mapping of 2D to 2D space. The results are shown in the Supplementary Figure 2. These natural coordinates (Supplementary Figure 2B) were used to evaluate the correlations between perceptual dimensions and the physico-chemical parameters.

Estimating the variability due to a finite number of observers. The perceptual variable used here (percent used, PU) is convenient for estimating the experimental variability. We resampled the data for every entry in the database independently using 149 observers as specified in (Dravnieks, 1985). We estimated the variance of the resulting ensemble to be equal to 7% of the experimental variance present in (Dravnieks, 1985).

Structural and Physico-chemical parameters (SPCP). The values of 72 physico-chemical properties were calculated using the program Molecular Modeling ProTM (ChemSW, Failfield, CA) as described in the section

titled "The list of physico-chemical parameters used" above. We verified that the use of 1999 parameters generated by E-Dragon (VCCLAB.org) did not improve the result suggesting a redundancy in the data. To evaluate the properties of the odorants we used their 3D structure provided by the chemical database maintained by the National Cancer Institute (CADD group) located at http://cactus.nci.nih.gov (release 3, September 2003). The structures were identified through the CAS numbers provided by the AOCP database. For small number of compounds the 3D structure was not found in the database. For such compounds the mol files were downloaded from several sources on the internet, the consensus of structural formulas was found, and the 3D geometry was optimized by the MM2 algorithm provided by Molecular Modeling Pro. All 3D structures were examined visually and in case of clear deficiencies MM2 algorithm was applied. The discrepancy between MM2 algorithm and the 3D structure provided by NCI database was found to be small.

The set of 72 physico-chemical properties was then calculated in the batch format, using Molecular Modeling Pro with the algorithms described in the section titled "The list of physico-chemical parameters used" above. Calculation of CIM indexes that are important for the vertical perceptual dimension was checked independently using the known procedure (Burden, 1997).

To normalize the properties we used the following procedure. For the properties that took negative or zero values we used the z-score $[z=(x-\overline{x})/\sigma(x)]$, as was done by (Khan et al., 2007). The properties that took positive values for all odorants often had log-normal distributions, i.e. the logarithm of these quantities had a Gaussian distribution. The use of z-score in this case was not appropriate. We therefore evaluated the standard deviation of the logarithm of positive properties. If this (unitless) standard deviation was found to be larger than one, indicating closeness to lognormal distribution, we used the z-score of the logarithm of such quantity for fitting. For quantities with smaller than unit standard deviation of the logarithm we used the direct z-score, as for the properties with some negative values.

The greedy algorithm. To approximate the perceptual variables (elevation and azimuth) we used the set of 126 structural/physical/chemical parameters (SPCPs) that are described above in the section titled "The list of physico-chemical parameters used". We used the algorithm that essentially reproduced the method described in (Saito et al., 2009) and was pioneered by Sobel's group (Haddad et al., 2008). We will describe the algorithm briefly for the elevation coordinate (called here "y"). The usage for the azimuth coordinate is identical.

On the first step of the algorithm, we found the SPCP that yields the largest Pearson correlation coefficient with the given perceptual coordinate "y". The results are shown by the lowest black curve of Supplementary Figure 3A. The best correlated SPCP turned out to be the Burden CIM index 8 as indicated in the figure by the red dot (see also Table 1). We then calculated the Pearson correlation coefficient for the approximation of the elevation coordinate with two SPCPs: The best property found in the first iteration (Burden CIM 8) and each of the remaining 125 properties. The approximation was found using multiple linear regression that employed pseudoinverse. The results are shown by the second lowest black curve in Supplementary Figure 3A. The best SPCP obtained on the second iteration was the number of C-S pairs (Carbon and Sulfur connected by a single bond) as indicated in Table 1 and Supplementary Figure 3A by the second red dot. The set of two best SPCPs from the first two iterations (CIM8 and C-S pairs) was used along with 124 additional SPCP in the third iteration. The results of the Person correlation coefficient obtained during the third iteration are shown in Supplementary Figure 3A, top black curve. The best correlation can only increase during these iterations. For this reason the procedure is called "greedy".

The best five SPCPs for coordinate "y" are shown in Table 1, left. These names mean that, for example, a multiple linear regression of "y" with five parameters listed yields a correlation coefficient of r=0.68. Similarly, the use of four parameters (CIM8 through molecular width) yields the correlation coefficient of r=0.66 after multiple linear regression.

References

Burden, F.R. (1997). A chemically intuitive molecular index based on the eigenvalues of a modified adjacency matrix. Quant Struct-Act Rel *16*, 309-314.

Dravnieks, A. (1982). Odor quality: semantically generated multidimensional profiles are stable. Science 218, 799-801.

Dravnieks, A. (1985). Atlas of odor character profiles (Philadelphia, PA: ASTM).

Eriksen, K.A., Simonsen, I., Maslov, S., and Sneppen, K. (2003). Modularity and extreme edges of the internet. Phys Rev Lett *90*, 148701.

Haddad, R., Khan, R., Takahashi, Y.K., Mori, K., Harel, D., and Sobel, N. (2008). A metric for odorant comparison. Nat Methods *5*, 425-429.

Khan, R.M., Luk, C.H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., and Sobel, N. (2007). Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J Neurosci *27*, 10015-10023.

Manning, C.D., and Schütze, H. (1999). Foundations of statistical natural language processing (Cambridge, Mass.: MIT Press).

Roweis, S.T., and Saul, L.K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323-2326.

Saito, H., Chi, Q., Zhuang, H., Matsunami, H., and Mainland, J.D. (2009). Odor coding by a Mammalian receptor repertoire. Sci Signal 2, ra9.

Tenenbaum, J.B., de Silva, V., and Langford, J.C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science *290*, 2319-2323.