Brain Tumors Radiotherapy

BIO 389

Caroline Hertler / Dorothee Gramatzki Department of Neurology

Radiotherapy in cancer

- Broad application
 - Application in almost all kind of brain tumors

Radiotherapy - History

Gordon Isaacs

- Retinoblastoma
- First patient treated with the linear accelerator in 1957
- Gordon's right eye was removed January 11, 1957 because the cancer had spread; left eye had only a localized tumor that prompted Henry Kaplan to try to treat it with the electron beam

Radiotherapy - Principles

- External beam radiation (external source of ionizing radiation is pointed at a particular part of the body; most common form)
 - High-energy radiation
 - Photons (x-rays or gamma-rays) "energy packets"
 - Particles (protons)
- <u>Internal radiation therapy</u> (brachytherapy; sealed source; placed precisely in the area under treatment)
 - E.g. Jodine¹²⁵ or Iridium¹⁹² seeds
- Systemic radiation therapy (unsealed source; given by infusion, oral ingestion)
 - E.g. Lutetium¹⁷⁷ DOTATATE

Radiotherapy – Target volumes

- Lokal treatment
 - e.g. Glioma

- Whole brain irradiation
 - e.g. Metastasis, CNS lymphoma

- Craniospinal irradiation (neuroaxis)
 - e.g. Medulloblastoma, ependymoma

Radiotherapy - Principles

- External beam radiation (external source of ionizing radiation is pointed at a particular part of the body; most common form)
 - High-energy radiation
 - Photons (x-rays or gamma-rays) "energy packets"
 - Particles (protons)
- Internal radiation therapy (brachytherapy; sealed source; placed precisely in the area under treatment)
 - E.g. Jodine¹²⁵ or Iridium¹⁹² seeds
- Systemic radiation therapy (unsealed source; given by infusion, oral ingestion)
 - E.g. Lutetium¹⁷⁷ DOTATAE

Radiotherapy – Mechanism of action

- Direct and indirect damage
 - Direct: ionizing radiation energy is deposited in DNA
 - Indirect: radicals react with neighbouring molecules and produce secondary DNA or lipid radicals

Fig. 2.2 Direct versus indirect action (Hall and Giaccia, 2006).

Radiotherapy – Protons and Photons

Bragg curve: plots the energy loss of ionizing radiation during its travel through matter

Proton (particle) therapy: the dose is deposited over a narrow range and there is minimal exit dose

SOBP: spread out bragg peak

Depth-dose plot of an X-ray beam (red line) shows additional doses of X-ray radiotherapy, which can damage normal tissue

Radiotherapy – Practical Issues

- The full dose of radiotherapy is usually divided into smaller doses -> fractions
- Fractions of radiation are given in a treatment session for some weeks
- Unit of radiation energy: Gray (Gy)
 - Absorbtion of one joule of energy in the form of ionizing radiation per kilogramm of matter (e.g. body tissue); 1 Gy = 1J/kg
- Standard radiation therapy for glioblastoma:
 - 30 x 2 Gy = 60 Gy; Mon to Fri for 6 weeks (plus concomitant temozolomide; 6 cycles maintenance temozolomide)

Radiotherapy - Mask

Avoid head movements

Radiotherapy – Planning

- External beam radiotherapy
 - 3D-planning
 - Gross tumor volume (GTV)
 - Planning target volume (PTV)
 - Computer simulation based on energy and number of radiation beams and their orientation
 - Leading to isodose contour map

Dr. Michelle Brown, Radio-Oncology, USZ

Radiotherapy – Technical aspects

- Photon beams
 - Machine: linear accelerator (LINAC)
 - USZ: TrueBeam®
 - Resolution <1mm
 - CT scanner integrated

Radiotherapy – Technical aspects

- Protons
 - Paul Scherrer Institute
 - Expansive

Radiotherapy – Technical aspects

Radiosurgery

 Highly focused irradiation beams precisly collimated to target a small tumor, e.g. a brain metastasis, one treatment session

Cyber-knife

