

1 - Matrizes

1.1 - Considere as matrizes

Indique quais são matrizes:

- (a) Quadradas.
- (b) Triangulares inferiores.
- (c) Diagonais.
- (d) Escalares.

1.2 - Indique a matriz $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tal que:

(a)
$$a_{ij} = \begin{cases} 0, & \text{se } i = j \\ 1, & \text{se } i \neq j \end{cases}$$

(b) $a_{ij} = \begin{cases} 1, & \text{se } i > j \\ 0, & \text{se } i = j \\ -1, & \text{se } i < j \end{cases}$
(c) $a_{ij} = \begin{cases} 1, & \text{se } i + j \text{ é par} \\ -1, & \text{se } i + j \text{ é impar} \end{cases}$

1.3 - Considere as matrizes de $\mathcal{M}_{2\times 3}(\mathbb{R})$

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 4 \\ -1 & 2 & -1 \end{bmatrix} \quad e \quad C = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -2 & 1 \end{bmatrix}.$$

Determine:

- (a) A + B + C.
- (b) 2A + 2C + 2B.
- (c) A-B.
- (d) 2A 3(B + C).

1.4 - Dadas as matrizes de $\mathcal{M}_{3\times 3}(\mathbb{R})$

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \qquad \text{e} \qquad B = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right],$$

determine uma matriz $X \in \mathcal{M}_{3\times 3}(\mathbb{R})$, tal que

$$X + A = 2(X - B).$$

1.5 - Sejam $A = [1 \ 2 \ -1] \in \mathcal{M}_{1\times 3}(\mathbb{R}) \in B = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \in \mathcal{M}_{3\times 1}(\mathbb{R}).$

Determine, se possível, $AB \in BA$.

1.6 - Sejam

$$A = \begin{bmatrix} -1 & 1 \\ 2 & 3 \\ 1 & 0 \end{bmatrix} \in \mathcal{M}_{3\times 2}(\mathbb{R}) \qquad e \qquad B = \begin{bmatrix} 4 & 1 & 2 \\ -1 & 3 & 1 \end{bmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{R}).$$

Calcule $(AB)_{23}$, $(BA)_{12}$, $(AB)_{22}$ e $(BA)_{22}$.

1.79 - Sejam $A \in \mathcal{M}_{3\times 2}(\mathbb{R})$ e $B \in \mathcal{M}_{2\times 3}(\mathbb{R})$ tais que

$$a_{ij} = i - j$$
 e $b_{ij} = 2i + j$.

Justifique que $(AB)_{ij} = 6i - 3j + 2ij - 10$, com i = 1, 2, 3 e j = 1, 2, 3.

1.7 - Considere as matrizes

$$A = \left[\begin{array}{cc} 1 & 2 \end{array}\right], \quad B = \left[\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right], \quad C = \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{array}\right] \quad \mathrm{e} \quad D = \left[\begin{array}{cc} -1 & 1 & 1 \\ 1 & -1 & 0 \end{array}\right].$$

Determine, se possível, cada um dos seguintes produtos:

- (a) AB.
- (b) *BA*.
- (c) *CD*.
- (d) DC.

1.8 - Considere as matrizes

$$A = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}, \ B = \begin{bmatrix} -1 & -1 \\ 2 & 2 \end{bmatrix}, \ C = \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$$

Verifique que:

- (a) $AB \neq BA$.
- (b) $AB = 0 \text{ com } A \neq 0 \text{ e } B \neq 0.$
- (c) $BA = CA \ e \ A \neq 0 \ mas \ B \neq C$.

1.10 - Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $B \in \mathcal{M}_{n \times p}(\mathbb{K})$. Justifique que:

- (a) Se A tem a linha i nula então a matriz AB tem a linha i nula.
- (b) Se B tem a coluna k nula então a matriz AB tem a coluna k nula.
- (c) Se A tem as linhas $i \in j$ iguais, come e $i \neq j$, então a matriz AB tem as linhas $i \in j$ iguais.
- (d) Se B tem as colunas $k \in l$ iguais, com $k \neq l$, então a matriz AB tem as colunas $k \in l$ iguais.

1.9 - Sejam $D, D' \in \mathcal{M}_{n \times n}(\mathbb{K})$ matrizes diagonais. Mostre que DD' é uma matriz diagonal com $(DD')_{ii} = d_{ii}d'_{ii}, i = 1, \ldots, n$, e que DD' = D'D.

1. Extra - Sejam $A \in \mathcal{M}_{4\times 4}(\mathbb{K})$ e $B \in \mathcal{M}_{4\times 4}(\mathbb{K})$ matrizes de Toeplitz. Justifique que:

- (a) A + B é ainda uma matriz de Toeplitz.
- (b) Dê exemplo de duas matrizes de Toeplitz de $\mathcal{M}_{4\times 4}(\mathbb{K})$ cujo produto não é uma matriz de Toeplitz.

1.14 - Sem calcular $(A+B)^2$, $(A-B)^2$ e A^2-B^2 , verifique que para as matrizes $A=\begin{bmatrix}0&1\\0&1\end{bmatrix}$, $B=\begin{bmatrix}-1&-1\\0&0\end{bmatrix}\in\mathcal{M}_{2\times 2}(\mathbb{R})$ se tem:

(a)
$$(A+B)^2 \neq A^2 + 2AB + B^2$$
.

(b)
$$(A - B)^2 \neq A^2 - 2AB + B^2$$
.

(c)
$$A^2 - B^2 \neq (A - B)(A + B)$$
.

1.15 - Seja $D \in \mathcal{M}_{n \times n}(\mathbb{K})$ uma matriz diagonal. Determine D^k , com $k \in \mathbb{N}$.

1.19 - Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Atendendo ao Exercício 1.10, justifique que:

- (a) Se A tem uma coluna nula então A não é invertível.
- (b) Se A tem as colunas i e j iguais, com $i \neq j$, então A não é invertível.

1.20 - Indique:

- (a) Uma condição necessária e suficiente para que uma matriz diagonal seja invertível.
- (b) D^{-1} , sendo $D \in \mathcal{M}_{n \times n}(\mathbb{K})$ uma matriz diagonal invertível.

1.21 - Dê exemplo de matrizes $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ tais que:

- (a) $A \in B$ são invertíveis e A + B não é invertível.
- (b) A + B é invertível e nem A nem B são invertíveis.

1.108 - Seja J_n a matriz de $\mathcal{M}_{n\times n}(\mathbb{K})$ com todas as entradas iguais a 1. Mostre que:

(a)
$$J_n^2 = nJ_n$$

(b) Se
$$n \ge 2$$
 então $I_n - J_n$ é invertível e $(I_n - J_n)^{-1} = I_n - \frac{1}{n-1}J_n$.

1.22 - Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ tal que:

$$(a) A^3 = I_n.$$

(b)
$$A^2 + 2A = I_n$$
.

(c)
$$A^2 + \alpha A + \beta I_n = 0$$
, com $\alpha \in \mathbb{K}$ e $\beta \in \mathbb{K} \setminus \{0\}$.

Para cada uma das alíneas anteriores, mostre que A é invertível e indique a sua inversa.

1.26 - Seja $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ invertível com $A^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 4 & 2 & 1 \end{bmatrix}$.

- (a) Determine uma matriz B tal que $AB = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 1 \end{bmatrix} \in \mathcal{M}_{3\times 2}(\mathbb{R})$ e justifique que tal matriz é única.
- (b) Determine uma matriz C tal que $AC = A + 2I_3$ e justifique que tal matriz é única.

1.34 - Indique quais das matrizes

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 4 \\ 3 & 4 & 5 \end{bmatrix},$$

$$D = \begin{bmatrix} 1 & 2 & -3 \\ -2 & 0 & 4 \\ 3 & -4 & -1 \end{bmatrix}, E = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix} \quad e \quad F = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- (a) são simétricas.
- (b) são hemi-simétricas.
- 1.36 Mostre que, para quaisquer $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ e qualquer $\alpha \in \mathbb{K}$, se tem:
 - (a) Se A e B são simétricas então A+B é simétrica.
 - (b) Se A e B são simétricas então AB é simétrica se, e só se, A e B comutam.
 - (c) Se A é simétrica então αA é simétrica.
 - (d) Se A é simétrica e invertível então o mesmo sucede a A^{-1} .

1.37 - Justifique as afirmações:

- (a) A única matriz $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ que é simultaneamente simétrica e hemi-simétrica é a matriz nula.
- (b) Se $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ é simétrica então o mesmo sucede a A^k , para qualquer $k \in \mathbb{N}$.
- 1.129 (a) Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Justifique que:
 - i. $A + A^{\mathsf{T}}$ é simétrica:
 - ii. $A A^{\mathsf{T}}$ é hemi-simétrica.
 - (b) Mostre que qualquer matriz de $\mathcal{M}_{n\times n}(\mathbb{K})$ se pode escrever como soma de uma matriz simétrica com uma matriz hemi-simétrica.
 - (c) Justifique que se A = B + C = B' + C', com $B \in B'$ simétricas e $C \in C'$ hemi-simétricas, então $B = B' \in C = C'$ (o que implica que a decomposição referida em (b) é única.) Sugestão Atenda a que, de acordo com a alínea (a) do Exercício 1.37, a única matriz simultaneamente simétrica e hemi-simétrica é a matriz nula.
 - (d) Sendo $A=\begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}$ determine a matriz simétrica B e a matriz hemi–simétrica C tais que A=B+C.

1.40 - Considere as matrizes

$$A = I_n, B = \begin{bmatrix} 0 & 2-3i \\ -2-3i & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & i \\ i & 2 \end{bmatrix},$$

$$D = \begin{bmatrix} 0 & i & 2 \\ -i & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix} \quad e \quad E = \begin{bmatrix} 0 & i & 2 \\ -i & 0 & 1+2i \\ 2 & 1-2i & 1 \end{bmatrix}.$$

Indique quais são matrizes:

- (a) Hermíticas.
- (b) Hemi-hermíticas.
- 1.41 Seja $A \in \mathcal{M}_{m \times n}(\mathbb{C})$. Justifique que as matrizes A^*A e AA^* são hermíticas.

1.136 - Justifique as afirmações:

- (a) A única matriz de $\mathcal{M}_{n\times n}(\mathbb{C})$ simultaneamente hermítica e hemi-hermítica é a matriz nula.
- (b) Qualquer que seja a matriz $A \in \mathcal{M}_{n \times n}(\mathbb{C})$, $A + A^*$ é hermítica e $A A^*$ é hemi-hermítica.
- (c) Se $C \in \mathcal{M}_{n \times n}(\mathbb{C})$ é hermítica então iC e -iC são hemi-hermíticas.

(d) Toda a matriz $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ se pode escrever na forma A = B + iC com $B \in C$ hermíticas, ou equivalentemente, na forma

$$A = B + C',$$

com B hermítica e C' hemi-hermítica.

- (e) Cada uma das decomposições referidas em (d) é única. Sugestão: Atenda a (a).
- 1.42 Indique se cada uma das seguintes matrizes é uma matriz elementar e, em caso afirmativo, se é do tipo I, II ou III.
 - $\begin{pmatrix} a \end{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$
 - (b) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} .$
 - $(c) \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right].$
 - $(d) \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right].$
 - (e) I_n .
- 1.43 Seja $A \in \mathcal{M}_{3\times 5}(\mathbb{K})$. Determine as matrizes elementares que, multiplicadas à esquerda de A, efectuam em A cada uma das seguintes transformações:
 - (a) Troca das linhas 1 e 3.
 - (b) Multiplicação da linha 1 por 6.
 - (c) Adição, à linha 3, da linha 2 multiplicada por $\frac{1}{5}$.
- 1.44 Sem efectuar multiplicações de matrizes, indique o resultado de:
 - $\begin{pmatrix}
 a \end{pmatrix} \begin{bmatrix}
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 0 & 0 & 1
 \end{bmatrix} \begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l
 \end{bmatrix}.$
 - (b) $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix}.$
 - $(c) \ \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$
 - $\text{(d) } \left[\begin{array}{ccc} 2 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{ccc} a & b & c \\ d & e & f \end{array} \right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{array} \right].$
- 1.45 Indique, se existir, uma matriz $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ sob a forma de um produto de matrizes elementares que, para quaisquer $a, b, c \in \mathbb{R}$, verifique:
 - (a) $A \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} b \\ 2a \\ c \end{bmatrix}$.
 - $(b) \ A \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a+c \\ c \\ -b \end{bmatrix}.$

1.140 - Seja $A \in \mathcal{M}_{3\times 4}(\mathbb{R})$. Considere que

$$A \xrightarrow{\alpha l_1} A_1 \xrightarrow{l_3 + \beta l_2} A_2 \xrightarrow{c_2 \leftrightarrow c_4} A_3 \xrightarrow{\gamma c_3} A_4 \xrightarrow{c_2 + \delta c_4} B.$$

Utilizando multiplicações por matrizes elementares, relacione

- (a) $A_2 \operatorname{com} A$.
- **(b)** $A_3 \text{ com } A_1$.
- (c) $B \operatorname{com} A$.

1.46 - Determine a inversa de cada uma das seguintes matrizes elementares:

- $\begin{pmatrix}
 a \\
 0 \\
 0 \\
 0 \\
 0
 \end{pmatrix}$
- $\begin{pmatrix}
 b \end{pmatrix} \begin{bmatrix}
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0
 \end{bmatrix}$

1.144 - Seja
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- (a) Sem efectuar multiplicação de matrizes, calcule a matriz A.
- (b) Justifique que A é invertível e indique A^{-1} como produto de matrizes elementares.
- (c) Sem efectuar multiplicação de matrizes, calcule a matriz A^{-1} .

1.48 - Indique se estão em forma de escada cada uma das seguintes matrizes:

- (a) I_n .
- (c) [0 5 0 0].
- $(d) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$

1.49 - Indique uma matriz em forma de escada e equivalente por linhas a cada uma das matrizes:

- $(a) \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$
- $(b) \begin{bmatrix} 2 & 4 & -2 & 6 & 0 \\ 4 & 8 & -4 & 7 & 5 \\ -2 & -4 & 2 & -1 & -5 \end{bmatrix}.$
- $(c) \left[\begin{array}{ccc} 2 & 2 & 1 \\ -2 & -2 & 1 \\ 1 & 1 & 2 \end{array} \right].$

1.51 - Indique se estão em forma de escada reduzida cada uma das seguintes matrizes em forma de escada:

- (a) [0 0 0 1 5]
- $(b) \left[\begin{array}{ccccc} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right].$

(e)
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
.

1.52 - Indique a forma de escada reduzida de cada uma das seguintes matrizes:

$$(a) \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

$$\begin{pmatrix} b \end{pmatrix} \begin{bmatrix} 2 & 4 & -2 & 6 & 0 \\ 4 & 8 & -4 & 7 & 5 \\ -2 & -4 & 2 & -1 & -5 \end{bmatrix}.$$

$$(c) \begin{bmatrix} 2 & 2 & 1 \\ -2 & -2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

Observação – Caso tenha resolvido o Exercício 1.49 já determinou uma matriz em forma de escada e equivalente por linhas a cada uma destas matrizes.

1.55 - Determine se são equivalentes por linhas as matrizes:

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
 e $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$.

(b)
$$\begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -5 \end{bmatrix}$$
 e $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix}$.

1.56 - Mostre que as matrizes

$$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 1 & 0 \end{array} \right] \quad \mathbf{e} \quad B = \left[\begin{array}{ccc} 1 & 2 & 0 \\ -1 & 2 & 0 \end{array} \right]$$

são equivalentes por linhas e indique uma sequência de transformações elementares sobre linhas tal que:

(a)
$$A \xrightarrow{(linhas)} B$$
.

(b)
$$B \xrightarrow{(linhas)} A$$
.

1.57 - Considere as matrizes

$$\mathbf{A_1} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 2 & 3 & 0 & 2 & 1 \\ -2 & -1 & 0 & 1 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 1 & 0 \end{bmatrix},$$

$$A_3 = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix} \quad e \quad A_4 = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}.$$

Determine a característica de A_i , com i = 1, 2, 3, 4.

1.58 - Discuta, segundo os valores de α e de β , a característica das matrizes de elementos reais

$$A_{\alpha} = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 \\ \alpha & 1 & -1 & 2 \end{bmatrix}, \ \mathbf{B}_{\alpha} = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & 0 & -1 \\ \alpha & 1 & 1 & 0 \\ 0 & 1 & \alpha & 1 \end{bmatrix},$$

$$C_{\alpha,\beta} = \begin{bmatrix} 0 & 0 & \alpha \\ 0 & \beta & 2 \\ 3 & 0 & 1 \end{bmatrix} \quad e \quad D_{\alpha,\beta} = \begin{bmatrix} \alpha & 0 & -1 & \beta \\ 1 & 0 & \beta & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}.$$

1.59 - Calculando as características, justifique que as matrizes

$$\left[\begin{array}{cc} 1 & 2 \\ 4 & 8 \end{array}\right] \quad \mathbf{e} \quad \left[\begin{array}{cc} 0 & 1 \\ 1 & 2 \end{array}\right]$$

não são equivalentes por linhas.

1.156 - Para cada $\alpha \in \mathbb{R}$ e cada $\beta \in \mathbb{R}$, considere as matrizes

$$A_{\alpha,\beta} = \begin{bmatrix} \alpha & \alpha & 1 \\ 1 & \beta & \beta \\ 1 & \alpha + \beta & \beta \end{bmatrix}, \quad \mathbf{B}_{\alpha,\beta} = \begin{bmatrix} \alpha & \alpha & 1 \\ 1 & 1 & \beta \\ 1 & \beta & \alpha \\ 1 & 1 & 1 \end{bmatrix},$$

$$C_{\alpha,\beta} = \begin{bmatrix} \alpha & 0 & 0 & \beta \\ \beta & \alpha & 0 & 0 \\ 0 & \beta & \alpha & 0 \\ 0 & 0 & \beta & \alpha \end{bmatrix} \quad \text{e} \quad D_{\alpha,\beta} = \begin{bmatrix} \alpha & -1 & 1 & \beta \\ 0 & 1 & \alpha & 1 \\ 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & \alpha \end{bmatrix}.$$

Discuta, em função de α e β , a característica das matrizes anteriores.

1.62 -

(a) Determine o conjunto dos valores de $\alpha \in \mathbb{R}$ para os quais a matriz

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 4 & 2 \\ 2 & 4 & 7+\alpha \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$$

é invertível.

(b) Determine o conjunto dos valores de α e o conjunto dos valores de β , com $\alpha, \beta \in \mathbb{R}$, para os quais a matriz

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 1 & \alpha+3 & 2 \\ 2 & 4 & \beta \end{array}\right] \in \mathcal{M}_{3\times3}(\mathbb{R})$$

é invertível.

1.65 - Seja $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$

- (a) Mostre que A é invertível e determine A^{-1} .
- (b) Exprima A^{-1} e A como produto de matrizes elementares.

1.171 - Sejam $A, B \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tais que

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 0 \end{bmatrix} \quad e \quad B^2 = I_3.$$

Determine $X \in \mathcal{M}_{3\times 3}(\mathbb{R})$ que verifica $AXB^{-1} = A^{\top}B + B$.

1.66 - Considere as matrizes

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & -1 & -1 \end{bmatrix} \in \mathcal{M}_{3\times3}(\mathbb{R}), \ B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 2 \\ 0 & 1 & -1 \end{bmatrix} \in \mathcal{M}_{3\times3}(\mathbb{R}),$$

$$C = \begin{bmatrix} 1 & 1+i \\ -i & 1 \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{C}) \text{ e } D = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 2 & -2 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ -2 & 0 & 2 & -2 \end{bmatrix} \in \mathcal{M}_{4\times 4}(\mathbb{R}).$$

Indique quais são invertíveis e, em caso afirmativo, determine a respectiva inversa.

2 - Sistemas de Equações Lineares

2.2 - Sejam

$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & 2 & -2 & 2 \\ 0 & 0 & 6 & -4 \end{bmatrix} \in \mathcal{M}_{3\times 4}(\mathbb{R}), \quad B = \begin{bmatrix} -1 \\ 4 \\ -6 \end{bmatrix} \in \mathcal{M}_{3\times 1}(\mathbb{R})$$

e (S) o sistema de equações lineares AX = B. Sem resolver o sistema, mostre que:

- (a) (-1, 1, 1, 3) é solução de (S).
- (b) (1,0,1,0) não é solução de (S).
- 2.3 Justifique que existe um sistema (S) de equações lineares, AX = B, com

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 4 & 3 \\ -1 & 0 & 2 \\ 3 & 4 & 2 \end{bmatrix} \in \mathcal{M}_{4 \times 3}(\mathbb{R})$$

e tal que (1,2,3) é solução de (S). Indique as equações de um sistema nessas condições.

2.7 - Discuta cada um dos seguintes sistemas de equações lineares, nas incógnitas x_1, x_2, x_3 , sobre \mathbb{R} , e resolva-os nos casos em que são possíveis.

$$(S_1) \begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 + x_2 = 1 \\ x_1 - x_3 = 1 \\ 2x_1 + x_2 - 2x_3 = 1 \end{cases}$$

$$(S_2) \begin{cases} 2x_1 + x_2 = 1 \\ -x_1 + 3x_2 + x_3 = 2 \\ x_1 + 4x_2 + x_3 = 3 \end{cases}$$

$$(S_3) \begin{cases} x_1 + 2x_2 + x_3 = -1 \\ 2x_1 + 4x_2 + 2x_3 = 3 \end{cases}$$

2.8 - Com a informação dada no quadro seguidamente apresentado determine, caso seja possível, se cada um dos sistemas de equações lineares AX = B é possível (determinado ou indeterminado) ou impossível e, para os sistemas indeterminados, indique o respectivo grau de indeterminação.

	Matriz A	r(A)	$r([A \mid B])$
(a)	3×3	3	3
(b)	3×3	2	3
(c)	3×3	1	1
(d)	5×7	3	3
(e)	5×7	2	3
(f)	6×2	2	2
(g)	4×4	0	0

- 2.9 Indique um sistema de equações lineares com 3 incógnitas que seja possível indeterminado, com grau de indeterminação
 - (a) 1.
 - (b) 2.

O grau de indeterminação pode ser 3?

2.10 - Um sistema de equações lineares AX = B tem uma matriz ampliada equivalente por linhas à matriz indicada. Determine o conjunto das soluções do sistema.

$$\text{(a)} \, \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

$$(b) \left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 3 & -1 \\ 0 & 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right].$$

(a)
$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
(b)
$$\begin{bmatrix} 1 & 0 & 0 & 3 & -1 \\ 0 & 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$
(c)
$$\begin{bmatrix} 1 & 5 & 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & -3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

2.11 - Indique o conjunto $\mathcal C$ dos valores reais de k para os quais o sistema de equações lineares

$$\begin{cases} x - y = 1 \\ 3x - 3y = k \end{cases}$$

nas incógnitas x, y, sobre \mathbb{R} , é

- (a) impossível.
- (b) possível determinado.
- (c) possível indeterminado.
- 2.15 Mostre que a matriz $A = \begin{bmatrix} -3 & 2 & -1 \\ 2 & 0 & -2 \\ -1 & 1 & 1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$ é invertível e utilize A^{-1} para resolver o sistema de equações lineares, nas incógnitas x, y, z, sobre \mathbb{R} ,

$$\begin{cases}
-3x + 2y - z = \alpha \\
2x - 2z = \beta \\
-x + y + z = \gamma
\end{cases}, \quad \text{com } \alpha, \beta, \gamma \in \mathbb{R}.$$

2.24 - Discuta cada um dos seguintes sistemas de equações lineares, nas incógnitas x_1, x_2, x_3 , sobre \mathbb{R} , e resolva-os nos casos em que são possíveis.

$$(S_1) \begin{cases} -5x_1 - 2x_2 + x_3 = -1 \\ 6x_1 + 2x_2 + x_3 = 0 \\ -4x_1 - 2x_2 + 3x_3 = -2 \\ 2x_1 + 4x_3 = -2 \\ -6x_1 - 3x_2 + 2x_3 = -1 \end{cases} (S_2) \begin{cases} -x_1 + 2x_3 = 1 \\ x_1 + 2x_2 = -1 \\ 2x_2 + 2x_3 = 0 \\ x_1 - 2x_3 = -1 \end{cases}$$

$$(S_3) \begin{cases} x_1 + x_2 + 2x_3 = 1 \\ 2x_1 - x_2 + x_3 = 1 \\ 3x_2 + 3x_3 = 0 \end{cases}$$

$$(S_4) \begin{cases} 2x_1 - x_2 + x_3 = -1 \\ x_1 + 2x_2 + x_3 = 0 \\ x_1 - 3x_2 = -1 \\ 4x_1 - 2x_2 + 2x_3 = -2 \\ -2x_1 + x_2 - x_3 = 1 \end{cases}$$

$$(S_5) \begin{cases} x_1 + 2x_2 = 1 \\ x_1 + x_2 = 1 \\ -x_1 + x_2 = -1 \end{cases}$$

$$(S_6) \begin{cases} x_1 + x_2 + x_3 = -1 \\ 2x_1 + x_2 = 0 \\ x_2 + x_3 = 2 \\ x_1 - x_3 = -1 \end{cases}$$

$$(S_7) \begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 + x_2 = 1 \\ -x_1 - x_3 = -1 \end{cases}$$

- **2.26** Mostre que:
 - (a) Existe um, e um só, polinómio p(x) de grau 3 tal que

$$p(-1) = 0$$
, $p(1) = 4$, $p(2) = 3$ e $p(3) = 16$.

- (b) O polinómio referido em (a) é $p(x) = 2x^3 5x^2 + 7$.
- 2.35 Para cada $\alpha \in \mathbb{R}$ e cada $\beta \in \mathbb{R}$, considere o sistema de equações lineares, nas incógnitas x, y, z, sobre \mathbb{R} ,

$$\begin{cases} x+y-z=1\\ -x-\alpha y+z=-1\\ -x-y+(\alpha+1)z=\beta-2 \end{cases}.$$

- (a) Discuta o sistema, em função de α e β .
- (b) Para $\alpha = 0$ e $\beta = 1$ indique o conjunto das soluções do sistema.
- **2.37** Para cada $\alpha \in \mathbb{R}$ e cada $\beta \in \mathbb{R}$, considere o sistema de equações lineares, nas incógnitas x, y, z, sobre \mathbb{R} .

$$\begin{cases}
 x + \alpha y + \beta z = 1 \\
 \alpha(\beta - 1)y = \alpha \\
 x + \alpha y + z = \beta^2
\end{cases}$$

- (a) Discuta o sistema, em função de α e β .
- (b) i. Justifique que $S_{2,2}$ tem uma e uma só solução.
 - ii. Justifique que a matriz simples de $S_{2,2}$ é invertível.
 - iii. Determine a solução de $S_{2,2}$, utilizando a inversa da matriz simples do sistema.

3 - Determinantes

3.1 - Calcule o determinante das seguintes matrizes:

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$$

(b)
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$$

(c)
$$C = \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{C}).$$

- 3.2 Seja $A = \begin{bmatrix} 0 & a & a^2 \\ a^{-1} & 0 & a \\ a^{-2} & a^{-1} & 0 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$, com $a \neq 0$. Calcule o determinante de A pela Regra de Sarrus.
- 3.3 Seja $A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 2 & 4 \\ 3 & 1 & 2 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$. Determine:
 - (a) \hat{a}_{11} .
 - (b) \hat{a}_{32} .
 - (c) \hat{a}_{23} .
- 3.4 Calcule, de duas formas diferentes, o determinante de cada uma das seguintes matrizes:

(a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

(b)
$$B = \begin{bmatrix} 1 & 0 & i \\ 0 & 0 & 2 \\ -i & 2 & 1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{C}).$$

(c)
$$C = \begin{bmatrix} 1 & 0 & -1 & 0 \\ -2 & 0 & 2 & -1 \\ 1 & 1 & -1 & 1 \\ 3 & 3 & -6 & 6 \end{bmatrix} \in \mathcal{M}_{4\times 4}(\mathbb{R}).$$

3.38 - Considere a matriz

$$A = \begin{bmatrix} 1 & 0 & b & 0 \\ -1 & a - 1 & 2 & 0 \\ 1 & 0 & b - 2 & 0 \\ 2 & 4 & 7b & a \end{bmatrix} \in \mathcal{M}_{4 \times 4}(\mathbb{R}).$$

Justifique que:

- (a) $\hat{a}_{43} = 0$.
- (b) \hat{a}_{44} não depende de b.
- (c) $\det A$ não depende de b.
- 3.5 Seja

$$H = \begin{bmatrix} x & a & b & 0 & c \\ 0 & 0 & y & 0 & d \\ 0 & z & e & 0 & f \\ g & h & k & u & l \\ 0 & 0 & 0 & 0 & v \end{bmatrix} \in \mathcal{M}_{5\times5}(\mathbb{R}).$$

Calcule $\det H$.

3.6 - Para cada $\lambda \in \mathbb{R}$, considere

$$A_{\lambda} = \begin{bmatrix} 3-\lambda & -3 & 2\\ 0 & -2-\lambda & 2\\ 0 & -3 & 3-\lambda \end{bmatrix}.$$

Determine o conjunto dos valores de λ para os quais det $A_{\lambda} = 0$.

3.10 - Seja $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tal que det $A = \gamma$.

Indique, em função de γ , o valor de cada um dos seguintes determinantes:

- $\begin{array}{c|cccc}
 (a) & d & e & f \\
 g & h & i \\
 a & b & c
 \end{array}.$
- (b) $\begin{vmatrix} 3a & 3b & 3c \\ -d & -e & -f \\ 4g & 4h & 4i \end{vmatrix}$.

3.46 - Os números 20604, 53227, 25755, 20927 e 78421 são divisíveis por 17. Justifique que o mesmo sucede ao determinante

$$\begin{vmatrix} 2 & 0 & 6 & 0 & 4 \\ 5 & 3 & 2 & 2 & 7 \\ 2 & 5 & 7 & 5 & 5 \\ 2 & 0 & 9 & 2 & 7 \\ 7 & 8 & 4 & 2 & 1 \end{vmatrix}$$

sem calcular o seu valor. Sugestão: Efectue transformações elementares sobre colunas, do tipo III, de forma a que c_5 seja transformada em

$$c_5 + 10c_4 + 10^2c_3 + 10^3c_2 + 10^4c_1$$
.

3.56 - Calcule o determinante das matrizes de $\mathcal{M}_{n\times n}(\mathbb{K})$:

(a)
$$\begin{bmatrix} 1-n & 1 & 1 & \cdots & 1 \\ 1 & 1-n & 1 & \cdots & 1 \\ 1 & 1 & 1-n & \cdots & 1 \\ & & & & \cdots \\ 1 & 1 & 1 & \cdots & 1-n \end{bmatrix}.$$

(b)
$$\begin{bmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ & & & \cdots & & \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{bmatrix}.$$

3.16 - Mostre que

$$\begin{vmatrix} 1+a_1 & a_2 & a_3 \\ a_1 & 1+a_2 & a_3 \\ a_1 & a_2 & 1+a_3 \end{vmatrix} = 1+a_1+a_2+a_3.$$

Sugestão: Adicione à coluna 1 as colunas 2 e 3

3.15 - Para cada $k \in \mathbb{R}$, considere a matriz

$$B_k = \left[egin{array}{cccc} 1 & 0 & -1 & 0 \ 2 & -1 & -1 & k \ 0 & k & -k & k \ -1 & 1 & 1 & 2 \end{array}
ight] \in \mathcal{M}_{4 imes 4}(\mathbb{R}).$$

Determine o conjunto dos valores de k para os quais se tem det $B_k = 2$.

3.19 - Para cada $t \in \mathbb{R}$, seja

$$A_t = \begin{bmatrix} 1 & t & -1 \\ 2 & 4 & -2 \\ -3 & -7 & t+3 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

Determine o conjunto dos valores de t para os quais A_t é invertível.

- **3.20** Sejam $A, B, C \in \mathcal{M}_{n \times n}(\mathbb{R})$ tais que det A = 2, det B = -5 e det C = 4. Calcule det $(AB^{\top}C)$, det (3B) e det (B^2C) .
- **3.21** Mostre que, para quaisquer $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$, se tem:
 - (a) $\det(AB) = \det(BA)$.
 - (b) Se AB é invertível então o mesmo sucede a A e a B.
- 3.22 Sejam $A = [-1 \ 2] \in \mathcal{M}_{1 \times 2}(\mathbb{R})$ e $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \mathcal{M}_{2 \times 1}(\mathbb{R})$.
 - (a) Mostre que $\det(AB) \neq \det(BA)$.
 - (b) Comente a alínea anterior, atendendo à alínea (a) do Exercício 3.21.
- 3.74 Seja $\alpha \in \mathbb{K} \setminus \{0\}$ e seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ uma matriz invertível, com det A = r. Justifique que as matrizes seguintes são invertíveis e indique, em função de r e de α , o respectivo determinante.
 - (a) $(\alpha A)^{-1}$.
 - (b) αA^{-1} .
 - (c) $(\alpha^{-1}A)^{-1}$.

- (d) $\alpha^{-1}A^{-1}$.
- **3.72** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ tal que $A^2 = -A$. O que pode afirmar sobre det A?
- **3.73** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ uma matriz unitária (isto é, $AA^* = I_n$). Mostre que det A tem módulo 1.
- 3.42 Seja $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Mostre que:
 - (a) Se A é hermítica então $\det A$ é um número real.
 - (b) Se A é hemi-hermítica então $\det A$ é um número com parte real nula se n é ímpar e um número real se n é par.
- 3.23 Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ uma matriz idempotente (isto é, $A^2 = A$). Mostre que det $A \in \{0, 1\}$.
- 3.25 Considere as matrizes

$$A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & 4 & 4 \\ 1 & 3 & 1 & 1 \\ 0 & 0 & -2 & 0 \end{bmatrix} \in \mathcal{M}_{4\times 4}(\mathbb{R}) \quad e \quad B = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 0 & 2 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

- (a) Calcule $\det A \in \det B$.
- (b) Determine se A e B são invertíveis e, em caso afirmativo, indique o determinante da respectiva inversa.
- (c) Indique se são determinados os sistemas
 - i. AX = 0.
 - ii. BX = 0.
- 3.26 Considere a matriz $A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$. Verifique que adj A = A.
- **3.28** Mostre que cada uma das matrizes seguintes é invertível e determine a sua inversa a partir da sua adjunta.

(a)
$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 2 & 2 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

- (b) $V_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, com $\alpha \in \mathbb{R}$.
- (c) $A = \begin{bmatrix} z & w \\ -\overline{w} & \overline{z} \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{C})$, com $z \neq 0$ ou $w \neq 0$.
- **3.29** Seja $M = \begin{bmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & m \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$
 - (a) Calcule $\operatorname{adj} M$.
 - (b) Utilizando determinantes, indique para que valores de m a matriz M é invertível.
 - (c) Nos casos em que M é invertível, determine M^{-1} a partir de adj M.
- **3.31** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$, com $n \geq 2$, uma matriz invertível. Mostre que:
 - (a) $\operatorname{adj} A$ é invertível.
 - (b) $(\operatorname{adj} A)^{-1} = \frac{1}{|A|}A = \operatorname{adj} (A^{-1}).$
 - (c) $|\operatorname{adj} A| = |A|^{n-1}$.
 - (d) $adj (adj A) = |A|^{n-2} A$.

- **3.90** Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$, com $n \geq 2$, matrizes invertíveis. Mostre que:
 - (a) $\operatorname{adj}(AB) = (\operatorname{adj} B)(\operatorname{adj} A)$.
 - (b) $\operatorname{adj}(A^k) = (\operatorname{adj} A)^k$, para qualquer $k \in \mathbb{N}$.
 - (c) adj $(S^{-1}AS) = S^{-1}(\text{adj }A)S$, para qualquer matriz invertível $S \in \mathcal{M}_{n \times n}(\mathbb{K})$.
- 3.32 Sejam

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \in \mathcal{M}_{3\times3}(\mathbb{R}), \quad B = \begin{bmatrix} 14 \\ 7 \\ 6 \end{bmatrix} \in \mathcal{M}_{3\times1}(\mathbb{R})$$

e considere o sistema (S) de equações lineares AX = B.

- (a) Calcule $\det A$ e justifique que o sistema (S) é um sistema de Cramer.
- (b) Utilizando a Regra de Cramer, determine a solução do sistema (S).
- **3.33** Para cada $k \in \mathbb{R}$, considere a matriz

$$A_k = \begin{bmatrix} 1 & -k & 1 \\ 0 & k & k \\ k & k & -k \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

- (a) Usando determinantes, indique para que valores de k a matriz A_k é invertível.
- (b) Para k = -1 justifique que o sistema de equações lineares

$$AX = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$$

é um sistema de Cramer e determine a sua solução.

3.95 - Considere o sistema, nas incógnitas x, y, z, sobre \mathbb{R} ,

(S)
$$\begin{cases} x - 2y + z = 1 \\ 2x - y = 0 \\ -y - z = -1 \end{cases}$$

Justifique que (S) é um sistema de Cramer e resolva-o, utilizando a Regra de Cramer.

4 - Espaços Vectoriais

- 4.1 Reescreva a Definição de Espaco-Vectorial utilizando os símbolos + e · para a adição e a multiplicação em \mathbb{K} , respectivamente, e os símbolos \boxplus e \boxdot para a adição em E e a multiplicação externa, respectivamente.
- $\mathbf{4.3}$ Considere \mathbb{R}^2 com uma adição e uma multiplicação externa definidas, respectivamente, por

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $\alpha(a_1, a_2) = (\alpha a_1, 0),$

para quaisquer $(a_1, a_2), (b_1, b_2) \in \mathbb{R}^2$ e qualquer $\alpha \in \mathbb{R}$. Mostre que $(\mathbb{R}^2, +, \cdot)$ não é um espaço vectorial sobre \mathbb{R} .

4.5 - Considere o conjunto \mathbb{R}^+ com uma adição definida por

$$u \boxplus v = uv$$
 (produto usual)

e uma multiplicação externa definida por

$$\alpha \boxdot u = u^{\alpha}$$
 (potência usual),

para quaisquer $u, v \in \mathbb{R}^+$ e qualquer $\alpha \in \mathbb{R}$. Mostre que $(\mathbb{R}^+, \boxplus, \boxdot)$ é um espaço vectorial real.

- 4.6 Indique 0_E nos seguintes casos:
 - (a) $E = \mathbb{R}^4$.
 - (b) $E = \mathcal{M}_{2\times 3}(\mathbb{R})$.
 - (c) $E = \mathbb{R}_3[x]$.
- 4.7 Indique o oposto, para a adição, de cada um dos elementos do espaço vectorial indicado:
 - (a) $(1, -2, 3, 0) \in \mathbb{R}^4$.
 - (b) $(0,0,0,0) \in \mathbb{R}^4$.
 - (c) $\begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$
 - (d) $x^3 2x^2 + 3x \in \mathbb{R}_3[x]$.
- 4.8 Seja E um espaço vectorial sobre \mathbb{K} . Sejam $\alpha, \beta \in \mathbb{K}$ e sejam $u, v \in E$. Justifique que:
 - (a) Se $\alpha u = \alpha v$ e $\alpha \neq 0$ então u = v.
 - (b) Se $\alpha u = \beta u$ e $u \neq 0_E$ então $\alpha = \beta$.
- 4.13 Determine quais dos seguintes conjuntos são subespaços do espaço vectorial indicado.
 - (a) $F_1 = \{(a, b) \in \mathbb{R}^2 : a \ge 0\}$ em \mathbb{R}^2 .
 - (b) $F_2 = \{(0,0,0), (0,1,0), (0,-1,0)\} \text{ em } \mathbb{R}^3.$
 - (c) $F_3 = \{(a, b, c) \in \mathbb{R}^3 : 2a = b \land c = 0\} \text{ em } \mathbb{R}^3.$
 - (d) $F_4 = \{(a, b, c) \in \mathbb{R}^3 : 2a = b\} \text{ em } \mathbb{R}^3.$
- **4.15** Mostre que é um subespaço de $\mathcal{M}_{n\times n}(\mathbb{K})$ o conjunto das matrizes de $\mathcal{M}_{n\times n}(\mathbb{K})$:
 - (a) Com a diagonal principal nula.
 - (b) Triangulares superiores.
 - (c) Diagonais.
 - (d) Escalares.
 - (e) Simétricas.
 - (f) Hemi-simétricas.
- 4. Extra Mostre que o conjunto da Matrizes de Toeplitz de ordem n é um subespaço de $\mathcal{M}_{n\times n}(\mathbb{K})$.
 - **4.16** Justifique que não é um subespaço de $\mathcal{M}_{n\times n}(\mathbb{K})$ o conjunto das matrizes de $\mathcal{M}_{n\times n}(\mathbb{K})$:
 - (a) Com a diagonal principal não nula.
 - (b) Invertíveis.
 - (c) Não invertíveis.

- **4.98** Determine se são subespaços de \mathbb{R}^n os conjuntos:
 - (a) $F = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 \in \mathbb{Q}\}.$
 - (b) $G = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 = x_n^2\}, \text{ com } n \ge 2.$
 - (c) $H = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 x_n = 0\}, \text{ com } n \ge 2.$
- **4.100** Em \mathbb{R}^3 , considere a sequência

$$S = ((1,0,1), (0,1,1), (2,-1,1)).$$

- (a) Indique se (1, -1, 2) é combinação linear dos vectores de S.
- (b) Justifique que (1, -1, 0) é combinação linear dos vectores de S.
- (c) Mostre que é possível escrever, de duas formas diferentes, o vector (1, -1, 0) como combinação linear dos vectores de S.
- (d) Determine o conjunto dos valores reais de k para os quais o vector (3, -5, k) é combinação linear dos vectores de S.
- 4.20 Mostre que os seguintes conjuntos são subespaços do espaço vectorial indicado:
 - (a) $F = \{(a, b, c, d) \in \mathbb{R}^4 : a 2b = 0 \land b + c = 0\} \text{ em } \mathbb{R}^4.$
 - (b) $G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}) : a 2b = 0 \land b + c = 0 \right\} \text{ em } \mathcal{M}_{2\times 2}(\mathbb{R}).$
 - (c) $H = \{ax^3 + bx^2 + cx + d \in \mathbb{R}_3[x] : a 2b = 0 \land b + c = 0\} \text{ em } \mathbb{R}_3[x].$
- **4.22** Seja $G = \left\{ \begin{bmatrix} a & a+b \\ -b & 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$. Mostre que G é um subespaço de $\mathcal{M}_{2\times 2}(\mathbb{R})$ indicando uma sequência geradora de G.
- **4.23** Apresentando uma sequência geradora, justifique que os seguintes conjuntos são subespaços do espaço vectorial indicado.
 - (a) $\{(a, b, c) \in \mathbb{R}^3 : a c = 0\}$ em \mathbb{R}^3 .
 - (b) $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}) : a+d=0 \right\} \text{ em } \mathcal{M}_{2\times 2}(\mathbb{R}).$
 - (c) $\{ax^3 + bx^2 + cx + d \in \mathbb{R}_3[x] : a 2c + d = 0\}$ em $\mathbb{R}_3[x]$.
- 4.105 Apresentando uma sequência geradora, justifique que os seguintes conjuntos são subespaços do espaço vectorial indicado.
 - (a) $\{(a, b, c, d) \in \mathbb{R}^4 : a + 2b c = 0\}$ em \mathbb{R}^4 .
 - (b) $\left\{ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{R}) : b+f=0 \land a=c \land e=0 \right\} \text{ em } \mathcal{M}_{2\times 3}(\mathbb{R}).$
 - (c) $\{ax^3 + bx^2 + cx + d \in \mathbb{R}_3[x] : a + d = 0 \land c = 2d\} \text{ em } \mathbb{R}_3[x].$
- **4.24** Sejam $u_1, \ldots, u_k, u_{k+1}, v$ elementos de um espaço vectorial E tais que

$$v \in \langle u_1, \dots, u_k, u_{k+1} \rangle$$
 e $v \notin \langle u_1, \dots, u_k \rangle$.

Mostre que

$$u_{k+1} \in \langle u_1, \dots, u_k, v \rangle$$
.

Sugestão: Nas condições do enunciado e sendo v combinação linear dos vectores $u_1, \ldots, u_k, u_{k+1}$, comece por justificar que o coeficiente de u_{k+1} é não nulo.

4.25 - Em \mathbb{R}^3 , considere os vectores

$$u_1 = (1, 1, 2), u_2 = (0, 0, 1), u_3 = (-1, -1, -1),$$

$$v_1 = (1, 1, 1), \ v_2 = (1, 1, 0), \ v_3 = (1, 0, 0).$$

Mostre que $\langle u_1, u_2, u_3 \rangle \subseteq \langle v_1, v_2, v_3 \rangle$.

- **4.110** Seja E um espaço vectorial sobre \mathbb{K} e sejam $u_1, u_2, u_3, u_4 \in E$. Justifique que:
 - (a) $\langle u_1, u_3, u_4 \rangle = \langle u_4, -2u_1, u_3 + u_4 \rangle$.
 - (b) $\langle u_1, u_2, u_3, u_4 \rangle = \langle u_3 + 2u_1, 2u_2, u_4 u_2, -u_1 \rangle$.
 - **4.28** Seja E um espaço vectorial e sejam $u_1, \ldots, u_r, v_1, \ldots, v_s$ vectores de E. Justifique que:
 - (a) Qualquer sequência de vectores que inclua o vector 0_E é linearmente dependente.
 - (b) Se $u_i = u_j$, com $i \neq j$ e $i, j \in \{1, ..., r\}$, então os vectores $u_1, ..., u_r$ são linearmente dependentes.
 - (c) Se os vectores u_1, \ldots, u_r são linearmente dependentes então os vectores $u_1, \ldots, u_r, v_1, \ldots, v_s$ são linearmente dependentes.
 - (d) Se os vectores $u_1, \ldots, u_r, v_1, \ldots, v_s$ são linearmente independentes então os vectores u_1, \ldots, u_r são linearmente independentes.
 - **4.30** Mostre que:
 - (a) Em \mathbb{R}^3 , a sequência ((1,2,3),(0,-1,1),(0,0,2)) é linearmente independente.
 - (b) Em \mathbb{R}^3 , a sequência ((1,2,3),(2,4,4),(0,0,2)) é linearmente dependente.
 - (c) Em $\mathcal{M}_{2\times 2}(\mathbb{R})$, a sequência $\left(\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix},\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix},\begin{bmatrix}2 & 2\\ 0 & 1\end{bmatrix},\begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}\right)$ é linearmente independente
 - (d) Em $\mathcal{M}_{2\times 2}(\mathbb{R})$, a sequência $\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}\right)$ é linearmente dependente.
 - 4.31 Seja E um espaço vectorial sobre K e sejam $u_1, u_2, u_3 \in E$. Justifique as afirmações:
 - (a) $S = (u_1, u_2, u_3)$ é linearmente independente se, e só se,

$$S' = (u_1, u_1 + u_2, u_1 + u_2 + u_3)$$

é linearmente independente.

(b) $S = (u_1, u_2, u_3)$ é linearmente independente se, e só se,

$$S'' = (u_1 - u_2, u_2 - u_3, u_1 + u_3)$$

é linearmente independente.

(c) A sequência

$$S''' = (u_1 - u_2, u_2 - u_3, u_1 - u_3)$$

é linearmente dependente.

4.33 - Em \mathbb{R}^3 , considere o subespaço $F = \langle (2,3,3) \rangle$. Indique, para F, duas bases distintas.

- 4.35 Seja $G = \left\{ \begin{bmatrix} a & a+b \\ -b & 0 \end{bmatrix} : a,b \in \mathbb{R} \right\}$ o subespaço de $\mathcal{M}_{2\times 2}(\mathbb{R})$ referido no Exercício 4.22. Determine uma base de G.
- **4.123** Seja $F = \{p(x) \in \mathbb{R}_3[x] : p(0) = 0 \land p(1) = 0\}$. Mostre que F é um subespaço de $\mathbb{R}_3[x]$ com dimensão 2.
 - 4.41 Em \mathbb{R}^3 , considere o subespaço

$$F = \langle (1,2,1), (2,-1,-3), (0,1,1) \rangle.$$

- (a) Verifique que (1, 2, 1), (2, -1, -3), (0, 1, 1) não é uma base de F.
- (b) Determine uma base de F constituída por vectores da sequência indicada na alínea anterior.
- **4.44** Em $\mathcal{M}_{2\times 2}(\mathbb{R})$, considere as bases

$$\mathcal{B} = \left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right] \right)$$

е

$$\mathcal{B}' = \left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right).$$

- (a) Determine a sequência das coordenadas do vector $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ em cada uma das bases \mathcal{B} e \mathcal{B}' .
- (b) Determine a sequência das coordenadas de $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R})$ em cada uma das bases \mathcal{B} e \mathcal{B}' .
- 4.45 Em $\mathbb{R}_3[x]$, considere as bases

$$\mathcal{B} = (x^3, \ x^3 + x^2, \ x^3 + x^2 + x, \ x^3 + x^2 + x + 1)$$

е

$$\mathcal{B}' = (x^3, x^2, x, 1).$$

- (a) Determine a sequência das coordenadas do vector $4x^3 + 3x^2 + 2x + 1$ em cada uma das bases $\mathcal{B} \in \mathcal{B}'$.
- (b) Determine a sequência das coordenadas de $ax^3+bx^2+cx+d \in \mathbb{R}_3[x]$ em cada uma das bases $\mathcal{B} \in \mathcal{B}'$.
- **4.149** (a) Justifique que $\mathcal{B} = (x^2 + 2x + 1, x^2 1, x^2 2x + 1)$ é uma base de $\mathbb{R}_2[x]$.
 - (b) Considerando, em $\mathbb{R}_2[x]$, a base $\mathcal{B}' = (1, x, x^2)$ determine:
 - i. A sequência das coordenadas, na base \mathcal{B}' , de cada um dos vectores da base \mathcal{B} .
 - ii. A sequência das coordenadas, na base \mathcal{B} , de cada um dos vectores da base \mathcal{B}' .
 - **4.48** Sejam

$$F = \{(a, b, c, d) \in \mathbb{R}^4 : a - c = 0 \land a - b + d = 0\}$$

 \mathbf{e}

$$G = \langle (1, 1, 0, 1), (2, 1, 2, -1) \rangle.$$

Determine uma base de $F \cap G$ e de F + G.

4.132 - Considere o conjunto F das matrizes de $\mathcal{M}_{m\times n}(\mathbb{K})$ em que a primeira coluna é nula.

- (a) Justifique que F é um subespaço de $\mathcal{M}_{m\times n}(\mathbb{K})$.
- (b) Mostre que existe um subespaço G de $\mathcal{M}_{m\times n}(\mathbb{K})$ tal que

$$\mathcal{M}_{m\times n}(\mathbb{K})=F\oplus G.$$

4.52 - Em \mathbb{R}^4 , considere os subespaços

$$F = \{(a, b, c, d) \in \mathbb{R}^4 : a - b = 0 \land a = b + d\},\$$

$$G = \{(a, b, c, d) \in \mathbb{R}^4 : b - c = 0 \land d = 0\}$$

e

$$H = \langle (1,0,0,3), (2,0,0,1) \rangle$$
.

Determine uma base de

- (a) F.
- (b) G.
- (c) F + G.
- (d) F + H.

4.56 - Em $\mathcal{M}_{2\times 2}(\mathbb{R})$, considere os subespaços

$$F = \left\{ \left[\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right] : \ a, b \in \mathbb{R} \right\} \quad \text{e} \quad G = \left\{ \left[\begin{array}{cc} 0 & 0 \\ c & d \end{array} \right] : \ c, d \in \mathbb{R} \right\}.$$

- (a) Mostre que $\mathcal{M}_{2\times 2}(\mathbb{R}) = F \oplus G$.
- (b) Considerando $A = \begin{bmatrix} 4 & 5 \\ 0 & 6 \end{bmatrix}$ determine a projecção de A sobre F, segundo G, e a projecção de A sobre G, segundo F.
- **4.59** Sejam F e G subespaços de um espaço vectorial E, com dim E=n, dim $F>\frac{n}{2}$ e dim $G>\frac{n}{2}$. Mostre que $F\cap G\neq \{0_E\}$.
- 4.62 Em \mathbb{R}^3 , considere os subespaços

$$F = \langle (1, 0, 1), (1, -1, 2) \rangle$$
 e $G = \langle (1, \alpha, 3) \rangle$.

(a) Determine o conjunto dos valores de α para os quais se tem

$$\dim(F+G)=3.$$

- (b) Conclua que $\mathbb{R}^3 = F \oplus G$ se, e só se, $\alpha \in \mathbb{R} \setminus \{-2\}$.
- 4.138 Sejam F, G e H subespaços de um espaço vectorial E de dimensão finita tais que

$$F \cap G = F \cap H$$
, $F + G = F + H$ e $G \subseteq H$.

Justifique que G = H.

4.65 - Em \mathbb{R}^3 , considere a sequência de vectores

$$S_k = ((1,0,2), (-1,2,-3), (-1,4,k)).$$

Determine o conjunto dos valores de k para os quais S_k é uma base de \mathbb{R}^3 .

- **4.69** Em \mathbb{R}^4 , considere o subespaço $F = \langle (1,0,1,0), (-1,1,0,1), (1,1,2,1) \rangle$.
 - (a) Indique uma base de F.
 - (b) Verifique que $(1,2,3,2) \in F$.
 - (c) Determine uma base de \mathbb{R}^4 que inclua os vectores da base de F indicada em (a).
- 4.71 Em $\mathcal{M}_{3\times 1}(\mathbb{R})$, considere as sequências

$$S_1 = \left(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right)$$
 e $S_2 = \left(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right)$.

Determine se S_i , i = 1, 2, é uma sequência linearmente dependente e, em caso afirmativo, indique um vector da sequência que seja combinação linear dos restantes.

- 4.151 Indique, caso exista, um vector u tal que
 - (a) S = (0,0,3), (-1,0,2), u) seja uma base de \mathbb{R}^3 .
 - (b) $S = (3, -x^2 + 2, u)$ seja uma base de $\mathbb{R}_2[x]$.
- 4.64 Em \mathbb{R}^3 , considere as sequências

$$S_1 = ((1, -1, 1), (1, 1, 0))$$
 e $S_2 = ((1, -1, 1), (1, 1, 0), (2, 0, 1))$.

Determine se S_i , i = 1, 2, é uma sequência linearmente dependente e, em caso afirmativo, indique um vector da sequência que seja combinação linear dos restantes.

4.73 - Seja E um espaço vectorial e seja (e_1, e_2, e_3) uma base de E. Considere as sequências

$$S_1 = (e_1 - e_2 + e_3, e_1 + e_2)$$
 e $\mathbf{S_2} = (e_1 - e_2 + e_3, e_1 + e_2, 2e_1 + e_3)$.

Determine se S_i , i = 1, 2, é uma sequência linearmente dependente e, em caso afirmativo, indique um vector da sequência que seja combinação linear dos restantes.

- 4.74 Indique a dimensão e uma base do subespaço
 - (a) $F = \langle 2x^3 + 2x^2 2x, x^3 + 2x^2 x 1, x^3 + x + 5, x^3 + 3, 2x^3 + 2x^2 x + 2 \rangle$ de $\mathbb{R}_3[x]$.
 - (b) $G = \left\langle \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix} \right\rangle \operatorname{de} \mathcal{M}_{2 \times 2}(\mathbb{R}).$
- **4.152** Em $\mathbb{R}_2[x]$, considere o subespaço

$$F = \langle x^2 + 1, x + 1, 2x^2 - x + 1 \rangle$$
.

- (a) Indique uma base de F.
- (b) Determine uma base de $\mathbb{R}_2[x]$ que tenha como subsequência a base indicada em (a).
- 4.144 (a) Em $\mathcal{M}_{2\times 2}(\mathbb{R})$, determine o conjunto dos valores de k para os quais as matrizes

$$A = \begin{bmatrix} 0 & k \\ 0 & 2k \end{bmatrix}, B = \begin{bmatrix} k+1 & 1 \\ 0 & 0 \end{bmatrix} e C = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$$

são linearmente independentes.

(b) Para os valores de k determinados em (a), indique uma base de $\mathcal{M}_{2\times 2}(\mathbb{R})$ que inclua as matrizes $A, B \in C$.

4.155 - Em $\mathbb{R}_4[x]$, considere o subespaço

$$F = \left\{ a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \in \mathbb{R}_4[x] : -2a_0 + 2a_1 + a_4 = 0 \land -a_0 + a_1 + 5a_4 = 0 \right\}.$$

- (a) Determine uma base de F.
- (b) Determine uma base de $\mathbb{R}_4[x]$ que inclua a base de F indicada em (a).
- (c) Indique, caso exista, um subespaço G de $\mathbb{R}_4[x]$ tal que

$$\dim(F+G) = 4$$
 e $\dim(F \cap G) = 1$.

4.156 - Em \mathbb{R}^4 , considere os subespaços

$$F = \langle (0, 1, 0, 1), (1, 2, 1, 2), (1, 1, 1, 1), (1, 2, 3, 4) \rangle$$

e

$$G_t = \langle (1, 1, 0, 1), (1, 0, 1, 1), (t, 2, -1, 1) \rangle.$$

- (a) Mostre que existe um, e um só, valor de t para o qual dim $G_t = 2$.
- (b) Para o valor de t determinado em (a), determine uma base de $F+G_t$ e a dimensão de $F\cap G_t$.

5 - Aplicações Lineares

5.2 - Determine se é linear a aplicação $f:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ tal que, para qualquer $(x,y,z)\in\mathbb{R}^3$, se tem

- (a) f(x, y, z) = (y, 0).
- **(b)** f(x, y, z) = (x 1, y).
- (c) f(x, y, z) = (xy, 0).
- (d) f(x, y, z) = (x, |z|).

5.3 - (a) Seja $f: \mathbb{C} \longrightarrow \mathbb{C}$ tal que

$$f(z) = \overline{z},$$

para qualquer $z \in \mathbb{C}$. Justifique que f não é uma aplicação linear se \mathbb{C} é considerado espaço vectorial sobre \mathbb{C} .

(b) Seja $g: \mathbb{C}_{\mathbb{R}} \longrightarrow \mathbb{C}_{\mathbb{R}}$ tal que

$$g(z) = \overline{z},$$

para qualquer $z\in\mathbb{C}$. Justifique que g é uma aplicação linear se \mathbb{C} é considerado espaço vectorial sobre \mathbb{R} .

5.4 - Seja $g: \mathcal{M}_{m \times n}(\mathbb{K}) \longrightarrow \mathcal{M}_{n \times m}(\mathbb{K})$ tal que

$$g(A) = A^{\top},$$

para qualquer $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Justifique que g é uma aplicação linear.

5.5 - Considere a aplicação $f: \mathcal{M}_{n \times n}(\mathbb{K}) \longrightarrow \mathbb{K}$ tal que

$$f(A) = \det A$$
,

para qualquer $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Justifique que, para $n \geq 2$, f não é linear. O que sucede para n = 1?

- **5.6** Seja $f: \mathbb{R}^3 \longrightarrow \mathcal{M}_{2 \times 2}(\mathbb{R})$ uma aplicação linear. Justifique que:
 - (a) $f(0,0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
 - (b) f(2,4,-2) = 2f(1,2,-1).
 - (c) f(-3,1,2) = f(-2,0,1) + f(-1,1,1).
- 5.7 Determine se é linear cada uma das aplicações seguintes:
 - (a) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$f(a, b, c) = (2a, b + 1),$$

para qualquer $(a, b, c) \in \mathbb{R}^3$.

(b) $g: \mathbb{R}_2[x] \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que

$$g(ax^2 + bx + c) = \begin{bmatrix} c & b \\ a+b & 2 \end{bmatrix},$$

para qualquer $ax^2 + bx + c \in \mathbb{R}_2[x]$.

5.50 - De acordo com o Exercício 4.5, \mathbb{R}^+ com as operações \boxplus e \boxdot definidas por

$$a \boxplus b = ab$$
.

para quaisquer $a, b \in \mathbb{R}^+$, e

$$\alpha \boxdot a = a^{\alpha}$$
,

para qualquer $\alpha \in \mathbb{R}$ e qualquer $a \in \mathbb{R}^+$, constitui um espaço vectorial sobre \mathbb{R} . Justifique que são lineares as seguintes aplicações:

(a) $f: (\mathbb{R}, +, \cdot) \longrightarrow (\mathbb{R}^+, \boxplus, \boxdot)$ tal que

$$f(x) = e^{x}$$

para qualquer $x \in \mathbb{R}$.

(b) $g:(\mathbb{R}^+, \boxplus, \boxdot) \longrightarrow (\mathbb{R}, +, \cdot)$ tal que

$$q(x) = \log x$$

para qualquer $x \in \mathbb{R}^+$.

- **5.10** Determine o núcleo, uma base do núcleo e uma base da imagem de cada uma das aplicações lineares seguintes:
 - (a) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$f(x, y, z) = (y, z),$$

para qualquer $(x, y, z) \in \mathbb{R}^3$.

(b) $g: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}^3$ tal que

$$g\left(\left[\begin{array}{cc}a & b\\ c & d\end{array}\right]\right) = (2a, c+d, 0),$$

para qualquer $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}).$

(c) $h: \mathbb{R}^3 \longrightarrow \mathbb{R}_2[x]$ tal que

$$h(a,b,c) = (a+b)x^2 + c,$$

para qualquer $(a, b, c) \in \mathbb{R}^3$.

(d) $t: \mathbb{R}_3[x] \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que

$$t(ax^3 + bx^2 + cx + d) = \begin{bmatrix} a - c & 0 \\ 0 & b + d \end{bmatrix},$$

para qualquer $ax^3 + bx^2 + cx + d \in \mathbb{R}_3[x]$.

5.62 - Sejam $f: E \longrightarrow E'$ e $g: E' \longrightarrow E''$ aplicações lineares. Mostre que

$$g \circ f = 0$$
 se, e só se, $\operatorname{Im} f \subseteq \operatorname{Ker} g$.

- **5.63** Sejam $f: E \longrightarrow E$ e $g: E \longrightarrow E$ aplicações lineares. Mostre que:
 - (a) $\operatorname{Im}(f+g) \subseteq \operatorname{Im} f + \operatorname{Im} g$.
 - (b) $\operatorname{Ker}(f+g) \supseteq \operatorname{Ker} f \cap \operatorname{Ker} g$.
 - (c) Se $f \circ g = g \circ f$ então $\operatorname{Im}(f \circ g) \subseteq \operatorname{Im} f \cap \operatorname{Im} g$.
 - (d) Se $f \circ g = g \circ f$ então $\operatorname{Ker}(f \circ g) \supseteq \operatorname{Ker} f + \operatorname{Ker} g$
- 5.63- Seja $f:E\longrightarrow E$ uma aplicação linear. Mostre que:
 - (a) Ker $f^k \subseteq \text{Ker } f^{k+1}$, para qualquer $k \in \mathbb{N}$.
 - (b) Im $f^k \supseteq \text{Im } f^{k+1}$, para qualquer $k \in \mathbb{N}$.
- 5.14 Indique se cada uma das aplicações lineares seguintes é injectiva, determinando o seu núcleo.
 - (a) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que f(a, b, c) = (2a, b + c, b c), para qualquer $(a, b, c) \in \mathbb{R}^3$.
 - **(b)** $g: \mathbb{R}_2[x] \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que $g(ax^2 + bx + c) = \begin{bmatrix} 2a & b+c \\ 0 & a+b-c \end{bmatrix}$, para qualquer $ax^2 + bx + c \in \mathbb{R}_2[x]$.
- 5.17 Determine a nulidade de cada uma das aplicações lineares seguintes:
 - (a) $f: \mathbb{R}^5 \longrightarrow \mathbb{R}^8$ com dim Im f = 4.
 - (b) $g: \mathbb{R}_3[x] \longrightarrow \mathbb{R}_3[x]$ com dim Im g = 1.
 - (c) $h: \mathbb{R}^6 \longrightarrow \mathbb{R}^3$ com h sobrejectiva.
 - (d) $t: \mathcal{M}_{3\times 3}(\mathbb{R}) \longrightarrow \mathcal{M}_{3\times 3}(\mathbb{R})$ com t sobrejectiva.
- 5.18 Justifique que não existe nenhuma aplicação linear $f: \mathbb{R}^7 \longrightarrow \mathbb{R}^3$ cujo núcleo tenha dimensão inferior ou igual a 3.
- **5.19** Seja $f: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$ uma aplicação linear com nulidade $\mathbf{n}(f)$ e característica $\mathbf{r}(f)$. Indique todos os pares possíveis $(\mathbf{n}(f), \mathbf{r}(f))$.

- $\mathbf{5.21}$ Seja $f: E \longrightarrow E'$ uma aplicação linear, com E e E' ambos de dimensão finita. Justifique que:
 - (a) Se $\dim E < \dim E'$ então f não é sobrejectiva (ou equivalentemente, se f é sobrejectiva então $\dim E \ge \dim E'$).
 - (b) Se $\dim E > \dim E'$ então f não é injectiva (ou equivalentemente, se f é injectiva então $\dim E \leq \dim E'$).
 - (c) Se f é bijectiva então dim $E = \dim E'$.
- **5.22** Utilizando a Proposição adequada, determine se é bijectiva cada uma das seguintes aplicações lineares.
 - (a)A aplicação da alínea (a) do Exercício 5.14, $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ tal que

$$f(a, b, c) = (2a, b + c, b - c),$$

para qualquer $(a, b, c) \in \mathbb{R}^3$.

(b) $g: \mathcal{M}_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}_3[x]$ tal que

$$g\left(\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]\right) = (a+d)x^3 + 2ax^2 + (b-c)x + (a+c),$$

para qualquer $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}).$

- 5.26 Indique se existe alguma aplicação linear nas condições referidas e, em caso afirmativo, dê um exemplo.
 - (a) $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ tal que $\text{Im } f = \langle (1,0,0,1), (0,1,1,0), (0,1,2,0) \rangle$ e dim Ker f = 2.
 - (b) $g: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ tal que $\operatorname{Ker} g = \langle (0, 1, 1, 0), (1, 1, 1, 1) \rangle$ e $(1, 1, 1) \in \operatorname{Im} g$.
 - (c) $h: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ tal que $\operatorname{Im} h = \langle (1, 2, 0, -4), (2, 0, -1, -3) \rangle$.
- 5.32 Indique três espaços vectoriais isomorfos a \mathbb{R}^5 e uma base para cada um desses espaços.
- **5.34** Justifique que $\mathcal{M}_{2\times 2}(\mathbb{R})$ e $\mathbb{R}_3[x]$ são isomorfos e indique um isomorfismo de $\mathcal{M}_{2\times 2}(\mathbb{R})$ em $\mathbb{R}_3[x]$.
- **5.36** Considere a aplicação linear $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$f(x, y, z) = (y, z),$$

para qualquer $(x,y,z)\in\mathbb{R}^3$ e a aplicação linear $g:\mathcal{M}_{2\times 2}(\mathbb{R})\longrightarrow\mathbb{R}^3$ tal que

$$g\left(\left[\begin{array}{cc}a & b\\ c & d\end{array}\right]\right) = (2a, c+d, 0),$$

para qualquer $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}).$

(a) Determine $\mathcal{M}(f; \mathcal{B}, \mathcal{B}')$ sendo

$$\mathcal{B} = ((1,2,3), (0,-2,1), (0,0,3))$$
 e $\mathcal{B}' = ((0,-2), (-1,0))$.

(b) Determine $\mathcal{M}(g; \mathcal{B}'', b. c._{\mathbb{R}^3})$ sendo

$$\mathcal{B}'' = \left(\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 2 \\ 3 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 2 & -1 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \right).$$

5.39 - Sejam \mathcal{B} e \mathcal{B}' bases de \mathbb{R}^4 e \mathbb{R}^3 , respectivamente, e seja $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ a aplicação linear tal que

$$\mathcal{M}(f; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} -1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & -1 \end{bmatrix}.$$

Calculando a característica da matriz anterior, determine se f é sobrejectiva.

 $\mathbf{5.42}$ - Seja $f:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ a aplicação linear tal que

$$f(a,b,c) = (a+b,b+c),$$

para qualquer $(a, b, c) \in \mathbb{R}^3$. Em \mathbb{R}^3 , considere as bases

$$\mathcal{B}_1 = \text{b. c.}_{\mathbb{R}^3}, \qquad \mathcal{B}_2 = ((0, 1, 0), (1, 0, 1), (1, 0, 0))$$

e, em \mathbb{R}^2 , considere as bases

$$\mathcal{B}'_1 = b. c._{\mathbb{R}^2}, \qquad \mathcal{B}'_2 = ((1,1), (1,0)).$$

- (a) Calcule f(1, 2, 3).
- (b) Determine $\mathcal{M}(f; \mathcal{B}_1, \mathcal{B}'_1)$ e calcule f(1, 2, 3) utilizando esta matriz.
- (c) Determine $\mathcal{M}(f; \mathcal{B}_2, \mathcal{B}'_1)$ e calcule f(1, 2, 3) utilizando esta matriz.
- (d) Determine $\mathcal{M}(f; \mathcal{B}_1, \mathcal{B}'_2)$ e calcule f(1, 2, 3) utilizando esta matriz.
- (e) Determine $\mathcal{M}(f; \mathcal{B}_2, \mathcal{B}'_2)$ e calcule f(1, 2, 3) utilizando esta matriz.
- 5.43 Em \mathbb{R}^3 , considere as bases

$$\mathcal{B}_1 = ((1, -1, 0), (-1, 1, -1), (0, 1, 0)), \quad \mathcal{B}_2 = b. c._{\mathbb{R}^3}$$

e

$$\mathcal{B}_3 = ((1,1,1), (0,1,1), (0,0,1)).$$

Determine a matriz de mudança de base de

- (a) \mathcal{B}_1 para \mathcal{B}_2 .
- (b) \mathcal{B}_2 para \mathcal{B}_1 .
- (c) \mathcal{B}_1 para \mathcal{B}_3 .
- $\mathbf{5.98}$ Seja $f:\mathbb{R}^3\longrightarrow\mathbb{R}_2[x]$ a aplicação linear tal que

$$\mathcal{M}(f; b. c._{\mathbb{R}^3}, \mathcal{B}') = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \text{ com } \mathcal{B}' = (1, x^2 + 1, x).$$

Determine se 2x + 1 pertence à imagem de f.

5.103 - Seja E um espaço vectorial e seja $\mathcal{B} = (u, v, w)$ uma base de E. Considere a aplicação linear $f: E \longrightarrow E$ tal que

$$f(u) = u$$
, $f(v) = u + v$ e $f(w) = u + v + w$.

- (a) Determine $\mathcal{M}(f; \mathcal{B}, \mathcal{B})$.
- (b) Justifique que f é invertível e determine $\mathcal{M}(f^{-1}; \mathcal{B}, \mathcal{B})$.

5.46 - Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ a aplicação linear tal que

$$\mathcal{M}\left(f; \text{ b. c.}_{\mathbb{R}^3}, \text{b. c.}_{\mathbb{R}^2}\right) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Considere as bases

$$\mathcal{B} = ((0,1,0), (1,0,1), (1,0,0))$$
 e $\mathcal{B}' = ((1,1), (1,0))$

de \mathbb{R}^3 e de \mathbb{R}^2 , respectivamente. Utilizando matrizes de mudança de base, determine:

- (a) $\mathcal{M}(f; \mathcal{B}, b. c._{\mathbb{R}^2})$.
- (b) $\mathcal{M}(f; b. c._{\mathbb{R}^3}, \mathcal{B}')$.
- (c) $\mathcal{M}(f; \mathcal{B}, \mathcal{B}')$.
- **5.107** Seja $\mathcal{B} = (e_1, e_2, e_3, e_4)$ uma base de um espaço vectorial E e seja $f: E \longrightarrow E$ a aplicação linear tal que

$$\mathcal{M}(f; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ com } a \in \mathbb{K}.$$

Em E, considere a base

$$\mathcal{B}' = (e_1, e_1 + e_2, e_1 + e_2 + e_3, e_1 + e_2 + e_3 + e_4).$$

Utilizando matrizes de mudança de base, determine:

- (a) $\mathcal{M}(f; \mathcal{B}', \mathcal{B})$.
- (b) $\mathcal{M}(f; \mathcal{B}', \mathcal{B}')$.
- 5.110 Seja E um espaço vectorial real e seja $\mathcal{B}' = (u_1, u_2, u_3)$ uma base de E. Considere a aplicação linear $f: \mathbb{R}^5 \longrightarrow E$ tal que

$$f(a, b, c, d, e) = (-b - c + d)u_1 + (2a + b + 3c - 3d)u_2 + (b + c - d)u_3$$

para quaisquer $a, b, c, d, e \in \mathbb{R}$.

- (a) Determine $\mathcal{M}(f; b. c._{\mathbb{R}^5}, \mathcal{B}')$.
- (b) Determine uma base de $\operatorname{Im} f$.
- (c) Em \mathbb{R}^5 , considere os vectores

$$v_1 = (2, 2, 0, 2, 2), v_2 = (-1, -1, 1, 0, 1) e v_3 = (0, 0, 0, 0, 1).$$

Mostre que (v_1, v_2, v_3) é uma base de Ker f.

- (d) Determine uma base de \mathbb{R}^5 que inclua os vectores v_1, v_2 e v_3 .
- (e) Sendo \mathcal{B} a base obtida em (d), determine $\mathcal{M}(f; \mathcal{B}, \mathcal{B}')$.

6 - Valores e Vectores Próprios

6.1 - Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ a aplicação linear tal que

$$f(a,b,c) = (a+b,b,2c),$$

para qualquer $(a, b, c) \in \mathbb{R}^3$. Considere os vectores $u_1 = (2, 0, 0)$, $u_2 = (0, 0, 7)$ e $u_3 = (0, 0, 0)$. Verifique se cada um dos vectores u_1 , u_2 , u_3 é um vector próprio de f e, em caso afirmativo, indique o valor próprio associado.

- **6.2** Seja $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$
 - (a) Mostre que $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ e $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ são vectores próprios de A e indique os valores próprios correspondentes.
 - (b) Questão análoga à de (a) para $\begin{bmatrix} \alpha \\ -\alpha \end{bmatrix}$ e $\begin{bmatrix} 0 \\ \alpha \end{bmatrix}$, com $\alpha \in \mathbb{R} \setminus \{0\}$.
- **6.3** Seja α um valor próprio de $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Justifique que $\overline{\alpha}$ é valor próprio de \overline{A} .
- **6.9** Seja $U \in \mathcal{M}_{n \times n}(\mathbb{C})$. Mostre que:
 - (a) Se X é um vector próprio de U associado ao valor próprio α então

$$X^*U^*UX = \overline{\alpha}\alpha X^*X.$$

- (b) Se U é unitária (isto é, $U^*U = I_n$) e α é valor próprio de U então $|\alpha| = 1$.
- (c) Se U é unitária e se X e Y são vectores próprios de U associados a valores próprios distintos então $X^*Y=0$.
- **6.19** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ uma matriz invertível. Mostre que:
 - (a) Se α é valor próprio de A então $\alpha \neq 0$ e α^{-1} é valor próprio de A^{-1} .
 - (b) Se $X \in \mathcal{M}_{n \times 1}(\mathbb{K})$ é vector próprio de A associado ao valor próprio α então X é vector próprio de A^{-1} associado ao valor próprio α^{-1} .
- **6.55** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ tal que

$$A^{k+1} = A^k$$
, para algum $k \in \mathbb{N}$.

Justifique que todo o valor próprio de A pertence ao conjunto $\{0,1\}$.

- **6.54** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ tal que $A^2 + 2A = I_n$. Justifique que todo o valor próprio de A pertence ao conjunto $\{-1 + \sqrt{2}, -1 \sqrt{2}\}$.
 - 6.7 Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ uma matriz idempotente (isto é, $A^2 = A$).
 - (a) Mostre que todo o valor próprio de A pertence ao conjunto $\{0,1\}$.
 - (b) Indique uma matriz que tenha todos os valores próprios no conjunto $\{0,1\}$ e que não seja idempotente.
- 6.12 Determine os valores próprios da matriz

$$A = \begin{bmatrix} 2 & -i & 0 \\ i & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{C})$$

28

e as respectivas multiplicidades algébricas.

- **6.13** Sejam $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{K})$. Mostre que:
 - (a) Se $\mathbb{K} = \mathbb{R}$ então A não tem valores próprios.
 - (b) Se $\mathbb{K} = \mathbb{C}$ então A tem dois valores próprios distintos.
 - (c) As matrizes A e B têm o mesmo polinómio característico.

6.14 - Seja
$$A = \begin{bmatrix} 0 & 2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

- (a) Determine os valores próprios de A e as respectivas multiplicidades algébricas.
- (b) Calcule o determinante de A.
- **6.23** Considere a matriz $A = \begin{bmatrix} 2 & 1 & -1 \\ k & 0 & k \\ 1 & -1 & 1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$
 - (a) Mostre que existe um, e um só, valor de k para o qual A admite o valor próprio 2.
 - (b) Para o valor de k determinado em (a), indique o subespaço próprio associado ao valor próprio 2.
- **6.22** Considere as matrizes, apenas com o valor próprio α ,

$$A_1 = \left[\begin{array}{ccc} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{array} \right], \ A_2 = \left[\begin{array}{ccc} \alpha & 1 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{array} \right], \ A_3 = \left[\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{array} \right] \in \mathcal{M}_{3 \times 3}(\mathbb{C}).$$

Mostre que em A_i se tem mg $(\alpha) = i, i = 1, 2, 3$.

- **6.31** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. Mostre que:
 - (a) A matriz A é diagonalizável se, e só se, αA é diagonalizável, para qualquer $\alpha \in \mathbb{K}$.
 - (b) A matriz A é diagonalizável se, e só se, A^{\top} é diagonalizável.
 - (c) Se A é invertível então A é diagonalizável se, e só se, A^{-1} é diagonalizável.
- 6.35 Considere as matrizes triangulares

$$A = \begin{bmatrix} -2 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 0 \\ 4 & 1 \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$$

Sem efectuar cálculos, justifique que A e B são ambas diagonalizáveis e indique uma matriz diagonal D_A semelhante a A e uma matriz diagonal D_B semelhante a B.

- **6.36** Seja $A = \begin{bmatrix} 2 & 5 & 2 \\ 0 & 3 & 0 \\ 2 & -1 & 2 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$. Calcule os valores próprios de A e, sem determinar os subespaços próprios de A, conclua que A é diagonalizável.
- 6.37 Considere a matriz

$$A = \begin{bmatrix} 3 & 2 & 0 \\ -4 & -3 & 0 \\ 4 & 2 & -1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

- (a) Calcule os valores próprios de A e indique as respectivas multiplicidades algébricas.
- (b) Determine uma base para cada um dos subespaços próprios de A.
- (c) Mostre que A é diagonalizável e indique uma matriz invertível $P \in \mathcal{M}_{3\times 3}(\mathbb{R})$ e uma matriz diagonal D tais que

$$P^{-1}AP = D.$$

6.93 - Seja $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tal que

$$A \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right] = \left[\begin{array}{c} 2 \\ 4 \\ 6 \end{array} \right], \quad A \left[\begin{array}{c} 0 \\ 1 \\ 2 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] \quad \text{e} \quad A \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 2 \end{array} \right].$$

- (a) Indique os valores próprios de A e as respectivas multiplicidades geométricas.
- (b) Indique, se existir, uma matriz diagonal semelhante a A.
- (c) Determine uma matriz A nas condições do enunciado.

6.41 - Seja f um endomorfismo de \mathbb{R}^3 e seja $\mathcal{B} = (e_1, e_2, e_3)$ uma base de \mathbb{R}^3 . Sabendo que

$$\mathcal{M}\left(f;\mathcal{B},\mathcal{B}\right) = \left[\begin{array}{ccc} 3 & 2 & 0 \\ -4 & -3 & 0 \\ 4 & 2 & -1 \end{array}\right],$$

determine:

- (a) Os valores próprios de f.
- (b) Uma base \mathcal{B}' , de \mathbb{R}^3 , constituída por vectores próprios de f.
- (c) $\mathcal{M}(f; \mathcal{B}', \mathcal{B}')$ sendo \mathcal{B}' a base indicada em (b).

Observação: Compare os resultados com os obtidos no Exercício 6.37.

6.28 - Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ a aplicação linear definida por

$$f(a, b, c) = (-b - c, -2a + b - c, 4a + 2b + 4c),$$

para qualquer $(a, b, c) \in \mathbb{R}^3$. Determine os valores próprios e os subespaços próprios de f.

6.89 - Considere as matrizes

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$$

- (a) Determine os valores próprios de cada uma das matrizes e indique as respectivas multiplicidades algébricas.
- (b) i. Mostre que A é diagonalizável.
 - ii. Indique se B é diagonalizável.
- (c) Determine uma matriz invertível $P \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tal que $P^{-1}AP$ seja uma matriz diagonal e os elementos da diagonal principal de $P^{-1}AP$ estejam ordenados por ordem crescente.

6.95 - Em \mathbb{R}^3 , considere o subespaço

$$F = \left\{ (x, y, z) \in \mathbb{R}^3: \ x + 2y + z = 0 \right\}.$$

Seja $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ a aplicação linear tal que (1,-1,0) é vector próprio de f associado ao valor próprio 2 e

$$f(a, b, c) = (0, 0, 0),$$

para qualquer $(a, b, c) \in F$.

- (a) Justifique que $\mathcal{B} = ((1, -1, 0), (1, 1, -3), (1, 0, -1))$ é uma base de \mathbb{R}^3 constituída por vectores próprios de f.
- (b) Mostre que 0 é valor próprio de f e que mg(0) = ma(0).
- (c) Determine $\mathcal{M}(f; \mathcal{B}, b. c._{\mathbb{R}^3})$.

Soluções

- 1.1 (a) B, E, F, H, I
 - (b) B, E, F, H, I
 - (c) B, E, F, I
 - (d) E, F, I
- 1.2 (a) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
- 1.3 (a) $\begin{bmatrix} 4 & 1 & 5 \\ -2 & 1 & -1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 8 & 2 & 10 \\ -4 & 2 & -2 \end{bmatrix}$

 - (c) $\begin{bmatrix} 2 & 1 & -4 \\ 2 & -1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 2 & -15 \\ 11 & 2 & -2 \end{bmatrix}$
- $1.4 X = \left[\begin{array}{ccc} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{array} \right]$
- 1.5 $AB = \begin{bmatrix} -1 \end{bmatrix}, BA = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & -1 \\ 3 & 6 & -3 \end{bmatrix}$
- 1.6 $(AB)_{23} = 7$, $(BA)_{12} = 7$, $(AB)_{22} = 11, (BA)_{22} = 8$
- 1.7 (a) [25]
 - (b) Não está definido
 - (c) $\begin{bmatrix} -2 & 2 & 1 \\ 1 & -1 & 0 \\ -2 & 2 & 2 \end{bmatrix}$
 - (d) $\begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix}$
- 1.15 Se $D = \operatorname{diag}\left(d_1, \dots, d_n\right)$ então $D^k = \operatorname{diag}\left(d_1{}^k, \dots, d_n{}^k\right)$
- 1.20 (a) Elementos da diagonal principal não nulos
 - (b) Se $D = \operatorname{diag}(d_1, \dots, d_n)$ então $D^{-1} = \operatorname{diag}(d_1^{-1}, \dots, d_n^{-1})$
- 1.21 (a) Por exemplo, para n = 2, $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
 - (b) Por exemplo, para n=2, $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
- 1.22 (a) $A^{-1} = A^2$
 - (b) $A^{-1} = A + 2I_n$
 - (c) $A^{-1} = -\frac{1}{\beta}(A + \alpha I_n)$
- 1.26 (a) $\begin{bmatrix} 9 & 5 \\ 12 & 4 \\ 8 & 11 \end{bmatrix}$
 - (b) $C = I_3 + 2A^{-1} = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 3 & 6 \\ 8 & 4 & 3 \end{bmatrix}$
- 1.34 (a) A, C

- (b) A, E
- 1.40 (a) A, E
 - (b) B
- 1.42 (a) Sim, do tipo III
 - (b) Sim, do tipo II
 - (c) Não
 - (d) Não
 - (e) Sim, do tipo II ou do tipo III
- 1.43 -
- 1.44 (a) $\begin{bmatrix} e & f & g & h \\ a & b & c & d \\ i & j & k & l \end{bmatrix}$
- 1.45 -(a) Por exemplo,
 - (b) Por exemplo,
- 1.46 (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 1.48 (a) Sim
 - (b) Não
 - (c) Sim
 - (d) Não
- (a) Por exemplo, 1.49 -
 - (b) Por exemplo, $\begin{bmatrix} 2 & 4 & -2 & 6 & 0 \\ 0 & 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
 - (c) Por exemplo.
- (a) Sim 1.51 -

- (b) Sim
- (c) Não
- (d) Sim
- (e) Sim
- 1.52 (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 2 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
 - $(c) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
- 1.55 (a) Não
 - (b) Sim
- 1.56 (a) Por exemplo, $(\frac{1}{2}l_1, l_2 + (-1)l_1, l_1 + 2l_2, 4l_2, \\ l_2 + (-1)l_1)$
 - (b) Por exemplo, $(l_2+l_1,\frac{1}{4}l_2,l_1+(-2)l_2,l_2+l_1,2l_1)$
- 1.57 $r(A_1) = 3$, $r(A_2) = 3$, $r(A_3) = 2$, $r(A_4) = 3$
- 1.58 $r(A_{\alpha}) = \begin{cases} 2, & \text{se } \alpha = 2\\ 3, & \text{se } \alpha \neq 2 \end{cases}$ $r(B_{\alpha}) = \begin{cases} 3, & \text{se } \alpha = 2\\ 4, & \text{se } \alpha \neq 2 \end{cases}$
 - $\mathbf{r}(C_{\alpha,\beta}) = \begin{cases} 2, \text{ se } \alpha = 0 \text{ ou } \beta = 0\\ 3, \text{ se } \alpha \neq 0 \text{ e } \beta \neq 0 \end{cases}$
 - $\mathbf{r}(D_{\alpha,\beta}) = \left\{ \begin{array}{l} 3, \text{ se } \beta = 0 \text{ e } \alpha \in \mathbb{R} \\ 4, \text{ se } \beta \neq 0 \text{ e } \alpha \in \mathbb{R} \end{array} \right.$
- 1.59 $r(\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}) = 1 e r(\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}) = 2$
- 1.62 (a) $\alpha \in \mathbb{R} \setminus \{-5\}$
 - (b) $\alpha \in \mathbb{R} \setminus \{-1\} \in \beta \in \mathbb{R} \setminus \{2\}$
- 1.65 (a) $\begin{bmatrix} 0 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix}$
 - (b) Por exemplo, $A^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

1.66 -
$$B^{-1} = \frac{1}{5} \begin{bmatrix} \frac{3}{-2} & \frac{1}{1} & \frac{2}{2} \\ -2 & 1 & -3 \end{bmatrix}$$

$$C^{-1} = \left[\begin{smallmatrix} -i & -1+i \\ 1 & -i \end{smallmatrix} \right]$$

$$D^{-1} = \frac{1}{2} \begin{bmatrix} 0 & 2 & -4 & -1 \\ 1 & 1 & -5 & -1 \\ 1 & 1 & -3 & 0 \\ 1 & -1 & 1 & 0 \end{bmatrix}$$

- 1.129 (d) $B = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 5 & 7 \\ 5 & 7 & 9 \end{bmatrix}, C = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$
- 1.140 (a) $A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \beta & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$
 - (b) $A_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \beta & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
 - $\begin{array}{l} \text{(c)} \ \ B = E_2 E_1 A C_1 C_2 C_3, \ \text{com} \\ E_1 = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \beta & 1 \end{bmatrix}, \\ C_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ C_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \\ C_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix},$
- 1.144 (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -6 & 1 \\ 0 & 3 & 0 \end{bmatrix}$
 - (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} \\ 0 & 1 & 2 \end{bmatrix}$
- 1.156 r $(A_{\alpha,\beta})=\left\{\begin{array}{ll} 3, \ {\rm se}\ \alpha\beta\neq 1 \ {\rm e}\ \alpha\neq 0 \\ 2, \ {\rm caso\ contrário} \end{array}\right.$
 - $r(B_{\alpha,\beta}) = \begin{cases} 3, \text{ se } \beta \neq 1\\ 2, \text{ se } \beta = 1 \text{ e } \alpha \neq 1\\ 1, \text{ se } \beta = 1 \text{ e } \alpha = 1 \end{cases}$
 - $r(C_{\alpha,\beta}) = \begin{cases} 4, & \text{se } (\alpha \neq 0 \text{ ou } \beta \neq 0) \\ & \text{e } \beta \neq -\alpha \\ 3, & \text{se } (\alpha \neq 0 \text{ ou } \beta \neq 0) \\ & \text{e } \beta = -\alpha \\ 0, & \text{se } \alpha = \beta = 0 \end{cases}$
 - $r(D_{\alpha,\beta}) = \begin{cases} 4, & \text{se } \alpha \neq 1 \text{ e } \beta \neq 3\alpha 2\\ 3, & \text{se } (\alpha = 1 \text{ e } \beta \neq 3\alpha 2)\\ & \text{ou } (\alpha \neq 1 \text{ e } \beta = 3\alpha 2)\\ 2, & \text{se } \alpha = 1 \text{ e } \beta = 3\alpha 2 \end{cases}$
- $1.171 X = \frac{1}{2} \begin{bmatrix} 4 & 5 & 1 \\ 0 & 1 & 1 \\ -10 & -8 & 2 \end{bmatrix}$

2 - Sistemas

Abreviaturas utilizadas:

- S.P.D.– \mathbf{S} istema \mathbf{P} ossível \mathbf{D} eterminado
- S.I.- Sistema Impossível
- S.P.I.- Sistema Possível Indeterminado

g.i. – grau de indeterminação

2.3 - Basta tomar a matriz
$$B = A \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} -2\\19\\52 \end{bmatrix}$$

resultando o sistema, nas incógnitas x, y, z, 2.10 - (a) $\{(2,3,4)\}$

$$\begin{cases} x - z = -2 \\ 2x + 4y + 3z = 19 \\ -x + 2z = 5 \\ 3x + 4y + 2z = 17 \end{cases}$$

 $2.7 - (S_1)$ S.P.D.

Conjunto das soluções de (S_1) : $\{(1,-1,0)\}$

 (S_2) S.P.I. com g.i. 1

Conjunto das soluções de (S_2) : $\left\{ \left(\frac{1}{7} + \frac{1}{7}\alpha, \frac{5}{7} - \frac{2}{7}\alpha, \alpha\right) : \alpha \in \mathbb{R} \right\}$ (S_3) S.I.

2.8 - (a) S.P.D.

(b) S.I.

(c) S.P.I. com g.i. 2

(d) S.P.I. com g.i. 4

(e) S.I.

(f) S.P.D.

(g) S.P.I. com g.i. 4

2.9 - (a) Por exemplo, $\begin{cases} x - 2z = 1 \\ y - z = -4 \end{cases}$

(b) Por exemplo, $\begin{cases} x-y+2z=0\\ 2x-2y+4z=0 \end{cases}$

Sim, basta tomar o sistema 0x + 0y + 0z = 0

2.11 - (a) $\mathcal{C} = \mathbb{R} \setminus \{3\}$

(b) $C = \emptyset$

(c) $C = \{3\}$

2.15 - Conjunto das soluções: $\left\{ \left(-\frac{1}{4}\alpha + \frac{3}{8}\beta + \frac{1}{2}\gamma, \frac{1}{2}\beta + \gamma, -\frac{1}{4}\alpha - \frac{1}{8}\beta + \frac{1}{2}\gamma \right) \right\}$

para cada $\alpha, \beta, \gamma \in \mathbb{R}$

 $4+3\alpha_5,\alpha_5$): $\alpha_2,\alpha_5 \in \mathbb{R}$

 $2.24 - (S_1)$ S.P.D.

(b) Ø

Conjunto das soluções de (S_1) :

 $\left\{ \left(\frac{3}{5}, -\frac{7}{5}, -\frac{4}{5} \right) \right\}$

 (S_2) S.P.I. com g.i. 1

Conjunto das soluções de (S_2) :

 $\{(-1+2\alpha, -\alpha, \alpha) : \alpha \in \mathbb{R}\}$

 (S_3) S.I.

 (S_4) S.P.I. com g.i. 1

Conjunto das soluções de (S_4) :

 $\left\{ \left(-\frac{2}{5} - \frac{3}{5}\alpha, \frac{1}{5} - \frac{1}{5}\alpha, \alpha \right) : \alpha \in \mathbb{R} \right\}$

 (S_5) S.P.I. com g.i. 1

Conjunto das soluções de (S_5) :

 $\{(1,0,\alpha):\alpha\in\mathbb{R}\}$

 (S_6) S.I.

 (S_7) S.P.I. com g.i. 1

Conjunto das soluções de (S_7) :

 $\{(1-\alpha, -1+2\alpha, \alpha) : \alpha \in \mathbb{R}\}$

2.35 - (a) Se $\alpha \neq 0$ e $\alpha \neq 1$ e $\beta \in \mathbb{R}$, S.P.D. Se $\alpha = 1$ e $\beta \in \mathbb{R}$, S.P.I. com g.i. 1

Se $\alpha = 0$ e $\beta \neq 1$, S.I.

Se $\alpha = 0$ e $\beta = 1$, S.P.I. com g.i. 1

(b) Conjunto das soluções:

 $\{(1+\gamma,0,\gamma):\gamma\in\mathbb{R}\}$

2.37 - (a) Se $\alpha \neq 0$ e $\beta \neq 1$, S.P.D.

Se $\alpha = 0$ e $\beta = 1$, S.P.I. com g.i. 2

Se $\alpha = 0$ e $\beta \neq 1$, S.P.I. com g.i. 1

Se $\alpha \neq 0$ e $\beta = 1$, S.I.

(b) (iii) (5, 1, -3)

3 - Determinantes

3.1 - (a) 1

(b) -3

(c) 0

3.2 - 2

3.3 - (a) 0

(b) -7

(c) -1

3.4 - (a) -1

(b) -4

(c) 3

3.5 - uvxyz

 $3.6 - \{0, 1, 3\}$

3.10 - (a)
$$\gamma$$

(b)
$$-12\gamma$$

(c)
$$\gamma$$

(d)
$$-3\gamma$$

(e)
$$-\gamma$$

$$3.15 - k \in \{-2, 1\}$$

$$3.19 - t \in \mathbb{R} \setminus \{0, 2\}$$

$$3.20 - |AB^{\top}C| = -40$$

 $|3B| = 3^{n}(-5)$
 $|B^{2}C| = (-5)^{2} \cdot 4$

3.25 - (a)
$$|A| = -32$$

 $|B| = 0$

(b)
$$|A^{-1}| = -\frac{1}{32}$$

3.28 - (a)
$$A^{-1} = \begin{bmatrix} 1 & 1 & -\frac{3}{2} \\ 0 & 1 & -\frac{1}{2} \\ -1 & -2 & \frac{5}{2} \end{bmatrix}$$

(b)
$$V_{\alpha}^{-1} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} = V_{-\alpha}$$

(c)
$$A^{-1} = \frac{1}{|z|^2 + |w|^2} \begin{bmatrix} \bar{z} - w \\ \bar{w} z \end{bmatrix}$$

4 - Espaços Vectoriais

$$4.6 - (a) (0, 0, 0, 0)$$

$$(b) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(c)
$$0x^3 + 0x^2 + 0x + 0$$

4.7 - (a)
$$(-1, 2, -3, 0)$$

(b)
$$(0,0,0,0)$$

(c)
$$\begin{bmatrix} -1 & 2 \\ -3 & 0 \end{bmatrix}$$

(d)
$$-x^3 + 2x^2 - 3x$$

- (b) Não
- (c) Sim
- (d) Sim

4.22 - (a) Por exemplo,
$$G = \langle \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \rangle$$

4.23 - (a) Por exemplo,
$$((1,0,1),(0,1,0))$$

(b) Por exemplo,
$$\begin{pmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

(c) Por exemplo,
$$(x^2, 2x^3 + x, -x^3 + 1)$$

3.29 - (a) adj
$$M = \begin{bmatrix} m^{2}-1 & 1-m & 1-m \\ 1-m & m^{2}-1 & 1-m \\ 1-m & 1-m & m^{2}-1 \end{bmatrix}$$

(b)
$$m \in \mathbb{R} \setminus \{-2, 1\}$$

(c)
$$M^{-1} = \frac{1}{(m+2)(m-1)} \begin{bmatrix} m+1 & -1 & -1 \\ -1 & m+1 & -1 \\ -1 & -1 & m+1 \end{bmatrix}$$

$$3.32 - (a) |A| = -3$$

(b)
$$(1,2,3)$$

3.33 - (a)
$$k \in \mathbb{R} \setminus \{0, -3\}$$

(b)
$$(1, -\frac{1}{2}, \frac{1}{2})$$

$$3.56 - (a) 0$$

(b)
$$x^n + (-1)^{n+1}y^n$$

3.72 -
$$\det A \in \{0,1\}$$
, se n é par $\det A \in \{0,-1\}$, se n é ímpar

3.74 - (a)
$$(\alpha r)^{-1}$$

(b)
$$\alpha r^{-1}$$

(c)
$$\alpha r^{-1}$$

(d)
$$(\alpha r)^{-1}$$

$$3.95$$
 - Solução de (S) : $(0,0,1)$

4.33 - Por exemplo,
$$((2,3,3))$$
 e $((-4,-6,-6))$

4.35 - Por exemplo,
$$(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix})$$

4.41 - (b) Por exemplo,
$$((1,2,1),(0,1,1))$$

4.44 - (a)
$$(1, 1, 1, 1)$$
, na base \mathcal{B} $(4, 3, 2, 1)$, na base \mathcal{B}'

(b)
$$(a-b, b-c, c-d, d)$$
, na base \mathcal{B}
 (a, b, c, d) , na base \mathcal{B}'

4.45 - (a)
$$(1,1,1,1)$$
, na base \mathcal{B} $(4,3,2,1)$, na base \mathcal{B}'

(b)
$$(a-b, b-c, c-d, d)$$
, na base \mathcal{B}
 (a, b, c, d) , na base \mathcal{B}'

4.48 - Para
$$F \cap G$$
 por exemplo, $((2,1,2,-1))$
Para $F+G$ por exemplo, $((1,1,1,0),(0,1,0,1),(0,0,-1,0,1))$

4.52 - (a) Por exemplo,
$$((1,1,0,0),(0,0,1,0))$$

(b) Por exemplo,
$$((1,0,0,0),(0,1,1,0))$$

(c) Por exemplo,
$$((1,1,0,0),(0,0,1,0),(1,0,0,0))$$

- (d) ((1,1,0,0),(0,0,1,0),(1,0,0,3),(2,0,0,1)
- 4.56 (b) Projecção de A sobre F, segundo G: Projecção de A sobre G, segundo F: $^{4.126}$ - Por exemplo, ((1,1,-5)) $\begin{bmatrix} 0 & 0 \\ 0 & 6 \end{bmatrix}$
- $4.62 (a) \mathbb{R} \setminus \{-2\}$
- 4.64 (a) S_1 é linearmente independente S_2 é linearmente dependente
- $4.65 \mathbb{R} \setminus \{-4\}$
- 4.69 (a) Por exemplo, ((1,0,1,0),(0,1,1,1))
 - (c) Por exemplo, ((1,0,1,0),(0,1,1,1),(0,0,1,0),(0,0,0,1)
- 4.71 (a) S_1 é linearmente independente S_2 é linearmente dependente
- 4.73 (a) S_1 é linearmente independente S_2 é linearmente dependente
- 4.74 (a) dim F = 3Por exemplo, $(x^3 + x^2 - x, x^2 - 1, x + 2)$
 - (b) $\dim G = 3$ Por exemplo, $\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix} \right)$
- 4.98 (a) Não
 - (b) Não
 - (c) Não
- 4.100 (a) Não (d) $\{-2\}$
- 4.105 (a) Por exemplo, ((1,-2,0,0),(1,0,1,0),(0,0,0,1))

- (b) Por exemplo, $(\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix})$
- (c) Por exemplo, $(-x^3 + 2x + 1, x^2)$
- 4.144 (a) $\mathbb{R} \setminus \{-\frac{1}{3}, 0\}$
 - (b) Por exemplo, $(A, B, C, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix})$
- 4.149 (b) (i) Sequência de coordenadas de $x^2 + 2x + 1$: (1, 2, 1) Sequência de coordenadas de $x^2 - 1$: (-1, 0, 1)Sequência de coordenadas de $x^2 - 2x + 1$: (1, -2, 1)
 - (ii) Sequência de coordenadas de 1: $(\frac{1}{4}, -\frac{1}{2}, \frac{1}{4})$ Sequência de coordenadas de $x: (\frac{1}{4}, 0, -\frac{1}{4})$ Sequência de coordenadas de $x^2: (\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$
- 4.151 (a) Por exemplo, (0,1,0)
 - (b) Por exemplo, x
- 4.152 (a) Por exemplo, $(x^2 + 1, x + 1)$
 - (b) Por exemplo, $(x^2 + 1, x + 1, 1)$
- 4.155 (a) Por exemplo, $(1+x, x^2, x^3)$
 - (b) Por exemplo, $(1, 1+x, x^2, x^3, x^4)$
 - (c) Por exemplo, $G = \langle x^3, x^4 \rangle$
- 4.156 (a) t = 1
 - (b) Por exemplo, ((1,2,1,2),(1,1,1,1),(1,2,3,4),(1,1,0,1) $\dim(F \cap G_t) = 1$

5 - Aplicações Lineares

- 5.2 (a) Sim
 - (b) Não
 - (c) Não
 - (d) Não
- 5.7 (a) Não
 - (b) Não

- 5.5 Para n=1 é linear
- 5.10 (a) Ker $f = \{(a, 0, 0) : a \in \mathbb{R}\}\$ Por exemplo, Base de Ker f: ((1,0,0))Base de Im f: ((1,0),(0,1))
 - (b) $\operatorname{Ker} g = \left\{ \begin{bmatrix} 0 & b \\ -d & d \end{bmatrix} : b, d \in \mathbb{R} \right\}$ Por exemplo,

Base de Ker
$$g: \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 1 \end{bmatrix} \right)$$

Base de Im $g: \left((2, 0, 0), (0, 1, 0) \right)$

- (c) Ker $h = \{(-b, b, 0) : b \in \mathbb{R}\}$ Por exemplo, Base de Ker h: ((-1,1,0))Base de Im h: $(x^2, 1)$
- (d) $\operatorname{Ker} t =$ $\{ax^3 + bx^2 + ax - b : a, b \in \mathbb{R}\}$ Por exemplo, Base de Ker t: $(x^3 + x, x^2 - 1)$ Base de Im t: $(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix})$
- 5.14 -(a) Ker $f = \{(0,0,0)\}$ Injectiva
 - (b) $\operatorname{Ker} g = \{0x^2 + 0x + 0\}$ Injectiva
- 5.17 (a) n(f) = 1(b) n(g) = 3
 - (c) n(h) = 3
 - (d) n(t) = 0
- 5.19 (2,3), (3,2), (4,1), (5,0)
- 5.22 (a) Sim
 - (b) Sim
- 5.26 (a) Não
 - (b) Sim, por exemplo, f(0,1,1,0) = (0,0,0),f(1,1,1,1) = (0,0,0),f(0,0,1,0) = (1,1,1),f(0,0,0,1) = (1,1,0)
 - (c) Sim, por exemplo, f(1,0,0) = (1,2,0,-4),f(0,1,0) = (2,0,-1,-3),f(0,0,1) = (0,0,0,0)
- 5.36 (a) $\begin{bmatrix} -\frac{3}{2} & -\frac{1}{2} & -\frac{3}{2} \\ -2 & 2 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 4 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- $5.39 r(\mathcal{M}(f; \mathcal{B}, \mathcal{B}')) = 2 = \dim \operatorname{Im} f \neq \dim \mathbb{R}^3$ f não é sobrejectiva.
- 5.32 Por exemplo, $\mathcal{M}_{1\times 5}(\mathbb{R}), \, \mathcal{M}_{5\times 1}(\mathbb{R}), \, \mathbb{R}_4[x]$

Base de $\mathcal{M}_{1\times 5}(\mathbb{R})$: ([10000], [01000], [00100],[00010], [00001])

Base de $\mathcal{M}_{5\times 1}(\mathbb{R})$:

Base de $\mathbb{R}_4[x]$: $(x^4, x^3, x^2, x, 1)$

- 5.34 Por exemplo, $f: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}_3[x]$, tal que $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ax^3 + bx^2 + cx + d,$ para qualquer $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}).$
- 5.42 (a) (3,5)
 - (b) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
 - (d) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$
 - (e) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- $5.43 \text{ } \left(a\right) \, \left[\begin{smallmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 0 \end{smallmatrix} \right]$
 - (b) $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & -1 & 0 \\ -2 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$
- $5.46 (a) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
 - (b) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 5.98 Sim, 2x + 1 = f(1, 0, 1)
- $5.103 (a) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
- $\begin{array}{c} \text{(b)} \quad \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \\ 5.107 \quad \text{(a)} \quad \begin{bmatrix} 1 & a+1 & a+1 & a+1 \\ 0 & 1 & a+1 & a+1 \\ 0 & 0 & 1 & a+1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{array}$
- $5.110 (a) \begin{bmatrix} 0 & -1 & -1 & 1 & 0 \\ 2 & 1 & 3 & -3 & 0 \\ 0 & 1 & 1 & -1 & 0 \end{bmatrix}$
 - (b) Por exemplo, $(u_1 u_3, u_2)$
 - (d) Por exemplo, ((2,2,0,2,2),(-1,-1,1,0,1),(0,0,0,0,1), (0,1,0,0,0),(0,0,0,1,0)
 - (e) $\begin{bmatrix} 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$

6 - Valores e Vectores Próprios

- 6.1 u_1 vector próprio associado ao valor próprio 6.37 1 u_2 vector próprio associado ao valor próprio 2 u_3 não é vector próprio
- 6.2 (a) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ vector próprio associado ao valor próprio 1 $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ vector próprio associado ao valor próprio 2
 - (b) $\begin{bmatrix} \alpha \\ -\alpha \end{bmatrix}$ vector próprio associado ao valor próprio 1 $\begin{bmatrix} \alpha \\ \alpha \end{bmatrix}$ vector próprio associado ao valor próprio 2
- 6.7 (b) Por exemplo, $\begin{bmatrix} 0 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$
- 6.12 Valores próprios de A: 3 e 1 ma(3) = 2 e ma(1) = 1
- 6.14 (a) Valores próprios de A: 3 ma(3) = 1
- 6.23 (a) $k = \frac{2}{3}$ (b) $M_2 = \left\{ \begin{bmatrix} 2c \\ c \end{bmatrix} : c \in \mathbb{R} \right\}$
- 6.28 Valores próprios de f: 1 e 2 $E_1 = \langle (-1,-1,2) \rangle$ $E_2 = \langle (-1,2,0), (-1,0,2) \rangle$
- 6.35 $D_A = \left[\begin{smallmatrix} -2 & 0 \\ 0 & 2 \end{smallmatrix} \right], \, D_B = \left[\begin{smallmatrix} 5 & 0 \\ 0 & 1 \end{smallmatrix} \right]$

- (a) Valores próprios de A: -1 e 1 ma(-1) = 2 e ma(1) = 1
- (b) Por exemplo, Base de M_{-1} : $\left(\begin{bmatrix} 1\\-2\\0\end{bmatrix},\begin{bmatrix} 0\\1\\1\end{bmatrix}\right)$ Base de M_1 : $\left(\begin{bmatrix} 1\\-1\\1\end{bmatrix}\right)$
- (c) Por exemplo, $P = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ e $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 6.41- (a) Valores próprios de f: -1 e 1
 - (b) Por exemplo, $\mathcal{B} = (e_1 2e_2, e_3, e_1 e_2 + e_3)$
 - (c) $\mathcal{M}(f; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 6.89 (a) Valores próprios de A: 1, 2 e 3 ma(1) = ma(2) = ma(3) = 1 Valores próprios de B: 1 ma(1) = 3
 - (b) (ii) Não
 - (c) $\begin{bmatrix} -1 & -2 & -1 \\ 1 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix}$
- 6.93 (a) Valores próprios de A: 0 e 2 $mg(0) = 1 \ e \ mg(2) = 2$
 - (b) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
 - (c) $\begin{bmatrix} 2 & 0 & 0 \\ 4 & 0 & 0 \\ 8 & -4 & 2 \end{bmatrix}$
- 6.95 (c) $\begin{bmatrix} 2 & 0 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$