Funzioni #7

Funzioni inettive e suriettive

13 dicembre 2022

Una funzione $f: X \to Y$ si dice iniettiva

Una funzione $f: X \to Y$ si dice iniettiva se elementi distinti di X hanno immagini distinte in Y:

Una funzione $f: X \to Y$ si dice iniettiva se elementi distinti di X hanno immagini distinte in Y:

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

Una funzione $f: X \to Y$ si dice iniettiva se elementi distinti di X hanno immagini distinte in Y:

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

In termini equivalenti:

▶ Una funzione $f: X \to Y$ è inettiva se ogni elemento di Y ha al massimo una controimmagine

Funzioni iniettive: definizioni equivalenti

Una funzione $f: X \to Y$ è iniettiva

Funzioni iniettive: definizioni equivalenti

Una funzione $f: X \to Y$ è iniettiva

▶ se, per ogni $y_0 \in Y$, l'equazione $f(x) = y_0$ ha al massimo una soluzione.

Funzioni iniettive: definizioni equivalenti

Una funzione $f: X \to Y$ è iniettiva

▶ se, per ogni $y_0 \in Y$, l'equazione $f(x) = y_0$ ha al massimo una soluzione.

▶ se, per ogni $y_0 \in Y$, la retta orizzontale $y = y_0$ interseca il grafico di f al massimo in un punto.

► Se una funzione ha più zeri, allora non è iniettiva

Se una funzione ha più zeri, allora non è iniettiva

Qualsiasi funzione pari non è iniettiva

Se una funzione ha più zeri, allora non è iniettiva

Qualsiasi funzione pari non è iniettiva

Ogni funzione strettamente monotòna è iniettiva

Funzioni iniettive: dimostrazioni

Consderiamo una funzione $f: X \to Y$.

Funzioni iniettive: dimostrazioni

Consderiamo una funzione $f: X \to Y$.

Per dimostrare che f non è iniettiva basta trovare due elementi distinti $x_1, x_2 \in X$ con la stessa immagine:

$$f(x_1) = f(x_2)$$

Funzioni iniettive: dimostrazioni

Consderiamo una funzione $f: X \to Y$.

Per dimostrare che f non è iniettiva basta trovare due elementi distinti $x_1, x_2 \in X$ con la stessa immagine:

$$f(x_1)=f(x_2)$$

ightharpoonup Dimostrare che f è iniettiva equivale a dimostrare che

$$f(x_1) = f(x_2) \implies x_1 = x_2$$

Una funzione $f: X \to Y$ si dice suriettiva

Una funzione $f: X \to Y$ si dice suriettiva se l'immagine di f è l'intero codominio Y.

Una funzione $f: X \to Y$ si dice suriettiva se l'immagine di f è l'intero codominio Y.

$$f(X) = Y$$

Una funzione $f: X \to Y$ si dice suriettiva se l'immagine di f è l'intero codominio Y.

$$f(X) = Y$$

In termini equivalenti:

▶ Una funzione $f: X \to Y$ è suriettiva se ogni elemento di Y ha almeno una controimmagine

Funzioni suriettive: definizioni equivalenti

Una funzione $f: X \to Y$ è suriettiva

Funzioni suriettive: definizioni equivalenti

Una funzione $f: X \to Y$ è suriettiva

> se, per ogni $y_0 \in Y$, l'equazione $f(x) = y_0$ ha almeno una soluzione.

Funzioni suriettive: definizioni equivalenti

Una funzione $f: X \to Y$ è suriettiva

> se, per ogni $y_0 \in Y$, l'equazione $f(x) = y_0$ ha almeno una soluzione.

▶ se, per ogni $y_0 \in Y$, la retta orizzontale $y = y_0$ interseca il grafico di f almeno in un punto.

Una funzione si dice biiettiva se è iniettiva e suriettiva.

Una funzione si dice biiettiva se è iniettiva e suriettiva.

Le funzioni biettive sono chiamate anche <u>corrispondenze</u> biunivoche o <u>corrispondenze 1 a 1</u>.

Una funzione si dice biiettiva se è iniettiva e suriettiva.

Le funzioni biettive sono chiamate anche <u>corrispondenze</u> biunivoche o corrispondenze 1 a 1.

In termini equivalenti:

▶ Una funzione $f: X \to Y$ è biettiva se ogni elemento di Y ha esattamente una controimmagine

Funzioni biettive: definizioni equivalenti

Una funzione $f: X \to Y$ è biettiva

Funzioni biettive: definizioni equivalenti

Una funzione $f: X \to Y$ è biettiva

▶ se, per ogni $y_0 \in Y$, l'equazione $f(x) = y_0$ ha esattamente una soluzione.

Funzioni biettive: definizioni equivalenti

Una funzione $f: X \to Y$ è biettiva

▶ se, per ogni $y_0 \in Y$, l'equazione $f(x) = y_0$ ha esattamente una soluzione.

▶ se, per ogni $y_0 \in Y$, la retta orizzontale $y = y_0$ interseca il grafico di f esattamente in un punto.