Domnul Ionescu pescuiește în iazul din spatele casei în care trăiesc 3 crapi și 7 carași. El decide să pescuiască până când prinde 4 pești. Presupunând că fiecare din cei 10 pești are aceeași șansă să fie prins și că toți peștii sunt de greutăți diferite, determinați probabilitatea evenimentelor următoare:

A = unul din cei patru pești prinși este un crap

B = cel puțin unul din cei patru pești prinși este un crap

C = primul pește prins este un crap

D = al doilea pește prins este un crap

E = primii doi pești prinși sunt crapi

F = cel puțin unul din primii doi pești prinși este crap

G = flecare din ultimii trei pești prinși cântărește mai mult decât cel precedent

2)

Tabloul următor reprezintă legea cuplului (X,Y): unde putem considera că X este numărul de copii dintr-o familie şi Y este numărul de televizoare din acea familie (am considerat numai familii cu 1-3 copii şi cu 1-3 televizoare).

$X \backslash Y$	1	2	3
1	0.22	0.11	0.02
2	0.2	0.15	0.1
3	0.06	0.07	0.07

Determinați:

- a) Legile marginale ale lui X și respectiv Y.
- b) Media și varianța lui X și respectiv Y.
- c) Coeficientul de corelație dintre X și Y.
- d) Legea condiționată a lui X la Y=2 și respectiv legea condiționată a lui Y la X=2.
- e) Media și varianța acestor legi condiționate

3)

Fie $X \sim N(m, \sigma)$ astfel încât $P(X < 22) = \frac{91}{100}, P(X > 28) = \frac{6}{100}$. Se cer m și σ știind că $\Phi(1, 35) = 0, 91, \Phi(1, 56) = 0, 94$.

Se consideră v.a. X cu densitatea de probabilitate

$$f(x) = \left\{ \begin{array}{ll} \alpha x^2 e^{-kx}, & x \geq 0 \\ 0, & x < 0 \end{array}, k > 0. \right.$$

- a) Să se determine constanta α .
 - b) Să se afle funcția de repartiție.
 - c) Să se calculeze $\mathbb{P}(0 < X < k^{-1})$.

5)

Fie cuplul de v.a. (X,Y) cu densitatea de repartiție $f_{(X,Y)}:\mathbb{R}^2\to\mathbb{R}$, unde

$$f_{(X,Y)}(x,y) = \left\{ \begin{array}{ll} k(x+y+1), & x \in [0,1], \; y \in [0,2] \\ 0, & \text{altfel} \end{array} \right..$$

- a) Să se determine constanta k.
- b) Să se determine densitățile marginale.
- c) Să se verifice dacă X și Y sunt independente.
 - d) Să se afle funcțiile de repartiție marginale și funcția de repartiție a vectorului (X,Y).
 - e) Să se determine densitățile v.a. X|Y=y și Y|X=x.

Programare R:

6)

Generați 250 de observații din repartiția $\mathcal{N}(0,2)$, trasați histograma acestora și suprapuneți densitatea repartiției date (vezi figura de mai jos).

Repartitia normala N(0,2)

7)

Generați 250 de observații din repartiția $\mathcal{E}(3)$, trasați histograma acestora și suprapuneți densitatea repartiției date (vezi figura de mai jos).

Repartitia exponentiala E(3)

8)

Generați 250 de observații din repartiția B(3,3), trasați histograma acestora și suprapuneți densitatea repartiției date (vezi figura de mai jos).

Repartitia B(3,3)

