Conversations in TV Shows

Team name

NTU r06943153 球哥與他的夥伴們

Members and work division (1)

學號	姓名	分工	
R06943147	李明庭	word2vec model, tune parameters	
R06943153	蘇旻彥	tune parameters, report, presentation	
R06943084	游彥勝	tune parameters, produce answer	
R06943118	賴俊丞	tune parameters	

Preprocessing / Feature Engineering (3)

在資料的 Preprocessing 當中·我們將讀入的五個 train.txt 檔案串在一起做為 training data · 並使用中文斷詞套件 - jieba(結巴)將每個句子做切割、分詞。由於 jieba 是大陸的套件 · 預設分詞的字典是簡體中文 · 所以我們改變預設字典為斷 繁體中文較為友善的 dict.txt.big。分詞套件 jieba 總共有三種不同的分詞模式 · 分別為:(1)全模式 (2)精準模式 (3)搜尋引擎模式 · 我們所使用的是預設的精準模式。

在分詞之後·我們使用了 stop words 的功能·引入 stopwords.txt·並將 training data 的句子中所有列在其中的單詞給去除。在 stopwords.txt 中所存放的詞為一些對文章主題無關緊要,與其他詞相比也顯得較不重要,去除掉也不會影響文義的詞,像是"你、我、他"這些代名詞,以及介係詞、語末助詞等。使用 stop words

可以讓之後的 word2vector model 訓練時可以將每個字與字之間的關聯訓練得更為精準。

Model Description (7)

在這個題目當中,我們主要使用的是套件 gensim 中的 word2vec 功能來訓練 詞彙,並使用兩種不同的方式在題目的選項中找到解答。以下會先敘述 word2vec 的實作,接著講解兩種不同的找解答方法。

1. word2vec

這是一個訓練詞向量(word vector)的套件,在訓練詞向量的過程,既是最簡單也是最困難的。簡單的是程式碼本身並不複雜,而困難的地方是各種參數的微調,使訓練出來的詞向量效能達到最高。在 word2vec 當中有許多不同的參數,這裡我們簡單介紹一下各參數的意義,而實驗結果會放在後面的段落。

- (1) size:控制訓練出的 word vector 的維度。
- (2) window:控制在訓練的時候一次能往前後看幾個字。
- (3) min count:每個詞出現的數字要高於這個參數才會視為訓練對象。
- (4) iteration:訓練時更新參數的週數。
- (5) sg:控制要使用 cbow 或是 skip-gram model, 我們使用的是 skip-gram。
- (6) alpha: 也就是 learning rate, 我們使用 default (0.025)。

2. Euclidean distance

在訓練完詞向量之後,我們接著要找出每個題目的答案。首先先把題目與選項使用 jieba 分詞後(處理方法和 training data 一樣),將題目以及每個選項中的每個詞向量加總,做為這個句子的向量。接著要評估哪一個選項和題目的向量最接近,這裡我們使用的第一種方法是計算每個選項與題目的 Euclidean distance。

Euclidean distance 的原理是將每個向量視為在多維空間中的一個點,並計算兩點之間的距離,計算的公式如下:

$$d(x,y) := \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2} = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}$$

3. Cosine similarity

我們使用的第二種方法是估算提目與選項的向量之間的 cosine similarity · 也就是餘弦相似度 · 這兩種方式的差異會在實驗結果的部分做說明 · cosine similarity 的算法是直接計算兩個多維向量之間的 cosine 值,計算公式如下:

$$ext{similarity} = \cos(heta) = rac{A \cdot B}{\|A\| \|B\|} = rac{\sum\limits_{i=1}^n A_i imes B_i}{\sqrt{\sum\limits_{i=1}^n (A_i)^2} imes \sqrt{\sum\limits_{i=1}^n (B_i)^2}}$$

Experiments and Discussion (8)

接下來將呈現我們所做的不同實驗結果,皆是以 cosine similarity 所預測的答案。 礙於 Kaggle 一天只能上傳五次,所以我們取出 15%的 testing data 並以肉眼辨識賦予 label,並在過程中順便觀察題目與答案的關聯性最為參考(很多題目根本都亂出阿...)。以下實驗作為評估的分數皆是以這 15%的樣本所做的評估。另外,這些 label 並沒有參與 training 的過程,僅為了以下實驗所用。

1. Size

使用 windows=10, min_count=1, iteration=50·並改變不同的 size 所做的實驗結果如下圖。可以看出在 size=64 的時候分數最高。

2. Windows

使用 size=128, min_count=1, iteration=50, 並改變不同的 windows 所做的實驗結果如下圖。可以看出在 windows=20 的時候分數最高。Windows 所代表的是一次往前和往後看多少個字作為資訊來訓練,若太少則資訊不足,但是太多卻又可能找到相隔一兩句、比較不相關的字,使訓練成果變差。

3. Min count

使用 size=64, windows=10, iteration=50 · 並改變不同的 min_count 所做的實驗結果如下圖。可以看出 min_count=1 的時候分數最高。Min_count 的原意是可以過濾一些出現次數極少的字詞,但由於已經使用 stopword 過濾了一些字,因此剩下的字應該都是相對重要的名詞、動詞等等,若調高 min_count 可能會過濾掉一些重要資訊,使訓練成績下降。

4. Iteration

使用 size=64, windows=10, min_count=1. 並改變不同的 iteration 所做的實驗結果如下。雖然感覺 iteration 越高分數越高,但因為 training time 太高,加上分數並沒有明顯的變化,因此沒有繼續嘗試下去。

5. Others

接下來我們列出我們上傳到 Kaggle 所做的一些嘗試,包含一些完全失敗的做法以及探討可能失敗的原因。

(1) Euclidean distance

使用 Euclidean distance 的結果非常失敗,在探討數學公式的計算後,我們認為由於 Euclidean distance 直接計算兩點之間的距離,並沒有經過normalize,而 cosine similatity 是計算兩個向量的夾角,在計算的過程中有類似 normalize 的過程,因此結果可能較為準確。

	euclidean	cosine	
Kaggle Public Score	0.10632	0.48063	
	size=128, w	size=128, windows=10, iteration=50	

(2) 不同參數的嘗試

以下是在決定要使用一開始的方法,取出 15% testing data 自己賦予 label 做實驗之前,分數較高的幾次結果。

size	windows	min_count	iteration	Kaggle Public Score
100	15	1	100	0.48695
100	15	1	50	0.46521
200	10	5	50	0.46521

(3) 過濾選項中和題目相同的字(關鍵!)

在最開始的時候,我們的組員提出了一個假設,若選項中出現和題目完全相同的字詞,會使這兩個句子的向量太過接近,因此若選項中出現了題目中出現過的字,則應該要將之去除。但是我們的分數始終沒辦法突破 0.5,於是我們嘗試不要去除重複的字,沒想到分數有了突破性的成長!

	有去除	沒去除	
Kaggle Public Score	0.48063	0.52727	
	size=128, w	size=128, windows=10, iteration=50	

Conclusion

最後我們用兩組參數做出的結果進行 ensemble 得到我們的最後結果,分別是由以上實驗推測出最佳的參數,以及我們在過程中胡亂嘗試出的最好成績(如下表(1)及(2)。Ensemble 之後的最高分數為 0.53675。

	size	windows	min_count	iteration	Kaggle Public Score
(1)	64	20	1	100	0.52292
(2)	128	10	1	50	0.52727