GEOINFORMACIJSKI SUSTAVI

Pitanja . . .

- Što je to karta, kako je nastala ?
- Mjerilo, koordinate, projekcije, elipsoidi, i što još treba da dobijemo neku točnu prostornu informaciju na papiru (monitoru) ?
- Kako uopće određujemo našu lokaciju u prostoru ?
- □ Tko je bio John Harrison ?

Karta kao podloga ...

- karta je grafička prezentacija realnog svijeta
- sadrži objekte koji su opisani
 - geografskom lokacijom
 - oblikom ili simbolom koji opisuje neka svojstva objekta
- lokacija objekta na karti manje ili više točno odgovara lokaciji na Zemljinoj površini

Mjerilo

- □ koristi se kao mjera za objekte u stvarnom svijetu
- razina detalja ovisi o mjerilu
- načini izražavanja mjerila
 - verbalno mjerilo

rep. razlomak (representative fraction - RF)

Distance on the Map Distance on the Ground
$$= \frac{2 \text{ cm}}{1 \text{ km}} = \frac{2 \text{ cm}}{100 000 \text{ cm}}$$
$$= \frac{1}{50 000}$$
$$= 1/50 000 \text{ Scale}$$

Mjerilo (nast.)

grafički prikaz mjerila

 1:1,000,000 do 1:10,000 se koristi za kartiranje na nacionalnoj razini

□ ispod 1:10,000 za potrebe katastra

Kategorije mjerila

- □ karte malog mjerila < 1:1,000,000</p>
- karte srednjeg mjerilaod 1:75,000 do 1,000,000
- □ karte velikog mjerila od 1:75,000 do 1:500

Kategorije mjerila (nast.)

1:1000000 1:500000 1:100000

Mjerilo – gubitak informacija

veliko mjerilo

malo mjerilo

gubitak informacija ako se radi u premalom mjerilu

Generalizacija – gubitak informacija

generalizacija također dovodi do gubitka informacija

Mjerilo u CAD-u

Mjerilo u GIS-u

Mjerilo u GIS-u

- □ GIS ne poznaje mjerilo!
- problem mjerilo u kojem su bili podaci kod unosa u GIS
- □ GIS višestruke geometrije objekata

Elipsoid

- problem nejednoliki sastav Zemlje
- geoid aproksimacija rotacijskim elipsoidom
- referentni elipsoid određen geo. širinom, dužinom i visinom

Geodetski Datum

- pod pojmom geodetskog datuma podrazumijeva se skup parametara kojima se definira položaj ishodišta, mjerilo i orijentacija koordinatnog sustava s obzirom na Zemljino tijelo odnosno položaj sferoida/elipsoida relativno prema središtu Zemlje
- u pravilu uključuje i definiciju elipsoida kao matematičkog oblika Zemlje; pojednostavljena matematička reprezentacija veličine i oblika Zemlje
- obično se koristi oblik sferoida ili elipsoida
- površina sfeorida (elipsoida) se pozicionira tako da najbolje aproksimira na razini mora
- države i razne organizacije koriste različite datume kao osnovu za svoje koordinatne sustave

Geocentrični datum

najbolje aproksimira veličinu i oblik za Zemlju kao cjelinu (WGS84)

Lokalni datum

 lokalni datum - najbolje aproksimira na određenom mjestu na površini Zemlje u odnosu na razinu mora

Referentni elipsoidi

Selected Reference Ellipsoids

Ellipse	Semi-Major Axis	1/Flattening
	(meters)	
Airy 1830	6377563.396	299.3249646
Bessel 1841	6377397.155	299.1528128
Clarke 1866	6378206.4	294.9786982
Clarke 1880	6378249.145	293.465
Everest 1830	6377276.345	300.8017
Fischer 1960 (Mercury)	6378166.0	298.3
Fischer 1968	6378150.0	298.3
G R S 1967	6378160.0	298.247167427
G R S 1975	6378140.0	298.257
G R S 1980	6378137.0	298.257222101
Hough 1956	6378270.0	297.0
International	6378388.0	297.0
Krassovsky 1940	6378245.0	298.3
South American 1969	6378160.0	298.25
WGS 60	6378165.0	298.3
WGS 66	6378145.0	298.25
WGS 72	6378135.0	298.26
WGS 84	6378137.0	298.257223563

Prostorni referentni sustavi

- kontinuirani georeferentni sustavi
 - koordinate na zakrivljenoj površini
 - x,y koordinatni sustav
 - geocentrične koordinate

□ diskretni georeferentni sustav

Sferni objekt

- 🗆 prva aproksimacija sferni objekt
- geografska širina, dužina (latitude, longitude)

West Longitude

Longitude

South Pole

Lost at Sea: The Search for Longitude

http://en.wikipedia.org/wiki/John Harrison http://www.nmm.ac.uk/server/show/conWebDoc.355

Pogledati ::

https://www.youtube.com/watch?v=T-g27KS0yiY
https://www.youtube.com/watch?v=NENPdT4LASw

Geocentrični ref. sustav

- ishodište se nalazi u središtu Zemlje; X,Y,Z Cartesijev koordinatni sustav
- koristi se za GPS georeferenciranje

Diskretni georef. sustavi

- adresno kodiranje
- poštansko kodiranje
- □ statističke jedinice i ostale administrativne zone
- mreža

Koordinatni sustavi

- određuju lokaciju na površini Zemlje
- vrste koordinatnih sustava
 - geografska širina, dužina i visina
 - geografske koordinate
 - <u>Universal Transverse Mercator (UTM)</u>
 - Military Reference Grid System (MGRS)
 - World Geografic Reference System (GEOREF)
 - lokalni sustavi

Lat, Long, Visina

MGRS (Military Reference Grid System)

GEOREF

NAD-83 Latitude, Longitude 30:16:28.82 N 97:44:25.19 W

World Geographic Reference System FJHA1516

GEOREF Example

Lokalni sustavi

WGS-84 Latitude, Longitude 85:40:30.0 S 85:40:300.0 W

Universal Polar Stereographic ATN2097136228

South Polar Area UPS Example

Projekcije

- matematička konverzija iz sfernih u planarne koordinate
- slika mreže meridijana i paralela u ravnini projekcije naziva se osnovnom kartografskom mrežom
- normalnom mrežom naziva se ona čiji je oblik u promatranoj kartografskoj projekciji najjednostavniji
- različite projekcije različita izobličenja
- prema položaju normalne kartografske mreže projekcije se dijele na
 - uspravnu
 - poprečnu
 - kosu
- prema obliku osnove tri su osnovne grupe projekcija
 - cilindrična
 - konusna
 - azimutalna

Izobličenja

- konformne (čuvaju kuteve)
- ekvivalentne (čuvaju površine)
- ekvidistantne (čuvaju duljinu u određenom smjeru)
- □ uvjetne

Cilindrične projekcije

Cilindrične - jednake površine

- Behrmann cilindrična jednakih površina
- Gallova stereografsko-cilindrična
- Petersova
- Mercatorova
- Lambertova cilindrična jednakih površina
- Millerova cinlindrična

Poprečne cilindrične projekcije

- Cassini
- poprečna Mercator
- poprečno-cilindrična jednakih površina
- modificirana poprečna Mercator

Pseudocilindrična

- Mollweide
- Eckertova projekcija
- □ Robinsonova
- Sinusoidalna jednakih površina

Konusna projekcija

Konusne projekcije

- ekvidistnantna ili jednostavna konusna
- Lambertova konformna konusna
- Albersova konusna jednakih površina
- Lambertova konusna jednakih površina
- perspektivna
- polikonusna
- pravokutna
- Bonne
- Werner

Azimutalne projekcije

Perspektivne

- Gnomonska
- Stereografska
- Ortografska
- najpoznatija danas –Gilbertova

Bez-perspektivne

- azimutalna ekvidistantna
- Lambertova azimutalna jednakih površina
- □ Airy

Modificirane

- Millerova stereografska spljoštena
- Berghaus Star
- Hammer

Primjer međunarodne koordinacije

- EPSG (1986-2005) Europeam Petroleum Survey
 Group -> OGP (The International Association of Oil & Gas Producers)
- Baza geodetskih parametara elipsoidi, geodetski datumi, koordinatni sustavi
- CRS (Coordinate Reference System) definicija transformacija i konverzija između dva sustava
- Primjena u GML (Geography Markup Language) i WMS (Web Map Service)
- □ EPSG:4326 -> WGS84
- EPSG:4761 -> HTRS96

Gdje je Hrvatska jučer?

- □ Besselov elipsoid iz 1841. god.
- Gauss-Krugerova projekcija (konformna poprečna cilindrična projekcija – Transverse Mercator Projection)
- 5. (srednji meridijan 15°) i 6. (srednji meridijan 18°)
 zona

Gdje je Hrvatska danas?

- 16.12.2004. donesena je nova uredba kojom se utvrđuje novi geodetski referentni koordinatni sustav RH
 - GRS80 elipsoid
 - ETRS89 referentni koordinatni sustav
 - HTRS96 (Hrvatski Terestrički Referentni Sustav) CROREF GPS mrežom od 78 trajno stabiliziranih stalnih geodetskih točaka – dio Europskog terestričkog referentnog sustava ETRS89 koji je realizira EUREF mrežom stalnih geodetskih točaka razmještenih preko cijele Europe, nazvanom ETRF89
 - poprečna Mercatorova projekcija (što je drugi naziv za Gauß-Krügerovu projekciju), ali sa samo jednim koordinatnim sustavom, srednjim meridijanom 16°30' i linearnim mjerilom 0,9999 duž srednjeg meridijana
 - mjesto dosadašnjih oznaka x i y za koordinate u ravnini projekcije predlažu se oznake N (northing sjeverno)i E (easting istočno), što je u skladu s normom ISO 19111 koja se bavi geoinformacijama i prostornim koordinatama.
 - za pregledne državne topografske karte u mjerilu 1:500 000 i sitnijim mjerilima predlaže se uvođenje Lambertove konformne konusne projekcije s dvije standardne paralele 43⁰05' i 45⁰55'
- više na stranicama Državne geodetske uprave http://www.dgu.hr

Pitanja & Diskusija