MAT 312 HW 4 Carl Liu

1.

i) We have 24s + 11r = 1 and since

$$\left(\begin{array}{cc|c} 1 & 0 & 24 \\ 0 & 1 & 11 \end{array}\right) \rightarrow \left(\begin{array}{cc|c} 1 & -2 & 2 \\ -5 & 11 & 1 \end{array}\right)$$

we thus have 24(-5) + 11 * 11 = 1. Then 7 * 24 * (-5) + 4 * 11 * 11 = -356 is a solution. Thus we have solutions $[-356]_{24*11} = [172]_{264}$

- ii) We have gcd(3,5) = 1 and so there is a solution for x. Since $[3]_5^{-1} = [2]_5$ we thus have solution $x = 2 \mod 5$ and since we have gcd(2,8) = 2 then $x \equiv 3 \mod 4$. Then we have 5r + 4s = 1 where by inspection we see r = 1 and s = -1. So there is a solution 5*3-4*2=7. Thus we have solutions of $[7]_{20}$.
- iii) We have $[2]_7^{-1} = [4]_7$ and so $x \equiv 4 \mod 7$. Then 5r + 7s = 1 which through inspection we can see that 5*3-7*2 = 1 which would result in 4*5*3-3*7*2 = 18 as a solution and so $x \equiv 18 \mod 35$. Since $x \equiv 3 \mod 8$. We must then have 35r + 8s = 1 where we see through inspection that 35*3-8*13 = 1. Then we have a solution 3*35*3-18*8*13 = -1557. Thus we have solution $[-1557]_{35*8} = [123]_{280}$

2.

We are trying to find a number that satisfies $x \equiv 8 \mod 11$, $x \equiv 4 \mod 10$, and $x \equiv 0 \mod 27$. We then have 11 - 10 = 1 and so x = 11 * 4 - 10 * 8 = -36. Thus we have $x \equiv -36 \mod 110 \equiv 74 \mod 110$. Now 27r + 110s = 1 and since

$$\left(\begin{array}{cc|c} 1 & 0 & 27 \\ 0 & 1 & 110 \end{array}\right) \rightarrow \left(\begin{array}{cc|c} 1 & 0 & 27 \\ -4 & 1 & 2 \end{array}\right) \rightarrow \left(\begin{array}{cc|c} 53 & -13 & 1 \\ -4 & 1 & 2 \end{array}\right)$$

we have 27*53+110*(-13)=1 then we have a solution 74*27*53+0*110*(-13)=105894 and so we have $x \equiv [105894]_{110*27} \equiv [1944]_{2970}$ making 1944 the smallest possible integer satisfying the properties given.

3.

The situation can be considered as such $x \equiv 3 \mod 15$, $x \equiv 2 \mod 7$, and $x \equiv 0 \mod 4$. We then have 15r + 7s = 1 where we see from inspection 15 - 7*2 = 1, Then there is a solution of 15*2 - 3*7*2 = -12 and so $x \equiv -12 \mod 105 \equiv 93 \mod 105$. Then we have 105 - 4*26 = 1 and so we have a solution 105*0 - 4*26*93 = -9672. Thus

$$x \equiv [-9672]_{105*4} \equiv [-9672]_{420} \equiv [408]_{420}$$

Thus the smallest amount of coins they could have is 408.

4.

We have $\phi(32) = \phi(2^5) = 2^5 - 2^4 = 32 - 16 = 16$, $\phi(21) = \phi(7)\phi(3) = (7-1)(3-1) = 6*2 = 12$, $\phi(120) = \phi(8)\phi(15) = \phi(2^3)\phi(5)\phi(3) = (2^3 - 2^2)(5-1)(3-1) = 4*4*2 = 32$, and $\phi(384) = \phi(2*192) = \phi(2^2*96) = \phi(2^3*48) = \phi(2^4*24) = \phi(2^5*12) = \phi(2^6*6) = \phi(2^7*3) = \phi(2^7)\phi(3) = (2^7 - 2^6)(3-1) = 128$.

5.

- a) We know that $\phi(7) = 6$ and so $5^6 \equiv 1 \mod 7$. Since 2023 = 6k + 1 we have $5^{2023} = 5^{6k} * 5 \equiv 5 \mod 7$.
- b) We know that $\phi(11) = 10$ and so $5^{10} \equiv 1 \mod 7$. Since 2023 = 10m + 3, we then have $5^{2023} = 5^{10m}5^3 \equiv 5^3 \mod 11 \equiv 25*5 \mod 11 \equiv 15 \mod 11 \equiv 4 \mod 11$. Since 5^{2023} satisfies the above and 7,11 being relatively prime, we have 7r + 11s = 1 where 2*11 7*3 = 1. Then we have solutions 2*11*5 7*3*4 = 26 and so $5^{2023} \equiv 26 \mod 77$

6.

We saw from above $5^{2023} \equiv 4 \mod 11$. Now $\phi(13) = 12$ and since 2023 = 12k + 7, we have $5^{2023} = 5^{12k}5^7 \equiv 5^7 \mod 13 \equiv (5^3)^2 * 5 \mod 13 \equiv 8^2 * 5 \equiv 12 * 5 \equiv 8 \mod 13$. We then have 13s + 11r = 1 where we see that 11 * 6 - 13 * 5 = 1. Then there is a solution 11 * 6 * 8 - 13 * 5 * 4 = 268 and so $5^{2023} \equiv 268 \mod 143 \equiv 125 \mod 143$.

7.

- a) We solve $x \equiv 1 \mod 20$ and $x \equiv 1 \mod 13$. We have 20 * 2 + 13 * (-3) = 1 and so a solution is 20 * 2 * 1 + 13 * (-3) * 1 = 1. Thus $x \equiv 1 \mod 260$ and 1 Imix returns every 260 days.
- b) We solve $x \equiv 8 \mod 13$ and $x \equiv 12 \mod 20$ where we see that $20 * 2 * 8 + 13 * (-3) * 12 = -148 \equiv 112 \mod 260$. Since the first day is 1 mod 260, we then have 111 days between the two days