

CHAPTER 5

Amplitude Modulation

(Part 1 of 4)

Introduction

Amplitude Modulation (AM)

- The process of varying the amplitude of a high frequency sinusoidal carrier in accordance with the modulating signal (information signal).
- Two things that happened:
 - The modulating signal is impressed onto the carrier.
 - The modulating signal is shifted to a higher frequency band.

Carrier:
$$v_c(t) = V_c \cos{(2\pi f_c t + \theta)} = V_c \cos{(\omega_c t + \theta)}$$
 or $v_c(t) = V_c \sin{(2\pi f_c t + \theta)}$ Initial phase $\theta = 0$ Carrier frequency f_c Peak Amplitude

modulating signal, $v_s(t)$, impressed onto the carrier amplitude

AM modulated signal:
$$v_{AM}(t) = \frac{v_{c}(t)}{v_{c}(t)} \cos(\omega_{c}t) = V_{c} \cos(\omega_{c}t) + v_{s}(t) \cos(\omega_{c}t)$$

 $[V_c + v_s(t)]$ varying with the instantaneous amplitude of the modulating signal $v_s(t)$

Time domain description of single-tone AM signals

Single-tone modulating signal

$$v_s(t) = V_s \cos 2\pi f_s t$$

 $v_{AM}(t) = [V_c + V_s \cos 2\pi f_s t] \cos 2\pi f_c t$

1

Time domain description of Single-tone AM signals

Single-tone AM signal

v_s(t), impressed onto carrier amplitude

Time domain description of single-tone AM signals

Carrier frequency, f_c

Before modulation: $v_{AM}(t) = v_c(t) = V_c cos \omega_c t$

instantaneous peak amplitude follow the change in v_s(t)

Envelope

Modulating signal Frequency, f.

Time domain description of single-tone AM signals

Positive envelope:

 $[V_c + V_s cos \omega_s]$

Negative envelope:

-
$$[V_c + V_s cos \omega_s t]$$

Minimum envelope

Maximum envelope

Time domain description of single-tone AM signals

Time domain description of single-tone AM signals

Modulating Signal v_s(t)

Example 5.1

A carrier signal $v_c(t)$ = 10cos(2 $\pi \times 10^5 t$) is amplitude modulated by a modulating signal $v_s(t)$ =5cos(2 $\pi \times 10^3 t$). Determine:

- (a) The values of V_c , V_s , T_c , T_s , Env_{max} and $Env_{min.}$
- (b) The expression of the AM signal.

Solution

(a) **Carrier:**

$$v_{c}(t) = 10 \cos(2\pi \times 10^{5}t)$$

standard equation $v_c(t) = V_c \cos(2\pi f_c t)$

 $V_c = 10 \text{ volt}$

$$T_c = 1/f_c = 1/10^5$$

=10 μs

Modualting signal:
$$v_s(t) = 2 \cos(2\pi \times 10^3 t)$$

standard equation $v_s(t) = V_s \cos(2\pi f_s t)$

 $V_s = 2 \text{ volt}$

$$T_s = 1/f_s = 1/10^3$$

= 1 ms

$$Env_{max} = V_c + V_s = 12 \text{ volt}$$

 $Env_{min} = V_c - V_s = 8 \text{ volt}$

$$Env_{max} = (V_c + V_s)$$

 $Env_{max} = (V_c - V_s)$

(b) $v_{AM}(t) = [V_c + V_s \cos 2\pi f_s t] \cos 2\pi f_c t$ standard AM equation = $[10 + 5\cos(2\pi \times 10^{3}t)]\cos 2\pi \times 10^{5}t$

Modulation index, m

 Defined as the ratio of the peak amplitudes of modulating signal to the peak amplitude of unmodulated carrier.

$$m = \frac{V_s}{V_c}$$
 Constant
$$0 \le m \le 1$$

- Also expressed in percentage, known as percentage modulation.
- Controlled by varying the peak amplitude of the modulating signal as carrier amplitude is usually fixed in practice.
- Describes the size of the envelope.

Modulation index, m

m is a number that tells us the size of the envelope

small m → small envelope

Envelope Detector

Keep m as high as possible.

Big m → big envelope

Big Receiver o/p → high SNR

Example 5.2

A carrier signal with amplitude of 4 Volt and frequency of 500 kHz is amplitude modulated by a sinusoidal modulating signal with frequency of 3 kHz and amplitude of 2.4 Volt.

- (a) Write the expression for the resulting AM signal.
- (b) Determine the modulation index.

Solution

(a)
$$V_c = 4$$
 volt, $V_s = 2.4$ volt
 $f_c = 500$ kHz, $f_s = 3$ kH

(b)
$$m = V_s / V_c = 2.6 / 4 = 0.6$$

Over-modulation

m must be large, but it must not however exceed 1.

What happens if m is greater than 1?

for example, $V_s = 1.5V$ and $V_c = 1V \rightarrow m = 1.5$

Over-modulation

m > 1 is called over-modulation

Over-modulation will result in a distorted o/p at the receiver.

Measurement of modulation index

$$V_{s} = \frac{Env_{max} - Env_{min}}{2}$$

$$V_{c} = \frac{Env_{max} + Envmin}{2}$$

$$m = \frac{Env_{max} - Env_{min}}{Env_{max} + Env_{min}}$$

End

CHAPTER 5

(Part 1 of 4)

