Syllabus

- 1. Introduction
 - Survival data
 - Censoring mechanism
 - Application in medical field
- 2. Concepts and definitions
 - Survival function
 - Hazard function
- 3. Non-parametric approach
 - Life table
 - Kaplan-Meier survival estimate
 - Hazard function
 - Median and percentile survival time
- 4. Hypothesis testing
 - Overview hypothesis, test statistics, p-values
 - Log-rank
 - Wilcoxon
 - Gehan test
- 5. Study design and sample size estimation
 - Overview
 - Survival sample size estimation
 - Accrual time and Study duration

- 6. Semiparametric model proportional hazard model
 - Partial likelihood
 - Inference
 - Time varying covariates
 - Stratification
- 7. Model checking in the PH model
 - Model checking
 - Residuals
- 8. Parametric model
 - Parametric proportional hazard model
 - Accelerate failure model
- 9. Other topics
 - Competing risk
 - Recurrent events
 - Non-proportional hazard ratio
 - Interval censoring

Recap

- Life-table
 - Discrepancy between lecture note and SAS manual
- Confidence interval for median survival

Life-table Estimate

- Also know as the actuarial estimate
 - Used in continuous survival data
 - Grouped data similar to discrete survival time
- Divide survival data T into intervals, for the i^{th} interval
 - $t_{i-1} \le t < t_i \text{ or } [t_{i-1}, t_i) \ i = 1, ..., s$
 - The intervals may or may not be of equal length

Life-table Estimate

- Within the i^{th} interval
 - d_i , number of events
 - c_i , number of censors
 - n_i , number of subjects at risk at t_i
 - $n'_i = n_i c_i/2$, average number of subjects at the interval
- Why $n'_i = n_i c_i/2$,
- i = 1, ..., s

Life-table Estimate – Conditional Probability

- For the i^{th} interval
 - ullet Conditional probability of surviving through the i^{th} interval

$$\hat{p}_i = \frac{n_i' - d_i}{n_i'}$$

• Conditional probability of experiencing an event in the i^{th} interval

$$\hat{q}_i = 1 - \hat{p}_i = \frac{d_i}{n_i'}$$

- Why $n'_i = n_i c_i/2$,
 - Not $n_i'=n_i$, underestimate the risk \widehat{q}_i
 - Not $n_i' = n_i c_i$, overestimate the risk \hat{q}_i
 - $n_i' = n_i c_i/2$, assuming constant censoring rate

Life-table Estimate – Survival Function

- In the i^{th} interval
 - Survival function at the end of the ith interval

$$\hat{S}_L(t_0) = 1$$

$$\hat{S}_L(t_i) = \hat{S}_L(t_{i-1}) \left(1 - \frac{d_i}{n_i'} \right)$$

$$\operatorname{var}\{\hat{S}_{L}(t_{i-1})\} = \hat{S}_{L}^{2}(t_{i-1}) \sum_{j=1}^{i-1} \frac{d_{j}}{n'_{j}(n'_{j} - d_{j})}$$

$$i = 1, \dots, s$$

Life-Table – SAS Manual Notation

SAS/STAT User's Guide

Life-Table Method

The life-table estimates are computed by counting the numbers of censored and uncensored observations that fall into each of the time intervals $[t_{i-1},t_i)$, $i=1,2,\ldots,k+1$ where $t_0=0$ and $t_{k+1}=\infty$. Let n_i be the number of units that enter the interval $[t_{i-1}, t_i)$, and let d_i be the number of events that occur in the interval. Let $b_i = t_i - t_{i-1}$, and let $n_i' = n_i - w_i/2$, where w_i is the number of units censored in the interval. The effective sample size of the interval $[t_{i-1}, t_i)$ is denoted by n'_i . Let t_{mi} denote the midpoint of $[t_{i-1}, t_i)$

The conditional probability of an event in $[t_{i-1},t_i)$ is estimated by

$$\hat{q}_i = rac{d_i}{n_i'}$$

and its estimated standard error is

$$\hat{\sigma}\left(\hat{q}_{i}
ight)=\sqrt{rac{\hat{q}_{i}\hat{p}_{i}}{n_{i}'}}$$

where $\hat{p}_i = 1 - \hat{q}_i$.

The estimate of the survival function at t_i is

$$\hat{S}(t_i) = egin{cases} 1 & i=0 \ \hat{S}(t_{i-1})p_{i-1} & i>0 \end{cases}$$

defined from the events from the it internal

and its estimated standard error is

$$\hat{\sigma}\left(\hat{S}(t_i)
ight) = \hat{S}(t_i)\sqrt{\sum_{j=1}^{i-1}rac{\hat{q}_j}{n_j'\hat{p}_j}}$$

• Survival function at the end of the i^{th} interval

SAS Life Table

$$\begin{split} \hat{S}_L(t_0) &= 1 \\ \hat{S}_L(t_i) &= \hat{S}_L(t_{i-1}) \left(1 - \frac{d_i}{n_i'} \right) \\ \hat{S}_L(t_i') \end{split}$$

	Life Table Survival Estimates														
Inte	rval					0141						Eval	uated at the M	idpoint of the	Interval
[Lower,	Upper)	Number Failed	Number Censored	Effective Sample Size	Conditional Probability of Failure	Conditional Probability Standard Error	Survival	Failure	Survival Standard Error	Median Residual Lifetime	Median Standard Error	PDF	PDF Standard Error	Hazard	Hazard Standard Error
0	1	458	0	2418.0	0.1886	0.00796	1.0000	0	0	5.3313	0.1749	0.1886	0.00796	0.208219	0.009698
1	2	226	39	1942.5	0.1163	0.00728	0.8114	0.1886	0.00796	6.2499	0.2001	0.0944	0.00598	0.123531	0.008201
2	3	152	22	1686.0	0.0902	0.00698	0.7170	0.2830	0.00918	6.3432	0.2361	0.0646	0.00507	0.09441	0.007649
3	4	171	23	1511.5	0.1131	0.00815	0.6524	0.3476	0.00973	6.2262	0.2361	0.0738	0.00543	0.119916	0.009154
4	5	135	24	1317.0	0.1025	0.00836	0.5786	0.4214	0.0101	6.2185	0.1853	0.0593	0.00495	0.108043	0.009285
5	6	125	107	1116.5	0.1120	0.00944	0.5193	0.4807	0.0103	5.9077	0.1806	0.0581	0.00503	0.118596	0.010589
6	7	83	133	871.5	0.0952	0.00994	0.4611	0.5389	0.0104	5.5962	0.1855	0.0439	0.00469	0.1	0.010963
7	8	74	102	671.0	0.1103	0.0121	0.4172	0.5828	0.0105	5.1671	0.2713	0.0460	0.00518	0.116719	0.013545

Confidence Interval for Median and Quantiles Survival Time

K-M Estimator Median and Quantiles

• Recall, the p^{th} quantile of the survival function is

$$S(t_p) = P(T > t_p) = p$$
$$t_p = \inf\{t: S(t_p) \le p\}$$

• So, for the K-M estimator, $\hat{S}_K(t_p)=p$

$$t_p = \inf\{t: \hat{S}_K(t_p) \le p\}$$

Recall the example of the death events from the colon cancer

Confidence Interval for Median and Quantiles Survival Time

• For the K-M estimator, $\hat{S}_K(t_p) = p$

$$Var\left(\hat{S}_{K}(t_{p})\right) = \left(\frac{d\hat{S}_{K}(t_{p})}{dt_{p}}\right)^{2} var(t_{p})$$

$$= \left(-\hat{f}_{K}(t_{p})\right)^{2} var(t_{p})$$

$$var(t_{p}) = \frac{1}{\left(\hat{f}_{K}(t_{p})\right)^{2}} Var\left(\hat{S}_{K}(t_{p})\right)$$

Leukemia Data

Leukemia Data

```
ods graphics on;
proc lifetest data=example method=KM
plots=survival (cl atrisk=0 to 35 by 5)
conftype=loglog outsurv=survival;
  time time*event(0);
  strata trt;
  run;
ods graphics off;
```

Obs	trt	time	_CENSOR_	SURVIVAL	SDF_LCL	SDF_UCL	STRATUM
1	6-MP	0		1.00000	1.00000	1.00000	1
2	6-MP	6	0	0.85714	0.61972	0.95155	1
3	6-MP	6	1	0.85714			1
4	6-MP	7	0	0.80672	0.56315	0.92281	1
5	6-MP	9	1	0.80672			1
6	6-MP	10	0	0.75294	0.50320	0.88936	1
7	6-MP	10	1	0.75294			1
8	6-MP	11	1	0.75294			1
9	6-MP	13	0	0.69020	0.43161	0.84907	1
10	6-MP	16	0	0.62745	0.36751	0.80491	1
11	6-MP	17	1	0.62745			1
12	6-MP	19	1	0.62745			1
13	6-MP	20	1	0.62745			1
14	6-MP	22	0	0.53782	0.26778	0.74679	1
15	6-MP	23	0	0.44818	0.18805	0.68014	1
16	6-MP	25	1				1
17	6-MP	32	1				1
18	6-MP	32	1				1
19	6-MP	34	1				1
20	6-MP	35	1				1
21	Control	0		1.00000	1.00000	1.00000	2
22	Control	1	0	0.90476	0.67005	0.97529	2
23	Control	2	0	0.80952	0.56891	0.92389	2
24	Control	3	0	0.76190	0.51939	0.89326	2
25	Control	4 Upper	0	0.66667	0.42535	0.82504	2
26	Control	5	0	0.57143	0.33798	0.74924	2
27	Control	8	0	0.38095	0.18307	0.57779	2
28	Control	11 (pver	0	0.28571	0.11656	0.48182	2
29	Control	12	0	0.19048	0.05948	0.37743	2
30	Control	15	0	0.14286	0.03566	0.32116	2
31	Control	17	0	0.09524	0.01626	0.26125	2
32	Control	22	0	0.04762	0.00332	0.19704	2
33	Control	23	0	0.00000			2

Leukemia Data

Quartile Estimates 6-MP							
Percent	Point	95% Confidence Interval					
	Estimate	Transform	[Lower	Upper)			
75		LOGLOG	23.0000				
50	23.0000	LOGLOG	13.0000				
25	13.0000	LOGLOG	6.0000	22.0000			

Quartile Estimates								
Percent	Point	95% Confidence Interval						
	Estimate	Transform	[Lower	Upper)				
75		LINEAR	23.0000	•				
50	23.0000	LINEAR	13.0000					
25	13.0000	LINEAR	6.0000	23.0000				

Quartile Estimates Control							
Percent	Point	95% Confidence Interval					
	Estimate	Transform	[Lower	Upper)			
75	12.0000	LOGLOG	8.0000	22.0000			
50	8.0000	LOGLOG	4.0000	11.0000			
25	4.0000	LOGLOG	1.0000	5.0000			

Quartile Estimates							
Percent	Point	95% Confidence Interval					
	Estimate	Transform	[Lower	Upper)			
75	12.0000	LINEAR	8.0000	17.0000			
50	8.0000	LINEAR	4.0000	11.0000			
25	4.0000	LINEAR	2.0000	8.0000			

Optional Readings

• Brookmeyer R, Crowley J. A confidence interval for the median survival time. Biometrics 1982;38:29-41.

Topics – 2 Independent Samples

- Overview hypothesis testing
- Overview nonparametric tests
- The log-rank test
- The Wilcoxon test
- Gehan's tests
 - Gehan (1965, Biometrika): modifying rank tests to allow censoring
 - Mantel (1966, Cancer Chem): adapting data to use methods for several 2x2 tables

Compare What?

Figure 1: Time to remission of leukemia patients

- Survival probability at certain time
 - Test difference at 1 year survival
 - Can we do this with what we have learned so far?
- Will 6-MP treatment prolong survival?
 - Comparing two survival curve

Leukemia Data Compare Survival Rates at 1 Year

Stratum 1: trt = 6-MP

Product-Lin	nit Survival Estir	nates				
time		Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.0000		1.0000	0	0	0	21
6.0000					1	20
6.0000					2	19
6.0000		0.8571	0.1429	0.0764	3	18
6.0000	*				3	17
7.0000		0.8067	0.1933	0.0869	4	16
9.0000	* _				4	15
10.0000	Stre(12)	0.7529	0.2471	0.0963	5	14
10.0000	*				5	13
11.0000	*				5	12
13.0000		0.6902	0.3098	0.1068	6	11
16.0000		0.6275	0.3725	0.1141	7	10
17.0000	*		-		7	9
19.0000	*				7	8
20.0000	*				7	7
22.0000		0.5378	0.4622	0.1282	8	6
23.0000		0.4482	0.5518	0.1346	9	5
25.0000	*				9	4
32.0000	*				9	3
32.0000	*				9	2
34.0000	*				9	1
35.0000	*				9	0

Stratum 2: trt = Control

Product-Lim	it Survival Estim	nates				
time		Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.0000		1.0000	0	0	0	21
1.0000			-		1	20
1.0000		0.9048	0.0952	0.0641	2	19
2.0000			-		3	18
2.0000		0.8095	0.1905	0.0857	4	17
3.0000		0.7619	0.2381	0.0929	5	16
4.0000			-		6	15
4.0000		0.6667	0.3333	0.1029	7	14
5.0000			-		8	13
5.0000		0.5714	0.4286	0.1080	9	12
8.0000			-		10	11
8.0000			-		11	10
8.0000					12	9
8.0000		0.3810	0.6190	0.1060	13	8
11.0000					14	7
11.0000		0.2857	0.7143	0.0986	15	6
12.0000	0		-		16	5
12.0000	Sct/(12)	<mark>0.1905</mark>	<mark>0.8095</mark>	0.085 <mark>7</mark>	17	4
15.0000		0.1429	0.8571	0.0764	18	3
17.0000		0.0952	0.9048	0.0641	19	2
22.0000		0.0476	0.9524	0.0465	20	1
23.0000		0	1.0000		21	0

Compare Survival Rate at 1 Year

•
$$S_{6-MP}(12) = 0.753$$
 $se(S_{6-MP}(12)) = 0.0963$
• $S_{control}(12) = 0.191$ $se(S_{control}(12)) = 0.0857$

· Test the survival rate difference

$$\frac{S_{6-MP}(12) - S_{Control}(12)}{\sqrt{se(S_{6-MP}(12))^{2} + se(S_{S_{Control}}(12))^{2}}} = \frac{0.753 - 0.191}{\sqrt{0.0963^{2} + 0.0857^{2}}} = 4.36$$

$$\sim \mathcal{N}(0/1)$$

$$p - value \le 0.001$$

Compare Two Survival Curves

• Rank based tests

Review

- Hypothesis Testing
- General parametric vs Nonparametric tests
- Background knowledge for nonparametric tests of survival data
 - 2x2 tables
 - Hypergeometric test
 - Cochran-Mantel-Haenszel (CMH) test
 - Wilcoxon rank sum test

Hypothesis Testing

- Hypothesis testing answer questions such as
 - Consider one group receive a new treatment
 - Have subjects improved after the new treatment?
 - Consider two groups
 - Group 1 new treatment
 - Group 0 placebo or control
 - Have the subjects in Group 1 became better in general than those in Group 0?
- Hypothesis testing could be
 - Parametric vs. nonparametric
 - One-sided vs. two-sided

Parametric

Distributions of the data are known

$$f(t|\theta)$$
, $\theta \in \Theta$, where

heta is a vector parameters describe the distribution of random variable T

- Θ is the parameter space
- The questions of interest can be described by distribution parameters
 - Such as mean or proportions
- The Hypotheses are set up with the parameters
 - One sample:

• 2-sided:
$$H_0$$
: $\mu = 0$ vs H_A : $\mu \neq 0$

• 1-sided:
$$H_0$$
: $\mu \le 0 \ vs$ H_A : $\mu > 0$

- Two samples
 - 2-sided: H_0 : $\mu_1 = \mu_0$ vs H_A : $\mu_1 \neq \mu_0$
 - 1-sided: H_0 : $\mu_1 \le \mu_0 \ vs \ H_A$: $\mu_1 > \mu_0$

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\hat{p}_1 + \hat{p}_2}$$

Nonparametric

- AKA: distribution-free tests
- When to use
 - Difficult to make distribution assumptions
 - · Often occurred when sample size is small
 - Data are ordinal
 - Parametric models are often used when the categories are 5 or more
 - Data are skewed
 - · Sometimes skewed data are transformed and then use parametric models
- Hypotheses
 - 1-sample 1-sided
 - H_0 : median \leq reference value vs. H_A : median > reference value
 - 2-sample 1-sided
 - H_0 : $F_1 \leq F_0 \ vs \ H_A$: $F_1 > F_0$, where F represents data distribution

Nonparametric vs. Parametric tests

Nonparametric

- 1-sample test median against a reference or targeted value
 - Sign test
 - Wilcoxon signed test require symmetric distributions such as Cauchy and uniform distributions
- 2 independent samples
 - Wilcoxon rank sum test (Mann Whitney U test)
- 2 or more independent samples
 - Kruskal-Wallis test
- Spearman correlation

Parametric

- 1-sampe t-test
 - Paired t-test
- 2-samples
 - 2-sample t-tests
 - One-way ANOVA
- 2 or more independent samples
 - One-way ANOVA
- Pearson correlation

 Consider a randomized and controlled clinical trial testing two treatments

• Group 0

- n_0 number of subjects in Group 0
- x_{01} , x_{02} , ..., x_{0n_0} observed data

• Group 1:

- n_1 number of subjects in Group 1
- $x_{11}, x_{12}, ..., x_{1n_1}$ observed data

- Rank data from the entire two groups
- Group 0
 - n_0 number of subjects in Group 0
 - x_{01} , x_{02} , ..., x_{0n_0} observed data of Group 0
 - $r_{01}, r_{02}, ..., r_{0n_0}$ ranks of Group 0 \longrightarrow get from pooled ranking
- Group 1:
 - n_1 number of subjects in Group 1
 - $x_{11}, x_{12}, \dots, x_{1n_1}$ observed data of Group 1
 - $r_{11}, r_{12}, \dots, r_{1n_1}$ ranks of Group 1

• Sum the ranks of each group

$$R_{z} = \sum_{i=1}^{n_{z}} R_{zi} \qquad z = 0, 1 - \text{group indicator}$$

$$E(R_{1}) = \frac{n_{1}(n_{1} + n_{0} + 1)}{2}$$

$$E(R_{0}) = \frac{n_{0}(n_{1} + n_{0} + 1)}{2}$$

$$Var(R_{z}) = \frac{n_{0}n_{1}(n_{1} + n_{0} + 1)}{12}$$

• The test statistics can be written as

$$\frac{R_1 - E(R_1)}{\sqrt{Var(R_1)}} \sim N(0,1)$$

· Re-write the Wilcoxon test in the Mann-Whitney test statistics

$$U_{ij} = \begin{cases} +1 & \text{if } x_{0i} > x_{1j} \\ 0 & \text{if } x_{0i} = x_{1j} \\ -1 & \text{if } x_{0i} < x_{1j} \end{cases}$$

$$U = \sum_{i=1}^{n_0} \sum_{j=1}^{n_1} U_{ij}$$

$$R_1 = \frac{n_1(n_1 + n_0 + 1)}{2} + \frac{U}{2} \quad or$$

$$U = 2R_1 - n_1(n_1 + n_0 + 1)$$

$$E(U) = 0 \quad Var(U) = \frac{n_0 n_1(n_1 + n_0 + 1)}{3}$$

$$Var(U) = 0 \quad Var(U) = \frac{n_0 n_1(n_1 + n_0 + 1)}{3}$$

$$U = 0 \quad Var(U) = \frac{n_0 n_1(n_1 + n_0 + 1)}{3}$$

• The test statistics is

Review of Hypergeometric Distribution

- N fishes in a pond
 - N_0 are white
 - N_1 are golden
- Catch d fishes
 - D_0 are white
 - D_1 are golden
- 2x2 tables all margins are fixed
- D_0 follows hypergeometric distribution
- $D_0 \sim Hyper(N, N_0, D)$

Class	Case	Non-case	Total
White	D_0	$N_0 - D_0$	N_0
Golden	D_1	$N_1 - D_1$	N_1
Total	D	N-D	N

Review of Hypergeometric Distribution

• $D_0 \sim Hyper(N, N_0, D)$

•
$$P(D_0 = d_0) = \frac{\binom{D}{d_0} \binom{N-D}{N_0-d_0}}{\binom{N}{N_0}}$$

Class	Case	Non-case	Total
White	D_0	$N_0 - D_0$	N_0
Golden	D_1	$N_1 - D_1$	N_1
Total	D	N-D	N

•
$$\sum_{0 \le d_0 \le \min(D, N_0)} \frac{\binom{D}{d_0} \binom{N-D}{N_0 - d_0}}{\binom{N}{N_0}} = 1$$

Review of Hypergeometric Distribution

- Test independence of caught (case) vs not caught and fish color
- Let $o = D_0$ be the observed
- Let $e=E(D_0)=\frac{DN_0}{N}$ be the expected prob of aught should be the expected probability aught should be the expected probability and the expected probability aught should be the expected probability aught should be the expected probability and the expected probability aught should be the expected probability aught should be the expected probability and the expected probability aught should be the expected probability aught should be the expected probability and the expected probability aught should be the expected probability aught should be the expected probability and the expected probability aught should be aught and the expected probability aught should be aught and the expected probability aught are also account and the expected probability and aught and aught and aught are also account and aught are also account and aught are also account and a
- H_0 : $o = e \text{ vs } H_0$: $o \neq e$

a bush of	aught	Should be proportion in
Same	as the	e proportion in
the pop	ulation	<u> </u>

The test statistics

•	$\left(D_0 - \frac{DN_0}{N}\right)^2$	~. v ²
•	$Var(D_0)$	χ_1

•
$$Var(D_0) = \frac{N_0 N_1 D(N-D)}{N^2 (N-1)}$$

Class	Case	Non-case	Total
White	D_0	$N_0 - D_0$	N_0
Golden	D_1	$N_1 - D_1$	N_1
Total	D	N-D	N

Review of Cochran-Mantel-Haenszel Test

- Test independence
 - Treatment vs. disease status
- Stratified 2x2 tables, K strata
 - Different age groups
 - Investigation centers

Class	Case	Non-case	Total
White	D_{0i}	$N_{0i}-D_{0i}$	N_{0i}
Golden	D_{1i}	$N_{1i}-D_{1i}$	N_{1i}
Total	D_i	$N_i - D_i$	N_i

•	Assume	common	odds ratio	OR, = ORz== OR 6
---	--------	--------	------------	------------------

- H_0 : odds ratio = 1
- The test statistics is

$$\frac{\sum_{i=1}^{k} \left(D_{0i} - \frac{D_{0i}N_{0i}}{N_{i}}\right)^{2}}{\sum_{i=1}^{k} \frac{D_{i}(N_{i} - D_{i})N_{1i}N_{0i}}{N_{i}^{2}(N_{i} - 1)}} \sim \chi_{1}^{2}$$

Nonparametric Tests for Survival Data

Nonparametric Tests for Survival Data

- Compare two groups wrt the event time distributions
 - $S_0(t)$ the control group
 - $S_1(t)$ the new treatment group
- If the occurrence of the events in the new treatment group delayed in comparison to the control group

$$H_0: S_1(t) \leq S_0(t) \text{ vs.} \qquad H_0: S_1(t) > S_0(t)$$

Log-rank Test

- AKA
 - Mantel-Haenszel test
 - Mantel-Cox test
 - Peto-Mantel-Haenszel test
- Proposed by
 - Mantel (1966)
 - Cox (1972)

- Keep in mind that survival data (T, Δ)
 - $T = \min(X, C)$
 - $\Delta = I(X < C)$
 - *X* event time
 - *C* censor time
- Group 0
 - n_0 number of subjects in Group 0
 - $(T_{01},\delta_{01}),(T_{02},\delta_{02}),\dots,(T_{0n_0},\delta_{0n_0})$,- observed survival data in Group 0
- Group 1:
 - n_1 number of subjects in Group 1
 - (T_{11},δ_{11}) , (T_{12},δ_{12}) , ..., (T_{1n_1},δ_{1n_1}) observed survival data in Group 1
- Number of events in both groups: r
 - Ordered distinct event time: $t_{(1)} < t_{(2)} < \cdots < t_{(k)}$
 - k ≤ r

- Construct $\frac{k}{2}$ 2x2 tables at each distinct event time
- At *i*th event time,
 - n_{0i} number of subjects at risk at $t_{(i)}^-$ in Group 0
 - n_{1i} number of subjects at risk at $t_{(i)}^-$ in Group 1
 - $n_i = n_{0i} + n_{1i}$ total number of subjects at risk at $t_{(i)}^-$
 - d_{0i} number of subjects at risk at $t_{(i)}$ in Group 0
 - d_{1i} number of subjects at risk at $t_{(i)}$ in Group 1
 - $d_i = d_{0i} + d_{1i}$ total number of events at $t_{(i)}$

2x2 Table at the i^{th} Event Time

Group	Events occurred at $t_{(i)}$	Number of subjects Survival at $t_{(i)}^+$	Number of subject at risk at $t_{(i)}^{-}$
0	d_{0i}	$n_{0i}-d_{0i}$	n_{0i}
1	d_{1i}	$n_{1i} - d_{1i}$	n_{1i}
Total	d_i	$n_i - d_i$	n_i

- n_{0i} , n_{1i} , n_i are fixed at $t_{(i)}^-$
- d_i is fixed at $t_{(i)}$
- d_{0i} ~ hypergeometric distribution

Once you have doi, you can have the rest.

Hypergeometric Distribution

• Let D_{0i} be the number of events at t_{0i} in Group 0

$$P(D_{0i} = d_{0i}) = \frac{\binom{d_i}{d_{0i}}\binom{n_i - d_i}{n_{0i} - d_{0i}}}{\binom{n_i}{n_{0i}}} \qquad \text{(by proof of hypergeometric distribution)}$$

• Combination $\binom{d_i}{d_{0i}}$ - probability of selecting d_{0i} out of d_i without ordering

$$\binom{d_i}{d_{0i}} = \frac{d_i!}{d_{0i}! (d_i - d_{0i})!}$$

$$d_i! = d_i \cdot d_{i-1} \cdots 2 \cdot 1$$

2x2 Table at the i^{th} Event Time

• The mean of D_{0i}

$$e_{0i} = n_{0i}d_i/n_i$$

The expected number of events if the survival probability of the two groups are the same – the null hypothesis

ullet The difference of observed d_{0i} and the expected e_{0i}

$$d_{0i} - e_{0i}$$

Represents deviation from the null hypothesis at the i^{th} event time

The total deviation from null

$$L = \sum_{i=1}^{k} (d_{0i} - e_{0i})$$

Variance

$$\mathrm{var}(L) = var\left(\sum_{i=1}^k (d_{0i} - e_{0i})\right) \approx \sum_{i=1}^k var(d_{0i}) \quad \text{underestimate the warding}$$
 bution

From hypergeometric distribution

$$var(d_{0i}) = \frac{n_{0i}n_{1i}d_i(n_i - d_i)}{n_i^2(n_i - 1)}$$

$$var(L) = \sum_{i=1}^{k} \frac{n_{0i}n_{1i}d_{i}(n_{i}-d_{i})}{n_{i}^{2}(n_{i}-1)}$$

$$\frac{L}{\sqrt{var(L)}} \sim N(0,1)$$

positively correlated.)

• If there is no tie at each event time, log-rank test statistics reduces to

$$\frac{\sum_{i=1}^{k} (d_{0i} - n_{0i}/n_i)}{\sum_{i=1}^{k} n_{0i} n_{1i}/n_i^2}$$

where d_{0i} can be 0 or 1

The numerators of the log-rank test is the difference of the observed and expected

$$\begin{split} \left(d_{0i} - \frac{n_{0i}d_i}{n_i}\right) &= \frac{n_{0i}n_{1i}}{n_i} \left(\frac{d_{0i}}{n_{0i}} - \frac{d_{1i}}{n_{1i}}\right) \\ &= \frac{n_{0i}n_{1i}}{n_i} (h_{0i} - h_{1i}) \end{split}$$

• Like the CMH test for several 2x2 tables, the log-rank test has the optimal power when the hazard ratio is constant over time, i.e.

$$h_0(t) = \lambda h_1(t)$$
 or $S_0(t) = S_1(t)^{\lambda}$

Example: Leukemia Data

- Group 0: 6+,6,6,6,7,9+,10+,10,11+,13,16,17+,19+,20+,22,23,25+,32+,32+,34+,35+
- 2 Group 1: 1,1,2,2,3,4,4,5,5,8,8,8,11,11,12,12,15,17,22,23
 - 16 Distinct event time: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 22, 23

Group	Events at $t_{(i)}$	Survival at $t_{(i)}^+$	At risk at $t_{(i)}^-$
0	d_{0i}	$n_{0i}-d_{0i}$	n_{0i}
1	d_{1i}	$n_{1i}-d_{1i}$	n_{1i}
Total	d_i	$n_i - d_i$	n_i

	tz	tz	ŧ;
O	0	21	21
	2	17	19
tou	2	38	40

Example: Leukemia Data

- 16 2x2 tables
- The first 7 2x2 tables
- eriz Moidi

• Can be calculated
$$L = \sum_{i=1}^{k} (d_{0i} - e_{0i}) = -10.25$$

Variance

$$var(L) = \sum_{i=1}^{k} \frac{n_{0i}n_{1i}d_i(n_i - d_i)}{n_i^2(n_i - 1)} = 6.26$$

$$\frac{L}{\sqrt{\text{var}(L)}} = 4.098 \sim N(0,1)$$

$$p - value = 2.1e^{-5} < 0.0001$$

i	Group	Events at $t_{(i)}$	Survival at $t_{(i)}^+$	Expected	At risk at $t_{(i)}^-$
1	0	0	21	1	21
	1	2	19	1	21
		2	40		42
2	0	0	21	1.05	21
	1	2	17	0.95	19
		2	38		40
ter null					
3	0	0	21	0.55	21
	1	1	16	0.45	17
		1	37		38
4	0	0	21	1.14	21
	1	2	14	0.86	16
		2	35		37
5	0	0	21	1.2	21
	1	2	12	0.8	14
		2	33		35
6	0	3	19	1.27	21
	1	0	12	0.73	12
		3	31		33
7	0	1	16	0.6	18
	1	0	12	0.4	12
		1	29		30

Example: Leukemia Data

• SAS outcomes

		Rank Statis	tics		
	trt	Log-Rank	Log-Rank Wile		
ĺ	6-MP	-10.251		-271.00	
	Contro	10.251		271.00	
Co	ovarian	ce Matrix for Statistics		Log-Rank	
trt		6-M	Р	Control	
6-1	MP	6.2569	6	-6.25696	
C-	ontrol	0.0500		6.25696	
CU	muoi	-6.2569	6	6.25696	
		ce Matrix for Statistics	the	Wilcoxon	
	ovarian	ce Matrix for	the	******	
Co	ovarian	ce Matrix for Statistics	the	Wilcoxon	
Co trt	ovarian	ce Matrix for Statistics 6-M	the s	Wilcoxon	
Co trt	ovarian MP ontrol	ce Matrix for Statistics 6-M	thes	Wilcoxon Control -5457.11 5457.11	
Co trt	MP ontrol	ce Matrix for Statistics 6-M 5457.1 -5457.1	thes	Wilcoxon Control -5457.11 5457.11 Strata Pr >	
Co trt 6-I Co	MP ontrol	ce Matrix for Statistics 6-M 5457.1 -5457.1	thes P 1 ver	Wilcoxon Control -5457.11 5457.11 Strata Pr >	

16.4852 1

<.0001

-2Log(LR)

The Gehan's Wilcoxon Test

• With right censored data, extending Censoring in the Wilcoxon Test

$$U_{ij} = \begin{cases} +1 & \text{if } t_{0i} > t_{1j} \text{; } \delta_{1j} = 1 \text{ at event} & \text{time} \\ 0 & \text{if } & \text{otherwise} \\ -1 & \text{if } t_{0i} < t_{1j} \text{; } \delta_{0i} = 1 \end{cases}$$

$$GW = \sum_{i=1}^{n_0} \sum_{j=1}^{n_1} U_{ij}$$

Under Null

$$E_{H_0}(GW)=0$$

$$\frac{GW}{\sqrt{Var(GW)}} \sim N(0,1)$$

The Gehan's Wilcoxon Test

- The generalized Wilcoxon procedure proposed by
 - Gehan (1965)
 - Breslow (1970)
- The test statistics can also be formulated as No this ni, reduce to by-rank test

$$W = \sum_{i=1}^{k} \frac{n_i}{n_i} (d_{0i} - e_{0i})$$

- Weighted by n_i , the total number of subjects at risk at $t_{(i)}^-$ give more weights to early events
- The variance

$$var(W) = var\left(\sum_{i=1}^{k} n_i(d_{0i} - e_{0i})\right) = \sum_{i=1}^{k} \frac{n_{0i}n_{1i}d_i(n_i - d_i)}{(n_i - 1)}$$

A weighted log-rank test

General Class of Weighted Log-rank Tests

Can be written as

$$L_w = \sum_{i=1}^k \omega_i (d_{0i} - e_{0i})$$

$$var(L_w) = \sum_{i=1}^k \omega_i^2 \frac{n_{0i} n_{1i} d_i (n_i - d_i)}{n_i^2 (n_i - 1)}$$

Test	Weight ω_i	
Log-rank	$\omega_i = 1$	
Gehan's Wilcoxon	$\omega_i = n_i$	
Peto/Prentice	$\omega_i = S(t_i)$	A
Fleming-Harrington	$\omega_i = S(t_i)^p D S(t_{i-1})^p$	(1-Scti-1) & pazo
Tarone-Ware	$\omega_i = \sqrt{n_i}$	

Comparisons

- All tests will control type I error under null
- May obtain optimal power under certain alternatives
- The Log-rank test
 - Tends to be sensitive to distributional differences which are separated late in time
 - Has the optimal power when the hazard ratio is constant
- The Wilcoxon test
 - Tends to be more powerful in detecting early separation between survival functions

Reference: A pretest for choosing between logrank and wilcoxon tests in the two-sample problem. International Journal of Statistics, 2010, vol. LXVIII, n. 2, pp. 111-125

Example – Ovarian Data

	futime	fustat	age	resid.ds		ecog.ps
1	59	1	72.3315	2	1	1
2	115	1	74.4932	2	1	1
3	156	1	66.4658	2	1	2
4	421	0	53.3644	2	2	1
5	431	1	50.3397	2	1	1
6	448	0	56.4301	1	1	2
7	464	1	56.9370	2	2	2
8	475	1	59.8548	2	2	2
9	477	0	64.1753	2	1	1
10	563	1	55.1781	1	2	2
11	638	1	56.7562	1	1	2
12	744	0	50.1096	1	2	1
13	769	0	59.6301	2	2	2
14	770	0	57.0521	2	2	1
15	803	0	39.2712	1	1	1
16	855	0	43.1233	1	1	2
17	1040	0	38.8932	2	1	2
18	1106	0	44.6000	1	1	1
19	1129	0	53.9068	1	2	1
20	1206	0	44.2055	2	2	1
21	1227	0	59.5890	1	2	2
22	268	1	74.5041	2	1	2
23	329	1	43.1370	2	1	1
24	353	1	63.2192	1	2	2
25	365	1	64.4247	2	2	1
26	377	0	58.3096	1	2	1

- Dataset available in R survival package
 - futime: survival or censoring time (day)
 - fustat: censoring status (censor=0)
 - age: in years
 - resid.ds: residual disease present (1=no,2=yes)
 - rx: treatment group
 - ecog.ps: ECOG performance status (1 is better, see reference)

Examples

```
ods graphics on;
proc lifetest data=example method=KM plot=survival(cl);
  time futime*fustat(0);
  strata rx/test=all;
  run;
ods graphics off;
```

Example- Ovarian Data (Non-stratified)

Example- Ovarian Data (Non-stratified)

	Rank Statistics				
гх	Log-Rank	Wilcoxon			
1	1.7665	47.000			
2	-1.7665	-47.000			

	Covariance Matrix for the Log-Rank Statistics				
гх	1	2			
1	2.93620	-2.93620			
2	-2.93620	2.93620			

	Covariance Matrix for the Wilcoxon Statistics			
гх	1	2		
1	1154.00	-1154.00		
2	-1154.00	1154.00		

Test	Chi-Square	DF	Pr > Chi-Square
Log-Rank	1.0627	1	0.3026
Wilcoxon	1.9142	1	0.1665
-2Log(LR)	1.1149	1	0.2910

Test of Equality over Strata					
Test	Chi-Square	DF	Pr > Chi-Square		
Log-Rank	1.0627	1	0.3026		
Wilcoxon	1.9142	1	0.1665		
Tarone	1.4852	1	0.2230		
Peto	1.6990	1	0.1924		
Modified Peto	1.7431	1	0.1867		
Fleming(1)	1.6849	1	0.1943		

can always derived one-side tese

Stratified Log-rank Test

- When comparing 2 groups, it is desirable to test between group within certain subgroups formed by factors such as
 - Disease severity Severe ↑ # of event 1
- The reason is that the background risk (in the control group) among the different factors are different
 - The risk in the mild patient population is different from that in the severe population
- The stratification factor for disease severity
 - Mild
 - Moderate
 - Severe

Stratified Log-rank Test

- Let s = 1, 2, ..., S be the stratum for a factor
- $h_{0s}(t)$ is the hazard of the s stratum in the control group

$$h_{0i}(t) \neq h_{0j}(t)$$
 for $i \neq j i, j = 1, 2, ..., s$

Assume the same treatment effect

$$\lambda = \frac{h_{1s}(t)}{h_{0s}(t)}$$

- The stratified log-rank test
 - Compares treatment effect between groups within each stratum first
 - Combine the comparisons of all strata

2x2 Table at the i^{th} Event Time in Stratum s

Group	Events occurred at $t_{(i)}$	Number of subjects Survival at $t_{(i)}^+$	Number of subject at risk at $t_{(i)}^-$
0	d_{s0i}	$n_{s0i} - d_{s0i}$	n_{s0i}
1	d_{s1i}	$n_{s1i} - d_{s1i}$	n_{s1i}
Total	d_{si}	$n_{si}-d_{si}$	n_{si}

Stratified Log-rank Test

• Log-rank statistics in Stratum s, r'_s distinct survival time in Stratum s

$$L_s = \sum_{i=1}^{r_{s}} (d_{s0i} - e_{s0i})$$

$$var(L_s) = \sum_{i=1}^{r_{s}} \frac{n_{0i}n_{1i}d_{i}(n_{i}-d_{i})}{n_{i}^{2}(n_{i}-1)}$$

• The stratified log-rank test is

$$LS = rac{\sum_{S=1}^{S} L_S}{\sqrt{\sum_{S=1}^{S} var(L_S)}}$$
 each stratum are independent

Example – Ovarian Data

		fustat		resid.ds		
1	59	1	72.3315	2	1	1
2	115	1	74.4932	2	1	1
3	156	1	66.4658	2	1	2
4	421	0	53.3644	2	2	1
5	431	1	50.3397	2	1	1
6	448	0	56.4301	1	1	2
7	464	1	56.9370	2	2	2
8	475	1	59.8548	2	2	2
9	477	0	64.1753	2	1	1
10	563	1	55.1781	1	2	2
11	638	1	56.7562	1	1	2
12	744	0	50.1096	1	2	1
13	769	0	59.6301	2	2	2
14	770	0	57.0521	2	2	1
15	803	0	39.2712	1	1	1 2 2
16	855	0	43.1233	1	1	2
17	1040	0	38.8932	2	1	2
18	1106	0	44.6000	1	1	1
19	1129	0	53.9068	1	2	1
20	1206	0	44.2055	2	2	1
21	1227	0	59.5890	1	2	2
22	268	1	74.5041	2	1	2
23	329	1	43.1370	2	1	1
24	353	1	63.2192	1	2	2
25	365	1	64.4247	2	2	1
26	377	0	58.3096	1	2	1

- Dataset available in R survival package
 - futime: survival or censoring time (day)
 - fustat: censoring status (censor=0)
 - age: in years
 - resid.ds: residual disease present (1=no,2=yes)
 - rx: treatment group
 - ecog.ps: ECOG performance status (1 is better, see reference)
- Ecog performance status as strata

SAS Code

```
Stratified Logrank
                                        Non-stratified Logrank
ods graphics on;
                                        ods graphics on;
proc lifetest data=example method=KM
                                        proc lifetest data=example method=KM
/*plot=survival(cl)*/;
                                        plot=survival(cl);
  time futime*fustat(0);
                                          time futime*fustat(0);
  strata ecog /group=rx;
                                          strata rx;
  run;
                                          run;
ods graphics off;
                                        ods graphics off;
```

Example- Ovarian Data

Cannot tell there is treatment be wifit in exag=2

Example- Ovarian Data

Summary c	of the Number	of Censored	and Uncensore	d Values		
Stratum	ecog	rx	Total	Failed	Censored	Percent Censored
1	1	1	7	4	3	42.86
1	1	2	7	1	6	85.71
Subtotal			14	5	9	64.29
2	2	1	6	3	3	50.00
2	2	2	6	4	2	33.33
Subtotal			12	7	5	41.67
Total			26	12	14	53.85

Example- Ovarian Data (Stratified)

Test	Chi-Square	DF	Pr > Chi-Square
Log-Rank	0.7679	1	0.3809
Wilcoxon	1.6026	1	0.2055
Tarone	1.1728	1	0.2788
Peto	1.3372	1	0.2475
Modified Peto	1.4180	1	0.2337
Fleming(1)	1.3119	1	0.2521

Stratified Comparison of Survival Curves for futime over Group

Rank Statistics			
гх	Log-Rank	Wilcoxon	
1	1.5000	22.000	
2	-1.5000	-22.000	

	Covariance Matrix for the Log-Rank Statistics				
гх	1	2			
1	2.93019	-2.93019			
2	-2.93019	2.93019			

100000000000000000000000000000000000000	Covariance Matrix for the Wilcoxon Statistics				
гх	1	2			
1	302.000	-302.000			
2	-302.000	302.000			

Stratified Test of Equality over Group					
Test	Chi-Square	DF	Pr > Chi-Square		
Log-Rank	0.7679	1	0.3809		
Wilcoxon	1.6026	1	0.2055		

Comparison of Three or More Groups

- May consider evaluate survival functions of K independent samples: $S_0(t), S_1(t), \cdots, S_K(t)$
 - K-1 groups in comparison with one control group
 - From *K* country
- The null hypothesis is that all the K survival functions are the same

$$H_0: S_1(t) = S_2(t) = \cdots = S_K(t)$$

 $H_A: not(S_1(t) = S_2(t) = \cdots = S_K(t))$

- Group *k*
 - n_k number of subjects in Group k
 - (T_{k1},δ_{k1}) , (T,δ_{k2}) , ..., (T_{kn_k},δ_{kn_k}) are observed survival data in Group k
 - k = 1, ..., K
- Number of events in *K* groups: *r*
 - Ordered distinct event time: $t_{(1)} < t_{(2)} < \cdots < t_{(r')}$
 - $r' \leq r$

K x2 Table at the i^{th} Event Time

Group	Events occurred at $t_{(i)}$	Number of subjects Survival at $t_{(i)}^+$	Number of subject at risk at $t_{(i)}^{-}$
1	d_{1i}	$n_{1i} - d_{1i}$	n_{1i}
2	d_{2i}	$n_{2i}-d_{2i}$	n_{2i}
K	d_{Ki}	$n_{Ki}-d_{Ki}$	n_{Ki}
Total	d_i	$n_i - d_i$	n_i

At The *i*th Event Time

• Let

$$O_{i} = \begin{pmatrix} d_{1i} \\ \vdots \\ d_{Ki} \end{pmatrix}, \qquad E_{i} = \begin{pmatrix} n_{1i} \\ \vdots \\ n_{Ki} \end{pmatrix} \frac{d_{i}}{n_{i}}, \quad V_{i} = \begin{pmatrix} v_{11i} & v_{12i} & \dots & v_{1Ki} \\ & v_{22i} & \dots & v_{2Ki} \\ & & \dots & & & & & \\ & & & v_{2Ki} \end{pmatrix}$$

The test statistics can be written as

$$(O_i - E_i)'V_i^{-1}(O_i - E_i) \sim \chi^2(K)$$

- Omnibus test
 - To test if there is any difference among the survival functions
 - Not for pairwise comparisons
 - · Not powerful to detect trend

Trend Log-rank Tests

- Let us assume there is a trend among the (K + 1) independent samples
 - *K* different doses
 - Possible to have monotone dose-response relationship
- A trend test is to test the hypothesis against a specific alternatives

$$H_0$$
: $S_1(t) = S_2(t) = \cdots = S_K(t)$

$$H_A$$
: $S_1(t) \le S_2(t) \le \cdots \le S_K(t)$

Trend Log-rank Tests

• Log-rank statistics Kth dose

$$L_k = \sum_{i=1}^{r_{i_k}} (d_{0i} - e_{ki})$$

$$\operatorname{var}(L_k) = \sum_{i=1}^{r_{ik}} \frac{n_{0i} n_{ki} d_{ki} (n_{0ki} - d_{0ki})}{n_{0ki}^2 (n_{0ki} - 1)}$$

• The trend log-rank test is

$$LS = \frac{\sum_{k=1}^{K} \omega_k L_k}{\sqrt{\sum_{k=1}^{K} (\omega_k - \overline{\omega})^2 var(L_k)}} \sim \chi_1^2$$

$$\overline{\omega} = \frac{\sum_{k=1}^{K} \omega_k e_k}{\sum_{k=1}^{K} e_k}$$

where ω_k is a weight for dose k

Trend Tests

- How to choose weight ω_k
- For monotone relationship

$$\omega_k = k \text{ for } k = 1, ..., K$$

- When K=3
 - $\omega_1 = 1, \omega_2 = 2, \omega_3 = 3$
 - $\omega_1 = -1, \omega_2 = 0, \omega_3 = 1$

Homework 4

- 1. Using the Leukemia data
 - Group 0: 6+,6,6,6,7,9+,10+,10,11+,13,16,17+,19+,20+,22,23,25+,32+,32+,34+,35+
 - Group 1: 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23
 - 16 Distinct event time: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 22, 23
 - a) Construct the 16 2x2 tables for the log-rank test
 - b) Verify the rank statistics by calculating the difference of the observed and expected in each 2x2 tables

$$L = \sum_{i=1}^{k} (d_{0i} - e_{0i}) = -10.25$$

c) Include the variance calculation for each of the 2x2 tables as well and verify that

$$var(L) = \sum_{i=1}^{k} \frac{n_{0i}n_{1i}d_i(n_i - d_i)}{n_i^2(n_i - 1)} = 6.26$$

- 2. Outline steps how you would show the following using simulation (no actual simulation is required)
 - a) The Wilcoxon has the optimal power when the failure times are log-normally distributed, with equal variance in both groups but different means.
 - b) With weights $\omega_i = S(t_i)$, the test is most powerful under the alternative hypothesis of log-logistic model
- 3. Results from a trial evaluating a new treatment in comparison with a standard of care (SOC) indicate that biomark+ subgroup will have positive survival benefit with the new treatment and biomarker- subgroup actually gets harm.
 - a) Please discuss what you think of an analysis by including all subject?
 - b) How would you recommend the analysis?
 - c) Do you think if FDA should approve this drug?