UNCLASSIFIED

AD NUMBER AD819257 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JUN 1967. Other requests shall be referred to Defense Advanced Research Projects Agency, Washington, DC 20301. This document contains export-controlled technical data. AUTHORITY darpa per form 55

AD819257

NATIONAL BUREAU OF STANDARDS MICROCOPY RESOLUTION TEST CHART

Geophysical Data Report

FARADAY ROTATION DATA: BANGKOK, THAILAND Reporting period: January - June 1967

By: VICHAI T. NIMIT

Prepared for:

U.S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY

CONTRACT DA-34-039 AMC-00040(E) ORDER NO. 5384-PM-63-91 ARPA ORDER NO. 371

SPONSORED BY THE ADVANCED RESEARCH PROJECTS AGENCY
FOR THE
THAI-U.S. MILITARY RESEARCH AND DEVELOPMENT CENTER
SUPREME COMMAND HEADQUARTERS
BANGKOK, THAILAND

STATEMENT #2 UNCLASSIFIED

This document is subject to special export controls and export transmittal to foreign governments or foreign nationals made only with prior approval of

STANFORD RESEARCH INSTITUTE

MENLO PARK, CALIFORNIA

Qualified requestors may obtain copies of this report from DDC.

DDC release to CFSTI nat authorized.

July 1967

Geophysical Data Report

FARADAY ROTATION DATA: BANGKOK, THAILAND

Reporting period: January - June 1967

Prepared for:

U.S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, NEW JERSEY

CONTRACT DA-36-039 AMC-00040(E) ORDER NO. 5384-PM-63-91 AL 'A ORDER NO. 371

By: MAHAI T. NIMIT

SRI Project 4240

SPONSORED BY THE ADVANCED RESEARCH PROJECTS AGENCY FOR THE THAI-U.S. MILITARY RESEARCH AND DEVELOPMENT CENTER SUPREME COMMAND HEADQUARTERS BANGKOK, THAILAND

CONTENTS

Parameter Physical Company (19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	
ACKNOWLEDGMENT	111
I INTRODUCTION	1
II DISCUSSION	2
III ELECTRON CONTENT AND EQUIVALENT SLAB THICKNESS EVALUATED FROM FARADAY FADING RATE	4
REFERENCES	21
DISTRIBUTION LIST	22
DD Form 1473	
ILLUSTRATIONS	
Fig. 1 Diurnal Variation of Electron Content	20
TABLES	
Table I Faraday Rotation Site at Bangkok, Thailand	1

ACKNOWLEDGMENT

The author gratefully acknowledges the assistance of various individuals who have made significant contributions to this data report. Mr. Uthai Mungtrisan participated in the operation of the equipment. Mr. Prujuab Nimityongskul supervised for the data reduction and Miss Pranoat Suntharothok assisted in the data reduction.

I INTRODUCTION

Faraday rotation observations are being carried out at the Electronics Laboratory of the Military Research and Development Center (MRDC) at Bangkok, Thailand, a joint Thailand-United States organization. The cooperation and participation of the staff members of the Thailand Ministry of Defense and the support of the United States Advanced Research Projects Agency and the United States Army Electronics Laboratories have made it possible for the data presented in this report to be accumulated.

The following information about the site is pertinent.

Table I FARADAY ROTATION SITE AT BANGKOK, THAILAND

Geogr	aphic	Geomag	netic	Magnetic Dip
Latitude	Longitude	Latitude	Longitude	megnotic bip
13.73°N	100.57°E	2.5°N	169.83°E	10°N

11 DISCUSSION

The data contained in this bulletin are experimental results obtained by analyzing Faraday rotation records obtained from the S-66 (Explorer 22) radio beacon satellite. Half-wave dipole antennas are used to receive 20-, 40-, and 41-MHz unmodulated signals.

The rotation rate technique^{1*} is applied to calculate the equivalent vertical electron content from a portion of the record near the transverse position. The electron content is calculated at the transverse position. This position corresponded to the subionospheric latitude of $14.3^{\circ}N \pm 0.1^{\circ}$ and a subionospheric longitude of $101^{\circ}E \pm 4.0^{\circ}$. The electron content is determined by using the following relation:

$$\int_{0}^{h} s_{N\dot{\alpha}h} = \frac{\dot{R}}{\dot{G}} , \qquad (1)$$

where

hs
Ndh = the integrated electron contents from ground
to the satellite in electrons/m

h = the satellite height in kilometers

- R = the rotation rate in revolutions per minute calculated by using a 1-minute interval centered at transverse position
- G = the geometrical coefficient, interpolated from values furnished by the Science Research Council, Radio and Space Research Station, Slough, England in rpm/electrons/m², assuming the height of the peak F layer density is 300 km.

^{*}References are given at the end of the report.

The equivalent slab thickness of the ionosphere is determined by:

$$\tau = \frac{\int_{0}^{h_{s}} Ndh}{1.24 \times 10^{13} (f_{o}F2)^{2}}$$
 (2)

where

T = the slab thickness in kilometers

f F2 = the critical frequency of the F layer in megahertz.

The electron content is calculated from Eq. (1), and the $^{\rm F}$ 2 critical frequency of the ionosphere is obtained from scaled values from the ionosonde located at the Electronics Laboratory of the Military Research and Development Center at Bangkok.

The calculated values of electron content are plotted for ascending and descending passes, respectively. Because the satellite precessed westward, the time of the satellite passage over Bangkok became progressively earlier. The passage time moved through a 24-hour period in about five and a half months. Therefore, each calculated value of electron content is associated with a particular hour and day.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

		Transverse		rpm)		• (Electron		Slab
Unte (1007)	Mevolution *	Position,				ָ כ	Content	foF2	interness,
(1961)		ro (Gerr)	20 MHZ	40 MHZ	41 MHz	(× 10 ⁻¹⁹)	$(\times 1016$	(MHz)	(km)
1 January	11174A	0933:33		12.4		0.287	43.0	10.4	320
1 Januery	11180D	2046:24			1.8	0.290	0°9	4.8	210
2 January	11187A	0816:05			11.4	0.271	42.1	10.3	320
2 January	11194D	2113:39			06.0	0,289	3.1	2.7	340
4 January	11215A	0910:41			10.0	0.265	37.7	0.6	380
4 January	11221D	2023:24			1.1	0.293	3.9	4.1	190
5 January	11228A	0753:07			10.6	0.265	40.0	8.5	450
5 January	11235D	2050:43			1.4	0.294	4.8	3.5	310
6 January	11242A	0820:30			10.0	0.263	38.0	8.5	420
6 Jrnuary	11248D	1933:08			1.4	0.296	4.7	4.4	200
7 January	11256A	0847:45			9.1	0.261	34.9	8.1	430
7 January	11262D	2000:23			1.3	0.296	4.5	3.6	280
3 January	11269A	0730:13			11.4	0.265	43.0	10.3	330
9 January	11289D	1910:07			2.1	0,301	8.8	5.2	200
10 January	11297A	0825:23			11.1	0.264	42.0	10.4	310
10 January	11303D	1937:22			2.8	0.305	0.6	6.8	160
11 Jamery	11310A	0707:16			10.9	0.261	41.8	9.6	370

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

		Transverse		R (TOW)			Electron		Slab
Date	Revolution	Position,				ט	-	foF2	inickaess,
(1967)	Muniber	To (GTT)	20 Marz	40 MHz	41 MHz	(× 10 ⁻¹⁶)	(x 1016 elec/m ²)	(MHZ)	(km)
12 January	11330D	1847:05			2.2	0.305	7.0	6.3	140
13 January	11338A	0801:54			4.9	0.261	18.6	9.8	160
14 January	11351A	0644:21			7.1	0.257	27.6	8.6	300
14 January	11357D	1756:50			96.0	0.306	3.1	5.9	20
15 January	11365A	0711:38			0.6	0.257	34.8	8.4	400
16 January	11379A	0738:55			7.5	0.256	29.3	8.4	330
17 January	11392A	0621:28			7.7	0.256	30.1	8.4	240
18 January	11412D	1801:03			1.8	0.307	5.8	5.3	170
19 January	11426D	1828:19			1.7	0.306	5.6	4.6	210
20 January	11433A	0558:27			8.5	0.257	33.0	8.9	340
20 January	11439D	1710:46			1.1	0.308	3.6	4.6	140
21 January	11447A	0625:48			9.8	0.254	38.6	7.9	500
21 January	11453D	1737:54			3.4	0.312	10.9	7.0	160
22 January	11461A	0652:57			9.5	0.254	36.2	8.5	400
22 January	11467D	1805;10			1.9	0.309	6.0	5,3	170
23 January	11474A	0535:34			11.1	0.256	43.3	9.1	420
23 January	11480D	1647:36			3.3	0,313	1.0.5	7.2	160

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

Date	Revolution	Transverse Position,		i (rpe)		• છ	Electron Content	forz	Slab Thickness,
(1967)	Maber	To (GET)	20 MEZ	40 MHZ	41 MRZ	(x 10 ⁻¹⁶)	(x 1016 elec/m ²)	(MHz)	(KCM)
24 January	11494D	1714:51			3.7	0.312	11.7	6.7	210
25 January	11502A	0629:59			6.6	0.257	38.6	9.6	340
25 January	11508D	1742:10			4.6	0.313	14.8	6.9	250
26 January	11515A	0512:38			11.8	0.262	44.9	11.4	280
26 January	11521D	1624:34			3.9	0.315	12.4	8.3	140
27 January	11529A	0539:50			10.2	0,254	40.2	8.7	430
28 January	11549D	1719.06			6.5	0,314	20.7	8.4	240
29 January	11556A	0449:37			11.5	0,255	44.9	9.1	440
29 January	11562D	1601:32			6.2	0,315	19.6	8.6	210
30 January	11570A	0517:02		12.5		0.268	46.6	8.9	470
31 Jenuary	11 584A	0544:05			10.0	0.254	39.4	8.7	420
								Married .	aragana makiba
								. ar	
		110							

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

					- A-				
Date	Revolution	Transverse Position,		r (rpm)		• •	Electron	forz	Slab Thickness,
(1961)	Musber*	To (GMT)	20 MHz	40 MRz	41 MHz	(× 10 ⁻¹⁶)	$(\times 1016)$ elec/m ²)	(MHZ)	(Ican)
1	115076	0496.35			11.5	0.257	44.9	8.6	380
1 February	WISCIT TO SEE	90.0250			10.4	0.257	40.4	9.4	370
3 February	AC2011	1832.58			6.3	0.315	20.0	8.7	210
3 February	116911	0404-50			13.0	0.263	49.2	11,3	320
4 February	11.0506	0430.55			13.0	0.268	48.5	12.2	260
5 February	116664	0458-28			13.2	0,263	50.2	10.5	370
6 February	116700	1609.54			8.1	0.313	25.9	8.5	290
6 February	116704	0340-39	1116	200.00	13.7	0.274	50.0	13.6	220
7 February	116034	0407-55			13.4	0.273	49.1	13.1	230
8 February	116000	1520-06			10.7	0.314	34.0	8.6	290
8 reprusity	11 707A	0435:10			11.2	0.260	43.0	6.3	400
10 Permary	11720A	0317:42	ı		12.1	0.267	46.8	10.7	330
11 Pehansry	_	0344:57			11.3	0.261	43.4	9.1	420
		1457:04			10.6	0.313	33.9	10.8	230
	_	0412:08			11.5	0.266	43.2	10.5	320
13 February	<u> </u>	0255:06			10.1	0.270	37.3	11.2	240
	_	1406:08	_		8.0	0.308	26.1	8.6	220

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

				• 🕿					Slab
Date	Revolution	Transverse Position,		(rpm)		. 5	Electron	forz	Thickness,
(1961)	Market	To (GET)	20 MHz	40 MHz	41 MRz	(× 10_18)	(x 1016 elec/m ²)	(W Hz)	(ECR)
14 February	11781D	1432:23			11.2	0.304	36.9	9.0	370
15 Pebruary	11.788A	0204:23			8,2	0.271	30.3	10.9	210
16 February	11802A	0231:40			9.8	0.269	36.4	8.6	310
16 February	11808D	1343:02			8.5	0.302	28.1	9.4	260
17 February	11816A	0258:55			11.7	0.270	43.3	10.2	340
17 February	11822D	1411:05			5.7	0.300	19.0	9.4	170
18 February	11829A	0141:22			8.8	0.269	32.9	9.0	330
19 February	11849D	1319:53			6.3	0.295	21.4	8.5	240
20 February	11857A	0235:52			10.3	0.276	37.3	11.1	240
20 February	11863D	1348:04			5.5	0.295	18.6	9.1	1.80
21 February	11870A	0118:20			7.5	0.275	27.3	10.1	220
21 February	11877D	1414:31			10.5	0.295	35.6	9.4	330
22 February	11884A	0146:13			8.7	0.276	31.5	10.7	220
22 February	11890D	1257:18			6.1	0.293	20.8	8.8	220
23 February	11898A	0212:50			11.1	0.279	39.7	11.6	230
23 February	11904D	1325:00			9.3	0.290	32.1	8.5	360
24 February	11912A	0240:58			10.7	0.277	38.8	10.1	300

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

(1967) Mu 25 February 11(25 February 11(Aumber	Position,		(rpm)	77700	• છ		forz	Thickness,
February February		To (Gerr)	20 MHz	40 MBz	41 MHz	(× 10 ⁻¹⁶)	$ (\times 10^{16} \\ elec/s^2) $	(Marz)	- ÎI
February	11925A	0122:36			8.6	0.279	30.8	10.8	210
	11931D	1233:46			9.1	0.295	31.2	12.1	170
26 February 11	11939A	0149:47		==	9.7	0.283	34.3	11.7	200
27 February 11	11 952A	0031:55	×19400-		6.1	0.275	22.2	7.8	290
28 February 11	11966A	0100:17			7.4	0.278	26.6	9.3	250
28 February 11	11972D	1211:46			4.3	0.282	15.1	8.0	190
									- 111
				100					ur es

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated : from Faraday Fading Rate

Member To 40 41 (x 10 ⁻¹ 6) (x 10 ¹ 6) (x 10 ¹ 6) (MI2) 11980A 0126:46 MEz MEz 0.283 29.0 10.6 11980A 0126:46 8.2 0.283 29.0 10.6 11986D 1238:29 8.5 0.283 30.0 9.0 11993A 0009:16 5.4 0.277 19.3 8.0 1 12001A 0036:31 6.1 0.282 24.1 9.4 1 12021A 0103:42 8.0 0.287 24.1 9.4 1 12024B 0103:42 8.0 0.287 24.1 9.4 1 1204BA 2346:14 8.0 0.293 30.8 8.5 1 1204BA 0013:42 8.0 0.276 29.0 8.7 1 1204BA 1124:36 7.2 0.296 21.0 8.9 1 1205AB 1124:36 7.2 0.290 24.7 10.0 1 1205AB 11010:35 7.2	Date	Revolution	Transverse Position,		å (rpm)		• 9	Electron	forz	Slab Thickness,
11980A 0126:46 8.2 0.283 29.0 10.6 11986D 1238:29 8.5 0.283 30.0 9.0 11993A 0009:16 8.5 0.283 30.0 9.0 12000D 1305:43 6.1 0.279 21.7 8.3 12007A 0036:31 6.8 0.282 24.1 9.4 12027A 0103:42 8.0 0.287 27.9 10.6 12027A 0103:42 8.0 0.287 27.9 10.6 1204D 1242:11 8.0 0.276 29.0 8.5 1204B 1242:11 8.0 0.276 29.0 8.7 1205AD 1124:36 6.0 0.286 21.0 8.9 1206AB 1013:42 0.290 24.7 10.0 1206AB 1124:36 15.0 0.290 24.7 10.0 1206AB 1010:35 12.9 0.290 24.7 10.0 12109B <td< th=""><th>(1967)</th><th>Mabber</th><th>To (Gerr)</th><th>20 Miz</th><th>40</th><th>41</th><th>(× 10⁻¹⁶)</th><th>$\begin{pmatrix} \times & 10^{16} \\ e^{16} \end{pmatrix}$</th><th>(MHz)</th><th>(km)</th></td<>	(1967)	Mabber	To (Gerr)	20 Miz	40	41	(× 10 ⁻¹⁶)	$\begin{pmatrix} \times & 10^{16} \\ e^{16} \end{pmatrix}$	(MHz)	(km)
11996D 1238:29 8.5 0.283 30.0 9.0 11993A 0009:16 5.4 0.277 19.3 8.0 9.0 12000D 1305:43 6.1 6.1 0.279 21.7 8.3 12007A 0036:31 6.8 0.282 24.1 9.4 8.3 12007A 0103:42 8.0 0.287 27.9 10.6 8.3 12027A 1215:25 9.0 4.2 0.287 27.9 10.6 1204D 1215:25 9.0 4.2 0.293 30.8 8.5 1204BA 0124:36 8.0 0.276 29.0 8.7 8.9 1205AD 1124:36 6.0 0.286 21.0 8.9 8.3 1205AD 1124:36 12.0 0.296 24.7 10.0 9.5 1205AD 1128:51 2000:35 20.291 22.3 7.3 10.0 12104B 2300:23 2.0 0.295 24.7 </td <td></td> <td>11980A</td> <td>0126:46</td> <td>1 10 7000</td> <td></td> <td>8.2</td> <td>0.283</td> <td>29.0</td> <td>10.6</td> <td>210</td>		11980A	0126:46	1 10 7000		8.2	0.283	29.0	10.6	210
11993A 0009:16 5.4 0.277 19.3 8.0 12000D 1305:43 6.1 0.279 21.7 8.3 5.3 12007A 0036:31 6.8 0.282 24.1 9.4 9.4 12027A 0103:42 8.0 0.287 27.9 10.6 9.4 12027B 1215:25 9.0 0.293 30.8 8.5 9.6 12034A 2346:14 8.0 0.279 15.1 6.8 9.7 1204BA 0013:42 6.0 0.286 21.0 8.7 12054D 1124:36 6.0 0.286 21.0 8.9 12095D 1101:35 7.2 0.290 24.7 10.0 12103A 0017:33 6.5 0.295 43.7 10.0 12104B 1216 0.283 6.9 4.5 4.5 1213B 128:51 0.283 6.9 4.5 4.5 12123D 1156:09 0.283		11986D	1238;29			8.5	0.283	30.0	0.6	300
12000D 1305;43 6.1 0.279 21.7 8.3 12007A 0036;31 6.8 0.282 24.1 9.4 12021A 0103;42 8.0 0.287 27.9 10.6 12027D 1215;25 9.0 0.293 30.8 8.5 1203A 2346;14 8.0 0.276 29.0 8.7 1204BA 0013;42 6.0 0.276 8.9 8.9 1206AD 1124;36 6.0 0.286 21.0 8.9 1206AB 0040;35 7.2 0.296 24.7 10.0 1206AB 0104;35 7.2 0.296 24.7 10.0 1206BB 1101;35 7.2 0.296 43.7 10.0 1210BB 1128;51 9.2 0.291 22.3 7.3 12116B 2306;23 0.293 6.9 4.5 9.5 12116B 2306;23 0.293 6.9 4.5 9.5 12116B </td <td>2 March</td> <td>11993A</td> <td>0000:16</td> <td></td> <td>></td> <td>5.4</td> <td>0.277</td> <td>19,3</td> <td>8.0</td> <td>240</td>	2 March	11993A	0000:16		>	5.4	0.277	19,3	8.0	240
12007A 0036:31 6.8 0.282 24.1 9.4 12021A 0103:42 8.0 0.287 27.9 10.6 12027D 1215:25 9.0 4.2 0.293 30.8 8.5 12034A 2346:14 8.0 4.2 0.279 15.1 6.8 8.7 12041D 1242:11 8.0 0.276 29.0 8.7 8.9 12048A 0013:42 8.0 0.276 29.0 8.7 8.9 12054B 1124:36 15.0 0.286 21.0 8.9 12062A 0040:35 12.9 0.296 24.7 10.0 12103A 0017:33 6.5 0.295 43.7 10.0 12116A 2300:23 12.9 0.283 6.9 4.5 12123D 1216:09 125.7 0.283 6.9 4.5	2 March	12000D	1305:43			6.1	0.279	21.7	8.3	250
12021A 0103:42 8.0 0.287 27.9 10.6 12027D 1215:25 9.0 0.293 30.8 8.5 12034A 2346:14 8.0 0.279 15.1 6.8 1204B 1242:11 8.0 0.276 29.0 8.7 12054D 1124:36 6.0 0.286 21.0 8.9 12054D 1124:36 15.0 0.276 8.9 8.9 12054D 1124:36 15.0 0.276 8.9 8.9 12055D 1101:35 12.9 0.290 24.7 10.0 12103D 1121:35 12.9 0.291 22.3 7.3 12116A 2300:23 2.0 0.291 22.3 7.3 12115A 200:283 6.9 4.5 4.5	3 March	12007A	0036:31			8.9	0,282	24.1	9.4	220
12027D 1215:25 9.0 0.293 30.8 8.5 12034A 2346:14 4.2 0.279 15.1 6.8 6.8 12041D 1242:11 8.0 6.0 0.276 29.0 8.7 8.9 12048A 0013:42 8.0 6.0 0.286 21.0 8.9 8.9 12054D 1124:36 15.0 0.276 54.4 8.9 8.9 12062A 0040:35 7.2 0.290 24.7 10.0 9.9 12103A 0017:33 6.5 0.291 22.3 7.3 9.5 12105B 1128:51 2300:23 0.273 6.9 4.5 9.5 12123D 1156:09 12.7 0.276 46.0 11.2	4 March	12021A	0103:42			8.0	0.287	6.72	10,6	200
12034A 2346:14 4.2 0.279 15.1 6.8 12041D 1242:11 8.0 0.276 29.0 8.7 12048A 0013:42 6.0 0.286 21.0 8.9 12054D 1124:36 15.0 0.276 54.4 8.9 12062A 0040:35 7.2 0.290 24.7 10.0 12095D 1101:35 12.9 0.295 43.7 10.0 12103A 0017:33 6.5 0.291 22.3 7.3 12116A 2300:23 2.0 0.273 6.9 4.5 12123D 1156:09 12.7 0.276 46.0 11.2	4 March	12027D	1215:25		9.0		0.293	30.8	8.5	340
12041D 1242:11 8.0 0.276 29.0 8.7 12054B 0013:42 6.0 0.286 21.0 8.9 8.9 12054D 1124:36 15.0 0.276 54.4 8.9 8.9 12062A 0040:35 7.2 0.290 24.7 10.0 9.0 12095D 1101:35 6.5 0.295 43.7 10.0 9.5 12109D 1128:51 14.5 0.273 53.1 9.5 12123D 1216:09 1156:09 12.7 0.283 6.9 4.5	4 March	12034A	2346:14			4.2	0.279	12.1	6.8	260
12048A 0013:42 6.0 0.286 21.0 8.9 12054D 1124:36 15.0 0.276 54.4 8.9 12062A 0040:35 7.2 0.290 24.7 10.0 12095D 1101:35 12.9 0.295 4.3.7 10.0 12103A 0017:33 6.5 0.291 22.3 7.3 12109D 1128:51 14.5 0.273 53.1 9.5 12116A 2300:23 2.0 0.283 6.9 4.5 12123D 1156:09 11.2 0.276 46.0 11.2	5 March	12041D	1242:11			8.0	0.276	29.0	8.7	310
12054D 1124:36 15.0 0.276 54.4 8.9 12062A 0040:35 7.2 0.290 24.7 10.0 12095D 1101:35 12.9 0.295 43.7 10.0 12109D 1128:51 4.5 0.273 53.1 9.5 12116A 2300:23 2.0 0.283 6.9 4.5 12123D 1156:09 12.7 0.276 46.0 11.2	6 March	12048A	0013:42			6.0	0.286	21.0	8°9	210
12062A 0040:35 7.2 0.290 24.7 10.0 12095D 1101:35 12.9 0.295 43.7 10.0 12103A 0017:33 6.5 0.291 22.3 7.3 12109D 1128:51 14.5 0.273 53.1 9.5 12116A 2300:23 2.0 0.283 6.9 4.5 12123D 1156:09 12.7 0.276 46.0 11.2	6 March	12054D	1124:36			15.0	9.276	54.4	8.9	550
12095D 1101:35 12.9 0.295 43.7 10.0 12103A 0017:33 6.5 0.291 22.3 7.3 12109D 1128:51 14.5 0.273 53.1 9.5 12116A 2300:23 2.0 0.283 6.9 4.5 12123D 1156:09 12.7 0.276 46.0 11.2	7 March	12062A	0040:35			7.2	0.290	24.7	10.0	200
12103A 0017:33 6.5 0.291 22.3 7.3 12109D 1128:51 14.5 0.273 53.1 9.5 12116A 2300:23 2.0 0.283 6.9 4.5 12123D 1156:09 12.7 0.276 46.0 11.2	9 March	12095D	1101:35			12.9	0.295	43.7	10.0	350
12109D 1128:51 14.5 0.273 53.1 9.5 12116A 2:300:23 2.0 0.283 6.9 4.5 12123D 1156:09 12.7 0.276 46.0 11.2	10 March	121034	0017:33			6.5	0.291	22.3	7.3	340
12116A 2300:23 2.0 0.283 6.9 4.5 12123D 1156:09 12.7 0.276 46.0 11.2	10 March	12109D	1128:51			14.5	0.273	53.1	9.5	470
12123D 1156:09 12.7 0.276 46.0 11.2	10 March	12116A	2300:23			2.0	0.283	6.9	4.5	270
	11 March	12123D	1156:09			12.7	0.276	46.0	11.2	300

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

Date	Revolution	Transverse Position,		r (rpm)		, 5	Electron	forz	Slab Thickness,
(1967)	New Der	To Gerr)	20 MIz	40 MRz	41 MHz	(x 10 ⁻¹⁶)	(x 1016 elec/m ²)		(Km)
11 March	12130A	2327:37			2.0	0.285	8.9	5.0	220
12 March	12136D	1038:34			16.0	0.277	57.7	11.9	330
13 March	12150D	1105:49			15.4	0.274	56.4	11.3	360
13 March	12157A	2237:20			1.9	0.289	6.4	4.4	270
14 March	12164D	1133:31			14.7	0.270	54.5	10.2	420
15 March	12177D	1015:31			14.8	0.312	47.5	12.9	230
15 March	12185A	2331:50			1.4	0.292	4.8	5.0	150
16 March	12191D	1142:45			14.0	0.269	52.0	10.7	370
17 March	12212A	2241:13			1.8	0.295	6°5	4.4	250
18 March	12218D	0952:30			14.6	0.271	53.9	11.9	310
18 March	12226A	2308:47			1.2	0.296	3.9	4.4	160
19 March	12232D	1019:43			14.4	0,265	54.3	10.6	390
19 March	12239A	2150:46			3.4	0.299	11.4	2.6	290
20 March	12246D	1147:03			14.1	0.263	55.1	10.4	410
20 March	12253A	2218:29			4.9	0.303	16.2	7.1	260
21 March	12259D	0929:25			17.0	0.270	62.9	12,4	330
21 March	12267A	2245:23			1.4	008.0	4.7	4.5	190

* The letters A and D indicate ascending and descending satellite passes, respectively.

Klectron Content and Equivalent Slab Thickwess Evaluated from Faraday Fading Rate

Date	Revolution	Transverse Position,		R (rpm)		• 5	Electron	2	Slab Thickness,
(1967)	Number*	To (GET)	20 MHz	40 MHz	41 MBz	(× 10 ⁻¹⁶)	(x 1016 (x 1016 elec/m ²)	(MERZ)	- (km)
22 March	12273D	0956:40			15.4	0.266	57.9	11.4	360
22 March	12280A	2127:49			2.8	0.302	9.3	5,1	290
23 March	12287D	1.024:08			13.8	0.265	52.2	11.3	330
24 March	12300D	0906:38			17.0	0.265	64.2	11.5	390
24 March	12308A	2222:18			2.4	0.305	7.9	4.9	270
25 March	12314D	0933:38		16.0		0.277	57.8	11.0	390
25 Karch	12321A	2104:44			2.4	0.306	7.8	5.4	220
26 March	12328D	1000:58			12.8	0.260	49.2	10,3	370
26 March	12335A	2131:59			4.1	0.306	13.4	4.6	510
27 March	12341D	0845:24			14.0	0.258	54.3	9.6	470
27 March	12349A	2159:14			3.7	0.310	11.9	6.4	230
28 March	12355D	0910:35			15.8	0.262	60.3	11.1	390
29 March	12369D	0937:55			13.6	0.263	51,6	11.4	320
29 March	12376A	2108:34			3.6	0.310	11.5	6.2	240
30 March	12382D	0820:16			14.9	0.260	57.3	10.6	410
31 March	12396D	0847:35			15.7	0.260	60.3	10.6	430

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

					-				
Date	Revolution	Transverse Position,		rps)		• ७	Electron	forz	Slab Thickness,
(1967)	Number*	To (arr)	50 120 120	40 ##Z	41 MRz	(x 10 ⁻¹⁶)	$\begin{pmatrix} \times 1016 \\ \text{elec/m}^2 \end{pmatrix}$	(MHz)	(km)
	4 94000	0729.59			12.5	0.260	48.1	10.7	340
1 April	450571	2045.26			3.3	0.310	10.6	0.9	240
1 April	124218	2112.37			4.3	0.312	13.7	6.3	280
Z April	19437	0824:33			15.2	0.264	57.6	11.8	330
3 April	124500	0706:59			13.6	0.260	52.3	10.8	360
4 April	12464D	0734:50			17.0	0.261	65.1	11.0	430
S April	12478D	0801:30			15.4	0.265	58.1	12.0	320
7 April	12491D	0643:57			14.3	0.262	54.6	11.4	340
r April	125050	0711:09			14.8	0.260	56.7	10.7	400
8 April	1.951 ah	0738:29		2400	14.1	0.262	53.7	11.3	340
SAPril	1.2526A	1909:20			8.1	0.219	37.0	10.5	270
10 April	12532D	0620:54			12.1	0.258	46.9	10.0	
11 April	12546D	0648:09			13.0	0.258	50.4	6.6	
12 Anril	12567A	1846:15			10.3	0.323	31.9	11.5	190
12 April	125730	0557:52			12.1	0.259	46.5	10.0	380
15 April	12601D	0652:25			11.6	0.257	45.1	9.5	400
16 April	126140	0535:45			13.2	0.259	51.0	6.6	420
12 April									

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Comtent and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

Date	Revolution	Transverse Position,	_	r (rpm)		• છ	Electron Content	forz	Slab Thickness,
(1967)	Manber	To Gert)	20 Hz	40	41 MHz	(× 10 ⁻¹⁶)	$(\times 1016$ elec/m ²)	(MAZ)	(km)
16 April	12622A	1849:46			7.7	0.314	24.7	9.5	220
18 April	12642D	0629:22			12.7	0.260	49.0	10.2	380
20 April	12669D	0539:03			13.5	0.262	51.5	10.2	00 *
20 April	12677A	1853:42			8.8	0.310	28.4	0.6	280
21 April	12683D	0606:20			12.8	0.262	48.9	10.1	390
Z1 April	12690A	1736:14			12.1	0.314	38.5	11.1	250
22 April	12696D	0448:44			14.3	0.265	54.0	10.9	370
22 April	12704A	1804:29			9.3	0.314	29.6	10.8	200
23 April	12710D	0515:59			16.0	0.266	60.2	11.1	390
24 April	12724D	0543:18			14.5	0.265	54.7	10.2	420
24 April	12731A	1713:07		5.01	11.2	0.308	36.4	10.0	290
25 April	12737D	0425:41			12.9	0.267	48.3	10.6	350
26 April	12751D	0452:54			14.2	0.264	53.8	6.6	440
27 April	12765D	0520:15			11.2	0.266	42.2	9.8	350
28 April	12778D	0402:37			12.7	0.266	47.7	8.6	400
29 April	12792D	0429:52			13.8	0.302	45.7	10.0	370
,				parant de velle					

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Comtent and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

Date	Revolution	Transverse Position,		R (rps)		• છ	Electron	forz	Slab Thickness,
(1967)	Number"	To (GMT)	20 MHz	40 MHz	41 MRz	(× 10 ⁻¹⁶)	$\begin{pmatrix} \times 10^{16} \\ elec/m^2 \end{pmatrix}$	(MHz)	(km)
1 May	12819D	0339:33			12.3	0.266	46.2	6.3	430
2 May	12833D	0406:48			11.7	0.269	43.5	9.4	400
3 May	12854A	1603:44			14.7	0.285	51.6	11.8	300
4 May	12860D	0317:07			16.1	0.276	58.3	11.2	380
6 May	12888D	0411:38			10.6	0.274	38.7	9.5	350
7 May	12909A	1607:48			9.6	0.291	33.0	10.4	250
8 May	12915D	0320:39			11.0	0.276	39.8	6.3	370
いる間に	12922A	1450:25			6.6	0.277	23.8	9.1	230
9 Мау	12929D	0347:56	71100		10.8	0.276	39.2	9.4	360
9 May	12936A	1517:33			8.4	0.277	30.3	9.4	280
10 May	12942D	0230:18		0.00	8.7	0.268	32.3	8.8	340
10 May	12950A	1544:46			6.3	0.276	22.8	9.1	220
11 May	12956D	0257:30			9.0	0.275	32.7	2.6	460
11 May	12963A	1427:19		111-1	4.9	0.282	17.4	8.8	180
12 May	12970D	0324:51			8.6	û.271	31.8	8.5	350
12 May	12977A	1454:24			6.5	0.274	23.7	10.1	190
13 May	12983D	0207:14			8.8	0.281	31.3	9.7	270
•		•			,				

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

	Dete	Revolution	Transverse Positios,		a (mgr		٠٥		F	Slab Thickness
1	(1967)	i i i	To Garri	20 HEZ	40	41 MEZ	(x 10 ⁻¹⁶)	$(x 10^{16})$	(MHz)	(K)
	13 May	12991A	1521;31			5.8	0.280	20.8	9.2	200
-) (loi	14 May	129970	0235;10			10.0	0.272	36.8	8.4	420
	14 May	13004A	1404:06			5.2	0.279	18.5	8.5	210
	15 Kay	130110	0302:27			11.4	0.284	40.2	11.0	320
	15 May	13018A	1431:18			6.8	0.281	24.2	9.5	210
	16 May	13032A	0144:08			8.3	0.277	29.8	9.1	290
	17 Kay	130380	0211:18			9.1	0.276	33.0	10.0	270
1	17 May	13045A	1340:59			12.1	0,268	45.2	9.6	400
i	18 Kay	130520	0239:23			10,1	0.286	35.3	9.4	320
	18 May	13059A	1408:11			3.8	0.266	14.2	10.3	110
	19 May	13065D	0120:56			8.5	0.288	29.5	9.7	250
(19 May	130731	1435:59			10.0	0.273	36.6	8.0	460
	20 May	13086A	1317:52			6.6	0.279	35.5	11.4	220
	21 Kay	130930	0215:30			9.6	0.292	32.7	10.2	250
	21 May	13100A	1345:06			8.1	0.273	29.7	9.3	280
	22 Kay	13106D	0057:50			8.0	0.280	28.6	9.2	270
	24 May	13134D	0152:23			8.7	0.294	29.6	9.5	260

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

Date	Revolution	Transverse Position,		R (rpm)		• છ		forz	Slab Thickness,
(1961)	Manber*	To (GMT)	20 MHz	40 MHz	41 MHz	(x 10 ⁻¹⁶)	$(\times 1016$ elec/m ²)	(MHz)	(km)
26 May	13163A	1231:42			9.3	0.274	33,8	11.3	210
27 May	1.31.82A	1258:58			7.6	0.268	28.4	8.6	240
28 May	131880	0011:32			8.4	0.295	28.5	8.2	340
28 May	13196A	1326:25			9.5	0.256	36.9	9.5	330
29 May	13029A	1208:36			10.0	0.266	37.6	10.4	280
30 key	13216D	0106:05			8.0	0,302	26.5	9.5	240
30 May	13223A	1235:47			10.e	0,253	42.0	7.9	540
30 May	13229D	2348:21			5.1	0.293	17.4	7.6	240
31 May	13237A	1302:58			9.3	0.267	34.8	10.9	240
}									
					mage and a				

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

Date	Revolution	Transverse Position,		R (rpm)		• 5	Electron	for2	Slab Thickness,
(1967)	Number*	To (Gurr)	20 MHz	40 MHz	41 MHz	(× 10 ⁻¹⁹)	$(\times 1016)$	(MERZ)	(kcm)
		0016.01			8.4	0.305	27.5	9.7	240
	132430	1105.91			8.5	0.261	32.5	10.3	250
	13387A	12.0017			06.0	0.306	2.9	4.8	100
11 June	133930	C7:0777			6 0	0 957	31.9	0.6	320
12 June	13401A	1136:58			3.0			0	030
13 June	13414A	1013:49			8.3	0.260	31.9	10.5	200
14 6000	13428A	1040:18			8.5	0.260	32.7	10.	240
omp #1	13442A	1107:57			8.8	0.257	34.2	9.1	330
aune cr	10466	0950-23			9.5	0.261	36.2	10.6	260
eunr 91	10400	1017.11			9.2	0.257	35.8	0.6	360
17 June	13469A	10101			10.4	0.259	40.4	10.2	320
18 June	13483A	1044:54			7.01		7 36	101	290
19 June	13496A	0926:52			9.4	607.0	1.00	3	
20 June	13510A	0954:03			10.1	0.257	39.2	3.6	
200	1 25.24A	1021:09			9.5	0.257	37.0	9.1	360
21 June	100420	2016-23			0.93	0.309	3.0	4.6	110
22 June	OCT TOTAL	0030.45			10.7	0.261	41.0	10.3	310
23 June	13551A	0530.52			2.0	0.311	6.4	6.3	130
23 June	135570	4043:31			3	6 257	33.3	9.2	320
24 June	13565A	0958:02			0.0				

* The letters A and D indicate ascending and descending satellite passes, respectively.

Electron Content and Equivalent Slab Thickness Evaluated from Faraday Fading Rate

Date	Revolution	Transverse Posttion,		(rra)		• 5	Electron Content	forz	Slab Thickness,
(1967)	Musber	To Girt)	20 MRz	40 MHz	41 MRz	(× 10 ⁻¹⁶)	$ (\times 10^{16} \\ elec/m^2) $	(MHz)	(km)
24 June	13571D	2110:49			4.0	0.307	13.1	3.8	730
25 June	13578A	0840:39			10.4	0.257	40.5	8.8	420
26 June	13592A	0907:45			17.1	0.260	42.6	10.1	340
27 June	13606A	0935:44			12.6	0.260	48.5	9.6	420
z8 June	13619A	0817:29			10.3	0.258	39.7	8.5	440
28 June	136250	1930:03			2.7	0.307	8.8	4.3	380
59 June	13633A	0844:40			9.8	0.260	37.7	9.2	360
29 June	13639D	1957:15			1.3	0,307	4.1	4.3	180
30 June	13646A	0727:06			8.2	0,257	31.9	7.8	420
)						

* The letters A and D indicate ascending and descending satellite passes, respectively.

FIG. 1 DIURNAL VARIATION OF ELECTRON CONTENT

REFERENCES

- S. A. Bowhill, "The Faraday Rotation Rate of a Satellite Radio Signal," J. Atmos. Terrest. Phys., Vol. 13, pp. 175-176 (1958).
- 2. E. Golton, "Electron Content Observations of the Equatorial Anomaly," paper presented at Second Symposium on Radio Astronomical and Satellite Studies of the Atmosphere, sponsored by Radio Astronomy Branch, Space Physics Laboratory, Air Force Cambridge Research Laboratory, Boston, Massachusetts, pp. 45-48 (October 1965).
- 3. C. L. Rufenach, V. T. Nimit, and R. E. Leo, "Faraday Rotation Measurements of Electron Content from the Transit IV-A Satellite near the Magnetic Equator," Special Technical Report 14, Contract DA-36-039 AMC-00040(E), SRI Project 4240, Stanford Research Institute, Menlo Park, California.
- 4. R. V. Bhonsle, A. V. da Rosa, and O. K. Garriott, "Measurements of the Total Electron Content and the Equivalent Slab Thickness of the Midlatitude Ionosphere," J. Research NBS, Radio Science, Vol. 69D, pp. 929-937 (July 1965).
- 5. V. T. Nimit, "Ionospheric Data, Bangkok, Thailand," Ionospheric Data Report, Contract DA-36-039 AMC-0004J(E), ARPA Order No. 5384-PM-63-91, Stanford Research Institute, Menlo Park, California (monthly beginning September 1963).

UNCLASSIFIED

Security Classification	III. IEONESCONOCE ESCESSI	III) year unterpe	
	TROL DATA - R &		
(Security classification of title, body of abstract and indexing i. ORIGINATING ACTIVITY (Corporate author)			e uverall report is classified) SECURITY CLASSIFICATION
Stanford Research Institute	ľ	Uncles	
333 Ravenswood Avenue		b. GROUP	81116u
Menlo Park, California		N/A	
3. REPORT TITLE		M/A	
FARADAY ROTATION DATA: BANGKOK, THAILAND			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Geophysical Data Report January - June 19	067		
Vichai TNimit			
6. REPORT DATE	76. TOTAL NO. OF	PAGES	76. NO. OF REFS
July 1967	26		5 6
SE. CONTRACT OR GRANT NO.	SE. ORIGINATOR'S	REPORT NUM	48ER(\$)
DA-36-039 AMC-00040(E)	SRI Projec	t 4240	
6. PROJECT NO.			
Order No. 5384-PM-63-91			
c,	Sh. OTHER REPORT	NOISI (Any	other numbers that may be essigned
ARPA Order No. 371			
<u>4</u> ,			
10. DISTRIBUTION STATEMENT			
Qualified requestors may obtain copies of	f this report	from DDC	C.
DDC release to CFSTI not authorized.			
11. SUPPLEMENTARY NOTES	112. SPONSORING MIL	TARY ACT	17177
	Advanced Re	search F	Projects Agency
	Washington,		a cyclic ingoine,
	,		
13. ABSTRACT			
None: Data Reports			
			į
			8

DD FORM 1473 (PAGE 1)

UNCLASSIFIED
Security Classification

S/N 0101-807-6801

UNCLASSIFIED

Security Classification	LIN	K A	LIN	K B	LIN	K C
KEY WORDS	ROLE	:WT	ROLE	WT	ROLE	WT
					}	
Faraday rotation	1	}				
Total electron content						
Equatorial ionosphere		Ì				
Southeast Asia						
Transverse position (of satellite)						
Ionospheric equivalent slab thickness						
S-66			į			
Beacon satellite			İ			
					Ì	
				ļ		Í
	ļ					
	ł					
				1		
					Ì	
	1			i,		
					1	
			i			
			1			
			1			
				}	1	
		1				
		1				
				ł		
						1
			1		1	
						1
]	1		
						1
		1		1		
			1			
		1	1			1
				1		
						1
	ļ					
		1		}		
			1			1
						1
•	İ			I		
	1	İ				
	1					
		1	1			
		I		1	1	1

DD . NOV .. 1473 (BACK)

UNCLASSIFIED
Security Classification