Website

Mohamed Emary

September 7, 2023

Contents

1	This	s is my website	2
		Lists	
	1.2	Headers	4
		1.2.1 Header of level 3	4
	1.3	Foot notes	2
		Links	
		Images	
		100100	
	1.7	Code blocks	:
	1.8	Math equations	:
		1.8.1 A Huge Equation	į
	1.9	Citations	4
2	Rof	orances.	,

1 This is my website

My website contains lists, headers of different levels, foot notes, links, images, tables, code blocks, math equations, and citations.

1.1 Lists

This is a list of items:

- Item 1
 - Item 11
 - Item 12
 - Item 13
- Item 3
- Item 2
- Item 3

This is a list of ordered items:

- 1. Item 1
 - 1. Item 2
 - 2. Item 3
- 2. Item 2
- 3. Item 3

1.2 Headers

This is a header of level 2

1.2.1 Header of level 3

1.3 Foot notes

This is a foot note¹

¹This is the text of the foot note

1.4 Links

This is a link to Google

1.5 Images

This is an image:

1.6 Tables

This is a table:

Header 1	Header 2	Header 3
Cell 1	Cell 2	Cell 3
Cell 4	Cell 5	Cell 6

1.7 Code blocks

This is a code block:

def function():
return 0

1.8 Math equations

This is a math equation:

$$e = mc^2 (1)$$

$$\frac{1}{2} = \frac{1}{3} + \frac{1}{6} \tag{2}$$

$$\lim_{x \to \infty} \exp(-x) = 0 \tag{3}$$

1.8.1 A Huge Equation

$$Q(\lambda, \hat{\lambda}) = -\frac{1}{2}P(O \mid \lambda) \sum_{s} \sum_{m} \sum_{t} \gamma_{m}^{(s)}$$
$$(t) \left(n \log(2\pi) + \log \left| C_{m}^{(s)} \right| + \left(\mathbf{o}_{t} - \hat{\mu}_{m}^{(s)} \right)^{T} C_{m}^{(s)-1} \left(\mathbf{o}_{t} - \hat{\mu}_{m}^{(s)} \right) \right)$$

$$1+1=2$$
$$2+2=4$$

$$y = ax^{2} + bx + c$$
$$= a(x + \frac{b}{2a})^{2} - \frac{b^{2}}{4a} + c$$

1.9 Citations

This is a citation [@emary2020 towards]

This is a reference to a figure fig. ??

2 References