北京大学数学科学学院期末考试

20 21 -20 22 学年第 二学期

考试科目:	概率统计 B	考试时间:	2022年6月23日
姓 名:_		学 号: _	
本试题共 _	<u>匕</u> 道大题,满分 <u>100</u> 分		

1. (12 分) 设二维随机变量 (X,Y) 的联合分布列如下表

Y X	0	1	2	3
0	0	0.01	0.01	0.01
1	0.01	0.02	0.03	0.02
2	0.03	0.04	0.05	0.04
3	0.05	0.05	0.05	0.06
4	0.07	0.06	0.05	0.06
5	0.09	0.08	0.06	0.05

试求条件期望 E(X|Y=2) 和 E(Y|X=0).

- 2. (18 分) 设从总体 $X \sim N(\mu_1, \sigma_1^2)$ 和总体 $Y \sim N(\mu_2, \sigma_2^2)$ 中分别抽取容量为 $n_1 = 10, n_2 = 15$ 的独立样本,计算得到 $\overline{x} = 82, s_x^2 = 56.5, \overline{y} = 76, s_y^2 = 52.4,$
 - (1). 在 $\alpha = 0.05$ 检验水平下,是否可以认为 σ_1^2 与 σ_2^2 显著不同.
 - (2). 求 σ_1^2/σ_2^2 的置信水平为 95% 的置信区间。
 - (3). 求 $\mu_1 \mu_2$ 的置信水平为 95% 的置信区间。
- 3. (15 分) 我们测量 30 个工件的长度(单位: cm)。测得样本均值为 9.952, 样本方差为 0.009019。已知测量值相互独立,服从一个完全未知的正态分布。
 - (a) 用最大似然估计法, 估计该正态分布的均值与方差。
 - (b) 试求均值的置信水平为 95% 的置信区间。
- 4. (18 分) 某生物实验室收集了 20 只小鼠的体重与某日的进食量的数据 (单位: g)。

x (小鼠体重/g)	22.0	26.9	18.4	24.0	19.3	21.0	28.5	24.5	21.7	25.5
y (单日进食量/g)	3.66	4.18	3.37	3.75	3.36	3.86	4.39	3.97	3.67	3.62
x (小鼠体重/g)	22.6	25.0	25.0	23.4	24.3	31.7	18.2	23.5	21.0	28.3
y (单日进食量/g)	3.76	4.28	3.67	3.86	3.86	4.82	3.20	3.87	3.71	4.21

(a) 用最小二乘法,求解回归直线 y = a + bx,其中 x 为小鼠体重,y 为单日进食量。

- (b) 求该回归模型中的复相关系数平方 (R^2) 。
- 5. (12 分) 设某次考试共 100 道选择题,每道题为 4 选 1 的单选题。设某考生一点也不懂,完全靠蒙(等概率地从四个选项里随机选一个),分别估算选对至少 20 道题和至少 40 题的概率。
- 6. (15 分) 有一批文物共 n 件,每种文物用两种方法测定年龄。第 i 件文物用方法一测定年龄 为 x_i ,用方法二测定年龄为 y_i ,($i=1,2,\cdots,n$). 不妨设每种测量方法给出的测量服从正态分布。
 - (1). 如果要检验两种测量方法是否有差异, 请给出你的统计方法?
 - (2). 如果 n = 12, 测得的数据如下,

```
384.2
           325.4
                   331.8
                           339.3
                                   393.2
                                                   338.2
                                                           338.8
                                                                  387.1
                                                                           370.1
                                                                                  336.4
                                                                                          336.2
                                           362.8
   401.2
                   361.7
                           389.2
                                   422.2
                                           402.8
                                                           309.2
                                                                  395.2
                                                                           358.3
                                                                                  406.5
                                                                                          344.4
           341.5
                                                   351.3
y
```

问在显著水平 $\alpha = 0.05$ 下,能否认为两种测量方法有显著差异?

7. (10 分) 假设未名湖的苍鹭每隔一个参数为 λ 的指数分布时间(单位: 天)会捉一条鱼,每次捉鱼的时间间隔独立同分布。张老师想要了解苍鹭每次捉鱼需要的平均时间 E[X],因此委托一位同学去现场记录。但该同学因为粗心没有记录每次时间间隔,仅仅记录了每天苍鹭捉鱼的条数 n_1, n_2, \cdots, n_m . 请利用目前现有的数据,构造一个 E[X] 的强相合估计。

附录:

- a. 标准正态分布上分位点: $z_{0.05} = 1.65$, $z_{0.025} = 1.96$, $z_{0.005} = 2.33$.
- b. t 分布上分位点: $t_{0.05}(9) = 1.833$, $t_{0.025}(9) = 2.262$, $t_{0.05}(10) = 1.812$, $t_{0.025}(10) = 2.228$, $t_{0.05}(11) = 1.796$, $t_{0.025}(11) = 2.201$, $t_{0.05}(12) = 1.782$, $t_{0.025}(12) = 2.179$, $t_{0.05}(14) = 1.761$, $t_{0.025}(14) = 2.145$, $t_{0.05}(15) = 1.753$, $t_{0.025}(15) = 2.131$, $t_{0.05}(23) = 1.714$, $t_{0.025}(23) = 2.069$, $t_{0.05}(24) = 1.711$, $t_{0.025}(24) = 2.064$, $t_{0.05}(25) = 1.708$, $t_{0.025}(25) = 2.060$, $t_{0.05}(29) = 1.699$, $t_{0.025}(29) = 2.045$, $t_{0.05}(30) = 1.697$, $t_{0.025}(30) = 2.042$.
- c. 卡方分布上分位点: $\chi^2_{0.025}(14) = 26.12$, $\chi^2_{0.05}(14) = 23.69$, $\chi^2_{0.95}(14) = 6.57$, $\chi^2_{0.975}(14) = 5.63$, $\chi^2_{0.025}(15) = 27.49$, $\chi^2_{0.05}(15) = 25.00$, $\chi^2_{0.95}(15) = 7.26$, $\chi^2_{0.975}(15) = 6.26$.
- d. F 分布上分位点: $F_{0.05}(9,14) = 2.646$, $F_{0.025}(9,14) = 3.209$, $F_{0.05}(14,9) = 3.025$, $F_{0.025}(14,9) = 3.798$, $F_{0.05}(9,15) = 2.588$, $F_{0.025}(9,15) = 3.123$, $F_{0.05}(15,9) = 3.006$, $F_{0.025}(15,9) = 3.769$, $F_{0.05}(10,14) = 2.602$, $F_{0.025}(10,14) = 3.147$, $F_{0.05}(14,10) = 2.865$, $F_{0.025}(14,10) = 3.550$, $F_{0.05}(10,15) = 2.544$, $F_{0.025}(10,15) = 3.060$, $F_{0.05}(15,10) = 2.845$, $F_{0.025}(15,10) = 3.522$.
- e. 指数分布 $\text{Exp}(\lambda): p(x) = \lambda e^{-\lambda x}, x \geq 0.$
- f. 正态分布 $N(\mu, \sigma^2): p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in (-\infty, +\infty).$