Anexe

A. Grafice

Figure 1. Grafic fraud_reported & incident_severity

Figure 2. Grafic fraud_reported & incident_state, incident_city

Figure 3. Grafic fraud_reported & number_of_vehicles_involved, witnesses, bodily_injuries

	number_of_vehi	_				ber_of_vehicles_involved	• ,
0	1		133	579)	22.971	13.327
1	2		9	36)	30	0.902
2	3		94	358	3	26.257	9.419
3	4		11	31	L	35.484	1.102
4	Column total		247	998	3	114.712	24.75
	bodily_injurie				ge by bodily_injuries	Percentage by Total	
0	0		80	339	23.599		
1	1		77	327	23.547	7.715	
2	2		90	332	27.108	9.018	
3	Column total		247	998	74.254	24.749	
	witnesses	fraud_reported			witnesses Percent		
0	0	50	249		20.08	5.01	
1	1	63	256	5	24.609	6.313	
2	2	74	256)	29.6	7.415	
3	3	60	243	3	24.691	6.012	
4	Column total	247	998	3	98.98	24.75	

Figure 4. Concordanță Figure 3

Figure 5. Grafic fraud_reported & auto_make, auto_year

Figure 6. Grafic fraud_reported & insured_age

 $Figure~7.~Grafic~fraud_reported~\&~policy_bind_year,~policy_deductable,~auto_year$

Figure 8. Grafic fraud_reported & incident_type

 $Figure~9.~Grafic~fraud_reported~\&~incident_severity,~authorities_contacted$

Figure 10. Grafic fraud_reported & insured_sex, insured_education_level, insured_age

Figure 11. Grafic fraud_reported & authorities_contacted, bodily_injuries, auto_make

Statisticile descriptive ale variabilelor calitative analizate: policy_bind_date insured_sex insured_education_level incident_date 998 998 998 998 count unique 949 2 7 60 1/1/2006 FEMALE JD top 2/2/2015 537 161 freq incident_type incident_severity authorities_contacted count 998 998 998 5 unique 4 4 Multi-vehicle Collision Minor Damage Police top freq 419 354 292 incident_state incident_city auto_make 998 998 998 count unique 7 7 14 top NY Springfield Saab freq 261 157 80

Figure 12. Statistici descriptive ale variabilelor calitative

Statisticile descriptive ale variabilelor cantitative analizate:					
	months_as_custome	r insured age	policy_numbe	r policy_bind_year	١
count	998.00000				
mean	203.91883	8 38.943888	546494.80260	5 2001.588176	
std	115.21492	0 9.148001	256884.29383	5 7.357591	
min	0.00000	0 19.000000	100804.00000	0 1990.000000	
25%	115.25000	0 32.000000	336188.75000	0 1995.000000	
50%	199.50000	0 38.000000	533135.00000	0 2002.000000	
75%	276.75000	0 44.000000	759819.25000	0 2008.000000	
max	479.00000	0 64.000000	999435.00000	0 2015.000000	
	policy deductable	insured co	d incident ye	ar \	
count	998.000000	_	_	•	
mean	1136.773547				
std	612.131133			.0	
min	500.000000				
25%	500.000000				
50%	1000.000000				
75%	2000.000000				
max	2000.000000				
	number_of_vehicle	s_involved bo	dily_injuries	witnesses \	
count	number_of_vehicle	s_involved boo	dily_injuries 998.000000	witnesses \ 998.000000	
count mean	number_of_vehicle	_			
	number_of_vehicle	998.000000	998.000000	998.000000	
mean	number_of_vehicle	998.000000 1.840681	998.000000 0.992986	998.000000 1.487976	
mean std	number_of_vehicle	998.000000 1.840681 1.019208	998.000000 0.992986 0.820347	998.000000 1.487976 1.112235	
mean std min	number_of_vehicle	998.000000 1.840681 1.019208 1.000000	998.000000 0.992986 0.820347 0.000000	998.000000 1.487976 1.112235 0.000000	
mean std min 25%	number_of_vehicle	998.000000 1.840681 1.019208 1.000000 1.000000	998.000000 0.992986 0.820347 0.000000 0.000000	998.000000 1.487976 1.112235 0.000000 1.000000	
mean std min 25% 50%	number_of_vehicle	998.000000 1.840681 1.019208 1.000000 1.000000	998.000000 0.992986 0.820347 0.000000 0.000000 1.000000	998.000000 1.487976 1.112235 0.000000 1.000000	
mean std min 25% 50% 75%		998.000000 1.840681 1.019208 1.000000 1.000000 1.000000 3.000000 4.000000	998.000000 0.992986 0.820347 0.000000 0.000000 1.000000 2.000000 2.000000	998.000000 1.487976 1.112235 0.000000 1.000000 1.000000 2.000000 3.000000	
mean std min 25% 50% 75% max	vehicle_price in	998.000000 1.840681 1.019208 1.000000 1.000000 1.000000 3.000000 4.000000	998.000000 0.992986 0.820347 0.000000 0.000000 1.000000 2.000000 2.000000	998.000000 1.487976 1.112235 0.000000 1.000000 1.000000 2.000000 3.000000	
mean std min 25% 50% 75% max	vehicle_price ir 998.000000	998.000000 1.840681 1.019208 1.000000 1.000000 1.000000 3.000000 4.000000 jury_claim 998.000000	998.000000 0.992986 0.820347 0.000000 0.000000 1.000000 2.000000 2.000000	998.000000 1.487976 1.112235 0.000000 1.000000 1.000000 2.000000 3.000000 ud_reported 998.000000	
mean std min 25% 50% 75% max count mean	vehicle_price ir 998.000000 52862.668337	998.000000 1.840681 1.019208 1.000000 1.000000 3.000000 4.0000000 jury_claim 998.000000 998.000000	998.000000 0.992986 0.820347 0.000000 1.000000 2.000000 2.000000 auto_year fra 98.000000 05.112224	998.000000 1.487976 1.112235 0.000000 1.000000 2.000000 3.000000 ud_reported 998.000000 0.247495	
mean std min 25% 50% 75% max count mean std	vehicle_price ir 998.000000 52862.668337 7 26341.916289 4	998.000000 1.840681 1.019208 1.000000 1.000000 1.000000 3.000000 4.000000 jury_claim 998.000000 998.000000 998.75.062211	998.000000 0.992986 0.820347 0.000000 1.000000 2.000000 2.000000 auto_year fra 98.000000 05.112224 6.017980	998.000000 1.487976 1.112235 0.000000 1.000000 1.000000 2.000000 3.000000 ud_reported 998.000000 0.247495 0.431773	
mean std min 25% 50% 75% max count mean std min	vehicle_price ir 998.000000 52862.668337 7 26341.916289 100.000000	998.000000 1.840681 1.019208 1.000000 1.000000 1.000000 3.000000 4.000000 jury_claim 998.000000 9947.915832 200 875.062211 0.000000 199	998.000000 0.992986 0.820347 0.000000 0.000000 1.000000 2.000000 2.000000 auto_year fra 98.000000 05.112224 6.017980 95.000000	998.000000 1.487976 1.112235 0.000000 1.000000 1.000000 2.000000 3.000000 ud_reported 998.000000 0.247495 0.431773 0.000000	
mean std min 25% 50% 75% max count mean std min 25%	vehicle_price ir 998.000000 52862.668337 26341.916289 100.000000 42060.000000	998.000000 1.840681 1.019208 1.000000 1.000000 3.000000 4.000000 jury_claim 998.000000 9447.915832 875.062211 0.000000 1998.347.500000 200	998.000000 0.992986 0.820347 0.000000 0.000000 1.000000 2.000000 2.000000 auto_year fra 98.000000 05.112224 6.017980 95.000000 00.000000	998.000000 1.487976 1.112235 0.000000 1.000000 1.000000 2.000000 3.000000 ud_reported 998.000000 0.247495 0.431773 0.000000 0.000000	
mean std min 25% 50% 75% max count mean std min 25% 50%	vehicle_price in 998.000000 52862.668337 726341.916289 42060.000000 42060.0000000 58150.0000000 6	998.000000 1.840681 1.019208 1.000000 1.000000 1.000000 3.000000 4.000000 jury_claim 998.000000 9447.915832 875.062211 0.000000 199.347.500000 200.780.000000	998.000000 0.992986 0.820347 0.000000 0.000000 1.000000 2.000000 2.000000 auto_year fra 98.000000 05.112224 6.017980 95.000000 00.000000 05.000000	998.000000 1.487976 1.112235 0.000000 1.000000 1.000000 2.000000 3.000000 ud_reported 998.000000 0.247495 0.431773 0.000000 0.000000 0.000000	
mean std min 25% 50% 75% max count mean std min 25%	vehicle_price ir 998.000000 52862.668337 26341.916289 100.000000 42060.000000 58150.000000 70597.500000	998.000000 1.840681 1.019208 1.000000 1.000000 1.000000 3.000000 4.000000 jury_claim 998.000000 99447.915832 875.062211 0.000000 199347.500000 200315.0000000 200315.0000000	998.000000 0.992986 0.820347 0.000000 0.000000 1.000000 2.000000 2.000000 auto_year fra 98.000000 05.112224 6.017980 95.000000 00.000000	998.000000 1.487976 1.112235 0.000000 1.000000 1.000000 2.000000 3.000000 ud_reported 998.000000 0.247495 0.431773 0.000000 0.000000	

Figure 13. Statistici descriptive pentru variabilele cantitative

	Feature	Chi2 val	p-val
25	fraud_reported	992.638	7.15385e-218
14	incident_severity	263.339	8.52087e-57
13	incident_type	28.9289	2.31777e-06
15	authorities_contacted	26.1979	2.88662e-05
16	incident state	15.8894	0.01436

Figure 14.Testul Chi2, variabile semnificative

	Feature	Chi2 val	p-val
14	incident_severity	263.339	8.52087e-57
13	incident_type	28.9289	2.31777e-06
15	authorities_contacted	26.1979	2.88662e-05
16	incident_state	15.8894	0.01436
4	policy_bind_month	17.3495	0.0979548
20	witnesses	6.07609	0.107966
0	months_as_customer	420.255	0.140026
12	incident_day	35.8724	0.212285
1	insured_age	50.8275	0.254878
24	auto_year	23.1253	0.282686
18	number_of_vehicles_involved	3.78261	0.285916
8	insured_sex	0.887957	0.346032
23	auto_make	13.6545	0.398621
11	incident_month	1.81947	0.402632
22	injury_claim	643.985	0.415409
21	vehicle_price	767.833	0.434042
19	bodily_injuries	1.48669	0.475521
2	policy_number	998	0.485117
6	policy_deductable	1.4389	0.48702
7	insured_cod	989.946	0.512436
5	policy_bind_day	28.0008	0.570394
17	incident_city	2.55489	0.862274
3	policy_bind_year	16.4699	0.900115
9	insured_education_level	1.67954	0.94669
10	incident_year	0	1

Figure 15. Testul Chi2 după transformarea variabilelor calitative în variabile cantitative

Feature	Pearson Correlation
vehicle price	0.162046
injury_claim	0.0894998
policy bind day	0.0619822
number_of_vehicles_involved	0.0509445
witnesses	0.049019
bodily_injuries	0.0332231
authorities_contacted	0.0244087
months_as_customer	0.0207278
insured_cod	0.0186045
insured_education_level	0.0159814
policy_deductable	0.0141055
insured_age	0.0124072
auto_year	0.00705648
policy_bind_year	0.00117465
incident_month	-0.0277771
auto_make	-0.0285756
policy_number	-0.0300747
insured_sex	-0.032157
policy_bind_month	-0.0350476
incident_city	-0.0401401
incident_day	-0.0459591
incident_type	-0.0490672
incident_state	-0.0513568
incident_severity	-0.405426
incident_year	nan

Figure 16. Coeficientul de corelație Pearson

B. Script Python

#Instalarea pachetelor si importul librariilor ce vor fi utilizate

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%pip install seaborn

import seaborn as sns

import time

%pip install pandasql

from pandasql import sqldf

%pip install imblearn

from imblearn.over_sampling import SMOTE

import scipy.stats as stats

%pip install tabulate

from tabulate import tabulate

%pip install xgboost

from xgboost import XGBClassifier

from xgboost import plot_tree

from xgboost import plot_importance

%pip install hyperopt

from hyperopt import STATUS_OK, Trials, fmin, hp, tpe

import hyperopt.pyll

from hyperopt.pyll import scope

%pip install hpsklearn

from hpsklearn import HyperoptEstimator

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot_tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_validate
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
%pip install category_encoders
from category_encoders.ordinal import OrdinalEncoder
from category_encoders.binary import BinaryEncoder
from category_encoders.one_hot import OneHotEncoder
from IPython.display import display
#Importarea setului de date
df = pd.read_csv("pjSda.csv")
print('The data contains ', len(df),' observations.')
print(df.head())
#Prezentarea tipului datelor utilizate
print(df.dtypes)
#Valorile unice
print('months_as_customer',df['months_as_customer'].unique())
print('insured_age',df['insured_age'].unique())
```

%pip install sklearn

```
print('policy_number',df['policy_number'].unique())
   print('policy_bind_date',df['policy_bind_date'].unique())
   print('policy_bind_year',df['policy_bind_year'].unique())
   print('policy_deductable',df['policy_deductable'].unique())
   print('insured_cod',df['insured_cod'].unique())
   print('insured_sex',df['insured_sex'].unique())
   print('insured_education_level',df['insured_education_level'].unique())
   print('incident_date',df['incident_date'].unique())
   print('incident year',df['incident year'].unique())
   print('incident_type',df['incident_type'].unique())
   print('incident_severity',df['incident_severity'].unique())
   print('authorities_contacted',df['authorities_contacted'].unique())
   print('incident_state',df['incident_state'].unique())
   print('incident_city',df['incident_city'].unique())
   print('number_of_vehicles_involved',df['number_of_vehicles_involved'].unique())
   print('bodily_injuries',df['bodily_injuries'].unique())
   print('witnesses',df['witnesses'].unique())
   print('vehicle_price',df['vehicle_price'].unique())
   print('injury_claim', df['injury_claim'].unique())
   print('auto_make',df['auto_make'].unique())
   print('auto_year',df['auto_year'].unique())
   print('fraud reported',df['fraud reported'].unique())
   #Investigarea valorilor nule in insured_education_level, vehicle_price,
                                                                                        auto_year,
number of vehicles involved
   print('insured_education_level has ', len(df.loc[(df['insured_education_level']=='NA')]), '
row(s) with a NA')
```

```
print('vehicle_price has ',len(df.loc[(df['vehicle_price']=='NA')]),' row(s) with a NA')
   print('auto_year has ',len(df.loc[(df['auto_year']=='NA')]),' row(s) with a NA')
   print('number_of_vehicles_involved
                                                                                               has
',len(df.loc[(df['number_of_vehicles_involved']=='NA')]),' row(s) with a NA')
   print(' ')
   print(df.loc[(df['insured education level']==' NA')])
   print(df.loc[(df['vehicle_price']=='NA')])
   print(df.loc[(df['auto_make']=='NA')])
   print(df.loc[(df['number_of_vehicles_involved']=='NA')])
   #Renuntam la randurile 916 si 990, creand un nou data frame
   df2 = df.loc[df['insured_education_level']!='NA']
   #Pentru coloana Vehicle price, randul 13 com inlocui valoarea lipsa cu media preturilor
autovehiculelor
   df2_vehicle_price_idx = (df2['vehicle_price']==0)
   df2.loc[list(df2_vehicle_price_idx),'df2_vehicle_price_idx']=52863
   #Verificam daca exista dubluri
   print(len(df2.drop_duplicates())==len(df2))
   #Statistici descriptive
   print('Statisticile descriptive ale variabilelor cantitative analizate:')
   print (df2.describe())
   print('Statisticile descriptive ale variabilelor calitative analizate:')
   print (df2.describe(include=['object']))
   #Relatia dintre variabile - testul chi2
   df2_chi_result = []
   for feat in df2.columns:
```

```
chi2 val,
                             dof2,
                                                    stats.chi2_contingency(pd.crosstab(df2[feat],
                  p_val,
                                       ex1
df2['fraud reported']))
     df2_chi_result.append([feat, chi2_val, p_val])
  chi_df = pd.DataFrame(df2_chi_result, columns=['Features', 'Chi2 val', 'p-val'])
  chi_df.sort_values(by='p-val', ascending=True, inplace=True)
  #Pastram doar variabilele relevante, cu un p-val < 0.05
  print(tabulate(chi_df[chi_df['p-val'] < 0.05], headers=['Feature', 'Chi2 val', 'p-val']))
  #Grafic - fraud_reported & incident_severity
  gpd_val1=df2.groupby('incident_severity').agg({'fraud_reported':'sum'}).reset_index()
  gpd_val2=df2.groupby('incident_severity').agg('count').reset_index()
  fig, (ax1,ax2) = plt.subplots(2,1,figsize=(22, 6))
  sns.barplot(x='incident_severity', y='fraud_reported', data = gpd_val1, ax=ax1)
  sns.barplot(x='incident_severity', y='fraud_reported', data=gpd_val2, ax=ax2)
  ax2.set(ylabel='Total counts')
  plt.show()
  total_list
                           pd.concat([gpd_val1,
                                                        gpd_val2['fraud_reported'].rename('Total
Accidents')],axis=1)
  total list
                                                        gpd_val2['fraud_reported'].rename('Total
                           pd.concat([gpd_val1,
Accidents')],axis=1)
  total list['Percentage
                                                                              incident severity']=
                                                 by
round((total_list['fraud_reported']/total_list['Total Accidents'])*100,3)
  total_list['Percentage by Total'] = round((total_list['fraud_reported']/sum(total_list['Total
Accidents']))*100,3)
  ax2.set(ylabel='Total counts')
  plt.show()
  #Grafic - fraud_reported & incident_state,incident_city
  gpd_val3=df2.groupby('incident_state').agg({'fraud_reported':'sum'}).reset_index()
```

```
gpd_val4=df2.groupby('incident_state').agg('count').reset_index()
   gpd_val5=df2.groupby('incident_city').agg({'fraud_reported':'sum'}).reset_index()
   gpd_val6=df2.groupby('incident_city').agg('count').reset_index()
   fig, (ax1, ax3) = plt.subplots(1,2,figsize=(22, 6))
   sns.barplot(x='incident_state', y='fraud_reported', data = gpd_val3, ax=ax1)
   sns.barplot(x='incident_state', y='fraud_reported', data = gpd_val4, ax=ax2)
   sns.barplot(x='incident_city', y='fraud_reported', data = gpd_val5, ax=ax3)
   sns.barplot(x='incident city', y='fraud reported', data = gpd val6, ax=ax4)
   plt.show()
   total list1
                            pd.concat([gpd_val3,
                                                         gpd_val4['fraud_reported'].rename('Total
Accidents')],axis=1)
   total_list1['Percentage
                                                                 Incident
                                                                                           state']=
                                            by
round((total_list1['fraud_reported']/total_list1['Total Accidents'])*100,3)
   total_list1['Percentage by Total'] = round((total_list1['fraud_reported']/sum(total_list1['Total
Accidents']))*100,3)
   total list2
                            pd.concat([gpd_val5,
                                                         gpd_val6['fraud_reported'].rename('Total
Accidents')],axis=1)
   total_list2['Percentage by Incident city']= round((total_list2['fraud_reported']/total_list2['Total
Accidents'])*100,3)
   total_list2['Percentage by Total'] = round((total_list2['fraud_reported']/sum(total_list2['Total
Accidents']))*100,3)
   data1 = [['Column total'],
   [sum(total_list1['fraud_reported'])],
   [sum(total_list1['Total Accidents'])],
   [sum(total_list1['Percentage by Incident state'])],
   [sum(total_list1['Percentage by Total'])]]
   data2 = [['Column total'],
```

```
[sum(total_list2['fraud_reported'])],
  [sum(total_list2['Total Accidents'])],
  [sum(total_list2['Percentage by Incident city'])],
  [sum(total_list2['Percentage by Total'])]]
  nr1 = pd.DataFrame(data1)
  nr1 = nr1.transpose()
  nr1.rename(columns={0:'incident_state',1:'fraud_reported',2:'Total Accidents',3:'Percentage
by Incident state',4:'Percentage by Total'}, inplace=True)
  tl1=pd.concat([total_list1,nr1],ignore_index=True)
  nr2 = pd.DataFrame(data2)
  nr2 = nr2.transpose()
  nr2.rename(columns={0:'incident_city',1:'fraud_reported',2:'Total Accidents',3:'Percentage by
Incident city',4:'Percentage by Total'}, inplace=True)
  tl2=pd.concat([total_list2,nr2],ignore_index=True)
  print(tabulate(tl1, headers=tl1.columns))
  print(' ')
  print(tabulate(tl2, headers=tl2.columns))
  #Grafic - fraud_reported & number_of_vehicles_involved,bodily_injuries,witnesses
  gpd val1
                             df2.groupby('number_of_vehicles_involved').agg({'fraud_reported':
'sum'}).reset_index()
  gpd_val2 = df2.groupby('bodily_injuries').agg({'fraud_reported': 'sum'}).reset_index()
  gpd_val3 = df2.groupby('witnesses').agg({'fraud_reported': 'sum'}).reset_index()
  gpd_valc1 = df2.groupby('number_of_vehicles_involved').agg('count').reset_index()
  gpd_valc2 = df2.groupby('bodily_injuries').agg('count').reset_index()
  gpd_valc3 = df2.groupby('witnesses').agg('count').reset_index()
  fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(22, 6))
```

```
sns.barplot(x='number_of_vehicles_involved', y='fraud_reported', data=gpd_val1, ax=ax1)
  sns.barplot(x='bodily_injuries', y='fraud_reported', data=gpd_val2, ax=ax3)
  sns.barplot(x='witnesses', y='fraud_reported', data=gpd_val3, ax=ax2)
  plt.show()
  part_list = [gpd_val1, gpd_val2, gpd_val3]
  counts_lst = [gpd_valc1, gpd_valc2, gpd_valc3]
  srch_gp = ['number_of_vehicles_involved', 'bodily_injuries', 'witnesses']
  total list = []
  for i in range(len(counts lst)):
     temp1 = counts_lst[i]
     gby = srch_gp[i]
     temp2 = pd.concat([part list[i], temp1['fraud reported'].rename('Total Accidents')], axis=1)
     temp2['Percentage by {}'.format(gby)] = round((temp2['fraud_reported'] / temp2['Total
Accidents']) * 100, 3)
     temp2['Percentage by Total'] = round((temp2['fraud_reported'] / sum(temp2['Total
Accidents'])) * 100, 3)
                        [['Column
                                       total'],[sum(temp2['fraud reported'])],[sum(temp2['Total
     temp3
Accidents'])],[sum(temp2['Percentage by {}'.format(gby)])],[sum(temp2['Percentage by Total'])]]
     nr1 = pd.DataFrame(temp3)
     nr1 = nr1.transpose()
     nr1.rename(columns={0: '{}'.format(gby), 1: 'fraud_reported', 2: 'Total Accidents', 3:
'Percentage by {}'.format(gby),4: 'Percentage by Total'}, inplace=True)
     total_list.append(pd.concat([temp2, nr1], ignore_index=True))
  for ii in range(len(total_list)):
     print(tabulate(total_list[ii], headers=total_list[ii].columns))
     print(' ')
  #Grafic -fraud_reported & auto_make, auto_year
```

```
gpd_val1=df2.groupby('auto_make').agg({'fraud_reported':'sum'}).reset_index()
  gpd_val2=df2.groupby('auto_year').agg({'fraud_reported':'sum'}).reset_index()
  fig, (ax1,ax2) = plt.subplots(1,2,figsize=(22, 6))
  grph1=sns.barplot(x='auto_make', y='fraud_reported', data = gpd_val1, ax=ax1)
  sns.barplot(x='auto_year', y='fraud_reported', data = gpd_val2, ax=ax2)
  grph1.set_xticklabels(grph1.get_xticklabels(),rotation=45,horizontalalignment='right')
  plt.show()
  #Grafic -fraud reported & insured age
  gpd val1 = df2.groupby('insured age').agg({'fraud reported': 'sum'}).reset index()
  gpd_val2 = df2.groupby('insured_age').agg('count').reset_index()
  fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(22, 6))
  sns.barplot(x='insured age', y='fraud reported', data=gpd val1, ax=ax1)
  sns.barplot(x='insured_age', y='fraud_reported', data=gpd_val2, ax=ax2)
  plt.show()
  total_list = pd.concat([gpd_val1, gpd_val2['fraud_reported'].rename('Total Accidents')],
axis=1)
  total_list['Percentage by insured_age'] = round((total_list['fraud_reported'] / total_list['Total
Accidents']) * 100, 3)
  total list['Percentage by Total'] = round((total list['fraud reported'] / sum(total list['Total
Accidents'])) * 100, 3)
  ax2.set(ylabel='Total counts')
  data = [['Column total'],
  [sum(total_list['fraud_reported'])],
  [sum(total_list['Total Accidents'])],
  [sum(total_list['Percentage by insured_age'])],
  [sum(total_list['Percentage by Total'])]]
```

```
nr = pd.DataFrame(data)
  nr1 = nr.transpose()
  nr1.rename(columns={0: 'Make', 1: 'fraud_reported', 2: 'Total Accidents', 3: 'Percentage by
insured_age', 4: 'Percentage by Total'},inplace=True)
  pd.concat([total_list, nr1], ignore_index=True)
  print(tabulate(total list, headers=total list.columns))
  #Grafic -fraud_reported & policy_bind_year, policy_deductable, auto_year
  gpd_val1=df2.groupby('policy_bind_year').agg({'fraud_reported':'sum'}).reset_index()
  gpd_val2=df2.groupby('policy_deductable').agg({'fraud_reported':'sum'}).reset_index()
  gpd_val3=df2.groupby('auto_year').agg({'fraud_reported':'sum'}).reset_index()
  fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(22, 6))
  sns.barplot(x='policy_bind_year', y='fraud_reported', data = gpd_val1, ax=ax1)
  grph2 = sns.barplot(x='policy_deductable', y='fraud_reported', data = gpd_val2, ax=ax2)
  sns.barplot(x='auto_year', y='fraud_reported', data = gpd_val3, ax=ax3)
  grph2.set_xticklabels(grph2.get_xticklabels(),rotation=45,horizontalalignment='right')
  plt.show()
  gpd_val1=df2.groupby('policy_bind_year').agg({'fraud_reported':'sum'}).reset_index()
  gpd_val2=df2.groupby('policy_deductable').agg({'fraud_reported':'sum'}).reset_index()
  gpd_val3=df2.groupby('auto_year').agg({'fraud_reported':'sum'}).reset_index()
  fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(22, 6))
  sns.barplot(x='policy_bind_year', y='fraud_reported', data = gpd_val1, ax=ax1)
  sns.barplot(x='policy_deductable', y='fraud_reported', data = gpd_val2, ax=ax2)
  grph1 = sns.barplot(x='auto_year', y='fraud_reported', data = gpd_val3, ax=ax3)
  grph1.set_xticklabels(grph1.get_xticklabels(),rotation=45,horizontalalignment='right')
  plt.show()
```

```
#Grafic - fraud_reported & incident_type
gpd_val1=df2.groupby('incident_type').agg({'fraud_reported':'sum'}).reset_index()
print(gpd_val1['fraud_reported'].sum(), 'cases with fraud reported')
fig, (ax1) = plt.subplots(1,1,figsize=(22, 8))
grph1=sns.barplot(x='incident_type', y='fraud_reported', data = gpd_val1, ax=ax1)
grph1.set_xticklabels(grph1.get_xticklabels(),
rotation=45,horizontalalignment='right')
plt.show()
#Grafic - fraud reported & incident severity, authorities contacted
gpd_val1=df2.groupby('incident_severity').agg({'fraud_reported':'sum'}).reset_index()
gpd_val2=df2.groupby('authorities_contacted').agg({'fraud_reported':'sum'}).reset_index()
fig, (ax1,ax2) = plt.subplots(1,2,figsize=(22, 6))
sns.barplot(x='incident_severity', y='fraud_reported', data = gpd_val1, ax=ax1)
sns.barplot(x='authorities_contacted', y='fraud_reported', data = gpd_val2, ax=ax2)
plt.show()
#Grafic - fraud_reported & insured_sex, insured_education_level, insured_age
gpd_val1=df2.groupby('insured_sex').agg({'fraud_reported':'sum'}).reset_index()
gpd_val2=df2.groupby('insured_education_level').agg({'fraud_reported':'sum'}).reset_index()
gpd_val3=df2.groupby('insured_age').agg({'fraud_reported':'sum'}).reset_index()
fig, (ax1,ax2,ax3) = plt.subplots(1,3,figsize=(22, 6))
sns.barplot(x='insured_sex', y='fraud_reported', data = gpd_val1, ax=ax1)
sns.barplot(x='insured_education_level', y='fraud_reported', data = gpd_val2, ax=ax2)
sns.barplot(x='insured_age', y='fraud_reported', data = gpd_val3, ax=ax3)
plt.show()
#Grafic - fraud_reported & authorities_contacted, bodily_injuries, auto_make
```

```
gpd_val1=df2.groupby('authorities_contacted').agg({'fraud_reported':'sum'}).reset_index()
gpd_val2=df2.groupby('bodily_injuries').agg({'fraud_reported':'sum'}).reset_index()
gpd_val3=df2.groupby('auto_make').agg({'fraud_reported':'sum'}).reset_index()
fig, (ax1,ax2,ax3) = plt.subplots(3,1,figsize=(22, 6))
sns.barplot(x='authorities_contacted', y='fraud_reported', data = gpd_val1, ax=ax1)
sns.barplot(x='bodily_injuries', y='fraud_reported', data = gpd_val2, ax=ax2)
sns.barplot(x='auto_make', y='fraud_reported', data = gpd_val3, ax=ax3)
plt.show()
#Vom elimina variabila dependenta
X=df2.drop('fraud_reported',axis=1).copy()
y=df2['fraud_reported'].copy()
#Vom codifica datelor calitative
#Pentru variabila insured_sex, unde valorile se incadreaza in intervalul {FEMALE, MALE}
cols=['insured_sex']
y_val = [FEMALE']
x_val = ['MALE']
for i in range(len(cols)):
  X_{idx1} = X[cols[i]] == y_val[i]
  X_{idx2} = X[cols[i]] == x_val[i]
  X.loc[list(X_idx1),cols[i]]=1
  X.loc[list(X_idx2),cols[i]]=0
for i in range(len(cols)):
  X[cols[i]] = X[cols[i]].astype('int')
print(X.dtypes)
#Pentru variabilele calitative cu mai mult de 2 alternative de raspuns
```

```
#insured_education_level,incident_type,incident_severity,authorities_contacted,incident_state
,incident_city,auto_make
                                      [{'insured_education_level':{'Associate':1,'College':2,'High
  col_map
School':3,'JD':4,'Masters':5,'MD':6,'PhD':7}},
                                          Collision': 1, 'Parked
                                                                     Car':2,'Single
                                                                                          Vehicle
   {'incident_type':{'Multi-vehicle
Collision':3,'Vehicle Theft':4}},
  {'incident_severity':{'Major Damage':1,'Minor Damage':2,'Total Loss':3,'Trivial Damage':4}},
  {'authorities_contacted':{'Ambulance':1,'Fire':2,'None':0,'Other':4,'Police':5}},
   {'incident_state':{'NC':1,'NY':2,'OH':3,'PA':4,'SC':5,'VA':6,'WV':7}},
   {'incident city':{'Arlington':1,'Columbus':2,'Hillsdale':3,'Northbend':4,'Northbrook':5,'Riverw
ood':6,'Springfield':7}},
   {'auto_make':{'Accura':1,'Audi':2,'BMW':3,'Chevrolet':4,'Dodge':5,'Ford':6,'Honda':7,'Jeep':8,'
Mercedes':9,'Nissan':10,'Saab':11,'Suburu':12,'Toyota':13,'Volkswagen':14}}]
  X2 = X.copy()
  for i in range(len(col_map)):
     X2.replace(col_map[i], inplace=True)
  #Testul Chi2
  chi_result=[]
  for feat in X2.columns:
     chi2, p, dof, ex = stats.chi2_contingency(pd.crosstab(X2[feat], y))
     chi_result.append([feat,chi2,p])
     ch_df = pd.DataFrame(chi_result, columns=['Feature', 'Chi2 val', 'p-val'])
     ch_df.sort_values(by=['p-val'], inplace=True)
  print(tabulate(ch_df, headers=['Feature', 'Chi2 val', 'p-val']))
  tempy_x2 = pd.DataFrame(X2.corrwith(y,axis=0).sort_values(ascending=False))
  #Coeficientul de Corelatie Pearson
  print(tabulate(tempy_x2, headers=['Feature', 'Pearson Correlation']))
```

```
#Impartirea in testing set si training set
  X_train, X_test, y_train, y_test = train_test_split(X2, y,stratify=y, random_state=42)
  clf_dt_m1 = DecisionTreeClassifier(random_state=42)
  clf_dt1 = clf_dt_m1.fit(X_train, y_train)
  #Arbore decizional preliminar
  y_pred_gini = clf_dt1.predict(X_test)
  print('Gini stats')
  print("Accuracy:",metrics.accuracy_score(y_test, y_pred_gini))
  print("balanced accuracy:",metrics.balanced accuracy score(y test, y pred gini))
  print("brier_score_loss:",metrics.brier_score_loss(y_test, y_pred_gini))
  print("f1_score:",metrics.f1_score(y_test,y_pred_gini))
  print("recall score:",metrics.recall score(y test, y pred gini))
  print("precision_score:",metrics.precision_score(y_test, y_pred_gini))
  print("roc_auc_score:",metrics.roc_auc_score(y_test, y_pred_gini))
  precision, recall, thresholds = metrics.precision_recall_curve(y_test, y_pred_gini)
  #Matricea de confuzie - arbore de decizie
  fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 7))
  fig.tight_layout(pad=5.0)
  metrics.plot_confusion_matrix(clf_dt1, X_test, y_test, display_labels=["Not Fraudulent
Claim", "Fraudulent Claim"], ax=ax1)
  tn, fp, fn, tp = metrics.confusion_matrix(y_test, y_pred_gini).ravel()
  plt.show()
  ax2.step(recall, precision, color='b', alpha=0.2, where='post')
  ax2.fill_between(recall, precision, step='post', alpha=0.2, color='b')
  ax2.set_xlabel('Recall')
```

```
ax2.set_ylabel('Precision')
ax2.set_ylim([0.0, 1.05])
ax2.set_xlim([-0.005, 1.0])
ax2.set_title('Precision-Recall curve:')
print('True Negatives:', tn)
print('False Postives:', fp)
print('False Negatives:', fn)
print('True Positive:', tp)
print('Recall:', tp/(fn+tp))
print('Precision:', tp/(fp+tp))
print('Prevalence:', (fn+tp)/(tn+fp+fn+tp))
# Compararea modelelor - Decision Trees, Random Forest, AdaBoost, and XGBoost
classifiers = {
  'DecisionTreeClassifier': DecisionTreeClassifier(random_state=42),
  'RandomForestClassifier': RandomForestClassifier(),
  'AdaBoostClassifier': AdaBoostClassifier(),
  "XGBClassifier": XGBClassifier(use_label_encoder=False,
objective='binary:logistic', eval_metric='aucpr'),
}
df_models = pd.DataFrame(columns=['model',
                     'run_time',
                     'avg_accy',
```

```
'avg_recall',
                     'avg_recall_std',
                     'avg_precision',
                     'avg_precision_std',
                     'avg_f1',
                     'avg_f1_std',
                     'avg_matthew_corcoef',
                     'avg_matthew_corcoef_std',
                     'avg_roc_auc',
                     'avg_roc_auc_std',
])
scorer = {'accuracy_score': metrics.make_scorer(metrics.accuracy_score),
'f1_score': metrics.make_scorer(metrics.f1_score),
'recall_score': metrics.make_scorer(metrics.recall_score),
'precision_score':
metrics.make_scorer(metrics.average_precision_score),
'matthew_corrcoef':
metrics.make_scorer(metrics.matthews_corrcoef),
'roc_auc_score': metrics.make_scorer(metrics.roc_auc_score)
}
for key in classifiers:
  print('*', key)
  start_time = time.time()
  classifier = classifiers[key]
```

'avg_accy_std',

```
model = classifier.fit(X_train, y_train)
  cvs = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=42)
  cv_scores = cross_validate(model, X_test, y_test, cv=cvs, scoring=scorer)
  y_pred = model.predict(X_test)
  row = {
      'model': key,
      'run_time': format(round((time.time() - start_time) / 60, 2)),
      'avg_accy': cv_scores['test_accuracy_score'].mean(),
      'avg accy std': cv scores['test accuracy score'].std(),
      'avg_recall': cv_scores['test_recall_score'].mean(),
      'avg_recall_std': cv_scores['test_recall_score'].std(),
      'avg precision': cv scores['test precision score'].mean(),
      'avg_precision_std': cv_scores['test_precision_score'].std(),
      'avg_f1': cv_scores['test_f1_score'].mean(),
      'avg_f1_std': cv_scores['test_f1_score'].std(),
      'avg_matthew_corcoef': cv_scores['test_matthew_corrcoef'].mean(),
      'avg_matthew_corcoef_std':
cv_scores['test_matthew_corrcoef'].std(),
'avg_roc_auc': cv_scores['test_roc_auc_score'].mean(),
'avg_roc_auc_std': cv_scores['test_roc_auc_score'].std(),
df models = df models.append(row, ignore index=True)
print(df_models)
#Aplicarea SMOTE si compararea modelelor
sm = SMOTE(random_state=42)
```

}

```
X_train_res, y_train_res = sm.fit_resample(X_train, y_train)
print(y_train.value_counts())
print(y_train_res.value_counts())
df_models_smote = pd.DataFrame(columns=['model',
                         'run_time',
                         'avg_accy',
                        'avg_accy_std',
                         'avg_recall',
                         'avg_recall_std',
                         'avg_precision',
                         'avg_precision_std',
                         'avg_f1',
                         'avg_f1_std',
                         'avg_matthew_corcoef',
                         'avg_matthew_corcoef_std',
                         'avg_roc_auc',
                         'avg_roc_auc_std',
                        1)
scorer = {'accuracy_score': metrics.make_scorer(metrics.accuracy_score),
      'f1_score': metrics.make_scorer(metrics.f1_score),
      'recall_score': metrics.make_scorer(metrics.recall_score),
      'precision_score': metrics.make_scorer(metrics.precision_score),
      'matthew_corrcoef': metrics.make_scorer(metrics.matthews_corrcoef),
      'roc_auc_score': metrics.make_scorer(metrics.roc_auc_score)
     }
```

```
for key in classifiers:
     print('*', key)
     start_time = time.time()
     classifier = classifiers[key]
     model = classifier.fit(X_train_res, y_train_res) # <--- pass the SMOTE generate training
data set
     #scorer = metrics.make_scorer(metrics.recall_score)
     #cv_scores = cross_val_score(model, X_test, y_test, cv=5, scoring=scorer)
     cvs = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=42)
     cv_scores = cross_validate(model, X_test, y_test, cv=cvs,scoring=scorer) # <--- tested the
SMOTE trained model on original testing data
     y_pred = model.predict(X_test)
     print(model.get_params())
     row = {
       'model': key,
       'run_time': format(round((time.time() - start_time) / 60, 2)),
       'avg_accy': cv_scores['test_accuracy_score'].mean(),
       'avg_accy_std': cv_scores['test_accuracy_score'].std(),
       'avg_recall': cv_scores['test_recall_score'].mean(),
       'avg_recall_std': cv_scores['test_recall_score'].std(),
       'avg_precision': cv_scores['test_precision_score'].mean(),
       'avg_precision_std': cv_scores['test_precision_score'].std(),
       'avg_f1': cv_scores['test_f1_score'].mean(),
       'avg_f1_std': cv_scores['test_f1_score'].std(),
       'avg_matthew_corcoef': cv_scores['test_matthew_corrcoef'].mean(),
       'avg_matthew_corcoef_std': cv_scores['test_matthew_corrcoef'].std(),
```

```
'avg_roc_auc': cv_scores['test_roc_auc_score'].mean(),
    'avg_roc_auc_std': cv_scores['test_roc_auc_score'].std(),
}
df_models_smote = df_models_smote.append(row, ignore_index=True)
print(df_models.head())
print(df_models_smote.head())
print(tabulate(df_models, headers=df_models.columns))
print(tabulate(df_models_smote, headers=df_models_smote.columns))
```