

Martin M. Monti UCLA Psychology

NITP 2015

TYPICAL DATASET

TYPICAL DATASET Run Volume Time

TYPICAL FMRI ANALYSIS SEQUENCE

Image Pre-processing

Single Subject Analysis

Group Analysis

PREPROCESSING: WHAT/WHY?

Preprocessing is a series of data transformations ("data conditioning") aimed at reducing sources of noise

Sources of noise in FMRI

1. Hardware & acquisition related:

Thermal noise (intrinsic noise)

System noise

Field inhomogeneities

Slice acquisition timing

2. Subject related

Oscillatory physiological noise (heartbeat, respiration)

Field inhomogeneities

Head motion

Psychological (alertness, learning)

3. White noise

CORRECTING FOR NOISE IN FMRI

- 1. Before scanning (maximize SNR):
 - i. Choose good technology (field strength, coils, ...)
 - ii. Choose good sequence (TE, voxel size, ...)
 - iii. Be informed about the healthy of your scanner (QA)
- 2. After scanning (detect & correct):
 - i. Look at your data (i.e., data quality check)
 - ii. Look at your data (again and again)
 - iii. Pre-processing ("standard", ICA)
 - iv. Re-look at your data

SEQUENCE PARAMETERS: TE

Short TE

Long TE

S Clare

CORRECTING FOR NOISE IN FMRI

- 1. Before scanning (maximize SNR):
 - i. Choose good technology (field strength, coils, ...)
 - ii. Choose good sequence (TE, voxel size, ...)
 - iii. Be informed about the healthy of your scanner (QA)
- 2. After scanning (detect & correct):
 - i. Look at your data (i.e., data quality check)
 - ii. Look at your data (again and again)
 - iii. Pre-processing ("standard", ICA)
 - iv. Re-look at your data

PREPROCESSING: WHAT/WHY?

Preprocessing is a series of data transformations ("data conditioning") aimed at reducing sources of noise in order to:

- 1) Increasing sensitivity of analysis (SNR)
- 2) Ensuring validity of the statistical model

SAMPLE EXPERIMENT: SNR

TR = 2s Vols = 160 10 AB Cycles Cycle = 8A + 8B

SAMPLE EXPERIMENT: SNR

TR = 2s Vols = 160 10 AB Cycles Cycle = 8A + 8B

SAMPLE EXPERIMENT: SNR

TR = 2s Vols = 160 10 AB Cycles Cycle = 8A + 8B

THE GENERAL LINEAR MODEL (GLM)

$$y = X \times \beta + \mathcal{E}$$

fMRI Signal Design Matrix Parameter Residuals "what we "how much to of it we CAN + "what we CANNOT"

explain"

explain"

CANNOT

explain"

Preprocessing

- i. Motion correction
- ii. Slice timing correction
- iii. Spatial filtering
- iv. Temporal filtering
- v. Intensity normalization

Preprocessing

- i. Motion correction
- ii. Slice timing correction
- iii. Spatial filtering
- iv. Temporal filtering
- v. Intensity normalization

SUBJECT MOTION

Motion within a time-series can have several unwanted consequences:

- Motion can produce signal changes of a greater magnitude than the BOLD signal
- Lose the correspondence between a voxel and anatomical location

SUBJECT MOTION

Effect of Motion Correction

Without MC

With MC

MOTION CORRECTION

Reference

lth

Difference

^2 =

Variance

MOTION CORRECTION

Reference

l*th*

Difference

Variance

Rigid body (6dof)

Rigid body transformations parameterised by:

Translations					Pitch			Roll				Yaw			
1	0	0	X trans	1	0	0	0)	cos(Θ)	0	$\sin(\Theta)$	0)	$\cos(\Omega)$	$\sin(\Omega)$	0	0)
0	1	0	Y trans	0	cos(Φ)	$\sin(\Phi)$	0	× 0	1	0	0	$-\sin(\Omega)$	$\cos(\Omega)$	0	0
0	0	1	Zt rans	0	$-\sin(\Phi)$	cos(Φ)	0	$ -\sin(\Theta) $	0	cos(⊕)	0	0	0	1	0
0	0	0	1	0	0	0	1	0	0	0	1)	0	0	0	1

VIEWING MOTION CORRECTION

COPING WITH MOTION I: PREVENT IT

COPING WITH MOTION II(A): MODEL IT

COPING WITH MOTION II(B): MODEL IT

COPING WITH MOTION III: PROSPECTIVE MC

PROSPECTIVE MOTION CORRECTION

MOTION CORRECTION IS GOOD, HOWEVER:

- Even after all this, movement artefacts still remain
 - Residual (uncorrected) motion
 - There's no way of detecting rapid movements within a scan
 - Spin history effects*

Task correlated motion

THE MORAL OF THE STORY...

- Stop people from moving
 - Make sure they're comfortable to begin with
 - Tell them that motion is a big problem
 - Train subjects?
 - Reward them?
- Decouple motion-prone tasks from cognitive event of interest
- · Model motion out
- · Reject run/subject

Preprocessing

- i. Motion correction
- ii. Slice timing correction
- iii. Spatial filtering
- iv. Temporal filtering
- v. Intensity normalization

SLICE TIMING CORRECTION

In our exp we took a full functional image (volume) of the brain every 2 s.

Each volume was acquired in 30 axial slices (interleaved).

2 s

SLICE TIMING CORRECTION

SLICE TIMING CORRECTION

Most people now suggest not to do it

- Not all that helpful & requires interpolation
- It may worsen artefacts (e.g., smearing spikes)
- Interacts in unpredictable ways with motion correction
- We spatially smooth across proximal slices
- Mismatching TR and task
- Include temporal derivative of HRF
- What order? Ascending, descending, contiguous, interleaved.

Preprocessing

- i. Motion correction
- ii. Slice timing correction
- iii. Spatial filtering
- iv. Temporal filtering
- v. Intensity normalization

SPATIAL FILTERING

Replace each voxel's value with a weighted average of its value and the value of it's neighbouring voxels.

Gaussian kernel (mm FWHM)

SPATIAL FILTERING

Advantages

Increases Signal to Noise Ratio (SNR)

Matched Filter Theorem: Maximum increase in SNR by filter with same shape/size as signal

Allows application of Gaussian Field Theory

May improve comparisons across subjects

Disadvantages

Reduces spatial resolution

May reduce your signal if smaller than your filter size!

SPATIAL FILTERING

Source FSL website

Preprocessing

- i. Motion correction
- ii. Slice timing correction
- iii. Spatial filtering
- iv. Temporal filtering
- v. Intensity normalization

TEMPORAL FILTERING

- You are interested in the signal fluctuations that have to do with your task, and thus are at a specific frequency
- But there is a lot of activity at many other frequencies (particularly at low ones: 1/f):
 - Thermal noise
 - Heart beat
 - Respiration
 - Alertness
 - Learning

SIGNAL & NOISE

HIGH-PASS FILTERING

Power Spectrum

HP Filter

HIGH-PASS FILTERING

Timecourse

Power Spectrum

HP Filter

Low-Pass Filtering

Timecourse

LP Filter

HP FILTERING STRATEGY I: SPM

Model low drifts to "soak up" their variance (using a discrete cosine transform basis set).

HP FILTERING STRATEGY I: SPM

Model low drifts to "soak up" their variance (using a discrete cosine transform basis set).

HP FILTERING STRATEGY II: FSL

- Remove low drifts from the signal:
 - i. Fit a Gaussian-weighted running line

HP FILTERING STRATEGY II: FSL

- Remove low drifts from the signal:
 - i. Fit a Gaussian-weighted running line
 - ii. Subtract from data (red is pre-HPF, green is post-HPF)

Preprocessing

- i. Motion correction
- ii. Slice timing correction
- iii. Spatial filtering
- iv. Temporal filtering
- v. Intensity normalization

Intensity Normalization I (GMS)

Between-session (grand mean scaling)

- The mean intensity of each 4D dataset varies for non-experimentally interesting reasons.
- Scale each 4D time-series by a single factor.
- Time-series from different runs are now centred around the same mean.

INTENSITY NORMALIZATION II

Within-session

Forces each volumes (within a run) to have the same mean intensity.

BRAIN EXTRACTION

OPTIBET

Standard available tools

http://montilab.psych.ucla.edu/fmri-wiki/optibet

OPTIBET

http://montilab.psych.ucla.edu/fmri-wiki/optibet

OPTIBET

REGISTRATION

STANDARD SPACE

- Common reference frame
 - Talairach & Tournoux 1988, based on post mortem dissection of 1 brain
 - MNI (152) non linear average of multiple individuals

STANDARD SPACE

REGISTRATION

- 1. **Transformation:** How to manipulate an image to fit it from its native space into a different space?
- 2. Cost function: How to assess the quality of the manipulation?
- 3. Interpolation: How create the intensity values to be assigned to the new "grid"?

TRANSFORMATION

- Rigid body (6dof):
 - 3 rotations, 3 translations
 - Typically used for intra-subject registration
- Rigid body + global scaling (7dof)
 - 3 rotations, 3 translations, global scaling
 - Typically used for within subject/between modalities (i.e., functional to structural)
- Affine (12dof)
 - 3 rotations, 3 translations
 - 3 scalings, 3 sheers/skews
 - Typically used for registering a subject to the template

TRANSFORMATION

- Non linear (>12dof):
 - Can be local
 - Can be constrained (e.g., regularization, topology preservation)

TRANSFORMATION

- Non linear (>12dof):
 - Can be local
 - Can be constrained (e.g., regularization, topology preservation)

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

An affine transformation is represented by these 12 numbers.

This matrix multiplies coordinate vectors to define the transformed coordinates.

FLIRT: Cost Functions

Important: Allowable image modalities

Less important: Details

Least Squares	Same modality (exact sequence parameters)
Normalised Correlation	Same modality (can change brightness & contrast)
Correlation Ratio	Any MR modalities
Mutual Information	Any modalities (including CT, PET, etc.)
Normalised Mutual Info.	Any modalities (including CT, PET, etc.)

Interpolation

Finds intensity values between grid points

Various types include

- Nearest Neighbour
- Trilinear
- Sinc
- Spline
- k-Space methods

Interpolation

Finds intensity values between grid points

Various types include

- Nearest Neighbour
- Trilinear
- Sinc
- Spline
- k-Space methods

Interpolation

Finds intensity values between grid points

Various types include

- Nearest Neighbour
- Trilinear
- Sinc
- Spline
- k-Space methods

Considerations: speed, accuracy, stability