A. 橘猫与好心人

Time Limit: 1s

Memory Limit: 256 MB

Description

每当橘猫想要进集训室睡觉 - 或者睡醒了要出集训室时 - 都会喵喵叫喊人来开门。

毕竟,猫爪子够不着门把手。够着了它也打不开。然后,有的时候就会出现神秘的好心人,帮它把集训 室的门打开。

有一天,橘猫在距离集训室 n 猫爪远的椅子上喵喵叫了几声,就在它的王座上睡着了。现在,每过一分钟,都会出现一个好心人把橘猫的王座向集训室推动 1 或 2 或 3 个猫爪的距离。

那么,问题来了:有多少种不同的方案能使得橘猫**恰好到达**集训室的门口(即到集训室的距离为 0)呢?两个方案是相同的,当且仅当两个方案中橘猫的移动距离序列完全一致。

由于方案数可能很大,请你把答案对 $10^9 + 7$ 取模输出。

Input

一行一个整数 n ($1 \le n \le 10^6$), 指示橘猫到集训室门口的距离。

Output

一行一个整数,即方案数对 10^9+7 取模得到的值。

Sample Input

2

Smple Out

2

B1. 橘猫的王座 (Easy Version)

Time Limit: 1s

Memory Limit: 256 MB

Description

This is the easier version of the problem. In this version $1 \le m \le n$. You can hack this problem only if you solve and lock both problems.

橘猫每天都会来集训室睡觉。对,就是集训室门口那张铺满了橘猫毛的电脑椅。我们称之为橘猫的王座。

现在,橘猫打算拓展它的地盘(毕竟它的地盘只有一个椅子那么大)。它看上了 n 个电脑椅,第 i 张电脑椅蕴含着 a_i 点猫力。橘猫决定在它们之间进行 m 次跳跃。每次,橘猫可以任意选择一个王座 i 作为起点,选择另一个王座 j 作为本次跳跃的终点 ($i\neq j$)。这样的一次跳跃会消耗橘猫的 a_i+a_j 点猫力。

橘猫相信,这样的跳跃能够在两个王座间建立某种特殊的无向的联系。如果能让每个王座都和其它两个不同的王座建立这样的联系,橘猫就会安心地在其中一张王座上打盹。

你能告诉橘猫,它至少要花费多少猫力才能去打盹吗?

Input

每组输入有多组测试数据。第一行包含一个整数 T ($1 \le T \le 10$), 指示了数据组数。

接下来的每组测试数据由两行组成。

第一行包含两个整数 n, m ($2 \le n \le 1000, 1 \le m \le n$) — 点数和边数。

第二行包含 n 个整数 a_1, a_2, \ldots, a_n ($0 \le a_i \le 10^4$) — 指示了每个点蕴含的猫力。

Output

对每组测试数据:

如果无解,请输出-1。

否则,请输出一个整数 c — 橘猫所需要消耗的猫力的最小值。 接下来的 m 行中,第 i 行包含两个整数 u_i 和 v_i ($1 \le u_i, v_i \le n$, $u_i \ne v_i$),表示橘猫从第 u_i 个王座跳到了第 v_i 个王座。它可以在两张王座间任意地跳来跳去 - 只要它高兴。

如果有多种方案,你可以任意输出一种。

Sample Input

```
3
4 4
1 1 1 1
3 1
1 2 3
3 3
1 2 3
```

Smple Out

```
8
1 2
4 3
3 2
4 1
-1
12
3 2
1 2
3 1
```

B2. 橘猫的王座 (Cute Version)

Time Limit: 1s

Memory Limit: 256 MB

Description

This is the cuter version of the problem. In this version $1 \le m \le 2000$. You can hack this problem only if you solve and lock both problems.

橘猫每天都会来集训室睡觉。对,就是集训室门口那张铺满了橘猫毛的电脑椅。

我们称之为橘猫的王座。

现在,橘猫打算拓展它的地盘。它看上了n个电脑椅,第i张电脑椅蕴含着 a_i 点猫力。橘猫决定在它们之间进行m次跳跃。每次,橘猫可以任意选择一个王座i作为起点,选择另一个王座j作为终点($i \neq j$)。这样的一次跳跃会消耗橘猫的 $a_i + a_i$ 点猫力。

橘猫相信,这样的跳跃能够在两个王座间建立某种特殊的无向的联系。如果能让每个王座都和其它两个不同的王座建立这样的联系,橘猫就会安心地在其中一张王座上打盹。

你能告诉橘猫,它至少要花费多少猫力才能去打盹吗?

Input

每组输入有多组测试数据。第一行包含一个整数 T ($1 \le T \le 10$),指示了数据组数。

接下来的每组测试数据由两行组成。

第一行包含两个整数 n, m ($2 \le n \le 1000$, $1 \le m \le 2000$) — 点数和边数。

第二行包含 n 个整数 a_1, a_2, \ldots, a_n ($0 \le a_i \le 10^4$) — 指示了每个点蕴含的猫力。

Output

对每组测试数据:

如果无解,请输出-1。

否则,请输出一个整数 c — 橘猫所需要消耗的猫力的最小值。 接下来的 m 行中,第 i 行包含两个整数 u_i 和 v_i ($1 \le u_i, v_i \le n, u_i \ne v_i$),表示橘猫从第 u_i 个王座跳到了第 v_i 个王座。它可以在两张王座间任意地跳来跳去 - 只要它高兴。

如果有多种方案,你可以任意输出一种。

Sample Input

```
3
4 4
1 1 1 1
3 1
1 2 3
3 4
1 2 3
```

Smple Out

8			
1 2			
4 3			
3 2			
4 1			
-1			
12			
3 2			
1 2			
3 1			
1 3			

C.橘猫与三角形

橘猫是一个计算几何的高手,所以它想考考你。

现在你有一个长方形和一个三角形,长方形的长和宽分别为 w,h ,三角形的三边的长度分别为 a,b,c 。

那么问题来了,这个三角形能放在长方形内部(也就是说,这个三角形的三个点都在长方形的内部)吗?

输入

输入的第一行是一个整数 $T(1 \le T \le 10^4)$,

接下来T行,每行五个整数 $h, w, a, b, c (1 \le h, w, a, b, c \le 100)$,其含义如题面所述。

输出

对于每组数据,

如果这个三角形能放在长方形内部,那么输出 "jumao nb!";

否则,输出 "jumao laji!";

D.橘猫吃火锅

Time Limit: 2s Memory Limit: 256MB

Description

橘猫曾经无忧无虑的生活在C10,白天在外面晒太阳,倦了就到集训室的专用床上睡觉,生活十分惬意。直到有一天,一张大网从天而降,改变了它的生活。

在被抓去炖火锅的路上,橘猫被好心的zyh救了出来。为了安抚橘猫受伤的心灵,zyh决定带橘猫一起去吃火锅。在一张有n个节点n-1条边的图上,第i个节点上有第i种火锅,每种火锅有相应的美味度 a_i ,吃掉火锅可以获得相应的美味度。为了知道火锅为什么这么好吃,橘猫决定得到尽可能高的美味度。橘猫可以从1号节点开始走k次。橘猫每次只能从1号节点出发,并且每次橘猫不能走回头路(也就是说橘猫不能经过这次已经经过了的节点)。

橘猫想在它乱走之前问问聪明的你,能不能告诉橘猫最多可以得到多少美味度。

Input

第一行两个正整数n, k, $(1 \le n, k \le 200000)$

第二行n个正整数,表示每种火锅的价值。($1 \le a_i \le 2^{31} - 1$)

接下来n-1行,每行两个整数a,b,表示a和b相连,且a是b的父亲。

Output

输出一个整数,表示答案

Sample Input

5 2

43211

12

15

23

24

Sample Output

10