PATENT OFFICE

10.11.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2002年10月17日

出 Application Number: 特願2002-303290

[JP2002-303290] [ST. 10/C]:

3 0 DEC 2003 **WIPO PCT**

RECEIVED

人 出 Applicant(s):

東洋紡績株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年12月11日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

CN02-0831

【提出日】

平成14年10月17日

【あて先】

特許庁長官 殿

【国際特許分類】

COSG 73/06

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

斉藤 都子

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

濱本 史朗

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

杉原 秀紀

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

高瀬 敏

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

北河 享

【特許出願人】

【識別番号】

000003160

【氏名又は名称】

東洋紡績株式会社

【代表者】

津村 準二

【手数料の表示】

【予納台帳番号】 000619

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書]

要

【プルーフの要否】

【発明の名称】複合イオン交換膜

【特許請求の範囲】

【請求項1】

連続した空隙を有する支持体膜とイオン交換樹脂からなる複合イオン交換膜の断面において、複合膜を厚み方向に縦断する直線を分析領域に設定し、イオン交換樹脂のみが含有する元素について電子プローブマイクロアナライザーを用い線分析を行う場合について、X線カウント値のばらつきがCV値で50%以内となることを特徴とする複合イオン交換膜。

【請求項2】

支持体膜が連続した空隙を有するポリベンザゾール系ポリマーからなる、請求項 1記載の複合イオン交換膜。

【請求項3】

請求項1記載のイオン交換膜において、該支持体膜に該支持体膜と組成の異なるイオン交換樹脂が含浸された複合層と、該複合層を挟む形で複合層の両面に形成された該イオン交換樹脂の層との三層構造からなることを特徴とする複合イオン交換膜。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はプロトン伝導性に優れる複合イオン交換膜、特に高分子固体電解質膜に 関するものである。

[0002]

【従来技術】

近年、エネルギー効率や環境性に優れた新しい発電技術が注目を集めている。中でも高分子固体電解質膜を使用した固体高分子形燃料電池はエネルギー密度が高く、また、他の方式の燃料電池に比べて運転温度が低いため起動、停止が容易であるなどの特徴を有し、電気自動車や分散発電等の電源装置としての開発が進んできている。また、同じく高分子固体電解質膜を使用し、燃料としてメタノール

を直接供給するダイレクトメタノール形燃料電池も携帯機器の電源などの用途に向けた開発が進んでいる。高分子固体電解質膜には通常プロトン伝導性のイオン交換樹脂膜が使用される。高分子固体電解質膜にはプロトン伝導性以外にも、燃料の水素やメタノール等の透過を防ぐ燃料透過抑止性や機械的強度などの特性が必要であり、これらの特性を有するものとして例えば米国デュポン社製ナフィオン (商品名)に代表されるようなスルホン酸基を導入したパーフルオロカーボンスルホン酸ポリマー膜が知られている。

[0003]

固体高分子形燃料電池の高出力化や高効率化のためには高分子固体電解質膜のイオン伝導抵抗を低減させることが有効であり、その方策のひとつとして膜厚の低減が挙げられる。ナフィオン(商品名)に代表されるような高分子固体電解質膜でも膜厚を低減させる試みが行われている。しかしながら、膜厚を低減させると機械的強度が小さくなり、高分子固体電解質膜と電極をホットプレスで接合させる際などに膜が破損しやすくなったり、膜の寸法の変動により、高分子固体電解質膜に接合した電極がはがれて発電特性が低下するなどの問題点を有していた。さらに、膜厚を低減させることで燃料透過抑止性が低下し、起電力の低下や燃料の利用効率の低下を招くなどの問題点を有していた。

[0004]

高分子固体電解質膜の機械的強度を向上させ、寸法変化を抑制する方法として、高分子固体電解質膜に種々の補強材を組み合わせた複合高分子固体電解質膜が提案されている。特許文献1には、延伸多孔質ポリテトラフルオロエチレン膜の空隙部にイオン交換樹脂であるパーフルオロカーボンスルホン酸ポリマーを含浸し、一体化した複合高分子固体電解質膜が記載されている。しかしながら、これらの複合高分子固体電解質膜は補強材がポリテトラフルオロエチレンでできているため、発電時の熱により補強材が軟化し、クリープによる寸法変化を生じたり、また補強材にパーフルオロカーボンスルホン酸ポリマーの溶液を含浸して乾燥する際に、補強材の空隙の容積がほとんど変化しないために補強材の空隙の内部で析出したパーフルオロカーボンスルホン酸ポリマーが偏在しやすく、空隙が完全に充填されるためにはイオン交換樹脂溶液の含浸と乾燥のプロセスを複数回繰り

返すなどの複雑なプロセスが必要であり、また、空隙が残りやすいために燃料透過抑止性に優れた膜が得られにくいといった問題点を有していた。また、特許文献2にはパーフルオロカーボンスルホン酸ポリマーの膜内に補強材としてフィブリル化されたポリテトラフルオロエチレンが分散された複合高分子固体電解質膜が記載されている。しかしながら、このような複合高分子固体電解質膜は、補強材が不連続な構造のため十分な機械的強度が得られず、膜の変形が抑制できないために電極のはがれが生じるなどの問題点を有していた。

[0005]

ポリベンゾオキサゾール(PBO)やポリベンズイミダゾール(PBI)のようなポリベンザゾール系ポリマーは高耐熱性、高強度、高弾性率の点で優れることから、高分子固体電解質膜の補強材料に適していることが期待される。特許文献3にはPBO多孔質膜と種々のイオン交換樹脂を複合化した高分子固体電解質膜が記載されている。しかしながら、これに記載されているPBO多孔質膜の空隙率はせいぜい90%以下であり、イオン交換樹脂を複合化させた場合のイオン交換樹脂の含有率が低い問題点を有していた。また、特許文献4にはPBI多孔質膜の空隙に酸をトラップした燃料電池用ポリマーフィルムの製造方法が記載されている。しかしながら、これに記載されているような方法で得られる遊離の酸をトラップしたフィルムは、酸が漏出しやすいなどの問題点を有していた。

[0006]

【特許文献1】

特開平8-162132号

【特許文献2】

特開2001-35508号

【特許文献3】

国際公開第WO00/22684号パンフレット

【特許文献4】

国際公開第WO98/14505号パンフレット

[0007]

【発明が解決しようとする課題】

[0008]

【課題を解決するための手段】

すなわち本発明は、連続した空隙を有する支持体膜とイオン交換樹脂からなる複合イオン交換膜の断面において、複合膜を厚み方向に縦断する直線を分析領域に設定し、イオン交換樹脂のみが含有する元素について線分析測定を行った際のX線カウント値のばらつきがCV値で50%以内であることを特徴とする複合イオン交換膜を提供する。さらに、支持体膜がポリベンザゾール系ポリマーである上記複合イオン交換膜、さらには、該複合層を挟む形で複合層の両面に形成された該支持体膜と組成の異なる該イオン交換樹脂の層との三層構造からなることを特徴とする複合イオン交換膜を提供する。

[0009]

【発明の実施の形態】

以下、本発明の複合イオン交換膜について詳細に説明する。本発明の連続した空隙を有する多孔質のポリベンザゾール系ポリマーよりなる支持体膜は、等方相を示すポリベンザゾール系ポリマーの溶液から製膜され、貧溶媒と接触させて凝固することにより得られた膜を洗浄することにより得られる膜である。

本発明におけるポリベンザゾール系ポリマーとは、ポリベンゾオキサゾール(PBO)ホモポリマー、ポリベンゾチアゾール(PBT)ホモポリマー及びポリベンズイミダゾール(PBI)ホモポリマー、もしくは、それらPBO、PBT、PBIのランダム、交互あるいはブロック共重合ポリマーをいう。ここでポリベンゾオキサゾール、ポリベンゾチアゾール及びそれらのランダム、交互あるいはブロック共重合ポリマーは、例えば米国特許第4703103号、米国特許4533692号、米国特許第4533693号、米国特許第4539567号、米国特許第4578432号等に記載されたものである。

[0010]

ポリベンザゾール系ポリマーに含まれる構造単位としては、好ましくはライオト

ロピック液晶ポリマーから選択される。モノマー単位は構造式(a)~(n)に 記載されているモノマー単位からなり、さらに好ましくは、本質的に構造式(a)~(f)から選択されたモノマー単位からなる。特に好ましくは、本質的に構 造式(a)~(b)から選択されたモノマー単位からなるPBOポリマー、ある いは構造式(e)~(f)から選択されたモノマー単位からなるPBIポリマー である。

[0011]

【化1】

(a)
$$+c(x)(x)(x)(x)(x)(x)$$

$$(c) + \left\langle \left\langle \left\langle \right\rangle \right\rangle \left\langle \left\langle \right\rangle \right\rangle \right\rangle$$

$$(d) \quad \left\{ c_{N}^{S} \left(\sum_{s}^{N} c - \left(\sum_{s}^{N} \right) \right\} \right\}$$

(e)
$$+c(N)(N)(C-C)$$

$$(g) \quad \left\{ \begin{array}{c} H \\ C \\ N \end{array} \right\} \left(\begin{array}{c} H \\ C \\ N \end{array} \right) \left(\begin{array}{c} C \\ C$$

$$(h) \left\{ c_{N}^{H} \right\} \left\{ c_{N}$$

[0012]

【化2】

(i)
$$(x)$$
 (x) (x)

[0013]

前記ポリベンザゾール系ポリマーは、ポリ燐酸溶媒中で縮合重合されポリマーが得られる。ポリマーの重合度は極限粘度で表され、 $15 \, \mathrm{d} \, \mathrm{L/g}$ 以上 $35 \, \mathrm{d} \, \mathrm{L/g}$ 以下、好ましくは $20 \, \mathrm{d} \, \mathrm{L/g}$ 以上 $26 \, \mathrm{d} \, \mathrm{L/g}$ 以下である。この範囲以下であれば、得られる支持体膜の強度が低く、またこの範囲以上であれば、溶液の粘度が高く加工困難である。

[0014]

ポリベンザゾール系ポリマー溶液の製膜方法としては、流延法と呼ぶポリマー溶液をドクターブレード等を用いて基板上にキャスティングする製膜方法のほかにも、直線状スリットダイから押し出す方法や円周状スリットダイからブロー押し出しする方法、二枚のフィルムに挟んだポリマー溶液をローラープレスする方法、スピンコート法など、溶液を膜状に成型するあらゆる方法が使用できる。

[0015]

本発明で用いるポリベンザゾール系ポリマー溶液は、均一でかつ空隙率の大きな支持体膜を得るために等方性条件の組成で製膜することが重要である。従って、ポリベンザゾール系ポリマー溶液の好ましい濃度範囲は 0.5%以上 2%以下、より好ましくは 0.8%以上 1.5%以下である。この範囲よりも濃度が低いとポリマー溶液の粘度が小さくなり、適用できる製膜方法が限られるほか、得られる支持体膜の強度が小さくなるため好ましくない。またこの範囲よりも濃度が高いと空隙率の大きな支持体膜が得られないため好ましくない。

[0016]

ポリベンザゾール系ポリマー溶液の濃度を上記で示したような範囲に調整するには次に示すような方法をとる事ができる。すなわち、重合されたポリベンザゾール系ポリマー溶液から一旦ポリマー固体を分離し、再度溶媒を加えて溶解することで濃度調整を行なう方法。さらには、ポリ燐酸中で縮合重合されたままのポリマー溶液からポリマー固体を分離することなく、そのポリマー溶液に溶媒を加えて希釈し、濃度調整を行なう方法。さらにはポリマーの重合組成を調整することで上記濃度範囲のポリマー溶液を直接得る方法などである。

[0017]

ポリマー溶液の濃度調整に用いるのに好ましい溶媒としては、メタンスルホン酸、ジメチル硫酸、ポリ燐酸、硫酸、トリフルオロ酢酸などがあげられ、あるいはこれらの溶媒を組み合わせた混合溶媒を用いることもできる。中でも特にメタンスルホン酸、ポリリン酸が好ましい。

[0018]

支持体膜の多孔質構造を実現する手段としては、製膜された等方性のポリベンザゾール系ポリマー溶液を、貧溶媒と接触させて凝固する方法を用いる。貧溶媒はポリマー溶液の溶媒と混和できる溶媒であって、液相状態であっても気相状態であっても良い。さらに、気相状態の貧溶媒による凝固と液相状態の貧溶媒による凝固を組み合わせることも好ましく用いることができる。凝固に用いる貧溶媒としては、水、酸水溶液や無機塩水溶液の他、アルコール類、グリコール類、グリセリンなどの有機溶媒等を利用することができるが、使用するポリベンザゾール系ポリマー溶液との組み合わせによっては、支持体膜の表面開孔率や空隙率が小

[0019]

ポリマーの凝固が進むと、支持体膜は収縮しようとする。凝固が進行する間は支持体膜の不均一な収縮によるシワの発生などを抑制する目的でテンターや固定枠を用いる場合もある。また、ガラス板などの基板上に成型したポリマー溶液を凝固する場合には、基板面の粗さを制御することで基板上での収縮を制御する場合もある。

[0020]

上記のようにして凝固された支持体膜は、残留する溶媒によるポリマーの分解の促進や、使用時の残留溶媒の流出などの問題を避ける目的で、十分に洗浄することが望ましい。洗浄は支持体膜を洗浄液に浸漬することで行なうことができる。特に好ましい洗浄液は水である。水による洗浄は、支持体膜を水中に浸漬したときの洗液のpHが5~8の範囲になるまで行なうことが好ましく、さらに好ましくはpHが6.5~7.5の範囲である。

[0021]

上記に述べた特定の濃度範囲のポリベンザゾール系ポリマーの等方性溶液を用い、上記に述べたような方法から選ばれた適当な凝固手段を用いることにより本発明の目的に適した構造を有するポリベンザゾール系ポリマーよりなる支持体膜が得られる。すなわち、膜の両面に開口部を持つ連続した空隙を有する支持体膜である。支持体膜はポリベンズイミダゾール系ポリマーのフィブリル状繊維の立体網目構造からなり、膜の両面に開孔部を持つ連続した空隙を有することを、実施例に示したような原子間力顕微鏡を用いる水中での支持体膜表面の観察、および、エポキシ包埋ー脱エポキシにより水中の構造を保持した支持体膜の透過型電子顕微鏡観察による断面観察から確認した。

本発明の支持体膜の空隙率は90%以上であることが好ましく、さらに好ましくは95%以上である。空隙率がこの範囲よりも小さいと、イオン交換樹脂を複合化させた場合のイオン交換樹脂の含有率が小さく、イオン導電性が低下するため好ましくない。

[0023]

本発明の支持体膜は両面に開孔部を持つ。少なくとも一方の面の開孔率は40%以上であることが好ましく、さらに好ましくは50%以上、特に好ましくは60%以上である。少なくとも一方の面の開孔率がこの範囲よりも小さいと、内部にイオン交換樹脂が含浸された支持体膜の層と、支持体膜の両面に形成されたイオン交換樹脂の層との密着性が低下し、イオン導電性が低下するだけでなく、該イオン交換樹脂層が剥離しやすくなるため好ましくない。

[0024]

上述のような方法で得られたポリベンザゾール系ポリマーよりなる多孔質の該支持体膜にイオン交換樹脂を複合化させ、複合イオン交換膜を得る方法について説明する。即ち、該支持体膜を乾燥させずに、イオン交換樹脂溶液に浸漬し、該支持体膜内部の液をイオン交換樹脂溶液に置換してから乾燥させる方法により複合イオン交換膜を得る方法である。支持体膜内部の液がイオン交換樹脂溶液の溶媒組成と異なる場合には、その溶媒組成にあわせてあらかじめ内部の液を置換しておく方法も採られる。

[0025]

本発明の支持体膜は乾燥により空隙内部の液体の体積が減少するのにしたがって空隙構造が収縮し、支持体膜の見かけの体積が大幅に減少するという特徴を有する。該支持体膜の内部にイオン交換樹脂を含浸することなく金属の枠などに固定して面方向の収縮を制限して乾燥させた場合には、収縮は膜厚方向に起こり、該支持体膜の乾燥後の見かけの膜厚は、乾燥前の膜厚の0.5%から10%の範囲である。本発明の支持体膜以外の多孔質支持体膜、例えば、ポリテトラフルオロエチレンポリマーからなる多孔質支持体膜ではこのような大幅な収縮は起こらない。

該支持体膜のこのような特徴により、該支持体膜の空隙内部の液をイオン交換樹脂溶液に置換してから乾燥させた場合、空隙内部に含浸された該イオン交換樹脂溶液が乾燥し、該イオン交換樹脂溶液の体積が減少するにつれて該支持体膜の空隙内部にイオン交換樹脂が析出しながら支持体膜が収縮するので、該支持体膜内部の空隙がイオン交換樹脂によって満たされた複合膜構造を容易に得ることができる。この複合膜構造により、本発明の複合イオン交換膜は優れた燃料透過抑止性を示す。

[0027]

該複合イオン交換膜はまた、該支持体膜が大幅に収縮するため、イオン交換樹脂溶液の濃度や粘度、溶媒の揮発性などを調整することで、イオン交換樹脂が支持体膜の内部空隙を満たした複合層を形成するだけでなく、該複合層を挟む形で複合層の両面にもイオン交換樹脂の層を形成した構造を容易に実現することができる。

[0028]

本発明の支持体膜以外の膜、例えばポリテトラフルオロエチレンポリマーからなる多孔質支持体膜は上記で述べたように、大幅な収縮が起こらないため、イオン交換樹脂溶液を含浸して乾燥する際に支持体膜内部にイオン交換樹脂が析出しても空隙が残ったままの状態となり、また、支持体膜複合層を挟む形のイオン交換樹脂層も形成されない。この状態を解消するためにはイオン交換樹脂溶液の含浸、乾燥を複数回繰り返す必要があり、工程が複雑になるため好ましくない。

[0029]

本発明の複合イオン交換膜に使用されるイオン交換樹脂は特に限定されるものではなく、前述のパーフルオロカーボンスルホン酸ポリマー以外にも、例えばポリスチレンスルホン酸、ポリ (トリフルオロスチレン) スルホン酸、ポリビニルホスホン酸、ポリビニルカルボン酸、ポリビニルスルホン酸ポリマーの少なくとも一つのアイオノマー、ポリスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィドスルホンスルホキシド、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリフェニルキノキサリン、ポリアリールケトン、ポリ

[0030]

上記に記述したイオン交換樹脂溶液の溶媒はポリベンザゾール系ポリマー支持体膜を溶解または分解せず、かつイオン交換樹脂を溶解できる溶媒の中から選ぶことができる。ただし、イオン交換樹脂溶液を支持体膜に含浸させた後に溶媒を除去してイオン交換樹脂を析出させる為、溶媒は加熱や減圧などの手段を用いて蒸発させるなどして除去することができるものでなくてはならない。ここで、本発明のポリベンザゾール系ポリマー支持体膜は高い耐熱性を有することから、100℃程度の温度からクリープを生じるポリテトラフルオロエチレン製の支持体膜を用いる複合イオン交換膜の作製では使用できない高沸点の溶媒を使用することができることも、多くの種類のイオン交換樹脂が選択できるという観点から優れた特徴である。

[0031]

上記に記述したイオン交換樹脂溶液の濃度および、イオン交換樹脂の分子量は特に限定されるものではないが、イオン交換樹脂の種類や得ようとする複合イオン 交換膜の膜厚などに応じて適宜選択される。

[0032]

上記のようにして得られる複合イオン交換膜に占めるイオン交換樹脂の含有率は70 v o 1%以上であることが好ましい。さらに好ましくは80 v o 1%以上である。この範囲より小さい含有率の場合、膜の導電抵抗が大きくなったり、膜の保水性が低下し、十分な発電性能が得られないため好ましくない。

[0033]

複合イオン交換膜の内部において、イオン交換樹脂の含有率の不均一は少ないことが望ましい。すなわち、複合膜を厚み方向に縦断する直線について、イオン交換樹脂のみが含有する元素について電子プローブマイクロアナライザーを用い線分析を行う場合について、X線カウント値のばらつきがCV値で50%以内、より好ましくは40%以内、さらに好ましくは25%以内であることが望ましい。X線カウント値のばらつきがこれより多い場合、複合イオン交換膜の内部におけるイオン交換樹脂の含有率が不均一であり、膜のイオン伝導性が低下し、さらに複合膜の機械的強度が低下するため、十分な発電性能が得られない。

[0034]

また、本発明の複合イオン交換膜は、上記で記述したように複合層を挟む形で複合層の両面にイオン交換樹脂の層を有することを特徴とする。該イオン交換樹脂の層を有することにより、該複合イオン交換膜は表面に電極層を形成させた場合の電極層との密着性に優れるという特長を有する。複合イオン交換膜の表面に形成される該イオン交換樹脂の層の厚みは両面それぞれ 50μ m以下であることが好ましく、より好ましくは 30μ m以下、さらに好ましくは 20μ m以下である。表面に形成されるイオン交換樹脂のみからなる層の厚みがこの範囲より大きい場合、該イオン交換樹脂のみからなる層の乾燥ムラが生じやすく、複合イオン交換膜の厚みむらやしわの原因となる他、支持体膜による補強の効果が小さくなるため好ましくない。

[0035]

複合イオン交換膜は機械的強度やイオン伝導性、表面に形成されるイオン交換樹脂層の耐剥離性などの特性をさらに向上させる目的で、複合イオン交換膜を適当な条件で熱処理する方法も好ましく用いることができる。また、表面に形成されるイオン交換樹脂の層の厚みを調整するために、該複合イオン交換膜をさらにイオン交換樹脂溶液に浸漬したり、該複合イオン交換膜にイオン交換樹脂溶液を塗布したりしてから乾燥することによりイオン交換樹脂層の付着量を増加させたり、あるいは、イオン交換樹脂溶液に浸漬した後に支持体膜の表面に付着したイオン交換樹脂溶液の一部をスクレーパー、エアナイフ、ローラーなどで掻き落としたり、ろ紙やスポンジのような溶液吸収性のある材料で吸収したりすることによ

[0036]

本発明の複合イオン交換膜は、優れた機械的強度、及び発電特性を生かして、複合イオン交換膜特に固体高分子形燃料電池の高分子固体電解質膜として利用することができる。

[0037]

実施例

以下に本発明の実施例を示すが本発明はこれらの実施例に限定されるものではない。

評価法・測定法

<透過型電子顕微鏡による構造観察>

透過型電子顕微鏡(TEM)による膜の断面構造の観察は以下の方法で行った。まず、観察用試料切片を次のようにして作成した。すなわち、水洗後の支持体膜試料内部の水をエタノールに置換、さらにエポキシモノマーに十分置換した。試料はそのままエポキシモノマー中で45℃、6時間保持した後、さらに60℃、20時間熱処理することでエポキシを硬化させた(エポキシ包埋)。このようにしてエポキシ包埋された試料はダイヤモンドナイフを備えたミクロトームを用いて、干渉色が銀から金色を示す程度の厚みの超薄切片に調製し、KOH飽和エタノール溶液で15分処理することでエポキシを除去した(脱エポキシ)。さらにエタノール、続いて水で洗浄し、RuO4で染色した試料にカーボン蒸着し、JEOL製TEM(JEM-2010)を用いて加速電圧200kVで観察した。

[0038]

<原子間力顕微鏡による構造観察>

原子間力顕微鏡(AFM)による構造観察は以下の方法で行った。すなわち、Seiko Instruments社製のAFM(SPA300 [観察モード: DFMモード、カンチレバー: SI-DF3、スキャナー: FS-100A])を使用し、水中の試料ステージに保持した未乾燥の支持体膜の表面の構造観察を

[0039]

<走査型電子顕微鏡による構造観察>

走査型電子顕微鏡(SEM)による構造観察は以下の方法で行った。まず、水洗した支持体膜内部の水をエタノールに置換、さらに酢酸イソアミルに十分置換した後、日立製臨界点乾燥装置(HCP-1)を用いて、CO2臨界点乾燥を施した。このようにして臨界点乾燥した支持体膜に厚さ150オングストロームの白金コートを施し、日立製SEM(S-800)を用いて加速電圧10kV、試料傾斜角度30度で観察を行った。

[0040]

<極限粘度>

メタンスルホン酸を溶媒として、0.5g/Lの濃度に調整したポリマー溶液の 粘度をオストワルド粘度計を用いて30℃恒温槽中で測定し、算出した。

[0041]

<支持体膜厚み>

未乾燥の支持体膜の厚みは次に示す方法により測定した。測定荷重を変更可能なマイクロメータを用い、各荷重における水中での支持体膜の厚みを測定した。測定した厚みを荷重に対してプロットし、直線部分を荷重0に外挿したときの厚みの切片の値を支持体膜の厚みとした。

[0042]

<複合イオン交換膜厚さおよび、それを構成する層の厚さ>

複合イオン交換膜の厚さおよび、該複合イオン交換膜の表面に形成されたイオン 交換樹脂のみからなる層の厚さは、上記と同じ方法で樹脂包埋し、平滑な断面が 露出するよう切削した複合膜の断面を光学顕微鏡で写真撮影し、既知の長さのス ケールを同倍率で撮影したものと比較することで測定した。支持体の空隙率が大 きい場合等で、少なくとも一方の面の表面層とその内側の複合層とが明確な界面 を形成せずに界面付近の構造が連続的に変化している場合があるが、その場合は 光学顕微鏡で連続的な構造の変化が確認できる部分のうち、複合イオン交換膜の 外表面に最も近い部分を複合層の最外表面として、そこから複合イオン交換膜の

[0043]

<複合イオン交換膜のイオン交換樹脂(ICP)含有率>

複合イオン交換膜のイオン交換樹脂含有率は以下の方法により測定した。 110 \mathbb{C} で6時間真空乾燥させた複合イオン交換膜の目付け $Dc[g/m^2]$ を測定し、複合イオン交換膜の作製に用いたのと同じ製造条件の支持体膜をイオン交換樹脂を複合化させずに乾燥させて測定した乾燥支持体膜の目付け $Ds[g/m^2]$ とから、以下の計算によりイオン交換樹脂含有率を求めた。

イオン交換樹脂含有率 [重量%] = (Dc-Ds)/Dc×100

また、複合イオン交換膜のイオン交換樹脂含有率は以下の方法によって測定することもできる。すなわち、複合イオン交換膜を複合イオン交換膜中の支持体膜成分あるいは、イオン交換樹脂成分のいずれかのみを溶解可能な溶剤に浸漬して一方の成分を抽出、除去した後、元の複合イオン交換膜との重量変化を測定することでイオン交換樹脂の含有率を求めることができる。

[0044]

<複合イオン交換膜内のイオン交換樹脂分布状態評価>

 、複合膜を厚み方向に縦断する直線とした。なお加速電圧、照射電流、測定時間については、複合膜の中心部で膜表面からの距離が等しい5点を無作為に選び、予め上述の分光器条件、ビーム径にて点分析を行い、測定値がCV20%以内のばらつきになる条件を採用した。得られた線分析データにおいて、複合膜外で両表面からそれぞれ最も近い点で最小値をとるものを結んでベースラインとし、これを減算して各点のカウント値を算出した。このうち、複合膜内の値についてCV値を算出した。測定は分析位置を変えて10回行い、その平均値をもって目的の値とした。

なお、複合膜内の領域でn点のデータを収集した場合におけるベースライン減算後のカウント値を x_i (i=1, 2, …, n) とした場合の、C V値(%) の算出式は以下の通りである。

[0045]

<強度・引張弾性率>

イオン交換膜の強度特性は、気温25℃、相対湿度50%の雰囲気で、オリエンテック社製テンシロンを用いて測定した。試料は幅10mmの短冊状とし、支間長40mm、引っ張り速度20mm/secで測定した応力歪み曲線から算出した。

[0046]

<発電特性>

デュポン社製 20% ナフィオン(商品名)溶液(品番:SE-20192)に、白金担持カーボン(カーボン:Cabot社製ValcanXC-72、白金担持量:40重量%)を、白金とナフィオン(商品名)の重量比が 2.7:1 になるように加え、撹拌して触媒ペーストを調製した。この触媒ペーストを、東レ製カーボンペーパーTGPH-060に白金の付着量が 1 mg/cm 2 になるように塗布、乾燥して、電極触媒層付きガス拡散層を作成した。 2 枚の電極触媒層付きガス拡散層の間に、膜試料を、電極触媒層が膜試料に接するように挟み、ホットプレス法により 120 C、2 MPaに 7 になる。 7 に表することにより、膜一電極接合体とした。この接合体をElectrochem社製評価用燃料電池セルFC 12 C C S Pに組み込んでセル温度 12 C 、 12 M に 12

[0047]

実施例1

ポリ燐酸中にIV=24dL/gのポリパラフェニレンシスベンゾビスオキサゾ ールポリマーを14重量%含んだドープにメタンスルホン酸を加えて希釈し、ポ リパラフェニレンシスベンゾビスオキサゾール濃度1重量%の等方性溶液を調製 した。この溶液を、90℃に加熱したガラス板上にクリアランス300µmのア プリケータを用いて製膜速度10mm/秒で製膜した。このようにしてガラス板 上に製膜したドープ膜をそのまま25℃、相対湿度80%の恒温恒湿槽中に置い て1時間凝固し、生成した膜を洗液がpH7±0.5を示すまで水洗を行って支 持体膜を作成した。作成した支持体膜は両面に開口部を持つ連続した空孔を有す る多孔質の膜であることを原子間力顕微鏡による表面形態観察および、透過型電 子顕微鏡による断面形態観察により確認した。この支持体膜を水中でステンレス 製のフレームに固定し、支持体膜の内部の水をイオン交換樹脂溶液であるデュポ ン社製20%ナフィオン(商品名)溶液(品番:SE-20192)の溶媒組成 とほぼ同じ水:エタノール:1ープロパノール=26:26:48 (重量比)の 混合溶媒で置換した。この支持体膜を20%ナフィオン(商品名)溶液に25℃ で2時間浸漬した後溶液から取り出し、膜の内部に含浸および膜表面に付着した ナフィオン(商品名)溶液の溶媒を風乾により揮発させ乾燥させた。乾燥させた 膜は60℃のオーブン中で1時間予備熱処理して残留した溶媒を除いた後、窒素 雰囲気下、150℃で1時間熱処理を行なうことにより実施例1の複合イオン交 換膜を調製した。

[0048]

比較例1

比較例1として、市販されているデュポン社製ナフィオン112 (商品名) 膜を用いた。この膜は実施例1で用いた20%ナフィオン (商品名) 溶液や実施例2で用いた10%ナフィオン (商品名) 水溶液に含まれるナフィオン (商品名) ポリマーと同じパーフルオロカーボンスルホン酸ポリマーからなるプロトン交換膜

であり、固体高分子形燃料電池用のプロトン交換膜として広く用いられているも のである。

[0049]

比較例 2

ポリ燐酸中にIV=24dL/gのポリパラフェニレンシスベンゾビスオキサゾ ールポリマーを8重量%含んだドープを未延伸のポリプロピレン製支持フィルム に挟み、対向した二本の金属ローラーの間を通すことで厚み100μmのドープ 膜とした。このドープ膜を支持フィルムごと130℃に加熱し、ドープ膜の各伸 長方向の伸長率が200%となるように同時二軸延伸した後に、支持フィルムを 剥離し、得られた延伸ドープ膜をフレームに固定して25℃、相対湿度80%の 恒温恒湿槽中に置いて1時間凝固し、生成した膜を洗液がpH7±0.5を示す まで水洗を行って支持体膜を作成した。この支持体膜を水中でステンレス製のフ レームに固定し、支持体膜の内部の水をイオン交換樹脂溶液であるデュポン社製 20%ナフィオン(商品名)溶液(品番:SE-20192)の溶媒組成とほぼ 同じ水:エタノール:1ープロパノール=26:26:48 (重量比)の混合溶 媒で置換した。この支持体膜を20%ナフィオン(商品名)溶液に25℃で2時 間浸漬した後溶液から取り出し、膜の内部に含浸および膜表面に付着したナフィ オン(商品名)溶液の溶媒を風乾により揮発させ乾燥させた。乾燥させた膜は6 0℃のオーブン中で1時間予備熱処理して残留した溶媒を除いた後、窒素雰囲気 下、150℃で1時間熱処理を行なうことにより比較例2の複合イオン交換膜を 調製した。

[0050]

実施例1および比較例2の複合イオン交換膜において、イオン交換樹脂であるナ フィオン(商品名)のみが含有する元素であるフッ素についてのX線カウント値 を用いてイオン交換樹脂の分布状態を分析した結果、複合イオン交換膜中のフッ 素のX線カウント値のばらつきはCV値で表すとそれぞれ18%、55%であっ た。実施例1および比較例1、2のイオン交換膜の各物性値を表1に示す。

[0051]

【表1】

	複合イオン交換膜や暗回	表面層A原表	表面層B原み	複合層厚み	ICP 含有率	破断強度	引張弹性率	発電性能
	H ID	m m	TI II	m n	重标%	MPa	MPa	A/cm²(at 0.2V)
文施例1	47	16	14	17	91	31	746	0.7
比較例 1	49	Ż	支持体なし		100	22	317	8.0
比較例2	40	13	13	17	75	06	1522	0.15

[0052]

実施例1の複合イオン交換膜は、比較例1の市販ナフィオン(商品名)膜に比べて破断強度、引張弾性率に優れ、複合化の効果により機械強度が向上している。さらに動作電圧0.2 V時の電流値で表した発電特性は、実施例1の複合イオン交換膜が比較例1の市販ナフィオン膜とほぼ同等の性能を示すのに対して、比較例2の複合イオン交換膜の発電特性は実施例1や比較例2の発電特性に比べて低い値であった。比較例2は支持体膜の内部に支持体ポリマー密度の高い層ができ

【発明の効果】

機械強度が高く、発電特性に優れた高分子固体電解質膜を提供することができる

【要約】

【課題】機械的強度が高く、イオン伝導性に優れた高分子固体電解質膜として使用するのに適した複合イオン交換膜を提供するものである。

【解決手段】連続した空隙を有するポリベンザゾール系ポリマーからなる支持体膜にイオン交換樹脂が含浸されてなる複合イオン交換膜であって、複合膜を厚み方向に縦断する直線を分析領域に設定し、イオン交換樹脂のみが含有する元素について電子プローブマイクロアナライザーを用い線分析を行う場合について、X線カウント値のばらつきがCV値で50%以内となることを特徴とする複合イオン交換膜。

【選択図】無し

特願2002-303290

出願人履歴情報

識別番号

[000003160]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所

大阪府大阪市北区堂島浜2丁目2番8号

氏 名 東洋紡績株式会社