

Capstone Project-4

Project Title NETFLIX MOVIES AND TV SHOWS CLUSTERING

By-Bhushan Patil

Problem Statement

In 2018, they released an interesting report which shows that the number of TV shows on Netflix has nearly tripled since 2010. The streaming service's number of movies has decreased by more than 2,000 titles since 2010, while its number of TV shows has nearly tripled. It will be interesting to explore what all other insights can be obtained from the same dataset. This dataset consists of TV shows and movies available on Netflix as of 2019. The dataset is collected from Flixable which is a third-party Netflix search engine.

Dataset

- There are 7787 entries and 12 columns.
- 11 columns present in object type and 1 column present in int type.
- There are a total of 3,631 null values across the entire dataset with 2,389 missing points under "director", 718 under "cast", 507 under "country", 10 under "date_added", and 7 under "rating". We will have to handle all null data points before we can dive into EDA and modeling.

RangeIndex: 7787 entries, 0 to 7786					
Data	columns (tota	al 12 columns):			
#	Column	Non-Null Count	Dtype		
0	show_id	7787 non-null	object		
1	type	7787 non-null	object		
2	title	7787 non-null	object		
3	director	5398 non-null	object		
4	cast	7069 non-null	object		
5	country	7280 non-null	object		
6	date_added	7777 non-null	object		
7	release_year	7787 non-null	int64		
8	rating	7780 non-null	object		
9	duration	7787 non-null	object		
10	listed_in	7787 non-null	object		
11	description	7787 non-null	object		
dtype	types: int64(1), object(11)				

Data Profiling & Cleaning

- There are a total of 3,631 null values across the entire dataset
- The easiest way to get rid of them would be to delete the rows with the missing data for missing values. This wouldn't be beneficial to our EDA since it is a loss of information.
- Since "director", "cast", and "country" contain the majority of null values, we chose to treat each missing value is unavailable.
- The other two label "date_added" and "rating" contain an insignificant portion of the data, so it drops from the dataset.
- Finally, we can see that there are no more missing values in the data frame.

show_id	0
уре	0
itle	0
director	0
ast	0
country	0
date_added	0
release_year	0
rating	0
duration	0
listed_in	0
description	0
type: int64	

Exploratory Data Analysis with Python

Netflix Content Analysis

Percentation of Netflix Titles that are either Movies or TV Shows

Movie present in higher percentage than TV shows

From this bar graph, it is evident that there are more Movies on Netflix than TV shows.

Netflix Rating Analysis

rating title

G

NR

PG

TV-PG

TV-Y

TV-Y7

UR

12 TV-Y7-FV

NC-17

Movies 5 R 6 TV-14 7 TV-G 8 TV-MA

TV Shows

Content growth over years

Year wise analysis

TV Shows

Analysis of duration of movies

A good amount of movies on Netflix are among the duration of 75-120 mins.

Top Genres on Netflix

Top 10 Actor Based on the Number of Titles

Top 10 Actor in Movies Based on the Number of Titles

Top 10 Actor in TV Shows Based on the Number of Titles

Top Directors on Netflix

TV shows with largest number of seasons

Release of content month-wise

Release of movies month-wise

Releases of TV Shows month-wise

Total release for last 10 years

Top 10 Movie Content Creating Countries

Top 15 Countries Contributor on Netflix

		country	Productions	TV-Shows	Movies
	0	United States	3288	860	2428
	1	India	990	75	915
Top 5 countries	2	United Kingdom	722	255	467
	3	Country Unavailable	505	276	229
	4	Canada	412	126	286

Content across all years

Netflix Content for different age groups in top 10 countries

Target ages proportion of total content by country

Topic Modeling

Top words (excluding stop words)

Coherence Score for Number of Topics

Latent Dirichlet Allocation (LDA)

K-MEANS Clustering

Finding number of components

Finding number of clusters

The number of clusters = 10

Clusters Formation

Recommendations

Recommendations for Movies Zulu Man in Japan

Pacammandations

Recommendations for TV-Shows 3%

- ☐ More Movies(69.1%) on Netflix than TV shows(30.9%).
- ☐ Growth in TV shows from 2018 to 2020 and decreases in movies from 2019 to 2020. Therefore Netflix has increasingly focusing on TV rather than movies in recent years.
- ☐ United State was highest contributor on Netflix.
- Topic modeling by using Latent Dirichlet Allocation (LDA) perform on text dataset and obtain highest coherence score on 7 number of topic. Feed the LDA model into the pyLDAvis instance and obtain intertopic distance map (via multidimensional scaling).
- k=10 was found to be an optimal value for clusters using which we grouped our data into 10 distinct clusters and obtain cluster using k=10 and found top words obtain in cluster. Using the given data a simple recommender system was created using cosine_similarity and recommendations for Movies and TV Shows were obtained.

