Scenario Generation Tables

The general scenario approach provides a framework for generating a large number of system-independent, quality-attribute-specific scenarios.

 A general scenario is a precise systemindependent specification of a type of quality attribute Requirement

A periodic event from an independent source arrives at the system under normal conditions. The system has to process the stimulus within certain latency.

 The general scenario provides a template for a creating a system-specific concrete scenarios.

 An event from sensor X arrives every 10 milliseconds (ms) at a system that operates under normal conditions. The system has to process the stimulus within 1 ms.

 A general scenario is system independent and can, potentially, pertain to any system.

Some scenarios:

- "Halt garage door when an obstacle is detected"
- "respond to user's requests to raise/lower the door within .5 second"
- "replace sensor/actuator within 40 staff hours"

Functional or quality requirements?

Every requirement has both functional AND quality portions.

 $\hbox{E.g.}$ Halt garage door when an obstacle is detected.

Function: detect obstacle, halt garage door

Quality: within time limit (implicit in this example).

Scenario template provides means for eliciting quality requirements associated with functions.

Quality portion leads to design template in which to situate functionality

To make the general scenarios useful, you must make them system specific. Concrete Quality Attribute Scenarios is specific to the particular system under consideration.

	Availability Scenario
Portion of Scenario	Possible Values
Source	Internal to the system; external to the system
Stimulus	Fault; omission, crash, timing, response
Artifact	System's processors, communication channels, persistent storage processes

Normal operation; degraded mode (i.e., fewer features, a fall-back solution.

System should detect event and do one or more of the following:

record it

notify appropriate parties, including the user and other systems disable sources of events that cause fault or failure

continue to operate in normal or degraded mode

be unavailable for a prespecified interval

Environment

Response

Response

Measure

Time interval when the system must be available; availability time; time interval in which system can be in degraded mode; repair time

Source of stimulus:

- Internal to the system
- ✓ External to the system.

Environment:

- ✓ Normal operation
- Degraded mode

Response:

- ✓ record it.
- ✓ notify parties
- ✓ operate in normal or degraded mode

Stimulus:

- ✓ Unanticipated event
- · Update to a data store

Artifact:

- ✓ Process
- Persistent storage

Response measures:

- ✓ Availability percentage
- Time range in which the system can be in degraded mode

Example Scenario:

"An unanticipated message is received by a system process during normal operation. The process has to record it, inform the appropriate parties and continue to operate in normal mode without any downtime."

Generate a possible general scenario by choosing one or more entries from each list and combining them

Not all:

- general scenarios are relevant to specific system.
- generated scenarios make sense

Make each scenario system specific (concrete scenario)

May be multiple concrete scenarios for each general scenario. e.g., modify function.

General Scenario for Availability

Sample Concrete Availability Scenario

The tables serve as checklist to ensure that all possibilities have been considered.

	Performance Scenario
Scenario Portion	Possible Values

System, or possibly a component

Normal mode; overload mode

Process stimuli; change level of service

Source

Stimulus

Artifact

Environment

RespMeasure

Response

A number of sources both external and internal

Periodic events, sporadic events, stochastic events

Latency, deadline, throughput, jitter, miss rate, data loss

Sample Performance Scenario

Modifiability Scenario		
Portion of Scenario	Possible Values	
Source	End user, developer, system administrator	

At runtime, compile time, build time, design time

makes modification without affecting other functionality;

Locates places in architecture to be modified;

affects other functions or quality attributes

target system

tests modification;

deploys modification

Stimulus

Artifact

Environment

Response Measure

Response

Wishes to add/delete/modify/vary functionality, quality attribute, capacity

System user interface, platform, environment; system that inter-operates with

Cost in terms of number of elements affected, effort, money; extent to which this

Sample Modifiability Scenario

Sample Modifiability Scenario

	Security Scenario
Possible Values	

Stimulus

Artifact

Environment

Source Individual or system that is correctly identified, identified incorrectly, of unknown identity who is internal/external, authorized/not authorized with access to limited resources, vast resources

Tries to display data, change/delete data, access system services, reduce availability to

system services

System services; data within system

Either online or offline, connected or disconnected, firewalled or open

Authenticates user; hides identity of the user; blocks access to data and/or services; Response allows access to data and/or services; grants or withdraws permission to access data and/or services; records access/modifications or attempts to access/modify data/services by identity; stores data in an unreadable format; recognizes an unexplainable high

demand for services, and informs a user or another system, and restricts availability of services Time/effort/resources required to circumvent security measures with probability of Response success; probability of detecting attack; probability of identifying individual responsible Measure for attack or access/modification of data and/or services; percentage of services still available under denial-of-services attack; restore data/services; extent to which data/services damaged and/or legitimate access denied

Sample Security Scenario

	Testability Scenario
Scenario Portion	Possible Values

acceptance tester, system user

delivered

deployment time

prepare test environment

Source

Stimulus

Artifact

Environment

Response

RespMeasure

Piece of design, piece of code, complete system

Unit developer, increment integrator, system verifier, client

At design time, at development time, at compile time, at

Provide access to state data values, observes results, compares

Coverage; prob of failure, time to perform tests, length of time to

Analysis, architecture, design, class, subsystem integration, system

Sample Testability Scenario

Sample testability scenario. A unit tester performs a unit test on a completed system component that provides an interface for controlling its behavior and observing its output; 85% path coverage is achieved within three hours.

to support "learn system features" – help system is sensitive to context; interface is

already entered data and/or commands; support for efficient navigation within a

to support "use system efficiently" – aggregation of data and/or commands; re-use of

screen; distinct views with consistent operations; comprehensive searching; multiple

Table for Generation of General
Usability Scenario
Passible Values

	- - - - - - - - - -	,	
Possible Values			

system; feel comfortable

At runtime or configuration time

simultaneous activities

Possible Values	

System provides one or more of the following responses:

familiar to user; interface is usable in an unfamiliar context

to "feel comfortable" - display system state; work at the user's pace

Source

Stimulus

Artifact

Environment

Response

Measure

End user

System

Wants to learn system features; use system efficiently; minimize impact of errors; adapt

to minimize "impact of errors" - undo, cancel, recover from system failure, recognize

and correct user error, retrieve forgotten password, verify system resources

to "adapt system" - customizability; internationalization

Task time, number of errors, number of problems solved, user satisfaction, gain of user

Response

knowledge, ration of successful operations to total operations; amount of time/data lost

Sample Usability Scenario

Sample usability scenario. A user, wanting to minimize the impact of an error, wishes to cancel a system operation at runtime; cancellation takes place in less than one second.