FedSKETCH: Communication-Efficient Federated Learning via Sketching

Anonymous Author(s)

Affiliation Address email

Abstract

Communication complexity and data privacy are the two key challenges in Federated Learning (FL) where the goal is to perform a distributed learning through a large volume of devices. In this work, we introduce two new algorithms, namely FedSKETCH and FedSKETCHGATE, to address jointly both challenges and which are, respectively, intended to be used for homogeneous and heterogeneous data distribution settings. Our algorithms are based on a key and novel sketching technique, called HEAPRIX that is unbiased, compresses the accumulation of local gradients using count sketch, and exhibits communication-efficiency properties leveraging low-dimensional sketches. We provide sharp convergence guarantees of our algorithms and validate our theoretical findings with various sets of experiments.

1 Introduction

2

3

4

9

10

11

24

25

26

27 28

29

30

31

32

Federated Learning (FL) is a recently emerging framework for distributed large scale machine learning problems. In FL, data is distributed across devices [33; 23] and due to privacy concerns, users are only allowed to communicate with the parameter server. Formally, the optimization problem across *p* distributed devices is defined as follows:

$$\min_{\boldsymbol{x} \in \mathbb{R}^d, \sum_{j=1}^p q_j = 1} f(\boldsymbol{x}) \triangleq \sum_{j=1}^p q_j F_j(\boldsymbol{x}),$$
 (1)

where $F_j(\boldsymbol{x}) = \mathbb{E}_{\xi \in \mathcal{D}_j} \left[L_j \left(\boldsymbol{x}, \xi \right) \right]$ is the local cost function at device $j, q_j \triangleq \frac{n_j}{n}, n_j$ is the number of data shards at device j and $n = \sum_{j=1}^p n_j$ is the total number of data samples, ξ is a random variable distributed according to probability distribution \mathcal{D}_j , and L_j is a loss function that measures the performance of model \boldsymbol{x} at device j. We note that, while for the homogeneous setting we assume $\{\mathcal{D}_j\}_{j=1}^p$ have the same distribution across devices and $L_i = L_j$, $1 \leq (i,j) \leq p$, in the heterogeneous setting, these distributions and loss functions L_j can vary from a device to another. There are several challenges that need to be addressed in FL in order to efficiently learn a global

There are several challenges that need to be addressed in FL in order to efficiently learn a global model that performs well in average for all devices:

- Communication-efficiency: There are often many devices communicating with the server, thus incurring immense communication overhead. One approach to reduce communication round is using local SGD with periodic averaging [48; 41; 47; 43] which periodically averages models after few local updates, contrary to baseline SGD [6] where model averaging is performed at each iteration. Local SGD has been proposed in [33; 23] under the FL setting and its convergence analysis is studied in [41; 43; 48; 47], later on improved in the follow up references [3; 12; 21; 39] for homogeneous setting. It is further extended to heterogeneous setting [46; 30; 38; 31; 12; 20]. Second approach to deal with communication cost aims at reducing the size of communicated message per communication round, such as local gradient quantization [1; 4; 42; 44; 45] or sparsification [2; 32; 40; 39].

-Data heterogeneity: Since locally generated data in each device may come from different distribution, local computations involved in FL setting can lead to poor convergence error in practice [27; 31].

To mitigate the negative impact of data heterogeneity, [13; 16; 31; 20] suggest applying variance reduction or gradient tracking techniques along local computations.

-Privacy [11; 14]: Privacy has been widely addressed by injecting an additional layer of randomness to respect differential-privacy property [34] or using cryptography-based approaches under secure multi-party computation [5]. Further study of challenges can be found in recent surveys [28] and [18].
 To tackle the aforementioned challenges in FL jointly, sketching based algorithms [7; 9; 22; 25] are promising approaches. For instance, to reduce communication cost. [17] develop a distributed SGD.

promising approaches. For instance, to reduce communication cost, [17] develop a distributed SGD algorithm using sketching along providing its convergence analysis in the homogeneous setting, and establish a communication complexity of order $\mathcal{O}(\log(d))$ per round, where d is the dimension of the vector of parameters compared to $\mathcal{O}(d)$ complexity per round of baseline mini-batch SGD. Yet, the proposed sketching scheme in [17], built from a communication-efficiency perspective, is based on a deterministic procedure which requires access to the exact information of the gradients, thus not meeting the privacy-preserving criteria. This systemic issue is partially addressed in [37].

Focusing on privacy, [26] derive a single framework in order to tackle these issues jointly and introduces DiffSketch algorithm, based on the Count Sketch operator, yet does not provide its convergence analysis. Additionally, the estimation error of DiffSketch is higher than the sketching scheme in [17] which may end up in poor convergence.

52 Our main contributions are summarized as follows:

53

54

55

56

57

58

60

61

62

63

64

65

68

77

- We provide a new algorithm HEAPRIX and theoretically show that it reduces the cost of
 communication between devices and server, based on unbiased sketching without requiring
 the broadcast of exact values of gradients to the server. Based on HEAPRIX, we develop general algorithms for communication-efficient and sketch-based FL, namely FedSKETCH and
 FedSKETCHGATE for homogeneous and heterogeneous data distribution settings respectively.
- We establish non-asymptotic convergence bounds for convex, Polyak-Łojasiewicz (PL) and non-convex functions in Theorems 1 and 2 in both homogeneous and heterogeneous cases, and highlight an improvement in the number of iteration to reach a stationary point. We also provide a convergence analysis for the PRIVIX algorithm proposed in [26].
- We illustrate the benefits of FedSKETCH and FedSKETCHGATE over baseline methods through
 a set of experiments. The latter shows the advantages of the HEAPRIX compression method
 achieving comparable test accuracy as Federated SGD (FedSGD) while compressing the
 information exchanged between devices and server.

Notation: We denote the number of communication rounds and bits per round and per device by R and B respectively. The count sketch of vector x is designated by S(x). [p] denotes the set $\{1, \ldots, p\}$.

2 Compression using Count Sketch

In this paper, we exploit the commonly used Count Sketch [7] which uses two sets of functions 69 that encode any input vector x into a hash table $S_{m \times t}(x)$. Pairwise independent hash functions 70 $\{h_{j,1\leq j\leq t}:[d]\to m\}$ are used along with another set of pairwise independent sign hash functions 71 $\{\operatorname{sign}_{j,1\leq j\leq t}:[d]\to \{+1,-1\}\}$ to map entries of x $(x_i,\ 1\leq i\leq d)$ into t different columns of 72 $\mathbf{S}_{m \times t}$, wherein to lower the dimension of the input vector we usually have $d \gg mt$. The final update 73 reads $S[j][h_j(i)] = S[j-1][h_{j-1}(i)] + \text{sign}_j(i).x_i$ for any $1 \leq j \leq t$. There are various types of 74 sketching algorithms which are developed based on count sketching that we develop in the following 75 subsections. See the Appendix for the detailed Count Sketch algorithm. 76

2.1 Sketching based Unbiased Compressor

78 We define an unbiased compressor as follows:

Definition 1 (Unbiased compressor). A randomized function, $C : \mathbb{R}^d \to \mathbb{R}^d$ is called an unbiased compression operator with $\Delta \geq 1$, if we have

$$\mathbb{E}\left[C(\boldsymbol{x})\right] = \boldsymbol{x} \quad and \quad \mathbb{E}\left[\left\|C(\boldsymbol{x})\right\|_2^2\right] \leq \Delta \left\|\boldsymbol{x}\right\|_2^2 \; .$$

We denote this class of compressors by $\mathbb{U}(\Delta)$.

This definition leads to the following property

$$\mathbb{E}\left[\left\|\mathbf{C}(\boldsymbol{x}) - \boldsymbol{x}\right\|_{2}^{2}\right] \leq \left(\Delta - 1\right) \left\|\boldsymbol{x}\right\|_{2}^{2}.$$

- Note that if we let $\Delta = 1$ then our algorithm reduces to the case of no compression. This property 83 allows us to control the noise of the compression. 84
- An instance of such unbiased compressor is PRIVIX which obtains an estimate of input x from a 85
- count sketch noted S(x). In this algorithm, to query the quantity x_i , the i-th element of the vector
- x, we compute the median of t approximated values specified by the indices of $h_i(i)$ for $1 \le i \le t$, 87
- see [26] or Algorithm 6 in the Appendix (for more details). For the purpose of our proof, we state the 88
- following crucial properties of the count sketch: 89
- **Property 1** ([26]). For any $x \in \mathbb{R}^d$, we have: 90
- Unbiased estimation: As in [26], we have $\mathbb{E}_{\mathbf{S}}\left[\mathtt{PRIVIX}[\mathbf{S}\left(x
 ight)]\right] = x$. 91
- Bounded variance: For the given m < d, $t = \mathcal{O}\left(\ln\left(\frac{d}{\delta}\right)\right)$ with probability 1δ we have:

$$\mathbb{E}_{\mathbf{S}}\left[\left\|\textit{PRIVIX}[\mathbf{S}\left(\boldsymbol{x}\right)] - \boldsymbol{x}\right\|_{2}^{2}\right] \leq c\frac{d}{m}\left\|\boldsymbol{x}\right\|_{2}^{2} \; ,$$

- where c ($e \le c < m$) is a positive constant independent of the dimension of the input, d.
- Thus, with probability $1-\delta$ we obtain PRIVIX $\in \mathbb{U}(1+c\frac{d}{m})$. $\Delta=1+c\frac{d}{m}$ implies that if $m\to d$, then $\Delta\to 1+c$, indicating a noisy reconstruction. [26] show that if the data is normally distributed, 94
- PRIVIX is differentially private [10], up to additional assumptions and algorithmic design. 96

97 2.2 Sketching based Biased Compressor

- A biased compressor is defined as follows:
- **Definition 2** (Biased compressor). A (randomized) function, $C : \mathbb{R}^d \to \mathbb{R}^d$ belongs to $\mathbb{C}(\Delta, \alpha)$, a class of compression operators with $\alpha > 0$ and $\Delta \geq 1$, if

$$\mathbb{E}\left[\left\|\alpha\boldsymbol{x} - C(\boldsymbol{x})\right\|_2^2\right] \leq \left(1 - \frac{1}{\Delta}\right) \left\|\boldsymbol{x}\right\|_2^2 \,,$$

- reference [15] proves that $\mathbb{U}(\Delta)$ $\mathbb{C}(\Delta,\alpha)$. An example 101 \subset compression via sketching top_m operation is given 102 ased and using below:
- Following [17], HEAVYMIX with sketch size 104 $\Theta\left(m\log\left(\frac{d}{\delta}\right)\right)$ is a biased compressor with 105 $\alpha=1$ and $\Delta=d/m$ with probability $\geq 1-\delta$. In other words, with probability $1-\delta$, 106 107 HEAVYMIX $\in C(\frac{d}{m},1)$. We note that Algorithm 1 is a variation of the sketching algo-108 109 rithm developed in [17] with distinction that 110 HEAVYMIX does not require a second round of 111 communication to obtain the exact values of 112 top_m . Additionally, while a sketching algo-113 rithm implementing HEAVYMIX has smaller es-114

103

118

Algorithm 1 HEAVYMIX

- 1: **Inputs:** S(g); parameter m
- 2: Query the vector $\tilde{\mathbf{g}} \in \mathbb{R}^d$ from $\mathbf{S}(\mathbf{g})$:
- 3: Query $\hat{\ell}_2^2 = (1 \pm 0.5) \|\mathbf{g}\|^2$ from sketch $\mathbf{S}(\mathbf{g})$
- 4: $\forall j$ query $\hat{\mathbf{g}}_{j}^{2} = \hat{\mathbf{g}}_{j}^{2} \pm \frac{1}{2m} \|\mathbf{g}\|^{2}$ from sketch $\mathbf{S}(\mathbf{g})$
- 5: $H = \{j | \hat{\mathbf{g}}_j \geq \frac{\hat{\ell}_2^2}{m} \}$ and $NH = \{j | \hat{\mathbf{g}}_j < \frac{\hat{\ell}_2^2}{m} \}$ 6: $\text{Top}_m = H \cup \text{rand}_{\ell}(NH)$, where $\ell = m |H|$
- 7: Get exact values of Top_m
- 8: Output: $\tilde{\mathbf{g}}: \forall j \in \text{Top}_m: \tilde{\mathbf{g}}_i = \mathbf{g}_i \text{ else } \mathbf{g}_i = 0$
- timation error compared to PRIVIX, it requires having access to the exact values of top_m, therefore not benefiting from privacy properties contrary to PRIVIX. In the following we introduce HEAPRIX – as a combination of those two methods.

2.3 Sketching based Induced Compressor

- Due to Theorem 3 in [15], which illustrates that we can convert the biased compressor into an 119
- 120
- unbiased one such that, for $C_1 \in \mathbb{C}(\Delta_1)$ with $\alpha = 1$, if you choose $C_2 \in \dot{\mathbb{U}}(\Delta_2)$, then induced compressor $C: x \mapsto C_1(\mathbf{x}) + C_2(\mathbf{x} C_1(\mathbf{x}))$ belongs to $\mathbb{U}(\Delta)$ with $\Delta = \Delta_2 + \frac{1 \Delta_2}{\Delta_1}$.

Based on this notion, Algorithm 2 pro-122 poses an induced sketching algorithm by 123 utilizing HEAVYMIX and PRIVIX for C_1 124 125 and C_2 respectively where the reconstruction of input x is performed using hash 126 table S and x, similar to PRIVIX and 127 HEAVYMIX. Note that if $m \to d$, then 128 $C(x) \rightarrow x$, implying that the conver-129 gence rate can be improved by decreas-130

ing the size of compression m.

131

137

140

160

161

162

163

164

165

166

167

Algorithm 2 HEAPRIX

- 1: Inputs: $\boldsymbol{x} \in \mathbb{R}^d, t, m, \mathbf{S}_{m \times t}, h_j (1 \leq$ t), sign_i $(1 \le i \le t)$, parameter m
- 2: Approximate $\mathbf{S}(x)$ using HEAVYMIX
- 3: Approximate $\mathbf{S}(x \text{HEAVYMIX}[\mathbf{S}(x)])$ with PRIVIX
- 4: Output:

 $\texttt{HEAVYMIX}\left[\mathbf{S}\left(\boldsymbol{x}\right)\right] + \texttt{PRIVIX}\left[\mathbf{S}\left(\boldsymbol{x} - \texttt{HEAVYMIX}\left[\mathbf{S}\left(\boldsymbol{x}\right)\right]\right)\right].$

Corollary 1. Based on Theorem 3 of [15], HEAPRIX in Algorithm 2 satisfies $C(x) \in \mathbb{U}(c\frac{d}{m})$. 132

Benefits of HEAPRIX: Corollary 1 states that, unlike PRIVIX, HEAPRIX compression noise can be made 133 as small as possible using larger hash size. Contrary to HEAVYMIX, HEAPRIX does not require having 134 access to exact top, values of the input, thus helps preserving privacy. In other words, HEAPRIX 135 leverages the best of both: the unbiasedness of PRIVIX while using heavy hitters as in HEAVYMIX. 136

FedSKETCH and FedSKETCHGATE

We introduce two new algorithms for both 138 homogeneous and heterogeneous settings. 139

3.1 Homogeneous Setting

In FedSKETCH, the number of local up-141 dates, between two consecutive communi-142 cation rounds, at device j is denoted by τ . 143 Unlike [13], server node does not store any 144 global model, rather, device j has two mod-145 els: $x^{(r)}$ and $x_i^{(\ell,r)}$, which are respectively 146 the local and global models. We develop FedSKETCH in Algorithm 3. A variant of 148 this algorithm implementing HEAPRIX is 149 also described in Algorithm 3. We note 150 that for this variant, we need to have an 151 additional communication round between 152 server and worker j to aggregate $\delta_i^{(r)} \triangleq$ 153 \mathbf{S}_i [HEAVYMIX($\mathbf{S}^{(r)}$)] (Lines 3 and 3). The 154 main difference between FedSKETCH and 155 DiffSketch in [26] is that we use distinct 156 local and global learning rates. Further-157 more, unlike [26], we do not add local 158 Gaussian noise. 159

Algorithmic comparison with [13] An important feature of our algorithm is that due to a lower dimension of the count sketch, the resulting averages ($S^{(r)}$ and $\tilde{\mathbf{S}}^{(r)}$) received by the server, are also of lower dimension. Therefore, these algorithms exploit a bidirectional compression during the communication from server to

Algorithm 3 FedSKETCH (R, τ, η, γ)

- 1: **Inputs:** $x^{(0)}$: initial model shared by local devices, global and local learning rates γ and η , respectively
- 2: **for** r = 0, ..., R 1 **do**
- 3: parallel for device $j \in \mathcal{K}^{(r)}$ do:
- if PRIVIX variant:

$$\boldsymbol{\Phi}^{(r)}\triangleq\mathtt{PRIVIX}\left[\mathbf{S}^{(r-1)}\right]$$

if HEAPRIX variant:

$$\boldsymbol{\Phi}^{(r)} \triangleq \mathtt{HEAVYMIX}\left[\mathbf{S}^{(r-1)}\right] + \mathtt{PRIVIX}\left[\mathbf{S}^{(r-1)} - \tilde{\mathbf{S}}^{(r-1)}\right]$$

- 6: Set $oldsymbol{x}^{(r)} = oldsymbol{x}^{(r-1)} \gamma oldsymbol{\Phi}^{(r)}$ and $oldsymbol{x}^{(0,r)}_j = oldsymbol{x}^{(r)}$
- 7: **for** $\ell=0,\ldots,\tau-1$ **do**8: Sample a mini-batch $\xi_j^{(\ell,r)}$ and compute $\tilde{\mathbf{g}}_j^{(\ell,r)}$ 9: Update $\boldsymbol{x}_j^{(\ell+1,r)}=\boldsymbol{x}_j^{(\ell,r)}-\eta \ \tilde{\mathbf{g}}_j^{(\ell,r)}$

- 11: Device j broadcasts $\mathbf{S}_{j}^{(r)} \triangleq \mathbf{S}_{j} \left(\boldsymbol{x}_{j}^{(0,r)} \boldsymbol{x}_{j}^{(\tau,r)} \right)$.
- 12: Server **computes** $\mathbf{S}^{(r)} = \frac{1}{k} \sum_{j \in \mathcal{K}} \mathbf{S}_{j}^{(r)}$.
 13: Server **broadcasts** $\mathbf{S}^{(r)}$ to devices in randomly drawn devices $\mathcal{K}^{(r)}$
- if HEAPRIX variant: 14:
- Second round of communication: $\delta_i^{(r)}$ $\mathbf{S}_{j}\left[\mathtt{HEAVYMIX}(\mathbf{S}^{(r)})
 ight]$ and broadcasts $\widetilde{\mathbf{S}}^{(r)}$ \triangleq $\frac{1}{k} \sum_{j \in \mathcal{K}} \delta_j^{(r)}$ to devices in set $\mathcal{K}^{(r)}$
- 16: end parallel for
- 17: **end**
- 18: Output: $\boldsymbol{x}^{(R-1)}$

device back and forth. As a result, due to this bidirectional property of communicating sketching 168 for the case of large quantization error $\omega = \theta(\frac{d}{m})$ as shown in [13], our algorithms can outperform 169 FedCOM and FedCOMGATE developed in [13] if sufficiently large hash tables are used and the uplink 170 communication cost is high. Furthermore, while, in [13], server stores a global model and aggregates 171 the partial gradients from devices which can enable the server to extract some information regarding 172 the device's data, in contrast, in our algorithms server does not store the global model and only 173 broadcasts the average sketches. Thus, sketching-based server-devices communication algorithms such as ours do not reveal the exact values of the inputs, to preserve privacy as a by-product.

Remark 1. As pointed out in [15], while induced compressors transform a biased compressor into unbiased one, as a drawback it doubles communication cost since the devices need to send $C_1(x)$ and 177 $C_2(x-C_1(x))$ separately. We note that in the special case of HEAPRIX, due to the use of sketching, 178 the extra communication round cost is compensated with lower number of bits per round thanks to 179 the lower dimension of sketching. 180

3.2 Heterogeneous Setting

181

In this section, we focus on the optimiza-182 tion problem of (1) in the special case 183 of $q_1 = \ldots = q_p = \frac{1}{p}$ with full device participation (k = p). These results 184 185 can be extended to the scenario where de-186 vices are sampled. For non i.i.d. data, the 187 FedSKETCH algorithm, designed for homo-188 geneous setting, may fail to perform well 189 in practice. The main reason is that in 190 FL, devices are using local stochastic de-191 scent direction which could be different 192 than global descent direction when the data 193 distribution are non-identical. Therefore, 194 to mitigate the effect of data heterogene-195 ity, we introduce a new algorithm called 196 FedSKETCHGATE described in Algorithm 4. 197 This algorithm leverages the idea of gra-198 dient tracking applied in [13] (with com-199 pression) and a special case of $\gamma = 1$ with-200 out compression [31]. The main idea is 201 that using an approximation of global gra-202 dient, $\mathbf{c}_{i}^{(r)}$ allows to correct the local gra-203 dient direction. For the FedSKETCHGATE 204 with PRIVIX variant, the correction vec-205 tor $\mathbf{c}_{i}^{(r)}$ at device j and communication 206 round r is computed in Line 4. While using 207 HEAPRIX compression, FedSKETCHGATE 208 also updates $\tilde{\mathbf{S}}^{(r)}$ via Line 4. 209

Remark 2. Most of the existing 210 communication-efficient algorithms with 211 compression only consider communication-212 efficiency from devices to server. However, 213

Algorithm 4 FedSKETCHGATE (R, τ, η, γ)

- 1: Inputs: $x^{(0)} = x_j^{(0)}$ shared by all local devices, global and local learning rates γ and η .
- 2: **for** r = 0, ..., R 1 **do**
- 3: parallel for device $j = 1, \dots, p$ do:
- if PRIVIX variant:

$$\mathbf{c}_{j}^{(r)} = \mathbf{c}_{j}^{(r-1)} - \frac{1}{\tau} \left[\mathtt{PRIVIX} \left(\mathbf{S}^{(r-1)} \right) - \mathtt{PRIVIX} \left(\mathbf{S}_{j}^{(r-1)} \right) \right]$$

- 5: where $\Phi^{(r)} \triangleq PRIVIX(\mathbf{S}^{(r-1)})$
- 6: if HEAPRIX variant:

$$\mathbf{c}_{j}^{(r)} = \mathbf{c}_{j}^{(r-1)} - \frac{1}{\tau} \left(\mathbf{\Phi}^{(r)} - \mathbf{\Phi}_{j}^{(r)} \right)$$

- 7: Set $m{x}^{(r)} = m{x}^{(r-1)} \gamma m{\Phi}^{(r)}$ and $m{x}_j^{(0,r)} = m{x}^{(r)}$
- 8: **for** $\ell = 0, \dots, \tau 1$ **do**9: Sample mini-batch $\xi_j^{(\ell,r)}$ and compute $\tilde{\mathbf{g}}_j^{(\ell,r)}$ 10: $\mathbf{x}_j^{(\ell+1,r)} = \mathbf{x}_j^{(\ell,r)} \eta \left(\tilde{\mathbf{g}}_j^{(\ell,r)} \mathbf{c}_j^{(r)} \right)$

10:
$$\boldsymbol{x}_{j}^{(\ell+1,r)} = \boldsymbol{x}_{j}^{(\ell,r)} - \eta \left(\tilde{\mathbf{g}}_{j}^{(\ell,r)} - \mathbf{c}_{j}^{(r)} \right)$$

- 12: Device j broadcasts $\mathbf{S}_{j}^{(r)} \triangleq \mathbf{S} \left(\boldsymbol{x}_{j}^{(0,r)} \boldsymbol{x}_{j}^{(\tau,r)} \right)$.
- 13: Server computes $\mathbf{S}^{(r)} = \frac{1}{p} \sum_{j=1}^{r} \mathbf{S}_{j}^{(r)}$ and broad**casts** $S^{(r)}$ to all devices.
- 14: **if HEAPRIX variant:** 15: Device j computes $\mathbf{\Phi}_j^{(r)} \triangleq \texttt{HEAPRIX}[\mathbf{S}_j^{(r)}]$
- 16: Second round of communication to obtain $\delta_i^{(r)} :=$ $\mathbf{S}_{j}\left(\mathtt{HEAVYMIX}[\mathbf{S}^{(r)}]
 ight)$
- 17: Broadcasts $\tilde{\mathbf{S}}^{(r)} \triangleq \frac{1}{p} \sum_{j=1}^{p} \delta_{j}^{(r)}$ to devices
- 18: end parallel for
- 19: **end**
- 20: Output: $\boldsymbol{x}^{(R-1)}$

Algorithms 3 and 4 also improve the communication efficiency from server to devices since it exploits 214 low-dimensional sketches (and averages), communicated from the server to devices. 215

For both FedSKETCH and FedSKETCHGATE algorithms, unlike PRIVIX, HEAPRIX variant requires 216 a second round of communication. Therefore, in Cross-Device FL setting, where there could be 217 millions of devices, HEAPRIX variant may not be practical, and we note that it could be more suitable 218 for Cross-Silo FL setting. 219

Convergence Analysis

- We first state commonly used assumptions required in the following convergence analysis (reminder 221 of our notations can be found Table 1 of the Appendix). 222
- **Assumption 1** (Smoothness and Lower Boundedness). The local objective function $f_i(\cdot)$ of device 223
- j is differentiable for $j \in [p]$ and L-smooth, i.e., $\|\nabla f_j(\mathbf{x}) \nabla f_j(\mathbf{y})\| \le L\|\mathbf{x} \mathbf{y}\|, \ \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.
- Moreover, the optimal objective function $f(\cdot)$ is bounded below by $f^* := \min_{\mathbf{x}} f(\mathbf{x}) > -\infty$.
- Assumption 1 is common in stochastic optimization. We present our results for PL, convex and 226 general non-convex objectives. [19] show that PL condition implies strong convexity property with

same module (PL objectives can also be non-convex, hence strong convexity does not imply PL 228 condition necessarily). 229

4.1 Convergence of FEDSKETCH

- We now focus on the homogeneous case where data is i.i.d. among local devices, and therefore, the 231 stochastic local gradient of each worker is an unbiased estimator of the global gradient. We have: 232
- **Assumption 2** (Bounded Variance). For all $j \in [m]$, we can sample an independent mini-batch 233
- ℓ_j of size $|\Xi_j^{(\ell,r)}| = b$ and compute an unbiased stochastic gradient $\tilde{\mathbf{g}}_j = \nabla f_j(\boldsymbol{x};\Xi_j)$, $\mathbb{E}_{\xi_j}[\tilde{\mathbf{g}}_j] = 0$ 234
- $\nabla f(\mathbf{x}) = \mathbf{g}$ with the variance bounded is bounded by a constant σ^2 , i.e., $\mathbb{E}_{\Xi_j} \left[\|\tilde{\mathbf{g}}_j \mathbf{g}\|^2 \right] \leq \sigma^2$. 235
- **Theorem 1.** Suppose Assumptions 1-2 hold. Given $0 < m \le d$ and considering Algorithm 3 with 236 sketch size $B = O\left(m\log\left(\frac{dR}{\delta}\right)\right)$ and $\gamma \geq k$, with probability $1 - \delta$ we have: 237
- In the non-convex case, $\{x^{(r)}\}_{r=>0}$ satisfies $\frac{1}{R}\sum_{r=0}^{R-1}\left\|\nabla f(x^{(r)})\right\|_2^2\leq \epsilon$ if: 238
- ullet FS-PRIVIX, for $\eta=rac{1}{L\gamma}\sqrt{rac{k}{R au(rac{cd}{2mt}+1)}}$: $R=O\left(1/\epsilon
 ight)$ and $au=O\left((d+m)/(mk\epsilon)
 ight)$.
- ullet FS-HEAPRIX, for $\eta=rac{1}{L\gamma}\sqrt{rac{k}{R au\left(rac{cd-m}{cr}+1
 ight)}}$: $R=O\left(1/\epsilon
 ight)$ and $au=O\left(d/(mk\epsilon)
 ight)$.
- In the PL or strongly convex case, $\{x^{(r)}\}_{r=>0}$ satisfies $\mathbb{E}[f(x^{(R-1)}) f(x^{(*)})] \le \epsilon$ if we set:
- FS-PRIVIX, for $\eta=\frac{1}{2L(cd/mk+1)\tau\gamma}$: $R=O\left((d/mk+1)\,\kappa\log\left(1/\epsilon\right)\right)$ and $\tau=0$
- $O\left(\left(d/m+1\right)/\left(d/m+k\right)\epsilon\right)$
- FS-HEAPRIX, for $\eta=\frac{1}{2L((cd-m)/mk+1)\tau\gamma}$: $R=O\left(((d-m)/mk+1)\,\kappa\log\left(1/\epsilon\right)\right)$ and $\tau=0$
- $O\left(d/m/\left(\left((d/m-1)+k\right)\epsilon\right)\right).$
- In the Convex case, $\{x^{(r)}\}_{r=>0}$ satisfies $\mathbb{E}\Big[f(x^{(R-1)}) f(x^{(*)})\Big] \le \epsilon$ if we set:
- FS-PRIVIX, for $\eta = \frac{1}{2L(cd/mk+1)\tau\gamma}$: $R = O\left(L\left(1+d/mk\right)/\epsilon\log\left(1/\epsilon\right)\right)$ and $\tau = 0$
- $O((d/m+1)^2/(k(d/mk+1)^2\epsilon^2))$
- $\bullet \textit{FS-HEAPRIX, for } \eta = \frac{1}{2L((cd-m)/mk+1)\tau\gamma} \text{: } R = O\left(L\left(1+(d-m)/mk\right)/\epsilon\log\left(1/\epsilon\right)\right) \textit{ and } \tau = O\left((d/m)^2/\left(k\left([d-m]/mk+1\right)^2\epsilon^2\right)\right).$
- 250
- The bounds in Theorem 1 suggest that in homogeneous setting if we set d = m (no compression), 251
- the number of communication rounds to achieve the ϵ error matches with the number of iterations 252
- required to achieve the same error under a centralized setting. Additionally, computational complexity 253
- scales down with number of sampled devices. To stress on the further impact of using sketching, we 254
- also compare our results with prior works in terms of total number of communicated bits per device. 255
- **Comparison with [17]** From privacy aspect, we note [17] requires for server to have access to exact 256
- values of top_m gradients, hence do not preserve privacy, whereas our schemes do not need those exact 257
- values. From communication cost point of view, for strongly convex objective and compared to [17], 258
- we improve the total communication per worker from $RB = O\left(\frac{d}{\epsilon}\log\left(\frac{d}{\delta\sqrt{\epsilon}}\max\left(\frac{d}{m},\frac{1}{\sqrt{\epsilon}}\right)\right)\right)$ to 259

$$RB = O\left(\kappa(\tfrac{d-m}{k} + m)\log\tfrac{1}{\epsilon}\log\left(\tfrac{\kappa d}{\delta}(\tfrac{d-m}{mk} + 1)\log\tfrac{1}{\epsilon}\right)\right).$$

- We note that while reducing communication cost, our scheme requires $\tau = O(d/m(k(\frac{d}{mk}+1)\epsilon)) > 1$, which scales down with the number of sampled devices, k. Moreover, unlike [17], we do not 260
- 261
- use bounded gradient assumption. Therefore, we obtain stronger result with weaker assumptions. 262
- Regarding general non-convex objectives, our result improves the total communication cost per 263
- worker in [17] from $RB = O\left(\max(\frac{1}{\epsilon^2}, \frac{d^2}{k^2 \epsilon})\log(\frac{d}{\delta}\max(\frac{1}{\epsilon^2}, \frac{d^2}{k^2 \epsilon}))\right)$ for only one device to RB = 0264
- $O(\frac{m}{\epsilon}\log(\frac{d}{\epsilon^3}))$. We also highlight that we can obtain similar rates for Algorithm 3 in heterogeneous 265
- environment if we make the additional assumption of uniformly bounded gradient.

Note: Such improved communication cost over prior related works is due to joint exploitation of 267 sketching, to reduce the dimension of communicated messages, and the use of local updates, to 268 reduce the total number of communication rounds leading to a specific convergence error. 269

4.2 Convergence of FedSKETCHGATE 270

- We start with bounded local variance assumption: 271
- **Assumption 3** (Bounded Local Variance). For all $j \in [p]$, we can sample an independent mini-272
- 273
- batch Ξ_j of size $|\xi_j| = b$ and compute an unbiased stochastic gradient $\tilde{\mathbf{g}}_j = \nabla f_j(\mathbf{x}; \Xi_j)$ with $\mathbb{E}_{\xi}[\tilde{\mathbf{g}}_j] = \nabla f_j(\mathbf{x}) = \mathbf{g}_j$. Moreover, the variance of local stochastic gradients is bounded such that 274
- $\mathbb{E}_{\Xi}\left[\|\tilde{\mathbf{g}}_j \mathbf{g}_j\|^2\right] \leq \sigma^2.$
- **Theorem 2.** Suppose Assumptions 1 and 3 hold. Given $0 < m \le d$, and considering FedSKETCHGATE in Algorithm 4 with sketch size $B = O\left(m\log\left(\frac{dR}{\delta}\right)\right)$ and $\gamma \ge p$ with proba-276
- 277
- 278
- In the non-convex case, $\eta = \frac{1}{L\gamma} \sqrt{\frac{mp}{R\tau(cd)}}$, $\{\boldsymbol{x}^{(r)}\}_{r=>0}$ satisfies $\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{x}^{(r)}) \right\|_2^2 \leq \epsilon$ if: 279
- FS-PRIVIX:

$$R = O((d+m)/m\epsilon)$$
 and $\tau = O(1/(p\epsilon))$.

- FS-HEAPRIX: $R = O(d/m\epsilon)$ and $\tau = O(1/(p\epsilon))$. 281
- In the PL or Strongly convex case, $\{x^{(r)}\}_{r=>0}$ satisfies $\mathbb{E}\Big[f(x^{(R-1)}) f(x^{(*)})\Big] \le \epsilon$ if: 282
- FS-PRIVIX, for $\eta=1/(2L(\frac{cd}{m}+1)\tau\gamma)$: $R=O\left((\frac{d}{m}+1)\kappa\log(1/\epsilon)\right)$ and $\tau=O\left(1/(p\epsilon)\right)$ 283
- FS-HEAPRIX, for $\eta = m/(2cLd\tau\gamma)$: $R = O\left(\left(\frac{d}{m}\right)\kappa\log(1/\epsilon)\right)$ and $\tau = O\left(1/(p\epsilon)\right)$.
- In the convex case, $\{x^{(r)}\}_{r=>0}$ satisfies $\mathbb{E}[f(x^{(R-1)}) f(x^{(*)})] \le \epsilon$ if: 285
- FS-PRIVIX, for $\eta = 1/(2L(cd/m+1)\tau\gamma)$: $R = O(L(d/m+1)\epsilon\log(1/\epsilon))$ and $\tau =$ 286 $O(1/(p\epsilon^2)).$ 287
- FS-HEAPRIX, for $\eta = m/(2Lcd\tau\gamma)$: $R = O(L(d/m)\epsilon \log(1/\epsilon))$ and $\tau = O(1/(p\epsilon^2))$. 288
- Theorem 2 implies that the number of communication rounds and local updates are similar to the 289
- corresponding quantities in homogeneous setting except for the non-convex case where the number 290
- of communication rounds also depends on the compression rate. 291
- These results are summarized in Table 2-3 of the Appendix. 292

4.3 Comparison with Prior Methods

- Before comparing with prior works, we highlight that privacy is another purpose of using unbiased 294
- sketching in addition to communication efficiency. Therefore, our main competing schemes are 295
- distributed algorithms based on sketching. Nonetheless, for the sake of showing the effectiveness of
- our algorithms, we also compare with prior non-sketching based distributed algorithms ([20; 3; 36;
- 298 13]) in Section B of Appendix.

- Comparison with [26]. Note that our convergence analysis does not rely on the bounded gradient 299
- assumption. We also improve both the number of communication rounds R and the size of transmitted 300
- bits B per communication round. Additionally, we highlight that, while [26] provides a convergence 301
- analysis for convex objectives, our analysis holds for PL (thus strongly convex case), general convex 302
- and general non-convex objectives. 303
- Comparison with [37]. Due to gradient tracking, our algorithm tackles data heterogeneity issue, 304
- while algorithms in [37] does not particularly. As a consequence, in FedSKETCHGATE each device 305
- has to store an additional state vector compared to [37]. Yet, as our method is built upon an 306
- unbiased compressor, server does not need to store any additional error correction vector. The 307
- convergence results for both of two variants of FetchSGD in [37] rely on the uniform bounded gradient 308
- assumption which may not be applicable with L-smoothness assumption when data distribution 309
- is highly heterogeneous, as in FL, see [21], while our bounds do not assume such boundedness. 310
 - Besides, Theorem 1 [37] assumes that Contraction Holds for the sequence of gradients which may

Figure 1: Homogeneous case: Comparison of compressed optimization methods on LeNet CNN.

not hold in practice, yet based on this strong assumption, their total communication cost (RB) in order to achieve ϵ error is $RB = O\left(m \max(\frac{1}{\epsilon^2}, \frac{d^2 - dm}{m^2 \epsilon}) \log\left(\frac{d}{\delta} \max(\frac{1}{\epsilon^2}, \frac{d^2 - dm}{m^2 \epsilon})\right)\right)$. For the sake of comparison we let the compression ratio in [37] to be $\frac{m}{d}$. In contrast, without any extra assumptions, 313 our results in Theorem 2 for PRIVIX and HEAPRIX are respectively $RB = O(\frac{(d+m)}{\epsilon} \log(\frac{(\frac{d^2}{m})+d}{\epsilon\delta}))$ and $RB = O(\frac{d}{\epsilon} \log(\frac{d^2}{\epsilon m\delta}))$ which improves the total communication cost of Theorem 1 in [37] under 315 316 regimes such that $\frac{1}{\epsilon} \geq d$ or $d \gg m$. Theorem 2 in [37] is based the *Sliding Window Heavy Hitters* assumption, which is similar to the gradient diversity assumption in [29; 12]. Under that assumption the total communication cost is shown to be $RB = O\left(\frac{m \max(I^{2/3}, 2-\alpha)}{\epsilon^3 \alpha} \log\left(\frac{d \max(I^{2/3}, 2-\alpha)}{\epsilon^3 \delta}\right)\right)$ where I is a constant related to the window of gradients. We improve this bound under weaker 317 318 319 320 assumptions in a regime where $\frac{I^{2/3}}{\epsilon^2} \ge d$. We also provide bounds for PL, convex and non-convex objectives contrary to [37]. Finally, we note that algorithms in [37] are using momentum at server. 321 322 While we do not use it explicitly, we can modify our algorithms to include momentum easily. 323

5 Numerical Study

324

325

326

328

330

331

332

333

334

335

336

337

338

339

340

341

342

345

346

347

In this section, we provide empirical results on MNIST benchmark dataset to demonstrate the effectiveness of our proposed algorithms. We train LeNet-5 Convolutional Neural Network (CNN) architecture introduced in [24], with 60 000 parameters. We compare Federated SGD (FedSGD) as the full-precision baseline, along with four sketching methods SketchSGD [17], FetchSGD [37], and two FedSketch variants FS-PRIVIX and FS-HEAPRIX. Note that in Algorithm 3, FS-PRIVIX with global learning rate $\gamma = 1$ is equivalent to the DiffSketch algorithm proposed in [29]. Also, SketchSGD is slightly modified to compress the change in local weights (instead of local gradient in every iteration), and FetchSGD is implemented with second round of communication for fairness. (The original proposal does not include second round of communication, which performs worse with small sketch size.) As suggested in [37], the momentum factor of FetchSGD is set to 0.9, and we also follow some recommended implementation tricks to improve its performance, which are detailed in the Appendix. The number of workers is set to 50 and we report the results for 1 and 5 local epochs. A local epoch is finished when all workers go through their local data samples once. The local batch size is 30. In each round, we randomly choose half of the devices to be active. We tune the learning rates (η and γ , if applicable) over log-scale and report the best results, for both homogeneous and heterogeneous setting. In the former case, each device receives uniformly drawn data samples, and in the latter, it only receives samples from one or two classes among ten.

Homogeneous case. In Figure 1, we provide the training loss and test accuracy with different number of local epochs and sketch size, (t, k) = (20, 40) and (50, 100). Note that, these two choices of sketch size correspond to a $75 \times$ and $12 \times$ compression ratio, respectively. We conclude

 In general, increasing compression ratio would sacrifice learning performance. In all cases, FS-HEAPRIX performs the best in terms of both training objective and test accuracy, among all compressed methods.

Figure 2: Heterogeneous case: Comparison of compressed optimization algorithms on LeNet CNN.

- FS-HEAPRIX is better than FS-PRIVIX, especially with small sketches (high compression ratio). FS-HEAPRIX yields acceptable extra test error compared to full-precision FedSGD, particularly when considering the high compression ratio (e.g., 75×).
- From the training loss, we see that the performance of FS-HEAPRIX improves when the number of local updates increases. That is, the proposed method is able to further reduce the communication cost by reducing the number of rounds required for communication. This is also consistent with our theoretical findings.

In general, our proposed FS-HEAPRIX outperforms all competing methods, and a sketch size of (50, 100) is sufficient to approach the accuracy of full-precision FedSGD.

Heterogeneous case. We plot similar set of results in Figure 2 for non-i.i.d. data distribution, which leads to more twists and turns in the training curves. We see that SketchSGD performs very poorly in the heterogeneous case, which is improved by error tracking and momentum in FetchSGD, as expected. However, both of these methods are worse than our proposed FedSketchGATE methods, which can achieve similar generalization accuracy as full-precision FedSGD, even with small sketch size (i.e., 75× compression with 1 local epoch). Note that, slower convergence and worse generalization of FedSGD in non-i.i.d. data distribution case is also reported in e.g. [33; 8].

We also notice in Figure 2 the advantage of FS-HEAPRIX over FS-PRIVIX in terms of training loss and test accuracy. However, empirically we see that in the heterogeneous setting, more local updates tend to undermine the learning performance, especially with small sketch size. Nevertheless, when the sketch size is not too small, i.e., (50,100), FS-HEAPRIX can still provide comparable test accuracy as FedSGD in both cases. Our empirical study demonstrates that our proposed FedSketch (and FedSketchGATE) frameworks are able to perform well in homogeneous (resp. heterogeneous) setting, with high compression rate. In particular, FedSketch methods are advantageous over recent SketchedSGD [17] and FetchSGD [37] in all cases. FS-HEAPRIX performs the best among all the tested compressed optimization algorithms, which in many cases achieves similar generalization accuracy as full-precision FedSGD with small sketch size.

6 Conclusion

In this paper, we introduced FedSKETCH and FedSKETCHGATE algorithms for homogeneous and heterogeneous data distribution setting respectively for Federated Learning wherein communication between server and devices is only performed using count sketch. Our algorithms, thus, provide communication-efficiency and privacy, through random hashes based sketches. We analyze the convergence error for *non-convex*, *PL* and *general convex* objective functions in the scope of Federated Optimization. We provide insightful numerical experiments showcasing the advantages of our FedSKETCH and FedSKETCHGATE methods over current federated optimization algorithm. The proposed algorithms outperform competing compression method and can achieve comparable test accuracy as Federated SGD, with high compression ratio.

4 References

- Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and encoding. In *Advances in Neural Information Processing Systems (NIPS)*, pages 1709–1720, Long Beach, 2017.
- Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric Renggli. The convergence of sparsified gradient methods. In *Advances in Neural Information Processing Systems (NeurIPS)*, pages 5973–5983, Montréal, Canada, 2018.
- [3] Debraj Basu, Deepesh Data, Can Karakus, and Suhas N. Diggavi. Qsparse-local-sgd: Distributed SGD with quantization, sparsification and local computations. In *Advances in Neural Information Processing Systems (NeurIPS)*, pages 14668–14679, Vancouver, Canada, 2019.
- Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
 SIGNSGD: compressed optimisation for non-convex problems. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, pages 559–568, Stockholmsmässan,
 Stockholm, Sweden, 2018.
- Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
 Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
 privacy-preserving machine learning. In *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS)*, pages 1175–1191, Dallas, TX, 2017.
- Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In *Advances in Neural Information Processing Systems (NIPS)*, pages 161–168, Vancouver, Canada, 2008.
- [7] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams. *Theoretical Computer Science*, 312(1):3–15, 2004. doi: 10.1016/S0304-3975(03)00400-6. URL https://doi.org/10.1016/S0304-3975(03)00400-6.
- [8] Xiangyi Chen, Xiaoyun Li, and Ping Li. Toward communication efficient adaptive gradient method. In *ACM-IMS Foundations of Data Science Conference (FODS)*, Seattle, WA, 2020.
- [9] Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. *Journal of Algorithms*, 55(1):58–75, 2005.
- [10] Cynthia Dwork. Differential privacy. In Automata, Languages and Programming, 33rd
 International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II,
 volume 4052 of Lecture Notes in Computer Science, pages 1–12. Springer, 2006.
- [11] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level perspective. *arXiv preprint arXiv:1712.07557*, 2017.
- 416 [12] Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated learning. *arXiv preprint arXiv:1910.14425*, 2019.
- Federated learning with compression: Unified analysis and sharp guarantees. *arXiv preprint arXiv:2007.01154*, 2020.
- [14] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume
 Smith, and Brian Thorne. Private federated learning on vertically partitioned data via entity
 resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677, 2017.
- [15] Samuel Horváth and Peter Richtárik. A better alternative to error feedback for communicationefficient distributed learning. *arXiv preprint arXiv:2006.11077*, 2020.
- [16] Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.
 Stochastic distributed learning with gradient quantization and variance reduction. arXiv preprint
 arXiv:1904.05115, 2019.

- 429 [17] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Raman 430 Arora. Communication-efficient distributed SGD with sketching. In *Advances in Neural* 431 *Information Processing Systems (NeurIPS)*, pages 13144–13154, Vancouver, Canada, 2019.
- [18] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
 et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,
 2019.
- [19] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal gradient methods under the polyak-łojasiewicz condition. In *Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD)*, pages
 795–811, Riva del Garda, Italy, 2016.
- [20] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
 and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated
 learning. arXiv preprint arXiv:1910.06378, 2019.
- 443 [21] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local SGD on identical and heterogeneous data. In *The 23rd International Conference on Artificial Intelligence*445 *and Statistics (AISTATS)*, pages 4519–4529, Online [Palermo, Sicily, Italy], 2020.
- [22] Jon Kleinberg. Bursty and hierarchical structure in streams. *Data Mining and Knowledge Discovery*, 7(4):373–397, 2003.
- Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for improving communication efficiency. *arXiv* preprint arXiv:1610.05492, 2016.
- 451 [24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- [25] Ping Li, Kenneth Ward Church, and Trevor Hastie. One sketch for all: Theory and application
 of conditional random sampling. In *Advances in Neural Information Processing Systems (NIPS)*,
 pages 953–960, Vancouver, Canada, 2008.
- [26] Tian Li, Zaoxing Liu, Vyas Sekar, and Virginia Smith. Privacy for free: Communication efficient learning with differential privacy using sketches. arXiv preprint arXiv:1911.00972,
 2019.
- 459 [27] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods, and future directions. *IEEE Signal Process. Mag.*, 37(3):50–60, 2020.
- ⁴⁶¹ [28] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods, and future directions. *IEEE Signal Processing Magazine*, 37(3):50–60, 2020.
- [29] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
 Smith. Federated optimization in heterogeneous networks. In *Proceedings of Machine Learning* and Systems (MLSys), Austin, TX, 2020.
- Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on non-iid data. In *Proceedings of the 8th International Conference on Learning Representations (ICLR)*, Addis Ababa, Ethiopia, 2020.
- 469 [31] Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei Cheng. Variance reduced local sgd with lower communication complexity. *arXiv preprint arXiv:1912.12844*, 2019.
- 472 [32] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression:
 473 Reducing the communication bandwidth for distributed training. In *Proceedings of the 6th International Conference on Learning Representations (ICLR)*, Vancouver, Canada, 2018.

- [33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
 Communication-efficient learning of deep networks from decentralized data. In *Proceedings* of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), pages
 1273–1282, Fort Lauderdale, FL, 2017.
- H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent language models. In *Proceedings of the 6th International Conference on Learning Representations (ICLR)*, Vancouver, Canada, 2018.
- 482 [35] Constantin Philippenko and Aymeric Dieuleveut. Artemis: tight convergence guarantees for bidirectional compression in federated learning. *arXiv preprint arXiv:2006.14591*, 2020.
- 484 [36] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization. In *The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS)*, pages 2021–2031, Online [Palermo, Sicily, Italy], 2020.
- Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
 Joseph Gonzalez, and Raman Arora. FetchSGD: Communication-efficient federated learning
 with sketching. arXiv preprint arXiv:2007.07682, 2020.
- [38] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia
 Smith. On the convergence of federated optimization in heterogeneous networks. arXiv preprint
 arXiv:1812.06127, 2018.
- [39] Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
 sgd with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
 2019.
- [40] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
 Advances in Neural Information Processing Systems (NeurIPS), pages 4447–4458, Montréal,
 Canada, 2018.
- 500 [41] Sebastian Urban Stich. Local sgd converges fast and communicates little. In *Proceedings of the* 501 *7th International Conference on Learning Representations (ICLR)*, New Orleans, LA, 2019.
- Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression for decentralized training. In *Advances in Neural Information Processing Systems (NeurIPS)*, pages 7652–7662, Montréal, Canada, 2018.
- Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis
 of communication-efficient sgd algorithms. arXiv preprint arXiv:1808.07576, 2018.
- Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary gradients to reduce communication in distributed deep learning. In *Advances in neural information processing systems (NIPS)*, pages 1509–1519, Long Beach, CA, 2017.
- [45] Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized
 sgd and its applications to large-scale distributed optimization. arXiv preprint arXiv:1806.08054,
 2018.
- Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, pages 7184–7193, Long Beach, CA, 2019.
- [47] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less communication: Demystifying why model averaging works for deep learning. In *The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI)*, pages 5693–5700, Honolulu, HI, 2019.
- [48] Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic
 gradient descent algorithm for nonconvex optimization. In *Proceedings of the Twenty-Seventh* International Joint Conference on Artificial Intelligence (IJCAI), pages 3219–3227, Stockholm,
 Sweden, 2018.

Checklist

525

526

527

528

529

530

531 532

533

534

535

536

537

538

539

540 541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556 557

- 1. For all authors...
 - (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [TODO]
 - (b) Did you describe the limitations of your work? [TODO]
 - (c) Did you discuss any potential negative societal impacts of your work? [TODO]
 - (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [TODO]
- 2. If you are including theoretical results...
 - (a) Did you state the full set of assumptions of all theoretical results? [TODO]
 - (b) Did you include complete proofs of all theoretical results? [TODO]
- 3. If you ran experiments...
 - (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [TODO]
 - (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [TODO]
 - (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [TODO]
 - (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [TODO]
- 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - (a) If your work uses existing assets, did you cite the creators? [TODO]
 - (b) Did you mention the license of the assets? [TODO]
 - (c) Did you include any new assets either in the supplemental material or as a URL? **[TODO]**
 - (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [TODO]
 - (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [TODO]
- 5. If you used crowdsourcing or conducted research with human subjects...
 - (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [TODO]
 - (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [TODO]
 - (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [TODO]

A Notations and Definitions

Notation. Here we denote the count sketch of the vector x by $\mathbf{S}(x)$ and with an abuse of notation, we indicate the expectation over the randomness of count sketch with $\mathbb{E}_{\mathbf{S}}[.]$. We illustrate the random subset of the devices selected by the central server with \mathcal{K} with size $|\mathcal{K}| = k \leq p$, and we represent the expectation over the device sampling with $\mathbb{E}_{\mathcal{K}}[.]$.

Table 1: Table of Notations

```
\triangleq
                 Number of devices
      p
           \triangleq
                  Number of sampled devices for homogeneous setting
      k
  \mathcal{K}^{(r)}
                  Set of sampled devices in communication round r
           \triangle
      d
                  Dimension of the model
                  Number of local updates
                  Number of communication rounds
      R
           \triangleq
      B
                 Size of transmitted bits
                 Total communication cost per device
R \times B
           \triangleq
      ĸ
                  Condition number
           \triangleq
                 Target accuracy
       \epsilon
           \triangleq
                 PL constant
           \triangleq
     m
                 Number of bins of hash tables
            \triangleq
  \mathbf{S}(\boldsymbol{x})
                  Count sketch of the vector x
                  Class of unbiased compressor, see Definition 1
 \mathbb{U}(\Delta)
```

Definition 3 (Polyak-Łojasiewicz). A function f(x) satisfies the Polyak-Łojasiewicz(PL) condition with constant μ if $\frac{1}{2} \|\nabla f(x)\|_2^2 \ge \mu(f(x) - f(x^*))$, $\forall x \in \mathbb{R}^d$ with x^* is an optimal solution.

67 A.1 Count sketch

568 In this paper, we exploit the commonly used Count Sketch [7] which is described in Algorithm 5.

```
Algorithm 5 Count Sketch (CS) [7]
```

```
1: Inputs: \boldsymbol{x} \in \mathbb{R}^d, t, k, \mathbf{S}_{m \times t}, h_j (1 \le i \le t), \operatorname{sign}_j (1 \le i \le t)

2: Compress vector \boldsymbol{x} \in \mathbb{R}^d into \mathbf{S}(\boldsymbol{x}):

3: for \boldsymbol{x}_i \in \boldsymbol{x} do

4: for j = 1, \cdots, t do

5: \mathbf{S}[j][h_j(i)] = \mathbf{S}[j-1][h_{j-1}(i)] + \operatorname{sign}_j(i).\boldsymbol{x}_i

6: end for

7: end for

8: return \mathbf{S}_{m \times t}(\boldsymbol{x})
```

569 A.2 PRIVIX and compression error of HEAPRIX

For the sake of completeness we review PRIVIX algorithm that is also mentioned in [26] as follows:

Algorithm 6 PRIVIX [26]: Unbiased compressor based on sketching.

```
1: Inputs: \boldsymbol{x} \in \mathbb{R}^d, t, m, \mathbf{S}_{m \times t}, h_j (1 \leq i \leq t), sign_j (1 \leq i \leq t)
2: Query \tilde{\boldsymbol{x}} \in \mathbb{R}^d from \mathbf{S}(\boldsymbol{x}):
3: for i = 1, \ldots, d do
4: \tilde{\boldsymbol{x}}[i] = \operatorname{Median}\{\operatorname{sign}_j(i).\mathbf{S}[j][h_j(i)] : 1 \leq j \leq t\}
5: end for
6: Output: \tilde{\boldsymbol{x}}
```

Table 3: Comparison of results with compression and periodic averaging in the heterogeneous setting. UG and PP stand for Unbounded Gradient and Privacy Property respectively.

Reference	non-convex	General Convex	UG	PP
Basu et al. [3] (with $\gamma=m/d$)	$R = O\left(\frac{d}{m\epsilon^{1.5}}\right)$ $\tau = O\left(\frac{m}{pd\sqrt{\epsilon}}\right)$ $B = O(d)$ $RB = O\left(\frac{d^2}{m\epsilon^{1.5}}\right)$	-	х	×
Li et al. [26]	-	$R = O\left(\frac{d}{me^2}\right)$ $\tau = 1$ $B = O\left(m\log\left(\frac{d^2}{me^2\delta}\right)\right)$	X	~
Rothchild et al. [37]	$\begin{split} R &= O\left(\max(\frac{1}{\epsilon^2}, \frac{d^2 - md}{m^2 \epsilon})\right) \\ \tau &= 1 \\ B &= O\left(m\log\left(\frac{d}{\delta}\max(\frac{1}{\epsilon^2}, \frac{d^2 - md}{m^2 \epsilon})\right)\right) \\ RB &= O\left(m\max(\frac{1}{\epsilon^2}, \frac{d^2 - md}{m^2 \epsilon})\log\left(\frac{d}{\delta}\max(\frac{1}{\epsilon^2}, \frac{d^2 - md}{m^2 \epsilon})\right)\right) \end{split}$	-	х	Х
Rothchild et al. [37]	$\begin{split} R &= O\left(\frac{\max(I^{2/3}, 2-\alpha)}{\epsilon^3}\right) \\ \tau &= 1 \\ B &= O\left(\frac{m}{\alpha}\log\left(\frac{d\max(I^{2/3}, 2-\alpha)}{\epsilon^3\delta}\right)\right) \\ RB &= O\left(\frac{m\max(I^{2/3}, 2-\alpha)}{\epsilon^3\alpha}\log\left(\frac{d\max(I^{2/3}, 2-\alpha)}{\epsilon^3\delta}\right)\right) \end{split}$	_	×	Х
Theorem 2	$\begin{split} R &= O\left(\frac{d}{m\epsilon}\right) \\ \tau &= O\left(\frac{1}{p\epsilon}\right) \\ B &= O\left(m\log\left(\frac{d^2}{m\epsilon\delta}\right)\right) \\ RB &= O\left(\frac{d}{\epsilon}\log\left(\frac{d^2}{m\epsilon\delta}\log\left(\frac{1}{\epsilon}\right)\right)\right) \end{split}$	$\begin{split} R &= O\left(\frac{d}{m\epsilon} \log\left(\frac{1}{\epsilon}\right)\right) \\ \tau &= O\left(\frac{1}{p\epsilon^2}\right) \\ B &= O\left(m \log\left(\frac{d^2}{m\epsilon\delta}\right)\right) \end{split}$	V	,

Regarding the compression error of sketching we restate the following Corollary from the main body of this paper:

Corollary 2. Based on Theorem 3 of [15] and using Algorithm 2, we have $C(x) \in \mathbb{U}(c\frac{d}{m})$. This shows that unlike PRIVIX (Algorithm 6) the compression noise can be made as small as possible using large size of hash table.

Proof. The proof simply follows from Theorem 3 in [15] and Algorithm 2 by setting $\Delta_1=c\frac{d}{m}$ and $\Delta_2=1+c\frac{d}{m}$ we obtain $\Delta=\Delta_2+\frac{1-\Delta_2}{\Delta_1}=c\frac{d}{m}=O\left(\frac{d}{m}\right)$ for the compression error of HEAPRIX.

B Summary of comparison of our results with prior works

579

For the purpose of further clarification, we summarize the comparison of our results with related works. We recall that p is the number of devices, d is the dimension of the model, κ is the condition number, ϵ is the target accuracy, R is the number of communication rounds, and τ is the number of local updates. We start with the homogeneous setting comparison. Comparison of our results and existing ones for homogeneous and heterogeneous setting are given respectively Table 2 and Table 3.

Table 2: Comparison of results with compression and periodic averaging in the homogeneous setting. UG and PP stand for Unbounded Gradient and Privacy Property respectively.

Reference	PL/Strongly Convex	UG	PP
Ivkin et al. [17]	$R = O\left(\max\left(\frac{d}{m\sqrt{\epsilon}}, \frac{1}{\epsilon}\right)\right), \ \tau = 1, \ B = O\left(m\log\left(\frac{dR}{\delta}\right)\right)$ $pRB = O\left(\frac{pd}{m\epsilon}\log\left(\frac{d}{\delta\sqrt{\epsilon}}\max\left(\frac{d}{m}, \frac{1}{\sqrt{\epsilon}}\right)\right)\right)$		x
Theorem 1	$\begin{split} R &= O\left(\kappa\left(\frac{d-m}{mk}+1\right)\log\left(\frac{1}{\epsilon}\right)\right), \ \tau = O\left(\frac{d}{k\left(\frac{d}{k}+m\right)\epsilon}\right), B = O\left(m\log\left(\frac{dR}{\delta}\right)\right) \\ kRB &= O\left(m\kappa(d-m+mk)\log\frac{1}{\epsilon}\log\left(\frac{\kappa(d\frac{d-m}{mk}+d)\log\frac{1}{\epsilon}}{\delta}\right)\right) \end{split}$	V	~

pression, while in this paper our FL algorithm based on HEAPRIX enjoys from unbiased compression 586 with equivalent biased compression variance. Moreover, we highlight that the convergence analysis 587 of FedCOMGATE is based on the extra assumption of boundedness of the difference between the 588 average of compressed vectors and compressed averages of vectors. However, we do not need this 589 extra assumption as it is satisfied naturally due to linearity of sketching. Finally, as pointed out 590 in Remark 2, our algorithms enjoy from a bidirectional compression property, unlike FedCOMGATE 591 in general. Furthermore, since results in [13] improve the communication complexity of FedPAQ 592 algorithm, developed in [36], hence FedSKETCH and FedSKETCHGATE improves the communication 593 complexity obtained in [36]. 594 Comparison with [3]. We note that the algorithm in [3] uses a composed compression and quantiza-595 tion while our algorithm is solely based on compression. So, in order to compare with algorithms 596 in [3] we only consider Qsparse-local-SGD with compression and we let compression factor $\gamma = \frac{m}{d}$ 597 (to compare with the same compression ratio induced with sketch size of mt). For strongly convex 598 objective in Qsparse-local-SGD to achieve convergence error of ϵ they require $R = O\left(\kappa \frac{d}{m\sqrt{\epsilon}}\right)$ and 599 $\tau = O\left(\frac{m}{pd\sqrt{\epsilon}}\right)$, which is improved to $R = O\left(\frac{\kappa d}{m}\log(1/\epsilon)\right)$ and $\tau = O\left(\frac{1}{p\epsilon}\right)$ for PL objectives. 600 Similarly, for non-convex objective [3] requires $R = O\left(\frac{d}{m\epsilon^{1.5}}\right)$ and $\tau = O\left(\frac{m}{pd\sqrt{\epsilon}}\right)$, which is 601 improved to $R=O\left(\frac{d}{m\epsilon}\right)$ and $\tau=O\left(\frac{1}{p\epsilon}\right)$. We note that we reduce communication rounds at the 602 cost of increasing number of local updates (which scales down with number of devices, p). Addi-603 tionally, we highlight that our FedSKETCHGATE exploits the gradient tracking idea to deal with data heterogeneity, while algorithms in [3] does not develop such mechanism and may suffer from poor 605 convergence in heterogeneous setting. We also note that setting $\tau = 1$ and using top_m compressor, 606 the QSPARSE-local-SGD algorithm becomes similar to distributed SGD with sketching as they both 607 use the error feedback framework to improve the compression variance. Finally, since the average of 608 sparse vectors may not be sparse in general the number of transmitted bits from server to devices in 609 QSPARSE-Local-SGD in [3] may not be sparse in general (B = O(d)), however our algorithms enjoy 610 from bidirectional compression properly due to lower dimension and linearity properties of sketching $(B = O(m \log(\frac{Rd}{\delta})))$. Therefore, the total number of bits per device for strongly convex and 612 non-convex objective is improved respectively from $RB = O\left(\kappa \frac{d^2}{m\sqrt{\epsilon}}\right)$ and $RB = O\left(\frac{d^2}{m\epsilon^{1.5}}\right)$ in [3] to $RB = O\left(\kappa d\log(\frac{\kappa d^2}{m\delta}\log(\frac{1}{\epsilon}))\log(1/\epsilon)\right) = O\left(\kappa d\max\left(\log(\frac{\kappa d^2}{m\delta}),\log^2(1/\epsilon)\right)\right)$ and 613 614 $RB = O\left(\log(\frac{d^2}{m\epsilon\delta})\frac{d}{\epsilon}\right)$ 615 Additionally, as we noted using sketching for transmission implies two way communication from 616 master to devices and vice e versa. Therefore, in order to show efficacy of our algorithm we compare 617 our convergence analysis with the obtained rates in the following related work: 618 **Comparison with [35].** The reference [35] considers two-way compression from parameter server to devices and vice versa. They provide the convergence rate of $R = O\left(\frac{\omega^{\text{Up}}\omega^{\text{Down}}}{\epsilon^2}\right)$ for strongly-objective 619 620 functions where ω^{Up} and ω^{Down} are uplink and downlink's compression noise (specializing to our case for the sake of comparison $\omega^{\mathrm{Up}} = \omega^{\mathrm{Down}} = \theta \, (d)$) for general heterogeneous data distribution. 621 622 In contrast, while our algorithms are using bidirectional compression due to use of sketching for 623 communication, our convergence rate for strongly-convex objective is $R = O(\kappa \mu^2 d \log(\frac{1}{\epsilon}))$ with 624

Comparison with [13] and [36] Convergence analysis of algorithms in [13] relies on unbiased com-

C Theoretical Proofs

probability $1 - \delta$.

625

585

We will use the following fact (which is also used in [30; 12]) in proving results.

Fact 3 ([30; 12]). Let $\{x_i\}_{i=1}^p$ denote any fixed deterministic sequence. We sample a multiset \mathcal{P} (with size K) uniformly at random where x_j is sampled with probability q_j for $1 \leq j \leq p$ with replacement.

Let $\mathcal{P} = \{i_1, \dots, i_K\} \subset [p]$ (some i_j s may have the same value). Then

$$\mathbb{E}_{\mathcal{P}}\left[\sum_{i\in\mathcal{P}}x_i\right] = \mathbb{E}_{\mathcal{P}}\left[\sum_{k=1}^K x_{i_k}\right] = K\mathbb{E}_{\mathcal{P}}\left[x_{i_k}\right] = K\left[\sum_{j=1}^p q_j x_j\right]$$
(2)

- For the sake of the simplicity, we review an assumption for the quantization/compression, that 631 naturally holds for PRIVIX and HEAPRIX. 632
- **Assumption 4** ([13]). The output of the compression operator Q(x) is an unbiased estimator of 633 its input x, and its variance grows with the squared of the squared of ℓ_2 -norm of its argument, i.e., 634
- $\mathbb{E}\left[Q(oldsymbol{x})
 ight] = oldsymbol{x} \ and \ \mathbb{E}\left[\left\|Q(oldsymbol{x}) oldsymbol{x}
 ight\|^2
 ight] \leq \omega \left\|oldsymbol{x}
 ight\|^2.$ 635
- We note that the sketching PRIVIX and HEAPRIX, satisfy Assumption 4 with $\omega=c\frac{d}{m}$ and $\omega=c\frac{d}{m}-1$ respectively with probability $1-\frac{\delta}{R}$ per communication round. Therefore, all the results in Theorem 1, by taking union over the all probabilities of each communication rounds, are concluded with probability $1-\delta$ by plugging $\omega=c\frac{d}{m}$ and $\omega=c\frac{d}{m}-1$ respectively into the corresponding convergence bounds. 636
- 637
- 638
- 639
- 640

C.1 Proof of Theorem 1 641

- In this section, we study the convergence properties of our FedSKETCH method presented in Algo-642 rithm 3. Before developing the proofs for FedSKETCH in the homogeneous setting, we first mention 643
- the following intermediate lemmas.
- **Lemma 1.** Using unbiased compression and under Assumption 2, we have the following bound: 645

$$\mathbb{E}_{\mathcal{K}}\left[\mathbb{E}_{\mathbf{S},\xi^{(r)}}\left[\|\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\|^{2}\right]\right] = \mathbb{E}_{\xi^{(r)}}\mathbb{E}_{\mathbf{S}}\left[\|\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\|^{2}\right] \le \tau\left(\frac{\omega}{k} + 1\right)\sum_{j=1}^{m} q_{j}\left[\sum_{c=0}^{\tau-1}\|\mathbf{g}_{j}^{(c,r)}\|^{2} + \sigma^{2}\right]$$
(3)

Proof.

$$\begin{split} & \mathbb{E}_{\xi^{(r)}|\boldsymbol{w}^{(r)}} \mathbb{E}_{\mathcal{K}} \left[\mathbb{E}_{\mathbf{S}} \Big[\| \frac{1}{k} \sum_{j \in \mathcal{K}} \mathbf{S} \left(\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)} \right) \|^{2} \Big] \right] \\ & = \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{\mathcal{K}} \left[\mathbb{E}_{\mathbf{S}} \Big[\| \frac{1}{k} \sum_{j \in \mathcal{K}} \mathbf{S} \left(\sum_{c=0}^{\tilde{\mathbf{g}}_{j}^{(r)}} \tilde{\mathbf{g}}_{j}^{(c,r)} \right) \|^{2} \right] \right] \\ & \stackrel{@}{=} \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{\mathcal{K}} \left[\left[\| \frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{\mathbf{S}j}^{(r)} - \frac{1}{k} \sum_{j \in \mathcal{K}} \mathbb{E}_{\mathbf{S}} \left[\tilde{\mathbf{g}}_{\mathbf{S}j}^{(r)} \right] \|^{2} \right] + \| \mathbb{E}_{\mathbf{S}} \left[\frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{\mathbf{S},j}^{(r)} \right] \|^{2} \right] \right] \\ & \stackrel{@}{=} \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{\mathcal{K}} \left[\mathbb{E}_{\mathbf{S}} \left[\| \frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{\mathbf{S}j}^{(r)} - \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{j}^{(r)} \right] \|^{2} \right] + \| \frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{j}^{(r)} \|^{2} \right] \right] \\ & = \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{\mathcal{K}} \left[\mathbb{E}_{\mathbf{S}} \left[\mathbb{E}_{\mathbf{S}} \left[\frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{\mathbf{S}j}^{(r)} \right] + \| \frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{j}^{(r)} \|^{2} \right] \right] \\ & = \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{\mathcal{K}} \left[\frac{1}{k^{2}} \sum_{j \in \mathcal{K}} \operatorname{Var}_{\mathbf{S}_{j}} \left[\tilde{\mathbf{g}}_{\mathbf{S}j}^{(r)} \right] + \| \frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{j}^{(r)} \|^{2} \right] \right] \end{split}$$

$$\leq \mathbb{E}_{\xi^{(r)}} \left[\mathbb{E}_{\mathcal{K}} \left[\frac{1}{k^{2}} \sum_{j \in \mathcal{K}} \omega \left\| \tilde{\mathbf{g}}_{j}^{(r)} \right\|^{2} + \left\| \frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{j}^{(r)} \right\|^{2} \right] \right]$$

$$= \left[\mathbb{E}_{\xi} \left[\frac{1}{k} \sum_{j \in \mathcal{K}} \omega \left\| \tilde{\mathbf{g}}_{j}^{(r)} \right\|^{2} + \mathbb{E}_{\mathcal{K}} \mathbb{E}_{\xi^{(r)}} \right\| \frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{j}^{(r)} \right]^{2} \right]$$

$$= \left[\mathbb{E}_{\xi} \left[\frac{\omega}{k} \sum_{j = 1}^{p} q_{j} \left\| \tilde{\mathbf{g}}_{j}^{(r)} \right\|^{2} + \mathbb{E}_{\mathcal{K}} \left[\operatorname{Var} \left(\frac{1}{k} \sum_{j \in \mathcal{K}} \tilde{\mathbf{g}}_{j}^{(r)} \right) + \left\| \frac{1}{k} \sum_{j \in \mathcal{K}} \mathbf{g}_{j}^{(r)} \right\|^{2} \right] \right] \right]$$

$$= \frac{\omega}{k} \sum_{j = 1}^{p} q_{j} \mathbb{E}_{\xi} \left\| \tilde{\mathbf{g}}_{j}^{(r)} \right\|^{2} + \mathbb{E}_{\mathcal{K}} \left[\frac{1}{k^{2}} \sum_{j \in \mathcal{K}} \tau \sigma^{2} + \frac{1}{k} \sum_{j \in \mathcal{K}} \left\| \mathbf{g}_{j}^{(r)} \right\|^{2} \right] \right]$$

$$= \frac{\omega}{k} \sum_{j = 1}^{p} q_{j} \left[\operatorname{Var} \left(\tilde{\mathbf{g}}_{j}^{(r)} \right) + \left\| \mathbf{g}_{j}^{(r)} \right\|^{2} \right] + \left[\frac{\tau \sigma^{2}}{k} + \sum_{j = 1}^{p} q_{j} \| \mathbf{g}_{j}^{(r)} \|^{2} \right]$$

$$\leq \frac{\omega}{k} \sum_{j = 1}^{p} q_{j} \left[\tau \sigma^{2} + \left\| \mathbf{g}_{j}^{(r)} \right\|^{2} \right] + \left[\frac{\tau \sigma^{2}}{k} + \sum_{j = 1}^{p} q_{j} \| \mathbf{g}_{j}^{(r)} \|^{2} \right]$$

$$\leq \frac{\omega}{k} \sum_{j = 1}^{p} q_{j} \left[\tau \sigma^{2} + \left\| \mathbf{g}_{j}^{(r)} \right\|^{2} \right] + \left[\frac{\tau \sigma^{2}}{k} + \sum_{j = 1}^{p} q_{j} \| \mathbf{g}_{j}^{(r)} \|^{2} \right]$$

$$= (\omega + 1) \frac{\tau \sigma^{2}}{k} + (\frac{\omega}{k} + 1) \left[\sum_{j = 1}^{p} q_{j} \| \mathbf{g}_{j}^{(r)} \|^{2} \right]$$

$$(4)$$

 $\text{ where } \textcircled{1} \text{ holds due to } \mathbb{E}\left[\left\|\boldsymbol{x}\right\|^{2}\right] = \text{Var}[\boldsymbol{x}] + \left\|\mathbb{E}[\boldsymbol{x}]\right\|^{2}, \textcircled{2} \text{ is due to } \mathbb{E}_{\mathbf{S}}\left[\frac{1}{p}\sum_{j=1}^{p}\tilde{\mathbf{g}}_{\mathbf{S}j}^{(r)}\right] = \frac{1}{p}\sum_{j=1}^{m}\tilde{\mathbf{g}}_{j}^{(r)}.$

Next we show that from Assumptions 3, we have

$$\mathbb{E}_{\xi^{(r)}}\left[\left[\|\tilde{\mathbf{g}}_j^{(r)} - \mathbf{g}_j^{(r)}\|^2\right]\right] \le \tau \sigma^2 \tag{5}$$

648 To do so, note that

$$\operatorname{Var}\left(\tilde{\mathbf{g}}_{j}^{(r)}\right) = \mathbb{E}_{\xi^{(r)}}\left[\left\|\tilde{\mathbf{g}}_{j}^{(r)} - \mathbf{g}_{j}^{(r)}\right\|^{2}\right] \stackrel{\textcircled{\tiny{0}}}{=} \mathbb{E}_{\xi^{(r)}}\left[\left\|\sum_{c=0}^{\tau-1} \left[\tilde{\mathbf{g}}_{j}^{(c,r)} - \mathbf{g}_{j}^{(c,r)}\right]\right\|^{2}\right] = \operatorname{Var}\left(\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)}\right)$$

$$\stackrel{\textcircled{\tiny{0}}}{=} \sum_{c=0}^{\tau-1} \operatorname{Var}\left(\tilde{\mathbf{g}}_{j}^{(c,r)}\right)$$

$$= \sum_{c=0}^{\tau-1} \mathbb{E}\left[\left\|\tilde{\mathbf{g}}_{j}^{(c,r)} - \mathbf{g}_{j}^{(c,r)}\right\|^{2}\right]$$

$$\stackrel{\textcircled{\tiny{0}}}{<} \tau\sigma^{2} \qquad (6)$$

where in ① we use the definition of $\tilde{\mathbf{g}}_{j}^{(r)}$ and $\mathbf{g}_{j}^{(r)}$, in ② we use the fact that mini-batches are chosen in i.i.d. manner at each local machine, and ③ immediately follows from Assumptions 2.

Replacing $\mathbb{E}_{\xi^{(r)}}\left[\|\tilde{\mathbf{g}}_j^{(r)}-\mathbf{g}_j^{(r)}\|^2\right]$ in (4) by its upper bound in (5) implies that

$$\mathbb{E}_{\boldsymbol{\xi}^{(r)}|\boldsymbol{w}^{(r)}} \mathbb{E}_{\mathbf{S},\mathcal{K}} \left[\| \frac{1}{k} \sum_{j \in \mathcal{K}} \mathbf{S} \left(\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)} \right) \|^{2} \right] \leq (\omega+1) \frac{\tau \sigma^{2}}{k} + (\frac{\omega}{k}+1) \sum_{j=1}^{p} q_{j} \| \mathbf{g}_{j}^{(r)} \|^{2}$$
(7)

652 Further note that we have

$$\left\| \mathbf{g}_{j}^{(r)} \right\|^{2} = \left\| \sum_{c=0}^{\tau-1} \mathbf{g}_{j}^{(c,r)} \right\|^{2} \le \tau \sum_{c=0}^{\tau-1} \| \mathbf{g}_{j}^{(c,r)} \|^{2}$$
 (8)

where the last inequality is due to $\left\|\sum_{j=1}^{n} a_i\right\|^2 \le n \sum_{j=1}^{n} \|a_i\|^2$, which together with (7) leads to the following bound:

$$\mathbb{E}_{\xi^{(r)}|\boldsymbol{w}^{(r)}} \mathbb{E}_{\mathbf{S}} \left[\| \frac{1}{k} \sum_{j \in \mathcal{K}} \mathbf{S} \left(\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)} \right) \|^{2} \right] \leq (\omega+1) \frac{\tau \sigma^{2}}{k} + \tau \left(\frac{\omega}{k} + 1 \right) \sum_{j=1}^{p} q_{j} \| \mathbf{g}_{j}^{(c,r)} \|^{2}, \quad (9)$$

and the proof is complete.

Lemma 2. Under Assumption 1, and according to the FedCOM algorithm the expected inner product between stochastic gradient and full batch gradient can be bounded with:

$$-\mathbb{E}_{\xi,\mathbf{S},\mathcal{K}}\left[\left\langle \nabla f(\boldsymbol{w}^{(r)}), \tilde{\mathbf{g}}^{(r)} \right\rangle\right] \leq \frac{1}{2} \eta \frac{1}{m} \sum_{j=1}^{m} \sum_{c=0}^{\tau-1} \left[-\|\nabla f(\boldsymbol{w}^{(r)})\|_{2}^{2} - \|\nabla f(\boldsymbol{w}_{j}^{(c,r)})\|_{2}^{2} + L^{2} \|\boldsymbol{w}^{(r)} - \boldsymbol{w}_{j}^{(c,r)}\|_{2}^{2} \right]$$

$$(10)$$

658 *Proof.* We have:

$$-\mathbb{E}_{\{\xi_{1}^{(t)},...,\xi_{m}^{(t)}|\boldsymbol{w}_{1}^{(t)},...,\boldsymbol{w}_{m}^{(t)}\}}\mathbb{E}_{\mathbf{S},\mathcal{K}}\left[\left\langle\nabla f(\boldsymbol{w}^{(r)}),\tilde{\mathbf{g}}_{\mathbf{S},\mathcal{K}}^{(r)}\right\rangle\right]$$

$$=-\mathbb{E}_{\{\xi_{1}^{(t)},...,\xi_{m}^{(t)}|\boldsymbol{w}_{1}^{(t)},...,\boldsymbol{w}_{m}^{(t)}\}}\left[\left\langle\nabla f(\boldsymbol{w}^{(r)}),\eta\sum_{j\in\mathcal{K}}q_{j}\sum_{c=0}^{\tau-1}\tilde{\mathbf{g}}_{j}^{(c,r)}\right\rangle\right]$$

$$=-\left\langle\nabla f(\boldsymbol{w}^{(r)}),\eta\sum_{j=1}^{m}q_{j}\sum_{c=0}^{\tau-1}\mathbb{E}_{\xi,\mathbf{S}}\left[\tilde{\mathbf{g}}_{j,\mathbf{S}}^{(c,r)}\right]\right\rangle$$

$$=-\eta\sum_{c=0}^{\tau-1}\sum_{j=1}^{m}q_{j}\left\langle\nabla f(\boldsymbol{w}^{(r)}),\mathbf{g}_{j}^{(c,r)}\right\rangle$$

$$\stackrel{\text{@}}{=}\frac{1}{2}\eta\sum_{c=0}^{\tau-1}\sum_{j=1}^{m}q_{j}\left[-\|\nabla f(\boldsymbol{w}^{(r)})\|_{2}^{2}-\|\nabla f(\boldsymbol{w}_{j}^{(c,r)})\|_{2}^{2}+\|\nabla f(\boldsymbol{w}^{(r)})-\nabla f(\boldsymbol{w}_{j}^{(c,r)})\|_{2}^{2}\right]$$

$$\stackrel{\text{@}}{\leq}\frac{1}{2}\eta\sum_{c=0}^{\tau-1}\sum_{j=1}^{m}q_{j}\left[-\|\nabla f(\boldsymbol{w}^{(r)})\|_{2}^{2}-\|\nabla f(\boldsymbol{w}_{j}^{(c,r)})\|_{2}^{2}+L^{2}\|\boldsymbol{w}^{(r)}-\boldsymbol{w}_{j}^{(c,r)}\|_{2}^{2}\right]$$

$$\stackrel{\text{@}}{\leq}\frac{1}{2}\eta\sum_{c=0}^{\tau-1}\sum_{j=1}^{m}q_{j}\left[-\|\nabla f(\boldsymbol{w}^{(r)})\|_{2}^{2}-\|\nabla f(\boldsymbol{w}_{j}^{(c,r)})\|_{2}^{2}+L^{2}\|\boldsymbol{w}^{(r)}-\boldsymbol{w}_{j}^{(c,r)}\|_{2}^{2}\right]$$

$$(11)$$

where ① is due to $2\langle \mathbf{a}, \mathbf{b} \rangle = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 - \|\mathbf{a} - \mathbf{b}\|^2$, and ② follows from Assumption 1.

The following lemma bounds the distance of local solutions from global solution at rth communication round.

662 **Lemma 3.** Under Assumptions 2 we have:

$$\mathbb{E}\left[\|\boldsymbol{w}^{(r)} - \boldsymbol{w}_j^{(c,r)}\|_2^2\right] \leq \eta^2 \tau \sum_{c=0}^{\tau-1} \left\|\mathbf{g}_j^{(c,r)}\right\|_2^2 + \eta^2 \tau \sigma^2$$

663 Proof. Note that

$$\begin{split} \mathbb{E}\left[\left\|\boldsymbol{w}^{(r)} - \boldsymbol{w}_{j}^{(c,r)}\right\|_{2}^{2}\right] &= \mathbb{E}\left[\left\|\boldsymbol{w}^{(r)} - \left(\boldsymbol{w}^{(r)} - \eta \sum_{k=0}^{c} \tilde{\mathbf{g}}_{j}^{(k,r)}\right)\right\|_{2}^{2}\right] \\ &= \mathbb{E}\left[\left\|\eta \sum_{k=0}^{c} \tilde{\mathbf{g}}_{j}^{(k,r)}\right\|_{2}^{2}\right] \\ &\stackrel{\text{\tiny @}}{=} \mathbb{E}\left[\left\|\eta \sum_{k=0}^{c} \left(\tilde{\mathbf{g}}_{j}^{(k,r)} - \mathbf{g}_{j}^{(k,r)}\right)\right\|_{2}^{2}\right] + \left[\left\|\eta \sum_{k=0}^{c} \mathbf{g}_{j}^{(k,r)}\right\|_{2}^{2}\right] \end{split}$$

$$\stackrel{@}{=} \eta^{2} \sum_{k=0}^{c} \mathbb{E} \left[\left\| \left(\tilde{\mathbf{g}}_{j}^{(k,r)} - \mathbf{g}_{j}^{(k,r)} \right) \right\|_{2}^{2} \right] + (c+1) \eta^{2} \sum_{k=0}^{c} \left[\left\| \mathbf{g}_{j}^{(k,r)} \right\|_{2}^{2} \right] \\
\leq \eta^{2} \sum_{k=0}^{\tau-1} \mathbb{E} \left[\left\| \left(\tilde{\mathbf{g}}_{j}^{(k,r)} - \mathbf{g}_{j}^{(k,r)} \right) \right\|_{2}^{2} \right] + \tau \eta^{2} \sum_{k=0}^{\tau-1} \left[\left\| \mathbf{g}_{j}^{(k,r)} \right\|_{2}^{2} \right] \\
\stackrel{@}{\leq} \eta^{2} \sum_{k=0}^{\tau-1} \sigma^{2} + \tau \eta^{2} \sum_{k=0}^{\tau-1} \left[\left\| \mathbf{g}_{j}^{(k,r)} \right\|_{2}^{2} \right] \\
= \eta^{2} \tau \sigma^{2} + \eta^{2} \sum_{k=0}^{\tau-1} \tau \left\| \mathbf{g}_{j}^{(k,r)} \right\|_{2}^{2} \tag{12}$$

where ① comes from $\mathbb{E}\left[\mathbf{x}^2\right] = \operatorname{Var}\left[\mathbf{x}\right] + \left[\mathbb{E}\left[\mathbf{x}\right]\right]^2$ and ② holds because $\operatorname{Var}\left(\sum_{j=1}^n \mathbf{x}_j\right) = \sum_{j=1}^n \operatorname{Var}\left(\mathbf{x}_j\right)$ for i.i.d. vectors \mathbf{x}_i (and i.i.d. assumption comes from i.i.d. sampling), and finally ③ follows from Assumption 2.

667 C.1.1 Main result for the non-convex setting

- Now we are ready to present our result for the homogeneous setting. We first state and prove the result for the general non-convex objectives.
- Theorem 4 (non-convex). For FedSKETCH(τ, η, γ), for all $0 \le t \le R\tau 1$, under Assumptions 1 to 2, if the learning rate satisfies

$$1 \ge \tau^2 L^2 \eta^2 + \left(\frac{\omega}{k} + 1\right) \eta \gamma L \tau \tag{13}$$

and all local model parameters are initialized at the same point $w^{(0)}$, then the average-squared gradient after au iterations is bounded as follows:

$$\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_{2}^{2} \leq \frac{2 \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)}) \right)}{\eta \gamma \tau R} + \frac{L \eta \gamma(\omega + 1)}{k} \sigma^{2} + L^{2} \eta^{2} \tau \sigma^{2} , \qquad (14)$$

- where $oldsymbol{w}^{(*)}$ is the global optimal solution with function value $f(oldsymbol{w}^{(*)})$.
- 675 Proof. Before proceeding with the proof of Theorem 4, we would like to highlight that

$$\mathbf{w}^{(r)} - \mathbf{w}_{j}^{(\tau,r)} = \eta \sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)}$$
 (15)

From the updating rule of Algorithm 3 we have

$$\boldsymbol{w}^{(r+1)} = \boldsymbol{w}^{(r)} - \gamma \eta \left(\frac{1}{k} \sum_{j \in \mathcal{K}} \mathbf{S} \left(\sum_{c=0,r}^{\tau-1} \tilde{\mathbf{g}}_j^{(c,r)} \right) \right) = \boldsymbol{w}^{(r)} - \gamma \left[\frac{\eta}{k} \sum_{j \in \mathcal{K}} \mathbf{S} \left(\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_j^{(c,r)} \right) \right].$$

In what follows, we use the following notation to denote the stochastic gradient used to update the global model at rth communication round

$$\tilde{\mathbf{g}}_{\mathbf{S},\mathcal{K}}^{(r)} \triangleq \frac{\eta}{p} \sum_{j=1}^{p} \mathbf{S} \left(\frac{\boldsymbol{w}^{(r)} - \boldsymbol{w}_{j}^{(\tau,r)}}{\eta} \right) = \frac{1}{k} \sum_{j \in \mathcal{K}} \mathbf{S} \left(\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)} \right).$$

- and notice that $\mathbf{w}^{(r)} = \mathbf{w}^{(r-1)} \gamma \tilde{\mathbf{g}}^{(r)}$.
- Then using the unbiased estimation property of sketching we have:

$$\mathbb{E}_{\mathbf{S}}\left[\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\right] = \frac{1}{k} \sum_{j \in \mathcal{K}} \left[-\eta \mathbb{E}_{\mathbf{S}}\left[\mathbf{S}\left(\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)}\right)\right]\right] = \frac{1}{k} \sum_{j \in \mathcal{K}} \left[-\eta\left(\sum_{c=0}^{\tau-1} \tilde{\mathbf{g}}_{j}^{(c,r)}\right)\right] \triangleq \tilde{\mathbf{g}}_{\mathbf{S},\mathcal{K}}^{(r)}.$$

From the *L*-smoothness gradient assumption on global objective, by using $\tilde{\mathbf{g}}^{(r)}$ in inequality (15) we have:

$$f(\boldsymbol{w}^{(r+1)}) - f(\boldsymbol{w}^{(r)}) \le -\gamma \langle \nabla f(\boldsymbol{w}^{(r)}), \tilde{\mathbf{g}}^{(r)} \rangle + \frac{\gamma^2 L}{2} \|\tilde{\mathbf{g}}^{(r)}\|^2$$
(16)

By taking expectation on both sides of above inequality over sampling, we get:

$$\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[f(\boldsymbol{w}^{(r+1)}) - f(\boldsymbol{w}^{(r)})\right]\right] \leq -\gamma \mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[\left\langle\nabla f(\boldsymbol{w}^{(r)}), \tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\right\rangle\right]\right] + \frac{\gamma^{2}L}{2} \mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\|\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\|^{2}\right]$$

$$\stackrel{(a)}{=} -\gamma \underbrace{\mathbb{E}\left[\left[\left\langle\nabla f(\boldsymbol{w}^{(r)}), \tilde{\mathbf{g}}^{(r)}\right\rangle\right]\right]}_{(\mathbf{I})} + \frac{\gamma^{2}L}{2} \underbrace{\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[\|\tilde{\mathbf{g}}_{\mathbf{S}}^{(r)}\|^{2}\right]\right]}_{(\mathbf{I}\mathbf{I})}. (17)$$

We proceed to use Lemma 1, Lemma 2, and Lemma 3, to bound terms (I) and (II) in right hand side of (17), which gives

$$\mathbb{E}\left[\mathbb{E}_{\mathbf{S}}\left[f(\boldsymbol{w}^{(r+1)}) - f(\boldsymbol{w}^{(r)})\right]\right] \\
\leq \gamma \frac{1}{2}\eta \sum_{j=1}^{p} q_{j} \sum_{c=0}^{\tau-1} \left[-\left\|\nabla f(\boldsymbol{w}^{(r)})\right\|_{2}^{2} - \left\|\mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2} + L^{2}\eta^{2} \sum_{c=0}^{\tau-1} \left[\tau \left\|\mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2} + \sigma^{2}\right]\right] \\
+ \frac{\gamma^{2}L(\frac{\omega}{k}+1)}{2} \left[\eta^{2}\tau \sum_{j=1}^{p} q_{j} \sum_{c=0}^{\tau-1} \left\|\mathbf{g}_{j}^{(c,r)}\right\|^{2}\right] + \frac{\gamma^{2}\eta^{2}L(\omega+1)}{2} \frac{\tau\sigma^{2}}{k} \\
\stackrel{\circ}{\leq} \frac{\gamma\eta}{2} \sum_{j=1}^{p} q_{j} \sum_{c=0}^{\tau-1} \left[-\left\|\nabla f(\boldsymbol{w}^{(r)})\right\|_{2}^{2} - \left\|\mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2} + \tau L^{2}\eta^{2} \left[\tau \left\|\mathbf{g}_{j}^{(c,r)}\right\|_{2}^{2} + \sigma^{2}\right]\right] \\
+ \frac{\gamma^{2}L(\frac{\omega}{k}+1)}{2} \left[\eta^{2}\tau \sum_{j=1}^{p} q_{j} \sum_{c=0}^{\tau-1} \left\|\mathbf{g}_{j}^{(c,r)}\right\|^{2}\right] + \frac{\gamma^{2}\eta^{2}L(\omega+1)}{2} \frac{\tau\sigma^{2}}{k} \\
= -\eta\gamma \frac{\tau}{2} \left\|\nabla f(\boldsymbol{w}^{(r)})\right\|_{2}^{2} \\
- \left(1 - \tau L^{2}\eta^{2}\tau - (\frac{\omega}{k}+1)\eta\gamma L\tau\right) \frac{\eta\gamma}{2} \sum_{j=1}^{p} q_{j} \sum_{c=0}^{\tau-1} \left\|\mathbf{g}_{j}^{(c,r)}\right\|^{2} + \frac{L\tau\gamma\eta^{2}}{2k} \left(kL\tau\eta + \gamma(\omega+1)\right)\sigma^{2} \\
\stackrel{\circ}{\leq} -\eta\gamma \frac{\tau}{2} \left\|\nabla f(\boldsymbol{w}^{(r)})\right\|_{2}^{2} + \frac{L\tau\gamma\eta^{2}}{2k} \left(kL\tau\eta + \gamma(\omega+1)\right)\sigma^{2}, \tag{18}$$

where in 1 we incorporate outer summation $\sum_{c=0}^{ au-1}$, and 2 follows from condition

$$1 \ge \tau L^2 \eta^2 \tau + (\frac{\omega}{k} + 1) \eta \gamma L \tau .$$

Summing up for all R communication rounds and rearranging the terms gives:

$$\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_2^2 \leq \frac{2 \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)}) \right)}{\eta \gamma \tau R} + \frac{L \eta \gamma (\omega + 1)}{k} \sigma^2 + L^2 \eta^2 \tau \sigma^2 \ .$$

From the above inequality, is it easy to see that in order to achieve a linear speed up, we need to have

687
$$\eta \gamma = O\left(\frac{\sqrt{k}}{\sqrt{R\tau}}\right)$$
.

Corollary 3 (Linear speed up). In (14) for the choice of $\eta \gamma = O\left(\frac{1}{L}\sqrt{\frac{k}{R\tau(\omega+1)}}\right)$, and $\gamma \geq k$ the convergence rate reduces to:

$$\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_{2}^{2} \leq O\left(\frac{L\sqrt{(\omega+1)} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{*}) \right)}{\sqrt{kR\tau}} + \frac{\left(\sqrt{(\omega+1)} \right) \sigma^{2}}{\sqrt{kR\tau}} + \frac{k\sigma^{2}}{R\gamma^{2}} \right). \tag{19}$$

Note that according to (19), if we pick a fixed constant value for γ , in order to achieve an ϵ -accurate 690 solution, $R = O\left(\frac{1}{\epsilon}\right)$ communication rounds and $\tau = O\left(\frac{\omega+1}{k\epsilon}\right)$ local updates are necessary. We also highlight that (19) also allows us to choose $R = O\left(\frac{\omega+1}{\epsilon}\right)$ and $\tau = O\left(\frac{1}{k\epsilon}\right)$ to get the same 691 692 convergence rate. 693

Remark 3. Condition in (13) can be rewritten as 694

$$\eta \leq \frac{-\gamma L \tau \left(\frac{\omega}{k} + 1\right) + \sqrt{\gamma^2 \left(L\tau \left(\frac{\omega}{k} + 1\right)\right)^2 + 4L^2 \tau^2}}{2L^2 \tau^2} \\
= \frac{-\gamma L \tau \left(\frac{\omega}{k} + 1\right) + L \tau \sqrt{\left(\frac{\omega}{k} + 1\right)^2 \gamma^2 + 4}}{2L^2 \tau^2} \\
= \frac{\sqrt{\left(\frac{\omega}{k} + 1\right)^2 \gamma^2 + 4 - \left(\frac{\omega}{k} + 1\right) \gamma}}{2L \tau} .$$
(20)

So based on (20), if we set $\eta = O\left(\frac{1}{L\gamma}\sqrt{\frac{k}{R\tau(\omega+1)}}\right)$, it implies that:

$$R \ge \frac{\tau k}{\left(\omega + 1\right)\gamma^2 \left(\sqrt{\left(\frac{\omega}{k} + 1\right)^2 \gamma^2 + 4} - \left(\frac{\omega}{k} + 1\right)\gamma\right)^2}.$$
 (21)

We note that $\gamma^2 \left(\sqrt{\left(\frac{\omega}{k} + 1\right)^2 \gamma^2 + 4} - \left(\frac{\omega}{k} + 1\right) \gamma \right)^2 = \Theta(1) \le 5$ therefore even for $\gamma \ge m$ we need to have

$$R \ge \frac{\tau k}{5(\omega + 1)} = O\left(\frac{\tau k}{(\omega + 1)}\right). \tag{22}$$

Therefore, for the choice of $\tau=O\left(\frac{\omega+1}{k\epsilon}\right)$, due to condition in (22), we need to have $R=O\left(\frac{1}{\epsilon}\right)$. Similarly, we can have $R=O\left(\frac{\omega+1}{\epsilon}\right)$ and $\tau=O\left(\frac{1}{k\epsilon}\right)$. 698

699

Corollary 4 (Special case, $\gamma = 1$). By letting $\gamma = 1$, $\omega = 0$ and k = p the convergence rate in (14) 700 reduces to 701

$$\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_{2}^{2} \leq \frac{2 \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)}) \right)}{\eta R \tau} + \frac{L \eta}{p} \sigma^{2} + L^{2} \eta^{2} \tau \sigma^{2} ,$$

which matches the rate obtained in [43]. In this case the communication complexity and the number 702 of local updates become 703

$$R = O\left(\frac{p}{\epsilon}\right), \quad \tau = O\left(\frac{1}{\epsilon}\right) \,,$$

which simply implies that in this special case the convergence rate of our algorithm reduces to the 704 rate obtained in [43], which indicates the tightness of our analysis. 705

C.1.2 Main result for the PL/Strongly convex setting 706

We now turn to stating the convergence rate for the homogeneous setting under PL condition which 707 naturally leads to the same rate for strongly convex functions. 708

Theorem 5 (PL or strongly convex). For FedSKETCH (τ, η, γ) , for all $0 \le t \le R\tau - 1$, under 709 Assumptions 1 to 2 and 3, if the learning rate satisfies 710

$$1 \ge \tau^2 L^2 \eta^2 + \left(\frac{\omega}{k} + 1\right) \eta \gamma L \tau$$

and if the all the models are initialized with $\mathbf{w}^{(0)}$ we obtain:

$$\mathbb{E}\Big[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\Big] \le (1 - \eta \gamma \mu \tau)^{R} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right) + \frac{1}{\mu} \left[\frac{1}{2}L^{2}\tau \eta^{2}\sigma^{2} + (1 + \omega)\frac{\gamma \eta L \sigma^{2}}{2k}\right]$$

712 *Proof.* From (18) under condition:

$$1 \ge \tau L^2 \eta^2 \tau + (\frac{\omega}{k} + 1) \eta \gamma L \tau$$

713 we obtain:

$$\mathbb{E}\Big[f(\boldsymbol{w}^{(r+1)}) - f(\boldsymbol{w}^{(r)})\Big] \le -\eta\gamma\frac{\tau}{2} \left\|\nabla f(\boldsymbol{w}^{(r)})\right\|_{2}^{2} + \frac{L\tau\gamma\eta^{2}}{2k} \left(kL\tau\eta + \gamma(\omega+1)\right)\sigma^{2}$$

$$\le -\eta\mu\gamma\tau\left(f(\boldsymbol{w}^{(r)}) - f(\boldsymbol{w}^{(r)})\right) + \frac{L\tau\gamma\eta^{2}}{2k} \left(kL\tau\eta + \gamma(\omega+1)\right)\sigma^{2}$$
(23)

vhich leads to the following bound:

$$\mathbb{E}\left[f(\boldsymbol{w}^{(r+1)}) - f(\boldsymbol{w}^{(*)})\right] \le (1 - \eta\mu\gamma\tau) \left[f(\boldsymbol{w}^{(r)}) - f(\boldsymbol{w}^{(*)})\right] + \frac{L\tau\gamma\eta^2}{2k} \left(kL\tau\eta + (\omega + 1)\gamma\right)\sigma^2$$

715 By setting $\Delta = 1 - \eta \mu \gamma \tau$ we obtain the following bound:

$$\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\right] \\
\leq \Delta^{R}\left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right] + \frac{1 - \Delta^{R}}{1 - \Delta} \frac{L\tau\gamma\eta^{2}}{2k} \left(kL\tau\eta + (\omega + 1)\gamma\right)\sigma^{2} \\
\leq \Delta^{R}\left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right] + \frac{1}{1 - \Delta} \frac{L\tau\gamma\eta^{2}}{2k} \left(kL\tau\eta + (\omega + 1)\gamma\right)\sigma^{2} \\
= (1 - \eta\mu\gamma\tau)^{R}\left[f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right] + \frac{1}{\eta\mu\gamma\tau} \frac{L\tau\gamma\eta^{2}}{2k} \left(kL\tau\eta + (\omega + 1)\gamma\right)\sigma^{2} \tag{24}$$

716

Corollary 5. If we let $\eta \gamma \mu \tau \leq \frac{1}{2}$, $\eta = \frac{1}{2L\left(\frac{\omega}{k}+1\right)\tau\gamma}$ and $\kappa = \frac{L}{\mu}$ the convergence error in Theorem 5, with $\gamma \geq k$ results in:

$$\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\right] \\
\leq e^{-\eta\gamma\mu\tau R} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right) + \frac{1}{\mu} \left[\frac{1}{2}\tau L^{2}\eta^{2}\sigma^{2} + (1+\omega)\frac{\gamma\eta L\sigma^{2}}{2k}\right] \\
\leq e^{-\frac{R}{2\left(\frac{\omega}{k}+1\right)\kappa}} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right) + \frac{1}{\mu} \left[\frac{1}{2}L^{2}\frac{\tau\sigma^{2}}{L^{2}\left(\frac{\omega}{k}+1\right)^{2}\gamma^{2}\tau^{2}} + \frac{(1+\omega)L\sigma^{2}}{2\left(\frac{\omega}{k}+1\right)L\tau k}\right] \\
= O\left(e^{-\frac{R}{2\left(\frac{\omega}{k}+1\right)\kappa}} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right) + \frac{\sigma^{2}}{\left(\frac{\omega}{k}+1\right)^{2}\gamma^{2}\mu\tau} + \frac{(\omega+1)\sigma^{2}}{\mu\left(\frac{\omega}{k}+1\right)\tau k}\right) \\
= O\left(e^{-\frac{R}{2\left(\frac{\omega}{k}+1\right)\kappa}} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right) + \frac{\sigma^{2}}{\gamma^{2}\mu\tau} + \frac{(\omega+1)\sigma^{2}}{\mu\left(\frac{\omega}{k}+1\right)\tau k}\right) \tag{25}$$

which indicates that to achieve an error of ϵ , we need to have $R = O\left(\left(\frac{\omega}{k}+1\right)\kappa\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = \frac{(\omega+1)}{k\left(\frac{\omega}{k}+1\right)\epsilon}$. Additionally, we note that if $\gamma \to \infty$, yet $R = O\left(\left(\frac{\omega}{k}+1\right)\kappa\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = \frac{(\omega+1)}{k\left(\frac{\omega}{k}+1\right)\epsilon}$ will be necessary.

722 C.1.3 Main result for the general convex setting

Theorem 6 (Convex). For a general convex function f(w) with optimal solution $w^{(*)}$, using FedSKETCH (τ, η, γ) to optimize $\tilde{f}(w, \phi) = f(w) + \frac{\phi}{2} \|w\|^2$, for all $0 \le t \le R\tau - 1$, under Assumptions I to 2, if the learning rate satisfies

$$1 \ge \tau^2 L^2 \eta^2 + \left(\frac{\omega}{k} + 1\right) \eta \gamma L \tau$$

and if the all the models initiate with $w^{(0)}$, with $\phi = \frac{1}{\sqrt{k\tau}}$ and $\eta = \frac{1}{2L\gamma\tau\left(1+\frac{\omega}{k}\right)}$ we obtain:

$$\mathbb{E}\left[f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\right] \leq e^{-\frac{R}{2L\left(1+\frac{\omega}{k}\right)\sqrt{m\tau}}} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right) + \left[\frac{\sqrt{k}\sigma^{2}}{8\sqrt{\tau}\gamma^{2}\left(1+\frac{\omega}{k}\right)^{2}} + \frac{(\omega+1)\sigma^{2}}{4\left(\frac{\omega}{k}+1\right)\sqrt{k\tau}}\right] + \frac{1}{2\sqrt{k\tau}} \left\|\boldsymbol{w}^{(*)}\right\|^{2}$$
(26)

We note that above theorem implies that to achieve a convergence error of ϵ we need to have

728
$$R = O\left(L\left(1 + \frac{\omega}{k}\right) \frac{1}{\epsilon} \log\left(\frac{1}{\epsilon}\right)\right) \text{ and } \tau = O\left(\frac{(\omega + 1)^2}{k\left(\frac{\omega}{k} + 1\right)^2 \epsilon}\right).$$

Proof. Since $\tilde{f}(\boldsymbol{w}^{(r)},\phi)=f(\boldsymbol{w}^{(r)})+\frac{\phi}{2}\left\|\boldsymbol{w}^{(r)}\right\|^2$ is ϕ -PL, according to Theorem 5, we have:

$$\tilde{f}(\boldsymbol{w}^{(R)}, \phi) - \tilde{f}(\boldsymbol{w}^{(*)}, \phi)
= f(\boldsymbol{w}^{(r)}) + \frac{\phi}{2} \|\boldsymbol{w}^{(r)}\|^2 - \left(f(\boldsymbol{w}^{(*)}) + \frac{\phi}{2} \|\boldsymbol{w}^{(*)}\|^2\right)
\leq (1 - \eta \gamma \phi \tau)^R \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)})\right) + \frac{1}{\phi} \left[\frac{1}{2} L^2 \tau \eta^2 \sigma^2 + (1 + \omega) \frac{\gamma \eta L \sigma^2}{2k}\right]$$
(27)

Next rearranging (27) and replacing μ with ϕ leads to the following error bound:

$$\begin{split} &f(\boldsymbol{w}^{(R)}) - f^* \\ &\leq (1 - \eta \gamma \phi \tau)^R \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)}) \right) + \frac{1}{\phi} \left[\frac{1}{2} L^2 \tau \eta^2 \sigma^2 + (1 + \omega) \frac{\gamma \eta L \sigma^2}{2k} \right] \\ &\quad + \frac{\phi}{2} \left(\left\| \boldsymbol{w}^* \right\|^2 - \left\| \boldsymbol{w}^{(r)} \right\|^2 \right) \\ &\leq e^{-(\eta \gamma \phi \tau)R} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)}) \right) + \frac{1}{\phi} \left[\frac{1}{2} L^2 \tau \eta^2 \sigma^2 + (1 + \omega) \frac{\gamma \eta L \sigma^2}{2k} \right] + \frac{\phi}{2} \left\| \boldsymbol{w}^{(*)} \right\|^2 \end{split}$$

731 Next, if we set $\phi=rac{1}{\sqrt{k au}}$ and $\eta=rac{1}{2\left(1+rac{\omega}{k}
ight)L\gamma au},$ we obtain that

$$f(\boldsymbol{w}^{(R)}) - f^* \le e^{-\frac{R}{2\left(1 + \frac{\omega}{k}\right)L\sqrt{m\tau}}} \left(f(\boldsymbol{w}^{(0)}) - f(\boldsymbol{w}^{(*)}) \right) + \sqrt{k\tau} \left[\frac{\sigma^2}{8\tau\gamma^2 \left(1 + \frac{\omega}{k}\right)^2} + \frac{(\omega + 1)\sigma^2}{4\left(\frac{\omega}{k} + 1\right)\tau k} \right] + \frac{1}{2\sqrt{k\tau}} \left\| \boldsymbol{w}^{(*)} \right\|^2,$$

thus the proof is complete.

C.2 Proof of Theorem 2 733

- The proof of Theorem 2 follows directly from the results in [13]. We first mention the general 734
- 735
- Theorem 7 from [13] for general compression noise ω . Next, since the sketching PRIVIX and HEAPRIX, satisfy Assumption 4 with $\omega=c\frac{d}{m}$ and $\omega=c\frac{d}{m}-1$ respectively with probability $1-\frac{\delta}{R}$ per communication round, all the results in Theorem 2, conclude from Theorem 7 with probability 736
- 737
- 738
- 739
- $1-\delta$ (by taking union over the all probabilities of each communication rounds with probability $1-\delta/R$) and plugging $\omega=c\frac{d}{m}$ and $\omega=c\frac{d}{m}-1$ respectively into the corresponding convergence bounds. For the heterogeneous setting, the results in [13] requires the following extra assumption 740
- that naturally holds for the sketching:
- **Assumption 5** ([13]). The compression scheme Q for the heterogeneous data distribution setting satisfies the following condition $\mathbb{E}_Q[\|\frac{1}{m}\sum_{j=1}^m Q(\boldsymbol{x}_j)\|^2 \|Q(\frac{1}{m}\sum_{j=1}^m \boldsymbol{x}_j)\|^2] \leq G_q$. 742
- 743
- We note that since sketching is a linear compressor, in the case of our algorithms for heterogeneous 744
- setting we have $G_q = 0$. 745
- Next, we restate the Theorem in [13] here as follows: 746
- **Theorem 7.** Consider FedCOMGATE in [13]. If Assumptions 1, 3, 4 and 5 hold, then even for the case 747
- the local data distribution of users are different (heterogeneous setting) we have 748
- non-convex: By choosing stepsizes as $\eta = \frac{1}{L\gamma} \sqrt{\frac{p}{R\tau(\omega+1)}}$ and $\gamma \geq p$, we obtain that the 749
- iterates satisfy $\frac{1}{R} \sum_{r=0}^{R-1} \left\| \nabla f(\boldsymbol{w}^{(r)}) \right\|_2^2 \le \epsilon$ if we set $R = O\left(\frac{\omega+1}{\epsilon}\right)$ and $\tau = O\left(\frac{1}{p\epsilon}\right)$. 750
- Strongly convex or PL: By choosing stepsizes as $\eta = \frac{1}{2L(\frac{\omega}{n}+1)\tau\gamma}$ and $\gamma \geq \sqrt{p\tau}$, we obtain 751
- that the iterates satisfy $\mathbb{E}\Big[f({m w}^{(R)}) f({m w}^{(*)})\Big] \leq \epsilon$ if we set $R = O\left((\omega + 1) \, \kappa \log\left(\frac{1}{\epsilon}\right)\right)$
- and $\tau = O\left(\frac{1}{n\epsilon}\right)$. 753
- Convex: By choosing stepsizes as $\eta = \frac{1}{2L(\omega+1)\tau\gamma}$ and $\gamma \geq \sqrt{p\tau}$, we obtain that the iterates satisfy $\mathbb{E}\Big[f(\boldsymbol{w}^{(R)}) f(\boldsymbol{w}^{(*)})\Big] \leq \epsilon$ if we set $R = O\left(\frac{L(1+\omega)}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = O\left(\frac{1}{p\epsilon^2}\right)$. 754

satisfy
$$\mathbb{E}\left|f(\boldsymbol{w}^{(R)}) - f(\boldsymbol{w}^{(*)})\right| \le \epsilon$$
 if we set $R = O\left(\frac{L(1+\omega)}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$ and $\tau = O\left(\frac{1}{p\epsilon^2}\right)$

- *Proof.* Since the sketching methods PRIVIX and HEAPRIX, satisfy the Assumption 4 with $\omega = c \frac{d}{m}$ 756
- and $\omega=c\frac{d}{m}-1$ respectively with probability $1-\frac{\delta}{R}$ per communication round, we conclude the proofs of Theorem 2 using Theorem 7 with probability $1-\delta$ (by taking union over all communication rounds) and plugging $\omega=c\frac{d}{m}$ and $\omega=c\frac{d}{m}-1$ respectively into the convergence bounds. 757

Numerical Experiments and Additional Results D 760

Implementation of FetchSGD **D.1** 761

- Our implementation of FetchSGD basically follows the original paper (Algorithm 1 in [37]). The 762
- only difference is that, in the original algorithm, the local workers compress the gradient (in every 763
- local step) and transmit it to the central server. In our setting, we extend to the case with multiple local 764
- updates, where the difference in local weights are transmitted (same as the standard FL framework). 765
- Also, TopK compression is used to decode the sketches at the central server. We apply the same 766
- implementation trick that when accumulating the errors, we only count the non-zero coordinates and
- leave other coordinates zero for the accumulator. This greatly improves the empirical performance.

D.2 Additional Plots for the MNIST Experiments

D.2.1 Homogeneous setting

In the homogeneous case, each node has same data distribution. To achieve this setting, we randomly choose samples uniformly from 10 classes of hand-written digits. The train loss and test accuracy are provided in Figure 3, where we report local epochs $\tau=2$ in addition to the main context (single local update). The number of users is set to 50, and in each round of training we randomly pick half of the nodes to be active (i.e., receiving data and performing local updates). We can draw similar conclusion: FS-HEAPRIX consistently performs better than other competing methods. The test accuracy increases with larger τ in homogeneous setting.

Figure 3: MNIST Homogeneous case: Comparison of compressed optimization methods on LeNet CNN architecture.

D.2.2 Heterogeneous setting

Analogously, we present experiments on MNIST dataset under heterogeneous data distribution, including $\tau=2$. We simulate the setting by only sending samples from one digit to each local worker (very few nodes get two classes). We see from Figure 4 that FS-HEAPRIX shows consistent advantage over competing methods. SketchedSGD performs poorly in this case.

Figure 4: MNIST Heterogeneous case: Comparison of compressed optimization algorithms on LeNet CNN architecture.

D.3 Additional Experiments: CIFAR-10

We conduct similar sets of experiments on CIFAR10 dataset. We also use the simple LeNet CNN structure, as in practice small models are more favorable in federated learning, due to the limitation of mobile devices. The test accuracy is presented in Figure 5 and Figure 6, for respectively homogeneous and heterogeneous data distribution. In general, we retrieve similar information as from MNIST experiments: our proposed FS-HEAPRIX improves FS-PRIVIX and SketchedSGD in all cases. We note that although the test accuracy provided by LeNet cannot reach the state-of-the-art accuracy given by some huge models, it is also informative in terms of comparing the relative performance of different sketching methods.

Figure 5: Homogeneous case: CIFAR10: Comparison of compressed optimization methods on LeNet CNN.

Figure 6: Heterogeneous case: CIFAR10: Comparison of compressed optimization methods on LeNet CNN.