ТАБЛИЦА ИНТЕГРАЛОВ (u = u(x))

1.
$$\int 0 \, du = c;$$

степенные функции

2.
$$\int u^m du = \frac{u^{m+1}}{m+1} + c; m \neq -1;$$

3.
$$\int \frac{du}{u} = \ln|u| + c;$$

$$(\sqrt[n]{x^m} = x^{\frac{m}{n}}; \frac{1}{\sqrt[n]{x^m}} = x^{-\frac{m}{n}})$$

показательные функции

4.
$$\int a^u du = \frac{a^u}{\ln a} + c;$$

$$4a. \int e^u du = e^u + c;$$

дробные рациональные и иррациональные функции

5.
$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{u}{a} + c;$$

6.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + c;$$

7.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + c;$$

8.
$$\int \frac{du}{\sqrt{u^2 \pm a^2}} = \ln \left| u + \sqrt{u^2 \pm a^2} \right| + c;$$

тригонометрические функции

9.
$$\int \sin u \, du = -\cos u + c;$$

10.
$$\int \cos u \, du = \sin u + c;$$

11.
$$\int \frac{du}{\cos^2 u} = tg \, u + c;$$

$$12. \int \frac{du}{\sin^2 u} = -ctg \, u + c;$$

гиперболические функции

13.
$$\int sh u \, du = ch u + c;$$

14.
$$\int ch u \, du = sh \, u + c;$$

15.
$$\int \frac{du}{ch^2 u} = th \, u + c;$$

$$16. \int \frac{du}{sh^2u} = -cth\,u + c;$$

$$\int f(x)dx = F(x) + C \Leftrightarrow F'(x) = f(x)$$

Непосредственное интегрирование

$$du = u'_x dx \Rightarrow dx = \frac{du}{u'};$$

$$u = ax + b \Rightarrow dx = \frac{d(ax + b)}{a}$$
;

$$\int \frac{1}{(ax+b)^m} dx = \frac{1}{a} \cdot \frac{(ax+b)^{1-m}}{1-m} + c;$$

$$\int \frac{dx}{ax+b} = \frac{1}{a} \cdot \ln|ax+b| + c;$$

$$u = (ax^3 + b) \Rightarrow dx = \frac{d(ax^3 + b)}{3ax^2}$$

$$\int x^2 \cos(ax^3 + b) \, dx = \frac{1}{3a} \sin(ax^3 + b) + c;$$

$$u = mx \Rightarrow dx = \frac{d(mx)}{dx}$$

$$\int \frac{dx}{\sqrt{a^2 - (mx)^2}} = \frac{1}{m} \arcsin \frac{mx}{a} + c;$$

основные свойства неопределенного интеграла

1.
$$\int (u \pm v) dx = \int u dx \pm \int v dx;$$

2.
$$\int \alpha u dx = \alpha \int u dx;$$

3.
$$d \int u(x) dx = u(x) dx$$
;

$$4. \quad \int du = u + c;$$

замена переменной

$$u = u(t) \Leftrightarrow du = u'_t dt;$$

$$\int f(u)du = \int f(u(t))u_t'dt;$$

интегрирование по частям

$$\int u dv = uv - \int v du.$$

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Метод непосредственного интегрирования

$$du = u_x^{\prime} dx \Rightarrow dx = \frac{du}{u_x^{\prime}}$$

$$u = ax + b \Rightarrow dx = \frac{d(ax + b)}{a} \Rightarrow \int \frac{dx}{\sqrt{ax + b}} = \int \frac{d(ax + b)}{a\sqrt{ax + b}} = \frac{2}{a} \cdot \sqrt{ax + b} + c;$$

$$u = (-ax^{2} + b) \Rightarrow dx = \frac{d(-ax^{2} + b)}{-2ax} \Rightarrow \underbrace{\int e^{-ax^{2} + b} x \, dx} = \underbrace{\int \frac{e^{-ax^{2} + b} x \, d(-ax^{2} + b)}{-2ax}} = -\frac{1}{2a} e^{-ax^{2} + b} + c;$$

$$u = \sin x \Rightarrow dx = \frac{d(\sin x)}{\cos x} \Rightarrow \int \frac{\cos x dx}{\sin^2 x - a^2} = \int \frac{\cos x \, d(\sin x)}{(\sin^2 x - a^2)\cos x} = \frac{1}{2a} \ln \left| \frac{\sin x - a}{\sin x + a} \right| + c;$$

$$u = mx \Rightarrow dx = \frac{d(mx)}{m} \Rightarrow \underbrace{\int \sin mx dx} = \int \frac{\sin mx \ d(mx)}{m} = -\frac{1}{m} \cos mx + c;$$

Метод интегрирования по частям

$$\int u dv = uv - \int v du;$$

№ п/п	Интеграл	Разбиение подынтегральн ого выражения на части	du	V	Результат применения метода
1	$\int P_n(x)e^{\alpha x} dx,$ $\int P_n(x)a^{\alpha x} dx,$ $\int P_n(x)\sin mx dx,$ $\int P_n(x)\cos mx dx.$	$u = P_n(x)$ $dv = \begin{cases} e^{\alpha x} \\ a^{\alpha x} \\ \sin mx \\ \cos mx \end{cases} dx$	$P_{n-1}(x)dx$	$\frac{e^{\alpha x}}{\alpha}, \frac{a^{\alpha x}}{\alpha \ln a}, \\ -\frac{\cos mx}{m}, \\ \frac{\sin mx}{m}$	Метод применяют праз, пока степень многочлена не понизится до нулевой
2	$\int P_n(x) \ln x dx,$ $\int P_n(x) \arcsin x dx, \int P_n(x) \arccos x dx,$ $\int P_n(x) \operatorname{arctgx} dx, \int P_n(x) \operatorname{arcctgx} dx.$	$u = \begin{cases} \ln x \\ \dots \\ arcctgx \end{cases},$ $dv = P_n(x)dx$	$\frac{dx}{x},$ \dots $-\frac{dx}{1+x^2}$	$P_{n+1}(x)$	Получают интеграл от функций степеней х
3	Циклические интегралы: $\int e^{\alpha x} \sin mx dx, \int e^{\alpha x} \cos mx dx$	$u = e^{\alpha x},$ $dv = \begin{cases} \sin mx \\ \cos mx \end{cases} dx$ $\begin{cases} u\pi u \ u = \begin{cases} \sin mx \\ \cos mx \end{cases},$ $dv = e^{\alpha x} dx$	$\alpha e^{\alpha x} dx$	$-\frac{\cos mx}{m},\\ \frac{\sin mx}{m}$	Метод применяют 2 раза, получая уравнение относительно искомого интеграла

План интегрирования рациональных дробей

II. Знаменатель $Q_m(x)$ разложить на множители линейные – (x-a) и квадратичные – (x^2+px+q) . Правильную дробь разложить на сумму простых дробей в зависимости от множителей знаменателя.

Вид множителя в	Сколько			
знаменателе дроби	дробей	Сумма простых дробей, соответствующая множителю в		
		знаменателе правильной рациональной дроби		
		A_1 A_2 A_k		
$(x-a)^k$	k	$\frac{1}{(x-a)^k} + \frac{1}{(x-a)^{k-1}} + \dots + \frac{1}{x-a}$		
_		$M_1x + N_1$ $M_2x + N_2$ $M_wx + N_w$		
$(x^2+px+q)^w$	w	$\frac{1}{(x^2 + px + q)^w} + \frac{1}{(x^2 + px + q)^{w-1}} + \dots + \frac{1}{x^2 + px + q}$		

III. Найти неопределенные коэффициенты A, M, N, приведя сумму дробей к общему знаменателю и **приравняв числители исходной** правильной дроби и **суммы** дробей.

IV. Проинтегрировать простые дроби:

а) дроби первого типа
$$\int \frac{A}{x-a} dx = \int \frac{A}{x-a} d(x-a) = A \ln|x-a| + c;$$

б) дроби второго типа
$$\int \frac{A}{(x-a)^k} dx = A \frac{(x-a)^{-k+1}}{-k+1} + c; (k>1)$$

B) дроби третьего типа
$$\int \frac{Mx+N}{x^2+px+q} dx = \begin{vmatrix} x^2+px+q = \\ = (x+\frac{p}{2})^2 - \frac{p^2}{4} + q \\ x+\frac{p}{2} = t; \quad dx = dt \\ x^2+px+q = t^2 \pm a^2 \end{vmatrix} = \int \frac{M(t-\frac{p}{2})+N}{t^2 \pm a^2} dt = M \int \frac{td(t^2 \pm a^2)}{(t^2 \pm a^2)2t} + (N-M\frac{p}{2}) \int \frac{dt}{t^2 \pm a^2} = \dots$$

г) дроби четвертого типа
$$\int \frac{Mx+N}{(x^2+px+q)^w} dx = \begin{vmatrix} x^2+px+q=(x+\frac{p}{2})^2-\frac{p^2}{4}+q\\ x+\frac{p}{2}=t; & dx=dt\\ x^2+px+q=t^2\pm a^2 \end{vmatrix} = \dots$$

$$\int \frac{dt}{(t^2+a^2)^n} = \frac{1}{2a^2(n-1)} (\frac{t}{(t^2+a^2)^{n-1}} + (2n-3) \int \frac{dt}{(t^2+a^2)^{n-1}}) - \text{рекуррентная формула}$$

Интегрирование тригонометрических и гиперболических функций

№ п/п	Подынтегральная функция	Подстановка	Вспомогательные преобразования	Итог	
1	$R(\sin x, \cos x)$ — рациональ ная функция относительно $\sin x$, $\cos x$	Универсаль ная $t = tg\frac{x}{2}$	$\sin x = \frac{2t}{1+t^2}; \cos x = \frac{1-t^2}{1+t^2}; dx = \frac{2dt}{1+t^2}$		
2	$R(\sin x, -\cos x) =$ $= -R(\sin x, \cos x)$ Нечётная относительно $\cos x$	$t = \sin x \qquad dt = \cos x dx$		ция рациона. ьно <i>х</i>	
3	$R(-\sin x, \cos x) =$ $= -R(\sin x, \cos x)$ Нечётная относительно $\sin x$	$t = \cos x \qquad dt = -\sin x dx$		Подынтегральная функция рациональная относительно x	
4	$R(-\sin x, -\cos x) =$ $= R(\sin x, \cos x)$	t = tgx	$\sin^2 x = \frac{t^2}{1+t^2}; \cos^2 x = \frac{1}{1+t^2}; dx = \frac{dt}{1+t^2}$	Тодынтегра	
	Чётная относительно $\cos x$ и $\sin x$	t = ctgx	$\sin^2 x = \frac{1}{1+t^2}; \cos^2 x = \frac{t^2}{1+t^2}; dx = -\frac{dt}{1+t^2}$		
5	$\sin^{2m} x \cdot \cos^{2n} x$ Степени чётные неотрицательные	$\cos^{2} x = \frac{1 + \cos 2x}{2}; \sin^{2} x = \frac{1 - \cos 2x}{2}; \sin x \cos x = \frac{1}{2} \sin 2x$		Понижение степени	
	$\sin mx \cos nx$	$\sin mx \cos nx = \frac{1}{2} (\sin(m+n)x + \sin(m-n)x)$			
6	$\cos mx \cos nx$ $\sin mx \sin nx$	$\cos mx \cos nx = \frac{1}{2}(\cos(m+n)x + \cos(m-n)x)$ $\sin mx \sin nx = \frac{1}{2}(\cos(m-n)x - \cos(m+n)x)$			
7	$shx = \frac{e^{x} - e^{-x}}{2}; chx = \frac{e^{x} + e^{-x}}{2}; thx = \frac{shx}{chx}; cthx = \frac{chx}{shx}; \sin x = \frac{e^{ix} - e^{-ix}}{2i}; \cos x = \frac{e^{ix} + e^{-ix}}{2};$ $ch^{2}x - sh^{2}x = 1; shxchx = \frac{1}{2}sh2x; sh^{2}x = \frac{ch2x - 1}{2}; ch^{2}x = \frac{ch2x + 1}{2}$				
	Интегрирование гиперболических функций аналогично интегрированию тригонометрических функций				

Интегрирование иррациональностей

	Подынтегральная функция Подстановка				
1	$R(x,(rac{ax+b}{cx+d})^{rac{p_1}{q_1}},(rac{c}{c})^{rac{p_2}{q_1}},(rac{c}{c})^{racp_2},(rac{c}{c})^{rac{p_2}{q_1}},(rac{c})^{rac{p_2}{q_1}},(r$	$\frac{ax+b}{cx+d}\right)^{\frac{p_2}{q_2}},\dots)$ яя функция,	$\frac{ax+b}{cx+d}=t^k$, где k — наименьшее общее кратное знаменателей показателей: $k=HOK(q_1,q_2,)$		
	$R(x,\sqrt{a^2-x^2})$		$x = a \sin t unu x = a \cos t$ $dx = a \cos t dt unu dx = -a \sin t dt$ $(a^2 - x^2 = a^2 \cos^2 t unu a^2 - x^2 = a^2 \sin^2 t)$		
2	$R(x,\sqrt{a^2+x^2})$		$x = atgt unu x = actgt$ $dx = \frac{adt}{\cos^2 t} unu dx = \frac{-adt}{\sin^2 t}$ $(a^2 + x^2 = \frac{a^2}{\cos^2 t} unu a^2 + x^2 = \frac{a^2}{\sin^2 t})$	Рацион альная функц ия sin t, cos t	
	$R(x,\sqrt{x^2-a^2})$		$x = \frac{a}{\cos t} unu x = \frac{a}{\sin t}$ $dx = \frac{a \sin t}{\cos^2 t} dt unu dx = \frac{-a \cos t}{\sin^2 t} dt$ $(x^2 - a^2 = a^2 t g^2 t unu x^2 - a^2 = a^2 c t g^2 t)$		
3	Дифференциальный бином $x^m(a+bx^n)^p$ по теореме Пафнутия Львовича Чебышева интегрируется в элементарных функциях только в трёх случаях:	p — целое число, m,n — дроби $\frac{m+1}{n} - y$ елое $\frac{m+1}{n} + p y$ елое	$x = t^k, k = HOK$ (знаменателей m, n) $dx = kt^{k-1}dt$ $a + bx^n = t^k, k - $ знаменатель дроби p $bnx^{n-1}dx = kt^{k-1}dt, x^m(a + bx^n)^p dx = x^m t^{kp} \frac{kt^{k-1}dt}{bnx^{n-1}}$ $a + bx^n = t^k x^n, k - $ знаменатель дроби p $ax^{-n} + b = t^k, -anx^{-n-1}dx = kt^{k-1}dt,$ $x^m(a + bx^n)^p dx = x^m(t^k x^n)^p \frac{kt^{k-1}dt}{-anx^{-n-1}}, $ еде $x^{-n} = \frac{t^k - b}{a}$	Рацион альная функц ия <i>t</i>	
4	$\frac{1}{(mx+n)\sqrt{ax^2+bx+c}}$		$t = \frac{1}{mx + n}$		
5	$\frac{mx+n}{\sqrt{ax^2+bx+c}}$		$t = x + \frac{b}{2a}$, $ax^2 + bx + c = at^2 - \frac{b^2}{4a} + c$	Два табл-х инт-ла	

При нахождении первообразной функции можно пользоваться следующим алгоритмом:

- 1. Попытаться найти первообразную непосредственным интегрированием или подведением подходящей функции под знак дифференциала. Если это не удается, то
- 2. Определить класс подынтегральной функции (рац. дробь, тригонометрическая, иррациональная) и применить соответствующие подстановки, а если функция смешанных классов интегрирование по частям.