ISTA410/INFO510 Bayesian Modelling and Inference

Lecture 3 – Probability Review

Dr. Kunal Arekar
College of Information
University of Arizona, Tucson

September 3, 2025

Sample Space of *outcomes* (often denoted by Ω)

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by ω and we can say things like, e.g., "for each $\omega \in \Omega$..."

Sample Space of *outcomes* (often denoted by Ω)

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by ω and we can say things like, e.g., "for each $\omega \in \Omega$..."

Event (subset of Ω) ...does or does not contain (is true or false for) a particular outcome odd $\{1, 3, 5\}$, even $\{2, 4, 6\}$, prime $\{2, 3, 5\}$

Sample Space of *outcomes* (often denoted by Ω)

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by ω and we can say things like, e.g., "for each $\omega \in \Omega$..."

Event (subset of Ω) ...does or does not contain (is true or false for) a particular outcome odd $\{1, 3, 5\}$, even $\{2, 4, 6\}$, prime $\{2, 3, 5\}$

Semantics of Set Operations

Equivalence between "set" and "proposition" representations.

- 1. Set *E*: outcomes s.t. proposition *E* is true.
- 2. Union, $E \cup F$: logical OR between propositions E and F.
- 3. Intersection, $E \cap F$: logical AND
- 4. Complement, E^{C} : logical negation

Sample Space of outcomes (often denote

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space

A "generic" outcome is often denoted by ω and we can say things like, e.g., "for each $\omega \in \Omega$..."

Event (subset of Ω) ...does or does not contain (is true or false for) a particular outcome odd $\{1, 3, 5\}$, even $\{2, 4, 6\}$, prime $\{2, 3, 5\}$

Denote the **collection of measurable events** (ones we want to assign probabilities to) by S.

S must include \varnothing and Ω

These special events represent the cases where "nothing" among all the choices happens (impossible), and "something" happens (certain).

Reason for being technical: It is important to be tuned into what a particular probability is about (precisely!).

Sample Space of *outcomes* (often denoted by Ω)

{H, T} {1, 2, 3, 4, 5, 6} An outcome is just ONE element of the sample space A "generic" outcome is often denoted by ω and we can say things like, e.g., "for each $\omega \in \Omega$..."

Event (subset of Ω) ...does or does not contain (is true or false for) a particular outcome odd $\{1, 3, 5\}$, even $\{2, 4, 6\}$, prime $\{2, 3, 5\}$

Denote the **collection of measurable events** (ones we want to assign probabilities to) by S.

S must include \varnothing and Ω

S is *closed* under set operations

...aka: σ -algebra

$$\alpha, \beta \in S \Rightarrow \alpha \cup \beta \in S, \ \alpha \cap \beta \in S, \ \alpha^{C} = \Omega - \alpha \in S, \text{ etc.}$$

Translation: We need to be able to deal with concepts such as "either A or B" happens, or "both A and B" happen.

Probability Space

A **probability space** is a sample space augmented with a function, P, that assigns a **probability** to each event, $E \subset S$.

Kolmogorov Axioms

- 1. $0 \le P(E) \le 1$ for all $E \subset S$. Non-Negativity
- 2. $P(\Omega) = 1$. Normalization
- 3. If $E \cap F = \emptyset$ then $P(E \cup F) = P(E) + P(F)$. Additivity

Important Consequences

- 1. $P(\emptyset) = 0$.
- 2. $P(E^{C}) = 1 P(E)$ Complement Rule
- 3. In general, $P(E \cup F) = P(E) + P(F) P(E \cap F)$. General Addition Rule

Random variables

Defined by functions mapping outcomes to values

A random variable is a way of reporting an attribute of an outcome

By choice, whatever we are interested in

Typically denoted by uppercase letters (e.g., X)

Generic values are corresponding lower case letters

Shorthand: P(x) = P(X=x)

Value "type" is arbitrary (typically categorical or real)

Example

Outcomes are student grades (A,B,C)

Random variable G=f_{GRADE}(student)

$$P('A') = P(G = 'A') = P(\left\{w \in \Omega : f_{GRADE}(w) = 'A'\right\})$$

We sometimes use sets, but usually R.Vs.:

$$P(\overrightarrow{A \cap B \cap C}) \equiv P(A,B,C)$$

Random Variable

- Formally, a **random variable** is a function, X that assigns a number to each outcome in S (e.g., dead \rightarrow 0, alive \rightarrow 1).
- ► Key consequence: a random variable divides the sample space into **equivalence classes**: sets of outcomes that share some property (differ only in ways irrelevant to *X*)

Example

- Let S = all sequences of 3 coin tosses.
- ▶ We can define a r.v. *X* that counts number of heads.
- ► Then *HHT* and *HTH* are equivalent in the eyes of *X*:

$$X(HHT) = X(HTH) = 2$$

Distribution of a Random Variable

- The expression P(X = x) refers to the probability of the event $E = \{\omega \in S : X(\omega) = x\}$.
- ► Sometimes we can obtain it by breaking it down into simpler, mutually exclusive events and adding their probabilities (Kolmogorov axiom 3)

Example

- \triangleright *S* = all sequences of 3 coin tosses.
- $ightharpoonup X(\omega) = \# \text{ of heads in } \omega.$

$$\{X = 2\} = \{HHT\} \cup \{HTH\} \cup \{THH\}$$

$$P(X = 2) = P(HHT) + P(HTH) + P(THH)$$

$$= \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

Distribution of a Random Variable

- ► Similarly, P(X < x) is the probability of the event $E = \{\omega \in S : X(\omega) < x\}.$
- Can sometimes obtain it the same way as we did above.

Example

- \triangleright *S* = all sequences of 3 coin tosses.
- \blacktriangleright $X(\omega) = \#$ of heads in ω .

$$\{X < 2\} = \{TTT\} \cup \{TTH\} \cup \{THT\} \cup \{HTT\}$$

$$P(X < 2) = P(TTT) + P(TTH) + P(THT) + P(HTT)$$

$$= \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

Distribution of a Random Variable

Example, continued

Notice that in this example we could also have written

$${X < 2} = {X = 0} \cup {X = 1}$$

 $P(X < 2) = P(X = 0) + P(X = 1)$

which is useful if we have already calculated P(X = x) for each value of x.

► This always works if *X* is always an integer.

Joint Probability

- ▶ We have already seen the concept of *intersecting events*: $A \cap B$ is the event that occurs when *both* A and B are true A the same time.
- ▶ $P(A \cap B)$ is called the **joint probability** of A and B.
- ▶ If *A* is $\{X = x\}$ and *B* is $\{Y = y\}$, then $A \cap B$ means X = x and Y = y at the same time.
- ▶ If X and Y are discrete, P(X = x, Y = y), for different combinations of x and y, characterize the **joint distribution** of X and Y.

We write
$$P(x, y)$$
 for $P(\ w \in \Omega : X(w) = x \text{ and } Y(w) = y)$
Alternatively, $P((X = x) \cap (Y = y))$

Note that the comma in the usual form, P(x, y), is read as "and". Here events are being defined by assignments of random variables

Marginalization:
$$P(A) = \sum_{b \in B} P(A, B)$$

way to calculate the probability of a single event (like P(A)) by summing over all possible outcomes of another event (like B)

AJB	B = 1	B = 2	B = 3
A = 1	0.1	0.2	0.1
A = 2	0.2	0.1	0.3

$$P(A = 2)$$

$$P(A = 2) = 0.2 + 0.1 + 0.3$$

$$P(A = 2) = 0.6$$

Conditional Probability

"probability in context"

Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Conditional Probability

"probability in context"

Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Example, what is the probability that you have rolled 2, given that you know you have rolled a prime number?

Product Rule

"probability in context"

Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Applying a bit of algebra,

$$P(A \cap B) = P(B)P(A|B)$$

Chain (Product) Rule

"probability in context"

Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Applying a bit of algebra,

$$P(A \cap B) = P(B)P(A|B)$$

In general, we have the **chain** (**product**) rule:

Product
$$P \Big(A_1 \cap A_2 \Big) = P(A_1) P(A_2 \, \big| A_1)$$

$$P \Big(A_1 \cap A_2 \cap \dots A_N \Big) = P(A_1) P(A_2 \, \big| A_1) P(A_3 \, \big| A_1 \cap A_2) \, \dots \, P(A_N \, \big| A_1 \cap A_2 \cap \dots A_{N-1})$$

Bayes Rule

Going back to the definition of conditional probability

$$P(A|B) \equiv \frac{P(A \cap B)}{P(B)}$$

Applying a little bit more algebra,

$$P(A \cap B) = P(A)P(B|A)$$
and
$$P(A \cap B) = P(B)P(A|B)$$
and thus
$$P(B)P(A|B) = P(A)P(B|A)$$
and we get
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$
Bayes rule **

Bayes Rule

Going back to the definition of conditional probability

$$P(A|B) \equiv \frac{P(A \cap B)}{P(B)}$$

Applying a little bit more algebra,

$$P(A \cap B) = P(A)P(B|A)$$
and
$$P(A \cap B) = P(B)P(A|B)$$
and thus
$$P(B)P(A|B) = P(A)P(B|A)$$
and we get
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Common to represent denominator as marginalization of numerator:

$$P(B) = \sum_{a \in A} P(A, B)$$
$$= \sum_{a \in A} P(A)P(B|A)$$

Bayes rule *

Suppose a TB test is 95% accurate

P (positive | TB) = 0.95

P (negative $|\neg TB| = 0.95$

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

Suppose a TB test is 95% accurate

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

• What is *P*(TB | positive)?

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

- What is P(TB | positive)?
 - The naive approach:
 - If the test result is wrong 5% of the time, then probability subject is infected is 0.95.
 - I.e., 95% of subjects with positive results have TB
 - What does the Bayesian say?

Suppose a TB test is 95% accurate

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

• What is P(TB | positive)?

$$P ext{(TB|pos)} = \frac{P ext{(pos|TB)}P ext{(TB)}}{P ext{(pos)}}$$

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

- What is *P*(TB | positive)?
 - P(TB) = ?
 - P(pos) = ?

$$P(TB|pos) = \frac{P(pos|TB)P(TB)}{P(pos)}$$

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

- What is $P(TB \mid positive)$? $P(TB \mid pos) = \frac{P(pos|TB)P(TB)}{P(pos)}$
 - Suppose 1 in 1000, so P(TB) = 0.001
 - P(pos) = ?

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

- What is $P(TB \mid positive)$? $P(TB \mid pos) = \frac{P(pos|TB)P(TB)}{P(pos)}$
 - Suppose 1 in 1000, so P(TB) = 0.001
 - P(pos) = P(pos|TB)P(TB) + P(pos|¬TB)P(¬TB)

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

- What is $P(TB \mid positive)$? $P(TB \mid pos) = \frac{P(pos|TB)P(TB)}{P(pos)}$
 - Suppose 1 in 1000, so P(TB) = 0.001
 - P(pos) = P(pos|TB)P(TB) + P(pos|¬TB)P(¬TB)= (0.95 * 0.001) + (0.05 * 0.999)= 0.0509
- Now plug in to Bayes rule:

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

- What is $P(TB \mid positive)$? $P(TB \mid pos) = \frac{P(pos|TB)P(TB)}{P(pos)}$
 - Suppose 1 in 1000, so P(TB) = 0.001
 - P(pos) = P(pos|TB)P(TB) + P(pos|¬TB)P(¬TB)= (0.95 * 0.001) + (0.05 * 0.999)= 0.0509
- Now plug in to Bayes rule: $\frac{0.95 \, \text{(0.001)}}{0.0509} \, \text{(0.0187)}$

Suppose a TB test is 95% accurate

$$P$$
 (positive | TB) = 0.95
 P (negative | ¬TB) = 0.95
 P (positive | ¬TB) = 0.05

- What is $P(TB \mid positive)$? $P(TB \mid pos) = \frac{P(pos|TB)P(TB)}{P(pos)}$
 - Suppose 1 in 1000, so P(TB) = 0.001
 - P(pos) = P(pos|TB)P(TB) + P(pos|TB)P(TB)= (0.95 * 0.001) + (0.05 * 0.999)= 0.0509
- Now plug in to Bayes rule: $\frac{0.95 \, \text{(-0.001)}}{0.0509} \, \text{(0.0187)}$

The bottom line: although a subject with a positive test is much more likely to be TB-infected than is a random subject (by almost 20 times)...

... fewer than 2 percent of those subjects are TB-infected.

Basic rules (so far)

Marginalization

$$P(A) = \sum_{b \in B} P(A, B)$$

Conditional probability (definition)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Chain (Product) Rule

$$P(A_1 \cap A_2) = P(A_1)P(A_2|A_1)$$

$$P(A_1 \cap A_2 \cap \dots A_N) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_N|A_1 \cap A_2 \cap \dots A_{N-1})$$

Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Normalization

Often we will deal with quantities or functions which are *proportional* to probabilities (they don't currently sum to 1, so need to scale them).

To convert such quantities to probabilities we normalize.

If
$$p(x) \propto P(X = x)$$
 then $P(X = x) = \frac{p(x)}{\sum_{x} p(x)}$

Example: $P(X|Y) \propto P(X,Y)$

$$P(X | Y) = \frac{P(X,Y)}{\sum_{X} P(X,Y)}$$

Probabilistic Queries

Organize variables into

Evidence (observed), E

Query (what you want to know), Y

Hidden (leftover), **X** (for completeness) – latent variable

Generic Query: P(Y|E)

This leads to a *distribution* over **Y** given the evidence Note that **X** is marginalized out

We can use this to make a decision

Simplest is most probable, i.e., $\underset{\mathbf{Y}}{\operatorname{Argmax}} P(\mathbf{Y}, \mathbf{E})$

"Maximum a posteriori"

MAP Query (most probably configuration of variables):

$$MAP(\mathbf{W} | \mathbf{E}) = \operatorname{Argmax} P(\mathbf{W}, \mathbf{E})$$
 $(\mathbf{W} = \mathbf{Y} \cup \mathbf{X})$

		Y		Assume this table
		\mathbf{y}_1	y_2	is conditioned on E
X	\mathbf{x}_1	0.04	0.30	0.34
	\mathbf{x}_2	0.36	0.30	0.66
		0.40	0.60	
Argmax P(x,y) is (x_2, y_1)			$P(x)$ is (x_2) $P(y)$ is (y_2)	

Arg max P(x,y) is **not necessarily** (Arg max P(x), Arg max P(y))