

# CMOS模拟集成电路设计

第四章: 失调与CMRR

胡远奇

©2020

## >>> 失调(Offset)的定义



- 失调电压Vos: 使输出电压为零时的两端输入电压 之差
  - 可以加在任意一端



## >>> 失调(Offset)的影响





## >>> 失调(Offset)的影响



n-bit Flash-ADC with offset

Ref: Pelgrom, IEDM 1998, pp.789.

### >>> 失调与CMRR

- ·随机性失调和CMRRR
- · 系统性失调和CMRR<sub>S</sub>
- •设计守则

### **>>>**

#### 随机失调:阈值电压的失配



$$\sigma_{\Delta VT} = \frac{A_{VT}}{\sqrt{WL}}$$

$$A_{VT} \sim t_{ox} \sqrt[4]{N_B}$$

氧化层厚度 & 衬底参杂浓度

A<sub>VT</sub> ≈ 5 mV um for 0.25 um nMOST

+50 % for pMOST

□估算0.25um工艺下、尺寸为16um/1um的PMOS差分对由阈值电压失配 造成的最大失调电压? (要求99.5%良率)



## >>> 阈值电压失配的标准差





## 》)阈值电压失配的系数A<sub>VT</sub>



• 某工厂55nm工艺的A<sub>VT</sub>=2.05e-9

#### >>> 随机失调:工艺与尺寸的失配

$$I_{DS} = K' W/L(V_{GS} - V_{T})^{2}$$

$$\frac{\Delta K'}{\overline{K'}} = \frac{A_{K'}}{\sqrt{WL}} \qquad \frac{\Delta W/L}{\overline{W/L}} = A_{WL} \sqrt{\frac{1}{W^{2}} + \frac{1}{L^{2}}}$$

$$A_{K'} \approx 0.0056 \text{ um}$$

$$+50 \% \text{ for pMOST}$$

$$A_{WL} \approx 0.02 \text{ mV um}$$

$$+50 \% \text{ for pMOST}$$

·参数K′造成的变化相 对较小

· AwL与工艺的相关性不强

## >>> NMOS的失配参数

| Techno L (μm)<br>t <sub>ox</sub> (nm) | 2.5<br>50 | 1.2<br>25 | 0.7<br>15 | 0.5<br>11 | 0.35<br>8 | 0.25<br>6    |
|---------------------------------------|-----------|-----------|-----------|-----------|-----------|--------------|
| A <sub>VT</sub> (mV μm)               | 30        | 21        | 13        | 7.1       | 6         | <b>⇒ 3</b>   |
| <b>A<sub>WL</sub></b> (% μ <b>m</b> ) | 2.5       | 1.8       | 2.5       | 1.3       | 2         | <b>⇒</b> 1.8 |

 $A_{VL}$ 的单位是 $\mathbf{um}$ ,可以听过设计**尺寸**或偏置电压减小其影响  $A_{VT}$ 的单位是 $\mathbf{mV*um}$ ,只能通过设计**尺寸**减小其影响









$$v_{od} = \Delta R_L \frac{I_B}{2}$$

$$v_{os} = \frac{v_{od}}{g_m R_L}$$

$$v_{os} = \frac{\Delta R_L}{R_I} \frac{I_B}{2g_m} \cdot \frac{R}{V_{GS}} \frac{R}{V_{T}}$$

$$v_{os} = \frac{\Delta R_L}{R_I} \frac{V_{GS} - V_T}{2}$$





$$I_{DS} = K' W/L(V_{GS} - V_T)^2$$





$$I_{DS} = K' W/L(V_{GS} - V_T)^2$$

#### 差分对应尽可能的

$$V_{GS}-V_{T}$$

$$v_{OS} = \Delta V_T + \frac{V_{GS} - V_T}{2} \left( \frac{\Delta R_L}{R_L} + \frac{\Delta K'}{K'} + \frac{\Delta W/L}{W/L} \right)$$



## 电流镜中的随机失调





## 电流镜中的随机失调



$$\frac{\Delta I_{\text{out}}}{I_{\text{out}}} =$$

### A<sub>WL</sub>是主要 失配源

$$\frac{\Delta V_{T}}{(V_{GS} - V_{T})/2} + \frac{\Delta K'}{\overline{K'}} + \frac{\Delta W/L}{\overline{W/L}}$$

#### 电流镜应尽可能的

$$V_{GS}-V_{T}$$



## 电流镜中的其他失调因素



 $\Delta K' \Delta W/L \Delta V_T$ 

 $\Delta K' \Delta W/L \Delta V_T R_S$ 

### >>> 输出电流的失配

$$I_{DS} = K' W/L(V_{GS} - V_{T})^{2}$$

$$I_{DS} = \frac{\beta}{2} (V_{GS} - V_{T})^{2}$$

定义: 总的电流失配由  $\beta$  失配和  $V_T$  失配造成

$$\frac{\Delta I_{DS}}{I_{DS}} =$$

$$\sigma^2 \left( \frac{\Delta I_{DS}}{I_{DS}} \right) =$$

#### >>> 输出电流的失配

$$I_{DS} = K' W/L(V_{GS} - V_{T})^{2}$$

$$I_{DS} = \frac{\beta}{2} (V_{GS} - V_{T})^{2}$$

定义: 总的电流失配由  $\beta$  失配和  $V_T$  失配造成

$$\frac{\Delta I_{DS}}{I_{DS}} = \frac{\Delta \beta}{\beta} - \Delta V_{T} \frac{2}{V_{GS} - V_{T}}$$

$$\sigma^{2}\left(\frac{\Delta I_{DS}}{I_{DS}}\right) = \sigma^{2}\left(\frac{\Delta \beta}{\beta}\right) + \sigma^{2}(\Delta V_{T}) \frac{4}{(V_{GS} - V_{T})^{2}}$$

#### **>>>**

#### 输出电流的失配

$$\sigma^{2} \left( \frac{\Delta I_{DS}}{I_{DS}} \right) = \sigma^{2} \left( \frac{\Delta \beta}{\beta} \right) + \sigma^{2} \left( \Delta V_{T} \right) \quad \frac{4}{\left( V_{GS} - V_{T} \right)^{2}} \quad \text{or} \quad \frac{1}{\left( nkT/q \right)^{2}}$$

$$in si \qquad in wi$$



• 弱反型区中,  $V_T$  失配占主要因素;强反型区中,  $\beta$  失配占主要因素, 其中主要又是W/L的失配为主

• 差分对的另一随机指标: 共模抑制比 (Common Mode Rejection Ration)



#### 共模增益:

差模输出Vod /共模输入Vinc

$$A_{dc} = \frac{v_{od}}{v_{ic}} \bigg|_{v_{id} = 0} \approx 0$$

#### 共模抑制比:

差模增益/共模增益

CMRR = 
$$\frac{A_{dd}}{A_{dc}}$$
 ≈ ∞

• 差分对的另一随机指标: 共模抑制比 (Common Mode Rejection Ration)



• 负载不对称

$$A_{dc} = \frac{v_{od}}{v_{ic}} \Big|_{v_{id} = 0} \neq 0$$

• 差分对的另一随机指标: 共模抑制比 (Common Mode Rejection Ration)



• 负载不对称

$$A_{dc} = \frac{v_{od}}{v_{ic}} \Big|_{v_{id} = 0} \neq 0$$

共模偏置电流: I<sub>B</sub>=V<sub>INC</sub>/R<sub>B</sub>

差模输出:V<sub>od</sub>=ΔR<sub>L</sub>•I<sub>B</sub>/2

$$A_{dc} = \frac{\Delta R_L}{2 R_B} \quad CMRR = \frac{2 g_m R_B}{\Delta R_L / R_L}$$

• 差分对的另一随机指标: 共模抑制比 (Common Mode Rejection Ration)



- 负载不对称
- ・差分对失调

$$CMRR = \frac{2g_m R_B}{\frac{\Delta R_L}{R_L}}$$



$$CMRR = \frac{2g_{m}R_{B}}{\frac{\Delta R_{L}}{R_{L}} + \frac{2V_{OS}}{V_{GS} - V_{T}}}$$



#### >>> 随机失调与CMRR的关系

$$CMRR = \frac{2g_{m}R_{B}}{\frac{\Delta R_{L}}{R_{L}} + \frac{2V_{OS}}{V_{GS} - V_{T}}}$$

$$V_{OS} \cdot CMRR = V_{OS} \cdot \frac{2g_m R_B}{\frac{\Delta R_L}{R_L} + \frac{2V_{OS}}{V_{GS} - V_T}}$$

$$V_{OS} \cdot CMRR \approx (V_{GS} - V_T)g_mR_B$$

$$V_{OS} \cdot CMRR \approx V_E L_B$$

减小失调就是提高CMRR

### 》)随机失调与CMRR的关系

```
v_{OSr} CMRR_r \approx V_F L_B \approx 10 V \quad (\sim L_B)
```

```
10 mV 60 dB \approx 10 V as for MOSTs
```

1 mV 80 dB ≈ 10 V as for Bipolar transistors

10 μV 120 dB ≈ 10 V with trimming : with laser

with Zener zap

with fusible links

Low offset = High CMRR

## >>> 失调与CMRR

- 随机性失调和CMRR<sub>R</sub>
- ·系统性失调和CMRR<sub>S</sub>
- •设计守则



## 电流镜中的系统失调



$$I_{out} \neq I_{in}$$



$$\frac{\Delta i_{out}}{i_{out}} = \frac{v_{DS2} - v_{DS1}}{v_{EL_2}}$$



#### >>> 差分运放中的系统性CMRR

#### • 不考虑任何随机性失调的情况下:



$$V_{OUT} = V_{GS3}$$
 
$$\Delta V_{GS3} = \frac{1}{2} \Delta I_B / g_{m3}$$
 
$$A_{dc} = \frac{1}{2g_{m3}R_B}$$

$$CMRR = 2g_{m1}g_{m3}R_B \cdot (r_{02}||r_{04})$$

 $A_{dd} = g_{m1} \cdot (r_{02}||r_{04})$ 







## >>> 差分运放中的总CMRR

$$\frac{1}{\text{CMRR}} = \frac{1}{\text{CMRR}_r} + \frac{1}{\text{CMRR}_s}$$





## >>> 两级运放中的失调现象





## >>> 两级运放中的失调现象



## >>> CMRR的频率特性



## >>> CMRR的频率特性



## >>> 失调与CMRR

- 随机性失调和CMRR<sub>R</sub>
- · 系统性失调和CMRR<sub>S</sub>
- ·设计守则

### >>> 设计守则

- •相同的特性
- •相同的温度
- 增大尺寸
- •减小间距
- 同样的方向
- 同样的长宽比
- 中心对称
- Dummy









Source/drain diffusion resistor in CMOS

Ref.: Laker, Sansen:
Design of analog ...,
MacGrawHill 1994
Table 2-6

# >>> 电阻的实现方式及对比

| Process | Type            | ρ <u></u><br>Ω/ <u></u> | absolute<br>accuracy<br>percent | temperature<br>coefficient<br>percent/°C | voltage<br>coefficient<br>percent/V | breakdown<br>voltage<br>V |
|---------|-----------------|-------------------------|---------------------------------|------------------------------------------|-------------------------------------|---------------------------|
| CMOS    | S/D diffusion   | 20-50                   | 20                              | 0.2                                      | 0.5                                 | 20                        |
|         | well            | 2.5k                    | 10                              | 0.3                                      | 1                                   | 20                        |
|         | poly gate       | 50                      | 20                              | 0.2                                      | 0.05                                | 40                        |
|         | poly resistance | 1.5k                    | 1                               | 0.05                                     | 0.02                                | 20                        |
|         | aluminum        | 50m                     | 20                              | 0.01                                     | 0.02                                | 90                        |

## >>> 电容的版图





## >>> 电容的实现方式及对比

| Process | Type                   | C<br>Nf/cm <sup>2</sup> | absolute<br>accuracy<br>percent | temperature<br>coefficient<br>percent/°C | voltage<br>coefficient<br>percent/V | breakdown<br>voltage<br>V |
|---------|------------------------|-------------------------|---------------------------------|------------------------------------------|-------------------------------------|---------------------------|
| CMOS    | C <sub>ox</sub> (50nm) | 70                      | 5                               | 0.002                                    | 0.005                               | 40                        |
|         | $C_{m,poly}$           | 12                      | 10                              | 0.002                                    | 0.005                               | 40                        |
|         | $C_{poly,poly}$        | 56                      | 2                               | 0.002                                    | 0.005                               | 40                        |
|         | $C_{poly,substrate}$   | 6.5                     | 10                              | 0.01                                     | 0.05                                | 20                        |
|         | $C_{m,substrate}$      | 5.2                     | 10                              | 0.01                                     | 0.05                                | 20                        |
|         | $C_{poly,substrate}$   | 6.5                     | 10                              | 0.01                                     | 0.05                                | 20                        |

Ref.:Laker,Sanse: Design of analog..., MacGrawHill 1994 Table 2-7



## **>>>** 差分对的匹配



**Better** Bad **Better** 





## >>> 中心对称的版图







### >>> 设计思路总结

- 1.与噪声的设计一样,差分对需要V<sub>GST</sub>尽量小,而电流镜则需要 V<sub>GST</sub>尽量大
- 2. 失调的优化与CMRR的优化相同,超高的CMRR往往需要后期的Calibration.
- 3. 在版图中选择合适的被动器件,以及优秀的版图技巧都能改善失调的现象。

### >>> 课后作业

- 对一偏置电流为100uA的五管OTA, 共模电压为0.9V,设计晶体管的尺寸,
  - 1. 使其在单位增益负反馈时系统性失调小于0.1mV;
  - 2. 使其随机性失调的标准差 (std) 小于 **1mV**;
  - 3. 使其共模抑制比大于 50dB。

