Genome-wide association studies in natural populations: managing expectations and avoiding error

Susan E. Johnston & Lewis G. Spurgin

Genome **W**ide **A**ssociation **S**tudy (GWAS)

Experimental design used to detect associations between genetic variants and traits in population samples

Trait	Gene with GWAS hits	Known or candidate drug
Type 2 Diabetes	SLC30A8/KCNJ11	ZnT-8 antagonists/Glyburide
Rheumatoid Arthritis	PADI4/IL6R	BB-Cl-amidine/Tocilizumab
Ankylosing Spondylitis(AS)	TNFR1/PTGER4/TYK2	TNF- in hibitors/NSAIDs/fostamatinib
Psoriasis(Ps)	IL23A	Risankizumab
Osteoporosis	RANKL/ESR1	Denosumab/Raloxifene and HRT
Schizophrenia	DRD2	Anti-psychotics
LDL cholesterol	HMGCR	Pravastatin
AS, Ps, Psoriatic Arthritis	IL12B	Ustekinumab

- Have I missed any variants associated with my trait? (False negatives)
- Have I identified any spurious associations with my trait? (False positives)

Factors affecting false positive and false negative rates

- Architecture of the trait
- Number of individuals sampled
- Number of genetic markers sampled
- Extent of linkage disequilibrium between sampled markers and causal variants

Factors affecting false positive and false negative rates

- Architecture of the trait
- Number of individuals sampled
- Number of genetic markers sampled
- Extent of linkage disequilibrium between sampled markers and causal variants

Indirect Association

Bush and Moore 2012, PLoS Comput. Biol.

Present day patterns of LD in a population are the product of:

- Historical evolutionary processes (e.g. recombination rate, demography, selection etc. - Ancestral LD)
- Nature of the population sample (e.g. family structure, substructure, sample size - Sample LD)

Both ancestral LD and sample LD will vary widely across studies of natural populations

GWAS in natural populations

- The power GWAS will vary enormously across natural populations and species with different evolutionary histories
- Sample size (number of individuals/markers) will therefore need to be adjusted accordingly
- This should be considered **before** undertaking sampling and genotyping

GWAS in natural populations: a simulation

approach

Study aims

Develop a simulation and analysis pipeline to:

- Illustrate some of the key issues affecting the power and promise of GWAS in natural populations
- ► Allow other researchers to estimate power in their system before undertaking costly fieldwork/genotyping

Simulation approach