ANALYSIS OF SEQUENTIAL CIRCUITS

Flip-flop review

Flip-flops

Characteristic tables

Characteristic equations

$$Q(t+1) = D$$

J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

$$Q(t+1) = K'Q(t) + JQ'(t)$$

$$Q(t+1) = T \oplus Q(t)$$

What do sequential circuits look like?

- Here is a sequential circuit with two JK flip-flops. There is one input X and one output Z.
- The values of the flip-flops (Q₁Q₀) form the state, or the memory, of the circuit.
- The flip-flop outputs also go back into the primitive gates on the left. This matches the abstract sequential circuit diagram at the bottom.

How do you analyze a sequential circuit?

- We can analyze a combinational circuit by deriving a truth table, which shows how the circuit outputs are generated from its inputs.
- But in a sequential circuit, the outputs are dependent upon not only the inputs, but also the current state of the flip-flops. So to understand how a sequential circuit works, we have to know how the memory changes.
- A state table is the sequential analog of a truth table. It shows inputs and current states on the left, and outputs and next states on the right.

How do you analyze a sequential circuit?

- We can analyze a combinational circuit by deriving a truth table, which shows how the circuit outputs are generated from its inputs.
- But in a sequential circuit, the outputs are dependent upon not only the inputs, but also the current state of the flip-flops. So to understand how a sequential circuit works, we have to know how the memory changes.
- A state table is the sequential analog of a truth table. It shows inputs and current states on the left, and outputs and next states on the right.

Inp	uts	Cur	rent	Next		
S	R	Q	Q'	ď	Q'	
0	0	0	1	0	1	
0	0	1	0	1	0	
0	1	0	1	0	1	
0	1	1	0	0	1	
1	0	0	1	1	0	
1	0	1	0	1	0	

Analyzing our example circuit

- A state table for our example circuit is shown below.
- The present state Q₁Q₀ and the input X will determine the next state Q₁Q₀ and the output Z.

Presen	Present State		Next State		Outputs
Q_1	Q_{o}	Х	Q_1	Q_0	Z
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

The outputs are easy

From the diagram, you can see that

$$Z = Q_1Q_0X$$

This is an example of a Mealy machine, where the output depends on both the present state (Q₁Q₀) and the input (X).

Presen	t State	Inputs	Next State		Outputs
Q ₁	Q_{o}	Х	Q_1	Q_0	Z
0	0	0			0
0	0	1			0
0	1	0			0
0	1	1			0
1	0	0			0
1	0	1			0
1	1	0			0
1	1	1			1

Flip-flop input equations

- Finding the next states is harder. To do this, we have to figure out how the flip-flops are changing.
 - Find Boolean expressions for the flip-flop inputs.
 - Use these expressions to find the actual flip-flop input values for each possible combination of present states and inputs.
 - Use flip-flop characteristic tables or equations to find the next states, based on the flip-flop input values and the present states.

Step 1: Flip-flop input equations

 For our example, the flip-flop input equations are:

$$J_1 = X' Q_0$$
 $K_1 = X + Q_0$
 $J_0 = X + Q_1$
 $K_0 = X'$

Step 2: Flip-flop input values

• With these equations, we can make a table showing J_1 , K_1 , J_0 and K_0 for the different combinations of present state Q_1Q_0 and input X.

$$J_1 = X' Q_0$$
 $J_0 = X + Q_1$
 $K_1 = X + Q_0$ $K_0 = X'$

Presen	t State	Inputs		Flip-flo	p Inputs	
Q ₁	Q_0	X	J_1	K ₁	J_0	K_0
0	0	0	0	0	0	1
0	0	1	0	1	1	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
1	0	0	0	0	1	1
1	0	1	0	1	1	0
1	1	0	1	1	1	1
1	1	1	0	1	1	0

Step 3: Find the next states

- Finally, use the JK flip-flop characteristic tables or equations to find the next state of each flip-flop, based on its present state and inputs.
- The general JK flip-flop characteristic equation was given earlier today.

$$Q(t+1) = K'Q(t) + JQ'(t)$$

 In our example circuit, we have two JK flip-flops, so we have to apply this equation to each of them.

$$Q_1(t+1) = K_1'Q_1(t) + J_1Q_1'(t)$$

$$Q_0(t+1) = K_0'Q_0(t) + J_0Q_0'(t)$$

Step 3 concluded

• Finally, here are the next states for Q_1 and Q_0 , using these equations.

$$Q_1(t+1) = K_1'Q_1(t) + J_1Q_1'(t)$$

 $Q_0(t+1) = K_0'Q_0(t) + J_0Q_0'(t)$

Presen	t State	Inputs	Flip-flop Inputs				Next State	
Q_1	Q_0	Χ	J_1	K ₁	J_0	K_0	Q_1	Q_0
0	0	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0	1
0	1	0	1	1	0	1	1	0
0	1	1	0	1	1	0	0	1
1	0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	0	1
1	1	0	1	1	1	1	0	0
1	1	1	0	1	1	0	0	1

Getting the state table columns straight

- The table starts with Present State and Inputs.
 - Present State and Inputs yield FF Inputs.
 - Present State and FF Inputs yield Next State, based on the flip-flop characteristic tables.
 - Present State and Inputs yield Output.
- We really only care about FF Inputs in order to find Next State.

Presen	t State	Inputs		Flip-flop Inputs		Next State		Output	
Q ₁	Q_0	X	J_1	K ₁	J_0	K ₀	Q_1	Q_0	Z
0	0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	1	0	0
0	1	1	0	1	1	0	0	1	0
1	0	0	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0	1	0
1	1	0	1	1	1	1	0	0	0
1	1	1	0	1	1	0	0	1	1

State diagrams

- We can also represent the state table graphically with a state diagram.
 - The diagram has one node for each possible state.
 - Arrows in the diagram connect present states to next states, and are labelled with "input/output."

State diagrams

- We can also represent the state table graphically with a state diagram.
 - The diagram has one node for each possible state.
 - Arrows in the diagram connect present states to next states, and are labelled with "input/output."
- A diagram corresponding to our example state table is shown below.

Presen	Present State		Next	State	Output
Q ₁	Q_0	Х	Q_1	Q_{0}	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Size of the state diagram

- Always check the size of your state diagrams.
 - If there are n flip-flops, there should be 2ⁿ nodes in the diagram.
 - If there are m inputs, then each node will have 2^m outgoing arrows.
- Our example circuit has two flip-flops and one input, so the state diagram should have four nodes, each with two outgoing arrows.

Presen	Present State		Next	State	Output
Q_1	Q_0	Х	Q	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

A D flip-flop example

- Here are two D flip-flops, with values labelled A and B.
- There is one input, X.
- There are no explicit outputs.
 - In this case, the outputs are assumed to be the flip-flop values A and B themselves.
 - This is an example of a Moore machine, where the outputs depend on only the present state.

Analyzing the example circuit

- The basic state table is below.
- Again, you can see that the present states are being used to generate the next states.
- For this example, remember that the present state also serves as the output.

Presen	t State	Inputs	Next	State
Α	В	Х	Α	В
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Step 1: Flip-flop input equations

 There are two input equations, one for each flip-flop.

$$D_A = AX' + A'BX + AB'X$$

$$D_B = B \oplus X$$

 "D_A" indicates a D-type flip-flop, whose output is A.

Step 2: Flip-flop input values

 Now that we have the equations for D_A and D_B, we can fill in actual values for each combination of present state and inputs.

$$D_A = AX' + A'BX + AB'X$$

 $D_B = B \oplus X$

Presen	t State	Inputs	Flip-flo	p Inputs
Α	В	Χ	D_A	D_B
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Step 3: Find the next states

- Finally, use the D flip-flop characteristic equation to find the next state of each flip-flop, based on its present state and its inputs.
- D flip-flops are simple because the next state is the same as the D input, regardless of the present state.

$$Q(t+1) = D$$

People often don't even bother writing the "Flip-flop Inputs" columns.

Present	t State	Inputs	Flip-flo	p Inputs	Next	State
Α	В	Х	D _A	D_B	Α	В
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	1	0	1	0
1	0	0	1	0	1	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	0	0	0	0

So what does this circuit do?

- When X = 0, the next state is the same as the present state.
- When X = 1, the next state is "one more" than the present state.
- This is a basic two-bit counter with an enable input, X. It's also called a modulo-4 counter, since it counts from 0 to 3 repeatedly.

Present State		Inputs	Next State	
Α	В	Х	Α	В
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Summary

- To analyze sequential circuits, you have to understand how the flip-flops change on each clock cycle, according to their current values and inputs.
- A state table show all the possible ways that the outputs and state of a sequential circuit can change, based on the its inputs and present state.
- State diagrams are an alternative way of showing the same information.
- Next time we'll look at designing sequential circuits. This is the opposite process—you make a state table and/or diagram first, and then turn that into a sequential circuit.