

# ELECTRICITY

**PHYSICS** 

Lecture -06

By - ER. RAKSHAK SIR



# Topics to be covered

- SERIES CIRCUIT (Part 02)
- 2 PARALLEL CIRCUIT (Part 02)
- COMBINATION OF RESISTORS (Practice)
- 4 RESISTANCE OF AMMETER AND VOLTMETER

5 WORKING OF RHEOSTAT



## 5-min Revision

$$R_s = R_1 + R_2 + R_3 \dots$$



$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

$$\frac{R}{R} = \frac{R}{2}$$

$$\frac{1}{1} \frac{R}{R} = \frac{R}{3}$$

$$\frac{1}{2} = \frac{1}{2}$$





$$\frac{1}{2} = \frac{xy}{x+y}$$

$$\frac{K_{1}}{K} = \frac{1}{2U_{2}}$$

#### QUESTION





A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the ratio R/R' is:

A 1/25

 $\frac{R}{5} = \frac{R}{5} = \frac{R}{5}$ 

 $\frac{1}{R'} = \frac{25}{R}$ 

**B** 1/5

R/ = 25

- **C** 5
- **25**



Shortcut



$$=\left(\frac{R}{n}\right)=44\Rightarrow\frac{126}{n}=44$$

$$\Rightarrow \frac{17}{3}$$





# How many 176 $\Omega$ resistors (in parallel) are required to carry 5 A on a 220 V line?



$$V = 220V$$

$$I = 5A$$

$$R_t = V = 220 \text{ YMB}$$



$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$\frac{1}{44} = \frac{1}{176} + \frac{1}{176} + \frac{1}{176} - \cdots = \infty$$
 ettz

#### PRACTICE PROBLEMS 1:



Ans

$$\frac{3n}{m}$$

$$\frac{1}{R_p} = \frac{1}{6} + \frac{1}{3} = \frac{1+2}{6} = \frac{31}{6}$$

#### **PRACTICE PROBLEMS 2:**





$$\frac{1}{R_P} = \frac{1}{6} + \frac{1}{3}$$

$$\frac{1}{R_p} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$$

$$R_{S} = 2 + 2 + 1$$

$$= 5 \times$$

Cx-3



$$R_{s} = R_{1} + R_{2}$$

$$= 3 + 3$$

$$= 6.2$$



$$\frac{1}{R_{p}} = \frac{1}{6} + \frac{1}{3}$$

$$\frac{1}{R_{p}} = \frac{1+2}{6} = \frac{21}{62}$$

$$\frac{1}{R_{p}} = \frac{1}{6} \times \frac{1}{6}$$





find the readings in 22









#### QUESTION



How can three resistors each of resistances  $3 \Omega$  be connected to give a total resistance

(i) 4.5 Ω

(jii) 2 Ω

X Pure Parallel:  $\frac{1}{R_p} = \frac{1}{3} + \frac{1}{3} + \frac{3}{3} = \frac{3}{3}$   $\frac{1}{R_p} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{3}{3}$ 



#### **QUESTION**



Show how you would connect three resistors, each of resistance 6  $\Omega$ , so that the combination has a resistance of

(i) 9  $\Omega$ 

$$\frac{1}{2} = 0$$





If in figure,  $R_1 = 10 \Omega$ ,  $R_2 = 40 \Omega$ ,  $R_3 = 30 \Omega$ ,  $R_4 = 20 \Omega$ ,  $R_5 = 60 \Omega$ , and a 12 *V* battery is

connected to the arrangement. Calculate:

- (a) The total resistance
- (b) The total current flowing

$$\mathring{l} = \frac{\vee}{R} = \frac{12}{12}$$





### RESISTANCE OF AMMETER AND VOLTMETER



#### **Ideal Ammeter**

Series device



#### **Ideal Voltmeter**





## **WORKING OF RHEOSTAT**





