

Transfer Learning Concepts

Transfer Learning Concepts - Objectives

- 1. Define transfer learning and its benefits.
- 2. Identify common deep learning tasks using transfer learning.
- 3. List the steps in a typical transfer learning workflow.
- 4. Differentiate between key techniques (feature extraction, fine-tuning, LoRA).
- 5. Explain how knowledge is leveraged from pre-trained models.

What *is* Transfer Learning?

Leveraging knowledge from a pre-trained model to solve a new but related problem.

Deep Learning Refresher

Deep Learning Refresher - Hyperparameters

- Learning Rate
- Batch Size
- Regularization
- Optimizer
- Epochs

And a new one: Frozen Layers

Learning Rate

- Pre-trained layers typically require lower learning rates (10⁻⁵ to 10⁻⁴).
- Newly added layers, however, often benefit from a higher learning rate (10⁻³).

Freezing Layers

 "Freezing" layers is a coding technique of specifying pretrained layers of a model to *not* update their parameter weights during training.

Question 1: What is the primary benefit of using a lower learning rate for pre-trained layers during transfer learning?

- A) To speed up training significantly.
- B) To help the model learn new features faster.
- C) To avoid drastically changing weights that already capture useful information.
- D) To initialize the new layers correctly.

Answer: C

Question 2: True or False: Transfer learning typically requires more data and computational resources than training a model from scratch.

Answer: False

Key Terminology

- Task
- Domain
- Source
- Target

Extract knowledge from source task, and apply to different target task

Domain Transfer vs Adaptation

Domain Transfer

Domain Adaptation

Task Transfer vs Adaptation

Task Transfer

Task Adaptation

Benefits of Transfer Learning

EFFICIENCY

PERFORMANCE

ADAPTABILITY

Typical Workflow - Phase 1: Setup & Prep

Typical Workflow - Phase 2: Adaptation

Typical Workflow - Phase 3: Training & Evaluation

Typical Workflow - Phase 4: Deployment & Iteration

Question 1: Which transfer learning technique typically involves freezing *all* layers of the base pre-trained model?

- A)Fine-tuning
- B)LoRA
- C)Feature Extraction
- D)Domain Adaptation

Answer: C

Question 2: If your target task domain is very *different* from the source model's domain, what layer freezing strategy is generally recommended?

- A)Freeze all layers.
- B)Freeze only the last layer.
- C)Unfreeze only the first few layers.
- D)Unfreeze most or all layers.

Answer: D

- Catastrophic Forgetting
- Negative Transfer
- Domain Shift

