Zadanie 1.

Załóżmy, że X i Y są niezależnymi zmiennymi losowymi o rozkładzie normalnym N(0,1). Zmienna losowa T jest równa

$$T = \frac{\mid X \mid}{\sqrt{X^2 + Y^2}} \,.$$

Jeśli $x \in (0,1)$, to funkcja gęstości f zmiennej losowej T jest równa

- (A) f(x) = 1
- (B) $f(x) = \frac{2}{\pi\sqrt{1-x^2}}$
- (C) $f(x) = \frac{x}{\pi\sqrt{1-x^2}}$
- (D) $f(x) = \frac{x}{\sqrt{1 x^2}}$
- (E) $f(x) = \frac{4x^2}{\pi\sqrt{1-x^2}}$

Zadanie 2.

Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi dodatnimi zmiennymi losowymi o tym samym rozkładzie wykładniczym o wartości oczekiwanej a. Niech N i M będą zmiennymi losowymi o rozkładach Poissona niezależnymi od siebie nawzajem i od zmiennych losowych $X_1, X_2, ..., X_n, ...$, przy czym $EN = \lambda$ i $EM = \mu$. Niech

$$Y_n = \begin{cases} \max(X_1, X_2, \dots, X_n) & gdy \ n > 0 \\ 0 & gdy \ n = 0 \end{cases}$$

Obliczyć $P(Y_{M+N} > Y_M)$.

(A)
$$\frac{\lambda}{\lambda + \mu} (1 - e^{-a})$$

(B)
$$\frac{\mu}{\lambda + \mu} \left(1 - e^{-\lambda - \mu} \right)$$

(C)
$$\frac{\lambda}{\lambda + \mu}$$

(D)
$$\frac{\lambda}{\lambda + \mu} \left(1 - e^{-a} \right) \left(1 - e^{-\lambda - \mu} \right)$$

(E)
$$\frac{\lambda}{\lambda + \mu} \left(1 - e^{-\lambda - \mu} \right)$$

Zadanie 3.

Zakładamy, że $X_1,X_2,...,X_{10},~X_{11},X_{12},...,X_{20}$ są niezależnymi zmiennymi losowymi o rozkładach normalnych, przy czym $EX_i=\mu_1$ i $VarX_i=\sigma^2$ dla i=1,2,...,10, oraz $EX_i=\mu_2$ i $VarX_i=2\sigma^2$ dla i=11,12,...,20. Parametry $\mu_1,~\mu_2$ i σ są nieznane.

Niech
$$\overline{X}_1 = \frac{1}{10} \sum_{i=1}^{10} X_i$$
, $\overline{X}_2 = \frac{1}{10} \sum_{i=1}^{20} X_i$, $\overline{X} = \frac{1}{20} \sum_{i=1}^{20} X_i$.

Dobrać stałe a i b tak, aby statystyka

$$\hat{\sigma}^{2} = a \sum_{i=1}^{20} (X_{i} - \overline{X})^{2} + b(\overline{X}_{1} - \overline{X}_{2})^{2}$$

była estymatorem nieobciążonym parametru σ^2 .

(A)
$$a = \frac{1}{27}, b = -\frac{1}{54}$$

(B)
$$a = \frac{1}{18}, b = -\frac{10}{18}$$

(C)
$$a = \frac{1}{27}, b = -\frac{10}{27}$$

(D)
$$a = \frac{1}{27}, b = -\frac{5}{27}$$

(E)
$$a = \frac{1}{18}, b = -\frac{5}{18}$$

Zadanie 4.

Dysponując pięcioma niezależnymi próbkami losowymi o tej samej liczebności n, z tego samego rozkładu normalnego $N(\mu,\sigma^2)$ z nieznaną wartością oczekiwaną μ i znaną wariancją σ^2 , zbudowano pięć standardowych przedziałów ufności dla parametru μ otrzymując przedziały postaci $\left[\overline{X}_i-1,2816\frac{\sigma}{\sqrt{n}},\overline{X}_i+1,2816\frac{\sigma}{\sqrt{n}}\right]$, gdzie

 \overline{X}_i jest średnią z obserwacji w *i*-tej próbce, i = 1,2,3,4,5.

Następnie zbudowano przedział ufności dla parametru μ postaci

$$\left[m-1,2816\frac{\sigma}{\sqrt{n}},m+1,2816\frac{\sigma}{\sqrt{n}}\right],$$

Gdzie $m = med\{\overline{X}_1, \overline{X}_2, \overline{X}_3, \overline{X}_4, \overline{X}_5\}$. Wyznaczyć

$$c = P \left(m - 1,2816 \frac{\sigma}{\sqrt{n}} < \mu < m + 1,2816 \frac{\sigma}{\sqrt{n}} \right).$$

(A)
$$c = 0.97500$$

(B)
$$c = 0.95000$$

(C)
$$c = 0.98288$$

(D)
$$c = 0.89144$$

(E)
$$c = 0.99982$$

Zadanie 5.

Niech $X_1, X_2, ..., X_{10}$ będą niezależnymi zmiennymi losowymi z rozkładu normalnego, przy czym $EX_i = 0$ i $VarX_i = \frac{\sigma^2}{i}$, gdzie σ^2 jest nieznanym parametrem.

Rozważamy jednostajnie najmocniejszy test hipotezy H_0 : $\sigma^2 \le 4$ przy alternatywie H_1 : $\sigma^2 > 4$ na poziomie istotności 0,05.

Niech S oznacza zbiór tych wartości wariancji σ^2 , dla których moc tego testu jest nie mniejsza niż 0,95. Wtedy S jest równy

- (A) $(20,353; +\infty)$
- (B) $(18,584; +\infty)$
- (C) $(17,307; +\infty)$
- (D) $(15,761; +\infty)$
- (E) $(15,051; +\infty)$

Zadanie 6.

Niech $X_1, X_2, ..., X_8$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie jednostajnym na przedziale $[-\theta, \theta]$, gdzie $\theta > 0$ jest nieznanym parametrem. Hipotezę $H_0: \theta = 2$ przy alternatywie $H_1: \theta = 4$ weryfikujemy testem najmocniejszym na poziomie istotności 0,1. Prawdopodobieństwo błędu drugiego rodzaju jest równe

- (A) 0,0035
- (B) 0,0933
- (C) 0,1000
- (D) 0,0060
- (E) 0,1566

Zadanie 7.

Zmienne losowe X i Y są niezależne i każda ma rozkład wykładniczy z wartością oczekiwaną $\lambda>0$. Obliczyć

$$Var(\min\{X,Y\}|S=X+Y=2).$$

- (A) $\frac{6}{12}$
- (B) $\frac{2}{12}$
- (C) $\frac{3}{12}$
- (D) $\frac{4}{12}$
- (E) $\frac{1}{12}$

Zadanie 8.

Niech $X_1, X_2, ..., X_n, ..., I_1, I_2, ..., I_n, ..., N$ będą niezależnymi zmiennymi losowymi . Zmienne $X_1, X_2, ..., X_n, ...$ mają rozkład wykładniczy o wartości oczekiwanej $\mu > 0$. Zmienne $I_1, I_2, ..., I_n, ...$ mają rozkład dwupunktowy $P(I_i = 1) = 1 - P(I_i = 0) = p$, gdzie $p \in (0,1)$ jest ustaloną liczbą. Zmienna N ma rozkład ujemny dwumianowy $P(N=n) = \frac{\Gamma(r+n)}{\Gamma(r)n!} (1-q)^r q^n \text{ dla } n = 0,1,2,\dots, \text{ gdzie } r > 0 \text{ i } q \in (0,1) \text{ są ustalone.}$

Niech

$$T_{N} = \begin{cases} \sum_{i=1}^{N} X_{i} & gdy & N \ge 1 \\ 0 & gdy & N = 0 \end{cases} \qquad S_{N} = \begin{cases} \sum_{i=1}^{N} I_{i}X_{i} & gdy & N \ge 1 \\ 0 & gdy & N = 0 \end{cases}$$

Wyznaczyć współczynnik kowariancji $Cov(T_N, S)$

(A)
$$\frac{p\mu^2 rq(2-q)}{(1-q)^2}$$

(B)
$$\frac{p\mu^2r(1+q)}{(1-q)^2}$$

(C)
$$\frac{p\mu^{2}r(1+q-q^{2})}{(1-q)^{2}}$$

(D)
$$\frac{p\mu^2 rq}{1-q}$$

(D)
$$\frac{p\mu^2 rq}{1-q}$$
(E)
$$\frac{p\mu^2 r(1-q^2)}{q^2}$$

Zadanie 9.

Zakładając, że obserwacje $x_1, x_2, ..., x_{10}$ stanowią próbkę losową z rozkładu Pareto o gęstości

$$f_{\theta}(x) = \begin{cases} \frac{3^{\theta} \theta}{(3+x)^{\theta+1}} & gdy \quad x > 0\\ 0 & gdy \quad x \le 0 \end{cases}$$

gdzie $\theta > 0$ jest nieznanym parametrem, wyznaczono wartość estymatora największej wiarogodności parametru θ i otrzymano $\hat{\theta} = 2$. W próbce były dwie obserwacje o wartości 6, a pozostałe osiem obserwacji miało wartości mniejsze od 6. Okazało się, że w rzeczywistości zaobserwowane wartości stanowiły próbkę z uciętego rozkładu Pareto, czyli były realizacjami zmiennych losowych $X_i = \min\{Y_i, 6\}$, gdzie Y_i , $i = 1, 2, \dots, 10$, są niezależnymi zmiennymi losowymi z rozkładu o gęstości f_{θ} . Wyznaczyć wartość estymatora największej wiarogodności parametru θ po uwzględnieniu modyfikacji założeń.

- (A) 2,00
- (B) 2,85
- (C) 1,60
- (D) 1,50
- (E) 3,00

Zadanie 10.

Dysponujemy dwiema urnami: A i B. W urnie A są dwie kule białe i trzy czarne, w urnie B są trzy kule białe i dwie czarne. Wykonujemy trzy etapowe doświadczenie:

1 etap: losujemy urnę (wylosowanie każdej urny jest jednakowo prawdopodobne);

2 etap: z wylosowanej urny ciągniemy 2 kule bez zwracania, a następnie wrzucamy je do drugiej urny;

3 etap: z urny, do której wrzuciliśmy kule, losujemy jedną kulę.

Okazało się, że wylosowana w trzecim etapie kula jest biała.

Obliczyć prawdopodobieństwo, że w drugim etapie wylosowano dwie kule jednego koloru.

- (A) 0,5
- (B) 0,4
- (C) 0,3
- (D) 0.2
- (E) 0,1

Egzamin dla Aktuariuszy z 8 stycznia 2007 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko :	K L U C Z	ODPOWIEDZ	Z I
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	Е	
3	D	
4	C	
5	В	
6	A	
7	Е	
8	A	
9	С	
10	В	

11

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.

^{*} Wypełnia Komisja Egzaminacyjna.