CS 228 : Logic in Computer Science

Krishna. S

Satisfiability of FOL

Given a formula in FOL over some signature τ , is it satisfiable?

Herbrand Theory

- Named after the French mathematician Jacques Herbrand
- ► Famous for Herbrand's Theorem, which allows a certain reduction from FOL to propositional logic
- ▶ Herbrand's theorem allows reducing a FOL formula φ in Skolem Normal Form to an infinite set $E(\varphi)$ of propositional formulae s.t. φ is satisfiable iff $E(\varphi)$ is satisfiable
- ▶ If $E(\varphi)$ is not satisfiable, then $\emptyset \in Res^*(E(\varphi))$, and we can derive this in finite number of steps
- ▶ As $E(\varphi)$ may be infinite, there is no way to say $\emptyset \notin Res^*(E(\varphi))$.

Herbrand Universe

Let τ be a signature. The Herbrand universe for τ is the set of all ground terms.

Herbrand Universe

Let τ be a signature. The Herbrand universe for τ is the set of all ground terms.

▶ If τ contains a constant c and unary function f, then the Herbrand universe contains c, f(c), f(f(c)), f(f(f(c))), . . .

Herbrand Universe

Let τ be a signature. The Herbrand universe for τ is the set of all ground terms.

- ▶ If τ contains a constant c and unary function f, then the Herbrand universe contains c, f(c), f(f(c)), f(f(f(c))), . . .
- ▶ If τ contains a constant c and unary function f and binary function g, then the Herbrand universe contains distinct ground terms c, g(c, c), f(c), g(c, f(c)), g(g(f(f(c)), c), f(c)), . . .

- \blacktriangleright If τ has no constants, then the Herbrand universe is empty
- ▶ If τ has no functions, then the Herbrand universe consists of the constants of τ and is finite
- \blacktriangleright If τ has constants and functions, then the Herbrand universe is infinite

Herbrand Structures

A structure $\mathcal A$ over a signature τ is a Herbrand structure if its underlying universe is a Herbrand universe.

A Herbrand structure gives the natural interpretation to the constants and functions in τ : a constant c is interpreted as the element c in the universe,

Herbrand Structures

A structure $\mathcal A$ over a signature τ is a Herbrand structure if its underlying universe is a Herbrand universe.

- A Herbrand structure gives the natural interpretation to the constants and functions in τ : a constant c is interpreted as the element c in the universe,
- If the signature τ has no relations or no constants, there is a unique Herbrand structure for τ

If the signature τ has relations and constants, then there are many Herbrand structures over τ depending on how you interpret them.

- If the signature τ has relations and constants, then there are many Herbrand structures over τ depending on how you interpret them.
 - ▶ If τ contains a constant c and a binary relation R, then
 - $\rightarrow A = (U^A = \{c\}, R^A = \{(c, c)\})$ is a Herbrand structure for τ .
 - $A = (U^A = \{c\}, R^A = \{\})$ is a Herbrand structure for τ .
- ▶ If τ contains a constant c, function f and a unary relation R, then
 - $A = (U^A = \{c, f(c), f(f(c)), \dots, \}, R^A = \{c, f(c)\})$ is a Herbrand structure for τ .
 - $A = (U^A = \{c, f(c), f(f(c)), \dots, \}, R^A = \{c, f(c), f(f(f(f(c))))\})$ is a Herbrand structure, and so on.

Herbrand Signature

Let Γ be a set of sentences over a signature τ .

- ▶ The Herbrand signature for Γ is denoted $τ_H$.
- ▶ $\tau_H = \tau \cup \{c\}$ if τ contains no constants, else it is τ .
- ► The Herbrand universe for Γ denoted H(Γ) is the Herbrand universe for $τ_H$.

Herbrand Model

A Herbrand model for Γ is a Herbrand structure M over τ_H such that $M \models \varphi$ for all $\varphi \in \Gamma$.