DS 2 : Référentiels non galiléens & Electronique numérique Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-07	Danger lié à un pendule suspendu dans un véhicule	7	
1	Dans le référentiel de la voiture qui freine (non galiléen), car il	1	
	est plus aisé d'exprimer sa position, sa vitesse et son accélération		
	dans ce référentiel. Il faudra alors tenir compte des forces d'inertie		
	dans l'écriture du PFD dans ce référentiel.		
2	En mouvement à vitesse constante, le référentiel lié à la voiture est	0.5	
	translation rectiligne uniforme par rapport au référentiel terrestre		
	donc il est galiléen.		
	En phase de freinage le mouvement de la voiture n'est pas uni-	0.5	
	forme donc le référentiel qui y est lié est non-galiléen.		
3	Si la trajectoire de la voiture est rigoureusement rectiligne, alors	0.5	
	le théorème du moment cinétique en O s'écrit $\frac{d\hat{L}_{O,R}(M)}{dt}$ =		
	$\vec{M}_O(M\vec{g}) + \vec{M}_O(\vec{T}) + \vec{M}_O(\vec{f}_{ie}), \text{ or } \vec{M}_O(M\vec{g}) = \overrightarrow{OM} \wedge (-Mg\vec{e}_z) / /\vec{e}_y$		
	ainsi que $\vec{M}_O(\vec{T}) = \frac{\vec{OM}}{\vec{OM}} \wedge \vec{T}//\vec{e}_y$ et $\vec{M}_O(\vec{f}_{ie}) = \frac{\vec{OM}}{\vec{OM}} \wedge \vec{T}$		
	$(-Ma_{R_0}(O_R)\vec{e}_x)//\vec{e}_y$, donc $\vec{L}_{O,R}(M)//\vec{e}_y$ donc le mouvement est		
	contenu dans le plan (O,z,x). Explication aussi possible avec PFD.		
	Si la trajectoire de la voiture est un mouvement de rotation, alors	0.5	
	il faut rajouter le moment de la force de Coriolis $\vec{M}_O(\vec{f}_{ic}) = \overrightarrow{OM} \wedge$		
	$(-2M\vec{\Omega} \wedge \vec{v}_R(M))$, or $\vec{\Omega}//\vec{e}_z$ et $\vec{v}_R(M) \in (O,z,x)$ donc $\vec{f}_{ic}//\vec{e}_y$ or		
	$\overrightarrow{OM} \in (O,z,x)$ donc $\overrightarrow{M}_O(\overrightarrow{f}_{ic}) \in (O,z,x)$ donc le moment de la		
	force de Coriolis provoque une rotation en dehors du plan $(0, z, x)$		
4	freinage : donc ref uniformément décéléré, donc $\vec{f}_{ie} = Ma_0\vec{u}_x$,	0.5	
	$ \text{ PFD}: M\vec{a}_R(M) = M\vec{g} + \vec{T} + Ma_0\vec{u}_x$		
	équilibre $\vec{a}_R(M) = \vec{0}$ projections $\tan(\beta_{eq}) = \frac{a_0}{g}$	0.5	
5	projection du PFD sur \vec{e}_{β} donne $M\vec{a}.\vec{e}_{\beta}(M) = M\vec{g}.\vec{e}_{\beta} + \vec{f}_{ie}.\vec{e}_{\beta}$	0.5	
	$Ml\ddot{\beta} = -Mg\sin(\beta) + Ma_0\cos(\beta)$ donc $\ddot{\beta} + \frac{g}{l}\dot{\beta} = \frac{a_0}{l}\cos(\beta)$	0.5	
6	petits angles: $\sin(\beta) \sim \beta$, $\cos(\beta) \sim 1$, $\frac{a_0}{g} = \tan(\beta_{eq}) \sim \beta_{eq}$ donc	0.5	
	$\frac{1}{\omega_0^2}\ddot{\beta} + \beta = \beta_{eq} \text{ avec } \omega_0 = \sqrt{\frac{g}{l}}$		

	solution d'oscillateur harmonique : $\beta = A\cos(\omega_0 t) + B\sin(\omega_0 t) + \beta_{eq}$, conditions initiales : $\beta(0) = 0$ et $\dot{\beta}(0) = 0$ donne $\beta(t) = \beta_{eq} [1 - \cos(\omega_0 t)]$	0.5	
7	La masse oscille entre $\beta = 0$ et $\beta = 2\beta_{eq}$ donc il faut que $2\beta_{eq} < \alpha$	0.5	
	$\operatorname{donc} a_0 < \frac{\alpha}{2}g$		
	application numérique : $a_1 \sim 2 \text{ m.s}^{-2}$ à comparer avec une voiture à 50 km.h ⁻¹ mets 50 m pour s'arrêter soit $a_0 = \frac{v^2}{d} \sim 4 \text{ m.s}^{-2}$,	0.5	
	donc le risque est bien réel.		
08-13	Atterrissage du module Philae	6	
8	$V_{com} = \frac{m_{com}}{\mu_{com}}$ on en déduit $\frac{4}{3}\pi r_{com}^3 = V_{com} = \frac{m_{com}}{\mu_{com}} \Rightarrow r_{com} = \frac{m_{com}}{\mu_{co$	1	
	$\gamma_{com} = \gamma_{com} = \gamma_{c$		
	$\left(\frac{3m_{com}}{4\pi\mu_{com}}\right)^{1/3} = 1.8 \text{ km}$ $\left[\frac{Gm_{com}}{r^2}\right] = \frac{L^3.M^{-1}.T^{-2}.M}{L^2} = L.T^{-2}$		
9	$\left[\frac{Gm_{com}}{r^2}\right] = \frac{L^3.M^{-1}.T^{-2}.M}{L^2} = L.T^{-2}$	1	
10	La masse de Philae est identique sur Terre et à la surface de la	1	
	comète, c'est son poids qui est moins important. $p = m_{ph}g_{com} = \frac{1}{2} \frac{1}{2}$		
	$m_{ph} \frac{Gm_{com}}{r_{com}^2} = 2,0.10^{-2} \text{ N. Un objet à la surface de la Terre dont}$		
	le poids est identique a une masse $m_{eq} = \frac{P}{g_{\text{Terre}}} = 2,0 \text{ g}$		
11	Le référentiel lié à la comète n'est pas galiléen, il faut ajouter les	1	
	forces d'inertie. Comme Philae est posé sur la comète, sa vitesse		
	relative est nulle et $\vec{f}_{iC} = \vec{0}$. C'est donc la force d'inertie d'entraî-		
12	nement qui intervient, couramment nommée force centrifuge. schéma avec comète sphérique, axe de rotation (vertical), le mo-	0.5	
12	dule assimilé à un point M , la force de gravitation vers le centre	0.5	
	de la comète, la force centrifuge selon \overline{HM} .		
	La force centrifuge dévie l'orientation du poids et diminue la valeur	0.5	
	du poids calculée		
13	$\vec{f}_{ie} = m_{ph}\omega^2 \overrightarrow{HM}$ sur le plan équatorial force centrifuge et force	1	
	gravitationnelle sont de même direction mais de sens opposé donc		
	$\Delta p = m_{ph}\omega^2 HM \text{ donc } \frac{\Delta p}{p} = \frac{m_{ph}\omega^2 HM}{m_{ph}g_{com}} = \frac{4\pi^2 r_{com}}{g_{com}} = 0.17 \text{ Malgré}$		
	une vitesse angulaire de rotation faible, la force d'inertie d'en-		
	traînement joue un rôle non négligeable par rapport à la force		
	gravitationnelle, en raison de la très faible intensité du champ de		
	pesanteur		
14-21	Objectif Lune	8	
14	Référentiel de Copernic : $R_O(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ O centre du So-	1	
	leil, les trois axes pointent vers 3 étoiles lointaines. Référen-		
	tiel géocentrique $R_T(T, \vec{e}_x, \vec{e}_y, \vec{e}_z)$ T centre de la Terre et les trois axes pointent vers 3 étoiles lointaines. Référentiel Terrestre		
	trois axes pointent vers 3 etones ionitaines. Referenter Terrestre $R_T^*(T, \bar{e}_x^*, \bar{e}_y^*, \bar{e}_z^*)$ T centre de la Terre et axe lié à la Terre.		
I	$T^{(1)}(x, c_x, c_y, c_z)$ is considered and include and include and include $T^{(1)}(x, c_x, c_y, c_z)$		

15	La Terre fait un tour en 24h donc $\Omega_T = \frac{2\pi}{24 \times 3600}$ rad.s ⁻¹ = 7.10 ⁻⁵	1	
	$ m rad.s^{-1}$		
16	Le ref de Copernic est supposé galiléen, le ref géocentrique est supposé galiléen s'il peut être considéré comme en translation rectiligne uniforme par rapport au ref de Copernic. Par exemple sur une durée d'expérience $\Delta t \ll 1$ an	0.5	
17	Le ref géocentrique est supposé galiléen, le ref terrestre peut être considéré comme galiléen sur une durée d'expérience très courte $\Delta t \ll 1$ jour.	0.5	
18	Lorsque la lune a fait un tour autour de la Terre, elle a fait un tour autour d'elle même. La lune met Δt pour faire le tour de la Terre : $\Delta t = \frac{2\pi}{\Omega_L} = 27,3$ jours. Ce temps est également la durée d'une journée sur la Lune	1	
19	L'expression est obtenue en utilisant le PFD à (M,μ) dans le réf. géocentrique, termes de la gauche vers la droite : accélération de M dans R_T , forces extérieures autres que les forces de gravitations, force de gravitation de la Terre, force de gravitation de la Lune, force de gravitation des autres astres, force d'inertie d'entrainement. Le réf. géocentrique est supposé non galiléen en translation par rapport au ref de Copernic.	1	
20	ref de Copernic galiléen, syst. Terre, forces de gravitation, $m_T \frac{d^2}{dt^2} \left(\overrightarrow{OT} \right) _{R_0} = m_T \vec{G}_{autres}(T) + m_T \vec{G}_{Lune}(T)$	1	
21	La Lune a une trajectoire circulaire autour de la Terre. Etude dans le référentiel géocentrique supposé galiléen $m_L \frac{d^2 \overrightarrow{TL}}{dt^2} _{R_T} = m_L \overrightarrow{G}_{Terre}(L)$ donc $-m_L \frac{V^2}{d} = -G \frac{m_T m_L}{d^2}$ donc $V = \sqrt{\frac{G m_T}{d}} = 1,0.10^3 \text{ m.s}^{-1}$ donc $\Omega_L = \frac{V}{d} = 2,7.10^{-5} \text{ rad.s}^{-1}$. Ce résultat est en accord avec la valeur de Ω_L précédente.	1	
22-40	Numérisation avant stockage	19	
22	La plus petite duré mesurable est 10^{-9} s. C'est la précision maximale 1 ns	1	
23	La masse est l'ensemble de tous les points portés au même po- tentiel, choisi nul par convention, c'est le point de référence des potentiels.	1	
24	graphe de fonction telle que $v_{S_A}=0$ V quand $u_2<0$ et $v_{S_A}=5$ V quand $u_2>0$	1	
25	à $t=0$ on a $u_1=u,u_2$ et u_1 sont reliés par un pont diviseur de tension r - $C,\dots,rC\frac{du_2}{dt}+u_2=u_1,\dots,u_2=u\left(1-e^{-t/\tau}\right)$ avec $\tau=rC$	1	
26	Si $t_1 \ll \tau$ alors $u_2 = u \frac{t}{\tau}$ ou $\frac{du_2}{dt} = \frac{u_1}{\tau}$	1	
27	Le bloc B est un intégrateur	1	
28	$u > 0 \text{ donc } u_2 > 0 \text{ donc } v_{S_A} = 5 \text{ V}$	1	
29	à $t = t_1$ on a $u_2 = u \frac{t_1}{\tau}$, à $t > t_1$ on a $u_1 = -V_{ref}$ d'où (en supposant $t_2 \ll \tau$) $u_2(t) = u \frac{t_1}{\tau} - V_{ref} \left(\frac{t - t_1}{\tau}\right)$ (car $\frac{du_2}{dt} = \frac{u_1}{\tau}$). $t_1 + t_2$ est l'instant où u_2 devient négatif soit $0 = u \frac{t_1}{\tau} - \frac{V_{ref}}{\tau} t_2$	1	

30	u_1 fait un signal créneau entre u et $0, u_2$ fait un signal triangle entre 0 et $u_{\frac{t_1}{\tau}}$	1	
31	Le compteur commence à t_1 et avance de 1 tous les $\frac{1}{f_{ck}}$. A $t_2 + t_1$,	1	
01	il a avancé de $ t_2 f_{ck} = s_N$	1	
32	$t_1 + t_{2,max} = 2t_1 = \frac{2(2^N - 1)}{f_{ck}} \text{ donc } t_m ax = 0,51 \mu \text{s donc } f_{tmin} = 0,51 \mu \text{s } donc$		
	$2,0.10^6$ Hz donc d'après le critère de Shannon $f_{signal} < 1,0$ MHz		
33	si $u > V_i$ le comparateur i d'un potentiel de sortie au niveau haut	1	
	(1) et si $u < V_i$ au niveau bas (0), avec 7 comparateurs on a 8	_	
	niveaux de quantification et 3 bits $u_N = \frac{s_N}{8} V_{ref}$		
34	Il faut $2^8 - 1 = 255$ comparateurs. Compromis entre rapidité,	1	
04	nombre de composant, nombre de bit, adaptabilité	1	
35		1	
	N = 3 (de 0 à 7 comme plus haut)		
36	$u = 1, 28 \text{ V}, s_N = 5 \text{ donc } s_N = 101 \text{ en base } 2, u_N = \frac{5}{8} V_{ref} = 1, 25 \text{ V}$	1	
37	L'écart maximal est $\frac{1}{16}V_{ref}=0,125$ V. La numérisation arrondit	1	
	car s_N est forcément entier, erreur de quantification.		
38	Il faut utiliser un passe-bas pour enlever les fréquences inaudibles,	1	
	sinon à cause de l'échantillonnage et du repliement de spectre, elles		
	donneraient un signal fantôme audible (qui existe dans le signal		
	numérisé mais pas dans le signal analogique de départ). Il ne doit		
	garder que les fréquences audibles donc inférieures à 20 kHz.		
39	f_{ech} doit être supérieure à $2f_{max}$ donc à 40 kHz. Un choix courant	1	
	(et économique) est 44 kHz		
40	le gain vaut 1,4 sur l'essai 1 à $f_1 = 1,0.10^2$ Hz, puis 2 sur l'essai à	1	
10	$f_2 = 5,0$ kHz, puis 7,2 sur l'essai 3 à $f_3 = 10$ kHz, puis $1,5.10^{-2}$	_	
	à $f_4 = 0,1$ MHz, c'est donc un passe-bas d'ordre 2, l'essai 3 cor-		
	respond à un déphasage de 90° donc $f_3 = f_0$, quand $\omega \ll \omega_0$ le		
	gain donne $H_{OLP} = 1,4$, à $\omega = \omega_0$ le gain donne $QH_{OLP} = 7,2$		
11.10	donc $Q = 5, 1$, calcul de f_c donne $f_c = 15$ kHz, et $f_p = 10$ kHz		
41-42	Numérisation d'un signal de marche	2	
41	On peut envisager un accéléromètre, un capteur de force par ex-	1	
	tensométrie,		
42	La fréquence maximale de tous les spectres est la moitié de la fré-	1	
	quence d'échantillonnage. En utilisant $\frac{N}{t_{max}-t_{min}}=f_e$ on obtient		
	en effet successivement : 1,68 Hz 11,5 Hz 3,37 Hz et 33,3 Hz. Or		
	le signal proposé est de période 0,5 s environ et donc de fréquence		
	voisine de 2 Hz. Le critère de Nyquist-Shanon n'est donc pas res-		
	pecté pour les trois permiers graphes : le premier et le troisième ne		
	restituent aucune fréquence correctement, le deuxième ne donne		
	que les deux premières harmoniques. Sur ces trois graphes, on as-		
	siste à un repliement de spectre. Seul le graphe 4 permet d'obtenir		
	un spectre convaincant : fondamentale vers 2 Hz et 6 harmoniques		
	bien observables. La fréquence de la marche est de l'ordre de 1 Hz,		
	Les deux pieds jouant un rôle symétrique, la fréquence de la force		
	est le double.		

43-45	Extraction d'un signal faible par effet de moyenne	3	
43	Pour $n = 2500$ acquisitions, la moyenne sera $b_n = nb = 25000$ et	1	
	l'écart-type $\sigma_n = \sqrt{n}\sigma = 250$. 95% des mesures doivent de trouver dans l'intervalle $b_n \pm 2\sigma_n$, donc entre 24 500 et 25 500		
44	Pour une seule acquisition : un signal d'amplitude unité dans un	1	
	bruit gaussien de dispersion cinq fois plus grande est indétectable.		
	Pour 2500 acquisitions les canaux centraux voient leur somme		
45	s'accroître de 2500 ce qui permet de les dégager du bruit.	1	
40	Le bruit introduit une fluctuation des mesures égale à $2\sigma_n = 2\sqrt{n}\sigma$ de part et d'autre du bruit moyen égal à nb . Si la somme des	1	
	signaux utiles est inférieure à cette fluctuation, ils seront noyés		
	dans le bruit. Il faut donc $ns_p > 2\sqrt{n}\sigma$ soit $n > \frac{4\sigma^2}{s_p^2}$.		
46-48	Méthodes de mesure du champ de pesanteur à l'aide de	5	
	pendules		
46	La période des petites oscillations est $T=2\pi\sqrt{\frac{l}{g}}$ dépend de g	1	
	donc permet de remonter à une mesure de g		
47	Un pendule qui retard a une période d'oscillation plus grande (il	2	
	marque moins de périodes dans la même durée). Le pendule de		
	Richter a donc une période à Cayenne T_C plus grande que celle T_P à Paris dans un rapport $\frac{T_C}{T_P} = 1 + \frac{2\min 28s}{1 \text{jour}} = 1 + 1, 7.10^{-3}$. En		
	supposant que la longueur du pendule est inchangée, on a donc		
	$\left \frac{g_P}{g_C} \right = \left(1 + 1, 7.10^{-3} \right)^2 = 1 + 3, 4.10^{-3} \text{ donc } g_C = 9,78 \text{ m.s}^{-2}.$		
	L'écart en altitude ne peut être invoqué ici puisqu'il vaut au maxi-		
	mum $\Delta z = 131$ m avec $\frac{2\Delta z}{R_T} = 7.10^{-5}$, il s'agit donc essentielle-		
	ment d'un écart du aux forces d'inertie.		
48	De la relation $T = 2\pi \sqrt{\frac{l}{g}}$ on en tire les incertitudes, $\frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta g}{g}$.	2	
	Comme le pendule bat la seconde, $T = 1$ s et $g = 9.8$ m.s ⁻²		
	donnent, avec $\Delta g = 10^{-8} \text{ m.s}^{-1}$ une incertitude à atteindre $\Delta T = T \Delta g$		
	$\frac{T}{2} \frac{\Delta g}{g} \simeq 5 \text{ ns}$		