

PRONÓSTICOS METEOROLÓGICOS USANDO TIME SERIES

Juan Antonio de la Cuadra The Bridge School DS/PT/Sep-2022

PLANTEAMIENTO

Dentro del ámbito del Machine Learning, vamos a intentar hacer unas predicciones meteorológicas, sin más. Y al ser datos diarios vamos a usar la serie temporal. Parece fácil de decidir.

Pero no, no es tan fácil.

- •Época del año
- Clima de la ciudad
- Particularidades del modelo

TOMA Y LIMPIEZA DE DATOS

ORIGEN Y FORMATO DE DATOS.

Datos diarios de la estación meteorológica del Aeropuerto de Sevilla entre el 01/01/1990 y el último registro disponible. A día de cierre de proyecto es el 12/03/2023.

API AEMET: OpenData API

IDEMA - 5783

NOMBRE - SEVILLA AEROPUERTO

LOCALIDAD - SEVILLA

PROVINCIA - SEVILLA

ALTITUD - 34 msnm

tmin -> Temperatura minima (°C)

tmax -> Temperatura máxima (°C)

tmed -> Temperatura media (°C)

presMin -> Presión mínima (milibares)

presMax -> Presión máxima (milibares)

dir -> Dirección del viento en base a los rumbos principales

velmedia -> Velocidad media del viento (km/h)

racha -> Velocidad de la racha máxima de viento (km/h)

sol -> Indice Ultravioleta

prec -> Precipitación acumulada (I/m2)

ORIGEN Y FORMATO DE DATOS.

COL_N	tmed	prec	tmin	tmax	dir	velmedia	racha	sol	presMax	presMin
DATA_TYPE	float64	float64	float64	float64	float64	float64	float64	float64	float64	float64
MISSINGS (%)	0.23	3.64	0.23	0.21	1.72	0.45	1.72	1.11	0.72	0.72
MISSINGS	28	441	28	26	209	54	209	134	87	87
UNIQUE_VALUES	309	346	290	366	37	42	81	145	371	410
CARDIN (%)	2.55	2.85	2.39	3.02	0.31	0.35	0.67	1.2	3.06	3.38

Y tras imputar los nulos con la media móvil...

COL_N	tmin	tmax	tmed	presMin	presMax	dir	velmedia	racha	sol	prec
DATA_TYPE	float64	float64	float64	float64						
MISSINGS (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MISSINGS	0	0	0	0	0	0	0	0	0	0
UNIQUE_VALUES	310	385	330	477	444	216	85	242	251	530
CARDIN (%)	2.56	3.18	2.72	3.94	3.66	1.78	0.7	2.0	2.07	4.37

EDA

PRIMERAS IMPRESIONES

CORRELACIONES

GRÁFICA PHIK

Las mayores correlaciones se dan entre:

- Rachas de viento y velocidad media del mismo.
- Temperaturas mínimas, máximas y medias.
- Presión mínima y máxima.

FEATURE IMPORTANCE

RandomForest vs. SelectKBest

Conclusiones

- Los más relevantes según RF son la radiación solar y la presión atmosférica mínima.
- La presión atmosférica baja cuando se acerca un frente lluvioso, por lo que parece bastante revelador este feature.
- SelectKBest nos ratifica lo que veíamos sobre la radiación solar, aunque también da importancia a las rachas de viento.
- Ante cambios rápidos de presión atmosférica, se dan mayores rachas de viento, por lo que sigue teniendo sentido.

VISTA DEL TARGET

MODELOS

SEASONAL DECOMPOSE

AUTOCORRELACIÓN

PLAN B

TEMPERATURA MEDIA

SEASONAL DECOMPOSE VS. STL

El algoritmo STL realiza el suavizado de las series temporales utilizando LOESS en dos bucles; el bucle interior itera entre el suavizado estacional y el de tendencia y el bucle exterior minimiza el efecto de los valores atípicos. Durante el bucle interno, se calcula primero el componente estacional y se elimina para calcular el componente de tendencia. El resto se calcula restando los componentes estacional y de tendencia de la serie temporal.

STLFORECAST + ARIMA

Tras un gridsearch nos da los parámetros 3,0,5

Dep. Variable:			y No.		12124		
Model:	ARIMA(3, 0,	5) Log	Likelihood	-19592.315			
Date:	Sa	t, 18 Mar 2				39204.629	
Time:			:19 BIC			39278.658	
Sample:			990 HQI			39229.450	
		- 03-12-2					
Covariance Type			opg				
	coef	std err			[0.025	0.975]	
x1	0.0011	0.001	1.148	0.251	-0.001	0.003	
ar.L1	1.0533	0.009	121.723	0.000	1.036	1.070	
ar.L2	-0.4582	0.013	-34.645	0.000	-0.484	-0.432	
ar.L3	0.3998	0.008	47.697	0.000	0.383	0.416	
ma.L1	-0.0530	0.008	-6.837	0.000	-0.068	-0.038	
ma.L2	0.8200	0.007	110.031	0.000	0.805	0.835	
ma.L3	0.1754	0.010	18.259	0.000	0.157	0.194	
ma.L4	0.3564	0.007	49.703	0.000	0.342	0.370	
ma.L5	0.6597	0.007	91.946	0.000	0.646	0.674	
sigma2	1.2358	0.014	89.238 		1.209	1.263	
Ljung-Box (L1)			2.62	Jarque-Bera			.17
Prob(Q):			Prob(JB):			.00	
Heteroskedasti			Skew:			.02	
Prob(H) (two-s	ided):		0.34				.32
			L Configu			=========	
Period:				Trend Length:			
Seasonal:				Trend deg:			
Seasonal deg:				Trend jump:			
Seasonal jump:				Low pass:			
Robust:		Fa	lse	Low pass deg:			1

MSE: 23.303371307245435

PRUEBA: SARIMAX

SARIMAX Results Dep. Variable: tmed No. Observations: SARIMAX(3, 0, 5) Log Likelihood 24258.826 Sat, 18 Mar 2023 -48481.652 BIC -48348.399 HQIC -48436.975 Sample: - 03-12-2023 Covariance Type: z P>|z| coef std err 0.4998 0.000 3773.335 0.000 tmax presMin presMax -1.189 0.234 -1.703e-05 1.03e-05 -1.647 0.100 -3.73e-05 3.23e-06 3.695e-05 -0.789 0.430 1.030 0.303 0.000 -2.569e-06 6.98e-05 0.470 -0.462 0.644 2.784 0.005 1.908 0.056 0.475 ma.L4 4.68e-05 0.001 0.0011 6.6e-06 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 94320.52 Prob(JB): Heteroskedasticity (H): 1.91 Prob(H) (two-sided): 0.00 Kurtosis:

MSE: 0.0010875842794987886

CONCLUSIONES

- Estamos en uno de los peores momentos del año para ponernos a prever temperaturas.
- El modelo STLForecast mejora mucho en rendimiento a ARIMA en este campo, ya que es más óptimo frente a estacionalidades.
- El modelo SARIMAX provoca un overfitting brutal. Además no tiene sentido si tampoco sabemos a priori las condiciones exógenas.
- Al desestimar los condicionantes exógenos, abrimos la puerta a otros modelos de regresión / Deep Learning.
- Sigo sin saber si va a llover en Semana Santa.

GRACIAS POR VUESTRA ATENCIÓN

Juan Antonio de la Cuadra The Bridge School DS/PT/Sep-2022

