Features

Feature types:	
1) global: e.g. color distribution (histograms)	
2) Local: eg. edys or corners	
Goal:	
characterize images	
and/or Local neighbarhoods	
Lo Za Mayn me rains	
Edge detection	
Leguirements:	
- Correspond to Scene elements	
- invariant (illumination, pose, viewpoint, scale)	
, , ,	
_ veliable detection	
Edge detection	
edge = location with change in image	
h discontinuiti	
pth discontinuity	
P normal Assuntinuity	
M A T	
100	
A illusion to dollar to 1	
A illumination discontinuity	
En Com	
ioise retlectance (alor) discontinuity	

Edge detection steps

- 1) Smooth to reduce noise (without attecting edges)
- 2) Enhance edges
- 3) Detect edges
- 4) Localite edges

Image gradient

Image: I(xy)

Image gradient: $\nabla I(xy) = \begin{bmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{bmatrix}$

$$= \begin{bmatrix} t_{\gamma} \\ t_{5} \end{bmatrix}$$

Edge detection using gradients

"edyle" = edye element

n = VI

Layr

Chyr

Clement

maynitud: 101/= JIx+13

anylo: $\theta = \frac{1}{5} \left(\frac{\tau_5}{\tau_x} \right)$

* Edge Mtection:

$$E(ij) = \begin{cases} 1 & \text{if } |\nabla I(ij)| > T \\ 0 & \text{otherwise} \end{cases}$$

Forward differences

$$\frac{\partial}{\partial x} \mathcal{I}(x,y) = \frac{\mathcal{I}(x+h,y) - \mathcal{I}(x,y)}{h}$$

$$= \mathcal{I}(x+h,y) - \mathcal{I}(x,y)$$

$$\Delta_{\kappa} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \qquad \Delta_{S} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$

Central differences

$$\frac{\partial}{\partial I} I(x,y) = \frac{I(x+h,y) - I(x-h,y)}{2h}$$

$$= \frac{I(x+h,y) - I(x-h,y)}{2h}$$

Sobel filter

Smooth and then take directive

$$\Delta_{\mathsf{X}} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\Delta_{5} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Example

More accurate derivatives

Perfect interpolator

Pertect interpolator: under centain landitions (nyquist) pertect reconstruction. $fs \ge 2f_m$ $h(x) = Sinc(x) = \frac{Sin(\pi x/T)}{(\pi x/T)}$ intinite tails

approximate h(x) with 6(x)

Accurate derivatives

Accurate derivatives

Gaussian derivatives

$$G(x) = Q^{-\frac{x^2}{2R^2}}$$

$$G'(x) = -\frac{x^2}{x} e^{-\frac{x^2}{2R^2}}$$

Laplacian of Gaussian

2D second derivative as scalar quantity

Laplacian:
$$\Delta I = \nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2} = I_{yy} + I_{yy}$$

$$I_{xy} = I(x+1) - I(y)$$

$$= I(x+1) - I(y) - (I(x-1))$$

$$= I(x+1) - I(x) + I(x-1) \implies I_{yy} = I_{yy} = I_{yy}$$

$$I_{yy} = I_{yy} = I_{yy} = I_{yy}$$

$$I_{yy} = I_{yy} = I_{$$

Laplacian of Gaussian (LOG)

Smoth with a bassian beton applying Laplatian $H = D^{2} (I * G) = \overline{D}^{2} G * \overline{I}$ LoG $G = e^{-\frac{r^{2}}{2\sigma^{2}}} (r^{2} * x^{2} + y^{2})$ $\overline{D}^{2} G = \frac{r^{2} - 2G^{2}}{G^{2}} e^{-\frac{r^{2}}{2\sigma^{2}}}$

Edge detection using LOG

- 1) Compute LOG: H = (D2G) * Z
- 2) Threshold $E(i,j) = \begin{cases} 0 & \text{if } \#(i,j) < 0 \\ 1 & \text{if } \#(i,j) \geq 0 \end{cases}$
- 3) Mark edges at transforms (->0) (scan lett-to-right and top-to-bottom)

Canny edge detection

Detect edges at zero crossings of second order directional derivative taken along the gradient

N = graduntif |M| > C detect

edges at zero crossing

of $\frac{\partial^2}{\partial n^2} (I + G)$

Canny edge detection

Commentsi

- 1) afternot detection only it gradient magnitude is large enough ($\ln 1 > \tau$)
- 2) smooth along edges to presence edge
- 3) Alternative to bero crossing of $\frac{\delta^2}{\delta n^2} (I + G)$ is maximum if $\frac{\delta}{\delta n} (I + G)$

Directional derivative expression

gradient: $N = \nabla (T * G)$

directional: 3 (IXG) = N. V (I*G)

$$M \cdot \nabla(T * G) = \nabla(T * G) \cdot \nabla(T * G)$$
$$= |\nabla(T * G)|^{2}$$

Canny summary

If $|\nabla(z*6)| > C$ Set edge of maximum of $|\nabla(z*6)|$ along the direction of $\nabla(z*6)$

A dditional components!

- 1) hoh-maximum suppression
- 2) hysteresis thresholding

Non-maximum suppression

Need: local maximum of grather magnitude in direction of gradient

$$\nabla \left(\tilde{\iota} * \mathcal{C} \right) = \left(\mathcal{I}_{x_{1}} \mathcal{I}_{y} \right)$$

$$\Theta = \int_{J}^{-1} \left(\frac{\mathcal{I}_{y}}{\mathcal{I}_{y}} \right)$$

nighbors after discrationation

$$\theta^{*}$$
 = round $\left(\frac{\theta}{45}\right) + 45$

 $E(i,j) = \begin{cases} 1 & \text{if } \nabla(I \times G) \text{ is a local maximum} \\ 0 & \text{otherwise} \end{cases}$

Hysteresis thresholding

Use TH to start tracking and To to continue (24 > 20)

1) Initialize array of visited pivels v(i,j) =0

- 2) Scan may T-B, L-R: if (V(i,j) && |VI| > Ty start tracking on edge
- 3) Search for additional neighbors in direction orthogonal to DI such that |DI| > TL

Summary edge detection

- * Edge detection reguires finding discrete Image derivatives:

 - forward difference
 central difference
 Soboel
 Ganssian durivatives

 - Zero chossing of Lot (22d o-hr)
 - Directional durivations (canny)