GD54/74LS164

8-BIT PARALLEL OUTPUT SERIAL SHIFT REGISTER

Feature

- Gated (Enable/Disable) Serial Inputs
- · Fully Buffered Clock and Serial Inputs
- Asynchronous Clear

Description

This 8-bit shift register features gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip flop to the low level at the next clock pulse. A high level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered clocking occurs or the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Function Table

INPUTS			OUTPUTS			
CLEAR	CLOCK	Α	В	Q _A	$Q_{B}\cdots \cdot Q_{H}$	
L	×	Х	Х	L	L L	
н	L	Х	Χ	Q _{AO}	$\mathbf{Q}_{BO}\!\cdots\!\mathbf{Q}_{HO}$	
Н	†	н	Н	н	$\mathbf{Q}_{Gn} \dots \mathbf{Q}_{Gn}$	
н	1	L	Х	L	$\mathbf{Q}_{An} \cdots \mathbf{Q}_{Gn}$	
н	†	×	L	L	$Q_{An} \cdots Q_{Gn}$	

H=high level (steady state), L=low level (steady state)

X=irrelevant (any input, including transitions)

t=transition from low-to-high-level

 Q_{AO}, Q_{BO}, Q_{HO} =the level of Q_A, Q_B or Q_H respectively, before the indicated steady-state input conditions were established.

 Q_{An} , Q_{Gn} =the level of Q_A or Q_G before the most recent † transition of the clock; indicates a one-bit shift.

Schematics of Inputs and Outputs

EQUIVALENT OF EACH INPUT

4-132

Typical Clear, Shift, and Clear Sequences

Function Block Diagram

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
		54LS	
	, ,	74LS	
	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
	Supply voltage	54	4.5	5	5.5	V
V _{CC}		74	4.75	5	5.25	,
Гон	High-level output current	54,74			-400	μΑ
	Low-level output current	54			4	mA
lOL		74			8	IIIA
f _{clock}	Clock frequency		0		25	MHz
t _w	Width of clock or clear input pulse		20			ns
t _{su}	Data set up time		15			ns
t _h	Data hold time		5			ns
		54	-55		125	°C
T_A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	МАХ	UNIT
V _{IH}	High-level input voltage				2			>
V _{IL}	Low-level input voltage			54			0.7	v
▼IL	Low level input voltage			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min,	_I =-18mA				-1.5	٧
	High-level output voltage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		V
V _{OH} High-level output vol	I light-level output voltage	I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		
		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V _{OL}	V _{OL} Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
l _i	Input current at maximum input voltage	V _{CC} =Max, V _I =7V				0.1	mA	
l _{iH}	High-level input current	V _{CC} =Max, V _i =2.7V					20	mA
l _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =5.25V (Note 3)				16	27	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: I_{CC} is measured with outputs open, serial inputs grouned, the clock input at 2.4V, and a momentary ground, then 4.5V applied.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		25	36		MHz
t _{PHL}	Propagation delay time, high-to- low-level Q outputs from clear input	0 -1525 B -2k0		24	36	ns
t _{PLH}	Propagation delay time, low-to- high-level Q outputs from clock input	$C_L=15pF, R_L=2k\Omega$ See Figure 1		17	27	ns
t _{PHL}	Propagation delay time, high-to- low-level Q outputs from clock input			21	32	ns

[#]For load circuit and voltage waveforms, see page 3-11.

Parameter Measurement Information

TEST CIRCUIT

VOLTAGE WAVEFORMS

Note A: The pulse generators have the following characteristics: duty cycle ≤50%, Z_{out ≈ 50Ω; tj}≤15ns, tj≤6ns.

Note B: C_L includes probe and jig capacitance. Note C: All diodes are 1N3064 or 1N916

Note D: Q_A output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence.

Note E: Outputs are set to the high level prior to the measurement of t_{PHL} from the clear input.

Note F: $V_{rel} = 1.3V$

Figure 1 Switching Times