An introduction to Bayesian statistical inference

S. Robin

JC(2)BIM, June 2018, Fréjus

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Evaluating the posterior distribution

Conjugate priors

Monte Carlo integration

Monte-Carlo Markov chain

And more: sequential Monte-Carlo

Approximate Bayesian Computation

When the likelihood is intractable...

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

An example

Example:

- ▶ n patients: $i = 1 \dots n$
- $Y_i = \text{status } (0 = \text{healthy}, 1 = \text{sick}) \text{ of patient } i$
- $ightharpoonup \mathbf{x}_i = (x_{i1}, \dots x_{ip}) = ext{vector of gene expression for patient } i ext{ (gene } j = 1 \dots p)$

Dataset: n = 78, p = 15

	AB033066	NM003056	NM000903	 Status
1	0.178	0.116	0.22	0
2	0.065	-0.073	-0.014	0
3	-0.077	0.03	0.043	0
4	0.176	-0.041	0.362	0
5	-0.089	-0.164	-0.266	0

A statistical model

Logistic regression Logistic regression

- ▶ The patients are independent.
- The probability for patient i to be sick depends on x_i :

$$\Pr\{Y_i = 1\} = \frac{e^{\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\theta}}}{1 + e^{\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\theta}}}, \qquad \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\theta} = \sum_{j=1}^p x_{ij}\theta_j$$

 $\theta = (\theta_1, \dots \theta_p)$: unknown parameter (regression coefficients, incl. intercept)

Frequentist inference

θ = fixed parameter:

Statistical model:

$$\mathbf{Y} \sim p_{m{ heta}}$$

▶ Inference: get a (point) estimate $\hat{\theta}$ e.g.

$$\widehat{m{ heta}}$$
: $\log p_{\widehat{m{ heta}}}(\mathbf{Y}) = \max_{m{ heta}} \log p_{m{ heta}}(\mathbf{Y})$

lacktriangle The estimate $\widehat{m{ heta}}$ itself is random (depends on the data) ightarrow confidence interval, tests, ...

Frequentist inference

θ = fixed parameter:

Statistical model:

$$\mathbf{Y} \sim p_{\mathbf{ heta}}$$

▶ Inference: get a (point) estimate $\widehat{\theta}$ e.g.

$$\widehat{\boldsymbol{\theta}}$$
: $\log p_{\widehat{\boldsymbol{\theta}}}(\mathbf{Y}) = \max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\mathbf{Y})$

▶ The estimate $\widehat{\theta}$ itself is random (depends on the data) → confidence interval, tests, ...

Output: GLM = glm(Y \sim X, family=binomial)

	Estimate	Std. Error	z value	$\Pr(> \mathtt{z})$
(Intercept)	-0.7212697	0.6512707	-1.107481	0.2680861
XAB033066	7.23375	2.505118	2.887589	0.003882068
XNM003056	-0.6116423	1.854695	-0.3297806	0.7415658
XNM000903	1.732625	1.199888	1.443988	0.1487423

Bayesian inference

$\theta = \text{random parameter}$:

Statistical model:

$$p(\mathbf{Y} \mid \boldsymbol{\theta})$$
 (= likelihood)

Inference: provide the conditional distribution of θ given the observed data Y:

$$p(\theta \mid \mathbf{Y})$$
 (= posterior distribution)

- → credibility intervals
- Requires to define a marginal distribution:

$$p(\theta)$$
 (= prior distribution)

Why 'Bayes'

Bayes formula:

$$P(A \mid B) = \frac{P(A, B)}{P(B)} = \frac{P(A)}{P(B)}P(B \mid A)$$

- ightharpoonup P(B) = marginal probability of B
- ightharpoonup P(A,B) = joint probability of A and B
- ▶ $P(A \mid B)$ = conditional probability of A given B^{-1}

Why 'Bayes'

Bayes formula:

$$P(A \mid B) = \frac{P(A, B)}{P(B)} = \frac{P(A)}{P(B)}P(B \mid A)$$

- ightharpoonup P(B) = marginal probability of B
- ightharpoonup P(A, B) = joint probability of A and B
- ▶ $P(A \mid B)$ = conditional probability of A given B^{1}

Be careful. Many methods, e.g.

Bayesian network, Naive Bayes, ...

- use conditional probabilities
- but have nothing to do with Bayesian inference (in the statistical sense)

¹see Appendix # 35

Bayes formula for Bayesian inference

Posterior distribution.

$$p(\theta \mid \mathbf{Y}) = \frac{p(\mathbf{Y}, \theta)}{p(\mathbf{Y})} = \frac{p(\theta) p(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})}$$

Requires to evaluate the integrated likelihood (i.e. marginal)

$$p(\mathbf{Y}) = \int p(\theta)p(\mathbf{Y} \mid \theta) d\theta,$$

which act as the normalizing constant of the posterior $p(\theta \mid \mathbf{Y})$.

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if sick, 0 otherwise
- ightharpoonup n = 10 patients
- ▶ : : number sicks / n

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if sick, 0 otherwise
- ightharpoonup n = 10 patients
- ▶ : number sicks /n

Param:

- \bullet θ = proba. sick
- -: prior $p(\theta)$

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if sick, 0 otherwise
- ightharpoonup n = 10 patients
- ▶ : number sicks /n

Param:

- \bullet θ = proba. sick
- -: prior $p(\theta)$

Output:

-: posterior $p(\theta \mid \mathbf{Y})$

Dependency vanishes when n increase

Back to logistic regression

Model

▶ Prior: all coefficient θ_i independent:

$$\theta_j \sim \mathcal{N}(0, 100)$$

Likelihood: all patients independent, conditionally on θ :

$$\mathsf{Pr}\{Y_i = 1 \mid \boldsymbol{\theta}\} = e^{\mathbf{x}_i^\mathsf{T}\boldsymbol{\theta}} \left/ \left(1 + e^{\mathbf{x}_i^\mathsf{T}\boldsymbol{\theta}}\right) \right.$$

Inference:

$$\theta \mid \mathbf{Y} \sim ?$$

(see later, but $p(\theta \mid \mathbf{Y}) \neq \mathcal{N}(\cdot, \cdot)$, for sure.)

Bayesian inference

Output:

Posterior distribution and confidence intervals

Parameter 'estimate'.

posterior mean:
$$\widehat{\theta}_j = \mathbb{E}(\theta_j \mid \mathbf{Y})$$

posterior mode:
$$\widehat{\theta}_j = \arg\max_{\theta_j} p(\theta_j \mid \mathbf{Y})$$

Credibility interval (CI). With level $1 - \alpha$ (e.g. 95%):

$$CI_{1-\alpha}(\theta_j) = [\theta_j^{\ell}; \theta_j^{u}]: \qquad \Pr\{\theta_j^{\ell} < \theta_j < \theta_j^{u} \mid \mathbf{Y}\} = 1 - \alpha$$

Posterior distribution and confidence intervals

Parameter 'estimate'.

posterior mean: $\widehat{ heta}_j = \mathbb{E}(heta_j \mid \mathbf{Y})$

posterior mode: $\widehat{\theta}_j = \arg\max_{\theta_j} \ p(\theta_j \mid \mathbf{Y})$

Credibility interval (CI). With level $1 - \alpha$ (e.g. 95%):

$$CI_{1-\alpha}(\theta_j) = [\theta_j^{\ell}; \theta_j^{u}]: \qquad \Pr\{\theta_j^{\ell} < \theta_j < \theta_j^{u} \mid \mathbf{Y}\} = 1 - \alpha$$

Example.

	${\tt post.mean}$	${\tt post.mode}$	lower.CI	upper.CI
Intercept	-0.9816181	-0.8652166	-2.41342	0.3704264
AB033066	8.395169	8.587083	3.271464	13.98373
NM003056	-1.042483	-0.9854149	-5.046639	2.819764
NM000903	1.911312	1.677234	-0.4240319	4.452512

Accounting for uncertainty

Question: What is the probability for patient 0 (with profile x_0) to be sick?

Model answer:

$$\mathsf{Pr}\{Y_0 = 1 \mid oldsymbol{ heta}\} = e^{\mathbf{x}_0^\mathsf{T}oldsymbol{ heta}} \left/ \left(1 + e^{\mathbf{x}_0^\mathsf{T}oldsymbol{ heta}}
ight)$$

but θ is unknown (and random).

Bayesian answer: posterior predictive probability

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}\} = \int \Pr\{Y_0 = 1 \mid \boldsymbol{\theta}\} p(\boldsymbol{\theta} \mid \mathbf{Y}) d\boldsymbol{\theta}$$

Model comparison (1/2)

Problem. Which model fits the data better:

 M_0 : none of the genes has an effect, i.e. $\boldsymbol{\theta} = (\theta_0, 0, \dots, 0)$

 M_1 : only the fist gene has an effect, i.e. $\theta = (\theta_0, \theta_1, 0, \dots, 0)$

. . .

 M_p : all genes have an effect, i.e. $\boldsymbol{\theta} = (\theta_0, \theta_1, \dots, \theta_p)$

Bayesian model comparison. For each model $M \in \mathcal{M} = \{M_0, \dots, M_p\}$, evaluate $p(M \mid \mathbf{Y})$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

Conditional prior on the parameters: $p(\theta \mid M)$, e.g.

$$heta_j \mid M_k \; \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & ext{if } j \leq k \ = & 0 & ext{otherwise} \end{array}
ight.$$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

Conditional prior on the parameters: $p(\theta \mid M)$, e.g.

$$heta_j \mid M_k \; \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & ext{if } j \leq k \ = & 0 & ext{otherwise} \end{array}
ight.$$

Recipe:

Evaluate the marginal likelihood of the data for each model M:

$$p(\mathbf{Y} \mid M) = \int p(\mathbf{Y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid M) d\boldsymbol{\theta}$$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

Conditional prior on the parameters: $p(\theta \mid M)$, e.g.

$$\theta_j \mid M_k \; \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & ext{if } j \leq k \ = & 0 & ext{otherwise} \end{array}
ight.$$

Recipe:

Evaluate the marginal likelihood of the data for each model M:

$$p(\mathbf{Y} \mid M) = \int p(\mathbf{Y} \mid \theta) p(\theta \mid M) d\theta$$

 \triangleright Evaluate the $p(M_k \mid \mathbf{Y})$ using Bayes rule

$$p(M_k \mid \mathbf{Y}) = \frac{p(M_k)p(\mathbf{Y} \mid M_k)}{p(\mathbf{Y})} = \frac{p(M_k)p(\mathbf{Y} \mid M_k)}{\sum_{k'} p(M_{k'})p(\mathbf{Y} \mid M_{k'})}$$

Model averaging (uncertainty on models)

Question: Probability for patient 0 to be sick?

Model averaging (uncertainty on models)

Question: Probability for patient 0 to be sick?

Model selection.

- ▶ Select the 'best' model \widehat{M} , i.e. with largest posterior $p(M \mid \mathbf{Y})$
- Compute

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}, \widehat{M}\} = \int \Pr\{Y_0 = 1 \mid \boldsymbol{\theta}\} p(\boldsymbol{\theta} \mid \mathbf{Y}, \widehat{M}) d\boldsymbol{\theta}$$

Model averaging (uncertainty on models)

Question: Probability for patient 0 to be sick?

Model selection.

- ▶ Select the 'best' model \widehat{M} , i.e. with largest posterior $p(M \mid \mathbf{Y})$
- Compute

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}, \widehat{M}\} = \int \Pr\{Y_0 = 1 \mid \boldsymbol{\theta}\} p(\boldsymbol{\theta} \mid \mathbf{Y}, \widehat{M}) d\boldsymbol{\theta}$$

Model averaging.

- Keep all models
- Compute

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}\} = \sum_{M} \Pr\{Y_0 = 1 \mid \mathbf{Y}, M\} p(M \mid \mathbf{Y})$$

Transfer of uncertainty from one experience to another

Combining samples. Consider two independent but similar datasets \mathbf{Y}_1 and \mathbf{Y}_2 .

Simple algebra gives:

$$p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2) = \frac{p(\theta \mid \mathbf{Y}_1)p(\mathbf{Y}_2 \mid \theta, \mathbf{Y}_1)}{p(\mathbf{Y}_2 \mid \mathbf{Y}_1)}$$

Transfer of uncertainty from one experience to another

Combining samples. Consider two independent but similar datasets \mathbf{Y}_1 and \mathbf{Y}_2 .

Simple algebra gives:

$$p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2) = \frac{p(\theta \mid \mathbf{Y}_1)p(\mathbf{Y}_2 \mid \theta, \mathbf{Y}_1)}{p(\mathbf{Y}_2 \mid \mathbf{Y}_1)}$$

In practice:

- 1. Perform inference using \mathbf{Y}_1 to get $p(\theta \mid \mathbf{Y}_1)$ from prior $p(\theta)$
- 2. Then perform inference using \mathbf{Y}_2 to get $p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2)$ using $p(\theta \mid \mathbf{Y}_1)$ as a prior

Combining experiments

Output: $n_1 = n_2 = 39$

Outline

Evaluating the posterior distribution

Conjugate priors Monte Carlo integration Monte-Carlo Markov chain And more: sequential Monte-Carlo

Posterior distribution

Aim: Evaluate

$$E[f(\theta)|\mathbf{Y}]$$

- ▶ Posterior mean: $f(\theta) = \theta_i$
- ▶ Credibility interval: $f(\theta) = \mathbb{I}\{\theta_i^{\ell} < \theta_j < \theta_i^{u}\}$

Posterior distribution

Aim: Evaluate

$$E[f(\theta)|\mathbf{Y}]$$

- ▶ Posterior mean: $f(\theta) = \theta_i$
- ▶ Credibility interval: $f(\theta) = \mathbb{I}\{\theta_i^{\ell} < \theta_i < \theta_i^{u}\}$

Main problem: evaluate

$$p(\theta \mid \mathbf{Y}) = \frac{p(\theta)p(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})}$$

which requires to evaluate

$$p(\mathbf{Y}) = \int \underbrace{p(\theta)}_{prior} \underbrace{p(\mathbf{Y}|\theta)}_{likelihood} d\theta$$

Nice case: Conjugate priors

Example: Bernoulli

Prior: $\theta = \text{proba.}$ to be sick.

$$\theta \sim \mathsf{Beta}(a,b), \qquad p(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$

Nice case: Conjugate priors

Example: Bernoulli

Prior: $\theta = \text{proba.}$ to be sick.

$$\theta \sim \mathsf{Beta}(a,b), \qquad p(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$

Likelihood: $Y_i = 1$ if sick, 0 otherwise. S = number of sick

$$Y_i \mid \theta \sim \mathcal{B}(\theta), \qquad p(\mathbf{Y} \mid \theta) = \prod_i \theta^{Y_i} (1 - \theta)^{1 - Y_i} = \theta^{S} (1 - \theta)^{n - S}$$

Nice case: Conjugate priors

Example: Bernoulli

Prior: $\theta = \text{proba.}$ to be sick.

$$\theta \sim \mathsf{Beta}(a,b), \qquad p(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$

Likelihood: $Y_i = 1$ if sick, 0 otherwise. S = number of sick

$$Y_i \mid \theta \sim \mathcal{B}(\theta), \qquad p(\mathbf{Y} \mid \theta) = \prod_i \theta^{Y_i} (1-\theta)^{1-Y_i} = \theta^{S} (1-\theta)^{n-S}$$

Posterior:

$$p(\theta \mid \mathbf{Y}) \propto p(\theta)p(\mathbf{Y} \mid \theta) = \theta^{a+S-1}(1-\theta)^{b+n-S-1}$$

which means that

$$\theta \mid \mathbf{Y} \sim \text{Beta}(a+S, b+n-S)$$

Conjugate priors: Discrete distributions

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i$	$\alpha-1$ successes, $\beta-1$ failures $^{[note\ 1]}$	$p(\tilde{x} = 1) = \frac{\alpha'}{\alpha' + \beta'}$
Binomial	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i$ $\alpha + \sum_{i=1}^{n} x_i, \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$	$\alpha-1$ successes, $\beta-1$ failures $^{[note\ 1]}$	$\operatorname{BetaBin}(\tilde{x} \alpha', \beta')$ (beta-binomial)
Negative Binomial with known failure number r	p (probability)	Beta	α , β	$\alpha + \sum_{i=1}^n x_i, \beta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{[\text{note }1]} \text{ (i.e. } \frac{\beta-1}{r} \text{ experiments,} \\ \text{assuming } r \text{ stays fixed)} \end{array}$	
Poisson	λ (rate)	Gamma	k, θ	$k + \sum_{i=1}^{n} x_i, \ \frac{\theta}{n\theta + 1}$	k total occurrences in $1/\theta$ intervals	$NB(\tilde{x} k', \frac{\theta'}{1+\theta'})$ (negative binomial)
Poisson	λ (rate)	Gamma	α, β [note 3]	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n$	α total occurrences in β intervals	$NB(\tilde{x} \alpha', \frac{1}{1+\beta'})$ (negative binomial)
Categorical	p (probability vector), k (number of categories, i.e. size of p)	Dirichlet	α	$oldsymbol{lpha} + (c_1, \dots, c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{ ext{Inote }1 ext{]}}$	$p(\tilde{x} = i) = \frac{\alpha_i'}{\sum_i \alpha_i'}$ $= \frac{\alpha_i + c_i}{\sum_i \alpha_i + n}$
Multinomial	p (probability vector), k (number of categories, i.e. size of p)	Dirichlet	α	$\alpha + \sum_{i=1}^{n} \mathbf{x}_i$	$lpha_i = 1$ occurrences of category $i^{ ext{[note 1]}}$	$\operatorname{DirMult}(\bar{\mathbf{x}} \boldsymbol{\alpha}')$ (Dirichlet- multinomial)
Hypergeometric with known total population size N	M (number of target members)	Beta-binomial ^[4]	$n=N, \alpha, \beta$	$\alpha + \sum_{i=1}^n x_i, \ \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	lpha-1 successes, $eta-1$ failures [note 1]	
Geometric	p_0 (probability)	Beta	α, β	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	lpha - 1 experiments, $eta - 1$ total failures ^[note 1]	

en.wikipedia.org/wiki/Conjugate_prior

Conjugate priors: Continuous distributions

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters	Posterior predictive[note 4]
Normal with known variance σ ²	μ (mean)	Normal	μ_0, σ_0^2	$ \left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma^2}\right) \middle/ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right), $ $ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1} $	mean was estimated from observations with total precision (sum of all individual precisions)1/ σ_0^2 and with sample mean μ_0	$\mathcal{N}(\tilde{x} \mu_0', \sigma_0^{2'} + \sigma^2)^{[5]}$
Normal with known precision τ	μ (mean)	Normal	μ_0, τ_0	$\left(\tau_{0}\mu_{0} + \tau \sum_{i=1}^{n} x_{i}\right) / (\tau_{0} + n\tau), \ \tau_{0} + n\tau$	mean was estimated from observations with total precision (sum of all individual precisions) τ_0 and with sample mean μ_0	$\mathcal{N}\left(\tilde{x} \mu'_{0}, \frac{1}{\tau'_{0}} + \frac{1}{\tau}\right)$ [5]
Normal with known mean µ	σ^2 (variance)	Inverse gamma	α, β [note 5]	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	variance was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2\alpha'}(\tilde{x} \mu,\sigma^2=\beta'/\alpha')^{[5]}$
Normal with known mean µ	σ^2 (variance)	Scaled inverse chi-squared	ν , σ_0^2	$\nu + n$, $\frac{\nu \sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{\nu + n}$	variance was estimated from ν observations with sample variance σ_0^2	$t_{\nu'}(\tilde{x} \mu, \sigma_0^{2'})^{[5]}$
Normal with known mean µ	τ (precision)	Gamma	α , β ^[note 3]	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	precision was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2\alpha'}(\tilde{x} \mu,\sigma^2=\beta'/\alpha')^{[5]}$
Normal ^(note 6)	μ and σ² Assuming exchangeability	Normal-inverse gamma		$\begin{split} &\frac{\nu\mu_0+n\bar{x}}{\nu+n_n},\nu+n,\alpha+\frac{n}{2},\\ &\beta+\frac{1}{2}\sum_{i=1}(x_i-\bar{x})^2+\frac{n\nu}{\nu+n}\frac{(\bar{x}-\mu_0)^2}{2} \end{split}$ • \bar{x} is the sample mean	mean was estimated from ν observations with sample mean μ_0 ; variance was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(\tilde{x} \mu',rac{eta'(u'+1)}{lpha' u'} ight)$ [5]
Normal	μ and τ Assuming exchangeability	Normal-gamma		$\begin{split} & \frac{\nu\mu_0 + n\bar{x}}{\nu + n_n}, \ \nu + n, \ \alpha + \frac{1}{2}, \\ & \beta + \frac{1}{2}\sum_{i=1}(x_i - \bar{x})^2 + \frac{n\nu}{\nu + n}\frac{(\bar{x} - \mu_0)^2}{2} \end{split}$ $\bullet \ \bar{x} \text{ is the sample mean}$	mean was estimated from ν observations with sample mean μ_0 , and precision was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(ar{x} \mu',rac{eta'(u'+1)}{lpha' u'} ight)$ [5]
Multivariate normal with known covariance matrix 2	μ (mean vector)	Multivariate normal	$oldsymbol{\mu}_0, oldsymbol{\Sigma}_0$	$\begin{split} & \left(\boldsymbol{\Sigma}_0^{-1} + n \boldsymbol{\Sigma}^{-1} \right)^{-1} \left(\boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 + n \boldsymbol{\Sigma}^{-1} \bar{\mathbf{x}} \right), \\ & \left(\boldsymbol{\Sigma}_0^{-1} + n \boldsymbol{\Sigma}^{-1} \right)^{-1} \end{split}$ • $\bar{\mathbf{x}}$ is the sample mean	mean was estimated from observations with total precision (sum of all individual precisions) Σ_0^{-1} and with sample mean μ_0	$\mathcal{N}(\tilde{\mathbf{x}} \boldsymbol{\mu}_0', \boldsymbol{\Sigma_0}' + \boldsymbol{\Sigma})^{[5]}$

en.wikipedia.org/wiki/Conjugate_prior

Computing integrals

General case: $p(\theta \mid \mathbf{Y})$ has no close form

Goal: compute

$$\mathbb{E}(f(\theta) \mid \mathbf{Y}) = \int f(\theta) p(\theta \mid \mathbf{Y}) d\theta = \int f(\theta) p(\theta) p(\mathbf{Y} \mid \theta) d\theta / p(\mathbf{Y})$$

where

$$p(\mathbf{Y}) = \int p(\theta) \ p(\mathbf{Y} \mid \theta) \ d\theta$$

Monte-Carlo

Importance sampling

MCMC principle (ergodic chain with stationary distribution $p(\theta|Y)$)

Metropolis-Hastings

Gibbs

Outline

Approximate Bayesian Computation

When the likelihood is intractable...

Approximate Bayesian Computation When the likelihood is intractable...

An introduction to Bayesian statistical inference

33 / 33

References

Outline

Appendix

Joint, Marginal, Conditional

Reminder: 2 loci with 2 alleles each: (A, a), (B, b)

Joint distribution:

	В	b	marginal
Α	f_{AB}	f_{Ab}	$p_A = f_{AB} + f_{Ab}$
а	f_{aB}	f_{ab}	$p_a = f_{aB} + f_{ab}$
marginal	$q_B = f_{AB} + f_{aB}$	$q_b = f_{Ab} + f_{ab}$	1

Marginal distribution: 'integrates out' the allele of the other locus

$$\Pr\{B\} = q_B = f_{AB} + f_{aB}$$

Conditional distribution

$$\Pr\{A \mid b\} = \frac{\Pr\{A, b\}}{\Pr\{b\}} = \frac{f_{Ab}}{q_b} = \frac{f_{Ab}}{f_{Ab} + f_{ab}}$$

Posterior distribution and CI (slide # 14)

The same holds for combination of parameters, e.g.

$$\delta = \theta_2 - \theta_3$$

	post.mean	post.mode	lower.CI	upper.CI
delta	9 389825	8 824822	3 539045	15 84367