

Ideal Locations for New Restaurants in Brandon, FL

Predicting Foursquare "Likes" ratio based on local demographics

Introduction

- Tampa, FL most residents live in suburbs, difficult for restaurants to pick locations due to sprawling population with inconsistent demographics
- Foursquare's user-driven evaluations help attract even more customers to restaurants
- Predicting locations where a new restaurant is likely to earn positive feedback can help sustain business
- Model based on local demographics may explain enough variation to produce useful insights

Data Sources

- Foursquare Venues
 - Locations
 - Category
 - Likes
 - Signals
 - Rating

- US Census Bureau
 - Census tracts'
 estimated counts
 of subpopulations
 - Shapefiles that outline tractsusing coordinates

Methodology

- 1. Get coordinates for center of suburb (Brandon, FL)
- 2. Use Foursquare API to get venue JSONs w/in given radius
- 3. Import shapefiles for census tracts, filter to local area
- 4. Import census tract demographic CSVs into dataframes
- 5. Cluster census tracts based on subpop. proportions
- 6. Cross-join venue data to tract data, aggregate per venue
- 7. Prep for analysis main dataframe and subsets

Methodology (cont.)

- 8. Review possible dependent variables
 - "likes" too biased toward older venues
 - "rating" heavily engineered by Foursquare
 - "likes ratio" most viable

Methodology (cont.)

- 9. Select features: start simple, look for obvious patterns, keep options open
 - *x* aggregated subpopulations
 - x venue "competition"
- ✓ nearby tracts per cluster
- ✓ venue "cuisine"
 - x worst-case: all dis-aggregated subpopulations
- 10.Try multiple machine learning algorithms with each feature set
- 11.Use best model to identify "ideal markets"

Results: Clustered Tracts

- Blue: I-75 corridor, commercial and apartments; many black and young-adult residents
- Green: further away from Tampa, many single-family homes; many white residents, few young-adults
- Red: along SR60, original Brandon with mix of single-family homes and business; no demographic trends
- Cyan: near Tampa except one to the east near farmland; many Hispanic residents, no age trend

Results: Best Model

- The best: support vector machine
 - 0.628 +/- 0.079 (roughly 5 / 8 correct)
- The good: logistic regression
 - 0.618 +/- 0.088 (still consistently better than chance, >50%)
- The bad: decision tree
 - 0.566 +/- 0.083 (<50% was within margin of error)
- The ugly: Multi-linear regression
 - Couldn't get any combination of feature sets to reliably produce a
 positive variance score; using the full set of subpopulations resulted in
 a massively negative score

Results: Predictions

Cuisine	svmRatio	blue Cluster	cyan Cluster	green Cluster	red Cluster
Cat:American	Bad	1.18	0.41	1.11	1.11
	Good	2.63	0.81	0.63	0.63
Cat:Asian	Bad	1.48	0.49	1.01	1.01
	Good	3.00	1.00	0.00	0.00
Cat:European	Bad	1.18	0.41	1.09	1.13
	Good	2.63	0.81	0.69	0.56
Cat:Fast	Bad	1.19	0.39	1.11	1.15
	Good	2.44	0.83	0.67	0.56
Cat:Joints	Bad	0.77	0.15	1.23	1.31
	Good	1.91	0.70	0.87	0.83
Cat:Latin	Bad	0.82	0.29	1.26	1.26
	Good	2.11	0.68	0.76	0.76
Cat:Other	Bad	1.34	0.45	1.05	1.09
	Good	2.75	0.88	0.63	0.25

General Discussion

- Ambitious, ill-fated goals = wasted time; spend more time during planning phase researching potential variables to improve efficiency
- Individual features were not strongly-correlated with "likes ratio"; clustering was extremely helpful by reducing the complexity of the issue and allowing for more intuitive analysis
- Small-ish sample size due to API rate restrictions probably limited effectiveness of machine-learning algorithms meant to be used on thousands of records

Recommendations

- Recommendation for most cuisines: multiple "blue" tracts nearby, minimal "green" or "red" tracts; "cyan" tracts not much of a factor
- Asian restaurants are unique: must have "cyan" tracts, "blue" tracts are less important
- Both recommendations align with common-sense based on context of local economic geography, i.e. stick to the areas where most other restaurants already are, where the young-adults are rather than families and retirees; any possible racial trend is probably a symptom of the age trend rather than a true predictor, so not much need to worry about matching cuisines' international sources to customers' ancestral origins

Conclusion

- Telling the hard truth: this model does not provide much counterintuitive or nuanced insight
- Positive framing! Plenty of opportunities for improvement and lessons learned about process
 - Start small and simple, expand scope and complexity after building reliable foundation (current model)
 - Introduce additional data to turn implicit contextual knowledge into explicit features:
 - economic data about residents
 - price ranges for restaurants
 - additional businesses not on Foursquare or non-restaurant businesses
 - Separating effects of race and age distributions (different cluster sets?