Rank-76051 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_1 + X_1^2 X_2 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 76051

General information

Number of lines	5
Number of points	11
Number of singular points	0
Number of Eckardt points	1
Number of double points	2
Number of single points	8
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{5}
Type of lines on points	$3, 2^2, 1^8$

Singular Points

The surface has 0 singular points:

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_5$$

$$\ell_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{7}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \mathbf{Pl}(0, 1, 1, 1, 1, 1)_{34}$$

Rank of lines: (4, 30, 34, 33, 26)

Rank of points on Klein quadric: (2, 5, 1, 7, 34)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1). T = 14$$

Double Points

The surface has 2 Double points:

The double points on the surface are:

$$P_2 = (0, 0, 1, 0) = \ell_0 \cap \ell_2$$

 $P_{12} = (0, 0, 1, 1) = \ell_2 \cap \ell_4$

Single Points

The surface has 8 single points:

The single points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0

1 : $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1

2: $P_6 = (1,0,1,0)$ lies on line ℓ_0

3: $P_7 = (0, 1, 1, 0)$ lies on line ℓ_3

4: $P_8 = (1, 1, 1, 0)$ lies on line ℓ_4

The single points on the surface are:

5: $P_{10} = (0, 1, 0, 1)$ lies on line ℓ_1 6: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_4

7 : $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_3

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} 01234 \\ \hline 000100 \\ 100110 \\ 211011 \\ 301100 \\ 400100 \\ \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_2
in point	P_2

Line 1 intersects

Line	ℓ_2	ℓ_3
in point	P_3	P_3

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_2	P_3	P_3	P_{12}

Line 3 intersects

Line	ℓ_1	ℓ_2
in point	P_3	P_3

Line 4 intersects

Line	ℓ_2
in point	P_{12}

The surface has 11 points:

The points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$

 $4: P_6 = (1, 0, 1, 0)$

 $8: P_{11} = (1, 1, 0, 1)$

 $1: P_1 = (0, 1, 0, 0)$ $2: P_2 = (0, 0, 1, 0)$ $3: P_3 = (0, 0, 0, 1)$

 $5: P_7 = (0, 1, 1, 0)$

9: $P_{12} = (0, 0, 1, 1)$ 10: $P_{14} = (0, 1, 1, 1)$

 $6: P_8 = (1, 1, 1, 0)$ $7: P_{10} = (0, 1, 0, 1)$