Lista de ejercicios 1 - Fundamentos de Probabilidad

3 de abril de 2019

Justo Andrés Manrique Urbina - 20091107

Pregunta 5.a. 1.

Demuestre que $A_1 \in \sigma(C), A_2 \in \sigma(C), ...$

Demostración:

Supongamos $A_i \in C, i = 1, 2, ...$

Recordemos que, por definición 1.2. del texto de la clase, $C \subset \sigma(C)$

Por lo tanto, $A_i \in C \subset \sigma(C), i = 1, 2, ...$

Finalmente, $A_i \in \sigma(C), i = 1, 2, ...$

Pregunta 5.b. 2.

Demuestre que $\bigcup_{j=1}^{\infty} A_j \in \sigma(C)$. **Demostración:**

Supongamos que $A_i \in \sigma(C), i = 1, 2, ...,$

Por definición de σ -álgebra (definición 1.1 del texto de la clase), toda σ -álgebra es cerrada respecto a reuniones infinitas enumerables.

Dada la suposición y la definición de σ -álgebra, se concluye que $\bigcup_{i=1}^{\infty} A_i \in$ $\sigma(C)$.

3. Pregunta 16.a.

Demuestre que $f^{-1}(\sigma(C))$ es una σ -álgebra en Ω_1 .

Demostración:

Si $\sigma(C)$ es una σ -álgebra en Ω_2 , entonces se cumplen las siguientes definiciones:

 $\Omega_2 \in \sigma(C)$

- $\forall A \in \sigma(C) : A^c \in \sigma(C)$
- $\forall A_1, A_2, \dots \in \sigma(C) : \bigcup_{j=1}^{\infty} A_j \in \sigma(C)$

En base a ello, aplicamos la imagen inversa a la σ -álgebra generada y verificaremos si se cumple la definición en Ω_1 .

- $f^{-1}(\Omega_2) = \Omega_1 \in f^{-1}(\sigma(C))$
- $\bullet \ \forall f^{-1}(A) \in f^{-1}(\sigma(C)) : f^{-1}(A^c) = (f^{-1}(A))^c \in f^{-1}(\sigma(C))$
- $\forall f^{-1}(A_1), f^{-1}(A_2), \dots \in f^{-1}(\sigma(C)) : f^{-1}(\bigcup_{j=1}^{\infty} A_j) = \bigcup_{j=1}^{\infty} (f^{-1}(A_j)) \in f^{-1}(\sigma(C))$

Observamos que, aplicando la imagen inversa a $\sigma(C)$, la definición de σ -álgebra se mantiene en Ω_1 .

Por lo tanto, $f^{-1}(\sigma(C))$ es una σ -álgebra en Ω_1 .

4. Pregunta 16.b.

Demuestre que $f^{-1}(C) \subset f^{-1}(\sigma(C))$

Demostración:

Recordemos que:

- $f^{-1}(C) = \{f^{-1}(A) : A \in C\}$
- $f^{-1}(A) = \{ w \in \Omega_1 : f(w) \in A \}$

Debido a ello, se obtiene que $f(w) \in A \in C$

Por definición, $C \subset \sigma(C)$

Por lo tanto, $f(w) \in A \in C \subset \sigma(C)$

Aplicando imagen inversa, se obtiene que: $w \in f^{-1}(A) \in f^{-1}(C) \subset f^{-1}(\sigma(C))$

Finalmente, se observa que $f^{-1}(C) \subset f^{-1}(\sigma(C))$.