A unified statement for smoothness

Miaoyan Wang, 03/31/2021

Let $\Theta \in [-1,1]^{d_1 \times \cdots \times d_K}$ be the signal tensor, and $d_t = \prod_{k=1}^K d_k$ the total dimension. We quantify the distribution of entries in tensor Θ using a histogram with bin width $\Delta s = 1/d_t$. Specifically, we divide the range [-1,1] into d_t equally sized bins, and let $(p_i)_{i=1,\dots,d_t}$ denote the frequency of tensor entries in each bin; that is, $p_i \stackrel{\text{def}}{=} \mathbb{P}_{\omega \sim \Pi}(-1 + (i-1)\Delta s < \Theta(\omega) \le -1 + i\Delta s)$. Let $\mathcal{N} = \{i: p_i \gg \Delta s\} \subset [d_t]$ to collect the indices for heavy bins whose probability mass is asymptotically larger than the bin size Δs as $d \to \infty$,

Definition 1 (α -smoothness). Fix $i \notin \mathcal{N}$. Assume there exist constant $\alpha = \alpha(\pi) > 0$, $c = c(\pi) > 0$, independent of tensor dimension, such that

$$\max_{j=1,\dots,\rho(i,\mathcal{N})} \frac{p_i + \dots + p_{i+j}}{(j\Delta s)^{\alpha}} \le c, \tag{1}$$

where $\rho(i, \mathcal{N}) = \min_{j \in \mathcal{N}} |i - j|$ denotes the distance from index i to the nearest index in \mathcal{N} . We make the conversion that $\alpha = \infty$ if the numerator in (1) is zero, implying almost no entries of which $\Theta(\omega)$ is around the i-th bin.

Let \mathbb{P}_{X} denote either continuous or discrete distribution over feature space \mathcal{X} . Define a reference mass $\Delta s = 0$ if \mathcal{X} is uncountable, or $\Delta s = \Omega\left(\frac{1}{|\mathcal{X}|}\right)$ if \mathcal{X} is countable. We use $\mathcal{N} \subset [-1,1]$ to collect levels whose probability mass in a Δs -neighborhood is heavier than the uniform measure; i.e,

$$\mathcal{N} = [-1, 1] / \{ \pi \colon \mathbb{P}_{\boldsymbol{X}}(|f(\boldsymbol{X}) - \pi| \le \Delta s) \le C \Delta s \}.$$
 (2)

Here C > 0 is a constant independent of feature dimension d.

Definition 2 (α -smoothness). For a given $\pi \notin \mathcal{N}$, we say f is (α, π) -smooth if there exists $\alpha = \alpha(\pi) \geq 1, c = c(\pi) > 0$, independent of feature dimension d, such that

$$\sup_{\Delta s \le t < \rho(\pi, \mathcal{N})} \frac{\mathbb{P}_{\mathbf{X}}(\Delta s \le |f(\mathbf{X}) - \pi| \le t)}{t^{\alpha}} \le c, \tag{3}$$

where $\rho(\pi, \mathcal{N}) = \inf_{\pi' \in \mathcal{N}} |\pi - \pi'|$ denotes the distance from π to the nearest point in \mathcal{N} . We make the conversion that $\alpha = \infty$ if $\rho(\pi, \mathcal{N}) \leq \Delta s$.

Remark 1 (Smoothness index). The largest possible $\alpha = \alpha(\pi)$ in (3) is called the smoothness index at level π . By definition (2) and (3), we always have $\alpha(\pi) \geq 1$ at levels $\pi \notin \mathcal{N}$.

Theorem 0.1 (Nonparametric regression via sign series). Assume f is globally α -smooth and r-sign rank representable. Denote $t_n = \frac{dr}{|\Omega|}$ for tensor completion problem, or $t_n = \frac{r(s_1+s_2)\log d}{n}$ for sparse matrix regression problem.

1. (Sign estimation) For all $\pi \notin \mathcal{N}$,

$$\|\operatorname{sign} \hat{f} - \operatorname{sign} (f - \pi)\|_1 \le t_n^{\alpha/(2+\alpha)} + \frac{1}{\rho^2(\pi, \mathcal{N})} t_n.$$

2. (Signal estimation) Assume N is countable. Then, we have

$$\|\hat{f} - f\|_1 \lesssim t_n^{\alpha/(2+\alpha)} + \frac{|\mathcal{N}| \vee 1}{H} + Ht_n.$$

Setting $H = \sqrt{\frac{|\mathcal{N}| \vee 1}{t_n}}$ yields the optimal rate

$$\|\hat{f} - f\|_1 = \max\left(t_n^{\alpha/(2+\alpha)}, \ t_n^{1/2}\sqrt{|\mathcal{N}|}, \ t_n^{1/2}\right).$$