MÓDULO 2:

IDENTIFICADOR DE CURTO-CIRCUITO IEC E FUNÇÕES DE PROTEÇÃO EM TEMPO REAL

Alan Petrônio Pinheiro

Coordenador do projeto – UFU/LRI

Execução e pesquisa:

Thiago Henrique Arbuini Rodrigues - 11911ECP002

1. DATA VERSÃO ORIGINAL 19-03-2024	2. DATA ÚLTIMA ATUALIZAÇÃO 23-04-2024	3. DATA COBERTA MAR/24 ATÉ MAI/24
4. TÍTULO DESTE DOCUMENTO REPORTE TÉCNICO DO IDENTIFICAD	OR DE CURTO-CIRCUITO	5a. PROCESSO SEI DO P&D
		5b. NÚMERO PROJETO P&D -
6. AUTOR(ES) THIAGO HENRIQUE ARBUINI RODRIGUES		5c. ETAPA DO PROJETO TODAS
		5d. TIPO DE PRODUTO DOCUMENTAÇÃO TÉCNICA DE SOFTWARE DE DISCIPLINA STR
7. ENDEREÇO		8. NÚMERO DO DOCUMENTO
AV. JOÃO NAVES DE ÁVILA, 2121, BLOCO 3N - UBERLÂNDIA - MG		TR-01

9. DISTRIBUIÇÃO DESTE DOCUMENTO

DISTRIBUIÇÃO ABERTA A TODOS OS INTERESSADOS.

10. NOTAS COMPLEMENTARES

11. RESUMO

ESTE DOCUMENTO DESCREVE O FUNCIONAMENTO DE UM MÓDULO DE UM SISTEMA SUPERVISÓRIO PARA O SETOR ELÉTRICO: UMA APLICAÇÃO DE IDENTIFICAÇÃO DE CURTO-CIRCUITO COM FUNÇÕES DE PROTEÇÃO ANSI.

12. PALAVRAS-CHAVE

P&D; IOT; SISTEMA EM TEMPO REAL, MERGE UNIT, SISTEMA SUPERVISÓRIO, MEDIÇÃO EM SUBESTAÇÕES DE ENERGIA.

13. CLASSIFICAÇÃO SEGURANÇA:	14. NÚMERO DE PÁGINAS 15. NOME DO RESPONSÁVEL PRINCIPAL E CONTATO	
		THIAGO HENRIQUE ARBUINI RODRIGUES
ABERTA	-	EMAIL: tharbuini@gmail.com

HISTÓRICO DE VERSÕES DESTE TR

Tabela 1 – Histórico de versões deste reporte técnico.

Versão	Data	Modificações
1.0	março/2024	 Principais elementos de projeto Requerimentos básicos Modelagem de pacotes e fluxo de pacotes Interfaces básicas
2.0	abril/2024	Nova interface

SUMÁRIO

RESUMO GERAL	ļ
1 – INTRODUÇÃO: VISÃO GERAL DA SOLUÇÃO	ļ
1.1 — Propósito e escopo	r
1.2 – Produto: perspectivas e funções	,
1.3 – Restrições do produto e considerações	,
2 – REQUISITOS	,
2.1 – CENÁRIOS DE USO	'
2.2 – REQUISITOS E VALIDAÇÃO	;
2.3 – Versionamento	į
2.4 – ELEMENTOS DE PROJETO	,
2.4.1 – Máquina de estados 9	,
2.4.3 – Interfaces de usuário	,
3 – MODELAGEM-MÉTODOS	<u>,</u>
3.1 – TABELA GERAL DE OBJETOS IPSO E RECURSOS DE URI	
3.2 – Fluxo geral de mensagens	
3.3 – MODELAGEM DETALHADA DOS RECURSOS	,
3.3.1 – Envio de pacotes	;

RESUMO GERAL

Este reporte técnico aborda os elementos do sistema identificador de curto-circuito que compõe a solução de sistema supervisório para o setor elétrico. O software a ser desenvolvido é responsável por ler pacotes da rede, com medições de correntes fornecidas por um módulo gerador de pacotes, e identificar curto-circuito seguindo a função 51 da tabela ANSI (sobrecorrente temporizada) e curva de curto-circuito IEC. Esse módulo é apenas uma parte do sistema supervisório.

1 – Introdução: visão geral da solução

1.1 – Propósito e escopo

O sistema a ser desenvolvido tem o objetivo de, ao receber pacotes da rede contendo informações de corrente, analisá-las usando normas e curvas de curto-circuito e identificar eventos na rede.

Figura 1.1.1: Visão geral de escopo.

Desta maneira, ainda que o M'odulo~2 tenha função de identificar evento de curto-circuito na rede, também atenderá características do módulo de atuação, em particular o M'odulo~5-IEDs~atuadores.

É importante ressaltar que normalmente há mais de um dispositivo enviador de pacotes a ser observado. Portanto, o módulo deve ser capaz de monitorar tais dispositivos simultaneamente e identificar (ou não) os eventos que ocorrerem. A seguir é mostrado um exemplo da distribuição lógica de uma subestação:

Figura 1.1.2: Visão geral de cenário.

1.2 – Produto: perspectivas e funções

Este produto tem como função monitorar a rede através da análise de pacotes recebidos com a maior precisão possível e atendendo requerimentos de tempo nas ocasiões especiais de eventos elétricos. As funções do sistema são:

- 1) Fazer análise a cada pacote recebido;
- 2) Em caso de evento, enviar o pacote de emergência em broadcast por rede ethernet em IP (confiável);
- 3) Responder as demandas dos requerimentos de tempo da norma IEC61850.

Figura 1.2.1: Principais elementos do projeto.

Para entender o sistema, comecemos a análise observando a **Figura 1.2.1**. Com base nisto, descreve-se os elementos:

- **Módulo hardware gerador de dados:** envia dados de medidas de corrente periodicamente para a rede.
- Módulo algoritmo de análise das medições: faz a análise dos valores de corrente obtidos do primeiro módulo e identifica se houve um evento na rede através da curva de curto-circuito IEC.
- **Módulo gerente de pacotes:** através dos dados analisados, monta e envia pacotes de alarme para a rede conforme urgência.

1.3 – Restrições do produto e considerações

A solução geral aqui prevista foi testada para condições específicas e nestas, foram identificadas as seguintes restrições ou limitações para os quais o sistema proposto não foi projetado para atuar. Estas restrições e limitações são mostradas na tabela da sequência.

Tabela 1.3.1: Restrições e limitações previstas para sistema.

Νō	Restrição/limitação	Descrição/detalhamento	
1	O sistema é voltado apenas para SE de energia que seguem o padrão IEC 61850	Ele se aplica somente as normas de SE de média tensão da IEC, especialmente a IEC 61850, para tempos de atuação, arquitetura, configuração e formatação de dados.	
2	O sistema é focado apenas para bay de processos	Sua medição e normalização é para atuação em transformadores de potência, disjuntores AT/MT, chaves seccionadoras e cubículos de medição.	
3	O sistema precisa de um computador industrial instalado dentro da SE	Para execução é necessário que no ambiente da SE exista um computador industrial apto a operar neste tipo de ambiente e com os mecanismos de proteção corretos. Ainda, ter interfaces de comunicação com latência desprezível.	
4	Sem ausência de redundância ou WDT	Caso o software falhe, não existe nenhum mecanismo de contingência dele.	
5	O sistema emula no máximo 5 dispositivos	O sistema proposto consegue emular só até 5 unidades de 'dispositivos identificadores'.	

2 – Requisitos

2.1 – Cenários de uso

Os seguintes cenários foram identificados para este sistema.

a) Cenário 1 – operação em condições normais: nele quando não há nenhum evento, o sistema opera em condições normais seguindo a sequência de passos indicada na figura da sequência. Ela ilustra como deve ser seu comportamento.

Cenário 1 - Funcionamento em Condições Normais

Figura 2.1.1: Cenário de aplicação.

b) Cenário 2 – operação em transitórios elétricos e/ou curto-circuito: nele, o "algoritmo de comportamento" verificou que houve uma mudança abrupta na rede elétrica. Pode ser um princípio de curto-circuito (ainda a confirmar), ou um transitório, mas que ainda será identificado pela curva e o tempo limite.

Cenário 2 - Funcionamento em Transitório e Curto-Circuito

Figura 2.1.2: Cenário de aplicação.

2.2 – Requisitos e validação

Com base nas avaliações de cenário de uso, desenvolveu-se na sequência a seguinte lista de requerimentos, vista na tabela da sequência.

Tabela 2.2.1: Mapa de requerimentos.

Classe/ Compon ente	Nº req ·	Requisito	Origem requisito	Prio r.	Tipo validação
1 - Robustez	1.1	Ter alimentação auxiliar para não cair (bateria)	Não parar de funcionar durante eventos elétricos	1	Testar em cenário comutando desligamento das fontes por X vezes e analisar disponibilidade do serviço.
	1.2	Ter redundância na alimentação	extremos	1	Usar uma fonte AC e outra fonte DC.
	2.1	Recebe medidas de corrente por rede ethernet em taxas aceitáveis para normas proteção	Norma IEC	1	Implantar um módulo de analog front end e validar medidas usando maleta de relé para geração de sinais.
Funcional	2.2	No evento elétrico o pacote deve ser enviado rapidamente a fim de respeitar o requerimento de tempo de atuação de sistema	Norma IEC	1	Fazer um recurso no software que aumenta o valor de corrente de modo que os outros módulos identifiquem este aumento e mandem as medidas instantaneamente.
	2.3	A aplicação deve suportar 10 dispositivos emissores de pacotes	-	2	Fazer um outro módulo de software de teste que identifique os pacotes na rede e seja capaz de contabilizar a quantidade de dispositivos
	3.1	Alto MTBF (superior a 1 falha/ano com DEC < 2 mim)	Alta disponibilidade	2	Simulação em software
3 – Não funcionais	3.2	Sistema deve contribuir para decrementar DEC e FEC evitando falsos positivos	ANEEL	2	Avaliações feitas pelos usuários com base em cenários estatísticos contabilizando-se o tempo (e frequência) de desligamentos desnecessários em que o sistema aqui proposto poderia atuar evitandos tais desligamentos

2.3 – Versionamento

Os recursos do software são distribuídos em versões conforme estimado pela tabela na sequência.

Tabela 2.3.1: Tabela de recursos do sistema e versão.

Versão	Recurso
1.0	■ Receber pacotes da rede
(mar/24)	■ Analisar segundo a curva de curto-circuito IEC
	□ Plotar visualmente os dados enviados e recebidos
2.0	□ Ter suporte a mais de um dispositivo gerador de pacotes
(abril/24)	□ Fazer análise multithread
(., -,,	🗖 Enviar pacote alerta com o número de dispositivo

2.4 – Elementos de projeto

2.4.1 - Máquina de estados

Baseado nos cenários identificados e requerimentos construídos, tem-se a seguinte proposição para a máquina de estados de uma MU.

Figura 2.4.2.1: Máquina de estados de uma unidade de monitoramento.

Todavia, essa unidade de monitoramento é executada dentro uma aplicação que pode ter mais de uma. Logo, o sistema também deve ter estes recursos:

- a) Criação dinâmica de unidades
- b) Recepção de dados da rede
- c) Estimador de QoS e métricas de tempo
- d) Avaliação de disponibilidade de rede

Esses recursos serão incluídos na segunda versão do projeto.

2.4.3 – Interfaces de usuário

Para fins de caracterização do sistema, a figura na sequência ilustra a interface desta aplicação indicando alguns de seus recursos previstos.

Figura 2.4.3.1: Interface principal da aplicação com visuais

Na sequência, uma breve descrição destes principais elementos:

0	Listview identificando: ID dispositivo, corrente. e o IP de conexão.
2	Plot de gráfico para visualização dos dados recebidos, sempre é atualizado com a maior corrente entre os dispositivos.
3	ToolStrip identificando o IP de conexão do dispositivo gerador.

Figura 2.4.3.2: Interface principal da aplicação sem visuais

Na sequência, uma breve descrição destes principais elementos:

Listview identificando: ID dispositivo, corrente. e o IP de conexão.
 ToolStrip identificando o IP de conexão do dispositivo gerador.

3 – Modelagem

3.1 – Tabela geral de objetos IPSO e recursos de URI

Os recursos a seguir descrevem os pacotes para eventos e para recebimento de dados. Estes códigos estão dispostos na tabela da sequência.

Tabela 3.1.1: Tabela IPSO de recursos do projeto.

Objeto	Recurso Nível 1	Significado	
99 Mensagens com medidas	1 Pacote de alarme	Mensagem de alarme para eventos elétricos	
100	1	Mensagens com medidas de corrente obtidas (geradas) por outro	
Pacote com medidas	Pacote de medidas recebidas	programa	

3.2 – Fluxo geral de mensagens

A figura na sequência ilustra resumidamente as mensagens que são trocadas, em diferentes circunstâncias, entre o sistema MU e demais módulos.

Figura 3.2.1: Diagrama do fluxo de mensagens.

O gerador de dados manda constantemente pacotes 100/1 para a rede e, no caso, são recebidas pelo módulo identificador de curto-circuito. Este só envia pacotes 99/1 quando identifica pela análise da curva a presença de curto-circuito na rede.

3.3 – Modelagem detalhada dos recursos

3.3.1 – Envio de pacotes

A figura na sequência ilustra o funcionamento do envio e recebimento de pacotes de medidas e o envio de pacotes de alarme.

Figura 3.3.1.1: Diagrama pacotes e eventos associados ao envio de mensagens.

O formato dos pacotes é descrito a seguir:

Tabela 3.3.1.1: Formato do pacote de dados 100/1

Campo	Valores	Significado
URI	100/1	Pacote de envio de medidas regulares
idDispositivo	int	Identificador de qual MU está gerando este pacote
numPct	int	Número do pacote gerado incrementalmente
medidas	[MedidasCorrente]	Três medidas de corrente

Tabela 3.3.1.2: Formato do pacote de dados 99/1

Campo	Valores	Significado
URI	99/1	Pacote de envio de controle do protocolo de medição
idDispositivo	int	Identificador de qual MU está gerando este pacote
emCurto	boolean	Flag identificando curto ou não
corrente	double	Valor da corrente no momento do curto
hora	string	Tempo quando o pacote foi enviado