States of Matter

- Q.1. The pressure of a 1 : 4 mixture of dihydrogen and dioxygen enclosed in a vessel is one atmosphere. What would be the partial pressure of dioxygen ?
 - a) 0.8 × 10⁵ atm
 - b) 0.008 Nm⁻²
 - c) $8 \times 10^4 \text{ Nm}^{-2}$
 - d) 0.25 atm
- Q.2. The ratio of Boyle's temperature and critical temperature for a gas is :
 - a) 8/27
 - b) 27/8
 - c) 1/2
 - d) 2/1
- Q.3. A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passing through the origin. The plots at different values of pressure are shown in figure. Which of the following order pressure is correct for this gas?

- a) $p_1 > p_2 > p_3 > p_4$
- b) $p_1 = p_2 = p_3 = p_4$
- C) $p_1 < p_2 < p_3 < p_4$
- d) $p_1 < p_2 = p_3 < p_4$
- Q.4. Densities of two gases are in the ratio 1:2 and their temperatures are in the ratio 2:1 then the ratio of their respective pressures is
 - a) 1:1
 - b) 1:2
 - c) 2:1
 - d) 4:1
- Q.5. Which of the following mixtures of gases does not obey Dalton's law of partial pressure?
 - a) O₂ and CO₂
 - b) N_2 and O_2
 - c) Cl₂and O₂
 - d) NH₃ and HCl

Q.6. Increase in kinetic energy can overcome intermolecular forces of attraction. How will the viscosity of liquid be affected by the increase in temperature?

- a) Increases
- b) No effect
- c) Decreases
- d) No regular pattern will be followed
- Q.7. Which pair of the gaseous species diffuse through a small jet with the same rate of diffusion at same P

and T

- a) NO, CO
- b) NO, CO₂
- c) NO, C₂H₆
- d) NH₃, PH₃
- Q.8. At what temperature the RMS velocity of SO₂ be same as that of O₂ at 303 K?
 - a) 273 K
 - b) 606 K
 - c) 303 K
 - d) 403 K
- Q.9. The value of van der waals constant 'a' for gases O_2 , N_2 , NH_3 and CH_4 are 1.360, 1.390, 4.170 and 2.253 liter² atm mol⁻² respectively. The gas which can most easily be liquefied is :
 - a) O₂
 - b) N₂
 - C) NH₃
 - d) CH₄

Q.10. Which of the following volume (V) - temperature (T) plots represents the behaviour of one mole of an ideal gas at one atmospheric pressure ?

 Q.11. Gases deviate from ideal behaviour because molecules a) are colourless b) are spherical c) attract each other d) have high speeds
 Q.12. Dominance of strong repulsive forces among the molecule of the gas: a) depends on Z and indicates that Z = 1 b) depends on Z and indicates that Z > 1 c) depends on Z and indicates that Z<1 d) is independent of Z
Q.13. The term which accounts for intermolecular forces in a van der Waal equation is: a) $(V-b)$ b) $(RT)^{-1}$ c) $(P+a/V^2)$ d) RT
Q.14. The density of a gas A is twice that of gas B. Molecular mass of A is half of the molecular mass of B. The ratio of the partial pressure of A and B is ——————————————————————————————————
 Q.15. A gas can be liquefied: a) above its critical temperature b) at its critical temperature c) below its critical temperature d) at any temperature
Q.16. The density of neon will be highest at a) STP b) 0°C and 2 atm c) 273°C, 1 atm d) 273°C, 0.5 atm
Q.17. A gas diffuses 1/5 times as fast as hydrogen. Its molar mass is a) 25 b) 50 c) $25\sqrt{2}$ d) $50\sqrt{2}$

Q.18. 0.5 mole of each of H_2 ,	SO_2 and CH_4 are kept in a container. A hole was ma	ade
in the container After 3 hours,	the order of partial pressures in the container will be	е

- a) $Pso_2 > PCH_4 > PH_2$
- b) $PH_2 > PSO_2 > PCH_4$
- C) $PCH_4 > Pso_2 > PH_2$
- d) $PH_2 > PcH_4 > Pso_2$

Q.19. If r.sm.s. speed of gaseous molecules is

x cm sec⁻¹ at a pressure of p atm, then r.m.s. speed at a pressure of 2p atm and constant temperature will be

- a) x
- b) 2x
- c) 4x
- d) x/4

Q.20. When temperature is increased, surface tension of water

- a) increases
- b) decreases
- c) remains constant
- d) shows irregular behaviour

Q.21. Density ratio of O₂ and H₂ is 16:1. The ratio of their r.m.s velocities will be

- a) 4:1
- b) 1:16
- c) 1:4
- d) 16:1

Q.22. Steam distillation is based on

- a) Boyle's Law
- b) Charle's Law
- c) Dalton's Law of partial pressures
- d) Avogadro's Law

Q.23. Equal masses of methane and oxygen are mixed in an empty container at

25°C. The fraction of the total pressure exerted by oxygen is

- a) 1/2
- b) 2/3
- c) $(1/2) \times (273/298)$
- d) 1/3

Q.24. In van der Waal equation of state of gas laws, the constant b is a measure of

- a) Intermolecular collisions per unit volume
- b) Intermolecular attraction
- c) Volume occupied by the molecules
- d) pressure of gas

Q.25. The compressibility factor for H_2 and He is usually

- a) >1 b) =1
- c) <1
- d) either of these