Практическо упражнение No 4

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЧИСЛАТА ОТ ДВОИЧНА В ДЕСЕТИЧНА БРОЙНА СИСТЕМА

1. Цел на упражнението:

Целта на упражнението е, работейки с програмните модели на операционните блокове за преобразуване на цели и дробни числа от двоична в десетична бройна система, студентите да добият по-ясна представа за начините за реализиране на съответните методи, а също така да се установи степента на усвояване на микроалгоритмите за преобразуване.

2. Теоретична част:

Методи за преобразуване от двоична в десетична система.

2.1. Метод за ръчно преобразуване - използва се следната форма на представяне:

$$A = a_n 2^{n-1} + a_{n-1} 2^{n-2} + ... + a_2 2 + a_1 + a_{-1} 2^{-1} + a_{-2} 2^{-2} + ... + a_{-k} 2^{-k}.$$

Всички цифри и числа се записват в десетичната система и действията се извършват в тази система. В резултат се получава A в десетичната система.

Примери:

$$(10010011)_2 = 1.2^7 + 1.2^4 + 1.2 + 1 = (147)_{10}$$

 $(0,1011)_2 = 1.2^{-1} + 1.2^{-3} + 1.2^{-4} = (0,6875)_{10}$

2.2. Методи за машинно преобразуване:

а. програмно - използват се специални подпрограми, които реализират общия метод като всички действия се извършват в двоичната система.

Примери:

$(10010011)_2 = (?)_{10}$				$(0,1011)_2 = (?)_{10}$			
10010011	:1010					0,	1011
-1010	1110	:1010	_	_		Χ	1010
10000	-1010	1	:1010			1,	0110
-1010	100	-0	0	_		+101,	1
1101	\downarrow	1			a ₋₁	6←110,	1110
-1010	4	\downarrow				X	1010
111	a_2	a_3				1,	1100
\downarrow				_		+111,	0
7					a ₋₂	8←1000,	1100
$\mathbf{a_1}$				_		X	1010
						1,	1000
$(10010011)_2 = (147)_{10}$					+110,	0	

$$(1011)_2 = (0.6875)_{10}$$

- **б. апаратно** използват се методи, аналогични на тези, по които става апаратното преобразуване от десетична в двоична система.
- преобразуване на цели числа става чрез прибавяне на корекция (+3) към тетрадите, които са по-големи от 4 и изместване наляво.

Схемата на операционната част на блока за преобразуване на цели двоични числа в десетичната система е показана на фиг.1. В Рх се записва двоичното число, в Рк се записват кодовете на корекциите, а в Рz след съответния брой цикли се получава двоично-десетичният код на числото. Във всеки от циклите се извършват последователно следните микрооперации:

- 3Pk:
- ПрК Pz и ПрК Pк в Σ ;
- ΠΚ Pz;
- ИЛ Рх и ИЛ Рz;

Забележка: При корекция = 0 може да се извършва направо ИЛ.

Фиг.1. Схема на операционната част на блока за преобразуване на цели двоични числа в десетичната система

Действието на блока за преобразуване е пояснено и чрез цифровата диаграма на фиг.2.

$(1001011)_2 \rightarrow (?)_{10}$

		Р	Z	Px
		0000	0000	1001011
Кор.	+	0000	0000	
		0000	0000	
ИЛ₁		0000	0001	0010110
Кор.	+	0000	0000	_
		0000	0001	
$ИЛ_2$		0000	0010	0101100
Кор.	+	0000	0000	_
		0000	0010	
$ИЛ_3$		0000	0100	1011000
Кор.	+	0000	0000	_
		0000	0100	
$ИЛ_4$		0000	1001	0110000
Кор.	+	0000	0011	
		0000	1100	
$ИЛ_5$		0001	1000	1100000
Кор.	+	0000	0011	_
		0001	1011	
$ИЛ_6$		0011	0111	1000000
Кор.	+	0000	0011	
		0011	1010	
$ИЛ_7$		0111	0101	0000000
		\downarrow	\downarrow	
		7	5	

Фиг.2. Цифрова диаграма на блока за преобразуване на цели числа от двоичната в десетичната система

- преобразуване на дробни числа - става чрез изместване надясно и прибавяне на корекция (+13) към тетрадите, в старшите разряди на които след изместването са се появили "1".

Схемата на операционната част на блока за преобразуване на дробни двоични числа в десетичната система е показана на фиг.3. В Рх се записва двоичното число, в Рк се записват кодовете на корекциите, а в Рz след съответния брой цикли се получава двоично-десетичният код на числото. Във всеки от циклите се извършват последователно следните микрооперации:

- ИД Рх и ИД Рz;
- 3Pк:
- ПрК Рz и ПрК Рк в ∑;
- ΠK Pz.

Забележка: При корекция = 0 може да се извършва направо ИД.

Фиг.3. Схема на операционната част на блока за преобразуване на дробни двоични числа в десетичната система

Действието на блока за преобразуване е пояснено и чрез цифровата диаграма на фиг.4.

$$(0,1100011)_2 \rightarrow (?)_{10}$$

 $n_{10} = n_2.lg2 = 7.0,3 \approx 2$

Px		Pz				
,1100011		,0000	0000			
,0110001	+	, 1 000 ,1101 ,0101	0000 0000	ИД ₁ Кор.		
,0011000	+	, 1 010 ,1101 ,0111	1 000 1101 0101	ИД ₂ Кор.		
,0001100	+	,0011 ,0000 ,0011	1 010 1101 0111	ИД ₃ Кор.		
,0000110	+	,0001 ,0000 ,0001	1 011 1101 1000	ИД ₄ Кор.		
,0000011	+	,0000 ,0000 ,0000	1 100 1101 1001	ИД ₅ Кор.		
,0000001	+	, 1 000 ,1101 ,0101	0100 0000 0100	ИД ₆ Кор.		
,0000000	+	, 1 010 ,1101 ,0111	1 010 1101 0111	ИД ₇ Кор.		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	↓ 7			

Фиг.4. Цифрова диаграма на блока за преобразуване на дробни числа от двоичната в десетичната система

3. Задачи за изпълнение:

- 3.1. Да се попълни цифровата диаграма на блока за преобразуване на цели числа от двоичната в десетичната система X =
- 3.2. Да се попълни цифровата диаграма на блока за преобразуване на дробни числа от двоичната в десетичната система Y = 0, Предварително да се изчисли броят на цифрите след запетаята.
- 3.3. Да се извърши преобразуването на числото X със съответния програмен модел (фиг.5), като междинните резултати се сравняват с цифровата диаграма.
- 3.4. Да се извърши преобразуването на числото Y със съответния програмен модел (фиг.6), като междинните резултати се сравняват с цифровата диаграма.

4. Контролни въпроси:

- 4.1. Какъв метод се използва при ръчното преобразуване от двоична в десетична система?
- 4.2. Какви основни методи се използват при машинното преобразуване от двоична в десетична система?
- 4.3. Как се извършва апаратното преобразуване на цели числа от двоична в десетична система?
- 4.4. Как се извършва апаратното преобразуване на дробни числа от двоична в десетична система?

Фиг.5. Програмен модел на блока за преобразуване на цели двоични числа в десетичната система

Фиг.6. Програмен модел на блока за преобразуване на дробни двоични числа в десетичната система