

상권 치안 수준에 따른 카페 폐업 예측 모델

TAVE 11기 - 뿌스팅 "정혜정, 서해원, 정윤주, 한유진, 허윤빈"

INDEX

01 프로젝트 소개

- 프로젝트 주제 및 목표
- 프로젝트 진행 중 사용 데이터 소개

02 프로젝트 진행과정 01. 전처리 & EDA

- 전처리 과정
- 각 변수별 EDA 결과
- EDA 결과에 따른 추가적인 전처리 과정

03 프로젝트 진행과정 02. 모델

- XGB Classifier
- Random Forest
- KNN
- Logistic Regression

04 결론

- 각모델별결과
- 프로젝트 결론
- 추후 보강할 점
- 출처 및 코드

01 프로젝트 소개

- 프로젝트 주제 및 목표
- 프로젝트 진행 중 사용 데이터 소개

상권 치안수준에 따른 카페 폐업 예측 모델

방범 지수와 폐업간 연관성 있을 것 시장님들에게 폐업여부 예측 => 도움될 것

- KT 잘나가게 홈페이지 : 특정 위치 가게의 상권인구, 주변수단, 유동인구추이, 해당 지역 사건(트렌드) 등을 한번에 제공

페이지에서는 단순히 정보를 제공하고 있으나 이를 확장하여, 각 변수들을 통해 새로운 위치에 가게를 개업할 때, '폐업여부를 알려주는 모델을 만든다면, 개업 위치 선정에 도움이 될 것'이라 생각특히, 특정 위치의 치안 수준이 폐업 여부에 영향을 줄 것이라 생각에,

치안수준에 따른 카페 폐업 예측 모델 제작을 주제로 프로젝트 진행

KT 잘나가게 ' 내가게 상권'

사용 DATA / 변수 설명

치안 수준에 따른 폐업 여부 예측 모델에 사용될 변수(DATA) 출처 및 소개

공공데이터포털

영업 중 점포 데이터

- 2023년 기준 영업 중 점포 위치 및 업종 데이터
- 소상공인시장진흥공단_상권정보

폐업 점포 데이터

2020 - 2023년 사이 폐업한 점포
 위치 및 업종 데이터

국가철도공단_수도권 역위치

- 서울시 메트로1~9호선에서 운영 하는 노선의 역 위치
- 철도운영기관명, 역/선명, 위경도

서울 열린데이터 광장

서울시 주요 공기업 리스트 정보

- 서울시내 주요 공기업 리스트들의 명칭, 주소
- 2015년 이후 공기업 업데이트 없음

서울시 대학 및 전문대학 DB 정보

• 서울시내 대학 및 전문대학의 종류별 학교명 및 상태, 주소 등 관련 정보

도로명 주소를 바탕으로 위경도 코드로 추출해 사용

스마트 치안 빅데이터 플랫폼

상권안전지수

범죄발생건수를 통해 추정한 서울
 시 상권별 안전지 (범주형)

상권활성화지수

 상권활성화지수, 상권활성화지수등급, 행정동코드명, 매출지수, 인프라 지수, 가맹점 지수, 인구지수, 금융지수

사용 DATA / 변수 설명

치안 수준에 따른 페업 여부 예측 모델에 사용될 변수(DATA) 출처 및 소개

서울시 상권분석 서비스

지역, 상권별 현황 사이트

- 점포수, 연차별 생존율(1,3,5년), 신생기업 생존율, 평균영업기간, 개폐업수, 인구수(유동,주거,직장), 소득/가구수, 임대시세
- 개폐업수 제외 모든 변수 크롤링
- 1,2,3,4분기 데이터 큰변화 없음 ->4분기 데이터로 통합하여 사용
- 행정동명 단위의 데이터

02 프로젝트 진행과정 01. 전처리 & EDA

- 전처리 과정
- 각 변수별 EDA 결과
- EDA 결과에 따른 추가적인 전처리 과정

전처리 과정

사용 데이터 간 label 설정 및 변수 내용 간 통일을 위한 과정

- 1. 폐업, 영업 데이터 병합 후, 각 가게별 위도, 경도 추가
 - 폐업 데이터와 영업 데이터 병합
 - 병합된 폐영업 데이터 주소를 바탕으로 위도, 경도 추가 (geopy.geocoders package 활용)

2. 행정동명 통일

ex) 노량진 제1동과 같이 제0동 꼴 -> 노량진동으로 통일

일원2동 -> 개포3동 : 행정구역 이름 변경때문. 제일 최신 버전이 개포3동

오류2동 & 항동: 항동이 오류2동이 분할되어 나온 동이므로, 오류2동으로 합침

행정동 - binary encoding활용하여, 텍스트를 encoding해줌

3. 크롤링 데이터

- 1) 소득분위, 생존율 등 변수를 integer 형태로 변환
- 2) 둔촌1동 제거 (폐영업데이터에는 없음)
- 4. 위치 기반 카페, 대학, 공공기관, 지하철, 버스정류장 개수 추가

```
In [134]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20886 entries, 0 to 20885
        Data columns (total 26 columns):
         # Column
                            Non-Null Count Dtype
            폐업여부
                               20886 non-null object
            소독분위
                               20886 non-null int64
            가구수
                              20886 non-null int64
            1년 생존율
                               20886 non-null float64
            3년 생존율
                               20886 non-null float64
            5년 생존율
                               20886 non-null float64
            최근 10년 기준 명균영업기간 20886 non-null float64
            최근 30년 기준 명균영업기간 20886 non-null float64
            일대시세
                               20886 non-null float64
         9 유동인구
                               20886 non-null int64
         10 주거인구
                               20886 non-null int64
         11 직장인구
                               20886 non-null int64
         12 방범지수
                               20886 non-null int64
                                 20886 non-null int64
         13 반경500_카페개수
         14 반경500 지하철역개수
                                  20886 non-null int64
         15 반경500_정류장계수
                                  20886 non-null int64
         16 반경500_공공기관개수
                                 20886 non-null int64
         17 반경500 대학개수
                                 20886 non-null int64
                                 20886 non-null int64
         18 반경1000.대학개수
         19 상권활성화지수등급
                                   20886 non-null float64
         20 상권활성화지수
                                  20886 non-null int64
         21 매출지수
                               20886 non-null float64
         22 인프라지수
                                20886 non-null float64
         23 가맹점지수
                                20886 non-null float64
         24 인구지수
                               20886 non-null float64
         25 금융지수
                               20886 non-null float64
        dtypes: float64(12), int64(13), object(1)
         memory usage: 4.1+ MB
```

[변수별 info]

범주형: 폐업여부

연속형 : 소득분위, 가구수, 1/3/5년 생존율, 최근 10/30년 평균 영업기간,

임대시세, 유동인구, 주거인구, 직장인구, 방범지수, 편의시설 개수,

상권활성화 지수(등급), 매출지수, 인프라지수, 가맹점지수,

인구지수, 금융지수

연속형 변수들 간 상관관계를 파악 -> 다중공선성 해결 및 변수 관계 파악

폐업 데이터가 0.85%로 매우 불균형 : oversampling method인 SMOTE적용하자!

변수별 dist plot

변수별 dist plot

변수별 dist plot

전체적으로 분포가 정규분포 처럼 생겼으나, 몇몇 지수에서 왼쪽으로 치우친 형태가 나옴 => 경제지수와 연결되어 있기 때문이라고 생각

분포 형태가 아닌 경우는 범주형으로 봐야할 것

각 분포 상 이상치 존재 - 이상치 자체가 특정 행정동의 특성을 나타내는 경우가 많음 ex) 서교동 주변 카페 개수, 잠실의 임대료 ... etc => 이상치 처리 X

변수별 correlation map

- 1. 1/3/5년 생존율의 상관관계가 높음
 - 3가지 분포 중 가장 skewed되어 있지 않은 3년 생존율 선택
- 2. 공공기관개수, 직장인구 제거
 - 두가지 변수의 분포 유사
 - 둘과 관련된 다른 변수들간 상관관계가 높음 (둘간 상관관계도 높음)
 - 직장인구의 경우, 공공기관 + 사기업 따라서 공공기관개수 의미 X
- 3. 주거인구 삭제
 - 주거인구, 유동인구간 높은 상관관계
 - 특정 주변 주거자뿐 아니라 행정동 방문자가 카페 사용자일 가능성 높으므로 두가지를 반영하는 유동인구만 사용
- 4. 반경 500m 이내 대학개수 삭제
 - 반경 500m의 결과와 1000m 결과 유사
 - 대학 크기를 고려했을 때 1000m가 합리적이라고 판단
- 5. 상권활성화지수등급 삭제 & 다른 경제 지수 삭제
 - 지수와 등급간 높은 상관관계
 - 상권활성화지수와 다른 경제지수 간 높은 상관관계 -> 상권활성화 지수 사용시 차원 축소도 가능하므로!

PCA 해석

0 폐업여부 1.009471 1 소득분위 62.529372 2 가구수 9.113669 3 1년 생존율 42.562229 4 3년 생존율 27.409906 5 5년 생존율 14.105935 6 최근 10년 기준 평균영업기간 172.501704 7 최근 30년 기준 평균영업기간 117.248363 8 임대시세 20.785267 9 유동인구 13.087208			F	eatures	YIF
2 가구수 9.113669 3 1년 생존율 42.562229 4 3년 생존율 27.409906 5 5년 생존율 14.105935 6 최근 10년 기준 평균영업기간 172.501704 7 최근 30년 기준 평균영업기간 117.248363 8 임대시세 20.785267	0			폐업여부	1.009471
3 1년 생존율 42.562229 4 3년 생존율 27.409906 5 5년 생존율 14.105935 6 최근 10년 기준 평균영업기간 172.501704 7 최근 30년 기준 평균영업기간 117.248363 8 임대시세 20.785267	1			소득분위	62.529372
4 3년 생존율 27.409906 5 5년 생존율 14.105935 6 최근 10년 기준 평균영업기간 172.501704 7 최근 30년 기준 평균영업기간 117.248363 8 임대시세 20.785267	2			가구수	9.113669
5 5년 생존율 14.105935 6 최근 10년 기준 평균영업기간 172.501704 7 최근 30년 기준 평균영업기간 117.248363 8 임대시세 20.785267	3		1	년 생존율	42.562229
6 최근 10년 기준 평균영업기간 172.501704 7 최근 30년 기준 평균영업기간 117.248363 8 임대시세 20.785267	4		3	년 생존율	27.409906
7 최근 30년 기준 평균영업기간 117.248363 8 임대시세 20.785267	5		5	년 생존율	14.105935
8 임대시세 20.785267	6	최근 10년 기준 평	97	면업기간	172.501704
	7	최근 30년 기준 평	92	면영업기간	117.248363
9 유동인구 13.087208	8			임대시세	20.785267
	9			유동인구	13.087208
10 주거인구 24.111448	10			주거인구	24.111448
11 직장인구 5.261454	11			직장인구	5.261454

12	방범지수	10.662753
13	반경500_카페개수	6.052884
14	반경500_지하철역개수	3.015157
15	반경500_정류장개수	9.911233
16	반경500_공공기관개수	1.988415
17	반경500_대학개수	1.677938
18	반경1000_대학개수	2.309081
19	상권활성화지수등급	1915.934819
20	상권활성화지수	40.879423
21	매출지수	110.051685
22	인프라지수	245.412823
23	가맹점지수	9.291396
24	인구지수	154.672439
25	금융지수	189.941896

VIF (다중공선성) 체크

VIF>10이면 다중공선성 있는 것 => 빨간 직사각형 모두 10 초과

10은 초과하지 않더라도 9이상인 값들이 많음

- => PCA나 변수 선택 필요
- 1. 상관관계를 통한 변수 선택
- 2. PCA를 통한 변수선택
- 2가지 방법을 사용할 것.

PCA 해석

PCA 결과 해석을 위해 특성별 변수 나눠줌

- 1. 상권특성 PCA
 - a. 임대시세, 방범지수, 반경 500/1000m 이내 지하철, 정류장, 공공기관, 대학 개수, 매출지수, 인프라지수, 금융지수
- 2. 경쟁업체 특성 PCA
 - a. 1,3,5년 생존율, 최근 10,30년 평균영업기간, 반경 500m 이내 카페 개수, 가맹점지수
- 3. 소비자 특성 PCA
 - a. 가구수, 유동인구, 주거인구, 직장인구, 인구지수

PCA 해석

상권특성 PCA

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
임대시세	0.3581	-0.0728	0.0582	0.0403	0.4912	0.1272	-0.4309	0.5885
방범지수	-0.0277	-0.1833	-0.1222	0.9351	-0.1469	-0.1574	0.0794	0.1080
반경500_지하철역개수	0.2904	0.0391	-0.2399	-0.1508	0.2309	-0.7114	0.4642	0.2130
반경500_정류장개수	0.0961	0.1704	-0.6218	-0.1231	-0.5632	0.0681	-0.2642	0.3721
반경500_공공기관개수	0.3349	-0.0585	-0.1929	-0.0328	-0.0424	0.5701	0.6404	0.0451
반경500_대학개수	0.0113	0.6583	0.0997	0.2044	0.1385	0.0952	0.0824	0.0951
반경1000_대학개수	0.0388	0.6787	0.0251	0.1304	0.0696	0.0361	0.0150	-0.0862
매출지수	0.4476	-0.1328	0.1651	0.1247	0.0232	0.2047	0.0006	-0.0579
인프라지수	0.4201	0.0859	-0.2571	0.0205	0.0068	-0.1651	-0.2975	-0.5587
금융지수	0.1955	0.0856	0.6072	-0.0890	-0.5565	-0.2026	0.0644	0.2730
상권활성화지수	0.4986	-0.0286	0.1666	0.0475	-0.1752	-0.0519	-0.1138	-0.2226

PC1: 직장가 카페 (공공기관 다수 포진, 임대시세 높음, 매출지수와 인프라지수 높음)

PC2: 대학가 카페 (대학개수 높음)

PC3 : 주거밀집지역 카페(교통 접근성이 낮고 소비자들의 잠재구매력이 높은 카페)

PC4: 치안이 좋은 지역 카페

PC5 : 임대시세 거품이 심한 지역 카페(임대시세에 반해 버스의 접근성 낮음, 소비자의

잠재구매력 낮음)

PC6: 역세권 아닌 직장가 카페(지하철역개수 낮음)

PC7: 임대세시가 낮은 직장가 카페

PC8: 역세권 아닌 대학가 카페(대학내부 카페로 추정)

PCA 해석

경쟁업체 특성 PCA

	PC1	PC2	PC3	PC4	PC5
1년 생존율	0.4495	-0.1528	-0.3068	0.7772	0.0506
3년 생존율	0.5581	-0.1024	-0.2246	-0.1925	-0.0599
5년 생존율	0.5344	-0.0652	-0.1803	-0.5615	-0.0520
최근 10년 기준 평균영업기간	0.3353	0.3956	0.4738	0.1660	0.2446
최근 30년 기준 평균영업기간	0.2491	0.5422	0.3612	-0.0167	-0.0111
반경500_카페개수	-0.1417	0.4397	-0.5674	-0.0938	0.6746
가맹점지수	-0.0794	0.5640	-0.3820	0.0834	-0.6900

PC1 : 일반적인 상권 카페 (카페수와 가맹점지수 0에 가까움)

PC2: 경쟁 치열한 상권의 카페(가맹점 다수, 생존율 낮음)

PC3: 경쟁 적은 상권의 카페(카페와 가맹점 음수, 생존율 낮지만 영업기간 높음)

PC4: 상권이 자주 바뀌는 카페(1년 생존율만 높고 그외 수치는 낮음) PC5: 개인카페 위주 상권의 카페(카페개수 많음, 가맹점지수 낮음)

PCA 해석

소비자 특성 PCA

	PC1	PC2	PC3
가구수	0.2517	-0.2261	-0.9302
유동인구	0.5731	-0.0803	0.2692
주거인구	0.5622	-0.2664	0.2034
직장인구	0.0472	0.8458	-0.1346
인구지수	0.5385	0.3951	-0.0523

PC1 : 주거지역 카페 PC2 : 직장가 카페

PC3: 인구수가 상대적으로 적은 지역 카페 (주택가)

추가적인 전처리 과정

PCA 선택시 다중공선성 해결됨 => 모델 적합시 PCA, PCA X version 두가지 데이터를 사용해 모델에 적합할것.

- 1. train, test set 나눈 후(test size : 40%), train set에 SMOTE(oversampling) 처리
- 2. train set에 대해 grid search 이용하여 cross validation (cv=3) 진행
- 3. 모델 성능은 confusion matrix를 활용해 평가할 것

03 프로젝트 진행과정 02. 모델

- XGB Classifier
- Random Forest
- KNN
- Logistic Regression

XGB Classifier

confusion matrix

1. 전체 변=	누 사용 & PCA X
16772	15141

X1

```
[[6772 1514]
[34 35]]
정확도: 0.8147
정밀도: 0.0226
재현율: 0.5072
f1 score: 0.0433
ROC: 0.8082
```

```
X2
2. 전체 변수 사용 & PCA O
```

```
[[6543 1743]
[31 38]]
정확도: 0.7877
정밀도: 0.0213
재현율: 0.5507
f1 score: 0.0411
ROC: 0.7904
```

```
X3
3. 일부 변수 사용 & PCA X
```

```
[[8240 46]
[ 68 1]]
정확도: 0.9864
정밀도: 0.0213
재현율: 0.0145
f1 score 0.0172
ROC: 0.7728
```

X4 4. 일부 변수 사용 & PCA O

```
[[8146 140]
[65 4]]
정확도: 0.9755
정밀도: 0.0278
재현율: 0.0580
f1 score: 0.0376
```

ROC: 0.7588

trade off를 고려해 재현율 & 정밀도 함께 고려한 것이

f1 score(높을 수록 좋음)

ROC: 민감도와 특이도를 바탕으로 한 graph value

정확도 : 실제값과 동일하게 예측한 비율

재현율이 높으면 정밀도가 낮다는 trade off 존재

Random Forest

confusion matrix

X1 1. 전체 변수 사용 & PCA X [[6693 1593] [43 26]]

정확도: 0.8042 정밀도: 0.0161 재현율: 0.3768

f1 score: 0.0308

ROC: 0.7657

X2

2. 전체 변수 사용 & PCA O

[[6609 1677]

정확도: 0.7944

정밀도: 0.0164

재현율: 0.4058

f1 score: 0.0316

ROC: 0.7722

X3

3. 일부 변수 사용 & PCA X

[[6566 1720]

40 29]

정확도: 0.7893

정밀도: 0.0166

재현율: 0.4203

1 score: 0.0319

ROC: 0.7779

X4

4. 일부 변수 사용 & PCA O

[[6342 1944]

32 37]

정확도: 0.7635

정밀도: 0.0187

재현율: 0.5362

f1 score: 0.0361

ROC: 0.7812

KNN confusion matrix

X1 X2 X3 X4 1. 전체 변수 사용 & PCA X 2. 전체 변수 사용 & PCA O 3. 일부 변수 사용 & PCA X 4. 일부 변수 사용 & PCA O 79] [[8186 100] 69] [[8207 87] [[8199 64 정확도: 0.9825 0.9816 0.9804 0.98370.02250.04760.0282재현율: 0.02900.0725 재현율: f1 score: 0.0253 0.0267 score: f1 score: 0.0575 0.0286ROC: 0.5240 ROC: 0.5246 ROC: 0.5236 ROC: 0.5248

Logistic Regression

confusion matrix

X1 X2 X3 X4 1. 전체 변수 사용 & PCA X 2. 전체 변수 사용 & PCA O 3. 일부 변수 사용 & PCA X 4. 일부 변수 사용 & PCA O [[6585 1701] [[6652 1634] 1479] 1665] 39]] 30 38 31]] 정확도: 0.7928 0.80120.8184 정확도: 0.79720.02240.0205 0.0251 정밀도: 0.0235재현율: 0.5652 0.4493 재현율: 0.60870.5797 재현율: f1 score: 0.0431 score: 0.0393 score: 0.0481 0.0451 score ROC: 0.7968 ROC: 0.8017 ROC: 0.8056 ROC: 0.8074

04 34 4

- 각모델별결과
- 프로젝트 결론
- 추후 보강할 점
- 출처 및 코드

각 모델별 결과

최종 모델 선정

f1 score와 ROC를 함께 고려했을 때 최고의 모델이라고 판단

		XGBClassifer					RandomForest				
	정확도	정밀도	재현율	f1 score	ROC	정확도	정밀도	재현율	f1 score	ROC	
X1	0.8147	0.0226	0.5072	0.0433	0.8082	0.8042	0.0161	0.3768	0.0308	0.7657	
X2	0.7877	0.0213	0.5507	0.0411	0.7904	0.7944	0.0164	0.4058	0.0316	0.7722	
X4	0.9864	0.0213	0.0145	0.0172	0.7728	0.7893	0.0166	0.4203	0.0319	0.7779	
X5	0.9755	0.0278	0.058	0.0376	0.7588	0.7635	0.0187	0.5362	0.0361	0.7812	
		KNN					로지스틱회귀				
	정확도	정밀도	재현율	f1 score	ROC	정확도	정밀도	재현율	f1 score	ROC	
X1	0.9837	0.0282	0.029	0.0286	0.5248	0.8184	0.0205	0.4493	0.0393	0.8017	
X2	0.9816	0.0225	0.029	0.0253	0.5246	0.8012	0.0251	0.6807	0.0481	0.8074	
X4	0.9825	0.0247	0.029	0.0267	0.524	0.7972	0.0235	0.5797	0.0451	0.8056	
X5	0.9804	0.0476	0.0725	0.0575	0.5236	0.7928	0.0224	0.5652	0.0431	0.7698	

프로젝트 결론

```
[[6772 1514]
정확도: 0.8147
정밀도: 0.0226
재현율: 0.5072
fl score: 0.0433
ROC: 0.8082
```

정확도약 81%로, 폐업 데이터가 불균형한 것에 비해 높다고 판단

다른 모델들에 비해 f1 score가 높았으며, X2 XGB Classifier에 비교했을 때, ROC, f1 score 두가지를 모두 고려했을 때, X1(전체 변수 & PCA 사용 X)일 때 결과가 best

보강할 점

예측 모델 기반 시나리오성

보강할 점

예측 모델 기반 시나리오성

출처 및 코드

출처

https://golmok.seoul.go.kr/owner/owner.do# https://jalnagage.kt.co.kr/push/#SYpopulation https://www.data.go.kr/ https://data.seoul.go.kr/ https://www.bigdata-policing.kr/

코드

https://fork-collision-452.notion.site/e93f9325104346b4ba08a99249bd8344 #뿌스팅 노션

2023.05.14 ~ 2023.07.11

