CSS 2101 DATA STRUCTURES [3 1 0 4] (Effective from the academic year 2025-26)

SEMESTER - III

Subject Code	CSS 2101	IA Marks	50
Number of Lecture Hours/Week	04	Exam Marks	50
Total Number of Lecture Hours	48	Exam Hours	03

CREDITS - 04

Abstract syllabus

Arrays, Sparse Matrix, Pointers and array of Pointers, Recursion, Memory allocation functions, Structures and array of structures, Linear Search, Binary Search, Sorting Techniques, Singly Linked List and Chains, Doubly Linked Lists, Circular Linked Lists, Linked Lists with Header Node, Applications using linked lists, Polynomials, Additional List Operations, Stacks, Queues, Circular Queues, Priority Queues and their Representation, Double Ended Queue, Input/Output Restricted Queues, Evaluation of Expression, Infix, Postfix and Prefix expressions and their conversions, Linked stacks and Linked Queues. Representation of Trees, Binary Trees, Expression tree, Binary Tree Traversals, Additional Binary Tree Operations, Threaded Binary Trees, Binary Search Trees - Definition, searching a Binary Search Tree, Inserting into and Deletion from Binary Search Tree, AVL trees, Red-Black Trees, Introduction, Definitions, Graph Representations, Depth First Search, Breadth First Search.

Course objectives: This course will enable students to

- Explain fundamentals of data structures and their applications essential for programming/problem solving
- Analyze Linear Data Structures: Stack, Queues and Linked Lists
- Analyze Non-Linear Data Structures: Trees and Graphs

Module -1	Teaching
	Hours
Introduction and Fundamentals:	12 Hours
Arrays – operations, applications, Pointers and array of pointers, Recursion –	
function recursion and applications, Memory allocation functions (malloc, calloc,	
free, realloc), Structures and array of structures, Searching Techniques - Linear	
Search, Binary Search, Sorting Techniques, Sparse Matrix - representation and	
operations	
R1: Chapter 6: 6.9, Chapter 8: 8.1-8.8, Chapter 9: 9.1-9.3, Chapter 10: 10.1-10.5,	
Chapter 12:12.3	
R2: Chapter 2: 2.4.1,2.4.2	

Module -2	
LINKED LISTS:	12 Hours
Singly Linked List and Chains, Representing Chains in C, Doubly Linked Lists,	
Circular Linked Lists, Linked Lists with Header Node, Linked Lists Applications	
- polynomial operations, Additional List Operations - Operations for Chains,	
Operations for Circularly Linked Lists	
R2: Chapter 4: 4.1 – 4.5, 4.8	
Module – 3	
STACKS and QUEUES:	9 Hours
Stacks and operations, Queues – linear, circular, Evaluation of Expressions – infix,	
postfix, prefix and conversions, Multiple Stacks and Queues,	
Priority Queues and their representation, Double Ended Queue (Deque),	
Input/Output Restricted Queues	
R2: Chapter 3: 3.1, 3.2, 3.4,3.5, Chapter 5: 5.6.1,5.6.2	
Module-4	

TREES:	11 Hours
Terminology, Representation of Trees, Binary Trees – operations and expression	
trees, Binary Tree Traversals: inorder, preorder, postorder, Additional Binary Tree	
Operations, Threaded Binary Trees, Binary Search Tree - definition, search,	
insertion, deletion, AVL Trees – rotations, balancing, Red-Black Trees	
R2: Chapter 5: 5.1-5.4.2, 5.5, 5.7.1-5.7.4, Chapter 10: 10.2,10.5	
Module-5	
GRAPHS:	4 Hours
Introduction, Definitions, Graph Representations- adjacency matrix, adjacency	
list, Depth First Search (DFS), Breadth First Search (BFS)	
R2: Chapter 6: 6.1, 6.2.1, 6.2.2	

Course outcomes:

After studying this course, students will be able to:

- 1. Associate real world representation of information using structures and recursions.
- 2. Understand and solve real world problems using linked list concepts.
- 3. Solve real world problems using concepts like queues and stacks.
- 4. Analyze Non-Linear Data Structures such as Trees.
- 5. Understand Graph representations and Graph traversals.

References:

- 1. Behrouz A. Forouzan, Richard F. Gilberg, A Structured Programming Approach Using C,(3e), Cengage Learning India Pvt. Ltd, India, 2007.
- 2. Ellis Horowitz, Sartaj Sahani, Susan Anderson and Freed, Fundamentals of Data Structures in C, (2e), Silicon Press, 2007.

- 3. Richard F. Gilberg, Behrouz A. Forouzan, Data structures, A Pseudocode Approach with C, (2e), Cengage Learning India Pvt. Ltd, India, 2009.
- 4. Tenenbaum Aaron M., Langsam Yedidyah, Augenstein Moshe J., Data structures using C, Pearson Prentice Hall of India Ltd., 2007.
- 5. Debasis Samanta, Classic Data Structures, (2e), PHI Learning Pvt. Ltd., India, 2010.
- 6. hs62/preview [Introduction to Data Structures, Punjabi University, Patiala].