Speech to Text, Text to Speech

Преслав Хаджицанев, ФН 26318 (ИИОЗ)

Джовани Чемишанов, ФН 26415 (ИИОЗ)

Speech to text

Connectionist Temporal Classification

Интуиция

Подход

hello

First, merge repeat characters.

Then, remove any ϵ tokens.

The remaining characters are the output.

Valid Alignments ϵ c c ϵ a t

ca ϵ ϵ ϵ t

Invalid Alignments

c ϵ c ϵ a t

 $C \epsilon \epsilon \epsilon t t$

corresponds to

Y = [c, c, a, t]

has length 5

missing the 'a'

like a spectrogram of audio.

The input is fed into an RNN, for example.

We start with an input sequence,

The network gives p_t ($a \mid X$), a distribution over the outputs

 $\{h, e, l, o, \epsilon\}$ for each input step.

With the per time-step output distribution, we compute the probability of different sequences

By marginalizing over alignments, we get a distribution over outputs.

Softmax over vocabulary {a, b, c, d, e, f, .. z, ?, ., !,..} and extra

token . Softmax at step, t, gives a score s(k,t)

Model learns to make peaky predictions!

Вероятност за едно разпределение

$$p(Y \mid X) = \sum$$

 $A{\in}\mathcal{A}_{X,Y}$

 $\prod_{t=1}^T p_t(a_t \mid X)$

The CTC conditional **probability**

marginalizes over the set of valid alignments

computing the **probability** for a single alignment step-by-step.

Оптимизация

Summing over all alignments can be very expensive.

Dynamic programming merges alignments, so it's much faster.

Вземане на решение

Максимална вероятност

$$A^* = \operatorname*{argmax}_{A} \ \prod_{t=1}^{T} \ p_t(a_t \mid X)$$

Beam Search

Употреби, Проблеми, Сравнения, Решения

Text to Speech

Подход

Deep Voice

Figure 1. System diagram depicting (a) training procedure and (b) inference procedure, with inputs on the left and outputs on the right. In our system, the duration prediction model and the F0 prediction model are performed by a single neural network trained with a joint loss. The grapheme-to-phoneme model is used as a fallback for words that are not present in a phoneme dictionary, such as CMUDict. Dotted lines denote non-learned components.

Wavenet

Figure 4: Overview of the residual block and the entire architecture.

Tacotron 2

Transformers TTS

Figure 1: Model architecture of Transformer-TTS and VC.

What is the best text to speech API?

Demo page Microsoft

https://azure.microsoft.

com/en-us/services/co

gnitive-services/text-to-speech/

After reviewing all the text to speech APIs, we found these 10 APIs to be the very best and worth mentioning:

- IBM Watson API
- Rev.ai API
- Speechmatics API
- Google Speech-to-text API
- Robomatic.ai API
- Amazon Polly API
- Voicepods API
- Dialog Flow API
- Microsoft Azure Cognitive Services API
- Ispeech API