INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4557B LSI

1-to-64 bit variable length shift register

Product specification
File under Integrated Circuits, IC04

January 1995

1-to-64 bit variable length shift register

HEF4557B LSI

DESCRIPTION

The HEF4557B is a static clocked serial shift register whose length may be programmed to be any number of bits between 1 and 64. The number of bits selected is equal to the sum of the subscripts of the enabled length control inputs (L₁, L₂, L₄, L₈, L₁₆ and L₃₂) plus one. Serial data may be selected from the D_A or D_B data inputs with the A/B select input. This feature is useful for recirculation

purposes. Information on D_A or D_B is shifted into the first register position and all the data in the register is shifted one position to the right on the LOW to HIGH transition of CP_0 while \overline{CP}_1 is LOW or on the HIGH to LOW transition of \overline{CP}_1 while CP_0 is HIGH. A HIGH on master reset (MR) resets the register and forces O to LOW and \overline{O} to HIGH, independent of the other inputs.

PINNING

D_A , D_B	data inputs
A/\overline{B}	select data input
CP ₀	clock input
CP ₁	clock enable input
MR	asynchronous master reset
L ₁ to L ₃₂	bit-length control inputs
$O.\overline{O}$	buffered outputs

HEF4557BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4557BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4557BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

FAMILY DATA, IDD LIMITS category LSI

See Family Specifications

Philips Semiconductors

1-to-64 bit variable length shift register

HEF4557B LSI

FUNCTION TABLE

	OUTPUT					
MR	A/B	D _A	D _B	СРо	CP ₁	O (1)
L	L	D ₁	D ₂		L	D ₂
L	Н	D_1	D ₂		L	D ₁
L	L	D_1	D ₂	Н	~	D ₂
L	Н	D_1	D ₂	Н	~	D ₁
Н	Х	Χ	Х	Х	Χ	L

Notes

- The moment D_n appears at O depends on the bit-length shown in the table below.
- 2. H = HIGH state (the more positive voltage)
- 3. L = LOW state (the less positive voltage)
- 4. X = state is immaterial
- 5. \int = positive-going transition
- 7. D_n = either HIGH or LOW

BIT-LENGTH SELECT FUNCTION TABLE

L ₃₂	L ₁₆	L ₈	L ₄	L ₂	L ₁	REGISTER LENGTH
L	L	L	L	L	L	1-bit
L	L	L	L	L	Н	2-bits
L	L	L	L	Н	L	3-bits
L	L	L	L	Н	Н	4-bits
L	L	L	Н	L	L	5-bits
L	L	L	Н	L	Н	6-bits
L	L	L	Н	Н	L	7-bits
L	L	L	Н	Н	Н	8-bits
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\
L	Н	Н	Н	Н	Н	32-bits
Н	L	L	L	L	L	33-bits
Н	L	L	L	L	Н	34-bits
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\
Н	Н	Н	Н	L	L	61-bits
Н	Н	Н	Н	L	Н	62-bits
Н	Н	Н	Н	Н	L	63-bits
Н	Н	Н	Н	Н	Н	64-bits

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$3 500 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	15 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	$f_i = input freq. (MHz)$
package (P)	15	37 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

1-to-64 bit variable length shift register

HEF4557B LSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$CP_0, \overline{CP}_1 \rightarrow 0, \overline{O}$	5		240	480	ns	213 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	90	180	ns	79 ns + (0,23 ns/pF) C _L
	15		65	130	ns	57 ns + (0,16 ns/pF) C _L
	5		240	480	ns	213 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	90	180	ns	79 ns + (0,23 ns/pF) C _L
	15		65	130	ns	57 ns + (0,16 ns/pF) C _L
$MR \rightarrow O$	5		170	340	ns	143 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	80	160	ns	69 ns + (0,23 ns/pF) C _L
	15		60	120	ns	52 ns + (0,16 ns/pF) C _L
$MR \rightarrow \overline{O}$	5		140	280	ns	113 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	70	140	ns	59 ns + (0,23 ns/pF) C _L
	15		55	110	ns	47 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

Interpolation table (see note next page)

LENGTH CONTROL INPUTS						MINIMUM	SET-UP, HOLD,	
L ₁	L ₂	L ₄	L ₈	L ₁₆	L ₃₂	NUMBER OF BITS SELECTED	RECOVERY TIMES	
L	L	L	L	L	L	1	specified	
Н	L	L	L	L	L	2	ļ	
X	Н	L	L	L	L	3		
X	X	Н	L	L	L	5	six equal steps	
X	X	X	Н	L	L	9		
X	X	Х	Х	Н	L	17		
X	X	Х	Х	X	Н	33	specified	

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial

Philips Semiconductors Product specification

1-to-64 bit variable length shift register

HEF4557B LSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; see also waveforms Fig.4

	V _{DD} V	SYMBOL	MIN.	TYP.		
Minimum clock						
pulse width;	5	t _{WCPL}	180	90	ns	
LOW for CP ₀ or	10	or	60	30	ns	
HIGH for CP₁	15	t _{WCPH}	40	20	ns	
Minimum reset	5		150	75	ns	
pulse width;	10	t _{WMRH}	70	35	ns	
HIGH	15		50	25	ns	
Set-up times						
D_A , D_B , $A/\overline{B} \rightarrow CP_0$,	5		360	180	ns	
CP ₁	10	t _{su}	140	70	ns	
L_1 to L_{32} = LOW	15		90	45	ns	
	5		40	-20	ns	
L ₃₂ = HIGH	10	t _{su}	35	-10	ns	
	15		30	-5	ns	
Hold times						
D_A , D_B , $A/\overline{B} \rightarrow CP_0$,	5		-40	-110	ns	
CP₁	10	t _{hold}	-10	-45	ns	see note
L_1 to L_{32} = LOW	15		0	-30	ns	see note
	5		90	30	ns	
L ₃₂ = HIGH	10	t _{hold}	60	20	ns	
	15		50	15	ns	
Recovery times for MR	5		500	250	ns	
L_1 to L_{32} = LOW	10	t _{RMR}	250	125	ns	
	15		150	75	ns	
	5		110	50	ns	
L ₃₂ = HIGH	10	t _{RMR}	70	30	ns	
	15		60	25	ns	
Minimum clock	5		2,5	5	MHz	
pulse frequency	10	f _{max}	7	14	MHz	
	15		10	20	MHz	

Note

^{1.} The set-up, hold and recovery times vary with the minimum number of bits selected. For other values as specified one may interpolate as shown in the table (see previous page).

1-to-64 bit variable length shift register

HEF4557B LSI

Fig.4 Waveforms showing recovery time for MR and minimum CP_0 , \overline{CP}_1 and MR pulse widths, set-up and hold times for D_A , D_B and A/\overline{B} to CP_0 and \overline{CP}_1 . Set-up and hold times are shown as positive values but may be specified as negative values.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.