

CSCI 2200 FOUNDATIONS OF COMPUTER SCIENCE

David Goldschmidt goldsd3@rpi.edu Fall 2022

EXAM 1 LOGISTICS...

We will review homework and problem set solutions in lecture on October 4 and in recitations on October 5

Exam 1 is on October 5 in our 6:00-7:50PM testblock in West Hall Auditorium

- If you have extra-time accommodations, I will email you further details regarding when/where
- Please bring your RPI ID

You can also bring one double-sided or two single-sided 81/2"×11" cribsheets

• Feel free to collaborate on creating your cribsheets

Exam 1 will be graded out of 50 points

- We will have 18 multiple choice questions and three short answer questions
- Each multiple choice question will be worth 2 points—no partial credit—for a total of 36 points
- The three short answer questions will be worth 4 points, 5 points, and 5 points

Exam 1 covers everything through our September 30 lecture, i.e., through Chapter 7

To study for the exam, review both required and practice/warm-up problems (and solutions)...

STRONG INDUCTION

Also note that the representation of n as a product of primes is unique (aside from ordering)

Consider P(n), the Fundamental Theorem of Arithmetic, which states that for all $n \ge 2$, we can write n as the product of one or more prime numbers

$$12180 = 2 \times 2 \times 3 \times 5 \times 7 \times 29$$

$$2022 = 2 \times 3 \times 337$$

How do we prove P(n) using induction...?

 $P(n) \to P(n+1)$

Tinker: what is the prime factorization of 2021?

$$2021 = 43 \times 47$$

How can we strengthen our claim?

STRONG INDUCTION

Consider P(n), the Fundamental Theorem of Arithmetic, which states that for all $n \ge 2$, we can write n as the product of one or more prime numbers

$$12180 = 2 \times 2 \times 3 \times 5 \times 7 \times 29$$

$$2022 = 2 \times 3 \times 337$$

How do we prove P(n) using induction...?

Smaller values do help, e.g., $12180 = 60 \times 203$, or $P(60) \land P(203) \rightarrow P(12180)$

From this, $P(4) \land P(15) \rightarrow P(60)$ and $P(7) \land P(29) \rightarrow P(203)$ —and so on!

Our much stronger claim is Q(n): 2, 3, ..., n are <u>all</u> products of prime numbers

STRONG INDUCTION

Consider P(n), the Fundamental Theorem of Arithmetic, which states that for all $n \ge 2$, we can write n as the product of one or more prime numbers

Claim Q(n) is $P(2) \wedge P(3) \wedge ... \wedge P(n)$, i.e., 2, 3, ..., n are <u>all</u> products of prime numbers

Proof. We prove by induction that Q(n) is **T** for $n \ge 2$.

- 1. [Base case] Q(2) = P(2), i.e., 2 is a product of prime numbers 2×1 .
- 2. [Induction step] We show $Q(n) \to Q(n+1)$ for all $n \ge 2$ via a direct proof.

Assume Q(n) is **T**: each of 2, 3, ..., n is a product of prime numbers. We must prove Q(n + 1) is **T**: each of 2, 3, ..., n, n + 1 is a product of primes.

By our induction hypothesis Q(n), observe that 2, 3, ..., n are products of primes.

Therefore, we need only prove that n + 1 is a product of primes...

Consider P(n), the Fundamental Theorem of Arithmetic, which states that for all $n \ge 2$, we can write n as the product of one or more prime numbers

Claim Q(n) is $P(2) \wedge P(3) \wedge ... \wedge P(n)$, i.e., 2, 3, ..., n are <u>all</u> products of prime numbers

Proof. We prove by induction that Q(n) is **T** for $n \ge 2$.

- 1. [Base case] Q(2) = P(2), i.e., 2 is a product of prime numbers, which is **T**.
- 2. [Induction step] We show $Q(n) \to Q(n+1)$ for all $n \ge 2$ via a direct proof.

Assume Q(n) is **T**: each of 2, 3, ..., n is a product of prime numbers. We must prove Q(n + 1) is **T**: each of 2, 3, ..., n, n + 1 is a product of primes.

By our induction hypothesis, Q(n), observe that 2, 3, ..., n are products of primes.

Therefore, we need only prove that n + 1 is a product of primes—two cases:

Case 1. n + 1 is prime. In this case, nothing more to prove.

Case 2. n+1 is not prime, so $n+1=k\ell$, where $2 \le k, \ell \le n$. From our induction hypothesis, both P(k) and $P(\ell)$ are T, which shows k and ℓ to be products of primes.

Therefore, $n + 1 = k\ell$ is a product of primes and Q(n + 1) is shown to be **T**.

3. By induction, Q(n) is **T** for all $n \ge 2$.

STRONG INDUCTION

In strong induction, we strengthen claim P(n) to include all n down to the base case...

To prove P(n) for all $n \ge n_0$, use strong induction to prove stronger claim Q(n)

$$Q(n)$$
: each of $P(n_0)$, $P(n_0 + 1)$, $P(n_0 + 2)$, ..., $P(n)$ are **T**

Compare ordinary induction with strong induction (assume $n_0 = 1$):

	Ordinary induction	Strong induction
Base case	Prove P(1)	Prove $Q(1) = P(1)$
Induction step	Assume $P(n)$ is T Prove $P(n + 1)$	Assume $Q(n) = P(1) \wedge P(2) \wedge \wedge P(n)$ is T Prove $P(n + 1)$

Strong induction is always easier because you get to assume more!

LEAPING STRONG INDUCTION

Suppose $P(1) \wedge P(2) \wedge P(3) \wedge ... \wedge P(n) \rightarrow P(n+4)$ and base case P(1) is true...

...is P(n) true for all $n \ge 1$?

If so, explain why.

If not, what additional base cases do you need?

SOLUTION: No, only P(1) and therefore P(5) are true! Here, $P(1) \rightarrow P(5)$.

To prove P(n) is true for <u>all</u> $n \ge 1$, we need base cases P(1), P(2), P(3), and P(4). Why...?

Given these four base cases, $P(1) \rightarrow P(5)$; $P(1) \land P(2) \rightarrow P(6)$; $P(1) \land P(2) \land P(3) \rightarrow P(7)$; $P(1) \land P(2) \land P(3) \land P(4) \rightarrow P(8)$; $P(1) \land \dots \land P(5) \rightarrow P(9)$; $P(1) \land \dots \land P(6) \rightarrow P(10)$; etc.

Given an unlimited supply of L-shaped tiles, can we tile a $2^n \times 2^n$ square patio, ignoring only one center tile?

L-tiles come in red, green, and blue

Claim P(n): Any $2^n \times 2^n$ grid with $n \ge 1$ minus a center square can be L-tiled

Prove P(n) using induction...

...but what is P(n + 1)?

A separate problem is whether we can ensure no pair of adjacent tiles has the same color...!

Claim P(n): Any $2^n \times 2^n$ grid with $n \ge 1$ minus a center square can be L-tiled

For P(n + 1), we construct a $2^{n+1} \times 2^{n+1}$ grid using four $2^n \times 2^n$ grids...

...now each $2^n \times 2^n$ sub-grid has exactly one missing square!

We can only use P(n) for <u>center</u> squares—ugh, this approach has missing <u>corner</u> squares...

How can we strengthen claim P(n) to also include grids with missing corner squares?

L-TILE LAND PROBLEM — STRENGTHENED...

Claim Q(n): (i) Any $2^n \times 2^n$ grid with $n \ge 1$ minus a <u>center</u> square can be L-tiled; and (ii) Any $2^n \times 2^n$ grid with $n \ge 1$ minus a <u>corner</u> square can be L-tiled

Proof. We prove claim Q(n) for all $n \ge 1$ by induction.

1. [Base case] Q(1) holds for center and corner squares:

2. [Induction step] We prove $Q(n) \to Q(n+1)$ for $n \ge 1$ using a direct proof.

Assume Q(n): (i) Any $2^n \times 2^n$ grid minus a center square can be L-tiled; and (ii) Any $2^n \times 2^n$ grid minus a corner square can be L-tiled.

Prove Q(n+1): (i) Any $2^{n+1} \times 2^{n+1}$ grid minus a center square can be L-tiled; and (ii) Any $2^{n+1} \times 2^{n+1}$ grid minus a corner square can be L-tiled.

- (i) For a $2^{n+1} \times 2^{n+1}$ grid missing a center square, ...
- (ii) For a $2^{n+1} \times 2^{n+1}$ grid missing a corner square, ...

See the rest of the proof on page 73...

WHAT NEXT...?

Attend as many office hours as you can—we have a lot of weekly coverage

Homework 2 is posted and due by 11:59PM on September 29

Problem 7.4(c) is no longer required—it is now a warm-up problem...

Problem Set 3 is due at recitations on September 28—tomorrow!

- We are again going to spread out to neighboring rooms: Ricketts 208 and 212
- Note that Ricketts 212 is not available 10:00-10:50AM this week (so for section 01)

Practice! Tinker! Practice! Tinker! Practice! Tinker! Practice! Tinker! Practice!