Sensor Music Player

István Szőllősi

Faculty of Sciences and Letters, "Petru Maior" University of Târgu Mureș

August 25, 2018

Contents

1	Abo	out	3
2	f Node.js		
	2.1	Installation	4
	2.2	Configuration	4
		2.2.1 Mongoose	4
		2.2.2 Express	4
		2.2.3 Nodemon	4
3	MongoDB		
	3.1	Installation	5
	3.2	Drop collection	5
4	Matplotlib		
	4.1	Installation	6
	4.2	Examples	6
5	DTAIDistance 8		
	5.1	Installation	8
	5.2	Usage	8
	5.3	Documentation	9
6	Postman 1		
	6.1	Installation	11
	6.2	Usage	11
		6.2.1 GET	11
		6.2.2 POST	12

1 About

The project is committed to the GitHub, you can find here.

The main structure of the repository is a valid $Android\ project$ with several additionals folders, like the:

- ullet backend folder where the Python and JavaScript codes are stored
- ullet docs folder where the documents about the project are stored

2 Node.js

In Node.js is very simple to create a small web server for REST calls.

2.1 Installation

2.2 Configuration

Used tutorial: Build Node.js RESTful APIs in 10 Minutes

- 2.2.1 Mongoose
- 2.2.2 Express
- 2.2.3 Nodemon

3 MongoDB

MongoDB to store signal data from the $\it Y~axis$ of the accelerometer from the Android devices.

3.1 Installation

3.2 Drop collection

Code:

```
1 show dbs
2 use <db>
3 show collections
4 db.<collection>.drop()
```

Listing 1: MongoDB shell commands to drop a collection

4 Matplotlib

Matplotlib is a plotting library for the Python programming language. I used *matplotlib* to generate graphical view of my series.

4.1 Installation

Install module using this tutorial.

Optionally, you need to install the python-tk package also.

4.2 Examples

According to this official tutorial you can easily generate a plot about an array using this Python script:

Result:

Figure 1: The result of the script

This example was very easy, so here is a *normal* signal from the accelerometer:

Figure 2: A section of the signal of accelerometer in real usage

5 DTAIDistance

Library for time series distances (e.g. Dynamic Time Warping) used in the DTAI Research Group.

DTAIDistance official documentation: dtaidistance.readthedocs.io Source available on https://github.com/wannesm/dtaidistance.

5.1 Installation

Run the follow codes in terminal to install the module:

```
sudo apt install python3-pip python3-setuptools python3-dev python3-tk
pip3 install wheel
pip3 install dtw
pip3 install dtaidistance
```

Listing 2: Used Linux Mint 19

5.2 Usage

```
from dtaidistance import dtw_visualisation as dtwvis
import numpy as np

s1 = np.array([0, 1, 2, 1, 0, 2, 1, 0, 0])
s2 = np.array([0, 1, 2, 1, 0, 0, 1, 2, 1])

d, matrix = dtw.warping_paths(s1, s2, window=25, psi=2)
print('DTW distance = ', d)

dtwvis.plot_warpingpaths(s1, s2, matrix, best_path, "image.png")
```

Listing 3: Script to calculate DTW distance and plot warping paths matrix

The result will be put in the newly created **image.png** file.

Figure 3: DTAIDistance's warping paths matrix

5.3 Documentation

```
import numpy as np
2 s1 = np.array([0, 1, 2, 1, 0, 2, 1, 0, 0])
```

NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.

The array() function creates an array from a given list. See more details here.

```
from dtaidistance import dtw
d, matrix = dtw.warping_paths(s1, s2, window=25, psi=2)
print('DTW distance = ', d)
print('DTW matrix = ', matrix
```

The warping_paths() function calculates the DTW distance and the DTW matrix for the two given series. See more details here.

```
from dtaidistance import dtw_visualisation as dtwvis
dtwvis.plot_warpingpaths(s1, s2, matrix, best_path, "image.png")
```

The *plot_warpingpaths()* method plots the warping paths matrix into the *image.png* file. See more details here.

6 Postman

6.1 Installation

Installed according to this article: How to install Postman native app in Linux Mint 18.3 Used to test the main functionalities of the Node.js server.

6.2 Usage

6.2.1 GET

To get all buffers from database run this code in Postman/Linux terminal

```
curl -X GET http://localhost:3000/buffers
```

Listing 4: Get all buffers

The response is or an empty list, if no items in the database or a list like this:

```
[
1
      {
           "value": [
               5.733050346374512,
               1.704751968383789,
               -2.7134790420532227,
               -1.343064308166504,
               2.6042985916137695,
               3.92281436920166,
               2.15725040435791,
               -0.9106369018554688,
               -2.4146032333374023,
               -2.943338394165039,
               -1.5269522666931152,
14
               -0.8230304718017578
          ],
           "_id": "5b82607f5601ec575d3bf0e4",
17
           "___v": 0
20
```

Listing 5: A sub section of the signal to process

6.2.2 POST

Post a new buffer a.k.a a sub section of the signal to store and process. Run this code in Postman or in a Linux terminal to post a new buffer to the Node.js server.

```
curl -X POST http://localhost:3000/buffers -d '{
    "value":[-2.2, -1.1, 0, 1.1, 2.2]
}'
```

Listing 6: Send signal data via REST