

Numerisches Programmieren Übung #09

Differentialgleichungen

Ordinary differential equations (ODEs)

 Gewöhnliche Differentialgleichung: Zusammenhang zwischen einer Funktion & ihrer Ableitung als Gleichung

$$\dot{y}(t) = \varphi(y, t)$$

 Beispiel: Blume, wo Wachstumsrate zweimal so groß ist wie ihre aktuelle Höhe:

$$\dot{y}(t) = 2y(t)$$

<u>Gleich</u>: Verschiedene Möglichkeiten geschlossene Form für y(t) zu bestimmen (Lösung der ODE)

Visualisierung als Richtungsfeld:

Konkrete Funktion (rot) eindeutig durch
 Anfangswert bestimmbar

Separation der Variablen

• Möglichkeit die analytische Lösung von y(t) zu finden

Algorithmus (mit Beispiel):

- 1. Leibniz Notation
- 2. Separation der Variablen
- 3. Integration
- 4. Auflösung nach y

Anfangswertbedingungen

$$\dot{y}(t) = y(t)$$

$$\frac{dy}{dt} = y$$

$$\frac{1}{y} dy = 1 dt$$

 $\frac{1}{y} dy = 1 dt$ (y auf eine, t auf andere Seite)

$$\int_{y_0}^{y} \frac{1}{\eta} d\eta = \int_{t_0}^{t} 1 d\tau \iff \ln(|y|) - \ln(|y_0|) = t - t_0$$

$$ln\left(\left|\frac{y}{y_0}\right|\right) = t - t_0 \iff \left|\frac{y}{y_0}\right| = e^{t - t_0}$$

$$y(t) = y_0 \cdot e^{t-t_0}$$
 (wegen $y(t_0) = y_0$)

Anfangswertproblem (AWP)

- Anfangsbedingungen y_0 und t_0
 - $t_0 := \text{Niedrigster gültiger Wert für } t \text{ (steht meist für die Zeit)}$
 - $y_0 := \text{Wert bei Startzeitpunkt } t_0$

$$\rightarrow y(t_0) = y_0$$

- Ohne Anfangsbedingungen beschreibt die ODE nur eine "Klasse" von Funktionen (Richtungsfeld, Folie 3)
- Spezifizierung der allgemeinen Lösung der ODE (→ roter Graph, Folie 3):
 - \rightarrow Einfach y_0 , t_0 in y(t) einsetzen (5. Schritt vorherige Folie)

Aufgabe 1)

1) Kondition von Anfangswertproblemen

a) Berechnen Sie die analytische Lösung y(t) der beiden folgenden gewöhnlichen Differentialgleichungen (ODE) mithilfe der Separation der Variablen:

i)
$$\dot{y}(t) = 2y(t)$$

i)
$$\dot{y}(t) = 2y(t)$$
 ii) $\dot{y}(t) = -2y(t)$

Gegeben seien folgende Anfangswertbedingungen für die jeweiligen ODEs aus a). Berechnen Sie nun die analytische Lösung der daraus resultierenden Anfangswertprobleme (AWP):

i)
$$\dot{y}(t) = 2y(t), \ y(0) = 3, \ t \ge 0$$

i)
$$\dot{y}(t) = 2y(t), \ y(0) = 3, \ t \ge 0$$
 ii) $\dot{y}(t) = -2y(t), \ y(0) = y_0, \ t \ge 0.$

Diskutieren Sie jeweils die Kondition der beiden AWP aus b).

Explizite Verfahren

- Numerische Annäherung von ODEs
- Verschiedene Methoden:
 - Explizites Euler-Verfahren
 - Verfahren von Heun
- Im folgenden:
 - $\delta t := Schrittweite$
 - $f(t_k, y_k) := \text{Ableitung zum diskreten Zeitpunkt } t_k \text{ und Wert } y_k$

Explizite Verfahren

- Es sei: $t_k = t_0 + k \cdot \delta t$
- Explizites Euler-Verfahren (1. Ordnung):
 - Steigung im aktuellen Punkt t_k zur Bestimmung der nächsten Annäherung

$$y_{k+1} = y_k + \delta t \cdot f(\mathbf{t}_k, \mathbf{y}_k)$$

- Verfahren von Heun (2. Ordnung):
 - Steigung in zwei Punkten verwendet

$$y_{k+1} = y_k + \frac{\delta t}{2} \cdot (f(t_k, y_k) + f(t_{k+1}, y_k + \delta t \cdot f(t_k, y_k)))$$

• (Einfach entsprechend rote und blaue Ausdrücke als Argumente in f einsetzen)

Aufgabe 2)

2) Einschrittverfahren

Gegeben sei das folgende Anfangswertproblem:

$$\dot{y}(t) = t \cdot y(t), \qquad y(0) = 1, \qquad t \ge 0.$$

- a) Berechnen Sie die analytische Lösung y(t) des AWPs mit Hilfe der Separation der Variablen!
- b) Berechnen Sie im Intervall [0; 4] numerische Lösungswerte y_k , welche die Lösung y(t) in den Stellen t_k approximieren, d.h. $y_k \approx y(t_k)$. Rechnen Sie mit Schrittweite $t_{k+1} t_k = \delta t = 1$ und verwenden Sie die folgenden Verfahren:
 - i) Explizites Euler-Verfahren:

Bei diesem Verfahren wird lediglich die Steigung im aktuellen Punkt t_k zur Berechnung der numerischen Lösung betrachtet:

$$t_k = t_0 + k \cdot \delta t;$$

$$y_{k+1} = y_k + \delta t \cdot f(t_k, y_k);$$

ii) Verfahren von Heun:

Analog zur Trapezregel bei der Quadratur wird bei diesem Verfahren im Vergleich zum Euler-Verfahren ein zweiter f-Wert zur numerischen Berechnung der Steigung hinzugezogen:

$$t_{k} = t_{0} + k \cdot \delta t;$$

$$y_{k+1} = y_{k} + \frac{\delta t}{2} \cdot (f(t_{k}, y_{k}) + f(t_{k+1}, y_{k} + \delta t \cdot f(t_{k}, y_{k})));$$

Danke fürs Kommen! Bis nächste Woche!

