MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Spring 2010)

Problem Set 10 Due: May 5, 2010

- 1. In your summer internship, you are working for the world's largest producer of lightbulbs. Your manager asks you to estimate the quality of the production, that is, to estimate the probability p that a bulb produced by the factory is defectless. You are told to assume that all lightbulbs have the same probability of having a defect, and that defects in different lightbulbs are independent.
 - (a) Supposing you test n randomly picked bulbs, what is a good estimate Z_n for p, such that Z_n converges to p in probability?
 - (b) The management asks that the estimate is located in the range $p \pm 0.1$ with probability 0.95. Are 27 randomly picked bulbs enough for this specification? Give the reason. Solve this problem using Chebyshev's inequality, and then using the central limit theorem.
- 2. (a) Given the information $\mathbf{E}[X] = 7$ and var(X) = 9, use the Chebyshev inequality to find a lower bound for $\mathbf{P}(4 \le X \le 10)$.
 - (b) Find the smallest and largest possible values of P(4 < X < 10), given the mean and variance information from part (a).
- 3. Many casino games are only slightly biased in favor of the casino, so that the casino makes a profit while customers maintain interest. Imagine such a game, where the probability of the casino winning is 0.51. Suppose you play 400 independent games, and let L denote the number of times you lose. Use whichever approximations to the binomial you feel are appropriate to calculate the following:
 - (a) $P(190 \le L \le 210)$
 - (b) P(210 < L < 230)
- 4. Let X_1, X_2, \ldots be independent, identically distributed, continuous random variables with $\mathbf{E}[X] = 2$ and var(X) = 9. Define $Y_i = (0.5)^i X_i$, $i = 1, 2, \ldots$ Also define T_n and A_n to be the sum and the average, respectively, of the terms Y_1, Y_2, \ldots, Y_n .
 - (a) Is Y_n convergent in probability to a real value y? If so, what is y? Explain.
 - (b) Is T_n convergent in probability to a real value t? If so, what is t? Explain.
 - (c) Is A_n convergent in probability to a real value a? If so, what is a? Explain.
- 5. Let $X_1, X_2, ...$ be independent, identically distributed random variables with (unknown but finite) mean μ and variance σ^2 where $\sigma^2 > 0$. For i = 1, 2, ..., let

$$Y_i = \frac{1}{3}X_i + \frac{2}{3}X_{i+1}.$$

- (a) Are the random variables Y_i independent?
- (b) Are they identically distributed?
- (c) Let

$$M_n = \frac{1}{n} \sum_{i=1}^n Y_i.$$

Is M_n convergent in probability to μ ? Prove your answer.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis

5.041/6.431: Probabilistic Systems Analysis (Spring 2010)

 $G1^{\dagger}$. (a) If U and V are random variables, and if ϵ is a scalar, explain why

$$\mathbf{P}(|U+V| \ge \epsilon) \le \mathbf{P}(|U| \ge \epsilon/2) + \mathbf{P}(|V| \ge \epsilon/2).$$

(b) Let U_n and V_n be two sequences of random variables that converge (in probability) to a and b, respectively. Show that $U_n + V_n$ converges to a + b. Hint: The inequality from part (a) may come handy.