Exercice 1

Soit ABC un triangle quelconque. I et J sont respectivement les symétriques des points B et C par rapport à A.

Exprimer les vecteurs suivants en fonction de \overrightarrow{AB} et \overrightarrow{AC} :

$$\overrightarrow{IA}$$
, \overrightarrow{AJ} , \overrightarrow{BC} , \overrightarrow{CB} et \overrightarrow{IJ}

Rappel Quels que soient les points A et B, on a $\overrightarrow{AB} = -\overrightarrow{BA}$

Exercice 2

Soient f et g deux fonctions affines : f(x) = x - 2 et g(x) = -2x + 1

- 1. Résoudre x 2 = -2x + 1.
- 2. Tracer f et g dans un repère d'unité 1 cm. $x \in [-1; 2], y \in [-3; 3]$
- 3. Que signifie f(x) = g(x)?
- 4. Que signifie $f(x) \ge g(x)$?

Exercice 3

Résoudre

- 1. f(x) = 0
- 2. $f(x) \le 0$
- 3. f(x) = 5
- 4. $f(x) \le 5$
- 5. f(x) = g(x)
- 6. $f(x) \leqslant g(x)$
- 7. $0 \le f(x) \le 5$
- 8. $-3 \le f(x) \le 0$

Exercice 4

- 1. Dresser le <u>tableau de variation</u> de f pour $x \in [0; 12]$.
- 2. Dresser le tableau de signes de g pour $x \in [0; 12]$.
- 3. Entourer la bonne solution sur chaque ligne du tableau.

$f(x) \leqslant g(x) \text{ pour } x \in [0; 6]$	$f(x) \leqslant g(x) \text{ pour } x \in [6; 12]$
$f(x) \geqslant 0 \text{ pour } x \in [1; 6]$	$f(x) \geqslant 0 \text{ pour } x \in [6; 11]$
$f(x) \leqslant 0 \text{ pour } x \in [6; 11]$	$f(x) \le 0 \text{ pour } x \in [0; 1] \cup [6; 11]$