Dataset 1

In [134]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler
```

In [135]:

```
data=pd.read_csv(r"C:\Users\chila\Downloads\Advertising.csv")
data
```

Out[135]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [136]:

```
data.head()
```

Out[136]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [137]:

```
data.info()
```

0 TV 200 non-null float64 1 Radio 200 non-null float64 2 Newspaper 200 non-null float64 3 Sales 200 non-null float64

dtypes: float64(4)
memory usage: 6.4 KB

In [138]:

data.describe

Out[138]:

<bou< th=""><th>nd meth</th><th>od NDFram</th><th>e.describe</th><th>of</th></bou<>	nd meth	od NDFram	e.describe	of
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
			• • •	
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

[200 rows x + columns]>

TV Radio Newspaper Sales

In [139]:

```
plt.figure(figsize = (10, 10))
sns.heatmap(data.corr(), annot = True)
```

Out[139]:

<Axes: >

In [140]:

```
data.drop(columns = ["Radio", "Newspaper"], inplace = True)
#pairplot
sns.pairplot(data)
data.Sales = np.log(data.Sales)
```


In [141]:

```
features = data.columns[0:2]
target = data.columns[-1]
#X and y values
x = data[features].values
y = data[target].values
#splot
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=17
print("The dimension of X_train is {}".format(x_train.shape))
print("The dimension of X_test is {}".format(x_test.shape))
#Scale features
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
```

The dimension of X_train is (140, 2) The dimension of X_test is (60, 2)

In [142]:

```
#Model
lr = LinearRegression()
#Fit model
lr.fit(x_train, y_train)
#predict
#prediction = lr.predict(X_test)
#actual
actual = y_test
train_score_lr = lr.score(x_train, y_train)
test_score_lr = lr.score(x_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lr))
print("The test score for lr model is {}".format(test_score_lr))
```

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

In [143]:

```
#Ridge Regression Model
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
#train and test scorefor ridge regression
train_score_ridge = ridgeReg.score(x_train, y_train)
test_score_ridge = ridgeReg.score(x_test, y_test)
print("\nRidge Model:\n")
print("The train score for ridge model is {}".format(train_score_ridge))
print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.9902871391941609 The test score for ridge model is 0.984426628514122

In [144]:

```
plt.figure(figsize = (10, 10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gre
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


In [145]:

```
#Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(x_train,y_train)
train_score_ls =lasso.score(x_train,y_train)
test_score_ls =lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

```
The train score for ls model is 0.0
The test score for ls model is -0.0042092253233847465
```

In [146]:

```
pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")
Out[146]:
```

<Axes: >

In [147]:

```
#Using the linear CV model
from sklearn.linear_model import LassoCV
#Lasso Cross validation
lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).fit(x_trai
#score
print(lasso_cv.score(x_train, y_train))
print(lasso_cv.score(x_test, y_test))
```

0.9999999343798134
0.9999999152638072

ELASTIC NET REGRESSION

In [151]:

```
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(x,y)
print(regr.coef_)
print(regr.intercept_)
```

[0.00417976 0. 2.026383919311004

In [152]:

```
y_pred_elastic=regr.predict(x_train)
```

In [153]:

```
mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
print("Mean Squared Error on test set", mean_squared_error)
```

Mean Squared Error on test set 0.5538818050142158

]

In [154]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler
```

In [155]:

data=pd.read_csv(r"C:\Users\chila\Downloads\fiat500_VehicleSelection_Dataset.csv")
data

Out[155]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1	lounge	51	882	25000	1	44.907242	8.611
1	2	рор	51	1186	32500	1	45.666359	12.241
2	3	sport	74	4658	142228	1	45.503300	11.417
3	4	lounge	51	2739	160000	1	40.633171	17.634
4	5	рор	73	3074	106880	1	41.903221	12.495
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.666
1535	1536	рор	51	2223	60457	1	45.481541	9.413
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	pop	51	1766	54276	1	40.323410	17.568

1538 rows × 9 columns

In [156]:

```
data.info()
```

```
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):
#
    Column
                     Non-Null Count Dtype
     ----
                     -----
    ID
                     1538 non-null
                                     int64
 0
 1
    model
                     1538 non-null
                                     object
 2
    engine power
                     1538 non-null
                                     int64
 3
                     1538 non-null
    age_in_days
                                     int64
 4
                     1538 non-null
                                     int64
 5
    previous_owners 1538 non-null
                                     int64
 6
    lat
                     1538 non-null
                                     float64
 7
    lon
                     1538 non-null
                                     float64
    price
                     1538 non-null
                                     int64
dtypes: float64(2), int64(6), object(1)
memory usage: 108.3+ KB
```

<class 'pandas.core.frame.DataFrame'>

In [157]:

```
data=data[['engine_power','price']]
data.columns=['Eng','pri']
```

In [158]:

data.head()

Out[158]:

	Eng	pri
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700

In [159]:

```
data.tail()
```

Out[159]:

	Eng	pri
1533	51	5200
1534	74	4600
1535	51	7500
1536	51	5990
1537	51	7900

In [160]:

```
sns.lmplot(x='Eng',y='pri',data=data,order=2,ci=None)
```

Out[160]:

<seaborn.axisgrid.FacetGrid at 0x260b1488490>

In [161]:

```
data.describe()
```

Out[161]:

	Eng	pri
count	1538.000000	1538.000000
mean	51.904421	8576.003901
std	3.988023	1939.958641
min	51.000000	2500.000000
25%	51.000000	7122.500000
50%	51.000000	9000.000000
75%	51.000000	10000.000000
max	77.000000	11100.000000

```
In [162]:
```

```
data.fillna(method='ffill')
```

Out[162]:

```
Eng
            pri
   0
       51
           8900
          8800
   1
       51
   2
       74 4200
       51 6000
   3
       73 5700
   4
1533
       51 5200
       74 4600
1534
1535
       51 7500
1536
       51 5990
1537
       51 7900
```

1538 rows × 2 columns

In [163]:

```
x=np.array(data['Eng']).reshape(-1,1)
y=np.array(data['pri']).reshape(-1,1)
```

In [164]:

```
data.dropna(inplace=True)
```

C:\Users\chila\AppData\Local\Temp\ipykernel_15008\1368182302.py:1: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data.dropna(inplace=True)

In [165]:

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
#splitting the dataset into training and testing dataset
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.07262451631405753

In [166]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.scatter(x_test,y_test,color='k')
plt.show()
```


In [167]:

```
df500=data[:][:500]
sns.lmplot(x='Eng',y='pri',data=df500,order=1,ci=None)
```

Out[167]:

<seaborn.axisgrid.FacetGrid at 0x260b1886590>

Dataset2

In [168]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
```

In [169]:

```
df=pd.read_csv(r"C:\Users\chila\Downloads\bottle.csv.zip")
df
```

C:\Users\chila\AppData\Local\Temp\ipykernel_15008\2541466974.py:1: DtypeWarning: Columns (47,73) have mixed types. Specify dtype option on import or set low_memory=False.

df=pd.read_csv(r"C:\Users\chila\Downloads\bottle.csv.zip")

	Cst	_Cnt	Btl_	_Cnt \$	Sta_ID	Depth_ID	Dep	othm	T_deg(Salnty	O2ml_L	STheta
0		1		1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3		0	10.500	0 3	33.4400	NaN	25.64900
1 To [17	2].	1		2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3		8	10.460	0 3	33.4400	NaN	25.65600
In [170 df.head		1		3	054.0 056.0	19- 4903CR- HY-060- 0930-		10	10.460	0 3	33.4370	NaN	25.65400
Out[17	0]:				030.0	05400560- 0010A-7							
Cst_	_	Btl_C	Cnt	Sta_ID	Dep 054.0 056.0	19- th_ 49 03 D&pt HY-060- 0930	hm	T_de 19	g C Sa l	-	O2ml_ 33.4200	=	25.64300
0	1		1	054.0 056.0	490 HY	0 59 00560- 03C R 919A-3 7-060- 0930- 19- 05 6 903CR-	0	10	.50 33.	440	Na	N 25.64	9 NaN
4		1		5	054 0 0 056.0	00AH3Y-060- 0930- 05900560- 03CR920A-7		20	10.450	0 3	33.4210	NaN	25.64300
1	1		2	054.0 056.0	H\ 0540	/-060- 0930 0560- 08A-3 20- 1611SR-	8		.46 33	440	Na 	N 25. <u>65</u>	6 NaN
864858	3	4404	864	1859	0264\$(1 9 IX-310- 3CR-2239-		0	18.74	4 3	33.4083	5.805	23.87055
2	1		3	054.0 056.0	0540	/-09840264- 0930000A-7 0560- 10A-7 20- 1611SR-	10	10	.46 33.	437	Na	N 25.65	4 NaN
864859	3	4404	864	1860		1 9 1X-310- 3CR-2239-		2	18.74	4 3	33.4083	5.805	23.87072
3	1		4	054.0 056.0	0540	/-098640264- 0930002A-3 0560- 19A-3 20- 1611SR-	19	10	.45 33.	420	Na	N 25.64	3 NaN
864860	3	4404	864	1861		1 9 LX-310- 3CR- 2239-		5	18.692	2 3	33.4150	5.796	23.88911
4	1		5	054.0 056.0	0540 002	7-00040264- 0930005A-3 0560- 20A-7 20- 1611SR-	20	10	.45 33.	421	Na	N 25.64	3 NaN
5 rows	× 74 ³	4404 colum	n86⁴ nns	1862	093.4 026.4	MX-310- 2239- 00340264-		10	18.16	1 3	33.4062	5.816	24.01426

In [171	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
df.info									
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297

864863 rows × 74 columns

<class 'pandas.core.frame.DataFrame'> RangeIndex: 864863 entries, 0 to 864862 Data columns (total 74 columns):

Data	columns (total 74 co.	lumns):	
#	Column	Non-Null Count	Dtype
0	Cst_Cnt	864863 non-null	int64
1	_	864863 non-null	int64
	Btl_Cnt		
2	Sta_ID	864863 non-null	object
3	Depth_ID	864863 non-null	object
4	Depthm	864863 non-null	int64
5	T_degC	853900 non-null	float64
6	Salnty	817509 non-null	float64
7	02m1_L	696201 non-null	
8	STheta	812174 non-null	
9	02Sat	661274 non-null	
10	Oxy_μmol/Kg	661268 non-null	
11	BtlNum	118667 non-null	
12	RecInd	864863 non-null	
13	T_prec	853900 non-null	
14	T_qual	23127 non-null	float64
15	S_prec	817509 non-null	float64
16	S_qual	74914 non-null	float64
17	P_qual	673755 non-null	float64
18	O_qual	184676 non-null	float64
19	SThtaq	65823 non-null	float64
	•		
20	02Satq	217797 non-null	
21	ChlorA	225272 non-null	
22	Chlqua	639166 non-null	
23	Phaeop	225271 non-null	float64
24	Phaqua	639170 non-null	float64
25	PO4uM	413317 non-null	float64
26	PO4q	451786 non-null	float64
27	SiO3uM	354091 non-null	
28	Si03qu	510866 non-null	
29	NO2uM	337576 non-null	
30	NO2q	529474 non-null	
31	NO3uM	337403 non-null	
	NO3q	529933 non-null	
33	NH3uM	64962 non-null	float64
34	NH3q	808299 non-null	float64
35	C14As1	14432 non-null	float64
36	C14A1p	12760 non-null	float64
37	C14A1q	848605 non-null	float64
38	C14As2	14414 non-null	float64
39	C14A2p	12742 non-null	float64
40	C14A2q	848623 non-null	float64
41	DarkAs	22649 non-null	float64
42	DarkAp	20457 non-null	float64
	·		
43	DarkAq	840440 non-null	float64
44	MeanAs	22650 non-null	float64
45	MeanAp	20457 non-null	float64
46	MeanAq	840439 non-null	float64
47	IncTim	14437 non-null	object
48	LightP	18651 non-null	float64
49	R_Depth	864863 non-null	float64
50	R_TEMP	853900 non-null	float64
51	R POTEMP	818816 non-null	float64
52	R_SALINITY	817509 non-null	float64
53	R SIGMA	812007 non-null	float64
	R_SVA	812092 non-null	
54 55	_		float64
55	R_DYNHT	818206 non-null	float64

56	R_02	696201 non-null	float64
57	R_02Sat	666448 non-null	float64
58	R_SIO3	354099 non-null	float64
59	R_P04	413325 non-null	float64
60	R_NO3	337411 non-null	float64
61	R_NO2	337584 non-null	float64
62	R_NH4	64982 non-null	float64
63	R_CHLA	225276 non-null	float64
64	R_PHAEO	225275 non-null	float64
65	R_PRES	864863 non-null	int64
66	R_SAMP	122006 non-null	float64
67	DIC1	1999 non-null	float64
68	DIC2	224 non-null	float64
69	TA1	2084 non-null	float64
70	TA2	234 non-null	float64
71	pH2	10 non-null	float64
72	pH1	84 non-null	float64
73	DIC Quality Comment	55 non-null	object
	63	. / - \	

dtypes: float64(65), int64(5), object(4)
memory usage: 488.3+ MB

In [172]:

df.describe()

Out[172]:

	Cst_Cnt	Btl_Cnt	Depthm	T_degC	Salnty	0
count	864863.000000	864863.000000	864863.000000	853900.000000	817509.000000	696201.0
mean	17138.790958	432432.000000	226.831951	10.799677	33.840350	3.3
std	10240.949817	249664.587269	316.050259	4.243825	0.461843	2.0
min	1.000000	1.000000	0.000000	1.440000	28.431000	-0.0
25%	8269.000000	216216.500000	46.000000	7.680000	33.488000	1.3
50%	16848.000000	432432.000000	125.000000	10.060000	33.863000	3.4
75%	26557.000000	648647.500000	300.000000	13.880000	34.196900	5.5
max	34404.000000	864863.000000	5351.000000	31.140000	37.034000	11.1

8 rows × 70 columns

```
In [173]:
```

```
df.isna().any()
Out[173]:
Cst_Cnt
                          False
Btl_Cnt
                          False
Sta_ID
                          False
Depth_ID
                          False
Depthm
                          False
                          ...
TA1
                           True
TA2
                           True
pH2
                           True
                           True
pH1
DIC Quality Comment
                           True
Length: 74, dtype: bool
In [174]:
df.isnull().sum()
Out[174]:
Cst_Cnt
                               0
                               0
Btl_Cnt
Sta_ID
                               0
Depth_ID
                               0
Depthm
                               0
                          862779
TA1
TA2
                          864629
pH2
                          864853
pH1
                          864779
DIC Quality Comment
                          864808
Length: 74, dtype: int64
In [175]:
df=df[['Salnty', 'T_degC']]
df.columns=['Sal', 'Temp']
```

In [176]:

df.head(20)

Out[176]:

	Sal	Temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45
5	33.431	10.45
6	33.440	10.45
7	33.424	10.24
8	33.420	10.06
9	33.494	9.86
10	33.510	9.83
11	33.580	9.67
12	33.640	9.50
13	33.689	9.32
14	33.847	8.76
15	33.860	8.71
16	33.876	8.53
17	NaN	8.45
18	33.926	8.26
19	33.980	7.96

In [177]:

```
sns.lmplot(x='Sal',y='Temp',data=df,order=2,ci=None)
```

Out[177]:

<seaborn.axisgrid.FacetGrid at 0x260b18867a0>


```
In [178]:
```

```
df.fillna (method='ffill')
```

Out[178]:

	Sal	Temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

864863 rows × 2 columns

In [179]:

```
df.fillna(value=0,inplace=True)
```

C:\Users\chila\AppData\Local\Temp\ipykernel_15008\709118144.py:1: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(value=0,inplace=True)

In [180]:

```
x=np.array(df['Sal']).reshape(-1,1)
y=np.array(df[ 'Temp']).reshape(-1,1)
```

In [181]:

```
df.dropna (inplace=True)
```

C:\Users\chila\AppData\Local\Temp\ipykernel_15008\1939022369.py:1: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna (inplace=True)

In [182]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

In [183]:

```
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score (x_test,y_test))
```

0.014223284614636067

In [184]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test, y_pred, color='k')
plt.show()
```


In [185]:

```
df500=df[:] [:500]
sns.lmplot(x='Sal', y= 'Temp', data=df500,order=1, ci=None)
```

Out[185]:

<seaborn.axisgrid.FacetGrid at 0x260b1347a90>

In [186]:

```
df500.fillna (method='ffill', inplace=True)
x=np.array(df500['Sal']).reshape(-1,1)
y=np.array(df500 [ 'Temp']).reshape(-1,1)
df500.dropna (inplace=True)
x_train,x_test,y_train, y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression: ", regr.score (x_test,y_test))
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test, y_pred, color='k')
plt.show()
```

Regression: 0.053364290956062765

In [187]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model = LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 0.053364290956062765

In [188]:

#conclusion: Linear regression is not fit for the model

```
In [189]:
features = df.columns[0:2]
target = df.columns[-1]
#X and y values
x = df[features].values
y = df[target].values
#splot
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=17
print("The dimension of X_train is {}".format(x_train.shape))
print("The dimension of X_test is {}".format(x_test.shape))
#Scale features
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
The dimension of X_train is (605404, 2)
The dimension of X_test is (259459, 2)
Elastic Net
In [190]:
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(x,y)
print(regr.coef_)
print(regr.intercept_)
[0.
            0.94934511]
0.5401219631068042
In [191]:
y_pred_elastic=regr.predict(x_train)
```

In [192]:

mean_squared_error=np.mean((y_pred_elastic-y_train)**2) print("Mean Squared Error on test set", mean_squared_error)

Mean Squared Error on test set 114.40984808659205

Dataset 3

In [210]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler
```

In [211]:

d=pd.read_csv(r"C:\Users\chila\Downloads\fiat500_VehicleSelection_Dataset.csv")
d

Out[211]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1	lounge	51	882	25000	1	44.907242	8.611
1	2	pop	51	1186	32500	1	45.666359	12.241
2	3	sport	74	4658	142228	1	45.503300	11.417
3	4	lounge	51	2739	160000	1	40.633171	17.634
4	5	pop	73	3074	106880	1	41.903221	12.495
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.666
1535	1536	pop	51	2223	60457	1	45.481541	9.413
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	pop	51	1766	54276	1	40.323410	17.568

1538 rows × 9 columns

In [212]:

d.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	int64
1	model	1538 non-null	object
2	engine_power	1538 non-null	int64
3	age_in_days	1538 non-null	int64
4	km	1538 non-null	int64
5	previous_owners	1538 non-null	int64
6	lat	1538 non-null	float64
7	lon	1538 non-null	float64
8	price	1538 non-null	int64

dtypes: float64(2), int64(6), object(1)

memory usage: 108.3+ KB

In [214]:

d.head()

Out[214]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	F
0	1	lounge	51	882	25000	1	44.907242	8.611560	i
1	2	рор	51	1186	32500	1	45.666359	12.241890	i
2	3	sport	74	4658	142228	1	45.503300	11.417840	
3	4	lounge	51	2739	160000	1	40.633171	17.634609	1
4	5	рор	73	3074	106880	1	41.903221	12.495650	;

In [215]:

d.tail()

Out[215]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lc
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.666
1535	1536	рор	51	2223	60457	1	45.481541	9.413
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	pop	51	1766	54276	1	40.323410	17.568
4								

In [216]:

```
d.drop(columns=["model"],inplace=True)
```

In [217]:

```
plt.figure(figsize=(10,10))
sns.heatmap(d.corr(),annot = True)
```

Out[217]:

<Axes: >


```
In [219]:
```

```
features = d.columns[0:2]
target = d.columns[-1]
#X and y values
x = d[features].values
y = d[target].values
#splot
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=17
print("The dimension of X_train is {}".format(x_train.shape))
print("The dimension of X_test is {}".format(x_test.shape))
#Scale features
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
```

The dimension of X_{train} is (1076, 2) The dimension of X_{train} is (462, 2)

In [220]:

```
#Model
lr = LinearRegression()
#Fit model
lr.fit(x_train, y_train)
#predict
#prediction = lr.predict(X_test)
#actual
actual = y_test
train_score_lr = lr.score(x_train, y_train)
test_score_lr = lr.score(x_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lr))
print("The test score for lr model is {}".format(test_score_lr))
```

Linear Regression Model:

The train score for lr model is 0.07448634159905865 The test score for lr model is 0.07913288661070894

In [221]:

```
#Ridge Regression Model
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
#train and test scorefor ridge regression
train_score_ridge = ridgeReg.score(x_train, y_train)
test_score_ridge = ridgeReg.score(x_test, y_test)
print("\nRidge Model:\n")
print("The train score for ridge model is {}".format(train_score_ridge))
print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.07448028989896427 The test score for ridge model is 0.07885996726883049

In [222]:

```
plt.figure(figsize = (10, 10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gre
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```



```
In [223]:
pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")
Out[223]:
<Axes: >
   0.04
   0.02
   0.00
 -0.02
 -0.04
                                                               engine_power
                          \Box
```

In [224]:

```
from sklearn.linear_model import LassoCV
#Lasso Cross validation
lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).fit(x_trai #score
print(lasso_cv.score(x_train, y_train))
print(lasso_cv.score(x_test, y_test))
```

0.07448634159905387
0.07913288806451946

Elastic net

```
In [225]:
```

```
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(x,y)
print(regr.coef_)
print(regr.intercept_)
```

[8.46751882e-02 -1.30405006e+02] 15279.442735227916

In [226]:

```
y_pred_elastic=regr.predict(x_train)
```

In [227]:

```
mse=np.mean((y_pred_elastic-y_train)**2)
print("Mean Squared Error on test set", mse)
```

Mean Squared Error on test set 48390222.80186546

In []: