Homework 1

PB20111686 Ruixuan Huang

Problem. 1

We have an assumption that the output signal can be copied as two input signals.

Problem. 2

a. We're required to find such an smallest n, which meets the conditions below.

$$2^n \ge 400$$

Considering n is an integer, so

$$n = \lceil \log_2 400 \rceil = 9$$

b. Nine bits can represent 512 students, so let s be what we want

$$s = 2^9 - 400 = 112$$

Problem. 3

a. 00010110

b. 11111101

c. 11111000

d. 00000001

Problem. 4

a. 01 + 1011 = 0001 + 1011 = 1100

b. 11 + 01010101 = 111111111 + 01010101 = 01010100

c. 0101 + 110 = 0101 + 1110 = 0011

d.
$$01 + 10 = 11$$

Problem. 5

a.
$$(01010101)_B = (85)_D$$

b.
$$(10001101)_B = (-115)_D$$

c.
$$(10000000)_B = (-128)_D$$

d.
$$(111111111)_B = (-1)_D$$

Problem. 6

$$(0.3)_D = (0.01001100110...)_B = 1.001100110... imes 2^{-2}$$

It's a postive number, so the sign bit will be 0. The exponent part is unsigned integer 125's 8-bit binary form, 01111101. And the fraction part is 001100110....

Answer: 0 01111101 001100110...

Problem. 7

Sign: Negative

Exponent : 10000010 = 130, represents 3.

Fraction:

$$1010100110... = (\frac{1}{2})^1 + (\frac{1}{2})^3 + (\frac{1}{2})^5 + (\frac{1}{2})^8 + (\frac{1}{2})^9 = 0.662109375$$

Answer:

$$(-1) imes 1.662109375 imes 2^3 = -13.296875$$

Problem. 8

$$\begin{array}{r} x90A \\ + x4123 \\ \hline x4A2D \end{array}$$

Problem. 9

b.
$$x1234$$
 XOR $x1234 = x0000$

c.
$$xFEED$$
 AND (**NOT**($xBEEF$)) = $x4000$

Problem. 10

X	Y	Z	Q_1	\mathbf{Q}_{2}
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Problem. 11

a.
$$(25675)_D = (644B)_H$$

b.
$$(675.625)_D = (1010100011.101)_B = 1.010100011101 \times 2^9$$

IEEE 754 format: 0 10001000 01010001110100000000000

Hexadecimal representation: 4428E800

c. (Hello)_{ASCII} = $(48\ 65\ 6C\ 6C\ 6F)_{H}$