(Vision) Transformers

Computer Vision and Artificial Intelligence

Dr Varun Ojha

varun.ojha@ncl.ac.uk

School of Computing Newcastle University

Learning objectives (Vision Transformer)

By the end of this week, you will be able to:

- Learn the concepts of Transformer Models
- Understand the Self-Attention Mechanisms (the basic building block of Transformers)
- Understand an image classification using Vision Transformers

Content of this week (ViT)

- Part 1: Self-Attention Block
 - Basic concept of Transformers
 - Word Embedding
 - Self-Attention Mechanism
- Part 2: Vision Transformer
 - Basic concept of Vision Transformers
 - Architecture of a Vision Transformer
 - Performance of Vision Transformer

Given a word W (e.g. "intelligence") we want W to be a real vector of dimension d. Dimension d is also called word embedding dimension.

$$W$$
: words $\rightarrow \mathbb{R}^d$

"intelligence"
$$\rightarrow (w_1, w_2, ..., w_d) \rightarrow (0.1, -0.8, ..., 0.9)$$

 W_1 = "I love artificial intelligence" W_2 = "I like computational intelligence"

We create a vocabulary V collecting all unique words.

V = {"I", "love", "like", "artificial", "computational", "intelligence"}

For this example, vocabulary size |V| = 6

Word Embedding: Word → Integer

V = {"I", "love", "artificial", "computational", "intelligence", "like"}

 $I \rightarrow 0$

love \rightarrow 1

like $\rightarrow 2$

artificial → 3

computational → 4

intelligence → 5

Word Embedding: Integer → Word

```
V = {"I", "love", "artificial", "computational", "intelligence", "like"}
```

- $0 \rightarrow 1$
- $1 \rightarrow love$
- $2 \rightarrow like$
- 3 → artificial
- 4 → computational
- 5 → intelligence

One-Hot Encoding

V = {"I", "love", "like", "artificial", "computational", "intelligence"}

$$"I" = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

"love" =
$$\begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Tlike" =
$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$"I" = \begin{bmatrix} \mathbf{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad "love" = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad "like" = \begin{bmatrix} \mathbf{0} \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad "artificial" = \begin{bmatrix} \mathbf{0} \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

"computational" =
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 "intelligence" =
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

"intelligence" =
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Similarity between words?

Objective is to place similar words close to each other

Similarity between words?

Objective is to place similar words close to each other

t-SNE visualisation of words

Turian et al. (2010)

t-SNE visualisation

Word Embedding: Objective

Given a word W (e.g. "intelligence") we want to W a real vector of dimension d

W: words $\rightarrow \mathbb{R}^d$

"intelligence" $\rightarrow (w_1, w_2, ..., w_d) \rightarrow (0.1, -0.8, ..., 0.9)$

Check online here: https://ronxin.github.io/wevi/

"intelligence" =
$$\begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \end{bmatrix}$$
 \times $\begin{bmatrix} 0.1 & -0.8 & \dots & 0.7 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0.6 & 0.8 & \dots & 0.3 \\ 0.3 & -0.6 & \dots & -0.8 \\ -0.5 & 0.5 & \dots & 0.1 \end{bmatrix}$

$$(1 \times |V|) \cdot (|V| \times d) \Rightarrow (1 \times d)$$

"intelligence" =
$$\begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \end{bmatrix}$$
 $\times \begin{bmatrix} 0.5 & 4.6 & \dots & 0.7 \\ 0.1 & -0.8 & \dots & 0.9 \\ 0.6 & 0.8 & \dots & 0.3 \\ 0.3 & -0.6 & \dots & -0.8 \\ -0.5 & 0.5 & \dots & 0.1 \end{bmatrix}$

$$= [0.1, -0.8, ..., 0.9]$$

Lookup Table Embedding Weight Matrix

Probabilities

Positional Encoding

Let's have a sentence "This is Computer Vision Class" of n = 5 sequence length

And each word x_t (e.g., "Computer") is represented by an embedding vector of size for example d=10 (this could be very large number)

That is mathematically t-th word is represented as

$$x_t \in \mathbb{R}^d$$

Then the positional encoding will be presented as:

$$p(pos, 2i) = sin\left(\frac{pos}{10000^{2i/d}}\right)$$

$$p(pos, 2i + 1) = cos\left(\frac{pos}{10000^{2i/d}}\right)$$

For
$$pos = 0, 1, ... n$$
 and $i = 0, 1, ... \frac{d}{2}$

Positional Encoding of word: $x_t \in \mathbb{R}^d$

It assign a value relevant to the position of the word in the sentence

$$m{P} = egin{bmatrix} m{p_0} \\ m{p_1} \\ \vdots \\ m{p_n} \end{bmatrix} & n imes d \end{aligned}$$

where

$$\omega_t = \frac{pos}{10000^{2i/d}}$$

Positional encoding matrix matrix

Positional Encoding of word: $x_t \in \mathbb{R}^d$

It assign a value relevant to the position of the word in the sentence

Positional Encoding of word: $x_t \in \mathbb{R}^d$

It assign a value relevant to the position of the word in the sentence

Output

Attention (Q, K, V) = softmax
$$\left(\frac{\mathbf{Q}K^T}{\sqrt{d_k}}\right)$$
 V

MatMul
SoftMax
Mask (opt.)
Scale
MatMul

Let's have a sentence "This is Computer Vision Class" of n = 5 sequence length

And each word x (e.g., "Computer") is represented by an embedding vector of size for example d=10 (this could be very large number)

That is mathematically a word is presented as

$$x^j \in \mathbb{R}^d$$

And we have weight matrices

Query
$$\mathbf{W_Q} = d \times d_k$$
, $\mathbf{Key} \ \mathbf{W_K} = d \times d_k$, $\mathbf{Value} \ \mathbf{W_v} = d \times d_v$

Then we perform a liner transformation of the input of x^{j} via Query, Key and Value matrices to obtain Query, Key and Value vectors as:

$$1 \times 2$$

$$q_i^{1 \times d_k} = x_i^{1 \times d} \times \mathbf{W}_{\mathbf{Q}}^{d \times d_k}, \quad k_i^{1 \times d_k} = x_i^{1 \times d} \times \mathbf{W}_{\mathbf{K}}^{d \times d_k}, \quad \text{and} \quad v_i^{1 \times d_v} = x_i^{1 \times d} \times \mathbf{W}_{\mathbf{V}}^{d \times d_v}$$
For all words $i = 1, ..., n$ in the sentence.

We can pack the following Query, Key and Value vectors into a matrix forms:

$$1 \times 2 \qquad 1 \times d_k = x_i^{1 \times d_k} = x_i^{1 \times d_k} = x_i^{1 \times d_k} \times W_K^{d \times d_k}, \text{ and } v_i^{1 \times d_k} = x_i^{1 \times d} \times W_V^{d \times d_k}$$
 For all words $i = 1, ..., n$ in the sentence.

$$\mathbf{Q} = [q_1 \quad q_2 \quad \dots \quad q_n] \quad \mathbf{K} = [k_1 \quad k_2 \quad \dots \quad k_n] \quad \mathbf{V} = [v_1 \quad v_2 \quad \dots \quad v_n]$$
1 2 5 1 2 5

Vaswani et al. Attention Is All You Need (NIPS 2017)

n is the number of tokens in a sentence

Q is a matrix of size $n \times d_k$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{5 \times 2}$$

Attention (Q, K, V) = softmax
$$\left(\frac{\mathbf{Q}K^T}{\sqrt{d_k}}\right)$$
 V

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix} 5 \times 2$$

Q is a matrix of size $n \times d_k$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{5 \times 2}$$

Attention (Q, K, V) = softmax $\left(\frac{\mathbf{Q}K^T}{\sqrt{d_k}}\right)$ V

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix} 5 \times 2$$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{\mathbf{5} \times \mathbf{2}}$$

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix} 5 \times 2$$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix} 5 \times 2$$

K is a matrix of size
$$n \times d_k$$

) is a matrix of size
$$n \times d_k$$

$$\mathbf{Q} \text{ is a matrix of size } n \times d_k$$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

$$\mathbf{Q} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & \vdots & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}_{5 \times 2}$$

Vaswani et al. Attention Is All You Need (NIPS 2017)

MatMul SoftMax Mask (opt.) Scale MatMul

Q is a matrix of size $n \times d_k$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}$$
softmax
$$\begin{bmatrix} e_{d_k,1} \\ \sqrt{d_k} \\ \end{bmatrix}$$

 $\begin{bmatrix} \mathbf{softmax} \begin{pmatrix} \mathbf{e_{1,1}} \\ \sqrt{d_k} \end{pmatrix} & \mathbf{0} \\ \mathbf{softmax} \begin{pmatrix} \mathbf{e_{2,1}} \\ \sqrt{d_k} \end{pmatrix} & \frac{\mathbf{e_{2,2}}}{\sqrt{d_k}} \\ \vdots \\ \mathbf{softmax} \begin{pmatrix} \mathbf{e_{d_{k,1}}} \\ \frac{\mathbf{e_{d_{k,2}}}}{\sqrt{d_k}} \end{pmatrix} & \cdots \\ & \mathbf{e_{d_k,d_k}} \\ \end{bmatrix} \cdot \begin{bmatrix} v_{1,1} & \cdots & v_{1,d_v} \\ v_{2,1} & \ddots & q_{2,d_v} \\ \vdots \\ v_{n,1} & \cdots & v_{n,d_v} \end{bmatrix} 5 \times 2$

resulting self-attention weights

Attention (Q, K, V) = softmax
$$\left(\frac{\mathbf{Q}K^T}{\sqrt{d_k}}\right)\mathbf{V}$$

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix} 5 \times 2 \qquad \mathbf{V} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,d_v} \\ v_{2,1} & \ddots & q_{2,d_v} \\ \vdots & & \vdots \\ v_{n,1} & \cdots & v_{n,d_n} \end{bmatrix} 5 \times 2$$

K is a matrix of size $n \times d_k$ **V** is a matrix of size $n \times d_v$

Vaswani et al. Attention Is All You Need (NIPS 2017)

Q is a matrix of size $n \times d_k$

$$\mathbf{Q} = \begin{bmatrix} q_{1,1} & \cdots & q_{n,1} \\ q_{1,2} & \ddots & q_{n,2} \\ \vdots & \ddots & \vdots \\ q_{1,d_k} & \cdots & q_{n,d_k} \end{bmatrix}$$

Q is a matrix of size
$$n \times d_k$$

$$\mathbf{Pead_1} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,d_v} \\ a_{2,1} & \ddots & a_{2,d_v} \\ \vdots & & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,d_v} \end{bmatrix}$$
 resulting

resulting self-attention weights

Attention (Q, K, V) = softmax
$$\left(\frac{\mathbf{Q}K^T}{\sqrt{d_k}}\right)$$
 V

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & \cdots & k_{n,1} \\ k_{1,2} & \ddots & k_{n,2} \\ \vdots & & \vdots \\ k_{1,d_k} & \cdots & k_{n,d_k} \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,d_v} \\ v_{2,1} & \ddots & q_{2,d_v} \\ \vdots & & \vdots \\ v_{d,1} & & v_{d,d_v} \end{bmatrix}$$

K is a matrix of size $n \times d_k$ V is a matrix of size $d \times d_v$

Multi Head Self-Attention

Vaswani et al. Attention Is All You Need (NIPS 2017)

MultiHead(Q, K, V) = Concat(Head₁, Head₂, ···, Head_h) W_{Out}

Attention Map

pretended she didn't have a sister, because her sister and her good - for nothing

child like that.

husband were as unDurslevish as it was possible to be. The Dursleys shuddered to think

another good reason for keeping the Potters away; they didn't want Dudley mixing with a

what the neighbours would say if the Potters arrived in the street. The Dursleys knew

that the Potters had a small son, too, but they had never even seen him. This boy was

How Query and Key might work

The query searches for "similar" key vectors, but because keys are shifted, it finds the next token.

Source: https://community.deeplearning.ai/t/w4-a1-is-there-a-typo-in-multi-head-attention-slides/135478

Transformer Visualisations & Explainers (Online Resources)

- https://bbycroft.net/llm
- https://poloclub.github.io/transformer-explainer/
- https://jalammar.github.io/illustrated-transformer/

97, 9 791 91.72.62.72 9 44,9 4 7 14 77.77.77.79.91.77

Convolutional Neural Nets

3×3 convolution layer and the 3×3 local relation layer

Hu et al. (2019). Local relation networks for image recognition. ICCV

Convolutional Nets Vs Transformer

Ramachandran et al. Stand-alone self-attention in vision models. NIPS 2019

3 × 3 convolution.

The output is the inner product between the local window and the learned weights

Self-attention around image local region
The output is local self attention

Standalone Self-attention in Vision Models

Ramachandran et al. Stand-alone self-attention in vision models. NIPS 2019

	ResNet-26			ResNet-38			ResNet-50		
	FLOPS (B)	Params (M)	Acc. (%)	FLOPS (B)	Params (M)	Acc. (%)	FLOPS (B)	Params (M)	Acc. (%)
	(B)	(1V1)	(70)	(D)	(1V1)	(70)	(D)	(1V1)	
Baseline	4.7	13.7	74.5	6.5	19.6	76.2	8.2	25.6	76.9
Conv-stem + Attention	4.5	10.3	75.8	5.7	14.1	77.1	7.0	18.0	77.4
Full Attention	4.7	10.3	74.8	6.0	14.1	76.9	7.2	18.0	77.6

Convolutional Nets Vs Transformers

How Vision Transformer Models Works

Splitting an Image into Patches

Split the image into patches, each of size (H'xW'xD)

Linear mapping

Linear projection to D-dimensional vector

Positional Encoding

Inform the model where the patch's position in the image is. In other word use sine and cosine

values for respective patch number

$$p_{i,j} = \begin{cases} \sin\left(\frac{i}{10000^{\frac{j}{d_{emb_dim}}}}\right) & \text{if } j \text{ is even} \\ \cos\left(\frac{i}{10000^{\frac{j-1}{d_{emb_dim}}}}\right) & \text{if } j \text{ is odd} \end{cases}$$

- 0.75

Positional Encoding and Vectors

Inform the model where the patch's position in the image is. In other word use sine and cosine values for respective patch number

$$p_{i,j} = \begin{cases} \sin\left(\frac{i}{10000^{\frac{j}{d_{emb_dim}}}}\right) & \text{if } j \text{ is even} \\ \cos\left(\frac{i}{10000^{\frac{j}{d_{emb_dim}}}}\right) & \text{if } j \text{ is odd} \end{cases}$$

Add a Learnable Classification Token

Output vector of Transformer Encoder

Same as ChatGPT Transformer

Same as ChatGPT Transformer

Same as ChatGPT Transformer

Attention (**Q**, **K**, **V**) = softmax
$$\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}\right)\mathbf{V}$$

ViT Performance

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2017

Note that this performance is only achieved when ViT is pre-trained on large dataset (in this case JFT-300M is a 300 million image dataset of Google)

ViT on CIFAR-10 (without Pre-Training)

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2017

Note that the performance depends on hyper parameter tuning models' size etc.

ViT Performance

- Worse than ResNet when trained just on ImageNet
- Performance improved when pre-trained on very large dataset
- Pretrained outperforms much bigger CNNs
- You need large GPUs (Computational Cost is very high)

Coursework Brief (Part III)

More details to be released this week (before Practical Session)

Implement Convolutional Neural Networks (specifically using VGG16) on CIFAR-10 dataset and solve following three problems:

- For the training use early stopping and save the model that produce best validation results. (you will need to use some of training data as validation set) [Marks 10: 5+3+2]
- What would be the performance of VGG16 with or without batch normalization to it. Show using a convergence graph [Marks 10: 5+5]
- Visualise the Convolutional Features / Filters. This could be done by using imshow or similar methods. Show how filters features changes over different layers over a test image. [Marks 20: 10+10]