Mathematik für Informatiker

Kevin Kraft

17. Juli 2024

Universität Ulm

Diagonalisieren

Eigenwerte, Eigenvektoren,

Eigenwerte

Definition 9.3.1: Eigenwert und Eigenvektor

Es sei V ein \mathbb{K} -Vektorraum mit $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$ und weiter sei $F:V\to V$ eine lineare Abbildung. Eine reelle oder komplexe Zahl λ

heißt *Eigenwert* von F, wenn es einen Vektor $x \in V$, $x \neq 0$, gibt mit

$$Fx = \lambda x. \tag{9.7}$$

x heißt dann *Eigenvektor* von F zum Eigenwert λ .

Definition 9.3.4: Charakteristisches Polynom

 $P_F(\lambda) = \det(F - \lambda I)$ beziehungsweise $P_A(\lambda) = \det(A - \lambda I)$

heißt das charakteristische Polynom von F beziehungsweise A.

Abbildung 1.1: Liebezeit, Skript: Mathematik für Informatiker, 2023

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix} \quad \Rightarrow \quad p_A = \det(A - \lambda I) \stackrel{!}{=} 0$$

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix} \quad \Rightarrow \quad p_A = \det(A - \lambda I) \stackrel{!}{=} 0$$

$$\begin{vmatrix} 2 - \lambda & 2 & 3 \\ 1 & 2 - \lambda & 1 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = (2 - \lambda)^2 (1 - \lambda) - 2 - 4(2 - \lambda) - 2(1 - \lambda) = 0$$

Die Nullstellen sind die Eigenwerte: $\lambda_1=-1,\ \lambda_2=2,\ \lambda_3=4$

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix} \quad \Rightarrow \quad p_A = \det(A - \lambda I) \stackrel{!}{=} 0$$

$$\begin{vmatrix} 2 - \lambda & 2 & 3 \\ 1 & 2 - \lambda & 1 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = (2 - \lambda)^2 (1 - \lambda) - 2 - 4(2 - \lambda) - 2(1 - \lambda) = 0$$

Die Nullstellen sind die Eigenwerte: $\lambda_1=-1,\ \lambda_2=2,\ \lambda_3=4$ Das bedeutet auch

$$p(\lambda) = (\lambda + 1)(\lambda - 2)(\lambda - 4)$$

$$A = egin{pmatrix} 2 & 2 & 3 \ 1 & 2 & 1 \ 2 & -2 & 1 \end{pmatrix} \quad \Rightarrow \quad p_A = \det(A - \lambda I) \stackrel{!}{=} 0$$

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix} \quad \Rightarrow \quad p_A = \det(A - \lambda I) \stackrel{!}{=} 0$$

$$\begin{vmatrix} 2 - \lambda & 2 & 3 \\ 1 & 2 - \lambda & 1 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = (2 - \lambda)^2 (1 - \lambda) - 2 - 4(2 - \lambda) - 2(1 - \lambda) = 0$$

Die Nullstellen sind die Eigenwerte: $\lambda_1 = -1, \ \lambda_2 = 2, \ \lambda_3 = 4$

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix} \quad \Rightarrow \quad p_A = \det(A - \lambda I) \stackrel{!}{=} 0$$

$$\begin{vmatrix} 2 - \lambda & 2 & 3 \\ 1 & 2 - \lambda & 1 \\ 2 & -2 & 1 - \lambda \end{vmatrix} = (2 - \lambda)^2 (1 - \lambda) - 2 - 4(2 - \lambda) - 2(1 - \lambda) = 0$$

Die Nullstellen sind die Eigenwerte: $\lambda_1=-1,\ \lambda_2=2,\ \lambda_3=4$ Eigenvektoren bestimmen:

$$[A - \lambda_i I] \vec{x_i} = 0 \quad \Leftrightarrow \quad \left[\begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix} - \lambda_i \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix}
2 - \lambda_{i} & 2 & 3 & 0 \\
1 & 2 - \lambda_{i} & 1 & 0 \\
2 & -2 & 1 - \lambda_{i} & 0
\end{pmatrix}
\xrightarrow{\lambda_{1} = -1}
\begin{pmatrix}
3 & 2 & 3 & 0 \\
1 & 3 & 1 & 0 \\
2 & -2 & 2 & 0
\end{pmatrix}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix}
2 - \lambda_i & 2 & 3 & 0 \\
1 & 2 - \lambda_i & 1 & 0 \\
2 & -2 & 1 - \lambda_i & 0
\end{pmatrix}
\xrightarrow{\lambda_1 = -1}
\begin{pmatrix}
3 & 2 & 3 & 0 \\
1 & 3 & 1 & 0 \\
2 & -2 & 2 & 0
\end{pmatrix}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix}
2 - \lambda_i & 2 & 3 & 0 \\
1 & 2 - \lambda_i & 1 & 0 \\
2 & -2 & 1 - \lambda_i & 0
\end{pmatrix}
\xrightarrow{\lambda_1 = -1}
\begin{pmatrix}
3 & 2 & 3 & 0 \\
1 & 3 & 1 & 0 \\
2 & -2 & 2 & 0
\end{pmatrix}$$

Ein x_i darf immer gewählt werden: Wähle $x_1 = 1$

$$\vec{x}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix}
2 - \lambda_i & 2 & 3 & 0 \\
1 & 2 - \lambda_i & 1 & 0 \\
2 & -2 & 1 - \lambda_i & 0
\end{pmatrix}
\xrightarrow{\lambda_2 = 2}
\begin{pmatrix}
0 & 2 & 3 & 0 \\
1 & 0 & 1 & 0 \\
2 & -2 & -1 & 0
\end{pmatrix}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix} 2 - \lambda_{i} & 2 & 3 & 0 \\ 1 & 2 - \lambda_{i} & 1 & 0 \\ 2 & -2 & 1 - \lambda_{i} & 0 \end{pmatrix} \xrightarrow{\lambda_{2}=2} \begin{pmatrix} 0 & 2 & 3 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & -2 & -1 & 0 \end{pmatrix}$$

$$\xrightarrow{Z'_{3}=Z_{3}-2Z_{2}+Z_{1}} \begin{pmatrix} 0 & 2 & 3 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{aligned} 2x_{2}+3x_{3} &= 0 \\ x_{2} &= -\frac{3}{2}x_{3} \\ x_{1} &= -x_{3} \end{aligned}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix}
2 - \lambda_i & 2 & 3 & 0 \\
1 & 2 - \lambda_i & 1 & 0 \\
2 & -2 & 1 - \lambda_i & 0
\end{pmatrix}
\xrightarrow{\lambda_2 = 2}
\begin{pmatrix}
0 & 2 & 3 & 0 \\
1 & 0 & 1 & 0 \\
2 & -2 & -1 & 0
\end{pmatrix}$$

$$\xrightarrow{Z_3' = Z_3 - 2Z_2 + Z_1} \begin{pmatrix} 0 & 2 & 3 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{aligned} 2x_2 + 3x_3 &= 0 \\ x_2 &= -\frac{3}{2}x_3 \\ x_1 &= -x_3 \end{aligned}$$

Ein x_i darf immer gewählt werden: Wähle $x_1 = 1$

$$\vec{\mathsf{x}}_2 = \begin{pmatrix} 1 \\ -\frac{3}{2} \\ -1 \end{pmatrix}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix} 2 - \lambda_i & 2 & 3 & 0 \\ 1 & 2 - \lambda_i & 1 & 0 \\ 2 & -2 & 1 - \lambda_i & 0 \end{pmatrix} \quad \stackrel{\lambda_3=4}{\Longrightarrow} \quad \begin{pmatrix} -2 & 2 & 3 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -2 & -3 & 0 \end{pmatrix}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix} 2 - \lambda_i & 2 & 3 & 0 \\ 1 & 2 - \lambda_i & 1 & 0 \\ 2 & -2 & 1 - \lambda_i & 0 \end{pmatrix} \quad \stackrel{\lambda_3=4}{\Longrightarrow} \quad \begin{pmatrix} -2 & 2 & 3 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -2 & -3 & 0 \end{pmatrix}$$

Lösen eines homogenen Gleichungssystems

$$\begin{pmatrix} 2 - \lambda_i & 2 & 3 & 0 \\ 1 & 2 - \lambda_i & 1 & 0 \\ 2 & -2 & 1 - \lambda_i & 0 \end{pmatrix} \quad \stackrel{\lambda_3=4}{\Longrightarrow} \quad \begin{pmatrix} -2 & 2 & 3 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -2 & -3 & 0 \end{pmatrix}$$

Ein x_i darf immer gewählt werden: Wähle $x_3 = 1$

$$\vec{x}_3 = \begin{pmatrix} 4 \\ \frac{5}{2} \\ 1 \end{pmatrix}$$

Diagonalisieren

$$A=egin{pmatrix} 2&2&3\1&2&1\2&-2&1 \end{pmatrix}$$
 A besitzt die Eigenwerte $\lambda_1=-1,$ $\lambda_2=2,$ $\lambda_3=4$

Und die Eigenvektoren:

$$\vec{x}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \vec{x}_2 = \begin{pmatrix} 1 \\ -\frac{3}{2} \\ -1 \end{pmatrix}, \ \vec{x}_3 = \begin{pmatrix} 4 \\ \frac{5}{2} \\ 1 \end{pmatrix}$$

Diagonalisieren

$$A=egin{pmatrix} 2&2&3\1&2&1\2&-2&1 \end{pmatrix}$$
 A besitzt die Eigenwerte $\lambda_1=-1,$ $\lambda_2=2,$ $\lambda_3=4$

Und die Eigenvektoren:

$$\vec{x}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \vec{x}_2 = \begin{pmatrix} 1 \\ -\frac{3}{2} \\ -1 \end{pmatrix}, \ \vec{x}_3 = \begin{pmatrix} 4 \\ \frac{5}{2} \\ 1 \end{pmatrix}$$

A ist diagonalisierbar, mit $B^{-1}AB = D$ mit

$$B = (\vec{x}_1, \ \vec{x}_2, \ \vec{x}_3) = \begin{pmatrix} 1 & 1 & 4 \\ 0 & -\frac{3}{2} & \frac{5}{2} \\ -1 & -1 & 1 \end{pmatrix} \quad \text{und} \quad D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Definition 9.4.8: Vielfachheiten und Eigenraum

Es sei $A \in M(n \times n, \mathbb{K})$ mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und $\lambda_0 \in \mathbb{K}$ eine m-fache Nullstelle von $P_A(\lambda) = \det(A - \lambda I)$, dann heißt

- (i) m die algebraische Vielfachheit von λ_0 ,
- (ii) $\dim {\rm Ker}(A-\lambda_0I)=:\dim N_{\lambda_0}$ geometrische Vielfachheit von λ_0 und
- $(\mathrm{iii}) \ \operatorname{Ker}(A-\lambda_0 I) = \{ \, v \mid Av = \lambda_0 v \, \} = N_{\lambda_0} \ \operatorname{der} \operatorname{\it Eigenraum} \ \operatorname{von} A \ \operatorname{zu} \ \lambda_0.$

Abbildung 1.2: Liebezeit, Skript: Mathematik für Informatiker, 2023

Definition 9.4.8: Vielfachheiten und Eigenraum

Es sei $A \in M(n \times n, \mathbb{K})$ mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und $\lambda_0 \in \mathbb{K}$ eine m-fache Nullstelle von $P_A(\lambda) = \det(A - \lambda I)$, dann heißt

- (i) m die algebraische Vielfachheit von λ_0 ,
- (ii) $\dim {\rm Ker}(A-\lambda_0I)=:\dim N_{\lambda_0}$ geometrische Vielfachheit von λ_0 und
- $(\mathrm{iii}) \ \operatorname{Ker}(A-\lambda_0 I) = \{ \, v \mid Av = \lambda_0 v \, \} = N_{\lambda_0} \ \operatorname{der} \operatorname{\it Eigenraum} \ \operatorname{von} A \ \operatorname{zu} \ \lambda_0.$

Abbildung 1.2: Liebezeit, Skript: Mathematik für Informatiker, 2023

algebraische Vielfachheit: Erkenne ich am charakteristischen Polynom.

$$p_A(t) = (t - \lambda_1)^{m_1} \cdot (t - \lambda_2)^{m_2} \cdot ...$$

algebraische Vielfachheit vom Eigenwert λ_1 ist m_1 .

Algebraische Vielfachheit

algebraische Vielfachheit: Erkenne ich am charakteristischen Polynom.

$$p_A(t) = (t - \lambda_1)^{m_1} \cdot (t - \lambda_2)^{m_2} \cdot ...$$

algebraische Vielfachheit vom Eigenwert λ_1 ist m_1 .

Beispiel:

$$A=egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$$
 , $p_A(\lambda)=(1-\lambda)^2$ Eigenwert: $\lambda_1=1$

Die algebraische Vielfachheit von $\lambda_1 = 1$ ist 2.

Definition 9.4.8: Vielfachheiten und Eigenraum

Es sei $A \in M(n \times n, \mathbb{K})$ mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und $\lambda_0 \in \mathbb{K}$ eine m-fache Nullstelle von $P_A(\lambda) = \det(A - \lambda I)$, dann heißt

- (i) m die algebraische Vielfachheit von λ_0 ,
- (ii) $\dim {\rm Ker}(A-\lambda_0I)=:\dim N_{\lambda_0}$ geometrische Vielfachheit von λ_0 und
- $(\mathrm{iii}) \ \operatorname{Ker}(A-\lambda_0 I) = \{ \, v \mid Av = \lambda_0 v \, \} = N_{\lambda_0} \ \operatorname{der} \operatorname{\it Eigenraum} \ \operatorname{von} A \ \operatorname{zu} \ \lambda_0.$

Abbildung 1.3: Liebezeit, Skript: Mathematik für Informatiker, 2023

geometrische Vielfachheit: Erkenne ich an der Anzahl der linear unabhängigen Eigenvektoren vom Eigenwert λ .

Finde ich für einen Eigenwert λ 3 l.u. Eigenvektoren, dann ist die geometrische Vielfachheit dieses Eigenwerts 3.

Geometrische Vielfachheit

geometrische Vielfachheit: Erkenne ich an der Anzahl der linear unabhängigen Eigenvektoren vom Eigenwert λ . Beispiel:

$$A=egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} \;, \quad p_A(\lambda)=(1-\lambda)^2 \quad ext{Eigenwert: } \lambda_1=1$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies x = c \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad c \in \mathbb{R}$$

Der Eigenwert $\lambda_1=1$ besitzt nur einen linear unabhängigen Eigenvektor. Seine geometrische Vielfachheit ist 1.

Definition 9.4.8: Vielfachheiten und Eigenraum

Es sei $A \in M(n \times n, \mathbb{K})$ mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und $\lambda_0 \in \mathbb{K}$ eine m-fache Nullstelle von $P_A(\lambda) = \det(A - \lambda I)$, dann heißt

- (i) m die algebraische Vielfachheit von λ_0 ,
- (ii) $\dim {\rm Ker}(A-\lambda_0I)=:\dim N_{\lambda_0}$ geometrische Vielfachheit von λ_0 und
- (iii) $\operatorname{Ker}(A \lambda_0 I) = \{ v \mid Av = \lambda_0 v \} = N_{\lambda_0} \text{ der } Eigenraum \text{ von } A \text{ zu } \lambda_0.$

Abbildung 1.4: Liebezeit, Skript: Mathematik für Informatiker, 2023

Eigenraum: Ist der Raum, der von den Eigenvektoren aufgespannt wird. Ein Eigenraum gehört zu einem Eigenwert.

Seien
$$\vec{v}_1$$
, \vec{v}_2 , \vec{v}_1 Eigenvektoren zum Eigenwert λ , dann ist $N_{\lambda} = \{\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 \mid a_1, a_2, a_3 \in \mathbb{R}\}$

Eigenraum

Seien \vec{v}_1 , \vec{v}_2 , \vec{v}_1 Eigenvektoren zum Eigenwert λ , dann ist $N_{\lambda} = \{\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + a_3\vec{v}_3 \mid a_1, a_2, a_3 \in \mathbb{R}\}$

$$A=egin{pmatrix}1&1&0\0&1&0\0&0&1\end{pmatrix}$$
 , $p_A(\lambda)=(\lambda-1)^3$ einziger Eigenwert: $\lambda_1=1$

Eigenvektoren:

$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 , $x_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Eigenraum:

$$N_{\lambda_1} = \left\{ x = a_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \mid a_1, a_2 \in \mathbb{R} \right\}$$

Eine Matrix $A \in \mathbb{R}^{n \times n}$ ist genau dann diagonalisierbar, wenn $\mathbf{n} = \mathbf{Summe}$ der l.u. Eigenvektoren aller Eigenwerte ist.

Eine Matrix $A \in \mathbb{R}^{n \times n}$ ist genau dann diagonalisierbar, wenn $\mathbf{n} = \mathbf{Summe}$ der I.u. Eigenvektoren aller Eigenwerte ist.

Anders Ausgedrückt die Summe der geometrischen Vielfachheiten = n

Eine Matrix $A \in \mathbb{R}^{n \times n}$ ist genau dann diagonalisierbar, wenn $\mathbf{n} = \mathbf{Summe}$ der I.u. Eigenvektoren aller Eigenwerte ist.

Anders Ausgedrückt die **Summe der geometrischen Vielfachheiten = n**

In diesem Fall gilt auch immer algebraische Vielfachheit = geometrische Vielfachheit für alle Eigenwerte.

Eine Matrix $A \in \mathbb{R}^{n \times n}$ ist genau dann diagonalisierbar, wenn $\mathbf{n} = \mathbf{Summe}$ der I.u. Eigenvektoren aller Eigenwerte ist.

Anders Ausgedrückt die **Summe der geometrischen Vielfachheiten** = **n**

In diesem Fall gilt auch immer algebraische Vielfachheit = geometrische Vielfachheit für alle Eigenwerte.

Hat $A \in \mathbb{R}^{n \times n}$ n paarweise verschiedene Eigenwerte, dann ist A diagonalisierbar.

Jede Linearkombination von Eigenvektoren zum gleichen Eigenwert ist wieder ein Eigenvektor.

Jede Linearkombination von Eigenvektoren zum gleichen Eigenwert ist wieder ein Eigenvektor.

Seien \vec{v}_1 , \vec{v}_2 Eigenvektoren zum EW λ .

$$A ec{v}_1 = \lambda ec{v}_1$$
 , $A ec{v}_2 = \lambda ec{v}_2$ Zu zeigen: $ec{v}_3 = a_1 ec{v}_1 + a_2 ec{v}_2$ ist ein EV

Also

$$A\vec{v}_3 = \lambda \vec{v}_3$$

Jede Linearkombination von Eigenvektoren zum gleichen Eigenwert ist wieder ein Eigenvektor.

Seien \vec{v}_1 , \vec{v}_2 Eigenvektoren zum EW λ .

$$A ec{v}_1 = \lambda ec{v}_1$$
 , $A ec{v}_2 = \lambda ec{v}_2$ Zu zeigen: $ec{v}_3 = a_1 ec{v}_1 + a_2 ec{v}_2$ ist ein EV

Also

$$A\vec{v}_3 = \lambda \vec{v}_3$$

$$A\vec{v}_{3} = A(a_{1}\vec{v}_{1} + a_{2}\vec{v}_{2})$$

$$= a_{1}A\vec{v}_{1} + a_{2}A\vec{v}_{2}$$

$$= a_{1}\lambda\vec{v}_{1} + a_{2}\lambda\vec{v}_{2}$$

$$= \lambda(a_{1}\vec{v}_{1} + a_{2}\vec{v}_{2})$$

$$= \lambda\vec{v}_{3}$$

Jede Linearkombination von Eigenvektoren zum gleichen Eigenwert ist wieder ein Eigenvektor.

Seien \vec{v}_1 , \vec{v}_2 Eigenvektoren zum EW λ .

$$A ec{v}_1 = \lambda ec{v}_1$$
 , $A ec{v}_2 = \lambda ec{v}_2$ Zu zeigen: $ec{v}_3 = a_1 ec{v}_1 + a_2 ec{v}_2$ ist ein EV

Also

$$A\vec{v}_3 = \lambda \vec{v}_3$$

$$A\vec{v}_{3} = A(a_{1}\vec{v}_{1} + a_{2}\vec{v}_{2})$$

$$= a_{1}A\vec{v}_{1} + a_{2}A\vec{v}_{2}$$

$$= a_{1}\lambda\vec{v}_{1} + a_{2}\lambda\vec{v}_{2}$$

$$= \lambda(a_{1}\vec{v}_{1} + a_{2}\vec{v}_{2})$$

$$= \lambda\vec{v}_{3}$$

Der Eigenraum beschreibt alle Eigenvektoren zu einem Eigenwert.

Zeige: Ist $A \in \mathbb{R}^{n \times n}$ und gilt $A^m = 0$ für ein $m \in \mathbb{N}$, dann hat A nur den Eigenwert 0.

Zeige: Ist $A \in \mathbb{R}^{n \times n}$ und gilt $A^m = 0$ für ein $m \in \mathbb{N}$, dann hat A nur den Eigenwert 0.

Annahme: A besitzt einen Eigenwert $\lambda \neq 0$ mit EV x

$$A^{m}x = A^{m-1}Ax = A^{m-1}\lambda x$$

$$= \lambda A^{m-2}Ax = \lambda A^{m-2}\lambda x$$

$$= \lambda^{2}A^{m-3}Ax = \lambda^{2}A^{m-3}\lambda x$$
...
$$= \lambda^{m}x = 0$$

Da $x \neq 0$ (EV) muss gelten $\lambda^m = 0$. Widerspruch zur Annahme.

Zeige: Ist $A \in \mathbb{R}^{n \times n}$, dann haben A und A^T das gleiche charakteristische Polynom und die gleichen Eigenwerte.

Zeige: Ist $A \in \mathbb{R}^{n \times n}$, dann haben A und A^T das gleiche charakteristische Polynom und die gleichen Eigenwerte.

Mit der Definition des charakteristischen Polynoms

$$p_{A^T}(\lambda) = \det(\lambda I - A^T) = \det((\lambda I)^T - A^T) = \det((\lambda I - A)^T)$$

Zeige: Ist $A \in \mathbb{R}^{n \times n}$, dann haben A und A^T das gleiche charakteristische Polynom und die gleichen Eigenwerte.

Mit der Definition des charakteristischen Polynoms

$$p_{A^T}(\lambda) = \det(\lambda I - A^T) = \det((\lambda I)^T - A^T) = \det((\lambda I - A)^T)$$

Aus der Eigenschaft der Determinanten det $B = \det B^T$ folgt nun die Aussage.

$$p_{A^T}(\lambda) = \det\left((\lambda I - A)^T\right) \det\left(\lambda I - A\right) = p_A(\lambda)$$