

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- 6 Warstwa łącza danych
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci
- 9 Odwzorowanie adresów
- 10 Podstawowa konfiguracja routera
- 11 Adresowanie IPv4

↑ Adresowanie IPv6 / Zapis adresów IPv6

Zapis adresów IPv6

12.2.1

Format adresu IPv6

Pierwszym krokiem do poznania IPv6 w sieci jest zrozumienie, w jaki sposób adres IPv6 jest zapisywany i formatowany. Adresy IPv6 są znacznie wieksze niż adresy IPv4, dlatego jest mało prawdopodobne, aby ich zabrakło.

Adres IPv6 ma długość 128 bitów zapisanych w postaci łańcucha wartości szesnastkowych. Każde cztery bity reprezentowane są przez jedną liczbę szesnastkową, co daje w sumie 32 cyfry szesnastkowe, jak pokazano na rysunku. Wielkość liter w zapisie adresu IPv6 nie jest istotna czyli adres może zawierać wszystkie litery małe lub wszystkie litery wielkie lub ich mieszankę (małe i wielkie jednocześnie).

16-bitowe segmenty lub hekstety

- 1 Komunikacja sieciowa dziś
- Podstawy konfiguracji
 przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- Systemy liczbowe

 \vee

V

- 6 Warstwa łącza danych
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci
- Odwzorowanie adresów 🔻
- 10 Podstawowa konfiguracja routera
- 11 Adresowanie IPv4 V

Preferowany format

Preferowany format oznacza, że wpisujesz adres IPv6 przy użyciu wszystkich 32 cyfr szesnastkowych. To w cale nie oznacza, że jest to najlepszy sposób zapisu adresu IPv6. W tym module zobaczysz dwie reguły, które pomogą zmniejszyć liczbę cyfr potrzebnych do reprezentacji adresu IPv6.

Oto przykłady adresów IPv6 w preferowanym formacie.

```
2001 : 0db8 : 0000 : 1111 : 0000 : 0000 : 0200
2001 : 0db8 : 0000 : 00a3 : abcd : 0000 : 0200 : 1234
2001 : 0db8 : 000a : 0001 : c012 : 9aff : fe9a: 19ac
2001 : 0db8 : aaaa : 0001 : 0000 : 0000 : 0000
```

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	~
6	Warstwa łącza danych	~
7	Przełączanie w sieciach Ethernet	~
8	Warstwa sieci	~
9	Odwzorowanie adresów	~
10	Podstawowa konfiguracja routera	~
11	Adresowanie IPv4	~

```
fe80 : 0000 : 0000 : 0000 : 0123 : 4567 : 89ab: cdef

fe80 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 00001

fe80 : 0000 : 0000 : 0000 : 0123 : 4567 : 89ab: cdef

fe80 : 0000 : 0000 : 0000 : 0123 : 4567 : 89ab: cdef

0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 00001

0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
```

12.2.2

Zasada 1 - Pomijanie zer wiodących

Pierwszą regułą, która pomaga skrócić zapis adresów IPv6, jest pomijanie początkowych zer w dowolnym hekstecie. Oto cztery przykłady sposobów pominięcia zer wiodących:

- 01ab może być zapisane jako 1ab
- 09f0 może być reprezentowany jako 9f0
- 0a00 może być reprezentowany jako a00
- 00ab może być zapisane jako ab

Reguła może być stosowana tylko do zer wiodących, w przeciwnym razie adres stałby się niejednoznaczny. Na przykład hekstet "abc" może mieć wartość "0abc" lub "abc0", ale nie reprezentują one tej samej wartości.

Pomijając wiodące zera

Тур	Format
Preferowany	2001 : 0db8 : 0000 : 1111 : 0000 : 0000 : 0200
Bez wiodących zer	2001 : db8 : 0 : 1111 : 0 : 0 : 200
Preferowany	2001 : 0 db8 : 000 0 : 00 a3 : ab00 : 0 ab0 : 1 234
Bez wiodących zer	2001 : db8 : 0 : a3 : ab00 : ab0 : ab : 1234
Preferowany	2001 : 0 db8 : 000 a : 000 1 : c012 : 90ff : fe90 : 000 1

1	Komunikacja sieciowa dziś	`

- Podstawy konfiguracji
 przełącznika i urządzenia
 końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- 6 Warstwa łącza danych
- Przełączanie w sieciach Ethernet
- 8 Warstwa sieci
- Odwzorowanie adresów
- 10 Podstawowa konfiguracja routera
- 11 Adresowanie IPv4

```
Тур
           Format
Bez
           2001 : db8 :
                                 1 : c012 : 90ff : fe90 :
zer
Preferowany 2001: 0db8: aaaa: 0001: 0000: 0000: 0000: 0000
Bez
wiodących
           2001 : db8 : aaaa :
Preferowany fe80: 0000: 0000: 0123: 4567: 89ab: cdef
Bez
wiodących
           fe80 :
                                 0 : 123 : 4567 : 89ab : cdef
Preferowany fe80 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
Bez
wiodących
           fe80 :
zer
Preferowany 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
Bez
wiodących
                                              0:
zer
Preferowany 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
Bez
wiodących
zer
```

12.2.3

Zasada 2 - Podwójny dwukropek

Druga reguła pozwalająca na skrócenie zapisu adresu IPv6 jest taka, że podwójny dwukropek może zastąpić jeden raz dowolną

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	~
6	Warstwa łącza danych	~
7	Przełączanie w sieciach Ethernet	~
8	Warstwa sieci	~
9	Odwzorowanie adresów	~
10	Podstawowa konfiguracja routera	~
11	Adresowanie IPv4	~

ilość hextetów składających się z samych zer. Na przykład 2001:db8:cafe:1:0:0:0:1 (pominięte zera wiodące) może być reprezentowany jako 2001:db8:cafe:1::1. Dwukropek (::) jest używany zamiast trzechhekstetów z samymi zerami (0:0:0).

Podwójny dwukropek (::) może być użyty tylko jeden raz w danym adresie, w przeciwnym przypadku adres byłby niejednoznaczny. Kiedy reguła ta użyta jest z jednoczesnym zastosowaniem techniki pomijania wiodących zer zapis adresu IPv6 może być znacząco skrócony. Taki zapis znany jest pod nazwą format skompresowany.

Oto przykład nieprawidłowego użycia dwukropka: 2001:db8::abcd::1234.

Dwukropek jest używany dwukrotnie w powyższym przykładzie. Oto możliwe rozszerzenia tego niepoprawnego adresu formatu skompresowanego:

- 2001:db8::abcd:0000:0000:1234
- 2001:db8::abcd:0000:0000:0000:1234
- 2001:db8:0000:abcd::1234
- 2001:db8:0000:0000:abcd::1234

Jeśli adres ma więcej niż jeden ciągły łańcuch hekstetów z samymi zerami, najlepszą praktyką jest użycie dwukropka (::) na najdłuższym łańcuchu. Jeśli łańcuchy są równe, pierwszy ciąg powinien użyć podwójnego dwukropka (::).

Pomijanie wiodących zer i wszystkich segmentów z samymi zerami

Тур	Format
Preferowany	2001 : 0db8 : 0000 : 1111 : 0000 : 0000 : 0200
Skompresowany/ odstępy	2001 : db8 : 0 : 1111 : : 200
Skompresowany	2001:db8:0:1111::200
Preferowany	2001 : 0db8 : 0000 : 0000 : ab00 : 0000 : 0000 : 0000
Skompresowany/ odstępy	2001 : db8 : 0 : 0 : ab00 ::
Skompresowany	2001:db8:0:0:ab00::
Preferowany	2001 : 0db8 : aaaa : 0001 : 0000 : 0000 : 0000 : 0000
Skompresowany/ odstępy	2001 : db8 : aaaa : 1 ::
Skompresowany	2001:db8:aaaa:1::
Preferowany	fe80 : 0000 : 0000 : 0123 : 4567 : 89ab : cdef
Skompresowany/	fe80 : : 123 : 4567 : 89ab : cdef

1	Komunikacja sieciowa dziś
---	---------------------------

 \vee

 \vee

 \vee

- Podstawy konfiguracji przełącznika i urządzenia końcowego
- 3 Protokoły i modele
- 4 Warstwa fizyczna
- 5 Systemy liczbowe
- 6 Warstwa łącza danych
- 7 Przełączanie w sieciach Ethernet
- 8 Warstwa sieci
- Odwzorowanie adresów
- 10 Podstawowa konfiguracja routera
- 11 Adresowanie IPv4

Typ odstępy	Format
Skompresowany	fe80::123:4567:89ab:cdef
Preferowany	fe80 : 0000 : 0000 : 0000 : 0000 : 0000 : 0001
Skompresowany/ odstępy	fe80 : : 1
Skompresowany	fe80::1
Preferowany	0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0001
Skompresowany/ odstępy	:: 1
Skompresowany	::1
Preferowany	0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
Skompresowany/ odstępy	::
Skompresowany	::

12.2.4

Ćwiczenie - Zapis adresu IPv6

Instrukcje:

Konwertuj adresy IPv6 na krótkie (pomiń początkowe zera) i skompresuj. Wpisuj małymi literami. Kliknij przycisk Dalej, aby przejść do następnego adresu.

Format preferowany	fe80	0000	0000	0000	6678	9101	0000	34ab
Pomiń początkowe zera								
Format skompresowany								

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	~
6	Warstwa łącza danych	~
7	Przełączanie w sieciach Ethernet	~
8	Warstwa sieci	~
9	Odwzorowanie adresów	~
10	Podstawowa konfiguracja routera	~
11	Adresowanie IPv4	~

