

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 10

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 100

These marking guidelines consist of 13 pages. Hierdie nasienriglyne bestaan uit 13 bladsye.

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, sien die deurgehaalde antwoord na.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.
- Dit is onaanvaarbaar om waardes/antwoorde te veronderstel om 'n probleem op te los.

QUESTION/VRAAG1

1.1		Marks/Punte	Frequency/Frekwensie	
		0	0	
		1	3	
		2	4	
		3	5	2 marks:
		4	3	all 11 values correct
		5	6	1
		6	0	1 mark: 5 – 10 values correct
		7	7	J – 10 values correct
		8	9	0 marks:
		9	5	0 – 4 values correct
		10	0	(2)
1.2	42 learners/	leerders		✓ answer/antwoord (1)
1.3.1	Range/Vari = 9 - 1 = 8	asiewydte	Answer only: 2/2 marks	\checkmark max = 9 and min = 1 \checkmark answer/antwoord (2)
1.3.2		$(2\times4)+(3\times5)+(4\times1)$	$\times 3) + (5 \times 6) + (7 \times 7) + (8 \times 9) + (9 \times 5)$ 42	✓ sum of (frequencies × values)
	$= \frac{234}{42} = 5,57$		Answer only: 3/3 marks	$\checkmark \div n$ $\checkmark \text{answer/} antwoord$ (3)
1.4	$= 21,5^{\text{th/de}} $ $Q_2 = \frac{5+7}{2}$	the median/ <i>Posisio</i>	e van die mediaan = $\frac{n+1}{2}$ Answer only: 3/3 marks	✓ identification of 5 and 7 $ \sqrt{\frac{5+7}{2}} $
1.5	= 6		Allswei offly. 3/3 marks	✓ answer/antwoord (3)
1.5			P	$\checkmark Q_1$ $\checkmark Q_3$ $\checkmark \text{ rest of the box}$
	1 2	3 4 5	5 6 7 8 9 10	(3)
				[14]

OUESTION/VRAAG 2

QUESTIC	ON/VRAAG 2			
2.1.1	$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$			
	$= \sqrt{(1-6)^2 + (0-3)^2}$	Answer only: 2/2 marks	✓subst./verv.	
	$=\sqrt{25+9}$			
	$=\sqrt{34}$		✓answer/antwoord	(2)
2.1.2	$m_{\rm po} = \frac{y_2 - y_1}{y_2 - y_1}$			(2)
	$m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1}$			
	$=\frac{3-0}{6-1}$	Answer only: 2/2 marks	✓ subst./verv.	
	$=\frac{3}{5}$		✓ answer/antwoord	
	5		▼ answer/antwoora	(2)
2.1.3	$x_T = \frac{x_1 + x_2}{2}$ $y_T = \frac{y_1 + y_2}{2}$	2		
	$=\frac{1+6}{2}$ $=\frac{0+3}{2}$			
	_			
	$=\frac{7}{2} \qquad \qquad =\frac{3}{2}$			
	$T\left(\frac{7}{2};\frac{3}{2}\right)$		✓x-value/x-waarde ✓y-value/y-waarde	
2.2.1	()			(2)
2.2.1	$QR = QP = \sqrt{34}$		\checkmark QR = $\sqrt{34}$	
	$QT = \frac{1}{2}PQ$ OR/OF		1	
	$QT = \frac{1}{2}PQ$ $QT = \frac{1}{2}\sqrt{34}$ $QT = \frac{1}{2}\sqrt{34}$		$\checkmark QT = \frac{1}{2}\sqrt{34}$	
	$QT = \sqrt{\left(\frac{7}{2} - 6\right)^2 + \left(\frac{3}{2} - 3\right)^2}$			
	$QT = \frac{\sqrt{34}}{2}$			
	Area of $\Delta QTR = \frac{1}{2}(QR)(QT)$		✓answer/antwoord	(3)
	$=\frac{1}{2}(\sqrt{34})\left(\frac{1}{2}.\sqrt{34}\right)$			(0)
	$= \frac{17}{2} = 8.5 \text{ sq units/eer}$	nhede		
	OR/OF			

	$QR = QP = \sqrt{34}$	\checkmark QR = $\sqrt{34}$
	Area of $\triangle QTR = \frac{1}{2}$ Area of $\triangle QPR$	
	$=\frac{1}{2}\left(\frac{1}{2}.QR.QP\right)$	
	$=\frac{1}{2}\times\frac{1}{2}.(\sqrt{34})\left(\sqrt{34}\right)$	$\sqrt{\frac{1}{2}}\sqrt{34}$
	$=\frac{17}{2}$ sq units/eenhede	✓answer/antwoord (3)
2.2.2	$\theta = 121^{\circ} - 90^{\circ} \qquad (ext \angle \Delta/buitehoek \ van \ \Delta)$ $= 31^{\circ}$	✓ reason ✓ answer/antwoord (2)
	OR/OF	/ / man A/Linnahaak
	$\hat{QSP} = 59^{\circ}$ (\angle str line/hoek op reguitlyn)	✓ \angle sum \triangle /binnehoek
	$\theta = 31^{\circ}$ ($\angle \text{sum } \Delta/binnehoek \ van \ \Delta$)	✓ answer/antwoord (2)
2.2.3	$\cos\theta = \frac{PQ}{PS}$ $\cos 31^{\circ} = \frac{\sqrt{34}}{PS}$ $PS = \frac{\sqrt{34}}{\cos 31^{\circ}}$ OR/OF $\sin Q\widehat{S}P = \frac{PQ}{PS}$ $\sin 59^{\circ} = \frac{\sqrt{34}}{PS}$ $PS = \frac{\sqrt{34}}{\sin 59^{\circ}}$	
	$PS = \frac{\sqrt{34}}{\cos 31^{\circ}} \qquad PS = \frac{\sqrt{34}}{\sin 59^{\circ}}$ $PS = 6,80 \qquad PS = 6,80$ $S(6,8+1;0)$ $S(7,8;0)$ OR/OF	✓ x-value/x-waarde ✓ y-value/y-waarde (3)
	$m_{QR} = -\frac{5}{3}$	$\checkmark m_{QR} = m_{QS}$
	$\frac{3-0}{6-x} = -\frac{5}{3}$	$\checkmark y = 0$
	9 = -30 + 5x	✓ x-value/x-waarde
	x = 7,8 OR/OF	(3)
	$m_{QR} = -\frac{5}{3}$	
	Equation of QR	
	$y-3 = -\frac{5}{3}(x-6)$	
	$y = -\frac{5}{3}x + 13$	✓ equation of QR/verhouding van QR
	$0 = -\frac{5}{3}x + 13$	$\checkmark y = 0$
	x = 7.8	
	S(7,8;0)	✓ x-value/x-waarde

		(3)
2.3	$m_{QR} = \frac{3 - (-2)}{6 - (9)}$ $= -\frac{5}{3}$	
=	$=-\frac{5}{3}$	$\checkmark m_{QR}$
n	$m_{T-\text{midpoint}} = m_{QR}$ (Midpoint Theorem) $m_{T-\text{midpoint}} = -\frac{5}{3}$	$\checkmark m_{T-\text{midpoint}} = m_{QR}$ $\checkmark \text{Midpoint theorem/}$ $Middelpunt-stelling$
N	OR/OF Midpoint $PR\left(\frac{9+1}{2}; \frac{-2+0}{2}\right)$	(3) ✓ midpoint of PR
n	Midpoint PR(5;-1) $m_{T \text{ and/en } PR} = \frac{\frac{3}{2} - (-1)}{\frac{7}{2} - (5)}$ $= -\frac{5}{3}$	✓ subst
	$=-\frac{5}{3}$	✓answer (3)

OUESTION/VRAAG3

QUEST	ION/KAAGS		
3.1.1	$\tan(90^{\circ} - R) = \frac{PR}{QP} OR/OF \frac{q}{r}$	✓ answer/antwoord	(1)
3.1.2	sec Q	✓ answer/antwoord	
			(1)
	OR/OF		
	cosec R	✓ answer/antwoord	
			(1)
	OR/OF		
	cosec (90° – Q)	✓ answer/antwoord	
			(1)
	OR/OF		
	sec (90° – R)	✓ answer/antwoord	
			(1)
3.2.1	$OS = \sqrt{(-3)^2 + (-4)^2}$ (Pythagoras) Answer only: 2/2 marks	√subst./verv.	
	= 5	✓ answer/antwoord	
			(2)

3.2.2	$\sec\theta + \sin^2\theta$	$\sqrt{-\frac{5}{2}}$	
	$=-\frac{5}{3}+\left(-\frac{4}{5}\right)^2$	$\begin{array}{c} \checkmark -\frac{5}{3} \\ \checkmark -\frac{4}{5} \end{array}$	
	$= -\frac{5}{3} + \frac{16}{25}$ 77		
	$=-\frac{77}{75}$	✓answer/antwoord	(3)
3.3	$\frac{\operatorname{cosec} 45^{\circ}}{\sin 90^{\circ}. \tan 60^{\circ}}$ $\frac{1}{\sin 45^{\circ}}$	$\sqrt{\frac{2}{\sqrt{2}}}$	
	$= \frac{\frac{1}{\sin 45^{\circ}}}{(1).(\sqrt{3})}$ $= \frac{2}{\sqrt{2}} \div \sqrt{3}$ $= \frac{2}{\sqrt{2}} \times \frac{1}{\sqrt{3}}$ If the answer is left as $\frac{\sqrt{6}}{3}$ and no other rationalisation working is shown: max 3/4 marks	$\begin{array}{c} \checkmark \frac{2}{\sqrt{2}} \\ \checkmark 1 \\ \checkmark \sqrt{3} \end{array}$	
	$=\frac{2}{\sqrt{6}}$	✓ answer/antwoord	(4)
	OR/OF cosec 45° sin 90°. tan 60° 1	$\checkmark \sqrt{2}$ $\checkmark 1$	
	$= \frac{\sin 45^{\circ}}{(1).(\sqrt{3})}$ $= \frac{\sqrt{2}}{\sqrt{2}}$	$\sqrt{3}$	
	$\sqrt{3}$	✓ answer/antwoord	(4)
			[11]

QUESTION/VRAAG 4

4.1.1 $\sin 30^{\circ} = \frac{20}{AC}$ $\cos \cos 30^{\circ} = \frac{AC}{20}$ $\sqrt{\sin 30^{\circ}} = \frac{20}{AC}$ or $\cos 30^{\circ} = \frac{AC}{20}$ $\cos 30^{\circ} = \frac{AC}{AC}$ $\cos 30^{\circ} = \frac{AC}{20}$
AC = 40 OR/OF $AC = 40$
$\mathbf{OR}/\mathbf{OF} $ \mathbf{OR} answer/antwoord (2)
$\cos 60^\circ = \frac{20}{AC}$ $\sec 60^\circ = \frac{AC}{20}$ $\cos 60^\circ = \frac{20}{AC} \text{ or}$ $\cos 60^\circ = \frac{AC}{AC}$
20 20 son 60° – AC
$AC = 40$ $AC = 40$ \checkmark answer/antwoord (2)
$4.1.2 \qquad \cos C\hat{A}D = \frac{AC}{60}$ $\sqrt{\cos C\hat{A}D} = \frac{AC}{60}$
$\begin{vmatrix} 4.1.2 & \cos C\hat{A}D = \frac{AC}{60} \\ \cos C\hat{A}D = \frac{40}{60} \end{vmatrix}$
$\hat{CAD} = 48,19^{\circ}$ \checkmark answer/antwoord (2)
$ A.1.3 \qquad DAE = 90^{\circ} - (30^{\circ} + CAD) $
$D\hat{A}E = 90^{\circ} - (30^{\circ} + 48,19^{\circ})$ $\checkmark D\hat{A}E = 11.8^{\circ}$
=11,81°
$\tan 11.81^\circ = \frac{DE}{60}$ $\sqrt{\tan 11.81^\circ} = \frac{DE}{60}$
DE = $60 \tan 11.81^{\circ}$ $\sqrt{\text{answer/antwoord}}$
DE = 12,55 answer an word (3)

4.2.1	$\tan x = 2,01$ $x = 63,5^{\circ}$	If the rounding is incorrect: max 1/2 marks	✓✓ answer/antwoord	(2)
4.2.2	$5\cos x + 2 = 4$ $5\cos x = 2$ $\cos x = \frac{2}{5}$ $x = 66,4218°$		$\sqrt{5}\cos x = 2$ $\sqrt{\cos x} = \frac{2}{5}$	
	$x = 66,4^{\circ}$		✓answer/antwoord	(3)
4.2.3	$\frac{\csc x}{2} = 3$ $\csc x = 6$ $\frac{1}{\sin x} = 6$ $\sin x = \frac{1}{6}$ $x = 9,6^{\circ}$		$✓ \csc x = 6$ $✓ \sin x = \frac{1}{6}$ $✓ \text{answer/} antwoord$	(3)
				[15]

QUESTION/VRAAG 5

5.1.1	↑y	
	1 0 45 90 135 180 225 270 315 360 -1 -2 -3 (45°; -3)	✓ Tan graph passing through (45°; -3) or (135°; 3) or (225°; -3) or (315°; 3) ✓ x-intercepts/ x-snypunte ✓ both asymptotes/ albei asimptote (3)
5.1.2(a)	180°	✓answer/antwoord
3.1.2(u)		(1)
5.1.2(b)	$h(x) = 3\tan x$	✓ answer/antwoord (1)
5.2.1	a = -2	√a
	b = 1	√b
5.2.2	$90^{\circ} < x < 270^{\circ} \text{ OR/OF } x \in (90^{\circ}; 270^{\circ})$	(2) ✓ answer/antwoord
3.2.2	$90 < x < 270$ ONOF $x \in (90, 270)$	(1)
5.2.3	$-4 \le y \le 0$	✓ critical values/kritieke
	ODIOE	waardes
	$ \begin{array}{l} \mathbf{OR}/\mathbf{OF} \\ y \in [-4; 0] \end{array} $	✓ notation/notasie
5.2.4		(2)
3.2.4	$-2(\cos 0^{\circ} + \cos 1^{\circ} + \cos 2^{\circ} + + \cos 358^{\circ} + \cos 359^{\circ} + \cos 360^{\circ})$	
	=-2(1)	✓✓ answer/antwoord
	=-2	(2)
		[12]

OUESTION/VRAAG 6

6.1	r = 3 cm			$\sqrt{r} = 3$ cm
	$V = \pi r^2 h$			
	$117\pi = \pi(3)^2 h$			✓ subst./verv.
	h=13 cm			✓answer/antwoord
6.2	TSA/TBO		TSA/TBO	(3)
	$=\pi r^2 + 2\pi rh$	OD (OE	$=\pi r^2 + 2\pi rh$	$\sqrt{\pi r^2 + 2\pi rh}$
	$= \pi(3)^2 + 2\pi(3)(13) \times 0.8$	OR/OF	$= \pi(3)^2 + 2\pi(3)(10,4)$	✓ subst./verv.
	$=224,31\mathrm{cm}^2$		$= 224,31 \text{cm}^2$	✓80% of height/van hoogte
				✓answer
				(4)

QUESTION/VRAAG7

7.1	Bisects the third side	Halveer die derde sy	✓answer/antwoord	(1)
7.2	1 2 B/1 2 R 1 2	A P P S		(1)
7.2.1	C CR = PS PS = QR	(given) (opp sides //m =)		
	CR = QR		\checkmark CR = QR	
	$\hat{Q}_1 = \hat{C}_1 = 50^{\circ}$	$(\angle s \text{ opp} = \text{sides})$	$\checkmark \hat{Q}_1 = \hat{C}_1 = 50^\circ$	
	$\hat{R}_3 = 100^{\circ}$	$(\operatorname{ext} \angle \Delta)$	$\checkmark \hat{R}_3 = 100^{\circ}$	
	= 100°	(alt \angle s; QR \parallel AS)	$\checkmark \hat{A} = 100^{\circ}$ $\checkmark Reason$	
7.0.0	AD DC	d: 6 :1 : ///	() D DC	(5)
7.2.2	AP = PS triangle)	(line from midpoint // to one side of	\checkmark AP = PS	
	RS = 120	(midpoint theorem)	✓ Reason	
	QP = 120	(opp sides //m =)	✓ QP = 120	
	OR/OF	Answer only: 1/3 marks		(3)
	In ΔQBR and ΔPBA			
	1. $\hat{R}_3 = \hat{A}$	(proven) or (alt \angle s; QR QS)		
		(vert opp ∠s)		
	3. BR = BA			
	$\Delta QBR \equiv \Delta PBA$		$\checkmark \Delta QBR \equiv \Delta PBA$	
		$(\equiv \Delta s)$	\checkmark QB = BP \checkmark QP = 120	
				(3)
				[9]

	OR/OF In $\triangle AED$ and $\triangle CFB$ 1. $FC = AE$ (given) 2. $\widehat{C}_1 + \widehat{C}_2 = \widehat{A}_1 + \widehat{A}_2$ (opp $\angle \parallel m = 1$) 3. $BC = AD$ (opp sides $\parallel m = 1$) $\triangle AED = \triangle CFB$ (S $\angle S$) $DE = FB$ ($\equiv \triangle S$) $AB = DC$ $AE + EB = DF + FC$ (opp sides of a parallelogram equal) $AE = CF$ (given) $\therefore EB = DF$ EDFB is a parallelogram (both pairs opp sides = 1) $DE \parallel FB$ (opp sides $\parallel m \parallel$) $DJ \parallel KB$	✓ ΔAED ≡ ΔCFB ✓ DE = FB ✓ S/R ✓ EB = DF ✓ Reason
8.1.2	$\hat{E}_1 = \hat{D}_1$ (corres. $\angle s$, AB DC) $\hat{F}_1 = \hat{D}_1$ (alt. $\angle s$, DE FB) $\therefore \hat{E}_1 = \hat{F}_1$	✓S ✓R ✓S ✓R (4)
	OR/OF $\hat{E}_{3} = \hat{D}_{1} \text{(alt. } \angle s, \text{ AB} \parallel \text{DC})$ $\hat{F}_{1} = \hat{D}_{1} \text{(alt. } \angle s, \text{ DE} \parallel \text{FB})$ $\therefore \hat{E}_{3} = \hat{F}_{1}$	✓ S ✓ R ✓ S
	$\hat{E}_3 = \hat{E}_1$ (vert. opp. $\angle s$) $\therefore \hat{E}_1 = \hat{F}_1$	✓ S/R (4)
	OR/OF $\hat{E}_1 = \hat{D}_1$ (corres $\angle s$, AB DC) $\hat{F}_3 = \hat{D}_1$ (corres $\angle s$, DE FB)	✓ S ✓ R ✓ S
	$\therefore \hat{E}_3 = \hat{F}_1$ $\hat{F}_3 = \hat{F}_1 \text{(vert. opp. } \angle s\text{)}$ $\therefore \hat{E}_1 = \hat{F}_1$	✓ S/R (4)
	OR/OF EDFB is a parallelogram (proven in 8.1.1) $\hat{E}_2 = \hat{F}_2$ (opp $\angle s \parallel m =$) $\hat{E}_1 = \hat{F}_1$ ($\angle s$ on straight line)	✓S ✓R ✓S ✓R (4)

8.2	Р	
	A 12 2 1 B	
8.2.1	AP = BP (given)	✓ S
	OA = OB (radii)	✓ OA = OB
	OAPB is a kite (two pairs adj sides =)	✓ OAPB is a kite/'n vlieër
	AT - TD	✓ two pairs adj sides =
	AT = TB (one diag of kite bisects the other)	✓ reason/rede
	OR/OF	(5)
	In ΔOAP and ΔOBP	
	1. $AP = BP$ (given)	\checkmark AP = BP
	2. OA = OB (radii) 3. OP is common	✓ OA = OB
	$\therefore \Delta OAP \equiv \Delta OBP \qquad (SSS)$	
	$\hat{O}_1 = \hat{O}_2$ $(\equiv \Delta s)$ $\hat{P}_1 = \hat{P}_2 \ (\equiv \Delta s)$	$\checkmark \hat{O}_1 = \hat{O}_2 \text{ or } \hat{P}_1 = \hat{P}_2 \ (\equiv \Delta s)$
	In $\triangle OAT$ and $\triangle OBT$ In $\triangle PAT$ and $\triangle PBT$	
	1. $\widehat{O}_1 = \widehat{O}_2$ $(\equiv \Delta s)$ 1. $\widehat{P}_1 = \widehat{P}_2 (\equiv \Delta s)$	
	2. $OA = OB$ (radii) 2. $AP = PB$ (give	·
	3. OT is common 3. PT is common	I E
	$\therefore \Delta OAT \equiv \Delta OBT \qquad (S \angle S) \qquad \qquad \Delta PAT \equiv \Delta PBT (S \angle S)$	$ \begin{array}{l} \checkmark \therefore \Delta OAT \equiv \Delta OBT \\ \text{or } \Delta PAT \equiv \Delta PBT \end{array} $
	$AT = TB$ $(\equiv \Delta s)$	$OI \ \Delta FAT = \Delta FBT$ $\checkmark = \Delta S$
		(5)
8.2.2	$\hat{OTA} = 90^{\circ}$ (properties of a kite)	✓ R
	OR/OF	(1)
	$O\widehat{T}A = O\widehat{T}B$ $(\Delta OTA \equiv \Delta OTB)$	/ P
		✓ R (1)
	but: $\widehat{OTA} + \widehat{OTB} = 180^{\circ}$ (\angle s on a str.line)	(1)
	$\therefore \widehat{OTA} = 90^{\circ}$	
		[15]

TOTAL/TOTAAL: 100