Consistency

11/17/2017

Strict Consistency

- Instantaneous writes: All writes immediately observed by all processes
- Global clock: Order ops across all processes as if on one machine
- Strongest consistency

Pros: Easily reason about correctness

Cons: Highly unavailable

Strict Consistency Example

Strict?	Yes		Stric	Strict?		
P1: W(x)b P2:		R(x)b	P1: P2:	W(x)b	R(x)a	R(x)b

Linearizability

- Total order: All processes agree on the same sequence of ops
- Global clock: Determine sequence of ops using real time
- Difference from *strict consistency*?
 - Writes don't have to be *immediately* observed by everyone
- Properties
 - A completed write appears to all future reads
 - Once a read sees a value, all future reads must also return the same value (until new write)

Pros: Easily reason about correctness

Cons: High read and write latencies

Linearizability Example

Line	earizable?	Yes	Yes		arizable?	No	
P1:	W(x)a			P1:	W(x)a		
P2:	W(x)b		P2:	W(x)b	
P3:		R(x)a	R(x)b	P3:		R(x)b	R(x)a
P4:		R(x)a	R(x)b	P4:		R(x)b	R(x)a

Sequential Consistency

- Total order: All processes agree on the same sequence of ops
- Difference from linearizability?
 - Sequence of ops not determined by global clock

Pros: Easily reason about correctness, more permissive

Cons: Many possible sequential executions, non-deterministic

Sequential Consistency Example

No	Sequentially Consistent?				Sequentially Consistent? Yes					
			W(x)a	P1:				W(x)a	P1:	
		W(x)b		P2:			W(x)b		P2:	
(x)a	R(x)b			P3:	R(x)a	R(x)b			P3:	
(x)b	R(x)a			P4:	R(x)a	R(x)b			P4:	

Causal Consistency

- Partial order: Order causally related ops the same way across all processes
- Difference from sequential consistency?
 - Only casually related ops need to be ordered
 - Concurrent ops may be ordered differently across different processes

Pros: Preserves causality while improving efficiency

Cons: Need to reason about concurrency

Causal Consistency Example

Causally Consistent? Yes				Caus	Causally Consistent?				
P1:	W(x)a			P1:	W(x)a				
P2:	W(x)b			P2:		R(x)a	W(x)b		
P3:		R(x)b	R(x)a	P3:				R(x)b	R(x)a
P4:		R(x)a	R(x)b	P4:				R(x)a	R(x)b

Eventual Consistency

- Eventual convergence: If no more writes, all replicas eventually agree
- Difference from causal consistency?
 - Does not preserve causal relationships
- Frequently used with application conflict resolution, anti-entropy

Pros: Super duper highly available

Cons: No safety guarantees, need conflict resolution

In a nutshell...

Strict consistency: all writes are immediately observed

Linearizability: Total order + real time guarantees

Sequential consistency: Total order

Causal consistency: Partial order that respects causal relationships

Eventual consistency: Eventually everyone should agree on state

Exercise 1:

Consistency Model:

Strict

Yes

Yes

Linearizable

Sequential

Causal

Yes

Yes

•

Eventual Yes

P1: W(x) 1

R(y) 4

P2:

R(x) 1

R(y) 4

P3:

R(x) 1 W(y) 4

P4:

R(x) 1

R(y) 4

Exercise 2:

P5:

Strict No Linearizable No Sequential Yes W(x) 3 P1: W(y) 7 Causal Yes W(x) 1 P2: Eventual Yes R(x) 1 R(x) 3 R(y) 7 P3: R(x) 3 R(x) 1 P4: R(y) 7

R(y) 7

R(x) 1

R(x) 3

Exercise 3:

					Strict
					Linearizable
P1: W(x) 3				W(y) 7	Sequential
P2:	W(x) 1				Causal
P3:		R(x) 1	R(x) 3	R(y) 7	Eventual
P4:		R(x) 3	R(x) 1	R(y) 7	
P5:		R(x) 1	R(x) 3	R(y) 7	

Consistency Model:

No

No

No

Yes

No

Exercise 4:

Consistency Model:

Strict No

Linearizable No

Sequential No

Causal Yes

Eventual No

P1: W(x) 1

P2: W(x) 3

P3: W(x) 7

P4: R(x) 3 R(x) 7 R(x) 1

P5: R(x) 3 R(x) 1 R(x) 7

Exercise 5:

Consistency Model:

Strict No

Linearizable No

Sequential No

Yes Causal

Eventual

No

W(x) 1

P1:

P2:

W(x) 3

P3: R(x) 3 W(x) 7

P4: R(x) 3 R(x) 7R(x) 1

R(x) 3 R(x) 1 P5: R(x) 7

Exercise 6:

Consistency Model:

Strict No

Linearizable No

Sequential No

Causal No

Eventual No

R(x) 3 R(x) 7R(x) 1

R(x) 1 R(x) 7

P1:

P2:

W(x) 1

R(x) 1 W(x) 3

P3: R(x) 3 W(x) 7

P4:

P5: R(x) 3