Defomation Theory Graduate Student Seminar Spring 2021

Notes by Patrick Lei

Lectures by Various

Columbia University

Disclaimer

These notes were taken during the seminar using the vimtex package of the editor neovim. Any errors are mine and not the speakers'. In addition, my notes are picture-free (but will include commutative diagrams) and are a mix of my mathematical style and that of the lecturers. If you find any errors, please contact me at plei@math.columbia.edu.

Seminar Website: https://www.math.columbia.edu/~dejong/seminar.html

Contents

Contents • 2

- 1 Johan (Sep 24): Schlessinger's Paper 3
- 2 Ivan and Cailan (Oct 1): Deformations of Schemes ullet 7
 - 2.1 Deformations of Affine Schemes 7
 - 2.2 Deformations of schemes 10

Johan (Sep 24): Schlessinger's Paper

The paper by Schlessinger is titled *Functors of Artin Rings*. Throughout this lecture, k is a field, \mathcal{C} is the category of Artinian local k-algebras A, B, C, ... with residue field k, and $\widehat{\mathcal{C}}$ is the category of Noetherian complete local k-algebras R, S, ... with residue field k.

Remark 1.0.1. Every $R \in \widehat{\mathbb{C}}$ is of the form $k[[x_1, \ldots, x_n]]/(f_1, \ldots, f_m)$ by the Cohen structure theorem. Then $R \in \mathbb{C}$ if and only if (f_1, \ldots, f_m) contains $(x_1, \ldots, x_n)^N$ for some N.

Remark 1.0.2. In the paper, there is a more general setup, where Λ is a complete local Noetherian ring with residue field k. Then \mathcal{C}_{Λ} , $\widehat{\mathcal{C}}$ are defined analogously, which will allow things like $\Lambda = \mathbb{Z}_p$.

The idea of deformation theory is to look at functors $F: \mathcal{C} \to \mathsf{Set}$.

Example 1.0.3. Given $R \in \widehat{\mathbb{C}}$, we set $h_R : \mathcal{C} \to \mathsf{Set}$ sending $A \mapsto \mathsf{Hom}_{\widehat{\mathbb{C}}}(R,A)$. This is not necessarily representable because $R \notin \mathcal{C}$ in general, but it is pro-representable.

Definition 1.0.4. A functor F is *pro-representable* if $F \simeq h_R$ for some $R \in \widehat{\mathbb{C}}$.

Example 1.0.5. Let M be a variety over k and $m \in M(k)$. Then define

$$\operatorname{Def}_{M,\mathfrak{m}}(A) = \left\{ \operatorname{Spec} A \xrightarrow{\mathfrak{m}_A} M \mid \mathfrak{m}_A \mid_{\operatorname{Spec} k} = \mathfrak{m} \right\}.$$

It is easy to see that $\mathsf{Def}_{\mathsf{M},\mathfrak{m}}(\mathsf{A})$ is pro-representable by $\widehat{\mathbb{O}}_{\mathsf{M},\mathfrak{m}}$.

Observe that $h_R(k) = \{*\}$ is a singleton. Also note that $h_R(A \times_B C) = h_R(A) \times_{h_R(B)} h_R(C)$. Here, $A \times_B C$ is the fiber product of rings and not the tensor product.

Now consider the following conditions on F: let $A \to B \leftarrow C$ be a diagram in ${\mathfrak C}$ and consider the morphism

$$F(A \times_B C) \xrightarrow{(*)} F(A) \times_{F(B)} F(C).$$

- (H_1) The morphism (*) is surjective if $C \rightarrow B$;
- (H₂) The morphism (*) is bijective if $C = k[\varepsilon] \rightarrow k = B$;
- (H_3) $dim_k(t_F) < \infty$ (later, we will see that we need H_2 for formulate this). Here, t_F is the tangent space to F;
- (H_4) The morphism (*) is bijective if $C \rightarrow B$.

Example 1.0.6. Fix a group G and a representation $\rho_0: G \to GL_n(k)$. Now define

$$Def_{\rho_0}^{naive}(A) = \left\{\rho \colon G \curvearrowright A^{\oplus n} \mid \rho \pmod{\mathfrak{m}_A} \right. \cong \rho_0 \right\} / \cong .$$

Better, we will define

$$\mathrm{Def}_{\rho_0}(A) = \big\{\rho \colon G \curvearrowright A^{\oplus n} \mid \rho \pmod{\mathfrak{m}_A} = \rho_0\big\} / \ker(\mathsf{GL}_n(A) \to \mathsf{GL}_n(k)).$$

In general these functors fail (H_4) and $Def_{\rho_0}^{naive}$ even fails (H_2) .

Namely, if $H = \mathbb{Z}$ and ρ_0 is the trivial representation, then for $Def_{\rho_0}^{naive}$, we are looking at subsets of

$$GL_n(A \times_B C)/conj \rightarrow GL_n(A)/conj \times_{GL_n(B)/conj} GL_n(C)/conj.$$

This morphism is always surjective, but in general it is not injective.

For example, if $A = k[\epsilon_1]$, B = k, $C = k[\epsilon_2]$, we can look at elements of the form $1 + \epsilon_1 T_1 + \epsilon_2 T_2$ and see that on the left we can only conjugate together, while on the right we can conjugate both T_1 , T_2 arbitrarily. Here $A \times_B C = k[\epsilon_1, \epsilon_2] = k[x_1, x_2]/(x_1^2, x_1x_2, x_2^2)$.

Definition 1.0.7. A natural transformation $t: F \to G$ of functors on \mathfrak{C} is *smooth* if for all surjections $B \twoheadrightarrow A$ the map $F(B) \to F(A) \times_{G(A)} G(B)$ is surjective.

Note that this is equivalent to the existence of a lift in the diagram below:

$$\begin{array}{ccc} \operatorname{Spec} A & \longrightarrow & M \\ & & & \downarrow^{f} \end{array}$$

$$\operatorname{Spec} B & \longrightarrow & N.$$

This definition is motivated by the following example: let $f: M \to N$ be a morphism of varieties over k. Let $m \in M(k)$, $n = f(m) \in N(k)$. Then the following are equivalent:

- 1. $\operatorname{Def}_{M,m} \to \operatorname{Def}_{N,n}$ is smooth.
- 2. f is smooth at m.

Definition 1.0.8. We say F has a *hull* if and only if $F(k) = \{*\}$ and there exists a smooth $t: h_R \to F$ for some $R \in \widehat{C}$ which induces an isomorphism $t_R \cong t_F$.

Now we will say a bit about tangent spaces.

- 1. When $F(k) = \{*\}$, then $t_F = F(k[\varepsilon])$.
- 2. If F satisfies (H_2) and $F(k) = \{*\}$, then t_F has a natural k-vector space structure. Here, H_2 gives $F(k[\epsilon_1, \epsilon_2]) \to F(k[\epsilon]) \times F(k[\epsilon])$ is a bijection, and then we take $\epsilon_1 \mapsto \epsilon, \epsilon_2 \mapsto \epsilon$, which defines addition.
- $3. \ t_R = Hom_k(\mathfrak{m}_R/\mathfrak{m}_R^2, k) = Hom_{\widehat{C}}(R, k[\epsilon]) = h_R(k[\epsilon]) = t_{(h_R)}.$

Theorem 1.0.9 (Schlessinger). Assume that $F(k) = \{*\}$. Then the conditions (H_1) , (H_2) , (H_3) hold for F if and only if F has a hull. In addition, (H_3) and (H_4) hold if and only if F is pro-representable.

Very rough idea of proof of \Rightarrow for the hull case. Let $\mathfrak{n}=\dim_k(\mathfrak{t}_F)$. Then (H_2) and $\mathfrak{n}<\infty$ imply the following: Let $S=k[[x_1,\ldots,x_n]]$ and $\mathfrak{m}=\mathfrak{m}_S=(x_1,\ldots,x_n)$. We can find $\xi_1\in F(S/\mathfrak{m}^2)$ such that

$$t_{S} = Hom_{\widehat{o}}(S, k[\varepsilon]) \xrightarrow{\xi_{1}} t_{F}$$

is an isomorphism.

Next, we will choose $q\geqslant 2$ and consider pairs (J,ξ) where $\mathfrak{m}^{q+1}\subset J\subset \mathfrak{m}^2$ and $\xi\in F(S/J)$ such that $\xi\mapsto \xi_1\in F(S/\mathfrak{m}^2)$. Say that $(J,\xi)\leqslant (J',\xi')$ if $J\subset J'$ and $\xi\mapsto \xi'$. Choose a minimal pair (J,ξ) for this ordering. We can choose J_q so that $\mathfrak{m}^{q+1}+J_{q+1}=J_q$ and ξ_{q+1} maps to ξ_q for bookkeeping purposes.

Choose $R = \lim S/J_q$, which is a quotient of S. Set $t: h_R \to F$ given by sending $\phi \colon R \to A$ to the following: choose q such that ϕ factors as $R \to S/J_q \xrightarrow{\phi \cdot q} A$ and take $\xi_q \mapsto F(\phi_q)(\xi_q) \in F(A)$. Finally, we must show that t is smooth. Consider the diagram

with $B\ni\widetilde{\xi}\mapsto \xi\in A$ and $S/J_q\ni \xi_q\mapsto \xi$. First, choose $\phi\colon S\to B$ making the diagram commute. We may increase q such that $\phi(\mathfrak{m}^{q+1})=0$, so we now have $\overline{\phi}\colon S/\mathfrak{m}^{q+1}\to B$. Now consider the fiber product $S/J_q\times_A B$ and $pr_1\colon S/J_q\times_A B\to S/J_q$, so we obtain $\overline{\phi}'\colon S/\mathfrak{m}^{q+1}\to S/J_q\times_A B$. By (H_1) , we obtain some $\widetilde{\xi}\in F(S/J_q\times_A B)$ mapping to $\widetilde{\xi}$ and ξ_q . We may now assume that $B\to A$ is a small extension, which means that $\dim_k \ker(B\to A)=1$, and thus pr_1 is a small extension. Therefore, either $\overline{\phi}'$ is surjective or its image maps isomorphically via pr_1 to S/J_q ., so we have ψ which gives $R\to B$ lifting our given $r\to A$.

The tricky part is to show that $F(\psi)(\psi_q) = \widetilde{\widetilde{\xi}}_{r}$, and this step is deliberately omitted.

A generalization of this is as follows. Consider a functor $\mathcal{F} \colon \mathcal{C} \to \mathsf{Grpd}$. We say that \mathcal{F} satisfies the *Rim-Schlessinger condition* (RS) if

$$\mathfrak{F}(A \times_B C) \to \mathfrak{F}(A) \times_{\mathfrak{F}(B)} \mathfrak{F}(C)$$

is an equivalence whenever C woheadrightarrow B. Let $x_0 \in \mathcal{F}(k)$ and set

$$\overline{\mathfrak{F}}_{x_0} \colon \mathfrak{C} \to \mathsf{Set} \qquad A \mapsto \{(x,\alpha) \mid x \in \mathfrak{F}(A), \alpha \colon X_0 \to x|_k\} / \cong,$$

where $(x, \alpha) \cong (x', \alpha')$ means that $\phi \colon x \to x'$ such that the diagram

$$\begin{array}{ccc}
x|_{k} & \xrightarrow{\varphi} x'|_{k} \\
\alpha \uparrow & \alpha' \uparrow \\
x_{0} & \xrightarrow{id} x_{0}
\end{array}$$

commutes.

Theorem 1.0.10. If \mathcal{F} has (RS) then $\overline{\mathcal{F}}_{x_0}$ has (H_1) and (H_2) . Therefore, if $\dim t_{\overline{\mathcal{F}}_{x_0}} < \infty$ then $\overline{\mathcal{F}}_{x_0}$ has a hull

In this situation, $\overline{\mathfrak{F}}_{x_0}$ has (H_4) if and only if $Aut_A(x) \twoheadrightarrow Aut_B(x|_B)$ whenever $A \twoheadrightarrow B$ and $x \in \mathfrak{F}_{x_0}(A)$.

Example 1.0.11. Let $\mathcal{F}(A)$ be the category of representations $G \curvearrowright A^{\oplus n}$ with morphisms being isomorphisms of representations. This has (RS).

Example 1.0.12. Let $\mathcal{F}(A)$ be the category of smooth projective families of curves of genus g over A with morphisms being isomorphisms. This has (RS).

Returning to the example of representations, it turns out that $t_{Def_{\rho_0}} = H^1(G, M_{n \times n}(k))$, where G acts on $M_{n \times n}(k)$ via ρ_0 by conjugation.

Example 1.0.13. Consider $G = \mathbb{Z} \oplus \mathbb{Z}$ and ρ_0 to be the trivial representation on $k^{\oplus 2}$. Then $t_{Def_{\rho_0}} = H^1(\mathbb{Z}^2, M_2(k)) = M_2(k) \oplus M_2(k)$. Given two matrices A, B, we have the representation

$$\begin{split} \mathbb{Z}^2 &\to \mathsf{GL}_2(\mathsf{k}[\epsilon])(1,0) \mapsto \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} + \epsilon A \\ (0,1) &\mapsto \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} + \epsilon B. \end{split}$$

We get a hull R with $h_R \to Def_{\rho_0}$. We know that R is a some quotient of $k[[a_{11},\ldots,a_{22},b_{11},\ldots,b_{22}]]$ with ρ looking like

$$(1,0)\mapsto\begin{pmatrix}1&\\&1\end{pmatrix}+A&(0,1)\mapsto\begin{pmatrix}1&\\&1\end{pmatrix}+B,$$

and of course R is the quotient of the power series ring by the ideal generated by the coefficients of AB-BA.

Ivan and Cailan (Oct 1): Deformations of Schemes

2.1 Deformations of affine schemes

We are looking for a Cartesian diagram of schemes

$$\begin{array}{ccc} X & \longrightarrow & \mathfrak{X} \\ \downarrow & & \downarrow \pi \\ Spec \, k & \longrightarrow & S \end{array}$$

where π is flat and surjective and S is surjective. This is called an *deformation* of X over S. For the beginning of this lecture (the part given by Ivan), we are interested in $S = \operatorname{Spec} A$, where $A \in \mathbb{C}^*$ (this category was defined in the previous lecture). This case is called a *local deformation*, and in the face where A is Artinian, it is called an *infinitesimal deformation*.

For the ring theorists, we will make the following digression. Let A be a ring and $I \subset A$ be an ideal with $I^2 = 0$. Suppose that \overline{B} is an A/I-algebra, J is an \overline{B} -module, and h: $I \to J$ is an A-module map. Then we are interested in a diagram

which we will call a deformation of A. Here are some interesting questions:

- 1. Is such a deformation unique?
- 2. If \overline{B} is flat over A/I, does that mean that B is flat over A?

Returning to the case of schemes, we will say that two deformations $\mathcal{X}, \mathcal{X}'$ of X over S are isomorphic if there exists an S-isomorphism $\phi \colon \mathcal{X}' \to \mathcal{X}$ commuting with the inclusions of the central fibers $X \to \mathcal{X}, \mathcal{X}'$.

Example 2.1.1. The most basic example of a family is the trivial deformation

$$\begin{array}{ccc} X & \longrightarrow & X \times_k S \\ \downarrow & & \downarrow \\ Spec k & \longrightarrow & S. \end{array}$$

Definition 2.1.2. A scheme X is *rigid* if all deformations of X are isomorphic to the trivial deformation.

Theorem 2.1.3. If X is a smooth affine k-scheme and $S = \operatorname{Spec} A$ for some local Artinian ring, then X is rigid.

Definition 2.1.4. A closed immersion $i: S_0 \hookrightarrow S$ of schemes is called a *first (resp. nth) order thickening* if the ideal sheaf $\mathfrak{I} = \ker(i^{\flat}: \mathfrak{O}_S \to \mathfrak{O}_{S_0})$ satisfies $I^2 = 0$ (resp. $I^{n+1} = 0$).

Definition 2.1.5. A morphism $f: X \to S$ is called *formally smooth* (resp. unfamified, resp. étale) if for all first order thickenings $i: T_0 \to T$ of affine schemes and diagrams

$$T_0 \xrightarrow{u_0} X$$

$$\downarrow_i \widetilde{u_0} \xrightarrow{\chi} \downarrow_f$$

$$T \xrightarrow{} S$$

there exists a lift $\widetilde{u_0}$ (resp. there is at most one such $\widetilde{u_0}$, resp. there exists a unique $\widetilde{u_0}$).

Example 2.1.6.

- 1. Open immersions are formally étale. This is cleaer because T_0 , T have the same underlying topological space.
- 2. Closed immersions are formally unramified. This is clear because $X \to S$ induces an injection on T-points.
- 3. $\mathbb{A}^n_S \to S$ is formally smooth. To see this, assume $S = \operatorname{Spec} R$ is affine and then consider the corresponding lifting problem in commutative algebra.

Proposition 2.1.7. The classes of formally smooth (resp. étale, resp. unramified) morphisms are closed under base change, composition, and products and local on both source and target.

Definition 2.1.8. A f: $X \to S$ is *smooth* if it is formally smooth and locally of finite presentation.

We will now consider differentials. Let $X = \operatorname{Spec} A$ be an affine scheme over k and choose a k-point and consider the diagram

$$\begin{array}{ccc} \operatorname{Spec} k & \longrightarrow & X \\ & \downarrow & & \downarrow \\ \operatorname{Spec} k[\epsilon] & \longrightarrow & \operatorname{Spec} k. \end{array}$$

If X is smooth, then there exists a lift Spec $k[\epsilon] \to X$. But this is given by a morphism

$$\widetilde{\varphi} \colon A \to k[\epsilon]/\epsilon^2 \qquad \alpha \mapsto \varphi(\alpha) + d(\alpha)\epsilon.$$

This motivates the following definition:

Definition 2.1.9. Let $R \to A$ be a morphism of rings and M be an A-module. A *derivation* d: $A \to M$ is an A-linear map satisfying the Leibniz rule.

Proposition 2.1.10. There exists an A-module $\Omega^1_{A/k}$ equipped with a derivation $d: \Omega^1_{A/k}$ that is universal among derivations from A. This means that all derivations $\widetilde{d}: A \to M$ factor through d, and formally, we have an identity

$$\operatorname{Der}_{R}(A, M) \simeq \operatorname{Hom}_{A}(\Omega^{1}_{A/k}, M).$$

Definition 2.1.11. For an A-module M with derivation d: $A \to M$, define the ring A[M] as the module $A \oplus M$ with the multiplication

$$(a,m) \cdot (a',m') = (aa',am'+a'm).$$

There is a sequence $\phi: A \to A[M] \to A$.

Proposition 2.1.12. *Let* $S \leftarrow R \rightarrow A \rightarrow B$ *be a diagram of rings. Then*

- 1. $\Omega^1_{A\otimes S/S}\simeq \Omega^1_{A/R}\otimes_R S$;
- 2. The sequence $\Omega^1_{A/R} \otimes_A B \to \Omega^1_{B/R} \to \Omega^1_{B/A} \to 0$ is exact.
- 3. If B = A/I for some ideal I, we have an exact sequence

$$I/I^2 \to \Omega^1_{A/R} \otimes_A B \to \Omega^1_{B/R} \to 0.$$

4. For all $f \in A$, we havae $\Omega^1_{A\lceil f^{-1} \rceil/R} \simeq \Omega^1_{A/R} \otimes_A A[f^{-1}]$.

Remark 2.1.13. If $J = \ker(A \otimes_R A \to A)$, then $\Omega^1_{A/R} = J/J^2$.

Theorem 2.1.14. *Let* $f: X \to S$ *be locally of finite presentation. The following are equivalent:*

- 1. f is smooth;
- 2. f is flat with smooth fibers;
- 3. f is flat and has smooth geometric fibers.

We will finally return to deformation theory.

Lemma 2.1.15. Let Z_0 be a closed subscheme of Z determined by a nilpotent ideal sheaf N. If Z_0 is affine, then so is Z.

Proof of this result can be found in EGA, Chapter I.5.9.

Proof of Theorem 2.1.3. Recall that we have a diagram of the form

$$\begin{array}{ccc}
B & \longrightarrow & B_0 \\
\uparrow & & \uparrow \\
A & \longrightarrow & k_{\ell}
\end{array}$$

where $A \to B$ is flat and $B_0 \simeq B \otimes_A k$ is a smooth k-algebra. We need to prove that $B_0 \simeq B \otimes_A k$. The first step is to prove this result for first-order deformations. Suppose that $A = k[\epsilon]$ is a square-zero extension.

Lemma 2.1.16. For a ring R with M, N flat over R, nilpotent ideal $I \subset R$, and $f: M \to N$, then if $f \otimes_R R/I$ is an isomorphism, then so is f.

To prove the lemma, note that the cokernel of f is preserved by I, so it must vanish. Returning to our case, we know that B is a smooth $k[\epsilon]$ -algebra. Now we obtain a square-zero extension $B_0[\epsilon]$ of B_0 and a diagram

$$\begin{array}{ccc} B & \longrightarrow & B_0 \\ & & \uparrow \\ k[\epsilon] & \stackrel{f}{\longrightarrow} & B_0[\epsilon] \end{array}$$

with a lift $B \to B_0[\varepsilon]$. But now by the lemma, we have $B \otimes_{k[\varepsilon]} k = B_0[\varepsilon] \otimes_{k[\varepsilon]} k$. The rest of the proof follows using an inductive argument that was verbalized but now written down.

2.2 Deformations of schemes

The main theorem of this section is

Theorem 2.2.1. Assume X is a smooth R-scheme. Then there is a bijection

$$\operatorname{Def}_X^{sm}(k[I]) \simeq H^1(X, T_{X/k} \otimes I).$$

Proof. Let X' be a smooth deformation over k[I]. Then the diagram

$$\begin{matrix} X & \longrightarrow & X' \\ \downarrow & & \downarrow \\ Spec k & \longrightarrow Spec k[I] \end{matrix}$$

is cartesian. Then if $U_k = \operatorname{Spec} B_k$ is an affine cover of X and $U'_k = \operatorname{Spec} D_k$ is an affine cover of X', we have a k[I]-linear ring isomorphism

$$\phi_k \colon k[I] \otimes_k B_k \to D_k \qquad (k, i) \otimes b \mapsto s(b) + i.$$

Modulo I, ϕ_k is the identity on B_k . Without loss of generality, we may assume that $U_{kj} = U_k \cap U_j$ is a distinguished open for both U_k and U_j , so let $U_{kj} = \operatorname{Spec} B_{kj}$ and $U'_{kj} = \operatorname{Spec} D_{kj}$. Now note that both

$$\varphi_k, \varphi_i \colon k[I] \otimes_k B_{ki} \to D_{ki}$$

induce the identity on B_{kj} modulo I. Now we have the commutative diagram

Lemma 2.2.2. The morphism $g = \phi_j^{-1} \phi_k$ must be of the form

$$q(i+b) = i + b + \delta(b),$$

where $\delta \colon B_{kj} \to I$ is a derivation.

In particular, this means that $\phi_j^{-1} \circ \phi_k(b,b') = (b,\alpha_{kj}(b)+b')$, where $\alpha_{kj} \colon B_{kj} \to I \otimes_k B_{kj}$ is a derivation.

By definition, we have

$$\begin{split} (\mathsf{T}_{\mathsf{X}/\mathsf{k}} \otimes_{\mathsf{k}} \mathsf{I})(\mathsf{B}_{\mathsf{k}\mathsf{j}}) &= \mathsf{Hom}_{\mathsf{B}_{\mathsf{k}\mathsf{j}}}(\Omega^1_{\mathsf{B}_{\mathsf{k}\mathsf{j}}/\mathsf{k}}, \mathsf{B}_{\mathsf{k}\mathsf{j}}) \otimes_{\mathsf{k}} \mathsf{I} \\ &= \mathsf{Hom}_{\mathsf{B}_{\mathsf{k}\mathsf{j}}}(\Omega^1_{\mathsf{B}_{\mathsf{k}\mathsf{j}}/\mathsf{k}}, \mathsf{B}_{\mathsf{k}\mathsf{j}} \otimes_{\mathsf{k}} \mathsf{I}) \\ &= \mathsf{Der}_{\mathsf{k}}(\mathsf{B}_{\mathsf{k}\mathsf{j}}, \mathsf{B}_{\mathsf{k}\mathsf{j}} \otimes_{\mathsf{k}} \mathsf{I}). \end{split}$$

Therefore, $\alpha_k \in H^0(B_{kj}, T_X \otimes_k I)$. Note that

$$\phi_{\ell}^{-1}\circ\phi_{j}\circ\phi_{i}^{-1}\circ\phi_{k}^{-1}=\phi_{\ell}^{-1}\circ\phi_{k},$$

which implies that

$$(b, \alpha_{i\ell}(b) + \alpha_{kj}(b) + b') = (b, \alpha_{k\ell}(b) + b')$$

and thus $\left\{\alpha_{kj}\right\}\in Z^1(\{U_k\},T_X\otimes_k I).$

If two deformations are the same, note that ϕ_k is defined using a ring section $s_k \colon B_k \to D_k$ of the canonical map $\pi_k \colon D_k \to B_k$. If ϕ_k' is defined using another section s_k' , then define $\theta_k = s_k' - s_k \in Der(B_k, I \otimes_k B_k)$. We now compute

$$((\phi_{\mathbf{j}}')^{-1} \circ \phi_{\mathbf{k}}' - \phi_{\mathbf{j}}^{-1} \circ \phi_{\mathbf{k}})(\mathbf{b}, \mathbf{b}') = (0, \theta_{\mathbf{k}}(\mathbf{b}) - \theta_{\mathbf{j}}(\mathbf{b})),$$

and thus the two differ by the desired coboundaries.

We will now consider some obstructions. We are looking for a diagram of the form

$$\begin{array}{ccc} X' & \longrightarrow & X'' \\ & \downarrow^f & & \downarrow \\ Spec A' & \longrightarrow & Spec A''. \end{array}$$

for each pair (j,k), we have a isomorphism $\psi_{jk}\colon V'_j\to V'_k$ and a cocycle

$$c_{\mathfrak{j}k\ell}=\psi_{k\ell}\circ\psi_{\mathfrak{j}k}\circ\psi_{\mathfrak{j}\ell}^{-1}.$$

This induces $B_{jk\ell} \in Der_A(D_{jk\ell}, J \otimes_A D_{k\ell}) = Z^2(U, T_{X'/A} \otimes_A J)$. Now we will discuss some examples.

Theorem 2.2.3. Let C be a smooth projective curve, $T = T_C$, and $K = \Omega_C^1$. We have the following table:

Table 2.1: Cohomology

	0		h^1		_
K	2g - 2	g	1	0	where $\varepsilon=0$ where $g\geqslant 2$, $\varepsilon=1$ if $g=1$, and $\varepsilon=3$ if $g=0$.
T	2-2g	ε	$\varepsilon + 3g - 3$	0	

For $g \ge 2$, deg T < 0, and by Riemann-Roch and Serre duality, we have $h^1(C, T_C) = 3g - 3$.

Theorem 2.2.4. \mathbb{P}^n has no infinitesimal deformations.

Proof. Consider the Euler sequence

$$0 \to \mathfrak{O} \to \mathfrak{O}(1)^{\oplus \mathfrak{n}+1} \to T_{\mathbb{P}^\mathfrak{n}} \to 0$$

and use the long exact sequence in cohomology. Because positive degree line bundles have no higher cohomology, we have $H^1(T_{\mathbb{P}^n})=0$.