КЛАССИФИКАЦИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Разберём эту схему по частям.

Все неорганические вещества делятся на простые и сложные. Простые вещества состоят из атомов одного и того же химического элемента.

Иногда ОДИН химический элемент способен образовывать несколько простых веществ, такое явление называется <u>АЛЛОТРОПИЕЙ</u>, а сами простые вещества - АЛЛОТРОПНЫМИ МОДИФИКАЦИЯМИ.

		Группы											
	1		11 111		IV	V	VI	VII	VIII				
	1	1 Н 1,008 Водород						(H)				Не 4,00 Гелий	— благородные (инерт
п	2	3 Li 6,94 Литий	4 Ве 9,01 Бериллий	10,81 B Eop	6 12,01 С Углерод	7 14,00 N Asar	8 16,00 О Киспород	19,00 F				10 Ne 20,18 Heaw	ные) газы
2	3	11 Na 22,99 Натрий	12 Mg 24,31 Магний	13 20 08 AI Алюмений	14 28,09 Si Кремняй	15 30,97 Р Фосфор	16 32,06 S Cepa	17 35,45 CI Xnop		Account to	AP	18 Ar 39,96 Арган	
р и о д	4	19 20 К 39,10 Са 40,08 Калый Кальций	21 SC 44,96 Скандий	22 Ti 47,90 Титан	23 V 50,94 Ванадий	24 Сг 52,00 Хром	25 Мп 54,94 Марганец	26 Fe 55,85 Железо	85 CO 58,93 N	28 Ni 58,69 Никель			
		29 63,55 Cu Mega	30 65,39 Zn Цинк	31 69,72 Ga	72,59 Се Германии	33 74,92 As Мышыяк	78,96 Se	35 79,90 Вг —	-		36 Ил Криптон	— неметаллы	
	5	37 Rb 85,47 Рубидий	38 Sr 87,62 Стронций	39 Y 88,91 Иттрий	40 Zr 91,22 Цирконий	41 Nb 92,91 Hudani	42 Мо 95,94 Молибден	43 ТС 98,91 Технеций	44 Ru 101,07 Рутений	45 Rh 102,91 Родий	46 Pd 106,42 Папладий		THE PROPERTY OF THE PROPERTY O
		47 107,87 Ag Cepe6po	48 112,41 Cd Кадмий	49 114,82 in Индий	50 118,69 Sn Олово	51 121,75 Sb Сурьма	52 127,60 Te Tennyp	53 126,90 I		Ma 41	AU.	54 Xe 131,29 Коенон	
	6	55 Cs 132,91 Цезий	56 Ва 137,33 Барий	57 La· 138,91 Лантан	72 Hf 178,49 Гафний	73 Та 180,95 Тантал	W 183 85 Вольфрам	75 Re 186,21	76 OS 190,2 Осмий	77 ir 192,22 Иридий	78 Pt 195,08 Платина		
		79 196,97 Au 3anoro	80 200,59 Нд Ртуть	81 204,38 ТІ Таллий	82 207,2 Рb Свинец	83 208,98 Ві Висмут	[209] Ро Полоний	[210] At Acrar		Art Mickey		Rn [222] Радон	металлы
	7	87 Fr [223] Франций	88 Ra 226 Радий	89 АС ** [227] Актиний	104 Rf [261] Резерфордий	105 Db [262] Дубний	106 Sg [266] Сиборгий	107 Вh [264] Борий	108 HS [269] Хассий	109 Mt [268] Мейтнерий	110 Ds [271] Дармштадтий		
		111 [280] Rg Рентгений	112 [285] Сп Коперниций	113 [286] Nh Нихоний	114 [289] FI Флеровий	115 [290] МС Московий	116 [293] LV Ливерморий	117 [294] TS Теннесий			***************************************	118 Од (294) Оганесон	

"OXYGEN", "OXYGENIUM" = КИСЛОРОД $X + O^{-2} = OKCИД$

НОМЕНКЛАТУРА: ОКСИД АРТУРА (С.О.)

 Fe₂O₃ - оксид железа (III)
 ! В скобках ука

 Na₂O - оксид натрия
 окисления рим

 CO - оксид углерода (II)
 ! Степень окисления

 SO₂ - оксид серы (IV)
 ! Степень окисления

 SO₃ - оксид серы (VI)
 случае, если элемания

 Al_2O_3 - оксид алюминия

! В скобках указывается модуль степени окисления римскими цифрами

! Степень окисления указывается только в том случае, если элемент имеет переменные степени окисления (а не постоянную)

ГИДРОКСИДЫ

"HYDROGENIUM" = ВОДОРОД "OXYGENIUM" = КИСЛОРОД X + OH = ГИДРОКСИД

НОМЕНКЛАТУРА: ГИДРОКСИД АРТУРА (С.О.)

NaOH - гидроксид натрия

Са(ОН), - гидроксид кальция

Fe(OH), - гидроксид железа (II)

Мg(ОН), - гидроксид магния

Fe(OH)₃ - гидроксид железа (III)

Al(OH), - гидроксид алюминия

! В скобках указывается модуль степени окисления элемента римскими цифрами

! Степень окисления указывается только в том случае, если элемент имеет переменные степени окисления (а не постоянную)

НАЗВАНИЯ КИСЛОТ И КИСЛОТНЫХ ОСТАТКОВ НУЖНО ЗНАТЬ КАК ОТЧЕ НАШ!!!

неметаллы неметаллы компортиве (инертные) газы не, Ne, Kr соли

соли

 $Me^{n+}/NH_{4}^{+} + A^{m-} = COЛЬ$ A^{m-} - кислотный остаток

NaOH + HCl = NaCl + H_2O Ca(OH)₂ + H_2SO_4 = CaSO₄ + $2H_2O$ средние (нормальные) NaCl, K,CO,

кислые кн₂РО₄, Na₂CO₃

основные мдОНСІ, АІ(ОН),СІ

комплексные Na[Al(OH),], K,[Fe(OH),]

двойные KAl(SO4)₂, CsNaSO₄

смешанные CaClBr, Ca(OCl)Cl **катион Ме/NH,** + An-

→ есть Н⁺ в анионе (?!)

→ есть ОН⁻ в катионе

квадратные скобки

два катиона

📦 два аниона

составление формул

Средние соли: $Me^{m+}/NH_4^+ + A^{n-} --- Na_2CO_3$, $Al_2(SO_4)_3$, $Ca(NO_3)_2$

Кислые соли: Me^{m+} + nH⁺ + A^{L-} --- NaHCO₃, Ca(H₂PO₄)₂, K₂HPO₄

Основные соли: $Me^{m+} + nOH^- + A^{l-} --- AlOH(NO_3)_2$

Комплексные соли: $Me_1^{m+} + Me_2^{n+} + (X)_{2n}^{l-} --- Na_2[Zn(OH)_4]$

Двойные соли: Me, m+ + Me, n+ + A1- --- CsNaSO,

Смешанные соли: Mem+ + A, n- + A, l- --- CaClBr

OH

^{*} A^{l-} - кислотный остаток; его заряд = число ""оторванных" H от кислоты ** У алюминия: и [Al(OH),], и [Al(OH),]

НОМЕНКЛАТУРА: ГИДРОКСИД АРТУРА (С.О.)

Na, CO, - карбонат натрия

NaCl - хлорид натрия

K,SO, - сульфат калия

Са,(РО,), - (орто)фосфат кальция

NaHCO, - гидрокарбонат натрия

NaHSO, - гидросульфат натрия

СаНРО, - гидрофосфат кальция

Са(Н,РО,), - дигидрофосфат кальция

MgOHCl - гидроксохлорид магния

AlOHCL, - гидроксохлорид алюминия

(CuOH), CO, - гидроксокарбонат меди (II)

Na[Al(OH),] - тетрагидроксоалюминат натрия

К,[Zn(OH),] - тетрагидроксоцинкат калия

К,[Fe(CN),] - гексацианоферрат (III) калия

KAl(SO,), - сульфат калия-алюминия

CsNaSO, - сульфат цезия-натрия

CaClBr - хлорид-бромид кальция

Ca(OCl)Cl - хлорид-гипохлорит кальция

! В скобках указывается модуль степени окисления элемента римскими цифрами

! Степень окисления указывается только в том случае, если элемент имеет переменные степени окисления (а не постоянную)

! H* = гидро, OH = гидроксо

Al(OH) Cl - дигидроксохлорид алюминия ! Названия всех солей (особенно обратите внимание на комплексные) читаются с конца!

КЛАССИФИКАЦИЯ РЕАКЦИЙ В НЕОРГАНИКЕ

Химическая реакция/превращение это преобразование одних веществ (реагентов) в другие (продукты реакции), отличающиеся по составу и/или строению

РЕАГЕНТЫ → ПРОДУКТЫ РЕАКЦИИ

ПО ХАРАКТЕРУ ПРОТЕКАНИЯ ПРОЦЕССА РЕАКЦИИ БЫВАЮТ..

A + B = C: из нескольких веществ образуется одно - реакция соединения

AB = A + B: из одного вещества образуется несколько - реакция разложения

АВ + С = АС + В: ПРОСТОЕ + СЛОЖНОЕ = ПРОСТОЕ + СЛОЖНОЕ - реакция замещения

AB + CD = AD + BC: СЛОЖНОЕ + СЛОЖНОЕ = СЛОЖНОЕ + СЛОЖНОЕ - реакция обмена

ПО ОБРАТИМОСТИ РЕАКЦИИ БЫВАЮТ..

ОБРАТИМЫЕ

протекают как в пря- протекают ТОЛЬКО мом, так и в обратном направлении

НЕОБРАТИМЫЕ

в одном направлении

ОН

- ! Для ЕГЭ нужно обязательно знать, что N, + 3H, \rightleftharpoons 2NH, и CO + 2H, \rightleftharpoons CH, OH обратимые.
- ! Если речь идёт о <u>РИО</u>, то: реакция необратима, когда образуется осадок, газ или любое другое малодиссоциирующее вещество.

ПО КОЛИЧЕСТВУ ФАЗ РЕАКЦИИ БЫВАЮТ..

ГОМОГЕННЫЕ

реагенты в <u>одном</u> агрегатном состоянии (HET границы раздела фаз); ИСКЛ: ТВ + ТВ

$$\mathbb{X}$$
 + \mathbb{X} ; Γ + Γ
NaOH_(ж) + $\mathrm{HCl}_{(\mathsf{x})}$ = $\mathrm{NaCl}_{(\mathsf{x})}$ + $\mathrm{H_2O}_{(\mathsf{x})}$

ГЕТЕРОГЕННЫЕ

реагенты в разных агрегатных состояниях (ECTb граница раздела фаз); ИСКЛ: ТВ + ТВ

$$X + TB$$
; $\Gamma + X$; $\Gamma + TB$; $TB + TB$
 $Zn_{(TB)} + 2HCl_{(xc)} = ZnCl_{2(xc)} + H_{2(r)}$

ПО ТЕПЛОВОМУ ЭФФЕКТУ РЕАКЦИИ БЫВАЮТ..

ЭКЗОТЕРМИЧЕСКИЕ (+ Q): тепло выделяется

замещение, обмен, соединение

искл:
$$C + CO_2 = 2CO - Q$$

 $N_2 + O_2 = 2NO - Q$
 $H_2 + I_2 = 2HI - Q$

ЭНДОТЕРМИЧЕСКИЕ (- Q): тепло поглощается

реакции разложения

искл: 2NO = N₂ + O₂ + Q 2HI = H₂ + I₂ + Q

ПО НАЛИЧИЮ КАТАЛИЗАТОРА РЕАКЦИИ БЫВАЮТ..

Каталитические: катализатор используется Некаталитические: катализатор НЕ используется

При добавлении катализатора скорость реакции растёт, при добавлении ингибитора - падает

* ЭНЕРГИЯ АКТИВАЦИИ -

минимальный избыток энергии, который должна иметь частица (или несколько частиц), чтобы произошло эффективное соударение

ПО ИЗМЕНЕНИЮ СТЕПЕНЕЙ ОКИСЛЕНИЯ РЕАКЦИИ БЫВАЮТ..

ОКИСЛИТЕЛЬНО-ВОССТАНО-ВИТЕЛЬНЫЕ (ОВР)

происходит изменение степени окисления одного или нескольких атомов химических элементов

$$Fe^{0} + Cl_{2}^{0} = Fe^{+3}Cl_{3}^{-1}$$

НЕ ОКИСЛИТЕЛЬНО-ВОССТА-НОВИТЕЛЬНЫЕ

степени окисления атомов всех химических элементов остаются прежними (не меняются)

$$Na^{+1}O^{-2}H^{+1} + H^{+1}Cl^{-1} = Na^{+1}Cl^{-1} + H_2^{-+1}O^{-2}$$

Определите, какие из реакций являются ОВР: 1 и 3

ПО МЕХАНИЗМУ РАЗРЫВА СВЯЗЕЙ РЕАКЦИИ БЫВАЮТ..

ГОМОЛИТИЧЕСКИЙ МЕХАНИЗМ (РАДИКАЛЬНЫЙ)

при разрыве связи образуются частички с неспаренными электронами - радикалы ВСЕМ ПОРОВНУ!

ГЕТЕРОЛИТИЧЕСКИЙ МЕХАНИЗМ (ИОННЫЙ)

при разрыве связи образуются заряженные частички - ионы ОДИН ЗАБИРАЕТ СЕБЕ ВСЁ!

$$A = B \rightarrow A^+ + B^-$$