TØ-opgaver til uge 9

Noah Rahbek Bigum Hansen

4. November 2024

Opg. 9.2.23

Find all second-order partial derivatives for the following.

$$R(x,y) = 4x^5 - 8x^4y^8 + 6x^5y^6.$$

For at finde de 2. ordens afledede må vi først finde de to 1. ordens afledede som

$$R_x = 20x^4 - 32x^3y^8 + 30x^4y^6$$

$$R_y = -64x^4y^7 + 36x^5y^5$$

Dermed har vi at

$$R_{xx} = 80x^3 - 96x^2y^8 + 120x^3y^6$$

$$R_{yy} = -448x^4y^6 + 180x^5y^4$$

$$R_{xy} = R_{yx} = -256x^3y^7 + 180x^4y^5$$

Prøveeksamensopgave 15

Betragt funktionen

$$f(x,y) = 6y^3 - 8x^2y + 16x^2 + 35.$$

Beregn

$$\frac{\partial^2 f}{\partial x \partial y} = -kx.$$

Hvor k er et helt tal mellem 0 og 99.

Vi har at

$$\frac{\partial f}{\partial x} = -16xy + 32x$$
$$\frac{\partial^2 f}{\partial x \partial y} = -16x$$

Altså er k=16

Opg. 9.2.63

The reaction to x units of a drug t hours after it was administered is given by

$$R(x,t) = x^{2}(a-x)t^{2}e^{-t},$$

for $0 \le x \le a$ (where a is a constant). Find the following.

Først udvider vi parentesen så vi får at

$$R(x,t) = x^2 a t^2 e^{-t} - x^3 t^2 e^{-t}.$$

(a)

 $\frac{\partial R}{\partial x}$.

Vi får at

$$\frac{\partial R}{\partial x} = 2xat^2e^{-t} - 3x^2t^2e^{-t} = x(2a - 3x)t^2e^{-t}.$$

(b)

 $\frac{\partial R}{\partial t}$.

Vi får at

$$\frac{\partial R}{\partial t} = x^2(a-x)(2te^{-t} - t^2e^{-t}).$$

(c)

 $\frac{\partial^2 R}{\partial^2 x}$.

Vi får at

$$\frac{\partial^2 R}{\partial^2 x} = 2at^2 e^{-t} - 6xt^2 e^{-t}.$$

(d)

$$\frac{\partial^2 R}{\partial x \partial t}$$
.

Vi får at

$$\frac{\partial^2 R}{\partial x \partial t} = x(2a - 3x)(2t - t^2)e^{-t}.$$

Opg. 9.2.69

The gravitational attraction F on a body a distance r from the center of the Earth, where r is greater than the radius of Earth, is a function of its mass m and the distance r as follows:

$$F = \frac{mgR^2}{r^2},$$

where R is the radius of Earth and g is the force of gravity.

(a)

Find and interpret F_m and F_r .

$$F_m = \frac{\partial F}{\partial m} = \frac{gR^2}{r^2}.$$

Dette fortolkes som, at hvis afstanden, r, holdes konstant så vil kraften stige med ovenstående konstant.

$$F_r = \frac{\partial F}{\partial r} = -\frac{2mgR^2}{r^3}.$$

Hvis afstanden r øges, men massen m holdes konstant så vil kraften falde

(b)

Show that $F_m > 0$ and $F_r < 0$. Why is this reasonable?

Fordi vi ved at kraften stiger ved øget masse og falder ved øget afstand.

Opg. 9.3.2

Find all points where the functions have any relative extrema. Identify any saddle points.

$$f(x,y) = 3xy + 6y - 5x.$$

Først findes f_x og f_y som

$$f_x = 3y - 5$$
$$f_y = 3x + 6$$

Altså har vi et kritisk punkt for

$$0 = 3y - 5$$

$$0 = 3x + 6$$

$$y = \frac{5}{3}$$

$$x = -2$$

Altså er vores eneste kritiske punkt $(-2, \frac{5}{3})$. Vi tjekker om dette er et saddelpunkt ved at finde diskriminanten $D = f_{xx}f_{yy} - f_{xy}^2$. Altså findes de dobbeltafledede

$$f_{xx} = 0$$

$$f_{yy} = 0$$

$$f_{xy} = 3$$

$$D = -3^2 = -9 < 0.$$

Altså er der ingen minima eller maksima men dog et saddelpunkt i $(-2, \frac{5}{3})$.

Prøveeksamensopgave 16

Betragt funktionen

$$f(x,y) = 5x^2 + 10y^2 - 5xy - 9x.$$

Det oplyses at f har et globalt minimum i (x_0, y_0) . Bestem y_0 når

$$y_0 = \frac{9}{k}.$$

Hvor k er et helt tal mellem 0 og 99.

Først finder vi f_x og f_y som

$$f_x = 10x - 5y - 9$$

$$f_y = 20y - 5x$$

Altså har vi minimum i

$$0 = 10x - 5y - 9$$

$$x = \frac{1}{2}y + \frac{9}{10}$$

$$0 = 20y - 5x$$

$$0 = 20y - \frac{5}{2}y - \frac{9}{2} = \frac{35}{2}y - \frac{9}{2}$$

$$y = \frac{9}{35}.$$

Altså er k = 35.

Opg. 9.3.31

Consider the function $f(x,y) = x^2(y+1)^2 + k(x+1)^2y^2$.

(a)

For what values of k is the point (x, y) = (0, 0) a critical point?

Vi finder først f_x og f_y som

$$f_x = 2x(y+1)^2 + 2k(x+1)y^2$$

og

$$f_y = 2x^2(y+1) + 2k(x+1)^2y.$$

Et kritisk punkt er hvor $f_x = 0$ og $f_y = 0$. Altså sættes punktet ind og ser for hvilke k-værdier det går op. Altså har vi at

$$0 = 2 \cdot 0(0+1)^2 + 2k(0+1)0^2$$

$$0 = 2 \cdot 0^2(0+1) + 2k(0+1)^2 \cdot 0$$

Det gælder altså for alle værdier af k.

(b)

For what values of k is the point (x, y) = (0, 0) a relative minimum of the function? *Hint:* Betragt k = 0 som et specialtilfælde.

Opg. 9.3.36

Cost. The total cost (in dollars) to produce x units of electrical tape and y units of packing tape is given by

$$C(x,y) = 2x^2 + 2y^2 - 3xy + 4x - 94y + 4200.$$

Find the number of units of each kind of tape that should be produced so that the total cost is a minimum. Find the minimum total cost.