

Graphendurchlauf III – Dijkstra-Algorithmus

Kürzester Weg zwischen zwei Knoten

Joachim Hofmann – Dijkstra-Algorithmus

Kürzester Weg: Bayreuth - Augsburg

Autobahnnetz Bayern

Autobahnnetz Bayern

Autobahnnetz Bayern

- Markiere den Startknoten, weise ihm den Gesamtaufwand 0 zu, verwende ihn als aktuellen Knoten.
- Untersuche alle Nachbarknoten des aktuellen Knotens:
 - Berechne den Gesamtaufwand des Nachbarknotens ausgehend vom aktuellen Knoten
 - Ist der Nachbarknoten vom aktuellen Knoten mit einer k\u00fcrzeren Distanz erreichbar, so wird diese Distanz aktualisiert/neu gesetzt, falls noch keine Distanz gesetzt ist.
- Wähle einen noch nicht besuchten Knoten mit dem geringsten Gesamtaufwand. Dieser ist der neue aktuelle Knoten.
- Fahre so lange mit Punkt 2 fort, bis der Zielknoten erreicht ist.

15

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	1	90,BT	8	8	∞	∞	∞	8	∞	∞

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	∞	∞	∞	∞	∞	∞	∞	∞
				aktueller						
			Kno	oten						

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	8	∞	∞	∞	∞	∞	∞	∞
BT,N		-	190,N	200,N	190,N	∞	∞	∞	∞	∞
					R, IN und					
					können					
					erreicht w	erden.)				

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	∞	∞	∞	∞	∞	∞	∞	∞
BT,N		-	190,N	200,N	190,N	∞	∞	∞	∞	∞
					Ges aus	ibe imme samtaufwa gehend v rtknoten a	and om			

d(N),V

- d(K) = Abstand zum Knoten

d(BT),V

Knoten

V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt

d(IN),V

- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

d(R),V

BT	-	90,BT	∞	∞	∞	∞	∞	∞	∞	∞
BT,N		-	190,N	200,N	190,N	∞	∞	∞	∞	∞
BT,N,R			-	200,N	190,N	255,R	260,R	∞	∞	∞
								nn auf vor		
								erreicht w		7
								oleibt die 1 00 über N		2
								ses Feld r		
								erden		

d(DON),V

d(LA),V

d(DGF),V

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	8	8	8	8	∞	8	8	∞
BT,N		1	190,N	200,N	190,N	8	∞	8	8	∞
BT,N,R			1	200,N	190,N	255,R	260,R	8	8	∞
,R,DON				200,N	ı	255,R	260,R	235,DON	8	∞

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	∞	∞	∞	∞	∞	∞	∞	∞
BT,N		-	190,N	200,N	190,N	8	∞	∞	∞	∞
BT,N,R			-	200,N	190,N	255,R	260,R	∞	∞	∞
,R,DON				200,N	-	255,R	260,R	235,DON	∞	∞
DON,IN				-		254,IN	260,R	235,DON	255,IN	∞
		IN schne	eller zu err	-A ist übe reichen als Weg, we						

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	8	8	∞	8	∞	∞	∞	∞
BT,N		1	190,N	200,N	190,N	8	∞	∞	∞	∞
BT,N,R			1	200,N	190,N	255,R	260,R	∞	∞	∞
,R,DON				200,N	-	255,R	260,R	235,DON	∞	∞
DON,IN				1		254,IN	260,R	235,DON	255,IN	∞
,IN,A						254,IN	260,R	-	255,IN	∞

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	1	90,BT	∞	∞	∞	∞	∞	∞	∞	∞
BT,N		1	190,N	200,N	190,N	8	∞	∞	∞	∞
BT,N,R			-	200,N	190,N	255,R	260,R	∞	∞	∞
,R,DON				200,N	-	255,R	260,R	235,DON	∞	∞
DON,IN				-		254,IN	260,R	235,DON	255,IN	∞
,IN,A						254,IN	260,R	-	255,IN	∞
,A,LA						ı	260,R		255,IN	∞

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	∞	8	∞	8	∞	8	∞	∞
BT,N		1	190,N	200,N	190,N	8	∞	8	8	∞
BT,N,R			-	200,N	190,N	255,R	260,R	8	8	∞
,R,DON				200,N	-	255,R	260,R	235,DON	8	∞
DON,IN				1		254,IN	260,R	235,DON	255,IN	∞
,IN,A						254,IN	260,R	1	255,IN	∞
,A,LA						1	260,R		255,IN	∞
,LA,M							260,R		I	∞

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	∞							
BT,N		ŀ	190,N	200,N	190,N	8	∞	∞	8	∞
BT,N,R			-	200,N	190,N	255,R	260,R	∞	8	∞
,R,DON				200,N	-	255,R	260,R	235,DON	8	∞
DON,IN				-		254,IN	260,R	235,DON	255,IN	∞
,IN,A						254,IN	260,R	-	255,IN	∞
,A,LA						1	260,R		255,IN	∞
,LA,M							260,R		ı	∞
,M,DGF							-			310,DGF

- d(K) = Abstand zum Knoten
- V = Vorheriger Knoten der die aktuell k\u00fcrzeste Distanz zum Knoten besitzt
- Bsp: d(D), V = 4, F bedeutet: Knoten D wird von Knoten F mit Gesamtaufwand 4 erreicht.

Knoten	d(BT),V	d(N),V	d(R),V	d(IN),V	d(DON),V	d(LA),V	d(DGF),V	d(A),V	d(M),V	d(PA),V
BT	-	90,BT	∞	8	∞	8	∞	∞	∞	∞
BT,N		-	190,N	200,N	190,N	8	∞	∞	∞	∞
BT,N,R			-	200,N	190,N	255,R	260,R	∞	∞	∞
,R,DON				200,N	-	255,R	260,R	235,DON	∞	∞
DON,IN				ı		254,IN	260,R	235,DON	255,IN	∞
,IN,A						254,IN	260,R	-	255,IN	∞
,A,LA						1	260,R		255,IN	∞
,LA,M							260,R		-	∞
,M,DGF							-			310,DGF
DGF,PA										_

Übung Dijkstra

Siehe Skript Aufgabe Dijkstra-Algorithmus

