A-Level Mathematics Edexcel 2024 Predicted Paper

Scan me for walkthrough

Paper 1

Pure Mathematics

Name:	 	
Date:	 	

2 hours allowed

You may use a calculator

Rough Grade Boundaries

These <u>do not</u> guarantee you the same mark in the exam.

A* - 75%

A - 55%

B - 45%

C - 35%

D - 25%

E - 15%

Mark scored	
Total	100

If you would like to **upgrade** to one of our Exam Masterclasses or Revision Bootcamps, which include our 2024 predicted papers **AND**:

- 2024 predicted paper video walkthroughs
- Live revision tutorials (exam masterclasses only)
- Easter Exam Prep Live tutorials with exam skills focus
 - Teaching videos
 - Quizzes
- 2023 predicted papers and walkthroughs (not all subjects)
 - Flashcards
 - Workbooks

... and so much more, please e-mail <u>Academy@primrosekitten.com</u> and we will deduct the cost of the predicted papers you have already bought.

Achieve more, stress less!

vector of $5\mathbf{I} - 2\mathbf{Z}$.	
Find $ \overrightarrow{AB} $.	[3 marks]

01 Point A has a position vector of $4\mathbf{i} - 2\mathbf{j} + \mathbf{z}$ and point B has a position

02	Solve $e^{10x} = 5e^{5x} - 6$. Give your solutions to 3 decimal places.			

03

If $ x = 1$	2, find the					[3 marks	5]
			•				•••
	set of val			3x + 1	> x - 3	3	
	set of valuur answer			3x + 1	> x - 3	3 [4 marks	5]
				3x + 1	> x - 3		s]
				3x + 1	> x - 3		s]
		in set not	tation.				
		in set not	tation.			[4 marks	
		in set not	tation.			[4 marks	
		in set not	tation.			[4 marks	
		in set not	tation.			[4 marks	

04

$$g(x) = \frac{2x+4}{x-3}, \ \ x \ge 4$$

$$f(x) = x^2 - 4x - 4, x \ge 2$$

a)	Find $fg(4)$	[2 marks]
b)	State the range of g .	[1 mark]

$f^{-1}(x)$ and state its range. [4 marks]
cribe the relationship between the graph of the function, $x = x^2 - 4x - 4$, $x \ge 2$ and the graph of its inverse.
[1 mark]

05 When metal spheres are heated they expand.

The volume of a sphere increases at a constant rate of $0.2\pi~\text{m}^{\text{3}}$ per minute.

a) Show that:

$$\frac{dr}{dt} = \frac{1}{20r^2}$$
[3 marks]

After 20 minutes, the sphere has a radius of 1.50 m.

o)	Find the radius of the sphere after 1 hour of being heated Give your answer to 2 decimal places.	ed.	
	·	[6 marks]	

c)	Find the rate that the surface area of the sphere increases in this sphere when $r=2m.$
	Give your answer to 2 decimal places.
	[3 marks]
d)	State an assumption that has been made when modelling the rate of
	increase of the surface area of the sphere.
	[1 mark]

06 The diagram shows a sector AOB of a circle with centre O and radius r cm.

The angle AOB is θ radians. The arc length AB is 14 cm and the area of the sector is 56 cm².

a)	Find the values of r and $ heta.$	[4 marks]

0)	AB.	e chord
	[3	3 marks]

07

a)	Express $2 \sin \theta + \cos \theta$ in the form $R \sin(\theta + \alpha)$, where $R \cos \theta < \alpha < \frac{\pi}{2}$.	2 > 0 and
	Give the value of α to 3 decimal places.	[3 marks]

A swimming pool at a water park was a wave machine.

A model was developed to show the height H (m) of the waves at different times (minutes).

$$H = 1.8 + \sin\left(\frac{7\pi t}{25}\right) + 0.5\cos\left(\frac{7\pi t}{25}\right) \quad 0 \le t < 12$$

b)	Calculate	th:	e m	axim	ium d	deptl	າ of the	e sw	vir	nming	pool	wher	n the v	vave
	machine	is	on	and	find	the	value	of	t	when	the	first	maxir	num
	occurs.													

occurs.	[4 marks]

The wave machine was turned on at 12pm.

c)	Calculate the first time after 12pm that the height of the water in the swimming pool reaches 1.5 m. Give your answer to the nearest minute.
	[4 marks]
	Some people complained the waves move too fast.
d)	Describe how the model could be adapted to slow down the waves. [1 mark]

08	Show that $\int_0^2 3x\sqrt{x+3}$	$dx = \frac{36\sqrt{5}}{5}$	3
----	-----------------------------------	-----------------------------	---

[7 marks]

09	In a	geometric	series,	the	first	term	is a	and	the	common	ratio	is 1	r.
	∽	90011100110						۵u					•

The third term of the geometric series is equal to $\frac{4}{9}$.

The sum to the first 4 terms is equal to 5 times the sum of the first 2 terms.

Show that:

$$S_5 = \frac{31}{9}$$

 5 marks]

10 A curve C has equation

$$y = x^2 - 5x - 12\sqrt{x}, \qquad x > 0$$

a)	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$	
	[3 marks	;]
b)	Verify that $\mathcal C$ has a stationary point when $x=4$ and determine its nature. [4 marks	
b)	nature.	
b)	nature. [4 marks	
b)	nature. [4 marks	
b)	nature. [4 marks	
b)	nature. [4 marks	
b)	nature. [4 marks	

11	A curve has equation $x = (y + 4)ln(2y - 6)$	
a)	Find $\frac{dx}{dy}$ in terms of y .	
		[3 marks]
b)	Find the gradient of the curve where it crosses the y -ax	
		[5 marks]

		[6 ma

13	A teacher buys a car for £7500. After t weeks, the car is worth £ \mathcal{C} .
	The rate of depreciation of $\mathcal C$ is directly proportional to $\mathcal C$.
a)	Write down a differential equation in terms of t , C and a constant k . [1 mark]
	[2 mark]
	The teacher wants to know what their car will be worth in the future.
	After 4 weeks the car is valued at £7450.
	They realise if they solve the differential equation, they will find an equation for the value of the car $\pounds \mathcal{C}$ as a function of the number of weeks t.
b)	Solve the differential equation to find the value of the car after 100 weeks.
	Give your answer to the nearest pound.
	[8 marks]

C)	the car's value to halve.
	Given that 52 weeks are in a year, give your answer to the nearest number of years.
	[3 marks]
d)	Give a reason why this model may not be correct. [1 mark]

END OF QUESTIONS

MARKING GUIDANCE

Question	Solution
1	A1M for attempting $\overrightarrow{OB} - \overrightarrow{OA}$ or similar
	A1M for \overrightarrow{AB} = i + 2j - 3z
	A1M for $ \overrightarrow{AB} = \sqrt{14}$
2	A2M for $(e^{5x} - 2)(e^{-5x} - 3) = 0$
	A1M for $e^{5x} = 2$ and $e^{5x} = 3$
	A1M for 0.139 and 0.220
3 (a)	A1M for $ 3(2) + 1 = 7$
	A2M for $ 3(-2) + 1 = 5$
3 (b)	A1M for $-3x - 1 > -x + 3$ therefore $x < -2$
	A2M for $3x + 1 > -x + 3$ therefore $x > \frac{1}{2}$
	A1M for $\{x: x < -2\} \cup \{x: x > \frac{1}{2}\}$
4 (a)	A1M for $g(4) = \frac{2(4)+4}{(4)-3} = 12$
	A1M for $fg(4) = (12)^2 - 4(12) - 4 = 92$
4 (b)	A1M for $2 < y \le 12$
	Or $2 < f(x) \le 12$
4 (c)	A1M for reversal of x and y.
	$x = y^2 - 4y - 4$ A1M for completing the square:
	$x = (y - 2)^2 - 8$
	A1M for $f^{-1}(x) = \sqrt{x+8} + 2$,
	A1M for range $y \ge 2$
4 (d)	A1M for reflection in the line y=x
5 (a)	A1M for $\frac{dV}{dt}=0.2\pi$
	A1M for $\frac{dV}{dr} = 4\pi r^2$
	A1M for $\frac{dr}{dt} = \frac{dV}{dt} \div \frac{dV}{dr} = 0.2\pi \div 4\pi r^2$

5 (b)	A1M for $\int r^2 dr \int \frac{1}{20} dt$
	A2M for $\frac{r^3}{3} = \frac{1}{20}t + c$
	A1M for correct substitution r=1.50 and t=20
	4.503
	$\frac{1.50^3}{3} = \frac{1}{20} \times 20 + c$
	A1M correctly finding c = 0.125
	$\frac{r^3}{3} = \frac{1}{20}t + 0.125$
	A1M for correctly finding $r = 2.11m$
	$\frac{r^3}{3} = \frac{1}{20} \times 60 + 0.125$
	r = 2.11m
5 (c)	A1M for $\frac{dA}{dr}=8\pi r$
	A1M for $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt} = 8\pi r \times \frac{1}{20r^2}$
	A1M for $\frac{dA}{dt} = 8\pi \times 2 \times \frac{1}{20 \times 2^2} = 0.628 cm^2$ per minute
5 (d)	A1M for Assumes the sphere expands at the same rate as it gets hotter.
6 (a)	A1M for $r\theta = 14$
	A1M for $\frac{1}{2}r^2\theta = 56$
	A1M for $\frac{1}{2}r(14) = 56$
6 (b)	A1M for $r=8$ and $\theta=\frac{7}{4}$ A1M for $\frac{1}{2}(8)^2 sin(\frac{7}{4})$
	A1M for $56 - \frac{1}{2}(8)^2 sin(\frac{7}{4})$
	A1M for 24.51 cm ²
7 (a)	A1M for $R = \sqrt{5}$
	A1M for $\tan \alpha = \frac{1}{2}$
	A1M for $\alpha = 0.464$ so $\sqrt{5}\sin(\theta + 0.464)$

7 (b)	A1M for $H = 1.8 + \frac{\sqrt{5}}{2} = 2.918$
	A1M for $\sin\left(\frac{7\pi t}{25} + 0.464\right) = 1$
	A1M for $\frac{7\pi t}{25} + 0.464 = \frac{\pi}{2}$
	A1M for $t = 1.258$ minutes
7 (c)	A1M for $1.5 = 1.8 + \frac{\sqrt{5}}{2} \sin\left(\frac{7\pi t}{25} + 0.464\right)$
	A1M for $\sin\left(\frac{7\pi t}{25} + 0.464\right) = -\frac{3\sqrt{5}}{25}$
	A1M for $\frac{7\pi t}{25} + 0.464 = 3.413249777$
	A1M for 12.03pm as $t = 3.35 minutes$
7 (d)	A1M for Decrease $\frac{7\pi}{25}$ in the formula
8	A1M for choosing a suitable method for $\int_0^2 3x\sqrt{x+3} \ dx$
	A1M for $u = x + 3$ and $\frac{du}{dx} = 1$ and $du = dx$
	A1M for $x = u - 3$ and $3x = 3u - 9$
	A2M for $\int_3^5 (3u - 9)u^{\frac{1}{2}} du = \int_3^5 (3u^{\frac{3}{2}} - 9u^{\frac{1}{2}}) du$
	A1M for $\left[\frac{6}{5}u^{\frac{5}{2}}-6u^{\frac{3}{2}}\right]_{3}^{5}$
	A1M for $\frac{36\sqrt{3}}{5}$
9	A1M for $\frac{a(1-r^4)}{1-r} = \frac{5a(1-r^2)}{1-r}$
	A1M for $r=2$
	A1M for $a \times (2)^2 = \frac{4}{9}$
	A1M for $a = \frac{1}{9}$
	A1M for $\frac{\frac{1}{9} \times (1-2^5)}{1-2} = \frac{31}{9}$ allow alternative methods
10 (a)	$\begin{array}{c} 1-2 & 9 \\ A2M \text{ for } \frac{dy}{dx} = 2x - 5 - 6x^{-\frac{1}{2}} \\ A1M \text{ for } \frac{d^2y}{dx^2} = 2 + 3x^{-\frac{3}{2}} \end{array}$
	A1M for $\frac{d^2y}{dx^2} = 2 + 3x^{-\frac{3}{2}}$
10 (b)	A2M for substitution $2(4) - 5 - 6(4)^{-\frac{1}{2}} = 0$ therefore it is a stationary point
	A2M for substitution $2 + 3(4)^{-\frac{3}{2}} = 2.375$ which is more than zero, therefore it's a minimum

11 (a)	A1M for use of product rule
11 (a)	
	A2M for $\frac{dx}{dy} = \frac{y+4}{y-3} + ln(2y-6)$
11 (b)	A1M for $y = -4$ and $y = 3.5$
	A1M for substitution $\frac{dx}{dy} = \frac{(3.5)+4}{(3.5)-3} + ln(2(3.5)-6)$
	A1M for $\frac{dx}{dy} = 15$ and $\frac{dy}{dx} = \frac{1}{15}$
	A1M for substitution $\frac{dx}{dy} = \frac{(-4)+4}{(-4)-3} + ln(2(-4)-6)$
	A1M for $ln(-14)$ does not exist so no second answer
12	A1M for $f'(x) = \frac{\sin(x+h) - \sin(x)}{h}$
	A1M for $f'(x) = \frac{\sin x \cos h + \sin h \cos x - \sin(x)}{h}$
	AIM for $f'(x) = \frac{h}{h}$
	A1M for $f'(x) = \frac{\sin x (\cos h - 1)}{h} + \frac{\sin h \cos x}{h}$
	A1M for $f'(x) = \sin x \frac{(\cos h - 1)}{h} + \cos x \frac{\sin h}{h}$
	$ \begin{array}{cccc} A111 & 101 & j & (x) & -3111 & x & & 1 & 003 & x \\ & & & & & & & h & & h \\ & & & & & & & h & & h \\ & & & & & & & & h & & h \end{array} $
	A1M for $\frac{(\cos h - 1)}{h} = 0$ and $\frac{\sin h}{h} = 1$
	A1M for $\cos \frac{\pi}{3} = \frac{1}{2}$
13 (a)	A1M for $\frac{dC}{dt} = -kC$
13 (b)	A1M for separation of variables $\frac{dc}{c} = -kdt$
	A1M for $ln C = -kt + c$
	A1M for $ln 7500 = 0 + c$
	A1M for $C = 7500e^{-kt}$ or $lnC = -kt + ln7500$
	A1M for correct substitution of $t = 4$ and $C = 7450$
	A1M for $k = 1.67 \times 10^{-3}$
	A1M for correct substitution of t = 100
13 (c)	A1M for C = £6345. Allow £6346 A1M for $ln3750 = -1.67 \times 10^{-3}t + ln7500$
13 (c)	AIM for $ln3/50 = -1.6/ \times 10^{-3} t + ln/500$ $ln3750 - ln7500$
	A1M for correct rearranging $t = \frac{ln3750 - ln7500}{-1.67 \times 10^{-3}} = 415.058192$
	OR $t = \frac{\ln{(0.5)}}{-1.67 \times 10^{-3}} = 415.058192$
	A1M for 8 years
13 (d)	A1M for it assumes constant rate of depreciation – doesn't
	allow for named example (e.g. damage to car etc)
Total	100