

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME								
CENTRE NUMBER					CANDIDATE NUMBER			
FURTHER MAT	HEMAT	ICS					9231	/22
Paper 2						May/J	une 20)18
							3 ho	urs
Candidates ans	wer on tl	ne Question	Paper.					
Additional Mater	rials:	List of For	mulae (M	F10)				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value is necessary, take the acceleration due to gravity to be 10 m s^{-2} .

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

k offers a c					
•••••••	••••••	•••••	•••••••••••		
	••••••	•	•		•••••
peed of P	are on the line at A to its speem	ed at B is $3:4$		m 071 – 1.0 m an	1,2 m. 11
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			
peed of P	at A to its spee	ed at B is $3:4$			

The maximum speed of P during its motion is $\frac{1}{3}\pi$ m s⁻¹.

rilia u	the period of the motion.	[2
Find tl	the time taken for P to travel directly from A to B .	[3
Find the	the time taken for P to travel directly from A to B .	
••••••		
••••••		
••••••		
••••••		
••••••		
••••••		
••••••		
••••••		
••••••		
••••••		

	ision.
(i)	Show that $e = \frac{k-1}{k+1}$.
(ii)	Given that 60% of the total initial kinetic energy is lost in the collision, find the values of k and

ļ	A uniform rod AB has length $2a$ and weight W . The end A rests on rough horizontal ground and the end B rests against a smooth vertical wall. The rod is in a vertical plane that is perpendicular to the wall. The angle between the rod and the horizontal is θ . A particle of weight $5W$ hangs from the rod at the point C , with $AC = xa$, where $0 < x < 1$.
	(i) By taking moments about A, show that the magnitude of the normal reaction at B is $\frac{W(5x+1)}{2\tan\theta}$.
	The particle of weight $5W$ is now moved a distance a up the rod, so that $AC = (x + 1)a$. This results in the magnitude of the normal reaction at B being double its previous value. The system remains in equilibrium with the rod at angle θ with the horizontal.
	(ii) Show that $x = \frac{4}{5}$. [3]

The coefficient of friction between the rod and the ground is $\frac{2}{3}$.

Given that the rod is about to slip when the par the value of $\tan \theta$.	[5

Three thin uniform rings A, B and C are joined together, so that each ring is in contact with each of the other two rings. Ring A has radius 2a and mass 3M; rings B and C each have radius 3a and mass 2M. The rings lie in the same plane and the centres of the rings are at the vertices of an isosceles triangle. The object consisting of the three rings is free to rotate about the horizontal axis l which is tangential to ring A, in the plane of the object and perpendicular to the line of symmetry of the object (see diagram).

(i)	Show that the moment of inertia of the object about the axis l is $180Ma^2$.	[7]
		· • • • • • • • • • • • • • • • • • • •
		,

Show that small oscillations of the object about the axis l are approximately simple harmonic, and state the period. [5]

6	The continuous	random	variable X	has	distribution	function	given	by

ble
$$X$$
 has distribution function given
$$F(x) = \begin{cases} 1 - e^{-0.4x} & x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find $P(X > 2)$.	[2]
		•••••
		••••
(ii)	Find the interquartile range of X .	[4]
(11)	That the interquartic range of A.	ניין
		••••
		••••
		•••••
		••••

	98.1	105.0	92.2	89.8	99.9	95.4	101.2	
Assuming that mass of athlet						% signific	cance level,	whether the me
	•••••	•••••	••••••	••••••	••••••	••••••		
	•••••	•••••	••••••	•••••		•••••		
	•••••					•••••		
						•••••		
	•••••		•••••			•••••		
	••••							
	••••							
•••••	••••••		••••••	••••••		••••••		
	•••••		•••••	••••••	••••••	•••••	••••••••••	
	•••••		•••••	•••••		•••••		
	•••••		••••••	••••••		••••••		
	•••••	•••••	••••••	••••••	••••••	••••••		
				•••••		•••••		

A manufacturer produces three types of car: hatchbacks, saloons and estates. Each type of car is available in one of three colours: silver, blue and red. The manufacturer wants to know whether the popularity of the colour of the car is related to the type of car. A random sample of 300 cars chosen by customers gives the information summarised in the following table.

		C	olour of ca	ar
		Silver	Blue	Red
	Hatchback	53	36	41
Type of car	Saloon	29	40	31
	Estate	28	24	18

Test at the 10% significance level whether the colour of car chosen by customers is independent of the type of car. [8]

•
 ,
 ,

9

At a ski resort, the probability of snow on any particular day is constant and equal to p. The skiing

(i)	Show that $4p^2 + 9p - 9 = 0$ and hence find the value of p.	
. ,		
		•••••
		•••••
		•••••
		•••••
		•••••
		
(11)	Find the probability that the first snowfall will be on 3 November.	

	and the probability that the first snowfall will not be before 4 November.	
•••		
•••		•••••••
•••		
•••		
•••		••••••
	and the least integer N so that the probability of the first snowfall being on or many of November is more than 0.999.	before the
•••		
•••		••••••
•••		
•••		
		••••••

10	The times taken to run 400 metres by students at two large colleges P and Q are being compared.
	There is no evidence that the population variances are equal. The time taken by a student at college P
	and the time taken by a student at college Q are denoted by x seconds and y seconds respectively. A
	random sample of 50 students from college P and a random sample of 60 students from college Q
	give the following summarised data.

 $\Sigma x = 2620$ $\Sigma x^2 = 138200$ $\Sigma y = 3060$ $\Sigma y^2 = 157000$

(i)	Using a 10% significance level, test whether, on average, students from college P take longer run 400 metres than students from college Q .	tc [9]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

• • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •								
••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••
••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • •
••••		• • • • • • • • • • • • • • • • • • • •		•••••			•••••			••••
••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••
••••	••••••	•••••	•••••	•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
••••										
••••	••••••						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
				•••••						
•••••										••••
	d a 90% co				fference i	n the mea	n times ta	iken to ru	n 400 me	etre
	d a 90% co				fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	ken to ru	n 400 me	
					fference i	n the mea	n times ta	ken to ru	n 400 me	
					fference i	n the mea	n times ta	iken to ru	n 400 me	
					fference i	n the mea	n times ta	iken to ru	n 400 me	
					fference i	n the mea	n times ta	ken to ru	n 400 me	
					fference i	n the mea	n times ta	iken to ru	n 400 me	
					fference i	n the mea	n times ta	iken to ru	n 400 me	
					fference i	n the mea	n times ta	iken to ru	n 400 me	
					fference i	n the mea	n times ta	iken to ru	n 400 me	
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre
					fference i	n the mea	n times ta	iken to ru	n 400 me	etre

11 Answer only **one** of the following two alternatives.

EITHER

A particle P of mass m is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle is held so that the string is taut, with OP horizontal. The particle is projected downwards with speed $\sqrt{\left(\frac{2}{5}ag\right)}$ and begins to move in a vertical circle. The string breaks when its tension is equal to $\frac{11}{5}mg$.

(i)	Show that the string breaks when OP makes an angle θ with the downward vertical through O , where $\cos \theta = \frac{3}{5}$. Find the speed of P at this instant. [6]

vertically below O	•				[6
			•••••	 	••••••
				 	•••••
				 	•••••
				 	•••••
				 	•••••
				 	•••••
			•••••	 	
			•••••	 	•••••
•••••		•••••	•••••	 	••••••
•••••	•••••	•••••	•••••	 	••••••
				 	•••••
				 	•••••
				 	•••••
			•••••	 	•••••
				 	•••••
				 	•••••

OR

The regression line of y on x, obtained from a random sample of 6 pairs of values of x and y, has equation

$$y = 0.25x + k,$$

where k is a constant. The values from the sample are shown in the following table.

x	4	5	7	8	10	14
у	5	8	p	7	p	9

(i)	Find the value of p and the value of k .	[6]
		·••••
		· ····
		· ····
		· ····
		· ····
		· ···

Find the pro							
•••••	•••••		••••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••
•••••	•••••	•••••	•••••	•••••		••••••	•••••
				•••••	•		••••••
••••••		•••••	•••••	••••••	•••••	••••••	•••••
Test at the		cance level	l whether t	here is evide	ence of posit	ive correla	tion betwee
		cance level	l, whether t	here is evide	ence of posit	ive correla	tion betwee
		cance level	l, whether t	here is evid	ence of posit	ive correla	tion betwee
variables.	5% signifi						
variables.	5% signifi				ence of posit		
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						
variables.	5% signifi						

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.									
	•								
	•								
	•								
	•								
	•								
	•								
	•								
	•								
	•								
	•								
	•								
	•								
	•								
	•								

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.