Les exercices et et le cours portent sur le chapitre 11: dérivabilité des fonctions de $\mathbb R$ dans $\mathbb K$. Les questions de cours portent sur les éléments entre accolades et en gras, et uniquement ceux-ci, même si on attend une maîtrise de l'ensemble des notions du chapitre.

Chapitre 11 : Dérivabilité de fonctions de $\mathbb R$ dans $\mathbb K$.

I intervalle réel non vide et non réduit à un point, $f: I \to \mathbb{K}$, $a \in I$.

Fonctions dérivables, fonction dérivée

Taux d'accroissement en a de f, $\tau_a(f): I\setminus \{a\} \to \mathbb{K}$, (f(x)-f(a))/(x-a). On dit que f est dérivable en a lorsque $\tau_a(f)$ admet une limite finie ℓ en a, auquel on note $f'(a)=\ell$. f est dérivable en a ssi elle admet un développement limité à l'ordre en f en

Extrema et derivation

Si f, dérivable en a, admet un extremum local en un point a intérieur à I, alors f'(a) = 0. Théorème de Darboux. [Théorème de Rolle. $a < b, f : [a, b] \to \mathbb{R}$, continue, dérivable sur]a, b[tel que f(a) = f(b). Alors $\exists c \in]a, b[, f'(c) = 0]$. Extensions sur des intervalles non bornés. Application au comptage et à la localisation de racines de fonctions, à la recherche de points fixes.

Accroissements finis

[Egalité des accroissements finis : $a < b, f : [a,b] \to \mathbb{R}$ continue, dérivable sur]a,b[. Alors $\exists c \in]a,b[,f'(c) = (f(b)-f(a))/(b-a)]$. Egalité généralisée des accroissements finis. Inégalité des accroissements finis dans le cas des fonctions à valeurs réelles sous l'hypothèse f' bornée. Extension de l'inégalité des accroissements finis aux fonctions à valeurs complexes. [f dérivable sur un intervalle est croissante ssi $f' \geq 0$] f dérivable sur un intervalle est strictement croissante ssi $f' \geq 0$ et $(f')^{-1}(\{0\})$ est d'intérieur vide. Application à « l'intégration » d'inégalités même si les dérivées ne sont pas continues. [Théorème de la limite de la dérivée : soit $f : [a,b] \to \mathbb{K}$ continue, dérivable sur $[a,b]\setminus \{c\}$. On suppose que f' admet une limite finie ℓ en c. Alors f est dérivable en c et $f'(c) = \ell$]. Règle de l'Hospital mentionnée, même si hors-programme.

Fonctions k-fois dérivables.

Fonction k-fois dérivable, indéfiniment dérivable. Dérivée k-ième d'une combinaison linéaire. [Formule de Leibniz de la dérivée k-ième d'un produit]. Stabilité des fonctions k-fois dérivables par composition, par quotient avec les bonnes hypothèses. k-dérivabilité de la réciproque d'une fonction bijective k-fois dérivable sous hypothèse de non-annulation de la dérivée première. Les formules de Faa Di Bruno et la réversion de Lagrange sont hors-programme. Théorème de la limite de la dérivée n-ième. Toute fonction de classe C^1 sur un segment est Lipschitzienne. Conditions nécessaires, conditions suffisantes d'extrema locaux à l'aide de la dérivée seconde.

* * * * *