Implementing SVM on Amazon fine food reviews dataset.

```
In [11]: #Importing relevant libraries
         %matplotlib inline
         import warnings
         warnings.filterwarnings("ignore")
         import sqlite3
         import pandas as pd
         import numpy as np
         import nltk
         import string
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.feature_extraction.text import TfidfTransformer
         from sklearn.feature_extraction.text import TfidfVectorizer
         import itertools
         from sklearn.feature_extraction.text import CountVectorizer
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import precision_score
         from sklearn.metrics import recall_score
         from sklearn.metrics import f1_score
         from sklearn import metrics
         from sklearn.cross_validation import train_test_split
         from sklearn.metrics import accuracy_score
         from sklearn.cross_validation import cross_val_score
         from collections import Counter
         from sklearn import cross_validation
         from sklearn.model_selection import train_test_split
         import warnings
         warnings.filterwarnings(action='ignore')
         from sklearn.model_selection import train_test_split
         from sklearn.grid_search import GridSearchCV
         from sklearn.model_selection import RandomizedSearchCV
         from sklearn.svm import SVC
         from prettytable import PrettyTable
         from sklearn.model_selection import TimeSeriesSplit
         import datetime as dt
```

Connecting to the preprocessed SQLITE database table

```
In [5]: #Connecting to the SQL table
    con = sqlite3.connect('final.sqlite')

#Reading data from the database

Data = pd.read_sql_query("""
    SELECT *
    FROM Reviews """,con)
    Data.shape

# Drop index column
Data.drop(columns=['index'],inplace=True)
```

Processing the data for further use

```
In [12]: #SETTING THE TIME COLUMN TO STANDARD DATE-TIME

Data['Time'] = Data[['Time']].applymap(lambda x: dt.datetime.fromtimestamp(x))

Data.head(5)
```

0.1+1	[12]	
out	[12]	•

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominato	r Score	Time	Sı
0	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0		0 positive	1999- 10-08 05:30:00	edı
1	150506	0006641040	A2IW4PEEKO2R0U	Tracy	1		1 positive	2007- 11-11 05:30:00	l bo
2	150507	0006641040	A1S4A3IQ2MU7V4	sally sue "sally sue"	1		1 positive	2007- 10-04 05:30:00	Si
3	150508	0006641040	AZGXZ2UUK6X	Catherine Hallberg " (Kate)"	1		1 positive	2004- 02-06 05:30:00	rh
4	150509	0006641040	A3CMRKGE0P909G	Teresa	3		4 positive	2002- 04-10 05:30:00	I
4									•
#So	<pre>#Setting Time column as index of the dataframe Data.set_index("Time",inplace=True) #Sampling the above data Sampled_data=Data.sample(n=30000,replace='False') Sorted=Sampled_data.sort_index()</pre>								
So	rted.he	ad()							

In [14]:

In [13]:

Out[14]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Sum
Time								
2000-06- 03 05:30:00	374400	B00004CI84	A2DEE7F9XKP3ZR	jerome	0	3	positive	Research Beatle V F
2000-12- 19 05:30:00	374383	B00004CI84	A34NBH479RB0E	"dmab6395"	0	1	positive	FL
2001-06- 11 05:30:00	451923	B00004CXX9	ANIMV3SPDD8SH	Guy De Federicis	1	12	negative	CAS IS GH WITH N
2002-01- 06 05:30:00	361317	B00005IX96	A3ODTU118FKC5J	Rosemarie E Smith	5	7	positive	∤ pi∈ he
2002-02- 11 05:30:00	374420	B00004CI84	A1ZH086GZYL5MZ	Doug DeBolt	2	2	positive	, gross
4								•

```
In [15]: Sorted=Sorted.drop_duplicates(subset={"UserId","ProfileName","Summary","Text"}, keep='first', inplace=
False)

Full_data=Data.sample(n=150000,replace='False')
new_sample=Full_data.sort_index()

new_sample["Score"].value_counts()
#LABELS.value_counts()
LABELS=new_sample["Score"]
sns.countplot(x="Score",data=new_sample,palette="hls")
plt.show()
plt.savefig("count_plot")
```


<Figure size 432x288 with 0 Axes>

```
In [16]: polarity=Sorted["Score"]
    sns.countplot(x="Score",data=Sorted,palette="hls")
    plt.show()
    plt.savefig("count_plot")
```


<Figure size 432x288 with 0 Axes>

Splitting the data into 70:30 partitions sets

```
In [17]: def data_split(x,y):
    #Splitting the model into 70:30 split of Training and Cross_validate split
    X_1, X_test, y_1, y_test = train_test_split(x, y, test_size=0.3,shuffle=False,random_state=None)

# split the train data set into cross validation train and cross validation test
    X_tr, X_cv, y_tr, y_cv = train_test_split(X_1, y_1, test_size=0.3,shuffle=False,random_state=None)
    return X_tr,y_tr,X_cv,y_cv,X_test,y_test
```

Preparing the data for further use

```
In [18]: #PARTITIONING THE DATA FOR KERNEL SVMC
X=Sorted
Y=polarity

X_tr,y_tr,X_cv,y_cv,X_test,y_test=data_split(X,Y)

print("The shape of x_train is:",X_tr.shape)
print("the shape of y_train is:",y_tr.shape)
print("The shape of x_cval is:",X_cv.shape)
print("The shape of y_cval is:",y_cv.shape)
print("The shape of y_test is:",Y_test.shape)
print("the shape of y_test is:",Y_test.shape)
```

```
The shape of x_train is: (14110, 10)
the shape of y_train is: (14110,)
The shape of x_cval is: (6048, 10)
The shape of y_cval is: (6048,)
the shape of x_test is: (8640, 10)
the shape of y_test is: (8640,)
```

Partioining the data for the implementation of the Linear SVM

```
In [19]: Linear_X=new_sample
Linear_Y=LABELS

li_xtr,li_ytr,li_xcv,li_ycv,li_xtest,li_ytest=data_split(Linear_X,Linear_Y)

print("The shape of x_train is:",li_xtr.shape)
print("the shape of y_train is:",li_ytr.shape)
print("The shape of x_cval is:",li_xcv.shape)
print("The shape of y_cval is:",li_ycv.shape)
print("the shape of x_test is:",li_xtest.shape)
print("the shape of y_test is:",li_ytest.shape)

The shape of x_train is: (73500, 10)
the shape of y_cval is: (31500,)
The shape of y_cval is: (31500,)
the shape of x_test is: (45000, 10)
the shape of y_test is: (45000,)
```

Utility functions for training the models

```
In [20]: #Function for training the data
         def train(X_tr, y_tr,X_cv,y_cv):
         #Splitting the data into train and test set
             Model = SVC(class_weight="balanced") #Performing weight balancing technique due to class imbalance
             model = Model.fit(X_tr, y_tr)
             print("The model score on train set is= ", model.score(X_tr,y_tr))
             y_pred=model.predict(X_cv)
             acc = accuracy_score(y_cv, y_pred, normalize=True) * float(100)
             print('\nThe accuracy of SVM over cross_val set is = %d%% ' % ( acc))
             return y_pred,acc
         #Hyper-parameter tuning of SVM using Gridsearch technique
         def Grid_s(X_train, y_train,X_cv,y_cv):
             Cs = [10 ** x for x in range(-5, 3)]
             gammas = [10 ** x for x in range(-5, 3)]
             #cv = TimeSeriesSplit(max_train_size=None, n_splits=3)
             param_grid = {'C': Cs, 'gamma' : gammas}
             grid_search = GridSearchCV(SVC(class_weight= "balanced"), param_grid,scoring = 'accuracy', cv=3,n_
         jobs=-1)
             grid_search.fit(X_train, y_train)
             print("The best model parameters for Gridsearch technique is ",grid_search.best_params_)
             print("The model score over the cv set is ",grid_search.score(X_cv,y_cv))
             return grid_search.best_params_
         #Function for doing random search
         def Random_s(X_train, y_train,X_cv,y_cv):
             from scipy.stats import uniform
             from sklearn.model selection import RandomizedSearchCV
             cv = TimeSeriesSplit(max_train_size=None, n_splits=3)
             C = uniform(loc=0, scale=2)
             gammas=uniform(loc=0,scale=2)
             param_grid={"C":C,"gamma":gammas}
             model1 = RandomizedSearchCV(SVC(class_weight="balanced"), param_grid,scoring = 'accuracy',n_jobs=
         -1, cv=cv)
             model1.fit(X_train, y_train)
             print("The best model parameters for Randomsearch technique is ",model1.best_params_)
             print("The model score over the cv set is ",model1.score(X_cv, y_cv))
             return model1.best_params_
         #Function for finding the test accuracy by using the default alpha
         def tuned_test(X_tr,y_tr,X_test,y_test,c,gam):
             New_clf= SVC(C=c,gamma=gam,class_weight="balanced")
             new_model=New_clf.fit(X_tr,y_tr)
             print("The model score on train set is= ", new_model.score(X_tr,y_tr))
             Y pred=new model.predict(X test)
             new_acc = accuracy_score(y_test, Y_pred, normalize=True) * float(100)
             print('\nThe accuracy of svm over Test set is = %d\% ' \% ( new_acc))
             return Y_pred,new_acc
```

Common Utility functions for plotting the results

```
In [21]: from sklearn.model_selection import learning_curve
         def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                                 n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):
             Generate a simple plot of the cv and training learning curve.
             plt.figure()
             plt.title(title)
             if ylim is not None:
                 plt.ylim(*ylim)
             plt.xlabel("Training examples")
             plt.ylabel("Score")
             train_sizes, train_scores, test_scores = learning_curve(
                 estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
             train_scores_mean = np.mean(train_scores, axis=1)
             train_scores_std = np.std(train_scores, axis=1)
             test_scores_mean = np.mean(test_scores, axis=1)
             test_scores_std = np.std(test_scores, axis=1)
             plt.grid()
             plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                              train_scores_mean + train_scores_std, alpha=0.1,
                              color="r")
             plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                              test_scores_mean + test_scores_std, alpha=0.1, color="g")
             plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                      label="Training score")
             plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
                      label="Cross-validation score")
             plt.legend(loc="best")
             return plt
```

Utility functions for plotting the confusion matrix

```
In [22]: from sklearn.metrics import confusion_matrix
         def Confusion_metric(y_test,y_pred,acc):
             print(metrics.confusion_matrix(y_test,y_pred))
             confusion=metrics.confusion_matrix(y_test,y_pred)
             plt.figure(figsize=(9,9))
             sns.heatmap(confusion, annot=True, fmt=".3f", linewidths=.5, square = True, cmap = 'Blues_r');
             plt.ylabel('Predicted label');
             plt.xlabel('Actual label');
             all_sample_title = 'Accuracy Score: {0}'.format( acc)
             plt.title(all_sample_title, size = 15);
             plt.show()
         #Storing the values of the confusion matrix
             TN=confusion[0,0]
             FP=confusion[0,1]
             FN=confusion[1,0]
             TP=confusion[1,1]
         # use float to perform true division, not integer division
             Class_acc=((TP + TN) / float(TP + TN + FP + FN))*100
         #Code for classification error
              classification_error = ((FP + FN) / float(TP + TN + FP + FN))*100
         #Code for finding the TPR, FPR, TNR, FNR
             TPR = (TP / float(FN + TP))*100
             FNR = (FN / float(FN + TP))*100
             TNR=(TN / float(TN + FP))*100
             FPR=(FP / float(TN + FP))*100
         #Code for finding the Precision, Recall & F1 score
             precision = (TP/float(TP+FP))*100
             recall= (TP / float(FN + TP))*100
             F1_s= ((float(precision*recall))float(precision+recall))*2)
             print()
             ptable=PrettyTable()
             ptable.title="The performance metrics of the above model are as follows: "
             ptable.field_names=["Metrics","Scores"]
             ptable.add_row(["Classification_accuracy",Class_acc])
             ptable.add_row(["Classification_error",classification_error])
             ptable.add_row(["True positive",TP])
             ptable.add_row(["False positive",FP])
             ptable.add_row(["True negative",TN])
             ptable.add_row(["False negative",FN])
             ptable.add_row(["True positive rate",TPR])
             ptable.add_row(["False negative rate",FNR])
             ptable.add_row(["True negative rate",TNR])
             ptable.add_row(["False positive rate",FPR])
             ptable.add_row(["Precision value",precision])
             ptable.add_row(["Recall value", recall])
             ptable.add_row(["f1_score value",F1_s])
             print(ptable)
```

```
In [65]: def conclusion_table():
    print()
    ptable=PrettyTable()
    ptable.title="The comparisons of all the vectorizers are as follows: "
    ptable.field_names=["Vectorizer", "Algorithm", "Scores", "Status"]
    ptable.add_row(["Bag-Of-Words", "Kernel-SVM", "86.6% ", "Stable"])
    ptable.add_row(["Bag-Of-Words", "Linear-SVM", "92.87%" , "Stable"])
    ptable.add_row(["Tf-IDF", "Kernel-SVM", "88.33%" , "Stable"])
    ptable.add_row(["Tf-IDF", "Linear-SVM", "89.82%" , "Unstable"])
    ptable.add_row(["Average-word2vec", "Kernel-SVM", "85.91%" , "Unstable"])
    ptable.add_row(["Average-word2vec", "Linear-SVM", "88.05%" , "Unstable"])
    ptable.add_row(["TF-IDF-Weighted-word2vec", "Kernel-SVM", "85.94%", "Unstable"])
    ptable.add_row(["TF-IDF-Weighted-word2vec", "Linear-SVM", "85.94%", "Unstable"])
    print(ptable)
```

Utilty functions for vectorizing the data

```
In [24]: #Function for vectorizing the train data
         from sklearn.preprocessing import StandardScaler
         scaler=StandardScaler(with_mean=False)
         def vec_train(vect,X_tr):
             import warnings
             warnings.filterwarnings("ignore")
             count_vect = vect #in scikit-learn
             BOW = count_vect.fit_transform(X_tr.values)
         #Standardizing the vectorized data
             standardized_data = scaler.fit_transform(BOW)
             standardized_data.shape
             return count_vect,standardized_data
         #Function for vectorizing the CV data
         def vec_cv(count,X_cv):
             cv=count.transform(X_cv.values)
             cv.get_shape()
             std_cv=scaler.transform(cv)
             std_cv.shape
             return std_cv
         #Function for vectorizing the test data
         def vec_test(count,X_test):
             test=count.transform(X_test.values)
             test.get_shape()
             std_data=scaler.transform(test)
             std_data.shape
             return std_data
         #Funtion for printing the total number of top features
         def top_tfidf_feats(name,row, features, top_n=25):
             ''' Get top n tfidf values in row and return them with their corresponding feature names.'''
             topn_ids = np.argsort(row)[::-1][:top_n]
             top_feats = [(features[i], row[i]) for i in topn_ids]
             df = pd.DataFrame(top_feats)
             df.columns = ['feature', name]
             return df
         #Function for displaying top frequent 50 tokens distributions
         from yellowbrick.text import FreqDistVisualizer
         from sklearn.feature_extraction.text import CountVectorizer
         def display_token(Vect,data):
             vectorizer = Vect
             docs = vectorizer.fit_transform(data)
             features = vectorizer.get_feature_names()
             visualizer = FreqDistVisualizer(features=features)
             visualizer.fit(docs)
             visualizer.poof()
```

Implementing the Bag of words vectorization technique

```
In [25]: #Initializing the count vectorizer
         Count_vect=CountVectorizer()
         #vectorizing the X_train set
         count,x_tr=vec_train(Count_vect,X_tr["CleanedText"])
         print("The shape of the X_train is: ",x_tr.shape)
         #Vectgorizing the X_crossvalidation set
         x_cv=vec_cv(count,X_cv["CleanedText"])
         print("The shape of the X_cv is: ",x_cv.shape)
         #Vectorizing the X_test set
         x_test=vec_test(count,X_test["CleanedText"])
         print("The shape of the X_test is: ",x_test.shape)
         #Printing the total length of the features
         print("\nTop 25 feaures acording to the Bow score are as follows")
         features = Count_vect.get_feature_names()
         len(features)
         top_Bow = top_tfidf_feats("bow",x_tr[1,:].toarray()[0],features,25)
         top_Bow
         The shape of the X_train is: (14110, 15155)
         The shape of the X_cv is: (6048, 15155)
         The shape of the X_test is: (8640, 15155)
         Top 25 feaures acording to the Bow score are as follows
Out[25]:
               feature
```

	reature	wod
0	geeki	118.789730
1	scenc	118.789730
2	priceless	68.588144
3	alec	53.131915
4	baldwin	48.504300
5	keaton	42.003722
6	michael	30.686605
7	beetlejuic	19.800394
8	funni	15.363626
9	play	11.058850
10	movi	8.427630
11	husband	5.510466
12	thought	4.598835
13	kid	4.230899
14	right	3.909289
15	enjoy	3.015589
16	realli	2.248107
17	love	1.652964
18	one	1.447356
19	folger	0.000000
20	fong	0.000000
21	fonder	0.000000
22	flipin	0.000000
23	fondant	0.000000
24	fond	0.000000

In [26]: display_token(Count_vect,X_tr["CleanedText"])

Training the model over the BOW vectorized data

The model score on train set is= 0.9806802721088436

The accuracy of SVM over cross_val set is = 87% Wall time: 3min 21s

In [20]: Confusion_metric(y_cv,pred,acc)

[[470 661] [146 5023]]

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	87.19047619047619	
Classification_error	12.80952380952381	
True positive	5023	
False positive	661	
True negative	470	
False negative	146	
True positive rate	97.1754691429677	
False negative rate	2.824530857032308	
True negative rate	41.55614500442087	
False positive rate	58.44385499557914	
Precision value	88.37086558761436	
Recall value	97.1754691429677	
f1_score value	92.5642679443472	

- The train accuracy of the model over Bag-of-words vectorized data is 87.19% by using the default parameters.
- The performance metrics of the above model is not good as the True-positives rate are very high as compared to all other metrics so the model is not stable.
- The False positive rate is around 58.44% which is very high as compared to the False negative rate which is not good for a model.
- So the model has a bias problem which is affecting the model a lot and can be solved by tuning the hyperparameter.

Tuning the hyperparameters by performing the Gridsearch and Randomsearch technique.

The best model parameters for Gridsearch technique is {'C': 10, 'gamma': 1e-05} The model score over the cv set is 0.8846031746031746 Wall time: 41min 4s

Implementing the Randomsearch technique

The best model parameters for Randomsearch technique is $\{'C': 0.6591632021221285, 'gamma': 1.7712275027341886\}$

The model score over the cv set is 0.8204761904761905

Wall time: 14min 24s

Testing the model over the test set using the optimal hyperparameters

```
In [23]: Y_pred,new_acc=tuned_test(x_tr,y_tr,x_test,y_test,c=10,gam=1e-05)
```

The model score on train set is= 0.9821768707482993

The accuracy of svm over Test set is = 86%

Confusion matrix of the above model

```
In [24]: Confusion_metric(y_test,Y_pred,new_acc)
```

```
[[ 903 726]
[ 480 6891]]
```


The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	86.6	
Classification_error	13.4	
True positive	6891	
False positive	726	
True negative	903	
False negative	480	
True positive rate	93.48799348799349	
False negative rate	6.512006512006511	
True negative rate	55.432780847145494	
False positive rate	44.56721915285451	
Precision value	90.46868846002363	
Recall value	93.48799348799349	
f1_score value	91.95356285028022	

- After tuning the hyperparameters the test accuracy of the model is 86.6% which is quite good for a model.
- Here also the True positive rates are dominating and affecting the other parametrs a lot.
- The False positive rate is very high and alarming which is not good for a model.
- There is still bias problems in the model so the accuracy cannot be trusted blindly.

```
In [32]: Count_vect=CountVectorizer()

#vectorizing the X_train set
    count,li_tr=vec_train(Count_vect,li_xtr["CleanedText"])

print("The shape of the X_train is: ",li_tr.shape)

#Vectgorizing the X_crossvalidation set
    li_cv=vec_cv(count,li_xcv["CleanedText"])
    print("The shape of the X_cv is: ",li_cv.shape)

#Vectorizing the X_test set
    li_test=vec_test(count,li_xtest["CleanedText"])
    print("The shape of the X_test is: ",li_test.shape)

The shape of the X_train is: (73500, 29744)
    The shape of the X_test is: (31500, 29744)
    The shape of the X_test is: (45000, 29744)
```

Implementing Linear SVM by using the SGD algorithm

```
In [60]: #FUNCTION FOR PERFORMING CROSS-VALIDATION
         from sklearn import linear_model
         from sklearn.linear_model import SGDClassifier
         def Cv_results(X_cv, y_cv):
             cv_erro_array1 = []
             alpha = [10 ** x for x in range(-2, 5)]
             for a in alpha:
                 print("-----
            ----")
                 print("for alpha =", a)
                 clf = SGDClassifier(alpha=a, penalty='l1', loss='hinge', random_state=42)
                 Scores = cross_val_score(clf, X_cv, y_cv, cv=10,scoring='accuracy')
                 cv_erro_array1.append(Scores.mean())
                 mse1=[1- x for x in cv_erro_array1]
                 # determining best alpha
                 #Best_alpha = alpha[mse.index(min(mse))]
                 print("\nthe misclassification error for each alpha value is : ", np.round(mse1,3))
                 #print("\nthe 10-fold CV_accuracy for each alpha is :",Scores)
             fig, ax = plt.subplots()
             ax.plot(alpha,mse1,c='g')
             for i, txt in enumerate(np.round(mse1,3)):
                 ax.annotate((alpha[i],str(txt)), (alpha[i],mse1[i]))
             plt.grid()
             plt.title("Cross Validation Error for each alpha")
             plt.xlabel("Alpha i's")
             plt.ylabel("Error measure")
             plt.show()
             Best_alpha = np.round(alpha[mse1.index(min(mse1))])
```

Tuning the hyperaprametrs by doing the 10k-fold Crossvalidation technique

```
In [61]: Cv_results(li_tr,li_ytr)
       ______
       for alpha = 0.01
       the misclassification error for each alpha value is : [0.153]
       for alpha = 0.1
       the misclassification error for each alpha value is : [0.153 0.145]
       for alpha = 1
       the misclassification error for each alpha value is : [0.153 0.145 0.139]
       for alpha = 10
       the misclassification error for each alpha value is : [0.153 0.145 0.139 0.139]
       for alpha = 100
       the misclassification error for each alpha value is : [0.153 0.145 0.139 0.139 0.139]
       ______
       for alpha = 1000
       the misclassification error for each alpha value is : [0.153 0.145 0.139 0.139 0.139 0.139]
       for alpha = 10000
       the misclassification error for each alpha value is : [0.153 0.145 0.139 0.139 0.139 0.139 0.139]
```


Utility function for training the Linear SVM

```
In [29]: def linearsvm (x_test,y_test,a):
        clf = linear_model.SGDClassifier(loss="hinge",alpha=a,max_iter=1000)
        clf.fit(x_test,y_test)
        sgd_y=clf.predict(x_test)
        sgd_acc = accuracy_score(y_test, sgd_y, normalize=True) * float(100)
        print('\nThe accuracy of svm over Test set is = %d%% ' % ( sgd_acc))
        return sgd_y,sgd_acc
```

Testing the above model over the test set.

+ The performance metrics of the a	bove model are as follows:
Metrics	Scores
Classification_accuracy	92.8244444444444
Classification_error	7.1755555555555
True positive	36942
False positive	3020
True negative	4829
False negative	209
True positive rate	99.4374310247369
False negative rate	0.5625689752631154
True negative rate	61.52376098866098
False positive rate	38.476239011339025
Precision value	92.44282067964566
Recall value	99.4374310247369
f1_score value	95.8126385953082

- The test accuracy of the linear model is 92.82% which is excellent for a classification model.
- The Diagonal elements of the confusion matrix are very high as compared to the non-diagonal ones so the model is doing a good job of classifying the positive and negative reviews.
- The False positive rate is significant around 38.47% which is quite alarming
- So linear SVM works well over the Bag-of-word vectorized text data.

Implementing the Tf-idf vectorization.

```
In [29]: #Initializing the count vectorizer
         TFIDF_vect=TfidfVectorizer(ngram_range=(1,2),min_df=5)
         #vectorizing the X_train set
         TF,tfx_tr=vec_train(TFIDF_vect,X_tr["CleanedText"])
         print("The shape of the X_train is: ",tfx_tr.shape)
         #Vectgorizing the X_crossvalidation set
         tfx_cv=vec_cv(TF,X_cv["CleanedText"])
         print("The shape of the X_cv is: ",tfx_cv.shape)
         #Vectorizing the X_test set
         tfx_test=vec_test(TF,X_test["CleanedText"])
         print("The shape of the X_test is: ",tfx_test.shape)
         #Printing the total length of the features
         print("\nTop 25 feaures acording to the TF-IDF score are as follows")
         TF_features = TFIDF_vect.get_feature_names()
         len(TF_features)
         top_TFIDF = top_tfidf_feats("TFIDF",tfx_tr[1,:].toarray()[0],TF_features,25)
         top_TFIDF
         The shape of the X_train is: (14700, 19728)
         The shape of the X_cv is: (6300, 19728)
         The shape of the X_test is: (9000, 19728)
         Top 25 feaures acording to the TF-IDF score are as follows
```

Out[29]:

	feature	TFIDF
0	know well	65.648498
1	fact like	61.357330
2	well known	59.406576
3	hey	51.134875
4	like see	46.112671
5	tri see	43.288227
6	danc	29.928701
7	film	27.479313
8	shown	23.619785
9	movi	20.884362
10	also tri	20.596561
11	funni	19.979427
12	big fan	17.236972
13	older	14.577870
14	apart	13.965427
15	known	13.251867
16	short	12.532525
17	like much	11.106913
18	see	10.286818
19	watch	8.661256
20	night	8.111786
21	wrong	7.562403
22	mayb	7.240360
23	fan	7.238508
24	decid	7.219122

Training the model by using the default parameters.

```
In [30]: Pred,Acc=train(tfx_tr,y_tr,tfx_cv,y_cv)
```

The model score on train set is= 0.9998639455782313

The accuracy of SVM over cross_val set is = 86%

```
In [31]: Confusion_metric(y_cv,Pred,Acc)
```

[[297 834] [38 5131]]

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	86.15873015873015	
Classification_error	13.84126984126984	
True positive	5131	
False positive	834	
True negative	297	
False negative	38	
True positive rate	99.26484813310118	
False negative rate	0.7351518668988198	
True negative rate	26.25994694960212	
False positive rate	73.74005305039788	
Precision value	86.0184409052808	
Recall value	99.26484813310118	
f1_score value	92.16813364469193	

- The performance metrics of the model is not that good which can be seen by the Confusion matrix scores.
- So the model's performance can be improved by tuning the hyperparameters.

Tuning the Hyperaparameters by using the GridSearchCV and RandomsearchCV techniques

The best model parameters for Gridsearch technique is {'C': 1, 'gamma': 1e-05} The model score over the cv set is 0.8917460317460317 Wall time: 50min 31s

Randomsearch techniques

The best model parameters for Randomsearch technique is $\{'C': 1.2897118382010795, 'gamma': 1.9764638888738673\}$

The model score over the cv set is 0.8204761904761905

Wall time: 16min 6s

Testing the model by using the optimal hyperaprameters.

```
In [35]: Y_Pred,new_accU=tuned_test(tfx_tr,y_tr,tfx_test,y_test,c=1,gam= 1e-05)
```

The model score on train set is= 0.9825850340136054

The accuracy of svm over Test set is = 88%

Confusion matrix of the above model.

```
In [35]: Confusion_metric(y_test,Y_Pred,new_accU)
```

[[636 403] [297 4664]]

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	88.3333333333333	
Classification_error	11.66666666666666	
True positive	4664	
False positive	403	
True negative	636	
False negative	297	
True positive rate	94.01330376940133	
False negative rate	5.986696230598669	
True negative rate	61.21270452358036	
False positive rate	38.78729547641964	
Precision value	92.04657588316559	
Recall value	94.01330376940133	
f1_score value	93.01954527323495	

- The test accuracy of the model is 88.33% by using the optimal hyperparameters which is good for a model.
- The True-postive-rate and the True-Negative-rate are very good as compared to the metrics.
- The false rates are quite low and the model is sensible in classifying the reviews properly.

```
In [40]: #Initializing the count vectorizer
    TFIDF_vect=TfidfVectorizer(ngram_range=(1,2),min_df=5)

#vectorizing the X_train set
lin,lin_tr=vec_train(TFIDF_vect,li_xtr["CleanedText"])

print("The shape of the X_train is: ",lin_tr.shape)

#Vectgorizing the X_crossvalidation set
lin_cv=vec_cv(lin,li_xcv["CleanedText"])
print("The shape of the X_cv is: ",lin_cv.shape)

#Vectorizing the X_test set
lin_test=vec_test(lin,li_xtest["CleanedText"])
print("The shape of the X_test is: ",lin_test.shape)

The shape of the X_train is: (73500, 102734)
The shape of the X_cv is: (31500, 102734)
The shape of the X_test is: (45000, 102734)
```

Implementing the Linear SVM model and performing 10k-Crossvalidation over it.

```
for alpha = 0.01
the misclassification error for each alpha value is : [0.173]
for alpha = 0.1
the misclassification error for each alpha value is : [0.173 0.157]
for alpha = 1
the misclassification error for each alpha value is : [0.173 0.157 0.14 ]
for alpha = 10
the misclassification error for each alpha value is : [0.173 0.157 0.14 0.139]
for alpha = 100
the misclassification error for each alpha value is : [0.173 0.157 0.14 0.139 0.139]
for alpha = 1000
the misclassification error for each alpha value is : [0.173 0.157 0.14 0.139 0.139 0.139]
for alpha = 10000
the misclassification error for each alpha value is : [0.173 0.157 0.14 0.139 0.139 0.139 0.139]
                       Cross Validation Error for each alpha
         (0.01, '0.173')
  0.170
  0.165
```


Testing the linear model over the test set

The performance metrics of the above model are as follows:			
Metrics	Scores		
Classification_accuracy	89.697777777777		
Classification_error	10.3022222222222		
True positive	37142		
False positive	4627		
True negative	3222		
False negative	9		
True positive rate	99.97577454173509		
False negative rate	0.024225458264918846		
True negative rate	41.049815263090835		
False positive rate	58.950184736909165		
Precision value	88.9224065694654		
Recall value	99.97577454173509		
f1_score value	94.12569690826153		

Implementing the Average-word2vec-Vectorization techniques.

```
In [100]: #code for finding the average word2vec
          #Utility function for implementing the Average-word2vec-vectorization techniques
          import gensim
          from gensim.models import word2vec
          from gensim.models import KeyedVectors
          def Average_word2Vec (X_tr,X_test):
          # Train our own Word2Vec model using text corpus
              Train_sentence_list=[]
              for sentence in X_tr:
                  Train_sentence_list.append(sentence.split())
              Test_sentence_list=[]
              for sentence in X test:
                  Test_sentence_list.append(sentence.split())
              print("length of train list set is as follows: ",len(Train_sentence_list))
              print("length of test list set is as follows : ",len(Test_sentence_list))
              print("*"*100)
          # Generate model and train our model on train data
              w2v_model=w2v_model_train =gensim.models.Word2Vec(Train_sentence_list,min_count=5,size=50, workers
          =6)
              # List of word in vocabulary
              w2v words = list(w2v model train.wv.vocab)
              print("length of the W2v vocabulary is : ",len(w2v_words))
          #Finding the average word2vec over the train set
              train_list = []
              for sentence in Train_sentence_list:
                  word_2_{vec} = np.zeros(50)
                  cnt words = 0
                  for word in sentence:
                      if word in w2v_words:
                          vec = w2v_model.wv[word]
                          word_2_vec += vec
                          cnt_words += 1
                  if cnt_words != 0 :
                      word_2_vec /= cnt_words
                  train_list.append(word_2_vec)
           #Finding the average word2vec over the test set
              test_list = []
              for sentence in Test_sentence_list:
                  word_2_{vec} = np.zeros(50)
                  cnt_words = 0
                  for word in sentence:
                      if word in w2v_words:
                          vec = w2v_model.wv[word]
                          word_2_vec += vec
                          cnt_words += 1
                  if cnt_words != 0 :
                      word_2_vec /= cnt_words
                  test_list.append(word_2_vec)
              print("The size of the trained average word2vec is :",len(train_list))
              print("The dimensions of average word2vec is :",len(train_list[0]))
              print()
              print("The size of the test average word2vec is :",len(test_list))
              print("The dimensions of the test average word2vec is :",len(test_list[0]))
              return Train_sentence_list,Test_sentence_list,w2v_model,w2v_words,train_list,test_list
```

Preparing the data over the Average-word2vectorized data

Training the model over the vectorized data by using default parameters

```
In [21]: %%time
         w2v_pred,w2v_acc=train(trw2v,y_tr,testw2v,y_test)
```

The model score on train set is= 0.8202721088435374

The accuracy of SVM over cross_val set is = 80% Wall time: 17 s

In [23]: Confusion_metric(y_test,w2v_pred,w2v_acc)

[[1303 223] [1562 5912]]

The performance metrics of the a	bove model are as follows:
Metrics	Scores
Classification_accuracy Classification_error True positive False positive True negative False negative True positive rate False negative rate False positive rate Precision value	80.1666666666666666666666666666666666666
Recall value f1_score value	79.1008830612791

Tuning the Hyper-parameters for finding the right alpha and gamma

```
In [24]: | %%time
```

#CODE FOR FINDING THE BEST HYPERPARAMETERS THROUGH GRIDSEARCH

w2v_para=Grid_s(trw2v,y_tr,testw2v,y_test)

The best model parameters for Gridsearch technique is {'C': 1, 'gamma': 1} The model score over the cv set is 0.8436666666666667 Wall time: 10min 27s

In [25]: %%time

#CODE FOR FINDING THE BEST HYPERPARAMETERS USING RANDOMSEARCH Randw2v_para=Random_s(trw2v,y_tr,testw2v,y_test)

The best model parameters for Randomsearch technique is {'C': 1.1698528631164136, 'gamma': 0.60675144 52686538}

The model score over the cv set is 0.859111111111112

Wall time: 2min 22s

Testing the model over the test set using the optimal hyperaparameters

In [26]: W2V_Pred,W2V_accu=tuned_test(trw2v,y_tr,testw2v,y_test,c=1.1698528631164136,gam= 0.6067514452686538)

The model score on train set is= 0.9912244897959184

The accuracy of svm over Test set is = 85%

In [27]: Confusion_metric(y_test,W2V_Pred,W2V_accu)

[[608 918] [350 7124]]

+ The performance metrics of the above model are as follows:			
Metrics	Scores		
Classification_accuracy	85.91111111111		
Classification_error	14.088888888889		
True positive	7124		
False positive	918		
True negative	608		
False negative	350		
True positive rate	95.31709927749532		
False negative rate	4.682900722504683		
True negative rate	39.84272608125819		
False positive rate	60.15727391874181		
Precision value	88.58492912210892		
Recall value	95.31709927749532		
f1_score value	91.82779066769784		

Observations

- The test accuracy of the Kernel SVM model is 85.91% but it is miss-leading because after studying the confusion-matrix the model is not sensible.
- There is a serious bias problem as the majority points which are the positive reviews are dominating which leads to poor classiffication of the negative reviews.
- So here the Kernel SVM model fails to classify the reviews properly.
- Let's try the Linear SVM model for better accuracies.

Implementing the Average word-2-vec over the 150k datapoints

Implementing the Linear SVM model and performing 10k-Crossvalidation over it.

```
In [103]: Cv_results(Trw2v,li_ytr)
          for alpha = 1e-05
          the misclassification error for each alpha value is : [0.174]
          for alpha = 0.0001
          the misclassification error for each alpha value is : [0.174 0.12]
          for alpha = 0.001
          the misclassification error for each alpha value is : [0.174 0.12 0.11]
          for alpha = 0.01
          the misclassification error for each alpha value is : [0.174 0.12 0.11 0.143]
          for alpha = 0.1
          the misclassification error for each alpha value is : [0.174 0.12 0.11 0.143 0.143]
          for alpha = 1
          the misclassification error for each alpha value is : [0.174 0.12 0.11 0.143 0.143 0.143]
          for alpha = 10
          the misclassification error for each alpha value is : [0.174 0.12 0.11 0.143 0.143 0.143 0.143]
                                 Cross Validation Error for each alpha
                   (1e-05, '0.174')
```


Testing the linear model over the test set

```
In [104]: w2v_sgd_y,w2v_sgd_acc=linearsvm(Testw2v,li_ytest,0.001)
The accuracy of svm over Test set is = 88%
```


The performance metrics of the	above model are as follows:		
Metrics	Scores		
Classification_accuracy	88.05555555556		
Classification_error	11.9444444444445		
True positive	7218		
False positive	819		
True negative	707		
False negative	256		
True positive rate	96.57479261439657		
False negative rate	3.425207385603425		
True negative rate	46.330275229357795		
False positive rate	53.669724770642205		
Precision value	89.80963045912654		
Recall value	96.57479261439657		
f1_score value	93.06943459480367		

- The test accuracy of the linear SVM model is 88.05% but it is miss-leading because after studying the confusion-matrix the model is not sensible.
- There is a serious bias problem as the majority points which are the positive reviews are dominating which leads to poor classiffication of the negative reviews.
- So here the Linear SVM model also fails to classify the reviews properly.

Implementing the Tf-idf weighted-word2vectorization technique

```
In [109]: | def Tf_idf_vector( X_tr,train_list,test_list,model,words):
              Tfidf_vector=TfidfVectorizer()
              Tf_train=Tfidf_vector.fit_transform( X_tr)
              dictionary = dict(zip(Tfidf_vector.get_feature_names(), list(Tfidf_vector.idf_)))
              Train_sentence_list=train_list
              Test_sentence_list=test_list
              w2v_words=words
              w2v_model= model
              train_list_vector=[]
              row=0
              for sentence in Train_sentence_list:
                  word_2_vec=np.zeros(50)
                  weight_tfidf_sum=0
                  for word in sentence:
                       if word in w2v words:
                          vec=w2v_model.wv[word]
                      #tfidf_value=Tf_train[row,Dimension.index(word)]
                          tf_idf = dictionary[word]*sentence.count(word)
                          word_2_vec +=(vec *tf_idf)
                          weight_tfidf_sum +=tf_idf
                  if weight_tfidf_sum !=0:
                       word_2_vec /=weight_tfidf_sum
                  train_list_vector.append(word_2_vec)
                  row +=1
              print(len(train_list_vector))
              print(len(train_list_vector[0]))
              TEST_LIST_VECTOR=[]
              Row=0
              for sentence in Test_sentence_list:
                  word_2_vec=np.zeros(50)
                  weight_tf_sum=0
                  for word in sentence:
                      if word in w2v_words:
                          vec=w2v_model.wv[word]
                       #tfidf_value=Tf_test[Row,Dimension.index(word)]
                          tf_idf = dictionary[word]*sentence.count(word)
                          word_2_vec += (vec* tf_idf)
                          weight_tf_sum += tf_idf
                  if weight_tf_sum !=0:
                      word_2_vec /=weight_tf_sum
                  TEST_LIST_VECTOR.append(word_2_vec)
                  row += 1
              print(len(TEST_LIST_VECTOR))
              print(len(TEST_LIST_VECTOR[0]))
              return train_list_vector,TEST_LIST_VECTOR
```

Preparing the data for the further use.

```
In [110]: train_list=X_tr["CleanedText"]
    test_list=X_test["CleanedText"]
    tfidf_tr,tfidf_test=Tf_idf_vector(X_tr,train_list,test_list,model,words)

14700
50
9000
50
```

Training the Kernel-sym model over the TF-idf vectorized data.

The performance metrics of the	above model are as follows:		
Metrics	Scores		
Classification_accuracy	78.5		
Classification_error	21.5		
True positive	5821		
False positive	282		
True negative	1244		
False negative	1653		
True positive rate	77.88332887342789		
False negative rate	22.116671126572115		
True negative rate	81.52031454783749		
False positive rate	18.479685452162517		
Precision value	95.37932164509257		
Recall value	77.88332887342789		
f1_score value	85.74795610223173		

Tuning the Hyper-parameters for finding the right alpha and gamma

```
In [76]: | %%time
```

#CODE FOR FINDING THE BEST HYPERPARAMETERS THROUGH GRIDSEARCH

TF_para=Grid_s(train_list_vector,y_tr,TEST_LIST_VECTOR,y_test)

The best model parameters for Gridsearch technique is {'C': 1, 'gamma': 1}

Wall time: 11min 59s

In [77]: | %%**time**

#CODE FOR FINDING THE BEST HYPERPARAMETERS USING RANDOMSEARCH
Rand_TF_para=Random_s(train_list_vector,y_tr,TEST_LIST_VECTOR,y_test)

The best model parameters for Randomsearch technique is $\{'C': 0.8304998310063612, 'gamma': 0.41488323755969314\}$

Wall time: 2min 25s

Testing the model over the test set using the optimal alpha and gamma.

In [79]: tf_Pred,tf_accu=tuned_test(train_list_vector,y_tr,TEST_LIST_VECTOR,y_test,c=0.8304998310063612,gam= 0.
41488323755969314)

The model score on train set is= 0.9774149659863945

The accuracy of svm over Test set is = 84%

In [80]: Confusion_metric(y_test,tf_Pred,tf_accu)

+	+		
The performance metrics of the above model are as follows:			
+	+		
Metrics	Scores		
Classification_accuracy	+ 84.677777777778		
Classification_error	15.322222222222		
True positive	6944		
False positive	849		
True negative	677		
False negative	530		
True positive rate	92.90875033449291		
False negative rate	7.091249665507091		
True negative rate	44.36435124508519		
False positive rate	55.63564875491481		
Precision value	89.10560759656101		
Recall value	92.90875033449291		
f1_score value	90.96744612563043		

- The test accuracy of the Kernel SVM model is 84.67% but it is miss-leading because after studying the confusion-matrix the model is not sensible.
- There is a serious bias problem as the majority points which are the positive reviews are dominating which leads to poor classiffication of the negative reviews.
- So here the Kernel SVM model fails to classify the reviews properly.
- Let's try the Linear SVM model for better accuracies.

Implementing the TF-idf weighted word-2-vec over the 150k datapoints

```
In [112]: SGD_list=li_xtr["CleanedText"]
    test_list=li_xtest["CleanedText"]

Tfidf_tr,Tfidf_test=Tf_idf_vector(SGD_list,Tr_list,Tes_list,Model,Words)

73500
50
45000
50
```

Implementing the Linear SVM model and performing 10k-Crossvalidation over it.

```
In [114]: Cv_results(Tfidf_tr,li_ytr)
```

```
for alpha = 1e-05
the misclassification error for each alpha value is : [0.201]
for alpha = 0.0001
the misclassification error for each alpha value is : [0.201 0.134]
for alpha = 0.001
the misclassification error for each alpha value is : [0.201 0.134 0.13 ]
for alpha = 0.01
the misclassification error for each alpha value is : [0.201 0.134 0.13 0.143]
for alpha = 0.1
the misclassification error for each alpha value is : [0.201 0.134 0.13 0.143 0.143]
for alpha = 1
the misclassification error for each alpha value is : [0.201 0.134 0.13 0.143 0.143 0.143]
for alpha = 10
the misclassification error for each alpha value is : [0.201 0.134 0.13 0.143 0.143 0.143 0.143]
                        Cross Validation Error for each alpha
         (1e-05, '0.201')
   0.20
   0.19
  0.18
  0.17
  0.16
         ((00011,, '(00(11/41391))143').
                                                                  _(10, '0.143')
   0.14
         (0.0001, '0.134')
         (0.001, '0.13')
   0.13
                                   Alpha i's
```

Testing the linear-SVM model over the test set by using the optimal alpha value.

The performance metrics of the above model are as follows:			
Metrics	Scores		
Classification_accuracy	+ 85.944444444444444		
Classification_error	14.0555555555554		
True positive	7337		
False positive	1128		
True negative	398		
False negative	137		
True positive rate	98.16697886004818		
False negative rate	1.833021139951833		
True negative rate	26.08125819134993		
False positive rate	73.91874180865007		
Precision value	86.67454223272297		
Recall value	98.16697886004818		
f1_score value	92.06349206349208		

- The test accuracy of the linear SVM model is 85.94% but it is miss-leading because after studying the confusion-matrix the model is not sensible.
- There is a serious bias problem as the majority points which are the positive reviews are dominating which leads to poor classiffication of the negative reviews.
- So here the Linear SVM model also fails to classify the reviews properly.

Conclusions

In [66]: conclusion_table()

+			+
The comparisons of all the vectorizers are as follows:			
+			-
Vectorizer	Algorithm	Scores	Status
+	-		
Bag-Of-Words	Kernel-SVM	86.6%	Stable
Bag-Of-Words	Linear-SVM	92.87%	Stable
Tf-IDF	Kernel-SVM	88.33%	Stable
Tf-IDF	Linear-SVM	89.82%	Unstable
Average-word2vec	Kernel-SVM	85.91%	Unstable
Average-word2vec	Linear-SVM	88.05%	Unstable
TF-IDF-Weighted-word2vec	Kernel-SVM	84.67%	Unstable
TF-IDF-Weighted-word2vec	Linear-SVM	85.94%	Unstable
+			

^{1.} From the above conclusion table the Linear SVM worked excellent with Bag-of-words & Tf-idf vectorizers and were also highly stable.

- 2. The Kernel-SVM was also stable with the BOW nad tf-idf but still they are facing Bias problems.
- 3. The gridearch and random search cross-validations are quite expensive interms of time and compute for larger datasets.
- 4. SGD with Linear-SVM was quite fast and have faster and good results.
- 5. The Average and Tf-idf weighted word2vec were unstable even after tuning the hyperparameters in both Kernel and Linear SVM'S because of bias problems.
- 6. So according to my observation I can Conclude that Linear model's are better in this case than Kernel-SVM's in case of BOW and Tf-idf vectorization techniques & Support Vector Machines are a good classification algorithm.

In []: