Assignment 1 (10%)

You will need very few and simple calculation in order to solve the problems of this assignment. The following questions refer to the matrices

$$A = \begin{bmatrix} 4 & 9 \\ 0 & 0 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 7 \\ 1 & 7 & 7 \end{bmatrix}$$

and the vector

$$\boldsymbol{b} = \begin{bmatrix} -1\\2\\8 \end{bmatrix}$$

- a) Which of the matrices are in echelon form?
- b) Write the system of linear equations that correspond to the matrix equation Cx = b.
- c) Is the system of linear equations that correspond to the matric equation Cx = b consistent?
- d) Explain which of the following five expressions that makes sense.

$$AB$$
, CA , B^2 $det(B)$, $det(C)$

Assignment 2 (20%)

Given

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- a) Solve the matrix equation X + A = 2(X B)
- b) Determine the rank and the nullity of A.
- c) Determine the rank and the nullity of B and find a basis for Col B and a basis for Null B.
- d) Find the characteristic polynomial of B and use it to find the eigenvalues of B.

Assignment 3 (10%)

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -4 & -1 \\ -1 & -3 & 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$

- a) Find the inverse of A using elementary row operations on the augmented matrix [A I]
- b) Use the inverse of A to solve Ax = b

Assignment 4 (5%)

Find the value(s) of α for which the determinant of the following matrix is -18 by co-expanding on the second row

$$\begin{bmatrix} 1 & 5 & -a \\ a & -a & a \\ 2 & 13 & -7 \end{bmatrix}$$

Assignment 5 (20%)

Let

$$u_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ and $u_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$

- a) Show that $\{u_1, u_2, u_3, u_4\}$ is a basis for \mathbb{R}^4 .
- b) Use the Gram-Schmidt process on $\{u_1, u_2, u_3, u_4\}$ to obtain an orthogonal basis for \mathbb{R}^4 .

Assignment 6 (15%)

The data

t	р
-7,0	-11,23
-5,0	-4,47
-3,0	-1,12
-1,0	-0,05
1,0	0,06
3,0	1,14
5,0	4,53
7,0	11,56

show some symmetry as can be seen from the following diagram, where the data-points are placed rather symmetrically around origo in the coordinate system.

This suggests that the data can be modelled by an equation of the form

$$p = \beta_0 t + \beta_1 \cdot t^3$$

where β_0 and β_1 are constants.

a) Find the model of this type that produces the least-squares fit of the data.

Assignment 7 (20%)

Given a matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 2 \end{bmatrix}$$

a) Compute a singular value decomposition of A in the form

$$A = USV^T$$

b) Show that the columns of U are eigenvectors of AA^T and determine the corresponding eigenvalues.