CALIFORNIA STATE UNIVERSITY SACRAMENTO

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

EEE 108L
Electronics I_Laboratory, 1 unit

Summer_2022

Lab - 01 Report

Submitted to

Riaz Ahmad

By

Dated: 07-17-2022

Vigomar Kim Algador

TABLE OF CONTENTS

Introduction	3
<u>Part 1</u> - Preliminary Calculation	4
<u>Part 2</u> - Simulations Results	5-9
Conclusions	10
Appendix	11-13

INTRODUCTION:

In this laboratory, the students were assigned to investigate a simple circuit given using PSPICE simulation. Using the techniques and methods taught for this laboratory, the students need to apply to the hand calculation and the step-by-step method for simulation. This laboratory is divided into three mahor types of analyses for student to experiment: DC sweep, AC sweep, and Transient Simulation.

Part1 – Preliminary Calculations

1. Transfer Function:

$$H(s) = \frac{R_1}{R_1 + R_2 + R_1 R_2 sC} = \frac{10 638.30}{s + 33 365.57}$$

2. At frequency = 0, the capacitor considered an open circuit. $\mathbf{Z}_c = \infty$

3.
$$|H(jw)| = \frac{10638.30}{\sqrt{s^2 + (33365.57)^2}}$$

At frequency = 0, w = 0:

Magnitude of the transfer function (|H(jw)|) = 0.3188

4. At frequency = ∞ , the capacitor considered a short circuit. $\mathbf{Z}_c = \mathbf{0}$

5.
$$|H(j\omega)| = \frac{10638.30}{\sqrt{s^2 + (33365.57)^2}}$$

At frequency = ∞ , $\omega = \infty$:

Magnitude of the transfer function ($|H(j\omega)|$) = 0

- 6. At $v_s = -1.5$ V, -1.0V, -0.5V, 0.0V, 0.5V, 1.0V, 1.5V, the v_2 are -0.478V, -0.319V, -0.159V, 0V, 0.159V, 0.319V, 0.478V, respectively.
- 7. The time constant $(\tau) = 29.97 \,\mu s$.
- 8. The cutoff frequency is 5310.30 Hz.
- 9. The magnitude and phase of v_2 at the given frequencies: 1kHz, 5kHz, 10kHz, and -3dB are 0.313, 0.232, 0.150, 0.225, and the phase angles are -10.66°, -43.28°, -62.03°, -45°, respectively.
- 10. The risetime of v_2 is 67.2 μ s.
- 11. The bandwidth is 5.21 kHz.

Part2 - Simulations Results

DC Sweep:

Figure 1. The Circuit in PSPICE.

Figure 2. The output graph for v_s and v_2 .

The student input the circuit in PSPICE shown in figure 1 and gave the result shown in figure 2. The blue line shows the v_2 while the red line shows v_s .

Trace Color	Trace Name	Y1	Y2.	Y1 - Y2
	X Values	-1.5000	-1.0000	-500.000m
CURSOR 1,2	V(Vs)	-1.5000	-1.0000	-500.000m
	V(V2)	-478.261m	-318.841m	-159.420m

Figure 3. Output data for $v_s = -1.5, -1.0$

Trace Color	Trace Name	Y1	Y2	Y1 - Y2
	X Values	-500.000m	0.000	-500.000m
CURSOR 1,2	V(Vs)	-500.000m	0.000	-500.000m
	V(V2)	-159.420m	0.000	-159.420m
i				

Figure 4. Output data for $v_s = -0.5, 0.0$

Trac	e Color	Trace Name	Yi	Y2	Y1 - Y2
		X Values	500.000m	1.0000	-500.000m
CURS	SOR 1,2	V(Vs)	500.000m	1.0000	-500.000m
		V(V2)	159.420m	318.841m	-159.420m

Figure 5. Output data for $v_s = 0.5, 1.0$

Trace Color	Trace Name	Y1	Y2	Y1 - Y2
	X Values	1.5000	1.5000	0.000
CURSOR 1,2	V(Vs)	1.5000	1.5000	0.000
	V(V2)	478.261m	478.261m	0.000

Figure 6. Output data for $v_s = 1.5$

Figure 7. The simulation result for v_2/v_s

From figures 3,4, 5, and 6, it shows the data for v_2 with corresponding v_s of -1.5 V, -1.0 V, -0.5 V, 0.0 V, 0.5 V, 1.0 V, and 1.5 V. For the figure 7, it shows the result for v_2/v_s .

AC Sweep:

Figure 8. The simulated curves for magnitude and phase v_2

Trace Color	Trace Name	Y1	Y2	Y1 - Y2
	X Values	1.0000K	5.0079K	-4.0079K
	V(V2)	313.333m	231.959m	81.374m
CURSOR 1,2	P(V(V2))	-10.665	-43.321	32.656

Figure 9. Output data for frequencies = 1K, 5K

Trace Color	Trace Name	Y1	Y2.	Y1 - Y2
	X Values	10.000K	5.3120K	4.6880K
	V(V2)	149.537m	225.387m	-75.850m
CURSOR 1,2	P(V(V2))	-62.030	-44.994	-17.037

Figure 10. Output data for frequencies = 10K and cutoff frequency

Trace Color	Trace Name	Y1	Y2	Y1 - Y
	X Values	5.3120K	100.000	5.2120K
CURSOR 1,2	V(V2)	225.387m	318.784m	-93.397r
	P(V(V2))	-45.009	-1.0788	-43.930
1				

Figure 11. The phase of the v_2 at the upper -3dB frequency

With the AC Sweep, we are able to simulate the curves for magnitude and phase for v_2 . We are also able to gather data for each frequencies given in the instruction: 1k, 5k and 10k and cutoff frequencies shown in figures 9, 10, and 11.

TRANSIENT:

Figure 12. Circuit for the Transient analysis

Figure 13. Simulation plot for v_2 and v_s

Using the transient simulation, we are able to obtain the v_2 and v_s as functions of time. We are able to show the simulation plot for v_2 and v_s shown in figure 13. The green line shows v_2 while the red line shows v_1 . We see that the peak-to-peak value for v_s is 1.0V and for v_2 is 0.5 V.

Figure 14. circuit for Transient replacing vsin voltage source with a vpulse source

Figure 15. Simulated plot for v_2 and v_s

Trace Color	Trace Name	Y1	Y2	Y1 - Y2	Y1(Cursor1)	- Y2(Cursor2)	318.040m		
	X Values	929.944u	0.000	929.944u	Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
CURSOR 1,2	V(V2)	318.040m	0.000	318.040m	0.000	0.000	318.040m	0.000	159.020m
	V(Vs)	1.0000	0.000	1.0000	681.960m	0.000	1.0000	0.000	500.000m

Figure 16. data for risetime

After, we replaced the vsin voltage source with a vpulse source shown in figure 14. With that, we are able to simulate and show the plot in figure 15. From this simulation, we are able to determine the 10% to 90% risetime which we got is 68.1 μ s shown in figure 16.

Conclusion:

The whole laboratory shows various calculations and simulations using PSPICE. With the given instructions, the students were able to work on with the PSPICE simulation with different major analyses. With the preliminary calculations, the students were able to compare the simulation part using AC Sweep, DC Sweep, and Transient simulations. From the preliminary calculations from number 6, we are able to match the data from DC Sweep under figures 3, 4, 5, and 6. With the AC Sweep, we are able to matched the data from the hand calculations with given frequencies 1 kHz, 5 kHz, 10 kHz, and -3 dB, which is also the cutoff frequency. Lastly, the Transient lets us simulate the data for the risetime. The whole data shown below.

Table 1. Laboratory calculation and simulation comparison

	Proliminary Colonistion							
	Preliminary Calculation	Simulation						
v_{2} /	0.2100 V	0.210 1/						
v_2/v_s	0.3188 V	0.318 V						
-1.5 V	- 0.478V	- 0.478 V						
-1.0 V	- 0.319V	- 0.319 V						
	0.17077							
-0.5 V	- 0.159V	- 0.159 V						
0.0 V	0V	0 V						
U.U Y	O V	0 v						
0.5 V	0.159V	0.159 V						
		0.209						
1.0 V	0.319V	0.319 V						
	0.45077	0.450.77						
1.5 V	0.478V	0.478 V						
	0.313 V	0.313 V						
1 kHz	0.313 V	0.313 V						
1 KIIZ	Ø = - 10.66°	Ø = - 10.66°						
		p 10.00						
	0.232 V	0.231 V						
5 kHz								
	Ø = - 43.28°	$\emptyset = -43.32^{\circ}$						
	0.150 V	0.150 V						
10 kHz	0.130 V	U.13U V						
IV MIL	Ø = - 62.03°	Ø = - 62.03°						
	0.225 V	0.225 V						
-3 dB								
	Ø = - 45°	Ø = - 44.99°						
Risetime	67.2 μ s	68.1 μ s						
Miseume	07.2 μ s	$00.1~\mu$ s						

APPENDIX

1.
$$V_{S} = \frac{1}{R_{1}} = \frac{R_{2}C}{R_{2} + C}$$

$$V_{S} = \frac{R_{2} / C}{R_{1} + (R_{2} / C)} = \frac{R_{2}C}{R_{1} + (R_{2} + C) + R_{2}C} = \frac{R_{2}C}{R_{1} + R_{2} + R_{1}C + R_{2}C}$$

$$= \frac{R_{2} (1/s_{C})}{R_{1} + R_{2} + R_{2}C} = \frac{R_{2}C}{R_{1} + R_{2} + R_{1}R_{2}C} = \frac{R_{2}C}{R_{1} + R_{2} + R_{1}R_{2}C}$$

$$|H(j\omega)| = \frac{10.638.50}{\sqrt{\omega^2 + 35.365.57^2}}$$

4.
$$X_c = \frac{1}{j\omega c} = \frac{1}{j(2\pi f c)}$$

Gain:
$$|V_2| = \left| \frac{-15957.45}{0 + 33.365.57} \right| = 0.478$$

Gain:
$$|V_2| = \frac{-10 \text{ 638.30}}{0 + 33 \text{ 365.57}} = 0.319$$

• if
$$V_s = -0.5 \text{ V}$$
: $V_2 = \frac{10.638.30}{s + 33.365.57} (-0.5) = \frac{-5319.15}{s + 33.365.57}$

Gain:
$$|V_2| = \left| \frac{-5319.15}{0 + 35.365.57} \right| = 0.159$$

• if
$$V_S = 0.5 \text{ V}$$
: $V_2 = \frac{10.638.30}{\text{s} + 33.365.57} (0.6) = \frac{5319.15}{\text{s} + 33.365.57}$

Gain:
$$|V_2| = \frac{5319.15}{0 + 35.365.57} = 0.159$$

$$\frac{R_1R_2}{R_1+R_2}\cdot C = \frac{(4.7k)(2.2k)}{4.7k+2.2k}\cdot (0.02 \times 10^{-6})$$

τ : 2.9971 x10-5 s

= 29.97 AS

9.
$$|V_2|$$
: $\frac{10 \cdot 638.30}{\sqrt{\alpha^2 + 33 \cdot 368.57^2}} V_E$

10 \(\frac{10 \text{ } \