Rozdział 1

28 września 2015

Definicja 1

Mówimy, że ciąg (f_n) jest zbieżny punktowo do funkcji $g: P \to \mathbb{R}$ wtedy i tylko wtedy, gdy:

$$\forall_{x \in P} \forall_{\varepsilon > 0} \exists_{n_o \in \mathbb{N}} \forall_{n > n_o} |f_n(x) - g(x)| < \varepsilon$$

Przykład 1

a)

$$P = \mathbb{R}$$

$$f_n(x) = \frac{x}{n}$$

$$f_n(x_0) = \frac{x_0}{n} \to 0 \Rightarrow g(x) = 0$$

b)

$$P = \mathbb{R}$$

$$f_n(x) = xe^{-nx}$$

$$\forall_x \lim_{n \to \infty} f_n(x) = 0$$

c)

$$P = [0,1]$$

$$f_n(x) = x^n$$

$$g(x) = \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1 \end{cases}$$

Definicja 2

Ciąg (f_n) jest zbieżny jednostajnie na zbiorze P do funkcji $g: P \to \mathbb{R}$ wtedy i tylko wtedy, gdy:

$$\forall_{\varepsilon>0} \exists_{n_o \in \mathbb{N}} \forall_{n>n_o} \forall_{x \in P} |f_n(x) - g(x)| < \varepsilon$$

Twierdzenie 1

Założenia:

- (f_n) funkcje ciągłe
- $f_n \to f$ jednostajnie zbieżny na P

Teza:

$$f: P \to \mathbb{R} \ jest \ ciagla$$

$$\mathcal{C}([a,b],\mathbb{R}) = \{f : [a,b] \to \mathbb{R}; \text{ ciagla}\}\$$

- przestrzeń liniowa $(f+g;\alpha\cdot f)$
- przestrzeń unormowana $||f||_0 = \sup_{x \in [a,b]} |f(x)|$

Twierdzenie 2

 $Ciag(f_n) \in \mathcal{C}([a,b],\mathbb{R})$ jest zbieżny do $f \in \mathcal{C}$ wtedy i tylko wtedy, gdy:

$$\lim_{n \to \infty} ||f_n - f||_0 = 0$$

Dowód. Mamy pokazać, że f jest ciągła w x_0 .

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x\in P} |x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| < \varepsilon$$

 $\varepsilon > 0$ ustalone:

$$\exists_{\delta} \forall_{x} |x - x_{0}| < \delta \Rightarrow |f_{n}(x) - f_{n}(x_{0})| < \frac{\varepsilon}{3}$$
$$\exists_{n_{0}} \forall_{n > n_{0}} \forall_{x} |f_{n}(x) - f(x)| < \frac{\varepsilon}{3}$$

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \varepsilon$$

Twierdzenie 3 (Kryterium Diniego)

Załóżmy, że $f_n:[a,b]\to\mathbb{R}$ jest monotoniczny i zbieżny punktowo do funkcji $f:[a,b]\to\mathbb{R}$. Jeśli f_n i f są ciągłe to zbieżność jest jednostajna.

Przykład 2

Brak ciągłości funkcji granicznej $f_n(x) = x^n$ na [0,1]Brak monotoniczności nxe^{-nx^2} na [0,2]Brak ciągłości funkcji $\chi_{\left(0,\frac{1}{n}\right)}:[0,1]\to\mathbb{R}$ Brak zwartości dziedziny $f_n(x)=x^n$ na [0,1)

Rozdział 2

5 października 2015

Szereg funkcyjny $\sum_{n=1}^{\infty} f_n(x)$ to ciag sum częściowych

$$S(n(x) = f_1(x) + \dots + f_n(x)$$
$$s(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} \sum_{k=1}^n f_k(x) = \sum_{n=1}^\infty f_n(x)$$

Wniosek

Jeżeli funkcje $f_n:[a,b]\to\mathbb{R}$ są nieujemne, ciągłe i szereg $\sum f_n(x)$ jest zbieżny punktowo do funkcji ciągłej to f_n jest zbieżny jednostajnie

Kryterium Weierstrassa

 $f_n: A \to \mathbb{R} \sum f_n(x)$. Jeśli $u_n := \sup_{x \in A} |f_n(x)|$ i $\sum u_n$ zbieżny, to $\sum f - n(x)$ jest zbieżny bezwzględnie i jednostajnie na A.

Warunek Cauchy'ego

$$\forall_{\varepsilon>0} \exists_{n_0} \forall_{n>k>n_0} |f_k(x) + \dots + f_n(x)| < \varepsilon$$

warunek konieczny i dostateczny na zbieżność jednostajną $\sum f_n(x)$

$$|f_k(x) + \dots + f_n(x)| \le |f_k(x)| + \dots + |f_n(x)| \le u_k + \dots + u_n < \varepsilon$$

Warunek Cauchy'ego dal ciagu a-n jest zbieżny wtedy i tylko wtedy, gdy

$$\forall_{\varepsilon>0} \exists_{n_0} \forall_{n,k>n_0} |a_n - a_k| < \varepsilon$$

dla szeregu
$$s_n = \sum_{k=1}^n a_k$$

 $s_n - s_k = a_{k+1} + \dots + a_n$

Przykład 3

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 zbieżny jednostajnie na $[-\alpha, \alpha] \subset \mathbb{R}, \alpha > 0$

$$\frac{x^n}{n!} \leqslant \frac{\alpha^n}{n!} \Rightarrow \sum_{n=0}^{\infty} \frac{x^n}{n!} \leqslant \sum_{n=0}^{\infty} \frac{\alpha^n}{n!}$$
$$\frac{a_{n+1}}{a_n} = \frac{\alpha}{n+1} \to 0 \Rightarrow \text{ zbieżny}$$

Przykład 4

$$\sum_{n=1}^{\infty} e^{nx^2} n^2, x \in \mathbb{R}$$

 $\sum_{n=1}^{\infty} \frac{\sin nx}{\sqrt[3]{n^4+x^2}} \quad \left| \frac{\sin nx}{\sqrt[3]{n^4+x^2}} \right| \leqslant \frac{1}{\sqrt[3]{n^4}} - \text{zbieżność jednostajna, bezwzględna na } \mathbb{R}$ Przykłady szeregów zbieżnych, do których nie nadaje się kryterium Weierstrassa.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
zbieżność jednostajna na $A \subset [0,2\pi]$

$$\sum_{n=1}^{\infty} f_n(x)
f_n(x) = \begin{cases} \frac{1}{x} & x \in [n, n+1) \\ 0 & x \notin [n, n+1) \end{cases}
\sup_{x \ge 1} |f_n(x)| = \frac{1}{n}
\sum_{k=1}^{n} f_k(x) = \frac{1}{x} \mathbb{1}_{[q, n+1)} = \begin{cases} \frac{1}{2} & x \in [1, n+1) \\ 0 & x \ge n+1 \end{cases}
\sup_{n \ge 1} |s_n(x) - s(x)| = \sup_{x \ge 1} \begin{cases} \frac{1}{2} & x \in [1, n+1) \\ 0 & x \ge n+1 \end{cases} = \frac{1}{n+1} \to 0$$

Twierdzenie 4 (Kryterium Abela)

Załóżmy, że sumy częściowe $\sum f_n(x)$ są jednostajnie ograniczone na zbiorze A, tzn.

$$\exists_{M>0} \forall_{n\in\mathbb{N}} \forall_{x\in A} \left| \sum_{k=1}^{n} f_k(x) \right| \leqslant M$$

Jeśli $a_n \to 0$ to szereg $\sum a_n f_n(x)$ jest zbieżny jednostajnie na A.

$$\begin{array}{c} \mathbf{Przykład} \ \mathbf{5} \\ sum_{n=1}^{\infty} \frac{\sin nx}{n} \\ a_n \to 0 \end{array}$$

$$\exists_{M>0} \forall_{n\in\mathbb{N}} \forall_{x\in A} \left| \sum_{k=1}^{n} \sin kx \right| \leqslant M$$