République Algérienne Démocratique et Populaire

وزارة التعليم العالى و البحت العلمى

Ministère de l'enseignement supérieur et de la recherche scientifique

2 ème AnnéeEcole Préparatoire en Sciences et Techniquesd'Oran

Module : Analyse

Durée: 3h

 $06 \hspace{-0.05cm}\backslash 02 \hspace{-0.05cm}\backslash 2012$

EXAMENN° 01

Exercice 01 (O3PTS)

Soit (u_n) une suite de nombres réels. Dire si les affirmations suivantes sont vraies ou fausses avec la justification

- 1) Si $u_n > 0$, et si la série $\sum_n u_n$ converge, alors (u_n) est décroissante à partir d'un certain rang.
- 2) Soitfune fonction définie sur \mathbb{R}^+ , positive et décroissante, telle que $\lim_{t\to+\infty} f(t) = 0$.

Soit $u_n = f(n)$ pour tout $n \in \mathbb{N}$, alors

$$\int_{1}^{+\infty} f(x) \, dx = \sum_{i=1}^{+\infty} u_{i}$$

3) Si une suite de fonctions $f_n(x)$ intégrable, convergeant uniformément vers f sur [a; b] alors f est intégrable sur [a; b] et

$$\int_{a}^{b} f_{n}(x) dx \to \int_{a}^{b} f(x) dx \text{ quand} n \to +\infty.$$

Exercice 02(O5PTS)

1- Pour chacune des séries numériques suivantes dire si elle est absolument convergente, convergente ou divergente:

$$\sum_{n\geq 1} \frac{(-1)^n}{2\,n + (-1)^n}; \qquad \sum_{n\geq 2} \frac{\sqrt{n+1} - \sqrt{n}}{n\log(n+1)}; \qquad \sum_{n\geq 0} \frac{(2n)\,!}{(n\,!)^2}.$$

2- • Montrer que la série

$$\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}}$$
 converge.

•Démontrer que :

$$\frac{(-1)^n}{\sqrt{n}+(-1)^n}=\frac{(-1)^n}{\sqrt{n}}-\frac{1}{n}+\frac{(-1)^n}{n\sqrt{n}}+o\left(\frac{1}{n\sqrt{n}}\right)\operatorname{avec} o\left(\frac{1}{n\sqrt{n}}\right)\to 0 \text{ quand} n\to\infty.$$

Etudier la convergence de la série

$$\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$$

Exercice 03(O3PTS)

Calculer les sommes des séries suivantes après avoir vérifié leur convergence.

$$\sum_{n\geq 2} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} \right); \sum_{n\geq 1} \frac{-a}{n(n+1)}; \quad a \in \mathbb{R}$$

Exercice 04(O5PTS)

Pour tout $n \in \mathbb{N}$ et tout réel $x \geq 0$, on pose

$$f_n(x) = \frac{1}{1 + xn^2}$$

1- Montrer que la série de fonctions $\sum_{n\geq 0} f_n(x)$ converge simplement sur]0,+ ∞ [. On posera

$$f(x) = \sum_{n \ge 0} f_n(x), \quad \forall x > 0$$

- 2- Soit un réel a > 0. Montrer que la série de fonctions $\sum_n f_n(x)$ converge normalements ur $[a, +\infty[$.
- 3- Montrer que f est une fonction continue sur $]0, +\infty[$.
- 4- Montrer que f est dérivable sur]0,+ ∞ [.
- 5- Soit un réel $\propto \in]1/2, 1[$ et soit $g_n(x) = x^{\alpha} f_n(x)$. Montrer que la série de fonctions $\sum_n g_n$ converge normalement sur $[0, +\infty[$.
- 6- En déduire que

$$f(x) = o(x^{-\alpha})$$
, quand $x \to 0^+$.

Exercice 05 (O4PTS)

Déterminer les domaines de convergence des séries entières suivantes:

$$\sum_{n} \frac{C_{2n}^{n}}{n^{n}} x^{n}, x \in \mathbb{R}; \sum_{n} \sqrt{n} z^{n}, z \in \mathbb{C}; \sum_{n} \frac{(-1)^{n} x^{2n}}{4^{n} n! (n + a)!}, x \in \mathbb{R}.$$

BONNE CHANCE

Ecole préparatoire science et techniques Oran

Corrigé d'Analyse

Exercice n°01:

- 1) V avec un exemple
- 2) F avec un centre exemple
- 3) V avec la démonstration ou bien un exemple

Exercice n°02:

1) $\sum \frac{(-1)^n}{2n+(-1)^n}$ converge serie alternée avec

 $A_n = \frac{1}{2n + (-1)^n}$ positive et décroissante et $\lim_{n \to +\infty} a_n = 0$

2)
$$\frac{\sqrt{n+1}-\sqrt{n}}{n\log (n+1)} = \frac{1}{n\log (n+1)(\sqrt{n+1}+\sqrt{n})} \le \underbrace{\frac{1}{n\log (n+1)\sqrt{n+1}}}_{n\log (n+1)\sqrt{n+1}} \cong \sum \frac{1}{n^{\frac{3}{2}}}$$
Donc
$$\sum_{n} \frac{\sqrt{N+1}-\sqrt{N}}{N\log (n+1)} \quad \text{converge}$$
Positive

3) D'après d'Alembert
$$\frac{U_{n+1}}{U_n} = 2 \frac{2n+1}{n+1} \rightarrow 4$$
 Diverge

$$\sum \frac{(-1)^n}{\sqrt{n}}$$
 Converge car $\lim \frac{1}{\sqrt{n}} = 0$ décroissante

On a
$$\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} = \frac{1}{1 + \frac{(-1)^n}{\sqrt{n}}}$$
 on fait D.L d'ordre 2 de $\frac{1}{1+x}$ avec $x = \frac{(-1)^n}{\sqrt{n}} = 0$ $n \to +\infty$

$$\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}+(-1)^n}$$
 n'est pas définie pour $n\geq 1$

Si on a
$$\sum_{n\geq 2} \frac{(-1)^n}{\sqrt{n}+(-1)^n}$$
 diverge car $\sum 1/n$ diverge

Exercice n°03:

1)
$$\sum_{n\geq 2} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}\right)$$

 $=\sum_{n\geq 2} \left[\left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}}\right) - \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)\right]$
Soit $S_n = \sum_{k=2}^n \left[\left(\frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}}\right) - \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right)\right]$

$$\begin{split} &= (1 - \frac{1}{\sqrt{2}}) \cdot (\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}) \\ &\text{donc } \sum_{n \geq 2} (\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}) = \lim_{n \to +\infty} S_n = 1 - \frac{1}{\sqrt{2}} \\ &S_n = \sum_{k=1}^n \frac{-a}{n(n+1)} = -a \sum_{k=1}^n \frac{1}{n(n+1)} \\ &= -a \sum_{k=1}^n (\frac{1}{n} - \frac{1}{n+1}) \\ &= -a \left(1 - \frac{1}{n+1}\right) \end{split}$$

Donc
$$\sum_{n\geq 1} \frac{-a}{n(n+1)} = \lim S_n = -a /a \in \mathbb{R}$$

Exercice n°05:

$$1) \sum_{n\geq 1} \frac{c_{2n}^n}{n^n}$$

On a
$$c_{2n}^n = \frac{(2n)!}{(2n-n)!n!} = \frac{(2n)!}{(n!)^2}$$

Et
$$c_{2n+2}^{n+1} = \frac{(2n+2)!}{(2n+2-(n+1))!(n+1)!} = \frac{(2n+2)!}{[(n+1)!]^2}$$

Donc
$$\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \frac{\frac{(2n+2)!}{[(n+1)!]^2/(n+1)^{n+1}}}{\frac{(2n)!}{[n!]^2/n^n}}$$
$$\lim \left[\frac{1}{n+1} \times \frac{4n+2}{n+1} \times \left(1 + \frac{1}{n}\right) \right] \cong \frac{4}{ne}$$
$$n \to +\infty$$

Donc
$$\lim \frac{a_{n+1}}{a_n} = 0 \rightarrow R = +\infty$$
 donc
 $n \rightarrow +\infty$

$$D=]-\infty, +\infty[=R$$

$$2) \quad \sum_{n\geq 2} \sqrt{n} \, Z^n$$

On a
$$\lim \left| \frac{a_{n+1}}{a_n} \right| = 1 \rightarrow R = 1$$

 $n \rightarrow +\infty$

Donc le domaine de convergence $D=\{Z \in Q/|Z| < 1\}$

Pour $|Z|=1 \rightarrow \sum_{n\geq 0} \sqrt{n}$ diverge \rightarrow D:disque ouvert de centre 0 et de rayon R=1

3) On a
$$\left|\frac{(-1)^n \times 2n}{4^n n!(n+a)!}\right| \le \frac{\left|x^2\right|^n}{n!}$$

Avec $e^{x^2} = \sum_{n \ge 1} \frac{\left|x^2\right|^n}{n!}$ converge $\forall \ x \in R$ donc le rayon de convergence $R = +\infty$

Le domaine de convergence = $]-\infty, +\infty[$

Exercice n°04:

Pour x>0 on a

1)
$$0 < f_n(x) < \frac{1}{x} \frac{1}{n^2}$$

Et puisque la série $\sum \frac{1}{n^2}$ convergente alors d'après le théorème de comparaison on a $\sum_n f_n(x)$ est convergente

- 2) Pour $x \in [a, +\infty[$, on a $|f_n(x)| < \frac{1}{a} \frac{1}{n^2}$
- 3) Puisque la série $\sum \frac{1}{n^2}$ convergente $\sum f_n$ converge normalement sur $[a, +\infty[$
- 4) Puisque on a $\sum f_n$ converge normalement sur $[a, +\infty[$ Donc on a la convergence uniforme \rightarrow f est contenue en tant point d'intervalle $]0, +\infty[$ La fonction f_n est dérivable sur $]0, +\infty[$ et on a :

$$f_n(x) = \frac{-n^2}{(1+xn^2)^2} \quad \forall x \ge 0$$

Pour a>0 on a:

$$\left| f_n(x) \right| \le \frac{1}{a^2} \frac{1}{n^2} \quad \forall x \ge a$$

Donc $\sum_n f_n(x)$ converge normalement sur $[a, +\infty[$ Donc d'après le théorème de converge uniforme, on a f est dérivable en tant point de l'intervalle $]0, +\infty[$

5) On a g_n est une fonction positive continue sur $[0, +\infty[$, démayable $[0, +\infty[$

$$\dot{g}_n(x) = \frac{x^{\alpha-1}(\alpha + (\alpha-1)n^2x)}{(1+xn^2)^2} \quad \forall x > 0$$

$$\begin{aligned} & \text{Sup} \ |g_n(x)| = g_n(\frac{\alpha}{1-\alpha} \ \frac{1}{n^2}) = \alpha^{\alpha} (1-\alpha)^{1-\alpha} \frac{1}{n^{2\alpha}} \\ & x \ge 0 \end{aligned}$$

Puisque $2\alpha > 1 \to \sum \frac{1}{n^{2\alpha}}$ convergente et puisque on a $\|g_n(x)\|_{\infty} \cong$ série converge $\to \sum g_n$ converge normalement sur $[0, +\infty[$

6) Posons $g(x) \sum_{n=1}^{\infty} g_n(x)$ $x \ge 0$

D'après 5) on a
$$x^{\alpha}$$
 $f(x)=g(x)$ $x>0$
Donc $\lim x^{\alpha}$ $f(x) = \lim g(x) = g(0) = 0$
 $x \rightarrow 0^+$ $x \rightarrow 0^+$

$$f(x) = 0 (x^{-\alpha}) \qquad x \to 0^+$$