UNIVERSIDAD DE COSTA RICA Escuela de Ingeniería Eléctrica IE0521 – Estructuras de Computadoras Digitales II

Tarea #4 Simulador de memoria caché

Luis Felipe Agüero Peralta C10089

Leonardo Leiva Vásquez C14172

Juan Pablo Morales Vargas B95322

6 de Julio de 2024

${\rm \acute{I}ndice}$

1.	I Parte 1.1. Construcción del caché	4 4 5
2.	Procesamiento de datos de entrada	6
3.	Análisis del efecto del tamaño de la caché	7
4.	Efecto de la asociatividad del caché	8
5 .	Efecto del tamaño del bloque en el caché	9
6.	Efecto de la política de reemplazo del caché	10
7.	II Parte	11
8.	Implementación del multinivel 8.1. Caché de un único nivel 8.2. Caché con dos niveles 8.2.1. L1+L2. L2: 64kB, 8-way 8.2.2. L1+L2. L2: 64kB, 16-way 8.2.3. L1+L2. L2: 128kB, 8-way 8.2.4. L1+L2. L2: 128kB, 16-way 8.3.1. L3: 512kB, Asociatividad de L3: 16-way 8.3.2. L3: 512kB, Asociatividad de L3: 32-way 8.3.3. L3: 1024kB, Asociatividad de L3: 32-way 8.3.4. L3: 1024kB, Asociatividad de L3: 32-way	11 14 16 16 19 22 25 28 28 32 36 40
9.	Gráficas y Análisis	44
10	0.Anexos	46

Índice de figuras

1.	Resultados de 400. perlbench-41B. trace. txt con los argumentos de la Guía de Resulta-	
	dos brindada por el profesor en el enunciado	5
2.	Resultados de 401.bzip2-226B.trace.txt con los argumentos de la Guía de Resultados	
	brindada por el profesor en el enunciado	5
3.	Resultados de 4403.gcc-16B.trace.txt con los argumentos de la Guía de Resultados	
	brindada por el profesor en el enunciado	6
4.	Efectos de la variación de la capacidad de la caché en el miss rate total (%)	7
5.	Efectos de la variación de la asociativdad de la caché en el miss rate total (%)	8
6.	Efectos de la variación del tamaño del bloque de la caché en el miss rate total (%).	9
7.	Efectos de la política de reemplazo de caché en el miss rate total (%)	10
8.	Gráfica de la comparación entre los diferentes niveles de caché	44

1. I Parte

1.1. Construcción del caché

El simulador de políticas de caché fue desarrollado en Python, utilizando una clase llamada policies. Esta clase incluye un constructor que inicializa dos matrices esenciales para el funcionamiento del simulador. La primera matriz se utiliza para almacenar los tags correspondientes a cada bloque de caché, mientras que la segunda, denominada recency, se emplea para registrar la antigüedad de cada bloque. A continuación, se presenta la forma en que estas matrices son inicializadas. Esta implementación se considera la manera más sencilla y eficiente para gestionar y simular el comportamiento de diferentes políticas de caché, en base a tareas previas realizadas anteriormente.

```
# Inicializamos la matriz de recency para la politica LRU
          self.recency = []
2
          for _ in range(self.sets):
3
               sets = [0] * self.asociatividad # Cada conjunto tiene ...
      'asociatividad' vias
               self.recency.append(sets)
          # Inicializamos la matriz de tags para almacenar las etiquetas de los ...
     bloques
          self.tags = []
          for _ in range(self.sets):
9
               sets = [None] * self.asociatividad # Cada conjunto tiene ...
10
      'asociatividad' vias
               self.tags.append(sets)
```

La caché incorpora varios métodos, entre los cuales se encuentra el método replace(self, tipo, PC). Este método se encarga de aplicar la política de reemplazo especificada por el usuario, basada en el tipo de acceso y el contador de programa (PC) de la línea actual del archivo de rastreo. En el caso de la política de reemplazo LRU (Least Recently Used), esta se implementa identificando, dentro del conjunto actual, la vía que contiene el bloque con la mayor antigüedad, si cae en la política aleatoria, simplemente se elige un entero aleatorio de 0 a asociatividad -1 como way a ser reemplazado. A continuación, se presenta un segmento de código que ilustra esta implementación.

```
# Si hubo un miss
           if not hit:
2
               if self.politica == "l":
                   lru = -1
                   for vejez in self.recency[index]:
                       if vejez > lru:
6
                           lru = vejez
                           way = self.recency[index].index(vejez) # Encontramos ...
      la via mas antigua
               elif self.politica == 'r':
9
                   way = random.randint(0, self.asociatividad - 1) # Elegimos ...
10
      una via aleatoriamente
11
               # Actualizamos la etiqueta del bloque en la cache
               self.tags[index][way] = tag
13
```

1.2. Implementación de asociatividad y políticas de reemplazo

Para verificar la correcta implementación de la asociatividad y las políticas de reemplazo, se realizó una prueba de la caché utilizando la política LRU. Se emplearon los parámetros proporcionados por el profesor en las indicaciones del trabajo, siguiendo la Guía de Resultados. Los argumentos utilizados fueron una capacidad de 128 kB, una asociatividad de 16 y bloques de 64 bytes. La prueba se ejecutó sobre los tres primeros benchmarks (traces) mencionados en la tabla, esto para asegurarnos que el programa si diera los resultados correctos.

• 400.perlbench-41B.trace.txt:

```
Política: LRU
    Tamaño de cache :
                                          128.0kB
    Asocitatividad :
                                          16
                                          64 bytes
    Tamaño de bloque :
Resultados de la simulación
    # Cantidad total de misses:
                                                       234
    # Miss rate total:
                             0.023%
    # Cantidad de misses de lectura:
                                              212
    # Miss rate en lectura:
    # Cantidad de misses de escritura:
                                              22
    # Miss rate en lectura:
                                 0.02%
Total accesos: 1000000
```

Figura 1: Resultados de 400.perlbench-41B.trace.txt con los argumentos de la Guía de Resultados brindada por el profesor en el enunciado.

• 401.bzip2-226B.trace.txt:

```
Política: LRU
    Tamaño de cache :
                                          128.0kB
    Asocitatividad :
                                          16
    Tamaño de bloque :
                                          64 bytes
Resultados de la simulación
    # Cantidad total de misses:
                                                       3912
    # Miss rate total:
                             0.391%
    # Cantidad de misses de lectura:
                                              3899
    # Miss rate en lectura:
                                 0.419%
    # Cantidad de misses de escritura:
                                              13
    # Miss rate en lectura:
                                 0.019%
Total accesos: 1000000
```

Figura 2: Resultados de 401.bzip2-226B.trace.txt con los argumentos de la Guía de Resultados brindada por el profesor en el enunciado.

■ 403.gcc-16B.trace.txt:

```
Política: LRU
    Tamaño de cache :
                                          128.0kB
    Asocitatividad :
                                          16
    Tamaño de bloque :
                                          64 bytes
Resultados de la simulación
    # Cantidad total de misses:
                                                       21331
    # Miss rate total:
                             2.133%
    # Cantidad de misses de lectura:
                                              16950
    # Miss rate en lectura:
    # Cantidad de misses de escritura:
                                              4381
    # Miss rate en lectura:
                                 5.772%
Total accesos: 1000000
```

Figura 3: Resultados de 4403.gcc-16B.trace.txt con los argumentos de la Guía de Resultados brindada por el profesor en el enunciado.

Como se puede notar en las Figuras 1, 2 y 3, los resultados obtenidos en términos de cantidad total de fallos de caché (misses), la tasa total de fallos (miss rate), la cantidad de fallos de lectura, la tasa de fallos de lectura, la cantidad de fallos de escritura y la tasa de fallos de escritura, coinciden perfectamente con los resultados proporcionados en la Guía de Resultados de las indicaciones de la tarea. Estos resultados muestran un porcentaje de error del 0%, lo que confirma la correcta implementación tanto de la política de reemplazo de caché como de la asociatividad.

Este alto nivel de precisión en la correspondencia de los resultados valida la efectividad de la simulación. Además, se observó que, para el resto de los archivos de rastreo (traces), los resultados obtenidos también se alinean con los presentados en la guía. Si se requiere realizar otras comprobaciones de manera independiente para verificar la consistencia de los resultados, puede consultar el archivo README.md adjunto este indica como obtener esos resultados.

2. Procesamiento de datos de entrada

El procesamiento de los datos de entrada se lleva a cabo en el archivo principal de código denominado cache_test.py. Este archivo importa el código contenido en politicas.py, que incluye la clase Policies donde se ha implementado la funcionalidad de la caché. Al ejecutar cache_test.py con argumentos de línea de comandos válidos, se obtienen los resultados correctos, tal como se demostró en la sección anterior consultar el archivo README.md si gusta. Esto permite verificar que el procesamiento de los datos de entrada se realiza de manera adecuada y conforme a lo esperado. En otras palabras, cache_replacement.py actúa como el motor principal del proceso, utilizando las políticas de reemplazo de caché definidas en politicas.py para gestionar y procesar los datos de entrada, garantizando así que los resultados sean precisos y confiables. Esta estructura modular y la correcta interacción entre los componentes aseguran la eficacia del sistema en la gestión de la caché y la validación de los datos de entrada.

3. Análisis del efecto del tamaño de la caché

La Figura 4 ilustra cómo varía el porcentaje total de fallos de caché (miss rate) a medida que se modifica el tamaño, considerando el promedio de todos los benchmarks proporcionados. Además, esta figura presenta el miss rate total específico para el trace 465.tonto-1769B.trace.txt.gz. Los resultados detallados de estas observaciones se encuentran en la Tabla 31. En otras palabras, la Figura 4 ofrece una representación visual del comportamiento del miss rate total al ajustar el tamaño de la caché, brindando una visión tanto del promedio general de todos los benchmarks como del comportamiento particular del trace mencionado. Esta información se complementa con los datos específicos presentados en la Tabla 31, proporcionando un análisis completo y detallado del rendimiento de la caché en diferentes escenarios.

Figura 4: Efectos de la variación de la capacidad de la caché en el miss rate total (%).

En la Figura 4 se puede apreciar que el miss rate promedio disminuye de manera cuadrática al incrementar la capacidad de la caché desde 8 kB hasta 32 kB. Posteriormente, al seguir aumentando la capacidad de la caché, el miss rate continúa decreciendo, pero a un ritmo más lento. Por otro lado, en el caso específico del trace 465.tonto-1769B.trace.txt.gz, el miss rate total se mantiene prácticamente constante en un 2.8139 %. Esto sugiere que, para este benchmark en particular, no hay un beneficio significativo en utilizar cachés de mayor tamaño. Esta estabilidad en el miss rate indica que el benchmark probablemente realiza operaciones de lectura y escritura sobre un conjunto reducido de datos repetitivos. Como resultado, incrementar la capacidad de la caché no proporciona una ventaja notable debido a la falta de diversidad en los datos que se procesan, lo cual impide que se utilice toda la capacidad adicional de la caché de manera efectiva.

4. Efecto de la asociatividad del caché

La Figura 5 ilustra cómo varía el miss rate total (en porcentaje) al modificar la asociatividad de la caché, considerando el promedio de todos los benchmarks proporcionados. Adicionalmente, la figura presenta el miss rate total específico para el trace 470.lbm-1274B.trace.txt.gz. Los detalles de estos resultados se encuentran en la Tabla 32. Es decir, la Figura 5 ofrece una visualización clara del comportamiento del miss rate total cuando se ajusta la asociatividad de la caché. Se pueden observar tanto los resultados promedio de todos los benchmarks como los específicos para el trace mencionado, proporcionando una comparación comprensiva del rendimiento de la caché en diferentes niveles de asociatividad.

Figura 5: Efectos de la variación de la asociativad de la caché en el miss rate total (%).

Como se puede observar en la gráfica, el miss rate total promedio es consistentemente menor que el miss rate específico para el trace 470.lbm-1274B.trace.txt.gz. Además, se evidencia un patrón claro en el promedio: el miss rate decrece de manera consistente a medida que se incrementa la cantidad de ways en la caché. Específicamente, el miss rate promedio disminuye con una asociatividad de 1-way a con una asociatividad de 16-ways, mostrando una mejora significativa en el rendimiento con el aumento de la asociatividad.

En el caso particular del trace 470.lbm-1274B.trace.txt.gz, se observa que la reducción más significativa en el miss rate ocurre al pasar de 1-way a 2-ways, donde el miss rate baja considerablemente. Sin embargo, a partir de 2-ways, incrementar la asociatividad no produce mejoras notables en el miss rate, manteniéndose prácticamente constante alrededor del 4%. Esto indica que, para este trace específico, la mayor parte de la reducción en el miss rate se obtiene con una asociatividad baja, y aumentar la asociatividad más allá de 2-ways no proporciona beneficios adicionales significativos. Este comportamiento sugiere que las características de acceso a la memoria de este benchmark no se benefician sustancialmente de una mayor asociatividad en la caché.

5. Efecto del tamaño del bloque en el caché

La Figura 6 ilustra cómo varía el miss rate total (en porcentaje) al modificar el tamaño del bloque de la caché. En esta figura, se presenta el promedio de todos los benchmarks proporcionados, así como el miss rate total específico para el trace 401.bzip2-226B.trace.txt.gz. Los resultados de este análisis se encuentran en la Tabla 33.

Esta figura ofrece una visión clara del impacto que tiene el tamaño del bloque de la caché sobre el rendimiento general del sistema. Al promediar los resultados de todos los benchmarks, se puede observar una tendencia general, mientras que el análisis específico del trace 401.bzip2-226B.trace.txt.gz proporciona información sobre cómo este particular benchmark se comporta en diferentes configuraciones de tamaño de bloque. Este enfoque comparativo permite identificar tanto los patrones generales como las particularidades de casos específicos, proporcionando una comprensión integral del rendimiento de la caché.

Figura 6: Efectos de la variación del tamaño del bloque de la caché en el miss rate total (%).

Como se puede observar, al modificar el tamaño del bloque, se logra una reducción consistente en el miss rate total promedio. Esta disminución se manifiesta de manera progresiva a medida que se incrementa el tamaño del bloque desde valores pequeños hasta más grandes. En contraste, para el trace 401.bzip2-226B.trace.txt.gz, se observa un comportamiento inverso, donde el miss rate aumenta con el incremento del tamaño del bloque. Este trace comienza con un miss rate relativamente bajo y experimenta un aumento notable al aumentar el tamaño del bloque, lo cual es opuesto a la tendencia promedio observada para el resto de los benchmarks.

Este fenómeno sugiere que, para el trace 401.bzip2-226B.trace.txt.gz, un tamaño mayor de bloque no resulta ventajoso. La razón detrás de este comportamiento podría estar relacionada con el hecho de que un tamaño grande de bloque reduce el número de conjuntos (sets) disponibles en la caché. Esto puede llenar la capacidad de la caché más rápidamente, lo que sugiere que el acceso a la memoria de este trace es muy variado y requiere de un mayor número de conjuntos para ser eficiente. En resumen, mientras que un aumento en el tamaño del bloque beneficia el rendimiento promedio de la caché, no es así para este trace específico debido a sus patrones únicos de acceso a la memoria.

6. Efecto de la política de reemplazo del caché

La Fig. 7 denota la diferencia en el miss rate total al utilizar una caché de 32 kB, 8 ways y bloques de 64B que se da entre la política LRU y la política aleatoria. Estos resultados se muestran en la Tabla 34.

Figura 7: Efectos de la política de reemplazo de caché en el miss rate total (%).

En la Figura 7 se muestra que, al utilizar una política de reemplazo aleatoria, el miss rate total promedio es mayor en comparación con el uso de la política LRU. Este análisis revela que la aplicación de una heurística basada en reemplazar el bloque que ha sido menos recientemente utilizado mejora el rendimiento de la caché en comparación con el reemplazo aleatorio de bloques. Sin embargo, cabe destacar que la reducción en el miss rate total, aunque presente, no es extremadamente significativa.

Esta observación sugiere que, aunque la política LRU ofrece un mejor rendimiento al gestionar el miss rate, la diferencia con respecto a la política de reemplazo aleatoria no es drástica. Esto podría implicar que, en ciertos escenarios, la simplicidad de implementar una política aleatoria podría ser suficiente, aunque LRU sigue siendo la opción preferida para optimizar el rendimiento de la caché en términos de miss rate.

7. II Parte

8. Implementación del multinivel

Para la implementación del código se tienen dos archivos, el sim_multinivel, que se encarga de mantener los contadores. En esta parte con los datos recolectados, se calculan los datos deseados.

```
miss_rate_l1 = total_misses / total_access
miss_rate_l2 = total_l2_misses / total_l2_access if total_l2_access > 0 ...
else 0
miss_rate_l3 = total_l3_misses / total_l3_access if total_l3_access > 0 ...
else 0
amat = hit_time_l1 + (miss_rate_l1 * (hit_time_l2 + (miss_rate_l2 * ...
(hit_time_l3 + (miss_rate_l3 * miss_penalty)))))
return amat
```

Además también hace cosas como la configuración de los argumentos, definiciones, contadores de los miss y AMAT, agarrar la linea del trace y descomponerla.

```
with gzip.open(os.path.join(trace_dir, trace_file), 'rt') as trace_fh:
               for line in trace_fh:
                   line = line.rstrip()
                   access_type, hex_str_address = line.split(" ")
                   address = int(hex_str_address, 16)
                   is_l1_miss = l1_cache.access(access_type, address)
                   if is_l1_miss:
                       is_12_miss = 12_cache.access(access_type, address)
                       if is_12_miss:
9
                           13_cache.access(access_type, address)
      except Exception as e:
11
           print(f"Error procesando el archivo {trace_file}: {e}")
12
           continue
13
```

Ademas de la creacion de diferentes caches, donde se igualan a la clase Cache_multinivel, donde nos lleva a la siguiente archivo. La cantidad de los niveles dependera de las necesidades del experimento por lo que se manipularan a nuestro favor.

```
# Creaci n del cach L1
11_cache = cache_multinivel(options.l1_s, options.l1_a, options.block_size, "l")

# Creaci n del cach L2
12_cache = cache_multinivel(options.l2_s, options.l2_a, options.block_size, "l")

# Creaci n del cach L3
13_cache = cache_multinivel(options.l3_s, options.l3_a, options.block_size, "l")
```

Con el cache creado y la linea guardada, verifica el tipo de acceso y la verificacion. Si encuentra un dato, cuenta un hit, si no, cuenta un miss.

```
if via == -1:
               self.bring_to_cache(index, tag)
               self.total_misses += 1
               if tipo_acceso == "r":
                   self.total_read_misses += 1
               else:
                    self.total_write_misses += 1
               miss = True
           # Contabilizar el acceso
10
           self.total_access += 1
           if tipo_acceso == "r":
12
               self.total_reads += 1
13
           else:
14
               self.total_writes += 1
15
```

Luego se busca una etiqueta en un conjunto del caché. Si se encuentra, se returna via y si no se encuentra -1.

```
def find(self, index, tag):

    for via in range(self.cache_assoc):
        if self.valid_table[index][via] and (self.tag_table[index][via] ...
        == tag):
            return via
            return -1
```

Igualmente que en la parte anterior, se utilizara la política de reemplazo LRU, en el bring to cache, Trae una nueva etiqueta al caché utilizando la política de reemplazo, esto se hace por medio de la asignacion LRU_value donde se va cambiando como se vayan accediendo a la memoria.

```
def bring_to_cache(self, index, tag):
2
           Trae una nueva etiqueta al cach utilizando la pol tica de ...
      reemplazo especificada.
           Par metros:
           index (int):
                        ndice del conjunto.
           tag (int): Etiqueta del bloque a traer.
9
           via_libre = -1
           for via in range(self.cache_assoc):
10
               if not self.valid_table[index][via]:
                   self.valid_table[index][via] = True
                   self.tag_table[index][via] = tag
                   self.repl_table[index][via] = self.cache_assoc - 1
                   via_libre = via
                   break
16
           if via_libre == -1 and self.repl_policy == "1": # Pol tica de ...
      reemplazo LRU
               via_lru = -1
19
               lru_value = 999999
20
               for via in range(self.cache_assoc):
21
                   if self.repl_table[index][via] < lru_value:</pre>
22
                       lru_value = self.repl_table[index][via]
23
                       via_lru = via
               self.valid_table[index][via_lru] = True
25
               self.tag_table[index][via_lru] = tag
26
               self.repl_table[index][via_lru] = self.cache_assoc - 1
27
               via_libre = via_lru
               for via in range(self.cache_assoc):
29
30
                   if via != via_libre:
                       self.repl_table[index][via] -= 1
31
```

8.1. Caché de un único nivel

Trace	Total Misses	Misses de Lectura	Hit Rate	Miss Rate
410.bwaves-1963B.trace.txt.gz	16378	15953	0.984	0.016
473.astar-153B.trace.txt.gz	4651	4176	0.995	0.005
436.cactusADM- $1804B.$ trace.txt.gz	6485	5972	0.994	0.006
$482.\mathrm{sphinx}3-1100\mathrm{B.trace.txt.gz}$	13211	13002	0.987	0.013
450.soplex- $247B.$ trace.txt.gz	69106	60821	0.931	0.069
433.milc-127B.trace.txt.gz	22205	17809	0.978	0.022
416.gamess-875B.trace.txt.gz	13492	10308	0.987	0.013
429.mcf-184B.trace.txt.gz	107758	107525	0.892	0.108
454.calculix-104B.trace.txt.gz	428	403	1.000	0.000
445.gobmk-17B.trace.txt.gz	15038	11758	0.985	0.015
459.GemsFDTD-1169B.trace.txt.gz	18209	18209	0.982	0.018
444.namd-120B.trace.txt.gz	5336	5126	0.995	0.005
483.xalancbmk-127B.trace.txt.gz	21764	21761	0.978	0.022
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	9126	7823	0.991	0.009
400.perlbench-41B.trace.txt.gz	236	214	1.000	0.000
401.bzip 2 - $226B.$ trace.txt.gz	18999	18939	0.981	0.019
471.omnetpp-188B.trace.txt.gz	37818	34393	0.962	0.038
456.hmmer-191B.trace.txt.gz	4830	3102	0.995	0.005
465.tonto-1769B.trace.txt.gz	28316	19739	0.972	0.028
481.wrf-1170B.trace.txt.gz	4204	3734	0.996	0.004
435.gromacs-111B.trace.txt.gz	4773	4746	0.995	0.005
403.gcc-16B.trace.txt.gz	22485	18066	0.978	0.022
453.povray-887B.trace.txt.gz	27060	25090	0.973	0.027
437.leslie3d-134B.trace.txt.gz	4084	2128	0.996	0.004
470.lbm-1274B.trace.txt.gz	38377	7901	0.962	0.038
464.h264ref-30B.trace.txt.gz	610	227	0.999	0.001
462.libquantum-1343B.trace.txt.gz	17784	17784	0.982	0.018

Tabla 1: Datos Caché de un único

Archivo de Traza	AMAT (ciclos)
410.bwaves-1963B.trace.txt.gz	12.189
473.astar-153B.trace.txt.gz	6.325
436.cactusADM-1804B.trace.txt.gz	7.242
482.sphinx3-1100B.trace.txt.gz	10.605
450.soplex-247B.trace.txt.gz	38.553
433.milc- 127 B.trace.txt.gz	15.102
416.gamess-875B.trace.txt.gz	10.746
429.mcf-184B.trace.txt.gz	57.879
454.calculix- $104B.$ trace.txt.gz	4.214
445.gobmk-17B.trace.txt.gz	11.519
459. Gems FDTD-1169B. trace. txt. gz	13.104
444.namd- $120B.$ trace.txt.gz	6.668
483.xalancbmk-127B.trace.txt.gz	14.882
458.sjeng-1088B.trace.txt.gz	8.563
400.perlbench- $41B.$ trace.txt.gz	4.118
401.bzip2-226B.trace.txt.gz	13.499
471.omnetpp-188B.trace.txt.gz	22.909
456.hmmer-191B.trace.txt.gz	6.415
465. tonto-1769 B. trace. txt. gz	18.158
481.wrf-1170B.trace.txt.gz	6.102
435.gromacs-111B.trace.txt.gz	6.386
403.gcc-16B.trace.txt.gz	15.243
453.povray-887B.trace.txt.gz	17.530
437.leslie3d-134B.trace.txt.gz	6.042
470.lbm-1274B.trace.txt.gz	23.189
464.h264ref-30B.trace.txt.gz	4.305
462.libquantum-1343B.trace.txt.gz	12.892
AMAT Promedio	11.024

Tabla 2: AMAT Caché de un único nivel

8.2. Caché con dos niveles

8.2.1. L1+L2. L2: 64kB, 8-way.

Trace	AMAT (ciclos)	L1 Total Miss	L1 Hit Rate	L1 Miss Rate
410.bwaves-1963B	10.977	16378	0.984	0.016
473.astar-153B	5.919	4651	0.995	0.005
436.cactusADM- $1804B$	6.225	6485	0.994	0.006
$482.\mathrm{sphinx}3-1100\mathrm{B}$	10.135	13211	0.987	0.013
450.soplex- $247B$	36.108	69106	0.931	0.069
433.milc-127B	15.332	22205	0.978	0.022
416.gamess-875B	5.993	13492	0.987	0.013
$429.\mathrm{mcf}$ - $184\mathrm{B}$	56.045	107758	0.892	0.108
454.calculix-104B	4.214	428	1.000	0.000
445.gobmk- $17B$	6.259	15038	0.985	0.015
459.GemsFDTD-1169B	13.200	18209	0.982	0.018
444.namd-120B	4.714	5336	0.995	0.005
483.xalancbmk- $127B$	14.809	21764	0.978	0.022
458. sjeng-1088B	5.259	9126	0.991	0.009
400.perlbench-41B	4.115	236	1.000	0.000
401.bzip 2 - $226B$	11.014	18999	0.981	0.019
471.omnetpp-188B	15.569	37818	0.962	0.038
456.hmmer- 191 B	5.905	4830	0.995	0.005
465.tonto-1769B	18.447	28316	0.972	0.028
481.wrf-1170B	5.714	4204	0.996	0.004
435.gromacs- $111B$	6.003	4773	0.995	0.005
403.gcc-16B	15.170	22485	0.978	0.022
453.povray-887B	11.196	27060	0.973	0.027
437.leslie $3d-134B$	6.056	4084	0.996	0.004
470.lbm-1274B	22.909	38377	0.962	0.038
$464.\mathrm{h}264\mathrm{ref}\text{-}30\mathrm{B}$	4.285	610	0.999	0.001
462.libquantum-1343B	13.071	17784	0.982	0.018

Tabla 3: L1+L2. L2: 64kB, 8-way. Datos Cache L1

Trace	AMAT (ciclos)	L2 Total Miss	L2 Hit Rate	L2 Miss Rate
410.bwaves-1963B	10.977	13561	0.172	0.828
473.astar- $153B$	5.919	3726	0.199	0.801
436.cactusADM- $1804B$	6.225	4294	0.338	0.662
482.sphinx3-1100B	10.135	11952	0.095	0.905
450.soplex- $247B$	36.108	62558	0.095	0.905
433.milc- $127B$	15.332	22131	0.003	0.997
416.gamess-875B	5.993	3662	0.729	0.271
$429.\mathrm{mcf}$ - $184\mathrm{B}$	56.045	101503	0.058	0.942
454.calculix- $104B$	4.214	418	0.023	0.977
445.gobmk- $17B$	6.259	4158	0.724	0.276
459.GemsFDTD-1169B	13.200	17963	0.014	0.986
444.namd- $120B$	4.714	1299	0.757	0.243
483.xalancbmk- $127B$	14.809	21095	0.031	0.969
$458.\mathrm{sjeng}$ - $1088B$	5.259	2298	0.748	0.252
400.perlbench-41B	4.115	225	0.047	0.953
401.bzip2-226B	11.014	13573	0.286	0.714
471.omnetpp- $188B$	15.569	22230	0.412	0.588
$456.\mathrm{hmmer}$ - $191B$	5.905	3694	0.235	0.765
465.tonto-1769B	18.447	28214	0.004	0.996
481.wrf-1170B	5.714	3328	0.208	0.792
435.gromacs- $111B$	6.003	3892	0.185	0.815
403.gcc-16B	15.170	21800	0.030	0.970
453.povray-887B	11.196	13742	0.492	0.508
437.leslie $3d-134B$	6.056	4014	0.017	0.983
470.lbm- 1274 B	22.909	36896	0.039	0.961
$464.\mathrm{h}264\mathrm{ref}\text{-}30\mathrm{B}$	4.285	555	0.090	0.910
462.libquantum-1343B	13.071	17716	0.004	0.996

Tabla 4: L1+L2. L2: 64kB, 8-way. Datos Cache L2

Archivo de Traza	AMAT (ciclos)
410.bwaves-1963B.trace.txt.gz	10.977
473.astar-153B.trace.txt.gz	5.919
436.cactusADM-1804B.trace.txt.gz	6.225
482.sphinx3-1100B.trace.txt.gz	10.135
450.soplex-247B.trace.txt.gz	36.108
433.milc-127B.trace.txt.gz	15.332
416.gamess-875B.trace.txt.gz	5.993
429.mcf-184B.trace.txt.gz	56.045
454.calculix-104B.trace.txt.gz	4.214
445.gobmk-17B.trace.txt.gz	6.259
459.GemsFDTD-1169B.trace.txt.gz	13.2
444.namd-120B.trace.txt.gz	4.714
483.xalancbmk-127B.trace.txt.gz	14.809
458.sjeng-1088B.trace.txt.gz	5.259
400.perlbench- $41B.$ trace.txt.gz	4.115
401.bzip2-226B.trace.txt.gz	11.014
471.omnetpp-188B.trace.txt.gz	15.569
456.hmmer-191B.trace.txt.gz	5.905
465. tonto-1769 B. trace. txt. gz	18.447
481.wrf-1170B.trace.txt.gz	5.714
435. gromacs-111B. trace. txt. gz	6.003
403.gcc-16B.trace.txt.gz	15.17
453.povray-887B.trace.txt.gz	11.196
437.leslie 3 d- 134 B.trace.txt.gz	6.056
470.lbm- 1274 B.trace.txt.gz	22.909
464.h264ref-30B.trace.txt.gz	4.285
462. lib quantum-1343 B. trace. txt. gz	13.071
AMAT Promedio	9.607270392

Tabla 5: L1+L2. L2: 64kB, 8-way.AMAT Caché dos niveles

8.2.2. L1+L2. L2: 64kB, 16-way

Archivo de Traza	AMAT (ciclos)	L1 Total Misses	L1 Hit Rate	L1 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.395	16378	0.984	0.016
473.astar-153B.trace.txt.gz	5.845	4651	0.995	0.005
436.cactusADM-1804B.trace.txt.gz	6.341	6485	0.994	0.006
$482.\mathrm{sphinx}3\text{-}1100\mathrm{B.trace.txt.gz}$	10.124	13211	0.987	0.013
450.soplex- $247B.$ trace.txt.gz	36.152	69106	0.931	0.069
433.milc- 127 B.trace.txt.gz	15.336	22205	0.978	0.022
$416. {\tt gamess-875B.trace.txt.gz}$	5.310	13492	0.987	0.013
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	55.928	107758	0.892	0.108
454.calculix-104B.trace.txt.gz	4.214	428	1.000	0.000
445. gobmk-17B. trace. txt. gz	6.086	15038	0.985	0.015
459. Gems FDTD-1169B. trace. txt. gz	13.208	18209	0.982	0.018
444.namd-120B.trace.txt.gz	4.642	5336	0.995	0.005
483. xalancbmk-127B. trace. txt. gz	14.828	21764	0.978	0.022
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	5.187	9126	0.991	0.009
400. perlbench-41B. trace. txt. gz	4.115	236	1.000	0.000
401.bzip 2 - $226B.$ trace.txt.gz	11.046	18999	0.981	0.019
471.omnetpp- $188B.$ trace.txt.gz	15.234	37818	0.962	0.038
456.hmmer-191B.trace.txt.gz	5.907	4830	0.995	0.005
465.tonto- 1769 B.trace.txt.gz	18.449	28316	0.972	0.028
481.wrf-1170B.trace.txt.gz	5.717	4204	0.996	0.004
435. gromacs-111B. trace. txt. gz	5.988	4773	0.995	0.005
403.gcc-16B.trace.txt.gz	15.173	22485	0.978	0.022
453.povray- $887B.$ trace.txt.gz	10.980	27060	0.973	0.027
437.leslie 3 d- 134 B.trace.txt.gz	6.054	4084	0.996	0.004
470. lbm-1274 B. trace. txt. gz	23.017	38377	0.962	0.038
464.h264ref30B.trace.txt.gz	4.285	610	0.999	0.001
462.libquantum-1343B.trace.txt.gz	13.071	17784	0.982	0.018

Tabla 6: L1+L2. L2: 64kB, 16-way. Datos L1

Archivo de Traza	AMAT (ciclos)	L2 Total Misses	L2 Hit Rate	L2 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.395	12396	0.243	0.757
473.astar-153B.trace.txt.gz	5.845	3579	0.230	0.770
436.cactusADM-1804B.trace.txt.gz	6.341	4526	0.302	0.698
$482.\mathrm{sphinx}3\text{-}1100\mathrm{B.trace.txt.gz}$	10.124	11931	0.097	0.903
450.soplex- $247B.$ trace.txt.gz	36.152	62646	0.093	0.907
433.milc- 127 B.trace.txt.gz	15.336	22139	0.003	0.997
416. gamess-875 B. trace. txt. gz	5.310	2296	0.830	0.170
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	55.928	101270	0.060	0.940
454.calculix- $104B.$ trace.txt.gz	4.214	418	0.023	0.977
445. gobmk-17B. trace. txt. gz	6.086	3811	0.747	0.253
459. Gems FDTD-1169B. trace. txt. gz	13.208	17979	0.013	0.987
444.namd-120B.trace.txt.gz	4.642	1156	0.783	0.217
483. xalancbmk-127B. trace. txt. gz	14.828	21134	0.029	0.971
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	5.187	2154	0.764	0.236
400.perlbench- $41B$.trace.txt.gz	4.115	225	0.047	0.953
401.bzip 2 - $226B.$ trace.txt.gz	11.046	13636	0.282	0.718
471.omnetpp-188B.trace.txt.gz	15.234	21560	0.430	0.570
456.hmmer-191B.trace.txt.gz	5.907	3698	0.234	0.766
465.tonto- 1769 B.trace.txt.gz	18.449	28218	0.003	0.997
481.wrf-1170B.trace.txt.gz	5.717	3334	0.207	0.793
435. gromacs-111B. trace. txt. gz	5.988	3861	0.191	0.809
403.gcc-16B.trace.txt.gz	15.173	21806	0.030	0.970
453.povray-887B.trace.txt.gz	10.980	13311	0.508	0.492
437.leslie 3 d- 134 B.trace.txt.gz	6.054	4010	0.018	0.982
470.lbm- 1274 B.trace.txt.gz	23.017	37113	0.033	0.967
464.h264ref30B.trace.txt.gz	4.285	555	0.090	0.910
462.libquantum-1343B.trace.txt.gz	13.071	17716	0.004	0.996

Tabla 7: L1+L2. L2: 64kB, 16-way. Datos L2

Archivo de Traza	AMAT (ciclos)
410.bwaves-1963B.trace.txt.gz	10.395
473.astar-153B.trace.txt.gz	5.845
436.cactusADM-1804B.trace.txt.gz	6.341
482.sphinx3-1100B.trace.txt.gz	10.124
450.soplex-247B.trace.txt.gz	36.152
433.milc-127B.trace.txt.gz	15.336
416.gamess-875B.trace.txt.gz	5.310
$429.\mathrm{mcf}$ - $184B.\mathrm{trace.txt.gz}$	55.928
454.calculix- $104B.$ trace.txt.gz	4.214
445. gobmk-17B. trace. txt. gz	6.086
459. Gems FDTD-1169B. trace. txt. gz	13.208
444.namd- $120B.$ trace.txt.gz	4.642
483. xalancbmk-127B. trace. txt. gz	14.828
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	5.187
400. perlbench-41B. trace. txt. gz	4.115
401. bzip 2-226B. trace. txt. gz	11.046
471.omnetpp- $188B.$ trace.txt.gz	15.234
456.hmmer-191B.trace.txt.gz	5.907
465.tonto- 1769 B.trace.txt.gz	18.449
481. wrf-1170B. trace. txt. gz	5.717
435.gromacs- $111B.$ trace.txt.gz	5.988
403.gcc-16B.trace.txt.gz	15.173
453.povray-887B.trace.txt.gz	10.980
437.leslie $3d-134B.$ trace.txt.gz	6.054
470.lbm- 1274 B.trace.txt.gz	23.017
464.h264ref30B.trace.txt.gz	4.285
$462. lib quantum \hbox{-} 1343 B. trace. txt. gz$	13.071
AMAT Promedio	9.514529717

Tabla 8: L1+L2. L2: 64kB, 16-way. AMAT Caché dos niveles

8.2.3. L1+L2. L2: 128kB, 8-way

Archivo de Traza	AMAT (ciclos)	L1 Total Misses	L1 Hit Rate	L1 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.184	16378	0.984	0.016
473.astar-153B.trace.txt.gz	5.500	4651	0.995	0.005
436.cactusADM-1804B.trace.txt.gz	5.572	6485	0.994	0.006
$482.\mathrm{sphinx}3\text{-}1100\mathrm{B.trace.txt.gz}$	9.732	13211	0.987	0.013
450.soplex- $247B.$ trace.txt.gz	32.974	69106	0.931	0.069
433.milc- 127 B.trace.txt.gz	15.320	22205	0.978	0.022
$416. {\tt gamess-875B.trace.txt.gz}$	4.769	13492	0.987	0.013
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	52.771	107758	0.892	0.108
454.calculix-104B.trace.txt.gz	4.213	428	1.000	0.000
445. gobmk-17B. trace. txt. gz	4.891	15038	0.985	0.015
459. Gems FDTD-1169B. trace. txt. gz	13.148	18209	0.982	0.018
444.namd-120B.trace.txt.gz	4.560	5336	0.995	0.005
483. xalancbmk-127B. trace. txt. gz	14.703	21764	0.978	0.022
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.749	9126	0.991	0.009
400. perlbench-41B. trace. txt. gz	4.114	236	1.000	0.000
401.bzip 2 - $226B.$ trace.txt.gz	6.264	18999	0.981	0.019
471.omnetpp- $188B.$ trace.txt.gz	13.745	37818	0.962	0.038
456.hmmer- $191B.$ trace.txt.gz	5.632	4830	0.995	0.005
465. tonto-1769 B. trace. txt. gz	18.427	28316	0.972	0.028
$481.\mathrm{wrf}$ - $1170\mathrm{B.trace.txt.gz}$	5.556	4204	0.996	0.004
435. gromacs-111B. trace. txt. gz	5.640	4773	0.995	0.005
403.gcc-16B.trace.txt.gz	15.058	22485	0.978	0.022
453.povray- $887B.$ trace.txt.gz	6.214	27060	0.973	0.027
437.leslie 3 d- 134 B.trace.txt.gz	6.041	4084	0.996	0.004
$470.lbm\hbox{-}1274B.trace.txt.gz$	16.782	38377	0.962	0.038
464.h264ref-30B.trace.txt.gz	4.285	610	0.999	0.001
462.libquantum-1343B.trace.txt.gz	13.053	17784	0.982	0.018

Tabla 9: L1+L2. L2: 128kB, 8-way. Datos L1

Archivo de Traza	AMAT (ciclos)	L2 Total Misses	L2 Hit Rate	L2 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.184	11975	0.269	0.731
473.astar-153B.trace.txt.gz	5.500	2889	0.379	0.621
436.cactusADM-1804B.trace.txt.gz	5.572	2989	0.539	0.461
$482.\mathrm{sphinx}3\text{-}1100\mathrm{B.trace.txt.gz}$	9.732	11146	0.156	0.844
450.soplex- $247B.$ trace.txt.gz	32.974	56289	0.185	0.815
433.milc- 127 B.trace.txt.gz	15.320	22108	0.004	0.996
416. gamess-875 B. trace. txt. gz	4.769	1214	0.910	0.090
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	52.771	94955	0.119	0.881
454.calculix- $104B.$ trace.txt.gz	4.213	416	0.028	0.972
445. gobmk-17B. trace. txt. gz	4.891	1421	0.906	0.094
459. Gems FDTD-1169B. trace. txt. gz	13.148	17858	0.019	0.981
444.namd-120B.trace.txt.gz	4.560	991	0.814	0.186
483. xalancbmk-127B. trace. txt. gz	14.703	20883	0.040	0.960
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.749	1279	0.860	0.140
400.perlbench- $41B$.trace.txt.gz	4.114	223	0.055	0.945
401.bzip 2 - $226B.$ trace.txt.gz	6.264	4073	0.786	0.214
471.omnetpp-188B.trace.txt.gz	13.745	18582	0.509	0.491
456.hmmer-191B.trace.txt.gz	5.632	3149	0.348	0.652
465.tonto- 1769 B.trace.txt.gz	18.427	28174	0.005	0.995
481.wrf-1170B.trace.txt.gz	5.556	3012	0.284	0.716
435.gromacs- $111B.$ trace.txt.gz	5.640	3165	0.337	0.663
403.gcc-16B.trace.txt.gz	15.058	21577	0.040	0.960
453.povray-887B.trace.txt.gz	6.214	3778	0.860	0.140
437.leslie $3d-134B.$ trace.txt.gz	6.041	3983	0.025	0.975
470.lbm- 1274 B.trace.txt.gz	16.782	24643	0.358	0.642
464.h264ref-30B.trace.txt.gz	4.285	555	0.090	0.910
462.libquantum-1343B.trace.txt.gz	13.053	17680	0.006	0.994

Tabla 10: L1+L2. L2: 128kB, 8-way. Datos L2

473.astar-153B.trace.txt.gz 436.cactusADM-1804B.trace.txt.gz 5. 482.sphinx3-1100B.trace.txt.gz 9. 450.soplex-247B.trace.txt.gz 32.	184 5.5 572 732 974 5.32 769 771
436.cactusADM-1804B.trace.txt.gz 5. 482.sphinx3-1100B.trace.txt.gz 9. 450.soplex-247B.trace.txt.gz 32.	572 732 974 5.32 769
482.sphinx3-1100B.trace.txt.gz 9. 450.soplex-247B.trace.txt.gz 32.	732 974 5.32 769
450.soplex-247B.trace.txt.gz 32.	974 5.32 769
	5.32 769
433 mile-127B trace tyt gz 15	769
499.IIIIC 121D.01acc.0x0.gz	
416.gamess-875B.trace.txt.gz 4.	771
429.mcf-184B.trace.txt.gz 52.	
454.calculix-104B.trace.txt.gz 4.	213
445.gobmk-17B.trace.txt.gz 4.	891
459.GemsFDTD-1169B.trace.txt.gz 13.	148
444.namd-120B.trace.txt.gz	4.56
483.xalancbmk-127B.trace.txt.gz 14.	703
458.sjeng-1088B.trace.txt.gz 4.	749
400.perlbench-41B.trace.txt.gz 4.	114
401.bzip2-226B.trace.txt.gz 6.	264
471.omnetpp-188B.trace.txt.gz 13.	745
456.hmmer-191B.trace.txt.gz 5.	632
465.tonto-1769B.trace.txt.gz 18.	427
481.wrf-1170B.trace.txt.gz 5.	556
0	5.64
403.gcc-16B.trace.txt.gz 15.	058
453.povray-887B.trace.txt.gz 6.	214
437.leslie3d-134B.trace.txt.gz 6.	041
470.lbm-1274B.trace.txt.gz 16.	782
464.h264ref-30B.trace.txt.gz 4.	285
462.libquantum-1343B.trace.txt.gz 13.	053
AMAT Promedio 8.656867	487

Tabla 11: L1+L2. L2: 128kB, 8-way. AMAT Cache dos niveles

8.2.4. L1+L2. L2: 128kB, 16-way

Archivo de Traza	AMAT (ciclos)	L1 Total Misses	L1 Hit Rate	L1 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.140	16378	0.984	0.016
473.astar-153B.trace.txt.gz	5.498	4651	0.995	0.005
436.cactusADM-1804B.trace.txt.gz	5.601	6485	0.994	0.006
482.sphinx3-1100B.trace.txt.gz	9.738	13211	0.987	0.013
450.soplex- $247B.$ trace.txt.gz	32.955	69106	0.931	0.069
433.milc- 127 B.trace.txt.gz	15.320	22205	0.978	0.022
$416. {\rm gamess\text{-}}875 B. trace. txt. {\rm gz}$	4.692	13492	0.987	0.013
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	52.708	107758	0.892	0.108
454.calculix- $104B.$ trace.txt.gz	4.213	428	1.000	0.000
445. gobmk-17B. trace. txt. gz	4.869	15038	0.985	0.015
459. Gems FDTD-1169B. trace. txt. gz	13.146	18209	0.982	0.018
444.namd-120B.trace.txt.gz	4.560	5336	0.995	0.005
483. xalancbmk-127B. trace. txt. gz	14.700	21764	0.978	0.022
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.707	9126	0.991	0.009
400. perlbench-41B. trace. txt. gz	4.114	236	1.000	0.000
401.bzip 2 - $226B.$ trace.txt.gz	5.912	18999	0.981	0.019
471.omnetpp- $188B.$ trace.txt.gz	13.713	37818	0.962	0.038
456.hmmer-191B.trace.txt.gz	5.621	4830	0.995	0.005
465.tonto- 1769 B.trace.txt.gz	18.427	28316	0.972	0.028
$481.\mathrm{wrf}$ - $1170\mathrm{B.trace.txt.gz}$	5.556	4204	0.996	0.004
$435. {\tt gromacs-111B.trace.txt.gz}$	5.634	4773	0.995	0.005
403.gcc-16B.trace.txt.gz	15.056	22485	0.978	0.022
453.povray- $887B.$ trace.txt.gz	5.582	27060	0.973	0.027
437.leslie $3d-134B.$ trace.txt.gz	6.041	4084	0.996	0.004
$470.lbm\hbox{-}1274B.trace.txt.gz$	18.476	38377	0.962	0.038
464.h264ref-30B.trace.txt.gz	4.285	610	0.999	0.001
462.libquantum-1343B.trace.txt.gz	13.053	17784	0.982	0.018

Tabla 12: L1+L2. L2: 128kB, 8-way. Datos L1

Archivo de Traza	AMAT (ciclos)	L2 Total Misses	L2 Hit Rate	L2 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.140	11887	0.274	0.726
473.astar-153B.trace.txt.gz	5.498	2884	0.380	0.620
436.cactusADM-1804B.trace.txt.gz	5.601	3046	0.530	0.470
$482.\mathrm{sphinx}3-1100\mathrm{B.trace.txt.gz}$	9.738	11158	0.155	0.845
450.soplex- $247B.$ trace.txt.gz	32.955	56252	0.186	0.814
433.milc- 127 B.trace.txt.gz	15.320	22107	0.004	0.996
416. gamess-875 B. trace. txt. gz	4.692	1061	0.921	0.079
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	52.708	94829	0.120	0.880
454.calculix- $104B.$ trace.txt.gz	4.213	416	0.028	0.972
445. gobmk-17B. trace. txt. gz	4.869	1377	0.908	0.092
459. Gems FDTD-1169B. trace. txt. gz	13.146	17854	0.019	0.981
444.namd-120B.trace.txt.gz	4.560	991	0.814	0.186
483. xalancbmk-127B. trace. txt. gz	14.700	20878	0.041	0.959
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.707	1195	0.869	0.131
400. perlbench-41B. trace. txt. gz	4.114	223	0.055	0.945
401.bzip 2 - $226B.$ trace.txt.gz	5.912	3368	0.823	0.177
471.omnetpp-188B.trace.txt.gz	13.713	18519	0.510	0.490
$456.\mathrm{hmmer}$ - $191B.\mathrm{trace.txt.gz}$	5.621	3126	0.353	0.647
465.tonto- 1769 B.trace.txt.gz	18.427	28174	0.005	0.995
$481.\mathrm{wrf}$ - $1170\mathrm{B.trace.txt.gz}$	5.556	3011	0.284	0.716
435.gromacs- $111B.$ trace.txt.gz	5.634	3154	0.339	0.661
403.gcc-16B.trace.txt.gz	15.056	21573	0.041	0.959
453.povray-887B.trace.txt.gz	5.582	2515	0.907	0.093
437.leslie $3d-134B.$ trace.txt.gz	6.041	3983	0.025	0.975
470.lbm- 1274 B.trace.txt.gz	18.476	28031	0.270	0.730
464.h264ref30B.trace.txt.gz	4.285	555	0.090	0.910
462.libquantum-1343B.trace.txt.gz	13.053	17680	0.006	0.994

Tabla 13: L1+L2. L2: 128kB, 8-way. Datos L2

Archivo de Traza	AMAT (ciclos)
410.bwaves-1963B.trace.txt.gz	10.14
473.astar-153B.trace.txt.gz	5.498
436.cactusADM-1804B.trace.txt.gz	5.601
482.sphinx3-1100B.trace.txt.gz	9.738
450.soplex- $247B.$ trace.txt.gz	32.955
433.milc- 127 B.trace.txt.gz	15.32
416.gamess-875B.trace.txt.gz	4.692
$429.\mathrm{mcf}$ - $184B.\mathrm{trace.txt.gz}$	52.708
454.calculix-104B.trace.txt.gz	4.213
445. gobmk-17B. trace. txt. gz	4.869
459.GemsFDTD-1169B.trace.txt.gz	13.146
444.namd- $120B.$ trace.txt.gz	4.56
483.xalancbmk-127B.trace.txt.gz	14.7
458.sjeng-1088B.trace.txt.gz	4.707
400.perlbench-41B.trace.txt.gz	4.114
401.bzip 2 - 226 B.trace.txt.gz	5.912
471.omnetpp-188B.trace.txt.gz	13.713
456.hmmer-191B.trace.txt.gz	5.621
465.tonto-1769B.trace.txt.gz	18.427
481.wrf-1170B.trace.txt.gz	5.556
435.gromacs-111B.trace.txt.gz	5.634
403.gcc-16B.trace.txt.gz	15.056
453.povray-887B.trace.txt.gz	5.582
437.leslie3d-134B.trace.txt.gz	6.041
470.lbm-1274B.trace.txt.gz	18.476
464.h264ref-30B.trace.txt.gz	4.285
462.libquantum-1343B.trace.txt.gz	13.053
AMAT Promedio	8.623237787

Tabla 14: L1+L2. L2: 128kB, 16-way. AMAT Cache dos niveles

8.3. Presencia de L3

8.3.1. L3: 512kB, Asociatividad de L3: 16-way

Archivo de Trama	AMAT (ciclos)	L1 Total Misses	L1 Hit Rate	L1 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.644	16378	0.984	0.016
473.astar-153B.trace.txt.gz	5.418	4651	0.995	0.005
436.cactusADM-1804B.trace.txt.gz	5.681	6485	0.994	0.006
482.sphinx3-1100B.trace.txt.gz	9.749	13211	0.987	0.013
450.soplex- $247B.$ trace.txt.gz	26.256	69106	0.931	0.069
433.milc-127B.trace.txt.gz	16.634	22205	0.978	0.022
416. gamess-875 B. trace. txt. gz	4.749	13492	0.987	0.013
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	49.363	107758	0.892	0.108
454.calculix-104B.trace.txt.gz	4.238	428	1.000	0.000
445. gobmk-17B. trace. txt. gz	4.950	15038	0.985	0.015
459. Gems FDTD-1169B. trace. txt. gz	14.175	18209	0.982	0.018
444.namd-120B.trace.txt.gz	4.619	5336	0.995	0.005
483. xalancbmk-127B. trace. txt. gz	15.852	21764	0.978	0.022
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.779	9126	0.991	0.009
400.perlbench- $41B.$ trace.txt.gz	4.128	236	1.000	0.000
401.bzip 2 - $226B.$ trace.txt.gz	5.555	18999	0.981	0.019
471.omnetpp-188B.trace.txt.gz	13.835	37818	0.962	0.038
456. hmmer-191B. trace. txt. gz	5.593	4830	0.995	0.005
465. tonto-1769 B. trace. txt. gz	16.870	28316	0.972	0.028
$481.\mathrm{wrf}$ - $1170\mathrm{B.trace.txt.gz}$	5.596	4204	0.996	0.004
435. gromacs-111B. trace. txt. gz	5.607	4773	0.995	0.005
403.gcc-16B.trace.txt.gz	16.250	22485	0.978	0.022
453.povray-887B.trace.txt.gz	5.282	27060	0.973	0.027
437. les lie 3d-134 B. trace. txt. gz	6.270	4084	0.996	0.004
$470.lbm\hbox{-}1274B.trace.txt.gz$	17.095	38377	0.962	0.038
464.h264ref30B.trace.txt.gz	4.318	610	0.999	0.001
462.libquantum-1343B.trace.txt.gz	14.101	17784	0.982	0.018

Tabla 15: L1+L2+L3. L3: 512kB, 16-way. Datos L1

Archivo de Traza	AMAT (ciclos)	L2 Total Misses	L2 Hit Rate	L2 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.644	11571	0.294	0.706
473.astar-153B.trace.txt.gz	5.418	2518	0.459	0.541
436.cactusADM-1804B.trace.txt.gz	5.681	2934	0.548	0.452
482.sphinx3-1100B.trace.txt.gz	9.749	10491	0.206	0.794
450.soplex- $247B.$ trace.txt.gz	26.256	48090	0.304	0.696
433.milc-127B.trace.txt.gz	16.634	22092	0.005	0.995
416.gamess- 875 B.trace.txt.gz	4.749	1049	0.922	0.078
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	49.363	88187	0.182	0.818
454.calculix-104B.trace.txt.gz	4.238	415	0.030	0.970
445. gobmk-17B. trace. txt. gz	4.950	1375	0.909	0.091
459. Gems FDTD-1169B. trace. txt. gz	14.175	17806	0.022	0.978
444.namd-120B.trace.txt.gz	4.619	991	0.814	0.186
483. xalancbmk-127B. trace. txt. gz	15.852	20758	0.046	0.954
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.779	1195	0.869	0.131
400.perlbench-41B.trace.txt.gz	4.128	223	0.055	0.945
401.bzip 2 - $226B.$ trace.txt.gz	5.555	2396	0.874	0.126
471.omnetpp- $188B.$ trace.txt.gz	13.835	17313	0.542	0.458
456.hmmer-191B.trace.txt.gz	5.593	2745	0.432	0.568
465.tonto- 1769 B.trace.txt.gz	16.870	27790	0.019	0.981
481.wrf-1170B.trace.txt.gz	5.596	2760	0.343	0.657
435. gromacs-111B. trace. txt. gz	5.607	2812	0.411	0.589
$403.\mathrm{gcc} ext{-}16\mathrm{B.trace.txt.gz}$	16.250	21448	0.046	0.954
453.povray-887B.trace.txt.gz	5.282	1743	0.936	0.064
437.leslie $3d-134B.$ trace.txt.gz	6.270	3974	0.027	0.973
470.lbm- 1274 B.trace.txt.gz	17.095	22667	0.409	0.591
464.h264ref30B.trace.txt.gz	4.318	555	0.090	0.910
462.libquantum-1343B.trace.txt.gz	14.101	17664	0.007	0.993

Tabla 16: L1+L2+L3. L3: 512kB, 16-way. Datos L2

Archivo de Trama	AMAT (ciclos)	L3 Total Misses	L3 Hit Rate	L3 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.644	11506	0.006	0.994
473.astar-153B.trace.txt.gz	5.418	2423	0.038	0.962
436.cactusADM-1804B.trace.txt.gz	5.681	2854	0.027	0.973
482.sphinx3-1100B.trace.txt.gz	9.749	9923	0.054	0.946
450.soplex- $247B.$ trace.txt.gz	26.256	37083	0.229	0.771
433.milc-127B.trace.txt.gz	16.634	22084	0.000	1.000
416.gamess-875B.trace.txt.gz	4.749	1049	0.000	1.000
429.mcf-184B.trace.txt.gz	49.363	77558	0.121	0.879
454.calculix- $104B.$ trace.txt.gz	4.238	415	0.000	1.000
445. gobmk-17B. trace. txt. gz	4.950	1374	0.001	0.999
459. Gems FDTD-1169B. trace.txt.gz	14.175	17777	0.002	0.998
444.namd-120B.trace.txt.gz	4.619	991	0.000	1.000
483. xalancbmk-127B. trace. txt. gz	15.852	20690	0.003	0.997
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.779	1195	0.000	1.000
400. perlbench-41B. trace. txt. gz	4.128	223	0.000	1.000
401.bzip 2 - $226B.$ trace.txt.gz	5.555	2367	0.012	0.988
471.omnetpp-188B.trace.txt.gz	13.835	16684	0.036	0.964
$456.\mathrm{hmmer}$ - $191B.\mathrm{trace.txt.gz}$	5.593	2741	0.001	0.999
465.tonto- 1769 B.trace.txt.gz	16.870	21725	0.218	0.782
481. wrf-1170B. trace. txt. gz	5.596	2760	0.000	1.000
435.gromacs- $111B.$ trace.txt.gz	5.607	2762	0.018	0.982
403.gcc-16B.trace.txt.gz	16.250	21386	0.003	0.997
453.povray-887B.trace.txt.gz	5.282	1705	0.022	0.978
437.leslie3d-134B.trace.txt.gz	6.270	3966	0.002	0.998
470.lbm-1274B.trace.txt.gz	17.095	22549	0.005	0.995
464.h264ref-30B.trace.txt.gz	4.318	555	0.000	1.000
462.libquantum-1343B.trace.txt.gz	14.101	17655	0.001	0.999

Tabla 17: L1+L2+L3. L3: 512kB, 16-way. Datos L3

Archivo de Trama	AMAT (ciclos)
410.bwaves-1963B.trace.txt.gz	10.644
473.astar-153B.trace.txt.gz	5.418
436.cactusADM-1804B.trace.txt.gz	5.681
482.sphinx3-1100B.trace.txt.gz	9.749
450.soplex- $247B.$ trace.txt.gz	26.256
433.milc-127B.trace.txt.gz	16.634
416.gamess-875B.trace.txt.gz	4.749
429.mcf-184B.trace.txt.gz	49.363
454.calculix-104B.trace.txt.gz	4.238
445.gobmk-17B.trace.txt.gz	4.95
459.GemsFDTD-1169B.trace.txt.gz	14.175
444.namd- $120B.$ trace.txt.gz	4.619
483.xalancbmk-127B.trace.txt.gz	15.852
458.sjeng-1088B.trace.txt.gz	4.779
400.perlbench-41B.trace.txt.gz	4.128
401.bzip 2 - $226B.$ trace.txt.gz	5.555
471.omnetpp-188B.trace.txt.gz	13.835
$456.\mathrm{hmmer}$ - $191B.\mathrm{trace.txt.gz}$	5.593
465.tonto- 1769 B.trace.txt.gz	16.87
481.wrf-1170B.trace.txt.gz	5.596
435.gromacs-111B.trace.txt.gz	5.607
403.gcc-16B.trace.txt.gz	16.25
453.povray-887B.trace.txt.gz	5.282
437.leslie3d-134B.trace.txt.gz	6.27
470.lbm-1274B.trace.txt.gz	17.095
464.h264ref-30B.trace.txt.gz	4.318
462.libquantum-1343B.trace.txt.gz	14.101
AMAT Promedio	8.615746047

Tabla 18: L1+L2+L3. L3: 512kB, 16-way. AMAT Cache tres niveles

8.3.2. L3: 512kB, Asociatividad de L3: 32-way

Archivo de Trama	AMAT (ciclos)	Total de Misses L1	L1 Hit Rate	L1 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.631	16378	0.984	0.016
473.astar-153B.trace.txt.gz	5.419	4651	0.995	0.005
436.cactusADM-1804B.trace.txt.gz	5.669	6485	0.994	0.006
482.sphinx3-1100B.trace.txt.gz	9.709	13211	0.987	0.013
450.soplex- $247B.$ trace.txt.gz	26.186	69106	0.931	0.069
433.milc- 127 B.trace.txt.gz	16.634	22205	0.978	0.022
416.gamess- 875 B.trace.txt.gz	4.749	13492	0.987	0.013
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	49.295	107758	0.892	0.108
454.calculix-104B.trace.txt.gz	4.238	428	1.000	0.000
445. gobmk-17B. trace. txt. gz	4.950	15038	0.985	0.015
459. Gems FDTD-1169B. trace. txt. gz	14.171	18209	0.982	0.018
444.namd- $120B.$ trace.txt.gz	4.619	5336	0.995	0.005
483. xalancbmk-127B. trace. txt. gz	15.848	21764	0.978	0.022
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.779	9126	0.991	0.009
400.perlbench- $41B$.trace.txt.gz	4.128	236	1.000	0.000
401.bzip 2 - $226B.$ trace.txt.gz	5.555	18999	0.981	0.019
471.omnetpp- $188B.$ trace.txt.gz	13.808	37818	0.962	0.038
$456.\mathrm{hmmer}$ - $191B.\mathrm{trace.txt.gz}$	5.593	4830	0.995	0.005
465. tonto-1769 B. trace. txt. gz	16.924	28316	0.972	0.028
481.wrf-1170B.trace.txt.gz	5.596	4204	0.996	0.004
435. gromacs-111B. trace. txt. gz	5.607	4773	0.995	0.005
403.gcc-16B.trace.txt.gz	16.247	22485	0.978	0.022
453.povray-887B.trace.txt.gz	5.282	27060	0.973	0.027
437.leslie $3d-134B.$ trace.txt.gz	6.270	4084	0.996	0.004
470.lbm- 1274 B.trace.txt.gz	17.090	38377	0.962	0.038
464.h264ref-30B.trace.txt.gz	4.318	610	0.999	0.001
462.libquantum-1343B.trace.txt.gz	14.101	17784	0.982	0.018

Tabla 19: L1+L2+L3. L3: 512kB, Asociatividad de L3: 32-way. Datos L1

Archivo de Traza	AMAT (ciclos)	Total de Misses L2	L2 Hit Rate	L2 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.631	11571	0.294	0.706
473.astar-153B.trace.txt.gz	5.419	2518	0.459	0.541
436.cactusADM-1804B.trace.txt.gz	5.669	2934	0.548	0.452
482.sphinx3-1100B.trace.txt.gz	9.709	10491	0.206	0.794
450.soplex- $247B.$ trace.txt.gz	26.186	48090	0.304	0.696
433.milc- 127 B.trace.txt.gz	16.634	22092	0.005	0.995
416.gamess-875B.trace.txt.gz	4.749	1049	0.922	0.078
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	49.295	88187	0.182	0.818
454.calculix-104B.trace.txt.gz	4.238	415	0.030	0.970
445. gobmk-17B. trace. txt. gz	4.950	1375	0.909	0.091
459. Gems FDTD-1169B. trace. txt. gz	14.171	17806	0.022	0.978
444.namd-120B.trace.txt.gz	4.619	991	0.814	0.186
483. xalancbmk-127B. trace. txt. gz	15.848	20758	0.046	0.954
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.779	1195	0.869	0.131
400. perlbench-41B. trace. txt. gz	4.128	223	0.055	0.945
401.bzip 2 - $226B.$ trace.txt.gz	5.555	2396	0.874	0.126
471.omnetpp-188B.trace.txt.gz	13.808	17313	0.542	0.458
$456.\mathrm{hmmer}$ - $191B.\mathrm{trace.txt.gz}$	5.593	2745	0.432	0.568
465. tonto-1769 B. trace. txt. gz	16.924	27790	0.019	0.981
481. wrf-1170B. trace. txt. gz	5.596	2760	0.343	0.657
435. gromacs-111B. trace. txt. gz	5.607	2812	0.411	0.589
403.gcc-16B.trace.txt.gz	16.247	21448	0.046	0.954
453.povray-887B.trace.txt.gz	5.282	1743	0.936	0.064
437.leslie 3 d- 134 B.trace.txt.gz	6.270	3974	0.027	0.973
470.lbm- 1274 B.trace.txt.gz	17.090	22667	0.409	0.591
464.h264ref-30B.trace.txt.gz	4.318	555	0.090	0.910
462.libquantum-1343B.trace.txt.gz	14.101	17664	0.007	0.993

Tabla 20: L1+L2+L3. L3: 512kB, Asociatividad de L3: 32-way. Datos L2

Archivo de Traza	AMAT (ciclos)	Total de Misses L3	L3 Hit Rate	L3 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.631	11480	0.008	0.992
473.astar-153B.trace.txt.gz	5.419	2424	0.037	0.963
436.cactusADM-1804B.trace.txt.gz	5.669	2830	0.035	0.965
482.sphinx3-1100B.trace.txt.gz	9.709	9842	0.062	0.938
450.soplex-247B.trace.txt.gz	26.186	36942	0.232	0.768
433.milc-127B.trace.txt.gz	16.634	22084	0.000	1.000
416.gamess-875B.trace.txt.gz	4.749	1049	0.000	1.000
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	49.295	77421	0.122	0.878
454.calculix-104B.trace.txt.gz	4.238	415	0.000	1.000
445. gobmk-17B. trace. txt. gz	4.950	1374	0.001	0.999
459. Gems FDTD-1169B. trace. txt. gz	14.171	17768	0.002	0.998
$444.\mathrm{namd}$ - $120B.\mathrm{trace.txt.gz}$	4.619	991	0.000	1.000
483. x alancbmk-127 B. trace. txt. gz	15.848	20682	0.004	0.996
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.779	1195	0.000	1.000
400.perlbench-41B.trace.txt.gz	4.128	223	0.000	1.000
401.bzip 2 - $226B.$ trace.txt.gz	5.555	2367	0.012	0.988
471.omnetpp- $188B.$ trace.txt.gz	13.808	16631	0.039	0.961
$456.\mathrm{hmmer}$ - $191B.\mathrm{trace.txt.gz}$	5.593	2740	0.002	0.998
465. tonto-1769 B. trace. txt. gz	16.924	21833	0.214	0.786
481. wrf-1170B. trace. txt. gz	5.596	2760	0.000	1.000
435.gromacs-111B.trace.txt.gz	5.607	2762	0.018	0.982
$403.\mathrm{gcc} ext{-}16\mathrm{B.trace.txt.gz}$	16.247	21380	0.003	0.997
453.povray-887B.trace.txt.gz	5.282	1705	0.022	0.978
437.leslie $3d-134B.$ trace.txt.gz	6.270	3966	0.002	0.998
470.lbm-1274B.trace.txt.gz	17.090	22538	0.006	0.994
464.h264ref-30B.trace.txt.gz	4.318	555	0.000	1.000
462.libquantum-1343B.trace.txt.gz	14.101	17655	0.001	0.999

Tabla 21: L1+L2+L3. L3: 512kB, Asociatividad de L3: 32-way. Datos L3

Archivo de Traza	AMAT (ciclos)
410.bwaves-1963B.trace.txt.gz	10.631
473.astar-153B.trace.txt.gz	5.419
436.cactusADM-1804B.trace.txt.gz	5.669
482.sphinx3-1100B.trace.txt.gz	9.709
450.soplex-247B.trace.txt.gz	26.186
433.milc- 127 B.trace.txt.gz	16.634
416.gamess-875B.trace.txt.gz	4.749
$429.\mathrm{mcf}$ - $184B.\mathrm{trace.txt.gz}$	49.295
454.calculix-104B.trace.txt.gz	4.238
445. gobmk-17B. trace. txt. gz	4.95
459. Gems FDTD-1169B. trace. txt. gz	14.171
444.namd- $120B.$ trace.txt.gz	4.619
483.xalancbmk- $127B.$ trace.txt.gz	15.848
458.sjeng-1088B.trace.txt.gz	4.779
400.perlbench- $41B.$ trace.txt.gz	4.128
401.bzip 2 - $226B.$ trace.txt.gz	5.555
471.omnetpp-188B.trace.txt.gz	13.808
456.hmmer- $191B.$ trace.txt.gz	5.593
465. tonto-1769 B. trace. txt. gz	16.924
481.wrf-1170B.trace.txt.gz	5.596
435. gromacs-111B. trace. txt. gz	5.607
403.gcc-16B.trace.txt.gz	16.247
453.povray-887B.trace.txt.gz	5.282
437.leslie 3 d- 134 B.trace.txt.gz	6.27
470.lbm- 1274 B.trace.txt.gz	17.09
464.h264ref-30B.trace.txt.gz	4.318
462.libquantum-1343B.trace.txt.gz	14.101
AMAT Promedio	8.612210803

Tabla 22: L1+L2+L3. L3: 512kB, Asociatividad de L3: 32-way. AMAT Cache tres niveles

$8.3.3.\;$ L3: 1024kB, Asociatividad de L3: 16-way

Archivo de Traza	AMAT (ciclos)	L1 Total Misses	L1 Hit Rate	L1 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.623	16378	0.984	0.016
473.astar-153B.trace.txt.gz	5.414	4651	0.995	0.005
436.cactusADM-1804B.trace.txt.gz	5.673	6485	0.994	0.006
482.sphinx3-1100B.trace.txt.gz	9.651	13211	0.987	0.013
450.soplex- $247B.$ trace.txt.gz	21.775	69106	0.931	0.069
433.milc-127B.trace.txt.gz	16.633	22205	0.978	0.022
416. gamess-875 B. trace. txt. gz	4.749	13492	0.987	0.013
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	44.566	107758	0.892	0.108
454.calculix- $104B.$ trace.txt.gz	4.238	428	1.000	0.000
445. gobmk-17B. trace. txt. gz	4.949	15038	0.985	0.015
459. Gems FDTD-1169B. trace. txt. gz	14.167	18209	0.982	0.018
444.namd-120B.trace.txt.gz	4.617	5336	0.995	0.005
483. xalancbmk-127B. trace. txt. gz	15.835	21764	0.978	0.022
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.778	9126	0.991	0.009
400. perlbench-41B. trace. txt. gz	4.128	236	1.000	0.000
401.bzip 2 - $226B.$ trace.txt.gz	5.555	18999	0.981	0.019
471.omnetpp-188B.trace.txt.gz	13.707	37818	0.962	0.038
$456.\mathrm{hmmer}$ - $191B.\mathrm{trace.txt.gz}$	5.592	4830	0.995	0.005
465. tonto-1769 B. trace. txt. gz	14.542	28316	0.972	0.028
$481.\mathrm{wrf}$ - $1170\mathrm{B.trace.txt.gz}$	5.463	4204	0.996	0.004
435.gromacs- $111B.$ trace.txt.gz	5.607	4773	0.995	0.005
403.gcc-16B.trace.txt.gz	16.235	22485	0.978	0.022
453.povray-887B.trace.txt.gz	5.282	27060	0.973	0.027
437.leslie $3d-134B.$ trace.txt.gz	6.270	4084	0.996	0.004
470.lbm- 1274 B.trace.txt.gz	17.073	38377	0.962	0.038
464.h264ref-30B.trace.txt.gz	4.318	610	0.999	0.001
462.libquantum-1343B.trace.txt.gz	14.099	17784	0.982	0.018

Tabla 23: L1+L2+L3. L3: 1024kB, Asociatividad de L3: 16-way. Datos L1

Archivo de Traza	AMAT (ciclos)	L2 Total Misses	L2 Hit Rate	L2 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.623	11571	0.294	0.706
473.astar-153B.trace.txt.gz	5.414	2518	0.459	0.541
436.cactusADM-1804B.trace.txt.gz	5.673	2934	0.548	0.452
482.sphinx3-1100B.trace.txt.gz	9.651	10491	0.206	0.794
450.soplex- $247B.$ trace.txt.gz	21.775	48090	0.304	0.696
433.milc-127B.trace.txt.gz	16.633	22092	0.005	0.995
416.gamess- 875 B.trace.txt.gz	4.749	1049	0.922	0.078
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	44.566	88187	0.182	0.818
454.calculix-104B.trace.txt.gz	4.238	415	0.030	0.970
445. gobmk-17B. trace. txt. gz	4.949	1375	0.909	0.091
459. Gems FDTD-1169B. trace. txt. gz	14.167	17806	0.022	0.978
444.namd-120B.trace.txt.gz	4.617	991	0.814	0.186
483. xalancbmk-127B. trace. txt. gz	15.835	20758	0.046	0.954
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.778	1195	0.869	0.131
400.perlbench-41B.trace.txt.gz	4.128	223	0.055	0.945
401.bzip 2 - $226B.$ trace.txt.gz	5.555	2396	0.874	0.126
471.omnetpp-188B.trace.txt.gz	13.707	17313	0.542	0.458
456. hmmer-191B. trace. txt. gz	5.592	2745	0.432	0.568
465.tonto-1769B.trace.txt.gz	14.542	27790	0.019	0.981
481.wrf-1170B.trace.txt.gz	5.463	2760	0.343	0.657
435. gromacs-111B. trace. txt. gz	5.607	2812	0.411	0.589
$403.\mathrm{gcc} ext{-}16\mathrm{B.trace.txt.gz}$	16.235	21448	0.046	0.954
453.povray-887B.trace.txt.gz	5.282	1743	0.936	0.064
437.leslie $3d-134B.$ trace.txt.gz	6.270	3974	0.027	0.973
470.lbm- 1274 B.trace.txt.gz	17.073	22667	0.409	0.591
464.h264ref-30B.trace.txt.gz	4.318	555	0.090	0.910
462.libquantum-1343B.trace.txt.gz	14.099	17664	0.007	0.993

Tabla 24: L1+L2+L3. L3: 1024kB, Asociatividad de L3: 16-way. Datos L2

Traza	AMAT (ciclos)	L3 Total Misses	L3 Hit Rate	L3 Miss Rate
410.bwaves-1963B	10.623	11464	0.009	0.991
473.astar- 153 B	5.414	2415	0.041	0.959
436.cactusADM- $1804B$	5.673	2839	0.032	0.968
482.sphinx3-1100B	9.651	9726	0.073	0.927
450.soplex- $247B$	21.775	28121	0.415	0.585
433.milc- $127B$	16.633	22083	0.000	1.000
416.gamess-875B	4.749	1048	0.001	0.999
$429.\mathrm{mcf}$ - $184\mathrm{B}$	44.566	67964	0.229	0.771
454.calculix- $104B$	4.238	415	0.000	1.000
445.gobmk- $17B$	4.949	1373	0.001	0.999
459.GemsFDTD-1169B	14.167	17761	0.003	0.997
444.namd- $120B$	4.617	987	0.004	0.996
483.xalancbmk- $127B$	15.835	20657	0.005	0.995
$458.\mathrm{sjeng}$ - $1088\mathrm{B}$	4.778	1194	0.001	0.999
400.perlbench-41B	4.128	223	0.000	1.000
401.bzip 2 - 226 B	5.555	2367	0.012	0.988
471.omnetpp- $188B$	13.707	16429	0.051	0.949
456.hmmer- 191 B	5.592	2739	0.002	0.998
465.tonto-1769B	14.542	17070	0.386	0.614
481.wrf-1170B	5.463	2493	0.097	0.903
435.gromacs- $111B$	5.607	2762	0.018	0.982
403.gcc-16B	16.235	21356	0.004	0.996
453.povray-887B	5.282	1705	0.022	0.978
437.leslie $3d-134B$	6.270	3966	0.002	0.998
470.1 bm - 1274 B	17.073	22504	0.007	0.993
$464.\mathrm{h}264\mathrm{ref}\text{-}30\mathrm{B}$	4.318	555	0.000	1.000
462.libquantum-1343B	14.099	17651	0.001	0.999

Tabla 25: L1+L2+L3. L3: 1024kB, Asociatividad de L3: 16-way. Datos L3

Archivo de Traza	AMAT (ciclos)
410.bwaves-1963B.trace.txt.gz	10.623
473.astar-153B.trace.txt.gz	5.414
436.cactusADM-1804B.trace.txt.gz	5.673
482.sphinx3-1100B.trace.txt.gz	9.651
450.soplex-247B.trace.txt.gz	21.775
433.milc- 127 B.trace.txt.gz	16.633
416.gamess-875B.trace.txt.gz	4.749
429.mcf-184B.trace.txt.gz	44.566
454.calculix- $104B.$ trace.txt.gz	4.238
445.gobmk-17B.trace.txt.gz	4.949
459. Gems FDTD-1169B. trace. txt. gz	14.167
444.namd- $120B.$ trace.txt.gz	4.617
483.xalancbmk-127B.trace.txt.gz	15.835
458.sjeng-1088B.trace.txt.gz	4.778
400.perlbench- $41B$.trace.txt.gz	4.128
401.bzip2-226B.trace.txt.gz	5.555
471.omnetpp-188B.trace.txt.gz	13.707
456.hmmer- $191B.$ trace.txt.gz	5.592
465. tonto-1769 B. trace. txt. gz	14.542
481.wrf-1170B.trace.txt.gz	5.463
435. gromacs-111B. trace. txt. gz	5.607
403.gcc-16B.trace.txt.gz	16.235
453.povray-887B.trace.txt.gz	5.282
437.leslie3d-134B.trace.txt.gz	6.270
470.lbm- 1274 B.trace.txt.gz	17.073
464.h264ref-30B.trace.txt.gz	4.318
462.libquantum-1343B.trace.txt.gz	14.099
AMAT Promedio	8.4606

Tabla 26: L1+L2+L3. L3: 1024kB, Asociatividad de L3: 16-way. AMAT Cache tres niveles

8.3.4. L3: 1024kB, Asociatividad de L3: 32-way

Traza	AMAT (ciclos)	L1 Total Misses	L1 Hit Rate	L1 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.623	16378	0.984	0.016
473.astar-153B.trace.txt.gz	5.414	4651	0.995	0.005
436.cactusADM-1804B.trace.txt.gz	5.667	6485	0.994	0.006
482.sphinx3-1100B.trace.txt.gz	9.651	13211	0.987	0.013
450.soplex- $247B.$ trace.txt.gz	21.714	69106	0.931	0.069
433.milc-127B.trace.txt.gz	16.633	22205	0.978	0.022
416. gamess-875 B. trace. txt. gz	4.749	13492	0.987	0.013
429.mcf-184B.trace.txt.gz	44.513	107758	0.892	0.108
454.calculix-104B.trace.txt.gz	4.238	428	1.000	0.000
445. gobmk-17B. trace. txt. gz	4.949	15038	0.985	0.015
459. Gems FDTD-1169B. trace. txt. gz	14.168	18209	0.982	0.018
444.namd-120B.trace.txt.gz	4.619	5336	0.995	0.005
483. xalancbmk-127B. trace. txt. gz	15.836	21764	0.978	0.022
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.778	9126	0.991	0.009
400.perlbench- $41B.$ trace.txt.gz	4.128	236	1.000	0.000
401.bzip 2 - $226B.$ trace.txt.gz	5.555	18999	0.981	0.019
471.omnetpp- $188B.$ trace.txt.gz	13.711	37818	0.962	0.038
456. hmmer-191B. trace. txt. gz	5.593	4830	0.995	0.005
465.tonto- 1769 B.trace.txt.gz	14.532	28316	0.972	0.028
481.wrf-1170B.trace.txt.gz	5.536	4204	0.996	0.004
435. gromacs-111B. trace. txt. gz	5.607	4773	0.995	0.005
403.gcc-16B.trace.txt.gz	16.235	22485	0.978	0.022
453.povray-887B.trace.txt.gz	5.282	27060	0.973	0.027
437.leslie $3d-134B.$ trace.txt.gz	6.270	4084	0.996	0.004
470.lbm- 1274 B.trace.txt.gz	17.073	38377	0.962	0.038
464.h264ref-30B.trace.txt.gz	4.318	610	0.999	0.001
462.libquantum-1343B.trace.txt.gz	14.099	17784	0.982	0.018

Tabla 27: L1+L2+L3. L3: 1024kB, Asociatividad de L3: 32-way Datos L1

Traza	AMAT (ciclos)	L2 Total Misses	L2 Hit Rate	L2 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.623	11571	0.294	0.706
473.astar-153B.trace.txt.gz	5.414	2518	0.459	0.541
436.cactusADM-1804B.trace.txt.gz	5.667	2934	0.548	0.452
482.sphinx3-1100B.trace.txt.gz	9.651	10491	0.206	0.794
450.soplex- $247B.$ trace.txt.gz	21.714	48090	0.304	0.696
433.milc-127B.trace.txt.gz	16.633	22092	0.005	0.995
416.gamess- 875 B.trace.txt.gz	4.749	1049	0.922	0.078
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	44.513	88187	0.182	0.818
454.calculix-104B.trace.txt.gz	4.238	415	0.030	0.970
445. gobmk-17B. trace. txt. gz	4.949	1375	0.909	0.091
459. Gems FDTD-1169B. trace. txt. gz	14.168	17806	0.022	0.978
444.namd-120B.trace.txt.gz	4.619	991	0.814	0.186
483. xalancbmk-127B. trace. txt. gz	15.836	20758	0.046	0.954
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.778	1195	0.869	0.131
400.perlbench- $41B.$ trace.txt.gz	4.128	223	0.055	0.945
401.bzip 2 - $226B.$ trace.txt.gz	5.555	2396	0.874	0.126
471.omnetpp-188B.trace.txt.gz	13.711	17313	0.542	0.458
456. hmmer-191B. trace. txt. gz	5.593	2745	0.432	0.568
465.tonto- 1769 B.trace.txt.gz	14.532	27790	0.019	0.981
481.wrf-1170B.trace.txt.gz	5.536	2760	0.343	0.657
435. gromacs-111B. trace. txt. gz	5.607	2812	0.411	0.589
403.gcc-16B.trace.txt.gz	16.235	21448	0.046	0.954
453.povray-887B.trace.txt.gz	5.282	1743	0.936	0.064
437.leslie $3d-134B.$ trace.txt.gz	6.270	3974	0.027	0.973
470.lbm- 1274 B.trace.txt.gz	17.073	22667	0.409	0.591
464.h264ref-30B.trace.txt.gz	4.318	555	0.090	0.910
462.libquantum-1343B.trace.txt.gz	14.099	17664	0.007	0.993

Tabla 28: L1+L2+L3. L3: 1024kB, Asociatividad de L3: 32-way Datos L2

Traza	AMAT (ciclos)	L3 Total Misses	L3 Hit Rate	L3 Miss Rate
410.bwaves-1963B.trace.txt.gz	10.623	11464	0.009	0.991
473.astar-153B.trace.txt.gz	5.414	2415	0.041	0.959
436.cactusADM-1804B.trace.txt.gz	5.667	2827	0.036	0.964
482.sphinx3-1100B.trace.txt.gz	9.651	9726	0.073	0.927
450.soplex- $247B.$ trace.txt.gz	21.714	27999	0.418	0.582
433.milc-127B.trace.txt.gz	16.633	22083	0.000	1.000
416.gamess-875B.trace.txt.gz	4.749	1048	0.001	0.999
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt.gz}$	44.513	67858	0.231	0.769
454.calculix-104B.trace.txt.gz	4.238	415	0.000	1.000
445. gobmk-17B. trace. txt. gz	4.949	1373	0.001	0.999
459. Gems FDTD-1169B. trace. txt. gz	14.168	17763	0.002	0.998
$444.\mathrm{namd}$ - $120\mathrm{B.trace.txt.gz}$	4.619	991	0.000	1.000
483. xalancbmk-127B. trace. txt. gz	15.836	20658	0.005	0.995
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt.gz}$	4.778	1193	0.002	0.998
400.perlbench- $41B.$ trace.txt.gz	4.128	223	0.000	1.000
401.bzip 2 - $226B.$ trace.txt.gz	5.555	2367	0.012	0.988
471.omnetpp-188B.trace.txt.gz	13.711	16437	0.051	0.949
456. hmmer-191B. trace. txt. gz	5.593	2740	0.002	0.998
465.tonto- 1769 B.trace.txt.gz	14.532	17050	0.386	0.614
481. wrf-1170B. trace. txt. gz	5.536	2640	0.043	0.957
435.gromacs- $111B.$ trace.txt.gz	5.607	2762	0.018	0.982
403.gcc-16B.trace.txt.gz	16.235	21357	0.004	0.996
453.povray-887B.trace.txt.gz	5.282	1705	0.022	0.978
437.leslie $3d-134B.$ trace.txt.gz	6.270	3966	0.002	0.998
470.lbm- 1274 B.trace.txt.gz	17.073	22504	0.007	0.993
464.h264ref-30B.trace.txt.gz	4.318	555	0.000	1.000
462.libquantum-1343B.trace.txt.gz	14.099	17651	0.001	0.999

Tabla 29: L1+L2+L3. L3: 1024kB, Asociatividad de L3: 32-way. Datos L3

Archivo de Traza	AMAT (ciclos)
410.bwaves-1963B.trace.txt.gz	10.623
473.astar-153B.trace.txt.gz	5.414
436.cactusADM-1804B.trace.txt.gz	5.667
482.sphinx3-1100B.trace.txt.gz	9.651
450.soplex-247B.trace.txt.gz	21.714
433.milc-127B.trace.txt.gz	16.633
416.gamess-875B.trace.txt.gz	4.749
429.mcf-184B.trace.txt.gz	44.513
454.calculix-104B.trace.txt.gz	4.238
445.gobmk-17B.trace.txt.gz	4.949
459.GemsFDTD-1169B.trace.txt.gz	14.168
444.namd-120B.trace.txt.gz	4.619
483.xalancbmk-127B.trace.txt.gz	15.836
458.sjeng-1088B.trace.txt.gz	4.778
400.perlbench-41B.trace.txt.gz	4.128
401.bzip2-226B.trace.txt.gz	5.555
471.omnetpp-188B.trace.txt.gz	13.711
456.hmmer-191B.trace.txt.gz	5.593
465.tonto-1769B.trace.txt.gz	14.532
481.wrf-1170B.trace.txt.gz	5.536
435.gromacs-111B.trace.txt.gz	5.607
403.gcc-16B.trace.txt.gz	16.235
453.povray-887B.trace.txt.gz	5.282
437.leslie3d-134B.trace.txt.gz	6.270
470.lbm-1274B.trace.txt.gz	17.073
464.h264ref-30B.trace.txt.gz	4.318
462.libquantum-1343B.trace.txt.gz	14.099
AMAT Promedio	8.463323715

Tabla 30: L1+L2+L3.L3: 1024kB, Asociatividad de L3: 32-way. AMAT Cache tres niveles

9. Gráficas y Análisis

Figura 8: Gráfica de la comparación entre los diferentes niveles de caché

Para la escogencia de los mejores AMAT, tenemos el único de L1, para el L1 y L2, 2: 128kB, 16-way fue la mejor opción, el que tenía la major cantidad de asociatividad con la mayor capacidad. Para el que contiene 3 niveles, el mejor llegando a ser el L3: 1024kB, Asociatividad de L3: 16-way, esto se decide por medio viendo cual tiene un tiempo en promedio menor ya que esto significa que es más rápido. El cual no es el que tiene más asociatividad y capacidad, el cual aunque es muy parecido, es ligeramente peor que el que escogimos. Con esto llegamos a nuestra primera conclusión la cual nos permite confirmar que más asociatividad y más capacidad no siempre es la mejor opción para un mejor rendimiento ya que si se tiene una librería es más fácil encontrar un libro en una estantería que en un pasillo lleno de estanterías.

En términos generales, se puede ir observando como el AMAT va mejorando como se le va agregando capacidad y asociatividad en los primeros experimentos, también cuando se le añaden más niveles en la memoria. Añadir más capacidad ayuda a mantener más datos y de esta manera evita que se pierdan datos antes de utilizarlos, además de que una mayor asociatividad permite a la memoria principal más opciones de ubicación de caché por lo que se evitan conflictos. Esto también se evidencia en lo que más niveles de memoria corresponde, cuando se tienen varios niveles bien organizados, se reduce la dependencia de la memoria principal, y a la hora de tener diferentes niveles, las memorias más recurrentes se quedarán en lo más cercano y de esta manera reduciendo el AMAT.

Aunque hay muchos beneficiosos de aumentar mucho la capacidad y la asociatividad, no siempre dará un efecto positivo o no siempre será la mejor opción para cierta aplicación, ya que mucha capacidad podría aumentar el tiempo de búsqueda en lugares muy grandes o también niveles de memoria que ni siquiera se utilizan para algunas aplicaciones o traces. Esto se ve evidenciado más a profundidad con la gráfica, la cual si siguiera un hilo constantes, el L1 y L2 deberían ser siempre constantemente menor que el L1 en todas las aplicaciones, pero lo contrario sucede, la grafica va subiendo y bajando, ya que estas mejoras afectan a las diferentes aplicaciones de manera diferente ya que administran sus datos y los acceden con diferentes prioridades.

El AMAT en sí es una medida en promedio de la velocidad pero para optimizarlo de la manera más adecuada hay que ver que tipo de aplicación de qué tipo de mejoras se beneficiaría, ya que en algunos casos más cosas puede llegar a ser menos.

10. Anexos

Trace	8 kB	16 kB	32 kB	64 kB	128 kB
400.perlbench-41B.trace.txt	0.1282	0.0471	0.0235	0.0234	0.0234
401.bzip2-226B.trace.txt	2.3729	2.1467	1.886	1.5453	0.4754
403.gcc-168.trace.txt	2.409	2.232	2.1639	2.137	2.1333
410.bwaves-1963B.trace.txt	5.4928	2.5357	1.6065	1.326	1.1697
416.gamess-875B.trace.txt	3.7468	2.2185	1.1729	0.3264	0.1184
429.mcf-184B.trace.txt	11.1595	11.0372	10.7254	10.0313	9.3066
433.milc-127B.trace.txt	2.2154	2.2119	2.2083	2.2083	2.2083
435.gromacs-111B.trace.txt	0.5119	0.47	0.4248	0.3757	0.3103
436.cactusADM-1804B.trace.txt	11.0294	6.3487	0.4344	0.3717	0.2882
444.namd-207B.trace.txt	2.1166	1.4345	0.4368	0.1138	0.0991
445.gobmk-17B.trace.txt	6.3246	3.3628	1.1407	0.323	0.1439
450.soplex-247B.trace.txt	7.6096	7.2354	6.7734	6.1798	5.518
453.povray-88B.trace.txt	3.7171	2.9787	2.5001	1.2368	0.2918
454.calculix-104B.trace.txt	0.052	0.0469	0.042	0.0418	0.0418
456.hmmer-191B.trace.txt	1.1317	0.9333	0.4097	0.3343	0.296
458.sjeng-1088B.trace.txt	3.6554	2.1201	1.7978	1.7753	1.7533
459.GemsFDTD-1169B.trace.txt	2.292	1.8982	1.7978	1.7753	1.7753
462.libquantum-1343B.trace.txt	1.7649	1.7649	1.7649	1.7649	1.7649
464.h264ref-30B.trace.txt	0.2855	0.0557	0.0555	0.0555	0.0555
465.tonto-1769B.trace.txt	2.841	2.8139	2.8139	2.8139	2.8139
470.lbm-1274B.trace.txt	3.5913	3.5867	3.5867	3.5867	2.3809
471.omnetpp-188B.trace.txt	9.1453	7.3374	2.7971	1.7547	1.6512
473.astar-153B.trace.txt	0.4765	0.464	0.4449	0.3716	0.2866
481.wrf-1107B.trace.txt	0.5962	0.5123	0.3834	0.2814	0.276
482.sphinx3-1100B.trace.txt	1.5856	1.2627	1.1943	1.1364	1.066
483.xalancbmk-127B.trace.txt	2.0714	2.065	2.0642	2.0639	2.0637
Media geométrica	1.791	1.346	0.904	0.671	0.524

Tabla 31: Resultados variando el tamaño de la caché con la política LRU con una caché de 8 ways y 64 bytes por bloque

Trace	1-way	2-way	4-way	8-way	16-way
400.perlbench-41B.trace.txt	1.2824	0.0878	0.0297	0.0235	0.0237
401.bzip2-226B.trace.txt	2.4342	1.9591	1.9086	1.886	1.8662
403.gcc-168.trace.txt	8.6183	2.4232	2.1681	2.1639	2.1479
410.bwaves-1963B.trace.txt	8.722	8.4326	8.5452	1.6065	1.2023
416.gamess-875B.trace.txt	3.6143	2.0316	1.4819	1.1729	1.0149
429.mcf-184B.trace.txt	10.802	10.695	10.7141	10.7254	10.7586
433.milc-127B.trace.txt	2.3826	2.2087	2.2083	2.2083	2.2083
435.gromacs-111B.trace.txt	0.5836	0.4606	0.4301	0.4248	0.42
436.cactusADM-1804B.trace.txt	5.7423	1.293	1.1778	0.4344	0.4205
437.leslie3d-34B.trace.txt	0.6676	0.4692	0.3968	0.3968	0.3968
444.namd-207B.trace.txt	1.3666	0.7402	0.5561	0.4368	0.3657
445.gobmk-17B.trace.txt	3.3497	2.0133	1.4747	1.1407	1.0592
450.soplex-247B.trace.txt	7.3165	7.0424	6.7836	6.7734	6.7457
453.povray-88B.trace.txt	3.1524	2.6293	2.4832	2.5001	2.5338
454.calculix-104B.trace.txt	0.0483	0.044	0.042	0.042	0.042
456.hmmer-191B.trace.txt	1.0465	0.7094	0.4504	0.4097	0.368
458.sjeng-1088B.trace.txt	1.5312	1.0952	0.8366	0.6924	0.6564
459.GemsFDTD-1169B.trace.txt	2.7302	2.6505	2.5213	1.7978	1.7753
462.libquantum-1343B.trace.txt	1.8615	1.7649	1.7649	1.7649	1.7649
464.h264ref-30B.trace.txt	0.535	0.0867	0.0581	0.0555	0.0555
465.tonto-1769B.trace.txt	3.0249	2.8139	2.8139	2.8139	2.8139
470.lbm-1274B.trace.txt	4.5288	3.6744	3.5867	3.5867	3.5867
471.omnetpp-188B.trace.txt	5.5645	4.5323	3.7568	2.7971	2.2034
473.astar-153B.trace.txt	0.5998	0.4749	0.4789	0.4449	0.4487
481.wrf-1107B.trace.txt	0.7091	0.4101	0.3876	0.3834	0.3885
482.sphinx3-1100B.trace.txt	2.2693	1.3275	1.2179	1.1943	1.193
483.xalancbmk-127B.trace.txt	2.3191	2.0679	2.0644	2.0642	2.0641
Media geométrica	2.023	1.254	1.076	0.904	0.867

Tabla 32: Resultados variando la asociatividad de la caché con la política LRU con una caché de 32 kB y 64 bytes por bloque.

Trace	16 kB	32 kB	64 kB	128 kB
400.perlbench-41B.trace.txt	0.0526	0.034	0.0235	0.0233
401.bzip2-226B.trace.txt	0.9561	1.7694	1.886	1.9963
403.gcc-16B.trace.txt	7.808	4.1006	2.1639	1.1183
410.bwaves-1963B.trace.txt	5.0241	2.7735	1.6605	1.1265
416.gamess-875B.trace.txt	1.0959	1.0637	1.1729	1.2152
429.mcf-184B.trace.txt	13.101	13.7416	10.7254	10.8355
433.milc-127B.trace.txt	7.5018	3.9729	2.2083	1.326
435.gromacs-111B.trace.txt	0.8764	0.5777	0.4248	0.3542
436.cactusADM-1804B.trace.txt	1.6435	0.827	0.4344	1.3844
437.leslie3d-134B.trace.txt	1.583	0.7922	0.3968	0.199
444.namd-120B.trace.txt	0.6807	0.3861	0.4368	0.4467
445.gobmk-17B.trace.txt	1.8017	1.3136	1.1407	1.1074
450.soplex-247B.trace.txt	9.6565	7.8884	6.7734	6.0452
453.povray-88B.trace.txt	4.14	3.1895	2.5001	1.8098
454.calculix-104B.trace.txt	0.1351	0.0738	0.042	0.025
456.hmmer-191B.trace.txt	1.4708	0.7632	0.4097	0.2286
458.sjeng-1088B.trace.txt	0.7404	0.6556	0.6924	0.9076
459.GemsFDTD-1169B.trace.txt	6.9706	3.521	1.7978	0.9353
462.libquantum-3423B.trace.txt	7.0583	3.5294	1.7649	0.8826
464.h264ref-30B.trace.txt	0.206	0.1044	0.0555	0.0311
465.tonto-1769B.trace.txt	11.2252	5.6179	2.8139	1.4109
470.lbm-1274B.trace.txt	6.327	4.5724	3.5867	2.4989
471.omnetpp-188B.trace.txt	3.3787	2.6114	2.7971	3.9869
473.astar-1539B.trace.txt	0.7408	0.5442	0.4449	0.389
481.wrf-1170B.trace.txt	1.335	0.7187	0.3834	0.2081
482.sphinx3-1100B.trace.txt	3.4498	1.9752	1.1943	0.8039
483.xalancbmk-127B.trace.txt	3.6458	2.8832	2.0642	1.3666
Media geométrica	1.98	1.306	0.904	0.708

Tabla 33: Resultados variando el tamaño del bloque de la caché con la política LRU con una caché de 32 kB y 8 ways.

Trace	LRU	Random
400.perlbench-41B.trace.txt	0.0235	0.0336
401.bzip2-226B.trace.txt	1.886	1.8485
403.gcc-16B.trace.txt	2.1639	2.8442
410.bwaves-1963B.trace.txt	1.6065	2.6191
416.gamess-875B.trace.txt	1.1729	1.1831
$429.\mathrm{mcf}$ - $184\mathrm{B.trace.txt}$	10.7254	10.7498
433.milc- $127B.$ trace.txt	2.2083	2.2371
435.gromacs-111B.trace.txt	0.4248	0.4803
436.cactusADM- $1804B.$ trace.txt	0.4344	0.9986
437.leslie $3d-134B.$ trace.txt	0.3968	0.4415
444.namd- $120B.$ trace.txt	0.4368	0.5592
445.gobmk-17B.trace.txt	1.1407	1.6217
450.soplex- $247B.$ trace.txt	6.7734	7.1292
453.povray-887B.trace.txt	2.5001	2.6284
454.calculix- $104B.$ trace.txt	0.042	0.0487
456.hmmer- $191B.$ trace.txt	0.4097	0.5977
$458.\mathrm{sjeng}$ - $1088B.\mathrm{trace.txt}$	0.6924	0.9544
459. Gems FDTD-1169B. trace.txt	1.7978	2.2091
462.libquantum-1343B.trace.txt	1.7649	1.7804
464.h264ref-30B.trace.txt	0.0555	0.0736
465.tonto- 1769 B.trace.txt	2.8139	2.8388
470.lbm- 127 B.trace.txt	3.5867	3.8667
471.omnetpp-188B.trace.txt	2.7971	3.751
473.astar-153B.trace.txt	0.4449	0.5175
481.wrf-1710B.trace.txt	0.3834	0.4624
$482.\mathrm{sphinx}3\text{-}1108\mathrm{B.trace.txt}$	1.1934	1.4076
483.xalancbmk-127B.trace.txt	2.0642	2.1898
Media geométrica	0.904	1.0949

Tabla 34: Resultados variando la política de reemplazo de la caché con una caché de 32 kB, 8 ways y 64 bytes por bloque.