Mathematica Tip Sheet

Built-In Constants:

	$\pi=\mathtt{Pi}$	$e = \mathtt{E}$	$i=\sqrt{-1}=\mathtt{I}$	$\infty = { t Infinity}$
--	-------------------	------------------	--------------------------	--------------------------

Built-In Functions:

Abs[x]	Sin[x]	ArcSin[x]
Sqrt[x]	Cos[x]	ArcCos[x]
Exp[x]	Tan[x]	ArcTan[x]
Log[x] (= ln x)	Sec[x]	ArcSec[x]
$Log[b, x] (= log_b(x))$	Csc[x]	ArcCsc[x]
n! or Factorial[n]	Cot[x]	ArcCot[x]

Grouping:

Parentheses - () Used for grouping for basic operations, like +, -, *, /, ^.

Square Brackets - [] Used for functions to indicate the variable quantity to be used. (f[x]).

Curly Braces - { } Used for lists, vectors, matrices, and ranges of values for options.

Assigning Values:

x = value	Assigns value to the variable x.
x = y = value	Assigns $value$ (the same value) to <u>both</u> the variables x and y.
Clear[x,y]	Clears all values (if any) previously assigned to ${\tt x}$ and ${\tt y}$. (USE OFTEN!)
x == y	Tests whether ${\tt x}$ is equal to ${\tt y},$ often used when trying to solve equations.
expr/.x-> value	Replaces every x in expr with value.
$expr/.\{x-> xval, y-> yval\}$	Replaces x and y in $expr$ with $xval$ and $yval$, respectively.
$f[x_{-}] = expr$	Defines a function f , of one variable. Remember the underscore (_)!
g[x, y] = expr	Defines a function g, of two variables.

Some Algebra Commands:

${ t Expand[\it expr]}$	Multiplies out products and powers in the <i>expr</i> .	
Factor[expr]	Factors <i>expr</i> over the integers.	
Apart[expr]	Decomposes expr into partial fractions.	
Simplify[expr]	Performs algebraic transformations to give the simplest form of expr.	
Solve[lhs == rhs, x]	Solves the polynomial equation $lhs=rhs$ (exactly) for x. (Notice the double equal sign $==$.)	
FindRoot[$lhs == rhs$, {x,a,b}]	Numerically solves the polynomial equation $lhs=rhs$ for x, starting in the interval (a, b).	
a=x/.Solve[lhs==rhs,x]	Stores the solution value as the variable a . If there is more than one solution, add [[n]] at the end of the command to store the n^{th} result as a .	
$sol=x/.FindRoot[lhs==rhs,{x,a,b}]$	Stores the solution value as the variable sol.	
$Solve[\{eq1,eq2,\ldots,eqN\}, \{x1,x2,\ldots,xN\}]$		
	Solves a system of N equations (written with ==), for the variables x1,,xN.	

Manipulating Lists and Vectors:

$letters=\{a,b,c\}$	A list called letters with three entries, a, b, and c. OR	
	A vector called letters with components, a, b, and c.	
<pre>letters[[n]]</pre>	Returns the n^{th} element in the list called letters. (letters[[3]] = c).	
Dot[u,v] or u.v	Returns the dot product of two vectors \mathbf{u} and \mathbf{v} .	
Cross[u,v]	Returns the cross product of two $\underline{\text{three-dimensional}}$ vectors u and v .	
Table[f[x],{x,a,b,n}]	Creates a table (list) of values of f[x], going from x=a to x=b in increments of n. (If no increment is specified, the default value of 1 is used.)	
Tableform[list]	Prints the elements of a list in a vertical table.	

Some Calculus Commands:

Finds $\frac{d}{dx}(expr)$. D[expr,x]Finds $\frac{d^n}{dx^n}(expr)$. $D[expr, \{x,n\}]$

f'[x] Finds the first derivative of a previously defined function f[x]. f''[x] Finds the second derivative of a previously defined function f[x].

Evaluates the indefinite integral $\int expr \ dx$. Integrate [expr,x]

Evaluates the definite integral $\int_{-b}^{b} expr \ dx$. Integrate[expr, {x,a,b}]

Limit[expr,x->a]

Evaluates $\lim_{\substack{x \to a \\ b}} expr$. Evaluates $\sum_{n=a}^{b} a[n]$. $Sum[a[n],{n,a,b}]$

Some Graphics Commands:

Plot[f[x], {x,a,b}, options] Creates a 2D plot of y=f[x] for the interval $a \le x \le b$.

Plot[{f[x], g[x]},{x,a,b},options] Creates a 2D plot of y=f[x] and y=g[x] on a single set of axes. Plot3D[f[x,y],{x,a,b},{y,c,d},options] Creates a 3D plot of z=f[x,y] over the region $a \le x \le b$, $c \le y \le d$.

ParametricPlot[f[t],{t,a,b},options] Creates a 2D plot of the parametrically defined function

 $f[t]={x[t],y[t]}$ for $a \le t \le b$.

ParametricPlot3D[f[t],{t,a,b},options] Creates a 3D plot of the parametrically defined function

 $f[t]=\{x[t],y[t],z[t]\}$ for $a \le t \le b$.

ListPlot[$\{\{x1,y1\},\{x2,y2\},\{x3,y3\}\}$] Plots the points with coordinates (x1, y1), (x2, y2), (x3, y3).

Show[{qraph1, qraph2}, options] Displays the two graphs qraph1, qraph2 on a single set of axes.

Some Selected Plot Options:

AspectRatio->value Sets the height-to-width ratio for the plot. Exclude axes in the plot. (Default is True). Axes->False

AxesLabel-> $\{xlabel, ylabel\}$ Labels to put on the axes.

PlotPoints->value The number of points to plot. (Default is 25). PlotRange->{min,max} The range of values to display on the plot.

PlotStyle->{Thickness[w]} Gives all curves a thickness of w as a fraction of the plot width.

PlotStyle->{RGBColor[a,b,c]} Produces color graphs: a, b, and c are values between 0 and 1 which represent

the saturation of red, green, and blue, respectively.

A Few Other Useful Commands:

% Refers to the last answer output from Mathematica.

Caution: This is the last output generated, which is not necessarily the answer directly above

the line on which % is entered.

N[expr,n]Returns a decimal value for *expr*, with n significant digits.

//N When typed after another command, converts it to a numerical (decimal) result. Semicolon:; Used at the end of successive lines of input, it evaluates, but suppresses output.

Used between two variables, it indicates a multiplication. For example, x y (with the space) means x*y, Space:

but xy (without any space) refers to a variable name.

Some Menu Commands / Other Items:

SHIFT + ENTER Executes an input cell.

 $Cell \rightarrow Delete All Output$ Deletes all output in the active notebook.

Evaluation \rightarrow Abort Evaluation Stops the evaluation of a cell which is currently running.

 $Palettes \rightarrow BasicMathInput$ Opens general palette with basic symbols. Evaluation \rightarrow Quit Kernel \rightarrow Local Clears all memory in current session.

 $Help \rightarrow Documentation Center$ Opens the Help Browser.