CSE 401 midterm winter 2019

February 12, 2019

Assume that \$s0 to \$s4 hold inteers and may be used as indices or offsets. Assume that the base addresses of arrays A and B are in \$s6 and \$s7. St registers are used to hold temporary values. What does this code do?

add \$t0, \$s6, \$s0 — {0: *B11 = ACB add \$t1, \$s7, \$s1 __ 1 = 13[11] Iw \$s0, O(\$t0) ___ so = *ACID = content of ACID addi \$t2, \$t0, 4 __ te= ALIJ+4: ALSJ->ALZJ -to: *ACJ] = content of ACZ] lw \$t0, O(\$t2) add \$t0, \$t0, \$s0 to: 1+1=2=2 sw \$t2, O(\$t1) tz= 1 -Integer 1

This code stores three ints in \$150, \$1 + 10, and \$1 +22. It mitably starts by setting the Moder to store at \$100 and \$ HEI, then stores the volue at Atmders in \$50. 1+ then ->

You are tasked with designing a CPU with 40-bit wordsize. You are using a RISC instruction set, similar to MIPS, with about 200 instruction codes. How many registers do you have? Why? et = 126 stegisters | Capianotion _

On a 32-bit MIPS machine, you need to execute the following single-precision floating point arithmetic instructions: Fraction 23-bits, buit since 1. Fraction,

1. 3.5e25 * 3.5e25 / 12.0e20

2. 13.2e-30 * 3.5e25

3. 13.2e-20 / 3.5e25 + 5.7e8

Do any of the above operations overflow or underflow? If so, can they be rewritten so they work? Note: all the above expressions are in base 10, the notation eNNN means 10 raised to the NNN power.

Extra

In problem 1, what is the maximum number of instruction codes for this machine? Explain.

on back 0.00.0.10-13

brbitz 0 32 6-hits

can hold. - 24 but unsigned int . 2

0.0,0,0,0,0,0,0,0,0,0.3.5.1012