Note Title

In this appendix, we will review important properties of

spatial & temporal Fourier transforms and provide some

use ful mathematical relationships.

A1) Spahial Fourier Transform:

$$F(\vec{r}) \xrightarrow{FT} F_k(\vec{k})$$

$$F_{k}(\vec{k}) = \frac{1}{(2n)^{3/2}} \int_{\infty}^{+\infty} F(\vec{r}) e^{-i\vec{k}\cdot\vec{r}} dr = FT\{F(r)\}$$

$$\vec{F}(\vec{r}) = \frac{1}{(2\pi)^3/2} \int_{-\infty}^{+\infty} \vec{F}_{k}(\vec{k}) e^{i\vec{k}\cdot\vec{r}} dk = FT^{+} \{F_{k}(k)\}$$

b)
$$F(\frac{\vec{r}}{a}) \longleftrightarrow |a|^3 F_k(a\vec{k})$$

$$F(a\vec{r}) \longleftrightarrow \frac{1}{|a|^3} F_k(\frac{\vec{k}}{a})$$
 $a \in \mathbb{R}$

c) If
$$f(r^2) = l(x) m(y) n(z)$$

and
$$l(x) \longleftrightarrow L(k_x)$$

 $m(y) \longleftrightarrow M(k_y)$
 $n(z) \longleftrightarrow N(k_z)$

Then

$$F(r) \longleftrightarrow L(k_x) M(k_y) N(k_z)$$

e)
$$F(\vec{r} \pm r_0) \longleftrightarrow e^{\pm i \vec{k} \cdot \vec{r_0}} F_k(\vec{k})$$

$$e^{\pm i \vec{k} \cdot r_0} F(r) \longleftrightarrow F_k(k \mp k_0)$$

f)
$$\int_{-\infty}^{+\infty} F(r) dr = (2n)^{3/2} \overline{F}_{k}$$

 $\int_{-\infty}^{+\infty} F_{k}(k) dk = (2n)^{3/2} F(0)$

g)
$$\int_{-\infty}^{+\infty} F(r) G(r) d^3r = \int_{-\infty}^{+\infty} F_k^*(k) G_k(k) d^3k$$

h)
$$FT^{+} \left\{ f(r) \right\} = \frac{1}{(2\pi)^{3/2}} F(-\vec{k})$$

$$FT^{-} \left\{ F_{k}(k) \right\} = (2\pi)^{3} F(-r)$$

$$\int_{-\infty}^{\infty} e^{\pm i \vec{k} \cdot \vec{r}} f(|\vec{r}|) d\vec{r} = \int_{-\infty}^{\infty} f(|r|) \frac{\sin \vec{k} \cdot \vec{r}}{|k||r|} 4\pi |r|^2 dr$$

j) If
$$f(\vec{r}) * G(\vec{r}) = \int f(\vec{r}_i) G(\vec{r} - \vec{r}_i) d^3r_i$$

$$F(r) G(r) \longleftrightarrow F_k(k) * G_k(k)$$

$$F(r) *G(r) \longleftrightarrow F_k(k) G_k(k)$$

$$\vec{k}$$
) $F(\vec{r}) \longleftrightarrow F_k(\vec{k})$

$$\overrightarrow{\nabla} \cdot F(r) \longleftrightarrow \overrightarrow{k} \cdot F_{k}(\overrightarrow{k})$$

$$\overrightarrow{\nabla} \times F(r) \longleftrightarrow \overrightarrow{k} \times F_{k}(k)$$

Some	use ful	functions	2	their	transforms:
		T .			4

F(プ)	$ \frac{1}{(2\pi)^{3/2}} e^{-i \vec{k} \cdot \vec{r_0}} $ $ \frac{1}{(2\pi)^{3/2}} e^{-i \vec{k} \cdot \vec{r_0}} $ $ \frac{1}{(\sqrt{2}a)^3} e^{-i \frac{\vec{k}^2}{4a^2}} $ $ \frac{1}{(4a^3)^{3/2}} e^{-i \frac{\vec{k}^2}{4a^2}} $ $ \frac{1}{(2\pi)^{3/2}} e^{-i \vec{k} \cdot \vec{r_0}} $
	-> -> :1
δ(r-r ₆)	1 e
-ar ²	$\frac{(210)^{3/2}}{1-k^2/4a^2}$
e aek	(50)3 · k2
ear² aeR	$\frac{(1\mp i)}{2} = \frac{1}{4a^2}$
	4a ³
1 e-ar	$(2n)^{3/2} \frac{1}{k^2 + a^2}$
F(r) = \ A r \leq R	
$F(r) = \begin{cases} A & r \leqslant R \\ 0 & \text{elsewhere} \end{cases}$	$\frac{\sqrt{\pi}R^3}{6} A \left\{ \frac{3(\sinh R - kR \cosh R)}{(kR)^3} \right\}$
A R <r<r+a ,a<<r<="" td=""><td>ب ب</td></r<r+a>	ب ب
$F(r) = \begin{cases} \frac{A}{4\pi\alpha R^2} & R \leq r \leq R + \alpha , \alpha \leq R \\ 0 & \text{elsewhere} \end{cases}$	$\frac{A}{(2\pi)^{3/2}} \frac{\sin \vec{k} \cdot \vec{R}}{\vec{k} \cdot \vec{R}}$
lo elsæwhere	(2n) ³¹ 2 k.R
$\sum \delta(\vec{r}_{-}n\vec{a})$	1 Σ δ(k- k)
$n=0,\pm 1,\pm 2,\cdots$	√27 a
	R.a=2πm?m=0,±1,±2,

Three dimensional lattice of points

$$F(r) = A \sum \delta(r_{-}n_{1}\vec{a}_{-}n_{2}\vec{b}_{-}n_{3}\vec{c})$$
 $F_{k}(k) = B\sum \delta(\vec{k}_{-}m_{1}\vec{a}_{-}m_{2}\vec{b}_{-}m_{3}\vec{c})$
 $n_{1},n_{2},n_{3}=0,\pm 1,\pm 2,...$ $m_{1},m_{2},m_{3}=0,\pm 1,\pm 2,...$

$$\frac{B}{A} = \frac{(2\pi)^{3/2}}{[a.bxc]} = \frac{[a^*, b^*xc^*]}{(2\pi)^{3/2}}$$

$\alpha = \alpha n = \alpha$	oxc , a=	$\frac{a^*.b^*}{a^*.b^*}$	×C*				
	$a \cdot b \cdot b^* = C \cdot C^* = 2\pi$						
a.b*=a.	$a \cdot b^* = a \cdot c^* = b \cdot a^* = b \cdot c^* = c \cdot a^* = c \cdot b^* = 0$						
	. 1	•1 •- 11 •	ન				
[a.bxc]	[a.bxc]: volume of unit cell in r space						
[a*.b*xc*]	: volume of u	unit cell in	k space				
, , , , , ,							

A2) Temporal Fourier Transform:

$$f(t) \xrightarrow{FT} f_{\omega}(\omega)$$

$$f_{\omega}(\omega) = \frac{1}{\sqrt{2\pi}} \int f(t) e^{i\omega t} dt = FT^{-} \{f(t)\}$$

$$f(t) = \frac{1}{\sqrt{2\pi}} \int f_{\omega}(\omega) e^{-i\omega t} d\omega = FT \{ f_{\omega}(\omega) \}$$

a)
$$f(t-a) \longleftrightarrow e^{ia\omega} f_{\omega}(\omega)$$

$$e^{\pm 2\pi ia} f(t) \longleftrightarrow f_{\omega}(\omega \pm 2\pi a)$$

b)
$$f(at) \leftarrow \frac{1}{10} f_{\omega}(\frac{\omega}{a})$$

c)
$$f_{\omega}(t) \longleftrightarrow f(-\omega)$$

d)
$$\frac{d^n}{dt^n}$$
 $f(t) \longleftrightarrow (-i\omega)^n f_{\omega}(\omega)$

e)
$$t^n f(t) \longleftrightarrow (-i)^n \frac{d^n}{d\omega^n} f_{\omega}(\omega)$$

f)
$$f(t) * g(t) \longleftrightarrow \sqrt{2n} f_{\omega}(\omega) g_{\omega}(\omega)$$

f(t)	$f_{\omega}(\omega)$
1	√2n δ(ω)
S(t)	√ 2 n
-i at	√2n δ (w-a)
Con (at)	$\sqrt{2n} \frac{\delta(\omega-a)+\delta(\omega+a)}{2}$
∈(at)	2 -i √2π δ(ω+α) - δ(ω-α)
th	$(-i)^n \sqrt{2n} \delta^{(n)}(\omega)$
1	$i \int \frac{\pi}{2} sgn(\omega)$
t	V -
u(t)	$\sqrt{\frac{n}{2}} \left(\frac{-1}{in\omega} + \delta(\omega) \right)$
Σ δ (t-nT)	$\frac{\sqrt{2\pi}}{T} \sum_{k=-\infty}^{+\infty} S(\omega_{-} \frac{2\pi}{T} k)$
tn	$i \int_{\overline{2}}^{\overline{1}} \frac{(i\omega)^{n-1}}{(n-1)!} sgn(\omega)$
-	
sgn(t)	$\int \frac{2}{\pi} \frac{i}{\omega}$
Cos(at²) Sin(at²)	$\frac{1}{\sqrt{2a}} \cos\left(\frac{\omega^2}{4a} - \frac{\pi}{4}\right)$ $\frac{-1}{\sqrt{2a}} \sin\left(\frac{\omega^2}{4a} - \frac{\pi}{4}\right)$
Sin(at²)	$\frac{-1}{\sqrt{2}} \sin\left(\frac{\omega^2}{40} - \frac{\pi}{4}\right)$