Recherche opérationnelle

DUT Info 2e année, parcours A

Complexité algorithmique de la PL et PLNE

Florent Foucaud

Problème algorithmique : une entrée, une sortie (≈ programme informatique)

- Trier une liste de n entiers
- Trouver un plus court chemin de A à B dans un graphe à *n* sommets
- Résoudre un programme linéaire à *n* variables et *m* contraintes
- Couvrir un réseau à *n* sommets avec *k* antennes

Problème algorithmique : une entrée, une sortie (≈ programme informatique)

- Trier une liste de n entiers
- Trouver un plus court chemin de A à B dans un graphe à n sommets
- Résoudre un programme linéaire à *n* variables et *m* contraintes
- Couvrir un réseau à *n* sommets avec *k* antennes

Pour un problème algorithmique P, quel est le plus petit nombre d'étapes de calcul nécessaire et suffisant pour résoudre P?

Problème algorithmique : une entrée, une sortie (≈ programm

(≈ programme informatique)

- Trier une liste de n entiers
- Trouver un plus court chemin de A à B dans un graphe à n sommets
- Résoudre un programme linéaire à *n* variables et *m* contraintes
- Couvrir un réseau à *n* sommets avec *k* antennes

Pour un problème algorithmique *P*, quel est le plus petit nombre d'étapes de calcul nécessaire et suffisant pour résoudre *P*?

C'est la complexité algorithmique du problème P.

Problème algorithmique : une entrée, une sortie (≈ programme informatique)

- Trier une liste de n entiers
- Trouver un plus court chemin de A à B dans un graphe à *n* sommets
- Résoudre un programme linéaire à *n* variables et *m* contraintes
- Couvrir un réseau à *n* sommets avec *k* antennes

Pour un problème algorithmique *P*, quel est le plus petit nombre d'étapes de calcul nécessaire et suffisant pour résoudre *P*?

C'est la complexité algorithmique du problème P.

On mesure cela par une fonction f(n) de la taille n de l'entrée

(n : nombre de bits pour coder l'entrée)

Explosion combinatoire

Complexité algorithmique pour un problème donné : f(n) opérations pour une entrée de taille n

Meilleurs problèmes: complexité linéaire $f(n) \rightarrow 10n, 2n, 1000n, n ...$

Problèmes "raisonnables": complexité polynomiale $f(n) \rightarrow 4n^2$, $10n^3$, n^{1000} ...

Problèmes difficiles : complexité exponentielle $f(n) \rightarrow 2^n$, n!, n^n ...

ightarrow Cela correspond à tester toutes les solutions possibles

Explosion combinatoire

Complexité algorithmique pour un problème donné :

f(n) opérations pour une entrée de taille n

Meilleurs problèmes: complexité linéaire $f(n) \rightarrow 10n, 2n, 1000n, n \dots$

Problèmes "raisonnables" : complexité polynomiale $f(n) \rightarrow 4n^2$, $10n^3$, n^{1000} ...

Problèmes difficiles : complexité exponentielle $f(n) \rightarrow 2^n$, n!, n^n ...

ightarrow Cela correspond à tester toutes les solutions possibles

	<i>f</i> (<i>n</i>)	n = 10	n = 50	n = 100	n = 200	n = 300
-	n	10	50	100	200	300
	100n	1000	5000	10000	20000	30000
_	n ²	100	2500	10000	40000	90000
	2 ⁿ	1024	(16 chiffres)	(31 chiffres)	(60 chiffres)	(91 chiffres)
	n!	3628800	(64 chiffres)	(157 chiffres)	(374 chiffres)	(614 chiffres)

Explosion combinatoire

Complexité algorithmique pour un problème donné :

f(n) opérations pour une entrée de taille n

Meilleurs problèmes: complexité linéaire $f(n) \rightarrow 10n, 2n, 1000n, n \dots$

Problèmes "raisonnables": complexité polynomiale $f(n) \rightarrow 4n^2$, $10n^3$, n^{1000} ...

Problèmes difficiles : complexité exponentielle $f(n) \rightarrow 2^n$, n!, n^n ...

ightarrow Cela correspond à tester toutes les solutions possibles

<i>f</i> (n)	n = 10	n = 50	n = 100	n = 200	n = 300
n	10	50	100	200	300
100 <i>n</i>	1000	5000	10000	20000	30000
n ²	100	2500	10000	40000	90000
2 ⁿ	1024	(16 chiffres)	(31 chiffres)	(60 chiffres)	(91 chiffres)
n!	3628800	(64 chiffres)	(157 chiffres)	(374 chiffres)	(614 chiffres)

Question

Quels problèmes sont "raisonnables"? Lesquels sont difficiles?

Paradoxe du barbier

Dans un village, le barbier rase exactement tous les hommes qui ne se rasent pas eux-mêmes.

Question: Qui rase le barbier?

Bertrand Russell (1872-1970)

Paradoxe du barbier

Dans un village, le barbier rase exactement tous les hommes qui ne se rasent pas eux-mêmes.

Question: Qui rase le barbier?

PARADOXE!

Bertrand Russell (1872-1970)

Problème de l'arrêt

Étant donné n'importe quel code de programme informatique, peut-on décider en temps fini :

1. s'il va s'arrêter un jour

ou bien

2. s'il va tourner à l'infini?

Problème de l'arrêt

Étant donné n'importe quel code de programme informatique, peut-on décider <mark>en</mark> temps fini:

1. s'il va s'arrêter un jour ou bien

2. s'il va tourner à l'infini?

Théorème (Alan Turing, 1936)

Il n'existe aucun algorithme pour résoudre le problème de l'arrêt.

Alan Turing (1912-1954)

Problème de l'arrêt

Étant donné n'importe quel code de programme informatique, peut-on décider en temps fini:

1. s'il va s'arrêter un jour ou bien

2. s'il va tourner à l'infini?

Théorème (Alan Turing, 1936)

Il n'existe aucun algorithme pour résoudre le problème de l'arrêt.

Démonstration : Supposons par l'absurde qu'il existe un programme en temps fini arret(code, parametre)

- qui renvoie VRAI si le code donné avec le paramètre s'arrêtera un jour, et
 - FAUX si au contraire le code tourne à l'infini.

Problème de l'arrêt

Étant donné n'importe quel code de programme informatique, peut-on décider en temps fini:

1. s'il va s'arrêter un jour ou bien

2. s'il va tourner à l'infini?

Théorème (Alan Turing, 1936)

Il n'existe aucun algorithme pour résoudre le problème de l'arrêt.

Démonstration : Supposons par l'absurde qu'il existe un programme en temps fini arret(code, parametre)

qui renvoie • VRAI si le code donné avec le paramètre s'arrêtera un jour, et

• FAUX și au contraire le code tourne à l'infini.

Soit le programme suivant :

def diag(x):

- si arret(x,x) est VRAI alors:
 - ▶ boucle infinie
- sinon:
 - retourner VRAI

Problème de l'arrêt

Étant donné n'importe quel code de programme informatique, peut-on décider en temps fini:

1. s'il va s'arrêter un jour ou bien

2. s'il va tourner à l'infini?

Théorème (Alan Turing, 1936)

Il n'existe aucun algorithme pour résoudre le problème de l'arrêt.

Démonstration: Supposons par l'absurde qu'il existe un programme en temps fini arret(code, parametre)

qui renvoie • VRAI si le code donné avec le paramètre s'arrêtera un jour, et

• FAUX și au contraire le code tourne à l'infini.

Soit le programme suivant :

def diag(x):

Que renvoie l'appel diag(diag)?

- si arret(x,x) est VRAI alors:
 - ▶ boucle infinie
- sinon:
 - retourner VRAI

Problème de l'arrêt

Étant donné n'importe quel code de programme informatique, peut-on décider en temps fini:

1. s'il va s'arrêter un jour ou bien

2 s'il va tourner à l'infini?

Théorème (Alan Turing, 1936)

Il n'existe aucun algorithme pour résoudre le problème de l'arrêt.

Démonstration: Supposons par l'absurde qu'il existe un programme en temps fini arret(code, parametre)

qui renvoie • VRAI si le code donné avec le paramètre s'arrêtera un jour, et

• FAUX și au contraire le code tourne à l'infini.

Soit le programme suivant :

def diag(x):

• si arret(x,x) est VRAI alors:

▶ boucle infinie

sinon:

retourner VRAI

Que renvoie l'appel diag(diag)?

PARADOXE!

Problèmes indécidables

Problèmes indécidables :

- Problème de l'arrêt (Alan Turing, 1936)
- Problème de correspondance de mots : 2 paquets de mots a₁,..., a_n et b₁,..., b_n
 → Peut-on les arranger pour créer deux mots identiques? (Emil Post, 1946)
- Trouver des solutions entières d'équations diophantiennes de type $2x^2 + 3y^3 2z = 0$ (Youri Matyasevitch, 1970 10e problème de Hilbert, 1900)

Alan Turing (1912-1954)

Emil L. Post (1897-1954)

Youri Matyasevitch (1947-)

David Hilbert (1862-1943)

Problèmes indécidables

Problèmes indécidables :

Problème de l'arrêt

- (Alan Turing, 1936)
- Problème de correspondance de mots : 2 paquets de mots a₁,..., a_n et b₁,..., b_n
 → Peut-on les arranger pour créer deux mots identiques? (Emil Post, 1946)
- Trouver des solutions entières d'équations diophantiennes de type $2x^2 + 3y^3 2z = 0$ (Youri Matyasevitch, 1970 10e problème de Hilbert, 1900)

Alan Turing (1912-1954)

Emil L. Post (1897-1954)

Youri Matyasevitch (1947-)

David Hilbert (1862-1943)

Liens avec la logique mathématique :

théorème d'incomplétude de Gödel (1931)

Quelques classes de complexité algorithmique

Classe P (pour "polynomiaux"): problèmes "raisonnables"

Au-dessus : problèmes (probablement) algorithmiquement difficiles

Quelques classes de complexité algorithmique

Classe P (pour "polynomiaux"): problèmes "raisonnables"

Au-dessus : problèmes (probablement) algorithmiquement difficiles

Jack Edmonds (1934-)

Quelques classes de complexité algorithmique

Classe P (pour "polynomiaux") : problèmes "raisonnables"

Au-dessus : problèmes (probablement) algorithmiquement difficiles

Question (P versus NP - une question à 1 million de \$)

Est-ce que P = NP? (On pense que non.)

Grigori Perelman (1966-)

L'algorithme du simplexe n'est (en général) pas polynomial... mais il l'est souvent!

L'algorithme du simplexe n'est (en général) pas polynomial... mais il l'est souvent!

Théorème (Leonid Khachiyan, 1979)

Le problème de trouver une solution à un PL est polynomial ("raisonnable").

Leonid Khachiyan (1952-2005)

→ Méthode de l'ellipsoïde ou des points intérieurs.

L'algorithme du simplexe n'est (en général) pas polynomial... mais il l'est souvent!

Théorème (Leonid Khachiyan, 1979)

Le problème de trouver une solution à un PL est polynomial ("raisonnable").

Leonid Khachiyan (1952-2005)

→ Méthode de l'ellipsoïde ou des points intérieurs.

Théorème

Le problème de trouver une solution à un PLNE est NP-difficile (probablement pas "raisonnable").

En particulier : ensemble dominant (= couverture par des antennes), voyageur de commerce...

L'algorithme du simplexe n'est (en général) pas polynomial... mais il l'est souvent!

Théorème (Leonid Khachiyan, 1979)

Le problème de trouver une solution à un PL est polynomial ("raisonnable").

Leonid Khachiyan (1952-2005)

→ Méthode de l'ellipsoïde ou des points intérieurs.

Théorème

Le problème de trouver une solution à un PLNE est NP-difficile (probablement pas "raisonnable").

En particulier : ensemble dominant (= couverture par des antennes), voyageur de commerce...

→ La méthode "brancher et borner" est généralement peu efficace! (mais quand même mieux que tester toutes les possibilités)

