ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

H₂-assisted NH₃-SCR over Ag/Al₂O₃: An engine-bench study

Sebastian Fogel, Pär Gabrielsson*

Haldor Topsøe A/S, Nymøllevej 55, 2800 Kgs. Lyngby, Denmark

ARTICLE INFO

Article history: Received 28 May 2013 Received in revised form 18 March 2014 Accepted 22 March 2014 Available online 31 March 2014

Keywords: Ag/Al₂O₃ SCR NH₃ H₂ Fe-BEA

ABSTRACT

A combined catalyst system of Ag/Al₂O₃ and Fe-BEA was tested in a light-duty engine-bench for H₂assisted NH₃-SCR. Ag/Al₂O₃ was used to provide a high low-temperature activity, while Fe-BEA can provide a high activity at higher temperatures without the need to co-feed H₂. The catalysts were combined in a sequential dual-brick layout and compared to Ag/Al₂O₃ and Fe-BEA only. The aim of the study was to investigate the performance of the catalysts in real life exhaust in contrast to synthetic gas. The catalysts were both tested during stationary and transient conditions. Transient testing was carried out with the New European Driving Cycle (NEDC). Laboratory tests were performed to complement the results from engine tests. Ag/Al₂O₃ showed a lower NO_x conversion in stationary engine tests than expected. This was investigated further in a laboratory test set-up and was attributed to deactivation by soot and/or Ag oxidation, low H₂ levels and low specific catalyst loading. NO₂ increased the catalytic activity at below 250 and above 300 °C. For the combined systems, it was preferred to have Fe-BEA in an upstream position of Ag/Al₂O₃ compared to the opposite. The high engine out NO₂/NO_x ratio, giving fast-SCR over the Fe-BEA, was believed to be the reason. At low temperature, the activity over the combined systems was higher than that for the individual catalysts showing that there were synergy effects of combining Ag/Al₂O₃ and Fe-BEA. This was also seen in the transient tests. However, the overall cycle NO_x conversion was low due to very demanding conditions with a lot of the NO_x being emitted at below 150 °C. The order of performance based on an overall conversion during the NEDC was dual-brick with Ag/Al₂O₃ upstream = Ag/Al₂O₃ only > dual-brick Fe-BEA upstream > Fe-BEA only. The Ag/Al₂O₃ containing layouts showed a noticeable NO_x conversion from the start of the cycle, i.e. before any NH₂ or H₂ was dosed. We believe that the NO_x conversion seen came from NO_x storage on the Ag/Al₂O₃.

© 2014 Published by Elsevier B.V.

1. Introduction

The upcoming Euro 6 and Euro VI emissions legislation for light- and heavy-duty diesel vehicles in Europe is very strict. It calls for large reductions of, among others, NO_x . It is well accepted that some type of exhaust after treatment will be needed for light-duty vehicles, as has been the case for heavy-duty vehicles for many years. For heavy-duty vehicles selective catalytic reduction (SCR) has almost completely penetrated the market. For light-duty vehicles there are other options in addition to SCR, with lean NO_x traps (LNT) being the main one; SCR catalyst and LNT can also be combined [1]. Today there are light-duty passenger cars equipped with SCR being sold in Europe that meet Euro 6 standards. Another wide-spread technique is exhaust gas recirculation (EGR) which often is used together with SCR on heavy-duty vehicles or as a single measure to reach present NO_x legislation (Euro 5) on light-duty

vehicles. EGR lowers the oxygen concentration and temperature in the engine cylinder which reduces NO_x formation [2].

The main challenge for the NO_x removal both for light- and heavy-duty vehicles is the low-temperature activity (<200–250 °C). Today's SCR catalysts, e.g. vanadia-based and Fe-zeolites, are efficient at higher temperatures [3]. Cu-zeolite type catalysts have been reported to have very promising low-temperature activity [4–6]; chabazite or chabazite-like structures are especially interesting due to their excellent hydrothermal stability [7–9]. Platinum group metal-based catalyst has also been proposed but suffers from too low selectivity to N₂ and a too narrow temperature window of operation [10,11]. Ag/Al₂O₃ is a promising candidate that has been reported to have high low-temperature activity, when H₂ is co-fed with either hydrocarbons (HC) [12-14] or NH₃ as the reductant [15,16]. We have previously investigated the mechanism [17,18] and sulfur tolerance [19,20] of NH $_3$ -SCR with H $_2$ over Ag/Al $_2$ O $_3$ and showed a promising low-temperature activity and stability of the catalyst. A large draw-back of NH3-SCR over Ag/Al2O3 is that the catalyst is inactive without H₂ in contrast to HC-SCR which is active from 250 to 300 °C even without H₂ [12-14]. Thus, we combined

^{*} Corresponding author. Tel.: +45 22754184. E-mail address: pg@topsoe.dk (P. Gabrielsson).

 Ag/Al_2O_3 with Fe-BEA in a previous study and showed that the amount of H_2 needed can be reduced without sacrificing the activity over the combined catalyst system [21]. Fe-BEA shows high activity from 250 to $300\,^{\circ}$ C [5,6,22]. Since diesel exhaust contains a lot more compounds than are possible to include in simulated exhaust, the catalyst system has to be tested under real conditions to fully evaluate the potential of it. Compounds, such as unburned hydrocarbons, particulates, residues from engine lubricant oil and even traces of metal from engine wear [23] could potentially affect the catalyst performance. There is a number of reports that test Ag/Al_2O_3 in real diesel exhaust for HC-SCR [24–29]; to our knowledge, there are none using urea/NH₃ as the reductant. The reported NO_X conversions were dependent on the type of HC species used, HC/NO_X ratio, GHSV and amount of H_2 used.

In this study, we aim to investigate the performance of Ag/Al_2O_3 , Fe-BEA and a combination of the two in the exhaust of a light-duty engine mounted on an engine dynamometer for H_2 -assisted NH_3 -SCR. We tested the catalysts both under stationary and transient conditions. Transient testing was made with the New European Driving Cycle (NEDC). Laboratory tests were performed to complement results from the engine tests.

2. Materials and methods

2.1. Catalyst preparation

Ag/Al₂O₃ catalyst (4 wt% Ag) was prepared by incipient wetness impregnation of Si-Al₂O₃ (Siralox 5/320, courtesy of Sasol Germany) with AgNO₃ (99.8% purity). The prepared catalyst was dried at room temperature and at 100 °C and later calcined at 500 °C. The Fe-BEA was a commercial 1 wt% Fe catalyst. The catalysts were washcoated onto cordierite monolith bricks (400 cpsi) to give the desired catalyst loading (120–160 g/l). We used 5.6 in. × 5.0 in. $(d \times h)$ (21) bricks for engine testing and $4.9 \, \text{cm} \times 7.6 \, \text{cm} (d \times h)$ (0.14 ml) bricks for laboratory tests. The catalyst bricks were dried at room temperature in flowing air and calcined at 500 °C for 2 h after the washcoating. Core samples, $4.9 \, \text{cm} \times 7.4 \, \text{cm} (d \times h)$, were taken from the Ag/Al₂O₃ catalyst used in the engine tests and were tested in the laboratory test set-up.

2.2. Engine dynamometer testing

A 2.01, 120 kW, five-cylinder direct-injected Volvo diesel engine equipped with EGR was used for engine dynamometer testing. The engine was rated to Euro 5 emission standard. A standard low-sulfur (<10 ppm) diesel was used. The engine was mounted on a Horiba DYNAS3 HT250 engine dynamometer test rig. The two catalyst bricks (41 in total volume) were placed directly after each other, approximately 75 cm after the engine. NH3 and H2 were dosed approximately 30 cm before the catalysts. The temperature was measured before and after the catalysts. The exhaust gas was analyzed by two Horiba MEXA 7170D and one FTIR (Gasmet 4000). Together, they can measure NO, NO2, N2O, NH3, CO, CO2, H2O, O2 and hydrocarbons (HC). HC was measured as total HC based on C1-equivalents.

One MEXA was placed directly after the engine and used as a reference of engine out concentrations. The second MEXA and the FTIR were coupled to the same sample line; sampling could either be carried out before or after the catalysts by switching the sample point in the engine dynamometer control program. Fig. 1 shows a schematic picture of the set-up. NO_x (NO and NO₂), N₂O, NH₃ and H₂O were measured by FTIR and HC, O₂, CO and CO₂ by MEXA (unless stated otherwise). Conversions (NO_x, NH₃ and HC) were calculated by comparing catalyst inlet and outlet levels by switching the sample point.

Fig. 1. Schematic layout of engine-bench test set-up.

NH₃ was supplied from a gas bottle by a mass flow controller. H₂ was supplied by feeding NH₃ to a cracker, where it was converted to H₂ and N₂; some unreacted NH₃ also remained in the stream. The NH₃ flow to the cracker was controlled by a mass flow controller. During stationary tests, the amount of NH₃ and H₂ dosed was controlled by online calculations from the actual NO_x concentrations (measured by NO_x sensors) and flow with fixed NH₃ (ammonia to NO_x ratio, ANR) and H_2 (hydrogen to NO_x ratio, HNR) to NO_x ratios. During transient testing, NH₃ and H₂ dosing were either controlled by online calculations, as in the case of stationary testing with dosing starting when the exhaust gas temperature was above 150 °C, or as pre-calculated values based on NO_x and flow inlet values from previous reference tests. The pre-calculated values were used to allow dosing from 120 °C by circumventing the low-temperature limit of reductant dosing below 150 °C due to an electronic shut down of the NO_x sensors used for calculating the amount NH₃ and H₂ to be dosed. The same ANR and HNR, 0.8 and 2, respectively, were used in all tests.

Table 1 shows the engine settings and relevant data for the six stationary points tested. The points were chosen to give comparable NO_x concentrations and total flows. The inlet NO_x levels varied significantly, they were in general lowest in the first test (Ag-only). At each point, temperature, NO_x level and NH_3 level were allowed to reach steady-state before changing the conditions. Tests were performed with (NH_3 and H_2 dosing) and without co-feeding of H_2 (only NH_3 dosing). Measurements were made before and after the catalysts. For transient tests, the New European Driving Cycle (NEDC) was used. It comprises four urban cycles and one extra urban cycle (highway cycle) and has a total road distance of 11 km and takes 1180 s to complete. Fig. 2 shows the road speed during the NEDC and the engine out temperature. The engine was operated under high speed and low throttle conditions ($3500 \, \text{rpm}/0\%$) for approximately 20 min prior to the start of the NEDC to cool

Fig. 2. NEDC, road speed and actual temperature.

Table 1Data for steady-state stationary engine points, GHSV based on a total of 4 l catalyst.

T (°C)	Engine settings		GHSV (h ⁻¹)	NO _x (ppm)	O ₂ (%)	H ₂ O (%)	CO ₂ (%)	CO (ppm)	HC ^a (ppm)
	Speed (rpm)	Torque (N m)							
160	2800	15	33,000	140-150	16	4.0	3.4	1000	240-280
180	2800	30	34,000	160-180	15	4.6	4.5	840	170-220
220	2800	50	36,000	190-230	14	5.5	5.3	560	100-150
270	2740	75	34,000	150-210	11	7.0	6.9	280	60-100
340	2330	125	33,000	130-160	7.8	9.2	9.6	200	30-60
400	1835	200	33,000	160-210	5.2	11	11	480	16-25

^a The level was in the higher range for Ag-only.

down the exhaust system. The inlet gas temperature at the start of the cycle was 60 $^{\circ}\text{C}.$

Four layouts were tested: Ag/Al_2O_3 (Ag-only), Fe-BEA (Fe-only), Fe-BEA upstream of Ag/Al_2O_3 (dual-brick-Fe/Ag) and Ag/Al_2O_3 upstream of Fe-BEA (dual-brick-Ag/Fe). A total of two bricks (4 l of catalysts) was used in all cases; either two of the same type (Agand Fe-only) or one of each type (dual-brick-Fe/Ag and dual-brick-Ag/Fe).

2.3. Laboratory testing

Testing was also carried out in a laboratory set-up. Fig. 3 shows a schematic picture of the set-up. N_2 and air were first heated in a gas heater before the desired feed gases were added. The resulting feed was passed through a mixer to ensure a homogenous composition before entering the reactor and the monolithic catalyst. All gases and liquid H_2O were controlled with mass flow controllers. All lines after the heater were made of steel. H_2O was evaporated by passing liquid H_2O to a heated metal block, where it was rapidly evaporated; the lines after the evaporator was heated to $180\,^{\circ}C$ to avoid condensation. The temperature was measured by thermocouples before and after the catalyst.

A standard feed of 500 ppm NO, 500 ppm NH₃, 1000 ppm H₂, 8% O₂, 12% H₂O and balance N₂ was used for activity testing. NO was mixed with air to allow oxidation to NO₂ in order to investigate the influence of NO₂ on the reaction. NO₂/NO_x ratios of 0.25, 0.5, 0.75 and 0.95 were tested and compared to the standard feed (NO₂/NO_x = 0). Tests were also performed without adding H₂. The outlet gas was analyzed by a FTIR (Gasmet 4000) after the catalyst. Inlet concentrations were taken from the given set-points (verified by empty reactor tests). The FTIR-lines were heated to 180 °C to avoid H₂O condensation and NH₄NO₃ formation. The GHSV was 30,000 or 33,000 h⁻¹ depending on the size of the tested catalyst brick.

2.4. TPD

NH $_3$ and NO-TPD were carried out in a fixed-bed flow reactor, where 0.5 g of the powder catalyst (of a particle size of 150–300 μ m) was used. The catalyst was treated in N $_2$ at 500 °C for 30 min. prior to adsorption of NO or NH $_3$. NO was adsorbed at

Fig. 3. Schematic layout of laboratory set-up.

 $40 \,^{\circ}\text{C}$ (2000 ppm, $10\% \, O_2$, balance N_2) and NH_3 at $150 \,^{\circ}\text{C}$ (2100 ppm, balance N_2). Excess NO or NH_3 was removed by switching back to pure N_2 , before the temperature was ramped up ($2 \,^{\circ}\text{C/min}$) to $500 \,^{\circ}\text{C}$ (NO-TPD) or $650 \,^{\circ}\text{C}$ (NH_3 -TPD) in a pure N_2 atmosphere.

3. Results and discussion

3.1. Stationary tests

Fig. 4 shows NO_x conversions for the four layouts tested (Agonly, Fe-only, dual-brick-Fe/Ag and dual-brick-Ag/Fe) as a function of temperature for the NH₃ and H₂ dosing case during stationary tests. Ag-only showed an unexpectedly low NO_x conversion in the whole temperature range (compared to e.g. [21]). Fe-only showed a higher than expected NO_x conversion at 150 °C and a 90% NO_x conversion at 340 and 400 °C. The combined catalyst systems (dual-brick-Fe/Ag and dual-brick-Ag/Fe) showed an activity profile that was a combination of that of Ag/Al₂O₃ and Fe-BEA with a local maximum at 180 °C corresponding to that of Ag/Al₂O₃ and a sharp increase in activity at above 270 °C related to Fe-BEA. It was, as seen, preferred to have Fe-BEA as the upstream catalyst (dual-brick-Fe/Ag) compared to having Ag/Al₂O₃ upstream. This contradicts our previous results, where there was a clear advantage of having Ag/Al₂O₃ upstream [21]. We attributed this, among other things, to a complete NH₃ conversion over Fe-BEA giving a deficit of NH3 over the downstream catalyst. In this study, no such unselective NH₃ oxidation was seen (Fig. 5). Fig. 5 shows that there were very small differences in NO_x conversion between NH₃ and H₂ dosing and only NH₃ dosing for Ag-only and the combined

Fig. 4. Engine-bench stationary steady-state NO_x conversions as function of temperature for the different catalyst layouts. The layouts including Ag/Al_2O_3 are tested with NH_3 and H_2 dosing and Fe-only with only NH_3 dosing.

Fig. 5. Engine-bench stationary steady-state NO_{χ} and NH_3 conversions as a function of temperature for (a) Ag-only, (b) Fe-only, (c) dual-Fe/Ag and (d) dual-Ag/Fe. The systems were tested both with NH_3 and H_2 dosing (w H_2) and with only NH_3 dosing (w/o H_2).

systems. Since the effect of H_2 is very pronounced [15], this was highly unexpected and will be discussed later.

The ratio between the amounts of converted NH_3 and converted NO_x over the catalysts varied between 0.8 and 1.2 and in most cases it was close to 1 for the Fe-BEA containing layouts, in good agreement with the expected results [5,6,22]. Most of the $deNO_x$ activity is believed to occur on the Fe-BEA (Fig. 4) for the combined systems. Thus, the somewhat low NH_3 conversion seen for the combined system (Fig. 5) can be explained by an overstoichiometric dosing of NH_3 due to unreacted NH_3 present in the H_2 stream from the

NH₃ to H₂ cracker (Fig. 1). Ag-only, on the other hand, showed lower values at up to $270\,^{\circ}\text{C}$ (0.4–0.6); at higher temperatures, the NH₃ conversion was negative and the NO_x conversion was slightly negative giving large positive values. The low NH₃/NO_x ratio for Agonly indicates that it is not only the main SCR reactions that were responsible for the NO_x conversion.

Fig. 6 shows the NO, NO₂, NO_x and NH₃ concentrations for Agonly. NO₂ concentrations in and out were a bit higher, and NH₃ in was a bit lower relative to total NO_x compared to the other layouts. The inlet NO₂ level was very high, it is typically expected that some

Fig. 6. Engine-bench stationary steady-state concentrations as function of temperature for Ag-only with NH₃ and H₂ dosing.

Fig. 7. Engine-bench stationary steady-state NO_2/NO_x ratios vs. NO_x conversions as function of temperature for Ag-only, NH_3 and H_2 dosing.

10% of the total NO_X is NO_2 . Here, the levels were up to 60% at the lowest temperatures and 18–20% at 400 °C. The high NO₂ levels are attributed to the high EGR rate, 60, 50, 40, 30, 20 and 20% seen for the six temperature points, respectively (low to high temperature). The air fuel ratios (AFR) roughly had the same values as the EGR rate. EGR lowers the peak temperature in the engine cylinders and thus the NO_x level [2]. However, NO_2 has been reported not to be affected to a larger extent which will increase the NO_2/NO_x ratio [30–32]. NO_x was primarily removed as NO_2 at the lowest temperatures (<250 °C) (Fig. 6). NO was produced over Ag-only from 220 °C and up by NO₂ to NO reduction. A close resemblance between NO_x conversion and NO₂ level for Ag-only (Figs. 4 and 6) can be seen. Fig. 7 shows the NO_2/NO_x ratio and NO_x conversion for Ag-only; there was a clear likeness of the two at temperatures above 200 °C, indicating a relation between the two. This was not seen for any of the other layouts (not shown).

Fe-BEA has, as other Fe-zeolites, been reported to be very active when equimolar amounts of NO2 and NO are co-fed, so called "fast-SCR" [6,22]. The high NO_2/NO_x ratio allowing fast-SCR, which makes Fe-BEA more active than Ag/Al₂O₃, is believed to be the reason for the high deNO_x activity seen for Fe-only and why Fe-BEA was preferred as the upstream catalyst (dual-brick-Fe/Ag) in the combined systems. Having Ag/Al₂O₃ upstream will mean that less NO₂ is present for fast-SCR over the Fe-BEA with a lower system deNO_x activity as the consequence. Fast-SCR has also been reported to suppress NH₃ oxidation [22]. Our previous study [21] did, in contrast to this study, only have NO present as the NO_x compound. NO to NO₂ oxidation over Ag/Al₂O₃ which could later react over the Fe-BEA was, together with unselective NH₃ oxidation over Fe-BEA, believed to be the reasons why Ag/Al₂O₃ was preferred as the upstream catalyst in the previous study. The difference in feed gas composition is believed to explain the difference seen between the two studies.

The NH₃ outlet concentration was higher than the inlet concentration at above 300 °C, indicating NH₃ formation. Since all points are taken at steady-state and that the same analysis equipment was used for both inlet and outlet measurements, experimental errors can be excluded. Still, a simple N-balance between inlet and outlet NO_x and NH₃ shows an excess of N-containing species at the outlet, this can be considered close to the experimental uncertainty. NH₃ formation over Ag/Al₂O₃ has been reported in the literature [33–37]. The NH₃ formation was in these studies attributed to the reaction of NO with H₂ [33,34], hydrolysis of N-containing

hydrocarbons (without H_2) [35] or reaction of HC and NO_x [36]. In a preliminary test prior to the one reported here, NH₃ formation was observed during transient testing. No conclusive NH3 formation could be seen in the present test. The difference between the preliminary test and the present test was the HC level. DiMaggio et al. [36] showed that NH₃ formation is dependent on H₂ level, temperature and C:N ratio. The higher HC level in the preliminary test (up to 2-2.5 times higher) could therefore be the reason why NH₃ formation was seen in that test and not in the present one. NH₃ formed over an upstream catalyst and then stored on the downstream catalyst, e.g. Fe-BEA, is similar to what has been proposed for combined LNT and SCR systems [38]. It can be a very interesting way to boost low-temperature activity and the potential problem of urea decomposition and formation of deposits at temperatures <190 °C [3]. Thus, further investigation of the potential NH₃ formation over Ag/Al₂O₃ is interesting but beyond the scope of this

This study also wanted to investigate if the hydrocarbons present in the exhaust could contribute to the total NO_x conversion by HC-SCR. Sitshebo et al. [28] reported that unburned HC present in the exhaust could give a noticeable NO_x conversion; especially when H_2 was present. It should be noted that the 4 wt% Ag catalyst used here might not be suited for HC-SCR. An optimal Ag loading for HC-SCR is often reported to be around 2 wt% [14,25,26]. No larger HC conversion over Ag/Al $_2O_3$ (Ag-only) was seen. Fe-BEA (Fe-only), on the other hand, showed a higher HC conversion, and it is reasonable to believe that the HC conversion seen for the combined systems comes from the Fe-BEA. Given the low NO_x conversion over Ag-only and the low ratio of reacted NH_3 to NO_x , HC-SCR might still contribute. This was also indicated by the low amount of reacted NH_3 to NO_x over Ag-only. The low NO_x and HC conversion, however, makes it hard to clearly see this.

The actual amount of NH₃ dosed during the tests was higher than the set-point (Fig. 6), especially when both NH₃ and H₂ were dosed due to the unreacted NH3 in the stream from the cracker. It was even a bit higher for the combined systems (not shown). An overdosing of NH₃ is believed not to affect Ag/Al₂O₃ [18]. However, it might affect Fe-BEA and thus the combined systems [4-6,39]. Since no measurement of H₂ was possible, the actual amount dosed can only be estimated indirectly. The H₂ level was estimated both based on the given set-point to the H2 dosing system and the amount of unreacted NH₃ in the stream from the cracker. Both estimations gave similar results. The estimated H₂ level dosed was a bit low due to the maximum NH₃ cracking capacity limit of the cracker system. In the worst cases (at 220 °C), the H_2/NO_x ratio was 1 (set-point HNR 2), in most other cases 1.4–1.6. The lack of H₂ will affect the activity, since Ag/Al₂O₃ is sensitive to H₂ concentration; especially in the region 200-300 °C [18] and can partly explain the low activity over Ag/Al₂O₃.

As stated above, the performance of Ag/Al_2O_3 was lower than expected, both in Ag-only and in the combined layouts. It was also unexpected that the NO_x conversion was very similar whether or not H_2 was co-fed. There was also an apparent relation between NO_2/NO_x ratio and NO_x conversion. Three possible explanations can be proposed: (1) a H_2 deficit of over the Ag/Al_2O_3 , only allowing NO_x reduction via NO_2 [17]; (2) the catalyst was deactivated, not allowing the expected H_2 -assisted NH_3 SCR to commence; and (3) the presence of NO_2 inhibits the performance of the catalyst. The latter could indirectly be due to NO_2 poisoning of NO active sites [14].

The H_2 concentration was low, as stated above, which will affect the activity of Ag/Al_2O_3 in a highly negative way. However, it should be high enough to show a higher difference in activity between NH_3 and H_2 dosing and only NH_3 dosing. Whether H_2 was available over the whole catalysts or not cannot, however, be concluded from these tests. Excessive H_2 oxidation in the first part

Fig. 8. Temperature dependency of NOx (a) and NH3 (b) conversion for core sample after engine tests. 1st test and 2nd test before and 3rd test and 4th test after regeneration (in situ at $500\,^{\circ}$ C and in oven at $550\,^{\circ}$ C). Reaction conditions: $500\,\text{ppm}$ NO, $500\,\text{ppm}$ NH₃, $1000\,\text{ppm}$ H₂, 8% O₂, 12% H₂O and balance N₂, GHSV \sim 33,000 h⁻¹.

of the catalyst brick would give a H₂ deficit downstream. Several authors have shown that the presence of NO₂ can reduce the NO_x conversion for HC-SCR, with or without H₂ present [13,14,40]. Other reports, on the other hand, have shown the opposite, they also showed that bare Al_2O_3 was active when NO_2 was fed [41,42]. A difference between the cited reports is the HC species used. The reports showing a positive effect [41,42] both used propene, while those showing no or negative effect ([13,14,40]) used saturated alkanes (propane or decane), which might affect the results. The HC present in the exhaust is a close match to the composition of the diesel fuel with mainly longer straight HC species. We have recently shown that Ag/Al₂O₃ (and Al₂O₃) was active for NH₃-SCR (without H_2), when mixtures of NO and NO₂ are used [17]. The activity was, however, much lower than for H2-assisted NH3-SCR of NO and limited to a maximum of 30% NO_x conversion regardless of NO₂/NO_x ratio. The stability of the catalyst during operation is of course crucial for it to be of any real interest, and the possibility of deactivation of the Ag/Al₂O₃ has to be considered. The catalyst in the study had been used in a previous preliminary test sequence and it had then been stored in air.

To investigate the possible reasons for the low NO_x conversion seen, a core sample of the brick used for engine testing was taken. The weight of the sample was lower than expected and some of the monolith channels were blocked. This means that the monolith brick had a non-uniform coat loading and a lower than expected specific coat loading. The low specific coat loading will affect the $deNO_x$ performance, since Ag/Al_2O_3 is sensitive to GHSV.

Fig. 8 shows a comparison of standard tests, before and after attempted regeneration. The standard test in the lab-scale reactor showed that the catalyst was almost completely inactive; it only started to show activity at $400\,^{\circ}$ C. However, a second test following the first one showed that the catalyst had been reactivated. The activity was still low and the catalyst was heated to $500\,^{\circ}$ C in the reactor in the presence of $1000\,\mathrm{ppm}\,\mathrm{H_2}$, $9\%\,\mathrm{O_2}$ and balance $\mathrm{N_2}$ to further try to regenerate it. No difference was seen in activity, and the catalyst was heated to $550\,^{\circ}$ C for $4\,\mathrm{h}$ in an oven in an atmosphere of air to burn off soot. After the treatment, the catalyst was completely "clean" and showed no visible traces of soot. The first standard test after the oven treatment showed a small gain in NO_x conversion. A second test showed a somewhat lower NO_x conversion comparable to that before the regeneration attempts of the sample. Prior to the lab-scale and the engine-bench testing,

the catalyst had been stored in air for some weeks. Oxidation of Ag could be one of the deactivation mechanisms seen. Oxidized Ag can be reduced at temperatures below $450\,^{\circ}$ C, i.e. during the first standard deNO_x test [14,40]. Soot is oxidized by NO₂ in the temperature range of $250-400\,^{\circ}$ C [43], which could explain the increase seen in NO out during engine testing. NO₂ from H₂ induced NO oxidation being able to oxidize soot might be the reason for the reactivation seen in Fig. 8.

Fig. 9 shows the influence of NO₂/NO_x ratio for a 4 wt% Ag/Al₂O₃ sample. The activity of the sample during a standard test (no NO_2) was enhanced after the NO₂/NO_x testing campaign compared to before. The higher activity was also seen in later tests and the activation is considered permanent. It is, therefore, concluded that the catalyst needs to be activated before it reaches its maximum activity, similar to what was found in our previous study [20]. In that study, we investigated the sulfur tolerance of Ag/Al₂O₃ catalysts and related an increased activity for high Ag loading samples to activation by sulfur. The results of this study show that testing under standard deNO_x conditions is, in itself, enough to activate the catalyst. It is speculated that this need for de-greening is related to dispersion and possibly the state of Ag on the catalyst. Further investigations with a similar protocol as in [20] are needed to fully understand the de-greening effect. The presence of NO₂ increased the activity below 250 °C and above 300 °C when H₂ was co-fed, the effect was largest at the lowest and highest temperatures tested. The first test conducted was the one with an NO₂/NO_x ratio of 0.5 which showed a lower activity than the other tests. This lower activity is believed to be related to the sample not being fully activated, it might be that the activation is related to or enhanced by the presence of NO₂. We have previously speculated that NO to NO₂ oxidation is an important step in the reaction mechanism of NO reduction [17]. The results in this study seem to support that conclusion. The deNO_x activity was very low, when no H₂ was co-fed, and it was not dependent of the NO₂ level, except at 150 °C, where the NO₂/NO_x ratio of 0.95 showed a much higher conversion, and 0.75 showed a somewhat higher NO_x conversion (Fig. 9b). Since the difference in activity was larger between no NO₂ at all and 0.25 or 0.95 NO₂/NO_x it is concluded that smaller quantities of NO₂ is enough to enhance the activity. It is not unreasonable to have 25% NO₂ in the exhaust; either from the engine as in this study or after

Based on the results in Fig. 9 a complete lack of H_2 over the catalyst does not seem to be the cause for the low NO_x conversion seen for Ag-only in the engine testing (Figs. 4 and 7). If no H_2 was present the NO_x conversion below $250\,^{\circ}C$ should have been lower and it should have been higher at higher temperatures given the NO_2/NO_x ratios in the engine tests. It is concluded that the lower than expected $deNO_x$ activity seen for Ag/Al_2O_3 , both in Agonly and the combined systems, comes from catalyst deactivation related to soot and possibly Ag oxidation, the lower H_2 than was intended and low specific catalyst coat loading giving a high GHSV. The presence of NO_2 in the engine exhaust is believed to explain the relatively high NO_x conversion seen when no H_2 was fed.

3.2. Transient tests

Fig. 10 shows the NO_x distribution over different temperature intervals for the NEDC. The conditions were, as seen, very demanding for SCR with more than 50% of the total NO_x emitted being emitted at below 150 °C and only 32% above 200 °C. Table 2 shows the gas composition during the NEDC. A further implication of the low temperature was NH_3 and H_2 dosing. In the standard case, NH_3 and H_2 were dosed when the temperature was above 150 °C. The temperature was stable above 150 °C after around 830 s. In another case, dosing started when the temperature was above 120 °C (after

Fig. 9. NO_x conversion as function of temperature for different NO_2/NO_x ratios (indicated in legend); (a) with H_2 and (b) without H_2 . Reaction conditions: 500 ppm NO_x NO ppm NO_x NO or 1000 ppm NO_x

Table 2 Typical gas composition during transient engine testing (NEDC).

Component	Concentration (%)	Component	Concentration (ppm)
02	10-20	СО	300-1200
H_2O	2-8	HC	150-400 ^a
CO ₂	0-9	NO_2/NO_x	0.3-0.6 ^b

- ^a Level was down to 50 ppm in shorter periods of time.
- b Lower at end of cycle (<0.3).

 $250\,\text{s})$ to investigate the potential benefit of earlier NH_3 and H_2 dosing.

Fig. 11 shows the accumulated NO_x at the outlet of the tested catalyst layouts. The inlet NO_x amount (measured with the reference MEXA) varied somewhat compared to the reference test. With the difference in the inlet NO_x taken into account, the total NO_x conversion over the cycles was 22, 15, 18 and 22% for Ag-only, Fe-only, dual-brick-Fe and dual-brick-Ag, respectively. This was a small change compared to what is reported in Fig. 11. However, the difference can be assumed to be within the margin of experimental error. There was a large increase in emitted NO_x after around 1100 s of the cycle corresponding to highway driving and the highest engine load (Fig. 2). Since this large increase in emitted NO_x corresponds to the highest temperatures, a large NO_x conversion can be expected. However, the high load resulted in a large increase in GHSV, from maximum $30,000 \, h^{-1}$ during urban driving to $70,000 \, h^{-1}$ during

Fig. 10. NO_x temperature distribution on mole basis measured directly before the catalysts for transient NEDC.

the highway part. Ag/Al_2O_3 is sensitive to GHSV [27,29,44], and a GHSV of $70,000 \, h^{-1}$ is high. Another issue was NH_3 and H_2 dosing. Due to inconsistent measurements from the NO_x sensors, the level dosed varied. The amount of NH_3 dosed varied between 0.3 and 2 times the NO_x concentration between the start of dosing (after around $830 \, s$) and $1100 \, s$ and down to $0.2 \, of \, NO_x$ at the highest flows and temperatures (the set-point was 0.8). H_2 dosing was estimated (no H_2 analysis was available) to be between 0.8 and 2 times the NO_x concentration between the start of dosing and $1100 \, s$ and down to $0.2 \, of \, NO_x$ at the highest flows and temperatures (the set-point was 2). Thus, there was a clear shortage of NH_3 and H_2 available for the SCR reaction, when the temperature and emitted NO_x was at their highest, severely affecting the SCR activity. Fig. 12 shows this as the drop in the total NO_x conversion after $1100 \, s$.

By looking more closely at the accumulated NO_x profiles (Fig. 11) and instantaneous total NO_x conversion (Fig. 12) they can roughly be divided into three different parts: The first part was 0–250 s of the NEDC, which is almost one and a half urban cycles. In this part the performance was dual-brick-Ag/Fe \approx dual-brick-Fe/Ag > Ag-only \approx Fe-only. The second part was 250–1000 s, urban driving and first part of high-way driving, the temperature was <180 °C; performance was dual-brick-Ag/Fe > dual-brick-Fe/Ag > Ag-only > Fe-only. The last part was >1000 s;

Fig. 11. Accumulated NO_x during NEDC for Ag-only, Fe-only, dual-brick-Fe/Ag and dual-brick-Ag/Fe compared to inlet NO_x, NH₃ and H₂ dosing (only NH₃ for Fe-only).

Fig. 12. Total NO_x conversions as function of time during NEDC for Ag-only, Fe-only, dual-brick-Fe/Ag and dual-brick-Ag/Fe, NH_3 and H_2 dosing (only NH_3 for Fe-only).

in this part dual-brick-Ag/Fe did no longer perform better than the other layouts; the order was instead Ag-only > Fe-only ≈ dualbrick-Ag/Fe≈dual-brick-Fe/Ag. The difference mainly occurred when the temperature was at its highest (220-240 °C). Given the fact that no NH₃ or H₂ was dosed until the temperature reached 150 °C (after 830 s) and the low temperatures during the NEDC, it seems unlikely that SCR was responsible for the relatively high NO_x conversion seen in the early stages of the cycle. A 37% total NO_x conversion was, e.g. seen for dual-brick-Ag/Fe after 250s with a temperature that only reached maximum 140 °C. Even though NH₃ was present on the catalyst surface at the start of the NEDC from previous testing, it seems unlikely that any H₂ would be present. The fact that NH₃ was present at the start of the cycle could be seen as a slow but steady release of NH₃, as the temperature was gradually increased (not shown). NH3-TPD confirmed that NH3 would still be present at both Fe-BEA (not shown) and Ag/Al₂O₃ (Fig. 13a) given the temperatures seen by the catalysts prior to the NEDC (160–270 °C). With the high NO₂/NO_x ratios shown (Table 2) and the presence of NH₃ over the catalysts, SCR over Fe-BEA is a possibility. The low activity of Fe-only contradicts this theory. Another possible explanation to the NO_x conversion seen at low temperatures is NO_x storage over the catalysts.

Even though Fe-BEA has been reported to store small amounts of NO_x [5,45], the H₂O present in the exhaust is believed to inhibit the storage making this insignificant [5]. Ag/Al₂O₃ has also been reported to be able to store NO_x [46–50], it has even been considered as NO_x storage catalyst due to its supposedly good storage capabilities [51]. It is vital that O₂ is present during adsorption to allow oxidation of NO to ad-NO_x species. NO-TPD was performed for Ag/Al₂O₃ to investigate the potential of NO_x storage (adsorption at 40 °C). Fig. 13(b) shows two clear peaks, one at approx. 110 °C and one at approx. 410 °C. All catalysts had been used in NO_x containing streams at relatively low temperature (160-270 °C) with only moderate NO_x conversion and relatively high NO_x in the outlet. Peak 2 is therefore assumed to be, at least partly, filled at start of the cycle. The NO_x adsorption capacity from the TPD-results was enough to explain the results seen during NEDC. However, the TPD was performed under dry conditions and H₂O will lower the NO_x storage capacity. Brosius et al. [46] showed a noticeable adsorption capacity when NO was replaced by NO₂ even when H₂O was present. With the results presented in literature [46,51], NO_x storage over Ag/Al_2O_3 is believed to be a valid explanation of the NO_x conversion seen at temperatures below 140-160°C during the NEDC in this study.

Fig. 14 shows the inlet and outlet NO_x levels for the tested systems. The NO_x level was in all cases higher or equal at the catalyst inlet compared to the outlet, i.e. no excessive desorption of NO_x during the cycle. The difference between Ag/Al₂O₃ and Fe-BEA was emphasized. It is clearly seen that Ag-only and the combined layouts showed NO_x conversion right from the start of the NEDC, whereas Fe-only showed NO_x outlet levels closer to the inlet levels. Again this indicates NO_x storage over Ag/Al₂O₃ as the main mechanism behind the NO_x conversion seen. The temperature never reached higher than 250 °C during the cycle, meaning that part of the NO_x stored on the catalysts likely remained even after the cycle. However, the main part of the NO_x stored will be desorbed during the ramp up in temperature starting after around 950 s. When the temperature increases, so does the activity of the catalysts; this should be seen as a lower NO_x level after the catalysts. However, the NO_x level after the catalyst was similar to the level before the catalysts from 1000s of the cycle. We believe that two facts are responsible: (1) the GHSV increases with the temperature which will lower the activity of the Ag/Al_2O_3 ; and (2) the NO_x desorbed from the catalysts gives a higher NO_x level over the catalyst than

Fig. 13. (a) NH₃-TPD, saturation temperature 150 °C, and (b) NO-TPD, saturation temperature 40 °C, of Ag/Al₂O₃.

Fig. 14. NO_x before (NO_x in) and after (NO_x out) catalysts during NEDC: (a) Ag-only, (b) Fe-only, (c) dual-Fe/Ag and (d) dual-Ag/Fe, NH₃ and H₂ dosing (only NH₃ for Fe-only).

that of the feed; this excessive NO_x reacts over the catalysts meaning that the NO_x level over the catalyst was higher than expected but still not higher than the inlet level. In other words, the increase in NO_x from desorption was compensated for by the SCR reaction. A NO_x -level that is higher than the feed will also lead to shortage of NH_3 and H_2 , since these are dosed based on inlet NO_x -level, further limiting possible NO_x conversion. Catalyst models and advanced dosing algorithms can compensate for this but is beyond the scope of this study.

While NO_x storage is believed to be the main cause of NO_x conversion during the first two identified parts of the NEDC (0-250 and 250–1000 s), SCR of NO_x seems to be the best explanation for the NO_x conversion seen in the last phase, since the rapid temperature rise would desorb NO_x rather than adsorb and store it as believed at the earlier phases. This implies that Ag/Al₂O₃ not only stores NO_x better than Fe-BEA, it also shows a higher SCR activity under NEDC conditions. However, the results indicate synergistic effect of combining Ag/Al₂O₃ and Fe-BEA during parts of the cycle. HC was stored on Ag/Al₂O₃ during the low temperature parts of the cycle and then released, as the temperature increased during the latter part of the NEDC. The total HC conversion over the cycle was 27, 73, 14 and 29% for Ag-only, Fe-only, dual-brick-Fe/Ag and dualbrick-Ag/Fe, respectively. HC-SCR might therefore contribute to the NO_x conversion seen. HC-SCR could be one reason for the advantage of having Ag/Al₂O₃ upstream of Fe-BEA. Another could be that excessive NH₃ adsorption on Fe-BEA hinders the activity over the downstream Ag/Al₂O₃ due to a NH₃ deficit. A step response test in the laboratory set-up (0-300 ppm NH₃) showed that the NH₃ adsorption capacity of Fe-BEA was large enough to give a large delay in NH₃ exiting the catalyst which could potentially affect the performance of the Ag/Al₂O₃, when the latter was placed downstream of the former.

Dosing of NH₃ and H₂ already from $120\,^{\circ}\text{C}$ (after $250\,\text{s}$) compared to dosing from $150\,^{\circ}\text{C}$ (after $830\,\text{s}$) did not give any difference in the total NO_x conversion for the combined layouts. Again, indicating that it was not the SCR reaction that was responsible for the NO_x conversion during the main part of the NEDC. However, a detailed investigation of total NO_x conversion as a function of time (Fig. 15) showed interesting results. The decline in NO_x conversion was more rapid up to approximately 400 s of the cycle, when dosing started at $120\,^{\circ}\text{C}$ as compared to at $150\,^{\circ}\text{C}$; also seen as a steeper increase in the accumulated NO_x curves (not shown). After approximately $400\,\text{s}$, the NO_x conversion increased, and in

Fig. 15. Total NO_x conversions as function of time during NEDC for Ag-only, dual-brick-Fe/Ag, dual-brick-Ag/Fe with NH₃ and H₂ dosing from 120 °C. Dual-brick-Ag/Fe with NH₃ and H₂ dosing from 150 °C is included for comparison.

the end it reached the same value as in the $150\,^{\circ}\text{C}$ dosing case. This is explained as follows: up to $400\,\text{s}$, NH₃ inhibits NO_x storage and possibly fast-SCR [39]. When the catalyst has been warmed up, there is some SCR activity in addition to NO_x storage, seen as the increase in NO_x conversion. When dosing also starts in the original dosing case, both strategies show the same NO_x conversion. We believe that by optimizing the dosing further, the negative effect of NH₃ can be removed, and a higher total NO_x conversion could be reached. It can thus be concluded that there is some SCR activity even at temperatures down to $120\,^{\circ}\text{C}$.

4. Conclusions

Stationary engine tests showed clear synergies from combining Ag/Al_2O_3 and Fe-BEA compared to only Ag/Al_2O_3 or Fe-BEA at low temperatures (<270 °C). The unexpectedly low activity of Ag/Al_2O_3 was attributed to deactivation by soot and/or Ag oxidation, low H_2 levels and low specific catalyst loading. Laboratory scale tests of fresh Ag/Al_2O_3 catalyst showed that it was activated by subsequent test runs pointing to the need to de-green the catalyst prior to using

it. The mechanism and a more precise de-greening protocol need to be investigated further. The catalytic activity below 250 and above 300 $^{\circ}$ C was enhanced by addition of NO₂ as part of the NO_x. An NO₂ level of 25% was enough to give the enhancement; increasing NO₂ only showed a small effect.

Transient NEDC tests showed the same synergistic effects of combining Ag/Al₂O₃ and Fe-BEA seen in the stationary tests. However, the overall cycle NO_x conversion was low which was attributed to low activity of the Ag/Al₂O₃, as seen in the stationary tests. The Ag/Al₂O₃ containing layouts showed a noticeable NO_x conversion from the start of the cycle, i.e. before any NH₂ or H₂ was dosed. We believe that the NO_x conversion seen comes from NO_x storage on the Ag/Al₂O₃.

The Ag/Al $_2$ O $_3$ –Fe-BEA system shows potential, but further studies are needed. Tests with a higher catalyst volume and DPF filter should be conducted to obtain a lower GHSV and avoid poisoning by soot. An advanced dosing algorithm should also be developed that includes NO $_X$ adsorption and desorption for a more accurate NH $_3$ and H $_2$ dosing.

Acknowledgements

This work was supported by The Danish Council for Strategic Research through grant 09-067233. Magnus Skoglundh, Louise Olsson and Stefanie Tamm from Competence Centre of Catalysis at Chalmers University of Technology are gratefully acknowledged for valuable discussions. Amminex A/S is gratefully acknowledged for supplying the NH₃ and H₂ dosing system. Thanks also to Magnus Lewander and his team at Topsøe Engine test center for their help with the engine-bench testing and to Susanne Friis Madsen for proof reading of the manuscript.

References

- [1] T.V. Johnson, SAE Int. J. Engines 5 (2012) 216–234.
- [2] M.K. Khair, H. Jääskeläinen, DieselNet Technol., Guide, http://www.dieselnet.com/tech/engine_egr.php (06-Mar-2013).
- [3] T.V. Johnson, Int. Engine Res. 10 (2009) 275–285.
- [4] S. Brandenberger, Ö. Kröcher, A. Tissler, R. Althoff, Catal. Rev. 50 (2008) 492–531.
- [5] K. Kamasamudram, N.W. Currier, X. Chen, A. Yezerets, Catal. Today 151 (2010) 212–222.
- [6] M. Colombo, I. Nova, E. Tronconi, Catal. Today 151 (2010) 223–230.
- [7] P.S. Metkar, M.P. Harold, V. Balakotaiah, Appl. Catal. B 111-112 (2011) 67-80.
- [8] D.W. Fickel, E.D. Addio, J.A. Lauterbach, R.F. Lobo, Appl. Catal. B 102 (2011)
- [9] S.J. Schmieg, S.H. Oh, C.H. Kim, D.B. Brown, J.H. Lee, C.H.F. Peden, D. Heui, Catal. Today 184 (2012) 252–261.
- [10] C.N. Costa, A.M. Efstathiou, Appl. Catal. B 72 (2007) 240–252.
- [11] M. Leicht, F.J.P. Schott, M. Bruns, S. Kureti, Appl. Catal. B 117–118 (2012) 275–282.

- [12] S. Satokawa, Chem. Lett. 3 (2000) 294-295.
- [13] S. Satokawa, J. Shibata, K. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 42 (2003) 179–186.
- [14] M. Richter, U. Bentrup, R. Eckelt, M. Schneider, M.-M. Pohl, R. Fricke, Appl. Catal. B 51 (2004) 261–274.
- [15] M. Richter, R. Fricke, R. Eckelt, Catal. Lett. 94 (2004) 115-118.
- [16] K. Shimizu, A. Satsuma, Appl. Catal. B 77 (2007) 202-205.
- [17] D.E. Doronkin, S. Fogel, S. Tamm, L. Olsson, T.S. Khan, T. Bligaard, P. Gabrielsson, S. Dahl, Appl. Catal. B 113–114 (2012) 228–236.
- [18] S. Tamm, S. Fogel, P. Gabrielsson, M. Skoglundh, L. Olsson, Appl. Catal. B 136–137 (2013) 168–176.
- [19] D.E. Doronkin, T. Suvra, T. Bligaard, S. Fogel, P. Gabrielsson, S. Dahl, Appl. Catal. B 117–118 (2012) 49–58.
- [20] S. Fogel, D.E. Doronkin, P. Gabrielsson, S. Dahl, Appl. Catal. B 125 (2012) 457–464.
- [21] S. Fogel, D.E. Doronkin, J.W. Høj, P. Gabrielsson, S. Dahl, Top. Catal. 56 (2013) 14–18.
- [22] P. Balle, B. Geiger, S. Kureti, Appl. Catal. B 85 (2009) 109–119.
- [23] W. A. Majewski, DieselNet Technol. Guide, http://www.dieselnet.com/tech/emi_intro.php.(Accessed: 06-Mar-2013).
- [24] K. Masuda, K. Tsujimura, K. Shinoda, T. Kato, Appl. Catal. B 8 (1996) 33-40.
- [25] L.-E. Lindfors, K. Eränen, F. Klingstedt, D.Y. Murzin, Top. Catal. 28 (2004) 185–189.
- [26] F. Klingstedt, K. Eränen, L.-E. Lindfors, S. Andersson, L. Cider, C. Landberg, E. Jobson, L. Eriksson, T. Ilkenhans, D. Webster, Top. Catal. 30/31 (2004) 27–30.
- [27] M.B. Viola, SAE Techn. Paper, 2008, 2008-01-2487.
- [28] S. Sitshebo, A. Tsolakis, K. Theinnoi, Int. J. Hydrogen Energy 34 (2009) 7842–7850.
- [29] K. Kim, K.M. Chun, S. Song, H.S. Han, H. Gu, SAE Int. (2011), 2011-01-1278.
- [30] M.J. Pipho, D.B. Kittelson, D.D. Zarling, SAE Techn. Paper (1991) 910231.
- [31] H. Yamada, K. Misawa, D. Suzuki, K. Tanaka, J. Matsumoto, M. Fujii, K. Tanaka, Proc. Combust. Inst. 33 (2011) 2895–2902.
- [32] J.J. Chong, A. Tsolakis, S.S. Gill, K. Theinnoi, S.E. Golunski, Int. J. Hydrogen Energy 35 (2010) 8723–8732.
- [33] K. Shimizu, J. Shibata, A. Satsuma, J. Catal. 239 (2006) 402-409.
- [34] J.P. Breen, R. Burch, C. Hardacre, C.J. Hill, C. Rioche, J. Catal. 246 (2007) 1–9.
- [35] K. Eränen, F. Klingstedt, K. Arve, L.-E. Lindfors, D.Y. Murzin, J. Catal. 227 (2004) 328–343.
- [36] C.L. DiMaggio, G.B. Fisher, K.M. Rahmoeller, M. Sellnau, SAE Int. J. Fuels Lubricants 2 (2009) 66–77.
- [37] S.J. Schmieg, T.M. Sloane, R.J. Blint, SAE Int. J. Fuels Lubricants 2 (2009) 323-336.
- [38] B. Pereda-Ayo, D. Duraiswami, J.R. González-Velasco, Catal. Today 172 (2011) 66–72.
- [39] A. Grossale, I. Nova, E. Tronconi, J. Catal. 265 (2009) 141-147.
- [40] P. Sazama, L. Capek, H. Drobna, Z. Sobalik, J. Dedecek, K. Arve, B. Wichterlova, J. Catal. 232 (2005) 302–317.
- [41] K.A. Bethke, H.H. Kung, J. Catal. 172 (1997) 93–102.
- [42] F.C. Meunier, J.R.H. Ross, Appl. Catal. B 24 (2000) 23–32.
- [43] M.V. Twigg, Catal. Today 163 (2011) 33-41.
- [44] S.J. Schmieg, R.J. Blint, L. Deng, SAE Int. J. Fuels Lubricants 1 (2008) 1540–1552.
- [45] D. Klukowski, P. Balle, B. Geiger, S. Wagloehner, S. Kureti, B. Kimmerle, A. Baiker, J.-D. Grunwaldt, Appl. Catal. B 93 (2009) 185–193.
- [46] R. Brosius, K. Arve, M. Groothaert, J. Martens, J. Catal. 231 (2005) 344–353.
- [47] J. Li, Y. Zhu, R. Ke, J. Hao, Appl. Catal. B 80 (2008) 202-213.
- [48] R. Zhang, S. Kaliaguine, Appl. Catal. B 78 (2008) 275–287.
- [49] X. She, M. Flytzani-Stephanopoulos, J. Catal. 237 (2006) 79–93.
- [50] I. Nadjar, J.-M. Trichard, P. Costa, G. Djéga-Mariadassou, Top. Catal. 42–43 (2007) 27–31.
- [51] Y. Tsukamoto, H. Nishioka, D. Imai, Y. Sobue, N. Takagi, T. Tanaka, T. Hamaguchi, SAE Int. (2012), 2012-01-03.