Localizations for quiver Hecke algebras

Myungho Kim (Kyung Hee University, Seoul)

Joint works with M. Kashiwara, S.-j. Oh and E. Park

September 20, 2022, Trends in Cluster Algebras 2022

Contents

- Motivations: Coordinate rings of unipotent subgroups and unipotent cells
- 2 Localizations of monoidal categories
 - Mooidal category
 - 2 Real commuting family of braiders in \mathcal{T}
 - **3** Localization of \mathcal{T} via $\{(C_i, R_{C_i})\}_{i \in I}$
- 3 Category C_w and its localization
 - 1 Nondegenerate braiders in R-gmod
 - 2 Category C_w and the family $\{C_i = M(w\Lambda_i, \Lambda_i)\}_{i \in I}$
 - 3 Rigidity
 - $\textbf{4} \text{ Kernel of } Q_w : R\operatorname{-gmod} \to R\operatorname{-gmod}[C_i^{\circ -1}; i \in I]$

Motivation

- ullet G : group corresp. to a symmetrizable Kac-Moody algebra ${\mathfrak g}$
- $N(w) \subset G$: the unipotent subgroup of G corresponding to w (i.e., $\operatorname{Lie}(N(w)) = \bigoplus_{\beta \in \Delta_+ \cap w\Delta_-} \mathfrak{g}_{\beta}$)
- $N^w := N_+ \cap \mathring{X}_w \subset G/B_-$: the unipotent cell corresponding to w inside the flag manifold, where $N_+ \hookrightarrow X = G/B_-$ and \mathring{X}_w is the Schubert cell corresponding to w in X.
- There is an isomorphism between coordinate rings

$$\mathbb{C}[N^w] \simeq \mathbb{C}[N(w)][D_{w\lambda,\lambda}^{-1} \mid \lambda \in \mathsf{P}_+]$$

- $\mathbb{C}[N(w)]$ has a categorification via a monoidal subcategory \mathcal{C}_w of $R\operatorname{-gmod}(=$ the category of f.d. modules over the quiver Hecke algebra R of type \mathfrak{g}), which respects the cluster algebra structure on $\mathbb{C}[N(w)]$ i.e., the cluster monomials are simple objects.
- It is desired to extend C_w to \widetilde{C}_w in which $M_{w\lambda,\lambda}$ (= simple module corresponding to $D_{w\lambda,\lambda}$) is invertible.

Monoidal categories

A monoidal category is a datum consisting of

- (a) a category \mathcal{T} ,
- (b) a bifunctor $\cdot \otimes \cdot : \mathcal{T} \times \mathcal{T} \to \mathcal{T}$,
- (c) an isomorphism a(X,Y,Z): $(X\otimes Y)\otimes Z\stackrel{\sim}{\longrightarrow} X\otimes (Y\otimes Z)$ which is functorial in $X,Y,Z\in\mathcal{T}$,
- (d) an object $\mathbf{1} \in \mathcal{T}$ with an isomorphism $\epsilon \colon \mathbf{1} \otimes \mathbf{1} \xrightarrow{\sim} \mathbf{1}$ such that
- (1) the diagram below commutes for all $X, Y, Z, W \in \mathcal{T}$:

$$((X \otimes Y) \otimes Z) \otimes W \xrightarrow{a(X \otimes Y, Z, W)} (X \otimes Y) \otimes (Z \otimes W)$$

$$\downarrow a(X, Y, Z) \otimes W \downarrow \qquad \qquad \downarrow a(X, Y, Z) \otimes W$$

$$\downarrow a(X, Y, Z, W) \downarrow \qquad \qquad \downarrow a(X, Y, Z) \otimes W$$

$$\downarrow A(X, Y, Z, W) \downarrow \qquad \qquad \downarrow A(X, Y, Z) \otimes W$$

$$\downarrow A(X, Y, Z, W) \downarrow \qquad \qquad \downarrow A(X, Y, Z) \otimes W$$

$$\downarrow A(X, Y, Z) \otimes W \downarrow \qquad \qquad \downarrow A(X, Y, Z) \otimes W$$

$$\downarrow A(X, Y, Z) \otimes W \downarrow \qquad \qquad \downarrow A(X, Y, Z) \otimes W$$

(2) the functors $\mathcal{T} \ni X \mapsto \mathbf{1} \otimes X \in \mathcal{T}$ and $\mathcal{T} \ni X \mapsto X \otimes \mathbf{1} \in \mathcal{T}$ are fully faithful. ($\Rightarrow \exists$ canonical isomorphisms $\mathbf{1} \otimes X \simeq X \otimes \mathbf{1} \simeq X$ for any $X \in \mathcal{T}$).

Invertible objects and dual objects

An object $X \in \mathcal{T}$ is invertible if the endofunctors $X \otimes -$ and $- \otimes X$ on \mathcal{T} are equivalence of categories. In the case there exists $Y \in \mathcal{T}$ and isomorphisms $f: X \otimes Y \overset{\sim}{\to} \mathbf{1}$ and $g: Y \otimes X \overset{\sim}{\to} \mathbf{1}$.

A pair (X, Y) of objects in \mathcal{T} is called a dual pair if there exists $\varepsilon \colon X \otimes Y \to \mathbf{1}$ and $\eta \colon \mathbf{1} \to Y \otimes X$ such that

$$X \xrightarrow{\cong} X \otimes \mathbf{1} \xrightarrow{X \otimes \eta} X \otimes Y \otimes X \xrightarrow{\varepsilon \otimes X} \mathbf{1} \otimes X \xrightarrow{\cong} X$$

$$\downarrow id_{Y}$$

$$Y \xrightarrow{\cong} \mathbf{1} \otimes Y \xrightarrow{\eta \otimes Y} Y \otimes X \otimes Y \xrightarrow{Y \otimes \varepsilon} Y \otimes \mathbf{1} \xrightarrow{\cong} Y$$

We say that X is a left dual to Y and Y is a right dual to X in T. A monoidal category T is left (respectively, right) rigid if every object in T has a left (respectively, right) dual.

Example: monoidal category R-gmod

Let $\mathbf k$ be a base field. The quiver Hecke algebra is a family of associative $\mathbf k$ -algebras $\{R(\beta)\}_{\beta\in \mathbb Q_+}$ which categorify the quantum coordinate ring $A_q(\mathfrak n)$ of the unipotent subgroup t, where $\mathbb Q_+$ is the positive root lattice of $\mathfrak g$ (Khovano-Lauda, Rouquier).

For $M \in R(\beta)$ -gmod, $N \in R(\gamma)$ -gmod, the convolution product is given by

$$M \circ N := R(\beta + \gamma) \underset{R(\beta) \otimes_{\mathbf{k}} R(\gamma)}{\otimes} (M \otimes N) \in R(\beta + \gamma) \text{-gmod}$$

Then the category

$$R$$
-gmod := $\bigoplus_{\beta \in Q_+} R(\beta)$ -gmod

is a k-linear abelian monoidal category.

The unit object $\mathbf{1}$ is the trivial representation \mathbf{k} of $R(0) \simeq \mathbf{k}$. If $M \in R(\beta)$ -gmod and a morphism $\varepsilon : M \circ N \to \mathbf{1}$ is nonzero, then $\beta = 0$ and $N \in R(0)$ -gmod.

Hence **1** is the only invertible object in R-gmod and there is no dual of M unless $M \in R(0)$ -gmod.

Real commuting family of braiders in ${\mathcal T}$

We assume that $\mathcal T$ is a **k**-linear monoidal category.

Definition

A (left) braider of \mathcal{T} is a pair (C, R_C) of an object C and a morphism

$$R_C(X): C \otimes X \longrightarrow X \otimes C$$

which is functorial in $X \in \mathcal{T}$ such that the followings commute:

$$C \otimes X \otimes Y \xrightarrow{R_C(X) \otimes Y} X \otimes C \otimes Y \qquad C \otimes 1 \xrightarrow{R_C(1)} 1 \otimes C$$

$$\downarrow X \otimes R_C(Y) \qquad \downarrow X \otimes R_C(Y) \qquad \downarrow X \otimes Y \otimes C,$$

A braider (C, R_C) is called a central object if $R_C(X)$ is an isomorphism for any $X \in \mathcal{T}$.

The category of braiders in $\mathcal T$ will be denoted by $\mathcal T_{br}$.

Real commuting family of braiders in ${\mathcal T}$

Let I be an index set. We say that a family $\{(C_i, R_{C_i})\}_{i \in I}$ of braiders in \mathcal{T} is a real commuting family if

- (a) $R_{C_i}(C_i) \in \mathbf{k}^{\times} \operatorname{id}_{C_i \otimes C_i}$ for $i \in I$,
- (b) $R_{C_i}(C_i) \circ R_{C_i}(C_j) \in \mathbf{k}^{\times} \operatorname{id}_{C_i \otimes C_j}$ for $i, j \in I$.

Then there exists braider $C^{\alpha}=(C^{\alpha},R_{C^{\alpha}})$ for each $\alpha\in\mathbb{Z}_{\geq 0}^{\oplus I}$, an isomorphism $\xi_{\alpha,\beta}\colon C^{\alpha}\otimes C^{\beta}\stackrel{\sim}{\longrightarrow} C^{\alpha+\beta}$ in \mathcal{T}_{br} and $\eta_{\alpha,\beta}\in\mathbf{k}^{\times}$ for $\alpha,\beta\in\mathbb{Z}_{\geq 0}^{\oplus I}$ such that

- (a) $C^0 = \mathbf{1}$ and $C^{e_i} = C_i$ for $i \in I$,
- (b) the following diagrams in \mathcal{T}_{br} commute:

$$C^{\alpha} \otimes C^{\beta} \xrightarrow{R_{C^{\alpha}}(C^{\beta})} C^{\beta} \otimes C^{\alpha} \qquad C^{\alpha} \otimes C^{\beta} \otimes C^{\gamma} \xrightarrow{\xi_{\alpha,\beta} \otimes C^{\gamma}} C^{\alpha+\beta} \otimes C^{\gamma}$$

$$\downarrow^{\xi_{\alpha,\beta}} \qquad \downarrow^{\xi_{\beta,\alpha}} \qquad C^{\alpha} \otimes \xi_{\beta,\gamma} \downarrow \qquad \qquad \downarrow^{\xi_{\alpha+\beta,\gamma}}$$

$$C^{\alpha+\beta} \xrightarrow{\eta_{\alpha,\beta}} C^{\alpha+\beta} \qquad C^{\alpha} \otimes C^{\beta+\gamma} \xrightarrow{\xi_{\alpha,\beta+\gamma}} C^{\alpha+\beta+\gamma}$$

Localization of \mathcal{T} via $\{(C_i, R_{C_i})\}_{i \in I}$

Define a partial order \leq on $\mathbb{Z}^{\oplus I}$ by

$$\alpha \preceq \beta \quad \text{ for } \alpha, \beta \in \mathbb{Z}^{\oplus I} \text{ with } \beta - \alpha \in \mathbb{Z}^{\oplus I}_{\geq 0},$$

and for $\alpha, \beta \in \mathbb{Z}^{\oplus I}$ set

$$\mathcal{D}_{\alpha,\beta} := \{ \delta \in \mathbb{Z}^{\oplus I} \mid \alpha + \delta, \, \beta + \delta \succeq 0 \}.$$

Define a monoidal category $(\widetilde{\mathcal{T}} = \mathcal{T}[C_i^{\otimes -1} | i \in I], \otimes)$ as

$$\mathsf{Ob}(\widetilde{\mathcal{T}}) := \left\{ (X, \alpha) \mid X \in \mathsf{Ob}(\mathcal{T}), \ \alpha \in \mathbb{Z}^{\oplus I} \right\},$$

$$\mathsf{Hom}_{\widetilde{\mathcal{T}}}((X, \alpha), (Y, \beta)) := \varinjlim_{\delta \in \mathcal{D}_{\alpha, \beta}} \mathsf{Hom}_{\mathcal{T}}(C^{\delta + \alpha} \otimes X, Y \otimes C^{\delta + \beta}),$$

$$(X,\alpha)\otimes(Y,\beta):=(X\otimes Y,\alpha+\beta).$$

Localization of \mathcal{T} via $\{(C_i, R_{C_i})\}_{i \in I}$

The structure morphism of the inductive system $(\delta' \succeq \delta)$

$$\mathsf{Hom}_{\mathcal{T}}(\mathit{C}^{\delta+\alpha} \otimes \mathit{X}, \mathit{Y} \otimes \mathit{C}^{\delta+\beta}) \xrightarrow{\zeta_{\delta',\delta}} \mathsf{Hom}_{\mathcal{T}}(\mathit{C}^{\delta'+\alpha} \otimes \mathit{X}, \mathit{Y} \otimes \mathit{C}^{\delta'+\beta})$$

$$f \quad \mapsto \quad \zeta_{\delta',\delta}(f)$$

is given by

$$C^{\delta'-\delta} \otimes C^{\delta+\alpha} \otimes X \xrightarrow{C^{\delta'-\delta} \otimes f} C^{\delta'-\delta} \otimes Y \otimes C^{\delta+\beta}$$

$$\downarrow^{R_{C^{\delta'-\delta}}(Y)}$$

$$Y \otimes C^{\delta'-\delta} \otimes C^{\delta+\beta}$$

$$\downarrow^{R_{C^{\delta'-\delta}}(Y)}$$

$$Y \otimes C^{\delta'-\delta} \otimes C^{\delta+\beta}$$

$$\downarrow^{\xi_{\delta'-\delta,\delta+\beta}}$$

$$C^{\delta'+\alpha} \otimes X \xrightarrow{\zeta_{\delta',\delta}(f)} Y \otimes C^{\delta'+\beta}.$$

Then $\zeta_{\delta'',\delta} = \zeta_{\delta'',\delta'} \circ \zeta_{\delta',\delta}$ for $\delta'' \succ \delta' \succ \delta$.

There is a natural way to define the composition of morphisms and the tensor product of morphisms with careful manipulation of coefficients.

Localization of \mathcal{T} via $\{(C_i, R_{C_i})\}_{i \in I}$

Recall
$$(X, \alpha) \otimes (Y, \beta) := (X \otimes Y, \alpha + \beta)$$
 in $\widetilde{\mathcal{T}}$.

Proposition

For $\alpha \in \mathbb{Z}^{\oplus I}$, set $\widetilde{C}^{\alpha} := (\mathbf{1}, \alpha)$. Then

- **1** \widetilde{C}^{α} is invertible in \widetilde{T} with an inverse $\widetilde{C}^{-\alpha} = (1, -\alpha)$.
- $2 (C^{\alpha}, 0) \simeq \widetilde{C}^{\alpha} = (1, \alpha) \text{ if } \alpha \succeq 0 \ (\Leftrightarrow \alpha \in \mathbb{Z}_{\geq 0}^{\oplus I}).$

proof of ②: For any $\delta \succ 0$, we have $\zeta_{\delta,0}(\operatorname{id}_{C^{\alpha}}) = R_{C^{\delta}}(C^{\alpha})$, which is an isomorphism, since $\{(C_i, R_{C_i})\}_{i \in I}$ is a real commuting family. Hence it defines an isomorphism in $\operatorname{Hom}_{\widetilde{\mathcal{T}}}((C^{\alpha}, 0), (\mathbf{1}, \alpha))$.

$$\mathsf{Hom}_{\mathcal{T}}(C^{\alpha}, C^{\alpha})$$

$$\mathsf{Hom}_{\mathcal{T}}(C^{0} \otimes C^{\alpha}, \mathbf{1} \otimes C^{0+\alpha}) \xrightarrow{\zeta_{\delta,0}} \mathsf{Hom}_{\mathcal{T}}(C^{\delta} \otimes C^{\alpha}, \mathbf{1} \otimes C^{\delta+\alpha})$$

$$\mathsf{id}_{C^{\alpha}} \longmapsto R_{C^{\delta}}(C^{\alpha}).$$

Universal property of $\widetilde{\mathcal{T}}$

Let $\Psi: \mathcal{T} \to \widetilde{\mathcal{T}}$ the canonical functor such that $X \mapsto (X,0)$ (it is a monoidal functor).

Theorem

- **1** $\Psi(C_i)$ is invertible in $\widetilde{\mathcal{T}}$ for $i \in I$.
- **2** For $i \in I$, $X \in \mathcal{T}$,

$$\Psi(R_{C_i}(X)): \Psi(C_i) \otimes \Psi(X) \to \Psi(X) \otimes \Psi(C_i)$$

is an isomorphsm.

3 If $\mathcal{F}:\mathcal{T}\to\mathcal{T}'$ is a monoidal functor such that ① and ② hold for \mathcal{F} , then there exists a monoidal functor $\widetilde{\mathcal{F}}$ such that the following diagram commutes:

Category C_w and its localization

R: quiver Hecke algebra of type $\mathfrak g$ (symmetrizable KM algebra) $R\operatorname{-gmod} := \bigoplus_{\beta \in \mathsf{Q}_+} R(\beta)\operatorname{-gmod}$

For each $w \in W$, there exist a full subcategory $\mathcal{C}_w \hookrightarrow R\operatorname{-gmod}$ which is stable under taking subquotients and convolution products. One has

$$A_q(\mathfrak{n}(w)) \simeq K(\mathcal{C}_w) \hookrightarrow K(R\operatorname{-gmod}) \simeq A_q(\mathfrak{n}),$$

where $A_q(\mathfrak{n}(w))$ denotes the quantum coordinate ring of the unipotent subgroup associated with w.

Proposition (Nondegenerate (graded) braiders in R-gmod)

For any simple R-module M, there exists a braider (M, R_M) in R-gmod such that $R_M(L(i))$ is nonzero for $i \in I$, where L(i) is the 1-dim'l simple module in $R(\alpha_i)$ -gmod. Moreover such (M, R_M) is unique up to a scalar.

Category C_w and its localization

For $i \in I$ (the index set of simple roots of \mathfrak{g}) set

$$C_i = C_{i,w} := M(w\Lambda_i, \Lambda_i) \in C_w$$

where $M(\lambda, \mu)$ denotes the simple $R(\mu - \lambda)$ -module corresponding to $D_{w\Lambda_i,\Lambda_i} := \Delta_{w\Lambda_i,\Lambda_i}|_{A_g(\mathfrak{n})}$ (unipotent quatum minor).

Recall that $\{D_{w\Lambda_i,\Lambda_i}\}_{i\in I}$ is the set of frozen variables of the quantum cluster algebra $A_q(\mathfrak{n})$.

Proposition

The family $\{(C_i, R_{C_i})\}_{i \in I}$ forms a real commuting family of graded braiders in R-gmod (and hence in C_w).

Category C_w and its localization

Theorem

Let $\iota_w : \mathcal{C}_w \hookrightarrow R\operatorname{-gmod}$ be the embedding functor. Then the functor $\widetilde{\iota}_w : \mathcal{C}_w[C_i^{\circ - 1} \mid i \in I] \to R\operatorname{-gmod}[C_i^{\circ - 1} \mid i \in I]$ induced from ι_w is an euqivalence of categories.

$$\begin{array}{ccc} R\text{-gmod} & \xrightarrow{Q_w} R\text{-gmod}[C_i^{\circ -1} \mid i \in I] \\ & & & \cong \widetilde{\iota_w} \\ & & & \cong \widetilde{\iota_w} \\ & & & & \mathcal{C}_w[C_i^{\circ -1} \mid i \in I]. \end{array}$$

Corollary

 $X \in R\operatorname{-gmod}$ belongs to C_w if and only if $R_{C_i}(X)$ is an isomorphism for each $i \in I$.

Rigidity

Theorem

The category $R\operatorname{-gmod}[C_i^{\circ -1} \mid i \in I]$ is left-rigid, and hence $C_w[C_i^{\circ -1} \mid i \in I]$ is left-rigid.

Theorem

There is a equivalence of monoidal categories

$$\mathcal{C}_w[C_{i,w}^{\circ-1} \mid i \in I] \simeq \left(\mathcal{C}_{w^{-1}}[C_{i,w^{-1}}^{\circ-1} \mid i \in I]\right)^{\mathrm{rev}}.$$

Corollary

The category $C_w[C_{i,w}^{\circ -1} | i \in I]$ is right-rigid and hence rigid.

Remark: The functor taking left-dual, $X \mapsto \mathcal{D}^{-1}(X)$, corresponds to the *twist automorphism* on $A_q(N^w)$ (=quantum analogue of $\mathbb{C}[N^w]$) up to an easy antiautomorphism.

Kernel of $Q_w : R\operatorname{-gmod} \to R\operatorname{-gmod}[C_i^{\circ -1} \mid i \in I]$

Recall $Q_w : R\operatorname{-gmod} \to R\operatorname{-gmod}[C_i^{\circ -1} \mid i \in I](\simeq \mathcal{C}_w[C_i^{\circ -1} \mid i \in I])$. The kernel $\operatorname{Ker}(Q_w) := \{M \in R\operatorname{-gmod} \mid Q_w(M) \simeq 0\}$ is a Serre subcategory and an \circ -ideal of $R\operatorname{-gmod}$, since Q_w is an exact monoidal functor.

Theorem

$$\{self-dual\ simples\ in\ Ker(Q_w)\} = \{S(b)\mid b\in B(\infty)\setminus B_w(\infty)\}\,,$$

where

$$B_w(\infty) := \left\{ \tilde{f}_{i_1}^{a_1} \cdots \tilde{f}_{i_\ell}^{a_\ell} b_\infty \mid (a_1, \dots, a_\ell) \in \mathbb{Z}_{\geq 0}^\ell \setminus \{0\} \right\} \subset B(\infty),$$

 $w = s_{i_1} \dots_{i_\ell}$ is a reduced expression of w, and

$$S: B(\infty) \xrightarrow{\simeq} \{ self-dual \ simples \ in \ R-gmod \}.$$

Kernel of $Q_w : R\operatorname{-gmod} \to R\operatorname{-gmod}[C_i^{\circ -1} | i \in I]$

We have a commutative diagram of functors:

Taking their Grothendieck groups, we have

$$A_{q}(\mathfrak{n}(w)) \longrightarrow A_{q}(\mathfrak{n}(w))D(w\Lambda, \Lambda_{i})^{-1}; i \in I]$$

$$\qquad \qquad \simeq \Big|_{[\widetilde{\iota}_{w}]}$$

$$A_{q}(\mathfrak{n}) \longrightarrow A_{q}(\mathfrak{n})/I_{w} \longrightarrow (A_{q}(\mathfrak{n})/I_{w})[[D(w\Lambda, \Lambda_{i})]^{-1}; i \in I],$$

where I_w is the ideal corresponding to $\operatorname{Ker} Q_w$.

If $\mathfrak g$ is symmetric and $\mathbf k$ is of characteristic zero, then the ideal I_w coincides with the ideal $(U_{w,q}^-)^\perp$ of Kimura(-Oya). And the above diagram recovers the theorem of Kimura-Oya which asserts that $[\iota_w]$ is an isomorphism.

Thank You!