Introduction to clustering Using python.

Iván Andrés Trujillo Abella

Aicoll

Unidad de analítica

Insights

How we can measure if two samples are similar? what are the primary focus on latex

new frame

a new frame will be important for us

Challenges

- How many groups we can find?
- How choose relevant variables?

Iván Andrés Trujillo Aicoll Analítica 4/33

Clustering

It is a optimization problem. That involves similarity among features. the most uses measure it is a distance metric among two points.

Data

Economy	PIB	Mean Growth
A	10	0.5
В	11	0.7
C	12	1.2
D	14	0.3

Table: Solow hypothesis

Euclidean distance

The distance as a approximation to similarity.

$$d_{ij} = \sqrt{\sum (x_{if} - x_{jf})^2} \tag{1}$$

where f indicate the feature of the individuals ij

Table: Euclidean distance matrix

note the symmetry $d_{AB} = d_{BA} = \sqrt{(11-10)^2 + (0.7-0.5)^2}$.

Association coefficients

		В		
		Feature	Not feature	
Α	Feature	а	b	
	Not feature	С	d	

 $S_{(ij)}=rac{a+d}{a+b+c+d}$ take in mind that two objects could be similar by lacking feature the following could be tackle this problem $J_{(ij)}=rac{a}{a+b+c}$. Notice that the both are numbers between zero and one, the first indicate not similarity a

Methods of clustering

Hierarchical clustering and k-means, are most popular methods to clustering.

Iván Andrés Trujillo Aicoll Analítica 9 / 33

Hierarchical cluster

```
n points then n cluster:
find the most pair similar cluster and merge
(step by step namely will be one fewer):
stop when all points are merged in one cluster
```

Iván Andrés Trujillo Aicoll Analítica 10 / 33

Linkage

if we have more of one point how measure?

• single: the shortest distance between two any member of two clusters.

$$d(C_i, C_j) = min\{d(i, j)\}, \forall i, j \in C_i \times C_j$$
 (2)

 Complete: the greatest distance from any member to another member.

$$d(C_i, C_j) = \max\{d(i, j)\}, \forall i, j \in C_i \times C_j$$
 (3)

 Avarage: Consider the mean of distances among the points of clusters.

$$d(C_i, C_j) = d(C_{\bar{x}_i}, C_{\bar{x}_j}). \tag{4}$$

11 / 33

Iván Andrés Trujillo Aicoll Analítica

Stopping criteria

- Minimun number of clusters: reach a minimum number of cluster
- treshold of maximun distance: not joint cluster with a maximun distance
- maximun of steps:

12 / 33

k means

We can make a partition of n individuals in k groups, and denote p(n, k) the distance of the point i to the c

$$d_{i,c} = (\sum_{f=1}^{m} (x_{i,f} - \bar{x}_{c,f})$$
 (5)

therefore:

$$e(p(n,k)) = \sum_{i} d_{i,c}^2 \tag{6}$$

Now we must select the arrangement that minimize e(p(n, k)).

Iván Andrés Trujillo Aicoll Analítica 13 / 33

K means

chose k initial centroids:
assing each observation to the closest centroid
assing new centroids
break the assingantion if not change

lván Andrés Trujillo Aicoll Analítica 14/33

How update the centroids

Suppose that you consider N variables, and k cluster therefore,

$$C_i = (\bar{x}_{1i}, \bar{x}_{2i}, ... \bar{x}_{Ni}), i = 1, 2, ..., k$$
 (7)

Remember that i denote the cluster actually assigned then the calculate is over all points that belong to the cluster $\forall j \in S_i$. This process remain until not change the composition of clusters.

Iván Andrés Trujillo Aicoll Analítica 15 / 33

Complexity

 \boldsymbol{k} cluster for each \boldsymbol{p} points and \boldsymbol{t} time of calculate the metric.

Iván Andrés Trujillo Aicoll Analítica 16/33

Problems

Sensible to the selection of k.

Question

the result depend upon initial centroids?

17 / 33

Choose k

 θ observations in k groups, $2 < k < \theta$

- A prior knowledge
- Iteration
- Uses hierarchical cluster

The reduction of the number of cluster imply lost in homogeneity.

18 / 33

Iván Andrés Trujillo Aicoll Analítica Analítica

Choose k

$$SSE = \sum_{i=1}^{n} \sum_{j=1}^{k} W_{(i,j)} \|X^{i} - \mu^{j}\|_{2}^{2}$$
 (8)

remember that x and y

Iván Andrés Trujillo Aicoll Analítica 19/33

Inertia

$$SSE = \sum_{i}^{n} \sum_{j}^{k} W_{(i,j)} d(x_{i}, c_{j})^{2}$$

$$= \sum_{i}^{n} [W_{i,1} d(x_{i}, c_{1})^{2} + W_{i,2} d(x_{i}, c_{2})^{2} + \dots + W_{(i,k)} d(x_{i}, c_{k})]$$

$$= \sum_{i}^{n} W_{(i,1)} d(x_{i}, c_{1})^{2} + \sum_{i}^{n} W_{(i,2)} d(x_{i}, c_{2}) + \dots + \sum_{i}^{n} W_{(i,k)} d(x_{i}, c_{k})$$

$$= W_{(1,1)} d(x_{1}, c_{1}) + \dots + W_{(n,1)} d(x_{n}, c_{1}) + W_{(1,2)} d(x_{1}, c_{2}) + \dots + W_{(n,2)} d(x_{n}, c_{2}) + W_{(1,k)} d(x_{1}, c_{k}) + \dots + W_{(n,k)} d(x_{n}, c_{k})$$

$$(9)$$

20 / 33

Iván Andrés Trujillo Aicoll Analítica

Assessment of quality

Silhouette is a measure that give us a number from -1 to 1.

$$s^{i} = \frac{b^{i} - a^{i}}{\max(b^{i}, a^{i})} \tag{10}$$

 \mathbf{a}^i the average distance among a sample that $\mathbf{x} \in \mathbf{i}$ and the other samples of the same group.

 b^i the average distance among $x \in i$ and the all other samples of the closest group.

how values of s^i are ideal?,

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Iván Andrés Trujillo Aicoll Analítica 21/33

Fuzzy c means clustering

Each point have a membership value to each cluster.

$$\sum_{k=1}^{m} \sum_{j=1}^{n} f_{jk}^{2} \|x_{j} - \mu_{k}\| \tag{11}$$

take in mind that f_{jk} it is the is the membership value of the j individual in the k cluster.

 u_k it is a function also of the points of data and membership values.

Iván Andrés Trujillo Aicoll Analítica 22 / 33

Cluster ideas

hard clustering: problems with no overlapping. soft clustering: belong to more than one centroid (K-means).

minimiza intra-clusters maximizing inter-cluster.

Examples of *c* **fuzzy means**

Cancer data analysis Impact on industry Segmentation cancer tissue

Until now

- spherical shapes with k-means
- stopping criteria with hierarchical

Iván Andrés Trujillo Aicoll Analítica 25 / 33

DBScan

We can trait noise with DBScan. Works differently to another two:

Density

Iván Andrés Trujillo Aicoll Analítica 26 / 33

Core object (r, η)

object that have at least η neighborhoods in a radius of r. think that a core object it is a candidate point to be a cluster.

Iván Andrés Trujillo Aicoll <mark>Analítica 27 / 33</mark>

H object

we said that a pattern or point H is **directly reachable** from a another point O if H it is neighbor of O and O it is object core.

Iván Andrés Trujillo Aicoll Analítica 28 / 33

S object

We said that a pattern or point S is **indirectly reachable** from another point O if there are a sequence of objects $p_1, p_2, ..., p_n$ where p_i is directly reachable from p_{i-1} . where $p_1 = O$ and $p_n = S$. To chain is apply to core objects.

summary in object core, border object and noise object.

Iván Andrés Trujillo Aicoll Analítica 30 / 33

Outliers

Outliers tend to have less densities.

Iván Andrés Trujillo Aicoll Analítica 31 / 33

Advantages

- we dont need provided the number of cluster as in K-means
- not is contingent to spherical shapes
- handled noise and outliers

Disadvantages

• rely on in the knowledge domain to tune the hyperparameters.

Iván Andrés Trujillo Aicoll Analítica 33 / 33