

Pesquisa Operacional

Prof. Msc. Aparecido Vilela Junior aparecido.vilela@unicesumar.edu.br

Pesquisa Operacional Método Simplex

- O método simplex é um algoritmo.
- É um método notavelmente eficiente que é usado rotineiramente para resolver os enormes problemas dos computadores de hoje.
- Um algoritmo é simplesmente um processo onde um procedimento sistemático é repetido (iterado) seguidamente até que o resultado desejado seja obtido.
- Cada percurso do procedimento sistemático é chamado de iteração.

- Objetivo:
 - Este é o procedimento geral para resolver problemas de programação linear.
 - Serão apresentados os principais aspectos do método simplex para resolver qualquer problema de programação linear tal que $b_i > 0$ para todo i = 1, 2, ..., m.

- O método simplex é um algoritmo.
 - Um algoritmo é um processo onde um procedimento sistemático é repetido (iterado) seguidamente até que o resultado desejado seja obtido.
 - Cada percurso do procedimento sistemático é chamado de *iteração*.
 - Consequentemente, um algoritmo substitui um problema difícil por uma série de outros fáceis.
 - Além das iterações, os algoritmos também incluem um procedimento de dar início e um critério para determinar quando parar.

• Em resumo:

- Aplicação do método simplex ao problema da Wyndor Glass Co.
- Estabelecimento do Método Simplex
 - É muito mais conveniente lidar com equações do que com relações de desigualdade.
 - Por isso, o primeiro passo para se estabelecer o método simplex é converter as restrições funcionais de desigualdade em restrições equivalentes de igualdade.
 - Isto é feito introduzindo variáveis de folga.

Consideremos a primeira restrição do exemplo:

$$x_1 \leq 4$$

A variável de folga para esta restrição é:

$$x_3 = 4 - x_1$$

Portanto,

$$x_1 + x_3 = 4$$

A constate original $x_1 \le 4$ se mantém sempre que $x_3 \ge 0$. Consequentemente, $x_1 \le 4$ é inteiramente equivalente ao conjunto de restrições

$$x_1 + x_3 = 4$$
 $x_3 \ge 0$

• Pela introdução de variáveis de folga de maneira idêntica para as outras variáveis funcionais, o modelo de programação linear original pode agora ser substituído pelo modelo *equivalente*.

$$Maximizar Z = 3x_1 + 5x_2$$

sujeito a

(1)
$$x_1 + x_3 = 4$$

(2) $2x_2 + x_4 = 12$
(3) $3x_1 + 2x_2 + x_5 = 18$

e

$$x_j \ge 0$$
, para $j = 1, 2, ..., 5$

- Note-se que o novo sistema de restrições funcionais tem duas variáveis mais que equações. (3 equações e 5 variáveis)
- Isto nos dá dois *graus de liberdade* na solução do sistema, uma vez que quaisquer duas variáveis podem ser escolhidas para serem consideradas igual a qualquer valor arbitrário a fim de resolver as três equações em termos das três variáveis restantes.
- O método simplex usa o zero para este valor arbitrário.
- As variáveis consideradas zero são chamadas de variáveis não-básica.
- As outras são chamadas de variáveis básicas.
- A solução resultante é chamada de solução básica.
- Se todas as variáveis básicas forem não-negativas, tratar-se-á de uma **solução básica viável.**
- Pela teoria da programação linear, uma solução ótima *tem* que ser uma solução básica viável.

• É conveniente considerar e manipular a equação da função-objetivo ao mesmo tempo que as novas equações de restrição. Por isso, antes de começar o método simplex o problema é escrito mais uma vez de maneira equivalente como:

Maximizar Z,

sujeito a

$$(0)Z - 3x_1 - 5x_2 = 0$$

$$(1) x_1 + x_3 = 4$$

$$(2) 2x_2 + x_4 = 12$$

$$(3) 3x_1 + 2x_2 + x_5 = 18$$

 $x_i \ge 0$, para j = 1, 2, ..., 5

e

- Agora podemos resumir simplesmente a idéia básica do método simplex.
 - O sistema de equações é resolvido repetidamente para uma seqüência de soluções básicas viáveis, cada uma melhor que a sua predecessora, até que seja alcançada uma solução (básica viável) ótima.
 - Cada nova solução básica viável é obtida a partir de sua predecessora, transformando uma variável não-básica em variável básica (a variável básica entrando) e transformado uma variável básica numa variável não-básica (a variável básica saindo).
 - Duas destas soluções básicas viáveis diferindo apenas por uma única troca de variáveis básica e não-básica são chamadas de **adjacentes**.

Resumo do Método Simplex

Passo de inicialização

Identificar uma solução

básica viável

inicial

Passo iterativo

Mover-se para a melhor solução

básica viável adjacente

Regra de parada

Parar quando não houver

nenhuma

solução básica adjacente melhor.

viável

• Cada uma destas partes do algoritmo será descrita para o exemplo.

- Passo de inicialização:
 - Introduza variáveis de folga (x_3,x_4,x_5) como descrito acima.
 - Selecione as variáveis originais (x_1,x_2) para serem as variáveis nãobásicas originais, iguale a zero e considere as variáveis de folga como sendo as variáveis básicas iniciais.
 - Quando estiver resolvendo um problema à mão, é conveniente usar a *forma tabular* do método simplex.

- Passo de inicialização:
 - O quadro simplex para registro de informações inclui:
 - 1. Os coeficientes das variáveis
 - 2. As constantes do lado direito das equações e
 - 3. A variável básica que aparece em cada equação.
 - O quadro simplex para o exemplo é mostrado abaixo:

		C	Coef					
Variável	Eq.							Lado
básica	No.	Z	x 1	x2	х3	x4	х5	direito
Z	0	1	-3	- 5	0	0	0	0
х3	1	0	1	0	1	0	0	4
x4	2	0	0	2	0	1	0	12
x5	3	0	3	2	0	0	1	18

- Passo de inicialização:
 - Uma vez que cada equação contém apenas uma variável básica, a qual tem um coeficiente de +1, cada variável básica é igual à constante do lado direito de sua equação.
 - Assim, a solução básica viável inicial para o exemplo $(x_1,x_2,x_3,x_4,x_5) = (0,0,4,12,18)$.
 - Vá a seguir para a regra de para parada para determinar se essa solução é ótima

- Regra de parada:
 - A atual solução básica viável é ótima se e somente se cada coeficiente na Eq. (0) for não-negativo (≥ 0) .
 - Se assim é, pare; de outro modo, vá para o passo iterativo para obter a próxima solução básica viável a qual envolve transformar uma variável não-básica numa variável básica (parte 1) e vice-versa (parte 2) e então resolva para a nova solução (parte 3).
 - O exemplo possui dois coeficientes negativos, portanto, vá para o passo iterativo.

• Passo iterativo:

- *Parte 1:*
 - Determine a variável básica entrando selecionando a variável com o maior coeficiente negativo na Eq. (0).
 - Faça um retângulo circunscrevendo a coluna abaixo deste coeficiente que será chamada de **coluna pivô**.
- *Parte 2:*
 - Determine a variável básica saindo
 - 1. selecionando cada coeficiente na coluna circunscrita que seja estritamente positivo.
 - 2. Dividindo o valor "lado direito" de cada linha pelo coeficiente correspondente.
 - 3. Identificando as equações que tenham as menores destas razões.
 - 4. Selecionando a variável básica para esta equação.

- Passo iterativo:
 - *Parte 2:*
 - Faça um retângulo circunscrevendo esta linha da equação no quadro à direita da coluna Z, e chame a linha circunscrita de **linha pivô**.
 - Chame também o número que está em ambos os retângulos de número pivô.

- Passo iterativo:
 - *Parte 3*:
 - Determine a nova solução básica viável a partir da construção de um novo quadro simplex abaixo do atual.
 - As três primeiras colunas não são modificadas com exceção de que a variável básica saindo na primeira coluna é substituída pela variável básica entrando.
 - O coeficiente da nova variável básica deverá ser mudado para +1, dividindose toda a linha pivô pelo número pivô, de modo que:

Nova linha pivô = antiga linha pivô número pivô

140,000,000			(Coeficiente de						
Iteração	Variável	Eq.							Lado	
1	básica	No.	Z	x 1	x2	х3	x4	х5	direito	
1	Z	0	1	-3	-5	0	0	0	0	
	х3	1	0	1	0	1	0	0	4	
	x4	2	0	0	2	0	1	0	12	
2	х5	3	0	3	2	0	0	1	18	
	Z	0	1							
	х3	1	0							Nova linha pivô <u>antiga linha pivô</u>
	x2	2	0	0	1	0	1/2	0	6	número pivô
	x5	3	0							

Para eliminar a nova variável básica das outras equações, todas as Linhas (inclusive da Eq.0), *exceto* a linha pivô, são modificadas para Usando se a seguinte fórmula:

Nova linha = antiga linha – (coeficiente da coluna pivô)x nova linha pivô

Nova linha = antiga linha – (coeficiente da coluna pivô)x nova linha pivô

• As nova linhas do exemplo são:

Linha 1. Não modificada pois o coeficiente da coluna pivô é zero

O novo quadro para a iteração 1, é mostrado a seguir:

1. ~				Coe	ficie	nte	de		
Iteração	Variável	Eq.							Lado
1	básica	No.	Z	x1	x2	х3	x4	х5	direito
1	Z	0	1	-3	-5	0	0	0	0
	x 3	1	0	1	0	1	0	0	4
	x4	2	0	0	2	0	1	0	12
2	x5	3	0	3	2	0	0	1	18
	Z	0	1	-3	0	0	5/2	0	30
	х3	1	0	1	0	1	0	0	4
	x2	2	0	0	1	0	1/2	0	6
	x5	3	0	3	0	0	-1	1	6

Uma vez que cada variável básica é igual ao lado direito de sua equação, a nova solução viável é (0, 6, 4, 0, 6), com Z=30 Como a Eq.0 ainda possui um coeficiente negativo a solução ainda não é ótima e deve ser feita uma nova iteração.

Dazão

O Método Simplex

	Z	0	1	-3	0	0	5/2	0	30	4 _ 4
Iteração	х3	1	0	1	0	1	0	0	4 -	1
4	x2	2	0	0	1	0	1/2	0	6	<u>6</u> _ 2 (mín)
ı	x5	3	0	3	0	0	-1	1	6 _	3

Linha 3 = Esta é a nova linha pivô

Nova linha=
$$1/3$$
 [3 0 0 -1 1, 6]
= [1 0 0 -1/3 1/3, 2]

Linha 0 [-3 0 0 -5/2 0, 30]
$$-(-3)$$
 [1 0 0 -1/3 1/3, 2] Nova linha = [0 0 0 3/2 1, 36]

Linha 1 [1 0 1 0 0, 4]
$$-(1)$$
 [1 0 0 $-1/3$ 1/3, 2] Nova linha = [0 0 1 1/3 $-1/3$, 2]

14	~ ~ -			Coeficiente de							
Itera	ıçao	Variável	Eq.							Lado	
	0	básica	No.	Z	x1	x2	х3	x4	х5	direito	
	U	Z	0	1	-3	- 5	0	0	0	0	
		х3	1	0	1	0	1	0	0	4	
		x4	2	0	0	2	0	1	0	12	
_	1	x5	3	0	3	2	0	0	1	18	
	•	Z	0	1	-3	0	0	5/2	0	30	
		х3	1	0	1	0	1	0	0	4	
	2	x2	2	0	0	1	0	1/2	0	6	
_		x5	3	0	3	0	0	-1	1	6	
		Z	0	1	0	0	0	3/2	1	36	
		х3	1	0	0	0	1	1/3	-1/3	2	
		x2	2	0	0	1	0	1/2	0	6	
		x1	3	0	1	0	0	-1/3	1/3	2	

A solução básica viável é (2, 6, 2, 0, 0) com $Z = 36 \rightarrow solução ótima$

Exercício Prático (1)

Modelo Completo

- Variáveis:
 - $x_1 = \text{cadeira e}$
 - $_{\rm x2} = {\rm mesa}$
- Função Objetivo
 - •MAXIMIZAR Margem de Contribuição Total
 - •MAX MCT = 10x1 + 8x2
- Restrições
 - •Montagem 3x1 + 3x2 <= 30
 - •Acabamento $6x1 + 3x2 \le 48$

Passo 1

- Inserir as variáveis de Folga:
 - As variáveis de folga servem para eliminar a inequação.
 - Uma variável de Folga para cada inequação
 - Utilizando a variável de folga, altera-se o sinal de <=, por somente =.
 - Todo o valor que está na diferença, agora vão estar na variável de folga.
 - Por exemplo, se não for fabricada nenhuma mesa e cadeira (Montagem $3x1 + 3x2 \le 30$), a folga vai ser de 30 (0x1 + 0x2 + x3 = 30), que seria o valor de x3, na equação de montagem.
 - Sempre a diferença da equação estará depositada na folga.

Passo 1 - Folga

Maximizar MCT =
$$10 \cdot x_1 + 8 \cdot x_2$$

Restrições: Montagem $3 \cdot x_1 + 3 \cdot x_2 + x_3 = 30$

UTILIZAÇÃO FOLGA DISPONIBILIDADE

Acabamento $6 \cdot x_1 + 3 \cdot x_2 + x_3 = 48$

UTILIZAÇÃO FOLGA DISPONIBILIDADE

com $x_1, x_2, x_3 \in x_4 \ge 0$

Passo 2 / 3

• Passo 2: Montagem do quadro de coeficientes, incluindo-se a função objetivo com os sinais trocados.

- Passo 3: Criação da solução básica inicial, geralmente atribuindo-se valor 0 às variáveis originais.
- Incluir a função objetivo com os sinais trocados.

Quadro de Coeficientes

BASE	x1	x2	x 3	x4	b
x 3	3	3	1	0	30
x4	6	3	0	1	48
MCT	-10	-8	0	0	0

Passo 2/3

BASE	x1	x2	х3	x4	b
x 3	3	3	1	0	30
x4	6	3	0	1	48
MCT	-10	-8	0	0	0

- Inicia-se com as variáveis de folga.
- Assim, se tornarmos x1 e x2 = 0 teremos x3 = 30 e x4 = 48 e MCT = 0

Passo 4

- Variável que entra na base:
- Aquela que tem o maior valor negativo na linha da função objetivo transformada.
- Quando não houver mais coeficiente negativo na linha da função objetivo, a solução encontrada é ótima.

Passo 4 - Matriz

BASE	x1	x2	x 3	x4	b
x 3	3	3	1	0	30
x4	6	3	0	1	48
MCT	-10	-8	0	0	0

Passo 5 - Matriz

- Definir a variável que sai da base:
 - Dividir os termos independentes pelos respectivos coeficientes positivos da variável que entra.
 - O menor quociente indica, pela equação em que ocorreu, a variável que deve sair da base.

Passo 5

BASE	x1	x2	x 3	x4	b	
х3	3	3	1	0	30	(30/3) = 10
x4	6	3	0	1	48	(48/6) = 8
MCT	-10	-8	0	0	0	

Passo 6

• Operação 01: Na variável que entrou dividida toda a linha pelo primeiro número para obter o número 1.

BASE	x1	x2	x 3	x4	b	
х3	3	3	1	0	30	
x4	6	3	0	1	48	"/6"
MCT	-10	-8	0	0	0	

Passo 6 – Etapa 01

BASE	x1	x2	x3	x4	b	
х3	3	3	1	0	30	
x1	1	"1/2"	0	"1/6"	8	"(X) - 3 + 1a. Linha
MCT	-10	-8	0	0	0	

Nova linha pivô = antiga linha pivô / número pivô, ou seja o 6

Passo 6 – Etapa 02

• Operação 02: Na variável que restou multiplique pelo primeiro número negativo da variável que entrou e some toda a linha.

BASE	x1	x2	x3	x4	b	
х3	0	"3/2"	1	"-1/2"	6	
x 1	1	"1/2"	0	"1/6"	8	"(X) - 3 + 1a. Linha
MCT	-10	-8	0	0	0	

Passo 06 – Etapa 03

• Na função objetivo multiplique o primeiro número negativo da variável que entrou e some com todas as linhas

BASE	x1	x2	x3	x4	b	
х3	0	"3/2"	1	"-1/2"	6	
x1	1	"1/2"	0	"1/6"	8	"(X) - 3 + 1a. Linha
MCT	-10	-8	0	0	0	

Nova linha = antiga linha – (coeficiente da coluna pivô) x nova linha pivô

Passo 06 – Etapa 03

• Com 8 cadeiras e 0 mesas o MCT = 80, mas como descrito no passo 4 existe ainda a possibilidade de otimização pois x2 = -3, retornamos a partir do passo 4.

BASE	x1	x2	x3	x4	b	
х3	0	"3/2"	1	"-1/2"	6	
x1	1	"1/2"	0	"1/6"	8	"(X) 10 + 3a. Linha
MCT	0	-3	0	"5/3"	80	

Passo 6 – Etapa 04

- Variável que entra na base: Aquela que tem o maior número negativo na linha da função objetivo transformada.
- Quando não houver mais coeficiente negativo na linha da função objetivo, a solução encontrada é ótima.

BASE	x1	x2	x3	x4	b
х3	0	"3/2"	1	"-1/2"	6
x1	1	"1/2"	0	"1/6"	8
MCT	0	-3	0	"5/3"	80

Passo 6 – Etapa 04

- Variável que sai da base: Dividir os termos independentes pelos respectivos coeficientes positivos da variável que entra.
- O menor quoeciente indica, pela equação em que ocorreu, a variável que deve sair da base.

BASE	x1	x2	x3	x4	b
х3	0	"3/2"	1	"-1/2"	6 " 4 = (6 / 3/2)
x1	1	"1/2"	0	"1/6"	8 " 16 = (8 / 1/2)
MCT	0	-3	0	"5/3"	80

Passo 6

• Operação 1: na variável que entrou divida toda a linha pelo primeiro número para obter o número 1.

BASE	x1	x2	x3	x4	b	
x2	0	1	"2/3"	"-1/3"	4	"/ (3/2)"
x 1	1	"1/2"	0	"1/6"	8	
MCT	0	-3	0	"5/3"	80	

Passo 4

• Operação 2: na variável que restou multiplique pelo primeiro número negativo da variável que entrou e some com todas as linhas:

BASE	x1	x2	x3	x4	b	
x2	0	1	"2/3"	"-1/3"	4	"(X) * -1/2 + 2a linha
x 1	1	"1/2"	0	"1/6"	8	
MCT	0	-3	0	"5/3"	80	

Passo 4 – Operação 02

BASE	x1	x2	х3	x4	b	
x2	0	1	"2/3"	"-1/3"	4	"(X) * -1/2 + 2a linha
x1	1	0	"-1/3	"1/3"	6	
MCT	0	-3	0	"5/3"	80	

Passo 4

• Operação 03: Na função objetivo multiplique pelo primeiro número negativo da variável que entrou e some com toda a linha:

BASE	x1	x2	х3	x4	b	
x2	0	1	"2/3"	"-1/3"	4	"(X) * 3 + 2a linha
x 1	1	0	"-1/3	"1/3"	6	
MCT	0	-3	0	"5/3"	80	

Passo 4

• Operação 03

BASE	x1	x2	x3	x4	b	
x2	0	1	"2/3"	"-1/3"	4	"(X) * 3 + 2a linha
x1	1	0	"-1/3	"1/3"	6	
MCT	0	0	2	"2/3"	92	

Solução Final

 Com 6 cadeiras, 4 mesas e MCT = R\$ 92,00 chegamos ao valor otimizado, pois na linha do MCT não há valores negativos.

BASE	x1	x2	x 3	x4	b
x2	0	1	"2/3"	"-1/3"	4
x1	1	0	"-1/3	"1/3"	6
MCT	0	0	2	"2/3"	92

Problema de PL

Um empreendedor decidiu comerciar barcos.

Depois de empregar alguns trabalhadores e de descobrir os preços aos quais venderia os modelos, chegou às seguintes observações: cada **modelo comum** rende um lucro de R\$ 520,00, e cada **modelo rápido** rende um lucro de R\$ 450,00.

Um modelo comum requer 40 horas para ser construído e 24 horas para o acabamento.

Cada modelo rápido requer 25 horas para a construção e 30 horas para o acabamento.

Este empreendedor dispõe de 400 horas de trabalho por mês para a construção e 360 horas para o acabamento.

Quanto deve produzir de cada um dos modelos de maneira a maximizar o lucro?

Montagem do Modelo

- Variáveis de decisão
 - x₁: quantidade de barcos a produzir do *Modelo Comum*
 - x₂: quantidade de barcos a produzir do *Modelo Rápido*
- Função-objetivo
 - Qual o objetivo?

Maximizar o lucro.

$$L = 520x_1 + 450x_2$$

• Conjunto de restrições

• Tempo para construção

utilização de recurso ≤ disponibilidade do recurso

•Tempo para acabamento

$$40x_1 + 25x_2 \le 400$$

$$24x_1 + 30x_2 \le 360$$

Modelo

Procedimento do Método Simplex

1ª Iteração

• Passo 1: Introduzir as variáveis de folga.

Maximizar L =
$$520x_1 + 450x_2 + 0x_3 + 0x_4$$

sujeito a:
$$\begin{cases} 40x_1 + 25x_2 + x_3 = 400\\ 24x_1 + 30x_2 + x_4 = 360\\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0 \end{cases}$$

• Passo 2: Montagem do quadro de cálculos.

$$L - 520x_1 - 450x_2 = 0$$

BASE	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	b	
\mathbf{x}_3	40	25	1	O	400	
X ₄	24	30	0	1	360	
L	-520	-450	0	0	0	

Passo 3: Escolha da solução básica viável inicial.

- Variáveis não-básicas:
- Variáveis básicas:

$$x_1 = x_2 = 0$$
$$x_3 = 400$$

• Função objetivo:

$$x_3 = 400$$

$$x_4 = 360$$

$$L = 0$$

- Passo 4: Variável que deve entrar na base.
 - Qual é o produto que mais contribui para o lucro?

• Passo 5: Variável que deve sair da base.

Divisões:

1^a linha:
$$400/40 = 10$$

$$2^{a}$$
 linha: $360/24 = 15$

O menor quociente ocorreu na 1ª linha. Logo, a variável que deve sair é

$$X_3$$

			Pivô			1
_	BASE	\mathbf{x}_1	$/$ x_2	\mathbf{x}_3	X ₄	b
	\mathbf{x}_3	40	25	1	0	400
_	X ₄	24	30	0	1	360
	L	-520	-450	O	0	0

• Passo 6: Transformação da matriz.

Deverão ser realizadas as operações com as linhas da matriz, de forma que a coluna de venha a se tornar um vetor identidade, com o elemento 1 na 1ª linha.

 \mathbf{X}_1

• 1ª operação: Dividir a 1ª linha por 40.

BASE	x ₁	\mathbf{x}_2	\mathbf{x}_3	X_4	b
\mathbf{x}_3	1	0,625	0,025	O	10
X_4	24	30	0	1	360
L	-520	-450	0	O	0

• <u>2^a operação</u>: Substituir a 2^a linha pela soma dela mesma com a 1^a linha multiplicada por (-24).

$$L_2 \Rightarrow L_2 - 24 \cdot L_1$$

• <u>3^a operação</u>: Substituir a 3^a linha pela soma dela mesma com a 1^a linha multiplicada por 520.

$$L_3 \Rightarrow L_3 + 520 \cdot L_1$$

Assim, obtemos o seguinte quadro:

BASE	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	b
\mathbf{x}_1	1	0,625	0,025	0	10
X_4	O	15	-0,6	1	120
L	O	-125	13	O	5200

GRADUAÇÃO UniCesumar

- Nova solução:
 - Variáveis não-básicas:

$$\mathbf{x}_2 = \mathbf{x}_3 = 0$$

Variáveis básicas:

$$\mathbf{x}_1 = 10$$

$$x_4 = 120$$

$$L = 5200$$

- Função objetivo:
- Passo 7: Voltar ao passo 4.

				Pivô		I
	BASE	\mathbf{x}_1	\mathbf{X}_2	$\int x_3$	X ₄	ъ
	\mathbf{x}_1	1	0,625	0,025	0	10
\	X ₄	0	15	-0,6	1	120
	L	0	-125	13	0	5200

2ª Iteração

- Passo 4: Variável que deve entrar na base: X 2
- Passo 5: Variável que deve sair da base:

Divisões:

$$1^{a}$$
 linha: $10/0,625=16$

$$2^{a}$$
 linha: $120/15 = 8$

O menor quociente ocorreu na 2ª linha. Logo, a variável que deve sair é .

• Passo 6: Transformação da matriz.

Encontrar o vetor identidade para a variável com o elemento 1 na 2ª linha.

 \mathbf{X}_2

• 1ª operação: Dividir a 2ª linha por 15.

BASE	x ₁	\mathbf{x}_2	\mathbf{x}_3	X_4	b
\mathbf{x}_1					
	1	0,625	0,025	0	10
X ₄	0	1	-0,04	1/15	8
L		-	0,01	1, 10	
Z	0	-125	13	0	
	520	0			

• 2^a operação: Substituir a 1^a linha pela soma dela mesma com a 2^a linha multiplicada por (-0,625).

$$L_1 \Rightarrow L_1 - 0.625 \cdot L_2$$

• <u>3^a operação</u>: Substituir a 3^a linha pela soma dela mesma com a 2^a linha multiplicada por 125.

$$L_3 \Rightarrow L_3 + 125 \cdot L_2$$

Assim, obtemos o seguinte quadro:

BASE	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	b
\mathbf{x}_1					
\mathbf{x}_2	1	O	0,05	-0,042	5
L	0	1	-0,04	1/15	8
	0	0	8	125/15	6200

Nova solução:

Variáveis não-básicas:

Função objetivo:
$$x_1 = 5$$

$$x_2 = 8$$

 $\mathbf{x}_3 = \mathbf{x}_4 = 0$

$$L = 6200$$

3ª Iteração

• <u>Passo 4</u>: Ao procurarmos a próxima variável que deve entrar na base, verificamos que todos os coeficientes da 3ª linha são positivos ou nulos, o que significa que qualquer aumento no valor das variáveis não-básicas faria diminuir o valor de L. Logo, concluímos que a solução encontrada é **ótima**.

• Resposta (Solução ótima)

5 barcos modelo comum

8 barcos modelo rápido

Lucro = 6200 reais