HEMATOLOGY AND ONCOLOGY

Pediatrics KKT

Contents

Iron deficiency anemia (IDA)	1
Thalassemia syndromes	5
β-thalassemia major (Cooley's anemia)	6
G6PD deficiency	12
Hypoplastic anemia	15
Causes of pancytopenia	18
Causes of purpura	19
Immune thrombocytopenic purpura (ITP)	20
Causes of coagulation disorders	24
Hemophilia Vs von Willebrand disease	24
Hemophilia	25
WBC neoplasms	29
Leukemia	29
Acute lymphoblastic leukemia (ALL)	30
Malignant lymphoma	34
Non-Hodgkin lymphoma	34

Iron deficiency anemia (IDA)

- The most common form of anemia in childhood
- Daily iron requirement

 ✓ 6 months-2 years
 ➤ 15 mg/day

 ✓ 4-10 years
 ➤ 10 mg/day

 ✓ 11-18 years
 ➤ 18 mg/day

- Causes of iron deficiency
 - ✓ ↓Iron intake
 - o \Socio-economic status, anorexia, food fads, negligence, ignorance
 - o Cow's milk (contains less bioavailable iron and can cause allergic gastroenteritis)
 - Late weaning of breast-milk with late introduction of supplementary diet (breast-milk contains sufficient iron only for the first 6 months of age)
 - ✓ ↓Iron absorption
 - O Hypochlorhydria/ achlorhydria due to chronic gastritis (e.g. atrophic gastritis), gastrectomy
 - o Small intestine disease (e.g. celiac disease, malabsorption syndromes)
 - ✓ ↓Iron storage
 - o Preterm low birth weight, small for gestational age
 - o Early cord clamp, cord and placental hemorrhage
 - o Multiple pregnancy, twin-to-twin transfusion syndrome (feto-fetal transfusion)
 - Feto-maternal transfusion
 - ✓ ↑Iron demand
 - o Preterm low birth weight (for catch-up growth)
 - o Infancy, puberty (periods of rapid growth)
 - o Pregnancy
 - ✓ ↑Iron loss
 - o From GI tract
 - Hookworm infestation
 - Rectal prolapse, polyposis, portal hypertension
 - Inflammatory bowel disease
 - Meckel's diverticulum, hiatus hernia
 - o From genitourinary tract
 - Menorrhagia, hematuria
 - From respiratory tract and others
 - Hemoptysis, epistaxis, gum bleeding
 - Cephalhematoma
 - ✓ Inborn errors of metabolism

- Clinical features
 - ✓ Features of anemia
 - o Pallor
 - o Constitutional symptoms fatigue, weakness, tiredness, palpitation, breathlessness
 - o Cardiomyopathy, anemic heart failure (high output heart failure), hemic murmur
 - ✓ Features of iron deficiency
 - o Pica craving for eating unusual (non-nutritional) things
 - o Frequent infections (due to reduced immune status)
 - o Epithelial changes
 - Skin angular stomatitis
 - Hair brittle hair
 - Nail koilonychia, longitudinal ridges, brittle nail
 - Tongue atrophic glossitis (due to atrophy of tongue papillae)
 - Esophagus dysphagia, esophageal web (post-cricoid web)
 - Intestine malabsorption due to villous atrophy
 - Growth retardation
 - ↓Mental performance, ↓school performance
 - ✓ Features of underlying cause
 - o Hookworm infestation passing of worms in the stool, abdominal pain, urticarial rash
- Complications of iron deficiency anemia
 - ❖ Anemic heart failure
 - **❖** Splenomegaly (15%)
 - ❖ Plummer-Vinson syndrome (risk of squamous cell carcinoma, esophagus)
 - * Repeated upper respiratory tract infections

- Investigations
 - ✓ Investigations for disease (iron deficiency anemia)
 - o Hemogram
 - Hb↓, retic count ↓
 - MCV↓, MCH↓, MCHC↓
 - WBC normal, platelet normal
 - Blood film
 - RBC
 - ➤ Hypochromic microcytic anemia
 - ➤ Mild to moderate degree of anisopoikilocytosis
 - Normocytes and microcytes
 - Pencil-shaped cells, few target cells
 - WBC normal, platelet adequate in distribution
 - Bone marrow examination (mostly not necessary)
 - Cell trails, cell fragments hypercellular
 - Micronormoblastic erythroid hyperplasia
 - Depletion of bone marrow iron (Perl Prussian Blue stain)
 - o Biochemical investigations (Iron study)
 - ↓Serum iron, ↑Total iron binding capacity (TIBC)
 - ↓Ferritin, ↓Transferrin saturation
 - ✓ Investigations for etiology
 - o For hookworm infestation stool REME
 - o For urinary pathology UREME, USG (abdomen)
 - For TB CXR, tuberculin skin test
 - ✓ Investigations for complications
 - o For heart failure CXR, ECG, echocardiogram
 - o For infections infection screen
 - o For esophageal web barium swallow, OGD scopy

Management

Management of underlying cause is more important than iron replacement therapy.

- ✓ Management of underlying cause
 - Hookworm infestation deworming with anthelminthics
 - o Rectal prolapse, polyposis surgery
- ✓ Iron replacement therapy
 - Oral iron therapy
 - Forms ferrous sulphate, ferrous gluconate, ferrous fumarate, ferrous succinate
 - Dose elemental iron 3-6 mg/kg/day in 3 divided doses
 - Should be given in empty stomach for better absorption (not after food, not after milk)
 - Advantage rate of rise in Hb level 1 g/dl/week
 - Disadvantage nausea, vomiting, abdominal pain, constipation, black stool
 - Treatment course
 - ➤ Oral iron therapy should be continued at least 6-8 weeks even after correction of Hb level (to replenish storage iron)
 - Parenteral iron therapy
 - Indication
 - > Intolerance to oral iron therapy
 - ➤ Altered bowel habit, GI pathology
 - Forms dextran iron, non-dextran iron (iron sorbitol, iron sucrose)
 - Dose: Iron (mg) = wt (kg) x Hb deficit (g/dl) x 4
 - Advantage ↓GI side effects
 - Disadvantage
 - > Anaphylaxis (especially with dextran iron)
 - > Injection site reaction (pain, discoloration)
 - Blood transfusion
 - Indication
 - ➤ Anemic heart failure
 - > When rapid correction of Hb level is required
 - Form packed cell transfusion slowly (with IV Lasix before and mid-transfusion)
 - Advantage rapid correction of Hb level (rate of rise in Hb level 1g/dl/unit)
 - Disadvantage transfusion reactions

Prevention

- ✓ Health education about iron-rich food; avoid diet restriction, fortification of food products
- ✓ Exclusive breastfeeding for 6 months; introduction of supplementary diet at 6 months of age
- ✓ Standard delivery care, iron supplementation to preterm low birth weight infants
- ✓ Iron supplementation to adolescent girls and pregnant women
- ✓ Avoid walking barefoot over the fields to prevent hookworm infestation

Thalassemia syndromes

- Reduced or absent globin chain synthesis resulting in chain imbalance and ineffective erythropoiesis
- Types of thalassemia syndromes in Myanmar
 - α-thalassemia
 - β-thalassemia
 - * Thalassemia E

Table II-3 Clinical and Genetic Classification of Thalassemias

Clinian Conductor	C	Clinical Features	Molecular Genetics
Clinical Syndrome	Genotype	Clinical Features	Molecular Genetics
β -Thalassemias			
β -Thalassemia major	Homozygous $\beta\text{-thalassemia}$ $(\beta^0/\beta^0,\beta^{\text{+}}/\beta^{\text{+}},\beta^0/\beta^{\text{+}})$	Severe anemia; regular blood transfusions required	Mainly point mutations that lead to defects in the transcription, splicing, or translation of β -globin mRNA
β-Thalassemia intermedia	Variable (β^0/β^+ , β^+/β^+ , β^0/β , β^+/β)	Severe anemia, but regular blood transfusions not required	
β-Thalassemia minor	Heterozygous β -thalassemia $(\beta^0/\beta, \beta^+/\beta)$	Asymptomatic with mild or absent anemia; red cell abnormalities seen	
α-Thalassemias			
Silent carrier	-/α, α/α	Asymptomatic; no red cell abnormality	Mainly gene deletions
α-Thalassemia trait	-/-, α/α (Asian) -/ α , -/ α (black African, Asian)	Asymptomatic, like β -thalassemia minor	
HbH disease	-l-, -lα	Severe; resembles β -thalassemia intermedia	
Hydrops fetalis	-/-, -/-	Lethal in utero without transfusions	

		в-тм	ß-TI	НВЕ/В	-Thal	НЬН
	Hb levels	-E ~/dl	- 7 10 ~/dl	Mild	9-12 g/dL	
	nd levels	<5 g/dL	~7-10 g/dL	Moderately Severe	6-7 g/dL	2.6-13.3 g/dL
				Severe	4-5 g/dL	
3L00D SMEAR	Low Hb production	Red cell hypochromia microcytosis, Target cells				
S QO	Haemolysis	Irreqularly crenated RBC, increased reticulocytes (5-10%)				
BLO	Ineffective erythropoiesis	Nucleated RBC, Basophilic stippling				
	Specific feautures	+Numerous F- cells/acid elusion	+F- cells/acid elusion	+ DCIP stain + F-cells/ac		HbH inclusion bodies
Н	emoglobin study	HbF up to 100% HbA2 ∮	HbF 10-50% (up to 100%) HbA2>4%	HbE (40 HbF (60 ± Hb A (with Hb	0-40%)	Variable HbH (0.8-40%) HbA2 ↓ + the pressence of a-varaints i.e. Hb CS, Hb PS etc.

β-thalassemia major (Cooley's anemia)

- Autosomal recessive disorder
- Consanguineous marriage of parents
- Family history of thalassemia
- Clinical features appear only after 6 months of age

Clinical features

- Clinical features due to disease process
 - ✓ Features due to ineffective erythropoiesis
 - o Persistent progressive severe anemia
 - o Constitutional symptoms (fatigue, weakness, tiredness, palpitation, breathlessness)
 - o Cardiomyopathy, anemic heart failure, hemic murmur
 - o Growth retardation, leg ulcers
 - ✓ Features due to compensatory medullary hemopoiesis
 - Thalassemic face frontal bossing, depressed nasal bridge, prominent malar eminence, malformed teeth
 - Vertebrae and long bones osteoporosis and pathological fractures
 - ✓ Features due to extramedullary hemopoiesis
 - o Hepatomegaly abdominal distension
 - o Extramedullary masses (e.g. paravertebral, intra-thoracic or intra-abdominal masses)
 - ✓ Features due to extravascular hemolysis
 - o Massive splenomegaly abdominal pain, splenic rupture
 - o Hypersplenism pancytopenia (progressive anemia, repeated infections, bleeding)
 - ✓ Features due to hemolysis
 - o Hemolytic jaundice
 - o Biliary stones (pigment stones)
 - ✓ Features due to iron overload (hemosiderosis and hemochromatosis)
 - Skin hyperpigmentation (especially knuckles)
 - o Pancreas
 - Exocrine pancreas impaired fat digestion and absorption (fat intolerance, steatorrhea), impaired fat soluble vitamin absorption
 - Endocrine pancreas diabetes mellitus (bronze diabetes)
 - Endocrine insufficiency
 - Hypopituitarism, hypothyroidism, hypogonadism
 - Endocrine insufficiency can cause growth retardation, delayed puberty and osteoporosis.
 - o Heart dilated cardiomyopathy, restrictive cardiomyopathy
 - Liver cirrhosis of liver

- Clinical features due to treatment
 - ✓ Features due to regular blood transfusion
 - o Blood transfusion reactions
 - o Transfusion-transmitted infections (HIV, HBV, HCV, malaria, syphilis)
 - o Iron overload (1 unit of blood contains 200 mg of iron)
 - ✓ Features due to iron chelation therapy
 - o Desferrioxamine
 - *Yersinia enterocolitica* infections
 - Visual problems (cataract, retinopathy)
 - Auditory problems (tinnitus, deafness)
 - ✓ Features due to splenectomy
 - OPSI (opportunistic post-splenectomy infections) (pneumococcus, meningococcus, *Hemophilus influenzae* type b)
 - o Thrombocytosis and thrombosis
- Major causes of death severe anemia, heart failure, liver failure, infections
- Investigations
 - Investigations for disease (chronic hemolytic anemia)
 - ✓ Hematological investigations
 - o Hemogram
 - Hb↓, Retic count↑
 - MCV↓, MCH↓, MCHC↓
 - WBC $-\leftrightarrow/\uparrow$ (reactive leukocytosis)/ \downarrow (pancytopenia)
 - Platelet ↔/↑ (reactive thrombocytosis)/↓ (pancytopenia)
 - Blood film
 - Hypochromic microcytic anemia
 - Severe degree of anisopoikilocytosis
 - Microcytes and normocytes
 - ➤ Pencil-shaped cells, target cells (many)
 - Features of hemolysis
 - Nucleated RBCs, polychromasia, reticulocytosis, spherocytes, fragmented RBCs
 - ➤ Marked basophilic stippling

- o Bone marrow examination (not usually necessary)
 - Cell trails and cell fragments hypercellular
 - Micronormoblastic erythroid hyperplasia
- ✓ Biochemical investigations for hemolysis
 - Bilirubin↑, LDH↑
 - Haptoglobin↓, hemopexin↓

- ❖ Investigations to exclude DDx (IDA)
 - ✓ Iron study
 - Serum iron ↔/↑
 - Ferritin ↑
 - TIBC ↔/↓
 - Transferrin saturation ↔/↑
- Investigations for etiology (β-thalassemia major)
 - ✓ Hemoglobin electrophoresis (cellulose acetate electrophoresis)
 - HbA reduced/absent
 - HbA₂ raised (5-10%)
 - HbF raised (90-95%)
 - ✓ Demonstration of HbF
 - HbF is more resistant to acid and alkali than HbA.
 - ➤ Acid elution test (Kleihauer test)
 - ➤ Alkaline denaturation test (Singer's test)
 - ✓ Osmotic fragility test
 - ↓Osmotic fragility to hypotonic saline (↑osmotic resistance)
 - ✓ Genetic tests
 - PCR (polymerase chain reaction), RFLP (restriction fragment length polymorphism)
- Investigations for complications
 - ✓ Investigations for hemochromatosis
 - o For iron overload ferritin, transferrin saturation
 - o For endocrine insufficiency hormonal assays (GH, TFT, sex hormones)
 - o For heart failure CXR, ECG, echocardiogram
 - o For liver failure LFT, USG (abdomen)
 - o For pancreatic failure CT (abdomen) for pancreatitis, RBS for DM
 - ✓ Investigations for bone changes
 - o Skull X-ray
 - Hair-on-end appearance (thinning of outer and inner tables, widening of diploic space, thickening of skull vault)
 - Vertebral X-ray cupping
 - o Hand X-ray lace-like appearance (prominent trabeculae)
 - o DEXA scan for bone mineral density (BMD) and osteoporosis
 - ✓ Investigations for hepatosplenomegaly USG (abdomen)
 - ✓ Investigations for transfusion-transmitted infections
 - o Infection screening (HIV Ab, HBV serology, anti-HCV Ab, blood for mp, VDRL)

- Management
 - Management of disease
 - General management
 - ✓ Blood transfusion
 - o Regular life-long blood transfusion is the mainstay treatment.
 - Purpose of blood transfusion
 - To improve anemia
 - To suppress ineffective erythropoiesis
 - To ensure active life and adequate growth
 - o Recommended blood products packed red cells (leuko-reduced)
 - o Transfusion regimens
 - Low transfusion regimen Hb 6-8 g/dl
 - High transfusion regimen Hb 8-10 g/dl
 - Super-high transfusion regimen Hb 10-12 g/dl
 - Transfusion methods
 - Packed cell transfusion 10-15 ml/kg
 - IV frusemide 1 mg/kg before and at the mid of transfusion
 - o Transfusion interval every 3-4 weeks (every 1-2 week if cardiac insufficiency)
 - o All thalassemic patients should be vaccinated with hepatitis B vaccine before starting vaccination.
 - ✓ Iron chelation therapy
 - o Indications for iron chelation therapy
 - Serum ferritin > 1000 ng/ml
 - After 10-20 units of blood transfusion
 - o Types of iron chelation therapy
 - Desferrioxamine (DFO) (Desferral)
 - Dose 25-50 mg/kg/day over a period of 8-12 hours during the night at least 5-6 nights/week
 - Route continuous subcutaneous infusion using micro infusion pump
 - Disadvantages *Yersinia enterocolitica* infection, visual problems (cataract, retinopathy), auditory problems (tinnitus, deafness)
 - Deferiprone (DFP) (Kelfer/ Ferriprox)
 - Dose 75-100 mg/kg/day in 3 divided doses PO
 - Disadvantages neutropenia/ agranulocytosis, arthralgia, zinc deficiency, GI disturbances

- ✓ Splenectomy
 - One in children > 6 years of age to prevent post-splenectomy sepsis
 - Indications for splenectomy
 - Symptomatic massive splenomegaly
 - Hypersplenism
 - †transfusion requirement
 - 1.5 times normal
 - >250 ml/kg/year of packed red cells
 - >400 ml/kg/year of whole blood
 - Complications of splenectomy
 - OPSI (opportunistic post-splenectomy infections) (pneumococcus, meningococcus, *Hemophilus influenzae* type b)
 - Thrombocytosis and thrombosis
 - o Pre-splenectomy prophylaxis
 - Immunoprophylaxis
 - 4-6 weeks prior to splenectomy
 - Pneumococcal conjugate vaccine, meningococcal conjugate vaccine, Hib vaccine
 - Post-splenectomy prophylaxis
 - Immunoprophylaxis
 - Booster dose of pneumococcal conjugate vaccine, annual influenza vaccine
 - Chemoprophylaxis life-long penicillin prophylaxis
 - Thromboprophylaxis low dose aspirin for thrombosis
- > Supportive management
 - ✓ Avoid iron-rich food
 - ✓ Folic acid supplementation (1-5 mg/day)
 - ✓ Calcium and vitamin D supplementation
- ➤ New therapeutic approaches
 - ✓ Hemopoietic stem cell transplant (HSCT)
 - Replacement of defective stem cells with normal stem cells to prevent ineffective erythropoiesis and chain imbalance
 - o It is only possible if HLA matched sibling donor is available.
 - o Thalassemia-free survival at least 75%
 - ✓ HbF inducers (hydroxyurea, azacytidine, myleran)
 - o Promoting y -chain synthesis to form HbF to prevent chain imbalance
 - ✓ Gene therapy transfer of normal gene in stem cells

Management of complications

- ➤ Management of heart failure
- ➤ Management of liver failure
- ➤ Management of pancreatic insufficiency
 - ✓ Replacement of pancreatic enzymes, fat soluble vitamins
 - ✓ Insulin therapy for diabetes mellitus
- ➤ Management of endocrine insufficiency
 - ✓ Hormone replacement therapy (GH, thyroid hormone, sex hormone)
 - ✓ Calcium, vitamin D, bisphosphonates for osteoporosis
- ➤ Management of infections proper antibiotics
- ➤ Management of biliary stones surgery

Prevention

- ✓ Genetic counseling
- ✓ Antenatal diagnosis
 - o Chorionic villous sampling
 - o Fetal blood sampling

G6PD deficiency

- The most common enzyme disorder worldwide
- Congenital hemolytic anemia especially on exposure to oxidative stress due to accelerated breakdown with or without reduced activity of G6PD enzymes
 - X-linked recessive disorder
 - o Male are affected. Female are carriers.
 - o Female are affected in Turner syndrome, homozygous condition, lyonization.
 - o Family history of G6PD deficiency in males of maternal side
- G6PD variants (over 300 variants)

Classes of G6PD variants	% of enzyme activity	Presentation
Class I	< 10% (severely deficient)	Chronic non-spherocytic
		hemolytic anemia
Class II	< 10% (severely deficient)	Acute intravascular hemolysis
Class III	10-60% (moderately deficient)	Acute intravascular hemolysis
Class IV	60-150% (normal activity)	Normal
Class V	>150% (increased activity)	Normal

- o Normal variant G6PD A (in Africa), G6PD B (worldwide)
- o Abnormal variant G6PD A- (class III), G6PD Mediterranean (class II)
- Clinical presentation
 - Neonatal jaundice and kernicterus
 - o Acute intermittent intravascular hemolysis
 - o Favism
 - o Chronic non-spherocytic hemolytic anemia
- Precipitating factors for hemolysis in G6PD deficiency
 - o Drugs
 - Drugs with definite risk of hemolysis methylene blue, nitrofurantoin, primaquine, quinolone, rasburicase, sulphonamide, dapsone
 - ❖ Drugs with possible risk of hemolysis chloroquine, sulphonylurea, aspirin
 - Chemicals moth balls (naphthalene balls)
 - Food fava beans (*Vicia faba*)
 - o Infection and illness hepatitis, diabetic ketoacidosis
- Clinical features of acute intravascular hemolysis
 - History of exposure to precipitating drugs or food
 - o Sudden onset of pallor, high-colored urine (hemoglobinuria) and back pain
 - o Fever with chills and rigor, tachycardia, hypotension, facial flushing
 - Children with hemolysis due to hepatitis have severe jaundice and severe clinical course with high mortality

- Complications anemic heart failure, acute kidney injury
- Investigations
 - ❖ Investigations for diagnosis (acute intravascular hemolysis)
 - ✓ Hemogram Hb↓, retic count ↑, WBC↔, platelet↔
 - ✓ Blood film
 - Features of hemolysis nucleated RBCs, reticulocytosis, polychromasia, fragmented RBCs, spherocytes
 - o Bite cells, blister cells
 - o Heinz bodies (with supravital stain)
 - ✓ Biochemical investigations for hemolysis
 - o Bilirubin↑, LDH↑
 - o Haptoglobin↓, hemopexin↓
 - O Hemoglobinemia (+), methemalbuminemia (+)
 - O Hemoglobinuria (+), hemosiderinuria (+)
 - ❖ Investigations to exclude DDx
 - ✓ For AIHA direct Coomb's test
 - ✓ For malaria blood for mp
 - ✓ For PNH flow cytometry (CD55, CD59)
 - Investigations for etiology (G6PD deficiency)
 - ✓ Screening tests
 - Methemoglobin reduction test
 - o Brilliant cresyl blue dye test
 - o Fluorescent spot test
 - ✓ Definitive tests
 - o Quantitative spectrophotometric analysis (G6PD enzyme assay)
 - May be normal (false negative) during acute attack because
 - Old RBCs are destroyed
 - Young RBCs have normal or near-normal G6PD activity
 - ➤ G6PD enzyme assay should be estimated 6 weeks after acute hemolysis
 - ✓ Genetic tests
 - o Polymerase chain reaction (PCR)
 - Restriction fragment length polymorphism (RFLP)
 - Investigations for precipitating factors
 - ✓ For hepatitis liver function test, serology for viral hepatitis
 - ✓ For DKA RBS, ketone bodies, ABG
 - Investigations for complications
 - ✓ For anemic heart failure CXR, ECG, echocardiogram
 - ✓ For acute kidney injury UREME, renal function tests

- Management
 - ❖ No specific therapy for G6PD deficiency
 - ❖ Management of acute intravascular hemolysis
 - ✓ Removal of precipitating factors
 - ✓ Supportive therapy
 - Nutrition
 - Folic acid, multivitamin supplement
 - Antioxidant (Vitamin E, selenium)
 - o Hydration adequate hydration to prevent AKI and to promote perfusion
 - o Fever control paracetamol, tepid sponging
 - ✓ Management of complications
 - Severe anemia blood transfusion
 - o AKI renal replacement therapy
 - Management of neonatal jaundice
 - ✓ Phototherapy, exchange transfusion
- Prevention
 - Prevention of G6PD deficiency
 - ✓ Genetic counseling
 - ✓ Antenatal diagnosis
 - Screening of G6PD deficiency
 - ✓ Neonatal screening for G6PD deficiency
 - ✓ Give known oxidant drugs with caution in male patients in highly prevalent areas of G6PD deficiency
 - ✓ Give known oxidant drugs only after screening of G6PD deficiency
 - ❖ Prevention of acute intravascular hemolysis in G6PD deficient patients
 - ✓ Health education of parents and children about the nature of the disease and checklist of oxidant drugs to avoid

Hypoplastic anemia (Aplastic anemia)

- Bone marrow failure to produce mature blood cells due to suppression of or injury to hemopoietic stem cells resulting in hypoplasia of single cell line or all cell lines
- Causes
 - Congenital
 - ✓ Fanconi anemia
 - ✓ Diamond-Blackfan anemia
 - Acquired
 - ✓ 1° idiopathic
 - **√** 2°
 - o Drugs
 - Antibiotics chloramphenicol, sulphonamide
 - Anti-epileptics phenytoin, carbamazepine
 - Anti-thyroids carbimazole, thiouracil
 - o Chemicals
 - Insecticides and fertilizers (aromatic hydrocarbons, benzene, DDT)
 - Gold, arsenic
 - Exposure to ionizing radiation
 - o Autoimmune diseases SLE
 - o Infection parvovirus B19, post-viral hepatitis, EBV
 - o PNH (25% associated with hypoplastic anemia)
- Classification according to severity (Camitta criteria)
 - ❖ Moderate aplastic anemia
 - ✓ BM cellularity < 30%
 - ✓ Reduction in ≥ 2 of 3 blood elements below normal range
 - ✓ Absence of severe pancytopenia
 - ❖ Severe aplastic anemia
 - ✓ BM cellularity < 25% normal or
 - ✓ BM cellularity < 50% with < 30% hemopoietic cells
 - ✓ And at least 2 of the following
 - \circ Retic count < 1% (< 40 x 10³/mm³)
 - \circ Neutrophil count $< 0.5 \times 10^3 / \text{mm}^3$
 - \circ Platelet count < 20 x 10³/mm³
 - Very severe aplastic anemia
 - ✓ Criteria for severe aplastic anemia +
 - ✓ Neutrophil count $< 0.2 \text{ x } 10^3/\text{mm}^3$

Clinical features

Symptoms

- ✓ Anemia
 - o Persistent progressive severe anemia
 - o Pallor, constitutional symptoms
 - o Cardiomyopathy, anemic heart failure, hemic murmur

✓ Bleeding

- O Skin bleeding petechiae, purpura, ecchymosis
- Mucosal bleeding epistaxis, gum bleeding, hemoptysis, H&M, bleeding per rectum, hematuria
- o Internal organ bleeding ICH (features of ↑ICP) (life-threatening)

✓ Infections

- Recurrent infections
- o Common infections occur more commonly (respiratory tract infections and GI infections)
- o Opportunistic infections can occur

Signs

- o Pallor disproportionate to amount of bleeding
- Hepatomegaly (-), splenomegaly (-), lymphadenopathy (-)
- o Bone pain (-), joint pain (-), sternal tenderness (-)

Investigations

- Investigations for disease
 - ✓ Hemogram
 - o Hb↓, Retic count↓
 - o WBC↓, neutrophil↓
 - Platelet↓
 - ✓ Blood film normochromic normocytic anemia or macrocytic anemia
 - ✓ Hemostatic parameters
 - Hess test (+)
 - o Bleeding time prolonged
 - o Clotting time normal
 - ✓ Bone marrow examination
 - Aspiration blood tap, dry tap
 - o Trephine biopsy hypocellularity of hemopoietic cells, replaced by fat

Investigations for etiology

- o For Fanconi anemia cytogenetics
- o For infection infection screen (HIV, HBV, HCV)
- o For autoimmune disease ANA, anti-dsDNA
- o For PNH flow cytometry (CD55, CD59)

Investigations for complications

- o For anemic heart failure CXR, ECG, echocardiogram
- o For infections CXR for pneumonia
- For ICH CT (head)

- Management
 - Supportive management
 - ✓ Prevention and treatment of anemia
 - Packed cell transfusion for
 - Hb < 7 g/dl or
 - Hb > 7 g/dl + fever/ bleeding
 - o Iron chelation therapy for patients with serum ferritin > 1000 ng/ml
 - > Routine use of erythropoietin is not recommended
 - ✓ Prevention and treatment of bleeding
 - > Avoid aspirin and anti-platelets
 - ➤ Avoid unnecessary IM injections
 - ➤ Avoid unnecessary skin tests
 - > Use a cloth or soft toothbrush for brushing teeth
 - o Platelet transfusion (platelet concentrate/ PRP) for
 - Platelet $< 10 \times 10^3 / \text{mm}^3$
 - Platelet $< 20 \times 10^3 / \text{mm}^3 + \text{fever/bleeding}$
 - Anti-fibrinolytic agent (tranexamic acid) for mucosal bleeding (contraindication hematuria)
 - ✓ Prevention and treatment of infections
 - o Personal hygiene, hand hygiene, dental hygiene, food and water hygiene
 - \circ For neutropenic fever (neutrophil < 0.5 x 10^3 /mm³ + fever)
 - Full barrier nursing, infection screen and blood culture
 - Empirical antibiotics therapy with broad-spectrum antibiotics
 - ➤ IV ceftriaxone 50mg/kg/dose 12 hourly + IV amikacin 7 mg/kg/dose 12 hourly
 - If still febrile after 4-7 days with anti-bacterial therapy
 - ➤ Anti-fungal therapy with IV amphotericin
 - If oral ulcer or perirectal infections
 - > Add IV metronidazole 7.5 mg/kg 8 hourly
 - If receiving immunosuppressive therapy
 - > Consider prevention and treatment of *Pneumocystis jiroveci* with septrin
 - Specific antibiotics therapy according to C&S results
 - Continue antibiotics therapy until
 - ➤ Afebrile for 3-5 days +
 - \triangleright Neutrophils > 0.5 x 10^3 /mm³
 - A short course of G-CSF may be considered for severe infections not responding to antibacterial and anti-fungal therapy

- Specific management
 - ✓ Removal of 2° causes (e.g. drugs, chemicals)
 - ✓ Hemopoietic stem cell transplant (HSCT) (60-80% survival rate)
 - HLA-identical sibling HSCT
 - HLA-matched unrelated donor HSCT
 - ✓ Immunosuppressive therapy (if HSCT is unavailable)
 - o 1st line therapy
 - Cyclosporine and levamizole (disadvantage renal toxicity)
 - Danazole (disadvantage hepatotoxicity)
 - o 2nd line therapy
 - Anti-thymocyte globulin (ATG) or anti-lymphocyte globulin (ALG)
 - Cyclophosphamide (disadvantage hemorrhagic cystitis)
 - o Role of steroid controversial (it can promote bacterial and fungal infections)
- Prevention
 - ❖ Protect children against contact with insecticides and fertilizers
 - * Rational use of antibiotics and anti-epileptics in children

Causes of pancytopenia

- \$\psi \Synthesis by bone marrow
 - o BM failure aplastic anemia
 - o BM infiltration
 - ✓ Infection HIV, disseminated TB
 - ✓ Inflammation autoimmune diseases (SLE)
 - ✓ Malignancy
 - 1° acute leukemia, lymphoma, multiple myeloma
 - 2° bone metastasis
 - o BM fibrosis myelofibrosis
 - o BM injury cytotoxics, radiation
 - o Ineffective hemopoiesis VitB12/folate deficiency
- †Destruction by spleen
 - o Hypersplenism

Causes of purpura

- Platelet disorders
 - Quantitative platelet defects (thrombocytopenia)
 - > Congenital
 - ✓ Fanconi anemia
 - ✓ Wiskott-Aldrich syndrome
 - Acquired
 - ✓ ↓Platelet production by bone marrow
 - o BM failure aplastic anemia
 - o BM infiltration
 - Infection HIV, disseminated TB
 - Inflammation autoimmune diseases (SLE)
 - Malignancy
 - 1° acute leukemia, lymphoma, multiple myeloma
 - 2° bone metastasis
 - o BM fibrosis myelofibrosis
 - o BM injury cytotoxics, radiation
 - o Ineffective hemopoiesis VitB12/folate deficiency
 - ✓ ↑Platelet destruction
 - o Hypersplenism
 - o Immune
 - Immune thrombocytopenic purpura (ITP)
 - Systemic lupus erythematosus (SLE)
 - Alloimmune neonatal thrombocytopenia
 - o Thrombotic microangiopathies
 - Disseminated intravascular coagulation (DIC)
 - Thrombotic thrombocytopenic purpura (TTP)
 - Hemolytic uremic syndrome (HUS)
 - o Others
 - Drugs heparin
 - Infections HIV, Gram-negative bacteria, HCV, dengue, EBV
 - Dilutional coagulopathy in massive blood transfusion
 - Qualitative platelet defect (platelet dysfunction)
 - > Congenital Glanzmann's thrombasthenia
 - ➤ Acquired uremia
 - Vascular defects
 - ➤ Congenital Marfan syndrome, Ehler-Danlos syndrome
 - Acquired steroid, vitamin C deficiency (scurvy), uremia, meningococcemia, vasculitis, Henoch-Scholein purpura

Immune thrombocytopenic purpura (ITP)

- Acquired thrombocytopenia due to autoimmune destruction of platelets and suppression of platelet production by bone marrow
- Classification of ITP
 - ✓ Primary ITP isolated thrombocytopenia with no underlying cause
 - ✓ Secondary ITP immune-mediated thrombocytopenia with underlying cause
- Phases of ITP
 - ✓ Newly diagnosed ITP (diagnosis to 3 months)
 - ✓ Persistent ITP (3-12 months)
 - ✓ Chronic ITP (>12 months)
 - ❖ Acute ITP
 - Chronic ITP (persistent thrombocytopenia for >6mths)
- Differences between acute ITP and chronic ITP

	Acute ITP	Chronic ITP
Age	Children	Adults
Sex	M = F	F:M - 3:1
Association	Preceding viral infection	Autoimmune diseases
Resolution	Spontaneous resolution (usually within 2 months)	Not remit within one year

Clinical features

- ✓ Symptoms
 - o Preceding viral infection
 - o Bleeding
 - Spontaneously or after trauma
 - Skin bleeding petechiae, purpura, ecchymosis
 - Mucosal bleeding epistaxis, gum bleeding, hemoptysis, hematemesis and melena, bleeding per rectum, hematuria
 - Internal organ bleeding ICH

✓ Signs

- o Pallor proportionate to bleeding
- o Splenomegaly (+) (in 10% of cases)
- O Hepatomegaly (-), lymphadenopathy (-)
- O Bone pain (-), joint pain (-), sternal tenderness (-)
- o Exclusion of all other causes of thrombocytopenia (diagnosis of exclusion)

Investigations

- Investigations for diagnosis
 - ✓ Hemogram $Hb\leftrightarrow /\downarrow$, $WBC\leftrightarrow$, platelet \downarrow
 - ✓ Blood film
 - Normochromic normocytic anemia (acute bleeding)/hypochromic microcytic anemia (chronic bleeding)
 - o WBC normal
 - o Platelet scanty in distribution
 - ✓ To assess hemostatic parameters
 - Hess test (+)
 - o Bleeding time prolonged
 - o Clotting time normal
 - ✓ To differentiate between quantitative platelet disorders and qualitative platelet disorders
 - Platelet count reduced
 - Platelet function test normal
 - ✓ To assess immune-mediated thrombocytopenia
 - o Anti-platelet antibodies (+) in 70-90% of cases
 - ✓ Bone marrow examination (not usually necessary) (only when uncertain diagnosis)
 - o \tag{Megakaryocytes (mature and immature forms)
 - Cytoplasmic vacuolation, poor platelet granulation, poor platelet budding of megakaryocytes
- Investigations to exclude secondary causes
 - ✓ Viral screen (HIV, HCV)
 - ✓ Autoimmune screen (ANA for SLE)
- Investigations for complications
 - \checkmark ICH CT (head)
- Management
 - ❖ Management of acute ITP
 - Most do not need active treatment
 - > Spontaneous resolution within 2 months
 - > Prevention of bleeding
 - ✓ Avoid aspirin and anti-platelets
 - ✓ Avoid unnecessary IM injections
 - ✓ Avoid unnecessary skin tests
 - ✓ Use a cloth or soft toothbrush for brushing teeth

- > Conservative outpatient management (Indications)
 - ✓ Definite diagnosis of ITP
 - ✓ Clinically well child without active bleeding
 - ✓ Good parental supervision and safe home environment
 - ✓ Guaranteed follow-up
- > Criteria for hospital admission
 - ✓ Uncertain diagnosis
 - ✓ Active bleeding
- > Inpatient management
 - ✓ Steroid
 - o Indication for steroid
 - Active bleeding
 - Platelet count < 20 x 10³/mm³
 - Oral prednisolone 2 mg/kg/day x 2 weeks, tapered over 1 week, regardless of response
 - Mechanism of action
 - Inhibit anti-platelet antibody production
 - Prolong platelet survival
 - Improve vascular stability
 - o Disadvantages hypertension, hyperglycemia
 - o (IV dexamethasone 1 mg/kg/day x 4 days for emergency care)

✓ IV IgG

- o Indication to rapidly raise platelet count
- o Total dose of 2 g/kg using either protocol:
 - 0.4 g/kg/day x 5 days or
 - 1 g/kg/day x 2 days
- Mechanism of action
 - Block Fc receptor of splenic macrophage and prevent platelet destruction by the spleen
- Platelet count rises within 48hrs of infusion.
- O Disadvantages hypersensitivity reaction, headache, aseptic meningitis
- ✓ Anti-D (useful only in D positive individuals)
 - o Indication to rapidly raise platelet count
 - \circ Time 24-48 hours, durability 3-4 weeks
 - Mechanism of action
 - Form RBC-antibody complex which are then destroyed by splenic macrophages instead of platelets
 - O Disadvantages hemolytic anemia, DIC, renal failure
- ✓ Fresh blood/platelet transfusion
 - Used only in life-threatening bleeding

- Management of chronic ITP
 - ➤ Aim to maintain hemostatically safe platelet count instead of trying for cure
 - > Usually do not need active treatment
 - Regular follow-up, report to hospital after injuries
- * Refractory ITP
 - Persistent thrombocytopenia ($< 20x10^3/\text{mm}^3$) for > 6-12 months and at least minor bleeding manifestations
- Management of chronic and refractory ITP
 - > First line therapies
 - ✓ Low dose steroid
 - Oral prednisolone 0.1-0.2 mg/kg/day
 - If no response, 1-2 mg/kg/day not more than 6 months
 - ✓ To rapidly raise platelet count
 - IV IgG
 - Anti-D
 - > Second line therapies
 - ✓ Splenectomy
 - One in children > 6 years of age to prevent post-splenectomy sepsis
 - o Complications of splenectomy
 - OPSI (opportunistic post-splenectomy infections) (pneumococcus, meningococcus, Hemophilus influenzae type b)
 - Thrombocytosis and thrombosis
 - Pre-splenectomy prophylaxis
 - Immunoprophylaxis
 - 4-6 weeks prior to splenectomy
 - Pneumococcal conjugate vaccine, meningococcal conjugate vaccine, Hib vaccine
 - Post-splenectomy prophylaxis
 - Immunoprophylaxis booster dose of pneumococcal conjugate vaccine, annual influenza vaccine
 - *Chemoprophylaxis life-long penicillin prophylaxis*
 - ✓ Rituximab (anti-CD20 antibody)
 - o Alternative to splenectomy or in patients with failed splenectomy
 - ➤ Modifying T cell response danazol, azathioprine, cyclosporine A
 - ➤ Immunosuppressive therapy CHOP regimen, pulse corticosteroids

Causes of coagulation disorders

- Congenital coagulation disorders
 - o Hemophilia
 - o von Willebrand disease
- Acquired coagulation disorders
 - Liver disease
 - Vitamin K deficiency
 - Anticoagulants
 - o Disseminated intravascular coagulation (DIC)
 - Circulating inhibitors of coagulation

Hemophilia Vs von Willebrand disease

Table 22.3 Investigations in haemophilia A and von Willebrand disease

Figure 22.15 Factor VIII synthesis: normal, haemophilia A and von Willebrand disease.

Hemophilia

- The most common congenital clotting disorders due to clotting factor deficiency in intrinsic pathway
 - * X-linked recessive disorder
 - ❖ Male are affected. Female are carriers.
 - ❖ Females are affected in Turner syndrome, homozygous condition, lyonization.
 - ❖ Family history of hemophilia in males of maternal side
- Classification
 - ❖ According to factor deficiency
 - ✓ Hemophilia A factor VIII deficiency
 - ✓ Hemophilia B factor IX deficiency (Christmas disease)
 - ❖ According to severity

Severity of hemophilia	% activity of	Bleeding manifestation
	clotting factors	
Mild hemophilia	5-30%	Severe bleeding with major surgery or major trauma
Moderate hemophilia	1-5%	Severe bleeding with minor surgery or minor trauma
Severe hemophilia	< 1%	Spontaneous joint or muscle bleeding

- Clinical features
 - Severe bleeding after injury in mild and moderate hemophilia
 - * Recurrent spontaneous bleeding in severe hemophilia
 - ✓ During neonatal period,
 - o Severe bleeding from umbilical cord
 - o Prolonged bleeding from heel prick and venipuncture sites
 - ✓ During infanthood,
 - o Bleeding into weight-bearing joints when start to crawl, stand and walk
 - ✓ During childhood,
 - o Severe bleeding post-circumcision
 - o Severe bleeding after dental extraction
 - o Severe bleeding after minor and major surgeries
 - Types of bleeding
 - o Joint bleeding (hemarthrosis), muscle bleeding (hematoma), wound bleeding
 - o Skin bleeding bruise
 - Mucosal bleeding epistaxis, gum bleeding, hemoptysis, hematemesis and melena, bleeding per rectum, hematuria
 - o Internal organ bleeding ICH, mediastinal bleeding, retroperitoneal bleeding
 - Pallor proportionate to bleeding

- Complications
 - Complications of disease
 - ✓ Pain (the most common and disturbing symptom) (local pain or referred pain)
 - ✓ Pressure effects
 - o Hemarthrosis → arthritis → chronic hemophilic arthropathy → permanent joint damage
 - o Limb hematoma compartment syndrome, peripheral neuropathy, gangrene
 - o Neck hematoma and tongue hematoma airway obstruction
 - o ICH, retroperitoneal bleeding fatal
 - o Mediastinal bleeding cardiac tamponade, respiratory failure
 - o Intramural intestinal bleeding intestinal obstruction
 - Bone bleeding pseudo-tumor formation
 - ✓ Anemia
 - Complications of treatment
 - ✓ Due to blood transfusion transfusion reactions, transfusion-transmitted infections
 - ✓ Due to development of factor inhibitors resistance to replacement therapy
 - Psychological and social complications
- Investigations
 - ❖ Investigations for disease and etiology (diagnosis and severity of hemophilia)
 - ✓ Hemogram Hb \downarrow , WBC \leftrightarrow , platelet \leftrightarrow
 - ✓ Blood film NNA (acute bleeding)/ HMA (chronic bleeding)
 - ✓ To assess hemostatic parameters
 - O Hess test (-)
 - o Bleeding time normal
 - Clotting time prolonged
 - ✓ To assess clotting pathways
 - o OSPT (for extrinsic pathway) normal
 - o APTT (for intrinsic pathway) prolonged
 - o Thrombin time (for final common pathway) normal
 - ✓ To exclude vWD
 - o vWF assay normal
 - ✓ To differentiate hemophilia A and hemophilia B
 - o Thromboplastin generation test (TGT)
 - To assess factor level and coagulant activity
 - o Factor VIII assay for hemophilia A
 - o Factor IX assay for hemophilia B

- Investigations for complications
 - ✓ For complications of disease
 - o To know site of bleeding endoscopy and imaging (X-ray, USG, CT, MRI)
 - ✓ For complications of treatment
 - o For transfusion-transmitted infections infection screen
 - o For factor inhibitors development factor inhibitors level

Management

- Principles of management
 - ✓ Comprehensive health care by multi-disciplinary team approach
 - Prevention and control of bleeding
 - o Treatment of complications and rehabilitation
 - o Health education of parents and children for early detection of hemophilia
 - o Counseling about benefits of prophylaxis, rehabilitation and prolonged management
- General management of hemarthrosis
 - ✓ First aid measures
 - P Protection of joint (splintage)
 - \circ R Rest
 - \circ I Ice compression
 - C Compression (gentle) (bandaging)
 - o E Elevation of dependent joint to a comfortable position
 - ✓ Pain management
 - o Functional training
 - o Adequate analgesia (paracetamol, COX-2 inhibitors, opioid analgesia)
 - o Orthopedic surgery if persistent and disabling pain
 - ✓ Prevention of joint deformities
 - o Physiotherapy and muscle strengthening exercises after acute phase of bleeding
- Drug therapy for bleeding episodes
 - ✓ DDAVP (Desmopressin)
 - o Mechanism of action release factor VIII from body stores
 - o Indication muscle or joint bleeding in mild hemophilia
 - ✓ Tranexamic acid
 - Mechanism of action inhibits fibrinolysis and prevents breakdown of blood clots
 - o Indication oral bleeding, epistaxis
 - o Contraindication hematuria (risk of clot retention and renal failure)
- Specific management (Replacement therapy)
 - ✓ Calculation of required amount of clotting factors
 - o Factor VIII = weight (kg) x % rise in factor VIII desired x 0.5
 - o Factor IX = weight (kg) x % rise in factor IX desired x 1.4

- ✓ Half-lives of clotting factors
 - Half-life of factor VIII 8 hours
 - Half-life of factor IX 18-20 hours
- ✓ Blood products for replacement therapy
 - Fresh whole blood (< 8 hours old) 1 ml contains 1 unit of factor VIII and factor IX
 - Fresh plasma (< 8 hours old) 1 ml contains 1 unit of factor VIII and factor IX
 - o Fresh frozen plasma (contains factor VIII and factor IX) (given within 30 min)
 - Each unit contains about 200 units of factor VIII and factor IX
 - o Cryoprecipitate (contains factor VIII, vWF, fibrinogen) (given within 30 min)
 - Each unit contains about 100 units of factor VIII
 - Factor concentrate
 - Pooled increased risk of infection
 - Recombinant no risk of infection

✓ Home therapy

o Home infusion of factor concentrate after proper training of parents and children

✓ Prophylactic therapy

 Prophylactic infusions of factor concentrate can convert severe hemophilia to mild or moderate hemophilia, reducing morbidity and mortality of hemophiliac patients

Management of factor inhibitors development

- ✓ Using very high dose of clotting factors
- ✓ Immunosuppressive therapy
- ✓ Factor VIII bypassing agents (activated factor VIIa, activated prothrombinase complex)

Prevention

- Prevention of bleeding
 - ✓ Avoid aspirin and anti-platelets
 - ✓ Avoid unnecessary IM injections
 - ✓ Give vaccinations via subcutaneous route
 - ✓ Avoid aspiration of joints

✓ For surgical procedure

- o Measure factor level; assess factor inhibitors; ensure adequate factors are available
- o Prophylactic transfusion of clotting factors
 - Major surgery raise up to 100% of factor VIII and maintain at 30-50% up to 2 weeks
 - Minor surgery raise up to 50% of factor VIII

Prevention of hemophilia

- ✓ Genetic counseling
- ✓ Antenatal diagnosis
- ✓ Carrier detection factor VIII C : factor VIII Ag < 0.6 is suggestive of carrier

WBC neoplasms

- Risk factors for WBC neoplasms
 - ✓ Radiation and radiotherapy
 - ✓ Infection
 - EBV, HTLV-1, HIV, HHV-8
 - H. pylori
 - ✓ Chemicals (hydrocarbons) and cytotoxic
 - ✓ Hereditary (genetic and chromosomal disorders) (e.g. Down syndrome, Bloom syndrome)

Leukemia

- Accumulation of malignant WBCs in bone marrow and/or blood resulting in bone marrow failure and/or tissue infiltration
- Classifications of leukemia
 - ✓ Acute leukemia
 - o Acute lymphoblastic leukemia (ALL)
 - o Acute myeloid leukemka (AML)
 - ✓ Chronic leukemia
 - o Chronic lymphocytic leukemia (CLL)
 - o Chronic myeloid leukemia (CML)
- Types of leukemia in children
 - o Acute lymphoblastic leukemia (ALL)
 - o Acute myeloid leukemia (AML)
 - o Chronic myeloid leukemia (CML)

Acute lymphoblastic leukemia (ALL)

- Most common malignancy of childhood
- Most common hematological malignancy of childhood
- Major risk factors for ALL
 - Ionizing radiation
 - ❖ Down syndrome
- Clinical features
 - Features of disease
 - > Features of bone marrow failure
 - ✓ Anemia
 - o Persistent progressive severe anemia
 - o Pallor, constitutional symptoms
 - o Cardiomyopathy, anemic heart failure, hemic murmur
 - ✓ Bleeding
 - O Skin bleeding petechiae, purpura, ecchymosis
 - Mucosal bleeding epistaxis, gum bleeding, hemoptysis, H&M, bleeding per rectum, hematuria
 - o Internal organ bleeding ICH (features of ↑ICP) (life-threatening)
 - ✓ Infections
 - o Recurrent infections
 - o Common infections occur more commonly (respiratory tract infection, GI infection)
 - o Opportunistic infections can occur
 - > Features of tissue infiltration
 - ✓ Bone pain, joint pain, sternal tenderness
 - ✓ Lymphadenopathy, hepatosplenomegaly
 - ❖ Features of etiology features of Down syndrome (facial dysmorphism, congenital heart disease)
- Complications
 - Emergency complications (hematological emergencies)
 - > Febrile neutropenia
 - ➤ Life-threatening bleeding
 - Mediastinal obstruction (especially in T lymphoblastic leukemia)
 - > Tumor lysis syndrome
 - Complications of ALL
 - ➤ Bone marrow relapse
 - ➤ CNS relapse (CNS leukemia meningism, cranial nerve palsies)
 - Testicular relapse (painless unilateral/bilateral testicular swelling)

- Complications of management
 - > Complications of blood transfusion
 - ✓ Transfusion reactions
 - ✓ Transfusion-transmitted infections (HIV, HBV, HCV, malaria, syphilis)
 - > Complications of chemotherapy
 - ✓ General complications
 - o Bone marrow failure (anemia, infections, thrombocytopenia)
 - o Chemotherapy-induced mucositis
 - o Chemotherapy-induced nausea and vomiting
 - ✓ Specific complications
 - o Methotrexate mucositis, pulmonary fibrosis, cirrhosis
 - o Adriamycin cardiotoxicity
- Investigations
 - ❖ Investigations for disease (diagnosis and classification of ALL)
 - ► Hemogram Hb \downarrow , WBC \downarrow / \leftrightarrow / \uparrow , platelet \downarrow
 - Peripheral blood film (Romanovsky stain) (FAB classification of ALL)
 - L1 monomorphic, small lymphoblasts, high N:C ratio
 - L2 pleomorphic, small and large lymphoblasts, low N:C ratio
 - L3 Burkitt's leukemia (basophilic cytoplasm with vacuolation)
 - ➤ Bone marrow examination
 - Lymphoblasts > 25% (30%)
 - Erythropoiesis↓, megakaryopoiesis↓
 - Cytochemical stain
 - Lymphoblasts PAS positive
 - > Immunophenotyping
 - T lymphoblastic leukemia (CD2, CD3, CD5, CD7 positive)
 - B lymphoblastic leukemia (CD10, CD19, CD20 positive)
 - Cytogenetics
 - For diagnosis and prognosis
 - Hyperdiploidy good prognosis
 - o Philadelphia chromosome (t 9;22) poor prognosis
 - Investigations for etiology
 - For Down's syndrome chromosomal study (trisomy 21)
 - ➤ For EBV infection EBV serology

- Investigations for complications
 - > For complications of ALL
 - o For lymphadenopathy lymph node biopsy
 - For hepatosplenomegaly USG (abdomen)
 - o For CNS leukemia CSF analysis (CSF leukocytes↑ and/or leukemic cells (+))
 - For emergency complications
 - o For febrile neutropenia infection screen, swabs (including ENT), cultures
 - For ICH CT (head)
 - For mediastinal obstruction CXR, CT (chest)
 - For tumor lysis syndrome uric acid \uparrow , $K^+\uparrow$, phosphate \uparrow , calcium \downarrow , LDH \uparrow
- Investigations for management
 - o Hemogram, ESR, CRP
 - o CXR, ECG, echocardiogram
 - o Glucose, LFT, RFT, UREME
- Management of ALL
 - Management of emergency complications
 - Febrile neutropenia (Neutropenic regimen)
 - o Full barrier nursing, infection screen, blood culture
 - o Empirical antibiotics therapy with broad-spectrum antibacterial ± antifungal followed by
 - o Specific antibiotics therapy according to C&S results until
 - Afebrile for 3-5 days
 - Neutrophil count $> 0.5 \times 10^3 / \text{mm}^3$
 - ➤ Life-threatening bleeding blood transfusion
 - ➤ Mediastinal obstruction radiotherapy
 - ➤ Tumor lysis syndrome adequate hydration, rasburicase/allopurinol
 - General management
 - Prevention of complications of chemotherapy
 - To prevent or treat bone marrow failure (replacement therapy) prophylactic/therapeutic transfusion of packed cells and platelets
 - o To prevent *Pneumocystis jiroveci* pneumonia septrin prophylaxis
 - o To prevent tumor lysis syndrome adequate hydration, allopurinol
 - Treatment of complications of chemotherapy
 - o For chemotherapy-induced nausea and vomiting ondensetron
 - o For chemotherapy-induced mucositis omit enteral feeding, give parenteral nutrition

Supportive management

- O Nutrition adequate nutrition via enteral and/or parenteral nutrition
- Hydration optimal fluid and electrolyte balance
- o Pain and fever control
- Play and occupational therapy
- Psychological and social support
- o Hospice care for terminally ill child

Specific management

- ➤ Chemotherapy mainstay treatment
- > Allogeneic or autologous bone marrow transplant, immunotherapy
- ➤ Role of surgery for lymph node biopsy
- ➤ Role of radiotherapy for metastasis (CNS leukemia) and mediastinal obstruction

> Chemotherapy

- ✓ Phases of chemotherapy
 - Remission induction
 - Combination chemotherapy to induce remission
 - Remission absence of any clinical or laboratory evidence of leukemia) (clinical improvement, absence of abnormal leukemic cells in bone marrow and blood, normal or improving blood count)
 - o Consolidation intensive chemotherapy to reduce or eliminate hidden leukemic cells
 - o Maintenance therapy combination chemotherapy to reduce the risk of relapse
 - \circ CNS-directed therapy (in each phase) intrathecal methotrexate \pm CNS irradiation

✓ Duration of chemotherapy

- \circ Girls 2 years
- \circ Boys 3 years

• Poor prognostic factors

- \circ Age < 1 year, > 10 years
- o Boys, Black, B lymphoblastic leukemia
- o Failure to respond to therapy
- \circ WBC count at diagnosis $-> 50 \times 10^3 / \text{mm}^3$
- o CNS leukemia
- o Cytogenetics Philadelphia chromosome

• Prevention of ALL

- ✓ Avoidance of radiation exposure in pregnant women
- ✓ Protection of children against exposure to dangerous chemicals
- ✓ Avoidance of unnecessary or repeated radiological investigations in children

Malignant lymphoma

- Malignant proliferation of cells of lymphoid tissue (lymphocytic or histiocytic lineage)
 - o Hodgkin lymphoma
 - o Non-Hodgkin lymphoma

Non-Hodgkin lymphoma

- Types common in children and adolescents lymphoblastic lymphoma, Burkitt lymphoma, diffuse large B cell lymphoma, anaplastic large cell lymphoma
- Clinical features
 - o Can arise in any lymphoid tissue, very rapidly progressive
 - o Mainly involving cervical and supraclavicular lymph nodes
 - o Nodal spread localized or generalized lymphadenopathy with painless, rubbery lymph nodes
 - o Extranodal spread hepatosplenomegaly, bone marrow failure
 - o Earlier symptoms cough, sore throat, abdominal pain, vomiting, fever, weight loss, night sweat
- Complications
 - o CNS lymphoma ↑ICP, paraplegia (spinal cord compression)
 - o Cervical and Waldeyer ring lymphoma airway obstruction
 - o Intra-thoracic lymphoma SVC syndrome, cardiac tamponade, pleural effusion
 - o Intra-abdominal lymphoma (30-40% of patients) (mainly involve ileum, cecum and appendix) intestinal obstruction, perforation, bleeding, ascites, IVC obstruction
 - o Tumor lysis syndrome, venous thromboembolism
- Staging (St. Jude Children's Research Hospital staging system)
 - o Stage I
 - Single tumor (extra-nodal) or single nodal area, excluding mediastinum or abdomen
 - Stage II
 - Single tumor with regional node involvement
 - Two or more tumors or nodal areas on one side of the diaphragm
 - Primary GI tract tumor (resected) with or without regional node involvement
 - Stage III
 - Tumors or lymph node areas on both sides of the diaphragm
 - Any primary intrathoracic or extensive intra-abdominal disease (unresectable)
 - Any primary paraspinal or epidural tumors
 - Stage IV
 - Bone marrow or CNS disease regardless of other sites (marrow involvement defined as 0.5% to 25% malignant cells)

Investigations

- o For diagnosis FNAC of lymph nodes, lymph node biopsy
- For complications
 - For nodal and extranodal spread imaging (X-ray, USG, CT, MRI)
 - For bone marrow spread BM biopsy
 - For pancytopenia hemogram, blood film, infection screen, hemostatic parameters
 - For tumor lysis syndrome LDH, calcium, phosphate, potassium level
 - For CNS lymphoma CSF analysis

Management

- Management of emergency complications
 - Febrile neutropenia neutropenic regimen
 - Life-threatening bleeding blood transfusion
 - Mediastinal obstruction radiotherapy
 - Tumor lysis syndrome adequate hydration, rasburicase/ allopurinol

o General management

- Prevention of complications of chemotherapy
 - ✓ For BM failure replacement therapy with blood components
 - ✓ For tumor lysis syndrome adequate hydration, allopurinol
- Treatment of complications of chemotherapy
 - ✓ For chemotherapy-induced nausea and vomiting ondensetron

Supportive management

- Nutrition adequate nutrition via enteral and/or parenteral nutrition
- Hydration optimal fluid and electrolyte balance
- Pain and fever control
- Psychological and social support

Specific management

- Role of surgery for lymph node biopsy, resection of nodal and extranodal areas, for complications (intussusception, intestinal perforation, suspected appendicitis, GI bleeding)
- Role of radiotherapy for metastasis (CNS leukemia) and mediastinal obstruction
- Chemotherapy mainstay treatment
 - ✓ Choice of protocol depends on histology and stage, duration 6-18 months
 - ✓ R-CHOP (rituximab, cyclophosphamide, hydroxydaunorubicin, oncovin, prednisolone)
- o Management of relapse (extremely poor prognosis) (no uniform approach to rescue therapy)
 - Different/ previously unused chemotherapy
 - Allogeneic or autologous stem cell transplant

Prognosis

- Important prognostic factors tumor burden at presentation and treatment administered
- o Disease free survival for 2 years
 - Nearly 90% in limited stage disease
 - 70% in stage III and IV disease