Weekly Presentation DeltaGrad: Rapid retraining of machine learning models

Yinjun Wu Edgar Dobriban Susan B Davidson Presented by : Ananth Mahadevan

October 1, 2020

Overview

- Motivation
- Related Work
- OeltaGrad
- 4 Theoretical Results
- **5** Experimental Results
- 6 Future Work

Wu et al. DeltaGrad October 1, 2020

Motivation

Wu et al. DeltaGrad October 1, 2020

Regular Machine Learning Pipeline:

- Train a ML model from data using a learning algorithm
- Small change in training data occurs (deletions or additions)
- Retrain ML model from scratch

Regular Machine Learning Pipeline:

- 1 Train a ML model from data using a learning algorithm
- 2 Small change in training data occurs (deletions or additions)
- Retrain ML model from scratch

Limitations:

Regular Machine Learning Pipeline:

- 1 Train a ML model from data using a learning algorithm
- Small change in training data occurs (deletions or additions)
- Retrain ML model from scratch

Limitations:

Computationally expensive process

Regular Machine Learning Pipeline:

- 1 Train a ML model from data using a learning algorithm
- Small change in training data occurs (deletions or additions)
- Retrain ML model from scratch

Limitations:

- Computationally expensive process
- Throws away useful computations from initial training

Regular Machine Learning Pipeline:

- 1 Train a ML model from data using a learning algorithm
- Small change in training data occurs (deletions or additions)
- Retrain ML model from scratch

Limitations:

- Computationally expensive process
- Throws away useful computations from initial training

Research Question

Can we retrain models in an efficient manner?

• GDPR: Deletion of private information from public datasets

- GDPR: Deletion of private information from public datasets
- Continuous Model Updating: Handle additions, deletions and changes of training samples

- GDPR: Deletion of private information from public datasets
- Continuous Model Updating: Handle additions, deletions and changes of training samples
- Data Valuation: Leave One Out tests to find important training samples

- GDPR: Deletion of private information from public datasets
- Continuous Model Updating: Handle additions, deletions and changes of training samples
- Data Valuation: Leave One Out tests to find important training samples
- Bias Reduction: Speeds up jackknife resampling that requires retrained model parameters

Related Work

Prior Work

- Prior work for specialized problems and ML models, usually for deletion
 - Provenane Based deletions for linear and logistic regression [WTD20]
 - Newton step and noise for certified data removal [GGHv20]
 - K-means clustering [GGVZ19]

DeltaGrad

Gradient Descent

Objective function,

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} F_i(\mathbf{w}),$$

where $F_i(\mathbf{w})$ is loss for *i*-th sample.

Gradient Descent

Objective function,

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} F_i(\mathbf{w}),$$

where $F_i(\mathbf{w})$ is loss for *i*-th sample.

• Stochastic Gradient Descent update rule, \mathcal{B}_t is randomly sampled mini-batch of size B

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - \frac{\eta_{t}}{B} \sum_{i \in \mathcal{B}_{t}} \nabla F_{i}(\mathbf{w}_{t})$$

Gradient Descent

Objective function,

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} F_i(\mathbf{w}),$$

where $F_i(\mathbf{w})$ is loss for *i*-th sample.

• Stochastic Gradient Descent update rule, \mathcal{B}_t is randomly sampled mini-batch of size B

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \frac{\eta_t}{B} \sum_{i \in \mathcal{B}_t} \nabla F_i(\mathbf{w}_t)$$

Full-batch gradient descent (GD) is on entire data

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \frac{\eta_t}{n} \sum_{i=1}^n \nabla F_i(\mathbf{w}_t)$$

• After training, $R = \{i_1, i_2, \dots, i_r\}$ samples are removed, where $r \ll n$

- After training, $R = \{i_1, i_2, \dots, i_r\}$ samples are removed, where $r \ll n$
- \bullet Naive retraining is applying GD over remaining samples, \mathbf{w}^U is the resulting model parameter

$$\mathbf{w}^{U}_{t+1} \leftarrow \mathbf{w}^{U}_{t} - \frac{\eta_{t}}{n-r} \sum_{i \notin R} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right)$$
 (1)

- After training, $R = \{i_1, i_2, \dots, i_r\}$ samples are removed, where $r \ll n$
- \bullet Naive retraining is applying GD over remaining samples, \mathbf{w}^U is the resulting model parameter

$$\mathbf{w}^{U}_{t+1} \leftarrow \mathbf{w}^{U}_{t} - \frac{\eta_{t}}{n-r} \sum_{i \notin R} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right)$$
 (1)

• The explicit gradient computation $\sum_{i \notin R} \nabla F_i \left(\mathbf{w}^U_{t} \right)$ is expensive

 Wu et al.
 DeltaGrad
 October 1, 2020
 10 / 29

- After training, $R = \{i_1, i_2, \dots, i_r\}$ samples are removed, where $r \ll n$
- \bullet Naive retraining is applying GD over remaining samples, \mathbf{w}^U is the resulting model parameter

$$\mathbf{w}^{U}_{t+1} \leftarrow \mathbf{w}^{U}_{t} - \frac{\eta_{t}}{n-r} \sum_{i \notin R} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right)$$
 (1)

- The explicit gradient computation $\sum_{i \notin R} \nabla F_i \left(\mathbf{w}^U_t \right)$ is expensive
- Instead rewrite (1) as the "leave-r-out" formula

$$\mathbf{w}^{U}_{t+1} = \mathbf{w}^{U}_{t} - \frac{\eta_{t}}{n-r} \left[\sum_{i=1}^{n} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right) - \sum_{i \in R} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right) \right]. \quad (2)$$

Wu et al. DeltaGrad October 1, 2020 10 / 29

- After training, $R = \{i_1, i_2, \dots, i_r\}$ samples are removed, where $r \ll n$
- ullet Naive retraining is applying GD over remaining samples, $ullet^U$ is the resulting model parameter

$$\mathbf{w}^{U}_{t+1} \leftarrow \mathbf{w}^{U}_{t} - \frac{\eta_{t}}{n-r} \sum_{i \notin R} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right)$$
 (1)

10 / 29

- The explicit gradient computation $\sum_{i \notin R} \nabla F_i \left(\mathbf{w}^U_t \right)$ is expensive
- Instead rewrite (1) as the "leave-r-out" formula

$$\mathbf{w}^{U}_{t+1} = \mathbf{w}^{U}_{t} - \frac{\eta_{t}}{n-r} \left[\sum_{i=1}^{n} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right) - \sum_{i \in R} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right) \right]. \quad (2)$$

• $\sum_{i \in R} \nabla F_i \left(\mathbf{w}^U_t \right)$ is cheaper to compute

Wu et al. DeltaGrad October 1, 2020

- After a small change to the data we need to redo the SGD computations
- We can achieve this by understanding the delta of the Gradient Descent

$$n\nabla F(\mathbf{w}) = \sum_{i=1}^{n} \nabla F_{i}(\mathbf{w}_{t}) \quad \& \quad n\nabla F(\mathbf{w}^{U}) = \sum_{i=1}^{n} \nabla F_{i}(\mathbf{w}^{U}_{t})$$

• Hence, the approach is called DeltaGrad

Aprroximating $\nabla F(\mathbf{w}^U)$

• $\mathbf{w}_0, \ldots, \mathbf{w}_t$ and $\nabla F(\mathbf{w}_0), \ldots, \nabla F(\mathbf{w}_t)$ are cached from training on initial dataset

Wu et al. DeltaGrad October 1, 2020

Aprroximating $\nabla F(\mathbf{w}^U)$

- $\mathbf{w}_0, \ldots, \mathbf{w}_t$ and $\nabla F(\mathbf{w}_0), \ldots, \nabla F(\mathbf{w}_t)$ are cached from training on initial dataset
- By Cauchy mean-value theorem¹

$$\nabla F(\mathbf{w}^{U}_{t}) - \nabla F(\mathbf{w}_{t}) = \mathbf{H}_{t} \cdot (\mathbf{w}^{U}_{t} - \mathbf{w}_{t})$$

Where $\mathbf{H}_t = \int_0^1 \mathbf{H}(\mathbf{w}_t + x(\mathbf{w}^U_t - \mathbf{w}_t)) dx$ is the integrated hessian

Wu et al. DeltaGrad October 1, 2020

Aprroximating $abla F(\mathbf{w}^U)$

- $\mathbf{w}_0, \ldots, \mathbf{w}_t$ and $\nabla F(\mathbf{w}_0), \ldots, \nabla F(\mathbf{w}_t)$ are cached from training on initial dataset
- By Cauchy mean-value theorem¹

$$\nabla F(\mathbf{w}^{U}_{t}) - \nabla F(\mathbf{w}_{t}) = \mathbf{H}_{t} \cdot (\mathbf{w}^{U}_{t} - \mathbf{w}_{t})$$

Where $\mathbf{H}_t = \int_0^1 \mathbf{H}(\mathbf{w}_t + x(\mathbf{w}^U_t - \mathbf{w}_t)) dx$ is the integrated hessian

Wu et al. Delta Grad October 1, 2020 12 / 29

¹Actually a consequence of Fundamental theory of Calculus and mean-value theorem

Aprroximating $\nabla F(\mathbf{w}^U)$

- $\mathbf{w}_0, \ldots, \mathbf{w}_t$ and $\nabla F(\mathbf{w}_0), \ldots, \nabla F(\mathbf{w}_t)$ are cached from training on initial dataset
- By Cauchy mean-value theorem¹

$$\nabla F(\mathbf{w}^{U}_{t}) - \nabla F(\mathbf{w}_{t}) = \mathbf{H}_{t} \cdot (\mathbf{w}^{U}_{t} - \mathbf{w}_{t})$$

Where $\mathbf{H}_t = \int_0^1 \mathbf{H}(\mathbf{w}_t + x(\mathbf{w}^U_t - \mathbf{w}_t)) dx$ is the integrated hessian

• This requires a hessian \mathbf{H}_t at each step, which is expensive to maintain and evaluate

¹Actually a consequence of Fundamental theory of Calculus and mean-value theorem

Wu et al. October 1, 2020

Aprroximating $\nabla F(\mathbf{w}^U)$

- $\mathbf{w}_0, \ldots, \mathbf{w}_t$ and $\nabla F(\mathbf{w}_0), \ldots, \nabla F(\mathbf{w}_t)$ are cached from training on initial dataset
- By Cauchy mean-value theorem¹

$$\nabla F(\mathbf{w}^{U}_{t}) - \nabla F(\mathbf{w}_{t}) = \mathbf{H}_{t} \cdot (\mathbf{w}^{U}_{t} - \mathbf{w}_{t})$$

Where $\mathbf{H}_t = \int_0^1 \mathbf{H}(\mathbf{w}_t + x(\mathbf{w}^U_t - \mathbf{w}_t)) dx$ is the integrated hessian

- This requires a hessian \mathbf{H}_t at each step, which is expensive to maintain and evaluate
- ullet Leverage classical L-BFGS algorithm to approximate $ullet_t$

 1 Actually a consequence of Fundamental theory of Calculus and mean-value theorem

Wu et al. DeltaGrad October 1, 2020 12 / 29

Review of L-BFGS

Traditional L-BFGS updates gradients using

$$abla F(\mathbf{w}_{t+1}) -
abla F(\mathbf{w}_t) = \mathbf{B}_t \cdot (\mathbf{w}_{t+1} - \mathbf{w}_t)$$

Where, \mathbf{B}_t is the approximation of the hessian

Review of L-BFGS

Traditional L-BFGS updates gradients using

$$abla F(\mathbf{w}_{t+1}) -
abla F(\mathbf{w}_t) = \mathbf{B}_t \cdot (\mathbf{w}_{t+1} - \mathbf{w}_t)$$

Where, \mathbf{B}_t is the approximation of the hessian

Traditional L-BFGS

$$\begin{aligned} & \nabla F\left(\mathbf{w}_{t+1}\right) - \nabla F\left(\mathbf{w}_{t}\right) \approx \mathsf{B}_{t}\left(\mathbf{w}_{t+1} - \mathbf{w}_{t}\right) \\ & \mathsf{B}_{t} \approx \mathsf{H}_{t} \\ & = \int_{0}^{1} \mathsf{H}\left(\mathbf{w}_{t} + x\left(\mathbf{w}_{t+1} - \mathbf{w}_{t}\right)\right) dx \\ & \mathbf{s}_{t} = \mathbf{w}_{t+1} - \mathbf{w}_{t} \\ & \mathbf{y}_{t} = \nabla F\left(\mathbf{w}_{t+1}\right) - \nabla F\left(\mathbf{w}_{t}\right) \end{aligned}$$

Review of L-BFGS

Traditional L-BFGS updates gradients using

$$abla F(\mathbf{w}_{t+1}) -
abla F(\mathbf{w}_t) = \mathbf{B}_t \cdot (\mathbf{w}_{t+1} - \mathbf{w}_t)$$

Where, \mathbf{B}_t is the approximation of the hessian

Traditional L-BFGS

$$\begin{split} & \nabla F\left(\mathbf{w}_{t+1}\right) - \nabla F\left(\mathbf{w}_{t}\right) \approx \mathsf{B}_{t}\left(\mathbf{w}_{t+1} - \mathbf{w}_{t}\right) \\ & \mathsf{B}_{t} \approx \mathsf{H}_{t} \\ & = \int_{0}^{1} \mathsf{H}\left(\mathbf{w}_{t} + x\left(\mathbf{w}_{t+1} - \mathbf{w}_{t}\right)\right) dx \\ & \mathbf{s}_{t} = \mathbf{w}_{t+1} - \mathbf{w}_{t} \\ & \mathbf{y}_{t} = \nabla F\left(\mathbf{w}_{t+1}\right) - \nabla F\left(\mathbf{w}_{t}\right) \end{split}$$

L-BFGS for approximating $\nabla F(\mathbf{w}^U)$

$$\begin{split} &\nabla F\left(\mathbf{w}^{U}_{t}\right) - \nabla F\left(\mathbf{w}_{t}\right) \approx \mathsf{B}_{t}\left(\mathbf{w}^{U}_{t} - \mathbf{w}_{t}\right) \\ &\mathsf{B}_{t} \approx \mathsf{H}_{t} \\ &= \int_{0}^{1} \mathsf{H}\left(\mathbf{w}_{t} + x\left(\mathbf{w}^{U}_{t} - \mathbf{w}_{t}\right)\right) dx \\ &\mathbf{s}_{t} = \mathbf{w}^{U}_{t} - \mathbf{w}_{t} \\ &\mathbf{y}_{t} = \nabla F\left(\mathbf{w}^{U}_{t}\right) - \nabla F\left(\mathbf{w}_{t}\right) \end{split}$$

Using L-BFGS

- Maintain m historical observations of $\mathbf{Y} = (\mathbf{y}_t, \mathbf{y}_{t-1}, \dots, \mathbf{y}_{t-m})$ and $S = (s_t, s_{t-1}, \dots, s_{t-m})$
- Let g be a function defined by L-BFGS, then we can approximate $\mathbf{B}_t \cdot \mathbf{v}$ using

Where, **v** is an arbitrary vector.

Therefore,

$$\mathbf{B}_t \cdot (\mathbf{w}^U_t - \mathbf{w}_t) = g(\mathbf{Y}, \mathbf{S}, \mathbf{w}^U_t - \mathbf{w}_t)$$

Hence we obtain the approximation as

$$\nabla F(\mathbf{w}^{U}_{t}) \approx \nabla F(\mathbf{w}_{t}) + \mathbf{B}_{t} \cdot (\mathbf{w}^{U}_{t} - \mathbf{w}_{t})$$

Wu et al. DeltaGrad October 1, 2020 14/29

Rewriting

ullet Denoting $old w^I$ as the approximate $old w^U$ we have

$$\nabla F(\mathbf{w}_t) \approx \nabla F(\mathbf{w}_t) + \mathbf{B}_t \cdot (\mathbf{w}_t - \mathbf{w}_t).$$

• replacing in (2)

$$\mathbf{w'}_{t+1} = \mathbf{w'}_{t} - \frac{\eta_{t}}{n-r} \left[\sum_{i=1}^{n} \nabla F_{i} \left(\mathbf{w'}_{t} \right) - \sum_{i \in R} \nabla F_{i} \left(\mathbf{w'}_{t} \right) \right]$$

$$= \mathbf{w'}_{t} - \frac{\eta_{t}}{n-r} \left\{ n[\mathbf{B}_{t}(\mathbf{w'}_{t} - \mathbf{w}_{t}) + \nabla F(\mathbf{w}_{t})] - \sum_{i \in R} \nabla F(\mathbf{w'}_{t}) \right\}$$

Wu et al. DeltaGrad October 1, 2020

Problem with Error Bound

Wu et al. DeltaGrad October 1, 2020 16

Problem with Error Bound

Wu et al. DeltaGrad October 1, 2020

Controlling the Errors

• Do explicit evaluations for j_0 "burn-in" iterations and then periodically every T_0 iterations

17/29

- DeltaGrad can be extended to when r samples are added rather than deleted
- Change the + to minus in the update formula to get

$$\mathbf{w'}_{t+1} = \mathbf{w'}_{t} - \frac{\eta_{t}}{n+r} \left\{ n[\mathbf{B}_{t}(\mathbf{w'}_{t} - \mathbf{w}_{t}) + \nabla F(\mathbf{w}_{t})] + \sum_{i \in R} \nabla F(\mathbf{w'}_{t}) \right\}$$

• Here $\sum_{i \in R} \nabla F(\mathbf{w'}_t)$ is the gradient of the added r samples

Wu et al. DeltaGrad October 1, 2020 18 / 29

Algorithm 1: DeltaGrad

```
Input: The full training set (X, Y), model parameters cached during the
                training phase over the full training samples \{\mathbf{w}_0, \mathbf{w}_1, \dots, \mathbf{w}_t\} and
                corresponding gradients \{\nabla F(\mathbf{w}_0), \nabla F(\mathbf{w}_1), \dots, \nabla F(\mathbf{w}_t)\}\, the
                indices of the removed training samples R, period T_0, total iteration
                number T, history size m, "burn-in" iteration number i_0, learning
                rate n₊
   Output: Updated model parameter w<sup>1</sup>,

    Initialize w<sup>1</sup><sub>0</sub> ← w<sub>0</sub>

2 Initialize an array \Delta G = \Pi
3 Initialize an array \Delta W = []
 4 for t = 0: t < T: t + + do
        if [((t-i_0) \mod T_0) == 0] or t \leq i_0 then
              compute \nabla F(\mathbf{w}^I) exactly
              compute \nabla F(\mathbf{w}_t) - \nabla F(\mathbf{w}_t) based on the cached gradient \nabla F(\mathbf{w}_t)
 7
              set \Delta G[k] = \nabla F(\mathbf{w}_t^I) - \nabla F(\mathbf{w}_t)
              set \Delta W[k] = \mathbf{w'}_t - \mathbf{w}_t, based on the cached parameters \mathbf{w}_t
 9
              k \leftarrow k + 1
10
              compute \mathbf{w}_{t+1}^{I} by using exact GD update (equation (1))
11
12
        else
              Pass \Delta W [-m:], \Delta G [-m:], the last m elements in \Delta W and \Delta G,
13
                which are from the j_1^{th}, j_2^{th}, \dots, j_m^{th} iterations where j_1 < j_2 < \dots < j_m
                depend on t, \mathbf{v} = \mathbf{w}^{I}_{t} - \mathbf{w}_{t}, and the history size m, to the L-BFGFS
                Algorithm to get the approximation of H(w_t)v, i.e., B_t v
              Approximate \nabla F(\mathbf{w}_t) = \nabla F(\mathbf{w}_t) + \mathbf{B}_{i-}(\mathbf{w}_t' - \mathbf{w}_t)
14
              Compute \mathbf{w}^{l}_{t+1} by using the "leave-r-out" gradient formula, based on
15
                the approximated \nabla F(\mathbf{w}^I_t)
16
        end
17 end
18 return w<sup>1</sup>+
```

19 / 29

Theoretical Results

Wu et al. DeltaGrad October 1, 2020 20 / 29

Theorem (Bound between true and incrementally updated iterates)

Assuming $F(\mathbf{w})$ is strongly convex, for large enough iterations t, the result \mathbf{w}_t^I of *DeltaGrad* approximates the correct iteration values \mathbf{w}_t^U at the rate of

$$\|\mathbf{w}^{U}_{t} - \mathbf{w}^{I}_{t}\| = o\left(\frac{r}{n}\right)$$

So $\|\mathbf{w}^{U}_{t} - \mathbf{w}^{I}_{t}\|$ is of a lower order than r/n. r/n is the "baseline error rate" of the original weights \mathbf{w}_t , i.e., $\|\mathbf{w}_t - \mathbf{w}_t\| = o(\frac{r}{n})$

DeltaGrad October 1, 2020 21/29

Theorem(Bound between true and incrementally updated iterates in SGD)

Assuming $F(\mathbf{w})$ is strongly convex, for large enough iterations t and mini-batch size B, the result \mathbf{w}^{l}_{t} of DeltaGrad approximates the correct iteration values \mathbf{w}^{U_t} at the rate of

$$\|\mathbf{w}^{U}_{t} - \mathbf{w}^{I}_{t}\| = o\left(\frac{r}{n} + \frac{1}{B^{\frac{1}{4}}}\right)$$

with high probability

Wu et al. DeltaGrad October 1, 2020 22 / 29

Experimental Results

- Datasets: MNIST, RCV1, HIGGS
- Model: Logistic regression with L2 regularization
- Baseline: Naive retraining (BaseL)
- **Hyperparameters**: $j_0 = \{10, 10, 300\}$ and $T_0 = \{5, 10, 3\}$

Results

Future Work

Our Research Directions

- What can we forget? Selectively cache \mathbf{w}_t and $\nabla F(\mathbf{w}_t)$ during original training, and still uphold the update approximation guarantee
- How to perform consecutive updates?
 Are there issues with cumulative approximations? Compare online machine learning with deletions to DeltaGrad.
- When should one retrain? After how many additions/deletions does w_t and w^U_t diverge beyond approximation guarantees? Can a complete retraining benefit from prior updates performed?

References I

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten.

Certified Data Removal from Machine Learning Models. arXiv:1911.03030 [cs, stat], August 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making Al Forget You: Data Deletion in Machine Learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 3518–3531. Curran Associates, Inc., 2019.

References II

Yinjun Wu, Val Tannen, and Susan B. Davidson.

PrIU: A Provenance-Based Approach for Incrementally Updating Regression Models.

In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pages 447–462, Portland OR USA, June 2020. ACM.

Additional Results

Wu et al. DeltaGrad October 1, 2020

Batch Performance

Table 1. Prediction accuracy of BaseL and DeltaGrad with batch addition/deletion MNISTⁿ refers to MNIST with a neural net

addition/de	with a neural net.		
Dataset		BaseL(%)	DeltaGrad(%)
	MNIST	87.530 ± 0.0025	87.530 ± 0.0025
Add	$MNIST^n$	92.340 ± 0.002	92.340 ± 0.002
(0.005%)	covtype	62.991 ± 0.0027	62.991 ± 0.0027
	HIGGS	55.372 ± 0.0002	55.372 ± 0.0002
	RCV1	92.222 ± 0.00004	92.222 ± 0.00004
	MNIST	87.540 ± 0.0011	87.542 ± 0.0011
Add	$MNIST^n$	92.397 ± 0.001	92.397 ± 0.001
(1%)	covtype	63.022 ± 0.0008	63.022 ± 0.0008
	HIGGS	55.381 ± 0.0007	55.380 ± 0.0007
	RCV1	92.233 ± 0.00010	92.233 ± 0.00010
	MNIST	86.272 ± 0.0035	86.272 ± 0.0035
Delete	$MNIST^n$	92.203 ± 0.004	92.203 ± 0.004
(0.005%)	covtype	62.966 ± 0.0017	62.966 ± 0.0017
	HIGGS	52.950 ± 0.0001	52.950 ± 0.0001
	RCV1	92.241 ± 0.00004	92.241 ± 0.00004
	MNIST	86.082 ± 0.0046	86.074 ± 0.0048
Delete	$MNIST^n$	92.373 ± 0.003	92.370 ± 0.003
(1%)	covtype	62.943 ± 0.0007	62.943 ± 0.0007
	HIGGS	52.975 ± 0.0002	52.975 ± 0.0002
	RCV1	92.203 ± 0.00007	92.203 ± 0.00007

Online Performance

Table 2. Distance and prediction performance of BaseL and DeltaGrad in online deletion/addition

Dataset	Distance		Prediction accuracy (%)	
Dataset	$\ \mathbf{w}^{U*} - \mathbf{w}^*\ $	$\ \mathbf{w}^{I*} - \mathbf{w}^{U*}\ $	BaseL	DeltaGrad
MNIST (Addition)	5.7×10^{-3}	2×10^{-4}	87.548 ± 0.0002	87.548 ± 0.0002
MNIST (Deletion)	5.0×10^{-3}	1.4×10^{-4}	87.465 ± 0.002	87.465 ± 0.002
covtype (Addition)	8.0×10^{-3}	2.0×10^{-5}	63.054 ± 0.0007	63.054 ± 0.0007
covtype (Deletion)	7.0×10^{-3}	2.0×10^{-5}	62.836 ± 0.0002	62.836 ± 0.0002
HIGGS (Addition)	2.1×10^{-5}	1.4×10^{-6}	55.303 ± 0.0003	55.303 ± 0.0003
HIGGS (Deletion)	2.5×10^{-5}	1.7×10^{-6}	55.333 ± 0.0008	55.333 ± 0.0008
RCV1 (Addition)	0.0122	3.6×10^{-6}	92.255 ± 0.0003	92.255 ± 0.0003
RCV1 (Deletion)	0.0119	3.5×10^{-6}	92.229 ± 0.0006	92.229 ± 0.0006

Figure S1. Running time and distance with varied deletion rate up to 20%

Figure S5. Comparison of DeltaGrad and BaseL on the CIFAR-10 dataset with pre-trained ResNet152 network

Proof Architecture

Reursive Architecture of Proof

