# **Markov Decision Processes**

Chen-Yu Wei

## **Sequence of Actions**



To win the game, the learner has to take a sequence of actions  $a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_H$ .

**One option:** view every sequence as a "meta-action":  $\bar{a} = (a_1, a_2, \dots, a_H)$ 

#### **Drawback:**

- The number of actions is exponential in horizon
- In stochastic environments, this does not leverage intermediate observations

Solution idea: dynamic programming

### Interaction Protocol: Fixed-Horizon Case

For **episode** t = 1, 2, ..., T:

For **step** h = 1, 2, ..., H:

Learner observes an observation  $x_{t,h}$ 

Learner chooses an action  $a_{t,h}$ 

Learner receives instantaneous reward  $r_{t,h}$ 

#### **General case:**

$$\mathbb{E}[r_{t,h}] = R(x_{t,1}, a_{t,1}, \dots, x_{t,h}, a_{t,h}), \quad x_{t,h+1} \sim P(\cdot \mid x_{t,1}, a_{t,1}, \dots, x_{t,h}, a_{t,h})$$

 $\Rightarrow$  Optimal decisions may depend on the entire history  $\mathcal{H}_t = (x_{t,1}, a_{t,1}, \dots, x_{t,h})$ 

### Interaction Protocol: Fixed-Horizon Case

For **episode** t = 1, 2, ..., T:

For **step** h = 1, 2, ..., H:

Learner observes an observation  $x_{t,h}$ 

Learner chooses an action  $a_{t,h}$ 

Learner receives instantaneous reward  $r_{t,h}$ 

We assume that the history  $\mathcal{H}_t = (x_{t,1}, a_{t,1}, \dots, x_{t,h})$  can be summarized as a **horizon-length-independent** representation  $s_{t,h} = \Phi(x_{t,1}, a_{t,1}, \dots, x_{t,h}) \in \mathcal{S}$  so that

$$\mathbb{E}[r_{t,h}] = R(s_{t,h}, a_{t,h}), \quad x_{t,h+1} \sim P(\cdot \mid s_{t,h}, a_{t,h})$$

 $s_{t,h}$  is called the "state" at the step h of episode t.

### From Observations to States



Stacking recent observations

Recurrent neural network

Hidden Markov model

### **Interaction Protocol: Fixed-Horizon Case**

```
For episode t = 1, 2, ..., T:
   For step h = 1, 2, ..., H:
   Environment reveals state s_{t,h}
   Learner chooses an action a_{t,h}
   Learner observes instantaneous reward r_{t,h} with \mathbb{E}[r_{t,h}] = R(s_{t,h}, a_{t,h})
   Next state is generated as s_{t,h+1} \sim P(\cdot \mid s_{t,h}, a_{t,h})
```

This is called the Markov decision process.

### MDP as Contextual Bandits?

Viewing states as contexts, and viewing the problem as a contextual bandit

problem with TH rounds.

Problem with TH rounds.

$$\frac{(X_{t,i}, u_{t,i}, X_{t,h})}{(X_{t,i}, u_{t,i}, X_{t,h})} = \sum_{t=1}^{T} \max_{a} R(S_{t,h}, a) - \sum_{t=1}^{T} R(S_{t,h}, a_{t,h})$$

Regnt 
$$= \sum_{t=1}^{T} \left( \sum_{h=1}^{H} R(S_{t,h}, \alpha_{t,h}) - \sum_{t=1}^{T} \sum_{h=1}^{H} R(S_{t,h}, \alpha_{t,h}) + \sum_{h=1}^{T} \sum_{h=1}^{H} R(S_{t,h}, \alpha_{t,h}) \right)$$

### **Formulations**

- Interaction Protocol
  - Fixed-Horizon
  - Variable-Horizon (Goal-Oriented)
  - Infinite-Horizon
- Performance Metric
  - Total Reward
  - Average Reward
  - Discounted Reward
- Policy
  - History-Dependent Policy
  - Markov Policy
  - Stationary Policy

Horizon = Length of an episode

## Interaction Protocols (1/3): Fixed-Horizon

Horizon length is a fixed number *H* 

```
h \leftarrow 1
```

Observe initial state  $s_1 \sim \rho$ 

#### While $h \leq H$ :

Choose action  $a_h$ 

Observe reward  $r_h$  with  $\mathbb{E}[r_h] = R(s_h, a_h)$ 

Observe next state  $s_{h+1} \sim P(\cdot | s_h, a_h)$ 

Examples: games with a fixed number of time

## Interaction Protocols (2/3): Goal-Oriented

The learner interacts with the environment until reaching **terminal states**  $\mathcal{T} \subset \mathcal{S}$ 

```
h \leftarrow 1
Observe initial state s_1 \sim \rho
While s_h \notin \mathcal{T}:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

**Examples:** video games, robotics tasks, personalized recommendations, etc.

## Interaction Protocols (3/3): Infinite-Horizon

The learner continuously interacts with the environment

```
h \leftarrow 1
Observe initial state s_1 \sim \rho
Loop forever:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

**Examples:** network management, inventory management

#### Formulations for Markov Decision Processes

- Interaction Protocol
  - Fixed-Horizon
  - Variable-Horizon (Goal-Oriented)
  - Infinite-Horizon
- Performance Metric
  - Total Reward
  - Average Reward
  - Discounted Reward
- Policy
  - History-Dependent Policy
  - Markov Policy
  - Stationary Policy

**Episodic setting** 

#### **Performance Metric**

Total Reward (for episodic settings):  $\sum r_h$  ( $\tau$ : the step where the episode ends)

$$\sum_{h=1}^{\tau} r_h$$

Average Reward (for infinite-horizon setting):  $\frac{1}{T} \sum_{k=0}^{T} r_k$ 

Discounted Total Reward (for episodic or infinite-horizon):  $\sum_{h=1}^{\tau} \gamma^{h-1} r_h \leq \frac{1}{1-\gamma}$   $\tau$ : the step where the episode and  $\tau$ : the step where the episode and  $\tau$ :

$$\sum_{h=1}^{\tau} \gamma^{h-1} r_h \qquad \leqslant \frac{1}{1-\gamma}$$

 $\tau$ : the step where the episode ends, or  $\infty$  in the infinite-horizon case  $\gamma \in [0,1)$ : discount factor

#### Interaction Protocols vs. Performance Metrics



#### **Discounted Total Reward?**

Focusing more on the **recent** reward

#### **Our Focus**

In most of the following lectures, we focus on the **goal-oriented / infinite-horizon** setting with **discount total reward** as the performance metric.

### **Some Facts**

Fact 1. Discount total reward for goal-oriented / infinite-horizon setting is equal to

the total reward in a modified MDP.





Fact 2. Goal-oriented setting is equivalent to infinite-horizon setting in a modified MDP.





$$\forall S \in T \Rightarrow P(s|s,u) = 1$$

$$R(s,u) = 0$$

# **Policy**

A mapping from observations/contexts/states to (distribution over) actions

Contextual bandits

$$a = \pi(x)$$
or  $a \sim \pi(\cdot | x)$ 

Multi-armed bandits

$$a \sim \pi$$
 or  $a = a^*$ 

## **Policy for MDPs**

History-dependent Policy

$$a_h \sim \pi(\cdot \mid s_1, a_1, r_1, s_2, a_2, r_2, ..., s_h)$$
  
 $a_h = \pi(s_1, a_1, r_1, s_2, a_2, r_2, ..., s_h)$ 

Markov Policy

$$a_h \sim \pi(\cdot \mid s_h, h)$$
  
 $a_h = \pi(s_h, h)$ 

**Stationary Policy** 

$$a_h \sim \pi(\cdot \mid s_h)$$
  
$$a_h = \pi(s_h)$$

### **Existence of a Stationary and Deterministic Optimal Policy**

#### Theorem.

For goal-oriented or infinite-horizon setting with discounted total reward metric, there exists an optimal policy that is **stationary** and **deterministic**.

That is, there exists a stationary and deterministic policy  $\pi^*$  such that

$$\mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h \mid P, R, \rho, \pi^{\star}\right] \geq \left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h \mid P, R, \rho, \pi\right]$$

for any history-dependent, randomized policy  $\pi$ .

**Remark.** For fixed-horizon setting, we can only guarantee that there is an optimal policy which is **Markov** and **deterministic.** There may not be a stationary optimal policy.

# **Value Functions and Occupancy Measures**

### **Value Functions**

Let  $\pi$  be a stationary policy

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} R(s_{i}, a_{i}) \mid s_{0} = s, \quad \forall i \geq 0: \ a_{i} \sim \pi(\cdot \mid s_{i}), \quad s_{i+1} \sim P(\cdot \mid s_{i}, a_{i})\right]$$

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} R(s_{i},a_{i}) \mid (s_{0},a_{0}) = (s,a), \quad \forall i \geq 1: \ a_{i} \sim \pi(\cdot \mid s_{i}), \quad \forall i \geq 0: \ s_{i+1} \sim P(\cdot \mid s_{i},a_{i})\right]$$

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q^{\pi}(s,a)$$
$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V^{\pi}(s')$$

#### **Bellman Equation**

$$\sqrt{x}(s) = \mathbb{E}\left[\left|\sum_{i=0}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{i} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 0\right]$$

$$= \mathbb{E}\left[\left|R(s, a_{0}) + \sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{i} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 0\right]$$

$$= \sum_{\alpha} \mathcal{I}(a|s) R(s, a_{i}) + \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{i} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \sum_{\alpha} \mathcal{I}(a|s) \left(R(s, a_{i}) + \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| \right] S_{0} = S, a_{i} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \sum_{\alpha} \mathcal{I}(a|s) \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| \right] S_{0} = S, a_{0} = \alpha, a_{i} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \sum_{\alpha} \mathcal{I}(a|s) \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| \right] S_{0} = S, a_{0} = a_{0}, a_{i} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \sum_{\alpha} \mathcal{I}(a|s) \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| \right] S_{0} = S, a_{0} = a_{0}, a_{i} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} = a_{0}, a_{0} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} = a_{0}, a_{0} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} = a_{0}, a_{0} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} = a_{0}, a_{0} \sim \mathcal{I}(\cdot|s_{i}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} = a_{0}, a_{0} \sim \mathcal{I}(\cdot|s_{0}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} = a_{0}, a_{0} \sim \mathcal{I}(\cdot|s_{0}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} \sim \mathcal{I}(\cdot|s_{0}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} \sim \mathcal{I}(\cdot|s_{0}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} \sim \mathcal{I}(\cdot|s_{0}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} \sim \mathcal{I}(\cdot|s_{0}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty} \mathcal{Y}^{i} R(s_{i}, a_{i})\right| S_{0} = S, a_{0} \sim \mathcal{I}(\cdot|s_{0}), \forall i \geq 1\right]$$

$$= \mathbb{E}\left[\left|\sum_{i=1}^{\infty}$$

# **Dynamic Programming Viewpoint**

### **Occupancy Measures**

Let  $\pi$  be a stationary policy

$$d_{\rho}^{\pi}(s) = (1 - \gamma) \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} \mathbb{I}\{s_{i} = s\} \middle| \mathbf{s}_{0} \sim \rho, \quad \forall i \geq 0: \ a_{i} \sim \pi(\cdot \mid s_{i}), \quad s_{i+1} \sim P(\cdot \mid s_{i}, a_{i})\right]$$

$$d_{\rho}^{\pi}(s,a) = (1-\gamma)\mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i}\mathbb{I}\{s_{i}=s,a_{i}=a\} \mid s_{0} \sim \rho, \quad \forall i \geq 0: \ a_{i} \sim \pi(\cdot \mid s_{i}), \quad s_{i+1} \sim P(\cdot \mid s_{i},a_{i})\right]$$

$$d_{\rho}^{\pi}(s) = (1 - \gamma)\rho(s) + \gamma \sum_{s',a'} d_{\rho}^{\pi}(s',a')P(s|s',a')$$
$$d_{\rho}^{\pi}(s,a) = d_{\rho}^{\pi}(s)\pi(a|s)$$