

SS 2008

25.09.2008

Formale Grundlagen der Informatik I

Bsc Inf (PO 2003, 2004), BEd Inf, LaG Inf (PO 2005)

Versehen Sie bitte jedes Blatt mit Namen und Matrikelnummer und fangen Sie für jede Aufgabe eine neue Seite an.

Nachname:	 	
Vorname:		
Tutor:	 1	
Matrikelnummer:		

Aufgabe	1	2	3	4	5	Gesamt	Note
mögl. Punktzahl	12	12	12	12	12	48+12	
err. Punktzahl							

vor der Abgabe bitte hier falten und die Lösungsblätter hineinlegen

Die Klausur besteht aus 5 Aufgaben, die alle mit 12 Punkten bewertet sind. Um die maximale Punktzahl zu erreichen, brauchen Sie insgesamt 48 Punkte. Bei der Bewertung wird auf klare Darstellung und Begründungen Wert gelegt.

Aufgabe 1 (12 Punkte)

Betrachten Sie $\Sigma = \{a, b\}$ und die reguläre Sprache $L = L((ab)^*)$.

- (a) Geben Sie einen DFA \mathcal{A} an mit $L(\mathcal{A}) = L$.
- (b) Geben Sie einen NFA $\mathcal B$ mit weniger als 3 Zustände an, der die Sprache L erkennt.
- (c) Betrachten Sie den DFA C:

Bestimmen Sie L(C).

Aufgabe 2 (12 Punkte)

Betrachten Sie den NFA A

$$\underbrace{\hspace{1cm}0 \underbrace{\hspace{1cm} \stackrel{a}{\longrightarrow} \hspace{1cm} 1}_{a} \hspace{1cm} \underbrace{\hspace{1cm} 0}_{b} \hspace{1cm} 2}$$

und sei L = L(A).

- (a) Bestimmen Sie einen regulären Ausdruck für L.
- (b) Konstruieren Sie einen minimalen DFA \mathcal{B} an mit $L(\mathcal{B}) = L$ und zeigen Sie die Minimalität.
- (c) Benutzen Sie das Pumping Lemma, um zu zeigen, dass die Sprache

$$L := \{a^n b c^n : n \geqslant 2\}$$

nicht regulär ist.

Aufgabe 3 (12 Punkte)

(a) Betrachten Sie die kontextfreie Grammatik $G = (\{a,b\},\{X_0,X,Y,Z\},P,X_0)$ mit

$$P: X_0 \to XXZ$$

$$X \to aY|Z$$

$$Y \to b$$

$$Z \to ab$$

Bestimmen Sie L(G).

- (b) Konstruieren Sie eine kontextfreie Grammatik für die Sprache $L:=\{a^nbc^n\,:\,n\geqslant 2\}.$
- (c) Bringen Sie die Grammatik in (b) auf Chomsky-Normalform.

Aufgabe 4 (12 Punkte)

Geben Sie an, ob die folgenden Aussagen richtig oder falsch sind und begründen Sie Ihre Antwort.

- (a) Ist L_1 entscheidbar and L_2 kontextfrei, dann ist $L_1 \setminus L_2$ entscheidbar.
- (b) Ist L_1 regulär and L_2 kontextfrei, dann ist $L_1 \setminus L_2$ kontextfrei.
- (c) Ist L_1 kontextfrei und L_2 regulär, dann ist $L_1 \backslash L_2$ kontextfrei.
- (d) Sind L_1 und L_2^c rekursiv aufzählbar, dann ist $L_1 \setminus L_2$ entscheidbar.

Aufgabe 5 (12 Punkte)

Sei
$$\Sigma = \{a, b\}$$
 und

$$L = \{ x \in \Sigma^* : 2|x|_a = |x|_b \}.$$

- (a) Zeigen Sie mit Hilfe des Pumping Lemmas, dass die Sprache L nicht regulär ist.
- (b) Zeigen Sie, dass die Sprache L kontextfrei ist, indem Sie einen Kellerautomat angeben, der diese Sprache erkennt.