Table The statistics of operations for breaking cycles in DNS

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	N_m	N_a
$SCC_1 = $ {8,11,21,25, 32,48,58}	21→11	10	16	6	0.0410	0.8579	1	0
	8→21	1	6	5	0.0410	0.0558	1	0
	48→32	1	5	4	0.0410	0.0355	1	0
	32→58	1	4	3	0.6077	0.0301	2	9
$SCC_2 = \{33,38,52\}$	38→33	2	3	1	0.2707	0.0138	1	4
	52 → 33	1	1	0	0.2707	0.0069	1	4

Table The statistics of operations for breaking cycles in ANT

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	N_m	N_a
	20→24	214	654	440	0.0851	0.1972	1	3
	18 → 24	191	440	249	0.1220	0.1926	2	3
	18 → 22	39	249	210	0.0554	0.1315	1	1
	20→18	70	210	140	0.1359	0.1285	1	6
	19 → 18	90	140	50	0.1942	0.0896	3	6
000 (0.4.10.10	20→23	10	50	40	0.0554	0.0749	1	1
$SCC_1 = \{2,4,10,16, 17,18,19,20, $	16 → 22	6	40	34	0.0554	0.0535	1	1
21,22,23,24}	2 → 20	10	34	24	0.1575	0.0435	1	7
21,22,23,24}	2 → 21	10	24	14	0.1401	0.0428	2	6
	16 → 21	5	14	9	0.2072	0.0254	5	6
	16 → 20	5	9	4	1.0626	0.0062	23	7
	16 → 17	1	4	3	0.0554	0.0103	1	1
	2 → 16	2	3	1	0.7089	0.0030	1	31
	20→21	1	1	0	0.0026	0.0008	1	0

Table The statistics of operations for breaking cycles in BCEL

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	N_m	N_a
	2 → 21	133674	416091	282417	0.0979	0.0189	1	1
$SCC_1 =$	20 → 45	40096	282417	242321	0.0884	0.0189	1	0
$\{2,4,5,6,$	4 → 34	33715	242321	208606	0.1218	0.0189	1	2
7,8,9,10,	17 → 18	27889	208606	180717	0.0839	0.0189	0	2
11,12,13,14,	45 → 26	16300	180717	164417	0.0884	0.0189	1	0
15,1617,18,	15 → 45	13610	164417	150807	0.0884	0.0189	1	0
19,20,21,22,	10→45	13610	150807	137197	0.0884	0.0189	1	0
25,26,27,28,	16 → 45	13593	137197	123604	0.0884	0.0189	1	0
29,30,31,32,	13 → 45	13534	123604	110070	0.0884	0.0189	1	0
33,34,35,36,	9 → 45	13505	110070	96565	0.0884	0.0189	1	0
37,38,39,40,	11 → 45	13505	96565	83060	0.0884	0.0189	1	0
41,43,44,45}	12 → 45	13505	83060	69555	0.0884	0.0189	1	0
	14 → 45	13505	69555	56050	0.0884	0.0189	1	0

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	N_m	N_a
	7→45	12888	56050	43162	0.0884	0.0189	1	0
	19→45	12772	43162	30390	0.0884	0.0189	1	0
	6→45	10735	30390	19655	0.0884	0.0189	1	0
	6 → 36	10735	19655	8920	0.0884	0.0189	1	0
	18→45	3904	8920	5016	0.0884	0.0189	1	0
	18 → 36	3904	5016	1112	0.0884	0.0189	1	0
	8 → 18	37	1112	1075	0.1957	0.0189	2	2
	6 → 19	15	1075	1060	0.0979	0.0172	1	1
	6 → 14	15	1060	1045	0.0979	0.0172	1	1
	6 → 12	15	1045	1030	0.0979	0.0172	1	1
	6 → 11	15	1030	1015	0.0979	0.0172	1	1
	6 → 9	15	1015	1000	0.0979	0.0172	1	1
	6 → 7	15	1000	985	0.0979	0.0172	1	1
	6 → 16	15	985	970	0.1218	0.0172	1	2
	8 → 6	3	970	967	0.0884	0.0172	1	0
	20→6	1	967	966	0.0884	0.0172	1	0
	14 → 18	1	966	965	0.1218	0.0172	1	2
	19→18	1	965	964	0.1218	0.0172	1	2
	16 → 18	1	964	963	0.1957	0.0172	2	2
	12 → 18	1	963	962	0.1218	0.0172	1	2
	11→18	1	962	961	0.1817	0.0172	2	1
	9 → 18	1	961	960	0.1218	0.0172	1	2
	7 → 18	1	960	959	0.1957	0.0140	2	2
	4 → 32	142	959	817	0.1218	0.0140	1	2
	2 → 40	88	817	729	0.1218	0.0140	1	2
	2→29	88	729	641	0.0839	0.0140	0	2
	33→45	63	641	578	0.0884	0.0140	1	C
	2→32	82	578	496	0.1218	0.0140	1	2
	33→36	63	496	433	0.0884	0.0140	1	C
	22 → 45	30	433	403	0.0884	0.0140	1	0
	25→45	30	403	373	0.0884	0.0140	1	C
	34 → 45	30	373	343	0.0884	0.0140	1	C
	43 → 45	30	343	313	0.0884	0.0140	1	C
	44 → 45	30	313	283	0.0884	0.0140	1	0
	2 → 38	31	283	252	0.0979	0.0140	1	1
	2 → 37	31	252	221	0.0420	0.0140	0	1
	5 → 36	31	221	190	0.0420	0.0135	1	0
	2 → 36	30	190	160	0.0884	0.0123	1	0
	2 → 39	29	160	131	0.0420			1

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$SCplx(C_i,C_j)$	Bf	N_m	N_a
	2→4	55	131	76	0.3469	0.0100	1	8
	35→32	8	76	68	0.1218	0.0100	1	2
	21 → 45	4	68	64	0.0884	0.0100	1	0
	45→40	4	64	60	0.1218	0.0093	1	2
	45→32	4	60	56	0.1218	0.0093	1	2
	45→29	4	56	52	0.1218	0.0089	1	2
	30→35	10	52	42	0.1768	0.0086	2	0
	30→26	5	42	37	0.1768	0.0086	2	0
	45 → 39	2	37	35	0.0979	0.0086	1	1
	45 → 31	2	35	33	0.1218	0.0074	1	2
	30→39	2	33	31	0.0884	0.0073	1	0
	45→4	3	31	28	0.3469	0.0072	1	8
	45 → 28	2	28	26	0.1897	0.0050	1	4
	45 → 35	10	26	16	0.0884	0.0049	1	0
	45→30	3	16	13	0.5444	0.0047	1	20
	41 → 45	1	13	12	0.0884	0.0037	1	0
	2 → 43	1	12	11	0.0979	0.0026	1	1
	2→22	1	11	10	0.0979	0.0016	1	1
	2 → 34	1	10	9	0.1218	0.0016	1	2
	2→25	1	9	8	0.1218	0.0008	1	2
	2→45	6	8	2	0.0884	0.0004	1	0
	2→44	1	2	1	0.1537	0.0004	1	3
	5→45	1	1	0	0.0884	0.0002	1	0