

ФГАОУ ВО «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

#### МЕТОДЫ ОПТИМИЗАЦИИ

Расчетная работа №2

Вариант 8

Лабушев Тимофей Группа Р3302

### Условие задачи

Дана транспортная сеть, состоящая из 7 вершин, связи между которыми заданы с помощью матрицы инцидентности. Найти оптимальный грузопоток.

$$G = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Интенсивности источников и потребителей:

$$d_1=17,\ d_2=19,\ d_3=d_4=0,\ d_5=-8,\ d_6=-12,\ d_7=-16$$
 
$$r_{15}=4,\ r_{27}=4$$

Матрица промежуточных расходов:

$$C = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 & 6 \\ 0 & 0 & 0 & 7 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 10 & 0 & 10 \\ 0 & 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Сеть с ограничениями:

| $\mid i \mid$ | $d_i$ | (i,j) | $C_{ij}$ | $r_{ij}$ |
|---------------|-------|-------|----------|----------|
| 1             | 11    | (1,2) | 1        | -        |
| 1             |       | (1,5) | 1        | 4        |
|               |       | (2,3) | 2<br>3   | -        |
| 2             | 19    | (2,4) | 3        | -        |
|               |       | (2,7) | 6        | 4        |
| 3             | 0     | (3,4) | 7        | -        |
| 3             |       | (3,6) | 9        | -        |
| $\boxed{4}$   | 0     | (4,5) | 10       | -        |
| 4             |       | (4,7) | 10       | -        |
| 5             | -8    | (5,6) | 9        | -        |
| 6             | -12   | (6,7) | 4        | -        |
| 7             | -16   | -     | -        | -        |



# Решение

Найдем кратчайшие пути:

| (1,2): 1  | (1,8): 1  |           | 1-5: 1,2,4,5 (14) |
|-----------|-----------|-----------|-------------------|
| (2,3): 3  | (2,4): 4  | (2,10): 7 | 1-6: 1,2,3,6 (12) |
| (3,4): 10 | (3,6): 12 |           | 1-7: 1,2,4,7 (14) |
| (4,5): 14 | (4,7): 14 |           | 1-8: 1,8 (1)      |
| (5,6): 23 |           |           | 1-10: 1,2,10 (7)  |
| (6,7): 27 |           |           |                   |

| (  | (2,3): 2 | (2,4): 3  | (2,10): 6 | 2-5: 2,4,5 (13) |
|----|----------|-----------|-----------|-----------------|
| (  | (3,4): 9 | (3,6): 11 |           | 2-6: 2,3,6 (11) |
| (- | 4,5): 13 | (4,7): 13 |           | 2-7: 2,4,7 (13) |
| (  | 5,6): 22 |           |           | 2-8: -          |
| (  | 6,7): 17 |           |           | 2-10: 2,10 (6)  |

| (9,5):0   | (9,8):0 | 9-5: 9,5 (0)      |
|-----------|---------|-------------------|
| (5,6): 9  |         | 9-6: 9,5,6 (9)    |
| (6,7): 13 |         | 9-7: 9,5,6,7 (13) |
|           |         | 9-8: 9,8 (0)      |
|           |         | 9-10: -           |

Построим опорный план:

|    | 5      | 6     | 7         | 8   | 10    |    |    |    |           |    |   |
|----|--------|-------|-----------|-----|-------|----|----|----|-----------|----|---|
| 1  | 14 1   | 12    | $14_{12}$ | 1 4 | 7     | 17 | 17 | 13 | 13        | 13 | 0 |
| 2  | $13_3$ | 11 12 | 13        | -   | $6_4$ | 19 | 19 | 19 | <i>15</i> | 0  |   |
| 9  | 0 4    | 9     | 13        | 0   | -     | 4  | 0  |    |           |    |   |
| 11 | _      | -     | 0 4       | _   | 0     | 4  | 0  |    |           |    |   |
|    | 8      | 12    | 16        | 4   | 4     |    |    |    |           |    |   |
|    | 4      | 12    | 12        | 4   | 4     |    |    |    |           |    |   |
|    | 4      | 12    | 12        | 0   | 4     |    |    |    |           |    |   |
|    | 4      | 12    | 12        |     | 0     |    |    |    |           |    |   |
|    | 1      | 0     | 12        |     |       |    |    |    |           |    |   |
|    | 0      |       | 0         |     |       |    |    |    |           |    |   |

Полученный базис:

|    | v1 | v2 | v3 | v4 | v5 |
|----|----|----|----|----|----|
| u1 | 1  |    | 12 | 4  |    |
| u2 | 3  | 12 |    |    | 4  |
| u3 | 4  |    |    |    |    |
| u4 |    |    | 4  |    |    |

Проверим оптимальность полученного опорного плана:

$$\begin{cases} u_1 + v_1 = 14 \\ u_2 + v_1 = 13 \\ u_2 + v_2 = 11 \\ u_2 + v_5 = 6 \\ u_3 + v_1 = 0 \\ u_1 + v_3 = 14 \\ u_4 + v_3 = 0 \\ u_1 + v_4 = 1 \end{cases} \implies \begin{cases} u_1 = 0 \\ u_2 = -1 \\ u_3 = -14 \\ u_4 = -14 \\ v_1 = 14 \\ v_2 = 12 \\ v_3 = 14 \\ v_4 = 1 \\ v_5 = 7 \end{cases}$$

Опорный план является оптимальным  $(u_{ij}+v_{ij}-C_{ij}\leqslant 0,\ i=\overline{1,4},\ j=\overline{1,5}).$ 

$$F = 1 \cdot 14 + 12 \cdot 14 + 4 \cdot 1 + 3 \cdot 13 + 12 \cdot 11 + 4 \cdot 6 + 4 \cdot 0 + 4 \cdot 0 = 381$$

#### Найдем оптимальный грузопоток:

1-5: 1,2,4,5 (1) 1-7: 1,2,4,7 (12) 1-8: 1,8 (4) 2-5: 2,4,5 (3) 2-6: 2,3,6 (12) 2-10: 2,10 (4) 9-5: 9,5 (4)

11-7: 11,7 (4)



## Ответ

F = 381

Оптимальный грузопоток:

