

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2022-01-10
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

단원 ISSUE

이 단원에서는 이전 개념들을 이용하는 문제들이 자주 출제된다. 두 곡선 사이의 넓이에서는 함수의 그래프의 개형을 파악하여 넓이를 구해야하며 유형이 다양하므로 유형을 파악하는 연습이 필요하다. 수직선 위를 움직이는 점에서는 위치, 속도, 가속도의 그래프 세 가지를 혼동하지 않도록 주의하여 풀이하도록 한다.

평가문제

[스스로 확인하기]

- **1.** $f(x) = 3x^2 + \frac{1}{2} \int_0^1 f(t) dt$ 를 만족시키는 함수 f(x)
 - 와 직선 y=28로 둘러싸인 도형의 넓이를 구하면?
 - ① 96
- ② 108
- ③ 132
- (4) 144
- **⑤** 155

[스스로 확인하기]

- **2.** 곡선 $y = x^2 5x + 4$ 과 x축으로 둘러싸인 도형의 넓이를 구하면?
 - ① $\frac{5}{2}$
- $2 \frac{7}{2}$
- $3\frac{9}{2}$
- $4\frac{11}{2}$
- $\bigcirc \frac{13}{2}$

[스스로 마무리하기]

- **3.** a > 1인 실수 a에 대하여 $y = -x^2 + ax$, $y = -x^3 + ax^2$ 로 둘러싸인 두 도형의 넓이가 같아지도록 하는 실수 a의 값을 구하면?
 - ① 1
- ② 2
- 3 3
- 4
- (5) 5

[스스로 마무리하기]

4. 다음 그림은 함수 y=f(x)의 그래프이다. $f(x)=3x^2-2x+1$, f(2)=3이고, 곡선 y=f(x)와 x축 및 두 직선 x=2, x=t로 둘러싸인 도형의 넓이를 S(t)라 할 때, $\lim_{h\to 0} \frac{S(4+h)-S(4)}{h}$ 의 값을 구하면?

- ① 37
- ② 39
- 3 41
- 43
- **⑤** 45

[스스로 마무리하기]

5. 곡선 $y = 4x^3$ 과 x축 및 두 직선 x = -2와 x = a로 둘러싸인 도형의 넓이가 32일 때, 양수 a의 값은?

$$\bigcirc \frac{\sqrt{2}}{2}$$

- 2 1
- $\sqrt{2}$
- **(4)** 2
- ⑤ $2\sqrt{2}$

[스스로 마무리하기]

- **6.** 곡선 $y=-x^2+4$ 와 이 곡선 위의 점 (1, 3)에서 의 접선 및 x=0, x=2로 둘러싸인 도형의 넓이는?
 - ① $\frac{1}{3}$

- $3 \frac{2}{3}$
- 4 1

[스스로 마무리하기]

- 7. 곡선 $y=4x^2-8x+k$ 와 x축, y축으로 둘러싸인 도형의 넓이를 S_1 , 이 곡선과 x축으로 둘러싸인 도형의 넓이를 S_2 라 하면 $S_2=2S_1$ 이다. 이 때, 상수 k의 값을 구하면?
 - ① $\frac{5}{3}$
- ② $\frac{7}{3}$
- $3\frac{8}{3}$
- $4) \frac{10}{3}$

[스스로 확인하기]

- **8.** 곡선 y = x(x-2)(x-a)와 x축으로 둘러싸인 두 도형의 넓이가 서로 같을 때, 상수 a의 값을 구하면? (단, a > 2)
 - 1 1
- 2 2

- 3 3
- **4**

⑤ 5

- [스스로 확인하기]
- **9.** 다음 그림은 삼차함수 y = f(x)의 그래프이다. 곡 선 y = f(x)와 x축으로 둘러싸인 도형의 넓이가 27일 때, f(x)를 구하면?

- (1) $f(x) = 4x^2(x-3)$
- ② $f(x) = 3x^2(x-3)$
- $f(x) = 2x^2(x-3)$
- (4) $f(x) = x^2(x-3)$
- (5) $f(x) = -x^2(x-3)$

[스스로 확인하기]

10. 다음 그림과 같이 $y=-x^2+4x$ 와 x축으로 둘러 싸인 도형을 y=x로 나눈 두 부분의 넓이를 각각 $S_1,\ S_2$ 라고 할 때, $4(S_1\times S_2)$ 의 값을 구하면?

- 100
- 2 105
- 3 111
- 4) 120
- ⑤ 125

[스스로 확인하기]

- **11.** $y=-x^2+x+2$ 와 x축, y축으로 둘러싸인 두 도형의 넓이를 S_1 , S_2 라 할 때, 서로소인 자연수 p, q에 대하여 $S_1:S_2=p:q$ 이다. p+q의 값을 구하면? (단, $S_1 < S_2$)
 - ① 3
- 2 9
- 3 18
- 4) 27
- (5) 30

[스스로 확인하기]

- **12.** 곡선 $y=x^3+2x^2-x-2$ 위의 점 (-2, 0)에서의 접선과 이 곡선으로 둘러싸인 도형의 넓이를 구하면?
 - ① $\frac{13}{3}$
- ② $\frac{23}{3}$
- $3 \frac{43}{3}$
- $4 \frac{64}{3}$
- $\frac{82}{3}$

[스스로 확인하기]

- **13.** 곡선 $y = x^2 x 2$ 와 직선 y = x + 1로 둘러싸인 도형의 넓이를 구하면?
 - ① $\frac{19}{3}$
- ② $\frac{21}{3}$
- $3\frac{28}{3}$
- $4) \frac{32}{3}$

[스스로 확인하기]

- **14.** 곡선 y=x|2x-1|의 그래프와 직선 y=x로 둘러싸인 도형의 넓이를 구하면?
 - 1

- $2\frac{1}{2}$
- $3 \frac{1}{3}$
- $4 \frac{1}{4}$

[스스로 확인하기]

- **15.** 곡선 $y = -2x^3 + 2x^2 + 4x$ 와 x축으로 둘러싸인 도형의 넓이 S에 대하여 6S의 값은?
 - ① 30
- ② 33
- ③ 37
- **4**0
- **(5)** 47

[스스로 확인하기]

- **16.** 곡선 $y = -x^3 + x^2$ 과 직선 y = -2x로 둘러싸인 도 형의 넓이를 구하면?
 - ① $\frac{37}{10}$
- $2 \frac{37}{11}$
- $3\frac{37}{12}$
- $4 \frac{37}{13}$

[스스로 확인하기]

- **17.** 곡선 $y = x^2(x-2)$ 과 x축으로 둘러싸인 도형의 넓이를 구하면?
 - ① $\frac{1}{3}$
- ② $\frac{2}{3}$
- 3 1
- $4\frac{4}{3}$

[스스로 확인하기]

- **18.** 원점에서 동시에 출발하여 수직선 위를 움직이는 두 점 P, Q의 시각 t에서의 속도는 각각 $v_{\rm P}(t)=3t^2-8t$, $v_{\rm Q}(t)=6-3t^2$ 이다. 두 점 P, Q가 다시 만나게 되는 시각은?
 - 1 1

2 2

3 3

4

⑤ 5

[스스로 확인하기]

- 19. 두 자동차 A, B가 같은 직선 도로를 따라 같은 방향으로 달리고 있다. P 지점을 지나면서부터 A의속도는 $10 \,\mathrm{m/s}$ 로 일정하다. A가 P 지점을 지난 지 2초 후에 B도 P 지점을 지났으며 P 지점을 지난 지 t초 후의 B의 속도는 $(t+1) \,\mathrm{m/s}$ 이었다. 두 자동차가 만나게 되는 것은 B가 P 지점을 지난 지 몇 초 후인지 구하면? (단, 두 자동차가 만난 후, B는 A와 만날 때의 속도로 일정하게 달린다.)
 - 10
- ② 20
- 3 30
- **4** 40
- **⑤** 50

[스스로 마무리하기]

20. 어느 승강기가 1층에서 출발하여 멈추지 않고 꼭 대기 층까지 올라갈 때, t초 후의 속도는

$$v(t) = \left\{ egin{array}{ll} & 3t^2 \ (0 \leq t \leq 2) \\ & 10 \ (2 < t \leq 5) \\ & 2t \ (5 < t \leq 10) \end{array}
ight.$$
이다. 이 승강기가 1 층

에서 꼭대기 층까지 움직인 거리를 구하면? (단, 속 도의 단위는 m/s이다.)

- 1 110
- ② 111
- ③ 112
- (4) 113
- **⑤** 114

[스스로 확인하기]

- **21.** 수평인 지면으로부터 $5\,\mathrm{m}$ 의 높이에서 $50\,\mathrm{m/s}$ 의 속도로 수직으로 위로 던져 올린 물체의 t초 후의 속도가 $v(t)=50-10t\,\mathrm{(m/s)}$ 일 때, 물체를 던져 올린 후 3초 동안 물체가 움직인 거리를 구하면? (단, $0 \le t \le 4$)
 - ① 85
- ② 90
- 3 95
- **4** 100
- ⑤ 105

[스스로 확인하기]

- **22.** 좌표가 -1인 점을 출발하여 수직선 위를 움직이는 점 P의 시각 t에서의 속도가 v(t) = 20 4t일 때, 점 P가 움직이는 방향이 바뀔 때의 점 P의 위치를 구하면?
 - 1) 46
- 2 47
- 3 48
- **4**9
- **⑤** 50

[스스로 마무리하기]

- **23.** 원점을 동시에 출발하여 수직선 위를 움직이는 두 점 P, Q의 시각 t에서의 속도를 각각 $v_1(t)$, $v_2(t)$ 라 하면 $v_1(t) = -2t$, $v_2(t) = 3t^2 2$ 이다. 선분 P Q의 중점을 R라 할 때, 점 R이 다시 원점을 지날 때의 시각을 구하면?
 - ① 1
- ② 2
- 3 3
- (4) 4
- (5) 5

[스스로 확인하기]

- **24.** 원점을 출발하여 수직선 위를 움직이는 점 P의 시각 t에서의 속도가 v(t) = 16 4t이다. t = 3일 때점 P의 위치를 구하면?
 - 10
- ② 20
- 3 30
- **4**0
- **⑤** 50

[스스로 확인하기]

25. 원점을 출발하여 수직선 위를 움직이는 점 P의 시각 t에서의 속도 v(t)의 그래프가 다음 그림과 같을 때, t=2에서 t=6까지 점 P가 움직인 거리를 구하면? (단, $0 \le t \le 6$)

1 1

2 2

3 3

4

(5) 5

[스스로 마무리하기]

- **26.** 원점을 출발하여 수직선 위를 움직이는 점 P의 시각 t에서의 속도가 $v(t) = t^2 4t$ 일 때, 점 P가 다시 원점을 통과하는 시각을 구하면?
 - \bigcirc 2

② 3

3) 4

(4) 5

(5) 6

[스스로 마무리하기]

- **27.** 서현이는 직선 도로를 따라 학교와 공원을 지나 복지관에 도착했다. 서현이가 학교를 출발한지 t분 후의 속도는 $v(t)=30+2t-t^2 \, (\mathrm{m/min})$ 이고, t=3일 때 공원을 지나고 t=6일 때 복지관에 도착했다고 한다. 이때 공원과 복지관 사이의 거리를 구하면?
 - ① 50
- ② 51
- ③ 52
- **4** 53
- (5) 54

정답 및 해설

1) [정답] ②

[해설]
$$f(x)=3x^2+\frac{1}{2}\int_0^1f(t)dt$$
의 양변을 0 부터 1 까지 정적분하면
$$\int_0^1f(x)dx=1+\frac{1}{2}\int_0^1f(t)dt$$
이고,
$$\int_0^1f(t)dt=\int_0^1f(x)dx$$
이므로
$$\int_0^1f(t)dt=2$$
이다. 따라서
$$f(x)=3x^2+1$$
과 직선 $y=28$ 로 둘러싸인 도형의 넓이는
$$3x^2+1=28$$
의 근이 -3 , 3 이고 열린구간 $(-3,3)$ 에서 $28>3x^2+1$ 이므로
$$\int_{-3}^3(28-3x^2-1)dx=\int_{-3}^3(-3x^2+27)dx$$
$$=\left[-x^3+27x\right]_{-3}^3=54+54=108$$
이다.

2) [정답] ③

[해설]
$$x^2-5x+4=0$$
, $(x-1)(x-4)=0$ 에서 $x=1$ 또는 $x=4$ 이다. 따라서 구하는 값은
$$-\int_1^4 (x^2-5x+4)dx = -\left[\frac{1}{3}x^3-\frac{5}{2}x^2+4x\right]_1^4 = \frac{9}{2}$$

3) [정답] ②

[해설]
$$y=-x^2+ax$$
, $y=-x^3+ax^2$ 의 교점의 x 좌표는 $-x^2+ax=-x^3+ax^2$ 의 근이다. $x^3-(a+1)x^2+ax=0$, $x(x-1)(x-a)=0$ 에서 근은 $x=0$, $x=1$, $x=a$ 이므로
$$\int_0^a \{(-x^2+ax)-(-x^3+ax^2)\}dx$$

$$=\int_0^a \{x^3-(a+1)x^2+ax\}dx$$

$$=\left[\frac{1}{4}x^4-\frac{1}{3}(a+1)x^3+\frac{1}{2}ax^2\right]_0^a$$

$$=\frac{1}{4}a^4-\frac{1}{3}(a+1)a^3+\frac{1}{2}a^3$$

$$=\frac{a^3(-a+2)}{12}=0,\ a=2$$

4) [정답] ③

[해설]
$$\lim_{h\to 0} \frac{S(4+h)-S(4)}{h} = S'(4) = f(4)$$

$$f(4) = 48-8+1 = 41$$

5) [정답] ④

[해설]
$$S = \int_{-2}^{a} \left| 4x^3 \right| dx = \int_{-2}^{0} \left(-4x^3 \right) dx + \int_{0}^{a} 4x^3 dx$$

$$=[-x^4]_{-2}^0+[x^4]_0^a=16+a^4=32$$

그러므로 $a=2$

6) [정답] ③

[해설]
$$y'=-2x$$
 이므로 $x=1$ 에서의 접선의 기울기는 -2 이고 접선의 방정식은 $y=-2x+5$ 이다. 따라서 $S=\int_0^2 \{-2x+5-(-x^2+4)\}dx$
$$=\int_0^2 (x^2-2x+1)dx = \left[\frac{1}{3}x^3-x^2+x\right]_0^2$$

$$=\frac{8}{3}-4+2=\frac{2}{3}$$

7) [정답] ③

[해설] 주어진 곡선은
$$y=4(x-1)^2-4+k$$
 이므로 이 곡선은 $x=1$ 에 대하여 대칭이다.
$$S_2=2S_1$$
이려면 $x=0$ 에서 $x=1$ 까지 정적분한 값이 0 이므로
$$\int_0^1 (4x^2-8x+k)dx=0,$$

$$\left[\frac{4}{3}x^3-4x^2+kx\right]_0^1=\frac{4}{3}-4+k=0$$
 에서 $k=\frac{8}{3}$

8) [정답] ④

[하] 실]
$$\int_0^a x(x-2)(x-a)dx = 0$$

$$\int_0^a \{x^3 - (a+2)x^2 + 2ax\} dx = 0$$

$$\left[\frac{1}{4}x^4 - \frac{1}{3}(a+2)x^3 + ax^2\right]_0^a = 0$$

$$\frac{1}{4}a^4 - \frac{1}{3}(a+2)a^3 + a^3 = 0$$

$$\frac{1}{4}a - \frac{1}{3}(a+2) + 1 = 0$$

$$-a+4 = 0, \ a = 4$$

9) [정답] ①

[해설]
$$f(x) = ax^2(x-3)$$

$$\int_0^3 |f(x)| dx = \int_0^3 |ax^2(x-3)| dx = 27$$

$$\int_0^3 (-ax^3 + 3ax^2) dx$$

$$= \left[-\frac{a}{4}x^4 + ax^3 \right]_0^3 = \frac{27}{4}a = 27, \ a = 4$$
 그러므로 $f(x) = 4x^2(x-3)$

10) [정답] ③

[해설]
$$y=-x^2+4x$$
와 $y=x$ 의 교점의 x 좌표는 $-x^2+4x=x$ 의 근이므로 $x^2-3x=0$ 에서 $x(x-3)=0$,

11) [정답] ④

[해설] $y = -x^2 + x + 2$ 는 x축과 x = -1, 2 일 때 만나고, 따라서 각 넓이의 값은 $S_1 = \int_0^0 (-x^2 + x + 2) dx = \frac{7}{6}$ $S_2 = \int_{0.5}^{2} (-x^2 + x + 2) dx = \frac{10}{3}$ 이므로 $S_1: S_2 = \frac{7}{6}: \frac{10}{3} = 7: 20$ 이므로 p+q=27이다.

12) [정답] ④

[해설] $y' = 3x^2 + 4x - 1$ 이므로 (-2, 0)에서의 접선의 기울기는 12-8-1=3이고, 접선의 방정식은 y=3x+6 이다. 곡선과 접선의 교점을 찾으면 $x^3 + 2x^2 - x - 2 = 3x + 6$ $r^3 + 2r^2 - 4r - 8 = 0$ $(x+2)^2(x-2)=0$, x=-2, x=2 이므로 $\int_{-2}^{2} \left\{ (3x+6) - \left(x^3 + 2x^2 - x - 2\right) \right\} dx$ $= \int_{0}^{2} (-x^{3} - 2x^{2} + 4x + 8) dx$ $=2\int_{0}^{2}(-2x^{2}+8)dx=2\left[-\frac{2}{3}x^{3}+8x\right]^{2}=\frac{64}{3}$

13) [정답] ④

[해설] 곡선 $y=x^2-x-2$ 과 직선 y=x+1의 교점을 구하면 $x^2 - x - 2 = x + 1$. $x^2 - 2x - 3 = 0$ (x+1)(x-3)=0. x=-1. x=3 이므로 $y = x^2 - x - 2$ 와 y = x + 1로 둘러싸인 도형의 넓이를 구하면 $S = \int_{-1}^{3} \{(x+1) - (x^2 - x - 2)\} dx$ $= \int_{0}^{3} (-x^{2} + 2x + 3) dx = \left[-\frac{x^{3}}{3} + x^{2} + 3x \right]^{3}$ $=-9+9+9-\frac{1}{3}-1+3=\frac{32}{3}$

14) [정답] ④

14) [정답] ④
[해설]
$$y=x|2x-1|=\begin{cases} 2x^2-x & \left(x\geq \frac{1}{2}\right)\\ -2x^2+x & \left(x\leq \frac{1}{2}\right) \end{cases}$$
1) $x\geq \frac{1}{2}$ 일 때
 $2x^2-x=x, \ x(x-1)=0, \ x=0, \ x=1$
 $x\geq \frac{1}{2}$ 이므로 $x=1$
2) $x\leq \frac{1}{2}$ 일 때
 $-2x^2+x=x, \ x^2=0, \ x=0$ 이므로 $y=x|2x-1|$ 의 그래프와 $y=x$ 로 둘러싸인 도형의 넓이를 구하면
$$\int_0^{\frac{1}{2}}\{x-(-2x^2+x)\}dx+\int_{\frac{1}{2}}^1\{x-(2x^2-x)\}dx$$

$$=\int_0^{\frac{1}{2}}2x^2dx+\int_{\frac{1}{2}}^1(-2x^2+2x)dx$$

$$=\left[\frac{2}{3}x^3\right]_0^{\frac{1}{2}}+\left[-\frac{2}{3}x^3+x^2\right]_{\frac{1}{2}}^1$$

$$=\frac{1}{12}+\frac{1}{6}=\frac{1}{4}$$

15) [정답] ③

[해설] $y = -2x^3 + 2x^2 + 4x$ 와 x축과의 교점을 구하면 $-2x^3+2x^2+4x=0$ $x^3 - x^2 - 2x = 0$ x(x+1)(x-2)=0, x=-1, x=0, x=2 $\int_{0}^{0} (2x^{3} - 2x^{2} - 4x) dx + \int_{0}^{2} (-2x^{3} + 2x^{2} + 4x) dx$ $= \left[\frac{1}{2}x^4 - \frac{2}{3}x^3 - 2x^2\right]^0 + \left[-\frac{1}{2}x^4 + \frac{2}{3}x^3 + 2x^2\right]^2$ 따라서 6S=37

16) [정답] ③

[해설] 주어진 직선과 곡선의 교점을 구하면 $-x^3+x^2=-2x$ $x^3 - x^2 - 2x = 0$, x(x+1)(x-2) = 0 에서 x = -1, x = 0, x = 2 이다. 따라서 $\int_{0}^{0} (x^{3} - x^{2} - 2x) dx + \int_{0}^{2} (-x^{3} + x^{2} + 2x) dx$ $= \left[\frac{1}{4}x^4 - \frac{1}{3}x^3 - x^2\right]_{-1}^{0} + \left[-\frac{1}{4}x^4 + \frac{1}{3}x^3 + x^2\right]_{0}^{2}$ $=\frac{5}{12}+\frac{8}{3}=\frac{37}{12}$

17) [정답] ④

[해설]
$$-\int_0^2 (x^3-2x^2) dx = -\left[\frac{1}{4}x^4 - \frac{2}{3}x^3\right]_0^2$$

$$= -\left(4 - \frac{16}{3}\right) = \frac{4}{3}$$

18) [정답] ③

[해설] 시각 t에서의 두 점 P, Q의 위치를 각각 $x_{\rm P}(t),\ x_{\rm Q}(t)$ 라 하면

$$x_{\rm P}(t) = \int_0^t (3t^2 - 8t)dt = t^3 - 4t^2$$

$$x_{Q}(t) = \int_{0}^{t} (6-3t^{2})dt = 6t - t^{3}$$

두 점 P, Q가 만나는 것은 두 점의 위치가 같을 때, 즉 $x_{\rm P}(t)\!=\!x_{\rm Q}(t)$ 일 때이므로 $t^3\!-\!4t^2\!=\!6t\!-\!t^3$ 에서 $2t^3\!-\!4t^2\!-\!6t\!=\!0$, $2t(t\!+\!1)(t\!-\!3)\!=\!0$ 이때 $t\!\geq\!0$ 이므로 $t\!=\!0$ 또는 $t\!=\!3$ 이다. 따라서 두 점 P, Q가 다시 만나게 되는 시각은

19) [정답] ②

t=3일 때이다.

[해설] B가 P 지점을 지나고 달린 시간을 t초라하면 A가 P 지점을 지나고 달린 시간은 (t+2)초이다. A가 P 지점을 지나고 (t+2)초 동안 달린 거리는 10(t+2)(m) 또, B가 P 지점을 지나고 달린 거리는

$$\int_{0}^{t} (t+1)dt = \frac{1}{2}t^{2} + t(\mathbf{m})$$

$$10(t+2) = \frac{1}{2}t^2 + t$$
에서

$$(t-20)(t+2)=0$$

이때
$$t > 0$$
이므로 $t = 20$

따라서 20초 후에 두 자동차가 만난다.

20) [정답] ④

[해설]
$$\int_0^2 3t^2 dt + \int_2^5 10 dt + \int_5^{10} 2t dt$$

= $[t^3]_0^2 + [10t]_2^5 + [t^2]_5^{10}$
= $8 + 50 - 20 + 100 - 25 = 113$

21) [정답] ⑤

[해설]
$$\int_0^3 |50-10t| dt = [50t-5t^2]_0^3 = 150-45 = 105$$

22) [정답] ④

[해설] 움직이는 방향이 바뀔 때 속도가 0이므로 v(t)=20-4t=0 일 때 t=5, t=5일 때의 위치는 $-1+\int_0^5 (20-4t)dt=-1+\left[20t-2t^2\right]_0^5$ =-1+100-50=49

23) [정답] ②

[해설] 시각 t에서의 점 P의 위치를 $x_1(t)$ 라 하면 $x_1(t) = \int_0^t (-2t)dt = -t^2$ 시각 t에서의 점 Q의 위치를 $x_2(t)$ 라 하면 $x_2(t) = \int_0^t (3t^2 - 2)dt = t^3 - 2t$ 시각 t에서의 점 R의 위치를 s(t)라 하면 $s(t) = \frac{1}{2}(t^3 - t^2 - 2t)$ 점 R가 원점을 지날 때 s(t) = 0이므로

 $s(t) = \frac{1}{2}(t^3 - t^2 - 2t) = 0$ t(t-2)(t+1) = 0 M/ $t = 0 \text{ E}_{\overline{b}} t = -1 \text{ E}_{\overline{b}} t = 2$

24) [정답] ③

[해설]
$$0 + \int_0^3 (16 - 4t) dt$$

= $\left[16t - 2t^2 \right]_0^3 = 48 - 18 = 30$

25) [정답] ④

[해설] 주어진 그래프에서 t=2부터 t=6까지의 삼각형의 넓이를 구하면 $\frac{1}{2}\times2\times2+\frac{1}{2}\times2\times2=4$

26) [정답] ⑤

[해설] 원점을 통과하는 시간을 a라고 하면 위치가 0일 때의 a의 값은 $\int_0^a (t^2-4t)dt = \left[\frac{1}{3}t^3-2t^2\right]_0^a$ $= \frac{1}{3}a^3-2a^2=0 \text{ 에서 } a^2(a-6)=0,$

5 따라서 a=6

27) [정답] ⑤

[해설] 공원에서 복지관까지의 거리를 구하면

$$\int_{3}^{6} (30+2t-t^{2})dt = \left[30t+t^{2} - \frac{1}{3}t^{3}\right]_{3}^{6}$$
$$= 180+36-72-90-9+9=54$$