

CSCI 104 Hash Tables & Functions

Mark Redekopp
David Kempe
Sandra Batista

Unordered_Maps / Hash Tables

- A hash table implements a map ADT
 - Add(key,value)
 - Remove(key)
 - Lookup/Find(key) : returns value
- In a BST the keys are kept in order
 - A Binary Search Tree implements an
 ORDERED MAP
- In a hash table keys are evenly distributed throughout the table (unordered)
 - A hash table implements an UNORDERED MAP

C++11 Implementation

- C++11 added new container classes:
 - unordered_map
 - unordered_set
- Each uses a hash table for average complexity to insert, erase, and find in O(1)
- Must compile with the -std=c++11 option in g++

Hash Tables

- A hash table is an array that stores key, value pairs
 - Usually smaller than the size of possible set of keys,
- The table is coupled with a hash function, h(k), that maps keys to an integer in the range [0..tableSize-1] (i.e. [0 to m-1])
- The *hash function, h(k)* should be fast to compute (O(1))

m = tableSize n = # of keys entered

General Table Size Guidelines

- The table size should be bigger than the amount of expected entries (m > n)
- TableSize should usually be a prime number

m = tableSize
n = # of keys entered

Hash Functions First Look

- Challenge: Distribute keys to locations in hash table such that
- Easy to compute and retrieve values given key
- Keys evenly distributed throughout the table
- Distribution is consistent for retrieval
- If necessary, key data type is converted to integer before hash is applied

Hash Function Goals

- Common Hash Function: h(k) = k mod m
 where m is prime table size
- Rules of thumb
 - The hash function should examine the entire search key, not just a few digits or a portion of the key
 - When modulo hashing is used, the base should be prime
- A "perfect hash function" should map each of the n keys to a unique location in the table
- A "good" hash function or Universal Hash Function
 - P(h(k) = x) = 1/m (i.e. pseudorandom)

Resolving Collisions

- Collisions occur when two keys, k1 and k2, are not equal, but h(k1) = h(k2).
- Collisions are inevitable if the number of entries, n, is greater than table size, m (by pigeonhole principle)
- Methods
 - Closed Addressing (e.g. buckets or chaining)
 - Open addressing (aka probing)
 - Linear Probing
 - Quadratic Probing
 - Double-hashing

Buckets/Chaining

- Rather than searching for a free entry, make each entry in the table an ARRAY (bucket) or LINKED LIST (chain) of items/entries
- Buckets
 - How big should you make each
 - array?
 - Too much wasted space
- Chaining
 - Each entry is a linked List

Buckets/Chaining Example

- Let $h(k) = k \mod 17$
- Table size m = 17
- Insert keys 34, 19, 36

Open Addressing

- Open addressing means an item with key, k, may not be located at h(k)
- Let i be number of failed inserts
- Linear Probing
 - $-h(k,i) = (h(k)+i) \mod m$
 - Example: Check h(k)+1, h(k)+2, h(k)+3, ...
- Quadratic Probing
 - $h(k,i) = (h(k)+i^2) \mod m$
 - Check location $h(k)+1^2$, $h(k)+2^2$, $h(k)+3^2$, ...

Linear Probing Issues

- Linear probing leads to clusters of occupied areas in the table called *primary* clustering
- How would quadratic probing help fight primary clustering?
 - Quadratic probing tends to spread out data across the table.

Clustering Example

- Let h(k) = k mod 17
- Table size m = 17
- Insert keys 19, 36, 2
- Use linear probing and then quadratic probing

Find, find(k)

- Given open addressing scheme how would you find a given key, value pair
 - First hash it
 - If it is not at h(k), follow probing sequence until
 - Find key -> return found
 - Find an empty -> return not found
 - Search the whole table -> return not found

Removal, remove(k)

- If closed addressing such as chaining, find k and delete it
- If open addressing such as linear or quadratic probing:
 - find(k)
 - Mark a location as "removed"=unoccupied but part of a cluster

Find and Remove Example

- Let h(k) = k mod 17
- Table size m = 17
- Use linear probing
- Insert keys 19, 36, 2
- Remove 36, Find 2

Double Hashing

- Define h₁(k) to map keys to a table location
- But also define h₂(k) to produce a linear probing step size
 - First look at h₁(k)
 - Then if it is occupied, look at $h_1(k) + h_2(k)$
 - Then if it is occupied, look at $h_1(k) + 2*h_2(k)$
 - Then if it is occupied, look at $h_1(k) + 3*h_2(k)$
- TableSize=13, $h1(k) = k \mod 13$, and $h2(k) = 5 (k \mod 5)$
- What sequence would I probe if k = 31
 - h1(31) = ____, h2(31) = ____
 - Seq:

Double Hashing

- Define h₁(k) to map keys to a table location
- But also define h₂(k) to produce a linear probing step size
 - First look at h₁(k)
 - Then if it is occupied, look at $h_1(k) + h_2(k)$
 - Then if it is occupied, look at $h_1(k) + 2*h_2(k)$
 - Then if it is occupied, look at $h_1(k) + 3*h_2(k)$
- TableSize=13, $h1(k) = k \mod 13$, and $h2(k) = 5 (k \mod 5)$
- What sequence would I probe if k = 31
 - $h1(31) = 5, h2(31) = 5-(31 \mod 5) = 4$
 - 5, 9, 0, 4, 8, 12, 3, 7, 11, 2, 6, 10, 1

Practice

 Use the hash function h(k)=k%7 to find the contents of a hash table (m=7) after inserting keys 14, 8, 21, 2, 7 using double hashing. Let the second function be h2(k) = 3 - (k%3).

Hash Tables

- Suboperations
 - Compute h(k) should be O(1)
 - Array access of table[h(k)] = O(1)
- In a hash table, what is the expected efficiency of each operation
 - Find = O(1)
 - Insert = O(1)
 - Remove = O(1)

Hashing Efficiency

- Loading factor, α , defined as:
 - (n=number of items in the table) / m=tableSize => α = n / m
 - Really it is just the fraction of locations currently occupied
- For chaining, α , can be greater than 1
 - The load factor is average length of chain
- Best to keep the loading factor, α < .5 especially for probing
- Resize and rehash contents if load factor too large: (using new hash function):
 - Allocate larger table size
 - Must rehash keys to location in new table size.

Summary

- Hash tables are LARGE arrays with a function that attempts to compute an index from the key
- In the general case, chaining is the best
- collision resolution approach
- The functions should spread the possible keys evenly over the table [i.e. p(h(k) = x) = 1/m]

An imperfect set...

BLOOM FILTERS

Set Review

- Recall the operations a set performs...
 - Insert(key)
 - Remove(key)
 - Contains(key) : bool (a.k.a. find())
- We can implement a set using
 - List
 - O(n) for some of the three operations
 - (Balanced) Binary Search Tree
 - O(log n) insert/remove/contains
 - Hash table
 - O(1) insert/remove/contains

- A Bloom filter is a set such that "contains()" will quickly answer...
 - "No" correctly (i.e. if the key is not present)
 - "Yes" with a chance of being incorrect (i.e. the key may not be present but it might still say "yes")
- Why would we want this?

Bloom Filter Motivation

- Why would we want this?
 - A Bloom filter usually sits in front of an actual set/map
 - Suppose that set/map is EXPENSIVE to access
 - if set/map doesn't sits on a disk drive or another server
 - Disk/Network access = ~milliseconds
 - Memory access = ~nanoseconds
 - The Bloom filter is small enough to reside in memory for quick access and can answer quickly if the set/map on disk contains a key:
 - If it answers "No" do not search the EXPENSIVE set
 - If it answers "Yes" search the EXPENSIVE set

Bloom Filter Explanation Insert("Tommy")

- A Bloom filter is...
 - A hash table of individual bits (Booleans: T/F)
 - A set of hash functions, $\{h_1(k), h_2(k), ... h_s(k)\}$
- Insert()
 - Apply each h_i(k) to the key
 - Set $a[h_i(k)] = True$

Bloom Filter Explanation

- A Bloom filter is...
 - A hash table of individual bits (Booleans: T/F)
 - A set of hash functions, $\{h_1(k), h_2(k), ... h_s(k)\}$
- Contains()
 - Apply each h_i(k) to the key
 - Return True if all a[h;(k)] = True
 - Return False otherwise
 - In other words, answer is "Maybe" or "No"
 - May produce "false positives"
 - May NOT produce "false negatives"
- We will ignore removal for now

Practice

- Trace a Bloom Filter on the following operations:
 - insert(0), insert(1), insert(2), insert(8), contains(2), contains(3), contains(4), contains(9)

- The hash functions are
 - h1(k)=(7k+4)%10
 - h2(k) = (2k+1)%10
 - h3(k) = (5k+3)%10
 - The table size is 10 (m=10).

	H1(k)		H3(k)	Hit?
Insert(0)	4	1	3	N/A
Insert(1)	1	3	8	N/A
Insert(2)	8	5	3	N/A
Insert(8)	0	7	3	N/A
Contains(2)	8	5	3	Yes
Contains(3)	5	7	8	Yes
Contains(4)	2	9	3	No
Contains(9)	7	9	8	No