

these are unnormalised marginals: to compute the normalisation constant Z, pick one of the tables and sum out all variables

$$Z = \sum_{D} f_{10}(D) = 102 + 63 = 165$$

to compute the marginal P(A,D), normalise $f_{11}(A,D)$:

A	D	P(A,D)
0	0	85/165=0.515
0	1	42/165=0.255
1	0	17/165=0.103
1	1	21/165=0.127

to compute the marginal P(A), sum out D:

Α	P(A)
0	85/165+42/165=0.7697
1	17/165+21/165=0.2303

similar for marginals of other variables

15

30

30

Homework

Α	D	f ₁ (A,D)
0	0	5
0	1	2
1	0	1
1	1	1

D	Е	f ₃ (D,E)
0	0	1
0	1	0
1	0	0
1	1	1

В	С	D	f ₂ (B,C,D)
0	0	0	10
0	0	1	1
0	1	0	1
0	1	1	5
1	0	0	1
1	0	1	5
1	1	0	5
1	1	1	10

- From the information on the previous slide, compute the marginals of the other variables, P(B), P(C), P(D) and P(E), as well.
- Compute the marginal of each variable using the original Markov network (repeated above) and the definition of the marginals, i.e.,

$$P(A) = \frac{1}{Z} \sum_{B,C,D,E} f_1(A,D) f_2(B,C,D) f_3(D,E) \text{ etc, where}$$

$$Z = \sum_{A,B,C,D,E} f_1(A,D) f_2(B,C,D) f_3(D,E)$$

• Construct the factor graph for the Markov network and use the sum-product algorithm (seen last week) to compute the marginal of each variable.

remaining marginals from JT

Α	D	f ₁₁ (A,D)
0	0	85
0	1	42
1	0	17
1	1	21

D	f ₁₀ (D)
0	102
1	63

D	Е	f ₉ (D,E)
0	0	102
0	1	0
1	0	0
1	1	63

D	f ₈ (D)
0	102
1	63

В	C	D	$f_7(B,C,D)$
0	0	0	60
0	0	1	3
0	1	0	6
0	1	1	15
1	0	0	6
1	0	1	15
1	1	0	30
1	1	1	30

Z =	$\sum f_{10}(D) =$	102 + 63 =	= 165
	D		

compute P(B) by summing out C and D from f7 & normalising

В	P(B)
0	(60+3+6+15)/165=0.5091
1	(6+15+30+30)/165=0.4909

compute P(C) by summing out B and D from f7 & normalising

С	P(C)
0	(60+3+6+15)/165=0.5091
1	(6+15+30+30)/165=0.4909

normalise f8 to get P(D)

P(D)
102/165=0.6182
63/165=0.3818

compute P(E) by summing out D from f9 & normalising

Ε	P(E)
0	(102+0)/165=0.6182
1	(0+63)/165=0.3818

marginals from definition

Α	D	f ₁ (A,D)
0	0	5
0	1	2
1	0	1
1	1	1

D	Е	f ₃ (D,E)
0	0	1
0	1	0
1	0	0
1	1	1

В	С	D	$f_2(B,C,D)$
0	0	0	10
0	0	1	1
0	1	0	1
0	1	1	5
1	0	0	1
1	0	1	5
1	1	0	5
1	1	1	10

A	В	C	D	Е	$f_1*f_2*f_3$
0	0	0	0	0	50
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	2
0	0	1	0	0	5
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	10
0	1	0	0	0	5
0	1	0	0	1	0
0	1	0	1	0	0
0	1	0	1	1	10
0	1	1	0	0	25
0	1	1	0	1	0
0	1	1	1	0	0
0	1	1	1	1	20

A	В	С	D	Е	f ₁ *f ₂ *f ₃
1	0	0	0	0	10
1	0	0	0	1	0
1	0	0	1	0	0
1	0	0	1	1	1
1	0	1	0	0	1
1	0	1	0	1	0
1	0	1	1	0	0
1	0	1	1	1	5
1	1	0	0	0	1
1	1	0	0	1	0
1	1	0	1	0	0
1	1	0	1	1	5
1	1	1	0	0	5
1	1	1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	10

$$Z = \sum_{A,B,C,D,E} f_1(A,D)f_2(B,C,D)f_3(D,E)$$

= 50 + 0 + 0 + 2 + ... + 5 + 0 + 0 + 10 = 165

_	Б		Г	_	c +c +c
Α	В	С	D	Е	f ₁ *f ₂ *f ₃
0	0	0	0	0	50
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	2
0	0	1	0	0	5
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	10
0	1	0	0	0	5
0	1	0	0	1	0
0	1	0	1	0	0
0	1	0	1	1	10
0	1	1	0	0	25
0	1	1	0	1	0
0	1	1	1	0	0
0	1	1	1	1	20

Α	В	C	D	Е	$f_1*f_2*f_3$
1	0	0	0	0	10
1	0	0	0	1	0
1	0	0	1	0	0
1	0	0	1	1	1
1	0	1	0	0	1
1	0	1	0	1	0
1	0	1	1	0	0
1	0	1	1	1	5
1	1	0	0	0	1
1	1	0	0	1	0
1	1	0	1	0	0
1	1	0	1	1	5
1	1	1	0	0	5
1	1	1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	10

$$Z = 165$$

$$P(A) = \frac{1}{Z} \sum_{B,C,D,E} f_1(A,D) f_2(B,C,D) f_3(D,E)$$

same principle gives:

В	P(B)
0	0.5091
1	0.4909

E	P(E)
0	0.6182
1	0.3818

marginals from sumproduct algorithm

D	Е	f ₃ (D,E)
0	0	1
0	1	0
1	0	0
1	1	1

В	C	D	$f_2(B,C,D)$
0	0	0	10
0	0	1	1
0	1	0	1
0	1	1	5
1	0	0	1
1	0	1	5
1	1	0	5
1	1	1	10

Homework: use the sum-product algorithm (seen last week) on the factor graph

pick D as the root propagate messages from leaves to root

Α	D	f ₁ (A,D)
0	0	5
0	1	2
1	0	1
1	1	1

D	Е	f ₃ (D,E)
0	0	1
0	1	0
1	0	0
1	1	1

В	С	D	f ₂ (B,C,D)
0	0	0	10
0	0	1	1
0	1	0	1
0	1	1	5
1	0	0	1
1	0	1	5
1	1	0	5
1	1	1	10

10

propagate messages from root to leaves

we're re-naming earlier messages for easier reference here

D	s1(D)
0	6
1	3

D	s3(D)
0	1
1	1

D	s2(D)
0	17
1	21

propagate messages from root to leaves

we're re-naming earlier messages for easier reference here

D	s1(D)
0	6
1	3

D	s3(D)
0	1
1	1

	s2(D)	D
0 1/	17	0
1 21	21	1

D	s1(D)	D	s3(D)	D	s2(D)
0	6	0	1	0	17
1	3	1	1	1	21

Α	D	f ₁ (A,D)
0	0	5
0	1	2
1	0	1
1	1	1

D	Е	f ₃ (D,E)
0	0	1
0	1	0
1	0	0
1	1	1

В	С	D	f ₂ (B,C,D)
0	0	0	10
0	0	1	1
0	1	0	1
0	1	1	5
1	0	0	1
1	0	1	5
1	1	0	5
1	1	1	10

$s_2(D)s_3(D)f_1(A,D)$

Α	D	s2s3f1
0	0	85
0	1	42
1	0	17
1	1	21

sum out D:

A	e1(A)
0	127
1	38

$$\sum_{D} s_2(D) s_3(D) f_1(A, D)$$

$s_1(D)s_2(D)f_3(D,E)$

D	Е	s1s2f3
0	0	102
0	1	0
1	0	0
1	1	63

sum out D:

Е	e2(E)
0	102
1	63

$$\sum_{D} s_1(D)s_2(D)f_3(D, E)$$

$s_1(D)s_3(D)f_2(B,C,D)$

В	С	D	s1s3f2
0	0	0	60
0	0	1	3
0	1	0	6
0	1	1	15
1	0	0	6
1	0	1	15
1	1	0	30
1	1	1	30

sum out B and D:

С	e3(C)
0	84
1	81

$$\sum_{D \in D} s_1(D)s_3(D)f_2(B, C, D)$$

sum out C and D:

В	e4(B)
0	84
1	81

$$\sum_{B,D} s_1(D)s_3(D)f_2(B, C, D) \qquad \sum_{C,D} s_1(D)s_3(D)f_2(B, C, D)$$

final state of graph

