REPUBLIQUE TUNISIENNE Ministère de l'Enseignement

Supérieur

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session : 2006

الجمهورية التونسية

المناظرات الوطنية للنخول إلى مراحل تكوين المهندسين دورة 2006

Concours Mathématiques et Physique

Correction de l'épreuve de Chimie

Problème 1: (10,25 pis)

Partic A: (1,75 pts)

A-1) et A-1a)

$_{24}Cr:1s^2\;2s^22p^6\;3s^23p^6$ $4s^1\;3d^5$	0,25 pt	NAME AND ADDRESS OF TAXABLE PARTY.
A-1b)		
Le nombre d'électrons de valence : 6	0.25 pt	i

A-1c)

Le chrome appartient à la 4 ^{ème} période.	0,25 pt	
The state of the s		

A-2)

D'après	l'énoncé :	Cr,	Mo	et	W	appartiennent	au	même	groupe	et	à	des	périodes	111111111111111111111111111111111111111
Successi	ves et croiss	ante	S:											-

élément	période	Numéro atomique Z	
(4)	4 ^{ème}	Z=24	0.25 -+
Mo	5 ^{ème}	Z=24+8+10=42	0,25 pt
W	6 ^{ème}	Z=42+8+10+14=74	0,23 pt

A-3)

L'oxyde correspondant à W(+IV) est WO ₂ .	0,25 pt
L'oxyde correspondant à W(+VI) est WO ₃ .	0,25 pt

Partie 8 : (5,00 pts)

B-1) et B-2)

B-3)

Dans cette structure, il y a tangence entre les atomes de « W » sur la grande diagonale du cube :

$$a\sqrt{3} = 4 \times r_w (1)$$

La distance la plus courte entre deux atomes de W est : $d_{W-W} = 2 \times r_{W}$ (2)

D'où, $a\sqrt{3} = 2 \times d_{w-w}$

$$d_{W-W} = \frac{a\sqrt{3}}{2}$$

0,25 pt

Application purpositions	7
Application numérique :	0.25 pt
$d_{W \to W} = \frac{3,17 \times \sqrt{3}}{2} = 2,75\text{Å}$	0,25 pt
	<u> </u>
B-4) B-4a)	
Pour un atome donné, la coordinence est le nombre de voisins les plus proches.	0,25 pt
B-4b)	1 0,23 pt
La coordinence de W est 8.	0,25 pt
B-5)	0,25 με
B-5a)	
Par définition, la compacité s'écrit :	1 /23 24
$\zeta = \frac{n_{atom}(W) \times \frac{4}{3} \times \pi \times r_W^3}{c^3}$	
is the state of th	
D'après B-3) $\Rightarrow a\sqrt{3} = 4 \times r_W \Rightarrow a = \frac{4 \times r_W}{\sqrt{3}}$	
Taples 5-3) $= 4 \times I_W = 4 \times I_W = \frac{1}{\sqrt{3}}$	0,5 pt
45	
$n_{\text{storm}}(W) \times \frac{4}{5} \times \pi \times r_W^3$	5200
$\zeta = \frac{3}{3} \frac{R_{dom}(W) \times \sqrt{3} \times \pi}{2}$	
$(4 \times r_{\rm gr})^2$	
$\zeta = \frac{n_{atom}(W) \times \frac{4}{3} \times \pi \times r_W^3}{\left(\frac{4 \times r_W}{\sqrt{3}}\right)^3} = \frac{n_{atom}(W) \times \sqrt{3} \times \pi}{16}$	
Application numérique :	i
per de	
$\zeta = \frac{2 \times \sqrt{3 \times \pi}}{16} = 0,68$	0,25 pt
16	
3-56)	-
Par définition, la masse volumique s'écrit :	
	0.75 at
$\rho = \frac{n_{alom}(W) \times M_W}{N_A \times \alpha^3}$	0,25 pt
$N_A \times a$	
application numérique :	
2×183,8 -10.16 c cm ⁻³	0,25 pt
$3 = \frac{1}{(10^{23} + 10^{23} + 10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	0,20 00
$0 = \frac{2 \times 185,8}{6,023 \times 10^{23} \times \left(3,17 \times 10^{-8}\right)^3} = 19,16 \text{ g.cm}^{-3}$	***
3-6)	
3-6a)	
Dans un réseau cubique centré, les sites octaédriques occupent les milieux des arêtes et les	0.25 05
entres des faces.	0,25 pt
3-6b)	
Number des sites (O) = $12 \times \frac{1}{4} + 6 \times \frac{1}{2} = 6$ sites(O) par maille.	0,25 pt
4 4	
3-6c)	T
• Site (O)	
0-1	
	0,25 pt
	0,23 pt
	A projection
l s'agit d'un octaèdre déformé car l'octaèdre obtenu possède quatre arêtes égales à (d ₁ =a)	

$u \times v = u \times v = v = v = v = v = v = v = v = v = v$	0,5 pt
et huit autres arêtes égales à $d_2 = \frac{a \times \sqrt{3}}{2}$	
Ou bien:	
L'octaèdre possède deux axes égaux à $\mathbf{a} \times \sqrt{2}$ et un troisième égale à \mathbf{a}	
B-7)	
D'après la relation de Bragg: $2 \times d_{hkl} \times \sin(\theta_{hkl}) = n_D \times \lambda$	
a leavest their	
Pour un réseau cubique : $d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$	
$\sin(\theta_{bkl}) = \frac{n_D \times \lambda}{2} = \frac{n_D \times \lambda}{2}$	0,5 pt
$\sin\left(\theta_{hkl}\right) = \frac{n_D \times \lambda}{2 \times d_{hkl}} = \frac{n_D \times \lambda}{2 \times \frac{a}{\sqrt{h^2 + k^2 + l^2}}}$	0,5 pt
$\sqrt{h^2 + k^2 + l^2}$	
$(n_0 \times \lambda \times \sqrt{h^2 + k^2 + l^2})$	P 813
D'où, $\theta_{hkl} = Arc\sin\left(\frac{n_D \times \lambda \times \sqrt{h^2 + k^2 + l^2}}{2 \times a}\right)$	
Application numérique :	
$\theta_{hkl} = Arc\sin\left(\frac{1\times1,54\times\sqrt{2}}{2\times3,17}\right) = 20,09^{\circ}$	0,25 pt
$\frac{1}{2\times3,17}$	1 - 1000, -
	57 1 as Luc
	
· · · · · · · · · · · · · · · · · · ·	
	0,5 pt
	0,5 pt
C-1b)	0,5 pt
C-1b)	0,5 pt
C-1b) Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$	0,5 pt
C-1b) Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$	0,5 pt
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$	
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ La stœchiométrie et la neutralité électrique sont bien respectées et il y a un groupement	
C-1b)	
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les a stœchiométrie et la neutralité électrique sont bien respectées et il y a un groupement ormulaire par maille. D'où la formule WO ₃ est bien vérifiée.	0,5 pt
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les a stœchiométrie et la neutralité électrique sont bien respectées et il y a un groupement ormulaire par maille. D'où la formule WO ₃ est bien vérifiée. 3-2) Les coordinence de W ⁶⁺ est 6 car il est entouré de 6 ions O ²⁻ . Le polyèdre de coordination a la forme octaédrique.	
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : n	0,5 pt
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : n	0,5 pt
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ La stœchiométrie et la neutralité électrique sont bien respectées et il y a un groupement formulaire par maille. D'où la formule WO ₃ est bien vérifiée. 10-2) La coordinence de W ⁶⁺ est 6 car il est entouré de 6 ions O ²⁻ Le polyèdre de coordination a la forme octaédrique. 21 a coordinence de O ²⁻ est 2 car il est entouré de 2 ions W ⁶⁺ 22 Le polyèdre de coordination a la forme linéaire. 23 C-3)	0,5 pt
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les a stœchiométrie et la neutralité électrique sont bien respectées et il y a un groupement ormulaire par maille. D'où la formule WO ₃ est bien vérifiée. 3-2) Le polyèdre de coordination a la forme octaédrique. Le polyèdre de coordination a la forme linéaire. 4 - 3) Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) $	0,5 pt 0,5 pt 0,5 pt
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ Les ions oxygène occupent le milieu de chaque arête : n	0,5 pt
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ La stœchiométrie et la neutralité électrique sont bien respectées et il y a un groupement ormulaire par maille. D'où la formule WO ₃ est bien vérifiée. 3-2) La coordinence de W ⁶⁺ est 6 car il est entouré de 6 ions O ²⁻ . Le polyèdre de coordination a la forme octaédrique. La coordinence de O ²⁻ est 2 car il est entouré de 2 ions W ⁶⁺ . Le polyèdre de coordination a la forme linéaire. 3-3) L-3a) Les anions et les cations sont tangents suivant l'arête a_1 de la maille. $a_1 = 2 \times \left(r_{W^{6+}} + r_{O^{2-}}\right)$	0,5 pt 0,5 pt 0,5 pt
Les ions tungstène occupent les sommets : $n_{ion}(W^{6+}) = 8 \times \frac{1}{8} = 1$ Les ions oxygène occupent le milieu de chaque arête : $n_{ion}(O^{2-}) = 12 \times \frac{1}{4} = 3$ La stœchiométrie et la neutralité électrique sont bien respectées et il y a un groupement formulaire par maille. D'où la formule WO ₃ est bien vérifiée. 3-2) Le polyèdre de coordination a la forme octaédrique. Le polyèdre de coordination a la forme linéaire. 3-3) Le polyèdre de coordination a la forme linéaire. 3-3) Le polyèdre de coordination a la forme linéaire. 3-3) Le polyèdre de coordination a la forme linéaire. 3-3) Le polyèdre de coordination a la forme linéaire.	0,5 pt 0,5 pt 0,5 pt

C-3b)

Par définition, la compacité s'écrit :	
$\zeta = \frac{\frac{4}{3} \times \pi \times \left(n_{ion}(W^{6+}) \times r_{W^{6+}}^3 + n_{ion}(O^{2-}) \times r_{O^{2-}}^3 \right)}{2}$	0,25 pt
a_1^3	
Application numérique :	
$\zeta = \frac{\frac{4}{3} \times \pi \times \left(1 \times \left(0,62\right)^3 + 3 \times \left(1,40\right)^3\right)}{\left(4,04\right)^3} = 0,54$	0,25 pt
$(4,04)^3$ = 0,34	
C-3c)	
Par définition, la masse volumique s'écrit :	
$n_{ion}(W^{6+}) \times M_W + n_{ion}(O^{2-}) \times M_O$	0,25 pt

Problème II : (10,25 pts)

Partie A: Diagramme d'Ellingham: (4,75 pts)

Application numérique: $\rho = \frac{1 \times 183,8 + 3 \times 16,0}{6,023 \times 10^{23} \times \left(4,04 \times 10^{-8}\right)^3} = 5,84 \text{ g.cm}^{-3}$

A-1)

L'approximation d'Ellingham consiste à supposer que $\Delta_r H^0$ et $\Delta_r S^0$ sont indépendantes	0.25
de la température en dehors des changements d'état.	0,25 pt
A-2)	
A-2a)	
$\frac{2}{3}W_{(sd)} + O_{2(g)} = \frac{2}{3}WO_{3(sd)} $ (1)	0,25 pt
A-2b)	
$\Delta_r G_1^0 = \Delta_r H_1^0 - T \times \Delta_r S_1^0$	
$\Delta_r H_1^0 = \frac{2}{3} \times \Delta_f H_{WO_3(sd)}^0 - \Delta_f H_{O_2(g)}^0 - \frac{2}{3} \times \Delta_f H_{W(sd)}^0$	0,25 pt
Application numérique :	
$\Delta_r H_1^0 = \frac{2}{3} \times (-842, 7) - 0, 0 - 0, 0 = -561, 8 \text{ kJ.mol}^{-1}$	0,25 pt
De même, l'entropie standard de réaction est :	
$\Delta_r S_1^0 = \frac{2}{3} \times S_{WO_3(sd)}^0 - S_{O_2(g)}^0 - \frac{2}{3} \times S_{W(sd)}^0$	0,25 pt
Application numérique :	
$\Delta_r S_1^0 = \frac{2}{3} \times 75,9 - 205,0 - \frac{2}{3} \times 32,6 = -176,13 \text{ J.K}^{-1}.\text{mol}^{-1}$	0,25 pt
On a done:	
$\Delta_r G_1^0 = -561,8 + 0,176 \times T$ (kJ.mol ⁻¹)	0,25 pt

0,25 pt

A-4)

L'équation de la réaction de réduction relative à une mole de WO_{3(sd)}.

 $WO_{3(sd)} + 3H_{2(g)} \Longrightarrow W_{(sd)} + 3H_2O$ (3)

0,25 pt

A-4h)

A-40)		
A T=T _i : température d'inversion correspond à	l'intersection des deux droites.	
$\Delta_{\mathbf{r}}G_{1}^{0} = \Delta_{\mathbf{r}}G_{2}^{0}$		
$-561,8+0,176\times T_i = -483,6+0,0889\times T_i$	W. G. Oak alam	0,25 pt
$T_i = \frac{561,8 - 483,6}{0,176 - 0,0889} = 897,8K$		

A-4c)

WO_{3(sd)} est réductible par le dihydrogène pour les températures supérieures à T_i= 897,8 K. 0,25 pt A-4d)

$$\frac{2}{3}W_{(sd)} + O_{2(g)} \longrightarrow \frac{2}{3}WO_{3(sd)}$$
 (1) $\Delta_r G_1^0$

$$2H_{2(g)} + O_{2(g)} \rightleftharpoons 2H_2O$$
 (2) $\Delta_r G_2^0$

$$WO_{3(sd)} + 3H_{2(g)} \rightleftharpoons W_{(sd)} + 3H_2O (3) \Delta_rG_3^0 = -R \times T \times Ln(K_T^0)$$

La réaction (3) est la combinaison linéaire des réactions (1) et (2) :

On remarque
$$(3) = \frac{3}{2} \times ((2) - (1))$$

$$\Delta_{r}G_{3}^{o} = \frac{3}{2} \times \left(\Delta_{r}G_{2}^{o} - \Delta_{r}G_{1}^{o}\right) = -R \times T \times Ln\left(K_{T}^{o}\right)$$

$$K_{T}^{0} = Exp\left(-\frac{\Delta_{r}G_{3}^{0}}{R \times T}\right)$$

Application numérique :

$$\Delta_{r}G_{3}^{0} = \frac{3}{2} \times ((-483, 6+0, 0889 \times 1500) - (-561, 8+0, 176 \times 1500)) = -78,675 \text{ kJ.mol}^{-1}$$

$$K_{1500}^{0} = \text{Exp}\left(\frac{+78,675}{8,314 \times 10^{-3} \times 1500}\right) = 549,30$$

$$WO_{3(sd)} + 3H_{2(g)} \xrightarrow{} W_{(sd)} + 3H_2O \quad (3)$$

$$A \text{ l'équilibre } Q = K_{1500}^0 = \frac{\left(\frac{P_{H_2O}}{P^0}\right)_{eq}^3}{\left(\frac{P_{H_2}}{P^0}\right)_{eq}^3} = \frac{\left(P_{H_2O}\right)_{eq}^3}{\left(P_{H_2}\right)_{eq}^3}$$

$$\begin{cases} K_{1500}^0 = \left(\frac{P_{H_2O}}{P_{H_2}}\right)_{eq}^3 = 549,30 \\ P_{H_2O} + P_{H_2} = 1 \text{ bar} \end{cases}$$
La résolution de ce système d'équations fournit :
$$P_{H_2O} = 0,891 \text{ bar et } P_{H_2} = 0,109 \text{ bar} \end{cases}$$

Partie B: Diagramme binaire: (5,00 pts)

B-1)

D-1)		
$x_w = \frac{v}{v+u} \implies x_w \times (v+u) = v \implies x_w \times u = v \times v$	$x\left(1-x_{W}\right) \Rightarrow \frac{u}{v} = \frac{1-x_{W}}{x_{W}}$	higher steels of the many of the
Pour le composé défini C_1 : $x_w = 0,333$		
$\frac{u}{v} = \frac{1 - 0,333}{0,333} = \frac{0,667}{0,333} \approx \frac{2}{1}$		0,25 pt
u = 2 et $v = 1D'où la formule de C_1: Si_2W$		70 A -21
Pour le composé défini C_2 : $x_w = 0,625$		
$\frac{u}{v} = \frac{1 - 0,625}{0,625} = \frac{0,375}{0,625} \approx \frac{3}{5}$		0,25 pt
u = 3 et $v = 5D'où la formule de C_2: Si_3W_5$		College Middleship to
Une solution solide S_{α} : solution solide de S	i dans W.	0,25 pt

B-3a)

B-3a)		* 1
i) $x_{W}^{M} = \frac{n_{W}}{n_{W} + n_{Si}} = \frac{\frac{m_{W}}{M_{W}}}{\frac{m_{W}}{M_{W}} + \frac{m_{Si}}{M_{Si}}}$	Application numérique : $x_{W}^{M} = \frac{\frac{4,59}{183,8}}{\frac{4,59}{183,8} + \frac{2,80}{28,1}} = 0,2$	0,25 pt
Voir diagramme		0,5 pt
ii)		
Le solide S est le composé défini C ₁ .		0,25 pt
iii)		
D'après le diagramme $x_w^L = 0,1$ $x_{Si}^L = 1 - x_w^L = 0,9$		0,25 pt
iv)		
$n_{Si} = \frac{m_{Si}}{M_{Si}} = \frac{2,80}{28,1} = 99,64 \times 10^{-3} \text{ mol}$		

$$\begin{split} n_W &= \frac{m_W}{M_W} = \frac{4,59}{183,8} = 24,97 \times 10^{-3} \text{ mol} \\ n_{total} &= n_{Si} + n_W = \left(99,64 + 24,97\right) \times 10^{-3} = 0,125 \text{ mol} \\ D'après la règle des segments inverses : \\ &\left\{ \frac{n^L}{n_{tot}} = \frac{x_W^S - x_W^M}{x_W^S - x_W^L} = \frac{0,333 - 0,200}{0,333 - 0,100} = 0,57 \\ n_{tot} &= 0,125 \text{ mol} \right. \end{split}$$
 La résolution de ce système d'équations fournit :
$$n^L = 0,071 \text{ mol} \end{split}$$

v)
$$2Si + W \rightleftharpoons Si_2W$$

 $\Rightarrow n_W^{sd} = n^S$
 $n^L = n_{s_1}^L + n_W^L = 0,071 \text{ mol}$
 $n_W^L = x_W^L \times n^L = 0,1 \times 0,071 = 0,00071 \text{ mol}$
 $x_W^{glob} = 0, 2 = \frac{n_W}{n_{tot}}$
 $n_W^{glob} = n_{tot} \times 0, 2 = 0,125 \times 0, 2 = 0,025 \text{ mol}$
 $n_W^{sd} = n_W^{glob} - n_W^L = 0,025 - 0,00071 = 0,018 \text{ mol}$
 $n^S = n_W^{sd} = 0,018 \text{ mol}$
Ou bien:
 $n^{C_1} = n^S = \frac{n_{tot} - n^L}{3} = \frac{0,125 - 0,071}{3} = \frac{0,054}{3} = 0,018 \text{ mol}$

