

Università degli studi di Milano-Bicocca

Corso di Laurea Magistrale in Informatica Anno accademico 2016/2017

Green smell identification for software energy efficiency optimization

Relatore: Prof.ssa Francesca Arcelli Fontana

Co-relatore: Dott. Marco Bessi

Corrado Ballabio - 764452

28 marzo 2018

Green IT

"is the study and practice of designing, manufacturing, using, and disposing of computers, servers, and associated subsystems - such as monitors, printers, storage devices, and networking and communications systems - efficiently and effectively with minimal or no impact on the environment." [1]

IT as an enabler of green governance

Eco-compatible management of IT products lifecycle

Energy efficiency of IT

Also software takes part in energy consumption:

Thesis outline

Main works assess the energetic impact that software has on embedded systems [2] or mobile devices [3]

No methodology that quantifies software energy efficiency

RQ1 Wich of the suspected patterns are *green smells*?

What are the variables that influences the energy consumption?

Definition of a *greenability* metric for assessing energy efficiency of sample applications

Research of the patterns

- Efficiency, performance, robustness, bad practices and dodgy code rules from different sources:
 - CAST Quality Rules documentation¹
 - o FindBugs ² and PMD³ ruleset
- Some rule selection criteria...

	•	6	Expensive Calls in Loops
53	•	11	Expensive Object Instantiation
identified	•	2	Garbage Collector calls
patterns	•	19	Poor Programming Choices
	•	15	DB calls

- Every pattern is implemented as a pair of functions
- Repeated 1 million times, 50 samples collected

¹http://doc.castsoftware.com/display/DOC82/Metrics+and+Quality+Rules+-+details

²http://findbugs.sourceforge.net

³https://pmd.github.io/pmd-6.0.0/index.html

RQ1: Energy results

Pattern name	Impact (in %)	rank
callPropertiesThatCloneValuesInLoop	-116.73	9
indirectExceptionHandlingInsideLoops	-130.04	9
indirectStringConcatenationInLoops	-56.77	9
instantiationInsideLoop	-22.6	4
stringConcatenationInLoop	-32.98	7
existsIndipendentClause	-77.3	9
sqlQueriesInsideLoop	-124.30	9
boxedPrimitiveToString	-34.73	7
boxingImmediatelyUnboxed	-20.86	4
declareStaticMethod	-12.35	4
dynamicInstantiation	-107.52	9
instantiatingBoolean	-18.72	4
needlessInstantiation	-5.44	2
newObjectForGetClass	-9.7	2
numberCtor	-12.73	4
randomUsedOnlyOnce	-119.69	9
stringInitializationWithObject	-24.88	4
nonShortCircuit	-26.96	4
useArraysAsList	-155.73	9
usingHashtable	-56.08	9
usingRemoveAllToClearCollection	-36.45	7

RQ1: which of the patterns under test represent an energy hotspot (i.e. which are green smells)?

- Measurements of energy consumption are performed with jRAPL [4]
- Green smells are identified according to the Mann-Whitney test results and the impact that the resolution has on the consumption

21 patterns out of 53 are proved to be *green smells*

• Expensive calls in loops and expensive object instantiation are the less energy efficient categories

RQ2: Time and resources correlation

Pattern name	Performance smell	Memory smell
callPropertiesThatCloneValuesInLoop	√	
$in direct {\tt Exception Handling Inside Loops}$	\checkmark	\checkmark
indirectStringConcatenationInLoops	\checkmark	\checkmark
instantiationInsideLoop	\checkmark	\checkmark
stringConcatenationInLoop	\checkmark	\checkmark
existsIndipendentClause	\checkmark	
sqlQueries Inside Loop	✓	✓
boxedPrimitiveToString	\checkmark	\checkmark
boxingImmediatelyUnboxed	\checkmark	\checkmark
declareStaticMethod	\checkmark	\checkmark
dynamicInstantiation	\checkmark	
instantiatingBoolean	\checkmark	\checkmark
needlessInstantiation		
newObjectForGetClass	\checkmark	\checkmark
numberCtor	\checkmark	\checkmark
randomUsedOnlyOnce	\checkmark	
stringInitializationWithObject	\checkmark	\checkmark
nonShortCircuit	√	
useArraysAsList	\checkmark	\checkmark
usingHashtable	\checkmark	
usingRemoveAllToClearCollection	✓	✓

RQ2: which are the main variables between execution time, resource usage and bytecode instruction, that are responsible of the increase in energy consume?

- Additional time and resource analysis identify performance and resources smells
- uselessSubstring is a performance smell but not a green smell
- largeNumberOfStringConcat, formatStringNewLine and staticFieldCollection are memory smells but not green smells

Bytecode analysis

```
public static void numberCtor With FindBugs();
  Code:
    0: new
                      #7
     3: dup
     4: bipush
                      11
    6: invokespecial #8
     9: astore 0
    10: return
public static void numberCtor_Without_FindBugs();
  Code:
    0: bipush
     2: invokestatic #9
     5: astore 0
     6: return
public static void instantiatingBoolean With CAST();
  Code:
     0: new
                      #32
     3: dup
     4: iconst 1
    5: invokespecial #33
     8: astore 0
     9: aload 0
   10: invokevirtual #34
    13: ifeq
                      16
    16: return
public static void instantiatingBoolean_Without_CAST();
  Code:
     0: getstatic
                      #35
     3: invokevirtual #34
     6: ifea
     9: return
```

- Bytecode analysis highlights a bigger presence of new and invoke operations
- Their presence is related to object instantiation:
 - new for allocating memory for the new instance
 - invokespecial for calling the Class constructor

And to methods invocation:

- invokeinterface is used to invoke a method declared within a Java interface
- invokestatic calls static methods
- invokevirtual for all the other cases

Greenability metric

Technical Health Application Quality Metric Subset Quality **Factors** Criteria callPropertiesThatCloneValuesInLoop indirectExceptionHandlingInsideLoops Complexity indirectStringConcatenationInLoops Efficiency instantiationInsideLoop stringConcatenationInLoop existsIndipendentClause Robustness Expensive calls in sqlQueriesInsideLoop Final grade that loops boxedPrimitiveToString Security reflects the boxingImmediatelyUnboxed overall quality of declareStaticMethod DB calls dynamicInstantiation **GREENABILITY** the application instantiatingBoolean Expensive object needlessInstantiation instantiation Changeability newObjectForGetClass numberCtor Poor programming randomUsedOnlyOnce Maintanability choices stringInitializationWithObject nonShortCircuit useArraysAsList Transferability usingHashtable Architecture usingRemoveAllToClearCollection

Greenability results

- A sample analysis is performed on WebGoat⁴, a deliberately flawed application used to test vulnerabilities commonly found in Java-based applications
- The metric allows an assessment of the energy efficiency of sample Java applications, and gives the ability to analyse and refactor the code from a energy efficient point of view

QUALITY RULES, DISTRIBUTIONS AND MEASURES

Grade	Var.	Rule Name	Contr.	Critical
• 1.93	0.00%	Declare as Static all methods not using instance me	4×50%	No
3.77	0.00%	Avoid using Dynamic instantiation	9×50%	Yes
3.96	0.00%	Avoid String initialization with String object (create	4×50%	No
4	0.00%	Avoid allocating a boxed primitive value just to call	7×50%	No
4	0.00%	Avoid boxing a primitive value and then immediatel	4×50%	No
4	0.00%	Avoid ineffiient Number constructor calls	4×50%	No
4	0.00%	Avoid instantiating Boolean	4×50%	No
4	0.00%	Avoid allocating an object just to call getClass() me	2x50%	No

Conclusions

RQ1: which of the patterns under test represent an energy hotspot (i.e. which are green smells)?

Green smells are mostly related to non-optimal Object instantiations and to expensive operation executed inside loops

bytecode

Main indicators of a bad energy management are useless Object instantiations and a large number of method calls

Future works

- An assessment on the impact that specific bytecode operations has on the overall consumption may reveal best programming techniques to achieve maximum energy optimization
- An analysis of energy consumption in relation to Fowler's code smells, do they bring an improvement or a decrease?
- An analysis on the possible trade-off between green and performance Smells

Grazie per l'attenzione

Identified patterns

section	method identifier
Expensive Calls in Loops	callPropertiesThatCloneValuesInLoop; indirectExceptionHandlingInsideLoops; indirectStringConcatenationInLoops; instantiationInsideLoop; stringConcatenationInLoop; terminationExpressionInLoop;
DB calls	closeDBResourcesASAP; usingLONGDatatype; nullableColumn; selectAll; implicitConversionInWHERE; preferUNIONALL; usingOldStyleJoin; mixAnsiWithOracleSyntax; existsIndipendentClause; withoutPrimaryKey; useDedicatedStoredProcedure; sqlQueriesInsideLoop; tooManyIndexes; firstIndexInWhere; redundantIndexes;
Expensive Object Instantiation	dynamicInstantiation; instantiatingBoolean; largeNumberOfStringConcat; stringInitializationWithObject; declareStaticMethod; boxingImmediatelyUnboxed; numberCtor; randomUsedOnlyOnce; needlessInstantiation; boxedPrimitiveToString; newObjectForGetClass;
Garbage Collector calls	callSuperFinalizeInFinally; callingFinalize;
Poor Programming Choices	arrayCopy; collapsibleIfStatement; deadLocalStoreReturn; formatStringNewLine; localDoubleAssignment; mutualExclusionOR; nonShortCircuit; repeatedConditionals; selfAssignment; staticFieldCollection; switchRedundantAssignment; useArraysAsList; uselessControlFlow; uselessSubstring; usingHashtable; usingRemoveAllToClearCollection; usingStringEmptyForStringTest; usingVector; variableDeclaredAsObject;

Energy results - 1

method name	mean w	mean w/o	impact	p-val	rank
callPropertiesThatCloneValuesInLoop	15.174	4.121	-114.568	6.86e-18	9
indirect Exception Handling Inside Loops	31.309	6.529	-130.980	6.86e-18	9
indirect String Concatenation In Loops	5.907	3.295	-56.775	6.86e-18	9
instantiationInsideLoop	9.705	7.734	-22.608	6.86e-18	4
stringConcatenationInLoop	2.321	2.065	-11.693	6.86e-18	7
terminationExpressionInLoop	3.965	3.913	-1.321	2.29e-04	
boxedPrimitiveToString	4.981	3.497	-35.003	6.86e-18	7
boxingImmediatelyUnboxed	0.350	0.284	-20.863	4.54e-13	4
declareStaticMethod	0.370	0.327	-12.357	6.86e-18	4
dynamicInstantiation	1.139	0.343	-107.529	6.86e-18	9
instantiatingBoolean	0.356	0.295	-18.723	6.34e-15	4
largeNumberOfStringConcat	1.170	1.819	43.412	6.86e-18	
needlessInstantiation	0.300	0.284	-5.442	1.67e-02	2
newObjectForGetClass	0.315	0.254	-21.349	1.59e-14	2
numberCtor	0.352	0.310	-12.733	1.01e-07	4
randomUsedOnlyOnce	46.081	11.575	-119.694	6.86e-18	9
stringInitializationWithObject	0.381	0.297	-24.882	1.05e-15	4
callSuperFinalizeInFinally	11.385	11.427	0.371	6.86e-18	
callingFinalize	16.679	16.769	0.535	6.86e-18	

Energy results - 2

6.552	6.350	-3.123	8.71e-14	
0.295	0.282	-4.669	1.31e-01	
0.274	0.267	-2.696	4.76e-01	
101.758	102.519	0.745	1.95e-01	
0.309	0.319	3.300	5.84e-02	
0.256	0.262	2.351	3.45e-01	
0.353	0.269	-26.964	8.73e-06	4
0.258	0.261	0.892	6.62e-01	
0.269	0.260	-3.065	2.02e-01	
1.283	1.801	33.584	6.86e-18	
0.265	0.268	0.800	8.47e-01	
6.906	0.859	-155.739	6.86e-18	9
0.268	0.262	-2.367	2.82e-01	
0.315	0.300	-4.746	1.13e-01	
18.952	10.651	-56.087	6.86e-18	9
6.622	4.580	-36.459	6.86e-18	7
0.315	0.309	-1.863	3.33e-01	
5.177	5.287	2.105	6.38e-05	
2.916	2.902	-0.512	2.44e-01	
	0.295 0.274 101.758 0.309 0.256 0.353 0.258 0.269 1.283 0.265 6.906 0.268 0.315 18.952 6.622 0.315 5.177	0.295 0.282 0.274 0.267 101.758 102.519 0.309 0.319 0.256 0.262 0.353 0.269 0.258 0.261 0.269 0.260 1.283 1.801 0.265 0.859 0.268 0.262 0.315 0.300 18.952 10.651 6.622 4.580 0.315 0.309 5.177 5.287	0.295 0.282 -4.669 0.274 0.267 -2.696 101.758 102.519 0.745 0.309 0.319 3.300 0.256 0.262 2.351 0.353 0.269 -26.964 0.258 0.261 0.892 0.269 0.260 -3.065 1.283 1.801 33.584 0.265 0.268 0.800 6.906 0.859 -155.739 0.268 0.262 -2.367 0.315 0.300 -4.746 18.952 10.651 -56.087 6.622 4.580 -36.459 0.315 0.309 -1.863 5.177 5.287 2.105	0.295 0.282 -4.669 1.31e-01 0.274 0.267 -2.696 4.76e-01 101.758 102.519 0.745 1.95e-01 0.309 0.319 3.300 5.84e-02 0.256 0.262 2.351 3.45e-01 0.353 0.269 -26.964 8.73e-06 0.258 0.261 0.892 6.62e-01 0.269 0.260 -3.065 2.02e-01 1.283 1.801 33.584 6.86e-18 0.265 0.268 0.800 8.47e-01 6.906 0.859 -155.739 6.86e-18 0.268 0.262 -2.367 2.82e-01 0.315 0.300 -4.746 1.13e-01 18.952 10.651 -56.087 6.86e-18 0.315 0.309 -1.863 3.33e-01 5.177 5.287 2.105 6.38e-05

Energy results - 3

method name	mean w	mean w/o	impact	p-value	rank
closeDBResourcesASAP_MYSQL	3.81	3.74	-1.8177	6.77e-02	
existsIndipendentClause_MYSQL	6.25	3.58	-54.1686	6.86e-18	9
firstIndexInWhere_MYSQL	14.19	14.14	-0.4009	1.08e-01	
implicitConversionInWHERE_MYSQL	3.81	3.79	-0.5157	1.97e-01	
mixAnsiWithOracleSyntax_MYSQL	4.34	4.32	-0.4951	1.32e-01	
nullableColumn_MYSQL	3.69	3.70	0.2052	5.84e-01	
preferUNIONALL_MYSQL	3.67	3.65	-0.6397	1.25e-01	
redundantIndexes_MYSQL	13.82	13.85	0.1856	5.13e-01	
selectAll_MYSQL	3.83	81.26	182.0021	6.25e-01	
sqlQueriesInsideLoop_MYSQL	17.08	3.99	-124.3019	6.86e-18	9
tooManyIndexes_MYSQL	25.45	24.58	-3.4868	4.00e-01	
useDedicatedStoredProcedure_MYSQL	5.99	6.07	1.2112	3.23e-10	
usingLONGDatatype_MYSQL	4.47	4.47	-0.1997	8.04e-01	
usingOldStyleJoin_MYSQL	4.08	4.08	0.0838	7.41e-01	
withoutPrimaryKey_MYSQL	3.57	75.99	182.0351	4.18e-01	
closeDBResourcesASAP_POSTGRE	2.06	2.04	-1.1264	5.53e-01	
existsIndipendentClause_POSTGRE	4.47	1.98	-77.3015	6.86e-18	9
firstIndexInWhere_POSTGRE	12.24	12.18	-0.4994	2.25e-01	
implicitConversionInWHERE_POSTGRE	2.08	2.15	3.2811	2.95e-05	
mixAnsiWithOracleSyntax_POSTGRE	1.96	1.96	-0.0921	8.04e-01	
nullableColumn_POSTGRE	2.01	1.99	-1.2010	1.46e-01	
preferUNIONALL_POSTGRE	2.00	1.97	-1.8493	9.93e-03	
redundantIndexes_POSTGRE	264.87	12.61	-181.8202	6.34e-01	
selectAll_POSTGRE	2.22	2.23	0.3657	2.58e-01	
sqlQueriesInsideLoop_POSTGRE	5.37	1.99	-91.9668	6.86e-18	9
tooManyIndexes_POSTGRE	5.43	5.36	-1.3439	5.46e-04	
useDedicatedStoredProcedure_POSTGRE	2.52	2.07	-19.4555	6.86e-18	
usingLONGDatatype_POSTGRE	3.13	3.97	23.4586	6.86e-18	
usingOldStyleJoin_POSTGRE	1.94	1.93	-0.5529	4.16e-01	
withoutPrimaryKey_POSTGRE	1.88	1.89	0.5216	3.24e-01	