

| EXAMEN DE ANÁLISIS (1ª PARTE)     |          |
|-----------------------------------|----------|
| 1º Grado en Ingeniería Matemática | Nombre:  |
| Asignatura: ANÁLISIS I            | DNI:     |
| Fecha: 2025-01-14                 | Modelo A |

Duración: 1 hora y 30 minutos.

- 1. (2.5 puntos) Dada la colección de conjuntos  $A_n = \left[1 \frac{2}{n}, 2 + \frac{1}{n}\right)$  con  $n \in \mathbb{N}$ , calcular para cada uno de los conjuntos  $\bigcup_{n=1}^{\infty} A_n$  y  $\bigcap_{n=1}^{\infty} A_n$ :
  - a) Supremo, ínfimo, máximo y mínimo.
  - b) Puntos interiores, puntos exteriores y puntos frontera.
  - c) Determinar si son abiertos o cerrados.

Justificar la respuesta de cada apartado.

- 2. (2.5 puntos) Calcular las derivadas de las siguientes funciones usando la definición de derivada.
  - $a) f(x) = e^x$ .
  - $f(x) = \ln(x)$ .
- 3. (2.5 puntos) Calcular el límite de las siguientes sucesiones.

a) 
$$\left(\sqrt{n^2 + n} - n\right)_{n=1}^{\infty}$$
  
b)  $\left(\frac{(n+1)!}{n^n}\right)_{n=1}^{\infty}$ 

b) 
$$\left(\frac{(n+1)!}{n^n}\right)_{n=1}^{\infty}$$

4. (2.5 puntos) Dar un ejemplo de una función no polinómica que tenga una asíntota vertical x = 2, una asíntota horizontal y=1 y una asíntota oblicua y=2x-1, y demostrarlo.