

CENTRO DE CIENCIAS BASICAS INGENIERIA EN COMPUTACION INTELIGENTE DEPARTAMENTO DE CIENCIAS DE LA COMPUTACION GRAFICACION

DOCENTE: DR. HERMILO SANCHEZ CRUZ
INTEGRANTES:

- Carlos Andrei Murillo Sánchez
- Diego Ivan Ramirez Valenciano
- Carlos Alberto Carreón Vázquez

Examen Parcial 2 / Tarea

02/04/2023

A continuación se presentan cada uno de los ejercicios a realizar de este trabajo

1. Elegir 10 imágenes de objetos binarios de la siguiente pagina: https://dabi.temple.edu/external/shape/MPEG7/dataset.html

Nombre	Imagen
deer-1.bmp	
device0-5.bmp	
device-2-2.bmp	
device7-8.bmp	
device8-1.bmp	

fish-9.bmp	
flatfish-1.bmp	
ray-10.bmp	
sea_snake-9.bmp	
turtle-9.bmp	

2. Calcular el numero de 1-pixeles de los objetos que aparecen en las imágenes.

Nombre	1-pixeles	
deer-1.bmp	158,591	
device0-5.bmp	120,329	
device-2-2.bmp	57,558	
device7-8.bmp	66,016	
device8-1.bmp	88,636	

fish-9.bmp	20,607
flatfish-1.bmp	98,532
ray-10.bmp	87,801
sea_snake-9.bmp	13,049
turtle-9.bmp	27,297

3. Realizar transformaciones de escala para que los objetos tengan (aproximadamente) la misma cantidad de 1-pixeles. Indicar el valor de factor α , de escala, usado en cada caso.

Nombre	Alpha	
deer-1.bmp	0.62129	
device0-5.bmp	0.818854	
device-2-2.bmp	1.7118732	
device7-8.bmp	1.492547	
device8-1.bmp	1.11164	
fish-9.bmp	4.781482	
flatfish-1.bmp	1 (imagen referencia)	
ray-10.bmp	1.122219	
sea_snake-9.bmp	7.550923	
turtle-9.bmp	3.609627	

Se uso la imagen flatfish-1 para tener una referencia de la transformación como ejemplo de si queremos que ambas imágenes tengan la misma cantidad de 1-pixeles.

4. Para cada objeto escalado, calcular el invariante de escala siguiente, antes y después del escalamiento. Con p, q = 0, 1 y 2. Reportar los resultados en una tabla.

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\frac{p+q}{2}+1}}$$

Ejemplo de con la imagen deer-10.bmp

Invariante de escala	Antes del escalado	Después del escalado
(p=0, q=0)	2.4727561005674853e-08	9.891379791099994e-08
(p=0, q=1)	3.7311470602983167e-06	7.4623767501090975e-06
(p=0, q=2)	0.0005629935917407247	0.0005629858314678666
(p=1, q=0)	4.413262808187718e-06	8.825944935254505e-06
(p=1, q=1)	0.000665918185352551	0.0006658578244245334

(p=1, q=2)	0.10048053987642161	0.05023446731197941
(p=2, q=0)	0.0007876591067620089	0.0007875271766456145
(p=2, q=1)	0.11885005399593639	0.05941359665885145
(p=2, q=2)	17.93331050650185	4.482353844569818

5. Por cada objeto binario, obtener gráficos de las celdas (cuadrangulares) de resolución de los 1-pixeles. En este caso usaremos como ejemplo la imagen fish-9.bmp, muchos de los gráficos exitenden demasiado su tamaño, por lo que al visualizarlos se ven incompletos pero el relleno es total ya que recorre cada 1pixel de la imagen que se ponga.

Imagen	n Grafico		
fish-9.bmp			

6. Obtener el contorno de cada uno de los objetos binarios, considerando la vecindad-8. Obtener un grafico por computadora donde se muestren las celdas del contorno.

7. Calcular el centro de masa (xcm,ycm) de cada uno de los objetos binarios. Trasladar la imagen original a una posición diferente y calcular los momentos centrales para p,q = 0,1 y 2. Reportar los resultados en una tabla.

$$\mu_{pq} = \sum_{x=1}^{M} \sum_{y=1}^{N} (x - x_{cm})^{p} (y - y_{cm})^{q}$$

Archiv	Cent	m00	m01	m10	m11	m02	m20
O	ro						
	de						
	mas						
	а						
deer-	(346,	400508	154579747	142954300	4996427217	6850241247	6375391801
1.bmp	368)	10.0	95.0	50.0	375.0	585.0	890.0
device0	(254,	303750	826804146	800382015	2177200833	2608276461	2477477426
-5.bmp	254)	90.0	0.0	0.0	165.0	720.0	250.0
device2	(254,	146772	402704236	388037197	1064636598	1178778404	1099827020
-2.bmp	254)	90.0	5.0	5.0	420.0	805.0	445.0
device7	(253,	168101	459836961	443335962	1212576043	1411731118	1322361079
-8.bmp	253)	10.0	0.0	0.0	605.0	830.0	110.0
device8	(287,	226021	589582491	671755170	1758000382	1778877178	2228021173
-1.bmp	240)	80.0	0.0	0.0	740.0	170.0	170.0
fish-	(169,	474325	349170480	848139945	6185965695	2745255489	1832068902
9.bmp	57)	5.0	.0	.0	0.0	0.0	15.0
flatfish-	(302,	251256	664471834	785612874	1984005808	1907933789	2811894552
1.bmp	244)	60.0	5.0	0.0	425.0	205.0	810.0
ray-	(326,	223892	715781659	752678145	2394548471	2450126332	2764625041
10.bmp	299)	55.0	5.0	0.0	820.0	545.0	140.0
sea_sna	(40,	311533	522388920	147938505	2152832272	1077314998	9023121705.
ke-9	149)	5.0	.0	.0	5.0	50.0	0
turtle-9	(151,	696073	113282092	112487691	1940249673	2024794449	2038009204
	142)	5.0	5.0	0.0	75.0	45.0	80.0

8. Para cada objeto, realizar una rotación, con angulo θ y calcula los tres primeros momentos de Hu, antes y después de la rotación

$$\begin{split} \varphi_1 &= \, \mu_{20} + \mu_{02} \\ \varphi_2 &= (\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2 \\ \varphi_3 &= (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2 \end{split}$$

lmagen	fi1	fi2	fi3
fish-9	638005522	371602920758501392	8979604483839765804506
deer-1	96656695511	7822573716223621827553	1217522720141195353967223613
device0-5	24518494863	508317976061483461721	44734643778285995663148893
device2-2	38537558138	1289118456962077116544	137101952577458505779814586
device7-8	37416777683	1222693570186939478473	134343220530536230641132049
device8-1	52124951668	2308022298007389513524	310150457348407676656784770
flatfish-1	47607086035	1981146847528668505061	262270164744728320210553081

ray-10	90922229406	7141105381878500964880	1155887101127279862956848410
sea_snake-9	1360986374	1728699897802852676	49677130665129329893444
turtle-9	5556970629	26909279101093974793	1242841197684585331101553

9. Calcular los ejes principales de cada uno de los objetos y alinearlos en una misma dirección, por ejemplo el eje Y.

Ejemplo con la imagen deer-1.bmp

Imagen	Eje 1	Eje 2
	[-0.78055908 0.62508201]	[0.62508201 0.78055908]

10. Realizar una superposición entre cada pareja de objetos haciendo coincidir el centro de masa. En una tabla de 10×10 indicar el número de pixeles comunes (Pc) y pixeles no comunes, P+ y P-, respectivamente, entre los 10 objetos

A continuación se muestra el ejemplo de la superposición, en este caso superpondremos cada imagen de las 10 con la imagen ray-10.bmp.

Imagen	Pc	P+	P-
deer-1.bmp	173170	128808	103151
device0-5.bmp	182888	164954	57287
device2-2.bmp	137042	96581	171506
device7-8.bmp	120961	150309	133858
device8-1.bmp	148353	153206	103569
fish-9.bmp	48919	178602	177608
flatfish-1.bmp	173170	128808	103151
ray-10.bmp	223892	0	181237
sea_snake-9.bmp	30918	195330	178881
turtle-9.bmp	69426	154647	181056

11. Con el Algoritmo Húngaro, mover los pixeles *P*+ a los pixeles *P*- y realizar una tabla de las distancias mínimas obtenidas al comparar cada pareja de objetos

El ejemplo se muestra con la pareja de imágenes deer-1.bmp y ray-10.bmp

Imagen	Dist mínima
deer-1 y ray-10	235.10423220350586

12. Analizar cada uno de los resultados y obtener conclusiones. En las conclusiones aclarar si las ecuaciones (1), (2) y (3) son invariantes ante dichas transformaciones y si el método de escalamiento, alineación por ejes principales y aplicación del Algoritmo Húngaro para mover los pixeles, es adecuado para dar una medida de similitud.

En conclusión, las ecuaciones de cálculo de centro de masa de una imagen, cálculo de momentos Hu y cálculo de invariante de escala son invariantes ante ciertas transformaciones de imágenes, como las transformaciones de afinidad, rotación y escala uniforme. Sin embargo, pueden no ser invariantes ante otras transformaciones, como la deformación no uniforme o la escala no uniforme.

Por otro lado, el método de escalado, alineación por ejes principales y aplicación del algoritmo húngaro para mover los píxeles es un enfoque adecuado para medir la similitud entre imágenes. Este método permite la comparación de imágenes que tienen diferencias en la escala, rotación y traslación, y puede producir resultados precisos y confiables en muchos casos.

Sin embargo, es importante tener en cuenta que la medida de similitud obtenida por este método no es perfecta y puede verse afectada por las diferencias en la iluminación, la textura y otros factores. Además, este método puede ser computacionalmente costoso y puede requerir ajustes para diferentes tipos de imágenes y aplicaciones. Por lo tanto, se

deben considerar otros enfoques y técnicas para la comparación de imágenes dependiendo del contexto y los objetivos específicos.