Appl. No. 09/770,675

Doc. Ref.: AK8

⑲ 日本 箇 特 許 庁 (JP)

① 特許出願公開

@ 公開特許公報(A) 平2-131629

⑤int. Cl. 5

識別記号

宁内整理番号

每公開 平成2年(1990)5月21日

H 04 B 7/12

8226-5K

審査請求 未請求 請求項の数 1 (全4頁)

6発明の名称 周波数ダイパーシテイ用送受信装置

②特 願 昭63-286224

②出 願 昭63(1988)11月12日

@発明者百合功

東京都港区芝5丁目33番1号 日本電気株式会社内

②出 願 人 日本電気株式会社

東京都港区芝5丁目33番1号

砂代 理 人 弁理士 鈴木 章夫

明福書

1. 発明の名称

).

周波数ダイバーシティ用送受信装置

2. 特許請求の範囲

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明はマイクロ波帯等で使用する周波数ダイ パーシティ用送受信装置に関し、特に回路構成の 簡略化を図った送受信装置に関する。

〔従来の技術〕

従来、この種の周波数ダイパーシティ送受信装置は、送信系及び受信系の夫々が異なる周波数の 局部発振部を備えた構成となっている。

第2図はその一例を示すブロック図であり、同 図(a)は送信系、同図(b)は受信系を示して いる。図において、送信系は、変調部1で変調さ れた中間周波数!Fの信号をハイブリッド11で 2分岐し、夫々ミキサ2a, 2bに送る。そして、 各局部発振部3 a , 3 b から出力される周波数 Floi, Flos の信号により、IF信号はミキサ 2 a. 2 bで周波数変換される。パンドパスフィ ルタ4 a′, 4 b′ は夫々中心周波数が (Flot + | F), (Fior + | F) となっており、ミキ サ2a、2bで周波数変換された周波数成分の内、 希望の周波数成分のみが通過される。パンドパス フィルタ4a′、4b′を通った送信周波数F。 = F.o. + 1 F, Fa = F.o. + 1 Fは夫々電力 増幅部5に送られ、所要の電力まで増幅した後、 この送信系から出力されアンテナ装置に送出され δ.

(発明が解決しようとする課題)

上述した従来の周波数ダイパーシティ用送受信装置は、送信系においては送信周波数 F. . F. を異なる周波数の局容を振部3 a . 3 b とミキサ2 a . 2 b を用いて作る必要がある。また、受信系においては、受信周波数 f. , f. を異なる周

上述した構成では、送信系は周波数変換部を1つの局部発振部と1つのミキサで構成でき、受信系は周波数変換部を1つの局部発振部と2つのミキサで構成でき、夫々ミキサや局部発振部の数を削減することが可能となる。

(実施例)

次に、本発明を図面を参照して説明する。

第1図は本発明の一実施例のプロック図であり、 同図 (a) は送信系。同図 (b) は受信系を夫々 示している。

図示のように、送信系は変調部1に対して1つのミキサ2と局部発振部3(周波数 Fie)を接続し、かつミキサ4の出力に対して異なる周波数(Fie+1F)、(Fie-1F)の各パンドパスフィルタ4 à、4 b を接続し、更に電力増幅部5を夫々接続している。

この送信系では、変調部1で変調された中間周波数1Fの信号はミキサ2に送られ、局部発掘器3から出力される周波数Ftoの信号により1F信号はミキサ2で周波数変換される。そして、バン

波数周波数の局部発展部8 a. 8 b とミキサ 7 a. 7 b を用いて作る必要がある。このため、送信系及び受信系に多数の局部発展部とミキサが必要となり、四路構成点数が多くなり、かつ回路が複雑になるという問題が生じている。

本発明は局部発援部やミキサを低減して回路構成を簡略化した送受信装置を提供することを目的 とする。

(課題を解決するための手段)

本発明の周波数ダイバーシティ用送受信装置は、送ぐ、系は中間周波数!Fに対する周波数変換部を周波数下、の1つの局部発振部と1つのミキサで構成して2つの異なる周波数F、(=Fio+|F)F』(=Fio-|F)の送信周波数を作るように構成し、受信系は受信周波数「、「」に対する周波数変換部を周波数「、「」に対する2)の1つの局部発振部と2つのミキサで構成して中間周波数「Fの信号を作るように構成している。

〔作用〕

ドパスフィルタ 4 a、 4 b により夫々の周波数成分(F to + 1 F)、(F to - 1 F)のみが通過されて夫々送信周波数 F t - F to + 1 F 、 F t - F to - 1 F の信号となり、電力増幅部 5 において所要の電力まで増幅されてアンテナ装置に出力される。

一方、受信系は、2つのアンテナ装置に夫々低雑音増幅器6を接続し、更にミキサ7a,7bと1つの局部発援部8(周波数 fie)を接続している。各ミキサ7a,7bには夫々復調部9を接続し、各復調部9の出力をベースバンド合成部10で合成するようにしている。

この受信系では、アンテナ装置から受信された周波数 「・・「・の信号は、夫々低雑音増幅器 6 で低雑音増幅され、ミキサ 7a.7bに夫々送られる。局部発振部 8 の出力周波数 「・oは、ミキサ 7a.7bの双方に送られており、前記受信信号は夫々ミキサ 7a.7bにおいて周波数変換される。ここで、局部発援周波数 「・oを(「・・+「・)/ 2 に設定すれば、 | 「・ ー「・ | = 2 ・ | 下の関係があることから、ミキサ 7a.7bで周波数

変換された受信信号の周波数は夫々1 Fとなる。 この中間周波数1 Fは夫々復調部9で復調され、 ペースパンド合成部10においてペースパンド合成され、婚局装置に出力される。

したがって、この構成によれば、送信周波数下」、 F』、受信周波数(」、「』、送信局部発援周波 数下」。、受信局部免援周波数(」。、中間周波数 I P を上述した関係となるように設定すれば、周波数 ダイバーシティ送受信が可能となり、かつ送信系 ではミキサと局部発援部を低減し、受信系では局 部発援部を低減して、回路構成の簡略化を達成す ることができる。

(発明の効果)

以上説明したように本発明は、中間周波数1F. 送信系局部発振部の周波数F.c. 送信周波数F.c. F.c. 受信周波数f.c. 人で受信系局部発振部の周波数f.c.を所定の関係となるように設定しているので、送信系は周波数変換部を1つの局部発振部と1つのミキサで構成でき、受信系は周波数変換部を1つの局部発振部と2つのミキサで 構成でき、夫々においてミキサや局部発援部の数 を従来構成に比較して削減することができ回路構 成の簡略化が実現できる。

4. 図面の簡単な説明

第1図は本発明の一実施例のブロック図であり、 同図(a)は送信系。同図(b)は受信系を夫々 示す図、第2図は従来の一例を示すブロック図で あり、同図(a)は送信系。同図(b)は受信系 を夫々示す図である。

1 … 変調部、2,2a,2b…ミキサ、3,3a,3b…局部発援部、4a,4a′,4b,4b′ … バンドパスフィルタ、5 … 電力増幅部、6 … 低雑音増幅部、7a,7b…ミキサ、8,8a,8b…局部発援部、9 … 復調器、10 … ベースバンド合成部、11 … ハイブリッド。

代理人 弁理士 鈴 木 :

第 1 図

(b)受信系

