Caratterizzazione di una molla e studio del moto armonico analisi dei dati

Ali Matteo, Broggi Diana, Cantarini Giulia

Metodo statico

Per stabilire la relazione tra massa appesa e allungamento della molla abbiamo utilizzato i grafici fornitici.

abbiamo ricavato l'allungamento relativo a ogni massa eseguendo la differenza tra l'altezza di ogni gradino ed il primo; di sotto riportiamo i risultati di questi calcoli ed i relativi grafici di $x_{0(m)}$.

Molla1 - allungamento

X_0 (m)	Masse (Kg)
0.0000	0.000
0.0060	0.020
0.0121	0.040
0.0182	0.060
0.0304	0.100
0.0625	0.200
0.0937	0.300
0.1255	0.400
0.1556	0.500
0.2172	0.700

interpolazione dei dati sull'allungamento della Molla1

Molla2 - allungamento

X_0 (m)	Masse (Kg)
0.0000	0.000
0.0062	0.020
0.0123	0.040
0.0183	0.060
0.0304	0.100
0.0608	0.200
0.0912	0.300
0.1226	0.400
0.1541	0.500
0.2140	0.700

interpolazione dei dati sull'allungamento della Molla2

Molla3 - allungamento

X_0 (m)	Masse (Kg)
0.0000	0.000
0.0119	0.020
0.0235	0.040
0.0352	0.060
0.0585	0.100
0.0713	0.120
0.0821	0.140
0.0947	0.160
0.1185	0.200
0.1751	0.300

interpolazione dei dati sull'allungamento della Molla3

Parallelo 1-2 - allungamento

X_0 (m)	Masse (Kg)
0.0000	0.000
0.0062	0.040
0.0093	0.060
0.0153	0.100
0.0305	0.200
0.0457	0.300
0.0612	0.400
0.0767	0.500
0.1074	0.700
0.1389	0.900

interpolazione dei dati sull'allungamento delle molle 1-2 in parallelo

Serie 1-3 - allungamento

-	
X_0 (m)	Masse (Kg)
0.0000	0.000
0.0183	0.020
0.0353	0.040
0.0536	0.060
0.0894	0.100
0.1047	0.120
0.1255	0.140
0.1278	0.160

interpolazione dei dati sull'allungamento delle molle 1-3 in serie

da $mg=kx_0$ abbiamo ricavato le k tramite i coefficienti angolari risultati dalle interpolazioni dei dati sopra riportati. Il calcolo del coefficiente angolare c.a. è stato svolto dal programma Capstone.

 $\sigma_{c.a.}$ è stato corretto stimando a posteriori σ_y attraverso la formula:

$$\sigma_y = \sqrt{\frac{\sum (y_i - A - Bx_i)^2}{N - 2}}$$

così facendo abbiamo ottenuto un'incertezza sul coefficiente più considerevole.

$$k = \frac{g}{c.a.} \pm \sqrt{\left(\frac{\partial k}{\partial g}\sigma_g\right)^2 + \left(\frac{\partial k}{\partial c.a.}\sigma_{c.a.}\right)^2}$$

molla	k - metodo statico (N/m)	k - metodo dinamico (N/m)
1	31.4 ± 0.1	
2	32.06 ± 0.08	
3	16.74 ± 0.07	
serie 1-3	11.68 ± 0.42	
parallelo 1-2	63.70 ± 0.14	

Metodo dinamico

Tramite i grafici della posizione in funzione del tempo è possibile ricavare una stima del periodo di oscillazione di ogni molla: abbiamo calcolato la differenza di

tempo tra il primo e l'ultimo massimo della funzione posizione e diviso per il numero n di periodi trascorsi. Riportiamo anche il risultato dell'interpolazione lineare effettuata da Capstone sui dati del periodo in funzione della massa appesa per ogni molla.

Molla1 - periodo

n	$t_f - t_i$	T (s)	Masse (Kg)
14	4.85-0.10	0.3393	0.090
12	4.710-0.240	0.3725	0.110
12	5.24-0.38	0.4050	0.130
11	4.93-0.18	0.4318	0.150
9	4.79-0.410	0.4867	0.190
6	4.15-0.55	0.6000	0.290
7	5.08-0.18	0.7000	0.390
6	5.26-0.55	0.7850	0.490
5	4.97-0.73	0.8480	0.590

interpolazione dei dati sul periodo della Molla1

Molla2 - periodo

n	$t_f - t_i$	T(s)	Masse (Kg)
14	4.73-0.02	0.3364	0.090
12	4.56-0.10	0.3717	0.110
11	4.75-0.33	0.4018	0.130
11	4.81-0.07	0.4309	0.150
9	4.73-0.37	0.4844	0.190
7	4.57-0.420	0.5929	0.290
7	5.010-5.210	0.6857	0.390
6	5.12-0.520	0.7667	0.490
5	4.92-0.74	0.8360	0.590

interpolazione dei dati sul periodo della Molla2

Molla3 - periodo

n	$t_f - t_i$	T (s)	Masse (Kg)
10	4.83-0.15	0.4680	0.090
8	4.44-0.310	0.5162	0.110
8	4.6-0.16	0.5550	0.130
7	4.44-0.240	0.6000	0.150
7	4.88-0.200	0.6686	0.190
6	4.74-0.5	0.7067	0.210
6	4.54-0.12	0.7367	0.230
6	4.970-0.370	0.7667	0.250
5	4.790-0.660	0.8260	0.290
5	4.710-0.010	0.9400	0.390

interpolazione dei dati sul periodo della Molla3

Parallelo 1-2 - periodo

n	$t_f - t_i$	T (s)	Masse (Kg)
5	4.9-0.76	0.8280	1.090
6	5.12-0.38	0.7900	0.990
6	4.76-0.21	0.7583	0.890
7	5.00-0.030	0.7100	0.790
7	5.19 - 0.55	0.6629	0.690
8	4.95-0	0.6188	0.590
9	5.34-0.27	0.5633	0.490
9	4.89-0.31	0.5089	0.390
10	4.77-0.31	0.4460	0.290
12	4.67-0.23	0.3700	0.190
17	4.91-0.18	0.2782	0.090

interpolazione dei dati sul periodo delle molle 1-2 in parallelo

Serie 1-3 - periodo

n	$t_f - t_i$	T(s)	Masse (Kg)
8	4.72-0.020	0.5875	0.090
7	4.96-0.46	0.6429	0.110
6	4.48-0.300	0.6967	0.130
6	4.54-0.070	0.7450	0.150
6	5.200-0.180	0.8367	0.190
4	4.100-0.620	0.8700	0.210

interpolazione dei dati sul periodo delle molle 1-3 in serie

da $T=2\pi\sqrt{\frac{M}{k}}$ abbiamo ricavato k, il coefficiente $\frac{4\pi^2}{k}$ è noto dall'interpolazione dei dati riportati nei grafici di $T^2_{(M)}$.

$$k = \frac{4\pi^2}{c.a.} \pm \frac{\partial k}{\partial c.a.} \sigma_{c.a.}$$

molla	k - metodo statico (N/m)	k - metodo dinamico (N/m)
1	31.44 ± 0.1	32.1 ± 0.3
2	32.06 ± 0.08	33.5 ± 0.2
3	16.74 ± 0.07	17.6 ± 0.2
serie 1-3	11.68 ± 0.42	11.3 ± 0.1
parallelo 1-2	63.70 ± 0.14	64.5 ± 0.4

confronti finali

Per confrontare i risultati ottenuti mediante i due metodi abbiamo eseguito il test t
 e calcolato la probabilità che la discrepanza rilevata fosse dovuta ad errori casuali. Per una probabilità < 0.3% scartiamo l'ipotesi.

$$t = \frac{|x_1 - x_2|}{\sqrt{(\sigma_1)^2 + (\sigma_2)^2}}$$

molla	t	probabilità
1	2.09	3.6 %
2	6.7	<0.3 %
3	4.06	< 0.3 %
serie 1-3	0.88	36.8 %
parallelo 1-2	1.89	5.7 %

I valori attesi per le costanti elastiche di sistemi di molle in serie ed in parallelo sono:

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2}$$
 per le molle in serie $k_{eq} = k_1 + k_2$ per le molle in parallelo

sistema	valore atteso (N/m)	valore osservato staticamente (N/m)	t	probabilità
serie 1-3	10.92 ± 0.15	11.68 ± 0.42	1.7	8.9 %
parallelo 1-2	63.5 ± 0.16	63.70 ± 0.14	0.94	37%