

Vectors

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Stephen Boyd Lieven Vandenberghe

VECTOR

> Vector

➤ Norm and distance

> Linear independence

> Applications

Vector

Notation

Examples

Addition and scalar multiplication

Inner product

Complexity

Vectors

- A vector is an ordered list of numbers
- Written as $\begin{bmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{bmatrix}$ or $\begin{pmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{pmatrix}$

or
$$(-1.1, 0, 3.6, -7.2)$$

- Numbers in the list are the elements (entries, coefficients, components)
- Number of elements is the size (dimension, length) of the vector
- Vector above has dimension 4; its third entry is 3.6
- Vector of size n is called an n-vector
- Numbers are called scalars

Vectors via symbols

- ▶ we'll use symbols to denote vectors, e.g., a, X, p, β , E^{aut}
- ightharpoonup other conventions: g, \tilde{a}
- \rightarrow ith element of *n*-vector *a* is denoted a_i
- ► if a is vector above, $a_3 = 3.6$
- ► in a_i , i is the *index*
- ► for an *n*-vector, indexes run from i = 1 to i = n
- ightharpoonup warning: sometimes a_i refers to the *i*th vector in a list of vectors
- ► two vectors a and b of the same size are equal if $a_i = b_i$ for all i
- we overload = and write this as a = b

Block vectors

- ► Suppose b, c, and d are vectors with sizes m, n, p
- ► The stacked vector or concatenation (of b, c, and d) is

$$a = \left[\begin{array}{c} b \\ c \\ d \end{array} \right]$$

also called a *block vector*, with (block) entries b, c, d

-a has size m + n + p

$$a = (b_1, b_2, \dots, b_m, c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_p)$$

Zero, ones, and unit vectors

- ► *n*-vector with all entries 0 is denoted 0_n or just 0
- ► *n*-vector with all entries 1 is denoted $\mathbf{1}_n$ or just $\mathbf{1}$
- ►a *unit vector* has one entry 1 and all others 0
- ightharpoonup denoted e_i where i is entry that is 1
- unit vectors of length 3:

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Sparsity

- ►a vector is *sparse* if many of its entries are 0
- can be stored and manipulated efficiently on a computer
- $-\mathbf{nnz}(x)$ is number of entries that are nonzero
- examples: zero vectors, unit vectors

Location or displacement in 2-D or 3-D

2-vector (x_1, x_2) can represent a location or a displacement in 2-D

More examples

- ► color: (R,G,B)
- ► quantities of *n* different commodities (or resources), *e.g.*, bill of materials
- portfolio: entries give shares (or \$ value or fraction) held in each of n assets, with negative meaning short positions
- ightharpoonup cash flow: x_i is payment in period i to us
- ► audio: x_i is the acoustic pressure at sample time i (sample times are spaced 1/44100 seconds apart)
- ► features: x_i is the value of *i*th *feature* or *attribute* of an entity
- customer purchase: x_i is the total \$ purchase of product i by a customer over some period
- ightharpoonup word count: x_i is the number of times word i appears in a document

Word count vectors

► a short document:

Word count vectors are used **in** computer based **document** analysis. Each entry of the **word** count vector is the **number** of times the associated dictionary **word** appears **in** the **document**.

a small dictionary (left) and word count vector (right)

word	[3
in	2
number	1
horse	0
the	4
document	2

dictionaries used in practice are much larger

Vector addition

- ► *n*-vectors a and b can be added, with sum denoted a + b
- ► to get sum, add corresponding entries:

$$\begin{bmatrix} 0 \\ 7 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 9 \\ 3 \end{bmatrix}$$

subtraction is similar

Properties of vector addition

- **commutative**: a + b = b + a
- ► associative: (a + b) + c = a + (b + c)(so we can write both as a + b + c)

$$-a + 0 = 0 + a = a$$

$$-a - a = 0$$

these are easy and boring to verify

Adding displacements

if 3-vectors a and b are displacements, a + b is the sum displacement

Displacement from one point to another

displacement from point q to point p is p - q

Scalar-vector multiplication

ightharpoonup scalar β and n-vector a can be multiplied

$$\beta a = (\beta a_1, \ldots, \beta a_n)$$

- ightharpoonup also denoted $a\beta$
- example:

$$(-2)\begin{bmatrix} 1\\9\\6 \end{bmatrix} = \begin{bmatrix} -2\\-18\\-12 \end{bmatrix}$$

Properties of scalar-vector multiplication

- ► associative: $(\beta \gamma)a = \beta(\gamma a)$
- ► left distributive: $(\beta + \gamma)a = \beta a + \gamma a$
- ► right distributive: $\beta(a + b) = \beta a + \beta b$

Linear combinations

▶ for vectors a_1, \ldots, a_m and scalars β_1, \ldots, β_m ,

$$\beta_1 a_1 + \cdots + \beta_m a_m$$

is a *linear combination* of the vectors

- $\triangleright \beta_1, \ldots, \beta_m$ are the *coefficients*
- a very important concept
- a simple identity: for any *n*-vector *b*,

$$b = b_1 e_1 + \cdots + b_n e_n$$

two vectors a_1 and a_2 , and linear combination $b = 0.75a_1 + 1.5a_2$

Replicating a cash flow

- $c_1 = (1, -1.1, 0)$ is a \$1 loan from period 1 to 2 with 10% interest
- $c_2 = (0, 1, -1.1)$ is a \$1 loan from period 2 to 3 with 10% interest
- linear combination

$$d = c_1 + 1.1c_2 = (1,0,-1.21)$$

is a two period loan with 10% compounded interest rate

we have replicated a two period loan from two one period loans

Inner product

inner product (or dot product) of n-vectors a and b is

$$a^T b = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

► other notation used: (a,b), (a|b), (a,b), $a \cdot b$, $\langle a,b \rangle$

example:
$$\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}^T \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} = (-1)(1) + (2)(0) + (2)(-3) = -7$$

Properties of inner product

$$-a^Tb=b^Ta$$

$$-(ka)^Tb = k(a^Tb)$$

$$(a+b)^T c = a^T c + b^T c$$

can combine these to get, for example,

$$(a + b)^T(c + d) = a^Tc + a^Td + b^Tc + b^Td$$

General examples

- $-e_i^T a = a_i$ (picks out *i*th entry)
- ► $\mathbf{1}^T a = a_1 + \cdots + a_n$ (sum of entries)
- $a^{T}a = a_1^2 + \cdots + a_n^2$ (sum of squares of entries)

- w is weight vector, f is feature vector; $w^T f$ is score
- ightharpoonup p is vector of quantities; p^Tq is total cost
- ightharpoonup c is cash flow, d is discount vector (with interest rate r):

$$d = (1, 1/(1+r), \dots, 1/(1+r)^{n-1})$$

 d^Tc is net present value (NPV) of cash flow

• s gives portfolio holdings (in shares), p gives asset prices; p^Ts is total portfolio value

Regression model

regression model is (the affine function of x)

$$\hat{y} = x^T \beta + v$$

- \rightarrow x is a feature vector; its elements x_i are called *regressors*
- ► n-vector β is the weight vector
- scalar v is the offset
- ► scalar \hat{y} is the *prediction* (of some actual outcome or *dependent variable*, denoted y)

- \rightarrow y is selling price of house in \$1000 (in some location, over some period)
- regressor is

$$x = (house area, # bedrooms)$$

(house area in 1000 sq.ft.)

regression model weight vector and offset are

$$\beta = (148.73, -18.85), \quad v = 54.40$$

• we'll see later how to guess β and ν from sales data

House	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

2. Norm and distance

Outline

<u>Norm</u>

Distance

Standard deviation

<u>Angle</u>

Norm

► the *Euclidean norm* (or just *norm*) of an *n*-vector *x* is

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

- used to measure the size of a vector
- ightharpoonup reduces to absolute value for n=1

Properties

for any *n*-vectors x and y, and any scalar β

- ► homogeneity: $\|\beta x\| = \|\beta\| \|x\|$
- ► triangle inequality: $||x + y|| \le ||x|| + ||y||$
- ► nonnegativity: $||x|| \ge 0$
- ► definiteness: ||x|| = 0 only if x = 0

RMS value

mean-square value of n-vector x is

$$\frac{x_1^2 + \dots + x_n^2}{n} = \frac{\|x\|^2}{n}$$

root-mean-square value (RMS value) is

rms(x) =
$$\sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} = \frac{||x||}{\sqrt{n}}$$

- ► $\mathbf{rms}(x)$ gives 'typical' value of $|x_i|$
- e.g., rms(1) = 1 (independent of n)
- RMS value useful for comparing sizes of vectors of different lengths

Norm of block vectors

- ightharpoonup suppose a,b,c are vectors
- so we have $||(a,b,c)|| = \sqrt{||a||^2 + ||b||^2 + ||c||^2} = ||(||a||, ||b||, ||c||)||$

Chebyshev inequality

- ▶ suppose that k of the numbers $|x_1|, \ldots, |x_n|$ are $\geq a$
- ▶ then k of the numbers x_1^2, \ldots, x_n^2 are $\geq a^2$
- so $||x||^2 = x_1^2 + \dots + x_n^2 \ge ka^2$
- ▶ so we have $k \le ||x||^2/a^2$
- ▶ number of x_i with $|x_i| \ge a$ is no more than $||x||^2/a^2$
- this is the Chebyshev inequality
- in terms of RMS value:

fraction of entries with
$$|x_i| \ge a$$
 is no more than $\left(\frac{\mathbf{rms}(x)}{a}\right)^2$

• example: no more than 4% of entries can satisfy $|x_i| \ge 5 \text{ rms}(x)$

Distance

► (Euclidean) *distance* between *n*-vectors *a* and *b* is

$$\mathbf{dist}(a,b) = \|a - b\|$$

ightharpoonup agrees with ordinary distance for n = 1,2,3

► $\mathbf{rms}(a - b)$ is the *RMS deviation* between a and b

Triangle inequality

- ► triangle with vertices at positions *a*,*b*,*c*
- edge lengths are ||a b||, ||b c||, ||a c||
- by triangle inequality

$$||a - c|| = ||(a - b) + (b - c)|| \le ||a - b|| + ||b - c||$$

i.e., third edge length is no longer than sum of other two

Feature distance and nearest neighbors

- ▶ if x and y are feature vectors for two entities, ||x y|| is the *feature distance*
- ightharpoonup if z_1, \ldots, z_m is a list of vectors, z_i is the *nearest neighbor* of x if

$$||x - z_j|| \le ||x - z_i||, i = 1, ..., m$$

these simple ideas are very widely used

Document dissimilarity

- 5 Wikipedia articles: 'Veterans Day', 'Memorial Day', 'Academy Awards', 'Golden Globe Awards', 'Super Bowl'
- word count histograms, dictionary of 4423 words
- pairwise distances shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	0.095	0.130	0.153	0.170
Memorial Day	0.095	0	0.122	0.147	0.164
Academy A.	0.130	0.122	0	0.108	0.164
Golden Globe A.	0.153	0.147	0.108	0	0.181
Super Bowl	0.170	0.164	0.164	0.181	0

Standard deviation

- for *n*-vector x, $\mathbf{avg}(x) = \mathbf{1}^T x/n$
- de-meaned vector is $\tilde{x} = x \mathbf{avg}(x)\mathbf{1}$ (so $\mathbf{avg}(\tilde{x}) = 0$)
- standard deviation of x is

$$\mathbf{std}(x) = \mathbf{rms}(\tilde{x}) = \frac{\|x - (\mathbf{1}^T x/n)\mathbf{1}\|}{\sqrt{n}}$$

- ▶ $\mathbf{std}(x)$ gives 'typical' amount x_i vary from $\mathbf{avg}(x)$
- $\mathbf{std}(x) = 0$ only if $x = \alpha \mathbf{1}$ for some α
- greek letters μ , σ commonly used for mean, standard deviation
- a basic formula:

$$rms(x)^2 = avg(x)^2 + std(x)^2$$

Mean return and risk

- x is time series of returns (say, in %) on some investment or asset over some period
- \mathbf{v} \mathbf{v} \mathbf{g} \mathbf{v} \mathbf{g} \mathbf{g}
- $\mathbf{std}(x)$ measures how variable the return is over the period, and is called the risk
- multiple investments (with different return time series) are often compared in terms of return and risk
- often plotted on a risk-return plot

Risk-return example

Chebyshev inequality for standard deviation

- \mathbf{x} is an *n*-vector with mean $\mathbf{avg}(x)$, standard deviation $\mathbf{std}(x)$
- rough idea: most entries of x are not too far from the mean
- by Chebyshev inequality, fraction of entries of x with

$$|x_i - \mathbf{avg}(x)| \ge \alpha \ \mathbf{std}(x)$$

is no more than $1/\alpha^2$ (for $\alpha > 1$)

► for return time series with mean 8% and standard deviation 3%, loss $(x_i \le 0)$ can occur in no more than $(3/8)^2 = 14.1\%$ of periods

Cauchy–Schwarz inequality

- for two *n*-vectors a and b, $|a^Tb| \le ||a|| ||b||$
- written out,

$$|a_1b_1 + \dots + a_nb_n| \le (a_1^2 + \dots + a_n^2)^{1/2} (b_1^2 + \dots + b_n^2)^{1/2}$$

now we can show triangle inequality:

$$||a + b||^{2} = ||a||^{2} + 2a^{T}b + ||b||^{2}$$

$$\leq ||a||^{2} + 2||a|| ||b|| + ||b||^{2}$$

$$= (||a|| + ||b||)^{2}$$

Derivation of Cauchy–Schwarz inequality

- ▶ it's clearly true if either a or b is 0
- ▶ so assume $\alpha = ||a||$ and $\beta = ||b||$ are nonzero
- we have

$$0 \leq \|\beta a - \alpha b\|^{2}$$

$$= \|\beta a\|^{2} - 2(\beta a)^{T}(\alpha b) + \|\alpha b\|^{2}$$

$$= \beta^{2} \|a\|^{2} - 2\beta \alpha (a^{T}b) + \alpha^{2} \|b\|^{2}$$

$$= 2\|a\|^{2} \|b\|^{2} - 2\|a\| \|b\| (a^{T}b)$$

- divide by $2||a|| \, ||b||$ to get $a^T b \le ||a|| \, ||b||$
- ▶ apply to -a, b to get other half of Cauchy–Schwarz inequality

Angle

angle between two nonzero vectors a, b defined as

$$\angle(a,b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

 \triangleright $\angle(a,b)$ is the number in $[0,\pi]$ that satisfies

$$a^{T}b = ||a|| \, ||b|| \cos(\angle(a,b))$$

coincides with ordinary angle between vectors in 2-D and 3-D

Classification of angles

$$\theta = \angle(a,b)$$

- $\theta = \pi/2 = 90^{\circ}$: a and b are orthogonal, written $a \perp b$ ($a^{T}b = 0$)
- ullet $\theta = 0$: a and b are aligned ($a^Tb = ||a|| ||b||)$
- $\theta = \pi = 180^{\circ}$: a and b are anti-aligned ($a^Tb = -\|a\| \|b\|$)
- $\theta \le \pi/2 = 90^\circ$: a and b make an acute angle ($a^Tb \ge 0$)
- $\theta \ge \pi/2 = 90^\circ$: a and b make an obtuse angle ($a^Tb \le 0$)

Spherical distance

if a, b are on sphere of radius R, distance along the sphere is $R \angle (a,b)$

Document dissimilarity by angles

- measure dissimilarity by angle of word count histogram vectors
- pairwise angles (in degrees) for 5 Wikipedia pages shown below

	Veterans Memorial Academy Golden Globe Super Bowl					
	Day	Day	Awards	Awards		
Veterans Day	0	60.6	85.7	87.0	87.7	
Memorial Day	60.6	0	85.6	87.5	87.5	
Academy A.	85.7	85.6	0	58.7	85.7	
Golden Globe A	. 87.0	87.5	58.7	0	86.0	
Super Bowl	87.7	87.5	86.1	86.0	0	

Correlation coefficient

vectors a and b, and de-meaned vectors

$$\tilde{a} = a - \operatorname{avg}(a)\mathbf{1}, \quad \tilde{b} = b - \operatorname{avg}(b)\mathbf{1}$$

► correlation coefficient (between a and b, with $\tilde{a} \neq 0$, $\tilde{b} \neq 0$)

$$\rho = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}$$

- $\rho = \cos \angle (\tilde{a}, \tilde{b})$
 - $\rho = 0$: a and b are uncorrelated
 - $\rho > 0.8$ (or so): a and b are highly correlated
 - ρ < -0.8 (or so): a and b are highly anti-correlated
- very roughly: highly correlated means a_i and b_i are typically both above (below) their means together

Examples

$$\rho = 97\%$$

$$\rho = -99\%$$

$$\rho = 0.4\%$$

Examples

- highly correlated vectors:
 - rainfall time series at nearby locations
 - daily returns of similar companies in same industry
 - word count vectors of closely related documents
 (e.g., same author, topic, ...)
 - sales of shoes and socks (at different locations or periods)
- approximately uncorrelated vectors
 - unrelated vectors
 - audio signals (even different tracks in multi-track recording)
- (somewhat) negatively correlated vectors
 - daily temperatures in Palo Alto and Melbourne

Applications Clustering

Outline

Clustering

<u>Algorithm</u>

Examples

Applications

Clustering

- ► given N n-vectors x_1, \ldots, x_N
- ► goal: partition (divide, cluster) into *k* groups
- want vectors in the same group to be close to one another

Example settings

- topic discovery and document classification
 - x_i is word count histogram for document i
- patient clustering
 - x_i are patient attributes, test results, symptoms
- customer market segmentation
 - x_i is purchase history and other attributes of customer i
- color compression of images
 - x_i are RGB pixel values
- financial sectors
 - x_i are n-vectors of financial attributes of company i

Clustering objective

- ► $G_j \subset \{1, ..., N\}$ is group j, for j = 1, ..., k
- $ightharpoonup c_i$ is group that x_i is in: $i \in G_{c_i}$
- group *representatives*: n-vectors z_1, \ldots, z_k
- clustering objective is

$$J^{\text{clust}} = \frac{1}{N} \sum_{i=1}^{N} \|x_i - z_i\|_{F}$$

mean square distance from vectors to associated representative

- J^{clust} small means good clustering
- ightharpoonup goal: choose clustering c_i and representatives z_i to minimize J^{clust}

Outline

Clustering

<u>Algorithm</u>

Examples

Applications

Partitioning the vectors given the representatives

- suppose representatives z_1, \ldots, z_k are given
- ▶ how do we assign the vectors to groups, *i.e.*, choose c_1, \ldots, c_N ?

- $ightharpoonup c_i$ only appears in term $||x_i z_{c_i}||^2$ in J^{clust}
- ► to minimize over c_i , choose c_i so $||x_i z_{c_i}||^2 = \min_j ||x_i z_j||^2$
- ► i.e., assign each vector to its nearest representative

Choosing representatives given the partition

- given the partition G_1, \ldots, G_k , how do we choose representatives z_1, \ldots, z_k to minimize J^{clust} ?
- ► J^{clust} splits into a sum of k sums, one for each z_i :

$$J^{\mathrm{clust}} = J_1 + \cdots + J_k, \qquad J_j = (1/N) \sum_{i \in G_j}^{\mathsf{X}} \|x_i - y_i\|_{L^2(G_j)}$$

- so we choose z_j to minimize mean square distance to the points in its partition
- this is the mean (or average or centroid) of the points in the partition:

$$z_j = (1/|G_j|) X_i$$

$$i \in G_j$$

k-means algorithm

- alternate between updating the partition, then the representatives
- ► a famous algorithm called *k*-means
- ightharpoonup objective $J^{
 m clust}$ decreases in each step

```
given x_1, \ldots, x_N \in \mathbf{R}^n and z_1, \ldots, z_k \in \mathbf{R}^n
```

repeat

Update partition: assign i to G_j , $j = \operatorname{argmin}_{j^j} \|x_i - z_{j^j}\|^2$ Update centroids: $z_j = \frac{1}{|G_j|} |_{i \in G_j} x_i$

until z_1, \ldots, z_k stop changing

Convergence of *k*-means algorithm

- ► J^{clust} goes down in each step, until the z_i 's stop changing
- but (in general) the k-means algorithm does not find the partition that minimizes $J^{\rm clust}$
- ightharpoonup k-means is a *heuristic*: it is not guaranteed to find the smallest possible value of $J^{\rm clust}$
- the final partition (and its value of $J^{
 m clust}$) can depend on the initial representatives
- common approach:
 - run k-means 10 times, with different (often random) initial representatives
 - take as final partition the one with the smallest value of $J^{
 m clust}$

Data

Final clustering

Convergence

Outline

Clustering

<u>Algorithm</u>

Examples

Applications

Handwritten digit image set

- MNIST images of handwritten digits (via Yann Lecun)
- ► $N = 60,000 \ 28 \times 28$ images, represented as 784-vectors x_i
- 25 examples shown below

k-means image clustering

- k = 20, run 20 times with different initial assignments
- convergence shown below (including best and worst)

Group representatives, best clustering

Topic discovery

- ► N = 500 Wikipedia articles, word count histograms with n = 4423
- k = 9, run 20 times with different initial assignments
- convergence shown below (including best and worst)

Topics discovered (clusters 1–3)

words with largest representative coefficients

Cluster 1		Cluster 2	Cluster 2		
Word	d Coef.	Word	d Coef.	Word	Coef.
fight	0.038	holiday	0.012	united	0.004
win	0.022	celebrate	0.009	family	0.003
even	nt 0.019	festival	0.007	party	0.003
champion	0.015	celebration	า 0.007	president	0.003
fighter	0.015	calendar	0.006	government	0.003

- titles of articles closest to cluster representative
 - 1. "Floyd Mayweather, Jr", "Kimbo Slice", "Ronda Rousey", "José Aldo", "Joe Frazier", "Wladimir Klitschko", "Saul Álvarez", "Gennady Golovkin", "Nate Diaz", . . .
 - 2. "Halloween", "Guy Fawkes Night" "Diwali", "Hanukkah", "Groundhog Day", "Rosh Hashanah", "Yom Kippur", "Seventh-day Adventist Church", "Remembrance Day", ...
 - 3. "Mahatma Gandhi", "Sigmund Freud", "Carly Fiorina", "Frederick Douglass", "Marco Rubio", "Christopher Columbus", "Fidel Castro", "Jim Webb", . . .

Topics discovered (clusters 4–6)

words with largest representative coefficients

Cluster 4		CI	Cluster 5		Cluster 6	
Word	Coef.	Word	Coef.	Word	Coef.	
album	0.031	game	0.023	series	0.029	
release	0.016	season	0.020	season	0.027	
song	0.015	team	0.018	episode	0.013	
music	0.014	win	0.017	character	0.011	
single	0.011	player	0.014	film	0.008	

- titles of articles closest to cluster representative
 - 4. "David Bowie", "Kanye West" "Celine Dion", "Kesha", "Ariana Grande", "Adele", "Gwen Stefani", "Anti (album)", "Dolly Parton", "Sia Furler", . . .
 - 5. "Kobe Bryant", "Lamar Odom", "Johan Cruyff", "Yogi Berra", "José Mourinho", "Halo 5: Guardians", "Tom Brady", "Eli Manning", "Stephen Curry", "Carolina Panthers", ...
 - 6. "The X-Files", "Game of Thrones", "House of Cards (U.S. TV series)", "Daredevil (TV series)", "Supergirl (U.S. TV series)", "American Horror Story", ...

Topics discovered (clusters 7–9)

words with largest representative coefficients

Cluster 7		C	luster 8	Cluster	Cluster 9	
Word	Coef.	Word	Coef.	Word	Coef.	
match	0.065	film	0.036	film	0.061	
win	0.018	star	0.014	million	0.019	
championship	0.016	role	0.014	release	0.013	
team	0.015	play	0.010	star	0.010	
event	0.015	series	0.009	character	0.006	

- titles of articles closest to cluster representative
 - 7. "Wrestlemania 32", "Payback (2016)", "Survivor Series (2015)", "Royal Rumble (2016)", "Night of Champions (2015)", "Fastlane (2016)", "Extreme Rules (2016)", . . .
 - 8. "Ben Affleck", "Johnny Depp", "Maureen O'Hara", "Kate Beckinsale", "Leonardo DiCaprio", "Keanu Reeves", "Charlie Sheen", "Kate Winslet", "Carrie Fisher", ...
 - 9. "Star Wars: The Force Awakens", "Star Wars Episode I: The Phantom Menace", "The Martian (film)", "The Revenant (2015 film)", "The Hateful Eight", ...

Linear independence

Outline

<u>Linear independence</u>

Basis

Orthonormal vectors

Gram-Schmidt algorithm

Linear dependence

▶ set of *n*-vectors $\{a_1, \ldots, a_k\}$ (with $k \ge 1$) is *linearly dependent* if

$$\beta_1 a_1 + \cdots + \beta_k a_k = 0$$

holds for some β_1, \ldots, β_k , that are not all zero

- ightharpoonup equivalent to: at least one a_i is a linear combination of the others
- we say ' a_1, \ldots, a_k are linearly dependent'
- $\{a_1\}$ is linearly dependent only if $a_1 = 0$
- $\{a_1, a_2\}$ is linearly dependent only if one a_i is a multiple of the other
- for more than two vectors, there is no simple to state condition

Example

the vectors

$$a_1 = \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, \qquad a_2 = \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, \qquad a_3 = \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}$$

are linearly dependent, since $a_1 + 2a_2 - 3a_3 = 0$

can express any of them as linear combination of the other two, e.g.,

$$a_2 = (-1/2)a_1 + (3/2)a_3$$

Linear independence

set of n-vectors $\{a_1, \ldots, a_k\}$ (with $k \ge 1$) is *linearly independent* if it is not linearly dependent, *i.e.*,

$$\beta_1 a_1 + \cdots + \beta_k a_k = 0$$

holds only when $\beta_1 = \cdots = \beta_k = 0$

- we say ' a_1, \ldots, a_k are linearly independent'
- equivalent to: no a_i is a linear combination of the others

ightharpoonup example: the unit *n*-vectors e_1, \ldots, e_n are linearly independent

Linear combinations of linearly independent vectors

• suppose x is linear combination of linearly independent vectors a_1, \ldots, a_k :

$$x = \beta_1 a_1 + \cdots + \beta_k a_k$$

▶ the coefficients β_1, \ldots, β_k are *unique*, *i.e.*, if

$$x = V_1 a_1 + \cdots + V_k a_k$$

then
$$\beta_i = \gamma_i$$
 for $i = 1, ..., k$

- this means that (in principle) we can deduce the coefficients from x
- to see why, note that

$$(\beta_1 - \gamma_1)a_1 + \cdots + (\beta_k - \gamma_k)a_k = 0$$

and so (by linear independence) $\beta_1 - \gamma_1 = \cdots = \beta_k - \gamma_k = 0$

Outline

<u>Linear independence</u>

Basis

Orthonormal vectors

Gram-Schmidt algorithm

Independence-dimension inequality

- ► a linearly independent set of *n*-vectors can have at most *n* elements
- ▶ put another way: any set of n + 1 or more n-vectors is linearly dependent

Basis

- ightharpoonup a set of n linearly independent n-vectors a_1, \ldots, a_n is called a *basis*
- ► any *n*-vector *b* can be expressed as a linear combination of them:

$$b = \beta_1 a_1 + \cdots + \beta_n a_n$$

for some β_1, \ldots, β_n

- and these coefficients are unique
- formula above is called *expansion* of b in the a_1, \ldots, a_n basis
- ightharpoonup example: e_1, \ldots, e_n is a basis, expansion of b is

$$b = b_1 e_1 + \cdots + b_n e_n$$

Outline

<u>Linear independence</u>

Basis

Orthonormal vectors

Gram-Schmidt algorithm

Orthonormal vectors

- ▶ set of *n*-vectors a_1, \ldots, a_k are (mutually) orthogonal if $a_i \perp a_j$ for $i \neq j$
- they are *normalized* if $||a_i|| = 1$ for i = 1, ..., k
- they are orthonormal if both hold
- can be expressed using inner products as

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- orthonormal sets of vectors are linearly independent
- ▶ by independence-dimension inequality, must have $k \le n$
- when $k = n, a_1, \dots, a_n$ are an *orthonormal basis*

Examples of orthonormal bases

- ightharpoonup standard unit *n*-vectors e_1, \ldots, e_n
- ► the 3-vectors

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

the 2-vectors shown below

Orthonormal expansion

ightharpoonup if a_1, \ldots, a_n is an orthonormal basis, we have for any n-vector x

$$x = (a_1^T x)a_1 + \dots + (a_n^T x)a_n$$

- ► called *orthonormal expansion of x* (in the orthonormal basis)
- ightharpoonup to verify formula, take inner product of both sides with a_i

Gram-Schmidt (orthogonalization) algorithm

- ightharpoonup an algorithm to check if a_1, \ldots, a_k are linearly independent
- we'll see later it has many other uses

Gram-Schmidt algorithm

given n-vectors a_1, \ldots, a_k

for
$$i = 1, ..., k$$

- 1. Orthogonalization: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \cdots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence: if $\tilde{q}_i = 0$, quit
- 3. *Normalization:* $q_i = \tilde{q}_i / ||\tilde{q}_i||$

- ▶ if G–S does not stop early (in step 2), a_1, \ldots, a_k are linearly independent
- if G–S stops early in iteration i = j, then a_j is a linear combination of a_1, \ldots, a_{j-1} (so a_1, \ldots, a_k are linearly dependent)

Example

Analysis

let's show by induction that q_1, \ldots, q_i are orthonormal

- ightharpoonup assume it's true for i-1
- orthogonalization step ensures that

$$\tilde{q}_i \perp q_1, \ldots, \tilde{q}_i \perp q_{i-1}$$

▶ to see this, take inner product of both sides with q_j , j < i

$$q_j^T \tilde{q}_i = q_j^T a_i - (q_1^T a_i)(q_j^T q_1) - \dots - (q_{i-1}^T a_i)(q_j^T q_{i-1})$$
$$= q_j^T a_i - q_j^T a_i = 0$$

- ightharpoonup so $q_i \perp q_1, \ldots, q_i \perp q_{i-1}$
- ▶ normalization step ensures that $||q_i|| = 1$

Analysis

assuming G-S has not terminated before iteration i

 a_i is a linear combination of q_1, \ldots, q_i :

$$a_i = \|\tilde{q}_i\| q_i + (q_1^T a_i) q_1 + \dots + (q_{i-1}^T a_i) q_{i-1}$$

 $ightharpoonup q_i$ is a linear combination of a_1, \ldots, a_i : by induction on i,

$$q_i = (1/||q_i^*||) \ a_i - (q_i^T q_i)q_i - \cdots - q_i^T (q_i a_i)q_{i-1}$$

and (by induction assumption) each q_1, \ldots, q_{i-1} is a linear combination of a_1, \ldots, a_{i-1}

Early termination

suppose G-S terminates in step j

► a_j is linear combination of q_1, \ldots, q_{j-1}

$$a_j = (q_1^T a_j)q_1 + \cdots + (q_{j-1}^T a_j)q_{j-1}$$

- ightharpoonup and each of q_1, \ldots, q_{j-1} is linear combination of a_1, \ldots, a_{j-1}
- ► so a_j is a linear combination of a_1, \ldots, a_{j-1}

Complexity of Gram-Schmidt algorithm

▶ step 1 of iteration i requires i - 1 inner products,

$$q_1^T a_i, \ldots, q_{i-1}^T a_i$$

which costs (i-1)(2n-1) flops

- ▶ 2n(i-1) flops to compute \tilde{q}_i
- ▶ 3n flops to compute $\|\tilde{q}_i\|$ and q_i
- total is

$$\sum_{i=1}^{k} ((4n-1)(i-1)+3n) = (4n-1)\frac{k(k-1)}{2} + 3nk \approx 2nk^2$$

using
$$\sum_{i=1}^{k} (i-1) = k(k-1)/2$$