Task 1: Build and Deploy a Domain-Specific Chatbot

- 1) Generated 60 pairs of human-assistant conversational data.
- 2) Transform the pair into JSON format and stored it into JSON file.
- 3) Performed fine tunning on pre-trained model "google/gemma-3-270m"
- 4) About Model:
 - It is a 270 million parameter AI model designed for efficient, task-specific fine-tunning and strong instruction-following capabilities.
 - The model is been selected because it is light weight and can easily be compute on free GPU available in google collab.
- 5) Fine-Tuning Approach for Causal Language Model (LoRA + 4-bit Quantization)
 - 1. Quantization and Efficiency Setup
 - Used BitsAndBytes 4-bit quantization (bnb_config) for memory-efficient model loading.
 - Configured compute dtype (float16 or bfloat16) based on GPU capability to optimize training efficiency.
 - o Optional nested quantization enabled for improved performance with reduced memory footprint.
 - o GPU capability checked to leverage bfloat16 (bf16) if supported (Ampere GPUs and above).

2. Base Model Loading

- Loaded a pretrained causal language model (AutoModelForCausalLM) with quantization applied.
- Device mapping (device_map) allows multi-GPU or single-GPU deployment.
- Disabled model caching (use_cache=False) to save memory during finetuning.

3. LoRA (Low-Rank Adaptation) Configuration

- Applied LoRA to efficiently fine-tune large models with fewer trainable parameters.
- Configured parameters:
 - r: Rank of LoRA matrices.
 - lora alpha: Scaling factor for LoRA updates.
 - lora dropout: Dropout rate to improve generalization.
- o Task type set to CAUSAL LM for language modeling.
- o Bias set to "none" to reduce overhead.

4. Training Setup (Supervised Fine-Tuning)

o Used Hugging Face TrainingArguments to define:

- Number of epochs, batch size, and gradient accumulation steps.
- Optimizer choice and learning rate scheduling (lr_scheduler_type).
- Mixed precision (fp16) and optional bf16 support for speed and memory efficiency.
- Gradient clipping (max grad norm) to stabilize training.
- Warmup ratio and weight decay for optimizer regularization.
- TensorBoard logging for monitoring metrics.
- o Training checkpoints saved at regular intervals (save_steps).

5. Trainer Initialization

- SFTTrainer used to manage supervised fine-tuning.
- LoRA configuration (peft_config) integrated into trainer for low-rank updates.
- o Training dataset supplied (dataset['train']) in Hugging Face Dataset format.

6. Training Execution

- o Fine-tuning initiated via trainer.train().
- o Efficient on-device memory usage due to 4-bit quantization + LoRA.
- Model parameters mostly frozen except LoRA layers, reducing computational cost.

7. Advantages of This Approach

- o Allows fine-tuning large models on limited GPU memory.
- o LoRA reduces trainable parameters, making fine-tuning faster and cheaper.
- o Mixed precision and quantization enhance training efficiency without significant loss in performance.
- o Flexible to different GPUs and scales easily for larger datasets.

8. Save the Model for future use.

6) Training Loss

TrainOutput(global_step=15, training_loss=2.58641357421875, metrics={'train_runtime': 12.0721, 'train_samples_per_second': 4.97, 'train_steps_per_second': 1.243, 'total_flos': 1539832277760.0, 'train_loss': 2.58641357421875, 'entropy': 2.634469292561213, 'num_tokens': 2485.0, 'mean_token_accuracy': 0.5077415764331817, 'epoch': 1.0})