...Machine Learning...

Artur Ezequiel Nelson

Universidade do Minho

26 de Abril

Indice

Categories

- We want to calculate \mathcal{D} .
- However, D is not computable.
- Solution: reimplement corollaries using category theory

- We want to calculate D.
- However, \mathcal{D} is not computable.
- Solution: reimplement corollaries using category theory

- We want to calculate D.
- However, \mathcal{D} is not computable.
- Solution: reimplement corollaries using category theory

Corollary 1.1

NOTA: adicionar definição do corolário 1.1 aqui

Corollary 2.1

NOTA: adicionar definição do corolário 2.1 aqui

Corollary 3.1

NOTA: adicionar definição do corolário 3.1 aqui

Categories

A category is a collection of objects(sets and types) and morphisms(operation between objects), with 2 basic operations(identity and composition) of morfisms, and 2 laws:

- (C.1) $id \circ f = id \circ f = f$
- (C.2) $f \circ (g \circ h) = (f \circ g) \circ h$

Note

For this paper, objects are data types and morfisms are functions

class Category k where instance Category (\rightarrow) where id :: (a'k'a) $id = \lambda a \rightarrow a$ $(\circ) :: (b'k'c) \rightarrow (a'k'b) \rightarrow (a'k'c)$ $q \circ f = \lambda a \rightarrow q \ (f \ a)$

Functors

A functor F between 2 categories \mathcal{U} and \mathcal{V} is such that:

- given any object $t \in \mathcal{U}$ there exists an object F $t \in \mathcal{V}$
- given any morphism m :: $a \to b \in \mathcal{U}$ there exists a morphism F m :: F $a \to F$ b $\in \mathcal{V}$
- F id $(\in \mathcal{U})$ = id $(\in \mathcal{V})$
- $F(f \circ g) = Ff \circ Fg$

Note

Given this papers category properties(objects are data types) functors map types to themselves

Objective

Let's start by defining a new data type: newtype \mathcal{D} a b = \mathcal{D} (a \rightarrow b \times (a \multimap b)), and adapting \mathcal{D}^+ to use it:

Adapted definition

$$\hat{\mathcal{D}}$$
 :: $(\mathbf{a} \to \mathbf{b}) \to \mathcal{D}$ \mathbf{a} \mathbf{b} $\hat{\mathcal{D}}$ $f = \mathcal{D} (\mathcal{D}^+ f)$

Our objective is to deduce an instance of a Category for $\mathcal D$ where $\hat{\mathcal D}$ is a functor.

Before deducing our instance we must first note that using corollaries 3.1 and 1.1 we can determine that

- (DP.1) \mathcal{D}^+ id = λ a -> (id a,id)
- (DP.2) D⁺(g ∘ f) = λ a -> let(b,f') = D⁺ f a; (c,g') = D⁺ g b in (c,g' ∘ f')

Saying that $\hat{\mathcal{D}}$ is a functor is equivalent to, for all f and g functions of apropriate types:

$$\begin{aligned} id &= \hat{\mathcal{D}} \ id = \mathcal{D} \ (\hat{\mathcal{D}}^+ \ id) \\ \hat{\mathcal{D}} \ g \circ \hat{\mathcal{D}} \ f &= \hat{\mathcal{D}} \ (g \circ f) = \mathcal{D} \ (\hat{\mathcal{D}} \ (g \circ f)) \end{aligned}$$

Based on (DP.1) and (DP.2) we'll rewrite the above into the following definition:

$$id = \mathcal{D} (\lambda a \rightarrow (id a, id))$$

$$\hat{\mathcal{D}}$$
 g \circ $\hat{\mathcal{D}}$ f = \mathcal{D} (λ a -> let(b,f') = \mathcal{D}^+ f a; (c,g') = \mathcal{D}^+ g b in (c,g' \circ f'))

The first equation shown above has a trivial solution(define id of instance as $\mathcal{D}(\lambda \text{ a -> (id a,id))})$

To solve the second we'll first solve a more general one:

$$\mathcal{D} g \circ \mathcal{D} f = \mathcal{D}(\lambda a \rightarrow \text{let(b,f')} = f a; (c,g') = g b \text{ in(c,g'} \circ f'))$$

This condition also leads us to a trivial solution inside our instance.

$\hat{\mathcal{D}}$ definition for linear functions

linearD ::
$$(a \rightarrow b) \rightarrow \mathcal{D}$$
 a b
linearD $f = \mathcal{D} (\lambda a \rightarrow (f \ a, f))$

Categorical instance we've deduced

instance $Category \mathcal{D}$ where

$$id = linearDid$$

$$\mathcal{D} \mathbf{g} \circ \mathcal{D} \mathbf{f} =$$

$$\mathcal{D}(\lambda a \rightarrow \text{let } \{(b, f') = f \text{ } a; (c, g') = g \text{ } b\} \text{ in } (c, g' \circ f'))$$

Instance proof

In order to prove that the instance is correct we must check if it follows laws (C.1) and (C.2).

First we must make a concession: that we only use morfisms arising from \mathcal{D}^+ (we can force this by transforming \mathcal{D} into an abstract type). If we do, then \mathcal{D}^+ is a functor.

(C.1) proof

 $\text{id} \circ \hat{\mathcal{D}}$

- $=\hat{\mathcal{D}}$ id $\circ\hat{\mathcal{D}}$ f functor law for id (specification of $\hat{\mathcal{D}}$)
- $=\hat{\mathcal{D}}$ (id \circ f) functor law for (\circ)
- $=\hat{\mathcal{D}}$ f categorical law

Instance proof

(C.2) proof

```
\hat{\mathcal{D}} h \circ (\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f) 

= \hat{\mathcal{D}} h \circ \hat{\mathcal{D}} (g \circ f) - \text{functor law for } (\circ) 

= \hat{\mathcal{D}} (h \circ (g \circ f)) - \text{functor law for } (\circ) 

= \hat{\mathcal{D}} ((h \circ g) \circ f) - \text{categorical law} 

= \hat{\mathcal{D}} (h \circ g) \circ \hat{\mathcal{D}} f - \text{functor law for } (\circ) 

= (\hat{\mathcal{D}} h \circ \hat{\mathcal{D}} g) \circ \hat{\mathcal{D}} f - \text{functor law for } (\circ)
```

Note

This proofs don't require anything from \mathcal{D} and $\hat{\mathcal{D}}$ aside from functor laws. As such, all other instances of categories created from a functor won't require further proving like this onr did.

Monoidal categories and functors

Generalized parallel composition shall be defined using a monoidal category:

class Category
$$k \Rightarrow$$
 Monoidal k where $(x) :: (a'k'c) \rightarrow (b'k'd) \rightarrow ((axb)'k'(cxd))$

instance Monoidal
$$(\rightarrow)$$
 where $f \times g = \lambda(a, b) \rightarrow (f \ a, g \ b)$

Monoidal Functor definition

A monoidal functor F between categories $\mathcal U$ and $\mathcal V$ is such that:

- F is a functor
- $F(f \times g) = Ff \times Fg$

From corollary 2.1 we can deduce that:

$$\mathcal{D}^+$$
 (f \times g) = λ (a,b) -> let(c,f')= \mathcal{D}^+ f a;(d,g')= \mathcal{D}^+ g b in ((c,d),f' \times g')

Deriving F from \hat{D} leaves us with the following definition:

$$\mathcal{D} (\mathcal{D}^+ f) \times \mathcal{D} (\mathcal{D}^+ g) = \mathcal{D} (\mathcal{D}^+ (f \times g))$$

Using the same method as before, we replace \mathcal{D}^+ with it's definition and generalize the condition:

$$\mathcal{D} f \times \mathcal{D} g =$$

$$\mathcal{D} (\lambda (a b) \Rightarrow lot(c f') - f a$$

$$\mathcal{D}$$
 (λ (a,b) -> let(c,f') = f a; (d,g') = g b in ((c,d),f' \times g')) and this is enough for our new instance.

Categorical instance we've deduced

instance Monoidal \mathcal{D} where

$$\mathcal{D}\ f\ x\ \mathcal{D}\ g = \mathcal{D}\ (\lambda(a,b) \to \text{let}\ \{(c,f') = f\ a; (d,g') = g\ b\}$$
$$\text{in}\ ((c,d),f'\ x\ g'))$$

Cartesian categories and functors

class Monoidal
$$k \Rightarrow Cartesian \ k$$
 where $exl :: (a, b) ' k' a$ $exr :: (a, b) ' k' b$ $dup :: a'k' (a, a)$

instance $Cartesian(\rightarrow)$ where

$$exl = \lambda(a, b) \rightarrow a$$

 $exr = \lambda(a, b) \rightarrow b$
 $dup = \lambda a \rightarrow (a, a)$

A cartesian functor F between categories \mathcal{U} and \mathcal{V} is such that:

- F is a monoidal functor
- F exl = exl
- F exp = exp
- F dup = dup

From corollary 3.1 and from exl,exr and dup being linear functions we can deduce that:

$$\mathcal{D}^+$$
 exl = $\lambda p \rightarrow$ (exl p,exl)
 \mathcal{D}^+ exr = $\lambda p \rightarrow$ (exr p,exr)
 \mathcal{D}^+ dup = $\lambda p \rightarrow$ (dup a,dup)
With this in mind we can arrive at our instance:
exl = $\mathcal{D}(\mathcal{D}^+$ exl)
exr = $\mathcal{D}(\mathcal{D}^+$ exr)
dup = $\mathcal{D}(\mathcal{D}^+$ dup)

Replacing \mathcal{D}^+ with it's definition and remembering linearD's definition we can obtain:

```
exl = linearD exl
```

exr = linearD exr

dup = linearD dup

and convert this directly into a new instance:

Categorical instance we've deduced

instance Cartesian D where

exl = linearD exl

exr = linearD exr

dup = linearD dup

Cocartesian category

This type of categories is the dual of the cartesian type of categories.

Note

In this paper coproducts are categorical products, i.e., biproducts

Definition

```
class Category k \Rightarrow Cocartesian k where : inl :: a'k' (a,b) inr :: b'k' (a,b) jam :: (a,a)'k' a
```


Cocartesian functors

Cocartesian functor definition

A cocartesian functor F between categories $\mathcal U$ and $\mathcal V$ is such that:

- F is a functor
- F inl = inl
- Finr = inr
- F jam = jam

