Universidade Federal de Pelotas

Cursos de Ciência e Engenharia de Computação

Disciplina: Cálculo Numérico Computacional

Profa. Larissa A. de Freitas

Relatório 4 – Diferenciação e Integração Numérica

 Uma corrida tem duas fases distintas: na primeira, a fase mais curta, o movimento do carro é perfeitamente não determinístico, dependendo das derrapagens e da forma como o condutor consegue dominar o carro. Na segunda fase, o carro tem um movimento muito rápido, cuja aceleração está perfeitamente definida.

Considere a prova do condutor X de duração 7,5 s. Na primeira fase os valores da aceleração em cada instante encontram-se na tabela abaixo.

t _i	0	0,5	1	1.5
A(t _i)	0	0,35	0,55	0,90

Na segunda fase da corrida a aceleração é definida pela seguinte expressão:

$$a(t) = 0.5t^2 - 0.15t para t \in [1.5; 7.5]$$

- a) Estime a velocidade na primeira fase da corrida, utilizando a fórmula da integração mais adequada.
- b) Estime a velocidade na segunda fase da corrida, utilizando a fórmula repetida do Trapézio com erro de truncamento em valor absoluto inferior a 0,3.
- 2. A disciplina de Cálculo Numérico Computacional de um curso de Computação no ano letivo 2022/2 teve 92 alunos inscritos. Inicialmente, um grupo de 10 alunos resolveu lançar o boato de que o exame iria ser cancelado.

Em média cada estudante conversa com outros colegas a uma taxa de 2 estudantes/hora, podendo estes já saberem ou não da novidade. Se y representar o número de estudantes que sabem do boato no instante de tempo t (horas) então a taxa de recepção do boato é dada por: $\frac{dy}{dx} = 2y\left(\frac{92-y}{92}\right)$.

Utilizando o método mais adequado que estudou, calcule o número de estudantes que após 3 horas tomou conhecimento do boato (use h = 1).

3. A coleta de dados sobre a temperatura em relação à posição para alguns corpos de prova, apresentaram os seguintes cenários:

Corpo A

Posição (m)	0,0	0,2	0,4	0,6	0,8	1,0	1,2	1,4
Temperatura (K)	300	320	350	380	375	360	340	320

Corpo B

Posição (m)	0,0	0,1	0,2	0,3	0,4	0,5
Temperatura (K)	290	303	320	341	365	397

Corpo C

Posição (m)	0,0	0,2	0,4	0,6	0,8	1,0	1,2	1,4
Temperatura (K)	300	320	350	380	375	360	340	320

Obtenha a temperatura média para cada um dos corpos. Para a integração numérica, utilize as regras do Trapézio e de 1/3 de Simpson.

4. Acompanhando-se a trajetória de algumas partículas, obtiveram-se os seguintes resultados em função do tempo:

Partícula A

Instante(s)	0	10	20	30	40	50	60	70
Posição (m)	0	15	35	60	90	125	165	210

Partícula B

. a. c.ca.a B								
Instante(s)	0	10	20	30	40	50	60	70
Posição (m)	0	20	35	45	60	75	90	120

Partícula C

Instante(s)	0	10	20	30	40	50	60	70
Posição (m)	0	80	120	80	75	90	120	130

Obtenha estimativas para a velocidade e a aceleração de cada partícula para cada instante de tempo. Utilize expressões para as derivadas numéricas de primeira ordem.