

Integration Point	x.value	Function value for
2. (Lower bound)	0.0	0.000
dr	0.25	0.0158
23	0.50	0.1499
X4	0.15	0-9624
75 (apper bound)	1.0	8,0000
2 1		

She
$$\int_0^1 x^3(1+x^4)^3 d\alpha$$
 nown Simpson's rule

$$\int_0^1 f(\alpha) d\alpha \approx \frac{h}{3} \left[f(\alpha_i) + f(\alpha_i) + 2 \sum_{5=3}^{P-2} f(\alpha_i) + 4 \sum_{i=2}^{P-1} f(\alpha_i) \right]$$

solve $\int_0^1 x^3(1+x^4)^3 d\alpha$ nown Simpson's rule

$$\int_0^1 f(\alpha) d\alpha \approx \frac{h}{3} \left[f(\alpha_i) + f(\alpha_i) + 2 \sum_{5=3}^{P-2} f(\alpha_i) + 4 \sum_{i=2}^{P-1} f(\alpha_i) \right]$$

solve $\int_0^1 x^3(1+x^4)^3 d\alpha$ nown Simpson's rule

$$\int_0^1 f(\alpha) d\alpha \approx \frac{h}{3} \left[f(\alpha_i) + f(\alpha_i) + 2 \sum_{5=3}^{P-2} f(\alpha_i) + 4 \sum_{i=2}^{P-1} f(\alpha_i) \right]$$

solve $\int_0^1 x^3(1+x^4)^3 d\alpha$ nown Simpson's rule

where
$$h = \frac{b-a}{p-1}$$
 where $b = 1$, $a = 0$; $p = 5 = no$ of intervals $\alpha = \frac{b-a}{p-1}$ where $a = 1$, $a = 0$; $a = 0$; $a = 0$

$$\int_{0}^{1} x^{3} (1+x^{4})^{3} dx = \frac{1}{12} \left[F(x_{1}) + F(x_{2}) + 2(F(x_{3})) + 4(F(x_{2}) + F(x_{4})) \right]$$

from the fable, four) = 0; FO(5)=8; F(0(3)=0.1499; F(0(4)=0-9624

$$\int_{0}^{3} \pi^{3} (1+x^{4})^{3} dx = \frac{1}{12} \left[0+8+2(0.1499)+4(0.0158+0.9624) \right]$$

$$= \frac{1}{12} (12.2126) = 0.017717 \ 2 \ 0.0177$$

nong simpson's rule s'n3(1+xt)3da = 1.0177

