

Signal Processing

Tutorial 5 – Sampling, Windowing

Pôle

Numérique

Author	: Guillaume GIBERT
Version	: 1 R O
Promotion	: 2025
Program	: EENG3
Date	: March 4 th 2024

1. Git

- Create a remote git repository (e.g. SignalProcessing_samplingwindowing) on gitarero.ecam.fr
- Update the repository description
- Create a commit
- Move to the develop branch

2. Exercise 1

- Create a Matlab/Octave script entitled sampling.m
- Generate a cosine function $x(t) = \cos(2\pi f t + \varphi)$ with $\begin{cases} f = 10 \text{ Hz} \\ \varphi = 0 \end{cases}$ for a duration of 1 s
- O. What is the condition for the sampling frequency?
- O. What is the name of the theorem?
- Use the provided frequencySpectrum.m function to plot the power spectrum of the signal
- O. What is the difference between the second and third plot?
- Generate the same cosine function with a sampling frequency that is not correct
- Plot the power spectrum of this signal
- O. What do you observe? Please explain
- Generate the sum of two cosine functions as follow:

$$x(t) = \cos(2\pi f_1 t + \varphi_1) + \cos(2\pi f_2 t + \varphi_2) + with \begin{cases} f_1 = 10 \ Hz, f_2 = 20 \ Hz \\ \varphi_1 = \varphi_2 = 0 \end{cases}$$

- Choose a sampling rate that respects the "condition"
- Plot the power spectrum of this signal
- Repeat the same procedure with a sampling frequency that does not respect the "condition"
- O. What do you observe? Please explain
- Modify the phase of the signals
- Q. What do you observe on the power spectrum? Please explain
- Create a commit and merge it to the main branch

3. Exercise 2

- Create a Matlab/Octave script entitled windowing.m
- Generate a cosine function $x(t) = \cos(2\pi f t + \varphi)$ with $\begin{cases} f = 10 \, Hz \\ \varphi = 0 \end{cases}$ for a duration of 12 s and a sampling frequency $F_s = 50 \, Hz$
- Apply the following time windows to this signal:
 - o Rectangular
 - Hanning
 - Hamming
 - o Blackman
- Display the different weighted signals on the same plot with different colours
- Compute the power spectrum of the different weighted signals
- Q. What do you observe on the power spectrum (main lobe, side lobes...)? Please explain
- O. Why did we choose a cosine function? Please explain
- Create a commit and merge it to the main branch

4. Exercise 3

4.1.

- Create a Matlab/Octave script entitled signalSeparation.m
- Generate the sum of two cosine functions as follow:

$$x(t) = \cos(2\pi f_1 t + \varphi_1) + \cos(2\pi f_2 t + \varphi_2) + with \begin{cases} f_1 = 70 \; Hz, f_2 = 100 \; Hz \\ \varphi_1 = \varphi_2 = 0 \end{cases}$$

- Choose the sampling frequency and the duration adequately
- Apply the following time windows to this signal:
 - Rectangular
 - o Hanning
 - o Hamming
 - o Blackman
- Compute the power spectrum of the different weighted signals
- O. What do you observe on the power spectrum? Please explain
- Q. Can you separate the spectral representation of the two cosine functions? Please explain

4.2.

- Modify the value $f_1 = 98 Hz$
- Regenerate the weighted signals
- Compute the power spectrum of the different weighted signals
- O. What do you observe on the power spectrum? Please explain
- O. Can you separate the spectral representation of the two cosine functions? Please explain
- O. How could you solve this issue?

4.3.

- Change the amplitude of the second cosine function by multiplying it by a factor 0.1
- Regenerate the weighted signals
- Compute the power spectrum of the different weighted signals
- Q. What do you observe on the power spectrum? Please explain
- Q. Can you separate the spectral representation of the two cosine functions? Please explain
- Q. How could you solve this issue?
- Create a commit and merge it to the main branch