Exercício 1

Um perfil metálico biapoiado com 5m de vão, localizado em uma estrutura residencial, possui os seguintes carregamentos básicos:

- Peso próprio de estruturas metálicas: a calcular, considerando o perfil adotado (ver tabela abaixo);
- Peso próprio de estruturas modadas no local: 4,5kN/m;
- Peso de elementos de alvenaria: 12kN/m;
- Sobrecarga: ver tabela abaixo;
- Vento: 1kN/m;
- Efeito decorrente da variação de temperatura de elementos apoiados: 0.5kN/m.

Considerando cada ação separadamente, calcule:

- a) O momento máximo no meio do vão para o estado limite último;
- b) A deformação máxima no meio do vão para o estado limite de serviço, considerando que a deformação máxima em uma viga biapoiada é calculada como $\delta_{m\acute{a}x}=5ql^4/384EI_x$. Adote $E=20000kN/cm^2$.

Aluno	Perfil	Peso linear I_x		Sobrecarga	
		(kg/m)	(cm^4)	(kN/m)	
Matheus	W200x22,5	22,5	2029,0	4,0	
Arthur	W250x28,4	28,4	4046,0	7,5	

Exercício 2

Um elemento de telhado, inclinado 10 graus em relação à horizontal, é composto por uma madeira especificada na tabela abaixo. O carregamento vertical de projeto também está apresentado na tabela. Dimensione o elemento, considerando que a peça possui um esforço de compressão de projeto adicional de 40kN, além do esforço transversal.

Aluno	Classe de	Tipo de	Tipo de	Categoria	Classe de
	umidade	carregamento	madeira		carregamento
Matheus	1	Longa duração	Serrada	2 ^a	Conífera C25
Arthur	3	Média duração	Serrada	1 ^a	Dicotiledônea C40

Aluno	Carregamento		
	transversal q_d		
	(kN/m)		
Matheus	3,5		
Arthur	6,0		

Exercício 3

Uma viga metálica laminada **engastada e apoiada** possui os seguintes carregamentos básicos:

- Carregamento transversal permanente q_1 (em kN/m);
- Carregamento transversal variável q₂ (em kN/m);
- Esforço normal de tração T (em kN);
- Esforço normal de compressão N (em kN);

Os esforços normais não ocorrem simultaneamente, ou seja, ora a viga está sujeita ao carregamento T, ora ao carregamento N. Outras informações sobre a viga estão listadas na tabela abaixo, bem como os carregamentos. Dimensione a peça, considerando que ela está contida lateralmente e que ela não possui conexão parafusada.

Sugestão: calcule o momento máximo no ftool.

Aluno	Comprimento	Material	q_1	q_2	T	N
	(m)		(kN/m)	(kN/m)	(kN)	(kN)
Matheus	8,0	ASTM A572 gr. 50	5,5	3,5	550	250
Arthur	5,5	ASTM A36	4,0	4,0	450	150