Álgebra Moderna Tarea 2.6

Tomás Ricardo Basile Álvarez 316617194

27 de octubre de 2020

a) Sea G un grupo, definimos la diagonal de G, $D_G = \{(g,g) \in G \times G\}$. Entonces D_G es un subgrupo de $G \times G$.

Primero notamos que D_G es no vacío, porque contiene por lo menos a (e, e). Ahora hay que probar que el producto de dos elementos de D_G es un elemento de D_G y que es cerrado bajo inversos.

- Producto cerrado: Sea $(g_1, g_1) \in D_G$ y $(g_2, g_2) \in D_G$. Entonces, $(g_1, g_1) \cdot (g_2, g_2) = (g_1g_2, g_1g_2)$ (por como se define el producto en $G \times G$). Pero claramente $(g_1g_2, g_1g_2) \in D_G$.
- Cerrado Bajo Inversos: Sea $(g,g) \in D_G$. Entonces, claramente tenemos que $(g,g) \cdot (g^{-1},g^{-1}) = (gg^{-1},gg^{-1}) = (e,e)$ pero (e,e) es el neutro de $G \times G$. Entonces (g^{-1},g^{-1}) es el inverso de (g,g), pero claramente $(g^{-1},g^{-1}) \in D_G$. Por lo que D_G es cerrado bajo inversos.

Por lo tanto, D_G es un subgrupo de $G \times G$.

- b) Sea G un grupo, entonces $D_G \subseteq G \times G$ si y sólo si G es abeliano
 - \Rightarrow) Digamos que $D_G \leq G \times G$. Entonces, para todo elemento $(a,b) \in G \times G$ tenemos que $(a,b)D_G(a,b)^{-1} = D_G$.

En particular, si consideramos el elemento $(a, e) \in G \times G$ y un elemento $(h, h) \in D_G$ arbitrario, debemos de tener que $(a, e)(h, h)(a, e)^{-1} \in D_G$.

Entonces, $(a, e)(h, h)(a^{-1}, e) = (aha^{-1}, ehe) = (aha^{-1}, h) \in D_G$.

Pero para que $(aha^{-1}, h) \in D_G$, debemos de tener que $aha^{-1} = h$ y por tanto, ah = ha.

Pero como a y h fueron escogidos arbitrariamente en G, tenemos que todo producto de elementos de G conmuta y por tanto G es abeliano.

• \Leftarrow) Digamos que G es abeliano y queremos $D_G \unlhd G \times G$. Para probar eso, probaremos la propiedad equivalente, que $(g_1, g_2)D_G(g_1, g_2)^{-1} \subset D_G$ para cualquier $(g_1, g_2) \in G \times G$ Sea $(g_1, g_2)(g, g)(g_1, g_2)^{-1} \in (g_1, g_2)D_G(g_1, g_2)^{-1}$ un elemento arbitrario. Este elemento es igual a $(g_1gg_1^{-1}, g_2gg_2^{-1})$, pero ahora usamos que G es abeliano para conmutar y tenemos $(g_1g_1^{-1}g, g_2g_2^{-1}g) = (g, g)$. Y este elemento pertenece a D_G . Entonces, todo elemento de $(g_1, g_2)D_G(g_1, g_2)^{-1}$ pertenece a D_G y tenemos lo que se quería probar.

c) Sea K un campo. Entonces $SL_n(K) \subseteq GL_n(K)$

Probaremos que para toda matriz $A \in GL_n(K)$ se tiene que $ASL_n(K)A^{-1} \subset SL_n(K)$, lo que prueba que $SL_n(K)$ es normal.

Entonces, sea $B \in SL_n(K)$ (es decir, det(B) = 1), de tal forma que ABA^{-1} es un elemento arbitrario de $ASL_n(K)A^{-1}$.

Pero vemos que ABA^{-1} tiene determinante $\det(ABA^{-1}) = \det(A) \det(B) \det(A^{-1}) = \det(A) \det(A) \det(B) \det(A)^{-1} = \det(B) = 1$.

Por tanto, $ABA^{-1} \in SL_n(K)$. Esto prueba que $ASL_n(K)A^{-1} \subset SL_n(K)$ y por tanto $SL_n(K)$ es normal.

d) Sea $G = G_1 \times G_2$ un grupo finito. Podemos encontrar dos subgrupos $H \subseteq G, K \subseteq G$ tales que $H \simeq G_1, K \simeq G_2$ y $|G| = |H| \cdot |K|$

Sea $H = \{(g_1, e_2) | g_1 \in G_1\}$ con e_2 el neutro de G_2 . Es decir, $H = G_1 \times \{e_2\}$. Primero probamos que $H \leq G$.

- H es un subgrupo de G: Esto se debe a que H es el producto cartesiano de dos grupos, G_1 y $\{e_2\}$.
- **H** es normal en **G**: Para ello tenemos que probar que para todo elemento $(g_1, g_2) \in G$ se tiene que $(g_1, g_2)H(g_1, g_2)^{-1} \in H$.

Sea $(k, e_2) \in H$ arbitrario (para lo que $k \in G_1$).

Entonces $(g_1, g_2)(k, e_2)(g_1, g_2)^{-1}$ es un elemento arbitrario de $(g_1, g_2)H(g_1, g_2)^{-1}$. Y tenemos que $(g_1, g_2)(k, e_2)(g_1, g_2)^{-1} = (g_1, g_2)(k, e_2)(g_1^{-1}, g_2^{-1}) = (g_1kg_1^{-1}, g_2e_2g_2^{-1}) = (g_1kg_1^{-1}, e_2)$.

Pero como $g_1kg_1^{-1} \in G_1$ porque G_1 es un grupo, entonces $(g_1kg_1^{-1}, e_2) \in H$.

Por lo tanto, todo elemento de $(g_1,g_2)H(g_1,g_2)^{-1}$ es un elemento de H y entonces H es normal en G

Ahora vemos que $H \simeq G_1$. Para ello, usamos la función $\phi: H \to G_1$ dado por $\phi(g_1, e_2) = g_1$.

Vemos que esta función es un morfismo porque:

$$\phi((g_1, e_2)(k_1, e_2)) = \phi(g_1k_1, e_2) = g_1k_1 = \phi(g_1, e_2)\phi(k_1, e_2)$$

Además es suprayectiva porque para todo $g_1 \in G$ se tiene $(g_1, e_2) \in H$ tal que $\phi(g_1, e_2) = g_1$.

Y es inyectivo porque si $(g_1, e_2) \neq (k_1, e_2)$ entonces $\phi(g_1, e_2) = g_1 \neq k_1 = \phi(k_1, e_2)$ La desigualdad se debe a que como $(g_1, e_2) \neq (k_1, e_2)$, entonces $g_1 \neq k_1$.

Similarmente, ahora definimos $K = \{(e_1, g_2) | g_2 \in G_2\} = \{e_1\} \times G_2$.

Probamos ahora que $K \triangleleft G$:

- K es un subgrupo de G: Esto se debe a que K es el producto cartesiano de dos grupos, $\{e_1\}$ y G_2 .
- **K** es normal en **G**: Para ello tenemos que probar que para todo elemento $(g_1, g_2) \in G$ se tiene que $(g_1, g_2)K(g_1, g_2)^{-1} \in K$. Sea $(e_1, k) \in K$ arbitrario (para lo que $k \in G_2$). Entonces $(g_1, g_2)(e_1, k)(g_1, g_2)^{-1}$ es un elemento arbitrario de $(g_1, g_2)K(g_1, g_2)^{-1}$. Y tenemos que $(g_1, g_2)(e_1, k)(g_1, g_2)^{-1} = (g_1, g_2)(e_1, k)(g_1^{-1}, g_2^{-1}) = (g_1e_1g_1^{-1}, g_2kg_2^{-1}) = (e_1, g_2kg_2^{-1})$.

Pero como $g_2kg_2^{-1} \in G_2$ porque G_2 es un grupo, entonces $(e_1, g_2kg_2^{-1}) \in K$. Por lo tanto, todo elemento de $(g_1, g_2)K(g_1, g_2)^{-1}$ es un elemento de K y entonces

K es normal en G

Luego, definimos la función $\phi_2: K \to G_2$ definida por $\phi_2(e_1, g_2) = g_2$. Vemos que es un morfismo porque:

$$\phi_2((e_1, g_2)(e_1, k_2)) = \phi_2(e_1, g_2k_2) = g_2k_2 = \phi_2(e_1, g_2)\phi_2(e_1, k_2)$$

 ϕ_2 es suprayectivo porque para todo $g_2 \in G_2$, tenemos $(e_1, g_2) \in K$ tal que $\phi_2(e_1, g_2) = g_2$

Y ϕ_2 es inyectivo porque si $(e_1, g_2) \neq (e_1, k_2)$, entonces, $\phi_2(e_1, g_2) = g_2 \neq k_2 = \phi_2(e_1, k_2)$.

La desigual dad se debe a que como $(e_1,g_2)\neq (e_1,k_2)$, entonces $g_2\neq k_2$ Por lo que $K\simeq G_2$.

Luego, como $H \simeq G_1$, entonces, $|H| = |G_1|$. Y como tenemos que $K \simeq G_2$, entonces $|K| = |G_2|$.

Pero como $G = G_1 \times G_2$, entonces $|G| = |G_1||G_2|$ y esto es igual a |H|K|. Por lo que |G| = |H||K|

e) Sea G un grupo finito, sean H, K subgrupos normales tales que $H \cap K = \{1\}$ y |H||K| = |G|. Entonces $G \simeq H \times K$

Usamos el lema 15.9, que dice que si $H \subseteq G$ y $K \subseteq G$ y $H \cap K = \{e\}$, entonces $hk = kh \ \forall h \in H, k \in K$.

Luego, proponemos la función $\phi: H \times K \to G$ dada por $\phi(h, k) = hk$ Esta función es un morfismo, pues si $(h_1, k_1), (h_2, k_2) \in H \times K$, entonces tenemos que:

$$\phi((h_1, k_1)(h_2, k_2)) = \phi(h_1 h_2, k_1 k_2)$$

$$= h_1 h_2 k_1 k_2$$

$$= h_1 k_1 h_2 k_2 \text{ por el lema } 15.9$$

$$= \phi(h_1, k_1) \phi(h_2, k_2)$$

Vemos también que ϕ es inyectiva, pues si $\phi(h_1,k_1)=\phi(h_2,k_2)$ entonces $h_1k_1=h_2k_2 \Rightarrow h_2^{-1}h_1=k_2k_1^{-1}$. Pero $h_2^{-1}h_1\in H$ y $k_2k_1^{-1}\in K$. Lo que implica que $h_2^{-1}h_1=k_2k_1^{-1}\in H\cap K=\{e\}$ Y por lo tanto, $h_2^{-1}h_1=e \Rightarrow h_1=h_2$ $k_2k_1^{-1}=e \Rightarrow k_1=k_2$. Por lo que $(h_1,k_1)=(h_2,k_2)$ y ϕ es inyectiva.

Luego, como $|H \times K| = |H||K|$ pero esto es igual a |G| por hipótesis, entonces $|H \times K| = |G|$.

Como tienen la misma cardinalidad (y es finita), toda función inyectiva de $H \times K$ a G es automáticamente biyectiva, en particular ϕ

Por lo que ϕ es un morfismo biyectivo y entonces $G \simeq H \times K$