期末试题 (1) (150 分钟内完成)

- 一. 填空题 (每小题 4 分, 共 28 分)
- 1. $\sum_{n=1}^{\infty} \frac{n-1}{3^n} =$
- 2. 微分方程 y'' y' = x 2 的通解为
- 3. 设 Σ 为球面 $x^2 + y^2 + z^2 = r^2(r > 0)$, 则 $\iint_{\Sigma} \left(x^2 + \frac{y^2}{2} + \frac{z^2}{3} \right) dS =$
- 4. 设 D 是以 (0,0),(1,1),(0,1) 为顶点的三角形区域,则 $\iint_{D} x^{2}e^{y^{2}}dxdy =$
- 5. 函数 $f(x,y) = x^4 + y^4 x^2 2xy y^2$ 的极小值为
- 6. 曲线 xy = 4 在点 (2,2) 处的曲率为, 曲率半径为
- 二. 计算题(每小题 7 分, 共 35 分)
- 7. 求幂级数 $\sum_{n=0}^{\infty} \frac{n^2+1}{2^n n!} x^n$ 的和函数(需指明收敛域).
- 8. 求极限 $\lim_{(x,y)\to(0,0)}\frac{xy}{x+y^2}$. (若极限存在, 求出其值; 否则,请阐明理由)
 9. 设 Ω 为平面曲线 $\begin{cases} y^2=2z \\ x=0 \end{cases}$ 绕 z 轴旋转一周形成的曲面与平面 z=8 所围的区域.
- 计算积分 $\iiint_{\Omega} (x^2 + y^2) dx dy dz$.
- 10. 已知 $f(x) = x^2, x \in [-\pi, \pi)$. (1) 求 f(x) 的 Fourier 级数, 并求其和函数; (2)利用
- Parseval 等式求 $\sum_{n=1}^{\infty} \frac{1}{n^4}$ 的和. 11. 求曲线 $L: \left\{ \begin{array}{l} x^2+y^2+z^2-2y=4, \\ x+y+z=0 \end{array} \right.$ 在点 (1,1,-2) 处的切线和法平面方程.
- 三. 解答题(每小题 7 分, 共 21 分)
- 12. 讨论函数 $F(\lambda) = \int_0^{+\infty} e^{-\lambda x} \sin x dx$ 在 $(0, +\infty)$ 上的连续性.
- 13. 利用 $\frac{1}{\sin x} \ln \frac{1+a\sin x}{1-a\sin x} = 2 \int_0^a \frac{dy}{1-y^2\sin^2 x}$, (0 < a < 1), 计算积分 $I = \int_0^{\frac{\pi}{2}} \frac{1}{\sin x} \ln \frac{1+a\sin x}{1-a\sin x} dx$ (提示: 计算中可能用到 $\frac{1}{\sin^2 x} = 1 + \cot^2 x$ 和 $d(\cot x) = -\frac{dx}{\sin^2 x}$.)
- 14. 设一个向量与 Oxy, Oyz, Ozx 三坐标面的夹角为 φ, θ, ω , 求 $\cos^2 \varphi + \cos^2 \theta + \cos^2 \omega$ 的值.
- 四. 证明题(共 20 分)
- 15. (7 分) 设函数 f(x,y) 在 R^2 上存在连续偏导数, \vec{a}_1 和 \vec{a}_2 是 R^2 上两个线性无关的 单位向量. 若 $\frac{\partial f}{\partial a_1}(x,y) = \frac{\partial f}{\partial a_1}(x,y) = 0$. 证明: 在 R^2 上 f(x,y) 为常值函数.
- 16. $(7 \, \mathcal{G})$ 设不含原点的区域 Ω 有分片光滑封闭曲面 Σ 所围成, \vec{n} 为曲面 Σ 的单位 外法向量, $\vec{r} = \{x, y, z\}, r = |\vec{r}|$. 证明:

$$\iiint_{\Omega} \frac{dxdydz}{r} = \frac{1}{2} \iint_{\Sigma} \cos(\vec{r}, \vec{n}) dS$$

17. (6 分) 设 L 是逆时针方向的圆周 $(x-a)^2 + (y-a)^2 = 1, f(t)$ 是 R 上恒为正值的连 续函数. 证明: $\int_L x f(y) dy - \frac{y}{f(x)} dx \ge 2\pi$.

期末试题(2)(150分钟内完成)

- 一、填空题 (每空 4 分, 共 28 分)
- 1. 用 Beta 函数表示积分 $\int_0^2 (2-x)^{\frac{1}{4}} x^{\frac{3}{4}} dx =$ 2、级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (\ln x)^n$ 的收敛域与和函数分别是 和
- 3、曲面 $z = 2x^2 + y^2 xy$ 在点 (1,1,2) 处的法线方程为 4、函数 $f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ 1, & 0 \le x < \pi \end{cases}$ 的 Fourier 级数是 5、设 $(x^{2015} + 4xy^3) dx + (ax^2y^2 2y^{2066}) dy$ 在整个 xOy 面内是某一函数 u(x,y) 的全
- 微分,则 a =
- 6、设 L 是圆周 $x^2+y^2=1$,则 $\int_L(x-y)^2ds=$ 7、设 L 为曲线 $\left\{ \begin{array}{l} x^2+y^2=2y\\ z=y \end{array} \right.$ 从轴正向看为顺时针,则 $\oint_L y^2dx+xydy+xzdz=$
- 二. 判断题 (每小题 2 分, 共 8 分). 请在正确说法相应的括号中画"✓", 在错误说法的 括号中画"x".
- 8. 若级数收敛,则其重排后的级数也必收敛,其和不变.
- 9. 若函数 f(x,y) 和 $f_y(x,y)$ 都在区域 $[a,+\infty)\times[c,d]$ 上连续, 且 $\int_a^{+\infty}f(x,y)dx$ 关于 y在 [c,d] 上一致收敛,则 $\frac{d}{dy}\int_a^{+\infty}f(x,y)dx=\int_a^{+\infty}f_y(x,y)dx$.
- 10. 若向量函数 \vec{F} 在区域 Ω 上有二阶连续偏导数, 则 div(rot \vec{F}) = 0.
- 11. 若 f(x,y) 在点 (x_0,y_0) 沿任意方向的方向导数都存在,则 f(x,y) 在点 (x_0,y_0) 可微.
- 三、证明题 (每小题 6 分, 共 12 分)
- 12. 用定义证明 $\lim_{(x,y)\to(1,0)} (x+y^2) = 1$.
- 13. 设 Ω 为上半球体 $x^2 + y^2 + z^2 \le 1 (z \ge 0)$, 函数 f 在 Ω 上连续. 证明:

$$\iiint_{\Omega} f(z)dxdydz = \pi \int_{0}^{1} f(z) \left(1 - z^{2}\right) dz$$

- 四、计算题 (每小题 7 分, 共 28 分)

14. 求函数
$$f(x) = x + \ln\left(x + \sqrt{1 + x^2}\right)$$
 的 Maclaurin 展开式.
$$\left(\; \exists \, \exists \, \frac{1}{\sqrt{1 + x}} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)!!}{(2n)!!} x^n, x \in (-1,1) \right).$$

- 15. 设 $D = [0,1] \times [0,1]$, 计算 $\iint_D (x+y) \operatorname{sgn}(x-y) dx dy$.
- 16. 求密度均匀 $(\mu = 1)$ 的半球面 $\Sigma : z = \sqrt{1 x^2 y^2}$ 对于 z 轴的转动惯量.
- 17. 计算 $I = \int_L (e^x \sin y 2(x+y)) dx + (e^x \cos y x) dy, L$ 是从原点 O(0,0) 沿折线 y = |x - 1| - 1 至点 A(2,0) 的折线段.
- 五、证明题 (每小题 8 分, 共 24 分)

- 18. 证明 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{\sqrt{n}} \left(1 + \frac{1}{n}\right)^n$ 对于 x 在 $(0, 2\pi)$ 内闭一致收敛.
- 19. 已知函数 z = z(x,y) 满足 $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$. 设 $u = x, v = \frac{1}{y} \frac{1}{x}, \varphi = \frac{1}{z} \frac{1}{x}$. 证明: 对函数 $\varphi = \varphi(u,v)$, 成立 $\frac{\partial \varphi}{\partial y} = 0$.
- 20. 设 Ω 为空间二维单连通区域, 三元向量函数 $\vec{F} \in C^1(\Omega)$. 证明: 对 Ω 内任一闭曲面 Σ 都有 $\iint_{\Sigma} \vec{F} \cdot \vec{n} dS = 0$ 的充分必要条件是在 Ω 内恒有 $\nabla \cdot \vec{F} = 0$, 其中 \vec{n} 为 Σ 的单位 法向量.

期末试题 (3) (150 分钟内完成)

- 一、填空题 (每空 4 分, 共 28 分)
- 1、设 $\vec{F} = \{\sin x \cos y, \sin y \cos z, \sin z \cos x\}$, 则 rot $\vec{F} = \{\sin x \cos y, \sin y \cos z, \sin z \cos x\}$
- 2、级数 $\sum_{n=1}^{\infty} \left(\ln x + \frac{1}{n} \right)^n$ 的收敛域是
- 3、曲线 $\vec{r}(t) = \{1 \sin t, 1 \cos t, t\}$ 的曲率 $\boldsymbol{K} =$
- 4、函数 $f(x) = \begin{cases} 1, 0 \le x \le h, \\ 0, h < x \le \pi \end{cases}$ 在 $[0, \pi]$ 上的正弦级数是
- 5、交换积分次序后, $\int_{-1}^{1} dx \int_{x^3}^{1} f(x, y) dy =$
- 6、函数 $f(x,y) = x^2 + y^2 + 8x$ 在 $D: x^2 + y^2 \le 16$ 上的最大值是, 最小值是
- 7、直线 L: x = 2t, y = 1, z = t 绕 z 轴旋转一周所得的曲面方程是
- 二、判断题 (每小题 2 分, 共 8 分). 请在正确说法相应的括号中画 " \checkmark ", 在错误说法的 括号中画 " \times "。
- 8. 若级数发散,则对其任意加括号后所得级数也必发散.
- 9. 若级数 $\sum_{n=1}^{\infty} (a_{2n-1} a_{2n})$ 收敛, 且 $\lim_{n \to \infty} a_n = 0$, 则 $\sum_{n=1}^{\infty} a_n$ 收敛.
- 10. 设 S 是球面 $x^2 + y^2 + z^2 = 1$ 的外侧, 它关于 xoy 坐标面对称, 所以第二型曲面积分 $\iint_S z^{2017} dx dy = 0$
- 11. 若在点 (x_0, y_0) 的某邻域内 f(x, y) 的两个偏导函数连续,则 f(x, y) 在点 (x_0, y_0) 沿任意方向的方向导数都存在.
- 三、解答题 (每小题 6 分, 共 12 分)
- 12. 计算 $I = \oint_L y dx + z dy + x dz$, 其中 L 是球面 $x^2 + y^2 + z^2 = 4z$ 与平面 x + z = 2 的交线, 从 z 轴正向看去为逆时针方向.
- 13. $\mbox{if } D = \left\{ (x,y) \mid \left(x^2 + y^2 \right)^2 \le 2 \left(x^2 y^2 \right) \right\}, \ \mbox{if } \iint_D (x+y)^2 dx dy.$
- 四、计算题 (每小顥 7 分, 共 28 分)

- 14. 求冥级数 $\sum_{n=0}^{\infty} \frac{n + (-1)^n}{(2n)!!} x^n$ 的收敛域及和函数.
- 15. 设 L 为圆柱面 $x^2+y^2=1$ 与平面 z=y 的交线, 计算曲线积分 $\int_L z^2 ds$, 并将结果用 B 函数表示.
- 16. 设 S 是圆柱面 $x^2+y^2=1$ 介干平面 z=0 和 z=1 之间部分的外侧, 试计算第二型 曲面积分 $I=\iint_S (y-z)xdydz+(x-y)zdxdy$.
- 17. 计算 $I = \int_L \frac{(y-1)dx xdy}{x^2 + (y-1)^2}$, 其中 L 是椭圆 $x^2 + 2y^2 = 4$, 沿逆时针方向.
- 五、证明题 (每小题 8 分, 共 24 分)
- 18. 证明级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \arctan \frac{x}{n}$ 在 $(-\infty, \infty)$ 内一致收敛.
- 19. 设曲面 S 方程由 F(x,y,z)=0 确定, 其中 F(x,y,z) 具有连续的偏导数, 且 $F_z'\neq 0$, 又 S 可一对一地投影到 xOy 面的区域 D, 证明: S 的面积 $A=\iint_D \frac{\sqrt{F_x'^2+F_y'^2+F_z'^2}}{|F_z'|} dxdy$.
- 20. 设函数 z = f(x,y) 在点 (x_0,y_0) 的某邻域 $N((x_0,y_0))$ 内具有二险连续偏导数,且 f(x,y) 在 (x_0,y_0) 点取得极大值,证明: $f_{xx}(x_0,y_0) + f_{yy}(x_0,y_0) \le 0$.