VEKTOR BEBAS LINIER, BERGANTUNG LINIER DAN KOMBINASI LINIER

SUKMAWATI NUR ENDAH - UNDIP

DEFINISI VEKTOR BEBAS LINIER

• Misalkan $S = \{\overline{u}_1, \overline{u}_2, ..., \overline{u}_n\}$ adalah himpunan vektor di ruang vektor V, S dikatakan **bebas linier** (*linearly independent*), jika $k_1\overline{u}_1 + k_2\overline{u}_2 + ... + k_n\overline{u}_n = \overline{0}$ hanya mempunyai satu solusi (tunggal), yakni : $k_1 = 0, k_2 = 0,, k_n = 0$

Contoh: Diketahui $\overline{u} = (-1, 3, 2)$ dan $\overline{a} = (1, 1, -1)$ Apakah saling bebas linear di \mathbb{R}^3

Jawab: Tulis

$$k_1 \vec{u} + k_2 \vec{a} = \vec{0}$$

atau

$$\begin{pmatrix} -1 & 1 \\ 3 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

dengan Operasi Baris Elementer (OBE) dapat diperoleh :

$$\begin{pmatrix} -1 & 1 & 0 \\ 3 & 1 & 0 \\ 2 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

dengan demikian diperoleh solusi tunggal yaitu:

$$k_1 = 0$$
, dan $k_2 = 0$.

Ini berarti ū dan ā adalah saling bebas linear.

DEFINISI VEKTOR BERGANTUNG LINIER

• Misalkan $S = \{\overline{u}_1, \overline{u}_2, ..., \overline{u}_n\}$ adalah himpunan vektor di ruang vektor V, S dikatakan **bergantung linier** (*linearly dependent*), jika terdapat scalar $k_1, k_2,, k_n$

yang tidak nol sehingga berlaku $k_1\overline{u}_1 + k_2\overline{u}_2 + ... + k_n\overline{u}_n = \overline{0}$

Contoh:

Misalkan

$$\overline{a} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} \quad \overline{b} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad \overline{c} = \begin{pmatrix} 2 \\ -6 \\ -4 \end{pmatrix}$$

Apakah ketiga vektor diatas saling bebas linear R³

Jawab:

Tulis :
$$\overline{0} = k_1 \overline{a} + k_2 \overline{b} + k_3 \overline{c}$$

atau
$$\begin{pmatrix} -1 & 1 & 2 \\ 3 & 1 & -6 \\ 2 & -1 & -4 \end{pmatrix} \begin{pmatrix} k1 \\ k2 \\ k3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

dengan OBE diperoleh:

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Didapatkan:

$$k_2 = 0$$

$$k_1 - k_2 - 2k_3 = 0 \implies k_1 = 2k_3$$

Ini menunjukan bahwa

 k_1 , k_2 , k_3 mrp solusi tak hingga banyak

Jadi $\bar{a}, \bar{b}, \bar{c}$ adalah vektor-vektor yang bergantung linear.

CATATAN

- 1. Untuk kumpulan vektor yang terdiri dari hanya satu elemen u dengan $u \neq 0$, adalah bebas linier, sebab jika $\lambda u = 0$ di mana $u \neq 0$ maka $\lambda = 0$.
- 2. Untuk kumpulan vektor yang terdiri dari hanya satu elemen 0 vektor nol adalah vektor yang bergantungan linier, sebab jika λ 0 = 0, maka terdapat λ ≠ 0.

- {(2,1,3,4,5)} merupakan kumpulan vektor bebas linier, karena elemen kumpulan vektor ini terdiri dari satu elemen yaitu (2,1,3,4,5)
- {(0,0,0)} merupakan kumpulan vektor yang bergantung linier, sebab terdapat scalar $k \neq 0$, sehingga (0,0,0) = (k_1 .0, k_2 .0, k_3 .0) = (0,0,0)

KOMBINASI LINIER

Definisi

Suatu vektor w disebut sebagai kombinasi linier dari vektor v₁, v₂,....v_n, jika bisa dinyatakan dalam bentuk

$$W = k_1 V_1 + k_2 V_2 ... + k_n V_n$$

dengan k₁, k₂, ... k_n adalah skalar

Catatan :

■ Jika n=1, maka w = k_1v_1 → w adalah kombinasi linier dari suatu vektor tunggal v_1 jika w adalah suatu penggandaan skalar dari v_1

 Setiap vektor v = (a, b, c) dalam R³ bisa dinyatakan sebagai suatu kombinasi linier dari vektor basis standar

$$i = (1,0,0), j = (0,1,0), k = (0,0,1)$$

karena

$$v = (a, b, c) = a (1,0,0) + b (0,1,0) + c (0,0,1)$$

= $ai+bj+ck$

- Diketahui ruang vektor V dibentuk oleh sekumpulan vektor {(-2,3), (6,-9)}
 - Selidiki apakah pembentuk ruang vector bebas linier atau bergantung linier?
 - Gambarkan bentuk geometrinya!

Penyelesaian :

- V = {(-2,3), (6,-9)}, sebutlah $\bar{a} = (-2,3)$ dan $\bar{b} = (6,-9)$
- $k_1 \bar{a} + k_2 \bar{b} = 0$
- $k_1(-2,3) + k_2(6,-9) = 0$

LANJUTAN

- $-2k_1 + 6k_2 = 0 \dots (1)$
- $3k_1 k_2 = 0 \dots (2)$
- Persamaan (1): (-2) $\Leftrightarrow k_1 3k_2 = 0$
- Persamaan (2): $3 \Leftrightarrow k_1 3k_2 = 0$
- Kedua persamaan sama, sehingga diperoleh hubungan k_1 = 3 k_2 , ambil k_1 =3, k_2 =1
- Jadi V merupakan kumpulan vector yang bergantung linier.
- Berlaku hubungan 3(-2,3) +(6,-9) = (0,0) atau $3\bar{a}+\bar{b}=\bar{0}$ atau $\bar{b}=-3\bar{a}$

LANJUTAN

Bentuk geometri :

Dengan mengasumsikan \bar{a} = $\overline{u_1}$ dan \bar{b} = $\overline{u_2}$

Tuliskan $\bar{u}=(8,9)$ sebagai kombinasi dari $\bar{u}_1=(2,1)$ dan $\bar{u}_2=(1,3)$ dan nyatakan bentuk geometrinya!

Penyelesaian:

- Dengan cara yang sama dengan contoh sebelumnya, sebagai Latihan ya..., didapatkan k_1 =3, k_2 =1
- $\bar{u} = 3 \, \overline{u_1} + 2 \, \overline{u_2}$

LANJUTAN

Bentuk geometri

- Tinjau vektor u = (1,2,-1) dan v = (6,4,2). Tunjukkan bahwa:
 - w = (9,2,7) adalah kombinasi linier dari u dan v
 - w' = (4,-1,8) bukanlah kombinasi linier dari u dan v

Penyelesaian:

• Agar w adalah kombinasi linier dari u dan v, maka harus ada k_1 dan k_2 sedemikian hingga:

$$(9,2,7) = k_1(1,2,-1) + k_2(6,4,2)$$

- Coba carilah nilai k₁ dan k₂!
- Bagaimana dengan w'?

Apa sih contoh hasil dari sebuah kombinasi linier??

$$1 \cdot u_1 + 1 \cdot u_2 =$$

TERIMA KASIH, ADA PERTANYAAN?