Exercice 0:

- 1. Show that [n] has n! permutation. $([n] = \{1, 2, \dots, n\})$
- 2. Let $n, m \in \mathcal{N}$ and $(x_i)_{i \in [\![1, mn+1]\!]}$ be a sequence of natural numbers. Show that the given sequence admits an non-decreasing sub-sequence of length n+1 or a non-increasing sub-sequence of length m+1.

Exercice 1:

Prove the following identities using combinatorial arguments :

1.
$$\sum_{0 \le 2i \le n} \binom{n}{2i} = 2^{n-1}$$
 et $\sum_{0 \le 2i+1 \le n} \binom{n}{2i+1} = 2^{n-1}$.

2.
$$\sum_{i=0}^{n} i \binom{n}{i} = n2^{n-1}$$
.

3.
$$\binom{n}{l}\binom{l}{k} = \binom{n}{k}\binom{n-k}{l-k}$$
, for $0 \le k \le l \le n$.

4. Given $m, n \in \mathcal{N}$ such that $1 \leq m \leq n$.

$$\sum_{i=m}^{n} \binom{n}{i} \binom{i}{m} = 2^{n-m} \binom{n}{m}$$

5. For all $n \geq 2$:

$$\binom{2n}{2} = 2\binom{n}{2} + n^2$$

6. For all $n \geq 3$:

$$\sum_{k=3}^{n} k(k-1)(k-2) \binom{n}{k} = n(n-1)(n-2)2^{n-3}$$

Exercice 2:

Let N > 0 be a natural number

1. Let \mathcal{E}_2 be the a family consisting of all subsets of size 2 of the set [N]. Partition the family \mathcal{E}_2 in a good manner in order to recover the equality:

$$\sum_{j=1}^{N-1} j = \frac{N(N-1)}{2}$$

2. By partitioning the set $[N]^3$ according to the maximal value of its items (i.e. (x,y,z) and (x',y',z') are in the same partition if $\max(x,y,z) = \max(x',y',z')$), recover a the expression $\sum_{j=1}^{N-1} j^2$ as a function of N.

Exercice 3:

Given n_1, \ldots, n_{12} a family of 12 integers. Show there exist $i \neq j$ such that $n_i - n_j$ is a multiple of 11 (i.e. $(n_i - n_j) \mod 11 = 0$).

Exercice 4:

Show that, in a group of 6 people there always exists either a sub-group of 3 people who don't know each other, or a sub-group of 3 people who all know each other.

Exercice 5:

A pass word is considered valid if it satisfies the following conditions:

- It consists of 8 characters taken from the 26 letters of the alphabet, the numbers 0 et 9, and the 7 special characters!,?,%, #, @, &, \$.
- It includes at least one letter from the alphabet.
- It includes at least one number.
- It includes at least one special character.

Determine the number of valid passwords.

Exercice 6:

Let $m, n \in \mathcal{N}$. Denote by s(m, n) the number of surjective function from the set [m] to the set [n].

- 1. What is s(m, n) if m < n? and if m = n?
- 2. Prove the following formula using the inclusion–exclusion principle :

$$s(m,n) = n^m - n(n-1)^m + \binom{n}{2}(n-2)^m + \dots + (-1)^k \binom{n}{k}(n-k)^m + \dots + (-1)^n n$$

Exercice 7 (Ramsey's theorem):

- 1. Show that $\forall (n_r, n_b) \in \mathbb{N}^2, \exists N \in \mathbb{N}$ such that, for any 2 (edge) coloring $\{r, b\}$ of the complete graph K_N , there exists a color $c \in \{r, b\}$ for which there is a complete subgraph K_{n_c} which is monochromatic in the color c. (the smallest N for which this property holds is denoted by $R(n_r, n_b)$).
- 2. Show that $\forall k \in \mathbb{N}, \forall (n_1, n_2, \dots, n_k) \in \mathbb{N}^k, \exists N \in \mathbb{N} \text{ such that, for any } k \text{ (edge) coloring of the complete graph } K_N, \text{ there exists a color } c \in [\![1, k]\!] \text{ for which there is a complete sub-graph } K_{n_c} \text{ which is monochromatic in the color } c.$ (the smallest N for which this property holds is denoted by $R(n_1, \dots, n_k)$).