

Experiment Report

陳昱瑋 Chen Yu-Wei 國立交通大學電子工程所

yuweiichen@gmail.com

Web: www.yuweiichen.com GitHub: www.github.com/yuweichen1008

Outline

- Experiment Setup
- Simulation Parameters
- Solution on binding
- Unsolved Problem
- Experiment

Experiment Setup

- ✓ Thermal Sensors probe (1~100°C)
- ✓ Flow sensors (G ½")
- √ Valve
- ✓ Tubing
- ✓ Connector (3/4" to 8 mm)
- ✓ Pump (45W, bought)
- ☐ Pressure Chamber(with gauge)
- □ Power Source

```
JM = 28 89 40 EE 8 U U 0E
 Chip = DS18B20
 Data = 1 AB 1 4B 46 7F FF 5 10 92 CRC=92
 Temperature = 26.69 Celsius, 80.04 Fahrenheit
Wo more addresses.
ROM = 28 89 46 EE 8 0 0 6E
 Data = 1 AB 1 4B 46 7F FF 5 10 92 CRC=92
 Temperature = 26.69 Celsius, 80.04 Fahrenheit
Wo more addresses.
ROM = 28 89 46 EE 8 0 0 6E
 Chip = DS18B20
 Data = 1 AB 1 4B 46 7F FF 5 10 92 CRC=92
 Temperature = 26.69 Celsius, 80.04 Fahrenheit
No more addresses.
ROM = 28 89 46 EE 8 0 0 6E
 Chip = DS18B20
 Data = 1 AB 1 4B 46 7F FF 5 10 92 CRC=92
 Temperature = 26.69 Celsius, 80.04 Fahrenheit
lo more addresses.
ROM = 28 89 46 EE 8 0 0 6E
 Chip = DS18B20
 Data = 1 AB 1 4B 46 7F FF 5 10 92 CRC=92
 Temperature = 26.69 Celsius, 80.04 Fahrenheit
lo more addresses.
ROM = 28 89 46 EE 8 0 0 6E
 Chip = DS18B20
 Data = 1 AB 1 4B 46 7F FF 5 10 92 CRC=92
 Temperature = 26.69 Celsius, 80.04 Fahrenheit
lo more addresses.
ROM = 28 89 46 EE 8 0 0 6E
 Chip = DS18B20
```

Experiment Flow chart

Unsolved Problem

• Problem 1:

Heat accumulation

heat might accumulated on top metal layers according to the figure

• Problem 2:

FR4 drilling

The accurate depth of the pit for T/Rx is 1.16 mm, CNC is more suitable in this cooling case for PCB drilling will cover a thin layer on top of surface, which is not optimal for cooling.

LTCC module

Bonding PCB to Aluminum Structure

Assembly cell structure

Aligning the PCB on VC

Clean Anodize Vapor Chamber Surface

Pressure on both side

Pre-apply Thermal Tape

Tape Layer Thickness Less than 150-200um

Thermal Tape

 3M 8805 High Adhesion Thermally Conductive Adhesive Transfer Tape

• Thickness: 5 mil (0.13 mm)

Conductivity 0.6 W/m-K

Adhesion: 5.8 @RT N/cm

✓ Problem: Aluminum Surface is wetout, which cause the tape less adhesive on vapor chamber side

Solution: coarse the surface with scratches (or silicone)

Tape Configuration

Experiment Setup

- Tube: 8 mm 12 mm tube (in ISO)
- All the sensors are in 12 mm tube; while the in/out of vapor chamber is 8 mm
- Surface and vapor chamber temperature sensor does not attach to the surface directly, only for the reference purpose.

No Flow Temperature chart

No Flow Experiment

Flow Temperature chart

No Flow / Flow compare

Data Format and Parser


```
Experiment_parser.py
      import sys
       import csv
   class DataParser:
           # constructor
           def init (self, filename):
               self.filename - filename
               self_line_cnt = 0
               self.data = []
               self.content - []
               self-original time - 8880
               self.openfile()
           def openfile(self):
               with open(self.filename) as f:
                   reader = f,readlines()
               self_content = [x_strip() for x in reader]
               self_line cnt = len(self.content)
               self.original_time = int(self.content[1][self.content[1].find("...") + 3:])
               print("Successfully open the file" + str(self.filename) + " with "+ str(self.line cmt) + " data.")
               self_read()
           def cead(self):
               print("Start reading...")
               for i in range(self.line_cnt):
                   if{(i %2) -- 0):
                       inflow = self.content[i].find("InFlow") = len("InFlow is:")
                       outflow = self.content[i].find("Outflow") + len("Outflow is:")
                       f1 = self.content[i].find("F1") + len("F1 is:")
                       #2 = self.content[i].find("F2") + len("F2 is:")
```

```
Temperature InFlow is:25.69 = OutFlow is:25.94 = F1 is:27.50 = F2 is:26.19
   Requesting temperatures...13464
 3 Temperature InFlow is:25.69 = OutFlow is:25.94 = F1 is:27.56 = F2 is:26.31
 4 Requesting temperatures...16007
   Temperature InFlow is:25.69 = OutFlow is:25.94 = F1 is:27.62 = F2 is:26.44
 6 Requesting temperatures...18549
   Temperature InFlow is:25.69 = OutFlow is:25.94 = F1 is:28.56 = F2 is:26.25
 8 Requesting temperatures...21092
 9 Temperature InFlow is:25.69 = OutFlow is:25.94 = F1 is:30.44 = F2 is:26.12
10 Requesting temperatures...23633
11 Temperature InFlow is:25.75 = OutFlow is:25.94 = F1 is:33.06 = F2 is:26.19
12 Requesting temperatures...26175
13 Temperature InFlow is:25.81 = OutFlow is:25.94 = F1 is:36.38 = F2 is:26.44
14 Requesting temperatures...28716
15 Temperature InFlow is:25.87 = OutFlow is:26.00 = F1 is:39.81 = F2 is:26.12
16 Requesting temperatures...31256
   Temperature InFlow is:25.87 = OutFlow is:25.94 = F1 is:42.88 = F2 is:26.25
   Requesting temperatures...33796
19 Temperature InFlow is:25.94 = OutFlow is:25.94 = F1 is:47.44 = F2 is:26.44
20 Requesting temperatures...36336
   Temperature InFlow is:26.00 = OutFlow is:26.00 = F1 is:51.56 = F2 is:26.44
   Requesting temperatures...38875
   Temperature InFlow is:26.06 = OutFlow is:26.00 = F1 is:55.31 = F2 is:26.56
   Requesting temperatures...41414
   Temperature Inflow is:26.12 = OutFlow is:26.00 = F1 is:58.88 = F2 is:26.25
   Requesting temperatures...43953
   Temperature InFlow is:26.12 = OutFlow is:26.00 = F1 is:62.50 = F2 is:26.50
   Requesting temperatures...46491
```

Future works

- Test out what's the best adhesive for aluminum surface (Ra 6.3)
- Design the next version based on current experiment result

Thank you