GATE-2022

EE23BTECH11016 - Aditi Dure*

Question

The block diagram of a two-tap high-pass FIR filter is shown below. The filter transfer function is given by $H(z) = \frac{Y(z)}{X(z)}$. If the ratio of maximum to minimum value of H(z) is 2 and $|H(z)|_{max} = 1$, the coefficients β_0 and β_1 are _____ and _____, respectively.

Block Diagram Given in Question

Figure: Block diagram

Options

- **1** 0.75, -0.25
- **2** 0.67, 0.33
- **3** 0.60, -0.40
- **4** -0.64, 0.36

GATE BM 2022

Solution – Input Parameter Table

Variable	Description	Value
H(z)	Transfer Function	$\beta_0 z^{-1} + \beta_1$
$ H(z) _{max}$	Maximum value of Transfer Function	1
$ H(z) _{min}$	Minimum value of Transfer Function	$\frac{1}{2}$

Table: input parameters

Since H(z) is complex, on using Triangle Inequality, we get

$$|x+y| \le |x| + |y| \tag{1}$$

And its corollary

$$||x| - |y|| \le |x + y| \tag{2}$$

where x and y are complex numbers.

$$||z^{-1}\beta_0| - |\beta_1|| \le |z^{-1}\beta_0 + \beta_1| \le |z^{-1}\beta_0| + |\beta_1|$$
 (3)

From Table 1

$$||z^{-1}\beta_0| - |\beta_1|| \le |H(z)| \le |z^{-1}\beta_0| + |\beta_1|$$
 (4)

As we know that |z| = 1,

$$||\beta_0| - |\beta_1|| \le |H(z)| \le |\beta_0| + |\beta_1|$$
 (5)

So, we can conclude that

$$|H(z)|_{max} = |\beta_0| + |\beta_1|$$
 (6)

Now from Table 1

$$1 = |\beta_0| + |\beta_1| \tag{7}$$

Similarly,

$$\frac{1}{2} = ||\beta_0| - |\beta_1|| \tag{8}$$

On solving (7) and (8), we get

$$|\beta_0| = 0.75, |\beta_1| = 0.25 \tag{9}$$

OR

$$|\beta_0| = 0.25, |\beta_1| = 0.75 \tag{10}$$

Hence the correct answer is option (A)