ii. Explain the terms specific energy, critical depth, critical velocity as applied to non-uniform flow.	5	2	3	3	
to non-uniform now.					
(OR)					
b. Find the discharge through a trapezoidal notch which is 1m wide at the top and 0.4 m at the bottom and is 0.3 m in height. The head of water on the notch is 20 cm. Assume 'C _d ' for rectangular portion = 0.62 while for triangular portion = 0.60.	10	2	3	3	3
29. a. A centrifugal pump is to discharge 0.118 m ³ /s at a speed of 1450 r.p.m against a head of 25 m. The impeller diameter is 250 mm, its width at outlet	10	2	4	3	÷
is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.					
(OR)					
b. A single acting reciprocating pump, running at 50 r.p.m delivers 0.01 m ³ /s of water. The diameter of the piston is 200 mm and stroke length 400 mm.	10	2	4	3	
Determine (i) The theoretical discharge of the name					
(i) The theoretical discharge of the pump					5:
(ii) Coefficient of discharge					
(iii) Slip and percentage slip of the pump					
30. a. A Kaplan turbine runner is to be designed to develop 9100 kW. The net available head is 5.6 m. If the speed ratio is 2.09, flow ratio = 0.68, overall efficiency = 86% and the diameter of the boss is 1/3 the diameter of the runner. Find the	10	2	5	3	
(i) Diameter of the runner					
(ii) Speed of turbine					
(iii) Specific speed of the turbine					
(OR)	10		_		
b. A pelton wheel is to be designed for a head of 60 m when running at 200 r.p.m. The pelton wheel develops 95.6475 kW shaft power. The velocity of	10	2	5	3	
buckets = 0.45 times the velocity of the jet, overall efficiency = 0.85 and co-					
efficient of velocity is equal to 0.98. Determine					
(i) Diameter of jet					
(ii) Diameter of wheel					
(iii) Width and depth of buckets					
(iv) Number of buckets on the wheel					
* * * *					

|--|

B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

18CEC206T – HYDRAULIC ENGINEERING AND DESIGN

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(1)			to hall invigilator at the end of 40 th		e	t snoun	u oc	, 11411	Iucc
(ii)			t - B should be answered in answer						
Time:	21/2	2 Ho	urs			Max. I	Mar	ks: ′	75
			$PART - A (25 \times 1)$	= 25	Marks)	Marks	BL	со	PC
			Answer ALL						
	1	Dim	ensional analysis is based on	Quest	ions	1	1	1	3
	1.		Newton's law of viscosity	(B)	Fluid properties				
		` '	Flow properties	` '	The principle of dimensional homogeneity				
	2	The	dimension of power is			1	1	I	3
			ML^2T^{-3}	(B)	MLT^{-1}				
			LT^{-1}		ML^{T} $ML^{-1}T^{-1}$				
		(0)	LT^{-1}	(D)	ML T				
	3.	The	number of dimensionless term i		* 1	1	1	1	3
		(A)	(m-n)		(n-m)				
		(C)	(l-m)	(D)	(t-n)				
	4.	The	square root of ratio of the inertia	a force	e to gravity force is called	1	1	1	3
			Froude's number		Reynolds number				
		(C)	Weber's number		Mach's number				
	5	The	actual structure of machine is ca	alled		1	1	1	3
			Prototype	(B)	Similitude				
		(C)	Mach's model law	(D)	Model				
	6	A cl	annel without any cover at the t	on is 1	znovin ag	1	1	2	3
			Natural channel	-	Open channel				
			Artificial channel		Closed channel				
		(0)	Tutificial chamici	(D)	Closed chamier				
	7.	The	flow in the open channel is critic	cal wh	nen Froude number is	1	2	2	3
		(A)	Less than 1	(B)	Equal to 1				
9-		(C)	More than 1	(D)	Equal to zero				
	8.	For	he best rectangular channel sect	ion	regard to the same of the	1 -	2	2	3
		(A)	b		y = b				
4 A		\- - /	$y = \frac{1}{3}$	(-)					
		(C)	h	(D)	b			i)	
		()	v = =		v = =				

					1 0									
	9.	The strength of jump is governed by the		1	1 2	2 3		The specific speed of a tu			1	2	5 3	
) Downstream velocity					(A) $N\sqrt{P}$	(B)	$N\sqrt{P}$				
00		(C) Upstream Froude number (D)) Bed slope					$\overline{H^{5/4}}$		H				
				1.0	1 2	2		(C) $N\sqrt{P}$	(D)	$N\sqrt{P}$				
	10.	The curve for kinetic energy is a		1	1 2	2 3								
		, ,) Hyperbola					H^2		H^3				
		(C) Ellipse (D)) Straight line				22	T			1	1	5 3	
				1	2 3	2 2		In a reaction turbine the fi			1	1	3 3	
	11.	Gradually varied flow may be caused due		-1	2 3	3 3		(A) Provide safety to tur	, ,	Prevent air from entering				
		(A) Depth of flow changes (B) abruptly in the channel) Loss of energy in the channel					(C) Reconvert the kineti- flow energy	c energy to (D)	Increase the rate of flow				
		(C) The change in slope of the (D)) Watted perimeter of the channel				23		rhines is least eff	ficient under part load conditions	1	1	5 3	
		channel) wetted perimeter of the chainer					(A) Propeller		Francis				
	12	The depth of flow at which the specific e	neros, is minimum is called	1	1 3	3 3		(C) Kaplan	` '	Pelton				
	12.		Critical velocity					(C) Kapian	(D)	1 Citon				
							24	Overall efficiency of the t	turbing is defined	as the ratio of	1	1	5 3	
		(C) Critical area (D) Critical depth					•						
	12	A notab is constally made of		1	1 3	3 3		shaft power	water jet to (b)	Shaft power to bucket power				
	15.	A notch is generally made of	Matallia plata						volume of (D)	Shaft power to power supplied				
) Metallic plate					water striking the ru						
		(C) Concrete (D) Plastic plate					water surking the ru	IIIICI	by water jet				
	1.4	Maximum discharge over a broad-crested	d wair is given by	1	2 3	3 3	25	For heads greater than	Delton turl	bine is generally employed.	1	2	5 3	
	14.	-						(A) 350 m		150 m				
		~	$Q = Cd.L.H^{3/2}$					(C) 60 m	` '	15 m				
		(C) $Q = Cd.L.H^{5/2}$ (D)	$Q = 0.5 Cd.L.H^{5/2}$					(C) 00 III	(D).	15 Ш				
	15.	The side slopes of a cippoletti weir is	***************************************	111	2 3	3 3		PART -	$-B (5 \times 10 = 50)$	Marks)	Marks	BL	со ро	
		(A) 1 horizontal to 3 vertical (B)	1 horizontal to 4 vertical						wer ALL Questie					
		(C) 1 horizontal to 2 vertical (D) 1 horizontal to 1 vertical					TILIS	Wei ALL Questi	Olis				
							26 a i	What are the advantages of	of Model testing?		5	2	1 3	
	16.	A current meter is an instrument used to	measure the	1	1 4	4 3	20. 4.1.	What are the devantages	or wooder testing.					
		(A) Rate of flow in a stream (B)) Pressure in a stream				ii	Find an expression for the	he drag force on	smooth sphere of diameter 'D',	5	2	1 3	
		(C) Velocity of flow at a point in (D) Temperature in a stream							a fluid density ' ρ ' and dynamic				
		the flowing stream						viscosity '\mu'.	velocity v iii	a find density p and dynamic				
	17.	The velocity of flow in streams can be m	easured by means of	1	1 4	4 3		viscosity μ.						
		(A) Floats (B)) Manometer						(OR)					
		(C) Venturi meter (D) Orifice meter				h		(OR)	[awa]	10	2	1 3	
								Show that the lift F _L on ai	irfoil can be expre	essed as $F_L = \rho V^2 d^2 \phi \left[\frac{\rho V d}{\mu}, \alpha \right].$				
	18.	The delivery valve while starting centrift	agal pump is kept	1	1 4	4 3		· ·		μ				
		(A) Fully open (B)) Half open											
		(C) Fully closed (D) In any position							of a rectangular channel carrying		2	2 3	
										e of the channel being 1 in 2000.				
	19.	The flow ratio in case of a centrifugal pu		1	2 4	4 3		Take Chezy's constant 'C	2' = 50.					
) 0.25-0.40						(OR)					
		(C) 0.40-0.50 (D	0.50-0.65				b. 1	Design a tranezoidal chan	` /	30 m ³ /sec of water. The bed slope	10	2	2 3	
			*							of 1 horizontal to 1 vertical. Take				
				1	1 /	4 3			and blue blope o					
	20.	Discharge through a double acting recipr	ocating pump is given as	1	1 4			$^{*}C' = 50.$						
	20.		ocating pump is given as) ALN	1				'C' = 50.						
	20.	(A) \underline{ALN} (B		1			28. a.i.	The depth of flow of water		ction of a rectangular channel of 4		2	3 3	
	20.	$\frac{ALN}{60} $ (B)) ALN				28. a.i.	The depth of flow of water m wide is 0.50 m. The	discharge throu	ugh the channel is 16 m ³ /s if a		2	3 3	
	20.	$ \begin{array}{ccc} \text{(A)} & \underline{ALN} & \text{(B)} \\ \hline \text{(C)} & \underline{ALN} & \text{(D)} \end{array} $) <u>ALN</u> 120) <u>2ALN</u>	l			28. a.i.	The depth of flow of water m wide is 0.50 m. The hydraulic jump takes place	discharge throu			2	3 3	
		$ \begin{array}{c} \text{(A)} \underline{ALN} \\ \text{(C)} \underline{ALN} \\ 30 \end{array} $ $ \begin{array}{c} \text{(B)} \\ \text{(D)} \\ \end{array} $) <u>ALN</u> 120				28. a.i.	The depth of flow of water m wide is 0.50 m. The	discharge throu	ugh the channel is 16 m ³ /s if a		2	3 3	
F	20.	$ \begin{array}{c} \text{(A)} \underline{ALN} \\ \text{(C)} \underline{ALN} \\ 30 \end{array} $ $ \begin{array}{c} \text{(B)} \\ \text{(D)} \\ \end{array} $) <u>ALN</u> 120) <u>2ALN</u>	26MF418C		т	28. a.i.	The depth of flow of water m wide is 0.50 m. The hydraulic jump takes place	discharge throu	agh the channel is 16 m ³ /s if a tream side, find the depth of flow				