High-throughput multimodal automated phenotyping (MAP) with application to PheWAS

Department of Statistical Sciences
University of Toronto

SHAOHAN CHANG and TIMOTHY REGIS

November 30, 2022

Introduction and Motivation

What is the problem being solved?

How to develop an algorithm which can phenotype patients accurately and efficiently?

Why is it an important problem?

- High-throughput technologies is widely applied to dissect genomic and biologic architecture of complex human traits.
- Translation of 'omics' finding to improvement in patient care, key link to the high- throughput biologic data with detailed high-quality phenotypic data (challenging problem).
- Efficient and accurate algorithm to phenotyping is in urgent need.

What Previous Work Exists?

Approaches using International Classification of Diseases (ICD) codes only.

- 1. PheWAS approach.
- loss of power for association.

Approaches combining ICD codes and narrative features identified via natural language processing (NLP).

- 1. Rule-based manual curation
- 2. Machine learning-based supervised learning
- Labor intensive and limiting the feasibility of using

Approaches to improve the efficiency for developing phenotyping algorithms.(Reduce the level of human input required)

- 1. Active Sampling
- 2. Feature Refinement
 - Curate silver standard labels or have variable accuracy.

Approaches that are fully automated.

- 1. Phenotyping algorithm based on normal mixture modeling using ICD codes only.
- Not provide the final classification of whether a participant had a specific phenotype necessary for clinical studies.

Methods

What methods were used

MAP procedure:

- ICD codes and NLP features corresponding to the target phenotype
- Annotation via unsupervised ensemble latent mixture modeling.

Identify the ICD code corresponding to the target phenotype

- Defined by the investigator or by selecting a PheWAS code from the catalog to use the associated ICD mapping.
- ICD feature.

Identify the NLP corresponding to the target phenotype

- Main ICD feature is extracted from the data set.
- Identify the medical concepts by **mapping** relevant clinical terms to the CUIs listed in the Unified Medical Language System
- **Combining all CUIs** mapped in the 3 steps gives a list of CUIs to represent each phecode.

Methods

Annotation via unsupervised ensemble latent mixture modeling.

$$\begin{split} P(X_{\text{count}} = x) &= \theta \frac{\left(\alpha \text{Note}_{\text{log}} + \lambda_1\right)^x e^{-(\alpha \text{Note}_{\text{log}} + \lambda_1)}}{x!} \\ &+ (1 - \theta) \frac{\left(\alpha \text{Note}_{\text{log}} + \lambda_0\right)^x e^{-(\alpha \text{Note}_{\text{log}} + \lambda_0)}}{x!}, \end{split}$$

- Estimate the parameters in the model by EM algorithm.
- The prevalence estimate is then used as a threshold to assign a binary classification of whether a participant has the phenotype.

Methods

What are the key assumptions of the methods?

Poisson mixture model

How are the methods different from previous work?

- NLP with ICD codes for use in a high-throughput phenotype algorithm pipeline
- MAP is the ability to assign a threshold to provide yes/no classification for each phenotype.

Why is this approach a logical one to take?

- ICD codes and narrative features identified via natural language processing (NLP) enhance the accuracy of phenotyping.
- Both ICD and NLP features automatedly, so the algorithm across institutions will not be labor intensive.

Results

Data:

EHR and Genetic Data Collected from 2 sources:

- Partners Biobank
 - Bio-data repository from Boston
 - 17,805 patients; 16 phenotypes

- Veteran's Affairs Million Veteran's Program (VA MVP)
 - Longitudinal cohort study on military exposure and genetics
 - 330,374 patients; PheWAS on 17 phenotypes

Assumptions:

Key distributional assumptions:

- Poisson Mixture Model
- Quasi-binomial model
- Log-normal model
 - All easily checkable

Not included in paper!

Accomplishments:

Primary Objectives:

- Develop an automated high-throughput phenotyping method
 - Focusing on PheWAS
- Develop a process for generating a binary classification of a phenotype's presence

Success determined through comparisons to current methods in use

Comparisons

Figure 1. Top panel: Comparison of AUCs with gold standard labels for ICD-9 count, NLP, PheNorm, and MAP for 16 disease phenotypes using the MAP automated feature curation. Bottom panel: Comparison of AUCs for the 16 phenotypes features manually curated by domain experts.

Figure 2. Performance of phenotype classification using MAP compared to ICD-9 codes for 16 phenotypes with gold-standard labels. (F-score, negative predictive value [NPV], positive predictive value [PPV, precision]).

phenotype	phecode nCase (nCon		OR (P-value)		
			MAP	ICD2	
Ischemic Heart Disease	411	83772 (246602)	0.945 (3.89e-19)	,	
Coronary atherosclerosis	411_4	67720 (262654)	0.948 (2.27e-16)	,	
Abdominal aortic aneurysm	442_11	7894 (322480)	0.865 (3.29e-16)	0.868 (2.86e-16)	
Aortic aneurysm	442_1	9946 (320428)	0.885 (6.7e-14)	0.895 (6.72e-13)	
Other aneurysm	442	11349 (319025)	0.908 (4.21e-10)	0.911 (1.93e-10)	
unspecified	411 8	49191 (281183)	0.961 (1.45e-07)	0.951 (8.4e-11)	
Atopic/contact dermatitis due to other		()	(1.100 0.1)	0.001 (0.70 11)	
or unspecified	939	39400 (290974)	1.03 (2.24e-06)	1.03 (0.000869)	
Peripheral vascular disease, unspecified	443 9	21438 (308936)	0.946 (7.89e-06)	0.953 (1.43e-05)	
		,		,	
Rash and other nonspecific skin eruption		21994 (308380)	1.04 (8.9e-06)	1.02 (0.0483)	
Chronic liver disease and cirrhosis	571	12195 (318179)	1.08 (1.38e-05)	1.05 (0.000256)	
Atherosclerosis of native arteries of the	More well-write considerance	week the commence of an arrangement as a more discharge	August the order out of the same	Nadithmannavion sales somethin each salas	
extremities with intermittent claudication		5173 (325201)	0.912 (2.8e-05)	0.901 (1.54e-06)	
Peripheral vascular disease	443	22944 (307430)	0.952 (3.22e-05)	0.958 (6.32e-05)	
End stage renal disease	585_32	3990 (326384)	1.12 (3.29e-05)	1.06 (0.0196)	
Myocardial infarction	411_2	18241 (312133)	0.953 (5.75e-05)	0.946 (2.22e-06)	
Atherosclerosis of the extremities	440_2	7768 (322606)	0.932 (0.000367)	0.924 (9.98e-06)	
Other mental disorder	306	26794 (303580)	1.03 (0.00095)	1.05 (7.34e-06)	
Atherosclerosis	440	10193 (320181)	0.959 (0.01)	0.937 (3.04e-05)	

Supplementary Table 3: PheWAS of IL6R (rs2228145) using phenotypes defined using the MAP and the standard approach (ICD), where either the MAP p value or the ICD p value passes the Bonferroni threshold of 3.73x10E-5 adjusting for 1342 tests. Reported also were the number of cases and controls for each phenotype

Conclusion

Key Summary:

3 Main Contributions:

- An automated method for selecting specific NLP features for a phenotype
- An automated method for combining NLP features and ICD codes relating to a phenotype
- And a method for generating a binary classification of a phenotype's presence

Primary Takeaway:

 MAP algorithm is "more efficient, robust, and accurate," than competing methods, and can provide a significant improvement to high-throughput phenotyping

Confidence:

Results are highly convincing

- Achieved general all-around significance
- Outperformed all other options in almost every case
- High-degree of robustness benefits new data

Validation

- Compared Full model to simplified versions
 - Full model still outperforms

Contributions:

MAP algorithm provided multiple unique and novel discoveries, as well as improvements.

Two previous papers:

- Yu et al 2015 **AFEP**
 - Failure: Large-scale data
- Yu et al 2017 PheNorm
 - Failure: Robustness and classification

PheWAS Results:

Figure 3: PheWAS results using MAP-defined phenotypes for the IL6R SNP. Phenotypes significantly associated with IL6R after Bonferroni correction are annotated.