Algorithms & Data Structures I CSC 225

Ali Mashreghi

Fall 2018

Department of Computer Science, University of Victoria

Elementary Data Structures

- Stacks
- Queues
- Lists
- Arrays
- Resizable Arrays

X	12	3	7	24	4	1	1
A	12	7.5	7.3	11.5	10	8.5	7.4

A stack is a collection of items with two interesting operations:

- 1. Push: Putting an item on top of the stack
- 2. Pop: Remove an item from the **top** of the stack Examples in real life:
- 1. A stack of plates in the cafeteria
- 2. The undo operation in text editors
- 3. Keeping the path when browsing files and folders

4. Making nested (or recursive) calls in programming

A stack with a single item in it

push(item 2)

push(item 3)

pop()

item 2 item 1

Stack follows the LIFO (Last In First Out) principle, i.e. the last item pushed into the stack is the first item that's popped.

push(item 4)

At this point you don't have access to item 1 or item 2
Since only the top of the stack is accessible

Stack ADT

A stack supports the following operations:

- Push(x): Insert item x at the top of the stack.
- Por(): Remove from the stack and return the item at the top of the stack. An error occurs if the stack is empty.
- IsEmpty(): Return True if the stack is empty, False otherwise.
- Top(): Return the top item on the stack without removing it; an error occurs if the stack is empty.
- Size(): Return the number of items in the stack.

Array-based Implementation

- We can use an array to implement a stack as follows:
- 1. Array S: N-element array, with elements stored from S[0] to S[t]
- 2. t: stack pointer; integer that gives the index of the top element in S
- 3. N: specified max stack size (e.g., N = 1000)

Top(), Size(), and IsEmpty()

```
Size()
1 return t + 1
```

```
Top()
1 \quad \mathbf{return} \ S[t]
```

Top(), Size(), and IsEmpty()

```
Size() IsEmpty()

1 return t + 1 If Size() == 0

2 return TRUE

Top()

3 return FALSE

1 return S[t]
```


Push(x)

Push(x)

1 if
$$Size() == N$$

$$4 t = t + 1$$

$$S[t] = x$$

Also called overflow

Pop()

```
Pop()
```

- $1 \quad \text{if IsEmpty}() == \text{TRUE}$
- *2* **error** "stack is empty" Also called underflow

In an empty stack t is -1

- 3 return NULL
- 4 item = S[t]
- 5 t = t 1
- 6 return item

Pros and Cons

Pros: Simple and efficient: O(1) per operation

Cons:

- 1. The stack *must* assume a fixed upper bound *N*
- 2. Memory might be wasted or a stack-full error can occur!
- 3. If a good estimate for the stack size is known, array is the best choice.

A queue is a collection of items with two interesting operations:

- 1. Enqueue
- 2. Dequeue

A queue is a collection of items with two interesting operations:

- 1. Enqueue
- 2. Dequeue

A queue is a collection of items with two interesting operations:

- 1. Enqueue: Insert an item at the rear of the queue
- 2. Dequeue: Remove an item from the front of the queue Examples in real life:
- 1. A line up in a bank
- 2. Resource sharing in operating systems

A queue follows the FIFO (First In First Out) principle.

Note: rear does not point to a position in the queue but rather to a position that the next item can be inserted at.

enqueue(item 3)

At this point we can't remove item 2, or item 3

dequeue()

dequeue()

dequeue()

In an empty queue, front and rear point to the same position.

Queue ADT

A queue supports the following operations:

- ENQUEUE(x): Insert item x at the rear of the queue.
- Dequeue(): Remove and return the item at the front of the queue. An error occurs if the queue is empty.
- IsEmpty(): Return True if the queue is empty, False otherwise.
- Front(): Return the front item in the queue without removing it; an error occurs if the queue is empty.
- Size(): Return the number of items in the queue.

Array-based Implementation

- We can also use an array to implement a queue:
- 1. Array Q: N-element array, with elements stored from Q[f] to Q[r-1]
- 2. f: pointer to the front position in Q
- 3. r: pointer to the rear position in Q, (next available position)
- 4. N: specified max queue size

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

• Example:

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

Example: enqueue

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

Example: enqueue

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

Simple Implementation

- 1. For **enqueue**, put the item at Q[r], and increment r
- 2. For **dequeue**, remove from Q[f], and increment f
- We say that queue is full when r reaches N.

• Example: enqueue

Simple Implementation

- However, this has a big problem!
- Say for example the size of the queue is at most 3 elements and we are doing a sequence of enqueues, and dequeues.
 Then, r could reach N while we still have plenty of space left in the array.

• The idea is to look at the array in a circular way.

• The idea is to look at the array in a circular way.

Q f N-1

The idea is to look at the array in a circular way

enqueue

• The idea is to look at the array in a circular way.

enqueue

• The idea is to look at the array in a circular way.

dequeue

• The idea is to look at the array in a circular way.

dequeue

• As a result, when r or f reach N, they restart from 0, and we can use the full capacity of the array

dequeue

• Question: What arithmetic operation can we apply to r and f for this purpose?

- Question: What arithmetic operation can we apply to r and f for this purpose?
- Answer: Modulo. Instead of N-checking if r has reached N, we always say increment r, and take the result modulo N. The results is in [0, N-1]

Problem with size

• Question: Before we said that f == r means an empty queue. But what else could it mean in a circular implementation?

Problem with size

• Answer: Since we use the array in a circular way, whenever f == r, it could be that either the queue is **empty** or **full**!

Problem with size

 In order avoid problems like this we use a variable size. We increment size upon an enqueue, and decrement it upon a dequeue.

Size (), IsEmpty (), and Front()

```
//We have a variable size which is
//updated in each operation. Initially,
//size is 0
Size()
   return size
                                 IsEmpty()
                                   if Size() == 0
Front()
                                       return TRUE
  return Q[f]
                                   return FALSE
```

Enqueue(x), Dequeue()

```
Enqueue(x)
                                Dequeue ()
                                    if IsEmpty() == TRUE
  if S_{IZE}() == N
                                       error "queue is empty"
      error "queue is full"
                                       return NULL
      return
                                    item = Q[f]
  Q[r] = x
                                5 f = (f+1) \mod N
5 \quad r = (r+1) \mod N
                                6 \quad size = size - 1
6 size = size + 1
                                    return item
```