

AOTL66518Q

150V N-Channel AlphaSGT[™]
AEC-Q101 Qualified

General Description

- AEC-Q101 Qualified
- Trench Power MOSFET AlphaSGTTM technology
- Combined of low R_{DS(ON)} and wide safe operating area (SOA)
- Higher in-rush current enabled for faster start-up and shorter down time
- RoHS 2.0 and Halogen-Free Compliant

Orderable Part Number

Diode reverse recovery

Dower Dissipation B

 $V_{DS}=0$ to 75V, $I_{F} \le 300A$, $T_{J} \le 125$ °C

Maximum Junction-to-Ambient AD

Maximum Junction-to-Case

 $T_c=25$ °C

Applications

- · Load switch
- BMS
- Motor

Product Summary

 $\begin{array}{lll} V_{DS} & 150V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 206A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 4.7 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 8V) & < 5.3 m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Form

500

500

45

0.3

Max Tj=175°C

Minimum Order Quantity

A/us

W

°C/W

°C/W

Package Type

di/dt

AOTL66518Q		TOLLA	Tape & Reel	2000	
Absolute Maximum	n Ratings T _A =25°C u	nless otherwise note	d		
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	150	V	
Gate-Source Voltage	е	V_{GS}	±20	V	
Continuous Drain Current	T _C =25°C		206		
	T _C =100°C	I _D	145	A	
Pulsed Drain Current ^Č (≤100µS)		I _{DM}	824		
Continuous Drain	T _A =25°C	1	29	Λ	
Current	T _A =70°C	IDSM	24	A	
Avalanche Current ^C		I _{AS}	70	А	
Avalanche energy L=0.3mH ^C		E _{AS}	735	mJ	

Power Dissipation	er dissipation TC=100 C				250		
T,	_A =25°C		P _{DSM} 10		W		
Power Dissipation A T	_A =70°C		I DSM	7		l vv	
Junction and Storage Temperature Range			T_J , T_{STG}	-55	°C		
Thermal Characteristic	s						
Parameter			Symbol	Тур	Max	Units	
Maximum Junction-to-Ar	mbient ^A	t ≤ 10s		10	15	°C/W	

35

0.2

 $R_{\theta JA}$

 $R_{\theta JC}$

Steady-State

Steady-State

Electrical Characteristics (T_{.1}=25°C unless otherwise noted)

Symbol	Parameter	er Conditions		Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	150			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =150V, V _{GS} =0V			1	μA			
		T _J =55°	,C		5	μ., τ			
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.7	3.2	3.7	V			
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =100A		3.9	4.7	mΩ			
		T _J =175°	Č	9.7	12				
		V_{GS} =8V, I_D =75A		4.2	5.3	mΩ			
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A		50		S			
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.68	1	V			
I _S	Maximum Body-Diode Continuous Current				200	Α			
DYNAMI	C PARAMETERS		-	-					
C _{iss}	Input Capacitance			6460		pF			
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =75V, f=1MHz		820		pF			
C _{rss}	Reverse Transfer Capacitance	7		5		рF			
R_g	Gate resistance	f=1MHz	1.1	2.3	3.5	Ω			
SWITCH	ING PARAMETERS	•	-	-					
Q _g (10V)	Total Gate Charge			80	115	nC			
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =75V, I_{D} =20A		32		nC			
Q_{gd}	Gate Drain Charge	7		15		nC			
Q_{oss}	Output Charge	V_{GS} =0V, V_{DS} =75V		273		nC			
t _{D(on)}	Turn-On DelayTime			27		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =75V, R_L =3.75 Ω	,	20		ns			
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		49		ns			
t _f	Turn-Off Fall Time	7		28		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, di/dt=500A/μs		86		ns			
Q_{rr}	Body Diode Reverse Recovery Charge	e I _F =20A, di/dt=500A/μs		920		nC			

A. The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{0JA} \(\simeq 10s\) and the maximum allowed junction temperature of 175° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

Rev.1.0: February 2025 **www.aosmd.com** Page 2 of 7

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =175° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ$ C.

 ${
m V_{DS}}$ (Volts) Figure 1: On-Region Characteristics (Note E)

300

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

I_D (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction
Temperature (Note E)

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

 ${\bf Q_g}$ (nC) Figure 7: Gate-Charge Characteristics

V_{DS} (Volts)
Figure 8: Capacitance Characteristics

V_{GS}> or equal to 8V Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

T_{CASE} (° C)
Figure 12: Power De-rating (Note F)

 T_{CASE} (° C) Figure 13: Current De-rating (Note F)

Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 17: E_{GS(th)} vs Junction Temperature

Temperature (° C)
Figure 18: Drain-source breakdown voltage vs.

Temperature (° C)
Figure 19: EAS vs. Junction Temperature

 $V_{GS}\left(V\right)$ Figure 20: Transfer Characteristics (Note E)

Time in avalanche, t_A (ms) Figure 21: Single Pulse Avalanche capability

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

 Rev.1.0: February 2025
 www.aosmd.com
 Page 7 of 7