Lab on STM32CubeMX DDR tool suite

For an easier DDR configuration an easier DDR signals tuning

Presentation

25 min

Agenda 2

 DDR tool suite forewords Technical information

- Demo
 - DDR configuration
 - Connection to the target
 - DDR registers loading
 - DDR tuning
 - DDR testing

DEMO (presenter Only)

- STM32CubeMX comes along with an exhaustive DDR tool suite for DDR subsystem. Helps to setup the DDR controller.
- Configuration of DDR controller and PHY registers is managed automatically based on reduced set of editable parameters
- **DDR Testing** is offered based on a rich tests list (basic, stress tests). User can also develop its own tests.
- Tuning of byte lanes delays is proposed to compensate design imperfection

Time 10 min

- Some signals routed between STM32MP15 and the DRAM are sensitive to design imperfection. See AN5122 for DDR design routing guidelines
- STM32MP15 PHY offers possibility to fine tune the those signals and thus compensate design imperfection
- **Tunable signals** are
 - DQS signals
 - DQ bits
- Tuning is a **sequence in 3 steps**
 - DQS gating
 - Bit deskew
 - Eye training

Tunable signals for the 4 data bytes (except the DQM one)

Distr.	TYTE_OAL	DDR DQ0	E21	U10E	
	DDR_DQ0	DDR DOL	F21	DDR_DQ0	DDR_CLKP
	DDR_DQ1	DDR DQ2	H21	DDR_DQ1	DDR_CLKN
	DDR_DQ2	DDR DQ3	E20	DDR_DQ2	
	DDR_DQ3		J21	DDR_DQ3	DDR_A0
	DDR_DQ4	DDR DQ4		DDR_DQ4	DDR_A1
	DDR DQ5	DUK DOS	H20	DDR DQ5	DDR A2
	DDR_DQ6	DDK DO	H22	DDR_DQ6	DDR_A3
	DDR_DQ7	DUK DOT	G19	DDR_DQ7	DDR_A4
	DDR_DQS0_P	DUR DOSO P	G22	DDR_DOSOP	DDR_A5
	DDR_DOS0_N	DDR DOSO N	G21	DDR_DOSON	DDR A6
	DDR DQM0		G20	DDR_DQM0	DDR A7
DDR BYTEORI	DDW_DCGGG			prost_referre	DDR_A8
DOM BITTEMET	DDR_DQ8	DDR_DQ8	N22	DDR_DQ8	DDR A9
			R21		
	DDR_DQ9		P21	DDR_DQ9	DDR_A10
	DDR_DQ10		T20	DDR_DQ10	DDR_A11
	DDR_DQ11	DDR DO12	V20	DDR_DQ11	DDR_A12
	DDR_DQ12	DDR DO13	R20	DDR_DQ12	DDR_A13
	DDR_DQ13	DDR DO14	U21	DDR_DQ13	DDR_A14
	DDR_DQ14	DDR DQ15	V21	DDR_DQ14	DDR_A15
	DDR_DQ15	DDR DOST P	T22	DDR_DQ15	
	DDR_DQS1_P	DDR DOST N	R22	DDR_DQSIP	DDR_BA0
	DDR_DQS1_N	DDR DOM1	T21	DDR DOSIN	DDR BAI
	DDR_DQM1	DDR DOSEI	141	DDR_DQMI	DDR_BA2
D	DR_BYTE_2&3			C1000-900-000	DDD DACK
	-	DDR_DQ16	B21	nne nous	DDR_RASN
	DDR_DQ16		D21	DDR_DQ16	DDR_CASN
	DDR_DQ17		D22	DDR_DQ17	DDR_CSN
	DDR_DQ18	DDR DO19	B20	DDR_DQ18	DDR_CKE
	DDR_DQ19	DDR DO20	A20	DDR_DQ19	DDR_WEN
	DDR_DQ20	DDR DO21	E22	DDR_DQ20	DDR_ODT
	DDR_DQ21	DDR DO22	D20	DDR_DQ21	
	DDR_DQ22	DDR DQ23	A21	DDR_DQ22	DDR_RESETN
	DDR_DQ23	DDR DQS2 P	C21	DDR_DQ23	
	DDR_DQS2_P	DDR DQS2 N	B22	DDR_DQS2P	
	DDR_DQS2_N		C22	DDR_DQS2N	DDR_VREF
	DDR_DQM2	DDR DQM2	Cád	DDR_DQM2	
(DDR BYTE 2&3)		nee non		0.00	
	DDR DQ24	DDR DO24	V22	DDR_DQ24	
	DDR DQ25	DDR DQ25	W20	DDR_DQ25	
	DDR DQ26	DDK DOS	AB21	DDR_DQ26	
	DDR_DQ27	DDR DOZ	AB20	DDR DO27	DDR ZQ
	DDR DQ28		AA21	DDR DQ28	man_ed
		DDK DOZY	AA20		
	DDR_DQ29		W22	DDR_DQ29	DDR ATO
	DDR_DQ30		W21	DDR_DQ30	DDR_ATO
	DDR_DQ31		Y21	DDR_DQ31	DDR_DTO0
	DDR_DQS3_P	DDR DOS3 N	Y22	DDR_DQS3P	DDR_DTO1
	DDR_DQS3_N	DDR DOMS	AA22	DDR_DQS3N	
	DDR_DQM3			DDR_DQM3	

Example of DDR Byte0 tunable signals

DQS0N / DQS0P signals

DQ[0:7] byte lane

Constrained signals length (e.g. +/-1mm within all signals in a byte vs DQS)

Length influences the round trip delay

DDR tuning: Read DQS gating training

Read DQS gating

> The purpose read DQS gating training is to adjust the timing of internal gating signal for DQS signal so that pseudo edges may occur due to glitches, post/preamble periods are eliminated.

DQS gating position is depending on the round trip delay.

Read DQS signal is an input signal

DDR tuning: Data Bit deskew

 Delay to be applied to each data line is computed based on results of several iteration DDR tool suite. This explains the step duration.

DDR tuning: Read Eye Training

Eye Training

> The purpose of eye training is to find middle point of data valid window so that data is sampled/generated in optimum positions for read/write cycles.

Read Eye training is intended for *Read access*

DDR Configuration Demo

15 min

Lab Pre-requisites 12

- STM32CubeMX
- SD card Uboot-SPL from basic boot chain
- Discovery board

- First, create a STM32CubeMX project
- Start my project from STBoard

Start My project from STBoard ACCESS TO BOARD SELECTOR

Click on overview

Create project

Initialize all peripherals : no

First, need to set DDR parameters influencing the pinout from "Pinout" tab

Select according to DK2 discovery board memory: 16 bits 4Gb DDR3 **DRAM**

For DDR3, the configuration is made easier.

- 8. Select DDR3-1066G / 8-8-8
- User can select directly the Speed Bin / Grade according to the DDR RAM to avoid manual timing parameters edition. JEDEC defines DDR timings
- AN5168 for further details about DDR DRAM parameters
- For other DDR type (LPDDR2), DDR parameters must be picked up from DRAM data sheet and computed manually.

Observe other parameters from the « Parameter Settings » tab

- Timing parameters are retrieved by user from its DDR datasheet
- Some parameters, depending of DDR types, are read only. They are displayed for user information only
- "i" icone, details are provided in the window footer.

Relaxed Timing mode

RELAXED_TIMING_MODE

Parameter Description:

Add one supplementary clock cycle to some key DDR parameters.

This ease the DDR bring-up by relaxing some key timings.

The relaxed timing parameters are: tRC, tRCD and tRP.

The +1 is made before register computation, thus not visible in the parameter edition interface

Tuning parameters

As DDR tuning has not run,
 byte line delays = 0xF

- User can check modification to the Tuning parameters via the 'DDR tuning' tab
- Those parameters related to Read DQS position and DQ Line delay are read only in the DDR configuration panel
- Those parameters are modified after tuning operation (See DDR tuning slides)

Marseille 2019

DDR Device Tree configuration

 First Stage boot loader (FSBL) initializes the DDR Controller.

All DDR controller registers values stand in FSBL device tree. STM32CubeMx generates the device tree files

- When trusted boot chain is in use, FSBL is TF-A firmware
- STM32CubeMX device tree files are to be copied in the TF-A source code location before device tree compilation
 - Refer to Wiki page related to device tree structure and device tree compilation [Wiki: STM32MP15 Device tree]
- DDR AN5168 provides details about STM32MP15 DDR registers

```
life.augmented
```

```
* Copyright (C) 2015-2018, STMicroelectronics - All Rights Reserved
  SPDX-License-Identifier: GPL-2.0+
                                        BSD-3-Clause
* File generated by STMicroelectronics STM32CubeMX DDR Tool for MPUs
 * DDR type: DDR3 / DDR3L
 * DDR width: 32bits
* DDR density: 8Gb
* System frequency: 400Mhz
* Relaxed Timing Mode: false
* Address mapping type: RBC
* Save Date: 2018.06.19, save Time: 13:18:42
#define DDR MEM NAME
                        "DDR3-DDR3L 32bits 400Mhz"
#define DDR MEM SPEED
#define DDR MEM SIZE
                        0x400000000
#define DDR MSTR 0x00040401
#define DDR MRCTRL0 0x00000010
#define DDR MRCTRL1 0x00000000
#define DDR DERATEEN 0x00000000
#define DDR DERATEINT 0x00800000
#define DDR PWRCTL 0x00000000
#define DDR PWRTMG 0x00400010
#define DDR HWLPCTL 0x00000000
#define DDR RFSHCTL0 0x00210000
#define DDR RFSHCTL3 0x00000000
#define DDR RFSHTMG 0x00610068
#define DDR CRCPARCTL0 0x00000000
#define DDR DRAMTMG0 0x0F141B0F
#define DDR DRAMTMG1 0x000A0415
#define DDR DRAMTMG2 0x0506080E
#define DDR DRAMTMG3 0x0050400C
#define DDR DRAMTMG4 0x06040406
#define DDR DRAMTMG5 0x05050403
```

#define DDR DRAMTMG6 0x02020002

#define DDR_DRAMTMG7 0x00000202 #define DDR DRAMTMG8 0x00001005

Connection to the target

Connection to Target 20

- **DDR tool suite** is made of: DDR interactive protocol, DDR tests and tuning process.
- **DDR tool suite** is part of U-Boot SPL binary
- To manage DDR tests and tuning, STM32CubeMX establishes a connection to **U-Boot SPL** via a dedicated **DDR interactive** protocol over UART
- Two connection options
 - U-Boot SPL binary is available in Flash memory (Today Option used in this lab)
 - U-Boot SPL needs to be loaded in SYSRAM
- Last option is required when Flash memory can be programmed only through STM32MP15 chip. Indeed, Flash programming requires a fully functional DDR (and thus test and tuning before hand).

Connect to the Target 21

- Make the MPU Boot from SDCard: set the boot switch to '11' (On)
- 10. Insert the yellow SDCard in the board with Uboot-SPL (basic boot chain)
- 11. Connect the host PC to the ST-LINK-v2 port of the discovery (Micro-Usb cable)
- 12. Power-On the discovery with USB (USB C cable power supply)

Connection to Target 22

U-Boot SPL binary is available in Flash memory (option 1)

13. Press Connect icon

14. Press reset black button on the board

Home > STM	32MP157CACx - STM32MP	157C-DK2 Vntitled	- Tools		GENERATE CODE	
Pinout 8	& Configuration	Clock Config	juration	Project Manager	То	ools
PCC	COM3 V Not Connected	Connect D	SYSRAM Loading ad U-Boot SPL on SYSRAM fire ort selection: USB	st UART Select COM Select files	Target Information	ý)
DDR Test Suite	Target DDR Tuning DDR Tests			_		

Connection to Target 24

15. Display output window

16. Observe Connection log

17. Check activity logs

MCUs Se	lection	Output	DDR Interactive logs
Host	>	Target	info
Target	>	Host	step = 0 : DDR_RESET
Target	>	Host	name = DDR3-1066/888 bin G 1x4Gb 533MHz v1.41
Target	>	Host	size = 0x20000000
Target	>	Host	speed = 533000 kHz
Host	>	Target	step 3
Target	>	Host	step to 3:DDR_READY
Target	>	Host	1:DDR CTRL INIT DONE
Target	>	Host	2:DDR PHY_INIT_DONE
Target	>	Host	3:DDR_READY
Host	>	Target	print mstr
Target	>	Host	mstr= 0x00041401
Host	>	Target	tuning help
Target	>	Host	tuning:5

DDR registers loading

DDR registers loading

- 18. Once connected by DDR interactive, user can load the current DDR configuration in SYSRAM
- This step is optional if the used U-Boot SPL already contains the required DDR configuration
- It allows user to quickly test a configuration without generating device tree and dedicated U-Boot SPL binary file

DDR registers loading 27

- The DDR Timings parameters set in CubeMX are loaded into internal RAM.
- DDR controller is initialized.
- DDR signal are not yet fine tuned.

MCUs Select	tion	Output	DDR Interactive logs	
Host >		Target	info	
Target >	>	Host	step = 0 : DDR_RESET	
Target >	>	Host	name = DDR3-1066/888 bin G 1x4Gb 533MHz v1.41	
Target >	>	Host	size = 0x20000000	\
Target >	>	Host	speed = 533000 kHz	1
Host >	•	Target	step 3	
Target >	>	Host	step to 3:DDR_READY	
Target >	>	Host	1:DDR_CTRL_INIT_DONE	
Target >	>	Host	2:DDR PHY_INIT_DONE	
Target		Host	3:DDR_READY	
Host >	•	Target	print mstr	
Target >	>	Host	mstr= 0x00041401	
Host >	>	Target	tuning help	
Target >	·	Host	tuning:5	

- Compensate HW design slight imperfections for best operations.
- Tuning is a sequence in 3 steps
 - Read DQS gating
 - Bit deskew
 - Eye training
- Once Tuning is completed, tuned parameters can be propagated to the current DDR configuration

- DDR tuning operation requires :
 - DDR tool suite in connected state
 - a valid DDR configuration to be available in memory
 - either an U-Boot SPL with valid DDR configuration (DDR register file in Device Tree)
 - either the current DDR configuration written in memory (see 'DDR registers loading' slides)

19. Press on a Start Tuning icon

20. Once Tuning is completed, with the 3 steps in sequence, the user is proposed to save the current tuning outcome to the edited DDR

configuration Pinout & Configuration Clock Configuration Project Manager Tools **DDR** Interactive SYSRAM Loading Target Information III Load U-Boot SPL on SYSRAM first COM3 Config name: DDR3-1066/888 bin G 1x4Gb 533.0MHz v1.41 Select COM Port selection: DDR Size: 4 GBits Connected DDR Freg: 533.0MHz U-Boot SPL file: DDR Tuning allows to fine tune delays for each data bits and to center the DQS signal in the middle of the eye. Start Tuning After tuning operation, you can choose to incorporate or not the tuned parameters to your DDR configuration. DDR Tests Click for more details DQS Gating Bit Deskew Eye Centering > Output DDR Interactive logs MCUs Selection Host Target tuning 0 execute 0:Read DQS gating Host Target Host Result: Pass [] Host Target tuning 1 Target Host execute 1:Bit de-skew Byte 0, DOS unit = 5, phase = 6Host Byte 0, bit 0, DO delay = 2Host Target Host Byte 0, bit 1, DO delay = 2Target

Observe the DDR tuned parameters

Before tuning

DDR Tuning

- Bit deskew panel gives a graphical representation of
 - Best Read DQS signal position (in grey) for the given byte
 - The delay to apply for each DQ line regarding this Read DSQ position (0 to +61.68ps in 3 steps of 20.56ps)

byte 0
Internal DOS

middle of data valid

window

DDR Tuning

DRAM Strobe

 Read Eye training panel gives the final optimum DQS position regarding DQ line eye in the half-period for each byte

DQS position can vary coarsely from 36 degrees to 144 degrees (quarter period is 90 degrees)

 DQS position can then vary finely about the coarse position with 8 steps, from -61.68ps to +82.24ps

335

402

Byte1 (ps)

134

201

268

Byte0 (ps)

Eve Centerina

							DQS							
0							T/4							T/2
0	67	134	201	268	335	402	469	536	603	670	737	804	871	938

469 ps = T/4 (533Mhz)

- Similarly to DDR Tuning, DDR testing operation requires :
 - DDR tool suite in connected state
 - a valid DDR configuration to be available in memory
 - either an U-Boot SPL with valid DDR configuration (DDR register file in Device Tree)
 - either the current DDR configuration written in memory (see 'DDR registers loading' slides)
- DDR tests are part of U-Boot SPL
- DDR tests are standard tests
- User can add its own DDR test by modifying U-Boot SPL

Test list is retrieved from U-Boot SPL

21. Press on a Run test icon

- Test verdict is reported by U-Boot SPL
- Parameters used for test are recalled, along with Pass/Fail status and results details
- Test history is available in the output panel

MCUs Sel	ection	Output	DDR Interactive logs
Lurgeo	-		Dioc of Dec anto Di buece o
Target	>	Host	Byte 1, DQS unit = 3, phase = 3
Target	>	Host	Result: Pass []
Host	>	Target	test 2 1 0xC0000000
Target	>	Host	execute 2:DataBusWalking0
Target	>	Host	running 1 loops at 0xc0000000
Target	>	Host	Result: Pass [no error for 1 loops]

Execution

Parameter(s)	
Address	0xC0000000
Loop	1

Run test

Verdict

ltem(s)	Info
Address	0xC0000000
Loop(s)	1
Result	Pass
Result details	no error for 1 loops

Thanks

