In-Class Lab Activity: Image Registration using ITK

Andrew Hahn (adhahn@wisc.edu)

ITK Image Registration

- Itk::ImageRegistrationMethodv4
 - SetFixedImage(ImageType): Set fixed input image
 - SetMovingImage(ImageType): Set moving input image
 - SetInitialTransform(TransformType): Set transform for fixed image (can be identity transform)
 - SetMovingInitialTransform(TransformType): Set initial transform for moving image, type of transform determines the type of registration (can be identity transform)
 - SetMetric(MetricType): Set the metric for registration
 - SetOptimizer(OptimizerType): Select optimizer for registration
 - SetNumberOfLevels(int): Number of scale spaces used for registration [1]
 - SetShrinkFactorsPerLevel(Array): Size factor for each scale space [1]
 - SetSmoothingSigmasPerLevel(Array): Smoothing for each scale space [0]

2D Translation Transform

- Itk::TranslationTransform<double,
 2>
 (allows translation in x- and y-dimension)
 - GetNumberOfParameters(): Returns the number of modifiable parameters (2)
 - SetParameters(double[2]): Set x-, and y-translation

Mean Squares Metric

- itk::MeanSquaresImageToImag
 eMetricv4
- Calculates similarity between two images using the mean squared error
- Use SetMetric() function of registration method object to set this metric

$$MSE = \frac{1}{N} \sum_{\forall x} \left(I_f(x) - I_m(x) \right)^2$$

Gradient Descent Optimization

- itk::RegularStepGradientDescentOptimizerv4<double>
 (Calculates the gradient of the cost function using local sampling and steps into the direction of the negative gradient)
 - SetLearningRate(double): Determines the initial step size [4]
 - SetMinimumStepLength(double): Stopping criterion [0.001]
 - SetRelaxationFactor(double): Step size reduction after sudden gradient direction change [0.5]
 - SetNumberOfIterations(int): Stopping criterion [200]

Postprocessing

- itk::ResampleImageFilter
 - SetInput(ImageType): Original moving image
 - SetTransform(TransformType): Estimated transform after registration
 - SetUseReferenceImage(bool): Use spatial reference from fixed image [true]
 - SetReferenceImage(ImagType): Fixed image
 - SetDefaultPixelValue(PixelType): Pixel value for pixels outside the FOV [0]
- itk::SubtractImageFilter
 - SetInput1(ImageType): FixedImage
 - SetInput2(ImageType): Output of resample filter

Exercise 2 [06_MSETranslationRegistration]

- 1. Read moving and fixed image:
 - head_fix.png
 - head_mov.png
- 2. Perform 2D translation registration
- 3. Display the difference between the original fix and moving images
- 4. Display the difference after registration

2D Affine Transform

- itk::AffineTransform
 - Translation in x- and y-direction
 - 2D Rotation
 - Isotropic and anisotropic scaling
 - Shear transformation

Mutual Information Image Metric

- itk::MutualInformationImageToImageMetric
 - Commonly used for multi-modality registration (e.g. MRI / CT)
 - Larger value corresponds to higher similarity between images

Evolutionary Optimizer

- itk::OnePlusOneEvolutionaryOptimizer
 - SetMaximumIteration(int): Set number of iterations [5000]
 - SetNormalVariateGenerator(RandomGeneratorType): Use itk::Statistics::MersenneTwisterRandomVariateGenerator as random number generator
 - SetInitialRadius(double): Initial step size [1.0]
 - MaximizeOn(): Use this to maximize metric value for mutual information metric

Postprocessing

- itk::CheckerBoardImageFilter
 - Combines moving and fixed image by alternatingly displaying blocks of each image in a checkerboard pattern
 - SetInput1(ImageType): FixedImage
 - SetInput2(ImageType): MovingImage

Exercise 3 [07_MIAffineRegistration]

- 1. Read moving and fixed image:
 - head_affine_fix.png
 - head_affine_mov.png
- 2. Perform 2D affine registration using mutual information and evolutionary optimizer
- 3. Display pre- and post registration results using the checkerboard filter

Deformable Registration

itkDemonsRegistrationFilter

- AddObserver(itk::IterationEvent(), ObserverType): Allows tracking of the registration progress
- SetFixedImage(ImageType): Fixed image
- SetMovingImage(ImageType): Moving image
- SetSmoothUpdateField(bool): Activate displacement field smoothing [true]
- SetNumberOfIterations(int): Number of iterations [500]
- SetStandardDeviations(double): Controls amount of smoothing [1.0]

Preprocessing: Histogram Matching

- itk::HistogramMatchingImageFilter
 - SetInput(ImageType): Original moving image
 - SetReferenceImage(ImageType): Original fixed image
 - SetNumberOfHistogramLevels(int): Number of histogram bins [1024]
 - SetNumberOfMatchPoints(int): Number of match points [7]
 - ThresholdAtMeanIntensityOn()

```
class CommandIterationUpdate : public itk::Command
public:
    using Self = CommandIterationUpdate;
    using Superclass = itk::Command;
    using Pointer = itk::SmartPointer<Self>;
    itkNewMacro(Self);
protected:
    CommandIterationUpdate() {};
public:
    using OptimizerType = itk::OnePlusOneEvolutionaryOptimizer;
    using OptimizerPointer = const OptimizerType
    void Execute(itk::Object *caller, const itk::EventObject & event) override
      Execute((const itk::Object *)caller, event);
    void Execute(const itk::Object * object, const itk::EventObject & event) override
      auto optimizer = dynamic cast< OptimizerPointer >(object);
      if (!itk::IterationEvent().CheckEvent(&event)) return;
      std::cout << optimizer->GetCurrentIteration() << optimizer->GetValue() <<</pre>
        optimizer->GetCurrentPosition() << std::endl;</pre>
```

Exercise 4 [08_DeformableRegistration]

- 1. Read moving and fixed image:
 - liver_exp.png
 - liver_insp.png
- 2. Perform histogram matching
- 3. Perform deformable registration and display status in each iteration
- 4. Display pre- and post registration results using difference filter
- 5. Display intermittent results during registration using the difference filter and VTK

