Si vous manquez de place pour répondre à une question, poursuivez à la fin de la copie.

Nom et Groupe: _

Question	Points	Note
Preuve par résolution	7	
Algorithme de Quine McCluskey	7	
Mots et langages	6	
Total:	20	

Dans cet exercice, a et b sont deux symboles de prédicat d'arité deux, i et e sont deux symboles de prédicat d'arité un.

On veut utiliser la résolution pour montrer que

$$\exists x \neg [\exists y \ b(y,x)]$$

est une conséquence de

- $-\exists x (i(x) \land \neg e(x))$
- $\forall x (i(x) \Rightarrow [(\exists y b(y,x)) \Rightarrow e(x)])$
- $\forall x \exists y \ a(x,y)$
- $-\exists x\exists y [a(x,y) \land a(y,x)]$
- $\ \forall x \forall y \ [b(x,y) \Rightarrow \neg b(y,x)]$
- (a) 2 points Mise sous forme prénexe

Solution:

- Négation de la conclusion : $\forall x \exists y \ b(y,x)$
- $\ \exists x (i(x) \land \neg e(x))$
- $\ \forall x \forall y [i(x) \Rightarrow (b(y,x) \Rightarrow e(x))]$
- $\forall x \exists y \ a(x,y)$
- $\exists x \exists y \ a(x,y) \land a(y,x)$
- $\ \forall x \forall y (b(x,y) \Rightarrow \neg b(y,x))$

(b) 2 points Skolémisation

Solution:

On introduit:

- deux nouveaux symboles de fonction d'arité un : f et g
- trois nouvelles constantes x_0, x_1, x_2
- $\forall x \ b(f(x),x)$
- $-i(x_0) \wedge \neg e(x_0)$
- $\forall x \forall y [(i(x) \Rightarrow (b(y,x) \Rightarrow e(x))]$
- $\forall x \ a(x,g(x))$
- $a(x_1,x_2) \wedge a(x_2,x_1)$
- $\ \forall x \forall y (b(x,y) \Rightarrow \neg b(y,x))$

(c) 1 point Mise sous forme de clauses

Solution:

- $-C_1: b(f(x),x)$
- $C_2 : i(x_0)$
- $-C_3: \neg e(x_0)$
- $-C_4: \neg i(x) \lor \neg b(y,x) \lor e(x)$
- $C_5: a(x,g(x))$
- $C_6: a(x_1,x_2)$
- $C_7: a(x_2,x_1)$
- $C_8: \neg b(x,y) \vee \neg b(y,x))$

éve	pints Résolution. A chaque application de la règle de résolution vous précis entuelle unification utilisée.
So	lution:
	- de C_2 et C_4 avec l'unificateur $\sigma[x x_0]$ on déduit $C_9: \neg b(y,x_0) \lor e(x_0)$
	- de C_9 et C_3 on déduit C_{10} : $\neg b(y,x_0)$
	– de C_1 et C_{10} on déduit la clause vide en utilisant l'unificateur $\sigma[x x_0;y f(x_0)]$

Question 2: Algorithme de Quine McCluskey
$f = (\neg A \land B \land \neg C \land \neg D) \lor (A \land \neg B \land \neg C \land \neg D) \lor (A \land \neg B \land \neg C \land D) \lor (A \land \neg B \land C \land \neg D)$
$\vee (A \wedge \neg B \wedge C \wedge D) \vee (A \wedge B \wedge \neg C \wedge \neg D) \vee (A \wedge B \wedge \neg C \wedge D) \vee (A \wedge B \wedge C \wedge D)$
(a) 2 points Lister dans le tableau ci dessous tous les minterms de f en les convertissant en mot de $\{0,1\}*$ et en les regroupant par poids
poids minterm nom 0
2

Solution:		

3

poids	minterm	
1	0100	4
	1000	8
2	1001	9
	1010	10
	1100	12
3	1011	11
	1101	13
4	1111	15

(b)	2 points	Trouver	les imp	licants	premiers

Solution:

A partir du tableau précédent, on procède à une première union des implicants

			unions	minterm
poids	minterm		4,12	x100
1	0100	4	8,9	100x
	1000	8	8,10	10x0
2	1001	9	8,12	1x00
	1010	10	9,11	10x1
	1100	12	10,11	101x
3	1011	11	9,13	1x01
	1101	13	12,13	110x
4	1111	15	11,15	1x11
			13,15	11x1

	unions	minterm
	4,12	x100
	8,9	100x
	8,10	10x0
	8,12	1x00
On recommence	9,11	10x1
	10,11	101x
	9,13	1x01
	12,13	110x
	11,15	1x11
	13,15	11x1
. 1	100	10 1 0

unions	minterm
8,9,10,11	10xx
8,9,12,13	1x0x
9,11,13,15	1xx1

On obtient 4

implicants premiers: x100, 10xx 1x0x et 1xx1

(c) 1 point Construire la table de la couverture des minterms par les implicants premiers dans le tableau ci dessous

Solution:									
	0100	1000	1001	1010	1100	1011	1101	1111	
x100	(x)				х				
10xx		х	x	(x)		x			
1x0x		x	x		x		x		
1xx1			x			x	x	(x)	

(d) 2 points En déduire une solution de cout minimal (à exprimer en fonction de A, B,C et D)

Solution: Il y a donc trois implicants essentiels :x100, 10xx et 1x1x et l'on constate que les trois implicants essentiels couvrent tous les minterms

	0100	1000	1001	1010	1100	1011	1110	1111
x100	x				x			
10xx		х	x	х		x		
1xx1			X			X	X	X

Une solution de coût minimal est donc

$$f = (B \land \neg C \neg D) \lor (A \land \neg B) \lor (A \land D)$$

Question 3: Mots et langages.....

Dans cet exercice on travaille sur l'alphabet $A=\{0,1,2,3,4,5\}$ On considère le mot m=1134

(a) $\boxed{\frac{1}{2} \text{ point}}$ Déterminer Pref(m), l'ensemble des préfixes de m

Solution:

$$Pref(m) = \{\epsilon, 1, 11, 113, 1134\}$$

(b) $\lceil \frac{1}{2} \rceil$ point Déterminer Suff(m), l'ensemble des suffixes de m

Solution:

$$Suff(m) = \{\epsilon, 4, 34, 134, 1134\}$$

(c) $\lceil \frac{1}{2} \rceil$ point Déterminer Fact(m), l'ensemble des facteurs de m

Solution:

$$Fact(m) = \{\epsilon, 1, 3, 4, 11, 13, 34, 113, 134, 1134\}$$

(d) $\frac{1}{2}$ point Déterminer SM(m), l'ensemble des sous-mots de m

Solution:

$$SM(m) = \{\epsilon, 1, 3, 4, 11, 13, 14, 34, 113, 114, 134, 1134\}$$

(e) 1 point Quelles relations générales (c'est à dire vraies pour tout mot m) de type $E(m) \subset F(m)$ avec E(m) et F(m) différents et égaux à Pref(m) ou Suff(m) ou Fact(m) ou SM(m) peut on écrire [pas de démonstration demandée]?

Solution:

- $Pref(m) \subset Fact(m)$
- Suff $(m) \subset Fact(m)$
- $Fact(m) \subset SM(m)$
- $Pref(m) \subset SM(m)$
- $-Suff(m) \subset SM(m)$

(f)	$\boxed{\frac{1}{2}\ \text{point}}$ Donner un mot de longueur $5\ \text{ayant}$ un nombre minimum de facteurs différents
	Solution: 11111
(g)	$2\sqrt{\frac{1}{2}}$ point Donner un mot de longueur 5 ayant un nombre maximum de facteurs différents
	Solution: 12345
(h)	1 point M et N sont deux langages quelconques inclus dans A^* . A-t-on $(M \cap N)^* \subset M^* \cap N^*$? [preuve demandée]
	Solution: oui. Car d'une part $M\cap N\subset M$ et $M\cap N\subset N$ et d'autre par $E\subset F$ implique $E^*\subset F^*$
(i)	1 point M et N sont deux langages quelconques inclus dans A^* . A-t-on $(M^* \cap N^*) \subset (M \cap N)^*$? [preuve demandée]
	Solution: Non . Prenons $M=\{a\}$ et $N=\{aa\}$. Le mot aa n'est pas dans $M\cap N$ qui est vide, mais est bien dans M^* et dans N^*

