

INFO20003 Database Systems

Dr Renata Borovica-Gajic

Lecture 07 Relational Algebra

What we have done so far

SQL:

- Language for data manipulation
- Allow to create/delete tables, add/update/remove data, etc

Introduced next time

Relational algebra:

- The theory behind SQL
- Makes sure that SQL produces correct answers
- Inputs/outputs are relations

Today

How do we manipulate with relations?

Relational Algebra: 5 Basic Operations

- **1. Selection** (*): Selects a subset of *rows* from relation (horizontal filtering).
- **2. Projection** (*): Retains only wanted *columns* from relation (vertical filtering).
- **3. Cross-product** (x): Allows us to combine two relations.
- **4. Set-difference** (–): Tuples in one relation, but not in the other.
- **5.** Union (\cup) : Tuples in one relation and/or in the other.

Each operation returns a relation, operations can be composed

MELBOURNE Coverage: Relational Algebra

- Selection & Projection
- Union, Set Difference & Intersection
- Cross product & Joins
- Examples

Readings: Chapter 4, Ramakrishnan & Gehrke, Database Systems

MELBOURNE Example Instances

Reserves (R1)

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Boats

<u>bid</u>	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Sailors 1 (S1)

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Sailors 2 (S2)

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Relational Algebra

- Selection & Projection
- Union, Set Difference & Intersection
- Cross product & Joins
- Examples

Readings: Chapter 4, Ramakrishnan & Gehrke, Database Systems

- Retains only attributes that are in the projection list
- Schema of result:
 - —Only the fields in the projection list, with the same names that they had in the input relation
- Projection operator has to eliminate duplicates
 - -How do they arise? Why remove them?
 - –Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it

Projection Examples

- 1. Find ages of sailors :
- 2. Find names and rating of sailors:

$\pi_{age}(S2)$	
π sname,rati	(S2)
sname, ran	irig

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10
	(0)

 $\pi_{sname,rating}(S2)$

Removed duplicates

age

- Selects rows that satisfy selection condition
- Result is a relation. *Schema* of the result is same as that of the input relation.
- Do we need to do duplicate elimination?

Example:

Find sailors whose rating is above 8

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0
-		(00	<u> </u>

sidsnamerating28yuppy958rusty10

$$\sigma_{rating>8}(S2)$$

age

35.0

35.0

Conditions are standard arithmetic expressions

Conditions are combined with AND/OR clauses

And: \Lambda

Or: V

Example:

Find sailors whose rating is above 8 and who are younger than 50

$$\sigma_{rating>8} \wedge_{age<50} (S2)$$

Selection & Projection

- Operations can be combined
- Select rows that satisfy selection condition & retain only certain attributes (columns)
- Example:

Find names and rating of sailors whose rating is above 8

si	\mathbf{d}	sname	rating	ag	e
28	3	yuppy	9	35	0.
3		lubber	8	,-,	5
1	1			24	
444	 	guppy	3	٥.	0.0
5	3	rusty	10	35	5.0

sname	rating
yuppy	9
rusty	10

 $\pi_{sname,rating}(O_{rating} > 8^{(S2)})$

Relational Algebra

- Selection & Projection
- Union, Set Difference & Intersection
- Cross product & Joins
- Examples

Readings: Chapter 4, Ramakrishnan & Gehrke, Database Systems

- Union: Combines both relations together
- **Set-difference:** Retains rows of one relation that do not appear in the other relation
- These operations take two input relations, which must be union-compatible:
 - -Same number of fields
 - –Corresponding fields have the same type

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

Duplicates are removed

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

Set Difference

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
44	guppy	5	35.0

S2 - S1

Set-difference is not symmetrical

Compound Operator: Intersection

- In addition to the 5 basic operators, there are several additional "Compound Operators"
 - -These add no computational power to the language, but are useful shorthands
 - –Can be expressed solely with the basic operations
- Intersection retains rows that appear in both relations
- Intersection takes two input relations, which must be union-compatible
- Q: How to express it using basic operators?

$$R \cap S = R - (R - S)$$

Intersection

Example:

Find sailors who appear in both relations S1 and S2

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

Relational Algebra

- Selection & Projection
- Union, Set Difference & Intersection
- Cross product & Joins
- Examples

Readings: Chapter 4, Ramakrishnan & Gehrke, Database Systems

Cross Product

- Cross product combines two relations:
 - -Each row of one input is merged with each row from another input
 - -Output is a new relation with all attributes of *both* inputs
 - -X is used to denote cross-product
- Example: S1 x R1
 - –Each row of S1 paired with each row of R1
- Question: How many rows are in the result?
 - -A: card(S1)*card(R1)

Cross Product Example

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	bid	day
22	101	10/10/96
58	103	11/12/96

R1

S1

S1 X R1 =

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

MELBOURNE Cross Product: Conflicting names

- Result schema has one field per field of S1 and R1, with field names "inherited" if possible.
 - -May have a naming conflict, i.e. both S1 and R1 have a field with the same name (e.g. sid).
 - In this case, can use the renaming operator.

$$\rho$$
 (C(1 \rightarrow sid1,5 \rightarrow sid2), S1×R1)

Result relation name

(sid1)	sname	rating	age (sid2	bid	day
	22	dustin	7	45.0	22	101	10/10/96
	22	dustin	7	45.0	58	103	11/12/96
С	31	lubber	8	55.5	22	101	10/10/96
	31	lubber	8	55.5	58	103	11/12/96
	58	rusty	10	35.0	22	101	10/10/96
	58	rusty	10	35.0	58	103	11/12/96

- Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a natural join (often just called join). R S conceptually is a cross product that matches rows where attributes that appear in both relations have equal values (and we omit duplicate attributes).
- To obtain cross product a DBMS must:
 - 1. Compute R X S
 - 2. Select rows where attributes that appear in both relations have equal values
 - 3. Project all unique attributes and one copy of each of the common ones.

MELBOURNE Natural Join Example

Example:

Find all sailors (from relation S1) who have reserved a boat

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	bid	day
22	101	10/10/96
58	103	11/12/96

<u>S1</u>

R1

S1 ⋈R1 =

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

S1 X R1 =

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

S1 X R1 =

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
	dustiii	'	45.0	30	103	11/12/00
21	lubbor	Q	55 5	22	101	10/10/06
<u> </u>	IUDDCI	U	00.0		101	10/10/90
21	lubbon	Q		50	102	11 /12 /06
51	IUDDCI	O	55.5	50	103	11/12/90
<u> </u>	444047	10	25.0	22	101	10/10/06
50	rusty	10	33.0		101	10/10/90
58	rusty	10	35.0	58	103	11/12/96

(1)			
S1	X	R1	=

				_	
sname	rating	age	(sid)	bid	day
dustin	7	45.0	22	101	10/10/96
منامان	7	45.0	FO	102	11 /10 /04
austin	/	40.0	50	103	11/12/90
lubber	Q	55.5	22	101	10/10/96
		00.0			
lubbor	0	55.5	50	103	11/12/96
lubber		00.0		100	11/12/90
4440444	10	25.0	22	101	10/10/96
lusty	10	33.0		101	10/10/90
rusty	10	35.0	58	103	11/12/96
	dustin dustin lubber lubber rusty	dustin 7 dustin 7 lubber 8 lubber 8 rusty 10	dustin 7 45.0 dustin 7 45.0 lubber 8 55.5 lubber 8 55.5 rusty 10 35.0	dustin 7 45.0 22 dustin 7 45.0 58 lubber 8 55.5 22 lubber 8 55.5 58 rusty 10 35.0 22	dustin 7 45.0 22 101 dustin 7 45.0 58 103 lubber 8 55.5 22 101 lubber 8 55.5 58 103 rusty 10 35.0 22 101

sid	sname	rating	age	bid	day	
22	dustin	7	45.0	101	10/10/96	
58	rusty	10	35.0	103	11/12/96	

Other Types of Joins

• Condition Join (or theta-join) is a cross product with a condition. $R \bowtie_{\mathcal{C}} S = \sigma_{\mathcal{C}}(R \times S)$

$$S1 \bowtie_{S1.sid} < R1.sid$$

- -Result schema is the same as that of cross-product
- Equi-Join is a special case of condition join, where condition c contains only equalities (e.g. S1.sid = R1.sid)
 - –Is this then a natural join? What is different?

Relational Algebra

- Selection & Projection
- Union, Set Difference & Intersection
- Cross product & Joins
- Examples

Readings: Chapter 4, Ramakrishnan & Gehrke, Database Systems

Let's try it...

Boats

bid	bname	color
101	Interlake	Blue
102	Interlake	Red
	Clipper	Green
104	Marine	Red

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Find names of sailors who have reserved boat #103

Boats

bid	bname	color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Solution 1:

$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

Solution 2:

$$\pi_{sname}(\sigma_{bid=103}(Reserves \bowtie Sailors))$$

Find all pairs of sailors in which the <u>older</u> sailor has a <u>lower</u> rating

- Relational Algebra Operations: Selection, Projection, Union, Set, Difference, Intersection, JOINS...
- Draw different queries with Relational Algebra operations

Introducing SQL