AP BC Calculus Mr. Carey

Lagrange Error Bound

Recall: Lagrange Error Bound

Error =
$$|f(x) - P_n(x)| \le \frac{|x - c|^{n+1}}{(n+1)!} \max \left[f^{(n+1)}(z) \right]$$
 where z is between x and c.

1. The degree 4 Taylor Polynomial for f(x) centered about x=2 is given by:

$$P_4 = 9 + \frac{1}{7}(x-2)^3 + 7(x-2)^4.$$

Using infromation from the graph of $y = f^{(5)}(x)$ below and the Lagrange error bound, approximate the maximum value of $|P_4(1.5) - f(1.5)|$.

2. Consider the Taylor Polynomial for f given by $P_3(x) = -9 + \frac{3}{7}(x-3)^2 - \frac{1}{9}(x-3)^3$. The fourth derivative of f(x) satisfies the inequality $\left|f^{(4)}(x)\right| \leq 85$ for all $x \in [3,3.3]$. Find an upper bound for the approximation of $|f(3.3) - P_3(3.3)|$.