

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Análisis Matemático II

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$

Arturo Olivares Martos

Granada, 2023-2024

Índice general

1.	Ejer	rcicios Voluntarios	5
2.	Prácticas		
	2.1.	Sucesiones de funciones	9
	2.2.	Series de funciones	20

1. Ejercicios Voluntarios

Teorema 1.1 (Aproximación de Weierstrass). Sea $f : [0,1] \to \mathbb{R}$ una función continua. Entonces, existe una sucesión de polinomios $\{P_n\}$ de manera que $\{P_n\}$ converge uniformemente a f en [0,1].

Demostración. Definimos la sucesión de polinomios de Bernstein como:

$$B_n(f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} \qquad 0 \leqslant x \leqslant 1$$

Tenemos claramente que $k, n-k \in \mathbb{N}$, por lo que $B_n(f)(x)$ es un polinomio. Veamos ahora que $\{B_n(f)\}$ converge uniformemente a f en [0,1]. Para ello, usaremos el siguiente lema relacionado con el binomio de Newton:

Lema 1.2. Para $x \in \mathbb{R}$, $n \in \mathbb{N}$, se tiene que:

1.
$$\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1.$$

2.
$$\sum_{k=0}^{n} \left(x - \frac{k}{n} \right)^2 \binom{n}{k} x^k (1-x)^{n-k} = \frac{x(1-x)}{n}$$
.

Demostración. Demostramos cada uno de los apartados por separado:

1. Usamos la fórmula del binomio de Newton:

$$(p+q)^n = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k} \qquad p, q \in \mathbb{R}$$
 (1.1)

En concreto, para p = x y q = 1 - x, se tiene que:

$$1 = (x + (1 - x))^n = \sum_{k=0}^n \binom{n}{k} x^k (1 - x)^{n-k}$$
 (1.2)

2. Derivando la fórmula del binomio de Newton (Ecuación 1.1) respecto de p, se tiene que:

$$n(p+q)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} k p^{k-1} q^{n-k} \Longrightarrow p(p+q)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} \frac{k}{n} \cdot p^{k} q^{n-k}$$
 (1.3)

Derivando ahora la Ecuación 1.3 respecto de p, se tiene que:

$$(p+q)^{n-1} + p(n-1)(p+q)^{n-2} = \sum_{k=0}^{n} \binom{n}{k} \frac{k^2}{n} \cdot p^{k-1} q^{n-k}$$

Multiplicando todo por p y diviendo por n, se tiene que:

$$\frac{p}{n} \cdot (p+q)^{n-1} + \frac{p^2}{n} (n-1)(p+q)^{n-2} = \sum_{k=0}^{n} \binom{n}{k} \frac{k^2}{n^2} \cdot p^k q^{n-k}$$
 (1.4)

Por tanto, tenemos que:

$$\begin{split} \sum_{k=0}^{n} \left(x - \frac{k}{n} \right)^{2} \binom{n}{k} x^{k} (1 - x)^{n-k} &= \\ &= \sum_{k=0}^{n} \binom{n}{k} \left(x^{2} - 2x \cdot \frac{k}{n} + \frac{k^{2}}{n^{2}} \right) \cdot x^{k} (1 - x)^{n-k} = \\ &= x^{2} \sum_{k=0}^{n} \binom{n}{k} x^{k} (1 - x)^{n-k} - 2x \sum_{k=0}^{n} \binom{n}{k} \cdot \frac{k}{n} x^{k} (1 - x)^{n-k} + \\ &\quad + \sum_{k=0}^{n} \binom{n}{k} \frac{k^{2}}{n^{2}} x^{k} (1 - x)^{n-k} \overset{(*)}{=} \\ &\stackrel{(*)}{=} x^{2} - 2x \cdot x (x + 1 - x)^{n-1} + \frac{x}{n} \cdot (x + 1 - x)^{n-1} + \frac{x^{2}}{n} (n - 1)(x + 1 - x)^{n-2} = \\ &= x^{2} - 2x^{2} + \frac{x}{n} + \frac{x^{2}}{n} (n - 1) = -x^{2} + \frac{x}{n} + x^{2} - \frac{x^{2}}{n} = \frac{x - x^{2}}{n} = \frac{x(1 - x)}{n} \end{split}$$

donde en (*) se han usado las Ecuaciones 1.2, 1.3 y 1.4.

Fijado $n \in \mathbb{N}, x \in [0,1],$ la acotación entonces la obtenemos de la siguiente manera:

 $|B_{n}(f)(x) - f(x)| = \left| \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k} - f(x) \cdot 1 \right|^{\text{Ec. 1.2}} = \frac{1}{n} \left| \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k} - f(x) \sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} \right| = \frac{1}{n} \left| \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k} - \sum_{k=0}^{n} f(x) \binom{n}{k} x^{k} (1-x)^{n-k} \right| = \frac{1}{n} \left| \sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) - f(x) \right| \binom{n}{k} x^{k} (1-x)^{n-k} \right| \leq \frac{1}{n} \left| f\left(\frac{k}{n}\right) - f(x) \right| \binom{n}{k} x^{k} (1-x)^{n-k}$

donde en la última desigualdad se usó la desigualdad triangular y se quitó el valor absoluto ya que x, 1-x>0. Ahora, usamos el Teorema de Heine para afirmar que, como f es continua en [0,1] (cerrado y acotado), es uniformemente continua en [0,1]. Por lo tanto,

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \text{tal que si} \quad |x - y| < \delta \quad \text{entonces} \quad |f(x) - f(y)| < \varepsilon$$

Fijado $\varepsilon > 0$, consideramos el δ dado por la continuidad uniforme para $\varepsilon/2$. Consideramos el siguiente conjunto:

$$F = \left\{ k \in \{0, \dots, n\} : \left| x - \frac{k}{n} \right| < \delta \right\}$$

Veamos qué ocurre en los puntos de F y en los que no están en F:

- Si $k \in F$, entonces $|x k/n| < \delta$, por lo que $|f(x) f(k/n)| < \varepsilon/2$.
- Si $k \notin F$, el razonamiento es algo más complejo. Por el Teorema de Weierstrass, sabemos que f es acotada en [0,1], es decir, existe M>0 tal que $|f(x)| \leq M$ para todo $x \in [0,1]$. Además, como $k \notin F$, se tiene que:

$$\left|x - \frac{k}{n}\right| \geqslant \delta \implies \left(x - \frac{k}{n}\right)^2 \geqslant \delta^2 \Longrightarrow \frac{\left(x - \frac{k}{n}\right)^2}{\delta^2} \geqslant 1$$

Uniendo ambos resultados, se tiene que:

$$\left| f(x) - f\left(\frac{k}{n}\right) \right| \le |f(x)| + \left| f\left(\frac{k}{n}\right) \right| \le 2M \le 2M \left(\frac{\left(x - \frac{k}{n}\right)^2}{\delta^2}\right)$$

Por tanto, en función de si $k \in F$ o no, tenemos que:

$$|B_{n}(f)(x) - f(x)| \leqslant \sum_{k=0}^{n} \left| f\left(\frac{k}{n}\right) - f(x) \right| \binom{n}{k} x^{k} (1-x)^{n-k} =$$

$$= \sum_{k \in F} \left| f\left(\frac{k}{n}\right) - f(x) \right| \binom{n}{k} x^{k} (1-x)^{n-k} +$$

$$+ \sum_{k \notin F} \left| f\left(\frac{k}{n}\right) - f(x) \right| \binom{n}{k} x^{k} (1-x)^{n-k} \leqslant$$

$$\leqslant \sum_{k \in F} \frac{\varepsilon}{2} \binom{n}{k} x^{k} (1-x)^{n-k} + \sum_{k \notin F} 2M \frac{\left(x - \frac{k}{n}\right)^{2}}{\delta^{2}} \binom{n}{k} x^{k} (1-x)^{n-k} <$$

$$< \frac{\varepsilon}{2} \sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} + \frac{2M}{\delta^{2}} \sum_{k=0}^{n} \left(x - \frac{k}{n}\right)^{2} \binom{n}{k} x^{k} (1-x)^{n-k} \stackrel{\text{(*)}}{=}$$

$$\stackrel{\text{(*)}}{=} \frac{\varepsilon}{2} + \frac{2M}{\delta^{2}} \cdot \frac{x(1-x)}{n} \stackrel{\text{(**)}}{\leqslant} \frac{\varepsilon}{2} + \frac{2M}{\delta^{2}} \cdot \frac{1}{4n} = \frac{\varepsilon}{2} + \frac{M}{2n\delta^{2}} \quad \forall x \in [0,1], n \in \mathbb{N}$$

donde en (*) se usó el Lema 1.2 y en (**) se usó que la función $g:[0,1] \to \mathbb{R}$ dada por $g(x)=(x)=x(1-x)=x-x^2$ es una parábola con imagen g([0,1])=[0,1/4].

Por tanto, buscamos que $\frac{M}{2n\delta^2} < \frac{\varepsilon}{2}$:

$$\frac{M}{2n\delta^2} < \frac{\varepsilon}{2} \Longleftrightarrow \frac{1}{n} < \frac{\varepsilon\delta^2}{M} \Longleftrightarrow n > \frac{M}{\varepsilon\delta^2}$$

Sea $m=E\left(\frac{M}{\varepsilon\delta^2}\right)+1$ el primer natural que cumple la condición. Entonces, para $n\geqslant m,$ se tiene que:

$$|B_n(f)(x) - f(x)| < \varepsilon \quad \forall x \in [0, 1]$$

queda así demostrado que $\{B_n(f)\}$ converge uniformemente a f en [0,1].

Definición 1.1. Un monstruo de Weierstrass es una función continua en todos sus puntos que no es derivable en ningún punto.

Ejercicio. Encontrar un monstruo de Weierstrass y demostrar que lo es. Un ejemplo es el siguiente:

$$\sum_{n=0}^{\infty} \frac{1}{n!} \cos\left((n!)^2 x\right)$$

2. Prácticas

2.1. Sucesiones de funciones

Ejercicio 2.1.1. Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{R}_0^+ \to \mathbb{R}$ la función definida como:

$$f_n(x) = \frac{\log(1+nx)}{1+nx} \quad \forall x \in \mathbb{R}_0^+$$

Fijado un $\rho \in \mathbb{R}^+$, estudiar la convergencia uniforme de la sucesión $\{f_n\}$ en el intervalo $[0, \rho]$ y en la semirrecta $[\rho, +\infty[$.

Estudiamos en primer lugar la convergencia puntual. Para x = 0, tenemos que:

$$f_n(0) = \frac{\log(1)}{1} = 0$$

Por tanto, es la sucesión constante 0, por lo que $\{f_n\}$ converge puntualmente a la función nula en 0. Para $x \in \mathbb{R}^+$, tenemos que:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\log(1 + nx)}{1 + nx} \stackrel{L'H\hat{o}pital}{=} \lim_{n \to \infty} \frac{\frac{x}{1 + nx}}{x} = \lim_{n \to \infty} \frac{1}{1 + nx} = 0$$

En resumen, tenemos que $\{f_n\}$ converge puntualmente a la función nula en \mathbb{R}_0^+ .

Para estudiar la convergencia uniforme, estudiamos la monotonía de la función f_n para cada $n \in \mathbb{N}$. Para ello, como $f_n \in C^{\infty}(\mathbb{R}_0^+)$, estudiamos su derivada:

$$f'_n(x) = \frac{\frac{n}{1+nx} \cdot (1+nx) - \log(1+nx) \cdot n}{(1+nx)^2} = \frac{n - \log(1+nx) \cdot n}{(1+nx)^2}$$

Por tanto, tenemos que los candidatos a extremos relativos de f_n son:

$$f'_n(x) = 0 \iff \log(1 + nx) = 1 \iff 1 + nx = e \iff x = \frac{e - 1}{n}$$

Evalucando la primera derivada en cada intervalo, tenemos que:

- Si $x \in \left[0, \frac{e-1}{n}\right]$, entonces $f'_n(x) > 0$, por lo que f_n es creciente para todo $n \in \mathbb{N}$.
- Si $x \in \left[\frac{e-1}{n}, +\infty\right[$, entonces $f'_n(x) < 0$, por lo que f_n es decreciente para todo $n \in \mathbb{N}$.

Estudiamos ahora la convergencia uniforme. Fijado $\rho \in \mathbb{R}^+$, definimos la sucesión $\{x_n\}$ de la siguiente forma:

- Si $n < \frac{e-1}{\rho}$ $\left(\rho < \frac{e-1}{n}\right)$, entonces $x_n = \rho \in [0, \rho]$ (podría haber tomado cualquier valor $x_n \in [0, \rho]$, ya que no afecta al límite).
- Si $n \geqslant \frac{e-1}{\rho} \left(\rho \geqslant \frac{e-1}{n} \right)$, entonces $x_n = \frac{e-1}{n} \in [0, \rho]$.

De esta forma, tenemos que $\{x_n\}$ es una sucesión de puntos de $[0, \rho]$. Veamos lo siguiente:

$$f_n\left(\frac{e-1}{n}\right) = \frac{\log\left(1 + n \cdot \frac{e-1}{n}\right)}{1 + n \cdot \frac{e-1}{n}} = \frac{\log(e)}{e} = \frac{1}{e} \qquad \forall n \in \mathbb{N}$$

Por tanto, como se tiene que $\{f_n(x_n) - f(x_n)\} = \{f_n(x_n)\} \to \frac{1}{e}$, tenemos que $\{f_n\}$ no converge uniformemente en $[0, \rho]$.

Observación. También sirve tomar $x_n = \frac{1}{n}$, y tendríamos que $f_n\left(\frac{1}{n}\right) = \frac{\log 2}{2}$.

Para el caso de la semirrecta $[\rho, +\infty[$, tomamos $m \in \mathbb{N}$ tal que $\rho > \frac{e-1}{m}$. De esta forma, para $n \in \mathbb{N}$, $n \geqslant m$, tenemos también que $\rho > \frac{e-1}{n}$. Por tanto, tenemos que $[\rho, +\infty[$ $\subset \left[\frac{e-1}{n}, +\infty\right[$, por lo que f_n es decreciente en $[\rho, +\infty[$. Por tanto, para $n \geqslant m$, tenemos que:

$$|f_n(x)| = f_n(x) \leqslant f_n(\rho) \quad \forall x \in [\rho, +\infty[$$

Además, por la convergencia puntual, tenemos que $\{f_n(p)\} \to 0$, por lo que se deduce que $\{f_n\}$ converge uniformemente en $[\rho, +\infty[$.

Ejercicio 2.1.2. Probar que la sucesión $\{g_n\}$ converge uniformemente en \mathbb{R} , donde $g_n : \mathbb{R} \to \mathbb{R}$ está definida como:

$$q_n(x) = \sqrt[n]{1 + x^{2n}} \qquad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Estudiemos en primer lugar la convergencia puntual. Distinguimos en función del valor de x:

• Si |x| < 1, entonces para todo $n \in \mathbb{N}$, tenemos que:

$$1 \leqslant 1 + x^{2n} \leqslant 1 + 1 = 2 \Longrightarrow 1 \leqslant g_n(x) \leqslant \sqrt[n]{2}$$

Como $\{\sqrt[n]{2}\} \to 1$, por el Lema del Sándwich tenemos que $\{g_n(x)\} \to 1$.

• Si |x|=1, entonces para todo $n\in\mathbb{N}$, tenemos que:

$$q_n(x) = \sqrt[n]{1+x^{2n}} = \sqrt[n]{1+1} = \sqrt[n]{2}$$

Por tanto, $\{g_n(x)\} \to 1$.

• Si |x| > 1, entonces para todo $n \in \mathbb{N}$, tenemos que:

$$g_n(x) = \sqrt[n]{1 + x^{2n}} = x^2 \sqrt[n]{\frac{1}{x^{2n}} + 1}$$

Como $\left\{\frac{1}{x^{2n}}\right\} \to 0$, tenemos que $\{g_n(x)\} \to x^2$.

Por tanto, tenemos que $\{g_n\}$ converge puntualmente a la función:

$$g(x) = \max\{1, x^2\} = \begin{cases} 1 & \text{si } |x| \le 1\\ x^2 & \text{si } |x| > 1 \end{cases}$$

Para la convergencia uniforme, en primer lugar tenemos en cuenta que:

$$\sqrt[n]{1+x^{2n}}\geqslant \sqrt[n]{x^{2n}}=x^2, \sqrt[n]{1}=1 \Longrightarrow \sqrt[n]{1+x^{2n}}\geqslant \max\{1,x^2\}=g(x) \qquad \forall x\in\mathbb{R},\ n\in\mathbb{N}$$

Por tanto, buscamos acotar $|g_n(x) - g(x)| = g_n(x) - g(x)$. Para ello, fijado $n \in \mathbb{N}$, usaremos la función

$$\varphi_n: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$$

$$t \longmapsto t^{1/n} = \sqrt[n]{t}$$

Tenemos que es derivable en todo su dominio, y su derivada es:

$$\varphi'(t) = \frac{1}{n} \cdot t^{\frac{1}{n} - 1} = \frac{1}{n \cdot t^{n - 1/n}} \qquad \forall t \in \mathbb{R}^+$$

Por el Teorema del valor medio, tenemos que para todo $t_1, t_2 \in \mathbb{R}^+$, con $t_1 < t_2$, existe un $c \in]t_1, t_2[$ tal que:

$$\varphi(t_2) - \varphi(t_1) = \varphi'(c) \cdot (t_2 - t_1)$$

Diferenciamos ahora si $|x| \le 1$ o |x| > 1:

■ Si $|x| \leq 1$, aplicamos el Teorema del valor medio a la función φ_n en el intervalo $[1, 1 + x^{2n}]$, obteniendo que existe un $c \in]1, 1 + x^{2n}[$ tal que:

$$g_n(x) - g(x) = \sqrt[n]{1 + x^{2n}} - 1 = \varphi_n(1 + x^{2n}) - \varphi_n(1) = \varphi'_n(c) \cdot (1 + x^{2n} - 1) = \frac{x^{2n}}{n \cdot c^{n-1/n}}$$

Como $|x| \le 1$, tenemos que $|x^{2n}| \le 1$; y como c > 1 y $\frac{n-1}{n} > 1$, tenemos que $c^{n-1/n} > 1$, por lo que:

$$|g_n(x) - g(x)| = \frac{x^{2n}}{n \cdot c^{n-1/n}} < \frac{1}{n} \quad \forall x \in [-1, 1], \ n \in \mathbb{N}$$

■ Si |x| > 1, aplicamos el Teorema del valor medio a la función φ_n en el intervalo $[x^{2n}, 1 + x^{2n}]$, obteniendo que existe un $d \in]x^{2n}, 1 + x^{2n}[$ tal que:

$$g_n(x) - g(x) = \sqrt[n]{1 + x^{2n}} - x^2 = \varphi_n(1 + x^{2n}) - \varphi_n(x^{2n}) = \varphi'_n(d) \cdot (1 + x^{2n} - x^{2n}) = \frac{1}{n \cdot d^{n-1/n}}$$

Como |x|>1, tenemos que $|x^{2n}|>1$, por tanto, d>1. Como también se tiene que $\frac{n-1}{n}>1$, tenemos que $d^{n-1/n}>1$, por lo que:

$$|g_n(x) - g(x)| = \frac{1}{n \cdot d^{n-1/n}} < \frac{1}{n} \qquad \forall x \in \mathbb{R} \setminus [-1, 1], \ n \in \mathbb{N}$$

Por tanto, uniendo ambos resultados se tiene que:

$$|g_n(x) - g(x)| < \frac{1}{n}$$
 $\forall x \in \mathbb{R}, \ n \in \mathbb{N}$

Por tanto, como $\left\{\frac{1}{n}\right\} \to 0$, tenemos que $\{g_n\}$ converge uniformemente en \mathbb{R} .

Ejercicio 2.1.3. Sea $\{h_n\}$ la sucesión de funciones de \mathbb{R}^2 en \mathbb{R} definida como:

$$h_n(x,y) = \frac{xy}{n^2 + x^2 + y^2}$$
 $\forall (x,y) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}$

Probar que la sucesión $\{h_n\}$ converge uniformemente en cada subconjunto acotado de \mathbb{R}^2 , pero no converge uniformemente en \mathbb{R}^2 .

Estudiemos en primer lugar la convergencia puntual. Fijado $(x, y) \in \mathbb{R}^2$, tenemos de forma directa que:

$$\lim_{n \to \infty} h_n(x, y) = \lim_{n \to \infty} \frac{xy}{n^2 + x^2 + y^2} = 0$$

Por tanto, $\{h_n\}$ converge puntualmente a la función nula en \mathbb{R}^2 .

Estudiemos ahora la convergencia uniforme. Fijado un subconjunto acotado $A \subset \mathbb{R}^2$, como este está acotado, está acotado para la norma del máximo. Por tanto, existe un $M \in \mathbb{R}^+$ tal que máx $\{|x|, |y|\} < M$. De esta forma, para todo $(x, y) \in A$, tenemos que:

$$|h_n(x,y)| = \left|\frac{xy}{n^2 + x^2 + y^2}\right| \leqslant \frac{M^2}{n^2} \quad \forall n \in \mathbb{N}$$

Por tanto, como $\left\{\frac{M^2}{n^2}\right\} \to 0$, tenemos que $\left\{h_n\right\}$ converge uniformemente a 0 en A.

Estudiemos ahora la convergencia uniforme en \mathbb{R}^2 . Tomemos $x_n = y_n = n$ para todo $n \in \mathbb{N}$. De esta forma, obtenemos una sucesión de puntos de \mathbb{R}^2 de forma que:

$$h_n(x_n, y_n) = \frac{n^2}{n^2 + 2n^2} = \frac{1}{3} \quad \forall n \in \mathbb{N}$$

Como $\{h(x_n, y_n)\} \to \frac{1}{3} \neq 0$, tenemos que $\{h_n\}$ no converge uniformemente en \mathbb{R}^2 .

Ejercicio 2.1.4. Se considera la sucesión de funciones $\{f_n\}$ de \mathbb{R} en \mathbb{R} definida como:

$$f_n(x) = \frac{x}{n}$$
 $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$

Probar que la sucesión $\{f_n\}$ converge uniformemente en un conjunto no vacío $C \subset \mathbb{R}$ si y solo si C está acotado.

Estudiemos en primer lugar la convergencia puntual. Fijado $x \in \mathbb{R}$, tenemos que:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{n} = 0$$

Por tanto, $\{f_n\}$ converge puntualmente a la función nula en \mathbb{R} .

Estudiemos ahora la convergencia uniforme. Fijado un conjunto no vacío $C \subset \mathbb{R}$, distinguimos en función de si C está acotado o no:

■ Si C está acotado (usamos norma del máximo), entonces existe un $M \in \mathbb{R}^+$ tal que |x| < M para todo $x \in C$. De esta forma, para todo $x \in C$, tenemos que:

$$|f_n(x)| = \left|\frac{x}{n}\right| \leqslant \frac{M}{n} \quad \forall n \in \mathbb{N}$$

Por tanto, como $\left\{\frac{M}{n}\right\} \to 0$, tenemos que $\left\{f_n\right\}$ converge uniformemente a 0 en C.

• Si C no está acotado, entonces para todo $n \in \mathbb{N}$, existe un $x_n \in C$ tal que $|x_n| > n$. Eligiendo esta sucesión de puntos, tenemos que:

$$|f_n(x_n)| = \left|\frac{x_n}{n}\right| > 1 \quad \forall n \in \mathbb{N}$$

Por tanto, tenemos que $\{f_n(x_n)\}$ no puede converger a 0, por lo que se tiene que $\{f_n\}$ no converge uniformemente en C.

Ejercicio 2.1.5. Sea $\{g_n\}$ la sucesión de funciones de \mathbb{R}_0^+ en \mathbb{R} definida como:

$$g_n(x) = \frac{2nx^2}{1+n^2x^4} \quad \forall x \in \mathbb{R}_0^+, \ \forall n \in \mathbb{N}$$

Dado $\delta \in \mathbb{R}^+$, probar que la sucesión $\{g_n\}$ converge uniformemente en $[\delta, +\infty[$, pero no converge uniformemente en $[0, \delta]$.

Estudiemos en primer lugar la convergencia puntual. Para x=0, tenemos que $g_n(0)=0$ para todo $n\in\mathbb{N}$, por lo que $\{g_n\}$ converge puntualmente a la función nula en \mathbb{R}^+_0 . Para x>0, tenemos que:

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{2nx^2}{1 + n^2x^4} = 0$$

Por tanto, $\{g_n\}$ converge puntualmente a la función nula en \mathbb{R}_0^+ .

Estudiemos ahora la convergencia uniforme. Fijado $\delta \in \mathbb{R}^+$, definimos la sucesión $\{x_n\}$ de la siguiente forma:

- Si $n < \frac{1}{\delta^2} \left(\delta < \frac{1}{\sqrt{n}} \right)$, entonces $x_n = \delta \in [0, \delta]$.
- Si $n \geqslant \frac{1}{\delta^2} \left(\delta \geqslant \frac{1}{\sqrt{n}} \right)$, entonces $x_n = \frac{1}{\sqrt{n}} \in [0, \delta]$.

De esta forma, tenemos que $\{x_n\}$ es una sucesión de puntos de $[0, \delta]$. Veamos lo siguiente:

$$g_n\left(\frac{1}{\sqrt{n}}\right) = \frac{2n\left(\frac{1}{\sqrt{n}}\right)^2}{1 + n^2\left(\frac{1}{\sqrt{n}}\right)^4} = \frac{2}{1+1} = 1 \qquad \forall n \in \mathbb{N}$$

Por tanto, como se tiene que $\{g_n(x_n) - g(x_n)\} = \{g_n(x_n)\} \to 1$, tenemos que $\{g_n\}$ no converge uniformemente en $[0, \delta]$.

Para el caso de la semirrecta $[\delta, +\infty[$, estudiamos en primer lugar la monotonía de la función g_n para cada $n \in \mathbb{N}$. Para ello, como $g_n \in C^{\infty}(\mathbb{R}_0^+)$, estudiamos su derivada:

$$g'_n(x) = \frac{4nx(1+n^2x^4) - 8n^3x^5}{(1+n^2x^4)^2} = \frac{-4n^3x^5 + 4nx}{(1+n^2x^4)^2} \qquad \forall x \in \mathbb{R}_0^+$$

Por tanto, tenemos que los candidatos a extremos relativos de g_n son:

$$g'_n(x) = 0 \iff -4n^3x^5 + 4nx = 0 \iff 4xn(-n^2x^4 + 1) = 0 \iff x = 0 \text{ ó } x = \pm \frac{1}{\sqrt{n}}$$

Evaluando la primera derivada en cada intervalo, tenemos que:

- Si $x \in \left[0, \frac{1}{\sqrt{n}}\right]$, entonces $g'_n(x) > 0$, por lo que g_n es creciente para todo $n \in \mathbb{N}$.
- Si $x \in \left[\frac{1}{\sqrt{n}}, +\infty\right[$, entonces $g'_n(x) < 0$, por lo que g_n es decreciente para todo $n \in \mathbb{N}$.

Estudiamos ahora la convergencia uniforme. Fijado $\delta \in \mathbb{R}^+$, tomamos $m \in \mathbb{N}$ tal que $\delta > \frac{1}{\sqrt{m}}$. De esta forma, para $n \in \mathbb{N}$, $n \geqslant m$, tenemos también que $\delta > \frac{1}{\sqrt{n}}$. Por tanto, tenemos que $[\delta, +\infty[$ $\subset \left[\frac{1}{\sqrt{n}}, +\infty\right[$, por lo que g_n es decreciente en $[\delta, +\infty[$. De esta forma, para $n \geqslant m$, tenemos que:

$$|g_n(x)| = g_n(x) \leqslant g_n(\delta) \quad \forall x \in [\delta, +\infty[$$

Además, por la convergencia puntual, tenemos que $\{g_n(\delta)\} \to 0$, por lo que se deduce que $\{g_n\}$ converge uniformemente en $[\delta, +\infty[$.

Ejercicio 2.1.6. Para cada $n \in \mathbb{N}$, sea $h_n : [0, \pi/2] \to \mathbb{R}$ la función definida como:

$$h_n(x) = n \cos^n x \sin x \qquad \forall x \in [0, \pi/2]$$

Fijado un $\rho \in]0, \pi/2[$, probar que la sucesión $\{h_n\}$ converge uniformemente en $[\rho, \pi/2]$, pero no converge uniformemente en $[0, \rho]$.

Estudiamos en primer lugar la convergencia puntual. Cabe destacar que, debido al dominio de la función, tanto el seno como el coseno son positivos. Considerando fijo $x \in]0, \pi/2[$, tenemos que:

$$\lim_{n \to \infty} \frac{n}{\cos^{-n} x} = \lim_{n \to \infty} \frac{n}{\left(\frac{1}{\cos x}\right)^n} \stackrel{L'H\hat{o}pital}{=} \lim_{n \to \infty} \frac{1}{n \cdot \left(\frac{1}{\cos x}\right)^{n-1}} = 0$$

donde he usado que $|\cos x| < 1$ para todo $x \in]0, \pi/2[$. Por tanto, tenemos que:

$$0 \leqslant n \cos^n x \sin x \leqslant n \cos^n x = \frac{n}{\cos^{-n} x}$$

Por el Lema del Sándwich, tenemos que $\{h_n\}$ converge puntualmente a la función nula en $]0, \pi/2[$.

Sumándole que, en $x = 0, \pi/2$ se tiene que $h_n(x) = 0$, se tiene que $\{h_n\}$ converge puntualmente a la función nula en $[0, \pi/2]$.

Estudiamos ahora la convergencia uniforme. Fijado $\rho \in]0, \pi/2[$, definimos la sucesión $\{x_n\}$ de la siguiente forma:

- Si $n < 1/\rho$ $(\rho < 1/n)$, entonces $x_n = \rho \in [0, \rho]$.
- Si $n \geqslant 1/\rho$ $(\rho \geqslant 1/n)$, entonces $x_n = 1/n \in [0, \rho]$.

De esta forma, tenemos que $\{x_n\}$ es una sucesión de puntos de $[0, \rho]$. Veamos lo siguiente:

$$\lim_{n \to \infty} h_n \left(\frac{1}{n} \right) = \lim_{n \to \infty} n \cos^n \left(\frac{1}{n} \right) \sin \left(\frac{1}{n} \right) = \lim_{n \to \infty} \cos^n \left(\frac{1}{n} \right) \cdot \lim_{n \to \infty} \frac{\sin \left(\frac{1}{n} \right)}{\frac{1}{n}} \stackrel{(*)}{=} e^0 \cdot 1 = 1$$

Pasar estudiar el primer límite en (*), hemos tomado en primer lugar el logaritmo neperiano, por lo que luego hemos de usar la exponencial:

$$\lim_{n \to \infty} n \log \left(\cos \left(\frac{1}{n} \right) \right) = \lim_{n \to \infty} \frac{\log \left(\cos \left(\frac{1}{n} \right) \right)}{\frac{1}{n}} \stackrel{L'H\hat{o}pital}{=} \lim_{n \to \infty} \frac{-\sin \left(\frac{1}{n} \right)}{\cos \left(\frac{1}{n} \right)} = \lim_{n \to \infty} -\tan \left(\frac{1}{n} \right) = 0$$

Por tanto, como se tiene que $\{h_n(x_n) - h(x_n)\} = \{h_n(x_n)\} \to 1$, tenemos que $\{h_n\}$ no converge uniformemente en $[0, \rho]$.

Para el caso de $[\rho, \pi/2]$, estudiamos en primer lugar la monotonía de la función h_n para cada $n \in \mathbb{N}$. Para ello, como $h_n \in C^{\infty}(]0, \pi/2[)$, estudiamos su derivada:

$$h'_n(x) = n\left(-n\cos^{n-1}x\sin^2x + \cos^{n+1}x\right) = n\cos^{n-1}x\left(-n\sin^2x + \cos^2x\right)$$

Por tanto, tenemos que los candidatos a extremos relativos de h_n son:

$$h'_n(x) = 0 \iff \cos^2 x = n \sin^2 x \iff \tan^2 x = \frac{1}{n} \iff x = \arctan\left(\frac{1}{\sqrt{n}}\right)$$

Evaluando la primera derivada en cada intervalo, tenemos que:

- Si $x \in \left[0, \arctan\left(\frac{1}{\sqrt{n}}\right)\right]$, entonces $h'_n(x) > 0$, por lo que h_n es creciente para todo $n \in \mathbb{N}$.
- Si $x \in \left[\arctan\left(\frac{1}{\sqrt{n}}\right), \pi/2\right]$, entonces $h'_n(x) < 0$, por lo que h_n es decreciente para todo $n \in \mathbb{N}$.

Estudiamos ahora la convergencia uniforme. Fijado $\rho \in]0, \pi/2[$, tomamos $m \in \mathbb{N}$ tal que $\rho > \arctan\left(\frac{1}{\sqrt{m}}\right)$, lo cual es posible ya que $\left\{\arctan\left(\frac{1}{\sqrt{n}}\right)\right\} \to 0$. De esta forma, para $n \in \mathbb{N}$, $n \geqslant m$, tenemos también que $\rho > \arctan\left(\frac{1}{\sqrt{n}}\right)$. Por tanto, tenemos que $[\rho, \pi/2] \subset \left[\arctan\left(\frac{1}{\sqrt{n}}\right), \pi/2\right]$, por lo que h_n es decreciente en $[\rho, \pi/2]$. Por tanto, para $n \geqslant m$, tenemos que:

$$|h_n(x)| = h_n(x) \leqslant h_n(\rho) \qquad \forall x \in [\rho, \pi/2]$$

Además, por la convergencia puntual, tenemos que $\{h_n(\rho)\} \to 0$, por lo que se deduce que $\{h_n\}$ converge uniformemente a 0 en $[\rho, \pi/2]$.

Ejercicio 2.1.7. Sea $\{\varphi_n\}$ la sucesión de funciones de \mathbb{R} en \mathbb{R} definida como:

$$\varphi_n(x) = \frac{x^2}{1+n|x|} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Probar que la sucesión $\{\varphi_n\}$ converge uniformemente en cada subconjunto acotado de \mathbb{R} , pero no converge uniformemente en \mathbb{R} .

Estudiemos en primer lugar la convergencia puntual. Fijado $x \in \mathbb{R}$, tenemos que:

$$\lim_{n \to \infty} \varphi_n(x) = \lim_{n \to \infty} \frac{x^2}{1 + n|x|} = 0$$

Por tanto, $\{\varphi_n\}$ converge puntualmente a la función nula en \mathbb{R} .

Estudiemos ahora la convergencia uniforme. Fijado un conjunto no vacío $C \subset \mathbb{R}$ acotado (en particular, acotado para la norma del máximo), existe un $M \in \mathbb{R}^+$ tal que |x| < M para todo $x \in C$. De esta forma, para todo $x \in C \setminus \{0\}$, tenemos que:

$$|\varphi_n(x)| = \left|\frac{x^2}{1+n|x|}\right| \leqslant \frac{x^2}{n|x|} = \frac{|x|}{n} \leqslant \frac{M}{n} \quad \forall n \in \mathbb{N}$$

Además, en el caso de que se tenga que $0 \in C$, se tiene que $|\varphi_n(0)| = 0 \leq \frac{M}{n}$ para todo $n \in \mathbb{N}$. En cualquier caso, como se tiene que $\left\{\frac{M}{n}\right\} \to 0$, tenemos que $\{\varphi_n\}$ converge uniformemente a 0 en C.

Estudiemos ahora la convergencia uniforme en \mathbb{R} . Tomamos $x_n = n$ para todo $n \in \mathbb{N}$. De esta forma, obtenemos una sucesión de puntos de \mathbb{R} de forma que:

$$\lim_{n \to \infty} \varphi_n(n) = \lim_{n \to \infty} \frac{n^2}{1 + n^2} = 1$$

Como $\{\varphi_n(n)\}\to 1\neq 0$, tenemos que $\{\varphi_n\}$ no converge uniformemente en \mathbb{R} .

Ejercicio 2.1.8. Se considera la sucesión de funciones $\{\varphi_n\}$ de \mathbb{R}_0^+ en \mathbb{R} definida como:

$$\varphi_n(x) = \frac{x^n}{1+x^n} \quad \forall x \in \mathbb{R}_0^+, \ \forall n \in \mathbb{N}$$

Dados $r, \rho \in \mathbb{R}$, con $0 < r < 1 < \rho$, estudiar la convergencia uniforme de $\{\varphi_n\}$ en los intervalos [0, r], $[r, \rho]$ y $[\rho, +\infty[$.

Estudiemos en primer lugar la convergencia puntual. Fijado $x \in \mathbb{R}_0^+$, tenemos que:

$$\varphi_n(x) = \frac{x^n}{1+x^n} = \frac{1}{\frac{1}{x^n}+1}$$

Por tanto, distinguimos en función de los valores de x:

• Si |x| < 1:

$$\lim_{n \to \infty} \varphi_n(x) = \lim_{n \to \infty} \frac{1}{\frac{1}{x^n} + 1} = \frac{1}{\frac{1}{0} + 1} = 0$$

Tenemos que φ_n converge puntualmente a la función nula en [0,1].

• Si |x| > 1:

$$\lim_{n \to \infty} \varphi_n(x) = \lim_{n \to \infty} \frac{1}{\frac{1}{x^n} + 1} = \frac{1}{\frac{1}{\infty} + 1} = 1$$

Tenemos que φ_n converge puntualmente a la función constante 1 en $]1, +\infty[$.

• Si x = 1:

$$\lim_{n \to \infty} \varphi_n(1) = \lim_{n \to \infty} \frac{1}{1 + 1^n} = \frac{1}{2}$$

Tenemos que φ_n converge puntualmente a la función constante 1/2 en $\{1\}$.

Por tanto, de forma directa deducimos que $\{\varphi_n\}$ no converge uniformemente en $[r, \rho]$, ya que a pesar de ser continua para todo $n \in \mathbb{N}$ (es racional), su función límite no lo es, por lo que no se preserva la continuidad.

Estudiemos ahora la convergencia uniforme en [0, r]. Tenemos que:

$$|\varphi_n(x)| = \left| \frac{x^n}{1+x^n} \right| \le \left| \frac{r^n}{1} \right| = r^n \quad \forall x \in [0, r], \ \forall n \in \mathbb{N}$$

donde he empleado que $0 \le x \le r < 1$, y por tanto $x^n < r^n$ para todo $n \in \mathbb{N}$. Entonces, como $\{r^n\} \to 0$, tenemos que $\{\varphi_n\}$ converge uniformemente a 0 en [0, r]. Estudiemos por último la convergencia uniforme en $[\rho, +\infty[$. Tenemos que:

$$|\varphi_n(x) - 1| = \left| \frac{x^n}{1 + x^n} - 1 \right| = \left| \frac{-1}{1 + x^n} \right| = \frac{1}{1 + x^n} \leqslant \frac{1}{x^n} \leqslant \frac{1}{\rho^n} \qquad \forall x \in [\rho, +\infty[, \forall n \in \mathbb{N}])$$

donde he empleado que $x \ge \rho > 1$, y por tanto $x^n \ge \rho^n$ para todo $n \in \mathbb{N}$. Además, como $\left\{\frac{1}{\rho^n}\right\} \to 0$, tenemos que $\left\{\varphi_n\right\}$ converge uniformemente a 1 en $\left[\rho, +\infty\right[$.

Ejercicio 2.1.9. Estudiar la convergencia puntual y uniforme de la sucesión de funciones $\{f_n\}$ de [0,1] en \mathbb{R} definida como:

$$f_n(x) = x - x^n \quad \forall x \in [0, 1], \ \forall n \in \mathbb{N}$$

Estudiemos en primer lugar la convergencia puntual. Fijado $x \in [0,1[$, tenemos:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x - x^n = x$$

Fijado x = 1, tenemos que:

$$\lim_{n \to \infty} f_n(1) = \lim_{n \to \infty} 1 - 1^n = 1 - 1 = 0$$

Por tanto, $\{f_n\}$ converge puntualmente a la función:

$$f(x) = \begin{cases} x & \text{si } x \in [0, 1[\\ 0 & \text{si } x = 1 \end{cases}$$

Para estudiar la convergencia uniforme, estudiamos la continuidad de f en [0,1]:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} x = 1 \neq 0 = f(1)$$

Por tanto, f no es continua en 1. No obstante, f_n sí es continua en 1 para todo $n \in \mathbb{N}$ (es un polinomio). Por tanto, se tiene que $\{f_n\}$ no converge uniformemente en [0, 1].

Ejercicio 2.1.10. Se considera la sucesión de funciones $\{f_n\}$ de \mathbb{R}_0^+ en \mathbb{R} definida como:

$$f_n(x) = \frac{x}{x+n}$$
 $\forall x \in \mathbb{R}_0^+, \ \forall n \in \mathbb{N}$

Fijado un $\rho \in \mathbb{R}^+$, estudiar la convergencia uniforme de $\{f_n\}$ en \mathbb{R}_0^+ y en $[0, \rho]$.

Estudiemos en primer lugar la convergencia puntual. Fijado $x \in \mathbb{R}^+$, tenemos que:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{x+n} = 0$$

Además, tenemos que $f_n(0) = 0$ para todo $n \in \mathbb{N}$. Por tanto, $\{f_n\}$ converge puntualmente a la función nula en \mathbb{R}_0^+ .

Estudiemos ahora la convergencia uniforme en \mathbb{R}_0^+ . Consideramos la sucesión $x_n = n$ para todo $n \in \mathbb{N}$. De esta forma, obtenemos una sucesión de puntos de \mathbb{R}_0^+ de forma que:

$$f_n(n) = \frac{n}{n+n} = \frac{1}{2} \quad \forall n \in \mathbb{N}$$

Como $\{f_n(n)\} \to 1/2 \neq 0$, tenemos que $\{f_n\}$ no converge uniformemente en \mathbb{R}^+_0 .

Estudiemos por último la convergencia uniforme en $[0, \rho]$. Tenemos que:

$$|f_n(x) - 0| = \left| \frac{x}{x+n} \right| \le \frac{\rho}{n} \quad \forall x \in [0, \rho], \ \forall n \in \mathbb{N}$$

donde he empleado que $0 \le x \le \rho$. Entonces, como $\left\{\frac{\rho}{n}\right\} \to 0$, tenemos que $\{f_n\}$ converge uniformemente a 0 en $[0, \rho]$.

Ejercicio 2.1.11. Se considera la sucesión de funciones $\{f_n\}$ de \mathbb{R}_0^+ en \mathbb{R} definida como:

$$f_n(x) = \frac{\operatorname{sen}(nx)}{1 + nx} \quad \forall x \in \mathbb{R}_0^+, \ \forall n \in \mathbb{N}$$

Fijado $\rho \in \mathbb{R}^+$, estudiar la convergencia uniforme de $\{f_n\}$ en $[\rho, \infty[$ y en $[0, \rho]$.

Estudiemos en primer lugar la convergencia puntual. Fijado $x \in \mathbb{R}_0^+$, tenemos que:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\sin(nx)}{1 + nx} = 0$$

Por tanto, $\{f_n\}$ converge puntualmente a la función nula en \mathbb{R}_0^+ .

Para estudiar la convergencia uniforme en \mathbb{R}_0^+ , consideramos la sucesión dada por:

- Si $n < 1/\rho$ $(\rho < 1/n)$, entonces $x_n = \rho \in [0, \rho]$.
- Si $n \ge 1/\rho$ $(\rho \ge 1/n)$, entonces $x_n = 1/n \in [0, \rho]$.

Por tanto, tenemos que $\{x_n\}$ es una sucesión de puntos de \mathbb{R}_0^+ . Veamos lo siguiente:

$$f_n\left(\frac{1}{n}\right) = \frac{\operatorname{sen}\left(n \cdot \frac{1}{n}\right)}{1 + n \cdot \frac{1}{n}} = \frac{\operatorname{sen} 1}{2} \quad \forall n \in \mathbb{N}$$

Por tanto, como se tiene que $\{f_n(x_n) - f(x_n)\} = \{f_n(x_n)\} \to \frac{\text{sen } 1}{2} \neq 0$, tenemos que $\{f_n\}$ no converge uniformemente en \mathbb{R}_0^+ .

Estudiemos por último la convergencia uniforme en $[\rho, +\infty[$. Tenemos que:

$$|f_n(x) - 0| = \left| \frac{\operatorname{sen}(nx)}{1 + nx} \right| \le \frac{1}{1 + nx} \le \frac{1}{1 + n\rho} \quad \forall x \in [\rho, +\infty[, \forall n \in \mathbb{N}])$$

donde he empleado que $x \ge \rho$. Entonces, como sabemos que $\left\{\frac{1}{1+n\rho}\right\} \to 0$, tenemos que $\left\{f_n\right\}$ converge uniformemente a 0 en $\left[\rho, +\infty\right[$.

2.2. Series de funciones

Ejercicio 2.2.1. Probar que la serie $\sum_{n\geqslant 1} f_n$ converge absoluta y uniformemente en \mathbb{R} , siendo:

$$f_n(x) = \frac{x}{n(1+nx^2)} \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}$$

Buscaremos aplicar el Test de Weierstrass. Para ello, hemos de acotar $f_n(x)$ para todo $x \in \mathbb{R}$ y para todo $n \in \mathbb{N}$. En primer lugar, estudiaremos su monotonía. Para cada $n \in \mathbb{N}$, la función f_n es derivable en \mathbb{R} con:

$$f'_n(x) = \frac{n(1+nx^2) - xn \cdot 2xn}{n^2(1+nx^2)^2} = \frac{n(1+nx^2) - 2x^2n^2}{n^2(1+nx^2)^2} = \frac{(1+nx^2) - 2x^2n}{n(1+nx^2)^2} = \frac{1-nx^2}{n(1+nx^2)^2}$$

Tenemos por tanto que hay dos candidatos a extremos relativos, $x = \pm \frac{1}{\sqrt{n}}$. Estudiaremos la monotonía en cada uno de los intervalos:

- Si $x \in \left] -\infty, -\frac{1}{\sqrt{n}} \right]$: $f'_n(x) \leq 0$, por lo que f_n es decreciente.
- Si $x \in \left[-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right]$: $f'_n(x) \ge 0$, por lo que f_n es creciente.
- Si $x \in \left[\frac{1}{\sqrt{n}}, +\infty\right]$: $f'_n(x) \leq 0$, por lo que f_n es decreciente.

Para acotar, tenemos en cuenta que:

$$f\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{2n\sqrt{n}}$$
 y $f\left(-\frac{1}{\sqrt{n}}\right) = -\frac{1}{2n\sqrt{n}}$

Sabiendo eso, acotamos en cada uno de los intervalos, teniendo en cuenta la monotonía:

• Si
$$x \in \left] -\infty, -\frac{1}{\sqrt{n}} \right]$$
:

$$0 \geqslant f_n(x) \geqslant f_n\left(-\frac{1}{\sqrt{n}}\right) = -\frac{1}{2n\sqrt{n}}$$

• Si
$$x \in \left[-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}} \right]$$
:

$$-\frac{1}{2n\sqrt{n}} = f_n\left(-\frac{1}{\sqrt{n}}\right) \leqslant f_n(x) \leqslant f_n\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{2n\sqrt{n}}$$

• Si
$$x \in \left[\frac{1}{\sqrt{n}}, +\infty\right]$$
:

$$0 \leqslant f_n(x) \leqslant f_n\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{2n\sqrt{n}}$$

En cualquier caso, uniendo los tres resultados, tenemos que:

$$|f_n(x)| \leqslant \frac{1}{2n\sqrt{n}} = \frac{1}{2n^{3/2}} \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}$$

Por el criterio límite de comparación, la serie $\sum_{n\geqslant 1}\frac{1}{2n^{3/2}}$ es convergente por serlo la serie $\sum_{n\geqslant 1}\frac{1}{n^{3/2}}$, (3/2>1). Por el Test de Weierstrass, la serie $\sum_{n\geqslant 1}f_n$ converge absoluta y uniformemente en $\mathbb R$.

Ejercicio 2.2.2. Para cada $n \in \mathbb{N}$, sea $g_n : [1, +\infty[\to \mathbb{R} \text{ la función definida por:}$

$$g_n(x) = \frac{1}{n^x}$$
 $\forall x \in [1, +\infty[$

Probar las siguientes afirmaciones:

1. Para $\rho \in \mathbb{R}$, $\rho > 1$, la serie $\sum_{n \ge 1} g_n$ converge uniformemente en $[\rho, +\infty[$.

Fijado $n \in \mathbb{N}$, sabemos que g_n es derivable en $[\rho, +\infty[$ con:

$$g'_n(x) = -\frac{\ln(n)}{n^{2x}} \quad \forall x \in [\rho, +\infty[$$

Por tanto, como la primera derivada de g_n no se anula, tenemos que es estrictamente monótona. Además, como $n \ge 1$, tenemos que $g'_n(x) \le 0$ para todo $x \in [\rho, +\infty[$, por lo que g_n es decreciente en $[\rho, +\infty[$. Por tanto,

$$|g_n(x)| = g_n(x) \leqslant g_n(\rho) = \frac{1}{n^p} \quad \forall x \in [\rho, +\infty[$$

Como la serie $\sum_{n\geqslant 1}\frac{1}{n^p}$ es convergente $(\rho>1)$, por el Test de Weierstrass, la serie $\sum_{n\geqslant 1}g_n$ converge uniformemente en $[\rho,+\infty[$.

2. La sucesión $\{g_n\}$ converge uniformemente a la función nula en $[1, +\infty[$. De nuevo, usando que g_n es decreciente en $[1, +\infty[$, tenemos que:

$$|g_n(x)| = g_n(x) \leqslant g_n(1) = \frac{1}{n} \quad \forall x \in [1, +\infty[$$

Como $\{1/n\} \to 0$, tenemos que $\{g_n\}$ converge uniformemente a la función nula en $[1, +\infty[$.

3. La serie $\sum_{n\geqslant 1} g_n$ no converge uniformemente en $]1,+\infty[.$

Por reducción al absurdo, supongamos que sí. Entonces, la serie $\sum_{n\geqslant 1}g_n$ converge uniformemente en $]1,+\infty[$, y por el Criterio de Cauchy tenemos que esto equivale a que la sucesión de sumas parciales $\{S_n\}$ sea uniformemente de

Cauchy en $]1, +\infty[$, es decir, que fijado $\varepsilon \in \mathbb{R}^+$, existe $m \in \mathbb{N}$ tal que, para $m \leq p < q$, se tiene que:

$$|S_q(x) - S_p(x)| = \left| \sum_{n=n+1}^q g_n(x) \right| = \sum_{n=n+1}^q \frac{1}{n^x} < \frac{\varepsilon}{2} \quad \forall x \in]1, +\infty[$$

Por tanto, tomando límite cuando $x \to 1$, tenemos que:

$$\sum_{n=p+1}^q \frac{1}{n} = \lim_{x \to 1} \sum_{n=p+1}^q \frac{1}{n^x} \leqslant \frac{\varepsilon}{2} < \varepsilon$$

Por tanto, la serie $\sum_{n\geqslant 1}\frac{1}{n}$ es una sucesión de Cauchy, y por tanto es convergente, lo cual es absurdo, ya que sabemos que la serie armónica no converge. Por tanto, la serie $\sum_{n\geqslant 1}g_n$ no converge uniformemente en $]1,+\infty[$.

Ejercicio 2.2.3. Estudiar la convergencia puntual, absoluta y uniforme de la serie de potencias

$$\sum_{n \ge 0} \frac{n!}{(n+1)^n} x^n \qquad \forall x \in \mathbb{R}$$

Estudiamos en primer lugar su campo de convergencia. La sucesión de coeficientes es $\{c_n\} = \left\{\frac{n!}{(n+1)^n}\right\}$. Tenemos que:

$$\left\{ \frac{|c_{n+1}|}{|c_n|} \right\} = \left\{ \frac{c_{n+1}}{c_n} \right\} = \left\{ \frac{(n+1)!}{(n+2)^{n+1}} \cdot \frac{(n+1)^n}{n!} \right\} = \left\{ \left(\frac{n+1}{n+2} \right)^{n+1} \right\} =$$

$$= \left\{ \left[\left(\frac{n+2}{n+1} \right)^{n+1} \right]^{-1} \right\} = \left\{ \left[\left(1 + \frac{1}{n+1} \right)^{n+1} \right]^{-1} \right\} \to \frac{1}{e}$$

Por el criterio de la raíz para sucesiones, tenemos que el radio de convergencia de la serie es:

$$\frac{1}{R} = \limsup_{n \to +\infty} \sqrt[n]{|c_n|} = \frac{1}{e} \Longrightarrow R = e$$

Por tanto, el intervalo de convergencia es J=]-e,e[. Por tanto, tenemos que la serie converge absolutamente en J y uniformemente en cada conjunto compacto $K\subset J$. También sabemos que la serie no converge en ningún punto de $\mathbb{R}\setminus \overline{J}=\mathbb{R}\setminus [-e,e]$. Falta ahora por estudiar la convergencia puntual en $x=\pm e$ y la convergencia uniforme en J.

• Convergencia puntual en $x = \pm e$:

Equivale a ver si la serie $\sum_{n\geqslant 0} c_n x^n$ es convergente, con $x=\pm e$ fijo. Tenemos que:

$$\frac{c_{n+1}x^{n+1}}{c_nx^n} = \frac{c_{n+1}}{c_n}x = x \cdot \left[\left(1 + \frac{1}{n+1} \right)^{n+1} \right]^{-1}$$

donde hemos usado los cálculos ya realizados. Además, sabemos que el segundo término converge a 1/e y es estrictamente decreciente. Por tanto, tenemos que:

$$\frac{|c_{n+1}x^{n+1}|}{|c_nx^n|} = \left|\frac{c_{n+1}x^{n+1}}{c_nx^n}\right| = \left|x \cdot \left[\left(1 + \frac{1}{n+1}\right)^{n+1}\right]^{-1}\right| > \left|x \cdot \frac{1}{e}\right| = \left|\frac{x}{e}\right| = 1$$

Por tanto, tenemos que la sucesión $\{|c_nx^n|\}$ es estrictamente creciente, por lo que no converge a 0. Por tanto, la serie $\sum_{n\geqslant 0} c_nx^n$ no converge en $x=\pm e$, luego su campo de convergencia es J.

lacktriangle Convergencia uniforme en J:

Supongamos que la serie $\sum_{n\geqslant 0} c_n x^n$ converge uniformemente en J. Entonces, por el Criterio de Cauchy, la sucesión de sumas parciales $\{S_n\}$ es uniformemente de Cauchy en J, es decir, que fijado $\varepsilon \in \mathbb{R}^+$, existe $m \in \mathbb{N}$ tal que, para $m \leqslant p < q$, se tiene que:

$$|S_q(x) - S_p(x)| = \left| \sum_{n=p+1}^q c_n x^n \right| < \frac{\varepsilon}{2} \quad \forall x \in J$$

Tomando límite cuando $x \to e$, tenemos que:

$$\lim_{x \to e} \sum_{n=p+1}^{q} c_n x^n \leqslant \frac{\varepsilon}{2} < \varepsilon$$

No obstante, esto es un absurdo, ya que al tomar límite con x tendiendo a e, la serie $\sum_{n\geqslant 0} c_n x^n$ diverge por divergir su término general. Por tanto, la serie $\sum_{n\geqslant 0} c_n x^n$ no converge uniformemente en J.

Ejercicio 2.2.4. Para cada $n \in \mathbb{N}$, sea $f_n :]-1,1[\to \mathbb{R}$ la función definida por:

$$f_n(x) = \frac{x^n}{1 - x^n} \quad \forall x \in]-1, 1[$$

Probar que la serie $\sum_{n\geqslant 1} f_n$ converge absolutamente en] -1,1[y uniformemente en cada conjunto compacto $K\subset]-1,1[$; pero no converge uniformemente en] -1,1[.

En \mathbb{R} , los conjuntos compactos son los cerrados y acotados. Por tanto, se tiene que $K = [a, b] \subseteq [-\rho, \rho] \subsetneq]-1, 1[$, con $a, b, \rho \in \mathbb{R}$. Tenemos que:

$$|f_n(x)| = \left| \frac{x^n}{1 - x^n} \right| = \frac{|x^n|}{|1 - x^n|} \le \frac{|x^n|}{1 - |x^n|} = \frac{|x|^n}{1 - |x|^n} \le \frac{\rho^n}{1 - \rho^n} \quad \forall x \in K, \ \forall n \in \mathbb{N}$$

Para ver si la serie de término general $a_n = \frac{\rho^n}{1-\rho^n}$ es convergente, usamos el criterio límite de comparación con la serie de término general $b_n = \rho^n$, que sabemos que es convergente por ser $|\rho| = \rho < 1$.

$$\left\{\frac{a_n}{b_n}\right\} = \left\{\frac{1}{1-\rho^n}\right\} \to 1 \Longrightarrow \sum_{n\geqslant 1} a_n \text{ es convergente}$$

Por tanto, por el Test de Weierstrass, la serie $\sum_{n\geqslant 1}f_n$ converge absoluta y uniformemente en K.

Estudiamos ahora la convergencia absoluta en] -1,1[. Fijando $x \in]-1,1[$, para ver si la serie $\sum_{n\geqslant 1}|f_n(x)|$ es convergente, usamos el criterio límite de comparación con la serie de término general $a_n=|x|^n$, que sabemos que es convergente por ser |x|<1.

$$\left\{\frac{|f_n(x)|}{|x|^n}\right\} = \left\{\frac{1}{1-|x|^n}\right\} \to 1 \Longrightarrow \sum_{n\geq 1} |f_n(x)| \text{ es convergente}$$

Por tanto, la serie $\sum_{n\geq 1} f_n$ converge absolutamente en] -1,1[.

Tan solo falta por ver que no converge uniformemente en] -1,1[. Por reducción al absurdo, supongamos que sí. Entonces, por el Criterio de Cauchy tenemos que la sucesión de sumas parciales $\{S_n\}$ es uniformemente de Cauchy en] -1,1[, es decir, que fijado $\varepsilon \in \mathbb{R}^+$, existe $m \in \mathbb{N}$ tal que, para $m \leq p < q$, se tiene que:

$$|S_q(x) - S_p(x)| = \left| \sum_{n=p+1}^q f_n(x) \right| = \left| \sum_{n=p+1}^q \frac{x^n}{1 - x^n} \right| < \frac{\varepsilon}{2} \quad \forall x \in]-1,1[$$

Tomando límite cuando $x \to 1$, tenemos que:

$$\lim_{x \to 1} \sum_{n=n+1}^{q} \frac{x^n}{1 - x^n} \leqslant \frac{\varepsilon}{2} < \varepsilon$$

No obstante, esto es un absurdo, ya que al tomar límite con x tendiendo a 1, la serie $\sum_{n\geqslant 1}\frac{x^n}{1-x^n}$ diverge por divergir su término general. Por tanto, la serie $\sum_{n\geqslant 1}f_n$ no converge uniformemente en] -1,1[.

Ejercicio 2.2.5. Fijado $\alpha \in \mathbb{R}^+$, se define:

$$g_n(x) = \frac{1}{n^{\alpha}} \operatorname{arctg} \frac{x}{n} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Probar que la serie de funciones $\sum_{n\geqslant 1}g_n$ converge absoluta y uniformemente en cada subconjunto acotado de $\mathbb R$ y que, si $\alpha>1$, dicha serie converge absoluta y uniformemente en $\mathbb R$.

Supongamos en primer lugar que $\alpha > 1$. Entonces, tenemos que:

$$|g_n(x)| = \left| \frac{1}{n^{\alpha}} \operatorname{arctg} \frac{x}{n} \right| \leqslant \frac{1}{n^{\alpha}} \cdot \frac{\pi}{2}$$

donde he aplicado que la arctan está acotada por $\frac{\pi}{2}$. Por tanto, como $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$ es convergente $(\alpha>1)$, tenemos que $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}\cdot\frac{\pi}{2}$ es convergente; y por el Test de Weierstrass,

la serie $\sum_{n\geqslant 1}g_n$ converge absoluta y uniformemente en \mathbb{R} .

Sin suponer ahora que $\alpha > 1$, veamos que la serie $\sum_{n \geqslant 1} g_n$ converge absoluta y uniformemente en cada subconjunto acotado de \mathbb{R} . Fijado $C \subset \mathbb{R}$ acotado, existe $M \in \mathbb{R}^+$ tal que $|x| \leqslant M$ para todo $x \in C$. Notemos que vamos a necesitar acotar por $\frac{1}{n^{\alpha+1}}$, por lo que buscamos acotar arctan $\left(\frac{x}{n}\right)$ por $\frac{M}{n}$. Para ello, veremos que arctan $x \leqslant x$ para todo $x \in \mathbb{R}_0^+$.

Opción 1: Usando la definición mediante integrales de la arcotangente.

En efecto, si $x \in \mathbb{R}_0^+$, tenemos que:

$$\arctan x = \int_0^x \frac{1}{1+t^2} dt \leqslant \int_0^x 1 dt = x \qquad \forall x \in \mathbb{R}_0^+$$

donde hemos usado que $\frac{1}{1+t^2} \leqslant 1$ para todo $t \in \mathbb{R}_0^+$.

Opción 2: Calcular la imagen de una función auxiliar.

Definimos la siguiente función auxiliar:

$$f: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
$$x \longmapsto \arctan x - x$$

Tenemos que es derivable en \mathbb{R}_0^+ con:

$$f'(x) = \frac{1}{1+x^2} - 1 = \frac{1-1-x^2}{1+x^2} = -\frac{x^2}{1+x^2} < 0 \qquad \forall x \in \mathbb{R}^+$$

Por tanto, f es decreciente en \mathbb{R}_0^+ , por lo que se tiene que $f(x) \leqslant f(0) = 0$ para todo $x \in \mathbb{R}_0^+$. Como $f(x) = \arctan x - x \leqslant 0$, tenemos que arctan $x \leqslant x$ para todo $x \in \mathbb{R}_0^+$.

En cualquier caso, tenemos que:

$$|g_n(x)| = \left| \frac{1}{n^{\alpha}} \operatorname{arctg} \frac{x}{n} \right| \leqslant \frac{1}{n^{\alpha}} \cdot \frac{x}{n} \leqslant \frac{1}{n^{\alpha}} \cdot \frac{M}{n} = \frac{M}{n^{\alpha+1}} \quad \forall x \in C, \ \forall n \in \mathbb{N}$$

Por tanto, como $\sum_{n\geqslant 1} \frac{M}{n^{\alpha+1}}$ es convergente $(\alpha+1>1)$, por el Test de Weierstrass, la serie $\sum_{n\geqslant 1} g_n$ converge absoluta y uniformemente en C.

Ejercicio 2.2.6. Para cada $n \in \mathbb{N}$, sea $h_n : \mathbb{R} \to \mathbb{R}$ la función definida por:

$$h_n(x) = \frac{1}{n} \operatorname{sen}(nx) \log \left(1 + \frac{|x|}{n}\right) \quad \forall x \in \mathbb{R}$$

Probar que la serie de funciones $\sum_{n\geqslant 1}h_n$ converge absoluta y uniformemente en cada subconjunto acotado de \mathbb{R} .

Para probar lo pedido, en primer lugar, demostraremos que $\log x \leq x - 1$ para todo $x \in \mathbb{R}^+$. Para ello, hay dos opciones:

Opción 1: Usando la definición mediante integrales del logaritmo.

En efecto, si $x \ge 1$, tenemos que:

$$\log x = \int_1^x \frac{1}{t} dt < \int_1^x 1 dt = x - 1 \qquad \forall x \in \mathbb{R}^+$$

donde hemos usado que $\frac{1}{t} \le 1$ para todo $t \ge 1$.

Si $x \in [0, 1[$, tenemos que:

$$\log x = -\int_{x}^{1} \frac{1}{t} dt \le -\int_{x}^{1} 1 dt = -(1-x) = x - 1 \qquad \forall x \in]0,1[$$

donde hemos usado que $\frac{1}{t} \geqslant 1$ para todo $t \in]0,1[$.

Opción 2: Calcular la imagen de una función auxiliar.

Definimos la siguiente función auxiliar:

$$f: \begin{tabular}{ll} $f: & \mathbb{R}^+ & \longrightarrow & \mathbb{R} \\ & $x & \longmapsto & $\log x - x + 1$ \\ \end{tabular}$$

Tenemos que es derivable en \mathbb{R}^+ con:

$$f'(x) = \frac{1}{x} - 1 = 0 \Longleftrightarrow x = 1$$

Por tanto, f tiene un único punto crítico en x=1. Además, $f''(x)=-\frac{1}{x^2}<0$ para todo $x\in\mathbb{R}^+$, por lo que f tiene un máximo en x=1. Por tanto, f(1)=0 y $f(x)\leqslant 0$ para todo $x\in\mathbb{R}^+$, por lo que $\log x-x+1\leqslant 0$ para todo $x\in\mathbb{R}^+$.

En cualquier caso, tenemos que:

$$|h_n(x)| = \left| \frac{1}{n} \operatorname{sen}(nx) \log \left(1 + \frac{|x|}{n} \right) \right| \leqslant \frac{1}{n} \cdot 1 \cdot \left(1 + \frac{|x|}{n} - 1 \right) = \frac{|x|}{n^2} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

donde además hemos usado que $|\operatorname{sen}(nx)| \leq 1$ para todo $x \in \mathbb{R}$ y $n \in \mathbb{N}$. Fijado $C \subset \mathbb{R}$ acotado, existe $M \in \mathbb{R}^+$ tal que $|x| \leq M$ para todo $x \in C$. Tenemos por tanto que:

$$|h_n(x)| \leqslant \frac{M}{n^2} \quad \forall x \in C, \ \forall n \in \mathbb{N}$$

Por tanto, como $\sum_{n\geqslant 1} \frac{M}{n^2}$ es convergente, por el Test de Weierstrass, la serie $\sum_{n\geqslant 1} h_n$ converge absoluta y uniformemente en C.

Ejercicio 2.2.7. Estudiar la convergencia puntual, absoluta y uniforme de las siguientes series de funciones:

$$1. \sum_{n\geqslant 1} \frac{x^n}{\log(n+2)}.$$

Estudiamos en primer lugar su campo de convergencia. La sucesión de coeficientes es $\{c_n\} = \left\{\frac{1}{\log(n+2)}\right\}$. Tenemos que:

$$\left\{ \frac{|c_{n+1}|}{|c_n|} \right\} = \left\{ \frac{1}{\log(n+3)} \cdot \frac{\log(n+2)}{1} \right\} = \left\{ \frac{\log(n+2)}{\log(n+3)} \right\} \to 1$$

Por el criterio de la raíz para sucesiones, tenemos que el radio de convergencia de la serie es:

$$\frac{1}{R} = \limsup_{n \to +\infty} \sqrt[n]{|c_n|} = 1 \Longrightarrow R = 1$$

Por tanto, el intervalo de convergencia es J=]-1,1[. Por tanto, tenemos que la serie converge absolutamente en J y uniformemente en cada conjunto compacto $K\subset J$. También sabemos que la serie no converge en ningún punto de $\mathbb{R}\setminus \overline{J}=\mathbb{R}\setminus [-1,1]$. Falta ahora por estudiar la convergencia puntual en $x=\pm 1$ y la convergencia uniforme en J.

• Convergencia puntual en x = 1:

Se trata de estudiar la convergencia de la serie $\sum_{n\geqslant 1} \frac{1}{\log(n+2)}$. Como $\log(n+2)\leqslant n+1$ para todo $n\in\mathbb{N}$ (visto en el ejercicio anterior), tenemos que:

$$\frac{1}{\log(n+2)} \geqslant \frac{1}{n+1}$$

Usando el contrarrecíproco del Criterio de Comparación, como la serie $\sum_{n\geqslant 1}\frac{1}{n+1}$ no converge, tenemos que la serie $\sum_{n\geqslant 1}\frac{1}{\log(n+2)}$ no converge.

Por tanto, la serie $\sum_{n\geqslant 1} \frac{x^n}{\log(n+2)}$ no converge en x=1.

• Convergencia puntual en x = -1:

Se trata de estudiar la convergencia de la serie $\sum_{n\geqslant 1} \frac{(-1)^n}{\log(n+2)}$. Por el Criterio de Leibnitz, sabemos que la serie converge si la sucesión $\left\{\frac{1}{\log(n+2)}\right\}$ converge a 0 y es decreciente. Como $\{\log(n+2)\}$ es estrictamente creciente y diverge positivamente, tenemos que $\left\{\frac{1}{\log(n+2)}\right\}$ converge a 0 y es decreciente. Por tanto, la serie $\sum_{n\geqslant 1} \frac{(-1)^n}{\log(n+2)}$ converge, y por tanto la serie $\sum_{n\geqslant 1} \frac{x^n}{\log(n+2)}$ converge en x=-1.

lacktriangle Convergencia uniforme en J:

Suponemos por reducción al absurdo que la serie $\sum_{n\geqslant 1} \frac{x^n}{\log(n+2)}$ converge uniformemente en J. Entonces, por el Criterio de Cauchy, tenemos que

la sucesión de sumas parciales $\{S_n\}$ es uniformemente de Cauchy en J, es decir, que fijado $\varepsilon \in \mathbb{R}^+$, existe $m \in \mathbb{N}$ tal que, para $m \leqslant p < q$, se tiene que:

$$|S_q(x) - S_p(x)| = \left| \sum_{n=p+1}^q \frac{x^n}{\log(n+2)} \right| < \frac{\varepsilon}{2} \quad \forall x \in J$$

Tomando límite cuando $x \to 1$, tenemos que:

$$\sum_{n=p+1}^{q} \frac{1}{\log(n+2)} = \lim_{x \to 1} \sum_{n=p+1}^{q} \frac{x^n}{\log(n+2)} \leqslant \frac{\varepsilon}{2} < \varepsilon$$

Por tanto, la serie $\sum_{n\geqslant 1} \frac{1}{\log(n+2)}$ es una sucesión de Cauchy, y por tanto es convergente, lo cual es absurdo, ya que se ha visto que no converge para x=1. Por tanto, la serie $\sum_{n\geqslant 1} \frac{x^n}{\log(n+2)}$ no converge uniformemente en J.

2.
$$\sum_{n\geq 1} \frac{n}{2^n} (x-1)^n$$
.

Estudiamos en primer lugar su campo de convergencia. La sucesión de coeficientes es $\{c_n\} = \left\{\frac{n}{2^n}\right\}$. Tenemos que:

$$\left\{ \frac{|c_{n+1}|}{|c_n|} \right\} = \left\{ \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} \right\} = \left\{ \frac{n+1}{2n} \right\} \to \frac{1}{2}$$

Por el criterio de la raíz para sucesiones, tenemos que el radio de convergencia de la serie es:

$$\frac{1}{R} = \limsup_{n \to +\infty} \sqrt[n]{|c_n|} = \frac{1}{2} \Longrightarrow R = 2$$

Por tanto, el intervalo de convergencia es J=]-1,3[. Por tanto, tenemos que la serie converge absolutamente en J y uniformemente en cada conjunto compacto $K \subset J$. También sabemos que la serie no converge en ningún punto de $\mathbb{R} \setminus \overline{J} = \mathbb{R} \setminus [-1,3]$. Falta ahora por estudiar la convergencia puntual en x=-1 y x=3 y la convergencia uniforme en J.

• Convergencia puntual en x = -1: Se trata de estudiar la convergencia de la serie siguiente:

$$\sum_{n>1} \frac{n}{2^n} (-2)^n = \sum_{n>1} \frac{n}{2^n} (-1)^n 2^n = \sum_{n>1} (-1)^n n$$

Por el criterio básico de convergencia, como el término general no converge a 0, la serie $\sum_{n\geqslant 1} (-1)^n n$ no converge, por lo que la serie $\sum_{n\geqslant 1} \frac{n}{2^n} (x-1)^n$ no converge en x=-1.

• Convergencia puntual en x = 3:

Se trata de estudiar la convergencia de la serie siguiente:

$$\sum_{n\geqslant 1} \frac{n}{2^n} 2^n = \sum_{n\geqslant 1} n$$

Por el criterio básico de convergencia, como el término general no converge a 0, la serie $\sum_{n\geqslant 1} n$ no converge, por lo que la serie $\sum_{n\geqslant 1} \frac{n}{2^n} (x-1)^n$ no converge en x=3.

lacktriangle Convergencia uniforme en J:

Suponemos por reducción al absurdo que la serie $\sum_{n\geqslant 1} \frac{n}{2^n} (x-1)^n$ converge uniformemente en J. Entonces, por el Criterio de Cauchy, tenemos que la sucesión de sumas parciales $\{S_n\}$ es uniform mente de Cauchy en J, es decir, que fijado $\varepsilon \in \mathbb{R}^+$, existe $m \in \mathbb{N}$ tal que, para $m \leqslant p < q$, se tiene que:

$$|S_q(x) - S_p(x)| = \left| \sum_{n=p+1}^q \frac{n}{2^n} (x-1)^n \right| < \frac{\varepsilon}{2} \qquad \forall x \in J$$

Tomando límite cuando $x \to 3$, tenemos que:

$$\sum_{n=p+1}^{q} \frac{n}{2^n} 2^n = \lim_{x \to 3} \sum_{n=p+1}^{q} \frac{n}{2^n} (x-1)^n \leqslant \frac{\varepsilon}{2} < \varepsilon$$

Por tanto, la serie $\sum_{n\geqslant 1} \frac{n}{2^n} 2^n$ es una sucesión de Cauchy, y por tanto es convergente, lo cual es absurdo, ya que se ha visto que no converge para x=3. Por tanto, la serie $\sum_{n\geqslant 1} \frac{n}{2^n} (x-1)^n$ no converge uniformemente en J.