GIRGs thesis - Benjamin Dayan - Marc & Ulysse

Benjamin Dayan - bdayan@student.ethz.ch

February 24, 2023

Contents

1	Erdos Renyi Random Graphs 1.1 Galton-Watson Branching process	1
1	Erdos Renyi Random Graphs	
G_n	$_{n,p}$ has uniform iid edge probability of p .	
Ex	expected Degree is $(n-1)p$, and $deg(v) \sim binomial(n-1,p)$.	
If ,	we fix $p = \mu/n$ s.t. $E[\deg(v)] \stackrel{n \to \infty}{\to} \mu$, then $\deg(v) \stackrel{n \to \infty}{\sim} Poisson(\mu)$	

1.1 Galton-Watson Branching process

GWBP with offspring dist. $\mathcal{D} \in \mathbb{N}_0$ generates a random rooted tree T where every vertex independently has \mathcal{D} children, e.g. $\mathcal{D} = \text{Poisson}(\mu)$.

Theorem (2.3 - connected component structure like GWBP trees). This is a weird statement. We show it precisely by showing that $P(|C_u| = s) \stackrel{n \to \infty}{\to} P(|T| = s)$, for any node $u \in V$. This we do by coupling the connected component produced (as a BFS) with the GWBP (only concentrating on outgoing edges (to non-visited nodes)).

Further with any connected component (e.g. of 5 nodes) produced as such, it has $\to 0$ probability of containing any additional cyclic edges (ignored in the GWBP). This corroborates e.g. $E[\#\text{triangles}] = \Theta(n^3p^3)$ is constant.

Ok