USING TIME SERIES MODELS FOR DEFECT PREDICTION IN SOFTWARE RELEASE PLANNING

A Thesis

Presented to

The Graduate Faculty

Central Washington University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

Computational Science

by

James W. Tunnell

June 2015

CENTRAL WASHINGTON UNIVERSITY

Graduate Studies

We hereby approve the thesis of		
	James W. Tunnell	
Candidate for the degree of Master of Science		
	APPROVED FOR THE GRADUATE FACULTY	
	Dr. John K. Anvik, Committee Chair	
	Dr. Yvonne Chueh	
	Dr. Kathryn Temple	
	Dean of Graduate Studies	

ABSTRACT

USING TIME SERIES MODELS FOR DEFECT PREDICTION IN SOFTWARE RELEASE PLANNING

by

James W. Tunnell

June 2015

To produce a high-quality software release, sufficient time should be allowed for testing and fixing defects. Otherwise, there is a risk of slip in the development schedule and/or software quality. A time series model is used to predict the number of bugs created during development. The model depends on the previous numbers of bugs created. The model also depends, in an exogenous manner, on the previous numbers of new features resolved and improvements resolved. This model structure would allow hypothetical release plans to be compared by assessing their predicted impact on testing and defect-fixing time. The VARX time series model was selected as a reasonable approach. The accuracy of the model varies for different sampling periods, window sizes, and degree of differencing.

ACKNOWLEDGEMENTS

The author is grateful to Dr. John Anvik, for his advice and patience, to Dr.

Yvonne Chueh for her help with exploratory data analysis, and to Dr. Kathryn Temple for her guidance with time series modeling.

TABLE OF CONTENTS

Chapter		Page
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
III	MOTIVATION	6
	The Next Release Problem The Gap between Abstraction and Reality	
IV	BACKGROUND	12
	Time Series Models Trends and Stationarity	
V	METHODS	16
	Data Methods	
VI	RESULTS	26
	Data Results	
VII	DISCUSSION	43
VIII	THREATS TO VALIDITY	45
	Internal Validity External Validity	
IX	FUTURE WORK	48
	Exclusion of Outliers	
	Modeling with Birth-death Processes	
X	CONCLUSION	52
	REFERENCES	53
	APPENDIXES	55
	Appendix A—Time Series Data Plots	55
	Appendix B—Stationarity Testing Results	61
	Appendix C—Exploratory Modeling Results	68

LIST OF TABLES¹

Table		Page
1	Results of sampling example issue data	19
2	Date ranges of data collected, and the number issues that resulted	27
3	Sliding windows sizes to be used for each sampling period	28
4	Parameter values selected for final modeling.	32
5	A comparison of the final modeling results across datasets	42
6	A comparison of full and restricted sample ranges	49

¹ The tables shown in the Appendixes are not listed here.

LIST OF FIGURES²

Figure		Page
1	An explanatory model	7
2	Applying defect prediction in the Next Release Problem	10
3	An overview of data methods	16
4	Sampling issue data	19
5	An illustration of time-windowing	21
6	Plot of the none-valid proportion	30
7	Plot of the 95% in-interval proportion	31
8	Distributions for actual and predicted number of bugs, MongoDB core server dataset	34
9	Histogram of prediction errors, MongoDB core server dataset	34
10	Q-Q plot of forecast mean errors, MongoDB core server dataset	35
11	Distributions for actual and predicted number of bugs, Hibernate <i>orm</i> dataset	36
12	Histogram of prediction errors, Hibernate <i>orm</i> dataset	37
13	Q-Q plot of forecast mean errors, Hibernate <i>orm</i> dataset	37
14	Distributions for actual and predicted number of bugs, NetBeans <i>platform</i> dataset	38
15	Histogram of prediction errors, NetBeans <i>platform</i> dataset	39

.

 $^{^{2}% = 10^{-2}}$ The figures shown in the Appendixes are not listed here.

16	Q-Q plot of forecast mean errors, NetBeans <i>platform</i> dataset	39
17	Distributions for actual and predicted number of bugs, NetBeans <i>java</i> dataset	40
18	Histogram of prediction errors, NetBeans <i>java</i> dataset	41
19	Q-Q plot of forecast mean errors, NetBeans <i>java</i> dataset	42
20	Forecast errors by window reveal the location of an outlier	49
21	Undifferenced time series data from the Hibernate <i>orm</i> dataset	50