MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás, n!, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek bizonyos statisztikai mutatók kiszámítására (átlag, szórás) abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, azokért nem jár pont.

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

I.

1.		
$x_1 = -2; x_2 = 4$	2 pont	
Összesen:	2 pont	

2.			
30°		2 pont	
	Összesen:	2 pont	

3.		
40 g	2 pont	
Összesen:	2 pont	

4.		
$C \setminus A = \{1; 8\}$	1 pont	
$(A \cup B) \cap C = \{1; 2; 3; 5; 13\}$	2 pont	
Összesen:	3 pont	

5.		
14	2 pont	
Összesen:	2 pont	

6.		
$(3 \cdot 3 \cdot 2 =) 18$	2 pont	
Összesen:	2 pont	

7.		
$\overrightarrow{AD} = 2\mathbf{b} + 2\mathbf{f}$	2 pont	
Összesen:	2 pont	

8.		
1458, 1848	2 pont	Egy jó, vagy két jó és egy rossz válasz esetén 1 pont jár, minden más esetben 0 pont jár.
Összesen:	2 pont	

9.		
$\sin \alpha = \frac{0.6}{3}$	2 pont	
$\alpha \approx 11.5^{\circ}$	1 pont	
Összesen:	3 pont	

10.		
a) például (2; –1)	1 pont	
b) $2x - y = 3$	2 pont	
Összesen:	3 pont	

11.		
A sorozat hányadosa $q = -2$.	1 pont	
A sorozat első tagja $a_1 = -3$.	1 pont	(-3) + 6 + (-12) + 24 + + (-48) + 96 + (-192) +
Az első tíz tag összege $S_{10} = -3 \cdot \frac{(-2)^{10} - 1}{(-2) - 1} =$	1 pont	+ (-48) + 96 + (-192) + + 384 + (-768) + 1536 =
= 1023.	1 pont	
Összesen:	4 pont	

12.		
Módusz: 5 (jeles)	1 pont	
Medián: 4 (jó)	2 pont	
Összesen:	3 pont	

II. A

13. a)		
$\frac{4x}{12} + \frac{2x}{12} \ge \frac{3x}{12} + 230$	1 pont	
$\frac{3x}{12} \ge 230$	1 pont	
$x \ge 920$	1 pont	
80 ilyen háromjegyű szám van.	1 pont	
Összesen:	4 pont	

13. b)		
$3 \cdot 4^x + 4 \cdot 4^x = 896$	1 pont	
$7 \cdot 4^x = 896$	1 pont	
$4^x = 128$	1 pont	
$2^{2x} = 2^7$	1 pont	$x = \log_4 128$
(Mivel a 2-es alapú exponenciális függvény kölcsönösen egyértelmű, ezért) $x = 3,5$.	1 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalens átalakításokra való hivatkozással.	1 pont	
Összesen:	6 pont	

14. a)		
(x+1)(x+3)	2 pont	
Összesen:	2 pont	

14. b)		
$y = (-6,5)^2 + 4 \cdot (-6,5) + 3 =$	1 pont	y = (-6,5+1)(-6,5+3) =
= 19,25	1 pont	
Összesen:	2 pont	

14. c)		
D	1 pont	
Az értékkészlet: [−1; ∞[.	2 pont	Más helyes jelölés is elfogadható.
Összesen:	3 pont	

14. d)		
A g értéke 0-ban 5, így az g tengelyt az g pontban metszi a g grafikonja.	2 pont	Ezek a pontok akkor is járnak, ha a vizsgázó egy helyesen felrajzolt grafikonról olvassa le a megfelelő értékeket.
Az $x^2 - 6x + 5 = 0$ egyenlet megoldásai $x_1 = 1$ és $x_2 = 5$,	2 pont	
így az x tengelyt a $B(1; 0)$ és a $C(5; 0)$ pontokban metszi a g grafikonja.	1 pont	
Az ABC háromszög (BC oldala 4 egység, a hozzá tartozó magasság 5 egység hosszú, így) területe $\frac{4.5}{2} = 10 \text{ (területegység)}.$	2 pont	
Összesen:	7 pont	

15. a) első megoldás		
A <i>BCE</i> háromszög szabályos, ezért $CBE \angle = 60^{\circ}$.	1 pont	
Az ABE (egyenlő szárú) háromszögben tehát $ABE \angle = (90^{\circ} - 60^{\circ} =) 30^{\circ}$.	1 pont	A 30°60° B

(Az AE szakasz hosszát koszinusztétellel számolva:) $AE^2 = 12^2 + 12^2 - 2 \cdot 12 \cdot 12 \cdot \cos 30^\circ \approx 38,58.$	2 pont	$\sin 15^\circ = \frac{\frac{AE}{2}}{12}$
$AE \approx 6.21$	1 pont	
Összesen:	5 pont	

15. a) második megoldás		
(BCE egyenlő oldalú háromszögben az ET magasság hossza Pitagorasz-tétellel:) $ET = \sqrt{12^2 - 6^2} = \sqrt{108} \; .$	2 pont	$ \begin{array}{c} C \\ F \\ A \end{array} $
(ET egyenese az AD oldalt az F felezőpontban metszi.) $EF = 12 - \sqrt{108} \approx 1,61$	1 pont	
(Az <i>AEF</i> derékszögű háromszögben felírva a Pitagorasz-tételt:) $AE = \sqrt{6^2 + 1,61^2} \approx 6,21$.	2 pont	
Összesen:	5 pont	

15. b)		
A feladat megértését tükröző ábra.		
10 m	1 pont	
A gúla oldallapjának magassága Pitagorasz-tétellel: $m = \sqrt{10^2 - 5^2} = \sqrt{75} \ (\approx 8,66) \ (\text{cm}).$	1 pont	Az alaplap átlója $10\sqrt{2}$ (cm), ennek fele $5\sqrt{2}$ (cm).
A gúla magassága Pitagorasz-tétellel: $m' = \sqrt{(\sqrt{75})^2 - 5^2} = \sqrt{50} \ (\approx 7,07) \ (\text{cm}).$	1 pont	$m' = \sqrt{10^2 - (5\sqrt{2})^2} = \sqrt{50}$
A gúla térfogata: $V = \frac{10^2 \cdot \sqrt{50}}{3} \approx$	1 pont	
$\approx 235,7$ cm ³ .	1 pont	
Mivel 1 dm 3 = 1000 cm 3 ,	1 pont	$8 \text{ kg/dm}^3 = 8 \text{ g/cm}^3,$
így a gúla tömege $8 \cdot 0,2357 \approx 1,89 \text{ kg}.$	1 pont	<i>így a gúla tömege</i> $8 \cdot 235,7 \approx 1886$ g.
Összesen:	7 pont	

II. B

16. a)		
4 év = 48 hónap	1 pont	
(Az egyes hónapokban félretett összegek egy számtani sorozat egymást követő tagjai, az első tag 50 000, a differencia 1000, így) 48 hónap alatt $S_{48} = \frac{50000 + 50000 + 47\cdot1000}{2} \cdot 48 =$	2 pont	a ₄₈ = 97 000 megállapítá- sáért 1 pont jár.
= 3 528 000 Ft-ot gyűjt összesen.	1 pont	
Tehát 4 év elegendő 3,5 millió Ft összegyűjtésére.	1 pont	
Összesen:	5 pont	

16. c)		
A modell alapján: $0,122 \cdot 2^{0,822x} = 25$.	1 pont	
$2^{0.822x} = \frac{25}{0.122} \ (\approx 204.9)$	1 pont	
$0.822x \cdot \lg 2 = \lg 204.9$	1 pont	$0,822x = \log_2 204,9$
$x \approx 9.34$	1 pont	
A modell szerint az elektromos autók száma	1 mont	
(2012 + 10 =) 2022-ben éri el a 25 milliót.	1 pont	
Összesen:	5 pont	

Megjegyzések:

^{1.} Ha a vizsgázó a modell alapján az egyes években gyártott autók számát helyes kerekítésekkel kiszámítja, és ez alapján helyesen válaszol, akkor teljes pontszámot kapjon.

2. Ha a vizsgázó hivatkozik f szigorú monoton növekedésére, valamint helyesen kiszámolja f (9) és f (10) értékét, és ez alapján helyesen válaszol, akkor teljes pontszámot kapjon.

16. d) első megoldás		
1 típust 5-féleképpen, 4 típust szintén 5-féleképpen		
választhat ki a grafikus.		
2 típust $\binom{5}{2} = 10$ -féleképpen, 3 típust szintén	3 pont	
10-féleképpen választhat ki.		
5 típust 1-féleképpen választhat ki.		
Összesen $(5 + 5 + 10 + 10 + 1 =) 31$ -féleképpen		
alakulhat a reklámfüzet fedőlapja a megjelenített	1 pont	
típusok szempontjából.		
Összesen:	4 pont	

16. d) második megoldás		
Mind az öt típus esetén két választási lehetőség van (szerepel vagy nem szerepel a fedőlapon). Ez összesen 2 ⁵ (= 32) lehetőséget jelent.	2 pont	
Nem megfelelő az a kiválasztás, melyben egy típus sincs kiválasztva,	1 pont	
tehát $32 - 1 = 31$ -féleképpen alakulhat a reklámfüzet fedőlapja a megjelenített típusok szempontjából.	1 pont	
Összesen:	4 pont	

17. a)		
A Föld folyékony állapotú édesvízkészlete a teljes		
vízkészlet $(0.03 \cdot 0.2 =) 0.006$ -szerese,	2 pont	
azaz 1 400 000 000 · 0,006 =		
$= 8 400 000 (km^3).$	1 pont	
A kérdéses gömb térfogatára $\frac{4}{3}r^3\pi = 8400000$,	1 pont	
azaz (a kért kerekítéssel) $r = \sqrt[3]{\frac{6300000}{\pi}} \approx 126 \text{ (km)}$ lenne ennek a gömbnek a sugara.	2 pont*	Ha a vizsgázó nem kere- kít, vagy rosszul kerekít, akkor legfeljebb 1 pont jár.
Összesen:	6 pont	

Megjegyzés: Ha (arra hivatkozva, hogy a 126 km sugarú gömbbe még nem fér bele a Föld folyékony édesvízkészlete) a vizsgázó válasza r = 127 km, akkor a *-gal jelölt 2 pont jár.

17. b)		
Ha a középső, kör alakú tartomány pl. sárga színű, akkor a hat sziromforma egyike sem lehet sárga.	1 pont	
Ekkor a szirmok váltakozva lehetnek kék, illetve zöld színűek, ami 2-féleképpen valósulhat meg.	1 pont	Ha az egyik szirom kék (illetve zöld), akkor ez meghatározza a többi szi- rom színét.

A szirmok körüli tartomány ekkor csak sárga lehet,	1 pont	
a külső tartomány pedig kék vagy zöld. Ez szintén 2 lehetőség.	1 pont	
Mivel a középső tartomány színe nemcsak sárga, hanem kék vagy zöld is lehet (3 lehetőség),	1 pont	
így a lehetséges színezések száma $3 \cdot 2 \cdot 2 = 12$.	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó szisztematikusan felsorolja az összes lehetséges színezést, és ez alapján helyesen válaszol, akkor teljes pontszámot kapjon.

17. c)		
Annak a valószínűsége, hogy Anna mind az öt nap szénsavmentes vizet kap: 0.8^5 (≈ 0.328).	1 pont	
Annak a valószínűsége, hogy valaki szénsavmentes vizet kér, de szénsavasat kap, 0,2.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak a valószínűsége, hogy Anna pontosan négy napon kap szénsavmentes vizet: $ \binom{5}{1} \cdot 0.8^4 \cdot 0.2 \ (\approx 0.410). $	2 pont	
A kérdéses valószínűség kb. (0,328 + 0,410 =) 0,738.	1 pont	
Összesen:	5 pont	

18. a)		
Megfelelő gráf felrajzolása.	2 pont	Egy vagy két hiba esetén I pont, több hiba esetén 0 pont jár.
Összesen:	2 pont	

18. b)		
A januárban eladott teljes árú jegyek számát jelölje x,	_	
ekkor a feladat szövege alapján:	2 pont	
$4 \cdot x \cdot 250 + x \cdot 400 + 0,125 \cdot x \cdot 500 = 912 600.$		
Ebből $x = 624$ (teljes árú jegyet adtak el).	1 pont	
Összesen $2496 + 624 + 78 = 3198$ jegyet adtak el.	1 pont	
Összesen:	4 pont	

18. c) első megoldás		
Öt fő 5! = 120-féle sorrendben érkezhet meg (összes eset száma).	1 pont	
Ha legfeljebb egy lánynak kell fiúra várnia, akkor a két fiú vagy az első két érkező, vagy az első és a har- madik, vagy a második és a harmadik érkező lehet.	2 pont	
A fiúk minden ilyen esetben 2-féle sorrendben érkezhetnek, a lányok érkezési sorrendje pedig 3! = 6-féle lehet.	1 pont	
Összesen $(3 \cdot 2 \cdot 6 =) 36$ kedvező eset van.	1 pont	
A kérdéses valószínűség $\frac{36}{120} = 0.3$.	1 pont	
Összesen:	6 pont	

18. c) második megoldás			
Ha csak a nemeket különböztetjük meg egymástól,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.	
akkor a két fiú és a három lány összesen $\binom{5}{2} = 10$ -féle sorrendben érkezhet meg.	2 pont	FFLLL, FLFLL, FLLFL, FLLLF, LFFLL, LFLFL, LFLLF, LLFFL, LLFLF, LLLFF	
Ezek közül a feladatban szereplő feltétel szempontjá- ból három érkezési sorrend kedvező: FFLLL, FLFLL, LFFLL.	2 pont		
A kérdéses valószínűség $\frac{3}{10} = 0.3$.	1 pont		
Összesen:	6 pont		

18. d)		
A felső görbe két félkörívének (sugara 12 cm, így) hossza összesen: $2 \cdot (0.5 \cdot 2 \cdot 12 \cdot \pi) = 24\pi$.	1 pont	
Ha az alsó görbénél az egyik félkör sugara r , akkor a másik félkör sugara $24 - r$.	1 pont	Ha az alsó görbénél az egyik félkör átmérője d, akkor a másik félkör át- mérője 48 – d.
Az alsó görbe két félkörívének hossza összesen: $r\pi + (24 - r)\pi =$	1 pont	$d\pi: 2 + (48 - d)\pi: 2 =$
$=24\pi$,	1 pont	
így Dezsőnek igaza van.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó az alapján válaszol, hogy az alsó görbe félköreinek sugarára egyegy konkrét értéket helyettesít be, akkor legfeljebb 3 pontot kapjon.