Lambdas: a (quick) reference guide Linguist 130A/230A Prerna Nadathur

The λ calculus was developed by Alonzo Church in the 1930s. It's a simple and powerful way of notating and handling functions and computations (it might be familiar from programming). This handout is a brief non-comprehensive reference.

1 What is a $\lambda(\text{-term})$?

- a variable (x, y, f, P)
- a combination of a λ -term t and a variable x: $\lambda x[t]$ or $\lambda x.t$
- a combination of two λ -terms where one is interpreted as a function t and the other is an input s to the function: t(s)
- nothing else is a λ -term

2 How to interpret a λ -term

 $\lambda x. f(x)$ "Give me an x and get back f applied to x"

$$\lambda x. f(x)(y) \qquad \leadsto \qquad f(y)$$
 "Apply the function $\lambda x. f(x)$ to the input y " reduces to " f applied to the input y "

3 Some correspondences

Example 3.1. Two ways of writing the function that always returns 2:

(a) f(x) = 2

(b) $\lambda y.2$

Example 3.2. Two ways of writing the squaring function:

(a) $f(x) = x^2$ $f(2) = 2^2 = 4$

(b) $\lambda y.y^2$ $\lambda y.y^2(2) = 2^2 = 4$

Example 3.3. Two ways of writing the [even] function:

(a)

(b) $\lambda y.(T \text{ if } x\%2 = 0, \text{ else } F)$

 $[\![\text{even}]\!](x) = \begin{cases} T & \text{if } x\%2 = 0\\ F & \text{else} \end{cases}$

NB: "x%2" gives you the remainder when you divide x by 2

Example 3.4. Three ways of writing the [daughter] function on the Simpson children:

(b)

(a)

(c)
$$\lambda x. \left(T \text{ if } x \in \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ \right\} \\ \end{array} \right\} \end{array} \right\} \end{array} \right\}, \text{ else } F \right) \end{array} \right)$$