1. [8 marks] Give a proof from first principles (not using limits) the following statements:

(a) [4 marks]
$$n^{2.7} - 100n^{2.4} + 1000 \in \omega(n^{2.5})$$

(b) [4 marks] Let $f(n)$ and $g(n)$ be positive-valued functions. Then:
$$\max\{f(n), g(n)\} = \Theta(f(n) + g(n))$$

(A) Let $C \neq 0$

$$n^{2.7} - for \cdot n^{4} + for 0 \Rightarrow C \cdot n^{2.5} \Rightarrow n^{0.2} - for \cdot n^{0.1} + for 0 \Rightarrow C$$

$$\Rightarrow for \cdot n^{0.1} - for \cdot n^{0.1} \Rightarrow for$$

We can express max $\{f(n), g(n)\}$ as

max $\{f(n), g(n)\} = \{f(n) + g(n) + |f(n) - g(n)| \}$ • f(n) + g(n) + |f(n) - g(n)| > f(n) + g(n) > 2Thus, G we will choose $\frac{1}{2}$.

• $f_{cns} + g_{cns} + |f_{cns} - g_{cns}| \le f_{cns} + g_{cns} + f_{cns} + g_{cns} = |\cdot[f_{cns} + g_{cns}]$ T_{hus}^2 , C_2 we will choose 1 Since we can find such (, and cz, we can conclude that max {fin, gin)} = D (fins + gins)

cb) We want to find such C1, C2 >0 that

c1.[fin>+gin)] ≤ max{fin>,gin>} ≤ C2.[fin>+gin>] for n>n.

2. [12 marks] For each pair of functions f(n) and g(n), fill in the correct asymptotic notation among Θ , o, and ω in the statement $f(n) \in H_1(q(n))$. Formal proofs are not necessary, but provide brief justifications for all of your answers. (The default base in logarithms is 2.) (a) $f(n) = (8n)^{250} + (3n + 1000)^{500}$ vs. $g(n) = n^{500} + (n + 1000)^{400}$ (b) $f(n) = n^{1.5}2^n$ vs. $g(n) = (n)^{100}1.99^n$.

(c) $f(n) = (256)^{n/4}$ vs. $g(n) = (125)^{n/3}$ (d) $f(n) = 2^{\log(n) \cdot \log(n)}$ vs. $g(n) = n^{2012}$

(a) f(n) 7, 3^{500} . n^{500} , $f(n) \leq (8^{500} + 1003^{500}) \cdot n^{500}$ Thus, $f(n) \in \theta \in n^{500}$ g(n) 7, n^{500} , $g(n) \leq (1+(001^{500}) n^{500})$ Thus, $f(n) \in \theta \in n^{500}$

Therefore, $f(m) \in \theta(g(m))$ (b) $f(m) = \frac{(3/.99)^n}{n^{98.5}} \longrightarrow \infty$, as $n \to \infty$.

Thus $f(n) \in \omega(g(n))$ (c) $f(n) = 4^n$ $g(n) = 5^n$

 $\frac{f(n)}{g(n)} = \left(\frac{4}{5}\right)^n \longrightarrow 0$, as $n \to \infty$

Thus, $f(n) \in O(g(n))$ (d) $\log^{f(n)} = \log cn$. $\log cn$ $\log^{g(n)} = 2012 \cdot \log n$ $\frac{\log^{f(n)}}{\log^{g(n)}} = \frac{\log (n)}{2012}$ $\log^{g(n)} = \frac{\log (n)}{2012}$ Therefore, $\log^{g(n)} \in O(\log^{g(n)})$ And hence, $f(n) \in O(g(n))$

3. [10 marks] Analyze the following pseudocodes and give a tight Θ bound on the running time as a function of n. Carefully show your work.

 $\sum_{i=1}^{n} 1 + \sum_{i=1}^{n} \left(1 + \left\lfloor \frac{n}{i} \right\rfloor \times ^{2}\right) = n + n + 2n \cdot \sum_{i=1}^{n} \frac{1}{i}.$ For $\sum_{i=1}^{n} \frac{1}{i}$, since $\int_{i}^{n} \frac{1}{x} dx = \ln n$ $\sum_{i=1}^{n} \frac{1}{i+1} \leq \int_{i}^{n} \frac{1}{x} \leq \sum_{i=1}^{n} \frac{1}{i}.$ A[i] = true3. for i = 1 to n do 4. j=i

5. while
$$j \le n$$
 do
6. $A[j] = \text{false}$
7. $j = j + i$

Thus, $\sum_{i=1}^{n} \frac{1}{i} \in \Theta(\log n)$

Therefore, $T(n) = 2n + 2n \cdot \log n \in \Theta(n \cdot \log n)$

(b) 5 marks The following is a sorting algorithm that sorts an array A of n integers, where each integer $e_i \in A$ is $0 \le e_i \le m-1$. Go through the code and verify that this algorithm indeed sorts A correctly. 1. for i = 0 to m - 1 do

2.
$$\operatorname{counts}[i] = 0$$

3. for $i = 0$ to $n - 1$ do
4. $\operatorname{counts}[A[i]] + +$
5. $k = 0$

m OS.

Line 3 d4: go through Al] and increament

5. k = 06. for i = 0 to m - 1 do for j = 0 to counts[i] - 1 do A[k] = i, k = k + 18.

4. [12 marks] Given a string $s = a_1 a_2 ... a_n$ of length n, where $a_1 a_2 ... a_n \in \{0, 1\}$, decide whether s is the kth power of a sub-string t, i.e., $s = t^k$, for some k > 1 and string t. Here, t^k denotes the string t repeated k times. For example, 01000100, 10101010, and 000000, are all perfect powers (e.g. 01000100 = 0100²) but 01000110 is not.

Give an algorithm that solves this problem in $O(n^{3/2})$ time. Describe your algorithm, provide the pseudocode, and analyze the run-time of your algorithm.

Hint: Observe that if $s = t^k$, and t has length ℓ , then $n = \ell k$. This implies that ℓ and k cannot both be greater than \sqrt{n} .

```
Check Pattern ( S. l, k)
   115: string, l: length of the pattern, k: times of repetition
      for i = 1 to k-1 do:
         if Sto: l-1] != Sti-l: i.l+l-1] then:
             return false
     return true
main:
  ALgo CS ):
  1/ n = lencs)
     for l=1 to Wn] do
         if n \% l = 0 then // l divides n.
k = n / l
             if CheckPattern (s, l, k) = true then
                return true
    for k=1 to LATA ] do
       if n \% k = 0 then 1/k divides n.
            if CheckPattern (s, l, k) = true then
                return true
    return false
```

Analysis:

Check Pattern (5, l, k) will loop (k-1) times to check if there exists a pattern with length l in s. And for each substring comparison, it will take l time. Thus, this helper function is in O(l(k-1)).

Then, in the main function, we will call the helper in two loops. Since, from hint, we know ℓ and ℓ cannot both be greater than \sqrt{n} , we can check \sqrt{n} times on ℓ and then on ℓ to cover all the cases. Thus, in total, Algo(s) will take $O(2\sqrt{n}\cdot \ell(k-1))=O(\sqrt{n}\cdot \ell\cdot k)$. Since $n=\ell k$, the time complexity of my algorithm will be $O(\sqrt{n}\cdot n)=O(n^{\frac{3}{2}})$