EE25BTECH11049 - Sai Krishna Bakki

Question:

Let **R** be an $n \times n$ nonsingular matrix. Let **P** and **Q** be two $n \times n$ matrices such that $\mathbf{Q} = \mathbf{R}^{-1}\mathbf{P}\mathbf{R}$. If **x** is an eigenvector of **P** corresponding to a nonzero eigenvalue λ of **P**, then

- a) $\mathbf{R}\mathbf{x}$ is an eigenvector of \mathbf{Q} corresponding to eigenvalue λ of \mathbf{Q}
- b) **Rx** is an eigenvector of **Q** corresponding to eigenvalue $\frac{1}{4}$ of **Q**
- c) $\mathbf{R}^{-1}\mathbf{x}$ is an eigenvector of \mathbf{Q} corresponding to eigenvalue λ of \mathbf{Q}
- d) $\mathbf{R}^{-1}\mathbf{x}$ is an eigenvector of \mathbf{Q} corresponding to eigenvalue $\frac{1}{\lambda}$ of \mathbf{Q}

Solution:

Start with the eigenvector equation for P:

$$\mathbf{P}\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

Pre-multiply both sides by \mathbf{R}^{-1} :

$$\mathbf{R}^{-1}(\mathbf{P}\mathbf{x}) = \mathbf{R}^{-1}(\lambda \mathbf{x}) \tag{2}$$

Now, we need to relate this to **Q**. We know that $\mathbf{Q} = \mathbf{R}^{-1}\mathbf{P}\mathbf{R}$. Let's introduce the identity matrix $\mathbf{I} = \mathbf{R}\mathbf{R}^{-1}$ into our equation.

$$\mathbf{R}^{-1}\mathbf{P}(\mathbf{R}\mathbf{R}^{-1})\mathbf{x} = \lambda(\mathbf{R}^{-1}\mathbf{x}) \tag{3}$$

$$(\mathbf{R}^{-1}\mathbf{P}\mathbf{R})(\mathbf{R}^{-1}\mathbf{x}) = \lambda(\mathbf{R}^{-1}\mathbf{x}) \tag{4}$$

Substitute $\mathbf{Q} = \mathbf{R}^{-1}\mathbf{P}\mathbf{R}$ into the equation:

$$\mathbf{Q}(\mathbf{R}^{-1}\mathbf{x}) = \lambda(\mathbf{R}^{-1}\mathbf{x}) \tag{5}$$

 $\mathbf{R}^{-1}\mathbf{x}$ is an eigenvector of \mathbf{Q} corresponding to the eigenvalue λ of \mathbf{Q} .

1