Aprendizado de Máquina Descomplicado:

O Início da Jornada em IA

A História da Inteligência Artificial e os Tipos de Aprendizado de Máquina

Capítulo 1: A História da Inteligência Artificial e os Tipos de Aprendizado de Máquina**

Introdução à Inteligência Artificial

A Inteligência Artificial (IA) refere-se à criação de sistemas computacionais capazes de realizar tarefas que, normalmente, exigem inteligência humana, como o reconhecimento de fala, visão computacional, tomada de decisões e aprendizado.

A história da IA remonta à década de 1950, quando Alan Turing formulou a famosa pergunta "As máquinas podem pensar?". Nos anos seguintes, diversos marcos ajudaram a definir o campo, como o Teste de Turing, desenvolvido para avaliar a capacidade das máquinas em emular o comportamento humano.

Marcos importantes na História da IA:

- **1956:** O termo "Inteligência Artificial" foi utilizado pela primeira vez por John McCarthy na Conferência de Dartmouth.
- **1960-1970:** Desenvolvimento dos primeiros sistemas especialistas e algoritmos de busca.
- **1997:** O computador Deep Blue da IBM derrotou o campeão mundial de xadrez, Garry Kasparov.
- **2010-2020:** O uso de redes neurais profundas (Deep Learning) começou a revolucionar o campo, com grandes avanços em reconhecimento de imagem e processamento de linguagem natural.

Capítulo 1: A História da Inteligência Artificial e os Tipos de Aprendizado de Máquina**

Tipos de Aprendizado de Máquina (Machine Learning)

Existem três tipos principais de aprendizado de máquina:

- 1. **Aprendizado Supervisionado:** O modelo é treinado com dados rotulados (com a resposta correta já conhecida). O objetivo é prever uma saída a partir de uma entrada.
- Exemplo: Prever o preço de uma casa com base em características como metragem, localização e número de quartos.
- 2. **Aprendizado Não Supervisionado:** O modelo recebe dados sem rótulos e busca padrões ou agrupamentos dentro dos dados.
- Exemplo: Segmentação de clientes em grupos de comportamento semelhante.
- 3. **Aprendizado por Reforço:** O modelo aprende por meio de tentativa e erro, recebendo recompensas ou punições conforme realiza ações no ambiente.
- Exemplo: Algoritmos de jogo, como o AlphaGo, que aprendem jogando milhões de partidas.

Fontes para Expansão:

- **Livro:** "Inteligência Artificial: Estruturas e Estratégias para Solução Complexa de Problemas", Stuart Russell, Peter Norvig.
- **Artigo:** "The History of Artificial Intelligence" [Medium](https://medium.com/).

Case Prático - Aprendizado Supervisionado

Capítulo 2: Case Prático - Aprendizado Supervisionado

Introdução ao Aprendizado Supervisionado

No aprendizado supervisionado, o modelo é treinado com um conjunto de dados rotulado, ou seja, cada entrada tem uma saída associada. O objetivo é fazer com que o modelo aprenda a prever ou classificar os dados de forma semelhante à forma como foi treinado.

Exemplo Prático: Classificação de E-mails como Spam

Imagine que você tenha um conjunto de e-mails, com rótulos indicando se cada um é "spam" ou "não spam". A tarefa é construir um modelo capaz de classificar novos e-mails de forma automática.

- **Passos do Processo:**
- 1. **Coleta de Dados:** Use um conjunto de dados de e-mails rotulados. Existem datasets disponíveis como o [SpamAssassin](https://spamassassin.apache.org/).
- 2. **Pré-processamento de Dados:**
- Remova stop words (palavras irrelevantes) e pontuação.
- Transforme as palavras em vetores numéricos usando técnicas como TF-IDF (Term Frequency - Inverse Document Frequency).

Capítulo 2: Case Prático - Aprendizado Supervisionado

- Transforme as palavras em vetores numéricos usando técnicas como TF-IDF (Term Frequency - Inverse Document Frequency).
- 3. **Modelo de Machine Learning:**
- Utilize um modelo de classificação, como a
 Regressão Logística ou **Máquinas de Vetores de Suporte (SVM)**.
- O modelo é treinado utilizando os dados rotulados e aprende a associar palavras e características a uma classificação de "spam" ou "não spam".
- 4. **Avaliação do Modelo:** Após o treinamento, use métricas como **precisão**, **recall** e **acurácia** para avaliar a performance do modelo.

Case Prático - Aprendizado Não Supervisionado

Case Prático - Aprendizado Supervisionado

Capítulo 3: Case Prático - Aprendizado Não Supervisionado

Introdução ao Aprendizado Não Supervisionado

O aprendizado não supervisionado envolve a análise de dados sem rótulos. O objetivo principal é identificar padrões e agrupamentos de dados que não são explicitamente fornecidos.

Exemplo Prático: Segmentação de Clientes com K-means

Neste exemplo, usaremos o algoritmo **K-means** para segmentar clientes com base em seu comportamento de compra.

- **Passos do Processo:**
- 1. **Coleta de Dados:** Um dataset de comportamento de clientes é necessário, com características como idade, histórico de compras e frequência de compras.
- 2. **Pré-processamento de Dados:**
- Normalização dos dados para que todas as características tenham a mesma escala.
 - Remoção de outliers, se necessário.
- 3. **Aplicação do K-means:**
- O algoritmo K-means divide os clientes em grupos, com base em sua proximidade em relação aos centros de cada cluster.
- 4. **Visualização:** Após o treinamento, visualize os clusters utilizando gráficos de dispersão.

Introdução ao Uso de IA no Mercado Financeiro

Introdução ao Uso de IA no Mercado Financeiro

Capítulo 4: Machine Learning no Mercado Financeiro

O aprendizado de máquina está sendo cada vez mais utilizado no mercado financeiro para prever comportamentos de mercado, identificar fraudes e otimizar portfólios de investimentos.

Exemplo de Case: Previsão de Preços de Ações

O modelo de previsão de preços de ações pode ser baseado em aprendizado supervisionado. Vamos usar uma técnica de séries temporais, como **ARIMA**, para prever os preços futuros de ações com base nos preços passados.

Passos do Processo:

1. **Coleta de Dados:** Utilize dados históricos de preços de ações. APIs como [Yahoo Finance](https://www.yahoofinanceapi.com/) ou [Alpha Vantage](https://www.alphavantage.co/) oferecem esses dados.

2. **Pré-processamento de Dados:**

- Limpeza dos dados e remoção de lacunas.
- Transformação dos dados de preço em uma série temporal.
- **3.** **Aplicação de ARIMA:** O modelo ARIMA (AutoRegressive Integrated Moving Average) é comumente usado para prever séries temporais.
- **4.** **Avaliação do Modelo:** Use métricas de erro como MSE (Mean Squared Error) para avaliar a precisão das previsões.

OBRIGADA

BOOTCAMP DIO