Table des matières

1	Géométrie Hermitienne						
	1.1	Forme	e hermitienne	5			
		1.1.1	Connection de Chern	5			
		1.1.2	Volume hermitien	5			
	1.2	Géomé	étrie Kahlérienne	5			
	1.3	Laplac	ce-Beltrami	5			
		1.3.1	Théorie de Hodge	5			
2	Fonctions						
	2.1	Foncti	ions holomorphes	7			
		2.1.1	Definition	7			
		2.1.2	Formule de Cauchy-Pompeiu	7			
		2.1.3	Formule de Cauchy en dimension \$n\$	7			
		2.1.4	Hartog-Riemann	7			
		2.1.5	Wierstrass	7			
	2.2	Sousha	armoniques	7			
		2.2.1	Harmoniques	7			
		2.2.2	Plurisousharmoniques	8			
3	Variétés complexes						
	3.1		norphiquement convexe	9			
		3.1.1	Surfaces de Riemann	9			
		3.1.2	Stein	9			
		3.1.3	Compactes	9			
4	Coh	omolo	ogie	11			
5	Not	ations		13			
	5.1		aux classiques	13			
		5.1.1	Fonctions localement constantes	13			
		5.1.2	formes et vecteurs	13			
		5.1.3	Faisceau gratte-ciel	14			
	5.2		er et tirer	14			
	0.2	5.2.1	!	14			
		5.2.1	-1	14			
		5.2.2	*	14			
		5.2.4		14			
		0.2.4		14			

6	Alge	ebrique	15			
	6.1	Cohomologie d'un complexe	15			
	6.2	Cohomologie des Faisceaux	15			
		6.2.1 Faisceau flasques et résolution flasque	15			
		6.2.2 Cohomologie des faisceaux	15			
		6.2.3 Suite exacte longue	15			
		6.2.4 Suite de Mayer-Vietoris	15			
	6.3	Cech	15			
	6.4	Théorème de Leray des faisceaux acycliques	15			
	0.1	6.4.1 Lemme d'acyclicité	16			
		6.4.2 Sur un espace paracompact, Cech=Faisc	16			
	6.5	Isomorphisme de Leray	16			
		•				
7		ometrique	17			
	7.1	Betti	17			
	7.2	De Rham	17			
		7.2.1 Lemme de Poincaré	17			
	7.3	Dolbeault	17			
		7.3.1 Lemme de Dolbeault-Poincaré	17			
	7.4	Bott-Chern	18			
	7.5	Aeppli	18			
8	Relations					
Ü	8.1	Vanishing Thm	19			
	0.1	8.1.1 Kodaira	19			
	8.2	Dualités	19			
	0.2	8.2.1 Poincaré	19			
		8.2.2 Serres	19			
	8.3	Künneth formula	19			
	0.5	Kumeth formula	19			
9	Thé	eorie de Hodge	21			
	9.1	Théorème de Hodge	21			
		9.1.1 Le cas Kahler	21			
10	Non	n-Classé	23			
10		Interpretation du HÎ en terme d'extensions	23			
		Propriétés des faisceaux	$\frac{23}{23}$			
	10.2	10.2.1 Flasque (flabby)	$\frac{23}{23}$			
		10.2.1 Plasque (habby)	23			
		10.2.3 Acyclique	23			
	10.9	10.2.4 Fin (Fine)	24			
	10.3	Suite spectrale de Frölisher	24			
		10.3.1 Le cas Kahler	24			
11		gramme	25			
	11.1	Cohomologie	25			
		11.1.1 Notations	25			

Géométrie Complexe

Géométrie Hermitienne

1.1 Forme hermitienne

1.1.1 Connection de Chern

 ${\bf Courbure}$

1.1.2 Volume hermitien

Inégalité de Wirtinger

Si ω forme hermitienne sur X alors pour toute sous-variété réelle de dimension 2k $V\subseteq X,$ on a

$$\int_{V} \omega^k \le k! Vol(V)$$

et avec égalité ssi V est une sous-variété complexe.

[?]

1.2 Géométrie Kahlérienne

1.3 Laplace-Beltrami

1.3.1 Théorie de Hodge

Fonctions

2.1 Fonctions holomorphes

- 2.1.1 Definition
- 2.1.2 Formule de Cauchy-Pompeiu
- 2.1.3 Formule de Cauchy en dimension \$n\$
- 2.1.4 Hartog-Riemann
- 2.1.5 Wierstrass

2.2 Sousharmoniques

Sh(U)

N'est un faisceau que sur une variété riemannienne.

2.2.1 Harmoniques

Théorème de l'application conforme

Théorème 1 (Théorème de l'application conforme (Riemann Mapping Thm))

Tout ouvert de \mathbb{C}

- non vide
- ullet différent de ${\mathbb C}$
- ullet simplement connexe

est biholomorphe au disque unité de \mathbb{C} .

Théorème d'uniformisation de Riemann Théorème 2

Les surfaces de Riemann simplement connexe sont, à biholomorphismes près :

- C
- $\bullet \ \mathbb D$ la boule unité de $\mathbb C$ (ou le demi-plan de Poincaré)
- $\bullet \ \mathbb{P}^1$

2.2.2 Plurisousharmoniques

PSh(U)Faisceau sur une variété complexe. équivalent à

$$\forall X \in T_{\mathbb{R}}M, \quad i(\partial \bar{\partial} f)(X, IX) \ge 0 \tag{2.1}$$

(on dit que $i\partial \bar{\partial} f$ est une (1,1)-forme positive) (on voit bien que c'est local!?)

Pluriharmoniques

f et -f sont plurisous harmoniques Si $H^1(X,\mathbb{R})=0$, alors $f\in Ph(X)$ ssi f partie réelle d'une fonction holomorphe

Exemples

 $z\mapsto \log|z|$ est sous harmonique sur $\mathbb C$ donc pour toute fonction holomorphe f sur X, $\log|f|\in PSh(X)$

Plus généralement soient $f_i \in \mathcal{O}(X)$ et $\alpha_i \geq 0$ pour $1 \leq i \leq n$ alors

$$\log\left(|f_1|^{\alpha_1} + \dots + |f_n|^{\alpha_n}\right) \in Psh(X)$$

Variétés complexes

3.1 Holomorphiquement convexe

L'enveloppe holomorphe de chaque compacte est compacte où l'enveloppe holomorphe de K c'est l'ensemble des points x de la variétés qui sont qui pour toute fonction holo f sur X, |f(x)| est borné par le sup de f sur K.

3.1.1 Surfaces de Riemann

Théorème de Riemann-Roch

3.1.2 Stein

Enough functions to separate points

Ouvert simplement connexe de \$C\$

Domaine d'Holomorphie

<=> Holomorphiquement convexe pour les ouverts de \mathbb{C}^n

3.1.3 Compactes

Not enough functions to separate points.

Projectives

\$Pî\$

Cohomologie

Cohomologie

Notations

5.1 Faisceaux classiques

5.1.1 Fonctions localement constantes

 \underline{R} faisceau des fonctions localement constantes à valeur dans R

Structurels

Fonction, par défaut, signifie à valeur dans $\mathbb C$

- \bullet C: continues
- C^k : k-fois dérivables à dérivées continue
- \bullet : lisses
- C^{ω} : analytiques
- \mathcal{O} : holomorphes
- \underline{o} : polynômiales

Fonctions à valeur dans $\mathbb{R} \cup \{+\infty\}$

- \mathcal{H} : harmoniques
- \bullet PSh: plurisous harmoniques

5.1.2 formes et vecteurs

 $\mathcal{A}^p = p$: p-formes différentielles $\mathcal{A}^{p,q} = p^{p,q}$: p+q-formes différentielles de type (p,q) relativement à une structure presque-complexe Ω^p : p-formes holomorphes $\Omega^{p,q}$: p+q formes holomorphes de type (p,q)

 $\mathfrak X$: champs de vecteurs lisses $\mathcal X$: champs de vecteurs holomorphes Cas particuliers

$$\mathcal{A}^0 = \mathbb{C}^{\infty}$$

$$\Omega^0 = \mathcal{O}$$

Courants

[?]

- 5.1.3 Faisceau gratte-ciel
- 5.2 Pousser et tirer
- 5.2.1 !
- 5.2.2 -1

exact

ŵ

5.2.3 _*

exact à gauche

Higher pushforwar $R\hat{q}_{*}$

- 5.2.4 ^!
- **5.2.5** \$⊗\$

Exact si plat

Algebrique

6.1 Cohomologie d'un complexe

Demailly Chap IV.

6.2 Cohomologie des Faisceaux

6.2.1 Faisceau flasques et résolution flasque

Demailly Chap. IV

- 6.2.2 Cohomologie des faisceaux
- 6.2.3 Suite exacte longue
- 6.2.4 Suite de Mayer-Vietoris
- 6.3 Cech

6.4 Théorème de Leray des faisceaux acycliques

Définition 1

Un recouvrement $\mathfrak U$ de X est acyclique pour $\mathcal F$ si $\mathcal F$ n'as pas de cohomologie supérieure sur les intersections d'ouverts de $\mathfrak U$. C'est-à-dire :

$$\forall p > 0, \forall k > 0, \forall J \subseteq I, |J| = k \quad \check{H}^p(U_J, \mathcal{F}) = 0$$

Théorème 3 (leray)

Si \mathfrak{U} est un recouvrement acyclique pour \mathcal{F} , alors

$$\forall p, \quad H^p(X, \mathcal{F}) = \check{H}^p(\mathfrak{U}, \mathcal{F})$$
 (6.1)

morale : Coh de Cech sur un recouvrement acyclique = Coh des Faisceaux [?] Chap IV par. 5. Cech Cohomologie

Corollaire 1

Si $\mathfrak U$ est un recouvrement acyclique pour $\mathcal F$, alors

$$\forall p, \quad \check{H}^p(X, \mathcal{F}) = \check{H}^p(\mathfrak{U}, \mathcal{F})$$
 (6.2)

6.4.1 Lemme d'acyclicité

Sur une variété paracompacte, les faisceaux de C^{∞} -modules sont acycliques sur les recouvrements localement finis.

En particulier pour de tels recouvrements, les faisceaux de C^{∞} -modules n'ont pas de cohomologie supérieure non nulle :

$$\forall q > 0, \quad \check{H}^q(X, \mathcal{F}) = 0 \tag{6.3}$$

6.4.2 Sur un espace paracompact, Cech=Faisc.

Si X est paracompacte et $\mathcal F$ un faisceau sur X alors

$$\forall q \ge 0, \quad H^q(X, \mathcal{F}) = H^q(X, \mathcal{F}) \tag{6.4}$$

6.5 Isomorphisme de Leray

Geometrique

7.1 Betti

7.2 De Rham

Par le lemme de Poincaré la suite

$$0 \to \underline{\mathbb{C}} \to C^{\infty} \to_d \mathcal{A}^1 \to_d \mathcal{A}^2 \cdots \tag{7.1}$$

est exacte.

C'est une résolution injective du faisceau \underline{C} (référence?).

7.2.1 Lemme de Poincaré

Lemme 1 (Poincaré)

Soit U ouvert simplement connexe de \mathbb{R}^n et soit ω une k-forme d-fermée sur U alors il existe θ une k-1-forme sur U telle que $\omega=\mathrm{d}theta$

7.3 Dolbeault

7.3.1 Lemme de Dolbeault-Poincaré

Lemme 2 ()

Soit U ouvert simplement connexe de \mathbb{C}^n et soit ω une (p,q)-forme $\bar{\partial}$ -fermée sur U alors il existe θ une (p,q-1)-forme sur U telle que $\omega=\bar{\partial}$ theta

Lemme 3 (Griffiths-Harris)

Soit Δ polydisque de \mathbb{C}^n , alors

$$H^{p,q}_{Dol}(\Delta,\underline{C}) = 0 \quad \text{ pour } q \ge 1 \tag{7.2}$$

7.4 Bott-Chern

$$\frac{\ker\partial\cap\ker\bar\partial}{\Im\partial\bar\partial}$$

7.5 Aeppli

$$\frac{\ker\partial\bar{\partial}}{\Im\partial+\Im\bar{\partial}}$$

Relations

- 8.1 Vanishing Thm
- 8.1.1 Kodaira
- 8.2 Dualités
- 8.2.1 Poincaré
- **8.2.2** Serres

8.3 Künneth formula

[Formule de Künneth pour l'homologie, [?] I.4 p. 58]

$$H_k(X \times Y, \mathbb{Q}) \simeq \bigoplus_{p+q=k} H_p(X, \mathbb{Q}) \otimes_{\mathbb{C}} H_q(Y, \mathbb{Q})$$
 (8.1)

Si X, Y variétés complexes dont l'une au moins est compacte. \mathcal{F} et \mathcal{G} des faisceaux de \mathbb{C} -ev. [Formule de Künneth pour la cohomologie, [?] Chap IV par. 15 p.278]

$$H_k(X \times Y, \mathcal{FG}) \simeq \bigoplus_{p+q=k} H_p(X, \mathcal{F}) \otimes_{\mathbb{C}} H_q(Y, \mathcal{G})$$
 (8.2)

Théorie de Hodge

9.1 Théorème de Hodge

Métrique hermitienne -> Notion de forme harmonique (et dimension finie des espaces de formes harmoniques) -> Représentant harmonique des classes de Cohomologies

9.1.1 Le cas Kahler

Non-Classé

10.1 Interpretation du HÎ en terme d'extensions

 $H^1(X,\mathcal{F})$ classifie les suites exactes

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{O}_X \to 0 \tag{10.1}$$

Ah bon?

Dans le cas X compact, $H^0(X, \mathcal{O}_X) = \mathcal{C}$ et donc la suite exacte longue de cohomologie associée à une telle extension \mathcal{G} nous donne

$$\cdots \to H^0(X, \mathcal{O}_X) \to H^1(X, \mathcal{F}) \to \cdots$$
 (10.2)

et donc un élément de $H^1(X,\mathcal{F})$ obtenue comme l'image de $1\in\mathcal{C}\cong H^0(X,\mathcal{O}_X)$. Réciproquement ?

10.2 Propriétés des faisceaux

10.2.1 Flasque (flabby)

Toute section locale peut être étendue en une section globale.

Ex : Si X n'est pas discret, même C_X n'est pas flasque.

Les faisceaux flasques sont acycliques

10.2.2 Mou (Soft)

Toute section sur un fermé S de X peut-être étendue en une section globale

 $\operatorname{Ex}:C_X$ (théorème de Tietze-Urysohn) et C_X^∞

Si R est un faisceau d'anneaux doux, alors tous les faisceaux de R-modules sont doux.

10.2.3 Acyclique

Définition 2 (Faisceau acyclique)

Un faisceau acyclique F sur X est un faisceau dont tous les groupes de cohomologie supérieure sont nuls.

C

Les faisceaux de C^{∞} -modules sont acycliques Bilan :

Proposition 1

Toute suite exacte de faisceaux de \mathcal{C}^{∞} -modules est C^{∞} scindée.

$$0 \to E \to F \to G \to 0$$

Alors en prenant le produit tensoriel au dessus de \mathcal{C}^{∞} par G^* , on obtient la suite exacte :

$$0 \to \operatorname{Hom}(G, E) \to \operatorname{Hom}(G, F) \to \operatorname{End}(G) \to^1 (G, E) \to \cdots$$

Or $\operatorname{Hom}(G,E)$ est un faisceau acyclique donc n'a pas de cohomologie supérieure.

Ainsi il existe un antécédent dans $\operatorname{Hom}(G,F)$ à l'identité dans $\operatorname{Hom}(G,G)$, c'est-à-dire une section de $F\to G$. Donc la suite est scindée.

10.2.4 Fin (Fine)

10.3 Suite spectrale de Frölisher

10.3.1 Le cas Kahler

Dégénère en page 1

Programme

11.1 Cohomologie

11.1.1 Notations

Faisceaux classiques

Fonctions localement constantes \underline{R} faisceau des fonctions localement constantes à valeur dans R