数分(B2)第10章综合习题解

1、计算

$$I = \int_L z \, \mathrm{d}s,$$

其中 L 是曲面 $x^2 + y^2 = z^2$ 与 $y^2 = ax$ (a > 0) 交线上从点 (0,0,0) 到 $(a,a,a\sqrt{2})$ 的 弧段.

注: 该题的关键是选取参变量, 接着就是计算.

 \mathbf{m} 取 y 为参变量, 因此

$$x(y) = \frac{y^2}{a}, \ y = y, \ z = \frac{y}{a}\sqrt{y^2 + a^2}, \ 0 \leqslant y \leqslant a.$$

因此, 弧长的微分为

$$ds = \sqrt{\left(\frac{2y}{a}\right)^2 + 1 + \left(\frac{2y^2 + a^2}{a\sqrt{y^2 + a^2}}\right)^2} dy = \sqrt{\frac{8y^4 + 9a^2y^2 + 2a^4}{a^2(y^2 + a^2)}} dy$$

$$\implies I = \int_{L} z \, ds = \int_{0}^{a} \frac{y}{a} \sqrt{y^{2} + a^{2}} \sqrt{\frac{8y^{4} + 9a^{2}y^{2} + 2a^{4}}{a^{2}(y^{2} + a^{2})}} \, dy$$
$$= \frac{\sqrt{8}}{a^{2}} \int_{0}^{a} y \sqrt{y^{4} + \frac{9}{8}a^{2}y^{2} + \frac{1}{4}a^{4}} \, dy.$$

为了计算上述积分, 作变换

$$u = y^2 + \frac{9a^2}{16}, \ b^2 = \frac{17a^4}{16^2}$$

$$\Longrightarrow I = \frac{\sqrt{2}}{a^2} \int_0^{25a^2} \sqrt{u^2 - b^2} \, \mathrm{d}u$$

我们知道(第一册)函数 $\sqrt{u^2-b^2}$ 的原函数可以按如下计算. 令

$$u = b \cosh t$$
, $\sqrt{u^2 - b^2} = b \sinh t$, $du = b \sinh t dt$,

所以

$$\int \sqrt{u^2 - b^2} \, du = b^2 \int \sinh^2 t \, dt = b^2 \int \frac{1}{2} (\cosh 2t - 1) \, dt = \frac{1}{4} \sinh 2t - \frac{1}{2}t.$$

将

$$t = \cosh^{-1} \frac{u}{b}$$

代入, 就得到 $\sqrt{u^2-b^2}$ 的原函数, 再将上下限代入即得到积分的值.

2、设 a, b, c > 0, 求曲线

$$L: \left(\frac{x}{a}\right)^{2n+1} + \left(\frac{y}{b}\right)^{2n+1} = c\left(\frac{x}{a}\right)^n \left(\frac{y}{b}\right)^n$$

所围成的区域 D 的面积.

注: 该题中若 n=1, 则曲线就是著名的Descartes 叶形线.

解 由 Green 公式的推论知

$$\mu(D) = \frac{1}{2} \oint (-y \, \mathrm{d}x + x \, \mathrm{d}y)$$

为了计算积分, 令 $y = \frac{b}{a}xt$, 得

$$x = x(t) = ac\frac{t^n}{1 + t^{2n+1}}, \ y = y(t) = bc\frac{t^{n+1}}{1 + t^{2n+1}}, \ 0 \leqslant t < +\infty.$$

$$\implies x'(t) = ac \frac{nt^{n-1} - (n+1)t^{3n}}{(1+t^{2n+1})^2}, \ y'(t) = bc \frac{(n+1)t^n - nt^{3n+1}}{(1+t^{2n+1})^2},$$

$$\mu(D) = \frac{1}{2} \oint (-y \, dx + x \, dy) = \frac{1}{2} \int_0^{+\infty} (-y(t)x'(t) + x(t)y'(t)) \, dt$$
$$= \frac{1}{2} \int_0^{+\infty} \frac{abc^2t^{2n}}{(1+t^{2n+1})^2} \, dt = \frac{abc^2}{2(2n+1)}.$$

3、求平面上两个椭圆

$$C_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad C_2: \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \ (a > b)$$

内部公共区域的面积.

 \mathbf{M} 由对称性,只要计算在第一象限的公共区域D的面积即可.

为此, 先求两个椭圆在第一象限的交点坐标 $P(x_0,y_0)$: 两个方程相减, 得 $x_0=y_0$. 因此

$$x_0^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right) = 1$$

解得

$$x_0 = y_0 = \frac{ab}{\sqrt{a^2 + b^2}}.$$

因此, 在第一象限的公共区域D是由椭圆 C_1 上从 $P(x_0, y_0)$ 到y 轴上点 A(0, b) 的弧段 L_{PA} 和 C_2 上从x 轴上点B(b, 0) 到 $P(x_0, y_0)$ 的弧段 L_{BP} 以及 x 轴上线段 \overline{OB} 和 y 轴上线段 \overline{AO} 围成的. 方向逆时针.

对于 L_{PA} , 取 $x = a\cos\theta$, $y = b\sin\theta$. 在交点 $P(x_0, y_0)$ 处, 有 $x_0 = y_0$, 对应的 θ_0 满足

$$a\cos\theta_0 = b\sin\theta_0, \Longrightarrow \tan\theta_0 = \frac{a}{b}, \ \theta_0 = \tan^{-1}\left(\frac{a}{b}\right).$$

在A(0,b), 对应的 θ_1 满足

$$a\cos\theta_1 = 0, \Longrightarrow \theta_1 = \frac{\pi}{2}.$$

因此 L_{PA} 的参数方程表示为

$$x = a\cos\theta, \ y = b\sin\theta \ \tan^{-1}\left(\frac{a}{b}\right) \leqslant \theta \leqslant \frac{\pi}{2}$$

同理, 对于 L_{BP} , 取 $x = b\cos\theta$, $y = a\sin\theta$. 在交点 $P(x_0, y_0)$ 处, 有 $x_0 = y_0$, 对应的 θ_2 满足

$$b\cos\theta_2 = a\sin\theta_2, \Longrightarrow \tan\theta_2 = \frac{b}{a}, \ \theta_2 = \tan^{-1}\left(\frac{b}{a}\right).$$

在B(b,0), 对应的 θ_3 满足

$$a\sin\theta_3=0,\Longrightarrow\theta_3=0.$$

因此 L_{BP} 的参数方程表示为

$$x = b\cos\theta, \ y = a\sin\theta \ 0 \leqslant \theta \leqslant \tan^{-1}\left(\frac{b}{a}\right).$$

所以面积为

$$\mu(D) = \frac{1}{2} \oint_{\partial D} (-y \, \mathrm{d}x + x \, \mathrm{d}y).$$

分段积分, 并注意到在直线 \overline{OB} 上, y=0, $\mathrm{d}x=0$; 在 \overline{AO} 上 x=0, $\mathrm{d}y=0$. 所以

$$\begin{split} \mu(D) &= \frac{1}{2} \oint_{L_{PA}} (-y \, \mathrm{d}x + x \, \mathrm{d}y) + \frac{1}{2} \oint_{L_{BP}} (-y \, \mathrm{d}x + x \, \mathrm{d}y) \\ &= \frac{1}{2} \int_{\tan^{-1}}^{\frac{\pi}{2}} \left(\frac{a}{b}\right) ab(\sin^2\theta + \cos^2\theta) \, \mathrm{d}\theta + \frac{1}{2} \int_{0}^{\tan^{-1}\left(\frac{b}{a}\right)} ab(\cos^2\theta + \sin^2\theta) \, \mathrm{d}\theta \\ &= \frac{1}{2} ab \tan^{-1}\left(\frac{b}{a}\right) + \frac{1}{2} ab \left(\frac{\pi}{2} - \tan^{-1}\left(\frac{a}{b}\right)\right) = \tan^{-1}\left(\frac{b}{a}\right) \end{split}$$

总面积为 $4 \tan^{-1} \left(\frac{b}{a} \right)$.

4、 (Poisson公式) 设 $S: x^2+y^2+z^2=1, f(t)$ 连续, 求证

$$\iint_{S} f(ax + by + cz) \, dS = 2\pi \int_{-1}^{1} f(kt) \, dt, \ k = \sqrt{a^2 + b^2 + c^2}.$$

证明 令 $\vec{n} = \frac{1}{k}(a\vec{i} + b\vec{j} + c\vec{k})$, 那么球面 S 是单位圆以 \vec{n} 为旋转轴的旋转曲面, 设 P(x,y,z) 为球面上一点, 则 $\vec{r} = \overrightarrow{OP}$ 在 \vec{n} 的投影为 $t = \vec{n} \cdot \vec{r}$, 绕 \vec{n} 的旋转半径为

$$\rho = \sqrt{1 - t^2}, \ d\rho = \frac{-t dt}{\sqrt{1 - t^2}}$$
$$\implies f(ax + by + cz) = f(kt)$$

只与 $t = \sqrt{1 - \rho^2}$ 有关, 类似旋转曲面的面积元的计算, 面积元为

$$dS = \pi(\rho + (\rho + d\rho)) ds = 2\pi \rho \frac{d\rho}{dt} dt = 2\pi dt$$

$$\implies \iint_S f(ax + by + cz) dS = \iint_S f(kt) dS = 2\pi \int_{-1}^1 f(kt) dt.$$

5、设 S(t) 是平面 $\Pi: x + y + z = t$ 被球面 $B: x^2 + y^2 + z^2 = 1$ 截下的部分,

$$F(x, y, z) = 1 - (x^2 + y^2 + z^2),$$

求证: 当 $|t| \leq \sqrt{3}$ 时, 有

$$\iint_{S(t)} F(x, y, z) \, dS = \frac{\pi}{18} (3 - t^2)^2.$$

证明 证明的过程实际上是一个计算的过程.

首先注意到平面 Π 的一个单位法向量是 $\vec{n}=\frac{1}{\sqrt{3}}(1,1,1)$,不难计算原点到 Π 的 距离为 $\frac{|t|}{\sqrt{3}}$,所以当 $|t|>\sqrt{3}$ 时, Π 和球面 B 没有交.

其次注意到当 $|t| \leq \sqrt{3}$ 时, S(t) 是一个圆盘, 圆盘的圆心为 $\left(\frac{t}{3}, \frac{t}{3}, \frac{t}{3}\right)$, 半径为

$$r_0 = \sqrt{1 - \frac{t^2}{3}}$$

设S(t) 上任意一点 (x,y,z) 到 S(t) 的圆心的距离为 r:

$$\left(x - \frac{t}{3}\right)^2 + \left(y - \frac{t}{3}\right)^2 + \left(z - \frac{t}{3}\right)^2 = r^2,$$

$$\implies x^2 + y^2 + z^2 = \frac{t^2}{3} + r^2$$

S(t) 上面积元在极坐标下为

$$dS = r dr d\theta, \ 0 \leqslant r \leqslant r_0, \ 0 \leqslant \theta \leqslant 2\pi$$

因此

$$\iint_{S(t)} F(x, y, z) dS = \iint_{S(t)} \left(1 - \left(\frac{t^2}{3} + r^2 \right) \right) r dr d\theta$$

$$= \int_0^{2\pi} d\theta \int_0^{\sqrt{1 - \frac{t^2}{3}}} \left(1 - \left(\frac{t^2}{3} + r^2 \right) \right) r dr$$

$$= \frac{\pi}{18} (3 - t^2)^2.$$

6. 设 f(t) 在 $|t| \leq \sqrt{a^2 + b^2 + c^2}$ 上连续, 证明:

$$\iiint_{x^2+y^2+z^2 \leqslant 1} f\left(\frac{ax+by+cz}{\sqrt{x^2+y^2+z^2}}\right) dx dy dz = \frac{2}{3}\pi \int_{-1}^{1} f(t\sqrt{a^2+b^2+c^2}) dt.$$

证明 令

$$x = r \sin \theta \cos \varphi$$
, $y = r \sin \theta \sin \varphi$, $z = \cos \theta$,

其中 $0 \le r \le 1$, $0 \le \theta \le \pi$, $0 \le \varphi \le 2\pi$. 则

$$\iiint_{x^2+y^2+z^2 \leqslant 1} f\left(\frac{ax+by+cz}{\sqrt{x^2+y^2+z^2}}\right) dx dy dz$$

$$= \int_0^1 dr \int_0^{\pi} d\theta \int_0^{2\pi} d\varphi f(a\sin\theta\cos\varphi + b\sin\theta\sin\varphi + c\cos\theta) r^2 \sin\theta$$

$$= \int_0^1 r^2 dr \int_0^{\pi} d\theta \int_0^{2\pi} d\varphi f(a\sin\theta\cos\varphi + b\sin\theta\sin\varphi + c\cos\theta) \sin\theta$$

$$= \frac{1}{3} \int_0^{\pi} d\theta \int_0^{2\pi} d\varphi f(a\sin\theta\cos\varphi + b\sin\theta\sin\varphi + c\cos\theta) \sin\theta$$

$$= \iint_{x^2+y^2+z^2=1} f(ax+by+cz) dS$$

$$= \frac{2}{3} \pi \int_{-1}^1 f(t\sqrt{a^2+b^2+c^2}) dt.$$

上式中最后一步利用了第4题中的Poisson公式.

点评: 本题中利用被积函数的特殊性, 通过换元, 把三重积分化成了曲面积分.

习题11.3中第7题:设 D 是平面上简单闭曲线 L 围成的区域, $L=\partial D$.

(1) 如果 f(x,y) 在 \overline{D} 上有二阶连续偏导数, 证明

$$\oint_{\partial D} \frac{\partial f}{\partial \vec{n}} \, \mathrm{d}s = \iint_{D} \Delta f \, \mathrm{d}x \, \mathrm{d}y.$$

这里 \vec{n} 是曲线 ∂D 的单位外法向量, $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ 为二维Laplace 算子, 因此当 f(x,y) 满足 Laplace 方程 $\Delta f = 0$ 时, 有

$$\oint_{\partial D} \frac{\partial f}{\partial \vec{n}} \, \mathrm{d}s = 0.$$

(2) 如果 ā 是单位常向量, 证明:

$$\oint_{\partial D} \cos(\vec{a}, \vec{n}) \, \mathrm{d}s = 0.$$

(3) 如果 u(x,y), v(x,y) 有连续的二阶偏导数, 证明下列第二Green公式:

$$\oint_{\partial D} \left(v \frac{\partial u}{\partial \vec{n}} - u \frac{\partial v}{\partial \vec{n}} \right) ds = \iint_{D} (v \Delta u - u \Delta v) dx dy.$$

证明 (1) 设平面曲线 ∂D 的外法向量为 $\vec{n}=\cos\alpha\vec{i}+\sin\alpha\vec{j}$, 那么 ∂D 的切向量 $\vec{\tau}$ 可以表示为

$$\vec{\tau} = \vec{k} \times \vec{n}, \quad \vec{\boxtimes} \quad \vec{n} = \vec{\tau} \times \vec{k}.$$

且 \vec{r} 的方向指向曲线 ∂D 的逆时针方向. 因此

$$\oint_{\partial D} \frac{\partial f}{\partial \vec{n}} \, ds = \oint_{\partial D} \nabla f \cdot \vec{n} \, ds = \oint_{\partial D} \nabla f \cdot \vec{\tau} \times \vec{k} \, ds$$

$$= \oint_{\partial D} \vec{k} \times \nabla f \cdot \vec{\tau} \, ds = \oint_{\partial D} \vec{k} \times \nabla f \cdot d\vec{r}$$

这里 $\nabla f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j}$, 因此

$$\vec{k} \times \nabla f = -\frac{\partial f}{\partial y}\vec{i} + \frac{\partial f}{\partial x}\vec{j}$$

所以, 利用Green 定理就有

$$\oint_{\partial D} \frac{\partial f}{\partial \vec{n}} \, \mathrm{d}s = \oint_{\partial D} -\frac{\partial f}{\partial y} \, \mathrm{d}x + \frac{\partial f}{\partial x} \, \mathrm{d}y = \iint_{D} \Delta f \, \mathrm{d}x \, \mathrm{d}y.$$

(2) 设 $\vec{a} = a_1 \vec{i} + a_2 \vec{j}$ 为平面单位常向量. 令 $f(x,y) = a_1 x + a_2 y$, 则

$$\nabla f = \vec{a}, \quad \Delta f = 0, \quad \frac{\partial f}{\partial \vec{n}} = \nabla f \cdot \vec{n} = \vec{a} \cdot \vec{n} = \cos(\vec{a}, \vec{n}),$$

由(1) 的结果就得到

$$\oint_{\partial D} \cos(\vec{a}, \vec{n}) \, \mathrm{d}s = 0.$$

(3) 类似 (1) 中的推导, 并利用Green 定理, 有

$$\oint_{\partial D} v \frac{\partial u}{\partial \vec{n}} \, ds = \oint_{\partial D} v \vec{k} \times \nabla u \cdot d\vec{r} = \oint_{\partial D} -v \frac{\partial u}{\partial y} \, dx + v \frac{\partial u}{\partial x} \, dy$$

$$= \iint_{D} \frac{\partial}{\partial x} \left(v \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(v \frac{\partial u}{\partial y} \right) \, dx \, dy$$

$$= \iint_{D} \left[v \Delta u + \left(\frac{\partial v}{\partial x} \right) \left(\frac{\partial u}{\partial x} \right) + \left(\frac{\partial v}{\partial y} \right) \left(\frac{\partial u}{\partial y} \right) \right] \, dx \, dy$$

同理有

$$\oint_{\partial D} u \frac{\partial v}{\partial \vec{n}} \, ds = \iint_{D} \left[u \Delta v + \left(\frac{\partial u}{\partial x} \right) \left(\frac{\partial v}{\partial x} \right) + \left(\frac{\partial u}{\partial y} \right) \left(\frac{\partial v}{\partial y} \right) \right] \, dx \, dy$$

两式相减得

$$\oint_{\partial D} \left(v \frac{\partial u}{\partial \vec{n}} - u \frac{\partial v}{\partial \vec{n}} \right) \, \mathrm{d}s = \iint_{D} (v \Delta u - u \Delta v) \, \mathrm{d}x \, \mathrm{d}y.$$

7. 设 D 是平面上光滑曲线 L 围成的区域, f(x,y) 在 \overline{D} 上有二阶连续偏导数且满足Lapace方程

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$$

求证:当 f(x,y) 在 L 上恒为零时, 它在 D 上也恒为零.

点评: 本题的含义是下列微分方程的边值问题:

$$\begin{cases} \Delta f = 0 & (x, y) \in D \\ f \Big|_{\partial D} = 0 \end{cases}$$

只有零解.

证明 类似习题11.3 第7题(3)中的计算, 有

$$\oint_{\partial D} f \frac{\partial f}{\partial \vec{n}} \, ds = \iint_{D} \left[f \Delta f + \left(\frac{\partial f}{\partial x} \right)^{2} + \left(\frac{\partial f}{\partial y} \right)^{2} \right] \, dx \, dy,$$

因为 $f\Big|_{\partial D}=0$, 所以上式左边曲线积分为零. 再由 $\Delta f=0$, 得

$$\iint_{D} \left[\left(\frac{\partial f}{\partial x} \right)^{2} + \left(\frac{\partial f}{\partial y} \right)^{2} \right] dx dy = 0$$

因为 f 有连续的二阶偏导数, 所以

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0,$$

即 $f \in D$ 上常值函数, 并且在边界上取值为零, 因此 f(x,y) = 0 在 D 上成立.

8. 设 f(x,y) 在 $\overline{B}(P_0,R)$ 上有二阶连续偏导数,且满足 Laplace 方程 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$, 那么有

$$f(P_0) = \frac{1}{2\pi r} \int_{\partial B_r(P_0)} f(x, y) \, \mathrm{d}s,$$

其中 $P_0 = (x_0, y_0), B_r(P_0): (x - x_0)^2 + (y - y_0)^2 \leqslant r^2, 0 \leqslant r \leqslant R.$

证明 令

$$g(r) = \frac{1}{2\pi r} \int_{\partial B_r(P_0)} f(x, y) ds.$$

取 $\partial B_r(P_0)$ 的参数方程为

$$x = x_0 + r\cos\varphi, \ y = y_0 + r\sin\varphi \ \ 0 \leqslant \varphi \leqslant 2\pi.$$

所以

$$g(r) = \frac{1}{2\pi} \int_0^{2\pi} f(x_0 + r\cos\varphi, y_0 + r\sin\varphi) \,d\varphi.$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \int_0^r \left(\cos\varphi \frac{\partial f}{\partial x}(x_0 + t\cos\varphi, y_0 + t\sin\varphi) + \sin\varphi \frac{\partial f}{\partial y}(x_0 + t\cos\varphi, y_0 + t\sin\varphi)\right) \,dt \,d\varphi$$

$$= \frac{1}{2\pi} \int_0^r dt \int_0^{2\pi} \left(\cos\varphi \frac{\partial f}{\partial x} + \sin\varphi \frac{\partial f}{\partial y}\right) \,d\varphi$$

这是一个对r的变上限积分,因此

$$g'(r) = \frac{1}{2\pi} \int_0^{2\pi} \left(\cos \varphi \frac{\partial f}{\partial x} + \sin \varphi \frac{\partial f}{\partial y} \right) d\varphi = \frac{1}{2\pi r} \int_{\partial B_r(P_0)} -\frac{\partial f}{\partial y} dx + \frac{\partial f}{\partial x} dy$$
$$= \frac{1}{2\pi r} \iint_{B_r(P_0)} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) dx dy = 0,$$

(注: 也可以在 q(r) 表达式中直接对 r 求导, 得到 q'(r).)

g'(r) = 0 说明 g(r) 为常数. 所以

$$g(r) = g(0) = \frac{1}{2\pi} \int_0^{2\pi} f(x_0, y_0) d\varphi = f(P_0).$$

9. 设 D 是平面上光滑曲线 L 围成的区域, f(x,y) 在 \overline{D} 上有二阶连续偏导数且满足Lapace方程

 $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0.$

求证: 若 f(x,y) 不是常数, 则它在 \overline{D} 上的最大值和最小值只能在 D 的边界 $L=\partial D$ 上取到.

证明 假设 f(x,y) 在 D 的内部一点 $P_0(x_0,y_0)$ 取到最大值. 因为 P_0 是内点, 所以存在 r > 0, 使得 $B_r(P_0) \subset D$. 在 $B_r(P_0)$ 上, 由第8题结果, 有

$$f(P_0) = \frac{1}{2\pi r} \int_{\partial B_r(P_0)} f(x, y) \, \mathrm{d}s,$$

$$\Longrightarrow \frac{1}{2\pi r} \int_{\partial B_r(P_0)} [f(x_0, y_0) - f(x, y)] \, \mathrm{d}s = 0,$$

$$\Longrightarrow \int_0^{2\pi} [f(x_0, y_0) - f(x_0 + r\cos\varphi, y_0 + r\sin\varphi)] \, \mathrm{d}\varphi = 0,$$

这里取 $\partial B_r(P_0)$ 的参数方程为

$$x = x_0 + r\cos\varphi, \ y = y_0 + r\sin\varphi \ \ 0 \leqslant \varphi \leqslant 2\pi.$$

由于 $f(x_0, y_0)$ 是最大值,上述积分中被积函数为非负连续,因此积分为零推出被积函数恒为零,即

$$f(x_0, y_0) - f(x_0 + r\cos\varphi, y_0 + r\sin\varphi) = 0, \ 0 \leqslant \varphi \leqslant 2\pi.$$

或

$$[f(x_0, y_0) - f(x, y)]\Big|_{\partial B_r(P_0)} = 0.$$

根据第7题结果, 推出

$$f(x,y) = f(x_0, y_0), (x,y) \in B_r(P_0).$$

其次在 D 的内部任意一点 $P(x,y) \in D^{\circ}$, 用折线连接 P_0 和 P 点, 并可用有限个 圆域 $B_{r_0}(P_0)$, $B_{r_1}(P_1)$, \cdots , $B_{r_n}(P_n)$ 覆盖该折线, 逐步递推得 $f(x_0,y_0) = f(x,y)$, 也

就是 f(x,y) 在 D 的内部恒为常数 $f(x_0,y_0)$, 再利用函数的连续性得 f 在 \overline{D} 上恒为常数:

$$f(x,y)\Big|_{\overline{D}} = f(x_0, y_0).$$

这与 f 不是常值函数的条件矛盾. 因此 f 在D 的内部不可能取到最大值. 同理可证也不可能取到最小值.

10. 设 f(x,y,z) 在 $\overline{B}_R(P_0)$ 上有二阶连续偏导数, 且满足 Laplace 方程 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$, 求证: 对 $0 \le r \le R$, 有

$$f(P_0) = \frac{1}{4\pi r^2} \iint_{\partial B_r(P_0)} f(x, y, z) \, dS,$$

其中 $P_0(x_0, y_0, z_0)$, $B_r(P_0)$: $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 \leqslant r^2$, $0 \leqslant r \leqslant R$.

证明 类似第8题的证明, 取球面 $\partial B_r(P_0)$ 的参数方程表示

$$x = r\sin\theta\cos\varphi, \ y = r\sin\theta\sin\varphi, \ z = r\cos\theta, \ 0 \leqslant \theta \leqslant \pi, \ 0 \leqslant \varphi \leqslant 2\pi.$$

并记

$$g(r) = \frac{1}{4\pi r^2} \iint_{\partial B_r(P_0)} f(x, y, z) dS$$
$$= \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} f(x_0 + r \sin \theta \cos \varphi, y_0 + r \sin \theta \sin \varphi, z_0 + r \cos \theta) \sin \theta d\theta d\varphi$$

对 r 求导得

$$g'(r) = \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} \left(\frac{\partial f}{\partial x} \sin \theta \cos \varphi + \frac{\partial f}{\partial y} \sin \theta \sin \varphi + \frac{\partial f}{\partial z} \cos \theta \right) \sin \theta \, d\theta \, d\varphi$$

$$= \frac{1}{4\pi r^2} \iint_{\partial B_r(P_0)} \frac{\partial f}{\partial x} \, dy \, dz + \frac{\partial f}{\partial y} \, dz \, dx + \frac{\partial f}{\partial z} \, dx \, dy$$

$$= \iiint_{B_r(P_0)} \Delta f \, dx \, dy \, dz = 0$$

所以 g(r) 是常值函数:

$$g(r) = g(0) = \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} f(x_0, y_0, z_0) \sin \theta \, d\theta \, d\varphi = f(P_0).$$