

Data Mining -- Classification

Instructor: Jen-Wei Huang

Office: 92528 in the EE building jwhuang@mail.ncku

Classification

- Predicts categorical class labels (discrete or nominal)
- Classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Typical applications
 - Credit approval
 - Target marketing
 - Medical diagnosis
 - Fraud detection

Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is the training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Testing set is the set of tuples used to estimate the accuracy of the model
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

3

Accuracy

- The known label of test sample is compared with the classified result from the model
- Accuracy rate is the percentage of test set samples that are correctly classified by the model
- Test set is independent of training set, otherwise over-fitting will occur

Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Classification
Algorithms

Classifier
(Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Data Mining & Social Network Analysis 2021/03/10

5

Supervised Learning

- The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set
- Compared to unsupervised learning (clustering):
 - ▶ The class labels of training data is unknown

Data Mining & Social Network Analysis 2021/03/10

_

Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Evaluation

- Accuracy: the ratio of correctly predicted tuples in the testing set
- Speed
 - time to construct the model (training time)
 - time to use the model (classification time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Example

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Decision Tree Model

References

- Slides from Prof. J.-W. Han, UIUC
- ▶ Slides from Prof. M.–S. Chen, NTU
- ▶ Slides from Prof. W.–Z. Peng, NCTU