Übungsblatt 2 zu Mathematik I (Physik)

Aufgabe 4: (15 Punkte) Es seien $f: W \to X$, $g: X \to Y$ und $h: Y \to Z$ Funktionen. Zeige: Sind $g \circ f$ und $h \circ g$ bijektiv, so sind f, g und h bijektiv.

Aufgabe 5 (15 Punkte) Entscheide, welche der folgenden Aussagen wahr oder falsch ist und gib einen Beweis bzw. ein Gegenbeispiel an:

- a) Es seien (X, \leq) und (Y, \leq) geordnete Mengen, $f: X \to Y$ eine streng monoton steigende Funktion, dann ist f injektiv.
- b) Es sei (X, \leq) eine totalgeordnete Menge, (Y, \leq) eine geordnete Menge und $f: X \to Y$ eine streng monoton steigende Funktion, dann ist f injektiv.
- c) Es seien (X, \leq) und (Y, \leq) total geordnete Mengen, $f: X \to Y$ eine injektive Funktion, dann ist f streng monoton steigend.
- d) Es seien (X, \leq) und (Y, \leq) total geordnete Mengen, $f: X \to Y$ eine streng monoton steigende, bijektive Funktion, dann ist auch die Umkehr funktion $f^{-1}: Y \to X$ streng monoton steigend.

Aufgabe 6: (10 Punkte)

a) Mit der Konvention $x^0 := 1$ zeige: Für alle $x \in \mathbb{R}$ mit $x \neq 1$ und alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} kx^{k-1} = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2}$$

b) Zeige: Für alle $n \in \mathbb{N}$ ist $3^{2n} + 7$ ohne Rest durch 8 teilbar.

Aufgabe 7: (10 Punkte) Es sei (X, \leq) eine totalgeordnete Menge und $n \in \mathbb{N}$. Zeige: Für alle $x_1, ..., x_n \in X$ existiert $\max\{x_1, ..., x_n\}$ und $\min\{x_1, ..., x_n\}$.

keine Abgabe – Besprechung in der Übung am 4.11.