클래스와 객체

세상 모든 것이 객체

■ 세상 모든 것이 객체

- □ 실세계 객체의 특징
 - 객체마다 고유한 특성(state)와 행동(behavior)를 가짐
 - 다른 객체들과 정보를 주고 받는 등, 상호작용하면서 존재
- □ 컴퓨터 프로그램에서 객체 사례
 - 테트리스 게임의 각 블록들
 - 한글 프로그램의 메뉴나 버튼들

객체 지향 특성 : 캡슐화

- □ 캡슐화 : 객체를 캡슐로 싸서 내부를 볼 수 없게 하는 것
 - □ 객체의 본질적인 특징
 - 외부의 접근으로부터 객체 보호

자바의 캡슐화

- □ 클래스(class): 객체 모양을 선언한 틀(캡슐화)
 - 메소드(멤버 함수)와 필드(멤버 변수)는 모두 클래스 내에 구현
- □ 객체
 - 클래스의 모양대로 생성된 실체(instance)
 - 객체 내 데이터에 대한 보호, 외부 접근 제한
 - 객체 외부에서는 비용개 멤버(필드, 메소드)에 직접 접근할 수 없은
 - 객체 외부에서는 공개된 메소드를 통해 비공개 멤버 접근

```
글래스 선언

class Animal {
  String name;
  int age;
  void eat() {...}
  void speak() {...}
  void love() {...}
}
```

```
클래스 모양으로 만들어진 객체

String name "lion" int age 4 String name "bear" int age 8

void eat();
void speak();
void love();

Void love();

Void love();
```

Animal 객체 두 개

객체 지향의 특성 : 상속

- □ 상속
 - □ 상위 개체의 속성이 하위 개체에 물려짐
 - □ 하위 객체가 상위 개체의 속성을 모두 가지는 관계
- 🗖 실세계의 상속 사례
 - □ 유전적 상속 관계
 - 나무는 식물의 속성과 생물의 속성을 모두 가짐
 - 그러므로 나무는 식물이다. 나무는 생물이다하고 할 수 있음
 - 사람은 생물의 속성은 가지지만 식물의 속성은 가지고 있지 않음
 - 그러므로 사람은 생물이다라고 할 수 있지만, 하지만 사람은 식물이다라고 할 수 없음

자바의 상속

- □ 상속
 - □ 자식 클래스가 부모 클래스의 속성 물려받고, 기능 확장
 - 부모 클래스 : 수퍼 클래스
 - 하위 클래스 : 서브 클래스. 수퍼 클래스를 재사용하고 새로운 특성 추가

객체 지향의 특성 : 다형성

- □ 다형성
 - □ 같은 이름의 메소드가 클래스나 객체에 따라 다르게 동작하도록 구현
 - 다형성 사례
 - 메소드 오버로딩: 같은 이름이지만 다르게 작동하는 여러 메소드
 - 메소드 오버라이딩 : 슈퍼클래스의 메소드를 서브 클래스마다 다르게 구현

객체 지향 언어의 목적

- 1. 소프트웨어의 생산성 향상
 - □ 컴퓨터 산업 발전에 따라 소프트웨어의 생명 주기(life cycle) 단축
 - 소프트웨어를 빠른 속도로 생산할 필요성 증대
 - 객체 지향 언어
 - 상속, 다형성, 캡슐화 등 소프트웨어 재사용을 위한 여러 장치 내장
 - 소프트웨어 재사용과 부분 수정 빠름
 - 소프트웨어를 다시 만드는 부담 대폭 줄임
 - 소프트웨어 생산성 향상
- 2. 실세계에 대한 쉬운 모델링
 - □ 컴퓨터 초기 시대의 프로그래밍
 - 수학 계산/통계 처리를 하는 등 처리 과정, 계산 절차 중요
 - □ 현대의 프로그래밍
 - 컴퓨터가 산업 전반에 활용
 - 실세계에서 발생하는 일을 프로그래밍
 - 실세계에서는 절차나 과정보다 물체(객체)들의 상호 작용으로 묘사하는 것이 용이
 - □ 객체 지향 언어
 - 실세계의 일을 보다 쉽게 프로그래밍하기 위한 객체 중심적 언어

- □ 절차 지향 프로그래밍
 - □ 작업 순서 표현
 - □ 작업을 함수로 작성한, 함수들의 집합
- □ 객체 지향 프로그래밍
 - □ 객체들간의 상호 작용으로 표현
 - 클래스 혹은 객체들의 집합으로 프로그램 작성

커피 자판기

객체지향적 프로그래밍의 객체들의 상호 관련성

절차지향적 프로그래밍의 실행 절차

클래스와 객체

- □ 클래스
 - □ 객체를 만들어내기 위한 설계도 혹은 틀
 - 객체의 속성(state)과 행동(behavior) 포함
- □ 객체
 - □ 클래스의 모양 그대로 찍어낸 실체
 - 프로그램 실행 중에 생성되는 실체
 - 메모리 공간을 갖는 구체적인 실체
 - 인스턴스(instance)라고도 부름
- □ 사례
 - □ 클래스: 소나타자동차,
 - □ 클래스: 사람,
 - □ 클래스: 붕어빵틀,
- 객체: 출고된 실제 소나타 100대
- 객체: 나, 너, 윗집사람, 아랫집사람
- 객체: 구워낸 붕어빵들

클래스와 객체와의 관계

붕어빵 틀은 클래스이며, 이 틀의 형태로 구워진 붕어빵은 바로 객체입니다. 붕어빵은 틀의 모양대로 만들어지지만 서로 조금씩 다릅니다. 치즈붕어빵, 크림붕어빵, 앙코붕어빵 등이 있습니다. 그래도 이들은 모두 붕어빵입니다.

사람을 사례로 든 클래스와 객체 사례

클래스: 사람

이름, 직업, 나이, 성별, 혈액형 밥 먹기, 잠자기, 말하기, 걷기

* 객체들은 클래스에 선언된 동일한 속성을 가지지만, 객체마다 서로 다른 고유한 값으로 구분됨

클래스 구성

```
클래스 선언
                     클래스 이름
접근 권한
     public class Circle {
       public int radius; // 원의 반지름 필드
                                                      필드(변수)
        public String name; // 원의 이름 필드
       public Circle() { // 원의 생성자 메소드
                                                       메소드
        public double getArea() { // 원의 면적 계산 메소드
          return 3.14*radius*radius;
```

클래스 구성 설명

- □ 클래스 선언, class Circle
 - □ class 키워드로 선언
 - 클래스는 {로 시작하여 }로 닫으며 이곳에 모든 필드와 메소드 구현
 - □ class Circle은 Circle 이름의 클래스 선언
 - □ 클래스 접근 권한, public
 - 다른 클래스들에서 Circle 클래스를 사용하거나 접근할 수 있음을 선언
- □ 필드와 메소드
 - 필드 (field): 객체 내에 값을 저장하는 멤버 변수
 - 메소드 (method) : 함수이며 객체의 행동(행위)를 구현
- □ 필드의 접근 지정자, public
 - 필드나 메소드 앞에 붙어 다른 클래스의 접근 허용을 표시
 - □ public 접근 지정자 : 다른 모든 클래스의 접근 허용
- □ 생성자
 - □ 클래스의 이름과 동일한 특별한 메소드
 - □ 객체가 생성될 때 자동으로 한 번 호출되는 메소드
 - □ 개발자는 객체를 초기화하는데 필요한 코드 작성

객체 생성 및 접근

- □ 객체 생성
 - □ 반드시 new 키워드를 이용하여 생성
 - new는 객체의 생성자 호출
- □ 객체 생성 과정
 - □ 객체에 대한 레퍼런스 변수 선언
 - 객체 생성
 - 클래스 타입 크기의 메모리 할당
 - 객체 내 생성자 코드 실행
- □ 객체의 멤버 접근
 - □ 객체 레퍼런스.멤버

객체 생성과 접근

1. 레퍼런스 변수 선언 (1) Circle pizza; pizza Circle 타입의 객체 객체 메모리 2. 객체 생성 (2) pizza = new Circle(); pizza radius 할당 및 객체 생성 - new 연산자 이용 name getArea() { ... } 3(4). 객체 멤버 접근 (3) pizza.radius = 10; radius pizza 10 radius 값 변경 - 점(.) 연산자 이용 pizza.name = "자바피자" "저띠내지" name 값 변경 name getArea() { ... } (4) double area = pizza.getArea(); pizza radius 10 "저따내지" name getArea() { 314.0 area getArea() ---- return 3.14*radius*radius; 메소드 실행

예제 4-1 : Circle 클래스의 객체 생성 및 활용

반지름과 이름을 가진 Circle 클래스를 작성하고, Circle 클래스의 객체를 생성하라. 그리고 객체가 생성된 모습을 그려보라.

```
public class Circle {
                     // 원의 반지름 필드
  int radius:
  String name; // 원의 이름 필드
  public Circle() { } // 원의 생성자
  public double getArea() { // 원의 면적 계산 메소드
     return 3.14*radius*radius;
  public static void main(String[] args) {
     Circle pizza;
     pizza = new Circle(); // Circle 객체 생성
     pizza.radius = 10;  // 피자의 반지름을 10으로 설정
pizza.name = "자바피자";  // 피자의 이름 설정
     double area = pizza.getArea(); // 피자의 면적 알아내기
     System.out.println(pizza.name + "의 면적은 " + area);
     Circle donut = new Circle(); // Circle 객체 생성

      donut.radius = 2;
      // 도넛의 반지름을 2로 설정

      donut.name = "자바도넛";
      // 도넛의 이름 설정

     area = donut.getArea(); // 도넛의 면적 알아내기
     System.out.println(donut.name + "의 면적은 " + area);
```

```
radius 10
name "자山下」
public Circle() { }
public double getArea() {
  return 3.14*radius*radius;
}
```


자바피자의 면적은 314.0 자바도넛의 면적은 12.56

예제 4-2 : Rectangle 클래스 만들기 연습

너비와 높이를 입력 받아 사각형의 합을 출력하는 프로그램을 작성하라. 너비(width)와 높이(height) 필드, 그리고 면적 값을 제공하는 getArea() 메소드를 가진 Rectangle 클래스를 만들어 활용하라.

- □ 생성자
 - □ 객체가 생성될 때 초기화를 위해 실행되는 메소드

예제 4-3 : 두 개의 생성자를 가진 Circle 클래스

다음 코드는 2개의 생성자를 가진 Circle 클래스이다. 실행 결과는 무엇인가?

```
public class Circle {
  int radius;
  String name;
                      생성자 이름은 클래스 이름과 동일
 public Circle() { // 매개 변수 없는 생성자
    radius = 1; name = ""; // radius의 초기값은 1
                                                               생성자는 리턴 타입 없음
  public Circle(int r, String n) { // 매개 변수를 가진 생성자 -
    radius = r; name = n;
  public double getArea() {
    return 3.14*radius*radius;
  public static void main(String[] args) {
    Circle pizza = new Circle(10, "자바피자"); // Circle 객체 생성, 반지름 10
    double area = pizza.getArea();
    System.out.println(pizza.name + "의 면적은 " + area);
    Circle donut = new Circle(); // Circle 객체 생성, 반지름 1
    donut.name = "도넛피자";
    area = donut.getArea();
    System.out.println(donut.name + "의 면적은 " + area);
                                                                          자바피자의 면적은 314.0
                                                                          도넛피자의 면적은 3.14
```

생성자의 특징

- □ 생성자의 특징
 - 생성자는 메소드
 - 생성자 이름은 클래스 이름과 반드시 동일
 - 생성자 여러 개작성 가능 (오버로딩)
 - □ 생성자는 new를 통해 객체를 생성할 때, 객체당 한 번 호출
 - □ 생성자는 리턴 타입을 지정할 수 없음
 - 생성자의 목적은 객체 초기화
 - 생성자는 객체가 생성될 때 반드시 호출됨.
 - 그러므로 하나 이상 선언되어야 함
 - 개발자가 생성자른 작성하지 않았으면 컩따일러가 자동으로 기본 생성자 삽입

예제 4-4: 생성자 선언 및 활용 연습

제목과 저자를 나타내는 title과 author 필드를 가진 Book 클래스를 작성하고, 생성자를 작성하여 필드를 초기화하라.

```
public class Book {
  String title;
  String author;
  public Book(String t) { // 생성자 ←
    title = t; author = "작자미상";
  public Book(String t, String a) { // 생성자 ◆
    title = t; author = a;
  public static void main(String [] args) {
    Book littlePrince = new Book("어린왕자", "생텍쥐페리");
    Book loveStory = new Book("춘향전");-
    System.out.println(littlePrince.title + " " + littlePrince.author);
    System.out.println(loveStory.title + " " + loveStory.author);
```

어린왕자 생텍쥐페리 춘향전 작자미상

기본 생성자

- □ 기본 생성자(default constructor)
 - □ 매개 변수 없고 아무 작업 없이 단순 리턴하는 생성자

이유

- □ 디폴트 생성자라고도 부름
- □ 클래스에 생성자가 하나도 선언되지 않은 경우, 컴파일 러에 의해 자동으로 삽입

```
public class Circle {
  int radius;
  void set(int r) { radius = r; }
  double getArea() { return 3.14*radius*radius; }

public static void main(String [] args){
    Circle pizza = new Circle();
    pizza.set(3);
  }
}
```

개발자가 작성한 코드 이 코드에는 생성자가 없지만 컴파일 오류가 생기지 않음 -

```
public class Circle {
    int radius;
    void set(int r) { radius = r; }
    double getArea() { return 3.14*radius*radius; }

    public Circle() {}

public Static void main(String [] args){
        Circle pizza = new Circle();
        pizza.set(3);
    }
}
```

──→ 컴파일러가 자동으로 기본 생성자 삽입

2

기본 생성자가 자동 생성되지 않는 경우

- □ 개발자가 클래스에 생성자가 하나라도 작성한 경우
 - □ 기본 생성자 자동 삽입되지 않음

```
public class Circle {
  int radius:
 void set(int r) { radius = r; }
                                                      컴파일러가 기본 생성자를 자동 생성하지 않음
  double getArea() { return 3.14*radius*radius; }
                                                        public Circle() { }
  public Circle(int r) {
    radius = r;
  public static void main(String [] args){
    Circle pizza = new Circle(10);
    System.out.println(pizza.getArea());
    Circle donut = new Circle(): -
                                                      컴파일 오류.
    System.out.println(donut.getArea());
                                                      해당하는 생성자가 없음!!!
```

this 레퍼런스

- this
 - □ 객체 자신에 대한 레퍼런스
 - 컴파일러에 의해 자동 관리, 개발자는 사용하기만 하면 됨
 - this.멤버 형태로 멤버 사용

```
public class Circle {
  int radius;

public Circle() { radius = 1; }
  public Circle(int r) { radius = r; }
  double getArea() {
    return 3.14*radius*radius;
  }
  ...
}
```

```
public class Circle {
  int radius;

public Circle() { this.radius = 1; }
  public Circle(int radius) {
    this.radius = radius;
  }
  double getArea() {
    return 3.14*this.radius*this.radius;
  }
  ...
}
```

this를 사용하여 수정한 경우

this가 필요한 경우

- this의 필요성
 - 객체의 멤버 변수와 메소드 변수의 이름이 같은 경우
 - 다른 메소드 호출 시 객체 자신의 레퍼런스를 전달할 때
 - 메소드가 객체 자신의 레퍼런스를 반환할 때

객체 속에서의 this

```
public class Circle {
                                                                   radius
                                                  ob1
  int radius;
  public Circle(int radius) {
                                                                   void set(int radius) {
     this.radius = radius;
                                                                      this.radius = radius;
  public void set(int radius) {
     this.radius = radius;
                                                                   radius
                                                  ob2
  public static void main(String[] args) {
                                                                   void set(int radius) {
     Circle ob1 = new Circle(1);
                                                                      this.radius = radius;
     Circle ob2 = new Circle(2);
     Circle ob3 = new Circle(3);
     ob1.set(4); -----
                                                  ob3
                                                                   radius
     ob2.set(5);-----
     ob3.set(6);-----
                                                                   void set(int radius) {
                                                                      this.radius = radius;/
```

this()로 다른 생성자 호출

- this()
 - □ 클래스 내의 다른 생성자 호출
 - 생성자 내에서만 사용 가능
 - □ 반드시 생성자 코드의 제일 처음에 수행

this() 사용 실패 예

```
public Book() {
   System.out.println("생성자가 호출되었음");
   this(null, null, 0); // 생성자의 첫 번째 문장이 아니기 때문에 컴파일 오류
}
```

title = "춘향전" author = "작자미상"

예제 4-5 this()로 다른 생성자 호출

예제 4-4에서 작성한 Book 클래스의 생성자를 this()를 이용하여 수정하라.

```
public class Book {
  String title;
  String author;
  void show() { System.out.println(title + " " + author); }
  public Book() {
    this("", "");
     System.out.println("생성자 호출됨");
  public Book(String title) {
    this(title, "작자미상");
public Book(String title, String author) {
    this.title = title; this.author = author;
  public static void main(String [] args) {
     Book littlePrince = new Book("어린왕자", "생텍쥐페리");
     Book loveStory = new Book("춘향전");
     Book emptyBook = new Book();
     loveStory.show();
```

생성자 호출됨 춘향전 작자미상 * 객체의 치환은 객체가 복사되는 것이 아니며 레퍼런스가 복사된다.

```
public class Circle {
  int radius;
  public Circle(int radius) { this.radius = radius; }
  public void set(int radius) { this.radius = radius; }
  public static void main(String [] args) {
     Circle ob1 = new Circle(1);
     Circle ob2 = new Circle(2);
     Circle s;
     s = ob2;
     ob1 = ob2; // 객체 치환
     System.out.println("ob1.radius=" + ob1.radius);
     System.out.println("ob2.radius=" + ob2.radius);
```

```
ob1

radius 1
...

void set(int radius) {this.radius = radius;}
...

void set(int radius) {this.radius = radius;}
...

void set(int radius) {this.radius = radius;}
...
```

```
ob1.radius=2
ob2.radius=2
```

□ 객체 배열 생성 및 사용

```
Circle 배열에 대한 레퍼런스 변수 c 선언

c = new Circle[5]; 레퍼런스 배열 생성

for(int i=0; i<c.length; i++) // c.length는 배열 c의 크기로서 5

c[i] = new Circle(i); 배열의 각 원소 객체 생성
```

```
for(int i=0; i<c.length; i++) // 배열에 있는 모든 Circle 객체의 면적 출력
System.out.print((int)(c[i].getArea()) + " ");
배열의 원소 객체 사용
```

객체 배열 선언과 생성 과정

반지름이 0~4인 Circle 객체 5개를 가지는 배열을 생성하고, 배열에 있는 모든 Circle 객체의 면적을 출력하라.

```
class Circle {
  int radius;
  public Circle(int radius) {
    this.radius = radius;
  public double getArea() {
    return 3.14*radius*radius;
public class CircleArray {
  public static void main(String[] args) {
    Circle [] c;
    c = new Circle[5];
    for(int i=0; i < c.length; i++)
       c[i] = new Circle(i);
    for(int i=0; i<c.length; i++)
       System.out.print((int)(c[i].getArea()) + " ");
```

예제 4-4의 Book 클래스를 활용하여 2개짜리 Book 객체 배열을 만들고, 사용자로부터 책의 제목과 저자를 입력 받아 배열을 완성하라.

```
import java.util.Scanner;
class Book {
  String title, author;
  public Book(String title, String author) {
     this.title = title;
     this.author = author;
public class BookArray {
  public static void main(String[] args) {
     Book [] book = new Book[2]; // Book 배열 선언
     Scanner scanner = new Scanner(System.in);
     for(int i=0; i<book.length; i++) {
       System.out.print("제목>>");
       String title = scanner.nextLine();
       System.out.print("저자>>");
       String author = scanner.nextLine();
       book[i] = new Book(title, author); // 배열 원소 객체 생성
     for(int i=0; i<book.length; i++)
       System.out.print("(" + book[i].title + ", " + book[i].author + ")");
     scanner.close();
```

```
제목>>사랑의 기술
저자>>에리히 프롬
제목>>시간의 역사
저자>>스티븐 호킹
(사랑의 기술, 에리히 프롬)(시간의 역사, 스티븐 호킹)
```

- □ 메소드
 - □ 클래스의 멤버 함수, C/C++의 함수와 동일
 - □ 자바의 모든 메소드는 반드시 클래스 안에 있어야 함(캡슐화 원칙)
- 🗖 메소드 구성 형식
 - 접근 지정자
 - public. private, protected, 디폴트(접근 지정자 생략된 경우)
 - □ 리턴 타입
 - 메소드가 반환하는 값의 데이터 타입

- □ 자바의 인자 전달 방식
 - □ 경우 1. 기본 타입의 값 전달
 - 값이 복사되어 전달
 - 메소드의 매개변수가 변경되어도 호출한 실인자 값은 변경되지 않음
 - □ 경우 2. 객체 혹은 배열 전달
 - 객체나 배열의 레퍼런스만 전달
 - 객체 혹은 배열이 통째로 복사되어 전달되는 것이 아님
 - 메소드의 매개변수와 호출한 실인자 객체나 배열 공유

인자 전달 - 기본 타입의 값이 전달되는 경우

- 매개변수가 byte, int, double 등 기본 타입의 값일 때
 - 호출자가 건네는 값이 매개변수에 복사되어 전달. 실인자 값은 변경되지 않음

```
public class ValuePassing {
                                                                      static void increase(int m) {
                  public static void main(String args[]) {
                                                                           m = m + 1;
                                                             호출
                     int n = 10;
                     increase(n);
▶ 실행 결과
                     System.out.println(n);
                 main() 실행 시작
                 int n = 10;
                                              10
                                          n
                                                                                    increase(int m) 실행 시작
                 increase(n);
                                              10
                                                           값 복사
                                                                         10
                                           n
                                                                               m
                                              10
                                                                          11
                                                                                    m = m + 1;
                                           n
                                                                                    increase(int m) 종료
                 System.out.println(n);
                                              10
                                          n
```

10

인자 전달 - 객체가 전달되는 경우

- □ 객체의 레퍼런스만 전달
 - 매개 변수가 실인자 객체 공유

```
public class ReferencePassing {
    public static void main (String args[]) {
        Circle pizza = new Circle(10);

        increase(pizza);
    }

    System.out.println(pizza.radius);
}
```

main() 실행 시작 pizza = new Circle(10); pizza radius 레퍼런스 복사 increase(Circle m) 실행 시작 increase(pizza); pizza radius 10 radius m.radius++; pizza increase(Circle m) 종료 System.out.println(pizza.radius); radius 11 pizza

실행 결과

11

인자 전달 - 배열이 전달되는 경우

- □ 배열 레퍼런스만 매개 변수에 전달
 - 배열 통째로 전달되지 않음
 - 객체가 전달되는 경우와 동일
 - 매개변수가 실인자의 배열을 공유

char[] 배열을 전달받아 출력하는 printCharArray() 메소드와 배열 속의 공백(' ') 문자를 ','로 대치하는 replaceSpace() 메소드를 작성하라.

```
public class ArrayParameterEx {
  static void replaceSpace(char a[]) {
    for (int i = 0; i < a.length; i++)
       if (a[i] == ' ')
          a[i] = ',';
  static void printCharArray(char a[]) {
    for (int i = 0; i < a.length; i++)
       System.out.print(a[i]);
     System.out.println();
  public static void main (String args[]) {
     char c[] = {'T','h','i','s',' ','i','s',' ','a',' ','p','e','n','c','i','l','.'};
     printCharArray(c);
     replaceSpace(c);
     printCharArray(c);
```

```
replaceSpace(char a[])

a for (int i = 0; i < a.length; i++)
if (a[i] == ' ')
a[i] = ',';

This is is a pencill.

c main()
```

This is a pencil. This, is, a, pencil.