微分方程数值解第三周第一次作业

作业:

$$\begin{cases} -u'(x) + xu(x) = (x+1)(sinx + cosx) &, 0 \le x \le \pi \\ u(0) = 1, u(\pi) = -1 \end{cases}$$

该问题的精确解为 u(x) = sinx + cosx.

定义误差为 $E_{\infty}(h) = \max_{0 \le i \le N} |u(x_i - u_i)|$.

要求用紧差分格式求上述问题的数值解求出不同步长下误差的变化,总结在步长变化时有什么规律,并通过数值例子比较中心差分格式和紧差分格式数值解的误差。

解:本题的差分格式为

$$(-\frac{1}{h^2} + \frac{1}{12}x_{i-1})u_{i-1} + (\frac{2}{h^2} + \frac{5}{6}x_i)u_i + (-\frac{1}{h^2} + \frac{1}{12}x_{i+1})u_{i+1} = \frac{1}{12}(f_{i-1} + 10f_i + f_{i+1})$$

$$\sharp +, \quad 1 \le i \le N - 1, f_i = (x_i + 1)(\sin(x_i) + \cos(x_i)), u_0 = 1, u_N = -1.$$

系数矩阵为 Au = f

$$A = \begin{bmatrix} \frac{2}{h^2} + \frac{5}{6}x_1 & -\frac{1}{h^2} + \frac{1}{12}x_2 \\ -\frac{1}{h^2} + \frac{1}{12}x_1 & \frac{2}{h^2} + \frac{5}{6}x_2 & -\frac{1}{h^2} + \frac{1}{12}x_3 \\ & \ddots & & \ddots & \\ & & -\frac{1}{h^2} + \frac{1}{12}x_{N-2} & \frac{2}{h^2} + \frac{5}{6}x_{N-1} \end{bmatrix}$$

为三对角矩阵。

$$f = \left[\frac{1}{12}(f_0 + 10f_1 + f_2) + \frac{1}{h^2}, \frac{1}{12}(f_1 + 10f_2 + f_3), \cdots, \frac{1}{12}(f_{N-2} + 10f_{N-1} + f_N) + \frac{\pi}{12} - \frac{1}{h^2}\right]^T$$

$$u = [u_1, u_2, \cdots, u_{N-1}]^T$$

解题程序运行于 Matlab 2018a.

一、数值解与精确解对比

步长为 pi/10 时的数值解与精确解对比图见图1, 误差很小,基本吻合。部分节点处紧差分格式的数值解和精确解见表1。

表 1 部分节点处紧差分格式的数值解和精确解

h	x			
	pi/5	2pi/5	3pi/5	4pi/5
pi/10	1.39682105	1.26009409	0.64205189	-0.22122884
pi/20	1.39680342	1.26007479	0.64204029	-0.22123156
pi/40	1.39680232	1.26007359	0.64203957	-0.22123173
pi/80	1.39680225	1.26007352	0.64203952	-0.22123174
pi/160	1.39680225	1.26007351	0.64203952	-0.22123174
精确解	1.39680225	1.26007351	0.64203952	-0.221231742

部分节点处中心差分格式的数值解和精确解见表2。 由两表可知,紧差分格式比中心差分格式的数值解更加接近于精确解。

二、不同步长下的误差

紧差分格式下取不同步长时数值解的最大误差见表3。 中心差分格式下取不同步长时数值解的最大误差见表4。

表 2 部分节点处中心差分格式的数值解和精确解

h	X			
	pi/5	2pi/5	3pi/5	4pi/5
pi/10	1.40060902	1.26422701	0.64453215	-0.22064412
pi/20	1.39775187	1.26111203	0.64266351	-0.22108522
pi/40	1.39703952	1.26033314	0.64219557	-0.22119514
pi/80	1.39686156	1.26013842	0.64207854	-0.22122259
pi/160	1.39681707	1.26008974	0.64204928	-0.22122945
精确解	1.39680225	1.26007351	0.64203952	-0.221231742

表 3 紧差分格式下取不同步长时数值解的最大误差

h	$E_{\infty}(h)$	$E_{\infty}(2h)/E_{\infty}(h)$
pi/10	2.15E-05	*
pi/20	1.34E-06	16.04547
pi/40	8.39E-08	15.95969
pi/80	5.24E-09	16.00292
pi/160	3.28E-10	15.99896

可知紧差分格式的数值解的最大误差小于中心差分格式,步长变为原来的 $\frac{1}{2}$,紧差分格式的最大误差为原来的 $\frac{1}{16}$,中心差分格式的最大误差为原来的 $\frac{1}{4}$,这是因为紧差分格式的截断误差为 $O(h^4)$,中心差分格式的截断误差为 $O(h^2)$ 。

绘制不同步长下的紧差分格式数值解的误差见图2,步长越小,误差越小,且同一步长的误差都随着 \mathbf{x} 的增大先增大后减小,在 $\mathbf{x}=1$ 左右达到最大。

表 4 中心差分格式下取不同步长时数值解的最大误差

h	$E_{\infty}(h)$	$E_{\infty}(2h)/E_{\infty}(h)$
pi/10	4.3432E-03	*
pi/20	1.0848E-03	4.0036
pi/40	2.7201E-04	3.9881
pi/80	6.8000E-05	4.0002
pi/160	1.7002E-05	3.9995

图 2 紧差分格式不同步长下的误差