Course 06: UKF

Sunday, November 3, 2019 10:16 PM

Robot Mapping

Unscented Kalman Filter

Cyrill Stachniss

KF, EKF and UKF

- Kalman filter requires linear models
- EKF linearizes via Taylor expansion

Is there a better way to linearize?

Unscented Transform

Unscented Kalman Filter (UKF)

Taylor Approximation (EKF)

Linearization of the non-linear function through Taylor expansion

3

Unscented Transform

Compute a set of (so-called) sigma points

Unscented Transform

Transform each sigma point through the non-linear function

5

Unscented Transform

Compute Gaussian from the transformed and weighted sigma points

6

Unscented Transform Overview

- Compute a set of sigma points
- Each sigma points has a weight
- Transform the point through the nonlinear function
- Compute a Gaussian from weighted points

Advantage]
 Avoids to linearize around the mean as Taylor expansion (and EKF) does

Sigma Points

- How to choose the sigma points?
- How to set the weights?

8

An trivial practice:

choose Identity, we should get EXACTLY

SAME DISTRIBUTION!

Sigma Points Properties

- How to choose the sigma points?
- How to set the weights?
- Select $\mathcal{X}^{[i]}, w^{[i]}$ so that:

$$\sum_{i} w^{[i]} = 1$$

$$\mu = \sum_{i} w^{[i]} \mathcal{X}^{[i]}$$

$$\Sigma = \sum_{i}^{i} w^{[i]} (\mathcal{X}^{[i]} - \mu) (\mathcal{X}^{[i]} - \mu)^{T}$$

There is no unique solution for $\mathcal{X}^{[i]}, w^{[i]}$

Sigma Points

- Choosing the signia points

$$\mathcal{X}^{[0]} = \mu$$

First sigma point is the mean

Sigma Points

Choosing the sigma points

$$\mathcal{X}^{[0]} = \mu$$

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda)} \, \Sigma\right)_i \quad \text{for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda)} \, \Sigma\right)_{i-n} \quad \text{for } i = n+1, \dots, 2n$$

$$\text{matrix square root}$$

$$\text{dimensionality} \quad \text{scaling parameter}$$

$$\text{States as how far}$$

$$\text{States as how$$

Matrix Square Root

- Defined as S with $\Sigma = SS$ Pefinition of matrix square root
- Computed via diagonalization

$$\Sigma = VDV^{-1}$$

$$= V\begin{pmatrix} d_{11} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & d_{nn} \end{pmatrix} V^{-1}$$

$$= (\sqrt{d_{11}} & \dots & 0) / (\sqrt{d_{11}$$

$$= V \begin{pmatrix} \mathbf{v}^{\omega_{11}} & \cdots & \mathbf{0} \\ 0 & \ddots & 0 \\ 0 & \cdots & \sqrt{d_{nn}} \end{pmatrix} \begin{pmatrix} \mathbf{v}^{\omega_{11}} & \cdots & \mathbf{0} \\ 0 & \ddots & 0 \\ 0 & \cdots & \sqrt{d_{nn}} \end{pmatrix} V^{-1}$$

Matrix Square Root

• Thus, we can define $S = \sqrt{D^2 \sqrt{1000}}$

$$S = V \left(\begin{array}{ccc} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{array} \right) V^{-1}$$

so that

$$SS = (VD^{1/2}V^{-1})(VD^{1/2}V^{-1}) = VDV^{-1} = \Sigma$$

13

Cholesky Matrix Square Root

 Alternative definition of the matrix square root

$$L$$
 with $\Sigma = LL^T$

- Result of the Cholesky decomposition
- Numerically stable solution
- Often used in UKF implementations more pratically easier to
- L and Σ have the same Eigenvectors

Sigma Points and Eigenvectors

• Sigma point can but do not have to lie on the main axes of Σ

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda) \Sigma}\right)_i \text{ for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda) \Sigma}\right)_{i-n} \text{ for } i = n+1, \dots, 2n$$

15

Sigma Points Example

16

Sigma Point Weights

Weight sigma points

for computing the mean

parameters

11/7/2019

$$w_m^{[0]} = \frac{\cdots}{n+\lambda}$$

$$w_c^{[0]} = w_m^{[0]} + (1-\alpha^2+\beta)$$

$$w_m^{[i]} = w_c^{[i]} = \frac{1}{2(n+\lambda)} \quad \text{for } i=1,\ldots,2n$$
for computing the covariance

17

Recover the Gaussian

 Compute Gaussian from weighted and transformed points

$$\mu' = \sum_{i=0}^{2n} w_m^{[i]} g(\mathcal{X}^{[i]})$$

$$\Sigma' = \sum_{i=0}^{2n} w_c^{[i]} (g(\mathcal{X}^{[i]}) - \mu') (g(\mathcal{X}^{[i]}) - \mu')^T$$

18

Example

Examples

$$g((x,y)^T) = \begin{pmatrix} x+1 \\ y+1 \end{pmatrix}^T$$

$$g((x,y)^T) = \begin{pmatrix} x+1 \\ y+1 \end{pmatrix}^T \qquad g((x,y)^T) = \begin{pmatrix} 1+x+\sin(2x)+\cos(y) \\ 2+0.2y \end{pmatrix}^T$$

20

Unscented Transform Summary

Sigma points

$$\mathcal{X}^{[0]} = \mu$$

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda)\Sigma}\right)_i \quad \text{for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda)\Sigma}\right)_{i-n} \quad \text{for } i = n+1, \dots, 2n$$

Weights

$$w_m^{[0]} = \frac{\lambda}{n+\lambda}$$

$$w_c^{[0]} = w_m^{[0]} + (1-\alpha^2 + \beta)$$

$$w_m^{[i]} = w_c^{[i]} = \frac{1}{2(n+\lambda)} \text{ for } i = 1, \dots, 2n$$

21

UT Parameters

Free parameters as there is no unique

solution

Scaled Unscented Transform suggests

 ≥ 0 κ

Influence how far the sigma points are $\alpha \in (0,1]$ away from the mean

$$\lambda = \alpha^2(n+\kappa) - n$$

$$\beta = 2$$

Optimal choice for Gaussians

by other situations, 22 depends on the special case.

Examples

23

Examples

11/7/2019

EKF Algorithm

- Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- $\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$
- 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ 5: $\mu_t = \bar{\mu}_t + K_t (z_t h(\bar{\mu}_t))$
- 6: $\Sigma_t = (I K_t H_t) \bar{\Sigma}_t$
- 7:return μ_t, Σ_t

25

EKF to UKF - Prediction

Unscented

- Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- $\begin{array}{ll} 2: & \bar{\mu}_t = & \text{replace this by sigma point} \\ 3: & \bar{\Sigma}_t = & \text{propagation of the motion} \end{array}$
- 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
- $\mu_t = \bar{\mu}_t + K_t(z_t h(\bar{\mu}_t))$
- 6: $\Sigma_t = (I K_t H_t) \bar{\Sigma}_t$
- 7:return μ_t, Σ_t

(1) get sigma points: X, cz, apply nonlinearfune;

UKF Algorithm - Prediction

1: Unscented_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2:
$$\mathcal{X}_{t-1} = (\mu_{t-1} \quad \mu_{t-1} + \sqrt{(n+\lambda)\Sigma_{t-1}} \quad \mu_{t-1} - \sqrt{(n+\lambda)\Sigma_{t-1}})$$

3:
$$\bar{\mathcal{X}}_t^* = g(u_t, \mathcal{X}_{t-1})$$

4:
$$\bar{\mu}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{X}}_t^{*[i]}$$

5:
$$\bar{\Sigma}_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t) (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t)^T + R_t$$

27

EKF to UKF - Correction

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

 $\begin{array}{ll} 2: & \bar{\mu}_t = & \text{replace this by sigma point} \\ 3: & \bar{\Sigma}_t = & \text{propagation of the motion} \end{array}$

use sigma point propagation for the expected observation and Kalman gain

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$$

6:
$$\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$$

7: return μ_t, Σ_t

UKF Algorithm - Correction (1)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \sqrt{(n+\lambda)\bar{\Sigma}_t} \quad \bar{\mu}_t - \sqrt{(n+\lambda)\bar{\Sigma}_t})$$

7:
$$\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$$

8:
$$\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$$

9:
$$S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{Z}_{t}^{[i]} - \hat{z}_{t}) (\bar{Z}_{t}^{[i]} - \hat{z}_{t})^{T} + Q_{t}$$
10:
$$\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{X}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{Z}_{t}^{[i]} - \hat{z}_{t})^{T}$$
11:
$$K_{t} = \bar{\Sigma}_{t}^{x,z} S_{t}^{-1} \longrightarrow \text{formula woks whe different than EFF.}$$
(But i^{+} 's still the same thing).

29

UKF Algorithm - Correction (1)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \sqrt{(n+\lambda)\bar{\Sigma}_t} \quad \bar{\mu}_t - \sqrt{(n+\lambda)\bar{\Sigma}_t})$$
7: $\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$
8: $\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$
9: $S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t$
10: $\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$
11: $K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$

$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$
(from EKF)

30

UKF Algorithm - Correction (2)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \sqrt{(n+\lambda)\bar{\Sigma}_t} \quad \bar{\mu}_t - \sqrt{(n+\lambda)\bar{\Sigma}_t})$$
7: $\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$
8: $\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$
9: $S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t$
10: $\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$
11: $K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$
12: $\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$
13: $\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$
14: $return \ \mu_t, \Sigma_t$

UKF Algorithm - Correction (2)

```
\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \sqrt{(n+\lambda)\bar{\Sigma}_t} \quad \bar{\mu}_t - \sqrt{(n+\lambda)\bar{\Sigma}_t})
8: \hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}
        S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t
           \bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T
11: K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}
12: \mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)
13: \Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T 
14: return \mu_t, \Sigma_t
                                                                                                                           (see next slide)
```

32

From EKF to UKF – Computing the Covariance

$$\Sigma_{t} = (I - K_{t}H_{t})\bar{\Sigma}_{t}$$

$$= \bar{\Sigma}_{t} - K_{t}\underline{H_{t}}\bar{\Sigma}_{t}$$

$$= \bar{\Sigma}_{t} - K_{t}(\bar{\Sigma}^{x,z})^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}(\bar{\Sigma}^{x,z}S_{t}^{-1}S_{t})^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}(\bar{K}_{t}S_{t})^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}S_{t}^{T}K_{t}^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}S_{t}K_{t}^{T}$$

33

UKF vs. EKF

UKF vs. EKF (Small Covariance)

35

UKF vs. EKF - Banana Shape

UKF vs. EKF

UT/UKF Summary

- Unscented transforms as an alternative to linearization
- UT is a better approximation than Taylor expansion (especially @ highly nonlinear functions)
- UT uses sigma point propagation
- Free parameters in UT
- UKF uses the UT in the prediction and correction step

UKF vs. EKF

- Same results as EKF for linear models
- Better approximation than EKF for non-linear models
- Differences often "somewhat small"
- No Jacobians needed for the UKF
- Same complexity class
 - Slightly slower than the EKF
- Still restricted to Gaussian distributions just better distribution
 them EKF of Taylor Expension (@1st order)39

Literature

Unscented Transform and UKF

- Thrun et al.: "Probabilistic Robotics", Chapter 3.4
- "A New Extension of the Kalman Filter to Nonlinear Systems" by Julier and Uhlmann, 1995
- "Dynamische Zustandsschätzung" by Fränken, 2006, pages 31-34