

2017 中国互联网安全大会 China Internet Security Conference

万均皆变 人是安全的尺度

Of All Things Human Is The Measure

IT/OT融合的安全挑战与应对

工业控制系统安全国家联合实验室主任 360工业安全业务线 负责人

目录

工业互联网 IT/OT 融合的驱动力

工业互联网 IT/OT的融合趋势是什么?

IT/OT融合后的安全挑战是什么?

IT/OT融合后的安全如何应对?

360在工业互联网IT/OT协同防护的安全实践

工业互联网 IT/OT 融合的驱动力?

效率 盈利

我国工业互联网总体架构

三大智能化闭环:智能生产控制、智能运营决策优化、消费需求与生产制造精确对接

IT/OT融合的驱动力

有效的管理和保护工作的"物",当应用他们产生的传感器数据进行分析和盈利时,

需要前所未有IT和OT组织合作获得竞争优势

- 简化操作获得更大的生产率
 Greater productivity with streamlined operations
- 提高安全性与预测性维护以避免危险的环境中 Improved safety with predictive maintenance to avoid dangerous environments
- 提高经营决策精度和速度

Increased accuracy and speed in operational decisions

• 减少所需人力成本

Cost savings with lesser manpower required

• 提高客户需求的响应速度和服务能力

Increasing responsiveness and service capabilities of customer

我国工业互联网的特点:两大视角

2大视角:

一工业企业:由内及外,渐进、改良、升级,生产系统的智能化

一互联网企业:由外及内,变革、颠覆、重构,商业系统的智能化

工业互联网 IT/OT 融合的方向?

效率 盈利

IT/OT融合的发展趋势

到2020年底,物联网的全球经济影响将达到2兆美元,其中有超过210亿个联网的"物联网"

- IT和OT分离管理的情况将会打破
- 基于以太网的尽力交付模型将不再适用
- 开始考虑时间敏感网络(TSN)自底向上打通
- 数字孪生

IT/OT 融合带来的安全挑战?

效率 盈利

IT / OT安全收敛,对齐,整合

Engineer

可靠性Reliability

安全Safety

物理变化的数据 Data for Physical Changes

Security安保 Privacy隐私

商业决策的数据Data for Business
Decisions

http://www.istockphoto.com/photo/two-engineers-discussing-a-building-project-gm483851688-70891017?st=2ffbd09

IT/OT融合的安全挑战

IT/OT融合后带来的安全挑战

- 工业互联网增加更多端点,也带来了更大的攻击面
- IIoT growth in complexity increases the "attack surface" in industrial settings, such as ICS, SCADA, manufacturing, smart grids, oil and gas, utilities, and transportation.
- 与IT相比, IIoT系统安全问题, 可以造成物理伤害, 生命和社会损失
- IIoT systems have different attack vectors and threats associated with them, as compared with their IT counterparts, which can cause physical harm, loss of life and major societal disruption.
- 安全态势和资产<mark>可视性不足</mark>,无效的安全对策及合规性和互操作性减缓了在 IOT中的使用安全措施
- Lack of security posture and asset visibility, ineffective security countermeasures, and compliance
 and interoperability issues are key concerns slowing security adoption in IIoT.
- 许多旧的工业协议都是专有的,未考虑到现代威胁和安全架构,带来互操作性和安全挑战
- Many older industrial protocols are proprietary and are not designed with modern-day threats and secure architectures in mind, creating both interoperability and security challenges

IT/OT系统主要差异

分类	IT系统	OT系统
可用性需求	可重启、热切换	高可用(不能重启)、计划性中断、重要系统冗余
管理需求	保密性、完整性、有效性、隐私	人身安全、有效性、完整性、保密性、隐私
体系安全焦点	IT资产及信息、中央服务器更重要	边缘设备与中央设备一样重要
未预期的后果	安全解决方案围绕典型的IT系统进行设计	安全工具必须先测试以确保不会影响ICS的正常运作
时间紧迫的交互	交互时效可有弹性 可实施严格限制的访问控制	实时性、紧急响应 访问控制不能妨碍必要人机交互
系统操作	典型的操作系统、自动部署、持续升级	专有的操作系统,无安全功能、软件变更须验证
资源限制	近3-5年主流硬件,有性能冗余	按需设计,可能10-20年前设备,刚好够用
通信	标准通信协议、有线、无线	专有标准、异构、难互操作

IT/OT融合后带来的进一步挑战

- OT大量采用IT设备和技术, IT安全风险随之而来,并将成为主要威胁
- IT和OT安全常常由两个不同团队管理,带来管理效率和有效性的挑战

案例1:KWC水厂SCADA受到攻击

IT/OT状态

- IBM AS/400小型机系统成为SCADA平台
- 系统通直接连接到多个网络中,包括:地区税务(向外)、流量控制应用程序、几百个PLC、安置客户的相关计费信息等

攻击发现

- 为期60天的评估期间,专家们发现了四个可疑的对外连接
- 可以被用来窃取其中的250万条记录,包括客户数据和付款信息
- 通过访问AS/400系统,攻击可完全控制 水流和用于净化水的化学物质

案例2:乌克兰停电 (Industroyer/Crashoverride)

攻击过程

- 2016年12月17日影响了乌克兰的变电站
- 黑客使用Industroyer无限循环打开关闭的断路器,使断路器持续打开、关闭,这可能会触发保护,并导致变电站断电,并组织HMI上发出的关闭命令
- 攻击发现
- Industroyer是模块化恶意程序
- 利用的四种工业协议: IEC 60870-5-101/5-104、IEC 61850、OPC DA
- 还可用于对美国的基础设施硬件发动攻势
- 清理器模块擦除关键性注册表项并覆盖相 关文件,导致系统无法启动提升恢复难度

案例3:一些公网上工业应用站点

IT-OT融合后的安全如何应对?

效率 盈利

滑动标尺模型(Sliding Scale)

依赖

架构安全

强身健体

ARCHITECTURE

在系统规划、建设、运维的过程 中充分考虑安全 防护的建设

被动防御

纵深防御

PASSIVE DEFENSE

在无人员介入的情况下,附加在架构安全之上,可提供持续的威胁防护及威胁洞察力的系统

积极防御

检测响应

ACTIVE DEFENSE

强调人员的参与,对所防御范围内的威胁进行持续的监控,学习经验和应用知识的过程

威胁情报

掌握敌情

INTELLIGENCE

收集数据,将数据转化为有价值的信息,并将信息生产加工

进攻反制

先发制人

OFFENSE

对抗攻击者的法 律反制措施、自 卫反击行动

IT/OT—体化架构安全

规划和建设阶段,建立与组织机构实际需求相适应的架构安全体系,可以使 其他类别的措施变得更有效且成本更低

- IT和OT功能安全与信息安全一体化规划
- 开发结构化的补丁管理和验证程序
- 使用网络分段的方法隔离关键系统
- 进行管理认证和访问控制
- 实施主机<mark>加固和白名单</mark>,只允许部分软 件运行
- 遵循最佳实践的远程访问
- 选择合适的供应商和组件

业务应用软件的供应链安全

缺陷检测

检测编写的代码是否 存在常见的安全缺陷

合规检测

检测代码的编写是否 遵循了安全编程标准

溯源检测

检测开发中是否使用 了不安全的第三方组 件

最大的风险来自这里

供应链的选择

- · 规划供应链暴露情况 Map the chain to understand exposures
- · 识别风险的切入点 Identify risk entry points
- · 列举的风险 Address the risks
- · 协调与供应商和合作伙伴的合作(Coordinate and collaborate with suppliers and partners)

滑动标尺模型(Sliding Scale)

依赖

强身健体

ARCHITECTURE

在系统规划、建设、运维的过程 中充分考虑安全 防护的建设

被动防御

纵深防御

PASSIVE DEFENSE

在无人员介入的情况下,附加在架构安全之上,可提供持续的威胁防护及威胁洞察力的系统

积极防御

检测响应

ACTIVE DEFENSE

强调人员的参与,对威胁进行持续的监控,学习经验和应用知识的过程

威胁情报

掌握敌情

INTELLIGENCE

收集数据,将数据转化为有价值的信息,并将信息生产加工

进攻反制

先发制人

OFFENSE

对抗攻击者的法 律反制措施、自 卫反击行动

纵深防御:"零信任网络"下的"巷战塔防"

- 1. 终端防御(杀毒、审计、白名单等)
- 2. 纵深防御
 - 安全分区、网络专用
 - 横向隔离、纵向认证
 - 审计、蜜罐等
- 3. 边界防御
 - 工业防火墙、网闸等
- 4. 安全远程访问(VPN等)
- 5. 漏洞和补丁管理
 - 漏洞扫描
 - 部分补丁

滑动标尺模型(Sliding Scale)

依赖

威胁情报的生产

- 程度如何?(指标)
- 谁攻击的? (源头)
- 现象如何?(表象)
- 目标是谁? (目标)
- 后果怎样?(影响)
- 为啥攻击? (动机)
- 如何补救?(方案)
- 手段如何? (工具)

恶意样本行为库

- · 总日志18.9万亿条
- 每天新增380亿

域名解析库

- 90亿DNS解析记录
- 13年whois信息

存活网址库

- 每天处理100亿条
- 钓鱼数网站1.4亿/天

中文漏洞库

- 总漏洞超过47万
- 每天新增500个

恶意代码样本库

- · 总样本145亿+
- 每天新增900万

安全大数据

第三方数据源

100+

机器学习大数据分析

- 服务器超20万台
- GPU并行计算平台
- 1TB数据/秒处理能力

云端重沙箱运行

安全专家分析

威胁情报

滑动标尺模型(Sliding Scale)

依 赖

ARCHITECTURE

在系统规划、建 设、运维的过程 中充分考虑安全 防护的建设

在无人员介入的 情况下,附加在 架构安全之上 可提供持续的威 胁防护及威胁洞 察力的系统

积极防御

检测响应

ACTIVE DEFENSE

强调人员的参与 对所防御范围内 的威胁进行持续 的监控,学习经 验和应用知识的 过程

威胁情报

收集数据,将数 据转化为有价值 的信息,并将信 息生产加工

进攻反制

OFFENSE

对抗攻击者的法 律反制措施、自 卫反击行动

工业互联网自适应防护架构(PC4R)

信息感知 (Perception)

人在回路的回溯、决策、部署、优化、响应,实现 安全防护管理与控制(Management & Control)

响应/决策 (Response)

PC4R

认知预测 (Cognition) 数据汇集 (Connection

感知工业现场(压力、摩擦、振动、温度、 电流等)物理量数字化、资产

CNC/PLC、DNC、SCADA、MES、ERP工业数据跨层汇集建立(安全数据仓库)

转化分析 (Conversion)

网络融合 (Cyber) 人在回路对规律、异常、目标、态势、背景 等完成认知,发现看不见威胁

丁读

打通IT & OT 人在回路、数据驱动

机理、环境、群体、操作、威胁情报有机结 合内容化(Content)和情景化(Context)

IT/OT安全问题的管理应对

管理总体思路

- 1. 建立IT和OT统一的安全团队
- 2. 规划lloT架构,进行lloT资产清查
- 3. 使用并维护准确和良好的记录库,用于进行风险分析
- 4. 集中化跟踪用户配置和资产信息、建立所有工业控制系统的资产和配置数据库
- 5. 采购过程对供应商提安全需求
- 6. 通过安全运营中心进行管理,实现自动化和可扩展,减少人员需求
- 7. 采购一个支持异构系统、支持多供应商的网络安全工具
- 8. 利用深度包检测,监测协议和控制系统漏洞

360进行的安全实践

效率 盈利

防御技术路线:建立企业工业安全运营中心

工业安全运营中心(IISOC)

防御技术路线:构建工控系统安全白环境

目标

基于大数据,构筑工业互联网系统"安全白环境"整体防护体系

- 持续监控收集,实时探测,云端判断、取证、溯源、修复;
- 被动解决方案,不影响工控系统的"可用性"和"稳定性"
- 工控协议深度解析技术,具备高安全性,低时延影响;

收集数据

內建白名单

云端+本地,获得"可信网络白环境"和"工业互联网软件白名单"

可信任的设备才能接入控制网络 可信任的信息才能在网络上传输 可信任的软件才允许被执行

安全 技术

防御技术路线:多级安全服务体系

目标

协同防御:构建工业互联网企业安全共同体

工业互联网安全威胁情报中心

全国工业互联网安全监测与响应中心

互联网 安全中心

区域/行业安全监测与响应中心 体系建 建 设 理 专 家 员 安全运维 安全响应 服 培 城 市 务 训 区域 工业云 区域 本 防护 云监测 云防护 地 情报/服务 情报/服务 情报 /服务 工业互联网企 工业互联网企 工业互联网企 业1(IISOC) 业n(IISOC) 业2(IISOC)

安全 服务

具体案例1:永恒之蓝处理

专项态势感知——永恒之蓝传播态势监控:中国

数据驱动工业安全

谢谢

