Practice Homework Solution for Module 1

- 1. Unsigned base conversions (LO 1-1).
 - (a) (2C9E)₁₆ to base 2
 (0010 1100 1001 1110)₂
 - (b) $(1101001)_2$ to base 10 $(105)_{10}$
 - (c) $(1101001)_2$ to base 16 $(69)_{16}$
 - (d) $(8576)_{10}$ to base 16 $(2180)_{16}$
 - (e) (A27F)₁₆ to base 8

- 2. Short answer questions over basic electronic components (LO 1-7).
 - (a) Write two different formulas for OHM's LAW:

(b) Describe what a <u>resistor</u> does:

Limits current flow

(c) Write two different <u>formulas</u> for calculating the power dissipation of a <u>resistor</u>:

$$V^2/R$$
 I^2R

(d) Describe what a diode does.

Restricts direction of current flow (from anode to cathode)

(e) Describe what affects the <u>brightness</u> of a light emitting diode (LED):

Forward current

(f) Describe what a capacitor does:

Stores charge

(g) Describe a <u>functional difference</u> between a MOSFET and a BJT:

MOSFETs are voltage-controlled switches, BJTs are current-controlled

(h) When a MOSFET is off, its drain-to-source impedance is on the order of:

(i) When a MOSFET is on, its drain-to-source impedance is on the order of:

(j) Describe a <u>functional difference</u> between an N-channel MOSFET and a P-channel MOSFET:

positive Vgs turns N-channel on, negative Vgs turns P-channel on

2	Prove DeMorgan's Law	Γ 13) for n=3 using perfect induction	$ion (I \cap 1 \land 6)$
J.	Tiuve Demoigan's Law	113) 101 H-3 using penteet induct	1011 (LO 1-0).

X1	X2	Х3	$X1 \cdot X2 \cdot X3$	$(X1 \cdot X2 \cdot X3)$	$(X1 \cdot X2 \cdot X3)'$	X1'	X2'	X3'	X1' + X2' + X3'
0	0	0	0	0	1	1	1	1	1
0	0	1	0	0	1	1	1	0	1
0	1	0	0	0	1	1	0	1	1
0	1	1	0	0	1	1	0	0	1
1	0	0	0	0	1	0	1	1	1
1	0	1	0	0	1	0	1	0	1
1	1	0	0	0	1	0	0	1	1
1	1	1	1	1	0	0	0	0	0

4. Prove the dual of the Covering theorem (T9^D) using axioms and other theorems (LO 1-3).

$$(T9^{D}) \quad X \cdot (X + Y) = X$$

$$X \cdot (X + Y) = (X+0) \cdot (X + Y) \qquad T$$

$$= X + (Y \cdot 0) \qquad T8^{D}$$

$$= X + 0 \qquad T2^{D}$$

$$= X \qquad T1$$

5. Determine voltages V_A , V_B , V_C , and V_D if each resistor is 100Ω and the voltage source is 10 volts (LO 1-7).

$$V_{A} = 10 \text{ x } (75/275) = 2.73 \text{ V}$$

$$V_{A} = V_{B} + V_{C} + V_{D} \text{ where } V_{B} = V_{C} = V_{D}$$

$$V_{B} = V_{C} = V_{D} = 0.91 \text{ V}$$

6. Using a total of **three** N-channel MOSFETs and **three** P-channel MOSFETs, draw a circuit schematic for a **two-input AND** gate. The gate inputs should be labeled A and B, and the gate output should be labeled F. Be sure to show the power (Vcc) and ground (GND) connections as well (LO 1-10).

7. Using a total of **three** N-channel MOSFETs and **three** P-channel MOSFETs, draw a circuit schematic for a **three-input NOR** gate. The gate inputs should be labeled A, B and C, and the gate output should be labeled F. Be sure to show the power (Vcc) and ground (GND) connections as well (LO 1-12).

- 8. Given that a (5-volt) CMOS gate's P-channel output pull-up has an "on" resistance of 160Ω and that its N-channel output pull-down has an "on" resistance of 80Ω :
 - (a) If the desired V_{OHmin} is 4.4 volts and the desired V_{OLmax} is 0.4 volts, what are the gate's I_{OHmax} and I_{OLmax} ratings? (LO 1-19)

$$I_{OHmax} = -0.6/160 = -3.75 \text{ mA}$$
 $I_{OLmax} = 0.4/80 = 5.0 \text{ mA}$

(b) If a DCNM of 1.2 volts is desired for this CMOS gate family, what do its V_{IHmin} and V_{ILmax} specifications need to be, based on the values given in part (a)? (LO 1-14)

$$V_{IHmin} = 4.4-1.2 = 3.2 V$$
 $V_{ILmax} = 0.4+1.2 = 1.6 V$

(c) If the I_{IH} and I_{IL} specifications for gates in this family are +0.1 mA and -0.1 mA, respectively, what is the practical fan-out for circuits constructed using these gates, based on values calculated in part (a)? (LO 1-20)

fanout =
$$min(3.75/0.1, 5.0/0.1) = 37.5$$

(d) Show how an LED (with forward voltage $V_{LED} = 1.5 \text{ V}$) should be interfaced to gates in this family to obtain maximum brightness, and calculate the value of the current limiting resistor required along with its power dissipation. (LO 1-21)

Current limiting resistor = 620Ω Resistor power dissipation = 15.5 mW

9. Given that the P-channel device in the circuit below has **ON** and **OFF** resistances of **80** Ω and **2** $M\Omega$ (respectively) and that the N-channel device has **ON** and **OFF** resistances of **60** Ω and **3** $M\Omega$ (respectively), complete the table listing the **output voltages** obtained for each input combination as well as the **power dissipation** (in *milliwatts*). Show your calculations (LOs 1-10 and 1-11).

A	В	P-ch	N-ch	Req (N+P)	V _{out}	Power Dissip Vcc ² /Req
0V	0V	on	off	3,000,080 Ω	4.99987	0.008333 mW
0V	5V	on	on	140 Ω	2.14286	178.57 mW
5V	0V	off	off	5,000,000 Ω	3.00000	0.005 mW
5V	5V	off	on	2,000,060 Ω	0.0001499	0.0124996 mW

10. One of your best friends from another major, "Raul", found some N- and P-channel MOSFETs in your "geek box" and wired them together as shown below. Help Raul figure out what he has created by determining V_{out} for all possible input combinations (for the sake of analysis, assume the **ON** resistance of **each** MOSFET (both P- and N-channel) is 10Ω and that its **OFF** resistance is $1 M\Omega$ (LOs 1-10 and 1-11).

	A	В	V_{out}
(VC	0V	4.99995
(VC	5V	2.5000
ļ	5V	0V	2.5000
Į	5V	5V	0.000049995

Describe what Raul has created:

"nothing useful"

11. A common question students have relates to *why* the P-channel device has to serve as a "pull-up" while the N-channel device has to serve as a "pull-down" (i.e., why can't it be the "other way around"?). To convince yourself of this reality, try drawing a CMOS inverter "upside down" (with an N-channel device used as a pull-up and a P-channel device used as a pull-down) and analyze the circuit you have created (i.e., determine its Vi-Vo characteristics). Describe your conclusion. (LO 1-10)

"flipped" upside-down → current unable to flow (cannot pull output high or low)

each transistor "flipped" in "upsidedown" circuit \rightarrow unable to establish V_{GS} potential to turn either transistor ON 12. Assume two hypothetical logic families have the following D.C. characteristics:

Logic Family "A"

$V_{CC} = 5 \text{ V}$	$V_{OH} = 4.4 \text{ V}$	$V_{OL} = 0.40 \text{ V}$	$V_{IH} = 3.60 \text{ V}$	$V_{\rm IL} = 1.60 \text{ V}$
$V_{TH} = (V_{OH} - V_{OL})/2$	$I_{OH} = -4 \text{ mA}$	$I_{OL} = 4 \text{ mA}$	$I_{IH} = 0.4 \mu A$	$I_{IL} = -0.4 \mu A$

Logic Family "B"

$V_{CC} = 5 \text{ V}$	$V_{OH} = 3.3 \text{ V}$	$V_{OL} = 0.30 \text{ V}$	$V_{IH} = 2.60 \text{ V}$	$V_{IL} = 1.60 \text{ V}$
$V_{TH} = (V_{OH} - V_{OL})/2$	$I_{OH} = -400 \mu A$	$I_{OL} = 8 \text{ mA}$	$I_{IH} = 40 \ \mu A$	$I_{IL} = -0.4 \text{ mA}$

- (a) Calculate the following (*show work*):
 - (LO 1-14) DCNM $_{A\rightarrow B}$ min(4.4-2.6, 1.6-0.4) = 1.2V
 - (LO 1-14) DCNM $_{B\rightarrow A}$ min(3.3-3.6, 1.6-0.3) = -0.3V
 - (LO 1-20) Practical Fanout $_{A\to B}$ min(4/0.04, 4/0.4) = 10
 - (LO 1-20) Practical Fanout $_{B\rightarrow A}$ min(400/0.4, 8/0.0004) = 1000
- (b) Draw the circuit and calculate the **value of the current limiting resistor** for a **Type "A"** gate driving an LED to the maximum brightness possible in a *current* sourcing configuration. Assume V_{LED} is 1.5V. (LO 1-21)

$$R = 2.9/0.004 = 725 \Omega$$

(c) Draw the circuit and calculate the **value of the current limiting resistor** for a **Type "B"** gate driving an LED to the maximum brightness possible in a *current sinking* configuration. Assume V_{J ED} is 1,5V. (LO 1-21)

$$R = 3.2/0.008 = 400 \Omega$$

- 13. A particular CMOS microcontroller is designed to operate over a supply voltage range of **1.0 V** to **5.0 V** and at a maximum clock frequency of **80 MHz** (no minimum clock frequency is specified). The *maximum power dissipation* over this range of supply voltage and clock frequency is specified to be **500 milliwatts**.
 - (a) Plot the relationship between *power dissipation* and *supply voltage* for this microcontroller (LO 1-29).

(b) Plot the relationship between *power dissipation* and *clock frequency* for this microcontroller (LO 1-28).

14. Given the circuit, below, calculate V_{in} (the CMOS inverter input voltage) for each of the cases indicated along with the current *individually* sunk by each active open drain gate. *Show your calculations*. (LOs 1-34 and 1-35).

Key: ON resistance of each OD gate is $0.4/0.004 = 100 \Omega$

Λ	В		Ron	V _{in} to	Current Sunk by
Α	B C		Total	Inverter	Each Active O.D. Gate
0 V	0 V	0 V	-	$5 - (0.00007 \times 1000) = 4.93 \text{ V}$	(20 μA leakage)
5 V	0 V	0 V	1100	5x100/1100 = 0.4545 V	4.545 mA
5 V	5 V	0 V	1050	5x50/1050 = 0.2381 V	2.381 mA
5 V	5 V	5 V	1033	5x33/1033 = 0.1597 V	1.618 mA

- 15. Given the circuit, below, along with its Vi-Vo (input output voltage) relationship, determine the following (show calculations where applicable):
 - (a) estimate the ON resistance of the O.D. NAND gate (LO 1-25) fall time = $10 \text{ ns} = R_{on} \times 100 \text{ pF} \rightarrow R_{on} = 100\Omega$
 - (b) estimate the value of the pull-up resistor (LO 1-36) rise time = $100 \text{ ns} = R_{\text{pullup}} \times 100 \text{ pF} \rightarrow R_{\text{pullup}} = 1000\Omega$
 - (c) estimate the t_{TLH} of the O.D. NAND gate (LO 1-25) rise time = 100 ns
 - (d) estimate the t_{THL} of the O.D. NAND gate (LO 1-25) fall time = 10 ns
 - (e) estimate the t_{PHL} of the O.D. NAND gate (LO 1-23) fall propagation delay = 10 ns
 - (f) estimate the t_{PLH} of the O.D. NAND gate (LO 1-23) rise propagation delay = 40 ns

