Productivity and Efficiency Analysis

3) Stochastic frontier analysis (SFA)
b) Basics of SFA

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Taxonomy of methods

based on Kuosmanen & Johnson (2010), Operations Research

		Parametric	Nonparametric	
			Local averaging	Axiomatic
		OLS	Kernel regression	Convex regression
		Gauss (1795),	Nadaraya (1964),	Hildreth (1954),
Average curve		Legendre (1805)	Watson (1964)	Hanson and Pledger
				(1976)
	Deterministic	Parametric programming	Nonparametric	DEA
	(Sign constr.)	Aigner and Chu (1968)	programming	Farrell (1957),
			Post et al. (2002)	Charnes et al. (1978)
	Deterministic	Corrected OLS	Corrected kernel	Corrected CNLS
	(2-stage)	Winsten (1957)	Kneip and Simar (1996)	Kuosmanen and
Frontier		Greene (1980)		Johnson (2010)
	Stochastic	SFA	Semi-nonparametric SFA	StoNED
		Aigner et al. (1977)	Fan, Li and Weersink	Kuosmanen and
		Meeusen and van den	(1996)	Kortelainen (2012)
		Broeck (1977)	•	•

Stochastic frontier model

$$\ln y_{i} = \alpha + \sum_{s=1}^{S} \beta_{s} \ln x_{si} - u_{i} + v_{i}, \quad i = 1, ..., n$$

where

 y_i is output of firm i

 β_s is **output elasticity** of input s

 x_{i} is input s of firm i

 u_i is inefficiency term of firm i

 v_i is random noise term of firm i

Aigner, Lovell & Schmidt (1977): Formulation and estimation of stochastic frontier production function models, *Journal of Econometrics*

Meeusen and van den Broeck (1977) Efficiency estimation from Cobb-Douglas production functions with composed error, *International Economic Review*

Battese and Corra (1977) Estimation of a production frontier model: with application to the pastoral zone of Eastern Australia, *Australian Journal of Agricultural Economics*

Stochastic frontier model: common distributional assumptions

Random noise term v_i follows the normal distribution N with zero mean and a constant variance.

Inefficiency term u_i follows

- Half-normal distribution
- Exponential distribution
- Truncated normal distribution
- Gamma distribution

Stochastic frontier model: common distributional assumptions

Illustration

Figure 2.5. Half-Normal and Exponential Distributions

Source: Greene (2008) The Econometric Approach to Efficiency Analysis, in Fried et al. (Eds.) The Measurement of Productive Efficiency and Productivity Growth

Two ways to estimate the SFA model

Modified OLS (MOLS):

- 1. Estimate coefficients β by OLS.
- 2. Estimate parameters of *u,v* using OLS residuals (method of moments or pseudolikelihood)
- 3. Adjust the intercept α (similar to COLS)

Maximum likelihood: Estimate all model parameters jointly in one step.

Illustration

Estimating inefficiency

- In the stochastic frontier model, distance to frontier depends on both inefficiency and noise.
- Inefficiency u_i is a random variable. It is impossible to distinguish realization u_i from noise v_i .

Estimating inefficiency

Illustration

Figure 2.4. Density of a Normal Minus a Half-Normal

Source: Greene (2008) The Econometric Approach to Efficiency Analysis, in Fried et al. (Eds.) The Measurement of Productive Efficiency and Productivity Growth

Estimating inefficiency

- The distributional assumptions allow us to estimate the expected value of inefficiency loss $E(u_i)$ based on the skewness of the residuals.
- Firm-specific SFA efficiency estimates are based on the JLMS conditional expectation $E(u_i | e_i)$.

Jondrow, Lovell, Materov and Schmidt (1982) On the estimation of technical inefficiency in the stochastic frontier production function model. *Journal of Econometrics*.

SFA efficiency

Illustration of the JLMS transformation of regression residual to efficiency:

Next lesson

3c) Application of SFA

