Planche nº 11. Intégration sur un intervalle quelconque

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice nº 1

Etudier l'existence des intégrales suivantes

1) (**)
$$\int_{0}^{+\infty} \left(x + 2 - \sqrt{x^2 + 4x + 1} \right) dx$$
 2) (**)
$$\int_{1}^{+\infty} \left(e - \left(1 + \frac{1}{x} \right)^{x} \right) dx$$
 3) (**)
$$\int_{0}^{+\infty} \frac{\ln x}{x + e^{x}} dx$$

4) (***)
$$\int_0^{+\infty} \left(\sqrt[3]{x+1} - \sqrt[3]{x}\right)^{\sqrt{x}} dx$$
 5) (**) $\int_1^{+\infty} e^{-\sqrt{x^2-x}} dx$ 6) (**) $\int_0^{+\infty} x^{-\ln x} dx$

7) (**)
$$\int_{0}^{+\infty} \frac{\sin(5x) - \sin(3x)}{x^{5/3}} dx$$
 8) (**)
$$\int_{0}^{+\infty} \frac{\ln x}{x^{2} - 1} dx$$
 9) (**)
$$\int_{-\infty}^{+\infty} \frac{e^{-x^{2}}}{\sqrt{|x|}} dx$$

10) (**)
$$\int_{-1}^{1} \frac{1}{(1+x^2)\sqrt{1-x^2}} dx$$
 11) (**) $\int_{0}^{1} \frac{1}{\sqrt[3]{x^2-x^3}} dx$ 12) (***) $\int_{0}^{1} \frac{1}{\operatorname{Arccos}(1-x)} dx$.

Exercice nº 2

Etudier l'existence des intégrales suivantes

1) (*** I)
$$\int_{2}^{+\infty} \frac{1}{x^{a} \ln^{b} x} dx$$
 (Intégrales de BERTRAND) 2) (**) $\int_{0}^{\pi/2} (\tan x)^{a} dx$
3) (**) $\int_{1}^{+\infty} \left(\left(1 + \frac{1}{x} \right)^{1 + \frac{1}{x}} - a - \frac{b}{x} \right) dx$ 4) (***) $\int_{0}^{+\infty} \frac{1}{x^{a} (1 + x^{b})} dx$

Exercice nº 3

Etudier la convergence des intégrales impropres suivantes

1) (** I)
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$
 2) (**) $\int_0^{+\infty} \frac{\sin x}{x^a} dx$ ($a > 0$) 3) (**) $\int_0^{+\infty} e^{ix^2} dx$
4) (**) $\int_0^{+\infty} x^3 \sin(x^8) dx$ 5) (**) $\int_0^{+\infty} \cos(e^x) dx$.

Exercice nº 4

Existence et calcul de

1) (** I)
$$I_n = \int_0^{+\infty} \frac{1}{(x^2+1)^n} dx$$
 2) (** I) $\int_0^{+\infty} \frac{1}{x^3+1} dx$ 3) (***) $\int_0^{+\infty} \frac{1}{(x+1)(x+2)\dots(x+n)} dx$ 4)(***) $\int_0^1 \frac{1}{\sqrt{(1-x)(1+ax)}} dx$ (a>0) 5) (**) $\int_0^{+\infty} \frac{1}{(e^x+1)(e^{-x}+1)} dx$ 6) (**) $\int_0^{+\infty} \frac{1}{5 \operatorname{ch} x + 3 \operatorname{sh} x + 4} dx$ 7) (***) $\int_0^{+\infty} \left(2 + (t+3) \ln \left(\frac{t+2}{t+4}\right)\right) dt$ 8) (** I) $\int_0^{+\infty} \frac{x \operatorname{Arctan} x}{(1+x^2)^2} dx$ 9) (** I) $\int_0^{+\infty} \frac{x \ln x}{(x^2+1)^2} dx$ 10) (***) $\int_0^{\pi/2} \sqrt{\tan x} dx$ 11) (*** I) $\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt$ (0 < a < b)

Exercice nº 5 (Deux calculs de $I = \int_0^{\pi/2} \ln(\sin x) \ dx$.)

1) (** I) En utilisant $J = \int_0^{\pi/2} \ln(\cos x) \ dx$, calculer I (et J).

2) (*** I) Calculer $P_n = \prod_{k=1}^{n-1} \sin \frac{k\pi}{2n}$ (commencer par P_n^2) et en déduire I.

Exercice nº 6 (** I)

En utilisant un développement de $\frac{1}{1-t}$, calculer $\int_0^1 \frac{\ln t}{t-1} \ dt$.

Exercice nº 7 (*** I)

$$\operatorname{Calculer} \int_0^1 \frac{t-1}{\ln t} \ dt \ (\operatorname{en} \ \operatorname{\acute{e}crivant} \ \int_0^x \frac{t-1}{\ln t} \ dt = \int_0^x \frac{t}{\ln t} \ dt - \int_0^x \frac{1}{\ln t} \ dt).$$

Exercice nº 8

1) (** I) Trouver un équivalent simple quand x tend vers $+\infty$ de $e^{x^2} \int_{x}^{+\infty} e^{-t^2} dt$.

2) (***) Montrer que $\int_{\alpha}^{+\infty} \frac{\cos x}{x} dx \underset{\alpha \to 0}{\sim} -\ln \alpha$.

3) (*) Montrer que $\int_0^1 \frac{1}{x^3 + a^2} dx \underset{\alpha \to +\infty}{\sim} \frac{1}{\alpha^2}.$

Exercice nº 9 (***)

Etude complète de f : $x \mapsto \int_{x}^{x^2} \frac{1}{\ln t} dt$.

Exercice no 10 (***)

Convergence et calcul de $\int_{1}^{+\infty} \frac{(-1)^{\lfloor x \rfloor}}{x} dx$ (où $\lfloor x \rfloor$ désigne la partie entière du réel x).

Exercice nº 11 (**)

Soit f définie, continue, positive et décroissante sur $[1, +\infty[$, intégrable sur $[1, +\infty[$.

Montrer que xf(x) tend vers 0 quand x tend vers $+\infty$.

Exercice nº 12 (***)

Soit f de classe C^2 sur $\mathbb R$ à valeurs dans $\mathbb R$ telle que f^2 et $(f'')^2$ soient intégrables sur $\mathbb R$. Montrer que f'^2 est intégrable sur $\mathbb R$ et que $\left(\int_{-\infty}^{+\infty} f'^2(x) \ dx\right)^2 \leqslant \left(\int_{-\infty}^{+\infty} f^2(x) \ dx\right) \left(\int_{-\infty}^{+\infty} f''^2(x) \ dx\right)$. Cas d'égalité?