Sites Energy Consumption

Presented by: Roaa Ehab Ahmed

>>>

Date: 15-12-2024

Table of content

- Introduction
- Mission
- Data Exploration and Analysis
- Exploratory Analysis
- Feature engineering
- Statistical Hypothesis Testing
- Statistical Hypothesis Testing

Introduction

- The objective of this project was to save energy by Monitoring the energy consumption of our daily usage to help us save energy
- We'll explore the reasons why tracking our energy consumption is essential, the benefits it brings to our households and communities, and practical strategies for monitoring and reducing our energy usage.

Mission

our mission is to save energy by analyzing the data we can answer the following Questions

- Does the region significantly affect energy consumption?
- Is there a relationship between the time of day and energy consumption?
- How to save energy?

Methodology

IMPORT NEEDED LIBRARIES

- pandas
- seaborne
- Matplotlib

DATA CLEANING

- check datatype of each column
- check Null values
- Drop duplicates
- make sure that there is no missing records
- Anomaly detection

EXPLORATORY ANALYSIS

• plot different figures

STATISTICAL HYPOTHESIS TESTING

- Hypothesis Formulation
- Test Selection and Application
- Threshold Recommendation and Cost Savings

Data Exploration and Analysis

Available Data

Data contains four csv files:

1- three Energy Consumption.csv contain power consumption of 82 cells from diffrent regions. the reading of the cells was each half our for an entire year (2013)

2- Power Demand.csv contain the demand of each half our for an entire year (2013)

Data Reading

Demand:

this data contain three sheets. only the first sheet contain data the remaining two are empty

Conclusion after reading the data:

- 1- this table contain 17520 recode
- 2-No Null Values
- 3- Date Types are correct

Demand

- The demand column contains values expressed in various formats that represent the same underlying amount.
- Check and drop duplicates (there is no duplicates in this dataframe)

Data Reading

Energy Consumption:

this data is divided on three csv file. so we must concat them all first

Conclusion after reading the data:

- 1- file is missing some record as the expected no.'1436640' Not '1380252'
- 2- DateTime column must be Datetime type
- 3- there are four regions
- 4- there are 82 cell across all regions combined

- change DateTime column to datetime64[ns] with the correct formate
- check and drop duplicates
- find the cells which has less than 17520 reading with further analysis there is 70 cells contain missing values
- Find missing date and time by defining add_miss function that:
 - 1- find missing date time value 2-add new record with this value 3-impute KWhh with median of this cell

>>>

Anomaly Detection

- Demand_df:
 after trying to univariate and Mulitvariate no useful anomalies
 insight was detected
- consumption:

univariate: applying IQR and MAD

Multivariate: by applying KNN, IForest and LOF (Local outlier factor)

AD of consumption df

univariate

the opposite box plot shows the anomlies in KWH/hh (per half hour) column

Back to Agenda Page

after applying both IQR and MAD and replace high outliers with median

• applied tests:

1- KNN 2-IForest 3- LOF

- encoding date time
- Less than 3% of the total data displayed detected anomalies.
- They can simply remain as they are.

Exploratory Analysis

- there are four main region
- the following pie chart show each region and the consumption
- region A has the most consumption
- Region D has the least consumption

- with further analysis
- Region A has 33 cell
- Region B has 26 cells
- Region C has 21 cells
- Region D has 2 cells
- this explain why Region A have the most consumption

- Site E has the most reading in the whole this means that it has the most no of cells
- There are 4 site in region A ['A' 'E' 'D' 'C']
- There are 5 site in region B ['P' 'Q' 'L' 'N' 'K']
- There are 4 site in region C ['H' 'J' 'F' 'G']
- There are 1 site in region D ['U']

 while there is great difference in the number of cell in each Region the median of the consumption is slightly different

- this figure explains the consumption across the whole year
- May, June, July and August shows a slight decrease in the consumption

Feature engineering

Add new columns

- cost according to the demand:
 - Low= 3.445 p/kWh
 - Normal= 9.73 p/kWh
 - High= 38.73 p/kWh
- month column in names
- time of the day column night, morning, afternoon, evening

Data Insights

- figure shows the consumption of each month
- conclusion :May, June, July , August and September shows a slight decrease in the consumption
- the cause of this decrease in consumption is might be because of the summer weather

Data Insights

- figure shows the cost of each month
- conclusion: May, June, July and August shows a slight decrease in the cost
- this due to the low consumption at these months as shown in the previous slide

Data Insights

- figure figure show the consumption with time of the day
- the consumption at night is less any other time
- the consumption at morning and afternoon is slightly different
- while the most consumption is at evening(6 to 12)

- figure figure show the cost with time of the day
- this graph is fully dependent on the conclusion in the previous slide

Statistical Hypothesis Testing

Hypothesis

	Does the region significantly affect energy consumption?	Is there a relationship between the time of day and energy consumption?
 Hypothesis Formulation 	 H0:there is a diffrence in cost according to region HA: there is no difference 	 H0:there is a relationship between consumption and time of the day HA: there is no relation
 Test Selection and Application 	ANOVAPaireWise	ANOVAPaireWise
• Results	p_value=0(Not logic)reject the H0	p_value=0(Not logic)reject the H0

Assumptions and Limitations

- the consumption column show right skewness
- this may cause to the wrong P-value

Threshold Recommendation and Cost Savings

Threshold Recommendation

- shut all cells that are below q1
- this method estimates to save about 25% of the cost
- q1=0.062
- total savings = 117953.5

Threshold Recommendation

- shut all cells that are below the mean with 1 standard deviation
- this method can save up to 13.6 % of the cost
- Std = 0.03
- Total save cost = 22927.2

Thank You