Распознавание речи: как сделать Speech-to-Text своими руками

Иван Бондаренко (МФТИ, Data Monsters, НГУ)

High**Load***

Интервью надо расшифровать. Как?

> Вручную

Интервью надо расшифровать. Как?

- ➤ Вручную
- Автоматически

Распознавание речи

- Пропиетарные системы
 - Nuance, Google, Яндекс, ЦРТ...
- Open-source системы
 - CMU Sphinx
 - O HTK
 - Kaldi
 - O ...

CMU Sphinx

https://cmusphinx.github.io/

Классическая структура системы распознавания речи

Классическая структура системы распознавания речи

Акустико-фонетический блок

- CMU Sphinx
 - https://cmusphinx.github.io/wiki/tutorialam/#training

- Речевой корпус
 - http://voxforge.org/ru

Подготовка к запуску обучения

```
etc
 — your db.dic
                                (Словарь транскрипций)
 - your_db.phone
                                (Список фонем)
 — your db.lm
                                (Языковая модель)
 - your db.filler
                                (Список филлеров - неречевых квазифонем)
 — your db train.fileids
                                (Список звукозаписей для обучения)
 — your db train.transcription (Аннотации звукозаписей для обучения)
                                (Список звукозаписей для тестирования)
 — your db test.fileids
└─ your db test.transcription
                                (Аннотации звукозаписей для тестирования)
wav
  speaker 1
    └─ file 1.wav
                                (Звукозаписи в формате WAV PCM)
 - speaker 2
   └─ file 2.wav
```


Создание конфига

sphinxtrain -t my_speech_system setup

```
etc
 - sphinx_train.cfg
                              (Конфигурационный файл)
 - your_db.dic
                              (Словарь транскрипций)
 your db.phone
                              (Список фонем)
 - your db.lm
                              (Языковая модель)
— your db.filler
                              (Список филлеров - неречевых квазифонем)
├─ your db train.fileids (Список звукозаписей для обучения)
├─ your_db_train.transcription (Аннотации звукозаписей для обучения)
├─ your_db_test.fileids (Список звукозаписей для тестирования)
\sqsubseteq your db test.transcription (Аннотации звукозаписей для тестирования)
wav
  speaker 1
    └─ file 1.wav
                              (Звукозаписи в формате WAV PCM)
 - speaker 2
  └─ file 2.wav
```


sphinx_train.cfg

```
# Feature extraction parameters
$CFG_WAVFILE_SRATE = 8000.0;
$CFG_NUM_FILT = 15; # For wideband speech it's 25, for telephone 8khz reasonable value
is 15
$CFG_LO_FILT = 200; # For telephone 8kHz speech value is 200
$CFG_HI_FILT = 3500; # For telephone 8kHz speech value is 3500
$CFG_TRANSFORM = "dct"; # Previously legacy transform is used, but dct is more accurate
$CFG_LIFTER = "22"; # Cepstrum lifter is smoothing to improve recognition
$CFG_VECTOR_LENGTH = 13; # 13 is usually enough
```


Звуковой сигнал

\$CFG WAVFILE SRATE = 8000.0;

Оконный анализ звукового сигнала

Начало английской фразы «Be careful not to plow over the flower beds»

Сигнал и его спектр


```
$CFG_LO_FILT = 200;
$CFG HI FILT = 3500;
```


Мел-шкала

Гребёнка треугольных фильтров

Исходный и сглаженный

sphinx_train.cfg

```
# Variables used in main training of models
$CFG_DICTIONARY = "$CFG_LIST_DIR/$CFG_DB_NAME.dic";
$CFG_RAWPHONEFILE = "$CFG_LIST_DIR/$CFG_DB_NAME.phone";
$CFG_FILLERDICT = "$CFG_LIST_DIR/$CFG_DB_NAME.filler";
```


Фонемы

```
$CFG_RAWPHONEFILE = "$CFG_LIST_DIR/$CFG_DB_NAME.phone";
```

мама мыла раму

M AO M A M YO L A R AO M U

Где взять фонемы?

• Прочитать труды лингвистов и придумать систему фонем

Где взять фонемы?

- Прочитать труды лингвистов и придумать систему фонем
- взять отсюда https://github.com/nsu-ai/voxforge-ru-sphinx

https://github.com/nsu-ai/voxforge_ru_sphinx/blob/ruscorpora-ngrams/voxforge_ru/etc/voxforge_ru.phone

Словарь транскрипций

```
$CFG_DICTIONARY = "$CFG_LIST_DIR/$CFG_DB_NAME.dic";

...

мама М АО М А
папа Р АО Р А
мыла М YO L
мыл М YO L
раму R АО М U
синхрофазотрон SO I N KH R A F A Z A T R OO N
```

. . .

Где взять словарь транскрипций?

 Изучить закономерности устной речи и выписать 800 000 транскрипций вручную

Где взять словарь транскрипций?

- Изучить закономерности устной речи и выписать 800 000 транскрипций вручную
- взять отсюда https://github.com/nsu-ai/voxforge-ru-sphinx

https://github.com/nsu-ai/voxforge_ru_sphinx/blob/ruscorpora-ngrams/voxforge_ru/etc/voxforge_ru.dic

более 800 тысяч словоформ

А если нужен миллион слов?

Транскрипции для недостающих слов можно нагенерировать автоматически!

- 1) с помощью словарей и правил "буква-фонема" https://github.com/nsu-ai/russian_g2p
- 2) с помощью машинного обучения https://github.com/nsu-ai/russian_g2p_neuro

Филлеры (квазифонемы)

Виды филлеров

Мяу-мяу!

Ty-my!

Би-би!

Где взять записи филлеров?

• Собрать самому

Где взять записи филлеров?

- Собрать самому
- Скачать в интернете https://www.kaggle.com/c/freesound-audio-tagging/data

sphinx_train.cfg

```
# Variables used in characterizing models
$CFG HMM TYPE = '.cont.'; # Sphinx 4, PocketSphinx
#$CFG HMM TYPE = '.semi.'; # PocketSphinx
#$CFG HMM TYPE = '.ptm.'; # PocketSphinx (larger data sets)
if (($CFG HMM TYPE ne ".semi.")
   and ($CFG HMM TYPE ne ".ptm.")
   and ($CFG HMM TYPE ne ".cont.")) {
 die "Please choose one CFG HMM TYPE out of '.cont.', '.ptm.', or '.semi.', " .
   "currently $CFG HMM TYPE\n";
# This configuration is fastest and best for most acoustic models in
# PocketSphinx and Sphinx-III. See below for Sphinx-II.
CFG STATESPERHMM = 3;
$CFG SKIPSTATE = 'no';
```


Распознавание фонем

Два подхода к распознаванию фонем:

1) генеративный (СММ, ИКДП)

2) дискриминативный (ИНН)

Марковский процесс

«Будущее» процесса не зависит от «прошлого» при известном «настоящем».

Вопросы к марковской модели

- Какова вероятность последовательности состояний погоды "ясно-облачно-дождьоблачно-ясно", если известно, что сейчас ясно?
- Какова вероятность того, что солнечная погода будет оставаться солнечной ровно 5 часов подряд?
- Какова наиболее вероятная длительность дождливого периода?

> ...

Скрытая марковская модель

Состояния модели скрыты, мы о них лишь догадываемся по наблюдениям

Классическая структура системы распознавания речи

Классическая структура системы распознавания речи

HighLoad

Языковые модели

```
$DEC_CFG_LANGUAGEMODEL = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.lm.bin";
# Or can be JSGF or FSG too, used if uncommented
# $DEC_CFG_GRAMMAR = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.jsgf";
# $DEC_CFG_FSG = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.fsg";
```


Языковые модели

```
$DEC_CFG_LANGUAGEMODEL = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.lm.bin";
# Or can be JSGF or FSG too, used if uncommented
# $DEC_CFG_GRAMMAR = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.jsgf";
# $DEC_CFG_FSG = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.fsg";
```

Детерминированные

Вероятностные

Языковые модели

```
$DEC_CFG_LANGUAGEMODEL = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.lm.bin";
# Or can be JSGF or FSG too, used if uncommented
# $DEC_CFG_GRAMMAR = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.jsgf";
# $DEC_CFG_FSG = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.fsg";
```

Детерминированные

Вероятностные

Детерминированные модели

https://www.w3.org/TR/jsgf/

Вероятностные модели

N-граммы

https://cmusphinx.github.io/wiki/arpaformat/

Как построить N-граммы?

- SRILM http://www.speech.sri.com/projects/srilm/
 - ngram-count
 http://www.speech.sri.com/projects/srilm/manpages/ngram-count.1.html
- Большой-пребольшой текстовый корпус
 - Национальный корпус русского языка (НКРЯ) http://www.ruscorpora.ru/corpora-freq.html

Где взять готовые N-граммы?

взять отсюда https://github.com/nsu-ai/voxforge-ru-sphinx

https://github.com/nsu-ai/voxforge_ru_sphinx/blob/ruscorpora-ngrams/voxforge_ru/etc/voxforge_ru.lm.bin

А если у меня специфичная задача?

- > Голосовой чат-бот для выдачи кредита
- Голосовой чат-бот для заказа пиццы
- **>** ...

Специфичной задаче - особые N-граммы!

- 1. Собираем особые тексты (кулинарные, финансовые...)
- 2. Строим особые N-граммы с помощью ngram-count
- 3. Объединяем их с базовыми N-граммами с помощью ngram-merge

http://www.speech.sri.com/projects/srilm/manpages/ngram-merge.1.html

HighLoad

Классическая структура системы распознавания речи

Что такое хорошо?

Word error rate:

число вставок *I*, замен *S* и удалений *D*, необходимое для приведения распознанной фразы к эталонной фразе

$$WER = rac{S + D + I}{N}$$

Какой WER мы хотим?

- → голосовое командное управление
 - ◆ WER < 5%
- → голосовой поиск
 - ◆ WER < 10%
- → стенографирование звукозаписей
 - ◆ WER < 20-30%

Кроссвалидация

Кроссвалидация на Voxforge-Ru

https://github.com/nsu-ai/voxforge_ru_sphinx/tree/ruscorpora-ngrams_

Experiment	1	2	3	4	5	6	7	8	9	10
WER, %	17,70	29,15	23,99	26,12	27,58	19,24	15,69	17,22	19,36	11,99

Итоговый WER = 20,80% ± 5,34%

Что мы забыли?

Как происходит интервью?

Шумоподавление!

Как подавить шумы?

Глубокими нейронными сетями!

Регрессионная нейронная

Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee

A Regression Approach to Speech Enhancement Based on Deep Neural Networks

Регрессионная нейронная

Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee

A Regression Approach to Speech Enhancement Based on Deep Neural Networks

SE-DNN: https://github.com/yongxuUSTC/sednn

Итоги

1. Распознавание речи можно сделать самому

Итоги

- 1. Распознавание речи можно сделать самому
- 2. Open Source это круто!

Итоги

- 1. Распознавание речи можно сделать самому
- 2. Open Source это круто!
- 3. **"Модульный подход"** VS "Нейросетевой End-to-end"

Спасибо моим ребятам!

Оля Яковенко, лингвист

Даниил Водолазский, математик

Маша Боровикова, лингвист

Спасибо вам за внимание!

Я открыт для диалога 🧽

Иван Бондаренко

bond005@yandex.ru

