

IIC2213 — Lógica para ciencia de la computación 1'2023

Examen

Miércoles 12 de julio de 2023

Condiciones de entrega. Debe entregar cada pregunta en una hoja distinta (la revisan personas diferentes).

Puntajes y nota. Cada pregunta tiene 6 puntos más un punto base. La nota del examen será el promedio de las notas de las 4 preguntas.

Bonus. El bonus se responde en la hoja de la Pregunta 1. Si responde, obtiene 1 décima a la nota del examen.

1. Conceptos esenciales

Indique si las siguientes afirmaciones son verdaderas (V), falsas (F) o si no sabemos (N). Esta tercera opción no se refiere a que usted no sepa la respuesta, sino que la afirmación es un problema abierto.

Cada afirmación debe acompañarse de una justificación corta según su tipo

- V: demostración concisa, no esperamos más que un par de líneas
- **F**: contraejemplo
- N: argumentación corta de cómo se relaciona con algún problema abierto estudiado en el curso

Opciones sin justificación no se evaluarán. ¡No necesariamente hay una afirmación de cada tipo!

- (a) [2 ptos.] Existe un algoritmo para demostrar si una fórmula proposicional es consecuencia lógica de un conjunto de fórmulas.
- (b) [2 ptos.] Existe un problema en P que es NP-hard.
- (c) [2 ptos.] Si un lenguaje es indecidible, su complemento también lo es.

Solución

Parte (a)

V. En lógica proposicional se puede utilizar resolución, un sistema deductivo correcto y completo. *Observación:* algunas respuestas ahondaron en que el conjunto podía ser infinito, y se evaluaron de acuerdo a eso, permitiéndose otras respuestas (N o F debidamente justificadas).

Parte (b)

N. Si descubriéramos un problema que es P y NP-hard, entonces todo problema en NP sería reducible a un problema P, teniendo así que P=NP, lo cual no sabemos si es verdad.

Parte (c)

V. Si el complemento de un lenguaje \mathcal{L} es decidible por alguna máquina \mathcal{M} entonces podemos construir una máquina \mathcal{M}' tal que rechaza todo lo que \mathcal{M} acepta y acepta todo lo que \mathcal{M} rechaza. Esta nueva máquina siempre termina, ya que \mathcal{M} siempre termina y decide a \mathcal{L} , por lo tanto \mathcal{L} es decidible, demostrando contrapositivamente lo pedido.

Cada ítem recibe 1 pt. por decidir correctamente V, F o N y 1 pt. por justificar correctamente.

2. Lógica proposicional

Sea P un conjunto de variables proposicionales. Dado $\Sigma \subseteq L(P)$ y $\alpha, \beta \in L(P)$, demuestre que si α es una tautología, entonces $\Sigma \cup \{\alpha\} \models \beta$ si y solo si $\Sigma \models \beta$.

Solución

- (\Leftarrow) Por teorema de monotonía, sabemos que si una oración es consecuencia lógica de Σ, entonces será consecuencia lógica de cualqueir conjunto que contenga Σ, en particular de $\Sigma \cup \{\beta\}$.
- (\Rightarrow) Sea σ una valuación tal que $\sigma(\Sigma) = 1$. Notemos que como α es tautología, también tenemos que $\sigma(\alpha) = 1$, por lo tanto $\sigma(\Sigma \cup {\alpha}) = 1$. Si $\Sigma \cup {\alpha} \models \beta$, entonces tenemos que $\sigma(\beta) = 1$, entonces, $\Sigma \models \beta$.

Cada implicancia vale 3 pts. en la primera dar 2 pts. por aplicar teorema de monotonía y 1 por concluir y en la segunda dar 1.5 pts. por elegir una valuación arbitraria y 1.5 pts. por concluir.

3. Complejidad computacional

El siguiente problema clásico es NP-completo

$$3\text{-COL} = \{G \mid G \text{ es un grafo no dirigido } 3\text{-coloreable}\}$$

Para el siguiente problema

$$4\text{-COL} = \{G \mid G \text{ es un grafo no dirigido } 4\text{-coloreable}\}$$

- (a) [2 ptos.] Demuestre que 4-COL está en NP.
- (b) [4 ptos.] Demuestre que 4-COL es NP-hard.

Solución

Parte (a)

Para mostrar que 4-COL está en NP, construiremos la siguiente máquina de Turing M:

- 1. La máquina revisa que el input sea efectivamente un grafo con la codificación pedida. Esto toma tiempo polinomial, ya que basta con leer el input y verificar formato.
- 2. Asignar uno de cuatro colores a cada vértice. Esto se puede realizar en tiempo lineal, ya que basta recorrer los vértices y asignarles un color.
- 3. Revisar que sea una 4-coloración. Es posible realizar esto en tiempo lineal, ya que basta recorrer las aristas y revisar que ninguna conecte dos vértices del mismo color.

4. Aceptar si efectivamente es una 4-coloración.

Esta máquina no determinista claramente funciona en tiempo polinomial y decide el lenguaje, ya que si el grafo está en 4-COL debe tener una 4-coloración que será aceptada y si no está en 4-COL entonces no se podrá encontrar tal coloración.

Parte (b)

Construiremos una reducción f de 3-COL de la siguiente manera. Si el input w no es la codificación de un grafo, f es la identidad. Si el input es un grafo G=(V,E), entonces su imagen será G'=(V',E') con V' un conjunto que contiene V y un vértice extra v y E' el conjunto de aristas que contiene todas las aristas de E y además aristas entre todos los vértices y v. Esta función es claramente computable en tiempo polinomial, ya que solo estamos agregando una cantidad finita de aristas y vértices al grafo original.

Por otro lado, sea $G = (V, E) \in 3$ -COL, entonces tiene una 3-coloración $c : V \to \{\bullet, \bullet, \bullet\}$ con C_3 un conjunto de 3 colores. Entonces tomamos la coloración $c' : V \to \{\bullet, \bullet, \bullet, \bullet\}$ como la función tal que $c'|_V = c$ y $c'(v) = \bullet$. Obteniendo así una 4-coloración del grafo y concluyendo que $f(G) \in 4$ -COL.

Si tenemos que $f(G) \in 4$ -COL, entonces existe una 4 coloración $c: V' \to \{\bullet, \bullet, \bullet, \bullet, \bullet\}$. Notemos que para que esto sea una coloración, tenemos que c(v) = c(u) para todo $u \in V$, ya que v está conectado a todos los vértices de V. Por lo tanto, si restringimos c a V, obtenemos una 3-coloración de G, es decir $G \in 3$ -COL. En conclusión f efectivamente es una reducción de 3-COL a 4-COL y como 3-COL es NP-hard, podemos concluir que 4-COL es NP-hard.

En el primer ítem, se otorga 1 punto por construir bien la máquina y 1 punto por justificar que 4-COL está en NP.

En el segundo ítem, se otorga 1 punto por construir la reducción y mencionar que es computable en tiempo polinomial y 1,5 pts. por cada implicancia.

4. Lógica de primer orden y teorías

(a) [3 ptos.] Sea el vocabulario $\mathcal{L} = \{\cdot\}$ con · símbolo de relación ternaria y considere la \mathcal{L} -estructura $\mathfrak{A} = \langle \mathbb{R}, \cdot^{\mathfrak{A}} \rangle$ que interpreta a · como la multiplicación usual en los reales. Demuestre que en \mathfrak{A} no es definible la función exponencial, es decir, que el siguiente conjunto no es definible en \mathfrak{A}

$$S = \{(a, b) \in \mathbb{R}^2 \mid b = 2^a\}$$

(b) [3 ptos.] Demuestre que para toda estructura \mathfrak{A} , el siguiente conjunto es una teoría

$$Th(\mathfrak{A}) = \{ \varphi \mid \varphi \text{ es } \mathcal{L}\text{-oración tal que } \mathfrak{A} \models \varphi \}$$

Solución

Parte (a)

Definimos la función $h : \mathbb{R} \to \mathbb{R}$ tal que $(h(x) = x^{-1} \text{ si } x \neq 0 \text{ y } h(0) = 0$. ESta función es inversa de sí misma por la izquierda y la derecha, entonces es biyectiva y respeta el producto, ya que

$$h(x \cdot y) = x^{-1} \cdot y^{-1} = (x \cdot y)^{-1} = h(x) \cdot h(y)$$

Y si alguno de los dos términos fuera 0, claramente al se respeta el producto.

Luego, supongamos que existe una fórmula φ que define S en \mathfrak{A} , entonces por teorema de isomorfismo tendríamos que $\mathfrak{A} \models \varphi(x,y)$ si y solo si $\mathfrak{A} \models \varphi(h(x),h(y))$. Sin embargo, tenemos que $(1,2) \in S$, pero $2^{h(1)} = 2 \neq \frac{1}{2} = h(2)$, es decir $(h(1),h(2) \notin S$ y hemos llegado a una contradicción. Con esto concluimos que no puede existir tal φ y S no es definible en \mathfrak{A} .

Parte (b)

En primer lugar, notemos que $\operatorname{Th}(\mathfrak{A})$ es satisfacible por \mathfrak{A} , por lo tanto solo hay que probar que es cerrado bajo conclusión lógica para probar que es teoría. Para esto, supongamos que $\operatorname{Th}(\mathfrak{A}) \models \varphi$, como $\mathfrak{A} \models \operatorname{Th}(\mathfrak{A})$, tenemos que $\mathfrak{A} \models \varphi$, por lo tanto $\varphi \in \operatorname{Th}(\mathfrak{A})$. En conclusión, $\operatorname{Th}(\mathfrak{A})$ es una teoría.

En el primer ítem, se otorga la mitad del puntaje por definir correctamente el isomorfismo y el resto por llegar a la contradicción.

En el segundo ítem, se otorga la mitad del puntaje por probar que es satisfacible y la otra mitad por mostrar que es cerrado bajo conclusión lógica.