

Note que To= T(0,00), negle caso: $Q_0^{\prime\prime} = -k T_0 - T(L, \infty) = h T + (L, \infty) - T_0$ b) O flues térmics par superficie

&=L & dado par q') (L,t)=- x dT |

A partir da dist. de temp.

Podemos Construir O gráfico de fluxo

térmico: $\mathcal{F}_{\alpha}^{\nu}(l,t)$ Eggrema: T(x,t) \uparrow \Im \checkmark Steady state, $T(x,\infty)$ Considera goes:

· Condução Uni. dim. Propriedados constantes

K;
M3

Consideracoes. · Prop. Cte · Capacitària global desprezivel · Radiagno degoresivel Ana/138: Ocaeff. 9 labor de trans. Cal édada $\frac{1}{1} = \frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1$ Entao:
Bi=Ul=0,003 < 0,1

Método do Cap. glob: 9) t= pla In 0: - 38865 b) Realizando um boulanço de energias na sup. externa 5,0: $\frac{1}{2} = \frac{1}{2} = \frac{1$

t=1220 K Pados: D=1mm, Ta=25°C; R=0,010/m; I=100A; h=500 W/(m2K); D=800 Kg/m3; c=5005/KgK; K=20 W/m2K; · Tempo do tio para regime estacionaria; · Tempo p/ atingir 1ºc a menos da Temp. em regime esta.; Esquema: (Oil) T_∞=25°C h=500W/m²·K T=100A Wire, D=1mm Considerações: Propriedades (te; Temps. da fia Uniforme em relação a

Analise: $B = \frac{h(r_0/2)}{K} = 0.096 (0.1)$ O método da capacitància global pode ser utilizado. Considerando reg. est. gent gent que o ... que que que l'indication de l'est. T=To+ I Re = 88.7 C III Dh (I-To) = I Re Sem radiação, a resposta transiente é governa da pla eq a segvir: de = 6-a 0 = Irre yh A dt scp(no2/4) scpD Considerando 1:=25°C em +=9: 0-(I2Re/11Dh) = exp(-4h-t) t=8,313 5.35 Indos: t1=1005; T(L1, t1)=315°C; T(L2, t2)=28.5°C

Caso	<i>L</i> (m)	$\frac{\alpha}{(m^2/s)}$	$(\mathbf{W}\!/\!(\mathbf{m}\!\cdot\!\mathbf{K})\!)$	T_i (°C)	<i>T</i> ∞ (°C)	$(W/(m^2 \cdot K))$
1	0,10	15×10^{-6}	50	300	400	200
2	0,40	25×10^{-6}	100	30	20	100

tigvema:

$$T(x, \ge 0) = T_i$$
 $T_{\infty}, h \uparrow \uparrow \uparrow$

-T(L1,100s)=315°C T(L2,+2)=28.5°C

Considerações:

Anwlise:

Usando a dependência funcional adimensional da distribuição de temp. transientes temos:

$$9^* = \frac{T(x,t) - T_{00}}{T} = f(x^*,B; , b)$$

120 10:

Caso x*, B: e to foremiguais p/ os dois cases temos que on* = 02:

$$B_{i,1} = 0.40$$
 $\} \mathcal{X}_{1}^{*} = 1$ $\} \Theta_{i}^{*} = 315 - 400 = 0.85$
 $B_{i,2} = 0.40$ $\} \mathcal{X}_{2}^{*} = 1$ $\} \Theta_{i}^{*} = 215 - 20 = 0.85$

Neste caso temas que: Fai = Fo.2: 1.503 x 10 1 t2 = 0.150 t₂ = 9605 Radgs. l=200 mm; K= 45 V/mK; 0= 78.00Kg T\$=300%; To=700%; h=500 W 800K; Achav: para attingir thin=550°C a Tenpo Foguema: