Проверка гипотез.

- **1** (2 балла) Пусть X_1, \ldots, X_n выборка из распределения $N(\theta, 1)$. Существует ли равномерно наиболее мощный критерий для проверки гипотезы $H_0: \theta = 0$ против альтернативы $H_1: \theta \neq 0$?
- 2 (2 балла) Был проведен эксперимент по оценке эффективности различных лекарств, используемых для уменьшения послеоперационных эффектов, и получены следующие результаты

	Количество пациентов	Количество осложнений
Placebo	80	45
Chlorpromazine	75	26
Dimenhydrinate	85	52
Pentobarbital (100 mg)	67	35
Pentobarbital (150 mg)	85	37

Протестировать успешность каждого из лекарств по сравнению с плацебо на уровне значимости 0.05 с помощью критерия Вальда.

- 3 (2 балла) Выдана выборка X_1, \ldots, X_{200} . Рассмотрим основную гипотезу $H_0: X \sim Geom(p)$ против альтернативы $H_1: X \sim Pois(\lambda)$. На основе байесовского критерия построить критерии различения H_0 и H_1 уровней значимости 0.01, 0.05, 0.1 с помощью моделирования и определить, к какому распределению принадлежит выданная выборка (априорные распределения будут выданы семинаристами).
- 4 (3 балла) В файле Население.xls содержатся данные о численности населения стран мира за 2017 год. С помощью RML-теста проверить гипотезу о том, что выборка принадлежит распределению с $F(x) = 1 (kx+1)^{-2}$, x > 0, против альтернативы, что выборка сделана из распределения с $F(x) = F(x) = 1 (mx+1)^{-1}$, x > 0, $\gamma > 1$, на уровне значимости 0.05. Известно, что при такой постановке задачи распределение RML-статистики не зависит от истинного значения параметра k (или m в случае ложности основной гипотезы). Наложить график плотности истинного распределения на гистограмму выборки для подтверждения правильности вычислений. Замечания. Следует перевести численность населения в млн.ч. Прежде чем делать вывод о распределении выборки, следует промоделировать распределение RML-статистики при основной гипотезе и в соответствии с этим выбирать критерий.
- 5 (3 балла) Выдана выборка $X = (X_1, \dots, X_n)$ из неизвестного распределения Q. Рассмотрим гипотезу $H_0: Q \in \mathcal{P} = \{P_\theta, \theta \in \Theta\}$, где \mathcal{P} некое (заданное семинаристом) семейство распределений. С помощью разделения (возможно, многократного) выборки на 2 части и построения по первой части оценки параметра θ (можно брать функции от θ) проверить гипотезу H_0 и объяснить, почему критерий работает. Критерий должен правильно работать на достаточно большом количестве распределений. Π римечание. Использовать критерии согласия и известные критерии проверки принадлежности данному в задаче семейству распределений нельзя.