Artificial Intelligence

Taro Sekiyama

National Institute of Informatics (NII) sekiyama@nii.ac.jp

Agenda

- Development phases for machine learning
- K-nearest neighbors algorithm
- Case studies

Machine learning (ML)

Technology to learn the statistical characteristics of data points

Development cycle for ML

Model selection

Decides a model that represents statistical characteristics of data points

Evaluation

Evaluates how good the trained model is

Training

Fits the model to sample data points

Model selection

- Decides how to capture the statistical characteristics of sample data
- We have to select:
 - Machine learning algorithms
 - Options (a.k.a. hyperparameters) of the selected algorithm
- The performance of a model depends on a task and a dataset
 - Important to investigate them deeply

Training

- Fits the *parameters* of a selected ML model with a dataset (a set of sample data)
 - Parameters make the model so expressive that it can be applied to various tasks
 - Getting good performance needs optimization of the parameters for a specific task
- Parameters are fitted according to *features* of data points

Features

- Properties capturing the characteristics of data points
- Example
 - For images: width, height, RGB value for each pixel, ...
 - □ For texts: word frequency, part of speech, length, ...
- Often represented by n-dimensional vectors over real numbers (that is, elements in \mathbb{R}^n)

Evaluation

- Tests the performance of the trained model for data not appearing in the training
 - Important to check how good the model is for unknown data
- Metrics for evaluation
 - Accuracy for classification
 - The number of correctly predicted data out of all
 - Root Mean Square Error (RMSE) for regression

Development cycle for ML

Model selection

Decides a model that represents statistical characteristics of data points

- Try different features
- Augment data points

Evaluation

Evaluates how good the trained model is for unknown data points

Fits the parameters of the model according to features of data points

Case study

Task: Classification of flower species

- Dataset: Iris flower dataset
- Algorithm: K-nearest neighbors (K-NN)
- Evaluation metric: accuracy

Classification dataset

- A dataset of classification consists of pairs (X, Y) such that
 - □ X: inputs to a classifier
 - Features identifying a data point
 - □ Y: Expected outputs from a classifier
 - Category of X (called *label*)

Iris flower dataset

- 150 data points
- Input X is a tuple of:
 - (1) sepal length (2) sepal width
 - (3) petal length (4) petal width

http://blog.kaggle.com/2015/04/22/scikit-learn-video-3-machine-learning-first-steps-with-the-iris-dataset/

- Output Y is a number denoting one of:
 - (1) setosa
 - (2) versicolor
 - (3) virginica

Iris Versicolor Iris Virginica

https://inclass.kaggle.com/alexisbcook/distributions

Case study

Task: Classification of flower species

- Dataset: Iris flower dataset
- Algorithm: K-nearest neighbors (K-NN)
- Evaluation metric: accuracy

K-nearest neighbors

Prediction by votes from training data points nearest to an input

- Training phase
 - Holding a given training dataset
- Classification phase
 - □ Returns the most frequent label among K training data points nearest to an input
 - K is a hyperparameter that controls how many data points join voting
 - Euclid distance is used to determine "nearest" usually

Case study

Task: Classification of flower species

- Dataset: Iris flower dataset
- Algorithm: K-nearest neighbors (K-NN)
- Evaluation metric: accuracy
 - Calculates the number of correctly predicted data points in a test dataset

Programming environment

- This course uses **Python** (ver. 3)
 - Jupyter notebook
 - Tool to enable interactive programming
 - numpy / scikit-learn / pandas / matplot
 - Useful libraries for ML programming
- Anaconda (ver. 2019.07) provides all in one package

Outline

- 1. Basics of Python programming
- 2. Implementing the case study: classification of Iris species in Python

Basics of Python

- 1. Primitive values: numbers, strings, Booleans
- 2. If / while statements
- 3. Data structures
 - Lists
 - Dictionaries
 - Objects
- 4. Use of libraries
- FYI: Quick references are found by googling with "python cheat sheet"

Why K-NN works well?

Thanks to the features capturing the characteristics of Iris data points well

Case study 2

Task: Classification of flower species

- Dataset: Forge dataset
 - Need to install "mglearn" library
 - □ Type "pip install mglearn" in the terminal
- Algorithm: K-nearest neighbors (K-NN)
- Evaluation metric: accuracy

Features in Forge

There are found noisy data points

Problem of K-NN

- Weak for noisy data points
- Weak for sparse data points with highly-dimensional features
 - □ Differences of highly-dimensional features are eliminated by conversion to a real number (low-dimensional repr.)
- Computational cost of prediction with a huge training dataset
 - K-NN needs to compute distances from all the training data points
 - Practical datasets consists of:
 - 1M~ data points
 - 1K~ features