

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO PIAUÍ – UFPI

PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA ELÉTRICA

PLANO DE ENSINO

1. Identificação

Disciplina: Inteligência Computacional Aplicada

Carga Horária: **60h** Créditos: **2.2.0**

Bloco: Turma: 01 Período Letivo: 2020.2

Professor(a): Flávio Henrique Duarte Araújo

e-mail: flavio86@ufpi.edu.br

2. Ementa

Descoberta de Conhecimento em Base de Dados, Aprendizado de Máquina, Regressão, Classificação, Previsão de séries temporais, Redes Neurais e Deep Learning.

3. Objetivos

A disciplina busca possibilitar ao aluno, ao final do semestre:

- O entendimento de sistemas computacionais dentro de uma perspectiva da Inteligência Artificial;
 - A familiaridade com as metodologias e técnicas de desenvolvimento de sistemas inteligentes;
- Aplicar técnicas de IA na solução de problemas que envolvam certas ações humanas e que são difíceis de resolver por outras metodologias;
 - Pesquisar e utilizar software, ferramentas e outros recursos da Inteligência Artificial.

4. Conteúdo Programático

Conteúdo	Carga Horária
ABERTURA DO CURSO	2

MINISTÉRIO DA EDUCAÇÃO

PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Descoberta de Conhecimento em Base de Dados	5
Aprendizado de Máquina	5
Python para Análise de Dados	8
Regressão, Classificação	14
Previsão de séries temporais	12
Redes Neurais e Deep Learning	14

5. Procedimento de Ensino

A disciplina será desenvolvida através da ação conjunta professor e aluno, exigindo, para tanto, participação ativa nas aulas. Os procedimentos de ensino e aprendizagem adotados serão aulas expositivas, demonstrativas, estudo individual ou em grupo que deverão resultar no levantamento de situações problema, seminários e implementação de algoritmos.

6. Sistemática de Avaliação

A sistemática de avaliação está de acordo com a resolução 177/12 do Conselho de pesquisa, ensino e extensão da UFPI, onde será considerado aprovado na disciplina o acadêmico que obtiver média aritmética das avaliações igual ou superior a 7,0 e frequência no mínimo de 75% da carga horária total da disciplina, caso contrário o acadêmico terá que ser submetido a um exame final caso a média esteja entre 4,0 e 6,9 e será considerado reprovado se média inferior a 4,0 ou não tiver frequência mínima. Caso o acadêmico tenha que ser submetido ao exame final, sua média final será a média entre as avaliações parciais e a avaliação de exame final tendo que obter no mínimo média 6,0.

- Serão realizados trabalhos práticos (implementações/seminários) envolvendo os conceitos apresentados nas aulas.
 - Nota 1 = Trabalhos práticos.
 - Nota 2 = Trabalhos práticos.
 - Nota 3 = Trabalhos final da disciplina.

7. Bibliografia

Bibliografia Básica:

• MCKINNEY, W. Python para análise de dados. Novatec, 2018.

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO PIAUÍ – UFPI

PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA ELÉTRICA

- GRUS, J. Data Science do zero. Rio de Janeiro: Alta Books, 2016.
- BISHOP, C. M. Pattern Recognition and Machine Learning, 2011.
- BIRD S. Natural Language Processing with Python, O'Reilly, 2009.
- GRUS, J. Data Science from Scratch: First Principles with Python. 1 ed, 2015.
- RUSSEL, S., NORVIG, P. Inteligência Artificial. 3 ed. São Paulo: Campus, 2013.
- COPPIN, Bem. Inteligência Artificial. 1 ed. Rio de Janeiro: LTC, 2010.

Bibliografia Complementar:

- FERNANDES, Anita Maria da Rocha. **Inteligência Artificial: Noções Gerais.** Florianópolis: Visual Books, 2005.
- ROSA, J. L. G. Fundamentos da Inteligência Artificial. 1 ed. Rio de Janeiro: LTC, 2011.
- HAYKIN, S. Redes Neurais: princípios e prática. 2 ed. Porto Alegre: Bookman, 2001.
- REZENDE, S.O. Sistemas Inteligentes: Fundamentos e Aplicações. São Paulo: Manole, 2003.

Flávio Henrique Duarte de Araújo Professor(a)