MO824 - Tópicos em Otimização Combinatória Primeiro semestre de 2017

Relatório da Atividade 3

André Breda Carneiro - RA 208607 Luis Henrique Pauleti Mendes - RA 117801

1. Introdução

Esta atividade consiste na implementação da metaheurística Reactive GRASP, uma extensão da metaheurística GRASP (Greedy Randomized Adaptative Search Procedure) para a solução do problema de maximização de uma função binária quadrática com restrições de adjacência MAX-QBFAC (Maximum Quadratic Binary Function with Adjacency Constraints).

O problema MAX-QBFAC pode ser formulado da seguinte forma:

$$Max Z = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$$

s.a.

$$x_i + x_{i+1} \le 1, i \in \{1, ..., n-1\}$$

 $x_i \in B, i \in \{1, ..., n\}$

Onde $a_{ij} \in R \ (i,j \in \{1, ..., n\})$ são parâmetros do problema.

2. Variáveis de decisão

As variáveis de decisão são os valores de x_i com $i \in \{1, ..., n\}$.

3. Lista Restrita de Candidatos

A Lista de Candidatos (CL) contém os índices das variáveis x_i que podem ser incluídas na solução.

A Lista Restrita de Candidatos (RCL) contém os elementos da Lista de Candidatos que mais agregam valor à solução. Seja c_{min} e c_{max} os valores mínimos e máximos que os elementos da CL podem agregar à solução, a RCL é formada por elementos e da CL cujo valor c(e) que agregam a solução está no intervalo $\begin{bmatrix} c_{min}, c_{min} + \alpha (c_{max} - c_{min}) \end{bmatrix}$.

Vale ressaltar que, como estamos trabalhando num problema de maximização, os valores c(e) estão negativados para todo elemento e.

4. Heurística construtiva

A Heurística Construtiva é a fase gulosa-aleatória do GRASP. É nesta fase que uma solução inicial para o problema é criada, para depois ser melhorada pelos operadores de busca local.

Na heurística construtiva, enquanto for possível melhorar o valor da solução, é escolhido aleatoriamente um elemento da Lista Restrita de Candidatos para integrar a solução.

5. Operador de Busca Local e Método de Busca

Os Operadores de Busca Local utilizados nesta atividade foram os mesmos utilizados no MAX-QBF no código fornecido: Inserção, Remoção e Troca.

O operador de Inserção analisa cada elemento que está na Lista de Candidatos (e, consequentemente, não está na solução) e verifica se ele pode ser inserido na solução de forma que o valor da solução é melhorado.

De maneira análoga, o operador de Remoção analisa cada elemento que está na solução e verifica se ele pode ser removido da solução de forma que o valor da solução é melhorado.

Já o operador de Troca analisa cada elemento que está na Lista de Candidatos e verifica se ele pode ser trocado por algum outro elemento que está na solução de forma que o valor da solução é melhorado.

Os Métodos de Busca utilizados nesta atividade foram o Best-Improving e o First-Improving.

No método Best-Improving, todas as soluções da vizinhança definida pelos operadores de busca local são avaliadas, e a melhores delas é escolhida para ser a nova solução.

Já no método First-Improving, as soluções da vizinhança são avaliadas até que uma melhor que a atual seja encontrada, passando a ser a nova solução, enquanto que as demais são ignoradas. Para não influenciar a busca, a vizinhança é explorada de forma aleatória.

6. Critérios de parada

O critério de parada adotado para esta atividade foi o tempo. O tempo máximo permitido para cada execução foi de 3 minutos.

7. Método de Construção Alternativo

O método de construção alternativo adotado para esta atividade foi o Reative GRASP. Neste método, o valor do parâmetro α da Lista Restrita de Candidatos não é fixo, ele é aleatoriamente selecionado a cada iteração de um conjunto discreto $\Psi = \{\alpha_1, ..., \alpha_m\}$ de possíveis valores. A probabilidade associada com a escolha de cada valor são inicialmente iguais a $p_i = \frac{1}{m}$, para $i \in \{1, ..., m\}$. Além disso, seja z^* o valor da solução incumbente e seja A_i a valor médio de todas as soluções encontradas utilizando $\alpha = \alpha_i$, para $i \in \{1, ..., m\}$. As

probabilidades de seleção são periodicamente atualizadas da seguinte maneira: $p_i = \frac{q_i}{\frac{m}{m}}$, com $q_i = \frac{z^*}{A_i}$, para $i \in \{1, ..., m\}$.

Nesta atividade foram utilizados dois conjuntos discretos de possíveis valores para α : Ψ_1 ={0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00} e Ψ_2 ={0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00}.

Os resultados estão listados na tabela da próxima página.

8. Resultados

A tabela abaixo mostra os resultados obtidos para cada teste realizado com GRASP e ReactiveGRASP. Os "logs" dos testes estão nos arquivos "GRASP_QBGAC_Tests.txt" e "ReactiveGRASP_QBFAC_Tests.txt" em anexo.

	Instância	Local Search	Alpha	Iterações	Melhor Custo
GRASP	20	Best Improving	0,1	1.803.423	104
			0,4	1.527.257	104
		First Improving	0,1	2.234.138	104
			0,4	2.589.567	104
	40	Best Improving	0,1	221.865	251
			0,4	159.909	251
		First Improving	0,1	368.299	238
			0,4	439.195	251
	60	Best Improving	0,1	63.432	396
			0,4	37.552	396
		First Improving	0,1	115.245	396
			0,4	152.980	396
	80	Best Improving	0,1	22.315	592
			0,4	12.527	592
		First Improving	0,1	48.754	586
			0,4	62.596	584
	100	Best Improving	0,1	9.770	862
			0,4	5.411	862
		First Improving	0,1	23.966	862
			0,4	30.141	829

Reactive GRASP	20	Best Improving	Ψ ₁	1.356.556	104
			Ψ_2	1.380.322	104
		First Improving	Ψ_1	4.202.291	104
			Ψ ₂	4.144.066	104
	40	Best Improving	Ψ_1	151.569	251
			Ψ ₂	149.762	251
		First Improving	Ψ_1	963.786	251
			Ψ ₂	952.020	251
	60	Best Improving	Ψ_1	35.869	396
			Ψ ₂	35.651	396
		First Improving	Ψ_1	347.978	396
			Ψ ₂	350.416	396
	80	Best Improving	Ψ_1	11.798	592
			Ψ ₂	11.741	592
		First Improving	Ψ_1	167.938	584
			Ψ ₂	169.744	586
	100	Best Improving	Ψ_1	4.677	862
			Ψ ₂	4.767	862
		First Improving	Ψ ₁	92.885	839
			Ψ ₂	92.801	839