STAT6181 Computational Statistics I Lecture 1

Course Overview

Overview

- The course specifics
- The content
- The assessments
- The Textbooks
- R Software

The Course Specifics

- Level: Graduate Level Semester: I
- No. of Credits: 3
- Lecturer: Dr Isaac Dialsingh
- Email: <u>isaac.dialsingh@sta.uwi.edu</u>
- Telephone: 662-2002 Ext 83554

- Pre-requisites:
- Some knowledge of Statistical Inference is beneficial.
- Co-requisites None

Why this course is important?

- Computational Power is cheap
- Assumptions in Statistics do not hold all the time.
 When this happens, we often have some computational methods available
- Not all problems have exact solutions. In cases where an exact solution does not exist, we can "estimate" the answer.
- Research today especially with the prevalence of big data makes computational methods necessary.

The Content

- The main topics covered in the course:
 - Random number generation, Monte Carlo basics.
 - Importance sampling, Markov chain Monte Carlo.
 - Parametric and nonparametric bootstrap, permutation tests.
 - Optimization the basics.
 - Imputation Techniques
 - Expectation-maximization (EM) algorithm.
 - Bayesian Inference.

Random number generation - Monte Carlo basics.

- Generating random values from common distributions
 - common univariate distributions like exponential
 - uncommon univariate distributions (like the one below)

Random number generation, Monte Carlo basics.

Multivariate distributions (discrete case)

	Y		
X	0	1	2
0	0.1	0.1	0.2
1	0.3	0.2	0.1

Estimation of Integrals

Can you integrate this?

$$\int_{-\infty}^{\infty} 100e^{-(x-3)^2} dx$$

OR even this

$$\int_0^\infty x^4 e^{-2x} \, \mathrm{d}x$$

Parametric and nonparametric bootstrap, permutation tests.

- In inferential statistics, we often make assumptions about the distribution of data, for example, we may assume normality which most times lead to normality of a particular test statistic.
- But what happens when the normality assumption is in question?
- This is where the bootstrapping can assist us.

Simple example: Bootstrap

Suppose we have a sample of size 10 from a population that is not normal. How can we find a 95% confidence interval for the population mean?

Optimization Techniques

- There are simple optimization problems and off course there are difficult ones.
- Estimation problems in Statistics are essentially optimization problems.
- We will meet MLEs, Least Squares Method, all of which utilizes optimization techniques
- Some MLE problems are 'exact' while others need to be estimated - the problem usually boils down to the solution of a system of equations after the differentiation etc.

Some distributions

Two parameter Distributions

Normal distribution EASY!!!

Gamma distribution? HARD?

putation Techniques (if time permits)

How do we handle missing data?

Delete the rows of data missing?

Impute the missing values with a number(s)? Which numbers should we use?

Perform multiple imputation.

The EM (Expectation Maximization) Algorithm

Estimate parameters using a "missing" data approach Works well when no analytic solution is present.

Mixture model example:

Collect data: 12, 10, 11, 14, 12, 10, 4, 2, 4, 1, 3

How can we model the data? If we can model the data, can we estimate the parameters?

Bayesian Statistics

What it is?

How do we model data?

Assessments (tentative)

Coursework: 100%

- Group Project: 30%
- 2 Take home Tests (30%)
- 3 Individual Assignments (40%)

The Textbooks

PRESCRIBED TEXTS AND READING MATERIALS

- Required reading
- Computational Statistics, by G. H. Givens and J. A. Hoeting, (Wiley 2005).
- Statistical Computing with R by M. Rizzo, Chapman and Hall
- Recommended reading
- Hastie, T., Tibshirani, R. and Friedman J. 2009. Elements of Statistical Learning Springer.

R Software

Found everywhere in this course!!!

Questions?