Project Report

PROJECT NAME: Merchandise Popularity Prediction Using ML

TIMELINE: June-July Batch

Batch: AI/ML Intern

OBJECTIVE:	 This ML Model or program predicts merchandise popularity using a machine learning pipeline. It starts by loading and inspecting the data, removing duplicates, and checking for missing values. After conducting exploratory data analysis (EDA) to understand feature relationships and distributions, the data is split into training and testing sets. four classification models—Decision Tree, Random Forest, SVM, and KNN—are trained on the training data. The models then make predictions on the test data, and their performance is evaluated using accuracy and classification reports. The results are compared to determine the best model for predicting merchandise popularity.
REVIEWING DATASET:	 Loading Libraries and Data: Importing necessary libraries like pandas, numpy, seaborn, and matplotlib. Load the dataset from a CSV file into a DataFrame called train. Inspecting the Data: view the first and last few rows of the dataset to get an overview of content [Dataset= 18208 x 12] Exploratory Data Analysis (EDA): Descriptive Statistics[calculating and reviewing the statistical summary of each column.], Correlation Analysis[computing the correlation matrix to understand relationships between features and the target variable.], Distribution Plots[used 'sns.distplot' to visualize the distribution of the target variable 'popularity' And used 'sns.histplot' for better results]
DATA PREPROCESSING:	 Feature and Target Variables: Defining X as the feature variables (excluding popularity) and y as the target variable. Train-Test Split: The dataset is split into training and testing sets using train_test_split with 20% of the data reserved for testing.
MODELING:	 Training and Evaluating four different classification models Decision Tree: [used DecisionTreeClassifier to train the model., accuracy = 75.46%.] Random Forest: [used RandomForestClassifier with a random state of 46 to train model, accuracy = 83.89%] Support Vector Machine (SVM): [used SVC with an RBF kernel, accuracy = 84.07%] K-Nearest Neighbors (KNN): [used KNeighborsClassifier with 10 neighbors, accuracy = 83.74%]
MODEL EVALUATION:	 Decision Tree Classifier: [Mean Accuracy= 75.46%, Standard Deviation= 0.0067, The relatively higher standard deviation suggests that the model's performance varied more across different training/test splits Random Forest Classifier: [Mean Accuracy=83.89%, Standard Deviation= 0.0015, the model consistently performed well across different datasets, making it a reliable choice] Support Vector Classifier (SVC): [Mean Accuracy= 84.07%, Standard Deviation=0.0000, The zero standard deviation suggests that the model's performance was extremely consistent across all datasets] K-Nearest Neighbors Classifier (KNN): [Mean Accuracy= 83.74%, Standard Deviation= 0.0011, The low standard deviation indicates a consistent performance, though slightly less accurate than the SVC and Random Forest models.