Tính gần đúng đạo hàm

và tích phân xác định – Chương 5

1) Tính gần đúng đạo hàm:

Phương pháp:

Giả sử y = f(x) trên [a, b] có bảng nội suy cách đều:

X	X ₀	X ₁		X _n
У	yo	y ₁	•••	y _n

Bước 1: Đi tìm đa thức nội suy Newton $f(x) \approx P(x)$

Bước 2: Tính gần đúng đạo hàm: f' $(x^*) \approx P'(x^*)$

Ví dụ 1: Cho bảng giá trị của hàm y = f(x) như sau:

X	50	55	60	65
у	1.699	1.7404	1.7782	1.8139

Tính gần đúng đạo hàm tại x = 50.

Giải:

Có 4 nút nội suy, ta có:

$$P_3(x) = P_3(x = x_0 + ht) = y_0 + t\Delta_{y_0} + \frac{t(t-1)}{2!}\Delta_{y_0}^2 + \frac{t(t-1)(t-2)}{3!}\Delta_{y_0}^3$$

Với $x_0 = 50$ và h = 5

Ta lập bảng:

Xi	y i	Hiệu hữu hạn cấp 1	Hiệu hữu hạn cấp 2	Hiệu hữu hạn cấp 3
50	1.699			
		0.0414		
55	1.7404		-0.0036	
		0.0378		0.0015
60	1.7782		-0.0021	
		0.0357		
65	1.8139			
	50 55 60	50 1.699 55 1.7404 60 1.7782	50	50 1.699 0.0414 -0.0036 55 1.7404 -0.0036 60 1.7782 -0.0021 0.0357

Đa thức cần tìm là:

$$\begin{split} P_3(\mathbf{x} = 50 + 5\mathbf{t}) &= P_3(\mathbf{t}) = 1.699 + 0.0414t - \frac{0.0036t(t-1)}{2!} + \frac{0.0015t(t-1)(t-2)}{3!} \\ &\to P_3'(t) = \left[0.0414 - 0.0018(2t-1) + 0.00025(3t^2 - 6t + 2)\right] \times \frac{1}{5} \end{split}$$

$$\mathsf{Tai} \ \mathbf{x} = 50 \to t = \frac{x - x_0}{h} = \frac{50 - 50}{5} = 0, \ \mathsf{thay} \ \mathbf{t} = 0 \ \mathsf{vao} \ P_3'(t), \ \mathsf{ta} \ \mathsf{duoc} : \\ P_3'(t = 0) &= \left[0.0414 - 0.0018(2 \times 0 - 1) + 0.00025(3 \times 0^2 - 6 \times 0 + 2)\right] \times \frac{1}{5} \\ &= 0.0085. \end{split}$$

Vậy, f '(x = 50)
$$\approx P_3'(t = 0) = 0.0085$$

2) Tính gần đúng tích phân xác định:

2.1. Công thức hình thang:

Phương pháp:

Chia đoạn [a, b] thành n đoạn bằng nhau $[x_0, x_1], ..., [x_{n-1}, x_n],$ với n+1 nút nội suy cách đều:

$$x_0 = a, ..., x_n = a + n \times h = b$$

$$\to h = \frac{b-a}{n}$$

Ta có công thức tổng quát như sau:

$$I = \int_{a}^{b} f(x)d(x) \approx \frac{h}{2} \times [(y_0 + y_n) + 2(y_1 + \dots + y_{n-1})]$$

Ví dụ 2: Tính gần đúng tích phân $I = \int_0^1 x \times e^{-x} dx$ bằng công thức hình thang với đoạn [0, 1] được chia thành 4 đoạn bằng nhau.

Giải:

Ta có:
$$f(x) = x \times e^{-x}$$
, $x_0 = 0$, $x_n = 1$, $n = 4$ và $h = \frac{b-a}{n} = \frac{1-0}{4} = \frac{1}{4}$

Bảng giá trị của hàm f(x) là:

X	$y = x \times e^{-x}$
0	0
1/4	0.1947
$^{1}/_{2}$	0.3033
3/4	0.3543
1	0.3679

Bấm máy:

- *Xóa bộ nhớ: Shift 9 3 = =*
- Lập công thức:

$$Y = X \times e^{-X} : X = X + \frac{1}{4}$$

- Bấm CALC
- Nhập X = 0 thì ra giá trị của f(x) khi x = 0 ...

Áp dụng công thức hình thang, ta được:

$$I = \int_{0}^{1} x \times e^{-x} dx \approx \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + y_3)]$$

$$\approx \frac{1/4}{2}[(0+0.3679)+2(0.1947+0.3033+0.3543)] \approx 0.2509$$

2.2. Công thức Simson:

Phương pháp:

Chia đoạn [a, b] thành n đoạn (n chẵn) với n+1 nút nội suy cách đều nhau:

$$x_0 = a, ..., x_n = a + n \times h = b \text{ v\'oi } h = \frac{b-a}{n}$$

Ta có công thức tổng quát như sau:

$$I = \int_{a}^{b} f(x)d(x) \approx \frac{h}{3} \times \left[(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 \dots + y_{n-2}) \right]$$

Ví dụ 3: Tính gần đúng tích phân sau bằng công thức Simson bằng cách chia [0.5, 1.5] thành 8 đoạn bằng nhau: $I = \int_{0.5}^{1.5} \frac{\sin(x)}{x} d(x)$

Giải:

Ta có:
$$f(x) = \frac{\sin(x)}{x}$$
, $x_0 = 0.5$, $x_n = 1.5$, $n = 8$, $h = \frac{b-a}{n} = \frac{1.5-0.5}{8} = 0.125$

Ta có bảng giá trị của hàm f(x) là:

X	$y = \frac{\sin(x)}{x}$
0.5	0.9589
0.625	0.9362
0.75	0.9089
0.875	0.8772
1	0.8415
1.125	0.802
1.25	0.7592
1.375	0.7134
1.5	0.665

Bấm máy:

- *Xóa bộ nhớ: Shift 9 3 = =*
- Chuyển đổi sang Radian: Shift MODE 4
- Lập công thức:

$$Y = \frac{\sin(X)}{X} : X = X + 0.125$$

• $Bắm\ CALC\ để\ nhập\ dữ\ liệu\ x_0$

Áp dụng công thức SimSon, ta có:

$$I = \int_{0.5}^{1.5} \frac{\sin(x)}{x} d(x) \approx \frac{h}{3} \times \left[(y_0 + y_8) + 4(y_1 + y_3 + y_5 + y_7) + 2(y_2 + y_4 + y_6) \right]$$

$$\approx \frac{h}{3} \times \left[(0.9589 + 0.6650) + 4 \times (0.9362 + 0.8772 + 0.8020 + 0.7134) + 2 \times (0.9089 + 0.8415 + 0.7592) \right]$$

≈ 0.8316

Bài tập 1: Tính gần đúng $I = \int_1^{1.6} \sqrt{x^3 - 1} dx$ bằng công thức SimSon với đoạn [1, 1.6] được chia thành 6 đoạn bằng nhau.

Bài tập 2: Cho hàm y = f(x) với bảng số liệu sau:

X	1.2	1.3	1.4	1.5
У	-4.38	-2.16	0	2.55

- a) Dùng phương pháp bình phương bé nhất tìm hàm y = ax + b gần với hàm f(x) nhất.
- b) Tính gần đúng đạo hàm f'(1.4).

Bài tập 3: Tính gần đúng tích phân $I = \int_2^4 x \cdot \ln(x) dx$ bằng công thức hình thang với việc chia đoạn [2, 4] thành 8 đoạn con bằng nhau.

Bài tập 4: Cho hàm y = f(x) với bảng giá trị sau:

X	2.2	2.3	2.4	2.55
у	1.772	2.635	2	1.094

- a) Dùng đa thức nội suy Lagrange để xác định đa thức gần đúng với hàm y = f(x).
- b) Tính gần đúng đạo hàm y'(2.2) và y'(2.4).
- c) Tính gần đúng đạo hàm y'(2.5).

Lưu ý: Cách tính gần đúng đạo hàm có 2 trường hợp:

Trường họp 1: x* không trùng với các nút nội suy
Dùng đa thức nội suy:

$$f'(x^*) \approx P'_n(x^*)$$

• Trường hợp 2: x* trùng với nút nội suy

Dùng một trong 3 cách sau:

- o Cách 1: Sử dụng Trường hợp 1.
- Cách 2: Áp dụng công thức: $f'(x) \approx \frac{f(x_{i+1}) f(x_i)}{x_{i+1} x_i}$
- Cách 3: Áp dụng công thức: $f'(x) \approx \frac{f(x_{i-1}) f(x_i)}{x_{i-1} x_i}$