# Simulation and High-Performance Computing Part 3: Higher-order Methods

Steffen Börm

Christian-Albrechts-Universität zu Kiel

September 29th, 2020

# Higher-order methods

#### Observation:

- First-order convergence: Error proportional to  $\delta$ . Examples: Implicit and explicit Euler methods.
- Second-order convergence: Error proportional to  $\delta^2$ . Examples: Runge's method, Crank-Nicolson, leapfrog method.

Goal: n-th order convergence, error proportional to  $\delta^n$ .

# Higher-order methods

#### Observation:

- First-order convergence: Error proportional to  $\delta$ . Examples: Implicit and explicit Euler methods.
- Second-order convergence: Error proportional to  $\delta^2$ . Examples: Runge's method, Crank-Nicolson, leapfrog method.

Goal: *n*-th order convergence, error proportional to  $\delta^n$ .

Idea: Euler methods are exact for linear solutions, Crank-Nicolson and the leapfrog method are exact for quadratic solutions.

 $\rightarrow$  Look for methods that are exact for polynomials of high degree m.

$$p(t) = a_0 + a_1t + \ldots + a_mt^m.$$

Goal: Approximate a given function f by a polynomial p of degree m.

Taylor polynomial around a center  $t_0$  given by

$$p(t) = \sum_{k=0}^{m} (t - t_0)^k \frac{f^{(k)}(t_0)}{k!}.$$

Goal: Approximate a given function f by a polynomial p of degree m.

Taylor polynomial around a center  $t_0$  given by

$$p(t) = \sum_{k=0}^{m} (t - t_0)^k \frac{f^{(k)}(t_0)}{k!}.$$

Problem: We need the first k derivatives to compute p.

Goal: Approximate a given function f by a polynomial p of degree m.

Taylor polynomial around a center  $t_0$  given by

$$p(t) = \sum_{k=0}^{m} (t - t_0)^k \frac{f^{(k)}(t_0)}{k!}.$$

Problem: We need the first k derivatives to compute p.

Interpolation: Given  $t_0, \ldots, t_m$ , find p of degree m with

$$p(t_i) = f(t_i)$$
 for all  $j \in [0:m]$ .

Goal: Approximate a given function f by a polynomial p of degree m.

Taylor polynomial around a center  $t_0$  given by

$$p(t) = \sum_{k=0}^{m} (t - t_0)^k \frac{f^{(k)}(t_0)}{k!}.$$

Problem: We need the first k derivatives to compute p.

Interpolation: Given  $t_0, \ldots, t_m$ , find p of degree m with

$$p(t_j) = f(t_j)$$
 for all  $j \in [0:m]$ .

Problem: p is given implicitly, i.e., as the solution of equations.

# Lagrange polynomials

Idea: If we can find polynomials  $(\ell_k)_{k=0}^m$  satisfying

$$\ell_k(t_j) = egin{cases} 1 & ext{if } k = j, \\ 0 & ext{otherwise} \end{cases}$$
 for all  $j, k \in [0:m],$ 

we can represent p explicitly as

$$p(t) = \sum_{k=0}^{m} f(t_k) \ell_k(t)$$
 since  $p(t_j) = \sum_{k=0}^{m} f(t_k) \ell_k(t_j) = f(t_j)$ .

# Lagrange polynomials

Idea: If we can find polynomials  $(\ell_k)_{k=0}^m$  satisfying

$$\ell_k(t_j) = egin{cases} 1 & ext{if } k = j, \\ 0 & ext{otherwise} \end{cases}$$
 for all  $j, k \in [0:m],$ 

we can represent p explicitly as

$$p(t) = \sum_{k=0}^{m} f(t_k) \ell_k(t)$$
 since  $p(t_j) = \sum_{k=0}^{m} f(t_k) \ell_k(t_j) = f(t_j)$ .

Construction: Multiply linear factors to create the required zeros.

$$\ell_k(t) = \prod_{\substack{i=0\\i\neq k}}^m \frac{t-t_i}{t_k-t_i}.$$





















#### Numerical differentiation

Goal: Given a function f, evaluate f'(0).

Approach: Approximate f by a polynomial p and evaluate p'(0).

$$f'(0) \approx p'(0) = \sum_{k=0}^{m} f(t_k) \underbrace{\ell'_k(0)}_{=:w_k} = \sum_{k=0}^{m} f(t_k) w_k.$$

Weights  $w_0, \ldots, w_m$  can be computed by solving a linear system. Monomials  $p_i(t) = t^i$ ,  $i \in [0 : m]$ , have to be differentiated exactly.

$$\sum_{k=0}^m t_k^i w_k = \sum_{k=0}^m p_i(t_k) w_k = p_i'(0) = egin{cases} 1 & ext{if } i=1, \ 0 & ext{otherwise.} \end{cases}$$

#### Example: Fourth-order numerical differentiation

Approach: Interpolation points -3, -1, 1, 3, weights have to solve

$$w_0 + w_1 + w_2 + w_3 = 0,$$
  $(p_0(t) = 1)$   
 $-3w_0 - w_1 + w_2 + 3w_3 = 1,$   $(p_1(t) = t)$   
 $9w_0 + w_1 + w_2 + 9w_3 = 0,$   $(p_2(t) = t^2)$   
 $-27w_0 - w_1 + w_2 + 27w_3 = 0.$   $(p_3(t) = t^3)$ 

#### Example: Fourth-order numerical differentiation

Approach: Interpolation points -3, -1, 1, 3, weights have to solve

$$w_0 + w_1 + w_2 + w_3 = 0,$$
  $(p_0(t) = 1)$   
 $-3w_0 - w_1 + w_2 + 3w_3 = 1,$   $(p_1(t) = t)$   
 $9w_0 + w_1 + w_2 + 9w_3 = 0,$   $(p_2(t) = t^2)$   
 $-27w_0 - w_1 + w_2 + 27w_3 = 0.$   $(p_3(t) = t^3)$ 

The first and third equation yield  $w_3 = -w_0$  and  $w_2 = -w_1$ . The fourth equation yields  $w_1 = -27w_0$ , and the second  $w_0 = \frac{1}{48}$ .

#### Example: Fourth-order numerical differentiation

Approach: Interpolation points -3, -1, 1, 3, weights have to solve

$$w_0 + w_1 + w_2 + w_3 = 0,$$
  $(p_0(t) = 1)$   
 $-3w_0 - w_1 + w_2 + 3w_3 = 1,$   $(p_1(t) = t)$   
 $9w_0 + w_1 + w_2 + 9w_3 = 0,$   $(p_2(t) = t^2)$   
 $-27w_0 - w_1 + w_2 + 27w_3 = 0.$   $(p_3(t) = t^3)$ 

The first and third equation yield  $w_3=-w_0$  and  $w_2=-w_1$ . The fourth equation yields  $w_1=-27w_0$ , and the second  $w_0=\frac{1}{48}$ .

Result: Another central difference quotient.

$$f'(0) \approx \frac{f(-3) - 27 f(-1) + 27 f(1) - f(3)}{48}$$

# **Experiment: Numerical differentiation**

Idea: Control accuracy by scaling,  $\hat{f}(t) = f(ht)$ ,

$$f'(0) = \frac{\hat{f}'(0)}{h} = \frac{f(-3h) - 27f(-h) + 27f(h) - f(3h)}{48h}.$$

# **Experiment: Numerical differentiation**

Idea: Control accuracy by scaling,  $\hat{f}(t) = f(ht)$ ,

$$f'(0) = \frac{\hat{f}'(0)}{h} = \frac{f(-3h) - 27f(-h) + 27f(h) - f(3h)}{48h}.$$

Experiment: Approximate derivative of  $f(t) = e^t$ .

| h    | error       | factor |
|------|-------------|--------|
| 1    | $-9.5_{-2}$ |        |
| 1/2  | $-5.0_{-3}$ | 19.2   |
| 1/4  | $-3.0_{-4}$ | 16.7   |
| 1/8  | $-1.8_{-5}$ | 16.2   |
| 1/16 | $-1.1_{-6}$ | 16.0   |
| 1/32 | $-7.2_{-8}$ | 16.0   |
| 1/64 | $-4.5_{-9}$ | 16.0   |

#### Example: Second derivative

Approach: Interpolation points -1, 0, 1, weights have to solve

$$w_0 + w_1 + w_2 = 0,$$
  $(p_0(t) = 1)$   
 $-w_0 + w_2 = 0,$   $(p_1(t) = t)$   
 $w_0 + w_2 = 2.$   $(p_2(t) = t^2)$ 

#### Example: Second derivative

Approach: Interpolation points -1, 0, 1, weights have to solve

$$w_0 + w_1 + w_2 = 0,$$
  $(p_0(t) = 1)$   
 $-w_0 + w_2 = 0,$   $(p_1(t) = t)$   
 $w_0 + w_2 = 2.$   $(p_2(t) = t^2)$ 

The second equation yields  $w_2 = w_0$ .

The third yields  $w_0 = 1$ , and the first  $w_1 = -2$ .

#### Example: Second derivative

Approach: Interpolation points -1, 0, 1, weights have to solve

$$w_0 + w_1 + w_2 = 0,$$
  $(p_0(t) = 1)$   
 $-w_0 + w_2 = 0,$   $(p_1(t) = t)$   
 $w_0 + w_2 = 2.$   $(p_2(t) = t^2)$ 

The second equation yields  $w_2 = w_0$ .

The third yields  $w_0 = 1$ , and the first  $w_1 = -2$ .

Result: Central difference quotient for the second derivative.

$$f''(0) \approx f(-1) - 2f(0) + f(1).$$

# Experiment: Second derivative

Once again: Control accuracy by scaling,  $\hat{f}(t) = f(ht)$ ,

$$f''(0) = \frac{\hat{f}''(0)}{h^2} = \frac{f(-h) - 2f(0) + f(h)}{h^2}.$$

# Experiment: Second derivative

Once again: Control accuracy by scaling,  $\hat{f}(t) = f(ht)$ ,

$$f''(0) = \frac{\hat{f}''(0)}{h^2} = \frac{f(-h) - 2f(0) + f(h)}{h^2}.$$

Experiment: Approximate second derivative of  $f(t) = e^t$ .

| h    | error      | factor |
|------|------------|--------|
| 1    | $8.6_{-2}$ |        |
| 1/2  | $2.1_{-2}$ | 4.1    |
| 1/4  | $5.2_{-3}$ | 4.0    |
| 1/8  | $1.3_{-3}$ | 4.0    |
| 1/16 | $3.3_{-4}$ | 4.0    |
| 1/32 | 8.1_5      | 4.0    |
| 1/64 | $2.0_{-5}$ | 4.0    |

#### Extrapolation

Goal: Given a function f, evaluate  $f(0) = \lim_{t\to 0} f(t)$ .

Approach: Approximate f by a polynomial p and evaluate p(0).

$$f(0) \approx p(0) = \sum_{k=0}^{m} f(t_k) \ell_k(0) = \sum_{k=0}^{m} f(t_k) w_k.$$

Weights  $w_0, \ldots, w_k$  can again be computed by solving a linear system. Monomials  $p_i(t) = t^i$ ,  $i \in [0:m]$ , have to be evaluated exactly.

$$\sum_{k=0}^m t_k^i w_k = \sum_{k=0}^m p_i(t_k) w_k = p_i(0) = \begin{cases} 1 & \text{if } i = 0, \\ 0 & \text{otherwise.} \end{cases}$$

# Example: Fourth-order extrapolation

Approach: Interpolation points  $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ , weights have to solve

$$\begin{aligned} w_0 + w_1 + w_2 + w_3 &= 1, & (p_0(t) &= 1) \\ w_0 + \frac{1}{2}w_1 + \frac{1}{4}w_2 + \frac{1}{8}w_3 &= 0, & (p_1(t) &= t) \\ w_0 + \frac{1}{4}w_1 + \frac{1}{16}w_2 + \frac{1}{64}w_3 &= 0, & (p_2(t) &= t^2) \\ w_0 + \frac{1}{8}w_1 + \frac{1}{64}w_2 + \frac{1}{512}w_3 &= 0. & (p_3(t) &= t^3) \end{aligned}$$

The solution is  $w_0 = -\frac{1}{21}$ ,  $w_1 = \frac{2}{3}$ ,  $w_2 = -\frac{8}{3}$ ,  $w_3 = \frac{64}{21}$ .

Result: Difference quotient for approximating the limit  $t \to 0$ .

$$\lim_{t\to 0} f(t) \approx \frac{-f(1) + 14 f(\frac{1}{2}) - 56 f(\frac{1}{4}) + 64 f(\frac{1}{8})}{21}$$

# **Experiment:** Extrapolation

Once again: Control accuracy by scaling,  $\hat{f}(t) = f(ht)$ ,

$$\lim_{t \to 0} f(t) = \lim_{t \to 0} \hat{f}(t) \approx \frac{-f(h) + 14 f(\frac{h}{2}) - 56 f(\frac{h}{4}) + 64 f(\frac{h}{8})}{21}.$$

# **Experiment:** Extrapolation

Once again: Control accuracy by scaling,  $\hat{f}(t) = f(ht)$ ,

$$\lim_{t \to 0} f(t) = \lim_{t \to 0} \hat{f}(t) \approx \frac{-f(h) + 14 f(\frac{h}{2}) - 56 f(\frac{h}{4}) + 64 f(\frac{h}{8})}{21}.$$

Experiment: Approximate  $\lim_{t\to 0} \frac{\exp(t)-1}{t}$ .

| h    | error        | factor |
|------|--------------|--------|
| 1    | $-1.8_{-4}$  |        |
| 1/2  | $-9.5_{-6}$  | 18.8   |
| 1/4  | $-5.5_{-7}$  | 17.3   |
| 1/8  | $-3.3_{-8}$  | 16.6   |
| 1/16 | $-2.0_{-9}$  | 16.3   |
| 1/32 | $-1.3_{-10}$ | 16.1   |
| 1/64 | $-7.7_{-12}$ | 16.2   |

# Numerical integration

Goal: Given a function f, evaluate  $\int_{-1}^{1} f(t) dt$ .

Approach: Approximate f by a polynomial p and integrate p.

$$\int_{-1}^{1} f(t) dt \approx \int_{-1}^{1} p(t) dt = \sum_{k=0}^{m} f(t_k) \int_{-1}^{1} \ell_k(t) dt = \sum_{k=0}^{m} f(t_k) w_k.$$

Weights  $w_0, \ldots, w_k$  can again be computed by solving a linear system. Monomials  $p_i(t) = t^i$ ,  $i \in [0:m]$ , have to be integrated exactly.

$$\sum_{k=0}^{m} t_k^i w_k = \sum_{k=0}^{m} p_i(t_k) w_k = \int_{-1}^{1} p_i(t) \, dt = \begin{cases} \frac{2}{i+1} & \text{if } i \text{ even,} \\ 0 & \text{otherwise.} \end{cases}$$

#### Examples: Trapezoidal and Simpson's rule

Trapezoidal quadrature rule: Interpolation points -1, 1, weights solve

$$w_0 + w_1 = 2,$$
  $(p_0(t) = 1)$   
 $-w_0 + w_1 = 0.$   $(p_1(t) = t)$ 

The solution is  $w_0 = w_1 = 1$ .

## Examples: Trapezoidal and Simpson's rule

Trapezoidal quadrature rule: Interpolation points -1, 1, weights solve

$$w_0 + w_1 = 2,$$
  $(p_0(t) = 1)$   
 $-w_0 + w_1 = 0.$   $(p_1(t) = t)$ 

The solution is  $w_0 = w_1 = 1$ .

Simpson's quadrature rule: Interpolation points -1,0,1, weights solve

$$w_0 + w_1 + w_2 = 2,$$
  $(p_0(t) = 1)$   
 $-w_0 + w_2 = 0,$   $(p_1(t) = t)$   
 $w_0 + w_2 = \frac{2}{3}.$   $(p_2(t) = t^2)$ 

The solution is  $w_0 = w_2 = \frac{1}{3}$ ,  $w_1 = \frac{4}{3}$ .

## Composite integration

Problem: Scaling to  $\hat{f}(t) = f(ht)$  only yields

$$\int_{-h}^{h} f(t) dt = h \int_{-1}^{1} \hat{f}(t) dt \approx h \sum_{k=0}^{m} f(ht_{k}) w_{k},$$

i.e., the interval is scaled, as well.

Solution: Split the original interval [a, b] into subintervals, apply quadrature rule to subintervals.

## Experiment: Composite trapezoidal rule

Scaling and subdividing yields

$$\int_a^b f(t) dt \approx \frac{b-a}{2n} \left( f(a) + 2 \sum_{i=1}^{n-1} f\left(a + \frac{b-a}{n}i\right) + f(b) \right).$$

# Experiment: Composite trapezoidal rule

Scaling and subdividing yields

$$\int_a^b f(t) dt \approx \frac{b-a}{2n} \left( f(a) + 2 \sum_{i=1}^{n-1} f\left(a + \frac{b-a}{n}i\right) + f(b) \right).$$

Experiment: Approximate  $\int_0^2 e^t dt$ .

| n  | error      | error factor |  |
|----|------------|--------------|--|
| 1  | 2          |              |  |
| 2  | $5.2_{-1}$ | 3.8          |  |
| 4  | $1.3_{-1}$ | 4.0          |  |
| 8  | $3.3_{-2}$ | 3.9          |  |
| 16 | $8.3_{-3}$ | 4.0          |  |
| 32 | $2.1_{-3}$ | 3.9          |  |
| 64 | $5.2_{-4}$ | 4.0          |  |

## Romberg quadrature

Idea: Combine extrapolation and the trapezoidal quadrature rule.

Trapezoidal rule for h > 0 with  $n := \frac{b-a}{h} \in \mathbb{N}$  given by

$$T(h) = \frac{h}{2} \left( f(a) + 2 \sum_{i=1}^{n-1} f(a+hi) + f(b) \right).$$

Euler-Maclaurin summation yields  $c_1, c_2, \ldots$  such that

$$T(h) = \int_a^b f(t) dt + c_1 h^2 + c_2 h^4 + \dots$$

## Romberg quadrature

Idea: Combine extrapolation and the trapezoidal quadrature rule.

Trapezoidal rule for h > 0 with  $n := \frac{b-a}{h} \in \mathbb{N}$  given by

$$T(h) = \frac{h}{2} \left( f(a) + 2 \sum_{i=1}^{n-1} f(a+hi) + f(b) \right).$$

Euler-Maclaurin summation yields  $c_1, c_2, \ldots$  such that

$$T(h) = \int_a^b f(t) dt + c_1 h^2 + c_2 h^4 + \dots$$

Idea: Use extrapolation to find limit  $s \to 0$  of

$$g(s) := T(\sqrt{s}) = \int_a^b f(t) dt + c_1 s + c_2 s^2 + \dots$$

## Extrapolation

Approach: Approximate limit  $s \to 0$  of  $g(s) = T(\sqrt{s})$  using the interpolation points  $s_0 := \frac{(b-a)^2}{4}$ ,  $s_k := s_0 4^{-k}$ ,  $k \in \mathbb{N}$ .

$$g(s_k) = T(\sqrt{s_k}) = T(\frac{b-a}{2^k}) = \frac{h_k}{2} \left( f(a) + 2 \sum_{i=1}^{2^{k+1}-1} f(a+h_k i) + f(b) \right)$$

with  $h_0 = \frac{b-a}{2}$ ,  $h_k = h_0 2^{-k}$ .

Implementation: We can use  $g(s_k)$  to compute  $g(s_{k+1})$  more efficiently.

Observation: We do not need the entire interpolating polynomial p, we only need its value in s=0.

#### Neville-Aitken method

Goal: Evaluate an interpolating polynomial efficiently in 0.

Idea: Define polynomials  $p_{i,j}$ ,  $j \ge i$ , of degree j - i such that

$$p_{i,j}(s_k) = g(s_k)$$

for all 
$$k \in [i:j]$$
.

#### Neville-Aitken method

Goal: Evaluate an interpolating polynomial efficiently in 0.

Idea: Define polynomials  $p_{i,j}$ ,  $j \ge i$ , of degree j - i such that

$$p_{i,j}(s_k) = g(s_k)$$
 for all  $k \in [i:j]$ .

Aitken recurrence:

$$p_{i,j}(s) = \begin{cases} g(s_i) & \text{if } i = j, \\ \frac{s_i - s}{s_i - s_j} p_{i+1,j}(s) + \frac{s - s_j}{s_i - s_j} p_{i,j-1}(s) & \text{otherwise.} \end{cases}$$

#### Neville-Aitken method

Goal: Evaluate an interpolating polynomial efficiently in 0.

Idea: Define polynomials  $p_{i,j}$ ,  $j \ge i$ , of degree j - i such that

$$p_{i,j}(s_k) = g(s_k)$$
 for all  $k \in [i:j]$ .

Aitken recurrence:

$$p_{i,j}(s) = \begin{cases} g(s_i) & \text{if } i = j, \\ \frac{s_i - s}{s_i - s_j} p_{i+1,j}(s) + \frac{s - s_j}{s_i - s_j} p_{i,j-1}(s) & \text{otherwise.} \end{cases}$$

In our case:  $s_k = s_0 4^{-k}$  and therefore

$$\frac{s_i}{s_i-s_j} = \frac{4^{-i}}{4^{-i}-4^{-j}} = \frac{4^{j-i}}{4^{j-i}-1}, \quad \frac{s_j}{s_i-s_j} = \frac{4^{-j}}{4^{-i}-4^{-j}} = \frac{1}{4^{j-i}-1}.$$

$$g(s_0) = p_{0,0}(0)$$

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$ 

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$ 

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$   
 $g(s_2) = p_{2,2}(0)$ 

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$   
 $g(s_2) = p_{2,2}(0)$   $p_{1,2}(0)$ 

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$   
 $g(s_2) = p_{2,2}(0)$   $p_{1,2}(0)$   $p_{0,2}(0)$ 

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$   
 $g(s_2) = p_{2,2}(0)$   $p_{1,2}(0)$   $p_{0,2}(0)$   
 $g(s_3) = p_{3,3}(0)$ 

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$   
 $g(s_2) = p_{2,2}(0)$   $p_{1,2}(0)$   $p_{0,2}(0)$   
 $g(s_3) = p_{3,3}(0)$   $p_{2,3}(0)$ 

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$   
 $g(s_2) = p_{2,2}(0)$   $p_{1,2}(0)$   $p_{0,2}(0)$   
 $g(s_3) = p_{3,3}(0)$   $p_{2,3}(0)$   $p_{1,3}(0)$ 

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$   
 $g(s_2) = p_{2,2}(0)$   $p_{1,2}(0)$   $p_{0,2}(0)$   
 $g(s_3) = p_{3,3}(0)$   $p_{2,3}(0)$   $p_{1,3}(0)$   $p_{0,3}(0)$ 

Approach: In each step, compute  $g(s_k)$  and update  $p_{kk}(0), \ldots, p_{0k}(0)$ .

$$g(s_0) = p_{0,0}(0)$$
  
 $g(s_1) = p_{1,1}(0)$   $p_{0,1}(0)$   
 $g(s_2) = p_{2,2}(0)$   $p_{1,2}(0)$   $p_{0,2}(0)$   
 $g(s_3) = p_{3,3}(0)$   $p_{2,3}(0)$   $p_{1,3}(0)$   $p_{0,3}(0)$ 

Result The polynomials  $p_{0,0}$ ,  $p_{0,1}$ ,  $p_{0,2}$ ,  $p_{0,3}$  are the required interpolating polynomials, and there values in s=0 approximate the integral.

## Experiment: Romberg quadrature

Experiment: Approximate  $\int_0^2 e^t dt$ .

|    | Trapezoidal |        | Romberg     |         |
|----|-------------|--------|-------------|---------|
| n  | error       | factor | error       | factor  |
| 2  | $5.2_{-1}$  |        | $5.2_{-1}$  |         |
| 4  | $1.3_{-1}$  | 4.0    | $2.2_{-3}$  | 23.6    |
| 8  | $3.3_{-2}$  | 3.9    | $3.2_{-6}$  | 687.5   |
| 16 | $8.3_{-3}$  | 4.0    | $1.2_{-9}$  | 2666.7  |
| 32 | $2.1_{-3}$  | 3.9    | $1.2_{-13}$ | 10000.0 |
| 64 | $5.2_{-4}$  | 4.0    | "0"         |         |

Observation: Extrapolation significantly improves the accuracy in this case.

#### Summary

Higher-order methods are based on polynomials of higher degree.

Interpolation constructs these polynomials based only on point values.

Numerical differentiation: Use values of f to approximate its derivative.

Extrapolation: Use values of f to approximate its limit.

Numerical integration: Use values of f to approximate its integral.

Combining differentiation or integration with extrapolation can yield very high accuracies, e.g., in the Romberg quadrature method.