

Soutenance de stage

Problème Inverse : Transfert Radiatif et Apprentissage

Roussel Desmond NZOYEM

Université de Strasbourg UFR de mathématiques et d'informatque Master 1 CSMI

24 août 2020

Simulation 2D de l'équation du transfert radiatif et reconstruction de la densité par un réseau de neurones

Roussel Desmond N7OYEM

Ensignant referent Christophe PRUD'HOMME

Maitre de stage Emmanuel FRANCK Laurent NAVORET Vincent VIGON

Annee Academique 2019/2020

L'equipe MOCO compte plusieurs membres parmi lesquels MM. :
■ Emmanuel FRANCK

Le probleme en 1D

Responsables des seminaires en EDP

■ Laurent NAVORET

Principe

Conclusion

5D

Introduction

●O ○○○

L'equipe MOCO compte plusieurs membres parmi lesquels MM. :

- Emmanuel FRANCK
- Laurent NAVORET

Responsables des seminaires en EDP

- Partenariats internationaux (Portugal, Allemagne, USA, etc.)
- Partenariats indutriels
- Modélisation des plasmas

Le probleme en 1D

Conclusion

5D

Introduction

o• ○○○ Principe

Le probleme en 1D

L'equipe Probabilités compte plusieurs membres parmi lesquels M. :

■ Vincent VIGON

Principe

Introduction

Des activites diverses :

- Partenariats internationaux (Allemagne, Autralie, Chine, etc)
- Séminaire (de calcul) stochastique.

Conclusion

5D

Le probleme en 1D

Conclusion

5D

Introduction

Le sujet du stage

00 ●00 Principe

Le probleme en 1D

Conclusion

5D

Introduction

Le sujet du stage

00 ●00 Principe

Le probleme en 1D

Introduction

Trois point cles pour situer le stage :

1 Explosion du deep learning

Principe

- 2 APplications dans le secteur medical (Imagerie medicale)
- 3 Reevaluation des methode de resolution de problemes inverse

Conclusion

5D

Le probleme en 1D

Introduction

000

- 1 Introduction ■ L'IRMA
 - Le sujet du stage
- 2 Principe
 - Simulation de l'ETR
 - L'architecture de reseau de neurones
- 3 Le probleme en 1D

Principe

- Simulation ■ Apprentissage
- 4 Le probleme en 2D
 - Simulation
 - Apprentissage
- 5 Conclusion ■ Sur l'apprentissage
 - Sur le stage
- 6 5D

Conclusion

5D

Simulation de l'ETR

Le transfer radiatif

Lorsque la photons se trouvent en presence de la matière, Trois phenomènes majeures (caratises par leurs opacites) se produisent :

- Emission (σ_e) : Plus la temperature matiere est elevee, plus l'emission est importante
- Absorption (σ_a) : Lorsqu'on est a l'equilibre thermique, $\sigma_a = \sigma_e$
- Scattering (σ_c) : If faut aussi tenir compte de la fonction de distribution angulaire de « scattering » $p(\Omega' \to \Omega)$.

rayonnement au niveau mesoscopique.

Principe 00000

Le probleme en 1D

L'equation du transfert radiatif est bilan d'energie lie au

Le probleme en 2D

 $+rac{1}{4\pi}\int_{0}^{\infty}\int_{\Omega}\sigma_{c}(
ho,\Omega,
u)
ho(\Omega' o\Omega)\left(\mathit{l}(t,\mathsf{x},\Omega',
u)-\mathit{l}(t,\mathsf{x},\Omega,
u)
ight)\,d\Omega'\,d
u$

Conclusion

- $I(t, \mathbf{x}, \Omega, \nu)$ designe l'intensité radiative specifique;
- $\blacksquare B(\nu, T)$ la fonction de Planck;
- \bullet $\oint p(\Omega' \to \Omega) d\Omega' = 1$

Introduction

L'ETR

Simulation de l'FTR

Où

$$\begin{cases} \partial_t E + c & \text{div } \mathbf{F} = c\sigma_a (aT^4 - E) \\ \partial_t \mathbf{F} + c & \nabla E = -c\sigma_c \mathbf{F} \\ \rho C_v \partial_t T = c\sigma_a (E - aT^4) \end{cases}$$

Le probleme en 1D

Ou :

Introduction

Simulation de l'FTR

l e modele P1

Principe

00000

$$E(t, \mathbf{x}) = rac{4\pi}{c} \int_0^\infty \int_{S^2} I(t, \mathbf{x}, \mathbf{\Omega}, \mathbf{\nu}) \, d\mathbf{\Omega} \, d\mathbf{\nu}$$
 $\mathbf{F}(t, \mathbf{x}) = rac{4\pi}{c} \int_0^\infty \int_{S^2} \mathbf{\Omega} I(t, \mathbf{x}, \mathbf{\Omega}, \mathbf{\nu}) \, d\mathbf{\Omega} \, d\mathbf{\nu}$

Conclusion

Le schema de « splitting » : Etape 1

On pose $\Theta = aT^4$

$$\begin{cases} E_j^{q+1} = \frac{\alpha E_j^n + \beta \gamma \Theta_j^n}{1 - \beta \delta} \\ \Theta_j^{q+1} = \frac{\gamma \Theta_j^n + \alpha \delta E_j^n}{1 - \beta \delta} \end{cases}$$

En posant

$$\mu_q = \frac{1}{T^{3,n} + T^n T^{2,q} + T^q T^{2,n} + T^{3,q}}$$

$$\alpha = \frac{1}{\Delta t \left(\frac{1}{\Delta t} + c\sigma_a\right)}, \quad \beta = \frac{c\sigma_a}{\frac{1}{\Delta t} + c\sigma_a}, \quad \gamma = \frac{\rho_j C_v \mu_q}{\Delta t \left(\frac{\rho_j C_v \mu_q}{\Delta t} + c\sigma_a\right)} \quad \text{et} \quad \delta = \frac{c\sigma_a}{\frac{\rho_j C_v \mu_q}{\Delta t} + c\sigma_a}.$$

COnvergence ver E_i^* et Θ_i^* . \mathbf{F}_j reste constant egale a $\overline{F_i^*}$.

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Principe

00000

Le probleme en 2D

Conclusion

Introduction

 $\begin{cases} E_j^{n+1} = E_j^* + \alpha \sum_k (\mathbf{F}_{jk}, \mathbf{n}_{jk}) \\ \mathbf{F}_j^{n+1} = \beta \mathbf{F}_j^* + \gamma E_j^n + \delta \sum_k E_{jk} \mathbf{n}_{jk} \end{cases}$

 $\beta = \frac{1}{\Delta t} \left(\frac{1}{\Delta t} + c \sum_{i,k} M_{ik} \sigma_{ik} \right)^{-1}$ $\gamma = rac{c}{|\Omega_i|} \left(rac{1}{\Delta t} + c \sum_k M_{jk} \sigma_{jk} \right)^{-1} \left(\sum_k I_{jk} M_{jk} \mathbf{n}_{jk} \right)$ $\delta = -\frac{c}{|\Omega_i|} \left(\frac{1}{\Delta t} + c \sum_k M_{jk} \sigma_{jk} \right)^{-1}$

 $\left(\mathsf{F}_{jk},\mathsf{n}_{jk}\right) = I_{jk}M_{jk}\left(\frac{\mathsf{F}_{j}^{n}\cdot\mathsf{n}_{jk} + \mathsf{F}_{k}^{n}\cdot\mathsf{n}_{jk}}{2} - \frac{\mathsf{E}_{k}^{n} - \mathsf{E}_{j}^{n}}{2}\right)$ $E_{jk}\mathbf{n}_{jk} = I_{jk}M_{jk}\left(\frac{E_j^n + E_k^n}{2} - \frac{\mathbf{F}_k^n \cdot \mathbf{n}_{jk} - \mathbf{F}_j^n \cdot \mathbf{n}_{jk}}{2}\right)\mathbf{n}_{jk}$

 $M_{jk} = \frac{2}{2 + \Delta \cdots}$

 $\sigma_{jk} = \frac{1}{2} \left(\sigma_c(\rho_j, T_i^n) + \sigma_c(\rho_k, T_k^n) \right)$

L'architecture de reseau de neurones

Implementation C++

- Temps final = 0.01 sh
- c = 299 [cm/sh]
- $a = 0.01372 [g/cm/sh^2/keV]$
- $C_v = 0.14361 [Jerk/g/keV]$
- La densité ρ est un signal créneau [g cm⁻³]
- $\sigma_a = \rho T \text{ [cm}^{-1]}$
- $\sigma_c = \rho T \text{ [cm}^{-1}$]
- $T_0, T_{gauche} = 5 \text{ [keV]}$
- $E_0 = aT_0^4 [g/cm/sh^2]$
- $E_{gauche^*} = aT_0^4 + 5\sin(2k\pi t) [g/cm/sh^2]$
- $\mathbf{F}_0, \mathbf{F}_{gauche} = \mathbf{0} \ [g/sh^2]$
- Sorties libres sur les autres bords

Ma 5D

Problème Inverse : Transfert Radiatif et Apprentissage

Le probleme en 2D

Conclusion

《口》《歷》《意》《意》

24 août 2020

5D

990

14 / 14

Le probleme en 1D

Introduction

Principe

00000

Roussel Desmond NZOYEM