Correction des exercices sur les probabilités

- 1. La proportion de femmes est :
- b. 50 % des personnes (125 sur 250).
- 2. La proportion de malades est :
- a. 10 % des personnes (25 sur 250).
- 3. Parmi les malades, la proportion de femmes est :
- c. 60 % des personnes malades (15 sur 25).
- 4. Parmi les hommes, la proportion de non malades est :
- c. 92 % des hommes (115 sur 125)

<mark>2</mark> 1.

	Conforme	Non conforme	Total
Pièce de type A	441	9	450
Pièce de type B	1029	21	1050
Total	1470	30	1500

2. a. Pièces de type A parmi les pièces conformes
441 sur 1470 soit 30 % des pièces conformes.
b. Pièces de type B parmi les pièces non conformes
21 sur 30 soit 70 % des pièces non conformes.

<mark>3</mark> 1.

	0	Α	В	AB	Total
Rhésus +	36	38	8	3	85
Rhésus -	6	7	1	1	15
Total	42	45	9	4	100

- 2. 85 % des personnes sont porteuses du rhésus positif et 45 % des personnes sont du groupe A.
- 3. Proportion de personnes porteuses du rhésus positif parmi les personnes de groupe 0 : 36 sur 42 soit environ 86 % des personnes de groupe 0. Proportion de personnes porteuses du rhésus positif parmi les personnes de groupe B : 8 sur 9 soit environ 89 % des personnes de groupe B.
- 4. 0,25 : un sur 4 soit 25 % des personnes de groupe AB ont un rhésus négatif.
- 4 1. 15 % des 1 000 fichiers donc 150 fichiers infectés.
- 2. 98 % des 150 fichiers infectés donc 147 fichiers infectés mis en quarantaine.
- 3. 4 % des 850 fichiers non infectés donc 34 fichiers non infectés mis en quarantaine.

	Infecté	Non infecté	Total
Quarantaine	147	34	181
Non quarantaine	3	816	819
Total	150	850	1 000

- 1. La prévalence du virus est 8 sur 300 soit environ 2,7 %.
- 2. Les « faux positifs » : personnes qui ne sont pas infectées et leur test est positif ;

Les « faux négatifs » : personnes qui sont infectées et leur test est négatif.

On peut représenter la situation à l'aide d'un tableau :

	Testé positif	Testé négatif	Total
Malade	7	1	8
Pas malade	3	289	292
Total	10	290	300

Le nombre de « faux positifs » vaut : 3. Le nombre de « faux négatifs » vaut : 1.

3. 7 sur 8 soit 87,5 % des personnes infectées. La sensibilité vaut ainsi environ 0,875.

289 sur 292 soit environ 98,97 % des personnes non infectées. La spécificité vaut ainsi environ 0,9897.

4) Question importante rajoutée : une personne passe le test et, est positif. Quelle est la probabilité qu'elle soit infectée ? Réponse : $\frac{7}{10} = 0, 7$

© Voici le tableau représentant la situation décrite dans l'énoncé :

		Machine A	Machine B	Total	
Un	défaut	1 % de	0,5 % de		
		14 000 :	20 000 :	240	
		140	100		
Auc	un défaut	13 860	19 900	33 760	
Tot	al	14 000	20 000	34 000	

140 sur 240 soit environ 58 % des pièces présentant un défaut sont issues de la machine A. 100 sur 240 soit environ 42 % des pièces présentant un défaut sont issues de la machine B. En associant les fréquences aux probabilités, les réponses en découlent.

Exercice 8. On construit un tableau à double entrée dans lequel, on place dans le total du total, disons 100 000 (afin d'obtenir que des nombres entiers dans le tableau).

	_ , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Testé positif	Testé négatif	Total
Malade	90	10	100
Pas malade	2997	96 903	99 900
Total	3087	96 913	100 000

La probabilité demandée est $\frac{90}{3087} \approx 0,029$ soit environ 2,9 % de chances d'être malade si on a été testé positif.

Exercice 9. Pour éviter de faire plusieurs tableaux dans les cas où la probabilité d'être malade est 0,1%, 1%, 5%, 10% puis 30%, traitons le cas général en notant p la probabilité d'être malade. On obtient :

	Testé positif	Testé négatif	Total
Malade	297 <i>p</i>	3 <i>p</i>	300p
Pas malade	6(1-p)	294(1-p)	300(1-p)
Total	6 + 291p	294 - 291p	300

Sachant que le test est positif, la probabilité d'être malade est :

$$P_{T^+}(M) = \frac{297p}{6 + 291p}$$

Sachant que le test est négatif, la probabilité d'être malade est :

$$P_{T^{-}}(M) = \frac{3p}{294 - 291p}$$

Il ne reste plus qu'à remplacer p par respectivement : 0,1%, 1%, 5%, 10% puis 30% ce qui donne :

P(M)	$P_{T^{+}}(M)$	$P_{T^{-}}(\overline{M})$
0,1 %	≈ 4,7%	≈ 0,001%
1 %	≈ 33%	≈ 0,01%
5 %	≈ 72%	≈ 0,05%
10 %	≈ 85%	≈ 0,1%
30 %	≈ 95%	≈ 0,4%