北京航空航天大学 2012 - 2013 学年第一学期期中

《 工科数学分析(I) 》 试卷

班号)) <u>/</u>	性 夕	一
*************************************	\rightarrow	U+ Z	放领
7)	1 1	<u>ντ</u> ΄Π	MAN

题 号	 二	三	四	五	六	七	八	总分
成绩								
阅卷人								
校对人								

一 计算下面各题 (满分40分,每个题目5分)

1) 计算极限
$$\lim_{x^{\otimes +\frac{x}{4}}} \left(x + \sqrt{1 + x^2}\right)^{\frac{1}{\ln x}}$$

M:
$$\lim_{x \to x} \left(x + \sqrt{1 + x^2} \right)^{\frac{1}{\ln x}} = \lim_{x \to x} e^{\frac{\ln(x + \sqrt{1 + x^2})}{\ln x}}$$
,

$$\overline{\lim}_{x} \lim_{x \to \infty} \frac{\ln(x+\sqrt{1+x^{2}})}{\ln x} = \lim_{x \to \infty} \frac{\frac{1+\frac{x}{\sqrt{1+x^{2}}}}{\frac{x+\sqrt{1+x^{2}}}{1}}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{x}{\sqrt{1+x^{2}}} = 1,$$

因此
$$\lim_{x^{\circledast} + \frac{\pi}{4}} \left(x + \sqrt{1 + x^2} \right)^{\frac{1}{\ln x}} = e.$$

建议评分标准: 转化成指数 2分, 洛比塔法则 3分

2) $\text{在} x \rightarrow 0^+ \text{时, 求下列无穷小的阶}$

$$\sin(\sqrt{2+\sqrt{4+\sqrt{x}}}-2).$$

解: 当
$$x \to 0^+$$
 时, $\sqrt{2 + \sqrt{4 + \sqrt{x}}} - 2$ ® 0 , 因此 $\sin(\sqrt{2 + \sqrt{4 + \sqrt{x}}} - 2)$ 与

$$\sqrt{2+\sqrt{4+\sqrt{x}}}-2$$
 为等价的无穷小量。而

$$\sqrt{2+\sqrt{4+\sqrt{x}}}-2$$

$$= \frac{\sqrt{4+\sqrt{x}}-2}{\sqrt{2+\sqrt{4+\sqrt{x}}}+2} = \frac{\sqrt{x}}{(\sqrt{2+\sqrt{4+\sqrt{x}}}+2)(\sqrt{4+\sqrt{x}}+2)}$$

因此
$$\lim_{x^{\circledast} \ 0^{+}} \frac{\sqrt{2 + \sqrt{4 + \sqrt{x}}} - 2}{\sqrt{x}} = \frac{1}{16}$$
,因此 $\sin(\sqrt{2 + \sqrt{4 + \sqrt{x}}} - 2)$ 为在 $x \to 0^{+}$

时的
$$\frac{1}{2}$$
阶无穷小量.

建议评分标准: 去掉 sin 的步骤 2 分, 剩下 3 分

3) 假设
$$f = x^{x^a} + a^{x^x}$$
 求 $f'(x)$.

解:
$$x^{x^a} = e^{x^a \ln x}$$
, 因此 $(x^{x^a})' = (e^{x^a \ln x})' = x^{x^a}(x^{a-1} + ax^{a-1} \ln x)$,

$$x^{x} = e^{x \ln x}$$
, $\boxtimes \& (x^{x})' = x^{x} (1 + \ln x)$,

因此 $(a^{x^x}) = \ln a \ a^{x^x}(x^x)$ ' 鬃 $\ln a \ a^{x^x} + x^x(1 \ \ln x)$.因此

原式=
$$x^{x^a}(x^{a-1} + ax^{a-1}\ln x) + \ln a$$
 鬟 $^{x^x} x^x(1 + \ln x)$

建议评分标准: 两部分各2分, 最终答案1分

4) 假设
$$\hat{x} = e^t \sin t$$
, $t \hat{1} \left(-\frac{p}{2}, \frac{p}{2}\right)$, $\frac{dy}{dx}$.

解:
$$\frac{dy}{dx} = \frac{e^t \cos t - e^t \sin t}{e^t \cos t + e^t \sin t} = \frac{\cos t - \sin t}{\cos t + \sin t}.$$

建议评分标准:分子分母各2分,答案1分

5) 假设
$$f(x) = (x^2 + 2x + 3)\sin 2x$$
, 求 $f^{(n)}(x)$.

解:由 Leibniz 公式,

$$f^{(n)}(x)$$

$$= (x^{2} + 2x + 3) \stackrel{\text{gen}}{=} \sin(2x + \frac{np}{2}) + (2x + 2) \stackrel{\text{gen}}{=} 2^{n-1} \sin(2x - \frac{(n-1)p}{2}) + n (n \stackrel{\text{gen}}{=}) 2^{n-2} \sin(2x - \frac{(n-2)p}{2})$$

建议评分标准:能看出是用Leibniz法则2分,剩余计算3分

6) 求
$$f(x) = \cos x$$
 在 $x = \frac{p}{2}$ 的 n 阶 Taylor 展开,并写出 peano 余项.

解:

$$\cos x = -\sin(x - \frac{p}{2})$$

$$= -(x - \frac{p}{2}) + \frac{1}{3!}(x - \frac{p}{2})^3 - L + (-1)^n(x - \frac{p}{2})^{2n-1} + o((x - \frac{p}{2})^{2n})$$

建议评分标准: 5分

7) 假设函数 $f(x) = x \ln x (x > 0)$, 判断函数的凹凸性.

解:
$$x > 0$$
时, $f''(x) = \frac{1}{x} > 0$, 因此 $f(x)$ 为凸函数.

建议评分标准:二阶导数3分,凹凸性判断2分

8) 求函数
$$f(x) = (2x-5)\sqrt[3]{x^2}$$
 的极值

解: 在
$$x^1$$
 0时 $f'(x) = 2x^{\frac{2}{3}} + (2x - 5)$ 奏 $x^{-\frac{1}{3}} = \frac{10}{3}x^{-\frac{1}{3}}(x - 1)$, 在 $x = 0$

时 f(x)不可导. 由 f'(x) = 0 求得 f(x)的驻点为 x = 1.

当
$$x < 0$$
时, $f'(x) > 0$, $f(x)$ 递增,

当
$$0 < x < 1$$
时, $f'(x) < 0$, $f(x)$ 递减,

当
$$x > 1$$
时, $f'(x) > 0$, $f(x)$ 递增,

因此 f(x) 在 x = 0 处取极大值 f(0) = 0,在 x = 1 处取极小值 f(1) = -3.

建议评分标准: 导数 1 分, 判断单调性 3 分, 极值判断 1 分

二 证明下面问题(10分)

假设 $s>0, x_1>0, x_{n+1}=\frac{1}{3}$ 据 证明数列 $\{x_n\}$ 单调有界,且极限为 $\sqrt[3]{s}$.

二项开始 $\{x_n\}$ 有下界 $\sqrt[3]{s}$. 下证 $\{x_n\}$ 为单调下降的,当 $n \geq 1$ 时,由 $x_n \geq \sqrt[3]{s}$,

限,设
$$\lim_{n} x_{n} = a$$
,则 $a = \frac{1}{3}(2a + \frac{s}{a})$,解得 $a = \sqrt[3]{s}$.

建议评分标准:有界性3分,单调性4分,计算极限3分

三. 证明下面问题(10分)

数列
$$\{x_n\}$$
 满足 $x_n = \frac{\sin 2x}{2(2+\cos 2x)} + \frac{\sin 3x}{3(3+\cos 3x)} + L \frac{\sin nx}{n(n+\cos nx)}$

用 Cauchy 收敛定理证明 $\{x_n\}$ 收敛。

证明: 易知不等式
$$\left| \frac{\sin nx}{n(n+\cos nx)} \right|$$
 £ $\frac{1}{n(n-1)}$ 成立, 因此任取自然数 n 及正整数

p,有

$$|a_{n+p} - a_n| \pounds |\frac{\sin(n+1)x}{(n+1)(n+1+\cos(n+1)x)}| + |\frac{\sin(n+p)x}{(n+p)(n+p+\cos(n+p)x)}|$$

$$\pounds \frac{1}{n(n+1)} + L \frac{1}{(n+p)(n+p-1)} < \frac{1}{n}.$$

任取 $e \geq 0$,取 $N = \begin{bmatrix} \frac{1}{e} \end{bmatrix}$,则当 $n \geq N$ 时,任取自然数 p,均有 $|a_{n+p} - a_n| \leq \frac{1}{n} \leq e$.

因此 $\{x_n\}$ 为 Cauchy 基本列,故收敛。

建议评分标准:不等式放缩 6分, Cauchy 收敛定理 4分。

四. 证明下面问题 (10 分).

- (1) 利用拉格朗日中值定理证明 | $\arctan x_1 \arctan x_2 \le |x_1 x_2|$;
- (2) $\lim_{x \to +\infty} (\arctan \sqrt{x+k} \arctan \sqrt{x}) = 0,$ $\sharp + k \in \mathbb{Z}$;
- (3) 设常数 $a_1, a_2, \cdots a_n$ 满足 $a_1 + a_2 + \cdots a_n = 0$, 求证 $\lim_{x \to +\infty} \sum_{k=1}^n a_k \arctan \sqrt{x+k} = 0$.

证明: (1). 由拉格朗日中值定理知存在 ξ 在 x_1 与 x_2 , 使得

$$\arctan x_1 - \arctan x_2 = \frac{1}{1 + \xi^2} (x_1 - x_2),$$

因此 | $\arctan x_1 - \arctan x_2 \le |x_1 - x_2|$;

(2) .
$$|\arctan \sqrt{x+k} - \arctan \sqrt{x}| \le |\sqrt{x+k} - \sqrt{x}| = \frac{k}{\sqrt{x+k} + \sqrt{x}}|$$
, $|\sin x| \le |\sin x| = \frac{k}{\sqrt{x+k} + \sqrt{x}}|$

$$\lim_{x \to +\infty} \frac{k}{\sqrt{x+k} + \sqrt{x}} = 0, \quad \text{Im} \lim_{x \to +\infty} (\arctan \sqrt{x+k} - \arctan \sqrt{x}) = 0;$$

(3).
$$\sum_{k=1}^{n} a_k \arctan \sqrt{x+k} = \sum_{k=1}^{n} a_k (\arctan \sqrt{x+k} - \arctan \sqrt{x})$$
,因此

$$\lim_{x \to +\infty} \sum_{k=1}^{n} a_k \arctan \sqrt{x+k} = \lim_{x \to +\infty} \sum_{k=1}^{n} a_k (\arctan \sqrt{x+k} - \arctan \sqrt{x})$$
$$= \sum_{k=1}^{n} a_k \lim_{x \to +\infty} (\arctan \sqrt{x+k} - \arctan \sqrt{x}) = 0.$$

建议评分标准:第(1)小题 3分,第(2)小题 4分,第(3)小题 3分

- 五. (10 分) 假设函数 f(x) 在[0,2] 上连续,在(0,2) 上可导,且 f(0)+f(1)=0,f(2)=0 证明: 1)利用介值定理证明存在 $\alpha \in [0,1]$,使得 $f(\alpha)=0$;
 - 2) 存在 $\theta \in (0,2)$ 使得 $f(\theta) + f'(\theta) = 0$.

证明: (1). 由 f(0)+f(1)=0 可得,要么 f(0)=f(1)=0,要么 $f(0)\cdot f(1)<0$,由连续函数介值定理,一定存在 $\alpha\in(0,1)$,使得 $f(\alpha)=0$,不管哪种情况都存在 $\alpha\in[0,1]$,使得 $f(\alpha)=0$.

- (2). 考虑新函数 $F(x) = e^x f(x)$,则 $F'(x) = e^x (f(x) + f'(x))$, $F(\alpha) = F(2) = 0$,由罗尔定理知存在 $\theta \in (0,2)$,使得 $F'(\theta) = e^{\theta} (f(\theta) + f'(\theta)) = 0$,即 $f(\theta) + f'(\theta) = 0$. 建议评分标准: 两个小题各 5 分
- 六. (10 分) 假设函数 f(x)在 [0,1]存在二阶导数,|f''(x)|氏 M, f(x)在 (0,1) 内取得最大值,求证 $|f'(0)|+|f'(1)| \le M$.

证明: 设 f(x) 在 a 点取到最大值,则 f'(a) = 0 ,在 a 点对 f'(x) 进行泰勒展开得: $f'(0) = f'(a) + f'(\theta_1)(0-a) = f''(\theta_1)(-a)$;

$$f'(1) = f'(a) + f'(\theta_2)(1-a) = f''(\theta_1)(1-a)$$
.

因此 $|f'(0)| + |f'(1)| = |f''(\theta_1)|a + |f''(\theta_1)|(1-a) \le M(a+1-a) = M$.

建议评分标准:得到最大值导数为0得2分,两个泰勒公式各3分,不等式放缩2分七.(10分)证明下面问题

证明: 任取 $\varepsilon > 0$, 由 f(x) 一致连续知: 存在 $\delta > 0$, 使得当 $|x_1 - x_2|$ ζ ζ ζ

$$|f(x_1) - f(x_2)|$$
 $|f(x_2)|$ 下面分情况证明 $|f(x_1)^{\frac{1}{2}} - f(x_2)^{\frac{1}{2}}|$ $|f(x_2)|$ $|f(x_2)|$ $|f(x_2)|$

如果
$$f(x_1) \le e^2$$
, $f(x_2) \le e^2$, 则 $|f(x_1)^{\frac{1}{2}} - f(x_2)^{\frac{1}{2}}| \le e$.

如果 $f(x_1)$, $f(x_2)$ 中有一个大于等于 e^2 , 不妨设 $f(x_1)^3$ e^2 , 则

$$|f(x_1)^{\frac{1}{2}} - f(x_2)^{\frac{1}{2}}| = \frac{|f(x_1) - f(x_2)|}{|f(x_1)^{\frac{1}{2}} + f(x_2)^{\frac{1}{2}}|} < \frac{e^2}{e} = e$$

因此 $f(x)^{\frac{1}{2}}$ 一致连续.

建议评分标准:一致连续定义4分,两种情况讨论各3分

八. (10分) 附加题 (下面任选一题, 只能选作一题)

1) 设 f(x) 为 $(-\infty, +\infty)$ 上 的 可 导 函 数 , 且 在 x = 0 的 某 个 邻 域 内 成 立 $f(e^{x}) - 2f(e^{-x}) = 9x + \alpha(x)$, 其中 $\alpha(x)$ 是当 $x \to 0$ 时比 x 高阶的无穷小量。求曲线 y = f(x) 在 (1, f(1)) 处的切线方程。

解: 记
$$F(x) = f(e^x) - 2f(e^{-x})$$
 ,则由 $F(x) = 9x + \alpha(x)$ 知 $F(0) = 0$,
$$F'(0) = \lim_{x \to 0} \frac{F(x) - F(0)}{x} = \lim_{x \to 0} \frac{9x + \alpha(x)}{x} = 9$$
 .又由 $F(x) = f(e^x) - 2f(e^{-x})$ 知
$$F(0) = f(1) - 2f(1) = -f(1)$$
 .因此 $f(1) = 0$, $F'(0) = f'(1) + 2f'(1)$,因此
$$f'(1) = 3$$
 , $y = f(x)$ 在 $(1, f(1))$ 处的切线方程为 $y = 3(x - 1)$.

建议评分标准: f(1)的计算 2 分, f'(1)的计算 4 分, 切线公式 4 分。

2) 用有限覆盖定理证明若函数 f(x) 在闭区间 [a,b] 上连续,并且对任何一点 $x \in [a,b], f(x) > 0$,则一定存在 c > 0,当 $x \in [a,b], f(x) > c$ 。

证明: 任取 $x \in [a,b]$,存在 $\delta_x > 0$,使得 $|y-x| < \delta_x$ 时, $|f(y)-f(x)| < \frac{f(x)}{2}$,此 时有 $f(y) > \frac{f(x)}{2}$ 。易知 $\{(x-\delta_x,x+\delta_x) | x \in [a,b]\}$ 构成 [a,b] 的一个开覆盖,由有限覆盖 定 理 , 存 在 有 限 个 数 $x_1,x_2,\cdots x_n$, 使 得 $[a,b] \subset \bigcup_{i=1}^n (x_i-\delta_{x_i},x_i+\delta_{x_i})$, 取 $c = \min\{\frac{f(x_1)}{2},\frac{f(x_2)}{2},\cdots \frac{f(x_n)}{2}\}$,则有任取 $x \in [a,b]$,f(x) > c.

建议评分标准: δ_x 的取法 3 分,构造开覆盖 4 分,c 的取法 3 分.