APPENDIX

1

PROPERTY TABLES AND CHARTS (SI UNITS)

Table A-1	Molar mass, gas constant, and critical-point properties	Table A-20	Ideal-gas properties of carbon dioxide, CO_2
Table A-2	Ideal-gas specific heats of various common gases	Table A-21	Ideal-gas properties of carbon monoxide, CO
Table A-3	Properties of common liquids, solids, and foods	Table A-22 Table A-23	Ideal-gas properties of hydrogen, H ₂
Table A-4 Table A-5	Saturated water—Temperature table Saturated water—Pressure table	Table A-24	Ideal-gas properties of water vapor, H ₂ O Ideal-gas properties of monatomic oxygen, O
Table A-6	Superheated water	Table A-25	Ideal-gas properties of hydroxyl, OH
Table A-7 Table A-8	Compressed liquid water Saturated ice-water vapor	Table A-26	Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm
Figure A-9 Figure A-10	T-s diagram for water Mollier diagram for water	Table A-27	Properties of some common fuels and hydrocarbons
Table A-11	Saturated refrigerant-134a— Temperature table	Table A-28	Natural logarithms of the equilibrium constant K_p
Table A-12	Saturated refrigerant-134a— Pressure table	Figure A-29	Generalized enthalpy departure chart
Table A-13	Superheated refrigerant-134a	Figure A-30	Generalized entropy departure chart
Figure A-14	P-h diagram for refrigerant-134a	Figure A–31	Psychrometric chart at 1 atm total pressure
Figure A-15	Nelson–Obert generalized compressibility chart	Table A-32	One-dimensional isentropic compressible-flow functions
Table A-16	Properties of the atmosphere at high altitude		for an ideal gas with $k = 1.4$
Table A-17	Ideal-gas properties of air	Table A-33	One-dimensional normal-shock functions for an ideal gas with $k = 1.4$
Table A-18	Ideal-gas properties of nitrogen, N_2	Table A-34	Rayleigh flow functions for an ideal
Table A-19	Ideal-gas properties of oxygen, O ₂		gas with $k = 1.4$

TABLE A −1

Molar mass, gas constant, and critical-point properties

moral mass, gas constant, and cr	'	'	Gas	Critical-	point properties	5
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg·K*	Temperature, K	Pressure, MPa	Volume, m³/kmol
Air	_	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO_2	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCI₄	153.82	0.05405	556.4	4.56	0.2759
Chlorine	Cl ₂	70.906	0.1173	417	7.71	0.1242
Chloroform	CHCl₃	119.38	0.06964	536.6	5.47	0.2403
Dichlorodifluoromethane (R-12)	CCI ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHČI ₂ F	102.92	0.08078	451.7	5.17	0.1973
Ethane	C_2H_6	30.070	0.2765	305.5	4.48	0.1480
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.1805	516	6.38	0.1673
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H ₂	2.016	4.1240	33.3	1.30	0.0649
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924
Methane	CH ₄	16.043	0.5182	191.1	4.64	0.0993
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180
Methyl chloride	CH ₃ CI	50.488	0.1647	416.3	6.68	0.1430
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899
Nitrous oxide	N_2^- 0	44.013	0.1889	309.7	7.27	0.0961
Oxygen	02	31.999	0.2598	154.8	5.08	0.0780
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO_2	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}The unit kJ/kg-K is equivalent to kPa·m³/kg-K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol-K and M is the molar mass

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A–2Ideal-gas specific heats of various common gases

(a) At 300 K

		Gas constant, R	c_p	$c_{_{\scriptscriptstyle V}}$	
Gas	Formula	kJ/kg·K	kJ/kg·K	kJ/kg∙K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_2	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	C_8H_{18}	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	C_3H_8	0.1885	1.6794	1.4909	1.126
Steam	$H_2^{\circ}O^{\circ}$	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg·K is equivalent to kJ/kg·°C.

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

TABLE A–2Ideal-gas specific heats of various common gases (*Continued*)

(b) At various temperatures

Temperature,	<i>c_p</i> kJ/kg⋅K	<i>c₀</i> kJ/kg∙K	k	<i>c_p</i> kJ/kg⋅K	<i>c</i> _v kJ/kg∙K	k	c _p kJ/kg⋅K	<i>c</i> , kJ/kg∙K	k	
K		Air		Car	bon dioxide, (CO ₂	Carbon monoxide, CO			
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400	
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399	
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398	
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395	
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392	
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387	
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382	
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376	
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370	
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364	
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358	
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353	
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343	
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335	
		Hydrogen,	H_2		Nitrogen,	N_2	С	xygen, O ₂		
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398	
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395	
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389	
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382	
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373	
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365	
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358	
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350	
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343	
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337	
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332	
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327	
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319	
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313	

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-2

Ideal-gas specific heats of various common gases (Concluded)

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(T in K, c_p in kJ/kmol·K)

						Temperature	% e	rror
Substance	Formula	а	b	С	d	range, K	Max.	Avg.
Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273-1800	0.59	0.34
Oxygen	02	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28
Air	_	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
Hydrogen Carbon	H ₂	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273–1800	1.01	0.26
monoxide Carbon	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273–1800	0.89	0.37
dioxide	CO_2	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
Water vapor	$H_2\bar{O}$	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24
Nitric oxide	NO	29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
Nitrous oxide Nitrogen	N_2O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273–1500	0.59	0.26
dioxide	NO_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18
Ammonia	NH_3	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
Sulfur Sulfur	S_2	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273–1800	0.99	0.38
dioxide Sulfur	SO_2	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273–1800	0.45	0.24
trioxide	SO ₃	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13
Acetylene	C_2H_2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273–1500	1.46	0.59
Benzene		-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273–1500	0.34	0.20
Methanol	CH₄O	19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273–1000	0.18	0.08
Ethanol Hydrogen	C ₂ H ₆ O	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273–1500	0.40	0.22
chloride	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
Methane	CH₄	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
Ethane	C ₂ H ₆	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273–1500	0.83	0.28
Propane	C ₃ H ₈	-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273–1500	0.40	0.12
<i>n</i> -Butane	C_4H_{10}	3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
<i>i</i> -Butane	C ₄ H ₁₀	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273–1500	0.25	0.13
<i>n</i> -Pentane	C ₅ H ₁₂	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273–1500	0.56	0.21
<i>n</i> -Hexane	C ₆ H ₁₄	6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
Ethylene	C ₂ H ₄	3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
Propylene	C_3H_6	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273–1500	0.73	0.17

Source: B. G. Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984). Used with permission.

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freez	ring data	L	iquid properti	es
Substance	Normal boiling point, °C	Latent heat of vaporization $h_{\rm fg}$, kJ/kg	Freezing point, °C	Latent heat of fusion h_{if} , kJ/kg	Temperature, °C	Density ρ, kg/m ³	Specific heat c _p , kJ/kg⋅K
Ammonia	-33.3	1357	-77.7	322.4	-33.3 -20	682 665	4.43 4.52
					0	639	4.60
	105.0	161.6	1000		25	602	4.80
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benzene	80.2	394	5.5	126	20	879	1.72
Brine (20% sodium	102.0		17 /		20	1150	2 11
chloride by mass)	103.9 -0.5	 385.2	-17.4 -138.5	80.3	20	1150	3.11
<i>n</i> -Butane Carbon dioxide	-0.5 -78.4*		-138.5 -56.6	80.3	-0.5 0	601 298	2.31 0.59
Ethanol	-78.4°	230.5 (at 0°C)	-36.6 -114.2	109	25	296 783	2.46
Ethyl alcohol	78.2 78.6	838.3 855	-114.2 -156	109	20	763 789	2.46
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glycerine	179.1	974	18.9	200.6	20	1261	2.32
Helium	-268.9	22.8	10.9	200.6	-268.9	146.2	2.32
Hydrogen	-252.8	445.7	 -259.2	— 59.5	-252.8	70.7	10.0
Isobutane	-232.8 -11.7	367.1	-259.2 -160	105.7	-252.8 -11.7	593.8	2.28
Kerosene	204–293	251	-24.9	105.7 —	20	820	2.20
Mercury	356.7	294.7	-38.9	11.4	25	13,560	0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
Wictharic	101.5	310.4	102.2	30.4	-100 -100	301	5.79
Methanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06
Millogen	133.0	150.0	210	23.3	-160	596	2.97
Octane	124.8	306.3	-57.5	180.7	20	703	2.10
Oil (light)	12 1.0	000.0	07.0	100.7	25	910	1.80
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71
Petroleum	_	230–384	210.0	1017	20	640	2.0
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
					0	529	2.53
					50	449	3.13
Refrigerant-134a	-26.1	217.0	-96.6	_	-50	1443	1.23
6					-26.1	1374	1.27
					0	1295	1.34
					25	1207	1.43
Water	100	2257	0.0	333.7	0	1000	4.22
					25	997	4.18
					50	988	4.18
					75	975	4.19
					100	958	4.22

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

TABLE A–3Properties of common liquids, solids, and foods (*Concluded*)

(b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ kg/m 3	Specific heat, $c_p \ \mathrm{kJ/kg} \cdot \mathrm{K}$	Substance	Density, $ ho$ kg/m 3	Specific heat, c_p kJ/kg·K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711
2% AI)			Granite	2700	1.017
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09
35% Zn)			Ice		
Copper			200 K		1.56
-173°C		0.254	220 K		1.71
-100°C		0.342	240 K		1.86
−50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C		0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water		Specifi kJ/k	ic heat, g⋅K	Latent heat of		Water		Specific kJ/kg		Latent heat of	
Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg	Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg	
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317	
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294	
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291	
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261	
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214	
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277	
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311	
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301	
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314	
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214	
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311	

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

TABLE A-4

Saturated water—Temperature table

		Specific volume, m³/kg		Internal energy, kJ/kg		Enthalpy, kJ/kg			Entropy, kJ/kg·K			
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. Iiquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLE A–4Saturated water—Temperature table (*Concluded*)

		Specific volume, Internal energy, m³/kg kJ/kg		ergy,		Enthalp kJ/kg		<i>Entropy,</i> kJ/kg∙K				
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s _g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.6225 2.5374	5.8210
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.6756 1.5585	5.3907
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070		

Source: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLE A-5

Saturated water—Pressure table

			<i>fic volume,</i> m³/kg		<i>Internal energy,</i> kJ/kg			<i>Enthalpy</i> kJ/kg	;	Entropy, kJ/kg·K		
Press., P kPa	Sat. temp., T_{sat} °C	Sat. Iiquid, <i>v_f</i>	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	639.54	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483		1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261		1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560		1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260		1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

TABLE A–5Saturated water—Pressure table (*Concluded*)

			Specific volume, m³/kg		<i>Internal energy,</i> kJ/kg			<i>Enthalpy,</i> kJ/kg			<i>Entropy,</i> kJ/kg∙K		
Press., P kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap.,	Sat. vapor, s_g	
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2768.3 2770.8 2773.0 2775.2	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862 4.4470	6.6616 6.6409 6.6213 6.6027 6.5850	
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2788.9		4.3735 4.3058 4.2428 4.1840 4.1287	6.5520 6.5217 6.4936 6.4675 6.4430	
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9		2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856	
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2601.7 2597.0	1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148	
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.015988	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939	
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4		3.6848 3.7461	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791	
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2466.0 2412.1 2338.4 2172.6		1.2343 1.0860 0.9164 0.7005 0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070	

TABLE A-6

Superheated water T v u h s v u h s v u h s											
T	V	И	h	s	V	и	h	S	l v u	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg kJ/kg	kJ/kg	kJ/kg·K
	D —	0.01 ME	°a (45.81°	PC)*	D —	0.05 MP	o (Q1 22º	()	P = 0.10	MP2 (00 61	I°C)
0 - 4 †											
Sat.† 50	14.670 14.867		2583.9 2592.0	8.1488 8.1741	3.2403	2483.2	2645.2	7.5931	1.6941 2505.	b 26/5.C	7.3589
100	17.196		2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959 2506.	2 2675.8	7.3611
150	19.513		2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367 2582.		
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8		2.1724 2658.		
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062 2733.	9 2974.5	8.0346
300	26.446		3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389 2810.		
400	31.063		3280.0	9.6094	6.2094	2968.9	3279.3		3.1027 2968.		
500	35.680		3489.7	9.8998	7.1338	3132.6	3489.3		3.5655 3132.		
600	40.296		3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279 3302.		
700	44.911		3929.9	10.4056	8.9813	3480.6	3929.7		4.4900 3480.		
800	49.527			10.6312	9.9047	3665.2	4160.4		4.9519 3665.		
900	54.143			10.8429	10.8280	3856.8		10.1000	5.4137 3856.		
1000	58.758			11.0429	11.7513	4055.2		10.3000	5.8755 4055.		
1100	63.373			11.2326	12.6745	4259.9		10.4897	6.3372 4259.		10.1698
1200 1300	67.989 72.604			11.4132 11.5857	13.5977 14.5209	4470.8 4687.3		10.6704 10.8429	6.7988 4470. 7.2605 4687.		3 10.3504 3 10.5229
1300											
0-4	P = 0.88578		a (120.2)	7.1270	0.60582	0.30 MPa	2724.9		P = 0.40 N 0.46242 2553.		
Sat. 150	0.86376			7.1270	0.63402		2724.9	6.9917 7.0792	0.47088 2564.		
200	1.08049			7.5081	0.03402		2865.9	7.0792	0.53434 2647.		
250	1.19890			7.7100	0.71645		2967.9	7.5132	0.59520 2726.		
300	1.31623			7.8941	0.87535		3069.6	7.7037	0.65489 2805.		
400	1.54934			8.2236	1.03155		3275.5	8.0347	0.77265 2964.		
500	1.78142			8.5153	1.18672		3486.6	8.3271	0.88936 3129.		
600	2.01302			8.7793	1.34139		3704.0	8.5915	1.00558 3301.		
700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345	1.12152 3479.	0 3927.6	8.7012
800	2.47550	3664.7	4159.8	9.2479	1.65004		4159.3	9.0605	1.23730 3663.	9 4158.9	8.9274
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298 3855.	7 4396.9	9.1394
1000	2.93755			9.6599	1.95824		4642.0	9.4726	1.46859 4054.		
1100	3.16848			9.8497	2.11226		4893.1	9.6624	1.58414 4259.		
1200	3.39938			10.0304	2.26624		5150.2		1.69966 4470.		
1300	3.63026	4687.1	5413.1	10.2029	2.42019			10.0157	1.81516 4686.	7 5412.8	9.8828
			a (151.83			0.60 MPa	-	-	P = 0.80 N		
Sat.	0.37483			6.8207	0.31560		2756.2		0.24035 2576.		
200	0.42503			7.0610	0.35212		2850.6		0.26088 2631.		6.8177
250	0.47443			7.2725				7.1833	0.29321 2715.		
300	0.52261			7.4614	0.43442		3062.0		0.32416 2797.		
350	0.57015			7.6346	0.47428		3166.1		0.35442 2878. 0.38429 2960.		
400 500	0.61731 0.71095			7.7956 8.0893	0.51374 0.59200		3270.8 3483.4		0.38429 2960.		
600	0.71095			8.3544	0.59200		3701.7		0.44332 3126.		
700	0.89696			8.5978	0.00976		3926.4		0.56011 3477.		
800	0.98966			8.8240	0.82457		4157.9		0.61820 3662.		
900	1.08227			9.0362	0.90179		4396.2		0.67619 3854.		
1000	1.17480			9.2364	0.97893		4641.1		0.73411 4053.		
1100	1.26728			9.4263	1.05603		4892.4		0.79197 4258.		
1200	1.35972			9.6071	1.13309		5149.6		0.84980 4469.		9.3898
1300	1.45214			9.7797	1.21012			9.6955	0.90761 4686		

 $^{{}^{*}\}text{The temperature in parentheses}$ is the saturation temperature at the specified pressure.

 $^{^{\}dagger}$ Properties of saturated vapor at the specified pressure.

TABLE A-6

Superheated water (Concluded) T												
T	V	И	h	S	v	И	h	S	v	И	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	Р	= 1.00 MI	Pa (179.8	8°C)	Р	= 1.20 M	MPa (187	.96°C)	P =	1.40 MP	a (195.0	4°C)
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934			6.5909	0.14303	2602.7	2803.0	
250	0.23275	2710.4	2943.1	6.9265	0.19241			6.8313	0.16356	2698.9	2927.9	
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5		7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464			7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395			7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297			8.1904	0.31951	3474.4	3921.7	
800	0.49438	3661.7	4156.1	8.5024	0.41184			8.4176	0.35288	3660.3	4154.3	
900	0.54083	3853.9	4394.8	8.7150	0.45059			8.6303	0.38614	3852.7		8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928			8.8310	0.41933	4051.7	4638.8	
1100	0.63354	4257.9	4891.4	9.1057	0.52792			9.0212	0.45247	4257.0	4890.5	
1200	0.67983	4469.0	5148.9	9.2866	0.56652		5148.5	9.2022	0.48558	4468.3		9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509			9.3750	0.51866	4685.1		9.3036
0 - 1		= 1.60 MI					MPa (207)			2.00 MP		
Sat. 225	0.12374 0.13293	2594.8 2645.1	2792.8 2857.8	6.4200 6.5537	0.11037	2597.3 2637.0			0.09959 0.10381	2599.1 2628.5		6.3390 6.4160
250	0.13293	2692.9	2919.9	6.6753	0.11678	2686.7			0.10361	2680.3		6.5475
300	0.14190	2092.9	3035.4	6.8864	0.12302	2777.4			0.11150	2773.2		6.7684
350	0.17459	2866.6	3146.0	7.0713	0.14023	2863.6			0.12331	2860.5		6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3			0.15122	2945.9		7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5			0.17568	3116.9		7.4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7			0.19962	3291.5		7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6			0.22326	3471.7		7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8			0.24674	3658.0		8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5	4391.		0.27012	3850.9	4391.1	8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7	4637.	6 8.6427	0.29342	4050.2	4637.1	8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2			0.31667	4255.7		8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6			0.33989	4467.2		8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5	5410.	6 9.1872	0.36308	4684.2	5410.3	9.1384
	<i>P</i>	= 2.50 MI	Pa (223.9	5°C)	Р	= 3.00 M	MPa (233	.85°C)	P =	3.50 MP	a (242.5	6°C)
Sat.	0.07995 0.08026	2602.1 2604.8	2801.9	6.2558	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
225			2805.5 2880.9	6.2629	0.07063	00447	0050	F (2002	0.05076	2624.0	2020 =	6.1764
250	0.08705	2663.3		6.4107	0.07063	2644.7 2750.8			0.05876	2624.0		
300 350	0.09894	2762.2	3009.6	6.6459	0.08118				0.06845	2738.8		6.4484
400	0.10979 0.12012		3127.0 3240.1	6.8424 7.0170	0.09056	2844.4 2933.6			0.07680 0.08456	2836.0 2927.2		9 6.6601 2 6.8428
450	0.12012		3351.6	7.1768	0.10789	3021.2			0.00430	3016.1		7.0074
500	0.13013		3462.8	7.1768	0.10789	3108.6			0.09198	3104.5		7.0074
600	0.15931		3686.8	7.5234	0.11020	3285.5			0.03313	3282.5		7.1353
700	0.17835	3469.3	3915.2	7.8455	0.13243	3467.0			0.12702	3464.7		7.4855
800	0.19722		4149.2	8.0744	0.16420	3654.3			0.14061	3652.5		7.9156
900	0.21597		4389.3	8.2882	0.17988	3847.9			0.15410	3846.4		8.1304
1000	0.23466		4635.6	8.4897	0.19549	4047.7			0.16751	4046.4		8.3324
1100	0.25330		4887.9	8.6804	0.21105	4253.6			0.18087	4252.5		8.5236
1200	0.27190	4466.3	5146.0	8.8618	0.22658	4465.3			0.19420	4464.4		8.7053
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.	8 8.9502	0.20750	4681.8	5408.0	8.8786

TABLE A-6

TABLE	A-6											
Superl	neated wate	r (<i>Conti</i>	nued)									
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg l	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	P =	= 4.0 MF	Pa (250.35	5°C)	Р	= 4.5 MP	a (257.44°	°C)	P =	5.0 MPa	(263.94	-°C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275		2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3		6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0		6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5		6.6483
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210
500		3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8		6.9781
600	0.09886		3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3		7.2605
700	0.11098		3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7		7.5136
800	0.12292		4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9		7.7458
900		3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8		7.9619
1000	0.14653		4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6		8.1648
1100	0.15824		4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3		8.3566
1200	0.16992		5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6		8.5388
1300	0.18157		5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3		8.7124
	P =	= 6.0 MF	Pa (275.59	9°C)	Р	= 7.0 MP	a (285.83°	°C)	P =	8.0 MPa	(295.01	°C)
Sat.	0.03245		2784.6	5.8902	0.027378		2772.6	5.8148	0.023525			5.7450
300	0.03619		2885.6	6.0703	0.029492		2839.9	5.9337	0.024279			5.7937
350		2790.4	3043.9	6.3357	0.035262		3016.9	6.2305	0.029975			6.1321
400	0.04742		3178.3	6.5432	0.039958		3159.2	6.4502	0.034344			6.3658
450		2989.9	3302.9	6.7219	0.044187		3288.3	6.6353	0.038194			6.5579
500	0.05667 3 0.06102 3		3423.1 3541.3	6.8826	0.048157		3411.4	6.8000	0.041767			6.7266
550 600	0.06102		3658.8	7.0308 7.1693	0.051966 0.055665		3531.6 3650.6	6.9507 7.0910	0.045172 0.048463			6.8800 7.0221
700		3453.0	3894.3	7.1093	0.053003		3888.3	7.0910	0.048403			7.0221
800	0.07355		4133.1	7.6582	0.062856		4128.5	7.5836	0.061011			7.5185
900		3838.8	4376.6	7.8751	0.076750		4373.0	7.8014	0.067082			7.7372
1000	0.09756		4625.4	8.0786	0.083571		4622.5	8.0055	0.073079			7.9419
1100	0.10543		4879.7	8.2709	0.090341		4877.4	8.1982	0.079025			8.1350
1200		4459.8	5139.4	8.4534	0.097075		5137.4	8.3810	0.084934			8.3181
1300	0.12107		5404.1	8.6273	0.103781		5402.6	8.5551	0.090817			8.4925
	P =	= 9.0 MF	Pa (303.35	5°C)	<i>P</i> =	= 10.0 MF	Pa (311.00)°C)	P =	12.5 MPa	a (327.8)	1°C)
Sat.	0.020489	2558.5	2742.9	5.6791	0.018028	2545.2	2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284	2647.6	2857.1	5.8738	0.019877	2611.6	2810.3	5.7596				
350	0.025816	2725.0	2957.3	6.0380	0.022440	2699.6	2924.0	5.9460	0.016138	2624.9	2826.6	5.7130
400	0.029960	2849.2	3118.8	6.2876	0.026436	2833.1	3097.5	6.2141	0.020030	2789.6	3040.0	6.0433
450	0.033524	2956.3	3258.0	6.4872	0.029782	2944.5	3242.4	6.4219	0.023019	2913.7	3201.5	6.2749
500	0.036793	3056.3	3387.4	6.6603	0.032811	3047.0	3375.1	6.5995	0.025630	3023.2	3343.6	6.4651
550	0.039885	3153.0	3512.0	6.8164	0.035655		3502.0	6.7585	0.028033			6.6317
600	0.042861		3634.1	6.9605	0.038378		3625.8	6.9045	0.030306			
650	0.045755		3755.2	7.0954	0.041018		3748.1	7.0408	0.032491			6.9227
700	0.048589		3876.1	7.2229	0.043597		3870.0	7.1693	0.034612			7.0540
800	0.054132		4119.2	7.4606	0.048629		4114.5	7.4085	0.038724			7.2967
900	0.059562		4365.7	7.6802	0.053547		4362.0	7.6290	0.042720			7.5195
1000	0.064919		4616.7	7.8855	0.058391		4613.8	7.8349	0.046641			7.7269
1100	0.070224		4872.7	8.0791	0.063183		4870.3	8.0289	0.050510			7.9220 8.1065
1200	0.075492		5133.6	8.2625	0.067938 0.072667		5131.7	8.2126	0.054342			8.1065
1300	0.080733	40/2.9	5399.5	8.4371	0.072007	40/1.3	5398.0	8.3874	0.00814/	4007.3	ეაყ4.1	0.2019

TABLE A-6

Superheated water (Concluded)

Superl	neated wate	r (Concil	iaea)									
T	V	и	h	S	V	И	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	P =	: 15.0 MP	a (342.16	i°C)	P = 1	17.5 MPa	(354.67	°C)	P =	20.0 MP	a (365.75	 5°C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463		2902.4		0.009950		2816.9	5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204			6.0212	0.012721		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385			6.2424	0.014793		3241.2	6.1446
550	0.022945	3106.2	3450.4	6.5230	0.019305			6.4266	0.016571			6.3390
600	0.024921	3209.3	3583.1	6.6796	0.021073			6.5890	0.018185		3539.0	6.5075
650	0.026804	3310.1	3712.1	6.8233	0.022742		3693.8		0.019695			6.6593
700	0.028621	3409.8	3839.1	6.9573	0.024342			6.8735	0.021134		3807.8	6.7991
800	0.032121	3609.3	4091.1	7.2037	0.027405		4079.3		0.023870		4067.5	7.0531
900	0.035503	3811.2	4343.7	7.4288	0.030348		4334.6		0.026484		4325.4	7.2829
1000	0.038808	4017.1	4599.2	7.6378	0.033215		4592.0		0.029020		4584.7	7.4950
1100	0.042062	4227.7	4858.6	7.8339	0.036029		4852.8		0.031504		4847.0	7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806		5117.6		0.033952		5112.9	7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.0574
		P = 25				P = 30.0				P = 35		
375	0.001978	1799.9	1849.4	4.0345	0.001792		1791.9		0.001701		1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1400	0.002798		2152.8		0.002105	1914.9	1988.6	4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299		2611.8		0.003434		2373.5	4.7751
450	0.009176	2721.2	2950.6	5.6759	0.006737		2821.0		0.004957		2671.0	5.1946
500	0.011143	2887.3	3165.9	5.9643	0.008691		3084.8		0.006933	2755.3	2997.9	5.6331
550	0.012736	3020.8	3339.2	6.1816	0.010175		3279.7		0.008348		3218.0	5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445		3446.8		0.009523		3399.0	6.1229
650	0.015430	3251.9	3637.7	6.5243	0.012590		3599.4			3190.9	3560.7	6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654		3743.9		0.011523		3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628		4020.0		0.013278		3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473		4288.8		0.014904		4270.6	6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240		4555.8		0.016450	3965.8		7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954		4823.9		0.017942			7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630		5094.2		0.019398	4406.1	5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		P = 40				P = 50.0				<i>P</i> = 60		
375	0.001641	1677.0	1742.6	3.8290		1638.6			0.001503		1699.9	3.7149
400	0.001911	1855.0	1931.4	4.1145	0.001731			4.0029	0.001633	1745.2	1843.2	3.9317
425	0.002538	2097.5	2199.0	4.5044	0.002009			4.2746	0.001816	1892.9	2001.8	4.1630
450	0.003692	2364.2	2511.8	4.9449	0.002487		2284.7		0.002086		2180.2	4.4140
500	0.005623	2681.6	2906.5	5.4744	0.003890		2722.6		0.002952			4.9356
550	0.006985	2875.1	3154.4	5.7857	0.005118				0.003955			5.3517
600	0.008089	3026.8	3350.4	6.0170	0.006108				0.004833			
650	0.009053	3159.5	3521.6	6.2078	0.006957				0.005591			5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717				0.006265			
800	0.011521	3511.8	3972.6	6.6613	0.009073				0.007456			6.4033
900	0.012980	3733.3	4252.5	6.9107	0.010296				0.008519			
1000	0.014360	3952.9	4527.3	7.1355	0.011441				0.009504			
1100	0.015686	4173.7		7.3425	0.012534				0.010439			
1200	0.016976	4396.9		7.5357	0.013590				0.011339			
1300	0.018239	4623.3	5352.8	7./1/5	0.014620	4007.5	ეპპგ.5	7.0048	0.012213	4591.8	3324.5	7.5111

TABLE A-7

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Compi	essea iiqui	u water											
°C m³/kg kJ/kg kJ/kg/kg kJ/kg/kg kJ/kg	T	V	11	h	S	l v	П	h	S	l v	П	h	S	
P = 5 MPa 263.94*C														
Sat		111 / 118	NJ/NS	NJ/NS	NJ/Ng·IN	111 / 118	NJ/NS	NJ/NS	NJ/Ng·IN	111 / Ng	NJ/NE	NJ/ Ng	NJ/Ng·IX	
0 0		<i>P</i> =	= 5 MPa ((263.94°C	;)	P =	= 10 MPa	(311.00°C))	P =	15 MPa	(342.16°	C)	
0 0	Sat	0.0012862	11/01	11545	2 9207	0.0014522	1303 3	1407.0	3 3603	0.0016572	1585 5	1610 3	3 6848	
20 0.0009996 83.61 88.61 0.2954 0.000937 83.31 93.28 0.2943 0.0009951 83.01 97.93 0.2932 40 0.0010049 250.29 255.36 0.8287 0.0010127 249.43 259.55 0.8260 0.0010052 231.88 263.74 0.8234 80 0.0010267 333.82 338.98 1.0723 0.0010244 332.69 342.94 1.0691 0.0010361 414.88 430.99 1.0528 120 0.0010576 501.91 1.5236 0.0010738 584.72 595.45 1.7293 0.0010522 498.50 514.28 1.5148 160 0.0010788 586.80 592.18 1.7344 0.0010798 586.80 592.18 1.7344 0.0010798 586.80 592.18 1.7344 160 0.0011240 759.47 765.09 2.1338 0.0011200 756.48 767.68 2.271 0.0011405 848.29 285.80 2.314 2.3100 0.001252 1.934														
A0														
60 0.010149 250.29 253.56 0.8287 0.0010244 332.69 342.94 1.0691 0.0010212 333.82 333.86 1.0723 0.0010244 332.69 342.94 1.0691 0.0010361 414.85 430.92 1.0659 100 0.0010576 501.91 507.19 1.5236 0.0010385 416.23 426.62 1.2996 0.0010524 414.85 430.92 1.0536 100 0.0010576 586.80 592.18 1.7344 0.0010738 584.72 595.45 1.7293 0.0010522 498.50 514.28 1.5148 180 0.0011240 759.47 765.09 2.1338 0.0011200 756.48 767.68 2.1271 0.0011455 848.42 858.68 2.3174 0.001249 767.68 2.1271 0.0011455 848.48 858.09 2.3100 2.3100 2.00188 2.3174 0.001249 2.3251 0.0011432 844.32 855.68 2.3174 0.001326 1.218.1 2.333 2.5077 0.00														
80														
100														
1.0														
140														
160 0.0010988 672.55 678.04 1.9374 0.0010954 670.06 681.01 1.9316 0.001020 667.63 684.01 1.9259 180 0.0011240 759.47 765.09 2.1338 0.0011120 756.88 767.68 2.1271 0.00111435 840.48 888.00 2.3102 200 0.0011868 938.39 944.32 2.5127 0.0011809 934.01 945.82 2.5037 0.0011752 929.81 947.43 2.4951 240 0.0012755 1138.5 1134.9 2.8841 0.001263 1121.6 1134.3 2.88710 0.001266 1115.1 1134.0 2.8868 280 0.001375 1128.5 1134.9 2.8841 0.0013926 1221.8 1235.0 3.0565 0.001396 121.4 1233.0 3.0410 300 2.20 0.001398 3.2279 3.0865 0.001393 1317.6 1333.3 3.2279 340 0.00009994 0.23 20.03 0.0005														
180														
200														
220														
240														
260														
280 280														
300 320 320 320 320 320 320 320 320 320		0.0012733	1120.5	1104.5	2.00+1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						0.0013300	1025.4	10-0.0	3.2400					
P = 20 MPa (365.75°C)														
Sat. 0.0020378 1785.8 1826.6 4.0146 Column 1 Column 2														
0 0.0009904 0.23 20.03 0.0005 0.0009857 0.29 29.86 0.0003 0.0009767 0.29 49.13 -0.0010 20 0.0009929 82.71 102.57 0.2921 0.0009886 82.11 111.77 0.2897 0.0009805 80.93 129.95 0.2845 40 0.0009992 165.17 185.16 0.5646 0.0009951 164.05 193.90 0.5607 0.0009872 161.90 211.25 0.5528 60 0.0010084 247.75 267.92 0.8208 0.0010042 246.14 276.26 0.8156 0.0009962 243.08 292.88 0.8055 80 0.0010193 330.50 350.90 1.0627 0.0010155 328.40 358.86 1.0564 0.00100702 243.08 292.88 0.8055 80 0.0010496 496.85 517.84 1.5105 0.0010496 496.85 517.84 1.5105 0.0010623 576.90 608.76 1.5020 0.0010349 487.69 <td></td> <td>P =</td> <td>20 MPa</td> <td>(365.75°C</td> <td>C)</td> <td></td> <td>P = 30</td> <td>MPa</td> <td></td> <td colspan="5">P = 50 MPa</td>		P =	20 MPa	(365.75°C	C)		P = 30	MPa		P = 50 MPa				
0 0.0009904 0.23 20.03 0.0005 0.0009857 0.29 29.86 0.0003 0.0009767 0.29 49.13 -0.0010 20 0.0009929 82.71 102.57 0.2921 0.0009886 82.11 111.77 0.2897 0.0009805 80.93 129.95 0.2845 40 0.0009992 165.17 185.16 0.5646 0.0009951 164.05 193.90 0.5607 0.0009872 161.90 211.25 0.5528 60 0.0010084 247.75 267.92 0.8208 0.0010042 246.14 276.26 0.8156 0.0009962 243.08 292.88 0.8055 80 0.0010193 330.50 350.90 1.0627 0.0010455 328.40 358.86 1.0564 0.0010072 324.42 374.78 1.0442 100 0.0010337 413.50 434.17 1.2920 0.0010445 493.66 525.00 1.5020 0.0010349 487.69 539.43 1.4859 140 <	Sat.	0.0020378	1785.8	1826.6	4.0146									
40 0.0009992 165.17 185.16 0.5646 0.0009951 164.05 193.90 0.5607 0.0009872 161.90 211.25 0.5528 60 0.0010084 247.75 267.92 0.8208 0.0010042 246.14 276.26 0.8156 0.0009962 243.08 292.88 0.8055 80 0.0010199 330.50 350.90 1.0627 0.0010155 328.40 358.86 1.0564 0.0010072 324.42 374.78 1.0442 100 0.0010337 413.50 434.17 1.2920 0.0010290 410.87 441.74 1.2847 0.0010201 405.94 456.94 1.2705 120 0.0010496 496.85 517.84 1.5105 0.0010623 576.90 608.76 1.7098 0.0010349 487.69 539.43 1.4859 140 0.0010886 665.28 687.05 1.9203 0.0010823 660.74 693.21 1.9094 0.0010704 652.33 705.85 1.8889 180<	0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010	
40 0.0009992 165.17 185.16 0.5646 0.0009951 164.05 193.90 0.5607 0.0009872 161.90 211.25 0.5528 60 0.0010084 247.75 267.92 0.8208 0.0010042 246.14 276.26 0.8156 0.0009962 243.08 292.88 0.8055 80 0.0010199 330.50 350.90 1.0627 0.0010155 328.40 358.86 1.0564 0.0010072 324.42 374.78 1.0442 100 0.0010337 413.50 434.17 1.2920 0.0010290 410.87 441.74 1.2847 0.0010201 405.94 456.94 1.2705 120 0.0010496 496.85 517.84 1.5105 0.0010623 576.90 608.76 1.7098 0.0010349 487.69 539.43 1.4859 140 0.0010886 665.28 687.05 1.9203 0.0010823 660.74 693.21 1.9094 0.0010704 652.33 705.85 1.8889 180<	20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845	
80 0.0010199 330.50 350.90 1.0627 0.0010155 328.40 358.86 1.0564 0.0010072 324.42 374.78 1.0442 100 0.0010337 413.50 434.17 1.2920 0.0010290 410.87 441.74 1.2847 0.0010201 405.94 456.94 1.2705 120 0.0010496 496.85 517.84 1.5105 0.0010445 493.66 525.00 1.5020 0.0010349 487.69 539.43 1.4859 140 0.0010679 580.71 602.07 1.7194 0.0010623 576.90 608.76 1.7098 0.0010517 569.77 622.36 1.6916 160 0.0010886 665.28 687.05 1.9203 0.0010823 660.74 693.21 1.9094 0.0010704 652.33 705.85 1.8889 180 0.0011390 837.49 860.27 2.3027 0.0011304 831.11 865.02 2.2888 0.0011149 819.45 875.19 2.2628 220 0.0011697 925.77 949.16 2.4867 0.0011595 918.15	40	0.0009992			0.5646	0.0009951		193.90	0.5607	0.0009872	161.90	211.25	0.5528	
100 0.0010337 413.50 434.17 1.2920 0.0010290 410.87 441.74 1.2847 0.0010201 405.94 456.94 1.2705 120 0.0010496 496.85 517.84 1.5105 0.0010445 493.66 525.00 1.5020 0.0010349 487.69 539.43 1.4859 140 0.0010679 580.71 602.07 1.7194 0.0010623 576.90 608.76 1.7098 0.0010517 569.77 622.36 1.6916 160 0.0010886 665.28 687.05 1.9203 0.0010823 660.74 693.21 1.9094 0.0010704 652.33 705.85 1.8889 180 0.0011390 837.49 860.27 2.3027 0.0011304 831.11 865.02 2.2888 0.0011149 819.45 875.19 2.2628 220 0.0011697 925.77 949.16 2.4867 0.0011927 1006.9 1042.7 2.6491 0.0011708 990.55 1049.1 2.6156 2	60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055	
120 0.0010496 496.85 517.84 1.5105 0.0010445 493.66 525.00 1.5020 0.0010349 487.69 539.43 1.4859 140 0.0010679 580.71 602.07 1.7194 0.0010623 576.90 608.76 1.7098 0.0010517 569.77 622.36 1.6916 160 0.0010886 665.28 687.05 1.9203 0.0010823 660.74 693.21 1.9094 0.0010704 652.33 705.85 1.8889 180 0.0011390 837.49 860.27 2.3027 0.0011304 831.11 865.02 2.2888 0.0011149 819.45 875.19 2.2628 220 0.0011697 925.77 949.16 2.4867 0.0011927 1006.9 1042.7 2.6491 0.0011412 904.39 961.45 2.4414 240 0.0012973 1134.0 2.8469 0.0012314 1097.8 1134.7 2.8250 0.0012044 1078.2 1138.4 2.7864 280 0.0012978 1205.6 1231.5 3.0265 0.0012770 1191.5 1229.8	80	0.0010199	330.50	350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	1.0442	
140 0.0010679 580.71 602.07 1.7194 0.0010623 576.90 608.76 1.7098 0.0010517 569.77 622.36 1.6916 160 0.0010886 665.28 687.05 1.9203 0.0010823 660.74 693.21 1.9094 0.0010704 652.33 705.85 1.8889 180 0.0011122 750.78 773.02 2.1143 0.0011049 745.40 778.55 2.1020 0.0010914 735.49 790.06 2.0790 200 0.0011697 925.77 949.16 2.4867 0.0011595 918.15 952.93 2.4707 0.0011412 904.39 961.45 2.4414 240 0.0012053 1016.1 1040.2 2.6676 0.0011927 1006.9 1042.7 2.6491 0.0011708 990.55 1049.1 2.6156 260 0.0012472 1109.0 1134.0 2.8469 0.0012770 1191.5 1229.8 3.0001 0.0012444 1078.2 1138.4 2.7864 280 0.0013611 1307.2 1334.4 3.2091 0.0013322 1288.9	100	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	1.2705	
160 0.0010886 665.28 687.05 1.9203 0.0010823 660.74 693.21 1.9094 0.0010704 652.33 705.85 1.8889 180 0.0011122 750.78 773.02 2.1143 0.0011049 745.40 778.55 2.1020 0.0010914 735.49 790.06 2.0790 200 0.0011390 837.49 860.27 2.3027 0.0011304 831.11 865.02 2.2888 0.0011149 819.45 875.19 2.2628 220 0.0011697 925.77 949.16 2.4867 0.0011595 918.15 952.93 2.4707 0.0011412 904.39 961.45 2.4414 240 0.0012053 1016.1 1040.2 2.6676 0.0011927 1006.9 1042.7 2.6491 0.0011708 990.55 1049.1 2.6156 260 0.0012472 1109.0 1134.0 2.8469 0.0012770 1191.5 1229.8 3.0001 0.001244 1078.2 1138.4 2.7864 28	120	0.0010496	496.85	517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	1.4859	
180 0.0011122 750.78 773.02 2.1143 0.0011049 745.40 778.55 2.1020 0.0010914 735.49 790.06 2.0790 200 0.0011390 837.49 860.27 2.3027 0.0011304 831.11 865.02 2.2888 0.0011149 819.45 875.19 2.2628 220 0.0011697 925.77 949.16 2.4867 0.0011595 918.15 952.93 2.4707 0.0011412 904.39 961.45 2.4414 240 0.0012053 1016.1 1040.2 2.6676 0.0011927 1006.9 1042.7 2.6491 0.0011708 990.55 1049.1 2.6156 260 0.0012472 1109.0 1134.0 2.8469 0.0012314 1097.8 1134.7 2.8250 0.0012044 1078.2 1138.4 2.7864 280 0.0012978 1205.6 1231.5 3.0265 0.0012770 1191.5 1229.8 3.0001 0.0012430 1167.7 1229.9 2.9547 300 0.0014450 1416.6 1445.5 3.3996 0.0014014 1391.7	140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	1.6916	
200 0.0011390 837.49 860.27 2.3027 0.0011304 831.11 865.02 2.2888 0.0011149 819.45 875.19 2.2628 220 0.0011697 925.77 949.16 2.4867 0.0011595 918.15 952.93 2.4707 0.0011412 904.39 961.45 2.4414 240 0.0012053 1016.1 1040.2 2.6676 0.0011927 1006.9 1042.7 2.6491 0.0011708 990.55 1049.1 2.6156 260 0.0012978 1205.6 1231.5 3.0265 0.0012770 1191.5 1229.8 3.0001 0.0012430 1167.7 1229.9 2.9547 300 0.0013611 1307.2 1334.4 3.2091 0.0013322 1288.9 1328.9 3.1761 0.0012879 1259.6 1324.0 3.1218 320 0.0014450 1416.6 1445.5 3.3996 0.0014014 1391.7 1433.7 3.5438 0.0014049 1452.9 1523.1 3.4575	160	0.0010886	665.28	687.05	1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	1.8889	
220 0.0011697 925.77 949.16 2.4867 0.0011595 918.15 952.93 2.4707 0.0011412 904.39 961.45 2.4414 240 0.0012053 1016.1 1040.2 2.6676 0.0011927 1006.9 1042.7 2.6491 0.0011708 990.55 1049.1 2.6156 260 0.0012472 1109.0 1134.0 2.8469 0.0012314 1097.8 1134.7 2.8250 0.0012044 1078.2 1138.4 2.7864 280 0.0012978 1205.6 1231.5 3.0265 0.0012770 1191.5 1229.8 3.0001 0.0012430 1167.7 1229.9 2.9547 300 0.0013611 1307.2 1334.4 3.2091 0.0013322 1288.9 1328.9 3.1761 0.0012879 1259.6 1324.0 3.1218 320 0.0014450 1416.6 1445.5 3.3996 0.0014014 1391.7 1433.7 3.5438 0.0013409 1354.3 1421.4 3.2888 340 0.0015693 1540.2 1571.6 3.6086 0.0014932 1502.4	180	0.0011122	750.78	773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	2.0790	
240 0.0012053 1016.1 1040.2 2.6676 0.0011927 1006.9 1042.7 2.6491 0.0011708 990.55 1049.1 2.6156 260 0.0012472 1109.0 1134.0 2.8469 0.0012314 1097.8 1134.7 2.8250 0.0012044 1078.2 1138.4 2.7864 280 0.0012978 1205.6 1231.5 3.0265 0.0012770 1191.5 1229.8 3.0001 0.0012430 1167.7 1229.9 2.9547 300 0.0013611 1307.2 1334.4 3.2091 0.0013322 1288.9 1328.9 3.1761 0.0012879 1259.6 1324.0 3.1218 320 0.0014450 1416.6 1445.5 3.3996 0.0014014 1391.7 1433.7 3.3558 0.0013409 1354.3 1421.4 3.2888 340 0.0015693 1540.2 1571.6 3.6086 0.0014932 1502.4 1547.1 3.5438 0.0014049 1452.9 1523.1 3.4575	200	0.0011390	837.49	860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	2.2628	
260 0.0012472 1109.0 1134.0 2.8469 0.0012314 1097.8 1134.7 2.8250 0.0012044 1078.2 1138.4 2.7864 280 0.0012978 1205.6 1231.5 3.0265 0.0012770 1191.5 1229.8 3.0001 0.0012430 1167.7 1229.9 2.9547 300 0.0013611 1307.2 1334.4 3.2091 0.0013322 1288.9 1328.9 3.1761 0.0012879 1259.6 1324.0 3.1218 320 0.0014450 1416.6 1445.5 3.3996 0.0014014 1391.7 1433.7 3.3558 0.0013409 1354.3 1421.4 3.2888 340 0.0015693 1540.2 1571.6 3.6086 0.0014932 1502.4 1547.1 3.5438 0.0014049 1452.9 1523.1 3.4575	220	0.0011697	925.77	949.16	2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45	2.4414	
280 0.0012978 1205.6 1231.5 3.0265 0.0012770 1191.5 1229.8 3.0001 0.0012430 1167.7 1229.9 2.9547 300 0.0013611 1307.2 1334.4 3.2091 0.0013322 1288.9 1328.9 3.1761 0.0012879 1259.6 1324.0 3.1218 320 0.0014450 1416.6 1445.5 3.3996 0.0014014 1391.7 1433.7 3.3558 0.0013409 1354.3 1421.4 3.2888 340 0.0015693 1540.2 1571.6 3.6086 0.0014932 1502.4 1547.1 3.5438 0.0014049 1452.9 1523.1 3.4575	240	0.0012053	1016.1	1040.2	2.6676	0.0011927	1006.9	1042.7		0.0011708	990.55	1049.1	2.6156	
300 0.0013611 1307.2 1334.4 3.2091 0.0013322 1288.9 1328.9 3.1761 0.0012879 1259.6 1324.0 3.1218 320 0.0014450 1416.6 1445.5 3.3996 0.0014014 1391.7 1433.7 3.3558 0.0013409 1354.3 1421.4 3.2888 340 0.0015693 1540.2 1571.6 3.6086 0.0014932 1502.4 1547.1 3.5438 0.0014049 1452.9 1523.1 3.4575	260	0.0012472	1109.0	1134.0	2.8469	0.0012314	1097.8	1134.7	2.8250	0.0012044	1078.2	1138.4	2.7864	
320 0.0014450 1416.6 1445.5 3.3996 0.0014014 1391.7 1433.7 3.3558 0.0013409 1354.3 1421.4 3.2888 340 0.0015693 1540.2 1571.6 3.6086 0.0014932 1502.4 1547.1 3.5438 0.0014049 1452.9 1523.1 3.4575	280	0.0012978	1205.6	1231.5	3.0265	0.0012770	1191.5	1229.8	3.0001	0.0012430	1167.7	1229.9	2.9547	
340 0.0015693 1540.2 1571.6 3.6086 0.0014932 1502.4 1547.1 3.5438 0.0014049 1452.9 1523.1 3.4575	300	0.0013611	1307.2	1334.4	3.2091	0.0013322	1288.9	1328.9	3.1761	0.0012879	1259.6	1324.0		
	320	0.0014450	1416.6	1445.5	3.3996	0.0014014	1391.7	1433.7	3.3558	0.0013409	1354.3	1421.4	3.2888	
360 0.0018248 1703.6 1740.1 3.8787 0.0016276 1626.8 1675.6 3.7499 0.0014848 1556.5 1630.7 3.6301	340	0.0015693	1540.2	1571.6	3.6086	0.0014932	1502.4	1547.1	3.5438	0.0014049	1452.9	1523.1	3.4575	
	360	0.0018248	1703.6	1740.1	3.8787	0.0016276	1626.8	1675.6	3.7499	0.0014848	1556.5	1630.7	3.6301	
380 0.0018729 1782.0 1838.2 4.0026 0.0015884 1667.1 1746.5 3.8102	200					0.0018729	1782.0	1838.2	4.0026	0.0015884	1667.1	1746.5	3 8102	

TABLE A–8Saturated ice–water vapor

			<i>c volume,</i> ³ /kg	Ir	<i>ternal er</i> kJ/kg	O 5 /		<i>Enthalpy</i> kJ/kg	;	Entropy, kJ/kg·K		
Temp., T°C	Sat. press., P _{sat} kPa	Sat. ice, v _i	Sat. vapor, v_g	Sat. ice, u_i	Subl., u _{ig}	Sat. vapor, u_g	Sat. ice, <i>h_i</i>	Subl., h _{ig}	Sat. vapor, h_g	Sat. ice, s_i	Subl., s _{ig}	Sat. vapor, s_g
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154
0	0.61115	0.001091	206.17	-333.43	2707.9	2374.5	-333.43	2833.9	2500.5	-1.2204	10.375	9.154
-2	0.51772	0.001091	241.62	-337.63	2709.4	2371.8	-337.63	2834.5	2496.8	-1.2358	10.453	9.218
-4	0.43748	0.001090	283.84	-341.80	2710.8	2369.0	-341.80	2835.0	2493.2	-1.2513	10.533	9.282
-6	0.36873	0.001090	334.27	-345.94	2712.2	2366.2	-345.93	2835.4	2489.5	-1.2667	10.613	9.347
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413
-10	0.25990	0.001089	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221
-32	0.03082	0.001086	3610.9	-397.00	2727.2	2330.2	-397.00	2838.4	2441.4	-1.4676	11.770	10.303
-34	0.02490	0.001085	4432.4	-400.72	2728.1	2327.4	-400.72	2838.5	2437.7	-1.4831	11.869	10.386
-36	0.02004	0.001085	5460.1	-404.40	2729.0	2324.6	-404.40	2838.4	2434.0	-1.4986	11.969	10.470
-38	0.01608	0.001085	6750.5	-408.07	2729.9	2321.8	-408.07	2838.4	2430.3	-1.5141	12.071	10.557
<u>-40</u>	0.01285	0.001084	8376.7	-411.70	2730.7	2319.0	-411.70	2838.3	2426.6	-1.5296	12.174	10.644

FIGURE A-9

T-s diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lexter Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

FIGURE A-10

Mollier diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

TABLE A–11Saturated refrigerant-134a—Temperature table

		Specific m ³ /l		Inte	ernal ene kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	<i>'</i> ,		<i>Entropy,</i> kJ/kg∙K	
Temp T °C	Sat. ., press., $P_{\rm sat}$ kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., <i>u_{fg}</i>	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96	0.000 2.515 5.037 7.566 10.10	225.86 224.61 223.35	225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058 0.95813
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70	12.65 15.20 17.76 20.33 22.91	219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	41.03 43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	54.30 56.99 59.68	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	67.83 70.57	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310

TABLE A–11Saturated refrigerant-134a—Temperature table (*Concluded*)

		Specific m³/		Inte	ernal ene kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	;		Entropy, kJ/kg·K	
Temp T°C	Sat. ., press., $P_{\rm sat}$ kPa	Sat. Iiquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215

Source: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

TABLE A-12

Saturated refrigerant-134a—Pressure table

			<i>volume,</i> /kg	Inte	<i>rnal enei</i> kJ/kg	rgy,	E	Enthalpy, kJ/kg			<i>Entropy,</i> kJ/kg∙K	
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Press.,		liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
P kPa	T _{sat} °C	V_f	V_g	U_f	U_{fg}	U_g	h_f	h_{fg}	h_g	S_f	S _{fg}	S_g
60	-36.95	0.0007098	0.31121	3.798	205.32	209.12	3.841	223.95	227.79	0.01634	0.94807	0.96441
70	-33.87	0.0007144	0.26929		203.20	210.88		222.00		0.03267	0.92775	0.96042
80	-31.13	0.0007185	0.23753	11.15	201.30	212.46	11.21	220.25	231.46	0.04711	0.90999	0.95710
90	-28.65	0.0007223	0.21263	14.31	199.57	213.88	14.37	218.65	233.02	0.06008	0.89419	0.95427
100	-26.37	0.0007259	0.19254	17.21	197.98	215.19	17.28	217.16	234.44	0.07188	0.87995	0.95183
120	-22.32	0.0007324	0.16212	22.40	195.11	217.51	22.49	214.48	236.97	0.09275	0.85503	0.94779
140	-18.77	0.0007383	0.14014	26.98	192.57	219.54	27.08		239.16	0.11087	0.83368	0.94456
160	-15.60	0.0007437	0.12348	31.09	190.27	221.35	31.21		241.11	0.12693	0.81496	0.94190
180	-12.73	0.0007487	0.11041	34.83	188.16	222.99	34.97	207.90	242.86	0.14139	0.79826	0.93965
200	-10.09	0.0007533	0.099867	38.28	186.21	224.48	38.43	206.03	244.46	0.15457	0.78316	0.93773
240	-5.38	0.0007620	0.083897	44.48	182.67	227.14	44.66	202.62	247.28	0.17794	0.75664	0.93458
280	-1.25	0.0007699	0.072352	49.97	179.50	229.46	50.18	199.54	249.72	0.19829	0.73381	0.93210
320	2.46	0.0007772	0.063604	54.92	176.61	231.52	55.16	196.71	251.88	0.21637	0.71369	0.93006
360	5.82	0.0007841	0.056738	59.44	173.94	233.38	59.72	194.08	253.81	0.23270	0.69566	0.92836
400	8.91	0.0007907	0.051201	63.62	171.45	235.07	63.94	191.62	255.55	0.24761	0.67929	0.92691
450	12.46	0.0007985	0.045619	68.45	168.54	237.00	68.81	188.71	257.53	0.26465	0.66069	0.92535
500	15.71	0.0008059	0.041118	72.93	165.82	238.75	73.33	185.98	259.30	0.28023	0.64377	0.92400
550	18.73	0.0008130	0.037408	77.10	163.25	240.35	77.54	183.38	260.92	0.29461	0.62821	0.92282
600	21.55	0.0008199	0.034295	81.02	160.81	241.83	81.51	180.90	262.40	0.30799	0.61378	0.92177
650	24.20	0.0008266	0.031646	84.72	158.48	243.20	85.26	178.51	263.77	0.32051	0.60030	0.92081
700	26.69	0.0008331	0.029361	88.24	156.24	244.48	88.82	176.21	265.03	0.33230	0.58763	0.91994
750	29.06	0.0008395	0.027371	91.59	154.08	245.67	92.22		266.20	0.34345	0.57567	0.91912
800	31.31	0.0008458	0.025621	94.79	152.00	246.79	95.47	171.82	267.29	0.35404	0.56431	0.91835
850	33.45	0.0008520	0.024069	97.87	149.98	247.85	98.60	169.71	268.31	0.36413	0.55349	0.91762
900	35.51	0.0008580	0.022683	100.83	148.01	248.85	101.61	167.66	269.26	0.37377	0.54315	0.91692
950	37.48	0.0008641	0.021438	103.69	146.10	249.79	104.51	165.64	270.15	0.38301	0.53323	0.91624
1000	39.37	0.0008700	0.020313	106.45	144.23	250.68	107.32	163.67	270.99	0.39189	0.52368	0.91558
1200	46.29	0.0008934	0.016715	116.70	137.11	253.81	117.77	156.10	273.87	0.42441	0.48863	0.91303
1400	52.40	0.0009166	0.014107	125.94	130.43	256.37	127.22	148.90	276.12	0.45315	0.45734	0.91050
1600	57.88	0.0009400	0.012123	134.43	124.04	258.47	135.93	141.93	277.86	0.47911	0.42873	0.90784
1800	62.87	0.0009639	0.010559	142.33	117.83	260.17	144.07	135.11	279.17	0.50294	0.40204	0.90498
2000	67.45	0.0009886	0.009288	149.78	111.73	261.51	151.76	128.33	280.09	0.52509	0.37675	0.90184
2500	77.54	0.0010566	0.006936	166.99	96.47	263.45	169.63	111.16	280.79	0.57531	0.31695	0.89226
3000	86.16	0.0011406	0.005275	183.04	80.22	263.26	186.46	92.63	279.09	0.62118	0.25776	0.87894

TABLE A-13

Superheated refrigerant-134a

Super	neated rei	ngerant-	154a									
T	V	и	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K
	P = 0.0	06 MPa (7	$s_{\text{sat}} = -36.$	95°C)	P = 0	.10 MPa ($T_{\rm sat} = -26$.37°C)	P=0.	14 MPa (7	$T_{\rm sat} = -18$.77°C)
Sat.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
-20	0.33608	220.60		1.0174	0.19841	219.66	239.50	0.9721				
-10	0.35048	227.55		1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724
0		234.66	256.54		0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	
10	0.37893	241.92	264.66		0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	
20		249.35	272.94		0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	
30	0.40705	256.95	281.37	1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	1.0912
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	1.1195
50	0.43495	272.64	298.74		0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	
60	0.44883	280.73	307.66	1.2463	0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	1.1749
70	0.46269	288.99	316.75	1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	1.2020
80	0.47651	297.41	326.00	1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	1.2288
90	0.49032	306.00	335.42	1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	1.2553
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	P = 0.1	18 MPa (7	$rac{1}{1} = -12.$	73°C)	P = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	P = 0	.24 MPa ($T_{\rm sat} = -5.$	38°C)
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0.11189	225.02	245.16		0.09991	224.55	244.54	0.9380	0.00030	227.11	217.20	0.5010
0	0.11722	232.48	253.58		0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519
10	0.12240	240.00	262.04			239.67	261.58	1.0004	0.09026	238.98	260.65	
20	0.12748	247.64	270.59		0.11418	247.35	270.18	1.0303	0.09423	246.74		1.0134
30		255.41		1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16	
40	0.13741	263.31		1.0975	0.12322		287.72	1.0882	0.10193	262.59	287.06	
50	0.14230	271.36	296.98		0.12766	271.15	296.68	1.1163	0.10570	270.71		1.1001
60		279.56	306.05			279.37	305.78	1.1441	0.10942	278.97	305.23	
70		287.91	315.27			287.73	315.01	1.1714	0.11310	287.36		1.1554
80	0.15673	296.42	324.63	1.2074	0.14074	296.25	324.40	1.1983	0.11675	295.91	323.93	1.1825
90	0.16149	305.07	334.14	1.2339	0.14504	304.92	333.93	1.2249	0.12038	304.60	333.49	1.2092
100	0.16622	313.88	343.80	1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20	
	P = 0.	.28 MPa ($T_{\rm sat} = -1.2$	25°C)	P =	0.32 MPa	$(T_{\rm sat} = 2.4)$	16°C)	P = (0.40 MPa	$(T_{\rm sat} = 8.9)$	91°C)
Sat.	0.07235	229.46	249.72	0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282	230.44	250.83									
10	0.07646	238.27	259.68	0.9680	0.06609	237.54	258.69	0.9544	0.051506	235.97	256.58	0.9305
20	0.07997	246.13	268.52	0.9987	0.06925	245.50	267.66	0.9856	0.054213	244.18	265.86	0.9628
30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796	252.36	275.07	0.9937
40	0.08672	262.10	286.38		0.07530	261.60	285.70	1.0451	0.059292	260.58	284.30	1.0236
50	0.09000	270.27	295.47	1.0862	0.07823	269.82	294.85	1.0739	0.061724	268.90	293.59	1.0528
60	0.09324	278.56	304.67	1.1142	0.08111	278.15	304.11	1.1021	0.064104	277.32	302.96	1.0814
70	0.09644	286.99	314.00	1.1418	0.08395	286.62	313.48	1.1298	0.066443	285.86	312.44	1.1094
80	0.09961	295.57	323.46	1.1690	0.08675		322.98	1.1571	0.068747	294.53	322.02	1.1369
90	0.10275	304.29	333.06	1.1958	0.08953	303.97	332.62	1.1840	0.071023	303.32	331.73	1.1640
100	0.10587	313.15	342.80	1.2222	0.09229	312.86	342.39	1.2105	0.073274	312.26	341.57	1.1907
110	0.10897	322.16	352.68	1.2483	0.09503	321.89	352.30	1.2367	0.075504	321.33	351.53	1.2171
120	0.11205	331.32	362.70	1.2742	0.09775	331.07	362.35	1.2626	0.077717	330.55	361.63	1.2431
130	0.11512	340.63	372.87	1.2997	0.10045	340.39	372.54	1.2882	0.079913	339.90	371.87	1.2688
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

TABLE A-13

Superheated refrigerant-134a (Continued)

Superi	leated rein	gciant-1	1344 (0	Ontinaea)								
Τ	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K
	P = 0.9	50 MPa ($T_{\rm sat} = 15.$	71°C)	P = 0	.60 MPa ($T_{\rm sat} = 21.5$	55°C)	P = 0	70 MPa (<i>T</i>	_{sat} = 26.6	9°C)
Sat.	0.041118	238.75	259.30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.042115											
30	0.044338	250.84	273.01	0.9703	0.035984	249.22	270.81	0.9499	0.029966	247.48	268.45	0.9313
40	0.046456	259.26	282.48	1.0011	0.037865	257.86	280.58	0.9816	0.031696	256.39	278.57	0.9641
50	0.048499				0.039659	266.48	290.28	1.0121	0.033322	265.20	288.53	0.9954
60	0.050485				0.041389	275.15	299.98	1.0417	0.034875	274.01		1.0256
70	0.052427				0.043069	283.89	309.73	1.0705	0.036373	282.87	308.33	
80	0.054331				0.044710	292.73	319.55	1.0987	0.037829	291.80		1.0835
90	0.056205				0.046318	301.67	329.46	1.1264	0.039250	300.82		1.1114
100	0.058053				0.047900	310.73	339.47	1.1536	0.040642	309.95		1.1389
110	0.059880				0.049458	319.91	349.59	1.1803	0.042010	319.19		1.1658
120	0.061687				0.050997	329.23	359.82	1.2067	0.043358	328.55		1.1924
130	0.063479				0.052519	338.67	370.18	1.2327	0.044688	338.04		1.2186
140	0.065256				0.054027	348.25	380.66	1.2584	0.046004	347.66		1.2444
150	0.067021				0.055522	357.96	391.27	1.2838	0.047306	357.41		1.2699 1.2951
160	0.068775				0.057006	367.81	402.01	1.3088	0.048597	367.29		
Cat	P = 0.8 0.025621	30 MPa (.90 MPa ($T_{\text{sat}} = 35.5$ 269.26			00 MPa (7		
Sat. 40	0.025621				0.022683 0.023375	248.85 253.13	209.20	0.9169 0.9327	0.020313 0.020406	250.68 251.30		0.9156 0.9179
50	0.027033				0.023375	262.44	284.77	0.9660	0.020400	260.94	282.74	
60	0.028347				0.024809	271.60		0.9976	0.021790	270.32	293.38	
70	0.023373				0.027413	280.72	305.39	1.0280	0.023000	279.59	303.85	
80	0.031640				0.027413	289.86	315.63	1.0574	0.025398	288.86	314.25	
90	0.033941				0.029806	299.06	325.89	1.0860	0.026492	298.15	324.64	
100	0.035193				0.030951	308.34	336.19	1.1140	0.027552	307.51	335.06	
110	0.036420				0.032068	317.70	346.56	1.1414	0.028584	316.94	345.53	
120	0.037625				0.033164	327.18	357.02	1.1684	0.029592	326.47	356.06	1.1580
130	0.038813	337.40	368.45	1.2061	0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	1.1846
140	0.039985	347.06	379.05	1.2321	0.035302	346.46	378.23	1.2210	0.031554	345.85	377.40	1.2109
150	0.041143	356.85	389.76	1.2577	0.036349	356.28	389.00	1.2467	0.032512	355.71	388.22	1.2368
160	0.042290	366.76	400.59	1.2830	0.037384	366.23	399.88	1.2721	0.033457	365.70	399.15	1.2623
170	0.043427				0.038408	376.31	410.88	1.2972	0.034392	375.81	410.20	
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
		20 MPa (.40 MPa (60 MPa (7		
Sat. 50	0.016715 0.017201				0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
60	0.017201				0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	0.9163
70	0.018404				0.015005		297.10	0.9389	0.012372	271.76		0.9103
80	0.019302			1.0248	0.010000	284.51	308.34	1.0056	0.013430	282.09	305.07	
90	0.020329			1.0546	0.017023	294.28	319.37	1.0364	0.014302	292.17	316.52	
100	0.021300			1.0836	0.017323	304.01	330.30	1.0661	0.015215	302.14	327.76	
110	0.023348				0.01979	313.76	341.19	1.0949	0.016773	312.07	338.91	1.0795
120	0.023348				0.020388	323.55	352.09	1.1230	0.01770	322.02	350.02	
130	0.025086			1.1664	0.021155	333.41	363.02	1.1504	0.018201	332.00	361.12	
140	0.025927			1.1930	0.021904	343.34	374.01	1.1773	0.018882	342.05	372.26	
150	0.026753			1.2192	0.022636	353.37	385.07	1.2038	0.019545	352.17	383.44	
160	0.027566			1.2449	0.023355	363.51	396.20	1.2298	0.020194	362.38	394.69	
170	0.028367				0.024061	373.75	407.43	1.2554	0.020830	372.69	406.02	
180	0.029158	385.08	420.07	1.2954	0.024757	384.10	418.76	1.2807	0.021456	383.11	417.44	

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

FIGURE A-15

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

TABLE A–16Properties of the atmosphere at high altitude

Altitude, m	Temperature, °C	Pressure, kPa	Gravity g, m/s ²	Speed of Sound, m/s	Density, kg/m³	Viscosity μ, kg/m·s	Thermal Conductivity, W/m·K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5} 1.783×10^{-5} 1.777×10^{-5} 1.771×10^{-5} 1.764×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202		0.0252
400	12.40	96.61	9.805	338.8	1.179		0.0252
600	11.10	94.32	9.805	338.0	1.156		0.0251
800	9.80	92.08	9.804	337.2	1.134		0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5} 1.752×10^{-5} 1.745×10^{-5} 1.739×10^{-5} 1.732×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090		0.0248
1400	5.90	85.60	9.802	334.9	1.069		0.0247
1600	4.60	83.53	9.802	334.1	1.048		0.0245
1800	3.30	81.49	9.801	333.3	1.027		0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5} 1.720×10^{-5} 1.713×10^{-5} 1.707×10^{-5} 1.700×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987		0.0242
2400	-0.59	75.63	9.799	331.0	0.967		0.0241
2600	-1.89	73.76	9.799	330.2	0.947		0.0240
2800	-3.19	71.92	9.798	329.4	0.928		0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5} 1.687×10^{-5} 1.681×10^{-5} 1.674×10^{-5} 1.668×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891		0.0237
3400	-7.09	66.63	9.796	327.0	0.872		0.0236
3600	-8.39	64.94	9.796	326.2	0.854		0.0235
3800	-9.69	63.28	9.795	325.4	0.837		0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5} 1.655×10^{-5} 1.648×10^{-5} 1.642×10^{-5} 1.635×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802		0.0232
4400	-13.6	58.52	9.793	323.0	0.785		0.0231
4600	-14.9	57.00	9.793	322.2	0.769		0.0230
4800	-16.2	55.51	9.792	321.4	0.752		0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5} 1.622×10^{-5} 1.615×10^{-5} 1.608×10^{-5} 1.602×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721		0.0227
5400	-20.1	51.23	9.790	318.9	0.705		0.0226
5600	-21.4	49.86	9.789	318.1	0.690		0.0224
5800	-22.7	48.52	9.785	317.3	0.675		0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5} 1.588×10^{-5} 1.582×10^{-5} 1.575×10^{-5} 1.568×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646		0.0221
6400	-26.6	44.69	9.787	314.8	0.631		0.0220
6600	-27.9	43.47	9.786	314.0	0.617		0.0219
6800	-29.2	42.27	9.785	313.1	0.604		0.0218
7000 8000 9000	-30.5 -36.9 -43.4	41.11 35.65 30.80 26.50	9.785 9.782 9.779	312.3 308.1 303.8	0.590 0.526 0.467	1.561×10^{-5} 1.527×10^{-5} 1.493×10^{-5} 1.458×10^{-5}	0.0217 0.0212 0.0206
10,000 12,000 14,000 16,000 18,000	-49.9 -56.5 -56.5 -56.5 -56.5	19.40 14.17 10.53 7.57	9.776 9.770 9.764 9.758 9.751	299.5 295.1 295.1 295.1 295.1	0.414 0.312 0.228 0.166 0.122	1.458×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5}	0.0201 0.0195 0.0195 0.0195 0.0195

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, $T=15^{\circ}$ C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

TABLE A-17

Ideal-gas properties of air

	Pao brobe	ortioo or an									
Τ	h		И		S [◦]	T	h		И		s°
K	kJ/kg	P_r	kJ/kg	V_r	kJ/kg·K	K	kJ/kg	P_r	kJ/kg	V_r	kJ/kg∙K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300 305	300.19 305.22	1.3860 1.4686	214.07 217.67	621.2 596.0	1.70203 1.71865	710 720	724.04 734.82	30.38 32.02	520.23 528.14	67.07 64.53	2.58810 2.60319
310	310.24	1.5546	221.25	572.3	1.73498		745.62	33.72	536.07		2.61803
315	315.27	1.6442	221.25	549.8	1.75106	730 740	756.44	35.50	544.02	62.13 59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	691.28	32.18	2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26 431.43	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430		4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440	441.61	5.332 5.775	315.30 322.62	236.8 223.6	2.08870 2.11161	1000 1020	1046.04 1068.89	114.0 123.4	758.94 776.10	25.17 23.72	2.96770 2.99034
450 460	451.80 462.02	6.245	329.97	223.6	2.11101	1020	1000.09	123.4	793.36	23.72	3.01260
470	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
480	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.07732
500	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540	544.35	11.10	389.34	139.7	2.29906	1200	1277.79	238.0	933.33	14.470	3.17888
550	555.74	11.86	396.86	133.1	2.31809	1220	1301.31	254.7	951.09	13.747	3.19834
560	565.17	12.66	404.42	127.0	2.33685	1240	1324.93	272.3	968.95	13.069	3.21751
570	575.59	13.50	411.97	121.2	2.35531	1					

TABLE A–17Ideal-gas properties of air (*Concluded*)

T K	<i>h</i> kJ/kg	P,	и kJ/kg	V _r	<i>s</i> ° kJ/kg⋅K	T K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	V _r	<i>s</i> ° kJ/kg⋅K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000	2252.1	2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050	2314.6	2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100	2377.7	2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150	2440.3	2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200	2503.2	3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

936 Property tables and charts

TABLE A-18

Ideal-gas properties of nitrogen, N_2

T	\overline{h}	\overline{U}	<u></u> $ \overline{S} $ °	T	\overline{h}	$\overline{\it u}$	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
0	0	0	0	600	17,563	12,574	212.066
220	6,391	4,562	182.639	610	17,864	12,792	212.564
230	6,683	4,770	183.938	620	18,166	13,011	213.055
240	6,975	4,979	185.180	630	18,468	13,230	213.541
250	7,266	5,188	186.370	640	18,772	13,450	214.018
260	7,558	5,396	187.514	650	19,075	13,671	214.489
270	7,849	5,604	188.614	660	19,380	13,892	214.954
280	8,141	5,813	189.673	670	19,685	14,114	215.413
290	8,432	6,021	190.695	680	19,991	14,337	215.866
298	8,669	6,190	191.502	690	20,297	14,560	216.314
300	8,723	6,229	191.682	700	20,604	14,784	216.756
310	9,014	6,437	192.638	710	20,912	15,008	217.192
320	9,306	6,645	193.562	720	21,220	15,234	217.624
330 340	9,597 9,888	6,853 7,061	194.459 195.328	730 740	21,529 21,839	15,460 15,686	218.059 218.472
350	10,180	7,270	196.173	750	22,149	15,913	218.889
360 370	10,471 10,763	7,478 7,687	196.995 197.794	760 770	22,460 22,772	16,141 16,370	219.301 219.709
380	11,055	7,895	198.572	780	23,085	16,570	220.113
390	11,347	8,104	199.331	790	23,398	16,830	220.512
400	11,640	8,314	200.071	800	23,714	17,061	220.907
410	11,932	8,523	200.794	810	24,027	17,292	221.298
420	12,225	8,733	201.499	820	24,342	17,524	221.684
430	12,518	8,943	202.189	830	24,658	17,757	222.067
440	12,811	9,153	202.863	840	24,974	17,990	222.447
450	13,105	9,363	203.523	850	25,292	18,224	222.822
460	13,399	9,574	204.170	860	25,610	18,459	223.194
470	13,693	9,786	204.803	870	25,928	18,695	223.562
480	13,988	9,997	205.424	880	26,248	18,931	223.927
490	14,285	10,210	206.033	890	26,568	19,168	224.288
500	14,581	10,423	206.630	900	26,890	19,407	224.647
510	14,876	10,635	207.216	910	27,210	19,644	225.002
520	15,172	10,848	207.792	920	27,532	19,883	225.353
530	15,469	11,062	208.358	930	27,854	20,122	225.701
540	15,766	11,277	208.914	940	28,178	20,362	226.047
550	16,064	11,492	209.461	950	28,501	20,603	226.389
560 570	16,363	11,707	209.999	960	28,826	20,844	226.728
570 580	16,662 16,962	11,923	210.528 211.049	970	29,151 29,476	21,086	227.064 227.398
580 590	16,962 17,262	12,139 12,356	211.049	980 990	29,476 29,803	21,328 21,571	227.398 227.728
	17,202	12,300	211.002	330	23,003	21,0/1	221.120

TABLE A–18 Ideal-gas properties of nitrogen, N_2 (*Concluded*)

T	h	\overline{u}	₹°	Т	h	ū	¯s°
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128
1160	35,430	25,786	232.973	1920	61,936	45,973	250.502
1180	36,104	26,291	233.549	1940	62,654	46,524	250.874
1200	36,777	26,799	234.115	1960	63,381	47,075	251.242
1220	37,452	27,308	234.673	1980	64,090	47,627	251.607
1240	38,129	27,819	235.223	2000	64,810	48,181	251.969
1260	38,807	28,331	235.766	2050	66,612	49,567	252.858
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726
1300	40,170	29,361	236.831	2150	70,226	52,351	254.578
1320	40,853	29,378	237.353	2200	72,040	53,749	255.412
1340	41,539	30,398	237.867	2250	73,856	55,149	256.227
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810
1400	43,605	31,964	239.375	2400	79,320	59,366	258.580
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512
1500	47,073	34,601	241.768	2650	88,488	66,455	262.213
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170
1640	51,980	38,344	244.896	3000	101,407	76,464	266.793
1660	52,686	38,884	245.324	3050	103,260	77,902	267.404
1680	53,393	39,424	245.747	3100	105,115	79,341	268.007
1700	54,099	39,965	246.166	3150	106,972	80,782	268.601
1720	54,807	40,507	246.580	3200	108,830	82,224	269.186
1740	55,516	41,049	246.990	3250	110,690	83,668	269.763

Source: Tables A-18 through A-25 are adapted from Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 787-98. Originally published in JANAF, Thermochemical Tables, NSRDS-NBS-37, 1971.

TABLE A-19

Ideal-gas properties of oxygen, ${\rm O_2}$

T	\overline{h}	\overline{u}	<u></u> s °	T	\overline{h}	\bar{u}	σ°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	17,929	12,940	226.346
220	6,404	4,575	196.171	610	18,250	13,178	226.877
230	6,694	4,782	197.461	620	18,572	13,417	227.400
240	6,984	4,989	198.696	630	18,895	13,657	227.918
250 260 270 280 290 298 300 310 320 330	7,275 7,566 7,858 8,150 8,443 8,682 8,736 9,030 9,325 9,620	5,197 5,405 5,613 5,822 6,032 6,203 6,242 6,453 6,664 6,877	199.885 201.027 202.128 203.191 204.218 205.033 205.213 206.177 207.112 208.020	640 650 660 670 680 690 700 710 720 730	19,219 19,544 19,870 20,197 20,524 20,854 21,184 21,514 21,845 22,177	13,898 14,140 14,383 14,626 14,871 15,116 15,364 15,611 15,859 16,107	228.429 228.932 229.430 229.920 230.405 230.885 231.358 231.827 232.291 232.748
340	9,916	7,090	208.904	740	22,510	16,357	233.201
350	10,213	7,303	209.765	750	22,844	16,607	233.649
360	10,511	7,518	210.604	760	23,178	16,859	234.091
370	10,809	7,733	211.423	770	23,513	17,111	234.528
380	11,109	7,949	212.222	780	23,850	17,364	234.960
390	11,409	8,166	213.002	790	24,186	17,618	235.387
400	11,711	8,384	213.765	800	24,523	17,872	235.810
410	12,012	8,603	214.510	810	24,861	18,126	236.230
420	12,314	8,822	215.241	820	25,199	18,382	236.644
430	12,618	9,043	215.955	830	25,537	18,637	237.055
440	12,923	9,264	216.656	840	25,877	18,893	237.462
450	13,228	9,487	217.342	850	26,218	19,150	237.864
460	13,525	9,710	218.016	860	26,559	19,408	238.264
470	13,842	9,935	218.676	870	26,899	19,666	238.660
480	14,151	10,160	219.326	880	27,242	19,925	239.051
490	14,460	10,386	219.963	890	27,584	20,185	239.439
500	14,770	10,614	220.589	900	27,928	20,445	239.823
510	15,082	10,842	221.206	910	28,272	20,706	240.203
520	15,395	11,071	221.812	920	28,616	20,967	240.580
530	15,708	11,301	222.409	930	28,960	21,228	240.953
540	16,022	11,533	222.997	940	29,306	21,491	241.323
550	16,338	11,765	223.576	950	29,652	21,754	241.689
560	16,654	11,998	224.146	960	29,999	22,017	242.052
570	16,971	12,232	224.708	970	30,345	22,280	242.411
580	17,290	12,467	225.262	980	30,692	22,544	242.768
590	17,609	12,703	225.808	990	31,041	22,809	242.120

TABLE A-19

Ideal-gas properties of oxygen, O_2 (Concluded)

T	h	ū	₹°	T	h	ū	<u></u> s °
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	31,389	23,075	243.471	1760	58,880	44,247	263.861
1020	32,088	23,607	244.164	1780	59,624	44,825	264.283
1040	32,789	24,142	244.844	1800	60,371	45,405	264.701
1060	33,490	24,677	245.513	1820	61,118	45,986	265.113
1080	34,194	25,214	246.171	1840	61,866	46,568	265.521
1100	34,899	25,753	246.818	1860	62,616	47,151	265.925
1120	35,606	26,294	247.454	1880	63,365	47,734	266.326
1140	36,314	26,836	248.081	1900	64,116	48,319	266.722
1160	37,023	27,379	248.698	1920	64,868	48,904	267.115
1180	37,734	27,923	249.307	1940	65,620	49,490	267.505
1200	38,447	28,469	249.906	1960	66,374	50,078	267.891
1220	39,162	29,018	250.497	1980	67,127	50,665	268.275
1240	39,877	29,568	251.079	2000	67,881	51,253	268.655
1260	40,594	30,118	251.653	2050	69,772	52,727	269.588
1280	41,312	30,670	252.219	2100	71,668	54,208	270.504
1300	42,033	31,224	252.776	2150	73,573	55,697	271.399
1320	42,753	31,778	253.325	2200	75,484	57,192	272.278
1340	43,475	32,334	253.868	2250	77,397	58,690	273.136
1360	44,198	32,891	254.404	2300	79,316	60,193	273.891
1380	44,923	33,449	254.932	2350	81,243	61,704	274.809
1400	45,648	34,008	255.454	2400	83,174	63,219	275.625
1420	46,374	34,567	255.968	2450	85,112	64,742	276.424
1440	47,102	35,129	256.475	2500	87,057	66,271	277.207
1460	47,831	35,692	256.978	2550	89,004	67,802	277.979
1480	48,561	36,256	257.474	2600	90,956	69,339	278.738
1500	49,292	36,821	257.965	2650	92,916	70,883	279.485
1520	50,024	37,387	258.450	2700	94,881	72,433	280.219
1540	50,756	37,952	258.928	2750	96,852	73,987	280.942
1560	51,490	38,520	259.402	2800	98,826	75,546	281.654
1580	52,224	39,088	259.870	2850	100,808	77,112	282.357
1600	52,961	39,658	260.333	2900	102,793	78,682	283.048
1620	53,696	40,227	260.791	2950	104,785	80,258	283.728
1640	54,434	40,799	261.242	3000	106,780	81,837	284.399
1660	55,172	41,370	261.690	3050	108,778	83,419	285.060
1680	55,912	41,944	262.132	3100	110,784	85,009	285.713
1700	56,652	42,517	262.571	3150	112,795	86,601	286.355
1720	57,394	43,093	263.005	3200	114,809	88,203	286.989
1740	58,136	43,669	263.435	3250	116,827	89,804	287.614

940 Property tables and charts

TABLE A-20

Ideal-gas properties of carbon dioxide, CO₂

T	\overline{h}	\overline{u}	<i>s</i> °	T	\overline{h}	\overline{u}	σ°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	22,280	17,291	243.199
220	6,601	4,772	202.966	610	22,754	17,683	243.983
230	6,938	5,026	204.464	620	23,231	18,076	244.758
240	7,280	5,285	205.920	630	23,709	18,471	245.524
250	7,627	5,548	207.337	640	24,190	18,869	246.282
260	7,979	5,817	208.717	650	24,674	19,270	247.032
270	8,335	6,091	210.062	660	25,160	19,672	247.773
280 290	8,697 9,063	6,369 6,651	211.376 212.660	670 680	25,648 26,138	20,078 20,484	248.507 249.233
298	9,364	6,885	213.685	690	26,631	20,894	249.952
300	9,431	6,939	213.915	700	27,125	21,305	250.663
310	9,807	7,230	215.146	710	27,123	21,719	251.368
320	10,186	7,526	216.351	720	28,121	22,134	252.065
330	10,570	7,826	217.534	730	28,622	22,522	252.755
340	10,959	8,131	218.694	740	29,124	22,972	253.439
350	11,351	8,439	219.831	750	29,629	23,393	254.117
360	11,748	8,752	220.948	760	30,135	23,817	254.787
370	12,148	9,068	222.044	770	30,644	24,242	255.452
380	12,552	9,392	223.122	780	31,154	24,669	256.110
390	12,960	9,718	224.182	790	31,665	25,097	256.762
400	13,372	10,046	225.225	800	32,179	25,527	257.408
410	13,787	10,378	226.250	810	32,694	25,959	258.048
420 430	14,206 14,628	10,714 11,053	227.258 228.252	820 830	33,212 33,730	26,394 26,829	258.682 259.311
440	15,054	11,393	229.230	840	34,251	27,267	259.934
450	15,483	11,742	230.194	850	34,773	27,706	260.551
460	15,916	12,091	231.144	860	35,296	28,125	261.164
470	16,351	12,444	232.080	870	35,821	28,588	261.770
480	16,791	12,800	233.004	880	36,347	29,031	262.371
490	17,232	13,158	233.916	890	36,876	29,476	262.968
500	17,678	13,521	234.814	900	37,405	29,922	263.559
510	18,126	13,885	235.700	910	37,935	30,369	264.146
520	18,576	14,253	236.575	920	38,467	30,818	264.728
530	19,029	14,622	237.439	930	39,000	31,268	265.304
540	19,485	14,996	238.292	940	39,535	31,719	265.877
550	19,945	15,372	239.135	950	40,070	32,171	266.444
560 570	20,407	15,751	239.962	960 970	40,607 41,145	32,625 33,081	267.007
580	20,870 21,337	16,131 16,515	240.789 241.602	980	41,145 41,685	33,537	267.566 268.119
590	21,807	16,902	242.405	990	42,226	33,995	268.670
	,50,	-0,502		1 330	,	00,000	

TABLE A-20

Ideal-gas properties of carbon dioxide, ${\rm CO_2}$ (${\it Concluded}$)

T	\overline{h}	\overline{u}	\overline{S}°	T	\overline{h}	\overline{u}	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069

TABLE A-21

Ideal-gas properties of carbon monoxide, CO

T	\overline{h}	ū	₹°	T	h	\overline{u}	S°
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230 240 250	6,683 6,975	4,771 4,979 5,188	189.980 191.221	620 630 640	18,221 18,527	13,066 13,289	219.205 219.695
260 270	7,266 7,558 7,849	5,396 5,604	192.411 193.554	650 660	18,833 19,141 19,449	13,512 13,736 13,962	220.179 220.656 221.127
280 290 298	8,140 8,432 8,669	5,812 6,020 6,190	194.654 195.713 196.735 197.543	670 680 690	19,449 19,758 20,068 20,378	13,962 14,187 14,414 14,641	221.127 221.592 222.052 222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,889	7,062	201.371	740	21,943	15,789	224.692
350	10,181	7,271	202.217	750	22,258	16,022	225.115
360	10,473	7,480	203.040	760	22,573	16,255	225.533
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
440	12,821	9,163	208.929	840	25,124	18,140	228.724
450	13,116	9,375	209.593	850	25,446	18,379	229.106
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
530	15,497	11,090	214.460	930	28,046	20,314	232.028
540	15,797	11,307	215.020	940	28,375	20,559	232.379
550	16,097	11,524	215.572	950	28,703	20,805	232.727
560	16,399	11,743	216.115	960	29,033	21,051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

TABLE A-21Ideal-gas properties of carbon monoxide, CO (*Concluded*)

T	\overline{h}	\overline{u}	<i>s</i> °	T	\overline{h}	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	30,355	22,041	234.421	1760	56,756	42,123	253.991
1020	31,020	22,540	235.079	1780	57,473	42,673	254.398
1040	31,688	23,041	235.728	1800	58,191	43,225	254.797
1060	32,357	23,544	236.364	1820	58,910	43,778	255.194
1080	33,029	24,049	236.992	1840	59,629	44,331	255.587
1100	33,702	24,557	237.609	1860	60,351	44,886	255.976
1120	34,377	25,065	238.217	1880	61,072	45,441	256.361
1140	35,054	25,575	238.817	1900	61,794	45,997	256.743
1160	35,733	26,088	239.407	1920	62,516	46,552	257.122
1180	36,406	26,602	239.989	1940	63,238	47,108	257.497
1200	37,095	27,118	240.663	1960	63,961	47,665	257.868
1220	37,780	27,637	241.128	1980	64,684	48,221	258.236
1240	38,466	28,426	241.686	2000	65,408	48,780	258.600
1260	39,154	28,678	242.236	2050	67,224	50,179	259.494
1280	39,844	29,201	242.780	2100	69,044	51,584	260.370
1300	40,534	29,725	243.316	2150	70,864	52,988	261.226
1320	41,226	30,251	243.844	2200	72,688	54,396	262.065
1340	41,919	30,778	244.366	2250	74,516	55,809	262.887
1360	42,613	31,306	244.880	2300	76,345	57,222	263.692
1380	43,309	31,836	245.388	2350	78,178	58,640	264.480
1400	44,007	32,367	245.889	2400	80,015	60,060	265.253
1420	44,707	32,900	246.385	2450	81,852	61,482	266.012
1440	45,408	33,434	246.876	2500	83,692	62,906	266.755
1460	46,110	33,971	247.360	2550	85,537	64,335	267.485
1480	46,813	34,508	247.839	2600	87,383	65,766	268.202
1500	47,517	35,046	248.312	2650	89,230	67,197	268.905
1520	48,222	35,584	248.778	2700	91,077	68,628	269.596
1540	48,928	36,124	249.240	2750	92,930	70,066	270.285
1560	49,635	36,665	249.695	2800	94,784	71,504	270.943
1580	50,344	37,207	250.147	2850	96,639	72,945	271.602
1600	51,053	37,750	250.592	2900	98,495	74,383	272.249
1620	51,763	38,293	251.033	2950	100,352	75,825	272.884
1640	52,472	38,837	251.470	3000	102,210	77,267	273.508
1660	53,184	39,382	251.901	3050	104,073	78,715	274.123
1680	53,895	39,927	252.329	3100	105,939	80,164	274.730
1700	54,609	40,474	252.751	3150	107,802	81,612	275.326
1720	55,323	41,023	253.169	3200	109,667	83,061	275.914
1740	56,039	41,572	253.582	3250	111,534	84,513	276.494

944 Property tables and charts

TABLE A-22

Ideal-gas properties of hydrogen, H_2

T	\overline{h}	\overline{u}	<u></u> s°	T	\overline{h}	\overline{u}	S °
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	1440	42,808	30,835	177.410
260	7,370	5,209	126.636	1480	44,091	31,786	178.291
270	7,657	5,412	127.719	1520	45,384	32,746	179.153
280	7,945	5,617	128.765	1560	46,683	33,713	179.995
290	8,233	5,822	129.775	1600	47,990	34,687	180.820
298	8,468	5,989	130.574	1640	49,303	35,668	181.632
300	8,522	6,027	130.754	1680	50,622	36,654	182.428
320	9,100	6,440	132.621	1720	51,947	37,646	183.208
340	9,680	6,853	134.378	1760	53,279	38,645	183.973
360	10,262	7,268	136.039	1800	54,618	39,652	184.724
380	10,843	7,684	137.612	1840	55,962	40,663	185.463
400	11,426	8,100	139.106	1880	57,311	41,680	186.190
420	12,010	8,518	140.529	1920	58,668	42,705	186.904
440	12,594	8,936	141.888	1960	60,031	43,735	187.607
460	13,179	9,355	143.187	2000	61,400	44,771	188.297
480	13,764	9,773	144.432	2050	63,119	46,074	189.148
500	14,350	10,193	145.628	2100	64,847	47,386	189.979
520	14,935	10,611	146.775	2150	66,584	48,708	190.796
560	16,107	11,451	148.945	2200	68,328	50,037	191.598
600	17,280	12,291	150.968	2250	70,080	51,373	192.385
640	18,453	13,133	152.863	2300	71,839	52,716	193.159
680	19,630	13,976	154.645	2350	73,608	54,069	193.921
720	20,807	14,821	156.328	2400	75,383	55,429	194.669
760	21,988	15,669	157.923	2450	77,168	56,798	195.403
800	23,171	16,520	159.440	2500	78,960	58,175	196.125
840	24,359	17,375	160.891	2550	80,755	59,554	196.837
880	25,551	18,235	162.277	2600	82,558	60,941	197.539
920	26,747	19,098	163.607	2650	84,368	62,335	198.229
960	27,948	19,966	164.884	2700	86,186	63,737	198.907
1000	29,154	20,839	166.114	2750	88,008	65,144	199.575
1040	30,364	21,717	167.300	2800	89,838	66,558	200.234
1080	31,580	22,601	168.449	2850	91,671	67,976	200.885
1120	32,802	23,490	169.560	2900	93,512	69,401	201.527
1160	34,028	24,384	170.636	2950	95,358	70,831	202.157
1200	35,262	25,284	171.682	3000	97,211	72,268	202.778
1240	36,502	26,192	172.698	3050	99,065	73,707	203.391
1280	37,749	27,106	173.687	3100	100,926	75,152	203.995
1320	39,002	28,027	174.652	3150	102,793	76,604	204.592
1360	40,263	28,955	175.593	3200	104,667	78,061	205.181
1400	41,530	29,889	176.510	3250	106,545	79,523	205.765

TABLE A-23

Ideal-gas properties of water vapor, $\rm H_2O$

T	<u>F</u>	\overline{u}	<u>5</u> °	T	<u>F</u>	ū	<u>s</u> °
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620 630	21,130	15,975 16,257	214.122
240 250	7,961 8,294	5,965 6,215	181.471 182.831	640	21,495 21,862	16,257	214.707 215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.265
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	218.610
310	10,302	7,725	190.030	710	24,464	18,561	219.142
320	10,639	7,978	191.098	720	24,840	18,854	219.668
330 340	10,976 11,314	8,232 8,487	192.136 193.144	730 740	25,218 25,597	19,148 19,444	220.189 220.707
350	11,652	8,742	194.125	750	25,977	19,741	221.215
360	11,992	8,998	195.081	760	26,358	20,039	221.720
370	12,331	9,255	196.012	770	26,741	20,339	222.221
380	12,672	9,513	196.920	780	27,125	20,639	222.717
390	13,014	9,771	197.807	790	27,510	20,941	223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430 440	14,388 14,734	10,813 11,075	201.160 201.955	830 840	29,062 29,454	22,162 22,470	225.123 225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530 540	17,889 18,245	13,482 13,755	208.475 209.139	930 940	33,032 33,436	25,300 25,621	229.637 230.070
550	18,601	14,028	209.795	950	33,841	25,943	230.499
560	18,959	14,028	210.440	960	34,247	26,265	230.499
570	19,318	14,579	211.075	970	34,653	26,588	231.347
580	19,678	14,856	211.702	980	35,061	26,913	231.767
590	20,039	15,134	212.320	990	35,472	27,240	232.184

946 PROPERTY TABLES AND CHARTS

TABLE A-23

Ideal-gas properties of water vapor, $\rm H_2O$ (Continued)

T	Ī	ū	₹°	T	h	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	35,882	27,568	232.597	1760	70,535	55,902	258.151
1020	36,709	28,228	233.415	1780	71,523	56,723	258.708
1040	37,542	28,895	234.223	1800	72,513	57,547	259.262
1060	38,380	29,567	235.020	1820	73,507	58,375	259.811
1080	39,223	30,243	235.806	1840	74,506	59,207	260.357
1100	40,071	30,925	236.584	1860	75,506	60,042	260.898
1120	40,923	31,611	237.352	1880	76,511	60,880	261.436
1140	41,780	32,301	238.110	1900	77,517	61,720	261.969
1160	42,642	32,997	238.859	1920	78,527	62,564	262.497
1180	43,509	33,698	239.600	1940	79,540	63,411	263.022
1200	44,380	34,403	240.333	1960	80,555	64,259	263.542
1220	45,256	35,112	241.057	1980	81,573	65,111	264.059
1240	46,137	35,827	241.773	2000	82,593	65,965	264.571
1260	47,022	36,546	242.482	2050	85,156	68,111	265.838
1280	47,912	37,270	243.183	2100	87,735	70,275	267.081
1300	48,807	38,000	243.877	2150	90,330	72,454	268.301
1320	49,707	38,732	244.564	2200	92,940	74,649	269.500
1340	50,612	39,470	245.243	2250	95,562	76,855	270.679
1360	51,521	40,213	245.915	2300	98,199	79,076	271.839
1380	52,434	40,960	246.582	2350	100,846	81,308	272.978
1400	53,351	41,711	247.241	2400	103,508	83,553	274.098
1420	54,273	42,466	247.895	2450	106,183	85,811	275.201
1440	55,198	43,226	248.543	2500	108,868	88,082	276.286
1460	56,128	43,989	249.185	2550	111,565	90,364	277.354
1480	57,062	44,756	249.820	2600	114,273	92,656	278.407
1500	57,999	45,528	250.450	2650	116,991	94,958	279.441
1520	58,942	46,304	251.074	2700	119,717	97,269	280.462
1540	59,888	47,084	251.693	2750	122,453	99,588	281.464
1560	60,838	47,868	252.305	2800	125,198	101,917	282.453
1580	61,792	48,655	252.912	2850	127,952	104,256	283.429
1600	62,748	49,445	253.513	2900	130,717	106,605	284.390
1620	63,709	50,240	254.111	2950	133,486	108,959	285.338
1640	64,675	51,039	254.703	3000	136,264	111,321	286.273
1660	65,643	51,841	255.290	3050	139,051	113,692	287.194
1680	66,614	52,646	255.873	3100	141,846	116,072	288.102
1700	67,589	53,455	256.450	3150	144,648	118,458	288.999
1720	68,567	54,267	257.022	3200	147,457	120,851	289.884
1740	69,550	55,083	257.589	3250	150,272	123,250	290.756

TABLE A-24

Ideal-gas properties of monatomic oxygen, O

T	\overline{h}	\overline{u}	₹°	T	\overline{h}	\overline{u}	<u></u> s°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
0	0	0	0	2400	50,894	30,940	204.932
298	6,852	4,373	160.944	2450	51,936	31,566	205.362
300	6,892	4,398	161.079	2500	52,979	32,193	205.783
500	11,197	7,040	172.088	2550	54,021	32,820	206.196
1000	21,713	13,398	186.678	2600	55,064	33,447	206.601
1500	32,150	19,679	195.143	2650	56,108	34,075	206.999
1600	34,234	20,931	196.488	2700	57,152	34,703	207.389
1700	36,317	22,183	197.751	2750	58,196	35,332	207.772
1800	38,400	23,434	198.941	2800	59,241	35,961	208.148
1900	40,482	24,685	200.067	2850	60,286	36,590	208.518
2000	42,564	25,935	201.135	2900	61,332	37,220	208.882
2050	43,605	26,560	201.649	2950	62,378	37,851	209.240
2100	44,646	27,186	202.151	3000	63,425	38,482	209.592
2150	45,687	27,811	202.641	3100	65,520	39,746	210.279
2200	46,728	28,436	203.119	3200	67,619	41,013	210.945
2250	47,769	29,062	203.588	3300	69,720	42,283	211.592
2300	48,811	29,688	204.045	3400	71,824	43,556	212.220
2350	49,852	30,314	204.493	3500	73,932	44,832	212.831

TABLE A-25

Ideal-gas properties of hydroxyl, OH

	_						
Τ	\overline{h}	\overline{u}	₹°	T	\overline{h}	\overline{U}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	2400	77,015	57,061	248.628
298	9,188	6,709	183.594	2450	78,801	58,431	249.364
300	9,244	6,749	183.779	2500	80,592	59,806	250.088
500	15,181	11,024	198.955	2550	82,388	61,186	250.799
1000	30,123	21,809	219.624	2600	84,189	62,572	251.499
1500	46,046	33,575	232.506	2650	85,995	63,962	252.187
1600	49,358	36,055	234.642	2700	87,806	65,358	252.864
1700	52,706	38,571	236.672	2750	89,622	66,757	253.530
1800	56,089	41,123	238.606	2800	91,442	68,162	254.186
1900	59,505	43,708	240.453	2850	93,266	69,570	254.832
2000	62,952	46,323	242.221	2900	95,095	70,983	255.468
2050	64,687	47,642	243.077	2950	96,927	72,400	256.094
2100	66,428	48,968	243.917	3000	98,763	73,820	256.712
2150	68,177	50,301	244.740	3100	102,447	76,673	257.919
2200	69,932	51,641	245.547	3200	106,145	79,539	259.093
2250	71,694	52,987	246.338	3300	109,855	82,418	260.235
2300	73,462	54,339	247.116	3400	113,578	85,309	261.347
2350	75,236	55,697	247.879	3500	117,312	88,212	262.429

TABLE A–26 Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm

		\overline{h}_f°	_° gf	¯s°
Substance	Formula	kJ/kmol	kJ/kmol	kJ/kmol·K
Carbon	C(s)	0	0	5.74
Hydrogen	$H_2(g)$	0	0	130.68
Nitrogen	$N_2(g)$	0	0	191.61
Oxygen	$O_2(g)$	0	0	205.04
Carbon monoxide	CO(<i>g</i>)	-110,530	-137,150	197.65
Carbon dioxide	$CO_2(g)$	-393,520	-394,360	213.80
Water vapor	$H_2O(g)$	-241,820	-228,590	188.83
Water	$H_2O(\ell)$	-285,830	-237,180	69.92
Hydrogen peroxide	$H_2O_2(g)$	-136,310	-105,600	232.63
Ammonia	$NH_3(g)$	-46,190	-16,590	192.33
Methane	CH ₄ (<i>g</i>)	-74,850	-50,790	186.16
Acetylene	$C_2H_2(g)$	+226,730	+209,170	200.85
Ethylene	$C_2H_4(g)$	+52,280	+68,120	219.83
Ethane	$C_2H_6(g)$	-84,680	-32,890	229.49
Propylene	$C_3H_6(g)$	+20,410	+62,720	266.94
Propane	$C_3H_8(g)$	-103,850	-23,490	269.91
<i>n</i> -Butane	$C_4H_{10}(g)$	-126,150	-15,710	310.12
<i>n</i> -Octane	C ₈ H ₁₈ (g)	-208,450	+16,530	466.73
<i>n</i> -Octane	$C_8H_{18}(\ell)$	-249,950	+6,610	360.79
<i>n</i> -Dodecane	C ₁₂ H ₂₆ (g)	-291,010	+50,150	622.83
Benzene	$C_6H_6(g)$	+82,930	+129,660	269.20
Methyl alcohol	CH ₃ OH(<i>g</i>)	-200,670	-162,000	239.70
Methyl alcohol	CH ₃ OH(ℓ)	-238,660	-166,360	126.80
Ethyl alcohol	C ₂ H ₅ OH(<i>g</i>)	-235,310	-168,570	282.59
Ethyl alcohol	$C_2H_5OH(\ell)$	-277,690 -240,100	-174,890	160.70 161.06
Oxygen	0(g)	+249,190	+231,770	114.72
Hydrogen Nitrogen	H(<i>g</i>) N(<i>g</i>)	+218,000 +472,650	+203,290 +455,510	153.30
Hydroxyl	OH(g)	+39,460	+34,280	183.70
rryuroxyr	OH(g)	+59,400	+54,200	103.70

Source: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971); Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

TABLE A–27Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, kg/kmol	Density, ¹ kg/L	Enthalpy of vaporization, ² kJ/kg	Specific heat, ¹ c _p kJ/kg·K	Higher heating value, ³ kJ/kg	Lower heating value, ³ kJ/kg
Carbon (s)	С	12.011	2	_	0.708	32,800	32,800
Hydrogen (g)	H ₂	2.016	_	_	14.4	141,800	120,000
Carbon monoxide (g)	CO	28.013	_	_	1.05	10,100	10,100
Methane (g)	CH₄	16.043	_	509	2.20	55,530	50,050
Methanol (ℓ)	CH₄O	32.042	0.790	1168	2.53	22,660	19,920
Acetylene (g)	C_2H_2	26.038	_	_	1.69	49,970	48,280
Ethane (g)	C_2H_6	30.070	_	172	1.75	51,900	47,520
Ethanol (ℓ)	C_2H_6O	46.069	0.790	919	2.44	29,670	26,810
Propane (ℓ)	C ₃ H ₈	44.097	0.500	335	2.77	50,330	46,340
Butane (ℓ)	C_4H_{10}	58.123	0.579	362	2.42	49,150	45,370
1-Pentene (ℓ)	C ₅ H ₁₀	70.134	0.641	363	2.20	47,760	44,630
Isopentane (ℓ)	C ₅ H ₁₂	72.150	0.626	_	2.32	48,570	44,910
Benzene (ℓ)	C_6H_6	78.114	0.877	433	1.72	41,800	40,100
Hexene (ℓ)	C ₆ H ₁₂	84.161	0.673	392	1.84	47,500	44,400
Hexane (ℓ)	C_6H_{14}	86.177	0.660	366	2.27	48,310	44,740
Toluene (ℓ)	C ₇ H ₈	92.141	0.867	412	1.71	42,400	40,500
Heptane (ℓ)	C_7H_{16}	100.204	0.684	365	2.24	48,100	44,600
Octane (ℓ)	C ₈ H ₁₈	114.231	0.703	363	2.23	47,890	44,430
Decane (ℓ)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,240
Gasoline (ℓ)	$C_n H_{1.87n}$	100-110	0.72-0.78	350	2.4	47,300	44,000
Light diesel (ℓ)	$C_nH_{1.8n}$	170	0.78-0.84	270	2.2	46,100	43,200
Heavy diesel (ℓ)	$C_nH_{1.7n}$	200	0.82-0.88	230	1.9	45,500	42,800
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	2	50,000	45,000

 $^{^1\}mathrm{At}\ 1$ atm and 20°C.

 $^{^2\}mbox{At }25\mbox{\,}^{\circ}\mbox{C}$ for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

 $^{^3}$ At 25°C. Multiply by molar mass to obtain heating values in kJ/kmol.

TABLE A-28

Natural logarithms of the equilibrium constant K_p

The equilibrium constant K_p for the reaction $\nu_A A + \nu_B B \Longrightarrow \nu_C C + \nu_D D$ is defined as $K_p \equiv \frac{P_C^{\nu_C} P_D^{\nu_D}}{P_A^{\nu_A} P_B^{\nu_B}}$

Temp.	,						
K	$H_2 \rightleftharpoons 2H$	$O_2 \rightleftharpoons 20$	$N_2 \rightleftharpoons 2N$	$H_2O \rightleftharpoons H_2 + \frac{1}{2}O_2$	$H_2O \rightleftharpoons {}^1/_2H_2 + OH$	$CO_2 \rightleftharpoons CO + \frac{1}{2}O_2$	$^{1}/_{2}N_{2} + ^{1}/_{2}O_{2} \rightleftharpoons NO$
298	-164.005	-186.975	-367.480	-92.208	-106.208	-103.762	-35.052
500	-92.827	-105.630	-213.372	-52.691	-60.281	-57.616	-20.295
1000	-39.803	-45.150	-99.127	-23.163	-26.034	-23.529	-9.388
1200	-30.874	-35.005	-80.011	-18.182	-20.283	-17.871	-7.569
1400	-24.463	-27.742	-66.329	-14.609	-16.099	-13.842	-6.270
1600	-19.637	-22.285	-56.055	-11.921	-13.066	-10.830	-5.294
1800	-15.866	-18.030	-48.051	-9.826	-10.657	-8.497	-4.536
2000	-12.840	-14.622	-41.645	-8.145	-8.728	-6.635	-3.931
2200	-10.353	-11.827	-36.391	-6.768	-7.148	-5.120	-3.433
2400	-8.276	-9.497	-32.011	-5.619	-5.832	-3.860	-3.019
2600	-6.517	-7.521	-28.304	-4.648	-4.719	-2.801	-2.671
2800	-5.002	-5.826	-25.117	-3.812	-3.763	-1.894	-2.372
3000	-3.685	-4.357	-22.359	-3.086	-2.937	-1.111	-2.114
3200	-2.534	-3.072	-19.937	-2.451	-2.212	-0.429	-1.888
3400	-1.516	-1.935	-17.800	-1.891	-1.576	0.169	-1.690
3600	-0.609	-0.926	-15.898	-1.392	-1.088	0.701	-1.513
3800	0.202	-0.019	-14.199	-0.945	-0.501	1.176	-1.356
4000	0.934	0.796	-12.660	-0.542	-0.044	1.599	-1.216
4500	2.486	2.513	-9.414	0.312	0.920	2.490	-0.921
5000	3.725	3.895	-6.807	0.996	1.689	3.197	-0.686
5500	4.743	5.023	-4.666	1.560	2.318	3.771	-0.497
6000	5.590	5.963	-2.865	2.032	2.843	4.245	-0.341

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 723, table A.14. Based on thermodynamic data given in JANAF, Thermochemical Tables (Midland, MI: Thermal Research Laboratory, The Dow Chemical Company, 1971).

FIGURE A-29

Generalized enthalpy departure chart.

Source: Redrawn from Gordon van Wylen, and Richard Sontag, Fundamentals of Classical Thermodynamics, (SI version), 2d ed., Wiley, New York, 1976. Reprinted by permission of John Wiley and Sons, Inc.

FIGURE A-30

Generalized entropy departure chart.

Source: Redrawn from Gordon van Wylen, and Richard Sontag, Fundamentals of Classical Thermodynamics, (SI version), 2d ed., Wiley, New York, 1976. Reprinted by permission of John Wiley and Sons, Inc.

ASHRAE Psychrometric Chart No. 1 Normal Temperature Barometric Pressure: 101.325 kPa

©1992 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Prepared by Center for Applied Thermodynamic Studies, University of Idaho.

FIGURE A-31

Psychrometric chart at 1 atm total pressure.

Reprinted by permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA; used with permission.

954 PROPERTY TABLES AND CHARTS

$$\begin{aligned} \mathbf{Ma^*} &= \mathbf{Ma} \sqrt{\frac{k+1}{2+(k-1)\mathbf{Ma}^2}} \\ \frac{A}{A^*} &= \frac{1}{\mathbf{Ma}} \left[\left(\frac{2}{k+1} \right) \left(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \right) \right]^{0.5(k+1)/(k-1)} \\ \frac{P}{P_0} &= \left(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \right)^{-k/(k-1)} \\ \frac{\rho}{\rho_0} &= \left(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \right)^{-1/(k-1)} \\ \frac{T}{T_0} &= \left(1 + \frac{k-1}{2} \, \mathbf{Ma}^2 \right)^{-1} \end{aligned}$$

TABLE A-32

One-dimensional isentropic compressible-flow functions for an ideal gas with k = 1.4

Ма	Ma*	A/A*	P/P_0	ρ/ρ_0	T/T ₀
0	0	∞	1.0000	1.0000	1.0000
0.1	0.1094	5.8218	0.9930	0.9950	0.9980
0.2	0.2182	2.9635	0.9725	0.9803	0.9921
0.3	0.3257	2.0351	0.9395	0.9564	0.9823
0.4	0.4313	1.5901	0.8956	0.9243	0.9690
0.5	0.5345	1.3398	0.8430	0.8852	0.9524
0.6	0.6348	1.1882	0.7840	0.8405	0.9328
0.7	0.7318	1.0944	0.7209	0.7916	0.9107
8.0	0.8251	1.0382	0.6560	0.7400	0.8865
0.9	0.9146	1.0089	0.5913	0.6870	0.8606
1.0	1.0000	1.0000	0.5283	0.6339	0.8333
1.2	1.1583	1.0304	0.4124	0.5311	0.7764
1.4	1.2999	1.1149	0.3142	0.4374	0.7184
1.6	1.4254	1.2502	0.2353	0.3557	0.6614
1.8	1.5360	1.4390	0.1740	0.2868	0.6068
2.0	1.6330	1.6875	0.1278	0.2300	0.5556
2.2	1.7179	2.0050	0.0935	0.1841	0.5081
2.4	1.7922	2.4031	0.0684	0.1472	0.4647
2.6	1.8571	2.8960	0.0501	0.1179	0.4252
2.8	1.9140	3.5001	0.0368	0.0946	0.3894
3.0	1.9640	4.2346	0.0272	0.0760	0.3571
5.0	2.2361	25.000	0.0019	0.0113	0.1667
\propto	2.2495	oc	0	0	0

$$\begin{split} T_{01} &= T_{02} \\ \mathrm{Ma}_2 &= \sqrt{\frac{(k-1)\mathrm{Ma}_1^2 + 2}{2k\mathrm{Ma}_1^2 - k + 1}} \\ \frac{P_2}{P_1} &= \frac{1 + k\mathrm{Ma}_1^2}{1 + k\mathrm{Ma}_2^2} = \frac{2k\mathrm{Ma}_1^2 - k + 1}{k + 1} \\ \frac{\rho_2}{\rho_1} &= \frac{P_2/P_1}{T_2/T_1} = \frac{(k+1)\mathrm{Ma}_1^2}{2 + (k-1)\mathrm{Ma}_1^2} = \frac{V_1}{V_2} \\ \frac{T_2}{T_1} &= \frac{2 + \mathrm{Ma}_1^2(k-1)}{2 + \mathrm{Ma}_2^2(k-1)} \\ \frac{P_{02}}{P_{01}} &= \frac{\mathrm{Ma}_1}{\mathrm{Ma}_2} \Big[\frac{1 + \mathrm{Ma}_2^2(k-1)/2}{1 + \mathrm{Ma}_1^2(k-1)/2} \Big]^{(k+1)/[2(k-1)]} \\ \frac{P_{02}}{P_1} &= \frac{(1 + k\mathrm{Ma}_1^2)[1 + \mathrm{Ma}_2^2(k-1)/2]^{k/(k-1)}}{1 + k\mathrm{Ma}_2^2} \end{split}$$

TABLE A-33

One-dimensional normal-shock functions for an ideal gas with k = 1.4

_						
Ma_1	Ma ₂	P_2/P_1	ρ_2/ρ_1	T_2/T_1	P_{02}/P_{01}	P_{02}/P_1
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335
∞	0.3780	∞	6.0000	∞	0	∞

956 PROPERTY TABLES AND CHARTS

$$\begin{split} \frac{T_0}{T_0^*} &= \frac{(k+1) \text{Ma}^2 [2 + (k-1) \text{Ma}^2]}{(1+k \text{Ma}^2)^2} \\ \frac{P_0}{P_0^*} &= \frac{k+1}{1+k \text{Ma}^2} \left(\frac{2+(k-1) \text{Ma}^2}{k+1} \right)^{k/(k-1)} \\ \frac{T}{T^*} &= \left(\frac{\text{Ma}(1+k)}{1+k \text{Ma}^2} \right)^2 \\ \frac{P}{P^*} &= \frac{1+k}{1+k \text{Ma}^2} \\ \frac{V}{V^*} &= \frac{\rho^*}{\rho} = \frac{(1+k) \text{Ma}^2}{1+k \text{Ma}^2} \end{split}$$

TABLE A-34

Rayleigh flow functions for an ideal gas with k = 1.4

Ма	T_{0}/T_{0}^{*}	P_0/P_0^*	T/ T*	P/P*	<i>V</i> / <i>V</i> *
0.0	0.0000	1.2679	0.0000	2.4000	0.0000
0.1	0.0468	1.2591	0.0560	2.3669	0.0237
0.2	0.1736	1.2346	0.2066	2.2727	0.0909
0.3	0.3469	1.1985	0.4089	2.1314	0.1918
0.4	0.5290	1.1566	0.6151	1.9608	0.3137
0.5	0.6914	1.1141	0.7901	1.7778	0.4444
0.6	0.8189	1.0753	0.9167	1.5957	0.5745
0.7	0.9085	1.0431	0.9929	1.4235	0.6975
8.0	0.9639	1.0193	1.0255	1.2658	0.8101
0.9	0.9921	1.0049	1.0245	1.1246	0.9110
1.0	1.0000	1.0000	1.0000	1.0000	1.0000
1.2	0.9787	1.0194	0.9118	0.7958	1.1459
1.4	0.9343	1.0777	0.8054	0.6410	1.2564
1.6	0.8842	1.1756	0.7017	0.5236	1.3403
1.8	0.8363	1.3159	0.6089	0.4335	1.4046
2.0	0.7934	1.5031	0.5289	0.3636	1.4545
2.2	0.7561	1.7434	0.4611	0.3086	1.4938
2.4	0.7242	2.0451	0.4038	0.2648	1.5252
2.6	0.6970	2.4177	0.3556	0.2294	1.5505
2.8	0.6738	2.8731	0.3149	0.2004	1.5711
3.0	0.6540	3.4245	0.2803	0.1765	1.5882

