A Figura 1 ilustra um inversor com tensão de módulo E_i e fase δ_i conectado a um barramento CA infinito com tensão de módulo E_o e fase 0^o através de uma impedância de saída com módulo Z_{oi} e fase θ_i .

Figura 1 – Inversor conectado a um barramento CA infinito.

A potência aparente entregue pelo inversor ao barramento infinito é dada por:

$$S_{i} = E_{o} \angle 0^{\circ} \left(\frac{E_{i} \angle \delta_{i} - E_{o} \angle 0^{\circ}}{Z_{oi} \angle \theta_{i}} \right)^{*}. \tag{1}$$

A expressão (1) pode ser escrita como:

$$S_{i} = E_{o} \left(\frac{E_{i} \cos(\delta_{i}) - E_{o} + jE_{i} \operatorname{sen}(\delta_{i})}{Z_{oi} \cos(\theta_{i}) + jZ_{oi} \operatorname{sen}(\theta_{i})} \right)^{*}.$$
 (2)

Separando a parte real e imaginária de (2), pode-se definir as contribuições de potência ativa e reativa do inversor para o barramento CA conforme:

$$P_{i} = \left(\frac{E_{i}E_{o}}{Z_{oi}}\cos(\delta_{i}) - \frac{E_{o}^{2}}{Z_{oi}}\right)\cos(\theta_{i}) + \frac{E_{i}E_{o}}{Z_{oi}}\sin(\delta_{i})\sin(\theta_{i}), \tag{3}$$

$$Q_{i} = \left(\frac{E_{i}E_{o}}{Z_{oi}}\cos(\delta_{i}) - \frac{E_{o}^{2}}{Z_{oi}}\right) \operatorname{sen}(\theta_{i}) - \frac{E_{i}E_{o}}{Z_{oi}} \operatorname{sen}(\delta_{i})\cos(\theta_{i}). \tag{4}$$

Quando a impedância de saída do inversor é resistiva, $\theta_i = 0$ e $Z_{oi} = R_{oi}$, então as expressões (3) e (4) podem ser reescritas como:

$$P_{\rm i} = \frac{E_{\rm i}E_{\rm o}\cos\left(\delta_{\rm i}\right) - E_{\rm o}^2}{R_{\rm oi}},\tag{5}$$

$$Q_{i} = -\frac{E_{i}E_{o}\mathrm{sen}\left(\delta_{i}\right)}{R_{oi}}.$$
 (6)

Pode-se observar que as potências ativa e reativa são acopladas tanto com a tensão E_i quanto com ângulo δ_i . No entanto, considerando um ângulo de defasagem pequeno ($\delta_i \approx 0$), as equações (5) e (6) podem ser simplificadas considerando-se que sen(δ_i) $\approx \delta_i$ e cos(δ_i) ≈ 1 :

$$P_{\rm i} = \frac{E_{\rm i} E_{\rm o} - E_{\rm o}^{\ 2}}{R_{\rm i}} \,, \tag{7}$$

$$Q_{\rm i} = -\frac{E_{\rm i}E_{\rm o}\delta_{\rm i}}{R_{\rm i}}.$$
 (8)

A partir de (7) e (8) percebe-se uma forte dependência de P_i com E_i , e de Q_i com δ_i , ou seja:

$$P_{\rm i} \sim E_{\rm i}$$
, (9)

$$Q_i \sim -\delta_i$$
. (10)

Sendo assim, as leis de controle do método *Droop* convencional para impedância de saída resistiva são dadas por:

$$E_{i} = E^{*} - n_{i} \left(P_{i} - P_{i}^{*} \right), \tag{11}$$

$$\omega_{i} = \omega^{*} + m_{I} \left(Q_{i} - Q_{i}^{*} \right). \tag{12}$$

onde E^* é tensão de referência, ω^* é a frequência angular de referência, P_i^* é a potência ativa de referência, Q_i^* é a potência reativa de referência.

Os coeficientes n_i e m_i definem a inclinação das retas de decaimento de tensão e incremento de frequência, respectivamente. Essa estratégia P-E e $Q-\omega$ é ilustrada na Figura 2

Figura 2 – Curvas P - E e $Q - \omega$ para método Droop para impedância de saída resistiva.

O coeficientes n_i é geralmente determinado pela variação de tensão desejada para uma determinada variação de potência ativa, conforme a expressão:

$$n_{\rm i} = \frac{\Delta E_{\rm i}}{\Delta P_{\rm i}}.$$
 (13)

De modo semelhante, o coeficiente m_i é determinado pela variação de frequência desejada para uma determinada variação de potência reativa, de acordo com a equação:

$$m_{\rm i} = \frac{\Delta \omega_{\rm i}}{\Delta Q_{\rm i}} \,. \tag{14}$$

Assumindo então que os algoritmos de cálculo de P_i e Q_i possam ser modelados por um filtro passa-baixas de primeira ordem tem-se,

$$Pf_{i} = \frac{\omega_{pb}}{s + \omega_{pb}} P_{i}, \qquad (15)$$

$$Qf_{i} = \frac{\omega_{pb}}{s + \omega_{pb}} Q_{i}. \tag{16}$$

onde ω_{pb} é a frequência de corte (em radianos) do filtro passa-baixas.

De (15) e (16) pode-se ainda escrever,

$$\frac{dPf_{i}}{dt} = -\omega_{pb}Pf_{i} + \omega_{pb}P_{i}, \qquad (17)$$

$$\frac{dQf_{i}}{dt} = -\omega_{pb}Qf_{i} + \omega_{pb}Q_{i}. \tag{18}$$

Sabendo ainda que o ângulo δ_i é obtido integrando-se a frequência ω_i , a partir de lei de controle (12), pode-se escrever,

$$\frac{d\delta_{i}}{dt} = m_{i} \left(Q f_{i} - Q_{i}^{*} \right). \tag{19}$$