Chapter 7 — Covalent Bonds

Michael Brodskiy

Instructor: Mr. Morgan

November 19, 2020

- Lewis Structures:
 - 1. Sum Valence Electrons
 - 2. Connect atoms with lines
 - 3. Arrange remaining e⁻ to satisfy octet rule
- Resonance Being able to draw more than one Lewis structure
- Halogens will almost never have double bonds
- Molecular Shapes:
 - 1. Linear
 - Bond angle equals 180°
 - Usually non-polar
 - Ex: Ö——C——Ö
 - 2. Triangular Planar
 - Bond angle equals 120°
 - Usually non-polar
 - Ex: F B
 - 3. Bent
 - Bond angle equals 109.5°
 - Appears as a linear, but bent
 - Always polar

- 4. Tri-Pyramid
 - Bond angle equals 109.5°
 - Appears as a three dimensional, triangular pyramid
 - Always polar
 - Ex:
 H N H
- 5. Tetrahedral
 - Bond angle equals 109.5°
 - Appears as a three dimensional, square pyramid
 - Usually non-polar
 - Ex:

- Expanded Octets: 5 e⁻ pairs
 - 1. Tri-Bipyramid (5 atoms)
 - (a) Usually non-polar
 - 2. Seesaw (4 atoms)
 - (a) Always polar
 - 3. T Shape (3 atoms)
 - (a) Always polar
 - 4. Linear (2 atoms)
 - (a) Usually non-polar
- Expanded Octets: 6 e⁻ pairs
 - Octahedral (6 atoms)
 - 1. Usually non-polar
 - Square Pyramid (5 atoms)
 - 1. Always polar

- Square Planar (4 atoms)
 - 1. Usually non-polar
- VESPR e⁻ pairs repel, and double and triple bonds count as one pair.
- Molecular Polarity The negative side is what repels branching atoms, while the branching atoms are attracted to the positive side.
- Exceptions NF₃ has a bond angle of 102°, CF₄ has a bond angle of 109.5°. This is because lone pairs repel more than bonding pairs.
- These types of graphs show the appropriate bond distance between two atoms:

Figure 1: Best Bonding Distance For H₂

 \bullet The AP Exam will show a graph like the following and ask what is incorrect. Horizontal is determined by protons, while vertical is determined by size of the atom. In this case, F_2 should be left of I_2

Figure 2: Incorrect Energy Required to Break I_2 and F_2 Bonds