### Introducción a Latex

Miguel Ángel Carrillo Lucía Leonardo David Solís Rodríguez

Universidad Nacional Autónoma de México Facultad de Ciencias Departamento de Matemáticas Licenciatura en Matemáticas Aplicadas

1 de septiembre de 2025



## Agenda





### **Ecuaciones**

#### El entorno para ecuaciones.

- Latex es muy útil para escribir ecuaciones. Para utilizarlo, es necesario añadir tres paquetes que a continuación se enlistan:
  - **amsmath** (AMS Math): Mejora el comportamiento y el aspecto de las ecuaciones. Permite añadir un asterisco en el entorno equation para crear ecuaciones sin enumerar.
  - @ amsthm (AMS Theorem): define los entornos teorema, corolario, lema, definición.
  - amssymb (AMS Symbol): carga otro paquete llamado amsfonts e incluye una colección de símbolos matemáticos.
- Los paquetes se pueden cargar por separado o bien en una sola línea de la siguiente forma:
  - \usepackage{amsmath, amsthm, amssymb}



### Alineación de ecuaciones

#### Alineación de ecuaciones

- La alineación de las ecuaciones se define en las opciones del tipo de documento (documentclass):
  - leqno: las ecuaciones están centradas pero la enumeración se coloca del lado izquierdo.
  - fleqn: alinea las ecuaciones a la izquierda y las enumera del lado derecho.
  - ceqn: centra las ecuaciones (opción por default si no se especifíca la alineación) y las enumera del lado derecho.

#### Cuidado.

 Estas opciones son para todo el documento. No se pueden hacer combinaciones con leqno, flegn, cegn.



### El modo matemático en Latex

#### Modo matemático en texto.

El modo matemático se puede poner de tres formas dentro del texto:

- \$ ecuación \$
  - Ejemplo: La variable  $x^{2}$  está elevada al cuadrado.  $\rightarrow$  La variable  $x^{2}$  está elevada al cuadrado.
- ② [\ ecuación \]
  - Ejemplo: La variable [\  $x^{3}$  \] está elevada al cubo  $\rightarrow$  La variable  $x^{3}$  está elevada al cubo.
- o \begin{math} c^2=a^2+b^2 \end{math}
  - Ejemplo: La variable \begin{math}  $x^3 \in \mathbb{R}$  está elevada al cubo  $\to \mathbb{R}$  La variable  $x^3 \in \mathbb{R}$  está elevada al cubo
- \* No es necesario cargar paquetes



### Ecuaciones. Numeradas y no enumeradas

Paquete: \usepackage{amsmath}

#### Entorno numerado

\begin{equation}
 c^2=a^2+b^2
\label{ec:Nombre}
\end{equation}

#### Entorno sin numerar

#### Numerada

$$c^2 = a^2 + b^2 (1)$$

#### Sin Numerar

$$c^2 = a^2 + b^2$$

## Espacios y símbolos

```
Ejemplo
\begin{equation}
    x^2 \geq 0 \quad \text{para todo } x \in \mathbf{R}
    \label{ec:Ejemplo}
\end{equation}
```

#### Resultado

 $x^2 \ge 0$  para todo  $x \in \mathbf{R}$ 

(2

#### **Comandos:**

Tabla: Espacios y símbolos

## Algunos símbolos

```
\times
                                       \div
X
                                                               \pm
                                                                                        cdot
            \circ
                                      \prime
                                                             \inftv
0
                                                    \infty
                                                                                         neg
           \wedge
                                       \vee
                                                    U
                                                              \cup
                                                                                         cap
A
           \forall
                                     \exists
                                                    \in
                                                               \in
                                                                                       notin
           \subset
                                     \supset
                                                          \rightarrow
                                                                                    \leftarrow
                                  \Rightarrow
     \leftrightarrow
                            \Rightarrow
                                                          \Leftarrow
                                                                           \Leftrightarrow
                                                                                 \Leftrightarrow
\leftrightarrow
                                                                            ã
                             â
ä
          \dot{a}
                                     \hat{a}
                                                     ā
                                                                                     \tilde{a}
                                                            \bar{a}
                                                    \leq
                                                              \lea
                                                                                        \sim
\neq
             \neq
                                       \geq
           \ldots
                                      \cdots
                                                             \vdots
                                                                                       \ddots
                            . . .
```

Tabla: Símbolos

## Operaciones



## Ejercicio

### Escriba la fórmula general para resolver la ecuación de segundo grado

#### Respuesta

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{3}$$

La ecuación 3 permite resolver ecuaciones de segundo grado.

\* Se hace referencia a la ecuación con el comando \ref{Nombre}



### Entorno split

#### Entorno split

El entorno split sirve para dividir la ecuación en partes pequeñas o desarrollos de las mismas. Se utiliza el símbolo & para definir a partir de dónde se fragmenta la expresión \begin{equation}

```
\begin{split}
    5+7-2+4[12\cdot 3 -2]/2 & = 5+7-2+4[34]/2 \\
    & = 5+7-2+4[17] \\
    & = 78
    \end{split}
\end{equation}
```

## Entorno split

# Ejemplo

$$5+7-2+4[12\cdot 3-2]/2 = 5+7-2+4[34]/2$$

$$= 5+7-2+4[17]$$

$$= 78$$
(4)



### Entorno multline

#### Ejemplo

\begin{multline}

$$p(x) = -5x^{8} x^{7} - 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3$$
\\
 $- 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3$ 

\end{multline}

#### Resultado

$$p(x) = -5x^8x^7 - 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3$$

$$-12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3$$
 (5)

### Sistemas de ecuaciones

#### Sin alinear

\begin{gather}
 2x + 2y = 20 \\
 7x - 9y - 2y = 213 \end{gather}

#### Alineada

\begin{align}
2x + 2y &=20 \\
7x - 9y -2y &= 213
\end{align}

#### Resultado sin alinear

$$2x + 2y = 20$$
 (6)

$$7x - 9y - 2y = 213 \tag{7}$$

#### Resultado alineado

$$2x + 2y = 20$$
 (8)

$$7x - 9y - 2y = 213 \tag{9}$$

### Funciones a trozos

### Ejemplo

```
begin{equation}
  f(x)= \left
  \{ \begin{array}{lcc}
     5 & si & x \leq 2 \\
  \\ x^2-6x+10 & si & 2 < x < 5 \\
     \\ 4x-15 & si & x \geq 5
  \end{array}
  \right
end{equation}</pre>
```

#### Resultado

$$f(x) = \begin{cases} 5 & si & x \le 2 \\ x^2 - 6x + 10 & si & 2 < x < 5 \\ 4x - 15 & si & x \ge 5 \end{cases}$$

### Entornos para teoremas y demostraciones

#### Entorno Teorema Corolario, lema

- \newtheorem{theorem}{Theorem}[section]
  - \theorem. Es el entorno a iniciar.
  - \Theorem. Nombre del entorno (se puede poner en español).
  - section Para enumerar el teorema según la sección en que se esté posicionado.
- \newtheorem{corollary}{Corollary}[theorem]
- \newtheorem{lemma}[theorem]{Lemma}



### Teorema

¿Qué nos dice el teorema fundamental del cálculo? Se menciona a continuación:

#### Theorem

El teorema fundamental del cálculo consiste en dos puntos:

• Si f es continua en [a,b], entonces la función

$$g(x) = \int_{a}^{x} f(t)dt \tag{10}$$

es derivable en [a,b] y g'(x)=f(x) para cada x en [a,b].

Si f es continua en [a,b] y si g es una función tal que g'(x)=f(x) para todo x en [a,b], entonces

$$\int_{a}^{b} f(x)dx = g(b) - g(a). \tag{11}$$

### Entorno colorbox

El entorno tcolorbox permite crear cajas de texto con colores personalizados, sombras, bordes, opacidad entre otras características. El paquete asociado a este entorno es \usepackage{tcolorbox}.

#### Entorno tcolorbox

El entorno se inicia de esta forma:

\begin{tcolorbox}[color de fondo, color del marco, título]

TEXTO, TEOREMA.

\end{tcolorbox}

### Color de fondo, color del marco y título

#### Color de fondo y del marco

- colframe=white. Color del marco.
- colback=yellow. Color de fondo.
- title=Título. Título del teorema.

### Ejemplo

Entonces el entorno puede definirse así:

\begin{tcolorbox}[colframe=white, colback=yellow, title=Teorema].

Para incluir código Python en Latex, se utiliza el paquete listings.

- (0) \usepackage{listings}
- \renewcommand{\lstlistingname}{Código}. Este comando se utiliza para cambiar el nombre del código (parecido a los pies de figura).

Se deben hacer configuraciones adicionales para que Latex identifique los comentarios, palabras reservadas y cadenas de texto. Esto se hace con el comando \lstset, el cuál requiere de parámetros adicionales para visualizar el código.





Los parámetros de \lstset son:

Ianguage=python. Lenguaje de Programación.





- language=python. Lenguaje de Programación.
- basicstyle=\normalsize. Tipo y tamaño de letra.





- language=python. Lenguaje de Programación.
- basicstyle=\normalsize. Tipo y tamaño de letra.
- keywordstyle=\color{blue}. Resalta con color palabras reservadas de Python.



- language=python. Lenguaje de Programación.
- basicstyle=\normalsize. Tipo y tamaño de letra.
- keywordstyle=\color{blue}. Resalta con color palabras reservadas de Python.
- stringstyle=\color{red}, Añade color a las cadenas de texto.



- language=python. Lenguaje de Programación.
- basicstyle=\normalsize. Tipo y tamaño de letra.
- keywordstyle=\color{blue}. Resalta con color palabras reservadas de Python.
- stringstyle=\color{red}, Añade color a las cadenas de texto.
- ommentstyle=\color{green}. Añade color a los comentarios.



- language=python. Lenguaje de Programación.
- basicstyle=\normalsize. Tipo y tamaño de letra.
- keywordstyle=\color{blue}. Resalta con color palabras reservadas de Python.
- stringstyle=\color{red}, Añade color a las cadenas de texto.
- ommentstyle=\color{green}. Añade color a los comentarios.







Los parámetros de \lstset son (continuación):

showstringspaces=false. Evita colocar símbolos especiales entre espacios.





Los parámetros de \lstset son (continuación):

showstringspaces=false. Evita colocar símbolos especiales entre espacios.

numbers=left. Número de línea de código. Se muestra a la izquierda.



- showstringspaces=false. Evita colocar símbolos especiales entre espacios.
- numbers=left. Número de línea de código. Se muestra a la izquierda.
- breaklines=true. Mantiene el código dentro del marco (márgenes del documento).

- Showstringspaces=false. Evita colocar símbolos especiales entre espacios.
- numbers=left. Número de línea de código. Se muestra a la izquierda.
- breaklines=true. Mantiene el código dentro del marco (márgenes del documento).
- frame=single. Dibuja un marco sencillo.

- Showstringspaces=false. Evita colocar símbolos especiales entre espacios.
- numbers=left. Número de línea de código. Se muestra a la izquierda.
- breaklines=true. Mantiene el código dentro del marco (márgenes del documento).
- frame=single. Dibuja un marco sencillo.
- o captionpos=b. Leyenda o 'pie de cuadro' en la parte de abajo.

```
\begin{lstlisting}[caption={Primer código en Python.}]
  import pandas as pd
  print("Impresion de una lista")
  array=[1,2,3,4,5]
  print(array)
  #series con cadenas
  mistextos=pd.Series(["Miguel","Ivan","Daniel"])
  print(mistextos)
\end{lstlisting}
```



```
TARABAN NACIONAL AUT
```

```
import pandas as pd
   print("Impresion de una lista")
   array = [1, 2, 3, 4, 5]
   print(array)
   print("Creacion de una serie")
   miserie=pd.Series([10,11,12,13])
   print(miserie)
   print(miserie[1])
11
   #series con cadenas
13
14
   mistextos=pd.Series(["Miguel","Ivan","Daniel"])
   print(mistextos)
```

