Рассмотрим каноническую задачу ЛП:

$$c'x \rightarrow \max, Ax = b, d_* \le x \le d^*$$
.

Разобьем множество J на два непересекающиеся подмножества $J_{\rm B},\,J_{\rm H}:\,J=J_{\rm B}\bigcup J_{\rm H},\,J_{\rm B}\bigcap J_{\rm H}=\varnothing,\,|\,J_{\rm B}|=m\,,\,|\,J_{\rm H}|=n-m\,.$

Определение 1. **П**лан x называется базисным, если n—m его компонент принимают граничные значения: $x_j = d_{*j} \lor d_j^*, \quad j \in J_{\mathrm{H}}$, а остальным m компонентам $x_j, \ j \in J_{\mathrm{B}}$, соответствуют линейно независимые векторы условий

$$a_j, j \in J_{\mathsf{B}},$$
 (1)

т. е. не вырождена матрица $A_{\rm B}=(a_j,\ j\in J_{\rm B})$.

Назовем совокупность векторов (1) *базисом* базисного плана x, $J_{\rm B}$ – *множеством базисных индексов*, $J_{\rm H}$ – *множеством небазисных индексов*, x_j , $j \in J_{\rm B}$, – *базисными компонентами* базисного плана, x_j , $j \in J_{\rm H}$, – *небазисными*, матрицу $A_{\rm B}$ – *базисной матрицей*. Введем обозначения: $x_{\rm B} = (x_j, j \in J_{\rm B}), x_{\rm H} = (x_j, j \in J_{\rm H}), c_{\rm B} = (c_j, j \in J_{\rm B}), c_{\rm H} = (c_j, j \in J_{\rm H}), A_{\rm H} = (a_j, j \in J_{\rm H})$.

Определение 2. **Базисный план** x называется **невырожденным**, если $d_{^*\mathrm{B}} < x_{\mathrm{B}} < d_{^{\mathrm{B}}}^*$, где $d_{^*\mathrm{B}} = (d_{^*j}, \ j \in J_{^{\mathrm{B}}}), \ d_{^{\mathrm{B}}}^* = (d_{^j}^*, \ j \in J_{^{\mathrm{B}}})$.

Определение 1.5. **Задача ЛП** называется **невырожденной**, если все ее базисные планы не вырождены.

Алгоритм симплекс метода

Пусть задан базисный план x с базисным множеством индексов $J_{\rm B}$ (с базисной матрицей $A_{\rm B}$). Алгоритм решения канонической задачи состоит из следующих шагов.

- 1. Вычисляем вектор потенциалов u по формуле $u'=c_{\rm b}'\ A_{\rm b}^{-1}$, или (что то же самое) решаем систему уравнений $a'_j u=c_j,\ j\in J_{\rm b}$, относительно потенциалов $u_i,\ i\in I$.
- 2. Вычисляем небазисные оценки по формулам $\Delta_j = c_j a_j' u, \ j \in J_{\mathrm{H}}$.
- 3. Проверяем условия оптимальности

$$\Delta_{j} \le 0 \ npu \ x_{j} = d_{*j}; \ \Delta_{j} \ge 0 \ npu \ x_{j} = d_{j}^{*}, \ j \in J_{H}.$$

Если они выполняются, то решение заканчиваем: план x оптимален. В противном случае переходим к шагу 4.

- 4. Выбираем индекс $j_0 \in J_{\rm H}^-$, для которого не выполняются условия оптимальности. /
- 5. Строим направление $l=(l_{\rm E},\ l_{\rm H})$ по правилам

$$l_{j_0} = \operatorname{sign}\Delta_{j_0}, \ l_j = 0, \quad j \in J_{\mathrm{H}} \setminus \{j_0\}, \ A_{\mathrm{B}}l_{\mathrm{B}} = -a_{j_0}\operatorname{sign}\Delta_{j_0}.$$

7. Находим величины θ_j , $j \in J_{\rm B}$, по формулам

$$\theta_{j} = \begin{cases} \frac{d_{j}^{*} - x_{j}}{l_{j}}, \text{ если } l_{j} > 0; \\ \frac{d_{*j} - x_{j}}{l_{j}}, \text{ если } l_{j} < 0; & j \in J. \\ +\infty, \text{ если } l_{j} = 0; \end{cases}$$
 (2)

Замечание. Если в формуле (2), граничные значения равны бесконечности, то $\theta_j = +\infty$.

Определяем число θ^0 по формуле $\theta^0 = \min_{j \in J} \theta_j = \theta_{j*}$. Если $\theta^0 = \infty$, то исходная задача не имеет решения, поскольку целевая функция не ограничена. В противном случае новый базисный план \overline{x} строим по правилу $\overline{x}_j = x_j + \theta^0 l_j, \ j \in J$. Заменяем базисное множество J_{B} на новое $\overline{J}_{\mathrm{B}} = (J_{\mathrm{B}} \backslash j_*) \bigcup j_0$ (или матрицу A_{B} на $\overline{A}_{\mathrm{B}} = A(I, \overline{J}_{\mathrm{B}})$) и переходим к шагу 1.

Первая фаза

Первой фазой симплекс-метода называется метод построения начального базисного плана, если множество планов не пусто.

Разобьем множество J на два подмножества J_* , J^* и построим вектор $\tilde{x}=(\tilde{x}_j=d_{*j},\ j\in J_*,\ \tilde{x}_j=d_j^*,\ j\in J^*)$. Подсчитаем вектор невязок основных ограничений $\omega=b-A\tilde{x}$.

Введем вспомогательную задачу (*задачу первой фазы для* канонической задачи)

$$-\sum_{i \in I^{+} \cup I^{-}} x_{n+i} \to \max,$$

$$\begin{cases} A(i, J)x + x_{n+i} = b_{i}, & i \in I^{+} \cup I^{0}, \\ A(i, J)x - x_{n+i} = b_{i}, & i \in I^{-}, \end{cases}$$

$$d_{*} \leq x \leq d^{*}, \quad 0 \leq x_{n+i} \leq |\omega_{i}|, \quad i \in I,$$
(3)

где $I^+=\{i\in I:\omega_i>0\},\ I^-=\{i\in I:\omega_i<0\},\ I^0=\{i\in I:\omega_i=0\}$. Задачу (3) решаем симплекс-методом по алгоритму, описанному выше. В качестве начального базисного плана этой задачи возьмем вектор $(\tilde{x},\,x_{n+i}=|\omega_i|,\,i\in I)$ с базисной матрицей $A_{\mathbb{B}}=(a_{n+i}=e_i,\,i\in I^+\bigcup I^0,\ a_{n+i}=-e_i,\,i\in I^-)$. Задача имеет решение, поскольку целевая функция ограничена сверху нулем и множество планов задачи не пусто (выше указан начальный базисный план).

Обозначим через $x_{\rm H}=(x_{n+i},i\in I)$ вектор искусственных переменных. Справедливо следующее утверждение.

Лемма 1.1. Для совместности ограничений канонической задачи $(X \neq \emptyset)$ необходимо и достаточно, чтобы в решении (x^*, x_{H}^*) задачи (3) все искусственные переменные были нулевыми: $x_{\mathrm{H}}^* = 0$.

Решение задачи (3) симплекс-методом называется *первой фазой симплекс-метода*.

После первой фазы будут построены оптимальный план $(x^*, x_{\rm H}^*)$ и базисное множество индексов $J_{\rm E}^*$ задачи (1.64), обладающие одним из трех свойств:

- 1) $x_{\rm H}^* \neq 0$;
- 2) $x_{\rm H}^*=0$ и в базисе нет искусственных векторов, т. е. $J_{\rm B}^*\cap J_{\rm H}=\varnothing$, где $J_{\rm H}=\{n+i,\ i\in I\}$;
 - 3) $x_{\rm H}^*=0$, а в базисе есть искусственные векторы, т. е. $J_{\rm B}^*\cap J_{\rm H}\neq\varnothing$.

Проанализируем каждое из указанных свойств.

В первом случае, согласно лемме 1.1, $X=\emptyset$ и решение прекращаем.

Во втором случае получаем начальный базисный план x^* с базисным множеством $J_{\rm B} = J_{\rm B}^*$ для исходной задачи. С него и начинаем решать задачу (1.60).

В третьем случае полагаем $I_{\Phi} \! = \! \{i \in I : n + i \in J_{\mathbb{B}}^*\}$ и решаем симплексметодом "буферную" задачу

$$c'x \to \max,$$

$$\begin{cases} A(i, J)x + x_{n+i} = b_i, & i \in I_{\phi}, \\ A(i, J)x & = b_i, & i \in I \setminus I_{\phi}, \end{cases}$$

$$d_* \le x \le d^*, \quad 0 \le x_{n+i} \le 0, \quad i \in I_{\phi},$$

$$(4)$$

взяв в качестве начального базисного плана пару $(x^*, x_{n+i}^* = 0, i \in I_{\phi})$ с базисным множеством J_{B}^* .

Замечание 2. Можно после каждой итерации, в результате которой искусственная переменная обращается в ноль, удалять эту переменную из задачи вместе с соответствующим вектором условий, если они не являются базисными. Если же они базисные, то переводим их в разряд фиктивных, а на переменную накладываем нулевые ограничения.

Пример 1.11. Решим следующую задачу

$$2x_1 + x_2 + 3x_3 \rightarrow \max,$$

$$\begin{cases} 5x_1 + x_2 + 3x_3 = 5, \\ x_1 + 2x_2 + 4x_3 = 7, \end{cases}$$

$$1 \le x_1 \le 3, \ 0 \le x_2 \le 4, \ 1 \le x_3 \le 2.$$

Возьмем вектор $\tilde{x} = (1; 0; 1)$. Подсчитаем невязки: $\omega_1 = 5 - 5 \cdot 1 - 1 \cdot 0 - 3 \cdot 1 = -3$; $\omega_2 = 7 - 1 \cdot 1 - 2 \cdot 0 - 4 \cdot 1 = 2$. Задача первой фазы имеет вид

$$-x_4 - x_5 \rightarrow \max,$$

$$\begin{cases} 5x_1 + x_2 + 3x_3 - x_4 = 5, \\ x_1 + 2x_2 + 4x_3 + x_5 = 7, \end{cases}$$

$$1 \le x_1 \le 3, \ 0 \le x_2 \le 4, \ 1 \le x_3 \le 2, \ 0 \le x_4 \le 3, \ 0 \le x_5 \le 2.$$

Начальный базисный план для нее $x = (1; 0; 1; 3; 2), J_{A} = \{4, 5\}, J_{f} = \{1, 2, 3\}.$

Итерация 1.

- 1. $u_1 = 1$; $u_2 = -1$.
- 2. $\Delta_1 = -5 + 1 = -4 < 0$ при $x_1 = d_{*_1} = 1$ (+); $\Delta_2 = -1 + 2 = 1 > 0$ при $x_2 = d_{*_2} = 0$ (-); $\Delta_3 = -3 + 4 = 1 > 0$ при $x_3 = d_{*_3} = 1$ (-).
- 3. $j_0 = 2$, $l_2 = 1$, $l_1 = l_3 = 0$.
- 4. $l_4 = 1$; $l_5 = -2$.

5.
$$\theta_{j_0} = \theta_2 = 4 - 0 = 4; \ \theta_4 = (3 - 3) : 1 = 0; \ \theta_5 = (0 - 2) : (-2) = 1; \ \theta^0 = \theta_4 = 0 = \theta_{j_*}; \ j_* = 4.$$

6. План остается прежним, поскольку $\theta^0=0$: x=(1;0;1;3;2). Меняется $\boldsymbol{J}_{\mathrm{B}}\colon \boldsymbol{J}_{\mathrm{B}}=\{2,5\}$. Тогда $\boldsymbol{J}_{\mathrm{I}}=\{1,3,4\}$.

Итерация 2.

- 1. $u_1 + 2u_2 = 0$, $u_2 = -1$. Отсюда получаем $u_1 = 2$, $u_2 = -1$.
- 2. $\Delta_1 = -9 < 0$ при $x_1 = d_{*_1} = 1$ (+); $\Delta_3 = -2 < 0$ при $x_3 = d_{*_3} = 1$ (+); $\Delta_4 = -1 -(-1) \cdot 2 = 1 > 0$ при $x_4 = d_4^* = 3$ (+).

План оптимальный. Но искусственные переменные ненулевые ($x_4 = 3$, $x_5 = 2$), поэтому ограничения исходной задачи несовместны.

Пример 1.12. Рассмотрим задачу

$$-5x_1 + 7x_2 - 11x_3 \to \max,$$

$$\begin{cases} 5x_1 + x_2 - x_3 = 15, \\ x_1 - 2x_2 + 3x_3 = 6, \\ 6x_1 - x_2 + 2x_3 = 21, \end{cases}$$

$$3 \le x_1 \le 4, -17 \le x_2 \le 3, -8 \le x_3 \le 3.$$

Пусть $\tilde{x}=(4;3;3)$. Тогда $\omega_1=15-20-3+3=-5<0,\ \omega_2=6-4+6-9==-1<0,$ $\omega_3=21-24+3-6=-6<0$. Задача первой фазы имеет вид

$$-x_4 - x_5 - x_6 \to \max,$$

$$\begin{cases} 5x_1 + x_2 - x_3 - x_4 &= 15, \\ x_1 - 2x_2 + 3x_3 & -x_5 &= 6, \\ 6x_1 - x_2 + 2x_3 & -x_6 &= 21, \end{cases}$$

$$3 \le x_1 \le 4, -17 \le x_2 \le 3, -8 \le x_3 \le 3,$$

$$0 \le x_4 \le 5, 0 \le x_5 \le 1, 0 \le x_6 \le 6.$$

В качестве начального базисного плана возьмем $x^1 = (4; 3; 3; 5; 1; 6)$, $J_{\rm B} = \{4, 5, 6\}$, $J_{\rm H} = \{1, 2, 3\}$.

Итерация 1.

1.
$$u_1 = u_2 = u_3 = 1$$
.

$$2. \ \Delta_1 = -5 - 1 - 6 = -12 < 0 \quad \text{при} \quad x_1 = d_1^* \quad (-), \quad \Delta_2 = -1 + 2 + 1 = 2 > 0 \quad \text{при} \quad x_2 = d_2^* \quad (+),$$

$$\Delta_3 = 1 - 3 - 2 = -4 < 0 \quad \text{при} \quad x_3 = d_3^* \quad (-).$$

3.
$$j_0 = 1$$
; $l_1 = -1$, $l_2 = l_3 = 0$. Тогда: $l_4 = -5$, $l_5 = -1$, $l_6 = -6$.

4.
$$\theta_{i_0} = \theta_1 = 1$$
; $\theta_4 = 1$, $\theta_5 = 1$, $\theta_6 = 1$. Таким образом, $\theta^0 = 1$.

5. Новый план $x^2 = (3; 3; 3; 0; 0; 0)$.

Поскольку на данном шаге все искусственные переменные нулевые, то можно поступить двояко: либо продолжить решение задачи первой фазы (условия оптимальности не выполняются), в частности, взяв $\theta^0 = \theta_{j_0} = \theta_1$ или, например, $\theta^0 = \theta_{j_*} = \theta_4$, либо перейти к решению "буферной" задачи. В последнем случае достаточно сделать две искусственные переменные фиктивными и базисными, а третью удалить и в качестве базисной переменной взять x_1 . Итак, получим "буферную" задачу

$$-5x_1 + 7x_2 - 11x_3 \rightarrow \max,$$

$$\begin{cases} 5x_1 + x_2 - x_3 + x_4 &= 15, \\ x_1 - 2x_2 + 3x_3 &+ x_5 = 6, \\ 6x_1 - x_2 + 2x_3 &= 21, \end{cases}$$

$$3 \le x_1 \le 4, -17 \le x_2 \le 3, -8 \le x_3 \le 3,$$

$$0 \le x_4 \le 0, 0 \le x_5 \le 0.$$

В качестве начального базисного плана берем вектор x = (3; 3; 3; 0; 0) и $J_{E} = \{1, 4, 5\}$.

Итерация 1.

- 1. $u_1 = 0$, $u_2 = 0$, $6u_3 = -5$, откуда получим $u_3 = -5/6$.
- 2. $\Delta_2 = 7 5/6 > 0$ при $x_2 = d_2^*$ (+), $\Delta_3 = -11 2 \cdot (-5/6) < 0$ при $x_3 = d_3^*$ (-).
- 3. $j_0=3;\ l_3=-1,\ l_2=0.$ Тогда уравнения для $l_{\rm B}$: $5l_1+1+l_4=0,\ l_1-3+l_5=0,\ 6l_1-2=0,$ откуда получим $l_1=1/3,\ l_4=-(5/3+1)=-8/3,\ l_5=-(1/3-3)=-8/3.$
 - 4. $\theta_{j_0}=\theta_3=11;\ \theta_1=3,\ \theta_4=0,\ \theta_5=0.$ Таким образом, $\theta^0=\theta_5=0$, т.е. $j_*=5$.
- 5. Удаляем фиктивную переменную x_5 из задачи. План остался прежним x=(3; 3; 3; 0) с $J_{\rm E}=\{1, 3, 4\}, \ J_{\rm H}=\{2\}$.

Итерация 2.

- 1. Уравнения для потенциалов: $5u_1 + u_2 + 6u_3 = -5$, $-u_1 + 3u_2 + 2u_3 = -11$, $u_1 = 0$. Отсюда получаем $u_1 = 0$, $u_2 = -7/2$, $u_3 = -1/4$.
 - 2. $\Delta_2 = 7 2 \cdot 7/2 1/4 = -1/4 < 0$ при $x_2 = d_2^*$ ().
- $3.\ j_0=2;\ l_2=-1.$ Тогда уравнения для $l_{\rm B}$: $5l_1-1-l_3+l_4=0,\ l_1+2+3l_3=0,$ $6l_1+1+2l_3=0,$ откуда получим $l_1=1/16,\ l_3=-11/16,\ l_4=0.$
 - 4. $\theta_{j_0}=\theta_2=20;\ \theta_1=16,\ \theta_3=16,\ \theta_4=\infty.$ Таким образом, $\theta^0=\theta_1=16$, т. е. $j_*=1$.
 - 5. Новый план $x=(4;-13;\ -8;\ 0)$ с $J_{\rm B}=\{2,\ 3,\ 4\},\ J_{\rm H}=\{1\}$. Итерация 3.
- 1. Уравнения для потенциалов: $u_1-2u_2-u_3=7$, $-u_1+3u_2+2u_3=-11$, $u_1=0$. Отсюда получаем $u_1=0$, $u_2=-3$, $u_3=-1$.
 - 2. $\Delta_1 = -5 + 3 + 6 > 0$ при $x_1 = d_{*1}$ (+).

Условия оптимальности выполняются – получен оптимальный план $x^0 = (4; -13; -8)$, $\phi_{\text{max}} = -23$.