

Lecture 2: Spatial Descriptions and Transformations

Advanced Robotics Hamed Ghafarirad

Outlines

- * Descriptions: Positions, Orientations and Frames
- * Mappings: Changing Description from Frame to Frame
- Operators
- * Transformation Arithmetic
- * More on Representation of Orientation
 - **Euler Angles**
 - Fixed Angles
 - Equivalent Angle-Axis
 - **Euler Parameters**
- * Transformation of Free Vectors

- To define position and orientation, we must define coordinate systems and conventions for its representation.
- There is a **universe coordinate system** to which everything can be referenced.
- A description is used to specify attributes of various objects.
- Objects are parts, tools, and the manipulator itself.

Description:

- Positions
- Orientations
- ➤ An entity that contains both of these descriptions: the **frame**

Description of a Position

- Once a coordinate system is established, locate any point with a 3×1 position vector.
- Vectors must be tagged identifying which coordinate system they are defined within, e,g, ${}^{A}P$.
- ^AP have numerical values that indicate distances along the axes of {A} (Projection).

$$^{A}P=\left[egin{smallmatrix}^{A}p_{\chi}\ ^{A}p_{y}\ ^{A}p_{z}\ \end{bmatrix}$$

$$P_{\gamma} = {}^{A}P \cdot \hat{X}_{A}$$

- ${}^{A}p_{x} = {}^{A}P . \hat{X}_{A}$ ${}^{A}p_{y} = {}^{A}P . \hat{Y}_{A}$ ${}^{A}p_{z} = {}^{A}P . \hat{Z}_{A}$

☐ Description of a Position

Vector Norm:

$$||AP|| = (AP \cdot AP)^{1/2} = (Ap_x^2 + Ap_y^2 + Ap_z^2)^{1/2}$$

• It is invariant of the frame.

$$||AP|| = (AP AP)^{1/2} = (BP BP)^{1/2} = ||BP||$$

Q: Condition ?

□ Description of an Orientation

- Positions of points are described with vectors and orientations of bodies are described with an attached coordinate system.
- Attach a coordinate system to the body and then give a description of this coordinate system relative to the reference system.
- One way to describe the coordinate system {B}:
 - Write its unit vectors \hat{X}_B , \hat{Y}_B , \hat{Z}_B in terms of the coordinate system $\{A\}$.
- They are called ${}^{A}\hat{X}_{B}$, ${}^{A}\hat{Y}_{B}$, ${}^{A}\hat{Z}_{B}$.

☐ Description of an Orientation

Each component is the dot product of a pair of unit vectors.

$${}^{A}\hat{X}_{B} = \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Y}_{A} \\ \hat{X}_{B} \cdot \hat{Y}_{A} \end{bmatrix} = \begin{bmatrix} \cos(\hat{X}_{B}, \hat{X}_{A}) \\ \cos(\hat{X}_{B}, \hat{Y}_{A}) \\ \cos(\hat{X}_{B}, \hat{Y}_{A}) \end{bmatrix} = \begin{bmatrix} r_{11} \\ r_{21} \\ r_{31} \end{bmatrix}$$

$${}^{A}\hat{Y}_{B} = \begin{bmatrix} \hat{Y}_{B} \cdot \hat{X}_{A} \\ \hat{Y}_{B} \cdot \hat{Y}_{A} \\ \hat{Y}_{B} \cdot \hat{Z}_{A} \end{bmatrix} = \begin{bmatrix} \cos(\hat{Y}_{B}, \hat{X}_{A}) \\ \cos(\hat{Y}_{B}, \hat{X}_{A}) \\ \cos(\hat{Y}_{B}, \hat{Y}_{A}) \end{bmatrix} = \begin{bmatrix} r_{12} \\ r_{22} \\ r_{32} \end{bmatrix}$$

$${}^{A}\hat{Z}_{B} = \begin{bmatrix} \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{Z}_{B} \cdot \hat{Y}_{A} \\ \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix} = \begin{bmatrix} \cos(\hat{Z}_{B}, \hat{X}_{A}) \\ \cos(\hat{Z}_{B}, \hat{X}_{A}) \\ \cos(\hat{Z}_{B}, \hat{Y}_{A}) \end{bmatrix} = \begin{bmatrix} r_{13} \\ r_{23} \\ r_{33} \end{bmatrix}$$

• Stack these three unit vectors together as the columns of a 3×3 matrix.

$${}^{A}R_{B} = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} \hat{X}_{B}.\hat{X}_{A} & \hat{Y}_{B}.\hat{X}_{A} & \hat{Z}_{B}.\hat{X}_{A} \\ \hat{X}_{B}.\hat{Y}_{A} & \hat{Y}_{B}.\hat{Y}_{A} & \hat{Z}_{B}.\hat{Y}_{A} \\ \hat{X}_{B}.\hat{Z}_{A} & \hat{Y}_{B}.\hat{Z}_{A} & \hat{Z}_{B}.\hat{Z}_{A} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

- It is called **Rotation Matrix** (**R**).
- Components of rotation matrices are direction cosines.

☐ Properties of Rotation Matrix

- 1) Orthonormal
- The columns all have unit magnitude, and, these unit vectors are orthogonal.

$$\|A\hat{X}_{B}\| = \|A\hat{Y}_{B}\| = \|A\hat{Z}_{B}\| = 1$$

$$A\hat{X}_{B} \cdot A\hat{Y}_{B} = A\hat{Y}_{B} \cdot A\hat{Z}_{B} = A\hat{X}_{B} \cdot A\hat{Z}_{B} = 0$$

2) The rows of the matrix are the unit vectors of {A} expressed in {B}.

$${}^{A}R_{B} = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} \hat{X}_{B}.\hat{X}_{A} & \hat{Y}_{B}.\hat{X}_{A} & \hat{Z}_{B}.\hat{X}_{A} \\ \hat{X}_{B}.\hat{Y}_{A} & \hat{Y}_{B}.\hat{Y}_{A} & \hat{Z}_{B}.\hat{Y}_{A} \\ \hat{X}_{B}.\hat{Z}_{A} & \hat{Y}_{B}.\hat{Z}_{A} & \hat{Z}_{B}.\hat{Z}_{A} \end{bmatrix} = \begin{bmatrix} {}^{B}\hat{X}_{A}^{T} \\ {}^{B}\hat{Y}_{A}^{T} \\ {}^{B}\hat{Z}_{A}^{T} \end{bmatrix} = \begin{bmatrix} {}^{B}\hat{X}_{A}^{T} \\ {}^{B}\hat{Y}_{A}^{T} \\ {}^{B}\hat{Z}_{A}^{T} \end{bmatrix} = [{}^{B}\hat{X}_{A} - {}^{B}\hat{X}_{A}]^{T} = {}^{B}R_{A}^{T}$$

The description of frame $\{A\}$ relative to $\{B\}$ (BR_A) is the transpose of AR_B .

$$^{B}R_{A}=^{A}R_{B}^{T}$$

☐ Properties of Rotation Matrix

3) From <u>linear algebra</u>, the <u>inverse</u> of a orthonormal matrix is equal to its transpose.

$${}^A R_B^T = {}^A R_B^{-1}$$

To demonstrate:

$${}^{A}R_{B}^{T} {}^{A}R_{B} = \begin{bmatrix} {}^{A}\hat{X}_{B}^{T} \\ {}^{A}\hat{Y}_{B}^{T} \\ {}^{A}\hat{Z}_{B}^{T} \end{bmatrix} [{}^{A}\hat{X}_{B} \quad {}^{A}\hat{Y}_{B} \quad {}^{A}\hat{Z}_{B}] = I_{3}$$

• where I_3 is the 3 × 3 identity matrix.

4)

$$det(^{A}R_{B})=1$$

4 *Q*: Why?

- 5) It can be expressed by Only 3 independent numbers.
- **4** *Q*: Why

□ Description of a Frame

- For a frame, both position and orientation should be determined.
- For convenience, the point whose position described is chosen as the **origin** of the body-attached frame.
- The description of a frame: a **position vector** and a **rotation matrix**.
- Frame {B} is described by AR_B and ${}^AP_{BORG}$. $\{B\} = \{{}^AR_B, {}^AP_{BORG}\}$
- $^{A}P_{BORG}$ is the vector that locates the origin of the frame {B}.
- A frame can be used as a description of one coordinate system relative to another.

☐ Description of a Frame

- Frames {A} and {B} are known relative to the universe frame.
- Frame {C} is known relative to frame {A}.

- Position and orientation can be represented as frames:
 - ➤ **Position:** a frame with identity rotation-matrix and position-vector which locates the point
 - **➢Orientation:** a frame whose position-vector was the zero vector.

- Mapping between frames can be done by:
 - **≻**Translation
 - **≻**Rotation
 - ➤ General Transformation

□ Translation

- A position defined by the vector ${}^{B}P$.
- {A} has the same orientation as {B}
- {A} differs only by a translation, i.e. ${}^{A}P_{BORG}$.
- Express this point in space in terms of frame $\{A\}$, i.e. ${}^{A}P$.

□ Rotation

- A position defined by the vector ${}^{B}P$.
- The orientation of $\{B\}$ is known relative to $\{A\}$ i.e. ${}^{A}R_{B}$.
- The origins of the two frames are coincident.
- Express this point in space in terms of frame $\{A\}$, i.e. ${}^{A}P$.
- The components of ${}^{A}P$ may be calculated by the projection as:

$${}^{A}P = \begin{bmatrix} {}^{A}p \\ {}^{A}p \end{bmatrix}$$

- $^{A}p_{x} = {}^{B}\widehat{X}_{A}. {}^{B}P$ $^{A}p_{y} = {}^{B}\widehat{Y}_{A}. {}^{B}P$
- **&** *Q*: Why?

Mappings: Frame to Frame

Rotation

$$^{A}P = \begin{bmatrix} ^{A}p_{x} \\ ^{A}p_{y} \\ ^{A}p_{z} \end{bmatrix}$$

- ${}^{A}p_{x} = {}^{B}\hat{X}_{A}. {}^{B}P$ ${}^{A}p_{y} = {}^{B}\hat{Y}_{A}. {}^{B}P$ ${}^{A}p_{z} = {}^{B}\hat{Z}_{A}. {}^{B}P$
- Expressing in the matrix form:

$${}^{A}P = \begin{bmatrix} {}^{A}p_{x} \\ {}^{A}p_{y} \\ {}^{A}p_{z} \end{bmatrix} = \begin{bmatrix} {}^{B}\hat{X}_{A}^{T} \\ {}^{B}\hat{Y}_{A}^{T} \\ {}^{B}\hat{Z}_{A}^{T} \end{bmatrix} {}^{B}P$$

Note that the rows of rotation matrix AR_B are ${}^B\hat{X}_A^T$, ${}^B\hat{Y}_A^T$ and ${}^B\hat{Z}_A^T$.

$$^{A}P = {^{A}R_{B}}^{B}P$$

□ Rotation

- ***** Example:
- Frame {B} that is rotated relative to frame {A} about \hat{Z} by θ degrees.
- ^{B}P is given.
- Find ^{A}P ?

☐ General Transformation

- A position defined by the vector ${}^{B}P$.
- The orientation of $\{B\}$ is known relative to $\{A\}$ i.e. ${}^{A}R_{B}$.
- The vector that locates $\{B\}$'s origin is called ${}^{A}P_{BORG}$.
- Express this point in space in terms of frame $\{A\}$, i.e. ${}^{A}P$.
- Assume an intermediate frame {C}:
 - \triangleright the same origin of $\{B\}$ and the same orientation of $\{A\}$.
- Describe ${}^{B}P$ in the intermediate frame.

$${}^{C}P = {}^{C}R_{B} {}^{B}P = {}^{A}R_{B} {}^{B}P$$

- Then account the translation between origins.
- $\bullet \quad {}^{A}P = {}^{A}R_{B} \, {}^{B}P + {}^{A}P_{BORG}$

□ General Transformation

General transform into a single matrix form.

$$^{A}P = {^{A}T_{B}} {^{B}P}$$

■ Define a 4×4 matrix operator and use 4×1 position vectors.

$$\begin{bmatrix} ^{A}P \\ 1 \end{bmatrix} = \begin{bmatrix} ^{A}R_{B} & ^{A}P_{BORG} \\ \hline 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ^{B}P \\ 1 \end{bmatrix}$$

So,

$${}^{A}P = {}^{A}R_{B} {}^{B}P + {}^{A}P_{BORG}$$
$$1 = 1$$

- ${}^{A}T_{B}$ is called a **Homogeneous Transformation Matrix.**
- The description of frame $\{B\}$ relative to $\{A\}$ is AT_B .

□ General Transformation

- **Example:**
- Frame {B} is rotated relative to frame {A} about \hat{Z} by 30 degrees, translated 10 units in \hat{X}_A and 5 units in \hat{Y}_A .
- where ${}^{B}P = [3 \quad 7 \quad 0]^{T}$.
- Find ${}^{A}P$?

□ General Transformation

- Special Transformations
 - > Translation:

$$^{A}T_{B} = T_{Trans} = \begin{bmatrix} I_{3\times3} & A_{BORG} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

> Rotation:

$${}^{A}T_{B} = T_{Rot} = \begin{bmatrix} & & & 0 \\ & AR_{B} & & 0 \\ & & 0 \\ 0 & -0 & -0 & -1 \end{bmatrix}$$

- Mapping concept can be used as operators.
 - **≻**Translation
 - **≻**Rotation
 - **▶**Transformation

☐ Translation

• Moving a point ${}^{A}P_{1}$ in space a finite distance along a given vector direction ${}^{A}Q$.

$${}^AP_2 = {}^AP_1 + {}^AQ$$

- Frame is invariant.
- Translational Operator:

$${}^AP_2 = T_{Trans}(Q) \, {}^AP_1$$

 \bullet Q: $T_{Trans}(Q) = ?$

□ Translation

- It is accomplished with the same mathematics as mapping the point to a second frame.
- When a vector is moved "forward" relative to a frame = the frame is moved "backward".

$$T_{Trans}(Q) = \begin{bmatrix} 1 & 0 & 0 & q_x \\ 0 & 1 & 0 & q_y \\ 0 & 0 & 1 & q_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- where q_x , q_y and q_z are the components of the translation vector Q.
- \bullet *Q*: Sign of q_i ?

□ Rotation

• Rotating a vector ${}^{A}P_{1}$ to a new vector ${}^{A}P_{2}$, by means of a rotation, R.

$$^{A}P_{2} = R ^{A}P_{1}$$

The rotation matrix that rotates vectors through some rotation, R = the rotation matrix that describes a frame rotated by R relative to the reference frame.

$${}^{A}P_{2} = R_{K}(\theta) {}^{A}P_{1}$$

- " $R_K(\theta)$ " performs a rotation about the axis direction K by θ degrees.
- Q: Assume $K = \hat{Z}$, what is $R_K(\theta)$?

□ Rotation

Rotational Operator:

$$^{A}P_{2} = T_{Rot}(\theta) \, ^{A}P_{1}$$

$$T_{Rot}(R) = \begin{bmatrix} R_K(\theta) & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$T_{Rot}(R) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

□ Transformation

• Rotating and translating a vector ${}^{A}P_{1}$ to compute a new vector ${}^{A}P_{2}$:

$$^{A}P_{2} = T ^{A}P_{1}$$

- The transform that rotates by R and translates by Q
 - = the transform that describes a frame rotated by R and translated by Q relative to the reference frame.

$$T = \begin{bmatrix} R_K(\theta) & q_x \\ q_y & q_z \\ 0 & 0 & 0 \end{bmatrix}$$

Q: Is its sequence important?

☐ Compound Transformations

■ Frame {C} is known relative to frame {B}, and frame {B} is known relative to frame {A}

$$^{A}P = {^{A}T_{B}} {^{B}T_{C}} {^{C}P}$$

$${}^AT_C = {}^AT_B \, {}^BT_C$$

$${}^{A}T_{C} = \begin{bmatrix} {}^{A}R_{C} & {}^{I}{}^{A}P_{CORG} \\ {}^{I}{}^{O} & {}^{I}{}^{O} & {}^{I}{}^{O} \end{bmatrix}$$

- We have ${}^{A}R_{B}$, ${}^{B}R_{C}$, ${}^{A}P_{BORG}$, ${}^{B}P_{CORG}$, So
- $^{A}T_{C} = \begin{bmatrix} ? & ? \\ & 0 & 0 & !1 \end{bmatrix}$

□ Compound Transformations

$${}^{A}T_{C} = \begin{bmatrix} {}^{A}R_{B} {}^{B}R_{C} & {}^{A}R_{B} {}^{B}P_{CORG} + {}^{A}P_{BORG} \\ {}^{1} & {}^{1} & {}^{1} \end{bmatrix}$$

Computation:

$${}^{A}P = {}^{A}T_{B} ({}^{B}T_{C} {}^{C}P)$$
 32 Multiplication + 24 Addition ${}^{A}P = ({}^{A}T_{B} {}^{B}T_{C}) {}^{C}P$ 80 Multiplication + 60 Addition

However, the second one is better when you want to do the transformation of many vectors many times.

☐ Inverting a Transform

- Frame {B} with respect to a frame {A}, ${}^{A}T_{B}$, is known (${}^{A}R_{B}$ & ${}^{A}P_{BORG}$).
- Invert this transform to get a description of $\{A\}$ relative to $\{B\}$, $({}^BT_A=?)$

$$^{A}P = {^{A}T_{B}} {^{B}P}$$

☐ Inverting a Transform

- Frame {B} with respect to a frame {A}, ${}^{A}T_{B}$, is known (${}^{A}R_{B}$ & ${}^{A}P_{BORG}$)
- Invert this transform to get a description of $\{A\}$ relative to $\{B\}$, $({}^BT_A=?)$

$$^{A}P = {^{A}T_{B}} {^{B}P}$$

$${}^{A}P = {}^{A}R_{B} {}^{B}P + {}^{A}P_{BORG}$$

$${}^{A}P - {}^{A}P_{BORG} = {}^{A}R_{B} {}^{B}P$$

$${}^{A}R_{B} {}^{-1}({}^{A}P - {}^{A}P_{BORG}) = {}^{B}P$$

$${}^{A}R_{B} {}^{T}{}^{A}P - {}^{A}R_{B} {}^{T}{}^{A}P_{BORG} = {}^{B}P$$

$${}^{B}T_{A} = \begin{bmatrix} {}^{A}R_{B}^{T} & {}^{I} - {}^{A}R_{B}^{T} {}^{A}P_{BORG} \\ {}^{I} - {}^{I} - {}^{I} - {}^{I} - {}^{I} - {}^{I} \end{bmatrix}$$

- **4** *Q*: Geometrical Description = ?
- Note that

Remember rotation matrix:

$${}^{A}R_{B} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

- The nine elements are not all independent (six dependencies).
- Imagine *R* as three columns, as originally introduced:

$${}^{A}R_{B} = [{}^{A}\hat{X}_{B} \quad {}^{A}\hat{Y}_{B} \quad {}^{A}\hat{Z}_{B}]$$

- These three vectors are the unit axes of some frame written in terms of the reference frame.
- Each is a unit vector, and all three must be mutually perpendicular (six constraints).

$$||^{A}\hat{X}_{B}|| = ||^{A}\hat{Y}_{B}|| = ||^{A}\hat{Z}_{B}|| = 1$$

$$|^{A}\hat{X}_{B} \cdot {^{A}}\hat{Y}_{B} = {^{A}}\hat{Y}_{B} \cdot {^{A}}\hat{Z}_{B} = {^{A}}\hat{X}_{B} \cdot {^{A}}\hat{Z}_{B} = 0$$

The representation is conveniently specified with three parameter.

- Rotation matrix is also called **proper orthonormal matrix**, ("proper" refers to $det({}^{A}R_{B}) = +1$)
- Cayley's formula for orthonormal matrices:
 For any proper orthonormal matrix R, there exists a skew-symmetric matrix S such that

$$R = (I_3 - S)^{-1}(I_3 + S)$$

• A skew-symmetric matrix (i.e., $S = -S^T$) is specified by three parameters (s_x, s_y, s_z) .

$$S = \begin{bmatrix} 0 & -s_x & s_y \\ s_x & 0 & -s_z \\ -s_y & s_z & 0 \end{bmatrix}$$

• Consequently, any 3×3 rotation matrix can be specified by just three parameters.

□ 5 Methods for Representation of Orientation

- Direction Cosines (9 Dependent Parameters)
- ➤ Euler angles (3 Parameters)
- Fixed angles (3 Parameters)
- > Equivalent angle-axis (4 Dependent Parameters)
- ➤ Euler parameters (4 Dependent Parameters)

☐ Z-Y-X Euler Angles

- Start with the frame {A}
 - Rotate $\{A\}$ about \hat{Z}_A by an angle α to get frame $\{B'\}$
 - Rotate $\{B'\}$ about $\hat{Y}_{B'}$ by an angle β to get frame $\{B''\}$
 - Rotate $\{B''\}$ about $\hat{X}_{B''}$ by an angle γ to get frame $\{B\}$

- Each rotation is performed about an axis of the moving frames.
- \bullet $Q: {}^{A}R_{B}=?$

□ Z-Y-X Euler Angles

• Using the intermediate frames $\{B'\}$ and $\{B''\}$ in order to give an expression for ${}^AR_{B\ ZYX}(\alpha,\beta,\gamma)$.

$${}^{A}R_{B\ ZYX}(\alpha,\beta,\gamma) = {}^{A}R_{B'}{}^{B'}R_{B''}{}^{B''}R_{B}$$

$${}^{A}R_{B_{ZYX}} = R_{Z}(\alpha) R_{Y}(\beta) R_{X}(\gamma) = \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix}$$

• where $c\alpha = \cos \alpha$, $s\alpha = \sin \alpha$

$${}^{A}R_{B_ZYX}(\alpha,\beta,\gamma) = \begin{bmatrix} c\alpha \ c\beta & c\alpha \ s\beta \ s\gamma - s\alpha \ c\gamma & c\alpha \ s\beta \ c\gamma + s\alpha \ s\gamma \\ s\alpha \ c\beta & s\alpha \ s\beta \ s\gamma + c\alpha \ c\gamma & s\alpha \ s\beta \ c\gamma - c\alpha \ s\gamma \\ -s\beta & c\beta \ s\gamma & c\beta \ c\gamma \end{bmatrix}$$

□ Z-Y-X Euler Angles

- The **Inverse** Problem
- Extracting equivalent Z-Y-X Euler angles from a given rotation matrix.
- If ${}^AR_B {}_{ZYX}(\alpha, \beta, \gamma)$ is equated to the given rotation matrix:

$$\begin{bmatrix} c\alpha \ c\beta & c\alpha \ s\beta \ s\gamma - s\alpha \ c\gamma & c\alpha \ s\beta \ c\gamma + s\alpha \ s\gamma \\ s\alpha \ c\beta & s\alpha \ s\beta \ s\gamma + c\alpha \ c\gamma & s\alpha \ s\beta \ c\gamma - c\alpha \ s\gamma \\ -s\beta & c\beta \ s\gamma & c\beta \ c\gamma \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

- 9 equations & 3 unknowns.
- Due to six dependencies, 3 equations & 3 unknowns.

$$\beta = Atan2\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$$

- Atan2(y, x) is a two-argument arc tangent function.
- Although a *second solution* exists for β , we always compute the single solution for which $-90.0^{\circ} \le \beta \le 90.0^{\circ}$ to have a **one-to-one mapping.**

□ Z-Y-X Euler Angles

• The **Inverse** Problem

$$\begin{bmatrix} c\alpha \ c\beta & c\alpha \ s\beta \ s\gamma - s\alpha \ c\gamma & c\alpha \ s\beta \ c\gamma + s\alpha \ s\gamma \\ s\alpha \ c\beta & s\alpha \ s\beta \ s\gamma + c\alpha \ c\gamma & s\alpha \ s\beta \ c\gamma - c\alpha \ s\gamma \\ -s\beta & c\beta \ s\gamma & c\beta \ c\gamma \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\beta = Atan2\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$$

- As long as $c\beta \neq 0$, $\alpha = Atan2 (r_{21}/c\beta, r_{11}/c\beta)$ $\gamma = Atan2 (r_{32}/c\beta, r_{33}/c\beta)$
- Q: What about for $\beta = \pm 90.0^{\circ}$ ($c\beta = 0$) ?!!!

□ Z-Y-X Euler Angles

- The **Inverse** Problem
- Singularity of the Inverse Problem:

$$\alpha = Atan2 (r_{21}/c\beta, r_{11}/c\beta)$$

$$\gamma = Atan2 (r_{32}/c\beta, r_{33}/c\beta)$$

- If $\beta = \pm 90.0^{\circ}$ ($c\beta = 0$), the solution degenerates.
- For $\beta = +90.0^{\circ}$:

$$\begin{bmatrix} c\alpha \ c\beta & c\alpha \ s\beta \ s\gamma - s\alpha \ c\gamma & c\alpha \ s\beta \ c\gamma + s\alpha \ s\gamma \\ s\alpha \ c\beta & s\alpha \ s\beta \ s\gamma + c\alpha \ c\gamma & s\alpha \ s\beta \ c\gamma - c\alpha \ s\gamma \\ -s\beta & c\beta \ s\gamma & c\beta \ c\gamma \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
$$\begin{bmatrix} 0 & sin(\gamma - \alpha) & cos(\gamma - \alpha) \\ 0 & cos(\gamma - \alpha) & -sin(\gamma - \alpha) \\ -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

• In those cases, only the $(\alpha \pm \gamma)$ can be computed.

□ Z-Y-X Euler Angles

- The **Inverse** Problem
- Singularity of the Inverse Problem:
- For $\beta = +90.0^{\circ}$:

$$\begin{bmatrix} 0 & \sin(\gamma - \alpha) & \cos(\gamma - \alpha) \\ 0 & \cos(\gamma - \alpha) & -\sin(\gamma - \alpha) \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}.$$

- One possible convention is to choose $\alpha = 0.0$ in these cases and compute γ .
- If $\beta = \pm 90.0^{\circ}$, then a solution can be calculated to be

$$eta = +90.0^{\circ}$$
 $eta = -90.0^{\circ}$ $lpha = 0.0$ $lpha = 0.0$ $\gamma = Atan2 \ (r_{12}, r_{22})$ $\gamma = -Atan2 \ (r_{12}, r_{22})$

- **□ Z-Y-X Euler Angles**
- The **Inverse** Problem
- Singularity of the Inverse Problem:
- \diamond Q: What is the <u>physical interpretation</u> of the IK singularity?

□ X-Y-Z Fixed Angles

- Start with the frame {A}
 - \triangleright Rotate {A} about \hat{X}_A by an angle γ to get frame {B'}
 - \triangleright Rotate $\{B'\}$ about \hat{Y}_A by an angle β to get frame $\{B''\}$
 - \triangleright Rotate $\{B''\}$ about \hat{Z}_A by an angle α to get frame $\{B\}$

- Each of the three rotations takes place about an axis in the fixed reference frame {A}.
- This convention is referred to as **roll**, **pitch**, **yaw** angles.

$$\bullet$$
 $Q: {}^{A}R_{B}=?$

□ X-Y-Z Fixed Angles

■ The composition rule <u>cannot</u> be applied here, <u>similarity transformation</u> can be used instead.

☐ Similarity Transformation

- A rotation matrix (as a coordinate transformation) may be viewed as changing basis from one frame to another.
- A general linear transformation is transformed from one frame to another using similarity transformation.
- M is a linear transformation in frame {0} and N is the representation of M in frame {1}.

$$N = ({}^{0}R_{1})^{-1} M {}^{0}R_{1}$$

□ X-Y-Z Fixed Angles

• Using the intermediate frames $\{B'\}$ and $\{B''\}$ in order to give an expression for ${}^AR_{B\ XYZ}(\gamma,\beta,\alpha)$.

$${}^{A}R_{B} = {}^{A}R_{B'} {}^{B'}R_{B''} {}^{B''}R_{B}$$

$${}^{A}R_{B'} = R_{X}(\gamma)$$

$${}^{B'}R_{B''} = ({}^{A}R_{B'})^{-1} R_{Y}(\beta) ({}^{A}R_{B'})$$

$${}^{B''}R_{B} = ({}^{A}R_{B''})^{-1} R_{Z}(\alpha) ({}^{A}R_{B''})$$

Therefore,

$${}^{A}R_{B'} = R_X(\gamma)$$

$${}^{A}R_{B''} = {}^{A}R_{B'} {}^{B'}R_{B''} = {}^{A}R_{B'} ({}^{A}R_{B'})^{-1} R_{Y}(\beta) ({}^{A}R_{B'}) = R_{Y}(\beta) R_{X}(\gamma)$$

$${}^{A}R_{B} = {}^{A}R_{B''} {}^{B''}R_{B} = {}^{A}R_{B''} ({}^{A}R_{B''})^{-1} R_{Z}(\alpha) ({}^{A}R_{B''}) = R_{Z}(\alpha) R_{Y}(\beta) R_{X}(\gamma)$$

□ X-Y-Z Fixed Angles

$${}^{A}R_{B_XYZ}(\gamma,\beta,\alpha) = R_{Z}(\alpha) R_{Y}(\beta) R_{X}(\gamma)$$

$$= \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix}$$

Therefore,

$${}^{A}R_{B_XYZ}(\gamma,\beta,\alpha) = \begin{bmatrix} c\alpha \ c\beta & c\alpha \ s\beta \ s\gamma - s\alpha \ c\gamma & c\alpha \ s\beta \ c\gamma + s\alpha \ s\gamma \\ s\alpha \ c\beta & s\alpha \ s\beta \ s\gamma + c\alpha \ c\gamma & s\alpha \ s\beta \ c\gamma - c\alpha \ s\gamma \\ -s\beta & c\beta \ s\gamma & c\beta \ c\gamma \end{bmatrix}$$

- Note: Three rotations taken about fixed axes $(e.g.^A R_{B_XYZ}(\gamma, \beta, \alpha))$ yield the same final orientation as the same three rotations taken in opposite order about the axes of the moving frame $(e.g.^A R_{B_ZYX}(\alpha, \beta, \gamma))$.
- 24 representations: 12 Euler angles series + 12 Fixed angles series.

□ Equivalent Angle-Axis

- Start with the frame {A}
 - \triangleright Rotate about the unit vector ${}^{A}\widehat{K}$ by an angle θ according to the right-hand rule (Based on the *Euler Theorem*).
- ${}^{A}\widehat{K}$: Equivalent axis of a finite rotation.
- It may be written as ${}^{A}R_{B}(\widehat{K},\theta)$ or $R_{K}(\theta)$.
- ${}^{A}\widehat{K}$ requires only <u>two parameters</u> caused by its unit length.

• For the general axis of rotation:

$$R_{K}(\theta) = \begin{bmatrix} k_{x}k_{x}v\theta + c\theta & k_{x}k_{y}v\theta - k_{z}s\theta & k_{x}k_{z}v\theta + k_{y}s\theta \\ k_{x}k_{y}v\theta + k_{z}s\theta & k_{y}k_{y}v\theta + c\theta & k_{y}k_{z}v\theta - k_{x}s\theta \\ k_{x}k_{z}v\theta - k_{y}s\theta & k_{y}k_{z}v\theta + k_{x}s\theta & k_{z}k_{z}v\theta + c\theta \end{bmatrix}$$

• where $c\theta = \cos\theta$, $s\theta = \sin\theta$, $v\theta = 1 - \cos\theta$ and ${}^A\widehat{K} = [k_x, k_y, k_z]^T$

□ Equivalent Angle-Axis

$$R_K(\theta) = \begin{bmatrix} k_x k_x v \theta + c \theta & k_x k_y v \theta - k_z s \theta & k_x k_z v \theta + k_y s \theta \\ k_x k_y v \theta + k_z s \theta & k_y k_y v \theta + c \theta & k_y k_z v \theta - k_x s \theta \\ k_x k_z v \theta - k_y s \theta & k_y k_z v \theta + k_x s \theta & k_z k_z v \theta + c \theta \end{bmatrix}$$

Example:

• For \hat{K} as principal axes (e.g. $\hat{K} = \hat{X} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ or \hat{Y} or \hat{Z})

$$R_X(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\theta & -s\theta \\ 0 & s\theta & c\theta \end{bmatrix}$$

$$R_Y(\theta) = \begin{bmatrix} c\theta & 0 & s\theta \\ 0 & 1 & 0 \\ -s\theta & 0 & c\theta \end{bmatrix}$$

$$R_Z(\theta) = \begin{bmatrix} c\theta & -s\theta & 0\\ s\theta & c\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

□ Equivalent Angle-Axis

- The **Inverse** Problem
- Computing \widehat{K} and θ from a given rotation matrix.

$$\begin{bmatrix} k_{x}k_{x}v\theta + c\theta & k_{x}k_{y}v\theta - k_{z}s\theta & k_{x}k_{z}v\theta + k_{y}s\theta \\ k_{x}k_{y}v\theta + k_{z}s\theta & k_{y}k_{y}v\theta + c\theta & k_{y}k_{z}v\theta - k_{x}s\theta \\ k_{x}k_{z}v\theta - k_{y}s\theta & k_{y}k_{z}v\theta + k_{x}s\theta & k_{z}k_{z}v\theta + c\theta \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\theta = A\cos\left(\frac{r_{11} + r_{22} + r_{33} - 1}{2}\right) , \ \widehat{K} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

- This solution always computes a value of θ between [0-180°].
- For any $({}^{A}\widehat{K}, \theta)$, $(-{}^{A}\widehat{K}, -\theta)$ results in the same orientation in space.
- For **small** angular rotations, the axis becomes ill-defined.
- If $\theta \to 0^\circ$, the axis becomes completely undefined. ($\theta = 0^\circ$ or $\theta = 180^\circ$)

□ Euler Parameters

- Another representation is by means of four numbers called the Euler parameters.
- In terms of the equivalent axis $\widehat{K} = [k_x, k_y, k_z]^T$ and the equivalent angle θ , the Euler parameters are given by

$$\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix} = \begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix} \sin \frac{\theta}{2} = \hat{K} \sin \frac{\theta}{2}$$

$$\epsilon_4 = \cos \frac{\theta}{2}$$

These four quantities are not independent (Unit Quaternion)

$$\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2 + \epsilon_4^2 = 1$$

• An orientation might be visualized as <u>a point</u> on a unit hypersphere in four-dimensional space.

□ Euler Parameters

The rotation matrix

$$R_{\epsilon} = \begin{bmatrix} 1 - 2\epsilon_2^2 - 2\epsilon_3^2 & 2(\epsilon_1 \epsilon_2 - \epsilon_3 \epsilon_4) & 2(\epsilon_1 \epsilon_3 + \epsilon_2 \epsilon_4) \\ 2(\epsilon_1 \epsilon_2 + \epsilon_3 \epsilon_4) & 1 - 2\epsilon_1^2 - 2\epsilon_3^2 & 2(\epsilon_2 \epsilon_3 - \epsilon_1 \epsilon_4) \\ 2(\epsilon_1 \epsilon_3 - \epsilon_2 \epsilon_4) & 2(\epsilon_2 \epsilon_3 + \epsilon_1 \epsilon_4) & 1 - 2\epsilon_1^2 - 2\epsilon_2^2 \end{bmatrix}$$

- The **Inverse** Problem:
- Given a rotation matrix (A), the equivalent Euler parameters are

$$\begin{bmatrix} 1 - 2\epsilon_2^2 - 2\epsilon_3^2 & 2(\epsilon_1\epsilon_2 - \epsilon_3\epsilon_4) & 2(\epsilon_1\epsilon_3 + \epsilon_2\epsilon_4) \\ 2(\epsilon_1\epsilon_2 + \epsilon_3\epsilon_4) & 1 - 2\epsilon_1^2 - 2\epsilon_3^2 & 2(\epsilon_2\epsilon_3 - \epsilon_1\epsilon_4) \\ 2(\epsilon_1\epsilon_3 - \epsilon_2\epsilon_4) & 2(\epsilon_2\epsilon_3 + \epsilon_1\epsilon_4) & 1 - 2\epsilon_1^2 - 2\epsilon_2^2 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = A$$

$$\epsilon_4 = \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}}$$

$$\epsilon = \frac{1}{4\epsilon_4} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

■ For a rotation of 180 degrees about some axis, $\epsilon_4 \rightarrow 0$ (ill defined).

□ Euler Parameters

- The **Inverse** Problem:
- Remember:

$$\epsilon = \widehat{K}\sin\frac{\theta}{2}$$

$$\epsilon_4 = \cos\frac{\theta}{2}$$

By definition, if $\epsilon_4 = 0$, then $\theta = 180^\circ$ and ϵ is equal to rotation axis, i.e. $\epsilon = \widehat{K}$

$$\epsilon_1^2 = \frac{1 + 2r_{11} - tr A}{4}$$

$$\epsilon_2^2 = \frac{1 + 2r_{22} - tr A}{4}$$

$$\epsilon_3^2 = \frac{1 + 2r_{33} - tr A}{4}$$

- Note: There is No Singularity associated with these parameters.
- As long as the direction cosines are known, we can find the corresponding Euler parameters [1].

Transformation of Free Vectors

- **Line vector:** a vector that is dependent on its line of action, along with direction and magnitude. (*Position* & *Force*)
- Free vector: a vector that may be positioned anywhere in space, provided that magnitude and direction are preserved (<u>Velocity</u> & <u>Moments</u>)
- For free vectors, **only** the rotation matrix relating the two systems is used in transforming.
- Position Transformation

$$^{A}P = {^{A}T_{R}}^{B}P$$

Velocity Transformation

$$^{A}V = {^{A}R_{B}}^{B}V$$

 AP_{BORG} which would appear in a position-vector transformation, does not appear in a velocity transform.

The END

• References:

[1] www.u.arizona.edu/~pen/ame553/Notes/Lesson%2009.pdf