Tutorial

- (Q1) Find out The L.T of each of the time domain functions.
 - (a) t cost u(t) (b) toint u(t) (c) et t cost u(t)(d) et toint u(t)
- (2) The L.T of the time domain function x(t) shown in The following figure has the form:

 $X(b) = X_1(b) + X_2(b) \stackrel{\sim}{E} X_3(b) e$

Where X1(B), X2(B) and X3(B) are rational functions. Obtain X,(B), X2(B) and X3(B)

Fig. for Q2 ->

- (93) Find The inverse L.T of the each of the following functions.
 - (a) $\frac{5^3}{(8+2)(8+3)(8+4)}$ (b) $\frac{35^2+28+2}{(8+2)^2(8+3)}$
 - (e) (45^2-38+5) (8^2+28+5)
- Find The inverse L.T of the following partial fraction expansions
- $X(8) = \frac{j1}{8+1+j1} \frac{j1}{8+1-j1} \frac{1}{(8+1+j1)^2} \frac{1}{(8+1-j1)^2}$
- $X(\beta) = \frac{jb}{(\beta j)^2} \frac{jb}{(\beta + j)^2}$
- for the R-L-C network with R=1-1, C=1F& L=1H, (Q5) Calculate Ve(t) and i(t) assuming all initial conditions relaxed.

when (a) v(t) = u(t) volts (b) v(t) = t u(t) volts.

Use L.T to find out i(t) for the following Cases and sketch it, for the God

(a)
$$T = 48 & i(0) = 0$$

(b)
$$T = 1/5 + \lambda(6^{-}) = 0$$

(c)
$$T = 28$$
 & $\hat{\lambda}(\bar{o}) = 1$ A

QUESTION 8:

The switch was closed at t = 0. Before that the circuit was already in a steady state. Using circuit analysis in Laplace domain, find the expression for the voltage $v_{AO}(t)$ and current $i_2(t)$ for $t \ge 0$.

QUESTION 9:

The switch was closed at t = 0. Before that the circuit was already in a steady state. Using circuit analysis in Laplace domain, find the expression for the capacitor voltage $v_c(t)$ and current i(t) for $t \ge 0$.

QUESTION 10:

The switch was **opened** at t = 0. Before that the circuit was already in a steady state. (Assume the inductor has a very low amount of resistance but the switch has much lower resistance) Using circuit analysis in Laplace domain, find the expression for the current $i_1(t)$ and $i_2(t)$ for $t \ge 0$.

QUESTION 11:

All switches were closed at t = 0 together. Before that the capacitor was uncharged. Using circuit analysis in Laplace domain, find the expression for the voltage $v_{AO}(t)$ and capacitor voltage $v_{C}(t)$ for $t \ge 0$.

QUESTION 12:

The switch was closed at t = 0. Before that the circuit was already in a steady state. Using circuit analysis in Laplace domain, find the expression for the voltage $v_c(t)$ and current $i_L(t)$ for $t \ge 0$.

(Hint: You may use nodal analysis at node C in Laplace domain for ease of calculation)