Roll No.						

Presidency School of Computer Science and Engineering (PSCS)

Mid - Term Examinations - September 2024

Model Question Paper

Semester: III	Date:
Course Code: CSE2001	Time : 00:00am – 00:00pm
Course Name : Data Structures and Algorithms	Max Marks: 50
Program:B.Tech	Weightage: 25%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Do not write anything on the question paper other than roll number.

Part A

Ans	wer ALL the Questions. Each question carries 2marks.	2Mx5Q=10M			
1	Explain the concept of an Abstract Data Type (ADT) with an example	2 Marks	L2	CO1	
2	Define Recursion.	2 Marks	L2	CO1	
3	Compare a standard queue with a circular queue.	2 Marks	L2	CO1	
4	Interpret how to check overflow condition for Stack using arrays.	2 Marks	L2	CO1	
5	Define one-dimensional array with an example.	2 Marks	L2	CO1	

Part B

Ansv	Answer ALL Questions. Each question carries 10 marks.			4QX10M=40M		
	i.	Design a code snippet to insert a new element to an array in the given position	4 Marks	L3	CO2	
6a	ii.	Use Code Snippet to demonstrate the following operation on Stack a. Push b. pop	6 Marks	L3	CO2	
	Or					

6b	i.	Use Code Snippet to demonstrate the following operation on Stack a. Enqueue b. DeQueue	4 Marks	L3	CO2
	ii.	Design a code snippet to Delete an element from an array in the given position	6.Marks	L3	CO2

	i.	Discuss the disadvantages of arrays.	3 Marks	L2	CO2
7a	ii.	Convert the following infix expression to a postfix expression using a stack data structure $K + L - M*N + (O^P)*W/U/V*T + Q$	7 Marks	L3	CO2
		or			
	i.	Discuss the disadvantages of normal queue implementation using arrays	3 Marks	L2	CO2
7b	ii.	Evaluate the following postfix expression using stack a. $231*+9-$ b. $100200+2/5*7+$	7 Marks	L3	CO2

	i.	Implement the following operation in a Singly linked list a. Insert a new node in the beginning b. Deleting node from the end	8 Marks	L3	CO3
8a	ii.	Predict the status of a single linked list Node CP=head; Node A=new Node() head=A Node b=new Node() A.link=b Head=null;	2 Marks	L3	СО3
		or			
8b	i.	Implement the following operation in the Circular Singly linked list a. Insert a new node at the end of the linked list b. Deleting node from the beginning	8 Marks	L3	CO3

ii.	Calculate the number of nodes present in the linked list			
	Node a=new Node(10) Node b=new Node(20) Node c=new Node(30) Node d=new Node(40) Head=a; A.link=b; b.link=c; c.link=d; b.link=null	2 Marks	L3	CO3

	i.	Design a code snippet for the following operation	1		
		c. Find nth Fibonacci number	8 Marks	L3	CO3
9a		d. Find the factorial of a given number			
	ii.	Describe the following			
		e. Base case	2 Marks	L2	CO3
		f. Recessive case			
	•	or	,	1	
9b	i.	Design a recursive function to solve the Tower of Hanoi problem	8 Marks	L3	CO3
	ii.	Discuss the advantages of recursion.	2 Marks	L2	CO3