Gradient Compression For Communication Limited Convex Optimization

Siddarth kumar

IIT Hyderabad

EE15BTECH11032

March 7, 2019

Overview

- Optimization using gradient descent.
 - Iteration complexity.
 - Communication cost of exchanging gradients.
- Compression technique for gradient is used to reduce compression.
- Discuss Gradient compression technique.

Problem formulation

Convex optimization problem,

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x). \tag{1}$$

Function f: $\mathbb{R}^n \to \mathbb{R}$ should satisfify below to conditions:

L-Lipschitz continuous gradient Condition,

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$
 (2)

Function is strongly convex,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2.$$
 (3)

Proposed method,

$$x_{k+1} = x_k - \gamma_k Q(\nabla f(x_k)).$$

Q is quantization, γ is step size.

Instead of using traditional gradient descent,

$$x_{k+1} = x_k - \gamma \nabla f(x_k), \tag{4}$$

4 / 10

Siddarth kumar (IITH) Short title March 7, 2019

Gradient Compression

- Sparsification
 - K-greedy Quantizer Q: $\mathbb{R}^n \to \mathbb{R}^n$

$$[Q_G^K(g)]_i = egin{cases} [g]_{\pi(i)} & ext{if } i \leq K \ 0 & ext{otherwise} \end{cases}$$

where π is a permutation of $\{1,...,n\}$, and $|g_{\pi}(k)| \geq |g_{\pi}(k+1)|$ g is gradient vector.

- Quantization
 - Ternary Quantizer $Q_T: \mathbb{R}^n \to \mathbb{R}^n$ such that $[Q_T(g)]_i = ||g||sgn(g_i)$

- Combination of Sparsification and Quatization (Dynamic gradient quatizer)
 - It is defined as $Q_D: \mathbb{R}^n \to \mathbb{R}^n$ as

$$[Q_D(g)]_i = egin{cases} \|g\| \ \mathrm{sgn} \ (g_i) & \mathrm{if} \ i \in I(g) \ 0 & \mathrm{otherwise} \end{cases}$$

where I(g) is the smallest subset of $\{1,...,n\}$ such that

$$\sum_{j\in I(g)}|g_i|\geq \|g\|.$$

Siddarth kumar (IITH)

- Number of bits required in different Quantizer
 - K-greedy Quantizer: $K(log_2(n) + b)$ bits
 - Ternary Quantizer: (2n + b) bits
 - Dynamic Quantizer: $|I(g)|(log_2(n) + 1) + b$

Experimental results

- Let Function $f(x) = 0.5 \times ||Ax b||$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, m = 1000 and n = 800, elements of matrix drawn from uniform distribution [0,1], Elements of b is sign of random variable drawn from $\mathcal{N}(0,1)$.
- Normalized each row of A by its Euclidean norm and computed the Lipschitz constant as $L = \lambda_{max}(A^T A)$.

References

- https://ieeexplore.ieee.org/document/8619625
- https://en.wikipedia.org/wiki/Gradient_descent