Analysis of Algorithms

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:

from time import time
start_time = time()
run algorithm
end_time = time()
elapsed = end_time - start_time

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- □ Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])

Input ...

Output ...

- Method callmethod (arg [, arg...])
- Return value return expression
- Expressions:
 - ← Assignment
 - = Equality testing
 - n² Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

□ A CPU

 An potentially unbounded bank of **memory** cells, each of which can hold an arbitrary number or character

Memory cells are numbered and accessing any cell in memory takes unit time.

Seven Important Functions

- Seven functions that
 often appear in algorithm 1E+30
 analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate

Functions Graphed Using "Normal" Scale

Slide by Matt Stallmann included with permission.

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
def find_max(data):
    """Return the maximum element from a nonempty Python list."""
    biggest = data[0]  # The initial value to beat
    for val in data:  # For each value:
    if val > biggest  # if it is greater than the best so far,
        biggest = val  # we have found a new best (so far)
    return biggest  # When loop ends, biggest is the max
```

Step 1: 2 ops, 3: 2 ops, 4: 2n ops, 5: 2n ops, 6: 0 to n ops, 7: 1 op

Estimating Running Time

- □ Algorithm find_max executes 5n + 5 primitive operations in the worst case, 4n + 5 in the best case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- □ Let T(n) be worst-case time of find_max. Then $a (4n + 5) \le T(n) \le b(5n + 5)$
- \Box Hence, the running time T(n) is bounded by two linear functions.

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm find_max

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
cnlgn	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n ²	~ c n ² + 2c n	4c n²	16c n ²
c n ³	$\sim c n^3 + 3c n^2$	8c n ³	64c n ³
c 2 ⁿ	c 2 n+1	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples → when problem size doubles

Slide by Matt Stallmann included with permission.

Comparison of Two Algorithms

insertion sort is

n² / 4

merge sort is
2 n lg n

sort a million items?

insertion sort takes
roughly 70 hours
while

merge sort takes
roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- □ Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Example

- □ Example: the function n^2 is not O(n)
 - $n^2 \le cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

- ♦ 7n-2
 - 7n-2 is O(n) need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c \cdot n$ for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$
- $-3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$
- 3 log n + 5

 $3 \log n + 5 \text{ is } O(\log n)$ need c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \cdot \log n$ for $n \ge n_0$ this is true for c = 8 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- □ The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We say that algorithm $find_max$ "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

```
def prefix_average1(S):

"""Return list such that, for all j, A[j] equals average of S[0], ..., S[j]."""

n = len(S)

A = [0] * n

for j in range(n):

total = 0

for i in range(j + 1):

total + S[i]

A[j] = total / (j+1)

# record the average

return A
```

Arithmetic Progression

- □ The running time of prefixAverage1 is O(1 + 2 + ... + n)
- □ The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm
 prefixAverage1 runs in
 O(n²) time

Prefix Averages 2 (Looks Better)

The following algorithm uses an internal Python function to simplify the code

lacktriangle Algorithm *prefixAverage2* still runs in $O(n^2)$ time!

Prefix Averages 3 (Linear Time)

The following algorithm computes prefix averages in linear time by keeping a running sum

ightharpoonup Algorithm *prefixAverage3* runs in O(n) time

Math you need to Review

- Summations
- Logarithms and Exponents

- Proof techniques
- Basic probability

properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

 $log_b(x/y) = log_bx - log_by$
 $log_bxa = alog_bx$
 $log_ba = log_xa/log_xb$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$
 $a^{bc} = (a^b)^c$
 $a^b / a^c = a^{(b-c)}$
 $b = a^{\log_a b}$
 $b^c = a^{c*\log_a b}$

Relatives of Big-Oh

big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n₀ ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n₀

big-Theta

f(n) is Θ(g(n)) if there are constants c' > 0 and c"
 > 0 and an integer constant n₀ ≥ 1 such that c'•g(n) ≤ f(n) ≤ c"•g(n) for n ≥ n₀

Intuition for Asymptotic Notation

Big-Oh

f(n) is O(g(n)) if f(n) is asymptotically
 less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)

big-Theta

f(n) is ⊕(g(n)) if f(n) is asymptotically equal to g(n)

Example Uses of the Relatives of Big-Oh

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let c = 5 and $n_0 = 1$

\blacksquare 5n² is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let c = 1 and $n_0 = 1$

f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Let c = 5 and $n_0 = 1$