

Suites et séries de fonctions

Sommaire

\mathbf{I}	Convergence simple ou uniforme	2
II	Propriétés des suites de fonctions convergentes	4
III	Approximations uniformes classiques	6
IV	Convergence simple des séries de fonctions	7
\mathbf{V}	Séries de fonctions : autres modes de convergence	8
VI	Propriétés des séries de fonctions convergentes	10

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Convergence simple ou uniforme

On considère des applications définies sur un intervalle I de \mathbb{R} , à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Définition

On note $\mathcal{B}(I, \mathbb{K})$ l'ensemble des applications bornées de I dans \mathbb{K} .

C'est un sous-espace de l'espace vectoriel $\mathcal{F}(I,\mathbb{K})$ de toutes les fonctions de I dans \mathbb{K} .

C'est un espace vectoriel normé quand on le munit de la norme dite de la convergence uniforme et définie par : $||f||_{\infty} = \sup_{x \in I} ||f(x)||$.

Définition (Convergence simple)

On dit que la suite (f_n) est simplement convergente (en abrégé CVS) si pour tout x de Ila suite de terme général $f_n(x)$ est convergente dans IK.

Si on pose, pour tout x de I, $g(x) = \lim_{n \to \infty} f_n(x)$, on dit que l'application $g: I \subset \mathbb{R} \to \mathbb{K}$ est la *limite simple* de la suite (f_n) .

Remarque

Avec les notations précédentes, l'application g est définie sur I par :

$$\forall \varepsilon > 0, \forall x \in I, \exists n_0 \in \mathbb{N} \text{ tel que} : n \geq n_0 \Rightarrow |f_n(x) - g(x)| \leq \varepsilon.$$

On notera que l'entier n_0 est fonction à la fois de ε et de x.

Définition (Convergence uniforme)

On dit que la suite (f_n) est uniformément convergente (en abrégé CVU) s'il existe une application $g:I\subset {\rm I\!R} \to {\rm I\!K}$ telle que :

- À partir d'un certain rang, $f_n g$ appartient à $B(I, \mathbb{K})$.
 $\lim_{n \to \infty} ||f_n g||_{\infty} = 0$.

Remarque

Avec les notations précédentes, l'application q est définie sur I par :

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que} : \forall n \geq n_0, ||f_n - g||_{\infty} \leq \varepsilon, \text{ ou encore} :$

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que} : \forall n \geq n_0, \forall x \in I, |f_n(x) - g(x)| \leq \varepsilon.$$

On notera que l'entier n_0 est fonction seulement de ε .

Définition (Convergence sur un sous-intervalle)

Soit J un sous-intervalle de I.

- On dit que la suite (f_n) converge simplement (resp. uniformément) sur J si la suite des restrictions des f_n à J est simplement (resp. uniformément) convergente. – On dit que la suite (f_n) est uniformément convergente $sur\ tout\ compact$ si, pour tout
- segment [a, b] inclus dans I, la suite (f_n) est uniformément convergente sur [a, b].

©EduKlub S.A. Page 2 Jean-Michel Ferrard www.klubprepa.net

Remarques

- Bien sûr, si la suite (f_n) est uniformément convergente vers g sur I, elle converge uniformément sur tout compact vers g et elle est simplement convergente vers g sur I. Les réciproques sont fausses.
- En général, on commence par vérifier que la suite (f_n) converge simplement, sur I, vers une fonction g. On examine ensuite si la convergence est uniforme sur I, ou sinon sur certains sous-intervalles J de I.
- Si on sait que la suite (f_n) converge simplement sur I vers g et si pour tout entier n, au moins à partir d'un certain rang, on sait trouver un élément x_n de I tel que la suite $f_n(x_n) - g(x_n)$ ne converge pas vers 0, alors il n'y a pas convergence uniforme sur I.

Proposition (Critère de Cauchy de convergence uniforme)

La suite (f_n) est uniformément convergente sur I si et seulement si :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que}: \begin{cases} \forall n \geq n_0 \\ \forall p \in \mathbb{N} \end{cases}, \begin{cases} f_{n+p} - f_n \in \mathcal{B}(I, \mathbb{K}) \\ \|f_{n+p} - f_n\|_{\infty} \leq \varepsilon \end{cases}$$

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que}: \begin{cases} \forall n \geq n_0 \\ \forall p \in \mathbb{N} \end{cases}, \begin{cases} \begin{cases} f_{n+p} - f_n \in \mathcal{B}(I, \mathbb{K}) \\ \|f_{n+p} - f_n\|_{\infty} \leq \varepsilon \end{cases} \end{cases}$$
Cela équivaut à dire:
$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que}: \begin{cases} \forall n \geq n_0 \\ \forall p \in \mathbb{N} \\ \forall x \in I \end{cases}, |f_{n+p}(x) - f_n(x)| \leq \varepsilon.$$

©EduKlub S.A. Page 3 Jean-Michel Ferrard www.klubprepa.net

Partie II : Propriétés des suites de fonctions convergentes

Propriétés des suites de fonctions convergentes \mathbf{II}

Proposition (Convergence des suites de fonctions à valeurs complexes)

Soit (f_n) une suite de fonctions de $I \subset \mathbb{R}$ dans \mathbb{C} .

Soient g_n et h_n les fonctions réelles définies par $g_n = \text{Re}(f_n)$ et $h_n = \text{Im}(f_n)$.

De même, soient g et h les fonctions réelles définies par f = g + ih.

La suite (f_n) converge simplement vers $f \Leftrightarrow :$

- La suite (g_n) converge simplement vers g.
- La suite (h_n) converge simplement vers h.

(même résultat avec la convergence uniforme et la convergence uniforme sur tout compact.)

Proposition (Limites et convergence uniforme)

On suppose que la suite des fonctions $f_n:I\subset\mathbb{R}\to\mathbb{K}$ est uniformément convergente sur I, vers une application g.

Soit a un élément de I. On suppose que pour tout entier n, $\lim_{x\to a} f_n(x) = \lambda_n$.

Dans ces conditions:

- La suite (λ_n) est convergente vers un élément λ de IK.
- La limite de g en a existe et : $\lim_{x\to a} g(x) = \lambda = \lim_{n\to\infty} \lambda_n$. On peut exprimer ce résultat en écrivant :

 $\lim_{n \to \infty} \left(\lim_{x \to a} f_n(x) \right) = \lim_{x \to a} \left(\lim_{n \to \infty} f_n(x) \right) \text{ (interversion des limites.)}$

Proposition (Continuité et convergence uniforme)

Si la suite de fonctions $f_n:I\subset\mathbb{R}\to\mathbb{K}$ est uniformément convergente sur I, et si les applications f_n sont continues en un point a de I, alors la limite g est continue en a.

Bien sûr, si les (f_n) sont continues sur I, g est continue sur I.

Ces propriétés restent vraies en cas de convergence uniforme sur tout compact.

Remarque

On peut utiliser cette propriété pour montrer qu'il n'y a pas convergence uniforme :

Si la suite (f_n) converge simplement vers g, si les f_n sont continues en un point a, mais si gn'est pas continue en a, alors il n'y a pas convergence uniforme.

Proposition (Convergence uniforme et intégration)

Soit (f_n) une suite de fonctions continues sur [a,b], uniformément convergente sur tout compact de I vers une application g. Soit a un point quelconque de I.

La suite des fonctions $F_n: x \to \int_0^x f_n(t) dt$ est uniformément convergente, sur tout compact

de l'intervalle I, vers l'application $G: x \to \int_{-\infty}^{x} g(t) dt$.

En particulier, pour tous points a et b de I: $\lim_{n\to\infty}\int_a^b f_n(t)dt = \int_a^b \lim_{n\to\infty} f_n(t)dt$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

SUITES ET SÉRIES DE FONCTIONS

Partie II : Propriétés des suites de fonctions convergentes

Remarque

Cette propriété est parfois utilisée pour montrer qu'il n'y a pas convergence uniforme.

Proposition (Convergence uniforme et dérivation)

Soit (f_n) une suite de fonctions de classe \mathcal{C}^1 sur l'intervalle I, telle que :

- La suite (f'_n) est uniformément convergente sur tout compact de I vers une fonction g.
- Il existe x_0 dans I tel que la suite $(f_n(x_0))$ soit convergente.

Sous ces hypothèses:

- La suite (f_n) est uniformément convergente sur tout compact de I, vers une fonction f.
 Cette fonction f est de classe \mathcal{C}^1 sur I et sa dérivée de f est f' = g.

On peut donc écrire l'égalité, valable sur $I: (\lim_{n\to\infty} f_n)' = \lim_{n\to\infty} f'_n$.

 \bigcirc EduKlub S.A. Jean-Michel Ferrard Page 5 www.klubprepa.net

Partie III: Approximations uniformes classiques

III Approximations uniformes classiques

Proposition

Toute application continue par morceaux sur [a, b] est limite uniforme sur [a, b] d'une suite d'applications en escaliers.

Proposition

Si f est continue sur [a, b], elle est limite uniforme sur [a, b] d'une suite d'applications continues affines par morceaux.

Proposition (Théorème de Weierstrass)

 $\|$ Toute fonction continue sur [a, b] est limite uniforme d'une suite de fonctions polynômiales.

Proposition

Toute fonction continue sur IR , T-périodique, est limite uniforme sur IR d'une suite de fonctions polynômes trigonométriques complexes, c'est-à-dire de fonctions s'écrivant sous la forme de sommes finies $f_n(x) = \sum_{k \in \mathbb{Z}} \lambda_k \, \exp(2i\pi k \, \frac{x}{T})$.

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Partie IV : Convergence simple des séries de fonctions

Convergence simple des séries de fonctions

Définition (Sommes partielles)

Soit (f_n) une suite d'applications de I dans \mathbb{K} .

Pour tout entier N, on définit l'application $S_N: I \to \mathbb{IK}$, par $S_N(x) = \sum_{n=0}^N f_n(x)$.

Les fonctions S_N sont appelées sommes partielles de la série de fonctions $\sum_{n\geq 0} f_n$.

Définition (Convergence simple)

On dit que la série de fonctions $\sum_{n\geq 0} f_n$ est simplement convergente sur I si la suite de fonctions (S_N) est simplement convergente sur I. Cela revient à dire que pour tout x de I, la série $\sum_{n\geq 0} f_n(x)$ est convergente dans IK.

Définition (Somme et restes d'une série de fonctions convergente)

Soit $\sum_{n\geq 0} f_n$ une série de fonctions convergente.

- La limite S de la suite (S_N) est appelée somme de cette série, et notée $S = \sum_{n=0}^{\infty} f_n$.

Elle est donc définie par : $\forall x \in I, S(x) = \sum_{n=0}^{\infty} f_n(x)$.

- Pour tout N de \mathbb{N} , on appelle reste d'ordre N de la série $\sum_{n\geq 0} f_n$ la fonction R_N définie par : $\forall x \in I, R_N(x) = \sum_{n=N+1}^{\infty} f_n(x)$.

Remarques

- Avec les notations précédentes, on a : $\forall N \in \mathbb{N}, \forall x \in I : S(x) = S_N(x) + R_N(x)$. Par définition, la suite (R_N) converge simplement sur I vers la fonction nulle.
- On abrège souvent "convergence simple" en CVS.
- Il y a d'autres modes de convergence pour les séries de fonctions. Mais quand on dira qu'une série de fonctions est convergente, sans précision supplémentaire, ce sera pour la convergence simple.

Page 7 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A. Partie V : Séries de fonctions : autres modes de convergence

V Séries de fonctions : autres modes de convergence

Définition (Convergence absolue)

On dit que la série de fonctions $\sum_{n\geq 0} f_n$ est absolument convergente sur I si pour tout x de I la série numérique $\sum_{n\geq 0} |f_n(x)|$ est convergente dans \mathbb{R}^+ .

Proposition

Si une série de fonctions est absolument convergente, alors elle est simplement convergente.

Définition (Convergence uniforme)

On dit que la série de fonctions $\sum_{n\geq 0} f_n$ est uniformément convergente sur I si la suite (S_N) des sommes partielles est uniformément convergente sur I.

Proposition

Si une série de fonctions est uniformément convergente, elle est simplement convergente.

Remarque

Soit $\sum_{n\geq 0} f_n$ une série de fonctions, simplement convergente.

Pour tout N de IN, soit $R_N = \sum_{n=N+1}^{\infty} f_n$ le reste d'indice N de cette série.

Dire que la série $\sum_{n\geq 0} f_n$ est uniformément convergente sur I, c'est dire que la suite (R_N) converge uniformément sur I vers la fonction nulle.

Cela équivaut à écrire : $\forall \varepsilon > 0, \exists N_0 \in \mathbb{N} \text{ tel que : } \forall N \geq N_0, \forall x \in I, \left| \sum_{n=N+1}^{\infty} f_n(x) \right| \leq \varepsilon.$

Proposition (Critères nécessaires de convergence)

Si $\sum_{n\geq 0} f_n$ converge simplement (resp. uniformément) sur I, alors la suite (f_n) converge simplement (resp. uniformément) sur I vers la fonction nulle.

Remarque

La propriété précédente est souvent utilisée pour démontrer qu'une série de fonctions n'est pas simplement convergente ou qu'elle n'est pas uniformément convergente.

Définition (Convergence normale)

On dit que la série de fonctions $\sum_{n\geq 0} f_n$ est normalement convergente sur I s'il existe une série $\sum_{n\geq 0} \alpha_n$ de \mathbb{R}^+ , convergente, telle que pour tout n de \mathbb{N} et tout x de I, $|f_n(x)| \leq \alpha_n$.

Cela revient à dire que la série numérique $\sum_{n>0} \sup_{x\in I} |f_n(x)|$ est convergente.

Page 8 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Suites et séries de fonctions

Partie V : Séries de fonctions : autres modes de convergence

Proposition

Si une série de fonctions est normalement convergente, alors elle est uniformément convergente et elle est absolument convergente. En particulier, elle est simplement convergente.

Définition (Convergence sur un sous-intervalle)

Soit (f_n) une suite d'applications de I dans IK. Soit J un sous-intervalle de I.

Pour tout entier n, soit g_n la restriction de f_n à J.

- On dit que $\sum_{n\geq 0} f_n$ converge simplement (resp. absolument, uniformément, normalement) sur J si $\sum_{n\geq 0} g_n$ converge simplement (resp. absolument, uniformément, normalement).
- On dit par exemple que $\sum_{n\geq 0} f_n$ est uniformément convergente sur tout compact si pour tout segment [a,b] inclus dans I, $\sum_{n\geq 0} f_n$ est uniformément convergente sur [a,b].

Remarque

On abrège souvent les modes de convergences précédents en CVA, CVU et CVN.

On a vu que la comparaison entre les différents modes de convergence des séries de fonction se résume en les implications : $CVN \Rightarrow CVA \Rightarrow CVS$ et $CVN \Rightarrow CVU \Rightarrow CVS$.

Toutes les réciproques de ces implications sont fausses.

De même, il n'y a aucune implication en général entre CVU et CVA.

©EduKlub S.A. Page 9 Jean-Michel Ferrard www.klubprepa.net

Partie VI: Propriétés des séries de fonctions convergentes

VI Propriétés des séries de fonctions convergentes

Proposition (Séries de fonctions à valeurs complexes)

Soit (f_n) une suite d'applications de I dans \mathbb{C} . On pose $g_n = \operatorname{Re}(f_n)$ et $h_n = \operatorname{Im}(f_n)$. La série de fonctions $\sum_{n\geq 0} f_n$ est CVS (resp. CVA, CVU, CVN) \Leftrightarrow les séries $\sum_{n\geq 0} g_n$ et $\sum_{n\geq 0} h_n$ sont CVS (resp. CVA, CVU, CVN).

On a alors, pour tout x de I: $\sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} g_n(x) + i \sum_{n=0}^{\infty} h_n(x)$.

Proposition (Opérations sur les séries de fonctions)

Soient (f_n) et (g_n) deux suites de fonctions de I dans IK.

Soient α et β deux éléments de IK.

Si les séries $\sum_{n\geq 0} f_n$ et $\sum_{n\geq 0} g_n$ sont CVS (resp. CVA, CVU, CVN) sur I, alors la série de fonctions $\sum_{n\geq 0} (\alpha f_n + \beta g_n)$ est CVS (resp. CVA, CVU, CVN) sur I.

On a alors, pour tout x de I: $\sum_{n=0}^{\infty} (\alpha f_n + \beta g_n)(x) = \alpha \sum_{n=0}^{\infty} f_n(x) + \beta \sum_{n=0}^{\infty} g_n(x)$.

Proposition (Continuité de la somme d'une série d'applications)

Soit (f_n) une suite de fonctions de I dans \mathbb{K} .

On suppose que la série $\sum_{n\geq 0} f_n$ est uniformément convergente sur tout compact.

- Si les (f_n) sont continues en un point x_0 de I, alors $S = \sum_{n=0}^{\infty} f_n$ est continue en x_0 .
- En particulier : si les f_n sont continues sur I, la somme $S = \sum_{n=0}^{\infty} f_n$ est continue sur I.

Remarque

Les deux propriétés précédentes peuvent parfois être utilisées pour montrer qu'une série de fonctions n'est pas uniformément convergente.

Proposition (Intégration de la somme d'une série d'applications)

Soit (f_n) une suite de fonctions de I dans \mathbb{K} , continues sur I.

On suppose que la série $\sum_{n\geq 0} f_n$ est uniformément convergente sur tout compact.

Alors pour tous a, b de I on a l'égalité : $\int_a^b \sum_{n=0}^\infty f_n(t) dt = \sum_{n=0}^\infty \int_a^b f_n(t) dt.$

Page 10 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

SUITES ET SÉRIES DE FONCTIONS

Partie VI: Propriétés des séries de fonctions convergentes

Proposition (Dérivabilité de la somme d'une série d'applications)

Soit (f_n) une suite de fonctions de I dans \mathbb{K} , de classe \mathcal{C}^1 , telle que :

- Il existe au moins un x_0 de I tel que la série $\sum_{n\geq 0} f_n(x_0)$ converge. La série de fonctions $\sum_{n\geq 0} f'_n$ est uniformément convergente sur tout compact de I. Alors on a les résultats suivants :

- La série $\sum_{n\geq 0} f_n$ est uniformément convergente sur tout compact de I.
 La somme de la série $\sum_{n\geq 0} f_n$ est de classe \mathcal{C}^1 sur I.
 Sur tout l'intervalle I, on a l'égalité : $(\sum_{n=0}^{\infty} f_n)' = \sum_{n=0}^{\infty} f'_n$.