NAME: /30/15 | 3/15 /10|5/10 /10 7 6 /10 T /100MATH 430 (Fall 2006) Exam 1, October 4th Show all work and give complete explanations for all your answers. This is a 75 minute exam. It is worth a total of 100 points. (1) [30 pts] (a) Define the term maximal linearly independent set. A subset B = {T, ... In} of a FDVS V is a MITset if O Bro a LI set 3 If B'= { di... an} is ANY of LI to of V then m < n. (b) State the Basis Characterization Theorem. Let V be a F.D. V.S, and let B = { J, Jan, Jan EV TRAE 1 Bro a basis for V 3 B is a maximal LI set for V 3 Brs a minimal squaring set for V

(c) State the definition of a least squares solution of a linear system
$$Ax = b$$
.

A vector \overrightarrow{x} is a least squares solution of $A\overrightarrow{x} = \overrightarrow{b}$.

If $A\overrightarrow{x} = \overrightarrow{b}$ if $A\overrightarrow{x} = \overrightarrow{b}$ if $A\overrightarrow{x} = \overrightarrow{b}$.

Function

$$E(\overrightarrow{x}) = \underbrace{3}_{x=1}^{2} \underbrace{2}_{x=1}^{2} = \underbrace{5}_{x=1}^{2} (A\overrightarrow{x} - \overrightarrow{b})^{2} = \underbrace{A\overrightarrow{x} - \overrightarrow{b}}(A\overrightarrow{x} - \overrightarrow{b})$$

(d) Suppose that $\mathbf{B}_{r\times r}$ is an invertible $r\times r$ matrix and that $\mathbf{0}_{p\times q}$ is the $p\times q$ zero matrix. Let \mathbf{A} be the square matrix

$$\mathbf{A} = \begin{pmatrix} \mathbf{B}_{r \times r} & \mathbf{0}_{r \times s} \\ \mathbf{0}_{s \times r} & \mathbf{0}_{s \times s} \end{pmatrix}.$$

Find bases for the nullspace, $N(\mathbf{A})$, and the range, $R(\mathbf{A})$, of \mathbf{A} and verify that the Rank and Nullity Theorem holds for \mathbf{A} .

$$\begin{pmatrix} B & O & | \vec{3} \\ O & O & | \vec{3} \end{pmatrix} = \begin{pmatrix} B \vec{7} \\ \vec{5} \end{pmatrix} = \begin{pmatrix} \vec{5} \\ \vec{5} \end{pmatrix} = \begin{pmatrix} \vec{5} \\ \vec{5} \end{pmatrix}$$

$$= \begin{pmatrix} \vec{5} \\ \vec{5} \end{pmatrix} = \begin{pmatrix} \vec{5} \\ \vec{5} \end{pmatrix}$$

$$= \begin{pmatrix} \vec{5} \\ \vec{5} \end{pmatrix} = \begin{pmatrix} \vec{5} \\ \vec{5} \end{pmatrix}$$

$$= \begin{pmatrix} \vec{5} \\ \vec{5} \end{pmatrix} = \begin{pmatrix} \vec{5} \\ \vec{5} \end{pmatrix}$$

So
$$\left(\frac{3}{3}\right) \in N(A)$$
 if $\frac{1}{3} = \frac{1}{3}$.

$$\begin{pmatrix} \vec{u} \\ \vec{t} \end{pmatrix} \in \mathcal{R}(A)$$
 means $\begin{pmatrix} \vec{u} \\ \vec{v} \end{pmatrix} = \begin{pmatrix} \mathcal{R} \circ \\ \circ \circ \end{pmatrix} \begin{pmatrix} \vec{x} \\ \vec{d} \end{pmatrix} = \begin{pmatrix} \mathcal{R} \vec{x} \\ \vec{d} \end{pmatrix}$

So if
$$B = [B_{\pm 1} ... B_{\pm r}]$$
 decomposes B into columns. Then the vectors $B_{\pm 1} ... B_{\pm r}$ aseLI as B is invertible. So $\{B_{\pm 1}\}$ $\{B_{\pm 1}\}$ are a boss for $R(A)$

(1e) If N(A) = N(B) for two metrices does Rad (A) = Rad (B)? Les Let A be mxn, B kxl. Then NA) = R" NB) = Rl Since N(A) = N(B) they must both contain vectors with some # of comprests So n= l must hold. So RIN THM gives din N(A) + Ronk (A) = n dim N(B) + Ronk (B) = n

So Rank (A) - Rank (B) (If). We did This in class.

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix}.$$

Find bases for the nullspace and range of the A and for the range of A^{T} .

$$\begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix} \rightarrow R2 \rightarrow R2 - 2R1$$

$$x^3 = -x^4$$

$$x^3 = -x^4$$

$$3 = -2x_2 - 3x_4$$

$$-3 = 3x_4$$

$$I(A) = \begin{cases} \begin{cases} \frac{3}{6} \\ \frac{1}{6} \end{cases} & \begin{cases} -\frac{3}{6} \\ \frac{1}{6} \end{cases} \end{cases}$$

 $38 - \frac{9}{25}$ $= 37 - \frac{16}{15}$

(3) [15 pts] Find the least squares solutions to the linear system

$$2x + 3y = 2$$

 $4x - 2y = -1$
 $x + 5y = 1$
 $2x + 0y = 3$
 $13 - \frac{21}{25}$
 $= 12 \frac{4}{25}$

$$\begin{pmatrix} 2 & 3 \\ 4 & -2 \\ 1 & 5 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$$

Least squares solutions are precisely solutions of Normal equations ATA = ATA:

$$A^{T}A = \begin{pmatrix} 2 & 4 & 1 & 2 \\ 3 & -2 & 5 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 4 & -2 \\ 1 & 5 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 25 & 3 \\ 3 & 38 \end{pmatrix}$$

$$AT\vec{b} = \begin{pmatrix} 2 & 4 & 1 & 2 \\ 3 & -2 & 5 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$$

$$\begin{pmatrix} 25 & 3 & | 7 \\ 3 & 38 & | 13 \end{pmatrix} \quad R2 \to R2 - \frac{3}{25}R1$$

$$37\frac{16}{25}y = 12\frac{4}{25}$$

$$y = \frac{12x25+4}{25}$$

$$\frac{25}{37.25+6}$$

$$25x = 7 - 3y$$

$$x = 7 - 3(12x25 + 4)$$

$$37x25 + 16)$$

(4) [10 pts] Let **A** and **B** be two matrices with the same number of columns and let $C = \begin{pmatrix} A \\ B \end{pmatrix}$. Prove that $N(\mathbf{C}) \subseteq N(\mathbf{A})$. Is $N(\mathbf{C}) = N(\mathbf{A})$? Why?

Let $\vec{x} \in N(c)$.

$$SO_{\overrightarrow{O}} = (\overrightarrow{O}) = C \overrightarrow{z} = (A) \overrightarrow{z} = (A\overrightarrow{z})$$

$$SO_{\overrightarrow{O}} = (\overrightarrow{O}) = C \overrightarrow{z} = (A) \overrightarrow{z} = (A\overrightarrow{z})$$

$$SO_{\overrightarrow{O}} = (\overrightarrow{O}) = (C\overrightarrow{z}) = (A) \overrightarrow{z} = (A) \overrightarrow{z}$$

So A= 3 must hald

Perefore $\vec{x} \in N(A)$

S. N(c) < N(A)

N(c) + N(A): as can be seen by the following

escanple

$$(1x) \quad [0] = +$$

$$R = I \Phi I$$

$$A = [10] (1\times1)$$
, $B = [4] (4\times1)$, $C = \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix}$

$$N(c) = \left\{ x \in \mathbb{R} \middle| \begin{pmatrix} 1 \\ 0 \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$
 $= \left\{ x \in \mathbb{R} \middle| \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$

$$= \{0\}$$
 = $\{0\}$ = $\{0\}$ $\neq 12$ 7

(5) [10 pts] Suppose that A is a 2×2 matrix with

$$\mathbf{A} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \mathbf{A} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \end{pmatrix}.$$

Without working out the entries of A, find A $\begin{pmatrix} 6\\10 \end{pmatrix}$.

$$\{\binom{1}{2},\binom{3}{5}\}$$
 is a boos for \mathbb{R}^2 .

Let's conte
$$\binom{6}{10} = x\binom{1}{2} + y\binom{2}{5} = \binom{1}{2} \cdot \binom{3}{5}\binom{3}{5}$$

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 10 \end{pmatrix} \qquad R2 \rightarrow R2 - 2R1$$

$$\sim \begin{pmatrix} 1 & 2 & | & 6 \\ 0 & 1 & | & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 10 \\ 0 & 1 & | & -2 \end{pmatrix} R_{1} \rightarrow R_{1} - 2R_{2}$$

gives
$$y=-2$$
, $x=10$

$$\begin{cases} 6 \\ 10 \end{cases} = 10 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + -2 \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

So by lisarty of maker multiplication.

$$A\binom{6}{10} = 10 A \binom{2}{2} + -2 A \binom{2}{5}$$

$$= 10 \binom{2}{3} - 2\binom{6}{7}$$

$$=$$
 $\binom{8}{16}$

(6) [10 pts] Let **A** be an $n \times n$ matrix. Suppose that $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n such that $\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$ is a basis for $N(\mathbf{A})$. Prove that $\{\mathbf{A}\mathbf{v}_1, \dots, \mathbf{A}\mathbf{v}_r\}$ is a basis for $R(\mathbf{A})$.

is a basis for N(A). Prove that {Av, ..., Av,} is a basis for R(A)

SPANNING

Let
$$\vec{v} \in R(A)$$
.

So $\vec{v} = A \vec{v}$ for some $\vec{v} \in R^*$.

Since $\{\vec{v}_1 - \vec{v}_2\}$ so a boson for R^* $\vec{J} \times_1 - \times_n + R^*$.

Then $A \vec{v}_1 + \cdots + x_n \vec{v}_n$
 $= x_1 A \vec{v}_1 + \cdots + x_n A \vec{v}_n + A$

So x, t, +- + x = tr - Branton - Branton - Branton BALLI
So x, t, +- + x = tr = Rranton - Ballo as v. - va BALLI

(7) [10 pts] Let \mathbf{v} , \mathbf{w} be two column vectors in \mathbb{R}^n and let I denote the $n \times n$ identity matrix. Suppose that $\mathbf{w}^T \mathbf{v} \neq 1$. Show that the matrix $I - \mathbf{v} \mathbf{w}^T$ is invertible and that its inverse is a matrix of the form $I - c \mathbf{v} \mathbf{w}^T$, for some scalar c. Also, find a formula for c in terms of \mathbf{v} and \mathbf{w} .

$$I = 7 \text{ at } \sim \text{ invertible } \mathcal{F} = \mathcal{B}$$
:
$$(I = 7 \text{ at }) \mathcal{B} = I = \mathcal{B}(I - 7 \text{ at})$$

Well
$$(I - 7 27) (I - c 7 27) = I - 7 27 - c 7 27 27 27$$

$$= I - (1+c) 7 27 + (c 277) 7 27$$

$$e = \frac{1}{\vec{h}^{T}\vec{l} - 1}$$
 provided $\vec{h}^{T}\vec{l} \neq 1$ as

So $(I - VVV)^{-1} = I - VVVV$ should hold.

Indeed of you redo talendation of with c = VVVV - 1Pledge: I have neither given nor received aid on this exam

You see That you get I, as required.

$$(I - c \overrightarrow{v} \overrightarrow{v} \overrightarrow{v})$$

$$= I - c \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} + c \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} \overrightarrow{v}$$

$$= I + (-c - 1 + c \overrightarrow{w} \overrightarrow{v}) \overrightarrow{v} \overrightarrow{w}$$

$$= I \qquad \text{as required.}$$

$$Together there results$$

$$Showth that
$$(I - \overrightarrow{v} \overrightarrow{v} \overrightarrow{v}) - 1 = I - \overrightarrow{v} \overrightarrow{v} \overrightarrow{v}.$$$$