Decision Tree

-> Decision Tree Classifier

- 1) Purity

 L> Entropy

 L> Gini Impurity
 - @ What Peature needs to solect for splitting

> Entropy and Gini Impurity

$$= 1 - [P(Y)^{2} + P(N)^{2}]$$

$$= 1 - [('6)^{2} + ('6)^{2}]$$

$$= 0.5 =) Impur Split$$

$$E(8) = -\frac{3}{6}\log_2(\frac{3}{6}) - \frac{3}{6}\log_2(\frac{3}{6})$$
= 1

$$E(C_{e}) = -\frac{3}{63} \log_{2}(\frac{3}{63}) - 0 \log_{2}0$$

$$= -\log_{2}| = 0$$

> Information Gain

Gain=
$$(S,F) = E(S) - \sum_{j=1}^{k} F(j,S)$$

 $E(S) = \sum_{j=1}^{k} -p_{i} \log_{2}^{k} p_{i}$

$$E(S) = -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14}$$
$$= 0.94$$

$$E(C_1) = -\frac{6}{3} \log_2 \frac{6}{8} - \frac{2}{8} \log_2 \frac{2}{8}$$

$$= 0.81$$

$$E(C_2) = -\frac{3}{BG} \log_2 \frac{3}{G} - \frac{3}{6} \log_2 \frac{3}{G}$$

> Example

	Day	OUTbok	Temperatur	e Humidity	y Wind	Decision
	I	Sumy	hot	high	weak	No
	2	Sunny	hot	high	strong	No
	3	overcast	hot	high	weak	Yes
	4	rainfall	mild	high	weak	Yes
	5	rainfall	Cool	normal	weak	Yes
	6	rainfall	c∞ 1	Mormal	strong	No
	7	overast	Cool	normal	Strong	Yes
	8	Sunny	mib	high	weak	No
	9	Sumy	رصا	normal	weak	Yes
	lo	rainfall	mild	normal	weak	Yes
	11	Sumy	mild	normal	strong	Yes
	12	overcast	plim	high	strong	Yes
	13	overcast	hot	normal	weak	Yes
	14	rainfall	mild	high	strong	No

Gir OUNDS

Gini Index (sunny) =
$$1 - (\frac{2}{5})^2 - (\frac{3}{5})^2 = 0.48$$

Gini Index (outlook = rainfall) = $1 - (\frac{3}{5})^2 - (\frac{2}{5})^2 = 0.48$
Gini Index (outlook = overast) = $1 - (\frac{4}{4})^2 - (\frac{4}{4})^2 = 0$
Gini (outlook) = $\frac{5}{14}(0.48) + \frac{4}{14}(0) + \frac{5}{14}(0.48) = 0.342$

Temperature

GI (temperature = hot) =
$$1 - (\frac{2}{4})^2 - (\frac{2}{4})^2 = 0.5$$

GI (temperature = mile) = $1 - (\frac{4}{6})^2 - (\frac{2}{6})^2 = 0.445$
GI (temperature = $cool$) = $1 - (\frac{3}{4})^2 - (\frac{1}{4})^2 = 0.375$
Gini (temperature) = $\frac{4}{14}(0.5) + (\frac{6}{14})(0.445) + \frac{4}{14}(0.375) = 0.439$

Humid ity

GI(humidity = high) =
$$1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2 = 0.489$$

GI(humidity = normal) = $1 - \left(\frac{6}{7}\right)^2 - \left(\frac{1}{7}\right)^2 = 0.249$
Gini(humidity) = $\frac{7}{14}(0.489) + \frac{7}{14}(0.249) = 0.367$

Wind

GI(wind = strong) =
$$1 - \left(\frac{6}{8}\right)^2 - \left(\frac{2}{8}\right)^2 = 0.375$$

GI(wind = weak) = $1 - \left(\frac{3}{6}\right)^2 - \left(\frac{3}{6}\right)^2 = 0.5$
Gini(wind) = $\frac{8}{14}(0.375) + \left(\frac{6}{14}\right)(0.5) = 0.428$

outbok has the lowest gini, it will be selected as

Och look = sunny

Gini(outlook = sunny and temperature = $|a_0|$) = $1 - (\%)^2 - (\%)^2 = 0$ Gini(outlook = sunny and temperature = $(001) = 1 - (\%)^2 - (\%)^2 = 0$ Gini(outlook = sunny and temperature = $(001) = 1 - (\%)^2 - (\%)^2 = 0$. Gini (outlook = sunny and temperature)

Gini (outlook = Sunny and humidity = high) = $1-(\frac{9}{3})^2+(\frac{3}{3})^2=0$ Gini (outlook = Sunny and humidity = normal) = $1-(\frac{2}{6})^2-(\frac{9}{6})^2=0$ Gini (outlook = Sunny and humidity) = $\frac{3}{6}(0)+\frac{2}{6}(0)=0$

Gini (outlook = Sunny and wind = weak) = $1 - (1/3)^2 - (2/3)^2 = 0.44$ Gini (outlook = Sunny and wind = Strong) = $1 - (1/2)^2 - (1/2)^2 = 0.5$ Gini (outlook = Sunny and wind) = 3/2 (0.44) + (2/3)(0.5) = 0.466

Lets focus on subdata for humidity

outlook = rainfall

Gini (outlook=rainfall and temperature=cool)= $1-(\frac{1}{6})^2-(\frac{1}{6})^2=0.5$ Gini (outlook=rainfall and temperature=mild)= $1-(\frac{1}{6})^2-(\frac{1}{3})^2=0.49$ Gini (outlook=rainfall and temperature)= $\frac{2}{5}(0.5)+\frac{3}{5}(0.49)=0.466$ Gini (outlook=rainfall and humidity=high)= $1-(\frac{1}{6})^2-(\frac{1}{3})^2=0.5$ Gini (outlook=rainfall and humidity=roinfal)= $1-(\frac{2}{3})^2-(\frac{1}{3})^2=0.49$ Gini (outlook=rainfall and humidity)= $\frac{2}{5}(0.5)+\frac{3}{5}(0.49)=0.466$ Gini (outlook=rainfall and wind=weak)= $1-(\frac{3}{3})^2-(\frac{9}{3})^2=0$ Gini (outlook=rainfall and wind=strong)= $1-(\frac{9}{6})^2-(\frac{9}{6})^2=0$ Gini (outlook=rainfall and wind=strong)= $1-(\frac{9}{6})^2-(\frac{9}{6})^2=0$

Now, Lets focus on sub data for strong and weak for wind and rainfall outbook feature

> Decision Tree Split on Numerical Features

· t' ·	output
2.3	Yes
3.6	Yes
4	No
5.2	No
6.7	Yes
8.9	No
10.5	Yes

- 1) Sort the value
- @ select threshold

Threshold = 2.3

Threshold = 3.6

> Post Pruning and Pre Pruning

Pruning -> To reduce overfitting

Post Pruning

- 1- Construct decision tree
- 2- Prune it with respect to depth
- 3 Smaller dateset

Pre Pruning

1 - Play/Tune with hyperparameters

-> Decision Tree Regressor

Dataset

Exp	CareesGap	Salary	
5	Yes	Yok	
2.5	Yes	Чек	
3	No	Sak	
थ	No	60K	
4.5	Yes	56K_	
		50 K	

Variance Reduction

Variance =
$$\frac{1}{n} \sum_{i=1}^{n} (y - \overline{y})^2$$

Variance of Roof =
$$\frac{1}{5}$$
 [(40-50)²+(42-50)²+(52-50)²+(56-50)²+(56-50)²]
= $\frac{1}{5}$ [100+64+4+100+36]
= 60.8
Variance of C1 = $\frac{1}{1}$ [40-50]²
= 100

Variance of
$$C2 = \frac{1}{4} [(42-50)^2 + (52-50)^2 + (60-50)^2 + (56-50)^2]$$

$$= \frac{1}{4} [64+100+36+100]$$

$$= 51$$

Variance Reduction

= 0

Variance of Root-2 = 60.8

Variance (C2) =
$$\frac{1}{3}$$
 [(52-50)² + (60-50)² + (56-50)²]
= $\frac{1}{3}$ [4+100+36] = 46.66

Variance Reduction for Split (2)

$$= 60.8 - \left[\frac{3}{5} + \frac{2}{5}(82) + \frac{3}{5}(46.66)\right]$$

Variance Reduction
for split (1) is
less than split (2)
so split (2) will
be selected as
root node.