

R. Gnana Praveen, Eric Granger, Patrick Cardinal

Laboratoire d'imagerie, de vision et d'intelligence artificielle (LIVIA), École de technologie supérieure, Montreal, Canada.

Motivation

- Dimensional emotion recognition deals with the problem of estimating emotion levels on a finer granular level using valence and arousal
- Although human emotions can be expressed through various modalities, we focus on audio (A) and visual (V)
- The objective is to develop ML models for efficient fusion of A and V for dimensional emotion recognition

Related Work

- Most of the existing approaches have modeled intra-modal relationship using LSTM based fusion (Tzirakis et al., JSTSP 2017), (Schoneveld et al., PR Letters 2021)
- Though attention models have been explored, they fail to explicitly capture the complementary relationship (Tzirakis et al., IF 2021), (Partha et al., SLT 2021)
- In this paper, we propose to leverage cross attention based on cross correlation to model the interrelationship and complementarity of A-V modalities

Proposed Approach

- The proposed approach has three major blocks Audio Feature Extractor, Visual Feature Extractor and Cross Attentional Module
- ullet The V features (X_v) are obtained using I3D network inflated from inception architecture pretrained on ImageNet
- The A features (X_a) are obtained from 2D CNN using spectrograms
- The obtained A (X_a) and V (X_v) features are used to compute cross correlation matrix (Z)

$$m{Z} = m{X}_{m{a}}^T m{W} m{X}_{m{v}}$$
 where $m{W} \in \mathbb{R}^{K imes K}$: learnable parameter and K is feature dimension (1)

• The cross attention weights of A (A_a) and V (A_v) modalities are obtained using column-wise softmax of Z and Z^T respectively

• The attention maps of A $(\widehat{\mathbf{X}_{\mathbf{a}}})$ and V $(\widehat{\mathbf{X}_{\mathbf{v}}})$ modalities are obtained as

$$\widehat{\mathbf{X}_{\mathbf{a}}} = \mathbf{X}_{\mathbf{a}} \mathbf{A}_{\mathbf{a}}$$
 and $\widehat{\mathbf{X}_{\mathbf{v}}} = \mathbf{X}_{\mathbf{v}} \mathbf{A}_{\mathbf{v}}$ (2)

ullet The attended features of A $(X_{
m att,a})$ and V $(X_{
m att,a})$ modalities are

$$X_{\text{att,a}} = \tanh(X_{\text{a}} + \widehat{X_{\text{a}}})$$
 (3)

$$X_{\text{att,v}} = \tanh(X_{\text{v}} + \widehat{X_{\text{v}}})$$
 (4)

Finally, the A-V feature vector is obtained by concatenating the attended A and V features as

$$\widehat{\mathbf{X}} = [\mathbf{X}_{\mathbf{att}, \mathbf{v}}; \mathbf{X}_{\mathbf{att}, \mathbf{a}}] \tag{5}$$

• The feature $(\widehat{\mathbf{X}})$ is then fed to fully connected layers to predict valence or arousal

Experimental Datasets

The proposed approach has been evaluated on RECOLA and Fatigue datasets

Fig. 2: Samples from the RECOLA dataset

Fig. 3: Samples from the Fatigue dataset

Ablation Study

- For V modality, we explored 2D CNN and I3D networks
- For A modality, we have used the same 2D CNN for all the experiments
- We compared the proposed approach with self-attention, LSTM-based fusion and simple feature concatenation

Method: V + Fusion	Valence	Arousal
2D CNN + Feature Concatenation	0.538	0.680
2D CNN + LSTM	0.552	0.697
I3D + Feature Concatenation	0.579	0.732
I3D + Self Attention	0.623	0.787
I3D + Cross-Attention (ours)	0.685	0.835

Tab. 1: CCC performance of our proposed approach obtained with various fusion strategies on the RECOLA dataset.

Visual Results

Though the full frontal face of the subject is not available in the V modality, the proposed approach still tracks the groud truth by leveraging the A modality

Fig. 4: Visualization of predictions of valence and arousal for subjects "dev 3"

Comparison to SOTA

[Tzirakis et al., 2017] and [Schoneval et al., 2021] explored deep models for A-V features and used LSTM based fusion. The proposed approach was found to outperform the state-of-the-art models by leveraging the inter-modal relationship of AV modalities. The experimental protocol of AVEC 2017 has been used for RECOLA dataset.

Method	Valence		Arousal			
	Audio	Visual	Fusion	Audio	Visual	Fusion
[He et al., 2015]	0.400	0.441	0.609	0.800	0.587	0.747
[Han et al., 2017]	0.480	0.592	0.554	0.760	0.350	0.685
[Tzirakis et al., 2017]	0.428	0.637	0.502	0.786	0.371	0.731
[Juan et al., 2019]	-	-	0.565	-	-	0.749
[Schoneval et al., 2021]	0.460	0.550	0.630	0.800	0.570	0.810
Proposed Approach	0.463	0.642	0.685	0.822	0.582	0.835
Proposed Approach (2-stage)	0.463	0.642	0.690	0.822	0.582	0.838

Tab. 2: CCC performance of the proposed approach and state-of-the-art models.

All the results are presented on the RECOLA development set.

Results with Fatigue Data

The proposed approach has been further evaluated to estimate the fatigue level on a scale of 0 to 10. 27 videos are captured from 18 participants suffering from degenerate diseases inducing pain. 80% of data is used for training and 20 % for validation. We have experimented with simple feature concatenation and the proposed approach.

Method	Fatigue Level
Audio only (2D-CNN)	0.312
Visual only (I3D)	0.415
Feature Concatenation	0.378
Proposed Approach (Cross-Attention)	0.421

Tab. 3: CCC performance on fatigue dataset.