INFORMATIKAI ALAPISMERETEK

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

> NEMZETI ERŐFORRÁS MINISZTÉRIUM

Fontos tudnivalók

I. rész

Általános megjegyzések:

- Ha a vizsgázó nem a kérdésben meghatározottak szerint válaszol, akkor a válasz nem fogadható el! (Pl.: H betű helyett nem válaszolhat N betűvel.)
- A feleletválasztásos tesztfeladatnál javítani tilos, a javított válaszok nem értékelhetők!
- Ha egy kérdésre a jó válasz(ok) mellett a vizsgázó válaszában hibás választ is megjelöl, akkor a kérdésre adható pontszámból le kell vonni a rossz válaszok számát. Negatív pontszám nem adható, ezért több hibás válasz esetén a minimális pontszám nullánál kevesebb nem lehet.

Pl.: Ha egy jó válasz mellett a vizsgázó egy hibás választ is bejelöl, akkor 0 pontot kell adni. Ez nem vonatkozik azokra a kérdésekre, ahol a (minden helyes részválasz 1 pont) szöveg szerepel.

- A kifejtős kérdések (nem feleletválasztós) válaszainál nem a szó szerinti, hanem a helyes tartalmi, illetve a lényegi válaszok megadását kell értékelni. Ha a vizsgázó válaszának a tartalmi vonatkozásai megfelelnek a megoldási útmutatóban megadott válasznak, akkor a válaszra adható pontot meg kell adni. Ha csak kis részben, vagy pedig nem felel meg a kapott válasz, akkor pont nem jár a válaszért.
- A pontszámok az **I.** részben a megadott részletezésnél tovább nem bonthatók (0,5 pont nem adható)
- Egyes esetekben előfordulhat, hogy egy általánostól eltérő rendszer használata miatt valamely kérdésre a vizsgázó nem a várt válasz adja, de *a válasza és az <u>indoklása elfogadható</u>*. Ilyen esetben a kérdésre adható pontszámot meg kell adni.

Pl.: Táblázatkezelőkben magyar beállításnál a tizedesek elválasztásának a jele a **vessző**, és ez a várt válasz. Ha a vizsgázók munkájuk során angol beállítást használnak, vagy a vizsgázó odaírja ezt megjegyzésként, akkor az előző helyett az angol beállítású környezetben használt **pont** lesz a helyes válasz.

A javítási-értékelési útmutatóban feltüntetett válaszokra kizárólag a megadott pontszámok adhatók.

A megadott pontszámok további bontása csak ott lehetséges, ahol erre külön utalás van. Az így kialakult pontszámok csak egész pontok lehetnek.

I. Egyszerű rövid, illetve kifejtendő szöveges választ igénylő írásbeli feladatok

Hardver

1)	d	19 200 / (1 + 8 + 1) = 1 920	3 pont					
2)	a	a 1 280 * 720 * 2 = 1 843 200 bájt						
3)	c	bit/s	1 pont					
4)	b	A processzor által ismert műveletek és utasítások összessége.	1 pont					
5)	c A csatlakozófej különbözik.							
	vag	v						
	d A D-SUB analóg, a DVI digitális jelet visz.							
		Megjegyzés: c és d együttes jelölése is elfogadható, de a feladatra maximum 1 pont adható.						
6)	I, H,	Н, Н, Н	5 pont					
7)	Webk	ramera	2 pont					
8)	CCD:	c ADSL: a CYMK: d AGP: b	2 pont					
9)	b	Az USB legfrissebb verziója a 2.0-ás.	1 pont					

Szoftver

10)	3-2-1-5-4	2 pont
11)	I, I, I, H, I, H	6 pont
12)	b a processzor által aktívan használt, gyors elérésű memória, amely a futó programokat és azok adatait tárolja.	2 pont
13)	c copy ment.txt+proba.txt p.txt	3 pont

Szövegszerkesztés, táblázatkezelés

14)	Н, І	Н, Н, I, Н, Н	6 pont
15)	b	Kijelölöm a szövegrészt, majd a hasábok számát 2-re változtatom.	2 pont

Informatikai alapok

16)	a A bináris számok könnyen átalakíthatók 16-os számrendszerbe, és itt kevesebb számjeggyel írhatjuk le ugyanazokat az értékeket	1 pont
17)	F=((A*C)+(B*D))*E, másképpen: F=((A and C) or (B and D)) and E	1 pont
18)		3 pont
	I Ha az A, B, C, D logikai változók értéke rendre 1,0,0,1, és	
	E=(A AND (NOT (B AND C)))OR(D OR (NOT (A AND C)))	
	akkor az E logikai változó értéke 1 lesz.	
	H Az A=01100011 és a B= 00110010 bitcsoport azonos helyi értékű bitjei között kizáró vagy műveletet végezve az eredmény bitcsoport decimális értéke 123 lesz.	
	01100011 00110010	
	01010001 ez decimálisan 81	
	I Ha az A, B, C logikai változók értéke rendre 0,1,1, és	
	E=A OR (NOT (B AND NOT(C)))	
	akkor az E logikai változó értéke 1 lesz.	
19)	c Decimálisan: 2035, binárisan 11111110011	1 pont

Hálózati alapismeretek, HTML

20)	b	11000110 00101011 10001011 00111001	2 pont
21)	c	<center> Ez az első <u>próba</u></center>	1 pont
22)	c	Szállítási réteg.	1 pont
		Összesen:	50 pont

II. Programozási feladatok számítógépes megoldása

1. feladat 10 pont

Feladatkitűzés:

Írjon programot, amely előállítja egy pozitív egész szám római szám alakját az alábbiak szerint!

- A program a felhasználótól kérje be a pozitív egész számot!
- A beolvasás során semmilyen ellenőrzést nem kell végezni, feltételezzük, hogy a szám az [1..3999] egész intervallumba esik.
- Az átváltás szabályai a következő táblázatban foglalhatók össze:

	0	1	2	3	4	5	6	7	8	9
Egyesek	ı	I	II	III	IV	V	VI	VII	VIII	IX
Tízesek	-	X	XX	XXX	XL	L	LX	LXX	LXXX	XC
Százasok	-	С	CC	CCC	CD	D	DC	DCC	DCCC	CM
Ezresek	-	M	MM	MMM	1	-	-	-	-	-

- A különböző helyi értékeket külön-külön át kell váltanunk, és egyszerűen egymás mellé kell írnunk.
- Példák^{*}

Szám	Ezresek	Százasok	Tízesek	Egyesek	Római
72	-	-	LXX	II	LXXII
953	-	CM	L	III	CMLIII
2618	MM	DC	X	VIII	MMDCXVIII

Fontos megkötések a program írásakor:

- Az egyesek, tízesek, százasok, ezresek esetében ugyanazon érték esetében ugyanaz a programrész végezze el az átváltást, csak a helyi értéktől függően más-más szimbólumokat használjon!
 - Például: egy 7-es érték az egyesek esetén VII, a tízesek esetén LXX, a százasok esetén DCC alakú lesz, amelyek az azonos szerkezet miatt ugyanazzal a programrésszel előállíthatók.
 - Segítség: érdemes egy függvényt írnia, amelynek paraméterei a helyi érték, és az átváltandó érték.
- Ahol csak lehet, alkalmazzon ciklust az elágazások kiküszöbölésére!
 - o Például: a 5,6,7,8 értékek ugyanazzal a ciklussal átválthatók.
- Ügyeljen arra, hogy a 0 érték átalakításakor a program üres stringet állítson elő!

Beadandó a feladatot megoldó program forráskódja.

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat billentyűzetről (standard input) olvassa, és a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén a megoldást konzol (szöveges ablakban futó) alkalmazásként kérjük elkészíteni.

Mintamegoldás: a program C# nyelven kódolva

```
using System;
using System.Collections.Generic;
using System.Ling;
using System. Text;
namespace Feladat1
{
    class Romai
        public static char[] romaiszamjegyek = {'I','V','X','L','C','D','M'};
        public static string arabszamjegybol_romai(int ertek, int helyiertek)
            string r ="";
            if (!(ertek == 4 | ertek == 9)) // Ha ertek nem 4, vagy 9
                if (ertek >= 5) // Beállítás V-re, L-re, vagy D-re
                    r += romaiszamjegyek[2 * helyiertek+1];
                for (int i = 0; i < ertek%5; i++)
                  //A megfelelő számú I, X vagy C mögé fűzése
                    r += romaiszamjegyek[2 * helyiertek];
            }
            else // Ha az ertek 4 vagy 9, akkor
                r += String.Concat(
                        romaiszamjegyek[2 * helyiertek],
                        romaiszamjegyek[2 * helyiertek + 1+(ertek/5)]);
            return r;
        }
        public static string romai(int arab)
            string s = arab.ToString();
            string romai = "";
            for (int i = 0; i < s.Length; i++)
                romai +=
                   arabszamjegybol_romai(s[i]-48, s.Length-i-1).ToString();
            return romai;
        }
    }
    class teszt
        public teszt()
            Console.WriteLine("Római szám\n");
            Console.WriteLine("Adjon meg egy egész számot 1 és 3999 között: ");
            int arabszam = int.Parse(Console.ReadLine());
            Console.WriteLine("Római szám alakban: ");
            Console.WriteLine(Romai.romai(arabszam));
            Console.ReadLine();
        }
    }
    class Program
        static void Main(string[] args)
        {
            teszt t = new teszt();
    }
}
```

<u>Értékelés:</u>

a)	-	brogramkód szintaktikailag hibátlan, lefordítható	pont
b)		adat beolvasása, végeredmény kiírása	pont
c)	- - - -	A 0,1,2,3 értékek helyes átváltása legalább egy helyi értéken: 1 pont Az 5,6,7,8 értékek helyes átváltása legalább egy helyi értéken: 1 pont Az átváltás az előző két esetben ciklussal történik: 1 pont A 0,1,2,3 és 5,6,7,8 értékek átváltása minden helyi értéken helyes: 1 pont A 4 és 9 értékek helyes átváltása legalább egy helyi értéken: 1 pont A 4 és 9 értékek átváltása minden helyi értéken helyes: 1 pont	pont
		A számjegyek átváltott alakja összefűzésre kerül: 1 pont Az összefűzés a helyes sorrendben történik: 1 pont	

2. feladat 10 pont

Feladatkitűzés:

Egy tenisz adogatógép tesztelése során a teniszlabdákat különböző kezdősebességgel és szöggel lövik ki, majd lemérik, hogy milyen távolságra repülnek a labdák.

Írjon programot, amely lehetőséget ad arra, hogy meghatározhassuk a kipróbált kezdősebességekhez és kilövési szögekhez tartozó távolságokat, és egyszerű statisztikát készíthessünk a mért és számított távolságértékek közötti különbségekről!

Adatbevitel

- o A program tegye lehetővé az adatok bevitelét a billentyűzetről!
 - A kezdősebesség m/s-ban megadott pozitív valós szám, amelynek maximális értéke 40 m/s.
 - A kilövési szög fokokban megadott pozitív, de 90-nél kisebb egész érték.
 - A mért távolság m-ben megadott pozitív valós érték.
- o A beolvasás során a program csak az előbb leírt feltételeknek megfelelő adatokat fogadjon el! Típusellenőrzést nem kell végeznie!
- o A beolvasás akkor érjen véget, ha a felhasználó kezdősebességként 0 m/s-ot ad meg!
- Határozza meg a program, hogy mely bemenő paraméterek esetén volt a mért és számított értékek között a legnagyobb az abszolút eltérés!
 - o A távolság kiszámítására az $s = \frac{{v_0}^2 \cdot \sin 2\alpha}{g}$ képletet alkalmazzuk, ahol v_0 a

kezdősebesség, α a kilövési szög, s pedig távolság, g értéke 9,81 $\frac{m}{s^2}$.

- A kiszámított távolságértéket ne kerekítsük!
- Az eltérést %-ban adjuk meg, 100%-nak a program által kiszámított távolságot tekintsük!
 - A %-os eredmény egészre legyen kerekítve!
 - Pl. ha a számított távolság 100 m, a mért távolság pedig 90 m, akkor az eltérés -10%, tehát az abszolút eltérés 10%.
 - Ha a számított távolság 10 m, a mért távolság 11,5 m, akkor az abszolút eltérés 15%.
- o A vizsgálat elvégzése után a program írja ki, hogy hányadik tesztelés adatai esetén adódott a legnagyobb abszolút eltérés!

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat billentyűzetről (standard input) olvassa, és a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén az algoritmust konzol alkalmazásként (szöveges ablakban futó) kérjük elkészíteni! Beadandó: a feladatot megoldó program forráskódja.

Mintamegoldás: a feladat egy lehetséges megoldása C# nyelven

(A tördelési problémák miatt a fájlban mellékelt megoldáshoz képest a nagyon hosszú sorok néhány helyen áttördelve láthatók!)

```
using System;
using System.Collections.Generic;
using System.Ling;
using System. Text;
namespace Feladat2
    class Tenisz
        private double v;
        private int alfa;
        private double sSzamitott, sMert;
        private int n;
        public Tenisz()
        {
            beolvas_feldolgoz();
        }
        public void beolvas_feldolgoz()
            bool kilep = false;
            n = 0;
            int ind = -1;
            int maxelteres = 0;
            Console.WriteLine("=> Adatok beolvasása:");
            Console.WriteLine();
            do
            {
                Console.WriteLine((n + 1) + ". lövés: ");
                Console.WriteLine(" Kezdősebesség (m/s) ");
                {
                    Console.Write("
                                       >");
                    v = Double.Parse(Console.ReadLine());
                }
                while (!((v >= 0) \&\& (v <= 40)));
                kilep = (v == 0);
                if (!kilep)
                {
                    Console.WriteLine(" Szög (fok) ");
                    do
                     {
                        Console.Write("
                                           >");
                        alfa = int.Parse(Console.ReadLine());
                    while (!((alfa > 0) \&\& (alfa < 90)));
                    Console.WriteLine(" Mért távolság (m) ");
                    do
                        Console.Write(" >");
                        sMert = Double.Parse(Console.ReadLine());
                    while (!(sMert > 0));
                    sSzamitott =
                    v * v * Math.Sin(Math.PI * 2 * alfa / 180) / 9.81;
                    int elteres =
      (int)Math.Round(((Math.Abs(sMert / sSzamitott - 1)) * 100));
```

```
Console.WriteLine("\n Számított távolság: "
                                       +sSzamitott+" m");
                     Console.WriteLine(" Eltérés
                                                              : " + elteres +
                                        " %\n");
                     if (elteres > maxelteres)
                         maxelteres = elteres;
                         ind = n;
                     }
                     n++;
                }
            while (!kilep);
            if (n > 0)
            Console.WriteLine("=> Eredmény:");
            Console.WriteLine();
Console.WriteLine(" A mért és a számított érték között a
                                legnagyobb eltérés a(z) " + (ind + 1) +
                                  ". lövésnél volt." );}
            Console.ReadLine();
        }
    }
    class Program
        static void Main(string[] args)
            Tenisz t = new Tenisz();
    }
}
```

Értékelés:	
 a) A programkód szintaktikailag hibátlan, lefordítható	pont
 b) Adatok beolvasása	pont
c) Számítások 4 – Számított távolság meghatározása o Szög átváltása fokból radiánra: 1 pont o A képlet helyes kódolása: 1 pont – %-os eltérés meghatározása: 2 pont	pont
d) A maximális eltérésű lövés sorszámának meghatározása, kiírása	pont

3. feladat 15 pont

Feladatkitűzés:

Készítsen programot, amely egy osztály pénzügyi nyilvántartását modellezi a 2009/2010-es tanévre vonatkozóan!

- A tanulók létszáma 25 és 35 közötti legyen, a tanulókat a sorszámukkal azonosítjuk.
- Minden tanulónak egyedi számlaegyenlege van, amely az év elején minimum 1000 Ft, maximum 3 500 Ft.
- Osztálypénz befizetés
 - o A tanulóknak szeptembertől júniusig havonta 1000 Ft osztálypénzt kell befizetniük.
 - o Egyszerre több havi osztálypénzt is be lehet fizetni, ebben az esetben a befizetés 1000 Ft valamely többszöröse. Ez az összes befizetés kb. 20%-ában fordul elő.
 - o Lehet túlfizetés is, azaz a tanulók fizethetnek 10 000 Ft-nál többet is egy tanévben.
 - o A befizetés a hónap során bármikor történhet, de egy hónapban csak egyszer.
 - o Késő tanuló nincs, azaz mindenki minden hónapban befizet legalább 1000 Ft-ot.
- Közös költségek
 - Az osztály programokra, eszközökre havi 2000 és 5000 Ft közötti összeget költ, ennek az egy főre eső részét minden tanuló egyenlegéből le kell vonni.
- Egyedi költségek
 - o A tanulóknak a tanév során 1-3 alkalommal 1000 és 1500 Ft közötti egyéni kiadásuk is van, amelyet az érintett tanuló egyenlegéből le kell vonni.
- Induláskor a program generálja véletlenszerűen a tanulók egyedi számlaegyenlegét!
- Ezután az előbb leirtaknak megfelelően generálja véletlenszerűen és tárolja el a tanévre vonatkozó befizetések, illetve költségek fontos adatait: tanuló sorszáma, dátum, jelleg (befizetés, közös költség, egyéni költség), összeg.
- A program készítsen kimutatást a tanulók éves befizetéseiről és költségeiről, az alábbi minta szerint! A lista a tanulók sorszáma szerint, azon belül a tranzakciók dátuma szerint növekvően legyen rendezve!

Minta:

```
Tanuló sorszáma: 17/30.

Nyitóegyenleg: 2000 Ft

Befizetések/költségek:

2009.09.01. Osztálypénz 6000 Ft

2009.09.12. Közös költség -100 Ft

2009.09.23. Egyéni költség -1000 Ft

2009.10.17. Közös költség -200 Ft

...

Záróegyenleg: 6700 Ft
```

- Megjegyzések:
 - o A fenti lista nem teljes, csak a formai megjelenítést illusztrálja!
 - o A tanuló sorszáma mellett tüntesse fel az osztály létszámát!

A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk, mely az adatokat a képernyőre (standard output) írja ki. Vizuális fejlesztőeszköz használata esetén az algoritmust konzol alkalmazásként (szöveges ablakban futó) kérjük elkészíteni! Beadandó: a feladatot megoldó program forráskódja.

Mintamegoldás: a feladat egy lehetséges megoldása C# nyelven

(A tördelési problémák miatt a fájlban mellékelt megoldáshoz képest a nagyon hosszú sorok néhány helyen áttördelve láthatók!)

```
using System;
using System.Collections.Generic;
using System.Linq;
using System. Text;
namespace Feladat3
{
    enum jelleg
    { osztalypenz = 0, kozos = 1, egyeni = 2 }
    class Osztalykassza
      private const int maxTranzakciodb = 23;
        private int tanulodb;
        private struct tranzakcio // Egy tranzakcio adatai
            public DateTime datum;
            public jelleg jelleg;
            public int osszeg; }
        private struct tanulo // Egy tanuló adatai
          public int nyitoegyenleg;
            public int zaroegyenleg;
            public int tranzakciodb;
            public tranzakcio[] tranzakciok; }
        private tanulo[] tanulok;
        public void general()
            Random r = new Random();
            tanulodb = r.Next(25,36); // A tanulók száma
            tanulok = new tanulo[tanulodb];
            for (int i = 0; i < tanulodb; i++)
                tanulok[i].nyitoegyenleg = r.Next(1000, 3501);
                tanulok[i].tranzakciok=new tranzakcio[maxTranzakciodb];
                for (int j = 0; j < 10; j++)
                    //Osztálypénz
                    int honap=(j < 4 ? j + 9 : j - 3);
                    tanulok[i].tranzakciok[j].datum =
                            new DateTime((j<4?2009:2010),honap,
                             r.Next(1, DateTime.DaysInMonth(2009, honap)+1));
                    tanulok[i].tranzakciok[j].jelleg = jelleg.osztalypenz;
                    tanulok[i].tranzakciok[j].osszeg =
                             (r.NextDouble() > 0.2 ? 1000: 1000* r.Next(2, 5));
                    // Közös költség
                    if (i == 0)
                        tanulok[i].tranzakciok[j + 10].datum =
                           new DateTime((j < 4 ? 2009 : 2010), honap,
                           r.Next(1, DateTime.DaysInMonth(2009, honap) + 1));
                         tanulok[i].tranzakciok[j + 10].osszeg =
                            -r.Next(2000, 5001) / tanulodb;
                    }
                    else
                        tanulok[i].tranzakciok[j + 10].datum =
                             tanulok[i - 1].tranzakciok[j + 10].datum;
                        tanulok[i].tranzakciok[j + 10].osszeg =
                             tanulok[i - 1].tranzakciok[j + 10].osszeg; } // else
                    tanulok[i].tranzakciok[j + 10].jelleg = jelleg.kozos; } // for
```

```
int egyedidb = r.Next(1, 4);
            for (int j = 0; j < egyedidb; j++)
                int ev=(r.NextDouble() < 0.4 ? 2009: 2010);</pre>
                 int honap=(ev==2009?r.Next(9,13):r.Next(1,7));
                tanulok[i].tranzakciok[j + 20].datum =
                         new DateTime(ev,honap,r.Next(1,28));
                tanulok[i].tranzakciok[j + 20].jelleg = jelleg.egyeni;
                tanulok[i].tranzakciok[j + 20].osszeg = -r.Next(1000, 1500); }
            tanulok[i].tranzakciodb = 20 + egyedidb;
            tanulok[i].zaroegyenleg = tanulok[i].nyitoegyenleg;
            for (int j = 0; j < tanulok[i].tranzakciodb; j++)</pre>
              tanulok[i].zaroegyenleg += tanulok[i].tranzakciok[j].osszeg; }
        }
    }
    public void rendez()
       for (int k = 0; k < tanulodb; k++)
            for (int i = 0; i < tanulok[k].tranzakciodb-1; i++)</pre>
                for (int j = i + 1; j < tanulok[k].tranzakciodb; j++)</pre>
                    if (tanulok[k].tranzakciok[i].datum >
                         tanulok[k].tranzakciok[j].datum)
                         tranzakcio s = tanulok[k].tranzakciok[i];
                         tanulok[k].tranzakciok[i] = tanulok[k].tranzakciok[j];
                         tanulok[k].tranzakciok[j] = s;
                    }
                }
            }
        }
    }
    public void kiirat()
        for (int i = 0; i < tanulodb; i++)
        {
            Console.WriteLine("\nTanuló sorszáma: "+(i + 1) + "/" + tanulodb);
            Console.WriteLine("
                                    Nyitóegyenleg: "+
                               tanulok[i].nyitoegyenleg+" Ft");
            Console.WriteLine("
                                   Befizetések/költségek:");
            for (int j = 0; j < tanulok[i].tranzakciodb; j++)</pre>
            { Console.WriteLine(String.Format(
                   "{0,10}{1:d}{2,5}{3,-20}{4,15}{5,3}",
                   "", tanulok[i].tranzakciok[j].datum,"",
                   (tanulok[i].tranzakciok[j].jelleg == jelleg.osztalypenz ?
                    "Osztálypénz":
                     (tanulok[i].tranzakciok[j].jelleg == jelleg.kozos ?
                   "Közös költség" : "Egyéni költség"))
                     ,tanulok[i].tranzakciok[j].osszeg,"Ft")); }
                                    Záróegyenleg: " +
            Console.WriteLine("
                               tanulok[i].zaroeqyenleg + " Ft");
            Console.ReadLine();
        }
    }
class Program
    static void Main(string[] args)
        Osztalykassza o = new Osztalykassza();
        o.general();
        o.rendez();
        o.kiirat();}
}
```

}

Ér	<u>tékelés:</u>
a)	 A programkód szintaktikailag hibátlan, lefordítható
b)	 Adatgenerálás, adatok eltárolása
c)	Záróegyenlegek kiszámítása
d)	Rendezés
e)	 Táblázatszerű kiírás:

4. feladat 15 pont

Feladatkitűzés:

Adott a **mesterek** nevű adatbázis, amely mesteremberek megrendeléseivel kapcsolatos adatokat tartalmaz. Az adatbázis a vizsgabizottság által megadott helyen, MS-Access 2000 formátumú állományban található.

Azok számára, akik az Access formátumát nem ismerő rendszert használnak, az adatbázis tábláit UTF-8 kódolású szöveges állományokban is megadtuk. Ezek első sorában az adott tábla mezőnevei, a többi sorban az adatrekordok találhatók. Az adatokat a sorokon belül pontosvessző határolja el egymástól.

Az adatbázis elsősorban feladatkitűzési céllal készült, így nem modellezi tökéletesen a való életben felmerülő összes lehetséges helyzetet.

Az adatbázis az alábbi táblákat és relációkat tartalmazza:

```
mester(
<u>mesterazon</u> : Egész szám -> mester_tevekenyseg.mesterazon
nev
               : Szöveg
varos
               : Szöveg
telefon : Szöveg
tevekenyseg(
tevekenysegazon : Egész szám -> mester_tevekenyseg.tevekenysegazon
tevekenyseg : Szöveg
)
mester_tevekenyseg(
mtazon
mesterazon

: Egész szám -> munka.mtazon
-> mester.mester
-> mester.mester
                                -> mester.mesterazon
tevekenysegazon : Egész szám -> tevekenyseg.tevekenysegazon
)
megrendelo(
megrendeloazon : Egész szám -> munka.megrendeloazon
nev : Szöveg varos : Szöveg
lakcim
               : Szöveg
telefon : Szöveg
)
munka (
munkaazon : Egész szám
megrendeloazon : Egész szám
                                -> megrendelo.megrendeloazon
mtazon : Egész szám -> megrendeloazon -> megrendeloazon megrenddatum : Dátum : Dátum : Dátum : Dátum
munkadij : Pénznem garancia : Egész szám
)
```

A kettőspont után az adatmező típusát adtuk meg, a "->" karakterek után pedig a más táblákkal való kapcsolatot.

Az elsődleges kulcsot aláhúzás jelöli.

A **mester** adattábla tartalmazza a mesteremberek egyedi azonosítóját, nevét, városát és telefonszámát. A táblában szerepelhet több, ugyanolyan nevű mester, akár azonos városban is.

A **tevekenyseg** adattábla tartalmazza a mesterek által végzett tevékenységek azonosítóját és megnevezését.

A **mester_tevekenyseg** adattábla (kapcsolótábla) tartalmazza, hogy melyik mester milyen tevékenységet végez. Ugyanaz a mester több különböző tevékenységet is végezhet, és ugyanazt a tevékenységet több különböző mester is végezheti. Minden mester-tevékenység párosítás egyedi azonosítóval rendelkezik.

A **megrendelo** adattábla a megrendelők azonosítóját, nevét, városát, lakcímét és telefonszámát tartalmazza.

A **munka** adattábla tartalmazza az elvégzett munkákkal kapcsolatos adatokat: a megrendelő azonosítóját, a mester-tevékenység azonosítót, a megrendelés és teljesítés dátumát, a munkadíjat és a garancia években mért idejét.

- A. Készítsen lekérdezést, amely megadja azoknak a mestereknek az azonosítóját, nevét és városát, akik valamelyik munkájukat a megrendeléstől számított 5 napon belül teljesítették, és ugyanarra a munkára 3 évnél kevesebb garanciát vállaltak!
- B. Siófokon a következő rendelkezést hozták: minden olyan mester, aki legalább 3 különböző tevékenységet végez, az elvégzett munkák összértéke után 10%-os támogatást kap. Készítsen lekérdezést, amely megadja a siófoki mestereknek kifizetett összes támogatás értékét!
- C. A pécsi mesterek az egyszerűbb kommunikáció érdekében ugyanahhoz a mobilszolgáltatóhoz szerződnek, de a régi számukat szeretnék megtartani. Készítsen lekérdezést, amely a pécsi mesterek (20) és (30) kezdetű telefonszámaiban a szolgáltató-azonosítót egységesen (70)-re változtatja, a telefonszám további részét pedig változatlanul hagyja! A (70)-es számokat a lekérdezés semmilyen módon ne módosítsa!
 - o A telefonszámok 12 mind karakter hosszúak, pl. ,(30) 1234567".
 - A feladat megoldása előtt készítsen másolatot a mestertábláról mester2 néven, és erre vonatkozóan készítse el a lekérdezést!

Megoldás, értékelés:

```
    A lista a megadott mezőket tartalmazza<sup>1</sup>:1 pont

    Mindegyik mester csak egyszer jelenik meg a listában<sup>2</sup>: 1 pont

    A munkavégzés idejére és a garanciára vonatkozó szűrőfeltétel helyes<sup>3</sup>: 1 pont

    A táblák közötti kapcsolat helyes<sup>4</sup>: 1 pont

   Egy lehetséges megoldás MS Access SQL-ben:
   Segédlekérdezés (ASeged):
   SELECT mester.mesterazon, mester.nev, mester.varos
   FROM munka, mester, mester_tevekenyseg
   WHERE (mester_tevekenyseg.mtazon=munka.mtazon) 4 AND
   (mester_tevekenyseg.mesterazon=mester.mesterazon)<sup>4</sup> AND
   (munka.teljdatum-munka.megrenddatum<=5) AND (garancia<3)<sup>3</sup>;
   Fő lekérdezés (A):
   SELECT mesterazon, nev, varos 1
   FROM Feladat1a
   GROUP BY mesterazon, nev, varos<sup>2</sup>;

    A városra vonatkozó szűrőfeltétel helyes <sup>1</sup>:1 pont

    A tevékenységek számára vonatkozó szűrőfeltétel helyes<sup>2</sup>: 1 pont

    A lekérdezés előállítja a feltételnek megfelelő mesterek azonosítóit<sup>3</sup>: 1 pont

    Csoportosítás a mesterek azonosítója szerint<sup>4</sup>: 1 pont

    A táblák közötti kapcsolat mindenütt helyes<sup>5</sup>: 1 pont

    Szűrés a kiválogatott mesterekre vonatkozóan, a munkadíjak előállítása<sup>6</sup>: 1 pont

    Helyes a számított mező<sup>7</sup>: 1 pont

   Egy lehetséges megoldás:
   Segédlekérdezés (BSeged):
   SELECT munka.munkadij<sup>6</sup>
   FROM munka, mester_tevekenyseg
   WHERE (mester_tevekenyseg.mtazon=munka.mtazon) AND
   mester_tevekenyseg.mesterazon In<sup>6</sup>
   SELECT mester_tevekenyseg.mesterazon<sup>3</sup>
   FROM mester_tevekenyseg, mester WHERE
   (mester.mesterazon=mester_tevekenyseg.mesterazon) AND
   (mester.varos="Siófok")<sup>1</sup>
   GROUP BY mester_tevekenyseg.mesterazon4
   HAVING Count (mester_tevekenyseg.tevekenysegazon) >= 3<sup>2</sup>;
   Fő lekérdezés (B):
   SELECT Sum(munkadij) *0.17 AS Tamogatas
   FROM BSeged;
```

- - A mester2 tábla létrehozása, frissítő lekérdezés alkalmazása¹:1 pont
 - Helyes a telefonszámra vonatkozó szűrőfeltétel²: 1 pont
 - Helyes a városra vonatkozó szűrőfeltétel³: 1 pont
 - Helyes a módosítás⁴: 1 pont

```
UPDATE<sup>1</sup> mester2<sup>1</sup> SET telefon = "(70"+Right(mester2.telefon,9)<sup>4</sup>
WHERE ( Left(mester2.telefon,3)="(30" Or
Left(mester2.telefon,3)="(20")<sup>2</sup> AND mester2.varos="Pécs"<sup>3</sup>;
```