

TI2316 Lab Course Solutions 3

deadline: May 16, 2017, 13:45

EXTRA, DRAFT

1. Suppose we have the following language L over the alphabet $\Sigma = \{a, b, c\}$:

 $L = \{w \in \Sigma^* \mid |w| \geq 2 \ \land \ \text{if} \ w \ \text{contains a} \ b \text{, the last two letters of} \ w \ \text{are equal}\}.$

(a) Give a regular expression R such that L(R) = L.

Solution:

$$R = (a \cup c)(a \cup c)^* \cup (a \cup b \cup c)^*b(a \cup b \cup c)^*(aa \cup bb \cup cc) \cup bb$$

(b) Explain how you arrived at your answer.

Solution: Words without a b are no problem so long as they are at least size 2. If w does contain a b, then the last two letters need to be aa, bb or cc. The regular expression $(a \cup b \cup c)^*$ represents any word, so the case $|w| \geq 3$ is represented by

$$(a \cup b \cup c)^*b(a \cup b \cup c)^*(aa \cup bb \cup cc).$$

The case |w|=2 only applies when w=bb, and this word is represented separately.

2. Convert the following NFA N to a regular expression R such that L(R) = L(N). Please show all the intermediate steps and eliminate the states in the following order: q_0 , q_1 , q_2 .

Solution: Rewrite to a GNFA by adding a new start state q_s and accept state q_a and turning the labels into regular expressions:

Eliminate q_0 :

Eliminate q_1 :

Eliminate q_2 :

The desired regular expression can be seen on the last remaining transition.

3. Suppose we have the following language L over the alphabet $\Sigma=\{1,;\}$:

$$L = \{a; b; c \mid a, b, c \in \{1\}^* \land |a|^2 + |b|^2 = |c|^2\}.$$

Use the pumping lemma to show that \boldsymbol{L} is not regular.

Hint: use that $3^2 + 4^2 = 5^2$, and that the equality also holds if you multiply the left and right hand side with the same factor.

Solution:

Proof. Suppose L is regular. Then there exists a pumping length p>0, in accordance with the pumping lemma. The lemma says all words $w\in L$ with $|w|\geq p$ can be split up into w=xyz with $|xy|\leq p$ and |y|>0 such that $xy^iz\in L$ for all $i\geq 0$.

Now, take $w=1^{3p};1^{4p};1^{5p}.$ We have $w\in L$ because $|a|^2+|b|^2=(3p)^2+(4p)^2=p^2(3^2+4^2)=p^25^2=(5p)^2=|c|^2.$ If we split this word according to the above requirements, we get $x=1^m$, $y=1^n$ and $z=1^{3p-m-n};1^{4p};1^{5p}$ for some $m\geq 0, n>0.$

Now, take i=2. Then $xy^iz=a^ma^{2n}a^{3p-m-n};1^{4p};1^{5p}=a^{3p+n}1^{4p}1^{5p}.$ Since n>0, we have $|a|^2+|b|^2=(3p+n)^2+(4p)^2\neq (5p)^2=|c|^2.$ Hence $xy^2z\notin L.$ This contradicts the pumping lemma, so L is not regular. \square