$_{ m QCM}^{ m Algo}$

1.	Un	arbre	général	dont	les	noeuds	contiennent	des	valeurs	est	?
----	----	-------	---------	------	-----	--------	-------------	-----	---------	-----	---

- (a) valué
- (b) étiqueté
- (c) valorisé
- (d) évalué

2. Parmi les constituants d'un arbre général, on trouve?

- (a) un noeud
- (b) une forêt
- (c) une liste de noeud
- (d) une liste d'arbres généraux

3. Dans un arbre général, une branche est le chemin obtenu à partir de la racine jusqu'à?

- (a) un noeud interne de l'arbre
- (b) une feuille de l'arbre
- (c) la racine du premier sous-arbre
- (d) le racine du dernier sous-arbre

4. Dans un arbre général, un noeud possédant juste 1 fils est appelé?

- (a) noeud interne
- (b) noeud externe
- (c) feuille
- (d) point simple
- (e) point double

5. La hauteur d'un arbre général réduit à un noeud racine est?

- (a) -1
- (b) 0
- (c) 1

6. Un arbre général?

- (a) Possède au moins 2 sous-arbres
- (b) ne peut pas être vide
- (c) Possède un nombre indéterminé de sous-arbres
- (d) Possède au moins 1 sous-arbre

7. Une forêt est?

- (a) une liste d'arbres
- (b) éventuellement vide
- (c) une liste de noeuds
- (d) toujours pleine
- 8. Un arbre général est une structure de données par nature?
 - (a) Itérative
 - (b) Répétitive
 - (c) Récursive
 - (d) Quelconque
- 9. Dans un arbre binaire, un noeud ne possédant pas de fils est appelé?
 - (a) une racine
 - (b) noeud interne
 - (c) noeud externe
 - (d) feuille
- 10. Dans un arbre binaire, le chemin obtenu à partir de la racine en ne suivant que des liens droits est?
 - (a) le chemin gauche
 - (b) le bord droit
 - (c) la branche droite
 - (d) le chemin droit

QCM N°17

lundi 11 février 2019

Question 11

Soit E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} . Alors

- a. $F_1 = \{ f \in E, f \text{ croissante} \}$ est un sev de E
- b. $F_2 = \{ f \in E, f \text{ dérivable en } 0 \}$ est un sev de E
- c. $F_3 = \{f \in E, f \text{ constante}\}$ est un sev de E
- d. $F_4 = \{f \in E, f(0) = 0\}$ est un sev de E
- e. rien de ce qui précède

Question 12

Soit E l'ensemble des polynômes à coefficients réels. Alors

- a. $F_1 = \{P \in E, P \text{ admet une racine réelle}\}$ est un sev de E
- b. $F_2 = \big\{ P \in E, P' \text{ admet une racine réelle} \big\}$ est un sev de E
- c. $F_3 = \{P \in E, P'(1) = 0\}$ est un sev de E
- d. $F_4 = \{P \in E, P = 0 \text{ ou } d^{\circ}(P) = 2\}$ est un sev de E
- e. rien de ce qui précède

Question 13

Soient E un \mathbb{R} -ev, F un sev de E et $(x,y) \in F^2$. Alors

- a. $3x 2y \in F$
- b. $3xy \in F$
- c. $3xy \in E$
- d. $0_E \in F$
- e. rien de ce qui précède

Question 14

Soient E un \mathbb{R} -ev et $F \subset E$ tel que $F \neq \emptyset$.

- a. Si pour tout $(x,y) \in F^2$ et tout $\lambda \in \mathbb{R}$, $x + \lambda y \in F$, alors F est un \mathbb{R} -ev.
- b. F est un \mathbb{R} -ev
- c. Si pour tout $(x,y) \in F^2$, $x+y \in F$, alors F est un \mathbb{R} -ev
- d. Si pour tout $(x,y) \in F^2$ et pour tout $\lambda \in \mathbb{R}$, $x+y \in F$ et $\lambda x \in F$, alors F est un \mathbb{R} -ev
- e. rien de ce qui précède

Question 15

Soient $A = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ décroissante}\}$ et $B = \{(u_n) \in \mathbb{R}^{\mathbb{N}}, (u_n) \text{ convergente}\}$. Alors

- a. A est un \mathbb{R} -ev.
- b. A n'est pas un \mathbb{R} -ev.
- c. B est un \mathbb{R} -ev.
- d. B n'est pas un \mathbb{R} -ev

Question 16

- a. X-3 divise $X^2+4X-21$
- b. X 4 divise $X^2 5X + 4$
- c. X + 3 divise $X^2 + 2X 3$
- d. X + 7 divise $X^2 + 4X 21$
- e. rien de ce qui précède

Question 17

Le reste de la division euclidienne de $X^2 + X - 1$ par X - 1 est

- a. 2
- b. -2
- c. 1
- d. 0
- e. rien de ce qui précède

Question 18

Soit $P \in \mathbb{R}[X]$ non nul. Alors

- a. Si 2 est racine double de P, X-2 divise P'
- b. Si X-2 divise P', 2 est racine double de P
- c. Si 2 est racine double de P', $(X-2)^2$ divise P'
- d. rien de ce qui précède

Question 19

Les solutions de l'équation différentielle -y''+y'-2y=0 sur $\mathbb R$ sont les fonctions de la forme

- a. $k_1e^t+k_2e^{-2t}$ où $(k_1,k_2)\in\mathbb{R}^2$
- b. $k_1 e^{-t} + k_2 e^{2t}$ où $(k_1, k_2) \in \mathbb{R}^2$
- c. $e^{-2t} \left(k_1 \cos(t) + k_2 \sin(t) \right)$ où $(k_1, k_2) \in \mathbb{R}^2$
- d. $(k_1t+k_2)e^{-2t}$ où $(k_1,k_2)\in\mathbb{R}^2$
- e. rien de ce qui précède

Question 20

Les solutions de l'équation différentielle y''+4y'+4y=0 sur $\mathbb R$ sont les fonctions de la forme

a.
$$k_1e^t + k_2e^{2t}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

b.
$$k_1e^{-2t}+k_2e^{2t}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

c.
$$(k_1t+k_2)e^{2t}$$
 où $(k_1,k_2)\in\mathbb{R}^2$

d.
$$(k_1t + k_2)e^{-2t}$$
 où $(k_1, k_2) \in \mathbb{R}^2$

e. rien de ce qui précède

CIE QCM 5, S2 (1984, Chap 7-8)

21. 'So long as they continued to work and breed, their other activities were without importance What or who is this about?
a) The Inner members of the Party.
b) The Outer members of the Party.
c) The Proles.
d) The women.
22. What did the Party expect of the Proles?
a) That they should not have any strong political feelings but have a primitive patriotism.
b) That they should be present at their jobs and never be absent.
c) That they should never be present at the Hate Speech.
d) That they should all have a tele screen at home.
23. Certain things like promiscuity, divorce were permitted among the Proles because
a) they were the privileged class.
b) they were free like animals and hence, beyond suspicion.
c) they were the Inner Party members.
d) None of the above.
24. The 'great purges' started
a) in 1984
b) in the 70s.
c) in 1948
d) in mid-sixties.
25. Who were Jones, Aaronson and Rutherford?
a) Party members
b) The last survivors of the Revolution.
c) Three journalists who wrote articles in the Times.

d) The three Revolutionaries that were never caught.

- 26. Winston came across a document years after the arrest of the three people mentioned in Q. 25 which was very significant, because ______.a) it was a proof of the fact that the confessions were lies.
- b) it was a proof that those people were actually vaporised.
- c) it was a proof that those people were the real revolutionaries.
- d) it was a proof that those people had fled.
- 27. How does the Party fool the proles with the lottery?
- a) By giving them Victory Gin as prizes.
- b) By giving them free lottery tickets.
- c) By making imaginary prizes where big winners are non existant.
- d) By giving them free tickets to the Victory Speech.
- 28. What is a steamer?
- a) An utensil for cooking, used by the proles.
- b) What the proles call rocket bombs.
- c) The word used by proles for 'vaporised'.
- d) None of the above.
- 29. What is the main thing that Winston wants to find out from the old man in the pub?
- a) If he ever saw Big Brother.
- b) If he was a Revolutionary.
- c) If he was a member of the Party.
- d) If life was better or worse before the Revolution.
- 30. What appeals to Winston about the glass paperweight that he buys at the junk shop?
- a) Its 'apparent uselessness' and the fact that it comes from an era entirely unlike his own.
- b) Its vibrant colour.
- c) Its light weight.
- d) Its simplicity.

QCM English - TIM - S2-4

Questions are based on Unit 5 and 6 of the MOOC "Video Game Design History"

NB. The sentence "check all that apply" indicates that more than one correct answer is possible.

- 31. What science fiction series did SpaceWar! originate from?
 - a. "Lensman"
 - b. "Star Wars"
 - c. "Flash Gordon"
 - d. A and C
- 32. Why was Spacewar! a two-player game?
 - a. There were two programmers that created the game.
 - b. It should have been a three-player game at first.
 - c. A four-player game would be too restrictive.
 - d. None of the above.
- 33. Why was Spacewar! significant? (check all that apply)
 - a. It was the first mainframe game that had sound effects
 - b. It was the first mainframe game that simulated an existing game or experience
 - c. It was the first mainframe game that was multiplayer
 - d. All of the above
- 34. What was the goal of creating BASIC?
 - a. Creating a more interactive programming language
 - b. Creating a more efficient programming language
 - c. Creating a more accessible language for non-science students
 - d. A and B
- 35. Which two programming languages allowed more people to program games during this era?
 - a. Fortran and Basic
 - b. Fargo and basic
 - c. Ambit and Fargo
 - d. Basic and Ambit
- 36. What was the primary reason Pong became such a success?
 - a. Storyline
 - b. Simple learning curve
 - c. Music
 - d. B and C
- 37. Which earlier game type is Pac-Mac most related to?
 - a. Chase Games
 - b. War Games
 - c. Card Games
 - d. None of the above
- 38. What was one of the first arcade games to use LaserDisc technology?
 - a. Donkey Kong
 - b. Ms. Pac-Man
 - c. Dragon's Lair
 - d. None of the above
- 39. Which attributes do casual mobile games share with early arcade games? (check all that apply)
 - a. Stimulating graphics
 - b. Fast gameplay
 - c. Simple learning curve
 - d. Long form storylines
- 40. Why did the first public prototype Pong arcade cabinet stop working?
 - a. Faulty wiring
 - b. The coin box overflowed
 - c. A player spilled beer on it
 - d. None of the above

EPITA-S2 2018-2019

O.C.M n°11 de Physique

41- On considère une masse m accrochée à un ressort de coefficient de raideur k, l'ensemble oscille sans frottement parallèlement à l'axe (Ox). La position d'équilibre de la masse est au point O.

L'énergie mécanique du système s'écrit

a)
$$E_m = \frac{1}{2}m(x^2)^2 + \frac{1}{2}kx^2$$
 b) $E_m = \frac{1}{2}m(x^2)^2 + kx$ c) $E_m = \frac{1}{2}m(x^2)^2 + \frac{1}{2}kx^2$

b)
$$E_m = \frac{1}{2}m(x)^2 + kx$$

c)
$$E_m = \frac{1}{2}m(x)^2 + \frac{1}{2}kx^2$$

42- On considère le système (question 41), la dérivée par rapport au temps de l'énergie cinétique du système est

a)
$$\frac{dE_c}{dt} = m.x$$

b)
$$\frac{dE_c}{dt} = mxx$$

c)
$$\frac{dE_c}{dt} = m.x x$$

a)
$$\frac{dE_c}{dt} = m.\dot{x}$$
 b) $\frac{dE_c}{dt} = m\dot{x}\dot{x}$ c) $\frac{dE_c}{dt} = m.\dot{x}\dot{x}$ d) $\frac{dE_c}{dt} = 2m\dot{x}\dot{x}$

43- On considère le système (question 41), la dérivée par rapport au temps de l'énergie potentielle du système est

a)
$$\frac{dE_p}{dt} = k.3$$

a)
$$\frac{dE_p}{dt} = k.x$$
 b) $\frac{dE_p}{dt} = kxx$ c) $\frac{dE_p}{dt} = kxx$ d) $\frac{dE_p}{dt} = 0$

c)
$$\frac{dE_p}{dt} = kxx$$

d)
$$\frac{dE_p}{dt} = 0$$

44- On considère le système (schéma de la question 41), en tenant compte d'une force de frottement d'expression $\vec{f} = -\alpha \cdot \vec{v}$, tels que la constante α représente le coefficient de frottement (positif) et \vec{v} le vecteur vitesse. L'équation différentielle du mouvement s'écrit

a)
$$x + \alpha x + \frac{k}{m}x = 0$$

b)
$$x + \frac{k}{m}x = 0$$

a)
$$x + \alpha x + \frac{k}{m}x = 0$$
 b) $x + \frac{k}{m}x = 0$ c) $x + \frac{\alpha}{m}x + \frac{k}{m}x = 0$ d) $x + \frac{k}{m}x + \alpha x = 0$

d)
$$x + \frac{k}{m}x + \alpha x = 0$$

45- Quel régime est décrit par le graphique ci-dessous ?

- a) critique
- b) pseudopériodique
- c) apériodique

A. Zellagui

46- La résolution de l'équation différentielle $x + \frac{\alpha}{m}x + \omega_0^2x = 0$ nécessite de distinguer trois régimes. Le régime apériodique correspond à une condition sur le coefficient de frottement α qui est

a)
$$\alpha = 0$$

b)
$$\alpha > 2m\omega_0$$
 c) $\alpha < 2m\omega_0$

c)
$$\alpha < 2m\omega_0$$

 $(\omega_0$ étant la pulsation propre de l'oscillateur sans frottement)

47- La pulsation du régime pseudo-périodique de l'oscillateur masse + ressort (question 44) s'écrit

a)
$$\omega = \sqrt{\omega_0^2 - (\frac{\alpha}{2m})^2}$$
 b) $\omega = \sqrt{(\frac{\alpha}{2m})^2 - \omega_0^2}$ c) $\omega = \omega_0$

b)
$$\omega = \sqrt{(\frac{\alpha}{2m})^2 - \omega_0^2}$$

c)
$$\omega = \omega_0$$

48- La dérivée de l'énergie mécanique de l'oscillateur avec frottement (question 44) est

a)
$$\frac{dE_m}{dt} = m.x x + kx$$

b)
$$\frac{dE_m}{dt} = m.x x + kxx$$

a)
$$\frac{dE_m}{dt} = m.x x + kx$$
 b) $\frac{dE_m}{dt} = m.x x + kxx$ c) $\frac{dE_m}{dt} = m.x x + kxx + \alpha x$

49- L'oscillateur masse + ressort soumis à une force de frottement (question 44), la dérivée de l'énergie mécanique du système vérifie

a)
$$\frac{dE_m}{dt} = \mathcal{P}(\vec{P})$$
 (Puissance du poids)

a)
$$\frac{dE_m}{dt} = \mathcal{P}(\vec{P})$$
 (Puissance du poids)
b) $\frac{dE_m}{dt} = \mathcal{P}(\vec{T})$ (Puissance de la tension du ressort)
c) $\frac{dE_m}{dt} = \mathcal{P}(\vec{f})$ (Puissance de la force de frottement)

c)
$$\frac{d\vec{E}_m}{dt} = \mathcal{P}(\vec{f})$$
 (Puissance de la force de frottement)

50- L'énergie mécanique de la masse m du pendule simple est

$$E_m = \frac{1}{2}mL^2(\dot{\theta})^2 + mgL(1 - \cos(\theta))$$

La dérivée par rapport au temps de l'énergie mécanique s'écrit donc

a)
$$\frac{dE_m}{dt} = mL^2\dot{\theta} - mg Lsin(\theta)\dot{\theta}$$

b)
$$\frac{dE_m}{dt} = mL^2\theta \theta + mgLsin(\theta)\theta$$

c)
$$\frac{dE_m}{dt} = mL^2\theta \theta + mgL(1 + sin(\theta))\theta$$

QCM - Electronique

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Soit le signal ci-contre (24&5):

a.
$$5.\sqrt{2}V$$

c.
$$5.\sqrt{3} V$$

d.
$$-\sqrt{50.\frac{T}{3}} V$$

Comment appelle-t-on le complexe associé à : Q2.

- un dipôle?
 - a. L'amplitude complexe

b. L'impédance complexe

- un signal?
 - c. L'amplitude complexe

d. L'impédance complexe

Q3. Soit un condensateur de capacité C. On note u(t), la tension à ses bornes et i(t), le courant qui le traverse. On utilise la convention récepteur pour flécher courant et tension. Choisir la relation correcte :

a.
$$i(t) = \frac{1}{c} \cdot \frac{du}{dt}$$

b.
$$u(t) = C \cdot \frac{di}{dt}$$

c.
$$i(t) = C \cdot \frac{du}{dt}$$

a.
$$i(t) = \frac{1}{c} \cdot \frac{du}{dt}$$
 b. $u(t) = C \cdot \frac{di}{dt}$ c. $i(t) = C \cdot \frac{du}{dt}$ d. $u(t) = \frac{1}{c} \cdot \frac{di}{dt}$

Dans un condensateur, quel est le déphasage de la tension par rapport au courant? Q4.

a.
$$+\frac{\pi}{2}$$

b.
$$-\frac{\pi}{2}$$

d.
$$\pm \frac{\pi}{2}$$
 selon la fréquence

Soit une bobine d'inductance L. On note u(t), la tension à ses bornes et i(t), le courant qui la traverse. On utilise la convention récepteur pour flécher courant et tension. Choisir la relation correcte:

a.
$$i(t) = L \cdot \frac{du}{dt}$$

b.
$$i(t) = \frac{1}{L} \cdot \frac{du}{dt}$$

a.
$$i(t) = L \cdot \frac{du}{dt}$$
 b. $i(t) = \frac{1}{L} \cdot \frac{du}{dt}$ c. $u(t) = L \cdot \frac{di}{dt}$ d. $u(t) = \frac{1}{L} \cdot \frac{di}{dt}$

d.
$$u(t) = \frac{1}{L} \cdot \frac{di}{dt}$$

Q6. Dans une bobine, quel est le déphasage du courant par rapport à la tension?

a.
$$+\frac{\pi}{2}$$

b.
$$-\frac{\pi}{2}$$

- c. -π
- d. $\pm \frac{\pi}{2}$ selon la fréquence
- Q7. Quelle formule représente l'impédance complexe d'un condensateur de capacité C?

b.
$$\frac{j}{c\omega}$$

c. – jCω

d.
$$\frac{-j}{c\omega}$$

Q8. Quelle formule représente l'impédance complexe d'une bobine d'inductance L?

a.
$$jL\omega$$

b.
$$\frac{1}{jL\omega}$$

c. $-jL\omega$

$$d. \ \frac{-j}{L\omega}$$

Soit l'association ci-contre. (Q9&10)

Q9. Quel est son impédance complexe ?

a.
$$\underline{Z} = -\frac{LC\omega^2}{jL\omega + 1/jC\omega}$$

b.
$$\underline{Z} = \frac{jL\omega}{1-j^2LC\omega^2}$$

c.
$$\underline{Z} = \frac{jL\omega}{1-LC\omega^2}$$

d.
$$\underline{Z} = \frac{1/jC\omega}{1-LC\omega^2}$$

Q10. Quel est le déphasage du courant par rapport à la tension ?

a.
$$+\frac{\pi}{2}$$

b.
$$-\frac{\pi}{2}$$

d.
$$\pm \frac{\pi}{2}$$
 selon la fréquence

QCM 4

Architecture des ordinateurs

Lundi 11 février 2019

- 11. Donnez la représentation IEEE 754, en simple précision, du nombre suivant : 78,25
- 12. Donnez la représentation associée au codage IEEE 754 double précision suivant :

0000 2800 0000 000016

- A. 5×2^{-1031}
- B. 517×2^{-1032}
- C. 517×2^{-1031}
- D. 5×2^{-135}
- 13. Une bascule RS asynchrone (R et S sont actifs à l'état haut) peut être fabriquée à l'aide de :
 - A. Une porte NON-OU et une porte NON-ET.
 - B. Deux portes OU EXCLUSIF.
 - C. Deux portes NON-ET.
 - D. Deux portes NON-OU.
- 14. Une bascule RS maître-esclave:
 - A. Peut modifier la sortie Q sur les fronts montants et descendants de l'horloge.
 - B. Peut modifier la sortie Q uniquement sur les fronts descendants de l'horloge.
 - C. Copie l'entrée R sur la sortie Q à chaque front montant de l'horloge.
 - D. Peut modifier la sortie Q uniquement sur les fronts montants de l'horloge.
- 15. Lorsque les entrées R et S d'une bascule RS active à l'état haut sont à 0 :
 - A. La sortie est toujours à 0.
 - B. La sortie ne change pas.
 - C. Cet état est interdit.
 - D. La sortie est toujours à 1.

Soit les deux figures ci-dessous :

 $\begin{array}{c|c} S & \overline{Q} \\ \hline S & \overline{Q} \\ \hline R & \overline{Q} \\ \hline \end{array}$

Figure 1

Figure 2

- 16. Le symbole de la figure 1 représente :
 - A. Une bascule D maître-esclave.
 - B. Une bascule D synchronisée sur état.
 - C. Une bascule D synchronisée sur front descendant.
 - D. Aucune de ces réponses.
- 17. Le symbole de la figure 2 représente :
 - A. Une bascule RS maître-esclave.
 - B. Une bascule RS synchronisée sur front montant.
 - C. Une bascule RS synchronisée sur état.
 - D. Aucune de ces réponses.

18. Soit la figure 1:

- A. La sortie ne change jamais.
- B. La sortie bascule à chaque front montant du signal d'horloge.
- C. La sortie est toujours à 1.
- D. Aucune de ces réponses.
- 19. Soit la figure 2.
 - A. La sortie ne change jamais.
 - B. La sortie bascule à chaque front descendant du signal d'horloge.
 - C. La sortie est toujours à 0.
 - D. Aucune de ces réponses.
- 20. Une bascule D synchronisée sur état est une bascule RS synchronisée sur état avec :
 - A. R = D et $S = \overline{D}$.
 - B. $R = \overline{D}$ et S = D.
 - C. R = 0 et S = D.
 - D. R = D et S = 1.