Кейс 5: Анализ производительности B-tree и B+-tree

Выполнили:

Шебордаев Андрей, Стрижов Тимофей, Олейник Владимир, Хани Юрий.

Задание 1: Сравнение производительности запросов

Условия тестирования

- Набор из 1000 чисел от 1 до 1000
- Сравниваются B-tree и B+-tree с одинаковым порядком (m=100)
- Дерева хорошо сбалансированы

Результаты производительности

Таблица сравнения:

Метрика	Запрос 1 (10 эл-тов: 50-59)	Запрос 2 (100 эл-тов: 400-499)	Запрос 3 (500 эл-тов: 1-500)
B-tree			
Время	Малое	Среднее	Большое
Узлы	~3-4	~13-19	~53-64
B+-tree			
Время	Малое	Среднее	Среднее
Узлы	~3-4	~5-7	~13-16

Общее время выполнения

- **B-tree**: Малое + Среднее + Большое = **Очень большое**
- **B+-tree:** Малое + Среднее + Среднее = **Умеренное**

Ответы на вопросы

1. Для каких запросов B+-tree выигрывает сильнее?

B+-tree выигрывает сильнее всего для **запросов на большие диапазоны (Запрос 3)**. С ростом размера диапазона преимущество становится подавляющим. Для маленьких диапазонов разница незначительна.

2. Почему B+-tree лучше для больших диапазонов?

- 1. Последовательный доступ листовые узлы связаны указателями
- 2. Высокая плотность ключей в листьях помещается больше записей
- 3. **Отсутствие обращений к внутренним узлам** не требуется повторный спуск по дереву

3. В каких реальных системах это важно?

• Базы данных - PostgreSQL, MySQL, Oracle (запросы с BETWEEN, >, <)

- Файловые системы NTFS, ReiserFS
- Системы с временными рядами мониторинг, аналитика
- Поисковые системы диапазонные запросы по датам

Задание 2: Выбор структуры для "Погодного сервиса"

Требования системы

- Частые запросы по датам (диапазоны)

- Пример: "погода за последнюю неделю"

Топ-3 структуры данных

Таблица сравнения

Критерий	B+-tree	LSM-дерево	Иммутабельное В-дерево
Скорость диапазонного запроса	****	***	****
Скорость обновления	***	****	**
Эффективность использования диска	***	***	**
Примечания	Золотой стандарт для диапазонных запросов	Оптимизирован под запись, хорош для чтения	Идеален для редких обновлений пачками
Итоговый приоритет	1	2	3

Рекомендации

- 1. **B+-tree** лучший выбор для текущих требований
- 2. **LSM-дерево** хорошая альтернатива с перспективой на будущее
- 3. **Иммутабельное В-дерево** специализированное решение для редких обновлений

Обоснование выбора

B+-tree обеспечивает оптимальный баланс между скоростью выполнения диапазонных запросов и простотой поддержки, что критично для погодного сервиса с его типичными сценариями использования.