

Sensorschaltungen mit OPV

Name: Rahm Datum: 16.09.2025 3_1_ADS1286_Datenblatt.docx

Datenblatt ADC1286

2.1.1

ADS1286

12-Bit Micro Power Sampling **ANALOG-TO-DIGITAL CONVERTER**

FEATURES

- SERIAL INTERFACE
- GUARANTEED NO MISSING CODES
- 20kHz SAMPLING RATE LOW SUPPLY CURRENT: 250µA

APPLICATIONS

- REMOTE DATA ACQUISITION
- ISOLATED DATA ACQUISITION
- TRANSDUCER INTERFACE
- BATTERY OPERATED SYSTEMS

DESCRIPTION

The ADS1286 is a 12-bit, 20kHz analog-to-digital converter with a differential input and sample and hold amplifier and consumes only 250µA of supply current. The ADS1286 offers an SPI and SSI compatible serial interface for communications over a two or three wire interface and micropower consumption makes the ADS1286 ideal for remote applications and for those requiring isolation.

The ADS1286 is available in a 8-pin plastic mini DIP and a 8-lead SOIC.

SPECIFICATIONS

At $T_A = T_{MIN}$ to T_{MAX} , +V_{CC} = +5V, V_{REF} = +5V, f_{SAMPLE} = 12.5kHz, , f_{CLK} = 16 • f_{SAMPLE} , unless otherwise specified.

		ADS1286, ADS1286A			ADS1286K, ADS1286B			ADS1286C, ADS1286L			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
ANALOG INPUT											
Full-Scale Input Range	+In - (-In)	0		V_{REF}	*		*	*		*	V
Absolute Input Voltage	+In	-0.2		V _{CC} +0.2	*		*	*		*	V
	-In	-0.2	,	+0.2	*		*	*	ļ	*	V
SYSTEM PERFORMANCE											
Resolution			12			*			*		Bits
No Missing Codes		12			*			*			Bits
Integral Linearity			±1	±2		*	*		±0.5	±1	LSB
Differential Linearity			±0.5	±1.0		*	±0.75		±0.25	±0.75	LSB
Offset Error			0.75	±3		*	*		*	*	LSB
Gain Error			±2	±8		*	*		*	*	LSB
Noise			50			*			*		μVrms
Power Supply Rejection			82			*			*		dB
SAMPLING DYNAMICS											
Conversion Time				12			*			*	Clk Cycles
Acquisition Time		1.5			*			*			Clk Cycles
Small Signal Bandwidth		ļ	500			*	ļ	ļ	*		kHz
REFERENCE INPUT											
REF Input Range		1.25	2.5	V _{CC} +0.05V	*	*	*	*	*	*	V
Input Resistance	$\overline{\text{CS}} = V_{\text{CC}}$		5000			*			*		$M\Omega$
	$CS = GND$, $f_{CLK} = 0Hz$		5000			*			*		$M\Omega$
Current Drain	CS = V _{CC}		0.01	2.5		*	*		*	*	μΑ
	$t_{CYC} \geq 640 \mu s, f_{CLK} \leq 25 k Hz$		2.4	20		*	*		*	*	μΑ
	t_{CYC} = 80 μ s, f_{CLK} = 200kHz		2.4	20		*	*		*	*	μΑ
DIGITAL INPUT/OUTPUT											
Logic Family			CMOS			*			*		
Logic Levels:											
V_{IH}	I _{IH} = +5μA	3		+V _{CC}	*		*	*		*	V
V_{IL}	$I_{IL} = +5\mu A$	0.0		0.8	*		*	*		*	V
V _{OH}	I _{OH} = 250μA	3		+V _{CC}	*		*	*		*	V
V_{OL}	$I_{OL} = 250 \mu A$	0.0		0.4	*		*	*		*	V
Data Format		Straight Binary			*			*			
POWER SUPPLY REQUIREME	NTS										
Power Supply Voltage											
V_{CC}		+4.50	5	5.25	*	*	*	*	*	*	V
Quiescent Current, V _{ANA}	$t_{CYC} \ge 640 \mu S, f_{CLK} \le 25 kHz$		200	400		*	*		*	*	μΑ
	$t_{CYC} = 90\mu S$, $f_{CLK} = 200kHz$		250	500		*	*		*	*	μΑ
Power Down	CS = V _{CC}			3			*			*	μΑ

Sensorschaltungen mit OPV

Name: Ranm
Datum: 16.09.2025
3_1_ADS1286_Datenblatt.doc

Datenblatt ADC1286

2.1.2

TIMING CHARACTERISTICS

 f_{CLK} = 200kHz, T_A = T_{MIN} to T_{MAX} .

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{SMPL}	Analog Input Sample Time	See Operating Sequence	1.5		2.0	Clk Cycles
t _{SMPL (MAX)}	Maximum Sampling Frequency	ADS1286			20	kHz
t _{CONV}	Conversion Time	See Operating Sequence		12		Clk Cycles
t_{dDO}	Delay TIme, DCLOCK↓ to D _{OUT} Data Valid	See Test Circuits		85	150	ns
t _{dis}	Delay TIme, CS ↑ to D _{OUT} Hi-Z	See Test Circuits		25	50	ns
t _{en}	Delay Time, DCLOCK↓ to D _{OUT} Enable	See Test Circuits		50	100	ns
t _{hDO}	Output Data Remains Valid After DCLOCK↓	C _{LOAD} = 100pF	15	30		ns
t _f	D _{OUT} Fall Time	See Test Circuits		70	100	ns
tr	D _{OUT} Rise Time	See Test Circuits		60	100	ns
t _{CSD}	Delay Time, CS↓ to DCLOCK↓	See Operating Sequence			0	ns
t _{SUCS}	Delay Time, CS↓ to DCLOCK↑	See Operating Sequence	30			ns

PIN CONFIGURATION

SERIAL INTERFACE

The ADS1286 communicates with microprocessors and other external digital systems via a synchronous 3-wire serial interface. DCLOCK synchronizes the data transfer with each bit being transmitted on the falling DCLOCK edge and captured on the rising DCLOCK edge in the receiving system. A falling $\overline{\rm CS}$ initiates data transfer as shown in Figure 1. After $\overline{\rm CS}$ falls, the second DCLOCK pulse enables $D_{\rm OUT}$. After one null bit, the A/D conversion result is output on the $D_{\rm OUT}$ line. Bringing $\overline{\rm CS}$ high resets the ADS1286 for the next data exchange.

PIN ASSIGNMENTS

PIN	NAME	DESCRIPTION
1	V_{REF}	Reference Input.
2	+In	Non Inverting Input.
3	–In	Inverting Input. Connect to ground or remote ground sense point.
4	GND	Ground.
5	CS/SHDN	Chip Select when low, Shutdown Mode when high.
6	D _{OUT}	The serial output data word is comprised of 12 bits of data. In operation the data is valid on the falling edge of DCLOCK. The second clock pulse after the falling edge of $\overline{\text{CS}}$ enables the serial output. After one null bit the data is valid for the next 12 edges.
7	DCLOCK	Data Clock synchronizes the serial data transfer and determines conversion speed.
8	+V _{CC}	Power Supply.

