

Administración de Servicios de Red

Redes multimedia

Ing. Denis L. Espinoza Hernández, M.Sc. denisjev@ct.unanleon.edu.ni

Contenido

- Stored audio-video streaming
- Live audio-video streaming
- Aplicaciones interatives

Stored audio/video

- Contenido almacenado en un servidor
- Usuario descarga el contenido
- Internet video (play/pause/ffw/rew)
- Ejemplo: mbone VCR

Live audio/video

- En directo (p.ej., evento deportivo)
- Similar al anterior (sin ffw)
- Internet TV / Internet radio
- Ejemplo: real player

Aplicaciones interactivas

- Bidireccional
- Requieren retardos menores
- VoIP (telefonia), videoconferencia
- Ejemplos: skype, vlc

TráficoTasa constanteTasa variable

Tasa constante

- CBR (constant bit rate)
- Sin ráfagas
- Audio / algunos codificadores de video

Tasa variable

- VBR (variable bit rate)
- Tasa emisión = f (tiempo)
- Actividad reducida + ráfagas
- Video codecs (ráfaga = cambio background)

SimetríaSimétricas

Asimétricas

- Volumen tráfico diferente en cada sentido
- Ejemplo: audio/video bajo demanda (contenido multimedia en un sentido, tráfico de control en el otro)

Simétricas

- Ambos participantes rol activo
- Mismo volumen en ambos sentidos
- Ejemplo: audio/video conferencia

Parámetros de red

- Caudal
- Pérdidas
- Retardo
- Jitter

Caudal

- Volumen tráfico / unidad de tiempo
- Caudal disponible en una red: variable
- Bits por segundo (bps)
- Gbps = 10^9 bps, Mbps = 10^6 bps, Kbps = 10^3 bps

Errores y pérdidas

- Pérdida: paquete no llega a su destino
- Error: paquete llega corrompido (bits erróenos)
- BER: Bit Error Rate (tasa errores)
- Algunas redes: detección errores y descate, por lo que no se observan errores (ej. Wifi)
- Otra causa pérdidas: buffer overflow (cola llena)

Retardo

- Parámetro más relevante tráfico multimedia
- Retardo extremo a extremo (end-to-end): desde la aplicación origen hasta el destino
- Componentes: Tprop, Ttx = I /Cfisico, Tcola

Jitter

- Variación retardo
- Crítico para aplicaciones multimedia
- Ejemplo: con retardo medio bajo pero jitter elevado, algunos paquetes sufren un retardo muy elevado, lo que deteriora el rendimiento
- Causas retardo: congestión -> ocupación colas -> retardo encolamiento (variable)

Factores de red

- Fallos
- Congestión
- Longitud colas
- Pérdidas
- Desorden paquetes

Fallos de red

- Interrupción operación nodo o enlace
- Poco habituales
- Reconfiguración tablas de enrutamiento
- Antes de reconfiguración: pérdidas
- Después: posible congestión

Congestión

- Red saturada: tráfico ofrecido > capacidad
- Posibles causas: volumen de trafico muy elevado, bottleneck en la red
- Poco frecuente en redes bien dimensionadas
- Colas llenas: retardo, pérdida

Longitud colas

- Memoria buffers
- Parámetro de configuración importante
- Longitud corta: pérdidas
- Longitud larga: retardos elevados
- Tamaño intermedia: 50, 100 paquetes

Pérdidas de paquetes

- Primera causa: overflow colas
- Segunda causa: detección errores

Paquetes out-of-order

- Característica del servicio IP
- Aplicaciones: numerar y reordenar
- Timer para detectar pérdidas

Componentes del retardo:

- Encolamiento
- Transmisión

Requisitos de las aplicaciones multimedia

Aplicaciones multimedia

- Sensibles retardo
- Tolerantes pérdidas ("glitches")
 - 10% ok
 - 5% bueno
 - <5% muy bueno</p>
- Error preferible a pérdida

Aplicaciones datos

- Intolerantes pérdidas
- Tolerantes retardo
- Paquete erróneo más perjudicial que una pérdida

Unas pocas palabras sobre compresión de audio

- Señal análoga muestreada a tasa fija
 - teléfono: 8,000 muestras/sec
 - CD musica: 44,100 muestras/sec
- Cada muestra es cuantizada,i.e., redondeada
 - e.g., 2⁸=256 valores posibles
- Cada valor cuatizado representado por bits
 - 8 bits => 256 valores

- Ejemplo: 8,000 muestras por segundo/sec, 256 niveles --> 64,000 bps
- Receptor convierte a señal análoga:
 - Hay reducción de calidad

Ejemplo tasas

- **CD**: 1.411 Mbps
- MP3: 96, 128, 160 kbps
- □ Telefonía en Internet: 5.3 13 kbps

Unas pocas palabras sobre compresión de vídeo

- Video es una secuencia de imágenes desplegadas a tasa constante
 - o e.g. 24 imágenes/sec
- Imagen digital es un arreglo de pixeles
- Cada pixel es representado por bits
- Hay redundancia
 - espacial
 - temporal

<u>Ejemplo:</u>

- MPEG 1 (CD-ROM) 1.5 Mbps
- MPEG2 (DVD) 3-6 Mbps
- MPEG4 (común en in Internet, < 1 Mbps)

Investigación:

- Video en capas (escalable)
 - adapta capas a BW disponible

Multimedia en Internet: caso más simple

audio, video no es flujo contínuo:

no, "pipelining," gran retardo hasta reproducción!

Multimedia en Internet: Vía streaming

- Navegador Obtiene metafile
- Navegador lanza el reproductor pasando el metafile
- Reproductor contacta al servidor
- Servidor envía flujo (streams) de audio/vídeo a reproductor

Streaming desde servidor de streaming

- Esta arquitectura permite protocolo no-HTTP entre servidor y reproductor
- Puede usar UDP en lugar de TCP.

Streaming de Multimedia: Buffering en Cliente

 Buffering en lado cliente, retardo en reproducción compensa variaciones de retardo de la red

Streaming de Multimedia: Buffering en cliente

 Buffering en lado cliente, retardo en reproducción compensa variaciones de retardo

Streaming de Multimedia: UDP o TCP?

<u>UDP</u>

- Servidor envía a tasa apropiada para cliente (obvio para evitar congestión de red!)
 - Tasa envío = tasa de codificación = tasa constante
 - o entonces, tasa llegada = tasa cte. tasa pérdida
- Retardo de reproducción pequeño (2-5 segundos) para compensar variaciones de retardo
- Recuperación de errores: lo que el tiempo permita

TCP

- Enviar a tasa máxima posible bajo TCP
- Llegada de paquetes fluctúa debido a control de congestión de TCP
- Retardo de reproducción mayor: tasa de envío de TCP estable
- HTTP/TCP pasa más fácilmente a través de firewalls

¿Qué es la VoIP?

La VoIP como sus siglas nos lo indican es "Voz Sobre Protocolo de Internet" significa que gracias a VoIP podemos establecer comunicaciones de voz encapsuladas en datos IP.

VoIP

- Es la tecnología que permite comunicar voz sobre el protocolo IP
- normas
- dispositivos
- protocolos

Telefonía sobre IP

 Es el servicio que se presta al publico que esta basado en VoIP

La Telefonía Actualmente...

Los proveedores de Telefonía local permiten que nos comuniquemos de forma Análoga o Digital gracias a la red telefónica publica conmutada (PSTN) que poseen. Lo que hace VoIP es tomar esa señal digital y enviarla en paquetes IP.

VoIP Open Source and Private

Para poder adentrarnos en una parte mas técnica de VoIP, es importante que tengamos en cuenta que existen una gran cantidad de tecnologías para su uso, estas se resumen en 2 grandes grupos:

Open Source

- Tecnologías basadas en los Estándares Abiertos
- SIP, H.323, IAX

Propietario

- Skype,
- CISCO con MGCP (Media Gateway Controller)

Teléfono Internet: Pérdidas y retardo

En la telefonía IP pueden existir perdidas de paquetes por la red o por los retardos:

- ☐ Pérdidas en la red: pérdida de datagrama IP debido a congestión en la red (overflow de buffer de router)
- ☐ Pérdida por retardo: Datagrama IP llega muy tarde para su reproducción en el receptor producido por procesamiento, colas en red; retardo en sistemas extremos (Tx y Rx)
- El retardo máximo tolerable típico: 400 ms
- □ Tolerancia a pérdidas: dependiendo de codificación de voz, pérdidas disimuladas, se puede tolerar entre 1% y 10% de paquetes perdidos.

Teléfono Internet: Retardo de reproducción fijo

- El receptor intenta reproducir cada golpe de voz exactamente q ms después que fue generado.
 - La voz tiene marca de tiempo t y se reproduce en t+q.
 - Si la voz llega después de t+q los datos llegan muy tarde para su reproducción por lo cual los datos son "perdidos"
- Compromiso para q:
 - o q grande: menor pérdida de paquete
 - q pequeño: mejor experiencia interactiva

Retardo de reproducción Adaptivo, I

- Objetivo: minimizar retardo de reproducción, manteniendo baja la tasa de pérdida por retardo
- ☐ Estrategia: Ajuste del retardo de reproducción adaptivo:
 - Retardo de red estimado, ajustar el retardo de reproducción al comienzo de cada segmento de voz.
 - Periodos de silencio alargados o comprimidos.
 - Voz reproducida cada 20 ms durante su presencia.

 $t_i = marca de timepo de i^{mo} paquete$

r_i = tiempo recepción paquete i

p_i = tiempo paquete i es reproducid o

 $r_i - t_i = retardo de red para i^{mo} paquete$

d_i = retardo promedio estimado después de recibir i^{mo} paquete

Estimación dinámica de retardo promedio en receptor

$$d_i = (1-u)d_{i-1} + u(r_i - t_i)$$

Donde u es una constante fija (e.g., u = .01).

Retardo de reproducción Adaptivo, II

- Q: ¿Cómo el receptor determina que un paquete es el primero en un segmento de habla?
- Si no hay pérdida, receptor mira marcas de tiempo sucesivas.
 - Diferencia de marcas de tiempo sucesivas > 20 ms --> segmento de habla comienza.
- Con posible pérdida, el receptor debe mirar las marcas de tiempo y números de secuencia.
 - Diferencia de marcas de tiempo sucesivas > 20 ms y números de secuencia sin espacios --> segmento de habla comienza.

Recuperación de pérdidas de paquetes (1)

forward error correction (FEC): esquema simple

- Por cada n paquetes crea un paquete redundante dando paridad
- envía n+1 paquetes, aumenta ancho de banda en factor 1/n.
- Se puede reconstruir los n paquetes originales si hay a lo más un paquete perdido de los n+1

- Retardo de reproducción debe ser suficiente para recibir todos los n+1 paquetes
- Compromiso:
 - aumentar n, menos BW perdido
 - aumentar n, retardo de reproducción mayor
 - aumentar n, mayor
 probabilidad que 2 ó más
 paquetes se pierdan

Recuperación de paquetes perdidos (2)

2º esquema FEC

- agrega un flujo de baja calidad
- envía flujo de baja resolución como información redundante
- por ejemplo, flujo nominal PCM a 64 kbps y flujo redundante GSM a 13 kbps.

- Cuando no hay pérdidas consecutivas, el receptor puede subsanar la perdida.
- ☐ Se puede agregar también las tramas de baja calidad (n-1) y (n-2)

Recuperación de paquetes perdidos (3)

Entrelazado

- Tramas son subdivididas en pequeñas unidades
- Por ejemplo, unidades de 4 ó 5 ms
- Paquete contiene pequeñas unidades de tramas diferentes
- Si paquete se pierde, aún se tiene la mayoría de cada trama
- No hay redundancia
- Se agrega retardo de reproducción

SIP (Session Initiation Protocol)

Propuesto por la IETF (Internet Engineering Task Force). Ofrece

- ☐ Todas las llamadas telefónicas y video conferencia tienen lugar en la Internet.
- ☐ Las personas son identificadas por nombres o e-mail, en lugar de números telefónicos.
- □ Podemos ubicar a alguien, no importando dónde esa persona esté, no importando qué dispositivo IP este usando.

Servicios SIP

- Establecimiento de llamada
 - Provee mecanismos para que el llamador dé a conocer al llamado su intención de establecer una llamada.
 - Provee mecanismos para acordar tipo y codificación del medio entre llamador y llamado.
 - Provee mecanismos para terminar la llamada.

- Determina dirección IP actual del llamado.
 - Mapea mnemónicos identificados a la dirección IP actual.
- Administración de llamadas:
 - Agregar un nuevo medio durante la llamada.
 - Cambio de codificación durante la llamada.
 - Invitar a otros.
 - Transferir y dejar en espera llamadas.

SIP Agent 456@pqr.com

Establecimiento de llamada a IP conocida

SIP Server (abc.com)

Establecimiento de llamada a IP conocida

SIP Agent (102@203.88.142.219)

SIP Agent (402@220.225.50.115)

- Mensaje SIP invite de Alice indica su puerto y dirección IP.
 Indica codificación preferida de Alice para recibir (PCM ulaw)
- Mensaje 200 OK de Bob indica su puerto, IP y codificación preferida (GSM)
- Mensajes SIP pueden ser enviados sobre TCP o UDP; aquí se hace vía RTP/UDP.
- Puerto por omisión de SIP es 5060.

Ejemplo de mensaje SIP

INVITE sip:bob@domain.com SIP/2.0

Via: SIP/2.0/UDP 167.180.112.24

From: sip:alice@hereway.com

To: sip:bob@domain.com

Call-ID: a2e3a@pigeon.hereway.com

Content-Type: application/sdp

Content-Length: 885

c=IN IP4 167.180.112.24

m=audio 38060 RTP/AVP 0

 Aquí no conocemos la IP de Bob. Servidor SIP intermedio será necesario.

- Alice envía y recibe mensajes SIP usando puerto SIP por omisión 5060.
- Alice especifica en Via: protocolo usado y dirección IP

Notar:

- Sintaxis HTTP del mensaje
- SDP = session description protocol
- Call-ID es única en cada llamada.