416 Test 1 Study guide

Test 1 covers $\S 3.4$, $\S 1.1 \sim \S 1.6$, $\S 2.1 \sim \S 2.5$ from the textbook.

You should be able to do the following

Chapter 3, §3.4

- Using Gaussian elimination solve a system of linear equations
- Using elementary row operations (§3.1) find Row Echelon Form (REF) and Reduced Row Echelon Form (RREF)
- Using augmented matrix find the solution set of a system of linear equations

Chapter 1, $\S 1.1 \sim \S 1.6$

- The 8 axioms of a vector space. You don't need to memorize, but you should be able to use the criteria for a subspace to prove that a given subspace is a vector space.
- The main examples of vector spaces are \mathbb{F}^n , $P_n(\mathbb{F})$, $M_{m \times n}(\mathbb{F})$, $\mathcal{F}(S, \mathbb{F})$ and their subspaces, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and S is a nonempty set.
- Find the subspace spanned by a given subset of a vector space.
- Given a set of linearly dependent vectors write one vector as a linear combination of the other vectors.
- Using the criteria for a subspace prove that a given subset of a vector space is a subspace.
- Determine whether a given set of vectors is linearly dependent or linearly independent.
- Using the criterion for linear independence prove that a given set of vectors is linearly independent.
- Know what it means for a given subset of a vector space to be a basis.
- Prove that a given subset of a vector space is a basis.

Chapter 2, $\S 2.1 \sim \S 2.5$

- Prove that a given map between two vector spaces is a linear transformation
- Given a linear transformation T compute N(T), R(T), nullity (= dim N(T)), rank (= dim R(T)), and verify the dimension theorem (also called rank-nullity theorem)
- Given a linear transformation prove that it is one-to-one or onto.
- Given an ordered basis β of a vector space compute the coordinate vector $[v]_{\beta}$ of a vector v.
- Given a linear map $T: V \to W$ and given ordered bases β, γ of V, W, respectively, compute the matrix representation $[T]^{\gamma}_{\beta}$
- Compute the matrix multiplication, addition and scalar multiplication
- Compute the inverse of small size matrices $(2 \times 2, 3 \times 3, 4 \times 4, ...)$
- Given two ordered bases β, β' for a vector space V compute the change of coordinate matrix $Q = [I_V]_{\beta'}^{\beta}$ such that $[v]_{\beta} = Q[v]_{\beta'}$ for any $v \in V$, and
- $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$ for every linear transformation T on V