Зодача^{ТМ} 2 НЕТ МОНЕТ

Артем Семидетнов, ЛНМО

Аннотация

Решены все пункты кроме 4го

1 Дефиниции

Определение 1.1. Соотношение Безу (Bézout's Identity) - утверждение из теории чисел заключающееся в том, что для любого набора целых чисел существует их линейная комбинация равная их наибольшему общему делителю. То есть для любых $x_1, x_2, \ldots, x_n \in \mathbb{Z}$

$$\exists \{c_i\}_{i=1}^n \subset \mathbb{Z} \quad \sum_{i=1}^n c_i \cdot x_i = \gcd(x_1, x_2, \dots, x_n)$$

Определение 1.2. Если множество S является порождающим в плане полугруппы для G, будем писать $\langle S \rangle_{sem} = G$. Понятно, что $S^+ = \langle S \rangle_{sem}$. Мы будем придерживаться обоих обозначений.

Определение 1.3. Для группы $G = \langle S | R \rangle$ введем метрику на графе Кэли : $d_S(\cdot, \cdot)$ – кратчайший путь от одного элемента к другому(иначе - от класса эквивалентности одного слова к другому).

Определение 1.4. Длиной элемента $g \in G$ будем называть $l(g) = d_S(e_G, g)$

Замечание 1.5. Понятно, что введенная в задаче функция $M_S(g)$ является тем же самым, что и общепринятая длина слова. Далее в работе мы будем придерживаться терминалогии l(g).

Определение 1.6. Элемент g называется тупиком, если $l(gs) \leqslant l(g), \quad \forall s \in S \cup S^{-1}$

2 Пункт 1

Теорема 2.1. Пусть $\langle S \rangle_{sem} = X$, причем $S = \{a,b\} \subset \mathbb{N} \pmod{a,b} = 1$, тогда

$$\forall n \geqslant a \cdot b - a - b + 1 \quad n \in X$$

Доказательство. Докажем по индукции:

- 1. Порождается $a \cdot b a b + 1$. Это проверяется по ссылке [2]. Можно заметить, что конкретно проверять разрешимость данного диофантова уравнения не обязательно, поскольку существует теорема, утверждающая, что любое диофантово уравнение вида ax + by = c, где gcd(a, b) = 1 имеет решения [3].
- 2. Пусть порождается $\tilde{n} \geqslant a \cdot b a b + 1$. Докажем, что породится $\tilde{n} + 1$. Понятно, что существуют такие x_1, x_2 , что $x_1 \cdot a + x_2 \cdot b = \tilde{n}$. Нам необходимо найти такие y_1, y_2 , что $y_1 \cdot a + y_2 \cdot b = \tilde{n} + 1$. Приравняем некоторые части уравнений, а именно:

$$x_1 \cdot a + x_2 \cdot b = y_1 \cdot a + y_2 \cdot b - 1$$

Получим:

$$(y_1 - x_1) \cdot a + (y_2 - x_2) \cdot b = 1$$

Поскольку a и b взаимно просты такие коэффициенты будут сущестовать по соотношению Безу.

Следствие 2.2. Для подполугруппы $(3,5)_{sem}$ все будет порождаться с номера $3 \cdot 5 - 3 - 5 + 1 = 8$. А это пункт 1(a)

$$S^+ = \{3\} \cup \{5\} \cup \mathbb{N}_8$$

Замечание 2.3. Подробнее про данное явление написано в Пункте 2.

Теорема 2.4. При любом множестве состоящим из взаимно простых чисел S

$$\langle S \rangle = \mathbb{Z}$$

Доказательство. Этот факт - прямое следствие соотношения Безу. Поскольку нод всех чисел из S равен 1, можно линейной комбинацией получить ее. Далее понятно, что $\langle 1 \rangle = \mathbb{Z}$

3 Пункт 2

Весь раздел задачи, представленный в этом пункте является проблемой Фробениуса(Frobenius Problem), также известной как "Coin problem". Это довольно известная задача на оценку числа обозначаемого $g(a_1, a_2, \ldots, a_n)$ для неотрицательных a_i , коий наибольший общий делитель равен 1, являющегося максимальным не имеющим решений в диофантовом уравнении(с неотрицательными коэффициентами) числом. То есть это максимальное число $\omega \in \mathbb{N}$, что диофантово уравнение

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = \omega$$

от неотрицательных переменных и коэффициентах не имеет решений. Можно дать еще одну формулировку:

$$g(a_1, a_2, \dots, a_n) \stackrel{\text{def}}{=} \max\{n \in \mathbb{N} \mid \nexists \{x_i\}_{i=1}^n \subset \mathbb{N} \quad \sum_{i=1}^n a_i \cdot x_i = n\}$$

Заметим, что $g(a_1, a_2)$ - двух чисел вычислен и известен(см. [6]). Оно имеет вид

$$g(a_1, a_2) = a_1 \cdot a_2 - a_1 - a_2$$

Легко видеть, что это еще один способ доказательства пункта 1(a) - все числа начиная с $a_1 \cdot a_2 - a_1 - a_2 + 1$ будут входить в $\langle a_1, a_2 \rangle_{sem}$ (в частном случае для $\langle 3, 5 \rangle_{sem}$ это будет 8). Строго говоря, еще можно дать оценку на $g(a_1, a_2, a_3)$ (см. [7]):

$$g(a_1, a_2, a_3) \geqslant \sqrt{3a_1a_2a_3} - a_1 - a_2 - a_3$$

Заметим, что существует алгоритм, вычислющий за полиномиальное время $g(a_1, a_2, \dots, a_n)$ при заданных $a_i, i = \overline{1, n}$. Он представлен в [5].

4 Пункт 3

Замечание 4.1. Понятно, что относительно абелевой группы $\mathbb{Z} = \langle S \, | \, S \rangle$ поиск неудачных слов (таких, что l(g+s) < l(g)+1) эквивалентен поиску тупиков.

Теорема 4.2. Пусть $S = \{a,b\}$ (gcd(a,b) = 1). Не умаляя общности считаем, что $a > b \geqslant 1$. Тогда справедливо одно из двух:

1. a + b четно — тогда существует ровно b - 1 тупиков в $\langle S \rangle$. И каждый из них имеет вид

$$\frac{(a+b)\cdot(2\alpha-b)}{2}$$

Для $\alpha = \overline{1,b-1}$

2. a+b нечетно — тогда существует ровно $2\cdot (b-1)$ тупиков в $\langle S \rangle$. И каждый из них имеет вид

$$\frac{(a+b)\cdot(2\alpha-b)\pm b}{2}$$

Для
$$\alpha = \overline{1,b-1}$$

Доказательство. Доказательство данного факта можно найти в [4].

Следствие 4.3. В пункте 3 можно дать ответ на частный случай - 7+9 четно. Тогда множество тупиков следующее

$$F(S) = F(\{7,9\}) = \left\{ \frac{16 \cdot (2\alpha - 7)}{2} \mid \alpha = \overline{1,6} \right\} = \left\{ 8 \cdot (2\alpha - 7) \mid \alpha = \overline{1,6} \right\}$$

Следствие 4.4. Можно описать множество $\{n/16 \mid n \in F(S)\}$. Это будет множество вида

$$\left\{ \frac{2\alpha - 7}{2} \mid \alpha = \overline{1, 6} \right\}$$

Лемма 4.5. $S^+ \cap F(S) = \emptyset$

Доказательство. Для этого опять обратимся к статье [4]. В ней для фиксированного порождающего множества вводилось понятие фробениусова числа — в нашем случае для $S = \{a, b\}$. Итого, число $\omega \in \mathbb{N}$ назовем фробениусовым, если

$$\nexists x, y \in \mathbb{N}$$
 $x \cdot a + y \cdot b = \omega$

Было доказано(см. [4]), что число фробениусово для $\langle a,b\rangle_{sem}$ тогда и только тогда когда оно тупик в $\langle a,b\rangle$. Тогда понятно, что вское фробениусово число для $S=\{a,b\}$ не может быть порождено в $\langle a,b\rangle_{sem}$. Тоже верно в обратную сторону.

Замечание 4.6. На вопросы 3(a), 3(b) и 3(c) отвечают вышеизложенные теорема, два замечания и лемма.

Список литературы

- [1] THE UNBOUNDED DEAD-END DEPTH PROPERTY IS NOT A GROUP INVARIANT TIM R. RILEY and ANDREW D. WARSHALL
- 2 https://www.wolframalpha.com/input/?i=diophantine(x*a%2By*b+%3D+(a-1)*(b-1))
- [3] Линейные диофантовы уравнения. Г.И. Фалин
- [4] Frobenius Problem and dead ends in integers. Zoran Šunić
- [5] "Lattice translates of a polytope and the Frobenius problem". Combinatorica. Ravi Kannan (1992)
- [6] https://en.wikipedia.org/wiki/Coin_problem
- [7] The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments. A. V. Ustinov