Assignment 1 - bridging course

Linus Falk

30 oktober 2022

1 Workout 2.9

Prove that if x and y are floating-point numbers with $\frac{y}{2} \le x \le y$ then fl(x-y) = x-y provided that the guard digit is supported, $\beta = 2$ and x-y does not underflow.

Let $y = (d_0 d_1 d_2 \dots d_{p-1})\beta^e$ Then we have:

$$(d_0 d_1 d_2 \dots d_{p-1}) \beta^{e-1} \le x \le (d'_0 d'_1 d'_2 \dots d'_{p-1}) \beta^e$$
(1)

if we investigate the inequality we can see that x is between the exponent e and e-1. For every x with the same e as y we have exact subtraction of the two floating-type numbers. In the other case we have a maximum difference of 1 in the exponent. If swap between x and y, such that $0 \le y \le x$ and scale them so we can represent the digits in x as in (2) $(x_0x_1...x_{p-1})$ we will have exact subtraction because $x \le y$ and $x - y \le y$, so we will only have p valid digits and $w_0 = 0$

2 Workout 2.10

Consider the Newton's method for solving $f(x) = a - \frac{1}{x}$ for a given real number a. Show that the computation of $x_{k+1} from x_k$ (successive Newton's iterations) can be expressed as two multiply-adds, thus the roundoff errors is reduced by a factor of $\frac{1}{4}$ if FMA operation is available.

2.1 Newtons method

$$x_{k+1} = x_k - \frac{f(x)}{f'(x)} \tag{3}$$

We find the derivative of $a - \frac{1}{x}$ that is $\frac{1}{x^2}$ and plug into (2) and simplify to see if we can put it in two multiply-adds form.

$$x_{k+1} = x_k - \frac{a - \frac{1}{x_k}}{\frac{1}{x^2}} = x_k - x_k^2 \left(a - \frac{1}{x_k} \right) = x_k - x_k \left(ax_k - 1 \right)$$
 (4)

By putting the equation on the later form we can compute the iterations with two multiply-adds. First inside the parenthesis and then the outer part.