The Cantor set and the Devil's staircase

Manuela Girotti

MATH 3441 Real Analysis I

In these notes we will prove a few properties of the Cantor set and we will construct a pathological function $\mathcal{D}: [0,1] \to [0,1]$ (the "Devil's staircase") that is continuous everywhere, whose derivative is zero almost everywhere, but it somehow magically rises from 0 to 1.

The section about the Devil's staircase will be more of a collection of facts with very few proofs, than a thorough exposition. We will explore the topic more in details in our upcoming course Real Analysis II!

1 The Cantor set \mathcal{C}

The (standard) Cantor set is the set $\mathcal{C} \subseteq [0,1]$ constructed as follows.

We start with the full interval $F_0 = [0, 1]$. Divide F_0 into three equal parts and let I_1 be the open middle third of F_0 , that is $I_1 = (\frac{1}{3}, \frac{2}{3})$, and define

$$F_1 = F_0 \setminus I_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right] .$$

Let I_2 and I_3 be the open middle thirds of the two component intervals of F_1 , i.e. $I_2 = (\frac{1}{9}, \frac{2}{9})$ and $I_3 = (\frac{7}{9}, \frac{8}{9})$, and define

$$F_2 = F_1 \setminus (I_2 \cup I_3) = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$$
.

Continue the construction iteratively: having constructed the set F_n , which is the disjoint union of 2^n closed intervals each of length $\frac{1}{3^n}$, let $I_{2^n}, I_{2^{n+1}}, \ldots, I_{2^{n+1}-1}$ be the open middle thirds to of these 2^n component intervals and define

$$F_{n+1} = F_n \setminus (I_{2^n} \cup I_{2^n+1} \cup \ldots \cup I_{2^{n+1}-1})$$
.

See the figure below to get an idea of how these sets look like.

_			1	
_	1/	3		
1	L/9			
1/27	_			
1/81				

Then, the Cantor set is

$$\mathcal{C} = \bigcap_{n=1}^{\infty} F_n.$$

The first straightforward properties of the Cantor set are the following.

Proposition 1. The Cantor set is closed and nowhere dense.

Proof. For any $n \in \mathbb{N}$, the set F_n is a *finite* union of closed intervals. Therefore, \mathcal{C} is closed because intersection of a family of closed sets. Notice that this will additionally imply that \mathcal{C} is compact (as $\mathcal{C} \subset [0,1]$).

Now, since $C = \overline{C}$, we simply need to prove that C has empty interior: $C^{\circ} = \emptyset$. Assume by contradiction that $C^{\circ} \neq \emptyset$, i.e. there exists an interior point $x_0 \in C$: therefore, $\exists \ \epsilon > 0$ such that $(x_0 - \epsilon, x_0 + \epsilon) \subset C$. Let $N \in \mathbb{N}$ such that $\frac{1}{3N} < 2\epsilon$. By construction,

$$\mathcal{C} = \bigcap_{n=1}^{\infty} F_n \subset F_N$$

and F_N is the union of 2^N intervals, each of length $\frac{1}{3^N}$ which is strictly less than the length of the interval $(x_0 - \epsilon, x_0 + \epsilon)$. Thus, the contradiction.

A little more work is required to prove the following property.

Proposition 2. The Cantor set is uncountable.

Let us first consider an equivalent representation of the Cantor set that will help us in the proof. We start by noticing that every $x \in [0,1]$ admits at most two representations in base 3 (ternary expansion):

$$x = 0.d_1 d_2 d_3 \dots = \sum_{j=1}^{\infty} \frac{d_j}{3^j}$$

with $d_i \in \{0, 1, 2\}$ (the endpoint x = 1 has representation 1 = 0.22222...).

The only cases where $x \in [0,1]$ may admit two equivalent expansions arise when $x \in \mathbb{Q}$ and its denominator is a multiple of 3: for example, $\frac{1}{3} = 0.10000\ldots = 0.02222\ldots$ In these (at most countably many) cases we have two representations for $x = 0.d_1d_2d_3\ldots = 0.c_1c_2c_3\ldots$), however they can be easily identified: let $N := \min\{j \in \mathbb{N} \mid d_j \neq c_j\}$ and (w.l.o.g.) assume $d_N < c_N$; then, necessarily $c_N = d_N + 1$ and $c_{N+1} = c_{N+1} = \ldots = 0$ and $d_{N+1} = d_{N+2} = \ldots = 2$ (in particular, either $c_N = 1$ or $d_N = 1$). Therefore among those two ternary expansion, there is only one which doesn't contain 1's.

Within this setting, the Cantor set can be represented as

$$C = \{x = 0.d_2d_2d_3 \dots \mid d_j \in \{0, 2\} \ \forall \ j \in \mathbb{N}\} \ .$$

Indeed, starting from the first "mid-pinch" I_1 we have that the endpoints

$$\frac{1}{3} = 0.10000... = 0.02222...$$
 and $\frac{2}{3} = 0.20000... = 0.12222...$

and any other point $x \in I_1$ has base-3 representation of the form $x = 0.1d_2d_3d_4d_5...$ where the sequence $d_2d_3d_4d_5...$ is strictly between 0000... and 2222...

Therefore, all points $x \in F_1 = [0,1] \setminus I_1$ have base-3 representation of the form $x = 0.0d_2d_3d_4d_5...$ or $x = 0.2d_2d_3d_4d_5...$ At the next step, similarly, the "mid-pinch" removes numbers of the form $x = 0.01d_3d_4d_5...$ and $x = 0.21d_3d_4d_5...$, therefore points $x \in F_2 = F_1 \setminus (I_2 \cup I_3)$ have a base-3 representation whose first two digits are restricted from being equal to 1. Continuing on in the construction of the sets F_n , we can see that the points in F_n have a base-3 expansion whose n-th digit is not equal to 1.

We are now ready to prove Proposition 2.

Proof. Assume that \mathcal{C} is countable and collect all of its points in an infinite table:

$$x_1 = 0.d_1^1 d_2^1 d_3^1 d_4^1 d_5^1 \dots$$

$$x_2 = 0.d_1^2 d_2^2 d_3^2 d_4^2 d_5^2 \dots$$

$$x_3 = 0.d_1^3 d_2^3 d_3^3 d_4^3 d_5^3 \dots$$

$$x_1 = 0.d_1^4 d_2^4 d_3^4 d_4^4 d_5^4 \dots$$

$$\vdots$$

By using Cantor diagonalization trick (seen in class), we can easily construct a new point $\bar{x} \in \mathcal{C}$, which has not being accounted for in the table, by considering all the "diagonal" digits d_j^j in the table above and replacing any 0 with 2 and viceversa. Thus, the contradiction.

2 The Devil's staircase

The formal definition of the Devil's staircase function \mathcal{D} is the following. Recall the ternary representation of a point $x \in [0, 1]$:

$$x = \sum_{j=1}^{\infty} \frac{d_j^{(x)}}{3^j}$$
, with $d_j^{(x)} \in \{0, 1, 2\}$;

denote by N_x the smallest index j such that $d_j^{(x)} = 1$, if it exists, otherwise $N_x = \infty$. Then, the Cantor function is the following

$$\mathscr{D}(x) := \frac{1}{2^{N_x}} + \frac{1}{2} \sum_{j=1}^{N_x - 1} \frac{d_j^{(x)}}{2^j}$$

Remark 3. Notice that \mathcal{D} is well defined, i.e. its value is independent on the choice of the base-3 expansion in the cases where x admits two of them.

An alternative way to define such a function (and an easier way to visualize it) is through an iterative construction. We consider the following a sequence of continuous functions $\{f_n\}_{n\in\mathbb{N}}\in F_b([0,1];[0,1])\cap C^0([0,1])$: let

$$f_1(x) = x$$

and $\forall n \in \mathbb{N}$ we have

$$f_{n+1}(x) = \begin{cases} \frac{1}{2} f_n(x) & x \in [0, \frac{1}{3}) \\ \frac{1}{2} & x \in [\frac{1}{3}, \frac{2}{3}] \\ \frac{1}{2} + \frac{1}{2} f_n(3x - 2) & x \in (\frac{2}{3}, 1] \end{cases}$$

By induction, it is possible to prove that f_n is indeed a continuous function on [0,1], for every $n \in \mathbb{N}$.

Proposition 4. The sequence of functions $\{f_n\}$ defined above converges uniformly to the Devil's staircase:

$$||f_n - \mathcal{D}||_{\infty} \to 0$$
, as $n \to \infty$.

Proof. As a first step, by using again the ternary representation of points in [0,1], we notice that $f_n(x)$ converges pointwise to $\mathcal{D}(x)$ (why?). Th uniform convergence follows by noticing that the sequence of functions $\{f_n\}$ is Cauchy.

Indeed, consider the quantity

$$||f_{n+1} - f_n||_{\infty} = \sup_{x \in [0,1]} |f_{n+1}(x) - f_n(x)| = \frac{1}{2} \sup_{x \in [0,1]} |f_n(x) - f_{n-1}(x)| = \frac{1}{2} ||f_n - f_{n-1}||_{\infty}, \quad \forall \ n \ge 1;$$

therefore,

$$||f_{n+1} - f_n||_{\infty} \le \frac{1}{2} ||f_n - f_{n-1}||_{\infty} \le \dots \le \frac{1}{2^n} \underbrace{||f_2 - f_1||_{\infty}}_{=\frac{1}{6}}.$$

Recall now the following property (see Homework 6): given a sequence $\{x_n\}$ in a metric space (X, d), if there exists a sequence $\{\gamma_n\}_{n=1}^{\infty} \subset [0, +\infty)$ such that

Figure 1: The Devil's staircase \mathcal{D} .

(i)
$$d(x_n, x_{n+1}) \le \gamma_n$$
, $\forall n \ge 1$ and (ii) $\sum_{n=1}^{\infty} \gamma_n < \infty$,

then $\{x_n\}$ is a Cauchy sequence.

In our case we have $\gamma_n = \frac{1}{32^{n+1}} \in (0, +\infty \ \forall \ n \geq 1 \ \text{and} \ \sum_n \gamma_n = \frac{1}{3} \sum_n \frac{1}{2^{n+1}} < +\infty \ (\text{geometric series with ration} \ q = \frac{1}{2} < 1)$. Therefore our sequence of functions $\{f_n\} \subset F_b([0,1];[0,1]) \cap C^0([0,1])$ is a Cauchy sequence, therefore it is convergent (recall that $(F_b([0,1];[0,1]), \|\cdot\|_{\infty})$ is a Banach space).

The Devil's staircase is related to the Cantor set because by construction \mathscr{D} is constant on all the removed intervals from the Cantor set. For example: $\mathscr{D}(x) = \frac{1}{2}$ for $x \in I_1 = (\frac{1}{3}, \frac{2}{3})$, $\mathscr{D}(x) = \frac{1}{4}$ for $x \in I_2 = (\frac{1}{9}, \frac{2}{9})$ and $\mathscr{D}(x) = \frac{3}{4}$ for $x \in I_3 = (\frac{7}{9}, \frac{8}{9})$, and so on.

Further properties are listed (and partly proven) in the Proposition below:

Proposition 5. The Devil's staircase $\mathcal{D}: [0,1] \to [0,1]$ satisfies the following properties:

- 1. \mathcal{D} is (uniformly) continuous and monotone increasing.
- 2. \mathscr{D} has derivative equal to zero almost everywhere. (the precise formulation is that $\mathscr{D}'(x) = 0 \ \forall \ x \in [0,1] \setminus \mathcal{C}$ and \mathcal{C} has measure zero).
- 3. The arc length of the graph of \mathcal{D} is equal to 2.

Proof. (partial - tune in for Real Analysis II for more!

 \mathscr{D} is continuous, since uniform limit of continuous functions. It is additionally uniformly continuous because it is defined on the compact set [0,1]. Additionally, $\forall n \in \mathbb{N}$ we have that $f_n(0) = 0$, $f_n(1) = 1$ and $f_n(x) \leq f_n(y) \ \forall x, y \in [0,1]$, $x \leq y$, therefore such properties still hold in the limit: $\mathscr{D}(0) = 0$, $\mathscr{D}(1) = 1$ and $\mathscr{D}(x) \leq \mathscr{D}(y) \ \forall x < y$.

4