

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	СТ «Информатика и системы управления»	
КАФЕЛРА	«Программное обеспечение ЭВМ и информационные технологии»	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

«Разработка базы данных для сравнительного анализа цен на элементы продуктовой корзины первой необходимости»

Студент <u>ИУ7-63Б</u>		ИУ7-63Б
(Группа)	(Подпись, дата)	(И. О. Фамилия)
Руководитель курсовой работы	(Подпись, дата)	Лысцев Н. Д. (И. О. Фамилия)
Консультант	(Подпись, дата)	Строганов Ю. В. (И. О. Фамилия)

СОДЕРЖАНИЕ

Β.	ВЕД	ЕНИЕ		4
1	Ана	алитич	неский раздел	5
	1.1	Аналі	из предметной области	5
	1.2	Суще	ствующие решения	8
	1.3	Форм	ализация и описание информации, подлежащей хранению	
		в про	ектируемой базе данных	9
	1.4	Форм	ализация и описание пользователей проектируемого при-	
		ложен	ния к базе данных	11
	1.5	Класс	сификация и выбор СУБД по модели данных	13
		1.5.1	Дореляционные базы данных	13
		1.5.2	Реляционные базы данных	15
		1.5.3	Постреляционные базы данных	15
2	Кон	нструк	кторский раздел	17
	2.1	Проев	ктирование базы данных	17
		2.1.1	Таблицы базы данных	17
		2.1.2	Триггеры базы данных	18
		2.1.3	Процедуры базы данных	18
		2.1.4	Функции базы данных	18
		2.1.5	Описание проектируемой ролевой модели на уровне базы	
			данных	18
	2.2	Проев	ктирование приложения	19
\mathbf{C}	пис	OK U	ІСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	21

ВВЕДЕНИЕ

Целью данного курсового проекта является разработка базы данных для сравнительного анализа цен на элементы продуктовой корзины первой необходимости.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) провести анализ предметной области;
- 2) проанализировать существующие решения;
- 3) спроектировать базу данных, описать ее сущности и связи между сущностями;
- 4) выбрать подходящие средства реализации;
- 5) реализовать базу данных;
- 6) провести исследования созданной базы данных.

1 Аналитический раздел

В данном разделе будет проведен анализ предметной области, будет проведено сравнение существующих решений. Также будет проведена формализация и описание информации, подлежащей хранению в проектируемой базе данных, будут выделены типы пользователей проектируемого приложения к базе данных, а также будет выбрана модель базы данных.

1.1 Анализ предметной области

В данном подразделе будет формально описан список продуктов первой необходимости, Росстат — орган, отвечающий за сбор статистики и участвующий в формировании цен на продукты, а также описан «Меркурий» — автоматизированная система для отслеживания продуктов питания на всей цепи их производства.

Элементы продуктовой корзины первой необходимости

Согласно постановлению Правительства № 530 [1], элементами продуктовой корзины первой необходимости являются следующие продукты:

- говядина, баранина, свинина (кроме бескостного мяса);
 куры (кроме куриных окорочков);
 рыба мороженая неразделанная;
 масло сливочное;
 масло подсолнечное;
 молоко питьевое;
- сахар-песок;

– яйца куриные;

- соль поваренная пищевая;
- чай черный байховый;

- мука пшеничная;
- хлеб ржаной, ржано-пшеничный;
- хлеб и булочные изделия из пшеничной муки;
- рис шлифованный;
- пшено;
- крупа гречневая ядрица;
- вермишель;
- картофель;
- капуста белокочанная свежая;
- лук репчатый;
- морковь;
- яблоки.

Акции на товары

На данный момент рынок розничной торговли очень насыщен. С каждым днем среди производителей конкуренция растет высокими темпами. Одной рекламы порой бывает не достаточно, чтобы привлечь внимание к производителю и его продукции. Чтобы хоть как то выделиться среди многочисленных фирм и предприятий, компаниям необходимо прибегать к методам стимулирования сбыта продукции [2].

Одна из форм стимулирования — **ценовая** [2]. Ее суть заключается в установлении скидки на определенный товар или группу товаров. Можно выделить 5 основных типов акций со снижением цены [3; 4]:

- скидка «товар дня»;
- скидка за объем, в том числе по принципу «1+1=3»;
- скидка отдельным категориям покупателей;

- скидка, приуроченная к определенному событию;
- сезонная распродажа.

Росстат

Росстат — федеральный орган исполнительной власти, осуществляющий функции по формированию официальной статистической информации о социальных, экономических, демографических, экологических и других общественных процессах в Российской Федерации. [5].

Одним из направлений сбора статистики являются цены, инфляция. Организации и их филиалы, индивидуальные предприниматели предоставляют в Росстат статистические отчеты, на основе которых производится расчет цен на различного рода товары и услуги.

ФГИС «Меркурий»

ФГИС «Меркурий» — автоматизированная система, предназначенная для отслеживания продуктов питания на всей цепи производства и перемещения до точки реализации [6].

Работа с «Меркурием» заключается в создании и «гашении» ветеринарно-сопроводительных документов (ВСД) на всех этапах движения товара: от производства и переработки до продажи или утилизации.

Создание ФГИС «Меркурий» позволило достичь следующих целей [6; 7]:

- защита потребителя от некачественной и небезопасной продукции, а все население страны от экономических и социальных угроз;
- обеспечение прозрачности и эффективности действий надзорных органов в борьбе с мошенничеством;
- минимизация бюрократии и предоставление удобного прозрачного механизма для комфортной работы частного бизнеса.

Помимо ВСД существует еще 3 типа разрешительных документов на пищевую продукцию [8]:

- декларация о соответствии на пищевую продукцию (ДС);
- добровольный сертификат на пищевую продукцию;
- свидетельство о государственной регистрации пищевой продукции (СГР на пищевую продукцию).

1.2 Существующие решения

На рынке существует большое количество сервисов для мониторинга цен на продукты в различных магазинах. Наиболее популярными являются:

- «Едадил» [9];
- SkidkaOnline [10];
- Price.ru [11].

Сравнение существующих решений было произведено в таблице 1.1:

Таблица 1.1 – Сравнение существующих решений

Критерии	«Едадил»	SkidkaOnline	Price.ru
возможность сравнения цены на	+	-	+
конкретный товар в разных ма-			
газинах			
возможность оставить отзыв о	+	+	+
товаре			
наличие информации об акциях	+	+	+
на товары			
возможность просмотра динами-	-	-	+
ки изменения цены			
возможность просмотра серти-	-	-	_
фикатов соответствия конкрет-			
ного товара			

1.3 Формализация и описание информации, подлежащей хранению в проектируемой базе данных

На основе анализа предметной области, в разрабатываемой базе данных были выделены сущности, приведенные в таблице 1.2:

Таблица 1.2 – Выделенные сущности предметной области и их описание

Сущность	Сведения	
Пользователь	ФИО, номер телефона, пароль	
Магазин	Название, телефон, адрес, ФИО директора	
Товар	Название, категория, бренд, состав, вес, масса	
	нетто, тип упаковки	
Сертификат соответ-	Тип сертификата, номер сертификата, норма-	
ствия	тивный документ, дата регистрации сертифи-	
	ката, дата окончания действия сертификата,	
	статус соответствия	
Цена	Цена, единица измерения, дата установки	
Акция	Тип акции, дата начала, дата конца, размер	
	бонуса, описание	
Оценка товара	Отзыв, рейтинг	
Производитель	Название, адрес, страна, контактная инфор-	
	мация	
Дистрибьютор	Название, адрес, контактная информация	
Ритейлер	Название, адрес, контактная информация	

На рисунке 1.1 представлена ER-диаграмма сущностей проектируемой базы данных в нотации Чена:

Рисунок 1.1 – ER-диаграмма сущностей проектируемой базы данных в нотации Чена

1.4 Формализация и описание пользователей проектируемого приложения к базе данных

В соответствии выделенными в разрабатываемой базе данных сущностями выделяется 3 типа пользователей:

Таблица 1.3 – Типы пользователей и их описание

Тип пользователя	Описание	
Гость	Может просматривать всю информацию о то-	
	варах, сравнивать цены.	
Зарегистрированный	Может все то же, что и гость, а также ставить	
пользователь оценки на товары, добавлять новые т		
	вносить изменения в цену товара, а также	
	добавлять новые магазины.	
Администратор	Управляет всей системой. Может все то же,	
	что и гость, а также удалять магазины, добав-	
	лять/удалять сертификаты на товары.	

На рисунке 1.2 представлены диаграммы вариантов использования для различных пользователей системы:

Рисунок 1.2 – Диаграмма вариантов использования для различных пользователей системы

1.5 Классификация и выбор СУБД по модели данных

СУБД — приложение, обеспечивающее создание, хранение, обновление и поиск информации в базах данных.

Модель данных — это абстрактное и логическое определение объектов и его поведение, в совокупности составляющих доступ к данным, с которой взаимодействует пользователь [12]. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.

По модели данных СУБД разделяются на:

- 1) дореляционные модели, которые, в свою очередь, делятся на:
 - инвертированные списки;
 - иерархические;
 - сетевые.
- 2) реляционные модели данных;
- 3) постреляционные модели данных.

1.5.1 Дореляционные базы данных

Дореляционные БД подразделяются на инвертированные списки, иерархические БД и сетевые БД.

БД на основе инвертированных списков состоит из двух областей: основная и индексная области. Основная область представляет собой наборы файлов с записями. Записи в файле имеют фиксированную длину и расположены либо в произвольном порядке, либо упорядочены в соответствии с физической организацией хранения данных. Индексная область представляет собой индексные файлы — файлы, содержащие значения ключей поиска и соответствующие этим значениям номера записей из файлов основной области [13]. В такой системе отсутствуют механизмы поддержания целостности хранимых данных, эта работа возлагается на программу, которая работает с такой БД.

Иерархическая БД состоих из трех основных элементов: физическая база данных, сегмент и поле. Поле представляет собой минимальную, неделимую единицу данных. Сегмент – запись в базе данных, состоящая из полей. Для

идентификации отдельного сегмента используется некоторый набор ключевых полей. В такой модели сегменты образуют ациклический древовидный граф, называемый физической базой данных. Физическая база данных должна удовлетворять следующим ограничениям [13]:

- в каждой физической БД должен существовать только один корневой сегмент;
- сегмент-предок может быть связан с произвольным числом сегментовпотомков;
- сегмент-потомок может быть связан только с одним сегментом-предком.

Благодаря данным ограничениям осуществляется поддержка ссылочной целостности между сегментами-предками и сегментами-потомками, однако нет поддержки целостности данных между сегментами, не входящими в одну иерархию.

Сетевая модель БД есть расширение иерархической: в иерархических структурах запись-потомок должна иметь в точности одного предка; в сетевой структуре данных потомок может иметь любое число предков[14]. Основные термины сетевой модели баз данных включают элемент (узел) и связь. Узел представляет собой набор атрибутов, описывающих определённый объект. Сетевые базы данных можно визуализировать в виде графа. Логика извлечения данных в сетевой БД зависит от их физической организации, что делает эту модель не полностью независимой от приложения. Иными словами, при необходимости изменения структуры данных потребуется также внести коррективы в само приложение [15].

Преимущество дореляционных БД состоит в том, что они позволяют управлять данными на низком уровне. Недостатком является необходимость знания физической организации данных и зависимость прикладных систем от этой организации [14].

1.5.2 Реляционные базы данных

Реляционная модель состоит из следующих трех частей:

- 1) структурная описывает, из каких объектов состоит реляционная модель. Определяется, что единственной структурой данных, используемой в реляционных БД, являются нормализованное n-apное отношение [14];
- 2) целостная отношения должны удовлетворять определенным условиям целостности [15]:
 - целостность сущности любой кортеж любого отношения должен отличаться от любого другого кортежа этого же отношения;
 - ссылочная целостность для каждого значения внешнего ключа, присутствующего в дочернем отношении, в родительском отношении должен существовать кортеж с соответствующим значением первичного ключа.
- 3) манипуляционная [15] манипулирования отношениями осуществляется средствами реляционной алгебры и/или реляционного исчисления.

Основными достоинствами реляционных БД является наличие небольшого набора абстракций, простого и в то же время мощного математического аппарата, возможность ненавигационного манипулирования данными без необходимости знания конкретной физической организации баз данных во внешней памяти [14].

1.5.3 Постреляционные базы данных

Постреляционная модель в общем случае есть расширение классической реляционной модели. В такой модели используются структуры, позволяющие хранить в полях таблицы другие таблицы, а в качестве языка запросов используется расширенный SQL [16].

Преимуществом такой модели данных является возможность представления связанных реляционных таблиц одной постреляционной таблицей, что расширяет возможности описания сложных предметов реального мира, а недостатком – сложность в обеспечении целостности данных [17].

Вывод

Таблица 1.4 – Сравнение баз данных по модели данных

Модель данных	Обеспечение целостности сущностей	Обеспечение ссылочной целостности	Независимость от физической организации данных
Дореляционная	+	+	-
Реляционная	+	+	+
Постреляционная	-	+	+

В данном разделе была проанализирована предметная область, рассмотрены существующие решения. На основе анализа предметной области была формализована задача и данные, описаны типы пользователей.

Для разрабатываемой базы данных необходимо обеспечение целостности сущностей, целостных связей между сущностями, а также независимость от физической организации данных. Дореляционные модели данных не подходят, поскольку они зависимы от физической организации хранения данных, а в моделях на основе инвертированных списков отсутствуют ограничения целостности. Не подходит также и постреляционная модель, поскольку в этой модели возникают сложности с обеспечением целостного хранения данных изза отмены ограничения на атомарность значений атрибутов. Таким образом, согласно с таблицей 1.4, для хранения данных была выбрана реляционная модель, поскольку она удовлетворяет всем необходимым требованиям.

2 Конструкторский раздел

В данном разделе...

2.1 Проектирование базы данных

В данном подразделе...

2.1.1 Таблицы базы данных

На рисунке 2.1 представлена ER-модель разрабатывамой базы данных:

Рисунок 2.1 – ER-модель базы данных

- 2.1.2 Триггеры базы данных
- 2.1.3 Процедуры базы данных
- 2.1.4 Функции базы данных
- 2.1.5 Описание проектируемой ролевой модели на уровне базы данных

2.2 Проектирование приложения

Рисунок 2.2

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Постановление Правительства РФ от 15 июля 2010 г. N 530 [Электронный ресурс]. Режим доступа: https://base.garant.ru/12177401/(дата обращения: 01.04.2024).
- 2. Стимулирование продаж [Электронный ресурс]. Режим доступа: https://dgpu-journals.ru/wp-content/uploads/2019/12/semahin.pdf (дата обращения: 02.04.2024).
- 3. Типы акций в рознице и как на них заработать [Электронный ресурс]. Режим доступа: https://kub-24.ru/2021/07/20/tipy-aktsij-v-roznitse-i-kak-na-nih-zarabotat/ (дата обращения: 09.04.2024).
- 4. Лучшие идеи для акций в розничном магазине [Электронный ресурс]. Режим доступа: https://www.ekam.ru/blogs/pos/aktsii-v-roznichnom-magazine (дата обращения: 09.04.2024).
- 5. Что такое Росстат [Электронный ресурс]. Режим доступа: https://rosstat.gov.ru/mission (дата обращения: 23.03.2024).
- 6. ФГИС «Меркурий» [Электронный ресурс]. Режим доступа: https://www.vetrf.ru/vetrf/materials/ (дата обращения: 23.03.2024).
- 7. Федеральная государственная информационная система (ФГИС) «Меркурий» как решение проблемы прослеживаемой продукции [Электронный ресурс]. Режим доступа: https://cyberleninka.ru/article/n/federalnaya-gosudarstvennaya-informatsionnaya-sistema-fgismerkuriy-kak-reshenie-problemy-proslezhivaemosti-produktsii/viewer (дата обращения: 23.03.2024).
- 8. Подтверждение соответствия пищевой продукции [Электронный ресурс]. Режим доступа: https://www.gostest.com/pishchevaya-produktsiya/ (дата обращения: 09.04.2024).
- 9. Едадил [Электронный ресурс]. Режим доступа: https://edadeal.ru (дата обращения: 01.04.2024).
- 10. SkidkaOnline [Электронный ресурс]. Режим доступа: https://skidkaonline.ru (дата обращения: 01.04.2024).

- 11. Price.ru [Электронный ресурс]. Режим доступа: https://price.ru (дата обращения: 01.04.2024).
- 12. Дж. Д. К. Введение в системы баз данных: 8-е издание //. «Вильямс», 2006. С. 1328.
- 13. T.C.~K. Базы данных: модели, разработка, реализация: Учебник для вузов. //. СПб.: Питер, 2002. С. 304.
- 14. Д. К. С. Основы современных баз данных //. Центр Информационных Технологий, 1998. С. 251.
- 15. *М. Г. Ю.* Курс лекций по дисциплине «Базы данных» ИУ7 //. МГТУ им. Н. Э. Баумана, 2023.
- 16. Постреляционные СУБД [Электронный ресурс]. Режим доступа: https://dit.isuct.ru/IVT/BOOKS/DBMS/DBMS14/ch_6_2.html (дата обращения: 01.04.2024).
- 17. Д.А. Попова-Коварцев Е. С. Основы проектирования баз данных //. Изд-во Самарского университета, 2019. С. 112.