MetaDamageNet

Using Deep Learning To Identify And Classify Damage In Aerial Imagery

Nima Afshar

Dataset & Problem Definition

Methodology

U-models

Decoder Modules

Backbone of Unet

model		#parama	Batch Normalization	DecoderType	
name	backbone	#params	Batch Normalization		
Resnet34Unet	resnet_34	25,728,112	No	Standard	
SeResnext50Unet	se_resnext50_32x4d	34,559,728	No	Standard	
Dpn92Unet	dpn_92	47,408,735	No	SCSE - concat	
SeNet154Unet	senet_154	124,874,656	No	Standard	
EfficientUnetB0	efficientnet_b0	6,884,876	Yes	Standard	
EfficientUnetB0SCSE	emcientilec_bo	6,903,860	Yes	SCSE - no concat	
EfficientUnetWideSEB0	efficientnet_widese_b0	10,020,176	Yes	Standard	
EfficientUnetB4	efficientnet_b0	20,573,144	Yes	Standard	
EfficientUnetB4SCSE	enicientilet_bo	20,592,128	Yes	SCSE- no concat	
SegFormer	segformer_512*512_ade	3,714,401			

Meta Learning

MetaDamageNet

The MAML Algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: **end for**
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

SegFormer

Loss Functions

Dice Loss

$$Dice\ Loss(p,t) = 1 - dice(p,t)$$

$$dice(A,B) = 2\frac{A \cap B}{A+B}$$

borders

Focal Loss

$$FL(p_t) = -lpha_t (1-p_t) \gamma log(p_t).$$

10 — MetaDamageNet — 20XX

Evaluation

Building Localization

$$Dice(P,Q) = 2.rac{P\cap Q}{P+Q}$$
 $F1(P,Q) = rac{2TP}{2TP+FP+FN}$

Damage Classification

$$egin{aligned} score &= 0.3 imes F1_{LOC} + 0.7 imes F1_{DC} \ &F1_{DC} = 4/(rac{1}{F1_1 + \epsilon} + rac{1}{F1_2 + \epsilon} + rac{1}{F1_3 + \epsilon} + rac{1}{F1_4 + \epsilon}) \end{aligned}$$

1 — MetaDamageNet — 20XX

Test-Time Augment

Results - Localization

model	version	seed	Test Score		Validation Score	
TTA					+	
		0	0.6590	0.6643	0.6542	0.6590
Resnet34Unet		1	0.6690	0.6799	0.6664	0.6768
Resnet340ffet	1	2	0.6839	0.6903	0.6812	0.6858
		mean agg.	0.6772		0.6720	
	tuned	0	0.6963	0.7002	0.6957	0.6967
SeResnext50Unet		1	0.7036	0.7074	0.6916	0.6971
Selvesilextoonlet		2	0.7084	0.7087	0.6981	0.7027
		mean agg.	0.7088		0.6998	
	tuned	0	0.6796	0.6849	0.6776	0.6830
Dpn92Unet		1	0.6297	0.6335	0.6335	0.6322
Dpii32onet		2	0.6708	0.6722	0.6662	0.6714
		mean agg.	0.6597		0.6637	
	1	0	0.7348	0.7393	0.7261	0.7302
SeNet154Unet		1	0.7253	0.7319	0.7100	0.7163
Server 1540 net		2	0.7326	0.7360	0.7217	0.7252
		mean agg.	0.7409		0.7264	

F(C : 111 180	Standard	0	0.7692	0.7739	0.7634	0.7666
		1	0.7685	0.7723	0.7638	0.7662
		2	0.7704	0.7740	0.7625	0.7666
	SCSE	0	0.7723	0.7749	0.7644	0.7674
EfficientUnetB0		1	0.7707	0.7737	0.7628	0.7682
		2	0.7721	0.7765	0.7647	0.7711
	Wide-SE	0	0.7719	0.7758	0.7662	0.7700
		1	0.7754	0.7754	0.7664	0.7682
EfficientUnetB4	Standard	0	0.7755	0.7797	0.7702	0.7724
	SCSE	0	0.7811	0.7826	0.7718	0.7743
SegFormerB0	512*512_ade	0	0.7602	0.7281	0.7543	0.7214
		1	0.7569	0.7223	0.7533	0.7189
		2	0.7605	0.7301	0.7545	0.7250

Results - Classification

model	version	seed	Test Score		Validation Score	
TTA						
	tuned	0	0.1090	0.0806	0.1119	0.0831
Resnet34Unet		1	0.1466	0.1174	0.1264	0.0997
Resilet340ffet		2	0.1314	0.1101	0.1324	0.1082
		mean agg.	0.0860		0.0832	
	tuned	0	0.6164	0.6152	0.6397	0.6347
SeResnext50Unet		1	0.6135	0.6069	0.6012	0.5991
SellestiextSouriet		2	0.6319	0.6422	0.6271	0.6361
		mean agg.	0.6360		0.6301	
	tuned	0	0.6564	0.6657	0.6387	0.6441
Dpn92Unet		1	0.6233	0.6343	0.5869	0.5813
Dpn320net		2	0.6246	0.6252	0.6075	0.6138
		mean agg.	0.6460		0.6258	
	tuned	0	0.6916	0.7034	0.6684	0.6722
SeNet154Unet		1	0.6216	0.6342	0.5889	0.6123
Servet 1340 net		2	0.6868	0.6949	0.6520	0.6479
		mean agg.	0.6954		0.6596	

EfficientNetB0	Standard	0	0.7576	0.7571	0.7606	0.7505
	SCSE	0	0.7591	0.7525	0.7497	0.7399
	Wide-SE	0	0.7726	0.7667	0.7769	0.7737
Eff. : III IBA	Standard	0	0.7732	0.7679	0.7684	0.7589
EfficientUnetB4	SCSE	0	0.7746	0.7650	0.7740	0.7635
SegFormer	Standard	0	0.7574	0.7380	0.7385	0.6993

Conclusion & Discussion

- Challenges
- Training Details
- Future Ideas
- Augmentations Framework
- Discussion

Thank You