Real Analysis

Aamod Varma

MATH - 4317, Fall 2025

Contents

1	Introduction	2
	1.1 Logic and proofs	2
	1.2 Real Numbers	3

Chapter 1

Introduction

1.1 Logic and proofs

Types of proofs,

- 1. Direct proof
- 2. Argument by contradiction
- 3. Induction
- 4. Contrapositive (we show $\neg B \Rightarrow \neg A$)

Theorem 1.1. $a = b \Leftrightarrow \forall \varepsilon > 0, |a - b| < \varepsilon$

Proof. 1. To show, $a = b \Rightarrow \forall \varepsilon > 0, |a - b| < \varepsilon$.

Suppose a = b so |a - b| = 0. We have $\forall \varepsilon > 0$ so $|a - b| = 0 < \varepsilon$

2. To show, $\forall \varepsilon > 0, |a - b| < \varepsilon \Rightarrow a = b$

Now assume this is not true, or that $a \neq b$ so $a - b \neq 0$ this means that there is a non-zero number k such that $|a - b| = \varepsilon_0$. Now take $\varepsilon = \frac{\varepsilon_0}{2}$. This gives us, $|a - b| = \varepsilon_0 > \varepsilon$ which contradicts the statement. Hence our assumption is false and we prove the results.

Example (Induction). $x_1 = 1$ and $x_{n+1} = \frac{1}{2}x_n + 1, \forall n \in \mathbb{Z}$. Show $x_{n+1} \ge x_n \forall n \in \mathbb{N}$

Define $S = \{n \in \mathbb{N}, s.t.x_{n+1} \ge x_n\}$ clearly, $S \subseteq N$.

 $x_1=1$ and $x_2=\frac{x_1}{2}+1=1.5$. This gives us $x_2>x_1$ so $1\in S$

Suppose $n \in S$ and $x_{n+1} \ge x_n$. Note that,

$$x_{n+2} = \frac{1}{2}x_{n+1} + 1$$

$$x_{n+1} = \frac{1}{2}x_n + 1$$

Then $x_{n+2}=\frac{1}{2}x_{n+1}+1\geq \frac{1}{2}x_n+1=x_{n+1}$ or $x_{n+2}\geq x_{n+1}$ which means $n+1\in S$. So by induction we have S=N and $x_{n+1}\geq x_n, \forall n\in\mathbb{N}$

1.2 Real Numbers

Number systems,

1. Natural numbers \mathbb{N}

 $1, 2, 3, \ldots$

Can't do subtraction

2. Integers \mathbb{Z}

$$\ldots, -3, -2, -1, 0, 1, 2, 3 \ldots$$

Can't do division

3. Rationals \mathbb{R}

 $\{\frac{p}{q} \text{ where } p, q \in \mathbb{Z} \text{ but } q \neq 0\}$

Now we have $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{R}$

But other numbers are still not captured,

Example. $\sqrt{2}$ is not defined in \mathbb{R} . However if we define $x_1 = 2$, $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$. We know $x_{n+1} \in \mathbb{R}, \forall n \in \mathbb{N}$ (we can then show that $x_n \to \sqrt{2}$).

Theorem 1.2. $\sqrt{2}$ is not rational

Proof. Argue by contradiction

4. Real numbers \mathbb{R}

We will define \mathbb{R} as \mathbb{Q} with the gaps filled in.

Definition 1.3 (Axiom of completeness). Every non-empty subset of \mathbb{R} that is bounded above has a least upper bound called the supremum.

Let $S \subseteq \mathbb{R}$ and S is bounded above. If there is $u \in \mathbb{R}$ such that $s \leq u, \forall s \in S$ then S is bounded above by u (Similar for bounded below)

Definition 1.4 (Least upper bound or supremum). We say $u \in \mathbb{R}$ is the least upper bound for S if,

- 1. If u is an upper bound for S
- 2. $u \leq v$ for any other upper bound v of S.

Similar for greatest lower bound or infimum