

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 03 JAN 2005		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER					
C*-algebras and Geometric Integration				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Heriot-Watt University Riccarton Edinburgh EH14 4AS UK				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO See also ADM0017 2004.	otes 49, Lie Group Meth	ods And Control Tl	neory Workshop	Held on 28 J	une 2004 - 1 July	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	14	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Time Independent Quantum Mechanics

Let $\mathcal H$ be a separable Hilbert space. Let H be a densely defined, unbounded, self adjoint operator on $\mathcal H$ i.e. H may be the one dimensional Hamiltonian on $L^2(\mathbb R)$ thus

$$Hf(x) = -\frac{1}{2}f''(x) + V(x)f(x).$$

Question: How do we compute $\sigma(H)$ the spectrum of H?

Algorithm for computing the spectrum

- Define an appropriate one parameter family $H_{\tau} \in \mathcal{B}(\mathcal{H})$.
- Find a sequence of finite dimensional Hilbert spaces $\{\mathcal{H}_n\}$, $\mathcal{H}_n \subset \mathcal{H}$ with corresponding projections P_n such that $P_n \to I$ strongly and $\bigcup_{n \geq 1} \mathcal{H}_n$ is dense in \mathcal{H} with respect to the norm topology.
- Compute the eigenvalues of $A_n = P_n H_{\tau}|_{\mathcal{H}_n}$.

Divide the problem into two parts:

- Find the one-parameter family $H_{\tau} \in \mathcal{B}(\mathcal{H})$.
- Computations of the spectrum of elements in $\mathcal{B}(\mathcal{H})$.

Let $A \in \mathcal{B}(\mathcal{H})$ and let $A_n = P_n A \big|_{\mathcal{H}_n}$. Define

$$\Lambda = \{ \lambda \in \mathbb{R} : \exists \lambda_n \in \sigma(A_n), \lambda_n \to \lambda \}.$$

For every set S of real numbers let $N_n(S)$ denote the number of eigenvalues (counting mult.) of A_n which belong to S.

Definition 1 (1) A point $\lambda \in \mathbb{R}$ is called essential if, for every open set U containing λ , we have

$$\lim_{n\to\infty} N_n(U) = \infty.$$

The set of essential points is denoted Λ_e

(2) $\lambda \in \mathbb{R}$ is called transient if there is an open set U containing λ such that

$$\sup_{n\geq 1} N_n(U) < \infty.$$

Theorem 1 (Arveson) Let A_1,A_2,\ldots be as discussed. Then $\sigma(A)\subset \Lambda$ and $\sigma_e(A)\subset \Lambda_e$.

- Examples show that the inclusions can be proper, i.e. one may experience convergence to points not in the desired spectrum.
- We need to impose some restrictions.

Definition 2 (1) A filtration of \mathcal{H} is a sequence $\mathcal{F} = \{\mathcal{H}_1, \mathcal{H}_2, \ldots\}$ of finite dimensional subspaces of \mathcal{H} such that $\mathcal{H}_n \subset \mathcal{H}_{n+1}$ and

$$\overline{\cup_{n>1}\mathcal{H}_n}=\mathcal{H}$$

(2) Let $\mathcal{F} = \{\mathcal{H}_n\}$ be a filtration of \mathcal{H} and let P_n be the projection onto \mathcal{H}_n . The degree of an operator $A \in \mathcal{B}(\mathcal{H})$ is defined by

$$deg(A) = \sup_{n \ge 1} rank(P_n A - AP_n).$$

Let $D(\mathcal{F})$ denote the set of all operators $A \in \mathcal{B}(\mathcal{H})$ such that

$$A = \sum_{k=1}^{\infty} A_k, \quad deg(A_K) < \infty$$

and

$$s = \sum_{k=1}^{\infty} (1 + deg(A_K)^{1/2}) ||A_k|| < \infty \tag{1}$$

Defining $|A|_{\mathcal{F}}$ to be the infimum of all such sums s which arise from representations of A as in (1). Then $(D(\mathcal{F}), |\cdot|_{\mathcal{F}})$ is a Banach *-algebra.

Theorem 2 (Arveson) Assume $A=A^*\in D(\mathcal{F})$. Then

(i)
$$\sigma_e(A) = \Lambda_e$$
.

(ii) Every point of Λ is either transient or essential.

Open problems

- Closing the gap $\sigma(A) \subset \Lambda$.
- Detect "false" eigenvalues.
- Definition of convergence.
- Rate of convergence.
- Error bounds in terms of n and possibly \mathcal{H}_n .
- Can the algorithm be improved?

The art of choosing $H_{ au}$

Consider the Hamiltonian H on $\mathcal{H}=L^2(\mathbb{R})$ defined by

$$H = \frac{1}{2}P^2 + v(Q),$$

where $P=-i\frac{d}{dx}$, Q= multiplication by x and v is continuous. We want to find

$$P_{ au},Q_{ au}\in\mathcal{B}(\mathcal{H})$$
 and define $H_{ au}=rac{1}{2}P_{ au}^2+v(Q_{ au}).$

Define

$$V_t f(x) = f(x-t)$$
 then $P = \lim_{t \to 0} \frac{1}{it} (V_t - I)$

so P is the infinitesimal generator of V_t i.e. $V_t = e^{itP}$ (Stone's Thrm).

The choice of P_{τ}

Possible choices of $P_{ au}$

(1)
$$P_{\tau} = \frac{1}{i\tau}(V_{\tau} - I)$$
 or (2) $P_{\tau} = \frac{1}{2i\tau}(V_{\tau} - V_{-\tau}).$

(1) is not self-adjoint, but (2) is. Choosing $P_{ au}=\frac{1}{2i au}(V_{ au}-V_{- au})$ and since $V_t=e^{itP}$ we have

$$P_{\tau} = \frac{1}{\tau} \sin(\tau P).$$

Recalling the Spectral Mapping Theorem

$$\sigma(f(a)) = f(\sigma(a))$$

and since $f(x)=\frac{1}{\tau}\sin(\tau x)$ approximates x when τ is small suggest that P_{τ} could be a good choice.

The choice of $Q_{ au}$

Now P and Q satisfy the Weyl relation

$$V_t U_s = e^{ist} U_s V_t$$
, where $V_t = e^{itP}, U_t = e^{itQ}$ (2)

which implies the "uncertainty principle"

$$PQ - QP = \frac{1}{i}I. (3)$$

Now (2) cannot be achieved for P_{τ}, Q_{τ} by the Stone-von Neumann Theorem but (3) is true if

 $P = F^{-1}QF$, where F is the Fourier transform.

$$Q_{\tau} = F P_{\tau} F^{-1} = F \frac{1}{\tau} \sin(\tau P) F^{-1} = \frac{1}{\tau} \sin(\tau Q).$$

Simplification using representations

Theorem 3 (Arveson) Let $\mathcal A$ be the C^* -algebra generated by P_{τ}^2 and Q_{τ} and let K be a Hilbert space spanned by a bilateral orthonormal set $\{e_n:n\in\mathbb Z\}$. Then there is a faithful representation $\pi:\mathcal A\to\mathcal B(K)$ such that $\pi(H_{\tau})$ has the form

$$\pi(H_{\tau}) = aT + bI$$

where $a=1/8\tau^2$, $b=-1/4\tau^2$, and T is the tridiagonal operator

$$Te_n = e_{n-1} + 8\tau^2 v(\frac{1}{\tau}\sin(2n\tau))e_n + e_{n+1},$$

$$n=0,\pm 1,\pm 2,\ldots.$$

Open problems

- Definition of convergence.
- Rate of convergence.
- How the structure preservation affects the computational result.
- \bullet Error bounds in terms of τ .
- Final open Problem: Error bounds in terms of τ , n and \mathcal{H}_n .

Computational Chemistry

The key problem is to compute the ground state of a molecule given by

$$E_0 = \inf\{\langle \psi, H\psi \rangle, \psi \in \mathcal{H}, \|\psi\| = 1\}. \tag{4}$$

- ullet Problems: E_0 may not be attained and ${\mathcal H}$ may be huge.
- Solution: Born-Oppenheimer approximation, leads to the problem

$$\inf\{\langle \psi, \hat{H}\psi \rangle, \psi \in \hat{\mathcal{H}}, \|\psi\| = 1\},\tag{5}$$

where \hat{H} and $\hat{\mathcal{H}}$ are different from (4), and (5) is attained in most cases.

- State of the art method: Born-Oppenheimer-Hartree-Fock approximation which leads to a large number of nonlinear partial differential equations.
- Possible solution: Born-Oppenheimer approximation together with the Arveson method.

Operator theory

We consider Barry Simon's 15 open problems in connection with Schrödinger operators. Given the operator on $l^2(\mathbb{Z})$ defi ned by

$$(h_{\alpha,\lambda,\theta}u)(n) = u(n+1) + u(n-1) + \lambda\cos(\pi\alpha + \theta)u(n),$$

where $\alpha, \lambda \in \mathbb{R}$ and $\theta \in [0, 2\pi]$

- (Problem 4)(Ten Martini) Prove that for all $\lambda \neq 0$ and all irrational α that $\sigma(h_{\alpha,\lambda,\theta})$ is a Cantor set.
- (Problem 5) Prove that for all irrational α and $\lambda=2$ that $\sigma(h_{\alpha,\lambda,\theta})$ has measure zero.
- (Problem 6) Prove that for all irrational α and $\lambda < 2$ that the spectrum is purely continuous.