

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta090

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

* Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $(2+3i)^2$.
- (4p) b) Să se calculeze distanța de la punctul C(-1, -1) la dreapta x + y = 0.
- (4p) c) Să se determine ecuația tangentei la hiperbola $\frac{x^2}{5} \frac{y^2}{4} = 1$, dusă prin punctul P(-5, 4).
- (4p) d) Să se determine a > 0 astfel încât punctul P(-4, -3) să se afle pe cercul $x^2 + y^2 = a$.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(-3,3), B(-5,5) și C(-1,-1).
- (2p) f) Să se calculeze produsul $(tg1^{\circ} tg7^{\circ}) \cdot (tg2^{\circ} tg6^{\circ}) \cdot ... \cdot (tg7^{\circ} tg1^{\circ})$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se rezolve în mulțimea numerelor reale ecuația $25^x + 4 \cdot 5^x 5 = 0$.
- (3p) b) Să se calculeze expresia $C_6^1 C_6^2 + C_6^4$.
- (3p) c) Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^4 x$. Să se calculeze $(f \circ f)(0)$.
- (3p) d) Să se calculeze probabilitatea ca un element $n \in \{1, 2, ..., 5\}$, să verifice relația $3^n \ge 8n$.
- (3p) $| e \rangle$ Să se calculeze suma elementelor din grupul $(Z_{18}, +)$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 1 + ln(x^2 + 1)$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f'(x) dx$.
- (3p) c) Să se determine intervalele de monotonie ale funcției f.
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
- (3p) e) Să se arate că $f(x) \ge 1$, $\forall x \in \mathbb{R}$

1

SUBIECTUL III (20p)

Se consideră matricele
$$E = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $F = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{5} \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și mulțimile

$$H = \left\{ X \in M_2(\mathbf{R}) \middle| X^2 = X \right\} \text{ si } M = \left\{ aA + bB + cC + dD \middle| \forall a, b, c, d \in \mathbf{R}, \ \forall \ A, B, C, D \in H \right\}.$$

- (4p) a) Să se verifice că $E \in H$ și $I_2 \in H$.
- (4p) b) Să se găsească o matrice $P \in H$ astfel încât rang(P) = 1 și o matrice $Q \in H$ astfel încât rang(Q) = 2.
- (4p) c) Să se verifice că, $\forall a,b \in \mathbf{R}$ matricele $\begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix}$ şi $\begin{pmatrix} 1 & 0 \\ b & 0 \end{pmatrix}$ sunt din mulțimea H.
- (2p) d) Să se arate că dacă $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H$, atunci $a + d \in \{0, 1, 2\}$.
- (2p) e) Să se arate că dacă $B \in H$ este o matrice inversabilă, atunci $B = I_2$.
- (2p) | f) Să se arate că $M = M_2(\mathbf{R})$.
- (2p) g) Să se arate că matricea F nu se poate scrie ca o sumă finită de matrice din mulțimea H.

SUBIECTUL IV (20p)

Se consideră funcțiile continue $f:[a,b] \to \mathbf{R}$ și $g:[a,b] \to \mathbf{R}$ și funcția $h:[0,1] \to \mathbf{R}$, $h(x) = \sqrt{1-x^9}$, unde $a,b \in \mathbf{R}$, a < b.

- **(4p)** a) Să se arate că $h(x) \ge 1 x^9$, $\forall x \in [0,1]$.
- (4p) b) Să se calculeze $\int_{0}^{1} h^{2}(x)dx$.
- (4p) c) Să se verifice că $t^2 f^2(x) 2tf(x)g(x) + g^2(x) \ge 0$, $\forall t \in \mathbf{R}$ și $\forall x \in [a,b]$.
- (2p) d) Integrând inegalitatea de la punctul c), să se arate că $t^2 \int_a^b f^2(x) dx 2t \int_a^b f(x) g(x) dx + \int_a^b g^2(x) dx \ge 0, \ \forall t \in \mathbf{R}.$
- (2p) e) Să se deducă inegalitatea $\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \le \left(\int_{a}^{b} f^{2}(x)dx\right)\left(\int_{a}^{b} g^{2}(x)dx\right)$.
- (2p) **f**) Utilizând inegalitatea de la punctul **e**) să se arate că, dacă $u : [0,1] \to \mathbf{R}$ este o funcție continuă, atunci $\left(\int_{0}^{1} u(x)dx\right)^{2} \le \int_{0}^{1} u^{2}(x)dx$.
- (2p) g) Să se arate că aria suprafeței plane cuprinsă între graficul funcției h, axa Ox și dreptele x = 0 și x = 1, este un număr real din intervalul (0,90; 0,95).