Complex networks theory for water distribution networks modelling and resilience assessment. An explorative analysis

GitHub: IreneBa26

Introduction & Overview

What is Complex Network Theory (CNT)? [1]

- Side branch of Graph Theory
- Focus on **interactions** and relationships among individuals
- Non-trivial topological features

Why Water Distribution Networks? [2]

- Complex structure
- Tanks, reservoirs and demand points → **Nodes**
- Pumps, valves and pipes → **Edges**
- **Edge weights:** interactions characterization

Aims and Objectives

Research questions:

- What are the most suitable criteria to model and analyze a water distribution network as a **complex graph**?
- Under which **conditions** could CNT metrics represent a hydraulic network?
- Could CNT reduce the **computational effort** required for water network resilience assessment?

Topology-based surrogate model

Review of Literature

- Edge weights Different methodologies/techniques for best system calibration:
 - Simulation-based parameters (flow, head, pressure, demand)
 - Structural parameters (pipe length, diameter length, node elevation)

Pipes length as edges weight [3]

Review of Literature

- Small world effect [1]: highly clustered network where most nodes are not neighbours of one another but can be reach from every other node with a short path → Small world coefficient σ > 1
 - locally and globally efficient
 - robust to targeted attacks
- Resilience assessment unsatisfied water demand [4]:
 - Failure duration: average duration of node failure
 - Failure magnitude: severity of water shortage: the percentage of unmet water demand

Source: Watts and Strogatz (1998)

Implementation flowchart

Methods

WDNs classification

Numbers of nodes, edges, reservoirs, tanks, pumps, valves, junctions, pipes and size of the network (total pipes length)

Test set selection

Network name	Nodes	Edges	Reservoirs	Tanks	Pumps	Valves	Junctions	Pipes	Length (m)
C-town	396	444	1	7	11	4	388	429	56738.77
MOD	272	317	4	0	0	0	268	317	71806.11
Net3	97	119	2	3	2	0	92	117	65750.96
KL	936	1274	1	0	0	0	935	1274	252497.77
ky6	548	647	2	3	2	1	543	644	123202.96

Small world coefficient ($\sigma > 1$)

Network name	σ median
Anytown	1.7
C-town	5,05
MOD	2.9
KL	20.37
ky1	2.42
ky2	10.52
ky3	3.58
ky4	17.05
ky5	4,91
ky6	5,76

Network name	σ median
ky7	4,89
ky8	12,29
ky9	14,93
ky10	5,26
ky11	10,87
ky13	17,53
ky14	4,34
ky15	4,5
RuralNetwork	3.04
ZJ	0,81

Network-referred analysis

Results

Comparison CNT metrics - failures values

Small world property

Name	10-th percentile	50-th percentile	90-th percentile
	[h]	[h]	[h]
C-town	3.91	53.2	112.75
MOD	13.16	72.09	134.15
KL	10.96	47.61	93.61
Net3	0.1	37.59	88.46
Ky6	9.09	57.54	135.67

Name	APL [m]	σ
C-town	3487.32	5.08
MOD	3323.78	2.9
KL	4117.58	20.37
Net3	5496.40	2.03
Ky6	3290.52	5.76

KL network

Average failure magnitude

Name	10-th percentile [%]	50-th percentile [%]	90-th percentile [%]
C-town	$1.6 \cdot 10^{-5}$	0.000177	0.000397
MOD	4.10^{-6}	$5.8 \cdot 10^{-5}$	0.000317
KL	$2 \cdot 10^{-6}$	$2.5 \cdot 10^{-5}$	0.000067
Net3	$1 \cdot 10^{-6}$	0.00011	0.000574
Ky6	$1.3 \cdot 10^{-5}$	$6.7 \cdot 10^{-5}$	0.000277

Node-referred analysis

Correlation failures - CNT metrics

Results

Correlation CNT metrics - Failure duration

Closeness centrality: Nodes which are closest to all other nodes

10-th percentile					
Name	BCE	Node degree	Closeness centrality	Clustering coeff	EIG
C-town	-0.031	0.047	-0.039	-0.027	-0.015
MOD	0.02	-0.03	-0.159	-0.036	0.154
KL	-0.123	-0.095	-0.223	0.112	0.091
Net3	-0.114	-0.091	-0.021	-0.029	-0.018
Ky6	0.031	0.015	-0.006	-0.05	-0.024

50-th percentile						
Name	BCE	Node degree	Closeness centrality	Clustering coeff	EIG	
C-town	-0.127	0.01	-0.138	0.11	-0.059	
MOD	0.085	0.02	-0.258	-0.106	0.150	
KL	-0.171	-0.208	-0.174	0.088	0.023	
Net3	-0.115	-0.025	-0.066	-0.134	-0.086	
Ky6	0.158	-0.055	-0.039	-0.056	-0.07	

90-th percentile						
Name	BCE	Node degree	Closeness centrality	Clustering coeff	EIG	
C-town	0.166	0.033	-0.348	0.054	0.032	
MOD	0.192	0.014	-0.232	-0.091	0.066	
KL	-0.331	-0.251	-0.140	0.081	-0.011	
Net3	0.015	-0.07	-0.117	-0.108	-0.154	
Ky6	0.085	-0.128	-0.039	-0.033	-0.183	

Results

Correlation node elevation - CNT metrics

MOD: Elevation

40

38

36

34

32

Name	BCE	Node degree	Closeness centrality	Clustering coeff	EIG
C-town	-0.049	0.034	0.059	0.199	-0.118
MOD	-0.038	-0.029	-0.814	-0.212	0.08
KL	0.002	-0.098	-0.137	0.034	0.123
Net3	-0.297	-0.153	0.504	-0.122	-0.068
Ky6	0.140	-0.049	-0.012	-0.003	-0.067

Closeness centrality

Conclusions

Final results and evaluations

What are the most suitable criteria to model and analyze a water distribution network as a **complex graph**?

- Exclusive characterization few metrics → **not enough** accuracy
- Small world property may have direct implications with network resilience and robustness
- Correlation between closeness centrality failure duration node elevation

Under which **conditions** could CNT metrics represent a hydraulic network?

- **Confirmed** previous literature discoveries
- **Nodes elevation** plays an important role in surrogate modelling

Could CNT reduce the **computational effort** required for water network resilience assessment?

- CNT does not require simulation, therefore it's computational efficient. Yet, a "general rule" was not found with our correlation analysis

Future studies

- Discoveries to be tested on **different** types of WDNs
- Edge weights to be calibrated including **other structural parameters** (nodes elevation, water flow, operational status)
- Simulation parameters → more **calibrated** and specific on each WDNs

References

[1] Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. nature 393, 440–442 (1998).

[2] Yazdani, A. & Jeffrey, P. Water distribution system vulnerability analysis using weighted and directed network models. Water Resources Research 48 (2012).

[3] Sitzenfrei, R., Oberascher, M. & Zischg, J. Identification of network patterns in optimal water distribution systems based on complex network analysis in World Environmental and Water Resources Congress 2019: Hydraulics, Waterways, and Water Distribution Systems Analysis (2019), 473–483.

[4] Zhan, X., Meng, F., Liu, S. & Fu, G. Comparing performance indicators for assessing and building resilient water distribution systems. Journal of Water Resources Planning and Management 146, 06020012 (2020).