Mathematics for Computer Science Linear Algebra

Lecture 3: Elementary matrices

Andrei Krokhin

March 14, 2021

Contents for today's lecture

- Elementary matrices and their properties
- A characterisation of invertible matrices
- An algorithm for finding A^{-1} ;
- Examples and exercises
- Lots of proofs

Reminder: Elementary row operations

The three elementary row operations on a matrix are:

- Multiply a row by a non-zero constant c;
- Interchange two rows;
- Add a constant c times one row R_1 to another row R_2 .

Obvious fact: If B is obtained from A by using an elementary row operation then A can be obtained from B by using the inverse elementary row operation:

- Multiply the same row by a non-zero constant 1/c;
- Interchange the same two rows;
- Add -c times row R_1 to row R_2 .

Elementary matrices

An $n \times n$ matrix is called an elementary matrix if it is obtained from the identity matrix I_n by performing a single elementary row operation.

Examples of elementary matrices:

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \quad \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{array}\right) \quad \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right) \quad \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right)$$

This matrix is not elementary:

$$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

Elementary row operations via elementary matrices

Lemma

Let E be an elementary matrix obtained from I_m by performing <u>some</u> elementary row operation. Then, for any $m \times n$ matrix A, the following matrices are equal:

- the matrix obtained from A by performing the same row operation, and
- the product matrix EA.

Thus, preforming an elementary row operation has the same effect as multiplying by the corresponding elementary matrix (from the left).

Exercise: Prove this lemma (by considering the three operations in turn).

Examples

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{array}\right) = \left(\begin{array}{ccc} 0 & 1 & 2 \\ -6 & -8 & -10 \\ 6 & 7 & 8 \end{array}\right) \quad -2 \times R_2$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 6 & 7 & 8 \\ 3 & 4 & 5 \end{pmatrix} \quad R_2 \leftrightarrow R_3$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 5 & 4 \end{pmatrix} + (-2 \times R_1) \rightarrow R_3$$

Elementary matrices are invertible

Lemma

Every elementary matrix E is invertible, and the inverse E^{-1} is also elementary.

Proof.

We know that (multiplying by) E corresponds to some elementary row operation. It is the same row operation as used to obtain E from I. This row operation has an inverse elementary row operation.

If E' is the matrix corresponding to this inverse elementary row operation then I=E'EI=E'E and similarly I=EE'I=EE'. Hence $E'=E^{-1}$.

Theorem about invertible matrices

Theorem (Theorem about invertible matrices, Version 1)

If A is an $n \times n$ matrix then TFAE (The Following Are Equivalent, i.e. all true or all false):

- A is invertible.
- ② The linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.
- **1** The reduced row echelon form of A is I_n .
- A can be expressed as a product of elementary matrices.

Proof: We will prove implications $(1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)\Rightarrow(1)$. Hence, if one of the conditions is true (for some matrix A), all of them must be true (for this A).

(1) \Rightarrow (2). Assume that A is invertible. If $A\mathbf{x} = \mathbf{0}$ then

$$x = Ix = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}0 = 0.$$

Theorem about invertible matrices

Theorem (Theorem about invertible matrices, Version 1)

If A is an $n \times n$ matrix then TFAE (The Following Are Equivalent, i.e. all true or all false):

- A is invertible.
- ② The linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.
- **1** The reduced row echelon form of A is I_n .
- A can be expressed as a product of elementary matrices.

Proof: (2) \Rightarrow (3). The linear system $A\mathbf{x} = \mathbf{0}$ is homogenous (i.e. RHS is $\mathbf{0}$). As proved in lecture 2, if it has n variables and the reduced row echelon form of its augmented matrix $[A|\mathbf{0}]$ has r non-0 rows then the system has n-r free variables.

Since our system has only one solution, it cannot have free variables, so n = r. Hence, each row in the reduced row echelon form of $[A|\mathbf{0}]$ has a leading 1.

The reduced row echelon form must then be $[I_n|\mathbf{0}]$, which immediately implies (3).

Theorem about invertible matrices, cont'd

Theorem (Theorem about invertible matrices)

If A is an $n \times n$ matrix then TFAE:

- A is invertible.
- ② The linear system Ax = 0 has only the trivial solution x = 0.
- **3** The reduced row echelon form of A is I_n .
- 4 A can be expressed as a product of elementary matrices.

Proof: (3) \Rightarrow (4). If I_n is obtained from A by a sequence of elementary row operations then there are elementary matrices $E_1, \ldots E_k$ such that

$$E_k \cdots E_2 E_1 A = I_n$$
.

We proved today that each E_i is invertible and each E_i^{-1} is elementary. Hence

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1} I_n = E_1^{-1} E_2^{-1} \cdots E_k^{-1}.$$

Theorem about invertible matrices, cont'd

Theorem (Theorem about invertible matrices)

If A is an $n \times n$ matrix then TFAE:

- A is invertible.
- ② The linear system Ax = 0 has only the trivial solution x = 0.
- **1** The reduced row echelon form of A is I_n .
- 4 A can be expressed as a product of elementary matrices.

Proof: $(4)\Rightarrow(1)$. We proved today that each elementary matrix is invertible. The product of invertible matrices is also invertible (see lecture 1).

11 / 15

A corollary

By definition, a matrix B is an inverse of A if we have both AB = I and BA = I.

We now apply the above theorem to show that either condition suffices.

Corollary

Let A be a square matrix.

- If B is a square matrix with BA = I then $B = A^{-1}$.
- ② If B is a square matrix with AB = I then $B = A^{-1}$.

Proof.

We prove (1) and leave (2) as an exercise.

Enough to prove that BA = I implies that A is invertible because then

$$BA = I \Rightarrow BAA^{-1} = IA^{-1} \Rightarrow BI = A^{-1} \Rightarrow B = A^{-1}.$$

We show that $A\mathbf{x} = \mathbf{0}$ has a unique solution $\mathbf{x} = \mathbf{0}$, and then apply the theorem to conclude that A is invertible. Let \mathbf{x}_0 be any solution of $A\mathbf{x} = \mathbf{0}$. Then

$$A\mathbf{x}_0 = \mathbf{0} \Rightarrow BA\mathbf{x}_0 = B\mathbf{0} \Rightarrow I\mathbf{x}_0 = \mathbf{0} \Rightarrow \mathbf{x}_0 = \mathbf{0}.$$

Inversion algorithm

As an application of the above theorem, we give an algorithm which

- decides whether a given matrix A is invertible,
- 2 and, if so, finds the inverse A^{-1} .

If A is invertible, condition (3) of the theorem implies that $E_k \cdots E_2 E_1 A = I_n$ for some elementary matrices E_i . Multiplying by A^{-1} , get $E_k \cdots E_2 E_1 I_n = A^{-1}$.

Therefore, if a sequence of elementary row operations transforms A to I_n then the same sequence transforms I_n to A^{-1} .

Inversion algorithm:

- Write the $n \times 2n$ matrix $[A|I_n]$.
- Apply elementary row operations to the whole matrix to transform its left half (i.e. A) to reduced row echelon form.
- \odot If this form (of the left half) is not I_n then the matrix is not invertible.
- Otherwise, the obtained matrix is $[I_n|A^{-1}]$.

Example

Find the inverse (if it exists) of the matrix
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$
.

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{array}\right) \rightsquigarrow$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{array}\right) \rightsquigarrow$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 0 & -14 & 6 & 3 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{array}\right)$$

We have
$$A^{-1} = \begin{pmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{pmatrix}$$
.

What we learnt today

- Elementary matrices: their properties and applications
- A characterisation of invertible matrices: 4 equivalent conditions
- An algorithm for finding A^{-1} via elementary row operations