

Ayudantía 11 - Grafos

14 de junio de 2024 Martín Atria, Paula Grune, Caetano Borges

Resumen

- Grafo Un grafo G = (V, E) es un par donde V es un conjunto, cuyos elementos llamaremos vértices o nodos, y E es una relación binaria sobre V (es decir, $E \subseteq V \times V$), cuyos elementos llamaremos aristas.
- Tipos de vértices(V):
 - Vertices adyacentes Dado un grafo G = (V, E), dos vértices $x, y \in V$ son adyacentes o vecinos si $(x, y) \in E$.
 - Vertice de corte: es un vértice tal que al eliminarlo (junto con todas sus aristas incidentes) aumenta la cantidad de componentes conexas de G.
- Tipos de aristas (E)
 - Rulo: es una arista que conecta un vértice con sí mismo.
 - Arista paralela: Dos aristas son paralelas si conectan a los mismos vértices.
 - Arista de corte: es una arista tal que al eliminarla aumenta la cantidad de componentes conexas de G.
- Tipos de subgrafos: (También pueden ser grafos, pero es más común verlos como subgrafos).
 - Ciclo: es una caminata cerrada en la que no se repiten aristas.
 - Clique: es un subgrafo en el que cada vértice está conectado a todos los demás vértices del subgrafo.
- Tipos de grafos
 - Grafo no dirigido: Un grafo es no dirigido si toda arista tiene una arista paralela.

- Grafos isomorfos: Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son isomorfos si existe una función biyectiva $f: V_1 \to V_2$ tal que $(x, y) \in E_1$ si y sólo si $(f(x), f(y)) \in E_2$.
- Grafo completo: es un grafo en el que todos los pares de vértices son adyacentes.
- Grafo conexo: Un grafo G se dice conexo si todo par de vértices está conectado por un camino.
- Grafo bipartito: es un grafo tal que su conjunto de vértices puede particionarse en dos conjuntos independientes
- Multigrafo G = (V, E, f): es un trío ordenado donde $f : E \to S$ es una función que asigna un par de vértices a cada arista en E.
- Grado de un vértice: El grado de v (denotado como $\delta_G(v)$) es la cantidad de aristas que inciden en v.
- Vecindad de un vértice: La vecindad de v es el conjunto de vecinos de v: $N_G(v) = \{u|(v,u) \in E\}.$
- Teoremas importantes
 - Handshaking lemma: $\sum_{v \in V} \delta_G(v) = 2|E|$.
- Tipos de ciclos:
 - Ciclo euleriano: es un ciclo que contiene a todas las aristas y vértices del grafo.
 - Ciclo hamiltoniano: es un ciclo en el grafo que contiene a todos sus vértices una única vez cada uno (excepto por el inicial y final).

Árboles

- Árbol: Un grafo T = (V, E) es un árbol si para cada par de vértices $x, y \in V$ existe un único camino entre ellos. También existen definciones equivalentes tales como:
 - Un grafo T = (V, E) es un árbol si y solo si es conexo y acíclico.
 - Un grafo T = (V, E) es un árbol si y solo si es conexo y todas sus aristas son de corte.
 - Un grafo T=(V,E) con n vértices es un árbol si y solo si es conexo y tiene exactamente n-1 aristas.

A partir de esto,

- Llamaremos a uno de los vértices $r \in V$ como la raíz del árbol y a los vértices de grado menor o igual a 1 hojas.
- Bosque: Un grafo T = (V, E) es un bosque si para cada par de vértices $x, y \in V$ si existe un camino entre ellos, este es único.

- Teorema: Todo árbol es un grafo bipartito.
- **Teorema:** Si T es un árbol y v es una hoja de él, entonces el grafo T-v es un árbol.
- Sea T = (V, E) un árbol con raíz r y x un vértice cualquiera. Luego,
 - La profundidad de x es el largo del camino que lo une con r (r tiene profundidad 0).
 - La altura o profundidad del árbol es el máximo de las profundidades de sus vértices.
 - Los ancestros de x corresponden a los vértices que aparecen en el camino entre él y r (x es ancestro de sí mismo).
 - El padre de x es su ancestro (propio) con mayor profundidad. Se dice que x es hijo de su padre.
 - Dos vértices x e y con el mismo padre son hermanos.
- Arbol Binario: Un árbol con raíz se dice binario si todo vértice tiene grado a lo más 3 o equivalentemente si todo vértice tiene a lo más dos hijos.

1. Grafos

Sea G = (V, E) un grafo conexo y $u, v \in V$. La distancia entre u y v, denotada por d(u, v), es el largo del camino más corto entre u y v, mientras que el ancho de G, denotado como A(G), es la mayor distancia entre dos de sus vértices.

- 1. Demuestre que si $A(G) \ge 4$ entonces $A(\bar{G}) \le 2$.
- 2. Demuestre que si G tiene un vértice de corte y A(G)=2, entonces \bar{G} tiene un vértice sin vecinos.

Solución

- 1. Sea G = (V, E) un grafo tal que $A(G) \geq 4$. Denotaremos por d(x, y) a la distancia entre los vértices x e y en G y $\bar{d}(x, y)$ a la distancia entre x e y en \bar{G} . Sean u, v los vértices de inicio y fin del camino que representa al ancho de G. Demostraremos que para todo par de vértices $x, y \in V$ se tiene que $\bar{d}(x, y) \leq 2$. Consideremos $x, y \in V$ dos vértices cualquiera. En primer lugar notemos que ni x ni y pueden ser adyacentes con u y v a la vez, ya que formarían un camino de largo 2 (por ejemplo u x v) y disminuirían el ancho de G. Ahora tenemos los siguientes casos:
 - $(x,y) \notin E$: Por definición de complemento $xy \in \bar{E}$ y por lo tanto $\bar{d}(x,y) = 1$.
 - $(x,y) \in E$: Dado que existe una arista x-y, no puede darse el caso en que x e y sean adyacentes a u y a v por separado. Esto porque se generaría un ciclo y por ende un camino u-x-y-v de largo 3, con lo que disminuiría el ancho de G. Ahora tenemos 2 casos:
 - u y v no son adyacentes ni a x ni a y en G: Dado que $xu, yu \notin E$, en \bar{G} obtenemos el camino x u y, por ende $\bar{d}(x, y) = 2$.
 - Solo u es adyacente a x o y en G. En este caso $vx, vy \notin E$ y por ende tenemos un camino x v y en \bar{G} de largo 2.
 - Solo v es adyacente a x o y en G. En este caso $ux, uy \notin E$ y por ende tenemos un camino x-u-y en \bar{G} de largo 2 .

Como no tenemos más casos posibles, y cada caso demostramos que $\bar{d}(x,y) \leq 2$, concluimos que $A(\bar{G}) \leq 2$.

2. Sea G = (V, E) un grafo conexo (Si el grafo no es conexo la demostración aplicará para cada una de sus componentes conexas) con un vértice de corte v y A(G) = 2.

Como v es de corte, si lo removemos aumenta la cantidad de componentes conexas, y por ende el grado de v es al menos 2. Sean u, w dos vértices adyacentes a v en G, y sea C la componente conexa a la que pertenece u. Demostraremos que para todo vértice x de C es adyacente a v, o en otras palabras, demostraremos que d(v, x) = 1.

Por contradicción, suponemos que $d(v,x)=k\cos k\geq 2$. Luego, debe existir un camino

 $(x, c_1, \ldots, c_{k-1}, v)$ de largo k que sólo utiliza sólo aristas de C. Además, como v y w son adyacentes, también tendremos el camino $(x, c_1, \ldots, c_n, v, w)$ de largo k + 1. Notemos que este camino es el menor camino posible entre x y w, ya que no pueden existir otros caminos que no pasen por v (porque dejaría de ser de corte). Esto contradice el hecho de que A(G) = 2 y por ende d(v, x) = 1.

Como C es arbitrario, podemos aplicar el mismo argumento para todas las componentes conexas generadas al remover v y concluir que G cumple $\forall x \in V((v, x) \in E)$. Finalmente, por definición de complemento, obtenemos que

$$\forall x \in V((v, x) \in E)$$
 si y sólo si $\forall x \in V((v, x) \notin \bar{E})$

Es decir, v es un vértice sin vecinos en \bar{G} .

2. Ciclos

Sea G un grafo con un ciclo C, tal que existen dos nodos distintos que forman parte del ciclo C entre los cuales existe un camino P de largo k (no necesariamente contenido en C).

Demuestre que G tiene un ciclo de largo al menos \sqrt{k} .

Solución

Sea v_1, \ldots, v_t la secuencia de nodos de P que también están en C. Hay dos posibilidades:

- 1. $t \ge \sqrt{k}$: como todos los nodos están en C, el tamaño de C es inmediatamente $\ge \sqrt{k}$ y la demostración está completa.
- 2. $t < \sqrt{k}$: Proposición: para algún i tal que $1 \le i \le t$ se tiene que entre v_i y v_{i+1} en P existen al menos \sqrt{k} nodos. Demostraremos esto por contradicción. Supongamos que para todo i, entre v_i y v_{i+1} en P hay un número menor a \sqrt{k} nodos. Si sumamos los largos de todos estos fragmentos deberíamos obtener el largo total del camino, k. Sin embargo, obtenemos un número $< t \cdot \sqrt{k}$, y como $t \le \sqrt{k}$, el resultado es < k, lo que es una contradicción. Luego, la proposición es correcta.

Con esto en consideración, el camino de largo $\geq \sqrt{k}$ entre v_i y v_{i+1} que es parte de P, unido al camino entre v_i y v_{i+1} que forma parte del ciclo C (hay dos tales caminos, se puede tomar cualquiera), forma un ciclo de largo al menos \sqrt{k} , que es lo que se quería demostrar.

3. Árboles

Decimos que un grafo no dirigido T = (V, E) es un *árbol* si es conexo y para todo par de vértices distintos existe un único camino que los conecta.

Demuestre que para todo grafo T, si T es un árbol, entonces es 2-coloreable.

Solución

Queremos demostrar que existe una 2-coloración $C: V \to \{0,1\}$, para un árbol cualquiera T = (V, E). Sea $v_0 \in V$ cualquiera, y definamos $C(v_0) := 0$. Luego, tomemos un $u \in V$ tal que $u \neq v_0$. Como tenemos un árbol, sabemos que existe un único camino entre u y v_0 de la forma

$$v_0, v_1, \ldots, v_{n-1}, u$$

Con esto, y considerando que el largo del camino es n, definamos

$$C(u) := \begin{cases} 0 & \text{si } n \text{ es par} \\ 1 & \text{si } n \text{ es impar} \end{cases}$$

Como tenemos que $u \in V$ es arbitrario y que el camino es único, tenemos una función $C: V \to \{0,1\}$ bien definida. Veamos que efectivamente tenemos una 2-coloración.

Sean $u_0, u_1 \in V$ cualesquiera tales que $\{u_0, u_1\} \in E$. Nuevamente, sabemos que existe un único camino entre v_0 y u_1 , de la forma

$$v_0, v_1, \ldots, v_{n-1}, u_0, u_1$$

Por definición, tenemos dos casos:

- 1. $C(u_0) = 0$: Es decir, el largo del camino entre v_0 y u_0 es un número par, como el largo del camino a u_1 tiene que ser un número impar, $C(u_1) = 1$, por lo que u_0 y u_1 tienen distinto color.
- 2. $C(u_0) = 1$: Análogo al anterior.

Por lo tanto, queda demostrado que dados dos vértices adjacentes cualquiera del árbol, ambos tienen coloración distinta, por lo que el árbol es 2-coloreable.