INDICES DE COLOMBIA

Nicolás Ramírez Pérez Facultad de Ingeniería Universidad de los Andes Bogotá, <u>Colombia</u> n.ramirez 12 @uniandes.edu.co

30 de Junio de 2018

Abstract

Este es el proyecto final del curso dictado en la universidad de los Andes en la ciudad de Bogotá, Colombia. Este trabajo fue hecho bajo la filosofía de trabajo replicable. Este es el proyecto final del curso dictado en la universidad de los Andes en la ciudad de Bogotá, Colombia. Este trabajo fue hecho bajo la filosofía de trabajo replicable. Este es el proyecto final del curso dictado en la universidad de los Andes en la ciudad de Bogotá, Colombia. Este trabajo fue hecho bajo la filosofía de trabajo replicable.

Introducción

Estos son los indices de Colombia, siguiendo la logica del paper realizado en la clase anterior. Estos son los indices de Colombia, siguiendo la logica del paper realizado en la clase anterior. Estos son los indices de Colombia, siguiendo la logica del paper realizado en la clase anterior. Estos son los indices de Colombia, siguiendo la logica del paper realizado en la clase anterior

Para comenzar veremos la sección 1 en la página 2.

1 Exploración Univariada

En esta seccion se explorara cada indice que nos dara el profesor Jose Magallanes, bajo en codigo estadistico desarrollado por el.En esta seccion se explorara cada indice que nos dara el profesor Jose Magallanes, bajo en codigo estadistico desarrollado por el.En esta seccion se explorara cada indice que nos dara el profesor Jose Magallanes, bajo en codigo estadistico desarrollado por el.

Para conocer el comportamiento de las variables se preparo la Tabla 1, donde se muestra los estadisticos de *IDH*, *Población Cabecera* y *Poblacion Resto*. Igualmente se muestra los histogramas correspondientes 1

Table 1: Medidas estadisticas

Statistic	N	Min	Median	Max
IDH	32	0.691	0.804	0.879
Población.Cabecera	32	13,090	717,197	10,070,801
Población.Resto	32	21,926	$268,\!111.5$	1,428,858

Figure 1: Histogramas variables de interes

Debido a que existe sesgo en las poblaciones, seran transformados los datos con los cuales se realizo 1 (ver en la pag. 2) y se presentaran en la tabla 2 y se presenta nuevamente los histogramas 2.

Table 2: Medidas estadisticas datos Transformados

Statistic	N	Min	Median	Max
Cabecera.Transformada	32	9.480	13.483	16.125
Resto.Transformada	32	9.995	12.499	14.172

Figure 2: Histogramas variables de interes transformados

2 Exploración Bivariada

En este trabajo estamos interesados en el impacto de la población en el el IDH, esto se puede obrservar en la tabla 3. De igual manera, nos intera la correlación

Table 3: Correlaciones

Cabecera.Transformada	Resto.Transformada
0.487	0.177

de las variable independientes. Esto se puede observar en la Tabla 4 y en la Grafica $3\,$

Table 4: Correlaciones

	Cabecera.Transformada	Resto.Transformada
Cabecera.Transformada	1	0.840
Resto.Transformada	0.840	1

Figure 3: Correlaciones variables de interes transformados

3 Modelos de Regresión

En la tabla 5 se puede observar los resultados de la regresión lineal sin la variable Población resto. Por otra parte, se evidencia los resultados del modelo de regresión con la variable, anteriormente enunciada, en la tabla 6

Table 5: Modelo de regresion sin población resto

Dependent variable:
IDH
0.013***
(0.004)
0.634***
(0.055)
32
0.238
0.212
0.037 (df = 30)
$9.347^{***} (df = 1; 30)$
*p<0.1; **p<0.05; ***p<0.01

Table 6: Modelo de regresion con población resto

	$Dependent\ variable:$
	IDH
Cabecera.Transformada	0.013***
	(0.004)
Constant	0.634***
	(0.055)
Observations	32
\mathbb{R}^2	0.238
Adjusted R ²	0.212
Residual Std. Error	0.037 (df = 30)
F Statistic	$9.347^{***} (df = 1; 30)$
Note:	*p<0.1; **p<0.05; ***p<0.01

4 Exploración Espacial

Calculemos conglomerados de regiones, usando toda la información de las tres variables. Usaremos la tecnica de k-means propuesta por MacQueen [1]

Figure 4: Departamentos conglomerados segun sus indicadores

Bibliografía

[1] J. MACQUEEN. SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE OBSERVATIONS. *MULTIVARIATE OBSERVATIONS*, page 17.