A fork() in the Road: Cross-Architecture Considerations

AMD Kernel Blog

Quentin Anthony Zyphra

Zyphra

Introduction: The State of SIMD Architectures

- NVIDIA still dominates, but AMD is catching up
 - 1. AMD MI300X is cheaper, has more VRAM quantity + bandwidth than H100
 - 2. These make MI300X great for inference (lower \$/tok, less parallelism and/or higher batch size, faster decode)
 - 3. Navigating AMD software is hard, and forward-pass kernels are easier to write
 - 4. Because of #1-3, many companies are training on NVIDIA and inferencing on AMD
- GPU software is hard to navigate, and optimizations cost labor and time
 - Therefore, we seek to reuse as much of the existing algorithms (e.g. GEMM kernels, FlashAttention, etc) and their associated implementations (CUDA, Triton, CUTLASS, etc) as much as possible
 - What about new kernels? How can we write them with this bifurcated ecosystem in mind (do I write in CUDA then port to HIP? Do I just write in Triton? Etc)
- This talk seeks to give a practitioners' guide to optimizing kernels across architectures

Some Things Translate

- Let's use FlashAttention (FA) as an example GPU op to run on H100 and MI300X
- Some things translate to any SIMD architecture
 - Algorithms and their structure, such as (for FA)
 - IO-aware chunking (all SIMD have registers/SRAM/HBM/etc)
- Some things don't
 - Tuning
 - E.g. MI300X has less SRAM but more SMs, so different block sizes are amenable
 - Number of kernel pipeline stages
 - Kernel flow
 - Harder to define, but GPU kernels require a lot of different hardware units (CUDA/Tensor cores, memory stages and their buses, etc) and control flow instructions (synchronization, overlap, etc) to work together
 - Even if a kernel is ported and tuned, bottlenecks often exist due to implicit assumptions in the kernel's flow
 - Needs kernel restructuring!

Kernel Translation

- NVIDIA Kernel written in:
 - Triton

CUTLASS

- AMD Kernel written in:
 - Triton
 - No conversion needed
 - AMD compiler target needs work
 - Mid-level perf
 - HIP
 - Easy conversion
 - Requires tuning
 - Often requires restructuring
 - High perf
 - Composable Kernel (CK)
 - Manual conversion from ground up
 - Requires tuning + restructuring from ground up
 - High perf

Triton Example

https://github.com/Dao-AlLab/flash-attention/blob/main/flash attn/flash attn triton.py

CUDA → **HIP** Example

 https://github.com/ROCm/rocm-blogs/blob/release/blogs/software-toolsoptimization/hipify/README.md

Porting Kernels Summary

Triton

- Great for rapid prototyping on AMD and NVIDIA
- You're limited by the compiler
 - Getting to near-optimal on NVIDIA is more achievable, the AMD compiler target still has some holes
 - Convenience languages are a double-edged sword. Low-level optimization becomes doubly hard:
 - With CUDA/HIP or PTX/AMDGCN, you *just* need to understand hardware optimization
 - With Triton, you need to understand optimization and the triton compiler itself
 - Example: In the FA example, register pressure was high. I want to keep the Q tensor resident in registers. In
 CUDA/HIP and PTX/AMDGCN, I directly update the kernel. In Triton, I need to figure out how the compiler generates PTX/AMDGCN and update that logic to account for my kernel without breaking the compiler overall

Porting Kernels Summary

CUDA/HIP

- General-purpose GPU programming models. Great for max expressivity and therefore optimization.
- Hipification lets you have something running day-1, but optimization takes more time
 - In the best-case for simpler kernels, you just manually tune, then play bottleneck whack-a-mole until optimal
 - In the worst-case, one needs to full rewrite around the target hardware's implicit assumptions
- CUTLASS (NVIDIA) and Composable Kernel (AMD)
 - Optimized building blocks for common DL subroutines
 - Many kernel engineers are moving towards these convenience libraries. More flexibility and easier to optimize than Triton, as well as faster prototyping than CUDA/HIP
- Even with all of this, modern models need to be trained with diverse hardware in mind!
 - SIMD architectures are highly sensitive to kernel input sizing!

Introduction: Transformer Sizing

The most dramatic optimization to nanoGPT so far (~25% speedup) is to simply increase vocab size from 50257 to 50304 (nearest multiple of 64). This calculates added useless dimensions but goes down a different kernel path with much higher occupancy. Careful with your Powers of 2.

10:36 AM · Feb 3, 2023 · 1.2M Views

Introduction: Transformer Sizing

- Consider (2¹⁰) vs (2¹⁰-1) neurons in a hidden layer
 - Same model accuracy
 - ~10-40% increase in layer throughput?!

The most dramatic optimization to nanoGPT so far (~25% speedup) is to simply increase vocab size from 50257 to 50304 (nearest multiple of 64). This calculates added useless dimensions but goes down a different kernel path with much higher occupancy. Careful with your Powers of 2.

10:36 AM · Feb 3, 2023 · 1.2M Views

Introduction: Transformer Sizing

- Consider (2¹⁰) vs (2¹⁰-1) neurons in a hidden layer
 - Same model accuracy
 - ~10-40% increase in layer throughput?!

- Finding efficient sizes is especially important since model designers tend to copy structure
 - E.g. this 2.7B was defined in GPT-3, then used in OPT, GPT-Neo,
 Cerebras-GPT, RedPajama-INCITE, and Pythia
 - Small tweaks to this shape provides over 20% throughput improvement!

The most dramatic optimization to nanoGPT so far (~25% speedup) is to simply increase vocab size from 50257 to 50304 (nearest multiple of 64). This calculates added useless dimensions but goes down a different kernel path with much higher occupancy. Careful with your Powers of 2.

10:36 AM · Feb 3, 2023 · 1.2M Views

Fig. 1: Transformer single-layer throughput of various architectures for a 2.7 billion parameter model (C1 and C2 are defined by this paper as C1: h = 2560, a = 64, C2: h = 2560, a = 40).

\boldsymbol{a}	Number of attention heads	S	Sequence length
<i>b</i>	Microbatch size	t	Tensor-parallel size
'n	Hidden dimension size	v	Vocabulary size
L	Number of transformer layers		·

- Treat transformer model as a sequence of GPU kernels
 - What kernels take up a single layer's latency?

TABLE I:	Variable	names.

Module	GEMM Size	Figure
Input Embedding	_	_
Layer Norm 1	-	_
QKV Transform	$(b \cdot s, h) \times (h, \frac{3h}{t})$	16
Attention Score	$(\frac{b \cdot a}{t}, s, \frac{h}{a}) \times (\frac{b \cdot a}{t}, \frac{h}{a}, s)$	7a 8
Attn over Value	$(\frac{b \cdot a}{t}, s, s) \times (\frac{b \cdot a}{t}, s, \frac{h}{a})$	7b 9
Linear Projection	$(b \cdot s, \frac{h}{t}) \times (\frac{h}{t}, h)$	19
Layer Norm 2	_	_
MLP h to $4h$	$(b \cdot s, h) \times (h, \frac{4h}{t})$	10a
MLP $4h$ to h	$(b \cdot s, \frac{4h}{t}) \times (\frac{4h}{t}, h)$	10b
Linear Output	$(b \cdot s, v) \times (v, h)$	20

TABLE II: Summary of operators in the transformer layer considered in this paper, along with the size of the GEMMs used to execute these operators.

a	Number of attention heads	s	Sequence length
b	Microbatch size	t	Tensor-parallel size
h	Hidden dimension size	v	Vocabulary size
L	Number of transformer layers		•

Treat transformer model as a sequence of GPU kernels

TABLE I: Variable names.

- What kernels take up a single layer's latency?
- As model size grows, majority are GEMMs from attention and MLPs (4h \rightarrow h and h \rightarrow 4h)

Fig. 11: The proportion of latency of each GEMM module in a medium sized transformer model.

Module	GEMM Size	Figure
Input Embedding	_	<u> </u>
Layer Norm 1		_
→ QKV Transform	$(b \cdot s, h) \times (h, \frac{3h}{t})$	16
Attention Score	$(\frac{b \cdot a}{t}, s, \frac{h}{a}) \times (\frac{b \cdot a}{t}, \frac{h}{a}, s)$	7a 8
Attn over Value	$(\frac{b \cdot a}{t}, s, s) \times (\frac{b \cdot a}{t}, s, \frac{h}{a})$	7b 9
Linear Projection	$(b \cdot s, \frac{h}{t}) \times (\frac{h}{t}, h)$	19
Layer Norm 2		_
\rightarrow MLP h to 4h	$(b \cdot s, h) \times (h, \frac{4h}{t})$	10a
\rightarrow MLP 4h to h	$(b \cdot s, \frac{4h}{t}) \times (\frac{4h}{t}, h)$	10b
Linear Output	$(b \cdot s, v) \times (v, h)$	20

TABLE II: Summary of operators in the transformer layer considered in this paper, along with the size of the GEMMs used to execute these operators.

- Good news: MLP GEMM sizes depend on h and 4h, which is easy to make divisible by 64!
 - Just need a large enough hdim to saturate GPU cores. Classic roofline.

Module	GEMM Size	Figure
Input Embedding	_	-
Layer Norm 1	_	
QKV Transform	$(b \cdot s, h) \times (h, \frac{3h}{t})$	16
Attention Score	$(\frac{b \cdot a}{t}, s, \frac{h}{a}) \times (\frac{b \cdot a}{t}, \frac{h}{a}, s)$	7a 8
Attn over Value	$(\frac{b \cdot a}{t}, s, s) \times (\frac{b \cdot a}{t}, s, \frac{h}{a})$	7b 9
Linear Projection	$(b \cdot s, \frac{h}{t}) \times (\frac{h}{t}, h)$	19
Layer Norm 2		_
MLP h to $4h$	$(b \cdot s, h) \times (h, \frac{4h}{t})$	10a
MLP $4h$ to h	$(b \cdot s, \frac{4h}{t}) \times (\frac{4h}{t}, h)$	10b
Linear Output	$(b \cdot s, v) \times (v, h)$	20

TABLE II: Summary of operators in the transformer layer considered in this paper, along with the size of the GEMMs used to execute these operators.

Fig. 11: The proportion of latency of each GEMM module in a medium sized transformer model.

- Good news: MLP GEMM sizes depend on h and 4h, which is easy to make divisible by 64!
 - Just need a large enough hdim to saturate GPU cores. Classic roofline.
- The only MLP constraint is capacity. Make sure hdim is large enough to escape the memory-bound regime!

100	■ QKV	Flash =	Score I	■ AOV	Linproj	■ MLP h	to 4h 🗏 N	VILP 4h to h	Non-G	EMN
80										
80 — 60 —										
40										
20										
0										
	Small	(h=2560, a	=20)	La	arge (h=163	84, a=128	3) Larg	e + Flash (h=	:16384, a:	=128

Fig. 11: The proportion of latency of each GEMM module in a medium sized transformer model.

TABLE II: Summary of operators in the transformer layer considered in this paper, along with the size of the GEMMs used to execute these operators.

Fig. 10: Throughput (in teraFLOP/s) for multilayer perceptrons (MLP) for each transformer layer as a function of hidden dimension for a=128.

Sizing: Attention

Fig. 17: Attention key-query score computation (KQ^T) .

- The two most sensitive kernels for the (non-flash!) attention calculation:
 - Attention over values (AOV)

- Query-key-value transform (QKV)

Module	GEMM Size	Figure
Input Embedding	_	_
Layer Norm 1		_
$\longrightarrow QKV$ Transform	$(b \cdot s, h) \times (h, \frac{3h}{t})$	16
Attention Score	$(\frac{b \cdot a}{t}, s, \frac{h}{a}) \times (\frac{b \cdot a}{t}, \frac{h}{a}, s)$	7a 8
Attn over Value	$(\frac{b \cdot a}{t}, s, s) \times (\frac{b \cdot a}{t}, s, \frac{h}{a})$	7b 9
Linear Projection	$(b \cdot s, \frac{h}{t}) \times (\frac{h}{t}, h)$	19
Layer Norm 2		_
MLP h to $4h$	$(b \cdot s, h) \times (h, \frac{4h}{t})$	10a
MLP $4h$ to h	$(b \cdot s, \frac{4h}{t}) \times (\frac{4h}{t}, h)$	10b
Linear Output	$(b \cdot s, v) \times (v, h)$	20

TABLE II: Summary of operators in the transformer layer considered in this paper, along with the size of the GEMMs used to execute these operators.

Fig. 11: The proportion of latency of each GEMM module in a medium sized transformer model.

- The two most sensitive kernels for the (non-flash!) attention calculation:
 - Attention over values (AOV)

- Query-key-value transform (QKV)
- These kernels are much more sensitive to model size
 - MLP gemms are (h,4h) whereas attention kernels get the dimension of h/a

	Attention Key Query Score, a=32	1	Attention over Values, a=32	
Throughput (TFLOP/s) 0 0 0	harry and the same of the same	h / a		1 1 2 2 4 4 8 8 1 6 3 3 2 4
	0 kg6 8197 2288 2638 20480 24576 28677 32768 Hidden Size		NS6 8191 2728 2638 20480 24576 28671 32768 Hidden Size	

(a) Attention key-query score GEMM throughput for 32 attention heads. (b) Attention over value GEMM throughput for 32 attention heads.

TABLE II: Summary of operators in the transformer layer considered in this paper, along with the size of the GEMMs used to execute these operators.

Fig. 11: The proportion of latency of each GEMM module in a medium sized transformer model.

- The two most sensitive kernels for the (non-flash!) attention calculation:
 - Attention over values (AOV)
- Query-key-value transform (QKV)

- MLP gemms are (h,4h) whereas attention kernels get the dimension of h/a
- Ensure h/a has as many factors of 2 as possible!
 - Preferably h/a divisible by at least 64

Module	GEMM Size	Figure
Input Embedding	<u> </u>	_
Layer Norm 1	_	_
QKV Transform	$(b \cdot s, h) \times (h, \frac{3h}{t})$	16
Attention Score	$(\frac{b \cdot a}{t}, s, \frac{h}{a}) \times (\frac{b \cdot a}{t}, \frac{h}{a}, s)$	7a 8
Attn over Value	$(\frac{b \cdot a}{t}, s, s) \times (\frac{b \cdot a}{t}, s, \frac{h}{a})$	7b 9
Linear Projection	$(b \cdot s, \frac{h}{t}) \times (\frac{h}{t}, h)$	19
Layer Norm 2		_
MLP h to $4h$	$(b \cdot s, h) \times (h, \frac{4h}{t})$	10a
MLP $4h$ to h	$(b \cdot s, \frac{4h}{t}) \times (\frac{4h}{t}, h)$	10b
Linear Output	$(b \cdot s, v) \times (v, h)$	20

TABLE II: Summary of operators in the transformer layer considered in this paper, along with the size of the GEMMs used to execute these operators.

(a) Attention key-query score GEMM throughput for 32 attention heads. (b) Attention over value GEMM throughput for 32 attention heads.

Fig. 7: Attention GEMM performance on A100 GPUs. Each plot is a single series (i.e. if we didn't split, there would be three regions with spikes), but split by the largest power of two that divides h/a to demonstrate that more powers of two leads to better performance up to h/a = 64.

Fig. 11: The proportion of latency of each GEMM module in a medium sized transformer model.

- The two most sensitive kernels for the (non-flash!) attention calculation:
 - Attention over values (AOV)
- Query-key-value transform (QKV)

- MLP gemms are (h,4h) whereas attention kernels get the dimension of h/a
- Ensure h/a has as many factors of 2 as possible!
 - Preferably h/a divisible by at least 64

Module	GEMM Size	Figure
Input Embedding	_	2
Layer Norm 1	_	_
QKV Transform	$(b \cdot s, h) \times (h, \frac{3h}{t})$	16
Attention Score	$(\frac{b \cdot a}{t}, s, \frac{h}{a}) \times (\frac{b \cdot a}{t}, \frac{h}{a}, s)$	7a 8
Attn over Value	$(\frac{b \cdot a}{t}, s, s) \times (\frac{b \cdot a}{t}, s, \frac{h}{a})$	7b 9
Linear Projection	$(b \cdot s, \frac{h}{t}) \times (\frac{h}{t}, h)$	19
Layer Norm 2		_
MLP h to $4h$	$(b \cdot s, h) \times (h, \frac{4h}{t})$	10a
MLP $4h$ to h	$(b \cdot s, \frac{4h}{t}) \times (\frac{4h}{t}, h)$	10b
Linear Output	$(b \cdot s, v) \times (v, h)$	20

TABLE II: Summary of operators in the transformer layer considered in this paper, along with the size of the GEMMs used to execute these operators.

Fig. 11: The proportion of latency of each GEMM module in a medium sized transformer model.

What are these waves?

(a) Attention key-query score GEMM throughput for 32 attention heads. (b) Attention over value GEMM throughput for 32 attention heads.

Fig. 7: Attention GEMM performance on A100 GPUs. Each plot is a single series (i.e. if we didn't split, there would be three regions with spikes), but split by the largest power of two that divides h/a to demonstrate that more powers of two leads to better performance up to h/a=64.

Background (alt. why are GPUs amazing for parallelism?)

- GPUs are composed of streaming multiprocessors (SMs)
 - SMs contain warps (i.e. thread blocks). Warps contain *cores*.
 - SMs run in parallel
- Keep all those cores busy!
 - GPU Occupancy = Sum_i(SM_i Occupancy) / #SMs
 - Want GPU occupancy to be high!
 - Fill each SM with enough* warps to hide instruction latency
 - Fill aggregate SMs with enough warps to keep cores busy

^{*} Too low, SMs are idle or latency between instructions isn't hidden (really bad!). Too high, not enough cores per warp (kinda bad)

Total units of work to compute = 1

Throughput = (6 + 1) / 2 = 3.5

Throughput = (6 + 2) / 2 = 4

ı	Number of attention heads		Sequence length
)	Microbatch size	t	Tensor-parallel size
ı	Hidden dimension size	v	Vocabulary size
	Number of transformer layers		•

Boiled things down to the following:

TABLE I: Variable names.

Therefore to ensure the best performance from transformer models, ensure:

- The vocabulary size should be divisible by 64.
- The microbatch size b should be as large as possible [24].
- $b \cdot s$, $\frac{h}{a}$, and $\frac{h}{t}$ should be divisible by a power of two, though there is no further benefit to going beyond 64.
- $(b \cdot a)/t$ should be an integer.
- t should be as small as possible [25].

Importantly, the microbatch size b does not itself need to be divisible by a large power of 2 since the sequence length s is a large power of two.