Elsevier LATEX template*

Elsevier¹

Radarweg 29, Amsterdam

Elsevier Inca,b, Global Customer Serviceb,*

^a 1600 John F Kennedy Boulevard, Philadelphia
^b 360 Park Avenue South, New York

Abstract

This template helps you to create a properly formatted LATEX manuscript.

Keywords: elsarticle.cls, LATEX, Elsevier, template

2010 MSC: 00-01, 99-00

1. The Elsevier article class

Installation. If the document class elsarticle is not available on your computer, you can download and install the system package texlive-publishers (Linux) or install the LATEX package elsarticle using the package manager of your TEX installation, which is typically TEX Live or MikTEX.

Usage. Once the package is properly installed, you can use the document class elsarticle to create a manuscript. Please make sure that your manuscript follows the guidelines in the Guide for Authors of the relevant journal. It is not necessary to typeset your manuscript in exactly the same way as an article, unless you are submitting to a camera-ready copy (CRC) journal.

Functionality. The Elsevier article class is based on the standard article class and supports almost all of the functionality of that class. In addition, it features commands and options to format the

- document style
- baselineskip
- front matter
- keywords and MSC codes
- theorems, definitions and proofs
- lables of enumerations
- citation style and labeling.

Here are two sample references: Feynman and Vernon Jr. (1963); Dirac (1953).

Email address: support@elsevier.com (Global Customer Service)

URL: www.elsevier.com (Elsevier Inc)

^{*}Fully documented templates are available in the elsarticle package on CTAN.

^{*}Corresponding author

¹Since 1880.

References

- Dirac, P., 1953. The lorentz transformation and absolute time. Physica 19, 888–896. doi:10.1016/ S0031-8914(53)80099-6.
 - Feynman, R., Vernon Jr., F., 1963. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics 24, 118–173. doi:10.1016/0003-4916(63)90068-X.