Computer Science & Engineering Department I. I. T. Kharagpur

Principles of Programming Languages: CS40032

Assignment – 6: Denotaional Semantics

Marks: 25

Assign Date: 25th March, 2021 Submit Date: 23:55, 09th April, 2021

Instructions: Please solve the questions using pen and paper and scan the images. Every image should contain your roll number and name.

- 1. Given the algebras of natural numbers and truth values, simplify the following expressions. Show all the steps in your simplification. [6]
 - (a) $((six equals(two plus one)) \rightarrow one [] (three minus one)) plus two$
 - (b) (two equals(true \rightarrow one [] two)) and true
 - (c) $not(false) \rightarrow not(true) [] not(true)$
- 2. Modify the dynamic array algebra of Module so that arrays carry with them upper and lower bounds. The operations are altered so that: [6]
 - (a) newarray : Nat \times Nat \to Array establishes an empty array with lower and upper bounds set to the values of the two arguments.
 - (b) access and update both compare their index argument against the lower and upper bounds of their array argument. (Hint: use Array = $(Nat \rightarrow A) \times Nat \times Nat.$)
- 3. Draw the abstract syntax tree that results from parsing the series of keystrokes 12 + 5 \pm M⁺ M⁺ 55 =.

Remember, keystrokes are entered and evaluated from left to right.

[5]

- 4. (a) Complete the definition of the algebra given below by defining these operations: [8]
 - i. update-payrate : Rat \times Payroll-rec \rightarrow Payroll-rec
 - ii. update-hours: Rat \times Payroll-rec \rightarrow Payroll-rec

Domain Payroll-rec =String \times (Day+ Night) \times Rat where Day= Rat and Night= Rat

(The names Day and Night are aliases for two occurrences of Rat. We use dwage \in Day and nwage \in Night in the operations that follow.)

Operations

 $newemp : String \rightarrow Payroll-rec$

newemp(name) = (name, inDay(minimum-wage), 0)

 $move\text{-to-dayshift}: Payroll\text{-rec} \rightarrow Payroll\text{-rec}$

move-to-dayshift(employee)=(employee $\downarrow 1$, (cases (employee $\downarrow 2$) of isDay(dwage) \rightarrow inDay(dwage) [] isNight(nwage) \rightarrow inDay(nwage) end), employee $\downarrow 3$)

move-to-nightshift : Payroll-rec \rightarrow Payroll-rec

move-to-nightshift(employee)= (employee $\downarrow 1$, (cases (employee $\downarrow 2$) of isDay(dwage) \rightarrow inNight(dwage) [] isNight(nwage) \rightarrow inNight(nwage) end), employee $\downarrow 3$)

. . .

compute-pay : Payroll-rec \rightarrow Rat

compute-pay(employee)= (cases (employee $\downarrow 2$) of isDay(dwage) \rightarrow dwage multrat (employee $\downarrow 3$) [] isNight(nwage) \rightarrow (nwage multrat 1.5) multrat (employee $\downarrow 3$) end)

- (b) Use the completed algebra to define a payroll record stating that
 - i. "Jane Doe" has been assigned a payroll record.

- ii. She is moved to the night shift.
- iii. She works 38 hours that week.
- iv. Her payrate goes to 9.00.

Next, write an expression denoting Jane Doe's pay for the week.