Minimum Spanning Tree (MST)

Hengfeng Wei

hfwei@nju.edu.cn

June 19, 2018

Cut Property

$$G = (V, E, w)$$

Cut Property (Strong)

- lacktriangleq X is some part of an MST T of G
- ► Any $\operatorname{cut}(S, V \setminus S)$ s.t. X does not cross $(S, V \setminus S)$ Âŋ
- ▶ Let e be a lightest edge across $(S, V \setminus S)$

3 / 26

Cut Property (Strong)

- lacktriangleq X is some part of an MST T of G
- ► Any $\operatorname{cut}(S, V \setminus S)$ s.t. X does not cross $(S, V \setminus S)$ Âŋ
- ▶ Let e be a lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is some part of an MST T' of G.

Cut Property (Strong)

- lacktriangleq X is some part of an MST T of G
- ▶ Any $\operatorname{cut}(S, V \setminus S)$ s.t. X does not cross $(S, V \setminus S)$ Âŋ
- ▶ Let e be a lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is some part of an MST T' of G.

Correctness of Prim's and Kruskal's algorithms.

By Exchange Argument.

By Exchange Argument.

By Exchange Argument.

$$T + \{e\} - \{e'\}$$

A cut
$$(S, V \setminus S)$$

Let e=(u,v) be a minimum-weight edge across $(S,V\setminus S)$

A cut
$$(S, V \setminus S)$$

Let e=(u,v) be a minimum-weight edge across $(S,V\setminus S)$

Then e must be in **some** MST of G.

A cut
$$(S, V \setminus S)$$

Let e=(u,v) be a minimum-weight edge across $(S,V\setminus S)$

Then e must be in **some** MST of G.

5 / 26

A cut
$$(S, V \setminus S)$$

Let e=(u,v) be a minimum-weight edge across $(S,V\setminus S)$

Then e must be in **some** MST of G.

"a"
$$\rightarrow$$
 "the" \Longrightarrow "some" \rightarrow "any"

5 / 26

Converse of Cut Property (Weak)

$$e = (u, v) \in \exists \mathsf{\ MST\ } T \mathsf{\ of\ } G$$

=

 $e \text{ is a lightest edge across some cut } (S, V \setminus S)$

Converse of Cut Property (Weak)

$$e = (u, v) \in \exists \mathsf{MST}\ T \mathsf{\ of\ } G$$

e is a lightest edge across some cut $(S, V \setminus S)$

$$T' = \underbrace{T - \{e\}}_{\text{to find } (S, V \setminus S)} + \underbrace{\{e'\}}_{\exists ?}$$

Application of Cut Property [Problem: 10.15 (3)]

 $e \in G$ is a lightest edge $\implies e \in \exists$ MST of G

Application of Cut Property [Problem: 10.15 (3)]

 $e \in G$ is a lightest edge $\implies e \in \exists$ MST of G

$$(S = \{u\}, V \setminus S)$$

Application of Cut Property [Problem: 10.15 (4)]

 $e \in G$ is the unique lightest edge $\Rightarrow e \in \forall$ MST

Application of Cut Property [Problem: 10.15 (4)]

$$e \in G$$
 is the unique lightest edge $\Rightarrow e \in \forall$ MST

By contradiction.

$$e \notin T : T' = T + \{e\} - \{e'\} \implies w(T') < w(T)$$

Wrong divide-and-conquer algorithm for MST [Problem: 10.21]

$$(V_1, V_2) : ||V_1| - |V_2|| \le 1$$

 $T_1 + T_2 + \{e\} : e$ is a lightest edge across (V_1, V_2)

Wrong divide-and-conquer algorithm for MST [Problem: 10.21]

$$(V_1, V_2) : ||V_1| - |V_2|| \le 1$$

 $T_1 + T_2 + \{e\} : e$ is a lightest edge across (V_1, V_2)

9 / 26

Cycle Property

$$G = (V, E, w)$$

Cycle property [Problem: 10.19(b)]

- ▶ Let C be any cycle in G
- ▶ Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

Cycle property [Problem: 10.19(b)]

- ▶ Let C be any cycle in G
- ▶ Let e = (u, v) be a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

$$T' = \underbrace{T - \{e\}}_{e \in T} + \{e'\}$$

Anti-Kruskal algorithm [Problem: 10.19(c)]

Reverse-delete algorithm (wiki)

$$O(m \log n (\log \log n)^3)$$

Anti-Kruskal algorithm [Problem: 10.19(c)]

Reverse-delete algorithm (wiki)

$$O(m \log n (\log \log n)^3)$$

Proof.

Invariant: If F is the set of edges remained at the end of the while loop, then there is some MST that are a subset of F.

Anti-Kruskal algorithm [Problem: 10.19(c)]

Reverse-delete algorithm (wiki)

$$O(m \log n (\log \log n)^3)$$

Proof.

Invariant: If F is the set of edges remained at the end of the while loop, then there is some MST that are a subset of F.

"On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem" — Kruskal, 1956.

Application of Cycle Property [Problem: 10.15 (1)]

$$G=(V,E), |E|>|V|-1$$
, e unique maximum-weighted edge

 $e \notin \mathsf{any} \; \mathsf{MST}$

Application of Cycle Property [Problem: 10.15(1)]

$$G=(V,E), |E|>|V|-1$$
, e unique maximum-weighted edge

 $e \notin \mathsf{any} \; \mathsf{MST}$

Bridge

Application of Cycle Property [Problem: 10.15 (2)]

 $C\subseteq G, e\in C$, e is the unique maximum-weighted edge of G

 \Longrightarrow

 $e \notin \text{any MST of } G$

Application of Cycle Property [Problem: 10.15 (2)]

 $C\subseteq G, e\in C$, e is the unique maximum-weighted edge of G

 $e \notin \text{any MST of } G$

By contradiction.

$$T' = T - \{e\} + \{e'\}$$

Application of Cycle Property [Problem: 10.15 (5)]

 $C \subseteq G, e \in C$, e is the unique lightest edge of $C \implies {}^?e \in \forall$ MST

Application of Cycle Property [Problem: 10.15 (5)]

 $C \subseteq G, e \in C$, e is the unique lightest edge of $C \implies {}^?e \in \forall$ MST

Properties of MST

✓ Or **X**[Problem: 3.6.15]

- 1. The shortest-path tree computed by Dijkstra's algorithm is necessarily an MST.
- 2. XThe shortest path between two nodes is necessarily part of some MST.

- 3. ✓ Prim's algorithm works correctly when there are negative edges.
- 4. \checkmark If e belongs to some MST, then e is a minimum edge across some cut.
- 5. $\checkmark w > 0$; Vertex s; shortest-path tree of s and some MST share a common edge [Problem: 6.1.5]
- 6. $\checkmark w'(e) = (w(e))^2$ [Problem: 6.2.2] Hengfeng Wei (hfwei@nju.edu.cn) Minimum Spa

Uniqueness of MST

Uniqueness of MST [Problem: 3.6.21]

Distinct weights \Rightarrow unique MST.

Solution.

Proof.

By contradiction: two MSTs $T_1 \neq T_2$.

- $e = \min \Delta E$. Suppose $e \in T_1 \setminus T_2$
- $ightharpoonup T_2 + \{e\} \Rightarrow C$
- $\exists (e' \in C) \notin T_1 \Rightarrow e' \in T_2 \setminus T_1 \Rightarrow e' \in \Delta E \Rightarrow w(e') > w(e)$
- $ightharpoonup e' \in T_2 \setminus T_1 \Rightarrow e' \in \Delta E$
- $T' = T_2 + \{e\} \{e'\} \Rightarrow w(T') < w(T_2)$

Uniqueness of MST

Conditions for Uniqueness of MST [Problem: 3.6.19]

► [Problem: 3.6.19 (a)]: unique MST #> equal weights

- ▶ [Problem: 3.6.19 (c)]: Counterexamples
 - ► Xcut: minimum-weight edge across any cut is unique
 - ▶ Xcycle: maximum-weight edge in any cycle is unique

Updating MST

Adding vertex to MST [Problem: 3.6.2]

- ▶ G = (V, E); an MST T
- ▶ G' = (V', E'): $V' = V + \{X\}, E' = E + E_X$; E_X : incident edges to X
- ▶ To find an MST T' of G'

Solution.

- 1. Recomputing $O((m+n)\log n)$
- - ▶ Run MST alg. on $G'' = (V + \{X\}, T + E_X)$
 - $ightharpoonup O(n \log n)$
- O(n)
 - "On Finding and Updating Spanning Tress and Shortest Paths", 1975
 - "Algorithms for Updating Minimum Spanning Trees", 1978

Feedback edge set: [Problem: 3.6.4]

- 1. maximum spanning tree
- 2. (minimum) feedback edge set:
 - lacktriangle a set of edges which, when removed from the graph, leave an acyclic graph G'
 - assuming G is connected $\Rightarrow G'$ is connected
 - ► feedback *arc* set: "cycle" ⇒ circular dependency

Solution.

- ▶ G' is connected + acyclic $\Rightarrow G'$ is an ST
- ightharpoonup FES $\Leftrightarrow G \setminus \text{Max-ST}$

Edge weights [Problem: 3.6.15 (8); 3.6.16]

- ► [Problem: 3.6.15 (8)]: negative edges for Prim algorithm
- ▶ [Problem: 3.6.16]: $w'(e) = (w(e))^2$

MST with specified leaves: [Problem: 3.6.7]

- $ightharpoonup G = (V, E), U \subset V$
- lacktriangle finding an MST with U as leaves

Solution.

- $ightharpoonup G' = G \setminus U$
- \blacktriangleright MST T' of G'
- ▶ attach $\forall u \in U$ to T' (lightest edge)

ST with specified edges: [Problem: 3.6.10]

- $G = (V, E), S \subset E$ (no cycle in S)
- ightharpoonup finding an MST with E as edges

Solution.

- contract each isolated component of S to a super-vertex
- ightharpoonup G
 ightharpoonup G'
- \blacktriangleright find MST of G'

Minimum Spanning Tree (MST)

MST vs. Shortest Paths

MST vs. shortest paths

```
[Problem: 3.6.15]
```

- ► [Problem: 3.6.15 (6)]: Dijkstra \Rightarrow SSSP tree \Rightarrow ? MST
- ▶ [Problem: 3.6.15 (7)]: $s \rightarrow t$ shortest path \Rightarrow ? $\subseteq \exists$ MST

MST vs. shortest paths

Sharing edges [Problem: 3.6.5]

- G = (V, E), w(e) > 0
- ▶ Given s: all sssp trees from s must share some edge with all (some) MSTs of G

Solution

E': lightest edges leaving s

- ▶ any MST T of G: $T \cap E' \neq \emptyset$
- ▶ $E' \subset \forall$ sssp trees

