Ph.D. Qualifying Exam, Real Analysis

Fall 2012, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Suppose u is a distribution on $\mathbb R$ and $x^k u=0$ for some $k\in\mathbb N$, $k\geq 1$. Show that there exists $a_j\in\mathbb C$ such that $u(\phi)=\sum_{j=0}^{k-1}a_j\phi^{(j)}(0)$.
 - **b.** Suppose that (X,μ) is a measure space, $1 , <math>u_n \in L^p(X,d\mu)$ for $n \in \mathbb{N}$, and for all $\phi \in L^q(X,d\mu)$, $q^{-1}+p^{-1}=1$, $\lim_{n\to\infty}\int_X u_n\phi\,d\mu$ exists. Show that there exists $C\geq 0$ such that $\int_X |u_n|^p\,d\mu\leq C$ for all n.
- 2 Let D_N , $N \ge 1$ integer, be the Dirichlet kernel

$$D_N(\theta) = \frac{1}{2\pi} \frac{\sin(N + \frac{1}{2})\theta}{\sin\frac{1}{2}\theta}.$$

Let $L_N = \int_0^{2\pi} |D_N(\theta)| d\theta$. Prove that there exist $C_1, C_2 > 0$ such that for all $N \ge 2$,

$$C_1 \log N \le L_N \le C_2 \log N.$$

- **3** Two short problems.
 - **a.** Show that there is a closed subset E of [0,1] with positive Lebesgue measure and with empty interior.
 - **b.** Show that if $f:[0,1] \to \mathbb{R}$ is absolutely continuous and $A \subset [0,1]$ is Lebesgue measurable with measure 0 then f(A) is measurable with measure 0.
- Suppose that X, Y are Banach spaces, and let \mathcal{T}_s denote the norm topology on X, \mathcal{U}_s the norm topology on Y. Let \mathcal{T}_w denote the weak topology on X, and \mathcal{U}_w denote the weak topology on Y.
 - **a.** Show that (X, \mathcal{T}_w) has the following property, sometimes called $(\mathrm{T}3\frac{1}{2})$ or *completely regular*: if $x \in X$ then $\{x\}$ is \mathcal{T}_w -closed, and given any $x \in X$ and $C \subset X$ \mathcal{T}_w -closed with $x \notin C$, there is a continuous function $f: X \to [0,1]$ with f(x)=1 and f identically 0 on C.
 - **b.** Show that a linear map $T: X \to Y$ is continuous as a map from (X, \mathcal{T}_s) to (Y, \mathcal{U}_s) if and only if it is continuous as a map from (X, \mathcal{T}_w) to (Y, \mathcal{U}_w) .
- Suppose that X, Y are Hilbert spaces. An operator $A \in \mathcal{L}(X, Y)$ is *Fredholm* if A has closed range, and $\operatorname{Ker} A$ as well as $Y/\operatorname{Ran} A$ are finite dimensional.
 - **a.** Show that $A \in \mathcal{L}(X,Y)$ is Fredholm if and only if there are finite dimensional vector spaces V,W and a finite rank operator $P \in \mathcal{L}(W \oplus X,V \oplus Y)$ such that $\tilde{A}+P$ is invertible, where $\tilde{A} \in \mathcal{L}(W \oplus X,V \oplus Y)$ is defined by $\tilde{A}(w,x)=(0,Ax), x \in X, w \in W$.
 - **b.** Suppose $A \in \mathcal{L}(X,Y)$ is Fredholm. Show that there exists $\delta > 0$ such that if $R \in \mathcal{L}(X,Y)$ with $\|R\|_{\mathcal{L}(X,Y)} < \delta$ then A + R is Fredholm.

Ph.D. Qualifying Exam, Real Analysis Fall 2012, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- 1 Two short problems.
 - **a.** Show that the spectrum of a bounded linear operator A on a Banach space X is non-empty.
 - **b.** Show that if $1 then for <math>f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$, $p^{-1} + q^{-1} = 1$, f * g defined by $(f * g)(x) = \int_{\mathbb{R}^n} f(x y)g(y) \, dy$ is a bounded continuous function with $\sup \operatorname{norm} \leq \|f\|_{L^p} \|g\|_{L^q}$.
- 2 Two short problems.
 - **a.** Let P denote the space of continuous piecewise affine functions on [0,1]. Show that any $f \in \mathcal{C}([0,1])$ is a uniform limit of elements of P.
 - **b.** Show that the inclusion map $\iota: C([0,1]) \to L^2([0,1])$ is *not* compact.
- Let $\ell^2(\mathbb{Z})$ denote the space of square summable bi-infinite sequences. Let L denote the operator of multiplication by n, and let $\mathcal{H}=\{\{a_n\}_{n=-\infty}^\infty\in\ell^2(\mathbb{Z}):\{na_n\}_{n=-\infty}^\infty\in\ell^2(\mathbb{Z})\}\subset\ell^2(\mathbb{Z})$ with $\|\{a_n\}_{n=1}^\infty\|_{\mathcal{H}}^2=\sum_{n\in\mathbb{Z}}(1+n^2)|a_n|^2$. Let $R\in\mathcal{L}(\ell^2(\mathbb{Z}),\ell^2(\mathbb{Z}))$.
 - **a.** Show that there is a discrete set $D \subset \mathbb{C}$ such that $L + R \lambda I : \mathcal{H} \to \ell^2$ is invertible for $\lambda \notin D$.
 - **b.** With $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$, show that if $V \in C(\mathbb{T})$ then the set of $\lambda \in \mathbb{C}$ for which there exists $f \in C^1(\mathbb{T})$, not identically 0, for which $f' + Vf = \lambda f$, is discrete.
- In this problem, let $\|.\|_p$ be the $L^p(\mathbb{R}^n)$ norm, $1 \leq p \leq \infty$, and let $\mathcal{C}_0^{\infty}(\mathbb{R})$ be the set of compactly supported \mathcal{C}^{∞} functions.
 - **a.** Show, including the explicit constant, that for $\phi \in \mathcal{C}_0^{\infty}(\mathbb{R})$, $\|\phi\|_{\infty} \leq \frac{1}{2} \int_{-\infty}^{\infty} |\phi'(t)| dt$.
 - **b.** Suppose that there is C>0 such that for all functions $\phi\in\mathcal{C}_0^\infty(\mathbb{R}^n)$ there is an inequality of the form $\|\phi\|_q\leq C\|\nabla\phi\|_p$. Show that one would necessarily then have the relationship $q^{-1}=p^{-1}-n^{-1}$. (Hint: consider the functions ϕ_t defined by $\phi_t(x)=\phi(tx)$.)
 - **c.** When n=2, part b) suggests that one might have an inequality of the form $\|\phi\|_{\infty} \leq C\|\nabla\phi\|_2$. Show that there is no C>0 such that this inequality holds for all $\phi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n)$.
- Let Ω be a compact polygonal domain in \mathbb{R}^2 , i.e. Ω is an open set with compact closure such that each $x \in \partial \Omega$ has a neighborhood O_x such that $\Omega \cap O_x$ is given by the intersection of one or two half-planes with O_x .

Show that there is C>0 such that the Fourier transform of the characteristic function χ_{Ω} of Ω satisfies $|(\mathcal{F}\chi_{\Omega})(\xi)|\leq C(1+|\xi|)^{-1}$, $\xi\in\mathbb{R}^2$. (Hint: reduce to the case of the Fourier transform of a product of a cutoff function with one or two characteristic functions of half-planes.)

Are there non-trivial open cones Σ in $\mathbb{R}^2 \setminus \{0\}$ such that a faster decay estimate holds as $\Sigma \ni \xi \to \infty$?