Занятие 2. Теорема Гаусса. Электрическое поле в диэлектрике.

Для подготовки к семинару надо проработать:

Лекция 3. Электростатическое поле в диэлектрике.

Электрический диполь в электростатическом поле. Поляризация диэлектриков.

Электростатическое поле в диэлектрике. Поляризованность. Свободные и связанные заряды. Связь поляризованности с плотностью связанных зарядов. Вектор электрического смещения. Обобщение теоремы Гаусса. Поле на границе раздела диэлектриков.

ОЛ-1 (§2.1- 2.4), ОЛ-3 (§1.9, 2.1- 2.7), ОЛ-4 (§1.7, 3.1- 3.6), ДЛ-10, 11, 12.

ОЛ-1. Мартинсон Л.К., Морозов А.Н., Смирнов Е.В. Электромагнитное поле. Учебное пособие. − М.: Изд-во МГТУ им. Н.Э.Баумана, 2013. − 423 с.

ОЛ-3. Савельев И. В. Курс общей физики: Учебное пособие для втузов. В 5 кн (кн.2). – М.: Наука, 1998.

ОЛ-4. Иродов И.Е. Электромагнетизм. Основные законы. – М.: Лаборатория базовых знаний, 2000. – 352 с.

ДЛ-10. Макаров А.М., Лунёва Л.А., Макаров К.А. Теория и практика классической электродинамики. – М.: URSS, 2014. – 774 с.

ДЛ-11. Детлаф А.А., Яворский Б.М. Курс физики. – М.: Изд.центр «Академия», 2005. – 720 с.

ДЛ-12. Сивухин Д.В. Общий курс физики. Учебное пособие для вузов. В 5 томах.

– М.: Физматлит, 2002. – 4506 с.

Краткие теоретические сведения

Электрическое поле, создаваемое диполем

$$\vec{p}_{\rm e} = q\vec{l}$$
;

$$\vec{E}(r) = \frac{1}{\varepsilon \varepsilon_0} \frac{\vec{p}_e \cdot \vec{e}_r}{4\pi r^3};$$

$$\vec{p}_{\rm e} = q\vec{l};$$
 $\vec{E}(r) = \frac{1}{\varepsilon \varepsilon_0} \frac{\vec{p}_e \cdot \vec{e}_r}{4\pi r^3};$ $E = \frac{1}{\varepsilon_0} \frac{p_{\rm e}}{4\pi r^3} \sqrt{1 + 3\cos^2 \theta}$

Реакция вещества на внешнее электрическое поле, векторы *P* и *D*

$$\vec{P} = \frac{\sum \vec{p}_{\rm e}}{V};$$

$$\vec{P} = \kappa \varepsilon_0 \vec{E} = \frac{(\varepsilon - 1)\vec{D}}{\varepsilon};$$

$$\kappa = \varepsilon - 1$$
.

 $\left| \vec{P} = \frac{\sum \vec{p}_{\mathrm{e}}}{V}; \right|$ $\vec{P} = \kappa \epsilon_0 \vec{E} = \frac{(\epsilon - 1)\vec{D}}{\epsilon};$ $\kappa = \epsilon - 1.$ Здесь \vec{E} - напряженность поля внутри диэлектрика.

$$\vec{E} = \frac{1}{\varepsilon \varepsilon_0} \vec{D} = \frac{1}{\varepsilon_0} (\vec{D} - \vec{P});$$

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}.$$

 $\vec{E} = \frac{1}{\epsilon \epsilon_0} \vec{D} = \frac{1}{\epsilon_0} (\vec{D} - \vec{P});$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P}.$ Вариант физического представления: $\vec{D} = \frac{\sum \vec{p}_{\rm e}^{\rm \ Bupt}}{V}$

$$\vec{D} = \frac{\sum \vec{p}_{\rm e}^{\rm \ Bupt}}{V}$$

Теорема Гаусса для векторов *P* и *D*

$$\oint \vec{D} d\vec{S} = q;$$

$$\oint \vec{D} d\vec{S} = q; \qquad \oint \vec{P} d\vec{S} = -q';$$

$$\oint \vec{E} d\vec{S} = \frac{1}{\varepsilon_0} (q + q') = \frac{q}{\varepsilon \varepsilon_0}$$

$$\operatorname{div} \vec{D} = \rho$$

$$\operatorname{div} \vec{D} = \rho;$$
 $\operatorname{div} \vec{P} = -\rho';$

$$\operatorname{div}\vec{E} = \frac{1}{\varepsilon_0}(\rho + \rho') = \frac{\rho}{\varepsilon\varepsilon_0}$$

Поведение электрических векторов на границе двух сред, граничные условия.

$$E_{\tau 1} = E_{\tau 2};$$

$$D_{n1}=D_{n2};$$

$$P_{\rm n} = \sigma' = \frac{q'^{\text{\tiny IIOB}}}{S}$$

Электромагнитные величины в системе ФВиЗ

Задача 2.32. Система состоит из шара радиуса R, заряженного сферически-симметрично и окружающей среды, заполненной зарядом с объёмной плотностью $\rho = \frac{\alpha}{r}$, где α -постоянная, r – расстояние от центра шара.

Пренебрегая влиянием вещества, найти заряд шара, при котором модуль напряженности электрического поля вне шара не зависит от r. Чему равна эта напряжённость?

Рис. 1

Решение:

Для поверхности сферы S радиусом r > R, центр которой совпадает с центром шара, применим теорему Гаусса

$$\oint_{S} \left(\overrightarrow{D}, \overrightarrow{dS} \right) = q_{\text{BHYTP}}. \tag{1}$$

Вектор электрического смещения

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E} \ . \tag{2}$$

Будем предполагать, что относительная диэлектрическая проницаемость постоянная $\varepsilon=1.$

Заряд внутри сферы S определится выражением

$$q_{\rm BHYTP} = q_{\rm III} + q_{\rm CP}. \tag{3}$$

Для определённости задачи примем заряд шара положительный $\,q_{
m III}>0$, заряд среды внутри сферы тоже положительный

$$q_{\rm CP} = \iiint_V \rho dV > 0. \tag{4}$$

Рис. 1

Векторы \overrightarrow{E} и \overrightarrow{dS} направлены одинаково в каждой точке поверхности S (рис.1), поэтому

$$\oiint_{S} (\overrightarrow{D}, \overrightarrow{dS}) = \oiint_{S} DdS. \tag{6}$$

Т.к. в каждой точке поверхности сферы S величина E=const , то

$$\oiint_{S} (\vec{D}, \vec{dS}) = D \oiint_{S} dS = \varepsilon_{0} E \cdot 4\pi r^{2}. \tag{7}$$

Тогда

$$\varepsilon_0 \varepsilon E \cdot 4\pi r^2 = q_{\text{III}} + 2\pi \alpha (r^2 - R^2). \tag{8}$$

Если заряд шара будет равен

$$q_{\rm III} = 2\pi\alpha R^2,\tag{9}$$

то напряженность поля вне шара будет постоянной величины

$$E = \frac{\alpha}{2\varepsilon_0} \,. \tag{10}$$

Рис. 2

Решение:

Найдем напряженность внутри сплошного равномерно заряженного шара. Применим теорему Гаусса

$$\oiint_{S} (\vec{D}, \vec{dS}) = q_{\text{BHYTP}} \tag{1}$$

для поверхности сферы S радиусом r < R, центр которой совпадает с центром шара. Вектор электрического смещения

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E}. \tag{2}$$

Будем предполагать, что относительная диэлектрическая проницаемость постоянная $\varepsilon=1$. Пусть для определённости объёмная плотность положительна $\rho>0$. Заряд внутри сферы

$$q_{\rm BHYTP} = \iiint_V \rho dV. \tag{3}$$

Из-за сферической симметрии

$$q_{\text{BHYTP}} = \int_0^r \rho 4\pi r^2 dr = \frac{4}{3}\pi \rho r^3.$$
 (4)

Рис. 2

Векторы \overrightarrow{E} и \overrightarrow{dS} направлены одинаково в каждой точке поверхности S , поэтому

$$\oiint_{S} (\overrightarrow{D}, \overrightarrow{dS}) = \oiint_{S} DdS. \tag{6}$$

Т.к. в каждой точке поверхности сферы S величина E=const , то

$$\oiint_{S} (\vec{D}, \vec{dS}) = D \oiint_{S} dS = \varepsilon_{0} E \cdot 4\pi r^{2}.$$
 (7)

Тогда

$$\varepsilon_0 E \cdot 4\pi r^2 = \frac{4}{3}\pi \rho r^3 \tag{8}$$

$$E = \frac{\rho}{3\varepsilon_0} r. \tag{9}$$

$$\vec{E} = \frac{\rho}{3\varepsilon_0} \vec{r},\tag{10}$$

где \vec{r} – вектор, проведённый из центра сферы.

Рис. 2

Полость можно определить как результат наложения положительного и отрицательного зарядов одинаковой плотности.

Положение любой точки внутри полости можно задать с помощью двух векторов (рис.2):

 $\overrightarrow{r_+}$ - вектор, проведённый из центра положительно заряженного шара, $\overrightarrow{r_-}$ - вектор, проведённый из центра отрицательно заряженного шара. При этом выполняется соотношение

$$\overrightarrow{r_+} - \overrightarrow{r_-} = \vec{a} \ . \tag{11}$$

Соответственно, для вектора напряженности внутри полости,

$$\vec{E} = \overrightarrow{E_+} + \overrightarrow{E_-} \,, \qquad (12)$$

$$\overrightarrow{E_+} = \frac{\rho}{3\varepsilon_0} \overrightarrow{r_+} \tag{13}$$

a
$$\overrightarrow{E}_{-} = -\frac{\rho}{3\varepsilon_0} \overrightarrow{r}_{-}$$

- вектор напряжённости внутри шара с зарядом **+**, (14)

- вектор напряжённости внутри шара с зарядом знака — (минус). Поэтому внутри полости электрическое поле характеризуется напряженностью

где

$$\vec{E} = \frac{\rho}{3\varepsilon_0} \vec{r_+} - \frac{\rho}{3\varepsilon_0} \vec{r_-} = \frac{\rho}{3\varepsilon_0} \vec{a}$$
. (15). Это поле оказывается однородным!

а) модуль напряженности электрического поля как функцию расстояния r от центра шара; изобразить примерные графики зависимостей E(r) и $\varphi(r)$; $\varphi(r)$ объемную и поверхностную плотность связанных зарядов.

Решение: Найдем напряженность внутри сплошного равномерно заряженного шара. Применим теорему Гаусса

$$\oiint_{S} (\vec{D}, \vec{dS}) = q_{\text{BHYTP}} \tag{1}$$

для поверхности сферы S радиусом r < R, центр которой совпадает с центром шара. Вектор электрического смещения

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E}. \tag{2}$$

Будем предполагать, что относительная диэлектрическая проницаемость постоянная $\varepsilon = const.$

Пусть для определённости объёмная плотность положительна $\rho>0$. Заряд внутри сферы

$$q_{\rm BHYTP} = \iiint_V \rho dV. \tag{3}$$

Из-за сферической симметрии

$$q_{\rm BHYTP} = \int_0^r \rho 4\pi r^2 dr = \frac{4}{3}\pi \rho r^3$$
. (4)

$$\oiint_{S} (\vec{D}, \vec{dS}) = \oiint_{S} DdS. \tag{5}$$

Т.к. в каждой точке поверхности сферы S величина E=const , то

$$\oiint_{S} (\vec{D}, \vec{dS}) = D \oiint_{S} dS = \varepsilon_0 \varepsilon E \cdot 4\pi r^2.$$
 (6)

Тогда

$$\varepsilon_0 \varepsilon E \cdot 4\pi r^2 = \frac{4}{3}\pi \rho r^3 \tag{7}$$

$$E = \frac{\rho}{3\varepsilon_0 \varepsilon} r . \tag{8}$$

Теперь применим теорему Гаусса

$$\oint_{S} (\vec{D}, \vec{dS}) = q_{\text{BHYTP}} \tag{9}$$

для поверхности сферы S радиусом r > R, центр которой совпадает с центром шара.

Заряд внутри сферы

$$q_{\rm BHYTP} = \iiint_{V} \rho dV. \tag{10}$$

Вычисляем:

$$q_{\text{BHYTP}} = \int_0^R \rho 4\pi r^2 dr = \frac{4}{3}\pi \rho R^3.$$
 (11)

Тогда по теореме Гаусса вне сферы

$$\varepsilon_0 E \cdot 4\pi r^2 = \frac{4}{3}\pi \rho R^3 \tag{12}$$

$$E = \frac{\rho R^3}{3\varepsilon_0 r^2} \tag{13}$$

Следовательно, напряженность поля шара

$$E(r) = \begin{cases} \frac{\rho}{3\varepsilon_0 \varepsilon} r, & r \le R \\ \frac{\rho R^3}{3\varepsilon_0 r^2}, & r > R \end{cases}$$
 (14)

На поверхности шара (при r=R) величина напряжённости поля не является непрерывной, т.к. при $\varepsilon>1$ из (14) следует, что

$$\frac{\rho}{3\varepsilon_0\varepsilon}R \neq \frac{\rho}{3\varepsilon_0}R , \qquad (15)$$

T.e.

$$E(R-0) \neq E(R+0).$$
 (16)

Это объясняется наличием на поверхности сферы связанных зарядов.

Зависимость потенциала $\varphi(r)$ можно найти из соотношения

$$\vec{E} = -grad\varphi \tag{17}$$

Если это равенство умножить скалярным образом на малый вектор \overrightarrow{dr} ,

$$(\vec{E}, \overrightarrow{dr}) = -(grad\varphi, \overrightarrow{dr}) \quad (18)$$

направленный по радиусу сферы S, т.е. так же, как и вектор \vec{E} , то получим равенство

$$(\vec{E}, \overrightarrow{dr}) = Edr \tag{19}$$

Т.к. $(grad\varphi,\overrightarrow{dr})=d\varphi$, то

$$Edr = -d\varphi \tag{20}$$

Из этого равенства находим при r>R

$$\varphi = -\int \frac{\rho R^3}{3\varepsilon_0 r^2} dr + C \tag{21}$$

$$\varphi = \frac{\rho R^3}{3\varepsilon_0 r} + C \tag{22}$$

Если принять условие, что $\phi o 0$ при $r o \infty$, то C = 0.

Соответственно, при r < R

$$\varphi = -\int \frac{\rho}{3\varepsilon_0 \varepsilon} r dr + C_1 \tag{23}$$

T.e.

$$\varphi = -\frac{\rho}{6\varepsilon_0 \varepsilon} r^2 + C_1 \tag{24}$$

Потенциал — это энергетическая характеристика поля, поэтому функция $\varphi(r)$ должна быть непрерывной на поверхности шара при r=R

$$-\frac{\rho}{6\varepsilon_0\varepsilon}R^2 + C_1 = \frac{\rho R^3}{3\varepsilon_0 R},\qquad (25)$$

откуда

$$C_1 = \frac{\rho R^2}{6\varepsilon_0} \left(2 + \frac{1}{\varepsilon} \right). \tag{26}$$

В итоге,

$$\varphi(r) = \begin{cases} \frac{\rho R^2}{6\varepsilon_0} \left(2 + \frac{1}{\varepsilon}\right) - \frac{\rho}{6\varepsilon_0 \varepsilon} r^2, & r \le R\\ \frac{\rho R^3}{3\varepsilon_0 r}, & r > R \end{cases}$$
(27)

Качественные графики изображены на рис. 3.

Интересным преставляется вопрос об ориентации отдельных диполей диэлектрика внутри шара. На поверхности + или - ?

Рис. 3

Плотность связанных зарядов на поверхности шара определяется разностью нормальных составляющих вектора поляризованности

$$\sigma' = P_{1n} - P_{2n}. (28)$$

Т.к.

$$\vec{P} = \varepsilon_0(\varepsilon - 1)\vec{E} \tag{29}$$

и вектор \vec{E} направлен по радиусу, то

$$P_n = P. (30)$$

Снаружи шара $\varepsilon = 1$, поэтому

$$P_{2n} = 0. (31)$$

Внутри шара при r=R-0

$$P_{1n} = \frac{(\varepsilon - 1)\rho}{3\varepsilon} R \quad , \tag{32}$$

следовательно

$$\sigma' = \frac{(\varepsilon - 1)\rho}{3\varepsilon} R . \tag{33}$$

По формулам поверхностная плотность получилась со знаком +.

Для диэлектричекого шара с положительными зарядами этот результат вполне естественен.

$$\rho' = -divP \quad . \tag{34}$$

Числовое значение вектора P (имеющего направленность от минуса к плюсу) определяется из соотношения

$$P = D - E. (35)$$

С учетом формул (6) - (8) и известного выражения для вектора D

$$D=\varepsilon\varepsilon_0 E,$$

значения вектора P внутри шара по формуле (35) определятся выражением

$$P = \frac{\rho r}{3} - \frac{\rho r}{3\varepsilon} = \frac{\rho r}{3} \frac{\varepsilon - 1}{\varepsilon}.$$
 (36)

Тогда объемная плотность связанных зарядов внутри шара

$$\rho' = -divP = -\frac{1}{r^2} \frac{\partial}{\partial r} r^2 P = -\frac{1}{r^2} \frac{\partial}{\partial r} \left(\frac{\rho r^3}{3} \frac{\varepsilon - 1}{\varepsilon} \right) = -\frac{\rho(\varepsilon - 1)}{\varepsilon}.$$
 (37)

Объемная плотность связанных зарядов получилась отрицательной по знаку, что тоже понятно с учетом формулы (33).

Вне шара $\varepsilon = 1$, никаких связанных зарядов нет и формула (37) показывает 0.

Задача 2.96. Первоначально пространство между обкладками плоского конденсатора заполнено воздухом и напряженность электрического поля в зазоре равна E_0 .

Затем половину зазора, как показано на рис. 4, заполнили однородным диэлектриком с проницаемостью *є*.

Найти модули векторов **E** и **D** в обеих частях зазора (1 и 2), если при введении диэлектрика:

- а) напряжение между обкладками не менялось;
- б) заряды на обкладках оставались неизменными.

Решение:

Векторы напряженности и смещения между пластинами направлены перпендикулярно пластинам, т.е. нормальная составляющая вектора равна самому вектору

$$E_n = E, D_n = D. \tag{1}$$

Пусть расстояние между пластинами равно d (рис.5). Начальное напряжение между пластинами равно

$$U = E_0 d. (2)$$

Величина вектора электрического смещения в отсутствии диэлектрика

$$D_0 = \varepsilon_0 E_0 .$$
(3)

$$D_n = \sigma . (4)$$

На границе раздела диэлектриков

$$D_{1n} = D_{2n} . (5)$$

Случай а) напряжение между обкладками не менялось:

в этом случае условие U=const примет вид

$$E_0 d = E_1 \frac{d}{2} + E_2 \frac{d}{2} \,. \tag{6}$$

Условие на границе

$$\varepsilon_0 E_1 = \varepsilon_0 \varepsilon E_2 \,, \tag{7}$$

откуда

$$E_1 = \frac{2\varepsilon}{\varepsilon + 1} E_0, \qquad (8)$$

$$E_2 = \frac{2}{\varepsilon + 1} E_0 \ . \tag{9}$$

Случай б) заряды на обкладках оставались неизменными:

в этом случае условие q=const примет вид $\sigma=const$ или

$$D_0 = D_1 = D_2 \,, \tag{10}$$

при этом

$$E_1 = E_0$$
, $E_2 = \frac{E_0}{\varepsilon}$. (11)

Для самостоятельной проработки студентам прелагается подумать над решением более сложных задач подобного типа, которые представлены на следующих рисунках.

Для закрепления знаний по теме данного семинара дома следует самостоятельно решить следующие задачи, которые рекомендуются учебным планом

Домашнее задание

Иродов И.Е. Задачи по общей физике.- М.: Бином, 1998 - 2001,

Дома: ОЛ-7 задачи 2.37, 2.99 или ОЛ-8 задачи 3.29, 3.89.

ОЛ-7. Иродов И.Е. Задачи по общей физике.- М.: Бином, 1998÷2001.

ОЛ-8. Иродов И.Е. Задачи по общей физике.- М.: Наука, 1988.

2.37. Имеется бесконечно длинная прямая нить, заряженная равномерно с линейной плотностью $\lambda = 0.40$ мкКл/м. Вычислить разность потенциалов точек 1 и 2, если точка 2 находится в $\eta = 2.0$ раза дальше от нити, чем точка 1.

 ϵ проницаемостью $\epsilon=5,00$ создано однородное электрическое поле напряженности E=100 В/м. Радиус шара R=3,0 см. Найти максимальную поверхностную плотность связанных зарядов и полный связанный заряд одного знака.

Спасибо за внимание