

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.01** Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 2

Название: Построение IDEF0-модели AS-IS функционирования системы

Дисциплина: Теория систем и системный анализ

Студент	ИУ6-73Б		В.К. Залыгин
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Д.А. Миков
1 ,,		(Подпись, дата)	(И.О. Фамилия)

Цель работы

Овладение методологией IDEF0 для функционального моделирования сложных систем (система планирования путешествий с персональными рекомендациями).

Задание

Разработать структурно-функциональную модель системы на основе методологии IDEF0.

Исходные данные: исследуемая система выбирается индивидуально, по согласованию с преподавателем. Рекомендуется выбрать систему, которая исследовалась при выполнении лабораторной работы №1.

ХОД РАБОТЫ

1 Выбор системы, описание предметной области

Система: оптимизирующий компилятор (далее – "Система").

Предметная область: приложения для сборки кодов программ в исполняемые файлы.

Субъект анализа: оптимизирующий компилятор.

Объект анализа: пользователь ПО.

Точка зрения: разработчик.

Цель: оптимизация и компиляция программ, составление ассемблерных файлов.

2 Моделирование контекстной диаграммы

Была построена таблица 1, содержащая выявленные недостатки.

Таблица 1 – Выявленные недостатки

Узкое место	Способ исправления	
Оптимизация не учитывает возможность	Сделать обратную связь для многократных	
многократных проходов по АСТ	проходов при оптимизации	
Входной файл может содержать	Добавить проверку правильности входного	
некорректную программу	файла с программой.	

Контекстная диаграмма, представленная на рисунке 1, позволяет выявить ключевые потоки данных и определить возможные узкие места, связанные с производительностью и полнотой информации.

Рисунок 1 – Контекстная диаграмма

3 Моделирование диаграмм декомпозиции

Целью моделирования является формализация и описание процессов функционирования оптимизирующего компилятора.

Построение иерархии диаграмм позволяет глубже **ПОНЯТЬ** последовательность действий, выявить зависимые компоненты и определить возможные узкие места, влияющие на точность рекомендаций И производительность системы.

На рисунке 2 представлена диаграмма декомпозиции контекстной диаграммы A0.

Рисунок 2 – Диаграмма декомпозиции контекстной диаграммы А0

На рисунке 3 представлена диаграмма декомпозиции A1 — "Разбор входного файла", где решена проблема отсутствия проверок – добавлен блок, осуществляющий проверки файла.

Рисунок 3 – Диаграмма декомпозиции А1

На рисунке 4 представлена диаграмма декомпозиции A2 — "Оптимизация". Для устранения узкого места добавлены обратные связи между различными блоками оптимизаций, которые помогают достичь наибольшей оптимизации программы путем многократной синергии.

Рисунок 4 – Диаграмма декомпозиции А2

На рисунке 5 представлена диаграмма декомпозиции A3 — "Генерация файла".

Рисунок 5 – Диаграмма декомпозиции А3

На рисунке 6 показана диаграмма декомпозиции A21 — "Локальная оптимизация". Диаграмма позволяет уточнить способ проведения локальных оптимизаций. В данной диаграмме также произведены изменения для увеличения степени оптимизации путем многократных проходов (обратная связь от блока 3 до блока 1).

Рисунок 6 – Диаграмма декомпозиции А21

ВЫВОД

В выполнения лабораторной работы была разработана ходе структурно-функциональная усовершенствованная модель системы рекомендаций туристических предложений, встроенной в мобильное приложение для планирования путешествий, в нотации IDEF0 (версия TO-ВЕ). Модель отражает оптимизированную архитектуру системы, построенную на основе анализа текущего состояния (AS-IS) и устранения выявленных недостатков.

В процессе работы были выполнены следующие шаги:

- проведён анализ исходной модели и определены ключевые проблемы, связанные с избыточной сложностью входных потоков и недостаточной интеграцией обратной связи;
- построена обновлённая контекстная диаграмма A-0, в которой объединены информационные потоки и укрупнены механизмы обработки данных, что позволило повысить наглядность и сократить дублирование функций;
- выполнена декомпозиция уровня A0 на четыре оптимизированных процесса: сбор данных пользователя, обработка данных и формирование рекомендаций, предоставление рекомендаций пользователю, сбор обратной связи и адаптивное обучение модели;
- построены диаграммы первого уровня (A1–A4) и уточнённая диаграмма второго уровня (A22) с учётом изменений в логике взаимодействия модулей и автоматического обновления пользовательских профилей;
 - добавлен блок проверки корректности входного файла;
- предложены меры по повышению эффективности оптимизаций, в частности добавлены дополнительные обратные связи в рамках диаграмм "Оптимизации" для повышения качества оптимизации.

Разработанная модель ТО-ВЕ позволила формализовать улучшенную структуру системы, повысить связность процессов и адаптивность алгоритмов рекомендаций.

Результаты моделирования демонстрируют повышение логической согласованности и управляемости системы, а также создают основу для дальнейшей автоматизации и масштабирования функционала рекомендательного модуля.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чем преимущество структурного подхода при исследовании сложных систем?

Структурный подход позволяет рассматривать сложную систему как совокупность взаимосвязанных функциональных блоков. Каждый блок выполняет определённую функцию и имеет чётко определённые входы, выходы, управляющие воздействия и механизмы. Такой подход облегчает анализ, проектирование и оптимизацию системы, так как позволяет:

- разбить сложную задачу на более простые части;
- выявить связи между элементами;
- понять, где находятся узкие места и дублирование функций;
- упростить модификацию и документирование.

По сути, структурное моделирование помогает «разобрать систему на слои» и увидеть её логику без избыточных деталей.

2. Укажите назначение методологии IDEF0.

Методология IDEF0 предназначена для описания, анализа и документирования функций сложных систем. Она используется для формализации бизнес-процессов и технологических схем в удобном для анализа виде.

IDEF0 показывает, что система делает, что ей нужно для выполнения функций, что она производит и что управляет её поведением.

Основная цель — создать наглядную и логически непротиворечивую модель, которая облегчает анализ текущего состояния и разработку улучшенной версии.

3. Поясните назначение моделей «как есть» и «как должно быть».

Модель «как есть» (AS-IS) описывает текущее состояние системы — как она функционирует на данный момент, с существующими процессами,

взаимодействиями и проблемами. Она нужна для выявления узких мест, избыточных потоков и неэффективных операций.

Модель «как должно быть» (ТО-ВЕ) представляет улучшенный вариант системы, в котором устранены недостатки и реализованы оптимизации. Эта модель используется для проектирования новой архитектуры, планирования автоматизации и внедрения изменений.

Построение обеих моделей позволяет провести анализ перехода от текущего состояния к целевому.

4. Что представляет собой IDEF0-модель?

IDEF0-модель — это графическое и текстовое представление функциональной структуры системы. Она состоит из набора взаимосвязанных диаграмм, каждая из которых описывает определённый уровень детализации. Каждый функциональный блок в IDEF0 имеет стандартную структуру:

- входы (Inputs) что поступает на обработку,
- выходы (Outputs) что создаётся в результате,
- управления (Controls) что регулирует выполнение функции,
- механизмы (Mechanisms) кто или что выполняет функцию.

Такая модель позволяет единообразно описывать процессы любой сложности.

5. Зачем при построении IDEF0-модель необходимо указывать цель моделирования и точку зрения?

Цель моделирования определяет зачем создаётся модель — например, для оптимизации процессов, анализа узких мест или автоматизации функций.

Точка зрения задаёт границы и уровень детализации модели — с позиции кого рассматривается система (пользователя, разработчика, аналитика, руководства).

Без этого модель может оказаться избыточной или, наоборот, неполной:

- цель обеспечивает направленность и логическую завершённость описания;
- точка зрения помогает определить, какие функции и связи действительно важны для анализа.

6. Перечислите и поясните ограничения сложности IDEF0диаграмм.

Методология IDEF0 предусматривает несколько ограничений для повышения читаемости и структурности диаграмм.

- 1) Количество блоков на диаграмме от 3 до 6 (максимум 7), чтобы не перегружать схему.
- 2) Количество входящих и исходящих стрелок должно быть разумным, чтобы диаграмма оставалась понятной.
- 3) Иерархичность каждая диаграмма может быть декомпозирована на подуровни (A0, A1, A2...), но уровень детализации должен быть оправдан задачей.
- 4) Единый контекст каждая диаграмма описывает только один аспект системы.
- 5) Однозначность связей все стрелки и блоки должны иметь уникальные имена и понятные назначения.

Эти ограничения делают модель компактной, логичной и пригодной для анализа.

7. Какие диаграммы входят в состав IDEF0-модели?

Полноценная IDEF0-модель включает несколько типов диаграмм.

- 1. Контекстная диаграмма (A-0) верхний уровень, показывающий систему в целом, её границы, входы, выходы, управляющие и механизмы.
- 2. Диаграмма первого уровня (A0) раскрывает основную функцию на несколько крупных подпроцессов.
- 3. Диаграммы декомпозиции (A1, A2, A3, ...) детализируют каждый подпроцесс, показывая внутреннюю структуру и взаимодействия.

4. Диаграммы второго и последующих уровней (A21, A31, ...) — применяются при необходимости более глубокого анализа конкретных функций.

Такое многоуровневое представление позволяет описывать систему «сверху вниз» — от общего к частному.