

Module 4 - Inferential Statistics

Central Limit Theorem, Bootstrapping

Quick Recap

One that is representative of the entire population gives each thing an equal chance of being chosen.

Simple Random Sampling (SRS): Every item in the population has an equal chance of being selected (Randomly).

Stratified Sampling: The population is divided into subgroups (strata), and random samples are taken from each subgroup.

Systematic Sampling: Every *k*th item is selected from a list after choosing a random starting point.

How trustworthy is Sample? Are multiple Samples Same? Maybe one Sample can be more "TRUSTWORTHY"

Sampling Distribution

This is the **distribution of a statistic** (like sample mean or proportion) **across many samples** from the same population.

- It tells you about the variability of the sample statistic.
- As the sample size increases, the estimated parameters gets closer to true parameter.

Sample 1 Sample Statistics 1 Sample Statistics 2 Sample 2 Population Sample Statistics 3 Sample 3 Sample Statistics 4 Sample 4 Sample Sampling

Population - N data points. Sample - n data points.

Sampling Distribution

This is the **distribution of a statistic** (like sample mean or proportion) **across many samples** from the same population.

It tells you about the **variability of the sample** statistic.

As the sample size increases, the estimated parameters gets closer to true parameter.

Law of Large Numbers

^{*}We will learn about it later in detail.

Sampling Distribution

This is the **distribution of a statistic** (like sample mean or proportion) **across many samples** from the same population.

For example: You take many samples of 50 people each, compute the mean height in each sample — the distribution of those means is the sampling distribution of the sample mean.

- It tells you about the **variability of the sample** statistic.
- Foundation of Advance concepts that we will learn later.

Sampling Distribution of Sample Mean

- 1. **Simulate a population** of 10,000 people where height follows a normal distribution (mean = 165 cm, std = 15 cm).
- 2. **Draw a random sample of size 5**, and calculate the sample mean height.
- 3. **Repeat** this process 1000 times and store all the sample means.
- 4. **Plot the histogram** of these 1000 sample means. Repeat for n=20, 30, 50.

Sampling Distribution - Simulation 1


```
import seaborn as sns
import random
import numpy as np
import matplotlib.pyplot as plt
from statistics import mean
# Step 1: Simulating for 10000
population = np.random.normal(165, 15, 10000)
# Step 2: Function to collect 1000 sample means (sample size = 5)
n = 5
reps = 1000
sample means = []
for _ in range(reps):
    sample = random.sample(list(population), n)
    sample means.append(mean(sample))
# Step 3: Plot histogram of the 1000 sample means
sns.histplot(sample means, bins=30, kde=True, color='skyblue')
plt.show()
```


Sampling Distribution - Simulation 1


```
import random
import seaborn as sns
from scipy stats import norm
# Step 1: Simulate population of 10,000 people (mean=165, std=15)
population = norm.rvs(loc=165, scale=15, size=10000)
# Step 2: Function to collect sample means
def get_sample_means(pop, n, reps=1000):
    return [sum(random.sample(list(pop), n)) / n for _ in range(reps)]
# Step 3: Try different sample sizes n = 5, 20, 50
n=5
means = get sample means(population, n)
sns.histplot(means, bins=30, kde=True, color='skyblue')
```


Sampling Distribution - Not Normal Population

This time Population is not Normal.

Let say this is how the population is distributed.

How do you think the sampling Distribution will look?

```
population = [random.randint(0, 100) for _ in range(10000)]]
sns.histplot(population, bins = 30)
```

Sampling Distribution - Simulation 2


```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from statistics import mean
# Step 1: Simulate data with a uniform distribution (range 0 to 100)
population = np.random.uniform(0, 100, 10000) # Generating 10000 samples
# Step 2: Collect 1000 sample means (each sample has 5 observations)
n = 5 # sample size
reps = 1000 # number of trials
sample_means = []
for in range(reps):
    sample = np.random.choice(population, size=n, replace=False)
    sample_means.append(mean(sample))
# Step 3: Plot histogram of the 1000 sample means
sns.histplot(sample means, bins=30, kde=True, color='skyblue')
plt.show()
```


- Doesn't matter even if my Population is Normal or not, the sampling distribution of the mean looks approximately Normal!
- ? What happens if we increase the sample size to 20, 30, or 50? Will the distribution become even narrower and more Normal?

Sampling Distribution - Simulation 2


```
import random
import seaborn as sns
from scipy.stats import uniform

# Step 1: Random Test Scores between 0 to 100
population = [random.randint(0, 100) for _ in range(10000)]

# Step 2: Function to get sampling distribution of means
def get_sample_means(pop, sample_size, repeats=1000):
    return [sum(random.sample(pop, sample_size)) / sample_size for _ in range(repeats)]

# # Step 3: Plot for different sample sizes
n = 5
means = get_sample_means(population, n)
sns.histplot(means, bins=30, kde=True, color='mediumseagreen')
```

- Doesn't matter even if my Population is Normal or not, the sampling distribution of the mean looks approximately Normal!
- ? What happens if we increase the sample size to 20, 30, or 50? Will the distribution become even narrower and more Normal?

Central Limit Theorem

CLT: The distribution of sample means follows a Normal Distribution, even if individual values don't, as long as $n \ge 30$.

Why CLT is important:

- Pfizer cannot test on every human, so they test small groups.
- Sample means help estimate the true average effectiveness.

CLT - Continued

Key Properties:

Sample means follow a Normal Distribution (even if population isn't Normal).

Mean of sample means ≈ Population Mean (unbiased estimates).

Larger samples $(n \ge 30) \rightarrow More$ stable & accurate estimates.

CLT - Conditions

To apply the central limit theorem, the following conditions must be met:

1. Randomization:

 Data should be randomly sampled, ensuring every population member has an equal chance of being included.

2. Independence:

- Each sample value should be independent, with one event's occurrence not affecting another.
- Commonly met in probability sampling methods, which independently select observations.

3. Large Sample Condition:

- A sample size of 30 or more is generally considered "sufficiently large."
- This threshold can vary slightly based on the population distribution's shape.

Practice - 1

For each population distribution described below, which of the following would likely produce a sampling distribution that is approximately normal?

- a) Rectangular population distribution, sample size = 15
- b) Bimodal population distribution, sample size = 29
- c) Skewed population distribution, sample size = 40
- d) Triangular population distribution, sample size = 35
- e) Normal population distribution, sample size = 20
- f) Normal population distribution, sample size = 30

Ans: **c, d, e, f**

Sampling Dist. vs Population Dist.

Standard Error

Standard Error
$$\sigma_{ar{x}}=rac{\sigma}{\sqrt{n}}$$

Standard Error (SE) measures how much the sample mean fluctuates from the true mean.

Why SE Matters?

Standard Error tells us how close our sample mean is likely to be to the true population mean.

Key Observations:

- Larger samples (higher n) → Lower SE → More accuracy.
- Higher variability (higher σ) \rightarrow Higher SE \rightarrow Less accuracy.

Real-life Example:

- Testing 10 vaccines → SE is large, the sample mean is less reliable.
- Testing 1000 vaccines → SE is small, sample mean is very close to 20 hours.

Pfizer can reduce error in estimates by increasing sample size.

Practice - 2

The average time a laptop battery lasts is **6 hours** with a standard deviation of **1.2 hours**. If a sample of **25 laptops** is tested, what is the probability that their **average battery life** is **less than 5.5 hours**?

Solution

Step 1: Compute Standard Error (SE)

$$SE = rac{\sigma}{\sqrt{n}} = rac{1.2}{\sqrt{25}} = rac{1.2}{5} = 0.24$$

Step 2: Convert to Z-score

$$Z = rac{ar{X} - \mu}{SE} = rac{5.5 - 6}{0.24} = rac{-0.5}{0.24} pprox -2.08$$

Step 3: Find Probability from Z-table

$$P(Z<-2.08)pprox 0.0188$$

Practice - 3

Suppose the population of student study hours follows a normal distribution with a mean (μ) of 6 hours and standard deviation (σ) of 2 hours.

If we take multiple random samples of size 25 and compute the sample mean for each:

Q1: What will be the mean of the sampling distribution of the sample mean?

Q2: What will be the standard deviation of the sampling distribution (i.e., the standard error)?

Q1:

Q2:

What is the mean of the sampling distribution?

What is the standard error (SE)?

 $SE=\sigma_{ar{x}}=rac{\sigma}{\sqrt{n}}=rac{2}{\sqrt{25}}=rac{2}{5}=0.4$

$$\mu_{ar{x}}=\mu=6~ ext{hours}$$

Key Takeaways

Newton School of Technology

1. Central Limit Theorem (CLT)

- Sample means tend to follow a Normal Distribution, even if the original population isn't normal (as long as n ≥ 30).
- Mean of sample means ≈ population mean.
- Larger samples → smaller spread (lower standard error) → more accurate estimates.

2. Standard Error (SE)

- SE measures how much sample means vary from the population mean.
- Formula: $SE = \sigma / \sqrt{n}$
- Bigger n → smaller SE → more reliable estimates.

3. Bootstrapping

- Resampling with replacement from a single sample to simulate the process of repeated sampling.
- Helps approximate the sampling distribution without collecting new data.
- Boosts confidence in estimates, especially when actual data collection is costly or limited.

4. Sampling Distribution vs. Population Distribution

- · Population distribution: actual data distribution
- Sampling distribution: distribution of statistic (e.g., mean) across many samples

References | Homework

Exercises:

Beginner: Try simulations using Python/R for 5–10 bootstrap samples

Intermediate: Plot histograms from 100 bootstrap samples

Advanced: Simulate CLT with different population shapes and increasing n

Additional Resources

1. Khan Academy - CLT Explanation

2. <u>Seeing Theory - CLT Simulation</u>

3. Blog: <u>Bootstrapping in Statistics</u>

Take-Home

- Run your own bootstrap on small dataset (e.g., your test scores)
- Observe how the mean varies across resamples
- Think: How does the shape of the distribution change with sample size?