

Arquitectura del Computador II

Facultad de Ingeniería (2 créditos prácticos – 2 créditos teóricos)

Información del profesor

Nombre del profesor e-mail Ubicación, horario

Jefferson Esquivel jefferson.esquivel.gt@gmail.com Campus Central,

Sábado de 07:30 a 10:30. Sección01

Información general

Descripción

La Arquitectura de Computadores es un área de las ciencias de la computación, que permite el conocimiento de la metodología del diseño de computadores, los componentes que lo integran y la programación del mismo, al más bajo nivel, orientado hacia un diseño óptimo con énfasis en la satisfacción de una necesidad de procesamiento particular.

El conocimiento del diseño de computadores estudia un esquema de un solo procesador (monoprocesador) y la forma en que este interactúa con otros elementos, formando así un computador. Posteriormente se estudia la ampliación del diseño del computador de un procesador, hacia la integración de varios procesadores (multiprocesador).

Debido a los avances de la tecnología, no se utilizan únicamente computadores portátiles para el afianzamiento de los conceptos teóricos del curso, sino también, se propone la utilización de microcontroladores, computadoras de bajo costo y demás dispositivos electrónicos, con el fin de lograr una implementación orientada a internet y cómo este forma parte del día a día.

Modalidad

Mixta (Blended). Se combinarán momentos de aprendizaje autónomo, de parte del estudiante y guiado en la plataforma de aprendizaje de la Universidad; así como conferencias virtuales con los profesores, donde se favorecerá la metodología activa.

Características del perfil

El egresado landivariano se identifica por:

Pensamiento lógico, reflexivo y analógico	Pensamiento crítico	Resolución de problemas
Habilidades de investigación	Uso de TIC y gestión de la información	Comunicación efectiva, escrita y oral
Comprensión lectora	Compromiso ético y ciudadanía	Liderazgo constructivo

Aprecio y respeto por la diversidad e interculturalidad

Creatividad

Indicadores de logro (Taxonomía de Marzano)

Indicadores de logro 1	Implementación de circuitos electrónicos básicos para funcionalidades complejas.
Indicadores de logro 2	Diseño de circuitos aplicaciones electrónicas que utilicen una arquitectura compleja.
Indicadores de logro 3	Análisis de la aplicación de arquitecturas complejas en modelos simplificados.

Metodología

Aprendizaje basado en proyectos

«Se orienta en el diseño y desarrollo de un proyecto de manera colaborativa por un grupo de alumnos, como una forma de lograr los objetivos de aprendizaje de una o más áreas disciplinares y además lograr el desarrollo de las competencias relacionadas con la administración de proyectos reales». Edutrends, Tecnológico de Monterrey.

Programación

Indicador de logro 1 Implementación de circuitos electrónicos básicos para funcionalidades complejas. Metodología: Aprendizaje basado en proyectos			
Saber conceptual	Saber procedimental	Saber actitudinal	
 Ensambladores, Linkers, Excepciones e Interrupciones. Jerarquía de memoria. Inclusión, coherencia y localidad de datos. 	-Implementación de corrimiento de datos de entrada hacia memoriaAlmacenamiento de resultados hacia diferentes posiciones de memoria.	-Resolución de problemas mediante simpleza y reducción. -Investigación y desarrollo de temas. -Independencia de implementación.	

Indicador de logro 2 Diseño de circuitos aplicaciones electrónicas que utilicen una arquitectura compleja.				
Metodología: Aprendizaje	Metodología: Aprendizaje basado en proyectos			
Saber conceptual	Saber procedimental	Saber actitudinal		
 Multihilos por Hardware. Paralelismo por datos. Paralelismo por hilos. Cluster Networking 	-Reemplazar circuitos básicos por organismos completos. - Utilización de mecanismos de entrada y salida de circuitos completos.	-Reducción de problemas de alto nivel con soluciones de bajo nivel. - Utilización de componentes completos.		

Indicador de logro 3 Análisis de la aplicación de arquitecturas complejas en modelos simplificados.				
Analisis de la a	plicación de arquitecturas compleja	s en modelos simplificados.		
Metodología: Aprendizaje basado en proyectos				
Sahar sansantual	Cabar procedimental	Cohon octitudinal		
Saber conceptual	Saber procedimental	Saber actitudinal		
 Cloud computing 	-Recopilación de datos desde	-Identificación de tendencias en el		
	servicios cloud hacia	mercado para recopilación de datos		
	componentes físicos.	y funcionamiento de artículos en		
	- Utilización de componentes	diversas industrias.		
	completos y su comunicación a			
	redes y mecanismos actuales.			

Evaluación

a. Evaluación formativa (consiste en el proceso de acompañamiento enfocado en corregir errores a tiempo y brindar retroalimentación oportuna).

Técnicas formativas	Utilizadas	Procedimiento
	en el curso	
Retroalimentación sobre análisis	х	Se brinda al estudiante un
de resolución de problemas.		problema de lógica el cual debe de
		ser resuelto mediante diseño de
		partes de un sistema.
Implementación de circuitos	Х	Dado un requerimiento inicial,
físicos y simulados.		realizar el diseño e implementación
		de un circuito electrónico físico o
		simulado según se requiera, el cual
		sea capaz de solventar el
		requerimiento.
Retroalimentación teórica	Х	Pruebas teóricas con el fin de
		evaluar los conceptos desde el
		aspecto literal y asimilativo.
Prácticas técnicas cortas	х	Laboratorios para hacer
		resoluciones de temas básicos que
		darán como inicio a
		implementaciones mayores.

b. Evaluación sumativa

Técnica sumativas		Instrumento		Porcentaje de nota	Fecha de entrega
	Lista de cotejo	Rúbrica	Escala de valoración		
Proyectos					
a. Laboratorio 01				5%	Semana 03
b. Laboratorio 02				5%	Semana 04
c. Examen Parcial 01				15%	Semana 05
d. Laboratorio 03				5%	Semana 06
e. Laboratorio 04				5%	Semana 07
f. Laboratorio 05				5%	Semana 08
g. Laboratorio 06				5%	Semana 09
h. Examen Parcial 02				15%	Semana 10
i. Laboratorio 07				5%	Semana 11
j. Laboratorio 08				5%	Semana 12
k. Laboratorio 09				5%	Semana 13
l. Laboratorio 10				5%	Semana 14
m. Evaluación final práctica				20%	Semana 15

Cada documento (Evaluación, laboratorio u otro instrumento) posee su propia rúbrica de calificación, set de instrucciones y lista de cotejo.

Calendario

Fecha o plazo de entrega	Producto (actividad observable y evaluable, realizada por el estudiante, que responde al indicador de logro)	
Semana 1	Hardware, Ensambladores, Linkers, Excepciones e Interrupciones.	
Semana 2	Hardware, Ensambladores, Linkers, Excepciones e Interrupciones.	
Semana 3	Laboratorio 01 – Conversión Análogo Digital – Conversión en parte alta y parte baja de memoria.	
	Teoría: Jerarquía de memoria – Separación de datos en memoria.	
Semana 4	Laboratorio 02 — Distribución de datos locales y remotos. Teoría: Inclusión, coherencia y localidad de memoria.	
Semana 5	Examen Parcial 01	
Semana 6	Laboratorio 03 – Setup de computadoras de bajo costo. Teoría: Hilos, Multihilos por medio de Hardware.	
Semana 7	Laboratorio 04 – Entradas por medio digitales hacia computadoras de bajo costo.	
	Teoría: Paralelismo a nivel de datos.	
Semana 8	Laboratorio 05: Conversión análogo digital y elementos de captura de movimiento.	
	Teoría: Paralelismo a nivel de hilos	
Semana 9	Laboratorio 06 – servicios Cloud conectados a computadoras de bajo costo locales.	
	Teoría: Cluster Networking	
Semana 10	Examen Parcial 02	
Semana 11	Laboratorio 07 – API y BDD externas a computadoras locales	
	Teoría: Sincronización de datos y procesos.	
Semana 12	Laboratorio 08 – Utilización de diferentes voltajes en un mismo dispositivo.	

Fecha o plazo de entrega	Producto (actividad observable y evaluable, realizada por el estudiante, que responde al indicador de logro)
	Teoría: Cloud Computing – independencia de funcionamiento local.
Semana 13	Laboratorio 09 – Múltiples dispositivos – separación de tareas. Teoría: Cloud Computing – cohesión de dispositivos.
Semana 14	Laboratorio 10 – Réplica de funcionamiento de productos comerciales.
Semana 15	Examen final.

Referencias

- a. Computer Organization and Design The Hardware / Software Interface. Patterson Hennessy 5th. Edition
- b. Computer Architecture, A Quantitative Approach. Patterson, Hennessy, 5th Edition
- c. Advanced Computer Architecture Parallelism, Scalabily, Programmability McGraw-Hill 2001
- d. Morris Mano. Arquitectura de computadoras. Prentice Hall, 1994.
- e. Kai Hwang. Arquitectura de Computadores y Procesamiento Paralelo. McGraw Hill, 1988
- f. Roger Tokheim. Fundamentos de los microprocesadores. 2ª Edicion McGraw Hill, 1991
- g. J. Ma. Angulo J. Ma. Angulo Usategui, E. Martín Cuenca, I. Angulo Martínez. Microcontroladores PIC. La solución en un chip. Paraninfo, 1997
- h. Essentials of Computer Organization and Architecture, 5th Edition. Jones & Bartlett Learning
- i. Learning Computer Architecture with Raspberry Pi. Eben Upton, Jeffrey Duntemann, Ralph Roberts, Tim Mamtora, Ben Everard