

	task	type	time limit	memory limit
Α	Cities	standard	2.00 s	256 MB
В	Maze	output only	N/A	N/A
С	Swap	standard	1.00 s	256 MB

A Cities

W Bajtolandii jest n miast, spośród których pewne k są ważnymi miastami, często odwiedzanymi przez króla tej krainy.

Poza tym, w krainie jest m dróg łączących pewne pary miast. Są one w bardzo złym stanie, przez co król Bajtolandii nie może na nich rozwinąć prędkości maksymalnej swojego sportowego BMW w obawie przed pęknięciem opon.

Dla każdej drogi znany jest koszt jej naprawy. Twoim zadaniem jest wybrać które z nich naprawić, żeby wszystkie k ważne miasta były połączone naprawionymi drogami, a sumaryczny koszt naprawy był najmniejszy możliwy.

Wejście

W pierwszym wierszu standardowego wejścia znajdą się trzy liczby całkowite n, k i m: liczba miast, liczba ważnych miast oraz liczba dróg łączących miasta. Miasta są ponumerowane kolejnymi liczbami całkowitymi $1, 2, \ldots, n$.

Drugi wiersz wejścia zawiera k liczb całkowitych oznaczających numery ważnych miast.

Każdy z kolejnych m wierszy zawiera opis jednej drogi. Taki opis składa się z trzech liczb całkowitych $a,\,b$ i $c,\,$ oznaczających, że dana droga łączy miasta a i $b,\,$ a koszt jej naprawy wynosi $c.\,$

Możesz założyć, że z każdego miasta da się dojechać do każdego innego.

Wyjście

W pierwszym wierszu standardowego wyjścia wypisz jedną liczbę całkowitą - minimalny koszt naprawy, która zapewnia, że wszystkie ważne miasta są ze sobą połączone naprawionymi drogami.

Przykład

Dla danych przykładowych:

- 4 3 6
- 1 3 4
- 1 2 4
- 1 3 9
- 1 4 6
- 2 3 2 2 4 5
- 3 4 8

Poprawną odpowiedzią jest:

Podzadania

We wszystkich podzadaniach zachodzi $1 \le c \le 10^9$ oraz $n \ge k$.

Podzadanie 1 (22 punkty)

- 2 < k < 5
- n < 20
- $1 \le m \le 40$

Podzadanie 2 (14 punktów)

- $\bullet \ 2 \le k \le 3$ $\bullet \ n \le 10^5$
- $\bullet \ 1 \stackrel{-}{\leq} m \stackrel{\cdot}{\leq} 2 \cdot 10^5$

Podzadanie 3 (15 punktów)

- ullet $2 \leq k \leq 4$
- $n \le 1000$
- $1 \le m \le 2000$

Podzadanie 4 (23 punkty)

- \bullet k=4
- ullet $n \leq 10^5$
- $1 \leq m \leq 2 \cdot 10^5$

Podzadanie 5 (26 punktów)

- k=5
- $n \le 10^5$
- $1 \le m \le 2 \cdot 10^5$

B Maze

Uolevi napisał grę, w której gracz zbiera monety w labiryncie. Aktualnie, problemem jest to, że gra jest zbyt prosta. Czy możesz zaprojektować trochę labiryntów stanowiących wyzwanie dla gry Uoleviego?

Każdy labirynt reprezentowany jest poprzez prostokątną tablicę złożoną z wolnych pól (.) i ścian (#). Jedno pole jest bazą (x), a niektóre z tych pól zawierają monety (o). Gracz rozpoczyna grę w bazie i może poruszać się w lewo, prawo, górę i dół. Zadaniem gracza jest zebranie wszystkich monet i powrót do bazy.

Trudność labiryntu określana jest poprzez długość najkrótszej ścieżki, która rozpoczyna się w bazie, zbiera wszystkie monety, a następnie wraca do bazy.

Wejście

Wejście rozpoczyna się pojedynczą liczbą całkowitą t: liczbą labiryntów. Dalej następuje t wierszy. Każda taka linia zawiera trzy liczby całkowite $n,\ m$ oraz k. Oznaczają one, że rozmiar szukanego labiryntu wynosi $n\times m$ oraz że musi się w nim znaleźć dokładnie k monet.

Wyjście

Wyjście powinno zawierać t opisów labiryntów oddzielonych pustymi wierszami, w tej samej kolejności, w jakiej były podawane na wejściu. Każdy labirynt musi być rozwiązywalny.

Przykład

```
Dla danych wejściowych:
2
3 3 1
4 7 2

jedną z możliwych odpowiedzi jest:
###
#.x
#0#

.o.####
.#..x.#
...###
###o...
```

Trudność pierwszego labiryntu wynosi 4, a drugiego 18.

Zgłoszenie

W tym zadaniu powinieneś zgłosić odpowiedni plik wyjściowy. Jest tylko jeden plik wejściowy (maze.in), który możesz ściągnąć tutaj. Musisz wysłać plik wyjściowy (maze.out), który zawiera wszystkie labirynty wyszczególnione w pliku wejściowym.

Ocenianie

Dla każdego labiryntu, Twoim wynikiem będzie $\max(0,100-3(d-x))$ gdzie x jest trudnością Twojego labiryntu, a d jest trudnością najbardziej skomplikowanego labiryntu znalezionego przez jury. Twój całkowity wynik za całe zadanie będzie średnią wyników zaokrągloną w dół do liczby całkowitej.

C Swap

Dany jest ciąg n liczb x_1, x_2, \ldots, x_n . Każda liczba $1, 2, \ldots, n$ występuje w tym ciągu dokładnie raz.

Możesz modyfikować ten ciąg zamieniając pewne pary elementów podczas niektórych z n-1 tur ponumerowanych $k=2,3,\ldots,n$. W turze numer k możesz (ale nie musisz) zamienić miejscami liczby x_k i $x_{\lfloor k/2 \rfloor}$.

Ciąg a_1, a_2, \ldots, a_n jest leksykograficznie mniejszy niż ciąg b_1, b_2, \ldots, b_n gdy istnieje indeks j ($1 \le j \le n$) taki że $a_k = b_k$ dla każdego k < j i $a_j < b_j$.

Jaki jest najmniejszy leksykograficznie ciąg, który możesz otrzymać?

Wejście

W pierwszym wierszu standardowego wejścia znajduje się liczba całkowita n.

W drugim wierszu standardowego wejścia znajduje się n liczb całkowitych oznaczających kolejne wyrazy ciągu x.

Wyjście

W pierwszym wierszu standardowego wyjścia wypisz n liczb całkowitych: najmniejszy leksykograficznie ciąg, który możesz otrzymać.

Przykład

Dla danych przykładowych:

3 4 2 5 1

Poprawną odpowiedzią jest:

2 1 3 4 5

Podzadanie 1 (10 punktów)

• $1 \le n \le 20$

Podzadanie 2 (11 punktów)

• $1 \le n \le 40$

Podzadanie 3 (27 punktów)

• $1 \le n \le 1000$

Podzadanie 4 (20 punktów)

• $1 \le n \le 5 \cdot 10^4$

Podzadanie 5 (32 punkty)

• $1 \le n \le 2 \cdot 10^5$