Solution to Problem 1:

The conditional distribution for mean (Θ) is a normal with parameters:

$$\tau^* = \left(\frac{1}{\tau^2} + n\rho\right)^{-1/2} \qquad \qquad \mu^* = \frac{\mu/_{\tau^2} + \rho \sum_i x_i}{1/_{\tau^2} + n\rho}$$

Therefore, for the surface distribution we have:

$$\tau^*_{s} = \left(\frac{1}{1.5^2} + 10\rho_{s}\right)^{-1/2} \qquad \mu^*_{s} = \frac{6/1.5^2 + 48.04\rho_{s}}{1/1.5^2 + 10\rho_{s}}$$

Both τ_s and μ_s are functions of ρ_s .

Also, for the bottom distribution we have:

$$\tau^*_b = \left(\frac{1}{1.5^2} + 10\rho_b\right)^{-1/2} \qquad \mu^*_b = \frac{6/1.5^2 + 58.39\rho_b}{1/1.5^2 + 10\rho_b}$$

Both τ_b and μ_b are functions of ρ_b .

The conditional distribution for precision (P) is a gamma with parameters:

$$\alpha^* = \alpha_0 + \frac{n}{2}$$
 $\beta^* = \left(\frac{1}{\beta} + \frac{1}{2}\sum_{i=1}^n (x_i - \theta)^2\right)^{-1}$

Therefore, for the Surface distribution we have:

$$\alpha^*_{s} = 4.5 + \frac{10}{2} = 9.5$$
 $\beta^*_{s} = \left(\frac{1}{0.19} + \frac{1}{2}\sum_{i=1}^{10}(x_{s_i} - \theta_s)^2\right)^{-1}$

 β_s is a function of θ_s , in which, x_{s_i} is the ith observation in the surface sample data.

Also, for the bottom distribution we have:

$$\alpha^*_b = 4.5 + \frac{10}{2} = 9.5$$
 $\beta^*_b = \left(\frac{1}{0.19} + \frac{1}{2}\sum_{i=1}^{10} (x_{b_i} - \theta_b)^2\right)^{-1}$

 β_b is a function of θ_b , in which, x_{b_i} is the ith observation in the surface sample data.

Solution to Problem 2:

Using 10000 Gibbs samples of Θ_s , Θ_b , P_s and P_b , the estimated 90% credible intervals are reported in the following table:

	5% Quantile	95% Quantile		
Θ_{s}	4.373	5.320		
Θ_{b}	5.304	6.407		
$\Sigma_{ m s}$	0.6973	1.2204		
Σ_{b}	0.8299	1.4344		
$\Theta_{b-}\Theta_{s}$	0.2734	1.7270		

The estimated distributions are illustrated in figures 1 to 3.

Figure 1

Figure 2

Figure 3

Solution to Problem 3:

The effective sample size was acquired using "effectivesize" function in R and it is equal to 10000, showing that the sampling is meaningful.

The traceplot and autocorrelation function are shown in figure 4 and figure 5.

Figure 4

Figure 5

Solution to Problem 4:

The traceplot shows samples are oscillating around 1, and it means that the sampler has reached the stationary distribution.

The auto correlation function shows correlation inside the limits; therefore, the Gibbs samples are reliable.

Visual investigation shows that figure 1 and figure 2, are compatible with results from problem 3 of homework 6, which say there is a 99% probability that Θ_b is greater than Θ_s , and there is a 91.6% probability that Σ_b is greater than Σ_s .

A comparison of results from problem 1 to results from problems 1 and 2 from homework 6 is presented in the following table:

	HW8 P1		HW6 P1		HW6 P2	
	5% Quantile	95% Quantile	5% Quantile	95% Quantile	5% Quantile	95% Quantile
$\Theta_{\rm s}$	4.373	5.320	4.44	5.17	4.44	5.16
$\Theta_{\rm b}$	5.304	6.407	5.25	6.43	5.26	6.43
$\Sigma_{\rm s}$	0.6973	1.2204	0.46	1.04	0.46	1.04
Σ_{b}	0.8299	1.4344	0.74	1.67	0.74	1.68

The results are close to those from homework 6. Given the uncertainty about the posterior in Gibbs sampling, it seems to be a reliable method in case of semi-conjugate distributions.