Practice for Quiz 2

Charlie Meyer

MoWeFri 1:00 - 1:50

Practice 2-2: Functions and Relations

Questions 1-3

Consider the _and_operator as a function, that is $f(x,y) = x \wedge y$.

Question 1

What is this function's domain ?

• $\{\top,\bot\}^2$

Question 2

What is the function's codomain?

{⊤, ⊥}

Question 3

Which of the following properties does this function have? (Total, injective, surjective, bijective)?

• Total, surjective

Questions 4-6

Consider the factorial operator as a function; that is f(x) = x!.

Question 4

What is this function's domain?

• Z+

Question 5

What is the function's codomain?

· 7.+

Question 6

Which of the following properties does this function have? (total, injective, surjective, bijective)?

• total, injective

Questions 7-9

Consider the choose notation as a function, that is $f(n,k) = {x \choose y}$. The mathematical definition of the "choose" function is $f(x,y) = \frac{x!}{y!(x-y)!}$.

Question 7

What is this function's domain?

• $(\mathbb{Z}^+)^2$

Question 8

What is the function's codomain?

• Z+

Question 9

Which of the following properties does this function have? (total, injective, surjective, bijective)?

Surjective

Question 10

Consider the XOR operator as a relation; that is $R = (x, y) : x \oplus y$. Which of the following properties does this relation have (reflexive, symmetric, transitive)?

• Symmetric

Questions 11-12

Consider ar elation defined over integers as $R(x,y):(x^2>4y)\to((x/2)\in\mathbb{Z})$. Note that the above \to is the *implies* operator.

Question 11

Which of the following are related under this relation? ((0,0), (1,1), (5,5), (6,5))?

- (0,0) (since false implies trye is true)
- (1,1) (since false implies false is true)
- (6, 5) (since true implies true is true)

Question 12

Which of the following properties does this relation have (Reflexive, transitive, symmetric)?

- None
 - Not reflexive, since (5,5) is not related to itself
 - Not transitive, since R(3, 4) and R(4, 2) are true but R(3, 2) is false
 - not symmetric, since R(3, 4) is true but R(4, 3) is false

Question 13

Consider the floor-equals operator as a relation defined over the rational numbers, that is $R(x,y): \lfloor x \rfloor = \lfloor y \rfloor$. Which of the following properties does this relation have? (Reflexive, transitive, symmetric)?

- Reflexive, transitive, symmetric
 - Reflexive, since |x| = |x| is true for all $x \in \mathbb{Q}$
 - transitive since |x| = |y| and |y| = |z| implies |x| = |z|
 - Symmetric since |x| = |y| implies |y| = |x|

Questions 14-16

Consider the division operator as a function, that is f(x,y) = x/y.

Question 14

If this function is *total*, what is the function's domain?

 $\mathbb{R} \times (\mathbb{R} \setminus \{0\})$

Question 15

What is this function's range?

ℝ

Question 16

Consider the function $f(x) = 0.5^x$ with domain and co-domain are both \mathbb{R} . Which of the following properties does this function have? (total, injective, surjective, bijective)?

• Total, injective

Questions 17-19

Consider the \log_2 operator as a function, that is $f(x) = \log_2 x$.

Question 17

If the function is *total*, what is its domain?

ℝ⁺

Question 18

What is this function's codomain?

\(\mathbb{R} \)

Question 19

Which of the following properties does this function have? (injective, surjective, bijective)?

• injective, surjective, bijective

Question 20

Consider the *implies* operator as a relation, that is $R(x,y): x \to y$. Which of the following does this relation have (reflexive, symmetric, transitive)?

• Reflexive, transitive

Questions 21-23

Question 21

Which of the following functions are total, assuming both domain and co-domain are \mathbb{Z} ? (f(x) = 2x and f(x) = x/2)

• Only f(x) = 2x

Question 22

Which of the following functions are injective (1-to-1), assuming both domain and co-domain are \mathbb{Z} ? (f(x) = 2x and f(x) = x/2)

• Both f(x) = 2x and f(x) = x/2

Question 23

Which of the following functions are surjective (onto), assuming both domain and co-domain are \mathbb{Z} ? (f(x) = 2x and f(x) = x/2)

• Only f(x) = x/2

Questions 24-26

Question 24

Which of the following relations are reflexive, assuming a domain of $\mathbb{Z} \times \mathbb{Z}$? $(R(x,y) : xy \text{ is even and } R(x,y) : |x| \ge |y|)$

• Only $R(x, y) : |x| \ge |y|$

Question 25

Which of the following relations are transitive, assuming a domain of $\mathbb{Z} \times \mathbb{Z}$? $(R(x,y) : xy \text{ is even and } R(x,y) : |x| \ge |y|)$

• only $R(x, y) : |x| \ge |y|$

Question 26

Which of the following relations are symmetric, assuming a domain of $\mathbb{Z} \times \mathbb{Z}$? $(R(x,y) : xy \text{ is even and } R(x,y) : |x| \ge |y|)$

• Just R(x,y): xy is even

Questions 27-30

Consider the function f(x,y) = x/y defined over the domain $\mathbb{Z} \times \mathbb{Z}^+$.

Question 27

THe codomain of f is (if multiple answers work, pick the one that is a subset of the others)

• Q (rational numbers)

Question 28

Is f total?

• yes, since the denominator is only defined on the positive integers

Question 29

Is f injective?

• no, since f(2,4) = f(4,8) = 1/2

Question 30

Is f surjective?

• yes.

Questions 31-33

Consider the relation p(x, y) which is true if x and y are co-prime, i.e. the greatest common divisor of x and y is 1.

Question 31

Is p symmetric or antisymmetric (or neither)?

• symmetric

Question 32

Is p reflexive or irreflexive (or neither)?

- Irreflexive (if you didn't consider 1 in your domain)
- Neither (if you did consider 1 in your domain)

Question 33

Is p transitive?

• no

Question 34

An equivalence relation must be (check all that apply):

• reflexive, symmetric, transitive

Question 35

A partial order must be (check all that apply):

• antisymmetric, transitive

Questions 36-38

Consider the relation R(x,y) which is constructed from function f(x,y) = 2 + 3x where $f: \mathbb{R} \to \mathbb{R}$. as R(x,y) being true iff y = f(x)

Question 36

Is R symmetric or antisymmetric?

• Antisymmetric. the system of equations y = 2 + 3x and y = 2 + 3y has only one solution (x, y) = (-1, -1).

Question 37

Is R reflexive or irreflexive?

• Irreflexive. (0,0) is not related

Question 38

Is R transitive?

• No. (0,2) and (2,8) are related by (0,8) is not.

Question 39:

Give an example function $f:\mathbb{Q} \to \mathbb{Q}$ which is total and injective but NOT surjective.

•
$$f(x) = 2x$$

Question 40:

Give five different functions $f:\mathbb{Q} \to \mathbb{N}$ which is *total* and *surjective*.

Question 41:

Consider R(x, y) defined over $\mathbb{Z} \times \mathbb{Z}$ as $x > 0 \lor y > 0$. Which of the following properties does this have (reflexive, transitive, symmetric)?

- Not reflexive (consider (0, 0))
- Not transitive (consider (0,1) and (1,2)
- Symmetric, since $x > 0 \lor y > 0$ is equivalent to $y > 0 \lor x > 0$