전 기 기 사 실 기 1회

문제 01 출제년도 : 23.

▶점수 : 5점

최대전력이 전달되도록 회로 a-b 단자 사이에 저항을 삽입하고자 한다. 다음 각 물음에 답하시오. 단. 효율은 90[%]이다.

- (1) 선로에 최대전력을 전달하기 위한 a-b 단자 사이의 저항값을 구하시오.
- (2) 10분간 전원을 인가했을 때 a-b 단자 사이에 삽입된 저항이 한 일[kJ]을 구하시오.

▶ 답안작성

(1) 주어진 회로를 테브난 등가변환을 하면

$$121[V] \bigcirc R_{ab}$$

 \therefore 최대전력 전달 조건 $r\!=\!R_{\!\scriptscriptstyle L}$ 이므로 $R_{\!\scriptscriptstyle ab}\!=\!23\,[\,{\mbox{\it Q}}\,]$

답: 23[Ω]

(2)
$$P = \frac{V^2}{R} = \frac{\left(\frac{121}{2}\right)^2}{23} = 159.14 \text{ [W]}$$

 $W = Pt\eta = 159.14 \times 10 \times 60 \times 0.9 \times 10^{-3} = 85.94 \text{ [kJ]}$

답: 85.94[kJ]

문제 02 출제년도 : 23.

▶점수 : 6점

아래와 같은 단상 3선식 회로의 각 선에 흐르는 전류[A]를 구하시오. 단, 부하의 역률은 100[%]이다.

(1) I_1

(2) I_2

(3) I_3

(1)
$$I_1 = \frac{600}{100} + \frac{1000}{200} = 6 + 5 = 11 [A]$$

(2)
$$I_2 = \frac{600}{100} - \frac{400}{100} = 6 - 4 = 2$$
 [A], 방향은 반대이므로 -2 [A] 답: -2 [A]

(3)
$$I_3 = \frac{400}{100} + \frac{1000}{200} = 4 + 5 = 9$$
 [A], 방향은 반대이므로 -9 [A] 답: -9 [A]

문제 03 출제년도 : 12. 23. ▶점수 : 4점

회전날개의 지름이 31[m]인 프로펠러형 풍차의 풍속이 16.5[m/s]일 때 풍력 에너지[kW]를 계산하시오. 단, 공기의 밀도는 $1.225[kg/m^3]$ 이다.

▶ 답안작성

출력
$$P = \frac{1}{2} \rho A V^3 \times 10^{-3} = \frac{1}{2} \rho \left(\frac{\pi}{4} d^2\right) V^3 \times 10^{-3}$$

$$= \frac{1}{2} \times 1.225 \times \frac{\pi}{4} \times 31^2 \times 16.5^3 \times 10^{-3} = 2076.69 \, [\mathrm{kW}]$$
 답: 2076.69[kW]

문제 04 출제년도 : 11. 14. 18. 20. 22. 23.

▶점수 : 5점

▶점수 : 4점

수전단전압 22,900[V], 계약전력 300[kW], 3상 단락전류가 7000[A]일 때 수전단 차단기 차단용량 [MVA]을 구하시오.

▶ 답안작성

$$P_s = \sqrt{3} \ V_n I_s = \sqrt{3} \times 25.8 \times 7 = 312.81 \, [\text{MVA}]$$
 답 : 312.81[MVA]

문제 05 출제년도 : 18. 23.

건축전기설비에서 전력설비의 간선을 설계하고자 한다. 간선 설계 시 고려할 사항 4가지를 쓰시오.

▶ 답안작성

- ① 전기방식, 배선방식
- ② 부하의 사용 상태나 수용률
- ③ 장래 증설의 유무와 이것에 대한 배려의 필요성
- ④ 간선 경로에 대한 위치와 넓이

(그 외)

⑤ 점검구에 대한 사항

문제 06 출제년도: 13. 16. 21. 23. ▶점수: 5점

그림과 같이 3상 4선식 배전선로에 역률 100[%]인 부하 1-N, 2-N, 3-N이 각 상과 중성선간에 연결되어 있다. 1, 2, 3상에 흐르는 전류가 220[A], 172[A], 190[A]일 때 중성선에 흐르는 전류를 계산하시오.

▶ 답안작성

중성선 전류 $I_n=\dot{I}_1+\dot{I}_2+\dot{I}_3=220\angle0^\circ+172\angle-120^\circ+190\angle120^\circ$ $=220+172\biggl(-\frac{1}{2}-j\frac{\sqrt{3}}{2}\biggr)+190\biggl(-\frac{1}{2}+j\frac{\sqrt{3}}{2}\biggr)$ $=39+j15.59\,[\mathrm{A}]$

∴
$$|I_n| = \sqrt{39^2 + 15.59^2} = 42 \text{ [A]}$$

문제 07 출제년도 : 04(산업). 10(산업). 23

▶점수 : 4점

역률 개선을 위한 전력용 콘덴서의 개폐 제어 중 자동조작 방식을 제어요소에 따라 분류할 때 그 제어요소에는 어떤 것이 있는지 4가지를 답란에 쓰시오.

▶ 답안작성

- ① 무효전력에 의한 제어
- ② 전압에 의한 제어
- ③ 역률에 의한 제어
- ④ 전류에 의한 제어

(그 외)

⑤ 시간에 의한 제어

문제 08 출제년도: 23. ▶점수: 12점

다음 그림의 ③의 F점에서 3상 단락이 발생하였을 때 ①-③, ②-③, ①-② 구간의 고장전력 [MVA]과 고장전류[A]를 구하여라. 단, 그림에 표시된 %Z는 154[kV], 100[MVA]기준이고, ①번 모선의 좌측은 전원측 %Z이며 40[%], ②번 모선의 우측 %Z는 전원측 %Z이며 4[%]이다.

- (1) 모선 ①-③의 고장전력 P_{1-3}
- (2) 모선 2-3의 고장전력 P_{2-3}
- (3) 모선 ①-②의 고장전력 P_{1-2}
- (4) 모선 ①-③의 고장전류 I_{1-3}
- (5) 모선 2-3의 고장전류 I_{2-3}
- (6) 모선 ①-②의 고장전류 I_{1-2}

▶ 답안작성

△-Y 등가변환을 하면,

$$\%Z_{1} = \frac{11 \times 3.2}{11 + 3.2 + 7.8} = 1.6\, [\%]$$

$$\%Z_2 = \frac{11 \times 7.8}{11 + 3.2 + 7.8} = 3.9 \, [\%]$$

$$\%Z_{3} = \frac{3.2 \times 7.8}{11 + 3.2 + 7.8} = 1.13 \, [\%]$$

F점에서 바라본 합성임피던스 %
$$Z=\frac{(40+1.6)\times(4+3.9)}{(40+1.6)+(4+3.9)}+1.13=7.77$$
 [%]이므로

$$I_{3} = \frac{100}{\%Z} \times I_{n} = \frac{100}{7.77} \times \frac{100 \times 10^{3}}{\sqrt{3} \times 154} = 4825 \, [\mathrm{A}]$$

$$\therefore \ I_1 = \frac{(4+3.9)}{(40+1.6)+(4+3.9)} \times 4825 = 770.05 \, \mathrm{[A]}$$

$$I_2 = I_3 - I_1 = 4825 - 770.05 = 4054.95$$
 [A]

한편,
$$\%Z = \frac{PZ}{10V^2} \rightarrow Z = \frac{10V^2\%Z}{P}$$
에 따라

$$Z_1 = \frac{10 \times 154^2 \times 1.6}{100 \times 10^3} = 3.79 [Q]$$

$$Z_2 = \frac{10 \times 154^2 \times 3.9}{100 \times 10^3} = 9.25 [\Omega]$$

$$Z_3 = \frac{10 \times 154^2 \times 1.13}{100 \times 10^3} = 2.68 [\Omega]$$

$$\begin{array}{l} \therefore \ \ V_1 = Z_1 I_1 + Z_3 I_3 = (3.79 \times 770.05) + (2.68 \times 4825) = 15849.49 \ [\mathrm{V}] \\ V_2 = Z_2 I_2 + Z_3 I_3 = (9.25 \times 4054.95) + (2.68 \times 4825) = 50439.29 \ [\mathrm{V}] \end{array}$$

(1)
$$P_{1-3} = 3 \times I_{13}^2 \times Z_{13}$$

= $3 \times 2088.21^2 \times 7.59 \times 10^{-6} = 99.29 \text{ [MVA]}$

답: 99.29[MVA]

(2)
$$P_{2-3} = 3 \times I_{23}^2 \times Z_{23}$$

= $3 \times 2726.45^2 \times 18.5 \times 10^{-6} = 412.56 \text{ [MVA]}$

답: 412.56[MVA]

(3)
$$P_{1-2} = 3 \times I_{12}^2 \times Z_{12}$$

= $3 \times 1325.79^2 \times 26.09 \times 10^{-6} = 137.58$ [MVA]

답: 137.58[MVA]

(4)
$$Z_{13} = \frac{10 V^2 \% Z_{13}}{P} = \frac{10 \times 154^2 \times 3.2}{100 \times 10^3} = 7.59 [Q]$$

$$I_{1-3} = \frac{V_1}{Z_{13}} = \frac{15849.49}{7.59} = 2088.21 \, [\mathrm{A}]$$

답: 2088.21[A]

(5)
$$Z_{23} = \frac{10 V^2 \% Z_{23}}{P} = \frac{10 \times 154^2 \times 7.8}{100 \times 10^3} = 18.50 [\Omega]$$

$$I_{2-3} = \frac{V_2}{Z_{23}} \! = \! \frac{50439.29}{18.50} \! = \! 2726.45 \, [\mathrm{A}]$$

답: 2726.45[A]

(6)
$$Z_{12} = \frac{10 V^2 \% Z_{12}}{P} = \frac{10 \times 154^2 \times 11}{100 \times 10^3} = 26.09 [\Omega]$$

$$I_{1-2} = \frac{V_1 - V_2}{Z_{12}} = \frac{15849.49 - 50439.29}{26.09} = -1325.79 \, \mathrm{[A]}$$

답: -1325.79[A]

전압 33,000[V], 주파수 60[c/s], 선로길이 7[km] 1회선의 3상 지중 송전선로가 있다. 이의 3상 무부 하 충전전류 및 충전용량을 구하시오. 단. 케이블의 1선당 작용 정전용량은 $0.4[\mu F/km]$ 라고 한다.

- (1) 무부하 충전전류
- (2) 충전용량

▶ 답안작성

(1) $I_c = \omega CE \times l = 2\pi f CE \times l$

$$= 2\pi \times 60 \times 0.4 \times 10^{-6} \times \frac{33000}{\sqrt{3}} \times 7 = 20.11 \text{ [A]}$$

답: 20.11[A]

(2)
$$Q_c = 3EI_c = 3 \times \frac{33000}{\sqrt{3}} \times 20.11 \times 10^{-3} = 1149.44 \text{ [kVA]}$$

답: 1149.44[kVA]

문제 10 출제년도 : 16. 20. 23.

▶점수 : 10점

어느 변전소에서 그림과 같은 일부하 곡선을 가진 3개의 부하 A, B, C의 수용가에 있을 때, 다음 각물음에 답하시오. 단, 부하 A, B, C의 역률은 각각 100[%], 80[%], 60[%]라 한다.

- (1) 합성 최대 전력[kW]을 구하시오.
- (2) 부등률을 구하시오.
- (3) 종합 부하율[%]을 구하시오.
- (4) 최대 부하시의 종합 역률[%]을 구하시오.

▶ 답안작성

(1) 합성최대전력 $=(9+7+4)\times10^3=20,000$ [kW]

답: 20,000[kW]

(2) 부등률 =
$$\frac{9000 + 7000 + 6000}{20000} = 1.1$$

답:1.1

(3) 각 수용가 평균전력

$$P_{A} = \frac{(4 \times 3) + (6 \times 5) + (9 \times 4) + (5 \times 10) + (4 \times 2)}{24} \times 10^{3} = 5666.67 \, [\text{kW}]$$

$$P_{B} = \frac{(5 \times 10) + (7 \times 12) + (6 \times 2)}{24} \times 10^{3} = 6083.33 \text{ [kW]}$$

$$P_C = \frac{(2 \times 6) + (4 \times 7) + (6 \times 7) + (1 \times 4)}{24} \times 10^3 = 3583.33 \, [\mathrm{kW}]$$

종합부하율 =
$$\frac{5666.67+6083.33+3583.33}{20000} imes 100 = 76.67 [\%]$$

답: 76.67[%]

(4)	구분	유효전력	무효전력
	A	9,000 [kW]	0 [kVar]
	В	7,000 [kW]	$7000 \times \frac{0.6}{0.8} = 5,250 [\text{kVar}]$
	С	4,000 [kW]	$4000 \times \frac{0.8}{0.6} = 5,333.33 [\text{kVar}]$
	종합	20,000 [kW]	10,583.33 [kVar]

종합역률
$$\cos\theta = \frac{20000}{\sqrt{20000^2 + 10583.33^2}} \times 100 = 88.39 \, [\%]$$
 답: 88.39[%]

문제 11 출제년도 : 10. 19. 23.

▶점수 : 5점

가스절연 변전소의 특징을 5가지만 설명하시오. 단, 경제적이거나 비용에 관한 답은 제외한다.

- ① 소형화 할 수 있다.
- ② 충전부가 완전히 밀폐되기 때문에 안전성이 높다.
- ③ 대기 중의 오염물의 영향을 받지 않기 때문에 신뢰도가 높다.
- ④ 소음이 적고 환경조화를 기할 수 있다.
- ⑤ 육안점검이 불가능하여 사고 조기발견이 어렵다.

문제 12 출제년도 : 03. 09. 10. 11. 23.

▶점수 : 5점

다음 논리식에 대한 물음에 답하시오.

$$Y = A + B\overline{C}$$

- (1) 이 식을 논리식 회로로 그리시오.
- (2) (1)의 회로를 2입력 NAND Gate만 최소로 이용하여 그리시오.
- (3) (1)의 회로를 2입력 NOR Gate만 최소로 이용하여 그리시오.

문제 13 출제년도 : 16. 23. ▶점수 : 5점

다음 조건과 같은 동작이 되도록 제어회로의 배선과 감시반 회로 배선 단자의 상호 연결을 아래 답란 에 적으시오.

【조건】

- 배선차단기(MCCB)를 투입(ON)하면 GL₁과 GL₂가 점등된다.
- 선택스위치(SS)를 "L" 위치에 놓고 PB₂를 누른 후 놓으면 전자접촉기(MC)에 의하여 전동기가 운전되고, RL₁과 RL₂는 점등, GL₁과 GL₂는 소등된다.
- 전동기 운전 중 PB1을 누르면 전동기는 정지하고, RL1과 RL2는 소등, GL1과 GL2는 점등된다.
- 선택스위치(SS)를 "R" 위치에 놓고 PB_3 를 누른 후 놓으면 전자접촉기(MC)에 의하여 전동기가 운전되고, RL_1 과 RL_2 는 점등, GL_1 과 GL_2 는 소등된다.
- 전동기 운전 중 PB_4 를 누르면 전동기는 정지하고, RL_1 과 RL_2 는 소등되고, GL_1 과 GL_2 가 점등된다.
- 전동기 운전 중 과부하에 의하여 EOCR이 작동되면 전동기는 정지하고 모든 램프는 소등되며, EOCR을 RESET하면 초기상태로 된다.

(a)	Ъ	©	a	e
5	4	2	3	1)

문제 14 출제년도: 18. 23. ▶점수: 6점

권수비 30인 3상 변압기의 1차측 전압이 6.6[kV]이고 2차측 부하 역률이 0.8(지상)일 때 다음 각물음에 답하시오. 단. 변압기 손실은 무시한다.

- (1) 변압기 2차측 전압을 구하시오.
- (2) 부하전력이 50[kW]일 때 2차측 및 1차측 전류를 구하시오.
- (3) 1차측 입력[kVA]을 구하시오.

▶ 답안작성

(1)
$$V_2 = 6600 \times \frac{1}{30} = 220 \, [V]$$

(2)
$$I_2 = \frac{P}{\sqrt{3} V_2 \cos \theta} = \frac{50 \times 10^3}{\sqrt{3} \times 220 \times 0.8} = 164.02 \,[\text{A}]$$

(3)
$$P_1 = \frac{P}{\cos \theta} = \frac{50}{0.8} = 62.5 \text{ [kVA]}$$

문제 15 출제년도 : 99. 00. 03. 04. 05. 13. 23.

▶점수 : 3점

지중 전선로는 어떤 방식에 의하여 시설하여야 하는지 3가지만 쓰시오.

- ① 직접매설식
- ② 관로식
- ③ 암거식

▶▶ 해 설

KEC 334.1 지중전선로의 시설

- 1. 지중 전선로는 전선에 케이블을 사용하고 또한 관로식·암거식 또는 직접매설식에 의하여 시설하여야 한다.
- 2. 지중 전선로를 관로식 또는 암거식에 의하여 시설하는 경우에는 다음에 따라야 한다.
 - 가. 관로식에 의하여 시설하는 경우에는 매설 깊이를 1.0 m 이상으로 하되, 매설 깊이가 충분하지 못한 장소에는 견고하고 차량 기타 중량물의 압력에 견디는 것을 사용할 것. 다만 중량물의 압력을 받을 우려가 없는 곳은 0.6 m 이상으로 한다.
 - 나. 암거식에 의하여 시설하는 경우에는 견고하고 차량 기타 중량물의 압력에 견디는 것을 사용할 것.
- 3. 지중 전선을 냉각하기 위하여 케이블을 넣은 관내에 물을 순환시키는 경우에는 지중 전선로는 순환수 압력에 견디고 또한 물이 새지 아니하도록 시설하여야 한다.
- 4. 지중 전선로를 직접 매설식에 의하여 시설하는 경우에는 매설 깊이를 차량 기타 중량물의 압력을 받을 우려가 있는 장소에는 1.0 m 이상, 기타 장소에는 0.6 m 이상으로 하고 또한 지중 전선을 견고한 트라프 기타 방호물에 넣어 시설하여야 한다. 다만, 다음의 어느 하나에 해당하는 경우에는 지중전선을 견고한 트라프 기타 방호물에 넣지 아니하여도 된다.
 - 가. 저압 또는 고압의 지중전선을 차량 기타 중량물의 압력을 받을 우려가 없는 경우에 그 위를 견고한 판 또는 몰드로 덮어 시설하는 경우
 - 나. 저압 또는 고압의 지중전선에 콤바인덕트 케이블 또는 규정에서 정하는 구조로 개장(鍇裝)한 케이블을 사용하여 시설하는 경우
 - 다. 특고압 지중전선은 규정에서 정하는 개장한 케이블을 사용하고 또한 견고한 판 또는 몰드로 지중 전선의 위와 옆을 덮어 시설하는 경우
 - 라. 지중 전선에 파이프형 압력케이블을 사용하거나 최대사용전압이 60 kV를 초과하는 연피케이블, 알루미늄피케이블 그 밖의 금속피복을 한 특고압 케이블을 사용하고 또한 지중 전선의 위를 견고한 판 또는 몰드 등으로 덮어 시설하는 경우

문제 16 출제년도 : 07. 12. 17. 23.

▶점수 : 5점

평형 3상 회로에 변류비 100/5인 변류기 2대를 그림과 같이 접속하였을 때 전류계에 3[A]의 전류가 흘렀다. 1차 전류의 크기는 몇 [A]인가?

▶ 답안작성

가동결선이므로 $I_a' = I_c' = I_2 = 3$ [A]

1차측 전류 $I_1 = I_2 \times \text{CT비} = 3 \times \frac{100}{5} = 60 \text{ [A]}$

답: 60[A]

문제 17 출제년도 : 23. ▶점수 : 5점

역률개선용 콘텐서에 직렬리액터를 설치하였다. 제3고조파가 존재하는 것을 고려할 때 리액터 용량은 콘텐서 용량의 몇 [%] 인지 쓰시오. 단, 주파수 변동을 고려할 때 콘텐서 용량은 2[%] 추가여유를 둔다.

▶ 답안작성

$$3\omega L = \frac{1}{3\omega C}$$
에서 $\omega L = \frac{1}{9} imes \frac{1}{\omega C} = 0.11 imes \frac{1}{\omega C}$ 이다.

이론적으로 직렬리액터의 용량은 콘덴서 용량의 11[%]로 산정하지만, 주파수 변동을 고려하여 13[%]의 값을 사용한다.

답: 13[%]

문제 18 출제년도 : 23.

▶점수 : 5점

빙설이 많은 지방에서 을종풍압하중을 적용하는 전선 기타 가섭선 주위 부착되는 빙설의 두께와 비중을 구하시오.

- (1) 두께
- (2) 비중

▶ 답안작성

- (1) 6[mm]
- (2) 0.9

▶▶ 해 설

KEC 331.6 풍압하증의 종별과 적용

나. 을종 풍압하중

전선 기타의 가섭선(架涉線) 주위에 **두께 6 ㎜, 비중 0.9**의 빙설이 부착된 상태에서 수직 투영면적 372 Pa(다도체를 구성하는 전선은 333 Pa), 그 이외의 것은 "가"풍압의 2분의 1을 기초로 하여 계산한 것.

2023

전 기 기 사 실 기 2회

문제 01 출제년도 : 03. 07. 09. 11. 23.

▶점수 : 6점

다음은 A, B 수용가에 대해 나타낸 것이다. 다음 각 물음에 답하시오.

고압간선	
A	В

	A	В
설비용량[kW]	50	30
역률	1	1
수용률	0.6	0.5
부등률	1.2	1.2
변압기 간 부등률	1.	.3

- (1) A 수용가의 변압기 용량[kVA]을 구하시오.
- (2) B 수용가의 변압기 용량[kVA]을 구하시오.
- (3) 간선에 걸리는 최대부하[kW]를 구하시오.

▶ 답안작성

(1)
$$T_A = \frac{50 \times 0.6}{1.2 \times 1} = 25 \text{ [kVA]}$$

답: 25[kVA]

(2)
$$T_B = \frac{30 \times 0.5}{1.2 \times 1} = 12.5 \, [\text{kVA}]$$

답: 12.5[kVA]

(3)
$$P = \frac{$$
각각최대수요전력의합계 $}{$ 부등률 $= \frac{50 \times 0.6}{1.2} + \frac{30 \times 0.5}{1.2} = 28.85 [kW]$ 답: 28.85[kW]

전동기 부하를 사용하는 곳의 역률 개선을 위하여 회로에 병렬로 역률 개선용 저압 콘덴서를 설치하여 전동기의 역률을 90[%] 이상으로 유지하려고 할 때, 다음 각 물음에 답하시오.

- (1) 정격전압 380[V], 정격출력 7.5[kW], 역률 80[%]인 전동기의 역률을 90[%]로 개선하고자 하는 경우 필요한 3상 콘덴서 용량을 구하시오.
- (2) 물음 "(1)"에서 구한 콘덴서의 용량[kVA]에 따른 한 상당 정전용량을 [μ F]로 환산하여 계산하시오. 단, 콘덴서는 \triangle 결선으로 하고, 주파수는 60[Hz]라고 한다.

▶ 답안작성

$$(1) \ \ Q_c = P \left(\tan \theta_1 - \tan \theta_2 \right) = 7.5 \left(\frac{\sqrt{1 - 0.8^2}}{0.8} - \frac{\sqrt{1 - 0.9^2}}{0.9} \right) = 1.99 \, [\text{kVA}]$$

답: 1.99[kVA]

(2)
$$Q_c = 3\omega C V^2$$
, $C = \frac{Q_c}{3\omega V^2} = \frac{Q_c}{3\times 2\pi f V^2} = \frac{1.99\times 10^3}{3\times 2\pi\times 60\times 380^2} \times 10^6 = 12.19 \, [\mu \text{F}]$

답: 12.19[µF]

문제 03 출제년도 : 18. 22. 23.

▶점수 : 6점

각 상의 순서가 a-b-c인 불평형 3상 교류회로에서 대칭분이 다음과 같을 때, 각 상의 전류 $I_a[A]$, $I_b[A]$, $I_b[A]$ 를 구하시오.

영상분	1.8∠ − 159.17° [A]
정상분	8.95∠1.14° [A]
역상분	2.51∠96.55° [A]

(1) I_a

(2) I_{b}

(3) I_{c}

▶ 답안작성

$$\begin{split} (1) \ \ I_a &= I_0 + I_1 + I_2 \\ &= 1.8 \angle -159.17^\circ + 8.95 \angle 1.14^\circ + 2.51 \angle 96.55^\circ \\ &= 7.27 \angle 16.23^\circ \, \text{[A]} \end{split}$$

답: 7.27∠16.23° [A]

(2)
$$I_b = I_0 + a^2 I_1 + a I_2$$

= $1.8 \angle -159.17^\circ + (1 \angle 240^\circ)(8.95 \angle 1.14^\circ) + (1 \angle 120^\circ)(2.51 \angle 96.55^\circ)$
= $12.80 \angle -128.80^\circ [A]$

(3)
$$I_c = I_0 + aI_1 + a^2I_2$$

= $1.8 \angle -159.17^{\circ} + (1 \angle 120^{\circ})(8.95 \angle 1.14^{\circ}) + (1 \angle 240^{\circ})(2.51 \angle 96.55^{\circ})$
= $7.23 \angle 123.65^{\circ}$ [A]

문제 04 출제년도 : 23. ▶점수 : 5점

다음은 한국전기설비규정에 의거하여 저압전로에 사용하는 주택용 배선차단기의 과전류 트립동작 시간 및 순시트립에 따른 구분을 나타낸 것이다. 표에 알맞은 말을 쓰시오.

차단기 유형	순시트립 범위	
(1)	$3I_n$ 초과 $\sim 5I_n$ 이하	
(2)	$5I_n$ 초과 $\sim 10I_n$ 이하	
(3)	$10I_n$ 초과 $\sim 20I_n$ 이하	

		정격전류의 배수		
정격전류의 구분	시간	주택 용		
		부동작 전류	동작전류	
63 A 이하	60분	(④)배	(⑤)배	
63 A 초과	120분	(④)배	(⑤)배	

▶ 답안작성

1	2	3	4	(5)
В	С	D	1.13	1.45

▶▶ 해 설

KEC 212.3 보호장치의 종류 및 특성 - 212.3.4 보호장치의 특성

표 212.3-2 과전류트립 동작시간 및 특성(산업용 배선차단기)

Ī	정격전류의 구분	시간	정격전류의 배수 (모든 극에 통전)		
			부동작 전류	동작 전류	
	63 A 이하	60분	1.05배	1.3배	
	63 A 초과	120분	1.05배	1.3배	

표 212.3-3 순시트립에 따른 구분(주택용 배선차단기)

형	순시트립범위		
В	$3I_n$ 초과 $\sim 5I_n$ 이하		
C	$5I_n$ 초과 $\sim~10I_n$ 이하		
D	$10I_n$ 초과 $\sim 20I_n$ 이하		

비고 1. B, C, D : 순시트립전류에 따른 차단기 분류 2. I_n : 차단기 정격전류

표 212.3-4 과전류트립 동작시간 및 특성(주택용 배선차단기)

정격전류의 구분	시간	정격전류의 배수 (모든 극에 통전) 부동작 전류 동작 전류		
63 A 이하	60분	1.13배	1.45배	
63 A 초과	120분	1.13배	1.45배	

문제 05 출제년도 : 23. ▶점수 : 6점

다음 회로에서 저항 $R=20\,[\Omega]$, 전압 $V=220\,\sqrt{2}\,\sin(120\pi t)\,[V]$ 이고, 변압비는 1:1일 때, 단상 전파 정류 브리지 회로를 나타낸 것이다. 다음 각 물음에 답하시오. 단, 직류측에 평활회로(리플 감소)는 포함하지 않는다.

- (1) 점선 안에 브리지 회로를 완성하시오.
- (2) V_{dc} 의 평균 전압[V]을 구하시오.
- (3) V_{dc} 에 흐르는 평균 전류[A]를 구하시오.

(2)
$$V_{dc} = \frac{2\sqrt{2}}{\pi} V_{rms} = \frac{2\sqrt{2}}{\pi} \times 220 = 198.07 \, [V]$$

(3)
$$I_{dc} = \frac{V_{dc}}{R} = \frac{198.07}{20} = 9.9 [A]$$
 답: 9.9[A]

문제 06 출제년도: 23. ▶점수: 4점

다음은 전기안전관리자의 직무에 관한 고시 제6조에 대한 사항이다. 빈칸에 알맞은 말을 쓰시오.

- (1) 전기안전관리자는 제3조제2항에 따라 수립한 점검을 실시하고, 다음 각 호의 내용을 기록하여야 한다. 다만, 전기안전관리자와 점검자가 같은 경우 별지 서식(제2호~제8호)의 서명을 생략할 수 있다.
 - 1. 점검자
 - 2. 점검 연월일, 설비명(상호) 및 설비용량
 - 3. 점검 실시 내용(점검항목별 기준치, 측정치 및 그 밖에 점검 활동 내용 등)
 - 4. 점검의 결과
 - 5. 그 밖에 전기설비 안전관리에 관한 의견
- (2) 전기안전관리자는 제1항에 따라 기록한 서류(전자문서를 포함한다)를 전기설비 설치장소 또는 사업장마다 갖추어 두고, 그 기록서류를 (①)년간 보존하여야 한다.
- (3) 전기안전관리자는 법 제11조에 따른 정기검사 시 제1항에 따라 기록한 서류(전자문서를 포함한다)를 제출하여야 한다. 다만, 법 제38조에 따른 전기안전종합정보시스템에 매월(②)회 이상안전관리를 위한 확인·점검 결과 등을 입력한 경우에는 제출하지 아니할 수 있다.

▶ 답안작성

① 4 ② 1

▶▶ 해 설

전기안전관리자의 직무에 관한 고시 - 제6조(점검에 관한 기록·보존)

- ① 전기안전관리자는 제3조제2항에 따라 수립한 점검을 실시하고, 다음 각 호의 내용을 기록하여야 한다. 다만, 전기안전관리자와 점검자가 같은 경우 별지 서식(제2호~제8호)의 서명을 생략할 수 있다.
 - 1. 점검자
 - 2. 점검 연월일, 설비명(상호) 및 설비용량
 - 3. 점검 실시 내용(점검항목별 기준치, 측정치 및 그 밖에 점검 활동 내용 등)
 - 4. 점검의 결과
 - 5. 그 밖에 전기설비 안전관리에 관한 의견
- ② 전기안전관리자는 제1항에 따라 기록한 서류(전자문서를 포함한다)를 전기설비 설치장소 또는 사업장마다 갖추어 두고, 그 기록서류를 **4년간 보존**하여야 한다.
- ③ 전기안전관리자는 법 제11조에 따른 정기검사 시 제1항에 따라 기록한 서류(전자문서를 포함한다)를 제출하여야 한다. 다만, 법 제38조에 따른 전기안전종합정보시스템에 매월 **1회 이상** 안전관리를 위한 확인·점검 결과 등을 입력한 경우에는 제출하지 아니할 수 있다.

3300/220[V]인 변압기의 용량이 각각 250[kVA], 200[kVA]이고, %임피던스 강하가 각각 2.7[%]와 3[%]이다. 두 변압기를 병렬운전하고자 할 때 병렬 합성용량[kVA]을 구하시오.

▶ 답안작성

250[kVA] 기준으로 %Z를 환산하면, % $Z_{B}{'}=3 imes rac{250}{200}=3.75[\%]$

같은 용량 기준으로 A변압기의 %Z가 작으므로 A변압기의 전용량(250[kVA])이 사용되고, B변압기의 부하분담은 %Z에 반비례하여 분담된다.

$$P_B = 250 \times \frac{2.7}{3.75} = 180 \, [\text{kVA}]$$

 \therefore 병렬 합성 용량 $P\!=\!P_A\!+\!P_B\!=\!250+180=\!430\,\mathrm{[kVA]}$

답: 430[kVA]

문제 08 출제년도 : 15. 23.

▶점수 : 4점

380[V], 4극 3상 유도전동기 37[kW]의 분기회로 긍장이 50[m]일 때 전압강하를 5[V] 이하로 하는데 필요한 전선 굵기[㎜]를 구하시오. 단, 전동기의 전부하 전류 75[A], 3상3선식 회로이다.

▶ 답안작성

전선의 굵기
$$A = \frac{30.8LI}{1000e} = \frac{30.8 \times 50 \times 75}{1000 \times 5} = 23.1 \, [$$
m²]

답: 25[m²] 선정

유도 전동기(IM)를 유도 전동기가 있는 현장과 현장에서 조금 떨어진 제어실의 어느 쪽에서든지 기동 및 정지가 가능하도록 전자 접촉기(MC)와 누름버튼스위치 PB-ON용 및 PB-OFF용을 이용 하여 제어회로를 구성하시오.

문제 10 출제년도 : 08. 23. ▶점수 : 4점

3상 평형부하 Z가 그림과 같이 접속되어 있을 때, 전압계의 지시치가 220[V], 전류계의 지시치가 20[A]. 전력계의 지시치가 2[kW]일 때 다음 각 물음에 답하시오.

- (1) 부하(Z)의 소비전력[kW]를 구하여라.
- (2) 부하의 임피던스 $Z[\Omega]$ 를 복소수로 나타내시오.

▶ 답안작성

(1) ① 1상의 전력 *W*=2[kW]

② 3상전력 $W_3 = 3W = 3 \times 2 = 6$ [kW]

답: 6[kW]

(2) ①
$$Z = \frac{E}{I} = \frac{220/\sqrt{3}}{20} = \frac{11}{\sqrt{3}} = 6.35[\Omega]$$

②
$$P = I^2 R \rightarrow R = \frac{P}{I^2} = \frac{2 \times 10^3}{20^2} = 5 [Q]$$

(3)
$$X = \sqrt{Z^2 - R^2} = \sqrt{6.35^2 - 5^2} = 3.91 \, [\Omega]$$

$$Z = R + jX = 5 + j3.91 \, [Q]$$

답: 5+j3.91 [Q]

그림과 같은 송전계통 S점에서 3상 단락사고가 발생하였다. 주어진 도면과 조건을 참고하여 다음 각물음에 답하시오.

【조건】

번호	기기명	용량	전압	%Z
1	발전기(G)	50,000[kVA]	11[kV]	25
2	변압기(T ₁)	50,000[kVA]	11/154[kV]	10
3	송전선		154[kV]	8 (10,000[kVA] 기준)
		1차 : 25,000[kVA]	154[kV]	12 (25,000[kVA] 기준, 1차~2차)
4	변압기(T2)	2차 : 30,000[kVA]	77[kV]	16 (25,000[kVA] 기준, 2차~3차)
		3차 : 10,000[kVA]	11[kV]	9.5 (10,000[kVA] 기준 3차~1차)
5	조상기(C)	10,000[kVA]	11[kV]	15

- (1) 변압기(T₂)의 각각 %임피던스를 기준용량 10[MVA]로 환산하시오.
- (2) 변압기(T₂)의 1차(P), 2차(S), 3차(T)의 %임피던스를 구하시오.
- (3) 단락점 S에서 바라본 전원측 합성 %임피던스 10[MVA] 기준으로 구하시오.
- (4) 고장점의 단락용량은 몇 [MVA]인지 구하시오.
- (5) 고장점을 지나는 단락전류는 몇 [A]인지 구하시오.

(1) 1차~2차간 %
$$Z_{P-S} = \frac{10}{25} \times 12 = 4.8$$
[%] 답 : 4.8[%]

$$2$$
차~3차간 % $Z_{S-T} = \frac{10}{25} \times 16 = 6.4$ [%] 답 : 6.4[%]

3차~1차간 %
$$Z_{T-P} = \frac{10}{10} \times 9.5 = 9.5$$
[%] **답**: 9.5[%]

(2) 1차 %
$$Z_P = \frac{1}{2}(4.8 + 9.5 - 6.4) = 3.95[\%]$$
 답: 3.95[%]

$$2$$
차 % $Z_S = \frac{1}{2}(4.8 + 6.4 - 9.5) = 0.85[%]$ 답: 0.85[%]

$$3$$
 $\%$ $Z_T = \frac{1}{2}(9.5 + 6.4 - 4.8) = 5.55[\%]$

(3) ① 10[MVA] 기준 %임피던스 화산

• 발전기 %
$$Z_G = \frac{10}{50} \times 25 = 5$$
 [%]

- 변압기(T₁) % $Z_T = \frac{10}{50} \times 10 = 2$ [%]
- 송전선 %*Z*_i = 8 [%]
- 조상기 %*Z*_c = 15 [%]
- ② 발전기 \sim T $_2$ 변압기 1차까지 $\%Z_1=5+2+8+3.95=18.95$ [%] 조상기 \sim T $_2$ 변압기 3차까지 $\%Z_2=15+5.55=20.55$ [%]

합성 %
$$Z = \frac{\%Z_1 \times \%Z_2}{\%Z_1 + \%Z_2} + \%Z_S = \frac{18.95 \times 20.55}{18.95 + 20.55} + 0.85 = 10.71$$
[%] 답 : 10.71[%]

(4) 고장점 단락용량
$$P_s = \frac{100}{\%Z} P_n = \frac{100}{10.71} \times 10 = 93.37 [\text{MVA}]$$
 답: 93.37 [MVA]

(5) 고장점 단락전류
$$I_s = \frac{100}{\%Z}I_n = \frac{100}{10.71} \times \frac{10 \times 10^6}{\sqrt{3} \times 77 \times 10^3} = 700.1$$
[A] **밥**: 700.1[A]

문제 12 출제년도 : 12. 22. 23.

▶점수: 6점

입력 A, B, C에 대한 출력 Y1, Y2를 다음의 진리표와 같이 동작시키고자 할 때, 다음 각 물음에 답하시오.

A	В	С	Y1	Y2
0	0	0	1	1
0	0	1	0	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	1

접속점 표기 방식				
접속 비접속				

- (1) 출력 Y1, Y2에 대한 논리식을 간략화하시오. 단, 간략화된 논리식은 최소한의 논리게이트와 접점 사용을 고려한 논리식이다.
- (2) (1)에서 구한 논리식을 무접점 회로로 나타내시오.
- (3) (1)에서 구한 논리식을 유접점 회로로 나타내시오.

(1) ①
$$Y1 = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$

 $= \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + AB\overline{C} + A\overline{B}\overline{C}$
 $= \overline{B}\overline{C}(\overline{A} + A) + A\overline{C}(B + \overline{B})$

$$=\overline{B}\overline{C}+A\overline{C}=\overline{C}(A+\overline{B})$$

②
$$\overline{Y2} = \overline{A}\overline{B}C + A\overline{B}C = \overline{B}C(\overline{A} + A) = \overline{B}C$$

 $Y2 = \overline{\overline{B}C} = \overline{\overline{B}} + \overline{C} = B + \overline{C}$

무제 13 출제년도 : 07. 23. ▶점수 : 4점

변류비 50/5인 변류기 2대를 그림과 같이 접속하였을 때, 변류기 2차측에 2[A]의 전류가 흘렀다. 1차 전류를 구하시오.

답: 11.55[A]

▶점수 : 5점

▶ 답안작성

무제 14 출제년도 : 14. 16. 20. 23.

차동결선이므로
$$I_2=I_1 imesrac{1}{\mathrm{CT}^{\,\mathrm{ll}}} imes\sqrt{3}$$

1차 전류 $I_1=I_2 imes\mathrm{CT}^{\,\mathrm{ll}} imesrac{1}{\sqrt{3}}=2 imesrac{50}{5} imesrac{1}{\sqrt{3}}=11.55\,\mathrm{[A]}$

다음은 한국전기설비규정에 의거하여 피뢰기 설치장소를 나타낸 것이다. 괄호 안에 알맞은 말을 쓰시오.

- 1. (①)의 가공전선 인입구 및 인출구
- 2. (②)에 접속하는 (③) 변압기의 고압 및 특고압측
- 3. 고압 및 특고압 가공전선로로부터 공급을 받는 (④)의 인입구
- 4. 가공전선로와 (⑤) 가 접속되는 곳

▶ 답안작성

- ① 발전소 및 변전소 또는 이에 준하는 장소
- ② 특고압 가공전선로
- ③ 배전용
- ④ 수용장소
- ⑤ 지중 전선로

▶▶ 해 설

KEC 341.13 피뢰기의 시설

고압 및 특고압의 전로 중 다음에 열거하는 곳 또는 이에 근접한 곳에는 피뢰기를 시설하여야 한다.

- 가. 발전소·변전소 또는 이에 준하는 장소의 가공전선 인입구 및 인출구
- 나. 특고압 가공전선로에 접속하는 341.2의 배전용 변압기의 고압측 및 특고압측
- 다. 고압 및 특고압 가공전선로로부터 공급을 받는 수용장소의 인입구
- 라. 가공전선로와 지중전선로가 접속되는 곳

문제 15 출제년도: 18. 23. ▶점수: 5점

다음 그림은 TN계통의 TN-S 방식의 저압 배전선로의 접지계통이다. 결선도를 완성하시오.

▶ 답안작성

▶▶ 해 설

KEC 203.1 계통접지 구성

표 203.1-1 기호 설명			
	중성선(N), 중간도체(M)		
	보호선(PE)		
중성선과 보호도체 겸용(PEN)			

TN-S 계통 : 계통 전체에 대해 보호도체(PE)와 중성선(N) 분리

설비용량이 10[kW]인 A, B 수용가가 있다. 다음 각 물음에 답하시오.

(1) A, B 수용가의 수용률[%]을 구하시오.

		계산식	수용률
•	A		
	В		

(2) A, B 수용가의 부하율[%]을 구하시오.

	계산식	부하율
A		
В		

(3) 부등률을 구하시오.

▶ 답안작성

(1) 수용률 = $\frac{$ 최대수요전력} $\times 100[\%]$

Į		계산식	수용률
Ī	A	$\frac{8}{10} \times 100 = 80$	80[%]
	В	$\frac{6}{10} \times 100 = 60$	60[%]

(2) 부하율 = 평균수요전력 최대수요전력×100 [%]

	계산식	부하율
A	$\frac{(2\times6) + (6\times6) + (8\times6) + (2\times6)}{24\times8} \times 100 = 56.25$	56,25[%]
В	$\frac{(2\times6) + (4\times6) + (2\times6) + (6\times6)}{24\times6} \times 100 = 58.33$	58,33[%]

(3) 부등률 = $\frac{$ 각각 최대수요전력의 합계 $}{$ 합성 최대수요전력 $}=\frac{8+6}{8+2}=1.4$

무제 17 출제년도 : 17. 23. ▶점수 : 5점

그림과 같은 점광원으로부터 원뿔 밑면까지의 거리가 4[m], 밑면의 반지름이 3[m]인 원형면의 평균조도가 100[lx]라면이 점광원의 평균광도[cd]는?

▶ 답안작성

$$\cos\theta = \frac{4}{\sqrt{4^2 + 3^2}} = 0.8$$

광속 $F = ES = E\pi a^2$

광도
$$I = \frac{F}{\omega} = \frac{E\pi a^2}{2\pi(1-\cos\theta)} = \frac{100\pi\times3^2}{2\pi(1-0.8)} = 2250 \, [\mathrm{cd}]$$

답: 2250[cd]

문제 18 출제년도 : 10. 15. 16. 23.

▶점수 : 4점

고압측 1선 지락사고시 지락전류가 100[A]라고 할 때 이 전로에 접속된 주상변압기 380[V]측 그 1단자에 접지공사 접지 저항값은 얼마 이하로 유지하여야 하는가? 단, 이 전선로는 고·저압 혼촉시 1초 초과 2초 이내에 자동 차단하는 장치가 있다.

▶ 답안작성

2초 이내 자동 차단하는 장치가 있으므로

$$\therefore R = \frac{300}{I_g} = \frac{300}{100} = 3 [\Omega]$$
 답: 3[Q]

▶▶ 해 설

KEC 142.5 변압기 중성점 접지

- 1. 변압기의 중성점접지 저항 값은 다음에 의한다.
 - 가. 일반적 변압기 고압·특고압측 전로 1선 지락전류로 150을 나눈 값 이하
 - 나. 변압기의 고압·특고압측 전로 또는 사용전압이 35 kV 이하의 특고압전로가 저압측 전로와 혼촉하고 저압전로의 대지전압이 150 V를 초과하는 경우는 저항 값은 다음에 의한다.
 - (1) 1초 초과 2초 이내에 고압·특고압 전로를 자동으로 차단하는 장치를 설치할 때는 300을 나눈 값 이하
 - (2) 1초 이내에 고압·특고압 전로를 자동으로 차단하는 장치를 설치할 때는 600을 나눈 값 이하

구분	접지 저항값
일반	$\frac{150}{I_g}$ াই
1초 초과 2초 이내에 고압·특고압 전로를 자동 차단하는 장치 설치 시	$\frac{300}{I_g}$ ্য
1초 이내에 고압·특고압 전로를 자동 차단하는 장치 설치 시	$\frac{600}{I_g}$ ्ोठी

2. 전로의 1선 지락전류는 실측값에 의한다. 다만, 실측이 곤란한 경우에는 선로정수 등으로 계산한 값에 의한다.

2023

전 기 기 사 실 기 3회

문제 01 출제년도 : 02. 03 .08. 23.

▶점수: 8점

다음 그림은 최대 사용전압 6900[V] 변압기의 절연내력 시험을 위한 시험 회로이다. 그림을 보고 다음 물음에 답하시오.

- (1) 다음 각 물음에 답하시오.
 - ① 피시험기기의 절연내력 시험전압은 얼마인가?
 - ② 시험전압 인가시 피시험기기는 최대 몇 분을 버틸 수 있어야 하는가?
- (2) 시험시 전압계 "V₁"으로 측정되는 전압은 몇 [V] 인가?
- (3) 시험회로의 전류계는 어떤 목적으로 사용되는가?

▶ 답안작성

(1) ① 절연내력 시험전압 $V = 6900 \times 1.5 = 10,350$ [V]

답: 10,350[V]

② 10[분]

(2) $V_1 = 10350 \times \frac{105}{6300} \times \frac{1}{2} = 86.25 \text{ [V]}$

답: 86.25[V]

(3) 누설전류의 측정

▶▶ 해 설

KEC 135 변압기 전로의 절연내력

변압기[방전등용 변압기·엑스선관용 변압기·흡상 변압기·시험용 변압기·계기용변성기와 전기집진 응용장치용의 변압기 기타 특수 용도에 사용되는 것을 제외한다. 이하 같다]의 전로는 다음 표에서 정하는 시험전압 및 시험방법으로 절연내력을 시험하였을 때에 이에 견디어야 한다.

최대사용전압	시험전압
1. 7 kV 이하인 권선	1.5배 (최저 500 V)
2. 7kV 초과 25kV 이하인 중성점 접지식 권선(중성선 다중 접지식)	0.92배
3. 7kV 초과 60kV 이하인 권선(2란 제외)	1.25배 (최저 10.5 kV)
4. 60 kV 초과 중성점 비접지식 권선	1.25배
5. 60 kV 초과 중성점 접지식 권선	1.1배 (최저 75 kV)
6. 60 kV 초과 중성점 직접접지식 권선	0.72배
7. 170 kV 초과 중성점 직접 접지식 권선	0.64배
8. 60 kV 초과 정류기에 접속되고 있는 권선	1.1배

※ 시험 방법: 시험되는 권선과 다른 권선, 철심, 외함 간 연속하여 10분

• 전압계 ① 에는 변압기 1대에 걸리는 전압이므로 **1/2만 측정**된다.

문제 02 출제년도 : 09. 12. 23.

▶점수 : 3점

다음은 과부하 보호장치의 설치위치에 대한 내용이다. 빈칸에 알맞은 값은?

분기회로의 (S_2) 보호장치 (P_2) 는 보호장치의 전원 측에서 분기점(O) 사이에 다른 분기회로 또는 콘센트의 접속이 없고, 단락의 위험과 화재 및 인체에 대한 위험성이 최소화 되도록 시설된 경우, 분기회로의 보호장치 P_2 는 분기회로의 분기점으로부터 (\bigcirc) m 까지 이동하여 설치할 수 있다.

▶ 답안작성

3[m]

▶▶ 해 설

KEC 212.4.2 과부하 보호장치의 설치 위치

- ① 과부하 보호장치는 전로 중 도체의 허용전류 값이 줄어드는 분기점에 설치해야 한다.
- ② 분기회로도체 S_2 는 전원측 보호장치 P_1 에 의해 단락보호가 보장되지 않을 경우 : 3m 이내 설치
- ③ 분기회로도체 S_2 는 전원측 보호장치 P_1 에 의해 단락보호가 보장되는 경우: 분기점으로부터 거리제한 없이 설치
- ④ 전원측 과부하보호장치 P_1 이 분기회로에서 발생하는 과부하를 보호하는 경우: 보호장치의 설치 생략

문제 03 출제년도 : 23. ▶점수 : 5점

연료전지의 특징 3가지를 적으시오.

▶ 답안작성

- ① 발전효율이 높다.
- ② 환경상의 문제가 없어 수용가 근처에 설치가 가능하다.
- ③ 단위 출력 당의 용적 또는 무게가 작다.

문제 04 출제년도: 20. 23. ▶점수: 5점

소선의 직경이 3.2[mm]인 37가닥의 연선을 사용할 경우 외경은 몇 [mm] 인가?

▶ 답안작성

N=3n(n+1)+1=37 : n=3 $D=(1+2n)d=(1+2\times 3)\times 3.2=22.4 \lceil mn \rceil$

답: 22.4[mm]

문제 **05** 출제년도 : 05. 23.

▶점수 : 6점

아래 차단기 트립 방식에 대한 설명을 읽고 빈칸에 알맞은 답을 작성하시오.

트립방식	(1)	(2)	(3)
내 용	고장시 변류기 2차 전류에 의해 트립되는 방식	고장시 콘덴서 충전전하에 의해 트립되는 방식	고장시 전압의 저하에 의해 트립되는 방식

- ① 과전류 트립방식
- ② 콘덴서 트립방식
- ③ 부족전압 트립방식

문제 06 출제년도 : 23. ▶점수 : 6점

6600/220[V] 두 대의 단상 변압기 A, B가 있다. A는 30[kVA]로서 2차로 환산한 저항와 리액턴스의 값은 $r_A=0.03[\Omega],\ x_A=0.04[\Omega]$ 이고, B의 용량은 20[kVA]로서 2차로 환산한 값은 $r_B=0.03[\Omega],\ x_B=0.06[\Omega]$ 이다. 이 두 변압기를 병렬 운전해서 40[kVA]의 부하를 건 경우 A의 분담 부하 [kVA]는 얼마인가?

▶ 답안작성

$$Z_A = \sqrt{0.03^2 + 0.04^2} = 0.05 \, [\, \Omega\,]$$

$$Z_B = \sqrt{0.03^2 + 0.06^2} = 0.067 \, [\, \Omega\,]$$

기준용량 $P_n = 30 [kVA]$ 로 했을 때,

$$\%Z_A = \frac{P_n Z_A}{10 V^2} = \frac{30 \times 0.05}{10 \times 0.22^2} = 3.1 \, [\%]$$

$$\%Z_B = \frac{P_n Z_B}{10 V^2} = \frac{30 \times 0.067}{10 \times 0.22^2} = 4.15 \, [\%]$$

부하분담은 %Z에 반비례하므로,

$$P_a = \frac{\% Z_B}{\% Z_A + \% Z_B} P = \frac{4.15}{3.1 + 4.15} \times 40 = 22.9 \, \text{[kVA]}$$

답: 22.9[kVA]

문제 07 출제년도 : 96. 14. 23.

▶점수 : 6점

어떤 공장의 어느 날 부하실적이 1일 사용전력량 192[kWh]이며, 1일의 최대전력이 12[kW]이고, 최대전력일 때의 전륫값이 34[A]이었을 경우 다음 각 물음에 답하시오. 단, 이 공장은 220[V], 11[kW]인 3상 유도전동기를 부하설비로 사용한다고 한다.

- (1) 일 부하율은 몇 [%]인가?
- (2) 최대공급전력일 때의 역률은 몇 [%]인가?

(2) 역률
$$\cos\theta = \frac{P}{\sqrt{3} VI} = \frac{12 \times 10^3}{\sqrt{3} \times 220 \times 34} \times 100 = 92.62 [\%]$$
 답: 92.62[%]

문제 08 출제년도: 23. ▶점수: 5점

정격차단전류가 24[kA], VCB의 정격전압이 170[kV]인 경우 수용가의 수전용 차단기의 차단용량은 몇 [MVA] 인가?

차단기 정격 용량 [MVA]					
5800	6600	7300	9200	12000	

▶ 답안작성

 $P_s = \sqrt{3} V_n I_s = \sqrt{3} \times 170 \times 24 = 7066.77 \text{ [MVA]}$

답: 7300[MVA] 선정

문제 09 출제년도 : 02(산업). 08(산업). 11(산업). 12(산업). 23.

▶점수 : 4점

델타결선 변압기의 한 대가 고장으로 제거되어 V결선으로 공급할 때, 변압기의 출력비와 이용률은 각각 몇 [%] 인가?

▶ 답안작성

출력비: 57.74[%]
 이용률: 86.6[%]

무제 10 출제년도 : 23.

▶점수 : 4점

한국전기설비규정 KEC에 따른 과전류 보호에 대한 설명이다. 다음 빈칸에 알맞은 내용을 쓰시오.

"중성선을 (①) 및 (②)하는 회로의 경우에 설치하는 개폐기 및 차단기는 (①) 시에는 중성선이 선도체보다 늦게 (①)되어야 하며, (②)시에는 선도체와 동시 또는 그 이전에 (②)되는 것을 설치하여야 한다."

▶ 답안작성

① 차단 ② 재폐로

▶▶ 해 설

KEC 212.2.3 중성선의 차단 및 재폐로

중성선을 차단 및 재폐로하는 회로의 경우에 설치하는 개폐기 및 차단기는 차단 시에는 중성선이 선도체보다 늦게 차단 되어야 하며, 재폐로 시에는 선도체와 동시 또는 그 이전에 재폐로 되는 것을 설치하여야 한다. 무제 11 출제년도 : 23. ▶점수 : 4점

다음 차단기 약호를 보고 명칭을 쓰시오. (예시 ELB: 누전차단기)

(1) OCB

(2) ABB (3) GCB (4) MBB

▶ 답안작성

- (1) 유입차단기
- (2) 공기차단기
- (3) 가스차단기
- (4) 자기차단기

무제 12 출제년도 : 06. 17. 23.

▶점수 : 5점

그림과 같은 논리회로를 이용하여 다음 물음에 답하시오.

아래 진리표를 완성하시오. 단, L은 Low이고, H는 High이다.

A	L	L	L	L	Н	Н	Н	Н
В	L	L	Н	Н	L	L	Н	Н
С	L	Н	L	Н	L	Н	L	Н
Z								

▶ 답안작성

A	L	L	L	L	Н	Н	Н	Н
В	L	L	Н	Н	L	L	Н	Н
С	L	Н	L	Н	L	Н	L	Н
Z	L	Н	L	Н	L	Н	Н	Н

문제 13 출제년도 : 03. 04. 14. 17. 23.

▶점수 : 4점

동기발전기의 병렬운전조건 4가지를 쓰시오.

- ① 기전력의 크기가 같을 것
- ② 기전력의 위상이 같을 것
- ③ 기전력의 주파수가 같을 것
- ④ 기전력의 파형이 같을 것

아래와 같은 회로에 대해서 각 물음에 답하시오.

시퀀스 접점 기호						
PB ₁ PB ₂ MC THR						
PB ₁	PB ₂	MC	* THR			

접속점 표기 방식					
접속	비접속				

- (1) 주어진 시퀀스 접점 예시를 참고하여 자기유지회로를 그리시오.
- (2) 시간 t_3 에 서멀 릴레이가 작동하고, 시간 t_4 에서 수동으로 복귀하였다. 이때의 동작을 타임차트로 표시하시오.

도면과 같이 345[kV] 변전소의 단선도와 변전소에 사용되는 주요 제원을 이용하여 다음 각 물음에 답하시오.

- (1) 도면의 345[kV]측 모선방식은 어떤 모선방식인가?
- (2) 도면에서 ①번 기기의 설치 목적은 무엇인가?
- (3) 도면에 주어진 제원을 참조하여 주변압기에 대한 등가 %임피던스($\%Z_{H}, \%Z_{M}, \%Z_{L}$)를 구하고 ②번 23[kV] VCB의 차단용량을 계산하시오. 단, 그림과 같은 임피던스 회로는 100[MVA] 기준 이다.
- (4) 도면의 345[kV] GCB에 내장된 BCT의 오차계급은 C800이다. 부담은 몇 [VA]인가?
- (5) 도면의 ③번 차단기의 설치 목적을 설명하시오.
- (6) 도면의 주변압기 1 Bank(단상×3대)을 증설하여 병렬 운전시키고자 한다. 이때 병렬운전 조건 4가지를 쓰시오.

[주변압기]

단권변압기 345[kV]/154[kV]/23[kV](Y-Y-△), 166.7[MVA]×3대≒500[MVA]

OLTC부 %임피던스 (500[MVA] 기준) : 1차 ~ 2차 : 10[%]

1차 ~ 3차 : 78[%] 2차 ~ 3차 : 67[%]

[차단기]

362[kV] GCB 25[GVA] $4000[A] \sim 2000[A]$

170[kV] GCB 15[GVA] $4000[A] \sim 2000[A]$

 $25.8[kV] VCB ()[MVA] 2500[A] \sim 1200[A]$

[단로기]

362[kV] DS $4000[A] \sim 2000[A]$

170[kV] DS $4000[A] \sim 2000[A]$

25.8[kV] DS $2500[A] \sim 1200[A]$

[피뢰기]

288[kV] LA 10[kA]

144[kV] LA 10[kA]

21[kV] LA 10[kA]

[분로 리액터]

23[kV] sh.R 30[MVAR]

[주모선]

Al-Tube 200ϕ

345[kV] 변전소 단선도

- (1) 2중 모선방식의 1.5 차단방식
- (2) 페란티 현상 방지
- (3) ① 주변압기 %임피던스 100[MVA] 기준 환산등가 %임피던스

$$\begin{split} \%Z_{HM} &= \frac{100}{500} \times 10 = 2\, [\%] \\ \%Z_{ML} &= \frac{100}{500} \times 67 = 13.4\, [\%] \\ \%Z_{LH} &= \frac{100}{500} \times 78 = 15.6\, [\%] \end{split}$$

② 각 권선별 %임피던스

$$\%Z_{H} = \frac{1}{2} \left(\%Z_{HM} + \%Z_{LH} - \%Z_{ML} \right) = \frac{1}{2} (2 + 15.6 - 13.4) = 2.1 [\%]$$

%
$$Z_{M} = \frac{1}{2} (\% Z_{HM} + \% Z_{ML} - \% Z_{LH}) = \frac{1}{2} (2 + 13.4 - 15.6) = -0.1 [\%]$$
 답: % $Z_{M} = -0.1 [\%]$

$$\%Z_L = \frac{1}{2} \big(\%Z_{LH} + \%Z_{M\!L} - \%Z_{H\!M} \big) = \frac{1}{2} \big(15.6 + 13.4 - 2 \big) = 13.5 \, [\%]$$

답:
$$\%Z_r = 13.5 \, [\%]$$

③ 23[kV] VCB 차단용량 등가 회로

등가회로의 간소화

④ 23[kV] VCB 설치점까지 %임피던스 %
$$Z=13.5+\frac{(2.1+0.4)(-0.1+0.67)}{(2.1+0.4)+(-0.1+0.67)}=13.96[\%]$$

⑤ 단락전류
$$I_s = \frac{100}{\%Z}I_n = \frac{100}{13.96} \times \frac{100 \times 10^3}{\sqrt{3} \times 23} \times 10^{-3} = 17.98 \text{[kA]}$$

⑥ 차단용량
$$P_s = \sqrt{3} \ V_n I_s = \sqrt{3} \times 25.8 \times 17.98 = 803.47 [\text{MVA}]$$
 답 : $803.47 [\text{MVA}]$

(4) 오차 계급 C800에서 임피던스는 8[Q] 정격 2차 부담 $I^2Z = 5^2 \times 8 = 200$ [VA]

답: 200[VA]

- (5) 모선절체: 무정전으로 점검하기 위해
- (6) ① 극성이 같을 것
 - ② 권수비가 같을 것
 - ③ 각 변압기의 임피던스전압이 같을 것
 - ④ 각 변압기의 내부저항과 누설리액턴스의 비가 같을 것

문제 16 출제년도 : 19. 23. ▶점수 : 6점

VCB의 특징 3가지를 작성하시오.

▶ 답안작성

- ① 차단성능이 우수하고, 차단시간이 짧다.
- ② 수명이 길다.
- ③ 기름이 사용되지 않아 화재에 대한 안전성이 우수하다.

문제 17 출제년도: 14. 23. ▶점수: 6점

22.9[kV-Y] 중성선 다중 접지 전선로에 정격전압 13.2[kV], 정격용량 250[kVA]의 단상 변압기 3대를 이용하여 아래 그림과 같이 $Y-\Delta$ 결선하고자 한다. 다음 각 물음에 답하시오.

- (1) 변압기 1차측 Y결선의 중성점을 전로로 N선에 연결해야 하는가? 연결해서는 안되는가? 연결해야 한다면 연결해야 하는 이유를, 연결해서는 안된다면 연결해서는 안되는 이유를 설명하시오.
 - 연결 여부 :
 - 이유 :
- (2) 퓨즈링크[A]를 계산하고, 주어진 정격 표에 따라 전력퓨즈의 용량을 선정하시오. 단, 퓨즈는 전부하전류의 1.25배를 고려하여 선정한다.

퓨즈의 정격용량[A]							
10 15 20 30 40 50 60							

▶ 답안작성

- (1) 연결 여부 : 연결해서는 안된다.
 - 이유 : 임의의 한 상이 결상 시 나머지 2대의 변압기가 역V결선되므로 과부하로 인하여 변압기가 소손 될 수 있다.
- (2) 전부하 전류 $I = \frac{750 \times 10^3}{\sqrt{3} \times 22900} = 18.91 [A]$

퓨즈는 전부하전류의 1.25배를 고려하여 선정하면 $18.91 \times 1.25 = 23.64$ [A]

답: 30[A]

▶▶ 해 설

내선규정 3220-10 수전설비 접지공사

고압 또는 특고압 기계기구의 철대, 금속제외함 및 금속프레임 등은 1445-2 접지 규정에 따라 접지하여야 한다.

- ① 다중접지계통(22,9kV-Y)에 접속되는 변압기, 계기용변성기, 계기용변류기, 콘덴서, 유입차단기 등의 철대 및 외함 또는 피뢰기 접지점은 중성선에 공동 접지공사를 할 것.
- ② 다중접지계통에서 수전변압기를 2부싱(2-Bushing) 변압기로 Y-△ 결선하는 경우에는 1차측 중성점은 접지하지 않고 부동(Floating) 시켜야 하며, 변압기 외함 만을 중성선과 공동 접지한다.

문제 18 출제년도 : 23.

▶점수 : 5점

아래 부하집계표에 의한 변압기용량을 구하시오.

구분	설비용량[kW]	수용률[%]	부등률	역률[%]
전등설비	60	80	-	95
전열설비	40	50	_	90
동력설비	70	40	1.4	90

변압기 정격							
50	75	100	150	200	300		

▶ 답안작성

$$P$$
전등 = $60 \times 0.8 = 48 [kW]$

$$P_{
m 전열} = 40 \times 0.5 = 20 \, [\mathrm{kW}]$$

$$P_{\text{Fe}} = \frac{70 \times 0.4}{1.4} = 20 \, [\text{kW}]$$

유효전력 P = 48 + 20 + 20 = 88 [kW]

무효전력
$$P_r = \left(48 \times \frac{\sqrt{1-0.95^2}}{0.95}\right) + \left(20 \times \frac{\sqrt{1-0.9^2}}{0.9}\right) + \left(20 \times \frac{\sqrt{1-0.9^2}}{0.9}\right) = 35.15 \left[\text{kVar}\right]$$

변압기 용량 $P_a = \sqrt{88^2 + 35.15^2} = 94.76 \text{ [kVA]}$

답: 100[kVA] 선정