

American International University – Bangladesh Faculty of Engineering Department of Electrical and Electronic Engineering

Course Name:	Microprocessor and Embedded Systems	Course Code:	
Semester:	2022-2023 Summer	Section:	F
Faculty Name:	Md Sajid Hossain		

Assignment No:	3 (individual submission consisting of 30 marks)
-----------------------	--

Student Name:	Rifat Hossain		
Student ID:	20-42461-1	Program Name:	CSE

[Sec: F]-Submission Link (MS forms): https://forms.office.com/r/zurGRhwBMW

[Sec: Q]-Submission Link (MS forms): https://forms.microsoft.com/r/T6ZX6zhpFu

Submission Date: 23/08/2023 Due Date: EXAM DAY

Assessment Rubrics:

COs-POIs	Excellent [28-30]	Proficient [25-27]	Good [20-24]	Acceptable [10-19]	Unacceptable [1-9]	No Response [0]	Secured Marks
CO3 P.a.4.C.3	solved correctly. The simulation processes are clearly described, and results are generated by combining all possible input patterns with appropriate outcomes. All necessary drawings and computations are shown.	are clearly described,	solved correctly. The simulation processes are not clearly described, and results are generated by combining all possible input patterns with appropriate outcomes. Some necessary drawings	All the problems are not solved correctly. The simulation processes are not clearly described, and results are generated by combining several wrong input patterns with inappropriate outcomes. Some necessary drawings and computations are missing.	All the problems are not solved correctly. The simulation processes are not described, and results are generated by combining mostly wrong input patterns with inappropriate outcomes. Almost all the necessary drawings and computations are missing.	No responses at all	
Comments					Total marks (30)		

Questions:

1. Prepare a design of 2-bit ALU for the operations listed in Table 1

[10]

[5]

Table 1: For Questions 1 and 2 and 3

Dinowy		Function of selection variables										
Binary Code	A	В	$F \text{ with } C_{in} = 1$	$F with C_{in} = 0$	D	Н						
000	Input Data	Input Data	A+1	A, C←0	None	1's to the output Bus						
0 0 1	R1	R1	A, C←1	A-1	R1	Shift Right with I _R =0						
010	R2	R2	A+B'+1	A+B'	R2	-						
0 1 1	R3	R3	A+B+1	A+B	R3	Circulate Left with Carry						
100	R4	R4	AUB	A U B	R4	0's to the output Bus						
1 0 1	R5	R5	A'	A'	R5	No Shift						
110	R6	R6	A Ω B	A Ω B	R6	Circulate Right with Carry						
111	R7	R7	A XOR B	A XOR B	R7	Shift Left with I _L =0						

- 2. Design a 3-bit shifter circuit for the listed shift functions provided in Table 1.
- 3. Develop the control words in binary and hexadecimal formats using the information provided in Table 1 for the following micro-operations: [10]

ii.
$$R4 \leftarrow 3(R4 - 0)/3$$

One example is shown as follows:

Micro-operation	\boldsymbol{A}	\boldsymbol{B}	D	\boldsymbol{F}	Cin	H	In Hex
R5 ← CRC (R3+R4)	011	100	101	011	0	110	72B6h

The necessary bits for the control word are presented in Table 2.

Table 1: 16-bit control word sequence

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	A			В			D			F		C_{in}		Н	

4. Show the flow chart for *counting the number of 1's* in register, R3, and storing the count in register R7. Assume that the starting address is 9. If register, R3 contains the data 10011011 then what would be the contents of register, R7 after this micro-operation is completed? [5]

3				(1)NO 0	duestio	n Hn	SWEL
0000	S ₂	5,0	50	Cin	ZA	2010	20	F A, CKO
W (1) W	0	0	0	1	A	0	1	A+1
	0	0	1	0	A	All 19	0	A-1
	0	0	1	1	A	Allja	1	A, e = 1
1 1 1 1	0	1	0	0	A	B	O	$A+\overline{B}$
-	0	1	0	1	Α	ট	1	A+B+1
000	O	1	1	0	A	B	0	A+B
200	0	1	1_	1	A	B	1	A+B+1
200	1	0	0	0	A+B	0	0	AUB
	1	0	1	0	A	1	0	Ā
000	1	1	0	0	A+B	$\overline{\mathbb{B}}$	0	ANB
100000000000000000000000000000000000000	1	1	1	0	A	B	0	ABB
200								

3 bit sufter:

(2) No Question Ans

H2	Hz	Ho	Function
0	0	0	I's to the Output Bus
0	0	1	Shift Right with Ip =0
0	1	0	
0	1	1	circulate Left with carry
1	0	0	o's to the cutput buy
1	D	1	No Shift
1	1	0	cinculate Right with contry
1	1	1	Shift Left with IL=0

3 NO Question Answer

Micro openations	A	B	D	F	cin	H	Hex
RZERST Ry	011	100	111	011	0	101	73B5h
P4 63(P4-0/5	100	000	100	000	0	101	F.FF 8205
P3 (SHL R3	011	011	011	100	0	111	60C7h
output < R5	101	000	000	000	0	101	FFFFACO Sh
P5 < P1	100	000	101	000	0	101	2285h
R260	000	000	010	000	0	101	105 h
REC input	000	000	110	000	0	101	305h
P6 6 R4-R2	100	010	110	010	1	101	FFFF 8B2Dh
RZ -SHR RS	101	101	010	100	0	001	FFFF B5414
R3 CRE R7	111	111	011	100	0	110	FFFF

4.

