Mean Shift clustering algorithm

Lorenzo Agnolucci

Università degli Studi di Firenze Dipartimento di Ingegneria dell'Informazione

Firenze, 20 Aprile 2019

Outline

- Introduction
- OpenMP
- 3 CUDA
 - Naive version
 - Tiling version
- Experimental results
 - OpenMP
 - CUDA
 - Global comparison
- Conclusions

Introduction

- Mean Shift is a non-parametric clustering algorithm
- It is based on Kernel Density estimation
- The only parameter is the bandwidth
- O(n²) computational cost
- Common application in computer vision: image segmentation
- It is embarassingly parallel

Algorithm

- At each step a kernel function is applied to each point to make it shift towards the local maxima
- Most used kernel: Gaussian kernel

$$K(x) = e^{-\frac{x^2}{2\sigma^2}} \tag{1}$$

New position x' where x has to be shifted is computed as:

$$x' = \frac{\sum_{x_i \in N(x)} K(dist(x, x_i))x_i}{\sum_{x_i \in N(x)} K(dist(x, x_i))}$$
(2)

N(x) is the neighborhood of x, a set of points for which $K(x_i) \neq 0$

 Algorithm stops when all points have stopped shifting, that is they have reached the local maxima

Sequential implementation

Algorithm 1 Mean shift core

```
function MEANSHIFT(originalPoints)
shiftedPoints ← originalPoints
while iterationIndex < MAX_ITERATIONS do
for each point p in shiftedPoints do
p ← SHIFTPOINT(p, originalPoints)
```

Algorithm 2 Shift a single point

OpenMP implementation

Algorithm 3 OpenMP Mean shift

core

```
function OPENMPMEANSHIFT(originalPoints)
shiftedPoints ← originalPoints
while iterationIndex < MAX_ITERATIONS do
#pragma parallel for schedule(static)
for each point p in shiftedPoints do
p ← SHIFTPOINT(p, originalPoints)
```

Algorithm 4 Shift a single point

```
function ShiftPoint(p, originalPoints) shiftedP \leftarrow 0 weight \leftarrow 0 for each point x in originalPoints do dist \leftarrow dist(p, x) w \leftarrow GKernel(dist, BW) shiftedP \leftarrow shiftedP + w * x weight \leftarrow weight + w return shiftedP (weight
```

- just a pragma directive
- static scheduling: loop divided statically in chunks of equal size

Exploiting GPUs: CUDA

Taking advantage of GPUs:

- One thread for each point to shift
- Coalescing of accesses to memory:
 - Points stored as a Structure of Arrays

$$[x,\ldots,x_n,y_1,\ldots,y_n,z_1,\ldots,z_n]$$
 (3)

Access to the array in the form of:

$$blockDim.x * blockldx.x + threadldx.x$$
 (4)

Naive CUDA implementation

Algorithm 6 CUDA Naive version Kernel

Algorithm 5 CUDA Naive version Mean Shift core

```
function NAIVECUDAMS(originalPoints)
shiftedPoints ← originalPoints
while iterationIndex < MAX_ITERATIONS do
NAIVEKERNEL(shiftedPoints. originalPoints)
```

```
function NAIVEKERNEL(shiftedPts, originalPts) tx \leftarrow thread(dx.x) tx \leftarrow bthead(dx.x) tx \leftarrow btx \leftarrow blocklot.x tx \leftarrow btx \leftarrow blocklot.x + tx if tx \leftarrow tx \leftarrow btx for each point tx \leftarrow tx \leftarrow btx for each point tx \leftarrow tx \leftarrow btx in originalPts tx \leftarrow btx in originalPts tx \leftarrow btx while tx \leftarrow btx in originalPts tx \leftarrow btx in originalPts tx \leftarrow btx while tx \leftarrow btx in originalPts tx \leftarrow btx in originalPtx tx \leftarrow btx in originalPtx tx \leftarrow btx in
```

Tiling CUDA

A further optimization is possible:

- Each thread reads O(n) points from global memory to compute the shift
- Shared Memory can be exploited with the Tiling pattern
- TILE_WIDTH = BLOCK_DIM
- O(n) accesses reduced to O(n/TILE_WIDTH)

Tiling CUDA implementation

Algorithm 8 CUDA Tiling version Kernel

```
function TILINGKERNEL(shiftedPts, originalPts)
    tx \leftarrow threadIdx x
    bx \leftarrow blockldx.x
    idx \leftarrow bx * blockDim.x + tx
    tile ← SharedMemArray[TILE WIDTH]
    shiftedP \leftarrow 0
    weight \leftarrow 0
    for tileIter < numTiles do
        tileldx \leftarrow tilelter * TILE WIDTH + tx
       if idx < |originalPts| then
           tile[tx] \leftarrow originalPts[tileIdx]
       else
           tile[tx] \leftarrow nullPoint
        synchthreads()
                                                                  if idx < |originalPts| then
           p \leftarrow shiftedPts[idx]
           for i with i < TILE WIDTH do
               x \leftarrow tile[i]
               if x! = nullPoint then
                   dist \leftarrow dist(p, x)
                   w \leftarrow GKernel(dist, BW)
                   shiftedP \leftarrow shiftedP + w * x
                   weight \leftarrow weight + w
        synchthreads()
                                                              ▶ End of computing
    if idx < |originalPts| then
```

Algorithm 7 CUDA Tiling version Mean Shift core

function TILINGCUDAMS(originalPoints)
shiftedPoints ← originalPoints
while iterationIndex < MAX_ITERATIONS do
TILINGKERNEL(shiftedPoints, originalPoints)

shiftedPts[idx] ← shiftedP/weight

Experimental results

Performances compared with the speedup metric, computed as:

$$S = \frac{t_{S}}{t_{P}} \tag{5}$$

- Tests executed on a machine with:
 - OS: Ubuntu 18.04 LTS
 - CPU: Intel Core i7-8565U 1.8GHz up to 4.6GHz with Turbo Boost, 4 cores/8 threads
 - RAM: 16 GB DDR4
 - GPU: NVidia GeForce MX250 2GB with CUDA 10.1
- Each time is the average of 5 experiments for the sequential and OpenMP versions and of 15 experiments for both CUDA implementations

Experimental results (cont.)

- The implementations have been evaluated on gaussian distributions composed by respectively 100, 1000, 10000, 100000 and 250000 3D points
- bandwidth set to 2
- MAX_ITERATIONS constant set to 10, which has been empirically estimated to be enough to make all points converge to the local maxima

OpenMP: Increasing threads

Number of threads gradually increased for each dataset

Not tested on 250k points dataset: too long execution time

Tiling CUDA: TILE_WIDTH

Execution time for 10000 points for the CUDA tiling implementation varying *TILE_WIDTH*

TILE WIDTH	CUDA Tiling
1122_***10111	•
16	0.334405 s
32	0.176171 s
64	0.171354 s
128	0.172666 s
256	0.173306 s
512	0.175091 s
1024	0.18845 s

Naive vs Tiling CUDA

Dim	CUDA Naive	CUDA Tiling	Speedup	
100	0.000401 s	0.000437 s	1.09	
1000	0.003044 s		1.11 1.12	
10000	0.171354 s			
100000	15.79 s	18.29 s	1.16	
250000	100.38 s	121.10 s	1.20	

Tiling CUDA speedup

Dim	Sequential	CUDA Tiling	Speedup
100	0.005384 s	0.000401 s	13.43
1000	0.475485 s	0.003044 s	156.21
10000	49.29 s	9.29 s 0.171354 s	287.64
100000	4560.37 s	15.79 s	288.80
250000	† 27768 s	100.38 s	† 276.61

• † time has been estimated with a quadratic regression (due to the $O(n^2)$ computational cost)

Global comparison

Global comparison between sequential, OpenMP and Tiling CUDA best results:

- Greatest speedups with CUDA, at the expense of a more complicated implementation
- OpenMP lets to reach noticeable speedups with a simple implementation (just a directive)

Dim	Sequential	OpenMP	OpenMP Speedup	CUDA Tiling	CUDA Speedup
100	0.005384 s	0.001473 s	3.66	0.000401 s	13.43
1000	0.475485 s	0.140161 s	3.39	0.003044 s	156.21
10000	49.29 s	15.25 s	3.24	0.171354 s	287.64
100000	4560.37 s	1403.78 s	3.25	15.79 s	288.80
250000	† 27768 s	† 8720 s	† 3.18	100.38 s	† 276.61

Table: † times have been estimated with a quadratic regression

Conclusions

- The embarassingly parallel structure of Mean Shift makes it suitable for parallel implementations
- OpenMP has an excellent speedup and development cost ratio
- CUDA makes Mean Shift applicable to datasets intractable with a CPU