

definition of prime ideal by Artin

Canonical name DefinitionOfPrimeIdealByArtin

Date of creation 2013-03-22 18:44:31 Last modified on 2013-03-22 18:44:31

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 9

Author pahio (2872)
Entry type Definition
Classification msc 13C99
Classification msc 06A06

Related topic EveryRingHasAMaximalIdeal

Defines prime ideal

Lemma. Let R be a commutative ring and S a multiplicative semigroup consisting of a subset of R. If there exist http://planetmath.org/node/371ideals of R which are disjoint with S, then the set \mathfrak{S} of all such ideals has a maximal element with respect to the set inclusion.

Proof. Let C be an arbitrary chain in \mathfrak{S} . Then the union

$$\mathfrak{b} \ := \ \bigcup_{\mathfrak{a} \in C} \mathfrak{a},$$

which belongs to \mathfrak{S} , may be taken for the upper bound of C, since it clearly is an ideal of R and disjoint with S. Because \mathfrak{S} thus is inductively ordered with respect to " \subseteq ", our assertion follows from Zorn's lemma.

Definition. The maximal elements in the Lemma are *prime ideals* of the commutative ring.

The ring R itself is always a prime ideal $(S = \emptyset)$. If R has no zero divisors, the zero ideal (0) is a prime ideal $(S = R \setminus \{0\})$.

If the ring R has a non-zero unity element 1, the prime ideals corresponding the semigroup $S = \{1\}$ are the maximal ideals of R.

References

[1] EMIL ARTIN: Theory of Algebraic Numbers. Lecture notes. Mathematisches Institut, Göttingen (1959).