Utility Functions for Competing Risk

zhedong liu

2022-11-14

Generation Model

Assume we will observe (T, δ) , where T is the occurance time, δ is the event type, $\delta = 1, \dots J$ and

$$T = min(T_1, \ldots, T_J).$$

We describe T_{δ} using pdf $\pi(T_{\delta} = t)$, then its cdf $P(T_{\delta} < t)$, survival function $P(T_{\delta} > t)$ and hazard function $h(T_{\delta} = t) = \frac{\pi(T_{\delta} = t)}{P(T_{\delta} > t)}$ are defined. We assume the underlining processes T_{δ} are independent.

The probability of not experiencing any event before s is

$$P(T > s) = \prod_{k=1}^{J} P(T_k > s).$$

The density of jth event happens at time t is

$$\pi(T=t, \delta=j) = \pi(T_j=t) \prod_{k \neq j} P(T_k > t).$$

In prediction points of view, the density of jth event happens at time t given nothing happening before time s is more interesting, which is

$$\pi(T = t, \delta = j | T > s) = \frac{\pi(T_j = t) \prod_{k \neq j} P(T_k > t)}{P(T > s)}.$$

The density of observing an event at t is

$$\pi(T=t) = \sum_{j=1}^{J} \pi(T_j=t) \prod_{k \neq j} P(T_k > t).$$

The conditional density of observing an event at t given nothing happening before time s is

$$\pi(T = t|T > s) = \frac{\sum_{j=1}^{J} \pi(T_j = t) \prod_{k \neq j} P(T_k > t)}{P(T > s)}$$
(1)

We would also happy to know

$$P(\delta = j) = \int_0^\infty \pi(T_j = t) \prod_{k \neq j} P(T_k > t) dt.$$

This will correspond to the relative frequency of each events.

The conditional version is

$$P(\delta = j|T > s) = \frac{\int_s^\infty \pi(T_j = t) \prod_{k \neq j} P(T_k > t) dt}{P(T > s)}.$$
 (2)

People are particularly interest in the probability of experiencing jth event within a time interval (s,s+t] given the whole information accumulated till the landmark time s. The probability is

$$P(T < s + t, \delta = j | T > s) = \frac{\int_s^{s+t} \pi(T = x, \delta = j) dx}{P(T > s)}.$$
 (3)

To summerise, the conditional version is more general since we simply set s = 0 to get the unconditional version. The above probability can be checked using data.

Fitted Model

Now we have our fitted model,

$$\pi(T_i|\mathbf{D}),$$

where D represents observed data. Thus all the above quantity can be derived.

We want to check how good is the model.

Prediction Tasks

There are some potentially interesting questions related to prediction:

1. When will the next event (whatever event) happen given no event has happened yet?

With probability .95, we can observe a event happen before t, where P(T < s + t | T > s) = 0.95. (1)

2. What's the next event happen given no event has happened yet?

The most likely happened event is $\delta = j$ which maximize $P(\delta = j | T > s)$. (2)

3. Will event j happen within t unit of time given no event has happened yet?

The probability that j will happen within t unit of time is $P(T < s + t, \delta = j | T > s)$. (3)

4. When will event j happen given no event has happened yet?

With probability $P(\delta \neq j | T > s) = 1 - P(\delta = j | T > s)$, j will not happen. (2)

With probability $.95 * P(\delta = j | T > s)$, we can observe j happens before t, where $P(T < s + t, \delta = j | T > s) = .95 * P(\delta = j | T > s)$. (3)

Scores

It seems question 2 - 4 are more interesting. We may focus on compute scores to check (2) and (3).

Brier Score

We have observed $(T_1, \delta_1), \ldots (T_n, \delta_n)$.

We compute

$$S_B(s) = \frac{1}{n(s)} \sum_{i=1}^n \sum_{j=1}^J (P(\delta = \delta_i | T > s, \mathbf{D}) - \mathbf{1}_{\delta_i = j})^2$$

to check (2). This is Brier score.

We compute

$$S_B(s,t) = \frac{1}{n(s)} \sum_{i=1}^{n} \sum_{j=1}^{J} (P(T_i \le s + t, \delta = \delta_i | T > s, \mathbf{D}) - \mathbf{1}_{T_i \le s + t, \delta_i = j})^2$$

to check (3). This is anther Brier score. (Blanche et al. (2015))

Logarithmic Score

We compute

$$S_L(s) = \frac{1}{n(s)} \sum_{i=1}^{n} \mathbf{1}_{T_i > s} \log \pi(T = T_i, \delta = \delta_i | T > s, \mathbf{D})$$

to check (3). This is logarithmic scores or expected cross-entropy, which can check (3) indirectly. (Commenges, Liquet, and Proust-Lima (2012))

Receiver Operating Characteristic Curve and Area Under the Curve

We predict an individual will encounter j within a time interval (s, s+t] when $P(T < s+t, \delta = j | T > s, \mathbf{D}) > c$, $\tilde{P} > c$ in short. \tilde{P} is different for each i because of the covariates.

We have the true positive counts,

$$TP_{s,t}(c) = \sum_{i=1}^{n} \mathbf{1}_{s < T_i \le s+t, \delta_i = j} \mathbf{1}_{\tilde{P} > c},$$

false positive counts,

$$FP_{s,t}(c) = \sum_{i=1}^{n} \mathbf{1}_{s < T_i \le s+t, \delta_i \ne j \cup T_i > s+t} \mathbf{1}_{\tilde{P} > c},$$

true negative counts,

$$TN_{s,t}(c) = \sum_{i=1}^{n} \mathbf{1}_{s < T_i \le s+t, \delta_i \ne j \cup T_i > s+t} \mathbf{1}_{\tilde{P} \le c},$$

and false negative counts

$$FN_{s,t}(c) = \sum_{i=1}^{n} \mathbf{1}_{s < T_i \le s+t, \delta_i = j} \mathbf{1}_{\tilde{P} \le c}.$$

Then the true positive rate, or sensitivity, is

$$TPR_{s,t}(c) = \frac{TP_{s,t}(c)}{TP_{s,t}(c) + FN_{s,t}(c)} = \frac{\sum_{i=1}^{n} \mathbf{1}_{s < T_i \le s+t, \delta_i = j} \mathbf{1}_{\tilde{P} > c}}{\sum_{i=1}^{n} \mathbf{1}_{s < T_i \le s+t, \delta_i = j}},$$

and the false positive rate, or specificity, is

$$FPR_{s,t}(c) = \frac{FP_{s,t}(c)}{FP_{s,t}(c) + TN_{s,t}(c)} = \frac{\sum_{i=1}^{n} \mathbf{1}_{s < T_i \le s+t, \delta_i \ne j \cup T_i > s+t} \mathbf{1}_{\tilde{P} > c}}{\sum_{i=1}^{n} \mathbf{1}_{s < T_i \le s+t, \delta_i \ne j \cup T_i > s+t}}$$

Then the receiver operating characteristic curve (ROC) is defined by

$$ROC_{s,t}(p) = TPR_{s,t}(FPR_{s,t}^{-1}(p)),$$

and the area under the receiver operating characteristic curve (AUC) is

$$S_{AUC}(s,t) = \int_0^1 ROC_{s,t}(p)dp.$$

Using Bamber's Equivalence theorem, we can compute Wilcoxon statistic, equivalent to AUC,

$$S_{AUC}(s,t) = \frac{1}{K_1 K_2} \sum_{i_1=1}^{K_1} \sum_{i_2=1}^{K_2} \mathbf{1}_{\tilde{P}_{i_1} > \tilde{P}_{i_2}},$$

where i_1 are those $s < T_{i_1} < s + t, \delta_{i_1} = j$ and i_2 are the compliments.

Blanche et al. (2015) considers decision about if subject i_1 has higher risk than i_2 . That is

$$S_{AUCb}(s,t) = \frac{\sum_{i_1=1}^n \sum_{i_2=1}^n \mathbf{1}_{\tilde{P}_{i_1} > \tilde{P}_{i_2}} \mathbf{1}_{s < T_{i_1} < s+t, \delta_{i_1}=j} (1 - \mathbf{1}_{s < T_{i_2} < s+t, \delta_{i_2}=j})}{\sum_{i_1=1}^n \sum_{i_2=1}^n \mathbf{1}_{s < T_{i_1} < s+t, \delta_{i_1}=j} (1 - \mathbf{1}_{s < T_{i_2} < s+t, \delta_{i_2}=j})}.$$

Cross Validation

We use cross validation to estimate those scores because we don't have future data. Leave-group-out cross-validation (LGOCV) will be involved when we have longitudinal data jointly modeled with our survival data depending on the definition of current time.

$$S_B(s,t) \approx \frac{1}{n(s)} \sum_{i=1}^n \sum_{j=1}^J (P(T_i \le s+t, \delta = \delta_i | T > s, \mathbf{D}_{-I_i}) - \mathbf{1}_{T_i \le s+t, \delta_i = j})^2$$

$$S_L(s) \approx \frac{1}{n(s)} \sum_{i=1}^n \mathbf{1}_{T_i > s} \log \pi (T = T_i, \delta = \delta_i | T > s, \mathbf{D}_{-I_i})$$

$$S_{AUC}(s,t) = \frac{1}{K_1 K_2} \sum_{i_1=1}^{K_1} \sum_{i_2=1}^{K_2} \mathbf{1}_{\tilde{P}_{i_1} | \mathbf{D}_{-i_1} > \tilde{P}_{i_2} | \mathbf{D}_{-i_2}}$$

$$S_{AUCb}(s,t) = \frac{\sum_{i_1=1}^n \sum_{i_2=1}^n \mathbf{1}_{\tilde{P}_{i_1} | \mathbf{D}_{-i_1} > \tilde{P}_{i_2} | \mathbf{D}_{-i_2}} \mathbf{1}_{s < T_{i_1} < s+t, \delta_{i_1} = j} (1 - \mathbf{1}_{s < T_{i_2} < s+t, \delta_{i_2} = j})}{\sum_{i_1=1}^n \sum_{i_2=1}^n \mathbf{1}_{s < T_{i_1} < s+t, \delta_{i_1} = j} (1 - \mathbf{1}_{s < T_{i_2} < s+t, \delta_{i_2} = j})}.$$

References

Blanche, Paul, Cécile Proust-Lima, Lucie Loubère, Claudine Berr, Jean-François Dartigues, and Hélène Jacqmin-Gadda. 2015. "Quantifying and Comparing Dynamic Predictive Accuracy of Joint Models for Longitudinal Marker and Time-to-Event in Presence of Censoring and Competing Risks." *Biometrics* 71 (1): 102–13.

Commenges, Daniel, Benoit Liquet, and Cécile Proust-Lima. 2012. "Choice of Prognostic Estimators in Joint Models by Estimating Differences of Expected Conditional Kullback–Leibler Risks." *Biometrics* 68 (2): 380–87.