

Presentación de la materia

¿Qué queremos lograr?

- Pasar de "en mi PC funciona" a "Mi aplicación corre clusterizada en un datacenter híbrido en varias regiones del mundo y sé cómo lo hace.
- 2) Mejorar la interacción dev-infra en lo laboral

Presentación de la materia

Why companies are leaving the cloud

Cloud is a good fit for modern applications, but most enterprise workloads aren't exactly modern. Security problems and unmet expectations are sending companies packing.

Cloud success for startups: Avoiding profit-driven cloud providers

Cloud usage has burgeoned due to its perceived low cost and ease of use.

nd chip scarcity, has led to many

×

Evolución - Temas de la materia

- 1. Entorno oficina
- 2. Entorno Edificio
- 3. Entorno Campus
- 4. Entorno Internet
- 5. Entorno Nube
- 6. Servicios

Capa física

.

Tipos de vínculos

- Cobre
 - Coaxil
 - UTP
 - Par telefónico
- Fibra óptica
 - Mono modo
 - Multimodo
- Ondas electromagnéticas
 - Radio frecuencia
 - Microondas
 - Satélites

Coaxil

- Más inmunes al ruido
- Cables modernos llegan a 1GHz de BW
- Costo medio

Par trenzado

- Un par de cobre paralelo es casi una antena
- El trenzado elimina interferencias (crosstalk)
- Bajo costo
- CAT 7 llega 600 MHz de ancho de banda
- a) CAT 3 UTP

b) CAT 5 UTP

UTP CAT5: 100Mbps

UTP CAT5e: 1000Mbps

UTP CAT6: 10 Gbps

"La clave es leer el cable"

1

Tipos de vínculos

- Fibra óptica
 - Inmune a interferencias electromagnéticas
 - Dos tipos
 - Multimodo
 - Monomodo
 - Se logran decenas de GB de ancho de banda

- Fibra óptica
- Multimodo
 - Se utiliza para cortas distancias (< 1km)
 - Cobertura exterior color naranja

- Se utiliza para distancias largas (> 1km)
- Cobertura exterior color amarillo

Fibra óptica

Los cables de fibras se obtienen N "hilos"

r.

Tipos de vínculos

Fibra óptica

Ejemplo hogareño

Ejemplo hogareño

Ejemplo hogareño

	Rango de frecuencias	Atenuación típica	Retardo típico	Separación entre repetidores
Par trenzado (con carga)	0 para 3,5 kHz	0,2 dB/km @ 1 kHz	50 μs/km	2 km
Pares trenzados (cables multi-pares)	0 para 1 MHz	3 dB/km @ 1 kHz	5 μs/km	2 km
Cable coaxial	0 para 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 a 9 km
Fibra óptica	180 para 370 THz	0,2 a 0,5 dB/km	5 μs/km	40 km

THz = Terahercios = 10¹² Hz.

Llevan el 99% de las comunicaciones en Internet En el orden de lo Tbps

Se alimentan por corriente que lleva el cable. Son amplificadores ópticos. No hay conversión a señal eléctrica.

- http://submarine-cable-map-2024.telegeography.com/
- https://www.submarinecablemap.com/

Aproximadamente 575 cables

Grandes inversionistas (1)

Grandes inversionistas (2)

¿Cómo se dañan?

Satélites

- GEO: Geostationary Earth Orbit (a 36.000 Km)
 - Órbita Geoestacionaria
 - Tiempo de giro = 24hs (gira con la tierra)
- MEO: Medium Earth Orbit (alrededor de 10.000-20.000 Km)
 - No giran a la velocidad de la tierra
 - Son poco usados
- LEO :Low Earth Orbit (alrededor de 5.000 Km, o menos)
 - Las antenas deben seguir el movimiento del satélite o debe haber un "tren" de satélites

Latencia -> 36.000 km / 300.000 km/s = 120 ms (para GEO) Se necesitan 3 satélites para cubrir toda la Tierra.

Satélites en números

- Cantidad total orbitando: 4857
- Cantidad activos: 1980 (40%)
- Cantidad en desuso: 2877 (60%)
- Sobre los activos la división es:
 - GEO son el 30%
 - MEO son el 6 %
 - LEO son el 63 %
 - Elípticos 1%
 - Ver sitio http://stuffin.space

Ejemplo: StarLink

- En la actualidad:
- Primera órbita a 550 km de altura
- Segunda órbita a 1110 km
- Promete:
 - Latencias de 20 a 40 ms
 - Transferencia de 50 a 150 Mb/s

v

Tipos de vínculos - VSAT

- Las antenas para los GEO llegan a 10m de diámetro
- Costosas y de difícil instalación.

VSAT

- Very Small Aperture Terminals (1-2 mts de diámetro)
- No tienen potencia para comunicarse entre sí (VSAT Satélite – VSAT)

Tipos de vínculos - VSAT

- Se utiliza un hub terrestre con antena grande y de mas ganancia para administrar las conexiones
- Desventaja: Doble camino de paquetes (512 ms de latencia aproximada)

٧

Repaso de Teoría

Belio: Unidad de intensidad acústica, que es el logaritmo de la presión producida por una onda y una presión de referencia.

Belio = log (onda / unidad de referencia)

Se utiliza para expresar que una relación de dos magnitudes iguales su ganancia o pérdida es CERO.

$$Ganancia(veces) = \frac{Potencia de Salida}{Potencia de Entrada} = \frac{Po}{Pi}$$

٠

Repaso de Teoría

- Decibeles ó decibelio
 - dB -> 10 log S/N
 - S = potencia de la señal
 - N = potencia del ruido ó referencia
 - Se utiliza para ganancia por ser exponencial
 - dB -> 10 log Psalida / Pentrada
 - dBm referencia al mW (mili watt)