Applications of Integer Programming

Wide area of applications:

- 1. Train scheduling
- 2. Airline Crew scheduling
- 3. Production Planning
- 4. Electricity Generation Planning
- 5. Telecommunications
- 6. Buses for the Handicapped (or Dial-a-Ride)
- 7. Ground Holding of Aircraft
- 8. Cutting Problems
- 9. Roster Problems

Linear Optimization (LO) Problem:

(LP)
$$\max \left\{ c^T x : Ax \le b, x \ge 0 \right\}$$

Integer (Linear) Problem:

(IP)
$$\max \left\{ c^T x : Ax \le b, x \ge 0, x \text{ integer} \right\}$$

Mixed Integer Problem:

$$(MIP) \qquad \max \left\{ c^Tx + d^Ty \ : \ Ax + Gy \le b, \, x \ge 0, \, y \ge 0, \, y \text{ integer} \right\}$$

Binary Integer Problem:

(BIP)
$$\max \{c^T x : Ax \le b, x \in \{0, 1\}^n\}$$

Combinatorial (or Discrete) Optimization Problem:

(COP)
$$\min_{S\subseteq N} \left\{ \sum_{j\in S} c_j : S \in \mathcal{F} \right\}$$

Here $N = \{1, ..., n\}$, c_j is the weight of $j \in N$, and \mathcal{F} denotes a family of feasible subsets of N.

Example: Rounding does not work

Let K be a large positive integer. Consider the problem

(IP)
$$\max\{x : x - 2Ky \le 0, x + 2Ky \le 2K, y \text{ integer}\}.$$

The LO relaxation is

(LP)
$$\max\{x : x - 2Ky \le 0, x + 2Ky \le 2K\}.$$

This problem admits the solution x=K, $y=\frac{1}{2}$ with objective value K. By adding the two inequalities we obtain $2x \leq 2K$, or $x \leq K$; so this solution is optimal. It is not integral, however. The IP solution has objective value 0, for the optimal solutions x=y=0 and x=0, y=1. The figure below illustrates the example (for K=5); the points that are feasible for (IP) are indicated as red.

Ingredients of an IP or BIP

- 1. Data of the problem instance
- 2. Decision variables
- 3. Objective function

In COP's we look for a suitable subset S of the set $N = \{1, ..., n\}$. By representing the set S by its binary incidence vector $x \in \{0, 1\}^n$:

$$x_i = \left\{ egin{array}{ll} 1, & ext{if } i \in S \ 0, & ext{if } i
otin S, \end{array}
ight.$$

every COP can be formulated as a BIP.

Four classical integer problems

The Assignment Problem

n people are available to carry out n jobs. Each person is assigned to carry out exactly 1 job. The cost for assigning job j to person i is c_{ij} . The aim is to find a minimal cost assignment.

Decision variables: $x_{ij} = 1$ if person i does job j, otherwise $x_{ij} = 0$.

Constraints:

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ij} = 1, \quad j = 1, \dots, n$$

Objective: $\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$.

The 0 - 1 Knapsack Problem

Budget b is available for investment in n possible projects the coming year; a_j is the outlet for project j and c_j is its expected return. The aim is to maximize the total expected return.

Decision variables: $x_j = 1$ if project j is selected, otherwise $x_j = 0$.

Constraints:
$$\sum_{j=1}^{n} a_j x_j \leq b$$
.

Objective:
$$\max \sum_{j=1}^{n} c_j x_j$$
.

The Set Covering Problem

 $M=\{1,\ldots,m\}$ denotes a set of regions (or locations), and $N=\{1,\ldots,n\}$ a set of potential centers from which these regions can be serviced. $S_j\subseteq M$ are the regions that can be serviced by center $j\in N$, and c_j the installation cost of service center j. The problem of finding centers such that all regions are serviced at minimal cost is a COP:

$$\min_{T\subseteq N} \left\{ \sum_{j\in T} c_j : \cup_{j\in T} S_j = M \right\}.$$

For a BIP formulation we use a incidence matrix A whose columns are the incidence vectors of the sets S_j .

Decision variables: $x_j = 1$ if center j is selected, otherwise $x_j = 0$.

Constraints:
$$\sum_{j=1}^{n} a_{ij}x_j \ge 1$$
, $i = 1, ..., m$.

Objective:
$$\min \sum_{j=1}^{n} c_j x_j$$
.

The Traveling Salesman Problem (TSP)

A salesman must visit each of n cities exactly once and then return to his starting point. The time to travel from city i to city j is c_{ij} . The aim is to find an order of the cities that minimizes the length of the tour.

We give a BIP formulation.

Decision variables: $x_{ij} = 1$ if the salesman goes directly from city i to city j, otherwise $x_{ij} = 0$; $x_{ii} = 0$ for every i.

Assingment constraints:

$$\sum_{j=1}^{n} x_{ij} = 1, \qquad i = 1, ..., n$$
 $\sum_{i=1}^{n} x_{ij} = 1, \qquad j = 1, ..., n$

Subtour elimination constraints:

$$\sum_{i \in S} \sum_{j \notin S} x_{ij} \ge 1, \quad S \subseteq N, S \ne \emptyset.$$

or, alternatively,

$$\sum_{i \in S} \sum_{j \notin S} x_{ij} \le |S| - 1, \quad S \subseteq N, \ 2 \le |S| \le n - 1.$$

Objective: min $\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$.

Alternative Subtour Elimination Constraints

Below we give a MIP formulation of the TSP.

Decision variables: $x_{ij} = 1$ if the salesman goes directly from city i to city j, otherwise $x_j = 0$; $x_{ii} = 0$ for every i.

Assingment constraints:

$$\sum_{j=1}^{n} x_{ij} = 1, \qquad i = 1, \dots, n$$
 $\sum_{i=1}^{n} x_{ij} = 1, \qquad j = 1, \dots, n$

Subtour elimination constraints: For each node i, we introduce a variable u_i . We want to assign values to these variables in such a way that for $i \neq 1$:

$$x_{ij} = 1 \quad \Rightarrow \quad u_j > u_i.$$

Obviously, this logical constraint can be satisfied if and only if the assignment does not contain a subtour (if there are subtours, there is a subtour that does not contain city 1; look at the values of u_i in the nodes of this subtour). The above logical constraint can be modelled as a linear constraint as follows:

$$u_i - u_j + nx_{ij} \le n - 1, \quad 2 \le i \le n, \quad 1 \le j \le n$$

Objective:
$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
.

Complete enumeration → **Combinatorial Explosion**

Problem	Number of possibilities
Assignment Problem	n!
Travelling Salesman Problem	(n-1)!
Knapsack and Set Covering Problem	$pprox 2^{n-1}$

These functions grow exponentially fast. For example, a TSP with 101 cities has approximately 9.33×10^{157} tours. If a computer were able to evaluate 10^{10} (10.000 million) tours per second, it would take about 3×10^{140} years to evaluate all the tours.

N.B. 1 year has only $31.536.000 \approx 3.2 \times 10^7$ seconds.

Modelling fixed costs

In case of setup costs f for a facility we have to deal with a cost function of the form

$$h(x) = \begin{cases} f + px, & \text{if } 0 < x \le C, \\ 0, & \text{if } x = 0. \end{cases}$$

This can be modelled by using a binary variable y:

$$y = 1$$
 if $x > 0$, otherwise $y = 0$,

and writing

$$h(x) = fy + px$$

and using the constraint

$$x \le Cy, \quad y \in \{0, 1\}.$$

Note that this is not completely satisfactory: it allows the solution x = 0, y = 1, with costs f. But, if we are minimizing cost, this solution will never be part of an optimal solution (unless f = 0).

Uncapacitated Facility Location (UFL)

 $M = \{1, \ldots, m\}$ denotes a set of clients, and $N = \{1, \ldots, n\}$ a set of potential depots from which these clients can be serviced. The setup costs for depot j are f_j . If the demand of client i is completely delivered by depot j the transportation costs are c_{ij} . The problem is to decide which (potential) depots should be used so as to minimize the total costs.

Decision variables:

 $y_j=1$ if depot j is selected, otherwise $y_j=0$ x_{ij} is the fraction of client's i demand delivered by depot j ($0 \le x_{ij} \le 1$).

Constraints:
$$\sum_{j=1}^n x_{ij}=1, \quad i=1,\ldots,m$$
 $\sum_{i\in M} x_{ij} \leq my_j \text{ for } j\in N, \quad y_j\in\{0,1\} \text{ for } j\in N.$

Objective:
$$\min \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{j \in N} f_j y_j$$
.

Uncapacitated Lot-Sizing (ULS)

The aim is to find an optimal production plan for an n-period horizon for a single product.

The data are

 $egin{array}{ll} f_t & ext{fixed cost of producing in period } t \ p_t & ext{unit production cost in period } t \ h_t & ext{unit storage cost in period } t \ d_t & ext{demand at the end of period } t \ \end{array}$

Decision variables: x_t : amount produced in period t

 s_t : stock at the end of period t

 y_t : $y_t = 1$ if production occurs in period t, otherwise $y_t = 0$

Constraints:

$$s_{t-1} + x_t = d_t + s_t, \ t = 1, ..., n$$
 $x_t \le M y_t, \quad t = 1, ..., n$ (e.g. $M = \sum_{t=1}^n d_t$) $s_0 = 0, s_t, x_t > 0, \quad t = 1, ..., n$

Objective: $\min \sum_{t=1}^{n} p_t x_t + \sum_{t=1}^{n} h_t s_t + \sum_{t=1}^{n} f_t y_t$.

Discrete Alternatives (or Disjunctions)

Suppose that two jobs must be processed on the same machine and cannot be processed simultaneously. If p_i are the processing times, and the variables t_i the starting times (i = 1, 2) for the two jobs, then either job 1 precedes job 2, and so $t_2 \ge t_1 + p_1$ or job 2 comes first and $t_1 > t_2 + p_2$.

More generally, consider the situation where $x \in \mathbb{R}^n$ satisfies $0 \le x \le u$ and

either
$$x^T a^1 \le b^1$$
 or $x^T a^2 \le b^2$.

N.B. Usually we require $x^Ta^1 \le b^1$ and $x^Ta^2 \le b^2$, which defines a convex region. In the or case the feasible region is not convex!!

By introducing a large number $M \ge \max\left\{x^Ta^i - b^i : 0 \le x \le u, i \in \{1,2\}\right\}$ and binary variables y_i , this can be modelled by linear and binary constraint as follows:

$$x^{T}a^{i} - b^{i} \leq M(1 - y_{i}), i = 1, 2$$

 $y_{1} + y_{2} = 1,$
 $y_{i} \in \{0, 1\}, i = 1, 2$
 $0 < x < u.$

Alternative Formulations

Definition 1 A subset of \mathbb{R}^n described by a finite set of linear constraints

$$P = \{x \in \mathbf{R}^n : Ax \le b\}$$

is called a polyhedron.

Definition 2 A polyhedron $P \subseteq \mathbb{R}^{n+p}$ is called a (linear) formulation for a set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^p$ if and only if $X = P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$.

N.B. A set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^p$ may have more than one formulation. For example:

$$\emptyset = \left\{ x \in \mathbf{R} \ : \ x^2 < 0 \right\} = \left\{ x \in \mathbf{R}^n \ : \ x^T x < 0 \right\} = \left\{ x \in \mathbf{R} \ : \ x \le 4, \ x \ge 7 \right\}.$$

Also, the polyhedra

$$P_{1} = \left\{ x \in \mathbb{R}^{4} : 0 \leq x_{i} \leq 1 \ (i = 1, \dots, 4), 83x_{1} + 61x_{2} + 49x_{3} + 20x_{4} \leq 100 \right\},$$

$$P_{2} = \left\{ x \in \mathbb{R}^{4} : 0 \leq x_{i} \leq 1 \ (i = 1, \dots, 4), 4x_{1} + 3x_{2} + 2x_{3} + x_{4} \leq 4 \right\},$$

$$P_{3} = \left\{ x \in \mathbb{R}^{4} : \begin{array}{c} 4x_{1} + 3x_{2} + 2x_{3} + 1x_{4} \leq 4 \\ x \in \mathbb{R}^{4} : 1x_{1} + 1x_{2} + 1x_{3} + 1x_{4} \leq 1 \\ 1x_{1} + 1x_{2} + 1x_{3} + 1x_{4} \leq 1 \end{array} \right\}$$

$$0 \leq x_{i} \leq 1 \ (i = 1, \dots, 4)$$

are formulations for the same set X of points

$$X = \{(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,1,0,1), (0,0,1,1)\}.$$

Equivalent Formulation for UFL

Decision variables:

 $y_j = 1$ if depot j is selected, otherwise $y_j = 0$ x_{ij} is the fraction of client's i demand delivered by depot j ($0 \le x_{ij} \le 1$).

Constraints:
$$\sum_{j=1}^n x_{ij} = 1, \quad i = 1, \ldots, m$$
 $\sum_{i \in M} x_{ij} \leq m y_j \text{ for } j \in N$ $y_j \in \{0,1\} \text{ for } j \in N.$

Objective:
$$\min \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{j \in N} f_j y_j$$
.

The second constraint $(\sum_{i \in M} x_{ij} \le my_j \text{ for } j \in N)$ just models the requirement that if $x_{ij} > 0$ for some i, then the depot j should be open, i.e. $y_j = 1$. Since $0 \le x_{ij} \le 1$, this can be achieved also by using a different set of constraints:

$$0 \le x_{ij} \le y_j$$
 for $i \in M, j \in N$.

Extended Formulation for ULS

Data

 $egin{array}{ll} f_t & ext{fixed cost of producing in period } t \\ p_t & ext{unit production cost in period } t \\ h_t & ext{unit storage cost in period } t \\ d_t & ext{demand at the end of period } t \\ \end{array}$

Decision variables: w_{it} : amount produced in period i to satisfy demand in period t y_t : $y_t = 1$ if production occurs in period t, otherwise $y_t = 0$

Constraints:
$$\sum_{i=1}^n w_{it} \geq d_t, \quad t=1,\ldots,n$$
 $w_{it} \leq d_t y_i, \quad i=1,\ldots,n, \ w_{it} \geq 0, \quad i,t=1,\ldots,n$

Objective: $\min \sum_{i=1}^{n} \sum_{t=i}^{n} c_{it}w_{it} + \sum_{t=1}^{n} f_t y_t$.

Here $c_{it} = p_i + h_{i+1} + \ldots + h_t$.

Ideal Formulation

Definition 3 Given a set $X \subseteq \mathbb{R}^n$, the convex hull of X, denoted as $\mathsf{conv}(X)$, is defined as

conv
$$(X) = \left\{ x : x = \sum_{i=1}^{k} \lambda_i x^i, \sum_{i=1}^{k} \lambda_i = 1, \lambda \ge 0, \left\{ x^1, \dots, x^k \right\} \subseteq X \right\}$$

Proposition 1 conv (X) is a polyhedron (i.e. $\exists A, b \ni \text{conv}(X) = \{x : Ax \leq b\}$)

Proposition 2 The extreme points of conv(X) all belong to X.

Due to the last two results, one has

$$\max\left\{c^Tx\ :\ x\in X\right\}=\max\left\{c^Tx\ :\ x\in \operatorname{conv}\left(X\right)\right\}=\max\left\{c^Tx\ :\ Ax\leq b\right\}.$$

Thus conv(X) yields an ideal formulation of X: the solution of the last formulation immediately gives the solution of the first problem.

However, in general, it is hard to find A and b, and, moreover, the number of inequalities in $Ax \leq b$ to describe CONV(X) may be enormous (exponential).

Good Formulations

For any formulation P we have $X \subseteq \text{conv}(X) \subseteq P$.

Definition 4 Given a set $X \subseteq \mathbb{R}^n$, and two formulations P_1 and P_2 for X, we call P_1 a better formulation than P_2 if $P_1 \subseteq P_2$.

The figure below illustrates the above definition.

Comparison of Formulations for a Knapsack Problem

Earlier we found three formulations for a Knapsack set, namely

$$P_{1} = \left\{ x \in \mathbb{R}^{4} : 0 \leq x_{i} \leq 1 \ (i = 1, ..., 4), 83x_{1} + 61x_{2} + 49x_{3} + 20x_{4} \leq 100 \right\},$$

$$P_{2} = \left\{ x \in \mathbb{R}^{4} : 0 \leq x_{i} \leq 1 \ (i = 1, ..., 4), 4x_{1} + 3x_{2} + 2x_{3} + x_{4} \leq 4 \right\},$$

$$P_{3} = \left\{ x \in \mathbb{R}^{4} : \begin{array}{c} 4x_{1} + 3x_{2} + 2x_{3} + 1x_{4} \leq 4 \\ 1x_{1} + 1x_{2} + 1x_{3} + \leq 1 \\ 1x_{1} + 1x_{4} \leq 1 \end{array} \right\}$$

$$0 \leq x_{i} \leq 1 \ (i = 1, ..., 4)$$

where X is the set of points

$$X = \{(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,1,0,1), (0,0,1,1)\}.$$

One may easily verify that $P_3 \subseteq P_2 \subseteq P_1$. So P_3 is the best formulation of the three. In fact, in this case one has $P_3 = \text{conv}(X)$, so P_3 is an ideal formulation.

Comparison of the Formulations for UFL

We already have two formulations for the set X underlying UFL:

P_1	P_2			
(i) $\sum_{j=1}^{n} x_{ij} = 1, i = 1, \dots, m$	(i) $\sum_{j=1}^{n} x_{ij} = 1, i = 1, \dots, m$			
(ii) $\sum_{i \in M} x_{ij} \le m y_j$ for $j \in N$	(ii) $0 \le x_{ij} \le y_j$ for $i \in M, j \in N$			
(iii) $y_j \in [0,1]$ for $j \in N$.	(iii) $y_j \in [0,1]$ for $j \in N$.			

The formulations differ only in the second constraint. With j fixed, taking the sum over $i \in M = \{1, \ldots, m\}$ in $P_2(ii)$ yields $P_1(ii)$, since |M| = m. Hence $P_2 \subseteq P_1$. In fact, $P_2 \subset P_1$, as we show now. For simplicity assume that m = kn for some integer $k \geq 2$. If we partition the clients in k groups, each of which is serviced by exactly one of the depots, and define x_{ij} accordingly, then $\sum_{i \in M} x_{ij} = k \leq m$ for each $j \in N$. Taking $y_j = k/m$ for each depot, we obtain a solution that satisfies P_1 , but which does not satisfy P_2 .

Comparison of the Formulations for ULS

We already have two formulations for the set X underlying ULS:

P_1				P_2					
(i)	$s_{t-1} + x_t$	=	$d_t + s_t$,	$t \in N$	(<i>i</i>)	$\sum_{t=1}^{n} w_{it}$	>	$d_t,$	$t \in N$
(ii)	x_t	<	My_t ,	$t \in N$	(ii)	w_{it}	\leq	$d_t y_i,$	$t\in N, t\geq i$
(iii)	s_t, x_t	>	0,	$t \in N$	(iii)	w_{it}	\geq	0,	$i,t\in N$
(iv)	y_t	\in	[0, 1],	$t \in N$	(iv)	y_t	\in	[0, 1]	$t \in N$
(v)	s_0	=	0.		(v)	x_i	=	$\sum_{t=i}^n w_{it},$	$i \in N$.

The situation is less clear than in the UFL case, since the variables in both formulations are not the same. However, given a solution of P_2 , we can compute each x_i form $P_2(v)$. Then we can compute the corresponding variables s_t from $P_1(i)$ and $P_1(v)$. We omit these computations, but in this way it can be shown that $P_2 \subseteq P_1$. The inclusion is strict, because $x_t = d_t$, $y_t = d_t/M$ (for each t) is a solution of P_1 (take $s_t = 0$ for each t) that can not be satisfied by P_2 .

N.B. It can be shown that formulation P_2 is ideal.