Systèmes dynamiques Corrigé n°6

Dans toute la suite, si p est un point fixe hyperbolique d'un difféomorphisme f d'une variété M, on note $W^u(f,p)$ et $W^s(f,p)$ (resp. $W^u_{loc}(f,p)$ et $W^s_{loc}(f,p)$) les variétés instables et stables globales (resp. locales) de p.

Exercice 1. Variété stable locale

1. L'énoncé est le suivant. Soit A un isomorphisme hyperbolique de \mathbf{R}^n , $E = E^s \oplus E^u$ sa décomposition stable/instable, et π_s , π_u les projecteurs associés. Soit $\|\cdot\|$ une norme sur \mathbf{R}^n adaptée à A, c'est-à-dire

$$||x|| = \max(||\pi_s(x)||_s, ||\pi_u(x)||_u), \quad x \in \mathbf{R}^n,$$

où $\|\cdot\|_s$ et $\|\cdot\|_u$ sont des normes sur E^s et E^u telles que pour un a<1 on a

$$||A|_{E^s}||_s \le a, \quad ||(A|_{E^u})^{-1}||_u \le a.$$

Soit r > 0 et $B = \bar{B}(0,r) = B_s \times B_u$ la boule de rayon r pour $\|\cdot\|$. Soit $\eta : B \to \mathbf{R}^n$ une application qui est Lipschitzienne avec constante de Lipschitz $\kappa < (1-a)$ et telle que $\eta(0) = 0$. Alors il existe une unique application $h : B_s \to B_u$ telle que

Graphe(h)
$$\stackrel{\text{def}}{=} \{(x_s, h(x_s)), x_s \in B_s\} = \{(x_s, x_u) \in B, (A + \eta)^n (x_s, x_u) \xrightarrow[n \to \infty]{} 0 \}.$$

De plus, h est Lipschitz, et \mathcal{C}^1 si η l'est.

2. Le problème étant local, on peut supposer que f est un difféomorphisme $U \to V$ où U et V sont des voisinages de 0 dans \mathbf{R}^n , et p=0, de sorte qu'en notant $A=(\mathrm{d} f)_0$ et $\eta=f-(\mathrm{d} f)_0$ on se ramène à la situation du théorème précédent. On rappelle que l'application h du théorème précédent est obtenue de la manière suivante. Soit $\mathcal{S}_0(B)$ les suites à valeurs dans B et $\chi: B_s \times \mathcal{S}_0(B) \to \mathcal{S}_0(B)$ définie par

$$\chi(x_s, \gamma)(n) = \begin{cases}
 \left(x_s, \ A_u^{-1}[\gamma_u(1) - \eta_u \gamma(0)]\right) & \text{si } n = 0, \\
 \left((A + \eta)_s \gamma(n - 1), \ A_u^{-1}[\gamma_u(n + 1) - \eta_u \gamma(n)]\right) & \text{si } n > 0,
\end{cases}$$
(1)

pour tout $\gamma = (\gamma(n))_{n \in \mathbb{N}}$ et $x_s \in B_s$. Ici on a noté $A_u = A|_{E^u}$, $\eta_u = \pi_u \circ \eta$, $(A + \eta)_s = \pi_s \circ (A + \eta)$ et $\gamma_u = \pi_u \circ \gamma$. Alors (voir la démonstration du théorème) il existe une unique application $g: B_s \to \mathcal{S}_0(B)$ telle que

$$g(x_s) = \chi(x_s, g(x_s)), \quad x_s \in B_s.$$
 (2)

L'application h est alors donnée par $h(x_s) = \pi_u[g(x_s)(0)]$.

En différenciant, il vient

$$(dg)_0(x_s) = (d\chi)_{(0,0)} (x_s, (dg)_0(x_s)).$$
(3)

En différenciant χ au point $(0,0) \in B_s \times \mathcal{S}_0(B)$, on voit aussi que $d\chi_{(0,0)} = \tilde{\chi}$, où $\tilde{\chi}$ est définie comme χ en remplaant η par $(d\eta)_0$ dans l'équation (1).

Par unicité de l'équation (2) (en remplaant χ par $\tilde{\chi}$), et par (3), on obtient que la variété stable de $A + (d\eta)_0$ est donnée par le graphe de $x_s \mapsto \pi_u[(dg)_0(x_s)(0)]$ (car $d(\pi_u \circ g) = \pi_u \circ dg$ puisque π_u est linéaire), c'est à dire par le graphe de $x_s \mapsto (dh)_0(x_s)$ qui est par définition l'espace tangent de la variété stable locale de $A + \eta$ en 0.

Or, la variété stable de l'application linéaire $A + (d\eta)_0$ est l'espace stable de $A + (d\eta)_0$; cela conclut puisque, avec les identifications faites au début de la question, on a $A + (d\eta)_0 = (df)_0$.

3. On se ramène au cas où $f: \mathbf{R}^n \to \mathbf{R}^n$ et f(0) = 0. Soit $\mathbf{R}^n = E^s \oplus E^u$ la décomposition stable et instable associée à $\mathrm{d} f_0$. On reprend les notations de la question précédente et on note $h_s: B_s \to B_u$ et $h_u: B_u \to B_s$ les applications dont les graphes sont les variétés stables et instables locales, et on définit $\psi_{s/u}: B_{s/u} \to B_s \times B_u$ par

$$\psi_s(x_s) = (x_s, h_s(x_s)), \quad \psi_u(x_u) = (h_u(x_u), x_u), \quad (x_s, x_u) \in B_s \times B_u.$$

Alors $\psi_{s/u}$ est un difféomorphisme local $B_{s/u} \to W^{s/u}_{loc}(f,0)$. On définit $\varphi: B_s \times B_u \to \mathbf{R}^n$ par

$$\varphi(x_s, x_u) = \psi_s(x_s) + \psi_u(x_u), \quad (x_s, x_u) \in B_s \times B_u.$$

Alors φ est un difféomorphisme local (sa différentielle est injective en 0) qui vérifie les conditions demandées. Quitte à identifier E^s avec \mathbf{R}^r et E^u avec \mathbf{R}^{n-r} , on a les conditions demandées.

4. On écrit $\tilde{f}(x) = d\tilde{f}_0(x) + \tilde{\eta}(x)$ où $\tilde{\eta}(x) = \mathcal{O}(\|x\|^2)$. Alors (ici $\|\cdot\|_s$ est une norme adaptée pour $d\tilde{f}_0$ qui est contractante sur $\mathbf{R}^r \times \{0\}$)

$$\left\| \tilde{f}(\tilde{x}_s) - \tilde{f}(\tilde{y}_s) \right\|_s \le \left\| d\tilde{f}_0(\tilde{x}_s - \tilde{y}_s) \right\|_s + \left\| \tilde{\eta}_s(\tilde{x}_s) - \tilde{\eta}_s(\tilde{y}_s) \right\|_s$$
$$\le a \|\tilde{x}_s - \tilde{y}_s\|_s + \varepsilon \|\tilde{x}_s - \tilde{y}_s\|_s,$$

pour tout $\tilde{x}_s, \tilde{y}_s \in \mathbf{R}^r \times \{0\}$ assez proches de 0, où 0 < a < 1 et $\varepsilon > 0$ vérifient $a + \varepsilon < 1$. On peut itérer ce raisonnement pour obtenir que

$$\|\tilde{f}^{n}(\tilde{x}_{s}) - \tilde{f}^{n}(\tilde{y}_{s})\| \leq C \|\tilde{f}^{n}(\tilde{x}_{s}) - \tilde{f}^{n}(\tilde{y}_{s})\|_{s}$$

$$\leq C(a + \varepsilon) \|\tilde{f}^{n-1}(\tilde{x}_{s}) - \tilde{f}^{n-1}(\tilde{x}_{u})\|_{s}$$

$$\leq \cdots$$

$$\leq C(a + \varepsilon)^{n} \|\tilde{x}_{s} - \tilde{y}_{s}\|_{s}$$

$$\leq C^{2}(a + \varepsilon)^{n} \|\tilde{x}_{s} - \tilde{y}_{s}\|_{s}$$

où $\|\cdot\| \le C \|\cdot\|_s \le C^2 \|\cdot\|$.

Exercice 2. Intérieur de la variété stable

On a que

$$W^{s}(f,p) = \bigcup_{N \ge 0} f^{-N} \left(\overline{W}_{loc}^{s}(f,p) \right).$$

Pour tout $N \geq 0$, on a que $f^{-N}\left(\overline{W}_{loc}^s(f,p)\right)$ est un fermé d'intérieur vide, puisque f est un difféomorphisme. Le théorème de Baire permet de conclure.

Exercice 3. Points périodiques hyperboliques

Par l'exercice 5. du TD n°5 (cf. corrigé), les points $x \in M$ tels que $f^n(x) = x$ sont isolés. Cela conclut par compacité de M.

Exercice 4. Calculs de variétés stables

1. On a f(0) = 0 et

$$\mathrm{d}f_0 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},$$

donc d f_0 est un opérateur hyperbolique. Les solutions de $\dot{x} = f(x)$ sont données par

$$x_1(t) = c_1 e^{-t}, \quad x_2(t) = \frac{5\varepsilon c_1^3}{4} e^{-3t} + c_2 e^t, \quad t \in \mathbf{R},$$

où $c_1, c_2 \in \mathbf{R}$. On a $c_1 = x_1(0)$ et $c_2 = x_2(0) - 5\varepsilon x_1(0)^3/4$, et donc

$$W^{s}(0) = \{(a_1, a_2) \in \mathbf{R}^2, \ a_2 = 5\varepsilon a_1^3/4\}, \quad W^{u}(0) = \{(a_1, a_2) \in \mathbf{R}^2, \ a_1 = 0\}.$$

2. On a f(0) = 0 et

$$df_0 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

donc d f_0 est un opérateur hyperbolique. Les solutions de $\dot{x} = f(x)$ sont données par

$$x_1(t) = c_1 e^{-t}, \quad x_2(t) = c_2 e^{-t} - c_1^2 e^{-2t}, \quad x_3(t) = c_3 e^t - \frac{1}{3} c_1^2 e^{-2t},$$

où $c_1, c_2, c_3 \in \mathbf{R}$. On a $c_1 = x_1(0), c_2 = x_2(0) + x_1(0)^2$ et $c_3 = x_3(0) + x_1(0)^2/3$, et donc

$$W^{s}(0) = \{(a_1, a_2, a_3), a_3 + a_1^2/3 = 0\}, \quad W^{u}(0) = \{(a_1, a_2, a_3), a_1 = a_2 = 0\}.$$

Exercice 5. Variété stable de l'application du chat

On note $\operatorname{sp}(L) = \{\lambda, \lambda^{-1}\}$ avec $\lambda > 1$. Soient $u, v \in \mathbf{R}^2$ des vecteurs propres associés à λ, λ^{-1} , et $p = [au + bv] \in \mathbf{T}^2$. On a

$$(f_L)^n(p) = [a\lambda^n u + b\lambda^{-n}v], \quad n \in \mathbf{N}.$$
 (4)

Soit $\varepsilon > 0$ assez petit et $U = \{[x] : x \in \mathbf{R}^2, ||x|| < \varepsilon\}$. Alors (4) montre que l'ensemble stable local de [0],

$$\left\{ p \in U : \forall n \in \mathbf{N}, \ (f_L)^n(p) \in U, \ \lim_n (f_L)^n(p) = [0] \right\}$$

est égal à

$$\{[bv] : b \in \mathbf{R}, \|bv\| < \varepsilon\}.$$

Ceci implique que $W^s([0]) = [\mathbf{R}v]$. On peut choisir v de la forme $(1, \alpha)$ avec $\alpha \notin \mathbf{Q}$, et donc $W^s([0])$ est dense dans \mathbf{T}^2 .

Exercice 6. Le lemme de Morse

1. Soit $\Phi: M_n(\mathbf{R}) \to M_n(\mathbf{R})$ définie par

$$\Phi(M) = M^{\top} S_0 M, \quad M \in S_n(\mathbf{R}).$$

On a

$$(\mathrm{d}\Phi)_I \cdot H = H^\top S_0 + S_0 H, \quad H \in M_n(\mathbf{R}).$$

Soit

$$F = \{ H \in M_n(\mathbf{R}) : S_0 H \in S_n(\mathbf{R}) \} = S_0^{-1} S_n(\mathbf{R}).$$

On pose $\tilde{\Phi} = \Phi|_F$. Alors

$$(d\tilde{\Phi})_I(H) = (S_0 H)^{\top} + S_0 H = 2S_0 H$$

pour tout $H \in T_I F = F$, et donc $d\tilde{\Phi}_0 : F \to S_n(\mathbf{R})$ est inversible. Par le théorème d'inversion locale, il existe un voisinage V de I dans F tel que $\tilde{\Phi}|_V : V \to S_n(\mathbf{R})$ réalise un difféomorphisme sur son image, notée U. On pose $\varphi = (\tilde{\Phi}|_V)^{-1}$; alors φ réalise les conditions demandées.

2. La formule de Taylor avec reste intégral s'écrit

$$f(x) = x^{\top} Q(x)x, \quad Q(x) = \frac{1}{2} \left(\int_0^1 (1-t) d^2 f(tx) dt \right), \quad x \in \mathbf{R}^n.$$

L'application $x \mapsto Q(x)$ est lisse, ce qui conclut.

3. On a $Q(0) = \frac{1}{2} \operatorname{Hess}_f(0)$, et donc Q(0) est non dégénérée. Par la question 1., il existe un ouvert \tilde{V} de $S_n(\mathbf{R})$ contenant Q(0) et une application lisse $\varphi : \tilde{V} \to \operatorname{GL}_n(\mathbf{R})$ telle que

$$Q(x) = \varphi(Q(x))^{\top} Q(0)\varphi(Q(x)), \quad x \in Q^{-1}(U).$$

Soit $P \in \mathrm{GL}_n(\mathbf{R})$ et $r \in \{0, \dots, n\}$ tels que

$$Q(0) = P^{\top} J P, \quad J = \operatorname{diag}(\underbrace{1, \dots, 1}_{r \text{ fois}}, \underbrace{-1, \dots, -1}_{n-r \text{ fois}}).$$

On pose $V=Q^{-1}(\tilde{V})$ et on définit $\psi:V\to {\bf R}^n$ par

$$\psi(x) = P\varphi(Q(x))x, \quad x \in Q^{-1}(\tilde{V}).$$

Soit $U=\psi(V)$. Alors $\psi:V\to U$ est un C^∞ -difféomorphisme d'inverse

$$\nu: x \mapsto \varphi(Q(x))^{-1}P^{-1}x.$$

On obtient pour tout $x \in V$

$$f(x) = x^{\mathsf{T}} \varphi(Q(x))^{\mathsf{T}} P^{\mathsf{T}} J P \varphi(Q(x)) x = \psi(x)^{\mathsf{T}} J \psi(x),$$

et finalement, pour tout $y \in U$,

$$f(\nu(y)) = y^{\top} J y,$$

ce qui conclut.

4. On a

$$\nabla g(y) = 2(y_1, \dots, y_r, -y_{r+1}, \dots, -y_n), \quad y = (y_i) \in \mathbf{R}^n.$$

En particulier la solution du système $\dot{y} = \nabla g(y)$ avec condition initiale $(y_1, \dots, y_n) \in U$ s'écrit, pour |t| petit

$$y(t) = (y_1 e^{2t}, \dots, y_r e^{2t}, y_{r+1} e^{-2t}, \dots, y_n e^{-2t}),$$

ce qui montre que $W_{loc}^s(0) = \{y_1 = \dots = y_r = 0\}$ et $W_{loc}^u(0) = \{y_{r+1} = \dots = y_n = 0\}$.

Exercice 7. Linéarisation du pendule

Si $t \mapsto (\theta(t), \omega(t))$ est une trajectoire du système, on a immédiatement

$$\partial_t H(\theta(t), \omega(t)) = 0.$$

En particulier, la trajectoire avec condition initiale (θ, ω) va rester dans l'ensemble $\mathcal{C}_{\varepsilon} = H^{-1}(\varepsilon)$ où $\varepsilon = H(\theta, \omega)$. On pose pour $\varepsilon > 0$ petit

$$\psi(\theta, \omega) = \left(\operatorname{sgn}(\theta) \operatorname{arccos}\left(1 - \frac{\theta^2}{2}\right), \ \omega\right), \quad \theta^2 + \omega^2 \le \varepsilon.$$

Alors $H(\psi(\theta,\omega)) = \theta^2 + \omega^2$; en particulier on a, si $U = \{\theta^2 + \omega^2 \le \varepsilon\}$,

$$H^{-1}(\varepsilon) \cap U = \psi(C_{\varepsilon})$$

où $C_{\varepsilon} = \{\theta^2 + \omega^2 = \varepsilon\}$. On a $\psi(0) = 0$ et

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \left[\mathrm{sgn}(\theta) \arccos\left(1 - \frac{\theta^2}{2}\right) \right] = \frac{2}{\sqrt{4 - \theta^2}}, \quad |\theta| < 2.$$

En particulier ψ est lisse au voisinage de 0 et on a $d\psi_0 = id$.

Il reste à montrer que la trajectoire $\{(\theta(t), \omega(t)) : t \in \mathbf{R}\}$ partant d'un point (θ_0, ω_0) avec $H(\theta_0, \omega_0) = \delta$ est exactement $H^{-1}(\delta) \cap U$ (ici $\delta < \varepsilon$). Le champ de vecteurs associé au système est donné par

$$X(\theta, \omega) = (\omega, \sin \theta), \quad (\theta, \omega) \in \mathbf{R}^2,$$

et donc le seul point d'annulation de X dans un voisinage de l'origine est 0. De plus X est tangent à la variété \mathcal{C}_{δ} ; en identifiant \mathbf{R}/\mathbf{Z} et \mathcal{C}_{δ} via ψ on obtient donc une application lisse $\gamma: \mathbf{R} \to \mathbf{R}/\mathbf{Z}$, donnée par $\gamma(t) = \psi^{-1}(\theta(t), \omega(t))$, qui vérifie $\gamma'(t) \neq 0$ pour tout t (car X est non nul sur \mathcal{C}_{δ}). Une telle application est nécessairement surjective par le théorème des valeurs intermédiaires.

Le système du pendule n'est pas localement conjugué à son linéarisé. En effet, toutes les orbites du système linéarisé sont périodiques de période 2π , tandis que la période de la trajectoire partant de $(0, \theta_0)$ (avec $\theta_0 > 0$ petit) est donnée par

$$\tau(\theta_0) = 2\sqrt{2} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\cos(\theta) - \cos(\theta_0)}}.$$

Cette quantité n'est pas indépendante de θ_0 ; ainsi le flot du pendule ne peut être conjugué à son linéarisé puisque les conjugaisons préservent les périodes.