Graphes et algorithmes: TD2

Exercice 1

Sujet

Donner les représentations par matrice d'incidence, matrice d'adjacence et listes d'adjacence des deux graphes suivants, puis déterminer le degré de chaque sommet.

Résolution

Graphe 1:

• Matrice d'incidence

• Matrice d'adjacence :

• Listes d'adjacence :

Graphe 2:

• Matrice d'incidence

• Matrice d'adjacence :

• Listes d'adjacence :

Exercice 2

Sujet

Donner des algorithmes (en pseudo-langage) pour insérer et supprimer un arc dans un graphe orienté représenté par sa matrice d'adjacence, puis par listes d'adjacences.

Résolution

```
CONST MAX = 1000;
TYPE Matrice = tableau[MAX][MAX] d'Entiers;
/*INSERTION*/
/*retourne 0 si (i,j) existe déjà, 1 sinon*/
fonction ajout_matrice(Entrée/Sortie M : Matrice, Entrée i,j : Entier) : En
début
    si M[i][j] = 0 alors
        M[i][j] \leftarrow 1;
        retourner 1;
    fin si
    retourner 0;
fin
/*SUPPRESSION*/
/*retourne 0 si (i,j) n'existe pas, 1 sinon*/
fonction supp_matrice(Entrée/Sortie M : Matrice, Entrée i,j : Entier) : Ent;
début
    si M[i][j] = 1 alors
        M[i][j] \leftarrow 0;
        retourner 1;
    fin si
    retourner 0;
fin
```

Listes d'adjacence

```
CONST MAX = 1000;
TYPE Listes = tableau[MAX] de Liste;

/*INSERTION*/

/*retourne 0 si (i,j) existe déjà, 1 sinon*/
fonction ajout_liste(Entrée/Sortie L : Listes, Entrée i,j : Entier) : Entier
début
    si j \( \xi \) L[i] alors
        L[i] \( \xi \) L[i] + \( \xi \);
        retourner 1;
    fin si
```

```
retourner 0;
fin

/*SUPPRESSION*/

/*retourne 0 si (i,j) n'existe pas, 1 sinon*/
fonction supp_liste(Entrée/Sortie L : Listes, Entrée i,j : Entier) : Entier
début
    si j ∈ L[i] alors
        L[i] ← L[i] - {j};
        retourner 1;
    fin si
    retourner 0;
fin
```

Exercice 3

Sujet

Le carré d'un graphe orienté G=(S,A) est le graphe $G^2=(S,A^2)$ tel que $(x,z)\in A2\Leftrightarrow \exists y\in S$ tel que $(x,y)\in A$ et $(y,z)\in A$.

1. Donner le carré du graphe orienté ci-dessous :

- 2. Donner une interprétation de G^2 en termes de chemin.
- 3. Décrire un algorithme (pseudo-langage) efficace permettant de calculer le graphe G^2 d'un graphe G représenté par listes d'adjacence.
- 4. Même question si G est représenté par matrice d'adjacence.
- 5. Analyser le temps d'exécution des algorithmes décrits dans les questions précédentes.

Résolution

Question 1

Question 2

Pour que l'arc (x,z) existe dans G^2 , il faut qu'il existe au moins un chemin de longueur 2 dans G reliant x à z.

Question 3

```
/*retourne le carré du graphe représenté par la liste
d'adjacence L*/
fonction carre_listes(Entrée L : Listes, n : Entier) : Listes
début
    pour i allant de 0 à n faire
        L^2[i] \leftarrow \emptyset;
    fin pour
    pour i allant de 0 à n faire
        pour j \in L[i] faire
            pour k \in L[j] faire
                 ajout_liste(L², i, k);
            fin pour
        fin pour
    fin pour
    retourner L²;
fin
```

Complexité : $O(n^3)$