Having Fun with PageRank and MapReduce

Hadoop User Group (HUG) UK – 14th April 2009 – http://huguk.org/ Paolo Castagna – HP Labs, Bristol, UK

$$m{r}_p = rac{m{r}_1}{3} + m{r}_2 + rac{m{r}_3}{2}$$

$$r_{p_i} = \sum_{p_j \in B_{p_i}} \frac{r_{p_j}}{|p_j|}$$

recursive definition

 B_{p_i} backward links (i.e. links to p_i)

 $|p_j|$ number of forward links (i.e. links from p_j)

iterative computation

$$r_{k+1}(p_i) = \sum_{p_j \in B_{p_i}} rac{r_k(p_j)}{\left|p_j
ight|}$$

$$r_{\rm o}(p_i) = \frac{1}{N}$$

 $r_k(p_i)$

pagerank of page p_i at k iteration

N

total number of pages

Random Surfer

- A surfer follows links at random indefinitely
- Time spent on a given page measure the importance of that page
- Problems:
 - rank sinks (accumulate too much)
 - cycles (could cause periodicity)
- Dangling pages? Jump to any other page
- Bored? Teleportation (fixes rank sinks and eliminates cycles)

Dangling Pages

if $|p_j|$ is zero?

total number of pages

Teleportation

if there are loops or someone gets bored?

$$\begin{split} r_{k+1}(p_i) &= d \left(\sum_{\substack{p_j \in B_{p_i} \\ |p_j| \neq 0}} \frac{r_k(p_j)}{\left| p_j \right|} + \sum_{\substack{p_j \\ |p_j| = 0}} \frac{r_k(p_j)}{N} \right) + (1 - d) \sum_{\substack{p_j \\ \text{random jump} \\ \text{independent from } p_i}} \frac{r_k(p_j)}{N} \end{split}$$

d=0.85 dumping factor

$$r_{k+1}(p_i) = d \left(\sum_{\substack{p_j \in B_{p_i} \\ |p_j| \neq 0}} \frac{r_k(p_j)}{\left|p_j\right|} + \sum_{\substack{p_j \\ |p_j| = 0}} \frac{r_k(p_j)}{N} \right) + \frac{\left(1 - d\right)}{N}$$

$$r_{\mathrm{o}}(p_i) = \frac{1}{N}$$

Adjacency Matrix

O	1	1	1	Ο	\mathbf{O}
O	Ο	Ο	O	1	О
O	Ο	Ο	O	1	О
O	Ο	Ο	O	1	1
0	Ο	Ο	Ο	Ο	О
\mathbf{O}	0	0	0	0	\mathbf{O}

Hyperlink Matrix

Sparse Matrices

Adjacency List

better for sparse matrices

$$\begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{pmatrix}_{k+1}^{T} = d \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{pmatrix}_{k}^{T} \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} + \frac{d}{N} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \end{pmatrix}_{k}^{T} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \frac{(1-d)}{N} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{r}_{k+1}^{\mathrm{T}} = d\mathbf{r}_{k}^{\mathrm{T}}\mathbf{H} + \frac{d}{N}\mathbf{r}_{k}^{\mathrm{T}}\mathbf{a}\mathbf{e}^{\mathrm{T}} + \frac{(1-d)}{N}\mathbf{e}^{\mathrm{T}}$$

a dangling node vector

 \mathbf{e}^{T} vector of all 1

Convergence

How many iterations?

How to check convergence?

$$\cong \frac{-n}{\log_{10} d}$$

$$\sum |r_{k+1}(p_i) - r_k(p_i)| < \varepsilon$$

n

number of significant digits

$$\varepsilon = 10^{-n}$$

tolerance

Convergence

significant digits	iterations
1	15
2	29
3	43
4	57
5	71
6	86
7	100
8	114
9	128
10	142
11	156
12	171
13	185

Power Method

- Slow to converge
- Each iteration complexity: O(N)
- Overall complexity: #iterations O(N) = O(N)
- Minimal storage: **H** sparse matrix, no completely dense matrices need to be stored

Storage Requirements

- Sparse hyperlink matrix H
 - number of non zero elements (each a double)
- Sparse binary dangling node vector
 - number of dangling nodes (each a boolean)
- PageRank values for the current iteration
 - N elements (each a double)
- (optional) PageRank values for the previous iteration to measure tolerance error
 - N elements (each a double)

Implementing PageRank with MapReduce

Adjacency List

1	$\mathbf{r}_{_{1}}$	2	3	4	
2	r_2	5			
3	r_3	5			
4	r_4	5	6		
5	r_5				
6	r_6				

job 3 – page ranks from backward links

- map
 - input
 - key = p value = $(r_p, p_1, p_2, ..., p_n)$
 - output
 - key = p_i value = r_p/n i = (1, 2, ..., n)
 - key = p value = $(p_1, p_2, ..., p_n)$
- reduce
 - input
 - key = p values = $(r_j/n_j)^*$, $(p_1, p_2, ..., p_n)$
 - output
 - key = p value = $(r_p, p_1, p_2, ..., p_n)$ $r_p = d\sum_j \frac{r_j}{n_j} + r_d + \frac{(1-d)}{N}$

job 2 – contribution from dangling pages

- map
 - input

• key = ... value = r_p

dangling page

- output

• key = 1 value = r_n

N total number of pages

- combine and reduce
 - input

• key = 1 values = $(r_i)^*$

 $r_d = \frac{d}{N} \sum_{i} r_j$

- output

• key = ... value = r_d

only one value

job 1 – total number of pages

- map
 - input
 - key = p value = ...
 - output
 - key = 1 value = 1
- combine and reduce
 - input
 - key = 1 values = $(v_j)^*$ $N = \sum_i v_j$
 - output
 - key = ... value = N

Adjacency List

1
$$r^{k+1}_{1}$$
 r^{k}_{1} 2 3 4
2 r^{k+1}_{2} r^{k}_{2} 5
3 r^{k+1}_{3} r^{k}_{3} 5
4 r^{k+1}_{4} r^{k}_{4} 5 6
5 r^{k+1}_{5} r^{k}_{5}
6 r^{k+1}_{6} r^{k}_{6}

job 4 – check for convergence

- map
 - input
 - key = p value = $(r^{k+1}_{p}, r^{k}_{p}, p_{1}, p_{2}, ..., p_{n})$
 - output
 - key = 1 value = abs $(r^{k+1}_{p} r^{k}_{p})$
- combine and reduce
 - input
 - key = 1 values = $(v_j)^*$ $\varepsilon = \sum_{j} v_j$
 - output
 - key = ... value = ϵ ϵ tolerance

Putting all together

- job 1 total number of pages
- for max n iterations or until convergence
 - job 2 contribution from dangling pages
 - job 3 page ranks from backward links
 - every y iterations
 - job 4 check for convergence
- Total number of jobs $\leq 1 + 2n + n/y$

Having Fun with PageRank

- Intelligent surfer
 - Change rows of the hyperlink matrix **H** so long they remain probability distributions
 - Teleportation vector (a.k.a. personalization vector) instead of random jumps
- CiteRank to rank papers (using a time dependant decay factor to shape probability distributions of the hyperlink matrix)
- Social networks
- Ranking schemes: evaluation and comparison techniques (without involving humans?)
- Ranking schemes for directed labelled multigraphs (a.k.a. RDF)?

Ranking Papers: CiteSeer Dataset

CiteSeer	(1)	(2)	PageRank	Title (Year)
340126	yes	yes	0.00157983	New Directions in Cryptography Invited Paper (1976)
549100	no	no	0.00121952	Structure and Complexity of Relational Queries (1982)
548351	no	no	0.00120267	Computable Queries for Relational Data Bases (1980)
527057	yes	yes	0.00114733	Optimization by Simulated Annealing (1983)
516071	no	no	0.00112389	Probabilistic Methods in Combinatorics (1974)
28289	yes	no	0.00108669	A Method for Obtaining Digital Signatures and Public-Key Cryptosystems (1978)
552631	no	no	0.00107492	Fast Anisotropic Gauss Filtering (2001)
328445	no	yes	0.00101743	Scheduling Algorithms for Multiprogramming in a Hard-Read-Time Environment (1973)
239544	no	no	0.00096108	Discrepancy in Arithmetic Progressions (1996?)
148879	yes	no	0.00094061	Yacc: Yet Another Compiler-Compiler (1975)
311874	no	yes	0.00091705	Graph-Based Algorithms for Boolean Function Manipulation (1986)
93436	no	no	0.00090491	Privacy Enhancement for Internet Electronic Mail: Part II (1993)
219414	no	no	0.00084181	Privacy Enhancement for Internet Electronic Mail: Part III (1993)
567230	no	no	0.00080948	A Timeout-Based Congestion Control Scheme for Window Flow-Controlled Networks (1986)
20336	no	no	0.00075584	Generalised Additive Models (1995)
524648	yes	no	0.00074717	Implementing Remote Procedure Calls (1984)
15205	no	no	0.00073840	Congestion Avoidance and Control (1988)
35316	no	no	0.00069750	Relational Queries Computable in Polynomial Time (1986)
76766	yes	no	0.00068785	The UNIX Time-Sharing (1974)
351230	no	no	0.00067404	History of Circumscription (1993)

CiteSeer - http://citeseer.ist.psu.edu/{CID}

^{(1) &}lt;a href="http://en.wikipedia.org/wiki/List of important publications in computer science">http://en.wikipedia.org/wiki/List of important publications in computer science

⁽²⁾ http://scholar.google.com/scholar?as q=%22+%22&num=100&as subj=eng

Dirty Data

```
a b c
b h k p
c
d a a c
e s
f f b
```

- Ignore duplicate links (d a a c) and self-references (f f b)
- Implicit dangling nodes (h, k, p, s)
- If the data is dirty, the Google matrix will not be stochastic and a unique solution as well as convergence are not guaranteed (with a sufficient high number of iterations, you might get as result ∞)

Rows: ranking positions. Columns: iterations. Cells: document ids.

Red: document should not be in the first 20 results. Yellow: document in the first 20 results, but wrong position. Green: document in the first 20 results, correct position.

References

- "Google's PageRank and Beyond: The Science of Search Engine Rankings"
 Amy N. Langville and Carl D. Meyer
 Princeton University Press (2006), ISBN 0-691-12202-4
 http://press.princeton.edu/titles/8216.html
- "The anatomy of a large-scale hypertextual Web search engine"
 Sergey Brin and Lawrence Page
 In Proc. of the Seventh International World Wide Web Conference (WWW 1998)
 http://ilpubs.stanford.edu:8090/361/
- "The PageRank Citation Ranking: Bringing Order to the Web"
 Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd
 Technical Report, Stanford InfoLab (1999)
 http://ilpubs.stanford.edu:8090/422/
- "The Intelligent Surfer: Probabilistic Combination of Link and Content Information in PageRank" Matthew Richardson and Pedro Domingos In Proc. of Advances in Neural Information Processing Systems (2002) http://www.cs.washington.edu/homes/pedrod/papers/nips01b.pdf
- "Ranking Scientific Publications Using a Simple Model of Network Traffic"
 Dylan Walker, Huafeng Xie, Koon-Kiu Yan, Sergei Maslov
 Journal of Statistical Mechanics (2007)
 http://arxiv.org/abs/physics/0612122v1

