Математические основы алгоритмов

Тискин Александр Владимирович

Факультет математики и компьютерных наук СПбГУ

- 🕕 Дискретное преобразование Фурье и его применения
- Параллельные алгоритмы
- ③ Оптимизационные задачи и приближенные алгоритмы

R — коммутативное кольцо без делителей нуля $n\geq 2$ $\omega\in R$ — первообразный корень степени n из единицы $\binom{n}{1}$ если $\omega,\omega^2,\ldots,\omega^{n-1}\neq 1,\;\omega^n=1$

B частности, $R=\mathbb{C}$

$$\omega=\omega_k=\mathrm{e}^{rac{2\pi\mathrm{i}}{n}k}$$
 — первообразный $\sqrt[n]{1}$, если $\gcd(k,n)=1$

 $\langle \omega
angle = \{1, \omega, \omega^2, \dots, \omega^{n-1}\}$: циклическая группа корней из единицы

$$R$$
 — коммутативное кольцо без делителей нуля $n \geq 2$

Пусть
$$n=1+\ldots+1$$
 $(n$ раз $)$ обратим в R : $\exists \ \emph{n}^{-1} \in \emph{R}, \ \emph{n}^{-1} \cdot \emph{n}$

Пусть
$$\exists\;\omega\in R$$
 — первообразный $\sqrt[n]{1}$

$$a = [a_0, \dots, a_{n-1}]^T \in R^n$$
 $b = [b_0, \dots, b_{n-1}]^T \in R^n$

Дискретное преобразование Фурье степени n (DFT $_n$): $F_{n,\omega} \cdot a = b$

$$F_{n,\omega} = \left[\omega^{ij}\right]_{i,j=0}^{n-1} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1}\\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{n-2}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{n-1} & \omega^{n-2} & \cdots & \omega \end{bmatrix}$$

$$\sum_{j} \omega^{ij} a_j = b_i \quad 0 \le i, j < n$$

Трудоемкость: наивный алгоритм — время $O(n^2)$

Приложения: обработка сигналов, изображений сжатие данных, 🔒 🚕 😞

Быстрое преобразование Фурье (FFT)

Идея: использовать разложение n на множители и структуру множества корней из единицы для ускорения вычислений

Пусть n = n' n''; 1 < n', n'' < n. В алгоритме FFT

- ullet вектор a записывается в виде n' imes n''-матрицы по строкам
- ullet вектор b записывается в виде n'' imes n'-матрицы по строкам
- ullet DFT $_n$ выражается через DFT $_{n'}$, DFT $_{n''}$ над столбцами матриц
- \bullet DFT $_{n'}$, DFT $_{n''}$ вычисляются рекурсивно

Классические варианты:

- $n = \frac{n}{2} \cdot 2$ FFT с прореживанием по времени (FFT-DIT)
- $n=2\cdot \frac{n}{2}$ FFT с прореживанием по частоте (FFT-DIF)
- ullet общий случай (например, $n=(n^{1/2})^2)-$ шестиэтапное FFT

Шестиэтапное FFT

Пусть
$$n=n'n''$$
 $1 < n', n'' < n$
$$A = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n''-1} \\ a_{n''} & a_{n''+1} & \cdots & a_{2n''-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-n''} & a_{n-n''+1} & \cdots & a_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} b_0 & b_1 & \cdots & b_{n'-1} \\ b_{n'} & b_{n'+1} & \cdots & b_{2n'-1} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n-n'} & b_{n-n'+1} & \cdots & b_{n-1} \end{bmatrix}$$

$$\begin{array}{l} A_{u,v} = a_{n''u+v} \quad B_{s,t} = b_{n's+t} \quad 0 \leq u, t < n' \quad 0 \leq s, v < n'' \\ B_{s,t} = \sum_{u,v} \omega^{(n's+t)(n''u+v)} A_{u,v} = \sum_{u,v} \omega^{n'sv+tv+n''tu} A_{u,v} = 0 \end{array}$$

$$\sum_{v} \left((\omega^{n'})^{sv} \cdot \omega^{tv} \cdot \sum_{u} (\omega^{n''})^{tu} A_{u,v} \right)$$

Таким образом,
$$B = F_{n'',\omega^{n'}} \cdot (G_{n',n'',\omega} \circ (F_{n',\omega^{n''}} \cdot A))^T$$

$$G_{n',n'',\omega} = \left[\omega^{tv}
ight]_{t,v}$$
: $n' imes n''$ -матрица поворотных множителей

Оператор о — умножение Адамара (поэлементное умножение матриц)

$$B = F_{n'',\omega^{n'}} \cdot (G_{n',n'',\omega} \circ (F_{n',\omega^{n''}} \cdot A))^T$$

 $F_{k,\zeta} \cdot X$: I независимых DFT_k над столбцами k imes I-матрицы X

Пусть
$$n = 2^r = n' \cdot n''$$

Имеем шестиэтапную схему FFT для DFT_n :

- вектор а записывается в матрицу по строкам
- ullet n'' независимых $\mathsf{DFT}_{n'}$ над столбцами, вычисляются рекурсивно
- транспозиция; применение поворотных множителей (2 этапа)
- ullet n' независимых $\mathsf{DFT}_{n''}$ над столбцами, вычисляются рекурсивно
- вектор b считывается из матрицы по строкам

База рекурсии:
$$F_{-1,2}\cdot a=\left[egin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}
ight]\cdot\left[egin{array}{c} a_0 \\ a_1 \end{array}
ight]=\left[egin{array}{c} a_0+a_1 \\ a_0-a_1 \end{array}
ight]=b$$

Трудоемкость FFT-DIT $(n'=\frac{n}{2}, n''=2)$

$$T(n) = O(n) + 2T(n/2) = O(n \cdot (1 + \frac{2}{2} + (\frac{2}{2})^2 + \dots + (\frac{2}{2})^{\log_2 n})) = O(n \log n)$$

Трудоемкость FFT-DIF $(n'=2,\ n''=rac{n}{2})$ — аналогично

Трудоемкость симметричного FFT $(n=2^{2^s}, n'=n''=n^{1/2}=2^{2^{s-1}})$

$$T(n) = O(n) + 2 \cdot n^{1/2} \cdot T(n^{1/2}) = O(1 \cdot n \cdot 1 + 2 \cdot n^{1/2} \cdot n^{1/2} + 4 \cdot n^{3/4} \cdot n^{1/4} + \dots + \log n \cdot n \cdot 1) = O(n + 2n + 4n + \dots + \log n \cdot n) = O(n \log n)$$

Схема FFT и граф-бабочка (шестиэтапное FFT)

$$DFT_n$$

$$n = 16$$

$$n' = n'' = 4$$

Поворотные множители не указаны

Схема FFT и граф-бабочка (шестиэтапное FFT)

$$DFT_n$$

$$n = 16$$

$$n' = n'' = 4$$

Поворотные множители не указаны

Схема FFT и граф-бабочка (FFT-DIT)

 DFT_n n = 16 n' = 8 n'' = 2

Вход: четно-нечетная перестановка а

4 D > 4 A > 4 B > 4 B > B

Схема FFT и граф-бабочка (FFT-DIT)

 DFT_n n = 16 n' = 8 n'' = 2

Вход: бит-реверсивная перестановка а

Умножение полиномов

Задача умножения полиномов

$$a, b, c \in \mathbb{C}[x]$$

$$a(x) = \sum_{0 \le i < n} a_i x^i$$
 $b(x) = \sum_{0 \le i < n} b_j x^i$ $c(x) = \sum_{0 \le i < 2n-1} c_j x^i$

Предполагаем $a_i=b_j=0$ при $i,j\geq n$

$$a(x) \cdot b(x) = c(x) = \sum_{0 \le k < 2n-1} c_k x^k = \sum_{0 \le k < 2n-1} \left(\sum_{0 \le i \le k} a_i b_{k-i} \right) x^k$$

Трудоемкость: наивный алгоритм — время $O(n^2)$

Умножение полиномов

Алгоритм Карацубы

$$a(x) = \sum_{i} a_{i}x^{i}$$
 $b(x) = \sum_{j} b_{j}x^{j}$ $0 \le i, j < n$

Пусть n=2m

$$a(x) = \sum_{i} a_{i}x^{i} + (\sum_{i} a_{m+i}x^{i})x^{m} = a'(x) + a''(x)x^{m}$$
 $0 \le i < m$

Аналогично, $b(x) = b'(x) + b''(x)x^{m}$

$$c(x) = (a' + a''x^m)(b' + b''x^m) = a'b' + (a'b'' + a''b')x^m + a''b''x^n = a'b' + ((a' + a'')(b' + b'') - a'b' - a''b'')x^m + a''b''x^n$$

Вместо 4 умножений полиномов с m членами получилось 3

Умножение полиномов

Пусть n — степень 2, иначе возьмем минимальную степень 2 большую n и дополним a, b нулевыми старшими членами до n членов

- ullet a'b', a''b'', (a'+a'')(b'+b'') вычисляются рекурсивно
- ullet вычисляется (a'+a'')(b'+b'')-a'b'-a''b''

База рекурсии: n=1 $ab=a_0\,b_0$

Трудоемкость:
$$T(n) = O(n) + 3T(n/2) = O(n \cdot (1 + \frac{3}{2} + (\frac{3}{2})^2 + \ldots + (\frac{3}{2})^{\log_2 n})) = O(n \cdot \frac{1}{n} \cdot 3^{\log_2 n}) = O(n^{\log_2 3}) = O(n^{1.59})$$

Умножение полиномов

Интерполяция полиномов

$$x_0, x_1, \dots, x_{n-1} \in \mathbb{C}$$

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} a(x_0) \\ a(x_1) \\ a(x_2) \\ \vdots \\ a(x_{n-1}) \end{bmatrix}$$

$$\sum_{j} x_{i}^{j} a_{j} = a(x_{i}) \qquad 0 \leq i, j < n$$

Если все x_0, x_1, \dots, x_{n-1} различны, то матрица невырождена

Следовательно, n коэффициентов полинома однозначно определяются его n-1 значениями

Умножение полиномов

Быстрое умножение полиномов

- ullet возьмем $N \geq 2n-1$ различных $x_0, x_1, \dots, x_{N-1} \in \mathbb{C}$
- ullet вычислим $a,\ b$ на всех x_i , получим $a(x_i),\ b(x_i),\ i=0,1,\dots,N-1$
- перемножим попарно $c(x_i) = a(x_i) \cdot b(x_i)$
- проинтерполируем c(x) по $c(x_i)$

Идея: взять в качестве x_i корни из единицы и применить FFT

Пусть
$$N$$
 — степень 2, т.ч. $2n-1 \le N < 4n-1$

$$x_i = \omega^i = e^{\frac{2\pi i}{N}i}$$
 $0 \le i < N$

Вычисление $a(x_i)$, $b(x_i)$: DFT степени N

Интерполяция c(x): обратное DFT степени N

Трудоемкость: $O(n \log n)$

$$a = [a_0, a_1, \dots, a_{n-1}]^T$$
 $b = [b_0, b_1, \dots, b_{n-1}]^T$ $a' = [a_0, a_1, \dots, a_{n-1}, 0, \dots, 0]^T$ $b' = [b_0, b_1, \dots, b_{n-1}, 0, \dots, 0]^T$ (дополнение нулями до длины $2n$)

(Линейная) свертка c=a*b

$$c_i = \sum_{0 \le j \le i} a'_j b'_{i-j} = \begin{cases} \sum_{0 \le j \le i} a_j b_{i-j} & 0 \le i \le n \\ \sum_{i-n \le j < n} a_j b_{i-j} & n \le i < 2n \end{cases}$$

Быстрое вычисление линейной свертки (= умножение полиномов) ω — первообразный $\sqrt[n]{1}$

$$c = \frac{1}{n} F_{2n,\omega^{-1}} ((F_{2n,\omega} a') \circ (F_{2n,\omega} b'))$$

$$a = [a_0, a_1, \dots, a_{n-1}]^T$$
 $b = [b_0, b_1, \dots, b_{n-1}]^T$

Циклическая и косоциклическая свертка $c^\pm=a\circledast_\pm b$:

$$c_i^{\pm} = c_i \pm c_{i+n} = \sum_{0 \le i \le i} a_i b_{i-j} \pm \sum_{i \le i \le n} a_i b_{n+i-j} \quad 0 \le i < n$$

Быстрое вычисление циклической свертки

$$c^{+}=rac{1}{n}F_{n,\omega^{-1}}ig((F_{n,\omega}a)\circ(F_{n,\omega}b)ig)$$

Быстрое вычисление косоциклической свертки

$$\psi$$
 — первообразный $\sqrt[2n]{1}$ $\psi^2=\omega$

$$\mathsf{w}_{\mathsf{n},\psi} = [1,\psi,\ldots,\psi^{\mathsf{n}-1}]^\mathsf{T}$$

$$c^{-}=w_{n,\psi^{-1}}\circ\left(\frac{1}{n}F_{n,\omega^{-1}}((F_{n,\omega}(w_{n,\psi}\circ a)\circ(F_{n,\omega}(w_{n,\psi}\circ b)))\right)$$

Доказательство: упражнение

Пусть
$$R=\mathbb{Z}_N$$
 $\mathbb{Z}_N^*=\{x\in\mathbb{Z}_N^+:\gcd(x,N)=1\}$ — мультипликативная группа $\operatorname{mod} N$ $|\mathbb{Z}_N^*|=\phi(N)$

 ξ — первообразный ${}^{\phi(N)}\overline{1}$, если $\mathbb{Z}_N^*=\langle \xi \rangle$. Существует только при $N=2,4,p^k,2p^k$, где p>2 — простое.

Тогда для любого $n\mid\phi(N),\ \omega=\xi^{rac{\phi(N)}{n}}$ — первообразный $\sqrt[n]{1}$

С другой стороны, по заданным степеням двойки n, ω несложно найти N такое, что ω — первообразный $\sqrt[n]{1}$ в \mathbb{Z}_N

Теорема Пусть n, ω — положительные степени 2, $N=\omega^{n/2}+1$. Тогда

- ullet n обратимо в \mathbb{Z}_N
- ullet ω первообразный $\sqrt[n]{1}$ в \mathbb{Z}_N

Доказательство

Имеем
$$n \mid \omega^{n/2}, \ n^{-1} \equiv -\frac{\omega^{n/2}}{n} \pmod{N}$$
 Действительно, $\left(-\frac{\omega^{n/2}}{n}\right) \cdot n = -\omega^{n/2} \equiv 1 \pmod{\omega^{n/2} + 1} = N$ ω — это $\sqrt[n]{1}$ в \mathbb{Z}_N Действительно, $\omega^n = (\omega^{n/2})^2 \equiv (-1)^2 = 1 \pmod{\omega^{n/2} + 1} = N$

Доказательство (продолжение)

Предположим, что $\omega^m \equiv 1 \pmod{N}$, 0 < m < n. Рассмотрим наименьшее такое m.

Имеем $\omega^k \equiv 1 \pmod{N}$, т. и т.т. когда $m \mid k$. Следовательно, $m \mid n$.

Поскольку n — степень двойки, из m < n, $m \mid n$ следует $m \mid n/2$

Имеем $\omega^{n/2}\equiv 1\pmod{N}$. Однако $\omega^{n/2}\equiv -1\pmod{\omega^{n/2}+1}=N$ — противоречие

Следовательно, ω — первообразный $\sqrt[n]{1}$ в \mathbb{Z}_N

Альтернативное доказательство

Пусть
$$n = 2^k$$
, $N = \omega^{2^{k-1}} + 1$.

Предположим, что
$$\omega^m \equiv 1 \pmod{N} \quad 0 < m < n$$

Рассмотрим
$$\sum_{0 \leq i < n} \omega^{im}$$

$$\sum_{i} \omega^{im} = \frac{\omega^{2^{k}m} - 1}{\omega^{m} - 1} = (\omega^{2^{k-1}m} + 1) \frac{\omega^{2^{k-1}m} - 1}{\omega^{m} - 1} = (\omega^{2^{k-1}m} + 1)(\omega^{2^{k-2}m} + 1) \frac{\omega^{2^{k-2}m} - 1}{\omega^{m} - 1} = \dots = (\omega^{2^{k-1}m} + 1)(\omega^{2^{k-2}m} + 1)\dots(\omega^{m} + 1) \frac{\omega^{m} - 1}{\omega^{m} - 1} = (\omega^{2^{k-1}m} + 1)(\omega^{2^{k-2}m} + 1)\dots(\omega^{m} + 1)$$

Пусть
$$m=2^ts$$
 s нечетно $0 \leq t < k$ (поскольку $m < n$)

$$\omega^{2^{k-1}s} + 1 = \omega^{2^{k-t-1}2^ts} + 1 = \omega^{2^{k-t-1}m} + 1 \mid \sum_i \omega^{im}$$

Альтернативное доказательство (окончание)

Утверждение: для нечетного $s,\ x\in\mathbb{Z}$, выполняется $x+1\mid x^s+1$

Действительно, пусть $x^s+1=(x+1)\cdot q+r$ в $\mathbb{Z}[x]$

При x=-1 имеем $0=0\cdot q+r$, следовательно r=0

Согласно утверждению, $N = \omega^{2^{k-1}} + 1 \mid \omega^{2^{k-1}s} + 1 \mid \sum_i \omega^{im} \quad 0 \leq i < n$

Таким образом, $\sum_i \omega^{im} \equiv 0 \mod N$

Ho в то же время $\sum_i \omega^{im} \equiv \sum_i 1^i = n \not\equiv 0 \pmod{N}$ — противоречие!

Следовательно, ω — первообразный $\sqrt[n]{1}$ в \mathbb{Z}_N

Пусть $n, \ \omega = 2^r$ — положительные степени 2

$$N = \omega^{n/2} + 1 = 2^{\frac{nr}{2}} + 1$$

Для записи элемента \mathbb{Z}_N достаточно $\lceil \log N \rceil = rac{nr}{2} + 1$ бит

Приведение $a\in\mathbb{N}$ в \mathbb{Z}_N : запишем a по основанию $\omega^{n/2}$

$$a = \sum_i a_i \omega^{ni/2} \equiv \sum_i a_i (-1)^i \pmod{N} \quad 0 \le a_i < \omega^{n/2}$$

Если в записи a всего O(nr) бит, трудоемкость O(nr) битовых операций

$$\omega^{-1} \equiv \omega^{n-1} \quad \omega^{n-1} \cdot \omega = \omega^n \equiv 1 \pmod{N}$$

Операции FFT для прямого и обратного DFT $_n$ в \mathbb{Z}_N

- ullet сумма двух значений: в результате $(rac{nr}{2}+1)+1=rac{nr}{2}+2$ бит
- ullet умножение на поворотный множитель $\omega^q=2^{qr},\ 0\leq q< n$: сдвиг на qr< nr бит: в результате $\leq (rac{nr}{2}+1)+nr-1=rac{3nr}{2}$ бит
- ullet приведение значений с записью из $rac{3nr}{2} = O(nr)$ бит

Трудоемкость каждой операции над значениями: O(nr) битовых операций

Трудоемкость DFT $_n$ в \mathbb{Z}_N :

- ullet вход/выход $n\cdot O(nr)=O(n^2r)$ бит
- $O(n \log n)$ сложений и умножений на поворотные множители $= O(n^2 r \log n)$ битовых операций

Умножение многозначных чисел

Задача умножения многозначных чисел

a, *b*, *c* в записи по основанию 2

$$a = [a_0, a_1, \dots a_{n-1}]$$
 $b = [b_0, b_1, \dots b_{n-1}]$ $c = [c_0, c_1, \dots c_{2n-1}]$
 $a_i, b_i, c_k \in \{0, 1\}$

Определим полиномы $a,b,c\in\mathbb{Z}[x]$

$$a(x) = \sum_{0 \le i < n} a_i x^i$$
 $b(x) = \sum_{0 \le i < n} b_j x^i$ $c(x) = \sum_{0 \le i < 2n} c_j x^i$
 $a(2) \cdot b(2) = (ab)(2) = c(2)$

 T рудоемкость: наивный алгоритм — $O(n^2)$ битовых операций

Замечание: Вообще говоря, $a(x)\cdot b(x)=(ab)(x)\neq c(x)$: в отличие от умножения полиномов, при умножении многозначных чисел происходит перенос из младших разрядов в старшие. В частности, в (ab)(x) всего 2n-1 член, а в c(x) — уже 2n.

Умножение многозначных чисел

Алгоритм Карацубы — аналогично одноименному для полиномов

$$a(2) = \sum_{i} a_{i} 2^{i}$$
 $b(2) = \sum_{i} b_{j} 2^{j}$ $0 \le i, j < n$

Пусть n=2m

$$a(2) = \sum_{i} a_{i} 2^{i} + (\sum_{i} a_{m+i} 2^{i}) 2^{m} = a'(2) + a''(2) 2^{m}$$
 $0 \le i < m$

Аналогично, $b(x) = b'(x) + b''(x)2^m$

$$c(2) = (a' + a''2^m)(b' + b''2^m) = a'b' + (a'b'' + a''b')2^m + a''b''2^n = a'b' + ((a' + a'')(b' + b'') - a'b' - a''b'')2^m + a''b''2^n$$

Вместо 4 умножений чисел с m разрядами получилось 3

В числах a', b', a'', b'' по m бит

В числах a' + a'', b' + b'' по m + 1 бит

Умножение многозначных чисел

Пусть n — степень 2, иначе возьмем минимальную степень 2 большую n и дополним a, b нулевыми старшими разрядами до n разрядов

- ullet a'b', a''b'', (a'+a'')(b'+b'') вычисляются рекурсивно
- ullet вычисляется (a'+a'')(b'+b'')-a'b'-a''b''

База рекурсии: n=1 $ab=a_0b_0$

 T рудоемкость $T(n) = O(n^{\log_2 3}) = O(n^{1.59})$ битовых операций

Перенос из младших разрядов в старшие:

- несущественен для алгоритма Карацубы (скорректировать анализ с учетом лишнего бита в a'+a'', b'+b'' упражнение)
- существенен для метода FFT: попарные умножения придется выполнять рекурсивно

Умножение многозначных чисел

Алгоритм Шенхаге-Штрассена

Идея: разбить a, b на разряды правильно выбранной длины I и рассматривать каждый разряд как коэффициент полинома, всего n/I коэффициентов в каждом полиноме. Использовать FFT для умножения полиномов. Попарное умножение значений полиномов выполнять рекурсивно. Затем учесть переносы.

$$0 \le a, b < 2^n$$

Пусть также $0 \le c = ab < 2^n$ (иначе возьмем большее n и дополним a,b нулями). Достаточно вычислить c по модулю $2^n + 1$.

Обозначим M(n) общую трудоемкость алгоритма в битовых операциях

Умножение многозначных чисел

Пусть
$$n=2^k=Im$$
 $I=2^{\lceil k/2 \rceil}$ $m=2^{\lfloor k/2 \rfloor}$ $m \mid I$

A, B, C в записи по основанию 2^{I}

$$A = [A_0, \dots, A_{m-1}]^T$$
 $B = [B_0, \dots, B_{m-1}]^T$ $C = [C_0, \dots, C_{2m-1}]^T$

$$0 \leq A_i, B_i, C_i < 2^I$$

Определим полиномы $A,B,C\in\mathbb{Z}[x]$

$$A(x) = \sum_{0 \le i < m} A_i x^i \quad B(x) = \sum_{0 \le i < m} B_i x^i \quad C(x) = \sum_{0 \le i < m} C_i x^i$$

$$a(2) = A(2^{l})$$
 $b(2) = B(2^{l})$ $c(2) = C(2^{l})$

$$A(2^{I}) \cdot B(2^{I}) = (AB)(2^{I}) = C(2^{I})$$

Умножение многозначных чисел

Пусть
$$D(x) = A(x)B(x)$$
 $D = A*B = [D_0, \dots, D_{2m-2}, D_{2m-1} = 0]^T$ $C(2^I) = D(2^I)$, то есть C — результат выполнения переносов в D $D_i = \begin{cases} \sum_{0 \le j \le i} A_j B_{i-j} & 0 \le i < m \\ \sum_{i-m \le j < m} A_j B_{i-j} & m \le i < 2m \end{cases}$ $D(2^I) = \sum_{0 \le i < m} D_i 2^{li} = \sum_{0 \le i < m} D_i 2^{li} + \sum_{m \le i < 2m} D_i 2^{li} = \sum_{0 \le i < m} D_i 2^{li} + \sum_{0 \le i < m} D_i 2^{li} = D_i 2^{li} = D_i 2^{li} = D_i 2^{li}$ (Meem $0 \le D_i \le (i+1)2^{2l}$ $0 \le D_{m+i} \le (m-i-1)2^{2l}$ $0 \le D_{m+i} \le (m-i-1)2^{2l}$ $0 \le D_{m+i} \le (m-i-1)2^{2l}$ $0 \le D_{m+i} \le (m-i-1)2^{2l}$

Умножение многозначных чисел

Диапазон E_i равен $(i+1)2^{2l}-(-(m-i-1)2^{2l})=m2^{2l}$, следовательно, E_i можно вычислять вместо модуля 2^n+1 по меньшему модулю $m(2^{2l}+1)>m2^{2l}$

Пусть
$$E_i \equiv X \pmod{m(2^{2l}+1)},\ 0 \leq X < m(2^{2l}+1),$$
 тогда $E_i = egin{cases} X-m(2^{2l}+1) & ext{если } X > (i+1)2^{2l} \ X & ext{иначе} \end{cases}$

Умножение многозначных чисел

Для вычисления $E_i\pmod{m(2^{2l}+1)}$, вычислим отдельно в \mathbb{Z}_m и $\mathbb{Z}_{2^{2l}+1}$ (описано позднее), затем восстановим в $\mathbb{Z}_{m(2^{2l}+1)}$

 $m=2^{\lfloor k/2 \rfloor}$; $2^{2l}+1$ нечетно; следовательно, $\gcd(m,2^{2l}+1)=1$

Китайская теорема об остатках

Пусть
$$x \equiv x' \pmod{p}$$
, $x \equiv x'' \pmod{q}$, $\gcd(p,q) = 1$

Тогда $x\equiv x'qar q+x''par p\pmod{pq}$, где $par p\equiv 1\pmod{q}$, $qar q\equiv 1\pmod{p}$

Доказательство в курсе теории чисел

Умножение многозначных чисел

Пусть
$$E_i \equiv E_i' \pmod m$$
, $E_i \equiv E_i'' \pmod 2^{2l} + 1$, Имеем $(2^{2l} + 1) \cdot 1 \equiv 1 \pmod m$, поскольку $m \mid 2^{2l}$ Имеем $m \cdot (2^{2l} + 1 - 2^{2l}/m) = m(2^{2l} + 1) - 2^{2l} \equiv 1 \pmod 2^{2l} + 1$ По китайской теореме об остатках: $E_i \equiv E_i' \cdot (2^{2l} + 1) \cdot 1 + E_i'' \cdot m \cdot (2^{2l} + 1 - 2^{2l}/m) =$

$$E_i' \cdot (2^{2l}+1) \cdot 1 - E_i'' \cdot 2^{2l} = (2^{2l}+1)(E_i' - E_i'') + E_i'' \pmod{m(2^{2l}+1)}$$
 Пусть $E_i' - E_i'' = Qm + R \equiv R \pmod{m}, \ 0 \leq R < m$

$$(2^{2l}+1)(E'_i-E''_i)+E''_i=Qm(2^{2l}+1)+R(2^{2l}+1)+E''_i\equiv R(2^{2l}+1)+E''_i\pmod{m(2^{2l}+1)}$$

Следовательно, для вычисления $E'_i - E''_i \pmod{m(2^{2l}+1)}$ требуются только приведение $\mod m$ (где m — степень двойки), сдвиг и сложение

Умножение многозначных чисел

Вычисление $E' \equiv A \circledast_{-} B \pmod{m}$

$$A = [A_0, \dots, A_{m-1}]^T \equiv A' = [A'_0, \dots, A'_{m-1}]^T \pmod{m} \quad 0 \le A'_i < m$$

$$B = [B_0, \dots, B_{m-1}]^T \equiv B' = [B'_0, \dots, B'_{m-1}]^T \pmod{m} \quad 0 \le B'_i < m$$

Поскольку $m=2^{\lfloor k/2 \rfloor}$, каждый разряд A', B' имеет длину $\lfloor k/2 \rfloor$ бит

Всего в A', B' по $m\lfloor k/2\rfloor = \Theta(n^{1/2}\log n)$ бит. Наивное вычисление A'*B' или $A'\circledast_- B'$ требует $\Theta\bigl((n^{1/2}\log n)^2\bigr) = \Theta\bigl(n(\log n)^2\bigr)$ битовых операций. Нужно уложиться в O(n) битовых операций.

Добавляем к каждому разряду A', B' по два нулевых разряда, формируя расширенные разряды длины $3\lfloor k/2 \rfloor$ бит

$$A'' = [A'_0, 0, 0, A'_1, 0, 0, \dots, A'_{m-1}, 0, 0] \quad A''(m) = A'(m^3)$$

$$B'' = [B'_0, 0, 0, B'_1, 0, 0, \dots, B'_{m-1}, 0, 0] \quad B''(m) = B'(m^3)$$

Вычисляем $A''(m) \cdot B''(m) = C''(m)$ алгоритмом Карацубы

Умножение многозначных чисел

Вычисление $E'\equiv A\circledast_- B\pmod m$ (окончание)

В каждом расширенном разряде C''(m) сумма $\leq m$ чисел $< m^2$, значение разряда $< m \cdot m^2 = m^3 = 2^{3 \lfloor k/2 \rfloor}$. Следовательно, переносов из расширенных разрядов нет: $A''(x) \cdot B''(x) = C''(x)$

Расширенные разряды C'' — элементы A'*B', отсюда получаем $A'\circledast_-B'$ попарным вычитанием, $E'\equiv A'\circledast_-B'$ (mod m) усечением

Трудоемкость этого этапа $O\left((3m\lfloor k/2\rfloor)^{\log_2 3}\right) = O\left((n^{1/2}\log n)^{\log_2 3}\right) = O\left((n^{1/2}\log n)^{1.59}\right) = O(n^{1.60/2}) = O(n)$

Умножение многозначных чисел

Вычисление $E''\equiv A\circledast_- B\pmod{2^{2I}+1}$ методом FFT

B векторах A, B по m элементов

Нужен
$$\psi$$
 — первообразный $\sqrt[2m]{1}$ в $\mathbb{Z}_{2^{2l}+1}$ $\omega=\psi^2$

$$\psi=2^{2l/m}$$
 подходит по теореме о первообразном корне для $\mathbb{Z}_{2^{2l}+1}$: $m\mid l,\ \psi^{2m/2}+1=\left(2^{2l/m}\right)^m+1=2^{2l}+1$

Прямое и обратное DFT: трудоемкость
$$O\left(m^2\log m \cdot 4I/m\right) = O(n\log n)$$

Поэлементное умножение результатов прямого DFT: m операций умножения 2I-битовых чисел, вычисляется рекурсивно; трудоемкость $m \cdot M(2I)$

Общая трудоемкость этого этапа

$$O(m^2 \log m \cdot 4I/m + m \cdot M(2I)) = O(n \log n + m \cdot M(2I))$$

Умножение многозначных чисел

Трудоемкость вычисления E в $\mathbb{Z}_{2^{2l}+1}$: $O(n \log n + m \cdot M(2l))$

Трудоемкость вычисления E в \mathbb{Z}_m и прочих вычислений: O(n) — пренебрежима

Итоговая трудоемкость $M(n) = O(n \log n + m \cdot M(2l))$

Пусть
$$M'(x) = \frac{M(x)}{x}$$

$$M'(n) = c \log n + \frac{mM(2l)}{n} = c \log n + \frac{2mM(2l)}{2ml} = c \log n + 2M'(2l)$$

Утверждение: $M'(x) = c' \log x \log \log x$ удовлетворяет этому рекуррентному соотношению при некотором c' (упражнение)

Следовательно, $M(n) = O(n \log n \log \log n)$

- 1 Дискретное преобразование Фурье и его применения
- Параллельные алгоритмы
- ③ Оптимизационные задачи и приближенные алгоритмы

Вычислительная схема как базовая модель параллелизма

$$a^2 + 2ab + b^2$$
$$a^2 - b^2$$

Вычислительная схема как базовая модель параллелизма

$$a^2 + 2ab + b^2$$
$$a^2 - b^2$$

Ориентированный ациклический граф (dag), фиксированное количество входов/выходов. Вычисления неадаптивны (oblivious): последовательность операций не зависит от входа.

Вычисления схемами

Вычислительная схема как базовая модель параллелизма

$$a^2 + 2ab + b^2$$
$$a^2 - b^2$$

Ориентированный ациклический граф (dag), фиксированное количество входов/выходов. Вычисления неадаптивны (oblivious): последовательность операций не зависит от входа.

Вычисления над переменным количеством входов: (бесконечное) семейство схем. Семейство схем с конечным описанием — алгоритм.

Вычисления схемами

В семействе схем, входящая/выходящая степень узлов может быть ограничена (константой) или неограничена: например, сумма двух аргументов vs сумма n аргументов

Возможные операции в узлах

- арифметические/булевы/сравнения
- каждая (обычно) выполняется за константное время

Вычисления схемами

В семействе схем, входящая/выходящая степень узлов может быть ограничена (константой) или неограничена: например, сумма двух аргументов vs сумма n аргументов

Возможные операции в узлах

- арифметические/булевы/сравнения
- каждая (обычно) выполняется за константное время

размер = количество узлов

глубина = максимальная длина пути от входа до выхода

Вычисления схемами

В семействе схем, входящая/выходящая степень узлов может быть ограничена (константой) или неограничена: например, сумма двух аргументов vs сумма n аргументов

Возможные операции в узлах

- арифметические/булевы/сравнения
- каждая (обычно) выполняется за константное время

размер = количество узлов

глубина = максимальная длина пути от входа до выхода

Схемы сравнения

Схема сравнения: схема, в которой узлы — элементы сравнения

Схемы сравнения

Схема сравнения: схема, в которой узлы — элементы сравнения

Вход/выход: последовательности одинаковой длины, их члены — элементы линейно упорядоченного множества

Схемы сравнения

Схема сравнения: схема, в которой узлы — элементы сравнения

Вход/выход: последовательности одинаковой длины, их члены — элементы линейно упорядоченного множества

Примеры:

Схемы сравнения

Схема сравнения: схема, в которой узлы — элементы сравнения

Вход/выход: последовательности одинаковой длины, их члены — элементы линейно упорядоченного множества

Примеры:

Схемы сравнения

Схема слияния — схема сравнения, у которой на входе две отсортированные последовательности длины n', n'', а на выходе — отсортированная последовательность длины n=n'+n''

Схема сортировки — схема сравнения, у которой на входе произвольная последовательность, а на выходе — отсортированная последовательность

Схемы сравнения

Схема слияния — схема сравнения, у которой на входе две отсортированные последовательности длины n', n'', а на выходе — отсортированная последовательность длины n=n'+n''

Схема сортировки — схема сравнения, у которой на входе произвольная последовательность, а на выходе — отсортированная последовательность

Семейство схем с конечным описанием — алгоритм сортировки. Их размер и глубина — последовательная и параллельная сложность алгоритма.

Схемы сравнения

Схема слияния — схема сравнения, у которой на входе две отсортированные последовательности длины n', n'', а на выходе — отсортированная последовательность длины n=n'+n''

Схема сортировки — схема сравнения, у которой на входе произвольная последовательность, а на выходе — отсортированная последовательность

Семейство схем с конечным описанием — алгоритм сортировки. Их размер и глубина — последовательная и параллельная сложность алгоритма.

Общее (адаптивное) слияние: O(n)

Общая (адаптивная) сортировка: $O(n \log n)$ сравнений (алгоритм сортировки слиянием)

Какова сложность неадаптивной сортировки?

Сортировка пузырьком

$$BUBBLE$$
- $SORT(n)$ размер $n(n-1)/2 = O(n^2)$ глубина $2n-3 = O(n)$

Сортировка пузырьком

BUBBLE-SORT(
$$n$$
)
размер $n(n-1)/2=O(n^2)$
глубина $2n-3=O(n)$

BUBBLE-SORT(8) размер 28 глубина 13

Сортировка пузырьком

$$INSERTION ext{-}SORT(n)$$
 размер $n(n-1)/2 = O(n^2)$ глубина $2n-3 = O(n)$

Сортировка пузырьком

INSERTION-SORT
$$(n)$$
 размер $n(n-1)/2 = O(n^2)$ глубина $2n-3 = O(n)$

INSERTION-SORT(8) размер 28

размер ∠о

глубина 13

Идентична BUBBLE-SORT!

Принцип нулей-единиц

Принцип нулей-единиц: Схема сравнения является сортирующей т. и т.т., когда она сортирует все последовательности нулей и единиц

Принцип нулей-единиц

Принцип нулей-единиц: Схема сравнения является сортирующей т. и т.т., когда она сортирует все последовательности нулей и единиц Доказательство.

Принцип нулей-единиц

Принцип нулей-единиц: Схема сравнения является сортирующей т. и т.т., когда она сортирует все последовательности нулей и единиц Доказательство. "Только тогда": тривиально.

Принцип нулей-единиц

Принцип нулей-единиц: Схема сравнения является сортирующей т. и т.т., когда она сортирует все последовательности нулей и единиц Доказательство. "Только тогда": тривиально. "Тогда": от противного. Предположим, что заданная сеть не сортирует вход $x = \langle x_1, \dots, x_n \rangle$ $\langle x_1, \dots, x_n \rangle \mapsto \langle y_1, \dots, y_n \rangle$ $\exists k, l : k < l : y_k > y_l$

Принцип нулей-единиц

Принцип нулей-единиц: Схема сравнения является сортирующей т. и т.т., когда она сортирует все последовательности нулей и единиц

Доказательство. "Только тогда": тривиально. "Тогда": от противного.

Предположим, что заданная сеть не сортирует вход $x=\langle x_1,\dots,x_n
angle$

$$\langle x_1, \ldots, x_n \rangle \mapsto \langle y_1, \ldots, y_n \rangle \qquad \exists k, l : k < l : y_k > y_l$$

Положим
$$X_i = \begin{cases} 0 & \text{if } x_i < y_k \\ 1 & \text{if } x_i \geq y_k \end{cases}$$
, запустим сеть на входе $X = \langle X_1, \dots, X_n \rangle$

Для всех i,j имеем $x_i \leq x_j \Rightarrow X_i \leq X_j$, следовательно путь X_i по сети тот же, что у x_i

Принцип нулей-единиц

Принцип нулей-единиц: Схема сравнения является сортирующей т. и т.т., когда она сортирует все последовательности нулей и единиц

Доказательство. "Только тогда": тривиально. "Тогда": от противного.

Предположим, что заданная сеть не сортирует вход $x=\langle x_1,\dots,x_n
angle$

$$\langle x_1, \ldots, x_n \rangle \mapsto \langle y_1, \ldots, y_n \rangle \qquad \exists k, l : k < l : y_k > y_l$$

Положим
$$X_i = \begin{cases} 0 & \text{if } x_i < y_k \\ 1 & \text{if } x_i \geq y_k \end{cases}$$
, запустим сеть на входе $X = \langle X_1, \dots, X_n \rangle$

Для всех i,j имеем $x_i \leq x_j \Rightarrow X_i \leq X_j$, следовательно путь X_i по сети тот же, что у x_i

$$\langle X_1, \dots, X_n \rangle \mapsto \langle Y_1, \dots, Y_n \rangle$$
 $Y_k = 1 > 0 = Y_1$

Имеем k < I, но $Y_k > Y_I$ — сеть не сортирует нули и единицы.

Принцип нулей-единиц

Принцип нулей-единиц применим к сортировке, слиянию и другим задачам сравнения (например, выбору порядковой статистики)

Принцип нулей-единиц

Принцип нулей-единиц применим к сортировке, слиянию и другим задачам сравнения (например, выбору порядковой статистики)

Позволяет протестировать:

- ullet сеть сортировки путем проверки только 2^n входных последовательностей, вместо $n!=(1+o(1))(2\pi n)^{1/2}\cdot (n/e)^n\gg 2^n$
- сеть слияния путем проверки только $(n'+1)\cdot (n''+1)$ пар входных последовательностей вместо $\binom{n}{n'}=\binom{n}{n''}$, например для n=2n'=2n'': $\binom{n}{n'}=(1+o(1))(\pi n/2)^{-1/2}\cdot 2^n\ggg (n'+1)\cdot (n''+1)$

Эффективные сети сортировки и слияния

Общее (адаптивное) слияние: O(n) сравнений

Насколько эффективно можно выполнить слияние неадаптивно?

Эффективные сети сортировки и слияния

Общее (адаптивное) слияние: O(n) сравнений

Насколько эффективно можно выполнить слияние неадаптивно?

$$\langle x_1 \leq \cdots \leq x_{n'} \rangle, \langle y_1 \leq \cdots \leq y_{n''} \rangle \mapsto \langle z_1 \leq \cdots \leq z_n \rangle$$

Нечетно-четное слияние

Если n'=n''=1 сравниваем (x_1,y_1) , иначе рекурсивно

- ullet слияние $\langle x_1, x_3, \dots
 angle, \langle y_1, y_3, \dots
 angle \mapsto \langle u_1 \leq u_2 \leq \dots \leq u_{\lceil n'/2 \rceil + \lceil n''/2 \rceil}
 angle$
- ullet слияние $\langle x_2, x_4, \dots
 angle, \langle y_2, y_4, \dots
 angle \mapsto \langle v_1 \leq v_2 \leq \dots \leq v_{\lfloor n'/2 \rfloor + \lfloor n''/2 \rfloor}
 angle$
- попарное сравнение: (u_2, v_1) , (u_3, v_2) , . . .

Общее (адаптивное) слияние: O(n) сравнений

Насколько эффективно можно выполнить слияние неадаптивно?

$$\langle x_1 \leq \cdots \leq x_{n'} \rangle, \langle y_1 \leq \cdots \leq y_{n''} \rangle \mapsto \langle z_1 \leq \cdots \leq z_n \rangle$$

Нечетно-четное слияние

Если n'=n''=1 сравниваем (x_1,y_1) , иначе рекурсивно

- ullet слияние $\langle x_1, x_3, \dots
 angle, \langle y_1, y_3, \dots
 angle \mapsto \langle u_1 \leq u_2 \leq \dots \leq u_{\lceil n'/2 \rceil + \lceil n''/2 \rceil}
 angle$
- ullet слияние $\langle x_2, x_4, \dots
 angle, \langle y_2, y_4, \dots
 angle \mapsto \langle v_1 \leq v_2 \leq \dots \leq v_{\lfloor n'/2 \rfloor + \lfloor n''/2 \rfloor}
 angle$
- попарное сравнение: (u_2, v_1) , (u_3, v_2) , . . .

$$size(OEM(n', n'')) \le 2 \cdot size(OEM(n'/2, n''/2)) + O(n) = O(n \log n)$$

 $depth(OEM(n', n'')) \le depth(OEM(n'/2, n''/2)) + 1 = O(\log n)$

Эффективные сети сортировки и слияния

OEM(n', n'') размер $O(n \log n)$ глубина $O(\log n)$

Эффективные сети сортировки и слияния

OEM(n', n'') размер $O(n \log n)$ глубина $O(\log n)$

OEM(4, 4) размер 9 глубина 3

Эффективные сети сортировки и слияния

Доказательство корректности нечетно-четного слияния:

Эффективные сети сортировки и слияния

Доказательство корректности нечетно-четного слияния: индукция, принцип нулей-единиц

База: тривиальна (2 входа, 1 элемент)

<u>Переход.</u> Индукционное предположение: нечетное и четное слияния корректны

Рассмотрим вход из нулей и единиц. Имеем для всех $k,\ I$:

$$\langle 0^{\lceil k/2 \rceil} 11 \ldots \rangle, \langle 0^{\lceil l/2 \rceil} 11 \ldots \rangle \mapsto \langle 0^{\lceil k/2 \rceil + \lceil l/2 \rceil} 11 \ldots \rangle$$
 нечетным слиянием $\langle 0^{\lfloor k/2 \rfloor} 11 \ldots \rangle, \langle 0^{\lfloor l/2 \rfloor} 11 \ldots \rangle \mapsto \langle 0^{\lfloor k/2 \rfloor + \lfloor l/2 \rfloor} 11 \ldots \rangle$ четным слиянием

Эффективные сети сортировки и слияния

Доказательство корректности нечетно-четного слияния: индукция, принцип нулей-единиц

База: тривиальна (2 входа, 1 элемент)

<u>Переход.</u> Индукционное предположение: нечетное и четное слияния корректны

Рассмотрим вход из нулей и единиц. Имеем для всех k, l: $\langle 0^{\lceil k/2 \rceil} 11 \ldots \rangle$, $\langle 0^{\lceil l/2 \rceil} 11 \ldots \rangle \mapsto \langle 0^{\lceil k/2 \rceil + \lceil l/2 \rceil} 11 \ldots \rangle$ нечетным слиянием $\langle 0^{\lfloor k/2 \rfloor} 11 \ldots \rangle$, $\langle 0^{\lfloor l/2 \rfloor} 11 \ldots \rangle \mapsto \langle 0^{\lfloor k/2 \rfloor + \lfloor l/2 \rfloor} 11 \ldots \rangle$ четным слиянием $(\lceil k/2 \rceil + \lceil l/2 \rceil) - (\lfloor k/2 \rfloor + \lfloor l/2 \rfloor) = \begin{cases} 0,1 & \text{все выходы упорядочены: } \langle 0^{k+l} 11 \ldots \rangle \\ 2 & \text{одна пара неупорядочена: } \langle 0^{k+l-1} 1011 \ldots \rangle \end{cases}$

Эффективные сети сортировки и слияния

Доказательство корректности нечетно-четного слияния: индукция, принцип нулей-единиц

База: тривиальна (2 входа, 1 элемент)

<u>Переход.</u> Индукционное предположение: нечетное и четное слияния корректны

Рассмотрим вход из нулей и единиц. Имеем для всех k, l: $\langle 0^{\lceil k/2 \rceil} 11 \ldots \rangle$, $\langle 0^{\lceil l/2 \rceil} 11 \ldots \rangle \mapsto \langle 0^{\lceil k/2 \rceil} + \lceil l/2 \rceil 11 \ldots \rangle$ нечетным слиянием $\langle 0^{\lfloor k/2 \rfloor} 11 \ldots \rangle$, $\langle 0^{\lfloor l/2 \rfloor} 11 \ldots \rangle \mapsto \langle 0^{\lfloor k/2 \rfloor} + \lfloor l/2 \rfloor 11 \ldots \rangle$ четным слиянием $(\lceil k/2 \rceil + \lceil l/2 \rceil) - (\lfloor k/2 \rfloor + \lfloor l/2 \rfloor) = \begin{cases} 0,1 & \text{все выходы упорядочены: } \langle 0^{k+l} 11 \ldots \rangle \\ 2 & \text{одна пара неупорядочена: } \langle 0^{k+l-1} 1011 \ldots \rangle \end{cases}$

Заключительный слой элементов сравнения корректирует единственную неупорядоченную пару

Эффективные сети сортировки и слияния

Сортировка произвольного входа $\langle x_1,\ldots,x_n
angle$

Сортировка нечетно-четным слиянием

[Batcher: 1968]

Если n=1 останавливаемся, иначе рекурсивно:

- ullet сортировка $\langle x_1, \dots, x_{\lceil n/2 \rceil}
 angle$
- ullet сортировка $\langle x_{\lceil n/2 \rceil+1}, \dots, x_n \rangle$
- ullet слияние результатов при помощи $OEM(\lceil n/2 \rceil, \lfloor n/2 \rfloor)$

Эффективные сети сортировки и слияния

Сортировка произвольного входа $\langle x_1,\ldots,x_n \rangle$

Сортировка нечетно-четным слиянием

[Batcher: 1968]

Если n=1 останавливаемся, иначе рекурсивно:

- ullet сортировка $\langle x_1,\ldots,x_{\lceil n/2 \rceil}
 angle$
- ullet сортировка $\langle x_{\lceil n/2 \rceil+1}, \dots, x_n \rangle$
- ullet слияние результатов при помощи $\mathit{OEM}(\lceil n/2 \rceil, \lfloor n/2 \rfloor)$

$$size(OEM-SORT)(n) \le 2 \cdot size(OEM-SORT(n/2)) + size(OEM(n/2, n/2)) = 2 \cdot size(OEM-SORT(n/2)) + O(n \log n) = O(n(\log n)^2)$$

$$depth(OEM-SORT(n)) \le \\ depth(OEM-SORT(n/2)) + depth(OEM(n/2, n/2)) = \\ depth(OEM-SORT(n/2)) + O(\log n) = O((\log n)^2)$$

Эффективные сети сортировки и слияния

 $OEM ext{-}SORT(n)$ размер $O\left(n(\log n)^2\right)$ глубина $O\left((\log n)^2\right)$

Эффективные сети сортировки и слияния

 $OEM ext{-}SORT(n)$ размер $O\left(n(\log n)^2\right)$ глубина $O\left((\log n)^2\right)$

OEM-SORT(8) размер 19

глубина 6

Эффективные сети сортировки и слияния

Битонная последовательность: $\langle x_1 \geq \cdots \geq x_m \leq \cdots \leq x_n \rangle$ $1 \leq m \leq n$

Эффективные сети сортировки и слияния

Битонная последовательность: $\langle x_1 \geq \cdots \geq x_m \leq \cdots \leq x_n \rangle$ $1 \leq m \leq n$

Битонное слияние: сортировка битонной последовательности

Если n=1 останавливаемся, иначе рекурсивно:

- ullet битонное слияние $\langle x_1, x_3, \dots
 angle \mapsto \langle u_1 \leq u_2 \leq \dots \leq u_{\lceil n/2 \rceil}
 angle$
- ullet битонное слияние $\langle x_2, x_4, \dots
 angle \mapsto \langle v_1 \leq v_2 \leq \dots \leq v_{\lfloor n/2 \rfloor}
 angle$
- попарное сравнение: (u_1, v_1) , (u_2, v_2) , . . .

Доказательство корректности — упражнение

Эффективные сети сортировки и слияния

Битонная последовательность: $\langle x_1 \geq \cdots \geq x_m \leq \cdots \leq x_n \rangle$ $1 \leq m \leq n$

Битонное слияние: сортировка битонной последовательности

Если n=1 останавливаемся, иначе рекурсивно:

- ullet битонное слияние $\langle x_1, x_3, \dots
 angle \mapsto \langle u_1 \leq u_2 \leq \dots \leq u_{\lceil n/2 \rceil}
 angle$
- ullet битонное слияние $\langle x_2, x_4, \dots
 angle \mapsto \langle v_1 \leq v_2 \leq \dots \leq v_{\lfloor n/2 \rfloor}
 angle$
- попарное сравнение: (u_1, v_1) , (u_2, v_2) , . . .

Доказательство корректности — упражнение

Битонное слияние более гибко, чем нечетно-четное слияние, поскольку одна и та же схема может осуществлять слияние для любого m при фиксированном n

Эффективные сети сортировки и слияния

Битонная последовательность: $\langle x_1 \geq \cdots \geq x_m \leq \cdots \leq x_n \rangle$ $1 \leq m \leq n$

Битонное слияние: сортировка битонной последовательности

Если n=1 останавливаемся, иначе рекурсивно:

- ullet битонное слияние $\langle x_1, x_3, \dots
 angle \mapsto \langle u_1 \leq u_2 \leq \dots \leq u_{\lceil n/2 \rceil}
 angle$
- ullet битонное слияние $\langle x_2, x_4, \dots
 angle \mapsto \langle v_1 \leq v_2 \leq \dots \leq v_{\lfloor n/2 \rfloor}
 angle$
- попарное сравнение: (u_1, v_1) , (u_2, v_2) , . . .

Доказательство корректности — упражнение

Битонное слияние более гибко, чем нечетно-четное слияние, поскольку одна и та же схема может осуществлять слияние для любого m при фиксированном n

$$size(BM(n)) = O(n \log n) \quad depth(BM(n)) = O(\log n)$$

Эффективные сети сортировки и слияния

BM(n) размер $O(n \log n)$ глубина $O(\log n)$

Эффективные сети сортировки и слияния

BM(n) размер $O(n \log n)$ глубина $O(\log n)$

 $BM(\lceil n/2 \rceil)$ $BM(\lfloor n/2 \rfloor)$

BM(8) размер 12 глубина 3

Эффективные сети сортировки и слияния

Сортировка битонным слиянием

[Batcher: 1968]

Если n=1 останавливаемся, иначе рекурсивно:

- ullet сортируем $\langle x_1,\dots,x_{\lceil n/2
 ceil}
 angle\mapsto \langle y_1\geq\dots\geq y_{\lceil n/2
 ceil}
 angle$ в обратном порядке
- ullet сортируем $\langle x_{\lceil n/2 \rceil+1}, \dots, x_n \rangle \mapsto \langle y_{\lceil n/2 \rceil+1} \leq \dots \leq y_n \rangle$
- битонное слияние $\langle y_1 \geq \cdots \geq y_m \leq \cdots \leq y_n \rangle$, $m \in \{\lceil n/2 \rceil, \lceil n/2 \rceil + 1\}$

Казалось бы, для сортировки в обратном порядке требуются "обратные элементы сравнения"

Сортировка битонным слиянием

[Batcher: 1968]

Если n=1 останавливаемся, иначе рекурсивно:

- ullet сортируем $\langle x_1,\dots,x_{\lceil n/2 \rceil}
 angle \mapsto \langle y_1 \geq \dots \geq y_{\lceil n/2 \rceil}
 angle$ в обратном порядке
- ullet сортируем $\langle x_{\lceil n/2 \rceil+1}, \dots, x_n
 angle \mapsto \langle y_{\lceil n/2 \rceil+1} \leq \dots \leq y_n
 angle$
- битонное слияние $\langle y_1 \geq \cdots \geq y_m \leq \cdots \leq y_n \rangle$, $m \in \{\lceil n/2 \rceil, \lceil n/2 \rceil + 1\}$

Казалось бы, для сортировки в обратном порядке требуются "обратные элементы сравнения", однако элементы сравнения — это узлы схемы, а прямое/обратное направление сортировки — артефакт рисунка схемы на плоскости

$$size(BM-SORT(n)) = O(n(\log n)^2)$$

 $depth(BM-SORT(n)) = O((\log n)^2)$

Эффективные сети сортировки и слияния

 $BM ext{-}SORT(n)$ размер $O\left(n(\log n)^2\right)$ глубина $O\left((\log n)^2\right)$

Эффективные сети сортировки и слияния

 $BM ext{-}SORT(n)$ размер $O(n(\log n)^2)$ глубина $O((\log n)^2)$

 $BM-\overrightarrow{SORT}$ $(\lceil n/2 \rceil)$ BM(n)

BM-SORT(8) размер 24 глубина 6

Эффективные сети сортировки и слияния

Как OEM-SORT, так и BM-SORT имеют размер $\Theta(n(\log n)^2)$

Возможна ли неадаптивная сортировка схемой размера $o(n(\log n)^2)$? $O(n\log n)$?

Эффективные сети сортировки и слияния

Kак OEM-SORT, так и BM-SORT имеют размер $\Theta(n(\log n)^2)$

Возможна ли неадаптивная сортировка схемой размера $o(n(\log n)^2)$? $O(n\log n)$?

Схема AKS

[Ajtai, Komlós, Szemerédi: 1983]

[Paterson: 1990]; [Seiferas: 2009]

размер $O(n \log n)$, глубина $O(\log n)$

Использует глубокие понятия теории графов (экспандеры)

Асимптотически оптимальна, но имеет огромный константный множитель

Модели параллельных вычислений

Parallel Random Access Machine (PRAM)

Простая, идеализированная модель общих параллельных вычислений

Модели параллельных вычислений

Parallel Random Access Machine (PRAM)

Простая, идеализированная модель общих параллельных вычислений

[Fortune, Wyllie: 1978]

Включает

- неограниченное количество процессоров (1 операция за единицу времени)
- глобальная общая память (1 доступ за единицу времени)

Вычисления полностью синхронны

Модели параллельных вычислений

Вычисление PRAM: последовательность параллельных шагов

Коммуникация и синхронизация считаются "бесплатными"

Труднореализуемо на практике!

Модели параллельных вычислений

Вычисление PRAM: последовательность параллельных шагов

Коммуникация и синхронизация считаются "бесплатными"

Труднореализуемо на практике!

Варианты PRAM:

- concurrent/exclusive read
- concurrent/exclusive write

Модели параллельных вычислений

Вычисление PRAM: последовательность параллельных шагов

Коммуникация и синхронизация считаются "бесплатными"

Труднореализуемо на практике!

Варианты PRAM:

- concurrent/exclusive read
- concurrent/exclusive write

Класс NC: задачи, решаемые на PRAM с $O(n^c)$ процессорами за $O((\log n)^d)$ шагов, c,d=O(1)

Например, сложность одного конкретного алгоритма PRAM для решения линейной системы: $O\left((\log n)^2\right)$ шагов на n^4 процессорах : -0

Разработка алгоритмов PRAM: минимизация количества шагов, также иногда количества процессоров

Модели параллельных вычислений

Bulk-Synchronous Parallel (BSP) computer

Простая, реалистичная модель общих параллельных вычислений — масштабируемая, переносимая, предсказуемая

[Valiant: 1990]

Модели параллельных вычислений

Bulk-Synchronous Parallel (BSP) computer

Простая, реалистичная модель общих параллельных вычислений — масштабируемая, переносимая, предсказуемая

[Valiant: 1990]

Включает

- *p* процессоров, каждый с локальной памятью (1 операция за единицу времени)
- коммуникационная среда, состоящая из сети и (возможно) внешней памяти (1 единица данных за g единиц времени)
- механизм барьерной синхронизации (не чаще 1 раза за / единиц времени)

Модели параллельных вычислений

Некоторые компоненты BSP могут быть реализованы при помощи других механизмов, например

- внешняя память при помощи локальной памяти и коммуникации
- барьерная синхронизация при помощи попарной синхронизации

Модели параллельных вычислений

Некоторые компоненты BSP могут быть реализованы при помощи других механизмов, например

- внешняя память при помощи локальной памяти и коммуникации
- барьерная синхронизация при помощи попарной синхронизации

Параметры коммуникацинной среды:

- g communication gap (inverse bandwidth), время (в худшем случае) для единицы данных войти в сеть или покинуть сеть
- I latency, время (в худшем случае) для единицы данных быть переданной внутри сети

Модели параллельных вычислений

Некоторые компоненты BSP могут быть реализованы при помощи других механизмов, например

- внешняя память при помощи локальной памяти и коммуникации
- барьерная синхронизация при помощи попарной синхронизации

Параметры коммуникацинной среды:

- g communication gap (inverse bandwidth), время (в худшем случае) для единицы данных войти в сеть или покинуть сеть
- I latency, время (в худшем случае) для единицы данных быть переданной внутри сети

Параллельную систему можно (приближенно) описать параметрами p, g, I. Эффективность сетей исторически растет медленнее, чем процессоров, и требует больше энергии: g, $I\gg 1$. Например, для компьютера Cray T3E (1995): p=64, $g\approx 78$, $I\approx 1825$, с тех пор принципиально не изменились.

Модели параллельных вычислений

Модели параллельных вычислений

Вычисление BSP: последовательность параллельных супершагов

Асинхронные вычисления/коммуникация внутри супершага (комуникация включает обмен данными с внешней памятью)

Синхронизация между супершагами

Модели параллельных вычислений

Вычисление BSP: последовательность параллельных супершагов

Асинхронные вычисления/коммуникация внутри супершага (комуникация включает обмен данными с внешней памятью)

Синхронизация между супершагами

(Альтернативная модель — CSP: взаимодействующие последовательные процессы)

Модели параллельных вычислений

Композиционная модель стоимости вычислений

Для конкретного процессора proc на супершаге sstep:

- comp(sstep, proc): объем локальных вычислений и операций над локальных памятью процессором proc на супершаге sstep
- comm(sstep, proc): объем данных, отправленных и полученных процессором proc на супершаге sstep

Модели параллельных вычислений

Композиционная модель стоимости вычислений

Для конкретного процессора proc на супершаге sstep:

- comp(sstep, proc): объем локальных вычислений и операций над локальных памятью процессором proc на супершаге sstep
- comm(sstep, proc): объем данных, отправленных и полученных процессором proc на супершаге sstep

Для компьютера BSP в целом на одном супершаге sstep:

- $comp(sstep) = \max_{0 \le proc < p} comp(sstep, proc)$
- $comm(sstep) = \max_{0 \le proc < p} comm(sstep, proc)$
- $cost(sstep) = comp(sstep) + comm(sstep) \cdot g + I$

Модели параллельных вычислений

Для вычисления BSP, состоящего из *sync* супершагов:

- $comp = \sum_{0 < sstep < sync} comp(sstep)$
- $comm = \sum_{0 < sstep < sync} comm(sstep)$
- $cost = \sum_{0 \le sstep < sync} cost(sstep) = comp + comm \cdot g + sync \cdot I$

Модели параллельных вычислений

Для вычисления BSP, состоящего из *sync* супершагов:

- $comp = \sum_{0 < sstep < sync} comp(sstep)$
- $comm = \sum_{0 < sstep < sync} comm(sstep)$
- $cost = \sum_{0 \le sstep \le sync} cost(sstep) = comp + comm \cdot g + sync \cdot I$

Входные/выходные данные хранятся во внешней памяти; стоимость ввода/вывода включена в comm

Модели параллельных вычислений

Для вычисления BSP, состоящего из *sync* супершагов:

- $comp = \sum_{0 < sstep < sync} comp(sstep)$
- $comm = \sum_{0 < sstep < sync} comm(sstep)$
- $cost = \sum_{0 \le sstep < sync} cost(sstep) = comp + comm \cdot g + sync \cdot I$

Входные/выходные данные хранятся во внешней памяти; стоимость ввода/вывода включена в comm

Например, сложность одного конкретного алгоритма PRAM для решения линейной системы:

$$comp = O(n^3/p)$$
 $comm = O(n^2/p^{1/2})$ $sync = O(p^{1/2})$

Модели параллельных вычислений

Разработка алгоритмов для BSP

Минимизация comp, comm, sync как функций от n, p

Соглашения:

- ullet размер задачи $n\gg p$ (допуск)
- входные/выходные во внешней памяти, ввод/вывод односторонняя коммуникация

Разработка алгоритмов для BSP (продолжение)

Баланс вычислений

ullet work-optimal $comp = O(rac{seq\ work}{p})$

Баланс коммуникации:

- ullet цель scalable $comm = O(rac{input+output}{p^c})$, $0 < c \leq 1$
- ullet в идеале fully-scalable $comm = O(rac{input+output}{p})$

Крупноблочность:

- ullet цель sync не зависящая от n (может зависеть от p)
- ullet еще лучше quasi-flat $sync = O((\log p)^{O(1)})$
- ullet в идеале $\mathsf{flat}\ sync = O(1)$

Модели параллельных вычислений

BSP software: индустриальные проекты

Google's Pregel	[2010]
-----------------	--------

• Apache Hama, Spark, Giraph (apache.org) [2010–16]

BSP software: исследовательские проекты

 Oxford BSP (www.bsp-worldwide.org/implmnts/oxtool) 	[1998]
--	--------

- Paderborn PUB (www2.cs.uni-paderborn.de/~pub) [1998]
- BSML (traclifo.univ-orleans.fr/BSML) [1998]
- BSPonMPI (bsponmpi.sourceforge.net) [2006]

 Multipers PSD (recommulations) [2011]
- Multicore BSP (www.multicorebsp.com) [2011]
- Epiphany BSP (www.codu.in/ebsp) [2015]
- Petuum (petuum.org)

[2015]

Сбалансированное дерево

Схема на основе сбалансированного двоичного дерева:

tree(n) 1 вход, *n* выходов (или наоборот)

размер n-1 глубина $\log n$

Сбалансированное дерево

Схема на основе сбалансированного двоичного дерева:

tree(n)1 вход, n выходов (или наоборот)
размер n-1глубина $\log n$

Каждый узел вычисляет произвольную заданную операцию за $\mathit{O}(1)$

Может быть ориентирован

- ullet сверху вниз (один вход в корне, n выходов в листьях)
- ullet снизу вверх (n входов в листьях, один выход в корне)

Последовательная сложность O(n); сложность на PRAM $O(\log n)$

Сбалансированное дерево

Вычисление сбалансированного двоичного дерева на BSP, p=4

tree(n)

Предполагаем, что вход читается во внешней памяти, а выход туда записывается

Сбалансированное дерево

Вычисление сбалансированного двоичного дерева на BSP, p=4

tree(n)

Предполагаем, что вход читается во внешней памяти, а выход туда записывается

 Π оделим tree(n) на

- один верхний блок, изоморфный tree(p)
- ullet нижний слой из p blocks, каждый из них изоморфный tree(n/p)

Сбалансированное дерево

Вычисление сбалансированного двоичного дерева на BSP (продолжение)

При вычислении сверху вниз, произвольно назначенный процессор отвечает за верхний блок:

ullet читает вход блока, вычисляет блок, записывает p выходов блока

Затем каждый процессор отвечает за один из нижних блоков:

ullet читает вход блока, вычисляет блок, записывает n/p выходов блока

При вычислении снизу вверх, последовательность действий обратная

Сбалансированное дерево

Вычисление сбалансированного двоичного дерева на BSP (продолжение)

При вычислении сверху вниз, произвольно назначенный процессор отвечает за верхний блок:

ullet читает вход блока, вычисляет блок, записывает ullet выходов блока

Затем каждый процессор отвечает за один из нижних блоков:

ullet читает вход блока, вычисляет блок, записывает n/p выходов блока

При вычислении снизу вверх, последовательность действий обратная

$$comp = O(n/p)$$

$$comp = O(n/p)$$
 $comm = O(n/p)$

$$sync = O(1)$$

Предполагаем допуск $n \geq p^2$

Сбалансированное дерево

Описанный BSP-алгоритм вычисления сбалансированного дерева полностью оптимален:

- ullet оптимальное $comp = O(n/p) = O(rac{ ext{sequential work}}{p})$
- ullet оптимальное $comm = O(n/p) = O(rac{ ext{input/output size}}{p})$
- ullet оптимальное sync = O(1)

Сбалансированное дерево

Описанный BSP-алгоритм вычисления сбалансированного дерева полностью оптимален:

- ullet оптимальное $comp = O(n/p) = Oig(rac{ ext{sequential work}}{p}ig)$
- оптимальное $comm = O(n/p) = O(\frac{\text{input/output size}}{p})$
- ullet оптимальное sync = O(1)

С другими задачами нам может и не повезти с полностью оптимальным алгоритмом. Однако обычно нас интересуют алгоритмы, оптимальные хотя бы по *comp* (при разумных предположениях).

Оптимальность по comm и sync ставится как цель при условии оптимальности по comp Например, нельзя "схитрить" и выполнить все вычисление в единственном процессоре, принося в жертву comp и comm ради оптимального sync = O(1)

Префиксное накопление

Задача префиксного накопления

Дан массив
$$a=[a_0,\ldots,a_{n-1}]$$

Вычислить
$$b_{-1} = 0$$
 $b_i = a_i + b_{i-1}$ $0 \le i < n$

В более общем виде: ассоциативный оператор \bullet (предполагается наличие единицы ϵ , может быть добавлена формально)

Вычислить
$$b_{-1} = \epsilon$$
 $b_i = a_i \bullet b_{i-1}$ $0 \le i < n$

$$b_0 = a_0$$

$$b_1 = a_0 \bullet a_1$$

$$b_2 = a_0 \bullet a_1 \bullet a_2$$

. . .

$$b_{n-1} = a_0 \bullet a_1 \bullet \cdots \bullet a_{n-1}$$

Задача префиксного накопления

Дан массив
$$a=[a_0,\ldots,a_{n-1}]$$

Вычислить
$$b_{-1} = 0$$
 $b_i = a_i + b_{i-1}$ $0 \le i < n$

В более общем виде: ассоциативный оператор \bullet (предполагается наличие единицы ϵ , может быть добавлена формально)

Вычислить
$$b_{-1} = \epsilon$$
 $b_i = a_i \bullet b_{i-1}$ $0 \le i < n$

$$b_0=a_0$$

$$b_1 = a_0 \bullet a_1$$

$$b_2 = a_0 \bullet a_1 \bullet a_2$$

. . .

$$b_{n-1} = a_0 \bullet a_1 \bullet \cdots \bullet a_{n-1}$$

Последовательная сложность O(n) при помощи тривиальной схемы размера n-1, глубины n-1

Префиксное накопление

Схема префиксного накопления

[Ladner, Fischer: 1980]

prefix(n)

где
$$a_{k:I} = a_k \bullet a_{k+1} \bullet \ldots \bullet a_I$$

Префиксное накопление

Схема префиксного накопления (продолжение)

prefix(n) n входов n выходов размер 2n — 2 глубина 2 log n

Сложность на PRAM $O(\log n)$

Префиксное накопление

Префиксное накопление на BSP

 Γ раф prefix(n) состоит из

- верхнего поддерева, вычисляемого от листьев к корню tree(n)
- переноса значений от узлов верхнего поддерева к узлам нижнего
- нижнего поддерева, вычисляемого от корня к листьям tree(n)

Префиксное накопление

Префиксное накопление на BSP

Граф prefix(n) состоит из

- ullet верхнего поддерева, вычисляемого от листьев к корню tree(n)
- переноса значений от узлов верхнего поддерева к узлам нижнего
- ullet нижнего поддерева, вычисляемого от корня к листьям $\mathit{tree}(n)$

Оба поддерева можно вычислить предыдущим алгоритмом

Перенос значений: comm = O(n/p) — на самом деле не обязательно; промежуточные значения можно запомнить; каждое нижнее поддерево вычислять в том же процессоре, что и соответствующее верхнее

Префиксное накопление

Префиксное накопление на BSP

Граф prefix(n) состоит из

- верхнего поддерева, вычисляемого от листьев к корню tree(n)
- переноса значений от узлов верхнего поддерева к узлам нижнего
- ullet нижнего поддерева, вычисляемого от корня к листьям tree(n)

Оба поддерева можно вычислить предыдущим алгоритмом

Перенос значений: comm = O(n/p) — на самом деле не обязательно; промежуточные значения можно запомнить; каждое нижнее поддерево вычислять в том же процессоре, что и соответствующее верхнее

$$comp = O(n/p)$$

$$comm = O(n/p)$$

$$sync = O(1)$$

Предполагаем допуск $n \geq p^2$

Линейные рекуррентные соотношения

Обобщенное линейное рекуррентное соотношение (первого порядка)

Даны массивы
$$a = [a_0, \ldots, a_{n-1}]$$
, $b = [b_0, \ldots, b_{n-1}]$

Вычислить
$$c_{-1} = 0$$
 $c_i = a_i + b_i \cdot c_{i-1}$ $0 \le i < n$

$$c_0 = a_0$$

$$c_1 = a_1 + b_1 \cdot c_0$$

$$c_2 = a_2 + b_2 \cdot c_1$$

. . .

$$c_{n-1} = a_{n-1} + b_{n-1} \cdot c_{n-2}$$

Линейные рекуррентные соотношения

$$c_{-1} = 0 \quad c_{i} = a_{i} + b_{i} \cdot c_{i-1} \quad 0 \leq i < n$$
Let $A_{i} = \begin{bmatrix} 1 & 0 \\ a_{i} & b_{i} \end{bmatrix} \quad C_{i} = \begin{bmatrix} 1 \\ c_{i} \end{bmatrix} \quad A_{i}C_{i-1} = \begin{bmatrix} 1 & 0 \\ a_{i} & b_{i} \end{bmatrix} \begin{bmatrix} 1 \\ c_{i-1} \end{bmatrix} = \begin{bmatrix} 1 \\ c_{i} \end{bmatrix} = C_{i}$

$$C_{0} = A_{0} \cdot C_{-1}$$

$$C_{1} = A_{1}A_{0} \cdot C_{-1}$$

$$C_{2} = A_{2}A_{1}A_{0} \cdot C_{-1}$$
...
$$C_{n-1} = A_{n-1} \dots A_{1}A_{0} \cdot C_{-1}$$

Линейные рекуррентные соотношения

Вычисление обобщенного линейного рекуррентного соотношения

- суффиксное накопление (= префиксное накопление в обратном направлении) на $[A_{n-1},\ldots,A_0]$, с оператором умножения 2×2 -матриц
- ullet умножаем каждый выход накопления на \mathcal{C}_{-1}
- берем в качестве выхода нижнюю компоненту получившихся 2-векторов

У полученной схемы размер O(n), глубина $O(\log n)$

Линейные рекуррентные соотношения

Операторы +, \cdot можно заменить на любые \oplus , \odot , где

- ullet операторы \oplus , \odot вычисляются за время O(1)
- ullet оператор \oplus ассоциативен: $a\oplus (b\oplus c)=(a\oplus b)\oplus c$
- ullet операторы \odot ассоциативен: $a\odot(b\odot c)=(a\odot b)\odot c$
- operator \odot дистрибутивен (слева) над \oplus : $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$

Примеры возможных \oplus , \odot :

- численные +, ⋅
- численные min, +; численные max, +
- булевы ∧, ∨; булевы ∨, ∧; булевы ∧, хог

Двоичное сложение

Параллельное двоичное сложение при помощи булевой логики

$$x+y=z$$
 x , y , z представлены булевыми массивами

$$x = [x_{n-1}, \dots, x_0]$$
 $y = [y_{n-1}, \dots, y_0]$ $z = [z_n, z_{n-1}, \dots, z_0]$

По заданным x, y, вычислить z

Примитивные операторы — булевы
$$\wedge$$
 ("and"), \vee ("or"), \oplus ("xor")

Пусть
$$c=[c_{n-1},\ldots,c_0]$$
, где c_i — это i -й бит переноса

Имеем:
$$x_i + y_i + c_{i-1} = z_i + 2c_i$$
 $0 \le i < n$

Двоичное сложение

Определим битовые массивы $u = [u_{n-1}, \dots, u_0]$, $v = [v_{n-1}, \dots, v_0]$

$$u_i = x_i \wedge y_i$$
 $v_i = x_i \oplus y_i$ $0 \le i < n$

$$z_0 = v_0$$
 $c_0 = u_0$

$$z_1 = v_1 \oplus c_0$$
 $c_1 = u_1 \vee (v_1 \wedge c_0)$

$$z_{n-1} = v_{n-1} \oplus c_{n-2}$$
 $c_{n-1} = u_{n-1} \vee (v_{n-1} \wedge c_{n-2})$

$$z_n = c_{n-1}$$

Двоичное сложение

Определим битовые массивы $u = [u_{n-1}, \dots, u_0]$, $v = [v_{n-1}, \dots, v_0]$

$$u_i = x_i \wedge y_i$$
 $v_i = x_i \oplus y_i$ $0 \le i < n$
 $z_0 = v_0$ $c_0 = u_0$

$$z_1 = v_1 \oplus c_0$$
 $c_1 = u_1 \vee (v_1 \wedge c_0)$

$$z_{n-1} = v_{n-1} \oplus c_{n-2}$$
 $c_{n-1} = u_{n-1} \vee (v_{n-1} \wedge c_{n-2})$

$$z_n = c_{n-1}$$

Получилась схема сумматора со сквозным переносом размера и глубины O(n)

Можно ли ее распараллелить?

Двоичное сложение

$$c_{-1}=0$$
 $c_i=u_i\vee(v_i\wedge c_{i-1})$

Вычисляем

- массив c при помощи обощенного линейного рекуррентного соотношения со входами u, v и операторами \lor , \land : размер O(n), глубина $O(\log n)$
- ullet массив z: дополнительный размер O(n), глубина O(1)

Получилась схема сумматора с ускоренным переносом размера O(n), глубины $O(\log n)$

- ① Дискретное преобразование Фурье и его применения
- 2 Параллельные алгоритмь
- 🗿 Оптимизационные задачи и приближенные алгоритмы

Оптимизационные задачи и приближенные алгоритмы Задача линейного программирования

Задача линейного программирования (LP): оптимизировать (максимизировать или минимизировать) многомерную вещественную линейную целевую функцию при линейных ограничениях (неравенствах или равенствах)

$$\max(\min)$$
 $c_1x_1 + c_2x_2 + \ldots + c_nx_n$ при условиях

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \ge b_2$
 $a_{31}x_1 + a_{32}x_2 + \ldots + a_{3n}x_n = b_3$

. . .

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \leq b_m$$

Оптимизационные задачи и приближенные алгоритмы Задача линейного программирования

Вектор $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ — допустимое решение задачи LP, если он удовлетворяет всем ограничениям

Задача LP разрешима, если у нее есть допустимое решение

Допустимое решение оптимально, если целевая функция достигает на нем (нестрогого) максимума (соответственно, минимума)

Многие теоретические и практические задачи имеют вид LP или приводятся к нему. Например, имеется m материалов, в наличии b_i единиц материала i. Возможны n продуктов, для производства единицы продукта j нужно a_{ij} единиц материала i. Единица продукта j дает прибыль c_j . Как максимизировать прибыль?

Оптимизационные задачи и приближенные алгоритмы Стандартная форма

max $c^T x$

Ax < b

x > 0

при условиях

Стандартная форма задачи LP

$$\max \quad c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

при условиях

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2$

. . .

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \leq b_m$$

$$x_1, x_2, \ldots, x_m \geq 0$$

n переменных, m+n ограничений, включая n ограничений

неотрицательности (будем их опускать, предполагая по умолчанию)

Оптимизационные задачи и приближенные алгоритмы Стандартная форма

Приведение задачи LP к стандартной форме

$$\min_{1 \le j \le n} c_j x_j \qquad \longrightarrow \max_{1 \le j \le n} -c_j x_j$$

при условиях

$$\begin{array}{ll} \sum_{1 \leq j \leq n} a_{ij} x_j \geq b_i & \leadsto \sum_{1 \leq j \leq n} -a_{ij} x_j \leq -b_i \\ \sum_{1 \leq j \leq n} a_{ij} x_j = b_i & \leadsto \sum_{1 \leq j \leq n} a_{ij} x_j \geq b_i \wedge \sum_{1 \leq j \leq n} a_{ij} x_j \leq b_i \\ x_j \text{ неограничено} & \leadsto x_j = x_j^+ - x_j^- \wedge x_j^+, x_j^- \geq 0 \end{array}$$

Оптимизационные задачи и приближенные алгоритмы Стандартная форма

Оптимизационные задачи и приближенные алгоритмы Стандартная форма

Пусть $P \subseteq \mathbb{R}^n$

P — выпуклое множество, если для любых $x,y\in P$, $0\leq \alpha \leq 1$, имеем $\alpha x+(1-\alpha)y\in P$

 $u\in P$ — экстремальная точка, если не существует $x,y\in P$, $0<\alpha<1$, для которых $u=\alpha x+(1-\alpha)y$

Линейное неравенство с n переменными задает полупространство. Пересечение конечного множества полупространств — многогранник.

Многогранник — выпуклое множество; его экстремальные точки — вершины. Многогранник, заданный ограничениями задачи LP — допустимый многогранник.

Задача LP ограничена, если $\sum_{1\leq i\leq n}c_ix_i\leq B$ для некоторого $B\in\mathbb{R}$ и любого допустимого x (в случае максимизации, иначе \geq)

Оптимизационные задачи и приближенные алгоритмы Каноническая форма

Каноническая форма задачи LP

$$\max \quad c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

при условиях

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$

. . .

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$$

 $x_1, x_2, \ldots, x_m \ge 0$

Как правило, $m \geq n$, строки A линейно независимы

$$max c^T x$$
при условиях

$$Ax = b$$
$$x \ge 0$$

Оптимизационные задачи и приближенные алгоритмы Каноническая форма

Приведение задачи LP от стандартной формы к канонической

Вводятся вспомогательные переменные $s_i = x_{n+i}$

$$\max \quad \sum_{1 \le j \le n} c_j x_j$$

 $\max c^T x$

при условиях

при условиях

$$\sum_{1 \le j \le n} a_{ij} x_j \ge b_i$$
$$x_i > 0$$

$$\sum_{1 \le j \le n} a_{ij} x_j \ge b_i \qquad \rightsquigarrow s_i = b_i - \sum_{1 \le j \le n} a_{ij} x_j$$

$$x_i \ge 0 \qquad \rightsquigarrow x_i \ge 0 \quad s_i \ge 0$$

$$s = b - Ax$$
$$x, s \ge 0$$

Оптимизационные задачи и приближенные алгоритмы Основная теорема линейного программирования

Основная теорема линейного программирования Задача LP в стандартной форме имеет оптимальное решение, если она разрешима и ограничена. Если задача LP имеет оптимальные решения, то хотя бы одно из них — вершина допустимого многогранника.

(Без доказательства; одно из конструктивных доказательств — симплекс-метод)

Теоретически, для решения задачи LP достаточно перебрать все вершины допустимого многогранника — это конечное множество. Однако количество вершин экспоненциально относительно количества переменных и ограничений (например, n-мерный гиперкуб).

Оптимизационные задачи и приближенные алгоритмы Алгоритмы для задачи LP

Симплекс-метод: последовательные перемещение по вершинам допустимого многогранника, улучшающие целевую функцию

Основная идея симплекс-метода:

- берем одну из вершин в качестве начального решения
- если решение не оптимально, но оптимальное решение существует, то в какой-то из соседних вершин значение целевой функции лучше, чем в текущей; перемещаемся в эту вершину и повторяем

В теории, симплекс-метод также экспоненциален в худшем случае. На практике, работает вполне эффективно.

Полиномиальные алгоритмы для решения задачи LP: метод эллипсоидов, метод внутренней точки. Применяются на практике, но не так широко, как симплекс-метод.

Оптимизационные задачи и приближенные алгоритмы Двойственность

$$\max \quad c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2$

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_m$$

 $x_1, x_2, \ldots, x_n > 0$

Сокращенная форма:

$$\max c^T x$$

при условиях

при условиях
$$Ax \le b$$
 $x \ge 0$

$$egin{array}{ll} {\sf min} & b_1 y_1 + b_2 y_2 + \ldots + b_m y_m \end{array}$$
 при условиях

$$a_{11}y_1 + a_{21}y_2 + \ldots + a_{m1}y_m \ge c_1$$

 $a_{12}y_1 + a_{22}y_2 + \ldots + a_{m2}y_m \ge c_2$

$$a_{1n}y_1 + a_{2n}y_2 + \ldots + a_{mn}y_m \ge c_n$$

 $y_1, y_2, \ldots, y_m \ge 0$

Сокращенная форма:

min
$$b^T y$$

при условиях $A^T y \ge c$ $y \ge 0$

Оптимизационные задачи и приближенные алгоритмы Двойственность

Теорема о двойственности Если первичная задача разрешима, то двойственная также разрешима, и оптимальные решения равны (Без доказательства)

Оптимизационные задачи и приближенные алгоритмы Двойственность

Экономический смысл двойственности: материал i расходуется для изготовления единицы продукта j в количестве a_{ij}

Первичная задача:

- ullet имеются материалы в заданных количествах b_i
- ullet продукты изготавливаются в количествах x_j и продаются по ценам c_j
- цель тах прибыль (сумму по продуктам с учетом цен)

Двойственная задача:

- ullet материалы покупаются в количествах y_i по ценам b_i
- ullet нужно изготовить заданное количество каждого продукта $c_j,$
- цель min стоимость (сумму по материалам с учетом цен)

Описывают одну и ту же экономическую ситуацию с разных сторон 🔊 🧟 С

G = (V, E, w) — ориентированный граф с весами на ребрах, без отрицательных циклов

 $s \in V$: источник

 $w:E o\mathbb{R}$: стоимость ребра

 $\delta(u)=\delta(s,u)$: расстояние от источника s до $u\in V$

Пусть каждая вершина достижима из s: $\delta(u) < \infty$ для всех $u \in V$

Лемма Если $y_s = 0$ и $y_v \le y_u + w(u,v)$ для всех $(u,v) \in E$, тогда $y_u \le \delta(u)$ для всех $u \in V$.

Если вдобавок для каждой $v \in V \setminus \{s\}$ существует $(u,v) \in E$ такое, что $y_v = y_u + w(u,v)$, тогда $y_u = \delta(u)$ для всех $u \in V$.

Доказательство (Упражнение)

Задача о кратчайших путях с одним источником в форме задачи LP

$$\max \sum_{u \in V} y_u$$

при условиях

$$y_v - y_u \le w(u, v) \quad (u, v) \in E$$

 $y_s = 0$

Теорема Эта задача LP разрешима. Пусть \bar{y} — оптимальное решение. Тогда $\bar{y}_u = \delta(u)$ для всех $u \in V$.

Доказательство $\delta(u)$ — допустимое решение:

- $\delta(s) = 0$
- ullet для всех $u\in V$, $\delta(u)\geq 0$
- ullet для любого $(u,v)\in E$, $\delta(v)\leq \delta(u)+w(u,v)$ по неравенству треугольника

Пусть у — произвольное допустимое решение

По первой части леммы, $y_u \leq \delta(u)$ для всех $u \in V$

Следовательно, $\bar{y}_u = \delta(u)$ — единственное оптимальное решение.

Проверим также вторую часть леммы: докажем, что для каждой $v \in V \setminus \{s\}$ существует $(u,v) \in E$ такое, что $\bar{y}_v = \bar{y}_u + w(u,v)$.

Предположим противное: $\bar{y}_v < \bar{y}_u + w(u,v)$ для некоторой $v \in V$ и всех $(u,v) \in E$

Тогда можем увеличить u, не нарушая ограничения и увеличивая целевую функцию. Противоречие с оптимальностью \bar{u} .

По второй части леммы, снова имеем $ar{y}_u \leq \delta(u)$ для всех $u \in V$

Если у G есть отрицательный цикл, задача неразрешима Если у G есть вершина, недостижимая из S, задача неограничена Задачу можно рассматривать, как физическую модель G: вершины u, v соединены нерастяжимой (но сжимаемой) веревкой длины w(u,v) Задача LP не дает эффективного алгоритма для поиска кратчайших путей — есть более эффективные алгоритмы

Однако формулировка в виде задачи LP устойчива к изменению условий задачи: например, стохастические кратчайшие пути, марковские процессы принятия решений

G = (V, E, c) — ориентированный граф с пропускными способностями на ребрах

 $s,t\in V$: источник, сток

 $c: E o \mathbb{R}^+$: пропускная способность ребра

 $f: E o \mathbb{R}^+$: поток вдоль ребра, 0 < f(u) < c(u)

Сохранение потока: для любого $u \in V \setminus \{s,t\}$ суммарный входящий поток в u должен равняться суммарному исходящему потоку из u Моделирует потоки жидкостей по трубам, грузов по дорогам и т.п.

Поток считается стационарным, не меняется со временем

Суммарный поток
$$19 = 11 + 8 = 15 + 4$$

Суммарный поток 23 = 12 + 11 = 19 + 4

Задача о максимальном потоке в форме задачи LP

$$\max |f| = \sum_{u:(u,t) \in E} f_{ut} - \sum_{w:(t,w) \in E} f_{tw}$$

при условиях

$$\begin{array}{ll} \sum_{u:(u,v)\in E} f_{uv} - \sum_{w:(v,w)\in E} f_{vw} = 0 & v \in V \setminus \{s,t\} \\ f_{uv} \leq c_{uv} & (u,v) \in E \\ f_{uv} \geq 0 & (u,v) \in E \end{array}$$

Задача разрешима и ограничена, следовательно, имеет оптимальное решение

Ребро (u,v) насыщено, если $f_{uv}=c_{uv}$

$$(s,t)$$
-разрез: Разбиение $V=S\cup T$, где $s\in S$, $t\in T$

$$\mathsf{3}$$
начение (s,t) -разреза: $c(S,T) = \sum_{(u,v) \in E \cap (S imes T)} c_{uv}$

Суммарный поток = 17

Блокирующий поток =19

Прямой увеличивающий путь: путь из s в t, где на всех ребрах поток ненасыщен

Блокирующий поток: имеется (s,t) разрез, где все ребра из компоненты s в компоненту t насыщены

При блокирующем потоке прямой увеличивающий путь отсутствует, однако поток может не быть максимальным

Суммарный поток =19

 $\mathsf{Maкcumaльhый}$ поток =23

Увеличивающий путь: путь из s в t по прямым и обратным ребрам, где на всех прямых ребрах поток ненасыщен, а на всех обратных ребрах поток ненулевой

Произвольный поток

Остаточная сеть

Для простоты предполагаем, что в исходном графе нет параллельных противонаправленных ребер

Остаточная сеть содержит для каждого $(u, v) \in E$:

- ullet прямое ребро веса $c_{uv}-f_{uv}$
- ullet обратное ребро веса f_{uv}

Ребра нулевого веса в остаточную сеть не включаются 🚛 👡

Увеличивающий путь

Увеличивающий путь в остаточной сети

Значение увеличивающего пути — минимальный вес по всем ребрам пути в остаточной сети

Оптимизационные задачи и приближенные алгоритмы Теорема о максимальном потоке

Теорема Следующие утверждения равносильны:

- f максимальный поток
- ② f не имеет увеличивающих путей
- $oldsymbol{\circ}$ существует (s,t)-разрез со значением c(S,T)=|f|

Доказательство
$$(1) \Rightarrow (2)$$
, $(3) \Rightarrow (1)$ — очевидно

 $(2)\Rightarrow (3)$: Пусть S — множество вершин остаточной сети, достижимых из s; $T=V\setminus S$

Оптимизационные задачи и приближенные алгоритмы

Теорема о максимальном потоке

Доказательство (окончание):

Поскольку f не имеет увеличивающих путей, имеем

- $s \in S$, $t \in T$
- $f_{uv} = c_{uv}$ при $(u,v) \in E \cap (S \times T)$
- $f_{uv}=0$ при $(u,v)\in E\cap (T imes S)$

$$c(S,T) = \sum_{(u,v) \in E \cap (S \times T)} c_{uv} = \sum_{(u,v) \in E \cap (S \times T)} c_{uv} + \sum_{(u,v) \in E \cap (T \times S)} 0 = \sum_{(u,v) \in E \cap (S \times T)} f_{uv} + \sum_{(u,v) \in E \cap (T \times S)} f_{uv} = |f|$$

Замечание Максимальный поток и минимальный разрез — оптимальные решения взаимно двойственных задач LP.

Альтернативное доказательство теоремы следует из общей теории двойственности.

Алгоритм Форда-Фалкерсона для нахождения максимального потока Начинаем с произвольного допустимого потока (например, нулевого), затем

- Строим для текущего потока остаточную сеть
- Ищем увеличивающий путь в остаточной сети. Если его нет, поток максимальный.
- Включаем увеличивающий путь в поток, добавляя его значение к прямым ребрам и вычитая из обратных
- Повторяем для нового потока

Поиск увеличивающего пути: поиск в графе в ширину (находит кратчайший такой путь) или в глубину

Суммарный поток = 0

Суммарный поток = 4

Увеличивающий путь: +4

Увеличивающий путь: +4

Суммарный поток = 8

Суммарный поток = 12

Увеличивающий путь: +4

Увеличивающий путь: +7

Суммарный поток = 19

Максимальный поток = 23

Увеличивающий путь: +4

Минимальный разрез = 23

Целочисленная задача о максимальном потоке: все пропускные способности и значения начального потока — натуральные числа

Теорема В целочисленной задаче о максимальном потоке значение оптимального потока $|f^*|$ — натуральное число. Алгоритм Форда—Фалкерсона находит его за $|f^*|$ итераций. Общая трудоемкость алгоритма $|E||f^*|$.

Доказательство На каждой итерации, все веса в остаточном графе — натуральные; значение увеличивающего пути — натуральное >0.

Замечание Количество итераций $|f^*|$ может быть экспоненциальным от размера входа!

Увеличивающие пути далее повторяются с периодом 2; вследствие неудачного выбора увеличивающих путей, алгоритм выполняет 2М итераций

Mакс. поток = 2M

Если хотя бы одна пропускная способность — не натуральное число, алгоритм может не завершиться; предельное значение потока может быть не оптимальным (сколь угодно далеким от оптимального)

Пусть
$$r=1-r^2=rac{\sqrt{5}-1}{2}$$
 (золотое сечение); $M\geq 4$

Поток = 0; ув. путь: +1

Поток = 1; ув. путь: +r

Поток = 1 + 2r; у.п.: $+1 - r = +r^2$

Поток = 1 + r; ув. путь: +r

Поток = 2 + r; у.п.: $+1 - r = +r^2$

Поток = 3; у.п.:
$$+r - r^2 = +r^3$$

Поток =
$$3 + r^3$$
; у.п.: $+1 - 1 + r^3 = +r^3$

Увеличивающие пути далее повторяются с периодом 4; вследствие неудачного выбора увеличивающих путей, алгоритм не завершается

Предельный поток
$$1 + 2 \sum_{k \geq 1} r^k = 3 + 2r < 5$$

Оптимальный поток 2M

G = (V, E) — неориентированный граф

 $S \in V$ — вершинное покрытие, если для любого $(u,v) \in E$, имеем $u \in S$ или $v \in S$

Задача о минимальном вершинном покрытии — не имеет известного полиномиального алгоритма; NP-полна (будет доказано в курсе сложности вычислений)

Формулировка в виде задачи LP позволяет получить 2-аппроксимацию, т.е. решение, которое не более, чем в 2 раза превосходит оптимальное, за полиномиальное время

Задача о минимальном вершинном покрытии в форме задачи LP

$$\min \quad \sum_{v \in V} x_v$$

при условиях

$$x_u + x_v \ge 1 \quad (u, v) \in E$$

 $0 \le x_v \le 1 \quad v \in V$

Для решения исходной задаче необходимо условие целочисленности: $x_v \in \{0,1\}$. Без условия целочисленности задача LP является релаксацией исходной задачи.

Задача разрешима и ограничена, следовательно, имеет оптимальное решение. Очевидно, оно не превосходит оптимального решения исходной задачи (и равно ему, если соответствующие значения переменных натуральные).

Пусть x^* — значения переменных в некотором оптимальном решении LP-релаксации

Определим
$$S_{\mathsf{LP}} = \{v \in V : x_v^* \geq \frac{1}{2}\}$$

Пусть S_{OPT} — некоторое минимальное вершинное покрытие, \bar{x} — значения переменных в соответствующем оптимальном решении с дополнительным ограничением $x_v \in \{0,1\}$, т.е. $\bar{x}_v = 1$, когда $v \in S_{\mathsf{OPT}}$

Утверждение S_{LP} — вершинное покрытие, $|S_{\mathsf{LP}}| \leq 2|S_{\mathsf{OPT}}|$

Доказательство

Для любого $(u,v)\in E$, имеем $x_u^*,x_v^*\geq 0$, $x_u^*+x_v^*\geq 1$. Следовательно $x_u^*\geq \frac{1}{2}$ или $x_v^*\geq \frac{1}{2}$, таким образом $u\in S_{\mathsf{LP}}$ или $v\in S_{\mathsf{LP}}$, то есть S_{LP} — вершинное покрытие.

$$|S_{\mathsf{LP}}| = \sum_{v \in S_{\mathsf{LP}}} 1 \le$$

(поскольку
$$x_v^* \geq rac{1}{2}$$
 для $v \in S_{\mathsf{LP}}$) $\sum_{v \in S_{\mathsf{LP}}} 2x_v^* \leq$

(поскольку
$$S_{\mathsf{LP}} \subseteq V$$
) $\sum_{v \in V} 2x_v^* \le$

(поскольку допустимые решения для исходной задачи допустимы и для LP-релаксации) $\sum_{v \in V} 2\bar{x}_v = 2|S_{\mathsf{OPT}}|$

Таким образом, решение LP-релаксации дает 2-аппроксимацию для задачи минимального вершинного покрытия

