Energy management strategies for reducing a building's electricity costs after a PV installation

Student: Pol Boudou, MA3 Energy Management & Sustainability

Supervisors: Dr. *Jagdish Achara*Prof. *Jean-Yves Le Boudec*

Laboratory for Communications and Applications LCA

Content

- 1. Baseline scenario
- 2. Control strategies
- 3. Simulation environment & Building case
- 4. Results
- 5. Conclusion

Baseline scenario

Assumptions:

• Two electric boilers, controlled by a thermostat fixing their temperature within $[\underline{T}_B; \underline{T}_B + \Delta T_B]$

EMS strategies

designed to reduce building's electricity bill.

Strategy 1: Myopic control of boilers for self-consumption

Rule-based logic: maintain boilers between Temp bounds and supply PV surplus to boilers to the extent possible

```
at each timestep h:
                             Inputs (5): ppcc, TB1, pB1, TB2, pB2
                                       p_x = p_{PCC}[h] - (p_{B1}[h] + p_{B2}[h])
                                       sort T_B[h] in ascending order
                                       for each boiler k do
 (set hysteresis state)
                                          set_sB,k[h] (T_{B,k}[h], s_{B,k}[h-1])
                                           if s_{B,k}[h] = 1 then
 (max supply if boiler
                                               u_{B,k} \leftarrow \overline{P}_k
                                               p_x = p_x + u_{B,k}
 at critical state)
                                           else
                                               if p_x > 0 then
                                                  e_k^T[h] = max(0, \overline{T}_{B,k} - T_{B,k}[h])
 (else supply using
                                                  u_{B,k} \leftarrow max[-C_B \frac{e_k^T[h]}{\Delta_t}, \overline{P}_k, -p_x]
                                                  p_x = p_x + u_{B,k}
 surplus)
                                               end
                                           end
                                        end
                              Outputs (2): UB1, UB2 (boiler commands)
```


<u>Limitations</u>: 1) myopic approach, 2) boiler model does not account for heat demand, 3) limited flexibility

Strategy 2: Myopic control of boilers & battery

Same rule-based control for boilers + battery backup:

- ightarrow Only charged when boilers at their max Temp or max Power
- → Discharged when negative surplus.

```
Inputs (7): pbat, Xbat, p_{PCC}, T_{B1}, p_{B1}, T_{B2}, p_{B2}
p_x = p_{PPC}[h] - (p_{B1}[h] + p_{B2}[h] + p_{bat}[h])
take \ care \ of \ boilers \ as \ usual
if \ p_x \geq 0 \ then
u_{bat} \leftarrow max[\frac{x_{bat}[h] - \overline{C}_{bat}}{\Delta t}, \overline{P}_{bat}^{ch}, -p_x] \quad \text{(charge battery)}
else
u_{bat} \leftarrow min[\frac{x_{bat}[h] - \underline{C}_{bat}}{\Delta t}, \overline{P}_{batat}^{disch}, -p_x] \quad \text{(discharge battery)}
end
return \ Control \ variables
Outputs (3): Ubat, UB1, UB2 (battery & boiler commands)
```


Strategy 3: Model Predictive Control with boilers as controllable loads

At each time h, controller applies the first iteration of the solution of the following OP:

(Power balance constraint)

(Boiler models and power and temperature bounds)

(Minimize cost)
$$\min_{\boldsymbol{u}_B, \boldsymbol{T}_B, p_g} \sum_{h=t}^{t+H-1} C_{buy}[h] \ max(0, +p_g[h]) - C_{sell}[h] \ max(0, -p_g[h])$$
 s.t.
$$p_g[h] + \hat{p}_x[h] + u_{B1}[h] + u_{B2}[h] = 0$$
 for $k = 1, 2$:
$$T_{B,k}[h+1] = T_{B,k}[h] - A \ u_{B,k}[h] + B \ \frac{\hat{E}_{B,k}[h]}{T_{B,k}[h]} - C \ \hat{E}_{B,k}[h]$$
 odels and power erature bounds)
$$\overline{P}_{B,k} \leq u_{B,k}[h] \leq 0$$

$$\underline{T}_{B,k} \leq T_{B,k}[h] \leq \overline{T}_{B,k}$$

Strategy 4: Model Predictive Control with battery & boilers as controllable loads

At each time h, controller applies the first iteration of the solution of the following OP:

(Minimize cost)

(Power balance constraint)

(Battery model and power and SoC bounds)

(Boiler models and power and temperature bounds)

$$\begin{split} \min_{\pmb{u_{B},T_{B},u_{bat},x_{bat}}} \sum_{h=t}^{t+H-1} C_{buy}[h] \ \max(0,+p_{g}[h]) - C_{sell}[h] \ \max(0,-p_{g}[h]) \\ s.t. \\ p_{g}[h] + \hat{p}_{x}[h] + u_{B1}[h] + u_{B2}[h] + u_{bat}[h] = 0 \\ x_{bat}[h+1] = x_{bat}[h] + u_{bat}[h] \Delta t \\ \underline{C}_{bat} \leq x_{bat}[h] \leq \overline{C}_{bat} \\ \overline{P}_{bat}^{ch} \leq u_{bat}[h] \leq \overline{P}_{bat}^{disch} \\ \text{for } k = 1, 2: \\ T_{B,k}[h+1] = T_{B,k}[h] - A \ u_{B,k}[h] + B \ \frac{\hat{E}_{B,k}[h]}{T_{B,k}[h]} - C \ \hat{E}_{B,k}[h] \\ \overline{P}_{B,k} \leq u_{B,k}[h] \leq 0 \\ \underline{T}_{B,k} \leq T_{B,k}[h] \leq \overline{T}_{B,k} \end{split}$$

<u>Limitations</u>: 1) need for forecasts (PV, loads, heat demand), 2) need for more computing time

Simulation framework

to allow us to compare all of the controller algorithms in the same building conditions.

Software implementation

- Listen to units sensors
- Run algorithm
- Publish control commands

- Simulate entities state evolution
- Publish Power and Temp/Soc
- Listen to controller's commands

Building case

- Building's power profile (without accounting for boilers)
- two 800L boilers (Pmax = -7.6 kW)
 - o [40°C; 50°C]
 - o [30°C; 60°C]

Boiler's heat demand for water usage:

• 5 kWh battery (P_{max/min} = ∓ 5 kW)

Time-of-Use tariff:

Forecasts and disturbances

Results

Comparing behaviour and cost reduction of all four strategies

Baseline scenario

Daily cost: 47.91 CHF

Strategy 1: myopic control boilers

Strategy 2: myopic control of battery & boilers

Daily cost: 45.22 CHF

-1.54% over strategy 1

-5.61% over Baseline

6 year battery payback time

Strategy 3: Applying MPC to boilers

Strategy 4: applying MPC to battery & boilers

Daily cost: 38.43 CHF

Reducing price variability

Baseline: 47.91 CHF

	Strategy 1 45.93 CHF	Strategy 2 45.22 CHF	Strategy 3 39.31 CHF	Strategy 4 38.43 CHF
Baseline	4.13%	5.61%	18.0%	19.79%
Strategy 1	×	1.54%	14.41%	16.33%
Strategy 2	×	×	13.07%	15.02%
Strategy 3	×	×	×	2.24%

	Strategy 1 40.02 CHF	Strategy 2 39.49 CHF	Strategy 3 35.55 CHF	Strategy 4 35.05 CHF
Baseline	2.65%	3.94%	13.52%	14.74%
Strategy 1	×	1.32%	11.17%	12.42%
Strategy 2	×	×	9.98%	11.24%
Strategy 3	×	×	×	1.41%

MPC reduces costs by 14.41% over a myopic control of boilers

MPC reduces costs by 11.17% over a myopic control of boilers

Conclusion

- **4.13**% estimated bill reduction with a primary EMS (communication + microcontroller + myopic algo).
- Battery can bring further savings to such EMS, after 6 years
- As expected, MPC proves to be more effective (18% reduction).
 - MPC implementation computationally costly (100 s per iteration)
 - MPC satisfactory results boosted by:
 - → High variability in the pricing structure.
 - → High accuracy in forecasts

Appendix A

Boiler model

$$T_B[h+1] = T_B[h] - \frac{\Delta t}{C_B} u_B[h] - \frac{E[h]}{C_B} + \frac{E[h] T_{inc}}{C_B} \frac{1}{T_B[h]}$$
 (5)

The boiler temperature state depends on 1) its present temperature $(T_B[h])$, 2) the temperature increase due to the supplied power $(\frac{\Delta t}{C_B} \ u_B[h])$, 3) the temperature decrease caused by the energy demanded by the building in terms of hot water $(\frac{E[h]}{C_B})$ and 4) the temperature decrease due to the incoming cold water, whose volume will depend on the energy drained but also on boiler's temperature $(\frac{E[h]}{C_B} \ T_{inc} \ \frac{1}{T_B[h]})$.

Appendix B

Linearizing MPC formulation

$$\begin{aligned} \min_{\boldsymbol{u}_{B}, \boldsymbol{T}_{B}, p_{g}} & \sum_{h=t}^{t+H-1} C_{buy}[h] \ p_{g}^{+}[h] - C_{sell}[h] \ p_{g}^{-}[h] \\ s.t. \\ & p_{g}[h] + \hat{p}_{x}[h] + u_{B1}[h] + u_{B2}[h] = 0 \\ & p_{g}^{-}[h] = \max(0, -p_{g}[h]) \\ & p_{g}^{+}[h] = \max(0, +p_{g}[h]) \\ & \text{for } k = 1, 2: \\ & \overline{T_{B,k}[h+1]} = T_{B,k}[h] - A \ u_{B,k}[h] + B \ \frac{\hat{E}_{B,k}[h]}{\underline{T_{B,k}[h]}} - C \ \hat{E}_{B,k}[h] \\ & \overline{P_{B,k}} \leq u_{B,k}[h] \leq 0 \\ & \underline{T_{B,k}} \leq T_{B,k}[h] \leq \overline{T_{B,k}} \end{aligned}$$

$$\begin{split} \min_{\boldsymbol{u}_{B}, \boldsymbol{T}_{B}, p_{g}, \phi, \epsilon_{B}} \sum_{h=t}^{t+H-1} \phi + w \; (\epsilon_{B1} + \epsilon_{B2}) \\ s.t. \\ p_{g}[h] + \hat{p}_{x}[h] + u_{B1}[h] + u_{B2}[h] = 0 \\ \phi &\geq C_{buy}[h] \; p_{g}[h] \\ \phi &\geq C_{sell}[h] \; p_{g}[h] \\ \text{for } k &= 1, 2 \\ T_{B,k}[h+1] &= T_{B,k}[h] - A \; u_{B,k}[h] + B \; \hat{E}_{B,k}[h] \; \underline{\epsilon_{B,k}} - C \; \hat{E}_{B,k}[h] \\ \underline{\epsilon_{B,k}} &\geq tan_{i}(\frac{1}{T_{B,k}[h]}) \quad \text{for } i \in [\underline{T}_{B,k}; \overline{T}_{B,k}] \\ \overline{P}_{B,k} &\leq u_{B,k}[h] \leq 0 \\ \underline{T}_{B,k}[h+1] &\leq T_{B,k}[h] \leq \overline{T}_{B,k}[h+1] \end{split}$$

Nonlinear version

 $T_{B,k}[h+1] = T_{B,k}[h] - A \ u_{B,k}[h] + B \ \hat{E}_{B,k}[h] \ \underline{\epsilon_{B,k}} - C \ \hat{E}_{B,k}[h]$ $\epsilon_{B,k} = max(tan_i(\frac{1}{T_{B,k}[h]}) \ \mathbf{for} \ i \in [\underline{T}_{B,k}; \overline{T}_{B,k}])$

Linear version

Strategy 1: Myopic control of boilers

return Control variables

<u>Rule-based logic</u>: at each timestep, maintain boilers between temp bounds and supply PV power surplus to boilers to the extent possible

Inputs: Power PCC, B1, B2 power & temp

For each boiler

Setting hysteresis state *s*_{B,k}[*h*]

Supplying if boiler at critical state

Supplying using surplus power

Outputs: B1,B2 actions

```
Inputs: T_B[h], p_{PCC}[h], p_{B1}[h], p_{B2}[h], s_B[h-1]
Control variables: u_B
Initialize: for all k: if (T_{R,k}[0] < T_{\Delta,k}): s_{R,k}[0] = 1, else: s_{R,k}[0] = 0
Start
u_B \leftarrow 0
p_x = p_{PCC}[h] - (p_{B1}[h] + p_{B2}[h])
sort T_{\mathbf{R}}[h] in ascending order
for each boiler k do
     if T_{B,k}[h] \geq \underline{T}_{B,k} + T_{\Delta,k} then
      |s_{B,k}[h] = 0
     if T_{B,k}[h] \leq \underline{T}_{B,k} then
       |s_{B,k}[h] = 1
     else
      |s_{B,k}[h] = s_{B,k}[h-1]
     end
     if s_{B,k}[h] = 1 then
         u_{B,k} \leftarrow \overline{P}_k
         p_r = p_r + u_{B,k}
         if p_x > 0 then
              e_k^T[h] = max(0, \overline{T}_{B,k} - T_{B,k}[h])
              u_{B,k} \leftarrow max[-C_B \frac{e_k^T[h]}{\Delta_t}, \overline{P}_k, -p_x]
              p_x = p_x + u_{B,k}
         end
     end
end
```

