

BIO306: Bioinformatics

Lecture 2

NGS and Reads mapping

Wenfei JIN PhD jinwf@sustc.edu.cn Department of Biology, SUSTech

Sanger Sequencing

Progression of Sequencing Reaction

dideoxynucleotides (ddNTPs)

What is Next generation sequencing (NGS)?

High-throughput sequencing

Massively parallel sequencing

Illumina dye sequencing as example

Illumina sequencing showed in original nature paper

Flow cell

Library preparation

Amplification/Cluster generation

Sequence by Synthesis (1)

fluorescently tagged nucleotides to the DNA strand

Sequence by Synthesis (2)

Schematic of Illumina dye sequencing

Illumina sequencing

Data Processing

Fastq format

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAA
+
!''*((((***+))%%%++)(%%%%).1***+*''))**55CCF>>>>>
```

4 lines per sequence/read

Line 1 begins with a @ and is followed by ID

Line 2 sequence letters.

Line 3 begins with a '+' is optionally followed by any characters

Line 4 quality values for the sequence in Line 2, must contain the same number of symbols as letters in the sequence. quality score are each encoded with a single ASCII character for brevity.

Characters of NGS data

- Short reads
 - Illumina (36 300bp)
 - SoLID (75bp max)
 - Ion Torrent (200-300bp max currently...)
 - Roche 454 400-800bp
- Data set is large (multiple coverage)
 - Millions or even billions reads

Reads alignment

Alignment of reads to a reference

Reference

Sample

Short Read Applications

Goal: identify variations Genotyping GGTATAC... CGGAAATTT **TATGCGCCC** ...CCATAG CGGTATAC ...CCAT **CTATATGCG** TCGGAAATT CGGTATAC CTATCGGAAA ...CCAT GGCTATATG GCGGTATA TTGCGGTA ...CCA **AGGCTATAT** CCTATCGGA ...CCA **AGGCTATAT GCCCTATCG** TTTGCGGT **A**AATTTGC ATAC... **AGGCTATAT GCCCTATCG GCGCCCTA A**AATTTGC GTATAC... **TAGGCTATA** .CCATAGGCTATATGCGCCCTATCGG<mark>CA</mark>ATTTGCGGTATAC...

.CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC...

RNA-seq, ChIP-seq, Methyl-seq

...CC

GAAATTTGC
GGAAATTT
CGGAAATTT
CGGAAATTT
TCGGAAATT
CTATCGGAAA
CCTATCGGA
TTTGCGGT
GCCCTATCG
AAATTTGC
ATAC...

Why is short read alignment hard?

The shorter a read, the less likely it is to have a unique match to a reference sequence

Fig. 1 The proportion of unique sequence in the *Streptococcus suis* (squares) and *Mus musculus* (triangles) genomes for varying read lengths. This graph indicates that read length has a critical affect on the ability to place reads uniquely to the genome

Why do we generate short reads?

- Sanger reads lengths ~ 800-2000bp
- Generally we define short reads as anything below 200bp
 - -Illumina (100bp 250bp)
 - -SoLID (75bp max)
 - —Ion Torrent (200-300bp max currently…)
 - -Roche 454 400-800bp
- Even with these platforms it is cheaper to produce short reads (e.g. 50bp) rather than 100 or 200bp reads
- Diminishing returns:
 - -For some applications 50bp is more than sufficient
 - Resequencing of smaller organisms
 - -Bacterial de-novo assembly
 - -ChIP-Seq
 - -Digital Gene Expression profiling
 - —Bacterial RNA-seq

Contents

Alignment algorithms for short-reads

- Adapting hashed seed-extend algorithms to work with shorter reads
- -Indel detection
- –Suffix/Prefix Tries
- Other alignment considerations
- -Typical alignment pipeline

Assembly algorithms for short reads

- –Effect of repeats
- -Overlap-Consensus
- -de Bruijn graphs
- Assembly evaluation metrics
- -Typical assembly pipeline

Adapting hashed seed-extend algorithms to work with shorter reads

- Improve seed matching sensitivity
 - Allow mismatches within seed
 - BLAST
 - Allow mismatches + Adopt spaced-seed approach
 - ELAND, SOAP, MAQ, RMAP, ZOOM
 - Allow mismatches + Spaced-seeds + Multi-seeds
 - SSAHA2, BLAT, ELAND2
- Above and/or Improve speed of local alignment for seed extension
 - Single Instruction Multiple Data
 - Shrimp2, CLCBio
 - Reduce search space to region around seed

Hashed seed-extend algorithms

2 step process

- Identify a match to the seed sequence in the reference
- Extend match using sensitive (but slow) Smith-Waterman algorithm (dynamic programming)

Reference sequence:

Short read:

GTCATCGTACGATCGATCGATCGATCGCTA

Note that the short read has 1 difference wrt to reference

Reference sequence:

Short read:

GTCATCGTACG ATCGATCGGCTA

11bp word 11bp word 11bp word

The algorithm will try to match each word to the reference. If there is a match at with any single word it will perform a local alignment to extend the match

Reference sequence:

Seed Extend with Smith Waterman

Short read:

GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

Here the algorithm is able to match the short read with a word length of 11bp

Reference sequence:

Short read:

GTCATCGTACGATCGATCGATCGATCGGCAA

Note that the short read has 3 differences Possibly sequencing errors, possibly SNPs

Reference sequence:

Short read:

GTCATCGTACG ATCGATCGCCAA

11bp word 11bp word 11bp word

Note that the short read has 3 differences

Reference sequence:

Short read:

GTCATCGTACG ATCGATCGCCAA

No seeds match

Therefore the algorithm would find no hits at all!

Adapting hashed seed-extend algorithms to work with shorter reads

- Improve seed matching sensitivity
 - Allow mismatches within seed
 - BLAST
 - Allow mismatches + Adopt spaced-seed approach
 - ELAND, SOAP, MAQ, RMAP, ZOOM
 - Allow mismatches + Spaced-seeds + Multi-seeds
 - SSAHA2, BLAT, ELAND2
- Above and/or Improve speed of local alignment for seed extension
 - Single Instruction Multiple Data
 - Shrimp2, CLCBio
 - Reduce search space to region around seed

Adapting hashed seed-extend algorithms to work with shorter reads

- Improve seed matching sensitivity
 - Allow mismatches within seed
 - BLAST
 - Allow mismatches + Adopt spaced-seed approach
 - ELAND, SOAP, MAQ, RMAP, ZOOM
 - Allow mismatches + Spaced-seeds + Multi-seeds
 - SSAHA2, BLAT, ELAND2
- Above and/or Improve speed of local alignment for seed extension
 - Single Instruction Multiple Data
 - Shrimp2, CLCBio
 - Reduce search space to region around seed

Contents

- Alignment algorithms for short-reads
 - -Background Blast (why can't we use it?)
 - Adapting hashed seed-extend algorithms to work with shorter reads
 - -Suffix/Prefix Tries
 - Other alignment considerations
 - -Typical alignment pipeline
- Assembly algorithms for short reads
 - –Effect of repeats
 - -Overlap-Consensus
 - -de Bruijn graphs
 - Assembly evaluation metrics
 - -Typical assembly pipeline

Suffix-Prefix Trie

- A family of methods which uses a Trie structure to search a reference sequence
 - Bowtie
 - BWA
 - SOAP version 2
- Trie data structure which stores the suffixes (i.e. ends of a sequence)
- Key advantage over hashed algorithms:
 - Alignment of multiple copies of an identical sequence in the reference only needs to be done once
 - Use of an FM-Index to store Trie can drastically reduce memory requirements (e.g. Human genome can be stored in 2Gb of RAM)
 - Burrows Wheeler Transform to perform fast lookups

Suffix Trie

AGGAGC

Heng Li & Nils Homer. Sequence alignment algorithms for nextgeneration sequencing. Briefings in Bioinformatics. Vol 11. No 5. 473 483, 2010

Suffix Trie

A block sorting lossless data compression algorithm.

Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Burrows-Wheeler Algorithm

- Encodes data so that it is easier to compress
- Burrows-Wheeler transform of the word BANANA
- Can later be reversed to recover the original word

Transformation					
Input	All Rotations	Sorting All Rows in Alphabetical Order by their first letters	Taking Last Column	Output Last Column	
^BANANA	^BANANA	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BA NA ^BANA ^BANANA ^BANANA	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BANA ^BANANA ^BANANA	BNN^AA A	

More Burrows-Wheeler

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Burrows-Wheeler Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT

Repeated characters mean that it is easier to compress

Query:
AATGATACGGCGACCACCGAGATCTA

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie/Soap2 vs. BWA

Bowtie and Soap2 cannot handle gapped alignments
 No indel detection => Many false SNP calls

Bowtie/Soap2:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

CCATTGTCATCGTACTTGGGATCTA

TCATCGTACTTGGGATCTA

TTGGGATCTA

N.B. Bowtie2 can handle gapped alignments

Bowtie/Soap2 vs. BWA

Bowtie and Soap2 cannot handle gapped alignments
 No indel detection => Many false SNP calls

BWA:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

CCATTGTCATCGTACTTGGGATC-TA

TCATCGTACTTGGGATC-TA

TTGGGATC-TA

N.B. Bowtie2 can handle gapped alignments

Comparison

Hash referenced spaced seeds

- Requires ~50Gb of memory
- Runs 30-fold slower
- Is much simpler to program
- Most sensitive

Suffix/Prefix Trie

- Requires <2Gb of memory
- Runs 30-fold faster
- Is much more complicated to program
- Least sensitive

Comparison

- Bowtie's reported 30-fold speed increase over hash-based MAQ with small loss in sensitivity
- Limitations to Trie-based approaches:
 - Only able to find alignments within a certain 'edit distance'
 - -Bowtie does not do gapped alignments no indels!
 - —Important to quality clip reads (-q in BWA)
 - –Non-A/C/G/T bases on reads are simply treated as mismatches
 - -Make sure Ns are removed!

Hash based approaches are more suitable for divergent alignments

- Rule of thumb:
 - <2% divergence -> Trie-based
 - −E.g. human alignments
 - >2% divergence -> seed-extend based approach
 - −E.g. wild mouse strains alignments

Thank you for your attention!