Celdas lógicas configurables (CLC) en el microcontrolador PIC18F57Q43

Por Kalun Lau Octubre del 2025

Agenda

- El periférico Celda Lógica Configurable (CLC)
 - Descripción funcional
 - Configuración de entradas
 - Selección de función lógica
 - Gestión de la salida
 - Registros de configuración
 - El PPS para el CLC
- Ejemplo de un contador síncrono de 3 bits

Las Celdas Lógicas Configurables (CLC)

- Periférico donde se puede implementar funciones lógicas en hardware, similar a un PLD (programmable logic device).
- Se tienen ocho celdas lógicas configurables disponibles.

CLC: Selección de señales de entrada

- Tener en cuenta el PPS si es que la señal de entrada proviene de pines del microcontrolador.
- Los puertos disponibles para recibir señales son:

	PPS Input	Default Pin	Register Reset	Available Input Port										
Peripheral	Register	Selection at POR			in De	vices	40	-Pin	De	vice	48	-Pin	Dev	ices
CLCx Input 1	CLCINOPPS	RA0	'b000 000	Α	_	С	Α	_	С -	- -	Α	_ (-	
CLCx Input 2	CLCIN1PPS	RA1	'b000 001	Α	1-	C	Α	.—.	C -		Α	_ (-	
CLCx Input 3	CLCIN2PPS	RB6	'b001 110	_	В	С	_	В	- 1	D —	-	В –	- D -	
CLCx Input 4	CLCIN3PPS	RB7	'b001 111	_	В	С	_	В	- 1	D –	-	В -	- D	
CLCx Input 5	CLCIN4PPS	RA0	'b000 000	Α	-	C	A	_	C -	_ _	Α	_ (-	
CLCx Input 6	CLCIN5PPS	RA1	'b000 001	Α	-	C	Α	-	C -	- -	Α	_ (
CLCx Input 7	CLCIN6PPS	RB6	'b001 110	_	В	С	_	В	- 1	D —	-	В –	- D -	
CLCx Input 8	CLCIN7PPS	RB7	'b001 111	-	В	C	-	В	-	D —	-	В –	D -	

Ejemplo: Si necesitamos conectar la entrada RC1 para CLC5: CLCIN5PPS = 11H (Revisar hoja técnica 21.8.1)

CLC: Selección de función lógica

- Se tienen como opción ocho tipos de función lógica para un CLC.
- Tener en cuenta que las entradas lcxg1, lcxg2, lcxg3 y lcxg4 provienen de la entapa de selección de entrada vista anteriormente.
- La señal de salida lcxq esta conectado a la etapa de la gestión de salida del CLC

CLC: Gestión de salida del CLC

- En esta etapa se configura lo siguiente:
 - Habilitador del CLC con EN (registro CLCnCON bit 7)
 - Inversor de la señal de salida con POL (registro CLCnPOL bit 7)
 - Opción para que salga por un pin de E/S configurando el PPS
 - Configuración del flanco para generación de interrupción

CLC: Gestión de salida del CLC

 Hay que tener en cuenta los puertos permitidos por el PPS para el periférico CLC y es que se requiere que la señal salga a un pin del microcontrolador

Ejemplo: Si necesitamos conectar la salida de CLC3 hacia RD5: RD5PPS = 03H

CLC: Resumen de registros implicados

CLC: Resumen de registros implicados

Address	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x0362	IPR0	7:0	IOCIP		CLC1IP		CSWIP	OSFIP	HLVDIP	SWIP
0x0368	IPR6	7:0	DMA2AIP	DMA2ORIP	DMA2DCNTIP	DMA2SCNTIP	NCO1IP	CWG1IP	CLC2IP	INT1IP
0x0369	IPR7	7:0	PWM3IP	PWM3PIP	CLC3IP		I2C1EIP	I2C1IP	I2C1TXIP	I2C1RXIP
0x036B	IPR9	7:0			CLC4IP		U3IP	U3EIP	U3TXIP	U3RXIP
0x036C	IPR10	7:0	DMA3AIP	DMA3ORIP	DMA3DCNTIP	DMA3SCNTIP	NCO2IP	CWG2IP	CLC5IP	INT2IP
0x036D	IPR11	7:0	DMA4AIP	DMA4ORIP	DMA4DCNTIP	DMA4SCNTIP	TMR4IP	CWG3IP	CLC6IP	CCP3IP
0x0370	IPR14	7:0					NCO3IP	CM2IP	CLC7IP	
0x0371	IPR15	7:0					TMR6IP	CRCIP	CLC8IP	NVMIP
0x049E	PIEO	7:0	IOCIE		CLC11E		CSWIE	OSFIE	HLVDIE	SWIE
0x04A4	PIE6	7:0	DMA2AIE	DMA2ORIE	DMA2DCNTIE	DMA2SCNTIE	NCO1IE	CWG1IE	CLC2IE	INT1IE
0x04A5	PIE7	7:0	PWM3IE	PWM3PIE	CLC3IE		I2C1EIE	I2C1IE	I2C1TXIE	I2C1RXIE
0x04A7	PIE9	7:0			CLC4IE		U3IE	U3EIE	U3TXIE	U3RXIE
0x04A8	PIE10	7:0	DMA3AIE	DMA3ORIE	DMA3DCNTIE	DMA3SCNTIE	NCO2IE	CWG2IE	CLC5IE	INT2IE
0x04A9	PIE11	7:0	DMA4AIE	DMA40RIE	DMA4DCNTIE	DMA4SCNTIE	TMR4IE	CWG3IE	CLC6IE	CCP3IE
0x04AC	PIE14	7:0					NCO3IE	CM2IE	CLC7IE	
0x04AD	PIE15	7:0					TMR6IE	CRCIE	CLC8IE	NVMIE
0x04AE	PIRO	7:0	IOCIF		CLC1IF		CSWIF	OSFIF	HLVDIF	SWIF
0x04B4	PIR6	7:0	DMA2AIF	DMA2ORIF	DMA2DCNTIF	DMA2SCNTIF	NCO1IF	CWG1IF	CLC2IF	INT1IF
0x04B5	PIR7	7:0	PWM3IF	PWM3PIF	CLC3IF		I2C1EIF	I2C1IF	I2C1TXIF	I2C1RXIF
0x04B7	PIR9	7:0			CLC4IF		U3IF	U3EIF	U3TXIF	U3RXIF
0x04B8	PIR10	7:0	DMA3AIF	DMA3ORIF	DMA3DCNTIF	DMA3SCNTIF	NCO2IF	CWG2IF	CLC5IF	INT2IF
0x04B9	PIR11	7:0	DMA4AIF	DMA40RIF	DMA4DCNTIF	DMA4SCNTIF	TMR4IF	CWG3IF	CLC6IF	CCP3IF
0x04BC	PIR14	7:0					NCO3IF	CM2IF	CLC7IF	
0x04BD	PIR15	7:0					TMR6IF	CRCIF	CLC8IF	NVMIF

Detalle de registros para el CLC:

NOTA: Tener en cuenta que para configurar un CLC, se deberá especificar primero el CLC a través de este registro

Detalle de registros para el CLC:

- CLCnCON es el registro principal de configuración de un CLC, aquí encontrarás lo siguiente:
 - EN: habilitador del CLC
 - INTP/INTF: establecer si la interrupción del CLC es en flanco ascendente o descendente
 - MODE: selección de la función lógica del CLC

Detalle de registros para el CLC:

- CLCnPOL es el registro de polaridad de la señal lógica:
 - POL: polaridad de la señal de salida del CLC
 - GxPOL: polaridad de la señal de cada puerta antes de ingresar a la función lógica del CLC

Detalle de registros para el CLC:

 CLCnSELx es el registro de selección de la señal de entrada a cada puerta.

Detalle de registros para el CLC:

 CLCnGLSx es el registro donde se selecciona qué señales van a ingresar al sector de puerta, tener en cuenta que hay la opción de ingreso invertido o no invertido.

Detalle de registros para el CLC:

 CLCDATA contiene una copia de las señales de salida de cada CLC

Referencias sobre uso de CLC

- Microchip TB3273 Getting Started with CLC on PIC18: https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ApplicationNotes/ApplicationNotes/Getting-Started-With-CLC-on-PIC18-90003273A.pdf
- Microchip AN2912 Using CLCs in Real-Time Applications: https://ww1.microchip.com/downloads/en/AppNotes/AN2912-Using-CLCs-in-Real-Time-Apps_00002912A.pdf
- Microchip DS40002188A Configurable Logic Cell (CLC) Tips and Tricks:
 - https://ww1.microchip.com/downloads/en/DeviceDoc/40002188 A.pdf

Ejemplo: Contador síncrono de 3 bits e implementado con FF JK

- Contador tipo síncrono (entrada de reloj para todos los FFs)
- Cuenta ascendente de uno en uno

Ejemplo: Contador síncrono de 3 bits e implementado con FF JK

 Se emplearán cuatro celdas lógicas configurables: tres en modo FFJK y uno en modo AND de cuatro entradas

Ejemplo: Contador síncrono de 4 bits e implementado con FF JK

 Aumentando la resolución del contador anterior a 4 bits se tiene el siguiente circuito lógico digital:

 Basta añadir un flip flop JK adicional para el dígito mas significativo y una compuerta AND

Ejemplo: Contador síncrono de 4 bits e implementado con FF JK

• Recordando Demorgan:

 Para implementar la compuerta AND se usarán las entradas negadas y salida invertida en el GATE 2 y 4 (entradas J y K del FFJK)

Ejemplo: Contador síncrono de 4 bits e implementado con FF JK

• Configuración del CLC5:

```
; conf del CLC5
movlw 04H
movwf CLCSELECT, 1 ; CLC4 seleccionado
movlw OAH
movwf CLCnPOL, 1 ; Negados G2 y G4
movlw 12H
movwf CLCnSEL0, 1 ;D1S=TMR0
movlw 36H
movwf CLCnSEL1, 1 ;D2S=CLC4
movlw 35H
movwf CLCnSEL2, 1 ;D3S=CLC3
clrf CLCnSEL3, 1 ; D4S no usado
movlw 02H
movwf CLCnGLSO, 1 ;GATE1 con G1D1T
movlw 14H
movwf CLCnGLS1, 1 ;GATE2 con G2D2N AND G2D3N
clrf CLCnGLS2, 1 ;GATE3 en cero
movlw 14H
movwf CLCnGLS3, 1 ;GATE4 con G4D2N AND G4D3N
clrf CLCDATA, 1
movlw 86H
movwf CLCnCON, 1 ; CLC5 enabled, FFJK mode
```

Ejemplo: Contador síncrono de 4 bits e implementado con FF JK

- Como propuesta de mejora, se puede obviar el uso de la CLC4 con la configuración vista en CLC5 (armar la AND usando las entradas del Data GATE) y aplicarla en CLC3.
- El detalle de la configuración se muestra a continuación:

Fin de la sesión