Tronc commun science 1

Pr. LATRACH Abdelkbir Année scolaire: 2017 - 2018

Comparer les nombres *A* et *B* dans les cas suivants :

- 1) $A = 1 + 3\sqrt{2}$
- ; $B = 3\sqrt{3}$
- $A = -5\sqrt{3}$ 2)
- ; $B = -6\sqrt{2}$
- 3)

- (0 < x < y)

Soient: $A = 3\sqrt{18} - \sqrt{72} + 2\sqrt{\frac{9}{2}}$ et $B = \sqrt{28} + \sqrt{32} - 2\sqrt{2}$.

- ① Montrer que : $A B = 4\sqrt{2} 2\sqrt{7}$.
- \bigcirc Comparer A et B.

On considère les nombres a et b tels que :

$$a = 2\sqrt{5} - 3\sqrt{2}$$

$$a = 2\sqrt{5} - 3\sqrt{2}$$
 et $b = \sqrt{39 - 12\sqrt{10}}$.

- ① Montrer que $a \ge 0$.
- ② Calculer a^2 et b^2 .
- 3 Comparer a et b puis $\frac{1}{a}$ et $\frac{1}{b}$.

Soient a et b deux nombres réels tels que : $a \ge 2$ et $b \ge 2$.

On pose : $x = \sqrt{a} + \sqrt{b}$

- et $y = \sqrt{ab+1}$.
- ① Montrer que : $x^2 y^2 = (a-1)(1-b)$.
- ② Comparer x et y.
- 3 Application : comparer les nombres $\sqrt{3} + \sqrt{2} + 1$ et $\sqrt{6}$.

Soient x et y deux nombres réels strictement positifs tels que : $x^2 + y^2 = 2$.

- ① Montrer $(x + y)^2 = 2(1 + xy)$.
- **2** En déduire que : $x + y > \sqrt{2}$.

- ① Soit a un nombre réel tel que : $a \ge 1$.
 - Montrer que : $a^2 \ge a$.
- ② Soient x et y deux nombres réels tels que : $x \ge 1$ et $y \ge 1$. Montrer que : $x + y \le 2xy$.

Soient *x* et *y* deux nombres réels. Montrer que

$$x^2 + y^2 \ge 2xy$$
 ; $(x+y)^2 \ge 4xy$; $\left(\frac{x+y}{2}\right)^2 \le \frac{x^2 + y^2}{2}$.

Soient x et y deux nombres réels strictement positifs.

Montrer que :
$$x + y \ge 2\sqrt{xy}$$
 ; $\frac{x}{y} + \frac{y}{x} \ge 2$.

Soient a, b et c trois nombres réels.

On pose : $A = a^2 + b^2 + c^2 - ab - ac - bc$.

- ① Montrer que : $2A = (a b)^2 + (b c)^2 + (c a)^2$.
- ② En déduire que : $ab + ac + bc \le a^2 + b^2 + c^2$.

Soient a et b deux nombres réels tels que :

$$3 \le a \le 9$$

 $2 \le b \le 7$. et

Encadrer les expressions suivantes :

$$a+b$$
 ; $a-b$; $2a+3b$; $2a-5b$;

$$; 2a+3b ; 2$$

$$\frac{a}{b}$$
 ; $\frac{2a+3b}{2a-5b}$; a^2+b^2 .

Soient x et y deux nombres réels tels que :

$$-4 \le x \le -1$$

et
$$3 \le \gamma \le 5$$
.

Encadrer les expressions suivantes :

$$x + y$$
 ; $x - y$; xy ; $\frac{x^2}{y^2 - 2xy}$.

Soient x et y deux nombres réels tels que :

$$-2 \le x \le 2$$

 $5 \le y \le 9$. et

Encadrer les expressions suivantes :

$$x+y$$
 ; $x-y$; xy ; $\frac{x}{y}$

Soit x un nombre réel tel que : $5 \le x \le 7$.

On pose : $A = x^2 - 2x - 8$.

- ① Encadrer l'expression A.
- **②** *a*) Vérifier que : A = (x-4)(x+2).
 - b) En déduire un autre encadrement de A.
- **3** a. Vérifier que : $A = (x-1)^2 9$.
 - b) En déduire un autre encadrement de A.
- 4 Quel est le meilleur encadrement de A?

Soient x et y deux nombres réels tels que : $1 \le x \le 2$ et $\frac{1}{2} \le y \le \frac{3}{2}$. On pose : $A = x^2 - y^2 + x + y$.

① Encadrer l'expression A.

② *a*) Vérifier que : A = (x + y)(x - y + 1).

b) En déduire un autre encadrement de A.

Écrire, sans le symbole de la valeur absolue, les nombres sui-

•
$$A = |3 - \pi| + |2^{-3}| + |-\pi\sqrt{2} - 1| - |2^{-3} - 6|$$
.
• $B = |\frac{3}{\sqrt{15} + 5}| + |\frac{1}{\sqrt{15} - 5}|$.

• $C = |2x - 3| + \sqrt{(2x - 3)^2}$, tel que : $x \in \mathbb{R}$.

Soient *x* et *y* deux nombres réels tels que :

$$|x-2| < \frac{1}{2}$$
 et $|y| \le \frac{1}{2}$.

Montrer que : $1 < \frac{2x}{x - y} < 5$.

Les questions de cet exercice sont indépendantes.

- ① On considère le nombre $A = \sqrt{6 \sqrt{11}} \sqrt{6 + \sqrt{11}}$.
 - a) Déterminer le signe de A.
 - b) Calculer A^2 puis déduire la valeur de A.
- ② On considère le nombre $B = (\sqrt{6} + \sqrt{2})(\sqrt{3} 2)(\sqrt{\sqrt{3} + 2})$.
 - a) Montrer que : $B^2 = 4$.
 - b) En déduire la valeur de B.
- 3) On considère le nombre $C = \sqrt{x^2 + 2x + 1} + \sqrt{x^2 2x + 1}$. Sachant que $x \in [-1, 1]$, simplifier le nombre C.

Soient a et b deux nombres réels tels que :

$$a \ge -2$$

t
$$b \le -1$$

$$a - b = 6$$
.

- ① Calculer le nombre : $A = \sqrt{(a+2)^2} + \sqrt{(b+1)^2}$
- ② Montrer que : $a \le 5$ et $b \ge -8$.
- 3 Déterminer la valeur du nombre : B = |a+b-4| + |a+b+10|.

Résoudre dans R les équations suivar

- |2x-3| = 8 ; 2) $|x-\frac{2}{3}| = -1$; |x+8| = |2x-1| ; 4) ||x|-3| = |4x+5|;
- |x+2| = |x-3|. 5)

Résoudre dans \mathbb{R} les inéquations suivantes :

- $|x| \leq 3$ 1)
- $; \quad 2) \qquad |x| \ge 3;$
- 3) $|1-x| \ge 4$
- ; 4) |7-2x| > 1;
- $1 \le |x+2| \le 2.$

Soient a et b deux nombres réels tels que :

- et $0 < b < \frac{1}{2}$ et ab = 1.

- ① Montrer que : 2 < a < 3.
- ② En déduire que : $\frac{1}{3} < b < \frac{1}{2}$.
- **3** Montrer que : $\frac{3}{7} < \frac{1}{a-2h} < 1$.
- ① Vérifier que $\frac{5}{7}$ est une valeur approchée de $\frac{1}{a-2h}$ à $\frac{2}{7}$ prés.

Soient a et b deux nombres réels tels que : 0 < a < 1 et $b = \frac{1 + \sqrt{a}}{2}$.

- ① Montrer que : $\frac{1}{2} < b < 1$.
- **2** Montrer que : $b-1 = \frac{a-1}{2(1+\sqrt{a})}$.
- 3 En déduire que : $|b-1| < \frac{1}{2}|a-1|$.
- ① Déduire une valeur approchée de $\frac{1+\sqrt{0.6}}{2}$ à 2×10^{-2} prés.

Soit $x \in \mathbb{R}^*$.

On pose : $E = \frac{\sqrt{1+x^2}}{x}$.

- ① Montrer que : $E \frac{1}{x} = \frac{x}{\sqrt{1 + x^2 + 1}}$
- (2) a) Montrer que $\sqrt{1+x^2}+1 \ge$
 - b) En déduire que : $|E \frac{1}{r}| < \frac{1}{2}|x|$.
- 3 Déterminer une valeur approchée au nombre $\frac{\sqrt{0,0001}}{0.01}$ à 5×10^{-3} prés.

Soit $a \in \mathbb{R}_{+}^{*}$.

- ① a) Montrer que : $1 + \sqrt{1+a} >$
 - b) En déduire que : $0 < \frac{1}{1 + \sqrt{1 + a}} < \frac{1}{2}$.
 - c) Montrer que : $1 < \sqrt{1+a} < 1+$
 - d) Donner un encadrement du nombre $\sqrt{1,04}$.
- ② a) Montrer que : $\frac{1}{\sqrt{a} + \sqrt{a+1}} = \sqrt{a+1} \sqrt{a}.$ b) En déduire la valeur de la somme : $S = \frac{1}{1+\sqrt{2}} + \frac{2}{\sqrt{2}+\sqrt{3}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}.$

$$S = \frac{1}{1 + \sqrt{2}} + \frac{2}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}}.$$

Soit $n \in \mathbb{N}$.

- ① Montrer que : $\frac{n}{n+1} < \frac{n+1}{n+2}$.
- ② On considère les nombres : $A = \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times ... \times \frac{97}{98} \times \frac{99}{100}$ et $B = \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times ... \times \frac{96}{97} \times \frac{98}{99}$ a) Montrer que : A < B.

 - b) Calculer le produit
 - c) En déduire que : $A < \frac{1}{10} < B$.