Introduction to Arithmagraphs

Define an *arithmagraph* to be a diagram of vertices and edges in which values at adjacent vertices combine to equal values at the edges using an operation. For example, the arithmagraph on the right uses <u>addition</u>. 12

10

16

9

1. Complete the following arithmagraph using ADDITION.

2. Complete the following arithmagraph using <u>MULTIPLICATION</u>.

3. Complete the following arithmagraph using <u>MULTIPLICATION</u>.

4. Complete the following arithmagraph using <u>AVERAGE</u>.

5. What questions come to your mind after doing these arithmagraph problems?

Arithmagraphs with Edge Labels

1. The following arithmagraph can be completed in more than one way using <u>ADDITION</u>. In how many ways can it be completed using <u>WHOLE NUMBERS</u>? Explain your reasoning.

2. In how many ways can the following arithmagraph using <u>ADDITION</u> be completed using WHOLE NUMBERS? How about using ANY NUMBERS?

3. Complete the following arithmagraphs using <u>ADDITION</u>.

4. Complete the following arithmagraphs using <u>MULTIPLICATION</u>:

5.	questions:		
	a.	What types of triangular arithmagraphs using <u>ADDITION</u> can ALWAYS be solved?	
	b.	How many ways are there to solve a triangular arithmagraph using <u>ADDITION</u> ? How do you know?	
	c.	What types of triangular arithmagraphs using <u>MULTIPLICATION</u> can ALWAYS be solved?	
	d.	How many ways are there to solve a triangular arithmagraph using <u>MULTIPLICATION</u> ? How do you know?	
	e.	What's the fastest way you can think of to solve a triangular arithmagraph?	
6.		nallenge] Do you know modular arithmetic? If so, try creating and solving triangular arithmagraph oblems using mod 8 arithmetic. Then, try using mod 7 arithmetic. What things do you notice?	

