${\bf Vorlesung smitschrift}$

Algorithmen und Berechenbarkeit

Vorlesung 18

Letztes Update: 2018/01/27 - 10:59 Uhr

Die Komplexitätsklassen \mathcal{NP} und \mathcal{P}

	\mathcal{NP}	\mathcal{P}
TM	nichtdeterministisch	deterministisch
Übergang	Relation	Funktion
Akzeptanz	falls es einen gültigen Berechnungspfad zu einem akzeptierenden Endzustand gibt	falls die TM in einem akzeptierenden Endzu- stand landet (es gibt nur einen Pfad)
Laufzeit für eine Eingabe der Länge n	$t_{\mathcal{M}} = L \ddot{a} n g ster k \ddot{u} r z e s$ ter a k z e p ti e r e chnung s p f a d	$t_{\mathcal{M}} = L \ddot{a}ngster Berech nungspfad$
Charakterisierung	$\mathcal{NP} \rightarrow \text{Entscheidungs-}$ probleme, für die die NTM \mathcal{M}_{NTM} akzeptiert mit Laufzeit $t_{\mathcal{M}} = \mathcal{O}(n^{\alpha})$ für ein konstantes α	$\mathcal{P} \to \text{Entscheidungsprobleme}$, für die die DTM \mathcal{M}_{DTM} akzeptiert mit Laufzeit $t_{\mathcal{M}} = \mathcal{O}(n^{\alpha})$
Beispiele	CLIQUE, Knapsack	Sortieren, Graphzusam- menhang

$$\mathcal{NP}\supseteq\mathcal{P}$$
?

Die Klasse $\mathcal{N}\mathcal{P}$ kann auch wie folgt charakterisiert werden:

Satz: Eine Sprache \mathcal{L} ist genau dann in \mathcal{NP} , wenn es einen Polynomzeitalgorithmus V und ein Polynom p gibt mit

$$x \in L \Leftrightarrow \exists y \in \{0,1\}^* \mid |y| \le p(|x|)$$

und V akzeptiert y#x.

Beweisidee: Falls \mathcal{L} in \mathcal{NP} ist, existiert eine NTM \mathcal{M} mit $\mathcal{L}(\mathcal{M}) = \mathcal{L}$ und polynomieller Laufzeit. Nun modifiziert man \mathcal{M} zu einer deterministischen TM V, die bei jeder (config, gekennzeichnet) - Situation, in der mehrere Schritte möglich sind, den Leitstring y liest und entsprechend deterministisch handelt.

Der Leitstring y muss nur polynomiell lang sein, da die NTM \mathcal{M} polynomielle Laufzeit hat (weitere Informationen im Skript).

Bin-Packing (Optimierung: \mathcal{NP} -schwer)

Gegeben: $b \in \mathbb{N}, \quad w_1, w_2, \dots, w_{\mathbb{N}} \in \{1, \dots, b\}$

Gegesucht: Eine Funktion $f: \{1, \dots, N\} \to \{1, \dots, k\}$, sodass für alle $i \in \{1, \dots, k\}$ gilt

$$\sum_{j \in f^{-1}(i)} w_j \le b$$

und k minimal.

Bin-Packing (Entscheidungsvariante: \mathcal{NP} -vollständig)

Gegeben: $b \in \mathbb{N}, \quad w_1, w_2, \dots, w_{\mathbb{N}} \in \{1, \dots, b\}$

Frage: Existiert eine solche Funktion f?

Travelling Salesperson Problem (TSP)

Gegeben sei ein vollständiger gewichteter Graph mit N-Knoten. Es soll nun eine Permutation π der Knoten gefunden werden, sodass die folgende Gleichung minimal wird:

$$\sum_{i=0}^{n-1} c(\pi(i)), \pi((i+1)n)$$

"Finde die billigste Rundtour"

Satz: Die Entscheidungsvarianten von KP, BPP und TSP sind in \mathcal{NP} .

Beweisidee: Man rät eine nichtdeterministische Lösung und verifiziert dann, dass die Lösung in der Tat gültig ist (alles in polynomieller Zeit).

Satz: Wenn die Entscheidungsvariante von KP in polynomieller Zeit lösbar ist, dann auch die Optimierungsvariante.

Beweisidee: Man nimmt an, ein deterministischer-polyzeit-Algorithmus \mathcal{A}_{ϵ} für die Entscheidungsvariante existiert.

1. **Schritt**: Man bestimmt den maximal möglichen Rucksackwert durch Binärsuche mittels \mathcal{A}_{ϵ} auf die folgende Weise: Man fragt \mathcal{A}_{ϵ} , ob es einen Rucksack mit Wert $\sum_{i=1}^{N} P_i$ gibt, falls nein, halbiert man, . . . Die Anzahl der Iterationen ist

$$\leq \log \sum p_i \leq n$$

bei Eingabelängen $\leq 2^n$.

- 2. **Schritt**: Man betrachtet den Gegenstand N und entscheidet, ob dieser eingespart werden soll, wie folgt:
 - a) Man bestimmt den Max-Wert a für die Gegenstände $1, \ldots, N$
 - b) Man bestimmt den Max-Wert b für die Gegenstände $1, \dots, N-1$
 - c) Falls a=b, dann wirft man den Gegenstand N weg, sonst packt man den Gegenstand N ein.
 - \Rightarrow Man wiederholt die Schritte a)-c) für die Gegenstände $1,\ldots,N-1$

Es erfordert $\mathcal{O}(n)$ Aufrufe für das Bestimmen des Max-Werts. Insgesamt ist die Laufzeit polynomiell.

Satz: Für jedes Entscheidungsproblem $L \in \mathcal{NP}$ gibt es einen deterministischen Algorithmus bzw. eine deterministische TM \mathcal{M} , der L entscheidet und dessen Worst-Case-Laufzeit beschränkt ist durch $2^{q(n)}$ für ein Polynom q.

Beweisidee: Man enumeriert alle möglichen Leitstrings für die Verifizierer, das sind exponentiell viele.