Naive Bayes with numeric features;

INPUT

temperature	play goff?
85	No
80	No
83	yes
. 70	yes
68	yes
65	20
64	yes
72	No
69	yes
75	yes
75	yes
72	yes
81	yes
71	00

QUESTION:

How to get the o and in?

For play= yes, the temp. values are: 83,70,68,64,69,75,75,72,8)

Their mean:
$$\mu = \frac{1}{n} \sum x_i = 73$$

Their $\sigma := \sqrt{\frac{1}{n-1}} \sum (x_i - \mu)^2 = \sqrt{\frac{1}{8} [83-73]^2 + (70-73)^2 + ... + (81-73)^2}$
 $= \sqrt{\frac{1}{8} \cdot 304} = 6.2$

Recall the Probability density function for a hormal Variable: $f(x) = \sqrt{\frac{1}{2\pi^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

So, P(temp=66) play= yes) =
$$f(66)$$
 for $M=73$ and $G=6.2$
= $\frac{1}{\sqrt{2\pi} \cdot 6.2}$ e $\frac{(66-73)^2}{2 \cdot 6.2^2}$ = 0.034

And for
$$P(tempz bb)$$
 play=no), = $f(bb)$ for $\mu = 74.6$ and $G = 7.9$
= $\sqrt{2\pi} \cdot 7.9$ e $\frac{(bb-74.6)}{2\cdot 7.9^2} = 0.022$.

$$= \frac{9}{14} \cdot 0.034$$

$$\frac{9}{14} \cdot 0.034 + \frac{5}{14} \cdot 0.022$$

Since play is a binary class variable,

P(play=no) temp=66)= 1-0.74=0.26.

Sowe Predict play=yes given temp=66.