Programiranje I: 4. izpit

27. avgust 2012

Čas reševanja je 120 minut. Doseženih 100 točk šteje za maksimalno oceno. Veliko uspeha!

1. naloga (25 točk)

Mobilni operater poskuša svoje bazne postaje razporediti tako, da so med seboj razmaknjene vsaj 1000 m. Sestavite funkcijo naloga1(sez), ki vrne True, če so vse postaje v seznamu sez dovolj razmaknjene, in False, če obstajata postaji, ki sta si bliže kot 1000 m. Postaje so predstavljene s koordinatami (x,y), izraženimi v metrih v kartezičnem koordinatnem sistemu (ukrivljenost Zemlje zanemarimo).

2. naloga (25 točk)

Zadnji skupni prednik dveh vozlišč v iskalnem drevesu je zadnje skupno vozlišče na poteh od korena do danih vozlišč (prvo skupno vozlišče je koren). Tako je v drevesu

vozlišče 2 zadnji skupni prednik vozlišč 1 in 5, vozlišče 8 pa zadnji skupni prednik vozlišč 8 in 9. Razredu IskalnoDrevo dodajte metodo naloga2(self,x,y), ki vrne zadnjega skupnega prednika vozlišč x in y v danem drevesu. Časovna zahtevnost metode naj bo O(k), kjer je k dolžina poti od korena do iskanega zadnjega skupnega prednika. Predpostavite lahko, da sta vozlišči x in y obe v drevesu.

3. naloga (30 točk)

Pri tej nalogi boste v Mathematici risali večkotnike, včrtane enega v drugega.

a) (20 točk) V *Mathematici* sestavite funkcijo naloga3a [n_,k_], ki nariše k pravilnih n-kotnikov, pri čemer naj bodo oglišča naslednjega večkotnika ravno na razpoloviščih stranic prejšnjega.

b) (10 točk) V Mathematici sestavite funkcijo naloga $3b[sez_]$, ki sprejme seznam sez števil n_1, \ldots, n_k in nariše pravilne n_j -večkotnike ter njim včrtane krožnice, oglišča naslednjega večkotnika pa naj ležijo na včrtani krožnici prejšnjega.

4. naloga (25 točk)

Izbor reda n je podmnožica množice $\{1,2,\ldots,n\}$. Vse izbore reda n in moči k lahko uredimo leksikografsko. Na primer, izbori reda n in moči n so urejeni na sledeč način:

$$\{1,2,3\} < \{1,2,4\} < \{1,2,5\} < \{1,3,4\} < \{1,3,5\} < \{1,4,5\} < \{2,3,4\} < \{2,3,5\} < \{2,4,5\} < \{3,4,5\}$$

Sestavite funkcijo naloga4(n,k,i), ki vrne i-ti izbor reda n in moči k. Izbor predstavite s seznamom, urejenim od najmanjšega do največjega števila. Časovna zahtevnost funkcije naj bo O(n). Če je i manjši ali enak 0 oziroma večji od $\binom{n}{k}$, naj funkcija vrne None.

>>> naloga4(5, 3, 1)
[1, 2, 3]
>>> naloga4(5, 3, 4)
[1, 3, 4]
>>> naloga4(5, 3, 7)
[2, 3, 4]