Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektronických měření

PROTOKOL O MĚŘENÍ

Název úlohy
Tranzistorový zesilovač

Číslo úlohy
302-4R

Zadání

- 1. Pro zadanou hodnotu I_C vypočítejte hodnotu R_C a zvolte nejbližší hodnotu z řady.
- 2. Nastavte pracovní bod tranzistoru (měřením U_{RC}) a ve výstupním obvodu tranzistorového zesilovače (U_{RC} , U_{CE} , U_{RE}) ověřte platnost II. KZ.
- 3. Pro $f=1~kHz,\,R_E=10~\Omega$ změřte A_u zesilovače pomocí:
 - (a) dvou milivoltmetrů
 - (b) dvoukanálového osciloskopu

Změřené hodnoty porovnejte a vyberte měřící metodu s menší chybou měření.

- 4. Změřte mezní kmitočty zesilovače f_d a f_h , na mm papír nakreslete orientační tvar frekvenční přenosové charakteristiky zesilovače.
- 5. Pro $f=1\ kHz$ změřte vstupní odpor zesilovače.
- 6. Vhodným způsobem změňte úroveň zpětné vazby a opakujte měření parametrů zesilovače viz. body zadání 3-4-5.
- 7. Změřte a zakreslete časové průběhy napětí na vstupu a výstupu zesilovače $f=1\ kHz.$

Poř. č.	PŘÍJMENÍ a Jméno			Třída	Skupina	Školní rol	ζ		
26		VYKYDAL Jan			4A	3	2014	/2015	
Datum měření Datum		odevzdání	Počet listů		Klasifikace				
						příprava	meření	protokol	obhajoba
15.10.		22.10.		9					
Protokol o měření obsahuje:		Teoretický	Teoretický úvod T		abulky naměřených a vypočtených hodnot				
		Schéma		Vzor výpočtu					
		Tabulka po	užitých přístrojů	Grafy					
		Postup měř	ření	Závěr					

Teoretický úvod

Bipolární tranzistor

kde:

Bipolární tranzistor je elektrotechnická součástka, oběvená 16. prosince 1947 v Bellových laboratořích týmem ve složení William Shockley, John Bardeen a Walter Brattain. Bipolární tranzistory mají tři elektrody: E - emitor, B - báze, C - kolektor. Bipolární tranzistory se dají rozdělit na tranzistory typu NPN a PNP. Jeden z nejdůležitějších parametrů tranzistoru je proudový zesilovací činitěl.

(a) NPN značka

(b) NPN náhradní schéma

(c) PNP značka

(d) PNP náhradní schéma

Schéma č. 1: schématické značky a náhradní zapojení bipolárních tranzistorů

Zesilovač

Zesilovač je zařízení, které zesiluje vstupní signál. V této úloze je realizován pomocí tranzistoru KFY34 (NPN) v zapojení se společným emitorem. Toto zpojení otáčí fázi o π rad. Hlavní parametr thoto zesilovače je napěťové zesílení.

> $A_u = \frac{U_{OUT}}{U_{IN}}$ (2)

kde: A_u napěťové zesílení U_{IN} vstupí napětí U_{OUT} výstupní napětí

Schémata

Schéma č. 2: Orientační měření β

Schéma č. 3: Měření napěťového přenosu a frekvenčních charakteristik

Schéma č. 4: Měření vstupního odporu (část 1.)

Schéma č. 5: Měření hodnoty vstupního odporu (část 2.)

Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Typ	Evidenční číslo	
M_1	M_1 milivoltmetr		0901	
M_2	$\operatorname{milivoltmetr}$	TESLA BK-128	0902	
M_3	čítač	U2000	0179	
M_4	osciloskop	GOS-620	0651	
M_5	DMM	MASTECH MY-64	0659	
Z_1	zdroj ss. napětí	TESLA BK-127	0140	
FG	generátor	TESLA BM-492	0129	
R_5	odporová dekáda	_	0026	

Tabulka č. 1: Použité přístroje

Postup měření

Měření proudového zesilovacího činitele

- DMM nastavíme na měření β .
- K DMM vhodným způsobem připojíme zkoumaný tranzistor, viz schéma č. 2.
- Z displaye DMM zjistíme naměřenou hodnotu.

Měření napěťového přenosu

- Zapojíme obvod dle schématu č.3.
- Na výstup generátoru nastavíme frekvenci $f = 1 \ kHz$.
- Z milivoltmetrů a osciloskopu zjistíme měřené hodnoty.
- ullet Z naměřených hodnot dopočítáme A_u

Měření mezních kmitočtů zesilovače

- Zapojíme obvod dle schématu č.3.
- Na výstup generátoru nastavíme frekvenci $f=1\ kHz.$
- Změříme hodnoty vstupu a výstupu pomocí milivolt
metrů M_1 a M_2 .
- Ladíme frekvenci generátoru směrem nadoru, dokud úroveň na výstupu nepoklesne o tři decibely.
- Zjistíme aktuální frekvenci pomocí čítače.
- Opakujeme poslední dva body, ale frekvenci měníme směrem dolů.

Měření vstupního odporu

- Zapojíme obvod dle schématu č. 4.
- Na generátoru nastavíme frekvenci $f = 1 \ kHz$.
- Dekádu nastavýme na nejmenší možný odpor.
- Změříme výstupní namětí, pomocí milivoltmetru M_2 .
- Zvyšujeme odpor dekády, dokud výstupní napětí neklesne na polovinu napětí naměřeného v minulém bodu.
- Z dekády odečteme vstupní odpor.
- Dekádu zapojíme dle schématu č. 5.
- Měřením můžeme ověřit odpor dekády.

Tabulky naměřených a vypočítaných hodnot

veličina	spočtená hodnota	naměřená hodnota
β	_	68
$R_1 [k\Omega]$	6,258	6, 2
$R_2 [\Omega]$	544,217	560
$R_3 [\Omega]$	500	500
$R_4 [\Omega]$	10	10
$C_3 [\mu F]$	_	100

Tabulka č. 2: napěťový přenos A_u s odpojeným kondenzátorem C_3

přístroj	U_1 $[mV]$	$\delta_{\%U_1}$	$U_2 [mV]$	$\delta_{\%U_2}$	A_u
milivoltmetr	4	$\pm 3,75$	270	$\pm 1,667$	67, 5
osciloskop	5	±3	350	$\pm 4, 5$	70

Tabulka č. 3: napěťový přenos A_u s připojeným kondenzátorem C_3

přístroj	U_1 $[mV]$	$\delta_{\%U_1}$	$U_2 [mV]$	$\delta_{\%U_2}$	A_u
milivoltmetr	4	$\pm 3,75$	140	$\pm 3,214$	35
osciloskop	5	±3	150	$\pm 4, 5$	30

Tabulka č. 4: napěťový přenos A_u s odpojeným kondenzátorem C_3

veličina	s připojenám kondenzátorem C_3	s odpojeným kondenzátorem C_3
f_d [Hz]	241	45
f_h [kHz]	589,721	636,309
$R_{VST} [\Omega]$	440	610

Tabulka č. 5: napěťový přenos A_u s odpojeným kondenzátorem C_3

Vzory výpočtů

Výpočet procentuální chyby:

$$\delta_{\%U_2} = \frac{\pm TP \cdot MR}{MH} = \frac{\pm 1, 5 \cdot 10}{4} = \underbrace{\pm 3, 75 \%}_{}$$

kde:

Proud bází:

$$\beta = \frac{I_C}{I_B} \Rightarrow I_B = \frac{I_C}{\beta} = \frac{10 \cdot 10^{-3}}{68} \doteq \underbrace{147,058 \ \mu A}_{}$$

Proud stabilizačním děličem:

$$I_D = 10I_C = 10 \cdot 147,058 = \underline{1,47 \ mA}$$

Hodnota rezistoru R_1 :

$$R_1 = \frac{U_{R_1}}{I_D} = \frac{9,2}{1,47} \doteq \underbrace{6,258 \ k\Omega}_{=======}$$

Hodnota rezistoru R_2 :

$$R_2 = \frac{U_{R_2}}{I_D} = \frac{0.8}{1.47} \doteq \underbrace{\frac{544,217 \ \Omega}{}}_{}$$

Hodnota rezistoru R_3 :

$$R_3 = \frac{U_{R_3}}{I_C} = \frac{5}{10} = \underline{500 \ \Omega}$$

Hodnota rezistoru R_4 :

$$R_4 = \frac{U_{R_4}}{I_C} = \frac{0,1}{10} = \underline{10 \ \Omega}$$

Ověření platnosti II. KZ. pro výstupní obvod:

$$U_{CC} = U_{R_3} + U_{R_4} + U_{CE} = 4,51 + 0,086 + 5,26 = \underline{9,859 \ V}$$

Napěťový přenos:

$$A_u = \frac{U_{OUT}}{U_{IN}} = \frac{140}{4} = \underline{\underline{35}}$$

Grafy

Závěr

Chyby měřících přístrojů

Procentuální chyba použitých měřících přístrojů $(M_1, M_2, M_3 \text{ a } M_4)$ nepřekročila $\pm 5 \%$. tudíž by jse měření dalo považivat za relativně přesné. Největší procentuální chyby jsem se dopustil pši měření maximální hodnoty maxímálního napětí osciloskopem (M_4) , chyby byly vypočítána na $\pm 4, 5 \%$.

Zhodnocení

- 1. Pro zadanou hodnotu $I_C = 10 \ mA$ jsem spočítal hodnotu rezistoru $R_3 = 500 \ \Omega$.
- 2. Nyvrhoval jsem zesilovač pracující v třídě A. Pracovní bod tranzistoru jsem tedy nastavil téměř na polovinu U_{CC} , tedy 5 V. Dosádnou přesné hodnoty poloviny U_{CC} jse mi ale nepodařilo, jelikož mi v tom bránily tolerance součástek.
- 3. Změřil jsem hodnotu A_u , a to pomocí dvou nepřímích metod. Mření pomocí milivoltmetrů mělo menchí procentuální chybu (maximálně $\pm 3,75$ %) než měření s osciloskopem. Naměřená hodnota pomocí milivoltmetru $A_u = 67, 5$. Pomocí osciloskopu $A_u = 70$.
- 4. Dle postupu uvedením v postupu jsem změřil horní a dolí mezní frekvenci zesilovače. $f_d=241\ Hz$ a $f_h=589,712\ kHz$. Na milimetrový papír jsem zakreslil orientační tvar přenosové charakteristiky.
- 5. Vstupní odpor zesilovače byl stanoven na hodnotu $r_{VST}=440~\Omega$. Docěla mě překvalila jeho moněrně nízká hodnota.
- 6. Změnil jsem hodnotu spětné vazby odpojením kondenzátoru C_3 . Což mělo za následek rapidní sníření napěťového zenosu. Z hodnoty $A_u = 67, 7$ jse hodnota změnila na $A_u = 35$. Dále jsem změřil horní a dolní mezní frekvenci a vstupní odpor, nyměření hodnoty jsou shrnuty v tabulce č. 5.
- 7. Na milimetrový papír jsem zakreslil časové půběhy vstupních a výstupních signálů a to jak s připojeným tak i odpojeným kondenzátorem C_3 .