```
import pandas as pd
In [260...
           import numpy as np
           from sklearn import preprocessing
           import matplotlib.pyplot as plt
 In [90]:
           train_data=pd.read_csv("D:\\AI-SL\\ML Project\\Mercedes Benz\\train.csv")
           test_data=pd.read_csv("D:\\AI-SL\\ML Project\\Mercedes Benz\\test.csv")
           train_data.head()
 In [91]:
              ID
                                                              X375 X376 X377 X378 X379 X380
Out[91]:
                      y X0
                             X1
                                 X2 X3 X4
                                              X5
                                                 X6 X8
                                                                                                    X38
                                                                 0
                                                                        0
                                                                                    0
                                                                                           0
                                                                                                 0
           0
               0
                  130.81
                           k
                                                                              1
                                  at
                                       а
                                           d
                                               u
                                                        0
                   88.53
                                                                        0
                                                                              0
                                                                                    0
                                                                                           0
                                                                                                 0
               6
                                           d
                                                                  1
                                                                        0
                                                                              0
                                                                                    0
                                                                                           0
                                                                                                 0
           2
               7
                   76.26
                                                    j
                                                                 0
                          az
                                   n
                                       C
                                           d
                                                        Χ
                               W
                                               Х
           3
               9
                   80.62
                                                                 0
                                                                        0
                                                                              0
                                                                                    0
                                                                                           0
                                                                                                 0
                                           d
              13
                                                                  0
                                                                        0
                                                                              0
                                                                                    0
                                                                                           0
                                                                                                 0
                   78.02
                          az
                                   n
                                           d
                                                    d
                                                        n
          5 rows × 378 columns
 In [92]:
           train_data.tail()
Out[92]:
                              X0 X1
                                       X2
                                           X3 X4
                                                   X5
                                                       X6
                                                           X8
                                                                   X375 X376 X377
                                                                                      X378 X379
                                                                                                   X380
                    ID
           4204
                 8405
                       107.39
                               ak
                                                 d
                                                    aa
                                                         d
                                                                       1
                                                                             0
                                                                                   0
                                                                                          0
                                                                                                0
                                                                                                      (
                                        as
                                             C
                                                             q
           4205
                 8406
                       108.77
                                                                       0
                                                                             1
                                                                                   0
                                                                                          0
                                                                                                0
                                                             h
                                                                                                      (
                                    0
                                         t
                                            d
                                                d
                                                    aa
                                                         h
           4206
                                                                             0
                                                                                          0
                 8412 109.22
                               ak
                                                 d
                                                             e
                                                                       0
                                                                                    1
                                                                                                0
                                                                                                      (
                                                    aa
                                                         g
           4207
                 8415
                        87.48
                                                                       0
                                                                             0
                                                                                   0
                                                                                          0
                                                                                                0
                                                                                                      (
                               al
                                                 d
                                                    aa
                                                             u
           4208 8417 110.85
                                                                       1
                                                                             0
                                                                                   0
                                                                                          0
                                                                                                0
                                                                                                      (
                                                 d
          5 rows × 378 columns
 In [93]: train_data.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 4209 entries, 0 to 4208
           Columns: 378 entries, ID to X385
           dtypes: float64(1), int64(369), object(8)
           memory usage: 12.1+ MB
In [103...
           train_data.describe()
```

| Out[103]: |       | ID          | у           | X10         | X12         | X13         | X14         | X15         |
|-----------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|           | count | 4209.000000 | 4209.000000 | 4209.000000 | 4209.000000 | 4209.000000 | 4209.000000 | 4209.000000 |
|           | mean  | 4205.960798 | 100.669318  | 0.013305    | 0.075077    | 0.057971    | 0.428130    | 0.000475    |
|           | std   | 2437.608688 | 12.679381   | 0.114590    | 0.263547    | 0.233716    | 0.494867    | 0.021796    |
|           | min   | 0.000000    | 72.110000   | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    |
|           | 25%   | 2095.000000 | 90.820000   | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    |
|           | 50%   | 4220.000000 | 99.150000   | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    |
|           | 75%   | 6314.000000 | 109.010000  | 0.000000    | 0.000000    | 0.000000    | 1.000000    | 0.000000    |
|           | max   | 8417.000000 | 265.320000  | 1.000000    | 1.000000    | 1.000000    | 1.000000    | 1.000000    |

8 rows × 358 columns

In [105... test\_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4209 entries, 0 to 4208
Columns: 377 entries, ID to X385
dtypes: int64(369), object(8)

memory usage: 12.1+ MB

In [106... test\_data.describe()

| Out[106]: |       | ID          | X10         | X11         | X12         | X13         | X14         | X15         |
|-----------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|           | count | 4209.000000 | 4209.000000 | 4209.000000 | 4209.000000 | 4209.000000 | 4209.000000 | 4209.000000 |
|           | mean  | 4211.039202 | 0.019007    | 0.000238    | 0.074364    | 0.061060    | 0.427893    | 0.000713    |
|           | std   | 2423.078926 | 0.136565    | 0.015414    | 0.262394    | 0.239468    | 0.494832    | 0.026691    |
|           | min   | 1.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    |
|           | 25%   | 2115.000000 | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    |
|           | 50%   | 4202.000000 | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 0.000000    |
|           | 75%   | 6310.000000 | 0.000000    | 0.000000    | 0.000000    | 0.000000    | 1.000000    | 0.000000    |
|           | max   | 8416.000000 | 1.000000    | 1.000000    | 1.000000    | 1.000000    | 1.000000    | 1.000000    |

8 rows × 369 columns

## **Check for Zero Variance columns**

In [95]: numeric\_columns=train\_data.select\_dtypes(include=np.number) #take columns that has
 variance\_per\_column=np.var(numeric\_columns,axis=0)
 print(variance\_per\_column)

```
ID
                  5.940524e+06
                  1.607285e+02
         У
         X10
                  1.312780e-02
         X11
                  0.000000e+00
         X12
                  6.944063e-02
                      . . .
         X380
                  8.012675e-03
         X382
                  7.544954e-03
         X383
                  1.660337e-03
         X384
                  4.749465e-04
         X385
                  1.423485e-03
          Length: 370, dtype: float64
          zero_var_col=numeric_columns.columns[variance_per_column==0]
In [96]:
          zero_var_col
          Index(['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293',
Out[96]:
                 'X297', 'X330', 'X347'],
                dtype='object')
          train_data[zero_var_col]
In [97]:
               X11 X93 X107 X233 X235 X268 X289 X290 X293 X297 X330 X347
Out[97]:
             0
                  0
                       0
                             0
                                  0
                                        0
                                              0
                                                    0
                                                          0
                                                                0
                                                                      0
                                                                            0
                                                                                  0
                  0
                       0
                             0
                                  0
                                        0
                                              0
                                                    0
                                                          0
                                                                0
                                                                      0
                                                                            0
                                                                                  0
```

4209 rows × 12 columns

```
train data=train data.drop(columns=zero var col)
In [108...
          #print(train data.columns)
```

```
KeyError
                                           Traceback (most recent call last)
Cell In[108], line 1
----> 1 train data=train data.drop(columns=zero var col)
File ~\anaconda3\lib\site-packages\pandas\util\_decorators.py:311, in deprecate_no
nkeyword arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
    305 if len(args) > num_allow_args:
    306
            warnings.warn(
    307
                msg.format(arguments=arguments),
    308
                FutureWarning,
    309
                stacklevel=stacklevel,
    310
--> 311 return func(*args, **kwargs)
File ~\anaconda3\lib\site-packages\pandas\core\frame.py:4954, in DataFrame.drop(se
1f, labels, axis, index, columns, level, inplace, errors)
   4806 @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "label
s"])
   4807 def drop(
   4808
            self,
   (\ldots)
   4815
            errors: str = "raise",
   4816 ):
   4817
   4818
            Drop specified labels from rows or columns.
   4819
   (\ldots)
   4952
                    weight 1.0
                                    0.8
   4953
-> 4954
            return super().drop(
   4955
                labels=labels,
   4956
                axis=axis,
                index=index,
   4957
   4958
                columns=columns,
   4959
                level=level,
   4960
                inplace=inplace.
   4961
                errors=errors,
   4962
File ~\anaconda3\lib\site-packages\pandas\core\generic.py:4267, in NDFrame.drop(se
lf, labels, axis, index, columns, level, inplace, errors)
   4265 for axis, labels in axes.items():
   4266
            if labels is not None:
                obj = obj. drop axis(labels, axis, level=level, errors=errors)
-> 4267
   4269 if inplace:
   4270
            self. update inplace(obj)
File ~\anaconda3\lib\site-packages\pandas\core\generic.py:4311, in NDFrame._drop_a
xis(self, labels, axis, level, errors, consolidate, only_slice)
   4309
                new_axis = axis.drop(labels, level=level, errors=errors)
   4310
            else:
                new_axis = axis.drop(labels, errors=errors)
-> 4311
   4312
            indexer = axis.get indexer(new axis)
   4314 # Case for non-unique axis
   4315 else:
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:6644, in Index.drop
(self, labels, errors)
   6642 if mask.any():
   6643
            if errors != "ignore":
                raise KeyError(f"{list(labels[mask])} not found in axis")
-> 6644
   6645
            indexer = indexer[~mask]
   6646 return self.delete(indexer)
```

```
KeyError: "['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293',
           'X297', 'X330', 'X347'] not found in axis"
           test data num col=test data.select dtypes(include=np.number)
In [110...
           test_var_percol=np.var(test_data_num_col)
           test_var_percol
           ID
                   5.869917e+06
Out[110]:
           X10
                   1.864563e-02
           X11
                   2.375297e-04
           X12
                   6.883438e-02
           X13
                   5.733136e-02
           X380
                   8.012675e-03
           X382
                   8.713410e-03
           X383
                   4.749465e-04
           X384
                   7.122504e-04
           X385
                   1.660337e-03
           Length: 369, dtype: float64
           test_data_zero_var_col=test_data_num_col.columns[test_var_percol==0]
In [118...
           test_data_zero_var_col
           Index(['X257', 'X258', 'X295', 'X296', 'X369'], dtype='object')
Out[118]:
In [120...
           test_data[test_data_zero_var_col]
                 X257 X258 X295 X296 X369
Out[120]:
              0
                                            0
                    0
                          0
                                0
                                      0
                                            0
              2
                    0
                          0
                                0
                                      0
                                            0
              3
                    0
                          0
                                0
                                      0
                                            0
              4
                    0
                          0
                                0
                                      0
                                            0
           4204
                    0
                          0
                                0
                                      0
                                            0
           4205
                    0
                          0
                                0
                                      0
                                            0
           4206
                    0
                          0
                                0
                                      0
                                            0
           4207
                    0
                          0
                                0
                                      0
                                            0
           4208
                    0
                          0
                                0
                                      0
                                            0
          4209 rows × 5 columns
           test_data=test_data.drop(columns=[test_data_zero_var_col])
In [122...
```

```
KeyError
                                           Traceback (most recent call last)
Cell In[122], line 1
----> 1 test data=test data.drop(columns=[test data zero var col])
File ~\anaconda3\lib\site-packages\pandas\util\_decorators.py:311, in deprecate_no
nkeyword arguments.<locals>.decorate.<locals>.wrapper(*args, **kwargs)
    305 if len(args) > num_allow_args:
    306
            warnings.warn(
    307
                msg.format(arguments=arguments),
    308
                FutureWarning,
    309
                stacklevel=stacklevel,
    310
--> 311 return func(*args, **kwargs)
File ~\anaconda3\lib\site-packages\pandas\core\frame.py:4954, in DataFrame.drop(se
1f, labels, axis, index, columns, level, inplace, errors)
   4806 @deprecate_nonkeyword_arguments(version=None, allowed_args=["self", "label
s"])
   4807 def drop(
   4808
            self,
   (\ldots)
   4815
            errors: str = "raise",
   4816 ):
   4817
   4818
            Drop specified labels from rows or columns.
   4819
   (\ldots)
   4952
                    weight 1.0
                                    0.8
   4953
-> 4954
            return super().drop(
   4955
                labels=labels,
   4956
                axis=axis,
                index=index,
   4957
   4958
                columns=columns,
   4959
                level=level,
   4960
                inplace=inplace.
   4961
                errors=errors,
   4962
File ~\anaconda3\lib\site-packages\pandas\core\generic.py:4267, in NDFrame.drop(se
lf, labels, axis, index, columns, level, inplace, errors)
   4265 for axis, labels in axes.items():
   4266
            if labels is not None:
                obj = obj. drop axis(labels, axis, level=level, errors=errors)
-> 4267
   4269 if inplace:
   4270
            self. update inplace(obj)
File ~\anaconda3\lib\site-packages\pandas\core\generic.py:4311, in NDFrame._drop_a
xis(self, labels, axis, level, errors, consolidate, only_slice)
   4309
                new_axis = axis.drop(labels, level=level, errors=errors)
   4310
            else:
                new_axis = axis.drop(labels, errors=errors)
-> 4311
   4312
            indexer = axis.get indexer(new axis)
   4314 # Case for non-unique axis
   4315 else:
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:6644, in Index.drop
(self, labels, errors)
   6642 if mask.any():
   6643
            if errors != "ignore":
                raise KeyError(f"{list(labels[mask])} not found in axis")
-> 6644
   6645
            indexer = indexer[~mask]
   6646 return self.delete(indexer)
```

## Check for Null and unique values

```
train_data.isna().sum()
In [124...
                                                                       0
                                        ID
Out[124]:
                                                                       0
                                        X0
                                                                      0
                                        X1
                                                                      0
                                        X2
                                        X380
                                                                    0
                                        X382
                                        X383
                                                                      0
                                        X384
                                                                      0
                                        X385
                                        Length: 366, dtype: int64
                                        test_data.isna().sum()
In [125...
                                        ID
                                                                       0
Out[125]:
                                                                      0
                                        X0
                                        X1
                                                                      0
                                        X2
                                                                      0
                                        Х3
                                                                      0
                                        X380
                                                                    0
                                        X382
                                        X383
                                                                      0
                                        X384
                                                                      0
                                        X385
                                        Length: 377, dtype: int64
                                        features with na= [features for features in train data.columns if train data[features]
 In [126...
                                         print(features_with_na)
                                         []
                                         test_features_with_na=[features for features in test_data.columns if test_data[features_with_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[features_mith_na=[featu
In [129...
                                         print(test_features_with_na)
                                         []
                                        train_data.columns
In [101...
                                        Index(['ID', 'y', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8',
Out[101]:
                                                                     'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
                                                                    'X385'],
                                                               dtype='object', length=366)
In [130...
                                         train data.nunique()
```

```
ID
                    4209
Out[130]:
                    2545
           У
           X0
                       47
           Х1
                       27
           X2
                       44
           X380
                        2
           X382
                        2
           X383
                        2
           X384
                        2
           X385
           Length: 366, dtype: int64
           test_data.nunique()
In [131...
           ID
                    4209
Out[131]:
           X0
                       49
           X1
                       27
           X2
                       45
                        7
           Х3
           X380
                        2
           X382
                        2
           X383
           X384
                        2
           X385
           Length: 377, dtype: int64
```

## Label encoding for category columns

```
In [140... train_cat_cols=train_data.select_dtypes(include=object) #to extract columns with strain_cat_cols
```

```
Out[140]:
                   X0
                      X1 X2 X3 X4 X5 X6
                                                   X8
                0
                                                    0
                             at
                                       d
                                                    0
                2
                    az
                                       d
                                           Χ
                                                    Χ
                         W
                              n
                                  C
                                                    е
                4
                                   f
                                           h
                                                d
                    az
                              n
                                       d
                                                    n
             4204
                    ak
                             as
                                  C
                                       d
                                          aa
                                                d
                                                    q
             4205
                                                    h
             4206
                    ak
                                       d
                                  а
                                          aa
                                                    е
                                                g
             4207
                                                    u
             4208
                                       d
                             ae
                                          aa
                                                g
                                                    W
```

4209 rows × 8 columns

```
col:X0 and unique values :['k' 'az' 't' 'al' 'o' 'w' 'j' 'h' 's' 'n' 'ay' 'f' 'x'
          'y' 'aj' 'ak' 'am'
           'z' 'q' 'at' 'ap' 'v' 'af' 'a' 'e' 'ai' 'd' 'aq' 'c' 'aa' 'ba' 'as' 'i'
           'r' 'b' 'ax' 'bc' 'u' 'ad' 'au' 'm' 'l' 'aw' 'ao' 'ac' 'g' 'ab']
          col:X1 and unique values :['v' 't' 'w' 'b' 'r' 'l' 's' 'aa' 'c' 'a' 'e' 'h' 'z'
          'j' 'o' 'u' 'p' 'n'
           'i' 'y' 'd' 'f' 'm' 'k' 'g' 'q' 'ab']
          col:X2 and unique values :['at' 'av' 'n' 'e' 'as' 'aq' 'r' 'ai' 'ak' 'm' 'a' 'k'
          'ae' 's' 'f' 'd'
           'ag' 'ay' 'ac' 'ap' 'g' 'i' 'aw' 'y' 'b' 'ao' 'al' 'h' 'x' 'au' 't' 'an'
           'z' 'ah' 'p' 'am' 'j' 'q' 'af' 'l' 'aa' 'c' 'o' 'ar']
          col:X3 and unique values :['a' 'e' 'c' 'f' 'd' 'b' 'g']
          col:X4 and unique values :['d' 'b' 'c' 'a']
          col:X5 and unique values :['u' 'y' 'x' 'h' 'g' 'f' 'j' 'i' 'd' 'c' 'af' 'ag' 'ab'
          'ac' 'ad' 'ae'
           'ah' 'l' 'k' 'n' 'm' 'p' 'q' 's' 'r' 'v' 'w' 'o' 'aa']
          col:X6 and unique values :['j' 'l' 'd' 'h' 'i' 'a' 'g' 'c' 'k' 'e' 'f' 'b']
          col:X8 and unique values :['o' 'x' 'e' 'n' 's' 'a' 'h' 'p' 'm' 'k' 'd' 'i' 'v' 'j'
          'b' 'q' 'w' 'g'
           'y' 'l' 'f' 'u' 'r' 't' 'c']
         train_cat_cols.columns
In [153...
          Index(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8'], dtype='object')
Out[153]:
In [183...
          label_enc=preprocessing.LabelEncoder()
          for col in train_cat_cols.columns:
              train_cat_cols[col]=label_enc.fit_transform(train_cat_cols[col])
              print("col:{} & unique values:{}".format(col, train_cat_cols[col].unique()))
          col:X0 & unique values:[32 20 40 9 36 43 31 29 39 35 19 27 44 45 7 8 10 46 37 1
          5 12 42 5 0
           26 6 25 13 24 1 22 14 30 38 21 18 23 41 4 16 34 33 17 11 3 28 2]
          col:X1 & unique values:[23 21 24 3 19 13 20 1 4 0 6 9 26 11 16 22 17 15 10 2
          5 5 7 14 12
            8 18 2]
          col:X2 & unique values:[17 19 34 25 16 14 38 7 8 33 0 31 3 39 26 24 5 21 2 1
          3 27 29 20 42
           22 12 9 28 41 18 40 11 43 6 36 10 30 37 4 32 1 23 35 15]
          col:X3 & unique values:[0 4 2 5 3 1 6]
          col:X4 & unique values:[3 1 2 0]
          col:X5 & unique values:[24 28 27 12 11 10 14 13 9 8 5 6 1 2 3 4 7 16 15 1
          8 17 20 21 23
           22 25 26 19 0]
          col:X6 & unique values:[ 9 11 3 7 8 0 6 2 10 4 5 1]
          col:X8 & unique values:[14 23 4 13 18 0 7 15 12 10 3 8 21 9 1 16 22 6 24 1
          1 5 20 17 19
            2]
In [175...
```

```
AttributeError
                                                          Traceback (most recent call last)
           Cell In[175], line 1
           ----> 1 train data.select dtype(include=np.number)
           File ~\anaconda3\lib\site-packages\pandas\core\generic.py:5575, in NDFrame.__getat
           tr__(self, name)
              5568 if (
                        name not in self._internal_names_set
              5569
              5570
                        and name not in self._metadata
              5571
                        and name not in self._accessors
                        and self._info_axis._can_hold_identifiers_and_holds_name(name)
              5572
              5573 ):
              5574
                        return self[name]
           -> 5575 return object.__getattribute__(self, name)
           AttributeError: 'DataFrame' object has no attribute 'select_dtype'
In [180...
           train_data_upd=pd.concat([numeric_columns,train_cat_cols],axis=1)
           train_data_upd
Out[180]:
                   ID
                            y X10 X11 X12 X13 X14 X15 X16 X17 ... X384 X385 X0 X1
                                                                                                X2
                                                                                                    X3
               0
                       130.81
                    0
                                 0
                                      0
                                           0
                                                 1
                                                      0
                                                           0
                                                                0
                                                                     0
                                                                               0
                                                                                     0
                                                                                         32
                                                                                             23
                                                                                                 17
                                                                                                      (
                        88.53
                                 0
                                      0
                                           0
                                                 0
                                                      0
                                                           n
                                                                n
                                                                     \cap
                                                                                             21
                                                                                     0
                                                                                         32
                                                                                                 19
               2
                        76.26
                                 0
                                      0
                                           0
                                                 0
                                                      0
                                                           0
                                                                0
                                                                     1
                                                                               0
                                                                                     0
                                                                                         20
                                                                                             24
                                                                                                 34
                                                                                                      2
              3
                    9
                        80.62
                                 0
                                      0
                                           0
                                                 0
                                                           0
                                                                0
                                                                     0
                                                                               0
                                                                                         20
                                                                                             21
                                                      0
                                                                                     0
                                                                                                 34
                   13
                        78.02
                                      0
                                           0
                                                 0
                                                      0
                                                           0
                                                                0
                                                                     0
                                                                               0
                                                                                         20
                                                                                             23
                                                                                                 34
                                                                                                      Ē
                                 0
                                                                                     0
           4204
                 8405 107.39
                                 0
                                      0
                                           0
                                                 0
                                                           0
                                                                0
                                                                                         8
                                                      1
                                                                     0
                                                                               0
                                                                                     0
                                                                                             20
                                                                                                 16
                                                                                                      2
           4205 8406 108.77
                                 0
                                      0
                                           0
                                                 0
                                                      0
                                                           0
                                                                0
                                                                     0
                                                                               0
                                                                                     0
                                                                                         31
                                                                                                 40
                                                                                             16
           4206
                 8412 109.22
                                      0
                                                 1
                                                      0
                                                           0
                                                                0
                                                                     0
                                                                               0
                                                                                     0
                                                                                         8
                                                                                             23
                                                                                                      (
                                 0
                                           1
                                                                                                 38
           4207 8415
                        87.48
                                 0
                                      0
                                           0
                                                 0
                                                           0
                                                                0
                                                                     0
                                                                               0
                                                                                     0
                                                                                         9
                                                                                             19
                                                                                                 25
                                                      1
           4208 8417 110.85
                                 0
                                      0
                                           0
                                                 0
                                                      0
                                                           0
                                                                0
                                                                     0
                                                                               0
                                                                                     0
                                                                                         46
                                                                                             19
                                                                                                  3
                                                                                                      2
          4209 rows × 378 columns
           test cat cols=test data.select dtypes(include=object)
In [182...
           test cat cols
```

```
X0 X1 X2 X3 X4 X5 X6 X8
Out[182]:
                    az
                          b
                               ai
                                        d
                                             b
                    az
                                    f
                                             а
                                                       j
                              as
                     az
                               n
                                                      n
                 4
                                        d
                                    C
                                                      m
                     W
                          S
                              as
                                             У
             4204
                     aj
                          h
                                    f
                                        d
                                            aa
                                                      е
                              as
             4205
                      t
                         aa
                               ai
                                    d
                                        d
                                            aa
             4206
                                    f
                                        d
                                                  d
                     У
                          ٧
                              as
                                            aa
                                                      W
             4207
                    ak
                              as
                                            aa
             4208
                         aa
                              ai
                                            aa
```

4209 rows × 8 columns

```
In [189...
           for col in test_cat_cols.columns:
               print(f'col : {col},unique values : {test_data[col].unique()}')
           col : X0,unique values : ['az' 't' 'w' 'y' 'x' 'f' 'ap' 'o' 'ay' 'al' 'h' 'z' 'aj'
           'd' 'v' 'ak'
           'ba' 'n' 'j' 's' 'af' 'ax' 'at' 'aq' 'av' 'm' 'k' 'a' 'e' 'ai' 'i' 'ag'
            'b' 'am' 'aw' 'as' 'r' 'ao' 'u' 'l' 'c' 'ad' 'au' 'bc' 'g' 'an' 'ae' 'p'
           col : X1,unique values : ['v' 'b' 'l' 's' 'aa' 'r' 'a' 'i' 'p' 'c' 'o' 'm' 'z' 'e'
            'y' 't' <sup>'</sup>u' 'd' 'j' 'q' 'n' 'f' 'ab']
           col : X2,unique values : ['n' 'ai' 'as' 'ae' 's' 'b' 'e' 'ak' 'm' 'a' 'aq' 'ag'
           'r' 'k' 'aj' 'ay'
           'ao' 'an' 'ac' 'af' 'ax' 'h' 'i' 'f' 'ap' 'p' 'au' 't' 'z' 'y' 'aw' 'd'
           'at' 'g' 'am' 'j' 'x' 'ab' 'w' 'q' 'ah' 'ad' 'al' 'av' 'u']
           col : X3,unique values : ['f' 'a' 'c' 'e' 'd' 'g' 'b']
           col : X4,unique values : ['d' 'b' 'a' 'c']
           col : X5,unique values : ['t' 'b' 'a' 'z' 'y' 'x' 'h' 'g' 'f' 'j' 'i' 'd' 'c' 'af'
           'ag' 'ab' 'ac'
           'ad' 'ae' 'ah' 'l' 'k' 'n' 'm' 'p' 'q' 's' 'r' 'v' 'w' 'o' 'aa']
           col : X6,unique values : ['a' 'g' 'j' 'l' 'i' 'd' 'f' 'h' 'c' 'k' 'e' 'b']
           col : X8,unique values : ['w' 'y' 'j' 'n' 'm' 's' 'a' 'v' 'r' 'o' 't' 'h' 'c' 'k'
           'p' 'u' 'd' 'g'
'b' 'q' 'e' 'l' 'f' 'i' 'x']
In [192...
           for col in test_cat_cols.columns:
               test_cat_cols[col]=label_enc.fit_transform(test_cat_cols[col])
               print(f"cols: {col}, unique values:{test_cat_cols[col]}")
```

```
cols: X0, unique values:0
                                  21
1
        42
2
        21
3
        21
4
        45
        . .
4204
         6
4205
        42
4206
        47
4207
         7
4208
        42
Name: X0, Length: 4209, dtype: int64
cols: X1, unique values:0
         3
2
        23
3
        13
4
        20
        . .
4204
         9
4205
         1
4206
        23
4207
        23
4208
Name: X1, Length: 4209, dtype: int32
cols: X2, unique values:0
1
         8
2
        17
3
        34
4
        17
        . .
4204
        17
4205
         8
4206
        17
4207
        17
4208
Name: X2, Length: 4209, dtype: int32
cols: X3, unique values:0
        0
        5
2
3
        5
        2
4
       . .
4204
        5
4205
        3
4206
        5
4207
        0
4208
        2
Name: X3, Length: 4209, dtype: int32
cols: X4, unique values:0
1
        3
2
        3
        3
3
        3
       . .
4204
        3
4205
        3
4206
        3
        3
4207
4208
Name: X4, Length: 4209, dtype: int32
cols: X5, unique values:0
                                  26
1
         9
2
         0
3
```

```
30
            4204
                      1
            4205
                      1
            4206
                      1
            4207
            4208
            Name: X5, Length: 4209, dtype: int32
            cols: X6, unique values:0
                      6
            2
                      9
            3
                     11
            4
                      8
            4204
                      9
            4205
                      9
            4206
                      3
            4207
            4208
            Name: X6, Length: 4209, dtype: int32
            cols: X8, unique values:0
                     24
            2
                      9
            3
                     13
            4
                     12
            4204
                      4
            4205
                     24
            4206
                     22
            4207
                     16
            4208
                     17
            Name: X8, Length: 4209, dtype: int32
            test_data_upd=pd.concat([test_data_num_col,test_cat_cols],axis=1)
In [195...
            test_data_upd
                                   X12 X13 X14 X15 X16 X17
Out[195]:
                        X10 X11
                                                                     X18
                                                                              X384
                                                                                    X385
                                                                                           X0
                                                                                                X1
                                                                                                    X2 X3
               0
                      1
                           0
                                 0
                                      0
                                            0
                                                 0
                                                       0
                                                             0
                                                                       0
                                                                                  0
                                                                                        0
                                                                                            21
                                                                                                23
                                                                                                    34
                                                                                                          5
                           0
                                            0
                                                                       0
                      2
                                 0
                                      0
                                                 0
                                                       0
                                                             0
                                                                  0
                                                                                  0
                                                                                        0
                                                                                           42
                                                                                                 3
                                                                                                     8
                                                                                                          0
                2
                      3
                           0
                                 0
                                      0
                                            0
                                                 1
                                                       0
                                                             0
                                                                  0
                                                                       0
                                                                                  0
                                                                                        0
                                                                                            21
                                                                                                23
                                                                                                    17
                                                                                                          5
                           0
                                 0
                                      0
                                            0
                                                 0
                                                       0
                                                             0
                                                                  0
                                                                       0
                                                                                  0
                                                                                        0
                                                                                            21
                                                                                                    34
                                                                                                          5
                                                                                                13
                      5
                           0
                                 0
                                      0
                                            0
                                                 1
                                                       0
                                                             0
                                                                  0
                                                                       0
                                                                                  0
                                                                                           45
                                                                                                20
                                                                                                          2
                                                                                        0
                                                                                                    17
            4204
                  8410
                           0
                                 0
                                      0
                                            0
                                                 1
                                                       0
                                                             0
                                                                  0
                                                                       0
                                                                                  0
                                                                                             6
                                                                                                 9
                                                                                                    17
                                                                                                          5
            4205
                  8411
                           0
                                 0
                                      0
                                            0
                                                 0
                                                       0
                                                             0
                                                                  0
                                                                       0
                                                                                  0
                                                                                            42
                                                                                                          3
                                                                                                     8
            4206
                  8413
                           0
                                 0
                                      0
                                            0
                                                 1
                                                       0
                                                             0
                                                                       0
                                                                                  0
                                                                                            47
                                                                                                23
                                                                                                    17
                                                                                                          5
            4207
                  8414
                           0
                                      0
                                                       0
                                                             0
                                                                  0
                                                                       0
                                                                                  0
                                                                                                          0
                                 0
                                            1
                                                                                        0
                                                                                                23
                                                                                                    17
                                            0
                                                 0
                                                       0
                                                                                                          2
            4208 8416
                           0
                                                             0
                                                                  0
                                                                       0
                                                                                  0
                                                                                        0
                                                                                           42
           4209 rows × 377 columns
```

## Dimensionality reduction using PCA

```
train data upd.shape
In [196...
                         (4209, 378)
Out[196]:
In [198...
                          y=train_data_upd['y']
                                             130.81
Out[198]:
                          1
                                               88.53
                          2
                                               76.26
                          3
                                               80.62
                          4
                                               78.02
                                               . . .
                         4204
                                            107.39
                         4205
                                            108.77
                         4206
                                            109.22
                         4207
                                              87.48
                         4208
                                             110.85
                         Name: y, Length: 4209, dtype: float64
In [199...
                          train_data_upd=train_data_upd.drop(columns=['y'])
                          train_data_upd.shape
In [200...
                          (4209, 377)
Out[200]:
                          #Scaling the input and target
In [202...
                          from sklearn.preprocessing import StandardScaler
                          scaler=StandardScaler()
                          train_data_scaled=scaler.fit_transform(train_data_upd)
                          train_data_scaled
                         array([[-1.72565045, -0.11612161,
                                                                                                                                      , ..., 1.29211729,
Out[202]:
                                               0.75178725, 0.33944483],
                                          [-1.72318873, -0.11612161, 0.
                                                                                                                                                         1.77697445,
                                                                                                                                       , . . . ,
                                               1.43751106, 0.33944483],
                                          [-1.72277844, -0.11612161, 0.
                                                                                                                                                         1.65576016,
                                                                                                                                       , . . . ,
                                               0.75178725, 1.61838949],
                                            . . . ,
                                          [ 1.72568262, -0.11612161, 0.
                                                                                                                                      , ..., -1.61702573,
                                             -0.27679847, -1.08160479],
                                          [ 1.72691348, -0.11612161, 0.
                                                                                                                                      , ..., -1.61702573,
                                               1.43751106, 1.1920746 ],
                                          [ 1.72773405, -0.11612161, 0.
                                                                                                                                      , ..., -1.61702573,
                                             -0.27679847, 1.47628453]])
In [229...
                          from sklearn.model_selection import train_test_split
                          X_train,X_test,y_train,y_test=train_test_split(train_data_scaled,y,test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_size=0.2,rain,x_test_
                          train data scaled.shape
In [230...
                          (4209, 377)
Out[230]:
In [231...
                          import xgboost as xgb
                          from sklearn.metrics import mean_squared_error
                          from xgboost import XGBRegressor
                          model=XGBRegressor(objective='reg:squarederror',n_estimators=50,learning_rate=0.1,
In [232...
                          model.fit(X train,y train)
                          y_pred=model.predict(X_test)
```

```
mse = mean_squared_error(y_test, y_pred)
In [233...
          print(f'Mean Squared Error: {mse}')
          Mean Squared Error: 62.124620867989364
In [239...
          from sklearn.decomposition import PCA
          pca=PCA(0.95) #retain 95% of useful features
          X_train_pca=pca.fit_transform(train_data_scaled)
          print(X_train_pca.shape)
          (4209, 149)
          print(X train pca.shape, y.shape)
In [240...
          (4209, 149) (4209,)
          pca.explained variance ratio
In [241...
          array([0.06873845, 0.05672831, 0.04525105, 0.03417386, 0.03255383,
Out[241]:
                 0.03154186, 0.02854713, 0.02118177, 0.01968633, 0.01778935,
                 0.0163563 , 0.015601 , 0.0145906 , 0.01445648, 0.01344956,
                 0.01292573, 0.01241382, 0.01171394, 0.01119126, 0.01074961,
                 0.00989891, 0.0096776 , 0.00940046, 0.00908605, 0.00872347,
                 0.0084076 , 0.00792762, 0.00761389, 0.00734903, 0.00718305,
                 0.00691227,\ 0.00675052,\ 0.00655057,\ 0.00646544,\ 0.00621348,
                 0.00600246, 0.0058665, 0.00574454, 0.00562534, 0.00555771,
                 0.00550145, 0.00538603, 0.00532449, 0.00523216, 0.00511352,
                 0.00501857, 0.00497724, 0.00477276, 0.0046579, 0.00459137,
                 0.00446221, 0.0043733 , 0.00431693, 0.00429122, 0.00422545,
                 0.0041891 , 0.00413148, 0.00405572, 0.0040222 , 0.00388352,
                 0.00386855,\ 0.00380218,\ 0.00374184,\ 0.00365935,\ 0.00359751,
                 0.00357123, 0.0035294 , 0.00346016, 0.00341059, 0.00335091,
                 0.00332836, 0.0032594, 0.00323873, 0.0032048, 0.00316934,
                 0.00315804, 0.0031486 , 0.00308903, 0.00306594, 0.00303922,
                 0.00299867, 0.00298425, 0.00295864, 0.00292366, 0.0029006,
                 0.00289135, 0.00286429, 0.00284373, 0.0028264 , 0.00280433,
                 0.0027932 , 0.00276794, 0.00274409, 0.00273399, 0.00271654,
                 0.00270406, 0.0026484, 0.00264044, 0.00261697, 0.0025998,
                 0.00258923, 0.00255473, 0.00253179, 0.00251264, 0.00250014,
                 0.00248148,\ 0.00243858,\ 0.00241888,\ 0.00240045,\ 0.00237785,
                 0.00234644, 0.00230577, 0.00230055, 0.00227058, 0.00225174,
                 0.00222925, 0.0022086, 0.0021946, 0.00214567, 0.00213139,
                 0.00211387, 0.00209153, 0.00205648, 0.00203631, 0.00202058,
                 0.00198862, 0.0019337, 0.00191698, 0.00191371, 0.00188131,
                 0.001847 , 0.00181313, 0.00178889, 0.00178173, 0.00175136,
                 0.00171302, 0.00170264, 0.00167895, 0.0016536, 0.00161437,
                 0.00160919, 0.00157355, 0.00154212, 0.00153118, 0.001496 ,
                 0.00149006, 0.00147679, 0.0014261, 0.00140735])
In [242...
          X_train_pcaa,X_test_pca,y_train,y_test=train_test_split(X_train_pca,y,test_size=0.)
          model=XGBRegressor(objective='reg:squarederror',n_estimators=50,learning_rate=0.1,n
In [243...
          model.fit(X_train_pcaa,y_train)
          y_pred_pca=model.predict(X_test_pca)
In [244...
          mse = mean_squared_error(y_test, y_pred_pca)
          print(f'Mean Squared Error: {mse}')
          Mean Squared Error: 76.65334766897016
          #pca with n components=10
In [245...
          pca 1=PCA(n components=10)
          X_train_pca1=pca_1.fit_transform(train_data_scaled)
          X_train_pca1.shape
```

```
Out[245]: (4209, 10)
           X_train_pca1,X_test_pca1,y_train,y_test=train_test_split(X_train_pca1,y,test_size=
In [246...
In [248...
           model=XGBRegressor(objective='reg:squarederror',n_estimators=50,learning_rate=0.1,
           model.fit(X_train_pca1,y_train)
           y_pred_pca1=model.predict(X_test_pca1)
In [249...
           mse_pca1 = mean_squared_error(y_test, y_pred_pca1)
           print(f'Mean Squared Error: {mse_pca1}')
          Mean Squared Error: 91.79506809351535
           Accuracy achieved upon PCA = 91.795
In [250...
           model.save_model('my_xgboost_model.model')
           test_data_scaled=scaler.fit_transform(test_data_upd)
In [254...
           test_data_scaled.shape
           (4209, 377)
Out[254]:
           X_test_data_pca1=pca_1.fit_transform(test_data_scaled)
In [255...
           X_test_data_pca1.shape
           (4209, 10)
Out[255]:
In [256...
           y_pred_test=model.predict(X_test_data_pca1)
In [257...
           y_pred_test #testing time of Mercedes Benz on the test bench
           array([ 83.54843 , 98.88009 , 82.77069 , ..., 98.371254, 105.347786,
Out[257]:
                   94.44501 ], dtype=float32)
           plt.plot(y_pred_test)
In [264...
           [<matplotlib.lines.Line2D at 0x1ec45acaeb0>]
Out[264]:
```



In [ ]: