Redes de computadoras

Capa de Enlace - Introducción

Las diapositivas están basadas en en libro: "Redes de Computadoras – Un enfoque descendente" de James F. Kurose & Keith W. Ross

Capa de Enlace: Introducción

Hosts y routers son **nodos**, los canales de comunicación que conectan nodos adyacentes a través de caminos de comunicación son enlaces.

El paquete de capa de enlace, denominado **frame** o **trama**, encapsula un datagrama.

La capa de enlace tiene la tarea de transferir datagramas desde un nodo a otro nodo **adyacente**, a través de un enlace.

Capa de Enlace: contexto

Los datagramas son transferidos por diferentes protocolos de enlace sobre diferentes enlaces:

EJ:

- Primer enlace: Ethernet
- Enlaces intermedios: Frame Relay
- último enlace: 802.11

Cada protocolo de enlace brinda diferentes servicios.

EJ: Puede proveer o no transferencia confiable sobre el enlace.

Figure 5.1 ◆ The link layer

Capa de Enlace: Servicios

Entramado (framing):

- Encapsulado del datagrama en la trama, agregando encabezado (header) y cola (trailer)

Acceso al enlace:

- Acceso al canal si es un medio compartido
- Direcciones MAC, utilizadas en los encabezados de las tramas

Entrega confiable:

- Entre nodos adyacentes
- Principalmente en enlaces inalámbricos.

Capa de Enlace: Servicios

Control de flujo:

- Acuerdo entre los nodos emisor y receptor (buffers y capacidad de procesamiento)

Detección de errores:

- Errores causados por atenuación de señal o ruido
- El receptor detecta errores: Informa al emisor y/o descarta la trama

Corrección de errores:

- El receptor identifica y corrige errores sin necesidad de retransmisión

Half-Duplex y Full-Duplex:

- Posibilidad de transmitir al mismo tiempo o no.

Capa de Enlace:

La capa de enlace se implementa:

En todos los hosts

- En el adaptador de red NIC (**Network Interface Card**)

Tarjetas Ethernet, PCMCIA, 802.11 Se implementan las capas de enlace y física por lo menos.

- Incorporadas a los buses del sistema de los hosts
- Combinación de hardware, software, firmware

Figure 5.3 ◆ The adapter is a semi-autonomous unit.

Comunicación de adaptadores

Lado Emisor:

Encapsula el datagrama en un frame

Agrega bits de chequeo de error, control de flujo, etc.

Lado Receptor:

Busca por errores, control de flujo, etc.

Extrae el datagrama y lo pasa a las capas superiores.

Detección de errores

EDC = Bits de detección y corrección de errores (redundancia)

(Error Detection Correction)

D = Datos protegidos por el chequeo de errores. Puede incluir campos del encabezado

La detección de errores no es 100% confiable

- El protocolo puede perder algunos errores.
- Un campo de EDC mayor proporciona mejor detección y corrección...

Chequeo de paridad

Paridad de un bit:

Detecta errores en 1 bit

Paridad en dos dimensiones:

Detecta y corrige errores en 1 bit ¿Detecta errores dobles? ¿paridad par, impar?

No errors

Correctable single-bit error

Protocolos y enlaces de acceso múltiple

Dos tipos de enlaces:

Punto a punto

- PPP para acceso discado
- HDLC High level Data Link Control
- Enlace punto a punto entre switch Ethernet y host

Broadcast

(cable o medio compartido)

- Ethernet "legacy"
- HFC: Hybrid Fiber Cable
- 802.11: LAN Inalámbrica

Shared wire (for example, Ethernet)

Shared wireless

Figure 5.9 ♦ Various multiple access channels

Protocolos de acceso múltiple

- Único canal de difusión (broadcast) compartido
- Dos o más transmisiones simultáneas: Interferencia
 - Colisión
 - Si un nodo recibe dos o más señales al mismo tiempo
 - Simultaneidad en el tiempo y en la frecuencia de dos o más tramas en el mismo medio físico.

Protocolo de acceso múltiple

- Algoritmo distribuido que determina cómo los nodos comparten el canal, y determina cuando el nodo puede transmitir
- La comunicación acerca de compartir el canal debe utilizar el mismo canal.

Protocolos de acceso múltiple (ideal)

Canal de difusión (broadcast) con velocidad R bps

- 1) Cuando un nodo quiere transmitir, lo hará a una velocidad R
- 2) Cuando **M** nodos quieren transmitir, cada uno enviará a una velocidad promedio de **R/M**
- 3) Completamente descentralizado:
 - No hay un nodo especial para coordinar las transmisiones
 - No hay sincronización de relojes, slots
- 4) Simple

Protocolos MAC

Tres grandes clases

- Particionado del canal

- Protocolos de arbitraje
- Divide el canal en pequeñas "piezas" (ranuras de tiempo, frecuencia, código)
- Asigna una pieza a un nodo para su uso exclusivo
- Estrategia estática
- equitativo

- Acceso Randómico

- El canal no se divide, permite colisiones
- "recuperación" de colisiones
- Estrategia dinámica

- Toma de turnos

- Los nodos toman turnos, nodos con tramas largas turnos más largos.
- Estrategia dinámica
- Estrategias de reserva o centralizada

Protocolos MAC Particionado del canal TDMA

Time Division Multiple Access

- Acceso al canal rotatorio
- Cada estación tiene un slot de longitud fija en cada vuelta (longitud = tiempo de transmisión de la trama)
- Los slots sin usar quedan libres

Protocolos MAC Particionado del canal FDMA

Frequency Division Multiple Access

- El espectro del canal se divide en bandas de frecuencia
- A cada estación se le asigna una banda de frecuencia fija
- El tiempo de transmisión no utilizado en las bandas de frecuencia queda libre

Protocolos de acceso aleatorio

Cuando un nodo tiene un paquete para enviar

- Transmite a la velocidad total del canal, R
- No existe previa coordinación entre nodos

Dos o más nodos transmitiendo, posible "colisión"

Protocolos MAC de acceso aleatorio especifican:

- Cómo detectar colisiones (directa o indirecta)
- Cómo recuperarse de las colisiones
 (Ej: a través de retransmisiones retrasadas)

ALOHA, ALOHA ranurado CSMA, CSMA/CD, CSMA/CA

(Sistemas de contención o de contienda)

ALOHA

Figure 5.11 Nodes 1, 2, and 3 collide in the first slot. Node 2 finally succeeds in the fourth slot, node 1 in the eighth slot, and node 3 in the ninth slot.

ALOHA Ingenio e inspiración para CSMA

CSMA

Carrier Sense Multiple Access

(Acceso Múltiple por Detección)

Escuchar antes de transmitir

- Si el canal está libre se transmite el frame entero
- Si el canal está ocupado: diferir la transmisión
 - Volver a escuchar después de un tiempo
 - Seguir escuchando hasta que quede libre y transmitir

CSMA

Un nodo B puede comenzar a transmitir al detectar el medio disponible.

El **retardo de propagación**del canal hará que otro nodo D
no detecte esa transmisión
hasta después de determinado
tiempo t1.

A mayor retardo de propagació más probabilidad de que falle el sondeo y se produzcan colisiones.

Figure 5.13 ◆ Space-time diagram of two CSMA nodes with colliding transmissions

CSMA-CD

Carrier Sense Multiple Access - Detección de Colisiones

- CSMA-CD:
 - Si el canal esta en uso se difiere la transmisión como en CSMA
 - Las transmisiones que colisionan son abortadas
 - Colisión = desperdicio del canal

Detección de colisión:

- Relativamente fácil en LANs cableadas
- Dificil en LANs inalámbricas

CSMA-CD

Detección de una colisión y cancelación de la transmisión

Figure 5.14 ◆ CSMA with collision detection

Protocolos MAC "Toma de turnos"

Encuesta:

El nodo maestro invita a los nodos esclavos a transmitir por turnos

- Típicamente utilizado con dispositivos esclavos "tontos"
- Sin colisiones
- Determinístico
- Involucra:
 - Sobrecarga por la encuesta
 - latencia
 - único punto de falla (maestro)

EJ: Bluetooth (IEEE 802.15), Un modo de Wi Fi (802.11)

Protocolos MAC "Toma de turnos"

Paso de testigo:

No existe un nodo maestro, se intercambia una trama especial token

- Quién retiene el token puede transmitir determinada cantidad de tramas
- Se va pasando al siguiente nodo
 - Fficiente
 - Problemas si un nodo falla.

EJ: FDDI, IEEE 802.5

Resumen de protocolos MAC

Particionado del canal:

- Compartir el canal justa y eficiente a alta carga
- Ineficiente a baja carga: Retardo en el acceso al canal, ancho de banda 1/N asignado aún si hay un sólo nodo activo.

Acceso Randómico:

- Eficiente a baja carga: Un único nodo puede utilizar completamente el canal.
- Alta carga: Overhead por colisión

Protocolos de "Toma de turnos"

- Busca lo mejor de las dos estrategias.