MATH-UA 349: Honors Algebra II

James Pagán, March 2024

Professor Kleiner

Contents

1	Problem 1	2
	1.1 Part (a)	2
	1.2 Part (b)	2
2	Problem 2	2
3	Problem 3	3
4	Problem 4	4
5	Problem 6	4

1 Problem 1

1.1 Part (a)

Performing reduction, it is easy to verify that

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 7 & 2 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 2 & 1 & 17 \\ -1 & 0 & -10 \\ 0 & 0 & 1 \end{bmatrix}$$

Observe that $(x, y, z) \in \mathbb{Z}^3$ is mapped to zero by the left-hand side if and only if x = y = 0. Therefore, the solutions are

$$\begin{bmatrix} 2 & 1 & 17 \\ -1 & 0 & -10 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix} = \begin{bmatrix} 17z \\ -10z \\ z \end{bmatrix}$$

across all $z \in \mathbb{Z}$.

1.2 Part (b)

Based on the above diagonalization, a basis of the image of **T** is $\mathbf{Q}(\mathbf{e}_1)$ and $\mathbf{Q}(2\mathbf{e}_2)$, where

$$\mathbf{Q}^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \quad \Longrightarrow \quad \mathbf{Q} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$

Therefore, the two basis vectors we seek are

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.$$

2 Problem 2

We perform a series of operations on the matrix, after all of which the underlying Abelian group is invariant:

$$\begin{bmatrix} 3 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 3 & 6 \end{bmatrix} \implies \begin{bmatrix} 0 & -2 & -1 \\ 1 & 1 & 1 \\ 0 & 1 & 4 \end{bmatrix} \implies \begin{bmatrix} -2 & -1 \\ 1 & 4 \end{bmatrix} \implies \begin{bmatrix} 0 & 7 \\ 1 & 4 \end{bmatrix} \implies [7].$$

Thus the matrix represents $\mathbb{Z}/7\mathbb{Z} = \boxed{\mathbb{Z}_7}$.

3 Problem 3

Assembling these relations into a matrix, we obtain a presentation of V:

$$\begin{bmatrix} 7 & 5 & 2 \\ 3 & 3 & 0 \\ 13 & 11 & 2 \end{bmatrix}.$$

We now perform a similar series of operations that simplifies this presentation matrix:

$$\begin{bmatrix} 7 & 5 & 2 \\ 3 & 3 & 0 \\ 13 & 11 & 2 \end{bmatrix} \implies \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 0 \\ 7 & 7 & 2 \end{bmatrix} \implies \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 0 \\ 0 & 7 & 2 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 7 & 2 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 \\ 0 & -6 \\ 0 & -12 \end{bmatrix}$$
$$\implies \begin{bmatrix} -6 \\ -12 \end{bmatrix} \implies \begin{bmatrix} 6 \\ 0 \end{bmatrix} \implies [6].$$

Hence $V \cong \mathbb{Z}_6 \cong C_6$. We now utilize the following lemma:

Lemma 1. Suppose that m and n are relatively prime, positive integers. Then $C_{mn} \cong C_m \times C_n$.

Proof. Let a generate C_{mn} . It is clear that a^m has order n and a^n has order m, so

$$(a^m) \cong C_n$$
 and $(a^n) \cong C_m$.

We seek to use the Chinese Remainder Theorem for \mathbb{Z} -modules. We must verify two conditions:

- 1. For all $k \in \{1, ..., mn\}$, Bézout's Identity ensures the existence of $b, c \in \mathbb{Z}$ such that k = bm + cn. Hence $a^k = a^{am+bn} = (a^m)^b (a^n)^c$. Thus we have the subgroup product $(a^n) \times (a^m) = C_{mn}$.
- 2. It is trivial that since n and m are relatively prime, $(a^n) \cap (a^m) = \{e\}$.

Thus, we conclude by the Chinese Remainder Theorem that

$$C_{mn} \cong C_{mn} / (a^n) \times C_{mn} / (a^m) \cong (a^m) \times (a^n) \cong C_n \times C_m.$$

This completes the proof.

We thus conclude that $V \cong C_2 \times C_3$

4 Problem 4

All Abelian groups of order 400 are of the form

$$C_{n_1} \times \cdots \times C_{n_i}$$

where $n_1, \ldots, n_i > 2$ are integers such that $n_1 \cdots n_i = 400$. For our purposes, denote a cyclic group C_n as **irreducible** if there do not exist integers a, b > 2 such that $C_n \cong C_a \times C_b$. Several observations are in order:

- 1. **Order**: If $C_{n_1} \times \cdots \times C_{n_i}$ has order 400, then $n_1 \cdots n_i = 400$ implies that each n_1, \ldots, n_k must divide 400. In particular, the prime factorizations of n_i must not contain primes other than 2 and 5.
- 2. Irreducibility implies Prime Powers: Suppose that C_{n_i} is cyclic, where n_i is not a prime power; then there exist relatively prime integers a, b > 2 such that $n_i = ab$. Hence by Lemma 1 (Problem 3), we have $C_{n_i} \cong C_a \times C_b$ so C_{n_i} is not irreducible. Contraposition yields that all irreducible C_{n_i} must be a prime power.
- 3. Prime Power implies Irreducibility: Suppose that C_{p^n} is a cyclic group. Then C_{p^n} contains an element of order p^n , but all direct products

$$C_{p^a} \times C_{p^b}$$

contain an element of greatest order $\max\{a,b\}$. Thus C_{p^n} is irreducible.

We deduce that G is an Abelian group of order 400 if and only if

$$G \cong C_{2^{n_1}} \times \cdots \times C_{2^{n_i}} \times C_{5^{m_1}} \times \cdots \times C_{5^{m_j}},$$

where n_k and m_k are positive integers such that $n_1 + \cdots + n_i = 4$ and $m_1 + \cdots + m_j = 2$. The number of distinct Abelian groups G is the number of distinct solutions to these equations — which is the number of partitions of 4 times the number of partitions of 2. Since there are 5 partitions of the former and 2 partitions of latter, the answer is $5 \times 2 = 10$.

5 Problem 6

Let R be the ring of polynomials with complex coefficients and 2^{\aleph_0} variables — in particular, let x_a be a unique variable for all $a \in \mathbb{R}$. An example of an element of R is as follows:

$$i(x_{\pi})^{100} + (2-i)(x_{\sqrt{2}})^{9}(x_{0}) + (x_{-1}) + i\sqrt{4}.$$

It is easy to verify that R is a ring. The principal ideal

$$\mathfrak{a} = (x_1, x_2, x_3, x_4, \ldots) \subseteq R$$

is clearly not finitely generated. For any finite set of elements $a_1, \ldots, a_k \in \mathfrak{a}$, let i be the maximum integer such that x_i appears in one of a_1, \ldots, a_k . Then $x_{i+1} \notin (a_1, \ldots, a_k)$, so this set of elements fails to generate \mathfrak{a} .