场论与凝聚态笔记

mny

2023年9月26日

目录

1	Invitation: The Cartoon of Confinement	1
2	Path Integral for Single Particles	2
3	Observables in QM	4
4	Path Integrals for Fields	4
5	Free Field Theory	5
	5.1 Ground State Wave Function and Entanglement	6
	5.2 Energy Gap and Corelation	6

1 Invitation: The Cartoon of Confinement

Never see individual quarks.

For separatable particles, like electron charges, their potential is $V(r) \sim \frac{1}{r}$, thus $V(r) - V(r_0)$ is always bounded.

Two quarks forms a pion. They interacts through gluon, and forms a structure called gluon tube or string. The potential is $V(r) \sim r$ and the energy density per length is appropriately constant. To separate a quark pair, the energy inputed $V(r) - V(r_0)$ is unbounded.

Similar phenomenon appears in superconductor(type II). When electronic charge condensed, the interaction of magnetic monopole becomes $V(r) \sim r$. According to EM duality, when magnetic monopole condensed, analogy goes to its counterpart. (Perspective by t'Hooft, Polyakov and Manldstan.)

2 Path Integral for Single Particles

From the two-slit interference, we've known the picture of wave. Whilst, the view of particle could recover the result by computing the phase e^{iS} .

For single particle mechanic, we start from the Schrödinger equation

$$i\hbar \partial_t |\psi(t)\rangle = H(p, x, t) |\psi(t)\rangle.$$
 (2.1)

We have the time evolution operator

$$|\psi(t)\rangle = U(t, t_0) |\psi(t)\rangle,$$
 (2.2)

which is unitary,

$$U^{\dagger}(t, t_0)U(t, t_0) = 1. \tag{2.3}$$

If H is time-dependent, we split the time interval into small slices, and we get the infinitesimal U operator as time-independent cases,

$$U(t,t_0) = \prod_{n=0}^{N-1} U(\overbrace{t_{n-1},t_n}^{\delta t}), \qquad (2.4)$$

where $t_n \equiv t + n\delta t$. Note that the product is time ordered.

Another perspective is from the Schrödinger equation, by finite differential,

$$|\psi(t+\delta t)\rangle = \left[1 - \frac{\mathrm{i}}{\hbar}H(p,x,t+\frac{\delta t}{2})\right]|\psi(t)\rangle$$
 (2.5)

To the order of δt , we have

$$|\psi(t+\delta t)\rangle = e^{-\frac{i}{\hbar}H(p,x,t+\frac{\delta t}{2})}|\psi(t)\rangle$$
 (2.6)

Next, we put the time evolution operator in spacial basis, considering

$$\langle x'|U(t+\delta t,t)|x\rangle$$
. (2.7)

Suppose $H = \frac{p^2}{2m} + V(x)$ for simplicity, we obtain

$$\langle x' | \left[1 - \frac{\mathrm{i}\delta t}{\hbar} \left(\frac{p^2}{2m} + V(x, t + \frac{\delta t}{2}) \right) \right] | x \rangle.$$
 (2.8)

Make a substitution

$$V \to \frac{V(x', t + \frac{\delta t}{2}) + V(x, t + \frac{\delta t}{2})}{2} 1,$$
 (2.9)

and insert a completeness relation of p in each time slice, we arrive at

$$\langle x'|U(t+\delta t,t)|x\rangle = \int dp \frac{1}{2\pi\hbar} e^{\frac{ip(x'-x)}{\hbar}} \exp\left[-\frac{i\delta t}{\hbar} \frac{H(p,x',t+\frac{\delta t}{2}) + H(p,x,t+\frac{\delta t}{2})}{2}\right]. \quad (2.10)$$

written in a more compact form,

$$\langle x' | U(t+\delta t, t) | x \rangle \sim \int dp \, \frac{1}{2\pi\hbar} e^{i\frac{p\delta x}{\hbar} - i\frac{H\delta t}{\hbar}}.$$
 (2.11)

The finite-time evolution operator,

$$U(t_N, t_0) = \prod_{n=0}^{N-1} U(t_{n-1}, t_n)$$
(2.12)

inserting an identity operator as x basis completeness relation, the element is

$$U(t_{n+2}, t_{n+1}) \underbrace{1}_{\int dx_n |x_n\rangle\langle x_n|} U(t_{n+1}, t_n)$$
 (2.13)

then we obtain

$$\langle x_N | U(t_N, t_0) | x_0 \rangle = \left(\prod_{n=1}^{N-1} \int dx_n \, \langle x_{n+1} | U(t_{n+1}, t_n) | x_n \rangle \right)$$

$$\times \langle x_1 | U(t_1, t_0) | x_0 \rangle$$
(2.14)

in full,

$$\langle x_{N} | U(t_{N}, t_{0}) | x_{0} \rangle = \left(\prod_{n=1}^{N-1} \int \frac{\mathrm{d}p_{n+\frac{1}{2}} \, \mathrm{d}x_{n}}{2\pi\hbar} \right) \int \frac{\mathrm{d}p_{\frac{1}{2}}}{2\pi\hbar} \times \exp\left(\frac{\mathrm{i}}{\hbar} \sum_{n=0}^{N-1} \left[p_{n+\frac{1}{2}}(x_{n+1} - x_{n}) - \delta t \frac{H(p_{n+\frac{1}{2}}, x_{n+1}, t_{n+\frac{1}{2}}) + H(p_{n+\frac{1}{2}}, x_{n}, t_{n+\frac{1}{2}})}{2} \right] \right)$$

$$\sim \left(\prod_{n=0}^{N-1} \int \frac{\mathrm{d}p_{n+\frac{1}{2}} \, \mathrm{d}x_{n}}{2\pi\hbar} \right) \int \frac{\mathrm{d}p_{\frac{1}{2}}}{2\pi\hbar} \mathrm{e}^{\frac{\mathrm{i}}{\hbar} \int p \, \mathrm{d}x - H \, \mathrm{d}t}$$

$$(2.15)$$

Insert a operator B(x) in between the path integral,

$$\langle x_N | U(t_N, t_m) \hat{B}(x) U(t_m, t_0) | x_0 \rangle = \left(\prod_{n=1}^{N-1} \int \frac{\mathrm{d}p_{n+\frac{1}{2}} \, \mathrm{d}x_n}{2\pi\hbar} \right) \int \frac{\mathrm{d}p_{\frac{1}{2}}}{2\pi\hbar} B(x_m)$$

$$\times \exp \frac{\mathrm{i}}{\hbar} \sum_{n=0}^{N-1} \left[p_{\frac{1}{2}}(x_{n-1} - x_n) - \delta t \frac{H(p_{n+\frac{1}{2}}, x_{n+1}, t_{n+\frac{1}{2}}) + H(p_{n+\frac{1}{2}}, x_n, t_{n+\frac{1}{2}})}{2} \right].$$

$$(2.16)$$

We simply need to add the value of the operator as a function of certain space coordinate in the expression of path integral.

3 Observables in QM

•

$$\langle \psi | A | \psi \rangle, \ A^{\dagger} = A.$$
 (3.1)

• Probability of projection,

$$P = |\langle \phi | \psi \rangle|^2 = \langle \psi | \underbrace{|\phi \rangle \langle \phi|}_{\hat{A}} | \psi \rangle$$
 (3.2)

• Observables after evaluation,

$$\langle \phi | \underbrace{e^{iHt/\hbar} A e^{-iHt/\hbar}}_{\hat{A}(t)} | \psi \rangle$$
 (3.3)

• Projection after evaluation: scattering

$$P = |\langle \psi | e^{-iHt/\hbar} | \psi \rangle|^2 = \langle \psi | \underbrace{e^{iHt/\hbar} | \phi \rangle \langle \phi | e^{-iHt/\hbar}}_{\hat{A}(t)} | \psi \rangle$$
 (3.4)

• Retarded correlation

$$H(t) = H_0 + \underbrace{a(t)}_{\text{small}} B. \tag{3.5}$$

The contribution of $\langle \psi | U^{\dagger}(t,0) A U(t,0) | \psi \rangle$ to the first order correction in a is

$$-\frac{\mathrm{i}}{\hbar} \int \mathrm{d}t' a(t') \Big[\langle \psi | U_0^{\dagger}(t,0) A U_0(t,t') B U_0(t',0) - U_0^{\dagger}(t,0) B U_0(t,t') A U_0(t',0) | \psi \rangle \Big]$$
(3.6)

4 Path Integrals for Fields

There's a mattress with springs and massive balls connected. Denoting the offset of each ball as $\phi_{\vec{r}}$ the Hamiltonian is

$$H = \sum_{\vec{r} \text{ on lattice}} \left[\frac{p_{\vec{r}}^2}{2m} + V(\phi_{\vec{r}}) + \sum_{\hat{\tau}=1}^d \frac{k}{2} \left(\phi_{\vec{\tau}+\alpha\vec{\tau}} - \phi_{\vec{\tau}} \right)^2 \right], \tag{4.1}$$

with a commutation relation

$$[\phi_{\vec{r}}, p_{\vec{r}'}] = i\hbar \delta_{\vec{r}, \vec{r}'}. \tag{4.2}$$

The interacting part of the Hamiltonian only involves pairs nearby.

In continuum limit, $H = \int d^d \vec{r} \mathcal{H}(\vec{r})$, and we can write the Hamilton density as

$$\mathcal{H} = \frac{\pi(\vec{r})^2}{2\rho} + \mathcal{V}(\phi(\vec{r})) + \frac{\kappa}{2} \left[\partial_{\vec{r}} \phi(\vec{r}) \right]^2, \tag{4.3}$$

where
$$\pi(\vec{r}) = \frac{p_{\vec{r}}}{\alpha^d}, \mathcal{V} = \frac{V}{\alpha^d}, \rho = \frac{m}{\alpha^d}, \kappa = \frac{k\alpha^2}{\alpha^d}.$$

Path Integral At t_n , we use $\bigotimes_{\vec{r}} |\phi(\vec{r})\rangle$ basis, and $\bigotimes_{\vec{r}} |\pi(\vec{r})\rangle$ for $t_{n+\frac{1}{2}}$.

Analogously, we get

$$\langle \operatorname{end} | U(t,0) | \operatorname{start} \rangle = \left(\prod_{t_n, \vec{r}} \frac{\mathrm{d} p_{t_n + \frac{1}{2}, \vec{r}} \, \mathrm{d} \phi_{t_n, \vec{r}}}{2\pi \hbar} \right)_{\text{suitable boundary condition}$$

$$\times \exp \frac{\mathrm{i}}{\hbar} \sum_{t_n, \vec{r}} \left[p_{t_{n + \frac{1}{2}}, \vec{r}} \left(\phi_{t_{n+1}, \vec{r}} - \phi_{t_n, \vec{r}} \right) - \delta t \left(\frac{p_{n + \frac{1}{2}, \vec{r}}^2}{2m} + \frac{k}{2} \sum_{\hat{\tau} = 1}^d \left(\phi_{t_n, \vec{r} + \alpha \hat{\tau}} - \phi_{t_n, \vec{r}} \right)^2 + V(\phi_{t_n, \vec{r}}) \right) \right].$$

$$(4.4)$$

Integrate out p, we obtain

$$\left(\prod_{t_{n},\vec{r}} \sqrt{\frac{2\pi\hbar m}{\mathrm{i}\delta t}} \frac{\mathrm{d}\phi_{t_{n},\vec{r}}}{2\pi\hbar}\right)_{\text{suitable boundary condition}} \times \exp\frac{i\delta}{\hbar} \sum_{t_{n},\vec{r}} \left[\frac{m}{2} \left(\frac{\phi_{t_{n+1},\vec{r}} - \phi_{t_{n},\vec{r}}}{\delta t}\right) - \frac{k\alpha^{2}}{2} \sum_{\hat{\tau}=1}^{d} \left(\frac{\phi_{t_{n},\vec{r}+\alpha\hat{\tau}} - \phi_{t_{n},\vec{r}}}{\alpha}\right)^{2} - V(\phi_{t_{n},\vec{r}})\right], \tag{4.5}$$

in which time and space stand in the same place, similar to relativistic K-G field.

5 Free Field Theory

For free fields, $V(\phi_{\vec{r}}) = \frac{u}{2}\phi_{\vec{r}}^2$, it behaves just like coupled simple harmonic oscillators. To find the normal modes, we use Fourier transformation.

$$\phi_{\vec{r}} = \int_{-\frac{\pi}{\alpha}}^{\frac{\pi}{\alpha}} \frac{\mathrm{d}^d \vec{k}}{(2\pi)^d} \,\mathrm{e}^{\mathrm{i}\vec{k}\cdot\vec{r}}\phi_{\vec{k}},\tag{5.1}$$

likewise for $p_{\vec{r}}$.

 $\phi_{\vec{r}}$ is real, thus $\phi_{\vec{r}} = \phi_{\vec{r}}^{\dagger} \implies \phi_{-\vec{k}} = \phi_{\vec{k}}^{\dagger}$, and the commutation relation is

$$\left[\phi_{\vec{k}}, p_{\vec{k'}}\right] = i\hbar (2\pi)^d \delta^d(\vec{k} + \vec{k'}).$$
 (5.2)

6

The Hamiltonian becomes

$$H = \int_{-\frac{\pi}{\alpha}}^{\frac{\pi}{\alpha}} \frac{\mathrm{d}^{d}\vec{k}}{(2\pi)^{d}} \frac{1}{2} \left[\frac{p_{-\vec{k}}p_{\vec{k}}}{2m} + \left(\frac{k}{2} \sum_{\vec{\tau}=1}^{d} \left(2\sin\frac{\alpha k_{i}}{2} \right)^{2} + \frac{u}{2} \right) \phi_{-\vec{k}}\phi_{\vec{k}} \right], \tag{5.3}$$

from which we can directly figure out the frequency $\omega_{\vec{k}} = \omega_{-\vec{k}} = \sqrt{\frac{k \sum_{\vec{\tau}} \left(\sin \frac{\alpha k_i}{2}\right)^2 + U}{m}}$ Next, we need to make a substitution, or Bogoliubov transformation:

$$\phi_{\vec{k}}^c = \frac{\phi_{\vec{k}} + \phi_{-\vec{k}}}{\sqrt{2}},\tag{5.4}$$

$$\phi_{\vec{k}}^s = i \frac{\phi_{\vec{k}} - \phi_{-\vec{k}}}{\sqrt{2}}.$$
 (5.5)

the integration range becomes half of \vec{k} .

5.1 Ground State Wave Function and Entanglement

5.2 Energy Gap and Corelation