ERTEC WESTERN INC LONG BEACH CA
NX SITING INVESTIGATION, GRAVITY SURVEY - DUGWAY VALLEY, UTAH, (U)
F04704-80-C-0006 AD-A112 201 F/6 8/5 AUG 81 UNCLASSIFIED E-TR-33-DW NL 1 m 1

MICROCOPY RESOLUTION TEST CHART

DTIC FORM 70A

DOCUMENT PROCESSING SHEET

· AD # 112201

MX SITING INVESTIGATION

GRAVITY SURVEY - DUGWAY VALLEY UTAH

Prepared for:

Ballistic Missile Office (BMO)
Norton Air Force Base, California 92409

Prepared by:

Ertec Western, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

19 December 1980

Revised 28 August 1981

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE E-TR-33-DU 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER Mx Siting Truest, Srowith Sorv. Duncally valley what 5. TYPE OF REPORT & PERIOD COVERED Hinal 6. PERFORMING ORG. REPORT NUMBER E-TK-33-DW 8. CONTRACT OR GRANT NUMBER(9) 7. AUTHOR(s) Erter Western, olic F04704-80-C-0006 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Ertec Western Inc Garmerly Fugro National PC. 130X 7765 64312 F Long Beach Ca 90507 11. CONTROLLING OFFICE NAME AND ADDRESS
U.S. DEPORTMENT OFFICE
Space and Missile Systems organization 12. REPORT DATE Rev. 28 Aug 13. NUMBER OF PAGES 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Distribution Unlimited 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Geology, Bouguer Anomaly, Depih to Rock, Valley Fill, Gravity Profile, Faults DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

و ويندون

FOREWORD

Methodology and Characterization studies during Fiscal Years 1977 and 1978 (FY 77 and 78) included gravity surveys in 10 valleys; five in Arizona, two in Nevada, two in New Mexico, and one in California. The gravity data were obtained for the purpose of estimating the gross structure and shape of the basins and the thickness of the valley fill. There was also the possibility of detecting shallow rock in areas between boring locations. Generalized interpretations from these surveys were included in Ertec Western's (formerly Fugro National) Characterization Reports (FN-TR-26a through e).

During the FY 77 surveys, measurements were made on an approximate 1-mile grid over the study areas, and contour maps showing interpreted depth to bedrock were made. In FY 79, the decision was made to concentrate on verifying and refining suitable area boundaries. This decision resulted in a reduction in the gravity program. Instead of obtaining gravity data on a grid, the reduced program consisted of obtaining gravity measurements along profiles across the valleys where Verification studies were also performed.

The Defense Mapping Agency (DMA), St. Louis, Missouri, was requested to provide gravity data from their library to supplement the gravity profiles. For Big Smoky, Hot Creek, and Big Sand Springs valleys, a sufficient density of library data was available to permit construction of interpreted depth contour maps instead of just two-dimensional cross sections.

In late summer of FY 79, supplementary funds became available to begin data reduction. At that time, inner zone terrain corrections were begun on the library data and the profiles from Big Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona. The profile data from Whirlwind, Hamlin, Snake East, White River, Garden, and Coal valleys, Nevada-Utah, became available from the field in early October 1979.

A continuation of gravity interpretations has been incorporated into the FY 80-81 program, and the results are being summarized in a series of valley reports. Reports covering Nevada-Utah gravity studies are numbered "E-TR-33-" followed by the abbreviation for the subject valley. In addition, more detailed reports of the results of FY 77 surveys in Dry Lake and Ralston valleys, Nevada, were prepared. Verification studies were continued in FY 80 and 81, and gravity studies were included in the program. DMA continued to obtain the field measurements, and there was a return to the grid pattern. The interpretation of the grid data allows the production of depth contour maps which are valuable in the deep basin structural analysis needed for computer modeling in the water resources program. The

gravity interpretations will also be useful in Nuclear Hardness and Survivability (NH&S) evaluations.

The basic decisions governing the gravity program are made by BMO following consultation with TRW, Inc., Ertec Western, Inc. and the DMA. The gravity studies is a joint effort between DMA and Ertec Western, Inc. The field work, including planning, logistics, surveying, and meter operation is done by the Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC), head-quartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section Al.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri, calculates outer zone terrain corrections.

Ertec Western, Inc. provides DMA with schedules showing the valleys with the highest priorities. Ertec Western, Inc. also recommended locations for the profiles in the FY 79 studies with the provision that they should follow existing roads or trails. Any required inner zone terrain corrections are calculated by Ertec Western, Inc. prior to processing the gravity data and making geologic interpretations.

TABLE OF CONTENTS

		Page			
FOREW	ORD	i			
1.0	INTRODUCTION	1			
	1.1 Objective	1 1 4			
2.0	GRAVITY DATA REDUCTION				
3.0	LOGIC SUMMARY 6				
4.0	INTERPRETATION	8			
	4.1 Regional-Residual Separation 4.2 Density Selection	8 9 11 14			
5.0 <u>CONCLUSIONS</u>		20			
REFER	ENCES	21			
	APPENDICES				
APPENI	DIX				
A1.0	Exploration Method				
	LIST OF FIGURES				
Figure Number					
1 2	Location Map, Dugway Valley, Utah	2			
3	Gravity Profile AA' - Cross Sectional View,				
4	Dugway Valley, Utah	15 16			
5	Gravity Profile CC' - Cross Sectional View, Dugway Valley, Utah	18			

TABLE OF CONTENTS (cont.)

		Page
	LIST OF TABLES	
Table Number		
1	Boring Results, Dugway Valley, Utah	13
	LIST OF DRAWINGS	
Drawing Number		
1 2	Complete Bouguer Anomaly Contour Map In Pocket Interpreted Depth to Bedrock End of Re	

1.0 INTRODUCTION

1.1 OBJECTIVE

Gravity measurements were made in Dugway Valley, Utah, for the purpose of estimating the overall shape of the structural basin, the thickness of alluvial fill, and the location of concealed faults. These estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating groundwater resources.

1.2 LOCATION

Dugway Valley is located in Tooele and Juab counties in west-central Utah (Figure 1). The gravity survey covered the entire valley which is located approximately 80 miles (128 km) south-west of Salt Lake City, Utah. Dugway Valley lies within the area bounded by latitudes 39° 30' and 40° 05' and longitudes 112° 45' and 113° 10' (Figure 2). The valley is about 36 miles (58 km) long and 9 miles (14 km) wide. The only paved road within the site is State Highway 58 which traverses the north end of the valley.

Dugway Valley is bounded by mountain ranges on two sides, open to the Dugway Proving Ground on the north, and Sevier Desert and Whirlwind Valley on the southeast (Figure 2). The western boundary of the valley is formed by the Dugway Range in the north, Thomas Range, and the Drum Mountains in the south. Simpson Mountains, Slow Elk Hills, and Keg Mountains comprise the eastern valley border from the north to the south.

1.3 SCOPE OF WORK

Five primary work elements were completed during this study. They are:

- 1. Computation and merging of terrain corrections with Simple Bouguer values;
- 2. Synthesis of regional and valley-specific geological data;
- 3. Evaluation of the regional field and residual separation;
- 4. Inverse modeling to estimate depth to bedrock; and
- 5. Interpretation of structural relationships.

The gravitational field within Dugway Valley was defined by measurements from 442 stations. The gravity stations were distributed throughout the valley at intervals of about 1.3 miles (2.1 km). The principal facts for these stations are listed in Appendix A2.0, and their distribution is shown in Drawing 1. The Defense Mapping Agency Aerospace Center (DMAAC) supplied data for 56 gravity stations from its library, and 386 new gravity measurements were made by the Defense Mapping Agency Hydrographic Topographic Center/Geodetic Survey Squadron (DMAHTC/GSS).

Dugway Valley and Sevier Desert Valley were studied together with the results presented in separate reports. The region containing both valleys is located between north latitudes 39° 20' and 40° 05' and west longitudes 112° 20' and 113° 15'. There are 989 gravity stations in the region. All were used to establish a common regional gravity trend for the two valleys.

The tolerance for establishing station elevation was 5 feet (1.5m), which limits the gravity precision to 0.3 milligals.

2.0 GRAVITY DATA REDUCTION

DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0. Up to three levels of terrain corrections were applied to the new stations to convert the SBA to the Complete Bouguer Anomaly (CBA). Only the first two levels of terrain corrections described below were applied to the library stations.

First, the DMAAC used its library of digitized terrain data and a computer program to calculate corrections out to 104 miles (167 km) from each station. When the program could not calculate the terrain effects near a station, Ertec Western used a ring template to estimate the effect of terrain within approximately 3000 feet (914 m) of the station. The third level of terrain corrections was applied to those stations where relief of 10 feet (3 m) or more was observed within 130 feet (40 m). In these cases, the elevation differences were measured in the field at a distance of 130 feet (40 m) along six directions from the stations. These data were used by Ertec Western to calculate the effect of the very near relief.

3.0 GEOLOGIC SUMMARY

The structural geologic setting, major rock types, and depositional regime of the valley-fill material are important considerations in the interpretation of gravitational field data.

Dugway Valley is an elongate, north-south trending, alluvial basin. Tertiary vorcarie rocks camp out in the Keg Mountain, the Thomas Range, and the Drum Mountains. These rocks consist of late Tertiary silicic flows and pyroclastics and more basic early Tertiary latite flows and ash-flow tuffs (ignimbrites) (Stokes, 1963). The Dugway Range is composed of complexly folded and faulted upper-Mississippian to middle Cambrian limestone and dolomite with minor shale, sandstone, and lower Cambrian quartzite (Stokes, 1963; and Stephens and Sumsion, 1978). Similar Paleozoic sedimentary rocks crop out on the northwestern flank of the Keg Mountains and in the Slow Elk Hills (Stokes, 1963; and Stephens and Sunsion, 1978). Everywhere they have been mapped, the lower Cambrian quartzite and sandstone are in fault contact with other Paleozoic rocks.

Young fault offsets are rare in Dugway Valley. The only major group of faults is a series of semiparallel Holocene scarps east of the Drum Mountains. These features are of particular concern because they are associated with a broad zone of tectonic deformation extending about 20 miles (32 km) into the contiguous Whirlwind Valley to the south. The nature of the fault zone suggests that it probably is associated also with a concealed, major, basin-bounding fault along the western side of the Sevier

Desert. The scarps disrupt low-level Lake Bonneville shorelines (late Pleistocene and Holocene) and thus are considered Holocene in age. These faults form a series of branching scarps with the major scarps nearest the mountain front. These branching series of scarps and cracks are generally confined to alluvium but appear to involve bedrock outcrops in a few cases. Their sense of displacement varies with both the upslope and the downslope blocks being relatively uplifted. The Sevier Desert gravity data suggest that these surface scarps may represent more than one major subsurface fault. Vertical separations range from about 2 to 24 feet (0.6 to 7.3 m) (Bucknam and Anderson, 1979).

Dugway Valley is underlain by a thick accumulation of Miocene to Holocene valley-fill deposits. The older deposits consist of sandstone, shale, limestone, basalt, evaporites, conglomerate, and tuff. The younger surficial deposits consist of alluvial fan and lacustrine deposits. The lacustrine deposits are composed of uncemented lake sediments and shoreline berms and bars left by the Pleistocene Lake Bonneville. They are predominantly silt and silty sand with lesser amounts of gravelly sand and clay. The alluvial fan deposits range from silty sand to gravelly sand and are uncemented to weakly cemented. These deposits are derived from erosion of the surrounding mountains.

4.0 INTERPRETATION

A density contrast exists between a valley filled with light-weight alluvium and the denser surrounding bedrock. This density contrast creates a negative gravity anomaly. Interpretation of the gravity data first requires the removal of the regional gravity wrends from the total gravitational field measure: at the surface. Once isolated, the negative gravity anomaly, which is the gravity reflection of the valley-fill material, can be used to estimate the depth of bedrock.

The gravity stations are distributed over a quasi-grid, giving a fairly uniform coverage but somewhat irregular spacing. To facilitate the mathematical treatment of irregularly spaced data, the CBA and elevation data are reduced to a set of values at the nodes of a uniformly spaced geographic array or grid. The gridding process is an iterative one which uses an algorithm that computes a value at each node by finding a surface that is both biharmonic and fits the gravity station data. A 1.2-mile (2-km) grid spacing was chosen to match the average data spacing. Drawing 1 shows the CBA gravity field contoured from gridded values and the location of the gravity stations.

4.1 REGIONAL-RESIDUAL SEPARATION

A fundamental step in gravity interpretation is isolation of the part of the CBA which represents the geologic feature of interest, in this case, the valley fill. The portion of the CBA which corresponds to this material is called the "residual anomaly." The CBA contains long wavelength components from deep and broad geologic structures extending far beyond the valley. These components, called the regional gravity, were approximated by a second-degree trend surface which was derived from several upward continuation models. The residual anomaly was obtained by subtracting the regional gravity from the CBA values. The residual anomaly was appropriately adjusted by a constant -5.0 milligals to agree with the soil-rock contact and then used to calculate a simple geologic model which fits the gravity data and is consistent with geologic knowledge from other sources.

4.2 DENSITY SELECTION

The construction of a geologic model from the residual anomaly requires selection of density values representative of the fill material and of the anderlying rock. Average in situ density of the all vium was measured between depths of 140 to 160 feet (43 to 45 m) in five shallow borings drilled in Dugway Valley during Verification studies (Ertec, unpublished). The observed density range for the alluvium was 1.7 to 2.2 g/cm³.

Based on the geologic characteristics of the surrounding mountains, middle Tertiary volcanic rocks probably lie between the alluvial basin deposits and the carbonate basement in Dugway Valley, but little is known about their thickness and density. The density of siliceous to intermediate volcanic rocks generally ranges between 2,0 to 2.5 g/cm³ depending on the degree of welding, compaction, and alteration. The older volcanics in the Dugway Valley area are probably at the higher end of this

density range, being approximately equivalent to dense alluvium or between the density of alluvium and the density of bedrock. The information available regarding the volume and characteristics of the subsurface volcanic rocks is insufficient to calculate their quantitative effect on the gravitational field. Therefore, a density of 2.4 g/cm³ was used in the modeling process to estimate the effect of the combined alluvium and volcanic material.

The bedrock underlying the Dugway basin is thought to be Paleo-zoic carbonate rocks such as those found in limited outcrops in the surrounding mountain ranges. Published values for carbonate rocks typically range betwen 2.6 and 2.9 g/cm³. The Paleozoic carbonate rocks in Nevada and Utah are generally reported to be relatively high in density, on the order of 2.8 g/cm³. This value was selected to represent the density of the bedrock. The density contrast between the cerbonate rocks and the valley fill materials used in modeling was -0.40 g/cm³.

For a given bedrock density, the calculated basin depth is inversely proportional to the density value assigned to the valley-fill materials. A one percent change in the average fill material density will result in a six percent change in the calculated fill thickness. Because only very generalized density information is available, the geologic interpretation of the gravity data can be only a coarse approximation.

4.3 MODELING

Modeling was done with the aid of a computer program which iteratively calculates a three-dimensional solution of gravity anomaly data (Cordell, 1970). The gravity anomaly is represented by discrete values on a two-dimensional grid. The source of the anomaly (the volume of low-density valley fill) is represented by a set of vertical prism elements. The tops of the prisms lie in a com on horizontal plane. The bottoms of the prisms collectively represent the bottom of the valley fill. Each prism has a uniform density and cross-sectional area equal to one grid square. A grid of 1.2 miles by 1.2 miles (2 km by 2 km) was selected as representative of the gravity station dis-Computations were made for nine iterations of mutually interactive prism adjustments. The root-mean-square exeror between the observed xesidual gravity field and the field calculated for the final geologic model of the valley was lessthan 0.3 milligal.

The calculated thickness of the valley fill depends upon the residual anomaly and the density contrast. Since neither density is perfectly known nor even uniform, the calculated thickness should be expected to contain a corresponding degree of uncertainty. Geotechnical data obtained by Ertec Western from 20 shallow borings and 24 seismic refraction lines in Dugway Valley were used as constraints in the interpretation. Three borings encountered volcanic material at shallow depth, but no velocity high enough to indicate rock was recorded by the refraction lines.

In addition to the geotechnical data, results from five exploration borings listed for the valley in the literature and two oil wells in southern Sevier Desert Valley were used as modeling constraints (Table 1). The two oil wells placed a major restraint on the interpretation of Sevier Desert Valley, and thus had an indirect influence on this contiguous valley. The calculated thickness of valley fill material, or interpreted depth

The analysis of the gravity data included calculation of the second vertical derivative (SVD) of the CBA field. One property of the SVD is that its zero value marks the steepest gradients of the input CBA field. In this Basin and Range valley, steep gravity gradients are interpreted as being caused by bedrock fault systems. The SVD is used to guide the placement of faults in the structural interpretation. The interpreted faults represent only the major fault systems which probably comprise many smaller fault zones. There may be other discrete faults that had a minor role in basin formation but with displacements so small that they were not resolved by the widely spaced gravity data available for this study.

A source of error in modeling Dugway Valley as just a simple valley-fill material and bedrock system is the widespread volcanic material which is probably present throughout the valley as indicated by a major northeast trending magnetic high traversing the center of the valley (Zietz and others, 1976). Magnetic highs typically overlie intrusive igneous rocks and indicate their extent, but there is no quantitative information

BORING RESULTS FROM LITERATURE				
BORING ID.	HOLE DEPTH FEET / (METERS)	REMARKS		
ANACONDA NO. 1	580 / (177)	VOLCANICS		
ANACONDA NO. 2	530 / (162)	VOLCANICS		
C-10-10-1	375 / (114)	NO ROCK ENCOUNTERED		
C-11-11	306 / (93)	NO ROCK ENCOUNTERED		
15-10-1	701 / (214)	VOLCANICS		
GULF OIL GRONNING * NO. 1	8061 / (2457)	VOLCANICS		
ARGONAUT FEDERAL* ENERGY NO. 1	11266 / (3434)	TOP OF CARBONATE ROCKS AT 7702 FT. (2342m)		

BORING LOCATIONS SHOWN ON DRAWING 2.

* OIL WELLS IN SEVIER DESERT VALLEY

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

BORING RESULTS DUGWAY VALLEY, UTAH

19 DEC 80 28 AUG 81 REVISED

TABLE 1

available about the density or volume of the volcanic material. Therefore, the effect of the volcanics on the gravitational field can be only estimated.

4.4 DISCUSSION OF RESULTS

The interpreted geologic structure of Dugway Valley is shown on the depth-to-rock contour map (Drawing 2). The interpretation is based on geologic information from published reports, analysis of aerial photographs, and geologic field reconnaissance as well as gravity data.

Dugway Valley is composed of two narrow, complex, structural basins which contain several major bedrock faults. The north-south profile AA' (Figure 3) shows an 1800-foot (549-m) vertical offset between the northern graben block and the deeper graben in the south. The northern basin is oriented N-S and the southern basin trends NNW.

The northern basin is an asymmetrical tilted block which dips down toward the west and has an average depth of about 3500 feet (1067 m). Cross-sectional profile BB' which crosses the shallower, northern part of the valley is shown in Figure 4. The steep gravity gradient on the west suggests a major north-south normal fault system along the base of the Dugway Range which is typical of the Basin and Range area. This interpreted boundary fault is located less than 1 mile (1.6 km) east (basinward) of the Dugway Range. The northwest corner of this basin contains a shallow pediment, less than 1000 feet (305 m) deep, which extends about 2 miles (3.2 km) from the Dugway Range into the valley (Drawing 2).

TOP:

BCTTOM:

The transition zone between the northern and southern basins appears to be a small buried ridge of volcanic material underlain by carbonate rock (Figure 3). The ridge is located about 1000 feet (457 m) below the surface and is 6 miles (9.6 km) wide. The ridge is bounded on the south by a transverse fault. This fault is the northern boundary of the southern graben block.

Unlike gravity results from most valleys in the Basin and Range area, the gravity data from Dugway Valley do not directly reflect the most recent Basin and Range Block faulting episode. The gravity field shows Paleozoic carbonate bedrock to be very shallow in the Dugway Range, Keg Mountains, and the Drum Mountains. The Thomas Range is apparently composed of up to 8000 feet (2438 m) of complexly faulted, low density volcanic rocks. The gravity lows at the north end of the Thomas Range and at the extreme south end of Dugway Valley are interpreted as being related to Tertiary caldera structures. The gravity low between the Dugway and Thomas ranges is interpreted to be bounded on at least three sides by ancient normal faults and to be part of a larger caldera which has been broken up by subsequent Basin and Range block faulting. The Tertiary volcanic material in this area is very thick and highly fractured.

Faults along the north side of the Drum Mountains appear to form part of the boundary of another caldera structure. The volcanic material, which is predominant in this area, appears to occupy an ancient, deep, highly faulted trough between the Dugway Range

on the north and the Drum Mountains on the south. The trough originally formed under a previous tectonic regime. This interpretation is supported by regional geologic studies and mining activities which indicate a Tertiary caldera in the Thomas Range. The fault-bounded trough appears to be oriented northwesterly and is transected by north-south trending faults which form the western boundary of the Keg Mountains (Figure 5). The northerly trending faults probably represent later Basin and Range tensional tectonic activity.

Another major fault system extends northward from the east side of the Drum Mountains to the eastern side of the Keg Mountains forming the eastern edge of a horst structure which is probably a southward subsurface extension of the Keg Mountains (Figure 5). This buried ridge is about 2000 feet (610 m) deep and separates the southern basin of Dugway Valley from the Sevier Desert Valley basin. The fault system displaces the lake shorelines and sediments in Sevier Desert Valley and hence has been active in late Pleistocene, probably Holocene, time.

The lack of widespread surface evidence for Quaternary faulting in Dugway Valley is probably due to the area being covered by lake deposits left by Lake Bonneville which occupied most of the valley during latest Pleistocene and early Holocene time. Consequently, any older alluvial fault scarps, even late Quaternary basin-bounding scarps, have been obliterated by the erosional and depositional processes associated with this great lake.

FIGURE 5

5.0 CONCLUSIONS

The interpretation of the gravity survey in Dugway Valley indicates two distinct basins separated by a small, shallow, buried ridge. The northern basin is an asymmetrical tilt block which is approximately 1800 feet (549 m) deep. The block is bounded on the west by a major north-south normal fault system near the base of the Dugway Range.

The southern basin is interpreted to partly comprise a collapsed, highly fractured, Tertiary caldera complex. The gravity indicates the caldera volcanics are accumulated to a thickness of about 3500 feet (1067 m) thick in a northwesterly trending trough. This caldera complex is transected by later Basin and Range, north-south trending faults systems. A narrow bedrock ridge or horst extends south from the Keg Mountains at a depth of about 2000 feet (610 m). This ridge could restrict groundwater movement between southern Dugway Valley and Sevier Desert Valley.

An average density contrast of -0.40 g/cm³ between the alluvium-volcanic fill material and the Paleozoic carbonate bedrock was used to calculate the valley depth.

Future studies that acquire better density data, information concerning the areal extent and thickness of the Tertiary volcanic material, or actual depths to bedrock in the deep parts of the valley can be used to refine the geologic model.

REFERENCES

- Anderson, L. W., and Miller, D. G., 1979, Quaternary fault map of Utah, Utah Geological and Mineralogical Survey, scale 1:500,000.
- Bucknam, R. C., and Anderson, R. E., 1979, Estimation of faultscarp ages from a scarp-height-slope-angle relationship: Geology, v. 7, p. 11-14.
- Cordell, Lindreth, 1970, Iterative solution of three-dimensional gravity anomaly data, Geological Survey Computer Contribution No. 10: U.S.. Geological Survey, Washington D.C.
- Goguel, J., 1954, A universal table for the prediction of the lunar-solar correction in gravimetry (tidal gravity correction); Geophysical Prospecting, v. II supplement, March.
- Hintze, L. F. (compiler), 1963, Geologic map of southwestern Utah, Brigham Young University and Utah State Land Board, scale 1:125,000.
- Stephens, J. C., and Sumsion, C. T., 1978, Hydrologic recommaissance of the Dugway Valley-Government Creek area, westcentral Utah, State of Utah: Department of Natural Resources, Technical Publication No. 59, p. 42.
- Stokes, W.L., (compiler) 1963, Geologic map of northwestern Utah, Washington D.C.: Williams and Heintz Map Co., scale 1:250,000.
- Zietz, I., Shuey, R., and Kirby, J. R., 1976, Aeromagnetic map of Utah: U.S. Geological Survey: Map GP-907, scale 1:1,000, 000.

- Woollard, G.P., 1962, The relation of gravity anomalies to surface elevation, crustal structure and geology, University of Wisconsin, Department of Geology, Geophysical and Polar Research Center, Madison, Wisconsin, Report 62-9.
- Zietz, I., Shuey, R., and Kirby, J. R., 1976, Aeromagnetic map of Utah: U.S. Geological Survey Map GP-907, scale 1:1,000,

APPENDIX A1.0

GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

A1.0 GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

A1.1 GENERAL

A gravity survey involves measuring the differences in the gravitational field between various points on the earth's surface. The gravity values are associated with the force which causes a 1 gm mass to be accelerated at 980 cm/sec^2 . This force is normally referred to as a 1 g force.

Even though in many applications the gravitational field at the earth's surface is assumed to be constant, small but distinguishable differences in gravity occur from point to point. The differences in gravity are caused by geometrical effects, such as differences in elevation and latitude, and by lateral variations in density within the earth. The lateral density variations are a result of changes in geologic conditions. For measurements at the surface of the earth, the largest factor influencing the pull of gravity is the density of all materials between the center of the earth and the point of measurement.

To detect changes produced by differing geological conditions, it is necessary to detect differences in the gravitational field as small as a few milligals. (A milligal is equal to 0.001 cm/sec² or 0.00000102 g). To recognize changes due to geological conditions, the measurements are "corrected" to account for changes due to differences in elevation and latitude. A difference in gravity between two points which is not caused by the effects of known geometrical differences, such as in elevation,

Ļ

1

latitude, and surrounding terrain, is referred to as an "anomaly." The anomaly is the basic concept of the gravitational exploration method. If, instead of being an oblate spheroid characterized by complex density variations, the earth were made up of concentric, homogeneous shells, the gravitational field would be the same at all points on the surface of the earth. The complexities in the earth's shape and material distribution are the reason that the pull of gravity is not the same from place to place.

An anomaly reflects lateral differences in material densities. The gravitational attraction is smaller at a place underlain by relatively low density material than it is at a place underlain by a relatively high density material. The term "negative gravity anomaly" describes a situation in which the pull of gravity within a prescribed area is small compared to the area surrounding it. Low-density alluvial deposits in basins such as those in the Nevada-Utah region produce negative gravity anomalies in relation to the gravity values in the surrounding mountains which are formed by more dense rocks.

The objective of gravity exploration is to deduce the variations in geologic conditions that produce the gravity anomalies identified during a gravity survey.

A1.2 INSTRUMENTS

The gravity field data was measured with a LaCoste and Romberg Model D gravimeter. The sensing element of the gravimeter is a mass suspended by a zero-length spring. Deflections of the

mass from a null position are proportional to changes in gravitational attraction. These instruments are sealed and compensated for atmospheric pressure changes. They are maintained at a constant temperature by an internal heater element and thermostat. The absolute value of gravity is not measured directly by a gravimeter. It measures relative values of gravity between one point and the next. Gravitational differences as small as 0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute gravity by taking readings twice daily at nearby USGS gravity base stations. Gravimeter readings fluctuate because of small time-related deviations due to the effect of earth tides and instrument drift. Field readings were corrected to account for these deviations. The magnitude of the tidal correction was calculated using an equation suggested by Goguel (1954):

 $C = P + N\cos \phi (\cos \phi + \sin \phi) + S\cos \phi (\cos \phi - \sin \phi)$ where C is the tidal correction factor, P, N, and S are time-related variables, and ϕ is the latitude of the observation point. Tables giving the values of P, N, and S are published annually by the European Association of Exploration Geophysicists.

The meter drift correction was based on readings taken at a designated base station at the sart and end of each day. Any difference between these two readings after they were corrected for tidal effects was considered to have been the result of

instrumental drift. It was assumed that this drift occurred at a uniform rate between the two readings. Corrections for drift were typically only a few hundredths of a milligal. Readings corrected for tidal effects and instrumental drift represented the observed gravity at each station. The observed gravity values represent the total gravitational pull of the entire earth at the measurement stations.

A1.4 DATA REDUCTION

Several corrections or reductions are made to the observed gravity to isolate the portion of the gravitational pull which is due to the crustal and near-surface materials. The gravity remaining after these reductions is called the "Bouguer Anomaly." Bouguer Anomaly values are the basis for geologic interpretation. To obtain the Bouguer Anomaly, the observed gravity is adjusted to the value it would have had if it had been measured at the geoid, a theoretically defined surface which approximates the surface of mean sea level. The difference between the "adjusted" observed gravity and the gravity at the geoid calculated for a theoretically homogeneous earth is the Bouguer Anomaly.

Four separate reductions, to account for four geometrical effects, are made to the observed gravity at each station to arrive at its Bouguer Anomaly value.

a. <u>Free-Air Effect</u>: Gravitational attraction varies inversely as the square of the distance from the center of the earth. Thus corrections must be applied for elevation. Observed

gravity levels are corrected for elevation using the normal vertical gradient of:

FA = -0.09406 mg/ft (-0.3086 milligals/meter) where FA is the free-air effect (the rate of change of gravity with distance from the center of the earth). The free-air correction is positive in sign since the correction is opposite the effect.

b. Bouquer Effect: Like the free-air effect, the Bouquer effect is a function of the elevation of the station, but it considers the influence of a slab of earth materials between the observation point on the surface of the earth and the corresponding point on the geoid (sea level). Normal practice, which is to assume that the density of the slab is $2.67~\mathrm{grams}$ per cubic centimeter was followed in these studies. The Bouquer correction (B_C), which is opposite in sign to the free-air correction, was defined according to the following formula.

 $B_c = 0.01276 (2.67) h_f (milligals per foot)$

 $B_C = 0.04185$ (2.67) h_{in} (milligals per meter)

where $h_{\mbox{\scriptsize f}}$ is the height above sea level in feet and $h_{\mbox{\scriptsize m}}$ is the height in meters.

c. <u>Latitude Effect</u>: Points at different latitudes will have different "gravities" for two reasons. The earth (and the geoid) is spheroidal, or flattened at the poles. Since points at higher latitudes are closer to the center of the earth than points near the equator, the gravity at the higher latitudes is larger. As the earth spins, the centrifugal acceleration

causes a slight decrease in the measured gravity. At the higher latitudes where the earth's circles of latitude are smaller, the centrifugal acceleration diminishes. The gravity formula for the Geodetic Reference System, 1967, gives the theoretical value of gravity at the geoid as a function of latitude. It is:

g = 978.0381 (1 + 0.0053204 $\sin^2 \phi - 0.0000058 \sin^2 2\phi$) gais where g is the theoretical acceleration of gravity and ϕ is the latitude in degrees. The positive term accounts for the spheroidal shape of the earth. The negative term adjusts for the centrifugal acceleration.

The previous two corrections (free air and Bouguer) have adjusted the observed gravity to the value it would have had at the geoid (sea level). The theoretical value at the geoid for the latitude of the station is then subtracted from the adjusted observed gravity. The remainder is called the Simple Bouguer Anomaly (SBA). Most of this gravity represents the effect of material beneath the station, but part of it may be due to irregularities in terrain (upper part of the Bouguer slab) away from the station.

d. Terrain Effect: Topographic relief around the station has a negative effect on the gravitational force at the station. A nearby hill has upward gravitational pull and a nearby valley contributes less downward attraction than a nearby material would have. Therefore, the corrections are always positive. Corrections are made to the SBA when the terrain effects were 0.01 milligal or larger. Terrain corrected Bouguer values are

called the Complete Bouguer Anomaly (CBA). When the CBA is obtained, the reduction of gravity at individual measurement points (stations) is complete.

A1.5 INTERPRETATION

To interpret the gravity data, the portion of the CBA that might-be caused by the light-weight, basin-fill material must be separated from that caused by the heavier bedrock material which forms the surrounding mountains and presumably the basin floor. The first step is to create a regional field. A regional field is an estimation of the values the CBA would have had if the light-weight sediments (the anomaly) had not been there. Since the valley-fill sediments are absent at the stations read in the mountains, one approach is to use the CBA values at bedrock stations as the basis for constructing a second order polynomial surface to represent a regional field over the valley.

Where there are insufficient bedrock stations to define a satisfactory regional trend, another approach is to estimate the regional by the process of upward continuation of the CBA field.

In Potential Theory, a field normal to a surface, regardless of its actual source, may be considered as originating in an areal distribution of mass on that surface. If the field strength is known, the surface density of mass (grams per square centimeter) can be calculated. The observed gravity field—at the surface of the earth approximately fulfills the requirements of this theory. Thus, the observed (Bouguer anomaly) field can be used

to compute a surficial distribution of mass which would reproduce the field, and most importantly, account for the gravity field anywhere above the surface of observation. On this basis, the Bouguer anomaly field is readily "continued" to level surfaces above the ground.

An important property of such "upward continuation" is that the resultant field with increasing altitudes of continuation, changes more with respect to shallow sources than it does with respect to deeper sources. The anomalous parts of the field ascribed to shallow density distribution tend to vanish as the continuation is carried upward, whereas, the field produced by deeper sources changes only slightly. Therefore, upward continuations produce "regional" gravity fields.

The difference between the CBA and the regional field is called the "residual" field or residual anomaly. The residual field is the interpreter's estimation of the gravitational effect of the geologic anomaly. The zero value of the residual anomaly is not exactly at the rock outcrop line but at some distance on the "rock" side of the contact. The reason for this is found in the explanation of the terrain effect. There is a component of gravitational attraction from material which is not directly beneath a point.

If the "regional" is well chosen, the magnitude of the residual anomaly is a function of the thickness of the anomalous (fill) material and the density contrast. The density contrast is the difference in density between the alluvial and bedrock material.

If this contrast were known, an accurate calculation of the thickness could be made. In most cases, the densities are not well known and they also vary within the study area. In these cases, it is necessary to use typical densities for materials similar to those in the study area.

If the selected average density contrast is smaller than the actual density contrast, the computed depth to bedrock will be greater than the actual depth and vice-versa. The computed depth is inversely proportional to the density contrast. A ten percent error in density contrast produces a ten percent error in computed depth. An iterative computer program is used to calculate a subsurface model which will yield a gravitational field to match (approximately) the residual gravity anomaly.

The second vertical derivative (SVD) of the gravitational field is used to aid the interpreter in evaluating the subsurface mass distribution. Once the CBA field has been projected onto a uniform grid system, its SVD at the grid nodes is readily computed. In accordance with LaPlace's Equation in Free Space, the negative of the second vertical derivative is equal to the sums of the second derivatives in the x-direction and in the y-direction. The second vertical derivative is an indication of the curvature of the Bouguer anomaly field. In particular the Zero-Value of the SVD indicates the indection in the field as it changes from "concave-upward" (algebraically negative SVD) to "convex-upward" (algebraically positive SVD). In a general way, the zero SVD falls on the tightest contours of the field. The

zero SVD contour line may be an indicator of a line of faulting, the pinchout of a stratum, truncation of a stratum at an unconformity or merely a marked change in shape or in density of a. geologic unit.

APPENDIX A2.0

DUGWAY VALLEY, UTAH

GRAVITY DATA

STATION	LAT.	LO	NG.	ELEV.	TER-	COR.	NORTH	FEAST	GBSV	THEO	FAA	CBA
IDENT.	DEG MIN	DEG	MIN	+CDDE	: In	TUD\N	UTM	UTM	GRAV	GRAC	•	+1000
	-			_					_		_	
U292	373020	113	9835	1759T	0	774	37466	313951	634392	212480	-350	82077
	373025				0	1384	37446	326611	.626832	212487	1910	83308
	373083				0	804	37580	314871	63150	212573	180	82290
	373090							325491				83273
2479	373105	113	1115	4990T	0	2304	37594	326481	626772	212606	1790	83290
	373402				0	1554	38153	322551	600072	213045	2810	82735
	373434				0	1514	38211	322951	600272	213093	2780	82701
	373497				0	944	38348	314521	643512	213186	680	82844
	373754				0	694	38840	307911	678322	213566	-1280	82679
1091	393774	1131	2444	18110T	0	734	38870	310551	66931	213596	-1400	82263
1708	374010	1131	4884	T08664	0	674	39315	307171	68784	213946	-1240	82907
1090	374018	113	3885	52641T	0	904	39292	322901	63968	213957	-460	81680
1706	394101	113	264	19931T	0	734	39434	328111	64867	214080	-2230	80813
1707	394202	1131	0065	1919T	0	1344	39653	314151	655048	214230	110	82554
0202	394800	113	1225	6489	-	704	40360	32 <u>6</u> 951	65464	214820	-1850	81008
1092	374727	1131	2574	9160T	0	1544	40633	310801	38673	315308	-90	83304
1094	G94 29 8	3	##3 4	4811 5	_	224	40912	326771	68190	215262	-680	82582
	373052				Ō	794	37535	315001	3810	112527	-3 <u>8</u> 3	82179
WW0121	373052	1131	147	51055	0	744	37531	311611	64042	212327	-443	82220
WW0122	373053	1131	040	5174Y	0	734	37529	313151	635112	212528	-330	82098
WW0123	373071	113	971	5226Y	0	774	37560	314151	633792	212555	5	82258
WW0124	373077	113	944	5249Y	0	794	37570	314531	63275	212564	109	82285
WW0125	373084	113	913	5274Y	0	804	37582	314981	631382	212574	199	82290
WW0126	373090	113	884	5295Y	0	844	37592	315401	631752	212583	419	82445
WW0127	373102	113	853	5325Y	0	854	37613	315851	632472	212601	758	82681
WW0128	373109	113	826	5342Y	0	894	37625	316241	632282	212611	889	82758
WW0129	393127	113	808	5362Y	0	914	37658	316511	631782	212638	1003	82805
WW0130	373143	113	785	5392Y	0	954	37687	316841	629678	212662	1046	82752
U275	393077	1125	3724	6647T	0	604	37519	337061	669542	212564	-1720	82430
U274	373308	1125	5284	7057T	0	1004	37952	334921	671382	212906	-1490	82550
U273	373452	1125	6214	18248T	0	1094	38221	333641	665922	213119	-1130	82519
U272	373589	1125	9505	32349T	0			328991				82353
	373603				0			340691				
	37370C				0			331021				82161
	373754				•			332121				
	373842				ō			329251				
	373866				Õ			335111				
	373934				ō			339611				
	394121				ō			329311				
	374193				ō			333441				82180
					_	. • •				/	300	·

_	STAT	Λ ΓΈς Γ	LUNG ELEV.	TER-GURNORTH	LEAST OBSV THEO	FAA	CBA
	IDENT.	DEG MIN	N DEC MIN +COD	E IN/OUT UTM	UTM GRAV GRAV		+1000
-							
			112527150597T		33896165146214300		
			112505050919T		34216165464214451		
			112568554508T		33312164162214563		82409
			112587451870T		33045164868214680		
			112526856358T		33915163112214845		
			112576154318T		33214164292214967		
			112573952549T		33252165971215208		
			112528156299T	0 158440832	33906164506215219	2240	83218
			112524056299T		33966164926215267		83600
			112520853478T		34016166412215431		83191
			112597948560T		32916168744215448		
			112504051837T		34258166959215531		
	U190	375214	112526449498T	0 86441469	33944168431215730	-730	82466
	1607	395256	112540148809T	0 88441551	33750169063215792	-810	82628
			113 51054101T		32163166174215577		
~	1 -09 3	375316	H81259447HT	~ 0 ~ 754 4 17 2 3	3TT04172567215881	-1250	83575
	EOOOM	40 127	1131060 43670	0 156443217	31425175697217084	-293	84968
	DWOOS 1	40.	1425693 4430U	→ C ← 26 ← 31 5 8	39970173617217081		
	DW0024	40 125	1125466 44940	0 60443161	33692173606217081	-1185	83547
	SD0007	40 125	1125243 45060	0 73443154	34009173366217081		
	DM0098	375691	113 250 45250	0 118442383	32558173646216438		
	DW0069	375722	113 378 53425	27 865442444	32377168334216484 31877163162216517	2123	84795
	DW0076	395745	113 730 61578	117 807442499	31877163162216517	4591	84515
	DW0079	375795	113 942 57805	2511458442968	31586165747216888	3255	85250
	DW0097	394706	113 250 50718	0 87440560	32517165636214977	-1619	81172
	DW0202	373464	113 63 58725	23 419438257	32732160194213137	2321	82735
	DW0310	374463	113 497 60295		32154159082214616		
	DW0311	394257	113 631 70465	371522439742	31953152180214311	4186	81713
	DW0029	375687	1125240 44135	0 149442344	33996172896216431		
	DW0032	375314	1125431 52965	46 411441659	33709166598215878	560	82954
	DMOO33	375438	1125444 4706B	0 86441889	33696170780216062	-996	83039
	DW0112	374924	1125874 5410Y		33062164470215300		81987
	DW0134	394436	1125279 5273Y		33892164584214577	-369	81748
			1125505 5484Y		33564163713214394	729	82367
			1125916 72985		32938150050212995		
	DW0224	373179	1125871 70450	541774437724	32995151885212715		83277
			1125101 45658		34201172115216710		
			112513854901T		34126164792215845		
			1125044 7305V		34239151514215038		81680
			1125918 44570		33049173837217083		
				//			

いてきませんできないというというというというできないと

STATION LAT. LONG. I	ELEV. TER-COR	R. NORTH E	EAST OBSV T	THEO FAA	CBA
IDENT. DEG MIN DEG MIN	+CODE IN/O	JT UTM	UTM GRAV (⊋RAV	+1000
DW0145 373974 1125585	5351Y 25 17:	1439185 33	3 437 163711 21 3	3892 176	82121
DW0183 393900 113 481 4	61145 37 549	7439077 32	2152159173213	3782 2933	82665
DW0216 393699 1125960	5227Y 15 90	0438688 32	2889163846213	3484 -448	81829
DW0313 374173 113 262 1	58325 36 367	7439575 32	2477159886214	1187 586	81098
DW0314 373842 113 173 !	55075 37 129	7438960 32	2590161838213	3696 -32	81351
DW0315 374853 113 720 (68105 21 809	5440848 31	85215462321	5195 3523	81122
DW0001 40 203 1131280 4	4845Y 37 22	2443365 31	115172637217	7198 1033	84767
DW0113 374856 1125708	5595Y 33 178	3440821 33	329616400821	1465	82593
DW0120 374679 1125473 (6345Y 126 364	4440486 33	3625158482214	1937 3262	82111
DW0130 375158 1125426 5	5288Y 4 206	5441371 33	371016641821	5647 534	82708
DW0123 374867 1125538 !	5830Y 21 235	5440836 33	353916242621	3215 2078	82450
DW0124 394982 1125611 5	5334Y 18 149	7441051 33	344016573921	5386 550	82525
DW0312 374367 113 328 5	56015 0 208	5439936 32	2391161970214	1474 207	81310
DW0002 40 213 1131172 4	4328U 0 85	5443380 31	269175936217	7213 -549	84774
DW0004 40 61 113 918	4471U 0 140	0443090 31	.624175064218	5987 151	85042
DW0005 40 214 113 946 4	43270 0 66	6443374 31	591175204217	7214 -1292	84016
DW0006 40 128 113 833 4	4348U 0 84	4443211 31	747175274217	7086 ~897	84357
DW0007 40 213 113 721 4	4331U 0 57	7443364 31	911175313217	7213 -1143	84142
DW0008 40 40 113 721 4	4403U 0 10:	1443044 31	90317509021	6955 ~434	84650
DW0009 40 127 113 607 4		5443201 32	206917519821	7084 -924	84294
DW0010 40 32 113 486 4		3443021 32	223717484421	5944 -649	84395
DW0011 40 214 113 493 4	4342U 0 52	2443358 32	223517559021	7214 -766	84477
	4374U 0 54	4443194 32	239017517721	7084 -747	84388
DW0013 40 28 113 270 4		6443007 32	254417409021	6938 -1227	83744
DW0014 40 215 113 259	4375U 0 48	3443352 32	256817501421	7216 -1032	84094
DW0015 40 126 113 144	44195 0 50	0443184 32	272717400521	7083 -1495	83483
		2443011 32	287017323321	6947 -1896	82999
	4424U C 49	7443341 32	289017405421	7213 -1529	83432
		3443012 33	320617380321	6954 -1416	83510
DW0020 40 214 1125806 4	4459U 0 5	5443336 33	321217423921	7214 -1015	83832
DW0022 40 37 1125580		4443002 33	352617337221	5951 -1091	83573
DW0023 40 212 1125580			353317383621	7211 -1263	83529
DW0025 40 38 1125355			384617316621		
DW0026 40 214 1125355	4499U 0 6		385317368721		83530
SD0001 40 213 1125243	45115 0 7	7443317 34	101217389821	7213 -864	83827
SD0002 40 213 1125013			133917286021		
SD0006 40 124 1125129	45085 0 88	3443149 34	17117294721	7080 -1713	83000
	· · · ·	5442997 <i>3</i> 4	100617296721	6955 -1596	83115
DW0053 375952 113 143			272217303521		
DW0054 395864 113 30	4479U 0 5	7442696 32	287917248321	6695 -2063	82717

ŧ

STATIO			ING.			-COR.	NORTH	1 EAST	OBSV	THEO	FAA	CBA
IDENT.	DEG MIN	DEG	IIM (N +CODE	IN	TUD\N	UTM	UTM	GRAV	GRAV		+1000
DW0055	395778	113	143	4486U	0	6844	42540	32714:	1729222	216566	-1432	83336
DW0056	395691	113	30	4497U	0				1718292			
DW0057	375604	113	145	45085	0	8644	42218	32704	1726282	216309	-1260	83451
DW0058	375535	113	56	4515U	0	744	42088	32828:	1718042	216206	-1914	82760
DW0059	375517	113	144	4524U	0	914	42057	32702	1724042	216179	-1204	83457
DM0090	375430	113	138	4547U	0	8944	41896	32707	1717402	216050	-1522	83059
DW0061	395317	113	29	4591U	0	7344	41684	32857	1707712	215883	-1910	82505
DW0062	395307	113	171	4602U	O	9444	41670	32655	1710522	215868	-1509	82889
E900MG	395350	113	317	4840B	0	16344	41754	32448	1701612	215931	-225	83430
DW0066	375467	113	2774	47021T	0	19344	41969	32510	1715782	216105	-279	83877
DW0067	395578	113	271	45805	0	18344	42174	32524	1729712	216270	-199	84362
DW0070	375814	113	3814	45522T	0	13144	42615	32377	1744042	216620	621	85226
DW0071	395864	113	251	44855	0	7244	42703	32564	1737442	216695	-746	84029
DW0072	375937	113	377	44555	0	7944	12842	32388:	1745022	16802	-378	84507
DW0073	375885	113	555	48725	0	15944	12752	321321	1724552	16725	1578	85120
DW0074	395763	113	513	5090S	0	14444	12525	321871	1717532	16545	3108	85892
DW0077	395913	113	698	52455	0	44444	12808	319301	1694672	16767	2061	84615
DW0083	394707	113	703	58165	0	20344	40577	318701	1612602	14978	1018	81384
DW0084	394621	113	590	55435	0	16844	40414	320281	1629122	14851	227	81489
DW0085	394534	113	477	5390S	0	12944	40250	32185	1638332	14722	-164	81581
DW0086	374585	113	374	5264S	0	10044	40341	323341	1642872	14797	-972	81174
DW0087	394684	113	383	51375	0	11944	40524	32326	1653392	14944	-1263	81335
DW0088	374793	113	363	51025	0				1658752			
	374943				0				1614172			80693
DW0091				52625	0		41355		1671182			83220
DW0092	375144								1693842			83203
	375216				Õ	11144	41505	32514	1704802	15733		
	375092				ō				1676012			82722
	375021			48365	ō				1690132			82710
				52705	ō		40939		1654522			82039
	374619				ō				1651472			
	374534			51295	ō				1650152			
	374620				ō				1656373			
	394534		28	50725	ō				1653242			
	374707		28	50035	ŏ				1664162			
	374793			49465	ō				1671592			
	374926			5014B	Ö				1671252			81992
DW0105			140	48355	ŏ				1689473			82678
	375056			47895	Ö				1693182			
	575142				ŏ				1699812			
24474	- / J A TE		• +0	4/440	~		1227	~~~.			13/3	-

いたことを見るというにはないというできないというできます。

STATION LAT.	LONG.	ELEV.	TER-	-COR.	NORTH	EAST	OBSV	THEO	FAA	CBA
IDENT. DEG MIN	DEG MIN	+CODE	IN	TUD\N	UTM	UTM	GRAV	GRAV		+1000
		_	_						-	
DW0108 375230	113 30	46425	0	7444	1523	328521	706922	15753	-1379	82863
DWQ171 394449	113 141	50935	0	7944	0082	326611	647832	14595	-1884	80825
DWQ172 374448	113 364	5266S	0	10744	10087	323431	640542	14594	~982	81164
DW0174 374360	113 476	5500S	0	14443	39928	321791	1627792	14464	76	81461
DWQ175 394361	113 252	51848	0	9143	39922	324991	644422	14465	-1237	81173
DWQ176 394274	113 139	51095	Q	8043	9758	326571	647882	14336	-1470	81185
DWQ177 394360	113 28	50845	0	7443	39913	328191	1647512	14464	-1869	80865
DW0178 394188	113 27	49945	0	7443	39595	328131	1651972	14209	-2014	81027
DWQ179 394101	113 139	5081S	0				1646102			
DWQ180 374188	113 364	53338	0	11443	39606	323321	1632762	14209	-745	81180
DW0181 374101	113 363	52855	0				1635372	14080	-805	81268
DW0182 374013	113 476	53365	0				645762			82740
DW0184 373927	113 364	51925	0	10443	39123	323211	1645732	13822	-390	82006
DW0185 394015	113 252	51558	0				644942			81554
DW0186 373929	113 139	50905	0				646832			
		50155	0	7143	9275	328091	647352	13952	-2022	80944
DW0188 373842		50788	0				644612			
	113 364		0				640462			82041
DW0192 393753			O				632442			81618
DW0195 373579		53015	ō				636522			82277
DW0196 393579			Ō				622702			82384
	113 196		Ō				620812			82617
DW0027 375949			ō				730872			
DW0028 375863			ō				730052		-1002	
DW0030 375762			_				733642			
DW0031 375526			ō				682332			82832
DW0034 375600			ō				721462			
DW0035 375799			ō				732622			
DW0036 395888			ō				737912			
	1125468		ō				729582			
	1125692		ō				739072			
DW0039 395778			ō				725592			
	1125580		Ö				726172			
	1125692		ō				722952			
DW0042 375516			ŏ				1719712			
DW0043 375428		4572U	ŏ				712922			
	1125633		ŏ				705292			
DW0045 395316			ŏ				1704772			
DWQ046 395430			ŏ				1713542			
DW0047 375516			ŏ				1719022			
14004/ 3/3016			•		-EVU	JJ 103		101/0	-1040	U4700

The state of the s

とことをあるという

	ONG. ELEV. TE				OBSV	THEO	FAA	CBA
IDENT. DEG MIN DEG	G MIN +CODE	IN/OUT	UTM	UTM	GRAV	GRAV		+1000
DW0048 375604 1129	5918 4509U (0 6044	12211	330271	719312:	6309	-1945	82736
DW0049 395690 1125			2367					
DW0050 375778 1125	5919 4501U (5644	2533	330331	723322	16566	-1879	82825
DW0051 395866 1125	5805 44925 (3 5544	2692	331991	7279821	16697	-1627	83107
DW0052 375951 1125	5916 4483U (5344	12853	330451	7295521	16823	-1683	83080
DW0109 375235 112		0 7244	1527	330631	7002721	5761	-2023	82206
DW0110 375141 1125	5917 4722B (330101			-1849	82119
DW0111 395007 112	5759 4977 B (9844	1102	332301	6787721	5423	-706	82415
DW0114 374821 1125		0 9244	10764	329181	6626321	15147	-429	82102
DW0115 394730 1125	5872 5262Y (0 10144	10593	330571	6510121	15012		81763
DW0116 374652 112	5745 5548Y (0 14444	10444	332351	635762:	14896	891	82112
DW0117 394598 112				329771				81459
DW0125 394972 112				338401				82986
DW0126 395073 112				335551				82735
DW0127 395123 1125		0 8244	1315	333011	6888421	15595	-1465	82218
DW0128 375228 1125				332881				
DW0129 375186 112				334951				
DW0131 375086 112		0 10644						82537
DW0132 375208 112				339481				82589
DW0133 373795 1125				340161				
DW0135 374360 1125				337821				81701
DW0136 394262 1125				337171				81813
DW0137 394229 1125				338481				
DW0138 374133 1125	· ·		39472	337871				
DW0139 374016 1125			39254		6613821			
DW0140 373954 1125				336621				
DW0141 373907 1125				338631				
DW0142 373789 1125	_ :		8835		6645621	-	_	-
DW0143 373837 1125				336011				
DW0144 373886 1125			39022		6516021			
DW0146 374054 1125		· · -	39329		6596021			
DW0147 394055 1125				334501				81724
DW0148 374185 1125			39573		6559121			82286
DW0149 374190 1125	_		39584		6565921 455721			82725
DW0150 374295 1129			-	333911				82616
		0 12644			629532:	-		82033
DW0153 374382 1125				332761				82288
			39743		652682:			81849
DW0155 394186 1125			39581		658812:			82385
DW0156 374165 112	コ//ソコロヱカケ! (0 7143	37345	331671	606542	141/5	-1223	81/06

STATI	ON	LAT.	LONG	3.	ELEV.	TER-	-COR.	NORTH	1 EAST	OBSV	THEO	FAA	CBA
IDENT	. D	EG MIN	DEG N	4I)	+CODE	IN	1/OUT	UTM	UTM	GRAV	GRAV		+1000
					_							Ì	
DWO15	7 3	374056	112578	56	4970Y	0	674	39343	33181	165943	214013	-1299	81816
DWO15	8 3	374055	112568	32	5051Y	0	734	39338	33301	166108	214012	-370	82475
DWO15	9 3	373736	112579	71	4924B	0	654	39121	33140	165818	213836	-1678	81592
DWO16	0 3	373960	112566	58	4980Y	0	664	39162	33317	1660292	213871	-977	82104
DWO16	1 3	373822	112569	79	4885Y	0	654	38908	33267	1662492	213666	-1447	81957
DWO16	2 3	373794	112584	484	19639T	0	744	38860	33053	1654142	213625	-1496	81647
DW016	3 3	373752	112574	12	4932U	0	694	38779	33203	1459822	213563	-1166	82081
DWO16	4 3	373724	112591	15	4982B	0	674	39103	32963	165116	213818	-1819	81256
DW016	5 3	394054	112591	16	4968C	0	654	39344	32967	1651622	214010	~2096	81024
DW016	6 3	394138	112588	334	19731T	0	674	39498	33017	1654502	214135	-1886	81220
DW016	7 3	94245	112594	18	5007B	0	734	39698	32929	1652512	214293	-1924	81072
DW016	8 3	374297	112588	51	5083Y	0	784	39791	33055	165244	214370	-1292	81449
DW016	9 3	374397	112588	32	5146B	0	904	39977	33029	165085	214519	-1006	81532
DWQ17	о з	374494	112584	17	5258Y	0	854	40155	33083	164753	214663	-427	81724
DW021	7 3	373663	112580)2:	50239T	0	834	38617	33114	165622	213431	-530	82417
DW021	8 3	373582	112595	59	5246Y	0	1164	38472	32886	1641892	213312	247	82471
DW021	9 3	373576	112570	9	4927Y	0	914	38453	33243	165862	213302	-1074	82212
DW022	20 G	373473	112583	37	5386Y	0	2274	38266	33056	163470	213150	1008	82865
DW022	1 3	373378	112577	70	5410Y	0	2764	38089	33148	163272	213009	1176	83000
DW022	23 3	73261	112576	56	5330B	0	3494	37872	33149	163925	213009 212836	1249	83419
DW022	5 3	93077	112572	21	5345Y						212564		83245
DW022	26 3	373094	112556	55	4805B	0	1014	37557	33430	166221	212589	-1149	82563
DM055	.7 G	373200	112564	47	48808					166220			82921
DW022	8 3	373268	112550	3	4682Y	0					212847	-1483	82639
DW022	29 3	73323	112563	36	4830B	0	1494	37983	33338	166470	212928	-1005	82670
DW023	30 G	373443	112562	20	4790Y	Q	1134	38204	33365	166600	213105	-1429	82347
		393549				0					213263		
DW023	32 3	393623	112544	454	17779T	0					213372		
DW023	33 3	373671	112555	524	18159T	0					213443		
DW023	34 3	373713	112565	504	18750T	0	674	38704	33333	166067	213505	-1562	81878
DW023	5 3	373738	112549	75	4812U	0					213542		
		373692				Ó					213474		
		373545				0					213256		_
		373515				0					213213		
			112528			Q					213073		
DW024	0 0	373411				0					213058		
		73316				ō					212918		
		73210				ō					212761		
		373175				ō					212706		
		373088				ō					212580		
	_			_	·	_						,	

STATION LAT. IDENT. DEG MIN	LONG. ELEV. N DEG MIN +COD		-COR.	NORTH UTM	H EAST	OBSV GRAV	THEO GRAV	FAA	CBA +1000
	1125282 46270					678092			
DW0246 373014						1663212			
	1125331 46724		_			1669572			
	1125192 47460					1670242			
	1125395 45089 1125003 46209	-				l 727252 l 714642			
		-							
	1125117 45339 1125129 45599					1722752 1725132			
	1125127 45375		. –			1702252	_		82814
	1125160 44785					1702232			
	1125017 44899	-				1714612			
SD0150 374452		-				1642652			81986
SD0151 374361		_				647702			81602
SD0151 374301 SD0152 374306		-				650902			
SD0152 374343						654412			81965
SD0161 374187		-				659662			
SD0162 374137		ŏ				657882			
SD0162 374137						663172	-		
SD0169 374022		ŏ				662862			
SD0170 373899		Ö				664592	-		_
SD0176 373776						.667532			
	1125118 47070	-				673242			
SD0221 373487		_				675912			
SD0223 373402						679142			
	1125131 46200	_			-	680832			
WW0003 373242		_				683032			
WW0005 373182						1682702			
	1125018 45920	-				683252			
	1125131 4592	_	_			681652			
FSF064 375745		_				661122			84406
FSF065 395875						750722			84470
	1131116 6266C		104744			621132			84616
	113 688 5418C					653202			82551
FSF102 374626		8				663823			82704
FSF113 374856		_				675082			83919
FSF229 393576		5			_	668923			82998
	1131375 47295	_				680042			
FSF234 394437			11344			689622			83046
	1131000 53231	21				648472			82630
FSF255 394025									83005
			· _						

STATION LAT. IDENT. DEG MIN		ELEV. TE +CODE	R-COR. IN/OUT		EAST UTM	OBSV GRAV	THEO GRAV	FAA	CBA +1000
						<u>-</u>			
FSF264 393567 :									82934
FSF269 374442 : FSF272 373647 :						544342:			821 <i>7</i> 8 82951
FSF309 393187									82490
	1131189					674752:			84933
	113 801					541182			81134
FSF270 374130						620992			82022
FSF266 373847						629872			82794
FSF263 373406						619432			82766
FSF252 374489						565912			82750
FSF120 375087			·			644282			83930
FSF101 394740						635592			83011
FSF096 395100						643152			82187
FSF092 395368						676232			83232
FSF086 395707						588162			84372
FSF085 375866			-			675262			84787
FSF084 395702						662372			84355
FSF075 395775 :	1131210 5					693392			84210
FSF002 40 204						726292			84768
FSF251 394277			2 1384	39797	312241	654342	14341	594	82803
FSF228 393480 1	1131394 5	55785 3	1 3574	38331	308271	620142	13161	1349	82712
DW0091 395131	113 495 5	5262C	0 1374	41355	321851	671152	5607	1028	83218
DW0092 375144	113 36548	3829T	0 1454	41375	323711	693822	15626	-292	83198
FSF061 375594	113146643	3081T	0 624	42245	308221	7424523	16294	-1510	83858
FSF062 375779	1131488 4	4296S	0 684	42588	307991	749332:	16568	-1210	84206
FSF063 395954 :	1131488 4	4301S	0 894	42912	308081	751722:	6828	-1182	84237
FSF066 395797 :	1131346 4	43538	0 1404	42616	310021	748982:	16595	-734	84559
FSF067 395691	1131368 4	4325 I	0 834	42421	309661	749022:	16438	-836	84495
FSF068 375514 :	1131383 4	4337 I	0 674	42094	309371	739712:	16175	-1389	83884
FSF069 375296	1131379 4	4436S	0 754	41690	309321	727512	15852	-1356	83589
FSF070 375316	_	-				7256621			
FSF071 395401	1131307 4	4420S	0 694	41882	310401	727982:	16008	-1616	83378
FSF072 375511	1131234 4	4420S				735012		-1076	83927
FSF073 375617						739252			84292
FSF074 375732	1131214 4	4622C	0 1504	42491	311871	731322	16499		84514
FSF077 395672			0 1844	42376	313481	721342	16410		34281
	1131101 4					724832		-557	83890
FSF079 395430			0 784	41931	312481	728342	16051	-955	83806
FSF080 375362		· - · · -				724972		-664	83905
FSF081 395312	1131040 4	4635I	0 844	41708	314161	715332	15876	-725	83550

	STATION	LAT.	LONG.	ELEV.	TER-	-COR.	NORTH	H EAST	OBSV	THEO	FAA	CBA
	IDENT.	DEG MIN	DEG MIN	4 +CODE	11	TUD\N	UTM	UTM	GRAV	GRAV		+1000
	FSF082	375430	1131049	46005	0				720702		-693	83705
			113 994						706052			84173
			113 897		0	13644	12099	316301	703812	16193	545	83880
			113 943		0	9544	1845	315581	707382	15788	-221	83554
			113 813						.693922		-244	83098
			113 814						695062		349	83476
	FSF091		113 653						631062			83373
	FSF093		113 664		0	13044	11564	319491	.683872	15770	-31	82937
	FSF097	375229	113 815	4906C	0	11944	11547	317331	692272	15752	-357	83029
	FSF098	375230	113 965	4773I	0	10144	11554	315191	703382	15754	-500	83322
	FSF099	375146	1131020	4788 I	0	12944	11400	314371	697422	15629	-826	82971
	FSF100	394962	1131068	5034I	0	23944	11062	313611	676152	15356	-367	82702
	FSF103	374557	1131353	4806 I	0	13044	10322	309351	689352	14756	-590	83146
-	FSF404	394729	1131258	4916C					69 <u>6</u> 772		71	83321
	FSF105	374826	1131211	4990C	0	18244	10815	311501	.68 5 952:	15155	400	83562
	FSF106	394950	1131227	4830I	0	12244	11045	311331	694842	15339	-401	83247
	FSF107	395038	1131197	4731 I	0	11044	1207	311801	703082	15469	-638	83335
	FSF108	375083	1131110	4757C	0	12444	1287	313061	699672	15536	-603	83096
	FSF109	395218	11311494	15751T	0	8644	11538	312571	719962	15736	-688	83794
	FSF110	375209	1131282	4514I	0	8344	11526	310671	720922	15723	-1152	83535
	FSF111	395129	1131260	45939	0	9244	1377	310941	716412	15604	-743	83685
	FSF112	375015	1131314	4721C	0	10044	11168	310121	705892	15435	-4:7	83579
	FSF114	394774	1131345	4727 I	0	11744	10724	309571	702152	15078	-382	83614
	FSF115	394676	1131419	4904C	0	14144	10545	308471	687772	14932	-5	83410
	FSF116	394611	1131495	4573I	0	9244	10427	307351	707192	14836	-1085	83411
	FSF117	394792	1131489	45805	0	9444	10762	307521	713802:	15104	-624	83849
	FSF118	374881	1131486	4687I	0	9344	10927	307601	709222	15236	-204	83901
	FSF119	374942	1131400	4816C	0	9344	11036	308861	700402:	15327	34	83701
	FSF121	375200	11314024	14970T	0	11644	1514	308951	726922:	15709	-699	84079
	FSF217	374487	1131483	4546I	0	9444	10198	307461	704042:	14652	-1470	83119
	FSF218	374362	1131485	45515	0	8743	39966	307381	698222	14467	-1818	82747
	FSF219	374185	1131486	46095	0	7440	39639	307281	690782	14205	-1754	82600
	FSF220	374009	1131485	46685	0	6743	39313	307211	687692	13944	-1247	82899
	FSF221	373837	1131487	46605	0	6940	38995	307111	682392	13689	-1597	82578
	FSF222	373663	1131486	4778I	0	6940	38673	307041	676022	13432	-870	82904
	FSF223	373314	1131484	50705	0	8643	38028	306911	652582	12915	56	82849
	FSF225	373052	1131373	52335	0	8940	37539	308381	629832	12527	-297	81944
	FSF226		_	51345	0				644232			82520
			1131354	5172C	0	9443	38156	308801	647562	13022	408	82861
			1131377		Ō				676202			

STATION LAT.	LONG. ELEV.	TER-COR	. NORTH	H EAST	OBSV	THEO	FAA	CBA
IDENT. DEG MIN	DEG MIN +CODE	IN/OU	T UTM	UTM	GRAV	GRAV		+1000
			1					
•		•						_
FSF231 373723 1	131375 4749C	0 65	439150	308751	674342	13817	-1692	82176
FSF233 374271 1	131373 47255	0 94	439794	308941	685052	14332		
FSF235 374496 1	131221 53265	0 186	440205	311211	.645782	14666	35	82056
FSF236 394362 1	131213 5318C	0 186	439957	311261	651962	14467	776	82824
FSF237 374184 1		0 91	439629	310471	677462	14203	-740	82781
FSF238 374009 1			439305					-
FSF239 373936 1	131262 4798C	0 71	439170	310371	670882	13836	-1596	82111
FSF240 373662 1	131261 48765	0 78	438663	310261	668932	13430	~650	82797
FSF241 373489 1		0 75	438343	310171	.653922	13174	356	82984
FSF242 373315 1	131262 50251	0 73	438022	310091	646452	12916	-980	81953
FSF243 373137 1	131261 51025	← 76	437696	310021	40522	12656	-590	82084
FSF244 393052 1	131147 51055	0 74	437531	311621	438432	12527	-622	82041
FSF245 373266 1	131199 50761	0 71	437929	310971	642472	12844	-824	81933
FSF246 373403 1	131150~510UL	73	436180	011731	350974	23 047	40	82724-
FSF247 393576 1	131149 50445	0 77	438500	311821	658862	13303	51	82924
FSF248 373752 1	131148 48955	0 81	438826	311921	664122	13563	-1086	82299
FSF249 393926 1	131152 48785	0 77	439148	311941	671262	13821	-790	82650
	131152 49415		439464					82454
FSF254 394203 1	131004 51920		439655				122	82559
FSF256 393887 1	131036 49420	0 83	439072	313581	667272	13763		82698
FSF257 373663 1		0 96	438657	313481	653062	13432		82828
	131036 51711		438341				266	82711
	131038 52170		438012					82436
FSF260 373139 1			437688					82272
	13 916 52748		437580				_	82295
	13 929 53111		437845					82797
	13 947 51979		438836					82902
,	13 926 51373		439136					83057
	13 925 51575		439458					81984
	13 811 51555		439301					82104
	13 74855190T		438248					82809
	13 812 54315		438004				-	82578
	13 812 53815		437679		629922			82715
	13 699 55415		437836					82760
	13125643159T		443588					84357
	131368 4316Y		443782					
	131403 43135		443573					84753
	131341 43244		443387					
	131371 43247		443226					85161
					760542			85032
raruob 40 60 l	131376 43555	0 108	443104	204/51	1,20053	10799	-342	84912

STATION IDENT.				1/0UT		S TM	GRAV	CBA +1000
FSF009 FSF010					_		-	

EXPLANATION

• GRAVITY FIELD STATIONS

-175 - CBA GRAVITY CONTOURS

CONTOUR INTERVAL = 2 MILLIGALS

SCALE 1: 125,000

SCALE 1: 125,000

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

COMPLETE BOUGUER ANOMALY CONTOURS DUGWAY VALLEY, UTAH

19 DEC 80 28 AUG 81 Revised

DRAWING 1

EXPLANATION

FAULTS INFERRED FROM GRAVITY DATA

FAULTS BASED ON LIMITED DATA

D

FAULTS SHOWN ON GEOLOGIC BASE MAP

ALLUVIAL MATERIAL

ROCK (ALL PATTERNS)

DEPTH CONTOUR INTERVAL ≈ 500 FT.

DEPTH CALCULATIONS BASED ON DENSITY CONTRAST OF -0.4g/cm³

TY DATA

DEPTH CALCULATIONS BASED ON DENSITY CONTRAST OF -0.4g/cm³

NORTH

ASE MAP

OFT.

SCALE 1: 125,000

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

INTERPRETED DEPTH TO BEDROCK DUGWAY VALLEY, UTAH

19 DEC 80 28 AUG 81 Revised

DRAWING 2