Consistency of Persistent Homology

통계이론세미나 - 위상구조의 통계적 추정, 2023 가을학기

We first recall the consistency:

Suppose we obtain a sample $X_1, \ldots, X_n \sim P$. Let $\theta(P)$ be a parameter, which is some function of P. Let $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ denote an estimator for $\hat{\theta}$, which is a function of a sample. Consistency is about, whether the estimator $\hat{\theta}$ converge in probability to θ , i.e. $\hat{\theta} \stackrel{P}{\to} \theta$. More precisely, can we find some function f(n) of the sample size n such that $d(\hat{\theta}, \theta) = O_P(f(n))$? This is analogous to the Law of Large Number.

Let $\mathbb{X} \subset \mathbb{R}^d$ be the target geometric structure, and P be a distribution on \mathbb{R}^d with $\operatorname{supp}(P) = \mathbb{X}$. Let X_1, \ldots, X_n be i.i.d. samples from P and $\mathcal{X} = \{X_1, \ldots, X_n\}$. For the consistency of persistent homology, the distance is the bottleneck distance d_B , and $\theta(P)$ and $\hat{\theta}(\mathcal{X})$ should be appropriate persistent homologies of P and \mathcal{X} , respectively. We consider two cases:

1. Persistent homologies from Čech complexes and Vietoris-Rips complexes. Let $\mathcal{PC}(\mathbb{X})$ and $\mathcal{PC}(\mathcal{X})$ be the persistent homologies induced from Čech complexes $\{H_k\check{\text{Cech}}_{\mathbb{R}^d}(\mathbb{X},r)\}_{r\in\mathbb{R}}$ and $\{H_k\check{\text{Cech}}_{\mathbb{R}^d}(\mathcal{X},r)\}_{r\in\mathbb{R}}$, respectively. Similarly, let $\mathcal{PR}(\mathbb{X})$ and $\mathcal{PR}(\mathcal{X})$ be the persistent homologies induced from Vietoris-Rips complexes $\{H_k\mathrm{Rips}(\mathbb{X},r)\}_{r\in\mathbb{R}}$ and $\{H_k\mathrm{Rips}(\mathcal{X},r)\}_{r\in\mathbb{R}}$, respectively. We would like to know $d_B(\mathcal{PC}(\mathbb{X}),\mathcal{PC}(\mathcal{X})) = O_P(f(n))$ and $d_B(\mathcal{PR}(\mathbb{X}),\mathcal{PR}(\mathcal{X})) = O_P(f(n))$.

Consistency of Čech complexes and Vietoris-Rips complexes

Assume X is compact. Recall the stability theorem for Čech complexes and Vietoris-Rips complexes:

Corollary. For a compact set $\mathbb{X} \subset \mathbb{R}^d$ and $\mathcal{X} \subset \mathbb{X}$.

$$d_B(\mathcal{PC}_{\mathbb{R}^d}(\mathbb{X}), \mathcal{PC}_{\mathbb{R}^d}(\mathcal{X})) \le d_H(\mathbb{X}, \mathcal{X}).$$
$$d_B(\mathcal{PR}(\mathbb{X}), \mathcal{PR}(\mathcal{X})) \le d_H(\mathbb{X}, \mathcal{X}).$$

For a distribution P, we assume (a, b) assumption:

Definition. P satisfies (a, b) assumption if there exists $r_0 > 0$ such that for all $x \in \text{supp}(P)$ and for all $r < r_0$,

$$P\left(\mathcal{B}(x,r)\right) \ge ar^b$$
.

Recall that under (a,b) assumption, we have probabilistic bound on the Hausdorff distance between X and \mathcal{X} :

Proposition ([2, Proposition 7.2][1, Theorem 2]). Let P be a distribution on \mathbb{R}^d with $\operatorname{supp}(P) = \mathbb{X}$, and assume P satisfies (a,b) assumption with a,b>0. Let X_1,\ldots,X_n be i.i.d. samples from P, and let $\mathcal{X}=\{X_1,\ldots,X_n\}$. Then there exists $\epsilon_0>0$ such that for all $\epsilon<\epsilon_0$,

$$P(d_H(X, \mathcal{X}) < \epsilon) \ge 1 - a^{-1} \epsilon^{-b} \exp(-na\epsilon^b). \tag{1}$$

This directly implies that with probability $1 - \delta$, with large enough n,

$$d_H(X, \mathcal{X}) < C\left(\frac{\log n}{n}\right)^{1/b},$$

and hence

$$d_H(\mathbb{X}, \mathcal{X}) = O_P\left(\left(\frac{\log n}{n}\right)^{1/b}\right).$$

Then this implies both that

$$d_B(\mathcal{PC}_{\mathbb{R}^d}(\mathbb{X}), \mathcal{PC}_{\mathbb{R}^d}(\mathcal{X})) = O_P\left(\left(\frac{\log n}{n}\right)^{1/b}\right),$$
$$d_B(\mathcal{PR}(\mathbb{X}), \mathcal{PR}(\mathcal{X})) = O_P\left(\left(\frac{\log n}{n}\right)^{1/b}\right).$$

(1) not only gives the probabilistic bound as above, but this also gives the bound on the expectation as well. Roughly speaking, this is deduced from

$$\mathbb{E}\left[d_H(\mathbb{X},\mathcal{X})\right] = \int_0^\infty P\left(d_H(\mathbb{X},\mathcal{X}) > \epsilon\right) d\epsilon.$$

Theorem ([1, Theorem 4]). Let P be a distribution on \mathbb{R}^d with $supp(P) = \mathbb{X}$, and assume P satisfies (a, b) assumption with a, b > 0. Let X_1, \ldots, X_n be i.i.d. samples from P, and let $\mathcal{X} = \{X_1, \ldots, X_n\}$. Then,

$$\mathbb{E}\left[d_H(\mathbb{X}, \mathcal{X})\right] \le C \left(\frac{\log n}{n}\right)^{1/b},\,$$

where C only depends on a and b. And correspondingly,

$$\mathbb{E}\left[d_B(\mathcal{PC}_{\mathbb{R}^d}(\mathbb{X}), \mathcal{PC}_{\mathbb{R}^d}(\mathcal{X}))\right] \le C\left(\frac{\log n}{n}\right)^{1/b},$$

$$\mathbb{E}\left[d_B(\mathcal{PR}(\mathbb{X}), \mathcal{PR}(\mathcal{X}))\right] \le C\left(\frac{\log n}{n}\right)^{1/b}.$$

The convergence rate $\left(\frac{\log n}{n}\right)^{1/b}$ of Čech complexes and Vietoris-Rips complexes is in fact minimax up to a logarithmic term.

Theorem ([1, Theorem 4]). Let \mathcal{P} be a set of distributions P with supp(P) being compact and satisfying (a, b) assumption with fixed a, b > 0. Then for any estimator $dgm_n(that is, a function of data <math>X_1, \ldots, X_n)$,

$$\sup_{P \in \mathcal{P}} \mathbb{E}_P \left[d_B(\mathcal{PC}_{\mathbb{R}^d}(\mathbb{X}), \mathcal{PC}_{\mathbb{R}^d}(\mathcal{X})) \right] \ge C n^{-1/b},$$

$$\sup_{P \in \mathcal{P}} \mathbb{E}_P \left[d_B(\mathcal{PR}(\mathbb{X}), \mathcal{PR}(\mathcal{X})) \right] \ge C n^{-1/b}.$$

References

- [1] Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. Convergence rates for persistence diagram estimation in topological data analysis. *J. Mach. Learn. Res.*, 16:3603–3635, 2015.
- [2] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–441, 2008.