Exploration and evaluation of hardly constrained Neural Networks

Team: Simulation and Data Science

Advisors: Raphael MEUNIER and Fouad OUBARI

Intern: Diana Sol Angel FONSECA HINCAPIE

University of Strasbourg

CONTENTS

- 1. Hosting company : Michelin
- 2. General context
- 3. Objectives
- 4. Constrained Models
- 5. Use cases
- 6. Conclusions
- 7. Retrospective and feedback

1. Michelin

Tires tailored to customers' needs

2. General Context

SIM R&D

Constrained Models

3. Objectives

1. State-of-the-art review

2. Choice of approaches

3. Study of use cases

4. Constrained Models

Physical constraints

- Physical phenomena
- Material properties
- Monotonicity

Geometrical constraints

 Regarding the domain, shape, aspect, size.

4.1 Constrained Learning approaches

Classification: D3

Réf./Document: Auteur/Dép: Date de création:

4.2 Chosen approaches

Standard NN Architecture

Monodense

 To enforce monotonicity constraints by defininf a new type of layer called Monodense.

 To enforce multiple domain constraints directly in the output layer of a NN.

Domain Constraints

 To enforce domain constraints defined as a differentiable layer.

8

USE CASES

Réf./Document : Date de création : Date de création : Classification : D3 Conservation : WA

5.1 Generative design of tire's components

Data description:

- 279 samples
- 27 products conforming an « épure »

10

5.1.1 Model architecture and constraint definition

Architecture

Date de création :02/08/2024

Réf./Document : Presentation Constrained NN

11

Classification: D3

UNCONSTRAINED RECONSTRUCTION

UNCONSTRAINED RECONSTRUCTION

5.1.2 Diversity study

14

Réf./Document : Presentation Constrained NN

GENERATION FROM LATENT SPACE

5.2 Damage prediction case

Prediction of the cumulative damage and final damage.

5.2.1 Results domain constraints

Constrained

Model	MSE	MAE	RMSE	R2
LSTM	3.2197	1.0895	1.7943	0.9979
Dense	23.9143	2.3130	4.8902	0.9828
Convolution	6.2355	1.2263	2.4971	0.9960

True

Unconstrained

Model	MSE	MAE	RMSE	R2
LSTM	6.2355	1.2263	2.4971	0.9960
Dense	26.3848	2.4132	5.1366	0.9811
Convolution	1838.6836	35.4744	42.8799	-0.1837

MICHELIN

17

5.2.2 Monotonicity constraints

6. Analysis and Conclusions

1st case

Scalability

Constraints respect

Diversity study

2nd case

Help the model to focus

Simpler models

Monotonicity constraints

7. Retrospective and Feedback

Experience at Michelin

Skills development

Future career

Thank you!

