Building ML models from tabular data

Marco Visentini-Scarzanella

Sr. Manager, Applied Science

Amazon Japan

A formal definition of ML

"A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P* if its performance at tasks in *T*, as measured by *P*, improves with experience *E*."

Mitchell, 1997

- Now substitute...
 - T with a problem definition
 - P with a cost function
 - E with training data

No performance measure -> it's **analytics**No learning from experience -> it's **optimization**

1. What is tabular data?

Name	Age	Income	Target
Alice	25	45,000	Yes
Bob	32	60,000	No
Carol	37	52,000	No
David	29	70,000	Yes
Eve	45	38,000	No

What is tabular data?

- Anything that can be represented as a flat table
 - Rows = instances (e.g. people, transactions)
 - Columns = features (e.g. age, income)
 - Often includes a target column (what we are trying to predict)

What is *not* tabular data?

• Images:

- Pixels arranged in grids, not tables
- Example: photos, X-ray images

• Text (Unstructured):

- Raw text without clear structure
- Example: books, articles, customer reviews

Audio & Video:

- Continuous streams of sound or images
- Example: voice recordings, movie clips

• Graph Data (Networks):

- Nodes connected by edges, relationships matter
- Example: social networks, web links

political Fursitance or the whenever be not persecuttion.

Congress on the annagonian more coronantion oath functions to a period in an argument, to peace, has given peace of peace. Ilititung or the duch peace on the lapresent oventure setill prayers a first government with conditions. The murtay country whereas clearly at that difficulties are the parties.

Text acc.

Graph

Why is tabular data important in ML?

- Ubiquitous in business and government
 - Easily >90% of models we build in Amazon are based on tabular data.
- Examples:
 - Finance: fraud detection
 - Healthcare: diagnostics from clinical imaging
 - Marketing: lifetime value prediction
 - E-commerce: recommendations

Amazon-specifi c applications

- Search results ranking
- Amazon's choice badge classification
- Double points badge regression / classification
- Price and points regression
- Title LLM generative processing + regression
- Sponsored revenue regression

(ニクソン) ck4 29L Men's Backpack, ack, Bag, Black,...

★☆☆ (5)

.500 List: ¥13.200

ime FREE One-Day

dd to cart

NIXON(ニクソン)

NC2256 JP Small Landlock Backpack

4.6***** (22)

¥11,550

116 pt (1%) ダブルポイント (some sizes/colors)

FREE Shipping

NIXON(ニクソン)

Ransack C3025 26L Backpack Daypack

5.0 ***** (1)

¥5.980

Get it as soon as Tue. Jun 10

Add to cart

NIXON(ニクソン) Ransac Backpack II

4.6 ***** (6)

¥20.600 206 pt (1%)

ダブルポイント (some sizes/colors)

Get it Thu, Jun 26 - Mon, Jul 7

Add to cart

Coleman(コールマ: ウォーカー25 メンス ニセックス リュック

4.5 **** (1.3K) 1K+ bought in past m

¥4.865 List: ¥7.590 49 pt (1%)

prime FREE One-Da

onsored 6

F. EE One-Day

ANETTA en's Backpack, Ultra htweight, 24.3 oz (690 g),... bt*** (12) bought in past month 03 1 000 with coupon

+8 other colors/patterns

Sponsored 1

AISFA

Backpack, PC Bag, For Business, Laptops, Large Capacity, USB...

4.0 ★★★☆**∨** (4.4K) 100+ bought in past month

Limited time deal

¥2,399 Was: ¥2,999 240 pt (10%)

ダブルポイント (some sizes/colors) vprime FREE One-Day

Add to cart

Sponsored ®

SUNOGE リュック ビジネスリュック メンズ リュックサック 防水 レインカバ…

4.4 ***** (4)

¥3,499

ダブルポイント (some sizes/colors)

vprime FREE One-Day Only 2 left in stock - order soon.

Add to cart

Sponsored ®

SPOSING

Men's Backpack, Stylish, Popular Latest Design, Highly Water...

4.4 **** (192) 100+ bought in past month

¥2.999

✓prime FREE One-Day

Add to cart

TPAID

Vacuum Compress Compression Back

4.0 ****** (1)

¥13,999

140 pt (1%)

Save ¥2,000 with co sizes/colors)

prime FREE One-Da

Add to cart

Tabular ML problem types

1. Classification

- Output: a discrete label (e.g. Yes/No, category)
- Examples:
 - Will the customer cancel? (Yes/No)
 - What product category is this? (T-shirt, Pants, Jacket)

2. Regression

- Output: a continuous number
- Examples:
 - What will sales be next month?
 - How much will the house sell for?

3. Ranking / Scoring (special case)

- Output: a **score** used to sort or prioritize
- Example: Which products should appear first in search results?

ML Task Type: Classification

- Output: a category or label
- Examples:
 - Will an applicant default on a loan? (Yes / No)
 - Is this email spam? (Spam / Not Spam)
 - Will a customer click on a recommendation? (Yes / No)
 - What age group is this customer (0-18, 18-35, 35-50, 50+)

ML Task Type: Regression

- Output: a continuous value
- Examples:
 - Predicting customer spending
 - Estimating exam scores
 - Forecasting next month's sales

A unifying view of tabular ML

- Tabular ML = curve fitting
- What makes a problem "easy" to solve with ML?
- We want to **transform features** so the task becomes linearly separable (for classification) or linearly predictable (for regression).
- This can happen through:
 - Explicit Feature Engineering (e.g., log, ratios, date parts)
 - Nonlinear mapping of features to spaces where they become linearly separable (e.g. NN)
 - Nonlinear curve fitting to fit very complex functions or decision boundaries

Real ML workflows

- Majority of ML applications:
 - Batch load → Batch train → Batch predict (scheduled regularly)
 - Frontend simply consumes predictions from dataset
- Increasingly commoditized stage:
 - Model Training & Deployment ("boilerplate")
- Crucial strategic stages:
 - Problem Definition → Requirements ("Are we solving the right problem?")
 - Feature Engineering (GIGO-Law: Garbage-In, Garbage-Out)
 - Monitoring & Auditing (Is it still performing as intended?)

2. Model family selection

Model family selection

- Overview of main algorithm families for tabular data
- Strengths, weaknesses, and when to pick each
- Why it matters:
 - Different models suit different problems
 - No Free Lunch Theorem: no model is best for all problems
 - Tradeoffs: accuracy vs. generalization vs. cost

Linear & Logistic Regression

- How they work: assume linear relationship between features and target
- Pros: interpretable coefficients, fast to train, simple
- Cons: struggle with complex, non-linear patterns
- When to use: small-medium datasets, interpretability important, baseline checks
- Logistic regression
 - $P(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$

Linear Classification

Linear regression

•
$$y = \mathbf{w}^\mathsf{T} \mathbf{x} + b$$

Linear Regression

Tree-based models

- Decision Trees: partition data into decisions (interpretable, risk of overfit)
- Random Forests: multiple trees, robust and accurate, less interpretability
- Gradient Boosting (XGBoost, LightGBM): builds models sequentially, highly accurate, slightly less transparent

Decision trees

- 1. Split data recursively by feature values
- 2. At each node, choose the feature & threshold that best separates target values
- 3. Continue until stopping criteria (max depth, purity, min samples, etc.)

```
function build_tree(data):
    if stopping_criteria(data):
        return leaf_node(prediction)
    best_split = find_best_split(data)
    left_data, right_data = split(data, best_split)
    return node(
        condition = best_split,
        left = build_tree(left_data),
        right = build_tree(right_data)
)
```

Decision trees in action

Random forests

- Forest = lots of trees
- Each tree uses a random subset of features at each split
- Final prediction:
 - Classification: majority vote
 - **Regression:** average of predictions
- Bagging (bootstrap aggregating): ensemble multiple weak learners trained on different features
 - Increases robustness as it will not be dominated by outliers

function random_forest_predict(X):
 trees = [build_tree(sample_data()) for _ in range(N)]
 predictions = [tree.predict(X) for tree in trees]
 return aggregate(predictions) # vote or average

Gradient boosted trees

- Build trees sequentially each one corrects the previous model's errors
- Final prediction is a **weighted sum** of weak learners
- Common libraries: XGBoost, LightGBM, CatBoost

```
F0 = constant_prediction()
for m in 1 to M:
    residuals = compute_gradient_loss(y, Fm-1)
    tree = train_tree(X, residuals)
    Fm = Fm-1 + learning_rate * tree.predict(X)
return Fm
```


Gradient boosted iterations

Neural networks

- Neural Networks (NNs): layers of interconnected nodes learn complex patterns
 - Pros: flexible, captures complex relationships
 - Cons: data-intensive, less interpretability
- Nonlinear transformation of all elements at each layer. Output learns a very nonlinear mapping of the inputs y = f(x)

Nonlinear feature mapping in action

3. Data preprocessing

Data preprocessing / feature engineering

Encode data to tabular

Handle missing values

Scale, normalize, and remove outliers Engineer new features... or remove redundant ones

Encoding non-tabular data

- Categorical features
 - One-hot: for nominal categories
 - Ordinal/label: for true rank order
 - E.g. low/medium/high
 - Watch out!
 - label encoding on nominal features can mislead models

Encoding non-tabular data (advanced)

- Text, images
 - Bag-of-words/features
 - Embeddings
- Time series
 - Lag features
 - Rolling statistics

Handling missing values

Populate from closest neighbour

id	x_1	x_2	x_3	x_4				
1	London	57	В	10.1				
2	Paris	42	С	31.5				
3	Tokyo	55	С	8.4				
4	London	51	В					
5			Α					
6	Paris		A	45.0				
Fill with column average								
Too many missing values - drop								

uncorrelated

- Feature engineering enables you to create your own nonlinear dependencies
 - E.g. loan screening: given "debt" and "income" features, ideal model would assess based on debt/income ratio.
 - Useless for models that do nonlinear mapping (e.g. NN)
 - Can reduce the depth needed by models that don't (e.g. trees/forests)
- More features != better models
 - What is the actual information that additional features bring?
 - Only include minimum set of features that contribute to the prediction
 - Can you think of why?
 - Ideal world: no cross correlation between features

Feature engineering – beyond engineering

- Most times we don't have the features that we need
- Feature engineering only transforms existing features
- Be a data leader acquire what you need!
 - Direct customer surveys capture attitudes, intents
 - A/B tests & experiments observe behavior under controlled conditions
 - Instrumentation & logs add tracking in your app or website
 - External sources & APIs enrich with weather, demographics, market data

Not unusual

- Z-score (|z| > 3)
- IQR rule (below Q1–1.5·IQR or above Q3+1.5·IQR)

Reflect before removing:

- Could the outlier carry important signal?
- Does it correlate with the target label?
- What is the distribution of your data?
 - If Gaussian, 0.3% of your data outlier by definition unusua

Treatment options:

- Remove if clearly erroneous
- Cap (winsorize) to boundary values utiliers

Outliers

$$z = -3$$
 $z = -2$ $z = -1$ $z = 0$ $z = 1$ $z = 2$

$$z = -2$$

$$z = -1$$

$$z = 0$$

$$z = 1$$

$$z = 2$$

$$z=3$$

4. Model training

Train / Validation / Test split

- Training set: fit the model
- Validation set: tune hyperparameters, select model
- **Test set:** evaluate generalization on unseen data
 - Never tune against this! Otherwise it becomes a validation set
- Ratios depend on data volume, frequency of defects and your ability to validate
- Goal: assess generalization performance as honestly as possible
- Challenge: create representative test set with rare classes

Bias and variance

- Validation set is used to detect overfitting
- Training should be stopped when validation set shows steady performance decrease

High bias, low variance

Low bias, high variance

High bias, high variance

Cross-valid ation

- Instead of one split, rotate through k folds
- Train on k-1 folds, validate on the 1 left out — repeat
 - Common choice: k = 10
 - Don't use the test set!!
- Average performance across all folds
- Helps reduce variance due to unlucky splits

Validation Report

ID - x ====				
ID	Feature	F	Prediction	
21	Error	1	Yes	
22	Error		No	
22	Гинон		No	

- Purpose: understand where and why the model fails, not just how many errors
- Not: blind parameter search on validation set
- Do:
 - Inspect misclassified examples
 - Quantify error types & frequencies (e.g., false positives vs. false negatives)
 - Identify patterns (segment, feature slice, data quality issue)
- Outcome: inform next steps—engineer new features, collect more data, or choose a different model family
- Please read: Machine Learning Yearning, by Andrew Ng

Pitfalls: Data leakage

- What is data leakage?
 - When information from outside the training process (especially from validation/test or future data) "sneaks in," giving overly optimistic performance.
- Common Leakage Examples:
 - **Global Imputation:** filling missing values using the mean/median of the *entire* dataset (train+validation+test)
 - Pre-Split Scaling: computing scaler parameters (mean/std or min/max) on the full dataset before splitting
 - Target-Derived Features: creating features that directly or indirectly encode the label (e.g., "days until churn" when predicting churn)
 - **Time Leakage:** including future data points as features (e.g., last month's sales when predicting this month's demand)

Pitfalls: Overfitting

- ML models iteratively fit input data
 - "Capacity": the ability of a model to fit complex functions
 - (Almost) monotonic increase in performance
 - Excessive training on the dataset will result in overfitting
 - Model fits noise and statistical irregularities rather than the true signal

4. Model evaluation

Classification metrics

- Accuracy: % of correct predictions
 - Pitfall: misleading on imbalanced data
 - **Use when:** classes roughly balanced, equal error costs
- Precision: TP/(TP+FP) → "When I say positive, am I usually right?"
- Recall: TP/(TP+FN) → "Of all actual positives, how many did I find?"
- **F1-score:** harmonic mean of P & R, balances the two

Confusion Matrix:

Predicted

Positive Negative

Actual Positive 8 2

Actual Negative 3 87

Regression metrics

• Mean Squared Error (MSE):

- Average of squared errors $\frac{1}{N}\sum (y_i \widehat{y}_i)^2$
- Used as a training loss—smooth and differentiable

Root Mean Squared Error (RMSE):

- \sqrt{MSE}
- Back in original units—easy to interpret ("average error of \$5 k")

Mean Absolute Error (MAE):

- Average of absolute errors $\frac{1}{N}\sum |y_i \widehat{y}_i|$
- More robust to outliers, equal weight to all errors

Choosing metrics

- Match your metric to what really matters: missed fraud vs. false alarms, or big price misses vs. average error. That's how you drive real value.
- Always align metric choice to business impact!

Choosing metrics

- **Scenario:** Predicting customer churn for a subscription service
 - Common ML choice: maximize accuracy (e.g. 95%)
 - Business goal: Minimize lost revenue from high-value customers
- Model may optimize ignoring churners worth \$1000/yr vs churners worth \$50/yr!
- Better metric:
 - Weighted recall on top 10% highest-value customers
 - Or expected revenue retained: sum(value_i × TP_i)

6. Challenges: Imbalanced data and interpretability

Why imbalance matters

- Rare-class problems: fraud (1 %), disease (5 %), churn (10 %)
- High accuracy can hide **0** % **recall** on the minority class
- Technical risk → missed cases
- Ethical risk \rightarrow under-represented groups harmed

Confusion (1 000 samples)	Predicted +	Predicted –
Actual + (50)	0	50
Actual – (950)	0	950

Countermeasures

Oversample minority → duplicates / SMOTE

- Pros: keeps majority data
- Cons: risk of overfitting

Undersample majority → drop excess negatives

- Pros: faster training
- Cons: discards information

Weights

 Give error weights to minority class inversely proportional to frequency

Metrics

 Use recall, F1 measures for minority focus

Countermeasures - SMOTE

Synthetic Minority Oversampling Technique

Why interpretability matters

- Trust: stakeholders want to know why a prediction happens
- Debugging: surface spurious correlations & data errors
- Fairness & compliance: detect bias, meet regulations (GDPR, banking, healthcare)
- Two types of interpretability
 - System interpretability = auditability. Can I find out what is wrong?

- Feature interpretability = attribution. Can I understand the reason behind the prediction?
 - NN = attention models
 - Trees = SHAP, LIME, etc.

Feature interpretability – feature importance

X[1] <= 0.75 gini = 0.667 samples = 105 value = [35, 35, 35] X[0] <= 4.75 gini = 0.5 samples = 35 samples = 70value = [35, 0, 0]value = [0, 35, 35]gini = 0.0samples = 30 samples = 40 value = [0, 30, 0]value = [0, 5, 35]X[0] <= 4.95X[0] <= 4.85gini = 0.5 gini = 0.061 samples = 8 samples = 32 value = [0, 4, 4]value = [0, 1, 31]gini = 0.444gini = 0.0samples = 3 samples = samples = 2samples = 6value = [0, 2, 0]value = [0, 2, 4]value = [0, 1, 2]value = [0, 0, Recall that in trees, decision features close to the root are better at separating samples between branches than those near the leaves

Two feature importance methods:

- 1. Average predictive power
- 2. Permutation importance: shuffle each column, measure drop in score
 - **Limitation:** only global; can be misleading if features are correlated

Feature interpretability - SHAP

- Based on Shapley values from cooperative game theory
- Each feature = a 'player'; SHAP fairly distributes a prediction's gain
- Advantages:
 - Unified framework for any model (tree, DL, linear)
 - Local + global explanations (waterfall & summary plots)
 - Additive: contributions sum to the prediction
- **Practical:** pip install shap, then shap.TreeExplainer(model)

A word of caution...

- 99% of ML models today are based on curve fitting / correlations.
- Feature importance indicates correlation,
 not causality.
- Business is interested about identifying the why of observations
 - This requires active experimentation: A/B tests, hypothesis validation, etc.
 - Drive an active experimentation mentality in your organization.

Concluding

. . .

Data and ML professionals work as a bridge between business leadership and numerical observations

Go beyond being a data provider. Inform leadership on:

- What data would be needed to really solve the problem
 - Even if it does not exist today!
- What new technologies the business needs to invest in to solve the problem
- What test would be needed to really validate a hypothesis
 - Get the data from the customer, not from our own biases!

If you treat ML as a parameter optimization problem, your work will be automated

• Real value for the business comes from intimate knowledge of the data, connecting it with the business priorities, and suggesting new initiatives to move forward. **ML is just a tool**.

Thank you!