

Rapport de stage :

Installation et maintenance des réseaux informatiques

Etabli par:

Ouahman Youssef

Encadré par:

• Mr Abdelaziz Ait Hammou

Remerciements

Je tiens tout d'abord à remercier **Mme EL JAZOULI MERYAM**, directrice du complexe NTIC2, pour m'avoir offert l'opportunité d'effectuer ce stage dans le cadre de ma formation.

Mes remerciements les plus sincères vont à **Mme ABIDAR RACHIDA**, mon enseignante, pour son accompagnement, ses conseils précieux et son soutien durant toute la période de stage.

Je tiens également à exprimer ma profonde gratitude à **Monsieur Abdelaaziz Ait Hammou**, mon tuteur au sein de la société OVERLINK SARL, pour son encadrement, sa disponibilité, et la richesse des enseignements qu'il m'a transmis dans le domaine de la maintenance et des réseaux.

Enfin, je remercie chaleureusement l'ensemble de l'équipe de OVERLINK pour leur accueil, leur bienveillance et l'ambiance professionnelle qui m'a permis d'apprendre dans les meilleures conditions.

Résumé

Ce rapport examine en détail les activités réalisées durant mon stage au sein de la société **OVERLINK SARL**, spécialisée dans les solutions informatiques et réseaux. Il met en avant les interventions effectuées dans le domaine de la maintenance du matériel informatique ainsi que la mise en place et l'amélioration de l'infrastructure réseau. Le rapport aborde également les outils et les normes de câblage utilisés, essentiels pour garantir une installation conforme et performante.

Glossaire

- CPU : Central Processing Unit (Unité Centrale de Traitement).
- **HDD**: Hard Disk Drive (Disque Dur).
- RAM: Random Access Memory (Mémoire Vive).
- NIC: Network Interface Card (Carte d'Interface Réseau).
- **GPU :** Graphics Processing Unit (Unité de Traitement Graphique).
- **PSU**: Power Supply Unit (Unité d'Alimentation).
- **PCI :** Peripheral Component Interconnect (Interface de Communication pour Composants Périphériques).
- **USB**: Universal Serial Bus (Bus Série Universel).

Liste des figures

Figure 1: Processeur	10
Figure 2: Disque dur	11
Figure 3: Une barrette mémoire	12
Figure 4: Carte réseau	13
Figure 5: Carte son	14
Figure 6: Carte graphique	15
Figure 7: Rouleau cable réseau	19
Figure 8: Connecteurs RJ45	19
Figure 9: Une pince à sertir	19
Figure 10: Les standards de câblage	20
Figure 11: Dénuder le câble	22
Figure 12: Séparez les paires	23
Figure 13: Disposer les paires selon l'ordre	23
Figure 14: Enficher les paires dans le connecteur	23
Figure 15: Sertir avec le pince	24
Figure 16: L'avant du salle SP13	32
Figure 17: L'après du salle SP13	32

Liste des tableaux

Tableau 1: Câble droit avec le standard TIA/EIA 568A	21
Tableau 2: Câble droit avec le standard TIA/EIA 568B	21
Tableau 3: Câble croisé	22

Table des matières

Introdu	ction	8
Chap. 1	: LA MAINTENANCE DU MATÉRIEL	10
1.1	Le processeur	10
1.2	Le disque dur	11
1.3	Les barrettes mémoire	12
1.4	Les cartes d'extensions	13
a.	Carte réseau	13
b.	Carte graphique	14
C.	Carte son	14
1.5	Les imprimantes	15
Chap. 2	: CABLAGE D'UN RESEAU	17
2.1	Introduction	17
2.2	Etapes à suivre pour l'installation d'un réseau	17
2.3	Les outils nécessaires pour réaliser le câble	19
2.4	Les standards de câblage	20
2.5	Câble droit et câble croisé	20
a.	Câble droit	20
b.	Câble croisé	22
2.6	Lors de la réalisation du câble	22
2.7	Conclusion	24
Chap. 3	MISE A NIVEAU DE L'INFRASTRUCTURES RESEAU	26
3.1	Évaluation et Conception de l'Infrastructure Réseau	26
a.	Les critères	26
b.	Les fiches techniques	26
C.	Analyse des fiches techniques	29
3.2	Réaménagement de l'armoire réseau dans la salle SP13	29

a.	Identification des salles dans le panneau de brassage	29
b.	Réaménagement de l'armoire	30
C.	Sertissage des Câbles dans le Panneau de Brassage	31
d.	L'avant et l'après du salle SP13	32
Conclusio	n	33
Référence	39	33

Introduction

Au sein de l'établissement de formation NTIC2, j'ai eu l'opportunité d'effectuer un stage enrichissant axé sur la maintenance du matériel et la mise à niveau de l'infrastructure réseau. Ce rapport présente une analyse détaillée des activités réalisées durant cette période, mettant en lumière les différentes étapes et les défis rencontrés dans l'amélioration de l'infrastructure informatique de l'établissement.

Chapitre 1 : Maintenance Matériel

Ce chapitre traite de la maintenance des composants essentiels de l'informatique, tels que le processeur, le disque dur, les barrettes mémoire, les cartes d'extension et les imprimantes.

Chapitre 2 : Câblage Réseau

Il explore les étapes d'installation d'un réseau, les outils nécessaires, les normes de câblage et la différence entre câbles droits et croisés.

Chapitre 3: Mise à Niveau Réseau

Ce chapitre détaille l'évaluation et la conception de l'infrastructure réseau, le réaménagement de l'armoire réseau dans la salle SP13 et les résultats obtenus.

CHAPITRE 1:

LA MAINTENANCE DU MATÉRIEL

Chap. 1 : LA MAINTENANCE DU MATÉRIEL

La maintenance en Hardware touche plusieurs parties de l'ordinateur tel que le processeur, le disque dur, les barrettes mémoires, les cartes d'extension, les imprimantes...etc.

1.1 Le processeur

Dans le domaine de la maintenance informatique, le processeur occupe une place centrale. Il agit comme le cerveau de l'ordinateur, traitant les instructions et les données. Pendant la maintenance, il est vital de surveiller son état pour éviter les problèmes de surchauffe ou de dysfonctionnement, qui peuvent causer des ralentissements ou des pannes. Ainsi, des tâches telles que le nettoyage régulier des ventilateurs et dissipateurs thermiques pour éviter la surchauffe, le remplacement de la pâte thermique pour assurer une bonne conductivité thermique entre le processeur et le dissipateur thermique et la mise à jour des pilotes sont essentielles pour assurer le bon fonctionnement du processeur et, par extension, du système informatique.

Figure 1: Processeur

1.2 Le disque dur

Dans le domaine de la maintenance informatique, le rôle du disque dur est fondamental. En tant que principal dispositif de stockage de données d'un ordinateur, il assure la conservation permanente des fichiers et programmes nécessaires au bon fonctionnement du système.

Lors de la maintenance informatique, le bon fonctionnement du disque dur est crucial pour assurer la stabilité et la performance du système. Il est essentiel de surveiller régulièrement l'état du disque dur afin de détecter tout signe de défaillance imminente, tels que des secteurs défectueux, des erreurs de lecture/écriture ou des baisses de performance. Des mesures préventives telles que la sauvegarde régulière des données, la défragmentation du disque et la mise à jour des pilotes peuvent contribuer à maintenir la santé du disque dur et à prévenir les pannes catastrophiques.

Figure 2: Disque dur

1.3 Les barrettes mémoire

La maintenance des barrettes mémoire est essentielle pour garantir la performance et la stabilité d'un système informatique. Les barrettes mémoire, ou modules RAM, jouent un rôle crucial dans le fonctionnement des applications en permettant un accès rapide aux données utilisées par le processeur. Des problèmes de mémoire peuvent entraîner des ralentissements, des plantages et des erreurs système, affectant ainsi la productivité et la fiabilité du système.

Effectuer une maintenance régulière des barrettes mémoire comprend des tâches telles que la vérification de leur bonne installation, le nettoyage des contacts pour éviter les problèmes de connexion dus à la poussière ou à l'oxydation, et la surveillance des températures pour prévenir la surchauffe. De plus, des outils de diagnostic peuvent être utilisés pour tester l'intégrité des modules RAM et détecter d'éventuelles erreurs. En maintenant les barrettes mémoire en bon état, on assure un fonctionnement optimal et une durée de vie prolongée du système informatique.

Figure 3: Une barrette mémoire

1.4 Les cartes d'extensions

Dans le domaine de la maintenance informatique, les cartes d'extensions occupent une place cruciale. Elles permettent à l'ordinateur d'étendre ses fonctionnalités, que ce soit pour le réseau, le son ou les graphiques. Pendant la maintenance, il est essentiel de surveiller l'état des cartes d'extensions pour éviter les problèmes tels que les déconnexions réseau, les problèmes audio ou les artefacts graphiques, qui peuvent entraîner des perturbations dans le fonctionnement de l'ordinateur.

a. Carte réseau

Les cartes réseau sont essentielles pour assurer la connectivité de l'ordinateur au réseau. Pendant la maintenance, il est important de vérifier régulièrement leur état, de mettre à jour les pilotes et de surveiller les performances pour éviter les déconnexions et assurer une connexion stable et rapide.

Figure 4: Carte réseau

b.Carte son

Les cartes son permettent à l'ordinateur de produire des sons et de gérer l'audio. Pour assurer un bon fonctionnement, il est nécessaire de vérifier périodiquement l'état de la carte son, de mettre à jour les pilotes et de vérifier la qualité audio pour éviter les problèmes tels que les grésillements, les coupures ou la perte de son.

Figure 5: Carte son

c.Carte graphique

Les cartes graphiques sont essentielles pour gérer l'affichage et les graphismes de haute qualité. Pendant la maintenance, il est crucial de surveiller l'état de la carte graphique, de mettre à jour les pilotes et de vérifier les performances graphiques pour éviter les artefacts visuels, les problèmes d'affichage ou les crashs.

En réalisant ces tâches de maintenance régulièrement, vous pouvez assurer le bon fonctionnement de vos cartes d'extensions et éviter les problèmes qui pourraient affecter la performance globale de votre système informatique.

Figure 6: Carte graphique

1.5 Les imprimantes

Les imprimantes jouent un rôle crucial. Elles permettent de produire des copies physiques de documents et de matériaux informatiques, ce qui en fait un élément vital pour de nombreux environnements de travail. Pendant la maintenance, il est essentiel de surveiller l'état des imprimantes pour éviter des problèmes tels que les bourrages papier, les impressions de mauvaise qualité ou les dysfonctionnements, qui peuvent entraîner des pertes de productivité.

Pour assurer le bon fonctionnement des imprimantes, il est nécessaire de réaliser régulièrement certaines tâches de maintenance. Voici quelques-unes des actions à réaliser :

- Nettoyage des têtes d'impression : Nettoyez régulièrement les têtes d'impression pour éviter l'accumulation de résidus d'encre qui peuvent obstruer les buses et entraîner des impressions floues ou manquantes.
- Vérification des niveaux d'encre : Surveillez les niveaux d'encre et remplacez les cartouches vides pour éviter les interruptions dans le processus d'impression.
- Alignement des têtes d'impression : Alignez périodiquement les têtes d'impression pour assurer des impressions de haute qualité et éviter les décalages.
- Mise à jour des pilotes : Assurez-vous que les pilotes d'imprimante sont à jour pour garantir la compatibilité avec votre système d'exploitation et éviter les problèmes de fonctionnement.
- Maintenance physique : Vérifiez et nettoyez les rouleaux d'alimentation du papier et les mécanismes d'entraînement pour éviter les bourrages papier.

CHAPITRE 2:

CABLAGE D'UN RESEAU

Chap. 2: CABLAGE D'UN RESEAU

2.1 Introduction

Un réseau local est un réseau informatique de taille géographique restreinte. Il peut concerner, par exemple, une salle informatique, une habitation particulière, un bâtiment, un établissement scolaire, un site d'entreprise ...

Couramment appelé LAN (Local Area Network) il peut également être nommé RLE (Réseau Local d'Entreprise).

Le réseau permet d'interconnecter, dans un rayon limité, plusieurs types de terminaux (postes de travail informatiques, serveurs, caisse enregistreuses, imprimantes...) L'objectif est de faire communiquer les divers équipements dans le but de partager des données et des services (logiciels, accès Internet, impressions, gestion à distance...)

Les réseaux peuvent être de divers types mais c'est le réseau Ethernet qui s'impose aujourd'hui grâce à sa simplicité de mise en œuvre et à l'augmentation progressive des débits de connexion (10 Mb/s, puis 100 Mb/s, 1 Gb/s voir 10 Gb/s aujourd'hui).

2.2 Etapes à suivre pour l'installation d'un réseau

Pour l'installation proprement dite d'un câblage réseau, les techniciens doivent accomplir les tâches suivantes :

- Les deux techniciens responsables d'installer le réseau on tout d'abord établit le plan du réseau c'est-à-dire qu'ils ont dessiné un schéma des bureaux et indiqués où se trouve chaque ordinateur et chaque imprimante.
- À côté de chaque ordinateur, ils ont indiqué le matériel qu'il comporte, comme les modems et les cartes réseau.
- Ils ont dressé la liste du matériel à acheter. Ce matériel comprend des modems, des cartes réseau, des commutateurs et des câbles (les câbles peuvent être acheté ou fabriqué).
- A part les câbles qu'on a nous-même fabriqué, on s'est procuré le matériel nécessaire.
- Ils ont ensuite installé les moulures puis fabriquées les câbles RJ45.
- Ils ont ensuite installé les cartes réseau et les modems pour créer des connexions réseau sur chaque ordinateur.
- Ils ont connecté physiquement les ordinateurs entre eux et branché les câbles aux commutateurs et aux ordinateurs.
- Ils ont allumé tous les ordinateurs et toutes les imprimantes.
- Ils ont ensuite exécuté la configuration réseau sur les ordinateurs du réseau.

2.3 Les outils nécessaires pour réaliser le câble

Pour réaliser le câble, il faut au moins

• Le câble lui-même

Figure 7: Rouleau cable réseau

• Deux connecteurs RJ45 pour chaque câble

Figure 8: Connecteurs RJ45

• Une pince à sertir

Figure 9: Une pince à sertir

2.4 Les standards de câblage

Comme nous savons, un câble à paires torsadées possèdent 4 paires torsadées. donc 8 fils dont les couleurs sont marron, marron blanc, bleu, bleu blanc, vert, vert blanc, orange et orange blanc. Il existe deux standards de câblage qui sont définis par Electronique Industrie Association/Télécommunications Industrie Association. Ces deux standards sont le standard TIA/EIA 568A et le standard TIA/EIA 568B représentés ci-dessous:

Figure 10: Les standards de câblage

2.5 Câble droit et câble croisé

a. Câble droit

Le câble droit est utilisé pour relier deux équipements différents comme par exemple un ordinateur à un hub, un ordinateur à un modem... le câble est dit droit parce que les fils sont parallèles d'un bout à l'autre. Le fils attaché au borne 1 d'un connecteur est aussi attaché au borne I de l'autre connecteur ainsi de suite. Donc lors de la réalisation du câble, on doit faire ci-dessous :

• Pour le standard TIA/EIA 568A

Tableau 1: Câble droit avec le standard TIA/EIA 568A

	Côté 1		Côté 2
Nō	Couleur	Nο	Couleur
1	Blanc/Vert	1	Blanc/Vert
2	Vert	2	Vert
3	Blanc/Orange	3	Blanc/Orange
4	Bleu	4	Bleu
5	Blanc/Bleu	5	Blanc/Bleu
6	Orange	6	Orange
7	Blanc/Marron	7	Blanc/Marron
8	Marron	8	Marron

• Pour le standard TIA/EIA 568B

Tableau 2: : Câble droit avec le standard TIA/EIA 568B

	Côté 1		Côté 2
Nō	Couleur	Nō	Couleur
1	Blanc/Orange	1	Blanc/Orange
2	Orange	2	Orange
3	Blanc/Vert	3	Blanc/Vert
4	Bleu	4	Bleu
5	Blanc/Bleu	5	Blanc/Bleu
6	Vert	6	Vert
7	Blanc/Marron	7	Blanc/Marron
8	Marron	8	Marron

b. Câble croisé

Le câble croisé est utilisé pour relier deux équipements identiques comme par exemple un ordinateur à un ordinateur, un hub à un hub... Pour réaliser un câble croisé, il suffit de prendre le standard TIA/EIA 568A pour un bout et le standard TIA/EIA 568B pour l'autre bout. Comme ça nous allons nous référer du tableau cidessous.

Tableau 3: Câble croisé

Côté 1		Côté 2	
Nō	Couleur	Nō	Couleur
1	Blanc/Orange	1	Blanc/Vert
2	Orange	2	Vert
3	Blanc/Vert	3	Blanc/Orange
4	Bleu	4	Bleu
5	Blanc/Bleu	5	Blanc/Bleu
6	Vert	6	Orange
7	Blanc/Marron	7	Blanc/Marron
8	Marron	8	Marron

2.6 Lors de la réalisation du câble

Etape 1 : Utilisez le petit outil livré avec la pince pour dénuder le câble sur 5 cm.

Figure 11: Dénuder le câble

Etape 2 : Séparez les paires en les conservant par groupe de 2.

Figure 12: Séparez les paires

Etape 3 : Disposer les paires selon l'ordre TIA/EIA 568A ou TIA/EIA 568B et couper les paires.

Figure 13: Disposer les paires selon l'ordre

Etape 4 : Enficher les paires dans le connecteur

Figure 14: Enficher les paires dans le connecteur

Etape 5 : Placer le connecteur dans la pince et sertir

Figure 15: Sertir avec le pince

Avec le matériel et un peu d'attention, vous voyez que ce n'est pas très compliqué de réaliser soit même son réseau domestique! C'est pratique et en plus

2.7 Conclusion

Le câble FTP convient pour des réalisations de petite et grande taille c'est le plus utilise, le câble STP (avec un écran collectif) est conseillé pour bâtir un réseau. J'ai participé plusieurs fois à la réalisation d'un câblage, cela permet de connecter toutes les machines y compris les imprimantes au réseau pour permettre la communication plus facile.

CHAPITRE 3:

MISE A NIVEAU DE L'INFRASTRUCTURES RESEAU DE L'ETABLISSEMENT DE FORMATION NTIC2

Chap. 2 : MISE A NIVEAU DE L'INFRASTRUCTURES RESEAU

3.1 Évaluation et Conception de l'Infrastructure Réseau

a. Les critères

Pour réaliser l'état de lieu on s'est basé sur les critères suivants :

- Les goulottes :
- L'état des goulottes

Les câbles :

- Le nombre des câbles
- L'état des câbles

Les prises réseau :

- L'état des prises réseau
- Le nombre des prises réseau

Armoire:

- Table de brassage
- Nombre de switch

b. Les fiches techniques

Date: 02/04/2024

La salle	SP6			
Les goulottes	Etat des goulottes			
	Cassées (à	Cassées (à changer)		
Les câbles	N° de câble	Etat de câble		
	28	Mauvais état		
Prise réseau	N° de prise réseau	Etat des prises		
	0	Il en faut		
Armoire	Table de brasage	N° de Switch		
	NON (pas d'armoire)	NON		

La salle	LAB Soft Skills		
Les goulottes	Etat des goulottes		
	Bon	Bon état	
Les câbles	N° de câble	Etat de câble	
	42	Bon état	
Prise réseau	N° de prise réseau	Etat des prises	
	0	Aucune prise réseau	
Armoire	Table de brasage	N° de Switch	
	NON (pas d'armoire)	NON	

La salle	SP11		
Les goulottes	Etat des goulottes		
	Bon	Bon état	
Les câbles	N° de câble	Etat de câble	
	12	Bon état	
Prise réseau	N° de prise réseau	Etat des prises	
	2	Non opérationnels	
Armoire	Table de brasage	N° de Switch	
	NON (pas d'armoire)	NON	

La salle	SP12		
Les goulottes	Etat des goulottes		
	Mauva	Mauvais état	
Les câbles	N° de câble	Etat de câble	
	Non définie	Les câbles sont coupés	
Prise réseau	N° de prise réseau	Etat des prises	
	Non définie	Non opérationnel	
Armoire	Table de brasage	N° de Switch	
	NON (pas d'armoire)	NON	

La salle	SP13	
Les goulottes	Etat des goulottes	
	Mauvais état	
Les câbles	N° de câble	Etat de câble
	On n'a pas pu définir un nombre	Tout est en désordre
	exact	
Prise réseau	N° de prise réseau	Etat des prises
	2	Non opérationnels
Armoire	Table de brasage	N° de Switch
	OUI	6 (des SW non opérationnels)

c. Analyse des fiches techniques

Après avoir inspecter toutes les salles concernées par le projet de la réinstallation du réseau, nous avons relevés les points suivants :

- Les câbles sont en mauvais état, parfois même complètement coupés, il faut absolument refaire le câblage dans quelques salles.
- Les prises réseau sont arrachées dans la plupart des salles.
- Les goulottes sont globalement en bon état.
- La tâche la plus difficile c'est d'identifier les câbles de chaque salle dans les switches vu que les étiquettes sont effacées.
- On dispose de 5 armoires (salle des profs, SP4, salle d'imprimante, salle technique, SP13) tous sont équipées par la connexion internet.
 - 3.2 Réaménagement de l'armoire réseau dans la salle SP13
 - a. Identification des salles dans le panneau de brassage

L'armoire de la salle SP13 contient les panneaux de brassage des salles suivantes :

- SP13
- SP12
- SP11
- SP6
- LAB Soft-Skills

Salle :	SP13
Table de brassage :	DE A31 à A40

Salle :	SP12
Table de brassage :	DE A41 à A48, DE B1 à B20

Salle :	SP11
Table de brassage :	DE B21 à B48

Salle :	SP6
Table de brassage :	De A1 à A30

Salle :	LAB Soft-Skills
Table de brassage :	De C10 à C24

b. Réaménagement de l'armoire

Après l'identification des salles sur le tableau de brassage, nous avons procédé à la coupe des câbles sur le panneau. Chaque câble a été soigneusement rassemblé et organisé à l'aide des clips de câble. Cette étape a permis de regrouper les câbles de manière ordonnée, facilitant ainsi leur gestion et leur maintenance future, tout en améliorant la clarté et l'efficacité de l'infrastructure réseau dans la salle SP13.

Remarque :

Quelques câbles ne sont pas brassés, ils sont directement liés au switch, son switch se trouve dans son armoire.

Au niveau du switch, on a connecté que les prises opérationnelles.

c. Sertissage des Câbles dans le Panneau de Brassage

Nous avons ensuite utilisé un outil de sertissage pour fixer les câbles dans le panneau de brassage, en suivant la norme T-568A. Cette opération, consistant à pincer les câbles avec précision, a permis de garantir des connexions solides et fiables.

d. L'avant et l'après du salle SP13

Avant

Figure 16: L'avant du salle SP13

Avant

Figure 17: L'après du salle SP13