DISCRETE STRUCTURE AND THEORY OF LOGIC KCS-303

SET THEORY PART-II

Empty (or Null) Set—

This is probably the weirdest thing about sets.

As an example, think of the set of piano keys on a guitar.

"But wait!" you say, "There are no piano keys on a guitar!"

And right you are. It is a set with **no elements**.

This is known as the **Empty Set** (or Null Set). There aren't any elements in it. It \emptyset is represented by \emptyset Or by $\{\}$ (a set with no elements) Some other examples of the empty set are **the set of countries south of the South Pole**. So what's so weird about the empty set? Well, that part comes next.

set notation	pronunciation	Meaning	Venn diagram	answer
$A \cup B$	"A union B"	everything that is in either of the sets	1 2 3	{1, 2, 3}
$A \wedge B$ or $A \cap B$	"A intersect B"	only the things that are in both of the sets	1 2 3	{2}
A ^c or ~A	"A complement", or "not A"	everything in the universe outside of <i>A</i>		{3, 4}
			1 2 3	
A - B	"A minus B", or "A complement B"	everything in A except for anything in its overlap with B	1 2 3	{1}

~(A U B)	"not (A union B)"	everything outside A and B	1 2 3	{4}
~(A ^ B) or ~()	"not (A intersect B)"	everything outside of the overlap of <i>A</i> and <i>B</i>	1 2 3	{1, 3, 4}

• Given the following Venn diagram, shade in A U(B - C).

we will first find B - C. "B complement C" means I take B and then throw out its overlap with C, which gives me this:

Now we have to union this with *A*:

