Rapids - cuDF

SPEEDING UP PANDAS WITH YOUR GPU

WHAT IS RAPIDS?

- RAPIDS is an open source project supported by NVIDIA, geared towards Data Science applications
- RAPIDS is a suite of libraries which aims at accelerating analytical and data science tasks by putting to work your computer's GPU
- ➤ The RAPIDS collection of libraries includes libraries such as:
 - cuGraph: a graph analytics library
 - cuML: a library for machine learning
 - o cuDF: a dataframe manipulation library

cuDF: The RAPIDS library for dataframes

- > cuDF is a Python GPU library focused on accelerating dataframe manipulation
- Very similar to the PANDAS library, both in terms of functionality and actual code writing
 - → switching an existing code from pandas to cuDF will be intuitive and require minimal code changes

Ex: opening a csv file:

```
With Python: df1 = pd.read_csv('effect_covid.csv')
```

With cuDF: df2 = cudf.read_csv('effect_covid.csv')

DOCUMENTATION ON cuDF

- ➤ Link to the cuDF documentation : https://docs.rapids.ai/api/cudf/stable/api.html#dataframe
- In this link, you will be able to find all the functions there is in the cuDF library, which you can then apply on your data

isna ()	Identify missing values.
isnull ()	Identify missing values.
iteritems ()	Iterate over column names and series pairs
join (other[, on, how, Isuffix, rsuffix,])	Join columns with other DataFrame on index or on a key column.
keys ()	Get the columns.
<pre>kurt ([axis, skipna, level, numeric_only])</pre>	Return Fisher's unbiased kurtosis of a sample.
kurtosis ([axis, skipna, level, numeric_only])	Return Fisher's unbiased kurtosis of a sample.
label_encoding (column, prefix, cats[,])	Encode labels in a column with label encoding.
log ()	Get the natural logarithm of all elements, element-wise.
mask (cond[, other, inplace])	Replace values where the condition is True.
max ([axis, skipna, level, numeric_only])	Return the maximum of the values in the DataFrame.
mean ([axis, skipna, level, numeric_only])	Return the mean of the values for the requested axis.

WHAT DIFFERENTIATES CUDF FROM PANDAS?

- > The key difference between PANDAS and cuDF when manipulating data is the speed at which you will be able to do so
- PANDAS functions are already optimized in terms of speed: using PANDAS functions to manipulate data instead of basic Python code is already a significant step up. However PANDAS is running on the CPU only. Given the size of modern datasets, it can quickly show its limitation.
- On the other hand, cuDF relies on the GPU which allows it to benefit from significant acceleration since GPUs have more cores than CPUs typically do

HOW DOES IT WORK?

CPU

Cache

ALU ALU

ALU

RAM

GPU

Pandas: HOW DOES IT WORK?

Pandas always uses only one ALU unless the multiprocessing python library is used.

cuDF: HOW DOES IT WORK?

lacktriangle lacktriangle going to the GPU allows a higher amount of parallel processing

HOW TO INSTALL RAPIDS / cuDF?

Next: Google Colab