Adevinta

Towards Improving Image Quality in Second-Hand Marketplaces with LLMs

Victor Codina, Sandra Esparza (Adevinta's Data Scientists)

Salma Lahbiss, Imene Sederi and Nafi Cissé (Leboncoin UX Design & Research)

Authors

Sandra Esparza
Data Scientist
(Adevinta)

Imene Sederi
UX Designer
(Leboncoin)

Victor Codina
Data Scientist
(Adevinta)

Nafi Cissé
UX Designer
(Leboncoin)

Salma Lahbiss
User Researcher
(Leboncoin)

Changing Commerce Together

Adevinta is a leading online classifieds group, operating digital marketplaces across Europe and beyond.

Our Marketplaces

leboncoin

Marktplaats

InfoJobs

fotocasa

Mobile.de

cochesnet

Adevinta

adevinta.com

120

million

monthly users

2.5

billion

monthly visits

Problem space and Motivation

Image quality in marketplaces

poor lightning

clearly visible

distracting background

sharp image

poor framing

not fully visible

good lighting

good resolution

bad angle

What does good quality image mean for marketplace users*

Image quality is key for user experience

Main element in search results, personalised feeds and item detail page and key **engagement driver**.

Visual quality is a key factor influencing trust in the marketplace*, especially among Gen Z users, who claim low overall image quality would be a reason to abandon a marketplace.

* also backed by **Ma et al.** <u>Understanding Image Quality and</u> <u>Trust in Peer-to-Peer Marketplaces</u>. 2018

Our goal

Extract image quality scores that can be used to understand image quality of ads in our marketplace and to enhance the user experience.

Our goal

Extract image quality scores that can be used to **understand image quality** of ads in our marketplace and to **enhance the user experience**.

photo tips

ranking features

hero image suggestion

Approach

An LLM-based approach

Questions:

- How good is the alignment of MLLMs scores with humans (our users)?
- How do different models compare and what are the trade-offs in quality vs model size vs cost?

LLMs evaluated: size and costs

	Lab	Parameters (B)	Cents per million input	Cents per million output
GPT-4o mini	OpenAl	8	15	60
GPT-4o	OpenAl	200	250	1000
Claude Haiku 3	Anthropic	20	25	125
Claude Sonnet 3.5	Anthropic	70	300	1500
Nova Lite	Amazon	20	6	24
Nova Pro	Amazon	90	80	320
Qwen2.5-VL-7B	Alibaba	7	-	-
Qwen2.5-VL-72B	Alibaba	72	_	_

https://docs.aws.amazon.com/bedrock/latest/userguide/custom-models.html

https://lifearchitect.ai/models-table/

Multimodal zero-shot prompts evaluated

Context: You are an expert at recognising good images for selling items in second-hand marketplaces.

Prefix: Given this image of a {*item_type*}, provide an overall image quality score for how good is the image if we want to sell it on a second-hand marketplace.

Generic Prompt:

The score should be a number on a scale of 1 to 5 (1 and 5 included). Do not expect more angles or close up shots as we can only use one image.

Guided Prompt:

If the image has none or minor aspects to improve, please return an overall_score of 5. Follow this guide when assigning scores:

Score 1: The image is horrible, with many aspects to improve.

Score 2: The image is bad, with several aspects to improve.

Score 3: The image is not great.

Score 4: The image is quite good, with just 1 or 2 things to improve.

Score 5: The image is fantastic, with none or minor things to improve.

Suffix: Return the score and a justification for the score in JSON format with only the following keys: score, justification.

Human evaluation through online user survey

Used Leboncoin's internal panel (a pool of >= 8K users for internal user studies).

Users provided scores on a dataset of 600 images of diverse quality.

3 categories: bags, sofas and clothes (balanced: 200 each).

Human evaluation through online user survey

- 929 users responded to the survey (~14% response rate)
- Each user rated 6 images (1–5 score)
- Open question: why did you give this score?

Comparing Human vs LLM scores

- Number of responses per ad image: 9.5 ± 3.8 average
 - Human score → majority voting
- Human-LLM alignment metrics:

inter-rater agreement

Percent Agreement

Weighted Kappa

inter-rater reliability

Pearson correlation

LLM-Human alignment results

Distribution of scores for generic vs guided prompts

Figure 2: Score densities of different models using the generic prompt (left) and the guided prompt (right)

Impact of the zero-shot prompts

			Generic		Guided			
	Parameters	Pct	Weighted	Pearson	Pct	Weighted	Pearson	
	(Billion)	Agreement	Kappa	Corr.	Agreement	Kappa	Corr.	
GPT-4o mini	8	0.494*	0.51	0.582	0.529*	0.577	0.606	
GPT-4o	200	0.355	0.518*	0.614	0.469	0.615	0.632	
Qwen2.5-VL-7B	7	0.322	0.236	0.566	0.406	0.36	0.584	
Qwen2.5-VL-72B	72	0.436	0.419	0.504	0.483	0.428	0.467	
Claude Haiku 3	20	0.242	0.074	0.299	0.33	0.104	0.269	
Claude Sonnet 3.5	70	0.442	0.497	0.618*	0.513	0.621*	0.647*	
Nova Lite	20	0.043	0.135	0.519	0.386	0.341	0.542	
Nova Pro	90	0.232	0.351	0.554	0.466	0.524	0.571	

Impact of fine-tuning

- How much can we improve results by fine-tuning a MLLM?
 - 60%/40% train/test split 480 / 240 images

		Pre-train	ned models (guide	d prompt)	Fine-tuned models (guided prompt)		
		Pct			Pct		
	Parameters (B)	Agreement	Weighted Kappa	Pearson Corr.	Agreement	Weighted Kappa	Pearson Corr.
Claude Sonnet 3.5	70	0.546	0.643	0.67			
Nova Lite	20	0.384	0.358	0.543			
Nova Pro	90	0.507	0.546	0.606			

Impact of fine-tuning

- How much can we improve results by fine-tuning a MLLM?
 - 60%/40% train/test split 480 / 240 images

		Pre-train	Pre-trained models (guided prompt)			prompt) Fine-tuned models (guided prompt		
		Pct			Pct			
	Parameters (B)	Agreement	Weighted Kappa	Pearson Corr.	Agreement	Weighted Kappa	Pearson Corr.	
Claude Sonnet 3.5	70	0.546	0.643	0.67	_	_	_	
Nova Lite	20	0.384	0.358	0.543	0.566 (47.40%)	0.601 (67.88%)	0.618 (13.81%)	
Nova Pro	90	0.507	0.546	0.606	0.501 (-1.18%)	0.614 (12.45%)	0.638 (5.28%)	

Significant gains when fine-tuning the small model (Nova Lite), beating inter-human Percent Agreement of **54.26%**

^{*} This supports findings by Bucher & Martini. Fine-Tuned'Small'LLMs (Still) Significantly Outperform Zero-Shot Generative Al Models in Text Classification. 2024.

Quality aspects mentioned in justifications

Conclusions

- ★ We have found high alignment between the **scores** provided by users and some MLLMs.
- ★ Fine-tuning a small model (Nova Lite; 20B params) shows significant gains compared to pre-trained models or fine-tuned larger model (Nova Pro; 70B params)
 - Key for cost reduction + sustainability
- ★ This work opens many possibilities for improving image quality in marketplaces:
 - Assyst sellers in taking better pictures or selecting the best hero photo.
 - Give more visibility to ads with better images (search, feeds ...)

Gracias

Merci

Thank you!

Obrigado

Dank u wel

Danke

Grazie