MA 322: Scientific Computing

Department of Mathematics Indian Institute of Technology Guwahati

March 28, 2023

Chapter 5: Numerical Differentiations and Initial Value Problems for ODEs

Theorem

Assume that the solution Y(x) of IVP has a bounded second derivative on $[x_0, b]$. Then the solution $\{y_h(x_n): x_0 \le x \le b\}$ obtained by Euler's method satisfies

$$\max_{x_0 \le x \le b} |Y(x_n) - y_h(x_n)| \le e^{(b-x_0)K} |e_0 + \left[\frac{2^{(b-x_0)K} - 1}{K}\right] \tau(h),$$

where $\tau(h) = \frac{h}{2} ||Y''||_{\infty}$ and $e_0 = Y_0 - y_h(x_0)$. If in addition to the conditions to the above theorem,

$$|Y_0 - y_h(x_0)| \le c_1 h$$
 as $h \to 0$

for some $c_0 \ge 0$, then there is a constant $B \ge 0$ for which

$$\max_{x_0 < x < b} |Y(x_n) - y_h(x_n)| \le Bh.$$

Stability analysis

We consider the numerical method

$$z_{n+1}=z_n+h[f(x_n,z_n)+\delta(x_n)] \qquad 0\leq n\leq N(h)-1$$

with $z_0=y_0+\epsilon$. We compare two numerical solutions $\{z_n\}$ and $\{y_n\}$ as $h\to 0$. Let $e_n=z_n-y_n,\ n\geq 0$. Then $e_0=\epsilon$, and subtracting $y_{n+1}=y_n+hf(x_n,y_n)$ from the above equation, we get $e_{n+1}=e_n+f[f(x_n,z_n)-f(x_n,y_n)]+h\delta(x_n)$. Using the previous theorem we can show that

$$\max_{0 \le n \le N(h)} |z_n - y_n| \le e^{(b-x_0)K} |\epsilon| + \left\lceil \frac{e^{(b-x_0)K} - 1}{K} \right\rceil \|\delta\|_{\infty}.$$

Consequently, there are constants k_1 , k_2 , independent of h, with

