CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP 426, Fall 2017 Instructor: R. Jayakumar

MID-TERM EXAMINATION

Date: Oct. 24, 2017 Time: 19:00–20:15

Instructions

- 1. Closed book exam.
- 2. Concise answers will be appreciated.
- 3. Answer All the questions in the space provided.
- 4. Write your student ID on the bottom-right corner of Pages 1 to 6.

Please fill in the following Your Exam will not be marked if these details are missing

Student Name	
Student I.D. No.	
Student Signature	

For Examiner's Use Only

Question	Mark
1	/24
2	/24
3	/24
4	/28
Total	/100

PARTA

Answer ALL the Questions in this Part $(3\times3\times8=72\%)$

1.	Multicore	Architecture	and	Programming
----	-----------	--------------	-----	-------------

Multicore	architectures	are	MIMD	shared	memory	multiprocessor	architectures	that
execute m	ultithreaded p	rogr	ams.					

(a)	[8%]	What is the major	difference bet	tween n	nulticore	architectures	and	traditional
	MIMD	shared memory m	ultiprocessor :	archited	ctures?			

How does this difference affect the programming of multicore processors?

(b) [8%] What is the major difference between multicore programming and traditional multithreaded programming?

How does this difference affect multicore programming?

(c) [8%] What is the major difference between homogeneous multicore architectures and heterogeneous multicore architectures?

Student ID:

2.

	Which one (homogeneous multicore architecture or heterogeneous multicore architecture) is easier to program? Why?
	Which one (homogeneous multicore architecture or heterogeneous multicore architecture) has better computational efficiency? Why?
Μι	ulticore Programs
	multicore program typically has one control thread and many computation threads. [8%] Why should a multicore program have many computational threads? What is achieved by using such multiple computational threads?
	Why should the multiple computational threads avoid synchronization among them? What is achieved by avoiding such synchronization?
(b)	[8%] Why should a multicore program have only one control thread? What is achieved by using a single control thread?
	Why should a multicore program avoid multiple control threads? What is achieved by avoiding such multiple control threads?
	Student ID:

	(c) [8%] What is the main problem in efficiently executing a multicore program on different processors with different number of hardware threads? Why?
	How can an appropriate thread scheduler efficiently execute a multicore program on different processors with different number of hardware threads?
3.	 Data Parallelism and Task Parallelism Multicore programming typically exploits data parallelism and task parallelism. (a) [8%] Explain the difference between data parallelism and task parallelism pointing out which one is easier to exploit in a multicore program.
	Explain the difference between the amounts of computation done within a computation thread implementing data parallelism and another computation thread implementing task parallelism. Why is this difference important?
	(b) [8%] Why are CPUs good for task parallelism? Is there any problem in using the CPU for data parallelism? If so, explain the problem; if not, explain why not.
	Student ID:

Why are GPUs good for data parallelism? Is there any problem in using the GPU for task parallelism? If so, explain the problem; if not, explain why not.

(c) [8%] Explain why TBB supports both data parallelism and task parallelism whereas CUDA supports only data parallelism

What is the problem in implementing task parallelism in CUDA? Why?

PARTBAnswer ALL the Questions in this Part (4×7 = 28%)

4. Multicore Program Design

The following pseudo code abstracts the multi-flock bird simulation computation from the assignment.

```
get the number of flocks, num_flocks;
initialize the screen with the required number of flocks;
at each time point (every 1/30th of a second) do {
    display the current screen image using OpenGL;

    // Computation for each flock
    for (int flock = 0; flock < num_flocks; ++flock) do {
        // Computation for each bird
        for each bird in the flock do {
            update the parameters of the bird;
        }
    }
}</pre>
```

Student ID: _____

(a)	a) [7%] Consider a multicore implementation of the given computation computation thread is used for each flock.	in which one
	Using appropriate pseudo code, illustrate the computation performed be computation threads in this multicore implementation clearly showing	y each of the any required
	synchronization.	
	Does this implementation exploit data parallelism or task parallelism?	Why?
(b	(b) [7%] Consider another multicore implementation of the given co which one computation thread is used for each bird.	mputation in
	Using appropriate pseudo code, illustrate the computation performed thread in this multicore implementation clearly showing a synchronization.	by the control ny required
	Does this implementation exploit data parallelism or task parallelism?	Why?
	Student ID:	

(c) [7%] In order to implement the given computation using TBB, would you use the (one thread per flock) implementation in (a) or the (one thread per bird) implementation in (b)? Why?
In order to implement the given computation using CUDA, would you use the (one thread per flock) implementation in (a) or the (one thread per bird) implementation in (b)? Why?
 (d) [7%] Suppose the required computation (displaying the screen image and updating the parameters for all the birds) takes much more than the available time (1/30th of a second). Suggest a way to further speed up the multicore implementation in this case,
illustrating the control thread in this multicore implementation with appropriate pseudo code clearly showing any required synchronization

Does this implementation exploit data parallelism or task parallelism? Why?