BCA611 Video Oyunları için 3B Grafik

Ders 4
Coordinate Systems and
Transformations

Zümra Kavafoğlu https://zumrakavafoglu.github.io/

Linear Independence

• A set of vectors $v_1, v_2, ..., v_n$ is *linearly independent* if

$$\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n = 0 \text{ iff } \alpha_1 = \alpha_2 = ... = 0$$
 (ex1)

- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one can be written in terms of the others

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the *dimension* of the space (ex2)
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- Given a basis $v_1, v_2,, v_n$, any vector v can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where the $\{\alpha_i\}$ are unique

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- Consider a basis v_1, v_2, \ldots, v_n
- A vector is written $v=\alpha_1v_1+\alpha_2v_2+....+\alpha_nv_n$
- The list of scalars $\{\alpha_1, \alpha_2, \alpha_n\}$ is the representation of v with respect to the given basis (ex3)
- We can write the representation as a row or column array of scalars $\lceil \alpha \rceil$

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_2 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Example

- $v = 2v_1 + 3v_2 4v_3$
- $a = [2 \ 3 \ -4]^T$
- Note that this representation is with respect to a particular basis
- For example, in WebGL we will start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

Coordinate Systems

 Which is correct to represent the coordinate system?

Coordinate Systems

 Which is correct to represent the coordinate system?

 Both are because vectors have no fixed location, they only have a direction and magnitude

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*

The University of New Mexico

Representation in a Frame

- Frame determined by (P_0, v_1, v_2, v_3)
- Within this frame, every vector can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n$$

Confusing Points and Vectors

Consider the point and the vector (ex4)

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$
$$v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$$

They appear to have the similar representations

$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3]$$
 $\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3]$ which confuses the point with the vector \mathbf{v} \mathbf{p} A vector has no position

Vector can be placed anywhere

point: fixed

A Single Representation

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$$

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$$

Thus we obtain the four-dimensional homogeneous coordinate representation

$$\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 0]^T$$
$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^T$$

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain $w\!\!=\!\!0$ for vectors and $w\!\!=\!\!1$ for points
 - For perspective we need a perspective division

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
 - Rigid body transformations: rotation, translation
 - Scaling, shear
- Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Pipeline Implementation

Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame

P,Q, R: points in an affine space

u, v, w: vectors in an affine space

 α , β , γ : scalars

p, q, r: representations of points

-array of 4 scalars in homogeneous coordinates

u, v, w: representations of points

-array of 4 scalars in homogeneous coordinates

Translation

 Move (translate, displace) a point to a new location

- Displacement determined by a vector d
 - Three degrees of freedom
 - P'=P+d

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

object

translation: every point displaced by same vector

Translation Using Representations

Using the homogeneous coordinate representation in some frame

$$\mathbf{p} = [x y z 1]^T$$

 $\mathbf{p}' = [x' y' z' 1]^T$
 $\mathbf{d} = [dx dy dz 0]^T$

Hence
$$\mathbf{p'} = \mathbf{p} + \mathbf{d}$$
 or

$$x'=x+d_x$$

 $y'=y+d_y$
 $z'=z+d_z$

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix

We can also express translation using a 4 x 4 matrix T in homogeneous coordinates p'=Tp where

$$\mathbf{T} = \mathbf{T}(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together (ex5)

Rotation (2D)

Rotation (2D)

Consider rotation about the origin by θ degrees - radius stays the same, angle increases by θ

Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

$$x'=x \cos \theta -y \sin \theta$$

 $y'=x \sin \theta +y \cos \theta$
 $z'=z$

- or in homogeneous coordinates

$$\mathbf{p'} = \mathbf{R}_{\mathbf{Z}}(\theta)\mathbf{p}$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

- Same argument as for rotation about z axis
 - For rotation about x axis, x is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

Expand or contract along each axis (fixed point of origin)

$$\mathbf{x}' = \mathbf{s}_{x} \mathbf{x}$$

$$\mathbf{y}' = \mathbf{s}_{y} \mathbf{y}$$

$$\mathbf{z}' = \mathbf{s}_{z} \mathbf{z}$$

$$\mathbf{p}' = \mathbf{S} \mathbf{p}$$

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}, \mathbf{s}_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflection

corresponds to negative scale factors

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$ $\mathbf{R}^{-1}(\theta) = \mathbf{R}^{T}(\theta)$
 - Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix
 M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$p' = ABCp = A(B(Cp))$$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \; \mathbf{R}_{y}(\theta_{y}) \; \mathbf{R}_{x}(\theta_{x})$$

 $\theta_x\,\theta_y\,\theta_z$ are called the Euler angles

Note that rotations do not commute We can use rotations in another order but with different angles

General Rotation About the Origin

$$\begin{split} R_z(30^\circ)R_y(-90^\circ)R_x(90^\circ) &= \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

Rotation About a Fixed Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{\mathrm{f}}) \mathbf{R}(\mathbf{\theta}) \mathbf{T}(-\mathbf{p}_{\mathrm{f}})$$

Alıştırma

- 1) Kütle merkezi (0,0,0)da olmayan bir küpü sliderlardan aldığı değerlere göre kendi kütle merkezi etrafında döndüren webgl programını yazınız.
- 2) Dersteki örnek koda biri küpü scale etmesi, diğeri de ötelemesi için iki slider daha ekleyiniz.