Matched pairs

Matched pairs

Some data:

subject	druga	drugb
1	2.0	3.5
2	3.6	5.7
	2.6	2.9
4 5	2.6	2.4
	7.3	9.9
6 7	3.4	3.3
7	14.9	16.7
8	6.6	6.0
9	2.3	3.8
10	2.0	4.0
11	6.8	9.1
12	8.5	20.9

Matched pairs 1/2

- Data are comparison of 2 drugs for effectiveness at reducing pain.
 - 12 subjects (cases) were arthritis sufferers
 - Response is #hours of pain relief from each drug.
- In reading example, each child tried only one reading method.
- But here, each subject tried out both drugs, giving us two measurements.

• Possible because, if you wait long enough, one drug has no influence over effect of other.

Matched pairs 2/2

- Advantage: focused comparison of drugs. Compare one drug with another on same person, removes a lot of variability due to differences between people.
- Matched pairs, requires different analysis.
- Design: randomly choose 6 of 12 subjects to get drug A first, other 6 get drug B first.

Packages

```
library(tidyverse)
library(smmr) # for a sign test later
```

Reading the data

Values aligned in columns:

```
my_url <-
   "http://ritsokiguess.site/datafiles/analgesic.txt"
pain <- read_table(my_url)
pain</pre>
```

```
# A tibble: 12 x 3
   subject druga drugb
     <dbl> <dbl> <dbl>
                    3.5
1
         1
             2
2
         2
             3.6
                    5.7
3
         3
             2.6
                    2.9
4
         4
             2.6
                    2.4
5
         5
             7.3
                    9.9
6
         6
             3.4
                    3.3
7
         7 14.9 16.7
8
         8
             6.6
                    6
9
         9
             2.3
                    3.8
             2
                    4
10
        10
11
        11
             6.8
                    9.1
             8.5 20.9
12
        12
```

Paired *t*-test

```
with(pain, t.test(druga, drugb, paired = TRUE))

Paired t-test

data: druga and drugb
t = -2.1677, df = 11, p-value = 0.05299
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
   -4.29941513    0.03274847
sample estimates:
mean difference
   -2.133333
```

- P-value is 0.053.
- Not quite evidence of difference between drugs.

t-testing the differences

• Likewise, you can calculate the differences yourself and then do a 1-sample t-test on them.

```
pain %>% mutate(diff = druga - drugb) -> pain
pain
```

```
# A tibble: 12 x 4
   subject druga drugb
                          diff
     <dbl> <dbl> <dbl>
                          <dbl>
1
         1
             2
                   3.5 - 1.5
2
         2
             3.6
                   5.7 - 2.1
3
         3
             2.6
                   2.9 -0.300
4
         4
             2.6
                   2.4
                         0.200
5
             7.3
                   9.9 - 2.6
         5
6
         6
             3.4
                   3.3
                         0.100
7
         7
           14.9 16.7 -1.80
8
         8
             6.6
                   6
                         0.600
9
         9
             2.3
                   3.8 -1.5
                        -2
10
        10
             2
                   4
                   9.1 -2.3
             6.8
11
        11
12
        12
             8.5 20.9 -12.4
```

t-test on the differences

• then throw them into t.test, testing that the mean is zero, with same result as before:

```
with(pain, t.test(diff, mu = 0))

One Sample t-test

data: diff
t = -2.1677, df = 11, p-value = 0.05299
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
   -4.29941513   0.03274847
sample estimates:
mean of x
   -2.133333
```

• Same P-value (0.053) and conclusion.

Assessing normality

- 1-sample and 2-sample t-tests assume (each) group normally distributed.
- Matched pairs analyses assume (theoretically) that differences normally distributed.
- How to assess normality? A normal quantile plot.

The normal quantile plot (of differences)

```
ggplot(pain,aes(sample=diff))+stat_qq()+stat_qq_line()
```


• Points should follow the straight line. Bottom left one way off, so normality questionable here: outlier.

What to do instead?

- Matched pairs t-test based on one sample of differences
- the differences not normal (enough)
- so do sign test on differences, null median 0:

```
sign_test(pain, diff, 0)
```

\$above_below
below above
9 3

\$p_values

```
alternative p_value
1 lower 0.07299805
2 upper 0.98071289
3 two-sided 0.14599609
```

Comments

- no evidence of any difference between drugs (P-value 0.1460)
- \bullet in t-test, the low outlier difference pulled mean difference downward and made it look more negative than it should have been
- therefore, there really isn't any difference between the drugs.