(although this is a bit inaccurate). Realize that since u = 0 outside of Ω , also u_j is zero there and in particular it is zero on that "lower strip". Clearly then $u_j \in W^{k,p}(\Omega_j)$. Now pick $\delta \in (0, \frac{\beta}{2})$, where β is from the definition of $C^{0,0}$ and set

$$S_j^{\delta} = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta < x_d < a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right),$$

$$\Omega_j^{\delta} = \mathbb{R}^d / \overline{S_j^{\delta}},$$

i.e.,

$$"\Omega_j^{\delta} = \Omega \cup \mathbb{A}_j(\{(x', x_d)|a_j(x') - \delta < x_d < a_j(x')\}) \cup \mathbb{A}_j\left(\left\{(x', x_d)|x_d < a_j(x') - \frac{\beta}{2} - \delta\right\}\right).$$

The trick is to shift the (support of) function u_i "into" Ω_i^{δ}

$$\tau_{\delta}u_{i}(\mathbb{A}_{i}(x',a_{i}(x'))) = u_{i}(\mathbb{A}_{i}(x',a_{i}(x')+\delta)), x' \in \mathbb{U}(0,\alpha) \subset \mathbb{R}^{d-1}$$

Realize that in fact

$$\operatorname{supp}(\tau_{\delta}u_j) = \operatorname{supp}(u_j) - \delta,$$

from which it follows $\tau_{\delta}u_{j} \in W^{k,p}(\Omega_{j}^{\delta})$; we have only shifted the function u_{j} , but since we have also shifted S_{j} , qualitatively there is no difference. Since $\Omega \subset \Omega_{j}^{\delta} \subset \Omega_{j}^{\delta} \cap \Omega_{j}$, $\Omega \subset \Omega_{j} \subset \Omega_{j}^{\delta} \cap \Omega_{j}$, and the fact τ_{δ} is an isometry between Sobolev spaces, we also have $u_{j}, \tau_{\delta}u_{j} \in W^{k,p}(\Omega_{j} \cap \Omega_{j}^{\delta})$. Moreover, from the properties of the shift operator it follows $\exists \delta > 0$ s.t.

$$\|u_j - \tau_\delta u_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \|u_j - \tau_\delta u_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_j \cap \Omega_j^\delta)} < \frac{\varepsilon}{2(m+1)}.$$

We are on a good track. Since we know $\tau_{\delta}u_j$ is already close to u_j , we are done once we approximate $\tau_{\delta}u_j$ by a function from $C^{\infty}\left(\overline{\Omega}\right)$. Notice that if we show $\overline{\Omega} \subset \Omega_j^{\delta}$, then clearly $C^{\infty}\left(\Omega_j^{\delta}\right) \subset C^{\infty}\left(\overline{\Omega}\right)$.

Show $\Omega \subset \Omega_j^{\delta}$: We already know $\Omega \subset \Omega_j^{\delta}$, so it suffices to show $\partial \Omega \subset \Omega_j^{\delta}$. Our parametrization of the boundary yields

$$\partial\Omega = \bigcup_{k=1}^{m} \mathbb{A}_k(\{(x',x_d)|x_d = a_k(x'), x' \in \mathrm{U}(0,\alpha)\}),$$

and the set Ω_j^{δ} is given as $\Omega_j^{\delta} = \mathbb{R}^d / \overline{S_j}$, where

$$S_j = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta < x_d < a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right).$$

Realize it suffices to show $\partial \Omega \notin \overline{S_j}$, as then it wont be excluded from \mathbb{R}^d and thus will end up in Ω_j^{δ} . Thanks to continuity of a_j , we may write

$$\overline{S_j} = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta \le x_d \le a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right).$$

i.e., the "<" have changed to " \leq ". Since we are doing everything locally, it is enough to show

$$\mathbb{A}_{j}(\{(x',x_{d})|x_{d}=a_{j}(x'),x'\in \mathrm{U}(0,\alpha)\}')\neq\mathbb{A}_{j}(\{(x',x_{d})|a_{j}(x')-\frac{\beta}{2}-\delta\leq x_{d}\leq a_{j}(x')-\delta,x'\in \mathrm{U}(0,\alpha)\}),$$

which is equivalent to

$$\left(\left(a_j \le a_j - \delta \right) \land \left(a_j < a_j - \frac{\beta}{2} - \delta \right) \right) \lor \left(\left(a_j > a_j - \delta \right) \land \left(a_j \ge a_j - \frac{\beta}{2} - \delta \right) \right).$$

Our choice has been $\delta \in (0, \frac{\beta}{2})$, and $\beta > 0$ from the definition of $\Omega \in \mathbb{C}^{0,0}$, so the second statement is clearly true $\forall j \in 1, \ldots, m$. Consequently $\partial \Omega \notin \overline{S}_j$ which leads to $\partial \Omega \subset \Omega_j^{\delta}$, and since also $\Omega \subset \Omega_j^{\delta}$, we have $\overline{\Omega} \subset \Omega_j^{\delta}$.

Approximation of $\tau_{\delta}u_{j}$. Since Ω_{j}^{δ} is open there $\exists v_{j} \in \mathbb{C}^{\infty}\left(\Omega_{j}^{\delta}\right)$ such that

$$\|\tau_{\delta}u_j - v_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \leq \|\tau_{\delta}w_j - v_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_j^{\delta})} < \frac{\varepsilon}{2(m+1)}.$$

What is more, since $\overline{\Omega} \subset \Omega_i^{\delta}$, we see $v_j \in \mathbb{C}^{\infty}(\overline{\Omega})$ in fact.

 $Approximation\ of\ u.$

Finally, let us set

$$v = \sum_{j=0}^{m} v_j.$$

Then $v \in C^{\infty}(\overline{\Omega})$ and it holds

$$\|u - v\|_{\mathbf{W}^{k,p}(\Omega)} = \left\| \sum_{j=0}^{m} u_{j} - \sum_{j=0}^{m} v_{j} \right\|_{\mathbf{W}^{k,p}(\Omega)} = \left\| \sum_{j=0}^{m} u_{j} - v_{j} \right\|_{\mathbf{W}^{k,p}(\Omega)} \le \sum_{j=0}^{m} \|u_{j} - v_{j}\|_{\mathbf{W}^{k,p}(\Omega)} \le \frac{\varepsilon}{m+1} + \sum_{j=1}^{m} \|v_{j} - u_{j}\|_{\mathbf{W}^{k,p}(\Omega)} \le \frac{\varepsilon}{m+1} + \sum_{j=1}^{m} \|v_{j} - \tau_{\delta} u_{j}\|_{\mathbf{W}^{k,p}(\Omega)} + \sum_{j=1}^{m} \|\tau_{\delta} u_{j} - u_{j}\|_{\mathbf{W}^{k,p}(\Omega)} \le \frac{\varepsilon}{m+1} + 2\sum_{j=1}^{m} \frac{\varepsilon}{2(m+1)} = \varepsilon$$

Remark (What is $C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$). Recall

$$C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d) = \left\{ u|_{\overline{\Omega}}, u \in C^{\infty}(\mathbb{R}^d) \right\}.$$

In other literature, it is stated that also $C^{\infty}(\overline{\Omega})$ is dense in $W^{k,p}(\Omega)$ if $\Omega \in C^{0,0}$. This probably means

$$C^{\infty}(\overline{\Omega}) \subset C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d).$$

2.3 Extension of Sobolev functions

Problem of extension: For $u \in W^{k,p}(\Omega)$, does there exist $\overline{u} \in W^{k,p}(\mathbb{R}^d)$, $s.t.\overline{u}|_{\Omega} = u$, $\|\overline{u}\|_{W^{k,p}(\mathbb{R}^d)} \le C(\Omega)\|u\|_{W^{k,p}(\Omega)}$?

The answer is **yes**, if Ω is nice enough.

Lemma 4. Let $\alpha, \beta > 0, K \subset U(0, \alpha) \times [\alpha, \beta]$ be compact. Then

$$\exists C > 0, \exists E : C^{1}(\overline{U(0,\alpha)} \times [0,\beta]) \to C^{1}(\overline{U(0,\alpha)} \times [-\beta,\beta]), \exists \tilde{K} \subset U(0,\alpha) \times [-\beta,b) \ compact$$

such that:

12

Figure 1: A cumbersome sketch of $\Omega_j, S_j, \Omega_j^\delta, S_j^\delta$

Set

$$v = \sum_{j \in \mathbb{N}} v_j,$$

then $v \in C^{\infty}(\Omega)$, (not clearly in W^{k,p}(Ω) however) as $\forall x \in \Omega$ the sum contains at most finitely many terms (\mathcal{F} is locally finite.)

Take the $N \in \mathbb{N}$ and estimate the norm $\|u - v\|_{W^{k,p}(\Omega)}$. Observe (the sum again contains only finitely many terms)

$$u - v = \sum_{j=1}^{\infty} (u\varphi_j - v_j),$$

so taking $x \in \Omega_N$ i have

$$(u-v)(x) = \sum_{j=1}^{N+1} (u\varphi_j - v_j),$$

because for m > N+1, i.e., m-1 > N it holds $U_m = \Omega_{m+1}/\overline{\Omega_{m-1}}$, $\Omega_N \subset \Omega_{m-1}$ meaning $\forall j \geq m > N+1$: $U_m \cap \Omega_N = \varnothing \Rightarrow \operatorname{supp} u\varphi_j \cap \Omega_N = \operatorname{supp} v_j \cap \Omega_N = \varnothing$, since $\operatorname{supp} u\varphi_j \subset U_j$, $\operatorname{supp} v_j \subset \operatorname{supp} u\varphi_j \subset U_j$, $\forall j \geq m$. The norm of sum is

$$||u-v||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_N)} \leq \sum_{j=1}^{N+1} ||u\varphi_j-v_j||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} < \delta \frac{2^N}{2^{N+1}-1} \sum_{j=1}^{N+1} \frac{1}{2^j} = \delta.$$

It only remains to let $N \to \infty$ and realize

$$||u-v||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_N)} \to ||u-v||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)}$$

by Lévi's theorem:

$$\sup_{N\in\mathbb{N}}\int_{\Omega_N}|D^\alpha f|\,\mathrm{d}x=\sup_{N\in\mathbb{N}}\int_{\mathbb{R}^d}|D^\alpha f|\chi_{\Omega_N}(x)\,\mathrm{d}x=\int_{\mathbb{R}^d}\sup_{N\in\mathbb{N}}|D^\alpha f|\chi_{\Omega_N}\,\mathrm{d}x\int_{\mathbb{R}^d}|D^\alpha f|\chi_{\Omega}(x)\,\mathrm{d}x=\int_{\Omega}|D^\alpha f|\,\mathrm{d}x\,,$$

since $\Omega_{N-1} \subset \Omega_N \forall N \in \mathbb{N}$, and $|D^{\alpha}f|$ is nonnegative, so the sequence under the integral is nondecreasing. Alltogether,

$$\|u-v\|_{\operatorname{W}^{k,p}(\Omega)} \leq \delta, \, \forall \, \delta > 0$$

from which it follows $v \in W^{k,p}(\Omega)$ (this was not totally evident) and thus $v \in W^{k,p}(\Omega) \cap C^{\infty}(\Omega)$ so indeed we have showed the desired density.

Remark. It is nice that we only require Ω to be open (no boundary regularity required), but on the other hand, we don't have any information about the function's behaviour near it.

Remark (C^{k,\lambda} domain). Recall we call $\Omega \subset \mathbb{R}^d$ to be of class C^{k,\lambda} if: Ω is open and bounded, $\exists m \in \mathbb{N}, k \in \mathbb{N}_0, \lambda \in [0,1], \alpha, \beta \in \mathbb{R}^+, \exists$ open sets $U_j \subset \mathbb{R}^d, \exists a_j : B(0,\alpha) \subset \mathbb{R}^{d-1} : \to \mathbb{R} \text{ s.t. } a_j \in C^{k,\lambda}\left(B(0,\alpha)\right), \exists \mathbb{A}_j \mathbb{R}^d \to \mathbb{R}^d$ affine orthogonal matrices such that

- 1. $\partial \Omega \subset \bigcup_{i=1}^m U_i$,
- 2. $\forall j \leq m : \emptyset \neq \partial \Omega \cap U_j = \mathbb{A}_j (\{(x', a_j(x') \in \mathbb{R}^d | x' \in U(0, \alpha) \subset \mathbb{R}^{d-1}\}),$
- 3. $\forall j \leq m : \mathbb{A}_j(\{(x', a_j(x') + b) | x' \in U(0, \alpha), b \in (0, \beta)\}) \subset \Omega$,
- 4. $\forall j \leq m : \mathbb{A}_j(\{(x', a_j(x') b) | x' \in \mathrm{U}(0, \alpha), b \in (0, \beta)\}) \subset \mathbb{R}^d/\overline{\Omega}$.

If $\lambda = 0$ we sometimes drop it and write $\Omega \in \mathbb{C}^{k,0} \Leftrightarrow \Omega \in \mathbb{C}^k$, if $k = 0, \lambda = 1$ we call $\Omega \in \mathbb{C}^{0,1}$ to be a Lipschitz domain. Remember that $\lambda(\Omega) < \infty$ is a part of the definition.

Theorem 5 (Global approximation by smooth functions up to the boundary). Let $\Omega \in C^{0,0}$, $k \in \mathbb{N}, p \in [1, \infty)$. Then $C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$ is dense in $W^{k,p}(\Omega)$.

Proof. Let $u \in W^{k,p}(\Omega)$, and $\varepsilon > 0$, be given. We wish to find $v \in C^{\infty}(\overline{\Omega})$ s.t. $||u - v||_{W^{k,p}(\Omega)} < \varepsilon$. The sketch is simple:

- 1. covering of $\overline{\Omega}$,
- 2. partition of unity,
- 3. approximation of u on the covering sets,
- 4. glue it together.

Set $U_0 = \Omega$, and let $\{U_j\}_{j=1}^m$ be from the definition of $\mathbb{C}^{0,0}$ boundary. Then⁴

$$\overline{\Omega} \subset \bigcup_{j=0}^m U_j$$
,

Take $\{\varphi_j\}$ to be the partition of unity on $\overline{\Omega}$, subordinate to $\{U_j\}_{j=0}^m$. Since

$$u = \sum_{j=0}^{m} u \varphi_j$$
, on Ω

observe that $u_j := u\varphi_j \in W^{k,p}(\Omega)$, supp $u_j \subset \text{supp } \varphi_j \subset U_j$. Also, we define $u(x) = 0, \forall x \in \mathbb{R}^d/\Omega$. The proofs differs in the cases j = 0 and $j \in \{1, \ldots, m\}$.

Case j = 0. We have supp $u\varphi_0 \subset U_0 = \Omega$. That means that after the extension of $u\varphi_0$ by zero outside of Ω , it holds $u\varphi_0 \in W^{k,p}(\mathbb{R}^d)$. Since $W^{k,p}(\mathbb{R}^d) = W_0^{k,p}(\mathbb{R}^d) = \overline{\mathcal{D}(\mathbb{R}^d)}^{\|\cdot\|_{W^{k,p}(\mathbb{R}^d)}}$, we can find $v_0 \in \mathcal{D}(\mathbb{R}^d)$ s.t.

$$||v_0 - u\varphi_0||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} < \frac{\varepsilon}{m+1}.$$

Case $j \in \{1, ..., m\}$. We have a problem now: $\{U_j\}_{j=1}^m$ covers $\partial \Omega$, which is a closed set and we cannot simply use local approximation theorem. One could imagine if we were to mollify in the neighbourhood of $\partial \Omega$, the kernel would pick up values from outside of Ω , where u = 0 and the mollification would not be a good approximation. Instead, we approximate u_j on a larger open domain containing $\overline{\Omega}$ and then show this is also a good approximation of u_j on $\Omega \subset \overline{\Omega}$.

Set $w_i = u\varphi_i$, and denote

$$S_j = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} < x_d < a_j(x'), x' \in \mathrm{U}(0, \alpha) \right\} \right),$$

$$\Omega_j = \mathbb{R}^d / \overline{S_j},$$

i.e.,

"
$$\Omega_j = \Omega \cup \mathbb{A}_j \left(\left\{ (x', x_d) | x_d \le a_j(x') - \frac{\beta}{2} \right\} \right)$$
,"

⁴Our choice $U_0 = \Omega$ is important, as without it the definition of $\mathbb{C}^{0,0}$ boundary only means $\partial \Omega \subset \bigcup_{i=1}^m U_i$.