Introduction à l'homogénéisation - S. Cardonna encadré par M. Bellieud

Problème 1. Homogénéisation d'une structure périodique *Motivation* : Déterminer les propriétés effectives des matériaux composites.

$$(\mathscr{P}_{\varepsilon}):-\operatorname{div}\left(a\left(\frac{x}{\varepsilon}\right)\nabla u_{\varepsilon}\right)=f \text{ dans }\Omega,\ u_{\varepsilon}\in H^{1}_{0}(\Omega),\ a\in C^{1}_{\sharp}(Y,\mathbb{R}^{*}_{+}) \text{ et }Y=(0,1)^{3}.$$

Théorème

La suite $(u_\varepsilon)_{\varepsilon>0}$ solution de $(\mathscr{P}_\varepsilon)$ converge faiblement dans $H^1_0(\Omega)$ vers la fonction u solution de

$$\begin{split} & (\mathscr{P}^{\mathsf{hom}}) : -\mathsf{div}(\mathbf{A}^{\mathsf{hom}} \nabla u) = f \text{ dans } \Omega, \ u_{\varepsilon} \in H^1_0(\Omega), \\ & (\mathbf{A}^{\mathsf{hom}})_{i,j} = \left(\int_Y \mathsf{a}(y) \, \mathrm{d}y \right) \delta_{i,j} + \left(\int_Y \mathsf{a}(y) \nabla w_i \, \, \mathrm{d}y \right)_j, \end{aligned}$$

où
$$w_j$$
 solution du problème : $-\operatorname{div}(a(y)\nabla w_j) = \frac{\partial a}{\partial v_i}(y)$ dans $Y, w_i \in H^1_\sharp(Y)$.

Outils

Cv. double-échelle (Ngue Tseng 89, Allaire 92) : $f_{\varepsilon} \in L^2(\Omega) \longrightarrow f_0 \in L^2(\Omega \times Y)$ si $\int_{\Omega} f_{\varepsilon} u_{\varepsilon} dx \rightarrow \iint_{\Omega \times Y} f_0 u_0 dx dy$.

Propriétés : 1. Si f_{ε} est bornée dans L^2 , alors $f_{\varepsilon} \longrightarrow f_0$ et $f_{\varepsilon} \longrightarrow f(x) = \int_Y f_0 \, dy \, L^2$ faiblement.

2. Si $f_{\varepsilon} \rightharpoonup f_0$ H^1 faiblement alors $\nabla f_{\varepsilon} \rightharpoonup \nabla f + \nabla_y f_1(x,y)$.

Introduction à l'homogénéisation - S. Cardonna encadré par M. Bellieud

Preuve.

- 1. Estimations à priori. On multiplie $(\mathscr{P}_{\varepsilon})$ par u_{ε} , puis on intègre par parties sur Ω . On applique ensuite l'in. de *Poincaré* et de *Cauchy-Schwarz*. On montre ensuite que u_{ε} est bornée dans $H^1(\Omega)$ et on en déduit que $u_{\varepsilon} \to u$ L^2 fortement (*Rellich-Kondrakov*), et également $\nabla u_{\varepsilon} \to \nabla u$ L^2 faiblement, et donc $\nabla u_{\varepsilon} \to \nabla u + \nabla_y u_1$. Ainsi $u_{\varepsilon} \simeq u(x) + \varepsilon u_1 \left(x, \frac{x}{\varepsilon}\right)$.
- 2. Fonctions tests oscillantes mimiquant le comportement de u_{ε} . On choisit une fonction $\phi_{\varepsilon} = \varphi(x) + \varepsilon \psi(x, x/\varepsilon)$, pour $\varphi \in \mathscr{D}(\Omega)$, $\psi \in \mathscr{D}(\Omega; C_{\sharp}^{\infty}(Y))$. On multiplie ensuite $(\mathscr{P}_{\varepsilon})$ par celle-ci, on intègre par parties sur Ω , et à la limite $\varepsilon \to 0$ on obtient

$$\iint_{\Omega \times Y} (\nabla_{x} u + \nabla_{y} u_{1}) a(\nabla \varphi + \nabla_{y} \psi) dx dy = \int_{\Omega} f \varphi dx.$$

3. On déduit : $u_1 = \sum_{i=1}^3 \frac{\partial u}{\partial x_i} w_i$ et u est solution de ($\mathscr{P}^{\mathsf{hom}}$).

Problème 2. "Brouillard de glace" (Domaine perforé avec condition de Dirichlet) *Motivation*: Déterminer la température de l'air en présence d'une suspension de glace.

$$\begin{split} (\mathscr{P}_{\varepsilon}): -\mathbf{div} \left(a \nabla u_{\varepsilon}\right) &= f \text{ dans } \Omega, \ u_{\varepsilon} \in H^{1}_{0}(\Omega), \ u_{\varepsilon} = 0 \text{ dans } B_{r_{\varepsilon}}, \\ B_{r_{\varepsilon}} &= \cup_{i \in \mathbb{Z}^{3}} B(\varepsilon i, r_{\varepsilon}), \quad Y^{i}_{\varepsilon} = \varepsilon (i + Y), \ \text{Hypothèse}: \frac{r_{\varepsilon}}{\varepsilon^{3}} \to \gamma \in (0, \infty) \end{split}$$

Introduction à l'homogénéisation - S. Cardonna encadré par M. Bellieud

Théorème

La suite $(u_{\varepsilon})_{\varepsilon>0}$ solution de $(\mathscr{P}_{\varepsilon})$ converge faiblement dans $H^1_0(\Omega)$ vers l'unique solution u de $(\mathscr{P}^{hom}): -\operatorname{div}(a\nabla u) + 4\pi\gamma u = f$ dans Ω , $u_{\varepsilon} \in H^1_0(\Omega)$. Le terme $4\pi\gamma u$ a d'ailleurs été baptisé "terme étrange" (Cionarescu Murat 82).

Preuve.

- 1. Estimations à priori. On multiplie $(\mathscr{P}_{\varepsilon})$ par u_{ε} , on déduit que u_{ε} est bornée dans $H^1(\Omega)$ et ainsi que $u_{\varepsilon} \to u$ dans L^2 fortement et $\nabla u_{\varepsilon} \rightharpoonup \nabla u$ dans L^2 faiblement. Ici, $u_{\varepsilon} \sim u$ et u_{ε} retombe abruptement à 0 dans un petit voisinage des boules.
- 2. Fonctions tests oscillantes. On prend $\phi_{\varepsilon}=\varphi(1-\theta_{\varepsilon})$, où θ_{ε} solution de $(\mathscr{P}_{\theta}): -\Delta\theta_{\varepsilon}=0$, $\theta_{\varepsilon}=1$ dans $B_{r_{\varepsilon}}$, $\theta_{\varepsilon}=0$ dans $\Omega\setminus B_{R_{\varepsilon}}$, pour $r_{\varepsilon}\ll R_{\varepsilon}\ll \varepsilon$. On multiplie $(\mathscr{P}_{\varepsilon})$ par ϕ_{ε} , on intègre par parties et à la limite quand $\varepsilon\to 0$ on obtient

$$\int_{\Omega} a \nabla u \nabla \varphi \, dx + 4\pi \gamma \int_{\Omega} u \varphi \, dx = \int_{\Omega} f \varphi \, dx \quad \forall \varphi \in \mathscr{D}(\Omega),$$

qui est la formulation variationnelle du problème (\mathcal{P}^{hom}).

Conclusion et perspectives.

Problème 1. Études récentes sur des estimations du type $\|u_{\varepsilon}-u\|_{L^{2}}\leq c\varepsilon$ par l'école russe.

Problème 2. L'analyse asymptotique de $\rho_{\varepsilon}\partial_{t}u_{\varepsilon}-\Delta u_{\varepsilon}=f$, où $\rho_{\varepsilon}=1+\frac{1}{\operatorname{mes}(B_{r_{\varepsilon}})}\mathbf{1}_{B_{r_{\varepsilon}}}$ est un problème ouvert.