

STT 1000 - STATISTIQVES

ARTHUR CHARPENTIER

Random Numbers?

			TA	BLE OF	RANDOM	DIGITS				1	
00000	10097	32533	76520	13586	34673	54876	90050	09117	20202	74945	
00001		04805		74296	24805			10402		91665	
00002		68953		09303		02560		34764		33606	
00003		02529		70715		31165		74397		27659	
00004		99970		36147		36653		16877		76833	
00005	66065	74717	34072	76850	36697	36170	65813	39885	11100	29170	
00006	31060			82406		42614		07439		09732	
00007		77602		65692		74818		85247		88579	
00008		32135		47048		57548		28709		25624	
00009		45753		64778		34282		20344		88435	
										00.00	
00010	98520	17767	14905	68607	22109	40558	60970	93433	50500	73998	
00011	11805	05431	39808	27732	50725	68248	29405	24201	52775	67851	
00012	83452			98083	13746	70078	18475	40610	68711	77817	
00013	88685			58401		67951	90364	76493	29609	11062	
00014	99594	67348	87517	64969	91826	08928	93785	61368	23478	34113	
00015 00016	65481			50950	58047	76974		57186		16544	
	80124			08015	45318			78253		53763	
00017 00018	74350 69916			77214 29148	36936	00210		64237		02655	
00018	09893			68514	46427			13990		56418	
00019	09893	20505	14225	68514	46427	56788	96297	78822	54382	14598	
00020	91499	14523	68479	27686	46162	83554	94750	89923	37089	20048	
00021	80336	94598	26940	36858	70297	34135	53140	33340	42050	82341	
00022	44104		85157	47954	32979	26575	57600	40881	22222	06413	
00023	12550		11100			74697	96644		28707		
00024	63606	49329	16505	34484	40219	52563	43651	77082	07207	31790	
00025	61196	90446	26457	A777A	51024	22720	65204	50500	49509	60507	

Source A Million Random Digits with 100,000 Normal Deviates, RAND, 1955.

Random Numbers?

Here random means a sequence of numbers do not exhibit any discernible pattern, i.e. successively generated numbers can not be predicted.

A random sequence is a vague notion... in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians... Derrick Lehmer, quoted in Knuth (1997)

The goal of Pseudo-Random Numbers Generators is to produce a sequence of numbers in [0,1] that imitates ideal properties of random number.

```
1 > runif(50)
2 [1] 0.27 0.37 0.57 0.91 0.20 0.90 0.94 0.66 0.63 0.06
3 [11] 0.21 0.18 0.69 0.38 0.77 0.50 0.72 0.99 0.38 0.78
4 [21] 0.93 0.21 0.65 0.13 0.27 0.39 0.01 0.38 0.87 0.34
5 [31] 0.48 0.60 0.49 0.19 0.83 0.67 0.79 0.11 0.72 0.41
6 [41] 0.82 0.65 0.78 0.55 0.53 0.79 0.02 0.48 0.73 0.69
```

Random Numbers?

Source Dibert, 2001.

Randomness

Heuristically,

1. calls should provide a uniform sample:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mathbf{1}_{u_i\in(a,b)}=b-a \text{ with }b>a,$$

2. calls should be independent: for b > a and d > c.

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mathbf{1}_{u_i\in(a,b),u_{i+k}\in(c,d)}=(b-a)(d-c)\;\forall k\in\mathbb{N},$$

How to create randomness?

Linear Congruential Method

Given $a, b, m \in \mathbb{N}$ and $x_0 \in \{0, 1, \dots, m\}$, define

$$x_{i+1} = (ax_i + b) \text{ modulo } m,$$

and set $u_i = x_i/m$.

```
a = 13; b = 43; m = 100; x = 77; u = rep(NA, 40)
2 > for (i in 1:40) {x = (a * x + b) \% m}
u[i] = x / m 
4 > u
5 [1] 0.44 0.15 0.38 0.37 0.24 0.55 0.58 0.97 0.04 0.95
6 [11] 0.78 0.57 0.84 0.35 0.98 0.17 0.64 0.75 0.18 0.77
7 [21] 0.44 0.15 0.38 0.37 0.24 0.55 0.58 0.97 0.04 0.95
```

Problem: not all values in $\{0, \dots, m-1\}$ are obtained, and there is a cycle here.

Solution: (very) large values for *m* and choose properly *a* and *b*.

6 / 27

How to create randomness?

E.g.
$$m = 2^{32} - 1$$
, $a = 16807$ (= 7^5) and $b = 0$ (used in Matlab).

See L'Ecuyer (2017) for an historical perspective,

Note See McCullough & Heiser (2008) or Mélard (2014) about MS Excel and randomness

Génération de loi binomiale

Soit
$$p \in (0,1)$$
, $U \sim \mathcal{U}_{[0,1]}$

$$X = \begin{cases} 1 & \text{si } U$$

```
1 > p = 0.4

2 > n = 1e7

3 > U1 = runif(n)

4 > Z = (U1<p)*1

5 > barplot(table(Z)/n)
```


Génération de loi multinomiale

Soit **p** un vecteur de probabilité,

$$\overline{p}_1 = 0 \text{ et } \overline{p}_{j+1} = \sum_{i=1}^j p_i$$

$$U \in [\overline{p}_j, \overline{p}_{j+1}) \implies X = j+1$$

- 1 > p = c(0.04, 0.16, 0.40, 0.32, 0.08) 2 > cumsum(p)
- 3 [1] 0.04 0.20 0.60 0.92 1.00
- 4 > n = 1e7
- 5 > U1 = runif()
- 7 > barplot(table(Z)/n)

Inversion de la Fonction de Répartition

Inversion de fonction de répartition, inverse method sampling

Soit F une fonction de répartition, si $U \sim \mathcal{U}([0,1]), X =$ $F^{-1}(U)$ a pour fonction de répartition F.

Proof: Let $x \in \mathbb{R}$, $\mathbb{P}[X \leq x]$ is equal to

$$\mathbb{P}[F^{-1}(U) \le x] = \mathbb{P}[F(F^{-1}(U)) \le F(x)] = \mathbb{P}[U \le F(x)] = F(x)$$

where $F^{-1}(u) = \inf \{x \mid F(x) \ge u\}$ for $u \in (0, 1)$.

Inversion de la Fonction de Répartition

```
1 > U = runif(100)
2 [1] 0.26 0.35 0.31 0.76 0.52 0.06 0.03 0.23 0.67 0.14
3 [11] 0.17 0.13 0.58 0.93 0.32 0.11 0.53 0.13 0.09 0.19
4 [21] 0.32 0.37 0.91 0.47 0.28 0.38 0.88 0.98 0.49 0.84
5 [31] 0.51 0.63 0.14 0.60 0.79 0.17 0.37 0.33 0.46 0.72
6 [41] 0.92 0.39 0.42 0.48 0.70 0.30 0.05 0.51 0.38 0.27
7 [51] 0.51 0.69 0.21 0.11 0.17 0.19 0.14 0.68 0.99 0.50
8 [61] 0.26 0.69 0.43 0.25 0.06 0.26 0.32 0.10 0.18 0.08
9 [71] 0.05 0.55 0.13 0.50 0.75 0.18 0.15 0.12 0.81 0.35
```

```
> Q(U)
 [1]
     1.04 - 0.48
                 0.81 - 0.86
                            -0.33 0.74
                                        0.92
                                               0.38
 [9]
     -0.80 0.95
                -0.76 0.22 0.44 0.77 0.25 -1.45
[17]
    0.10 - 0.12
                -1.87
                       0.68
                            0.73
                                  -1.06 - 0.19 - 0.19
[25]
     -1.10 -0.48
                1.09 1.11
                            0.06 0.04
                                        0.15
                                               0.08
[33]
     -0.45 -1.29 0.48 -0.33
                            0.95 0.25 0.80
                                              1.58
[41] 0.31 -1.51 1.57 0.84
                            0.07 0.01
                                        -0.96
                                              0.56
[49]
     -0.66 0.49
                0.46 -1.57 0.00 -0.29
                                        1.89
                                               0.60
[57]
    0.34 0.43
                1.01
                     0.31
                            -0.20 -0.19 -0.07 -0.07
[65]
     -0.04 1.31
                -0.35 - 0.37
                            -0.35 - 2.26
                                        1.47
                                              -1.17
```

Inversion de la Fonction de Répartition Empirique

Given a sample $\{x_1, \dots, x_n\}$ i.i.d. from F,

$$F(x) = \mathbb{P}[X \le x],$$

the empirical cumulative distribution function is

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(x_i \le x), \ x \in \mathbb{R}$$

Glivenko-Cantelli: $\widehat{F}_n \to F$ as $n \to \infty$, or more precisely, almost surely

$$\|\widehat{F}_n - F\|_{\infty} = \sup_{x \in \mathbb{R}} |\widehat{F}_n(x) - F(x)| \longrightarrow 0$$

Inversion de la Fonction de Répartition Empirique

The inverse method with \hat{F}_n simply means resampling within $\{x_1, \dots, x_n\}$ with equal probabilities 1/n (or with replacement)

```
1 > x
2 [1] 4.164 4.374 5.184 5.330 6.595
3 > Qemp(U)
4 [1] 6.60 6.60 6.60 5.33 4.37 5.33 5.33 4.16 6.60 5.33
5 [11] 4.37 4.37 4.37 6.60 5.33 5.18 5.33 5.18 6.60 5.18
6 [21] 5.18 4.37 6.60 4.37 4.16 6.60 4.16 6.60 5.33 4.16
7 [31] 4.16 6.60 4.37 4.37 5.33 5.18 5.18 5.18 5.33 5.33
8 [41] 4.37 5.18 5.33 5.18 4.37 5.18 5.18 5.18 5.33 5.18
9 [51] 5.33 4.37 4.37 4.16 5.18 5.18 5.18 5.18 4.16 5.18
10 [61] 4.37 4.16 4.16 4.16 6.60 4.37 4.37 5.33 5.18 4.16
11 [71] 5.33 4.16 6.60 5.18 4.16 4.16 5.18 4.16 5.18 4.16
```

called bootstrapping

Génération de loi Exponentielle

$$F(x) = \mathbb{P}[X < x] = 1 - e^{-ax}$$
 pour $x \ge 0$. On veut $1 - e^{-aq} = u$, i.e. $e^{-aq} = 1 - u$, $aq = -\log(1 - u)$

$$F^{-1}(u) = \frac{-1}{a} \log(1-u)$$
, pour $u \in [0,1]$.

Génération de loi Exponentielle

Autre preuve? Soit *U* une loi uniforme, de densité $f(x) = \mathbf{1}_{[0,1]}(x)$, et considérons la fonction $g(x) = -b \log(x)$, telle que $h(y) = g^{-1}(y) = \exp[-y/b]$. Soit Y = g(X), prenant les valeurs dans $(0, \infty)$.

Comme $h'(y) = -\exp[-y/b]/b$, comme $g(y) = f(h(y)) \cdot |h'(y)|$,

$$g(y) = f_X\left(e^{-y/b}\right)\left|h'(y)\right| = \frac{1}{b}e^{-y/b} \operatorname{sur}\left(0,\infty\right)$$

qui est la loi exponentielle de paramètre a = 1/b.

Génération de loi Gaussienne $\mathcal{N}(0,1)$

Si $U_1, U_2 \sim \mathcal{U}_{[0,1]}$, indépendantes, $R = \sqrt{-2\log(U_1)}$ et $\Theta = 2\pi U_2$, alors $(X_1, X_2) = (R \cos \Theta, R \sin \Theta)$ est un couple de variables $\mathcal{N}(0,1)$ indépendantes

```
> U1 = runif(1e7)
_2 > U2 = runif(1e7)
3 > R = sqrt(-2*log(U1))
4 > Theta = 2*pi*U2
5 > Z = R*cos(Theta)
6 > hist(Z, proba=TRUE)
7 > curve(dnorm(x,0,1),add=TRUE)
```

On parle de la méthode de Box-Muller.

Génération de loi Gaussienne $\mathcal{N}(\mu, \sigma^2)$

Si
$$Z \sim \mathcal{N}(0,1)$$
, $X = \mu + \sigma Z \sim \mathcal{N}(\mu, \sigma^2)$

```
> U1 = runif(1e7)
_2 > U2 = runif(1e7)
3 > R = sqrt(-2*log(U1))
4 > Theta = 2*pi*U2
5 > Z = R*cos(Theta)
6 > X = 2 + 3 * Z
7 > hist(X, proba=TRUE)
8 > curve(dnorm(x,2,3),add=TRUE)
```


Génération de loi Gaussienne $\mathcal{N}(\mu, \sigma^2)$ censurée

On yeut simuler X conditionnellement à X > 0

```
_1 > U1 = runif(1e7)
_2 > U2 = runif(1e7)
3 > R = sqrt(-2*log(U1))
4 > Theta = 2*pi*U2
5 > Z = R*cos(Theta)
_{6} > X = 2 + 3 * Z
7 > X = X[X>0]
8 > hist(X, proba=TRUE)
```


Génération de loi Gamma

C'est plus compliqué...

On peut utiliser les fonctions R pour les lois usuelles, runif, rbinom, rpois, rexp, rnorm, rlnorm, rgamma, etc.

```
1 > a = 4

2 > b = 6

3 > Z = rgamma(1e7, a, b)

4 > hist(Z, probability=TRUE)

5 > curve(dgamma(x,a,b))
```


Génération de loi Beta

Si
$$U_1, U_2 \sim \mathcal{U}_{[0,1]}$$
, indépendantes, soient $V_1 = U_1^{1/a}$ $V_2 = U_1^{1/a} + U_2^{1/b}$, alors V_1/V_2 sachant $V_1 \leq 1$ suit une loi $\mathcal{B}(a,b)$

```
_{1} > a = 4
^{2} > b = 6
3 > U1 = runif(1e7)
_4 > U2 = runif(1e7)
5 > V1 = U1^(1/a)
6 > V2 = U1^(1/a) + U2^(1/b)
7 > Z = (V1/V2)[V2 <= 1]
8 > hist(Z, probability=TRUE)
9 > curve(dbeta(x,a,b),add=TRUE)
```


Génération d'une loi mélange

Soit
$$I \sim \mathcal{B}(p)$$
, $p \in (0,1)$

$$X \sim egin{cases} \mathcal{N}(\mu_0, \sigma_0^2) \; ext{si} \; I = 0 \ \mathcal{N}(\mu_1, \sigma_1^2) \; ext{si} \; I = 1 \end{cases}$$

```
1 > m1 = 178
2 > m2 - 164
3 > s1 = 6.44
4 > s2 = 5.66
5 > p = 0.45
6 > I = sample(1:2,size = 1e6, prob = c(p,1-p), replace= TRUE)
7 > Z = rnorm(1e6,m1,s1)*(I==1)+ rnorm(1e6,m2,s2)*(I==2)
8 > hist(Z, proba=TRUE)
```


Génération d'un vecteur Gaussien

Décomposition de Cholesky

Soit Σ une matrice de variance-covariance (matrice symétrique définie positive), il existe une matrice triangulaire inférieure L telle que $\Sigma = LL^{\top}$,

$$\mathbf{L} = \begin{bmatrix} I_{11} & & & & \\ I_{21} & I_{22} & & & \\ \vdots & \vdots & \ddots & & \\ I_{n1} & I_{n2} & \cdots & I_{nn} \end{bmatrix}$$

Il existe une unique matrice triangulaire inférieure dont les termes de la diagonale sont positifs telle que $\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^{\top}$.

Génération d'un vecteur Gaussien

Example:

$$\mathbf{\Sigma} = \begin{bmatrix} 4 & -6 & 8 & 2 \\ -6 & 10 & -15 & -3 \\ 8 & -15 & 26 & -1 \\ 2 & -3 & -1 & 62 \end{bmatrix} \text{ et } \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 4 & -3 & 1 & 0 \\ 1 & 0 & -5 & 6 \end{bmatrix}$$

Génération d'un vecteur Gaussien

Vecteur Gaussien, $\mathcal{N}(\mu, \mathbf{\Sigma})$ et $\mathcal{N}(\mathbf{0}, \mathbb{I})$

 $m{X} \sim \mathcal{N}(m{\mu}, m{\Sigma})$ si et seulement si $m{X} = m{\mu} + m{L}^{ op} m{Z}$ où $m{\Sigma} = m{L}m{L}^{ op}$ et $m{Z} \sim \mathcal{N}(m{0}, \mathbb{I})$.

$$\begin{cases} X_1 &= \mu_1 + L_{11}Z_1 \\ X_2 &= \mu_2 + L_{21}Z_1 + L_{22}Z_2 \\ X_3 &= \mu_3 + L_{31}Z_1 + L_{32}Z_2 + L_{33}Z_3 \\ \vdots \\ X_d &= \mu_d + L_{d1}Z_1 + L_{d2}Z_2 + \dots + L_{d(d-1)Z_{d-1} + L_{dd}Z_d} \end{cases}$$

Calcul d'espérance

$$X \sim LN(0,1)$$
, que vaut $\mathbb{P}[X>3]$?

1. Calcul intégral

$$\mathbb{P}[X > 3] = \int_3^\infty \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

- 2. Calcul numérique de l'intégrale
- > integrate(dlnorm,3,Inf)
- 2.0.1359686 with absolute error < 2.8e-05
 - 3. Calcul numérique par simulations

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}(x_{i}>3) \text{ où } x_{i} \leftarrow \text{ loi log-normale } LN(0,1)$$

- 1 > mean(rlnorm(1e6)>3)
- 2 [1] 0.1359608

Calcul d'espérance (ou pas)

Example Loi de Pareto, $F(x) = 1 - \left(\frac{x_{\text{m}}}{x}\right)^{\alpha}$ pour $x \ge x_m$ Un algorithme simple pour la simuler est par l'inverse de la fonction de répartition, $T = \frac{x_{\rm m}}{U^{1/\alpha}} xxx$

Visualisation de lois

Nous avions vu que si U_1, \cdots, U_n est une collection de variables uniformes indépendantes, et si $U_{(k)}$ désigne la kième observation, $U_k \sim \mathcal{B}(k, n-k+1)$. Aussi

$$\min\{\textit{U}_1,\cdots,\textit{U}_n\}\sim \mathcal{B}(1,\textit{n}) \text{ et } \max\{\textit{U}_1,\cdots,\textit{U}_n\}\sim \mathcal{B}(\textit{n},1)$$

