1 Sets

1.1 Definitions

 $N = \{0, 1, 2, \ldots\} \text{ natural numbers}$ $Z = \{\ldots, -1, 0, 1, \ldots\} \text{ integers}$ $Q = \{\frac{a}{b} : a, b \in Z, b \neq 0\} \text{ rationals}$ R = real numbers $C = \{a + bi : a, b \in R\} \text{ complex numbers}$ $i = \sqrt{-1} \text{ imaginary unit}$ $R^n = \{(x_1, \ldots, x_n) : x_i \in R\} \text{ n-dimensional space}$ $R^\infty = \{(x_1, x_2, \ldots) : x_i \in R\} \text{ space of infinite sequences of reals}$

1.2 Operations

Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$ Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$ Difference: $A \setminus B = \{x \in A : x \notin B\}$ Symmetric difference: $(A \cup B) \setminus (A \cap B)$

2 Functions

Let $(A_n)_{n\in\mathbb{N}}$ be an indexed family of sets (where $n\in\mathbb{N}$).

$$\bigcup_{n \in N} A_n = \{x : x \in A_n \text{ for some } n \in N\}$$
$$\bigcap_{n \in N} A_n = \{x : x \in A_n \text{ for every } n \in N\}$$

These are called *union* and *intersection* of an indexed family.

Definition: $A_1 \to A_2$ is the set of all functions mapping from A_1 to A_2 .

If $A \xrightarrow{f} B$, then f is an assignment of $V \in B$ to every $a \in A$, denoted by f(a).

Note: If $\forall a \in A$, there exists exactly one $b \in B$ such that $(a, b) \in f$, then f is called a function (by definition).

f is called the *domain* (by definition) of f.

B is called the *codomain* or *target space* of f.

Definition: If $A' \subseteq A$, then the image of A' under f (denoted by f(A')) is called the restriction of f to A'.

2.1 Examples

 $1. \ f:R\to R, x\mapsto x^2$

2. $f: R[X] \to R, p \mapsto p(0)$

3. $g: R \to R, x \mapsto \frac{1}{x}$

 $4. \ f:V\to V^*$

5. $f: V \xrightarrow{\sim} V^{**}$

6. $D: C^{\infty}(R) \to C^{\infty}(R), f \mapsto f'$