Lecture 5: Matchings

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Motivating example

Definitions

- A matching is a set of independent edges, in which no pair of edges shares a vertex
- The vertices incident to the edges of a matching M are M-saturated (饱和的); the others are M-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is n!
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n-1)(2n-3)\cdots 1 = (2n-1)!!$

Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5

 Every maximum matching is maximal, but not every maximal matching is a maximum matching

- The symmetric difference of M, M' is $M\Delta M' = (M-M') \cup (M'-M)$
- Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Maximum matching and augmenting path

- Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M
- An *M*-alternating path whose endpoints are *M*-unsaturated is an *M*-augmenting path
- Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Hall's theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X,Y.

G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

- Exercise. Read the other two proofs in Diestel.
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k>0) bipartite graph has a perfect matching

General regular graph

- Corollary (2.1.5, D) Every regular graph of positive even degree has a 2-factor
 - A k-regular spanning subgraph is called a k-factor
 - A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian \iff it has at most one nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching

Application to SDR

 Given some family of sets X, a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X

$$S_1 = \{2, 8\},\$$

 $S_2 = \{8\},\$
 $S_3 = \{5, 7\},\$
 $S_4 = \{2, 4, 8\},\$
 $S_5 = \{2, 4\}.$

The family $X_1 = \{S_1, S_2, S_3, S_4\}$ does have an SDR, namely $\{2, 8, 7, 4\}$. The family $X_2 = \{S_1, S_2, S_4, S_5\}$ does not have an SDR.

• Theorem(1.52, H) Let $S_1, S_2, ..., S_k$ be a collection of finite, nonempty sets. This collection has SDR \Leftrightarrow for every $t \in [k]$, the union of any t of these sets contains at least t elements

Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y. G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

С

König Theorem Augmenting Path Algorithm

Vertex cover

• A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U

• Example:

- Art museum is a graph with hallways are edges and corners are nodes
- A security camera at the corner will guard the paintings on the hallways
- The minimum set to place the cameras?

König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

Augmenting path algorithm (3.2,1, W)

- Input: G is Bipartite with X,Y, a matching M in G $U = \{M$ -unsaturated vertices in X $\}$
- Idea: Explore M-alternating paths from U letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached
- Initialization: $S = U, T = \emptyset$ and all vertices in S are unmarked
- Iteration:
 - If S has no unmarked vertex, stop and report $T \cup (X S)$ as a minimum cover and M as a maximum matching
 - Otherwise, select an unmarked $x \in S$ to explore
 - Consider each $y \in N(x)$ such that $xy \notin M$
 - If y is unsaturated, terminate and report an M-augmenting path from U to y
 - Otherwise, $yw \in M$ for some w
 - include y in T (reached from x) and include w in S (reached from y)
 - After exploring all such edges incident to x, mark x and iterate.

Example

Red: A random matching

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

Theoretical guarantee for Augmenting path algorithm

• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path Algorithm to a bipartite graph produces a matching and a vertex cover of equal size

Weighted Bipartite Matching Hungarian Algorithm

Weighted bipartite matching

- The maximum weighted matching problem is to seek a perfect matching M to maximize the total weight w(M)
- Bipartite graph
 - W.I.o.g. Assume the graph is $K_{n,n}$ with $w_{i,j} \ge 0$ for all $i,j \in [n]$
 - Optimization:

$$\max w(M_a) = \sum_{i,j} a_{i,j} w_{i,j}$$
s. t. $a_{i,1} + \dots + a_{i,n} \le 1$ for any i

$$a_{1,j} + \dots + a_{n,j} \le 1$$
 for any j

$$a_{i,j} \in \{0,1\}$$

- Integer programming
- General IP problems are NP-Complete

(Weighted) cover

- A (weighted) cover is a choice of labels u_1, \dots, u_n and v_1, \dots, v_n such that $u_i + v_j \ge w_{i,j}$ for all i,j
 - The cost c(u, v) of a cover (u, v) is $\sum_i u_i + \sum_j v_j$
 - The minimum weighted cover problem is that of finding a cover of minimum cost
- Optimization problem

$$\min c(u, v) = \sum_{i} u_{i} + \sum_{j} v_{j}$$

$$s. t. u_{i} + v_{j} \ge w_{i,j} \text{ for any } i, j$$

$$u_{i}, v_{j} \ge 0 \text{ for any } i, j$$

Duality

- Weak duality theorem
 - For each feasible solution a and (u, v)

$$\sum_{i,j} a_{i,j} w_{i,j} \le \sum_i u_i + \sum_j v_j$$
 thus $\max \sum_{i,j} a_{i,j} w_{i,j} \le \min \sum_i u_i + \sum_j v_j$

Duality (cont.)

- Strong duality theorem
 - If one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight

$$\max \sum_{i,j} a_{i,j} w_{i,j} = \min \sum_{i} u_i + \sum_{j} v_j$$

• Lemma (3.2.7, W) For a perfect matching M and cover (u, v) in a weighted bipartite graph G, $c(u, v) \ge w(M)$. $c(u, v) = w(M) \Leftrightarrow M$ consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$ In this case, M and (u, v) are optimal.

Equality subgraph

- The equality subgraph $G_{u,v}$ for a cover (u,v) is the spanning subgraph of $K_{n,n}$ having the edges x_iy_j such that $u_i+v_j=w_{i,j}$
 - So if c(u,v)=w(M) for some perfect matching M, then M is composed of edges in $G_{u,v}$
 - And if $G_{u,v}$ contains a perfect matching M, then (u,v) and M (whose weights are $u_i + v_i$) are both optimal

Hungarian algorithm

- Input: Weighted $K_{n,n} = B(X,Y)$
- Idea: Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching
- Initialization: Let (u, v) be a cover, such as $u_i = \max_j w_{i,j}$, $v_j = 0$

(Dual)
$$\min \sum_{i} u_{i} + \sum_{j} v_{j}$$

$$s. t. u_{i} + v_{j} \ge w_{i,j} \text{ for any } i, j$$

$$u_{i}, v_{j} \ge 0$$

Hungarian algorithm (cont.)

- Iteration: Find a maximum matching M in $G_{u,v}$
 - If *M* is a perfect matching, stop and report *M* as a maximum weight matching
 - Otherwise, let Q be a vertex cover of size |M| in $G_{u,v}$
 - Let $R = X \cap Q$, $T = Y \cap Q$ $\epsilon = \min\{u_i + v_j - w_{i,j} : x_i \in X - R, y_j \in Y - T\}$
 - Decrease u_i by ϵ for $x_i \in X R$ and increase v_j by ϵ for $y_j \in T$
 - Form the new equality subgraph and repeat

Example

Example 2: Excess matrix

Optimal value is the same But the solution is not unique

Theoretical guarantee for Hungarian algorithm

 Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Example 3

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0.1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover

Stable Matchings

Stable matching

- A family $(\leq_v)_{v\in V}$ of linear orderings \leq_v on E(v) is a set of preferences for G
- A matching M in G is stable if for any edge $e \in E \setminus M$, there exists an edge $f \in M$ such that e and f have a common vertex v with $e <_v f$
 - Unstable: There exists $xy \in E \setminus M$ but $xy', x'y \in M$ with $xy' <_x xy$ $x'y <_y xy$

3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

```
Men \{x, y, z, w\} Women \{a, b, c, d\}

x: a > b > c > d a: z > x > y > w

y: a > c > b > d b: y > w > x > z

z: c > d > a > b c: w > x > y > z

w: c > b > a > d d: x > y > z > w
```

Gale-Shapley Proposal Algorithm

- Input: Preference rankings by each of n men and n women
- Idea: Produce a stable matching using proposals by maintaining information about who has proposed to whom and who has rejected whom
- Iteration: Each man proposes to the highest woman on his preference list who has not previously rejected him
 - If each woman receives exactly one proposal, stop and use the resulting matching
 - Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list
 - Every woman receiving a proposal says "maybe" to the most attractive proposal received

Example

Example (gif)

Theoretical guarantee for the Proposal Algorithm

- Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm produces a stable matching
- Who proposes matters (jobs/candidates)
- Exercise Among all stable matchings, every man is happiest in the one produced by the male-proposal algorithm and every woman is happiest under the female-proposal algorithm

```
3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching \{xa, yb, zd, wc\} is a stable matching.
```

```
Men \{x, y, z, w\} Women \{a, b, c, d\}

x: a > b > c > d a: z > x > y > w

y: a > c > b > d b: y > w > x > z

z: c > d > a > b c: w > x > y > z

w: c > b > a > d d: x > y > z > w
```

Matchings in General Graphs

Perfect matchings

- K_{2n} , C_{2n} , P_{2n} have perfect matchings
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching
- Theorem(1.58, H) If G is a graph of order 2n such that $\delta(G) \geq n$, then G has a perfect matching

Theorem (1.22, H, Dirac) Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is Hamiltonian

Tutte's Theorem (TONCAS)

- Let q(G) be the number of connected components with odd order
- Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \ge 2$. G has a perfect matching $\Leftrightarrow q(G - S) \le |S|$ for all $S \subseteq V$

Fig. 2.2.1. Tutte's condition $q(G-S) \leq |S|$ for q=3, and the contracted graph G_S from Theorem 2.2.3.

Petersen's Theorem

• Theorem (1.60, H; 2.2.2, D;3.3.8, W) Every bridgeless, 3-regular graph contains a perfect matching

```
Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order n \geq 2. G has a perfect matching \Leftrightarrow q(G - S) \leq |S| for all S \subseteq V
```

Find augmenting paths in general graphs

• Different from bipartite graphs, a vertex can belong to both S and T

ullet Example: How to explore from M-unsaturated point u

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

• Flower/stem/blossom

Lifting

Edmonds' blossom algorithm (3.3.17, W)

- Input: A graph G, a matching M in G, an M-unsaturated vertex u
- Idea: Explore M-alternating paths from u, recording for each vertex the vertex from which it was reached, and contracting blossoms when found
 - Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u and the vertices reached along saturated edges
 - Reaching an unsaturated vertex yields an augmentation.
- Initialization: $S = \{u\}$ and $T = \emptyset$
- Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u
 - Otherwise, select an unmarked $v \in S$. To explore from v, successively consider each $y \in N(v)$ s.t. $y \notin T$
 - If y is unsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting u, y-path
 - If $y \in S$, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.
 - Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
 - After exploring all such neighbors of v, mark v and iterate

Illustration

Example

Example 2

Example 2 (cont.)

Summary

Shuai Li

https://shuaili8.github.io

- Matching
 - M-alternating path, M-augmenting path
 - Hall's Theorem (TONCAS)

Questions?

- Berge Theorem: A matching M in a graph G is a maximum $\iff G$ has no M-augmenting path
- König Theorem: For bipartite graph, the maximum size of a matching is equal to the minimum size of a vertex cover of its edges
- Augmenting Path Algorithm
- Weighted bipartite graph
 - Weighted cover, Hungarian algorithm, equality subgraph, excess matrix
- Stable matching
 - Gale-Shapley Proposal Algorithm
- Matchings in general graphs
 - Tutte's Theorem (TONCAS), Petersen's Theorem, Edmonds' blossom algorithms