ĐẠI HỌC QUỐC GIA HÀ NỘI Trường Đại học Công nghệ

ĐỀ THI CUỐI KỲ

Môn học: Tín hiệu và hệ thống (ELT2035)

Thời gian làm bài: 90 phút (Đề thi có 2 trang)

Phổ biên độ và pha của tín hiệu sin//cos

Ngày thi: 26/12/2018

Câu 1. Xem xét tín hiệu $x(t) = [\cos(\pi t)]^2 + \sin(\pi t) + 2$:

- a) Vẽ phổ biên độ của x(t) (0,5 điểm)
- b) Lấy mẫu x(t) với tốc độ lấy mẫu $\omega_s = 2\pi$ (rad/s) để thu được tín hiệu rời rạc x[n]. Vẽ phổ biên độ của x[n] (0,5 điểm)

Câu 2. Một hệ thống tuyến tính bất biến liên tục nhân quả được mô tả bởi phương trình vi phân sau đây:

H(s) = s/(pi^2 +s^2)
diễm cực: +- j .pi
$$\frac{d^2 y(t)}{dt^2} + \pi^2 y(t) = \frac{dx(t)}{dt}$$
u(t)===> y1(t)
u(t-1)===> y1(t)
u(t-1)===> y1(t-1)

H(s), nhân quả => ROC Re(s) > 0 ROC chứa trục tung?

a) Hệ thống có ổn định hay không? Giải thích (1 điểm)

Bd L ngược =>h(t) b) Xác định đáp ứng xung h(t) của hệ thống (1 điểm)

H(s), ROC của H(s) x1(t) = u(t)=> X1(s) = 1/s

Re(s) > 0

c) Xác định đáp ứng của hệ thống với tín hiệu vào x(t)=u(t-1) (khi không có điều kiện đầu) (1 điểm)

Y1(s) => y1(t) => y1(t-1) Câu 3. Một hệ thống tuyến tính bất biến liên tục nhân quả có hàm chuyển (hàm truyền đạt) được cho như sau:

$$H(s) = \frac{1}{(s+1)(s^2+s+1)}$$
 nhân quả => ROC

 $H(w)=H(s) \mid s=jw$

 $|H(w)| = \operatorname{sqrt}(\operatorname{Re}^2 + \operatorname{Im}^2)$ a) Xác định đáp ứng biên độ $|H(\omega)|$ của hệ thống, nếu tồn tại (1 điểm)

b) Xác định đáp ứng của hệ thống với tín hiệu vào $x(t) = \sin(t + \pi/2) - 1$ (1 điểm) tín hiệu ra Dùng đáp ứng tần số

Câu 4. Một hệ thống tuyến tính bất biến rời rạc nhân quả được mô tả bằng phương trình sai phân sau đây:

$$y[n] - \frac{5}{2}y[n-1] + y[n-2] = x[n]$$

H(z), nhận quả => ROC; => bd ngược => h(n)

- a) Xác định đáp ứng xung h[n] của hệ thống (1 điểm)
- b) Xác định đáp ứng của hệ thống với điều kiện đầu $\{y[-1]=2, y[-2]=1\}$ khi không có tín hiệu vào (1 điểm)

Đáp ứng tự nhiên, dạng nghiệm giống với nghiệm thuần nhất thoả mặn đk đầu Trang~I/2

- c) Xác định đáp ứng của hệ thống với tín hiệu vào $x[n]=2^{-n}u[n]$ khi không có điều kiện đầu (1 điểm)
- d) Xác định đáp ứng tần số $H(\Omega)$ của hệ thống, nếu tồn tại (1 điểm) ROC của H(z). chứa đường tròn đơn vị ? =>...

 ***** HẾT *****