Assignment 2 of Algorithm

Zuyao Chen 201728008629002 zychen.uestc@gmail.com

Largest Divisible Subset 1.

- a). • Def. OPT(i) = length of the optimal subset of distinct integers $a_1, a_2, ..., a_i$. • Given. a set of distinct positive integers $A_n = \{a_1, a_2, ..., a_n\}$. · Goal. OPT(n) and extract optimal subset S. To compute OPT(i), • if i = 1, $A_i = \{a_1\}, OPT(1) = 1$; • for i > 1, firstly we sort the original array in ascending order, then scan over the array from j = 1 to j = i - 1,hence $OPT(i) = \max \begin{cases} OPT(j) + 1, & a_i\%a_j = 0 \text{ and } \forall m, j < m < i, a_i\%a_m \neq 0 \\ OPT(i-1) \end{cases}$
- b). pseudo-code:

Algorithm 1 find the largest divisible subset of distinct positive integers

```
Input: A set of distinct positive integers a_1, a_2, ..., a_n
Output: the largest divisible subset S
 1: function LARGEST-DIVISIBLE(a_1, a_2, ..., a_n)
 2:
        if n=1 then return a_1
        end if
 3:
        sort original array in ascending order
 4:
        initialize elements of len[n], pre[n] with 1, S = \{\}
 5:
        for i=2 to n do
 6:
 7:
            for j = 1 to i - 1 do
                if a[i]\%a[j] = 0 and len[i] < len[j] + 1 then
 8:
                    len[i] = len[j] + 1, pre[i] = j
 9:
                end if
10:
            end for
11:
12:
        [max \ len, max \ index] = max(len[])
13:
        initialize index[max\ len] = \{0, 0, ..., 0, max\ index\}
14:
        for i = max \ len - 1 to 0 \ do
15:
            index[i] = pre[max \ index], max \ index = index[i]
16:
17:
        S = S \cup a_{index[k]}, k = 1 \text{ to } max\_len
18:
        return S
19:
20: end function
```

c). correctness:

Let S_i be the optimal subset of $A_i = \{a_1, a_2, ..., a_i\}$.

- if $i = 1, A_i = \{a_1\}$, then $OPT(i) = 1, S_i = \{a_1\}$
- if i = k > 1, $A_k = \{a_1, a_2, ..., a_k\}$ is arranged in ascending order.
 - i. if $a_k \in S_k$, we initialize $S_k = \{a_k\}$, scan over the array from j = 1 to k 1, if $a_k\%a_j = 0$, add a_j to S_k , finally we can get the S_k . Find the maximum j subjected to $a_k\%a_j = 0$, then remove all $a_m(a_k\%a_m \neq 0 (j < m < k))$, S_k should be a subset of $\{a_1, a_2, ..., a_j\} \cup \{a_k\}$, hence $len(S_k) = OPT(j) + 1$;
 - ii. if $a_k \notin S_k$, that means it does not matter to remove a_k , thus $len(S_k) = len(S_{k-1}) = OPT(k-1)$

thus

$$OPT(i) = \max \begin{cases} OPT(j) + 1, & a_k\%a_j = 0 \text{ and } \forall m, j < m < i, a_i\%a_m \neq 0 \\ OPT(i-1) \end{cases}$$

In the pseudo-code, we use a small trick that only when len[j] + 1 > len[i], len[i] is updated and the position j is recorded,then find the maximum element of len[i]. In another words, len[i] is the length of the subset S_i' ended with $a_i, pre[i]$ is the end position of subset $S_i' - \{a_i\}$ ($a_i\%a_{pre[i]} = 0$ and $\forall k, pre[i] < k < i, a_i\%a_k \neq 0$). There must exists a subset ended with $\max(S_i)$, if we find i_0 that $len[i_0]$ is the maximum in len[i], the subset S_{i_0}' is the optimal subset S_i .

d). complexity:

- sorting the array costs O(nlogn) using quick-sort;
- traversal needs $\frac{n(n-1)}{2}$ steps,thus it costs $O(n^2)$;
- tracing back to extract optimal subset costs O(n)

thus the time complexity of algorithm is $O(n^2)$.

2. Money robbing

i. case 1

a). description:

- **Def.** OPT(i) = sum of optimal subset of a list of non-negative integers.
- Given. a list of non-negative integers $A_n = \{a_1, a_2, ..., a_n\}$.
- Goal. OPT(n).

To compute OPT(i),

- if i = 1, $OPT(i) = a_1$;
- if i = 2, $OPT(i) = \max(a_1, a_2)$;

• if i > 2,

$$OPT(i) = \max \begin{cases} OPT(i-1) \\ OPT(i-2) + a_i \end{cases}$$

b). pseudo-code:

Algorithm 2 find the optimal subset with maximum sum of a list of positive integers

```
A set of positive integers A_n = \{a_1, a_2, ..., a_n\}
Output: maximum sum of subset S, any two elements of S are not adjacent in A_n
 1: function MONEY-ROBBING(a_1, a_2, ..., a_n)
        if n = 0(A_n \text{ is NULL}) then
 3:
            return 0
 4:
        else if n \leq 2 then
 5:
            return \max(A_n)
 6:
        end if
        initialize sum[n] = \{a_1, \max(a_1, a_2), 0, 0, ...\}
 7:
        for i=3 to n do
 8:
            sum[i] = \max(sum[i-1], sum[i-2] + a_i)
 9:
10:
        end for
        return sum[n]
11:
12: end function
```

c). correctness:

- if $n = 1, A_n = \{a_1\}$, then $OPT(n) = a_1$;
- if n = 2, $A_n = \{a_1, a_2\}$, then $OPT(n) = \max(a_1, a_2)$;
- if n > 2, let k = n 1, $A_k = \{a_1, a_2, ..., a_k\}$, $OPT(k) = sum(S_k)$, S_k be the optimal subset of A_k . $A_{k+1} = \{a_1, a_2, ..., a_k, a_{k+1}\}$,
 - i. if $a_{k+1} \in S_{k+1}$, then $a_k \notin S_{k+1}$, $S_{k+1} = S_{k-1} \cup \{a_{k+1}\}$, thus $OPT(k+1) = OPT(k-1) + a_{k+1}$;
 - ii. if $a_{k+1} \notin S_{k+1}$, $S_{k+1} = S_k$, hence OPT(k+1) = OPT(k).

in summary, if n > 2

$$OPT(n) = \max \begin{cases} OPT(n-1) \\ OPT(n-2) + a_n \end{cases}$$

OPT(n) can be solved recursively from OPT(1), the algorithm is correct.

d). complexity:

Obviously it costs O(n) time.

ii. case 2 – all houses are arranged in a circle

Under this circumstance, let S'_k be the optimal subset of $A'_k = \{a_1, a_2, ..., a_k\}$ $\{a_1, a_k\}$ are adjacent), OPT'(k) be the sum of $S'_k, OPT(k)$ be the sum in the condition above.

- if $a_1 \in S'_k$, then $a_k \notin S'_k$, OPT'(k) = OPT(k-1);
- if $a_1 \notin S'_k$, then a_k may belong to S'_k , just let $a_1 = 0$, thus OPT'(k) = OPT(k)

hence,

$$OPT'(n) = \begin{cases} \max(A_k'), & \text{if } n <= 3 \\ \max \begin{cases} OPT(n-1) & \text{otherwise} \end{cases} \end{cases}$$

3. Decoding

a). description:

- **Def.** OPT(i) = the number of ways decoding a message $S_i = \{s_1s_2...s_i\}$.
- Given. an encoded message $S_n = \{s_1 s_2 s_3 ... s_n\}$.
- Goal. OPT(n).

the all cases are showed below,

- i. If S_i is NULL or started with '0' $(s_1 = 0)$ ', it makes no sense, thus OPT(i) = 0;
- ii. If i = 1 and $s_1 \neq 0$, OPT(i) = 1;
- iii. If i > 1 and $s_1 \neq$ '0', define OPT(0) = 1. Consider $S_{k-1} = \{s_1s_2...s_{k-1}\}$ and $S_k = \{s_1s_2...s_{k-1}s_k\}$, k > 1. suppose that S_{k-1} is valid (no isolated '0' in the decoded message),
 - if $s_{k-1} = 0$ and $s_k = 0$, S_k is invalid, OPT(k) = 0.
 - if $s_{k-1} = 0$ and $s_k \neq 0$, s_k can not be combined with s_{k-1} , thus OPT(k) = OPT(k-1).
 - if ' $s_{k-1}s_k$ ' > 26, s_k should be isolated, OPT(k) = OPT(k-1).
 - if ' $s_{k-1}s_k \leq 26$, if s_k ='0',that means $s_{k-1}s_k$ should be regarded as a number,hence OPT(k) = OPT(k-2); if $s_k \neq$ '0', the result can be regarded as a combination of two part: one part is just like decoding S_{k-1} (s_k is isolated),another part is regarding $s_{k-1}s_k$ as a number, then there has no $s_{k-2}s_{k-1}$ and s_{k-1} is isolated in decoding S_{k-1} , therefore OPT(k) = OPT(k-1) + OPT(k-2).

In summary,to compute OPT(n) (define OPT(0) = 1),

$$OPT(n) = \begin{cases} 0, & \text{if } S_n \text{ is NULL or } s_1 = \text{`0' or `00' in } S_n \\ 1, & \text{else if } n = 1 \\ OPT(n-1), & \text{else if } n \geq 2, \text{`} s_{n-1} s_n\text{'} > 26 \text{ or } s_{n-1} = \text{`0'} \\ OPT(n-2), & \text{else if } n \geq 2, \text{`} s_{n-1} s_n\text{'} \leq 26 \text{ and } s_n = \text{`0'} \\ OPT(n-1) + OPT(n-2), & \text{else if } n \geq 2, \text{`} s_{n-1} s_n\text{'} \leq 26 \text{ and } s_n \neq \text{`0'} \end{cases}$$

b). pseudo-code:

Algorithm 3 find the number of ways decoding a message

```
an encoded message S_n = \{s_1 s_2 ... s_n\}
Output: the number of ways decoding the message
 1: function NUM-DECODINGS(S_n)
        if S_n is invalid then
 2:
           return 0
 3:
        end if
 4:
       if n = 1 then
 5:
           return 1
 6:
 7:
       end if
 8:
       initialize M[n+1] = \{1, 1, 0, 0...\}
        for i=2 to n do
 9:
           if s_{i-1}s_i > 26 or s_{i-1} = 0 then
10:
               if s_i = 0 then
11:
                   return 0
12:
               end if
13:
14:
               M[i+1] = M[i]
15:
           else
               if s_i = 0 then
16:
                   M[i+1] = M[i-1]
17:
18:
               else
                   M[i+1] = M[i] + M[i-1]
19:
20:
               end if
           end if
21:
22:
        end for
        return M[n+1]
23:
24: end function
```

c). correctness:

the detail description is showed above, OPT(n) can be solved from state OPT(1), and all conditions are considered, thus it's a correct algorithm.

d). complexity:

Obviously it costs O(n) time.

4. Maximum length

Code is written using C++ in accessory file 'max length.cpp'. Here is a test example,

```
joseph_chen@JosephChen-Desktop:~/Documents/algorithms_course/c_plus_plus$ ./max
array:3 5 6 2 5 4 19 5 6 7 1
length of optimal subset:5
```