

Final Project: Classification with Python

Table of Contents

- Instructions
- About the Data
- Importing Data
- Data Preprocessing
- Transforming Categorical Variables
- Train and Test Data Split
- Train Linear Regression, KNN, Decision Tree, Logistic Regression, and SVM models and return their appropriate accuracy scores

Estimated Time Needed: 180 min

Instructions

In this notebook, you will practice all the classification algorithms that we learned in this course.

After completing this notebook, you will need to upload it to the "Submit Your Work and Review Your Peers" section of the Final Project module.

Below, is where we are going to use the classification algorithms to create a model based on our training data and evaluate our testing data using evaluation metrics learned in the course.

We will use some of the algorithms taught in the course, specifically:

- 1. Linear Regression
- 2. KNN
- 3. Decision Trees
- 4. Logistic Regression
- 5. SVM

We will evaluate our models using:

- 1. Accuracy Score
- 2. Jaccard Index
- 3. F1-Score
- 4. LogLoss
- 5. Mean Absolute Error

7. R2-Score

Finally, you will use your models to generate the report displaying the accuracy scores.

About The Dataset

The original source of the data is Australian Government's Bureau of Meteorology and the latest data can be gathered from http://www.bom.gov.au/climate/dwo/.

The dataset to be used has extra columns like 'RainToday' and our target is 'RainTomorrow', which was gathered from the Rattle at https://bitbucket.org/kayontoga/rattle/src/master/data/weatherAUS.RData

This dataset contains observations of weather metrics for each day from 2008 to 2017. The **weatherAUS.csv** dataset includes the following fields:

Field	Description	Unit	Type
Date	Date of the Observation in YYYY-MM-DD	Date	object
Location	Location of the Observation	Location	object
MinTemp	Minimum temperature	Celsius	float
MaxTemp	Maximum temperature	Celsius	float
Rainfall	Amount of rainfall	Millimeters	float
Evaporation	Amount of evaporation	Millimeters	float
Sunshine	Amount of bright sunshine	hours	float
WindGustDir	Direction of the strongest gust	Compass Points	object
WindGustSpeed	Speed of the strongest gust	Kilometers/Hour	object
WindDir9am	Wind direction averaged of 10 minutes prior to 9am	Compass Points	object
WindDir3pm	Wind direction averaged of 10 minutes prior to 3pm	Compass Points	object
WindSpeed9am	Wind speed averaged of 10 minutes prior to 9am	Kilometers/Hour	float
WindSpeed3pm	Wind speed averaged of 10 minutes prior to 3pm	Kilometers/Hour	float
Humidity9am	Humidity at 9am	Percent	float
Humidity3pm	Humidity at 3pm	Percent	float
Pressure9am	Atmospheric pressure reduced to mean sea level at 9am	Hectopascal	float
Pressure3pm	Atmospheric pressure reduced to mean sea level at 3pm	Hectopascal	float
Cloud9am	Fraction of the sky obscured by cloud at 9am	Eights	float
Cloud3pm	Fraction of the sky obscured by cloud at 3pm	Eights	float
Temp9am	Temperature at 9am	Celsius	float
Temp3pm	Temperature at 3pm	Celsius	float
RainToday	If there was rain today	Yes/No	object
RISK_MM	Amount of rain tomorrow	Millimeters	float
RainTomorrow	If there is rain tomorrow	Yes/No	float

Import the required libraries

```
In [1]: # All Libraries required for this lab are listed below. The libraries pre-installed on S
        # !mamba install -qy pandas==1.3.4 numpy==1.21.4 seaborn==0.9.0 matplotlib==3.5.0 scikit
        # Note: If your environment doesn't support "!mamba install", use "!pip install"
In [2]: # Surpress warnings:
        def warn(*args, **kwargs):
           pass
        import warnings
        warnings.warn = warn
In [3]:
        import pandas as pd
        from sklearn.linear model import LogisticRegression
        from sklearn.linear model import LinearRegression
        from sklearn import preprocessing
        import numpy as np
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.model selection import GridSearchCV
        from sklearn.model selection import train test split
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn import svm
        from sklearn.metrics import jaccard score
        from sklearn.metrics import f1 score
        from sklearn.metrics import log loss
        import matplotlib.pyplot as plt
        from sklearn.metrics import confusion matrix, accuracy score
        import sklearn.metrics as metrics
```

Importing the Dataset

```
In [4]: df = pd.read_csv('Weather_Data.csv')
    df.head()
```

Out[4]:		Date	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	١
	0	2/1/2008	19.5	22.4	15.6	6.2	0.0	W	41	S	
	1	2/2/2008	19.5	25.6	6.0	3.4	2.7	W	41	W	
	2	2/3/2008	21.6	24.5	6.6	2.4	0.1	W	41	ESE	
	3	2/4/2008	20.2	22.8	18.8	2.2	0.0	W	41	NNE	
	4	2/5/2008	19.7	25.7	77.4	4.8	0.0	W	41	NNE	

5 rows × 22 columns

Data Preprocessing

Transforming Categorical Variables

First, we need to convert categorical variables to binary variables. We will use pandas <code>get_dummies()</code> method for this.

```
In [5]: df_sydney_processed = pd.get_dummies(data=df, columns=['RainToday', 'WindGustDir', 'Wind
```

Next, we replace the values of the 'RainTomorrow' column changing them from a categorical column to a binary column. We do not use the get_dummies method because we would end up with two columns for 'RainTomorrow' and we do not want, since 'RainTomorrow' is our target.

```
df sydney processed.replace(['No', 'Yes'], [0,1], inplace=True)
In [6]:
In [7]:
          df sydney processed.head()
Out[7]:
                                MaxTemp Rainfall
                                                    Evaporation Sunshine WindGustSpeed
                                                                                          WindSpeed9am
                                                                                                          WindSpeed3
                      MinTemp
            2/1/2008
                           19.5
                                      22.4
                                               15.6
                                                            6.2
                                                                      0.0
                                                                                      41
                                                                                                       17
         1 2/2/2008
                           19.5
                                      25.6
                                               6.0
                                                            3.4
                                                                      2.7
                                                                                      41
         2 2/3/2008
                           21.6
                                      24.5
                                               6.6
                                                            2.4
                                                                      0.1
                                                                                      41
                                                                                                       17
         3 2/4/2008
                           20.2
                                      22.8
                                               18.8
                                                            2.2
                                                                      0.0
                                                                                      41
                                                                                                       22
                                                            4.8
            2/5/2008
                           19.7
                                      25.7
                                               77.4
                                                                      0.0
                                                                                      41
                                                                                                       11
```

5 rows × 68 columns

In [8]:

Training Data and Test Data

Now, we set our 'features' or x values and our Y or target variable.

df sydney processed.drop('Date',axis=1,inplace=True)

```
df sydney processed = df sydney processed.astype(float)
 In [9]:
           features = df sydney processed.drop(columns='RainTomorrow', axis=1)
In [10]:
           Y = df sydney processed['RainTomorrow']
           features
In [11]:
Out[11]:
                  MinTemp
                             MaxTemp
                                        Rainfall Evaporation Sunshine
                                                                         WindGustSpeed
                                                                                           WindSpeed9am
                                                                                                            WindSpeed3pm
               0
                       19.5
                                   22.4
                                                                                                                       20.0
                                            15.6
                                                          6.2
                                                                     0.0
                                                                                     41.0
                                                                                                      17.0
                       19.5
                                   25.6
                                             6.0
                                                          3.4
                                                                     2.7
                                                                                     41.0
                                                                                                       9.0
                                                                                                                       13.0
               2
                       21.6
                                   24.5
                                             6.6
                                                          2.4
                                                                     0.1
                                                                                     41.0
                                                                                                      17.0
                                                                                                                        2.0
                       20.2
                                   22.8
                                            18.8
                                                          2.2
                                                                     0.0
                                                                                     41.0
                                                                                                      22.0
                                                                                                                       20.0
               4
                       19.7
                                   25.7
                                            77.4
                                                          4.8
                                                                     0.0
                                                                                     41.0
                                                                                                      11.0
                                                                                                                        6.0
           3266
                        8.6
                                   19.6
                                             0.0
                                                          2.0
                                                                     7.8
                                                                                     37.0
                                                                                                      22.0
                                                                                                                       20.0
           3267
                        9.3
                                   19.2
                                             0.0
                                                          2.0
                                                                     9.2
                                                                                     30.0
                                                                                                      20.0
                                                                                                                        7.0
           3268
                        9.4
                                   17.7
                                             0.0
                                                                     2.7
                                                                                     24.0
                                                                                                      15.0
                                                                                                                       13.0
                                                          2.4
           3269
                       10.1
                                   19.3
                                             0.0
                                                                     9.3
                                                                                     43.0
                                                                                                      17.0
                                                                                                                       19.0
                                                          1.4
           3270
                        7.6
                                   19.3
                                             0.0
                                                                     9.4
                                                                                     35.0
                                                                                                      13.0
                                                                                                                       13.0
                                                          3.4
```

3271 rows × 66 columns

```
In [12]:
                 1.0
Out[12]:
                 1.0
         2
                 1.0
         3
                 1.0
         4
                 1.0
                . . .
         3266
                0.0
         3267
                0.0
         3268
                0.0
         3269
               0.0
                 0.0
         3270
         Name: RainTomorrow, Length: 3271, dtype: float64
```

Linear Regression

Q1) Use the train_test_split function to split the features and Y dataframes with a test size of 0.2 and the random state set to 10.

```
#Enter Your Code, Execute and take the Screenshot
In [13]:
        x train, x test, y train, y test = train test split(features, Y, test size=0.2, random sta
In [14]:
        x train.values, x test.values
In [15]:
        (array([[14.8, 22., 33.8, ..., 0., 0.,
                                                 0. ],
Out[15]:
               [8.1, 18.4, 0., ..., 0., 0.,
                                                 0.],
               [15.4, 21.1, 0., ..., 1., 0.,
               . . . ,
               [ 6.7, 17.3, 0., ..., 0., 0.,
               [15., 22.7, 9.4, ..., 0., 0.,
               [15.9, 30.1, 0.2, ..., 0., 0.,
        array([[18.7, 35.7, 0.2, ..., 0. , 0. ,
                                                 0.],
               [15., 24.8, 22.4, ..., 0., 0.,
                                                 0.],
               [8.5, 16., 3.4, ..., 0., 0.,
               [11.6, 15.7, 18.2, ..., 0., 0.,
                                                 0.],
               [16.9, 23.9, 0., ..., 0., 0.,
               [15.6, 22.2, 22.8, ..., 0. , 0. , 0. ]]))
```

Q2) Create and train a Linear Regression model called LinearReg using the training data (x_{train} , y_{train}).

```
In [16]: #Enter Your Code, Execute and take the Screenshot
In [17]: LinearReg = LinearRegression()
In [18]: LinearReg.fit(x_train, y_train)
Out[18]: LinearRegression()
```

Q3) Now use the predict method on the testing data (x_{test}) and save it to the array predictions.

```
In [19]: #Enter Your Code, Execute and take the Screenshot
```

```
In [21]: | predictions[:5]
        array([0.13184071, 0.2761859, 0.97818819, 0.2874561, 0.13241371])
Out[21]:
        Q4) Using the predictions and the y test dataframe calculate the value for each
        metric using the appropriate function.
In [22]: #Enter Your Code, Execute and take the Screenshot
         from sklearn.metrics import mean absolute error, mean squared error, r2 score
In [23]:
         LinearRegression MAE = mean absolute error(y test, predictions)
         LinearRegression_MSE = mean_squared_error(y test,predictions)
         LinearRegression R2 = r2 score(y test,predictions)
        Q5) Show the MAE, MSE, and R2 in a tabular format using data frame for the linear
        model.
In [24]: #Enter Your Code, Execute and take the Screenshot
         d = {'MAE': LinearRegression MAE, 'MSE': LinearRegression MSE, 'R2': LinearRegression R2
        LRReport = pd.DataFrame(d, index=[0])
In [25]:
        LRReport
In [26]:
Out[26]:
              MAE
                      MSE
                               R2 Loss
        0 0.256318 0.115721 0.427132 NaN
        KNN
        Q6) Create and train a KNN model called KNN using the training data (x train,
         y train) with the n neighbors parameter set to 4.
         #Enter Your Code, Execute and take the Screenshot
In [27]:
        KNN = KNeighborsClassifier(n neighbors=4)
In [28]:
        KNN.fit(x train, y train)
In [29]:
        KNeighborsClassifier(n neighbors=4)
Out[29]:
        Q7) Now use the predict method on the testing data (x test) and save it to the
        array predictions.
In [30]:
         #Enter Your Code, Execute and take the Screenshot
        predictions = KNN.predict(x test)
In [31]:
```

In [20]: | predictions = LinearReg.predict(x test)

predictions[:5]

In [32]:

```
Out[32]: array([0., 0., 1., 0., 0.])
```

Q8) Using the predictions and the y_test dataframe calculate the value for each metric using the appropriate function.

```
In [33]: #Enter Your Code, Execute and take the Screenshot

In [34]: KNN_Accuracy_Score = accuracy_score(y_test,predictions)
   KNN_JaccardIndex = jaccard_score(y_test,predictions)
   KNN_F1_Score = f1_score(y_test,predictions)

In [35]: #Enter Your Code, Execute and take the Screenshot
   d = {'Accuracy': KNN_Accuracy_Score, 'Jaccard': KNN_JaccardIndex, 'F1': KNN_F1_Score, 'L

In [36]: KNNReport = pd.DataFrame(d, index=[1])

In [37]: KNNReport

Out[37]: Accuracy Jaccard F1 Loss
   1 0.818321 0.425121 0.59661 NaN
```

Decision Tree

Q9) Create and train a Decision Tree model called Tree using the training data (x_train, y_train).

```
In [38]: #Enter Your Code, Execute and take the Screenshot
In [39]: Tree = DecisionTreeClassifier()
In [40]: Tree.fit(x_train,y_train)
Out[40]: DecisionTreeClassifier()
```

Q10) Now use the predict method on the testing data (x_{test}) and save it to the array predictions.

```
In [41]: #Enter Your Code, Execute and take the Screenshot
In [42]: predictions = Tree.predict(x_test)
```

Q11) Using the predictions and the y_test dataframe calculate the value for each metric using the appropriate function.

```
In [43]: Tree_Accuracy_Score = accuracy_score(y_test, predictions)
    Tree_JaccardIndex = jaccard_score(y_test, predictions)
    Tree_F1_Score = f1_score(y_test, predictions)

In [44]: #Enter Your Code, Execute and take the Screenshot
    d = {'Accuracy': Tree Accuracy Score, 'Jaccard': Tree JaccardIndex, 'F1': Tree F1 Score,
```

Logistic Regression

Q12) Use the train_test_split function to split the features and Y dataframes with a test_size of 0.2 and the random_state set to 1.

```
In [47]: #Enter Your Code, Execute and take the Screenshot
In [48]: x_train, x_test, y_train, y_test = train_test_split(features,Y,test_size=0.2, random_sta
```

Q13) Create and train a LogisticRegression model called LR using the training data (x_train, y_train) with the solver parameter set to liblinear.

```
In [49]: #Enter Your Code, Execute and take the Screenshot
In [50]: LR = LogisticRegression(solver='liblinear')
In [51]: LR.fit(x_train,y_train)
Out[51]: LogisticRegression(solver='liblinear')
```

Q14) Now, use the predict method on the testing data (x_test) and save it to the array predictions.

```
In [52]: #Enter Your Code, Execute and take the Screenshot
In [53]: predictions = LR.predict(x_test)
```

Q15) Using the predictions and the y_test dataframe calculate the value for each metric using the appropriate function.

```
In [54]: #Enter Your Code, Execute and take the Screenshot

In [55]: LR_Accuracy_Score = accuracy_score(y_test,predictions)
    LR_JaccardIndex = jaccard_score(y_test,predictions)
    LR_F1_Score = f1_score(y_test,predictions)
    LR_Log_Loss = log_loss(y_test,predictions)

In [56]: #Enter Your Code, Execute and take the Screenshot
    d = {'Accuracy': LR_Accuracy_Score, 'Jaccard': LR_JaccardIndex, 'F1': LR_F1_Score, 'Loss
In [57]: LogReport = pd.DataFrame(d, index=[3])
In [58]: LogReport
```

```
Out[58]:
                                      F1
             Accuracy
                        Jaccard
                                              Loss
          3 0.836641 0.509174 0.674772 5.642256
```

SVM

Q16) Create and train a SVM model called SVM using the training data (x train, y train).

```
#Enter Your Code, Execute and take the Screenshot
In [59]:
         from sklearn.svm import SVC
In [60]:
         SVM = SVC()
         SVM.fit(x train,y train)
In [61]:
         SVC()
Out[61]:
```

Q17) Now use the predict method on the testing data (x test) and save it to the array predictions.

```
#Enter Your Code, Execute and take the Screenshot
In [62]:
        predictions = SVM.predict(x test)
In [63]:
```

Q18) Using the predictions and the y test dataframe calculate the value for each metric using the appropriate function.

```
SVM_Accuracy_Score = accuracy_score(y test,predictions)
In [64]:
         SVM JaccardIndex = jaccard score(y test,predictions)
         SVM F1 Score = f1 score(y test,predictions)
In [65]:
         #Enter Your Code, Execute and take the Screenshot
         d = { 'Accuracy': SVM Accuracy Score, 'Jaccard': SVM JaccardIndex, 'F1': SVM F1 Score,
         SVMReport = pd.DataFrame(d, index=[4])
In [66]:
         SVMReport
In [67]:
Out[67]:
           Accuracy Jaccard
                           F1 Loss
         4 0.722137
```

Report

Q19) Show the Accuracy, Jaccard Index, F1-Score and LogLoss in a tabular format using data frame for all of the above models.

*LogLoss is only for Logistic Regression Model

0.0 0.0 NaN

#Enter Your Code, Execute and take the Screenshot In [68]:

```
Report = pd.concat([KNNReport, TreeReport, LogReport, SVMReport])
          Report.rename(index={1: 'KNN', 2: 'Tree', 3: 'Logistic', 4: 'SVM'}, inplace=True)
In [71]:
         Report
                                        F1
Out[71]:
                                               Loss
                 Accuracy
                           Jaccard
            KNN
                 0.818321 0.425121 0.596610
                                               NaN
                0.757252  0.395437  0.566757
                                               NaN
          Logistic 0.836641 0.509174 0.674772 5.642256
            SVM
                 0.722137 0.000000 0.000000
                                               NaN
```

How to submit

Once you complete your notebook you will have to share it. You can download the notebook by navigating to "File" and clicking on "Download" button.

This will save the (.ipynb) file on your computer. Once saved, you can upload this file in the "My Submission" tab, of the "Peer-graded Assignment" section.

About the Authors:

Joseph Santarcangelo has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Other Contributors

Himanshu Birla

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2020-08-27	1.0	Malika Singla	Added lab to GitLab
2022-06-22	2.0	Lana K.	Deleted GridSearch and Mock

© IBM Corporation 2020. All rights reserved.