```
In [8]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
import warnings
warnings.filterwarnings('ignore')
In [11]:
train = pd.read csv("train.csv")
test = pd.read_csv("test.csv")
In [12]:
print("Train:", train.shape)
print("Test:",test.shape)
Train: (9557, 143)
Test: (23856, 142)
In [13]:
train.head()
Out[13]:
                   v2a1 hacdor rooms hacapo v14a refrig v18q v18q1 r4h1 ... SQBescolari SQBage SQBhogar_total SQBedjefe SQBhogar_nin SQBovercrowding SQBdependency SQBmeaned agesq Target
            ld
                                                                                                                               0
0 ID_279628684 190000.0
                                                                     0 ...
                                                                                        1849
                                                                                                                 100
                                                                                                                                         1.000000
                                                                                                                                                           0.0
                                                                                                                                                                           1849
                            0
                                                             NaN
                                                                                 100
                                                                                                                                                                     100.0
1 ID f29eb3ddd 135000.0
                            0
                                                                     0 ...
                                                                                 144
                                                                                        4489
                                                                                                         1
                                                                                                                 144
                                                                                                                               0
                                                                                                                                         1.000000
                                                                                                                                                          64.0
                                                                                                                                                                     144.0
                                                                                                                                                                           4489
                                                              1.0
                                                          1
                                                                                        8464
                                                                                                                  0
                                                                                                                                         0.250000
2 ID_68de51c94
                   NaN
                                                             NaN
                                                                     0 ...
                                                                                 121
                                                                                                                                                          64.0
                                                                                                                                                                     121.0
                                                                                                                                                                           8464
3 ID_d671db89c 180000.0
                                  5
                                                                                         289
                                                                                                        16
                                                                                                                 121
                                                                                                                               4
                                                                                                                                         1.777778
                                                                                                                                                           1.0
                                                                                                                                                                     121.0
                            0
                                                               1.0
                                                                     0 ...
                                                                                  81
                                                                                                                                                                            289
                                                          1
4 ID_d56d6f5f5 180000.0
                                                                                 121
                                                                                        1369
                                                                                                        16
                                                                                                                 121
                                                                                                                                         1.777778
                                                                                                                                                           1.0
                                                                                                                                                                     121.0 1369
                                                               1.0
5 rows × 143 columns
In [14]:
```

```
In [14]:
train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9557 entries, 0 to 9556
Columns: 143 entries, Id to Target
dtypes: float64(8), int64(130), object(5)
memory usage: 10.2+ MB
In [15]:
```

Out[15]:

test.head()

Id	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	age	SQBescolari	SQBage	SQBhogar_total	SQBedjefe	SQBhogar_nin	SQBovercrowding	SQBdependency	SQBmeaned	agesq
0 ID_2f6873615	NaN	0	5	0	1	1	0	NaN	1	4	0	16	9	0	1	2.25	0.25	272.25	16
1 ID_1c78846d2	NaN	0	5	0	1	1	0	NaN	1	41	256	1681	9	0	1	2.25	0.25	272.25	1681
2 ID_e5442cf6a	NaN	0	5	0	1	1	0	NaN	1	41	289	1681	9	0	1	2.25	0.25	272.25	1681
3 ID_a8db26a79	NaN	0	14	0	1	1	1	1.0	0	59	256	3481	1	256	0	1.00	0.00	256.00	3481
4 ID_a62966799	175000.0	0	4	0	1	1	1	1.0	0	18	121	324	1	0	1	0.25	64.00	NaN	324

5 rows × 142 columns

memory usage: 25.4+ MB

In [16]:

```
test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23856 entries, 0 to 23855
Columns: 142 entries, Id to agesq
dtypes: float64(8), int64(129), object(5)
```

train.select dtypes('int64').head()

Out[19]:

Looking at the train and test dataset we noticed that the following:

Train dataset: Rows: 9557 entries, 0 to 9556 Columns: 143 entries, Id to Target Column dtypes: float64(8), int64(130), object(5)

Test dataset: Rows: 23856 entries, 0 to 23855 Columns: 142 entries, Id to agesq dtypes: float64(8), int64(129), object(5)

The important piece of information here is that we don't have 'Target' feature in Test Dataset. There are 5 object type, 130(Train set)/ 129 (test set) integer type and 8 float type features. Lets look at those features next.

```
In [18]:
#List the columns for different datatypes:
print('Integer Type: ')
print(train.select dtypes(np.int64).columns)
print('\n')
print('Float Type: ')
print(train.select_dtypes(np.float64).columns)
print('\n')
print('Object Type: ')
print(train.select_dtypes(np.object).columns)
Integer Type:
Index(['hacdor', 'rooms', 'hacapo', 'v14a', 'refrig', 'v18q', 'r4h1', 'r4h2',
       'r4h3', 'r4m1',
       'areal', 'area2', 'age', 'SQBescolari', 'SQBage', 'SQBhogar_total',
       'SQBedjefe', 'SQBhogar nin', 'agesq', 'Target'],
      dtype='object', length=130)
Float Type:
Index(['v2a1', 'v18q1', 'rez esc', 'meaneduc', 'overcrowding',
       'SQBovercrowding', 'SQBdependency', 'SQBmeaned'],
     dtype='object')
Object Type:
Index(['Id', 'idhogar', 'dependency', 'edjefe', 'edjefa'], dtype='object')
In [19]:
```

```
hacdor rooms hacapo v14a refrig v18q r4h1 r4h2 r4h3 r4m1 ... area1 area2 age SQBescolari SQBage SQBhogar_total SQBedjefe SQBhogar_nin agesq Target
                                                                                      100
                                                                                             1849
                                                                                                                      100
                                                                                                                                     0 1849
                                                                       0
                                                                          67
                                                                                      144
                                                                                             4489
                                                                                                                      144
                                                                                                                                       4489
                                                                                                              1
                                                                                      121
                                                                                             8464
                                                                                                                                         8464
           5
                                                                          17
                                                                                                              16
                                                                                                                      121
    0
                                                                       0
                                                                                       81
                                                                                              289
                                                                                                                                          289
                                                                                      121
                                                                                             1369
                                                                                                              16
                                                                                                                       121
                                                                                                                                     4 1369
```

5 rows × 130 columns

```
#Find columns with null values
null_counts=train.select_dtypes('int64').isnull().sum()
null counts[null counts > 0]
Out[20]:
Series([], dtype: int64)
In [21]:
train.select dtypes('float64').head()
```

Out[21]:

In [20]:

v2a1 v18q1 rez_esc meaneduc overcrowding SQBovercrowding SQBdependency SQBmeaned NaN 10.0 1.000000 1.000000 0.0 100.0 **0** 190000.0 NaN 1 135000.0 1.0 NaN 12.0 1.000000 1.000000 64.0 144.0 0.250000 NaN 11.0 0.500000 64.0 121.0 NaN NaN 3 180000.0 1.333333 1.777778 1.0 121.0 1.0 1.0 11.0 4 180000.0 1.0 NaN 11.0 1.333333 1.777778 1.0 121.0

In [22]:

```
#Find columns with null values
null counts=train.select dtypes('float64').isnull().sum()
null_counts[null_counts > 0]
```

Out[22]:

6860 v2a1 v18q1 7342 7928 rez_esc 5 meaneduc 5 SQBmeaned dtype: int64

In [23]:

train.select dtypes('object').head()

Out[23]:

	Id	idhogar	dependency	edjefe	edjefa
0	ID_279628684	21eb7fcc1	no	10	no
1	ID_f29eb3ddd	0e5d7a658	8	12	no
2	ID_68de51c94	2c7317ea8	8	no	11
3	ID_d671db89c	2b58d945f	yes	11	no
4	ID_d56d6f5f5	2b58d945f	yes	11	no

In [24]:

```
#Find columns with null values
null_counts=train.select_dtypes('object').isnull().sum()
null counts[null counts > 0]
```

Out[24]:

Series([], dtype: int64)

Looking at the different types of data and null values for each feature. We found the following: 1. No null values for Integer type features. 2. No null values for float type features. 3. For Object types v2a1 6860 v18q1 7342 rez_esc 7928 meaneduc 5 SQBmeaned 5

We also noticed that object type features dependency, edjefe, edjefa have mixed values.

Lets fix the data for features with null values and features with mixed values

Lets fix the column with mixed values.

According to the documentation for these columns: dependency: Dependency rate, calculated = (number of members of the household younger than 19 or older than 64)/(number of member of household between 19 and 64) edjefe: years of education of male head of household, based on the interaction of escolari (years of education), head of household and gender, yes=1 and no=0 edjefa: years of education of female head of household, based on the interaction of escolari (years of education), head of household and gender, yes=1 and no=0

For these three variables, it seems "yes" = 1 and "no" = 0. We can correct the variables using a mapping and convert to floats.

In [26]:

```
mapping={'yes':1,'no':0}
for df in [train, test]:
   df['dependency'] =df['dependency'].replace(mapping).astype(np.float64)
   df['edjefe'] =df['edjefe'].replace(mapping).astype(np.float64)
   df['edjefa'] =df['edjefa'].replace(mapping).astype(np.float64)
train[['dependency','edjefe','edjefa']].describe()
```

Out[26]:

	dependency	edjefe	edjefa
count	9557.000000	9557.000000	9557.000000
mean	1.149550	5.096788	2.896830
std	1.605993	5.246513	4.612056
min	0.000000	0.000000	0.000000
25%	0.333333	0.000000	0.000000
50%	0.666667	6.000000	0.000000
75%	1.333333	9.000000	6.000000
max	8.000000	21.000000	21.000000

Lets fix the column with null values

According to the documentation for these columns:

v2a1 (total nulls: 6860): Monthly rent payment v18q1 (total nulls: 7342): number of tablets household owns rez_esc (total nulls: 7928): Years behind in school meaneduc (total nulls: 5): average years of education for adults (18+) SQBmeaned (total nulls: 5): square of the mean years of education of adults (>=18) in the household 142

```
In [27]:
```

```
# 1. Lets look at v2al (total nulls: 6860) : Monthly rent payment
# why the null values, Lets look at few rows with nulls in v2al
# Columns related to Monthly rent payment
# tipovivil, =1 own and fully paid house
# tipovivi2, "=1 own, paying in installments"
# tipovivi3, =1 rented
# tipovivi4, =1 precarious
# tipovivi5, "=1 other(assigned, borrowed)"
```

In [28]:

```
data = train[train['v2a1'].isnull()].head()
columns=['tipovivi1','tipovivi2','tipovivi3','tipovivi4','tipovivi5']
data[columns]
```

Out[28]:

tipovivi1 tipovivi2 tipovivi3 tipovivi4 tipovivi5 2 1 0 0 0 0 13 1 0 0 0 0 14 1 0 0 0 0 26 1 0 0 0 0 32 1 0 0 0 0

In [29]:

Home Ownership Status for Households Missing Rent Payments

In [31]:

```
#Looking at the above data it makes sense that when the house is fully paid, there will be no monthly rent payment.
#Lets add 0 for all the null values.
for df in [train,test]:
    df['v2a1'].fillna(value=0, inplace=True)

train[['v2a1']].isnull().sum()
```

Out[31]:

v2a1 0 dtype: int64

In [32]:

```
# 2. Lets look at v18q1 (total nulls: 7342) : number of tablets household owns
# why the null values, Lets look at few rows with nulls in v18q1
# Columns related to number of tablets household owns
# v18q, owns a tablet
```

In [33]:

```
# Since this is a household variable, it only makes sense to look at it on a household level,
# so we'll only select the rows for the head of household.

# Heads of household
heads = train.loc[train['parentescol'] == 1].copy()
heads.groupby('v18q')['v18q1'].apply(lambda x: x.isnull().sum())
```

Out[33]:

v18q 0 2318 1 0 Name: v18q1, dtype: int64

In [34]:

plt.show();

```
V18q1 Value Counts

1600
1400
1200
1000
600
400
200
0
178q1
V18q1
```

In [35]:

```
#Looking at the above data it makes sense that when owns a tablet column is 0, there will be no number of tablets household owns.
#Lets add 0 for all the null values.
for df in [train, test]:
    df['v18q1'].fillna(value=0, inplace=True)

train[['v18q1']].isnull().sum()
Out[35]:
```

ode[50]

v18q1 0 dtype: int64

In [36]:

```
# 3. Lets look at rez_esc (total nulls: 7928) : Years behind in school

# why the null values, Lets look at few rows with nulls in rez_esc

# Columns related to Years behind in school

# Age in years

# Lets look at the data with not null values first.

train[train['rez_esc'].notnull()]['age'].describe()
```

Out[36]:

1629.000000 count 12.258441 mean 3.218325 std 7.000000 min 25% 9.000000 50% 12.000000 75% 15.000000 max 17.000000 Name: age, dtype: float64

In [37]:

#From the above, we see that when min age is 7 and max age is 17 for Years, then the 'behind in school' column has a value.
#Lets confirm
train.loc[train['rez_esc'].isnull()]['age'].describe()

Out[37]:

count 7928.000000 38.833249 mean std 20.989486 min 0.000000 25% 24.000000 50% 38.000000 75% 54.000000 97.000000 max Name: age, dtype: float64

In [38]:

train.loc[(train['rez_esc'].isnull() & ((train['age'] > 7) & (train['age'] < 17)))]['age'].describe() #There is one value that has Null for the 'behind in school' column with age between 7 and 17

Out[38]:

count 1.0 10.0 mean NaN std min 10.0 25% 10.0 10.0 50% 75% 10.0 10.0 max Name: age, dtype: float64

In [39]:

train[(train['age'] ==10) & train['rez_esc'].isnull()].head()
train[(train['Id'] =='ID_f012e4242')].head()
#there is only one member in household for the member with age 10 and who is 'behind in school'. This explains why the member is
#behind in school.

Out[39]:

	ld	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	SQBescolari	SQBage	SQBhogar_total	SQBedjefe	SQBhogar_nin	SQBovercrowding	SQBdependency	SQBmeaned	agesq T	arget
2514	ID_f012e4242	160000.0	0	6	0	1	1	1	1.0	0	. 0	100	9	121	1	2.25	0.25	182.25	100	4

1 rows × 143 columns

In [40]:

```
#from above we see that the 'behind in school' column has null values
# Lets use the above to fix the data
for df in [train,test]:
    df['rez_esc'].fillna(value=0, inplace=True)
train[['rez_esc']].isnull().sum()
```

Out[40]:

rez_esc 0
dtype: int64

In [41]:

```
#Lets look at meaneduc (total nulls: 5): average years of education for adults (18+)
# why the null values, Lets look at few rows with nulls in meaneduc
# Columns related to average years of education for adults (18+)
# edjefe, years of education of male head of household, based on the interaction of escolari (years of education),
# head of household and gender, yes=1 and no=0
```

```
# edjefa, years of education of female head of household, based on the interaction of escolari (years of education),
    head of household and gender, yes=1 and no=0
# instlevel1, =1 no level of education
# instlevel2, =1 incomplete primary
In [42]:
data = train[train['meaneduc'].isnull()].head()
columns=['edjefe','edjefa','instlevel1','instlevel2']
data[columns][data[columns]['instlevel1']>0].describe()
Out[42]:
      edjefe edjefa instlevel1 instlevel2
count
        0.0
              0.0
                      0.0
                              0.0
       NaN
             NaN
                     NaN
                             NaN
mean
       NaN
             NaN
                     NaN
                             NaN
  std
       NaN
             NaN
  min
                     NaN
                             NaN
             NaN
                             NaN
 25%
       NaN
                     NaN
 50%
       NaN
             NaN
                     NaN
                             NaN
       NaN
             NaN
                     NaN
                             NaN
  max
       NaN
             NaN
                     NaN
                             NaN
In [43]:
#from the above, we find that meaneduc is null when no level of education is 0
#Lets fix the data
for df in [train, test]:
    df['meaneduc'].fillna(value=0, inplace=True)
train[['meaneduc']].isnull().sum()
Out[43]:
            0
meaneduc
dtype: int64
In [44]:
#Lets look at SQBmeaned (total nulls: 5) : square of the mean years of education of adults (>=18) in the household 142
# why the null values, Lets look at few rows with nulls in SQBmeaned
# Columns related to average years of education for adults (18+)
# edjefe, years of education of male head of household, based on the interaction of escolari (years of education),
    head of household and gender, yes=1 and no=0
# edjefa, years of education of female head of household, based on the interaction of escolari (years of education),
# head of household and gender, yes=1 and no=0
# instlevel1, =1 no level of education
# instlevel2, =1 incomplete primary
In [45]:
data = train[train['SQBmeaned'].isnull()].head()
columns=['edjefe','edjefa','instlevel1','instlevel2']
data[columns][data[columns]['instlevel1']>0].describe()
Out[45]:
      edjefe edjefa instlevel1 instlevel2
                              0.0
       NaN
             NaN
                     NaN
                             NaN
mean
       NaN
             NaN
                     NaN
                             NaN
             NaN
                             NaN
 25%
       NaN
                     NaN
 50%
       NaN
             NaN
                     NaN
                             NaN
 75%
       NaN
             NaN
                     NaN
                             NaN
       NaN
             NaN
                     NaN
                             NaN
  max
In [47]:
#from the above, we find that SQBmeaned is null when no level of education is 0
#Lets fix the data
for df in [train, test]:
    df['SQBmeaned'].fillna(value=0, inplace=True)
train[['SQBmeaned']].isnull().sum()
Out[47]:
SQBmeaned
             0
dtype: int64
In [48]:
#Lets look at the overall data
null counts = train.isnull().sum()
null_counts[null_counts > 0].sort_values(ascending=False)
Out[48]:
Series([], dtype: int64)
Lets see if records belonging to same household has same target/score.
In [49]:
# Groupby the household and figure out the number of unique values
all_equal = train.groupby('idhogar')['Target'].apply(lambda x: x.nunique() == 1)
# Households where targets are not all equal
not_equal = all_equal[all_equal != True]
print('There are {} households where the family members do not all have the same target.'.format(len(not equal)))
There are 85 households where the family members do not all have the same target.
In [50]:
#Lets check one household
train[train['idhogar'] == not_equal.index[0]][['idhogar', 'parentescol', 'Target']]
Out[50]:
       idhogar parentesco1 Target
7651 0172ab1d9
7652 0172ab1d9
                            2
7653 0172ab1d9
                            3
```

7654 0172ah1d9

```
In [51]:
#Lets use Target value of the parent record (head of the household) and update rest. But before that lets check
# if all families has a head.
households_head = train.groupby('idhogar')['parentescol'].sum()
# Find households without a head
households no head = train.loc[train['idhogar'].isin(households head[households head == 0].index), :]
print('There are {} households without a head.'.format(households_no_head['idhogar'].nunique()))
There are 15 households without a head.
In [52]:
# Find households without a head and where Target value are different
households_no_head_equal = households_no_head.groupby('idhogar')['Target'].apply(lambda x: x.nunique() == 1)
print('{} Households with no head have different Target value.'.format(sum(households_no_head_equal == False)))
O Households with no head have different Target value.
In [54]:
#Lets fix the data
#Set poverty level of the members and the head of the house within a family.
# Iterate through each household
for household in not_equal.index:
    # Find the correct label (for the head of household)
    true_target = int(train['idhogar'] == household) & (train['parentescol'] == 1.0)]['Target'])
    # Set the correct label for all members in the household
    train.loc[train['idhogar'] == household, 'Target'] = true_target
# Groupby the household and figure out the number of unique values
all_equal = train.groupby('idhogar')['Target'].apply(lambda x: x.nunique() == 1)
# Households where targets are not all equal
not equal = all equal[all equal != True]
print('There are {} households where the family members do not all have the same target.'.format(len(not_equal)))
There are 0 households where the family members do not all have the same target.
In [55]:
#Lets look at the dataset and plot head of household and Target
\# 1 = extreme poverty 2 = moderate poverty 3 = vulnerable households 4 = non vulnerable households
target_counts = heads['Target'].value_counts().sort_index()
target_counts
Out[55]:
      222
      442
     355
3
    1954
Name: Target, dtype: int64
In [56]:
target_counts.plot.bar(figsize = (8, 6),linewidth = 2,edgecolor = 'k',title="Target vs Total Count")
<matplotlib.axes._subplots.AxesSubplot at 0xde88b0>
2000
1750
 1500
1250
 1000
 750
 500
  250
extreme poverty is the smallest count in the train dataset. The dataset is biased.
In [58]:
#Lets remove them
print(train.shape)
cols=['SQBescolari', 'SQBage', 'SQBhogar total', 'SQBedjefe',
        'SQBhogar nin', 'SQBovercrowding', 'SQBdependency', 'SQBmeaned', 'agesq']
for df in [train, test]:
    df.drop(columns = cols,inplace=True)
print(train.shape)
(9557, 143)
(9557, 134)
In [59]:
id_ = ['Id', 'idhogar', 'Target']
ind_bool = ['v18q', 'dis', 'male', 'female', 'estadocivil1', 'estadocivil2', 'estadocivil3',
            'estadocivil4', 'estadocivil5', 'estadocivil6', 'estadocivil7',
            'parentesco1', 'parentesco2', 'parentesco3', 'parentesco4', 'parentesco5',
            'parentesco6', 'parentesco7', 'parentesco8', 'parentesco9', 'parentesco10',
            'parentescoll', 'parentescol2', 'instlevel1', 'instlevel2', 'instlevel3',
            'instlevel4', 'instlevel5', 'instlevel6', 'instlevel7', 'instlevel8',
            'instlevel9', 'mobilephone']
ind ordered = ['rez esc', 'escolari', 'age']
hh bool = ['hacdor', 'hacapo', 'v14a', 'refrig', 'paredblolad', 'paredzocalo',
           'paredpreb', 'pisocemento', 'pareddes', 'paredmad',
           'paredzinc', 'paredfibras', 'paredother', 'pisomoscer', 'pisoother',
           'pisonatur', 'pisonotiene', 'pisomadera',
```

idhogar parentesco1 Target 7655 0172ab1d9 0 2

```
'techozinc', 'techoentrepiso', 'techocane', 'techootro', 'cielorazo',
            'abastaguadentro', 'abastaguafuera', 'abastaguano',
            'public', 'planpri', 'noelec', 'coopele', 'sanitario1',
            'sanitario2', 'sanitario3', 'sanitario5', 'sanitario6',
            'energcocinar1', 'energcocinar2', 'energcocinar3', 'energcocinar4',
            'elimbasu1', 'elimbasu2', 'elimbasu3', 'elimbasu4',
            'elimbasu5', 'elimbasu6', 'epared1', 'epared2', 'epared3',
            'etecho1', 'etecho2', 'etecho3', 'eviv1', 'eviv2', 'eviv3',
            'tipovivi1', 'tipovivi2', 'tipovivi3', 'tipovivi4', 'tipovivi5',
            'computer', 'television', 'lugar1', 'lugar2', 'lugar3',
            'lugar4', 'lugar5', 'lugar6', 'area1', 'area2']
hh_ordered = [ 'rooms', 'r4h1', 'r4h2', 'r4h3', 'r4m1', 'r4m2', 'r4m3', 'r4t1', 'r4t2',
               'r4t3', 'v18q1', 'tamhog', 'tamviv', 'hhsize', 'hogar_nin',
               'hogar_adul','hogar_mayor','hogar_total', 'bedrooms', 'qmobilephone']
hh cont = ['v2a1', 'dependency', 'edjefe', 'edjefa', 'meaneduc', 'overcrowding']
In [60]:
#Check for redundant household variables
heads = train.loc[train['parentesco1'] == 1, :]
heads = heads[id + hh bool + hh cont + hh ordered]
heads.shape
Out[60]:
(2973, 98)
In [61]:
# Create correlation matrix
corr matrix = heads.corr()
# Select upper triangle of correlation matrix
upper = corr matrix.where(np.triu(np.ones(corr matrix.shape), k=1).astype(np.bool))
# Find index of feature columns with correlation greater than 0.95
to_drop = [column for column in upper.columns if any(abs(upper[column]) > 0.95)]
to_drop
Out[61]:
['coopele', 'area2', 'tamhog', 'hhsize', 'hogar_total']
In [62]:
corr_matrix.loc[corr_matrix['tamhog'].abs() > 0.9, corr_matrix['tamhog'].abs() > 0.9]
Out[62]:
             r4t3 tamhog
                                   hhsize hogar_total
                           tamviv
      r4t3 1.000000 0.996884 0.929237 0.996884
                                           0.996884
   tamhog 0.996884 1.000000 0.926667 1.000000
                                           1.000000
    tamviv 0.929237 0.926667 1.000000 0.926667
                                           0.926667
    hhsize 0.996884 1.000000 0.926667 1.000000
                                           1.000000
hogar_total  0.996884  1.000000  0.926667  1.000000
                                           1.000000
In [64]:
sns.heatmap(corr_matrix.loc[corr_matrix['tamhog'].abs() > 0.9, corr_matrix['tamhog'].abs() > 0.9],
             annot=True, cmap = plt.cm.Accent r, fmt='.3f');
           0.997
     1.000
                  0.929
                        0.997 0.997
                         1.000
                               1.000
    0.997
           1.000
                  0.927
                                        - 0.97
           0.927
                  1.000
                               0.927
tamviv
                                        - 0.96
                                        - 0.95
           1.000
                         1.000
                               1.000
    0.997
                  0.927
hhsize
                                        - 0.94
     0.997
           1.000
                         1.000
                               1.000
                                         0.93
     r4t3
           tamhog
                  tamviv
                         hhsize hogar_total
In [65]:
# There are several variables here having to do with the size of the house:
# r4t3, Total persons in the household
# tamhog, size of the household
# tamviv, number of persons living in the household
# hhsize, household size
# hogar total, # of total individuals in the household
# These variables are all highly correlated with one another.
In [66]:
cols=['tamhog', 'hogar total', 'r4t3']
for df in [train,test]:
    df.drop(columns = cols,inplace=True)
train.shape
Out[66]:
(9557, 131)
In [67]:
#Check for redundant Individual variables
ind = train[id + ind bool + ind ordered]
ind.shape
Out[67]:
(9557, 39)
In [68]:
# Create correlation matrix
corr matrix = ind.corr()
# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
# Find index of feature columns with correlation greater than 0.95
to drop = [column for column in upper.columns if any(abs(upper[column]) > 0.95)]
to_drop
Out[68]:
[[fama]a]]
```

```
# This is simply the opposite of male! We can remove the male flag.
for df in [train, test]:
   df.drop(columns = 'female',inplace=True)
train.shape
Out[76]:
(9557, 129)
In [77]:
#lets check areal and area2 also
# area1, =1 zona urbana
# area2, =2 zona rural
#area2 redundant because we have a column indicating if the house is in a urban zone
for df in [train, test]:
   df.drop(columns = 'area2',inplace=True)
train.shape
Out[77]:
(9557, 128)
In [78]:
#Finally lets delete 'Id', 'idhogar'
cols=['Id','idhogar']
for df in [train, test]:
   df.drop(columns = cols,inplace=True)
train.shape
Out[78]:
(9557, 126)
Predict the accuracy using random forest classifier.
In [80]:
x features=train.iloc[:,0:-1]
y_features=train.iloc[:,-1]
print(x_features.shape)
print(y_features.shape)
(9557, 125)
(9557,)
In [81]:
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,f1_score,classification_report
x_train,x_test,y_train,y_test=train_test_split(x_features,y_features,test_size=0.2,random_state=1)
rmclassifier = RandomForestClassifier()
In [82]:
rmclassifier.fit(x_train,y_train)
Out[82]:
RandomForestClassifier()
In [83]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                      max_depth=None, max_features='auto', max_leaf_nodes=None,
                      min_impurity_decrease=0.0, min_impurity_split=None,
                      min samples leaf=1, min samples split=2,
                      min weight fraction leaf=0.0, n estimators=10,
                      n_jobs=None, oob_score=False, random_state=None,
                      verbose=0, warm_start=False)
Out[83]:
RandomForestClassifier(n estimators=10)
In [84]:
y_predict = rmclassifier.predict(x_test)
In [85]:
print(accuracy_score(y_test,y_predict))
print(confusion matrix(y_test,y_predict))
print(classification_report(y_test,y_predict))
0.9518828451882845
2 289 0 26]
    0 1 194 38]
    0
        1 1 1203]]
             precision
                          recall f1-score
                                             support
          1
                  0.99
                            0.85
                                      0.91
                                                 157
                                                 317
          2
                  0.99
                            0.91
                                      0.95
          3
                  0.99
                            0.83
                                      0.91
                                                 233
           4
                  0.93
                            1.00
                                      0.96
                                                1205
                                      0.95
                                                1912
   accuracy
  macro avg
                  0.98
                            0.90
                                      0.93
                                                1912
                  0.95
                            0.95
                                      0.95
                                                1912
weighted avg
In [87]:
y predict testdata = rmclassifier.predict(test)
In [88]:
y predict testdata
Out[88]:
array([4, 4, 4, ..., 4, 4], dtype=int64)
Check the accuracy using random forest with cross validation.
```

[. тешате .]

In [76]:

In [89]:

from sklearn.model selection import KFold,cross val score

Checking the score using default 10 trees

```
In [90]:
```

```
seed=7
kfold=KFold(n_splits=5,random_state=seed,shuffle=True)
rmclassifier=RandomForestClassifier(random_state=10,n_jobs = -1)
print(cross_val_score(rmclassifier,x_features,y_features,cv=kfold,scoring='accuracy'))
results=cross_val_score(rmclassifier,x_features,y_features,cv=kfold,scoring='accuracy')
print(results.mean()*100)
```

[0.94717573 0.94665272 0.94400837 0.94348509 0.94819466]

94.59033146570505

Checking the score using 100 trees

In [92]:

```
num_trees= 100
rmclassifier=RandomForestClassifier(n_estimators=100, random_state=10,n_jobs = -1)
print(cross val score(rmclassifier,x features,y features,cv=kfold,scoring='accuracy'))
results=cross_val_score(rmclassifier,x_features,y_features,cv=kfold,scoring='accuracy')
print(results.mean()*100)
```

[0.94717573 0.94665272 0.94400837 0.94348509 0.94819466]

94.59033146570505

In [95]:

```
rmclassifier.fit(x_features,y_features)
labels = list(x features)
feature_importances = pd.DataFrame({'feature': labels, 'importance': rmclassifier.feature_importances_})
feature_importances=feature_importances[feature_importances.importance>0.015]
feature_importances.head()
```

Out[95]:

feature importance v2a1 0.019724

2	rooms	0.026011
9	r4h2	0.020433
10	r4h3	0.019571

0.015607

r4m1

In [96]:

```
feature_importances.sort_values(by=['importance'], ascending=True, inplace=True)
feature_importances['positive'] = feature_importances['importance'] > 0
feature importances.set_index('feature',inplace=True)
feature_importances.head()
feature_importances.importance.plot(kind='barh', figsize=(11, 6),color = feature_importances.positive.map({True: 'blue', False: 'red'}))
plt.xlabel('Importance')
```

Out[96]:

Text(0.5, 0, 'Importance')

From the above figure, meaneduc, dependency, overcrowding has significant influence on the model.

In []: