Booth Multiplication Algorithm

Booth Algorithm

- •An efficient way to multiply two signed binary numbers expressed in 2's complement notation :
- •Reduces the number of operations by relying on blocks of consecutive 1's
- •Example:
- •Y × 001111110 = Y × $(2^5+2^4+2^3+2^2+2^1)$.
- •Y × 001111110 =Y × (01000000-00000010) = Y × (2^{6} - 2^{1}).

One addition and one subtraction

Description and Hardware for Booth Multiplication

- *QR* multiplier
- Q_n least significant bit of QR
- Q_{n+1} previous least significant bit of QR
- *BR* multiplicand
- \bullet AC = 0
- *SC* number of bits in multiplier

Algorithm

Do SC times

$$Q_{n}Q_{n+1} = 10$$

$$AC \leftarrow AC + \overline{BR} + 1$$

$$Q_{n}Q_{n+1} = 01$$

$$AC \leftarrow AC + BR$$

Arithmetic shift right AC& QR

$$SC \leftarrow SC - 1$$

- For our example, and multiply (-9) x (-13)
 - The numerically larger operand (13) would require 4 bits to represent in binary (1101). So we must use AT LEAST 5 bits to represent the operands, to allow for the sign bit.

Flowchart for Booth Multiplication

START Multiply 7 x 3 using above signed 2's compliment binary multiplication. Multiplicand =7 \rightarrow Binary equivalent is 0111 \rightarrow M Multiplier = $3 \rightarrow Binary equivalent is 0011 \rightarrow Q$ $-7 \rightarrow$ Binary equivalent is $1001 \rightarrow -M$ Count←n **A** 0 0 0 0 **A** 1 1 1 0 + -M 1 0 0 1 + M 0 1 1 1 A1001 **A** 0 1 0 1 =10Qn, Q_{n+1} A←A-M =11 =00

Step	A	Q	Q_{n+1} Action C_0	ount
1	0 0 0 0	0 0 1 1	0 Initial	4
2 2	1001	0 0 1 1	0 A←A-M	
2	1 1 0 0	1 0 0 1	1 Shift	3
3	1 1 1 0	0 1 0 0	1 Shift	2
4 4	0 1 0 1 0 0 1 0	0 1 0 0 1 0 1 0	1 A←A+M O Shift	1
5	0 0 0 1	0 1 0 1	0 Shift	0

Examples

• Multiply the following using Booth's algorithm

```
7 x -3
-7 x 3
-7 x -3
11 x 13
-11 x 13
-11 x -13
```

Reference

• Morris Mano, "Computer System Architecture", Pearson Education, 3rd edition (Chapter 10)