

Deep Learning Project

Facial Emotion Recognition in Job interviews

Table of Contents

Introduction

Dataset & EDA

Methodology

Results

Future Works

Conclusion

Ministry of Human Resources and Social Development

- Using facial emotion recognition to prospective candidates based on some factors
- Finding the person whose personality and characteristics are best suited to the job

Building a Convolutional Neural Network model that uses the dataset images to determine the correct emotion type of a person face

Images are categorized based on the emotion shown in the facial expressions (happiness, neutral, sadness, anger, surprise, disgust, fear)

Exploratory Data Analysis

Fig 1: EDA for training set

Fig 2: EDA for testing set

Models Convolutional Neural Networks (CNN)

Model build settings:

Callbacks Function:

- 1.Model Check point.
- 2.Early Stopping.

Hyperparameter Settings:

• As shown in Table 1

Table 1: Hyperparameter Settings

(Hyper) Parameter	Setting
Epochs E	15
Batch Size	64
Activation Function	SoftMax
Optimizer	Adam Algorithm
Loss Function	Categorical cross entropy
Metrics	Accuracy

First Model Results:

By training the CNN model using 15 epochs, the accuracy results are constantly improving from 39 to 87

Fig 3: the results for the first model

Experiment #1

accuracy	Val loss	Val accuracy
0.43	1.86	0.32

Fig 4: the results for Experiment 1

Experiment #2

accuracy	Val loss	Val accuracy
0.56	1.44	0.45

Fig 5: the results for Experiment 2

Experiment #3

Accuracy	Val loss	Val accuracy
0.71	1.07	0.60

Fig 6: the results for Experiment 3

VGG16 with Transfer Learning

Fig 7: the results for VGG16 Model

(Hyper) Parameter	Setting
Epochs E	15
Batch Size	64
Learning Rate	0.0001
Weights	ImageNet
Activation Function	RELU, SoftMax
Optimizer	Adam Algorithm
Loss Function	Categorical cross entropy
Metrics	Accuracy

Best Results

Test Accuracy: 0.86

Future Work

Crime Investigation

Customer satisfaction

Airports Inspection

Digital Advertising

Conclusion

• Build a Convolutional Neural Network (CNN) and VGG16 by Transfer Learning models to get the best result to apply on facial emotion recognition.

• Facial emotion recognition can be used on jobs interviews field by Human Resources and Social Development.

• Easier to find the person whose personality and characteristics are best suited to the job.

