CALIPSO-inferred aerosol direct radiative effects: bias estimates using ground-based Raman lidars Tyler Thorsen and Qiang Fu LANCE Rapid Response MODIS images: Aug 22, 2015

Aerosol direct effect (DRE)

• The change in radiative flux caused by the presence of aerosols (both natural and anthropogenic)

Aerosol direct effect (DRE)

- The change in radiative flux caused by the presence of aerosols (both natural and anthropogenic)
 - How aerosol affects the Earth's radiation balance in the present climate
 - Evaulate how GCMs represent aerosol chemistry, transport and radiative properties (e.g. Kinne JGR 2003)
 - Estimation of aerosol radiative forcing (i.e. anthropogenic aerosols)

(Bellouin et al. Nature 2005, Kaufman GRL 2005, Su et al. JGR 2013)

Satellite estimates of aerosol DRE

- Many estimates of the shortwave (SW) aerosol DRE have been made using passive remote sensors (Yu et al. ACP 2006 and references therein)
 - Longwave aerosol DRE is usually much smaller
 - Mostly MODIS-based

Satellite estimates of aerosol DRE

- Many estimates of the shortwave (SW) aerosol DRE have been made using passive remote sensors (Yu et al. ACP 2006 and references therein)
 - Longwave aerosol DRE is usually much smaller
 - Mostly MODIS-based

- The global-mean SW aerosol DRE at the TOA is about $-5.0 \ Wm^{-2}$
 - ullet The presence of aerosols increases the amount of reflected SW by 5.0 Wm^{-2}

CALIPSO

- Vertically-resolved aerosol properties over all surface types during both day and night
- Easier to separate cloud from aerosol in the same profile

CALIPSO

- Vertically-resolved aerosol properties over all surface types during both day and night
- Easier to separate cloud from aerosol in the same profile
- Recent studies have made new estimates of the global-mean aerosol DRE using CALIPSO:
 - **1** Oikawa et al. JGR 2013: $-0.61 \ Wm^{-2}$
 - **2** Matus et al. JCLIM 2015: $-1.9 \ Wm^{-2}$

CALIPSO

- Vertically-resolved aerosol properties over all surface types during both day and night
- Easier to separate cloud from aerosol in the same profile
- Recent studies have made new estimates of the global-mean aerosol DRE using CALIPSO:
 - **1** Oikawa et al. JGR 2013: $-0.61 \ Wm^{-2}$
 - **2** Matus et al. JCLIM 2015: $-1.9 \ Wm^{-2}$
 - Previous passive estimates: −5.0 Wm⁻²

CALIPSO

- Vertically-resolved aerosol properties over all surface types during both day and night
- Easier to separate cloud from aerosol in the same profile
- Recent studies have made new estimates of the global-mean aerosol DRE using CALIPSO:
 - **1** Oikawa et al. JGR 2013: $-0.61 \ Wm^{-2}$
 - **2** Matus et al. JCLIM 2015: $-1.9 \ Wm^{-2}$
 - Clear-sky ocean = $-3.21 \ Wm^{-2} \ / \ -2.6 \ Wm^{-2}$
 - Previous passive estimates: −5.0 Wm⁻²

CALIPSO

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite)

- Vertically-resolved aerosol properties over all surface types during both day and night
- Easier to separate cloud from aerosol in the same profile
- Recent studies have made new estimates of the global-mean aerosol DRE using CALIPSO:
 - **1** Oikawa et al. JGR 2013: $-0.61 \ Wm^{-2}$
 - **2** Matus et al. JCLIM 2015: $-1.9 \ Wm^{-2}$
 - Clear-sky ocean = $-3.21 \ Wm^{-2} \ / \ -2.6 \ Wm^{-2}$
 - Previous passive estimates: −5.0 Wm⁻²

Assess CALIPSO's capabilities for deriving the aerosol DRE to better understand this discrepancy

Evaluating CALIPSO

ARM Raman lidars (RL)

Evaluating CALIPSO

lacktriangle Radiative flux ightarrow aerosol extinction ightarrow assumed lidar ratio (ratio of extinction-to-backscatter)

ARM Raman lidars (RL)

Direct extinction measurements
(no critical assumptions)

Evaluating CALIPSO

- $\textbf{ Radiative flux} \rightarrow \text{aerosol extinction} \rightarrow \\ \text{assumed lidar ratio} \text{ (ratio of extinction-to-backscatter)}$
- Is all radiatively-significant aerosol detected? (Kacenelenbogen et al. 2014, Rogers et al. 2014,

Thorsen et al. 2015)

ARM Raman lidars (RL)

- Direct extinction measurements (no critical assumptions)
- **2** Strong signals from aerosols (it's closer)

Methodology

 \bullet Collocate (± 200 km, ± 2 hr) CALIPSO aerosol products (VFM, ALay) and ARM RL-FEX product over a 5 year period at SGP, 4 year period at TWP

Methodology

- Collocate (± 200 km, ± 2 hr) CALIPSO aerosol products (VFM, ALay) and ARM RL-FEX product over a 5 year period at SGP, 4 year period at TWP
- Calculate aerosol DRE using the NASA Langley Fu-Liou radiative transfer model:

$$DRE^{\uparrow}(TOA) = F_{\text{aerosol}}^{\uparrow}(TOA) - F_{\text{no aerosol}}^{\uparrow}(TOA)$$

$$DRE^{\downarrow}(SFC) = F_{\text{aerosol}}^{\downarrow}(SFC) - F_{\text{no aerosol}}^{\downarrow}(SFC)$$

 Modify RL retrievals to mimic CALIPSO to test effect of 1 lidar ratio assumptions and 2 detection sensitivity

Effect of assumed lidar ratios

• Detect \rightarrow cloud/aerosol \rightarrow 6 aerosol subtypes \rightarrow lidar ratio \rightarrow extinction \rightarrow flux

Effect of assumed lidar ratios

• Detect o cloud/aerosol o 6 aerosol subtypes o lidar ratio o extinction o flux

Perform a CALIPSO-like retrieval using the RL with 3 types of lidar ratio averages

- "Profile": single vertical-mean in each profile (majority of CALIPSO profiles contain a single aerosol type)
- "Overpass": single temporal- and vertical-mean in each collocated overpass (majority of aerosol in an overpass is a single type)
- "Climo": single climatological value (50.08 sr at SGP and 40.26 sr at TWP)

Effect of assumed lidar ratios

Perform a CALIPSO-like retrieval using the RL with 3 types of lidar ratio averages

- "Profile": single vertical-mean in each profile
- "Overpass": single temporal- and vertical-mean in each collocated overpass
- 3 "Climo": single climatological value

Effect of assumed lidar ratios

Perform a CALIPSO-like retrieval using the RL with 3 types of lidar ratio averages

- "Profile": single vertical-mean in each profile
- "Overpass": single temporal- and vertical-mean in each collocated overpass
- 3 "Climo": single climatological value

Lidar ratio assumptions introduce minimal error in CALIPSO-inferred mean aerosol DRE

Detection sensitivity

Detection sensitivity

Is this undetected aerosol radiatively-significant?

Effect of detection sensitivity

- In each collocated overpass: force RL aerosol occurrence profile to match CALIPSO's by removing aerosol
- Monte Carlo method: obtain multiple realizations of what the missing aerosol might be

Effect of detection sensitivity

- In each collocated overpass: force RL aerosol occurrence profile to match CALIPSO's by removing aerosol
- Monte Carlo method: obtain multiple realizations of what the missing aerosol might be
- "RL-RM": RL degraded to CALIPSO's sensitivity

Effect of detection sensitivity

- In each collocated overpass: force RL aerosol occurrence profile to match CALIPSO's by removing aerosol
- Monte Carlo method: obtain multiple realizations of what the missing aerosol might be
- "RL-RM": RL degraded to CALIPSO's sensitivity

CALIPSO's lack of sensitivity causes a significant reduction of 30–50% in the magnitude of the aerosol DRE

Conclusions

• Assumptions about the aerosol lidar ratio used by CALIPSO likely cause minimal error in global estimates of the aerosol DRE.

Conclusions

- Assumptions about the aerosol lidar ratio used by CALIPSO likely cause minimal error in global estimates of the aerosol DRE.
- CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30–50%.

Conclusions

- Assumptions about the aerosol lidar ratio used by CALIPSO likely cause minimal error in global estimates of the aerosol DRE.
- CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30–50%.
- Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.
 - CALIPSO-based: $-0.61~Wm^{-2}$ to $-1.9~Wm^{-2}$ (Oikawa et al. JGR 2013, Matus et al. JCLIM 2015)
 - Passive-based: $-5~Wm^{-2}$ (Yu et al. ACP 2006)
- What is the aerosol DRE?

Undetected aerosol extinction

- "RL-RM" = CALIPSO-like
- What goes undetected is consistent with random noise considerations
- CALIPSO's SNR is too low to detect all aerosol during both day and night.

- Recent studies have made new estimates of the global-mean aerosol DRE using CALIPSO:
 - **1** Oikawa et al. JGR 2013: $-0.61 \ Wm^{-2}$
 - **2** Matus et al. JCLIM 2015: $-1.9 \ Wm^{-2}$
 - Previous passive estimates: $-5.0 \ Wm^{-2}$
 - Not just due to reduced DRE over cloud/land clear-sky ocean = -3.21 Wm⁻² / -2.6 Wm⁻²