Data Structures and Algorithms - II, Even 2020-21

Graph Algorithms: Breadth-First Search (BFS)

Graph Searching

- A vertex v is reachable from vertex u iff there is a path from u to v
- A search method starts at a given vertex u and visits/labels/marks every vertex that is reachable from v

Graph Search Methods

- Many graph problems solved using a search method
 - Path from one vertex to another
 - o Is the graph connected?
 - Find a spanning tree
 - etc.
- Commonly used search methods:
 - Breadth-first search
 - Depth-first search

Dispensers

- Graph searches require a data structure that temporarily holds vertices that are neighbors of previously visited vertices, or edges that leave previously visited vertices
- The data structures that are used form a family of abstract data types called dispensers
- A *dispenser* is an abstract data type that supports insert, delete, and retrieve operations
- The dispenser family is characterized by the fact that whenever it is not empty, only one of its data items is accessible for delete or retrieve operations
- Stacks, queues, and priority queues are the best-known abstract data types in the *dispenser* family
- They determine the accessible item in a different ways:
 - In a stack, it is the item that was inserted last
 - In a queue, it is the item that was inserted first
 - In a priority queue, it is the item that has the highest priority
 - the priority of an item in a priority queue may be specified as a parameter when the item is inserted, or it may be determined from the item's data contents

Visit start vertex and put into a FIFO queue

Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices

into the queue

Start search at vertex 1


```
BFS(G, root)
let Q be a queue
label root as discovered
Q.enqueue(root)
while Q is not empty do
   \mathbf{v} := \mathbf{Q}.\text{dequeue}()
   if v is the goal then
     return v
  for all edges from v to w in
G.adjacentEdges(v) do
     if w is not labeled as discovered then
         label w as discovered
         Q.enqueue(w)
Output: Goal state. The parent links trace
```

the shortest path back to **root**

- Remove 1 from Q, visit adjacent unvisited vertices, put in Q
- Remove 2 from Q, visit adjacent unvisited vertices, put in Q

Visit/mark/label start vertex and put in a FIFO queue

1 2 4

- Remove 4 from Q, visit adjacent unvisited vertices, put in Q
- Remove 3 from Q, visit adjacent unvisited vertices, put in Q
- Remove 5 from Q, visit adjacent unvisited vertices, put in Q

- Remove 6 from Q, visit adjacent unvisited vertices, put in Q
- Remove 9 from Q, visit adjacent unvisited vertices, put in Q
- Remove 7 from Q, visit adjacent unvisited vertices, put in Q

1 2 4 3	5 6 9	7 8	
---------	-------	-----	--

- Remove 8 from Q, visit adjacent unvisited vertices, put in Q
- Return to the invoking method

1	2	4	3	5	6	9	7	8	

- Start search at vertex 1
- Remove 1 from Q, visit adjacent unvisited vertices, put in Q

1 2	4				
-----	---	--	--	--	--

- Remove 2 from Q, visit adjacent unvisited vertices, put in Q
- Remove 4 from **Q**, visit adjacent unvisited vertices, put in **Q**

1 2 4	3	6		
-------	---	---	--	--

- Remove 3 from Q, visit adjacent unvisited vertices, put in Q
- Remove 6 from Q, visit adjacent unvisited vertices, put in Q

Visit/mark/label start vertex and put in a FIFO queue

1 2 4 3 6 7 5

- Remove 7 from Q, visit adjacent unvisited vertices, put in Q
- Remove 5 from Q, visit adjacent unvisited vertices, put in Q

	1	2	4	3	6	7	5
--	---	---	---	---	---	---	---

BFS Properties and Complexity

All vertices reachable from the start vertex (including the start vertex) are visited

Time Complexity

- Each visited vertex is put on (and so removed from) the queue exactly once
- When a vertex is removed from the queue, we examine its adjacent vertices
 - O(N) if adjacency matrix used
 - O(vertex degree) if adjacency lists used
- Total time
 - O(MN), where M is number of vertices in the component that is searched (adjacency matrix)
 - O(N + sum of component vertex degrees) (adj. lists) = O(N + number of edges in component)

Applications of BFS

- Shortest Path and Minimum Spanning Tree for unweighted graph
- Peer to Peer Networks
- Crawlers in Search Engines
- Social Networking Websites
- GPS Navigation systems
- Broadcasting in Network
- In Garbage Collection
- Cycle detection in undirected graph
- Ford–Fulkerson algorithm
- To test if a graph is Bipartite
- Path Finding
- Finding all nodes within one connected component

Application: Path from Vertex *u* to Vertex *v*

- Start a breadth-first search at vertex u
- Terminate when vertex v is visited or when Q becomes empty (whichever occurs first)
- Time
 - o O(N2) when adjacency matrix used
 - O(N + E) when adjacency lists used (E is number of edges)

Application: Is The Graph Connected?

- Start a breadth-first search at any vertex of the graph
- Graph is connected iff all N vertices get visited
- Time
 - o **O(N²)** when adjacency matrix used
 - O(N + E) when adjacency lists used (E is number of edges)

Connected Components

- Start a breadth-first search at any as yet unvisited vertex of the graph
- Newly visited vertices (plus edges between them) define a component
- Repeat until all vertices are visited

- Time complexity
 - o **O(N²)** when adjacency matrix used
 - O(N + E) when adjacency lists used (E is number of edges)

Spanning Tree

- Start a breadth-first search at any vertex of the graph
- If graph is connected, the N 1 edges used to get to unvisited vertices define a spanning tree (breadth-first spanning tree)

- Time complexity
 - O(N²) when adjacency matrix used
 - O(N + E) when adjacency lists used (E is number of edges)

Breadth-first search from vertex **1**Breadth-first spanning tree

Graph Algorithms: Depth-First Search (DFS)

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi.bhattacharjee@tum.de