Exo1. Étudien l'appartenance à L'(IR) et L'(IR) des fonctions suivantes;

$$P(t) := \frac{\sin t}{t} (t \neq 0)$$

$$\int_{\mathbb{R}} \left| \frac{\sinh t}{t} \right| dt = 2 \int_{0}^{\infty} \frac{|\sinh t|}{t} dt = 0, \text{ os sint } | \leq 1$$

$$|\sinh t| \geq \sin^{2} t = \frac{1 - \cos 2t}{2}$$

Sint e L2(IR)? 20,4 Sint -10,1 $||x|| = 2 \left(\int \frac{x^2}{x^2} dx \right) = 2 \left(\int \frac{x^2}{x^2} dx \right)$ IR to the series of the serie

$$\int_{\mathbb{R}} |g(t)|^{2} dt = \int_{0}^{\infty} \frac{dt}{\sqrt{(1+t^{2})^{2}}} \times \int_{$$

$$f(t) = \frac{1}{\sqrt{1+t^2}}, t \in \mathbb{R};$$

$$\int_{\mathbb{R}} |\mathcal{L}(t)| dt = 2 \int_{0}^{\infty} \frac{dt}{\sqrt{1+t^2}} = \infty, f \cdot h(t) \sim \frac{1}{\pi} \left(+ \text{Riemann} \right)$$

$$\int_{\mathbb{R}} |\mathcal{L}(t)|^2 dt = 2 \int_{0}^{\infty} \frac{dt}{\sqrt{1+t^2}} < \infty, f \cdot |\mathcal{L}(t)|^2 \sim \frac{1}{\pi} \left(+ \text{Riemann} \right)$$

$$\Rightarrow f \notin \mathcal{L}'(\mathbb{R}), f \in \mathcal{L}^2(\mathbb{R})$$

$$\mathcal{L}'(\mathbb{R}) = \frac{1}{\pi} \int_{0}^{\pi} \frac{dt}{\sqrt{1+t^2}} = \frac{1}{\pi} \int_{0}^{\pi} \frac{dt}{\sqrt{$$

silt|>A, $t^*e^t \leq 1$ ie $e^t \leq \frac{1}{L^2}$, donc $\int_{0}^{\pi} |\bar{e}^{t^{2}}|_{AL} = \int_{0}^{\pi} \bar{e}^{t^{2}}_{AL} + \int_{A}^{\infty} \bar{e}^{t^{2}}_{AL} = \infty : \mathcal{R} \in L^{1}(\mathbb{R})$ of parity $\begin{cases}
f \text{ parity} \\
f \text{ parity}
\end{cases} = \begin{cases}
f$

Exo 2
$$f(t) := \frac{1}{t(1+|\Delta t|)^2}$$
, $t > 0$

2.1 $M_1 f \in L^1([0,1])$ $e^{-t(1+|\Delta t|)^2}$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} = \lim_{\epsilon \to 0} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} = \lim_{\epsilon \to 0} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} = \lim_{\epsilon \to 0} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} = \lim_{\epsilon \to 0} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} = \lim_{\epsilon \to 0} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} = \lim_{\epsilon \to 0} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$\int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \int_0^1 \frac{dt}{t(1+|\Delta t|)^2} \chi_{[\epsilon,1]}$$

$$= \Lambda - \frac{\Lambda}{\Lambda - 1/2} \left\{ \begin{array}{c} -\lambda \\ \leq -\lambda \end{array} \right\} = \left\{ \begin{array}{c} -\lambda \\ \leq -\lambda \end{array} \right\}$$

Rg: intignales de Bentrand:

$$\frac{Rg}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

9.2. Mq f ≠ L²([o,n]) r p ∈]1, m]: $\int_{0}^{1} \frac{dt}{t!(1+lent!)^{2p}} = \infty \left(f. \text{ int. Bentiand} \right)$ $\sum_{0}^{1} \frac{dt}{t!(1+lent!)^{2p}} = \infty \left(f. \text{ int. Bentiand} \right)$ et sip= ∞ , $f \notin L^{\infty}([0,1])$: en effect, $(=) \neg ((\exists c > 0) : \mu((\{t \in [0, \Lambda] \mid |f(t)| > C\}) = D)$ $(=) (+c>): \mu(\{\{\xi \in (0, \Lambda) | | f(\xi) | > c \}) > 0$

Con,
$$t(1+|\Delta t|)^2 \sim t|\Delta t|^2 \longrightarrow 0_+ \Longrightarrow \frac{1}{t(1+|\Delta t|)^2 t} \longrightarrow \infty$$

due, sit $c > 0$, $\exists \in z > 0$ is $t \in z > 0$, $|f(t)| > c$
 $\Rightarrow Mc(dt \in [o, n] | |f(t)| > c)$) = $\epsilon > 0$
2.3. My $f \in L^p([1, nt])$ pour $p \in [1, n]$: $\begin{cases} sip = n, |f(t)| \leq 1 \\ sip \in [1, nt], \\ si$

Exo3. Sit (x, x, μ) esp. mesure to $\mu(x) < \infty$. JriEnt $1 \leq p < q \leq \infty$, mqJ. 17 1 2 (2x6) (on, $\int_{X} |f|^{p} d\mu = \|f\|_{p}^{p} \mu(x)$

 $\frac{\mathbb{R}_{q}}{\mathbb{R}_{q}} = \int_{\mathbb{R}_{q}}^{\mathbb{R}_{q}} = \int_{\mathbb{R}_{q}}^{\mathbb{R$ • $\frac{9}{\sqrt{x}}$: $\int_{x}^{x} f \in L^{9}(x,x,y)$, Stephan = Stephan applique tilden If = (If It)

Hölder: feltatgel are Lui - 1 0 1

Gralflit L'avec n= % 1 E L'avec sonjugué de n, ie $5 = (1 - \frac{1}{4}) = \frac{9}{9 - p} > 1 \left(f \int_{x} |x|^{5} dy = \mu(x) < \infty \right)$ +1 \Rightarrow $|f|^{?} \land \in L^{1}(x, x, y) (\Rightarrow f \in L^{1}(x, x, y))$ $=\left(\int (|f|^{\frac{1}{2}})^{\frac{1}{2}} dy\right)^{\frac{1}{2}} \left(\int |1|^{\frac{9}{2-1}} dy\right)^{\frac{9}{2}}$ $=) ||f||_{\varphi} \leq ||f||_{\varphi} \cdot (\mu(x))^{\frac{4}{3} + \frac{4}{3}} \times (Et \ L'inclusion \ sot stricts.)$