时间序列分析第六章作业

Phlinsia

2024年4月30日

Contents

0.1	练习 6.12	 	1
0.2	练习 6.13	 	2
0.9	练习 6.31	 	10
0.10	练习 6.36	 	11

0.1 练习 6.12

从包含 100 个观测值的时间序列中, 我们计算得到以下自相关系数:

$$\begin{cases} r_1 = -0.49, \\ r_2 = 0.31, \\ r_3 = -0.21, \\ r_4 = 0.11 \end{cases}$$

且满足条件

$$|r_k| < 0.09 \quad \stackrel{\text{def}}{=} \quad k > 4.$$

仅依据这些统计量,我们尝试初步确定适合该序列的 ARIMA 模型。考虑到样本相关性的标准差,通过 $\frac{2}{\sqrt{n}} = \frac{2}{\sqrt{100}} = 0.2$,如果某个自相关系数的绝对值显著大于这个值,就可能意味着序列不是完全随机的,存在某种结构。我们或许可以考虑 MA(2) 或 MA(3) 模型作为可能的选项。

如果我们暂时假定一个 $\mathrm{MA}(2)$ 结构,可以利用公式来评估 r_3 的方差。

$$\mathrm{Var}(r_k) = \frac{1}{n} \left[1 + 2 \sum_{j=1}^q \rho_j^2 \right] \, \stackrel{\text{\tiny def}}{=} \, k > q$$

基于已知的 r_1 至 r_4 ,在假设 MA(2) 模型时,仅考虑 q=2,计算 r_3 的方差。这里, ρ_1 和 ρ_2 分别对应 r_1 和 r_2 的值(注意,实际应用中 ρ 应通过偏自相关函数 PACF 准确计算,但此处直接用了 r 值作为近似处理),代入公式:

$$Var(r_3) = \frac{1 + 3[(-0.49)^2 + (0.31)^2]}{100} = 0.016724$$

因此, r_3 的标准化残差是其值除以方差的平方根:

$$\frac{r_3}{\sqrt{\mathrm{Var}(r_3)}} = \frac{-0.21}{\sqrt{0.016724}} = -1.62.$$

鉴于该标准化残差的绝对值(|-1.62|)并未远大于 1,未超过统计显著性的典型临界值(通常对于 95% 的置信区间约为 1.96),我们根据这一证据得出结论,MA(2) 模型未被拒绝。因此,基于呈现的自相关结构,一个 MA(2) 模型似乎是该时间序列合理的初步模型设定。

0.2 练习 6.13

假设有一个长度为 121 的平稳时间序列,该序列产生了以下样本偏自相关系数:

$$\begin{cases} \hat{\phi}_{11} = 0.8, \\ \hat{\phi}_{22} = -0.6, \\ \hat{\phi}_{33} = 0.08, \\ \hat{\phi}_{44} = 0.00. \end{cases}$$

$$\frac{2}{\sqrt{n}} = \frac{2}{\sqrt{121}} = 0.181$$

这个界限来源于正态分布的 95% 置信区间概念,即大约有 95% 的数据点会落在均值 ± 2 标准差的范围内。对于长度为 n 的时间序列,一个纯随机序列(即白噪声)的自相关系数的标准误大约为 $\frac{1}{\sqrt{n}}$,因此,两倍的标准误即为 $\frac{2}{\sqrt{n}}$ 。当 PACF 的绝对值超过这个界限时,我们倾向于认为该系数在统计上显著,意味着它可能对模型有所贡献。

提供的 PACF 值在前几阶显著不为零,特别是 $\hat{\phi}_{11}=0.8$ 和 $\hat{\phi}_{22}=-0.6$,这两个值的绝对值远大于 0.181 这一显著性界限。由于 $\hat{\phi}_{33}=0.08$ 和 $\hat{\phi}_{44}=0.00$ 的值接近零,且从 $\hat{\phi}_{22}$ 到 $\hat{\phi}_{33}$ 有一个明显的下降,这表明序列的自回归特性主要体现在前两阶滞后上。因此,基于 PACF 的这种表现,我们倾向于认为一个 AR(2) 模型足够捕捉到序列的主要自相关特性,而更高阶的滞后系数在统计上并不显著,故不纳入模型考虑。

0.3 练习 6.15

下表给出了一序列及其一阶差分的样本自相关函数 (ACF), 其中 n = 100。

延迟 (lag)	Y_t 的 ACF	∇Y_t 的 ACF
1	0.97	-0.42
2	0.97	0.18
3	0.93	-0.02
4	0.85	0.07
5	0.80	-0.10

仅凭这些信息,我们会考虑使用哪个或哪些 ARIMA 模型对该序列进行分析?

一阶差分后,第 1 阶 ACF 为-0.42,之后的 ACF 值迅速减小并接近零,这提示序列经过一次差分后可能达到平稳。

样本自相关函数中缺乏衰减现象表明非平稳性。然而,在进行差分后,相关性显得更为合理。,

$$\because \rho_1 = -0.42 \ \because \text{Var}(r_1) = \frac{1 + 2(-0.42)^2}{100} = 0.0135$$

$$:: \rho_2 = 0.18 : 显著性为 \frac{\rho_2}{\sqrt{\mathrm{Var}(r_1)}} = \frac{0.18}{\sqrt{0.0135}} = 1.55$$

统计实践中,如果这个标准化值的绝对值大于约 1.96 (对应于 95% 的置信水平),则认为该自相关系数在统计上显著不为零。此处,虽然 1.55 小于 1.96,但仍然较大,表明二阶自相关在统计上也是相对显著的,尽管可能不满足最严格的标准显著性水平。

差分后序列的 ACF 显示出了平稳性,并且至少有一阶自相关显著,这表明序列经过一次整合(I)后,可能还存在一定的自回归(AR)和滑动平均(MA)特性。IMA(1,1)模型意味着序列经过一次差分(整合部分)后,其残差显示出一阶自回归和一阶滑动平均的影响。因此,根据差分后 ACF 的模式和显著性测试结果,IMA(1,1)模型是进一步分析和检验的一个合理候选模型。

0.4 练习 6.16

针对长度为 64 的时间序列, 样本偏自相关系数如下所示:

延迟 (Lag)	偏自相关系数 (PACF)
1	0.47
2	-0.34
3	0.20
4	0.02
5	-0.06

在这种情况下,我们应该考虑哪些模型呢?

在大样本情况下,一个纯随机序列(白噪声)的自相关系数大约会落在 $\pm \frac{2}{\sqrt{n}}$ 的范围内。因此,如果某个 PACF 的绝对值大于 $\frac{2}{\sqrt{n}}$,则认为它在统计上显著不为零,可能意味着该滞后阶在模型中是重要的。

因为 $\frac{2}{\sqrt{64}} = 0.25$, 并且从滞后 3 开始的所有偏自相关系数的绝对值都小于 0.25。

PACF 在 Lag 1 和 Lag 2 处有显著的非零值(0.47 和-0.34),这意味着序列中存在明显的自回归特征,且在前两阶。而从 Lag 3 开始,PACF 的值(0.20, 0.02, -0.06)都小于显著性界限 0.25,这意味着在 Lag 3 及以后的自回归效应不显著。因此,基于 PACF 的这种"拖尾"(在高阶滞后逐渐减小至不显著)特性,我们可以推测原序列可能适合一个自回归模型,且其阶数为 2,即 AR(2) 模型。

0.5 练习 6.20

Simulate an AR(1) time series with n=48 and with $\phi=0.7$.

set.seed(241357); series=arima.sim(n=48,list(ar=0.7))

a

对于此模型, 计算滞后 1 和滞后 5 的理论自相关系数。

$$\rho_1 = \phi^1 = 0.7, \quad \rho_5 = \phi^5 = 0.16807$$

b

计算滞后 1 和滞后 5 的样本自相关系数,并将这些值与理论值进行比较。

$$\mathrm{Var}(r_1) \approx \frac{1-\phi^2}{n}, \quad \mathrm{Var}(r_k) \approx \frac{1}{n} \left(\frac{1+\phi^2}{1-\phi^2}\right) \quad (\stackrel{\text{\tiny def}}{=} k \ \mbox{$\rlap/$$$ $\upsigma} \mbox{$\uparrow$} \mbox{$\downarrow$} \mb$$

acf(series,lag.max=5)[1:5]

Series series

##

Autocorrelations of series 'series', by lag

##

1 2 3 4 5

0.768 0.626 0.436 0.318 0.143

 r_n 的标准误差计算为 $\sqrt{rac{1-\phi^2}{n}}=\sqrt{rac{1-(0.7)^2}{48}}=\sqrt{0.010625}pprox 0.10$ 。至于 r_5 的标准误差,则计算为

$$\sqrt{\frac{1}{n} \left[\frac{1+\phi^2}{1-\phi^2} \right]} = \sqrt{\frac{1}{48} \left[\frac{1+(0.7)^2}{1-(0.7)^2} \right]} \approx 0.25.$$

综合考虑这些标准误差,估计值 0.768 对于 ϕ 而言,以及 0.14 对于另一个系数,分别是真实值 0.7 和 0.16807 的极佳近似。

 \mathbf{c}

在相同的条件下使用新的模拟数据重复 (b) 部分的步骤。讨论在不同样本下估计的准确性如何变化。

d

多次重复时间序列的模拟以及 r_1 和 r_5 的计算过程,构建 r_1 和 r_5 的抽样分布。描述在相同条件下选取不同样本时,这些估计的精度如何变化。

```
set.seed(132435); r1=rep(NA,10000); r5=r1
for (k in 1:10000) {series=arima.sim(n=48, list(ar=0.7));r1[k]=acf(series,lag.max=1,plot=F)$acf[1];r5[k]
hist(r1); mean(r1); sd(r1); median(r1)
```

Histogram of r1

[1] 0.6184299

[1] 0.1145287

[1] 0.6313287

hist(r5); mean(r5); sd(r5); median(r5)

[1] 0.03277664

[1] 0.1848059

[1] 0.03243878

对于 r_1 的抽样分布,其均值为 0.618 ($\rho_1=0.7$),中位数为 0.631,这与观察到的向较小值偏斜的情况一致。该分布的标准差为 0.11,与渐近理论预测的约 0.10 非常吻合。

至于 r_5 的抽样分布,其均值为 0.033 ($\rho_5=0.168$),中位数为 0.032,这与该分布接近对称的特点相符。此分布的标准差为 0.18,与渐近理论值大约 0.25 较为相符。

本练习揭示了在样本量 n=48 如此之小时,准确估计简单 AR(1) 序列自相关函数的难度。你可以考虑使用更大的样本量,比如 n=96 或更大来重复此练习。此外,尝试不同的自回归参数 ϕ 值也是值得探索的方向。

0.6 练习 6.21

 \mathbf{a}

set.seed(6453421); series=arima.sim(n=60,list(ma=-0.5))

$$\rho_1 = -\frac{\theta}{1+\theta^2} = -\frac{0.5}{1+(0.5)^2} = -0.4$$

b

acf(series,lag.max=1)[1]

Series series

##

Autocorrelations of series 'series', by lag

##

1

-0.362

滞后 1 处的自相关系数估计值为 -0.362。 r_1 的标准误差计算为 $\sqrt{c_{11}/n}=\sqrt{1-3\rho_1^2+4\rho_1^4/n}=\sqrt{1-3(-0.4)^2+4(-0.4)^4/60}\approx 0.10$ 。该估计值位于真值 -0.4 的两倍标准误差范围内,表明估计较为精确。

 \mathbf{c}

 \mathbf{d}

set.seed(534261); r1=rep(NA,10000); r5=r1
for (k in 1:10000) {series=arima.sim(n=60, list(ma=-0.5));r1[k]=acf(series,lag.max=1,plot=F)\$acf[1]}
hist(r1); mean(r1); sd(r1); median(r1)

Histogram of r1

[1] -0.3901954

[1] 0.1002125

[1] -0.3931737

注意到 $\rho_1=-0.4$ 。此处,抽样分布的均值为-0.390(中位数为-0.393),标准差为 0.100。给出的大样本标准差是 $\frac{0.79}{\sqrt{60}}=0.102$,这与从抽样分布中获得的值非常接近,是一个极好的近似。

0.7 练习 6.25

a

round(ARMAacf(ar=0.7,lag.max=10),digits=3)

0 1 2 3 4 5 6 7 8 9 10 ## 1.000 0.700 0.490 0.343 0.240 0.168 0.118 0.082 0.058 0.040 0.028

ACF=ARMAacf(ar=0.7,lag.max=10)
plot(y=ACF[-1],x=1:10,xlab='Lag',ylab='ACF',type='h'); abline(h=0)

b

set.seed(162534); series=arima.sim(n=36,list(ar=0.7)); acf(series)

Series series

模式匹配并不是很好,但请记住 n=36。

 \mathbf{c}

 $\phi_{11}=0$ 并且对于其它所有的 k, $\phi_{kk}=0$ 。

 \mathbf{d}

参考 (b) 部分的答案,这里 r_1 的方差的平方根大约为 $\sqrt{Var(r_1)} \approx \sqrt{(1-\phi^2)/n} = \sqrt{(1-0.7^2)/36} = 0.12$,表明观测到的 r_1 值很好地落在了真实值的两倍标准误差之内。对于更高阶的滞后也一样。

 \mathbf{e}

pacf(series)

Series series

利用大约的标准误差 $\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{36}}=0.167$,样本偏自相关函数(PACF)与理论上的 PACF 匹配得相当好。

0.8 练习 6.26

 \mathbf{a}

对于给定的模型,一阶偏自相关系数计算如下:

$$\rho_1 = -\frac{\theta}{1+\theta^2} = -\frac{0.5}{1+(0.5)^2} = -0.4$$

这是该模型中唯一非零的自相关系数。

 \mathbf{b}

set.seed(162534); series=arima.sim(n=48,list(ma=-0.5)); acf(series)

Series series

滞后 1 处的自相关系数看起来是合理的,但在滞后 7 和 14 处也出现了看似"显著"但实际上虚假的相关性。

 \mathbf{c}

对于 $\mathrm{MA}(1)$ 模型,偏自相关系数 (ϕ_{kk}) 的公式定义为:

$$\phi_{kk}\,=\,-\frac{\theta^k(1-\theta^2)}{1-\theta^{2(k+1)}}\stackrel{\text{\tiny def}}{=} k\geq 1$$

```
theta=0.5; phikk=rep(NA,10)
for (k in 1:10) {phikk[k]=-(theta^k)*(1-theta^2)/(1-theta^(2*(k+1)))}
plot(phikk,type='h',ylab='MA(1) 偏自相关系数',xlab='延迟'); abline(h=0)
```


 \mathbf{d}

pacf(series)

Series series

只有前两阶的样本偏自相关系数与理论值匹配良好。然而,样本偏自相关系数的标准误大约为 $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{48}} = 0.14$,表明在本例中仅滞后 7 的样本偏自相关系数超出了预期范围,其余的差异可视为抽样波动的结果。

0.9 练习 6.31

##

```
а
set.seed(15243); series=arima.sim(n=60,list(order=c(0,1,1),ma=-0.8))[-1]
library(urca); ur.df(series, type="none", selectlags="AIC")
## Warning: 程辑包'urca'是用R版本4.3.3 来建造的
##
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
##
## The value of the test statistic is: -2.6684
b
ar(diff(series))
##
## Call:
## ar(x = diff(series))
##
## Coefficients:
##
            2
  -0.7355 -0.5275 -0.3961
##
## Order selected 3 sigma^2 estimated as 0.8229
ur.df(diff(series), type="none", selectlags="AIC")
##
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
```

```
## The value of the test statistic is: -8.356
\mathbf{c}
ur.df(diff(series), type="none", selectlags="AIC")
##
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
##
## The value of the test statistic is: -8.356
ar(diff(diff(series)))
##
## Call:
## ar(x = diff(diff(series)))
##
## Coefficients:
##
            2
                   3
      1
## -1.4156 -1.4512 -1.2708 -0.7384 -0.2884
##
## Order selected 5 sigma^2 estimated as 1.203
ur.df(diff(series), type="none", selectlags="AIC")
##
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
##
## The value of the test statistic is: -8.356
0.10 练习 6.36
a
data(robot)
plot(robot,type='o',ylab='Robot End Position')
```


从这个图中,我们可能会尝试使用一个平稳模型,但同时也存在着足够的"漂移"现象,这使得我们怀疑序列可能存在非平稳性。

 \mathbf{b}

acf(robot)

Series robot

pacf(robot)

Series robot

这些图并不是特别明确,但偏自相关图(pacf)暗示了该序列可能适合一个 AR(3)模型。

 \mathbf{c}

eacf(robot)

7 x o o x o x x o o o o o

误差修正函数(EACF)则提示了一个 ARMA(1,1) 模型。

\mathbf{d}

```
plot(armasubsets(y=robot,nar=14,nma=14,y.name='Robot',ar.method='ols'))
```

Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax, force.in =
force.in, : 2 linear dependencies found

Reordering variables and trying again:

在这里,最佳模型包括了序列部分的一个 1 阶自回归项(AR term),以及移动平均部分(MA part)中的 3 阶和 12 阶滞后。