Programowanie nieliniowe

Jakub Kruszyk Maciej Duszczak Sławomir Forszpaniak Tomasz Sobecki

https://github.com/jakubkruszyk/optymalizacja

Programowanie nieliniowe bez ograniczeń

- Szukają minimum lokalnego dowolnej funkcji wielu zmiennych
- Wymagają podania punktu startowego
- Metody iteracyjne powtarzane dopóki obliczone rozwiązanie nie będzie wystarczająco blisko optimum

Polega na przekształcaniu w-wymiarowego simpleksu, czyli figury składającej się z n+1 punktów, gdzie n to liczba zmiennych optymalizowanej funkcji.

W każdym kroku iteracji obliczana jest wartość funkcji w punktach simpleksu. Następnie punkt, w którym wartość funkcji jest największa(najgorsza) zostaje wymieniony.

Algorytm kończy pracę gdy odległość pomiędzy środkiem symetrii simpleksu a jego wierzchołkami przekroczy zadaną wartość.

Funkcja fminsearch znajduje minimum lokalne nieograniczonej funkcji wielu zmiennych metodą Neldera-Meada.

Global minimum

Local minimum

[x, fval] = fminsearch(fun, x0, options)

gdzie:

fun - funkcja poddawana minimalizacji

x0 - punkt początkowy w postaci jednowymiarowego wektora

options - opcjonalny argument pozwalający na zmianę parametrów optymalizacji

Zadanie 1

Znajdź minimum poniższej funkcji:

$$y = fun(x) = 3 |x_1| + |x_2|$$

Zapis zmiennych funkcji anonimowych w języku Matlab:

$$f@(x)... -> x_n = x(n)$$

Rozwiązanie:

```
X =
   1.0e-04 *
   -0.1439
    0.3565
val =
   7.8809e-05
```

Zadanie 2

Znajdź minimum podanej funkcji:

$$z = 5(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Rozwiązanie:

```
x =
1.0000
1.0000
val =
1.8161e-09
```

Metoda Broydena-Fletchera-Goldfarba-Shanno (BFGS)

Polega na iteracyjnym znajdowaniu minimum funkcji celu poprzez aktualizację macierzy aproksymującej Hesjan, co pozwala uniknąć bezpośredniego obliczania odwrotności macierzy Hesjana.

W każdym kroku iteracji:

- Wyznaczany jest gradient funkcji w bieżącym punkcie.
- 2. Aproksymowana jest odwrotność Hesjana na podstawie gradientów z kolejnych iteracji.
- 3. Wybierany jest kierunek poprawy, a następnie wykonywany jest krok minimalizacyjny wzdłuż tego kierunku.

Algorytm kończy pracę, gdy norma gradientu funkcji celu jest mniejsza od zadanej wartości lub długość kroku minimalizacyjnego osiągnie zadaną precyzję.

Funkcja fminunc znajduje minimum nieograniczonej funkcji wielu zmiennych metodą Broydena-Fletchera-Goldfarba-Shanno.

[x, fval] = fminunc(fun, x0, options)

gdzie:

fun - funkcja poddawana minimalizacji

x0 - punkt początkowy w postaci jednowymiarowego wektora

options - opcjonalny argument pozwalający na zmianę parametrów optymalizacji

Zadanie Optymalizacji Nieliniowej (Bez gradientu)

Znajdź minimum funkcji celu:

$$f(x) = 3x_1^2 + 2x_1x_2 + x_2^2$$

przy warunkach poczatkowych:

$$x_0 = [1,1]$$
.

```
f = @(x)3*x(1)^2+2*x(1)*x(2)+x(2)^2;
x0 = [1, 1];
options = optimset('Display', 'iter');
[x, fval, exitflag, output] = fminunc(f, x0, options)
             X =
                1.0e-06 *
                 0.2541 - 0.2029
```

1.3173e-13

fval =

Zadanie Optymalizacji Nieliniowej (Z gradientem)

Znajdź minimum funkcji celu:

$$f(x) = 3x_1^2 + 2x_1x_2 + x_2^2$$

przy warunkach poczatkowych:

$$x_0 = [1,1]$$
.

Dodatkowo wykorzystaj informacje o gradientzie funkcji celu:

$$\frac{\partial f}{\partial x_1} = 6x_1 + 2x_2, \quad \frac{\partial f}{\partial x_2} = 2x_1 + 2x_2.$$

Plik: zad2_fun.m

```
function [f, g] = zad2_fun(x)
% Funkcja celu
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2;

% Gradient funkcji celu
if nargout > 1 % Sprawdzenie, czy gradient jest wymagany|
    g(1) = 6*x(1)+2*x(2);
    g(2) = 2*x(1)+2*x(2);
end
end
```

Plik: zad2.m

```
x0 = [1, 1];
options = optimoptions('fminunc',
    'SpecifyObjectiveGradient', true,
    'Algorithm', 'quasi-newton', ...
'TolX', 1e-12, ...
'TolFun', 1e-12, ...
'Display', 'iter');
[x, val, exitflag, output] = fminunc(@zad2_fun, x0, options)
```

```
X =
  1.0e-13 *
  -0.1585 0.4090
val =
  1.1298e-27
```

- Podstawowe podejście polega na zamianie zadania z ograniczeniami na zadanie bez ograniczeń, najprostszym rozwiązaniem jest modyfikacja funkcji celu
- Metoda funkcji kar
 - Wielokrotna modyfikacja funkcji celu, do której wprowadzony został czynnik "kary" sztucznie zawyżający wartość minimalizacji, który w wyniku iteracji jest modyfikowany i stopniowo zanika gdy spełniane są ograniczenia
- Metoda kierunków dopuszczalnych
 - Metoda polega na przeniesieniu punktu początkowego do obszaru dopuszczalnego poprzez minimalizację odległości między punktem a ograniczeniami. Gwarantuje pozostanie w obszarze dopuszczalnym, ale może być kosztowna obliczeniowo przy dużej liczbie ograniczeń.
- Metoda rzutu ortogonalnego
 - Znajduje kierunek poprawy funkcji celu, który jednocześnie spełnia ograniczenia. W każdym kroku optymalizuje funkcję wzdłuż dopuszczalnego kierunku, zapewniając efektywne poruszanie się w obszarze dopuszczalnym.

- Metoda SQP (Sequential Quadratic Programming)
 - Należy do metod modyfikacji kierunku poszukiwań jak i poprawy
 - Iteracyjnie rozwiązuje zadanie programowania kwadratowego, aby kierunek był możliwie bliski kierunkowi metody Newtona, po czym dokonywana jest minimalizacja w kierunku
 - Hesjan uaktualniany jest z zasadami metod zmiennej metryki
- Metoda równań Kuhna-Tuckera
 - Najefektywniejsza z metod
 - Ustala warunki optymalności z użyciem mnożników Lagrange'a

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\mathbf{x}^*) = 0,$$

$$\nabla g_i(\mathbf{x}^*) = 0, \quad i = \overline{1, m_e},$$

$$\lambda_i^* = 0, \quad i = \overline{m_e + 1, m},$$

Funkcja fmincon znajduje minimum problemu opisanego jako:

$$\min_{x} f(x) \text{ such that} \begin{cases} c(x) \le 0\\ ceq(x) = 0\\ A \cdot x \le b\\ Aeq \cdot x = beq\\ lb \le x \le ub, \end{cases}$$

[x, fval] = fmincon (fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)

gdzie:

fun - minimalizowana funkcja

x0 - punkt początkowy w postaci jednowymiarowego wektora

A, b - ograniczenia liniowe (nierówności)

Aeq, beq - ograniczenia liniowe (równości)

lb, ub - ograniczenie dolne i górne

nonlcon - ograniczenia nieliniowe reprezentowane jako c(x) oraz ceq(x)

options - opcjonalny parametr pozwalający m.in. na wybór algorytmu optymalizacji (domyślny algorytm: interior-point)

Przykład 1

Znajdź minimum funkcji celu:

$$f(x) = -x_1 * x_2 * x_3$$

przy warunkach początkowych:

$$x_0 = [10; 10; 10]$$

oraz przy obecności ograniczeń liniowych:

$$-x_1 - 2x_2 - 2x_3 \le 0, x_1 + 2x_2 + 2x_3 \le 72$$

Ograniczenia te można zapisać w postaci macierzowej:

$$A * x \leq b$$
,

gdzie:

$$A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 2 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 72 \end{bmatrix}$$

Przykład 1

```
% Funkcja celu
f = \Omega(x) - x(1) * x(2) * x(3); % f(x) = -x1*x2*x3
% Ograniczenia liniowe w postaci macierzowej
A = [-1, -2, -2; % -x1 - 2x2 - 2x3 <= 0]
      1, 2, 2]; % \times 1 + 2 \times 2 + 2 \times 3 <= 72
b = [0; 72];
% Warunki początkowe
x0 = [10; 10; 10]; % Startowa wartość zmiennych
% Rozwiązanie problemu optymalizacji
[x, fval] = fmincon(f, x0, A, b, [], [], [], []);
% Wyświetlenie wyników
disp('Optymalne rozwiązanie:');
disp(x);
disp('Wartość funkcji celu:');
disp(fval);
```

```
Optymalne rozwiązanie:
24.0000
12.0000
12.0000
Wartość funkcji celu:
-3.4560e+03
```

Zadanie 1

Znajdź minimum poniższej funkcji przy zadanych ograniczeniach

$$f = 5(x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$x_0 = (-3, 4)$$
Ograniczenia: $x_1 - x_2 + 4 \le 0$

Zadanie 1 - rozwiązanie

```
f = @(x)(1-x(1))^2+5*(x(2)-x(1)^2)^2;
A = [1, -1];
b = -4;

x0 = [-3.0; 4.0];
options = optimset('Display', 'iter');
[x, fval] = fmincon(f, x0, A, b, [], [], [], [], options)
```

```
x =
-1.5311
2.4689

fval =
6.4841
```

Zadanie 2

Funcja

$$f(x) = 0.5x_1^2 + 0.5x_2^2 - x_1 - 2x_2 + 5$$

przy $x_0 = (1.5, 0.5)$ i ograniczeniach

$$2x_1 + 3x_2 \le 6$$
,
 $x_1 + 4x_2 \le 5$,
 $x_1, x_2 \ge 0$

Zadanie 2 - rozwiązanie

```
% Funkcja celu
f = \Omega(x) \ 0.5 * x(1)^2 + 0.5 * x(2)^2 - x(1) - 2*x(2) + 5;
% Ograniczenia liniowe
A = [2, 3; % 2x1 + 3x2 <= 6]
    1, 4]; \% \times 1 + 4 \times 2 <= 5
b = [6; 5];
% Dolne ograniczenia (x1, x2 >= 0)
lb = [0, 0];
ub = []; % Brak górnych ograniczeń
% Warunki początkowe
x0 = [1.5, 0.5]; % Punkt startowy
% Rozwiązanie problemu optymalizacji
[x, fval] = fmincon(f, x0, A, b, [], [], lb, ub);
% Wyświetlenie wyników
disp('Optymalne rozwiązanie:');
disp(x);
disp('Wartość funkcji celu:');
disp(fval);
```

```
Optymalne rozwiązanie:
0.7647 1.0588
Wartość funkcji celu:
2.9706
```