4、最佳编码

(1)最佳码定义是什么?

凡是能载荷一定的信息量,且码字的平均长度最短,可分离的变长码的码字集合都可称为最佳码。

(2)最佳编码思想是什么?

将概率大的信息符号编以短的码字,概率小的符 号编以长的码字,使得平均码字长度最短。

(3)最佳码的编码主要方法有哪些?

香农(Shannon)、费诺(Fano)、哈夫曼 (Huffman)编码等。

信源编码有以下3种主要方法:

- (1) 匹配编码蕌根据信源符号的概率不同,编码的码长不同:概率大的信源符号,所编的代码短;概率小的信源符号所编的代码长,这样使平均码长最短。将要讲述的香农编码、哈夫曼编码、费诺码都是概率匹配编码,都是无失真信源编码。
- (2) 变换编码 先对信号进行变换,从一种信号空间变换为另一种信号空间,然后针对变换后的信号进行编码。
- (3) 识别编码蕌识别编码主要用于印刷或打字机等 有标准形状的文字符号和数据的编码,比如中文 文字和语音的识别。蕌

第四节 变长码的编码方法

- 香农编码
- 香农-费诺-埃利斯编码
- 费诺编码方法
- 霍(哈)夫曼编码方法
- 『元霍夫曼编码

1、香农编码

香农码的方法是选择每个码字长度 满足

$$l_i = \left\lceil \log \frac{1}{p(s_i)} \right\rceil \qquad i = 1, 2, \dots, q$$

按照香农编码方法构造的码,其平均码长不超过上界,即 $\bar{L} \leq H_r(S)+1$

- 编码方法如下:
- (1)将信源消息符号按其出现的概率大小依 次排列

$$p(x_1) \ge p(x_2) \ge \cdots \ge p(x_n)$$

(2) 确定满足下列不等式的整数码长Ki:

$$-\log_2 p(x_i) \le K_i < -\log_2 p(x_i) + 1$$

(3)为了编成唯一可译码,计算第i个消息

的累加概率

$$P_i = \sum_{k=1}^{i-1} p(x_k)$$

(4)将累加概率P, 变换成二进制数。

(5)取P_i二进数的小数点后K_i位即为该消息符号的二进制码字。

十进制小数转换为二进制小数

十进制小数转换成二进制小数采用"乘2取整,顺序排列法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。

表 5.2.1 二进制香农编码

x_i	$p(x_i)$	$p_a(x_j)$	ki	码字
x_1	0.25	0.000	2	00(0.000)2
x_2	0.25	0.250	2	01(0.010)2
<i>x</i> ₃	0.20	0.500	3	100(0.100)2
<i>x</i> ₄	0.15	0.700	3	101(0.101)2
<i>x</i> ₅	0.10	0.850	4	1101(0.1101)2
<i>x</i> ₆	0.05	0.950	5	11110(0.11110)2

x _i	P(x _i)	P_{i}	-logp ₂ (x _i)	Ki	码字
x ₁	0.20	0	2.32	3	000
X ₂	0.19	0.2	2.41	3	001
X ₃	0.18	0.39	2.48	3	011
X ₄	0.17	0.57	2.56	3	100
X ₅	0.15	0.74	2.74	3	101
x ₆	0.10	0.89	3.32	4	1110
x ₇	0.01	0.99	6.64	7	1111110

2、香农-费诺-埃利斯编码

- 将香农编码中的累加概率换成修正累加概率即可得到相应的香农-费诺-埃利斯编码:
- (1) 计算出各个信源符号的修正累加概率

$$\overline{F}(s_i) = \sum_{k=1}^{i-1} p(s_k) + \frac{1}{2} p(s_i)$$

• (2) 按下式计算第i个消息的二元代码组的码台,

$$l_i = \left\lceil \log \frac{1}{p(s_i)} \right\rceil + 1$$

• (3) 将累加概率 (s_i)(十进制小数)变换成二进制小数. 根据码长 [取小数点后 [个二进制符号作为第i个消息的码字.

	x _i	P(x _i)	Fi	-logp ₂ (x _i)	K _i	二进制	码字
	x ₁	0.10	0.05	3.34	5	00001	00001
24	x ₂	0.19	0.195	2.41	4	00110	0011
	X ₃	0.15	0.365	2.74	4	01011	0101
	X ₄	0.17	0.525	2.56	4	10000	1000
	X ₅	0.18	0.7	2.48	4	10110	1011
	x ₆	0.20	0.89	2.34	4	11100	1110
	x ₇	0.01	0.995	6.64	8	11111110	11111110

3、费诺编码方法

• 编码步骤:

- (1) 将信源消息符号按其出现的概率大小依次排列: $p(x_1) \ge p(x_2) \ge ... \ge p(x_n)$ 。
- (2) 将依次排列的信源符号按概率值分为两大组,使两个组的概率之和近于相同,并对各组赋予一个二进制码元"0"和"1"。

- (3) 将每一大组的信源符号进一步再分成两组,使划分 后的两个组的概率之和近于相同,并又赋予两个组一 个二进制符号"0'和"1"。
- (4) 如此重复,直至每个组只剩下一个信源符号为止。
- (5) 信源符号所对应的码字即为费诺码。

表 5.14 费诺编码

信源符号	概率	第1次分组	第2次分组	第3次分组	第 4 次分组	码字	码长
s_1	0.2		0			00	2
s ₂	0.19	0	1	0		010	3
53	0.18			1		011	3
84	0.17		0			10	2
55	0.15		: 0 :	0		110	3
56	0.10	1	1		0	1110	4
87	0.01			I	1	1111	4
					1		4

该码的平均码长为

$$\overline{L} = \sum_{i=1}^{7} p(s_i) l_i$$

 $= 0.20 \times 2 + 0.19 \times 3 + 0.18 \times 3 + 0.17 \times 2 + 0.15 \times 3 + 0.10 \times 4 + 0.01 \times 4$

= 2.74 码符号/信源符号

信息传输率为

$$R = \frac{H(S)}{L} = \frac{2.61}{2.74} = 0.953$$
 比特码符号

4、哈夫曼编码方法

哈夫曼(Huffman)编码是一种效率比较高的变长无失真信源编码方法。

• 哈夫曼编码步骤:

- (1) 将n个信源消息符号按其出现的概率大小依次排列, p(x₁)≥p(x₂)≥...≥p(x_n)
- (2) 取两个概率最小的字母分别配以0和1两码元,并将这两个概率 相加作为一个新字母的概率,与未分配的二进符号的字母重新排 队。

- (3) 对重排后的两个概率最小符号重复步骤(2) 的过程。
- (4)不断继续上述过程,直到最后两个符号配以0和1为止。
- (5) 从最后一级开始,向前返回得到各个信源符号所对应的码元序列,即相应的码字。

哈夫曼编码练习

表 5.11 霍夫曼编码

信源符号s	概率p(s _i)		编码过程	码字w,	码长/,
		S_1 S_2	S_3 S_4	S ₅	42.6
			0.35 0.35	0.39	多维女子 。
		[0.26	0.26 0.26		
s_1	0.20	0.20 0.20	0.20	10	2
s_2	0.19	0.19 0.19	0.19	11	2
s ₃	0.18	0.18 0.18	1 4	010	3
S_4	0.17	0.17 0.17	TENED SKILL	011	3
S_5	0.15	0.15		000	3
s_6	0.10	-0.11		0010	4
$S_{\mathcal{T}}$	0.01			0011	4

该哈夫曼码的平均码长为

$$\bar{K} = \sum_{i=1}^{7} p(x_i)K_i = 2.72$$
码元/符号

信息传输速率

$$R = \frac{H(X)}{\overline{K}} = \frac{2.61}{2.72} = 0.9596$$
比特/码元

由此可见,哈夫曼码的平均码长最小,消息传输速率最大,编码效率最高。

例[5.4.2] 单符号离散无记忆信源 P(X) = $\begin{cases} x_1, & x_2, & x_3, & x_4, & x_5, \\ 0.4 & 0.2 & 0.2 & 0.1 & 0.1 \end{cases}$,用 两种不同的方法对其编二进制哈夫曼码。

方法一: 合并后的新符号排在其它相同概率符号的后面。

信源	概率	缩減信源				码字	码长
符号		SI	52	53	54		
.xq	0.4			0.6	1.0	1	1
-t-i	0.4		0.4	0			
x	0.2					01	2
X)	0.2		0	1		000	3
x ₄	0.1	0.2	1			0010	4
X5	0.1	1				0011	4

■ 方法二:合并后的新符号排在其它相同概率符号的前面。

- 单符号信源编二进制哈夫曼码,编码效率主要决定于信源熵和平均码长之比。对相同的信源编码,其熵是一样的,采用不同的编法,得到的平均码长可能不同。平均码长越短,编码效率就越高。
- 编法一的平均码长为

$$\overline{K}_1 = \sum_{i=1}^{5} p(x_i)k_i = 0.4 \times 1 + 0.2 \times 2 + 0.2 \times 3 + (0.1 + 0.1) \times 4 = 2.2(\text{Lth}/76\%)$$

• 编法二的平均码长为

$$\overline{K}_2 = \sum_{i=1}^{3} p(x_i) k_i = (0.4 + 0.2 + 0.2) \times 2 + (0.1 + 0.1) \times 3 = 2.2 \text{(比特/符号)}$$

• 可见 $K_1 = K_2$, 本例两种编法的平均码长相同,所以编码效率相同。

■ 讨论: 哪种方法更好?

■ 定义码字长度的方差 σ^2 : 长度 k_i 与平均码长 K 之差的平方的数学期望,即

$$\sigma^2 = E[(k_i - \overline{K})^2] = \sum_{i=1}^n p(x_i)(k_i - \overline{K})^2$$

■ 编法一码字长度方差:

$$\sigma_1^2 = 0.4(1-2.2)^2 + 0.2(2-2.2)^2 + 0.2(3-2.2)^2 + (0.1+0.1)(4-2.2)^2 = 1.36$$

■ 编法二码字长度方差:

$$\sigma_2^2 = (0.4 + 0.2 + 0.2)(2 - 2.2)^2 + (0.1 + 0.1)(3 - 2.2)^2 = 0.16$$

- 可见:第二种编码方法的码长方差要小许多。
 意味着第二种编码方法的码长变化较小,比较接近于平均码长。
 - 第一种方法编出的5个码字有4种不同的码长;
 - 第二种方法编出的码长只有两种不同的码长;
 - 显然, 第二种编码方法更简单、更容易实现, 所以更好。

结论: 在哈夫曼编码过程中,对缩减信源符号按概率由大 到小的顺序重新排列时,应使合并后的新符号尽可能 在靠前的位置,这样可使合并后的新符号重复编码次 减少,使短码得到充分利用。

哈夫曼编码的特点

哈夫曼码是用概率匹配方法进行信源编码。

它有两个明显特点:

- ◆ 一是哈夫曼码的编码方法保证了概率大的符号对应 于短码,概率小的符号对应于长码,充分利用了短码;
- ◆ 二是缩减信源的最后二个码字总是最后一位不同, 从而保证了哈夫曼码是即时码

这两个特点,保证了哈夫曼码是最佳码

5、r元霍夫曼编码

二进制霍夫曼码的编码方法很容易推广到 r 进制的情况, 只是编码过程中构成缩减信源时,每次都是将 r 个概率最小的信源符号合并

为了充分利用短码,使霍夫曼码的平均码长最短,必须使最后一个缩减信源恰好有 r 个信源符号.因此对于 r 元霍夫曼编码,信源 S 符号个数 q 必须满足 $q=(r-1)\theta+r$. θ 表示信源缩减次数.如果不满足上式,则可以在最后增补一些概率为 0 的信源符号

例:对如下单符号离散无记忆信源编三进 制哈夫曼码。

$$\begin{bmatrix} X \\ P(X) \end{bmatrix} = \begin{cases} x_1, & x_2, & x_3, & x_4, & x_5, & x_6 & x_7 & x_8 \\ 0.4 & 0.18 & 0.1 & 0.1 & 0.07 & 0.06 & 0.05 & 0.04 \end{cases}$$

对香农码、费诺码、哈夫曼码特点进行归纳

香农码、费诺码、哈夫曼码都考虑了信源的统计特性,使经常出现的信源符号对应较短的码字,使信源的平均码长缩短,从而实现了对信源的压缩;

- > 香农编码方法特点:
- ✓ 由于b_i总是进一取整,香农编码方法不一定是最佳的;
- ✓ 由于第一个消息符号的累加概率总是为0,故它对应码字总是0、00、000、0...0的式样;
- ✓ 码字集合是唯一的,且为即时码;
- ✓ 先有码长再有码字;
- ✓ 对于一些信源,编码效率不高,冗余度稍大,因此其实用性受到较大限制。

▶ 费诺编码特点:

- ✓ 概率大,则分解的次数小;概率小,则分解的次数多。这符合最佳编码原则。
- ✓ 码字集合是唯一的。
- ✓ 分解完了,码字出来了,码长也有了。
- ✓ 因此,费诺编码方法又称为子集分解法。
- ✓ 费诺编码方法比较适合于每次分组概率都很接近的信源,特别是对每次分组概率都相等的信源进行编码时,可达到理想的编码效率。

> 哈夫曼编码特点:

- ✓ 由于哈夫曼编码总是以最小概率相加的方法来"缩减"参与排队的概率个数,因此概率越小,对缩减的贡献越大,其对于消息的码字也越长;
- ✓ 最小概率相加的方法使得编码不具有唯一性,尤其是碰到存在几个消息符号有着相同概率的情况,将会有多种路径选择,亦即具有多种可能的代码组集合;
- ✓ 尽管对同一信源存在着多种结果的哈夫曼编码,但它们的平均码长几乎都是相等的,因为每一种路径选择都是使用最小概率相加的方法,其实质都是遵循最佳编码的原则,因此哈夫曼编码是最佳编码。
- ✓ 哈夫曼编码是一种最佳编码,实现也不困难,因此到目前为止它仍是应用最为广泛的无失真信源编码之一。

总结

- 香农码、费诺码、哈夫曼码都考虑了信源的统计特性,使 经常出现的信源符号对应较短的码字,使信源的平均码长 缩短,从而实现了对信源的压缩;
 - 香农码有系统的、惟一的编码方法,但在很多情况下编码效率不是 很高;
 - 费诺码和哈夫曼码的编码方法都不惟一;
 - 费诺码比较适合于对分组概率相等或接近的信源编码,费诺码也可以编m进制码,但m越大,信源的符号数越多,可能的编码方案就多,编码过程就越复杂,有时短码未必能得到充分利用;
 - 一哈夫曼码对信源的统计特性没有特殊要求,编码效率比较高,对编码设备的要求也比较简单,因此综合性能优于香农码和费诺码。