ECE 133A HW 4

Lawrence Liu

November 19, 2022

Exercise T13.3

(a)

With the following julia code we get:

```
using MAT
using LinearAlgebra
using PyPlot
# using Statistics

include("mooreslaw.m")
# println(T)
Years, Transistors=T[:,1],T[:,2]
# println(Years)
# println(Transistors)
A=transpose([reshape(ones(size(Years)),1,:);reshape(Years.-1970,1,:)])
# println(A)
log_Transistors=log10.(Transistors)
theta=A\log_Transistors
println("theta_1=",theta[1])
println("theta_2=",theta[2])
#plot out
plot(Years,log_Transistors,"o")
plot(Years,A*theta)
xlabel("Years")
ylabel("Transistors (log10)")
title("Moore's Law")
legend(["Data","Fit"])
savefig("Moore's Law.png")
close()
```

that

 $\theta_1 = 3.125592633829346$

and

$$\theta_2 = 0.1540181798438225$$

which results in the following fit:

(b)

From our fit we expect the number of transistors to be:

$$10^{\theta_1 + \theta_2(2015 - 1970)} \approx 10^{10}$$

Which is more than the acutally number of $4\cdot 10^9$ transistors:

(c)

This is in line with Moore's law since $2\theta_2=0.30803635968$ which is close to $\log_{10}(2)=0.30102999566$

Exercise T12.12

(a)

Let $p_{ik} = [u_{ik}, v_{ik}]$ then we have that

$$||p_{i_1} - pj_1||^2 + \dots + ||p_{i_L} - p_{j_L}||^2 = (u_{i_1} - u_{j_1})^2 + \dots + (u_{i_L} - u_{j_L})^2 + (v_{i_1} - v_{j_1})^2 + \dots + (v_{i_L} - v_{j_L})^2$$

$$||p_{i_1} - pj_1||^2 + \dots + ||p_{i_L} - p_{j_L}||^2 = D(u) + D(v)$$

(b)

Let C be the incident matrix of the graph we have that we want to minimize

$$||C^T u||^2 + ||C^T v||^2$$

Letting the matrix made up of the of the first N-K rows of C be the matrix A and the last K rows of C, likewise let u_1 and v_1 be the first N-K rows of u and v and v

$$||B^T u||^2 + ||B^T v||^2 = ||A^T u_1 + B^T u_2||^2 + ||A^T v_1 + B^T v_2||^2$$

$$= \left| \left| \begin{bmatrix} A^T & 0 \\ 0 & A^T \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} + \begin{bmatrix} B^T u_2 \\ B^T v_2 \end{bmatrix} \right| \right|^2$$

So then we have that in term of a least square problem we have $||Ax - b||^2$

$$A = \begin{bmatrix} A^T & 0 \\ 0 & A^T \end{bmatrix}$$

And

$$b = \begin{bmatrix} B^T u_2 \\ B^T v_2 \end{bmatrix}$$

And

$$x = \begin{bmatrix} u_1 \\ v_1 \end{bmatrix}$$

(c)

With the following code in julia

```
using PyPlot
#println (A)
#println (B)
 A=vcat(hcat(transpose(A), zeros(size(A)[2], size(A)[1])),
 hcat\left(\,z\,e\,ro\,s\,(\,s\,i\,z\,e\,(A)\,[\,2\,]\,\,,\,s\,i\,z\,e\,(A)\,[\,1\,]\,\right)\,,\,t\,r\,a\,n\,s\,po\,s\,e\,(A)\,)\,)
\#println(size(A))
u2=transpose([[0] [0] [1] [1]])
v2=transpose([[0] [1] [1] [0]])
#println(size(u2))
b=vcat(transpose(B)*u2,transpose(B)*v2)
#println(size(transpose(B)*u2))
#println(size(b))
x=A\b
#println(x)
u=reshape(vcat(x[1:6],u2),(10))
v=reshape(vcat(x[7:12],v2),(10))
 plot(u,v,"o")
axis("equal")
edges=[[ 1 3]
[ 1 4]
[ 1 7]
[ 2 3]
   1
1
2
2
2
2
3
3
4
5
6
          4]
5]
          6]
9]
        10]]
  for \quad i=1: size \, (\,edges\,) \, [\,1\,] 
        plot\left(u\left[\stackrel{\cdot}{edges}\left[\stackrel{\cdot}{i},:\right]\right],v\left[\stackrel{\cdot}{edges}\left[\stackrel{\cdot}{i},:\right]\right],"--",color="black"\right)
 savefig("fig1.png")
 close()
```

We get the following plot:

Exercise A8.3

We can get that

$$\alpha t_i + \beta = \ln(\frac{y_i}{1 - y_i})$$

So therefore we can have a least squares problem, with

$$A = \begin{bmatrix} t_1 & 1 \\ t_2 & 1 \\ \vdots & \vdots \\ t_n & 1 \end{bmatrix}$$

and

$$b = [\ln(\frac{y_1}{1 - y_1}), \ln(\frac{y_2}{1 - y_2}), \dots, \ln(\frac{y_n}{1 - y_n})]^T$$

and

$$x = [\alpha, \beta]^T$$

Then we have a least squares problem of

$$||Ax - b||^2$$

To find α and β I used the following code:

```
using PyPlot
include("logistic_fit.jl")

t,y=logistic_fit()

A=ones(length(t),2)
A[:,1]=t
b=log.(y./(ones(length(t)).-y))

x=A\b
# println(x)
# println(x[1].*t)
# println(x[2])
t1=LinRange(-1,5,50)
y1=exp.(x[2].+(x[1].*t1))./(ones(length(t1)).+exp.(x[2].+(x[1]*t1)))
println("alpha=",x[1])
println("beta=",x[2])
plot(t,y,"o",label="data")
plot(t1,y1,label="fit")
xlabel("t")
ylabel("y")
title("Logistic Fit")
legend()
savefig("fig2.png")
close()
```

which results in

 $\alpha = 1.8676293241597044$

 $\beta = -3.739673238861126$

and the following fit:

Exercise A8.11

(a)

we have that

$$x = A^{\dagger}b$$

$$x = (A^{T}A)^{-1}A^{T}b$$

$$x = \left(\begin{bmatrix} 1 & 10^{-k} & 0 \\ 1 & 0 & 10^{-k} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 10^{-k} & 0 \\ 0 & 10^{-k} \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 10^{-k} & 0 \\ 1 & 0 & 10^{-k} \end{bmatrix} \begin{bmatrix} -10^{-k} \\ 1+10^{-k} \\ 1-10^{-k} \end{bmatrix}$$

$$x = \left(\begin{bmatrix} 1+10^{-2k} & 1 \\ 1 & 1+10^{-2k} \end{bmatrix} \right)^{-1} \begin{bmatrix} 10^{-2k} \\ -10^{-2k} \end{bmatrix}$$

$$x = \begin{bmatrix} \frac{1+10^{-2k}}{10^{-4k}+2\cdot10^{-2k}} & -\frac{1}{10^{-4k}+2\cdot10^{-2k}} \\ -\frac{1}{10^{-4k}+2\cdot10^{-2k}} & \frac{1+10^{-2k}}{10^{-4k}+2\cdot10^{-2k}} \end{bmatrix} \begin{bmatrix} 10^{-2k} \\ -10^{-2k} \end{bmatrix}$$

$$x = \frac{10^{-2k}}{10^{-4k}+2\cdot10^{-2k}} \begin{bmatrix} 2+10^{-2k} \\ -2-10^{-2k} \end{bmatrix}$$

thus we have for k = 6:

$$x = \frac{10^{-12}}{10^{-24} + 2 \cdot 10^{-12}} \begin{bmatrix} 2 + 10^{-12} \\ -2 - 10^{-12} \end{bmatrix}$$

And for k = 7 we have

$$x = \frac{10^{-14}}{10^{-28} + 2 \cdot 10^{-14}} \begin{bmatrix} 2 + 10^{-14} \\ -2 - 10^{-14} \end{bmatrix}$$

And for k = 8 we have

$$x = \frac{10^{-16}}{10^{-32} + 2 \cdot 10^{-16}} \begin{bmatrix} 2 + 10^{-16} \\ -2 - 10^{-16} \end{bmatrix}$$

(b)

We have that with the following code:

```
for k = [6,7,8]
    A=transpose([[1,1] [10.0^-k,0] [0,10.0^-k]])
    b = [-(10.0^{\circ} - k), 1 + 10.0^{\circ} - k, 1 - 10.0^{\circ} - k]
    println("k=",k)
    println("x=",A\b)
    println("----
end
we get that
k=6
x = [0.999999999176988, -0.99999999917699]
x=[1.0000000027436178, -1.0000000027436176]
x=[1.0000000043137076, -1.0000000043137076]
(c)
We have that with the following code:
for k = [6,7,8]
    A=transpose([[1,1] [10.0^-k,0] [0,10.0^-k]])
    b = [-(10.0^{\circ} - k), 1 + 10.0^{\circ} - k, 1 - 10.0^{\circ} - k]
    println("k=",k)
    println("x=",(A'*A) \setminus (A'*b))
    println("_____")
end
```

we get that

And for k=8 we get a singular exception error since $\mathbf{A'*A}$ gets rounded to a matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ that is singular

Exercise A8.12

(a)

$$f(y) = ||Ay - b||^2 + (c^T y - d)^2$$

To minimize we take the derivative of it with respect to y_i for all $1 \le n \le N$ and set it to zero have

$$\frac{\partial}{\partial u_i} f(y) = 2(A^T (Ay - b))_i + 2(c^T y - d)c_i = 0$$

Thus we have

$$\nabla f(y) = 2(A^{T}(Ay - b) + c(c^{T}y - d)) = 0$$

which gives us

$$\nabla f(y) = 0$$
$$2(A^{T}(Ay - b) + c(c^{T}y - d)) = 0$$
$$A^{T}(Ay - b) + c(c^{T}y - d) = 0$$

if \hat{y} is a solution then we must have that

$$A^{T}(A\hat{y} - b) + c(c^{T}\hat{y} - d) = 0$$

we can confirm this, since

$$\hat{y} = \hat{x} + \frac{d - c^T \hat{x}}{1 + c^T (A^T A)^{-1} c} (A^T A)^{-1} c$$

we have:

$$A^{T}(A\hat{y}-b)+c(c^{T}\hat{y}-d)=0$$

$$A^{T}A\frac{d-c^{T}\hat{x}}{1+c^{T}(A^{T}A)^{-1}c}(A^{T}A)^{-1}c+cc^{T}\hat{x}+c(c^{T}\frac{d-c^{T}\hat{x}}{1+c^{T}(A^{T}A)^{-1}c}(A^{T}A)^{-1}c-d)=0$$

$$dc-c^{T}\hat{x}c+cc^{T}(d-c^{T}\hat{x})(A^{T}A)^{-1}c-c(d-c^{T}\hat{x})(1+c^{T}(A^{T}A)^{-1}c)=0$$

$$cc^{T}(d-c^{T}\hat{x})(A^{T}A)^{-1}c-c(d-c^{T}\hat{x})(c^{T}(A^{T}A)^{-1}c)=0$$

$$cc^{T}(d-c^{T}\hat{x})(A^{T}A)^{-1}c-cc^{T}(d-c^{T}\hat{x})(A^{T}A)^{-1}c=0$$

(b)

We first compute the QR factorization fo A, which will cost us $2mn^2$ flops, then we can compute \hat{x} with an additional $2mn+n^2$ flops. Likewise, since we can rewrite $(A^TA)^{-1}c$ as $(R^TQ^TQR)^{-1}c=(R^TR)^{-1}c$, which we can solve in $2n^2$ flops. then computing $c^T\hat{x}$ and $c^T(A^TA)^{-1}c$ will each cost us an additional 2n-1 flops, then computing $\frac{d-c^T\hat{x}}{1+c^T(A^TA)^{-1}c}$ will cost us 3 flops. Then computing $\hat{x}+\frac{d-c^T\hat{x}}{1+c^T(A^TA)^{-1}c}(A^TA)^{-1}c$ will cost us 2n flops, so in total this algorithm will cost us $2mn^2+2mn+3n^2+6n+1$ flops.