Devoir à la maison n° 10

À rendre le 18 janvier

I. Résolution d'une équation de Pell-Fermat.

Soit $G = \{ (a, b) \in \mathbb{N} \times \mathbb{Z} \mid a^2 - 2b^2 = 1 \}$. Pour $x = (a, b) \in G$ et $y = (c, d) \in G$, on pose :

$$x \times y = (ac + 2bd, ad + bc).$$

- 1) Montrer que (G, \times) est un groupe commutatif.
- 2) On note $x_0 = (3, 2)$, on peut vérifier que c'est un élément de G. On adopte les notations usuelles pour les puissances dans un groupe multiplicatif. Pour $n \in \mathbb{N}$, on note a_n et b_n les deux entiers tels que $x_0^n = (a_n, b_n)$.
 - note a_n et b_n les deux entiers tels que $x_0^n = (a_n, b_n)$.

 a) Montrer que $a_0 = 1$, $b_0 = 0$ et $\forall n \in \mathbb{N}$, $\begin{cases} a_{n+1} = 3a_n + 4b_n \\ b_{n+1} = 2a_n + 3b_n \end{cases}$
 - **b)** Montrer que pour tout $n \in \mathbb{N}$, on a $0 \leq b_n < a_n$. En déduire que, pour tout $n \in \mathbb{N}$, $5b_n < b_{n+1}$, puis que la suite (b_n) est strictement croissante de limite $+\infty$.
- 3) Soit $(a, b) \in G$ avec b > 0.
 - a) Justifier l'existence d'un entier $n \in \mathbb{N}^*$ tel que $b_n \leqslant b < b_{n+1}$. On pourra considérer l'ensemble $A = \{ p \in \mathbb{N} \mid b_p > b \}$.
 - b) En déduire que $0 \le ba_n ab_n < b_{n+1}a_n a_{n+1}b_n = 2$. On pourra remarquer (en le justifiant) que :

$$\left(\frac{a_{n+1}}{b_{n+1}}\right)^2 - 2 < \left(\frac{a}{b}\right)^2 - 2 \leqslant \left(\frac{a_n}{b_n}\right)^2 - 2.$$

- c) Montrer alors que $(a, b) \times x_0^{-n} = (1, 0)$. Que vaut (a, b)?
- d) Quels sont les entiers positifs a et b tels que $a^2 2b^2 = 1$?

II. Endomorphismes monotones de $(\mathbb{R}, +)$.

Déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ monotones et vérifiant :

$$\forall x, y \in \mathbb{R}, \ f(x+y) = f(x) + f(y).$$

Indication: On pourra commencer par déterminer une telle fonctions sur \mathbb{Z} puis sur \mathbb{Q} .