Actividades día 2 Entrelazamiento y Protocolos Cuánticos

Introducción a la Computación Cuántica, CACIC 2025 XXIX Escuela Internacional de Ingeniería y Computación Universidad Nacional de Rio Negro, Viedma, Rio Negro

Objetivos

En esta asignación, se propone una investigación guiada sobre los siguientes temas fundamentales:

- La conexión entre el teorema de no clonación y la comunicación superlumínica.
- La dualidad conceptual y matemática de la teleportación y la codificación superdensa.
- La violación de las desigualdades de Bell (CHSH) como evidencia del no-localismo cuántico.
- El debate EPR, el realismo local y la perspectiva de Einstein.
- Los fundamentos del protocolo de criptografía cuántica BB84 (QKD).

El objetivo es que utilices libros, la web y asistentes de IA como herramientas de investigación para construir tus respuestas, y que implementes los circuitos correspondientes en Qiskit.

1. Comunicación Superlumínica y No-Clonación

Consigna: El protocolo de codificación superdensa permite a Alice enviar dos bits clásicos a Bob transmitiendo un solo qubit, siempre que compartan un par entrelazado. Explica conceptualmente por qué, si el **teorema de no clonación** no fuera válido, este protocolo podría ser utilizado para establecer comunicación más rápida que la luz (superlumínica).

Pista: Considera un escenario donde Alice, después de enviar su qubit a Bob, pudiera clonar su qubit original del par entrelazado. ¿Qué le permitiría saber instantáneamente sobre la operación que Bob realizó para decodificar el mensaje?

2. Teleportación y Codificación Superdensa: Dos Caras de una Moneda

- a) Explica por qué se dice que la teleportación cuántica y la codificación superdensa son "dos caras de la misma idea". Compara los recursos necesarios (qubits, bits clásicos, entrelazamiento) y lo que se logra en cada protocolo.
- **b)** Usando la notación de Dirac, describe paso a paso el estado del sistema de dos qubits para ambos protocolos. Comienza con el estado de Bell $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.
- c) Implementa los circuitos cuánticos para la **teleportación** y la **codificación superdensa** en Qiskit. Asegúrate de que tus circuitos incluyan la creación del estado de Bell, las operaciones de Alice y las operaciones de decodificación de Bob. Comenta cada sección del código para explicar qué hace.

3. Desigualdad de Bell (CHSH)

El formalismo CHSH es una de las pruebas experimentales más importantes del entrelazamiento. La desigualdad se basa en el valor de correlación S = E(A, B) + E(A, B') + E(A', B) - E(A', B'), donde A, A' son mediciones de Alice y B, B' son mediciones de Bob.

a) Investiga y explica por qué, para cualquier teoría clásica basada en **realismo local** (variables ocultas locales), el valor de S está acotado por $|S| \le 2$.

Pista: Asume que los resultados de las mediciones (a, a', b, b') tienen valores predefinidos de ± 1 y deriva el límite.

b) Demuestra que en mecánica cuántica, al medir sobre un estado entrelazado como $|\Psi^-\rangle$, es posible elegir bases de medición tales que S alcanza el valor $2\sqrt{2}$, violando así el límite clásico. ¿Qué significa esta violación?

Pista: Asigna los observables de Alice y Bob a combinaciones de matrices de Pauli. Por ejemplo: $A = \sigma_z$, $A' = \sigma_x$, $B = -\frac{1}{\sqrt{2}}(\sigma_z + \sigma_x)$, $B' = \frac{1}{\sqrt{2}}(\sigma_z - \sigma_x)$.

4. El Debate EPR: "spooky action at a distance"

Consigna: Investiga el famoso artículo de Einstein, Podolsky y Rosen (EPR) de 1935.

- a) Define claramente qué entendía Einstein por localidad y realismo.
- b) Explica con tus propias palabras cuál era el núcleo del .ªrgumento EPR". ¿Qué era exactamente lo que le molestaba a Einstein del entrelazamiento cuántico y por qué lo llamó "spukhafte Fernwirkung" (acción espeluznante a distancia)?

5. Criptografía Cuántica (QKD)

Consigna: El protocolo BB84 (por Bennett y Brassard, 1984) es el ejemplo más famoso de Distribución Cuántica de Claves (Quantum Key Distribution - QKD).

- a) Describe los pasos del protocolo BB84. Explica cómo Alice envía los qubits, cómo Bob los mide, y cómo establecen una clave secreta compartida.
- b) Explica por qué la presencia de un espía (Eve) que intente interceptar y medir los qubits inevitablemente introduce errores detectables en la clave que Alice y Bob comparan. Conecta tu explicación con el postulado de la medición y el teorema de no clonación.

Sobre las soluciones.

- Entrega: Se realizará a través de un formulario de Google que se anunciará próximamente.
 Puedes entregar un documento PDF escaneado o digital, y enlaces a tus notebooks de Qiskit (Google Colab, etc.).
- Formato: Incluye todos los pasos de cálculo y razonamiento, indicando claramente cada problema.

Recursos

- Slides de la clase.
- Nielsen & Chuang, "Quantum Computation and Quantum Information".
- Qiskit learning especialmente las secciones sobre protocolos cuánticos.