# $10_{133} \ (K10n_4)$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle u^{11} + 5u^{10} + 9u^9 + 2u^8 - 15u^7 - 18u^6 + u^5 + 13u^4 + 5u^3 - u^2 + 4b - 7u + 1, \\ &- u^{11} - 5u^{10} - 11u^9 - 8u^8 + 9u^7 + 24u^6 + 13u^5 - 7u^4 - 13u^3 - 3u^2 + 2a + 5u + 5, \\ &u^{12} + 4u^{11} + 8u^{10} + 5u^9 - 5u^8 - 15u^7 - 9u^6 + 8u^4 + 2u^3 - 2u^2 - 4u - 1 \rangle \\ I_2^u &= \langle b^3 + b^2 + 2b + 1, \ a, \ u - 1 \rangle \end{split}$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 15 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{11} + 5u^{10} + \dots + 4b + 1, -u^{11} - 5u^{10} + \dots + 2a + 5, u^{12} + 4u^{11} + \dots - 4u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{11} + \frac{5}{2}u^{10} + \dots - \frac{5}{2}u - \frac{5}{2} \\ -\frac{1}{4}u^{11} - \frac{5}{4}u^{10} + \dots + \frac{7}{4}u - \frac{1}{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{2} - 2u + 1 \\ -\frac{1}{4}u^{11} - \frac{3}{4}u^{10} + \dots + \frac{3}{4}u + \frac{1}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{3}{4}u^{11} + \frac{15}{4}u^{10} + \dots - \frac{17}{4}u - \frac{9}{4} \\ -\frac{1}{4}u^{11} - \frac{5}{4}u^{10} + \dots + \frac{7}{4}u - \frac{1}{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{11} - \frac{3}{4}u^{10} + \dots + \frac{3}{4}u + \frac{1}{4} \\ \frac{1}{4}u^{11} + \frac{3}{4}u^{10} + \dots + \frac{1}{4}u - \frac{1}{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{3}{2}u^{11} + \frac{9}{2}u^{10} + \dots - \frac{3}{2}u - \frac{3}{2} \\ -\frac{3}{4}u^{11} - \frac{7}{4}u^{10} + \dots + \frac{1}{4}u - \frac{3}{4} \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes 
$$=2u^{11}+\tfrac{17}{2}u^{10}+16u^9+\tfrac{13}{2}u^8-\tfrac{39}{2}u^7-34u^6-9u^5+\tfrac{35}{2}u^4+19u^3+\tfrac{3}{2}u^2-12u-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}u^8-\tfrac{19}{2}$$

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $c_1, c_8$            | $u^{12} + 2u^{11} + u^{10} - 2u^9 + u^8 + 6u^7 + 4u^6 - 3u^5 + 6u^3 + 3u^2 - u - u^{12} + 2u^{11} + u^{10} - 2u^9 + u^8 + 6u^7 + 4u^6 - 3u^5 + 6u^3 + 3u^2 - u - u^{10} + 2u^{10} + 2u^{1$ | 1      |
| $c_2, c_{10}$         | $u^{12} + 2u^{11} + \dots + 7u + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| $c_3, c_6$            | $u^{12} - 4u^{11} + 8u^{10} - 5u^9 - 5u^8 + 15u^7 - 9u^6 + 8u^4 - 2u^3 - 2u^2 + 4u^4 - 2u^3 - 2u^4 + 3u^4 - 2u^3 - 2u^4 + 3u^4 - 2u^4 $ | 4u - 1 |
| <i>C</i> <sub>4</sub> | $u^{12} + 14u^{10} + \dots + 12u + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| $c_5,c_9$             | $u^{12} + u^{11} + \dots + 36u + 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| $c_7$                 | $u^{12} - 2u^{11} + \dots - 175u - 49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |

### (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing          |
|-----------------------|---------------------------------------------|
| $c_{1}, c_{8}$        | $y^{12} - 2y^{11} + \dots - 7y + 1$         |
| $c_2, c_{10}$         | $y^{12} + 18y^{11} + \dots - 7y + 1$        |
| $c_3, c_6$            | $y^{12} + 14y^{10} + \dots - 12y + 1$       |
| $c_4$                 | $y^{12} + 28y^{11} + \dots - 136y + 1$      |
| $c_5, c_9$            | $y^{12} - 21y^{11} + \dots - 464y + 64$     |
| <i>C</i> <sub>7</sub> | $y^{12} + 54y^{11} + \dots - 39739y + 2401$ |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.267707 + 0.884422I |                                       |                     |
| a = 0.991606 + 0.968229I  | 3.72986 - 1.03019I                    | -1.27943 + 1.44119I |
| b = 0.208639 - 1.095630I  |                                       |                     |
| u = -0.267707 - 0.884422I |                                       |                     |
| a = 0.991606 - 0.968229I  | 3.72986 + 1.03019I                    | -1.27943 - 1.44119I |
| b = 0.208639 + 1.095630I  |                                       |                     |
| u = -0.561933 + 0.696285I |                                       |                     |
| a = -0.925264 - 0.846250I | 2.66318 + 4.39533I                    | -2.94428 - 5.22312I |
| b = -0.544421 + 1.250460I |                                       |                     |
| u = -0.561933 - 0.696285I |                                       |                     |
| a = -0.925264 + 0.846250I | 2.66318 - 4.39533I                    | -2.94428 + 5.22312I |
| b = -0.544421 - 1.250460I |                                       |                     |
| u = 1.11609               |                                       |                     |
| a = 0.469158              | -2.23241                              | 0.00782210          |
| b = -0.247448             |                                       |                     |
| u = 0.703419 + 0.354505I  |                                       |                     |
| a = 0.543453 + 0.851824I  | -0.87372 - 1.32529I                   | -6.28742 + 4.78445I |
| b = -0.137910 - 0.436156I |                                       |                     |
| u = 0.703419 - 0.354505I  |                                       |                     |
| a = 0.543453 - 0.851824I  | -0.87372 + 1.32529I                   | -6.28742 - 4.78445I |
| b = -0.137910 + 0.436156I |                                       |                     |
| u = -1.18067 + 1.13803I   |                                       |                     |
| a = -0.702429 - 1.111310I | 14.0447 + 7.7983I                     | -3.16952 - 4.22102I |
| b = -0.15451 + 1.86459I   |                                       |                     |
| u = -1.18067 - 1.13803I   |                                       |                     |
| a = -0.702429 + 1.111310I | 14.0447 - 7.7983I                     | -3.16952 + 4.22102I |
| b = -0.15451 - 1.86459I   |                                       |                     |
| u = -1.10559 + 1.21488I   |                                       |                     |
| a = 0.744589 + 1.118150I  | 14.3370 + 0.8045I                     | -2.71291 + 0.16086I |
| b = 0.11602 - 1.80584I    |                                       |                     |

| Solutions to $I_1^u$     | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|--------------------------|---------------------------------------|---------------------|
| u = -1.10559 - 1.21488I  |                                       |                     |
| a = 0.744589 - 1.118150I | 14.3370 - 0.8045I                     | -2.71291 - 0.16086I |
| b = 0.11602 + 1.80584I   |                                       |                     |
| u = -0.291129            |                                       |                     |
| a = -1.77307             | -1.41716                              | -6.22070            |
| b = -0.728189            |                                       |                     |

II. 
$$I_2^u = \langle b^3 + b^2 + 2b + 1, \ a, \ u - 1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ -b^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -b \\ b \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -b \\ b \end{pmatrix}$$

$$a_2 = \begin{pmatrix} b^2 + 1 \\ -b^2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-7b^2 5b 17$

#### (iv) u-Polynomials at the component

| Crossings      | u-Polynomials at each crossing |
|----------------|--------------------------------|
| $c_1$          | $u^3 - u^2 + 1$                |
| $c_2$          | $u^3 + u^2 + 2u + 1$           |
| $c_3$          | $(u-1)^3$                      |
| $c_4, c_6$     | $(u+1)^3$                      |
| $c_5,c_9$      | $u^3$                          |
| $c_7, c_{10}$  | $u^3 - u^2 + 2u - 1$           |
| c <sub>8</sub> | $u^3 + u^2 - 1$                |

# (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing |
|--------------------|------------------------------------|
| $c_1, c_8$         | $y^3 - y^2 + 2y - 1$               |
| $c_2, c_7, c_{10}$ | $y^3 + 3y^2 + 2y - 1$              |
| $c_3, c_4, c_6$    | $(y-1)^3$                          |
| $c_5, c_9$         | $y^3$                              |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 1.00000               |                                       |                     |
| a = 0                     | 1.37919 + 2.82812I                    | -4.28809 - 2.59975I |
| b = -0.215080 + 1.307140I |                                       |                     |
| u = 1.00000               |                                       |                     |
| a = 0                     | 1.37919 - 2.82812I                    | -4.28809 + 2.59975I |
| b = -0.215080 - 1.307140I |                                       |                     |
| u = 1.00000               |                                       |                     |
| a = 0                     | -2.75839                              | -16.4240            |
| b = -0.569840             |                                       |                     |

### III. u-Polynomials

| Crossings  | u-Polynomials at each crossing                                                                                                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------|
| $c_1$      | $(u^{3} - u^{2} + 1)$ $\cdot (u^{12} + 2u^{11} + u^{10} - 2u^{9} + u^{8} + 6u^{7} + 4u^{6} - 3u^{5} + 6u^{3} + 3u^{2} - u - 1)$ |
| $c_2$      | $(u^3 + u^2 + 2u + 1)(u^{12} + 2u^{11} + \dots + 7u + 1)$                                                                       |
| $c_3$      | $(u-1)^3 \cdot (u^{12} - 4u^{11} + 8u^{10} - 5u^9 - 5u^8 + 15u^7 - 9u^6 + 8u^4 - 2u^3 - 2u^2 + 4u - 1)$                         |
| $c_4$      | $((u+1)^3)(u^{12}+14u^{10}+\cdots+12u+1)$                                                                                       |
| $c_5, c_9$ | $u^3(u^{12} + u^{11} + \dots + 36u + 8)$                                                                                        |
| $c_6$      | $(u+1)^3$ $\cdot (u^{12} - 4u^{11} + 8u^{10} - 5u^9 - 5u^8 + 15u^7 - 9u^6 + 8u^4 - 2u^3 - 2u^2 + 4u - 1)$                       |
| $c_7$      | $(u^3 - u^2 + 2u - 1)(u^{12} - 2u^{11} + \dots - 175u - 49)$                                                                    |
| $c_8$      | $(u^3 + u^2 - 1)$ $\cdot (u^{12} + 2u^{11} + u^{10} - 2u^9 + u^8 + 6u^7 + 4u^6 - 3u^5 + 6u^3 + 3u^2 - u - 1)$                   |
| $c_{10}$   | $(u^3 - u^2 + 2u - 1)(u^{12} + 2u^{11} + \dots + 7u + 1)$                                                                       |

IV. Riley Polynomials

| Crossings      | Riley Polynomials at each crossing                                 |
|----------------|--------------------------------------------------------------------|
| $c_1, c_8$     | $(y^3 - y^2 + 2y - 1)(y^{12} - 2y^{11} + \dots - 7y + 1)$          |
| $c_2,c_{10}$   | $(y^3 + 3y^2 + 2y - 1)(y^{12} + 18y^{11} + \dots - 7y + 1)$        |
| $c_3, c_6$     | $((y-1)^3)(y^{12}+14y^{10}+\cdots-12y+1)$                          |
| $c_4$          | $((y-1)^3)(y^{12} + 28y^{11} + \dots - 136y + 1)$                  |
| $c_5,c_9$      | $y^3(y^{12} - 21y^{11} + \dots - 464y + 64)$                       |
| c <sub>7</sub> | $(y^3 + 3y^2 + 2y - 1)(y^{12} + 54y^{11} + \dots - 39739y + 2401)$ |