ITC

Instrukcja użytkowania programu do projektu ITC_SSPO00891_00

Spis treści

1.	Przygotowanie komputera	3
	1.1. Wymagania programu	3
	1.2. Instalacja JVM	4
2.	Instalacja i deinstalacja programu	5
	2.1. Instalacja programu w trybie graficznym	5
	2.2. Instalacja programu z linii komend	5
	2.2. Deinstalacja programu	5
	2.3. Struktura katalogu i jego funkcje	6
3.	Praca z programem	7
	3.1. Menu Program	7
	3.1.1. Connect – podłączenie do zdalnego urządzenia	7
	3.1.2. Disconnect – rozłączenie z zdalnym urządzeniem	8
	3.1.3. Settings – konfiguracja połączeń	9
	3.1.4. Program log – rejestracja działania programu	10
	3.1.5. Exit – zakończenie pracy programu	10
	3.2. Menu Backup	11
	3.3. Menu DME Report	11
	3.4. Transparent – Status View	12
	3.5. Belka narzędziowa	13
	3.5.1. Ikona Summary	13
	3.5.2. Ikona Status	14
	3.5.3. Ikona ID Station	18
	3.5.4. Ikona Logs	19
	3.5.5. Ikona MTU	20
	3.5.6. Ikona CMU/RCU	21
	3.5.7. Ikona HPA/TXU	22
	3.5.8. Ikona RXU	23
	3.5.9. Ikona PSU	23
	3.5.10. Ikona Exit	24
	3.6. Okno główne	24

1. Przygotowanie komputera

Do pracy z powyższym programem można wykorzystać praktycznie każdy komputer, na którym będzie można zainstalować środowisko uruchomieniowe Javy w zalecanej wersji.

1.1. Wymagania programu

System operacyjny: Windows, Linux/Unix, Solaris

JVM wersja 8 JRE/SDK: Windows:

• Windows Vista SP2, 7 SP1, 8.x, 10

• Windows 8.x (Desktop)

• Windows 7 SP1

• Windows Vista SP2

• Windows Server 2008 R2 SP1 (wersja 64-bitowa)

• Windows Server 2012 i 2012 R2 (wersja 64-bitowa)

Linux:

• Oracle Linux 5.5 lub nowszy,

• Red Hat Enterprise Linux 5.5 lub nowszy,

• Suse Linux Enterprise Server 10 lub nowszy,

• Ubuntu Linux 12.04 LTS lub nowszy,

• Ubuntu Linux 14 lub nowszy,

Mac OS X:

• Komputer Mac oparty na Intelu, z systemem Mac OS X 10.8 lub nowszy,

Procesor: Minimum Intel Pentium II 266MHz,

Pamięć RAM: 128 MB (zalecane 512 MB),

Miejsce na dysku twardym (dla JVM): 124 MB dla JRE (372 MB dla SDK),

Miejsce na dysku twardym (program

ITC): około 50MB,

Sieć: TCP/IP 10Mbps lub lepsza, protokół snmp w wersji 3,

odpowiednie porty otwarte na zaporze ogniowej systemu

operacyjnego (typowo porty 34161 i 34080)

1.2. Instalacja JVM

W celu zainstalowania wirtualnego środowiska javy (JVM) należy skorzystać z poniższego adresu:

https://www.java.com/pl/download/

Po otwarciu strony w dowolnej przeglądarce internetowej w prawym menu wybieramy pozycję "Wszystkie wersje oprogramowania Java" a po otwarciu kolejnego okna szukamy wersji swojego systemu operacyjnego. Dla Windowsa zalecany jest wybór "Windows Offline (64-bitowa)".

W przypadku konieczności instalacji środowiska Javy w wersji JDK należy postępować zgodnie z instrukcją po wcześniejszym wybraniu z lewego menu pozycji " Jest potrzebny pakiet JDK?". Program ITC będzie pracował prawidłowo w obu środowiskach w wersji 8 i późniejszych.

2. Instalacja i deinstalacja programu

2.1. Instalacja programu w trybie graficznym

Program nie wymaga instalacji i jest rozprowadzany w postaci pliku archiwum zip. Po skopiowaniu pliku archiwum zip z programem ITC należy je w dowolny sposób rozpakować (np. poprzez opcję "Wyodrębnij wszystkie" - menu kontekstowe Windows). Przechodzimy do rozpakowanego katalogu i kopiujemy jego zawartość w dowolne wybrane przez użytkownika miejsce (np. C:\).

Wchodzimy do katalogu w miejscu docelowym i odnajdujemy plik ITC.jar. "Klikamy" dwa razy na pliku i jeżeli poprawnie zostało zainstalowane środowisko javy to program wystartuje. Docelowo dla wygody użytkowania można zrobić sobie skrót do programu.

W przypadku problemów należy sprawdzić poprawność ścieżek środowiskowych JVM, powiązań w systemie według rozszerzeń plików lub po prostu zainstalować ponownie środowisko Javy,

2.2. Instalacja programu z linii komend

Program nie wymaga instalacji i jest rozprowadzany w postaci pliku archiwum zip. Po skopiowaniu pliku archiwum zip z programem ITC należy je w dowolny sposób rozpakować (np. poprzez opcję "Wyodrębnij wszystkie" - menu kontekstowe Windows). Przechodzimy do rozpakowanego katalogu i kopiujemy jego zawartość w dowolne wybrane przez użytkownika miejsce (np. C:\).

Otwieramy "Ten komputer" i przechodzimy do docelowego miejsca programu do momentu gdy w oknie na liście pojawi się plik ITC.jar. Kasujemy całą zawartość paska adresu a wte miejsce należy wpisać **cmd**. Po zatwierdzeniu komendy otworzy się okno konsoli dokładnie w miejscu lokalizacji pliku programu. Na koniec w oknie podajemy następująca komendę:

java -jar ITC.jar

Program się uruchomi.

Ten sposób uruchomienia jest przydatny przy starszych systemach operacyjnych lub w szczególnych okolicznościach. W większości przypadków wystarczy procedura z punktu 2.1.

2.2. Deinstalacja programu

Ponieważ wszystkie pliki programu, dane i logi są zgromadzone w katalogu ITC w celu deinstalacji procedura ogranicza się do usunięcia powyższego folderu.

2.3. Struktura katalogu i jego funkcje

Na poniższym rysunku przedstawiona jest struktura katalogu programu ITC.

Nazwa	Data modyfikacji	Тур	Rozmiar
CONF	21.05.2018 20:31	Folder plików	
DATA	21.05.2018 20:31	Folder plików	
HELP	21.05.2018 20:31	Folder plików	
lib	21.05.2018 20:31	Folder plików	
LOG	21.05.2018 20:31	Folder plików	
	21.05.2018 20:31	Folder plików	
🕌 ITC.jar	28.03.2018 14:57	Executable Jar File	11 385 KB
README.TXT	25.03.2018 05:01	Plik TXT	2 KB

W kolejności foldery od góry:

- **CONF** Katalog zawiera plik konfiguracyjny programu oraz wszystkie dane dotyczące komunikacji programu z urządzeniem DME. Nie powinno się tego katalogu modyfikować ręcznie.
- **DATA** Katalog do którego trafiają wszystkie eksporty dostępne w programie (logi urządzenia, konfiguracja).
- **HELP** Rola pomocnicza, zawiera krótki instruktaż instalacji i uruchomienia.
- **lib** Folder niezbędny do pracy programu. Zawiera wykorzystywane w programie biblioteki dynamiczne. Nie powinno się tego katalogu modyfikować ręcznie.
- **LOG** Folder zawiera pliki logów samego programu, jego działania jak i ewentualnych problemów.
- **PIC** Folder pomocniczy programu.

3. Praca z programem

3.1. Menu Program

3.1.1. Connect – podłączenie do zdalnego urządzenia

Po uruchomieniu programu aby połączyć się z zdalnym urządzeniem DME należy z górnego menu najpierw wybrać **Program** a później **Connect** lub skrót klawiszowy **Alt+C** tak jak na poniższym rysunku.

Naszym oczom ukaże się okno dialogowe takie jak poniżej. Z sekcji Select w polu wyboru wybieramy interesującą nas stację.

Jeżeli na liście nie ma pożądanej stacji lub jest ona pusta oznacza to że wymagana jest konfiguracja programu. W tym celu przejdź do punktu 3.1.3.

W przypadku gdy na liście znajduje się pożądana pozycja i została wybrana mamy przed połączeniem możliwość sprawdzenie łącza. Jest to o tyle istotne że szybko weryfikujemy poprawność konfiguracji sprzętu i eliminujemy typowe błędy. W tym celu wybieramy przycisk **Test connect** - po chwili powinniśmy otrzymać wynik taki jak poniżej

W przypadku gdy pojawi się komunikat Address n.n.n.n unreachable... może to oznaczać iż:

- Karta sieciowa komputera ma błędny adres,
- Kabel połączeniowy lub łącze sieciowe jest niesprawne,
- Możemy być w innym vlan-ie niż urządzenie docelowe,
- Jeżeli wybrana konfiguracja nie była wcześniej używana może zawierać błąd

Po wybraniu przycisku Connect pojawią się komunikaty o pobieraniu ustawień z urządzenia oraz danych. Uwieńczeniem tej operacji będzie komunikat w lewym dolnym narożniku informujący o połączeniu oraz wyświetlające się dane w oknie aplikacji.

Istnieje możliwość że połączenie nie będzie najlepsze. Skutkować to może zrywaniem połączenia co sygnalizować będzie wyżej wspomniany komunikat. Aplikacja ponownie połączy się samoczynnie niezwłocznie po odzyskaniu kontaktu z urządzeniem.

Ponieważ protokół snmp nie należy do najszybszych należy wziąć pod uwagę iż reakcja aplikacji może być opóźniona jednak nie powinna przekraczać 10 sekund dla ponownego zestawiania połączenia i 3 sekund przy odświeżaniu danych.

3.1.2. Disconnect – rozłączenie z zdalnym urządzeniem

Rozłączenie zestawionego połączenia z urządzeniem realizujemy poprzez wybranie z menu **Program** przycisku **Disconnect** lub skrótu klawiszowego **Alt+D**.

3.1.3. Settings – konfiguracja połączeń

Aby uruchomić konfigurację połączeń programu wybieramy z menu **Program** opcję **Settings** lub skrót klawiszowy **ALT+S**.

Naszym oczom ukaże się powyższe okno. Jeżeli jest to pierwsze uruchomienie to będzie puste, jeśli kolejne to pojawią się wcześniejsze wpisy.

W celu dodania nowej pozycji należy wypełnić pola w sekcji Add/Edit/Delete. Pola:

- Name Opis, nazwa wyświetlana urządzenia,
- IP Address Adres IP urządzenia DME,
- Port for SNMP numer portu dla protokołu snmp,
- **User** nazwa użytkownika (taka jak przy logowaniu via WEB), użytkownik dla snmp jest "zaszyty" w programie,
- Password hasło (takie jak przy logowaniu via WEB), hasło dla snmp jest "zaszyte" w programie,
- Port for WEB numer portu dla protokołu http (odczyt logów urządzenia).

Na koniec wybieramy przycisk **Add**.

W celu edycji w liście wybieramy pożądaną pozycję. Dolna część okna zostanie wypełniona danymi, które zgodnie z potrzebami należy zmodyfikować. Zmiany utrwalamy przyciskiem **Edit Save**.

Aby skasować stację z listy podobnie jak w poprzednim wypadku wybieramy pozycję z listy a następnie klikamy przycisk **Delete**.

3.1.4. Program log – rejestracja działania programu

Aby uruchomić okno logów programu wybieramy z menu **Program** opcję **Progrma log** lub skrót klawiszowy **ALT+L**.

W powyższym oknie możemy prześledzić działanie programu oraz pojawiające się ewentualne błędy i ostrzeżenia. Log taki jest tworzony z podziałem na dni. W celu przejrzenia logów archiwalnych wystarczy skorzystać z ikony **Open log**. W oknie dialogowym wybieramy żądaną datę i zatwierdzamy. Plik logów zostanie załadowany do wyświetlenia.

3.1.5. Exit – zakończenie pracy programu

Aby zakończyć pracę programu wybieramy z menu **Program** opcję **Exit** lub skrót klawiszowy **ALT+E**. Alternatywą jest ikona **Exit** w belce narzędziowej. Efekt jest taki sam. Wszelkie zasoby zostaną zwolnione a połączenie (jeśli było zestawione) zostanie zerwane. W logu zostanie umieszczony stosowny zapis.

3.2. Menu Backup

W celu wykonania backupu należy z menu wybrać **Backups** i pozycję **Backup**.

W powyższym oknie możemy wykonać kopie bezpieczeństwa ważniejszych modułów DME. Działanie mechanizmu można obserwować w oknie podglądu. Zastosowany mechanizm nie modyfikuje plików wyjściowych, pozostawia je w wersji oryginalnej tak jak zostały odebrane z urządzenia. Wybranie przycisku **Go to the storage folder** powoduje otwarcie okna menadżera plików w miejscu składowania wcześniej utworzonych plików kopii zapasowych.

3.3. Menu DME Report

W celu wykonania backupu należy z menu wybrać **Reports** i pozycję **Report**. Okno Report jest bliźniaczo podobne do okna Backup. Również jest podzielone na dwie części: górną – z przyciskami i dolną z oknem szybkiego podglądu.

W oknie umieszczone są wszystkie opcje pobierania raportu dostępne ze strony WWW. W tym przypadku również (tak jak w Backup) dane nie podlegają obróbce – oryginalne dane trafiają do plików docelowych.

Wybranie przycisku **Go to the storage folder** powoduje otwarcie okna menadżera plików w miejscu składowania wcześniej utworzonych plików raportu.

3.4. Transparent – Status View

Transparent **Status View** jest głównym aktywnym elementem aplikacji. Rozmieszczenie elementów oraz znaczenie jest intuicyjne i w większości przypadków jasne.

Patrząc od góry mamy:

DME SYSTEM: Jest to w dużej mierze odpowiednik *Operation status* ze strony web, choć nie w pełni. W miejscu tym mamy zebrane w całość wszystkie alarmy z urządzenia. Jeśli tu jest "zielono" to mamy sprawne urządzenie. Element jest tylko do odczytu.

TXP A i TXP B: Są to dwa panele skorelowane z sobą (podzielone dla poprawienia czytelności). Przyciski **ON/OFF** obu paneli są niezależne i umożliwiają niezależne załączenie nadajników.

Kolejne przyciski **ON/OFF AIR** i **MAIN/STANDBY** są połączone w pary co oznacza, że przełączenie któregokolwiek wpływa aktywnie na sąsiada.

Uwaga!

Działanie w/w modułu jest silnie uzależnione od zachowania urządzenia zdalnego.

Przykład: Po podłączeniu do DME via program przycisk załączenia nadajnika TXP A wskazuje na wyłączony. Po jego wybraniu do kolejki modułu komunikacyjnego programu jest przekazana odpowiednia komenda. Rozkaz zostaje wysłany a przy najbliższym okienku odczytu pobrany stan modułu, który to dopiero zmienia stan i opis przycisku. Może to powodować złudzenie chwilowego braku reakcji na czynność ale jednocześnie gwarantuje że wskazania są zawsze realne – w tym przypadku nadajnik jest włączony.

ACTIVE i **STANDBY**: Są to pola funkcyjnie zbliżone do *DME SYSTEM* z ta jednak różnicą, że dotyczą nie całego urządzenia lecz części będącej w danym czasie odpowiednio w stanie aktywnym i gorącej rezerwy. Elementy są tylko do odczytu.

MASTER: Jest polem wskazującym, które CMU jest aktywne oraz jego stan. Element jest tylko do odczytu.

BYPASS: Ten przycisk zgodnie z opisem załącza bypass urządzenia. Jego zachowanie jest takie samo jak przycisków z sekcji *TXP A/B*.

RECYCLE COUNT: Jest to ostatnia sekcja zawierająca pole oraz przycisk reset. Wybranie tego przycisku powoduje wysłanie komendy kasującej licznik restartów urządzenia. Efekt działania jest widoczny po chwili na wyświetlaczu z lewej strony przycisku. Jeśli wyświetlana tam cyfra była niezerowa to pojawi się ta zero.

U dołu okna aplikacji, tuż pod transparentem jest umieszczone pole stanu połączenia umożliwiające szybkie stwierdzenie czy jest się podłączonym do urządzenia którego parametry połączeniowe są wyświetlane w belce statusu.

3.5. Belka narzędziowa

Belka narzędziowa umożliwia wywoływanie okien zawierających szczegółowe dane o stanie urządzenia. Funkcje poszczególnych przycisków zostały opisane w kolejnych podpunktach.

3.5.1. Ikona Summary

Okno **Summary** wywołuje się klikając przycisk **Summary** na belce narzędziowej.

Okno wzorowane jest na wyglądzie wynosu urządzenia DME LDB-103 i zawiera podstawowe parametry pracy urządzenia.

Beacon Delay – opóźnienie radiolatarni,
Pulse Pair Spacing – odstęp pary impulsów,
Efficiency – efektywność,
Transmitted Power – moc przenoszona,
Pulse Power Variation – zmienność mocy impulsu,
Radiated Power – moc wypromieniowana,
Transmission Rate – prędkość transmisji,
Ident Status – status sygnału identyfikacyjnego,
Ident Code – kod identyfikacyjny.

Zielone tło oznacza prawidłową wartość parametru. <mark>Żółte</mark> – przekroczenie progu ostrzeżenia ("Secondary Threshold"). Czerwony – przekroczenie progu alarmu ("Primary Threshold") lub nieprawidłową wartość parametru. Puste pole w kolorze szarym oznacza parametr nieaktywny.

3.5.2. Ikona Status

Okno **Status** wywołuje się klikając przycisk **Status** na belce narzędziowej. Okno podzielone jest na szereg zakładek.

Zakładka **General** zawiera informację o komunikacji modułu zarządzającego z poszczególnymi kartami urządzenia.

Zielone tło oznacza prawidłową komunikację. Żółte tło oznacza brak informacji o komunikacji. Czerwony tło oznacza błędną komunikację. Szare tło oznacza brak karty.

Zakładka Pulses zawiera informacje o parametrach impulsów zebrane z kart MTU, HPA i TXU.

Pulse Rise Time – Czas wzrastania impulsu,
Pulse Fall Time – Czas opadania impulsu,
Pulse Width – Szerokość impulsu,
TX Freq Deviation – Odchyłka częstotliwości nadajnika,
RX Freq Deviation – Odchyłka częstotliwości odbiornika.

Zielone tło oznacza prawidłową wartość parametru. Żółte – przekroczenie progu ostrzeżenia ("Secondary Threshold"). Czerwony – przekroczenie progu alarmu ("Primary Threshold"). Puste pole w kolorze szarym oznacza parametr nieaktywny. Wartości wyświetlane w kolorze szarym nie podlegają posiadają zadeklarowanych progów alarmowych.

MTU - TXP A			MTU - TXP B		
	MTU 1	MTU 4		MTU 1	MTU 4
Pulse 1 Rise Time:	2.800 µs	2.800 µs	Pulse 1 Rise Time:		
Pulse 1 Fall Time:	2.800 µs	2.800 µs	Pulse 1 Fall Time:		
Pulse 1 Width:	3.550 µs	3.600 µs	Pulse 1 Width:		
Pulse 2 Rise Time:	2.750 µs	2.750 μs	Pulse 2 Rise Time:		
Pulse 2 Fall Time:	2.800 µs	2.800 µs	Pulse 2 Fall Time:		
Pulse 2 Width:	3.550 µs	3.550 µs	Pulse 2 Width:		
TX Freq Deviation:	0 ppm	0 ppm	TX Freq Deviation:		
RX Freq Deviation:	0 ppm	0 ppm	RX Freq Deviation:		
НРА	· · · · · · · · · · · · · · · · · · ·		TXU		
	HPA A	HPA B		TXU A	TXU B
Pulse 1 Rise Time:			Pulse 1 Rise Time:	2.750 µs	0.000 µs
Pulse 1 Fall Time:			Pulse 1 Fall Time:	3.000 µs	0.000 µs
Pulse 1 Width:			Pulse 1 Width:	3.350 µs	0.000 µs
Pulse 2 Rise Time:			Pulse 2 Rise Time:	2.600 µs	0.000 µs
Pulse 2 Fall Time:			Pulse 2 Fall Time:	2.700 µs	0.000 µs
Pulse 2 Width:			Pulse 2 Width:	3.350 µs	0.000 µs

Zakładka **MTU** zawiera dwie grupy parametrów odnoszące się do autodiagnostyki i sygnału identyfikacyjnego.

ID Tone Period (741 us) – okres tonu identyfikacyjnego,

Dash length – długość (czas) kreski,

Dot length – długość (czas) kropki,

Keydown Period – okres kluczowania,

Ident Period – okres sygnału identyfikacyjnego,

Ident Length – długość (czas) sygnału identyfikacyjnjego.

Konwencja kolorowania jest identyczna jak w przypadku zakładki **Pulses**.

MTU Autodiagnosis		
	MTU 1	
Pulse Pair Spacing:	49.450 μs	50.500 µs
Beacon Delay:	11.300 µs	12.700 µs
	MTU 4	
Beacon Delay:	49.500 μs	50.500 μs
Pulse Pair Spacing:	11.300 µs	12.700 µs
MTU Ident		
MTU Ident		
	MTU 1	MTU 4
ID Tone Period (741 us):	MTU 1 0 μs	МТU 4 0 µs
ID Tone Period (741 us): Dash Length:		
	0 µs	0 µs
Dash Length:	0 µs 0 ms	0 μs 0 ms
Dash Length:	0 μs 0 ms 0 ms	0 μs 0 ms 0 ms
Dash Length: Dot Length: Keydown Period:	0 μs 0 ms 0 ms 0.000 s	0 μs 0 ms 0 ms 0.000 s

Zakładka **TXU/HPA** zawiera parametry pracy kart nadajnika (TXU) i wzmacniacza mocy (HPA o ile jest zainstalowany).

RF Operation Enabled – praca operacyjna nadajnika/wzmacniacza. ON – włączony, OFF – wyłączony, **HPA Present** - ON – nadajnik wykrył wzmacniacz mocy, OFF – nadajnik nie wykrył wzmacniacza mocy, **Forward Power** – moc wychodząca z nadajnika/wzmacniacza,

Temperature – temperatura karty,

Transmission Rate – prędkość transmisji,

Replies Transmission Rate – prędkość transmisji odpowiedzi,

Squitter Transmission Rate – prędkość transmisji squitterów,

Total Transmission Rate – całkowita prędkość transmisji.

Konwencja kolorowania jest identyczna jak w przypadku zakładki Pulses.

TXU			HPA		
	TXU A	TXU B		HPA A	HPA B
RF Operation Enabled:	ON	OFF	RF Operation Enabled:		
HPA Present:	OFF	OFF	Forward Power:		
Forward Power:	51.69 dBm	0.00 dBm	Temperature:		
Temperature:	43 °C	38 °C	Transmission Rate:		
Replies Transmission Rate:	23 ppps	0 ppps			
Squitter Transmission Rate:	851 ppps	866 ppps	TXU Interlock Status		
Squitter Transmission Rate.	оэт рррз	ооо рррз		TXU A	TXU B
Total Transmission Rate:	872 ppps	0 ppps	ILS 1 Interlock Status:	YES	YES
Waveform Fail Count:	0	0	ILS 2 Interlock Status:	YES	YES

Zakładka RXU zawiera parametry pracy kart odbiornika (RXU).

Received Pulses – odebrane impulsy,
Received Interrogations – odebrane zapytania,
SDES – Suppresed Pulses – impulsy stłumione przez algorytm SDES,
LDES - Suppresed Interrogations – zapytania stłumione przez algorytm LDES,
Dead-Time Suppresed Interrogations – zapytania stłumione przez bramkę "martwego czasu",
Fully Decoded Interrogations – całkowicie zdekodowanie zapytania,
Minimum Threshold Level – Minimalny próg poziomu sygnału.

Konwencja kolorowania jest identyczna jak w przypadku zakładki Pulses.

Zakładka Voltage zawiera poziomy napięć na poszczególnych kartach, a także parametry pracy zasilaczy (PSU).

Konwencja kolorowania jest identyczna jak w przypadku zakładki Pulses.

3.5.3. Ikona ID Station

Okno **ID Station** wywołuje się klikając przycisk **ID Station** na belce narzędziowej. Okno zawiera podstawowe dane o urządzeniu DME.

DME Name – nazwa radiolatarni,

CMU Uptime – czas pracy kart CMU,

CMU Soft Health – status oprogramowania karty CMU,

Channel Number – numer kanału radiolatarni

Mode – tryb pracy radiolatarni.

3.5.4. Ikona Logs

Okno **Logs** wywołuje się klikając przycisk **Logs** na belce narzędziowej. Okno służy do wyświetlania logów urządzenia.

Przyciski:

SEARCH: wraz z polem *Search parameters* umożliwia selekcjonowanie i odczyt logów według oczekiwanych parametrów. Domyślnie pola dat są ustawione na bieżącą datę (po wywołaniu okna można z marszu odczytać log z bieżącego dnia).

REFRESH: ma podobną funkcję jak poprzedni przycisk – odświeża zawartość okna logów (powtórnie odczytuje logi z urządzenia).

SAVE: wybranie tego przycisku powoduje eksport do pliku zawartości bieżącego okna – poniżej przedstawiono przykładową zawartość takiego pliku.

Paramet	User	Type	Orig	Module	Time	Date	New	01d	Result
TXPAEnab	RCU	snmp	setting	CMUB	04:05:51	2018-05-29	On	Off	success
TXPABeaconDel	MTU1	1	state	CMUB	04:05:52	2018-05-29	Secondary	Primary	1
TXPABeaconDel	MTU4	1	state	CMUB	04:05:52	2018-05-29	NoFault	Primary	1
TXPAPulsePairSpaci	MTU1	1	state	CMUB	04:05:52	2018-05-29	NoFault	Primary	1
TXPAPulsePairSpaci	MTU4	1	state	CMUB	04:05:52	2018-05-29	NoFault	Primary	1
RadiofrequencyPow	MTU4	1	state	CMUB	04:05:52	2018-05-29	NoFault	Secondary	1
TXPAPulseSha	MTU4	1	state	CMUB	04:05:52	2018-05-29	NoFault	Secondary	1
TXPOnA	Sys	1	state	CMUB	04:05:52	2018-05-29	TXPA	None	1
TXPAExecutivePrimaryAla	RCU	1	state	CMUB	04:05:52	2018-05-29	NoFault	Primary	1
TXPABeaconDel	MTU1	1	state	CMUB	04:05:53	2018-05-29	NoFault	Secondary	1
RadiofrequencyPow	MTU1	1	state	CMUB	04:05:53	2018-05-29	NoFault	Secondary	1
TXPAPulseSha	MTU1	1	state	CMUB	04:05:53	2018-05-29	NoFault	Secondary	1
TransmissionRa	MTU1	1	state	CMUB	04:05:54	2018-05-29	NoFault	Secondary	1
TransmissionRa	MTU4	1	state	CMUB	04:05:55	2018-05-29	NoFault	Secondary	1
TXPAExecutiveSecondaryAla	RCU	1	state	CMUB	04:06:11	2018-05-29	NoFault	Secondary	1
TXPAEfficien	MTU1	1	state	CMUB	04:06:12	2018-05-29	NoFault	Secondary	1
TXPAEfficien	MTU4	1	state	CMUB	04:06:12	2018-05-29	NoFault	Secondary	1
	login	rest	auth	CMUB	04:19:34	2018-05-29	1	1	success
	logout	rest	auth	CMUB	04:19:36	2018-05-29	1	1	1
TXPAEnab	RCU	snmp	setting	CMUB	04:27:30	2018-05-29	Off	On	success
TXPOnA	Sys	i i	state	CMUB	04:27:31	2018-05-29	None	TXPA	i i
TXPAExecutiveSecondaryAla	RCU	i	state	CMUB	04:27:32	2018-05-29	Secondary	NoFault	i
TransmissionRa	MTU1	i i	state	CMUB	04:27:32	2018-05-29	Secondary	NoFault	i
TransmissionRa	MTU4	i i	state	CMUB	04:27:32	2018-05-29	Secondary	NoFault	i
TXPABeaconDel	MTU4 I	i i	statel	CMUB	04:27:341	2018-05-291	Primary	NoFault	i
TXPAPulsePairSpaci	MTU4	i i	state	CMUB	04:27:34	2018-05-29	Primary	NoFault	i
RadiofrequencyPow	MTU4	i i	state	CMUB	04:27:34	2018-05-29	Secondary	NoFault	i
TXPAPulseSha	MTU4 i	i i	statel	CMUB	04:27:341	2018-05-291	Secondary	NoFault	i
TXPAExecutivePrimarvAla	RCUI	i i	statel	CMUB	04:27:35	2018-05-291	Primary	NoFault	i
TXPABeaconDel	MTUli	i i	statel	CMUB	04:27:351	2018-05-29	Primarv	NoFault	i
TXPAPulsePairSpaci	MTUli	i i	statel	CMUB		2018-05-291		NoFault	i
RadiofrequencyPow	MTU1	i i	statel	CMUB		2018-05-291		NoFault	i
TXPAPulseSha	MTU1	i i	state	CMUB		2018-05-29		NoFault	i
TXPAEfficien	MTU1	i i	statel	CMUB		2018-05-291		NoFault	i
TXPAEfficien	MTU4 I	- 1	statel	CMUBI		2018-05-291	-	NoFault	i i
	login	resti	auth	CMUB		2018-05-291			successi

Na koniec tej czynności jest wyświetlane okno dialogowe z informacją gdzie plik został zapisany. Domyślnie jest to katalog DATA.

3.5.5. Ikona MTU

Okno **MTU** wywołuje się klikając przycisk **MTU** na belce narzędziowej. Okno zawiera alarmy na zainstalowanych kartach **MTU** (monitora).

Zielone tło oznacza brak alarmu. Żółte – oznacza ostrzeżenie ("Secondary Alarm"). Czerwony –oznacza alarm ("Primary Alarm"). Szare – oznacza alarm nieaktywny.

Szczegółowe informacje na temat postępowania w wypadku pojawienia się alarmu zawarte są instrukcji użytkownika urządzenia.

3.5.6. Ikona CMU/RCU

Okno **CMU/RCU** wywołuje się klikając przycisk **CMU/RCU** na belce narzędziowej. Okno zawiera alarmy na zainstalowanych kartach **CMU** (zarządzającej) i **RCU** (sterowania przełączaniem).

Konwencja kolorowania i sposób postępowania w przypadku alarmu jest identyczny jak w przypadku okna **MTU**.

3.5.7. Ikona HPA/TXU

Okno **HPA/TXU** wywołuje się klikając przycisk **HPA/TXU** na belce narzędziowej. Okno zawiera alarmy na zainstalowanych kartach **HPA** (wzmacniacza) i **TXU** (nadajnika).

Konwencja kolorowania i sposób postępowania w przypadku alarmu jest identyczny jak w przypadku okna **MTU**.

3.5.8. Ikona RXU

Okno **RXU** wywołuje się klikając przycisk **RXU** na belce narzędziowej. Okno zawiera alarmy na zainstalowanych kartach **RXU** (odbiornika).

Konwencja kolorowania i sposób postępowania w przypadku alarmu jest identyczny jak w przypadku okna **MTU**.

3.5.9. Ikona PSU

Okno **PSU** wywołuje się klikając przycisk **PSU** na belce narzędziowej. Okno zawiera alarmy na zainstalowanych zasilaczach.

Konwencja kolorowania i sposób postępowania w przypadku alarmu jest identyczny jak w przypadku okna **MTU**.

3.5.10. Ikona Exit

Ikona **Exit** ma taką samą funkcję jak pozycja o tej samej nazwie w menu Program (p. 3.1.5).

3.6. Okno główne

Okno główne programu zawiera dwie zakładki System i Status.

Zakładka System przedstawia stan następujących elementów:

DME System – ogólny stan urządzenia,

TXP Sub-System – stan transpondera,

Monitor Sub-System – stan systemu monitorów,

Manage & Control Sub-System – stan systemu zarządzania i sterowania,

Relay Control Sub-System – stan systemu przełączania,

PSU Sub-System – stan systemu zasilania,

TXP Overall – ogólny stan transpondera,

TXP BITE – wynik testów BITE transpondera,

TXP Integrity –integralność transpondera,

BITE Alarms – wynik testów BITE dla poszczególnych kart

Zielone tło oznacza brak alarmu.

Żółte – oznacza ostrzeżenie ("Secondary Alarm").

Czerwony –oznacza alarm ("Primary Alarm").

Szare - oznacza alarm nieaktywny.

Szczegółowe informacje na temat postępowania w wypadku pojawienia się alarmu zawarte są instrukcji użytkownika urządzenia.

Zakładka **Summary** zawiera dane identyczne dane jak w oknie **Summary** (opis w punkcie 5.3.1).