OSI 7 LAYER 정리

1.요약

개방형 시스템 상호 연결 모델의 표준

실제 인터넷에서 사용되는 TCP/IP 는 OSI 참조 모델을 기반으로 상업적이고 실무적으로 이용될 수 있도록 단순화한 것

2. 탄생 배경

초기 여러 정보 통신 업체 장비들은 자신의 업체 장비들끼리만 연결이 되어 호환 성 없음

모든 시스템들의 상호 연결에 있어 문제없도록 표준을 정한것이 OSI 7계층 즉, 표준(호환성)과 학습도구로써 제작

3. 작동원리

OSI 7계층은 응용, 표현, 세션, 전송, 네트워크, 데이터링크, 물리계층으로 나뉨 전송 시 7계층에서 1계층으로 각각의 층마다 인식할 수 있어야 하는 헤더를 붙이 고 (캡슐화)

수신 시 1계층에서 7계층으로 헤더를 떼어냄 (디캡슐화)

- 출발지에서 데이터가 전송될 때 헤더가 추가되는데 2계층에서만 오류제어 를 위해 꼬리부분에 추가
- 물리계층에서 1,0 의 신호가 되어 전송매체 (동축케이블, 광섬유 등)을 통해 전송

5. 계층 기능

1) 물리 계층 (Physical Layer)

전기적, 기계적 특성을 이용하여 통신 케이블로 전기적 신호를 전송 단지 데이터 전달의 역할을 할 뿐이라 알고리즘, 오류제어 기능이 없음 네트워크 엔지니어는 감쇠 등의 열 손실과 IEEE 규격 등에 대해 알아야 함 장비는 케이블, 리피터, 허브 등

2) 데이터 링크 계층 (Data Link Layer)

물리적인 연결을 통하여 인접한 두 장치 간의 신뢰성 있는 정보 전송을 담당 전송단위는 Frame 이며 주소와 제어정보를 가짐. 정보의 오류와 흐름을 관리하여 안정된 정보를 전달 장비는 브리지, 스위치 등

3) 네트워크 계층 (Network Layer)

중계 노드를 통하여 전송하는 경우 어떻게 중계할 것인가를 규정 전송단위는 패킷이며 목적지까지 경로 설정 데이터를 목적지까지 가장 안전하고 빠르게 전달 장비는 라우터, L3 스위치 등

4) 전송계층 (Transport Layer)

종단 간 신뢰성 있고 정확한 데이터 전송을 담당 전송단위는 세그먼트이며 종단 간의 에러 복구와 흐름 제어를 담당 장비로 L4 스위치를 두는 경우가 있는데, 3계층에서 온 트래픽을 분석하여 서비스 종류를 구분

5) 세션 계층 (Session Layer)

통신 장치 간 상호작용 및 동기화를 제공 연결 세션에서 데이터 교환과 에러 발생 시의 복구를 관리

6) 표현 계층 (Presentation Layer)

데이터 표현에 차이가 있는 응용처리에서의 제어 구조를 제공 ASCII, JPEG, MPEG 등의 번역 전송하는 데이터의 인코딩, 디코딩, 암호화, 코드 변환 등을 수행

7) 응용 계층 (Application Layer)

사용자와 가장 밀접한 계층으로 인터페이스 역할 담당 응용 프로세스 간의 정보 교환을 담당 예로는 전자메일, 인터넷, 동영상 플레이어 등의 어플리케이션이 존재

6. 네트워크 장비

1) 1계층 장비

리피터 (중계기)

- 신호가 너무 약해지거나 잡음에 의해 훼손되기 전에 수신하여 신호를 증 폭시키는 역할
- 물리적인 길이를 확장가능
- 변질된 신호도 증폭하기 때문에 신호 변형 가능성이 큼

허브

- 다중 포트 리피터의 역할

2) 2계층 장비

브리지

- 수신한 신호를 재생성
- 패킷에 포함된 물리주소(MAC address) 를 검사할 수 있고 전달될지 폐기될 지 결정가능(Filtering)
- 인터페이스 주소를 대입한 테이블을 가지고 있고 스위치도 MAC 주소 테이블을 가짐

스위치

- 사용목적은 허브와 유사하지만 향상된 네트워크 속도를 제공
- 이는 허브처럼 다른 모든 컴퓨터에 전송되는 것이 아니라 필요한 컴퓨터 에만 전송하기에 가능
- 허브처럼 충돌현상 (충돌 도메인) 이 나타나지 않음
- 멀티포트 브리지 역할로 많은 포트수를 사용하기 위해서 사용

3) 3계층 장비

라우터

- 패킷이 포함하고 있는 물리주소 검사
- 네트워크 계층 주소(IP 주소) 검사
- 분리된 네트워크를 연결가능 (LAN-LAN, WAN-WAN, LAN-WAN)
- 분리된 네트워크 사이에서 패킷 전송을 하며 가능한 이유는 라우팅 테이 불이 있기 때문

4) 1, 2, 3계층 장비의 본질적 차이

- **리피터**는 신호를 연결되어 있는 모든 포트로 전파하기 때문에 다른 단말 이 **신호를 보낼 시 충돌이 발생**
- **스위치**는 이런 문제를 해결한 장비이다. 브리지 주소 테이블 또는 MAC 주소 테이블을 가지고 있음
- **스위치**는 보내야할 곳과 보내지 말아야할 곳을 구분하므로 **충돌 도메인을** 해결가능
- 하지만 브로드캐스트 도메인을 해결하지 않았고 세그먼트 구분을 못하므로 **네트워크를 나누지 못함**
- 라우터는 스위치의 문제를 해결가능
- 출발지 주소와 도착지 주소를 설정하고 경로를 지정하여 **다른 네트워크로** 의 전송이 가능