11. Übungsblatt

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik

Sommersemester 2021

2. Juli 2021

Abgabe bis 9. Juli 2021, 12:00 Uhr

Auf diesem Übungsblatt wird der Vorlesungsstoff bis einschließlich Seite 82 des Vorlesungsskripts behandelt.

Aufgabe 41 (K):

(i) Bestimmen Sie die allgemeine Lösung der folgenden Differentialgleichungen:

(a)
$$y'''(x) - y(x) = 0$$
,

(b)
$$y''(x) + y'(x) - 12y(x) = 4 + 6x^2 - 7x$$
.

(ii) Bestimmen Sie die Lösung des folgenden Anfangswertproblems

$$y'(x) = Ay(x), \quad y(0) = y_0 \quad \text{mit} \quad A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 1 \\ 1 & -1 & -1 \end{pmatrix} \quad \text{und} \quad y_0 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Aufgabe 42:

(i) Bestimmen Sie die allgemeine Lösung der folgenden Differentialgleichungen:

(a)
$$y'''(x) - y(x) = (x+1)\sin(x)$$
,

(b)
$$y'''(x) - 2y''(x) + y'(x) - 2y(x) = -4\cos(x) - 2\sin(x)$$
.

(ii) Bestimmen Sie die Lösung des Anfangswertproblems

$$y''(x) - y(x) = xe^x$$
, $y(0) = 1, y'(0) = -1$.

Aufgabe 43 (K):

(i) Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y'''(x) - 6y''(x) + 9y'(x) = 2\sin(x).$$

(ii) Bestimmen Sie die Lösung des Anfangswertproblems

$$y''(x) - y(x) = xe^{2x}, \quad y(0) = 0, y'(0) = 1.$$

Aufgabe 44:

In dieser Aufgabe möchten wir die gedämpfte Schwingung eines Federpendels genauer betrachten. Berücksichtigt man neben dem Einfluss der Rückstellkraft (-Du, mit der Federkonstanten D) auch die Reibung ($-\mu u'$, für $\mu > 0$), so ergibt sich für die zugehörige Bewegungsgleichung mit Anfangsauslenkung $x_0 \in \mathbb{R}$ und Anfangsgeschwindigkeit 0 das folgende Anfangswertproblem

$$\begin{cases}
 mu''(t) = -\mu u'(t) - Du(t), \\
 u(0) = x_0, \quad u'(0) = 0,
\end{cases}$$
(1)

wobei m die Masse des Massepunktes bezeichnet. Bestimmen Sie die Lösung von (1) und bestimmen Sie μ so, dass das Pendel nicht über die Ruhelage hinausschwingt. Den Fall für das kleinste μ , für welches

dies erfüllt ist, bezeichnet man als aperiodischen Grenzfall, bei allen weiteren solchen μ spricht man vom Kriechfall.

Information

Aufgrund der aktuellen Situation wird dieses Modul teilweise in digitaler Form angeboten. Die gesamte Abwicklung wird über das System ILIAS stattfinden. Melden Sie sich dafür mit Ihrem KIT-Account an und treten Sie dem Kurs Höhere Mathematik II (Analysis) für die Fachrichtung Informatik bei. Sie können diesem Kurs direkt über folgenden Link beitreten:

https://ilias.studium.kit.edu/goto.php?target=crs_1460343_rcodeUyjdjAUg9P&client_id=produktiv

Alle weiteren Informationen bezüglich der Themen Übungsbetrieb, Scheinkriterien, Tutorien, Prüfung, Skript und Literaturhinweise finden Sie auf der ILIAS-Seite der Vorlesung. Dort werden Sie auch über mögliche Änderungen informiert.

Zum Bearbeiten der Übungsblätter sollten Sie pro Woche etwa 7-8 Seiten des Skripts mithilfe der angebotenen Vorlesungsvideos durcharbeiten. Das kommende Übungsblatt wird den Vorlesungsstoff bis Seite 90 (einschließlich Satz 24.4) beinhalten.

Übungsschein

Jede (K)-Aufgabe wird mit maximal 8 Punkten bewertet. Einen Übungsschein erhält, wer auf den Übungsblättern 1-6 und 7-13 **jeweils** mindestens 48 bwz. 56 Punkte (50%) erzielt. Notwendig für den Erhalt des Übungsscheins ist eine Anmeldung im CAS-Portal.

Anmeldung zur Klausur

Die Klausur zur Höheren Mathematik I und II für die Fachrichtung Informatik wird am **14.09.2021** von **8:00 - 13:00 Uhr** stattfinden. Die Anmeldung zur Klausur ist ab sofort möglich. Beachten Sie bitte den **Anmeldeschluss** am **30.08.2021**. Eine nachträgliche Anmeldung ist nicht möglich.