

A command-line, CHARMM-GUI based membrane builder.

Maria José Falaguera, David Funosas, Lucía Rodríguez, Edgar Sánchez

Outline

- 1. Introduction
- 2. Objective
- 3. Methodology
 - 3.1. Infrastructure
 - 3.2. Main code
 - 3.3. Problems found
- 4. Example of membrane

1. Introduction

• CHARMM-GUI Membrane Builder provides a web-based graphical user interface to generate lipid membranes using MD simulations.

2. Objective

Project aim: CHARMM-GUI Membrane Builder → Command-line program

CHARMMANDER

3.1. Infrastructure

- Database of homogeneous membranes for each lipid, with 30 lipids per leaflet.
- Lipid data dictionaries module:
 - Parent-child relationships
 - Head atom of parent
 - Edge length (sqrSize)
- Main code

3.1. Infrastructure: Database

• Database of homogeneous membranes for each lipid (CRD files), with 30 lipids per leaflet

3.1. Infrastructure: Lipid data dictionaries

Edge length (sqrSize)

Membrane	Edge Length
Cholesterol	34.641
ERG	40.6202
DLPA	41.4246

Length one edge of the area

Head Atom Parent

Lipid Category	Head Atom					
Sterols	03					
PA	Р					

Separate upper from lower layers

3.1. Infrastructure: Lipid data dictionaries

Edge length (sqrSize)

Membrane	Edge Length
Cholesterol	34.641
ERG	40.6202
DLPA	41.4246

Length one edge of the area

Head Atom Parent

Lipid Category	Head Atom
Sterols	03
PA	Р

Separate upper from lower layers

Lipid-Category Relationship

Lipid	Lipid category
ERG	Sterols
Cholesterol	Sterols
DLPA	PA

Access to head atom of the child

3.2. Main code

User input.

```
usage: clasif.py [-h] -u UP_LIP [UP_LIP ...] -1 LOW_LIP [LOW_LIP ...]
-ur UP_RATIO [UP_RATIO ...] -lr LOW_RATIO [LOW_RATIO ...]
[-s SYS_SIZE [SYS_SIZE ...]] [-d BET_DIST] [-o OUT_NAME] [-v]
```


3.2. Main code

- Selecting membrane template for each leaflet (upper and lower)
 - Main lipid type introduced by user determines the template to select

3.2. Main code

- Selecting membrane template for each leaflet (upper and lower)
 - Main lipid type introduced by user determines the template to select
- Reading the correspondent .crd template membranes
 - Function that reads the coordinates from the .crd file and returns three variables:
 - A molecule object
 - List of residues in upper leaflet
 - List of residues in lower leaflet
- Removing one of the layers from each template

3.2. Main code

We applied the following pipeline for each leaflet (separately):

- Calculation of current proportions and target proportions (percentage)
- Removal and insertion of lipid
 - Random selection of the residue number that is going to be removed from leaflet
 - Removal of the selected residue
 - Insertion of new lipid
 - New lipids are obtained from the homogeneous membrane templates of the respective lipid
 - Collisions are set to TRUE so that the residues that collide are removed from the membrane
- Repeating the 2 previous steps until target proportions are reached

3.2. Main code

- Creating leaflets of dimensions given by user
 - Taking into account the area of the membrane template and the sizes of the user, repeat
 the following steps until a square big leaflet is generated (for loop):
 - Make copy 1 of leaflet → object molecule to append to
 - \blacksquare Make copy 2 of leaflet \rightarrow object molecule that will be moved and appended
 - \blacksquare MoveBy the copy d units in the X or Y axis
 - *d* is the edge length of the membrane template (retrieved from *sqrtSize* dictionary)
 - Append copy 2 to to copy 1

3.2. Main code

Finally, the two leaflets are assembled:

- Center both leaflets
- Calculate the vertical size of the largest lipid in both layers
- Move in z axis the lower leaflet by this distance plus the intermembrane distance that the user decides

3.2. Main code

- Output stored as PDB file.
 - Default name (date time) if none provided.
 - User provided.
- Visualization of the output.
 - Optional. Requires VMD installation.

3.3. Problems found

• Problem 1:

CHARMM-GUI membranes are generated in CRD files (not readable by htmd molecule.py)

○ **Solution**: crd_reader() function → load as molecule objects

3.3. Problems found

• Problem 2:

molecule.append() method does not output colliding atoms

○ **Solution**: edit molecule.append(mol, <u>collisions=True</u>) method → return colliding atoms

3.3. Problems found

Problem 3:

Heterogeneous membranes with different composition between layers

o **Solution**: Separate upper from lower layer (head atoms) and work separately with each one

4. Example of membrane

Choose desired lipids and absolute ratios. **Example**:

24:1 / 24:1

python charmmander.py -u SAPA SAPC -l SAPE SAPG -ur 1 3 -lr 3 1 -v -s 200

24:1 / 24:1

▼ Sterols	▼ Sterols		▼ PC (phosphatidylcholine) Lipids			▼ PE (phosphatidylethanolamine)			▼ PG (phosphatidylglycero) Lipids			▼ PS (phosphatidylserine) Lipids		
Cholesterol	0		DDPC	0	10:0 / 10:0	DLPE	0	12:0 / 12:0	DLPG	-1	12:0 / 12:0	DLPS	-1	12:0 / 12:0
ERG	0		DCPC	0	11:0 / 11:0	DMPE	0	14:0 / 14:0	DMPG	-1	14:0 / 14:0	DMPS	-1	14:0 / 14:0
▼ PA (phosi	hatidic	acid) Lipids	DLPC	0	12:0 / 12:0	DPPE	0	16:0 / 16:0	DPPG	-1	16:0 / 16:0	DPPS	-1	16:0 / 16:0
DLPA	-1	12:0 / 12:0	DMPC	0	14:0 / 14:0	DSPE	0	18:0 / 18:0	DSPG	-1	18:0 / 18:0	DSPS	-1	18:0 / 18:0
DMPA	-1	14:0 / 14:0	DPPC	0	16:0 / 16:0	PYPE	0	16:0 / 16:1	PYPG	-1	16:0 / 16:1	POPS	-1	16:0 / 18:1
DPPA	-1	16:0 / 16:0	DSPC	0	18:0 / 18:0	POPE	0	16:0 / 18:1	POPG	-1	16:0 / 18:1	PLPS	-1	16:0 / 18:2
DSPA	-1	18:0 / 18:0	POPC	0	16:0 / 18:1	PLPE	0	16:0 / 18:2	PLPG	-1	16:0 / 18:2	SOPS	-1	18:0 / 18:1
POPA	-1	16:0 / 18:1	PLPC	0	16:0 / 18:2	SOPE	0	18:0 / 18:1	SOPG	-1	18:0 / 18:1	SLPS	-1	18:0 / 18:2
PLPA	-1	16:0 / 18:2	SOPC	0	18:0 / 18:1	SLPE	0	18:0 / 18:2	SLPG	-1	18:0 / 18:2	DYPS	-1	16:1 / 16:1
SOPA	-1	18:0 / 18:1	SLPC	0	18:0 / 18:2	DYPE	0	16:1 / 16:1	DYPG	-1	16:1 / 16:1	YOPS	-1	16:1 / 18:1
SLPA	-1	18:0 / 18:2	DYPC	0	16:1 / 16:1	YOPE	0	16:1 / 18:1	DOPG	-1	18:1 / 18:1	DOPS	-1	18:1 / 18:1
DYPA	-1	16:1 / 16:1	YOPC	0	16:1 / 18:1	OYPE	0	18:1 / 16:1	DGPG	-1	20:1 / 20:1	DGPS	-1	20:1 / 20:1
YOPA	-1	16:1 / 18:1	DOPC	0	18:1 / 18:1	DOPE	0	18:1 / 18:1	DEPG	-1	22:1 / 22:1	DEPS	-1	22:1 / 22:1
DOPA	-1	18:1 / 18:1	DUPC	0	18:2 / 18:2	DGPE	0	20:1 / 20:1	DNPG	-1	24:1 / 24:1	DNPS	-1	24:1 / 24:1
DGPA	-1	20:1 / 20:1	DGPC	0	20:1 / 20:1	DEPE	0	22:1 / 22:1						
	55		DEDC	0	22-1 / 22-1	DNDE	0	24-1 / 24-1						

Thanks for your attention!

Any question?

A command-line, CHARMM-GUI based membrane builder.

Maria José Falaguera, David Funosas, Lucía Rodríguez, Edgar Sánchez