<u>Capstone 3: Predicting Shaft Unbalance using Vibration</u> <u>Data</u>

Table of contents

- Capstone 3: Predicting Shaft Unbalance using Vibration Data
 - Abstract
 - Problem Statement:
 - About the Data
 - Summary and Conclusions
 - Steps
 - Dependencies and Initial Definitions
 - Read data
 - Exploratory Data Analysis (EDA)
 - Data Processing Method Summary
 - Model Data Preparation
 - Model Evaluation
 - Concern areas
 - Suggestions and Improvements

Abstract

The use of machinery vibration and the technological advances that have been developed over the years, that make it possible to not only detect when a machine is developing a problem, but to identify the specific nature of the problem for scheduled correction.

Fault detection at rotating machinery with the help of vibration sensors offers the possibility to detect damage to machines at an early stage and to prevent production down-times by taking appropriate measures.

The following Kaggle dataset consists of pairs of training and test data for different levels of vibration imbalances created by varying amounts of unbalance masses (unbalance load) on the shaft. The output of vibration sensors corresponding to the various unbalances are provided.

Problem Statement:

How can vibration data be used to predict possible damage to rotating shaft and machinery?

About the Data

A shaft attached to a motor was setup to rotate in a bearing. The other end of the shaft was connected to a load platform. The bearing had three PCB Synotech GmbH, type PCB-M607A11 / M001AC vibration sensors sending readings to a DAQ.

Vibration data for unbalances of different sizes was recorded. The vibration data was recorded at a sampling rate of 4096 values per second. By varying the level of unbalance, different levels of difficulty can be achieved, since smaller unbalances obviously influence the signals at the vibration sensors to a lesser extent.

In total, datasets for 4 different unbalance strengths were recorded as well as one dataset with the unbalance holder without additional weight (i.e. without unbalance). The rotation speed was varied between approx. 630 and 2330 RPM in the development datasets and between approx. 1060 and 1900 RPM in the evaluation datasets. Each dataset is provided as a csy-file with five columns:

1. . V_in : The input voltage to the motor controller V_in (in V)

2. . Measured_RPM : The rotation speed of the motor (in RPM; computed from speed measurements using the DT9837)

3. . Vibration_1 : The signal from the first vibration sensor

4. . Vibration_2 : The signal from the second vibration sensor

5. . Vibration_3 : The signal from the third vibration sensor

Overview of the dataset components:

ID Radius [mm], Mass [g]

0D/ 0E - -

1D/ 1E 14 ± 0.1, 3.281 ± 0.003

2D/ 2E 18.5 ± 0.1, 3.281 ± 0.003

 $3D/3E23\pm0.1$, 3.281 ± 0.003

4D/ 4E 23 ± 0.1, 6.614 ± 0.007

In order to enable a comparable division into a development dataset and an evaluation dataset, separate measurements were taken for each unbalance strength, respectively. This separation can be recognized in the names of the csv-files, which are of the form "1D.csv": The digit describes the

unbalance strength ("0" = no unbalance, "4" = strong unbalance), and the letter describes the intended use of the dataset ("D" = development or training, "E" = evaluation).

Data Source: https://www.kaggle.com/datasets/jishnukoliyadan/vibration-analysis-on-rotating-shaft/data

Summary and Conclusions

- Imported the development and evaluation data from the source
- The data was analyzed and modified to make it suitable for predicting load
- · Different models were explored and compared to find the best model for predicting load
- A custom metric was developed to evaluate the best model
- The best model was found to be a Logistic Regression model

Steps

- 1. Download the development and evaluation data from the provided link.
- 2. Read the development data into a pyspark dataframe
- 3. Explore the pyspark dataframe and observe discrepancies (negative RPM and vibrations, etc..)
- 4. Group the pyspark dataframe by voltage and load level
- 5. Convert the grouped pyspark dataframe to pandas dataframe
- 6. Repeat these steps for the evaluation data
- 7. Plot the vibration vs. RPM for various load levels for both training and evaluation data and shuffle if necessary to obtain suitable data
- 8. Define model metric for evaluation
- 9. Split the data into train and test
- 10. Develop data pre-processing and modeling pipeline and Grid SearchCV to tune hyperparameters
- 11. Fit the search to the training data
- 12. Select the model with the best hyperparameters and evaluate on the test data
- 13. Plot the confusion matrix and determine the model metric for different models
- 14. Choose the model with the highest metric value

Dependencies and Initial Definitions

```
import math as mth
import pandas as pd
import numpy as np
from pyspark import SparkContext
from pyspark.sql import SparkSession, DataFrame, functions, types
import pyspark.sql.functions as spark fn
import pyarrow
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline, make pipeline
from sklearn.linear model import LinearRegression, LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor
from sklearn.metrics import r2_score,mean_squared_error, mean_absolute_error, mean_absolute_
classification_report, roc_curve,auc,confusion_matrix, ConfusionMatrixDisplay
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer, FunctionTransform
from sklearn.decomposition import PCA
from sklearn.model selection import train test split, TimeSeriesSplit, GridSearchCV
from xgboost import XGBClassifier,XGBRegressor
import tensorflow as tf
from keras import callbacks
from keras.models import Sequential
from keras.layers import InputLayer, Dense, Flatten, LSTM
# from keras.optimizers import Adam
import scipy
from scipy.stats import linregress
from scipy.stats import pearsonr
import statsmodels
from statsmodels.tsa.stattools import acf
from datetime import datetime, timedelta
import random
import sys
import os
from io import StringIO
import json # library to handle JSON files
from matplotlib import cm, colors
from matplotlib.colors import Normalize
from geopy.geocoders import Nominatim # convert an place into latitude and longitude values
import folium # map rendering library
from bs4 import BeautifulSoup
import camelot
import requests
from IPython import get_ipython
# Create a spark sql session
spark=SparkSession.builder.getOrCreate()
sc=spark.sparkContext
```

import warnings

```
# Customize how warnings are displayed
warnings.filterwarnings('always', module='.*')
warnings.formatwarning = lambda message, category, filename, lineno, line=None: f'{category.
General Classes and Functions
# Class to create Plots grid
from itertools import product, cycle, combinations
from scipy.stats import pearsonr
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
class Plotsgrid:
    """ Creates a nxn grid of plots for an input df. Shows blank for grid values exceeding r
    def __init__(self,df):
        self.df=df
    def figure_params(self,size_fac1,size_fac2):
        df=self.df
        n_data_cols=len(df.columns)
        self.n_data_cols=n_data_cols
        n_cols=int(n_data_cols**.5)
        n rows=0
        while n_rows*n_cols<n_data_cols:
            n rows += 1
        # Create the figure and axes grid
        fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols,figsize=(int(size_fac1*n_data_col
        # Flatten the axs array for easier iteration
        if n_rows == 1 and n_cols == 1: # Only one subplot
            self.axs = [axs]
        else:
            self.axs = axs.flatten()
    # Loop through the axes and Hist plot
    def histplots(self,bins=-1,density=False):
        # Initialize figure
        self.figure params(1,2)
        # Create a cycler to iterate over the DataFrame columns
        cycler = cycle(self.df.columns)
        for i,ax in enumerate(self.axs):
```

```
if i==self.n data cols:
            ax.set_visible(False) # Hide any extra subplots if there are more subplots
            break
        col = next(cycler) # Get the next column name
        if bins==-1:
            if density:
                sns.histplot(data=self.df, x=col, ax=ax,stat='density') # Plot the hist
            else:
                sns.histplot(data=self.df, x=col, ax=ax) # Plot the histogram on the cu
        else:
            if density:
                sns.histplot(data=self.df, x=col, ax=ax,bins=bins,stat='density') # Plc
                sns.histplot(data=self.df, x=col, ax=ax,bins=bins) # Plot the histogram
   plt.tight_layout()
   plt.show()
# Loop through the axes and Box plot
def boxplots(self):
   # Coerce df to numeric:
   df=self.df.apply(pd.to_numeric,errors='coerce').dropna(how='all',axis=1)
   # Initialize figure
   self.figure_params(1,2)
   # Create a cycler to iterate over the DataFrame columns
   cycler = cycle(df.columns)
   for i,ax in enumerate(self.axs):
        try:
            if i==self.n_data_cols:
                ax.set_visible(False) # Hide any extra subplots if there are more subpl
            col = next(cycler) # Get the next column name
            sns.boxplot(data=df, y=col, ax=ax) # Plot the boxplot on the current axis
        except Exception as E:
            print(E)
    plt.tight_layout()
   plt.show()
# Loop through the axes and Line plot
def lineplots(self):
   # Initialize figure
   self.figure_params(5,5)
   # Create a cycler to iterate over the DataFrame columns
   cycler = cycle(self.df.columns)
    for i,ax in enumerate(self.axs):
        if i==self.n_data_cols:
            ax.set_visible(False) # Hide any extra subplots if there are more subplots
            break
        col = next(cycler) # Get the next column name
        print(col)
```

```
sns.lineplot(data=self.df,x=self.df.index,y=col, ax=ax) # Plot the Line on the
   plt.tight_layout()
   plt.show()
def scatterplots(self):
   # Coerce df to numeric:
   df=self.df.apply(pd.to_numeric,errors='coerce').dropna(how='all',axis=1)
   # Get all numeric combinations
   col_combinations = list(combinations(df.columns, 2))
   num_combs = len(col_combinations)
   # Calculate grid size based on the number of combinations
   n_cols = int(np.ceil(np.sqrt(num_combs)))
   n_rows = int(np.ceil(num_combs / n_cols))
   # Create the figure and axes grid
   fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(int(2*n_cols),int(2.5*r
   plt.suptitle('Pairwise Scatter with higher correlations shown brighter')
   axs = axs.flatten() # Flatten the axes array for easier iteration
   # Iterate through each combination and plot scatterplots
    for i, (col_x, col_y) in enumerate(col_combinations):
        ax = axs[i]
       df_x_y=df[[col_x,col_y]].dropna()
       x = df_x_y[col_x]
       y = df_x_y[col_y]
        # Calculate Pearson correlation and p-value
        if len(x) > 1 and len(y) > 1: # Ensure there are enough data points
            corr, p_value = pearsonr(x, y)
           corr_array=np.array([corr]*x.shape[0])
            # Scatter plot with colored points
            sns.scatterplot(x=x, y=y, ax=ax,hue=corr_array, palette='coolwarm',hue_norm=
            # Add correlation coefficient and p-value as the legend
            ax.text(0.05, 0.95, f"r = {corr:.2f} \neq {p_value:.2e}",
                    transform=ax.transAxes, fontsize=7, verticalalignment='top',
                    bbox=dict(boxstyle="round,pad=0.3", facecolor="lightgray", edgecolor
            # Set plot labels
            ax.set_xlabel(col_x)
            ax.set_ylabel(col_y)
   # Hide any extra subplots
   for j in range(i + 1, len(axs)):
        axs[j].set_visible(False)
```

```
plt.tight_layout()
        plt.show()
def mape(y_true, y_pred):
    """Compute the mean absolute percentage error (MAPE)."""
    y_true, y_pred = np.array(y_true), np.array(y_pred)
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
def basic_eda(df):
    # Check if 'df' is a DataFrame
    if isinstance(df, pd.DataFrame):
        pass
    else:
        df=pd.DataFrame(df)
    cols=df.columns.tolist()
    print('\nCOLUMNS LIST: ')
    print(cols)
    print('\nFIRST FEW: ')
    print(df.head(3))
    print('\nLAST FEW: ')
    print(df.tail(3))
    print('\nINFO: ')
    print(df.info())
    print('\nDESCRIPTION: ')
    print(df.describe())
    print('\nUNIQUE VALUES: ')
    [print(col+' Unique: ',len(df[col].value_counts())) for col in df.columns];
    return cols
def basic_eda_spark(df):
    # Check if 'df' is a Spark DataFrame
    if isinstance(df, DataFrame):
        pass
    else:
        raise TypeError("The input is not a Spark DataFrame")
    # Create a table view
    df.createOrReplaceTempView("eda_table")
    # Get the column list
    cols = df.columns
    print('\nCOLUMNS LIST: ')
    print(cols)
    # Show first few rows (head)
    print('\nFIRST FEW: ')
    df.show(3)
    # Show last few rows (tail equivalent in PySpark by ordering)
    #print('\nLAST FEW: ')
```

```
#df.orderBy(df.columns[0], ascending=False).show(3)
    # Show schema (info equivalent)
    print('\nINFO (Schema): ')
    df.printSchema()
    # Show summary statistics (describe equivalent)
    print('\nDESCRIPTION: ')
    df.describe().show()
    # Count of unique values:
    print('\nCOUNT UNIQUE: ')
    [print(col+': ',df.select(col).distinct().count()) for col in df.columns];
    return cols
def plot line from spark(df):
    df_plot=df.limit(100000).toPandas()
    for col in df.columns:
        df_plot[col].plot(kind='line');
        plt.legend([col])
        plt.show();
# Read local csv
def read local csv(filenames):
    '''Read a file or list of files into a dataframe'''
    if type(filenames)==list:
        df=pd.DataFrame()
        for file in filenames:
            df_file=pd.read_csv(data_dir+'\\'+file)
            load_num=[i for i in file if i.isdigit()][0]
            df file['load']=load_num
            df=pd.concat([df,df_file],axis=0)
    else:
        df=pd.read_csv(data_dir+'\\'+filenames)
        load_num=[i for i in file if i.isdigit()][0]
        df['load']=load_num
    return df
def read_local_csv_object(filenames):
    print(filenames)
    ''' Read a csv or list of csvs into a spark object'''
    if type(filenames)==list:
        file=filenames[0]
        spark_df=spark.read.csv(data_dir+'\\'+file,header=True,inferSchema=True)
        load_num=[int(i) for i in file if i.isdigit()][0]
        spark_df=spark_df.withColumn('load',spark_fn.lit(load_num))
        for file in filenames[1:]:
```

Read data

```
current_directory=os.getcwd()
# List all files in the data directory
data_dir=current_directory+'\kaggle\working'
files = os.listdir(data_dir);
filenames=[file for file in files if '.csv' in file]
print(filenames)

☐ ['OD_trunc.csv', 'OE_trunc.csv', '1D_trunc.csv', '1E_trunc.csv', '2D_trunc.csv', '2E_trunc.csv', '2E_tr
                  SyntaxWarning: invalid escape sequence '\k'
                  SyntaxWarning: invalid escape sequence '\k'
                  SyntaxWarning: invalid escape sequence '\k'
# Development and evaluation files
filenames_D=[filename for filename in filenames if 'D' in filename]
filenames_E=[filename for filename in filenames if 'E' in filename]
# Read the development files
df_D_spark=read_local_csv_object(filenames_D)
 → ['0D_trunc.csv', '1D_trunc.csv', '2D_trunc.csv', '3D_trunc.csv', '4D_trunc.csv']
```

Exploratory Data Analysis (EDA)

```
0.0
      28.610235
                  0.0
                          0.01
                                   0.0
                                       0 l
0.0
      28.610235
                  0.0
                          0.0
                                   0.0
                                       01
0.01
      28.610235
                  0.0
                          0.0
                                   0.01
                                       0 l
+---+----+----+
```

only showing top 3 rows

INFO (Schema):

root

|-- V_in: double (nullable = true)

|-- Measured_RPM: double (nullable = true)

|-- Vibration_1: double (nullable = true)

|-- Vibration 2: double (nullable = true)

|-- Vibration_3: double (nullable = true)

|-- load: integer (nullable = false)

DESCRIPTION:

4					
į	summary		Measured_RPM	Vibration_1	Vibration_2
	count mean	13201553		13201553 0.001651138868151	
١	stddev	2.327930769161795	2986857.101551288	0.05552156238148596	0.0845743674615158
j	min	0.0	-2.4E8	-0.12001276	-0.21576047
j	max	10.0	4091.723	7.8491378	8.7981558
+	+	·			

COUNT UNIQUE:

V_in: 162

Measured_RPM: 27804 Vibration_1: 122577 Vibration_2: 164840 Vibration 3: 62060

load: 5

['V_in', 'Measured_RPM', 'Vibration_1', 'Vibration_2', 'Vibration_3', 'load']

Explore occurence of negative RPM values
df_D_spark.filter((df_D_spark.Measured_RPM<0)).describe().show()</pre>

\rightarrow	+					
ٽ			Measured_RPM	Vibration_1	Vibration_2	Vibration_3
	++ count		2045			2045
	mean	0.0	-2.4E8	1.1340587862948655	2.7391967250366744	1.4354542156332515
	stddev	0.0	0.0	0.8078785936476082	0.49377066863850905	0.8008889551017733 1.4
	min	0.0	-2.4E8	0.010514259	1.8436027	0.27963758
	max	0.0	-2.4E8	2.4504042	3.8436234	2.748549
	++		+			+

- There are values of RPM < 0. This is clearly some kind of measurement fault as an RPM of -2.4E8 is unrealistic. Hence we can disregard values lower than 0
- There are also negative vibration values; we can turn them positive since we are interested in the magnitude of the vibration, not the direction.

```
# Remove RPM <0
df_D_spark=df_D_spark.filter((df_D_spark.Measured_RPM>=0))
print(df_D_spark)
   DataFrame[V_in: double, Measured_RPM: double, Vibration_1: double, Vibration_2: double,
# Turn vibration values to absolute
for col in df_D_spark.columns:
  if 'Vib' in col:
     df D spark=df D spark.withColumn(col, spark fn.abs(spark fn.col(col)))
df_D_spark.describe().show()
V_in| Measured_RPM| Vibration 1|
   summary
                                                       Vibration 2
   13199508
                             13199508
                                            13199508
      mean | 5.996072732408105 | 1479.338342939554 | 0.006926123949303975 | 0.008946409263340052 | 6
   | stddev| 2.32691468542015|494.5346613461752| 0.05232164670326984| 0.07668427695074911|
                   0.0
                          28.610235
                                               0.0
                                                          8.7981558
                   10.0
                            4091.723
                                          7.8491378
       max
```

plot_line_from_spark(df_D_spark)

 $\overline{\mathbf{T}}$

DeprecationWarning: distutils Version classes are deprecated. Use packaging.version in DeprecationWarning: distutils Version classes are deprecated. Use packaging.version in ResourceWarning: unclosed <socket.socket fd=7140, family=2, type=1, proto=0, laddr=(':

- We can filter the data further, to say RPM > 600. This will filter out the spike in vibration signal as well
- Based on the voltage and RPM patterns, it looks like the purpose of the experiment was to maintain the motor at specific RPMs.
- We can take the mean of the parameters for each voltage level to understand how the speed and vibration vary with voltage, while also drastically reducing data size.

```
df_D_spark=df_D_spark.filter(df_D_spark.Measured_RPM>600)

df_D_spark_grouped=df_D_spark.groupBy(['V_in','load']).mean()
```

'Load' was included in the grouping to prevent getting the mean values of load instead of the actual load values in the df

df_D_spark_grouped.describe().show()

→	+ summary	+ V_in	load	avg(V_in)	 avg(Measured_RPM)	
	count	'	805	805		
		5.999999999999997			1480.2197952421488	
	stddev	2.325234701682919	1.4150927751172553			
	min	2.0	0		636.9171586791892	
	max	10.0	4	10.0	2332.1845971923567	0.6
	+	h			h	

Convert to Pandas

```
# Let's first convert to pandas
df_D_grouped=df_D_spark_grouped.toPandas()
```

DeprecationWarning: distutils Version classes are deprecated. Use packaging.version inst DeprecationWarning: distutils Version classes are deprecated. Use packaging.version inst ResourceWarning: unclosed <socket.socket fd=6128, family=2, type=1, proto=0, laddr=('127

df_D_grouped.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 805 entries, 0 to 804
 Data columns (total 8 columns):
 # Column Non-Null Coun

#	Column	Non-Null Count	Dtype
0	V_in	805 non-null	float64
1	load	805 non-null	int32
2	avg(V in)	805 non-null	float64

```
avg(Measured_RPM) 805 non-null
                                          float64
        avg(Vibration_1)
                           805 non-null
                                          float64
     5
        avg(Vibration_2)
                           805 non-null
                                         float64
     6
         avg(Vibration_3)
                           805 non-null
                                          float64
     7
         avg(load)
                           805 non-null float64
    dtypes: float64(7), int32(1)
    memory usage: 47.3 KB
# We can drop the avg V_in and avg load columns and remove 'avg' from the column names
df_D_grouped.columns=[col.replace('avg','').replace('(','').replace(')','') for col in df_D_
# Remove duplicate columns
df_D_grouped=df_D_grouped.loc[:, ~df_D_grouped.columns.duplicated()]
df D grouped.info()
→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 805 entries, 0 to 804
    Data columns (total 6 columns):
        Column
                      Non-Null Count Dtype
    --- -----
                      -----
                                     ----
     0 V_in
                     805 non-null
                                      float64
     1 load
                     805 non-null
                                      int32
     2 Measured_RPM 805 non-null
                                      float64
     3 Vibration_1 805 non-null
                                     float64
         Vibration 2 805 non-null
                                     float64
     5
         Vibration_3 805 non-null
                                     float64
    dtypes: float64(5), int32(1)
    memory usage: 34.7 KB
```

We can see the correlations by plotting a heatmap

```
sns.heatmap(df_D_grouped.corr(),annot=True)
```

→ <Axes: >

Plotsgrid(df_D_grouped).scatterplots()

• The vibration components are correlated weakly to load

Plotsgrid(df_D_grouped).lineplots()

V_in load

Measured_RPM

Vibration_1

Vibration_2

Vibration_3

- As the load (unbalance) progresses, the vibrations for the same cycle generally increases with load. This is a small correlation between vibration and load
- We also see the vibrations being strongly correlated. This is expected for a rigid shaft. Therefore, we can consider the median value of the vibrations for our analysis

```
df_D_grouped['Vibration_med']=df_D_grouped[['Vibration_1','Vibration_2','Vibration_3']].medi
```

Make plots for: RPM, median vibration and load

```
df_D_grouped_featured=df_D_grouped[['Measured_RPM','Vibration_med','load']]
```

```
Plotsgrid(df_D_grouped_featured).scatterplots()
Plotsgrid(df_D_grouped_featured).lineplots()
```


Pairwise Scatter with higher correlations shown brighter

Measured_RPM Vibration_med

Let's explore also: Vibration vs. RPM for different load levels

sns.scatterplot(data=df_D_grouped_featured,x='Measured_RPM',y='Vibration_med',hue='load')

<axes: xlabel='Measured_RPM', ylabel='Vibration_med'>

- The vibrations do indeed rise as load increases, for a given RPM.
- The effect is more pronounced between loads 0,1,2 and loads 3,4.
- Finally we can filter out RPMs below 1300 as the trend is much stronger above this value. We also get rid of the outlier vibration points at low RPM, likely electrical issues

Therefore we can create a classification model to predict the vibration level using the RPM and median vibrations

df_D_grouped_featured=df_D_grouped_featured[df_D_grouped_featured.Measured_RPM>1300]

sns.scatterplot(data=df_D_grouped_featured,x='Measured_RPM',y='Vibration_med',hue='load')

 $\overline{\mathbf{T}}$

<Axes: xlabel='Measured_RPM', ylabel='Vibration_med'>

- There is barely any resolution between load levels 2 and 3. So one would expect the number of true positives here to be fewer
- Load level 0 shows *more* vibration than load level 1 at higher speeds- this is interesting, as one might expect the opposite
- Increasing the weight of the load (load 4) has a drastic effect on the vibration characteristics

<u>Data Processing Method Summary</u>

- 1. Add a 'load' column corresponding to level of unbalance
- 2. Filter for RPM > 1300
- 3. Take absolute values of vibrations
- 4. Group by 'V_in' and 'load' and remove the additional columns
- 5. Calculate median of vibrations 1,2,3
- 6. select 'Measured_RPM','Vibration_med' and 'load' columns

```
def process_files(filename):
    ''' Function to read in and process a file to make it compatible for modeling'''
    #print(filename)
    # Read the file
    spark_df=read_local_csv_object(filenames_E)
```

```
# Remove RPM <1300
    spark_df=spark_df.filter((spark_df.Measured_RPM>=1300))
    # Absolute values for vib
    for col in spark df.columns:
        if 'Vib' in col:
            spark_df=spark_df.withColumn(col, spark_fn.abs(spark_fn.col(col)))
    # Group by V_in,load
    spark_df=spark_df.groupBy(['V_in','load']).mean()
    # Convert to pandas
    df=spark_df.toPandas()
    # We can drop the avg V_in and avg load columns and remove 'avg' from the column names
    df.columns=[col.replace('avg','').replace('(','').replace(')','') for col in df.columns]
    # Remove duplicate columns
    df=df.loc[:, ~df.columns.duplicated()]
    # Calcuate median of vibrations
    df['Vibration_med']=df[['Vibration_1','Vibration_2','Vibration_3']].median(axis=1)
    # Select RPM, median vibration and load
    df=df[['Measured_RPM','Vibration_med','load']]
    return df
# Create the evaluation df similar to the 'development' df
df_E_grouped_featured=process_files(filenames_E)
→ ['0E_trunc.csv', '1E_trunc.csv', '2E_trunc.csv', '3E_trunc.csv', '4E_trunc.csv']
     DeprecationWarning: distutils Version classes are deprecated. Use packaging.version inst
     DeprecationWarning: distutils Version classes are deprecated. Use packaging.version inst
     ResourceWarning: unclosed <socket.socket fd=7688, family=2, type=1, proto=0, laddr=('127
# Explore the evaluation df
basic_eda(df_E_grouped_featured)
→
     COLUMNS LIST:
     ['Measured_RPM', 'Vibration_med', 'load']
     FIRST FEW:
       Measured RPM Vibration med load
     0
       1353.860217
                           0.002436
         1346.793309
                           0.002245
                                        0
     1
         1324.485053
                           0.002017
                                        0
     LAST FEW:
         Measured_RPM Vibration_med load
                             0.014683
     152 1932.797451
     153 1882.744901
                             0.015137
                                          4
     154
          1874.222343
                             0.014631
     INFO:
     <class 'pandas.core.frame.DataFrame'>
```