PROBLEMES DE MATEMÀTICA DISCRETA

Tema 2. CONJUNTS I RELACIONS (Bloc 1)

1	Escriviu	les següents	afirmacions	en notació	conjuntista:
т.	Escriviu	ies seguents	ammacions	en notacio	conjuntista.

- a) x és un element del conjunt A.
- b) a no pertany a A.
- c) B és un subconjunt de A.
- d) D està inclòs en C.
- e) E no és subconjunt de F.
- f) A és un conjunt sense elements.
- g) B està inclòs en C i C està inclòs en B.
- 2. Descriviu els següents conjunts per extensió:
 - $a) \{x \in \mathbb{N} \mid x < 9\}.$
 - b) $\{x \in \mathbb{N} \mid 2x^2 3x + 1 = 0\}.$
 - c) $\{x \in \mathbb{Q} \mid 2x^2 3x + 1 = 0\}.$
 - $d) \ \{x \in \mathbb{N} \mid x = 2n + 1, n \in \mathbb{N}\}.$
- 3. Descriviu els següents conjunts per comprensió:
 - a) $\{2, 3, 4, 5, 6, 7\}$.
 - $b) \{2,4,6,8,\ldots\}.$
 - c) $\{1, 3, 5, 7, \ldots\}.$
 - d) $\{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}.$
- 4. Siga $A = \{1, 2, 3, 4\}$. Indiqueu quines de les següents afirmacions són correctes, assenyalant per què no ho són la resta.
 - a) $\{1,4\}\subseteq\wp(A)$ d) $\{1,4\}\subseteq A$ g) $\{4\}\subseteq A$

b) $4 \in A$

- e) $4 \subseteq A$
- $h) \{4\} \in A$

- c) $\{4\} \in \wp(A)$
- f) $4 \in \wp(A)$

- $i) \emptyset \in \wp(A)$
- 5. Si A i B són subconjunts qualssevol d'un conjunt E, completa les següents afirmacions inserint els símbols \subseteq , \supseteq o nc (no comparables) entre cada parell de conjunts:
 - $a) \emptyset \dots A$

- $e) B \dots A^c \cup B$
- i) $A \setminus B \dots B^c$

- b) $A \dots A \cap B$
- $f) A \setminus B \dots B^c$
- i) $A \dots A \cup B$

- $c) \wp(A) \dots \emptyset$
- $g) B^c \dots B \setminus A$
- $d) B \dots B \setminus A$
- $h) A \cap B \dots A^c \cup B$

- 6. Siguen els conjunts $A = \{1, 2, 3, 4, 5\}$, $B = \{2, 4, 6, 8, 10\}$ i $C = \{3, 4, 5, 6\}$. Considerant els complementaris respecte del conjunt $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, calculeu:
 - $a) (A \cap B) \cup C$
- $e) A \times C$

i) $U \setminus (A \cup B \cup C)$

- $b) (A \cup C) \cap (B \cup C)$
- f) $C \times A$

i) $A\Delta B$

 $c) A^c \cup B^c$

 $g) (A \cup B) \setminus C$

 $d) (A \cap B)^c$

- $h) A \setminus (B \cap C)$
- 7. Si A, B i C són subconjunts qualssevol d'un conjunt E, proveu:
 - $a) A^c \setminus B^c = B \setminus A$
 - $b) \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
 - $c) \ (A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
 - $d) \ (A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
- 8. Si A, B i C són conjunts quals sevol indiqueu quines de les següents afirmacions són correctes, justificant les respostes:
 - a) Si $A = B \setminus C$, aleshores $B = A \cup C$
 - b) $(A \cup B) \setminus B = A$
 - $c) \ A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
 - $d) \ A \setminus (B \setminus C) = (A \setminus B) \setminus C$
- 9. Simplifiqueu la següent expressió utilitzant les propietats de l'àlgebra de conjunts:

$$(A^c \cap B^c) \cap [((A \cup B) \cap (A \cup B^c)) \cup ((A \cap B) \cup (A^c \cap B))]$$

- 10. Donats els conjunts $E = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 4\}$ i $B = \{1, 4, 6\}$, obteniu els subconjunts $R = A \setminus B$, $S = B \setminus A$, $V = A \cap B$ i $W = E \setminus (A \cup B)$. És $\{R, S, V, W\}$ una partició del conjunt E?
- 11. Proveu que la família de conjunts $\{A_k, k \in \mathbb{N}^*\}$, definida per:

$$A_k = \{2k - 1, 2k + 1\}, k = 1, 2, \dots$$

és un recobriment del conjunt dels nombres naturals senars, però no una partició.

- 12. Siga g la correspondència de \mathbb{N} en \mathbb{N} definida per $G = \{(x, y) : x + 2y = 12\}.$
 - a) Descriviu el graf d'aquesta relació per extensió.
 - b) Calculeu el domini i el rang d'aquesta correspondència.
 - c) Obteniu el graf de la correspondència inversa per extensió.
 - d) Calculeu $g \circ g$.
- 13. a) Considerem els conjunts $X = \{2, 4, 5\}$ i $Y = \{1, 2, 4, 6\}$. Dels següents subconjunts de parells ordenats de $X \times Y$, indiqueu aquells que defineixen aplicacions de X en Y.

- (i) $F = \{(2,4), (4,1), (5,6), (4,2)\}$
- (ii) $G = \{(2,4), (4,6), (5,1)\}$
- (iii) $H = \{(2,6), (4,6), (5,1)\}$
- (iv) $J = \{(2,2), (4,4)\}$
- b) Per a aquells que siguen aplicacions, determineu de quins tipus són.
- 14. Trobeu els grafs de les següents aplicacions:
 - a) L'aplicació f definida del conjunt $M = \{1, 2, 3, 4, 5\}$ en $\mathbb R$ donada per:

$$f(x) = x^2 + 2x - 1.$$

- b) L'aplicació f definida del conjunt $W=\{1,2,3,4\}$ en $\mathbb R$ donada per la fórmula $f(x)=x^3.$
- c) L'aplicació g definida del conjunt $S = \{a, e, i, o, u\}$ en el conjunt A format per totes les lletres de l'alfabet, que a cada element del conjunt S li assigna la lletra que li segueix en l'alfabet.
- 15. Siguen $A = \mathbb{R} \setminus \{3\}$ i $B = \mathbb{R} \setminus \{1\}$. Considerem la funció f de A en B definida per

$$f(x) = \frac{x-2}{x-3}.$$

Comproveu que és injectiva i suprajectiva. Obteniu una fórmula per a definir f^{-1} .

16. Siga $f_{a,b}$ una aplicació de \mathbb{R} en \mathbb{R} definida com $f_{a,b}(x) = ax + b$ amb $a \neq 0$ i $a,b \in \mathbb{R}$. Demostreu que $f_{a,b}$ és bijectiva i calculeu la seua inversa.