

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen IV

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Topología I.

Curso Académico 2021-22.

Grado Doble Grado en Ingeniería Informática y Matemáticas¹.

Grupo Único.

Profesor Miguel Ortega Titos.

Descripción Convocatoria Ordinaria.

Fecha 14 de enero de 2022.

Duración 3 horas.

Observaciones Todos los apartados de un mismo ejercicio tienen la misma puntuación.

¹El examen lo pone el departamento.

Ejercicio 1 (4.5 puntos). Para todo $R \ge 0$, consideramos el conjunto S_R dado por $S_R = \{x \in \mathbb{R}^2 \mid ||x|| = R\}$, donde $||\cdot||$ es la norma euclídea en \mathbb{R}^2 . Se considera la topología \mathcal{T} en \mathbb{R}^2 generada por la base $\mathcal{B} = \{S_R \mid R \ge 0\}$.

- 1. Estudiar cuándo el conjunto $\{x_0\}$, con $x_0 \in \mathbb{R}^2$ arbitrario, es cerrado en $(\mathbb{R}^2, \mathcal{T})$.
 - Veamos en primer lugar que $\{0\} \in C_{\mathcal{T}}$. Tenemos que:

$$\mathbb{R}^2 \setminus \{0\} = \bigcup_{R>0} S_R \in \mathcal{T}$$

donde afirmamos que es un abierto por ser unión de abiertos. Por tanto, $\{0\}$ es cerrado.

- Veamos ahora que si $x_0 \neq 0$, entonces $\{x_0\}$ no es cerrado. Sea $R_0 = ||x_0||$, y sea $x \in S_{R_0}$, $x \neq x_0$. Supongamos entonces que $\mathbb{R}^+ \setminus \{x_0\}$ es abierto. Entonces, como $x \neq x_0$, existe R > 0 tal que $x \in S_R \subset \mathbb{R}^+ \setminus \{x_0\}$. Por tanto, como $x \in S_{R_0}$, tenemos que $x \in S_{R_0} \subset \mathbb{R}^+ \setminus \{x_0\}$, algo que es una contradicción, ya que $x_0 \in S_{R_0}$ y $x_0 \notin \mathbb{R}^+ \setminus \{x_0\}$.
- 2. Demostrar que $(\mathbb{R}^2, \mathcal{T})$ es 1AN pero no es 2AN.
 - Veamos en primer lugar que (\mathbb{R}^2 , \mathcal{T}) es 1AN. Sea $x \in \mathbb{R}^2$, y veamos que existe una base de entornos β_x numerable. Sea $R_0 = ||x||$, y como tenemos que { $B \in \mathcal{B} \mid x \in B$ } es una base de entornos, tenemos que:

$$\beta_x = \{S_R \mid x \in S_R\} = \{S_R \mid ||x|| = R\} = \{S_{R_0}\}\$$

Por tanto, dicha base de entornos no solo es numerable sino finita, con un único elemento.

• Veamos que no es 2AN. Sabemos que:

$$B(0,1) = \bigcup \{ S_R \mid ||(0,x)|| = R, \ x \in [0,1[] \}$$

Supongamos que sí es 2AN, y llegaremos a una contradicción. Como es 2AN, entonces podemos extraer una base numerable de \mathcal{B} , que denotaremos por $\mathcal{B}' = \{S_{R_n}\}_{n \in \mathbb{N}}$. Como B(0,1) es abierto, entonces

$$B(0,1) = \bigcup \{S_R \mid ||(0,x)|| = R, \ x \in A, \ A \text{ numerable.} \}$$

Como [0, 1[no es numerable, entonces $A \subsetneq [0, 1[$. Por tanto, como tenemos que $A \neq [0, 1[$, existe $x_0 \in [0, 1[\setminus A, \text{ por lo que } S_{\|x_0\|} \subset \mathbb{R}^2 \setminus B(0, 1), \text{ lo que es una contradicción, ya que } S_{\|x_0\|} \subset B(0, 1) \text{ por tener } \|x_0\| < 1.$

- 3. Calcular la clausura, el interior y la frontera en $(\mathbb{R}^2, \mathcal{T})$ del conjunto A dado por $A = \{(a, b) \in \mathbb{R}^2 \mid |b| \leq 1\}$.
 - Veamos en primer lugar que $A^{\circ} = \overline{B}(0,1)$.

- C) Si $x \in A^{\circ}$, entonces existe $B \in \mathcal{T}$ tal que $x \in B \subset A$. Como \mathcal{B} da una partición de \mathbb{R}^2 , entonces $B = S_{R_0}$, con $R_0 = ||x||$. Por tanto, $S_{R_0} \subset A$, y como S_{R_0} es cerrado, tenemos que $S_{R_0} \subset A$. Como $(0, R_0) \in S_{R_0}$, tenemos que $(0, R_0) \in A$, por lo que $R_0 \leq 1$. Por tanto, como $||x|| \leq 1$, $x \in \overline{B}(0, 1)$.
- ⊃) Si $(x,y) \in \overline{B}(0,1)$, entonces $x^2 + y^2 \le 1$. Por tanto, $y^2 \le 1$, por lo que $|y| \le 1$. Por tanto, $(x,y) \in A$.
- 4. Probar que A es conexo en $(\mathbb{R}^2, \mathcal{T})$ si y solo si existe $R \geqslant 0$ tal que $A \subset S_R$. Determinar las componentes conexas de $(\mathbb{R}^2, \mathcal{T})$.

Calculemos en primer lugar las componentes conexas de $(\mathbb{R}^2, \mathcal{T})$. Sabemos que $\mathcal{B} = \{S_R \mid R \geqslant 0\}$ es una partición mediante abiertos de \mathbb{R}^2 . Veamos ahora que (S_R, \mathcal{T}_{S_R}) es conexo para todo $R \geqslant 0$. Calculamos en primer lugar \mathcal{T}_{S_R} , sabiendo que $\mathcal{T} = \{\overline{B}(0,r) \mid r > 0\}$:

$$U \in \mathcal{T}_{S_R} \iff \exists r' \in \mathbb{R}^+ \mid U = \overline{B}(0, r') \cap S_R = \overline{B}(0, r') \cap S(0, r)$$

Si $r' \ge r$, tenemos que $\overline{B}(0,r') \cap S(0,r) = S(0,r)$; mientras que si r' < r, entonces $\overline{B}(0,r') \cap S(0,r) = \emptyset$. Por tanto, $\mathcal{T}_{S_R} = \{\emptyset, S(0,r)\}$, que es la topología trivial. Por tanto, (S_R, \mathcal{T}_{S_R}) es conexo, por lo que \mathcal{B} es una partición mediante abiertos conexos de \mathbb{R}^2 . Por tanto, las componentes conexas de $(\mathbb{R}^2, \mathcal{T})$ son \mathcal{B} .

Caracterizamos ahora los conexos de $(\mathbb{R}^2, \mathcal{T})$ mediante doble implicación:

- \Longrightarrow) Sea A conexo, y sea $x \in A$. Entonces, como $x \in A$ y A conexo, $A \subset C(x)$. Por tanto, $A \subset S_R$ para algún $R \geqslant 0$.
- \iff Sea $R \geqslant 0$ tal que $A \subset S_R$. Veamos que A es conexo. Como $A \subset S_R$, entonces $\mathcal{T}_{|A} = \mathcal{T}_{S_R|_A}$. Por tanto, ver que (A, \mathcal{T}_A) es conexo equivale a ver que $\left(A, \mathcal{T}_{S_R|_A}\right)$ es conexo. Como $\mathcal{T}_{S_R} = \{\emptyset, S(0, r)\}$, tenemos que es la topología trivial. Por tanto, como todo subconjunto de un espacio topológico trivial es conexo, tenemos que $\left(A, \mathcal{T}_{S_R|_A}\right)$ es conexo, por lo que A es conexo.
- 5. Demostrar que A es compacto en $(\mathbb{R}^2, \mathcal{T})$ si y solo si existe $J \subset [0, +\infty[$ finito tal que $A \subset \bigcup_{R \in J} S_R$.
 - \Longrightarrow) Sea A compacto. Entonces, como \mathcal{B} es un recubrimiento de A por abiertos de $(\mathbb{R}^2, \mathcal{T})$, tenemos que $\exists J \subset \mathbb{R}^+$ finito tal que $A \subset \bigcup_{R \in J} S_R$.
 - \iff Sea $J \subset \mathbb{R}^+$ finito tal que $A \subset \bigcup_{R \in J} S_R$. Sabemos que (S_R, \mathcal{T}_{S_R}) es la topología trivial. Por tanto, como todo subconjunto de un espacio topológico trivial es compacto, tenemos que $A \cap S_R$ es compacto. Veamos por tanto que A es unión finita de compactos:

$$A = A \cap \left(\bigcup_{R \in J} S_R\right) = \bigcup_{R \in J} (A \cap S_R)$$

como J es finito, tenemos que A es unión finita de compactos, por lo que A es compacto.

Ejercicio 2 (2.5 puntos). Enunciar y demostrar el teorema de Tichonov. Si se hace uso del lema del tubo, entonces éste debe ser enunciado y demostrado previamente.

Ejercicio 3 (3 puntos). Estudiar de forma razonada las siguientes cuestiones:

- 1. Decidir si los siguientes subespacios de $(\mathbb{R}^2, \mathcal{T}_u)$ son homeomorfos entre sí dos a dos o no:
 - a) $A_1 = \{x \in \mathbb{R}^2 \mid 1 < ||x|| < 4\},\$
 - b) $A_2 = \{x \in \mathbb{R}^2 \mid 1 \leqslant ||x|| \leqslant 4\},\$
 - $c) A_3 = \mathbb{R}^2 \setminus \{0\}.$

Veamos en primer lugar que A_2 es compacto.

$$A_2 = \{ x \in \mathbb{R}^2 \mid 1 \leqslant ||x|| \} \cap \{ x \in \mathbb{R}^2 \mid ||x|| \geqslant 1 \}$$

Como $\|\cdot\|$ es continua con la topología usual, tenemos que A_2 es intersección de dos cerrados, luego es cerrado. Además, claramente $A_2 \subset B(0,5)$, luego A_2 es acotado. Por tanto, es compacto.

Veamos ahora que A_1 no es compacto. Para ello, veremos que no es cerrado. Tenemos que:

$$\mathbb{R}^2 \setminus A_1 = \overline{B}(0,1) \cup \{x \in \mathbb{R}^2 \mid ||x|| \geqslant 4\}$$

Veamos que dicho conjunto no es abierto. Tomado $p = (0, 1) \in \mathbb{R}^2 \setminus A_1$, tenemos que no existe $U \in \mathcal{T}_u$, tal que $(0, 1) \in U \cap \overline{B}(0, 1)$. De forma directa se ve que $\not\equiv U \in \mathcal{T}$ tal que $(0, 1) \in U \subset \mathbb{R}^2 \setminus A_1$. Por tanto, $\mathbb{R}^2 \setminus A_1$ no es entorno de (0, 1), por lo que $\mathbb{R}^2 \setminus A_1$ no es abierto, y por tanto A_1 no es cerrado. Por tanto, tampoco es compacto.

Además, como A_3 no está acotado, tenemos que no es compacto.

Por tanto, tenemos que A_2 no es homeomorfo ni a A_1 ni a A_3 . Veamos ahora que $A_1 \cong A_3$. Sabemos que $]1,4[\cong]0,\infty[$, por lo que sea f el homeomorfismo entre ellos, y notamos $g=f^{-1}$. Definimos $\overline{f}:A_1\to A_3$ dado por:

$$\overline{f}(x) = \frac{x}{\|x\|} f(\|x\|)$$

Sea $\overline{g}: A_3 \to A_1$ dado por:

$$\overline{g}(x) = \frac{x}{\|x\|} g(\|x\|)$$

Tenemos que ambas son continuas, ya que es el producto, cociente y composición de funciones continuas. Veamos que:

$$\begin{split} \overline{f}(\overline{g}(x)) &= \frac{\overline{g}(x)}{\|\overline{g}(x)\|} \cdot f\left(\|\overline{g}(x)\|\right) = \frac{\frac{x}{\|x\|}g\left(\|x\|\right)}{\left\|\frac{x}{\|x\|}g\left(\|x\|\right)\right\|} \cdot f\left(\left\|\frac{x}{\|x\|}g\left(\|x\|\right)\right\|\right) = \\ &= \frac{\frac{x}{\|x\|}g\left(\|x\|\right)}{\frac{\|x\|}{\|x\|}\|g\left(\|x\|\right)\|} \cdot f\left(\left\|\frac{x}{\|x\|}\right\|g\left(\|x\|\right)\right) = \frac{x}{\|x\|}f(g(\|x\|)) \stackrel{(*)}{=} \frac{x}{\|x\|} \cdot \|x\| = x \end{split}$$

De igual forma, se demuestra que $\overline{g}(\overline{f}(x)) = x \ \forall x \in A_1$. De esta forma, se ve que \overline{f} , \overline{g} son biyectivas, con $\overline{g} = \overline{f}^{-1}$. Por tanto, \overline{f} es un homeomorfismo, por lo que $A_1 \cong A_3$.

2. Sean $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ espacios topológicos. Para i = 1, 2, sea \mathcal{R}_i una relación de equivalencia en X_i tal que la proyección $p_i : (X_i, \mathcal{T}_i) \to (X_i/\mathcal{R}_i, \mathcal{T}/\mathcal{R}_i)$ es abierta. Demostrar que

$$(X_1 \times X_2)/\mathcal{R} \cong (X_1/\mathcal{R}_1, \mathcal{T}_1/\mathcal{R}_1) \times (X_2/\mathcal{R}_2, \mathcal{T}_2/\mathcal{R}_2),$$

donde \mathcal{R} es la relación de equivalencia en $X_1 \times X_2$ definida por

$$(x_1, x_2)\mathcal{R}(y_1, y_2) \iff x_1\mathcal{R}_1y_1 \ y \ x_2\mathcal{R}_2y_2.$$

Sea $f = p_1 \times p_2 : (X_1 \times X_2, \mathcal{T}_1 \times \mathcal{T}_2) \to (X_1/\mathcal{R}_1, \mathcal{T}_1/\mathcal{R}_1) \times (X_2/\mathcal{R}_2, \mathcal{T}_2/\mathcal{R}_2)$ aplicación producto dada por $f(x, y) = (p_1(x), p_2(y))$. Como p_1, p_2 son abiertas, continuas y sobreyectivas, tenemos que f es continua, abierta y sobreyectiva, por lo que f es una identificación. Veamos que $\mathcal{R} = \mathcal{R}_f$:

$$(x,y)\mathcal{R}_f(x',y') \iff f(x,y) = f(x',y') \iff (p_1(x),p_2(y)) = (p_1(x'),p_2(y')) \iff p_1(x) = p_1(x') \text{ y } p_2(y) = p_2(y') \iff x\mathcal{R}_1x' \text{ y } y\mathcal{R}_2y' \iff (x,y)\mathcal{R}(x',y')$$

Por tanto, como f es una identificación y $\mathcal{R} = \mathcal{R}_f$, tenemos que f induce un homeomorfismo entre $(X_1 \times X_2)/\mathcal{R}$ y $(X_1/\mathcal{R}_1, \mathcal{T}_1/\mathcal{R}_1) \times (X_2/\mathcal{R}_2, \mathcal{T}_2/\mathcal{R}_2)$.

3. Sea $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ una aplicación entre espacios topológicos tal que f(A) es conexo en (Y,\mathcal{T}') para cada A conexo en (X,\mathcal{T}) . ¿Es f continua?

Sea $X = \{1, 2\}$, y consideramos las topologías de Sierpinsky, $\mathcal{T}_1 = \{\emptyset, X, \{1\}\}$ y $\mathcal{T}_2 = \{\emptyset, X, \{2\}\}$. Sea ahora $Id_X : (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$. Claramente $\{1\}, \{2\}$ son conexos en ambas topologías porque no hay dos abiertos no triviales, por lo que f(A) es conexo en (X, \mathcal{T}_2) para cada A conexo en (X, \mathcal{T}_1) . Sin embargo, f no es continua, ya que $f^{-1}(\{2\}) = \{2\} \notin \mathcal{T}_1$.