ARHITECTURA SISTEMELOR DE CALCUL

UB, FMI, CTI, ANUL III, 2022-2023

ARHITECTURA SISTEMELOR DE CALCUL

Conf.Dr. Florin Stanculescu

Lect.Dr. Alecsandru Chirosca

Asist.Dr. Gianina Chirosca

Adrese institutionale:

florin.stanculescu@unibuc.ro alecsandru.chirosca@unibuc.ro gianina.chirosca@unibuc.ro

Adrese pentru comunicare informala:

asc@fpce1.fizica.unibuc.ro

SITE-UL CURSULUI
http://asc.fizica.unibuc.ro/

BIBLIOGRAFIE RECOMANDATA

Computer Organization and Design
The hardware/Software interface
David Patterson, John Hennessy, Fifth edition, Elsevier 2014

Computer Architecture
A quantitative Approach
John Hennessy, David Patterson, Fifth edition, Elsevier 2012

John L. Hennessy:

- President of Stanford University (2010-2016)
- co-founder of MIPS Computer Systems Inc Marc

Andreessen called him "the godfather of Silicon Valley.

Arhitectura si performantele sistemelor de calcul

Arhitectura: Felul în care este construit sau alcătuit ceva Presupune o conceptie vizuala

SISTEM: Ansamblu de elemente <u>dependente între ele şi</u> formând un întreg organizat

Presupune existenta mai multor elemente sau subsisteme; Minim doua elemente Subsistem 1

Subsistem 2

SISTEM

Canalul fizic de comunicatie este un subsistem al unui sistem de calcul

Un sistem de calcul presupune executia succesiva (fara intrerupere) a unui sir de instructiuni Performantele se refera, de regula, la executia instructiunilor

- Performanțele unui sistem de calcul se pot masura folosind un numar foarte mare de criterii.
 - Criteriile se impart in mai multe categorii.
- De regula, performanțele se masoara prin raportare la performanțele unui sistem de referința.

Latenţa

S₁ semnalul la intrare; S₂ semnalul la iesire; t₁ momentul de inceput al intrarii; t₂ momentul de inceput al iesirii

Latenţa= t₂-t₁ Largimea de Banda (debit)=1/L

Definiția performanței (asociata cu latența)

Performanta(
$$X$$
) = $\frac{1}{Latenta(X)}$

Aceasta definitie generala este aplicabila si unui sistem de calcul (X):

De exemplu: t₁ momentul lansarii in executie a unei instructiuni,

t₂ momentul lansarii in executie a urmatoarei instructiuni

Sporul de performanta (lui Y in raport cu(X) =

$$= \frac{Performanta(Y)}{Performanta(X)} = \frac{Latenta(X)}{Latenta(Y)} = n$$

Sistemul Y este de n ori mai rapid decat sistemul X

Timpul de execuţie

- Pentru un sistem de calcul in locul lațentei se foloseste termenul: timp de execuție.
- iar performanta se exprima prin viteza de execuţie, avand ca unitate de masura:
 MIPS (Millions of Instructions Per Second)
 - (A nu se confunda cu ISA MIPS)
- Timpul de execuție se poate referi la diverse activitati.
- Timpul de execuție al unui program (P) de catre un sistem (S) este:

$$timp \ de \ executie(P,S) = \frac{numar \ de \ instructiuni(P)}{viteza \ de \ executie(S)}$$

viteza unui astfel de calculator era considerata 1 milion de instrucțiuni pe secunda.

Viteza de calcul depinde de frecvența ceasului intern (generatorul de tact)

Ecuația performanței (procesorului)

$$\frac{timp}{program} = \frac{timp}{ciclu} \times \frac{cicluri}{instructione} \times \frac{instructioni}{program}$$

Ciclu: ciclul de ceas (generatorul de tact)

timp/ciclu: este inversul frecvenței generatorului de tact

cicluri/instrucţiune: este numarul mediu de cicluri de ceas pe instrucţiune

timp/program: timpul consumat de CPU pentru execuţia programului

Sunt excluse perioadele de timp in care CPU face altceva.

In aceste condiţii se mai introduce o marime:

Numarul de cicluri pe instructiune (CPI) [Cycles Per-Instruction]

Observatie: Timpul de executie al fiecarui tip de instrucţiune este diferit!

CPI este o marime medie (**globala**): $CPI = \sum_{i=1}^{n} F_i \cdot CPI_i$

unde CPI_i este numarul de cicluri al fiecarui tip de instrucțiune, iar F_i este frecventa de utilizare a instrucțiunii tip i.

Ansamblul {F_i} determina compoziţia in instrucţiuni a programului. [instruction mix]

Compoziţia este specifica atat fiecarui program cat si fiecarei ISA

Exista o anumita procedura de determinare a compozitiei numita: workload characterization

Exemplu:

Operatia	Fi	CPI _i	$F_i \times CPI_i$
Aritmetica	40%	1	0.4
Cu memoria	40%	4	1.6
De salt	20%	2	0.4
TOTAL (CPI)	100%		2.4

 $nr\ de\ cicluri(P,S) = numarul\ de\ instructiuni(P) \times CPI(S)$

$$timp executie program(P) = \frac{nr de cicluri(P,S)}{frecventa generatorului de tact(S)} =$$

 $= \frac{numarul de instructiuni(P) \times CPI(S)}{frecventa generatorului de tact(S)}$

Alta unitate de masura pentru viteza de execuţie

FLOPS (scris şi flops sau flop/s) este un acronim ce provine de la expresia engleză <u>floating point operations per second</u> (tradus: operații în virgulă mobilă pe secundă).

Name	FLOPS
<u>votta</u> FLOPS	10 ²⁴
zetta FLOPS	10 ²¹
<u>exa</u> FLOPS	10 ¹⁸
<u>peta</u> FLOPS	10 ¹⁵
<u>tera</u> FLOPS	10 ¹²
giga FLOPS	1 0 ⁹
megaFLOPS	1 0 ⁶
<u>kilo</u> FLOPS	10 ³

Estimare

- Majoritatea procesoarelor contemporane sunt caracterizate de 4 FLOPS/ciclu ceas
- In aceste conditii un single-core la 2.5GHz va avea o performanta maxima de 10 GFLOPS

Legea Amdahl

Se refera la cresterea in performanţa a unui sistem de calcul atunci cand este imbunataţita numai o porţinune (componenta) din sistem.

$$S = \frac{1}{(1 - f) + f/K}$$

S: este factorul global de crestere a performanței;

f: fracția din activitate realizata de componenta imbunatațita,

K: cresterea in performaţa a componentei

In particular se poate calcula impactul cresterii performantei unei magistrale asupra performantei intregului sistem

Performantele supercomputerelor

1993	Intel Paragon XP/S 140	0.143 teraflops
1997	Intel's ASCI Red	1.338 teraflops
2002	NEC Earth Simulator	35.86 teraflops
2007	IBM Blue Gene/L	478 teraflops
2008	Cray XT Jaguar	1.64 petaflops
2009	Cray Jaguar	1.75 petaflops
2010, oct	Tianhe-IA,(China)	2.56 petaflops
2011, nov.	Fujitsu K computer (Japan)	10.51 petaflops
2012, iun.	IBM's Sequoia	16.32 petaflops
2012, nov.	Titan/Cray Inc	17.59 petaflops
2013, iunie	China's Tianhe-2	33.86 petaflops
2016	Sunway TaihuLight (Wuxi, China)	93.01 petaflops
2018	IBM Summit	122.3 petaflops
2020	Supercomputer Fugaku (Fujitsu)	537 petaflops
2023	El Capitan (Cray)	1.5 exaflops

sursa: Top500

Gflpos

