Statistics and parameter estimation in cosmology

Observational Cosmology
NASSP course
Bruce Bassett

Resources

• Wikipeadia.com + lots on the web

- D. J. C. MacKay, Information theory, inference, and learning algorithms Cambridge (2003). A good how-to book for MCMC, neural networks, data compression.
- Available on the web at: http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

What's the point?

• A crude characterisation of science is that it is the full circle:

The problem...

The solid line
Is clearly a better fit

To the data...but how do we quantify this belief?

...and how do we combine multiple datasets?

What are error bars?

error bar sizes

Here model 2 is ruled out by the data at high confidence.

Here model 2 is not ruled out by the data.

The χ^2 statistic

• A useful measure of how well data is fit by a theoretical curve (which may depend on some parameters, θ_{i}) is the quantity:

$$\chi^{2} = \sum_{i=1}^{2} \left(\frac{d_{i}(x_{i}) - t(x_{i}, \theta)}{\sigma_{i}} \right)^{2}$$

 d_i is the data t_i is the theoretical prediction at that point. The sum is over data points.

• This is the sum of the number of standard deviations (σ_i) the data is away from the theoretical curve.

What is the χ^2 ?

$$\chi^{2}(\theta_{\alpha}) \equiv \sum_{i} \frac{(d_{i} - t_{i}(\theta_{\alpha}))^{2}}{\sigma_{i}^{2}}$$

• This point has $\chi^2 \sim 9$

$$\chi^{2}(\theta_{\alpha}) = \sum_{i} \frac{(d_{i} - t_{i}(\theta_{\alpha}))^{2}}{\sigma_{i}^{2}}$$

• χ^2 is just the sum over the data points, of the number of standard deviations the data is from the model:

χ^2 continued...

• Exercise 1: assuming a linear model:

$$t(\mathbf{x}, \mathbf{\theta}_i) = \mathbf{\theta}_1 \mathbf{x} + \mathbf{\theta}_2$$

Analytically compute the best-fit values of the parameters given a set of N data-points with given errors, σ_i , using the χ^2 statistic.

Parameter estimation - I

- A very common problem in science is that we want to find the parameter values that best fit given observational data.
- For example: what is the period of a binary star, the mass of the electron, the value of the Hubble constant or the size of the cosmological constant?

Parameter estimation - II

- How can we estimate the best-fitting parameters?
- Since any measurement has finite accuracy, this is always a statistical problem. We want the most-likely values of the parameters.
- We can estimate this by minimising χ^2 while we vary the parameters of the theory. We already did it in the case of a linear model.

To estimate parameters...

$$\frac{\partial \chi^2}{\partial \theta_{\alpha}} = 0...\alpha = 1...n$$

Parameter estimation - III

- If the model depends nonlinearly on the parameters we usually cannot solve it analytically and must use numerical methods.
- This is a well-studied branch of computational mathematics.
- We want to find the global minimum of χ^2 (there are often lots of local minima which we are not interested in)

Parameter estimation - IV

- One of the easiest ways to minimise χ^2 when there are few parameters (less than 4 or 5) is the *grid method*.
- Consider the case of a single parameter, θ , for simplicity. We split up the allowed range of θ into n equal regions, with grid points labeled θ_i .
- We then compute χ^2 at each point in the region and then choose the smallest χ^2_i . The corresponding θ_i is approximately the best-fit parameter value. Obviously the method can be refined by increasing n.
- Grid method fails for large number of parameters (why?). Stochastic/Monte Carlo methods are much better in this case (e.g. MCMC, simulated annealing).