#### Group 1: Multivariate analysis of australian climate data

#### Data input

To perform the clustering analysis are used the original datasets (numeric variables) for Brisbane, Perth and Cairns.

#### Clustering Analysis

In order to analyze if data presents patterns of association are it is performed a clustering analysis. For this purpose, all incomplete cases remaining are removed and as a first step, the optimal number of clusters are estimated through direct methods: elbow, average silhouette and ASM to choose the most common value of optimal clusters.

```
par(mar = c(4,4,.1,.1))
fun01<-function(x){ tmp_df = listall[[x]]</pre>
                     tmp_name = names(listall)[x]
                     fviz_nbclust(tmp_df, kmeans, method = "wss") +
                     geom_vline(xintercept = 4, linetype = 2) +
                     labs(subtitle = paste("Elbow method", tmp_name))}
fun02<-function(x){ tmp_df = listall[[x]]</pre>
                     tmp_name = names(listall)[x]
                     fviz_nbclust(tmp_df, kmeans, method = "silhouette") +
                     geom_vline(xintercept = 4, linetype = 2) +
                     labs(subtitle = paste("Elbow method",tmp_name))}
fun03<-function(x){ tmp_df = listall[[x]]</pre>
                     tmp_name = names(listall)[x]
                     fviz_nbclust(tmp_df, kmeans, method = "gap_stat") +
                     geom_vline(xintercept = 4, linetype = 2) +
                     labs(subtitle = paste("Elbow method",tmp_name))}
wss<-lapply(1:length(listall),fun01)
silhouette<-lapply(1:length(listall),fun02)</pre>
silhouette
#Gaps <- lapply (1: length (listall), fun03)
```





Given the results provided by the methods, it can be concluded the clustering can be performed with 4 cluster for all the dataset, the original numerical variables and the coordinates of the performed MCA.

# VizKmeans<-lapply(1:length(listall),funVizKm) VizKmeans</pre>

## Warning: ggrepel: 1751 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

## Warning: ggrepel: 1751 unlabeled data points (too many overlaps). Consider
## warning: ggrepel: 1771 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

## Warning: ggrepel: 1771 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

## Warning: ggrepel: 1618 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

## Warning: ggrepel: 1618 unlabeled data points (too many overlaps). Consider ## increasing max.overlaps





```
funKm<- function(i){ tmp_df = listall[[i]];</pre>
                      tmp_kmeans = kmeans(x = listall[[i]], centers = 4)
                      listall[[i]]<-add_column(listall[[i]], KmeansCluster =</pre>
                                                  tmp_kmeans$cluster)}
Kmeans<-lapply(1:length(listall),funKm)</pre>
names(Kmeans)<-c("Brisbane", "ScaledBrisbane", "Perth", "ScaledPerth",</pre>
                  "Cairns", "ScaledCairns")
#a<-Kmeans[[1]]
#fun08<-function(a,i) {
# for (i \ in \ 1:17) {boxplot(a[,i] ~ a[,18], xlab = 'Kmeans', ylab = names(a)[i])}}
#lapply(Kmeans, fun08)
#boxplot(a[,1] ~ a[,18])
#boxplot(a[,2] ~ a[,18])
#boxplot(a)
#plot(formula = KmeansCluster ~ ., data = a)
lapply(1:length(Kmeans), function(x){
  # Get the dataframe and the name
 tmp_df = Kmeans[[x]]
 tmp_name = names(Kmeans)[x]
  for (i in 1:17) {boxplot(tmp_df[,i] ~ tmp_df[,18], xlab = 'Kmeans',
                            ylab = names(tmp_df)[i], main = tmp_name)}
 })
```

```
## [[1]]
## NULL
##
## [[2]]
## NULL
```

```
## [[3]]
## NULL
## [[4]]
## NULL
## [5]]
## NULL
## [6]]
## NULL
```































































#### ScaledBrisbane



## ScaledBrisbane



## ScaledBrisbane





































































#### ScaledPerth







































































```
fun04<-function(x) print(names(x))</pre>
lapply(Kmeans, fun04)
fun05<-function(x){x[,ncol(x)]</pre>
                    x$KMCluster<-x[,ncol(x)]
                    return(x$KMCluster)}
clusters<-lapply(Kmeans,fun05)</pre>
BrisbaneClusters<-as.data.frame(cbind(originaldata[[1]],as.factor(clusters[[1]]),</pre>
                                         as.factor(clusters[[2]])))
names(BrisbaneClusters)<-c(names(originaldata[[1]]), "KmeansDF", "KmeansScaled")</pre>
PerthClusters<-as.data.frame(cbind(originaldata[[2]],as.factor(clusters[[3]]),
                                      as.factor(clusters[[4]])))
names(PerthClusters)<-c(names(originaldata[[3]]), "KmeansDF", "KmeansScaled")</pre>
CairnsClusters<-as.data.frame(cbind(originaldata[[3]],as.factor(clusters[[5]]),</pre>
                                       as.factor(clusters[[6]])))
names(CairnsClusters)<-c(names(originaldata[[3]]), "KmeansDF", "KmeansScaled")</pre>
funMetrics<-function(i){ tmp_df = listall[[i]]</pre>
```

```
lapply(1:length(listall), funMetrics)
write.csv(BrisbaneClusters, "BrisbaneClusters.csv")
write.csv(PerthClusters, "PerthClusters.csv")
write.csv(CairnsClusters, "CairnsClusters.csv")
DFClusters<-list(BrisbaneClusters,PerthClusters,CairnsClusters)</pre>
fun06<-function(x){tmpdf=DFClusters[[x]]</pre>
                   levels(tmpdf[,24])<-list(C1="1",C2="2",C3="3",C4="4")
                   levels(tmpdf[,25])<-list(G1="1",G2="2",G3="3",G4="4")
                   return(tmpdf)}
data<-lapply(1:length(DFClusters),fun06)</pre>
funtableKmeans<-function(x){table(x$KmeansDF,x$KmeansScaled)}</pre>
funtabseason<-function(x){table(x$KmeansDF,x$Season) }</pre>
funtabseason2<-function(x){table(x$KmeansScaled,x$Season) }</pre>
funtabseason2<-function(x){table(x$KmeansScaled,x$RainTomorrow) }</pre>
lapply(data, funtableKmeans)
## [[1]]
##
         G1 G2 G3 G4
##
             8 228
##
     C1 66
     C2 534 20 44 113
##
        4 98
##
    C3
                 1 179
##
     C4 36 190 263 13
##
## [[2]]
##
##
         G1 G2 G3 G4
   C1 54
             0 259
##
##
     C2
        9 204 178 216
     C3 2 109 2 327
##
##
     C4 309 110 17 1
##
## [[3]]
##
##
         G1 G2 G3 G4
##
     C1 153 17
                 0 170
##
    C2 186 280 70 99
##
     C3 0 203 334 95
     C4 33
             0
                  0
lapply(data,funtabseason)
## [[1]]
##
##
        autumn spring summer winter
```

```
C1
                                  135
##
            48
                   104
                            15
                   204
                                   19
##
     C2
            149
                           339
     C3
                    48
                            96
                                   41
##
            97
##
     C4
            166
                    99
                                  236
                             1
##
## [[2]]
##
##
        autumn spring summer winter
##
     C1
             57
                    84
                            21
                                  151
##
     C2
            149
                   198
                           231
                                   29
##
     СЗ
            127
                    97
                           198
                                   18
     C4
            127
                    76
                             1
                                  233
##
##
## [[3]]
##
##
        dry wet
##
     C1 155 185
     C2 268 367
##
##
     C3 492 140
          3 34
##
     C4
lapply(data,funtabseason2)
```

```
## [[1]]
##
##
         No Yes
##
     G1 526 114
##
     G2 182 134
##
     G3 521 15
##
     G4 117 188
##
## [[2]]
##
##
         No Yes
     G1 316 58
##
     G2 397 26
##
     G3 222 234
##
     G4 520 24
##
##
## [[3]]
##
##
         No Yes
     G1 133 239
##
##
     G2 381 119
##
     G3 390 14
##
     G4 200 168
```

```
#boxplot(BrisbaneClusters$Pressure9am ~ BrisbaneClusters$KmeansDF)
funtableKmeans<-function(x){table(x$KmeansDF,x$KmeansScaled)}</pre>
funtabseason<-function(x){table(x$KmeansDF,x$Season) }</pre>
funtabseason2<-function(x){table(x$KmeansScaled,x$Season) }</pre>
funtabseason2<-function(x){table(x$KmeansScaled,x$Season) }</pre>
```

#### lapply(data, funtableKmeans)

```
## [[1]]
##
        G1 G2 G3 G4
##
##
            8 228
    C1 66
##
    C2 534 20 44 113
##
    C3
        4 98
                1 179
    C4 36 190 263 13
##
##
## [[2]]
##
##
        G1 G2 G3 G4
            0 259
##
    C1 54
        9 204 178 216
##
    C2
    C3 2 109
##
               2 327
##
    C4 309 110 17
##
## [[3]]
##
##
        G1 G2 G3 G4
    C1 153 17
               0 170
##
##
    C2 186 280 70 99
##
    C3
       0 203 334
##
    C4 33
             0
                0
```

#### lapply(data,funtabseason)

```
## [[1]]
##
##
        autumn spring summer winter
##
    C1
           48
                  104
                                135
                          15
    C2
                  204
                                 19
##
           149
                         339
##
    СЗ
           97
                   48
                          96
                                 41
##
     C4
           166
                   99
                          1
                                236
##
## [[2]]
##
        autumn spring summer winter
##
##
     C1
            57
                          21
                                151
                   84
                  198
                                 29
##
     C2
           149
                         231
##
     C3
           127
                   97
                         198
                                18
##
     C4
           127
                   76
                         1
                                233
##
## [[3]]
##
##
        dry wet
##
     C1 155 185
##
     C2 268 367
##
     C3 492 140
     C4 3 34
##
```

```
## [[1]]
##
##
        autumn spring summer winter
##
     G1
           147
                  198
                         289
##
    G2
           105
                   66
                          0
                                145
                                278
##
    G3
           117
                  141
                           0
##
    G4
           91
                  50
                         162
##
## [[2]]
##
##
        autumn spring summer winter
##
            77
                   42
                                254
     G1
                           1
                          33
##
    G2
           153
                  186
                                 51
    G3
           108
                  158
                                126
##
                          64
##
    G4
           122
                   69
                         353
                                  0
##
## [[3]]
##
##
        dry wet
##
     G1 56 316
    G2 141 359
##
##
    G3 400 4
    G4 321 47
##
kruskal.test(Kmeans$Brisbane$Rainfall ~ Kmeans$Brisbane$KmeansCluster, data = Kmeans$Brisbane)
##
## Kruskal-Wallis rank sum test
##
## data: Kmeans$Brisbane$Rainfall by Kmeans$Brisbane$KmeansCluster
## Kruskal-Wallis chi-squared = 570.6, df = 3, p-value < 2.2e-16
kruskal.test(Kmeans$Perth$Rainfall ~ Kmeans$Perth$KmeansCluster, data = Kmeans$Perth)
##
## Kruskal-Wallis rank sum test
## data: Kmeans$Perth$Rainfall by Kmeans$Perth$KmeansCluster
## Kruskal-Wallis chi-squared = 647.99, df = 3, p-value < 2.2e-16
kruskal.test(Kmeans$Cairns$Rainfall ~Kmeans$Cairns$KmeansCluster, data = Kmeans$Cairns)
##
## Kruskal-Wallis rank sum test
## data: Kmeans$Cairns$Rainfall by Kmeans$Cairns$KmeansCluster
## Kruskal-Wallis chi-squared = 813.73, df = 3, p-value < 2.2e-16
```

lapply(data,funtabseason2)

```
# As the p-value is less than the significance level 0.05, we can conclude that there are significant d
#From the output of the Kruskal-Wallis test, we know that there is a significant difference between gro
pairwise.wilcox.test(Kmeans$Brisbane$Rainfall,Kmeans$Brisbane$KmeansCluster, p.adjust.method = "BH")
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
## data: Kmeans$Brisbane$Rainfall and Kmeans$Brisbane$KmeansCluster
##
##
    1
                     3
## 2 1.2e-08 -
## 3 < 2e-16 < 2e-16 -
## 4 0.00014 0.02033 < 2e-16
## P value adjustment method: BH
pairwise.wilcox.test(Kmeans$Perth$Rainfall,Kmeans$Perth$KmeansCluster, p.adjust.method = "BH")
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: Kmeans$Perth$Rainfall and Kmeans$Perth$KmeansCluster
##
##
     1
            2
## 2 <2e-16 -
## 3 <2e-16 <2e-16 -
## 4 <2e-16 0.0072 <2e-16
##
## P value adjustment method: BH
pairwise.wilcox.test(Kmeans$Cairns$Rainfall,Kmeans$Cairns$KmeansCluster, p.adjust.method = "BH")
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
## data: Kmeans$Cairns$Rainfall and Kmeans$Cairns$KmeansCluster
##
##
                   3
## 2 <2e-16 -
## 3 <2e-16 2e-15 -
## 4 <2e-16 <2e-16 <2e-16
## P value adjustment method: BH
funProfile<-function(x){catdes(x, num.var=18, prob = 0.01)</pre>
                        catdes(x, num.var=19, prob = 0.01)}
#lapply(temp,funProfile)
```