Geometry Problem booklet

Assoc. Prof. Cornel Pintea

E-mail: cpintea math.ubbcluj.ro

Contents

W	eek 1	2			
1	Wee	Week 12. Transformations			
	1.1	Transf	formations of the plane		
	1.2	Exam	ples of affine transformations		
		1.2.1	Translations		
		1.2.2	Scaling about the origin		
			Reflections		
		1.2.4	Rotations		
		1.2.5	Shears		
	1.3	Proble	ems		

Module leader: Assoc. Prof. Cornel Pintea

Department of Mathematics, "Babeş-Bolyai" University 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania

Week 12

1 Week 12. Transformations

1.1 Transformations of the plane

Definition 1.1. An affine transformation of the plane is a mapping

$$L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \ L(x,y) = (ax + by + c, dx + ey + f), \tag{1.1}$$

for some constant real numbers a, b, c, d, e, f.

The affine transformation (1.1) can be equally described by means of its equations

$$\begin{cases} x' = ax + by + c \\ y' = dx + ey + f. \end{cases}$$

By using the matrix language, the action of the map *L* can be written in the form

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} a & b \\ d & e \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} c \\ f \end{array}\right),$$

or, equivalently

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}. \tag{1.2}$$

In order to point out the theoretical background behind representations of type (1.2), we identify the points $(x,y) \in \mathbb{R}^2$ with the points $(x,y,1) \in \mathbb{R}^3$ and even with the punctured lines of \mathbb{R}^3 , (rx,ry,r), $r \in \mathbb{R}^*$. Due to technical reasons we shall actually identify the points $(x,y) \in \mathbb{R}^2$ with the punctured lines of \mathbb{R}^3 represented in the form

$$\begin{pmatrix} rx \\ ry \\ r \end{pmatrix}$$
, $r \in \mathbb{R}^*$,

and the latter ones we shall call *homogeneous coordinates* of the point $(x,y) \in \mathbb{R}^2$. The set of homogeneous coordinates (x,y,w) will be denoted by \mathbb{RP}^2 and call it the real *projective plane*. The homogeneous coordinates $(x,y,w) \in \mathbb{RP}^2$, $w \neq 0$ şi $(\frac{x}{w}, \frac{y}{w}, 1)$ represent the same element of \mathbb{RP}^2 .

Observation 1.2. The projective plane \mathbb{RP}^2 is actually the quotient set $(\mathbb{R}^3 \setminus \{0\}) / \sim$, where $' \sim'$ is the following equivalence relation on $\mathbb{R}^3 \setminus \{0\}$:

$$(x,y,w) \sim (\alpha,\beta,\gamma) \Leftrightarrow \exists r \in \mathbb{R}^* \ a.\hat{\imath}. \ (x,y,w) = r(\alpha,\beta,\gamma).$$

Observe that the equivalence classes of the equivalence relation \sim' are the punctured lines of \mathbb{R}^3 through the origin without the origin itself, i.e. the elements of the real projective plane \mathbb{RP}^2 . Such an equivalence class of

$$(x,y,w) \in \mathbb{R}^3$$
 wil be denoted by $[x,y,w]$ or by $\begin{bmatrix} x \\ y \\ w \end{bmatrix}$.

Definition 1.3. A projective transformation is a linear transformation of \mathbb{R}^3 , say

$$L: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \ L\begin{pmatrix} x \\ y \\ w \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix} = \begin{pmatrix} ax + by + cw \\ dx + ey + fw \\ gx + hy + kw \end{pmatrix}, \tag{1.3}$$

where $a, b, c, d, e, f, g, h, k \in \mathbb{R}$, which maps the lines through the origin onto lines (obviously through the origin).

For example the linear invertible transformations $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ have such a property and they might be restericted as $L: \mathbb{R}^3 \setminus \{0\} \longrightarrow \mathbb{R}^3 \setminus \{0\}$. Note that such a linear map induces a map $p \circ L: \mathbb{R}^3 \setminus \{0\} \longrightarrow \mathbb{RP}^2$, where $p: L: \mathbb{R}^3 \setminus \{0\} \longrightarrow \mathbb{RP}^2$ stands for the canonical projection. Also $p \circ L$ maps every punctured line through the origin onto the same element of \mathbb{RP}^2 , which shows that $p \circ L$ induces a map $\tilde{L}: \mathbb{R}^3 \longrightarrow \mathbb{RP}^2$ of the projective plane \mathbb{RP}^2 . We shall denote \tilde{L} by L and call it a *projective transformation of* \mathbb{RP}^2 . In other words the transformation

$$L: \mathbb{RP}^2 \longrightarrow \mathbb{RP}^2, L \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} ax + by + cw \\ dx + ey + fw \\ gx + hy + kw \end{bmatrix}, \tag{1.4}$$

is well defined, as and will be denoted by L. Indeed,

$$L\begin{pmatrix} rx \\ ry \\ rw \end{pmatrix} = \begin{pmatrix} arx + bry + crw \\ drx + ery + frw \\ grx + hry + krw \end{pmatrix} = \begin{pmatrix} r(ax + by + cw) \\ r(dx + ey + fw) \\ r(gx + hy + kw) \end{pmatrix}.$$

The projective transformation L is completely determined by its *homogeneous transformation matrix*

$$[L] = \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & k \end{array} \right).$$

If g = h = 0 and k = 1, then the projective transformation (1.4) is said to be *affine*. The restriction of the affine transformation (1.4), which corresponds to the situation g = h = 0 and k = 1, to the subspace w = 1, has the form

$$L\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} ax + by + cw \\ dx + ey + fw \\ 1 \end{pmatrix}, \tag{1.5}$$

i.e.

$$\begin{cases} x' = ax + by + c \\ y' = dx + ey + f. \end{cases}$$
 (1.6)

and it induces a transformation $L: \mathbb{RP}^2 \setminus \mathbb{RP}^1_{xy} \longrightarrow \mathbb{RP}^2 \setminus \mathbb{RP}^1_{xy}$

$$L\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + cw \\ dx + ey + fw \\ 1 \end{bmatrix}, \tag{1.7}$$

where \mathbb{RP}^1_{xy} stands for collection of all equivalences classes [x,y,0] of \mathbb{RP}^2 . Note that the linear transformation (1.5) behaves on $\mathbb{R}^3 \setminus xOy$ as a projective aplication, even when the homogeneous matrix transformation

$$\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right)$$

is not invertible, i.e. evey punctured line through the origin of $\mathbb{R}^3 \setminus xOy$ is mapped onto a punctured line (obviously through the origine) in $\mathbb{R}^3 \setminus xOy$.

Observation 1.4. If $L_1, L_2 : \mathbb{RP}^2 \longrightarrow \mathbb{RP}^2$ are two projective applications, then their product (concatenation) transformation $L_1 \circ L_2$ is also a projective transformation and its homogeneous transformation matrix is the product of the homogeneous transformation matrices of L_1 and L_2 .

Indeed, if

$$L_1 \begin{pmatrix} x \\ y \\ w \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & k_1 \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

and

$$L_{2} \begin{pmatrix} x \\ y \\ w \end{pmatrix} = \begin{pmatrix} a_{2} & b_{2} & c_{2} \\ d_{2} & e_{2} & f_{2} \\ g_{2} & h_{2} & k_{2} \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

then

$$(L_1 \circ L_2) \begin{pmatrix} x \\ y \\ w \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & k_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \\ g_2 & h_2 & k_2 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

Observation 1.5. If $L_1, L_2 : \mathbb{RP}^2 \longrightarrow \mathbb{RP}^2$ are two affine applications, then their product $L_1 \circ L_2$ is also an affine transformation.

Proposition 1.6. If $(aB - bA)^2 + (dB - eA)^2 > 0$, then the affine transformation (1.1) maps the line (d) Ax + By + C = 0 to the line

$$(eA - dB)x + (aB - bA)y + (bf - ce)A - (af - cd)B + (ae - bd)C = 0.$$

If aB - bA = dB - eA = 0, then ae - bd = 0 and L is the constant map $\left(\frac{cB - bC}{B}, \frac{fB - eC}{B}\right)$.

Definition 1.7. An affine transformation (1.1) is said to be singular if

$$\begin{vmatrix} a & b \\ d & e \end{vmatrix} = 0$$
 i.e. $ae - bd = 0$.

and non-singular otherwise.

Note that the affine transformation L is nonsingular if and only if it is invertible. In such a case the inverse L^{-1} is a non-singular affine transformation and $[L^{-1}] = [L]^{-1}$.

1.2 Examples of affine transformations

1.2.1 Translations

Definition 1.8. *The* translation *of vector* $(h,k) \in \mathbb{R}^2$ *is the affine transformation*

$$T(h,k): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $(T(h,k))(x,y) = (x+h,y+k)$.

Its equations are

$$\begin{cases} x' = x + h \\ y' = y + k \end{cases}$$

or, by using the matrix language and the homogeneous coordinates

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} h \\ k \end{pmatrix} i.e. \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

which shows that the homogeneous matrix transformation is

$$[T(h,k)] = \begin{pmatrix} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix}.$$

Note that the translation T(h,k) *is non-singular (invertible) and* $(T(h,k))^{-1} = T(-h,-k)$.

1.2.2 Scaling about the origin

Definition 1.9. The scaling about the origin by non-zero scaling factors $(s_x, s_y) \in \mathbb{R}^2$ is the affine transformation

$$S(s_x, s_y) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \ (S(s_x, s_y)) \ (x, y) = (s_x \cdot x, s_y \cdot y).$$

Its equations are

$$\begin{cases} x' = s_x \cdot x \\ y' = s_y \cdot y \end{cases}$$

or, by using the matrix language and the homogeneous coordinates

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ i.e. } \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

which shows that the homogeneous matrix transformation is

$$[S(s_x, s_y)] = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Note that the scaling about the origin by non-zero scaling factors $(s_x, s_y) \in \mathbb{R}^2$ is non-singular (invertible) and $(S(s_x, s_y))^{-1} = S(s_x^{-1}, s_y^{-1})$.

The scaling $S_P(s_x, s_y)$ by non-zero scaling factors $(s_x, s_y) \in \mathbb{R}^2$ about an arbitrary point $P(x_0, y_0)$ acts in a similar way as $S(s_x, s_y)$, but the role of the origin is played bt P. Thus

$$S_P(s_x, s_y) = T(x_0, y_0) \circ S(s_x, s_y) \circ T(-x_0, -y_0),$$

i.e. its homogeneous transformation matrix is

$$\begin{bmatrix} S_P(s_x, s_y) \end{bmatrix} = \begin{pmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -x_0 \\ 0 & 1 & -y_0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & (1 - s_x)x_0 \\ 0 & s_y & (1 - s_y)y_0 \\ 0 & 0 & 1 \end{pmatrix}.$$

1.2.3 Reflections

Definition 1.10. The reflections about the x-axis and the y-axis respectively are the affine transformation

$$r_x, r_y : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $r_x(x, y) = (x, -y)$, $r_y = (-x, y)$.

Their equations are

$$r_x: \left\{ \begin{array}{ll} x' &= x \\ y' &= -y \end{array} \right. \ \text{and} \ r_y: \left\{ \begin{array}{ll} x' &= -x \\ y' &= y \end{array} \right.$$

or, by using the matrix language and the homogeneous coordinates

$$r_{x}: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ and } r_{y}: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ i.e.}$$

$$r_{x}: \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \text{ and } r_{y}: \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

which shows that the homogeneous matrices transformations are

$$[r_x] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $(r_y) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Note that $r_x = S(1, -1)$ and $r_y = S(-1, 1)$. Thus the two reflections are non-singular (invertible) and $r_x^{-1} = r_x$, $r_y^{-1} = r_y$.

Definition 1.11. The reflection $r_l: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ about the line l maps a given point M to the point M' defined by the property that l is the perpendicular bisector of the segment MM'. One can show that the action of the reflection about the line l: ax + by + c = 0 is

$$r_l(x,y) = \left(\frac{b^2 - a^2}{a^2 + b^2}x - \frac{2ab}{a^2 + b^2}y - \frac{2ac}{a^2 + b^2}, -\frac{2ab}{a^2 + b^2}x + \frac{a^2 - b^2}{a^2 + b^2}y - \frac{2bc}{a^2 + b^2}\right).$$

Its equations are

$$\begin{cases} x' = \frac{b^2 - a^2}{a^2 + b^2} x - \frac{2ab}{a^2 + b^2} y - \frac{2ac}{a^2 + b^2} \\ y' = -\frac{2ab}{a^2 + b^2} x + \frac{a^2 - b^2}{a^2 + b^2} y - \frac{2bc}{a^2 + b^2} \end{cases}$$

or, by using the matrix language and the homogeneous coordinates

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{b^2 - a^2}{a^2 + b^2} & -\frac{2ab}{a^2 + b^2} \\ -\frac{2ab}{a^2 + b^2} & \frac{a^2 - b^2}{a^2 + b^2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \frac{2ac}{a^2 + b^2} \\ \frac{2bc}{a^2 + b^2} \end{pmatrix} i.e.$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{b^2 - a^2}{a^2 + b^2} & -\frac{2ab}{a^2 + b^2} & -\frac{2ac}{a^2 + b^2} \\ -\frac{2ab}{a^2 + b^2} & \frac{a^2 - b^2}{a^2 + b^2} & -\frac{2bc}{a^2 + b^2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

which shows that the homogeneous matrix transformation is

$$[r_l] = \begin{pmatrix} \frac{b^2 - a^2}{a^2 + b^2} & -\frac{2ab}{a^2 + b^2} & -\frac{2ac}{a^2 + b^2} \\ -\frac{2ab}{a^2 + b^2} & \frac{a^2 - b^2}{a^2 + b^2} & -\frac{2bc}{a^2 + b^2} \\ 0 & 0 & 1 \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} b^2 - a^2 & -2ab & -2ac \\ -2ab & a^2 - b^2 & -2bc \\ 0 & 0 & a^2 + b^2 \end{pmatrix}.$$

Note that the reflection r_l is non-singular (invertible) and $r_l^{-1} = r_l$.

1.2.4 Rotations

Definition 1.12. The rotation $\operatorname{rot}_{\theta}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ about the origin through an angle θ maps a point M(x,y) into a point M'(x',y') with the properties that the segments [OM] and [OM'] are congruent and the $m(\widehat{MOM'}) = \theta$. If $\theta > 0$ the rotation is supposed to be anticlockwise and for $\theta < 0$ the rotation is clockwise. If $(x,y) = (r\cos\varphi, r\sin\varphi)$, then the coordinates of the rotated point are $(r\cos(\theta+\varphi), r\sin(\theta+\varphi)) = (x\cos\theta-y\sin\theta, x\sin\theta+y\cos\theta)$, i.e.

$$rot_{\theta} = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta).$$

Its equations are

$$\begin{cases} x' = x \cos \theta - y \sin \theta \\ y' = x \sin \theta + y \cos \theta \end{cases}$$

or, by using the matrix language and the homogeneous coordinates

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} i.e. \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

which shows that the homogeneous matrix transformation is

$$[\operatorname{rot}_{\theta}] = \left(egin{array}{ccc} \cos \theta & -\sin \theta & 0 \ \sin \theta & \cos \theta & 0 \ 0 & 0 & 1 \end{array}
ight).$$

Note that the rotation $\operatorname{rot}_{\theta}$ *is non-singular (invertible) and* $\operatorname{rot}_{\theta}^{-1} = \operatorname{rot}_{-\theta}$.

The rotation $\operatorname{rot}_{\theta}(P)$ about an arbitrary point $P(x_0,y_0)$ acts in a similar way as $\operatorname{rot}_{\theta}$, but the role of the origin is played bt P. Thus $\operatorname{rot}_{\theta}(P) = T(x_0,y_0) \circ \operatorname{rot}_{\theta} \circ T(-x_0,-y_0)$, i.e. its homogeneous transformation matrix is

$$[\operatorname{rot}_{\theta}(P)] = \begin{pmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -x_0 \\ 0 & 1 & -y_0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos \theta & -\sin \theta & x_0 (1 - \cos \theta) + y_0 \sin \theta \\ \sin \theta & \cos \theta & -x_0 \sin \theta + y_0 (1 - \cos \theta) \\ 0 & 0 & 1 \end{pmatrix} .$$

1.2.5 Shears

Definition 1.13. Given a fixed direction in the plane specified by a unit vector $v = (v_1, v_2)$, consider the lines d with direction v and the oriented distance d from the origin. The shear about the origin of factor r in the direction v is defined to be the transformation which maps a point M(x, y) on d to the point M' = M + rdv. The equation of the line through M of direction v is

$$v_2X - v_1Y + (v_1y - v_2x) = 0.$$

The oriented distacnce from the origin to this line is $v_1y - v_2x$. Thus the action of the shear Sh(v,r): $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ about the origin of factor r in the direction v is

$$Sh(v,r)(x,y) = (x,y) + rd(v_1, v_2)$$

$$= (x,y) + (r(v_1y - v_2x)v_1, r(v_1y - v_2x)v_2)$$

$$= (x,y) + (-rv_1v_2x + rv_1^2y, -rv_2^2x + rv_1v_2y)$$

$$= ((1 - rv_1v_2)x + rv_1^2y, -rv_2^2x + (1 + rv_1v_2)y)$$

Its equations are

$$\begin{cases} x' = (1 - rv_1v_2)x + rv_1^2y \\ y' = -rv_2^2x + (1 + rv_1v_2)y \end{cases}$$

or, by using the matrix language and the homogeneous coordinates

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 - rv_1v_2 & rv_1^2 \\ -rv_2^2 & 1 + rv_1v_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ i.e. } \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - rv_1v_2 & rv_1^2 & 0 \\ -rv_2^2 & 1 + rv_1v_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

which shows that the homogeneous matrix transformation is

$$[Sh(v,r)(x,y)] = \begin{pmatrix} 1 - rv_1v_2 & rv_1^2 & 0 \\ -rv_2^2 & 1 + rv_1v_2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

The *shear* $Sh_P(v,r)$ *about an arbitrary point* $P(x_0,y_0)$ of factor r in the direction v acts in a similar way as Sh(v,r), but the role of the origin is played bt P. Thus $Sh_P(v,r) = T(x_0,y_0) \circ Sh(v,r) \circ T(-x_0,-y_0)$, i.e. its homogeneous transformation matrix is

$$[Sh_P(v,r)] = \begin{pmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 - rv_1v_2 & rv_1^2 & 0 \\ -rv_2^2 & 1 + rv_1v_2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -x_0 \\ 0 & 1 & -y_0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 - rv_1v_2 & rv_1^2 & rv_1(x_0v_2 - y_0v_1) \\ -rv_2^2 & 1 + rv_1v_2 & rv_2(x_0v_2 - y_0v_1) \\ 0 & 0 & 1 \end{pmatrix} .$$

1.3 Problems

1. Consider a quadrilateral with vertices A(1,1), B(3,1), C(2,2), and D(1.5,3). Find the image quadrilaterals through the translation T(1,2), the scaling S(2,2.5), the reflections about the x and y-axes, the clockwise and anticlockwise rotations through the angle $\pi/2$ and the shear $Sh\left(\left(2/\sqrt{5},1/\sqrt{5}\right),1.5\right)$.

- 2. Find the concatenation (product) of an anticlockwise rotation about the origin through an angle of $\frac{3\pi}{2}$ followed by a scaling by a factor of 3 units in the *x*-direction and 2 units in the *y*-direction. (Hint: $S(3,2)R_{3\pi/2}$)
- 3. Find the homogeneous matrix of the product (concatenation) $S(3,2) \circ R_{\frac{3\pi}{2}}$.
- 4. Find the equations of the rotation $R_{\theta}(x_0, y_0)$ about the point $M_0(x_0, y_0)$ through an angle θ .
- 5. Show that the concatenation (product) of two rotations, the first through an angle θ about a point $P(x_0, y_0)$ and the second about a point $Q(x_1, y_1)$ (distinct from P) through an angle $-\theta$ is a translation.

References

- [1] Andrica, D., Topan, L., Analytic geometry, Cluj University Press, 2004.
- [2] Galbură Gh., Radó, F., Geometrie, Editura didactică și pedagogică-București, 1979.
- [3] Pintea, C. Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferențială a curbelor și suprafețelor, Presa Universitară Clujeană, 2001.
- [4] Radó, F., Orban, B., Groze, V., Vasiu, A., Culegere de Probleme de Geometrie, Lit. Univ. "Babeş-Bolyai", Cluj-Napoca, 1979.