0.1 R6 数学選択

 $(1)(\mathbf{a})K=\mathbb{Q}, M=\mathbb{Q}(\sqrt{2}), L=\mathbb{Q}(\sqrt{1+\sqrt{2}})$ とする. M/K が Galois 拡大である. $x^2-(1+\sqrt{2})$ が $\sqrt{1+\sqrt{2}}$ の M 上の最小多項式である. したがって L/M は Galois 拡大である.

 $(\sqrt{1+\sqrt{2}}^2-1)^2=2$ であるから, $f(x)=x^4-2x^2-1$ が $\sqrt{1+\sqrt{2}}$ を根にもつ K 上の多項式である. [L:K]=[L:M][M:K]=4 であるから f は K 上の最小多項式である. f の根は $\pm\sqrt{1\pm\sqrt{2}}$ である. $\sqrt{1-\sqrt{2}}\in\mathbb{C}\setminus\mathbb{R}$ であるから, $\sqrt{1+\sqrt{2}}\notin L\subset\mathbb{R}$ である. よって L/K は正規拡大でないから,L/K は Galois 拡大でない.

 $(b)\alpha\in L$ について, α の K 上最小多項式 p_{α} は分離多項式であり,その根は全て L に属す. α の M 上の最小多項式は p_{α} の因数であるから分離多項式である.またその根は p_{α} の根であるから全て L に属す.したがって L/M は Galois 拡大である.

 $(2)(a)\zeta_3 \notin \mathbb{Q}$ であるから $x^2 + x + 1$ が ζ_3 の最小多項式である. よって $\mathbb{Q}(\zeta_3)/\mathbb{Q}$ は Galois 拡大である.

 $(b)x^3-2$ は \mathbb{Q} 上の $\sqrt[3]{2}$ の最小多項式であるから $[\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}]=3$ である。 $\zeta_3\notin\mathbb{Q}(\sqrt[3]{2})\subset\mathbb{R}$ であるから, $[\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}(\sqrt[3]{2})]=2$ である。よって $[\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}]=6$ である。すなわち $[\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}(\zeta_3)]=3$ である。 x^3-2 の根は $\sqrt[3]{2},\zeta_3\sqrt[3]{2},\zeta_3\sqrt[3]{2}$ であるから, $\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}(\zeta_3)$ は正規拡大。したがって $\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}(\zeta_3)$ は Galois 拡大である。

 $(c)p(x)=x^n-t^n\in\mathbb{C}(t^n)[x]$ とする。p(x) はモニック多項式であり, $\mathbb{C}(t^n)$ は UFD である $\mathbb{C}[t^n]$ の商体であるから p(x) の既約性は $\mathbb{C}[t^n][x]$ の既約性と同値。 $\mathbb{C}[t^n]$ において t^n は素元である。よってアイゼンシュタインの既約判定法から p(x) は $\mathbb{C}[t^n][x]$ 上既約である。したがって p(x) は $\mathbb{C}[t^n][x]$ 上既約である。

また p(x) の根は $\zeta_n^k t$ $(k=0,1,\ldots,n-1)$ であるから, p(x) は $\mathbb{C}(t^n)$ 上の t の最小多項式で,その根は全て $\mathbb{C}(t)$ に属す.よって $\mathbb{C}(t^n)/\mathbb{C}(t)$ は n 次の Galois 拡大である.

 $\begin{bmatrix} \mathbf{B} \end{bmatrix}(1)f,g,h \in M(A)$ に対して $(f \cdot g) \cdot h(a) = (f \cdot g)(a) \cdot h(a) = f(a) \cdot g(a) \cdot h(a) = f(a) \cdot (g \cdot h)(a) = f \cdot (g \cdot h)(a)$ であるから、 $(f \cdot g) \cdot h = f \cdot (g \cdot h)$ である。すなわち M(A) は積について結合法則が成り立つ。

 $(2)\phi_A((f+g)(x))(a)=(f+g)(a)=f(a)+g(a)=\phi_A(f(x))(a)+\phi_A(g(x))(a),\phi_A(fg(x))(a)=(fg)(a)=f(a)g(a)=\phi_A(f(x))(a)\phi_A(g(x))(a),\phi_A(1(x))(a)=1$ であるから、 ϕ_A は加法と乗法を保つ。M(A) の単位元は $1_{M(A)}(a)\equiv 1$ なる $1_{M(A)}$ であるから ϕ_A は単位元を保つ。よって ϕ_A は環準同型である。

 $(3)M(\mathbb{R})$ の零元は $0_{M(A)}(a)\equiv 0$ であるから $f(x)\in\ker(\phi_{\mathbb{R}})$ とすれば、任意の $a\in\mathbb{R}$ に対して f(a)=0 である. f は \mathbb{R} 上の多項式であるから、f=0 である. よって $\ker(\phi_{\mathbb{R}})=\{0\}$ であるから、 $\phi_{\mathbb{R}}$ は単射である.

 $(4)\mathbb{F}_p$ において、 $a\in\mathbb{F}_p^{\times}$ は \mathbb{F}_p^{\times} の位数が p-1 であるから $a^{p-1}=1$ である.よって $a^p=a$ である.a=0 でも $0^p=0$ であるから、 \mathbb{F}_p の任意の元 a に対して $a^p-a=0$ である.したがって $\phi_{\mathbb{F}_p}(x^p-x)(a)=a^p-a=0$ であるから、 $(x^p-x)\subset\ker(\phi_{\mathbb{F}_p})$ である.

 $f(x) \in \ker(\phi_{\mathbb{F}_p})$ とすれば、任意の $a \in \mathbb{F}_p$ に対して f(a) = 0 である。 $f(x) = (x^p - x)g(x) + h(x) \quad (\deg(h(x)) < p)$ とできる。 $h(x) \in \ker(\phi_{\mathbb{F}_p})$ であるから、任意の $a \in \mathbb{F}_p$ に対して h(a) = 0 である。 したがって因数定理から $x(x-1)(x-2)\cdots(x-(p-1))\mid h(x)$ である。 $x(x-1)(x-2)\cdots(x-(p-1))$ の次数は p であるから、 h=0 である。 よって $f \in (x^p - x)$ であるから、 $\ker(\phi_{\mathbb{F}_p}) = (x^p - x)$ である。