Trigonometry Facts for HL

Dr. William J. Larson - MathsTutorGeneva.ch

θ	$\sin \theta$	Memory Trick for $\sin \theta$ count $0, 1, 2, 3, 4$	cos θ (same as sin θ, but in reverse order)	$\tan \theta = \frac{\sin \theta}{\cos \theta}$
0, 2π	0	$\frac{\sqrt{0}}{2} = 0$	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	$\frac{\sqrt{4}}{2} = 1$	0	undefined
π	0		-1	0
$\frac{3\pi}{2}$	-1		0	undefined

Arc length = $s = r \theta$ (**in radians only**)

Area of a sector = $\frac{1}{2}r^2\theta = \frac{1}{2}sr$ (in radians only)

Area of a triangle = $\frac{1}{2}ab\sin C$

(plus 2 more interchanging the letters)

Trig functions definitions

Trig functions definitions						
	Using the	Using a point	Using the			
Function	sides of a	(x, y) on the	point (x, y) on			
	right triangle	terminal side	the unit circle			
$\sin \theta$	$\frac{opp}{hyp}$	$\frac{y}{r}$	у			
$\cos \theta$	$\frac{adj}{hyp}$	$\frac{x}{r}$	x			
$\tan heta$	$\frac{opp}{adj}$	$\frac{y}{x}$	$\frac{y}{x}$			

$$r^2 = x^2 + y^2$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sec\theta = \frac{1}{\cos\theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

The quadrants in which the function is positive:

Mnemonic: "All Students Take Calculus"

S	(sine)	Α	(all)
T	(tangent)	C	(cosine)

$$\sin^2\!\theta + \cos^2\!\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\cot^2 \theta + 1 = \csc^2 \theta$$

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \times \tan B}$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$

$$\tan(2A) = \frac{2\tan A}{1 - \tan^2 A}$$

$$\frac{\sin A}{\sin A} = \frac{\sin B}{\sin A} = \frac{\sin C}{\sin A}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$
 (plus 2 more interchanging the letters)

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 (plus 2 more interchanging the letters)

$$sin(-\theta) = -sin \theta$$

$$cos(-\theta) = +cos \theta$$

$$tan(-\theta) = -tan \theta$$

The co-functions of complementary angles are equal:

$$\sin \theta = \cos (90 - \theta)$$
 $\cos \theta = \sin (90 - \theta)$

$$\cos \theta = \sin (90 - \theta)$$

$$tan \theta = cot (90 - \theta)$$
 $cot \theta = tan (90 - \theta)$

$$\cot \theta = \tan (90 - \theta)$$

$$sec \theta = csc (90 - \theta)$$

$$sec \theta = csc (90 - \theta)$$
 $csc \theta = sec (90 - \theta)$

$$\sin(180^{\circ} - \theta) = \sin \theta$$

$$\cos(180^{\circ} - \theta) = -\cos\theta$$

$$\tan(180^{\circ} - \theta) = -\tan\theta$$

$$\sin(\theta + 90^{\circ}) = +\cos\theta$$

$$\cos (\theta + 90^{\circ}) = -\sin \theta$$

$$\tan (\theta + 90^{\circ}) = -\cot \theta$$

$$\sin (\theta + 180^\circ) = -\sin \theta$$

$$\cos (\theta + 180^\circ) = -\cos \theta$$

$$\tan (\theta + 180^{\circ}) = + \tan \theta$$

Angle between two lines with slopes

$$m_1$$
 and m_2 : $\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2}$