Leveraging Transformer Models for Multilingual **Hierarchical Classification of Articles**

A Study of Unified mBERT and XLM-R with Attention Networks

Team 28

Pavithra Raghavan, Takitazwar Parthib, Nila Maitra Chaity, Sabikunnahar Talukder Pyaasa, Isra Zaman

Problem

The task focuses on identifying narratives, classifying them, and analyzing entity roles to support analysts studying target-specific disinformation.

Objective

- Task: Assign accurate narrative and sub narrative labels to news articles using a two-level hierarchical taxonomy.
- Goal: Improve classification accuracy across diverse, multilingual news content.

Challenges:

- Multiple interrelated multi-label, multi-class dataset.
- Multilingual dataset.
- Fine-grained hierarchical classification.

Research Questions:

RQ1: How effectively can mBERT and XLM-R models perform in multi-label, multi-class narrative classification within a two-level taxonomy of narrative and sub narrative labels?

RQ2: To what extent does the proposed model generalize across datasets in different languages, and how does its adaptability affect performance in multilingual contexts?

Data

Data Overview and Visualizations

Correlation Between Narrative Levels:

- Source: News articles provided in five languages (e.g., English, Russian
- Annotations: Articles labeled with multiple narratives and sub-narratives.

 - Main Narrative 3 (2 main classes + fallback case)

 - Sub-Sub-Narrative 69

Fig 1: Number of Unique Classes Fig 2: Number of Article/Narrative

- Main Narratives & Sub-narratives: Main narratives (e.g., "Climate Change") connect to specific sub-narratives (e.g., "Green policies as geopolitical
- Interconnected Propagation: Sub-narratives align with broader themes (e.g., "Hidden plots" under "Climate Change"). • **Insight Potential:** Analyzing correlations uncovers how narratives propagate and evolve.

Fig 3: Number of Article per Sub Narrative Class

Class Imbalance Observations:

- Disproportionate Representation: Largest class has 123 articles; smallest class has only 2 articles.
- Impact: Skews model performance, favoring majority classes and underperforming on minority ones.

Strategies used: Class Weights, SMOTE (Synthetic Minority Oversampling Technique)

Fig 5: Class Frequency vs Number of Articles

Approach

Model: Unified mBert

Data Preprocessing

- **Dual Encoders** tokenizer extracts rich language features. [1]
- MultiLabelBinarizer encodes multi-label data for training and decodes predictions. **Hierarchical Classification Framework:**

- Flattened hierarchical labels into a single vector representation. • Reconstructed hierarchical relationships from predicted class values.
- **Transformer-based Model:**

- 24 transformer layers, 768 hidden units, fused via a 1024-dimensional ReLU layer.
- Includes a dropout layer (rate 0.3) and a fully connected classifier with sigmoid activation.
- Fusion layer combines encoder outputs; final classifier produces multi-label output.

Training and Evaluation:

- Used AdamW optimizer and Binary Cross-Entropy with Logits Loss.
- Evaluation Metrics: **F1-score**, Precision, and Recall, Accuracy.

Input Data Feature extraction: Actant Extraction Sentiment Scores for keyword Embedding generation Embedding Refinement Transformer Based Attention model For Classification **Narrative Pred Sub-narrative Pred Sub-sub-narrative Pred**

Model: XLM-R embedded Transformer Based Attention Model **Data Preprocessing:** • Extracted top 10 keywords from Level 1 classes and computed sentiment scores.

• Tokenized articles and actants [3] using **XLM-R embeddings[2**] for feature

a. actants used: subject, object, helper, and opponent **Transformer Based Attention Model:**

- Multi-layer transformer with 16-head attention, dropout (30%), and L2
- regularization. • Positional encoding and **batch normalization** were included for stable and efficient

Training and Evaluation:

- Hierarchical training where each level's outputs informed the next level (Narrative →
- Level $1 \rightarrow \text{Level } 2$).
- Early stopping and learning rate decay ensured efficient convergence.
- Metrics computed: Accuracy, F1-Score (Macro/Weighted), and Balanced Accuracy.

Result

Level 1 - Narrative Level 2 - Sub-narrative Level 3 - Sub-sub-narrative

Fig 8: Ove	erall Accuracy		
rative	Sub-Nar		

	Narrative	Sub-Narrative	Sub-Sub-Narrative
English mBert	71%	38%	18%
English XLM-R	87%	26%	33%
Russian mBert	78%	35%	13%
Russian XLM-R	80%	20%	19%

Fig 9: F1 scores

Analysis

Fig 7: XLM-R model

		Actual Values				Actual Values	
Values		Positive	Negative	Values		Positive	Negative
Predicted \	Positive	57	38		Positive	105	59
Pred	Negative	82	177	Predicted	Negative	46	248

Fig 10:mBert model Confusion Matrix

Fig 11: XLM-R model Confusion Matrix

• Captured some hierarchical relationships.

- Struggled with accurate contextual predictions, indicating need for better handling of dependencies between levels.
- Performance across classes showed inconsistencies, with the model favoring certain classes, highlighting challenges with imbalanced data distributions.
- Issues with Unified mBert model:
 - Thresholding: Default threshold might be suboptimal. • Language-Specific Accuracy: Lower due to inadequate domain-specific fine-tuning.
- Issues with XLM-R embedded model:
- Accuracy Increases: Measures overall performance, not class-specific. o F1 Score Decreases: Penalizes class imbalance.

	True Values	Predicted Values
0	1, 7, 38	1, 2, 42
	0, 4, 18	0, 15, 51
2	0, 13, 8	0, 16, 29
3	1, 10, 33	1, 10, 15
4	1, 6, 36	1, 6, 36
5	0, 17, 37	0, 17, 37

Fig 12: mBert Sample Hierarchical Predictions True Values Prodicted Values

'	rue values	Predicted values		
	2, 8, 22	2, 8 , 11		
	0, 0, 4	0, 0, 4		
Z 2	1, 1, 1	1, 1, 1		
	2, 7, 9	2, 10, 9		
	2, 8, 22	2, 8, 11		
	0, 0, 3	0, 0, 4		

Fig 13: XLM-R Sample Hierarchical Predictions

Conclusion/Future Work

- The models effectively classify narratives
- into multiple levels. • Performance can improve for complex and

detailed narrative elements.

• Results emphasize the need for refinement in handling diverse languages and structures.

Future work:

- o To leverage language-specific adapters, alignment techniques, and enhanced feature extraction to improve
- multilingual adaptation. o Data Augmentation to solve Class-imbalance.
- o Fine-tuning the model for unsupervised learning and domain-specific narratives.

Reference

[1] J. Libovický, R. Rosa, and A. Fraser, "How Language-Neutral is Multilingual BERT?," arXiv.org, Nov. 08, 2019. https://arxiv.org/abs/1911.03310 [2] Z. Chi et al., "XLM-E: Cross-lingual Language Model Pre-training via ELECTRA," Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Jan. 2022, doi: 10.18653/v1/2022.acl-long.427. [3] D. Herman, "Existentialist roots of narrative actants," Studies in 20th & 21st Century Literature, vol. 24, no. 2, Jun. 2000, doi: 10.4148/2334-4415.1484. [4] "Call for task proposals," SemEval-2025. https://semeval.github.io/SemEval2025/cft.html

