Normal Distribution contd..

Dr.Mamatha.H.R

Professor

Department of Computer Science and Engineering

PES University

Bangalore

Course material created using various Internet resources and text book

Are my data "normal"?

- Not all continuous random variables are normally distributed!!
- It is important to evaluate how well the data are approximated by a normal distribution

Are my data normally distributed?

- Look at the histogram! Does it appear bell shaped?
- Compute descriptive summary measures—are mean, median, and mode similar?
- Do 2/3 of observations lie within 1 std dev of the mean? Do 95% of observations lie within 2 std dev of the mean?
- 4. Look at a normal probability plot—is it approximately linear?
- Run tests of normality (such as Kolmogorov-Smirnov). But, be cautious, highly influenced by sample size!

Coffee (ounces/day)

Median = 6

Mean = 7.1

Mode = 0

SD = 6.8

Range = 0 to 24

(= 3.5 ()

Love of manuscript writing (10=highest)

Median = 5

Mean = 5.4

Mode = none

SD = 1.8

Range = 2 to 9 (~ 4)

Moderate to intense exercise (hours/week)

$$Median = 3$$

$$Mean = 3.4$$

$$Mode = 3$$

$$SD = 2.5$$

Range =
$$0$$
 to 12

Wake-up time in the am (hour)

Median = 7:00

Mean = 7:04

Mode = 7:00

SD = :55

Range = 5:30 to 9:00 (~4)

$$7.1 + / - 6.8 =$$
 $0.3 - 13.9$

$$7.1 + / - 2*6.8 =$$
 $0 - 20.7$

$$7.1 + / - 3*6.8 =$$
 $0 - 27.5$

$$5.4 +/- 2*1.8 =$$
 $1.8 - 9.0$

3.4 +/- 2.5= 0.9 - 7.9

7:04+/- 0:55 =

6:09 - 7:59

7:04+/- 2*0:55 = 5:14 - 8:54

The Normal Probability Plot

- Normal probability plot
 - Order the data.
 - Find corresponding standardized normal quantile values: i^{th} quantile $= \phi(\frac{i}{n+1})$

where ϕ is the probit function, which gives the Z value that correspond s to a particular left - tail area

- Plot the observed data values against normal quantile values.
- Evaluate the plot for evidence of linearity.

Normal probability plot coffee...

Right-Skewed! (concave up)

Normal probability plot writing...

Normal Probability Plot, Love of Writing

Neither right-skewed or left-skewed, but big gap at 6.

Norm prob. plot Exercise...

Normal Probability Plot, Exercise

Right-Skewed! (concave up)

Norm prob. plot Wake up time

Normal Probability Plot, Wake up times

Closest to a straight line...

Formal tests for normality

- Results:
- Coffee: Strong evidence of non-normality (p<.01)
- Writing love: Moderate evidence of non-normality (p=.01)
- Exercise: Weak to no evidence of non-normality (p>.10)
- Wakeup time: No evidence of non-normality (p>.25)

- Order your n number of points of raw data from the minimum value to the maximum observed values.
- Assign a rank order number (i) to each of the n points of data. That is, from minimum to maximum, is the point of data the 1st, 7th, or 98th?
- Calculate the cumulative probability (p_i) associated with each rank-ordered point of data.
- Use the followi $p_i = \frac{i 0.5}{n}$
- Use the standard normal table found in Z Table to calculate the z_i value for each of your n points of data.
- Create an *x-y* scatter plot of your measured data points versus their determined *z* values.
- The measured data go on the x-axis, and the z values go on the y-axis.

Rank-Ordered Data	I	P _i	\mathbf{z}_{i}
7.3	1	0.025	-1.96
8.2	2	0.075	-1.44
8.8	3	0.125	-1.15
8.9	4	0.175	-0.93
9.1	5	0.225	-0.76
9.2	6	0.275	-0.60
9.3	7	0.325	-0.45
9.5	8	0.375	-0.32
9.5	9	0.425	-0.19
9.7	10	0.475	-0.06
9.7	11	0.525	0.06
9.9	12	0.575	0.19
10.0	13	0.625	0.32
10.3	14	0.675	0.45
10.5	15	0.725	0.60
10.8	16	0.775	0.76
10.9	17	0.825	0.93
11.2	18	0.875	1.15
11.4	19	0.925	1.44
10.0	•	0.055	1.06

- The closer the points are to forming a single line, the more normal your data are;
- the more scattered the points are, the less normal your data are.