Lecture 4: Non-Uniform PAC Learning

Tianpei Xie

$Dec.\ 20th.,\ 2022$

Contents

1	Non-Uniform PAC Learning		2
	1.1	Definitions	2
	1.2	Characterizing Non-Uniform Learnability	3
2	2 Structrual Risk Minimization		3
3	Minimum Description Length and Occam's Razor		5
	3.1	Occam's Razor	5
	3.2	Minimum Description Length	5

1 Non-Uniform PAC Learning

1.1 Definitions

• Remark (Relaxation of PAC Learning)

The notions of **PAC** learnability discussed so far allow the sample sizes to depend on the accuracy and confidence parameters, but they are **uniform** with respect to the **labeling** rule and the **underlying** data distribution. Consequently, classes that are learnable in that respect are limited (they must have a finite VC-dimension). In this chapter we consider more relaxed, **weaker** notions of learnability.

• Recall that the agnostic PAC-learning:

Definition (Agnostic PAC-Learning)

Let \mathcal{H} be a hypothesis set. \mathcal{A} is an <u>agnostic PAC-learning algorithm</u> if there exists a **polynomial function** poly $(\cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathcal{P} over $\mathcal{X} \times \mathcal{Y}$, the following holds for any sample size $m \geq \text{poly}(1/\epsilon, 1/\delta, d, \text{size}(c))$:

$$\mathcal{P}^{m}\left\{L(\mathcal{A}(\mathcal{D}_{m})) - \inf_{h \in \mathcal{H}} L_{\mathcal{P}}(h) \le \epsilon\right\} \ge 1 - \delta.$$
 (1)

If \mathcal{A} further runs in $poly(1/\epsilon, 1/\delta, d, size(c))$, then \mathcal{H} is said to be <u>efficiently agnostic</u> PAC-learnable.

• We now introduce the concept of *competitivity*:

Definition (Competitiveness)

A hypothesis g is (ϵ, δ) -competitive with another hypothesis g' if, with probability higher than $(1 - \delta)$,

$$L(g) \le L(g') + \epsilon$$
.

• Definition (Non-Uniform Learning)

Let \mathcal{H} be a hypothesis set. \mathcal{A} is an **non-uniform learning algorithm** if there exists a **polynomial function** poly $(\cdot, \cdot, \cdot, \cdot, \cdot)$ such that for any $\epsilon > 0$ and $\delta > 0$, for all distributions \mathcal{P} over $\mathcal{X} \times \mathcal{Y}$, the following holds for **any** $h \in \mathcal{H}$, any sample size $m \geq \text{poly}(1/\epsilon, 1/\delta, \underline{h}, d)$:

$$\mathcal{P}^m \left\{ L_{\mathcal{P}}(\mathcal{A}(\mathcal{D}_m)) - L_{\mathcal{P}}(h) \le \epsilon \right\} \ge 1 - \delta. \tag{2}$$

If \mathcal{A} further runs in poly $(1/\epsilon, 1/\delta, h, d)$, then \mathcal{H} is said to be **non-uniformly learnable**.

• Remark (Compare with Agnostic PAC Learning)

Both agnostic PAC learning and non-uniform learning require that the output hypothesis will be (ϵ, δ) -competitive with every other hypothesis in the class.

From the definition of non-uniform learning, we see that the sample complexity $m \ge m(\epsilon, \delta, h)$, which <u>depends on other hypothesis</u> $h \in \mathcal{H}$, while for agnostic PAC learning, the sample size $m \ge m(\epsilon, \delta)$ is chosen uniformly over \mathcal{H} . It is easy to see that an **agnostic PAC** learnable class is also non-uniformly learnable.

1.2 Characterizing Non-Uniform Learnability

• Lemma 1.1 [Shalev-Shwartz and Ben-David, 2014]

Let \mathcal{H} be a hypothesis class that can be written as a countable union of hypothesis classes,

$$\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n,$$

where each \mathcal{H}_n enjoys the uniform convergence property. Then, \mathcal{H} is non-uniformly learnable.

• Proposition 1.2 (Characterization of Non-Uniform Learnable Class) [Shalev-Shwartz and Ben-David, 2014]

A hypothesis class \mathcal{H} of binary classifiers is **non-uniformly learnable if and only if** it is a **countable union** of **agnostic PAC learnable** hypothesis classes.

• Example (Non-Uniform Learable But Not Agnostic PAC Learnable)

The following example shows that non-uniform learnability is a strict relaxation of agnostic PAC learnability; namely, there are hypothesis classes that are non-uniform learnable but are not agnostic PAC learnable.

Consider a binary classification problem with the instance domain being $\mathcal{X} = \mathbb{R}$. For every $n \in \mathbb{N}$ let \mathcal{H}_n be the class of polynomial classifiers of degree n; namely, \mathcal{H}_n is the set of all classifiers of the form $h(x) = \operatorname{sgn}(p(x))$ where $p : \mathbb{R} \to \mathbb{R}$ is a polynomial of degree n. Let $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$. Therefore, \mathcal{H} is the class of all polynomial classifiers over \mathbb{R} .

It is easy to verify that $VCdim(\mathcal{H}) = \infty$ while $VCdim(\mathcal{H}_n) = n + 1$. Hence, \mathcal{H} is not PAC learnable, while on the basis of Proposition above, \mathcal{H} is non-uniformly learnable.

2 Structrual Risk Minimization

• Remark (*Encoding Prior Knowledge*)

So far, we have *encoded our prior knowledge* by *specifying a hypothesis class* \mathcal{H} , which we believe includes a good predictor for the learning task at hand.

Yet another way to express our prior knowledge is by **specifying preferences** over hypotheses within \mathcal{H} . In the Structural Risk Minimization (SRM) paradigm, we do so by first assuming that \mathcal{H} can be written as $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$ and then specifying a **weight function**, $w : \mathbb{N} \to [0,1]$, which assigns a **weight** to **each hypothesis class**, \mathcal{H}_n , such that a higher weight reflects a stronger preference for the hypothesis class.

• Definition (Structural Risk Minimization (SRM) paradigm) Let \mathcal{H} be a hypothesis class that can be written as

$$\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n,$$

Assume that for each n, the class \mathcal{H}_n enjoys the uniform convergence property, i.e. PAC-learnable regardless underlying distribution, with a sample complexity function $m_{\mathcal{H}_n}(\epsilon, \delta)$. Let

3

us also define the function $\epsilon_n : \mathbb{N} \times (0,1) \to (0,1)$ by

$$\epsilon_n(m,\delta) = \min\left\{\epsilon \in (0,1) : m_{\mathcal{H}_n}(\epsilon,\delta) \le m\right\}. \tag{3}$$

In other words, we have a *fixed sample size* m, and we are interested in *the lowest possible upper bound* on the gap between empirical and $true\ risks$ achievable by using a sample of m examples.

Note that it follows that for every m and δ , with probability of at least $1 - \delta$ over the choice of $\mathcal{D}_m \sim \mathcal{P}$ we have that

$$\left| L_{\mathcal{P}}(h) - \widehat{L}_m(h) \right| \le \epsilon_n(m, \delta), \quad \forall h \in \mathcal{H}_n.$$

Let $w : \mathbb{N} \to [0,1]$ be a function such that $\sum_{n=1}^{\infty} w(n) \leq 1$. We refer to w as a **weight function** over the hypothesis classes $\mathcal{H}_1, \mathcal{H}_2, \ldots$ Such a weight function can reflect the **importance** that the learner attributes to **each hypothesis class**, or some measure of the complexity of different hypothesis classes.

The goal of a <u>Structural Risk Minimization (SRM) rule</u> is to find a hypothesis $h \in \mathcal{H}$ that minimizes a certain upper bound on the true risk by <u>choosing weight</u> in a "bound minimization" manner. In particular, the SRM solves the following problem:

$$\min_{h \in \mathcal{H}} \left\{ \widehat{L}_m(h) + \epsilon_{n(h)} \left(m, \, w(n(h)) \cdot \delta \right) \right\}$$
 (4)

where

$$n(h) := \min \left\{ n : h \in \mathcal{H}_n \right\}. \tag{5}$$

• We have the following proposition:

Proposition 2.1 | Shalev-Shwartz and Ben-David, 2014|

Let $w : \mathbb{N} \to [0,1]$ be a function such that $\sum_{n=1}^{\infty} w(n) \leq 1$. Let \mathcal{H} be a hypothesis class that can be written as $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$, where for each n, \mathcal{H}_n satisfies **the uniform convergence property** with a sample complexity function $m_{\mathcal{H}_n}(\epsilon, \delta)$. Let ϵ_n be as defined in Equation 3.

Then, for every $\delta \in (0,1)$ and distribution \mathcal{P} , with probability of at least $1-\delta$ over the choice of $\mathcal{D}_m \sim \mathcal{P}^m$, the following bound **holds** (simultaneously) for every $n \in \mathbb{N}$ and $h \in \mathcal{H}_n$.

$$\left| L_{\mathcal{P}}(h) - \widehat{L}_m(h) \right| \le \epsilon_n(m, w(n) \cdot \delta).$$

Therefore, for every $\delta \in (0,1)$ and distribution \mathcal{P} , with probability of at least $1-\delta$ it holds that

$$L_{\mathcal{P}}(h) \le \widehat{L}_m(h) + \min_{n:h \in \mathcal{H}_n} \epsilon_n(m, w(n) \cdot \delta). \tag{6}$$

• Remark (Bias for Lower Risk vs Bias for Smaller Estimation Error Tradoff) Unlike the ERM paradigm discussed in previous chapters, we no longer just care about the empirical risk, $\widehat{L}_m(h)$, but we are willing to trade some of our bias toward low empirical risk with a bias toward classes for which $\epsilon_{n(h)}(m, w(n(h)) \cdot \delta)$ is smaller, for the sake of a smaller estimation error.

• Remark By Hoeffding's inequality, each singleton class has the uniform convergence property with rate $m_{\mathcal{H}_n}(\epsilon, \delta) = \frac{\log(2/\delta)}{2\epsilon^2}$ so SRM rule (4) becomes

$$\min_{h \in \mathcal{H}} \left\{ \widehat{L}_m(h) + \sqrt{\frac{-\log(w(n)) + \log(2/\delta)}{2m}} \right\}
\Rightarrow \min_{h \in \mathcal{H}} \left\{ \widehat{L}_m(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right\}$$
(7)

• Proposition 2.2 (SRM for Non-Uniform Learning) [Shalev-Shwartz and Ben-David, 2014]

Let \mathcal{H} be a hypothesis class such that $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$, where each \mathcal{H}_n has the uniform convergence property with sample complexity $m_{\mathcal{H}_n}$. Let $w : \mathbb{N} \to [0,1]$ be such that

$$w(n) = \frac{6}{\pi^2 n^2}.$$

Then, H is non-uniformly learnable using the SRM rule with rate

$$m_{\mathcal{H}}(\epsilon, \delta, h) \le m_{\mathcal{H}_n} \left(\frac{\epsilon}{2}, \frac{6\delta}{(\pi n(h))^2} \right).$$

• Remark (SRM as Resource Allocation)

Consider SRM as *simultaneously run* n PAC learning algorithm on different hypothesis classes with *shared sample size* m so that it need to *allocate resources* to the hypothesis class \mathcal{H}_n in some optimal way to minimize the overall gap between true risk and empirical risk.

3 Minimum Description Length and Occam's Razor

3.1 Occam's Razor

• Remark (Occam's Razor)
A short explanation (that is, a hypothesis that has a short length) tends to be more valid than a long explanation.

3.2 Minimum Description Length

• Remark (*Efficient Prior Knowledge Encoding*) See that the SRM optimize the following objective:

$$\min_{h \in \mathcal{H}} \left\{ \widehat{L}_m(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right\}$$

It follows that in this case, **the prior knowledge** is solely determined by the **weight** we assign to each hypothesis. We assign **higher** weights to hypotheses that we believe are **more likely to be the correct one**, and in the learning algorithm we prefer hypotheses that have higher weights.

• Definition (Description Language of Hypothesis Class)

Let \mathcal{H} be the hypothesis class we wish to describe. Fix some finite set Σ of **symbols** (or "characters"), which we call the <u>alphabet</u>. For concreteness, we let $\Sigma = \{0,1\}$. <u>A string</u> is a finite sequence of symbols from Σ ; for example, $\sigma = (0,1,1,1,0)$ is a string of <u>length</u> 5. We denote by $|\sigma|$ the length of a string. The set of all finite length strings is denoted Σ^* .

<u>A description language for \mathcal{H} is a function $d: \mathcal{H} \to \Sigma^*$ mapping each member h of \mathcal{H} to a string d(h). d(h) is called **the description of** h, and its length is denoted by |h|.</u>

• Remark (Restriction of \mathcal{H} on \mathcal{D}_m)

The restriction of \mathcal{H} **to** \mathcal{D} is the set of functions from \mathcal{D} to $\{0,1\}$ that can be derived from \mathcal{H} . That is,

$$\mathcal{H}_{\mathcal{D}} := \left\{ (h(x_1), \dots, h(x_m)) : h \in \mathcal{H} \right\}.$$

For each $h \in \mathcal{H}$, $h_{\mathcal{D}} \in \mathcal{H}_{\mathcal{D}} \subset \{0,1\}^*$ is a **description** of h which is a **binary** string of **fixed length** m. It is not a prefix-free string and is **data-dependent** which is not preferred in MDL.

• Definition (Prefix-Free String)

For every **distinct** h, h', d(h) is **not** a **prefix** of d(h').

That is, we do not allow that any string d(h) is exactly the first |h| symbols of any longer string d(h').

• Lemma 3.1 (Kraft's Inequality).

If $S \subseteq \{0,1\}^*$ is a **prefix-free** set of strings, then

$$\sum_{\sigma \in S} \frac{1}{2^{|\sigma|}} \le 1$$

• Remark In light of Krafts inequality, any prefix-free description language of a hypothesis class, \mathcal{H} , gives rise to a *weighting function* w over that hypothesis class where

$$w(h) = \frac{1}{2^{|h|}}.$$

• Proposition 3.2 (Generalization Bound by Description Length) [Shalev-Shwartz and Ben-David, 2014]

Let \mathcal{H} be a hypothesis class and let $d: \mathcal{H} \to \{0,1\}^*$ be a **prefix-free description language** for \mathcal{H} . Then, for every sample size, m, every confidence parameter, $\delta > 0$, and every probability distribution, \mathcal{P} , with probability greater than $1 - \delta$ over the choice of $\mathcal{D}_m \sim \mathcal{P}^m$ we have that,

$$L_{\mathcal{P}}(h) \le \widehat{L}_m(h) + \sqrt{\frac{|h| + \log(2/\delta)}{2m}}$$
(8)

where |h| is the **length of description** d(h) of h.

• Definition (Minimum Description Length (MDL) learning paradigm) With the definition of description language of hypothesis, the goal of a Minimum Description Length (MDL) learning is to find a hypothesis $h \in \mathcal{H}$ such that

$$\min_{h \in \mathcal{H}} \left\{ \widehat{L}_m(h) + \sqrt{\frac{|h| + \log(2/\delta)}{2m}} \right\}$$
 (9)

In particular, it suggests trading off empirical risk for saving description length.

• Remark (Choose Description Language Independent From the Data)
As we know from the basic Hoeffding's bound, if we commit to any hypothesis before seeing
the data, then we are guaranteed a rather small estimation error term.

Choosing a description language (or, equivalently, some weighting of hypotheses) is a **weak** form of committing to a hypothesis. Rather than committing to a single hypothesis, we spread out our commitment among many. As long as it is done **independently** of the training sample, our generalization bound holds. Just as the choice of a single hypothesis to be evaluated by a sample can be arbitrary, so is the choice of description language.

References

Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.