1.7 Анализ эффективности использования объектов интеллектуальной собственности в сфере развития науки и технологии в Казахстане, в сравнении с общемировой тенденцией

Обзор проблемы и актуальности темы. Статистические свойства патентных данных определяются их правовыми характеристиками и их экономической реализацией, поскольку они влияют на то, какие изобретения охраняются, кем, какая информация раскрывается (следовательно, становится доступной для статистиков), насколько важны патенты для промышленности и т. д.

В этом отчете представлен обзор эффективности использования объектов интеллектуальной собственности в сфере развития науки и технологии в Казахстане, в сравнительный анализ с общемировой тенденцией с учетом экономических основ. В нем также описаны основные понятия, необходимые для использования патента в качестве индикатора науки и техники.

Цели и задачи исследования. Статистические данные в области интеллектуальной собственности для понимания тенденций в сфере развития науки и технологии в стране.

Обзор общемировой деятельности в области охраны прав интеллектуальной собственности на республиканском и международном уровнях. Аналитика по статистической информации об использовании объектов интеллектуальной собственности в области развития науки и технологии в Казахстане.

Методология исследования. Методология исследования, направленного на анализ эффективности использования объектов интеллектуальной собственности в сфере развития науки и технологии, включает в себя анализ статистических данных, обзор литературы, научные публикации, базы данных по интеллектуальной собственности и другие источники информации., а также сравнительный анализ различных показателей.

В отчете были сравнены данные, полученные в рамках исследования, с общемировыми тенденциями и результатами других стран или регионов. Это позволило выявить, как Казахстан сравнивается с другими странами по эффективности использования интеллектуальной собственности в науке и технологиях. Полученные данные и результаты анализа интерпретируются с учетом поставленных целей и задач. Это включает в себя объяснение того, ΜΟΓΥΤ влиять на эффективность интеллектуальной собственности и какие выводы можно сделать на основе данных. На основе полученных результатов формулируются рекомендации для улучшения использования интеллектуальной собственности в сфере науки и технологии. Эти рекомендации включают в себя предложения по улучшению законодательства, поддержке инноваций и другие меры для повышения эффективности.

Этот отчет представляет собой структурированный документ, содержащий методологию, данные, анализ и рекомендации. В отчете

рассматривается значимость эффективного использования интеллектуальной собственности для научно-технологического развития, а также необходимость адаптации мировых практик к специфике Казахстана.

При составлении отчета применялся государственный стандарт о патентных исследованиях 1 , научно-исследовательской работе 2 и системе разработки и постановки продукции на производство 3 .

1.7.1 Обзор общемировой деятельности в области охраны прав интеллектуальной собственности

Международные стандарты и соглашения. Существует несколько международных стандартов и соглашений, которые имеют отношение к объектам интеллектуальной собственности в области развития науки и технологий. Ниже приведен список некоторых из них:

- 1) Парижская конвенция по охране промышленной собственности⁴. Парижская Конвенция, которая была принята в 1883 г., касается вопросов промышленной собственности в самом широком смысле слова, включая патенты, товарные знаки, промышленные образцы, полезные модели, знаки обслуживания, фирменные наименования, географические указания и пресечение недобросовестной конкуренции. Это международное соглашение стало первым шагом в рамках усилий, призванных помочь авторам обеспечить охрану их интеллектуальных произведений в других странах.
- 2) Договор о патентной кооперации⁵ международный договор в области патентного права, заключён в 1970 году. Предназначен для того, чтобы упростить и сделать более экономичным получение охраны изобретений, когда такая охрана требуется в нескольких странах.
- 3) Договор о патентном праве (PLT)⁶ был принят в 2000 г. с тем, чтобы гармонизировать и оптимизировать формальные процедуры, применяемые в отношении национальных и региональных патентных заявок и патентов, и сделать эти процедуры более удобными для пользователей. PLT предусматривает максимальные перечни требований, которые может

¹ СТ РК ГОСТ Р 15.011-2005 "Система разработки и постановки продукции на производство. Патентные исследования. Содержание и порядок проведения

² ГОСТ 7.32-2001 Система стандартов по информации, библиотечному и издательскому делу. Отчет о научно-исследовательской работе. Структура и правила оформления.

 $^{^3}$ ГОСТ 15.012-84 Система разработки и постановки продукции на производство. Патентный формуляр.

 $^{^4}$ Парижская конвенция по охране промышленной собственности (Париж, 20 марта 1883 г.) // Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/treaties/ru/ip/paris/ (дата обращения: 20.10.2023).

⁵ Договор о патентной кооперации заключён в 1970 году, Инструкция и Административная инструкция. Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/pct/ru/texts/index.html (дата обращения: 20.10.2023).

Договор о патентном праве (PLT) Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/treaties/ru/ip/plt/ (дата обращения: 20.10.2023)

применять ведомство Договаривающейся стороны (важным исключением являются требования в отношении даты подачи заявки).

- 4) Евразийская патентная конвенция (ЕПК) (Москва, 9 сентября 1994 г.)⁷ это международное соглашение, которое создано с целью упрощения процесса получения патентов на изобретения, полезные модели и промышленные образцы в странах-членах Евразийской патентной организации (ЕАПО). ЕАПО это межгосударственная организация, созданная для содействия охране интеллектуальной собственности в регионе Евразии.
- 5) Соглашение по торговым аспектам прав интеллектуальной собственности (Соглашение ТРИПС) $(1994 \text{ г.})^8$. Это соглашение было принято в ходе Уругвайского раунда Генерального соглашения по тарифам и торговле в 1994 году. Соглашение ТРИПС открывает возможность для использования высокоэффективных механизмов разрешения ВТО, применительно вопросов, имеющихся В К интеллектуальной собственности.
- 6) Будапештский договор о международном признании депонирования микроорганизмов для целей патентной процедуры⁹. Будапештский договор, был принят в 1977 г., касается особого вопроса международного патентования патентования микроорганизмов.
- 7) Международная конвенция по охране новых сортов растений 10, более известная как UPOV. Принят: 2 декабря 1961 г., является международным договором, направленным на охрану прав интеллектуальной собственности в области селекции растений. Конвенция разработана с целью стимулирования и защиты инноваций в селекции растений, что важно для сельского и садоводческого секторов.
- 8) Мадридское соглашение¹¹, заключено в 1891 году, является основой регулирования Мадридской системы международной регистрации знаков. Мадридская система это удобный и экономичный механизм регистрации товарных знаков и управления ими по всему миру. Подача одной международной заявки на регистрацию товарного знака и уплата одного набора пошлин позволяет испрашивать охрану в разных странах.

⁸ Соглашение по торговым аспектам прав интеллектуальной собственности (Соглашение ТРИПС) (1994) Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/wipolex/en/text/379915 (дата обращения: 20.10.2023).

_

⁷ Евразийская патентная конвенция (ЕПК) (Москва, 9 сентября 1994 г.) Официальный сайт ЕАПВ. [Электронный ресурс] https://www.eapo.org/documents/voprosy-pravovoj-ohrany-izobretenij/ep/ (дата обращения: 20.10.2023).

Будапештский договор о международном признании депонирования микроорганизмов для целей патентной процедуры (1977 г.) Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/treaties/ru/registration/budapest/summary_budapest.html (дата обращения: 20.10.2023).

¹⁰ Международная конвенция по охране новых сортов растений (UPOV). Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/wipolex/ru/treaties/details/27 (дата обращения: 20.10.2023).

Мадридское соглашение. Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/madrid/ru/ (дата обращения: 20.10.2023).

- 9) Гаагское соглашение о международной регистрации промышленных образцов 12. Гаагская система международная система образцов состоит из трех самостоятельных актов: Лондонского 1934 г., Гаагского 1960 г., и Женевского 1999 г. Гаагская система это централизованная система приобретения и поддержания в силе прав на промышленный образец путем подачи одной международной заявки на одну международную регистрацию, действующую в одной или нескольких указанных Договаривающихся сторонах.
- 10) Лиссабонское соглашение об охране наименований мест происхождения и их международной регистрации (последняя редакция Женевский акт 2015 года)¹³. Лиссабонская система: международная система наименований мест происхождения и географических указаний для международной регистрации наименований мест происхождения и географических указаний, в рамках которого может обеспечиваться охрана в договаривающихся сторонах, с помощью единой процедуры регистрации и уплаты одного набора пошлин.

Международные стандарты и соглашения. Основные международные стандарты и соглашения администрируется Всемирной интеллектуальной собственности (ВОИС), который разрабатывает возглавляет международные соглашения и рекомендации в интеллектуальной собственности. Это включает в себя соглашения о товарных знаках, авторских правах И интеллектуальной собственности, основной из которых является Парижская конвенция. Важнейшим соглашением также является Соглашение о торговом аспекте правами интеллектуальной собственности (Соглашение ТРИПС), которое входит в состав Всемирной торговой организации (ВТО) и устанавливает стандарты защиты интеллектуальной собственности. Оно регулирует патенты, авторские права, товарные знаки и другие аспекты собственности интеллектуальной во второй мировой Национальные патентные законы должны соответствовать международным стандартам, изложенным в настоящее время в ТРИПС, международном договоре, который является частью пакета ВТО, подписанного в 1994 году. При условии, что страна является членом ВТО, ТРИПС налагает на эту страну строгие условия, такие как патентоспособность изобретений во всех областях техники, минимальный срок действия патентов 20 лет, ограничения принудительного лицензирования и т. д.

После выдачи административным органом патент все еще может быть оспорен третьими лицами. Они могут сделать это через правовую систему, потребовав аннулировать патент или признать его недействительным. В

13 Лиссабонское соглашение об охране наименований мест происхождения и их международной регистрации. Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/treaties/ru/registration/lisbon/ (дата обращения: 20.10.2023).

-

 $^{^{12}}$ Гаагское соглашение о международной регистрации промышленных образцов . Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/hague/ru/ (дата обращения: 20.10.2023).

таких случаях патентообладатель должен обратиться в суд для обеспечения соблюдения оспариваемого патента, заявив о нарушении авторских прав третьей стороной.

Сравнение законодательства разных стран

Сравнивая законодательства разных стран по патентам, таким как США, Китай, Европейский союз и Россия, приводится обобщенный анализ основных характеристик законодательства о патентах в этих странах.

- 1) США: В США патенты регулируются Патентным законодательством США¹⁴. Система «первый к заявителю» (First-to-File) означает, что первый заявитель имеет право на патент. Процесс рассмотрения патентной заявки включает в себя экспертизу и публичную публикацию заявки.
- 2) Существует три типа патентов: патент на изобретение, патент на промышленные образцы (дизайн) и на растения. Заявки на патенты на изобретения и растения могут быть предварительными и непредварительными. Предварительные заявки не могут быть поданы на промышленные образцы.
- 3) Патенты на изобретение. Они могут быть предоставлены любому, кто изобретает или открывает новый и полезный процесс, машину, изделие производства или состав вещества, или любые новые и полезные улучшения их.
- 4) Китай: В Китае патенты регулируются Китайским патентным законодательством 15. Срок действия патента на изобретение составляет 20 лет, на полезную модель 10 лет, на промышленный образец 10 лет. Могут быть получены патенты на изобретения, полезные модели и промышленные изделия. Китай является крупнейшим патентообладателем в мире и активно внедряет инновации.
- 5) Европейский союз: Европейский союз имеет единое патентное законодательство, а именно Европейское патентное соглашение (EPC)¹⁶. Европейская патентная организация (ЕПВ) выдает европейский патент и единый европейский патент, срок действия патента составляет 20 лет с продлением. Европейский патент считается "бандерольным", так как после выдачи он должен быть национализирован в каждой конкретной стране, в которой заявитель хочет получить защиту.
- 6) Система Единого европейского патента создана в рамках Европейского союза¹⁷, обеспечивающего осуществление расширенного

¹⁴Appendix L Consolidated Patent Laws — January 2023 update. United States Code Title 35 - Patents.Официальный сайт USPTO. [Электронный ресурс]https://www.uspto.gov/web/offices/pac/mpep/consolidated_laws.pdf (дата обращения: 20.10.2023).

¹⁵ Patent Law of the People's Republic of China (amended up to October 17, 2020) Официальный сайт CNIPA. [Электронный ресурс] http://www.npc.gov.cn/zgrdw/englishnpc/Law/2007-12/13/content_1383992 (дата обращения: 20.10.2023).

¹⁶ European Patent Convention (EPC)), Мюнхен 1973 год. Официальный сайт EPO. [Электронный ресурс] https://www.epo.org/en/legal/epc (дата обращения: 20.10.2023).

¹⁷ Регламента Европейского парламента и Совета Европейского Союза от 17.12.2012 № 1257/2012

сотрудничества в области создания единой патентной защиты. Под Единым европейским патентом понимается Европейский патент, который выдается в соответствии с правилами и процедурами Европейской патентной конвенции. После выдачи Европейского патента патентообладателем может быть подан запрос на получение Единого европейского патента, который будет действовать на территории 25 стран.

7) Россия: В России патенты регулируются Гражданским кодексом РФ¹⁸ и Федеральным законом «О введении в действие части четвертой Гражданского кодекса Российской Федерации»¹⁹. Срок действия патента на изобретение составляет 20 лет, на полезную модель - 10 лет, на промышленный образец -5 лет. Могут быть получены патенты на изобретения, полезные модели и промышленные изделия.

Помимо приведенных характеристик, важно учитывать, что в каждой стране существуют свои собственные процедуры регистрации, требования и обычаи, которые также могут меняться со временем. В случае более подробного сравнения необходимо изучить конкретное законодательство и применить его на практике в каждой стране, и можно провести профессиональную экспертизу.

Сравнение законодательства стран по патентам стран Евразийского экономического союза (ЕАЭС). Страны ЕАЭС внедрили евразийскую патентную систему, позволяющую получать единые патенты, действующие на территории всех членов ЕАЭС. Это значит, что патент, полученный в одной из стран ЕАЭС, может распространяться на другие страны-члены. Процедура подачи заявок на патент, их экспертизы и выдачи унифицирована для всех стран ЕАЭС. Это облегчает получение патентов на территории разных членов союза. Все страны-члены ЕАЭС соблюдают схожие сроки действия патентов, которые составляют 20 лет с момента подачи заявки. Основные различия в законодательстве государств-членов, которые касаются вопросов объектов интеллектуальной собственности, об исключительных правах, возмездности лицензионных договоров приведены в таблице 1.

Таблица 1 — Основные отличия в законодательстве государств-членов в части общих положений в сфере интеллектуальной собственности

	Республик	Республик	Республик	Кыргызск	Российска
	а Армения	а Беларусь	a	ая	Я
			Казахстан	Республик	Федерация
				a	

¹⁹ Федеральный закон от 18 декабря 2006 г. № 231 «О введении в действие части четвертой Гражданского кодекса Российской Федерации».

-

¹⁸ Гражданский кодекс Российской Федерации - часть четвертая (с изм. на 13 июня 2023 года, редакция, действующая с 29 июня 2023 года).

Исключ	ст. 1104 ГК	ст. 983 ГК	ст. 964 ГК	ст. 1040 ГК	ст. 1229 ГК
итель	PA	РБ	PK	KP	РФ
ное	Исключите	Исключите	Исключите	Исключите	Исключите
право на	льное право	льное право	льное право	льное право	льноеправо
объект	распростра	распростра	распростра	распростра	распростра
интелле	няется	няется на	няется	няется	няется на
ктуальн	на все	все	на все	на все	все
ой	определенн	определенн	определенн	определенн	определенн
собстве	ые	ые	ые	ые	ые
нности	законодател	законодател	законодател	законодател	законодател
	ьством	ьством	ьством	ьством	ьством
	объекты	объекты	объекты	объекты	объекты
	интеллекту	интеллекту	интеллекту	интеллекту	интеллекту
	альной	альной	альной	альной	альной
	собственно	собственно	собственно	собственно	собственно
	сти	сти	сти	сти	сти
		за			
		исключение			
		м секретов			
		производст			
_		ва (ноу-хау)			
Виды	ст. 1106 ГК	ст. 985 ГК	ст. 966 ГК	ст. 1042 ГК	ст. 1236 ГК
лицензи	PA	РБ	PK	KP	РФ
ОННЫХ	1) простая,	1) простая,	1) простая,	1) простая,	1) простая,
договор	неисключит	неисключит	неисключит	неисключит	неисключит
OB	ельная	ельная	ельная	ельная	ельная
	лицензия;	лицензия;	лицензия;	лицензия;	лицензия;
	2) единична	2) исключи	2) исключи	2) исключи	2) исключи
		тельная	тельная лицензия;	тельная	тельная
	лицензия; 3) исключи	лицензия; 3) другие	лицензия, 3) другие	лицензия; 3) другие	лицензия
	тельная	виды	не	Виды	
	лицензия;	лицензий,	противореч	лицензии,	
	4) другие	допускаемы	ащие	допускаемы	
	виды	e	законодател	e	
	лицензии,	законодател	ьным	законом	
	допускаемы	ьными	актам		
	e	актами	условия		
	законом		использова		
			ния		
			объекта		
			интеллекту		
			альной		
			собственно		
			сти		

Возмезд	ст. 1106 ГК	ст. 985 ГК	ст. 966 ГК	ст. 1042 ГК	ст. 1235 ГК
ность	PA	РБ	РК	КР	РΦ
лицензи	Возмездны	Возмездны	Возмездны	Возмездны	Возмездны
онных	й	й	й	й	й
договор	лицензионн	лицензионн	лицензионн	лицензионн	лицензионн
ОВ	ый договор	ый договор	ый договор	ый договор	ый договор
		Безвозмезд			Безвозмезд
		ный			ный
		лицензионн			лицензионн
		ый договор			ый договор

Анализ указывает на то, что общие положения законодательства государств-членов в области интеллектуальной собственности не противоречат международным договорам, к которым данные государства являются сторонами, а также нормам, регулирующим деятельность ЕАЭС.

Законодательство различных стран часто гармонизировано и соответствует основным нормам патентного права, установленным ВОИС. Права на интеллектуальную собственность могут быть защищены с использованием разных подходов, правил и норм законодательства. В частных случаях одно изделие, выпущенное на рынок, может быть охранено различными видами прав интеллектуальной собственности, такими как патенты, товарные знаки, авторские права или права на промышленные образцы.

Например, в случае фармацевтических продуктов их химическая формула может быть защищена патентами, фирменное наименование продукта может быть зарегистрировано как товарный знак, а инструкции к использованию могут быть охранены авторскими правами. В некоторых странах компьютерные программы могут быть защищены как патентами, так и авторскими правами, а растительные сорта могут быть охранены патентами и правами на селекционные достижения.

Следует отметить, что разные категории интеллектуальной собственности связаны с разными аспектами продукции и обладают разным сроком действия. В течение периода, когда на продукцию распространяются различные права интеллектуальной собственности, применение разных политик относительно исчерпания и их выполнение могут влиять на законность параллельного импорта продукции²⁰.

Тенденции и особенности на международном уровне. По данным заявок РСТ по областям технологий в 2022 году, компьютерные технологии и цифровые коммуникации показали высокие темпы роста. Ниже представлен небольшой анализ данных о заявках РСТ по нескольким технологическим областям в 2022 году:

 $^{^{20}}$ Различные категории прав ИС в отношении продукции. ПРОЕКТ СПРАВОЧНОГО ДОКУМЕНТА ОБ ИСКЛЮЧЕНИИ, СВЯЗАННОМ С ИСЧЕРПАНИЕМ ПАТЕНТНЫХ ПРАВ. Тридцать четвертая сессия Женева, 26—30 сентября 2022 года.

Компьютерные технологии (Computer Technology): Эта область показала заметный рост с 2021 года. Заявки на патенты в области компьютерных технологий выросли на 8,1% в 2022 году (таблица 2 и график 1).

Таблица 2 – Заявки РСТ по областям технологий, 2018–2022 гг.

<u>№</u> п/п		Год пуб	бликаци	ии			2022 share (%)	Chang e from 2021
		1	Т	ı	Т	1		(%)
	Technical field	2018	2019	2020	2021	2022		
I	Electrical							
	engineering		1= 10	1	10.	10.00		
1	Electrical	16,55	17,19	17,36	18,2	19,35	7.1	6.2
	machinery,	6	4	7	30	3		
	apparatus, energy	0.10=	0.000	11.70	100	1015	2 =	
2	Audio-visual	8,187	8,900	11,53	10,8	10,15	3.7	-6.3
	technology			4	39	7		
3	Telecommunicatio	6,132	5,861	6,445	6,37	6,427	2.4	0.8
	ns				6			
4	Digital	20,23	19,05	22,07	23,6	25,66	9.4	8.7
	communication	3	0	9	09	4		
5	Basic	1,712	1,554	1,610	1,64	1,697	0.6	3.0
	communication				7			
	processes							
6	Computer	19,18	21,49	24,34	26,1	28,22	10.4	8.1
	technology	1	6	4	09	4		
7	IT methods for	4,803	5,747	5,891	5,29	5,373	2.0	1.4
	management				8			
8	Semiconductors	7,183	8,048	8,862	8,34	8,913	3.3	6.8
					6			
II	Instruments							
9	Optics	7,610	8,018	8,371	7,92	7,398	2.7	-6.6
					0			
10	Measurement	10,77	11,45	12,70	12,1	12,64	4.6	4.0
		5	1	4	58	6		
11	Analysis of	1,940	1,917	2,062	2,15	2,248	0.8	4.4
	biological				4			
	materials							
12	Control	5,212	5,363	5,457	5,18	5,252	1.9	1.4
				,	1			
13	Medical	15,79	16,91	17,50	18,5	19,01	7.0	2.5
	technology	8	6	Ó	53	3		

III	Chemistry							
14	Organic fine chemistry	5,787	5,888	6,351	6,15 5	6,495	2.4	5.5
15	Biotechnology	6,640	7,404	7,985	8,74 7	9,336	3.4	6.7
16	Pharmaceuticals	9,130	9,786	10,76 7	12,1 60	12,55 5	4.6	3.2
17	Macromolecular chemistry, polymers	4,249	4,425	4,656	4,47 9	4,653	1.7	3.9
18	Food chemistry	2,104	2,215	2,383	2,46 8	2,579	0.9	4.5
19	Basic materials chemistry	5,573	5,589	5,712	5,48 4	5,552	2.0	1.2
20	Materials, metallurgy	4,334	4,417	4,685	4,31 3	4,633	1.7	7.4
21	Surface technology, coating	3,680	3,852	4,014	3,83	3,980	1.5	3.8
22	Micro-structural and nano- technology	395	390	456	440	422	0.2	-4.1
23	Chemical engineering	4,886	5,074	5,285	5,23 0	5,504	2.0	5.2
24	Environmental technology	2,732	2,705	3,020	2,77 1	2,841	1.0	2.5
IV	Mechanical engineering							
25	Handling	5,889	5,954	6,413	6,25 8	6,577	2.4	5.1
26	Machine tools	4,077	4,300	4,315	4,30 8	4,282	1.6	-0.6
27	Engines, pumps, turbines	5,656	5,366	5,123	4,44 3	4,375	1.6	-1.5
28	Textile and paper machines	2,757	2,769	2,952	2,62 3	2,425	0.9	-7.5
29	Other special machines	6,959	7,236	7,483	7,23 2	7,277	2.7	0.6
30	Thermal processes and apparatus	3,866	4,085	4,306	3,92 8	4,035	1.5	2.7
31	Mechanical elements	6,187	5,952	5,847	5,16 2	5,047	1.9	-2.2
32	Transport	10,94 1	11,22 7	11,29 0	10,1 17	10,05	3.7	-0.6

V	Other fields							
33	Furniture, games	4,669	4,625	4,718	4,49	4,933	1.8	9.8
					1			
34	Other consumer	5,403	5,445	6,045	5,84	6,335	2.3	8.4
	goods				2			
35	Civil engineering	6,121	6,387	6,502	6,31	5,941	2.2	-6.0
	_				9			

График 1 – Заявки РСТ по областям технологий (2018–2022 гг.)

Цифровые коммуникации (Digital Communication): Здесь также отмечается значительный рост, и заявки на патенты увеличились на 8,7% по сравнению с 2021 годом.

Эти данные свидетельствуют о высокой активности в области информационных технологий и связи. Вероятно, это связано с постоянными инновациями и развитием технологий в сфере цифровой коммуникации и компьютерных систем²¹.

Четвертая промышленная революция (4IR) вызвала радикальные преобразования в создании стоимости и поведении потребителей. Созвездие прорывных технологий, таких как Интернет вещей, облачные вычисления, большие данные, связь 5G и, конечно же, искусственный интеллект, прокладывает путь к новой экономике, основанной на данных²². Мир уже наполнен миллиардами интеллектуальных устройств, которые могут собирать и обмениваться данными в режиме реального времени, а также

_

²¹ Patent Cooperation Treaty Yearly Review 2023 The International Patent System.

²² Innovation trends in additive manufacturing Patents in 3D printing technologies September 2023 | Executive summary.

принимать автономные решения²³. С точки зрения создания стоимости, ожидается, что бум технологий 4IR принесет экономика стран, развивающих данную технологию более двух триллионов евро к концу этого десятилетия²⁴.

В этоv разделе рассмотрены 10 главных технологических тенденций 2023 года, на основе идей и анализа ведущих экспертов и лидеров отрасли. Чтобы описать состояние каждой тенденции, разработаны оценки инноваций (на основе патентов и исследований) и интереса (на основе новостей и вебпоиска)²⁵.

Перечисленные области представляют собой ключевые направления в современных технологиях и инновациях. Давайте кратко рассмотрим каждую из них:

- 1) Квантовые технологии: Квантовые компьютеры и квантовая криптография представляют собой область, которая имеет потенциал революционизировать вычислительные возможности и обеспечить надежную криптографию.
- 2) Генеративный ИИ: Генеративные алгоритмы, такие как генеративные состязательные сети (GAN), используются для создания контента, включая изображения, видео, текст и даже звук. Это область, в которой ИИ может создавать новые вещи, а не только анализировать существующие.
- 3) Космические технологии: Космическая исследовательская и коммерческая деятельность растет, и это включает разработки в области ракетных технологий, спутниковой связи и даже будущего заселения других планет.
- 4) Биоинженерия: Это область, связанная с генной инженерией, клонированием, созданием органов в лаборатории и другими биологическими инновациями.
- 5) Веб 3: Это новое поколение интернета, включающее децентрализованные приложения и технологии блокчейна.
- 6) Индустриализация машинного обучения: Машинное обучение становится более доступным и интегрируется в широкий спектр промышленных решений.
- 7) Технологии погружения в реальность: Виртуальная реальность (VR) и дополненная реальность (AR) нашли применение в развлечениях, образовании и промышленности.
- 8) Расширенные возможности подключения: Это включает в себя разработки в области 5G и развертывание сетей Интернета вещей (IoT).

-

²³ Top 10 Emerging Technologies of 2023. FLAGSHIP REPORT JUNE 2023. World Economic Forum [Электронный ресурс] ttps://www3.weforum.org/docs/WEF_Top_10_Emerging_Technologies_of_2023.pdf (дата обращения: 20.10.2023).

Deep tech innovation in smart connected technologies A comparative analysis of SMEs in Europe and the United States April 2022.

McKinsey Technology Trends Outlook 2023 [Электронный ресурс https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-top-trends-in-tech#new-and-notable (дата обращения: 20.10.2023).

- 9) Климатические технологии: Решения для борьбы с изменением климата, включая новые источники энергии, снижение выбросов и адаптацию к климатическим изменениям.
- 10) Электрификация и возобновляемые источники энергии: Переход к более чистой и эффективной энергетике.
- 11) Будущее мобильности: Разработка автономных транспортных средств, новых систем управления трафиком и других инноваций в транспортной сфере.
- 12) Архитектура доверия и цифровая идентификация: Технологии, которые обеспечивают безопасность и аутентификацию в цифровом мире.
- 13) Облачные и периферийные вычисления: Развитие вычислительных инфраструктур, включая облачные решения и устройства на краю сети.
- 14) Разработка программного обеспечения нового поколения: Это включает в себя новые методологии разработки, языки программирования и инструменты.
- 15) Прикладной ИИ: Применение искусственного интеллекта в различных отраслях и сферах, чтобы автоматизировать процессы, улучшить прогнозирование и управление, и создать новые возможности и решения.

Эти области представляют собой ключевые двигатели технологического прогресса и будут вероятно формировать будущее инноваций и развития мировой экономики.

1.7.2 Статистический анализ в области интеллектуальной собственности в Казахстане

Сбор и анализ данных

Коэффициент изобретательской активности (число отечественных патентных заявок на изобретения, поданных в Казахстане, в расчете на 10 000 человек населения) рассчитаны по данным Бюро национальной статистики АСПиР РК и данных ежегодного отчета Национального института интеллектуальной собственности показан в таблице 3.

Таблица 3 – Коэффициент изобретательской активности Индикаторы инноваций

	2020	2021	2022
Коэффициент изобретательской активности	0,4	0,4	0,4
(число отечественных патентных заявок на			
изобретения, поданных в Казахстане, в расчете			
на 10 000 человек населения)			

Страны мира, имеют следующие данные по этому показателю: в Республики Корея - 33,05, в Японии – 20,39, Швейцарии – 10,35, США – 8,97, в России 2,05. Ниже показателей Казахстана в ЮАР – 0,16, Мексике – $0,11^{26}$.

С 2017 по 2022 годы количество выданных охранных документов по объектам интеллектуальной собственности, включая патенты на изобретение, промышленные образцы и полезные модели, представляется следующим образом:

По изобретениям было выдано 585 патентов в 2022 году, что означает снижение на 10% по сравнению с 2021 годом, когда было выдано 651 патент (таблица 4).

Таблица 4 – Выдача охранных документов на изобретения по годам

Выдача	а охран	ных до	кумен	гов на 1	изобрет	гения п	о года	М				
Охранные 2014 2015 2016 2017 2018 2019 2020 2021 2022												
документы												
Выдано, всего												
	Национальным заявителям											
Предварительные	-	-	-	-								
патенты												
Патенты	Патенты 203 250 331 638 588 544 573 521 473											
Инновационные	1091	1084	476	12	1	_						
патенты												

По полезным моделям было выдано 864 охранных документа в 2022 году. Здесь наблюдается снижение на 23% по сравнению с 2021 годом, когда было выдано 1,122 полезных моделей (таблица 5 и график 2).

Таблица 5 – Выдача патентов на полезные модели по годам

	Выдача	патент	гов на п	олезны	е моде.	ли по го	одам				
Охранные 2014 2015 2016 2017 2018 2019 2020 2021 2022											
документы											
Выдано	165	166	577	591	950	1049	1107	1122	864		
патентов											
Национальны	92	102	490	532	862	925	1027	1038	840		
м заявителям											
Иностранным	73	64	87	59	88	124	80	84	24		
заявителям											

_

 $^{^{26}}$ Данные Института Статистики ЮНЕСКО (см.: http://stats.uis.unesco.org) и ВОИС (см.: URL: http://www.wipo.int)

График 2 – Полезные модели по годам

По промышленным образцам в 2022 году выдано 176 охранных документов, что показывает увеличение на 1% по сравнению с 2021 годом, когда было выдано 177 промышленных образцов (таблица 6).

Таблица 6 – Выдача патентов на промышленные образцы по годам

Выдача патентов на пр	Выдача патентов на промышленные образцы по годам									
Охранные документы 2017 2018 2019 2020 2021 2022										
(предпатенты и патенты)										
Выдано, всего	Выдано, всего 591 950 1049 1107 1122 864									
Из них:										
Национальным заявителям 532 862 925 1027 1038 840										
Иностранным заявителям	59	88	124	80	84	24				

Эти статистические данные указывают на изменения в количестве выданных патентов и охранных документов в разных категориях интеллектуальной собственности за данный период времени.

Интерпретация статистических данных. Данные о выдаче охранных документов и патентов важны для оценки активности и инновационной деятельности в Республике Казахстан. Распределение выданных охранных документов по разделам Международной патентной классификации (МПК) может дать представление о приоритетных областях, в которых развиваются инновации.

Согласно представленным данным:

- 1) Удовлетворение жизненных потребностей человека остается наиболее активной областью среди полученных охранных документов, составляя 34,7% от общего объема. Это может включать в себя разработки, связанные с медициной, потребительскими товарами и другими аспектами, удовлетворяющими человеческие потребности.
- 2) Химия и металлургия занимает второе место с 18,2% от общего объема. Это может включать в себя инновации в химической промышленности и металлургии.
- 3) Физика имеет долю в 12,4%, указывая на наличие инноваций в физических науках.
- 4) Различные технологические процессы составляют 11,9% от общего объема. Это включает различные технологии и методы, используемые в промышленных процессах.

В целом, данные показывают снижение активности регистрации объектов промышленной собственности в Республике Казахстан в 2022 году по сравнению с предыдущими годами. Это снижение активности может повлиять на рейтинг инноваций в стране.

Важно отметить, что одной из причин снижения может быть недостаточная заинтересованность авторов изобретений в правовой охране своих результатов, возможно, из-за низкой реализации прав на вознаграждение за использование интеллектуальной собственности. Это может потребовать дополнительных мер для стимулирования инноваций и защиты интеллектуальной собственности в будущем.

Сравнение с мировыми показателями. Согласно данным ВОИС²⁷, в Глобальном инновационном индексе (GII) 2023 по странам лидируют Швейцария, Швеция, США, Великобритания и Сингапур; Китай, Турция, Индия, Вьетнам, Филиппины, Индонезия и Исламская Республика Иран — страны со средним уровнем дохода, добившиеся наибольших успехов в области инноваций за последнее десятилетие (таблица 7).

Таблица 7 — Тепловая карта: рейтинг Глобальный инновационный индекс (GII) 2023 в целом и по инновационным направлениям, 2023 г.

Страна/эконом ика	Общи й GII	Учре ждени я	Челов еческ ий капит ал и иссле дован ия	Инф раст рукт ура	Сло жнос ть рынк а	Делов ая изыск аннос ть	Резул ьтаты знани й и техно логий	Творч еские резул ьтаты
Switzerland	1	2	6	4	7	5	1	1
Sweden	2	18	3	2	10	1	3	8

 $^{^{}m 27}$ Global Innovation Index 2023 Innovation in the face of uncertainty. WIPO

-

United States	3	16	12	25	1	2	2	12
United Kingdom	4	24	8	6	3	13	7	2
Singapore	5	1	2	8	6	3	10	18
Finland	6	3	5	1	12	4	4	16
Netherlands	7	6	13	14	15	8	8	9
(Kingdom of								
the)								
Germany	8	22	4	23	14	16	9	7
Denmark	9	5	9	3	21	12	12	10
Republic of	10	32	1	11	23	9	11	5
Korea								
France	11	27	17	22	9	17	16	6
China	12	43	22	27	13	20	6	14
Japan	13	21	18	13	8	11	13	25
Israel	14	40	20	36	11	6	5	33
Canada	15	14	10	30	4	18	19	22
Estonia	16	11	34	5	5	25	20	15
Hong Kong,	17	8	15	9	2	28	51	3
China								
Austria	18	13	11	12	39	19	17	13
Norway	19	4	19	7	29	22	28	23
Iceland	20	9	24	10	32	15	25	20
Luxembourg	21	7	31	31	35	7	38	11
Ireland	22	15	28	18	51	14	14	26
Belgium	23	30	14	44	26	10	15	30
Australia	24	17	7	19	17	24	30	24
Malta	25	34	39	17	43	21	36	4
Italy	26	52	33	21	40	33	18	21
New Zealand	27	12	21	29	31	29	39	28
Cyprus	28	41	38	32	38	31	23	17
Spain	29	46	27	16	33	32	24	29
Portugal	30	35	23	45	42	34	32	19
Czech Republic	31	36	30	24	82	27	21	32
United Arab	32	10	16	15	25	23	59	50
Emirates		• •		• 0	10			10
Slovenia	33	38	25	20	68	26	27	48
Lithuania	34	19	42	43	34	35	29	41
Hungary	35	47	36	42	64	30	26	38
Malaysia	36	29	32	51	18	36	37	47
Latvia	37	39	43	33	61	37	49	31
Bulgaria	38	66	66	28	60	42	34	34
Türkiye	39	105	41	50	36	46	44	27
India	40	56	48	84	20	57	22	49
Poland	41	76	40	47	67	41	40	35

	42	63	29	38	66	62	43	39
Greece								
	43	85	74	49	22	43	42	44
Thailand								
	44	72	44	26	48	53	33	52
Croatia								
	45	65	53	41	72	47	31	56
Slovakia								
	46	54	71	70	49	49	48	36
Viet Nam								
Romana	47	74	75	34	75	51	35	58
Saudi Arabia	48	45	35	48	28	45	68	66
Brazil	49	99	56	58	50	39	52	46
Qatar	50	23	54	39	44	73	82	65
Russian	51	110	26	72	56	44	54	53
Federation								
Chile	52	49	58	52	47	55	58	59
Serbia	53	57	51	35	41	68	41	92
North	54	75	78	40	30	60	53	69
Macedonia								
Ukraine	55	100	47	77	104	48	45	37
Philippines	56	79	88	86	55	38	46	60
Mauritius	57	26	64	74	24	91	90	57
Mexico	58	111	63	65	57	79	57	45
South Africa	59	88	84	68	45	61	56	63
Republic of	60	96	67	75	76	101	60	42
Moldova								
Indonesia	61	70	85	69	37	77	61	68
Iran (Islamic	62	131	60	97	19	117	55	43
Republic of)								
Uruguay	63	31	83	57	86	59	66	78
Kuwait	64	86	55	46	62	103	73	64
Georgia	65	25	69	80	77	58	72	81
Colombia	66	78	81	60	73	40	62	80
Bahrain	67	28	77	37	78	92	74	98
Mongolia	68	80	65	81	101	67	88	40
Oman	69	62	52	61	74	95	75	79
Morocco	70	83	86	94	80	107	65	55
Jordan	71	51	82	87	53	70	76	75
Armenia	72	69	92	79	89	94	67	61
Argentina	73	123	70	66	92	54	79	51
Costa Rica	74	48	79	62	90	63	70	89
Montenegro	75	82	62	56	54	66	80	85
Peru	76	81	50	63	52	52	101	74

Bosnia and	77	104	68	67	27	106	64	91
Herzegovina	78	10.	91	91	_,	100	0.	
Jamaica	79	53	71	89	109	69	92	54
Tunisia	80	107	46	71	98	119	50	72
Belarus	81	128	37		99	74	47	88
Kazakhstan	82	61	59	59	87	75	83	90
Uzbekistan	83	55	89	73	69	78	78	93
Albania	84	60	96	53	93	50	91	87
Panama	85	77	103	55	102	124	87	67
Botswana	86	37	73	85	70	56	117	106
Egypt	87	103	95	90	88	100	77	73
Brunei	88	20	57	54	105	80	126	127
Darussalam	89					72		
Pakistan	90	113	117	120	97	. –	69	70
Azerbaijan	91	42	87	95	85	64	114	100
Sri Lanka	92	124	110	82	106	71	71	83
Cabo Verde	93	44	97	64	96	65	98	108
Lebanon	94	125	72	96	46	76	86	96
Senegal	95	59	107	98	81	122	63	113
Dominican	96	67	109	76	91	86	95	94
Republic	97		106	99	95	85	94	77
El Salvador	98	101			84	99		
Namibia	99	50	76	100		81	123	104
Bolivia		132	61	104	16	87	106	102
(Plurinational		112				83	109	
State of)						84	111	
Paraguay			129	83	79			76
Ghana		93	105	105	117			71
Kenya	100	84	118	107	108		81	95
Cambodia	101	87	101	108	59	125	93	103
Trinidad and	102	68	45	88	124	113	103	109
Tobago	103				115	109	100	117
Rwanda	104	33	94	101	103		102	
Ecuador	105	109	98	78	100	90		99
Bangladesh	106	108	125	93		126	89	82
Kyrgyzstan	107	122	49	92	71	114	96	116
Madagascar	108	121	102	131	113	123	121	62
Nepal	109	114	123	110	63	89	110	101
Nigeria	110	115	80	123	127	82	124	84
Lao People's	111	95	115	109	65	102	97	124
Democratic	112	90		122		110	85	123
Republic	113	71		106				
Tajikistan	114	73	99	115	94			
Côte d'Ivoire	115		128	117	123	96	118	97

United Republic	116		126	113	83	105	119	120
_				112	65			
of Tanzania	117	100	111			131	108	105
Togo	118	102	120	119	111		122	111
Nicaragua	119	127		111	58	97	107	114
Honduras	120	126	90	102	107	104	113	
Zimbabwe	121	130	104	114	121	112	130	86
Zambia	122	119	93	116	110	98	128	112
Algeria	123	97	113	118	125	120	116	107
Benin	124	58	114	130	118	111	105	129
Uganda	125	64	124	121	128	118		122
Guatemala	126	120	122	132	112	93	99	119
Cameroon	127	91	112	103	129	88	104	118
Burkina Faso	128	92	108	124	116	128	112	130
Ethiopia	129	116	131	127	114	130	84	126
Mozambique	130	129	116	128	122	129	127	115
Mauritania	131	89	119	126	130	108	115	131
Guinea	132	98	132	125	132	127	125	110
Mali		117	121	129	126	115	120	128
Burundi		106	100		131	121	131	125
Niger		94	130		120	116	129	132
Angola		118	127		119	132	132	121

- Швейцария вот уже 13-й год занимает первое место в ГИИ 2023. Швеция сейчас занимает 2-е место, а США 3-е, за ним следуют Великобритания (4-е место) и Сингапур (5-е место), которые входят в пятерку лучших стран.
- Финляндия (6-е место) приближается к первой пятерке, а все остальные страны Северной Европы (9-е место Дании и Швеция) и стран Балтии (16-е место Эстония, 34-е место Литвы и 37-е место) также демонстрируют тенденцию к росту, за исключением Исландии, которая остается стабильной. на 20-м месте.
- Китай по-прежнему единственная экономика со средним уровнем дохода в топ-30 ГИИ, вошедшая в высший эшелон в 2014 году занимает 12-е место в ГИИ-2023, а Япония 13-е.
 - Израиль (14-е место) попадает в топ-15.
- Саудовская Аравия (48-е место), Бразилия (49-е место) и Катар (50-е место) входят в топ-50, а ЮАР (59-е место) в топ-60.
- Индонезия (61-е место) присоединяется к Китаю, Турции (39-е место), Индии (40-е место), Вьетнаму (46-е место), Филиппинам (56-е место) и Исламской Республике Иран (62-е место) в группе стран со средним уровнем дохода в рамках ГИИ. топ-65. Это группа, которая быстрее всего поднялась в рейтинге GII за последнее десятилетие.
- За пределами топ-65, но внутри топ-100, следующие страны со средним и низким уровнем дохода продвинулись дальше всего – более чем

на 20 позиций – за последнее десятилетие: Марокко (70-е), Узбекистан (82-е), Египет (86-е). и Пакистан (88-е место).

– За последние четыре года, с момента начала пандемии, больше всего поднялись в рейтинге (в порядке ранговой прогрессии) Маврикий (57-е место), Индонезия, Саудовская Аравия, Бразилия и Пакистан.

США, Сингапур и Израиль демонстрируют лучшие показатели по отдельным инновационным показателям.

- США продолжают лидировать по количеству показателей инноваций ГИИ, по которым они занимают первое место в мире (13 из 80 показателей).
 - Далее следуют Сингапур (11 из 80) и Израиль (9 из 80).
- Отдельные страны со средним и низким уровнем дохода преуспевают в различных областях. По отношению к другим странам и их ВВП или населению Мозамбик занимает 1-е место по валовому накоплению капитала, Камбоджа и Непал по кредитам от микрофинансовых учреждений, Маврикий по венчурным инвесторам и Исламская Республика Иран по товарным знакам (Рисунок 1. Мировые лидеры в области инноваций, 2023 г. Три ведущие инновационные экономики по регионам).

Рисунок 1 – Мировые лидеры в области инноваций, 2023 г.

Три ведущие инновационные экономики по регионам

Региональными лидерами Глобального инновационного индекса (GII) являются Швейцария, США, Бразилия, Индия, Сингапур, Израиль и Маврикий; Индия и Руанда лидируют в своих группах по доходам²⁸.

 $^{^{\}mbox{\footnotesize 28}}$ Global Innovation Index 2023 Innovation in the face of uncertainty. WIPO

- В Юго-Восточной Азии, Восточной Азии и Океании лидируют Сингапур, Республика Корея (10-е место) и Китай.
- В Северной Африке и Западной Азии Израиль лидирует, за ним следуют Кипр (28-е место), Объединенные Арабские Эмираты (ОАЭ) (32-е место) и Турция.
- В Латинской Америке и странах Карибского бассейна впервые лидирует Бразилия, за ней следует Чили (52-е место) 23 и Мексика (58-е место).
- В Центральной и Южной Азии продолжает лидировать Индия, далее идут Исламская Республика Иран (62-е место) и Казахстан (81-е место, новичок в топ-3 региона).
- В странах Африки к югу от Сахары за Маврикием (57-е место) следуют Южная Африка (59-е место), Ботсвана (85-е место), Кабо-Верде (91-е место) и Сенегал (93-е место).
- Индия лидирует в группе стран с доходом ниже среднего, за ней следуют Вьетнам и Украина (55-е место). Украина является новичком в топ-3 этой группы по доходам, согласно данным, которые в основном датируются периодом до 2022 года.
- Руанда (103-е место) возглавляет группу с низкими доходами, за ней следуют Мадагаскар (107-е место) и Того (114-е место), новичок в тройке лидеров этой группы по доходам.

Интересно отметить, что в некоторых развивающихся странах показатели инноваций значительно превосходят уровень ожидаемого развития, что свидетельствует о их стремлении к технологическому прогрессу. Большинство таких стран находятся в различных регионах, включая Африку к югу от Сахары, Юго-Восточную Азию, Восточную Азию и Океанию²⁹.

Индия, Республика Молдова и Вьетнам заслуживают особого внимания, так как они продолжают лидировать в области инноваций в течение 13 лет подряд. Это свидетельствует о стабильности и успешной инновационной политике в этих странах.

Индонезия, Узбекистан и Пакистан также удерживают статус лидеров в области инноваций второй год подряд, а Бразилия делает это уже третий год подряд.

Особый интерес вызывает возвращение в рейтинг Сенегала и Северной Македонии, что свидетельствует о возрастающей значимости инноваций в этих странах.

С другой стороны, 37 стран оказались с показателями инноваций ниже ожиданий. Они преимущественно находятся в Латинской Америке и Карибском бассейне, а также в регионах Африки к югу от Сахары, Северной Африке и Западной Азии, а также в Европе. Эти страны, возможно, столкнулись с вызовами в развитии инноваций, которые требуют дополнительных усилий и ресурсов (таблица 8).

 $^{^{29}}$ Global Innovation Index 2023 Innovation in the face of uncertainty. WIPO

Эти данные подчеркивают важность инноваций в современном мире и показывают, как разные страны балансируют между экономическим развитием и инновациями (рисунок 1).

Известно, что крупнейшие пять научно-технологических кластеров в мире сосредоточены в Восточной Азии. Вот некоторая информация о них³⁰:

Токио-Иокогама (Япония): Этот кластер считается самым большим в мире. Он располагается в Японии и включает в себя Токио и близлежащий город Иокогама.

Шэньчжэнь-Гонконг-Гуанчжоу (Китай и Гонконг): Этот кластер включает в себя города Шэньчжэнь, Гонконг и Гуанчжоу. Он является одним из крупнейших и наиболее динамичных технологических регионов в мире.

Сеул (Республика Корея): Сеул - еще один крупный технологический кластер в регионе, известный своей высокой технологической активностью.

Пекин (Китай): Пекин - столица Китая и один из важнейших технологических центров в стране.

Шанхай-Сучжоу (Китай): Шанхай и его окрестности, включая город Сучжоу, также играют важную роль в сфере научных исследований и технологического развития.

Следует отметить, что Кембридж в Соединенном Королевстве и Сан-Хосе-Сан-Франциско, Калифорния, в США, являются двумя из самых наукоемких кластеров в мире. Они выделяются плотностью населения и высокой активностью в области науки и технологий (Рисунок 2. Ведущий научно-технический кластер по экономике или трансграничному региону вошел в число 100 лучших, 2023 г.).

Рисунок 2 — Ведущий научно-технический кластер по экономике или трансграничному региону вошел в число 100 лучших, 2023 г.

 $^{^{30}}$ Global Innovation Index 2023 Innovation in the face of uncertainty. WIPO $\,$

Это информация о некоторых из крупнейших технологических кластеров в мире. Каждый из них играет важную роль в развитии научных исследований и инноваций в своем регионе.

1.7.3 Международные патентные заявки

Данные указывают на то, что в последние несколько лет наблюдается умеренный рост в подаче международных патентных заявок, но этот рост весьма недавно снизился. В 2021 году рост составил 0,8 процента, а в 2022 году этот показатель был еще более низким - 0,3 процента, что является самым медленным темпом роста с 2009 года³¹.

Важно отметить, что Азия остается лидирующим регионом по подаче заявок на международные патенты, и в 2022 году на ее долю пришлось 54,7 процента всех международных патентных заявок. Крупнейшими азиатскими подателями патентных заявок были Китай, Япония и Республика Корея (График 3. Заявки РСТ для 20 крупнейших стран происхождения, 2022 г.).

График 3 – Заявки РСТ для 20 крупнейших стран происхождения, 2022 г.

В отличие от этого, некоторые страны с развитой экономикой, такие как США и Соединенное Королевство, испытали снижение числа поданных международных патентных заявок.

Что касается Китая, то, несмотря на заметное замедление роста количества патентных заявок, он все равно остается крупнейшим заявителем. Важно отметить, что данный рост и заявки на патенты являются важными индикаторами инновационной активности и технологического развития в мире.

Оценка рейтинга Глобального инновационного индекса (GII)³² включает данные за пандемические и постпандемические годы, что делает

 $^{^{31}}$ Patent Cooperation Treaty Yearly Review 2023 The International Patent System.

 $^{^{\}rm 32}$ Global Innovation Index 2023 Innovation in the face of uncertainty. WIPO

его особенным. Более 88 процентов данных, используемых для составления рейтинга GII 2023, охватывают период с 2020 по 2023 годы. Это включает данные за 2021 и 2022 годы, когда многие страны сталкивались с вызовами пандемии и вводили разнообразные политические меры в ответ на ситуацию. Эти факторы оказали влияние на инновационную активность и могут повлиять на рейтинги в 2023 году.

1.7.4 Аналитика по статистической информации об использовании объектов интеллектуальной собственности в Казахстане

Анализ текущего состояния в Казахстане. В 2022 году удельный вес инновационно активных предприятий в общем числе организаций, принимавших участие в обследовании инновационной деятельности, составил 11,0%, что на 0,5 процентный пункт выше прошлогоднего уровня (таблица 8 и график 4). Основные показатели инновационной деятельности предприятий Республики Казахстан).

Таблица 8 – Основные показатели инновационной деятельности предприятий Республики Казахстан

Показатели	2020	2021	2022
Уровень активности в области инноваций, %	11,5	10,5	11,0
Общий объем инновационной продукции	1 715,5	1 438,7	1 879,1
(товаров и услуг), млрд тенге			
Объем реализованной инновационной	1 664,6	1 318,1	1 739,8
продукции (товаров и услуг), млрд тенге			
Объем реализованный инновационной			
продукции (товаров и услуг), поставленный	308,0	214,5	286,3
на экспорт, млрд тенге			
Сумма затрат на осуществление инноваций,	783,3	800,1	1 453,3
млрд. тенге			

 $^{^{33}}$ По данным Бюро национальной статистики АСПиР РК. https://stat.gov.kz/ru/

График 4 — Основные показатели инновационной деятельности предприятий Республики Казахстан

Инновационная деятельность остается важной для Казахстана. В 2022 году в ней участвовали 3,390 организаций, из числа 30,750, участвовавших в обследовании инновационной активности предприятий. Производство инновационной продукции составило 1,879.1 млрд тенге, что составляет 3.9% от общего объема промышленного производства товаров и услуг за январьдекабрь 2022 года, и это увеличение более чем на 30% по сравнению с предыдущим годом.

Общий объем реализованной инновационной продукции составил 1,739.8 млрд тенге, из которой 286.3 млрд тенге поставлено на экспорт.

Затраты на инновации в 2022 году составили более 1,453 млрд тенге, с 7.6% приходящихся на государственные инвестиции, что немного меньше, чем в предыдущем году.

Почти половина инноваций (47.7%) была финансирована собственными средствами, 37.7% приходилось на займы банков, 1.4% - на иностранные инвестиции, преимущественно в Кызылординской области.

Затраты предприятий на инновации, связанные с внедрением новых или усовершенствованных товаров, составили 70.4%. Почти 65% всех затрат на инновации были направлены на приобретение машин, оборудования, программного обеспечения и других активов, 13% - на выполнение НИОКР, и оставшиеся 22% - на приобретение внешних знаний, проектирование, маркетинговое исследование, обучение и другие мероприятия.

Важно также отметить, что 513 предприятий осуществляли создание инноваций, используя НИОКР, проведенные внутри предприятия, и из них 220 осуществляют исследования на постоянной основе, а 293 - иногда. 203 предприятия приобрели НИОКР, проведенные сторонними организациями. Это свидетельствует о том, что в Казахстане существует активное внимание

к инновационной деятельности и исследованиям для улучшения конкурентоспособности и разнообразия продукции³⁴.

Впечатляющий рост казахстанских стартап-экосистемы в последние годы стал серьезным стимулом для национальной экономики. Стартапы все чаще рассматриваются как двигатели экономического роста с большим потенциалом для решения ключевых проблем цифровизации, устойчивого конкурентоспособности промышленности посредством развития Казахстанские инноваций. Тем не менее, компаний по-прежнему сталкивается серьезными проблемами преодолении дефицита c В финансирования.

Можно выделить следующие недостатки эффективности использования объектов интеллектуальной собственности в сфере развития науки и технологии в Казахстане:

Маркетинг.

- Незначительная проверка продукта или его полное отсутствие, возможно, только концепция;
 - Целевые рынки не развиты или отсутствуют;
 - а. Технический.
- Лабораторный прототип не соответствует критериям подтверждения концепции;
- Сложность предвидеть инженерные проблемы при создании прототипа;
 - b. Экономический.
 - Небольшой или нулевой интерес инвесторов;
 - Сроки не оптимальны;
 - Требует значительного капитала;
 - с. Управление.
- Небольшой опыт работы создания стартап компании инноваторами и создателями ИС;
- Дефицит управленцев, сложность привлечения кадров и исполнителей на этапе становления компании, пока это не станет более привлекательной/убедительной.

Выявление проблем и возможностей

Анализ и оценка возможных альтернатив коммерческого использования объектов интеллектуальной собственности включают в себя ряд важных факторов. В данном случае, важно оценить следующие факторы³⁵:

а. Рыночный риск:

Исследование целевого рынка, включая анализ конкурентной обстановки, потенциальный спрос и факторы, влияющие на него.

Patents, trade marks and startup finance Funding and exit performance of European startups October 2023 | Executive summary.

 $^{^{34}}$ О СОСТОЯНИИ И НАПРАВЛЕНИЯХ РАЗВИТИЯ НАУКИ В РЕСПУБЛИКЕ КАЗАХСТАН ПО ИТОГАМ 2020-2022 ГОДОВ. Аналитический доклад. Алматы 2023.

b. Технический риск:

Оценка технической сложности внедрения интеллектуальной собственности в продукт или процесс.

Анализ наличия необходимых навыков и знаний, а также возможности их приобретения или привлечения.

с. Экономический риск:

Оценка финансовых затрат, связанных с коммерческим использованием интеллектуальной собственности, включая лицензирование, разработку и маркетинг.

Финансовая оценка ожидаемой прибыли и окупаемости проекта.

d. Риск управления/кадровых ресурсов:

Оценка наличия необходимых человеческих ресурсов для управления и развития проекта, включая управленческий персонал, юридических экспертов и специалистов по интеллектуальной собственности.

Анализ готовности организации к управлению интеллектуальной собственностью и рисками, связанными с ней.

После оценки каждого из этих факторов можно создать матрицу рисков, определив вероятность возникновения каждого риска и его потенциальное воздействие на проект. Это позволяет взвесить риски и пользу коммерческого использования интеллектуальной собственности и принять информированное решение о дальнейших шагах. Также рекомендуется обратиться к экспертам или консультантам по интеллектуальной собственности для более детальной оценки.

Внедрение интеллектуального продукта в экономический оборот может принимать разные формы³⁶:

- а. Изготовление: Это означает производство продукта с целью его коммерческой реализации, даже если продукт временно не продается, а, например, хранится для последующей продажи. Место продажи, будь то внутри страны или за границей, не имеет значения. Важно, что любое производственное использование продукта для коммерческих целей считается его применением³⁷.
- b. Ввоз: Ввоз продукта означает его импорт на территорию страны, и нарушением считается даже сам факт пересечения границы, даже если продукт не предназначался для использования на данной территории.
- с. Хранение и накопление: Хранение продукта, включая его накопление для будущей реализации, рассматривается как использование объекта интеллектуальной собственности.
- d. Предложение к продаже: Реклама продукта, включая его демонстрацию в магазинах, рекламные клипы, брошюры, каталоги и другие

_

 $^{^{36}}$ Глава 49 и 52, раздела 5 Гражданского кодекса Республики Казахстан (Особенная часть).

 $^{^{37}}$ Патентный закон Республики Казахстан от 16 июля 1999 года № 427-I.

способы предоставления информации о продукте, считается предложением к продаже.

е. Продажа: Продажа означает коммерческую деятельность по реализации продукта, чаще всего оформляемую в виде гражданско-правового договора купли-продажи.

Важно отметить, что перечисленные действия не ограничивают все возможные способы введения запатентованного продукта в экономический оборот. Это также может включать техническое обслуживание, ремонт, аренду, лизинг и другие виды использования продукта³⁸.

Патентообладатель имеет исключительное право на использование своей разработки и может выбрать любую законно допустимую форму предпринимательской деятельности для внедрения научно-технического решения. Это может включать создание собственного предприятия, внесение права на интеллектуальную собственность в уставный фонд существующего юридического лица, а также другие варианты.

Рекомендации по улучшению ситуации

Одной из приоритетных задач макроэкономической политики Казахстана заключается в преодолении устойчивого технологического отставания страны от мировых лидеров в сфере инноваций. Одновременно Казахстан активно участвует в международных экономических отношениях и составляет неотъемлемую часть мировой экономической системы. Наука и передовые технологии по своей природе универсальны, но вклад каждой страны в мировой научный потенциал уникален.

Сегодня ведущие страны мира рассматривают большую науку в контексте "науки - инноваций - реальной экономики". В условиях развитых рыночных отношений ключевым стимулятором в этой цепочке становится интеллектуальная собственность, её защита, регулирование передачи прав и коммерциализация. В Казахстане последние годы свидетельствуют о некоторых вызовах и трудностях в этих процессах. Одной из причин является относительная новизна и недостаточное понимание процесса коммерциализации инноваций. Это подчеркивает необходимость активного воздействия со стороны государства на инновационные процессы в стране.

Государственная инновационная политика является ОДНИМ эффективных средств, направленных национальной на создание инновационной системы, способной генерировать новые знания преобразовывать их в продукцию с высокой ценностью для потребителей.

В среднем 35% Казахстанских стартапов подали заявки на регистрацию прав интеллектуальной собственности, хотя между отраслями

_

³⁸ Парижская конвенция по охране промышленной собственности от 20 марта 1883 года (На Республику Казахстан действие данной Конвенции распространяется с 16 февраля 1993 г. в соответствии со специальной декларацией Премьер-министра Республики Казахстан, направленной в ВОИС).

промышленности существуют существенные различия³⁹. Информационные технологий на сегодняшний день являются наиболее интенсивным сектором интеллектуальной собственности: почти половина стартапов используют авторские свидетельства, треть используют патенты и каждый второй зарегистрированные торговые знаки.

Стартапы с зарегистрированными правами интеллектуальной собственности существуют во всех секторах, при этом они сильнее полагаются на товарные знаки в секторах, которые не являются интенсивно использующими интеллектуальную собственность, тогда как стартапы, использующие патенты, как правило, более сконцентрированы в меньшем количестве секторов, связанных с технологиями⁴⁰.

Выводы по исследованию

В контексте рассмотрения эффективности использования объектов интеллектуальной собственности в сфере развития науки и технологии в Казахстане, особое внимание следует уделить патентам. Патенты представляют собой важный инструмент для защиты и продвижения инноваций, что является ключевым элементом развития науки и технологии в стране. Важно рассмотреть следующие аспекты патентов:

Защита интеллектуальной собственности: Патенты обеспечивают юридическую защиту инноваций и идей, способствуя их сохранению и предотвращению незаконного использования.

Поощрение инноваций: Предоставление патентов стимулирует научные и технологические исследования, поскольку исследователи и компании видят в них возможность заработка и признания.

Трансфер технологий: Патенты могут быть использованы для трансфера технологий из научных исследований в коммерческие продукты и услуги.

Привлечение инвестиций: Наличие патентов может сделать проекты более привлекательными для инвесторов, так как патенты могут увеличить стоимость компании.

С учетом этих аспектов, патенты играют важную роль в развитии науки и технологии в Казахстане, обеспечивая защиту интеллектуальной собственности, стимулируя инновации и способствуя экономическому росту.

Патенты также можно рассматривать как промежуточный этап между НИОКР и инновации (изобретение используется в последующих экономических процессах). Патенты могут быть получены на разных стадиях процесса НИОКР, особенно в случае дополнительных или совокупных изобретений. В этом смысле патенты можно рассматривать не только как результат НИОКР, но и как вклад в инновации и, таким образом, как вклад и

 40 Patents, trade marks and startup finance Funding and exit performance of European startups October 2023 | Executive summary.

³⁹ ГОСУДАРСТВЕННЫЕ РЕЕСТРЫ ИЗОБРЕТЕНИЙ, ПОЛЕЗНЫХ МОДЕЛЕЙ, ПРОМЫШЛЕННЫХ ОБРАЗЦОВ, ТОВАРНЫХ ЗНАКОВ, НАИМЕНОВАНИЙ МЕСТ ПРОИСХОЖДЕНИЯ ТОВАРОВ, СЕЛЕКЦИОННЫХ ДОСТИЖЕНИЙ РЕСПУБЛИКИ КАЗАХСТАН. [Электронный pecypc] https://gosreestr.kazpatent.kz/

результат процесса изобретения. Этот промежуточный характер делает патентные данные полезным связующим звеном между данными НИОКР и данными об инновациях (оба из которых собираются посредством обследований предприятий)⁴¹.

Патентные данные имеют преимущества и недостатки для отражения изобретательской деятельности. Их основные преимущества:

Патенты охватывают широкий спектр технологий, для которых иногда имеется мало других источников данных (например, нанотехнологии). Наиболее значимый коммерческие изобретения патентуются независимо от того, основаны ли они на результатах НИОКР или нет. Объем доступных патентных данных для исследователей огромна.

Ежегодно во всем мире подается более миллиона патентов, предоставляющих уникальную информацию о ходе изобретений. Патентные данные являются общедоступными, в отличие от данных исследований, которые обычно защищаются законами о коммерческой тайне.

Однако как индикаторы технологической деятельности патенты имеют определенные недостатки:

Не все изобретения патентуются. Изобретения с ограниченными экономическими возможностями могут не оправдать затраты на патентование. Изобретения, вносящие незначительный вклад в искусство, и нетехнологические изобретения не подпадают под действие юридических требований патентования. Стратегические соображения могут привести к тому, что изобретатель отдаст предпочтение альтернативной защите (коммерческой тайне), в результате чего патентные данные не будут отражать такие изобретения 42.

Склонность к подаче патентных заявок существенно различается в разных странах. Склонность компаний к патентованию также различается: новым или малым и средним предприятиям (МСБ), особенно тем, у которых нет крупномасштабного производства, сложнее покрыть затраты на патент (хотя национальная политика пытается решить проблему путем предоставления МСБ субсидий или льготных ставок)⁴³.

Несколько исследований показали, что распределение стоимости патентов сильно искажено⁴⁴. Многие патенты не имеют промышленного применения (следовательно, не имеют или не имеют никакой ценности для общества), тогда как лишь немногие имеют очень высокую ценность. Тем не менее, раскрытие информации представляет собой выгоду для общества,

43 Закон о коммерциализации результатов научной и (или) научно-технической деятельности. Закон Республики Казахстан от 31 октября 2015 года № 381-V 3PK.

⁴¹ Доклад о положении в области интеллектуальной собственности в мире за 2019 год География инноваций: локальные центры, глобальные сети. ВОИС.

 $^{^{42}}$ World Intellectual Property Report 2022 The Direction of Innovation.

⁴⁴ ЕВРОПЕЙСКАЯ ЭКОНОМИЧЕСКАЯ КОМИССИЯ КООРДИНАЦИОННАЯ ГРУППА ПО ОПЕРАТИВНОЙ ДЕЯТЕЛЬНОСТИ. ЦЕЛЕВАЯ ГРУППА НА ВЫСОКОМ УРОВНЕ ПО ОЦЕНКЕ И КАПИТАЛИЗАЦИИ ИНТЕЛЛЕКТУАЛЬНЫХ АКТИВОВ (Первое совещание, Женева, 18-19 ноября 2002).

поскольку увеличивает запас знаний. При такой неоднородности простой подсчет патентов может ввести в заблуждение.

Это не характерно только для патентов, а является отражением характерной особенности изобретательского процесса, которая также применима к затратам на НИОКР (которые часто приводят к небольшому успеху, но иногда к огромному успеху).

Изменения в патентном законодательстве, произошедшие за прошедшие годы, требуют осторожности при анализе тенденций с течением времени. Защита, предоставляемая патентообладателям во всем мире, усилилась и поэтому компании более склонны к патентованию, чем раньше.

Предложения и рекомендации. В контексте стремительного прогресса науки и технологии в Казахстане, необходим проведение анализа эффективности использования интеллектуальной собственности. Сопоставление с мировыми трендами поможет выявить уникальные особенности и определить области для возможных улучшений.

Методология

Сбор данных:

- 1. Оценка количества зарегистрированных патентов, авторских прав и товарных знаков.
- 2. Изучение структуры интеллектуальной собственности по различным отраслям.

Анализ использования:

- 1. Оценка степени коммерциализации зарегистрированных объектов.
- 2. Выявление успешных кейсов инновационных компаний на местном уровне.

Сравнение с мировыми тенденциями:

- 1. Анализ сравнительных данных по интеллектуальной собственности в других странах.
- 2. Изучение передовых практик и опыта успешных инновационных экосистем.

Рекомендации

Стимулирование инноваций:

- 1. Внедрение налоговых льгот и финансовых поощрений для инновационных проектов.
- 2. Создание инфраструктуры для поддержки стартапов и исследовательских центров.

Образование и развитие кадров:

- 1. Развитие образовательных программ в области интеллектуальной собственности.
- 2. Проведение мероприятий для повышения осведомленности с важности защиты интеллектуальных прав.

Сотрудничество с мировым сообществом:

1. Укрепление международного сотрудничества в области инноваций и обмен опытом.

2. Привлечение иностранных инвестиций в перспективные инновационные проекты.

Анализ эффективности использования интеллектуальной собственности в Казахстане требует системного подхода и внедрения мер, способствующих инновационному развитию. С учетом мировых тенденций и рекомендаций, страна может укрепить свою позицию на глобальной арене науки и технологий.

Рекомендуемые источники

- 1. Мадридское соглашение. Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/madrid/ru/ (20.10.2023).
- 2. Гаагское соглашение о международной регистрации промышленных образцов. Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/hague/ru/ (20.10.2023).
- 3. Лиссабонское соглашение об охране наименований мест происхождения и их международной регистрации. Официальный сайт ВОИС. [Электронный ресурс] https://www.wipo.int/treaties/ru/registration/lisbon/ (20.10.2023).
- 4. Appendix L Consolidated Patent Laws January 2023 update. United States Code Title 35 Patents. Официальный сайт USPTO. [Электронный ресурс] https://www.uspto.gov/web/offices/pac/mpep/consolidated_laws.pdf (20.10.2023).
- 5. European Patent Convention (EPC)), Мюнхен 1973 год. Официальный сайт EPO. [Электронный ресурс] https://www.epo.org/en/legal/epc (20.10.2023).
- 6. Различные категории прав ИС в отношении продукции. Проект справочного документа об исключении, связанном с исчерпанием патентных прав. Тридцать четвертая сессия Женева, 26–30 сентября 2022 года.
- 7. Patent Cooperation Treaty Yearly Review 2023 The International Patent System.
- 8. Innovation trends in additive manufacturing Patents in 3D printing technologies September 2023 | Executive summary.
- 9. Top 10 Emerging Technologies of 2023. FLAGSHIP REPORT JUNE 2023. World Economic Forum [Электронный ресурс] https://www3.weforum.org/docs/WEF_Top_10_Emerging_Technologies_of_2023.pdf (20.10.2023).
- 10. Данные Института Статистики ЮНЕСКО (см.: http://stats.uis.unesco.org) и ВОИС (см.: URL: http://www.wipo.int)
- 11. Global Innovation Index 2023 Innovation in the face of uncertainty. WIPO
- 12. По данным Бюро национальной статистики АСПиР РК. https://stat.gov.kz/ru/
- 13. Patents, trade marks and startup finance Funding and exit performance of European startups October 2023 | Executive summary.
- 14. Государственные реестры изобретений, полезных моделей, промышленных образцов, товарных знаков, наименований мест

происхождения товаров, селекционных достижений Республики Казахстан. [Электронный ресурс] https://gosreestr.kazpatent.kz/
15. World Intellectual Property Report 2022 The Direction of Innovation.