Solutions To HW4

ZIXUAN CHEN X313572 zixuanchen@ucsb.edu

July 2024

PROVE:

$$\exists n_0 \in \mathbb{N} \, \forall n \in \mathbb{Z}^{\geq n_0} (n^3 \leq (n+2)!)$$

PROOF:

First, we need to prove the **Base Case**: the inequality holds when $n = n_0$.

Here, we choose $n_0 = 1$ as the witness.(Actually we can let n_0 be any non-negative integer.)

Now we need to prove: $n_0^3 \le (n_0 + 2)!$

$$n_0^3 \le (n_0 + 2)! \Longrightarrow 1^3 \le 3! \Longrightarrow 1 \le 6$$

We have proved the **Base Case**.

INDUCTIVE STEPS:

Assume that for some $n = k \ge 1$, we have $k^3 \le (k+2)!$, we need to show that:

$$(k+1)^3 < ((k+1)+2)!$$

We can rewrite it as:

$$(k+1)(k+1)(k+1) \le (k+3)(k+2)(k+1)k!$$

From definition, we know that $\forall k \in \mathbb{Z}^+ k! \geq 1$ Therefore, we only need to show that:

$$(k+1)(k+1)(k+1) \le (k+3)(k+2)(k+1)$$

Divide both side by (k+1) gives:

$$(k+1)(k+1) \le (k+3)(k+2)$$

Expand both sides:

$$k^2 + 2k + 1 \le k^2 + 5k + 6$$

Thus we have the inequality we need to prove:

$$3k + 5 > 0$$

As $k \in \mathbb{Z}^+$, the inequality holds true.

Actually, we can see that we don't need the inductive hypothesis. The justification (in inductive steps) works for every non-negative integer. So after I wrote this, I found that this was actually a **Direct Proof**: choose a witness n_0 and verify the statement.

Consider the functions $f_a: \mathbb{N} \to \mathbb{N}$ and $f_b: \mathbb{N} \to \mathbb{N}$ defined recursively by

$$f_a(0) = 0$$
 and for each $n \in \mathbb{N}$, $f_a(n+1) = f_a(n) + 2n + 1$

$$f_b(0) = 0$$
 and for each $n \in \mathbb{N}$, $f_b(n+1) = 2f_b(n)$

Determine which of these functions, if any, equals 2^n and which of these functions, if any, equals n^2 .

Function f_a

First, let's explore f_a by computing the first few values:

$$f_a(1) = f_a(0) + 2(0) + 1 = 0 + 1 = 1$$

$$f_a(2) = f_a(1) + 2(1) + 1 = 1 + 2 + 1 = 4$$

$$f_a(3) = f_a(2) + 2(2) + 1 = 4 + 4 + 1 = 9$$

Notice a pattern: $f_a(n) = n^2$.

We can use mathematical induction to prove this.

Base Case: n = 0

$$f_a(0) = 0^2 = 0$$

Inductive Step: Assume $f_a(k) = k^2$. We need to show $f_a(k+1) = (k+1)^2$.

Using the recursive definition:

$$f_a(k+1) = f_a(k) + 2k + 1$$

By the inductive hypothesis:

$$f_a(k+1) = k^2 + 2k + 1 = (k+1)^2$$

Thus, by induction, $f_a(n) = n^2$.

Function f_b

$$f_b(0) = 0$$

 $f_b(1) = 2f_b(0) = 2 \cdot 0 = 0$

If $f_b(n) = 2^n$, then $f_b(1)$ should be 2.

If $f_b(n) = n^2$, then $f_b(1)$ should be 1.

Clearly, $f_b(n) = 0$ for all $n \in \mathbb{N}$. This function does not match 2^n or n^2 .

Prove that any amount of postage worth 24 cents or more can be made from 7-cent or 5-cent stamps.

PROOF:

First, we define S(j) as the strategy to make a postage worth j cents.

Base Case: First we need to prove that 24 cents can be made from 7 cents and 5 cents. We can take 2*7-cent stamps and 2*5-cent stamps since $2 \times 7 + 2 \times 5 = 24$.

25 cents: 5*5-cent stamps

26 cents: 3*7-cent stamps and 1*5-cent stamp

27 cents: 1*7-cent stamp and 4*5-cent stamps

28 cents: 4*7-cent stamps

Therefore, S(i) exists for $i \in \{24, 25, 26, 27, 28\}$

Inductive Steps: Assume a postage worth $24, 25, ..., k(k \ge 28)$ cents can be made from m 7-cent stamps and n 5-cent stamps.

Therefore S(24), S(25), ..., S(k) exist. And we want to prove that S(k+1) exists. S(k+1) = S(k-4+5). As $k \ge 28$, we know that $k-4 \ge 24$. We have proved that S(24) exists. So for any k, S(k-4) exists. (Strong induction)

From definition, S(k-4+5) is the strategy to make a postage worth k-4+5 cents. As S(k-4) exists, then we know that there exists m and n and we can make a postage worth k-4 cents with m^*7 -cent stamps and n^*5 -cent stamps. Then, to make a postage worth k-4+5 cents, we just need m^*7 -cent stamps and $(n+1)^*5$ -cent stamps. Therefore, S(k+1) exists.

Solution To Question 4

Given: {22, 15, -35, 34, 72, 79, -111, -42}, group them according to their congruence classes modulo 19.

$$22 \equiv 22 - 19 \equiv 3 \pmod{19}$$

$$15 \equiv 15 \pmod{19}$$

$$-35 \equiv -35 + 2 \cdot 19 \equiv -35 + 38 \equiv 3 \pmod{19}$$

$$34 \equiv 34 - 19 \equiv 15 \pmod{19}$$

$$72 \equiv 72 - 3 \cdot 19 \equiv 72 - 57 \equiv 15 \pmod{19}$$

$$79 \equiv 79 - 4 \cdot 19 \equiv 79 - 76 \equiv 3 \pmod{19}$$

$$-111 \equiv -111 + 6 \cdot 19 \equiv -111 + 114 \equiv 3 \pmod{19}$$

$$-42 \equiv -42 + 3 \cdot 19 \equiv -42 + 57 \equiv 15 \pmod{19}$$

Grouping According to Congruence Classes

- Congruence class 3 mod 19: {22, -35, 79, -111}
- Congruence class 15 mod 19: $\{15, 34, 72, -42\}$

Prove by contradiction that $a^2 = b^2 + 1$ has no solutions a, b in the positive integers.

Proof by Contradiction

1. Assumption:

Suppose there exist positive integers a and b such that

$$a^2 = b^2 + 1$$

2. Rearranging the equation:

$$a^2 - b^2 = 1$$

3. Factoring:

$$(a-b)(a+b) = 1$$

4. Analyzing the factors:

The product of two integers is 1. The only pairs of positive integers that multiply to 1 are (1, 1). Therefore, we have:

$$a - b = 1$$
 and $a + b = 1$

5. Solving the system of equations:

Adding these two equations:

$$(a-b) + (a+b) = 1+1$$
$$2a = 2$$
$$a = 1$$

Substituting a = 1 into a + b = 1:

$$1 + b = 1$$
$$b = 0$$

6. Contradiction:

We assumed a and b are positive integers. However, this leads us to b = 0, which contradicts the assumption that b is a positive integer.

(a) The set S consists of all strings (including the empty string) that have an even number of 1's but may have an even or odd number of zeros.

Base Case:

• The empty string ε belongs to S.

 $\varepsilon \in S$

Recursive Step:

• If $x \in S$, then both 0x and x0 are in S. This ensures that adding a zero does not affect the even number of 1's.

If $x \in S$, then $0x \in S$ and $x0 \in S$

• If $x \in S$, then both 1x1 and x11 are in S. This ensures that adding two 1's (an even number) maintains the even number of 1's.

If $x \in S$, then $1x1 \in S$ and $x11 \in S$

(b) The set S consists of all strings (including the empty string) that have the same number of 0's and 1's.

Base Case:

• The empty string ε belongs to T.

 $\varepsilon \in T$

Recursive Step:

• If $x \in T$, then 0x1 and 1x0 are in T. This ensures that for every 0 added, a corresponding 1 is added, and vice versa.

If $x \in T$, then $0x1 \in T$ and $1x0 \in T$

 \bullet Additionally, we can ensure balance by allowing any string in T to be expanded symmetrically:

If $x \in T$, then $0x1 \in T$, $1x0 \in T$, $10x \in T$, and $01x \in T$

If $a, b \in T$, then $ab \in T, ba \in T$

The last rule is needed because without this it's impossible to construct string like 1111 0000 0010 0111

We want to prove that for all $s \in S$ and $t \in S$, rnalen(st) = rnalen(s) + rnalen(t) using the recursive definition of rnalen.

Basis Step

The base cases for the recursive definition are the individual RNA bases A, C, G, U. For any single base $b \in B$, we have:

$$rnalen(b) = 1$$

We need to check that $\operatorname{rnalen}(st) = \operatorname{rnalen}(s) + \operatorname{rnalen}(t)$ holds when $t \in B$. For any base $t \in B$:

$$rnalen(st) = 1 + rnalen(s)$$

and

$$rnalen(s) + rnalen(t) = rnalen(s) + 1$$

Therefore,

$$\operatorname{rnalen}(st) = \operatorname{rnalen}(s) + \operatorname{rnalen}(t) = \operatorname{rnalen}(s) + 1$$

Inductive Step

Assume the inductive hypothesis: for all $s \in S$,

$$rnalen(st) = rnalen(s) + rnalen(t)$$

We will prove that for all $s \in S$ and any base $b \in B$,

$$\operatorname{rnalen}(stb) = \operatorname{rnalen}(s) + \operatorname{rnalen}(tb)$$

Let $s \in S$ be arbitrary. Then,

$$rnalen(stb) = 1 + rnalen(st)$$

(by the recursive step).

Using the inductive hypothesis, we have:

$$rnalen(stb) = 1 + rnalen(s) + rnalen(t)$$

By the recursive step,

$$\operatorname{rnalen}(tb) = 1 + \operatorname{rnalen}(t)$$

Thus,

$$rnalen(stb) = rnalen(s) + rnalen(tb)$$

Therefore, our inductive hypothesis is proven true.

We want to prove that for any positive integers x and y, with $y \ge x$ and $x \ne 0$:

$$\gcd(y, x) = \gcd(y - x, x)$$

PROOF:

Let $d = \gcd(y, x)$. By definition, d is the largest positive integer that divides both y and x. Thus, we have:

$$d \mid y$$
 and $d \mid x$

We need to show that d also divides y - x. Since $d \mid y$ and $d \mid x$, there exist integers k and m such that:

$$y = kd$$
 and $x = md$

Now consider y - x:

$$y - x = kd - md = (k - m)d$$

Since d divides (k-m)d, it follows that $d \mid (y-x)$. Thus, d is a common divisor of both y-x and x.

Next, let $d' = \gcd(y - x, x)$. By definition, d' is the largest positive integer that divides both y - x and x. We need to show that d' also divides y. Since $d' \mid (y - x)$ and $d' \mid x$, there exist integers n and p such that:

$$y - x = nd'$$
 and $x = pd'$

Adding these two equations, we get:

$$y = (y - x) + x = nd' + pd' = (n + p)d'$$

Since d' divides (n+p)d', it follows that $d' \mid y$. Thus, d' is a common divisor of both y and x.

As d is the largest positive integer that divides y and x, and d' also divides y and x. We know that

$$d' \leq d$$

As d'is the largest positive integer that divides y-x and x, and d also divides y-x and x. We know that

Thus,

$$(d' \le d) \land (d' \ge d) \Longrightarrow (d' = d)$$

Therefore,

$$\gcd(y, x) = \gcd(y - x, x)$$

We want to prove that for any positive integers x and y with $y \ge x$,

$$gcd(y, x) = gcd(x, y \, mod \, x).$$

PROOF:

We will use strong induction on y.

Base Case

Let y = x. Then:

$$y \mod x = x \mod x = 0$$

So,

$$\gcd(y, x) = \gcd(x, 0) = x.$$

By definition,

$$\gcd(x,0) = x.$$

Inductive Step

Assume the statement is true for all y such that $y \le k$ for some $k \ge x$. We need to prove it for y = k + 1.

Consider y = k + 1. We need to show:

$$\gcd(k+1,x) = \gcd(x,(k+1) \mod x).$$

By the division algorithm, we can write:

$$k + 1 = qx + r,$$

where $0 \le r < x$ and $r = (k+1) \mod x$.

Thus, we need to prove:

$$\gcd(k+1, x) = \gcd(x, r).$$

Using the gcd lemma, we have:

$$\gcd(k+1,x) = \gcd(k+1-x,x).$$

Since $k + 1 - x \le k$, by the inductive hypothesis, we have:

$$\gcd(k+1-x,x) = \gcd(x,(k+1-x) \mod x).$$

But,

$$(k+1-x) \mod x = (k+1) \mod x = r.$$

Therefore,

$$\gcd(k+1,x) = \gcd(x,r) \iff \gcd(k+1,x) = \gcd(x,(k+1) \mod x)$$

We want to prove that for positive integers a, b, and c, if gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

Proof

Since gcd(a, b) = 1, there exist integers x and y such that

$$ax + by = 1$$
.

Given that $a \mid bc$, there exists an integer k such that

$$bc = ak$$
.

Now, consider the product $c \cdot (ax + by)$:

$$c(ax + by) = c \cdot 1 = c.$$

Expanding the left-hand side, we get:

$$cax + cby$$
.

Since $a \mid a$, it follows that $a \mid cax$. Also, since $a \mid bc$ and bc = ak, it follows that $a \mid cby$.

Therefore, a divides both cax and cby. Thus, a divides their sum:

$$a \mid (cax + cby).$$

But, since

$$cax + cby = c$$
,

it follows that

$$a \mid c$$
.

Hence, we have shown that if gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

Theorem: Every positive integer is a sum of one or more distinct powers of 2.

PROOF: We will use strong induction to prove this theorem.

Base Case:

For n = 1:

$$1 = 2^0$$

This is clearly a sum of distinct powers of 2.

Inductive Step:

Assume that for every positive integer k such that $1 \le k \le n$, k can be written as a sum of distinct powers of 2. We need to prove that n+1 can also be written as a sum of distinct powers of 2.

Case 1: n+1 is a power of 2:

If $n+1=2^m$ for some integer m, then n+1 is already a sum of a single power of 2.

Case 2: n+1 is not a power of 2:

If n+1 is not a power of 2, we can express n+1 as 2^m+k , where 2^m is the largest power of 2 less than n+1 and k is the remainder (i.e., $k < 2^m$). By the inductive hypothesis, k can be written as a sum of distinct powers of 2.

Thus, $n + 1 = 2^m + k$, where k is a sum of distinct powers of 2. Therefore, n + 1 is also a sum of distinct powers of 2.

By strong induction, every positive integer can be written as a sum of distinct powers of 2.

Algorithm: Calculating base 2 expansion recursively

```
procedure base2recursive(n: a positive integer)

if (n = 0)

a_0 := 0

else if (n = 1)

a_0 := 1

else

(a_{k-1}, \dots, a_1) := \text{base2recursive}(n \text{ div } 2)

a_0 := n \text{ mod } 2

return (a_{k-1}, \dots, a_0)\{(a_{k-1} \dots a_0)_b \text{ is the base 2 expansion of } n\}
```

Theorem: Prove that $n \in \mathbb{N}$ is divisible by 3 if and only if the alternating sum of the bits of n in binary representation is divisible by 3. The alternating sum of any sequence $a_0, a_1, ..., a_m$ is $\sum_{i=0}^m (-1)^i a_i$.

PROOF: Noticing the 'iff', I'll prove this statement from 2 aspects:

- Theorem1: if the alternating sum(base2) of $n \in \mathbb{Z}$ is divisible by 3, then n is divisible by 3.
- Theorem2: if $n \in \mathbb{Z}$ is divisible by 3, then its alternating sum(base2) is divisible by 3.

Theorem1: If 3 divides $\sum_{i=0}^{m} (-1)^{i} a_{i}$, then 3 divides $\sum_{i=0}^{m} 2^{i} a_{i}$ (The base-2 expansion of n).

Proof:

- Given: $\sum_{i=0}^{m} (-1)^i a_i \equiv 0 \pmod{3}$.
- Objective: Show $\sum_{i=0}^{m} 2^{i} a_{i} \equiv 0 \pmod{3}$.
- Step-by-Step Approach:
 - Step 1: Consider the behavior of powers of 2 modulo 3:
 - $* 2^0 \equiv 1 \pmod{3}$
 - $* 2^1 \equiv 2 \pmod{3}$
 - $* 2^2 \equiv 4 \equiv 1 \pmod{3}$
 - $* 2^3 \equiv 8 \equiv 2 \pmod{3}$
 - * Generally, $2^i \mod 3$ alternates between 1 and 2 for even and odd i, respectively.
 - **Step 2:** Rewrite $\sum_{i=0}^{m} 2^{i} a_{i}$ using modular properties:

$$\sum_{i=0}^{m} 2^i a_i \equiv \sum_{\substack{i=0\\i \text{ even}}}^{m} a_i + \sum_{\substack{i=0\\i \text{ odd}}}^{m} 2a_i \pmod{3}$$

- Step 3: Combine the alternating sum components:

$$\sum_{i=0}^{m} 2^i a_i \equiv \sum_{\substack{i=0\\i \text{ even}}}^{m} a_i + 2 \sum_{\substack{i=0\\i \text{ odd}}}^{m} a_i \pmod{3}$$

- **Step 4:** Relate this to the given alternating sum:
 - * The given alternating sum is $S = \sum_{i=0}^{m} (-1)^{i} a_{i}$
 - * This can be rewritten as:

$$S = \sum_{\substack{i=0\\i \text{ even}}}^{m} a_i - \sum_{\substack{i=0\\i \text{ odd}}}^{m} a_i \equiv 0 \pmod{3}$$

- Step 5: Transform the even and odd sums:

* Let
$$A = \sum_{\substack{i=0 \ i \text{ even}}}^m a_i$$

* Let $B = \sum_{\substack{i=0 \ i \text{ odd}}}^m a_i$

* Let
$$B = \sum_{i=0}^{m} a_i$$

$$A - B \equiv 0 \pmod{3} \implies A \equiv B \pmod{3}$$

- **Step 6:** Substitute back:

$$\sum_{i=0}^{m} 2^{i} a_{i} \equiv A + 2B \equiv A + 2A \equiv 3A \equiv 0 \pmod{3}$$

• Conclusion: Thus, $\sum_{i=0}^{m} 2^{i} a_{i} \equiv 0 \pmod{3}$. This completes the proof.

Theorem2:If 3 divides $\sum_{i=0}^{m} 2^{i} a_{i}$, then 3 divides $\sum_{i=0}^{m} (-1)^{i} a_{i}$.

Proof:

Actually we don't have much to prove because we have already done most of the stuff in Theorem 1.

Proving Theorem 2 is similar to proving Theorem 1.

Now we only need to justify:

$$\sum_{i=0}^{m} (-1)^{i} a_{i} \equiv \sum_{i=0}^{m} 2^{i} a_{i} \pmod{3}$$

We can rewrite it in:

$$A - B \equiv A + 2B \pmod{3}$$

As

$$A - B = A + 2B - 3B$$

Therefore

$$(A-B)\pmod 3=((A+2B)\pmod 3-3B\pmod 3)\pmod 3$$

$$3B \pmod{3} = 0$$

Therefore,

$$(A - B) \equiv (A + 2B) \pmod{3}$$