## Komplexné čísla



- N Prirodzené čísla {1, 2, 3, 4...}
  - Operácie: +, \*
  - Neutrálny prvok: 1 (pre \*)
- Z Celé čísla
  - Operácie: +, -, \*
  - Neutrálne prvky:
    - 1 (pre \*)
    - 0 (pre +)
  - Vzťahy:
    - a, -a = opačné čísla

## Q – Racionálne čísla

- Definícia:
  - $x \in Q \Leftrightarrow \exists q, p \in Z; x = \frac{q}{p} \land p \neq 0 \land p, q \text{ sú nesúdeliteľné}$
  - Pre x patriace do Racionálnych čísel existuje taký pár celých čísel (q, p) že x je ich podielom; p nie
    je nulové a sú nesúdeliteľné
- Operácie: +, -, \*, /
- Neutrálne prvky:
  - 1 (pre \*)
  - 0 (pre +)
- Vzťahy:
  - a, -a = opačné čísla
  - $\frac{1}{a}$ , a = prevrátené čísla

## - C - Komplexné čísla

- o Zápis komplexného čísla:
  - Zložkový tvar:
    - [1, 5]
    - [x, y], x = reálna zložka, y = imaginárna zložka
  - Algebrický tvar:
    - z = a + bi, a = reálna zložka, b = imaginárna zložka
  - Goniometrický tvar:
    - $z = |z|(\cos \alpha + i \sin \alpha)$
- o Komplexné čísla predstavujú tzv. Gaussovu rovinu



- x = reálna zložka = Re. z.
- y = imaginárna zložka = Im. z.
- o Číslo i imaginárna jednotka
  - i = 0 + 1i = [0, 1]
  - Platí:  $i^2 = -1$
  - Teda:  $\sqrt{-1} = i$
- o Operácie s komplexnými číslami
  - Súčet spočítať reálne navzájom, imaginárne navzájom
  - Rozdiel odpočítať reálne od reálnej, imaginárne od imaginárnej
  - Súčin každé číslo s každým
  - Podiel
  - Rovnosť imaginárnych čísel 2 imaginárne čísla sa rovnajú ak majú rovnakú reálnu aj imaginárnu zložku
- o Komplexné združené čísla
  - $\bar{z} = a bi$
  - z a  $\bar{z}$  sú súmerné podľa reálnej osi