Let $\epsilon > 0$ Be Given

Erik Taubeneck

GameChanger

November 16th, 2016

Welcome Erik and Maura!

Propositional Calculus

Propositional Calculus

Elementary Analysis

Outline:

- N: The natural numbers (i.e. counting numbers)
- \mathbb{Z} : The *integers* (i.e. $\mathbb{N} \cup 0 \cup \text{negative } \mathbb{N}$)
- ullet \mathbb{Q} : The rational numbers (i.e. fractions)
- ullet \mathbb{R} : The *real numbers* (i.e. $\mathbb{Q} \cup$ the crazy numbers like *e* and π)
- \bullet Sequence: a sequence of numbers, (e.g. $\{1,1,2,3,5,8,...\})$
- ∞ (infinity)
- Hyper-dimensional balls in crazy high dimensions

Math - The Universal Language?

Nope!

Math is rooted in Definitions and Axioms

$$\mathbb{N}=1,2,3,...$$

$$\mathbb{N} = 1, 2, 3, ...$$

$$\mathbb{N} = 1, 2, 3, ...$$

We define the $natural\ numbers\ \mathbb{N}$ by the following axioms:

• N1. $1 \in \mathbb{N}$

$$\mathbb{N}=1,2,3,...$$

- N1. $1 \in \mathbb{N}$
- N2. If $n \in \mathbb{N}$, then its successor $n + 1 \in \mathbb{N}$.

$$\mathbb{N}=1,2,3,...$$

- N1. 1 ∈ N
- N2. If $n \in \mathbb{N}$, then its successor $n + 1 \in \mathbb{N}$.
- N3. 1 is not the successor of any element of \mathbb{N} .

$$\mathbb{N}=1,2,3,...$$

- N1. 1 ∈ N
- N2. If $n \in \mathbb{N}$, then its successor $n + 1 \in \mathbb{N}$.
- N3. 1 is not the successor of any element of \mathbb{N} .
- N4. If n and m have the same successors, then n = m.

$$\mathbb{N}=1,2,3,...$$

- N1. 1 ∈ N
- N2. If $n \in \mathbb{N}$, then its successor $n + 1 \in \mathbb{N}$.
- N3. 1 is not the successor of any element of \mathbb{N} .
- N4. If n and m have the same successors, then n = m.
- N5. A subset of $\mathbb N$ which contains 1, and which contains n+1 whenever it contains n, must equal $\mathbb N$.

Integers, Rationals, and Reals

•
$$\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n \text{ for all } n \in \mathbb{N}\}$$

Integers, Rationals, and Reals

- $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n \text{ for all } n \in \mathbb{N}\}$
- $\bullet \ \mathbb{Q} = \{ \tfrac{p}{q} \text{ for all } p,q \in \mathbb{Z}, \ q \neq 0 \}.$

Integers, Rationals, and Reals

- $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n \text{ for all } n \in \mathbb{N}\}$
- $\bullet \ \mathbb{Q} = \{ \tfrac{p}{q} \text{ for all } p,q \in \mathbb{Z}, \ q \neq 0 \}.$
- ullet \mathbb{R} (talk to me afterwards...)

•
$$(1,2,3,...): s_n = n$$

- $(1,2,3,...): s_n = n$
- (1,1,2,3,5,8,...): $s_1 = 1$; $s_2 = 1$; $s_n = s_{n-1}$

- $(1,2,3,...): s_n = n$
- (1,1,2,3,5,8,...): $s_1 = 1$; $s_2 = 1$; $s_n = s_{n-1}$
- $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...) : s_n = \frac{1}{n^2}$

- $(1,2,3,...): s_n = n$
- (1,1,2,3,5,8,...): $s_1 = 1$; $s_2 = 1$; $s_n = s_{n-1}$
- $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...)$: $s_n = \frac{1}{n^2}$
- \bullet $(-1,1,-1,1,-1,...): s_n = -1^n$

- $(1,2,3,...): s_n = n$
- (1,1,2,3,5,8,...): $s_1 = 1$; $s_2 = 1$; $s_n = s_{n-1}$
- $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...) : s_n = \frac{1}{n^2}$
- $(-1,1,-1,1,-1,...): s_n=-1^n$
- $\bullet \left(2, \left(\frac{3}{2}\right)^2, \left(\frac{4}{3}\right)^3, \left(\frac{5}{4}\right)^4, \ldots\right) : s_n = \left(1 + \frac{1}{n}\right)^n$

•
$$(1,2,3,...): s_n = n$$

•
$$(1,1,2,3,5,8,...)$$
: $s_1 = 1$; $s_2 = 1$; $s_n = s_{n-1}$

•
$$(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...) : s_n = \frac{1}{n^2}$$

•
$$(-1,1,-1,1,-1,...): s_n = -1^n$$

•
$$\left(2, \left(\frac{3}{2}\right)^2, \left(\frac{4}{3}\right)^3, \left(\frac{5}{4}\right)^4, \ldots\right) : s_n = \left(1 + \frac{1}{n}\right)^n$$

$$\bullet \ \left(\frac{1}{2},-\frac{1}{2},-1,-\frac{1}{2},\frac{1}{2},1,\frac{1}{2},-\frac{1}{2},-1,-\frac{1}{2},\frac{1}{2},1,\ldots\right):s_n=\cos\left(\frac{n\pi}{3}\right)$$

Infinity

When working with a sequence s, we often want to find out the limit of s_n as $n \to \infty$.

Infinity

When working with a *sequence* s, we often want to find out the limit of s_n as $n \to \infty$.

Unfortunately, ∞ isn't a *number*, but instead a process. Thus we cannot simply calculate s_{∞} .

Infinity

When working with a *sequence* s, we often want to find out the limit of s_n as $n \to \infty$.

Unfortunately, ∞ isn't a *number*, but instead a process. Thus we cannot simply calculate s_{∞} .

A *sequence* can do one of three things as $n \to \infty$:

- Converge to $m \in \mathbb{R}$
- Diverge to ∞ or $-\infty$
- Not Converge or Diverge

Each of these has their own definition.

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

Example: Prove that $s_n = \frac{1}{n}$ converges to s = 0.

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

Example: Prove that $s_n = \frac{1}{n}$ converges to s = 0.

Proof: Let $\epsilon > 0$ be given.

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

Example: Prove that $s_n = \frac{1}{n}$ converges to s = 0.

Proof: Let $\epsilon > 0$ be given. Let $N = \lceil \frac{1}{\epsilon} \rceil$. Then, for all n > N,

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

Example: Prove that $s_n = \frac{1}{n}$ converges to s = 0.

Proof: Let $\epsilon > 0$ be given. Let $N = \left\lceil \frac{1}{\epsilon} \right\rceil$. Then, for all n > N,

$$N \geq \frac{1}{\epsilon}$$
 and $\frac{1}{n} < \frac{1}{N}$.

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

Example: Prove that $s_n = \frac{1}{n}$ converges to s = 0.

Proof: Let $\epsilon > 0$ be given. Let $N = \left\lceil \frac{1}{\epsilon} \right\rceil$. Then, for all n > N,

$$N \geq \frac{1}{\epsilon}$$
 and $\frac{1}{n} < \frac{1}{N}$.

Thus,

$$|s_n-s|=|s_n-0|=|s_n|=\left|\frac{1}{n}\right|<\frac{1}{N}\leq\epsilon$$

Convergent Sequences

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

Example: Prove that $s_n = \frac{1}{n}$ converges to s = 0.

Proof: Let $\epsilon > 0$ be given. Let $N = \left\lceil \frac{1}{\epsilon} \right\rceil$. Then, for all n > N,

$$N \geq \frac{1}{\epsilon}$$
 and $\frac{1}{n} < \frac{1}{N}$.

Thus,

$$|s_n-s|=|s_n-0|=|s_n|=\left|\frac{1}{n}\right|<\frac{1}{N}\leq\epsilon$$

and therefore

$$|s_n-s|<\epsilon.$$

Convergent Sequences

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

Example: Prove that $s_n = \frac{1}{n}$ converges to s = 0.

Proof: Let $\epsilon > 0$ be given. Let $N = \left\lceil \frac{1}{\epsilon} \right\rceil$. Then, for all n > N,

$$N \geq \frac{1}{\epsilon}$$
 and $\frac{1}{n} < \frac{1}{N}$.

Thus,

$$|s_n-s|=|s_n-0|=|s_n|=\left|\frac{1}{n}\right|<\frac{1}{N}\leq\epsilon$$

and therefore

$$|s_n-s|<\epsilon.$$

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example: Prove that $s_n = n$ diverges.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example: Prove that $s_n = n$ diverges.

Proof: Let M > 0 be given.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example: Prove that $s_n = n$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil M \rceil$.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example: Prove that $s_n = n$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil M \rceil$. Then, for all n > N,

$$M \leq N < n = s_n$$

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example: Prove that $s_n = n$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil M \rceil$. Then, for all n > N,

$$M \leq N < n = s_n$$

and therefore

$$M < s_n$$
.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example: Prove that $s_n = n$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil M \rceil$. Then, for all n > N,

$$M \leq N < n = s_n$$

and therefore

$$M < s_n$$
.

 \mathbb{QED}

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example 2: Prove that $s_n = \frac{n}{2}$ diverges.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example 2: Prove that $s_n = \frac{n}{2}$ diverges.

Proof: Let M > 0 be given.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example 2: Prove that $s_n = \frac{n}{2}$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil 2M \rceil$. Then, for all n > N,

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example 2: Prove that $s_n = \frac{n}{2}$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil 2M \rceil$. Then, for all n > N,

$$\frac{n}{2} > \frac{N}{2}$$
 and $\frac{N}{2} \leq M$.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example 2: Prove that $s_n = \frac{n}{2}$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil 2M \rceil$. Then, for all n > N,

$$\frac{n}{2} > \frac{N}{2}$$
 and $\frac{N}{2} \leq M$.

Thus,

$$M \leq \frac{N}{2} < \frac{n}{2} = s_n$$

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example 2: Prove that $s_n = \frac{n}{2}$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil 2M \rceil$. Then, for all n > N,

$$\frac{n}{2} > \frac{N}{2}$$
 and $\frac{N}{2} \leq M$.

Thus,

$$M \leq \frac{N}{2} < \frac{n}{2} = s_n$$

and therefore

$$M < s_n$$
.

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Example 2: Prove that $s_n = \frac{n}{2}$ diverges.

Proof: Let M > 0 be given. Let $N = \lceil 2M \rceil$. Then, for all n > N,

$$\frac{n}{2} > \frac{N}{2}$$
 and $\frac{N}{2} \leq M$.

Thus,

$$M\leq \frac{N}{2}<\frac{n}{2}=s_n$$

and therefore

$$M < s_n$$
.

Infinity

$$\lim_{n\to\infty} s_n = 0$$

$$\lim_{n\to\infty} s_n = \infty$$

Infinity

$$\lim_{n\to\infty} s_n = 0$$

A sequence is said to converge to $s \in \mathbb{R}$ if for any $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|s_n - s| > \epsilon$ for all n > N $(n \in \mathbb{N})$.

$$\lim_{n\to\infty} s_n = \infty$$

A sequence is said to diverge if for any M>0 there exists an $N\in\mathbb{N}$ such that $s_n>M$ for all n>N $(n\in\mathbb{N})$.

Let c_1 be a circle with radius = 1 and $c_{0.5}$ be a circle with radius = 0.5.

Let c_1 be a circle with radius = 1 and $c_{0.5}$ be a circle with radius = 0.5.

Then let d be the "donut" left over when we remove $c_{0.5}$ from c_1 .

Let c_1 be a circle with radius = 1 and $c_{0.5}$ be a circle with radius = 0.5.

Then let d be the "donut" left over when we remove $c_{0.5}$ from c_1 .

Now, let
$$A(x) = \pi r^2$$
 (the area function) and note that $A(c_1) = \pi$ $A(c_{0.5}) = 0.25 * \pi$ $A(d) = A(c_1) - A(c_{0.5}) = 0.75\pi$

Now, note the proportion of area contained within the "donut" d

$$\frac{A(d)}{A(c_1)} = \frac{A(c_1) - A(c_{0.5})}{A(c_1)} = \frac{0.75\pi}{\pi} = 0.75$$

Now, let c_1^3 be a sphere with radius = 1 and $c_{0.5}^3$ be a sphere with radius = 0.

Now, let c_1^3 be a sphere with radius = 1 and $c_{0.5}^3$ be a sphere with radius = 0.

Then let d^3 be the "donut" left over when we remove $c_{0.5}$ from c_1 .

Now, let c_1^3 be a sphere with radius = 1 and $c_{0.5}^3$ be a sphere with radius = 0.

Then let d^3 be the "donut" left over when we remove $c_{0.5}$ from c_1 .

Now, let
$$V_3(x) = \frac{4}{3}\pi r^3$$
 (the volume function) and note that $V_3(c_1^3) = \frac{4}{3}\pi$ $V_3(c_{0.5}^3) = \frac{4}{3}\frac{1}{2^3} * \pi = \frac{1}{6}\pi$ $V_3(d^3) = V_3(c_1^3) - V_3(c_{0.5}^3) = \frac{7}{6}\pi$

Again, note the proportion of volume contained within the "donut" d^3

$$\frac{V_3(d^3)}{V_3(c_1^3)} = \frac{V_3(c_1^3) - V_3(c_{0.5}^3)}{V_3(c_1^3)} = \frac{\frac{7}{6}\pi}{\frac{4}{3}\pi} = \frac{7}{8}$$

In general, the hyper-volume of a hyper-sphere in n dimensions is

$$V_n(r) = \frac{r^n \pi^{n/2}}{\Gamma(n/2+1)}.$$

In general, the hyper-volume of a hyper-sphere in n dimensions is

$$V_n(r) = \frac{r^n \pi^{n/2}}{\Gamma(n/2+1)}.$$

Then, the proportion of volume contained within the hyper "donut" is

$$\frac{V_n(1) - V_n(0.5)}{V_n(1)} = \frac{\frac{1^n \pi^{n/2}}{\Gamma(n/2+1)} - \frac{(0.5)^n \pi^{n/2}}{\Gamma(n/2+1)}}{\frac{1^n \pi^{n/2}}{\Gamma(n/2+1)}} = \frac{\frac{(1 - (0.5)^n) \pi^{n/2}}{\Gamma(n/2+1)}}{\frac{\pi^{n/2}}{\Gamma(n/2+1)}} = 1 - (0.5)^n$$

The proportion of volume contained within the hyper "donut" that is within $\delta>0$, $\delta<1$ of the surface is

$$\frac{V_n(1)-V_n(1-\delta)}{V_n(1)} = \frac{\frac{1^n\pi^{n/2}}{\Gamma(n/2+1)} - \frac{(1-\delta)^n\pi^{n/2}}{\Gamma(n/2+1)}}{\frac{1^n\pi^{n/2}}{\Gamma(n/2+1)}} = \frac{\frac{(1-(1-\delta)^n)\pi^{n/2}}{\Gamma(n/2+1)}}{\frac{\pi^{n/2}}{\Gamma(n/2+1)}} = 1 - (1-\delta)^n$$

Let
$$s_n = 1 - (1 - \delta)^n$$
.

Let
$$s_n = 1 - (1 - \delta)^n$$
.

Claim: s_n converges to s=1 for all $\delta>0, \delta<1$.

Let $s_n = 1 - (1 - \delta)^n$.

Claim: s_n converges to s=1 for all $\delta > 0, \delta < 1$.

Proof: Let $\epsilon > 0$ be given

Let $s_n = 1 - (1 - \delta)^n$.

Claim: s_n converges to s=1 for all $\delta > 0, \delta < 1$.

Proof: Let $\epsilon > 0$ be given as well as $\delta > 0, \delta < 1$.

Let $s_n = 1 - (1 - \delta)^n$.

Claim: s_n converges to s=1 for all $\delta > 0, \delta < 1$.

Proof: Let $\epsilon > 0$ be given as well as $\delta > 0$, $\delta < 1$.

Let
$$N = \left\lceil \frac{\log(\epsilon)}{\log(1-\delta)} \right\rceil$$
.

Let
$$s_n = 1 - (1 - \delta)^n$$
.

Claim: s_n converges to s=1 for all $\delta > 0, \delta < 1$.

Proof: Let $\epsilon > 0$ be given as well as $\delta > 0$, $\delta < 1$.

Let
$$N = \left\lceil \frac{\log(\epsilon)}{\log(1-\delta)} \right\rceil$$
. Note that since $0 < \delta < 1$

$$\log(1-\delta) < 1.$$

Let $s_n = 1 - (1 - \delta)^n$.

Claim: s_n converges to s=1 for all $\delta>0, \delta<1$.

Proof: Let $\epsilon > 0$ be given as well as $\delta > 0$, $\delta < 1$.

Let
$$N = \left\lceil \frac{\log(\epsilon)}{\log(1-\delta)} \right\rceil$$
. Note that since $0 < \delta < 1$

$$\log(1-\delta)<1.$$

Then, for all n > N

$$n > N \ge \frac{\log(\epsilon)}{\log(1-\delta)}$$

$$n > N \ge \frac{\log(\epsilon)}{\log(1 - \delta)}$$

$$n > \frac{\log(\epsilon)}{\log(1 - \delta)}$$

$$n > N \ge \frac{\log(\epsilon)}{\log(1 - \delta)}$$
 $n > \frac{\log(\epsilon)}{\log(1 - \delta)}$
 $n \log(1 - \delta) < \log(\epsilon)$

$$n > N \ge \frac{\log(\epsilon)}{\log(1 - \delta)}$$
 $n > \frac{\log(\epsilon)}{\log(1 - \delta)}$
 $n \log(1 - \delta) < \log(\epsilon)$
 $\log((1 - \delta)^n) < \log(\epsilon)$

$$n > N \ge rac{\log(\epsilon)}{\log(1 - \delta)}$$
 $n > rac{\log(\epsilon)}{\log(1 - \delta)}$
 $n \log(1 - \delta) < \log(\epsilon)$
 $\log((1 - \delta)^n) < \log(\epsilon)$
 $(1 - \delta)^n < \epsilon$

$$n > N \ge rac{\log(\epsilon)}{\log(1 - \delta)}$$
 $n > rac{\log(\epsilon)}{\log(1 - \delta)}$
 $n \log(1 - \delta) < \log(\epsilon)$
 $\log((1 - \delta)^n) < \log(\epsilon)$
 $(1 - \delta)^n < \epsilon$
 $1 - (1 - (1 - \delta)^n)) < \epsilon$

$$n > N \ge rac{\log(\epsilon)}{\log(1 - \delta)}$$
 $n > rac{\log(\epsilon)}{\log(1 - \delta)}$
 $n \log(1 - \delta) < \log(\epsilon)$
 $\log((1 - \delta)^n) < \log(\epsilon)$
 $(1 - \delta)^n < \epsilon$
 $1 - (1 - (1 - \delta)^n)) < \epsilon$
 $|1 - (1 - (1 - \delta)^n)| < \epsilon$

$$n > N \ge rac{\log(\epsilon)}{\log(1 - \delta)}$$
 $n > rac{\log(\epsilon)}{\log(1 - \delta)}$
 $n \log(1 - \delta) < \log(\epsilon)$
 $\log((1 - \delta)^n) < \log(\epsilon)$
 $(1 - \delta)^n < \epsilon$
 $1 - (1 - (1 - \delta)^n)) < \epsilon$
 $|s - s_n| < \epsilon$

$$n > N \ge rac{\log(\epsilon)}{\log(1 - \delta)}$$
 $n > rac{\log(\epsilon)}{\log(1 - \delta)}$
 $n \log(1 - \delta) < \log(\epsilon)$
 $\log((1 - \delta)^n) < \log(\epsilon)$
 $(1 - \delta)^n < \epsilon$
 $1 - (1 - (1 - \delta)^n)) < \epsilon$
 $|s - s_n| < \epsilon$

Woah!

In crazy high enough dimensions, an arbitrarily high proportion of the outer hyper volume of any hyper sphere is concentrated arbitrarily close the boundary!