# lab3\_challenge

Saksham Goel January 30, 2018

### The Timing of Processing Invoices.

We have talked about the study of production runs during the lecture. Now it is time for you to explore the data firsthand.

#### Download data

Download the data **production.txt** from the textbook website <www.stat.tamu.edu/~shether/book>

#### Read data into R.

## 2

## 3

2

3

60 1.8

188 2.3

Read the data into R by using function "read.table()" and save the data in a variable called "prod". Prod will be a type of R object called data frame.

You can provide a complete address for the file or set the working directory to the folder where you have saved the data:

```
prod = read.table('/myComputer/myFolder1/myFolder2/production.txt', header = TRUE)
Or
setwd('/myComputer/myFolder1/myFolder2')
prod = read.table('production.txt', header = TRUE)
# read data into R.
prod = read.table("invoices.txt", header= TRUE)
# Use function View(prod) or head(prod) to see if the data has been imported successfully.
#View(prod)
head(prod)
##
     Day Invoices Time
## 1
      1
              149 2.1
## 2
       2
               60 1.8
## 3
       3
              188 2.3
## 4
       4
               23 0.8
## 5
       5
              201 2.7
## 6
               58 1.0
       6
# Advanced: can you try importing data using "read.csv()" instead of "read.table()":
csv_type = read.csv("invoices.txt", header = TRUE, sep = "\t")
#View(csv_type)
head(csv_type)
##
     Day Invoices Time
## 1
              149 2.1
       1
```

```
## 4 4 23 0.8
## 5 5 201 2.7
## 6 6 58 1.0
```

### Explore data

summary() is a very important function. See what happens when you apply it to a dataframe.

```
# explore data using summary()
summary(prod)
```

```
Day
                        Invoices
##
                                            Time
##
    Min.
           : 1.00
                     Min.
                             : 23.0
                                      Min.
                                              :0.800
##
    1st Qu.: 8.25
                     1st Qu.: 62.5
                                      1st Qu.:1.500
                     Median :127.5
    Median :15.50
                                      Median :2.000
##
    Mean
            :15.50
                             :130.0
                                              :2.110
                     Mean
                                      Mean
    3rd Qu.:22.75
                     3rd Qu.:189.5
                                       3rd Qu.:2.775
            :30.00
##
    Max.
                     Max.
                             :289.0
                                      Max.
                                              :4.100
```

Now let us draw some exploratory plots.

For each variable in the data frame, we can draw a histogram. A histogram can give us an idea of the distribution of a variable.

```
# explore the data with histograms
# Hint: use hist() for histograms
hist(prod$Invoices)
```

## Histogram of prod\$Invoices



hist(prod\$Time)

# Histogram of prod\$Time



Next we draw a scatterplot with one variable (RunSize) on the x axis and another variable (RunTime) on the y axis.

```
# explore data with scatterplot
# Hint: use plot()
plot(x = prod$Invoices, y = prod$Time)
```



### Fit a regression model

The linear trend in the scatterplot seems strong, which means that a linear regression model is appropriate.

```
# fit a linear regression model # Hint: use lm(). Don't forget to save the model to a variable called "mod" mod = lm() prod$Time ~ prod$Invoices )
```

We have applied the function summary() to a data frame. This function can also be applied to a model.

```
# apply summary() to your model
summary(mod)
```

```
##
## Call:
## lm(formula = prod$Time ~ prod$Invoices)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
  -0.59516 -0.27851 0.03485 0.19346
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 0.6417099 0.1222707
                                        5.248 1.41e-05 ***
## prod$Invoices 0.0112916 0.0008184
                                      13.797 5.17e-14 ***
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.3298 on 28 degrees of freedom ## Multiple R-squared: 0.8718, Adjusted R-squared: 0.8672 ## F-statistic: 190.4 on 1 and 28 DF, p-value: 5.175e-14 Please complete the following formula of the model: Fitted Time = 0.6417099 + 0.0112916 * Invoices Or we can use mathematical symbols: Let X = \text{Invoices}, Y = \text{Time}. \hat{Y} = \hat{\beta_0} + \hat{\beta_1} X
```

### Compare the observed RunTime and the fitted RunTime

```
# Print out the observed RunTime
# prod$RunTime
# Print out the observed RunTime
# Hint: Use mod$fitted.values OR use predict(mod)
prod$Time
## [1] 2.1 1.8 2.3 0.8 2.7 1.0 1.7 3.1 2.8 1.0 1.5 1.2 0.8 1.0 2.0 2.5 2.9
## [18] 3.4 4.1 1.2 2.5 1.8 3.8 1.5 2.8 2.5 3.3 2.0 1.7 1.5
predict(mod)
##
                     2
                               3
                                          4
                                                    5
                                                                        7
## 2.3241648 1.3192085 2.7645390 0.9014177 2.9113303 1.2966252 1.5111665
##
           8
                     9
                              10
                                                   12
                                                             13
                                         11
## 3.1484549 2.6854975 0.9804592 1.8837907 1.5789163 1.3192085 0.9240010
##
                                                   19
                                                             20
          15
                    16
                              17
                                         18
## 2.5951643 2.5499977 2.7871223 3.2726630 3.9049950 1.1498339 2.8209972
                              24
                                        25
                                                   26
                                                             27
          22
                    23
## 1.4321250 3.3629961 1.8047492 2.4822479 1.9967072 2.9113303 2.1660818
          29
## 1.5450414 0.9691676
```

The observed RunTime is different from the fitted RunTime.

### visualize the observed RunTime and the fitted RunTime

```
# Hint: first draw a scatterplot of the data
plot(x = prod$Invoices, y = prod$Time)
# Next add the fitted values
points(predict(mod) ~ prod$Invoices, col = 'red', pch = 4)
```



### Calculating the estimated coefficients using formulas

We learnt that the following formulas during the lecture:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$$

Let's use these two formulas to estimate the coefficients.

```
x = prod$Invoices
y = prod$Time
xbar = mean(x)
ybar = mean(y)

beta1_hat = sum((x-xbar)*(y-ybar)) / sum((x-xbar)^2)
beta1_hat

## [1] 0.01129164
beta0_hat = ybar - beta1_hat*xbar
```

## [1] 0.6417099

beta0\_hat

Compare beta1\_hat and beta2\_hat with the estimated coefficients obtained from the linear regression model. They should be identical!