TERCERA TAREA TEORÍA ERGÓDICA

MAURO ARTIGIANI

Los ejercicios valen todos 1 punto. La tarea se puede escribir en inglés o en español, o en una mezcla de idiomas. Se puede entregar en físico en mi buzón (H-100) o en pdf a mi correo (m.artigiani@uniandes.edu.co). La colaboración en equipos pequeños está incentivado. Cada uno tiene que entregar su tarea, escribiendo claramente con quien trabajó.

La entrega de la tarea es al **comienzo** de la clase de **miércoles 22 octubre**. Cada día de retraso causa una penalidad de 0,2 puntos en la nota.

1. (Ej. 9.5.1 [EW]). Demuestre que los subgrupos U y V generan $\mathrm{SL}_2(\mathbb{R})$, donde:

$$U = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, x \in \mathbb{R} \right\} \qquad \mathbf{y} \qquad V = \left\{ \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}, x \in \mathbb{R} \right\}$$

- 2. (Ej. 9.7.2 [EW]). Demuestre el shadowing lemma por el flujo geodésico por $X = \Gamma \backslash \mathrm{PSL}_2(\mathbb{R})$. Es decir, que dados dos puntos cercanos x y y existe otro punto z con la propiedad que $R_{a(t)}(x)$ y $R_{a(t)}(z)$ son cercanos para todos $t \geq 0$ y $R_{a(t)}(y)$ y $R_{a(t)}(z)$ son cercanos para todos $t \leq 0$.
- 3. Sea Γ un subgrupo discreto de $\mathrm{SL}_2(\mathbb{R})$. Demuestre que si F_1 y F_2 son dos dominios fundamentales por Γ , hay $\mu(F_1) = \mu(F_2)$.
- 4. Demuestre que las órbitas periódicas del flujo geodésico en una superficie hiperbólica son densas.
- 5. Sean $d \in \mathbb{N}$ y $(x,y) \in \mathbb{Z}^2$ una solución de la ecuación de Pell $x^2 dy^2 = 1$. Demuestre que todas las soluciones de este tipo genera una órbita periódica por el flujo geodésico en la superficie modular, con periodo $2\cosh^{-1} x$. Más precisamente, encuentre un punto z en la superficie modular que satisfaga $za(t_0) = z \cot t_0 = \cosh^{-1}(x)$.

Date: 15 de octubre de 2019.