9 -> quantity { m -> mechanics
mole and entropy -> bio chemistry & heat flow
columb and candela -> electromagnetism
potential $V = \frac{dq}{dt} = \dot{q} \rightarrow flow$ $V \rightarrow potential = \frac{Joules}{quantity}$ [7] = [J quantity. s] q - can be stored in 'capacitor' $\begin{cases}
\Gamma = E \neq \rightarrow \text{capacitor} & \alpha = \frac{d \mathcal{U}}{dt} = \frac{d^2q}{dt^2} \\
\Gamma = L \alpha = R \mathcal{U} \rightarrow \text{inductor} \\
\mathcal{U} = \frac{1}{R} \Gamma \rightarrow \text{Resistance}
\end{cases}$ $\begin{cases}
F = m \alpha \rightarrow \alpha = \frac{d \mathcal{V}}{dt}, \ v_{z} \frac{d x}{dt} \\
V = L \frac{di}{dt}
\end{cases}$ $\begin{cases}
\rho = \int \Gamma dt \\
\rho = L \mathcal{U}
\end{cases}$ $\begin{cases}
\rho = L \mathcal{U}
\end{cases}$ ass in mechania BG = Bonol Greeph IK. V = UIK;=0 conservation laws

constitutive - nonlinear or Linear

6

Electrical -> Valtage (J.c1) x current (c'.s-1) = power (J) Mechanical \rightarrow force $(\frac{J}{m}) \times \text{Velocity}(\frac{m}{s}) = \text{power}(\frac{J}{s})$ Hydraulics - pressure $(\frac{J}{3})$ x Volume flow $(\frac{m^3}{5})$ = power $(\frac{J}{5})$ Thermodynamis -> temperature $(\frac{J}{e^{-1}})_x$ entropy flow $(\frac{e}{S}) = power(\frac{J}{S})$ U=dq power=KU q = { c, m, m³, e} rentropy

culumab meter volume Static Storage (capacitor) -> ([= Eq) capacitor $\rightarrow \int V_{\overline{at}} \int C \frac{dk}{dt} dt \rightarrow q = C \int E la Stance = \frac{1}{C}$ $E = \frac{1}{C}$ (F = Eq)Dynamic storage (Inductor) - (1=La) Inductor $\rightarrow N = L \frac{dv}{dt} = La$ Dissipation (Resistor) -> (V= KK)

Fluid Dynamics

pressure
$$\rightarrow \Gamma \left[J_{m^3} \right]$$
, $q = m^3$, $v_0 = \frac{dq}{dt} = \left[\frac{m^3}{s} \right]$

Volume Rate

9 - اصافه حجم برائز اتساع است.

(h=r(ae+ce), b=0505 ml d=-11 ml) Watanabe(2013)

$$E = \frac{\epsilon h}{2\kappa r^3 l}$$
, $C = \frac{1}{E}$

Viscosity -7

کی مشاردر حالمی که ه= ۹ (برون ا تساع)

M= M4+ M5+M2 V1= V2+ V2 12 = 1/4 /7 + /3 q = 2 ,

TWO Boundary conditions are needed for example: 1, 13

				i i
_	name	Solid Mech	Fluid (Bio chemical
Potential	Jr.	force (J/m-N)	J (po)	J/mol= M
Quantity	(, q	m	m^3	W
Flow	V = q	<u>m</u> 5	$\frac{1}{s}$	M
Rate of How	a=1=q	m SZ	$\frac{m^3}{s^2}$	<u>M</u> S ²
Elastance	$E\left(\frac{d}{k}\right)$	J/m²	J/m6	$\frac{J}{M} \frac{1}{M} = \frac{J}{M^2}$
Resistance	$R(\frac{\pi}{2})$	(4) s	J/m6.3	M M = M3
In ductance	L(K)	$\frac{J}{ms} \frac{S^2}{m^2} = \frac{Js^2}{m^2}$	$\frac{\int_{m3}^{3} \frac{S^2}{m^3}$	$\frac{W}{2} \times \frac{W}{2s} = \frac{W_2}{2s}$

def Unit
$$JS2_per_m2$$
 as

Unit joule;

Unit second[expo:2];

Unit metre {expo:-2};

enddef;

Note:
$$1 \text{ kg} = \frac{J}{m^2} S^2$$
 pressure = $1 \text{ Pa} = \frac{J}{m^3}$

$$1 \text{ N} = \frac{J}{m}$$
 Voltage = $\frac{J}{C}$

Circulation System:

LA: Left Atrium

Lv: Left Ventricle

RA: Right Atrium RV: Right Ventricle

Blood Circulatory System's chematics 30 equations and 30 variables

RA: Right Atrium

RV: Right ventricle LV: Left Ventricle trv: tricuspid valve puv: pulmonary valve

miv: mitral valve oov: oortic valve

LA: Left Atrium

par: pulmonary artery

pvn: pulmonary vein

pulmonary sys.

الای: Vub: Venous upper body الاد: inferior Vena cava من نین سیامرگ نیزین SVC: superior Vena cava من الله الله Vib: Venous lower body سیامرد الله

def import using "testrun-modules.cellml" for comp. X Using comp y:

enddef

X

pvn_module

Vp_simple_type

par_module

Vp-simple-type

heart-modelle

heart_new_valve

aortic-root-module

VV_simple_type

systemic.T_module

PP- &T_type

venous_svc_module VP_simple-type

Zero_flow_module

Zero-flow

BC: Inputs: Uin, Vous

Pub outputs: U, g, U, v

Vessel mapping:

def map between par-module and PVn-module for

enddef;

م الساني كه با - وعده - داراد) مشارط مداد على على حستند ،

def comp

pv_00_10_coupler_type

imposter_10

heart_simple_ weont

heart_simple

heart-new-valve

hear t_simple_Lvprop

constant-flow_BC_type

constant_flow_2_Bc_type

constant- pressure_Bc_type

P. observer_ type

f_observer_type

controller_type

controller2_type

PV- type

VP-type

PP-type

W-type

1 PV_Simple_type

PP-simple-type

VV-simple-type

Vp-simple_type

PP-T-type

-> PP_ T-wcont-type

pr-split-type

VV-2in2out_type

VV - merge-type

Vp-merge-type

zero-flow

flow-sum-2-type

baroreceptor_type

chemoreceptor-type

afferent_to_vagal_efferent

-type

afferent_to_syp---.

efferent_resistance___

efferent-heart ...

gas-transport-simple-type

temp