Defect Indices of Time-Changed Covariance Operators

BY STEPHEN CROWLEY
August 3, 2025

Table of contents

1	Definitions	1
2	Main Results	2
1	Definitions	

Definition 1. [Bessel Kernel] Let J_0 be the Bessel function of the first kind of order zero. The standard Bessel kernel is defined as $B(s,t) = J_0(2\pi |s-t|)$ for $s,t \in \mathbb{R}$.

Definition 2. [Transformed Bessel Kernel] Given a function $\theta: \mathbb{R} \to \mathbb{R}$, the transformed Bessel kernel is defined as $K_{\theta}(s,t) = J_0(2\pi |\theta(s) - \theta(t)|)$ for $s,t \in \mathbb{R}$.

Definition 3. [Covariance Operator] The integral operator T_{θ} associated with kernel K_{θ} acts on functions $f \in L^2(\mathbb{R})$ as:

$$(T_{\theta} f)(s) = \int_{\mathbb{R}} J_0 (2 \pi |\theta(s) - \theta(t)|) f(t) dt$$
 (1)

Definition 4. [Defect Indices] For a densely defined symmetric operator T on a Hilbert space \mathcal{H} with adjoint T^* , the defect indices (n_+, n_-) are:

$$n_{+} = \dim \ker (T^* - i \cdot I), \quad n_{-} = \dim \ker (T^* + i \cdot I)$$
 (2)

where I denotes the identity operator.

Definition 5. [Self-Adjoint Operator] A symmetric operator T is self-adjoint if and only if $T = T^*$, which is equivalent to having defect indices $n_+ = n_- = 0$.

2 Main Results

Theorem 6. The covariance operator T_{θ} with kernel $K_{\theta}(s,t) = J_0(2 \pi |\theta(s) - \theta(t)|)$ has zero defect indices $(n_+ = n_- = 0)$ if and only if θ is strictly monotonic.

To prove this theorem, several preliminary results are needed.

Lemma 7. The Bessel kernel $B(s,t) = J_0(2\pi |s-t|)$ defines a positive definite operator.

Proof. By Bochner's theorem, a continuous function $\phi(s-t)$ is positive definite if and only if it is the Fourier transform of a non-negative measure. The Fourier transform of $J_0(2\pi|x|)$ is:

$$\mathcal{F}\left[J_0(2\pi|x|)\right](\omega) = \frac{1}{2\pi\sqrt{1-\omega^2/(4\pi^2)}} 1_{[-2\pi,2\pi]}(\omega)$$
 (3)

where $1_{[-2\pi,2\pi]}$ is the indicator function of the interval $[-2\pi,2\pi]$.

Since this is a non-negative function, $J_0(2\pi|x|)$ is positive definite, and hence B(s,t) defines a positive definite operator.

Lemma 8. The operator S associated with the standard Bessel kernel $B(s,t) = J_0(2\pi | s - t|)$ is self-adjoint.

Proof. The operator S with kernel B(s,t) is unitarily equivalent to multiplication by the function $\frac{1}{2\pi\sqrt{1-\omega^2/(4\pi^2)}} 1_{[-2\pi,2\pi]}(\omega)$ in the Fourier domain. Since this is a bounded, real-valued multiplication operator, it is self-adjoint, and thus S has defect indices (0,0). \square

Proposition 9. If $\theta: \mathbb{R} \to \mathbb{R}$ is strictly monotonic, then the covariance operator T_{θ} is self-adjoint.

Proof. When θ is strictly monotonic, it is invertible. Consider the change of variables:

$$u = \theta(s), \quad v = \theta(t)$$
 (4)

Define the unitary transformation $U: L^2(\mathbb{R}, ds) \to L^2(\mathbb{R}, du)$ by:

$$(Uf)(u) = f(\theta^{-1}(u))\sqrt{\left|\frac{d\theta^{-1}}{du}(u)\right|}$$
(5)

Under this transformation, the operator T_{θ} becomes:

$$(UT_{\theta}U^{-1}g)(u) = \int_{\mathbb{R}} J_0(2\pi |u-v|) g(v) dv$$
 (6)

which is precisely the operator S with the standard Bessel kernel.

Since S is self-adjoint by Lemma 8, and unitary equivalence preserves self-adjointness, $T_{\theta} = U^{-1} S U$ is also self-adjoint. Thus, its defect indices are (0,0).

Proposition 10. If θ is not strictly monotonic, then T_{θ} has non-zero defect indices.

Proof. If θ is not strictly monotonic, there exist points $s_1 \neq s_2$ such that $\theta(s_1) = \theta(s_2)$.

Let $\mathcal{E} = \{(s_1, s_2) \in \mathbb{R}^2 : s_1 \neq s_2, \theta(s_1) = \theta(s_2)\}$. This set is non-empty by assumption.

For any pair $(s_1, s_2) \in \mathcal{E}$, the kernel satisfies:

$$K_{\theta}(s_1, t) = J_0(2\pi |\theta(s_1) - \theta(t)|) = J_0(2\pi |\theta(s_2) - \theta(t)|) = K_{\theta}(s_2, t) \tag{7}$$

This introduces a linear dependence in the kernel, violating the strict positive definiteness needed for self-adjointness.

To formalize this, consider the distribution:

$$f_{s_1,s_2}(t) = \delta(t - s_1) - \delta(t - s_2)$$
 (8)

While f_{s_1,s_2} itself is not in $L^2(\mathbb{R})$, it can be approximated by L^2 functions. Using the symmetry property $K_{\theta}(s_1,t) = K_{\theta}(s_2,t)$:

$$(T_{\theta} f_{s_1, s_2})(s) = \int_{\mathbb{R}} K_{\theta}(s, t) f_{s_1, s_2}(t) dt = K_{\theta}(s, s_1) - K_{\theta}(s, s_2) = 0$$
(9)

This implies that T_{θ} has a non-trivial null space, and consequently, there exist non-zero solutions to the equations $(T_{\theta}^* \pm i \cdot I) g = 0$. Therefore, both defect indices n_+ and n_- are at least 1.

Lemma 11. If θ is not strictly monotonic, then the kernel $K_{\theta}(s,t) = J_0(2\pi |\theta(s) - \theta(t)|)$ is not positive definite.

Proof. Let $s_1 \neq s_2$ with $\theta(s_1) = \theta(s_2)$. Consider the matrix:

$$M = \begin{pmatrix} K_{\theta}(s_1, s_1) & K_{\theta}(s_1, s_2) \\ K_{\theta}(s_2, s_1) & K_{\theta}(s_2, s_2) \end{pmatrix}$$
 (10)

Since $\theta(s_1) = \theta(s_2)$, we have:

$$K_{\theta}(s_1, s_1) = K_{\theta}(s_2, s_2) = J_0(0) = 1$$
 (11)

$$K_{\theta}(s_1, s_2) = K_{\theta}(s_2, s_1) = J_0(2 \pi |\theta(s_1) - \theta(s_2)|) = J_0(0) = 1$$
 (12)

Thus, $M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, which has eigenvalues 2 and 0. The presence of the zero eigenvalue means M is not strictly positive definite. Therefore, K_{θ} is not a positive definite kernel. \square

Combining Proposition 9 and Proposition 10, the covariance operator T_{θ} has defect indices (0,0) if and only if θ is strictly monotonic.

Corollary 12. The Gaussian process with covariance function $K_{\theta}(s,t) = J_0(2 \pi | \theta(s) - \theta(t)|)$ is well-defined if and only if θ is strictly monotonic.

Proof. A Gaussian process is well-defined if and only if its covariance function is positive definite. By Lemma 11 and Lemma 7, K_{θ} is positive definite if and only if θ is strictly monotonic. Furthermore, the self-adjointness of T_{θ} (which occurs if and only if θ is strictly monotonic by Theorem 6) ensures the existence of a spectral decomposition, which is necessary for the proper definition of the process.