Analyse du mouvement Partie 2 : dynamique

Laurence CHEZE

Bâtiment Omega, Université Claude Bernard Lyon 1 43 Bd. du 11 novembre 1918 69 622 Villeurbanne Cedex

Tél: 04 72 44 80 98

Email: Laurence.Cheze@univ-lyon1.fr

Systèmes d'analyse du mouvement :

Mesures tridimensionnelles non invasives à partir de marqueurs externes

Actions de contact sol/pied

Cinématique =

Amplitudes de mouvements articulaires en 3D

Dynamique =

Moments intersegmentaires en 3D

Modèle musculo -squelettique ⇒ **estimer les charges articulaires**

PLAN

Analyse dynamique

Actions de contact sol/pied

Algorithme de dynamique inverse (formulation matricielle)

Moments et Puissances musculaires

Forces musculaires et réactions articulaires

Problématique

Modèle - Hypothèses

Optimisation

Résultats

Anthropométrie

Caractérisation des segments corporels en termes de : longueurs, masses, positions des centres de gravité, moments d'inertie ...

Différentes méthodes, \pm précises, nécessitant \pm de mesures et \pm adaptées à un type de population.

M-L

Action de contact sol / pied

Composantes = projections \perp du vecteur sur 3 axes. 100

Formulation matricielle:

(proposée par Legnani – 96 – dans le domaine de la théorie des machines)

Cinématique :

Matrice homogène de position :

• Cinétique :

Données anthropométriques :

Eq. de régression + dimensions du sujet

Masse, centre de gravité, moments d'inertie

Matrice de pseudo-inertie :

$$\begin{bmatrix} J_S \end{bmatrix}_{RS} = \begin{bmatrix} \frac{S}{2} - A & F & E & m x_G \\ F & \frac{S}{2} - B & D & m y_G \\ E & D & \frac{S}{2} - C & m z_G \\ m x_G & m y_G & m z_G & m \end{bmatrix}_{RS}$$

Efforts extérieurs :

mesures:
$$\begin{bmatrix}
\overrightarrow{F}_{pied \mid sol} = \begin{pmatrix} F_{x} \\ F_{y} \\ F_{z} \end{pmatrix}_{\mid R0} \\
\overrightarrow{M}_{pied \mid sol} (\overrightarrow{O}) = \begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix}_{\mid R0}$$

$$\begin{bmatrix}
\Phi_{pied \mid sol} \end{bmatrix}_{\mid R0} = \begin{bmatrix}
0 & -M_{z} & M_{y} & F_{x} \\
M_{z} & 0 & -M_{x} & F_{y} \\
-M_{y} & M_{x} & 0 & F_{z} \\
-F_{x} & -F_{y} & -F_{z} & 0
\end{bmatrix}$$

• Modèle dynamique inverse : Algorithme récursif

Pour les instants $t=t_0$ à T (phase d'appui monopodal)

Pour les segments S=4 (pied) à S=1 (bassin)

Calcul des matrices vitesse et accélération

$$\begin{bmatrix} \mathbf{W}_{S/0} \end{bmatrix}_{R0} = {}_{S}^{0} \dot{\mathbf{T}} \cdot \left({}_{S}^{0} \mathbf{T} \right)^{-1} \qquad \text{et} \qquad \begin{bmatrix} \mathbf{H}_{S/0} \end{bmatrix}_{R0} = {}_{S}^{0} \ddot{\mathbf{T}} \cdot \left({}_{S}^{0} \mathbf{T} \right)^{-1}$$

Calcul de la pseudo-matrice d'inertie

$$\begin{bmatrix} \mathbf{J}_{S} \end{bmatrix}_{R0} = {}_{S}^{0} \mathbf{T} \cdot \begin{bmatrix} \mathbf{J}_{S} \end{bmatrix}_{RS} \cdot {}_{S}^{0} \mathbf{T}^{t}$$

Calcul du torseur dynamique

$$\left[egin{array}{c} \mathbf{A} \end{array}
ight]_{\mathrm{R0}} = \left[egin{array}{c} \mathbf{H} \end{array}
ight]_{\mathrm{R0}} \mathbf{.} \left[egin{array}{c} \mathbf{J} \end{array}
ight]_{\mathrm{R0}} \mathbf{.} \left[egin{array}{c} \mathbf{J} \end{array}
ight]_{\mathrm{R0}} \mathbf{.} \left[egin{array}{c} \mathbf{H} \end{array}
ight]_{\mathrm{R0}}^{\mathrm{t}}$$

Calcul du torseur d'action de la pesanteur

$$\left[\left. \phi \right|_{\mathrm{P/S}} \right]_{\mathrm{R0}} = \left[\left. \mathbf{H} \right|_{\mathrm{g}} \right]_{\mathrm{R0}} . \left[\left. \mathbf{J} \right|_{\mathrm{S}} \right]_{\mathrm{R0}} - \left[\left. \mathbf{J} \right|_{\mathrm{S}} \right]_{\mathrm{R0}} . \left[\left. \mathbf{H} \right|_{\mathrm{g}} \right]_{\mathrm{R0}}^{\mathrm{t}}$$

Equilibre dynamique du segment

$$\left[\left. \phi \right|_{\text{S-1/S}} \right]_{\text{R0}} = \left[\left. \mathbf{A} \right|_{\text{S/0}} \right]_{\text{R0}} - \left[\left. \phi \right|_{\text{S+1/S}} \right]_{\text{R0}} - \left[\left. \phi \right|_{\text{P/S}} \right]_{\text{R0}}$$

Calcul du torseur d'actions intersegmentaires

$$\left[\phi_{\text{S-1/S}} \right]_{\text{RS-1}} = {}^{\text{S-1}}_{0} \text{ T} \cdot \left[\phi_{\text{S-1/S}} \right]_{\text{R0}} \cdot \left({}^{\text{S-1}}_{0} \text{ T} \right)^{t}$$

Fin pour S

$$\begin{bmatrix} \mathbf{A}_{\text{S/0}} \end{bmatrix}_{\text{R0}} = \begin{bmatrix} \widetilde{\delta}_{\text{S/0}}(\mathbf{O}) \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{\text{S/0}} \\ - & - & - & - \\ -\overline{\Sigma}_{\text{S/0}} \end{bmatrix}$$

Moments et puissances musculaires

On distingue:

- un travail moteur (positif) lorsque la force agit dans le sens du déplacement;
- un travail résistant (négatif) lorsque force agit dans le sens opposé au déplacement.

Si m^{v†} de flexion:

Wint > 0 et Wext < 0

Si mvt d'extension:

Wint < 0 et Wext > 0

Evolution des moments et puissances articulaires au cours de la marche

Pendant l'appui (droit), la jambe pivote autour de la cheville : la flexion dorsale est contrôlée par un moment de flexion plantaire.

Ceci se traduit par une absorption d'énergie (A1).

Puis, la flexion plantaire liée à unmoment dans le même sens correspondent à une génération de puissance (A2), nécessaire à la propulsion du membre inférieur vers l'avant.

Evolution des moments et puissances articulaires au cours de la marche

Genou

Peu après la réception, légère flexion du genou sous contrôle des extenseurs : absorption K1.

Puis, les extenseurs redressent le membre inf. : génération K2.

En fin de support, importante flexion du genou et faible moment extenseur du quadriceps pour réguler : absorption K3.

En fin d'oscillation, les fléchisseurs viennent décélérer l'extension du genou pour contrôler le contact suivant : absorption K4.

Evolution des moments et puissances articulaires au cours de la marche

Peu après la réception, les extenseurs de hanche viennent freiner l'avancée du bassin: génération H1.

Puis, le moment devient fléchisseur, alors que la hanche continue à s'étendre : absorption H2.

En début d'oscillation, la flexion de la hanche due à une action concentrique des fléchisseurs tire le membre inférieur vers l'avant : génération H3.

PLAN

Analyse dynamique

Actions de contact sol/pied

Algorithme de dynamique inverse (formulation matricielle)

Moments et Puissances musculaires

Forces musculaires et réactions articulaires

Problématique

Modèle - Hypothèses

Optimisation

Résultats

Calcul des actions de contact articulaires :

Données disponibles

- Positions successives des segments corporels (supposés rigides)
- Torseurs des actions de contact sol/pied (phase d'appui)
- Masse, position du centre de gravité, inertie des segments (Zatsiorsky, 83)
- Origines et insertions des muscles (White, 89), F_{isométriques max.} (Goubel, 98)

Démarche

- Calcul des actions intersegmentaires (Newton-Euler)
 - Formulation matricielle (Legnani, 96)
- Modèle musculo-squelettique
 - Sélection des muscles principaux (tâche) + Détermination de leurs bras de levier / articulation
 - Hypothèses ⇒ simplification du problème.
- Détermination des forces musculaires : Pb. redondant ⇒ Optimisation
- Calcul de la réaction articulaire
- Validation
 - Synchronisation temporelle : forces musculaires / EMG
 - Mesures de la réaction sur hanche instrumentée (O 'Connor, 98)

Calcul des actions de contact articulaires :

Modèle musculo-squelettique

- 47 muscles interviennent dans la marche (Crowninshield, 81)
- ⇒ sélection des 22 muscles principaux (Bouisset, 95 Carret)

	Cheville	Genou	Hanche
Flexion	Jambier antérieur (2)	Demi-tendineux Demi-membraneux Long biceps	Droit antérieur (5) Couturier
Extension	Soléaire Jumeaux Triceps sural (1)	Ischio-jambiers (3) Quadriceps (4)	Grand fessier (7, 12) Moyen fessier (6)
Rotation externe	Long péronier latéral Court péronier latéral (8)	Long biceps Court biceps (10)	Grand fessier Pyramidal Crural
Rotation interne / Supination	Jambier postérieur (9)	Couturier (11)	Petit fessier Moyen fessier Tenseur du fascia lata
Abduction			Tenseur du fascia lata Moyen fessier Petit fessier (13)
Adduction			Droit interne (14) Grand adducteur (15)

Hypothèses:

- La réaction articulaire \vec{R} passe par le centre de l'articulation
- **⇒** Moments intersegmentaires équilibrés par moments musculaires (ligaments négligés)
- Le muscle est assimilé à sa ligne moyenne
- ⇒ Point d'insertion = barycentre de la zone d'insertion du tendon
- \Rightarrow Ligne d'action = direction de la ligne moyenne du tendon \Rightarrow Bras de levier / chaque axe

Equilibre en quasi-statique :

Articulation S_{i-1}/S_i

$$\begin{cases}
\overrightarrow{\mathbf{F}_{i-1/1}} = \sum_{j=1}^{n} \mathbf{F}_{Mj} \cdot \overrightarrow{\mathbf{u}}_{j} + \overrightarrow{\mathbf{R}_{i-1/i}} \\
\overrightarrow{\mathbf{M}_{i-1/i}}(\mathbf{O}_{i-1}) = \sum_{j=1}^{n} \overrightarrow{\mathbf{O}_{i-1}} \overrightarrow{\mathbf{I}_{j}} \times \overrightarrow{\mathbf{F}}_{Mj} \cdot \overrightarrow{\mathbf{u}}_{j}
\end{cases}$$

(3*6 = 18 équations)

- 22 amplitudes musculaires F_{Mi}
- + 9 composantes de réaction
- 31 inconnues \Rightarrow Redondance!

Optimisation:

Minimisation d'un critère :
$$\sum_i F_i$$
 , $\sum_i (F_i/S_i)$, $\sum_i (F_i/S_i)^2$

Avec S_i: section du muscle

En respectant les contraintes suivantes :

Force de traction, inférieure à une limite maximale : $0 \le F_i \le F_{iMax}$

Validation

Système d'électromyographie permettant l'enregistrement des signaux de l'activité électrique des muscles de surface

Calcul des forces musculaires :

a. Résultats de l'optimisation

b. Mesures EMG

Calcul des actions de contact articulaires :

- a. Joint contact forces normalized by the body weight predicted by optimisation during the stance phase of gait, b. Joint contact forces published by Anderson and Pandy (2001),
- c. The hip joint reaction measurement using an instrumented prosthesis published by Lu and O'Connor (1999).