Foundations of Computer Science Comp109

University of Liverpool

Boris Konev

konev@liverpool.ac.uk

Olga Anosova

O. Anosova@liverpool.ac.uk

Part 4. Function

Comp109 Foundations of Computer Science

Reading

- Discrete Mathematics with Applications S. Epp, Chapter 7.
- Discrete Mathematics and Its Applications K. Rosen, Section 2.3.

Contents

- Functions: definitions and examples
- Domain, codomain, and range
- Injective, surjective, and bijective functions
- Invertible functions
- Compositions of functions
- Functions and cardinality
- Pigeon hole principle
- Cardinality of infinite sets

Functions

Examples:

- $y = x^2$
- $y = \sin(x)$
- first letter of your name

Functions/methods on programming

Definition of a function

A *function* from a set A to a set B is an assignment of **exactly one** element of B to **each** element of A.

We write f(a) = b if b is the unique element of B assigned by the function f to the element of a.

If f is a function from A to B we write $f: A \rightarrow B$.

Example: map, not a function

$$3 \longrightarrow 4$$

7

No function

Example: map, not a function

No function

More examples

Domain, codomain, and range

Suppose the function $f: A \rightarrow B$.

- A is called the <u>domain</u> of f. B is called the <u>codomain</u> of f.
- The range (or image) f(A) of f is

$$f(A) = \{f(x) \mid x \in A\}.$$

Codomain vs range

Find domain, codomain and the range of f

Example: $\frac{1}{x}$

Find domain, codomain and range of $f = \frac{1}{x}$.

Injective (one-to-one) functions

Definition Let $f: A \to B$ be a function. We call f an *injective* function (or *one-to-one function*) if

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2 \text{ for all } a_1, a_2 \in A.$$

This is logically equivalent to $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$, hence different inputs give different outputs.

Examples

■ $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = x^2$ is not injective.

■ $h: \mathbb{Z} \to \mathbb{Z}$ given by h(x) = 2x is

Examples

lacksquare $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = x^2$ is not injective.

■ $h: \mathbb{Z} \to \mathbb{Z}$ given by h(x) = 2x is injective.

More examples

Boris Copuc

- first_letter: People → Char 1 St letter of the name
- $lue{}$ ID : People $ightarrow \mathbb{N}$

Surjective (or onto) functions

Definition Let $f: A \to B$ be a function. We call f *surjective* (or *onto*) if the range of f coincides with the codomain of f:

$$\forall b \in B \quad \exists a \in A \text{ such that } b = f(a).$$

Examples

 $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = x^2$ is not surjective.

 $h: \mathbb{Z} \to \mathbb{Z}$ given by h(x) = 2x is not surjective.

 $h_1: \mathbb{Q} \to \mathbb{Q}$ given by $h_1(x) = 2x$ is surjective.

Classify $f:\{a,b,c\} \rightarrow \{1,2,3\}$ given by

Classify $g:\{a,b,c\} \rightarrow \{1,2,3\}$ given by

Classify $h: \{a, b, c\} \rightarrow \{1, 2\}$ given by

Classify $h':\{a,b,c\} \rightarrow \{1,2,3\}$ given by

Bijections

We call f bijective (or one-to-one correspondence) if f is both **injective** and **surjective**.

Examples

 $f: \mathbb{Q} \to \mathbb{Q}$ given by f(x) = 2x is bijective.

Inverse functions

If and only if f is a bijection from a set X to a set Y, then there exists a function f^{-1} from Y to X that "undoes" the action of f; that is, it sends each element of Y back to the element of X that it came from.

This function is called the inverse function f^{-1} for f:

 $f^{-1}: Y \to X$ such that

$$f(a) = b \iff f^{-1}(b) = a.$$

Such function *f* is calles *invertible*.

Example: 4x + 3

 $k: \mathbb{R} \to \mathbb{R}$ given by k(x) = 4x + 3 is invertible and

$$k^{-1}(y) = \frac{1}{4}(y-3).$$

Example: $\frac{x}{x-1}$

Let $A = \{x \mid x \in \mathbb{R}, x \neq 1\}$ and $f : A \rightarrow A$ be given by

$$f(x) = \frac{x}{x-1}.$$

Show that f is bijective and determine the inverse function.

The inverse relation is the set of pairs (y, x) with y = x/(x-1) with $x \in \mathbb{R}$ and $x \neq 1$.

This means
$$yx - y = x \Rightarrow x(y - 1) = y \Rightarrow x = y/(y - 1)$$
.

Thus for every $y \in A$ there is exactly one such x. Also note $x \in A$.

So f is invertible. Thus, it is bijective. $f^{-1}(y) = y/(y-1)$.

The function is its own inverse!

$$f(3) = \frac{3}{3-1} = \frac{3}{2}, \quad f^{-1}(\frac{3}{2}) = \frac{\frac{3}{2}}{\frac{3}{2}-1} = \frac{\frac{3}{2}}{\frac{1}{2}} = 3.$$

Cardinality of finite sets and functions

Recall: The cardinality of a finite set S is the number of elements in S,

i.e. there is a bijection $f: S \to \{1, \dots, n\}$.

For finite sets A and B

- $|A| \ge |B|$ iff there is a surjective function from A to B.
- $|A| \le |B|$ iff there is a injective function from A to B.
- |A| = |B| iff there is a bijection from A to B.

The pigeonhole principle

Let $f: A \rightarrow B$ be a function where A and B are finite sets.

The *pigeonhole principle* states that if |A| > |B| then **at least one** value of f occurs **more than once**, i.e.

f(a) = f(b) for some distinct elements a, b of A.

Pigeons and pigeonholes

If (N+1) pigeons occupy N holes, then some hole must have at least 2 pigeons.

It is also known as Dirichlet's box principle or Dirichlet's drawer principle.²

¹Image by McKay from en.wikipedia

²Gustav Dirichlet (1805 - 1859) was a German mathematician who first introduced formal defintion of a function.

Example: birthday problem.

Problem. There are 15 people on a bus. Show that at least two of them have a birthday in the same month of the year.

DIY Example: dark socks puzzle

Imagine you have 10 pairs of socks in a drawer. How many socks would you need to pull out blindly in a completely dark room to ensure you have at least one matching pair?

Summary

Attendance code: 844739

- A function $f: A \rightarrow B$ is an assignment such that $\forall a \in A \exists$ one $b \in B: f(a) = b$.
- A is the **domain**, B is the **codomain**, f(A) is the **range**.
- **Injective** function: $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ for all $a_1, a_2 \in A$.
- **Surjective** function: $\forall b \in B \quad \exists a \in A \text{ such that } b = f(a).$
- Bijective function: both injective and surjective.
- Inverse function $f^{-1}: Y \to X$ such that $f(a) = b \iff f^{-1}(b) = a$.
- **Pigeonhole principle:** If A and B are finite sets such that |A| > |B|, then for any $f: A \to B$ $\exists a, b \in A: f(a) = f(b)$.