$\mathbf{x}_k = \mathbf{\Phi}_{k-1}\mathbf{x}_{k-1} + \mathbf{B}_{k-1}\mathbf{u}_{k-1} + \mathbf{w}_{k-1}$	(3.16)
$\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$,	(3.17)
$\mathbf{w}_k \sim \mathcal{N}(0, \mathbf{Q}_k)$,	(3.18)
$\mathbf{v}_k \sim \mathcal{N}(0, \mathbf{R}_k)$,	(3.19)
$\mathbf{Q}_k = \mathrm{E}[\mathbf{w}_k \mathbf{w}_k^T]$,	(3.20)
$\mathbf{R}_k = \mathrm{E}[\mathbf{v}_k \mathbf{v}_k^T]$,	(3.21)
$\hat{\mathbf{x}}_k^- = \mathbf{\Phi}_{k-1}\hat{\mathbf{x}}_{k-1} + \mathbf{B}_{k-1}\mathbf{u}_{k-1}$,	(3.22)
$\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + \mathbf{K}_k [\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_k^-] .$	(3.23)
$\mathbf{K}_k = \mathbf{P}_k^- \mathbf{H}_k^T [\mathbf{H}_k \mathbf{P}_k^- \mathbf{H}_k^T + \mathbf{R}_k]^{-1}$,	(3.24)
$\mathbf{P}_k^- = \mathbf{\Phi}_{k-1} \mathbf{P}_{k-1} \mathbf{\Phi}_{k-1}^T + \mathbf{Q}_{k-1}$	(3.25)
$\mathbf{P}_k = [\mathbf{I}_n - \mathbf{K}_k \mathbf{H}_k] \mathbf{P}_k^-$.	(3.26)