

R08546019 干語形 January 13th, 2020

Agenda

- 1 Krill Herd Algorithm
- 2 程式人機介面
- 3 Demo
- 4 數值測試與比較
- 5 結論與討論

Krill Herd Algorithm

- 1) 每一隻磷蝦為建構解的代理人,即磷蝦的位置
- 2) 模仿磷蝦個體由低密度往高密度聚集、往食物中心聚集的兩種特性
- 3) 移動至新位置的距離受到下列五個因素的影響:

Movement Random **Foraging** induced by diffusion activity neighbors 鄰居和迄今最後 著迭代次數增加 物位置的吸引 Mutation Crossover 置對於個別磷蝦 **게磷蝦對於過往**意 減少擴散值 位置經驗的影響 影響

Krill Herd Algorithm — Pseudo Code

Krill Herd Algorithm

Begin

```
 \begin{tabular}{ll} \textbf{Step 1: Initialization.} Define lower bound and upper bound of $X$. Generate random population (NP) of the krill positions $X_i$ within the limit variables. Assign values to parameters: $N_{max}$, $V_f$, $D_{max}$ and $C_t$. Set induced motion ($N_i$), foraging motion ($F_i$) and physical diffusion ($D_i$) to zero
```

Step 2: Evaluation. Calculate fitness for each krill individual

Step 3 : For I = 1: I_{max} (iteration)

Calculate time interval $\Delta_t(I)$

Induced motion step

Evaluate local, target swarm density and the direction of each krill individual

Calculate the distances between each 2 krill positions (d_{sij})

Identify the sensing distance $\left(d_{si}\right)$ of each krill individual

If $d_{sij} < d_{si}$

Calculate and update the induced motion $N_i(I)$

End If

Foraging motion step

Generate center of food density $X^{\text{food}}(I)$ for the herd krill

Calculate and update the foraging motion F_i (I)

Physical diffusion step

Calculate and update the diffusion motion Di (I)

Genetic operators implementation step

Apply crossover and mutation operator on each krill individual

Move the krill positions after $t+\Delta_t$ period

Evaluate the fitness for each krill individual

Rank the krill positions according to minimum fitness

Record so far the best krill position and its fitness

Step 4: End For I (obtain so far the best solution)

End.

單一演算法的求解介面

讀取連續問題的COP檔

比較KHAI、KHAII、KHAIV的求解介面

讀取連續問題的COP檔

比較KHA、PSO、GA的求解介面

讀取連續問題的COP檔

Demo

數值測試與比較 — KHA I、KHA II、KHA III、KHA IV

		KHA I	KHA II	KHA III	KHA IV
Peak (2)	平均值	-6.3232	-6.4169	-6.2795	-6.4196
	標準差	1.0300	0.9167	1.1291	0.9171
Branin (2)	平均值	0.0022	0.0010	0.0021	0.0000
	標準差	0.0045	0.017	0.0143	0.0000
Ackley (10)	平均值	13.2094	11.0641	8.0807	7.9776
	標準差	6.5264	5.8163	5.0282	4.5699
Schwefel (10)	平均值	1499.4820	1585.3483	462.6957	363.3636
	標準差	570.9953	549.6717	662.9070	519.4757
Girewank (10)	平均值	1.0926	1.0999	0.9949	0.9874
	標準差	0.1598	0.1627	0.1424	0.1412

- → KHA IV的平均表 現結果最好
- →無論使用交配或 突變運算,皆比沒 有使用任何基因運 算來得好

數值測試與比較 — KHA、PSO、GA

結論與討論

- 1) 使用交配或突變運算(KHA II、KHA III、KHA IV)的求解能力較無使用任何基因運算(KHA I)來得好,其中又以同時使應用交配及突變運算為最突出
- 2) KHA的求解能力與GA不分上下
- 3) KHA及PSO皆受解代理人數量的影響。當數量增加時,兩種演算法的效率 明顯提升,而PSO又比KHA更容易陷在區域最佳解無法跳脫
- 4) KHA在前期進行**大範圍的隨機搜索**,因此收斂速度較PSO與GA來得慢,但隨著迭代次數的增加,KHA較其他兩種演算法來得**活絡**,並於後期進行小**範圍的最佳解搜尋**
- 5) KHA的參數值是否為最佳、鄰居的感知距離及虛擬食物中心的估算是否有 其他方法可以替代,以促進演算法的效用

Any questions?