

EXCEL PROJECT MANAGEMENT DOCUMENTATION

Section 2

NOVEMBER 15, 2017 SO CALLED ENGINEERS

Table of Contents

List of Figure	es
List of Table	s2
2. Excel Pr	oject Management Documents (ELO 8)
2.1 Con	mbined Project Documents (Team)
2.1.1	Work Breakdown and Allocation
2.1.2	Project schedule
2.1.3	Progress tracking
2.2 Risl	k / Mitigation Register (Team)
2.3 Mir	nutes of Meetings
	Carter: Excel Project Management Documents (Member – Refer to Exce et in Appendix B)
2.4.1	Expertise
2.4.2	Parts of the circuit the member is responsible for:
2.4.3	Unit Breakdown (Functional Architecture of Circuits)
2.4.4	Work Breakdown 23
2.4.5	Timeline 23
2.4.6	Progress Tracking
2.4.7	Experience Report
•	du Plessis: Excel Project Management Documents (Member – Refer to Exce et in Appendix B)
2.5.1	Expertise
2.5.2	Parts of the circuit the member is responsible for
2.5.3	Unit Breakdown (Functional Architecture of Circuits)
2.5.4	Work Breakdown
2.5.5	Timeline
2.5.6	Progress Tracking
2.5.7	Experience Report

	Greyling: Excel Project Management Documents (Member – Reference in Appendix B)	
2.6.1	. Expertise	
2.6.2	Parts of the circuit the member is responsible for:	
2.6.3	Unit Breakdown (Functional Architecture of Circuits)	
2.6.4	Work Breakdown	
2.6.5	Timeline	
2.6.6	Progress Tracking	
2.6.7	Experience Report	36
List of I	Figures	
Figure 1: Tim	neline	
Figure 2: The	e Unit Breakdown for Member A	22
Figure 3: Uni	t Breakdown for Member B	27
Figure 4: Uni	t breakdown for Member C	32
Figure 5: Dio	de referencing Interface architecture breakdown	33
List of Z	Гables	
Table 1: Wor	k Breakdown allocation for the group	4
Table 2: Time	eline of project	5
Table 3: Proj	ect progress tracking and status	6
Table 4: Risk	/ Mitigation	7
Table 5: Wor	k breakdown for Member A	23
Table 6: Time	eline for Member A	23
Table 7: A pr	rogress tracking of Member A	24
Table 8: Wor	k breakdown for Member B	27
Table 9: Time	eline for Member B	28
Table 10: A p	progress tracker for Member B	28
Table 11: Wo	ork Breakdown for Member C	33

So Called Engineers

Table 12: Timeline for Member C	33
Table 13: A progress tracker for Member C	35

2. Excel Project Management Documents (ELO 8)

ELO 8 main focus is team work and team dynamics. Therefore this part of the report will look at how the team work together and not really concentrate on the design of the product but instead take a look at which member designed the product and how the members interacted with one another throughout the design process.

2.1 Combined Project Documents (Team)

From the excel documentation the following combined project documents are documented.

2.1.1 Work Breakdown and Allocation

In Table 1 the work breakdown allocation can be seen for each member of the group including the functional responsibilities and the additional task for which they are responsible.

Table 1: Work Breakdown allocation for the group

Member	Function responsible for	Additional Tasks
TE Carter	DCDC Convertor 1 I/F 2.0 Unit 3	Functional analysis diagram
	DCDC Convertor 2 I/F 2.2 Unit 3	Research for I/F responsible for
		List and price components needed for I/F
	DCDC Convertor 3 I/F 2.4 Unit 3	responsible for
	Phone Charger I/F 5.2 Unit 5	Begin working on ELO 5 and portfolio
	LED Light Driver I/F 3.7 Unit 3	Compile the budget
		Buy components
SJ Du	Arduino control and programming Unit	
Plessis	2	Define all interfaces
	Battery charging with PWM I/F 1.7.1,	
	3.6, 3.5 Unit 2	Research for I/F responsible for
		List and price components needed for I/F
	LED light control with PWM Unit 3.7	responsible for
	Additional Trigger I/F 3.4 and 3.1 Unit 2	Work further on Functional Analysis
	HMI control with LEDs I/F 3.9 Unit 2	Begin working on ELO 5 and portfolio
		Submit and compile all documents
CF		
Greyling	Solar Charge Unit and PSU I/F 1.0 Unit 1	Functional architecture
	Battery I/F 4.1 Unit 1	Research for I/F responsible for
	220 V Mains Input (Optional) (no	
	longer included)	Compile the power budget
	Solar Panel I/F 1 Unit 1	Begin working on ELO 5 and portfolio
		List and price components needed for I/F responsible for

These responsibilities were discussed and agreed upon at the beginning of the semester, in some cases some members had much more work than others or were battling with their work load while

other members were more flexible, which lead to members swapping tasks in order to help each other. The group got together and continuously discussed each members work load and as mentioned above if the one member had to great a work load another member would take on some of that work load. All decisions were made unanimously and no member was taken advantage of during this project each member brought their side.

2.1.2 Project schedule

The project schedule can be seen in the timeline tabulated below in Table 2 as well as in Figure 1: Timeline, where the chart of the timeline can be seen.

Table 2: Timeline of project

Timeline	
17-Jul-17	Project initiation
10-Aug-17	Functional Analysis Test
10-Aug-17	Functional Analysis Complete 2 levels
14-Aug-17	Preliminary Design Complete
28-Aug-17	Work done as discussed in class in
	preparation for 30% demonstration
31-Aug-17	30% Completion Milestone
4-Sep-17	Finalize who is working on which part of
	the circuit
7-Sep-17	Order Components and finalize wiring
	diagram
28-Sep-17	Start Assembling Circuit
29-Sep-17	Buy battery and other remaining
	components
2-Oct-17	Buy other remaining components
3-Oct-17	Start building
4-Oct-17	50% Completion Milestone
4-Oct-17	Portfolio and documentation up to date
	due for submission
9-Oct-17	Prof Holm 50% Evaluation in class
27-Oct-17	80% Completion Milestone

10-Nov-17	100% Completion Milestone
16-Nov-17	Demonstration

Figure 1: Timeline

2.1.3 Progress tracking

Each week the projects progress was checked with a RAG status and a description of why the project is in risk if it should be an amber or red status. The project progress tracking can be seen in the Table 3 here below.

Table 3: Project progress tracking and status

		Р	roject Statu	ıs	
	%				
	Complete	Green	Amber	Red	Description
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
					Some confusion as to what has to
Week 6	20%				be done for the 30% milestone
Week 7	30%				
Week 8					
Week 9					
					Although all the work is done, the
Week					group is a bit late on documenting
10	50%				all the factors in the design

	1	1	
			There is still clarity on the USB port
			and another group member has
Week	Start		been put in charge of the USB port
11	building		as well as the opt coupler
			Only the LED has been built and
			tested there seems either to be a
Week			problem with the ciruit or the
12			Arduino code.
			The USB chips have not arrived yet
			and the correct diodes must be
			bought for the charger and the
Week			correct capacitors for the DCDC
13	60%		convertors
Week			The charger and DCDC have been
14			built but don't seem to work.
			The lecturer has been consulted
			and it has been discovered that
			the DCDC chips and USB chips are
			faulty, these devices are now on
Week			track the charger also works it just
15			does not want to switch.
			All the documentation has been
			corrected and most part have
			been integrated the charger just
			does not want to switch and the
Week			lecturer will be consulted on this
16	80% demo		matter.
			Finalizing documentation and the
			charging circuit now works, just
Week			making the circuit more
17	100% demo		presentable.
Week	Project		Project finalized and ready for the
18	finished		final demonstration

2.2 Risk / Mitigation Register (Team)

Table 4 shows the risks that were encountered during the timeline the project was designed and built in.

Table 4: Risk/ Mitigation

		_		_			_	M	
		Is		S			Re	it	
D		S	T	е			sp	i	
а	Description	u	у	V			on	g	
t	of Issue /	е	р	е		Mitigation /	sibl	a	notes on
е	Risk	/	е	r	Impact	Action	е	t	mitigation
	t	a Description	D s a Description u t of Issue / e	D s T a Description u y t of Issue / e p	D s T e a Description u y v t of Issue / e p e	D s T e a Description u y v t of Issue / e p e	D s T e a Description u y v t of Issue / e p e Mitigation /	D s T e sp a Description u y v on t of Issue / e p e Mitigation / sibl	DIsSReita Descriptionuyvspit of Issue /epeMitigation /sibla

N o			Ri s		i t			per so	e d	
	2		k *		У		Complete	n		
1	4 - A u g - 1 7 3 1	Confusion as to what is due for the 30% milestone	Is s u e	Project	3	Penalization for incomplete work	work up to where is possible and ask in Monday (28th) class for clarification	All me mb ers	-	
	A U g		.	P r o j e		Behind schedule	Order	All me		
2	1 7 3 1 - A u	Components not ordered	Ri sk	c t T e c h	3	may not finish project	components ASAP	mb ers		
3	g - 1 7 3 1	MOSFET or PSU unsure	Is s u e	i c a I T e	3	PSU does not work	Find someone to help	CF Gre ylin g		
	A u g -	The timeline to build	Ri	c h n i c		Do not complete project and get	Better time	All me mb		time continues to be an
4	7 3 1 - A	project	sk	I T e c h	2	penalized for it	management	ers		obstacle
5	u g - 1 7	Design not finished	Ri sk	n i c a I	5	Do not finish in time	Finish the design within the week, change focus to design	All me mb ers		

	3 1 - A			T e c h					
	и g - 1	Time components take to	Ri	n i c a		Do not have enough time to	Order components	All me mb	First components ordered
6	7 3 1 -	order	sk	I P	2	finish the project	with leniency	ers	received
	Α			r					
	и	Don't know		0					
	g -	what will happen if		j				All me	
	1	deadline is	Ri	e c			Unable to	mb	
7	7	not met	sk	t	4	Penalty	finish project	ers	will not be late
	3								
	1			Р					
	Ā			r					
	u			0					
	g	Help with	Is	j					
	-	the thermal	S	e			Determine	TE	
8	1 7	design of the LED	u e	c t	3	LED does not work	how the LED works	Car ter	
O	3	the LLD	C	·	,	LLD does not work	WOTKS	tei	
	1								
	-			Ρ					
	A			r					
	u g	Simulation	Is	o j				All	
	<i>-</i>	and wiring	s	e			Must do	me	
	1	not done for	и	С			within the	mb	
9	7	components	e	t	5	Deadline not met	week	ers	
	3 1	Datasheets and		T e					
	-	application		c					
	Α	notes must		h					
	и	be		n					
	g	downloaded	Is	i			Must to	All	
1	- 1	and added to the	s u	c a			Must to within the	me mb	
0	7	portfolio	e	I	5	Deadline not met	week	ers	
	3			T					
	1	Not sure		e			MPS design		
	- A	how to design a	Is s	c h			simulation for DCDC and	TE	
1	u	DCDC	s U	n			populate	Car	
1	g	convertor	e	i	3	Technical issue	portfolio	ter	

	- 1			c a					
	7			1					
	3			Τ					
	1			e					
	Ā			c h					
	u			n					
	g	Not sure	Is	i					
	-	how to	S	С				TE	
1	1	design an	и	a	_		5	Car	
2	7 3	LED driver	е	I T	3	Technical issue	Do research	ter	
	3 1			ı e					
	_			С					
	Α			h					
	и			n					
	\boldsymbol{g}	Not 100%		i				All	
	-	sure how	٠.	С		5 44 4 4 4		me	
1 3	1	the circuit looks	Ri sk	a	_	Build the circuit	Do rosooreb	mb	
3	7 3	IOOKS	SK	I T	5	incorrectly	Do research	ers	
	1			e					
	_			С					
	Α			h					
	и	Have		n					
	g	nothing to		i			6	SJ	
1	- 1	measure	D:	c		Dagama hahind	Get the solar	Du	
1 4	1 7	against at present	Ri sk	a I	5	Become behind schedule	panel to do testing on	Ple ssis	Test completed
7	3	present	J.K	, T	,	Schedule	testing on	3313	rest completed
	1			е					
	-			С					
	Α			h					
	и	PC board		n					
	<i>g</i> -	layout and the thermal		i		Cannot order		TE	
1	1	design of	Ri	c a		components		Car	No PC board
5	7	the LED	sk	I	3	before design	Do research	ter	layout
				Т		,			.,
	4			е					
	-			С					
	S			h					
	e n	The	Is	n i				SJ	
	p -	connectors	is s	ı C				Տյ Du	Connectors
1	1	on the solar	s U	а		Don't know how		Ple	found but are
6	7	panel	e	Ī	3	to use connectors	Do research	ssis	very expensive
	4			Ρ		The price of new			
1	-	Other	Ri	r		connectors are	Consult with	SJ	less expensive
7	S	connector	sk	0	3	expensive	lecturer	Du	connectors

- c 1 t 7	
7	
τ	
4 e	
- <i>c</i>	
S h	
e n p Switch Is i All Switch w	ıi+h
p Switch Is i All Switch w - between s c me diodes	1111
1 1 power input u a Consult with mb between	ı
8 7 components e 1 3 Technical issue lecturer ers supplies	
T	
4 e	
- C	
S h Will add there is 6	
e 220 V AC n there is a p input from Is i CF	
- mains s c Gre resource	
1 1 connection u a Consult with ylin (Optiona	
9 7 to circuit e l 2 Technical issue lecturer g Extra)	
Τ	
4 e	
- C	
S h	
e n p Is i CF	
p Is i CF - s c Gre	
2 1 Solar charge u a Consult with ylin	
0 7 unit circuit e l 3 Technical issue lecturer g	
Τ	
4 e	
- C	.1
S h Consulte e Unsure n MPS em	
e Unsure n MPS employee and make All and	pioyee
- pricing of c contact with me determine	ned the
2 1 components Ri a Mr de Klerk mb cost of	
1 7 MPS sk l 2 Over budget from MPS ers compone	ents
Τ	
4 e CF	
- C Gre	
S h ylin	
e n g, p i SJ	
- Arduino c Du	
2 1 connection Ri a Consult with Ple	
2 7 to charger sk l 3 Technical issue lecturer ssis	

				Τ					
	4			е					
	-			<i>c</i>				TE	
	S			h				Car	
	e			n				ter,	
	p	Arduino 		i				SJ	
_	-	connection	٠.	С				Du	
2	1	to LED light	Ri	a	_		Consult with	Ple	
3	7	driver	sk	I	3	Technical issue	lecturer	ssis	
	5			_					
	-			P		extra cost may			
	S			r		cause project to	Consult Ma		
	e	Courier cost		0		exceed the budget and the extra time	Consult Mr de Klerk at	All	
	p			j			MPS and the		
2	- 1	and time for	D:	e		courier takes may	finance at	me mb	
2 4	<i>1 7</i>	components from MPS	Ri sk	c t	2	delay the project	NWU		
4	/	JI UIII IVIPS	SK	τ	3	dangerously	NVVO	ers	
	5			e					
	_			С					
	S			h					
	e			n					
	р	Payment	Is	i				All	
	-	method for	s	С			Consult	me	
2	1	components	u	а			finance for	mb	
5	7	at MPS	e	Ī	2	Financial issue	project	ers	
				T			p. 0,000		
	6			е					
	_			С					
	S			h					
	е			n			Do more		
	р		Is	i			research on	CF	
	-		S	С			different	Gre	
2	1		и	а			kinds of usb	ylin	Different usb
6	7	USB chip	e	1	2	Technical issue	chips	g	charger
	2			Τ					
	3			е					
	-			С					
	S			h					
	е			n					
	p	some		i		Components not		All	
_	-	components		С		delivered with in	order all	me	_
2	1	still need to	Ri	a	_	time of	components	mb	Components
7	7	be ordered	sk	1	2	competition	ASAP	ers	ordered
	2	Due date for		P					
	3	50%		r			Ack for		
	-	completion		0 ;			Ask for	ΛIJ	
	S	moved		j			extension of time and	All	avtancian
2	e	ahead from 30 to 26	Ri	e c		50% Completion	complete	me mb	extension received till the
8	p -	September	sk	t	4	50% Completion not on time	work	ers	end of 27th
U	-	Schreimei	31	ι	4	not on time	WOIK	CIS	cha oj z/til

	1 7								
	2			Т					
	3			е					
	-			С					
	S			h					
	е	Schottky		n			Do more		
	р	diode		i			research on	CF	
_	-	sufficient for		С		Circuit will not	properties of	Gre	
2	1	power	Ri	a	_	work if diode is	different 	ylin	Correct diode
9	7	switch?	sk	I	3	insufficient	diodes	g	used
	4			P r					
	0	50%		0					
	С	milestone		i			Ве а	All	
	t-	may not be		e		Behind schedule	accurate as	me	50% milestone
3	1	up to	Ri	С		may not finish	possible with	mb	assessment
0	7	standard	sk	t	2	project	project	ers	was successful
				Τ					
				e					
	6			С					
	-			h					
	0			n :		DC+- DC	Final materia		
	c t-	cannot find the correct	ls c	i		DC to DC converter will not	Find a store that has the	TE	Found Ceramic
3	ι- 1	ceramic	s u	c a		be able to work	correct	Car	caps of the
1	7	caps	e	I	3	with polarized	ceramic cap	ter	correct value
_	1	caps	·	•	J	With polarized	ceramic cap		correct varae
	6			Р					
	-			r					
	0			0					
	С	schedule		j				Αll	
	t-	clash		е		Might not be able	Talk to Prof	me	Not needed to
3	1	between	Ri	C	_	to be at the	Holm about	mb	go As the group
2	7	LLAW 221	sk	t	2	assessment	a time slot	ers	got above 80%
	2			T					Find now shins
	6	DC to DC		e c					Find new chips and rebuild,
	-	converters		h					which was
	0	are not		n					done the
	С	working	Is	i					moment it was
	t-	because the	S	С			The DCDC	TE	discovered that
3	1	chips aren't	и	а			chips aren't	Car	the chips don't
3	7	working	е	1	3	Technical issue	working	ter	work.
				Τ					
	2	USB charger		e					
	6	does not		C					
	-	work	Is	h			The USB	TE	
3	0	because the chips aren't	5	n i			The USB chips don't	TE Car	Buy a USB port
3 4	c t-	working	u e	r C	2	Technical issue	work either	ter	сircuit
7	٠	working	·	C	_	recinited 1330c	WOIR CITIES	ici	Circuit

Note all risks where mitigated by the end of the Project.

2.3 Minutes of Meetings

The meetings that were held throughout the designing and building of the project.

Meeting 1

Date	8-Aug-17	
Time	14:00	
Chairman	<u>TE Carter</u>	
Attendance list	<u>TE Carter</u>	
	SJ Du Plessis	
	<u>CF Greyling</u>	

Agenda

Progress	Trac	cking		Progress on schedule
Issues	/	Risks	and	

Mitigations No risk identified

Decisions Functional Flow Diagram

Functional Architecture

Design

Specification of interfaces

Allocated

Actions work TE Carter Functional Flow Diagram

SJ Du

Plessis Specification of interfaces
CF Functional Architecture

Greyling Design

Meeting 2

Chairman	SJ Du Plessis
Time	13:00
Date	21-Aug-17

Attendance list <u>TE Carter</u>

SJ Du Plessis CF Greyling

Agenda

Progress Tracking <u>Progress on schedule</u>

Issues / Risks and

Mitigations No risk identified

Decisions Members work allocation

Allocated DC

Actions work TE Carter converter

LED

SJ Du

Plessis ARDUINO

Programming

to

DC

CF

Greyling Solar charge unit

Battery USB charger

Meeting 3

Date 24-Aug-17 **Time** 14:30

Chairman <u>CF Greyling</u>
Attendance list <u>TE Carter</u>
SJ Du Plessis

CF Greyling

Agenda

Progress Tracking 20% complete

Issues / Risks and

Mitigations Uncertainty of work due for 30% deadline

Decisions Portfolio ELO 5

ELO 8

Actions Allocate individual and group work between members

Agree to ask for clarification (in Monday 28th class) of work due up for

30% milestone

Meeting 4

Date 28-Aug-17 **Time** 11:30

Chairman SJ Du Plessis
Attendance list TE Carter

SJ Du Plessis CF Greyling

Take note this meeting was held with Prof Holm in order to clear up some uncertainties about the circuit

Agenda

Progress Tracking By

Issues / Risks and

By 07-Sept-17 30% Complete

Mitigations The solar panel connectors

The price of the solar panel connectors

Decisions How the circuit will look this can be seen in the Figure in this meeting

Actions Simulate and finalize the wiring diagram by 05-Sept-17

Create a list and order components by 07-Sept-17 The solar panel connectors is a MC4 connector

Meeting 5

Date 4-Sep-17 **Time** 8:00

Chairman <u>CF Greyling</u>
Attendance list <u>TE Carter</u>

SJ Du Plessis CF Greyling

Agenda

Progress Tracking <u>27%</u>

Issues / Risks and

Mitigations The connectors on the solar panel

Other connector are expensive

Switch between power input components

220 V AC input from mains connection to circuit

Solar charge unit circuit

Unsure about pricing of components MPS

Arduino connection to charger

Arduino connection to LED light driver

Decisions determine the price o components

Actions Make contact with MPS about component pricing

Meeting 6

Date 11-Sep-17 **Time** 8:00

Chairman <u>TE Carter</u>
Attendance list <u>TE Carter</u>

SJ Du Plessis CF Greyling

Agenda

Progress Tracking 30%

Issues / Risks and

Mitigations progress of project
Decisions EMC of project

PCB Layout
Design for DC to DC converters

Actions design for the DC to DC converter finalized

will use other way to lay out circuit than PCB

Meeting 7

Date 18-Sep-17 **Time** 8:00

Chairman SJ Du Plessis
Attendance list TE Carter
SJ Du Plessis
CF Greyling

Agenda

Decisions

Progress Tracking 40%

Issues / Risks and

Mitigations Risks 50% deadline Paperwork

Show of progress

Mitigation informed on what is due fir 50%

50% deadline requirements

State base diagram

Characterization

Actions stock taken of progress

begin work for deadline

Meeting 8

Date 23-Sep-17 **Time** 8:00

Chairman <u>CF Greyling</u>
Attendance list <u>TE Carter</u>
<u>SJ Du Plessis</u>
<u>CF Greyling</u>

Agenda

Progress Tracking <u>45%</u>

Issues / Risks and

Mitigations 50% deadline may not be complete Decisions Work allocation for 50% deadline

decided that we will complete work up until where we are giving an

honest representation of work progress
Will work in vacation starting Tuesday 12 pm

Actions Design module is set as priority

Meeting 9

Date 9-Oct-17 **Time** 8:00

Chairman <u>CF Greyling</u>
Attendance list <u>TE Carter</u>
<u>SJ Du Plessis</u>
<u>CF Greyling</u>

Agenda

Progress Tracking <u>50%</u>

Issues / Risks and Mitigations DC to DC converter not finding the correct ceramic caps

Decisions Continue building

Continue documenting

try to finish work before the exam

Actions general 50% assessment

Meeting 10

Date 16-Oct-17 **Time** 8:00

Chairman <u>TE Carter</u>
Attendance list <u>TE Carter</u>

<u>SJ Du Plessis</u>
<u>CF Greyling</u>

Agenda

Progress Tracking <u>60%</u>

50-60% assessment and feedback Monday 13:00 clash with LLAW

Issues / Risks and Mitigations class
Decisions Testability

safety

try to finish work before the exam

Actions mitigation of risk of assessment

Meeting 11

Date 19-Oct-17 **Time** 16:00

Chairman SJ Du Plessis

Attendance list TE Carter

> SJ Du Plessis **CF Greyling**

Agenda

Progress Tracking 60%

Issues / Risks and Mitigations Time for combined building limited

Decisions safety HIRA

formal lessons at an end

Monday resubmission for documentations

Actions Discuss safety in the project

single point of failure

Meeting 12

Date 26-Oct-17 Time 10:00

Chairman **CF Greyling Attendance list TE Carter** SJ Du Plessis

CF Greyling

Agenda

Progress Tracking 65%

Issues / Risks and Mitigations DC to DC converter chips blown, new circuit designed

charge controller circuit not working must rebuild

USB chips not functioning

new DC to DC converter circuit designed **Decisions**

> must re-solder charge controller circuit date set for 27th to continue building new design of USB charger decided on

Actions work on 27th

portfolio on design updates

Meeting 13

Date 27-Oct-17 Time 8:00

Chairman **TE Carter Attendance list** TE Carter

SJ Du Plessis **CF Greyling**

Agenda

Progress Tracking

Issues / Risks and Mitigations

80% milestone on the way

Charger does not want to switch

Decisions Work at home in the weekend

do more testing on the charge controller

assemble most of the components in the control panel

Actions do risk mitigation of the charge controller

update design portfolio and project management file

Meeting 14

Date09-Nov-17Time12:30ChairmanSJ Du PlessisAttendance listTE Carter

SJ Du Plessis CF Greyling

Agenda

Progress Tracking 90%

Issues / Risks and Mitigations 100% demo on the way and final demo

The coding is not yet complete and a lot of documentation still needs to be done.

Decisions Work on the portfolio 11-Nov-2017

Submit portfolio to demi on 13-Nov-2017 Improve portfolio 14-Nov to 16-Nov-2017

Do final tests on 11-Nov-2017

Actions Do final documentation and testing 11-Nov-2017

Send portfolio to demi 13-Nov-2017

Correct and prepare portfolio for submission.

2.4 TE Carter: Excel Project Management Documents (Member – Refer to Excel Spreadsheet in Appendix B)

Take note that the whole ELO 8 Project management spreadsheet can be seen on the CD.

2.4.1 Expertise

- Documentation
- Hardware

2.4.2 Parts of the circuit the member is responsible for:

- DCDC Convertor 1 I/F 2.0 Unit 3
- DCDC Convertor 2 I/F 2.2 Unit 3
- DCDC Convertor 3 I/F 2.4 Unit 3
- Phone Charger I/F 5.2 Unit 5
- LED Light Driver I/F 3.7 Unit 3

2.4.3 Unit Breakdown (Functional Architecture of Circuits)

DCDC Convertor

Phone Charger

Figure 2: The Unit Breakdown for Member A.

2.4.4 Work Breakdown

Table 5: Work breakdown for Member A

Function responsible for	Additional Tasks
DCDC Convertor 1 I/F 2.0 Unit 3	Functional analysis diagram
DCDC Convertor 2 I/F 2.2 Unit 3	Research for I/F responsible for
DCDC Convertor 3 I/F 2.4 Unit 3	List and price components needed for I/F responsible for
Phone Charger I/F 5.2 Unit 5	Begin working on ELO 5 and portfolio
LED Light Driver I/F 3.7 Unit 3	Compile the budget
	Buy components

2.4.5 Timeline

Table 6: Timeline for Member A

Date	Description
17-Jul-17	Project initiation
08-Aug-17	Design Functional Analysis
10-Aug-17	Functional Analysis Test
14-Aug-17	Preliminary Design Complete
	Work done as discussed in class in preparation for 30%
28-Aug-17	demonstration
31-Aug-17	20% Completion Milestone
04-Sep-17	Research and design wiring diagram for components
06-Sep-17	Finalise wiring diagram and make list of components
07-Sep-17	Order components
08-Sep-17	30% Completion Milestone
28-Sep-17	Begin Assembling Components

So Called Engineers

30-Sep-17	50% Completion Milestone
27-Oct-17	80% Completion Milestone
10-Nov-17	100% Completion Milestone
16-Nov-17	Demonstration

2.4.6 Progress Tracking

Table 7: A progress tracking of Member A

	% of work allocated to member			
Week		Individual	progress	statement
		Green	Amber	Red
Week 1	100%			
Week 2	100%			
Week 3	100%			
Week 4	100%			
Week 5	100%			
Week 6	100%			
Week 7	100%			
Week 8	100%			
Week 9	100%			
	Fallen behind on documentation for 50%			
Week 10	demo			
	Components have arrived, behind on			
Week 11	building			
Week 12	The LED has been built and tested with the signal generator and with another person's code.			

Week 13	The LED has been soldered onto the Vero board and does not work with the Arduino code		
Week 14	No other components have been built still waiting for USB chips and finding the correct capacitors for the DCDC.		
Week 15	The DCDC has been built but does not work, consulted with lecturer and found the chips were blown, the same is now true for the USB chips could be due to soldering them on. New DCDC chips have been used by classmates and USB ports have been bought because to reorder will take too long		
Week 16	All sub circuits work for this member the interface document has been updated but the lecturer will be asked if it is correct and the functional flow diagram will also be redone and the lecturer will be asked if the new one is correct. (80% demo)		
Week 17	Need to update all documentation and conduct tests on the whole system and record and document the information (100% demo).		
Week 18	Ensure all documents are up to date (Project ends).		

2.4.7 Experience Report

For the year 2017 it was required of my group and myself to design a solar system and battery system to power an alarm. In this system there would be a USB cell-phone charging port and an LED driver. It was not compulsory to add sensors and a 220 V AC source to our system, therefore the team decided to see how well time was managed before deciding on a 220 V AC source and sensor. As a member of the "So called engineers" group it was my job to research and build DCDC Buck convertors, the USB port and the LED driver circuit. At this present moment the only experience I have is in simulating these components (as the components have only arrived recently as can be seen in the progress report above), documenting ideas and choices and drawing up a functional flow diagram. Once I have completed this module I will have experience in connecting

a DCDC convertor circuit, LED driver circuit and USB port circuit, as well as using a heat-sink to reduce the LED temperature when operating and using other devices to bring down the temperature of components. The experience part of this module will only really begin once building of the circuits begins.

The rest of the team will be doing other parts of the circuit, which can be seen above in Table 3 it shows what each member is involved with for this project and the additional tasks they have to do for this module.

2.5 SJ du Plessis: Excel Project Management Documents (Member – Refer to Excel Spreadsheet in Appendix B)

2.5.1 Expertise

- Documentation and characterization
- Software
- Hardware

2.5.2 Parts of the circuit the member is responsible for

- Arduino (programing) Unit 2.0
- Human Interface Machine Unit I/F 3.9
- Solar Panel sectional test I/F 1

2.5.3 Unit Breakdown (Functional Architecture of Circuits)

Figure 3: Unit Breakdown for Member B

2.5.4 Work Breakdown

Table 8: Work breakdown for Member B

Function responsible for	Additional Tasks
Arduino control and programming Unit 2	Specification of Interfaces
Battery charging with PWM I/F 1.7.1, 3.6, 3.5 Unit 2	RF Flow combined block diagram
LED light control with PWM Unit 3.7	PV panel characterization

Additional Trigger I/F 3.4 and 3.1 Unit 2	Work further on Functional Analysis
HMI control with LEDs I/F 3.9 Unit 2	Battery charging (PWM)
	Begin working on ELO 5 and portfolio
	Submit and compile all documents

2.5.5 Timeline

Table 9: Timeline for Member B

Date	Description
17-Jul-17	Project initiation
10-Aug-17	Functional Analysis Test
12-Aug-17	Specification of Interfaces
14-Aug-17	Preliminary Design Complete
	Work done as discussed in class in preparation for 30%
28-Aug-17	demonstration
31-Aug-17	30% Completion Milestone
4-Sep-17	PV panel characterized
30-Sep-17	50% Completion Milestone
27-Oct-17	80% Completion Milestone
10-Nov-17	100% Completion Milestone
16-Nov-17	Demonstration

2.5.6 Progress Tracking

Table 10: A progress tracker for Member B

	% of work allocated to member completed	Green	Amber	Red	Description
Week 1	100%				
Week 2	100%				
Week 3	100%				
Week 4	100%				
Week 5	100%				
Week 6	100%				
Week 7	100%				
Week 8	100%				
Week 9	100%				
	50%				
Week	demonstratio				Fallen behind on documentation for 50%
10	n				demo
Week	Need to start				Components have arrived behind on
11	building				building

Week			
12	60%		Test week
Week 13			Helped with LED layout and soldered to Vero board. Small amount of diming with Arduino. Arduino switching correctly on oscilloscope.
Week 14			Still not sure what was wrong with the LED circuit. Characterized the Solar panel in the sun and compared results against datasheet
Week 15			Coded on main program, still wanting on other circuits to test them for functionality and to finalize the code. Focused on other subjects practical's and tests.
Week 16	80% demo		LED circuit fault found. LED current limited with to high resistance. Replaced 1k ohm resistor with two 1.2 ohm 5W resistors. Code dimes the LED. Helped with the DCDC convertors as well as the charge circuit. The charge circuits had an fault and the layout on the Vero board made it hard to connect loads. Redesign the layout and made the load connects easier.
Week 17	100% demo		Document the new designs and finalize the programming of the Charger and LED.
Week 18	Project ends		Finalize final errors and final test on designs

2.5.7 Experience Report

It was required from our group to design a power system for an alarm system with solar - and AC power from the grid. The solar panel and AC power supply deliver power to the alarm system, highest priority, but also to an LED driver, Arduino and mobile phone charging. The solar panel and power supply also charge a lead acid battery with a p-MOSFET and PWM from the Arduino. The Arduino controls the charge state in which the battery operates. When the solar and AC power fails away the battery is the power source to the alarm system. The LED driver is controlled by a n-MOSFET and PWM from the Arduino. The Arduino controls the power output of the LED to minimize power usage. It is my job to code the Arduino and control the battery charging and LED driver with PWM. When only the battery is supplying power to the system the mobile phone charging is disabled with the Arduino. The battery has three modes namely normal -, trickle - and discharge. Between a certain voltage range, the battery is charge normally with 100% duty cycle but when the voltage is above the range the battery is charge just to keep it from discharging, thus with a lower duty cycle. If the battery delivers power it is in the discharge mode. The Arduino

controls the HMI which is kept basic with LEDs. The inputs values are uses to change the LEDs colours for different representations.

I have software experience from high school and was asked by fellow members if it is possible for me to do the program because they do not feel comfortable to do it. After the module I will have gained experience in group work and programming of an Arduino and how to protect the Arduino as well as better understand on how to manage a project from the beginning to the end with the help of a great mentor.

The true experience will be gained when the manufacture of the system starts. The work allocation of the other members can be seen in Table 3.

2.6 CF Greyling: Excel Project Management Documents (Member – Refer to Excel Spreadsheet in Appendix B)

2.6.1 . Expertise

- Hardware
- Documentation
- Taking notes
- Software such as
 - o Excel
 - o word
 - o RF Flow

2.6.2 Parts of the circuit the member is responsible for:

- Solar panel Interface 1.0
- Mains (If applicable) Interface 6.0 and 6.1
- Diode circuit power switching Interface 1.0.0
 - Interface 1.0.1
 - Interface 1.0.2
 - Interface 1.0.3
- Charge controller Interface 4.0 (to Arduino Interface 1.7 with SJ du Plessis)
 - O Voltage sensor Interface 4.1.1 (to Arduino Interface 1.7.1 with SJ du Plessis)
 - O Current sensor Interface 4.1.2 (to Arduino Interface 1.7.2– with SJ du Plessis)
- Battery Interface 4.1

2.6.3 Unit Breakdown (Functional Architecture of Circuits)

The individual unit breakdown can be seen in the Figure 4 below.

Figure 4: Unit breakdown for Member C

The diode interface numbering revers to Figure 5 below.

Figure 5: Diode referencing Interface architecture breakdown

2.6.4 Work Breakdown

Table 11: Work Breakdown for Member C

Function responsible for	Additional Tasks
Solar Charge Unit and PSU I/F 4.1	Functional architecture
Battery I/F 2	Research for I/F responsible for
220 V Mains Input (Optional) I/F 6	List and price components needed for I/F responsible for
Solar Panel I/F 1	Compile the power budget
	Work on ELO 5 and portfolio
	Document team work
	Document meetings
	Document requirements
	Simulations and Circuit diagrams of I/F responsible for

2.6.5 Timeline

Table 12: Timeline for Member C

Timeline	
17-Jul-17	Project initiation
10-Aug-17	Functional Analysis Test
10-Aug-17	Functional Analysis Complete 2 levels

14-Aug-17	Preliminary Design Complete
28-Aug-17	Work done as discussed in class in preparation for 30%
	demonstration
29-Aug-17	Complete research aspect
30-Aug-17	Finalize first component list
31-Aug-17	30% Completion Milestone
4-Sep-17	Finalize who is working on which part of the circuit
7-Sep-17	Order Components and finalize wiring diagram
28-Sep-17	Start Assembling Circuit
29-Sep-17	Buy battery and other remaining components
2-Oct-17	Buy other remaining components including diodes
3-Oct-17	Start building
4-Oct-17	Compile portfolio documentation
4-Oct-17	50% Completion Milestone
4-Oct-17	Portfolio and documentation up to date due for
	submission
9-Oct-17	Prof Holm 50% Evaluation in class
16-Oct-17	Feedback on 50% evaluation
16-Oct-17	60% Completion milestone
17-Oct-17	Solder charge controller
21-Oct-17	Solder final circuit
23-Oct-17	Test diode circuit
27-Oct-17	80% Completion Milestone
3-Nov-17	Test charge controller circuit
8-Nov-17	Integrate circuit
8-Nov-17	Trouble shoot circuit
9-Nov-17	Re-solder circuit after mistake was discovered
9-Nov-17	Integrated circuit test
10-Nov-17	100% Completion Milestone
15-Nov-17	Complete documentation
16-Nov-17	Demonstration

17-Nov-17 Hand in Portfolio and ELO5 documentation

2.6.6 Progress Tracking

From the documentation in excel the following work progress tracking is done using the RAG status.

Table 13: A progress tracker for Member C

		Individual progress Status		gress	
	% of work allocated to member completed	Green	Amber	Red	Notes
Week 1	100%				
Week 2	100%				
Week 3	100%				
Week 4	100%				
Week 5	100%				
Week 6	100%				
Week 7	100%				
Week 8	100%				
Week 9	100%				93% on evaluation from lecturer
Week 10	Fallen behind on documentati on for 50% demo				components have arrived but behind on building schedule
Week 11	Components have arrived behind on building				redesign circuit without mains 220V power supply
Week 12					redesign circuit without mains 220V power supply Correct Schottky diodes must be
Week 13	60%				bought for the power supply management Learn how to solder. Built the charge controller circuit and the diode circuit.
Week 14					Ready for testing next week. Discovered mistake in diode circuit,
Week 15					unsolder main components from board, re-solder correct circuit, use node checking. Diode circuit fixed and working, solar panel tested and working, battery tested and working. Test Arduino with charging switch.

Week 16	80% demo		Documentation on track. Diode is switching the circuit. Battery working. Solar Panel working. Charge controller functional but will not switch correctly. Ask Prof if the ground is where the mistake is. Therefore not all individual components working and not on track for 80% milestone. Would rate work at 80% of the 80% milestone.
Week 17	100% demo		Test integrated system. Document the testing. Complete documentation.
Week 18	Project ends		Ensure all documentation is complete

2.6.7 Experience Report

Our team consisting of TE Carter, SJ du Plessis and CF Greyling are required to design and build a solar powered alarm system for the module INEM 327 in the second semester 2017. The alarm panel and motion sensors is the responsibility of the REII 327 student, however it is expected of our team to provide the REII students RaspberryPi with 12 V and 6 Watt as agreed upon in the interface 3.5. For the system there will be either three or four power sources, firstly the 40W solar panel that will be the primary power source and will load the battery. The second source is the battery that will act as power source at night or when the solar panel does not have sun. The last and optional power sources is the mains power which is a 220 V AC power source therefore it will need a transformer to convert the power to DC 12 V source this is very expensive. This will only be added on if there is still finance and time left at the final stages of the project, as the mains would not be used as primary source at any stage it is a backup for the system if both the solar panel and the battery is incapable of acting as power source.

For the system the charge of the battery will be controlled with pulse width modulation (PWM), the PWM is controlled with Arduino for which SJ Du Plessis is responsible, while I am responsible for the Charge controller and the Voltage and Current sensors that will be used to do the calculations with for the PWM with the Arduino this interface between the Charge controller and the Arduino is interface 1.7, the voltage sensor interface with the Arduino input is interface 1.7.1 and the current sensor interface with the Arduino input pin is interface 1.7.2. For the PWM charging algorithm the set point is changes automatically according to the battery voltage. During the charge the amount of charge current is determined by the difference between the battery voltage and the charge set voltage. The Arduino will then give a high or low output the p channel

MOSFET that form part of the charge controller depending on the status. Therefore the battery will be charged with treacle charge.

For the system lightning protection is added in the form of a Transorb and fuses for thither circuit protection from spikes are added at the battery and the solar panel which is part of my responsibility for the project. Thither more I am responsible for the switching between power sources, this is done by adding Schottky diodes throughout the circuit so that the power is firstly pulled from the solar panel and if that should drop below 14 V it will start tapping power from the battery if the voltage drops below 12V then it will start getting power from the mains (in the case that we should add the mains power source). Thither more I am responsible for the documentation of team work and the taking of notes during class for the subject. In the system there is also a USB cell-phone, DC-DC buck converter charger and LED driver this is the responsibility of TE Carter. While the other responsibility of SJ du Plessis is to build and research the Optocoupler for the circuit.