ANSC 446 / IB 416 Population Genetics Exam 1, Sept. 19, 2008

Name				

(5 pages) Please show decimals rounded to 4 significant digits. Show your work or describe your logic to earn partial credit for incomplete answers.

- (9) 1. A survey in one state finds that the proportion of newborn infants who have the recessive autosomal disease cystic fibrosis is 1 in 2000.
 - (3) a) What is the estimated frequency of this disease allele?

q = P(a) = square root of 1/2000 = 0.02236

(3) b) What proportion of individuals would be carriers of the disease?

 $P(carriers) = 2pq = 2 \times P(A) \times P(a) = 2 \times (1-0.02236) \times (0.02236) = 0.04372$

(3) c) Assuming a random-mating population, what proportion of matings would be between two carriers?

 $(P(carriers))^2 = 0.04372^2 = 0.001911$

(15) 2. Assume that the following mtDNA sequences were found in four different individuals sampled from a population.

AATCGAGACTTTAGT ATTCCAGATTTAAGC ATTCCAGATTTAAGC AATTGAGACTTTAGT

- (3) a) How many sites are segregating? 6
- (3) b) What proportion of nucleotide sites differ between the first and second sequences? 5/15 = 0.3333
- (3) c) How many transitions are present between the first and second sequences? 2
- (6) d) Estimate the population nucleotide diversity from this sample.

Three unique sequences: A (sequence 1), B (sequences 2, 3), C (sequence 4) Frequencies P(A) = 0.25, P(B) = 0.5, P(C) = 0.25 πij for comparisons: A-B 5/15 = 0.3333, A-C 1/15 = 0.06666, B-C 6/15 = 0.4

```
\pi-hat (estimate) = (N/(N-1)) Σ (pi X pj) X \piij
= 4/3 X [(2 X 0.25 X 0.5 X 0.3333) + (2 X 0.25 X 0.25 X 0.06666) + (2 X 0.5 X 0.25 X 0.4)]
= 4/3 X (.08333 + 0.008333 + 0.1)] = 0.2555
```

(6) 3. A population of caracals was sampled to determine the weight of adult males. A normal distribution was present in which the arithmetic mean weight of the sampled caracals was 20 kg, with standard deviation of 5 kg.

Hint: draw a bell shaped curve

(3) a) What proportion of adult male caracals would be expected to weigh 29.8 kg or more?

29.8 is 9.8 kg above the mean. 9.8/5 = 1.96 standard deviations; 95% of values fall within 1.96 sd's of the mean, only 5% are more extreme than this, with half above and half below. So **0.025** of adult male caracals would be > 29.8 kg.

(3) b) Among 200 adult male caracals, how many individuals would be expected to weigh between 15 and 25 kg?

This range of one standard deviation above and below the mean in a normal distribution includes 68% of samples; 0.68 X 200 = 136 adult male caracals.

- (16) 4. Red-green color blindness in humans is an X-linked recessive trait present in 7% of males in the United States. Assuming Hardy Weinberg Equilibrium:
 - (3) a) What would be the expected frequency of the trait in females?

```
P(Xa) = 0.07; in females P(trait) = P(Xa)^2 = 0.0049
```

(3) b) What would be the expected frequency of carriers among females?

```
Female heterozygotes are carriers, with P(het) = 2 \times P(Xa) \times P(X_A) = 2 \times (0.07) \times (1-0.07) = 2 \times 0.07 \times 0.93 = 0.1302
```

(3) c) Alice is a daughter born to a father with normal vision and a mother who is a carrier. Using just this information, what is the probability that Alice is also a carrier?

```
Hint: draw Punnett square. P(carrier) = 0.5
```

(7) d) As an adult, Alice has four sons who all have normal vision.

Using information regarding her ancestors and descendants, what is the (posterior or Bayesian) probability that Alice is a carrier?

$$P(X_AX_a) =$$

$$\frac{(P(4|X_A|sons)|given|X_A|X_a)*P(X_A|X_a)}{[(P(4|X_A|sons)|given|X_A|X_a)*P(X_A|X_a)] + [(P(4|X_A|sons)|given|X_A|X_A)|X|P(X_A|X_A)]}$$

$$= \frac{(.5)^4 * 0.5}{((.5)^4 * 0.5) + (1 * 0.5)}$$

$$= 0.03125 / (0.03125 + 0.5) = 0.05882$$

(3) 5. Four babies were born in a hospital on the same night, and their blood groups were later found to be O, A, B and AB. The four pairs of biological parents were:

Assign the four babies to their correct parents. Indicated next to parents

(2) 6. What is the difference between a Punnett square and a unit square?

A Punnett square is used by biologists to determine the probability of offspring having a particular genotype when **two individuals** mate.

A unit square is a square with all sides equaling one, which is used to show frequencies of alleles and genotypes in a **population**.

(9) 7. Coat color in horses is determined by multiple alleles. A complete Black horse (C1 black horse with black mane and tail) is dominant to a Bay horse (C2 brown horse with black legs, mane and tail) and a Mahogany Bay. A Bay is dominant to a Mahogany Bay (C3 brown horse with black roots, legs, mane, and tail). Your sample has 1000 horses (Black, Bay, and Mahogany Bay).

Color	Observed Number
Black	360
Bay	150
Mahogany Ba	ay 490

Estimate the allele frequencies for C1, C2, and C3.

Hint: draw a unit square

$$P(C3)$$
 = square root of 490/1000 = 0.7

$$P(C2) = (square root of 640/1000) - P(C3) = 0.8-0.7 = 0.1$$

$$P(C1) = 1 - P(C2) - P(C3) = 1 - 0.7 - 0.1 = 0.2$$

(5) 8. An AFLP marker in xantusid lizards was found to be heterozygous in 80 lizards and homozygous in 10 lizards.

Estimate the effective number of alleles at this marker.

$$AE = 1 / (1-(80/90)) = 1/(1-0.8888) = 1/.1111 = 9$$
 alleles

(16) 9. A survey of MN blood type frequencies was conducted using samples from 400 Navaho in New Mexico. The phenotypic results were:

(3) a. What is the frequency of the M allele?

$$P(M \text{ allele}) = (336 + (48/2)) / 400 = 0.9$$

(3) b. What is the frequency of the N allele?

$$P(N \text{ allele}) = (16 + (48/2)) / 400 = 0.1$$

(6) c. What are the expected genotypic frequencies under Hardy-Weinberg equilibrium?

$$MM = 0.9^2 = 0.81$$
 $MN = 2 \times 0.9 \times 0.1 = 0.18$
 $NN = 0.1^2 = 0.01$

(4) d. Using a chi-square (χ 2) test, are the observed genotypes in the sampling consistent with Hardy-Weinberg equilibrium?

Expected: MM 0.81 X 400 = 324, MN = 0.18 X 400 = 72, NN = 0.01 X 400 = 4
$$\Sigma ((O-E)^2/E) = [(336-324)^2/324] + [(48-72)^2/72] + [(16-4)^2/4]$$

$$= 0.4444 + 8 + 36 = 44.44$$

Since 44.44 > 3.84, we conclude that the population significantly differs from Hardy Weinberg expectations

Potentially useful chi square critical values.				
Degrees of freedom	P value = .05			
1	3.84			
2	5.99			
3	7.81			
4	9.49			

- 4) 10. Give the best definition for the following terms:
 - (2) a) Synonymous mutation

A nucleotide substitution in a codon that does not alter the amino acid coded

(2) b) Transversion (mutation)

A substitution mutation between a purine and a pyrimidine, or vice versa

(15) 11. Two populations of cattle were sampled and found to have the following allele frequencies for two SNP sites:

	<u>Site 1</u>		<u>S</u>	<u>Site 2</u>	
	G	С	G	Α	
Ten Asian cattle	.20	.80	.30	.70	
Forty African cattle	.60	.40	.35	.65	

(3) a) Estimate the mean allele frequency of G at Site 1.

Mean P(G) =
$$(0.2 \times 10/50) + (0.6 \times 40/50) = 0.04 + 0.48 = 0.52$$

(8) b) Calculate genetic identity and its three components for Site 1.

$$J_{xi} = 0.2^2 + 0.8^2 = 0.04 + 0.64 = 0.68$$

$$J_{yi} = 0.6^2 + 0.4^2 = 0.36 + 0.16 = 0.52$$

$$J_{xiyi} = (0.2 \times 0.6) + (0.8 \times 0.4) = 0.12 + 0.32 = 0.44$$

$$I = 0.44/((0.68 \times 0.52)^0.5)) = 0.44/0.5946 = 0.7399$$

(4) c) Estimate Nei's standard genetic distance between the two cattle populations at Site 1.

$$D = -ln(I) = -ln(0.7399) = 0.3011$$