G(x)	a_k
$(1+x)^n = \sum_{k=0}^n C(n,k)x^k =$	C(n,k)
$1+C(n,1)x+C(n,2)x^2+\cdots+x^n$	
$(1+ax)^n = \sum_{k=0}^{\infty} C(n,k)a^k x^k =$	$C(n,k)a^k$
$1 + C(n,1)ax + C(n,2)a^{2}x^{2} + \cdots + a^{n}x^{n}$	$O(n, \kappa)u$
$\frac{\cdots + a^n x^n}{(1+x^r)^{n/r} = \sum_{k=0}^{n/r} C(n,k) x^{rk} =}$	
$1 + C(n,1)x^{r} + C(n,2)x^{2r} + \cdots + x^{n}$	$C(n, k/r)$ if $r \mid k; 0$ otherwise
$\frac{1-x^{n+1}}{1-x} = \sum_{k=0}^{n} x^k =$	
$\kappa = 0$	1 if $k \leq n$; 0 otherwise
$1 + x + x^2 + \dots + x^n$	
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$	1
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$ $\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^k x^k = \dots$	a^k
$1 + ax + a^2x^2 + \cdots$	te .
$\frac{1}{1-x^r} = \sum x^{rk} =$	1 if $r \mid k$; 0 otherwise
$1 + x^r + x^{2r} + \cdots$	
$\frac{1 + x^r + x^{2r} + \cdots}{\frac{1}{(1 - x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \cdots}$	k+1
$\frac{1+2x+3x^2+\cdots}{\frac{1}{(1-x)^r}} =$	
$(1-x)^r - \sum_{k=0}^{\infty} C(n+k-1,k)x^k = 0$	C(n+k-1,k) = C(n+k-1,n-1)
$\frac{1 + C(n,1)x + C(n+1,2)x^2 + \cdots}{\frac{1}{(1+x)^n}} =$	
$\sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k =$	$(-1)^k C(n+k-1,k) = (-1)^k C(n+k-1,n-1)$
$1 - C(n,1)x + C(n+1,2)x^2 - \cdots$	
$\frac{1 - C(n, 1)x + C(n + 1, 2)x^{2} - \dots}{\frac{1}{(1 - ax)^{r}}} =$	
$\sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k = 1 + $	$C(n+k-1,k)a^{k} = C(n+k-1,n-1)a^{k}$
$C(n,1)ax + C(n+1,2)a^2x^2 + \cdots$	1
$C(n,1)ax + C(n+1,2)a^{2}x^{2} + \cdots$ $e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} =$	$\underline{1}$
$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$\frac{1}{k!}$
$ \frac{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots}{\ln(1+x)=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}x^k}{k}} = $	$(-1)^{k+1}$
$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	$\frac{(-1)^{k+1}}{k}$

Table 1: Useful Generating Functions.