Forecasting Inflation in Emerging Markets Using Phillips Curve and Alternative Time Series Models

Research Paper by A. Özlem Önder Presentation by Zach Winship and Atharv Jagtap

Philips Curve

Decomposing Our Discussion

Models Used in the Paper

ARIMA, VAR, VECM, Naive

02 Introduction to Paper
Historical Context

Forecasting
Inflation in Turkey
Why Forecasting Inflation is
Important for Monetary Policy

- Check for Stationarity (ADF Test)
- Transform the Series if Needed
- ACF/PACF Plots to Identify p and q
- Fit the Model

$$y_t = c + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- Check for Stationarity (ADF Test)
- Transform the Series if Needed
- ACF/PACF Plots to Identify p and q
- Fit the Model

$$y_t = c + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- Check for Stationarity (ADF Test)
- Transform the Series if Needed
- ACF/PACF Plots to Identify p and q
- Fit the Model

$$y_t = c + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- Check for Stationarity (ADF Test)
- Transform the Series if Needed
- ACF/PACF Plots to Identify p and q
- Fit the Model

$$y_t = c + \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

What is a Vector Autoregression?

VAR(1) Example (N = 3)

- M1 = Currency in Circulation + Demand Deposits
- CPI is used as an example for Price Level

VAR(1) Example (N=3)

- M1 = Currency in Circulation + Demand Deposits
- CPI is used as an example for Price Level

VAR(1) Example (N = 3)

- M1 = Currency in Circulation + Demand Deposits
- CPI is used as an example for Price Level

VAR(1) Example (N = 3)

$$x_{t,1} = \alpha_1 + \phi_{11}x_{t-1,1} + \phi_{12}x_{t-1,2} + \phi_{13}x_{t-1,3} + \epsilon_{t,1}$$

$$x_{t,2} = \alpha_2 + \phi_{21}x_{t-1,1} + \phi_{22}x_{t-1,2} + \phi_{23}x_{t-1,3} + \epsilon_{t,2}$$

$$x_{t,3} = \alpha_3 + \phi_{31}x_{t-1,1} + \phi_{32}x_{t-1,2} + \phi_{33}x_{t-1,3} + \epsilon_{t,3}$$

VAR(1) Simplied (N=3)

$$x_{t,1} = \alpha_1 + \phi_{11}x_{t-1,1} + \phi_{12}x_{t-1,2} + \phi_{13}x_{t-1,3} + \epsilon_{t,1}$$
$$x_{t,2} = \alpha_2 + \phi_{21}x_{t-1,1} + \phi_{22}x_{t-1,2} + \phi_{23}x_{t-1,3} + \epsilon_{t,2}$$

(STAT 510 – VAR Models, Penn State Online)

 $x_{t,3} = \alpha_3 + \phi_{31}x_{t-1,1} + \phi_{32}x_{t-1,2} + \phi_{33}x_{t-1,3} + \epsilon_{t,3}$

VAR(1) Simplied (N = 3)

$$\begin{pmatrix} x_{t,1} \\ x_{t,2} \\ x_{t,3} \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

$$x_{t,1} = \alpha_1 + \phi_{11}x_{t-1,1} + \phi_{12}x_{t-1,2} + \phi_{13}x_{t-1,3} + \epsilon_{t,1}$$

$$x_{t,2} = \alpha_2 + \phi_{21}x_{t-1,1} + \phi_{22}x_{t-1,2} + \phi_{23}x_{t-1,3} + \epsilon_{t,2}$$

VAR (1) Further Simplied (N = 3)

$$\begin{pmatrix} x_{t,1} \\ x_{t,2} \\ x_{t,3} \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

$$\mathbf{x}_t = \boldsymbol{\alpha} + \mathbf{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t$$

VAR (1) Further Simplied (N = 3)

$$\begin{pmatrix} x_{t,1} \\ x_{t,2} \\ x_{t,3} \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

$$\mathbf{x}_t = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t$$

VAR (1)

$$\mathbf{x}_t = \boldsymbol{\alpha} + \mathbf{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t$$

VAR(1) and VAR(2)

$$\mathbf{x}_t = \boldsymbol{\alpha} + \mathbf{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t$$

$$\mathbf{x}_t = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\Gamma}_2 \mathbf{x}_{t-2} + \boldsymbol{\epsilon}_t$$

VAR(1) and VAR(2) and VAR(p)

$$\mathbf{x}_t = \boldsymbol{lpha} + \mathbf{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t$$

$$\mathbf{x}_t = \alpha + \Gamma_1 \mathbf{x}_{t-1} + \Gamma_2 \mathbf{x}_{t-2} + \boldsymbol{\epsilon}_t$$

$$\mathbf{x}_t = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\Gamma}_2 \mathbf{x}_{t-2} + \ldots + \boldsymbol{\Gamma}_p \mathbf{x}_{t-p} + \boldsymbol{\epsilon}_t$$

VAR(1) and VAR(2) and VAR(p)

$$\mathbf{x}_t = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t$$

$$\mathbf{x}_t = \alpha + \Gamma_1 \mathbf{x}_{t-1} + \Gamma_2 \mathbf{x}_{t-2} + \boldsymbol{\epsilon}_t$$

$$\mathbf{x}_t = \boldsymbol{\alpha} + \boldsymbol{\Gamma}_1 \mathbf{x}_{t-1} + \boldsymbol{\Gamma}_2 \mathbf{x}_{t-2} + \ldots + \boldsymbol{\Gamma}_p \mathbf{x}_{t-p} + \boldsymbol{\epsilon}_t$$

N or P can be any Positive Integer!

Recall Our Papers Example

$$\begin{bmatrix} M1_t & \text{Interest Rate}_t & \text{CPI}_t \\ M1_{t-1} & \text{Interest Rate}_{t-1} & \text{CPI}_{t-1} \end{bmatrix}$$

$$P = 1$$
 and $N = 3$
Parameters = $P \times N^2 = 9$

P = 12 and N = 5

$$\begin{bmatrix} x_{1,t} & x_{2,t} & x_{3,t} & x_{4,t} & x_{5,t} \\ x_{1,t-1} & x_{2,t-1} & x_{3,t-1} & x_{4,t-1} & x_{5,t-1} \\ x_{1,t-2} & x_{2,t-2} & x_{3,t-2} & x_{4,t-2} & x_{5,t-2} \\ x_{1,t-3} & x_{2,t-3} & x_{3,t-3} & x_{4,t-3} & x_{5,t-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{1,t-12} & x_{2,t-12} & x_{3,t-12} & x_{4,t-12} & x_{5,t-12} \end{bmatrix}$$

P = 12 and N = 5

P = 12 and N = 5

P = 12 and N = 5

P = 12 and N = 5

P = 12 and N = 5

P = 12 and N = 5

P = 12 and N = 5
Parameters =
$$P \times N^2$$
 = ?

P = 12 and N = 5
Parameters =
$$P \times N^2 = 300!$$
?

Assuming N is Fixed. How to Choose P?

TABLE 11.2 Lag Order Selaction in VAR

VAR Lag Order Selection Criteria

Endogenous variables: GLA GRiv

Exogenous variables: C Sample: 1975Q1 2009Q2 Included observations: 129

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-569.9297	NA	24.32180	8.867127	8.911465	8.885142
1	-487.7585	160.5205	7.238637*	7.655170*	7.788185*	7.709217*
2	-487.2043	1.065406	7.636332	7.708594	7.930285	7.798671
3	-481.6932	10.42418*	7.460515	7.685165	7.995532	7.811274
4	-477.4558	7.883524	7.434896	7.681485	8.080528	7.843624
5	-476.7097	1.364911	7.822540	7.731933	8.219653	7.930104
6	-472.1276	8.240713	7.756466	7.722908	8.299304	7.957109
7	-470.3528	3.136797	8.034679	7.757408	8.422480	8.027640
8	-469.6694	1.186753	8.466835	7.808827	8.562576	8.115091

*indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schewarz information criterion

HQ: Hannan-Quinn information criterion

 Quantifies each variable's reaction to a shock from another variable

 Holds all other endogenous variables constant

Reveals Internal dynamics of VAR model

$$\frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}}$$

$$\begin{pmatrix} x_{t,1} \\ x_{t,2} \\ x_{t,3} \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

(Gonzalez-Rivera, 2013)

$$\frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}}$$

Note the Shock from this Example

$$\begin{pmatrix} x_{t,1} \\ x_{t,2} \\ x_{t,3} \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

(Gonzalez-Rivera, 2013)

$$\frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}}$$

Note the Shock from this Example

$$\begin{pmatrix} x_{t,1} \\ x_{t,2} \\ x_{t,3} \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

(Gonzalez-Rivera, 2013)

$$\frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}}$$

$$\underbrace{ \begin{array}{c} \text{M1} \\ \text{Interest Rates} \\ \hline \text{(Gonzalez-Rivera, 2013)} \end{array}}_{\text{(Gonzalez-Rivera, 2013)}} \begin{pmatrix} x_{t,1} \\ x_{t,2} \\ x_{t,3} \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

$$\frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}}$$

M1 Response to r_t Shocks over Time

$$\begin{array}{c} \text{M1} \\ \\ \text{Interest Rates} \\ \hline \\ \text{(Gonzalez-Rivera, 2013)} \end{array} \right) = \begin{pmatrix} \alpha_1 \\ x_{t,2} \\ x_{t,3} \end{pmatrix} + \begin{pmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

Impluse-Response Function

$$\frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}}$$

Impluse-Response Function

$$\frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}}$$

Interaction Between Every Variable in VAR Model

Impluse-Response Function

$$\frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}}$$

Interaction Between Every Variable in VAR Model

$$\begin{pmatrix} \frac{\partial x_{1,t+s}}{\partial \epsilon_{1,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{1,t}} & \frac{\partial x_{1,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{2,t}} & \frac{\partial x_{1,t+s}}{\partial \epsilon_{3,t}} = \frac{\Delta x_{1,t+s}}{\Delta \epsilon_{3,t}} \\ \frac{\partial x_{2,t+s}}{\partial \epsilon_{1,t}} = \frac{\Delta x_{2,t+s}}{\Delta \epsilon_{1,t}} & \frac{\partial x_{2,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{2,t+s}}{\Delta \epsilon_{2,t}} & \frac{\partial x_{2,t+s}}{\partial \epsilon_{3,t}} = \frac{\Delta x_{2,t+s}}{\Delta \epsilon_{3,t}} \\ \frac{\partial x_{3,t+s}}{\partial \epsilon_{1,t}} = \frac{\Delta x_{3,t+s}}{\Delta \epsilon_{1,t}} & \frac{\partial x_{3,t+s}}{\partial \epsilon_{2,t}} = \frac{\Delta x_{3,t+s}}{\Delta \epsilon_{2,t}} & \frac{\partial x_{3,t+s}}{\partial \epsilon_{3,t}} = \frac{\Delta x_{3,t+s}}{\Delta \epsilon_{3,t}} \end{pmatrix}$$

What is a Vector Error Correction Model?

VECM(p-1)

VECM also known as **VEC**

- Used when your process are Cointegrated with each other
- Very similar to VAR models
- Includes error correction mechanism
- Models in differences, not levels

Do I Have Cointegration?

M1 (Money Supply)

Error Correction Term

$$ECT_t = \phi_1 x_{1,t} + \phi_2 x_{2,t} + \phi_3 x_{3,t} - \mu$$

Recall the VAR(1) N = 3 Example

$$x_{t,1} = \alpha_1 + \phi_{11}x_{t-1,1} + \phi_{12}x_{t-1,2} + \phi_{13}x_{t-1,3} + \epsilon_{t,1}$$

$$x_{t,2} = \alpha_2 + \phi_{21}x_{t-1,1} + \phi_{22}x_{t-1,2} + \phi_{23}x_{t-1,3} + \epsilon_{t,2}$$

$$x_{t,3} = \alpha_3 + \phi_{31}x_{t-1,1} + \phi_{32}x_{t-1,2} + \phi_{33}x_{t-1,3} + \epsilon_{t,3}$$

Recall the VAR (1) N = 3 Example

$$x_{t,1} = \alpha_1 + \phi_{11}x_{t-1,1} + \phi_{12}x_{t-1,2} + \phi_{13}x_{t-1,3} + \epsilon_{t,1}$$

$$x_{t,2} = \alpha_2 + \phi_{21}x_{t-1,1} + \phi_{22}x_{t-1,2} + \phi_{23}x_{t-1,3} + \epsilon_{t,2}$$

$$x_{t,3} = \alpha_3 + \phi_{31}x_{t-1,1} + \phi_{32}x_{t-1,2} + \phi_{33}x_{t-1,3} + \epsilon_{t,3}$$

Take Difference

Recall the VAR (1) N = 3 Example

$$x_{t,1} = \alpha_1 + \phi_{11}x_{t-1,1} + \phi_{12}x_{t-1,2} + \phi_{13}x_{t-1,3} + \epsilon_{t,1}$$

$$x_{t,2} = \alpha_2 + \phi_{21}x_{t-1,1} + \phi_{22}x_{t-1,2} + \phi_{23}x_{t-1,3} + \epsilon_{t,2}$$

$$x_{t,3} = \alpha_3 + \phi_{31}x_{t-1,1} + \phi_{32}x_{t-1,2} + \phi_{33}x_{t-1,3} + \epsilon_{t,3}$$

Take Difference Add ECT
$$\,ECT_t$$

Add ECT $ECT_{t} = \phi_{1}x_{1,t} + \phi_{2}x_{2,t} + \phi_{3}x_{3,t} - \mu$

VECM Model

$$x_{t,1} = \alpha_1 + \phi_{11}x_{t-1,1} + \phi_{12}x_{t-1,2} + \phi_{13}x_{t-1,3} + \epsilon_{t,1}$$

$$x_{t,2} = \alpha_2 + \phi_{21}x_{t-1,1} + \phi_{22}x_{t-1,2} + \phi_{23}x_{t-1,3} + \epsilon_{t,2}$$

$$x_{t,3} = \alpha_3 + \phi_{31}x_{t-1,1} + \phi_{32}x_{t-1,2} + \phi_{33}x_{t-1,3} + \epsilon_{t,3}$$

Take Difference

Add ECT

$$\Delta x_{1,t} = \alpha_1^* + \gamma_1 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_1) + \phi_{11}^* \Delta x_{t-1,1} + \phi_{12}^* \Delta x_{t-1,2} + \phi_{13}^* \Delta x_{t-1,3} + \epsilon_{t,1}$$

$$\Delta x_{2,t} = \alpha_2^* + \gamma_2 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_2) + \phi_{21}^* \Delta x_{t-1,1} + \phi_{22}^* \Delta x_{t-1,2} + \phi_{23}^* \Delta x_{t-1,3} + \epsilon_{t,2}$$

$$\Delta x_{3,t} = \alpha_3^* + \gamma_3 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_3) + \phi_{31}^* \Delta x_{t-1,1} + \phi_{32}^* \Delta x_{t-1,2} + \phi_{33}^* \Delta x_{t-1,3} + \epsilon_{t,3}$$

$$\Delta x_{1,t} = \alpha_1^* + \gamma_1 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_1) + \phi_{11}^* \Delta x_{t-1,1} + \phi_{12}^* \Delta x_{t-1,2} + \phi_{13}^* \Delta x_{t-1,3} + \epsilon_{t,1}$$

$$\Delta x_{2,t} = \alpha_2^* + \gamma_2 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_2) + \phi_{21}^* \Delta x_{t-1,1} + \phi_{22}^* \Delta x_{t-1,2} + \phi_{23}^* \Delta x_{t-1,3} + \epsilon_{t,2}$$

$$\Delta x_{3,t} = \alpha_3^* + \gamma_3 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_3) + \phi_{31}^* \Delta x_{t-1,1} + \phi_{32}^* \Delta x_{t-1,2} + \phi_{33}^* \Delta x_{t-1,3} + \epsilon_{t,3}$$

Recall the Matrix Break Down from the VAR Model

$$\Delta x_{1,t} = \alpha_1^* + \gamma_1 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_1) + \phi_{11}^* \Delta x_{t-1,1} + \phi_{12}^* \Delta x_{t-1,2} + \phi_{13}^* \Delta x_{t-1,3} + \epsilon_{t,1}$$

$$\Delta x_{2,t} = \alpha_2^* + \gamma_2 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_2) + \phi_{21}^* \Delta x_{t-1,1} + \phi_{22}^* \Delta x_{t-1,2} + \phi_{23}^* \Delta x_{t-1,3} + \epsilon_{t,2}$$

$$\Delta x_{3,t} = \alpha_3^* + \gamma_3 (\beta_1 x_{t-1,1} + \beta_2 x_{t-1,2} + \beta_3 x_{t-1,3} + \mu_3) + \phi_{31}^* \Delta x_{t-1,1} + \phi_{32}^* \Delta x_{t-1,2} + \phi_{33}^* \Delta x_{t-1,3} + \epsilon_{t,3}$$

Recall the Matrix Break Down from the VAR Model

$$\begin{pmatrix} \Delta x_{1,t} \\ \Delta x_{2,t} \\ \Delta x_{3,t} \end{pmatrix} = \begin{pmatrix} \alpha_1^* \\ \alpha_2^* \\ \alpha_3^* \end{pmatrix} + \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix} \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} \phi_{11}^* & \phi_{12}^* & \phi_{13}^* \\ \phi_{21}^* & \phi_{22}^* & \phi_{23}^* \\ \phi_{31}^* & \phi_{32}^* & \phi_{33}^* \end{pmatrix} \begin{pmatrix} \Delta x_{t-1,1} \\ \Delta x_{t-1,2} \\ \Delta x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

$$\begin{pmatrix} \Delta x_{1,t} \\ \Delta x_{2,t} \\ \Delta x_{3,t} \end{pmatrix} = \begin{pmatrix} \alpha_1^* \\ \alpha_2^* \\ \alpha_3^* \end{pmatrix} + \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix} \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} x_{t-1,1} \\ x_{t-1,2} \\ x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} \phi_{11}^* & \phi_{12}^* & \phi_{13}^* \\ \phi_{21}^* & \phi_{22}^* & \phi_{23}^* \\ \phi_{31}^* & \phi_{32}^* & \phi_{33}^* \end{pmatrix} \begin{pmatrix} \Delta x_{t-1,1} \\ \Delta x_{t-1,2} \\ \Delta x_{t-1,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{t,1} \\ \epsilon_{t,2} \\ \epsilon_{t,3} \end{pmatrix}$$

$$\Delta \mathbf{x}_t = \boldsymbol{\alpha}^* + \boldsymbol{\gamma} (\boldsymbol{\beta}' \mathbf{x}_{t-1} + \boldsymbol{\mu}) + \boldsymbol{\Phi}^* \Delta \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t$$

$$\begin{pmatrix}
\Delta x_{1,t} \\
\Delta x_{2,t} \\
\Delta x_{3,t}
\end{pmatrix} = \begin{pmatrix}
\alpha_1^* \\
\alpha_2^* \\
\alpha_3^*
\end{pmatrix} + \begin{pmatrix}
\gamma_1 \\
\gamma_2 \\
\gamma_3
\end{pmatrix} (\beta_1 \quad \beta_2 \quad \beta_3) \begin{pmatrix}
\begin{pmatrix}
x_{t-1,1} \\
\mathbf{x}_{t-1,2} \\
\mathbf{x}_{t-1,3}
\end{pmatrix} + \begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3
\end{pmatrix} + \begin{pmatrix}
\phi_{11}^* & \phi_{12}^* & \phi_{13}^* \\
\phi_{21}^* & \phi_{22}^* & \phi_{23}^* \\
\phi_{31}^* & \phi_{32}^* & \phi_{33}^*
\end{pmatrix} \begin{pmatrix}
\Delta x_{t-1,1} \\
\Delta x_{t-1,2} \\
\Delta x_{t-1,3}
\end{pmatrix} + \begin{pmatrix}
\epsilon_{t,1} \\
\epsilon_{t,2} \\
\epsilon_{t,3}
\end{pmatrix}$$

$$\Delta \mathbf{x}_{t} = \boldsymbol{\alpha}^* + \boldsymbol{\gamma}(\boldsymbol{\beta}' \mathbf{x}_{t-1} + \boldsymbol{\mu}) + \boldsymbol{\Phi}^* \Delta \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_{t}$$

\times

Easiest Model For Last

 $\frac{\times}{}$

Naive Model

Naive Model (Level)

$$\hat{CPI}_{t+h|t} = CPI_t$$

Assumes the future value will be the same as the most recently observed value

Naive Model (Seasonal)

$$\hat{CPI}_{t+h|t} = CPI_{t+h-S(k+1)}$$

Assumes the future value will be the same as the most recent observation from the corresponding point in the previous cycle

Naive Model (Drift)

$$\hat{y}_{t+h|t} = y_t + h \times d \qquad d = \frac{g_t - g_1}{t - 1}$$

Assumes the future value will be the same as the most recent observation plus the drift of the entire series (d) times the horizon (h)

Thanks, Any Questions?