1 Die reellen Zahlen

1.1 Körperaxiome (engl. field)

 \mathbb{K} : Menge mit zwei Operationen "+"und "·". $\forall a, b \in \mathbb{K}$ ist $a + b \in \mathbb{K} \land a \cdot b \in \mathbb{K}$ erklärt sollen kompatibel sein.

Definition 1.1.1 (Körperaxiome). In einem Körper gelten diese Axiome:

- 1. Kommutativität: $\forall a, b \in \mathbb{K} : a + b = b + a, a \cdot b = b \cdot a$
- 2. Assoziativität: $\forall a, b, c \in \mathbb{K}$: $a + (b + c) = (a + b) + c, a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. Existenz des neutralen Elements:

$$\exists 0 \in \mathbb{K} : a+0 = 0 + a = a \forall a \in \mathbb{K}$$

$$\exists 1 \in \mathbb{K} : a \cdot 1 = 1 \cdot a = a \forall a \in \mathbb{K}$$

4. Existenz eines inversen Elements:

$$\forall a \in \mathbb{K} \exists -a \in \mathbb{K} : a + (-a) = 0$$
$$\forall a \in \mathbb{K} \setminus \{0\} \exists \frac{1}{a} \in \mathbb{K} : a \cdot \frac{1}{a} = 1$$
Es gilt: $0 \neq 1$.

5. Distributivgesetz: $\forall a, b, c \in \mathbb{K} : a \cdot (b+c) = a \cdot b + a \cdot c$

Beispiel. $\mathbb{Q} = \frac{m}{n}, n \in \mathbb{N}, m \in \mathbb{Z}$ ist ein Körper.

Bemerkung. .

- 1. Somit ist ein Körper \mathbb{K} mit "+"eine kommutative Gruppe und $\mathbb{K} \setminus \{0\}$ mit "·"auch eine kommutative Gruppe.
- 2. Die neutralen Elemente sind eindeutig bestimmt. z.B.: angenommen, 0_1 und 0_2 sind neutrale Elemente mit "+". $\Rightarrow 0_1 \stackrel{(3)}{=} 0_1 + 0_2 \stackrel{(1)}{=} 0_2 + 0_1 \stackrel{(2)}{=} 0_2$ analog für Multiplikation

Definition 1.1.2. Zu $a \in \mathbb{K}$ ist -a das Inverse bzgl. der Addition schreibe a - b := a + (-b). Zu $a \in \mathbb{K} \setminus \{0\}$ sei $a^{/1}$ das Inverse bzgl. der Multiplikation.

Ist $b \neq 0$, so schreiben wir $\frac{a}{b} := a \cdot b^{-1} = b^{-1} \cdot a$. schreibe $(ab) := a \cdot b$.

Lemma 1.1.3 (Rechnen in einem Körper). .

- 1. Umformen von Gleichungen $\forall a, b, c \in \mathbb{K}$: aus a + b = c folgt a = c b aus $a \cdot b = c$, $b \neq 0$ folgt $a = \frac{c}{b}$
- 2. Allgemeine Rechenregeln -(-a) = a $(a^{-1})^{-1} = a, \text{ falls } a \neq 0$ -(a+b) = (-a) + (-b) $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1} = a^{-1} \cdot b^{-1}$ $a \cdot 0 = 0$ a(-b) = -(ab), (-a)(-b) = ab a(b-c) = ab ac $ab = 0 \Leftrightarrow a = 0 \lor b = 0 \text{ (Nullteilerfreiheit)}$

Beweis.
$$0 = a + (-a) = (-a) + a$$

 $\Rightarrow -(-a) = a$
 $(a + b) + ((-a) + (-b)) = (a + (-a)) + (b + (-b)) = 0 + 0 = 0$
 $\Rightarrow -(a + b) = (-a) + (-b)$
benutzen wir auch Eindeutigkeit des inversen Elements
analog zeigt man $(a^{-1})^{-1} = a$ und $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$
z.B.: $(ab) \cdot (b^{-1}a^{-1}) = a(b \cdot b^{-1})a^{-1} = (a \cdot 1)a^{-1} = a \cdot b^{-1} = 1$
Ferner $a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0 = a \cdot 0 + 0$
 $\Rightarrow a \cdot 0 = a \cdot 0 - a \cdot 0 = 0$
 $\Rightarrow a \cdot b + a \cdot (-b) = a \cdot (b + (-b)) = a \cdot 0 = 0$
Eind. d. Inv. $-ab = a(-b)$
Somit auch $(-a)(-b) = -((-a)b) = -(b(-a)) = (-ba) = -(-ab) = ab$
und $a(b - c) = a(b + (-c)) = ab + a(-c) = ab + (-ac) = ab - ac$.
ist $ab = 0$ und $a \neq 0 \Rightarrow 0 = (ab) \frac{1}{a} = \frac{1}{a} \cdot (ab) = (\frac{1}{a} \cdot a)b = 1b = b$

Satz 1.1.4 (Bruchrechnen). $a, b, c, d \in \mathbb{K}, c \neq 0, d \neq 0$. Dann gilt

$$1. \ \frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

2.
$$\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$$

also ist b = 0.

3. $\frac{a/c}{b/d} = \frac{ad}{bc}$, falls auch $b \neq 0$ ist.

Beweis. Übung

Beispiel. rationale Zahlen sind ein Körper schreiben ($\mathbb{K}, +, \cdot$) für einen Körper

1.2 Die Anordnungsaxiome

Definition 1.2.1. Sei \mathbb{K} (genauer $(\mathbb{K},+,\cdot)$) ein Körper. Dann heißt > eine Anordnung falls

- 1. Für jedes $a \in \mathbb{K}$ gilt genau eine der Aussagen a > 0, a = 0, -a > 0 (wenn $a \in \mathbb{K}$, mit a > 0 positiv)
- 2. Aus a > 0 und b > 0 folgt a + b > 0 und $a \cdot b > 0$

Wir nennen $(\mathbb{K}, +, \cdot, >)$ einen angeordneten Körper.

Bemerkung. Statt -a > 0 schreiben wir a < 0 Statt a - b > 0 schreiben wir a > b Bild:

Statt a - b < 0 schreiben wir a < b.

$$a \ge b$$
, falls $a > b \lor a = b$

$$a \leq b$$
, falls $a < b \lor a = b$.

Satz 1.2.2. Sei $(\mathbb{K}, +, \cdot, >)$ ein angeordneter Körper. Dann gilt

- 1. für $a, b \in \mathbb{K}$ gilt genau eine der Relationen a > b, a = b, a < b (Trichotromie)
- 2. Aus a > b, b > c folgt a > c (Transitivität)
- 3. Aus a > b folgt:

$$\begin{cases} a+c > b+c, \forall c \in \mathbb{K} \\ ac > bc, \text{ falls } c > 0 \\ ac < bc, \text{ falls } c < 0 \end{cases}.$$

4. Aus a > b und c > d folgt:

$$\begin{cases} a+c > b+d \\ ac > bd, \text{ falls } b,d > 0 \end{cases}$$

5. Für $a \neq 0$ ist $a^2 > 0$.

- 6. Aus a > 0 folgt $\frac{1}{a} > 0$.
- 7. Aus a > b > 0 folgt $0 < \frac{1}{a} < \frac{1}{b}$.
- 8. Aus a > b, $0 < \lambda < 1$ folgt $b < \lambda b + (1 \lambda)a < a$.

Bemerkung. Auf \mathbb{F}_2 kann es keine Anordnung geben!

Beweis. 1. Direkt aus (A.1) und Def. von a > b.

2.
$$a - c = \underbrace{(a - b)}_{>0} + \underbrace{(b - c)}_{>0} \stackrel{\text{(A.2)}}{>} 0.$$

3.
$$(a+c) - (b+c) = a-b > 0$$

 $ac - bc = (a-b) \cdot c \stackrel{\text{(A.2)}}{>} 0$, falls $c > 0$
Ist $c < 0$, so ist $-c > 0$
 $\Rightarrow bc - ac = (a-b) \cdot (-c) \stackrel{\text{(A.2)}}{>} 0$
 $ac - bd = ac - bc + bc - bd = (a-b) \cdot c + b \cdot (c-d) \stackrel{\text{(A.2)}}{>} 0$.

4.
$$(a+c)-(b+d)=(a-b)+(c-d)>0$$
 nach (A.2)
 $ac-bd=ac-bc+bc-bd=(a-b)c+b(c-d)$
Ist $b=0\Rightarrow a>b=0\Rightarrow ac>0=bd$
Ist $b<0\Rightarrow (-b)d>0\Rightarrow -bd>0\Rightarrow bd<0\Rightarrow ac<-bd\Rightarrow$
 $\underbrace{ac}_{>0}+\underbrace{(-bd)}_{>0}\overset{(A.2)}{>}0$.

5. Fallunterscheidung:

ist
$$a > 0 \Rightarrow a^2 = a \cdot a > 0$$
 (A.2)
ist $a < 0 \Rightarrow a^2 = (-a) \cdot (-a) > 0$ (A.2)

6. sei a > 0:

$$\stackrel{5_{\cdot}}{\Rightarrow} \left(\frac{1}{a}\right) > 0 \Rightarrow \frac{1}{a} = \underbrace{\left(\frac{1}{a}\right)^{2}}_{>0} \cdot \underbrace{a}_{>0} > 0.$$

7. aus
$$a > b > 0$$

$$\Rightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{b}(a - b)\frac{1}{a} > 0.$$

8.
$$a > b, 0 > \lambda > 1 \Rightarrow \lambda > 0 \land 1 - \lambda > 0$$

 $b = \lambda b + \underbrace{(1 - \lambda)b}_{<(1 - \lambda)a}$
 $< \lambda b + (1 - \lambda)a < \lambda a + (1 - \lambda)a = a$
 $\Rightarrow b < \lambda b + (1 - \lambda)a = a$.
Insbesondere $\lambda = 1/2 \Rightarrow b < 1/2b + 1/2a = \frac{a+b}{2} < a$.

Definition 1.2.3 (Betrag). Sei $(\mathbb{K}, +, \cdot, >)$ ein angeordneter Körper. Betrag von $a \in \mathbb{K}$ ist gegeben durch

$$|a| := \begin{cases} a, \text{ falls } a \ge 0 \\ -a, \text{ falls } a < 0 \end{cases}$$
 auch noch $a, b \in \mathbb{K}$

$$\max(a, b) := \begin{cases} a, & \text{falls } a \ge b \\ b, & \text{falls } a < b \end{cases}$$
$$\min(a, b) := \begin{cases} a, & \text{falls } a \le b \\ b, & \text{falls } a > b \end{cases}$$

Bemerkung. .

1.
$$a, b \in \mathbb{K}$$

 $|a - b| = \text{Abstand von } a \text{ zu } b.$
 $|a| = |a - 0| = \text{Abstand von } a \text{ zu } 0.$

2.
$$|a| = \max(a, -a)$$
.

Satz 1.2.4. $(\mathbb{K}, +, \cdot, >)$ ang. Körper Dann gilt $\forall a, b \in \mathbb{K}$:

1.
$$|-a| = |a| \text{ und } a \le |a|$$

2.
$$|a| \ge 0$$
 und $|a| = 0 \Leftrightarrow a = 0$

3.
$$|ab| = |a| |b|$$

4.
$$|a+b| \le |a| + |b|$$
 (Dreiecksungleichung)

5.
$$||a| - |b|| \le |a - b|$$
 (umgekehrte Dreiecksungleichung)

Beweis. .

1.
$$|-a| = \begin{cases} -a, -a \ge 0 \\ -(-a), -a \le 0 \end{cases} = \begin{cases} -a, a \le 0 \\ a, a \ge 0 \end{cases} = |a|$$

$$|a| - a = \begin{cases} a - a, a \ge 0 \\ -a - a, a < 0 \end{cases} = \begin{cases} 0, a \ge 0 \\ -(a + a), a < 0 \end{cases} \ge 0.$$
alternativ: $a < \max(a, -a) = |a|$.

2.

3. Hier ändern sich die linke und rechte Seite
 <u>nicht,</u> wenn man a bzw. b durch -a bzw. -b ersetzt.

Also, o.B.d.A. können wir annehmen, dass $a, b \ge 0$. $\Rightarrow |ab| = ab = |a||b|$.

5. $|a| = |a - b + b| = |(a - b) + b| \stackrel{(4)}{\leq} |a - b| + |b|$ $|a| - |b| \leq |a - b| \, \forall a, b \in \mathbb{K}.$ Jetzt: Symmetrieargument. (Vertausch von a und b) $\Rightarrow |b| - |a| \leq |b - a| = |(-b - a)| = |a - b|$ also $|b| - |a| \leq |a - b|$ $|a| - |b| \leq |a - b|$ $||a| - |b|| = \max(|a| - |b|, -(|a| - |b|)) = \max(|a| - |b|, |b| - |a|) \leq |a - b|.$

. 1

Beispiel. Sei $a,b\in\mathbb{K}$ ein angeordneter Körper. Aus $|b-a|\leq b/2, 2=1+1$ folgt $a\geq b/2$ Bild:

Beweis.
$$b-a \le |b-a| \le b/2 \Rightarrow a \ge b-b/2 = b/2$$
.

Korollar 1.2.5 ("geometrisch-arithmetische Ungleichung"). Sei $(\mathbb{K},+,\cdot,>)$ ein ang. Körper, $a,b\in\mathbb{K}$

$$\Rightarrow ab \le \left(\frac{a+b}{2}\right)^2.$$

Wenn Gleichheit gilt, so folgt a = b.

Beweis. In Übung

Fakt:

- In jedem angeordneten Körper gilt 0 < 1!
- Es gibt keine Anordnung, die \mathbb{F}_2 zu einem angeordneten Körper macht. (H.A.)

1.3 Obere und untere Schranken, Supremum und Infimum

Notation: a ist nicht negativ, falls $a \ge 0$.

natürlich $a = b \Leftrightarrow a \leq b \land a \geq b$.

Im Folgenden ist \mathbb{K} immer ein angeordneter Körper. $A, B \subset \mathbb{K}, A, B \neq \emptyset$ und $\gamma \in \mathbb{K}$, so bedeutet $A \leq \gamma : \forall a \in A : a \leq \gamma \ (\gamma \text{ it obere Schranke für } A)$.

 $B \ge \beta : \forall b \in B : b \ge \beta$ (β ist untere Schranke für B).

Analog sind $a < \gamma, A > \gamma, A < B$, usw. definiert.

Hat A eine obere Schranke, so heißt A nach oben beschränkt. Hat B eine untere Schranke, so ist B nach unten beschränkt. A ist beschränkt, falls es nach oben und unten beschränkt ist.

Ist $A \leq \alpha$ und $\alpha \in A$, so heißt α größtes (maximales) Element von A, schreibe $\alpha = \max A$ (Maximum).

Ist $B \ge \beta$ und $\beta \in B$, so heißt B kleinstes (minimales) Element von B, schreibe $\beta = \min B$ (Minimum).

Man zeige, dass max und min eindeutig sind, sofern sie existieren.

 $[0,1):=\{x\in\mathbb{K}|0\leq x\leq 1\}$ hat kein Maximum bzw. kein maximales Element.

Definition 1.3.1. Sei $A \subset \mathbb{K}, A \neq \emptyset$. Dann ist $\gamma \in \mathbb{K}$ die kleinste obere Schranke (oder Supremum), falls $A \leq \gamma$ und aus $A \leq n$ folgt $\gamma \leq n$.

Schreibe $\gamma = \sup A = \sup(A)$.

Analog: β it die größte untere Schranke von A (Infimum), falls $\beta \leq A$ und aus $\eta \leq A$ folgt $\eta \leq \beta$

Schreibe $\beta = \inf A = \inf(A)$.

Beispiel.
$$P := \{x \in \mathbb{K} | x > 0\}$$

 \Rightarrow

- 1. P ist nicht nach oben beschränkt.
- 2. P hat kein Minimum, aber inf P = 0.

Beweis. .

- 1. Ang. γ ist obere Schranke für P. D.h. $\forall x \in P$ folgt $0 < x \le \gamma \Rightarrow \gamma > 0 \Rightarrow \gamma \in P \Rightarrow 0 < \gamma = \gamma + 0 < \gamma + 1 \in P \Rightarrow \gamma + 1 \in P$ und $\gamma + 1 > \gamma \gamma$ ist nicht obere Schranke für P (Widerspruch!) \mathbf{f}
- $2. \ 2 := 1 + 1 > 1 > 0$

Ang. min $P:=\eta$ existiert. $\Rightarrow \eta \in P, \eta > 0, \tilde{x}:=\frac{\eta}{2}=\frac{0+\eta}{2}<\eta$. Es gilt $0=\inf P$.

Sicherlich 0 < P, also ist 0 eine untere Schranke für P.

0 ist die größte untere Schranke, denn nach obigem Argument ist jede Zahl > 0 keine untere Schranke für P!

Lemma 1.3.2. $A \subset \mathbb{K}, A \neq \emptyset$.

- 1. $\alpha := \sup A \Leftrightarrow \alpha \ge A \land \forall \varepsilon > 0 \exists a \in A : \alpha \varepsilon < a$.
- 2. $\beta := \inf B \Leftrightarrow \beta \leq B \land \forall \varepsilon > 0 \exists b \in B : b < \beta + \varepsilon$.

Beweis. .

1. "⇒": Sei $\alpha = \sup A$. Also α ist die kleinste obere Schranke für A. D.h. $\alpha \geq A$ und $\forall \varepsilon > 0$ ist $\varepsilon > 0 < \alpha$, also ist $\alpha - \varepsilon$ keine obere Schranke für A. D.h. $\exists a \in A : \alpha - \varepsilon < a$. " \Leftarrow ": Sei $\alpha \geq A \land \forall \varepsilon > 0 \exists a \in A : \alpha - \varepsilon < a$. Also ist α eine obere Schranke für A. Sei $\tilde{\alpha} < \alpha$.

Setze $\varepsilon := \alpha - \tilde{\alpha} > 0 \Rightarrow \exists a \in A : \tilde{\alpha} = \alpha - \varepsilon < a \Rightarrow \tilde{\alpha}$ ist keine obere Schranke für $a. \Rightarrow \alpha$ ist die kleinste obere Schranke.

2. $A := -B = \{-b | b \in B\}$. Beachte: $\sup A = \sup(-B) = -\inf B$.

1.4 Das Vollständigkeitsaxiom

Definition 1.4.1. Ein angeordneter Körper $(\mathbb{K}, +, \cdot, >)$ erfüllt das Vollständigkeitsaxiom, falls

Jede nichtleere, nach oben beschränkte Teilmenge hat ein Supremum.

Solch einen Körper nennt man ordnungsvollständig. \mathbb{R} , der Körper der reellen Zahlen, ist <u>der</u> ordnungsvollständige Körper. (Im Wesentlichen gibt es nur einen!)

$$\mathbb{Q}; A := \{r \in \mathbb{Q} | r^2 < 2\}$$
 Notation: $a, b \in \mathbb{R}$ $a < b$
$$[a, b] := \{x \in \mathbb{R} | a \leq x \leq b\} \text{ abgeschlossenes Intervall}$$

$$(a, b) := \{x \in \mathbb{R} | a < x < b\} \text{ offenes Intervall}$$

$$[a, b) := \{x \in \mathbb{R} | a \leq x < b\} \text{ nach rechts halboffenes Intervall}$$

$$(a, b] := \{x \in \mathbb{R} | a < x \leq b\} \text{ nach links halboffenes Intervall}$$
 Intervalllänge: $b - a$ unbeschränkte Intervalle:
$$(-\infty, a] := \{x \in \mathbb{R} | x \leq a\}$$

$$[a, \infty) := \{x \in \mathbb{R} | x \geq a\}$$

$$[-\infty, a) := \{x \in \mathbb{R} | x < a\}$$

$$(-\infty, a) := \{x \in \mathbb{R} | x < a\}$$

$$(a, \infty) := \{x \in \mathbb{R} | x > a\}.$$

1.5 Die natürlichen Zahlen \mathbb{N}

(als Teilmenge von
$$\mathbb{R}$$
)
 n natürliche Zahl, $n = \underbrace{1 + 1 + \ldots + 1}_{n - \text{mal}}$ (zirkulär \mathcal{I})

Definition 1.5.1. Eine Teilmenge $M \subset \mathbb{R}$ heißt induktiv, falls

- 1. $1 \in M$
- 2. Aus $x \in M$ folgt $x + 1 \in M$

Beispiel. $[1, \infty)$ ist induktiv.

 \mathbb{R} ist induktiv.

 $(1, \infty)$ ist nicht induktiv.

$$\{1\} \cup [1+1,\infty)$$
 ist induktiv.

Beobachtung: Ein beliebiger Schnitt induktiver Mengen ist wieder induktiv.

$$J: \text{Indexmenge } A_0 \text{ induktiv } \forall j \in J \\ \Rightarrow \forall i \in J: 1 \in A_j \Rightarrow 1 \in \bigcap_{j \in J} A_j \\ \text{Ist } x \in \bigcap_{j \in J} A_j \Rightarrow \forall j \in J: x \in A_j \Rightarrow x+1 \in A_j \Rightarrow x+1 \in \bigcap_{j \in J} A_j.$$

Definition 1.5.2 (natürliche Zahlen).

$$\mathbb{N}:=\{x\in\mathbb{R}: \text{ für jede induktive Teilmenge }M\in\mathbb{R} \text{ gilt }x\in M\}:=\bigcap_{M\subset\mathbb{R} \text{ ist induktiv}}M$$

Bemerkung. \mathbb{N} ist induktiv und \mathbb{N} ist die kleinste induktive Teilmenge von \mathbb{R} .

Satz 1.5.3 (Archimedisches Prinzip für \mathbb{R}).

- 1. \mathbb{N} ist (in \mathbb{R}) nicht nach oben beschränkt!
- 2. $\forall x \in \mathbb{R} \text{ mit } x > 0 \exists n \in \mathbb{N} : \frac{1}{n} < x.$

Beweis. 1. Angenommen, $\mathbb{N} \subset R$ ist nach oben beschränkt.

$$\mathbb{N} \neq \emptyset$$
 (da $1 \in \mathbb{N}$)

Vollständigkeitsaxiom $\Rightarrow \alpha := \sup \mathbb{N} \in \mathbb{R}$.

Setze $\varepsilon = 1$ in Lemma 3.3.2

 $\alpha - 1$ ist nicht obere Schranke für N.

 $\exists n \in \mathbb{N} : n > \alpha - 1$

 $\Rightarrow n+1 > \alpha \in \mathbb{N}$ Zu α ist obere Schranke von \mathbb{N} .

2. Sei
$$x > 0 \stackrel{\text{Satz 3.2.1 (6)}}{\Rightarrow} \frac{1}{x} > 0 \Rightarrow \exists n \in \mathbb{N} : n > \frac{1}{x} \underset{\text{Satz 3.2.1 (7)}}{\Rightarrow} x = \frac{1}{1/x} > \frac{1}{n}.$$

Satz 1.5.4 (Induktionsprinzip). Sei $M \subset \mathbb{N}$ mit

- 1. $1 \in M$
- 2. Ist $x \in M \Rightarrow x + 1 \in M$

Dann ist $M = \mathbb{N}$.

 $\begin{array}{l} \textit{Beweis.} \ \Rightarrow M \ \text{ist induktiv}. \ \mathbb{N} \ \text{kleinste induktive Teilmenge von} \ \mathbb{R} \\ \ \Rightarrow \mathbb{N} \subset M \\ \ M \subset \mathbb{N} \wedge \mathbb{N} \subset M \Leftrightarrow M = \mathbb{N}. \end{array}$

Korollar 1.5.5 (Vollständige Induktion). Für $n \in \mathbb{N}$ seien A(n) Aussagen. Es gelte:

- 1. A(1) ist wahr.
- 2. aus A(n) ist wahr folgt A(n+1) ist wahr.

Beweis. Definiere $M := \{n \in \mathbb{N} | A(n) \text{ ist wahr}\} \subset \mathbb{N}$.

- $1. \Rightarrow 1 \in M$, da A(1) wahr ist
- 2. \Rightarrow sei $n \in M$, d.h. A(n) ist wahr $\Rightarrow A(n+1)$ ist wahr, d.h. $n+1 \in M$.

 $\overset{\text{Ind.prinzip Satz 4}}{\Rightarrow} M = \mathbb{N}, \text{ also sind alle } A(n) \text{ wahr!} \qquad \square$

Notation: Induktive Definition von Summen und Produkten. $a_1 + a_2 + \ldots + a_n$ vage ...

Summe:

$$\sum_{k=1}^{1} a_k := a_1, (n=1), \sum_{k=1}^{n+1} a_k := \left(\sum_{k=1}^{n} a_k\right) + a_{n+1}, n \in \mathbb{N}$$

Allgemein: untere Grenze k=m, obere Grenze k=n, Laufindex kann verschoben werden.

z.B.:
$$k = j + 1$$

$$\sum_{k=m}^{n} a_k = \sum_{j=m-1}^{n-1} a_{j+1} = \dots = \sum_{l=0}^{n-m} a_{l+m}$$

Ist m > n, definieren $\sum_{k=m}^{n-m} a_k := 0$ (leere Summe)

Produkt:

$$\prod_{k=1}^{1} a_k := a_1, \prod_{k=1}^{n+1} a_k := \left(\prod_{k=1}^{n} a_k\right) \cdot a_{n+1}, n \in \mathbb{N}$$

Ähnlich $\prod_{k=m}^n a_n$, setzen für $m > n \prod_{k=m} .a_k := 1$ (leeres Produkt) z.B.

$$a \in \mathbb{R}, a^n = \prod_{k=1}^n a$$
, d.h. $a^1 = a, a^{n+1} = a^n \cdot a, n \in \mathbb{N}$ (induktive Definition)

Rechenregeln gelten z.B.

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k a_j, b_j \in \mathbb{R}, j = 1, \dots, n$$
$$c \in \mathbb{R}, \sum_{k=1}^{n} (c \cdot a_k) = c \cdot \sum_{k=1}^{n} a_k$$

Satz 1.5.6 (Bernoullische Ungleichung).

$$x \in \mathbb{R}, x \ge -1, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

gilt
$$(1+x)^n \ge 1 + n + x (\forall m \in \mathbb{N}, x \ge -1)$$

mit ">", falls $n > 1, x \ne 0$
 $(\forall n \in \mathbb{N}, x \ge -1(1+x)^n \ge 1 + nx)$

Beweis. Vollständige Induktion: Induktionsanfang:

$$n = 0: (1+x)^0 = 1 = 1 + 0x\checkmark$$
$$n = 1: (1+x)^1 = 1 + x = 1 + 1x\checkmark$$

Induktionsschritt: Induktionsvoraussetzung: es gelte für ein festes, aber beliebiges $n \in \mathbb{N}$:

$$(1+x)^n \ge 1 + nx$$

$$(1+x)^{n+1} = \underbrace{(1+x)^n}_{\ge 1+nx} \cdot \underbrace{(1+x)}_{>0} \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2$$

$$= \begin{cases} \ge 1 + (n+1)x, x > -1 \\ > 1 + (n+1)x, x > -1, x \ne 0 \end{cases}$$

Satz 1.5.7 (geometrische Summe). Sei $x \neq 1$, dann ist

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

Beweis. Vollständige Induktion:

IA:

$$n = 0: \sum_{k=0}^{0} x^{k} = x^{0} = 1 = \frac{1-0}{1+0} \checkmark$$

$$n = 1: \sum_{n=0}^{1} x^{k} = 1 + x = \frac{1-x}{1-x} (1+x) = \frac{1-x^{2}}{1-x} \checkmark$$

IS:

IV: Es gelte für ein festes, aber beliebiges $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}$$

$$\Rightarrow \sum_{k=0}^{n} x^{k} + x^{n+1} \stackrel{\text{IV}}{=} \frac{1 - x^{n+1}}{1 - x} + x^{n+1}$$

$$= \frac{1 - x^{n+1} + (1 - x)x^{n+1}}{1 - x} = \frac{1 - x^{n+2}}{1 - x}.$$
(1)

Beweis. ohne vollständige Induktion:

$$S_n := \sum_{k=0}^n x^k$$

$$x \cdot S_n = \sum_{k=0}^n x^k = \sum_{k=0}^n x^{k+1} = \sum_{j=1}^{n+1} x^j,$$

$$\Rightarrow (1-x)S_n = S_n - xS_n = \sum_{k=0}^n x^k - \sum_{k=1}^{n+1} x^k = x^0 - x^{n+1} = 1 - x^{n+1}$$

$$\Rightarrow S_n = \frac{1-x^{n+1}}{1-x}$$

Satz 1.5.8 (Eigenschaften von \mathbb{N}). Es gilt

- 1. $\forall m, n \in \mathbb{N} : n + m \in \mathbb{N} \text{ imd } n \cdot m \in \mathbb{N}.$
- 2. $\forall n \in \mathbb{N} : n = 1 \text{ oder } (n > 1 \text{ und demnach } n 1 \in \mathbb{N}).$
- 3. $\forall m, n \in \mathbb{N} : m \leq n : n m \in \mathbb{N}_0$.
- 4. $\forall n \in \mathbb{N}$ gibt es kein $m \in \mathbb{N}$: n < m < n + 1.

Beweis. .

- 1. Gegeben $m \in \mathbb{N} : A := \{n \in \mathbb{N} | n + m \in \mathbb{N}\} \subset \mathbb{N}$
 - (a) $1 \in A$, denn $m \in \mathbb{N} : 1 + m = m + 1 \in \mathbb{N}$.

(b) Angenommen,
$$n \in A \Rightarrow (n+1) + m = \underbrace{n+m}_{\in \mathbb{N}} + 1 \in \mathbb{N}$$

 $\Rightarrow n+1 \in A$

somit ist A induktiv, also $\mathbb{N} \subset A \Rightarrow A = \mathbb{N}$.

- 2. Definiere $B:=\{n\in\mathbb{N}|n=1\vee(n-1\in\mathbb{N}\wedge n-1\geq 1)\}\subset\mathbb{N}$ Dann ist B induktiv, denn
 - (a) $1 \in B, 2 = 1 + 1 \in B$
 - (b) Sei $1 \neq n \in B$, so folgt $1 \leq n 1$ und somit $n = (\underbrace{n 1}) + 1 \in \mathbb{N}$ $\Rightarrow n + 1 \in \mathbb{N}$ und $(n + 1) - 1 = n \geq 1 + 1 > 1$. Somit ist $n + 1 \in B$.

- 3. $C := \{ n \in \mathbb{N} | \forall m \in \mathbb{N} \text{ mit } m \leq n \text{ ist } n m \in \mathbb{N}_0 \} \Rightarrow$
 - (a) $1 \in C$, denn ist $m \in \mathbb{N}$ und m = 1. folgt nach b): m = 1 $\Rightarrow n - m = 1 - 1 = 0 \in \mathbb{N}_0$.
 - (b) ang. $n \in C$ und $m \in \mathbb{N}$ mit $m \le n+1$. Fallunterscheidung:
 - $n = 1 \Rightarrow n + 1 m = (n+1) 1 = n \in \mathbb{N}.\checkmark$ $\Rightarrow n + 1 \in C.$
 - n > 1 (und $m \le n + 1$) $\stackrel{\text{b)}}{\Rightarrow} m 1 \in \mathbb{N} \text{ und } m 1 \le (n + 1) 1 = n$ Da $n \in C, m 1 \in \mathbb{N}, m 1 \le n \Rightarrow \underbrace{n (m 1)}_{=(n + 1) m} \in \mathbb{N}_0$ $\Rightarrow n + 1 \in C.$
- 4. H.A.