

CRF理论、工具包的使用及在 NE上的应用

廖先桃 2006.4.6

提纲

- CRF理论
- CRF工具包的使用
- 基于CRF的NE识别
- 下一步工作

CRF理论

- CRF是Conditional Random Fields的缩写,即 条件随机域
- CRF理论相关PPT由赵世奇友情赞助◎

提纲

- CRF理论
- CRF工具包的使用
- 基于CRF的NE识别
- 下一步工作

CRF工具包的使用

- CRF工具包
 - http://crf.sourceforge.net/doc/
 - java写的CRF工具包,有很详细的说明文档。
 - FlexCRFs: Flexible Conditional Random Fields
 - 作者:Xuan-Hieu Phan 和 Le-Minh Nguyen
 - C++语言实现
 - 下载地址: http://www.jaist.ac.jp/~hieuxuan/flexcrfs/flexcrfs.html
 - CRF++: Yet Another CRF toolkit
 - C++语言实现,有windows下运行的exe程序以及Linux下运行的版本
 - 下载地址: http://chasen.org/~taku/software/CRF++/#features

- CRF++的安装
- 训练语料的格式
- 特征模板的格式
- 训练模型
- 识别
- 评测

- CRF++的安装
 - 编译器要求: C++编译器(gcc 3.0或更高)
 - · Linux安装命令(依次执行):

```
% ./configure
% make
% su
# make install
```

· 注意: 必须具有root帐号才能安装成功

- 训练语料的格式
 - ·训练和测试文件必须包含多个tokens
 - 每个token包含多个列
 - token的定义可根据具体的任务,如词、词性等
 - 每个token必须写在一行,且各列之间用空格或制表格间隔
 - 一个token的序列可构成一个sentence, sentence 之间用一个空行间隔

- 训练语料的格式 这是一个toker

He	PRP	B-NP
reckons	VBZ	B-VP
the	DΤ	B-NP
current	JJ	I-MP
account	NN	I-NP
deficit	NN	I-NP
will	MD	B-VP
narrow	VΒ	I-VP
to	TO	B-PP
only	RB	B-NP
#	#	I-MP
1.8	CD	I-MP
billion	CD	I-MP
in	IN	B-PP
September	MNP	B-MP
_		0
He	PRP	B-NP
reckons	VBZ	B-VP
	. — —	

这是一个句子

句子间用空行间隔

每个token包含3列,分别 为词本身、词性和Chunk 标记

信息检索实验室

- 特征模板的格式
 - 模板的基本格式为%x[row,col],它用于确定输入数据中的一个token
 - 其中, row确定与当前的token的相对行数。col 用于确定绝对列数。

特征模板的例子

• 训练语料 col0 col2 col1 Input: Data Не PRP B-NP VBZ reckons $B-\Lambda L$ << 当前的token B-NP the DT I-NP current I-NP account

• 特征模板

```
template expanded feature
%x[0,0] the
%x[0,1] DT
%x[-1,0] rokens
%x[-2,1] PRP
%x[0,0]/%x[0,1] the/DT
ABC%x[0,1]123 ABCthe123
```


- 特征模板的类型
 - 第一种以字母U开头,为Unigram template。
 - 当模板前加上U之后, CRF会自动生成一个特征函数集合(func1 ... funcN), 如:

```
func1 = if (output = B-NP and feature="U01:DT") return 1 else return 0
func2 = if (output = I-NP and feature="U01:DT") return 1 else return 0
func3 = if (output = 0 and feature="U01:DT") return 1 else return 0
....
funcXX = if (output = B-NP and feature="U01:NN") return 1 else return 0
funcXY = if (output = 0 and feature="U01:NN") return 1 else return 0
...
```


- 特征模板的种类
 - 一个模型生成的特征函数的个数总数为L*N, 其中L是输出的类别数,N是根据给定的 template扩展出的独立串(unique string)的数 目。

- 特征模板的种类
 - 第二种特征模板以B开头,即Bigram template
 - 它用于描述Bigram特征。系统将自动产生当前输出 token与前一个输出token的组合。产生的可区分的特征 的总数是L*L*N,其中L是输出类别数,N是这个模板 产生的unique features数。
 - 优点: 提高识别效果
 - 缺点: 当类别数很大的时候,这种类型会产生许多可 区分的特征,这将会导致训练和测试的效率降低。

- 特征模板的类型
 - 两种模板的区别
 - 注意: Unigram/Bigram是指输出token的 Unigram/Bigrams,而不是特征
 - unigram: |output tag| × |从模板中扩展的所有可能串|
 - bigram: |output tag| × |output tag| × |从模板中扩展的所有可能串|

特征模板的#表示注释,将被忽略

```
# Unigram
U00:%x[-2,0]
U01: \%x[-1,0]
U02:%x[[
U03:%x[]
        为区分特征给特征的编号
U04:%x[1
U10:%x[-2,1]
U11:%x[-1,1]
U12:%x[0,1]q
U13:%x[1,1]
U14:%x[2,1]
U15:%x[-2,1]/%x[-1,1]
U16: %x[-1,1]/%x[0,1]
U17: %x[0,1]/%x[1,1]
U18: %x[1,1]/%x[2,1]
U20: %x[-2,1]/%x[-1,1]/%x[0,1]
U21: %x[-1, 1]/%x[0, 1]/%x[1, 1]
U22: %x[0,1]/%x[1,1]/%x[2,1]
# Bigram
```

```
The
         DΤ
            B-NP
         NN I-NP
pen
is
         VB B-VP << CURRENT TOKEN
         DT B-NP
a
                   得到的结果都为DT
U01:%x[-2,1]
U02:%x[1,1]
```


- 训练模型
 - 使用crf_learn命令

```
% crf_learn template_file train_file model_file
```

• 其中,template_file和train_file需由使用者事先准备好。crf_learn将生成训练后的模型并存放在model_file中。

- ■训练模型
 - 屏幕显示信息

% crf_learn template_file train_file model_file
CRF++: Yet Another CRF Tool Kit

iter: 迭代次数

terr: 和tags相关的错误率(错误的tag数/所有的tag数)

serr: 与sentence相关的错误率 (错误的sentence数/所有的sentence数)

obj: 当前对象的值。当这个值收敛到一个确定的值是,CRF模型将停止迭代

diff: 与上一个对象值之间的相对差

```
iter=0 terr=0.7494725738 serr=1 obj=2082.968899 diff=1 iter=1 terr=0.1671940928 serr=0.8831168831 obj=1406.329356 diff=0.3248438053 iter=2 terr=0.1503164557 serr=0.8831168831 obj=626.9159973 diff=0.5542182244
```


- 识别
 - 使用crf_test 命令

```
% crf_test -m model_file test_files ...
```

• 其中,model_file是crf_learn创建的。在测试过程中,使用者不需要指定template file,因为,mode file已经有了template的信息。test_file是使用者想要标注序列标记的测试语料。这个文件的书写格式应该与训练文件一致。

- 识别

```
% crf_test -m model test.data
```

Rockwell	NNP	B	B	标注结果
International	NNP	I	I	
Corp.	NNP	I	I	
's	POS	B	B	
Tulsa	NNP	I	I	
unit	NN	I	I	

信息检索实验室

- 评测
 - 使用评测程序conlleval.pl(CoNLL 2000 评测程序)
 - 下载地址:
 http://www.cnts.ua.ac.be/conll2000/chunking/output.ht
 ml
 - ·测试语料的格式与前边的识别结果一致,但是 token的每一列之间必须用空格间隔,否则评测 程序不能正常执行
 - 评测指令: perl conlleval.pl < output.txt
 - Output.txt为待评测文件

■ 评测结果

```
processed 961 tokens with 459 phrases; found: 539 phrases; correct: 371.
          84.08%; precision:
                              68.83%; recall: 80.83%; FB1:
                                                            74.35
accuracy:
            ADJP:
                  precision:
                             0.00%; recall:
                                               0.00%; FB1:
                                                             0.00
                  precision: 45.45%; recall: 62.50%; FB1:
            ADVP:
                                                           52.63
                                                            71.16
              NP:
                  precision: 64.98%; recall: 78.63%; FB1:
              PP:
                  precision: 83.18%; recall: 98.89%; FB1:
                                                            90.36
            SBAR:
                  precision: 66.67%; recall: 33.33%; FB1:
                                                           44.44
              VP:
                  precision:
                              69.00%; recall: 79.31%; FB1:
                                                            73.80
           识别类别
                                      相应的指标
```


提纲

- CRF理论
- CRF工具包的使用
- 基于CRF的NE识别
- 下一步工作

- 训练语料: 经IRLAS转换后的北大富士通1 月份语料, 共37426句
- 测试语料: 经IRLAS转换后的北大富士通6 月份语料前10000句
- 实验:
 - 采用复杂特征
 - 采用简单特征

- 实验1
- 特征
 - CRF特征16种: P-2 W-1 P-1 W0 P0 W1 P1 P-2/P0 P-2/P1 P-1/P0/P1 P0/P1 P2 P0/P2 P0/P1/P2 W0/P0 W-1/P-1 W1/P1
 - ME特征23种: T P-2 W-1 T-1 P-1 W0 P0 W1 P1 P-2/P0 P-2/P1 T-1/P0 P-1/T-1/P0 P-1/P0/P1 P0/P1 P2 P0/P2 P0/P1/P2 W0/P0 W-1/P-1 P-1/T-1 W1/P1 S E

特征模板

```
# Unigram
U00: %x[-2,1]
U01:%x[-1.0]
U02:%x[-1,1]
U03:%x[0,0]
U04:%x[0,1]
U05:%x[1,0]
U06:%x[1,1]
U07:%x[-2,1]/%x[0,1]
U08:%x[-2,1]/%x[1,1]
U09:%x[-1,1]/%x[0,1]/%x[1,1]
U10:%x[0,1]/%x[1,1]
U11:%x[2,1]
U12:%x[0,1]/%x[2,1]
U13:%x[0,1]/%x[1,1]/%x[2,1]
U14:%x[0,0]/%x[0,1]
\overline{U}15:\%x[-1,0]/\%x[-1,1]
U16: %x[1,0]/%x[1,1]
# Bigram
В
```


■ 实验1评测结果

表 1 利用复杂特征的基于 CRF 的 NE 识别的识别结果。

类别₽	模型↩	识别个	准确率	召回率₽	F值₽	7
		数				
人名₽	CRF₽	3237₽	96.66%	96.54‰	96.60%]
	ME₽	3266₽	98. 28₽	85.70₽	91.56	*
机构名↩	CRF₽	2513₽	89.65%	86.99%;₽	88.30%]
	ME₽	2592₽	84. 64₽	75. 27₽	79. 68₽	4
地名	CRF₽	5742₽	93.94‰	95.42%	94.67%	7
	ME₽	5689₽	91.15₽	93.55₽	92.33₽	7
专有名词₽	CRF₽	524₽	84.35%₽	79.07%⊷	81.63‰	1
	ME₽	560₽	91.12₽	64. 11₽	75. 26₽	7
时间↩	CRF₽	32₽	90.63‰	76.32%⊌	82.86%],
	ME₽	38₽	76₽	50₽	60.32₽	1
日期↩	CRF₽	1635₽	97.86%	97.21%	97.53‰]
	ME₽	1651₽	95. 47₽	85.52₽	90. 22₽	7
数量短语↩	CRF₽	6986₽	97.92%	98.40%	98.16‰]
	ME₽	7009₽	95. 91₽	93.12₽	94. 49₽],
总的结果↩	CRF₽	20669₽	95.25%	95.21%	95.23₽	}
	ME ₂	20805₽	93.37₽	88. 38₽	90. 81₽	1

信息检索失业主

- 实验2特征
 - CRF特征(7种): P-2 W-1 P-1 W0 P0 W1 P1
 - ME特征(12种): P-2 W-1 T-1 P-1 W0 P0 W1 P1 W2 P2 S E

■ 实验2特征模板

```
# Unigram
U00:%x[-2,1]
U01:%x[-1,0]
U02:%x[-1,1]
U03:%x[0,0]
U04:%x[0,1]
U05:%x[1,0]
U06:%x[1,1]
U11:%x[2,1]
# Bigram
B
```


■ 实验2评测结果

表 2 CRF 和 ME 仅利用简单特征的实验对比。

类别↩	模型₽	识别个数	准确率	召回率₽	F值₽
人名↩	CRF₽	3237₽	95.90%	96.76‰	96.33‰
	ME₽	3266₽	91.59₽	66.32₽	76. 93₽
机构名₽	CRF₽	2513₽	89.45‰	86.10%₽	87.740
	ME ₂	2592₽	78. 42₽	69.11₽	73. 47₽
地名	CRF₽	5742₽	93.77‰	95.10‰	94.43%
	ME_{ℓ}	5689₽	90. 64₽	91.58₽	91.11₽
专有名词↩	CRF₽	524₽	83.84‰	78.89%₀	81.29%
	ME_{\circ}	560₽	90. 21₽	23.04₽	36. 70₽
时间↩	CRF₽	30₽	90.00%∘	71.05‰	79.41₽
	$ME_{^{\wp}}$	38₽	39.13₽	23. 68₽	29.51₽
日期₽	CRF₽	1635₽	97.45‰	97.33‰	97.39‰
	ME ₂	1651₽	86. 78₽	66.06₽	75. 02₽
数量短语₽	CRF₽	6986₽	97.93‰	98.23‰	98.08‰
	$ME_{^{\wp}}$	7009₽	93. 47₽	84. 00₽	88. 48₽
总的结果↩	CRF_{ℓ}	20669₽	95.03‰	94.98‰	95.00₽
	ME_{\circ}	20805₽	89. 87₽	78. 27₽	83. 67₽

- 基于CRF的NE识别总结
 - 与ME相比,在同等条件下,CRF的实验结果明显优于ME,说明CRF的性能更好。
 - CRF对特征的融合能力比较强,即使是给出的很简单的特征,它仍然能达到较高的性能。而ME对特征的融合能力相对较弱。如果只给出简单的特征,它的性能,尤其是对复杂NE的识别效果会有较大的降低。

- 基于CRF的NE识别总结
 - CRF能更好的克服数据稀疏现象。对于实例 较少的时间类NE来说,CRF的识别效果明显 高于ME的识别结果。
 - 缺点:训练模型的时间比ME更长,且获得的模型很大,在一般的PC机上无法运行。

提纲

- CRF理论
- CRF工具包的使用
- 基于CRF的NE识别
- 下一步工作

下一步工作

- 进一步完成CRF的实验,找到CRF比ME性 能好的原因
- 对NE识别结果进行错误分析,针对错误改 进
- 修改Linux环境下的CRF代码,使之能在 Windows下运行,并成为性能更好的NE模 块

#