1001011101111000001

20100110100010ZO 1011110001110

001101100011111010100 第五章 网络层

什么是IPv6?

什么是IP、IPv4、IPv6?

IP

网络层协议,用以规定IP地址和IP报文格式,以便进行IP寻址。

- > 最早的科学研究应用
- > 普通老百姓的使用

IPv4

IP version 4

IPv6

IP version 6

IPv4的危机

IPv4的危机

- □ 地址缺乏是最大的危机
 - ▶约43亿的地址
 - ▶分类浪费了大量的IP地址
 - >不到一年,网络数量翻一番

92年开始限制地址分配!

16th Nov.,2015 vs May 10th 2017

http://inetcore.com/project/ipv4ec/index_en.html

是修补还是全面的替换?

- □ 如果把 IPv4 替换掉的话,网络中的所有系统均需要升级。升级Windows易如闲庭信步,但I P的升级对于大型组织来说,简直就是一场恶梦!
- □ 如果问题仅在地址匮乏,可通过NAT、CIDR、VLSM等。但是,它们最终将阻碍未来Internet的发展,因为它们限制了可连接的网络数和主机数。

工程师们决定替换 而不是修补IPv4

IPv6

- □ CIDR和NAT可能"买"一些年头,但是IPv4的日子很快就完了
- □ 1990年, IETF开始着手新版本的IP协议, 主要目标是:
 - 支持几十亿台主机
 - 缩减路由表的规模
 - 简化协议,让路由器可以更快地处理分组
 - 提供比IPv4好的安全性

IPv6

更加关注服务类型 (尤其是实时数据)

允许通过指定范围来支持组播传输

允许主机在不改变地址的情况下能够漫游

允许协议具有扩展性

允许新老协议共存多年

- □ 1991年12月发布的RFC1287, 其标题是"未来的Internet体系结构"
- □ 对Internet将来的估计
 - ▶ Internet将变得更加复杂,需要与种类繁多的不同网络技术协同工作;
 - > 对于Internet的访问将由许多承载商一起提供;
 - > Internet需要能够支持多达上百亿个网络的互联。

- □ 随后出现了三种较有影响力的提案
 - ▶1992年,RFC 1347,TUBA
 - ▶1993年, RFC 1475 (IPv7), TP/IX, 形成后来的, C ATNIP (RFC1707)
 - ➤ IP Encapsulation

- □ Steve Deering, Paul Francis和Robert Hinden等,在IPv4基础上,取各家所长,形成了SIPP(简单增强IP),RFC1710,可称为IPV6的前身
- □ 最早的描述IPv6及其支持的协议的RFC标准(RFC 1883~1887) 于1996年早期发表

□ 到1998年夏末为止,新的IPv6 RFC获得了发表的批准。其中 尤其值得注意的是,RFC2373 (IPv6的寻址体系结构)替换了 RFC 1883;RFC 2374(一种IPv6可集聚全球单播地址格式)替换 了RFC 2073

是否还听到过其它术语?

IPv6标准组织

IETF

http://www.ietf.org

- ☐ IP Version 6 Working Group
 - ➤ 制订IPv6规范和标准
- IPv6 Operations
 - ➤ 为运营IPv4/IPv6共存的Internet和在已有的IPv4网络或者新的网络安装中部署IPv6提供指导
- □ 其它IPv6相关工作组
 - 6lowpan, mip6, mipshop, monami6, multi6, shim6...

国内IPv6发展现状

□ 2004年12月25日,中国第一个下一代互联网示范工程(CNGI) 核心网之一CERNET2主干网正式开通。

□ 2006年9月23日,下一代互联网骨干网核心技术通过验收

2006年度中国十大科技进展新闻是:下一代互联网技术获重大成果。

相关标准与规范

文件号码	标题	发布时间	内容
1886	DNS Extensions to support IPv6	95 年 12 月	DNS 扩充
1933	Transition Mechanisms for IPv6 Hosts and	96年4月	IPv6 主机和路由器过渡方案
	Routers		
2080	RIPng for IPv6	97年1月	IPv6 路由协议
2373	IPv6 Addressing Architecture	98年7月	IPv6 地址体系结构
2374	An IPv6 Aggregatable Global Unicast Address	98年7月	IPv6 可聚类的全局单目地址
2375	IPv6 Multicast Address Assignments	98年7月	IPv6 组播地址
2460	IPv6 Specification	98年12月	IPv6 规范
2461	Neighbor Discovery for IPv6	98年12月	IPv6 的邻机发现
2462	IPv6 Stateless Address Autoconfiguration	98年12月	IPv6 的地址自动配置
2463	ICMPv6 for IPv6	98年12月	IPv6 控制报文管理协议
2464	Transmission over IPv6 Packets over Ethernet	98年12月	以太网上传送 IPv6 分组
	Network		
2545	Use of BGP4+ Multiprotocol Extention for IPv6	99年3月	IPv6 路由协议
	Inter-Domain Routing		
2740	OSPFv6	99年12月	IPv6 路由协议
2765	SIIT	2000年3月	协议变换
2766	NAT-PT	2000年3月	地址/协议变换

小结

- □ IPv4存在地址危机、端到端模式受到破坏、
 - 配置复杂、安全问题、QoS问题等
- □ IPv6来解决这些问题
- □ IPv6在中国的现状,逐步过渡

思考题

- □ IPv4有哪些问题?
- □ 什么是IPv6?
- □ IPv6的相关标准主要由哪个标准组织推出?
- □ IPv6在中国的发展现状如何?

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!