This file is to plot emittance growth after cooling in JSPEC simulation.

He Zhnag: Interaction time betwenn proton beam and electron beam is given by

Interaction time = total time (hrs) in simulation * cooler length/ring circumference

```
In [1]: import pandas as pd
import numpy as np
In [2]: df=pd.read csv("cool2.txt", sep="\s+", skiprows = [0,1,3,4])
```

Out[2]:

```
t
              emit_x
                         emit_y
                                  dp/p
        0
        2.16  0.000003  4.495446e-07  0.000656
        3.24 0.000003 4.495644e-07 0.000655
   3
        4.32 0.000003 4.494804e-07 0.000659
9996 10795.68 0.000007 4.963973e-07 0.000620
9997 10796.76 0.000007 4.964953e-07 0.000613
9998 10797.84 0.000007 4.965041e-07 0.000624
9999 10798.92 0.000007 4.965375e-07 0.000621
10000 10800.00 0.000007 4.963149e-07 0.000619
```

10001 rows × 4 columns

In [4]: df

Out[4]:

	t	emit_x	emit_y	dp/p	time	emitx	emity
0	0.00	0.000003	4.500000e-07	0.000660	0.0000	2.800000	0.450000
1	1.08	0.000003	4.497735e-07	0.000662	0.0003	2.799666	0.449773
2	2.16	0.000003	4.495446e-07	0.000656	0.0006	2.799306	0.449545
3	3.24	0.000003	4.495644e-07	0.000655	0.0009	2.798567	0.449564
4	4.32	0.000003	4.494804e-07	0.000659	0.0012	2.799090	0.449480
9996	10795.68	0.000007	4.963973e-07	0.000620	2.9988	7.325192	0.496397
9997	10796.76	0.000007	4.964953e-07	0.000613	2.9991	7.326791	0.496495
9998	10797.84	0.000007	4.965041e-07	0.000624	2.9994	7.327766	0.496504
9999	10798.92	0.000007	4.965375e-07	0.000621	2.9997	7.328974	0.496538
10000	10800.00	0.000007	4.963149e-07	0.000619	3.0000	7.327038	0.496315

10001 rows \times 7 columns

```
In [5]: import matplotlib.pyplot as plt
%matplotlib inline
```

```
In [8]: #fig, ax1 = plt.subplots()
    ax1 = df.plot(x = 'time', y=['emitx', 'emity', 'dp/p'], kind="line", figsize=(10,5))
    ax1.set_xlabel('time (hour)')
    ax1.set_ylabel('Emittance(mm.mrad)')
    ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
    ax2.set_ylabel(r'momentum spread $ \times 10^{-4}$') # we already handled the x-label with ax1
    ax2.tick_params(axis='y')
    ax1.legend(['$\epsilon_x$','$\epsilon_y$','$\delta_{p}/p$'])

fig.tight_layout() # otherwise the right y-label is slightly clipped
    plt.savefig("phase-space.pdf")
    plt.show()
```


In []: