Федеральное государственное автономное образовательное учреждение высшего образования Университет ИТМО

Отчет по лабораторной работе №1-2 «Администрирование систем и сетей»

Выполнили:

Чжоу Хунсян Группа: Р34131

Преподаватель:

Афанасьев Дмитрий Борисович

 $2024 \ г.$ Санкт-Петербург

Оглавление

Адресация и маршрутизация ІРv4	3
Цели	
Топология	
План работы	3
Процедура конфигурирования	4
Шаг 1. Настройте основные параметры устройств	4
Шаг 2. Выведите на экран IP-адрес текущего интерфейса и таблицу	
маршрутизации маршрутизатора	5
Шаг 3. Настройте IP-адреса для физических интерфейсов	7
Шаг 4. Создайте loopback-интерфейс	9
Шаг 5. Настройте статические маршруты.	. 10
Шаг 6. Настройте маршрут от R1 к R2 через R3 в качестве резервног	O
маршрута от LoopBack0 R1 к LoopBack0 R2	. 13
Шаг 7. Настройте маршруты по умолчанию для установления связи	
между интерфейсом LoopBack0 маршрутизатора R1 и интерфейсом	
LoopBack0 маршрутизатора R2	
Справочные конфигурации	. 17
Маршрутизация OSPF	
Цели	
Топология	
План работы	
Процедура конфигурирования	
Шаг 1. Настройте основные параметры устройств	
Шаг 2. Настройте основные параметры OSPF	
Шаг 3. Выведите на экран рабочий статус OSPF	
Шаг 4. Настройте аутентификацию OSPF	
Шаг 5. Предположим, что R1 является граничным маршрутизатором	
всех сетей. Таким образом, маршрутизатор R1 анонсирует маршрут	
OSPF по умолчанию	. 26
Шаг 6. Измените значения стоимости интерфейсов на R1, чтобы	
LoopBack0 на R1 мог достигать LoopBack0 на R2 через R3	
Справочные конфигурации	. 29

Адресация и маршрутизация IPv4

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Процедура настройки IPv4-адреса на интерфейсе
- Функции и значение loopback-интерфейсов
- Принципы генерирования прямых маршрутов
- Процедура настройки статических маршрутов и условия, при которых используются статические маршруты
- Процедура проверки возможности установления соединения сетевого уровня с помощью инструмента ping
- Процедура настройки статических маршрутов и сценарии их применения

Топология

План работы

- 1. Настройка ІР-адресов для интерфейсов на маршрутизаторах.
- 2. Настройка статических маршрутов для установления связи между маршрутизаторами.

Процедура конфигурирования

Шаг 1. Настройте основные параметры устройств

Задайте имена устройствам.

AR1

<Huawei>
<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname AR1
[AR1]

AR2

<Huawei>
<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname AR2
[AR2]

AR3

<Huawei>
<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname AR3
[AR3]

Шаг 2. Выведите на экран IP-адрес текущего интерфейса и таблицу маршрутизации маршрутизатора.

Выведите на экран статус интерфейса на маршрутизаторе.

AR1

```
[AR1]display ip interface brief
*down: administratively down
^down: standby
(1): loopback
(s): spoofing
The number of interface that is UP in Physical is 3
The number of interface that is DOWN in Physical is 1
The number of interface that is UP in Protocol is 1
The number of interface that is DOWN in Protocol is 3
                                   IP Address/Mask
                                                                     Protocol
Interface
                                                          Physical
GigabitEthernet0/0/0
                                   unassigned
                                                                     down
                                                          เมต
GigabitEthernet0/0/1
                                   unassigned
                                                          down
                                                                     down
GigabitEthernet0/0/2
                                   unassigned
                                                          up
                                                                     down
NULL0
                                   unassigned
                                                                     up(s)
                                                          up
```

AR2

```
[AR2]display ip interface brief
*down: administratively down
^down: standby
(1): loopback
(s): spoofing
The number of interface that is UP in Physical is 3
The number of interface that is DOWN in Physical is 1
The number of interface that is UP in Protocol is 1
The number of interface that is DOWN in Protocol is 3
Interface
                                    IP Address/Mask
                                                           Physical
                                                                       Protocol
GigabitEthernet0/0/0
                                    unassigned
                                                           up
                                                                       down
GigabitEthernet0/0/1
                                    unassigned
                                                                       down
                                                           up
GigabitEthernet0/0/2
                                    unassigned
                                                                       down
                                                           down
```

```
[AR3]display ip interface brief
*down: administratively down
^down: standby
(1): loopback
(s): spoofing
The number of interface that is UP in Physical is 3
The number of interface that is DOWN in Physical is 1
The number of interface that is UP in Protocol is 1
The number of interface that is DOWN in Protocol is 3
                                  IP Address/Mask
                                                                   Protocol
Interface
                                                        Physical
GigabitEthernet0/0/0
                                  unassigned
                                                        down
                                                                   down
GigabitEthernet0/0/1
                                  unassigned
                                                                   down
                                                        up
GigabitEthernet0/0/2
                                  unassigned
                                                                   down
                                                        up
NULL 0
```

Выведите на экран таблицу маршрутизации на маршрутизаторе

AR1

[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib Routing Tables: Public Destinations : 4 Routes: 4 Destination/Mask Proto Pre Cost Flags NextHop Interface 127.0.0.1 127.0.0.0/8 Direct 0 InLoopBack0 127.0.0.1/32 Direct 0 127.255.255.255/32 Direct 0 255.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0 0 D 0 D 127.0.0.1 InLoopBack0 127.0.0.1 InLoopBack0

AR2

<AR2>display ip routing-table
Route Flags: R - relay, D - download to fib Routing Tables: Public Destinations : 4 Routes: 4 Flags NextHop Destination/Mask Proto Pre Cost Interface 127.0.0.0/8 Direct 0 127.0.0.1/32 Direct 0 127.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0 0 127.0.0.1 InLoopBack0 0 127.0.0.1 InLoopBack0 255.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0

AR3

<AR3>display ip routing-table Route Flags: R - relay, D - download to fib Routing Tables: Public Destinations: 4 Routes: 4 Destination/Mask Proto Pre Cost Flags NextHop Interface 127.0.0.0/8 Direct 0 InLoopBack0 0 D 127.0.0.1 127.0.0.1/32 Direct 0 InLoopBack0 127.0.0.1 0 D 127.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0 255.255.255.255/32 Direct 0 InLoopBack0 127.0.0.1

Шаг 3. Настройте IP-адреса для физических интерфейсов.

Настройте IP-адреса для физических интерфейсов на основе следующей таблины

Маршрутизатор	Интерфейс	IP- адрес/маска
R1	GigabitEthernet0/0/0	10.0.12.1/24
	GigabitEthernet0/0/2	10.0.13.1/24
R2	GigabitEthernet0/0/0	10.0.12.2/24
	GigabitEthernet0/0/1	10.0.23.2/24
R3	GigabitEthernet0/0/1	10.0.23.3/24
	GigabitEthernet0/0/2	10.0.13.3/24

AR1

[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]ip address 10.0.12.1 24
Nov 8 2024 07:12:19-08:00 AR1 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP on the interface GigabitEthernet0/0/0 has entered the UP state.
[AR1-GigabitEthernet0/0/0]quit
[AR1]interface g0/0/2
[AR1-GigabitEthernet0/0/2]ip address 10.0.13.1 24
Nov 8 2024 07:14:01-08:00 AR1 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP on the interface GigabitEthernet0/0/2 has entered the UP state.
[AR1-GigabitEthernet0/0/2]quit

AR2

[AR2]interface g0/0/0
[AR2-GigabitEthernet0/0/0]ip address 10.0.12.2 24
Nov 8 2024 07:16:50-08:00 AR2 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP on the interface GigabitEthernet0/0/0 has entered the UP state.
[AR2-GigabitEthernet0/0/0]quit
[AR2]interface g0/0/1
[AR2-GigabitEthernet0/0/1]ip address 10.0.23.2 24
[AR2-GigabitEthernet0/0/1]
Nov 8 2024 07:18:01-08:00 AR2 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP on the interface GigabitEthernet0/0/1 has entered the UP state.
[AR2-GigabitEthernet0/0/1]quit

AR3

[AR3]interface g0/0/1
[AR3-GigabitEthernet0/0/1]ip address 10.0.23.3 24
[AR3-GigabitEthernet0/0/1]
Nov 8 2024 07:21:41-08:00 AR3 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP on the interface GigabitEthernet0/0/1 has entered the UP state.
[AR3-GigabitEthernet0/0/1]quit
[AR3]interface g0/0/2
[AR3-GigabitEthernet0/0/2]ip address 10.0.13.3 24
[AR3-GigabitEthernet0/0/2]
Nov 8 2024 07:22:11-08:00 AR3 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP on the interface GigabitEthernet0/0/2 has entered the UP state.
[AR3-GigabitEthernet0/0/2]quit

Проверьте наличие связи с помощью инструмента ping.

```
[AR1]ping -c 5 10.0.12.2
  PING 10.0.12.2: 56 data bytes, press CTRL_C to break

Reply from 10.0.12.2: bytes=56 Sequence=1 ttl=255 time=100 ms
     Reply from 10.0.12.2: bytes=56 Sequence=2 ttl=255 time=20 ms
    Reply from 10.0.12.2: bytes=56 Sequence=3 ttl=255 time=30 ms Reply from 10.0.12.2: bytes=56 Sequence=4 ttl=255 time=30 ms
    Reply from 10.0.12.2: bytes=56 Sequence=5 ttl=255 time=20 ms
  --- 10.0.12.2 ping statistics ---
    5 packet(s) transmitted
     5 packet(s) received
     0.00% packet loss
    round-trip min/avg/max = 20/40/100 ms
[AR1]ping -c 5 10.0.13.3
  PING 10.0.13.3: 56 data bytes, press CTRL_C to break
    Reply from 10.0.13.3: bytes=56 Sequence=1 ttl=255 time=90 ms
Reply from 10.0.13.3: bytes=56 Sequence=2 ttl=255 time=30 ms
     Reply from 10.0.13.3: bytes=56 Sequence=3 ttl=255 time=20 ms
    Reply from 10.0.13.3: bytes=56 Sequence=4 ttl=255 time=20 ms
Reply from 10.0.13.3: bytes=56 Sequence=5 ttl=255 time=20 ms
  --- 10.0.13.3 ping statistics ---
    5 packet(s) transmitted
     5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 20/36/90 ms
```

Выведите на экран таблицу маршрутизации R1.

```
[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
         Destinations : 10
                                  Routes : 10
Destination/Mask
                                                                   Interface
                    Proto
                            Pre Cost
                                            Flags NextHop
      10.0.12.0/24 Direct 0
                                                  10.0.12.1
                                                                   GigabitEthernet0/0/0
      10.0.12.1/32
                    Direct 0
                                  0
                                              D
                                                  127.0.0.1
                                                                   GigabitEthernet0/0/0
                                                                  GigabitEthernet0/0/0
    10.0.12.255/32 Direct 0
                                                  127.0.0.1
                                  0
                                              D
      10.0.13.0/24 Direct 0
                                  Θ
                                              D
                                                  10.0.13.1
                                                                   GigabitEthernet0/0/2
      10.0.13.1/32 Direct 0
                                  0
                                              D
                                                  127.0.0.1
                                                                   GigabitEthernet0/0/2
    10.0.13.255/32 Direct 0
                                              D
                                                  127.0.0.1
                                                                   GigabitEthernet0/0/2
                                  0
      127.0.0.0/8
                   Direct 0
                                  0
                                              D
                                                  127.0.0.1
                                                                   InLoopBack0
                   Direct 0
      127.0.0.1/32
                                  0
                                              D
                                                  127.0.0.1
                                                                   InLoopBack0
127.255.255.255/32 Direct 0
                                                  127.0.0.1
                                                                   InLoopBack0
                                              D
                                 0
255.255.255.255/32 Direct 0
                                                  127.0.0.1
                                                                   InLoopBack0
[AR1]
```

Шаг 4. Создайте loopback-интерфейс

Hастройте loopback-интерфейс в соответствии со следующей таблицей.

Маршрутизатор	Интерфейс	IP-адрес/маска
R1	LoopBacko	10.0.1.1/32
R2	LoopBacko	10.0.1.2/32
R3	LoopBacko	10.0.1.3/32

AR1

```
[AR1]interface LoopBack0
[AR1-LoopBack0]ip address 10.0.1.1 32
```

AR2

```
[AR2]interface LoopBack0
[AR2-LoopBack0]ip address 10.0.1.2 32
```

AR3

```
[AR3]interface LoopBack0
[AR3-LoopBack0]ip address 10.0.1.3 32
```

Выведите на экран таблицу маршрутизации на маршрутизаторе (в данном случае на примере R1).

```
[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
         Destinations: 11
                                   Routes : 11
Destination/Mask
                     Proto
                             Pre Cost
                                              Flags NextHop
                                                                     Interface
       10.0.1.1/32 Direct 0
                                                    127.0.0.1
                                                                     LoopBack0
                                   Θ
      10.0.12.0/24 Direct 0
                                   0
                                                    10.0.12.1
                                                                     GigabitEthernet0/0/0
    10.0.12.1/32 Direct 0
10.0.12.255/32 Direct 0
                                                                     GigabitEthernet0/0/0
                                   0
                                                    127.0.0.1
                                                    127.0.0.1
                                                                     GigabitEthernet0/0/0
                                   0
      10.0.13.0/24 Direct 0
                                   0
                                               D
                                                   10.0.13.1
                                                                     GigabitEthernet0/0/2
    10.0.13.1/32 Direct 0
10.0.13.255/32 Direct 0
                                   0
                                                    127.0.0.1
                                                                     GigabitEthernet0/0/2
                                                                     GigabitEthernet0/0/2
                                               D
                                                    127.0.0.1
                                   Θ
      127.0.0.0/8
                    Direct 0
                                   0
                                                   127.0.0.1
                                                                     InLoopBack0
127.0.0.1/32 Direct 0
127.255.255.255/32 Direct 0
                                                    127.0.0.1
                                                                     InLoopBack0
                                               D
                                                   127.0.0.1
                                                                     InLoopBack0
255.255.255.255/32 Direct 0
                                                   127.0.0.1
                                                                     InLoopBack0
```

Проверьте наличие связи между loopback-интерфейсами

```
[AR1]ping -a 10.0.1.1 10.0.1.2
PING 10.0.1.2: 56  data bytes, press CTRL_C to break
  Request time out
  --- 10.0.1.2 ping statistics ---
  5 packet(s) transmitted
  0 packet(s) received
  100.00% packet loss
```

Шаг 5. Настройте статические маршруты.

На маршрутизаторе R1 настройте маршрут к интерфейсам LoopBack0 маршрутизаторов R2 и R3.

```
[AR1]ip route-static 10.0.1.2 32 10.0.12.2
[AR1]ip route-static 10.0.1.3 32 10.0.13.3
```

Выведите на экран таблицу маршрутизации R1.

```
[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
           Destinations: 13
                                        Routes: 13
Destination/Mask
                                                     Flags NextHop
                        Proto Pre Cost
                                                                                Interface
        10.0.1.1/32 Direct 0
                                                            127.0.0.1
                                                                                LoopBack0
        10.0.1.2/32 Static 60 0
                                                           10.0.12.2
                                                                                GigabitEthernet0/0/0
                                                      RD
        10.0.1.3/32 Static 60 0
                                                      RD 10.0.13.3
                                                                                GigabitEthernet0/0/2
       10.0.12.0/24 Direct 0 0
10.0.12.1/32 Direct 0 0
                                                                                GigabitEthernet0/0/0
                                                            10.0.12.1
                                                     D 127.0.0.1
                                                                                GigabitEthernet0/0/0
    10.0.12.1/32 Direct 0 0
10.0.12.255/32 Direct 0 0
10.0.13.0/24 Direct 0 0
10.0.13.1/32 Direct 0 0
10.0.13.255/32 Direct 0 0
127.0.0.0/8 Direct 0 0
127.0.0.1/32 Direct 0 0
                                                     D 127.0.0.1
D 10.0.13.1
                                                                                GigabitEthernet0/0/0
                                                                                GigabitEthernet0/0/2
                                                     D 127.0.0.1
                                                                                GigabitEthernet0/0/2
                                                     D 127.0.0.1
D 127.0.0.1
                                                                                GigabitEthernet0/0/2
                                                                                InLoopBack0
                                                     D 127.0.0.1
                                                                                InLoopBack0
127.255.255.255/32 Direct 0 0 255.255.255.255/32 Direct 0 0
                                                 D 127.0.0.1
D 127.0.0.1
                                                                                InLoopBack0
                                                                                InLoopBack0
```

Проверьте возможность установления связи.

```
[AR1]ping -a 10.0.1.1 10.0.1.2
  PING 10.0.1.2: 56 data bytes, press CTRL_C to break
    Request time out
    Request time out
    Request time out
    Request time out
   Request time out
   -- 10.0.1.2 ping statistics ---
5 packet(s) transmitted
    0 packet(s) received
    100.00% packet loss
[AR1]ping -a 10.0.1.1 10.0.1.3
  PING 10.0.1.3: 56 data bytes, press CTRL_C to break
   Request time out
    Request time out
    Request time out
   Request time out
   Request time out
   -- 10.0.1.3 ping statistics ---
   5 packet(s) transmitted
    0 packet(s) received
   100.00% packet loss
```

Ha R2 добавьте маршрут к интерфейсу LoopBack0 маршрутизатора R1.

```
[AR2]ip route-static 10.0.1.1 32 10.0.12.1
```

Проверьте возможность установления связи.

```
[AR1]ping -a 10.0.1.1 10.0.1.2

PING 10.0.1.2: 56 data bytes, press CTRL_C to break

Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=255 time=20 ms

Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=255 time=30 ms

Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=255 time=10 ms

Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=255 time=20 ms

Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=255 time=20 ms
```

```
--- 10.0.1.2 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 10/20/30 ms

[AR1]ping -a 10.0.1.1 10.0.1.3
PING 10.0.1.3: 56 data bytes, press CTRL_C to break
Request time out
--- 10.0.1.3 ping statistics ---
5 packet(s) transmitted
0 packet(s) received
100.00% packet loss
```

Настройте другие необходимые маршруты.

AR2

```
[AR2]ip route-static 10.0.1.3 32 10.0.23.3
```

AR3

```
[AR3]ip route-static 10.0.1.1 32 10.0.13.1
[AR3]ip route-static 10.0.1.2 32 10.0.23.2
```

Проверьте возможность установления связи между интерфейсами LoopBack0 маршрутизаторов, следуя приведенной процедуре.

AR1

```
[AR1]ping -a 10.0.1.1 10.0.1.2
  PING 10.0.1.2: 56 data bytes, press CTRL_C to break
    Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=255 time=20 ms
    Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=255 time=20 ms
    Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=255 time=20 ms
    Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=255 time=30 ms
    Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=255 time=30 ms
  --- 10.0.1.2 ping statistics ---
    5 packet(s) transmitted
5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 20/24/30 ms
[AR1]ping -a 10.0.1.1 10.0.1.3
  PING 10.0.1.3: 56 data bytes, press CTRL_C to break
    Reply from 10.0.1.3: bytes=56 Sequence=1 ttl=255 time=30 ms
    Reply from 10.0.1.3: bytes=56 Sequence=2 ttl=255 time=20 ms Reply from 10.0.1.3: bytes=56 Sequence=3 ttl=255 time=20 ms
    Reply from 10.0.1.3: bytes=56 Sequence=4 ttl=255 time=40 ms
    Reply from 10.0.1.3: bytes=56 Sequence=5 ttl=255 time=30 ms
  --- 10.0.1.3 ping statistics ---
    5 packet(s) transmitted
    5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 20/28/40 ms
```

```
[AR2]ping -a 10.0.1.2 10.0.1.1

PING 10.0.1.1: 56 data bytes, press CTRL_C to break

Reply from 10.0.1.1: bytes=56 Sequence=1 ttl=255 time=30 ms

Reply from 10.0.1.1: bytes=56 Sequence=2 ttl=255 time=20 ms

Reply from 10.0.1.1: bytes=56 Sequence=3 ttl=255 time=20 ms

Reply from 10.0.1.1: bytes=56 Sequence=4 ttl=255 time=30 ms
```

```
Reply from 10.0.1.1: bytes=56 Sequence=5 ttl=255 time=20 ms
  --- 10.0.1.1 ping statistics ---
    5 packet(s) transmitted
    5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 20/24/30 ms
[AR2]ping -a 10.0.1.2 10.0.1.3
  PING 10.0.1.3: 56 data bytes, press CTRL_C to break
    Reply from 10.0.1.3: bytes=56 Sequence=1 ttl=255 time=60 ms
    Reply from 10.0.1.3: bytes=56 Sequence=2 ttl=255 time=30 ms
    Reply from 10.0.1.3: bytes=56 Sequence=3 ttl=255 time=20 ms
    Reply from 10.0.1.3: bytes=56 Sequence=4 ttl=255 time=10 ms
Reply from 10.0.1.3: bytes=56 Sequence=5 ttl=255 time=30 ms
  --- 10.0.1.3 ping statistics --- 5 packet(s) transmitted
    5 packet(s) received
    0.00% packet loss
   round-trip min/avg/max = 10/30/60 ms
```

```
[AR3]ping -a 10.0.1.3 10.0.1.1
  PING 10.0.1.1: 56 data bytes, press CTRL_C to break
    Reply from 10.0.1.1: bytes=56 Sequence=1 ttl=255 time=10 ms
     Reply from 10.0.1.1: bytes=56 Sequence=2 ttl=255 time=30 ms
    Reply from 10.0.1.1: bytes=56 Sequence=3 ttl=255 time=20 ms
Reply from 10.0.1.1: bytes=56 Sequence=4 ttl=255 time=20 ms
Reply from 10.0.1.1: bytes=56 Sequence=5 ttl=255 time=20 ms
  --- 10.0.1.1 ping statistics ---
    5 packet(s) transmitted
     5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 10/20/30 ms
[AR3]ping -a 10.0.1.3 10.0.1.2
  PING 10.0.1.2: 56 data bytes, press CTRL_C to break
    Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=255 time=20 ms
     Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=255 time=30 ms
    Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=255 time=20 ms
    Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=255 time=20 ms
Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=255 time=20 ms
  --- 10.0.1.2 ping statistics --- 5 packet(s) transmitted
     5 packet(s) received
    0.00% packet loss
    round-trip min/avg/max = 20/22/30 ms
```

Шаг 6. Настройте маршрут от R1 к R2 через R3 в качестве резервного маршрута от LoopBack0 R1 к LoopBack0 R2.

Настройте статические маршруты на R1 и R2.

```
[AR1]ip route-static 10.0.1.2 32 10.0.13.3 preference 100 [AR2]ip route-static 10.0.1.1 32 10.0.23.3 preference 100
```

Выведите на экран таблицы маршрутизации R1 и R2.

AR1

[AR1]display ip routing-table Route Flags: R - relay, D - download to fib						
Routing Tables: Pub Destinatio			Routes	: 13		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
10.0.1.1/32	Direct	0	Θ	D	127.0.0.1	LoopBack0
10.0.1.2/32	Static	60	0	RD	10.0.12.2	GigabitEthernet0/0/0
10.0.1.3/32	Static	60	0	RD	10.0.13.3	GigabitEthernet0/0/2
10.0.12.0/24	Direct	Θ	Θ	D	10.0.12.1	GigabitEthernet0/0/0
10.0.12.1/32	Direct	0	Θ	D	127.0.0.1	GigabitEthernet0/0/0
10.0.12.255/32	Direct	0	Θ	D	127.0.0.1	GigabitEthernet0/0/0
10.0.13.0/24	Direct	0	Θ	D	10.0.13.1	GigabitEthernet0/0/2
10.0.13.1/32	Direct	Θ	Θ	D	127.0.0.1	GigabitEthernet0/0/2
10.0.13.255/32	Direct	0	Θ	D	127.0.0.1	GigabitEthernet0/0/2
127.0.0.0/8	Direct	Θ	Θ	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct	Θ	Θ	D	127.0.0.1	InLoopBack0
127.255.255.255/32	Direct	0	Θ	D	127.0.0.1	InLoopBack0
255.255.255.255/32	Direct	Θ	0	D	127.0.0.1	InLoopBack0

AR2

```
[AR2]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
         Destinations: 13
                                 Routes: 13
Destination/Mask
                    Proto
                            Pre Cost
                                           Flags NextHop
                                                                  Interface
                                            RD
       10.0.1.1/32 Static 60
                                 Θ
                                                 10.0.12.1
                                                                  GigabitEthernet0/0/0
       10.0.1.2/32 Direct 0
                                 0
                                             D
                                                 127.0.0.1
                                                                  LoopBack0
                                                                  GigabitEthernet0/0/1
      10.0.1.3/32 Static 60
                                0
                                            RD
                                                 10.0.23.3
      10.0.12.0/24 Direct 0
                                 Θ
                                                 10.0.12.2
                                                                  GigabitEthernet0/0/0
   10.0.12.2/32 Direct 0
10.0.12.255/32 Direct 0
                                             D
                                                 127.0.0.1
                                                                  GigabitEthernet0/0/0
                                 0
                                                 127.0.0.1
                                                                  GigabitEthernet0/0/0
     10.0.23.0/24 Direct 0
10.0.23.2/32 Direct 0
                               0
                                                                  GigabitEthernet0/0/1
                                             D
                                                 10.0.23.2
                                 0
                                             D
                                                 127.0.0.1
                                                                  GigabitEthernet0/0/1
    10.0.23.255/32 Direct 0
                                                 127.0.0.1
                                                                  GigabitEthernet0/0/1
      127.0.0.0/8
                    Direct 0
                                             D
                                                 127.0.0.1
                                 Θ
                                                                  InLoopBack0
      127.0.0.1/32 Direct 0
                                 0
                                             D
                                                 127.0.0.1
                                                                  InLoopBack0
127.255.255.255/32 Direct 0
                                                 127.0.0.1
                                                                  InLoopBack0
255.255.255.255/32 Direct 0
                                                127.0.0.1
                                                                  InLoopBack0
```

Отключите интерфейс GigabitEthernet0/0/0 на маршрутизаторах R1 и R2, чтобы сделать недействительным маршрут с наивысшим приоритетом.

```
[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]shutdown
Nov 8 2024 09:17:51-08:00 AR1 %%01IFPDT/4/IF_STATE(l)[0]:Interface GigabitEther
net0/0/0 has turned into DOWN state.
[AR1-GigabitEthernet0/0/0]
[AR1-GigabitEthernet0/0/0]
Nov 8 2024 09:17:51-08:00 AR1 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP
on the interface GigabitEthernet0/0/0 has entered the DOWN state.
```

Выведите на экран таблицы маршрутизации на R1 и R2. Из командного вывода

видно, что маршруты с более низким приоритетом активируются, когда маршруты с более высоким приоритетом становятся недействительными.

AR1

```
[AR1-GigabitEthernet0/0/0]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
        Destinations: 10
                                Routes: 10
Destination/Mask
                   Proto Pre Cost
                                          Flags NextHop
                                                                Interface
       10.0.1.1/32 Direct 0
                                0
                                                127.0.0.1
                                                                LoopBack0
      10.0.1.2/32 Static 100 0
                                                10.0.13.3
                                                                GigabitEthernet0/0/2
                                           RD
      10.0.1.3/32 Static 60
                                0
                                           RD 10.0.13.3
                                                                GigabitEthernet0/0/2
     10.0.13.0/24 Direct 0
10.0.13.1/32 Direct 0
                                0
                                            D
                                                10.0.13.1
                                                                GigabitEthernet0/0/2
                                           D 127.0.0.1
                                                                GigabitEthernet0/0/2
                                0
   10.0.13.255/32 Direct 0
                                0
                                           D 127.0.0.1
                                                                GigabitEthernet0/0/2
     127.0.0.0/8 Direct 0
127.0.0.1/32 Direct 0
                                                127.0.0.1
                                                                InLoopBack0
                                           D 127.0.0.1
                                0
                                                                InLoopBack0
127.255.255.255/32 Direct 0
                                                                InLoopBack0
                                0
                                           D 127.0.0.1
255.255.255.255/32 Direct 0
                                            D 127.0.0.1
                                                                InLoopBack0
```

AR2

[AR2]display ip routing-table Route Flags: R - relay, D - download to fib						
Routing Tables: Pub Destinatio			Routes	: 10		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
10.0.1.1/32 0/0/1	Static	100	0	RD	10.0.23.3	GigabitEthernet
10.0.1.2/32	Direct	Θ	Θ	D	127.0.0.1	LoopBack0
10.0.1.3/32 0/0/1	Static	60	0	RD	10.0.23.3	GigabitEthernet
10.0.23.0/24 0/0/1	Direct	Θ	0	D	10.0.23.2	GigabitEthernet
10.0.23.2/32 0/0/1	Direct	Θ	0	D	127.0.0.1	GigabitEthernet
10.0.23.255/32 0/0/1	Direct	0	0	D	127.0.0.1	GigabitEthernet
127.0.0.0/8	Direct	0	Θ	D	127.0.0.1	InLoopBack0
127.0.0.1/32	Direct	Θ	0	D	127.0.0.1	InLoopBack0
127.255.255.255/32	Direct	0	Θ	D	127.0.0.1	InLoopBack0
255.255.255.255/32	Direct	0	0	D	127.0.0.1	InLoopBack0

Проверьте возможность установления связи.

```
[AR1]ping -a 10.0.1.1 10.0.1.2

PING 10.0.1.2: 56 data bytes, press CTRL_C to break

Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=254 time=60 ms

Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=254 time=20 ms

Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=254 time=30 ms

Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=254 time=30 ms

Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=254 time=30 ms

--- 10.0.1.2 ping statistics ---

5 packet(s) transmitted

5 packet(s) received

0.00% packet loss

round-trip min/avg/max = 20/34/60 ms
```

Выполните трассировку маршрута, по которому передаются пакеты данных.

```
[AR1]tracert -a 10.0.1.1 10.0.1.2
traceroute to 10.0.1.2(10.0.1.2), max hops: 30 ,packet length: 40,press CTRL_C to break
```

1 10.0.13.3 30 ms 30 ms 20 ms

2 10.0.23.2 30 ms 20 ms 20 ms

Шаг 7. Настройте маршруты по умолчанию для установления связи между интерфейсом LoopBack0 маршрутизатора R1 и интерфейсом LoopBack0 маршрутизатора R2.

Включите интерфейсы и удалите настроенные маршруты.

```
[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]undo shutdown
[AR1-GigabitEthernet0/0/0]qui
Nov 8 2024 09:23:21-08:00 AR1 %%01IFPDT/4/IF_STATE(l)[2]:Interface GigabitEther net0/0/0 has turned into UP state.
Nov 8 2024 09:23:21-08:00 AR1 %%01IFNET/4/LINK_STATE(l)[3]:The line protocol IP on the interface GigabitEthernet0/0/0 has entered the UP state.
[AR1-GigabitEthernet0/0/0]quit
[AR1]undo ip route-static 10.0.1.2 32 10.0.12.2
[AR1]undo ip route-static 10.0.1.2 32 10.0.13.3
```

Выведите на экран таблицу маршрутизации R1.

```
[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
        Destinations: 12
                                Routes: 12
Destination/Mask
                   Proto
                           Pre Cost
                                          Flags NextHop
                                                                Interface
      10.0.1.1/32 Direct 0
                                            D 127.0.0.1
                                                                LoopBack0
     10.0.1.3/32 Static 60
10.0.12.0/24 Direct 0
                                           RD
                                                10.0.13.3
                                                                GigabitEthernet0/0/2
                                Θ
                                0
                                            D
                                                10.0.12.1
                                                                GigabitEthernet0/0/0
     10.0.12.1/32 Direct 0
                                                                GigabitEthernet0/0/0
                                               127.0.0.1
   10.0.12.255/32 Direct 0
10.0.13.0/24 Direct 0
                                           D
                                                                GigabitEthernet0/0/0
                                0
                                                127.0.0.1
                                               10.0.13.1
                               Θ
                                                                GigabitEthernet0/0/2
     10.0.13.1/32 Direct 0 0
                                           D 127.0.0.1
                                                                GigabitEthernet0/0/2
    10.0.13.255/32 Direct 0
                                            D
                                                                GigabitEthernet0/0/2
                               Θ
                                                127.0.0.1
                                                127.0.0.1
                   Direct 0
     127.0.0.0/8
                                0
                                                                InLoopBack0
      127.0.0.1/32 Direct 0
                                           D 127.0.0.1
                                                                InLoopBack0
127.255.255.255/32 Direct 0
                                                127.0.0.1
                                                                InLoopBack0
                                            D 127.0.0.1
255.255.255.255/32 Direct 0
                                                                InLoopBack0
```

Настройте маршрут по умолчанию на R1.

[AR1]ip route-static 0.0.0.0 0 10.0.12.2

Выведите на экран таблицу маршрутизации R1.

```
[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
         Destinations : 13
                                  Routes : 13
Destination/Mask
                             Pre Cost
                                             Flags NextHop
                                                                    Interface
                     Proto
        0.0.0.0/0 Static 60
                                  0
                                              RD
                                                   10.0.12.2
                                                                    GigabitEthernet0/0/0
       10.0.1.1/32 Direct 0
                                                                    LoopBack0
                                                  127.0.0.1
      10.0.1.3/32 Static 60
10.0.12.0/24 Direct 0
                                              RD
                                                                    GigabitEthernet0/0/2
                                  0
                                                   10.0.13.3
                                                  10.0.12.1
                                  0
                                                                    GigabitEthernet0/0/0
      10.0.12.1/32 Direct 0
                                                  127.0.0.1
                                                                    GigabitEthernet0/0/0
    10.0.12.255/32 Direct 0
10.0.13.0/24 Direct 0
                                  0
                                              D
                                                   127.0.0.1
                                                                    GigabitEthernet0/0/0
                                                   10.0.13.1
                                                                    GigabitEthernet0/0/2
                                  0
                                              D
      10.0.13.1/32 Direct 0
                                                   127.0.0.1
                                                                    GigabitEthernet0/0/2
                    Direct 0
Direct 0
    10.0.13.255/32
                                  0
                                                   127.0.0.1
                                                                    GigabitEthernet0/0/2
      127.0.0.0/8
                                                   127.0.0.1
                                                                    InLoopBack0
                                  0
      127.0.0.1/32 Direct 0
                                               D 127.0.0.1
                                                                    InLoopBack0
127.255.255.255/32 Direct 0 255.255.255.255/32 Direct 0
                                               D
                                                   127.0.0.1
                                                                    InLoopBack0
                                               D 127.0.0.1
                                                                    InLoopBack0
```

Проверьте наличие связи между LoopBack0 маршрутизатора R1 и LoopBack0 маршрутизатора R2.

```
[AR1]ping -a 10.0.1.1 10.0.1.2

PING 10.0.1.2: 56 data bytes, press CTRL_C to break

Reply from 10.0.1.2: bytes=56 Sequence=1 ttl=255 time=50 ms

Reply from 10.0.1.2: bytes=56 Sequence=2 ttl=255 time=20 ms

Reply from 10.0.1.2: bytes=56 Sequence=3 ttl=255 time=20 ms

Reply from 10.0.1.2: bytes=56 Sequence=4 ttl=255 time=20 ms

Reply from 10.0.1.2: bytes=56 Sequence=5 ttl=255 time=20 ms

--- 10.0.1.2 ping statistics ---

5 packet(s) transmitted

5 packet(s) received

0.00% packet loss

round-trip min/avg/max = 20/26/50 ms
```

Справочные конфигурации

AR1.cfg

```
[V200R003C00]
 sysname AR1
 snmp-agent local-engineid 800007DB03000000000000
 snmp-agent
clock timezone China-Standard-Time minus 08:00:00
portal local-server load portalpage.zip
 drop illegal-mac alarm
set cpu-usage threshold 80 restore 75
aaa
 authentication-scheme default
 authorization-scheme default
 accounting-scheme default
domain default
 domain default_admin
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0\8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
 ip address 10.0.12.1 255.255.255.0
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
ip address 10.0.13.1 255.255.255.0
interface NULL0
interface LoopBack0
ip address 10.0.1.1 255.255.255.255
ip route-static 0.0.0.0 0.0.0.0 10.0.12.2
ip route-static 10.0.1.3 255.255.255.255 10.0.13.3
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
wlan ac
return
```

AR2.cfg

```
[V200R003C00]
sysname AR2
snmp-agent local-engineid 800007DB03000000000000
 snmp-agent
clock timezone China-Standard-Time minus 08:00:00
portal local-server load portalpage.zip
drop illegal-mac alarm
set cpu-usage threshold 80 restore 75
aaa
authentication-scheme default
authorization-scheme default
 accounting-scheme default
domain default
domain default_admin
local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
ip address 10.0.12.2 255.255.255.0
interface GigabitEthernet0/0/1
ip address 10.0.23.2 255.255.255.0
interface GigabitEthernet0/0/2
interface NULL0
interface LoopBack0
ip address 10.0.1.2 255.255.255.255
ip route-static 10.0.1.1 255.255.255.255 10.0.12.1
ip route-static 10.0.1.1 255.255.255.255 10.0.23.3 preference 100
ip route-static 10.0.1.3 255.255.255.255 10.0.23.3
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
#
wlan ac
return
```

AR3.cfg

```
[V200R003C00]
#
sysname AR3
#
snmp-agent local-engineid 800007DB03000000000000
snmp-agent
#
clock timezone China-Standard-Time minus 08:00:00
#
portal local-server load portalpage.zip
#
drop illegal-mac alarm
#
set cpu-usage threshold 80 restore 75
#
```

```
aaa
 authentication-scheme default
 authorization-scheme default
 accounting-scheme default
 domain default
 domain default_admin
 local-user \ admin \ password \ cipher \ \$\$\$K8m.Nt84DZ\}e\#<0`8bmE3Uw\}\$\$\$\$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
interface GigabitEthernet0/0/1
 ip address 10.0.23.3 255.255.255.0
interface GigabitEthernet0/0/2
 ip address 10.0.13.3 255.255.255.0
interface NULL0
interface LoopBack0
ip address 10.0.1.3 255.255.255.255
ip route-static 10.0.1.1 255.255.255.255 10.0.13.1 ip route-static 10.0.1.2 255.255.255.255 10.0.23.2
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
wlan ac
return
```

Маршрутизация OSPF

Цели

Лабораторная работа помогает получить практические навыки по изучению следующих тем:

- Основные команды OSPF
- Процедура проверки рабочего статуса OSPF
- Процедура настройки выбора маршрутов OSPF на основании их стоимости
- Анонсирование маршрутов по умолчанию в OSPF
- Процедура настройки аутентификации OSPF

Топология

План работы

- 1. Создание процессов OSPF на устройствах и включение OSPF на интерфейсах.
- 2. Настройка аутентификации OSPF.
- 3. Настройка OSPF для анонсирования маршрутов по умолчанию.
- 4. Управление выбором маршрутов OSPF на основании их стоимости.

Процедура конфигурирования

Шаг 1. Настройте основные параметры устройств.

Выполните шаги 1, 2, 3 и 4, приведенные в лабораторной работе 1, чтобы присвоить маршрутизаторам имена и настроить IP-адреса физических интерфейсов и loopback-интерфейсов.

AR1

```
<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname AR1

[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]ip address 10.0.12.1 24
Nov 8 2024 10:23:41-08:00 AR1 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP
on the interface GigabitEthernet0/0/0 has entered the UP state.
[AR1-GigabitEthernet0/0/0]quit
[AR1]interface g0/0/2
[AR1-GigabitEthernet0/0/2]ip address 10.0.13.1 24
Nov 8 2024 10:24:16-08:00 AR1 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP
on the interface GigabitEthernet0/0/2 has entered the UP state.
[AR1-GigabitEthernet0/0/2]quit

[AR1]interface LoopBack0
[AR1-LoopBack0]ip address 10.0.1.1 32
```

AR2

```
<Huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname AR2

[AR2]interface g0/0/0
[AR2-GigabitEthernet0/0/0]ip address 10.0.12.2 24
Nov 8 2024 10:25:01-08:00 AR2 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP
on the interface GigabitEthernet0/0/0 has entered the UP state.
[AR2-GigabitEthernet0/0/0]quit
[AR2]interface g0/0/1
[AR2-GigabitEthernet0/0/1]ip address 10.0.23.2 24
Nov 8 2024 10:25:36-08:00 AR2 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP
on the interface GigabitEthernet0/0/1 has entered the UP state.
[AR2-GigabitEthernet0/0/1]quit

[AR2]interface LoopBack0
[AR2-LoopBack0]ip address 10.0.1.2 32
```

```
<huawei>system-view
Enter system view, return user view with Ctrl+Z.
[Huawei]sysname AR3
[AR3]interface g0/0/1
[AR3-GigabitEthernet0/0/1]ip address 10.0.23.3 24
[AR3-GigabitEthernet0/0/1]
Nov 8 2024 10:26:14-08:00 AR3 %%01IFNET/4/LINK_STATE(l)[0]:The line protocol IP
on the interface GigabitEthernet0/0/1 has entered the UP state.
[AR3-GigabitEthernet0/0/1]quit
[AR3]interface g0/0/2
[AR3-GigabitEthernet0/0/2]ip address 10.0.13.3 24
Nov 8 2024 10:26:45-08:00 AR3 %%01IFNET/4/LINK_STATE(l)[1]:The line protocol IP
on the interface GigabitEthernet0/0/2 has entered the UP state.
[AR3-GigabitEthernet0/0/2]quit
[AR3]interface LoopBack0
[AR3-LoopBack0]ip address 10.0.1.3 32
```

Выведите на экран таблицу маршрутизации на маршрутизаторе.

AR1

[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib Routing Tables: Public Destinations : 11 Routes : 11 Flags NextHop Destination/Mask Proto Pre Cost Interface 10.0.1.1/32 Direct 0 127.0.0.1 LoopBack0 GigabitEthernet0/0/0 10.0.12.0/24 Direct 0 D 10.0.12.1 0 10.0.12.1/32 Direct 0 0 D 127.0.0.1 GigabitEthernet0/0/0 10.0.12.255/32 Direct 0 GigabitEthernet0/0/0 0 127.0.0.1 GigabitEthernet0/0/2 10.0.13.0/24 Direct 0 Θ D 10.0.13.1 10.0.13.1/32 Direct 0 127.0.0.1 GigabitEthernet0/0/2 Θ D 10.0.13.255/32 Direct 0 D 127.0.0.1 GigabitEthernet0/0/2 127.0.0.0/8 Direct 0 D 127.0.0.1 InLoopBack0 0 InLoopBack0 127.0.0.1/32 Direct 0 0 D 127.0.0.1 127.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0 D 255.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0

AR2

[AR2]display ip routing-table Route Flags: R - relay, D - download to fib Routing Tables: Public Destinations: 11 Routes: 11 Destination/Mask Proto Pre Cost Flags NextHop Interface 10.0.1.2/32 Direct Θ Θ 127.0.0.1 LoopBack0 10.0.12.0/24 Direct 0 0 D 10.0.12.2 GigabitEthernet0/0/0 GigabitEthernet0/0/0 10.0.12.2/32 Direct 0 0 D 127.0.0.1 GigabitEthernet0/0/0 10.0.12.255/32 Direct 0 D 127.0.0.1 Θ 10.0.23.0/24 Direct 0 0 D 10.0.23.2 GigabitEthernet0/0/1 GigabitEthernet0/0/1 10.0.23.2/32 Direct 0 D 127.0.0.1 0 10.0.23.255/32 GigabitEthernet0/0/1 D 127.0.0.1 Direct 0 0 127.0.0.0/8 Direct 0 0 D 127.0.0.1 InLoopBack0 127.0.0.1/32 Direct 0 D 127.0.0.1 InLoopBack0 127.255.255.255/32 Direct 0 255.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0 Θ D Θ 127.0.0.1 InLoopBack0

AR3

[AR3]display ip routing-table Route Flags: R - relay, D - download to fib Routing Tables: Public Destinations: 11 Routes: 11 Destination/Mask Interface Proto Pre Cost Flags NextHop LoopBack0 10.0.1.3/32 Direct 0 127.0.0.1 10.0.13.0/24 Direct 0 10.0.13.3 GigabitEthernet0/0/2 0 D 10.0.13.3/32 Direct 0 0 D 127.0.0.1 GigabitEthernet0/0/2 10.0.13.255/32 D 127.0.0.1 GigabitEthernet0/0/2 Direct 0 0 10.0.23.0/24 Direct GigabitEthernet0/0/1 Θ D 10.0.23.3 D GigabitEthernet0/0/1 10.0.23.3/32 Direct 0 0 127.0.0.1 10.0.23.255/32 Direct 0 0 D 127.0.0.1 GigabitEthernet0/0/1 127.0.0.0/8 Direct 0 D 127.0.0.1 InLoopBack0 0 127.0.0.1 127.0.0.1/32 Direct 0 Θ D InLoopBack0 127.255.255.255/32 Direct 0 0 D 127.0.0.1 InLoopBack0 255.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0

Шаг 2. Настройте основные параметры OSPF.

Создайте процесс OSPF.

[AR1]ospf 1

Создайте область OSPF и укажите интерфейсы, на которых необходимо включить OSPF.

AR1

```
[AR1-ospf-1]area 0

[AR1-ospf-1-area-0.0.0.0]network 10.0.12.1 0.0.0.255

[AR1-ospf-1-area-0.0.0.0]network 10.0.13.1 0.0.0.255

[AR1-ospf-1-area-0.0.0.0]network 10.0.1.1 0.0.0.0
```

AR2

```
[AR2]ospf

[AR2-ospf-1]area 0

[AR2-ospf-1-area-0.0.0.0]network 10.0.12.2 0.0.0.0

[AR2-ospf-1-area-0.0.0.0]network 10.0.23.2 0.0.0.0

[AR2-ospf-1-area-0.0.0.0]network 10.0.1.2 0.0.0.0
```

```
[AR3]ospf

[AR3-ospf-1]area 0

[AR3-ospf-1-area-0.0.0.0]network 10.0.13.3 0.0.0.0

[AR3-ospf-1-area-0.0.0.0]network 10.0.23.3 0.0.0.0

[AR3-ospf-1-area-0.0.0.0]network 10.0.1.3 0.0.0.0
```

Шаг 3. Выведите на экран рабочий статус OSPF.

Выведите на экран информацию о соседях OSPF.

```
[AR1]dis ospf peer
              OSPF Process 1 with Router ID 10.0.12.1
                           Neighbors
 Area 0.0.0.0 interface 10.0.12.1(GigabitEthernet0/0/0)'s neighbors
   outer ID: 10.0.12.2 Address: 10.0.12.2
State: Full Mode:Nbr is Master Priority: 1
 Router ID: 10.0.12.2
   DR: 10.0.12.1 BDR: 10.0.12.2 MTU: 0 Dead timer due in 33 sec
   Retrans timer interval: 5
   Neighbor is up for 00:02:53
Authentication Sequence: [ 0 ]
                            Neighbors
 Area 0.0.0.0 interface 10.0.13.1(GigabitEthernet0/0/2)'s neighbors
   outer ID: 10.0.23.3 Address: 10.0.13.3
State: Full Mode:Nbr is Master Priority: 1
DR: 10.0.13.1 BDR: 10.0.13.3 MTU: 0
 Router ID: 10.0.23.3
   Dead timer due in 36 sec
   Retrans timer interval: 5
   Neighbor is up for 00:01:36
Authentication Sequence: [ 0 ]
```

Выведите на экран маршруты, полученные от OSPF.

```
[AR1]display ip routing-table protocol ospf
Route Flags: R - relay, D - download to fib
Public routing table : OSPF
        Destinations : 3
                               Routes: 4
OSPF routing table status : <Active>
        Destinations : 3
                               Routes: 4
Destination/Mask
                 Proto Pre Cost
                                        Flags NextHop
                                                             Interface
      10.0.1.2/32 OSPF
                          10 1
                                              10.0.12.2
                                                             GigabitEthernet0/0/0
                         10 1
                                                             GigabitEthernet0/0/2
      10.0.1.3/32 OSPF
                                             10.0.13.3
                                         D
                          10 2
10 2
     10.0.23.0/24 OSPF
                                             10.0.12.2
                                                             GigabitEthernet0/0/0
                  OSPF
                          10
                                             10.0.13.3
                                                             GigabitEthernet0/0/2
OSPF routing table status : <Inactive>
        Destinations: 0 Routes: 0
```

Шаг 4. Настройте аутентификацию OSPF.

Настройте на маршрутизаторе R1 аутентификацию интерфейса.

```
[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]ospf authentication-mode md5 1 cipher HCIA-Datacom
[AR1-GigabitEthernet0/0/0]quit
[AR1]interface g0/0/2
[AR1-GigabitEthernet0/0/2]ospf authentication-mode md5 1 cipher HCIA-Datacom
[AR1-GigabitEthernet0/0/2]display this
[V200R003C00]
#
interface GigabitEthernet0/0/2
ip address 10.0.13.1 255.255.255.0
ospf authentication-mode md5 1 cipher %$%$%LN,6VvjtNt*`~@e,oH*,C7(%$%$
#
return
```

Выведите на экран соседей OSPF.

[AR1]display ospf peer brief

```
OSPF Process 1 with Router ID 10.0.12.1
Peer Statistic Information

Area Id Interface Neighbor id State
```

Настройте аутентификацию интерфейса на маршрутизаторе R2.

```
[AR2]interface g0/0/0
[AR2-GigabitEthernet0/0/0]ospf authentication-mode md5 1 cipher HCIA-Datacom
[AR2-GigabitEthernet0/0/0]quit
[AR2]interface g0/0/1
[AR2-GigabitEthernet0/0/1]ospf authentication-mode md5 1 cipher HCIA-Datacom
```

Выведите на экран соседей OSPF на R2.

```
OSPF Process 1 with Router ID 10.0.12.2
Peer Statistic Information

Area Id Interface Neighbor id State
0.0.0.0 GigabitEthernet0/0/0 10.0.12.1 Full
```

Настройте аутентификацию области на R3.

```
[AR3]ospf
[AR3-ospf-1]area 0
[AR3-ospf-1-area-0.0.0.0]authentication-mode md5 1 cipher HCIA-Datacom
```

Выведите на экран соседей OSPF на R3.

Шаг 5. Предположим, что R1 является граничным маршрутизатором всех сетей. Таким образом, маршрутизатор R1 анонсирует маршрут OSPF по умолчанию.

Анонсируйте маршрут по умолчанию на R1.

[AR1]ospf
[AR1-ospf-1]default-route-advertise always

Выведите на экран таблицы IP-маршрутизации R2 и R3.

AR2

[AR2]display ip routing-table Route Flags: R - relay, D - download to fib Routing Tables: Public Destinations : 15 Routes: 16 Destination/Mask Flags NextHop Proto Pre Cost Interface 0.0.0.0/0 0_ASE 150 10.0.12.1 GigabitEthernet0/0/0 1 10.0.1.1/32 OSPF 10.0.12.1 GigabitEthernet0/0/0 10 1 10.0.1.2/32 Direct 127.0.0.1 LoopBack0 0 0 10.0.1.3/32 **OSPF** 10 D GigabitEthernet0/0/1 1 10.0.23.3 Direct 0 10.0.12.0/24 10.0.12.2 GigabitEthernet0/0/0 0 10.0.12.2/32 Direct 0 D 127.0.0.1 GigabitEthernet0/0/0 10.0.12.255/32 Direct 0 127.0.0.1 GigabitEthernet0/0/0 10.0.13.0/24 OSPF 10.0.12.1 GigabitEthernet0/0/0 10 2 **OSPF** 10 D 10.0.23.3 GigabitEthernet0/0/1 10.0.23.0/24 Direct 0 0 D 10.0.23.2 GigabitEthernet0/0/1 10.0.23.2/32 Direct 0 127.0.0.1 GigabitEthernet0/0/1 0 10.0.23.255/32 Direct 0 127.0.0.1 GigabitEthernet0/0/1 127.0.0.0/8 InLoopBack0 Direct 0 D 127.0.0.1 127.0.0.1/32 Direct 0 127.0.0.1 InLoopBack0 127.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0 255.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0

AR3

[AR3]display ip routing-table Route Flags: R - relay, D - download to fib Routing Tables: Public Destinations: 15 Routes: 16 Destination/Mask Flags NextHop Interface Proto Pre Cost 0.0.0.0/0 0_ASE 150 10.0.13.1 GigabitEthernet0/0/2 1 OSPF 10.0.1.1/32 10.0.13.1 GigabitEthernet0/0/2 10 1 10.0.1.2/32 **OSPF** 10.0.23.2 GigabitEthernet0/0/1 10 10.0.1.3/32 10.0.12.0/24 Direct 0 D 127.0.0.1 LoopBack0 0 OSPF 10 10.0.23.2 GigabitEthernet0/0/1 **OSPF** 10 D 10.0.13.1 GigabitEthernet0/0/2 10.0.13.0/24 Direct 0 10.0.13.3 GigabitEthernet0/0/2 10.0.13.3/32 127.0.0.1 Direct 0 GigabitEthernet0/0/2 0 10.0.13.255/32 Direct 0 0 127.0.0.1 GigabitEthernet0/0/2 10.0.23.3 GigabitEthernet0/0/1 10.0.23.0/24 Direct 0 Direct 0 127.0.0.1 GigabitEthernet0/0/1 10.0.23.3/32 10.0.23.255/32 Direct 0 0 127.0.0.1 GigabitEthernet0/0/1 127.0.0.0/8 Direct 0 0 127.0.0.1 InLoopBack0 127.0.0.1/32 Direct 0 127.0.0.1 InLoopBack0 0 127.255.255.255/32 Direct 0 127.0.0.1 InLoopBack0 255.255.255.255/32 Direct 0 InLoopBack0 127.0.0.1

Шаг 6. Измените значения стоимости интерфейсов на R1, чтобы LoopBack0 на R1 мог достигать LoopBack0 на R2 через R3.

Согласно таблице маршрутизации R1 стоимость маршрута от маршрутизатора R1 до LoopBack0 маршрутизатора R2 равна 1, а стоимость маршрута от R1 к R2 через R3 равна 2. Следовательно, необходимо только установить для стоимости маршрута от маршрутизатора R1 до LoopBack0 маршрутизатора R2 значение больше 2.

```
[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
        Destinations: 14
                               Routes: 15
Destination/Mask
                   Proto
                          Pre Cost
                                         Flags NextHop
                                                              Interface
      10.0.1.1/32 Direct 0
                                               127.0.0.1
                               0
                                                              LoopBack0
      10.0.1.2/32 OSPF
                          10
                                               10.0.12.2
                                                              GigabitEthernet0/0/0
                              1
                                                              GigabitEthernet0/0/2
      10.0.1.3/32
                   OSPF
                          10
                               1
                                               10.0.13.3
     10.0.12.0/24 Direct 0
                                               10.0.12.1
                                                              GigabitEthernet0/0/0
                               0
     10.0.12.1/32 Direct 0
                               0
                                           D
                                              127.0.0.1
                                                              GigabitEthernet0/0/0
    10.0.12.255/32 Direct 0
                               0
                                           D
                                               127.0.0.1
                                                              GigabitEthernet0/0/0
     10.0.13.0/24 Direct 0
                                              10.0.13.1
                                                              GigabitEthernet0/0/2
                               0
     10.0.13.1/32 Direct 0
                              0
                                              127.0.0.1
                                                              GigabitEthernet0/0/2
    10.0.13.255/32 Direct 0
                               0
                                           D
                                               127.0.0.1
                                                              GigabitEthernet0/0/2
                              2
                                                              GigabitEthernet0/0/0
     10.0.23.0/24 OSPF
                          10
                                          D
                                              10.0.12.2
                   OSPF
                                          D
                                              10.0.13.3
                                                              GigabitEthernet0/0/2
                          10 2
     127.0.0.0/8
                   Direct
                               0
                                           D
                                               127.0.0.1
                                                              InLoopBack0
     127.0.0.1/32 Direct 0
                                           D
                                               127.0.0.1
                                                              InLoopBack0
                               0
127.255.255.255/32 Direct 0
                               0
                                           D
                                               127.0.0.1
                                                              InLoopBack0
255.255.255.255/32 Direct 0
                                               127.0.0.1
                                                              InLoopBack0
```

```
[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]ospf cost 10
```

Выведите на экран таблицу маршрутизации R1

```
[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib
Routing Tables: Public
        Destinations: 14
                                Routes: 14
Destination/Mask
                           Pre Cost
                                          Flags NextHop
                                                               Interface
                   Proto
      10.0.1.1/32 Direct 0
                                               127.0.0.1
                                                               LoopBack0
      10.0.1.2/32 OSPF
                           10
                                2
                                               10.0.13.3
                                                               GigabitEthernet0/0/2
      10.0.1.3/32
                   OSPF
                           10
                                1
                                           D
                                                10.0.13.3
                                                               GigabitEthernet0/0/2
     10.0.12.0/24 Direct 0
                                                               GigabitEthernet0/0/0
                                               10.0.12.1
                                0
                                           D
                                                               GigabitEthernet0/0/0
     10.0.12.1/32 Direct 0
                                0
                                               127.0.0.1
    10.0.12.255/32 Direct 0
                                0
                                           D
                                               127.0.0.1
                                                               GigabitEthernet0/0/0
     10.0.13.0/24 Direct 0
                                                               GigabitEthernet0/0/2
                                               10.0.13.1
                                           D
                                                               GigabitEthernet0/0/2
     10.0.13.1/32 Direct 0
                                0
                                               127.0.0.1
    10.0.13.255/32
                   Direct
                           Θ
                                0
                                           D
                                               127.0.0.1
                                                               GigabitEthernet0/0/2
     10.0.23.0/24
                                               10.0.13.3
                                                               GigabitEthernet0/0/2
                   OSPF
                           10
     127.0.0.0/8
                   Direct 0
                                0
                                           D
                                               127.0.0.1
                                                               InLoopBack0
     127.0.0.1/32
                   Direct 0
                                0
                                           D
                                               127.0.0.1
                                                               InLoopBack0
127.255.255.255/32
                   Direct 0
                                               127.0.0.1
                                                               InLoopBack0
255.255.255.255/32 Direct 0
                                               127.0.0.1
                                                               InLoopBack0
```

Проверьте результат конфигурирования с помощью команды Tracert.

```
[AR1]tracert -a 10.0.1.1 10.0.1.2

traceroute to 10.0.1.2(10.0.1.2), max hops: 30 ,packet length: 40,press CTRL_C

to break

1 10.0.13.3 30 ms 10 ms 10 ms
```

Справочные конфигурации

AR1

```
[V200R003C00]
sysname AR1
 snmp-agent local-engineid 800007DB03000000000000
 snmp-agent
 clock timezone China-Standard-Time minus 08:00:00
portal local-server load portalpage.zip
 drop illegal-mac alarm
set cpu-usage threshold 80 restore 75
aaa
 authentication-scheme default
 authorization-scheme default
accounting-scheme default
domain default
 domain default_admin
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
ip address 10.0.12.1 255.255.255.0
 ospf cost 10
 ospf authentication-mode md5 1 cipher %$%$Y[BG%EY~W8(:z#PJ+<_%,BR1%$%$
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
 ip address 10.0.13.1 255.255.255.0
ospf authentication-mode md5 1 cipher %$%$%LN,6VvjtNt*`~@e,oH*,C7(%$%$
interface NULL0
interface LoopBack0
ip address 10.0.1.1 255.255.255.255
ospf 1
default-route-advertise always
area 0.0.0.0
 network 10.0.1.1 0.0.0.0
 network 10.0.12.0 0.0.0.255
 network 10.0.13.0 0.0.0.255
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
wlan ac
return
```

```
[V200R003C00]
#
sysname AR2
#
snmp-agent local-engineid 800007DB0300000000000
```

```
snmp-agent
clock timezone China-Standard-Time minus 08:00:00
portal local-server load portalpage.zip
drop illegal-mac alarm
set cpu-usage threshold 80 restore 75
aaa
 authentication-scheme default
 authorization-scheme default
 accounting-scheme default
domain default
domain default_admin
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
ip address 10.0.12.2 255.255.255.0
 ospf authentication-mode md5 1 cipher $$$sDxl; Y=7dP\setminus L+/]6j@$, Ee \$$$$
interface GigabitEthernet0/0/1
 ip address 10.0.23.2 255.255.255.0
ospf authentication-mode md5 1 cipher %$%$a>|#JXCOjLvj1qYP3E^$,F|H%$%$
interface GigabitEthernet0/0/2
interface NULL0
interface LoopBack0
ip address 10.0.1.2 255.255.255.255
ospf 1
area 0.0.0.0
  network 10.0.1.2 0.0.0.0
  network 10.0.12.2 0.0.0.0
 network 10.0.23.2 0.0.0.0
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
wlan ac
return
```

```
[V200R003C00]
#
    sysname AR3
#
    snmp-agent local-engineid 800007DB03000000000000
    snmp-agent
#
    clock timezone China-Standard-Time minus 08:00:00
#
    portal local-server load portalpage.zip
#
    drop illegal-mac alarm
#
    set cpu-usage threshold 80 restore 75
#
aaa
    authentication-scheme default
    authorization-scheme default
```

```
accounting-scheme default
 domain default
 domain default_admin
local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http
firewall zone Local
priority 15
interface GigabitEthernet0/0/0
interface GigabitEthernet0/0/1
ip address 10.0.23.3 255.255.255.0
interface GigabitEthernet0/0/2
 ip address 10.0.13.3 255.255.255.0
interface NULL0
interface LoopBack0
ip address 10.0.1.3 255.255.255.255
ospf 1
area 0.0.0.0
 authentication-mode md5 1 cipher %$%$;{3y:R6G@S!L6AGC[1n2,H#h%$%$
  network 10.0.1.3 0.0.0.0
 network 10.0.13.3 0.0.0.0
  network 10.0.23.3 0.0.0.0
user-interface con 0
authentication-mode password
user-interface vty 0 4
user-interface vty 16 20
wlan ac
return
```

Вывод

В ходе выполнения лабораторной работы мы познакомились со средой eNSP и её настройкой. В ЛР1 назначили адреса и статические маршруты IPV4, в ЛР2 настроили маршрутизацию OSPF.