ME 400 Creative Capstone Design

Team Buldozer

Pf. Koo TA Kyungeun Lee

Soonho yoon Boseok Kim Jihwan Park Joonyoung Oh Sangbaek Yoo Haegoo Jeon Eunhee Jung Khalifa

solidworks characteristic

Simple operation

Moduled components

Compact size

Designed with flexibility

Push away redball

Detailed quality of design

Structure/Function Simple operation

Our robot's pick-up and release part can be operated by only one motor. This reduce heat, weight and error's caused by complex code. Also, we don't need to change orientation to release at aligning stage

Structure/Function Push away red-ball

By the characteristic of pick-up hardware structure, we don't have to avoid the red ball. Instead, we push away and stick the red ball around the robot's bumper which save a lot of time avoiding the red balls.

Structure/Function Design flexibility

We made longer holes to make the gears fit together even if there are some deformations. Also, we made parts which perfectly suit to our device environment like the second picture.

Heat

Without Fan With Fan

labview

| Motor configuration

I How to connect with ROS

| Vehicle movement motion

| Vehicle rotation motion

| Pick-up Motion

How to connect with ROS

Array

Vehicle movement motion

Mecanum Wheel

Appropriate rotation direction of each motor

Vehicle rotational motion

maximum radius of gyration

$$V1 = V2$$

$$\frac{V1cos\theta1}{r1} = \frac{V2cos\theta2}{r2} \rightarrow \frac{V2}{V1} = 2.47$$

Initial radius of gyration **568.86mm**

Changed radius of gyration **373.63mm**

Vehicle rotational motion

maximum radius of gyration

Pick-up Motion

$$x(\theta) = L\sin\theta + H - h\cos\theta = D$$

$$H = 80.85mm, h = 68.85mm, D = 73.2mm$$

$$\theta \approx 23.31^{\circ}$$

opencv

| Stereo Camera | Calculating coordinate | Accuracy

| Result

opencv

Calculating coordinate

opencyCalibration Ball position

opencv Accuracy

opencv Result

ROS

| Algorithm | Solution

| About red balls

| Operation

Data Flow & Overview of Algorithm

ROS improvements of OpenCV problems Stereo camera -> too sensitive to vibration!

Solution - take_rest()

Stop for a short time to detect ball position accurately

Time issue - Longer operation time?

Stops 0.3 second per 1 takerest()

10 times of takerest() per operation – extra 3seconds

Lots of feedback + Failure >> extra 3 sec

About red balls

Our hardware have a wall in front.

By attaching red balls on its way, we can reduce time.

How do we collect blue balls?

How do we collect blue balls?

How do we collect blue balls?

How pickup is held?

(When the device is in range of d=0.7m)

Move forward + lift the tray

Move forward (Move 35cm)

Move forward + lower the tray

How do we park? Until two green balls are detected, Rotate!

Calculate (x_p, y_p) and move to P

Calculate θ using (x_p, y_p) and (x_{mid}, y_{mid})

Rotate θ

Case 1 – Perpendicular aligning

Perpendicular to basket -> Rotate!

 $|y_1 - y_2| < 0.01$: Angular aligned!

Case 2 – lateral alignment

Mid point alignment should be made!

 $\left|\frac{x_1+x_2}{2}\right|$ < 0.02 : Aligned well in the middle!

After two conditions are satisfied.

Move forward after alignment

Lift up tray to release balls!

