MarshalkoMV 25012025-105218

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=1.28\text{-}1.83\mathrm{i}$.

Рисунок 1 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.331	-165.9	9.800	85.0	0.049	66.9	0.285	-65.0
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
1.6	0.335	-171.5	8.475	81.1	0.055	66.3	0.256	-68.8
1.7	0.338	-173.9	7.988	79.7	0.058	66.1	0.243	-70.7
1.8	0.342	-176.0	7.561	78.3	0.061	66.0	0.232	-72.8
1.9	0.344	-178.6	7.147	76.2	0.064	65.5	0.222	-74.8
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
2.2	0.350	176.3	6.119	72.6	0.073	64.5	0.200	-81.3
2.4	0.350	172.9	5.544	69.8	0.079	63.5	0.190	-85.2
2.6	0.355	170.0	5.114	67.8	0.084	62.7	0.181	-89.0
2.8	0.356	167.0	4.738	65.3	0.090	61.7	0.176	-92.5

и частоты $f_{\rm H}=1.6$ ГГц, $f_{\rm B}=2.4$ ГГц. Найти неравномерность усиления в полосе $f_{\rm H}...f_{\rm B}$, используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

- 1) 1.8 дБ
- 2) 6.3 дБ
- 3) 1.4 дБ
- 4) 3.7 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Найти точку (см. рисунок 3), соответствующую s_{11} на частоте 2.2 ГГц.

Рисунок 3 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.2	0.477	-156.4	12.641	83.0	0.038	51.0	0.305	-81.7
2.3	0.477	-158.6	12.117	81.6	0.039	51.1	0.297	-83.5
2.4	0.477	-160.9	11.602	80.0	0.041	51.2	0.289	-85.5
2.5	0.478	-163.2	11.146	78.6	0.042	51.3	0.282	-87.5
2.6	0.479	-165.4	10.698	77.1	0.043	51.3	0.276	-89.5
2.7	0.479	-167.3	10.300	75.8	0.044	51.5	0.272	-91.3
2.8	0.479	-169.2	9.908	74.5	0.045	51.6	0.267	-93.2
2.9	0.481	-170.8	9.570	73.3	0.046	51.6	0.264	-94.8
3.0	0.483	-172.4	9.236	72.0	0.047	51.6	0.261	-96.4
3.1	0.483	-173.9	8.962	71.0	0.048	51.6	0.258	-97.6
3.2	0.483	-175.4	8.691	69.9	0.049	51.6	0.256	-98.9

и частоты $f_{\rm H}=2.7~\Gamma\Gamma$ ц, $f_{\rm B}=3.1~\Gamma\Gamma$ ц. **Найти** модуль s_{22} в дБ на частоте $f_{\rm H}$.

- 1) -27.1 дБ
- 2) -11.3 дБ
- 3) -6.4 дБ
- 4) 20.3 дБ

Задан двухполюсник на рисунке 4, причём R1 = 13.14 Om.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
1.7	0.477	-141.2	16.400	92.8	0.032	50.5	0.376	-67.9
2.4	0.470	-159.6	11.766	80.7	0.039	51.5	0.301	-79.9
3.1	0.476	-172.8	9.096	71.5	0.047	51.9	0.268	-91.4
3.8	0.481	177.2	7.416	63.7	0.055	51.9	0.253	-98.7
4.5	0.494	168.7	6.240	55.8	0.064	50.7	0.237	-106.3
5.2	0.500	161.8	5.348	48.9	0.073	49.1	0.221	-113.1
5.9	0.502	154.7	4.719	42.2	0.083	46.3	0.207	-119.8
6.6	0.515	146.1	4.212	34.9	0.091	43.0	0.186	-130.8

и частоты $f_{\scriptscriptstyle \rm H}=1$ ГГц, $f_{\scriptscriptstyle \rm B}=6.6$ ГГц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \rm B}.$

- 1) 14.6 дБ
- 2) 5.3 дБ
- 3) 29.2 дБ
- 4) 2.6 дБ