

Lycée BILLES Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Devoir de mathématiques N°2/TS1/Durée 4h

23 octobre 2021

Exercice 1 (3 points)

Soit les suites (u_n) et (v_n) définie sur IN* par :

$$u_n = \frac{1}{1+\sqrt{n}} + \frac{2}{1+\sqrt{2n}} + \dots + \frac{n}{1+n}$$
 et $v_n = \frac{1}{1+n^2} + \frac{2}{2+n^2} \dots + \frac{n}{n+n^2}$.

- 1. a. Montrer que pour tous entiers naturels n et k tels que $1 \le k \le n$ on a : $\frac{1}{1+\sqrt{kn}} \ge \frac{1}{1+n}$. (0,5 pt)
 - b. En déduire que $u_n \ge \frac{1}{2} n$. (0,75 pt)
 - c. Déterminer la limite de la suite (u_n) . (0,5 pt)
- 2. a. Démontrer que pour tout entier naturel n on a : $\frac{1}{2} \le v_n \le \frac{n(n+1)}{2(n^2+1)}$. (0,5 pt)
 - b. En déduire que la suite (v_n) est convergente et préciser sa limite. (0,75 pt)

Exercice 2 (4,75 points)

- 1. Soit (u_n) la suite définie par $u_0 = 3$ et $u_{n+1} = \frac{3u_n + 2}{u_n + 4}$, pour tout entier naturel.
- a. Montrer que pour tout entier naturel n, $u_{n+1}=3-\frac{10}{u_n+4}$. (0,25 pt)
- b . Démontrer que pour tout entier naturel n, $1 \le u_n \le 3$. (0,75 pt)
- c. Montrer que la suite (u_n) est décroissante. (0,75 pt)
- d. Montrer que la suite (u_n) est convergente puis déterminer sa limite. (0,5 pt+0,5 pt)
- 2. Soit (V_n) la suite définie par V_0 = 0,1 et $V_{n+1} = \frac{3v_n + 2}{v_n + 4}$, pour tout entier naturel.
- a. Montrer que pour tout entier naturel n, on a : $1 V_{n+1} = \left(\frac{2}{4 + v_n}\right) (1 v_n)$ (0,5 pt)
- b. Montrer que pour tout entier naturel n, on a : $0 \le 1 v_n \le \left(\frac{1}{2}\right)^n$ (0,75 pt)
- c. Montrer que (v_n) convergente puis préciser sa limite. (0,75 $\,$ pt)

Exercice 3 (3,25 points)

On considère le plan complexe du repère orthonormal direct.

Soit le nombre complexe z = $\sqrt{2-\sqrt{3}}$ – i $\sqrt{2+\sqrt{3}}$.

- 1. Montrer que $z^2 = -2\sqrt{3}$ -2i. (0,5 pt)
- 2. Déterminer le module et un argument de z^2 . (0,25 pt + 0,5 pt)
- 3. En déduire le module et un argument de z. (0,5 pt+ 0,75 pt)
- 4. Déterminer $\cos \frac{19\pi}{12}$ et $\sin \frac{19\pi}{12}$. (0,25 pt + 0,25 pt)
- 5. Déterminer l'ensemble des entiers relatifs in pour que z^n soit un réel. (0,25 pt)

Exercice 4 (4,5 points)

Soit z un nombre complexe différent de 2 –3 i .On pose $z' = \frac{z+1-2i}{z-2+3}$.

Dans le plan complexe muni du repère orthonormal direct (O, \vec{u}, \vec{v}) , soit les points M(z), A(-1+2i) et B(2-3i).

- 1. Donner une interprétation géométrique du module et d'un argument de z' (0,75 ptx2)
- 2. En déduire l'ensemble des points M(z) tel que :
 - a. z' soit un réel négatif. (0,75 pt)
 - b. z' soit un imaginaire pur. (0,5 pt)
 - c. |z'|=1. (0,5 pt)
 - d. |z'| = 3. (0,75 pt)
- 3. Déterminer l'ensemble des point M(z) tels que :
- a. |z-2+3i|=|z| (0,5 pt); b. $|\bar{z}+1+2i|=3$. (0,5 pt)

Exercice 5 (4 points)

Les parties 1 et 2 sont indépendantes.

Partie 1

Pour tout nombre complexe $z \neq 1$ on pose $z' = \frac{z-1}{1-\overline{z}}$.

Montrer que:

1.
$$|z'| = 1$$
. (0,5 pt) 2. $\frac{z'-1}{z-1}$ est un réel. (0,5 pt) 3. $\frac{z'+1}{z-1}$ est une imaginaire pur. (0,5 pt)

Partie 2

Pour tout nombre complexe $z \neq i$ on pose: $z' = \frac{\overline{z}}{1 - i \overline{z}}$.

Dans le plan complexe muni du repère orthonormal direct (O,\vec{u},\vec{v}) , soit les points A(i) M(z) et M'(z').

- 1.a. Montrer que z' est réel si et seulement si $|z|^2$ -Im(z) = 0. (0,5 pt)
- b. En déduire l'ensemble des points M(z) tel que ; z' soit réel. (0,5 pt)
- 2. a. Montrer que z'-i = $\frac{-i}{1-i\bar{z}}$. (0,25 pt)
 - b. En déduire l'ensemble des points M(z) tels que : |z'-i|=2. (0,5 pt)
- 3. a. Montrer que z'-i = $\frac{1}{|1-i|^2}$ (z-i). (0,25 pt)
 - b. En déduire (\overrightarrow{AM} , $\overrightarrow{AM'}$). (0,5 pt)