Exercise 4

AUTHOR
Collin Real (yhi267)

Import Libraries

library(mlbench)
library(caret)
library(earth)
library(e1071)
library(nnet)

Generate training/test datasets, visualize and pre-process data

```
# Set seed for reproducibility
set.seed(200)

# Training Data
training_data <- mlbench.friedman1(200, sd = 1)
training_data$x <- data.frame(training_data$x)

# Visualize
featurePlot(training_data$x, training_data$y)</pre>
```



```
# Test Data
test_data <- mlbench.friedman1(5000, sd = 1)
test_data$x <- data.frame(test_data$x)

# Center and Scale Data
pre_process_data <- preProcess(training_data$x, method = c("center", "scale"))
train_transformed <- predict(pre_process_data, training_data$x)
test_transformed <- predict(pre_process_data, test_data$x)</pre>
```

k-Nearest Neighbors (kNN):

k-Nearest Neighbors

```
200 samples
10 predictor
```

```
Pre-processing: centered (10), scaled (10)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
Resampling results across tuning parameters:
```

```
      k
      RMSE
      Rsquared
      MAE

      5
      3.654912
      0.4779838
      2.958475

      7
      3.529432
      0.5118581
      2.861742

      9
      3.446330
      0.5425096
      2.780756

      11
      3.378049
      0.5723793
      2.719410

      13
      3.332339
      0.5953773
      2.692863

      15
      3.309235
      0.6111389
      2.663046

      17
      3.317408
      0.6201421
      2.678898

      19
      3.31667
      0.6333800
      2.682098

      21
      3.316340
      0.6497537
      2.688887

      23
      3.326040
      0.6491480
      2.705915
```

RMSE was used to select the optimal model using the smallest value. The final value used for the model was k=15.

Multivariate Adaptive Regression Splines (MARS):

```
set.seed(200)
```

Multivariate Adaptive Regression Spline

```
200 samples
10 predictor

Pre-processing: centered (10), scaled (10)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 200, 200, 200, 200, 200, ...
Resampling results across tuning parameters:

nprune RMSE Rsquared MAE
2 4.447045 0.2249607 3.650128
```

```
2
       4.447045 0.2249607 3.650128
 3
       3.744821 0.4546610 3.019175
       2.828643 0.6892908 2.244131
 4
 6
       2.406670 0.7747079 1.906733
 7
       2.027113 0.8375721 1.594956
 9
       1.800794 0.8728377 1.411703
10
       1.810047 0.8721377 1.412023
12
       1.831608 0.8700790 1.430044
13
       1.839717 0.8686550 1.440537
15
       1.856211 0.8663787 1.452430
```

Tuning parameter 'degree' was held constant at a value of 1 RMSE was used to select the optimal model using the smallest value. The final values used for the model were nprune = 9 and degree = 1.

Neural Network

Neural Network

```
200 samples
10 predictor
```

Pre-processing: centered (10), scaled (10)

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...

Resampling results across tuning parameters:

size	decay	RMSE	Rsquared	MAE
1	0.0000000000	14.47801	NaN	13.59034
1	0.0001000000	14.47801	0.46388412	13.59034
1	0.0002371374	14.47802	0.54494073	13.59034
1	0.0005623413	14.47802	0.61944972	13.59034
1	0.0013335214	14.47802	0.09093040	13.59035
1	0.0031622777	14.47802	0.30228015	13.59035
1	0.0074989421	14.47803	0.56808124	13.59036
1	0.0177827941	14.47805	0.71039904	13.59038
1	0.0421696503	14.47809	0.73040205	13.59043
1	0.1000000000	14.47818	0.73494609	13.59053
3	0.0000000000	14.47801	NaN	13.59034
3	0.0001000000	14.47801	0.34800441	13.59034
3	0.0002371374	14.47802	0.45676945	13.59034
3	0.0005623413	14.47802	0.43051350	13.59034
3	0.0013335214	14.47802	0.17944723	13.59034
3	0.0031622777	14.47802	0.34885263	13.59035
3	0.0074989421	14.47802	0.66340789	13.59035
3	0.0177827941	14.47804	0.71716435	13.59037
3	0.0421696503	14.47807	0.71146831	13.59040
3	0.1000000000	14.47813	0.73501063	13.59047
5	0.0000000000	14.47801	NaN	13.59034
5	0.0001000000	14.47801	0.34108207	13.59034
5	0.0002371374	14.47801	0.43036960	13.59034
5	0.0005623413	14.47802	0.21949661	13.59034
5	0.0013335214	14.47802	0.16071675	13.59034
5	0.0031622777	14.47802	0.39392125	13.59034
5 5	0.0074989421 0.0177827941	14.47802	0.62726936 0.71623817	13.59035
5	0.0421696503	14.47803 14.47805	0.71023817	13.59036 13.59039
5	0.1000000000	14.47810	0.73462200	13.59039
<i>7</i>	0.0000000000	14.47801	NaN	13.59044
7	0.0001000000	14.47801	0.23898081	13.59034
7	0.0002371374	14.47801	0.35110213	13.59034
, 7	0.0005623413	14.47802	0.23402091	13.59034
7	0.0013335214	14.47802	0.12715521	13.59034
7	0.0031622777	14.47802	0.39694516	13.59034
7	0.0074989421	14.47802	0.60175109	13.59035
7	0.0177827941	14.47803	0.70582638	13.59036
7	0.0421696503	14.47805	0.72921800	13.59038
7	0.1000000000	14.47809	0.73543577	13.59043
9	0.0000000000	14.47801	NaN	13.59034
9	0.0001000000	14.47801	0.14616290	13.59034
9	0.0002371374	14.47801	0.18887281	13.59034
9	0.0005623413	14.47802	0.13174456	13.59034
9	0.0013335214	14.47802	0.12235462	13.59034
9	0.0031622777	14.47802	0.34661430	13.59034
9	0.0074989421	14.47802	0.61749255	13.59035
9	0.0177827941	14.47803	0.68744029	13.59036

9	0.0421696503	14.47805	0.72754367	13.59038
9	0.1000000000	14.47808	0.73665992	13.59042
11	0.0000000000	14.47801	NaN	13.59034
11	0.0001000000	14.47801	0.08908443	13.59034
11	0.0002371374	14.47801	0.28164363	13.59034
11	0.0005623413	14.47801	0.05349839	13.59034
11	0.0013335214	14.47802	0.10594059	13.59034
11	0.0031622777	14.47802	0.31727910	13.59034
11	0.0074989421	14.47802	0.63361111	13.59035
11	0.0177827941	14.47803	0.69885458	13.59035
11	0.0421696503	14.47804	0.72941521	13.59037
11	0.1000000000	14.47808	0.73750572	13.59041
13	0.0000000000	14.47801	NaN	13.59034
13	0.0001000000	14.47801	0.19210023	13.59034
13	0.0002371374	14.47802	0.11206074	13.59034
13	0.0005623413	14.47801	0.09392261	13.59034
13	0.0013335214	14.47802	0.13329265	13.59034
13	0.0031622777	14.47802	0.41331057	13.59034
13	0.0074989421	14.47802	0.63739490	13.59035
13	0.0177827941	14.47803	0.69752049	13.59035
13	0.0421696503	14.47804	0.73035630	13.59037
13	0.1000000000	14.47807	0.73589138	13.59041
15	0.0000000000	14.47801	NaN	13.59034
15	0.0001000000	14.47801	0.13752235	13.59034
15	0.0002371374	14.47802	0.05144031	13.59034
15	0.0005623413	14.47801	0.12997206	13.59034
15	0.0013335214	14.47802	0.12810176	13.59034
15	0.0031622777	14.47802	0.40560042	13.59034
15	0.0074989421	14.47802	0.62308752	13.59035
15	0.0177827941	14.47803	0.69911203	13.59035
15	0.0421696503	14.47804	0.73074432	13.59037
15	0.1000000000	14.47807	0.73527103	13.59040
17	0.0000000000	14.47801	NaN	13.59034
17	0.0001000000	14.47801	0.13660237	13.59034
17	0.0002371374	14.47801	0.08365132	13.59034
17	0.0005623413	14.47801	0.10863086	13.59034
17	0.0013335214	14.47802	0.10883388	13.59034
17	0.0031622777	14.47802	0.38999051	13.59034
17	0.0074989421	14.47802	0.58645670	13.59035
17	0.0177827941	14.47802	0.69878013	13.59035
17	0.0421696503	14.47804	0.72499187	13.59037
17	0.1000000000	14.47807	0.73501430	13.59040
19	0.0000000000	14.47801	NaN	13.59034
19	0.0001000000	14.47801	0.13346317	13.59034
19	0.0002371374	14.47802	0.05506695	13.59034
19	0.0005623413	14.47801	0.06037268	13.59034
19	0.0013335214	14.47802	0.11693798	13.59034
19	0.0031622777	14.47802	0.39541966	13.59034
19	0.0074989421	14.47802	0.61412118	13.59035
19	0.0177827941	14.47802	0.70122881	13.59035
19	0.0421696503	14.47804	0.73065305	13.59037
19	0.1000000000	14.47806	0.73737851	13.59040

RMSE was used to select the optimal model using the smallest value. The final values used for the model were size = 1 and decay = 0.

```
# Check for N/A values
sum(is.na(training_data$x))
```

[1] 0

```
sum(is.na(training_data$y))
```

[1] 0

Support Vector Machines (SVM)

Support Vector Machines with Radial Basis Function Kernel

```
200 samples
10 predictor

Pre-processing: centered (10), scaled (10)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 200, 200, 200, 200, 200, ...
```

C RMSE Rsquared MAE

0.25 2.635010 0.7685188 2.074977

0.50 2.423373 0.7839086 1.902162

1.00 2.284133 0.8001542 1.791776

2.00 2.196624 0.8126474 1.713560

4.00 2.143035 0.8209820 1.668024

8.00 2.119154 0.8246316 1.649386

16.00 2.117441 0.8248674 1.648573

32.00 2.117441 0.8248674 1.648573

64.00 2.117441 0.8248674 1.648573

128.00 2.117441 0.8248674 1.648573

Resampling results across tuning parameters:

Tuning parameter 'sigma' was held constant at a value of 0.06299324 RMSE was used to select the optimal model using the smallest value. The final values used for the model were sigma = 0.06299324 and C = 16.

k-Nearest Neighbors (kNN) Results:

```
knn_results
```

RMSE Rsquared MAE 3.1750657 0.6785946 2.5443169

Multivariate Adaptive Regression Splines (MARS) Results:

mars_results

RMSE Rsquared MAE 1.7901760 0.8705315 1.3712537

Neural Network Results:

neural_network_results

RMSE Rsquared MAE 14.27693 NA 13.38691

Support Vector Machines (SVM) Results:

svm_results

RMSE Rsquared MAE 2.0736997 0.8256573 1.5751967

MARS Model - Variable Importance

varImp(mars_model)

earth variable importance

0verall

X1 100.00

X4 82.92

X2 64.47

X5 40.67

X3 28.65

X6 0.00

Model Performance Comparison

The optimal k for the k-NN model is 15. The optimal nprune for the MARS model is 9. The optimal size is 1, and the optimal decay is 0 for the neural network model. The optimal C is 16, and the optimal σ is 0.063 for the SVM-RBF model. Given the above output results, the MARS model performed best with the highest R-squared of 0.871 and the lowest RMSE of 1.790. Upon inspection of the variable importance for the MARS model, we conclude the most informative predictors to be X1, X4, X2, X5, and X3 (descending order). The X6 predictor is not informative.