NYCU-EE IC LAB - Fall 2023

Lab03 Exercise

Design: AXI-SPI DataBridge

Data Preparation

- 1. Extract files from TA's directory:
 - % openssl des3 -d -k MApocYIQNgU= -salt -in ~iclabTA01/Lab03.tar | tar xvf -
- 2. The extracted LAB directory contains:
 - a. 00 TESTBED
 - b. **01** RTL
 - c. 02 SYN
 - d. 03 GATE

Introduction

In today's digital era, the seamless transfer of data between various storage mediums is pivotal to the efficiency and reliability of electronic systems. The task at hand pertains to the design of a mechanism that enables data transfer between Dynamic Random Access Memory (DRAM) using the AXI4-Lite protocol and an SD card using the Serial Peripheral Interface (SPI) protocol. The system architecture is shown below.

In this lab, your task is to finalize the **PATTERN** and develop a **pseudo SD card** by referencing the provided design specifications and the SD card protocol. We will supply both encrypted versions of correct and incorrect designs to guide and assist you in this process. Additionally, we offer a pseudo DRAM that not only simulates the behavior of actual DRAM but also verifies its specifications. Once the PATTERN and pseudo SD card are complete, your next step is to design a **bridge** connecting the

DRAM and the SD card.

Problem Description

Read Pattern

In this lab, you need to read the patterns from the file Input.txt. The format of Input.txt is outlined below:

em Integration of

- 2 (2 patterns in this file)
- **Q 11 22** (Reading data from the DRAM starting at address 11 and writing it to the SD card located at address 22)
- **1 33 44** (Reading data from the SD card starting at address 44 and writing it to the DRAM located at address 33)

The first number at the beginning of the file is the number of patterns, and each subsequent line corresponds to a pattern. For each pattern:

- 1. The first number signifies the **direction** of the data transfer.
 - (0) DRAM \rightarrow SD card, out_data
 - (1) SD card \rightarrow DRAM, out data
- 2. The second number indicates the starting **DRAM address**. (Legal range: 0~8191)
- 3. The third number indicates to the **SD card address**. (Legal range: 0~65535)

Please note that you should calculate the golden answer in the PATTERN. The golden answer from external files is NOT allowed.

Read Initial Data

The initial data sets are been saved as DRAM_init.dat for DRAM and SD_init.dat for the SD card. The format can be readable by "readmemh" function from Verilog.

The legal address range for DRAM and SD card is from **0 to 8191** and for the SD card, it is from **0 to 65535**. For each address of DRAM and SD card contains **64** bits data.

Simulation and Final Data

If the design pass the simulation, capture the concluding data states of both the DRAM and SD card. Save them as DRAM_final.dat and SD_final.dat respectively. The format must be readable by "readmemh" function from Verilog. You can use "writememh" function to write the files. We will check the correctness of final state of DRAM and SD card according to the Input.txt, DRAM_init.dat and SD_init.dat.

All the above files are stored in 00 TESTBED.

AXI4-Lite Protocol (pseudo_DRAM.v)

For simplicity, we use AXI4-Lite protocol to access DRAM. You can get familiar with the basic operation of AXI4-Lite protocol through this lab first, and you will encounter the complete AXI4 protocol in the following lab.

The key difference between AXI4 and AXI4-Lite is that while AXI4 supports burst operations, AXI4-Lite does not.

Global Signals

Signal	Bit Widt	h Source	Description
clk	1	Clock source	Global clock signal. All signals are sampled on the Positive
			edge of the global clock.
rst_n	1	Reset source	Global reset signal. This signal is active LOW.

Write Address Channel

Signal	Bit Width	Source	Description			
AW_ADDR	32	Master	Write address.			
AW_VALID	1	Master	Write address valid. This signal indicates that valid write			
			address is available:			
			1 = address available			
			0 = address not available.			
			The address remain stable until the address acknowledge			
			signal, AW_READY, goes HIGH.			
AW_READY	1	Slave	Write address ready. This signal indicates that the slave is			
			ready to accept an address signals:			
			1 = slave ready			
			0 = slave not ready.			

Write Data Channel

Signal	Bit Width	Source	Description
W_DATA	64	Master	Write data bus.
W_VALID	1	Master	Write valid. This signal indicates that valid write data is available: 1 = write data available 0 = write data not available.

W_READY	1	Slave	Write ready. This signal indicates that the slave can accept
		~:1:	the write data:
		Silic	1 = slave ready
			0 = slave not ready.

Write Response Channel

Signal	Bit Width	Source	Description			
B_RESP	2	Slave	Write response. This signal indicates the status of the write			
		FEC	transaction. The allowable responses are OKAY, EXOKAY,			
			SLVERR, and DECERR. (In this lab we only issue			
		A.	OKAY(2'b00))			
B_VALID	1	Slave	Write response valid. This signal indicates that a valid write			
			response is available:			
			1 = write response available.			
			0 = write response not available.			
B_READY 1 Master Response ready. This signal indicates that the						
			accept the response information.			
			1 = master ready.			
			0 = master not ready.			

Waveform of Write Transaction

(AMD Adaptive Computing Documentation Portal)

Spec about Write Operation

- 1. After AW VALID is high, AW READY should be pulled high in the next 1~50 cycles.
- 2. AW_VALID and AW_ADDR should remain stable until AW_READY goes high.
- 3. **AW ADDR** should be within the legal range (0~8191).
- 4. AW ADDR should be valid when AW VALID is high.
- 5. **AW_ADDR** should be reset when **AW_VALID** is low.
- 6. After write address channel communicate, **W_VALID** and **W_READY** should be pulled high in the next 1~100 cycles.
- 7. **W_DATA** should be valid when **W_VALID** is high.
- 8. W DATA should be reset when W VALID is low.
- 9. W VALID and W DATA should be remained stable until W READY goes high.
- 10. After write data channel communicate, **B_VALID** should be pulled high in the next 1~100 cycles.
- 11. **B_RESP** should be valid when **B_VALID** is high.
- 12. **B RESP** should be reset when **B VALID** is low.
- 13. **B_VALID** and **B_RESP** should be remained stable until **B_READY** goes high.
- 14. B_READY should be asserted before B_VALID goes high by at least 100 eyeles. B_READY can be asserted even before B_VALID goes high. After B_VALID goes high B_READY should be high in the next 1 \simple 100 cycles.

Read Address Channel

Signal	Bit Width	Source	Description	
AR_ADDR	32	Master	Read address.	
AR_VALID	1	Master	Read address valid. This signal indicates, when HIGH, that the read address is valid and will remain stable until the address acknowledge signal, AR_READY , is high. 1 = address and control information valid 0 = address and control information not valid.	
AR_READY	1	Slave	Read address ready. This signal indicates that the slave is ready to accept an address signal: 1 = slave ready 0 = slave not ready.	

Read Data Channel

Signal	Bit Width	Source	Description
R_DATA	64	Slave	Read data.

R_RESP	2	Slave	Read response. This signal indicates the status of the read
		0.1.	transfer. The allowable responses are OKAY, EXOKAY,
		Silic	SLVERR, and DECERR. (In this project we only issue
			OKAY) mentation
R_VALID	1	Slave	Read valid. This signal indicates that the required read data is
		A	available, and the read transfer can complete:
		Multimedia	1 = read data available
			0 = read data not available.
R_READY	1	Master	Read ready. This signal indicates that the master can accept
			the read data and response information:
			1= master ready
			0 = master not ready.

Waveform of Read Transaction

(AMD Adaptive Computing Documentation Portal)

Spec about Read Operation

- 1. After AR VALID is high, AR READY should be pulled high in the next 1~50 cycles.
- 2. AR_VALID and AR_ADDR should remain stable until AR_READY goes high.
- 3. **AR ADDR** should be within the legal range (0~8191).
- 4. **AR ADDR** should be valid when **AR VALID** is high.
- 5. **AR ADDR** should be reset, when **AR VALID** is low.
- 6. After read address channel communicate, **R_VALID** and **R_READY** should be pulled high in the next 1~100 cycles.
- 7. **R_DATA** should be valid when **R_VALID** is high.
- 8. **R** DATA should be reset when **R** VALID is low.

9. R VALID and R DATA should be remained stable until R READY goes high.

SPI Protocol (pseudo SD.v)

For simplicity, we remove some unimportant initial stage and some complex rule so that we can focus on the read / write operation. Please keep in mind that what is described below is not the full version of the SPI protocol to access SD card and with some modifications.

Signal	Bit Width	Source	Description
clk	1	Clock source	Global clock signal. All signals are sampled on the Positive
			edge of the global clock.
CS_n	1	Master FEC	Chip Select, active LOW
MISO	1	Slave	Master Input Slave Output. When the data is not transfer,
			keep HIGH. Serial In Serial Out (SISO) transmission.
MOSI	1	Master	Master Output Slave Input. When the data is not transfer,
			keep HIGH. Serial In Serial Out (SISO) transmission.

Command Format

	Byte 1		Bytes 2—5		Byte 6		
7	6	5	0	31	0	7	0
0	1	Command		Command Argument		CRC	1
0	ı	01000 1		000000000000000000000000000000000000000	1010	0100000	ī

Read Operation

Command (from host)

Start bit + transmission bit = 2'b01

Command: CMD17 = 6'd17 Argument: 32 bits address

CRC: CRC-7 ({Start bit, Transmission bit, Command, Argument}) // 40 bits input

End bit: 1'b1

Response (from SD card)

Response: 0x00 (8 bits)

(wait $1\sim32$ units, units = 8 cycles)

Data (from SD card)

Start token: 0xFE (8 bits)

Data block: 64 bits (differ from the original protocol)

CRC: CRC-16-CCITT (Data block) // 64 bits input

Write Operation

Command (from host)

Start bit + transmission bit = 2'b01

Command: CMD24 = 6'd24 Argument: 32 bits address

CRC: CRC-7 ({Start bit, Transmission bit, Command, Argument}) // 40 bits input

End bit: 1'b1

(wait $0 \sim 8$ units, units = 8 cycles)

Response (from SD card)

Response: 0x00

(wait $1\sim32$ units, units = 8 cycles)

SD_WRITE_WAIT

Data (from host)

Start token: 0xFE

Data block: 64 bits (differ from the original protocol)

CRC: CRC-16-CCITT (Data block) // 64 bits input

12

6

(wait 0 units, units = 8 cycles)

Data response (from SD card)

Data response: 8'b00000101

Busy: keep low until finish write. (wait $0\sim32$ units, units = 8 cycles)

Spec about SD card

- 1. Command format should be correct, other command is not allowed.
- 2. The address should be within the legal range.
- 3. CRC (CRC-7, CRC-16-CCITT) check should be correct.
- 4. Time between each transmission should be correct. Please notice that the time unit should be

integer. For example, 10 cycles = 1.25 units is not allowed.

5. All transfers are frein MSB to LSB.

56 56

Inputs /Outputs (BRIDGE.v)

() }	■ The following	g are the defin	nition of input signals 3 5 5 85 7 48 47 47
ON O	Input Signals	Bit Width	Definition
	clk	3 1	Clock 39: 32 3\ 124 23 = 16
	rst_n	α _β 1	Asynchronous active-low reset
40	in_valid ცე	56	High when all the input signals (direction, addr_dram, addr_sd) are valid
	direction	15	Input pattern from Input.txt, if the signal is not valid, the data
, .	addr_dram	13	should be all zero.
$\binom{2}{3}$	addr_sd	16	Should be an Leib.

The following are the definition of output signals

Output Signals	Bit Width	Definition
out_valid	1	High when all read and write operation finish and out_data is
_		valid.
		Output the data that the design reads or writes, starting from the
out_data	8	MSB. Each pattern should have 8 cycles, producing a total of 64
		bits of data.

- 1. All inputs will be changed at the clock negative edge.
- 2. All input signals are synchronized at the **negative edge** of the clock.
- For each pattern, in_valid should keep high for 1 cycle and out_valid should keep high for 8 cycles.
- 4. The next input pattern will come in **2~4 negative edge of the clock** after your **out_valid** is pulled down.

Specifications

- 1. Top module name: BRIDGE (design file name: BRIDGE.v)
- 2. It is asynchronous reset and active-low architecture. If you use synchronous reset (considering

417a ch82 of 9d bf 1f

- reset after clock starting) in your design, you may fail to reset signals.
- 3. For simplify the design, DRAM, SD card and design use a common clock and the clock period is 40 ns.
- 4. The reset signal (rst_n) would be given only once at the beginning of simulation. All output signals except MOSI (SD card signal) should be reset and MOSI should be set after the reset signal is asserted. The pattern will check the output signal 100ns after the reset signal is pulled low.
- 5. The out data should be reset when your out valid is low.
- 6. The execution latency is limited in 10000 cycles. The latency is the time of the clock cycles between the falling edge of the in valid and the rising edge of the out valid.
- 7. The out valid and out data must be asserted in 8 cycles.
- 8. The **out data** should be correct when **out valid** is high.
- 9. The data in the DRAM and SD card should be correct when **out valid** is high.
- 10. The input delay is set to **0.5***(clock period).
- 11. The output delay is set to **0.5***(clock period), and the output loading is set to **0.05**.
- 12. The synthesis result of the data type **cannot** include any **latches**.
- 13. Gate-level simulation **cannot** include any **timing violations** without the notimingcheck command.
- 14. After synthesis, The slack at the end of the timing report should be **non-negative (MET)**.
- 15. Any words with "error", or "congratulation" can't be used as variable name.

Grading Policy

- 1. **Test Bench**: 60% (Demo: Use your pattern.v and pseudo_SD.v, use the BRIDGE_encrypted.v, Input.txt, DRAM init.dat and SD init.dat we provided.)
 - (15%) Pattern correctness. (Complete the simulation when design is correct.)
 - (2.5%) SPEC MAIN-1: All output signals should be reset after the reset signal is asserted.
 - (2.5%) SPEC MAIN-2: The **out_data** should be reset when your **out_valid** is low.
 - (2.5%) SPEC MAIN-3: The execution latency is limited in 10000 cycles.
 - (2.5%) SPEC MAIN-4: The **out valid** and **out data** must be asserted in 8 cycles.
 - (2.5%) SPEC MAIN-5: The **out_data** should be correct when **out_valid** is high.
 - (2.5%) SPEC MAIN-6: The data in the DRAM and SD card should be correct when **out_valid** is high.
 - (5%) The final states of DRAM and SD card (DRAM_final.dat and SD_final.dat) should be all correct (for correct design).
 - (5%) SPEC SD-1: Command format should be correct.
 - (5%) SPEC SD-2: The address should be within the legal range ($0\sim65535$).

- (2.5%) SPEC SD-3: CRC-7 check should be correct.
- (2.5%) SPEC SD-4: CRC-16-CCITT check should be correct.
- (10%) SPEC SD-5: Time between each transmission should be correct. (Only integer time units is allowed).
- 2. **Design Functionality**: 40% (Demo: Use our pattern.v and pseudo_SD.v, use your BRIDGE.v, and use Input.txt, DRAM init.dat and SD init.dat we provided.)
- 3. The grade of the 2nd demo would be 30% off.
- 4. NO design performance score.
- 5. The design we provided will also check the pattern correctness. If the simulation cannot complete because of the error of pattern, the pattern demo will fail.
- 6. The specification of DRAM will check in pseudo DRAM.v which we provide.

Check the result

Check Test Bench

- 1. Include BRIDGE encrypted.v in your TESTBED.v.
- 2. Check each specification in terminal.

Specification	Command	Check the result on screen
Pattern correctness	./01_run_vcs_rtl CORRECT	Congratulations
SPEC MAIN-1	./01_run_vcs_rtl SPEC_MAIN_1_{1~11}	SPEC MAIN-1 FAIL
SPEC MAIN-2	./01_run_vcs_rtl SPEC_MAIN_2_{1~2}	SPEC MAIN-2 FAIL
SPEC MAIN-3	./01_run_vcs_rtl SPEC_MAIN_3_1	SPEC MAIN-3 FAIL
SPEC MAIN-4	./01_run_vcs_rtl SPEC_MAIN_4_{1~2}	SPEC MAIN-4 FAIL
SPEC MAIN-5	./01_run_vcs_rtl SPEC_MAIN_5_{1~2}	SPEC MAIN-5 FAIL
SPEC MAIN-6	./01_run_vcs_rtl SPEC_MAIN_6_{1~5}	SPEC MAIN-6 FAIL
The final states of	Write your own script to check it.	
DRAM and SD		
card		
SPEC SD-1	./01_run_vcs_rtl SPEC_SD_1_{1~3}	SPEC SD-1 FAIL
SPEC SD-2	./01_run_vcs_rtl SPEC_SD_2_1	SPEC SD-2 FAIL
SPEC SD-3	./01_run_vcs_rtl SPEC_SD_3_1	SPEC SD-3 FAIL
SPEC SD-4	./01_run_vcs_rtl SPEC_SD_4_1	SPEC SD-4 FAIL
SPEC SD-5	./01_run_vcs_rtl SPEC_SD_5_{1~5}	SPEC SD-5 FAIL

- You can run ./07 *check pattern* to check all above specifications.
- Make sure the keyword printed on the screen is EXACTLY THE SAME as the one listed in the table above. You can print out other information according to your preference, but

only ONE keyword from the table above is permissible and it is indispensable.

Check Design

- 1. Include BRIDGE.v in your TESTBED.v.
- 2. Check each specification in terminal.

Specification	Command Wireless	Check the result on screen
Pattern correctness	./01_run_vcs_rtl	Congratulations

• You can run ./08 check design to check the design functionality.

Note

- 1. Please submit PATTERN.v, pseudo_SD.v, BRIDGE.v in Lab03/EXERCISE/09_SUBMIT
 - a. 1st demo deadline: 2023/10/09(Mon.) 12:00:00
 - b. 2nd demo deadline: 2023/10/11(Wed.) 12:00:00
- 2. Please upload the following file under 09 SUBMIT:
 - PATTERN.v, pseudo SD.v, BRIDGE.v
 - If your file violates the naming rule, you will lose 5 points.
 - Encryption of any uploaded files is prohibited or the demo will fail.
- 3. We provide the BRIDGE_encrypted.v for you. You only need to complete the pattern and check the correctness of each design we provided.
- 4. We provide you with pseudo_DRAM.v and check all the specification related to AXI4-Lite protocol.
- 5. You need to implement the BRIDGE.v. We only check the functionality using our pattern.
- 6. No hidden design and hidden pattern.
- 7. Directly access DRAM and SD card data in pattern. Use [instance name].[variable name] to access. The variable name in the provided pseudo_DRAM.v is "DRAM". The default variable name in the provided pseudo SD.v is "SD".

```
pseudo DRAM u DRAM (
   .clk(clk),
   .rst_n(rst_n),
                                              Variable name in pseudo_DRAM.v
   // write address channel
    .AW_ADDR(AW_ADDR),
    .AW_VALID(AW_VALID),
                                              reg [63:0] DRAM[0:8191];
    .AW_READY(AW_READY),
    // write data channel
   .W_VALID(W_VALID),
   .W_DATA(W_DATA),
                                                 Access submodule element.
    .W_READY(W_READY),
   // write response channel
    .B_VALID(B_VALID),
                                              u_DRAM.DRAM[my_addr_dram]
    .B_RESP(B_RESP),
    .B_READY(B_READY),
   // read address channel
   .AR ADDR(AR ADDR),
    .AR_VALID(AR_VALID),
    .AR_READY(AR_READY),
   // read data channel
    .R_DATA(R_DATA),
    .R_VALID(R_VALID),
    .R_RESP(R_RESP),
    .R_READY(R_READY)
                                                          c = CRC) (deta)
```

8. CRC function (C and Verilog)

Figure 4-10. CRC7 Generator/Checker

```
function automatic [6:0] CRC7; // Return 7-bit result
   input [39:0] data; // 40-bit data input
    reg [6:0] crc;
    integer i;
    reg data_in, data_out;
    parameter polynomial = 7'h9; // x^7 + x^3 + 1
       crc = 7'd0;
        for (i = 0; i < 40; i = i + 1) begin
           data_in = data[39-i];
           data_out = crc[6];
            crc = crc << 1; // Shift the CRC
            if (data_in ^ data_out) begin
               crc = crc ^ polynomial;
            end
        end
       CRC7 = crc;
    end
endfunction
```

Try to implement CRC-16-CCITT function by yourself.

Figure 4-11. CRC16 Generator/Checker

Example Waveform

- 1. Input
- 2. DRAM read
- 3. SD card write
- 4. Output

- 1. Input
- 2. SD card read
- 3. DRAM write
- 4. Output

2. Read data channel

- 1. Write address channel
- 2. Write data channel
- 3. Write response channel

- 1. Command
- 2. Response
- 3. Data
- 4. Data response