Exercise Sheet 1 for Algorithms for Big Data 2023 Spring Solution

Note: In the following, we will refer the book "Foundations of Data Science" by Blum, Hopcroft and Kannan as [BHK].

Note: In the following, for a vector x, $||x|| = ||x||_2$.

Exercise 1

(Exercise 3.12 in [BHK]) Let $\sum_i \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ be the singular value decomposition of a rank r matrix A. Let $A_k = \sum_{i=1}^k \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ be a rank k approximation to A for some k < r. Express the following quantities in terms of the singular values $\{\sigma_i, 1 \leq i \leq r\}$.

- (a) $||A_k||_F^2$
- (b) $||A_k||_2^2$
- (c) $||A A_k||_F^2$
- (d) $||A A_k||_2^2$

Solution.

- (a) The definition that $A_k = \sum_{i=1}^k \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ is also the SVD of A_k . As a result, the singular values of A_k are $\sigma_1, \sigma_2, \ldots, \sigma_k$. By the connection between Frobenius norm and singular values of a matrix, we can see that $\|A_k\|_F^2 = \sum_{i=1}^k \sigma_i^2$.
- (b) Since the singular values of A_k are $\sigma_1, \sigma_2, \ldots, \sigma_k$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k$, we can see that the largest singular value of A_k is σ_1 . Since the 2-norm of a matrix is equal to its largest singular value, it is obvious that $||A_k||_2 = \sigma_1$ and thus $||A_k||_2^2 = \sigma_1^2$.
- (c) Since $A = \sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ and $A_k = \sum_{i=1}^k \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$, we can see that $A A_k = \sum_{i=k+1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$, which is the SVD of $A A_k$. As a result, the singular values of $A A_k$ are $\sigma_{k+1}, \ldots, \sigma_r$ and thus $\|A A_k\|_F^2 = \sum_{i=k+1}^r \sigma_i^2$.
- (d) Since the singular values of $A A_k$ are $\sigma_{k+1}, \ldots, \sigma_r$ and $\sigma_{k+1} \ge \cdots \ge \sigma_r$, we can see that the largest singular value of $A A_k$ is σ_{k+1} and thus $\|A A_k\|_2^2 = \sigma_{k+1}^2$.

Exercise 2

(Exercise 3.18 in [BHK]) A matrix A is positive semi-definite if for all x, $x^{\top}Ax \geq 0$.

- (a) Let A be a real valued matrix. Prove that $B = AA^{\top}$ is positive semi-definite.
- (b) Let A be the adjacency matrix of a graph. The Laplacian of A is L = D A where D is a diagonal matrix whose diagonal entries are the row sums of A. Prove that L is positive semi-definite by showing that $L = B^{T}B$ where B is an m-by-n matrix with a row for each edge in the graph, a column for each vertex, and we define

$$b_{ei} = \begin{cases} -1 & \text{if } i \text{ is the endpoint of } e \text{ with lesser index} \\ 1 & \text{if } i \text{ is the endpoint of } e \text{ with greater index} \\ 0 & \text{if } i \text{ is not an endpoint of } e \end{cases}$$

Proof.

- (a) For all \boldsymbol{x} , we have $\boldsymbol{x}^{\top}B\boldsymbol{x} = \boldsymbol{x}^{\top}AA^{\top}\boldsymbol{x} = (A^{\top}\boldsymbol{x})^{\top}(A^{\top}\boldsymbol{x}) = \|A^{\top}\boldsymbol{x}\|_{2}^{2} \geq 0$. Therefore, B is positive semi-definite.
- (b) Let $G = (V, E, \psi)$ denote the graph, where V denotes the set of vertices, E denotes the set of edges, and $\psi : E \to \mathcal{P}(V)$ is a function. Here $\mathcal{P}(V)$ denotes the power set of V. Note that the vertices in $\psi(e)$ are the endpoints of the edge e.

It suffices to prove that each entry of $B^{\top}B$ is equal to that of L, i.e., $\ell_{ij} = (B^{\top}B)_{ij}$, $\forall i, j \in V$. We consider the following two cases:

(i) $i \neq j$

Since D is a diagonal matrix, $d_{ij} = 0$. Since A is the adjacency matrix of G, a_{ij} is equal to the number of edges between vertices i and j, i.e., $a_{ij} = |\{e \in E \mid \psi(e) = \{i, j\}\}|$. Therefore, $\ell_{ij} = d_{ij} - a_{ij} = -|\{e \in E \mid \psi(e) = \{i, j\}\}|$ because L = D - A.

Note that $(B^{\top}B)_{ij} = \sum_{e \in E} b_{ei}b_{ej}$. For each $e \in E$, if $b_{ei} \neq 0$ and $b_{ej} \neq 0$ hold, either (1) $b_{ei} = 1$ and $b_{ej} = -1$ or (2) $b_{ei} = -1$ and $b_{ej} = 1$ must hold, because 1 and -1 are the only two possible non-zero values in the e-th row of B. As a result, $b_{ei}b_{ej} = -1$ or $b_{ei}b_{ej} = 0$ holds for all $e \in E$ and $i, j \in V$.

By the definition of B, $b_{ei} \neq 0$ iff (if and only if) i is the endpoint of e. Therefore, $b_{ei}b_{ej} = -1$ iff i and j are both the endpoints of e, i.e., $\psi(e) = \{i, j\}$. As a result,

$$(B^{\top}B)_{ij} = \sum_{e \in E} b_{ei}b_{ej} = \sum_{e \in E, b_{ei}b_{ej} = -1} b_{ei}b_{ej} + \sum_{e \in E, b_{ei}b_{ej} = 0} b_{ei}b_{ej}$$

$$= \sum_{e \in E, b_{ei}b_{ej} = -1} -1 + \sum_{e \in E, b_{ei}b_{ej} = 0} 0$$

$$= -|\{e \in E \mid b_{ei}b_{ej} = -1\}|$$

$$= -|\{e \in E \mid \psi(e) = \{i, j\}\}|$$

$$= \ell_{ij}$$

(ii) i = j

In this case, we only need to prove that $\forall i \in V$, $\ell_{ii} = (B^{\top}B)_{ii}$. Note that $(B^{\top}B)_{ii} = \sum_{e \in E} b_{ei}^2$. Since $b_{ei}^2 \in \{0,1\}$, $b_{ei}^2 = 1$ iff i is an endpoint of e, i.e., $i \in \psi(e)$. It is easy to obtain that

$$(B^{\top}B)_{ii} = \sum_{e \in E} b_{ei}^{2} = \sum_{e \in E, b_{ei}^{2} = 1} b_{ei}^{2} + \sum_{e \in E, b_{ei}^{2} = 0} b_{ei}^{2}$$

$$= \sum_{e \in E, b_{ei}^{2} = 1} 1 + \sum_{e \in E, b_{ei}^{2} = 0} 0$$

$$= \left| \left\{ e \in E \mid b_{ei}^{2} = 1 \right\} \right|$$

$$= \left| \left\{ e \in E \mid i \in \psi(e) \right\} \right|$$

$$= \sum_{j \in V \setminus \{i\}} \left| \left\{ e \in E \mid \psi(e) = \{i, j\} \right\} \right|$$

$$= \sum_{j \in V \setminus \{i\}} a_{ij}$$

$$= \sum_{j \in V} a_{ij} - a_{ii}$$

$$= d_{ii} - a_{ii}$$

$$= \ell_{ii}$$

Exercise 3

(Exercise 3.22 in [BHK])

- (a) For any matrix A, show that $\sigma_k \leq \frac{\|A\|_F}{\sqrt{k}}$.
- (b) Prove that there exists a matrix B of rank at most k such that $||A B||_2 \le \frac{||A||_F}{\sqrt{k}}$.
- (c) Can the 2-norm on the left-hand side in (b) be replaced by Frobenius norm?

Proof.

(a) Let r denote the rank of A and $\sigma_1, \sigma_2, \ldots, \sigma_r$ denote the singular values of A. By the connection between singular values and Frobenius norm of a matrix, and the fact that singular values are non-negative, we can see that

$$||A||_F^2 = \sum_{i=1}^r \sigma_i^2 \ge \sum_{i=1}^k \sigma_i^2 \ge \sum_{i=1}^k \sigma_k^2 = k\sigma_k^2$$

Therefore,

$$\sigma_k^2 \le \frac{\|A\|_F^2}{k}$$
$$\sigma_k \le \frac{\|A\|_F}{\sqrt{k}}$$

- (b) We choose $B = A_k$, i.e., the projection of A onto the best-fitting k-dimensional subspace, and thus $\|A B\|_2 = \|A A_k\|_2 = \sigma_{k+1} \le \sigma_k \le \frac{\|A\|_F}{\sqrt{k}}$.
- (c) No. We choose r = 5, k = 2 and $A = I_r$ (the $r \times r$ identity matrix). It is obvious that all the singular values of A are 1. By the properties of SVD, we can see that $A_k = \arg\min_{\text{rank}(B)=k} \|A B\|_F$. Therefore,

$$||A - B||_F \ge ||A - A_k||_F = \sqrt{\sum_{i=k+1}^r \sigma_i^2} = \sqrt{3} > \frac{\sqrt{5}}{\sqrt{2}} = \frac{||A||_F}{\sqrt{k}}$$

(Exercise 3.23 in [BHK]) Suppose an $n \times d$ matrix A is given and you are allowed to preprocess A. Then you are given a number of d-dimensional vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_m$ and for each of these vectors you must find the vector $A\mathbf{x}_j$ approximately, in the sense that you must find a vector \mathbf{y}_j satisfying $\|\mathbf{y}_j - A\mathbf{x}_j\| \le \varepsilon \|A\|_F \|\mathbf{x}_j\|$. Here $\varepsilon > 0$ is a given error bound. Describe an algorithm that accomplishes this in time $O\left(\frac{d+n}{\varepsilon^2}\right)$ per \mathbf{x}_j not counting the preprocessing time.

Hint: use Exercise 3.22 in [BHK].

Solution. When preprocessing, we calculate the SVD of A, i.e., $\{(\sigma_i, \boldsymbol{u}_i, \boldsymbol{v}_i)\}_{i=1}^r$ s.t. $A = \sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$. When answering a query, we use the following algorithm:

Algorithm 1: Query

Data: Singular value decomposed matrix $A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\mathsf{T}}$

Input: Input vector \boldsymbol{x} and error bound ε

Output: $y \approx Ax$ 1 Calculate $k = \left\lceil \frac{1}{\varepsilon^2} \right\rceil$.

2 For i = 1, 2, ..., k, iteratively calculate $a_i \triangleq \sigma_i \mathbf{v}_i^{\top} \mathbf{x}$.

з Calculate $\boldsymbol{y} \triangleq \sum_{i=1}^k a_i \boldsymbol{u}_i$ and return.

Analysis of the algorithm:

- (a) Running time: The above algorithm calculates $\mathbf{y} = A_k \mathbf{x}$ in $O(k(d+n)) = O(\frac{d+n}{\varepsilon^2})$ time, as calculating k inner products of two d-dimensional vectors (Step 2) takes O(kd) time and accumulating k vectors of n dimensions (Step 3) takes O(kn) time.
- (b) Correctness: Note that $\sqrt{k} \ge \frac{1}{\varepsilon}$ (since $k = \lceil \frac{1}{\varepsilon^2} \rceil \ge \frac{1}{\varepsilon^2}$), and $||A\boldsymbol{x}||_2 \le ||A||_2 ||\boldsymbol{x}||_2$ (since $||A||_2 = \sup_{\|\boldsymbol{x}\|_2 = 1} ||A\boldsymbol{x}||_2 = \sup_{\boldsymbol{x} \ne \boldsymbol{0}} \frac{||A\boldsymbol{x}||_2}{||\boldsymbol{x}||_2} \ge \frac{||A\boldsymbol{x}||_2}{||\boldsymbol{x}||_2}$ when $\boldsymbol{x} \ne \boldsymbol{0}$), we have

$$\|\boldsymbol{y} - A\boldsymbol{x}\|_{2} = \|(A_{k} - A)\boldsymbol{x}\|_{2} \le \|A_{k} - A\|_{2}\|\boldsymbol{x}\|_{2} \le \frac{\|A\|_{F}}{\sqrt{k}}\|\boldsymbol{x}\|_{2} \le \varepsilon \|A\|_{F}\|\boldsymbol{x}\|_{2}$$

Exercise 4

Let $A \in \mathbb{R}^{n \times d}$ be a data matrix with the SVD: $A = UDV^{\top} = \sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}$, where $r \leq d$. Suppose that $\sigma_{2} < (1 - \varepsilon)\sigma_{1}$ for some $\varepsilon > 0$. Let \boldsymbol{x} be a unit vector such that $\boldsymbol{x}^{\top}\boldsymbol{v}_{1} \geq \frac{1}{2}$. For each integer $k \geq 1$, define a vector $\boldsymbol{b}_{k} = (A^{\top}A)^{k}\boldsymbol{x}$.

Find the smallest possible k such that

$$\left| \boldsymbol{b}_{k}^{\top} \cdot \boldsymbol{v}_{1} \right| \geq \left(1 - \varepsilon^{10} \right) \left\| \boldsymbol{b}_{k} \right\|,$$

and explain why.

Solution. Since the right singular vectors are orthonormal, we can add $v_{r+1}, v_{r+2}, \ldots, v_d$ so that $\{v_1, v_2, \ldots, v_d\}$ forms an orthonormal basis of \mathbb{R}^d . Hence we can write \boldsymbol{x} as the linear combination of v_1, v_2, \ldots, v_d , i.e., $\boldsymbol{x} = \sum_{i=1}^d a_i v_i$ where $a_i = \langle \boldsymbol{x}, v_i \rangle$. Since $a_1 = \langle \boldsymbol{x}, v_1 \rangle = \boldsymbol{x}^\top v_1 \geq \frac{1}{2}$, i.e., $4a_1^2 \geq 1$, we can see that

$$\sum_{i=2}^{r} a_i^2 \le \sum_{i=2}^{d} a_i^2 = 1 - a_1^2 \le 3a_1^2$$

Notice that we can expand b_1 in the following way:

$$\boldsymbol{b}_1 = A^\top A \boldsymbol{x} = \left(\sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^\top\right)^\top \left(\sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^\top\right) \sum_{i=1}^d a_i \boldsymbol{v}_i = \left(\sum_{i=1}^r \sigma_i \boldsymbol{v}_i \boldsymbol{u}_i^\top\right) \sum_{i=1}^r a_i \sigma_i \boldsymbol{u}_i = \sum_{i=1}^r a_i \sigma_i^2 \boldsymbol{v}_i$$

It is easy to prove that $\boldsymbol{b}_k = \sum_{i=1}^d a_i \sigma_i^{2k} \boldsymbol{v}_i$ by induction. Therefore,

$$\left| \boldsymbol{b}_k^{\top} \boldsymbol{v}_1 \right| = \left| \left(\sum_{i=1}^r a_i \sigma_i^{2k} \boldsymbol{v}_i^{\top} \right) \boldsymbol{v}_1 \right| = a_1 \sigma_1^{2k}$$

$$\|\boldsymbol{b}_{k}\| = \|\boldsymbol{b}_{k}\|_{2} = \sqrt{\sum_{i=1}^{r} (a_{i}\sigma_{i}^{2k})^{2}} \leq \sqrt{(a_{1}\sigma_{1}^{2k})^{2} + \sum_{i=2}^{r} (a_{i}\sigma_{2}^{2k})^{2}} < \sqrt{(a_{1}\sigma_{1}^{2k})^{2} + (1-\varepsilon)^{4k}\sigma_{1}^{4k}\sum_{i=2}^{r} a_{i}^{2k}}$$

$$\leq a_{1}\sigma_{1}^{2k}\sqrt{1 + 3(1-\varepsilon)^{4k}}$$

In order to make $\left| \boldsymbol{b}_k^{\top} \boldsymbol{v}_1 \right| \geq (1 - \varepsilon^{10}) \| \boldsymbol{b}_k \|$, we can just make sure that