Théorie des graphes - Annale 1

Exercice 1

On a 4 villes : V_1 , V_2 , V_3 et V_4 .

Il existe des vols directs de : V_1 vers V_2 , V_1 vers V_4 , V_2 vers V_3 , V_3 vers V_1 , V_3 vers V_4 et V_4 vers V_2 .

1. Montrer qu'il existe au moins un vol avec 2 escales de V_i à V_j pour $i \neq j$.

- 2. Ecrire la matrice d'adjacence, et trouver tous les trajets d'une ville à une autre avec 1 escale (utiliser la multiplication latine).
- 3. Comment retrouver le résultat de la question 1. avec la multiplication latine?

- 1. Enoncé erroné
- 2. La matrice d'adjacence est la suivante :

$$M = \begin{pmatrix} 0 & 12 & 0 & 14 \\ 0 & 0 & 23 & 0 \\ 31 & 0 & 0 & 34 \\ 0 & 42 & 0 & 0 \end{pmatrix}$$

On cherche les trajets d'une ville à une autre avec 1 escale. On utilise la multiplication latine. On a :

$$M^2 = \begin{pmatrix} 0 & 142 & 123 & 0 \\ 231 & 0 & 0 & 234 \\ 0 & 312 + 342 & 0 & 314 \\ 0 & 0 & 423 & 0 \end{pmatrix}$$

Félix de Brandois

3. On utilise la multiplication latine pour 2 escales :

$$M^{3} = \begin{pmatrix} x & 0 & 1423 & 1234 \\ x & x & 0 & 2314 \\ 0 & 3142 & x & 0 \\ 4231 & 0 & x & x \end{pmatrix}$$

Exercice 2

 Q_n : Graphe sommets n-uplets de 0 ou 1 adjacents si ils diffèrent seulement de 1 bit.

Montrer que Q_n est hamiltonien pour $n \geq 2$.

 Q_3 :

 \mathbb{Q}_{n+1} est construit à partir de \mathbb{Q}_n duppliqué.

On prend un cycle hamiltonien de Q_n . On enlève une arrête (u, v) du cycle dans

 Q_n :

$$(\boldsymbol{u}^0, \boldsymbol{v}^0)$$
 dans Q_{n+1}^0 et $(\boldsymbol{u}^1, \boldsymbol{v}^1)$ dans $Q_{n+1}^1.$