L = M

则加热济行次

力矩分配法的迭代过程:

$$k_{11}\theta_1 + k_{12}\theta_2 = M_1 \quad \cdots \quad \boxed{1}$$

$$k_{21}\theta_1 + k_{22}\theta_2 = M_2$$
 ... 2

$$\Rightarrow \theta_{1,1}$$

释放附加刚臂1

将
$$\theta_{1,1}$$
代入2式 $k_{21}\theta_{1,1} + k_{22}\theta_2 = M_2$ $\Rightarrow \theta_{2,1}$

将
$$\theta_{2,1}$$
代入 $k_1\theta_1 + k_{12}\theta_{2,1} = 0$ ⇒ $\theta_{1,2}$ 传递 化处理系统

将
$$\theta_{1,2}$$
代入 $k_{21}\theta_{1,1} + k_{22}\theta_2 = 0$ $\Rightarrow \theta_{2,2}$

释放附加刚臂2

即为的到及的被影马数

释放附加刚臂1

已被加强强强

分层法求解过程:

分层法迭代过程(以单跨为例):

$\lceil k_{11} \rceil$	k_{12}	k_{13}	k_{14}	k_{15}	k_{16}	$\left\lceil \theta \right\rceil$
k_{21}	$k_{22}^{}$	k_{23}	k_{24}	k_{25}	$\begin{bmatrix} k_{16} \\ k_{26} \end{bmatrix}$	θ_{2}
k_{31}	k_{32}	k_{33}	k_{34}	k_{35}	k_{36}	θ
k_{41}	k_{42}	k_{43}	k_{44}	k_{45}	k_{46}	θ_{a}
k_{51}	k_{52}	k_{53}	k_{54}	k_{55}	k_{56}	θ
$\lfloor k_{61}$	k_{62}	k_{63}	k_{64}	k_{65}	$\begin{bmatrix} k_{56} \\ k_{66} \end{bmatrix}$	θ_{0}

$$\theta_{3,1}$$
、 $\theta_{4,1}$ 、 $\theta_{5,1}$ $\theta_{6,1}$ 带入1式的齐式 $\theta_{1,1}$ 、 $\theta_{2,1}$ 、 $\theta_{5,1}$ 、 $\theta_{6,1}$ 带入2式的齐式 $\theta_{1,1}$ 、 $\theta_{2,1}$ 、 $\theta_{3,1}$ 、 $\theta_{4,1}$ 带入3式的齐式

$$\theta_{1,1}, \quad \theta_{2,1}, \quad \theta_{3,1}, \leftarrow \begin{bmatrix} \theta_{4,1}, & \theta_{5,1}, & \theta_{6,1} \end{bmatrix}$$

$$\Theta_1$$
、 θ_2 、 θ_3 、 θ_4 为零

$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} M_1 \\ M_2 \end{bmatrix}$$

$$\begin{bmatrix} k_{55} & k_{56} \\ k_{65} & k_{66} \end{bmatrix} \begin{bmatrix} \theta_5 \\ \theta_6 \end{bmatrix} = \begin{bmatrix} M_5 \\ M_6 \end{bmatrix}$$

$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} + \begin{bmatrix} k_{13} & k_{14} \\ k_{23} & k_{24} \end{bmatrix} \begin{bmatrix} \theta_{3,1} \\ \theta_{4,1} \end{bmatrix} + \begin{bmatrix} k_{15} & k_{16} \\ k_{25} & k_{26} \end{bmatrix} \begin{bmatrix} \theta_{5,1} \\ \theta_{6,1} \end{bmatrix} = \begin{bmatrix} M_1 \\ M_2 \end{bmatrix}$$

$$\begin{bmatrix} k_{31} & k_{32} \\ k_{41} & k_{42} \end{bmatrix} \begin{bmatrix} \theta_{1,1} \\ \theta_{2,1} \end{bmatrix} + \begin{bmatrix} k_{33} & k_{34} \\ k_{43} & k_{44} \end{bmatrix} \begin{bmatrix} \theta_3 \\ \theta_4 \end{bmatrix} + \begin{bmatrix} k_{35} & k_{36} \\ k_{45} & k_{46} \end{bmatrix} \begin{bmatrix} \theta_{5,1} \\ \theta_{6,1} \end{bmatrix} = \begin{bmatrix} M_5 \\ M_4 \end{bmatrix}$$

$$\begin{bmatrix} k_{51} & k_{52} \\ k_{61} & k_{62} \end{bmatrix} \begin{bmatrix} \theta_{1,1} \\ \theta_{2,1} \end{bmatrix} + \begin{bmatrix} k_{53} & k_{54} \\ k_{63} & k_{64} \end{bmatrix} \begin{bmatrix} \theta_{3,1} \\ \theta_{4,1} \end{bmatrix} + \begin{bmatrix} k_{55} & k_{56} \\ k_{65} & k_{66} \end{bmatrix} \begin{bmatrix} \theta_5 \\ \theta_6 \end{bmatrix} = \begin{bmatrix} M_5 \\ M_6 \end{bmatrix}$$

……(国到广西处精度印刷)

$$\theta_1 = \sum \theta_{1,i} \qquad \theta_2 = \sum \theta_{2,i} \qquad \theta_3 = \sum \theta_{3,i}$$

$$\theta_4 = \sum \theta_{4,i} \qquad \theta_5 = \sum \theta_{5,i} \qquad \theta_6 = \sum \theta_{6,i}$$