18. Macchina di Turing

Corso di Informatica

Outline

- Modelli di calcolo
- Macchina di Turing

Modelli di calcolo

- Per modello di calcolo intendiamo una macchina in grado di eseguire algoritmi
- Ne esistono diversi, ognuno con determinate caratteristiche e capacità
- Alcuni sono molto recenti, come il quantum computing o il DNA computing
- È però necessario usarne uno di riferimento: la Macchina di Turing (MdT)

Macchina di Turing

- Ideata dall'omonimo matematico inglese
- Consta di due componenti fondamentali
 - Un nastro, che serve come memoria, e che può scorrere verso destra (D) o sinistra (S)
 - Una testina, che accede in lettura e scrittura alle informazioni contenute nel nastro

Macchina di Turing

- La MdT modifica il suo stato sulla base del contenuto attuale del nastro
- È un Automa a Stati Finiti Deterministico
 - Automa: effettua calcoli in maniera automatica
 - Stati Finiti: ha un numero finito di stati possibili
 - Deterministico: è possibile determinare a priori lo stato successivo della macchina di Turing a partire da stato attuale e contenuto del nastro
- Il numero di stati non dipende dalla lunghezza del nastro

Macchina di Turing

- Formalmente, una **MdT** T è una quintupla $\langle \Sigma, S, s_0, S_f, \delta \rangle$, dove:
 - Σ è un **alfabeto** di simboli
 - S è un insieme di stati
 - $s_0 \in S$ è lo stato iniziale
 - $S_f \in S$ è un insieme di stati finali
 - δ è una funzione di transizione del tipo $\delta(s_s, c_s) \rightarrow \langle t, s_F, c_F \rangle$
 - s_S ed s_F rappresentano lo stato **precedente** e **successivo** alla transizione, rispettivamente;
 - c_S e c_F rappresentano il carattere **letto prima della transizione** e **scritto dopo la transizione**, rispettivamente (con quest'ultimo opzionale);
 - t rappresenta la direzione verso cui scorre il nastro (destra o sinistra)

Esempio applicativo

- Problema: valutare se una stringa contiene un carattere a
 - Alfabeto: a, b, c, ..., x, y, z, #
 - Insieme degli stati: $S = \{s_0, s_1, s_T, s_F\}$
 - Stato iniziale: s_0
 - Stati finali: $S_F = \{s_T, s_F\}$

	s_0	<i>s</i> ₁	s_T	S_F
а	$\langle D, s_1, - \rangle$	$\langle D, s_1, - \rangle$	/	/
b-z	$\langle D, s_0, - \rangle$	$\langle D, s_1, - \rangle$	/	/
#	$\langle -, s_F, - \rangle$	$\langle -, s_T, - \rangle$	/	/

Tesi di Church – Turing

- Tutti i modelli di calcolo sono tra loro equivalenti, per cui un problema risolvibile usando la macchina di Turing è risolvibile da qualsiasi modello
- La tesi di Church Turing afferma che ogni problema algoritmico risolto mediante una macchina di Turing (se risolvibile)
- Non è un teorema, ma una tesi universalmente accettata

Domande?

42