

Handbuch

HIQuad®X

Functional Safety Data

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIQuad[®]X, HIMax[®], HIMatrix[®], SILworX[®], XMR[®], HICore[®] und FlexSILon[®] sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Alle aktuellen Handbücher können über die E-Mail-Adresse documentation@hima.com angefragt werden.

© Copyright 2020, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

Revisions-	Anderungen	Art der A	nderung
index		technisch	redaktionell
1.00	Erstausgabe		
1.01	Geändert: Tabellen in Kapitel 1.1.1. Hinzugefügt: Weitere Proof Test Intervalle für Arbeitsstromprinzip	Х	X

Inhaltsverzeichnis

1	HIQuad X Functional Safety Data nach IEC 61508	5
1.1	Functional Safety Data der HIQuad X Module	5
1.1.1 1.1.2	Ruhestromprinzip Arbeitsstromprinzip	6 7
2	HIQuad X Functional Safety Data nach EN ISO 13849	9
2.1	Functional Safety Data der HIQuad X Module	9
3	Berechnungsbeispiele	11
3.1	Mono-System	11
3.2	Redundanz-System	12
3.3	Redundanz-Systeme mit redundanten Eingängen	14
3.3.1 3.3.2	Redundante Eingangsmodule in einem Rack Eingangsmodule in redundanten Racks	14 15
3.4	Redundanz-Systeme mit redundanten Ausgängen	16
3.4.1 3.4.2	Redundante Ausgangsmodule in einem Rack Ausgangsmodule in redundanten Racks	16 18
3.5	Redundanz-Systeme mit redundanten Ein- und Ausgängen	19
3.5.1 3.5.2 3.5.3	1oo2-Verschaltung 2oo2-Verschaltung 2oo3-Verschaltung der Eingänge und 2oo2-Verschaltung der Ausgänge	19 20 21
	Anhang	23
	Tabellenverzeichnis	23

HI 803 232 D Rev. 1.01 Seite 3 von 24

1 HIQuad X Functional Safety Data nach IEC 61508

Das folgende Kapitel listet die Werte für MTTF, PFH und PFD nach IEC 61508 auf.

Allgemeines						
Sicherheitshandbuch	HI 803 208 D, in der jeweils gültigen Ausgabe					
Prüfgrundlage	IEC 61508, Teil 1 - 7:2010 IEC 61511-1:2016 + Corr.1:2016 + AMD1:2017					
Zertifikat	EG-Baumusterprüfbescheinigung 01/205/5666.00/18					
Zertifiziert durch	TÜV Rheinland Industrie Service GmbH					

Tabelle 1: Allgemeine Informationen (IEC 61508)

1.1 Functional Safety Data der HIQuad X Module

Die in den nachfolgenden Tabellen aufgeführten Werte wurden gemäß den Vorgaben der IEC 61508 berechnet.

Berechnung der Functional Safety Data

Die nachfolgend aufgeführten Ausfallraten (λ_S , λ_{DD} , λ_{DU}) lassen keinen Rückschluss auf die internen Funktionseinheiten und Architekturen zu. Die Ausfallraten eines Moduls entstehen durch die Aufsummierung der Ausfallraten aller Komponenten des Moduls unter Berücksichtigung der internen Strukturen. Daher lassen sich die angegebenen Ausfallraten (insbesondere λ_{DU}) nicht mit den vereinfachten Formeln der IEC 61508-6 direkt in die von HIMA angegebenen Werte für PFD und PFH überführen.

Die von HIMA angegebenen PFD- und PFH-Werte berücksichtigen die internen Architekturen der HIQuad X Module. Dadurch sind die in diesem Dokument angegebenen PFD- und PFH-Werte niedriger. Die Berechnung der PFD- und PFH-Werte auf Basis der Ausfallraten liefert ein konservativeres, höheres Ergebnis.

Die in diesem Dokument angegebenen PFD- und PFH-Werte werden im Rahmen der Zertifizierung der Module von unabhängiger Stelle (TÜV Rheinland) geprüft.

HIMA empfiehlt daher, die angegebenen PFD- und PFH-Werte zu verwenden.

Berechnung der Sicherheitsfunktion

Für die Berechnung der Sicherheitsfunktion durch den Anwender sind folgende Annahmen zu Grunde zu legen:

Parameter	Wert / Beschreibung
Тур	B-Element
HFT	0 (interne redundante Architekturen)
MTTR = MRT	8 h
β-Faktor	2 %
β _D -Faktor	1 %
Betriebsart	Niedrige Anforderungsrate / Hohe Anforderungsrate
Sicherer Zustand	Gemäß Ruhestromprinzip, siehe 1.1.1 Gemäß Arbeitsstromprinzip, siehe 1.1.2

Tabelle 2: Annahmen zur Berechnung (IEC 61508)

Für alle Module sind die Einsatzbedingungen gemäß den Modul-Handbüchern und des Sicherheitshandbuches einzuhalten.

HI 803 232 D Rev. 1.01 Seite 5 von 24

1.1.1 Ruhestromprinzip

Tabelle 3 enthält die Ausfallraten und die PFD- und PFH-Werte für das Proof Test Intervall von $T_1 = 1$ Jahr:

Modul	MTTF in Jahren	λ_{S}/h^{-1}	λ_{DD} / h^{-1}	λ_{DU} / h^{-1}	PFD	PFH/h ⁻¹	SFF	SIL
F-CPU 01	64,24	6,94E-07	6,50E-07	3,35E-09	5,46E-05	1,27E-09	99,75 %	3
F-IOP 01	48,98	8,29E-07	7,44E-07	4,00E-09	2,10E-05	1,54E-09	99,75 %	3
F 3236	448,02	1,56E-07	9,82E-08	9,92E-10	5,14E-06	9,92E-10	99,61 %	3
F 3237	330,69	2,43E-07	1,01E-07	1,02E-09	5,28E-06	1,02E-09	99,71 %	3
F 3238	184,87	4,55E-07	1,61E-07	1,63E-09	8,43E-06	1,63E-09	99,74 %	3
F 3240	220,29	3,93E-07	1,24E-07	1,25E-09	6,50E-06	1,25E-09	99,76 %	3
F 3248	220,29	3,93E-07	1,24E-07	1,25E-09	6,50E-06	1,25E-09	99,76 %	3
F 3330	235,03	1,66E-07	1,23E-07	1,25E-09	3,98E-06	7,68E-10	99,57 %	3
F 3331	232,83	1,69E-07	1,26E-07	1,27E-09	4,10E-06	7,91E-10	99,57 %	3
F 3333	278,50	1,49E-07	1,05E-07	1,07E-09	3,55E-06	6,86E-10	99,58 %	3
F 3334	260,21	1,63E-07	1,20E-07	1,21E-09	4,30E-06	8,30E-10	99,57 %	3
F 3335	101,53	5,43E-07	2,09E-07	2,11E-09	6,22E-06	1,20E-09	99,72 %	3
F 3349	116,93	4,32E-07	2,83E-07	2,86E-09	8,25E-06	1,59E-09	99,60 %	3
F 3430	112,69	2,87E-07	1,37E-07	2,73E-08	6,51E-06	1,37E-09	≥ 99 %	3
F 5220	45,12	8,76E-07	7,32E-07	5,59E-09	1,30E-05	2,25E-09	99,65 %	3
F 6217	154,20	3,58E-07	2,33E-07	1,75E-09	7,77E-06	1,41E-09	99,71 %	3
F 6220	56,34	8,42E-07	5,76E-07	3,83E-09	9,28E-06	1,49E-09	99,73 %	3
F 6221	58,12	7,72E-07	5,68E-07	3,74E-09	8,62E-06	1,36E-09	99,72 %	3
F 6705	180,37	3,28E-07	2,29E-07	2,32E-09	1,01E-05	1,96E-09	99,59 %	3

Tabelle 3: Wiederholungsprüfung mit $T_1 = 1$ Jahr (Ruhestromprinzip)

Tabelle 4 enthält die PFD- und PFH-Werte für weitere Proof Test Intervalle:

Modul	$T_1 = 2 \text{ Jah}$	re	$T_1 = 3 \text{ Jah}$	re	T ₁ = 5 Jah	re	$T_1 = 10 \text{ Ja}$	hre
	PFD	PFH / h ⁻¹	PFD	PFH / h ⁻¹	PFD	PFH / h ⁻¹	PFD	PFH / h ⁻¹
F-CPU 01	6,01E-05	1,27E-09	6,57E-05	1,27E-09	7,68E-05	1,27E-09	1,05E-04	1,27E-09
F-IOP 01	2,76E-05	1,54E-09	3,42E-05	1,54E-09	4,75E-05	1,54E-09	8,05E-05	1,54E-09
F 3236	9,48E-06	9,92E-10	1,38E-05	9,92E-10	2,25E-05	9,92E-10	4,42E-05	9,92E-10
F 3237	9,74E-06	1,02E-09	1,42E-05	1,02E-09	2,31E-05	1,02E-09	4,54E-05	1,02E-09
F 3238	1,56E-05	1,63E-09	2,27E-05	1,63E-09	3,69E-05	1,63E-09	7,26E-05	1,63E-09
F 3240	1,20E-05	1,25E-09	1,75E-05	1,25E-09	2,85E-05	1,25E-09	5,59E-05	1,25E-09
F 3248	1,20E-05	1,25E-09	1,75E-05	1,25E-09	2,85E-05	1,25E-09	5,59E-05	1,25E-09
F 3330	7,34E-06	7,68E-10	1,07E-05	7,68E-10	1,74E-05	7,68E-10	3,43E-05	7,68E-10
F 3331	7,56E-06	7,91E-10	1,10E-05	7,91E-10	1,80E-05	7,91E-10	3,53E-05	7,91E-10
F 3333	6,55E-06	6,86E-10	9,56E-06	6,86E-10	1,56E-05	6,86E-10	3,06E-05	6,86E-10
F 3334	7,93E-06	8,30E-10	1,16E-05	8,30E-10	1,88E-05	8,30E-10	3,70E-05	8,30E-10
F 3335	1,15E-05	1,20E-09	1,68E-05	1,20E-09	2,73E-05	1,20E-09	5,36E-05	1,20E-09
F 3349	1,52E-05	1,59E-09	2,22E-05	1,59E-09	3,62E-05	1,59E-09	7,11E-05	1,59E-09
F 3430	1,25E-05	1,37E-09	1,85E-05	1,37E-09	3,05E-05	1,37E-09		
F 5220	2,29E-05	2,25E-09	3,27E-05	2,25E-09	5,24E-05	2,25E-09	1,02E-04	2,25E-09
F 6217	1,39E-05	1,41E-09	2,01E-05	1,41E-09	3,24E-05	1,41E-09	6,33E-05	1,41E-09
F 6220	1,58E-05	1,49E-09	2,23E-05	1,49E-09	3,54E-05	1,49E-09	6,80E-05	1,49E-09
F 6221	1,46E-05	1,36E-09	2,06E-05	1,36E-09	3,25E-05	1,36E-09	6,23E-05	1,36E-09
F 6705	1,87E-05	1,96E-09	2,73E-05	1,96E-09	4,45E-05	1,96E-09	8,74E-05	1,96E-09

Tabelle 4: PFD- und PFH-Werte bei verschiedenen Proof Test Intervallen (Ruhestromprinzip)

Seite 6 von 24 HI 803 232 D Rev. 1.01

1.1.2 Arbeitsstromprinzip

Tabelle 5 enthält die Ausfallraten und die PFD- und PFH-Werte für das Proof Test Intervall von $T_1 = 1$ Jahr:

Modul	MTTF in	λ_{S}/h^{-1}	λ_{DD} / h^{-1}	λ_{DU} / h^{-1}	PFD	PFH / h ⁻¹	SFF	SIL
	Jahren							
F-CPU 01	51,27	9,02E-07	8,91E-07	3,74E-09	5,82E-05	1,66E-09	99,79 %	3
F-IOP 01	40,11	1,07E-06	1,01E-06	6,73E-09	3,52E-05	4,26E-09	99,68 %	3
F-PWR 01	125,20	4,56E-07	4,51E-07	4,56E-09	2,36E-05	4,56E-09	99,50 %	3
F-PWR 01 (1002)	8,58E06	4,56E-07	4,51E-07	4,56E-09	4,37E-07	9,14E-11	99,50 %	3
F-PWR 01 (2003)	1,17E07	4,56E-07	4,51E-07	4,56E-09	4,39E-07	9,18E-11	99,50 %	3
F 3236	448,02	1,29E-07	1,24E-07	1,26E-09	6,51E-06	1,26E-09	99,51%	3
F 3237	330,69	1,74E-07	1,70E-07	1,71E-09	8,88E-06	1,71E-09	99,50%	3
F 3238	184,87	3,10E-07	3,04E-07	3,08E-09	1,59E-05	3,08E-09	99,50%	3
F 3240	220,29	2,64E-07	2,51E-07	2,54E-09	1,32E-05	2,54E-09	99,51%	3
F 3248	220,29	2,64E-07	2,51E-07	2,54E-09	1,32E-05	2,54E-09	99,51%	3
F 3330	235,03	1,53E-07	1,52E-07	1,53E-09	1,05E-05	2,02E-09	99,50%	3
F 3331	232,83	1,67E-07	1,65E-07	1,67E-09	1,12E-05	2,16E-09	99,50%	3
F 3333	278,50	1,34E-07	1,32E-07	1,34E-09	8,93E-06	1,72E-09	99,50%	3
F 3334	260,21	1,48E-07	1,47E-07	1,48E-09	9,68E-06	1,87E-09	99,50%	3
F 3335	101,53	5,28E-07	2,38E-07	2,41E-09	1,73E-05	3,33E-09	99,69%	3
F 3349	116,93	3,59E-07	3,55E-07	3,59E-09	2,10E-05	4,06E-09	99,50%	3
F 5220	45,12	8,07E-07	8,00E-07	6,28E-09	2,33E-05	4,22E-09	99,61%	3
F 6217	154,20	2,97E-07	2,94E-07	2,37E-09	1,10E-05	2,02E-09	99,60%	3
F 6220	56,34	7,11E-07	7,06E-07	5,13E-09	1,61E-05	2,80E-09	99,64%	3
F 6221	58,12	6,72E-07	6,67E-07	4,74E-09	1,38E-05	2,36E-09	99,65%	3
F 6705	180,37	2,80E-07	2,77E-07	2,80E-09	1,64E-05	3,16E-09	99,50%	3

Tabelle 5: Wiederholungsprüfung mit $T_1 = 1$ Jahr (Arbeitsstromprinzip)

HI 803 232 D Rev. 1.01 Seite 7 von 24

Tabelle 6 enthält die PFD- und PFH-Werte für weitere Proof Test Intervalle:

Modul	$T_1 = 2$	Jahre	$T_1 = 3$	Jahre	$T_1 = 5$	Jahre	$T_1 = 10$	$T_1 = 10$ Jahre	
	PFD	PFH / h ⁻¹	PFD	PFH / h ⁻¹	PFD	PFH / h ⁻¹	PFD	PFH / h ⁻¹	
F-CPU 01	6,55E-05	1,66E-09	7,27E-05	1,66E-09	8,73E-05	1,66E-09	1,24E-04	1,66E-09	
F-IOP 01	5,37E-05	4,26E-09	7,23E-05	4,26E-09	1,09E-04	4,26E-09	2,02E-04	4,26E-09	
F-PWR 01	4,36E-05	4,56E-09	6,36E-05	4,56E-09	1,03E-04	4,56E-09	2,03E-04	4,56E-09	
F-PWR 01 (1002)	8,38E-07	9,16E-11	1,24E-06	9,17E-11	2,05E-06	9,21E-11	4,09E-06	9,30E-11	
F-PWR 01	8,43E-07	9,23E-11	1,25E-06	9,29E-11	2,08E-06	9,39E-11	4,19E-06	9,66E-11	
(2003)									
F 3236	1,20E-05	1,26E-09	1,75E-05	1,26E-09	2,85E-05	1,26E-09	5,60E-05	1,26E-09	
F 3237	1,64E-05	1,71E-09	2,39E-05	1,71E-09	3,89E-05	1,71E-09	7,64E-05	1,71E-09	
F 3238	2,94E-05	3,08E-09	4,29E-05	3,08E-09	6,98E-05	3,08E-09	1,37E-04	3,08E-09	
F 3240	2,43E-05	2,54E-09	3,54E-05	2,54E-09	5,76E-05	2,54E-09	1,13E-04	2,54E-09	
F 3248	2,43E-05	2,54E-09	3,54E-05	2,54E-09	5,76E-05	2,54E-09	1,13E-04	2,54E-09	
F 3330	1,93E-05	2,02E-09	2,81E-05	2,02E-09	4,58E-05	2,02E-09	9,00E-05	2,02E-09	
F 3331	2,06E-05	2,16E-09	3,01E-05	2,16E-09	4,90E-05	2,16E-09	9,62E-05	2,16E-09	
F 3333	1,65E-05	1,72E-09	2,40E-05	1,72E-09	3,91E-05	1,72E-09	7,69E-05	1,72E-09	
F 3334	1,79E-05	1,87E-09	2,60E-05	1,87E-09	4,24E-05	1,87E-09	8,33E-05	1,87E-09	
F 3335	3,19E-05	3,33E-09	4,65E-05	3,33E-09	7,57E-05	3,33E-09	1,49E-04	3,33E-09	
F 3349	3,88E-05	4,06E-09	5,66E-05	4,06E-09	9,22E-05	4,06E-09	1,81E-04	4,06E-09	
F 5220	4,18E-05	4,22E-09	6,03E-05	4,22E-09	9,73E-05	4,22E-09	1,90E-04	4,22E-09	
F 6217	1,98E-05	2,02E-09	2,87E-05	2,02E-09	4,64E-05	2,02E-09	9,07E-05	2,02E-09	
F 6220	2,83E-05	2,80E-09	4,06E-05	2,80E-09	6,51E-05	2,80E-09	1,26E-04	2,80E-09	
F 6221	2,41E-05	2,36E-09	3,45E-05	2,36E-09	5,52E-05	2,36E-09	1,07E-04	2,36E-09	
F 6705	3,03E-05	3,16E-09	4,41E-05	3,16E-09	7,18E-05	3,16E-09	1,41E-04	3,16E-09	

Tabelle 6: PFD- und PFH-Werte bei verschiedenen Proof Test Intervallen (Arbeitsstromprinzip)

Seite 8 von 24 HI 803 232 D Rev. 1.01

2 HIQuad X Functional Safety Data nach EN ISO 13849

Das folgende Kapitel listet die Werte nach EN ISO 13849 auf.

Allgemeines					
Sicherheitshandbuch	HI 803 208 D, in der jeweils gültigen Ausgabe				
Prüfgrundlage	EN ISO 13849-1:2015				
Zertifikats	EG-Baumusterprüfbescheinigung				
	01/205/5666.00/18				
Zertifiziert durch	TÜV Rheinland Industrie Service GmbH				

Tabelle 7: Allgemeine Informationen (EN ISO 13849)

2.1 Functional Safety Data der HIQuad X Module

Die in nachfolgender Tabelle aufgeführten Werte wurden gemäß den Vorgaben der EN ISO 13849-1 und IEC 61508 berechnet.

Berechnung der Sicherheitsfunktion

Für die Berechnung der Sicherheitsfunktion durch den Anwender sind folgende Annahmen zu Grunde zu legen:

Parameter	Wert / Beschreibung
Тур	B-Element
HFT	0 (interne redundante Architekturen)
MTTR = MRT	8 h
β-Faktor	2 %
β_D -Faktor	1 %
Betriebsart	Niedrige Anforderungsrate / Hohe Anforderungsrate
Sicherer Zustand	Gemäß Ruhestromprinzip

Tabelle 8: Annahmen zur Berechnung (EN ISO 13849)

 $\dot{1}$ Für alle Module sind die Einsatzbedingungen gemäß den Modul-Handbüchern und des Sicherheitshandbuches einzuhalten.

HI 803 232 D Rev. 1.01 Seite 9 von 24

Folgende Werte ergeben sich bei einer Wiederholungsprüfung (Proof Test) mit $T_1 = 20$ Jahren:

Module	PFH _{IEC 61508} / h ⁻¹	PL
F-CPU 01	1,27E-09	е
F-IOP 01	1,54E-09	е
F 3236	9,92E-10	е
F 3237	1,02E-09	е
F 3238	1,63E-09	е
F 3240	1,25E-09	е
F 3248	1,25E-09	е
F 3330	7,68E-10	е
F 3331	7,91E-10	е
F 3333	6,86E-10	е
F 3334	8,30E-10	е
F 3335	1,20E-09	е
F 3349	1,59E-09	е
F 5220	2,17E-09	е
F 6217	1,41E-09	е
F 6220	1,49E-09	е
F 6221	1,36E-09	е
F 6705	1,96E-09	е

Tabelle 9: Functional Safety Data der HIQuad X Module (EN ISO 13849)

Seite 10 von 24 HI 803 232 D Rev. 1.01

3 Berechnungsbeispiele

Nachfolgendes Kapitel zeigt Beispiele zur Berechnung des Sicherheits-Loops bei verschiedenen System-Konfigurationen. Für alle Konfigurationen wird die Anwendung nach dem Ruhestromprinzip und ein Proof-Test-Intervall von $T_1 = 10$ Jahren angenommen.

Die Berechnungen erfolgen gemäß der IEC 61508, Teil 6, Anhang B.

3.1 Mono-System

Nachfolgende Abbildung zeigt den Aufbau eines Mono-Systems:

Für die Berechnung wird als Eingangsmodul die F 3236 und als Ausgangsmodul die F 3330 verwendet.

Für die Module gelten die λ -Werte aus Tabelle 3. Die PFD- und PFH-Werte bei 1001-Architektur können Tabelle 4 entnommen werden.

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 3236	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	1001	1001	1001	1001	
λ_{S} / h^{-1}	1,56E-07	8,29E-07	6,94E-07	1,66E-07	
$\lambda_{\rm D}$ / h^{-1}	9,92E-08	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	9,82E-08	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	9,92E-10	4,00E-09	3,35E-09	1,25E-09	
SFF	99,61%	99,75%	99,75%	99,57%	
PFD	4,42E-05	8,05E-05	1,05E-04	3,43E-05	2,64E-04
PFH / h ⁻¹	9,92E-10	1,54E-09	1,27E-09	7,68E-10	4,57E-09

HI 803 232 D Rev. 1.01 Seite 11 von 24

3.2 Redundanz-System

Nachfolgende Abbildung zeigt den Aufbau eines Redundanz-Systems:

Für die Berechnung wird als Eingangsmodul die F 3236 und als Ausgangsmodul die F 3330 verwendet

Für die Module gelten die λ -Werte aus Tabelle 3. Die PFD- und PFH-Werte bei 1001-Architektur können Tabelle 4 entnommen werden.

Die Berechnung der PFD- und PFH-Werte für die F-CPU 01 Module in 1002-Architektur wird wie folgt durchgeführt:

$$\mathsf{PFD} = 2 \cdot \left((1 - \beta_{\mathsf{D}}) \cdot \lambda_{\mathsf{DD}} + (1 - \beta) \cdot \lambda_{\mathsf{DU}} \right)^{2} \cdot \, t_{\mathsf{CE}} \cdot t_{\mathsf{GE}} + \beta_{\mathsf{D}} \cdot \lambda_{\mathsf{DD}} \cdot \, \mathsf{MTTR} + \beta \cdot \lambda_{\mathsf{DU}} \cdot \left(\frac{\mathsf{T}_{\mathsf{1}}}{2} + \mathsf{MRT} \right)$$

$$PFH = 2 \cdot \left((1 - \beta_D) \cdot \lambda_{DD} + (1 - \beta) \cdot \lambda_{DU} \right) \cdot (1 - \beta) \cdot \lambda_{DU} \cdot t_{CE} + \beta \cdot \lambda_{DU}$$

Mit:

$$t_{\text{CE}} = \frac{\lambda_{\text{DU}}}{\lambda_{\text{D}}} \cdot \left(\frac{T_{1}}{2} + \text{MRT}\right) + \frac{\lambda_{\text{DD}}}{\lambda_{\text{D}}} \cdot \text{MTTR}$$

$$t_{\text{GE}} = \frac{\lambda_{\text{DU}}}{\lambda_{\text{D}}} \cdot \left(\frac{T_{\text{1}}}{3} + \text{MRT}\right) + \frac{\lambda_{\text{DD}}}{\lambda_{\text{D}}} \cdot \text{MTTR}$$

Weiterhin gilt:

- β = 2 %
- $\beta_D = 1 \%$
- MTTR = MRT = 8 h
- T₁ = 10 Jahre = 87 600 h

Damit ergibt sich für t_{CE} und t_{GE} :

$$t_{\text{CE}} = \frac{3,35 \cdot 10^{-9}}{6,53 \cdot 10^{-7}} \cdot \left(\frac{87600}{2} + 8\right) + \frac{6,5 \cdot 10^{-7}}{6,53 \cdot 10^{-7}} \cdot 8$$

 $t_{CE} = 232,71 \text{ h}$

$$t_{\text{GE}} = \frac{3,35 \cdot 10^{-9}}{6.53 \cdot 10^{-7}} \cdot \left(\frac{87600}{3} + 8\right) + \frac{6,5 \cdot 10^{-7}}{6.53 \cdot 10^{-7}} \cdot 8$$

$$t_{GE} = 157,81 \text{ h}$$

Seite 12 von 24

Damit ergibt sich für PFD und PFH:

$$PFD = 2 \cdot \left((1 - 0.01) \cdot 6.5 \cdot 10^{-7} + (1 - 0.02) \cdot 3.35 \cdot 10^{-9} \right)^{2} \cdot 232.71 \cdot 157.81 + 0.01 \cdot 6.5 \cdot 10^{-7} \cdot 8$$
$$+ 0.02 \cdot 3.35 \cdot 10^{-9} \cdot \left(\frac{87600}{2} + 8 \right)$$

 $PFD = 3.02 \cdot 10^{-6}$

$$\mathsf{PFH} = 2 \cdot \left((1 - 0.01) \cdot 6.5 \cdot 10^{-7} + (1 - 0.02) \cdot 3.35 \cdot 10^{-9} \right) \cdot (1 - 0.02) \cdot 3.35 \cdot 10^{-9} \cdot 232.71 \\ + 0.02 \cdot 3.35 \cdot 10^{-9} \cdot 232.71 + 0.02 \cdot 3.75 \cdot 10^{-9} \cdot 232.71 + 0.02 \cdot 10^{-9} \cdot 232.71 + 0.02 \cdot 10^{-9} \cdot 10^{-9}$$

 $PFH = 6,80 \cdot 10^{-11}$

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 3236	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	1001	1001	1002	1001	
$\lambda_{\rm S}$ / h^{-1}	1,56E-07	8,29E-07	6,94E-07	1,66E-07	
λ_D / h^{-1}	9,92E-08	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	9,82E-08	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	9,92E-10	4,00E-09	3,35E-09	1,25E-09	
SFF	99,61%	99,75%	99,75%	99,57%	
PFD	4,42E-05	8,05E-05	3,02E-06	3,43E-05	1,62E-04
PFH / h ⁻¹	9,92E-10	1,54E-09	6,80E-11	7,68E-10	3,37E-09

HI 803 232 D Rev. 1.01 Seite 13 von 24

3.3 Redundanz-Systeme mit redundanten Eingängen

Nachfolgende Beispiele zeigen die Berechnung von Redundanz-Systemen mit redundanten Eingangsmodulen.

3.3.1 Redundante Eingangsmodule in einem Rack

Nachfolgende Abbildung zeigt den Aufbau eines Redundanz-Systems mit redundanten Eingangsmodulen:

Für die Berechnung wird als Eingangsmodul die F 3236 und als Ausgangsmodul die F 3330 verwendet.

Für die Module gelten die λ -Werte aus Tabelle 3. Die PFD- und PFH-Werte bei 1001-Architektur können Tabelle 4 entnommen werden.

Die Berechnung der PFD- und PFH-Werte für die Module in 1002-Architektur wird in Kapitel 3.2 exemplarisch gezeigt.

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 3236	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	1002	1001	1002	1001	
λ_{S} / h^{-1}	1,56E-07	8,29E-07	6,94E-07	1,66E-07	
λ_D / h^{-1}	9,92E-08	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	9,82E-08	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	9,92E-10	4,00E-09	3,35E-09	1,25E-09	
SFF	99,61%	99,75%	99,75%	99,57%	
PFD	8,80E-07	8,05E-05	3,02E-06	3,43E-05	1,19E-04
PFH / h ⁻¹	1,99E-11	1,54E-09	6,80E-11	7,68E-10	2,40E-09

Seite 14 von 24 HI 803 232 D Rev. 1.01

3.3.2 Eingangsmodule in redundanten Racks

Nachfolgende Abbildung zeigt den Aufbau eines Redundanz-Systems mit redundanten Eingangsmodulen in unterschiedlichen Racks:

Für die Berechnung wird als Eingangsmodul die F 3236 und als Ausgangsmodul die F 3330 verwendet.

Für die Module gelten die λ -Werte aus Tabelle 3. Die PFD- und PFH-Werte bei 1001-Architektur können Tabelle 4 entnommen werden.

Die Berechnung der PFD- und PFH-Werte für die Module in 1002-Architektur wird in Kapitel 3.2 exemplarisch gezeigt.

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 3236	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	1002	1002	1002	1001	
$\lambda_{\rm S}$ / h^{-1}	1,56E-07	8,29E-07	6,94E-07	1,66E-07	
λ_D / h^{-1}	9,92E-08	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	9,82E-08	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	9,92E-10	4,00E-09	3,35E-09	1,25E-09	
SFF	99,61%	99,75%	99,75%	99,57%	
PFD	8,80E-07	3,61E-06	3,02E-06	3,43E-05	4,18E-04
PFH / h ⁻¹	1,99E-11	8,13E-11	6,80E-11	7,68E-10	9,37E-09

HI 803 232 D Rev. 1.01 Seite 15 von 24

3.4 Redundanz-Systeme mit redundanten Ausgängen

Nachfolgende Beispiele zeigen die Berechnung von Redundanz-Systemen mit redundanten Ausgangsmodulen.

3.4.1 Redundante Ausgangsmodule in einem Rack

Nachfolgende Abbildung zeigt den Aufbau eines Redundanz-Systems mit redundanten Ausgangsmodulen:

Für die Berechnung wird als Eingangsmodul die F 3236 und als Ausgangsmodul die F 3330 verwendet.

Für die Module gelten die λ -Werte aus Tabelle 3. Die PFD- und PFH-Werte bei 1001-Architektur können Tabelle 4 entnommen werden.

Die Berechnung der PFD- und PFH-Werte für die Module in 1002-Architektur wird in Kapitel 3.2 exemplarisch gezeigt.

Die Berechnung der PFD- und PFH-Werte für die F 3330 Module in 2002-Architektur wird wie folgt durchgeführt:

 $PFD_{2002} = 2 \cdot PFD_{1001}$

 $PFH_{2002} = 2 \cdot PFH_{1001}$

Mit den Werten aus Tabelle 4 ergibt sich:

 $PFD = 2 \cdot 3,43 \cdot 10^{-5}$

 $PFD = 6,86.10^{-5}$

 $PFH = 2 \cdot 7,68 \cdot 10^{-10}$

 $PFH = 1,54.10^{-9}$

Seite 16 von 24 HI 803 232 D Rev. 1.01

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 3236	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	1001	1001	1002	2002	
$\lambda_{\rm S}$ / h^{-1}	1,56E-07	8,29E-07	6,94E-07	1,66E-07	
λ_D / h^{-1}	9,92E-08	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	9,82E-08	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	9,92E-10	4,00E-09	3,35E-09	1,25E-09	
SFF	99,61%	99,75%	99,75%	99,57%	
PFD	4,42E-05	8,05E-05	3,02E-06	6,86E-05	1,96E-04
PFH / h ⁻¹	9,92E-10	1,54E-09	6,80E-11	1,54E-09	4,14E-09

HI 803 232 D Rev. 1.01 Seite 17 von 24

3.4.2 Ausgangsmodule in redundanten Racks

Nachfolgende Abbildung zeigt den Aufbau eines Redundanz-Systems mit redundanten Ausgangsmodulen in unterschiedlichen Racks:

Für die Berechnung wird als Eingangsmodul die F 3236 und als Ausgangsmodul die F 3330 verwendet.

Für die Module gelten die λ -Werte aus Tabelle 3. Die PFD- und PFH-Werte bei 1001-Architektur können Tabelle 4 entnommen werden.

Die Berechnung der PFD- und PFH-Werte für die Module in 1002-Architektur wird in Kapitel 3.2 exemplarisch gezeigt.

Die Berechnung der PFD- und PFH-Werte für die Module in 2002-Architektur wird in Kapitel 3.4.1 exemplarisch gezeigt.

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 3236	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	1001	1002	1002	2002	
$\lambda_{\rm S}$ / h^{-1}	1,56E-07	8,29E-07	6,94E-07	1,66E-07	
λ_D / h^{-1}	9,92E-08	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	9,82E-08	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	9,92E-10	4,00E-09	3,35E-09	1,25E-09	
SFF	99,61%	99,75%	99,75%	99,57%	
PFD	4,42E-05	3,61E-06	3,02E-06	6,86E-05	1,19E-04
PFH / h ⁻¹	9,92E-10	8,13E-11	6,80E-11	1,54E-09	2,68E-09

Seite 18 von 24 HI 803 232 D Rev. 1.01

3.5 Redundanz-Systeme mit redundanten Ein- und Ausgängen

Nachfolgende Beispiele zeigen die Berechnung von Redundanz-Systemen mit redundanten Eingangsmodulen und redundanten Ausgangsmodulen.

3.5.1 1002-Verschaltung

Nachfolgende Abbildung zeigt den Aufbau einer 1002-Verschaltung für hohe Sicherheit:

Für die Berechnung wird als Eingangsmodul die F 6217 und als Ausgangsmodul die F 3330 verwendet.

Für die Module gelten die λ -Werte aus Tabelle 3.

Die Berechnung der PFD- und PFH-Werte für die Module in 1002-Architektur wird in Kapitel 3.2 exemplarisch gezeigt.

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 6217	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	1002	1002	1002	1002	
λ_{S} / h^{-1}	3,58E-07	8,29E-07	6,94E-07	1,66E-07	
λ_D / h^{-1}	2,35E-07	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	2,33E-07	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	1,75E-09	4,00E-09	3,35E-09	1,25E-09	
SFF	99,71%	99,75%	99,75%	99,57%	
PFD	1,56E-06	3,61E-06	3,02E-06	1,11E-06	9,29E-06
PFH / h ⁻¹	3,53E-11	8,13E-11	6,80E-11	2,51E-11	2,10E-10

HI 803 232 D Rev. 1.01 Seite 19 von 24

3.5.2 2002-Verschaltung

Nachfolgende Abbildung zeigt den Aufbau einer 2002-Verschaltung für hohe Verfügbarkeit:

Für die Berechnung wird als Eingangsmodul die F 6217 und als Ausgangsmodul die F 3330 verwendet.

Für die Module gelten die λ -Werte aus Tabelle 3.

Die Berechnung der PFD- und PFH-Werte für die Module in 1002-Architektur wird in Kapitel 3.2 exemplarisch gezeigt.

Die Berechnung der PFD- und PFH-Werte für die Module in 2002-Architektur wird in Kapitel 3.4.1 exemplarisch gezeigt.

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 6217	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	1002	1002	1002	2002	
λ_{S} / h^{-1}	3,58E-07	8,29E-07	6,94E-07	1,66E-07	
λ_D / h^{-1}	2,35E-07	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	2,33E-07	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	1,75E-09	4,00E-09	3,35E-09	1,25E-09	
SFF	99,71%	99,75%	99,75%	99,57%	
PFD	1,56E-06	3,61E-06	3,02E-06	6,86E-05	7,67E-05
PFH / h ⁻¹	3,53E-11	8,13E-11	6,80E-11	1,54E-09	1,72E-09

Seite 20 von 24 HI 803 232 D Rev. 1.01

3.5.3 2003-Verschaltung der Eingänge und 2002-Verschaltung der Ausgänge Nachfolgende Abbildung zeigt den Aufbau einer Konfiguration für hohe Verfügbarkeit und hohe Sicherheit:

Für die Berechnung wird als Eingangsmodul die F 6217 und als Ausgangsmodul die F 3330 verwendet.

Für die Module gelten die λ -Werte aus Tabelle 3.

Die Berechnung der PFD- und PFH-Werte für die Module in 1002-Architektur wird in Kapitel 3.2 exemplarisch gezeigt.

Die Berechnung der PFD- und PFH-Werte für die Module in 2002-Architektur wird in Kapitel 3.4.1 exemplarisch gezeigt.

Die Berechnung der PFD- und PFH-Werte für die F 6217 Module in 2003-Architektur wird wie folgt durchgeführt:

$$\mathsf{PFD} = 6 \cdot \left((1 - \beta_\mathsf{D}) \cdot \lambda_\mathsf{DD} + (1 - \beta) \cdot \lambda_\mathsf{DU} \right)^2 \cdot \, t_\mathsf{CE} \cdot t_\mathsf{GE} + \beta_\mathsf{D} \cdot \lambda_\mathsf{DD} \cdot \, \mathsf{MTTR} \, + \, \beta \cdot \lambda_\mathsf{DU} \cdot \, \left(\frac{\mathsf{T_1}}{2} + \mathsf{MRT} \right)$$

$$PFH = 6 \cdot \left((1 - \beta_D) \cdot \lambda_{DD} + (1 - \beta) \cdot \lambda_{DU} \right) \cdot (1 - \beta) \cdot \lambda_{DU} \cdot t_{CE} + \beta \cdot \lambda_{DU}$$

Mit:

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_{D}} \cdot \left(\frac{T_{1}}{2} + MRT\right) + \frac{\lambda_{DD}}{\lambda_{D}} \cdot MTTR$$

$$t_{\text{GE}} = \frac{\lambda_{\text{DU}}}{\lambda_{\text{D}}} \cdot \left(\frac{T_{1}}{3} + \text{MRT}\right) + \frac{\lambda_{\text{DD}}}{\lambda_{\text{D}}} \cdot \text{MTTR}$$

HI 803 232 D Rev. 1.01 Seite 21 von 24

Weiterhin gilt:

■ β = 2 %

• $\beta_D = 1 \%$

■ MTTR = MRT = 8 h

■ T₁ = 10 Jahre = 87 600 h

Damit ergibt sich für t_{CE} und t_{GE}:

$$t_{\text{CE}} = \frac{1,75 \cdot 10^{-9}}{2,35 \cdot 10^{-7}} \cdot \left(\frac{87600}{2} + 8\right) + \frac{2,33 \cdot 10^{-7}}{2,35 \cdot 10^{-7}} \cdot 8$$

 $t_{CE} = 334,16 \text{ h}$

$$t_{\text{GE}} = \frac{1,75 \cdot 10^{-9}}{2,35 \cdot 10^{-7}} \cdot \left(\frac{87600}{3} + 8\right) + \frac{2,33 \cdot 10^{-7}}{2,35 \cdot 10^{-7}} \cdot 8$$

$$t_{GE} = 225,44 \text{ h}$$

Damit ergibt sich für PFD und PFH:

PFD =
$$6 \cdot ((1 - 0.01) \cdot 2.33 \cdot 10^{-7} + (1 - 0.02) \cdot 1.75 \cdot 10^{-9})^2 \cdot 334.16 \cdot 225.44$$

$$+0.01 \cdot 2.33 \cdot 10^{-7} \cdot 8 + 0.02 \cdot 1.75 \cdot 10^{-09} \cdot \left(\frac{87600}{2} + 8\right)$$

 $PFD = 1,58 \cdot 10^{-6}$

$$\mathsf{PFH} = 6 \cdot \left((1 - 0.01) \cdot 2.33 \cdot 10^{-7} + (1 - 0.02) \cdot 1.75 \cdot 10^{-9} \right) \cdot (1 - 0.02) \cdot 1.75 \cdot 10^{-9} \cdot 334.16$$

 $+0.02 \cdot 1.75 \cdot 10^{-9}$

 $PFH = 3.58 \cdot 10^{-11}$

Für den Sicherheits-Loop werden die PFD- und PFH-Werte durch Aufsummieren der Einzelwerte ermittelt.

Modul	F 6217	F-IOP 01	F-CPU 01	F 3330	Loop
Architektur	2003	2003	1002	2002	
λ_{S} / h^{-1}	3,58E-07	8,29E-07	6,94E-07	1,66E-07	
λ_D / h^{-1}	2,35E-07	7,48E-07	6,53E-07	1,25E-07	
λ_{DD} / h^{-1}	2,33E-07	7,44E-07	6,50E-07	1,23E-07	
λ_{DU} / h^{-1}	1,75E-09	4,00E-09	3,35E-09	1,25E-09	
SFF	99,71%	99,75%	99,75%	99,57%	
PFD	1,58E-06	3,69E-06	3,02E-06	6,86E-05	7,68E-05
PFH / h ⁻¹	3,58E-11	8,42E-11	6,80E-11	1,54E-09	1,72E-09

Seite 22 von 24 HI 803 232 D Rev. 1.01

Anhang

Tabe	IIAN	VACET		hnı	c
Iave		V CI 2	- CI C		э

Tabelle 1:	Allgemeine Informationen (IEC 61508)	5
Tabelle 2:	Annahmen zur Berechnung (IEC 61508)	5
Tabelle 3:	Wiederholungsprüfung mit T ₁ = 1 Jahr (Ruhestromprinzip)	6
Tabelle 4:	PFD- und PFH-Werte bei verschiedenen Proof Test Intervallen (Ruhestromprinzip)	6
Tabelle 5:	Wiederholungsprüfung mit T ₁ = 1 Jahr (Arbeitsstromprinzip)	7
Tabelle 6:	PFD- und PFH-Werte bei verschiedenen Proof Test Intervallen (Arbeitsstromprinzip)	8
Tabelle 7:	Allgemeine Informationen (EN ISO 13849)	9
Tabelle 8:	Annahmen zur Berechnung (EN ISO 13849)	9
Tabelle 9:	Functional Safety Data der HIQuad X Module (EN ISO 13849)	10

HI 803 232 D Rev. 1.01 Seite 23 von 24

HANDBUCH

Functional Safety Data

HI 803 232 D

Für weitere Informationen kontaktieren Sie:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Telefon +49 6202 709-0 Fax +49 6202 709-107 E-Mail info@hima.com

Erfahren Sie online mehr über HIMA Lösungen:

