

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-060272

(43)Date of publication of application: 03.03.1998

(51)Int.CI.

CO8L 79/00 CO8L101/08 C09D179/00 C09D201/00 C09J179/00 C09J201/00 CO8G 18/02 CO8G 18/79

(21)Application number: 08-234713

(22)Date of filing:

16.08.1996

(71)Applicant:

NIPPON POLYURETHANE IND CO LTD

(72)Inventor:

YAMAZAKI SUMIICHI KIMURA NAOKO **HAMA SHINJIRO KONISHI SHIN**

(54) POLYCARBODIMIDE CURING AGENT COMPOSITION FOR CARBOXYL GROUP-CONTAINING RESIN AND ADHESIVE AND COATING MATERIAL USING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a curing agent composition, comprising a carbodiimidebased compound, containing plural carbodiimide groups and polyethylene glycol units bonded through a urethane linkage to the carbodiimide units, capable of curing adhesives or coating materials and excellent in solvent and heat resistances and durability.

SOLUTION: This curing agent composition comprises a carbodiimide based compound, having two or more carbodiimide groups in one molecule and polyethylene glycol units bonded through a urethane linkage to the carbodiimide units as represented by the formula [R is a residue after removing isocyanate groups from an organic diisocyanate; (m) is ≥1; (n) is ≥1] and has preferably 0.01-10.0 mmol/g carboxyl group content. The composition is useful in curing resins for adhesives and coating materials.

LEGAL STATUS

[Date of request for examination]

28.02.2002

[Date of sending the examiner's decision of rejection]

28.06.2004

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-60272

(43)公開日 平成10年(1998) 3月3日

(51) Int.Cl.°	識別記号	庁内整理番号	FI				技術表示箇所
CO8L 79/00	LQZ		C08L 7	9/00		LQZ	
101/08	LTA		10	1/08		LTA	
C 0 9 D 179/00	PLT		C09D 17	9/00		PLT	
201/00	PDC		20	1/00		PDC	
CO9J 179/00	JGC		C09J 17	9/00		J G C	
		客查請求	未請求 請求項	質の数 3	FD	(全 10 頁)	最終頁に続く
(21)出願番号	特顯平8-234713		(71)出顧人	0002301	35		
				日本ポリ	リウレ:	タン工業株式	会社
(22)出顧日	平成8年(1996)8月	16日		東京都洋	他区虎.	ノ門1丁目2月	番8号
•			(72)発明者	山崎	中的		•
		·		神奈川リ	具大和	市下鶴間461	
			(72)発明者	林村	官子		
				神奈川県	具 横 浜	市戸塚区深谷	172 5
		• •	(72)発明者	16 伸	二郎		
				神奈川リ	具藤沢1	市みその台6	- 9
			(72)発明者	小西 🖟	申		
			,	神奈川以	具藤沢1	市遠藤1893-	8
			1				

(54) 【発明の名称】 カルポキシル基含有樹脂用ポリカルポジイミド硬化剤組成物、これを用いた接着剤及び強料

(57)【要約】

【課題】 カルボキシル基を含有している水系樹脂や有機溶剤系樹脂に、耐溶剤性、耐薬品性、耐水性、耐候性、耐熱性、接着性等を付与させる硬化剤組成物及び該硬化剤を用いた接着剤、塗料を提供する。

【解決手段】 1分子中にカルボジイミド基を2個以上含有し、かつ、ポリエチレングリコールユニットとカルボジイミドユニットとは、ウレタン結合を介するポリカルボジイミド化合物を含有することを特徴とする。

【特許請求の範囲】

【請求項1】 1分子中にカルボジイミド基を2個以上 含有し、かつ、ポリエチレングリコールユニットとカル ボジイミドユニットが、下記の式(1)のようにウレタ* *ン結合を介するポリカルボジイミド系化合物を含有する ことを特徴とするカルボキシル基含有樹脂用ポリカルボ ジイミド硬化剤組成物。

(化1)

$$\left\{ N = C = N - R \right\}_{m}^{N + COO} \left\{ C + C \right\}_{n}^{N} \cdots (1)$$

(R:有機ジイソシアネートからイソシアネート基を除いた残基) (m≥1 n≥1)

【請求項2】 カルボキシル基含有量が0.01~1 0.0mmol/gである接着剤用樹脂を請求項1記載 のカルボキシル基含有樹脂用ポリカルボジイミド硬化剤 組成物で硬化させることを特徴とする接着剤。

【請求項3】 カルボキシル基含有量が0.01~1 0.0mmol/gである塗料用樹脂を請求項1記載のカルボキシル基含有樹脂用ポリカルボシイミド硬化剤組成物で硬化させることを特徴とする塗料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、1分子中にカルボジイミド基を2個以上含有し、かつ、ポリエチレングリコールユニットとカルボジイミドユニットが、ウレタン基結合を介することを特徴とするカルボキシル基含有樹脂用ポリカルボジイミド硬化剤組成物及びカルボキシル基を含有している接着剤や塗料用樹脂を前述の硬化剤で硬化させる接着剤及び塗料に関するものである。

[0002]

[0003]

【従来の技術】近年、塗料、接着剤、コーティング剤等の分野では、環境汚染の少ない水系樹脂が採用され始めている。一方、技術的な問題や経済上の理由等から有機溶剤系樹脂も、広く使用されている。一般的には、水系樹脂又は溶剤系樹脂単独では、耐溶剤性、耐薬品性、耐水性、耐候性、耐熱性、接着性等が不十分であるため、硬化剤を用いて諸物性を向上させる手段が広く用いられている。このような樹脂の硬化剤として、特開昭63-264128号公報に開示されている表面活性ポリカルボジイミド及びそれらのエマルジョンがある。また、特開昭61-291613号公報に開示されているポリイソシアネート組成物及び水性接着剤組成物がある。

【発明が解決しようとする問題点】しかしながら、特開昭63-264128号公報記載のポリカルボジイミド化合物は、カルボジイミド基と反応させて水分散させる

ための親水性基を導入しているために硬化効率が悪くなる。このため、十分なカルボジイミド基量を得るためには、硬化剤の分子量を大きくせざるを得ないため、粘度が大きくなり、水分散工程等の作業性に難がある。また、特開昭61-291613号公報記載のボリイソシアネート組成物は水分散可能であるが、この状態での長期保存が不可能である。このように、従来の硬化剤には、求められる性能を全て満たした水系樹脂と溶剤系樹100種化剤はなく、タイプ別に硬化剤を用いなければならなかった。

[0004]

【問題点を解決するための手段】本発明者らは、とのような問題点を解決するために鋭意検討した結果、1分子中に2個以上のカルボジイミド基を含有し、かつ、ボリエチレングリコールユニットとカルボジイミドスニットがウレタン基結合を介するボリカルボジイミド系化合物を含有することを特徴とするカルボキシル基含有樹脂用ボリカルボジイミド硬化剤組成物が、カルボキシル基を含有している水系樹脂及び溶剤系樹脂の両方の硬化剤となることを見いだし、また、カルボキシル基を含有している接着剤や塗料用樹脂を前述の硬化剤組成物で反応させる接着剤や塗料が、諸物性を満たしていることを見いだし、本発明を完成するに至った。

ある。
(1) 1分子中にカルボジイミド基を2個以上含有し、かつ、ポリエチレングリコールユニットとカルボジイミドユニットが、下記の式(1)のようにウレタン結合を介するポリカルボジイミド系化合物を含有することを特徴とするカルボキシル基含有樹脂用ポリカルボジイミド

【0005】すなわち、本発明は次の(1)~(3)で

硬化剤組成物。 【0006】

【化2】

$$\frac{3}{\left\{N=C=N-R\right\}_{m}^{N+COO}\left\{CH_{2}O\right\}_{n}^{\cdots}}$$
 (1)

(R:有機ジイソシアネートからイソシアネート基を除いた残基) $(m \ge 1 \quad n \ge 1)$

【0007】(2)カルボキシル基含有量が0.01~ *10.0mmol/gである接着剤用樹脂を前記(1)のカルボキシル基含有樹脂用ポリカルボジイミド硬化剤 10組成物で硬化させることを特徴とする接着剤。

[0008](3)カルボキシル基含有量が0.01~10.0mmol/gである塗料樹脂を前記(1)のカルボキシル基含有樹脂用ポリカルボジイミド硬化剤組成物で硬化させることを特徴とする塗料。

[0009]

【発明の実施の形態】本発明のカルボキシル基含有樹脂 用ポリカルボジイミド硬化剤組成物は、有機ジイソシア ネートと官能基数1及び/又は2の水酸基含有ポリエチ レングリコールを主原料とする。また、必要により、有 20 機モノイソシアネートや、他のポリオールやグリコー ル、モノアルコール及び/又はモノアミンを使用するこ とができる。

【0010】本発明のカルボキシル基含有樹脂用ポリカルボジイミド硬化剤組成物の製造方法は、公知の方法が用いられる。すなわち、水酸基とイソシアネート基とのウレタン化反応とイソシアネート基のカルボジイミド化反応から得られる。ウレタン化反応とカルボジイミド化反応の順序は、そのときに応じて適宜選択される。ウレ*

* タン化反応時は、必要に応じてトリエチルアミン等のア ミン系触媒や、ジブチル錫ジラウレート等の有機金属系 触媒を用いても良い。ウレタン化反応の進行は、赤外線 分光分析の2270cm⁻¹付近のイソシアネート基のピ ークの減少と、1730cm-1付近のウレタン基のカル ボニルのビークの増大で確認できる。また、イソシアネ ート基の定量分析でも確認できる。カルボジミド化反応 は、トリメチルホスフェート、トリエチルホスフェー ト、トリプチルホスフェート、1-フェニル-3-メチ ルー3-ホスホレン-1-オキサイド、リン酸ジブチル 等公知のカルボジイミド触媒を用いたイソシアネート基 の脱二酸化炭素縮合反応である。カルボジイミド化反応 の進行は、赤外線吸光分析の2270 c m-1付近ののイ ソシアネート基のピークの減少と、2130 cm-1付近 のカルボジイミド基のピークの増大で確認できる。ま た、イソシアネート基やカルボジイミド基の定量分析で も確認できる。このような製造方法により、下記の式 (1) のように、ポリエチレングリコールユニットとカ ルボジイミドユニットが、ウレタン結合を介することに なる。

(R:有機ジイソシアネートからイソシアネート基を除いた残基) (m≥1 n≥1)

【0012】本発明のカルボキシル基含有樹脂用ポリカルボジィミド硬化剤組成物の主原料である有機ジイソシアネートとしては、2、4ートリレンジイソシアネート、2、6ートリレンジイソシアネート、4、4′ージ 40フェニルメタンジイソシアネート、2、2′ージフェニルメタンジイソシアネート、2、2′ージフェニルメタンジイソシアネート、1、5ーナフチレンジイソシアネート、1、4ーナフチレンジイソシアネート、mーフェニレンジイソシアネート、mーキシリレンジイソシアネート、のーキシリレンジイソシアネート、mーキシリレンジイソシアネート、カーキンリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、チトラメチルキシリレンジイソシアネート、4、4′ージフェニルエーテルジイソシアネート、2ーニトロジフェニルー4、4′ージイソシアネート、2、2′50

ージフェニルブロパン-4, 4′ージイソシアネート、3, 3′ージメチルジフェニルメタン-4, 4′ージイソシアネート、4, 4′ージフェニルプロパンジイソシ40 アネート、3, 3′ージメトキシジフェニル-4, 4′ージイソシアネート等の芳香族ジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、インホロンジイソシアネート、2ーメチルー1,5ーペンタンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加トリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネート、水素添加テトラメチルキシリレン50 ジイソシアネート、シクロヘキシルジイソシアネート等

の脂環族ジイソシアネートや、これらの2種類以上の混 合物がある。本発明で好ましい有機ジイソシアネート は、得られるポリカルボジイミド硬化剤組成物の粘度等 の観点からイソホロンジイソシアネート及び2、4-ト リレンジイソシアネート、2、6-トリレンジイソシア ネートであり、最も好ましいのは、イソホロンジイソシ アネートである。

【0013】また、本発明のカルボキシル基含有樹脂用 ポリカルボジイミド硬化剤組成物の主原料の一つである 水酸基含有ポリエチレングリコールは、エチレンオキサ 10 イドの開環重合から得られる。このときの開始剤として は、モノアルコール、水やエチレングリコールが用いら れる。開始剤がモノアルコールであれば、官能基数1の ポリエチレングリコールが得られ、水やエチレングリコ ール等のグリコールであれば、官能基数が2のポリエチ レングリコールが得られる。なお、このポリエチレング リコールは、ポリカルボジイミド硬化剤組成物に水分散 性を付与するためのものである。 官能基数が 1 未満の場 合は、ポリカルボジイミド分子中にポリエチレングリコ ールユニットが導入されないため、ポリカルボジイミド 20 硬化剤組成物が得られない。官能基数が2を越える場合 は、製造時にゲル化が起こり、目的とするカルボキシル 基含有樹脂用ポリカルボジイミド硬化剤組成物が得られ

【0014】なお、本発明に用いられるポリエチレング リコールに代えて、エチレンオキサイドとプロピレンオ キサイド等他のアルキレンオキサイドとの共重合物で、 エチレンオキサイドが70モル%以上、好ましくは80 モル%以上含有しているものを用いることができる。

【0015】本発明に用いられるポリエチレングリコー ルの数平均分子量は200~5,000、好ましくは4 00~2,000である。分子量が200未満の場合 は、ポリカルボジイミド硬化剤組成物の親水性が不足す るため、水分散せず、また、得られる硬化物の柔軟性に 欠ける。分子量が5,000を越える場合は、ポリカル ボジイミドの分子量が不必要に大きくなるため粘度が大 きくなりすぎて、作業性が劣る。

【0016】本発明のカルボキシル基含有樹脂用ポリカ

ルボジイミド硬化剤組成物には、カルボジイミド基導入 量、分子量、親水性や親油性の調節、接着性や密着性 等、必要に応じて、有機モノイソシアネート、ポリエチ レングリコール以外のポリオール、低分子グリコール、 モノアルコール、モノアミンを用いることができる。 【0017】必要に応じて使用できる有機モノイソシア ネートとしては、フェニルイソシアネート、シクロヘキ シルイソシアネート、ブチルイソシアネート等がある。 【0018】必要に応じて使用できるその他のポリオー ルとしては、ポリエステル系、ポリラクトン系、ポリエ ーテル系、ポリカーボネート系、ポリオレフィン系、及

単独または2種類以上の混合物でも良い。接着剤用硬化 剤としては、被着体がポリエステルやナイロン等の極性 物質では、ポリエステル系のポリオール、ポリエチレン 等のような非極性物質では、ポリオレフィン系ポリオー ルが好ましい。また、塗料用硬化剤としては、ポリエー テル系ポリオールが好ましい。

【0019】必要に応じて使用できる低分子グリコール としては、エチレングリコール、1,2-ブタンジオー ル、1、3-プタンジオール、1、4-プタンジオー ル、1、5-ペンタンジオール、3-メチル-1、5-ペンタンジオール、1,6-ヘキサンジオール、ネオペ ンチルグリコール、3、3-ジメチロールへフタン等が ある。このうち好ましいのは、1,2-ブタンジオー ル、1、3-ブタンジオール、3-メチル-1、5-ベ ンタンジオール、ネオペンチルグリコール、3,3-ジ メチロールヘプタン等の側鎖をもつ低分子グリコールで

【0020】必要に応じて使用できるモノアルコールと しては、メタノール、エタノール、n-プロパノール、 i-プロパノール、n-ブタノール、sec-ブタノー ル、ter‐ブタノール等があり、モノアミンとして は、エチルアミン、プチルアミン、ジエチルアミン、ジ ブチルアミン、アニリン、ジフェニルアミン等がある。 【0021】本発明のポリカルポジイミド硬化剤組成物 の数平均分子量は、500~10,000であり、好ま しくは、1,000~7,000である。数平均分子量 が500未満の場合は、分子中に十分なカルボジイミド 基が存在せず、硬化剤としての性能が不十分である。ま た、数平均分子量が10.000を越える場合は、ポリ カルボジイミド化合物が、溶剤や水に溶解もしくは分散 が困難になる。また、主剤用樹脂との相溶性が悪くなる といった現象が起き易くなる。

【0022】本発明のポリカルボジイミド硬化剤組成物 を用いる接着剤及び塗料を得るための硬化条件は、主剤 (樹脂)と本発明の硬化剤組成物を配合、塗布、溶媒飛 散、接着剤の場合は貼り合わせ、1~5分程度室温放置 するだけで十分な物性をもつ接着剤や塗料が得られる。 アフターキュアさせる場合は、室温で数時間~数日静置 するだけでよい。硬化速度が速すぎる場合は、カルボキ シル基含有樹脂に塩基性物質、例えば、アミンやアルカ リ、具体的にはトリエチルアミンや水酸化ナトリウム等 を添加することで、反応速度を調整することができる。 【0023】本発明の接着剤、塗料を形成する主剤の樹 脂は、カルボキシル基を含有していれば、その種類を問 わない。樹脂のカルボキシル基の導入量は、0.01~ 10.0mmol/g、好ましくは0.03~8.0m mol/gであれば、十分硬化できる。カルボキシル基 の導入量が0.01mmo1/g未満のときは、架橋密 度が小さいために、満足いく物性が得られない。 10m びこれらのコポリオールがある。これらのポリオールは 50 mol/gを越える場合は、主剤/硬化剤との反応

が、"分子間"架橋ではなく、"分子内"架橋の割合が 多くなるため、十分な物性が得られない。

【0024】カルボキシル基を含有している樹脂の数平均分子量は、5,000~100,000、好ましくは、10,000~90,000である。分子量が5,000未満の場合は、良好な物性が得られにくい。100,000を越える場合は、主剤と硬化剤との配合に手間がかかる等、作業性が劣る。

【0025】カルボキシル基を含有している樹脂としては、アクリルエマルジョン、ポリウレタンエマルジョン、カルボン酸含有磁気テーブ用樹脂、末端カルボキシル化のポリオレフィンやポリジエンなどがある。具体的な商品として、ニカライト(日本カーバイド工業製)、アロニックス(東亜合成化学工業製)、アイゼラックス(保土谷化学工業製)等がある。

【0026】本発明のカルボキシル基含有樹脂用ボリカルボジイミド硬化剤組成物をカルボキシル基を含有している接着剤や塗料用樹脂に添加する方法としては、主剤に硬化剤組成物を添加して混練する、もしくは主剤の水溶液、水分散液、有機溶剤の溶液または分散液に、硬化 20 剤組成物の水溶液、水分散液、溶剤の溶液や分散液を添加、撹拌する等の方法がある。

【0027】本発明のカルボキシル基含有樹脂用ポリカルボジイミド硬化剤組成物の水分散方法としては、硬化剤を水中に、もしくは水を硬化剤に投入して強制的に攪拌、分散させる方法や、いったんアセトン等の有機溶剤に溶解させた後、水を投入、脱溶剤するといった方法がある。

【0028】本発明のカルボキシル基含有樹脂用ポリカルボジイミド硬化剤組成物を有機溶剤の溶液として用いるときの使用できる有機溶剤としては、トルエン、キシレン等の芳香族系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、ジメチルエーテル、ジエチルエーテル、1、4ージオキサン、テトラヒドロフラン等のエーテル系溶剤、メタノール、エタノール、イソプロパノール等のアルコール系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、Nーメチルピロリドン、ピリジン等の単品又は2種類以上の混合溶剤が使用可能である。

【0029】カルボキシル基を含有している主剤に得られたカルボキシル基含有樹脂用ポリカルボジイミド系硬化剤を添加し、カルボキシル基とカルボジイミド基の架橋反応により、十分な耐久性を持つ接着剤や塗料が得られる。このときの硬化剤組成物の添加量は、主剤100部に対して1~100部、好ましくは2~30部である

【0030】硬化剤添加量が1部未満の場合は、架橋密 のビーク 度が小さすぎるために十分な耐久性が得られない。ま は1.0 た 100部を越える場合は、架橋反応に関与しなかっ 50 あった。

た硬化剤が存在することになり、機械的物性を低下させる。

[0031]

【実施例】以下に実施例により本発明を説明するが、本 発明はこれら実施例に限定されるものではない。なお、 例中における部とは重量部、%は重量%をそれぞれ示 す。

【0032】実施例1

撹拌装置、温度計、遵流冷却器および窒素ガス導入管を備えた4つ□フラスコに数平均分子量700の片末端水酸基含有メトキシボリエチレングリコールを599.8 部、イソホロンジイソシアネートを475.6部仕込み、窒素気流下、85℃で3時間反応させた。次いで、1ーフェニルー3ーメチルー3ーホスホレンー1ーオキサイドを1.0部添加し、窒素気流下にて170℃で20時間反応させてボリカルボジイミド硬化剤A-1を得た。A-1を赤外線吸光分析したところ、2270cmコのイソシアネート基のピークが確認された。A-1のカルボジイミド含有量は1.71mmo1/gで、外観は、褐色、ベースト状であった。

【0033】実施例2

実施例1と同様な合成装置に、数平均分子量700の片末端水酸基含有メトキシポリエチレングリコールを668.6部、2.4ートリレンジイソシアネートを415.5部仕込み、窒素気流下、85℃で3時間反応させた。次いで、1-フェニル-3-メチル-3-ホスホレン-1-オキサイドを0.1部添加し、窒素気流下にて170℃で10時間反応させてポリカルボジイミド硬化剤A-2を得た。A-2を赤外線吸光分析したところ、2270cm⁻¹のイソシアネート基のピークはなく、2130cm⁻¹のカルボジイミド基のピークが確認された。A-2のカルボジイミド含有量は1.91mmo1/gで、外観は、褐色、ベースト状であった。

[0034] 実施例3

実施例1と同様な合成装置に、イソホロンジイソシアネートを240.3部とフェニルイソシアネートを84.1部を仕込み、1-フェニル-3-メチル-3-ホスホレン-1-オキサイドを1.0部添加し、窒素気流下に40で170℃で20時間カルボジイミド化反応させた。カルボジイミド化反応後、85℃まで冷却し、数平均分子量2,000の両末端水酸基含有ポリエチレングリコールを721.5部とジブチルチンジラウレートを0.3部仕込み、窒素気流下にて85℃で3時間反応させてポリカルボジイミド硬化剤A-3を得た。A-3を赤外線吸光分析したところ、2270cm⁻¹のイソシアネート基のビークはなく、2130cm⁻¹のカルボジイミド含有量は1.08mmo1/gで、外観は褐色、ベースト状で

【0035】実施例4

実施例1と同様な合成装置に、数平均分子量2.000の両未端水酸基含有ポリエチレングリコールを621.1部、メタノールを19.9部、イソホロンジイソシアネートを413.7部を仕込み、窒素気流下、50℃で6時間反応させた。次いで、カルボジイミド化触媒である1-フェニル-3-メチル-3-ホスホレン-1-オキサイドを1.0部添加し、窒素気流下にて170℃で20時間反応させてポリカルボジイミド硬化剤A-4を得た。A-4を赤外線吸光分析したところ、2270c10m⁻¹のオソシアネート基のピークはなく、2130cm⁻¹のカルボジイミド基のピークが確認された。A-4のカルボジイミド含有量は1.24mmo1/gで、外観は褐色、ペースト状であった。

【0036】実施例5

実施例1と同様な合成装置に、数平均分子量1,000の両末端水酸基含有ポリ(オキシテトラメチレン)グリコールを334.9部、2-エチルヘキサノールを43.5部、数平均分子量400の片末端水酸基含有エトキシポリエチレングリコールを234.4部、イソホロ20ンジイソシアネートを446.1部を仕込み、窒素気流下、80℃で3時間反応させた。次いで、カルボジイミド化触媒である1-フェニル-3-メチル-3-ホスホレン-1-オキサイドを1.0部添加し、窒素気流下にて170℃で20時間反応させてポリカルボジイミド硬化剤A-5を得た。A-5を赤外線吸光分析したところ、2270cm⁻¹のイソシアネート基のピークはなく、2130cm⁻¹のカルボジイミド基のピークが確認された。A-5のカルボジイミド含有量は1.34mmo1/gで、外観は褐色、ペースト状であった。30

【0037】実施例6

実施例1と同様な合成装置に、片末端水酸基含有ポリ(エチレンーブチレン)(米国シェル製:商品名 L-1203)を710.0部、数平均分子量700の片末端水酸基含有メトキシポリエチレングリコールを124.2部、イソホロンジイソシアネートを197.0部を仕込み、窒素気流下、80℃で3時間反応させた。次いで、カルボジイミド化触媒である1ーフェニルー3ーメチルー3ーホスホレンー1ーオキサイドを1.0部添加し、窒素気流下にて170℃で20時間反応させてポリカルボジイミド硬化剤A-6を得た。A-6を赤外線吸光分析したところ、2270cm⁻¹のイソシアネート基のピークはなく、2130cm⁻¹のカルボジイミド基のピークが確認された。A-6のカルボジイミド含有量は0.71mmol/gで、外観は褐色、ベースト状であった。

【0038】実施例7

実施例1と同様な合成装置に、両末端水酸基含有ポリ

(エチレンーブチレン) (米国シェル製: 商品名 L-203)を647.9部、数平均分子量400の片末端水酸基含有メトキシポリエチレングリコールを144.0部、イソホロンジイソシアネートを239.7部を仕込み、窒素気流下、80℃で3時間反応させた。次いで、カルボジイミド化触媒である1-フェニルー3ーメチルー3ーホスホレンー1ーオキサイドを1.0部添加し、窒素気流下にて170℃で20時間反応させてポリカルボジイミド硬化剤A-7を得た。A-7を赤外線吸光分析したところ、2270cm⁻¹のイソシアネート基のピークはなく、2130cm⁻¹のカルボジイミド基のピークが確認された。A-7のカルボジイミド含有量は0.72mmo1/gで、外観は褐色、ペースト状であった。

【0039】実施例8

実施例1と同様な合成装置に、数平均分子量700の片末端水酸基含有メトキシポリエチレングリコールを551.6部、ジメチロールへブタンを63.0部イソホロンジイソシアネートを239.7部を仕込み、窒素気流下、80℃で3時間反応させた。次いで、カルボジイミド化触媒である1-フェニル-3-メチル-3-ホスホレン-1-オキサイドを1.0部添加し、窒素気流下にて170℃で20時間反応させてポリカルボジイミド硬化剤A-8を得た。A-8を赤外線吸光分析したところ、2270cm⁻¹のイソシアネート基のピークはなく、2130cm⁻¹のカルボジイミド基のピークが確認された。A-8のカルボジイミド含有量は1.18mmo1/gで、外観は褐色、ペースト状であった。

【0040】比較例1

30 実施例1と同様な合成装置に、イソホロンジイソシアネ ートを233... 2部とフェニルイソシアネートを83.. 3部、N-メチルピロリドンを500部を仕込み、均一 に攪拌した。その後、1-フェニル-3-メチル-3-ホスホレン-1-オキサイドを0.5部添加し、窒素気 流下にて170℃で40時間カルボジイミド化反応させ た。カルボジイミド化反応後、100℃まで冷却し、数 平均分子量7000の片末端水酸基含有メトキシポリエ チレングリコールを245.1部部仕込み、窒素気流下 にて100℃で5時間反応させてポリカルボジイミド硬 化剤溶液B-1を得た。B-1を赤外線吸光分析したと ころ、2270cm-1のイソシアネート基のピークはな く、2130cm-1のカルボジイミド基のピークが確認 された。B-1のカルボジイミド含有量は1.21mm o 1/gで、外観は褐色液体であった。実施例1~8、 比較例1で得られたポリカルボジイミド硬化剤を表1、 2に示す。

[0041]

【表1】

. (

12

	実施例1	実施例 2	実施例3	実施例4
ポリエチレングリコール(部) Me-PEG-700 PEG-2000	599. 8	668. 6	721. 5	621. 1
カルボジイミド基្阿鰲剤(部) メタノール				19. 9
有機イソシアネート(部) IPDI 2, 6-TDI PI	475. 6	415. 5	240. 3 85. 9	413. 7
カルポジイミド化触媒(部) PMPO	1. 0	0. 1	1. 0	l. 0
脱炭酸ガス(部)	Δ75. 4	Δ84. 1	Δ47. 7	Δ54. 7
硬化剤組成物	A-1	A-2	A-3	A-4
カルボジイミ ド基含 有量 (mmol/g)	1. 71	1. 91	1.08	1. 24
外観	褐色 ペースト	福色ペースト	褐色 ペースト	褐色ペースト

[0042]

* *【表2】

		7 1242	- 4		
	実施例 5	実施例 6	実施例7	実施例8	比較例
ポリエチレングリコール(部) EtーPEG-700 Me-PEG-700 Me-PEG-400	234. 4	124. 2	144. 0	551.6	245.1
カルボジイミド基調整剤(部) 2-エチルヘキサノール PTMEG-1000 L-1203 L-2203 DMH	43. 5 334. 9	710. 0	647. 9	63. 0	
有機イソシアネート(部) IPDI PI	446. 1	197. 0	239. 7	437.4	233. 2 83. 3
カルボジイミド化触媒(部) PMPO	1.0	1. 0	1.0	1. 0	0.5
溶剤(部) N-メチルピロリドン					500
脱炭酸ガス(部)	Δ58. 9	Δ31. 2	Δ31. 6	Δ52. 0	Δ61.6
硬化剂組成物	A-5	A-6	A-7	A-8	B-1
カルボジイミド基含有量 (mmol/g)	1. 34	0. 71	0. 72	1. 18	1. 21
外键	褐色 ペースト	褐色 ペースト	褐色 ペースト	褐色 ペースト	褐色 液体

【0043】表1、表2において、

40

Me-PEG-700:数平均分子量700、片末端水酸基含有のメトキシポ

リエチレングリコール

Et-PEG-700:数平均分子量700、片末端水酸基含有のエトキシポ

リエチレングリコール

Me-PEG-400:数平均分子量400、片末端水酸基含有のエトキシポ

リエチレングリコール

PEG-2000 : 数平均分子量2000の両末端水酸基含有のポリエチ

レングリコール

PTMEG-1000:数平均分子量1000の両末端水酸基含有のポリ(オ

キシテトラメチレン) グリコール

L-1203

: 数平均分子量4000、片末端水酸基含有のポリ(エ

チレンーブチレン)

L - 2203

: 数平均分子量3600、片末端水酸基含有のポリ(エ

チレン-ブチレン)

DMH

: ジメチロールヘプタン

IPDI

: イソホロンジイソシアネート

2, 6-TDI

: 2, 6-トリレンジイソシアネート

РI

: フェニルイソシアネート

PMPO

: 1-フェニル-3-メチル-3-ホスホレン-1-オ

キサイド

【0044】〔硬化剂水分散液経時安定性評価法〕A-1~8を100部に対して、アセトン50部を加えて溶 解させた。このポリカルボジイミド硬化剤のアセトン溶 液150部に対して、水400部を加えて転相させた。 その後、エバポレートにて、アセトンを除いて、硬化剤 の水分散液を得た。このポリカルボジイミド硬化剤の水 分散液を25℃にて経時した。経時安定性は、外観とカ ルボジイミド基含有量を追跡した。また、比較例とし * * て、水分散性のポリイソシアネート(商品名:アクアネ ート-200、日本ポリウレタン工業製)100部を、 水400部分散させたものも同様に経時安定性をみた。 比較例は、外観とイソシアネート基含有量を追跡した。 表3に結果を示す。

[0045]

【表3】

			分散直後	4時間後	8時間後	1週間後	4週間後	3ヶ月後
寒		外觀	透明	透明	透明	透明	透明	透明
実施例	A-1	NCN量	0. 43	0. 43	0. 43	0. 42	0.41	0. 38
		外観	透明	透明	透明	透明	透明	透明
	A-2	NCN量	0. 48	0. 48	0. 47	0. 42	0. 38	0. 35
	A-3	外観	透明	透明	透明	透明	透明	透明
	N-3	NCN量	0. 27	0. 27	0. 27	0. 26	0. 25	0. 24
		外観	透明	透明	透明	透明	透明	透明
	A-4	NCN量	0. 31	0. 31	0. 31	0. 30	0. 29	0. 26
	A-5	外観	分散状態	分散状態	分散状態	分散状態	分散状態	分散状態
	N-3	NCN量	0. 34	0. 34	0. 33	0. 33	0. 32	0_ 30
	A-6	外観	分散状態	分散状態	分散状態	分散状態	分散状態	分散状態
	A-0	NCN量	0. 18	0. 18	0. 18	0. 18	0.18	0. 17
	A-7	外観	分散状態	分散状態	分散状態	分散状態	分散状態	分散状態
	N-1	NCN量	0. 18	0. 18	0.18	0.18	0. 18	0. 17
	А-8	外観	透明	透明	透明	透明	透明	透明
		NCN量	0. 25	0. 25	0. 25	0. 24	0. 23	0. 23
比較例	AQ-	外観	分散状態	分散状態	分散状態			
	200	NCO最	12	12	0			

【0048】表3において、

AQ-200: アクアネート-200

NCN量

:カルボジイミド基含有量(mmol/g)

NCO量

: イソシアネート基含有量(%)

【0047】 (硬化剤の調整) 実施例1~8で得られた

A-1~8をそれぞれ、アセトンに溶解させ、(固形分

【0048】応用実施例1

=50%に調整)、このポリカルボジイミド/アセトン 溶液を硬化剤とした。これをそれぞれCA-1~8とす カルボキシル基含有アクリル樹脂(商品名:ニカライト HA-401、日本カーバイド工業製)をメチルエチル

る。比較例1で得られたB-1はそのまま硬化剤として 50 ケトンに溶解させて、固形分50%の溶液にした。との

アクリル樹脂溶液100部にCA-1を10部添加し、よく混合した。この樹脂溶液を離型紙上にキャストし、60℃にて30分のち120℃1時間キュアして、硬化物を得た。

【0049】応用実施例2~8

応用実施例1と同様にして、CA-1の代わりにCA-2~8を用いて硬化物を得た。

【0050】応用比較例1、2

応用実施例1と同様にして、CA-1の代わりにB-1を用いたものと、硬化剤を添加していない硬化物を得た。

【0051】応用実施例9

カルボキシル基含有水分散型ポリウレタン溶液(商品名:アイゼラックスS-1060、保土谷化学工業製、固形分:50%)を100部に対して、CA-1を10部添加し、よく混合した。これらの樹脂溶液をポリエチレンコート紙上にキャストし、60℃にて30分の5100℃にて1時間キュアして、硬化物を得た。

【0052】応用実施例10~16

応用実施例9と同様にして、CA-1の代わりにCA- 20 2~8を用いて硬化物を得た。

[0053]応用比較例3、4

応用実施例9と同様にして、CA-1の代わりにB-1を用いたものと、硬化剤を添加していない硬化物を得か

[0054] [硬化物の物性評価] 硬化物の物性評価は、軟化温度測定、ゲル分率測定にて評価した。

1. 軟化温度測定

得られた硬化物をJ I S K -6 3 O 1 の 2 号ダンベル チルエチルケトン溶液(固形分 = 5 O %) 1 O O 部に対 の形に打ち抜き、5 O O g 重/ C / C / の荷重にて、昇温 30 して、/ C / A -1 を 1 O 部配合し、5 分以内にコロナ処理 速度 5 C / 分にて軟化温度を測定した。軟化温度は、伸 ポリエチレンテレフタレート(/ P E / T / フィルムの処理 びの変化が急に変わるところとした。 面に、塗布量 3 g / / m² (/ ドライ) になるように塗布し

【0055】2. ゲル分率測定

フィルムにしたCM-1~16、RM-1~4を細かくカットし、それぞれをあらかじめ秤量した円筒濾紙に入れて秤量する。これををメチルエチルケトンに漬け込み、メチルエチルケトンの沸点(80℃)にて5時間煮沸し、その後メチルエチルケトンの蒸気にて1時間リンスする。リンス後、乾燥、秤量してゲル分率を求めた。軟化温度測定、ゲル分率測定結果を表4に示す。

[0056]

【表4】

		主剣	四の人ともの	軟化温度	ゲル分率
		土机	硬化剤	(°C)	(%)
	1		C A - 1	145	91
[2		CA-2	190	99
	3		CA-3	170	98
	4	ニカライト	CA-4	165	93
إيرا	5	HA-401	CA-5	170	97
応	6		CA-6	160	90
莊	7		CA-7	153	91
奥	8		CA-8	185	95
~	9		CA-1	178	95
施	10		C A - 2	201	97
6 91	1 1		C A - 3	184	91
ניס	1 2	アイゼラックス	C A - 4	193	94
	1 3	S-1060	CA-5	185	95
	14		CA-6	185	90
	15		C A - 7	160	88
	16		C A — 8	153	91
L.	1	ニカライト	B - 1	173	92
崩	2	HA-401	なし	83	25
応用比較例	3	アイゼラックス	B - 1	86	55
ויס	4	S-1060	なし	75	15
ш				1	

【0057】 [接着試験] ニカライトHA-401のメ チルエチルケトン溶液(固形分=50%)100部に対 ポリエチレンテレフタレート(PET)フィルムの処理 面に、塗布量3g/m²(ドライ)になるように塗布し た。塗布後、80℃にて10秒加温して、接着剤塗布面 同士を貼り合わせ、25°Cにて3日間静置した。その 後、15mm幅にカットして、接着サンブルを得た。同 様にしてCA-2~8を用いた接着サンブルを得た。得 られた接着サンブルは、引張り速度200m/分、18 0 剥離強度にて評価した。また、アイゼラックスS-1060 (固形分=50%) 100部に対してCA-1 を10部配合し、5分以内にコロナ処理PETフィルム の処理面に、塗布量3g/m² (ドライ)になるように 塗布した。塗布後、80℃にて10秒加温して、接着剤 塗布面同士を貼り合わせ、25℃にて3日間静置した。 その後、15mm幅にカットして、接着サンプルを得 た。同様にしてCA-2~8を用いた接着サンプルを得 た。得られた接着サンプルは、引張り速度200m/ 分、180 剥離強度にて評価した。同様にして、比較 例としてのB-1についても評価した。

[0058] [塗料性能試験] ニカライトHA‐401 50 のメチルエチルケトン溶液(固形分=50%)100部

に対して、酸化チタン33部、メチルエチルケトン33 部を配合し、ボールミルにて分散させて、有機溶剤系の 塗料を調整した。同様にアイゼラックスS-1060 (固形分=50%) 100部に対して、酸化チタン33 部、水20部、イソプロピルアルコール13部を配合 し、ボールミルにて分散させて、水系の塗料を調整し た。先に調整した有機溶剤系塗料100部に対して、C A-1を3部配合し、よく混合した。これをアルミ板に ドライで膜厚50μになるように塗布し、80℃にて1 分間加温して塗装サンブルを得た。同様にしてCA-1 10 に代えてCA-2~8を用いた塗装サンブルを得た。先*

*に調整した水系塗料100部に対して、CA-1を3部 配合し、よく混合した。これをアルミ板にドライで膜厚 50 µになるように塗布し、100℃にて1分間加温 し、室温にて3日静置して塗装サンブルを得た。同様に してCA-1に代えてCA-2~8を用いた塗装サンプ ルを得た。同様にして、比較例としてのB-1について も評価した。得られた塗装サンプルを、JIS K-5 400の碁盤目テーブ法にて評価した。接着試験結果、 塗料性能試験結果を表5に示す。

[0059] 【表5】

主剤	硬化剂	剥離試験結果	塗膜評価試験
土和	- NU 1861 LAN	(gf/15mm)	(点)
	C A - 1	フィルム材破	10
	C A - 2	フィルム材破	8
実	C A - 3	フィルム材破	10
大 ニカライト	C A - 4	フィルム材破	10
MA-40:	1 CA-5	フィルム材破	10
ויש	C A - 6	フィルム材破	8
	CA-7	フィルム材破	8
	CA-8	フィルム材破	1 0
	CA-1	フィルム材破	1 0
	CA-2	フィルム材破	10
!	CA-3	フィルム材破	1 0
アイゼラック	スCA-4	フィルム材破	10
S-106	0 CA-5	フィルム材破	10
	CA-6	フィルム材破	8
[CA-7	フィルム材破	8
	C A - 8	フィルム材破	10
此 =カライトEA-401	B-1	1500	6
例 7イセ・ラックスS-1(1200	4.

[0060]

【発明の効果】以上説明した通り、本発明のカルボキシ ル基含有樹脂用ポリカルボジイミド硬化剤は、カルボキ シル基を含有している樹脂用の硬化剤として、溶剤系、 いった性能を主剤に付与させることができた。さらに、 本発明のカルボキシル基含有樹脂用ポリカルボジイミド※

※硬化剤の水分散液の経時安定性は、良好であった。本発 明のカルボキシル基含有樹脂用ポリカルボジイミド硬化 剤は、塗料、接着剤、コーティング剤等、様々な分野に 応用でき、また、硬化させる樹脂が溶剤系、水系である 水系を問わずに硬化させ、耐溶剤性、耐熱性、耐久性と 40 ととを問わないので、硬化剤の在庫の削減が可能になっ た。

フロントページの続き

(51)Int.Cl. ⁶	識別記号	庁内整理番号	FI	技術	表示箇所
C 0 9 J 201/00	JAQ		CO9J 201/00	JAQ	
// C 0 8 G 18/02	NDL		C 0 8 G 18/02	NDL	
18/79	NFK		18/79	NFK	