LÓGICA PARA COMPUTAÇÃO

Dedução Natural

Formas de Argumento

- São padrões abstratos de raciocínio compartilhados por diversos argumentos.
- Observe os três argumentos a seguir:
 - Hoje é segunda-feira ou terça-feira.
 Hoje não é segunda-feira.
 - Portanto, hoje é terça-feira.
 - Rembrandt pintou a Mona Lisa ou Michelangelo a pintou.
 Não foi Rembrandt quem a pintou.
 Portanto, Michelangelo pintou a Mona Lisa.
 - Ele é menor de 18 anos ou ele é jovem. Ele não é menor de 18 anos. Portanto, ele é jovem.
- □ A forma comum a eles é:

Dedução Natural

- Permite provar a validade de certas formas de argumento
- Fornece regras que permitem realizar cálculos sobre proposições
- As regras permitem inferir fórmulas a partir de outras.
- Uma prova constitui-se da aplicação destas regras sobre as premissas (e outras fórmulas inferidas a partir destas) obtendo-se eventualmente a conclusão.

$$P, S \rightarrow Q, P \rightarrow S \vdash Q$$

□ Provar que a forma de argumento é válido:

$$P, S \rightarrow Q, P \rightarrow S \vdash Q$$

□ Prova:

1. P

Ρ

2. $S \rightarrow Q$

Р

3. $P \rightarrow S$

Ρ

•

□ Provar que a forma de argumento é válido:

$$P, S \rightarrow Q, P \rightarrow S \vdash Q$$

□ Prova:

ı. P

Ρ

2. $S \rightarrow Q$

Р

3. $P \rightarrow S$

Ρ

4. S

1,3 MP

•

□ Provar que a forma de argumento é válido:

$$P, S \rightarrow Q, P \rightarrow S \vdash Q$$

□ Prova:

I. P

Ρ

2. $S \rightarrow Q$

Ρ

3. $P \rightarrow S$

Р

4. **S**

1,3 MP

5. **Q**

2,4 MP

Q

□ Provar que a forma de argumento é válido:

$$P, S \rightarrow Q, P \rightarrow S \vdash Q$$

□ Prova:

. P

Ρ

2. $S \rightarrow Q$

Р

3. $P \rightarrow S$

Р

4. S

1,3 MP

5. Q

2,4 MP

Condicional

□ Eliminação do condicional ou Modos Ponens

$$\frac{\phi \to \psi \qquad \phi}{\psi} \qquad MP$$

Eliminação do condicional

S,
$$P \wedge Q$$
, $(P \wedge Q) \rightarrow (S \rightarrow T) \vdash T$

Eliminação do condicional

Provar que a forma de argumento é válido:

S, P
$$\wedge$$
 Q, (P \wedge Q) \rightarrow (S \rightarrow T) \vdash T

□ Prova:

2.
$$P \wedge Q$$

3.
$$(P \land Q) \rightarrow (S \rightarrow T) P$$

4.
$$S \rightarrow T$$

$$\frac{\phi \to \psi \qquad \phi}{\psi} \quad MP$$

Dupla negação

□ Eliminação

Dupla negação - Eliminação e Introdução

$$\sim\sim$$
 (Q \wedge R) $\rightarrow\sim\sim$ S, Q \wedge R \vdash S

Dupla negação - Eliminação e Introdução

□ Provar que a forma de argumento é válido:

$$\sim\sim$$
 (Q \wedge R) $\rightarrow\sim\sim$ S, Q \wedge R \vdash S

□ Prova:

1.
$$\sim\sim(Q \land R) \rightarrow \sim\sim S P$$

- 2. $Q \wedge R$
- 3. ~~(Q ∧ R)
- 4. ~~S
- 5. S

- 2 l~
- 1,3 MP
- 4 E~

Conjunção

□ Eliminação

$$egin{array}{c|c} \phi \wedge \psi & E_1 \wedge \ \hline \phi & \end{array}$$

Introdução

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \quad I \wedge$$

Conjunção - Eliminação e Introdução

$$P \rightarrow (Q \land R), P \vdash P \land Q$$

Conjunção - Eliminação e Introdução

Provar que a forma de argumento é válido:

$$P \rightarrow (Q \land R), P \vdash P \land Q$$

□ Prova:

1.
$$P \rightarrow (Q \land R) P$$

2. P

Ρ

3. $Q \wedge R$

1,2 MP

4. Q

3 E₁∧

5. P ∧ Q

2,4 I∧

$$\frac{\phi \wedge \psi}{\psi}$$
 $E_2 \wedge$

Exercícios

 Prove que as seguintes formas de argumento são válidas:

- \square P \wedge Q \vdash Q \wedge P
- \square (P \wedge Q) \rightarrow (R \wedge S), $\sim \sim$ P, Q \vdash S
- \square P \vdash P \land P

