

Linear Regression Models

Segment 4 – Model Diagnostics

Topic 3 – Bias and Variance

Sudarsan N.S. Acharya (sudarsan.acharya@manipal.edu)

Topics

1. The Bias-Variance Decomposition

$$E\left[\varepsilon \mid X\right] = 0,$$

$$E\left[\varepsilon \mid X\right] = 0,$$

$$\operatorname{Var}\left[\varepsilon \mid X\right] = \sigma^{2}.$$

• For this lecture, we will consider the true population relationship $Y = f(X) + \varepsilon$ with the assumptions:

$$E\left[\varepsilon \mid X\right] = 0,$$

$$\operatorname{Var}\left[\varepsilon \mid X\right] = \sigma^{2}.$$

• This implies $f(X) = E[Y \mid X]$.

$$E\left[\varepsilon \mid X\right] = 0,$$

$$\operatorname{Var}\left[\varepsilon \mid X\right] = \sigma^2.$$

- This implies $f(X) = E[Y \mid X]$.
- Suppose we build a model \hat{f} using the dataset (\mathbf{X}, \mathbf{y}) :

$$E\left[\varepsilon \mid X\right] = 0,$$

$$\operatorname{Var}\left[\varepsilon \mid X\right] = \sigma^{2}.$$

- This implies $f(X) = E[Y \mid X]$.
- Suppose we build a model \hat{f} using the dataset (\mathbf{X}, \mathbf{y}) : the prediction error for an unseen data X can be shown to be

$$E\left[\varepsilon \mid X\right] = 0,$$

$$\operatorname{Var}\left[\varepsilon \mid X\right] = \sigma^{2}.$$

- This implies $f(X) = E[Y \mid X]$.
- Suppose we build a model \hat{f} using the dataset (\mathbf{X}, \mathbf{y}) : the prediction error for an unseen data X can be shown to be

$$\sigma^2 + \left(\hat{f}(X) - f(X)\right)^2.$$

• We will focus on the term $\left(\hat{f}(X) - f(X)\right)^2$.

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- ullet To assess how good the model \hat{f} is,

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- To assess how good the model \hat{f} is, we fix the design matrix \mathbf{X} ,

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- To assess how good the model \hat{f} is, we fix the design matrix \mathbf{X} , generate the true response vector values \mathbf{y} several times,

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- To assess how good the model \hat{f} is, we fix the design matrix \mathbf{X} , generate the true response vector values \mathbf{y} several times, create a model \hat{f} using each dataset (\mathbf{X}, \mathbf{y}) ,

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- To assess how good the model \hat{f} is, we fix the design matrix \mathbf{X} , generate the true response vector values \mathbf{y} several times, create a model \hat{f} using each dataset (\mathbf{X}, \mathbf{y}) , and calculate the quantity in the previous step for each model.

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- To assess how good the model \hat{f} is, we fix the design matrix \mathbf{X} , generate the true response vector values \mathbf{y} several times, create a model \hat{f} using each dataset (\mathbf{X}, \mathbf{y}) , and calculate the quantity in the previous step for each model.
- How close $\hat{f}(X)$ is to $f(X) = E[Y \mid X]$ represents the bias.

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- To assess how good the model \hat{f} is, we fix the design matrix \mathbf{X} , generate the true response vector values \mathbf{y} several times, create a model \hat{f} using each dataset (\mathbf{X}, \mathbf{y}) , and calculate the quantity in the previous step for each model.
- How close $\hat{f}(X)$ is to $f(X) = E[Y \mid X]$ represents the bias.
- How much $\hat{f}(X)$ varies w.r.t. each dataset represents the variance.

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- To assess how good the model \hat{f} is, we fix the design matrix \mathbf{X} , generate the true response vector values \mathbf{y} several times, create a model \hat{f} using each dataset (\mathbf{X}, \mathbf{y}) , and calculate the quantity in the previous step for each model.
- How close $\hat{f}(X)$ is to $f(X) = E[Y \mid X]$ represents the bias.
- How much $\hat{f}(X)$ varies w.r.t. each dataset represents the variance.
- A more general result called the *bias-variance* decomposition shows how prediction error changes w.r.t. the training data:

- We will focus on the term $\left(\hat{f}(X) f(X)\right)^2$.
- To assess how good the model \hat{f} is, we fix the design matrix \mathbf{X} , generate the true response vector values \mathbf{y} several times, create a model \hat{f} using each dataset (\mathbf{X}, \mathbf{y}) , and calculate the quantity in the previous step for each model.
- How close $\hat{f}(X)$ is to $f(X) = E[Y \mid X]$ represents the bias.
- How much $\hat{f}(X)$ varies w.r.t. each dataset represents the variance.
- A more general result called the *bias-variance* decomposition shows how prediction error changes w.r.t. the training data:

prediction error = irreducible error $\sigma^2 + bias^2 + variance$.

• We consider the population model $Y = 1 + X_1 + 2X_2 + \varepsilon$,

• We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and

• We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.

- We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.
- We see that $f(X_1, X_2) = 1 + X_1 + 2X_2$.

- We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.
- We see that $f(X_1, X_2) = 1 + X_1 + 2X_2$.
- We will investigate three models:

- We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.
- We see that $f(X_1, X_2) = 1 + X_1 + 2X_2$.
- We will investigate three models: (1) Y~X_1,

- We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.
- We see that $f(X_1, X_2) = 1 + X_1 + 2X_2$.
- We will investigate three models: (1) Y~X_1, (2) Y~X_1+X_2,

- We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.
- We see that $f(X_1, X_2) = 1 + X_1 + 2X_2$.
- We will investigate three models: (1) Y~X_1, (2) Y~X_1+X_2, (3) Y~X_1+X_2+...+I(X_1^4)+I(X_2^4).

- We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.
- We see that $f(X_1, X_2) = 1 + X_1 + 2X_2$.
- We will investigate three models: (1) Y~X_1, (2) Y~X_1+X_2, (3) Y~X_1+X_2+...+I(X_1^4)+I(X_2^4).
- Which model will have a higher bias?

- We consider the population model $Y=1+X_1+2X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.
- We see that $f(X_1, X_2) = 1 + X_1 + 2X_2$.
- We will investigate three models: (1) Y~X_1, (2) Y~X_1+X_2, (3) Y~X_1+X_2+...+I(X_1^4)+I(X_2^4).
- Which model will have a higher bias?
- Which model will have a higher variance?

Summary

Summary

• Describe the general equation for bias-variance decomposition.

Summary

- Describe the general equation for bias-variance decomposition.
- Describe bias and variance in the context of linear regression