Stochastic Gradient Descent, De-Mystified

Since we are implementing stochastic gradient descent, we want to compute the gradient of the following expression w.r.t $u_n, v_m \forall n \in U, m \in V$ for a given y_{ij} .

$$l = \min_{U,V,a,b} \frac{\lambda}{2N} (||U||_{Fro}^2 + ||V||_{Fro}^2 + ||a||_{Fro}^2 + ||b||_{Fro}^2) + \frac{1}{2} (y_{ij} - \mu - (u_i^{\mathsf{T}} v_j + a_i + b_j))^2$$

We have the following process for stochastic gradient descent:

- 1. Randomly pick a y_{ij}
- 2. Compute the gradient of the error function l(i, j) with respect to every column in U and every column in V, and every entry in a and b.
- 3. Subtract $\eta \nabla$ from U V, a, and b
- 4. Repeat steps 1-3 until $\eta \nabla < \epsilon$.

We can compute the following partial derivatives:

$$\begin{split} \frac{\partial l}{\partial a_k} &= \frac{\lambda}{N} a_k - \mathbb{1}^{i=k} ((y_{ij} - \mu) - (u_i^\mathsf{T} v_j + a_i + b_j)) \\ \frac{\partial l}{\partial b_j} &= \frac{\lambda}{N} b_j - \mathbb{1}^{j=k} ((y_{ij} - \mu) - (u_i^\mathsf{T} v_j + a_i + b_j)) \\ \frac{\partial l}{\partial u_k} &= \frac{\lambda}{n} u_k - \mathbb{1}^{k=i} v_j ((y_{ij} - \mu) - (u_i^\mathsf{T} v_j + a_i + b_j)) \\ \frac{\partial l}{\partial v_k} &= \frac{\lambda}{n} v_k + \mathbb{1}^{k=j} u_i ((y_{ij} - \mu) - (u_i^\mathsf{T} v_j + a_i + b_j)) \end{split}$$

Choice of Parameters

As per the set, we want to over-specify the rank of U and V, so we will pick k=20 given the concrete suggestion in the problem. We will run the risk of iterating too many times $\eta=0.001$.