Devoir maison 10.

À rendre le jeudi 31 mars 2022

Exercice

Le but de cet exercice est de calculer, pour tout $n \geq 2$,

$$S = \sum_{k=1}^{n-1} \frac{1}{1 - e^{i\frac{2k\pi}{n}}}.$$

Question préliminaire :

Soit $T = a_p X^p + a_{p-1} X^{p-1} + \cdots + a_0$ un polynôme de degré $p \in \mathbb{N}^*$, que l'on suppose scindé. Rappeler la formule donnant la somme des racines de T.

Étude d'une suite de polynômes

On définit la suite de polynômes $(Q_n)_{n\in\mathbb{N}}$ par :

$$Q_0 = 1$$
 et $\forall n \in \mathbb{N}, \ Q_{n+1} = X^{n+1} + (X-1)Q_n$ (*)

- 1°) a) Calculer Q_1 , Q_2 et Q_3 . Faire une conjecture sur le degré de Q_n et le coefficient dominant de Q_n pour tout $n \in \mathbb{N}$.
 - b) Démontrer cette conjecture.
- 2°) Montrer que pour tout $n \in \mathbb{N}$,

$$Q_n = \sum_{k=0}^{n} (X-1)^k X^{n-k}$$

3°) Pour tout $n \in \mathbb{N}^*$, on note b_n le coefficient de X^{n-1} dans Q_n . Déduire de la question précédente que, pour tout $n \in \mathbb{N}^*$, $b_n = -\frac{n(n+1)}{2}$.

Calcul de S

Dans cette partie, $n \geq 2$ est un entier fixé.

On pose
$$P = \sum_{k=0}^{n-1} X^k = X^{n-1} + \dots + X + 1$$
.

On note, pour tout $k \in \{0, \dots, n-1\}$, $\omega_k = e^{i\frac{2k\pi}{n}}$.

- **4°)** Montrer que les racines de P sont les ω_k pour $k \in \{1, \dots, n-1\}$.
- 5°) Soit $x \in \mathbb{C} \setminus \{1\}$. On pose $y = \frac{1}{1-x}$. Exprimer x en fonction de y, puis montrer :

$$P(x) = 0 \Longleftrightarrow Q_{n-1}(y) = 0.$$

- **6°)** Exprimer les racines de Q_{n-1} en fonction des ω_k .
- 7°) En déduire la valeur de S.