Statistics&Probability II

Tian Zheng
Department of Statistics
Data Science Institute
Columbia University

Conditional Probability and Bayes' formula

Definition of Conditional Probability

• For a family with 2 children, if we know that there is at least one girl in this family, what is the probability that the other child is also a girl?

Definition of Conditional Probability P(A | B)

• For a family with 2 children, if we know that there is at least one girl in this family, what is the probability that the other child is also a girl?

Bayes' formula

Hemophilia example

Hemophilia example

A woman with an affected brother

Now we observe some data

A: XX

"not A": XX

B: 2 sons with XY P(B|A) = 1 P(B|not A) = (1/2)(1/2) = 1/4

Bayes formula

$$P(A) = P(not A) = 1/2$$

 $P(B|A) = 1$
 $P(B|not A) = 1/4$
 $P(A|B) = ?$

More data

Now B: 3 unaffected sons P(A) = P(not A) = 1/2 P(B|A) = 1 P(B|not A) = 1/8 P(A|B) = ?

Association: two-way table

Two way table

Summarize joint occurrences of two categorical variables.

	Use Internet	Do not use
18-29	48	2
30-49	93	7
50-64	85	15
65+	29	21

Probability under Independence

	Use Internet	Do not use
18-29	P(18-29, Use)	
30-49		
50-64		
65+		

Marginal distribution

P(Use)

1-P(Use)

sum to 1

From data we can estimate the marginal distribution

Summarize joint occurrences of two categorical variables.

	Use Internet	Do not use
18-29	48	2
30-49	93	7
50-64	85	15
65+	29	21

Total 255 45

From data we can estimate the marginal distribution

Total

.85

Summarize joint occurrences of two categorical variables.

	Use Internet	Do not use	Total
18-29	????		.17
30-49			.33
50-64			.33
65+			.17

.15

Relation between two categorical variables

- Say we are looking at variable X and variable Y, which are both categorical.
- Association: certain values of X occur more frequently with certain values of Y.
- No association: independence.

$$P(A \text{ and } B) = P(A)P(B)$$

Independence test in a two-way table

- Looking for evidence on association?
 - the null hypothesis should be...independence!
 - statistic measures association as departure from independence
- Chi-square test for independence in two-way table
 - the null hypothesis is a **special pattern**.
- What (pattern) does the null hypothesis imply?
 - No association: Given any event A decided by the values of X, and any event B decided by the values of Y, A and B are independent, P(A and B) = P(A)P(B)
 - Model probability of each cell = product of the marginal proportions of the outcome values of X and Y that define this cell.

Chi-square test

Test statistic

$$\chi^2 = \sum_{\text{cell i}} \frac{(O_i - E_i)^2}{E_i}$$

• Statisticians already identified the distribution of χ^2 as a <u>chi-square distribution with (r-1)(c-1) d.f.</u>.

From data we can *estimate* the marginal distribution

Summarize joint occurrences of two categorical variables.

	Use Internet	Do not use
18-29	????	
30-49		
50-64		
65+		

Total .85 .15

Expected under independence

Summarize joint occurrences of two categorical variables.

	Use Internet	Do not use
18-29	42.5	7.5
30-49	85	15
50-64	85	15
65+	42.5	7.5

Total 255 45

Expected versus observed

Summarize joint occurrences of two categorical variables.

	Use Internet	Do not use
18-29	48 5.42.5	2-5.75.5
30-49	93885	7 -815
50-64	85 0 85	15015
65+	29-1349.5	2113.

chi-square statistic = 38.34

Chi-square distribution

Detecting Association versus measuring association

- Sampling distribution of test statistic
 - Given the same joint probability model between X and Y that shows association, the test statistic's center scales with sample size.
 - The level association is decided by the probability relation between X and Y, not by sample size.
 - Statistics such as odds ratio can be used to show extent of association.

Implication of association

- Or "X and Y are associated. So what?"
- P(X|Y) differs from P(X) to provide more information than the marginal probabilities.
- In other words, we can achieve better prediction of Y given information in X.
- Is it causal relation then?

Association: analysis of variance

Education versus Income

A hypothetical example

Education

A hypothetical example

Education

Analysis of variance (ANOVA)

- It concerns the total variation in Y (the quantitative variable) Income.
- Considering a variable X, we would like to know how much variation in Y can be explained by X.
- Still not necessarily a causal relation.

A hypothetical example

Education

A hypothetical example

Education

Sources of variation

$$SSG = \sum_{groups} n_i (\overline{x}_i - \overline{x})^2$$

$$SSE = \sum_{all\ obs} (x_{ij} - \overline{x}_i)^2$$

$$SSTO = \sum_{all\ obs} (x_{ij} - \overline{x})^2$$

Manhattan Condo Prices

- From NYC Open Data
- Year 2009
- Condo building with elevator
- 3553 apartments

Manhattan Condo Prices

Manhattan Condo Prices

Sampling variability in regression estimates

Sampling variability in regression estimates

Sampling variability in regression estimates

- The confidence band centers at the sample estimate.
- It represents interval estimate for the regression line.
- Other inference on regression estimates can also be carried out.

Prediction

- Given a value of X
- The predicted value is $\widehat{Y}=b_0+b_1X$
- It is an estimate for the mean (average) value for Y given the X value.
- Most of the time, prediction is different from what is actually observed.
 - $Y mean \ of \ Y$ (random variation)
 - mean of $Y \hat{Y}$ (estimation error)

Prediction

 Extrapolation happens when one tries to give prediction on values of X outside the data range.

Multiple regression

- Y: response
- Multiple X variables
- $\hat{Y} = -546944 3265 Age + 1770 SQFT$
- Consider interaction
- $\hat{Y} = -743800 + 3137$ Age + 1996 SQFT -5.213 Age \times SQFT
 - $\hat{Y} = (-743800 + 3137 Age) + (1996 5.213 Age) SQFT$

Multiple regression

