Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №1 Индивидуальное задание №8

по теме

Метод наименьших квадратов и сглаживание экспериментальных зависимостей по дисциплине
Математическая статистика

Выполнили Студенты группы Р3212 Кобелев Роман Павлович Балин Артем Алексеевич Пархоменко Кирилл Александрович

Содержание

1	Цель работы	3
2	Исходные данные	4

1 Цель работы

Используя метод наименьших квадратов, требуется сгладить предложенную табличную зависимость их при помощи формул. Помимо этого, следует вычислить невязки с точностью до сотых и отобразить на графике табличные данные и сглаживающую кривую. Предварительно зависимость следует линеаризировать.

2 Исходные данные

Таблица данных:

	0.4									
y(i)	2.36	1.9	1.75	1.5	1.39	1.22	1.09	1.04	0.82	0.59

Решение при помощи обратной формулы

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$y = \frac{1}{a + bx}$$

Линеаризуем формулу:

$$\frac{1}{y} = a + bx$$

$$z = \frac{1}{y}, \quad x = x$$

α	0.4	0.6	0.7	0.9	1.0	1.2	1.4	1.5	2.0	3.0
2	0.424	0.526	0.571	0.667	0.719	0.819	0.917	0.961	1.219	1.694

На основе полученной таблицы найдём точечную оценку линейной модели.

$$z = \tilde{a} + \tilde{b}x$$

Метод наименьших квадратов:

$$S(a_0, a_1) = \sum_{i=1}^{n} (z_i - \tilde{z}(x_i))^2 = \sum_{i=1}^{10} (z_i - \tilde{a} - \tilde{b}x_i)^2 - > \min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2 \left(\sum_{i=1}^{10} y_i - 11\tilde{a} - \tilde{b} \sum_{i=1}^{10} x_i \right) = 0 \\ \frac{\partial S}{\partial ab} = -2 \left(\sum_{i=1}^{10} x_i y_i - \tilde{a} \sum_{i=1}^{10} x_i - \tilde{b} \sum_{i=1}^{10} x_i^2 \right) = 0 \end{cases}$$

$$\sum_{i=1}^{10} x_i = 12.7$$

$$\sum_{i=1}^{10} z_i = 8.521$$

$$\sum_{i=1}^{10} x_i^2 = 21.47$$

$$\sum_{i=1}^{10} x_i z_i = 13.439$$

После подсчёта сумм получили систему:

$$\begin{cases} 10\tilde{a} + 12.7\tilde{b} = 8.521 \\ 12.7\tilde{a} + 21.47\tilde{b} = 13.439 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{a} \approx 0.230 \\ \tilde{b} \approx 0.490 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{z} = 0.230 + 0.490x$$

В итоге получили точечную оценку

$$\tilde{y} = \frac{1}{0.230 + 0.490x}$$

x	0.4	0.6	0.7	0.9	1.0	1.2	1.4	1.5	2.0	3.0
y	2.36	1.9	1.75	1.5	1.39	1.22	1.09	1.04	0.82	0.59
\tilde{y}	2.349	1.909	1.746	1.490	1.389	1.222	1.091	1.0365	0.826	0.588
ε^2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

$$S_1 = 0.0003759$$

График 1. Обратная модель

Решение при помощи дробной формулы

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$y = \frac{x}{a + bx}$$

Линеаризуем формулу:

$$y = \frac{x}{a+bx}$$

$$\frac{1}{y} = \frac{a+bx}{x} = \frac{a}{x} + b$$

$$y^{-1} = ax^{-1} + b$$

$$z = y^{-1}, \ t = x^{-1}$$

t	2.5	1.667	1.428	1.111	1.0	0.833	0.714	0.667	0.5	0.333
z	0.424	0.526	0.571	0.667	0.719	0.819	0.917	0.961	1.219	1.694

На основе полученной таблицы найдём точечную оценку линейной модели.

$$z = \tilde{b} + \tilde{a}t$$

Метод наименьших квадратов:

$$S(a, b) = \sum_{i=1}^{n} (z_i - \tilde{z}(x_i))^2 = \sum_{i=1}^{10} (z_i - \tilde{b} - \tilde{a}t_i)^2 - > min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2 \left(\sum_{i=1}^{10} y_i - 10\tilde{b} - \tilde{a} \sum_{i=1}^{10} x_i \right) = 0 \\ \frac{\partial S}{\partial b} = -2 \left(\sum_{i=1}^{10} x_i y_i - \tilde{b} \sum_{i=1}^{10} x_i - \tilde{a} \sum_{i=1}^{10} x_i^2 \right) = 0 \end{cases}$$

$$\sum_{i=1}^{10} t_i = 10.754$$

$$\sum_{i=1}^{10} z_i = 8.520$$

$$\sum_{i=1}^{10} t_i^2 = 15.313$$

$$\sum_{i=1}^{10} z_i t_i = 7.367$$

После подсчёта сумм получили систему:

$$\begin{cases} 10\tilde{b} + 10.754\tilde{a} = 8.520\\ 10.754\tilde{b} + 15.313\tilde{a} = 7.367 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{b} \approx 1.3673 \\ \tilde{a} \approx -0.4791 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{z} = 1.3673 - 0.4791t$$

В итоге получили точечную оценку

$$\tilde{y} = \frac{x}{-0.4791 + 1.3673x}$$

x	0.4	0.6	0.7	0.9	1.0	1.2	1.4	1.5	2.0	3.0
y	2.36	1.9	1.75	1.5	1.39	1.22	1.09	1.04	0.82	0.59
\tilde{y}	2.349	1.909	1.746	1.490	1.389	1.222	1.091	1.0365	0.826	0.588
ε^2	12.519	0.020	0.08	0.09	0.0693	0.034	0.013	0.007	0.004	0.056

$$S_2 = 12.899$$

График 2. Дробная модель

Решение при помощи степенной формулы

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$y = ax^b$$

Линеаризуем формулу:

$$y = ax^{b}$$

$$ln \ y = ln \ ax^{b} = ln \ a + ln \ x^{b} = ln \ a + bln \ x$$

$$ln \ y = ln \ a + bln \ x$$

$$z = ln \ y, \ t = ln \ x, A = ln \ a$$

t	-0.916	-0.510	-0.356	-0.105	0.0	0.182	0.336	0.405	0.693	1.098
z	0.858	0.641	0.559	0.405	0.329	0.198	0.086	0.039	-0.198	-0.527

На основе полученной таблицы найдём точечную оценку линейной модели.

$$z = \tilde{A} + \tilde{b}t$$

Метод наименьших квадратов:

$$S(a, b) = \sum_{i=1}^{n} (z_i - \tilde{z}(t_i))^2 = \sum_{i=1}^{10} (z_i - \tilde{A} - \tilde{b}t_i)^2 - > \min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2 \left(\sum_{i=1}^{10} z_i - 10\tilde{A} - \tilde{b} \sum_{i=1}^{10} t_i \right) = 0 \\ \frac{\partial S}{\partial b} = -2 \left(\sum_{i=1}^{10} z_i t_i - \tilde{A} \sum_{i=1}^{10} t_i - \tilde{b} \sum_{i=1}^{10} t_i^2 \right) = 0 \end{cases}$$

$$\sum_{i=1}^{10} t_i = 0.826$$

$$\sum_{i=1}^{10} z_i = 2.393$$

$$\sum_{i=1}^{10} t_i^2 = 3.237$$

$$\sum_{i=1}^{110} t_i z_i = -1.993$$

После подсчёта сумм получили систему:

$$\begin{cases} 10\tilde{A} + 0.826\tilde{b} = 2.393\\ 0.826\tilde{A} + 3.237\tilde{b} = -1.993 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{b} \approx -0.6914 \\ \tilde{A} \approx 0.296 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{a} \approx 1.3451$$

В итоге получили точечную оценку

$$\tilde{y} = 1.3451x^{-0.6914}$$

a	$r \mid$	0.4	0.6	0.7	0.9	1.0	1.2	1.4	1.5	2.0	3.0
ı	į	2.36	1.9	1.75	1.5	1.39	1.22	1.09	1.04	0.82	0.59
ĵ	j	2.349	1.909	1.746	1.490	1.389	1.222	1.091	1.0365	0.826	0.588
ε	2	0.030	0.000	0.000	0.002	0.002	0.001	0.000	0.000	0.000	0.001

$$S_3 = 0.04038$$

График 3. Степенная модель

Решение при помощи экспоненциальной формулы

Требуется сгладить при помощи формулы и вычислить невязки до тысячных.

$$y = ae^{bx}$$

Линеаризуем формулу:

$$y = ae^{bx}$$

$$\ln y = \ln ae^{bx} = \ln a + \ln e^{bx} = \ln a + bx$$

$$\ln y = \ln a + bx$$

$$z = \ln y; \ x = x; \ A = \ln a$$

x	0.4	0.6	0.7	0.9	1.0	1.2	1.4	1.5	2.0	3.0
z	0.858	0.641	0.559	0.405	0.329	0.198	0.086	0.039	-0.198	-0.527

На основе полученной таблицы найдём точечную оценку линейной модели.

$$z = \tilde{A} + \tilde{b}x$$

Метод наименьших квадратов:

$$S(a, b) = \sum_{i=1}^{n} (z_i - \tilde{z}(x_i))^2 = \sum_{i=1}^{10} (z_i - \tilde{A} - \tilde{b}x_i)^2 - > min$$

Найдём экстремум:

$$\begin{cases} \frac{\partial S}{\partial a} = -2 \left(\sum_{i=1}^{10} z_i - 10\tilde{A} - \tilde{b} \sum_{i=1}^{10} x_i \right) = 0 \\ \frac{\partial S}{\partial b} = -2 \left(\sum_{i=1}^{10} x_i z_i - \tilde{A} \sum_{i=1}^{10} x_i - \tilde{b} \sum_{i=1}^{10} x_i^2 \right) = 0 \end{cases}$$

$$\sum_{i=1}^{10} x_i = 12.7$$

$$\sum_{i=1}^{10} z_i = 2.393$$

$$\sum_{i=1}^{10} x_i^2 = 21.47$$

$$\sum_{i=1}^{10} x_i z_i = 0.252$$

После подсчёта сумм получили систему:

$$\begin{cases} 10\tilde{A} + 12.7\tilde{b} = 2.393 \\ 12.7\tilde{A} + 21.47\tilde{b} = 0.252 \end{cases}$$

Подсчитали неизвестные:

$$\begin{cases} \tilde{A} \approx 0.901 \\ \tilde{b} \approx -0.5217 \end{cases}$$

Подставили коэффиценты и получили точечную оценку:

$$\tilde{a} \approx 2.4642$$

В итоге получили точечную оценку

$$\tilde{y} = 2.4642e^{-0.5217x}$$

	0.4									3.0
y	2.36	1.9	1.75	1.5	1.39	1.22	1.09	1.04	0.82	0.59
\tilde{y}	2.000	1.801	1.710	1.540	1.462	1.317	1.187	1.126	0.868	0.515
ε^2	0.129	0.009	0.001	0.001	0.005	0.009	0.009	0.007	0.002	0.005

$$S_4 = 0.18205$$

График 4. Экспоненциальная модель

Вывод

Используя метод наименьших квадратов, сгладили предложенную табличную зависимость при помощи формул. Помимо этого, вычислили невязки с точностью до сотых и отобразить на графике табличные данные и сглаживающую кривую. Наиболее точным решением принято решение при помощи обратной формулы.