1 Homework 1

1.1 1

1.1.1 1

Maps $\operatorname{Hom}_k(\mathbb{G}_a, \mathbb{G}_a) = \operatorname{Hom}_k(\operatorname{Spec}(k[t]), \operatorname{Spec}(k[t])) = \operatorname{Hom}_k(k[t], k[t]) = k[t]$. Therefore we need $f \in k[t]$ which are cogroup maps for $k[t] \to k[t] \otimes_k k[t]$ meaning that f(x+y) = f(x) + f(y).

Consider $\operatorname{Hom}_k(\mathbb{G}_m, \mathbb{G}_m) = \operatorname{Hom}_k(\operatorname{Spec}(k[t]), \operatorname{Spec}(k[t])) = \operatorname{Hom}_k(k[t, t^{-1}], k[t, t^{-1}]) = (k[t, t^{-1}])^{\times}$ such that f(xy) = f(x)f(y).

1.1.2 2

If k is a Q-algebra then any $f \in k[t]$ satisfying f(x+y) = f(x) + f(y) must be linear with zero constant term and thus f = at for $a \in k$ so we get End $(k) \mathbb{G}_a \cong k$.

If k is a field of characteristic p > 0 then if f(x+y) = f(x) + f(y) we must have that f(ax) = af(x) for each $a \in \mathbb{F}_p$ which implies that,

$$f(t) = \sum c_j t^{p^j}$$

Suppose that $k = \mathbb{Z}/(p^2)$. (DO THIS CASE!!)

1.1.3 3

If k is a field then $(k[t, t^{-1}])^{\times}$ consists of elements of the form $f(t) = at^n$ and if f(xy) = f(x)f(y) then a = 1 so End $(\mathbb{G}_m) \cong \mathbb{Z}$.

Now suppose that A is an Artinian local ring and $\kappa = A/\mathfrak{m}$ its residue field. It suffices to prove that every $f \in (A[t,t^{-1}])^{\times}$ such that f(xy) = f(x)f(y) is of the form $f = t^n$ for some $t \in \mathbb{Z}$. We have shown that the image of f in $(\kappa[t,t^{-1}])^{\times}$ is of the form t^n for some $n \in \mathbb{Z}$. Then we can consider $g = ft^{-n}$ which is 1 when reduced to the special fiber. To conclude that g = 1 we appeal to induction on the length of A. If $\ell_A(A) = 1$ then A must be a field in which case we are done. Since A is Artinian, $\mathfrak{m}^{N+1} = 0$ but $\mathfrak{m}^N \neq 0$ for some N. Then,

$$0 \longrightarrow \mathfrak{m}^N \longrightarrow A \longrightarrow A/\mathfrak{m}^N \longrightarrow 0$$

However, \mathfrak{m}^N is a κ -module. Then $A' = A/\mathfrak{m}^N$ has smaller length so the image of g in $A'[t.t^{-1}]$ equals 1 and thus $g-1 \in \mathfrak{m}^N[t,t^{-1}]$. However, g(xy)=g(x)g(y) and thus $g(1)=g(1)^2$ but $g(1) \in A^{\times}$ so g(1)=1. Furthermore,

$$(g(x) - 1)(g(y) - 1) = g(xy) + 1 - g(x) - g(y) = (g(xy) - 1) - (g(x) - 1) - (g(y) - 1)$$

and thus since (g(x) - 1)(g(y) - 1) = 0 letting h = g - 1,

$$h(xy) = h(x) + h(y)$$

But this is impossible for degree reasons since $h(t^2) = 2h(t)$ so if,

$$h = \sum_{n=-k}^{k} c_n t^n$$

then $c_k = 0$ and $c_{-k} = 0$ since $h(t^2) = 2h(t)$ and thus h = 0.

1.1.4 4

Let A be a complete Noetherian local ring and $f \in (A[t,t^{-1}])^{\times}$. Then under $A \to A/\mathfrak{m}^k$ we see that $f \mapsto t^n$ for a fixed n by using (iii) (the fixedness of n comes from the composition $A \to A/\mathfrak{m}^k \to \kappa$ and $f = t^n$ in $\kappa[t,t^{-1}]$). However, the maps $A \to A/\mathfrak{m}^n$ are mutually injective because A is complete so $f = t^n$.

Now let A be any Noetherian local ring and $f \in (A[t, t^{-1}])^{\times}$. Consider the injection $A \to \hat{A}$ (this is injective because if $x \mapsto 0$ under each $A \to A/\mathfrak{m}^k$ then $x = \mathfrak{m}^k$ for all k so x = 0 by the Krull intersection theorem) then we see that $f = t^n$ since it is in $\hat{A}[t, t^{-1}]$.

Now let A be any local ring and $f \in (A[t, t^{-1}])^{\times}$ and consider A' to be the ring generated by the coefficients of f and f^{-1} over \mathbb{Z} . Then localizing at $\mathfrak{m} \cap A'$ we get a Noetherian local subring $A'' \subset A$ such that $f \in (A''[t, t^{-1}])^{\times}$ and thus $f = t^n$.

Now consider any ring A and $f \in (A[t, t^{-1}])^{\times}$. Then for any ideal $\mathfrak{p} \in \operatorname{Spec}(A)$ we have $f_{\mathfrak{p}} \in (A_{\mathfrak{p}}[t, t^{-1}])^{\times}$ so $f_{\mathfrak{p}} = t^{n_{\mathfrak{p}}}$ giving a function $n : \operatorname{Spec}(A) \to \mathbb{Z}$ taking $\mathfrak{p} \mapsto n_{\mathfrak{p}}$. However, if $f_{\mathfrak{p}} = t^{n_{\mathfrak{p}}}$ then there is some $u \in A \setminus \mathfrak{p}$ such that $u(f_{\mathfrak{p}} - t^{n_{\mathfrak{p}}}) = 0$ which implies that $f = t^n$ in $A_u[t, t^{-1}]$ and thus n is constant on D(u) with $\mathfrak{p} \in D(u)$.

1.2 2

Let V be a finite-dimensional vector space over a field k.

1.2.1 1

Should this be Sym (V^*) or Sym $(V)^*$? It is clear that Sym (V^*) is the set of functions on V that are sums of products of linear maps while Sym $(V)^*$ contains divided power structures.

1.2.2 2

Consider the functor,

$$\operatorname{End}(V)(R) = \operatorname{End}(V_R)$$

However, Sym (-) is the left adjoint to the forgetful functor from k-algebras to k-modules. Then,

$$\operatorname{Hom}_{k\text{-alg}}\left(\operatorname{Sym}\left(\operatorname{End}\left(V\right)^{*}\right),R\right)=\operatorname{Hom}_{k}\left(\operatorname{End}\left(V\right)^{*},R\right)=\operatorname{End}\left(V\right)\otimes_{k}R=\operatorname{End}\left(V_{R}\right)$$

functorially and thus Sym $(\text{End}(V)^*)$ represents the functor End (V).

1.2.3 3

Define det \in Sym (End $(V)^*$) as follows. Let $n = \dim V$ then define the ring map End $(V) \to$ End $(\bigwedge^n V)$ via $\varphi \mapsto \wedge^n \varphi$. This defines a natural map of algebras,

$$\operatorname{Sym}\left(\operatorname{End}\left(\bigwedge^{n}V\right)^{*}\right) \to \operatorname{Sym}\left(\operatorname{End}\left(V\right)^{*}\right)$$

However, $\bigwedge^n V$ is one-dimensional and thus,

$$\operatorname{End}\left(\bigwedge^{n}V\right)\cong k$$

canonically via the canonical basis element id \in End $(\bigwedge^n V)$. Then the map,

$$\operatorname{Sym}\left(\operatorname{End}\left(\bigwedge^{n}V\right)^{*}\right) \to \operatorname{Sym}\left(\operatorname{End}\left(V\right)^{*}\right)$$

sends id \mapsto det.

Now consider the algebra,

$$A = \operatorname{Sym} \left(\operatorname{End} \left(V \right)^* \right) \left[\det^{-1} \right]$$

Then we see,

 $\operatorname{Hom}_{k\text{-alg}}(A,R) = \{ \varphi : \operatorname{End}(V)^* \to R \mid \varphi(\det) \in R^* \} = \{ \varphi \in \operatorname{End}(V) \otimes_k R \mid \det \varphi \in R^* \}$ which is exactly $\operatorname{Aut}(V)(R)$.

1.2.4 4

Let $B: V \times V \to k$ be a bilinear form. Consider the subfunctor $\operatorname{Aut}(V, B) \subset \operatorname{Aut}(V)$ of points preserving B. It is clear that $B(g \cdot v, g \cdot u) = B(v, u)$ is a closed condition.

Let B be nondegenerate. We say that $T: V_R \to V_R$ is a B-similitude if $B_R(Tv, Tu) = \mu(T)B_R(v, u)$ for all $v, u \in V_R$ and some $\mu(T) \in R^{\times}$. Since B is nondegenerate, for each $v \in V$ there is $v' \in V$ such that B(v, v') = 1 and thus $B_R(v \otimes 1, v' \otimes 1) = 1$. Then, $B_R(Tv \otimes 1, Tv' \otimes 1) = \mu(T) \cdot B_R(v \otimes 1, Tv' \otimes 1) = \mu(T)$ so $\mu(T)$ is uniquely determined by T and B. Consider the functor sending $R \mapsto \{B\text{-similitudes}\}$. Consider the closed subscheme,

$$H \subset V \times \mathbb{G}_m$$

defined in coodinates,

$$V \times \mathbb{G}_m = k[x_{ij}][\det^{-1}][t, t^{-1}]$$

as the vanishing of (let B be represented by S_{ij}) the equations,

$$x_{\ell i} S_{ij} x_{jk} = t S_{\ell k}$$

for each pair (ℓ, k) .

1.3 3 dO THIS

1.3.1 1

Let X be a connected scheme of finite type over a field k and x : Spec $(k) \to X$ is a rational point. Let k'/k be a finite extension. Since Spec $(k') \to \text{Spec}(k)$ is flat and finite we see that $X_{k'} \to X$ is flat and finite and thus open and closed. Consider the fiber over x,

$$\begin{array}{ccc} \operatorname{Spec}\left(k'\right) & \longrightarrow & \operatorname{Spec}\left(k\right) \\ \downarrow & & \downarrow \\ X_{k'} & \longrightarrow & X \\ \downarrow & & \downarrow \\ \operatorname{Spec}\left(k'\right) & \longrightarrow & \operatorname{Spec}\left(k\right) \end{array}$$

since the bottom square is cartesian and the outer square is trivially cartesian we see that the top square is cartesian. Therefore, the fiber over x consists of a single point with residue field k'. Now if $X_{k'} = C_1 \cup C_2$ is a disjoint union of clopen sets. Then under $f: X_{k'} \to X$ we see that $f(C_1) \cup f(C_2) = X$ and $f(C_i)$ are clopen so we need to show that $f(C_1) \cap f(C_2) = \emptyset$. Since the fibers over X(k) are single points we see that each fiber is contained in exactly one of C_1 or C_2 so $f(C_1) \cap f(C_2) \cap X(k) = \emptyset$. Without loss of generality, the fiber over x is contained in C_1 and thus $x \notin f(C_2)$ but X is connected and $f(C_2)$ is clopen so $f(C_2) = \emptyset$ and thus $C_2 = \emptyset$ meaning that $X_{k'}$ is connected.

Now for every extension of fields k'/k we know that,

$$\varinjlim_{k'\supset k''\supset k} k'' = k'$$

over the finite extensions k''/k. However, Spec (-) is a right adjoint $\mathbf{Ring}^{\mathrm{op}} \to \mathbf{Sch}$ and thus preserves limits (this is a limit in $\mathbf{Ring}^{\mathrm{op}}$) and thus we see that.

$$\operatorname{Spec}(k') = \varprojlim_{k' \supset k'' \supset k} \operatorname{Spec}(k'')$$

and products commute with limits so we see that,

$$X_{k'} = \varprojlim_{k' \supset k'' \supset k} X_{k''}$$

Since for each $k_1 \supset k_2$ the map $X_{k_1} \to X_{k_2}$ is surjective and furthermore the map $X_{k'} \to X_{k_1}$ is surjective

1.3.2 2

Let X and Y be geometrically connected of finite type over k. Then it suffices to show that $(X \times_k Y) \times_k \bar{k}$ is connected. However,

$$(X \times_k Y) \times_k \bar{k} = (X \times_k \bar{k}) \times_{\bar{k}} (Y \times_k \bar{k})$$

and then I claim that if X and Y are connected and finite type over an algebraically closed field k then $X \times_k Y$ is connected. Since X and Y are connected the standard affine cover $U_i \times V_j$ overlap eachother and thus it suffices to show the claim for affine X and Y. Thus we need to show that if A and B are finitely generated k-algebras with prime nilradical then $A \otimes_k B$ has prime nilradical.

Suppose that X and Y are connected but not necessarily geometrically connected over $k = \mathbb{Q}$. We can take $X = \operatorname{Spec}(\mathbb{Q}(i))$ and $Y = \operatorname{Spec}(\mathbb{Q}(i))$ and then

$$X \times_k Y = \operatorname{Spec} (\mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{Q}(i)) = \operatorname{Spec} (\mathbb{Q}(i)) \sqcup \operatorname{Spec} (\mathbb{Q}(i))$$

is not connected.

1.4 4 DO THIS

Let G be a group scheme of finite type over k.

1.4.1 1

Let $(G_{\overline{k}})_{\text{red}}$ be the closed subscheme of $G_{\overline{k}}$. To show that various maps factor through $(G_{\overline{k}})_{\text{red}} \hookrightarrow G_{\overline{k}}$ it suffices to show that $(G_{\overline{k}})_{\text{red}} \times (G_{\overline{k}})_{\text{red}}$ is reduced (since obviously $(G_{\overline{k}})_{\text{red}}$ and Spec (\overline{k}) are reduced). Since reducedness and smothness are local properties we reduce to the affine case that A is a finite type k-algebra then $B = (A_{\overline{k}})_{\text{red}}$ then then tensor product of reduced \overline{k} -algebras is reduced. To see this, consider,

$$B \to \prod_{\mathfrak{p} \text{ minimal}} B_{\mathfrak{p}}$$

which is injective because for a reduced ring the associated primes are exactly the minimal primes. Then $B_{\mathfrak{p}}$ is a field because \mathfrak{p} is a minimal prime. Since B is flat over k we can suppose that B is a finite product of fields (B is finite type and thus noetherian) so it suffices to reduce to the case of a domain and we know that the tensor product of domains over an algebraically closed field is a domain.

Now we need to show that $H = (G_{\bar{k}})_{\text{red}}$ is smooth. However, since \bar{k} is algebraically closed and H is reduced, by generic smoothness there is a smooth point and then by translation every point is smooth.

1.4.2 2

Let k be an imperfect field k and G an algebraic group scheme over k. Then G_{red} need not be a closed algebraic subgroup of G. This happens when $G_{\text{red}} \times_k G_{\text{red}}$ is not reduced and thus it does not map into G_{red} . (FIND EXAMPLE)

1.4.3 3

Let k be imperfect and characteristic p > 0. Choose $\alpha \in k \setminus k^p$ then let,

$$f = x_0^0 + ax_1^p + \dots + a^{p-1}x_{p-1}^p - 1$$

and consider,

$$G = \operatorname{Spec} \left(k[x_0, \dots, x_{p-1}]/(f) \right)$$

with the group operation,

$$(x \cdot y)_n = \sum_{p+q=n} x_p y_q$$

This works because,

$$G = \ker\left(\operatorname{Nm} : \operatorname{Res}_{k}^{k(a^{\frac{1}{p}})}\left(\mathbb{G}_{m}\right) \to \mathbb{G}_{m}\right)$$

I claim that f is not a power over k. Indeed, because the degree of f is prime it would have to be $f = g^p$ but this implies that $a = \alpha^p$ which is not true by hypothesis. Therefore, G is reduced.

Now after base changing to $k(a^{\frac{1}{p}})$ we see that,

$$f = (x_0 + a^{\frac{1}{p}}x_1 + \dots + a^{\frac{p-1}{p}}x_{p-1} - 1)^p$$

and thus $G \times_k k(a^{\frac{1}{p}}) = \operatorname{Spec}(k[x_0, \dots, x_{p-1}]/(f))$ is not reduced and thus not smooth.

1.4.4 4

Consider the subscheme,

$$\mu_n = \ker \left(\mathbb{G}_m \xrightarrow{x \mapsto x^n} \mathbb{G}_m \right)$$

which is a subgroup because kernels always are. Clearly, the kernel is closed. Let $K = \ker(G \to H)$. Then $K \times K \subset G \times G \to G$ maps to K because,

$$K \times K \to G \to H$$

is the map $K \times K \to \operatorname{Spec}(k) \to H$ and thus factors through $K \to G$ by the universal property of the kernel which is a fiber product.

Consider the map deg: $GL_N \to \mathbb{G}_m$ and the preimage $G = \det^{-1} \mu_n \subset GL_N$ is always a k-subgroup by the universal property (its the exact same argument as for the kernel). Explicitly, let $K \subset H$ be a closed subgroup and $f: G \to H$ a morphism of algebraic groups. Let $\tilde{K} = f^{-1}(K)$ the pullback which is a closed subscheme of G then consider the diagram,

therefore multiplication factors through $\tilde{K} \times \tilde{K} \to \tilde{K}$. The same trick works for inversion.

It is clear that $\operatorname{SL}_N \subset G$ and thus assuming that SL_N is connected we see that $\operatorname{SL}_N \subset G^0$. Furthermore, as long as $p \not\mid n$ we see that μ_n is disconnected with a reduced point at each root of unity contained in k and $\mu_n^0 = \operatorname{Spec}(k)$ the trivial group scheme at the origin. Thus, $G^0 = \ker \det = \operatorname{SL}_N$.

For $k = \mathbb{Q}$ and n = 5 the group scheme $G \setminus G^0$ is the fiber over the one nonidentity point of $\mu_5 = \operatorname{Spec}(k[x]/(x^5 - 1))$ which is the point $\eta = \operatorname{Spec}(k[x]/(x^4 + x^3 + x^2 + x + 1))$. Therefore, the preimage is isomorphic as a scheme over k to $\operatorname{SL}_N \times_k \eta$ which is connected because it is just SL_N over η viewed as a k-scheme. However, over $\overline{\mathbb{Q}}$ we see that η splits into four points and thus $G \setminus G^0 = \det^{-1}(\eta)$ must have at least four components after base change to $\overline{\mathbb{Q}}$.