Real-Time Systems Concepts

謝仁偉 教授 jenwei@mail.ntust.edu.tw 國立台灣科技大學 資訊工程系 2017 Fall

Major References:

Real-Time Systems,國立臺灣大學,郭大維教授 Real-Time Computing,國立交通大學,張立平教授 Course Information (1/2)

• Instructor:謝仁偉

- jenwei@mail.ntust.edu.tw

- Office: T4-509

Course Information

課程代碼: CS2017701上課時間: 二34、四6上課教室: TR-310-1

Office Hours:

- 四 78

2

Course Information (2/2)

- TA: 林紘立
 - 410121022@gms.ndhu.edu.tw
 - RB-306-1

 All slides would be uploaded to the Moodle (http://moodle.ntust.edu.tw)

Motivation (1/3)

- Take yourself as an example
 - Naturally you have a number of things to do with time pressure
 - Project deadlines
 - Meeting time
 - · Class time
 - ..
 - Some of them regularly recur but some don't
 - Attend the class every Thursday (periodic)
 - Go to the movies on 8:00pm (aperiodic)
 - Date with a girl/boy friend (sporadic)
 - ...

3

Motivation (2/3)

- You schedule yourself to meet deadlines
 - Course A: one homework is announced every 6 days, each costs you 3 days to do
 - Course B: one homework is announced every 9 days, each costs you 4.5 days to do

 You miss deadlines of one course if your policy favors either one course.

5

the problem?

Motivation (3/3)

- Schedule to meet deadlines
 - Course A: (6, 3)
 - Course B: (9, 4.5)
- All deadlines are met if you do whatever has the

6

Introduction to Real-Time Systems

- What is a real-time system?
 Any system where a timely response by the computer to external stimuli is vital!
- Examples:
 - multimedia systems, virtual reality, games
 - avionics, air traffic control, nuclear power plant
 - stock market, trading system, information access, etc.
- Does the definition make every computer a realtime computer?

Yes! It is if we need some response from a computer within a finite time!!

Course Objectives

- Real-time scheduling theory, however, usually can't be directly applied to realistic systems
 - Then why should we learn theoretical matters?
 - That's to avoid choosing bad designs, and, of course, to come to a good design, e.g., a frequently overloaded system should provide stable prioritization rather than high resource utilization

Concepts for Real-Time Systems

- Guarantee, guarantee, and guarantee
 - Real-time systems are not high-performance systems

- How to provide performance guarantees with low hardware cost?
 - To answer this question, you have to know how to analyze your system.

Reference

Real-Time Systems

• Jane W. S. Liu

ISBN: 0-13-099651-3Publisher: Prentice Hall

Copyright: 2000Format: 624 PagesPublished: 04/13/2000

10

Outline of the Course (1/2)

- Priority-Driven Scheduling of Periodic Tasks
 - Fixed-Priority vs. Dynamic-Priority Algorithms
 - Exact Schedulability Test
 - Sufficient Schedulability Conditions
- Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems
 - Deferrable Servers
 - Sporadic Servers
 - Constant Utilization, Total Bandwidth, and Weighted Fair-Queueing Servers
 - Scheduling of Sporadic Jobs

Outline of the Course (2/2)

- Resources and Resource Access Control
 - Assumptions on Resources and Their Usage
 - Effects of Resource Contention and Resource Access Control
 - Nonpreemptive Critical Sections Protocol
 - Basic Priority-Inheritance Protocol
 - Basic Priority-Ceiling Protocol
 - Stack-Based, Priority-Ceiling (Ceiling-Priority)
 Protocol
 - Preemption-Ceiling Protocols
 - Controlling Accesses to Multiple-Unit Resources

Grading Policy

- 2 Midterm (50%)
- 1 Final (30%)
- Class Participation (20%)

Any Question?

3 14

Now I Would Like to Know Everyone of You...

See You on Thursday!