Semi-stable lattices in higher rank

Tri Nguyen

April 29, 2025

Outline

- Introduction
- 2 In 2 dimensions
- 3 In dimension at least 3

Historical motivation

Serre and Quillen used the notion of semistable vector bundle on an algebraic curve to study $SL_n(\mathcal{O})$ when \mathcal{O} is a Dedekind domain finitely generated over a finite field. Stuhler then realized he can used the same method to adapt some work of Harder and Narasimhan on stable vector bundles to yields new facts about lattices in a Euclidean space.

Definition of two-dimensional lattices

Lattice

A lattice $L \subset \mathbb{R}^2$ is a set of the form

$$L = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$$

where $e_1, e_2 \in \mathbb{R}^2$ are linearly independent over \mathbb{R} .

Example of a 2-dim lattice

Classification of lattices

Do we know all the possible 2 dimensional "lattice shapes"?

Classification of lattices

Do we know all the possible 2 dimensional "lattice shapes"?

Answer: Up to rescaling, rotation and change of basis, the answer is yes.

Fundamental domain

Up to rotations and rescaling, we can reduce a lattice

$$L = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$$

to a lattice of the form

$$L_z = \mathbb{Z}z \oplus \mathbb{Z}, \quad \Im(z) > 0$$

So the upper half-plane parametrizes the 2 dimensional lattices.

Classification of unit lattices

The map $z \mapsto L_z = \mathbb{Z}z \oplus \mathbb{Z}$ induces a bijection

$$\mathsf{SL}_2(\mathbb{Z}) \backslash \mathbb{H} \cong \{ \text{ lattices} \} / \mathbb{C}^{\times}$$

Fundamental domain

So we reduce the study of the space of lattices by looking the action of $SL_2(\mathbb{Z})$ on the upper half plane. Geometrically, the fundamental domain is given by

$$\mathfrak{D} = \{ z = x + iy \in \mathbb{H} : |z| \ge 1, -1/2 \le x \le 1/2 \}$$

,

Fundamental domain

So we reduce the study of the space of lattices by looking the action of $SL_2(\mathbb{Z})$ on the upper half plane. Geometrically, the fundamental domain is given by

$$\mathfrak{D} = \{ z = x + iy \in \mathbb{H} : |z| \ge 1, -1/2 \le x \le 1/2 \}$$

Grayson associated each lattice L some kind of **Newton polygon**.

Grayson associated each lattice L some kind of **Newton polygon**.

The process is as follows:

- \bullet Put (0,0) in the plot.
- ② For each primitive vector $v \in L$, he assigns the point $(1, \log(||v||))$ to the plot.
- **3** Put the point $(2, \log(vol(L)))$ in the plot.

Figure: [1] - The figure on the left corresponds to z = -2/5 + 3i/2 and on the right corresponds to z = 7/16 + 15i/16

Since the lattice is discrete, there is a shortest primitive vector - on the plot we have the lowest point on the vertical line x = 1.

Since the lattice is discrete, there is a shortest primitive vector - on the plot we have the lowest point on the vertical line x = 1.

Grayson called the set of points plotted above as **canonical plot**. The convex hull of the collection of the plot points is called **profile**.

For any $z \in \mathbb{H} = \{ \text{Im}(z) > 0 \}$, we can assign to it a lattice of covolume 1 as follows

$$z \mapsto L_z = \mathbb{Z} \frac{e_1}{\sqrt{y}} + \mathbb{Z} \left(\frac{x}{\sqrt{y}} e_1 + \sqrt{y} e_2 \right)$$

The shortest vector is then e_1/\sqrt{y} , with length $\frac{1}{\sqrt{y}}$. So for y < 1, the lowest point is below the horizontal axis.

For any $z \in \mathbb{H} = \{ \text{Im}(z) > 0 \}$, we can assign to it a lattice of covolume 1 as follows

$$z \mapsto L_z = \mathbb{Z} \frac{e_1}{\sqrt{y}} + \mathbb{Z} \left(\frac{x}{\sqrt{y}} e_1 + \sqrt{y} e_2 \right)$$

The shortest vector is then e_1/\sqrt{y} , with length $\frac{1}{\sqrt{y}}$. So for y < 1, the lowest point is below the horizontal axis.

The element z corresponds to a lattice L_z such that its lowest point on the vertical line x=1 lies below the x-axis is called **semi-stable**, otherwise z is called **unstable**.

Semi-stable locus in fundamental domain

Figure: The blue part is the semistable locus in the fundamental domain

Since the semi-stability is preserved under the action of $SL_2(\mathbb{Z})$, the semi-stable locus in the upper half plane \mathbb{H} is as follows

Figure: [1] - Semi-stable locus over $\mathbb H$ - it is the complement of the union of the gray area

In higher dimensions

We work with the lattices of the form $g\mathbb{Z}^n$ for $g\in GL_n(\mathbb{R})$ or $g\in SL_n(\mathbb{R})$. The latter yields lattices with unit volumes. Even if we want to work with unit lattices, we still need to consider the sublattices of arbitrary volumes.

In higher dimensions

We work with the lattices of the form $g\mathbb{Z}^n$ for $g \in GL_n(\mathbb{R})$ or $g \in SL_n(\mathbb{R})$. The latter yields lattices with unit volumes. Even if we want to work with unit lattices, we still need to consider the sublattices of arbitrary volumes.

Sublattice

A discrete subgroup M of the lattice L is called **sublatice** if it satisfies one of the the following equivalent conditions:

- \bigcirc L/M is torsion-free.
- M is a direct summand in L.
- Every basis of M can be extended to a basis in L.
- The quotient L/M is a free \mathbb{Z} -module.

Volume of lattice

The volume of $L = g\mathbb{Z}^n$ is just $\det(g)$. Assume that M is a sublattice of L of rank $k \leq n$ with a basis

$$\{v_1, v_2, \ldots, v_k\}$$

Let e_1, e_2, \ldots, e_n be the standard basis in $L \otimes \mathbb{R} \cong \mathbb{R}^n$. We can form a matrix of size $k \times n$

$$A = \left[\langle v_i, e_j \rangle \right]$$

The volume of M is defined to be the sum of the squares of the determinants of the $k \times k$ minor matrices in the matrix A.

Canonical plot in higher dimension

Grayson assigns to the lattice L a canonical plot as follows:

- Put the point (0,0) in the plot.
- ② For each sublattice $M \subset L$, assign a point with coordinates $I(M) = (\text{rank}(M), \log(\text{vol}(M)))$ to the plot.
- 3 Put the point $(n, \log(\text{vol}(L)))$ in the lattice.

Canonical plot in higher dimension

Grayson assigns to the lattice L a canonical plot as follows:

- Put the point (0,0) in the plot.
- ② For each sublattice $M \subset L$, assign a point with coordinates $I(M) = (\text{rank}(M), \log(\text{vol}(M)))$ to the plot.
- **3** Put the point $(n, \log(\text{vol}(L)))$ in the lattice.

As before, we call the convex hull of this plot its profile.

We have the following proposition:

Lemma - Grayson

Fix a lattice L of rank n and a positive number c. For each $k \le n$, there are only finitely many sublattices $M \subset L$ such that $\operatorname{vol}(M) < c$.

We have the following proposition:

Lemma - Grayson

Fix a lattice L of rank n and a positive number c. For each $k \le n$, there are only finitely many sublattices $M \subset L$ such that $\operatorname{vol}(M) < c$.

This guarantees that on each vertical line x=k, there exists a lowest point corresponding to the sublattice of smallest volume of each rank k. In particular, the bottom of the profile is bounded below. Hence, the following definition makes sense:

We have the following proposition:

Lemma - Grayson

Fix a lattice L of rank n and a positive number c. For each $k \le n$, there are only finitely many sublattices $M \subset L$ such that vol(M) < c.

This guarantees that on each vertical line x=k, there exists a lowest point corresponding to the sublattice of smallest volume of each rank k. In particular, the bottom of the profile is bounded below. Hence, the following definition makes sense:

Semi-stable lattice

A lattice *L* is called **semi-stable** if the bottom of the profile is just a line.

Example of a higher rank profile

Figure: An unstable lattice

Iwasawa decomposition

We recall the Iwasawa decomposition for $G = GL_n$:

$$G = K \times A \times N$$

where:

- $oldsymbol{0}$ K is the orthogonal subgroup.
- A is the group of diagonal matrices with positive entries along the diagonal.
- **3** *N* is the unipotent subgroup.

Parabolic subgroups

For $G = GL_n$ we have an explicit description of standard parabolic subgroups

Parabolic subgroups

For $G = GL_n$ we have an explicit description of standard parabolic subgroups

Standard Parabolic subgroups of GL_n

For each partition

$$n=n_1+n_2+\ldots+n_k$$

We denote $P_{n_1,n_2,...,n_k}$ the standard parabolic subgroup of type $(n_1,...,n_k)$ to be the subgroup of matrices of the form

$$P_{n_1,\ldots,n_k} = \left\{ \begin{bmatrix} \mathfrak{m}_1 & * & \ldots & * \\ 0 & \mathfrak{m}_2 & \ldots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \mathfrak{m}_k \end{bmatrix} \right\}$$

where \mathfrak{m}_i is invertible of size $n_i \times n_i$.

Degree of instability

Now we are ready to define the degree of instability

Degree of instability, [2]

For each $x \in G$, we define its degree of instability to be

$$\mathsf{deg}_{\mathsf{inst}}(x) := \min_{P \in \mathsf{ParSt}, \gamma \in G/P} \langle \rho_P, H_B(x\gamma) \rangle$$

Degree of instability

Now we are ready to define the degree of instability

Degree of instability, [2]

For each $x \in G$, we define its degree of instability to be

$$\mathsf{deg}_{\mathsf{inst}}(x) := \min_{P \in \mathsf{ParSt}, \gamma \in G/P} \langle \rho_P, H_B(x\gamma) \rangle$$

We define the notion of ρ -semistable as follows

ρ -semistable

A point $x \in G$ is called **semi-stable** iff $\deg_{inst}(x) \ge 0$.

Equivalent between two notions of semi-stable

We have

$$\langle \rho_{Q_i}, H_B(x\gamma) \rangle = a_1 a_2 \dots a_i$$

Equivalent between two notions of semi-stable

We have

$$\langle \rho_{Q_i}, H_B(x\gamma) \rangle = a_1 a_2 \dots a_i$$

where

$$x = k_x a_x n_x \in K \times A \times N,$$

in which

$$a_{X} = \begin{bmatrix} a_{1} & 0 & \dots & 0 \\ 0 & a_{1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n} \end{bmatrix}$$

Equivalent between two notions of semi-stable lattices

We have the following Lemma

Lemma 2.2.1, [2]

The following are equivalent:

- ② For every parabolic subgroup $P \subset G$, every $\delta \in G(\mathbb{Q})/P(\mathbb{Q})$, and every $\varpi \in \hat{\Delta}_P^G$, we have:

$$\langle \varpi, H_B(x\delta) \rangle \geq 0;$$

3 For every maximal parabolic subgroup $P \subset G$, every $\delta \in G(\mathbb{Q})/P(\mathbb{Q})$, and every $\varpi \in \hat{\Delta}_P^G$, we have:

$$\langle \varpi, H_B(x\delta) \rangle \geq 0.$$

This suggests that there should be a connection between the maximal parabolic subgroups of G and sublattices of L. Indeed we have

$$\mathsf{GL}_n(\mathbb{Z})/(Q_i(\mathbb{Q})\cap\mathsf{GL}_n(\mathbb{Z}))\longleftrightarrow\{\text{ sublattices of rank }i\text{ of }\mathbb{Z}^n\}$$

So we have the main theorem

Main theorem

Let $x \in X_n = K \backslash GL_n(\mathbb{R})$ - the space of lattices . Then x is semi-stable if one of the following equaivalent conditions holds

- The bottom of the profile of the lattice corresponding to x is a straight line that connects the origin and $(n, \log(\text{vol}(L)))$.
- ② The degree of instability of x is nonnegative, namely, $\deg_{inst}(x) \ge 0$.

References

Stability of lattices and the partition of arithmetic quotients. 2004.

Pierre-Henri Chaudouard.

Sur une variante des troncatures d'arthur.

In *Simons Symposium on the Trace Formula*, pages 85–120. Springer, 2016.

THANK YOU FOR YOUR ATTENTION.