Rodzaj niepewności	Sposób wyznaczenia
Niepewności graniczne mierników	
Niepewność graniczna bezwzględna	I sposób: $\Delta I = (a\% rdg + b\% FSR)$
	np.: $\pm (1\% \cdot I_x + 0.5\% \cdot 200mA)$
- często podawana przez producentów	
(wyniki mają jednostkę)	II sposób: $\Delta I = (a\% rdg + dig)$
Althous and the second states	$np.: \pm (1\% \cdot I_x + 1 mA)$
Niepewność graniczna względna	np.: $\pm (1\% \cdot I_x + 1 mA)$ $\delta I = \frac{\Delta I}{I_x} \cdot 100\%$
Niepewności pomiarów bezpośrednich	
Niepewność standardowe typu A	Dla serii n pomiarów
-niepewności statystyczne (pomiary powtórzone n-krotnie) (ćw 6A)	$u_A(x)\equiv s(\bar x)=\sqrt{\frac{\sum_{i=1}^n(x_i-\bar x)^2}{n(n-1)}}$ gdzie $\bar x=\frac{1}{n}\sum_{i=1}^nx_i$
Niepewność standardowe typu B	Uwzględnia
	- niepewność wzorcowania (np. niepewność
- niepewność szacowana	przyrządu pomiarowego $\Delta_p x$)
(wykonany jeden pomiar lub wyniki nie wykazują	- niepewność eksperymentatora $\Delta_e x$
rozrzutu)	-inne niepewności
	$u_B(x) = \sqrt{\frac{(\Delta_p x)^2}{3} + \frac{(\Delta_e x)^2}{3} + \cdots}$
Niepewność standardowa całkowita	
(gdy obydwa typy niepewności A i B występują równocześnie)	$u(x) = \sqrt{u_A^2(x) + u_B^2(x)}$
Niepewności pomiarów pośrednich (użyte wzory do przeliczeń, np. prawo Ohma)	
Niepewność złożona	Dla wielkości y = $(x_1, x_2, \dots x_k)$
-którą wyliczamy korzystając z wyznaczonych niepewności standardowych pomiarów pośrednich	$u_c(y) = \sqrt{\sum_{i=1}^k \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i)}$
Niepewność rozszerzona	$U(x) = k \cdot u(x)$
	Na laboratorium przyjmujemy k = 2

Szczegółowe objaśnienia można znaleźć w wykładach i materiałach z eportlu

Zanim zaczniesz obliczenia i uznasz, że sprawozdanie jest gotowe odpowiedz sobie na pytania, np.

- Czy dwa pomiary to seria pomiarowa?
- Czy dwa lub więcej pomiarów odczytanych w różnych układach pomiarowych i na różnych przyrządach można uśredniać? Jak można przeanalizować kompleksowo takie wyniki?
- Do czego służy skala przyrządu? Jak z niej korzystać i jak określać jej wpływ na dokładność pomiaru?
- Jakie znasz wielkości mierzone? Czy wszystkie mają jednostki?
- Czy rezystancja wewnętrzna przyrządów albo innych elementów może zmieniać się wraz z pomiarem?
- Zrobiłem(am) obliczenia, otrzymuje wartość czy powinienem (nam) zastanowić się, czy wynik jest poprawny?
- Czy, jeżeli pomiary tego samego obiektu zostały wykonane różnymi metodami różnymi przyrządami, to przeanalizowałem(łam) kompleksowo uzyskane wyniki i ich niepewności? Czy mogę ocenić poprawność wszystkich pomiarów? Jakie kryterium do tego mogę przyjąć? Jak "wygodnie" porównać wyniki?
- Czy moje sprawozdanie jest czytelne dla kolegi? (czy wie co robiłem, dlaczego i jaki sens mają wyniki)
- Czy sformułowania "proste krzywe", "w większości liniowe", "prosta rosnąco-malejąca" mają sen?