Thermodynamics and Internal Degrees of Freedom

per mole	Rotation	Vibration	High temperature or		
internal			$hv_0 \ll kT$		
q	$q_{r} = \frac{kT}{\sigma \tilde{B}hc}$	$q_v = \frac{1}{1 - e^{-h\nu_o/kT}}$	$e^{-h\nu_o/kT} = 1 - \frac{h\nu_o}{kT}$		
		$q_v = \frac{1}{1 - e^{-\beta h \nu_o}}$	$q_{v} = \frac{kT}{h\nu_{o}}$		
U - U(0)	RT^2 (k)	*	$RT^2(k)$		
$= \frac{RT^2}{q} \left(\frac{\partial q}{\partial T} \right)_{V}$	$\frac{kT}{\sigma \tilde{B}hc} \sigma \tilde{B}hc$	$\frac{\text{Nhv}_{o} \text{ e}^{-\text{hv}_{o}/\text{kT}}}{1 - \text{e}^{-\text{hv}_{o}/\text{kT}}}$	$\left \frac{\overline{kT}}{\overline{hv_o}} \right \overline{hv_o}$		
$= \frac{-N}{q} \left(\frac{\partial q}{\partial \beta} \right)_{V}$	= RT	1 - C 0, K1	= RT		
$G - G(0)$ $= -RT \ln q$	$-RT ln \left(\frac{kT}{\sigma \tilde{B}hc}\right)$	$RT \ln(1 - e^{-h\nu_0/kT})$	$-RT ln \left(\frac{kT}{h\nu_o}\right)$		
at 298.15 K	$-RT \ln \left(\frac{207.2 \text{ cm}^{-1}}{\sigma \tilde{B}} \right)$	RT $\ln(1 - e^{-\tilde{v}_0/207.2 \text{ cm}^{-1}})$	$-RT \ln \left(\frac{207.2 \text{ cm}^{-1}}{\tilde{v}_o} \right)$		

$$\frac{* \ U - U(0) \ and \ Vibration}{\left(\frac{\partial q}{\partial \beta}\right)_{V} = \frac{-1}{\left(1 - e^{-\beta h \nu_{o}}\right)^{2}} \ (h\nu_{o} \ e^{-\beta h \nu_{o}})$$

$$U-U(0) = -\frac{N}{q} \left(\frac{\partial q}{\partial \beta} \right)_{V} = -\frac{N}{\left(\frac{1}{1-e^{-\beta h \nu_{o}}} \right)} \frac{-h\nu_{o} \ e^{-\beta h \nu_{o}}}{(1-e^{-\beta h \nu_{o}})^{2}}$$

$$U - U(0) = \frac{Nh\nu_o e^{-\beta h\nu_o}}{1 - e^{-\beta h\nu_o}}$$

Non-linear Molecules and Rotation

$$\begin{split} q_r &= \frac{\sqrt{\pi}}{\sigma} \left(\frac{kT}{\tilde{A}hc} \right)^{1/2} \!\! \left(\frac{kT}{\tilde{B}hc} \right)^{1/2} \!\! \left(\frac{kT}{\tilde{C}hc} \right)^{1/2} \\ G - G(0) &= -RT \, ln \left[\frac{\sqrt{\pi}}{\sigma} \left(\frac{kT}{\tilde{A}hc} \right)^{1/2} \!\! \left(\frac{kT}{\tilde{B}hc} \right)^{1/2} \!\! \left(\frac{kT}{\tilde{C}hc} \right)^{1/2} \right] \end{split}$$

Electronic Degree of Freedom

$$q_{\rm e} = \sum_{all \; energy \; levels} g_i \; e^{-E_i/kT}$$

with $E_{gs} = 0$ as the reference energy

Ground State Atomic Terms, Low Lying Excited States, and Degeneracies (gi).

Element	Н	В	С	N	О	F	P	S	Cl	Br
Term	$^{2}S_{\frac{1}{2}}$	$^{2}P_{\frac{1}{2}}$	${}^{3}P_{0}$	$^{4}S_{3/2}$	${}^{3}P_{2}$	$^{2}P_{3/2}$	$^{4}S_{3/2}$	$^{3}P_{2}$	$^{2}P_{3/2}$	$^{2}P_{3/2}$
\mathbf{g}_{gs}	2	2	1	4	5	4	4	5	4	4
Excited states										
E (cm ⁻¹)		15.254	16.4		158.5	404		396.8	881	
g_{ex}		4	3		3	2		3	2	
E(cm ⁻¹)			43.5		226.1			573.6		
g_{ex}			5		1			1		
q _e at 298.15 K	2	5.71615	7.82505	4	6.73212	4.28470	4	5.50495	4.02850	4

Example: ground state O: $2p^4$: 1 2s 2p

$${}^{3}P_{2} \hspace{0.5cm} J=2 \hspace{1.5cm} M_{J}=\text{-2,-1,0, 1, 2} \hspace{0.5cm} g_{gs}=5$$

$$q_e = 5 + 3 \; e^{-158.5/207.2} + 1 \; e^{-226.1/207.2} = 5 + 1.39404 + 0.33581 = 6.72984$$

For almost all molecules the energy of the first excited state is >> kT above the ground state, only the ground state contributes and the partition function is well approximated by the ground state degeneracy at 298.2 K, $q_e \cong g_{gs}$

$$O_2: \ 1\sigma_g^2 \ 1\sigma_u^{*2} \ 2\sigma_g^2 \ 2\sigma_u^{*2} \ 3\sigma_g^2 \ 1\pi_u^4 \ 1\pi_g^{*2} \qquad \qquad ^3\Sigma_g^- \ , \quad g_{gs} = 3 \qquad \qquad q_e = 3$$

$$^1\!\Delta_g$$
 , $g_{ex}=2$ at $7918.1~cm^{\text{-}1}$ $\;$ and $\;^1\!\Sigma_g^+$, $g_{ex}=1\;$ at $13195.1~cm^{\text{-}1}$

Molecular Exception: NO: $1\sigma^2 1\sigma^{*2} 2\sigma^2 3\sigma^{*2} 2\sigma^2 1\pi^4 1\pi^{*1}$

$$^{2}\Pi_{\frac{1}{2}}$$
, $g_{gs} = 2$ and $^{2}\Pi_{\frac{3}{2}}$, $g_{ex} = 2$ at 119.8 cm⁻¹ $q_{e} = 2 + 2$ e^{-119.8/207.2} = 3.156

Total Molecular Angular Momentum: $\Omega = \Lambda + \Sigma$, $|\Lambda - \Sigma|$

for NO, $\Lambda=1$ with $M_{\Lambda}=+1$, -1 and $\Sigma=\frac{1}{2}$ with $M_{\Sigma}=+\frac{1}{2}$, -\frac{1}{2} \rightarrow two terms $^{2}\Pi_{3/2}$ and $^{2}\Pi_{1/2}$