Test_RMkdwn

TK51

2023-04-08

YES, IT IS! The starter (2nd timeR)!

Markdown syntax

You can use regular markdown rules in your R Markdown document. Once you knit your document, the output will display text formatted according to the following simple rules.

Formatting Text

Here are a few common formatting commands:

Italic

Italic

Bold

Bold

This is code in text

This is code in text

Header 1

Header 1

Header 2

Header 2

Note that when a # symbol is placed inside a code chunk it acts as a normal R comment, but when placed in text it controls the header size.

• Unordered list item

Unordered list item

1. Ordered list item

Ordered list item

Link

Link

 $A=\pi\times r^2$

Rendered equation example

The \$ symbols tells R markdown to use LaTeX equation syntax.

1

```
norm \leftarrow rnorm(100, mean = 0, sd = 1)
A <- c("a", "a", "b", "b")
B \leftarrow c(5, 10, 15, 20)
dataframe <- data.frame(A, B)</pre>
print(dataframe)
##
     A B
## 1 a 5
## 2 a 10
## 3 b 15
## 4 b 20
##
     A B
## 1 a 5
## 2 a 10
## 3 b 15
## 4 b 20
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
print("yey!")
## [1] "yey!"
A <- c("a", "a", "b", "b")
B \leftarrow c(5, 10, 15, 20)
dataframe <- data.frame(A, B)</pre>
print(dataframe)
     A B
## 1 a 5
## 2 a 10
## 3 b 15
## 4 b 20
boxplot(B~A,data=dataframe)
```


dataframe

```
## A B ## 1 a 5 ## 2 a 10 ## 3 b 15 ## 4 b 20
```

library(knitr)
kable(dataframe, digits = 2)

 $\begin{array}{c|cc} A & B \\ \hline a & 5 \\ a & 10 \\ b & 15 \\ b & 20 \\ \end{array}$

```
library(pander)
plant <- c("a", "b", "c")
temperature <- c(20, 20, 20)
growth <- c(0.65, 0.95, 0.15)
dataframe <- data.frame(plant, temperature, growth)
emphasize.italics.cols(3)  # Make the 3rd column italics
pander(dataframe)  # Create the table</pre>
```

plant	temperature	growth
a	20	0.65
b	20	0.95
$^{\mathrm{c}}$	20	0.15

Plant	Temp.	Growth
Δ	20	0.65

Plant	Temp.	Growth
В	20	0.95
\mathbf{C}	20	0.15

```
library(broom)
library(pander)
A <- c(20, 15, 10)
B <- c(1, 2, 3)

lm_test <- lm(A ~ B)  # Creating linear model

table_obj <- tidy(lm_test)  # Using tidy() to create a new R object called table

pander(table_obj, digits = 3)  # Using pander() to view the created table, with 3 sig figs</pre>
```

term	estimate	std.error	statistic	p.value
(Intercept)	25	4.07e-15	6.14e + 15	1.04e-16
В	-5	1.88e-15	-2.65e + 15	2.4e-16

[1] "/home/t51/DataAnalytics/R-Playground/coding_club/03_Wiz_MarkDown"

```
edidiv <- read.csv("edidiv.csv")
richness <-
  edidiv %>%
  group_by(taxonGroup) %>%
  summarise(Species_richness = n_distinct(taxonName))
richness
```

```
## # A tibble: 11 x 2
##
   taxonGroup Species_richness
##
    <chr>
                               <int>
## 1 Beetle
                                  37
## 2 Bird
                                  86
                                  25
## 3 Butterfly
## 4 Dragonfly
                                 11
## 5 Flowering.Plants
                                 521
## 6 Fungus
                                 219
## 7 Hymenopteran
                                 112
## 8 Lichen
                                 94
## 9 Liverwort
                                  40
## 10 Mammal
                                  33
## 11 Mollusc
                                  97
```

pander(richness)

taxonGroup	Species_richness
Beetle	37
Bird	86
Butterfly	25
Dragonfly	11
Flowering.Plants	521
Fungus	219
Hymenopteran	112
Lichen	94
Liverwort	40
Mammal	33
$\operatorname{Mollusc}$	97

kable(richness)

taxonGroup	Species_richness
Beetle	37
Bird	86
Butterfly	25
Dragonfly	11
Flowering.Plants	521
Fungus	219
Hymenopteran	112
Lichen	94
Liverwort	40
Mammal	33
Mollusc	97