ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

ХИМИЯ 11 КЛАСС

Вариант 1

Инструкция по выполнению работы

Проверочная работа включает в себя 15 заданий. На выполнение работы по химии отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать следующие дополнительные материалы:

- Периодическая система химических элементов Д.И. Менделеева;
- таблица растворимости солей, кислот и оснований в воде;
- электрохимический ряд напряжений металлов;
- непрограммируемый калькулятор.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Сумма баллов	Отметка за работу
Баллы																	

1

Из курса химии Вам известны следующие *способы* разделения смесей: *отстаивание,* фильтрование, дистилляция (перегонка), действие магнитом, выпаривание, кристаллизация. На рисунках 1–3 представлены примеры использования некоторых из перечисленных способов.

Какие из названных способов разделения смесей можно применить для отделения:

- 1) железных и пластиковых скрепок;
- 2) воды от заварки чая (листья чая)?

Запишите в таблицу номер рисунка и название соответствующего способа разделения смеси.

	Смесь	Номер рисунка	Способ разделения смеси
:	железные и пластиковые скрепки		
	вода и заварка чая (листья чая)		

2

На рисунке изображена схема распределения электронов по энергетическим уровням атома некоторого химического элемента.

На основании предложенной схемы выполните следующие задания:

- 1) запишите символ химического элемента, которому соответствует данная модель атома;
- 2) запишите номер периода и номер группы в Периодической системе химических элементов Д.И. Менделеева, в которых расположен этот элемент;
- 3) определите, к металлам или неметаллам относится простое вещество, которое образует этот элемент.

Ответы запишите в таблицу.

	Символ химического	No	$N_{\underline{0}}$	Металл/
	элемента	периода	группы	неметалл
i				

КОД

3	Периодическая система химических элементов Д.И. Менделеева – богатое хранилище
3)	информации о химических элементах, их свойствах и свойствах их соединений. Так,
	например, известно, что с увеличением порядкового номера химического элемента основный
	характер их оксидов в периодах ослабевает, а в группах усиливается.

Учитывая эти закономерности, укажите, какой химический элемент среди приведённых образует оксид с наиболее сильными основными свойствами, а какой – с наименьшими: кальций, магний, натрий, калий.

В ответе укажите символы этих элементов:

образует оксид с наиболее сильными основными свойствами	
образует оксид с наименьшими основными свойствами	

В приведённой ниже таблице перечислены характерные свойства веществ, которые имеют молекулярное и ионное строение.

еств
Ионного строения
обычных условиях, как правило, ые; кие; павкие; учие; сплавах и растворах проводят рический ток; падают запахом
1

Используя данную информацию, определите, какое строение имеют вещества ацетилен C_2H_2 и нитрат аммония NH_4NO_3 .

1) ацетилен С ₂ H ₂	
2) нитрат аммония $\mathrm{NH_4NO_3}$	

Прочитайте следующий текст и выполните задания 5-7.

Хлороводород (HCl) – довольно ядовитый газ с резким запахом. В промышленности его получают синтезом из простых веществ, в лаборатории – действием концентрированной серной кислоты на хлорид натрия. Хлороводород хорошо растворим в воде, его водный раствор называется соляной кислотой.

В соляной кислоте растворяются многие металлы, например, железо, цинк, магний. Так, при действии соляной кислоты на алюминий можно получить хлорид алюминия (AlCl₃). Соляная кислота реагирует с многими оксидами металлов (например, оксидами натрия (Na₂O) или магния (MgO)) и гидроксидами (например, гидроксидами алюминия (Al(OH)₃) или натрия (NaOH)).

Соляная кислота входит в состав желудочного сока, способствуя перевариванию пищи. Избыток соляной кислоты в желудочном соке приводит к изжоге и развитию гастрита. Многие лекарственные препараты уменьшают кислотность желудочного сока, поскольку содержат компоненты (например, гидроксид магния $Mg(OH)_2$), которые нейтрализуют соляную кислоту.

Сложные неорганические вещества условно можно распределить, то есть классифицировать, по четырём группам, как показано на схеме. В эту схему для каждой из четырёх групп впишите по одной химической формуле веществ из тех, о которых говорится в приведённом выше тексте.

	Ответ:
	2) Укажите тип реакции по её тепловому эффекту.
	Ответ:
7	1) Составьте молекулярное уравнение упомянутой в тексте реакции между соляной кислотой и гидроксидом магния.
	Ответ:
	2) Укажите, к какому типу (соединения, разложения, замещения, обмена) относится эта реакция.
	Ответ:

1) Составьте молекулярное уравнение взаимодействия алюминия и соляной кислоты.

8	В составе воды реки Неглинная были обнаружены следующие ионы: NH_4^+ , Zn^{2+} , Cl^- . Для проведения качественного анализа к этой воде добавили раствор $AgNO_3$.
	1. Укажите, какое изменение можно наблюдать в растворе при проведении данного опыта, учитывая, что концентрация веществ является достаточной для проведения анализа.
[Ответ:
	2. Запишите сокращённое ионное уравнение произошедшей химической реакции.
	Ответ:
9	Дана схема окислительно-восстановительной реакции. $MnO_2 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O$
\cup	1. Составьте электронный баланс этой реакции.
	Ответ:
<u> </u>	2. Укажите окислитель и восстановитель. Ответ:
	3. Расставьте коэффициенты в уравнении реакции. Ответ:
(10)	Дана схема превращений:
	$Fe \to FeCl_2 \to Fe(OH)_2 \xrightarrow{t^\circ} X$ Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.
,	1)
	2)

Для выполнения заданий 11-13 используйте вещества, структурные формулы которых приведены в перечне:

приведены в перечне:
1)
$$CH_3$$
— CH_2 — C $\stackrel{O}{\leftarrow}$ 2) CH_3 — CH = CH_2 3) CH_3 - OH 4) CH_3 - C $\stackrel{O}{\leftarrow}$ 5) CH_3 — CH - CH_3 CH_3

Из приведённого перечня выберите предельный углеводород и одноатомный спирт. Запишите в таблицу номера, под которыми указаны эти соединения.

Предельный углеводород	Одноатомный спирт

Составьте уравнения реакций: в предложенные схемы химических реакций впишите структурные формулы пропущенных веществ и расставьте коэффициенты.

1) ············· + H ₂ O
2) ······ + H ₂

Метилацетат является типичным представителем сложных эфиров. Благодаря низкой токсичности и приятному запаху этот эфир широко используется как растворитель, а также как компонент фруктовых эссенций. В лаборатории метилацетат можно получить в соответствии с приведённой схемой превращений:

CH₃-CI
$$\xrightarrow{\text{KOH}}$$
 X $\xrightarrow{\text{CH}_3\text{COOH}, \text{H}_2\text{SO}_4}$ CH₃-C $\xrightarrow{\text{O}}$ CH₃-CH₃

Определите вещество X, выбрав его из предложенного выше перечня веществ. Запишите уравнения двух реакций, с помощью которых можно осуществить эти превращения. Запишите название вещества X.

При написании уравнений реакций используйте структурные формулы органических веществ.

 1)	
2)	
 3)	

КОД	

	Одним из важных понятий в экологии и химии является «предельно допустимая
	концентрация» (ПДК). ПДК — это такая концентрация вещества в окружающей среде
	которая при повседневном воздействии в течение длительного времени не оказывает
ļ	прямого или косвенного неблагоприятного влияния на настоящее или будущее поколение, не
	снижает работоспособности человека, не ухудшает его самочувствия и условий жизни.
	ПДК углекислого газа в воздухе составляет 9 г/м 3 .
	В стеклодувной мастерской площадью 24 м ² и высотой потолка 2 м 50 см в результате
	работы газовых горелок в воздухе скопилось 558 г углекислого газа. Определите и
	подтвердите расчётами, превышает ли концентрация углекислого газа в воздухе данного
	помещения значение ПДК. Предложите способ, позволяющий снизить концентрацик
•	углекислого газа в помещении.
	Ответ:
	Для приготовления маринадов вместо уксуса можно использовать 2,5%-ный раствор
	лимонной кислоты. Рассчитайте массу лимонной кислоты и массу воды, которые
	необходимы для приготовления 160 г такого раствора. Запишите подробное решение задачи.
(Ответ:

1

Ответы и критерии оценивания проверочной работы по химии

Содержание верного ответа и указания по оцениванию Баллы (допускаются иные формулировки ответа, не искажающие его смысла) Смесь Номер рисунка Способ разделения смеси железные и пластиковые скрепки 1 действие магнитом 3 вода и заварка чая (листья чая) фильтрование Ответ правильный и полный, содержит все названные выше элементы 2 Допущена ошибка в одном из элементов ответа 1 Допущено две и более ошибки 0 Максимальный балл

2	Содержание вер (допускаются иные фор				Баллы
	Символ химического	№	№	Металл/	
	элемента	периода	группы	неметалл	
	Si	3	4	Неметалл	
	Ответ правильный и полный,	содержит все наз	ванные выше э	лементы	2
	Допущена ошибка в одном из	з элементов ответа	a		1
	Допущено две и более ошибк	и			0
				Максимальный балл	2

3	Содержание верного ответа и указания по оц (допускаются иные формулировки ответа, не искажаю		Баллы
	образует оксид с наиболее сильными основными свойствами	K	
	образует оксид с наименьшими основными свойствами	Mg	
	Правильно указаны символы элементов		1
	Последовательность символов записана неверно, или ответ	отсутствует	0
		Максимальный балл	1

1	Содержание верного ответа и указания по оцениванию	Баллы
4	(допускаются иные формулировки ответа, не искажающие его смысла)	
	Элементы ответа:	
	1) Ацетилен имеет молекулярное строение.	
	2) Нитрат аммония имеет ионное строение	
	Ответ правильный и полный, содержит все названные выше элементы	2
	Допущена ошибка в одном из элементов ответа	1
	Все элементы ответа записаны неверно	0
	Максимальный балл	2

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
Элементы ответа:	
Оксид: Na ₂ O или MgO	
Основание: NaOH или Mg(OH) ₂	
Кислота HCl или H ₂ SO ₄	
Соль: AlCl ₃ или NaCl	
Ответ правильный и полный, содержит все названные выше элементы	2
Правильно заполнены три ячейки схемы	1
Допущено две и более ошибки	0
Максимальный б	алл 2

6	Содержание верного ответа и указания по оцениванию	Баллы
0	(допускаются иные формулировки ответа, не искажающие его смысла)	
	Элементы ответа:	
	1) $2Al + 6HCl = 2AlCl_3 + 3H_2 \uparrow$	
	2) Реакция протекает с выделением теплоты (экзотермическая реакция)	
	Ответ правильный и полный, содержит все названные выше элементы	2
	Допущена ошибка в одном из элементов ответа	1
	Все элементы ответа записаны неверно	0
	Максимальный балл	2

7	Содержание верного ответа и указания по оцениванию	Баллы
	(допускаются иные формулировки ответа, не искажающие его смысла)	
	Элементы ответа:	
	1) $Mg(OH)_2 + 2HCl = MgCl_2 + 2H_2O$	
	2) Реакция обмена	
	Ответ правильный и полный, содержит все названные выше элементы	2
	Допущена ошибка в одном из элементов ответа	1
	Все элементы ответа записаны неверно	0
	Максимальный балл	2

8	Содержание верного ответа и указания по оцениванию	Баллы
o	(допускаются иные формулировки ответа, не искажающие его смысла)	
	Элементы ответа:	
	1) Выпадение (белого) осадка	
	2) $Ag^+ + C\Gamma = AgCl\downarrow$	
	Ответ правильный и полный, содержит все названные выше элементы	2
	Допущена ошибка в одном из элементов ответа	1
	Все элементы ответа записаны неверно	0
	Максимальный балл	2

	_
(0
(フ
/	. /
	$\overline{}$

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа:	
1) Составлен электронный баланс:	
$1 \mid Mn^{+4} + 2\bar{e} \rightarrow Mn^{+2}$	
$1 \mid 2Cl^{-} - 2\bar{e} \rightarrow Cl_{2}^{0}$	
2) Указано, что хлор в степени окисления –1 (или HCl) является восстановителем,	
а марганец в степени окисления +4 (или MnO ₂) – окислителем;	
3) Составлено уравнение реакции:	
$MnO_2 + 4HCl = MnCl_2 + Cl_2 + 2H_2O$	
Ответ правильный и полный, включает в себя все названные выше элементы	3
Правильно записаны два из названных выше элементов ответа	2
Правильно записан один из названных выше элементов ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	3

(10)

Содержание верного ответа и указания по оцениванию	
(допускаются иные формулировки ответа, не искажающие его смысла)	
Написаны уравнения реакций, соответствующие схеме превращений	
1) Fe + 2HCl = FeCl ₂ + H ₂ O	
2) FeCl2 + 2NaOH = Fe(OH)2 + 2NaCl	
3) $Fe(OH)_2 \xrightarrow{t^\circ} FeO + H_2O$	
Правильно записаны 3 уравнения реакций	3
Правильно записаны 2 уравнения реакций	2
Правильно записано 1 уравнение реакции	1
Все уравнения записаны неверно или ответ отсутствует	0
Максимальный балл	3

(11)

Содержание верного ответа и указания по оцениванию	
(допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа: 53	
Правильно записаны все элементы ответа	2
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно или ответ отсутствует	
Максимальный балл	2

/			\
/	4	•	1
(•	•	
\	_	_	/
\			/

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)		Баллы
Элементы ответа:		
1) CH_3 - CH = CH_2 + H_2O \longrightarrow CH_3 - CH - CH_3 OH		
2) CH ₃ -CH ₂ -C, O + H ₂		
Правильно записаны два элемента ответа		2
Правильно записан один элемент ответа		1
Все элементы ответа записаны неверно или ответ отсутствует	-	0
Max	ксимальный балл	2

(13

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа:	
Написаны уравнения реакций, соответствующие схеме:	
1) CH_3 - CI + KOH \longrightarrow CH_3 - OH + H_2O	
2) $CH_3-OH + CH_3-C \stackrel{O}{\stackrel{O}{\bigcirc}OH} \longrightarrow CH_3-C \stackrel{O}{\stackrel{O}{\stackrel{O}{\bigcirc}O-CH_3}} + H_2O$	
3) Записано название вещества Х: метанол или метиловый спирт	
Правильно записаны все элементы ответа	3
Правильно записаны два элемента ответа	2
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно или ответ отсутствует	0
Максимальный балл	3

(14)

Содержание верного ответа и указания по оцениванию		
(допускаются иные формулировки ответа, не искажающие его смысла)	Баллы	
Элементы ответа:		
1) Определён объём помещения и определена концентрация углекислого		
газа в нём:		
V (помещения) = $24 \cdot 2.5 = 60 \text{ m}^3$		
Содержание углекислого газа = $558 \text{ г} / 60 = 9.3 \text{ г/м}^3$		
2) Сформулирован вывод о превышении ПДК;		
Концентрация углекислого газа в помещении превышает показатель 9 г/м ³ ;		
3) Сформулировано одно предложение по снижению содержания		
углекислого газа в помещении.		
Возможные варианты: замена газового оборудования на электрическое;		
регулярное проветривание (вентиляция) помещения		
Ответ правильный и полный, содержит все названные выше элементы		
Правильно записаны два из названных выше элементов ответа		
Правильно записан один из названных выше элементов ответа		
Максимальный балл	3	

Содержание верного ответа и указания по оцениванию	
(допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа:	
1) Рассчитана масса лимонной кислоты:	
$m(кислоты) = 160 \cdot 0,025 = 4 \Gamma$	
2) Рассчитана масса воды:	
$m(воды) = 160 - 4 = 156 \ \Gamma$	
Ответ правильный и полный, содержит все названные выше элементы ответа	2
Допущена ошибка в одном из элементов ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	2

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы -33.

Рекомендуемая шкала перевода суммарного балла за выполнение ВПР в отметку по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Суммарный балл	0–10	11–19	20–27	28–33