Matemática Avanzada
Facultad de Ingeniería
Universidad Nacional de Cuyo

EVALUACIÓN PARCIAL Nro. 1-2018

Nombre y Apellido: Guatelli, María Sology

Legajo: 12164

Ejercicio 1.

Un sistema dinámico en tiempo discreto está representado por la siguiente ecuación diferencial

$$\frac{d^2u(t)}{dt^2} + 2\frac{du(t)}{dt} + 10 \cdot u(t) = g(t)$$

En t=0 se conoce que
$$\frac{du(t)}{dt}\Big|_{t=0} = v_0 \cdot = 1$$
 $u(0) = u_0 = 1$

- a) Encuentre U(s) usando Transformada de Laplace, distinguiendo la solución natural y la solución forzada.
- b) Determine la respuesta natural $u_n(t)$, usando propiedades de *Transformada de Laplace*, o bien utilizando los residuos expresados en forma polar (sin calcularlos).
- c) Determine la respuesta forzada $u_i(t)$ para $g(t) = 2 \cdot e^{-3t}$.
- d) Exprese la función de transferencia de H(s)
- e) Indique la posición de los polos de H(s) en el plano complejo, y dibuje cualitativamente la respuesta h(t).
- f) Indique las dos funciones cuya convolución entre ambas genera la solución forzada del inciso c).

f(t)	F(s)	f(t)	F(s)	f(t)	F(s)
b=b.u(t)	b/s	sen(bt)	$b/(s^2+b^2)$	cos(bt)	$s/(s^2+b^2)$
b.t	b/s ²	senh(bt)	$b/(s^2 - b^2)$	cosh(bt)	$s/(s^2 - b^2)$
e ^{-a.t} δ (t-a)	1/(s+a) e-a.s	e ^{-a.t} f(t)	F(s-a)	df(t)/dt	s F(s)- f(0)
$\int_{0}^{t} h(t-\tau) \cdot g(\tau) \cdot d\tau$	H(s).G(s)	F(t-a)	e ^{-a.s} F(s)	$d^2f(t)/dt^2$	$s^2 F(s) - sf(0) - df(0)/dt$

us(t) es la función escalón unitario. δ(t-a), es la función Delta de Dirac en t=a

Ejercicio 2.

- Diseñe el modelo matemático que gobierna el movimiento de un sistema acoplado masa resorte no amortiguado, como indica la *Figura*, para valores genéricos de los parámetros físicos del problema.
- b) Determine las frecuencias y los modos naturales de vibración del sistema, expresando en términos de la relación k/m, para el caso en el que M=8m; K=8k (4)
- c) Compare las frecuencias naturales obtenidas en el inciso b), con las frecuencias correspondientes a los sistemas desacoplados de un grado de libertad (M, K, w_0) y (m, k, w_a) respectivamente. Elabore conclusiones.
- d) A partir de las expresiones obtenidas en el inciso b), determine una solución particular para la relación k/m=4 N/(m kg) y las siguientes condiciones iniciales:

$$U(0) = \begin{bmatrix} 0.15 \\ 0.30 \end{bmatrix}$$
; $\dot{U}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

e) Grafique las formas asociadas a ambos modos de vibración.

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

