Density @ Gravity a) We have dp = Ce-mgz/kT dz dxdy e P2/2mT dpxdpydpz · We note that the probability factorizes 1 = forp = C | dz emg2/xT | dxdy (e-P2/2mT d3p · Recognizing from the old result (in class) $\int d^3 \rho \, e^{-\frac{p^2}{2mT}} \left(\frac{1}{2\pi m k_B T} \right)^{\frac{3}{2}} = 1$ · We insett the factors

I = C L2(211 mkT)3/2 | dz e-mg2/kT | dxdy | d3p e P3/2mkT

= kT/mg = 1

 $1 = C \left(2\pi m k T\right)^{3/2} \left(\frac{kT}{mg}\right)$

(= 1- 1 (2TTmkT)3/2 2 with l= KT · Ther

$$dP = e^{-\frac{7}{2}/2} dz dxdy e^{-\frac{7}{2} \ln kT} d^{3}p$$

$$L^{2} \frac{(2 \ln kT)^{3}/2}{(2 \ln kT)^{3}/2}$$

The result fortorizes

To find P(z) we only need to sum over

[X, y, and px, py pz wich we don't want to know

$$\frac{dP}{z} = \frac{e^{-2l\varrho}}{2} dz \int \frac{dxdy}{L^2} \int \frac{d3p}{(2\pi m kT)^{3/2}} dxdy$$

$$\frac{P(z)}{dP} = \frac{e^{-z/\varrho}}{2} dz \qquad l = kT$$

$$\frac{z}{2} = \frac{q}{2}$$

b) So
$$(z) = \int_{0}^{\infty} dz \ z \ P(z) = \int_{0}^{\infty} dz \ z \ e^{-z/2}$$

Esimating

$$L = k_{0}T = N_{A}k_{0}T - 8.32T \times 300^{\circ}K - 9 \, km$$

$$mg = N_{A}m \, g - (28g)(9.8m/s^{2})$$

The molar mass of air is 28g.

$$(1) \cdot The \text{ density is proportional to } P(z)$$

$$N(z) \propto P(z) \propto e^{-2/L}$$

$$So = N(z) = (e^{-2/L}) \quad \text{at } z = 0 \quad N(0) = N_{0}$$

$$N(z) = n_{0}e^{-2/L}$$

$$N(z) = n$$

For n(z) = n e mg 2/kT this is satisfied,

Phase Space Density

. The momenta are confined to a spherical

· The volume of this shell is

2pdp = 2mdE

$$d\rho = m - dE = (2mE)^{V_2} dE$$

50

Oscillator

· Then

a)
$$\sum P_n = -\sum C e^{-En/kT} = C \sum e^{-En/kT} = 1$$

$$C=1$$

· So

$$Z = \sum_{n} e^{-\beta \hbar w_{n}}$$
we use $1 = 1 + u + u^{2} + \dots$

b)
$$2 = \sum_{n=0}^{\infty} u^n = \frac{1}{1-u} = \frac{1}{1-e^{-\beta \hbar \omega_0}}$$

Then

$$P_n = \frac{1}{2}e^{-n\hbar\omega_0/kT} = e^{-n\hbar\omega_0\beta}(1 - e^{-\hbar\omega_0\beta})$$

• The plot is telling me that for low temperatures

the oscillator is most likely in the ground

state while for high temperature is in its

Vibrational states

C) Then we see that when
thus ~ 1 proposition for instance when two=kT
& T 60% of atoms are in around
state and 40%. The atoms will begin to Vibrate. are in Vibrational states
· The atoms will begin to Vibrate. are in
Vibrational states
two = to k = 197 eV nm 4400 1
em
hw = 0.0866
· At room temperature kgT is 0.025 eV
So
i.e. 1 = 300°K
T = 0.086 eV = 0.086 eV, 300°k
k 0.025eV
T ~ 1000° K

So

$$T/2$$
 $Cos\theta sin \theta d\theta$

$$C = 1$$

$$Cos\theta sin \theta d\theta$$

$$Cos\theta sin \theta d\theta$$

$$C = 1$$

$$Cos\theta sin \theta d\theta$$

$$Cos\theta sin$$

$$A = \frac{\sqrt{2\pi m}}{\tau} \left(\frac{2\pi m}{k\tau}\right)^{\frac{1}{2}}$$

microns

2D World

· The determinant is

i.e

$$\frac{\delta(x,y)}{\delta(r,0)} = \begin{pmatrix} \cos 0 & -r\cos 0 \\ \sin 0 & r\sin 0 \end{pmatrix}$$

- · e do = do (-rcosoî + rsing) | ledo | = rdo

0F	
· Et.dr - is the displacement 1 caused r to rtdr (see & example	
e do is the displacement caused of to 0+d0, for example	by increasing
d= e d0 = 27 d0	
where r=xi+yj+zk	
d) - We have	
dp = Ce mv3/2kt dvx e-mv3/	2KT dVg
· The constant comes from	
$\int dP = 1 \qquad \text{we know} \int dx = \frac{e}{(27)}$	$\frac{x^{2}/2\sigma^{2}}{(\tau \sigma^{2})^{1/2}} = 1$
• Look at $e^{-V_{\chi}^2/2\sigma^2}$ with $\sigma^2 = k^2$	T So
$dP_{\frac{1}{2}} = \frac{e^{-\sqrt{2}/2\sigma^2}}{(2\pi\sigma^2)^{1/2}} dV_{\frac{1}{2}} = \frac{e^{-\sqrt{2}/2\sigma^2}}{(2\pi\sigma^2)^{1/2}} dV_{\frac{1}{2}}$	1

So since
$$dv_{x}dv_{y} = v dv d\theta$$
 and
$$distribution of speed and angle$$

Then integrating over $\theta \in [0, 2\pi]$:
$$dP = \int dP_{v\theta} = \frac{e^{-v^{2}/2\sigma^{2}}}{2\pi \sigma^{2}} v dv \int d\theta$$

$$\theta \in [0, 2\pi]$$

$$dP = e^{-v^{2}/2\sigma^{2}} v dv \int d\theta$$
We are integrating over a shell of configurations all of which have speed between $v \neq dv$

$$\left\langle \frac{1}{2}mv^{2}\right\rangle = \frac{1}{2}m\int_{0}^{\infty}dv e^{-v^{2}/2\sigma^{2}}v \cdot v^{2}$$

· Changing vars, writing u= 1/0 we have

$$\left\langle \frac{1}{2}mv^{2}\right\rangle = \frac{1}{2}m\sigma^{2}\int \frac{dv}{\sigma}e^{-\frac{v^{2}}{2}}\sqrt{2\sigma^{2}} \times \frac{v^{2}}{\sigma}$$

This is very nearly the Γ for let $x = u^2$ the dx = u du

$$\left(\frac{1}{2}mv^2\right) = \frac{1}{2}m\sigma^2 \int dx e^{-x} \cdot 2x$$

= mo-2

This is the the equipartition theorem in 2D.

The molecules have 2 dof motion in x and y.

We have simply (see lecture for more discussion)

$$d\Phi = nP(v) v\cos\theta \dot{v} dv d\theta$$
 2π

· Compate 2D and 3D

dv dvy dv = v2dv sinddodd (3D)

· For particles uniformly distributed ion the circle we have

$$dP = d\theta \qquad (2D)$$

While for the sphere we have

$$dP = dR \qquad (30)$$

Then total flux is

$$\begin{bmatrix}
\bar{\Phi} = \int P(v) v \cos \theta \, dv \, d\theta \\
2\pi$$

$$\Theta \in [-\pi, \pi/2]$$

in [-1]