

Multi-tenant cluster has benefits

- Eases cluster management
 - Avoids the need of tools to create/update/delete clusters
 - Provides consistent environment
- Lowers control plane overhead
- Reduces resource fragmentation
- Allows quick provisioning for new tenant

Tenants share common resources

Master Node Node Node Pod Pod Pod Pod Pod Pod Pod Pod Pod Tenant 1 Local disk Local disk Local disk Tenant 2 Storage LBs Tenant 3

Visibility into usage is lacking

- Hard to know which resource is used by whom
- Difficult to understand and predict usage trend
- Susceptible to resource over-provisioning
- Challenging to pinpoint costs to a specific tenant

Why is visibility needed?

Finance department

Have basis for planning, budgeting and forecasting

Perform cost allocation and chargeback

SREs/ Admins

Catch unexpected usage/bugs

Monitor network traffic

IT Director/
Product manager

Understand usage trends and drivers

Optimize resource utilization

Usage metering provides visibility

- Monitor and report resource usage in a Kubernetes cluster
 - CPU, memory, GPU, storage, network traffic, etc
- Tie resource usage to Kubernetes concepts
 - pods, persistentVolumeClaims, namespaces, labels, etc

How to meter usage in Kubernetes

- North America 2018

Meter "request" as "usage" for CPU/memory

- kube-scheduler
 - Uses request to decide whether pod fits on node
- cluster autoscaler
 - Adds nodes when there are pending pods
 - Removes nodes when possible to re-pack pods
- ResourceQuota
 - Constrains the aggregated resource requests

Utilization is still useful

- Tracks resources used by BestEffort/Burstable
- Allows understanding application behavior
 - For example, changes in tenant usage patterns
- Accounts network usage
 - Kubernetes does not (yet) support network bandwidth as a schedulable resource

Convert usage into cost

- Dedicated resource (e.g., dynamically provisioned PDs)
 - Perform a simple lookup
- Shared resource (e.g., VM instances)
 - Allocate cost proportionally
 - Example:
 - Pod requests 200 milli-CPU and runs 30 minutes
 - Cost of a single-core VM is \$1 per hour
 - CPU cost for the pod == \$0.10

GKE Usage Metering

- Currently in Beta
- Enable/disable via gcloud
- Features
 - Reports usage by Kubernetes namespaces + labels
 - CPU, memory, dynamically provisioned disks, GPUs, and network egress

System Architecture

North America 2018

Demo

Conclusion

- Multi-tenancy in Kubernetes
 - Eases cluster management and lowers cost
- Usage metering is thus needed to
 - Understand per-tenant resource usage
 - Perform cost allocation
- GKE usage metering
 - Documentation

