<u>Proof.</u> We will show that each of the conditions (a) , (b) , (c) implies that $\ker(1-T(s))$ is a Banach lattice (not necessarily a sublattice of E) for every $s \ge 0$. Then one argues as follows: Given $i\alpha \in P\sigma(A)$, $\alpha \in \mathbb{R}$ then $T(t)g = e^{i\alpha t}g$ for suitable $g \ne 0$. For $\tau := 2\pi \left|\alpha\right|^{-1}$ we have $g \in F := \ker(1-T(\tau))$. Then the restriction $(T(t)_{|F|})_{t\ge 0}$ is a τ -periodic positive semigroup on F . Since $T(t)_{|F|} = T(n\tau - t)_{|E|} \ge 0$ it follows that $(T(t)_{|E|})$ is a semigroup of lattice isomorphisms. Since $g \in F$ we have $i\alpha \in P\sigma(A_{|E|})$ hence $i\alpha \not\in P\sigma(A_{|E|}) \subset P\sigma(A_{|E|})$ by Thm.4.2.

Now we show that ker(1 - T(s)) is a vector lattice for the induced order and a Banach lattice for an equivalent norm.

In case (c), ker(1 - T(s)) is even a sublattice of E . Indeed, assume T(t)' $_{\varphi}$ = $_{\varphi}$ and $_{\varphi}$ >> 0 (t $_{\geq}$ 0) then T(s)f = f implies T(s)|f| $_{\geq}$ |f| . Thus from $_{\langle}$ T(s)|f| - |f|, $_{\varphi}$ > = $_{\langle}$ f|,T(s)' $_{\varphi}$ - $_{\varphi}$ > = 0 it follows that T(s)|f| = |f| .

Now we assume that E is weakly sequentially complete, which is equivalent to (cf. Sec.5 of C-I):

(4.5) Every increasing norm-bounded net of E_{\perp} converges.

We fix s > 0 and define F := ker(1 - T(s)) , T := T(s) . Obviously f \in F implies \bar{f} \in F hence F = F(E) + iF(E) . Thus we have to show that $F_R = F(E)$ is a sublattice. Given $f \in F_R$ then Tf = f hence $|f| \le T|f|$. Iterating this inequality we obtain $|f| \le T|f| \le T^2|f| \le T^3|f| \le \dots$. By (4.5) $|f|_0 := \lim_{n \to \infty} T^n|f|$ exists and we have $T|f|_0 = \lim_{n \to \infty} T^{n+1}|f| = |f|_0$, i.e. $|f|_0 \in F_R$. For $g \in F_R$ satisfying $f \in F_R = f(F)$ we have $|f|_0 = f(F)$ is an equivalent norm on F such that $(F, \| f)_0$ is a Banach lattice. (b) If $f \in F$ is mean-ergodic then we have $f \in F$ is the mean-ergodic projection, i.e. $f \in F$ is a PE where P is the mean-ergodic projection, i.e. $f \in F$ implies that PE is a Banach lattice (for the induced order and an equivalent norm).

The assumptions made in Cor.4.3 can be weakened slightly (cf. Greiner (1982)). However, one cannot prove cyclicity of $P_{\sigma_b}(A)$ for arbitrary positive semigroups.

Example 4.4. At first we recall Ex.2.13 of Chapter B-III. There we constructed a bounded semigroup on the space $C(\Gamma) \times C_O(\mathbb{R})$ such that $P\sigma_D(A) = \{ik : k \in \mathbb{Z} \ , \ k \neq 0\}$.