Branch: CSE & IT

Batch: Hinglish

Algorithms

Introduction to Algorithms and Analysis

DPP

[MCQ]

1. Sort the functions in ascending order asymptotic(big-O) complexity.

 $f_1(n) = n$, $f_2(n) = 80$, $f_3(n) = n^{\log n}$, $f_4(n) = \log \log^2 n$, $f_5(n) = (\log n)^{\log n}$

- (a) $f_2(n)$, $f_4(n)$, $f_1(n)$, $f_5(n)$, $f_3(n)$
- (b) $f_2(n)$, $f_1(n)$, $f_4(n)$, $f_5(n)$, $f_3(n)$
- (c) $f_2(n)$, $f_1(n)$, $f_4(n)$, $f_3(n)$, $f_5(n)$
- (d) $f_1(n)$, $f_1(n)$, $f_4(n)$, $f_3(n)$, $f_2(n)$

[MCQ]

- 2. Consider two function $f(n) = 10n + 2\log n$ $g(n) = 5n + 2(\log n)^2$, then which of the following is correct option?
 - (a) $f(n) = \theta(g(n))$
- (b) f(n) = O(g(n))
- (c) $f(n) = \omega(g(n^2))$
- (d) None of the above

[MCQ]

- 3. Consider two function $f(n) = \sqrt{n}$ and $g(n) = n \log n + n$ then f(n) /g(n) is equivalent to how many of the following given below?
 - (i) $o(n^{-1/2})$
- (ii) $O(n^{-1/2})$
- (iii) $\Omega(1/\log n)$
- (iv) $\theta(n^{-1/2})$

[MCQ]

4. Consider the following C-code void foo (int x) int a = 1; if (n = 1)return;

for (;
$$a \le n$$
; $a++$)

{

 printf("GATEWALLAH");

 break;

}
}

What is the worst time complexity of above program?

- (a) O(1)
- (b) O(n)
- (c) $O(\log n)$
- (d) $O\sqrt{n}$

[MCQ]

Find the time complexity of the following summation, assume that k is constant, k > 0

$$\sum_{x=1}^{n} \sum_{y=x+1}^{n} \frac{1}{k}$$

- (a) $O(n^2)$
- (b) O(n)
- (c) $O(n^3)$
- (d) None of the above

[NAT]

- How many of the following expressions correctly describes $T(n) = nlog(n^2)$?
 - (a) $\theta(n^2)$
- (b) O(n)
- (c) $\Omega(n)$
- (d) $O(n^2)$

[MCQ]

- 7. Consider two function $f_1(n) = n^{2^n}$ and $f_2(n) = n^{n^2}$ then which of the following is true.
 - (a) $f_1(n) = (Of_2(n))$
 - (b) $f_1(n) = \theta(f_2(n))$

 - (c) $f_1(n) = \omega(f_2(n))$ (d) None of these

Answer Key

- 1. (a)
- 2. (a)
- 3. (2 to 2)
- 4. (a)

- 5. (a) 6. (2 to 2)
- 7. (c)

Hints & Solutions

1. (a)

80 < n

 $\log \log^2 n < n$

put $n = 10^{100}$

 $\log(\log n)^2 = 10^{100}$

 $\log(100)^2 < 10^{100}$

 $4 < 10^{100}$

 $n < n^{logn}$

taking log on both side

logn < lognlogn

we know that $(\log n)^2 > \log n$

now, $(\log n)^{\log n} < n^{\log n}$

as we can see that logn in LHS and n on RHS.

n (logn)^{logn}

taking log on both sides

logn < logn*log logn

From above we conclude that growth of log*logn is higher than 1.

: option (a) is correct.

2. (a)

As we can see in above function, 'n' is the dominating factor in these 2 functions. Which means they also have similar growth rate.

$$\therefore$$
 f(n) = O(g(n))

Hence option (a) is correct.

3. (2 to 2)

$$\frac{f(n)}{g(n)} = h(n)$$

Given

$$f(n) = \sqrt{n}, g(n) = n \log n + n$$

$$=\frac{\sqrt{n}}{n\log n+n}$$

$$=\frac{\sqrt{n}}{\sqrt{n}\left(\sqrt{n}\log n+\sqrt{n}\right)}$$

$$=\frac{1}{\sqrt{n}\log n + \sqrt{n}}$$

and clearly $h(n) = O(n^{-0.5})$ and

$$h(n) = o(n^{-0.5})$$

NOTE: if small 'o' possible then Big 'O' is possible but if Big 'O' possible then small 'o' may or may not possible.

∴ (i) and (ii) are correct.

Hence 2 expressions are correct.

4. (a)

If we see carefully, loop will execute only one time because of break statement, therefore time complexity will be O(1)

5. (a)

$$\sum_{x=1}^{n} \sum_{y=x+1}^{n} \frac{1}{k} = \frac{1}{k} \sum_{x=1}^{n} \sum_{y=x+1}^{n} (1)$$

$$= \frac{1}{k} \sum_{y=x+1}^{n} \sum_{y=x+1}^{n} (1)$$

$$= \frac{1}{k} \sum_{x=1}^{n} \left[1 + 1 + 1 + \dots - (x+1) + 1 \text{ times} \right]$$

$$= \frac{1}{k} \sum_{x=1}^{n} \left[n - x \right]$$

$$= \frac{1}{k} \left[n \sum_{x=1}^{n} (1) - n \sum_{x=1}^{n} x \right] = \frac{1}{k} \left[n \cdot n - \frac{n(n+1)}{2} \right]$$

$$= \frac{1}{k} \left[n^2 - \frac{n^2 + n}{2} \right] = \frac{1}{2k} \left[n^2 - n \right]$$
$$= O(n^2)$$

6. (2 to 2)

Given: $T(n) = nlog(n^2) = 2nlogn$

- (i) $T(n) = \theta(n^2)$, which means the value of T(n) is exactly $\theta(n^2)$, but as we can see that T(n) is $n\log(n^2)$ so this is incorrect.
- (ii) T(n) = O(n): $T(n) \le k.n$, but value of T(n) is $nlog(n^2)$

So, this is also false.

(iii) $T(n) = \Omega(n)$

T(n) >= k.n and the complexity given for T(n) is $nlog(n^2)$, so it is correct.

(iv) $O(n^2)$

$$T(n) = O(n^2)$$

 $n\log(n^2) \le k.n^2$ which is correct.

Hence 2 expression out of 4 are correct.

7. (c)

$$f_1(n) = n^{2^n}$$
 and $f_2(n) = n^{n^2}$

$$n^{2^n} = n^{n^2}$$

Taking log on both side

 $2^n \log n$

$$n^2 \log n$$

as we can see that

2ⁿ has more growth rate than

 n^2 : we conclude

$$f_2\!\left(n\right)\!<\!O\!\left(f_1\!\left(n\right)\right)$$
 or

$$f_1(n) = \omega(f_2(n))$$

 \therefore (c) is correct.

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

