

Protocolos de retransmissão

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de

Computadores

Redes de Computadores

Protocolos de transmissão

- Problemas
 - Controlo de fluxo
 - Controlo de erros, duplicações e sequência
- Comunicação humano computador central
 - Echo Checking
 - Controlo manual
- Comunicação computador computador
 - ARQ
 - Controlo automático

Protocolos teóricos

- ARQ Automatic Repeat reQuest
 - Idle RQ
 - Send and Wait (Stop and Wait)
 - Continuous RQ
 - Go Back N
 - Selective Repeat
- Métodos de ARQ
 - Pedido de retransmissão implícito
 - Pedido de retransmissão explícito

- Pedido de retransmissão implícito ou pedido de retransmissão explícito
 - Funcionamento normal

- Pedido de retransmissão implícito
 - Trama de dados corrompida

- Pedido de retransmissão implícito
 - Trama de ACK ou NAK corrompida

- Pedido de retransmissão explícito
 - Trama de dados corrompida

Idle RQ: taxa de utilização

Continuous RQ

- Aumento da taxa de utilização do link.
- Aumento da dimensão dos buffers.
- Métodos de retransmissão:
 - Selective Repeat
 - Por pedido implícito
 - Por pedido explícito
 - Go-back-N

Pedido de retransmissão implícito (trama de dados corrompida)

Pedido de retransmissão implícito (trama de ACK corrompida)

Um ACK por cada trama de dados

Um ACK indica que recebeu bem a trama e todas as tramas anteriores.

No estado de retransmissão, S, suspende o envio de tramas de ACK.

Pedido de retransmissão explícito (trama de dados e de NACK corrompida)

Se no estado de retransmissão não fosse suspenso o envio de ACK haveria falta de tramas visto que...

um ACK indica que recebeu bem a trama e todas as tramas anteriores

Na figura: S nunca recebe a trama I[N+1].

Continuous RQ - Go Back N

Pedido de retransmissão explícito (trama de dados corrompida)

Um ACK indica que recebeu bem a trama e todas as tramas anteriores

Um NAK pede retransmissão de todas as tramas a partir da trama indicada.

Após uma falha, S, volta a enviar tramas de ACK apenas quando receber a trama pedida no NACK.

Continuous RQ - Go Back N

Trama de ACK corrompida

Um ACK indica que recebeu bem a trama e todas as tramas anteriores

Continuous RQ com temporização

Para quando há uma interrupção no envio de tramas

Piggyback acknowledgment

- Consideremos um canal full-duplex (não só do ponto de vista físico, mas também lógico, ou seja, que haja lugar a troca de tramas de informação em ambos os sentidos)
- Para aumentar a eficiência de utilização do canal é embebida a informação de ack (N_R) no cabeçalho das tramas que circulam em sentido oposto, no qual além do número da sequência da trama, existe um campo onde são transportados os bits que informam sobre o estado da ligação no sentido oposto.
- Contudo continua a existirem as tramas de controlo ACK (NACK) para o caso de instantes em que não haja tráfego num dos sentidos.

Sliding Window

- Mecanismo de controlo do fluxo de transmissão de tramas.
- Limita o número de tramas que podem ser enviadas sem receber acknowledge.
- Se houver congestionamento do lado do receptor este n\u00e3o envia acknowledges o que faz com que o emissor atinja o limite e pare de enviar tramas.
- Parâmetros:
 - Janela de envio
 - Janela de recepção
 - Números de sequência identificadores de trama

Sliding Window – Parâmetros

- Janela de envio (Send Window).
 - Identificadores das tramas que foram enviadas e estão à espera de acknowledge.
- Janela de recepção (Receive Window).
 - Identificadores das últimas N tramas bem recebidas de modo a que seja possível distinguir tramas duplicadas ou fora de sequência.
- Números de sequência.
 - Número mínimo de Identificadores de trama que são necessários para que os protocolos funcionem sem problemas.

Controlo de fluxo: Sliding window

Send window, K = 3

	Janela de envio	Janela de recepção	Mínimo de Id. da trama
IdleRQ	1	1	2
Selective Repeat	K	K	2K
Go Back N	K	1	K+1

Parametros do mecanismo "Sliding Window" para os vários protocolos:

Sliding Window

Situação que define o limite mínimo dos números de sequência.

Send Window = 3

Sliding Window

- Consideremos as seguintes hipóteses com base na figura anterior:
 - Go Back N Send Window = 3 Receive Window = 1
 - Nº identificadores = 3 Receptor espera a trama 0
 - A <u>retransmissão</u> da trama 0 pode ser tomada como <u>nova</u> (**errado**)
 - Nº identificadores = 4 Receptor espera a trama 3
 - Nenhuma das tramas <u>retransmitidas</u> pode ser tomada como <u>nova</u> (<u>correcto</u>)
 - Selective Repeat Send Window = 3Receive Window = 3
 - Nº identificadores = 3 Receptor espera as tramas 0,1,2
 - As tramas 0,1,2 retransmitidas podem ser tomadas como novas (errado)
 - Nº identificadores = 4 Receptor espera as tramas 3,0,1
 - As tramas 0,1 retransmitidas podem ser tomadas como novas (errado)
 - Nº identificadores = 6 Receptor espera as tramas 3,4,5
 - Nenhuma das tramas retransmitidas pode ser tomada como nova (<u>correcto</u>)

Sequencialização: tamanho de janela

Protocol	Maximum number of frame identifiers	
Idle RQ	2	
Selective repeat	2K	
Go-back-N	K + 1	

Eficiência de utilização do protocolo (Idle RQ)

Sem erros de transmissão

• Nos protocolos **idle RQ**, o tempo de processamento de uma trama de dados (T_{ip}) e trama de ACK associada (T_{ap}) são bastante mais curtos que os tempos de transmissão (T_{ix} e T_{ax}). Também a trama ACK é muito mais curta quando comparada com a de dados, T_{ax} é negligenciável quando comparada com T_{ix} . Assim o tempo mínimo total até que uma próxima trama possa ser transmitida é $T_{ix} + 2T_p$. A expressão aproximada para U é:

```
• U=T_{ix}/T_t
```

•
$$U=T_{ix}/(T_{ix}+2T_p)$$
 ou $U=(1+2T_p/T_{ix})^{-1}$

•
$$a=T_p/T_{ix}$$
, $U=(1+2a)^{-1}$

•
$$T_{ix}=N/R$$
, $T_p=S/V$

- N Número de bits da trama
- R Bit rate em bit/segundo (bps)
- S Distância da ligação (m)
- V Velocidade de propagação

Eficiência de utilização do protocolo (Idle RQ)

Com os erros de transmissão

• Reconhecendo a existência de erros nas ligações, o BER será superior a zero. Assim para transmitir uma trama com sucesso, uma media de N_x tentativas de transmissão são necessárias. A expressão final fica:

```
• U=T_{ix}/(N_rT_{ix}+2N_rT_p) ou U=(N_r(1+2T_p/T_{ix}))^{-1}
```

- $P_f = 1 (1 P)^{Ni}$, $N_r = 1/(1 P_f)$
 - P_f Probabilidade de uma trama ser recebida com erros
 - Ni Número de bits da trama
 - P BER Probabilidade de um bit com erro.
- $a=T_p/T_{ix}$, $U=(1-P_f)/(1+2a)$

Eficiência de utilização do protocolo (Continuous RQ), Sem erros de transmissão

- $T_{ix}=N/R$, $T_p=S/V$.
 - N Número de bits da trama.
 - R Bit rate em bit/segundo (bps).
 - S Distância da ligação (m).
 - V Velocidade de propagação.
 - K Número de tramas da janela de envio.
- $a=T_p/T_{ix}$.
- U=1, se $K \ge 1+2a$.
- $U=(K T_{ix})/(T_{ix}+2T_p)=K/(1+2T_p/T_{ix})=K/(1+2a)$ se K < 1+2a.
- Tal pode verificar-se considerando T_p=T_{ix}. Neste caso o ultimo bit da trama transmitida não é recebido antes de 2Tp (2T_{ix} também). A trama ACK associada leva T_p (e T_{ix}) a ser recebida. Se K=1 (Idle RQ), então U=1/3. De modo a elevar U a 100% (K > 1+2a), K tem de estar em excesso de 3, isto é três ou mais tramas têm de ser enviadas antes que algum ACK seja recebido.

Eficiência de utilização do protocolo (Continuous RQ) Com erros de transmissão (Selective Repeat)

Dada e existência numa situação real de erros que provocarão a retransmissão de tramas, teremos eficiências distintas para os dois esquemas de transmissão Selective Repeat e para o Go Back N. Por exemplo, com um esquema de selective repeat, U é reduzido pelo número de tentativas para transmitir cada trama N_r dado que unicamente a trama corrompida e retransmitida. Se P_f é a taxa de erros de tramas, então, assumindo erros aleatórios:

```
• N_r = 1/(1-P_f), P_f = 1-(1-P)^{Ni}
```

- $a=T_p/T_{ix}$
- $U=K/N_r(1+2a)=K(1-P_f)/(1+2a)$ se K < 1+2a
- Se $K \ge 1+2a$, $U=(1+2a)(1-P_f)/(1+2a)=1-P_f$

Eficiência de utilização do protocolo (Continuous RQ) Com erros de transmissão (Go Back N)

Para o caso do Go Back N, a utilização da linha é ainda mais reduzida pois por cada trama corrompida, mais que uma trama tem de ser retransmitida. Novamente o número de tramas a retransmitir é determinado pela magnitude de K relativamente a 1+2a. Para K inferior a 1+2a, o número de vezes que as tramas têm de ser retransmitidas é P_f(K-1). Para cada ocorrência, mais um atraso de 1+2a se verificará.

```
• N_r=1/(1-P_f), P_f=1-(1-P)^{Ni}

• a=T_p/T_{ix}

• Se K < 1+2a

• U=K(1-P_f)/((1+2a)+(1+2a)P_f(K-1))=

• U=K(1-P_f)/((1+2a)(1+P_f(K-1))) se K < 1+2a

• Se K \geq 1+2a

• U=((1+2a)(1-P_f))/((1+2a)(1+P_f(K-1)))=

• U=(1-P_f)/(1+P_f(K-1))
```

Comparação de eficiência – sem erros

FIGURE 6.16 Line utilization as a function of window size.

Comparação de eficiência – com erros

FIGURE 6.17 Line utilization for various error-control techniques $(P = 10^{-3})$.

Sumário e Bibliografia

Sumário:

- Protocolos de ARQ:
 - Idle RQ (Send and Wait ou Stop and Wait)
 - Continuous RQ
 - Go Back N
 - Selective Repeat
- Controlo de fluxo com algoritmo de Sliding Window
- Calculo da eficiência dos protocolos
- Especificação de protocolos

Bibliografia:

Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach," Addison-Wesley, July 2007.