Number bases and modular arithmetic – exercises

Peter Rowlett

- 1. Write down all the numbers in base 5 up to and including 40_5 .
- 2. Give the next 20 numbers after 101_4 in base 4.
- 3. Convert the following to base 10:
 - (a) 2351_7 ;
 - (b) 10010111₂;
 - (c) 10101_2 ;
 - (d) $AC1_{16}$.
- 4. Convert 89_{10} to each of the following bases:
 - (a) 2;
 - (b) 9.
- 5. Convert 46_{10} to each of the following bases:
 - (a) 2;
 - (b) 16.
- 6. Calculate:
 - (a) $10110_2 + 111100111_2$;
 - (b) $1C_{16} + 239_{16}$.
- 7. Convert 110000001101_2 to hexadecimal.
- 8. Convert $3A27_{16}$ to binary.
- 9. Convert the following binary fractions to decimal fractions.
 - (a) 0.1000;
 - (b) 0.1010;
 - (c) 0.1111.

- 10. Convert the following decimal fractions to binary fractions?
 - (a) $\frac{3}{4}$;
 - (b) $\frac{1}{8}$;
 - (c) $\frac{2}{3}$.
- 11. What is the biggest binary number you can write with five bits?
- 12. What is the biggest binary number you can write with n bits?
- 13. If a number has k digits in hexadecimal, how many digits (bits) does it have in binary?
- 14. Calculate the following:
 - (a) $16 \pmod{5}$;
 - (b) 22 (mod 4);
 - (c) $-33 \pmod{22}$;
 - (d) $7 \pmod{7}$;
 - (e) 545 (mod 12).
- 15. Starting from the information that $17^2 = 289$, find the last digit of 17^{23} .
- 16. Calculate 100 (mod 24) and 1000 (mod 24). What time of day will be in 3000 hours from now?
- 17. Find $5^{19} \pmod{6}$. (Hint: $6 = -1 \pmod{7}$.)
- 18. Find the value of $7^{137} \pmod{11}$.
- 19. Find the value of $7^{137} \pmod{8}$. (Hint: $7 = -1 \pmod{8}$.)
- 20. Find the last two digits of 3^{124} .
- 21. Find the last digit of $1! + 2! + 3! + \cdots + 10!$.