

## Pravidlo pravé ruky

Jak již bylo milému bakaláři jednou vysvětleno v předchozích kapitolách, výraz

$$oldsymbol{c} = oldsymbol{a} imes oldsymbol{b}$$

je symbolický zápis vektorového součinu dvou vektorů  $\boldsymbol{a}$  a  $\boldsymbol{b}$ , přičemž výsledný vektor  $\boldsymbol{c}$  se spočítá podle vztahu

$$c = (|\boldsymbol{a}||\boldsymbol{b}|\sin\alpha)\boldsymbol{e}_c,$$

kde  $\alpha$  je úhel, který mezi sebou vektory  $\boldsymbol{a}$  a  $\boldsymbol{b}$  svírají. Jednotkový vektor  $\boldsymbol{e}_c$  je kolmý na oba vektory  $\boldsymbol{a}$  i  $\boldsymbol{b}$ , nebo-li kolmý na rovinu, ve které se tyto dva vektory nachází. A jeho smysl se udává pomocí pravidla~pravé~ruky. Takže když zrovinka nemá nějaký bakalář s pravačkou nic na práci, může si radostně zkoušet pravidlo pravé ruky u vektorového součinu dvou vektorů.





Použití pravidla pravé ruky je velmi snadné. Malíková hrana ruky reprezentuje první vektor ve vektorovém součinu

$$a \times b = c$$
,

tedy v tomto případě vektor  $\boldsymbol{a}$ . Prsty téže ruky musí mířit k druhému vektoru ve vektorovém součinu, tj. k vektoru  $\boldsymbol{b}$ . A palec, ten skvost každé bakalářské ručky, který činí bakaláře tolik odlišného od psů a koček, ten ukazuje smysl jednotkového vektoru  $\boldsymbol{e}_c$ , resp. samotného výsledného vektoru  $\boldsymbol{c}$ .

Vektorový součin je v mechanice využíván k matematické reprezentaci rotace kolem osy reprezentované vektorem  $\boldsymbol{e}_c$ . Pokuc jsou na sebe vektory  $\boldsymbol{a}$ ,  $\boldsymbol{b}$  a  $\boldsymbol{c}$  kolmé, mohou bez problémů reprezer tovat jednotkové vektory  $\boldsymbol{i}$ ,  $\boldsymbol{j}$  a  $\boldsymbol{k}$  souřadnicových os kartezského souřadnicového systému, tedy kladnou osu  $\boldsymbol{x}$ , kladnou osu  $\boldsymbol{y}$  a kladnou osu  $\boldsymbol{z}$ . Je jasné, že vztah

$$oldsymbol{i} imesoldsymbol{j}=oldsymbol{k}$$

platí do puntíku a podle pravidla pravé ruky by palec ukazoval ve směru jednotkového vektoru k, tj. kladné osy z. Jako by chtěl nějaký bakalář otevřít kohoutek s vodou. Pokud teda neni na fotobuňku nebo s pákovou baterií. Proto je také smysl otáčení proti chodu hodinových ručiček označován jako kladný.







Když si vektory  $\boldsymbol{a}$  a  $\boldsymbol{b}$  vymění pozici, tak se podle pravidla pravé ruky změní i smysl výsledného vektoru  $\boldsymbol{c}$ . Z toho plyne, že vektorový sučin není komutativní. Není to žádná tragédie, protože jde jen o změnu znaménka. Zkušený bakalář by to zapsal následovně

$$\boldsymbol{b} \times \boldsymbol{a} = -(\boldsymbol{a} \times \boldsymbol{b}).$$

Jednomu se ale z toho zatočí hlava, zejména, pokud se vezme v úvahu, že vektorový součin je matematickou reprezentací rotace. Výměna poloh vektorů  $\boldsymbol{a}$  a  $\boldsymbol{b}$  změní smysl otáčení kolem osy  $\boldsymbol{e}_c$  na otáčení ve směru chodu hodinových ručiček. V tomto případě se kohoutky tekoucí vody utahují a takový smysl otáčení se označuje jako záporný.



