Tree Methods

Geena Kim

What is Decision Tree?

Caesar's mushroom

Death Cap

Decision Tree Nodes

Decision Nodes

Different kinds of models

Parametric vs. Non-parametric

Linear Regression

Logistic Regression

kNN

Parameters vs. Hyperparameters

Decision Tree

Optimization objective function

Linear Regression

Minimize MSE

Logistic Regression

Minimize Cross Entropy

kNN

No optimization, but uses distance

Decision Tree

Split to minimize MSE for Regression task

and minimize

Cross Entropy or Gini for Classification task

Decision Tree Regressor

Predicting Salary of Baseball players

- X1: number of years played in the major league
- X2: number of hits made in the last year
- y: log(salary)

Decision Tree Regressor

The goal is to find boxes R1 ~ RJ such that

$$\sum_{j=1}^J \sum_{i \in R_j} (y_i + \hat{y}_{R_j})^2 \quad \text{is minimized.}$$
 the mean of the data in the box

Decision Tree Classifier

Decision Tree Classifier

Split criterion- Gini index

$$H(X_m) = \sum_k p_{mk} (1 - p_{mk})$$

What is the Gini of this box?

Gini:
$$H(X_m) = \sum_k p_{mk}(1 - p_{mk})$$

Split criterion- Entropy

```
a = np.arange(0.01,1,0.01)
plt.plot(a,-a*np.log(a)-(1-a)*np.log(1-a));
```


$$H(X_m) = -\sum_k p_{mk} \log(p_{mk})$$

Split criterion-Information gain

Information Gain = Reduction in Entropy

$$-\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) = 1$$

 $-\left(\frac{1}{6}\log_2\frac{1}{6} + \frac{5}{6}\log_2\frac{5}{6}\right) = 0.65$

C

Which split gives the maximum information gain?

Decision Tree Split Criteria

Regression Tree

Classification Tree

MSE

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - \bar{y}_m)^2$$

Gini

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - \bar{y}_m)^2 \qquad H(X_m) = \sum_k p_{mk} (1 - p_{mk})$$

MAE

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} |y_i - \bar{y}_m|$$

Entropy

$$H(X_m) = -\sum_k p_{mk} \log(p_{mk})$$

Information Gain = E(parent)-E(children)

Decision Tree – When to stop split?

max_depth The maximum depth of the tree
 min_samples_split The minimum number of samples required to split an internal node
 min_samples_leaf The minimum number of samples required to be at a leaf node
 max_features The number of features to consider when looking for the best split
 min_impurity_decrease A node will be split if this split induces a decrease of the impurity greater than or equal to this value

The weighted impurity decrease equation is the following:

Hyperparameter search

Grid Search Tip

- Give a range of values for each hyperparameter
- Measure a training time for one, then estimate how long for the loop
- Adjust number of values, range, or hyperparameters to include

```
max_depth
min_samples_split
min_samples_leaf
max_features
min_impurity_decrease
```

Decision Tree Pros and Cons

Trees are easy to understand

Trees don't suffer collinearity

Trees are good for non-linear features

Trees handle categorical variables easily

Trees are weak-learner

Trees have high variance in general

Linear regression is a better choice if features are linear

Tree's performance can be greatly improved when ensembled