#### ARTIFICIAL INTELLIGENCE PyQ ANSWERS

#### Q. Define the relationship between agent and environment

#### Agent:

An **agent** is any entity that perceives its environment through sensors and acts upon that environment through actuators. It could be a robot, a software bot, a self-driving car, or even an AI model in a game.

#### • Environment:

The **environment** is the external world in which the agent operates. It provides the context and conditions for the agent's actions, and it responds to those actions, sometimes changing as a result.

# **Agent-Environment Relationship**

### 1. Perception-Action Cycle

The interaction between the agent and environment occurs through a continuous cycle:

#### 1. Perceive

The agent uses its sensors to **observe the environment** (e.g., a camera, temperature sensor, or data stream).

#### 2. Decide:

Based on its observations and internal logic or model, the agent **makes decisions**.

#### 3. Act:

The agent then uses its actuators to **take actions** that affect the environment.

#### 4. Feedback:

The environment changes based on the agent's actions, and the agent perceives the updated environment in the next cycle.

# This loop is often called the Sense-Think-Act cycle.

# **Types of Environments**

The nature of the environment affects how the agent behaves:

| Environment<br>Type     | Description                                                                      |  |
|-------------------------|----------------------------------------------------------------------------------|--|
| Fully Observable        | Agent has complete information (e.g., chess).                                    |  |
| Partially<br>Observable | Agent sees only part of the environment (e.g., driving in fog).                  |  |
| Deterministic           | Outcomes are predictable (e.g., mathematical calculations).                      |  |
| Stochastic              | Outcomes are probabilistic (e.g., poker).                                        |  |
| Static                  | Environment doesn't change while the agent is thinking (e.g., crossword puzzle). |  |
| Dynamic                 | Environment changes over time (e.g., real-time video game).                      |  |
| Discrete                | Finite number of states/actions (e.g., board games).                             |  |
| Continuous              | Infinite possibilities (e.g., driving).                                          |  |

#### Goal of the Agent

The goal of an agent is to:

- Maximize performance based on a performance measure.
- Make decisions that lead to the **best possible outcome** in its environment over time.

# Q. Name the different types of environments and briefly explain effects of each environment on agent.

#### 1. Fully Observable Environment

- **Definition**: The agent has access to the complete state of the environment at every point in time.
- **Example**: Chess, where all pieces and their positions are visible.
- Effect on Agent:
  - Easier to design optimal agents.
  - The agent can make decisions based on full knowledge.
  - Reduces uncertainty in decision-making.

# 2. Partially Observable Environment

- **Definition**: The agent has limited or incomplete access to the environment's state.
- **Example**: Poker, where opponents' cards are hidden.
- Effect on Agent:
  - The agent must maintain internal states or beliefs (memory/history).
  - Decision-making is probabilistic and based on assumptions or estimations.
  - Increases complexity and uncertainty.

#### 3. Deterministic Environment

- **Definition**: The next state of the environment is completely determined by the current state and the agent's action.
- **Example**: A puzzle where each move leads to a predictable result.
- Effect on Agent:
  - Easier to plan and predict outcomes.
  - Allows for precise strategies without randomness.
  - No need for probabilistic reasoning.

# 4. Stochastic Environment

- **Definition**: The next state of the environment is influenced by randomness or uncertainty.
- **Example**: Driving a car on a road with unpredictable pedestrian movements.
- Effect on Agent:
  - The agent must account for probabilities.
  - Strategies must be flexible and adaptive.
  - Requires robust handling of uncertainty.

#### 5. Episodic Environment

- **Definition**: The agent's experience is divided into distinct episodes, and each decision does not depend on previous actions.
- **Example**: Image recognition tasks where each image is independent.
- Effect on Agent:
  - Simplifies the agent's decision-making.
  - No need for long-term planning or memory.
  - Actions are evaluated in isolation.

# **6. Sequential Environment**

- **Definition**: Current decisions affect future outcomes; episodes are interconnected.
- **Example**: Chess or navigation tasks.
- Effect on Agent:
  - The agent must plan ahead and consider future consequences.

- Requires memory and foresight.
- More complex decision-making process.

#### 7. Static Environment

- **Definition**: The environment remains unchanged while the agent is making decisions.
- Example: Crossword puzzles.
- Effect on Agent:
  - No need to worry about time constraints.
  - Easier to deliberate and optimize decisions.
  - Agent can use search and planning techniques effectively.

#### 8. Dynamic Environment

- **Definition**: The environment changes over time, possibly independent of the agent's actions.
- **Example**: Autonomous driving, where other vehicles move independently.
- Effect on Agent:
  - The agent must act quickly and adapt continuously.
  - Time-sensitive decision-making is critical.
  - May require real-time data processing.

#### 9. Discrete Environment

- **Definition**: The environment consists of a finite number of distinct states, actions, and events.
- **Example**: Board games.
- Effect on Agent:
  - Easier to model using rules or tables.
  - Ideal for logic-based and rule-based systems.
  - Suitable for classical AI algorithms.

# **10. Continuous Environment**

- **Definition**: The environment has a range of possible values for states and actions.
- **Example**: Robot arm movements or flying a drone.
- Effect on Agent:
  - Requires techniques from continuous mathematics (e.g., calculus, control theory).
  - Often involves approximation and learning-based strategies.
  - Harder to model exhaustively.

Each environment type defines **constraints and capabilities** for the agent. Understanding the nature of the environment helps in designing better agents and choosing suitable AI techniques.

Q. In a grid world environment, the goal of the agent is to reach state I starting from



state A without visiting the shaded states. In each of the states, the agent can perform any of the four actions: up, down, left, and right to achieve the goal.

Explain what is the outcome of stochastic policy with help of the grid world environment, assuming given a state A, and suppose the stochastic policy returns the probability distribution over the action space as [0.10, 0.70, 0.10, 0.10].

In a **stochastic policy**, instead of choosing a fixed action in a state, the agent chooses actions **based on a probability distribution** over the possible actions. Let's apply this concept to the grid world environment shown in your image.

#### Given:

- The agent starts at **state A**.
- The **goal** is to reach **state I**.
- The shaded cells (B, C, G, H) are not allowed (obstacles).
- The action space = [Up, Down, Left, Right]
- The stochastic policy for state A is: P(actions)=[Up=0.10,Down=0.70,Left=0.10,Right=0.10]

# **Interpreting the Policy:**

The policy is:

- 10% chance to go **Up**
- 70% chance to go **Down**
- 10% chance to go **Left**
- 10% chance to go **Right**

In **state A**, the only valid actions are:

- **Down**  $\rightarrow$  moves to state **D**
- **Right** → moves to **B** (**X** invalid, shaded)
- Up and Left → go outside the grid (X invalid)

#### **Outcome of the Policy in Practice:**

Since this is a **stochastic policy**, each time the agent is in state A, it samples an action based on the given probabilities.

- 70% of the time, the agent goes Down to state  $D \rightarrow \bigvee$  valid move
- 10% of the time, it tries to go Right to state  $B \rightarrow X$  invalid (blocked)
- 10% for Up and 10% for Left  $\rightarrow \times$  invalid (outside the grid)

So, **only 70% of the time**, the agent will make a successful move from A to D. In the other **30%** of the times, it attempts an invalid move and likely **remains in state A**.

# What This Means for the Agent:

- Progress is slower than a deterministic policy that always chooses "Down."
- **Uncertainty** in action selection can cause the agent to **take longer paths** or **get stuck** if not properly handled.
- With enough time (iterations), it can still reach the goal due to the probabilistic nature allowing for correct moves.

#### **Conclusion:**

A **stochastic policy** introduces randomness. Even if the optimal action is known (e.g., going "Down" in A), there's a chance the agent will try less optimal or even invalid moves. In your grid world, this means slower or inefficient paths, but it's essential in many RL problems to encourage **exploration**.

# **Effect of Stochasticity:**

Because of randomness:

- At **A**, there's a 30% chance the agent chooses an invalid move and stays in **A**.
- Similar risks apply in **D**, **E**, and **F** if the agent doesn't pick the optimal action.
- Thus, the agent **may take longer** to reach I, or **may oscillate** until it learns or randomly chooses the correct sequence.

# **Summary:**

| Step | State | Action Taken | Success?         |
|------|-------|--------------|------------------|
| 1    | A     | Down (70%)   | Move to D        |
| 2    | D     | Right        | Move to E        |
| 3    | Е     | Right        | Move to F        |
| 4    | F     | Down         | Move to I (Goal) |

# Q. How the Q-function differs from the value function of Reinforcement Learning?

#### **Value Function (V-function)**

- **Denoted as**: V(s)
- **Definition**: The **value function** estimates the expected return (future cumulative reward) starting from state s, and following a certain policy  $\pi$ .
- Formula:

$$V^\pi(s) = \mathbb{E}_\pi \left[ \sum_{t=0}^\infty \gamma^t R_{t+1} \mid S_0 = s 
ight]$$

• **Interpretation**: How good it is to be in state s, assuming the agent follows policy  $\pi$ .

#### **Q-Function (Action-Value Function)**

- **Denoted as**: Q(s, a)
- **Definition**: The **Q-function** estimates the expected return starting from state s, taking action a, and thereafter following policy  $\pi$ .
- Formula:

$$Q^\pi(s,a) = \mathbb{E}_\pi \left[ \sum_{t=0}^\infty \gamma^t R_{t+1} \mid S_0 = s, A_0 = a 
ight]$$

• **Interpretation**: How good it is to take action a in state s, assuming the agent follows policy  $\pi$  afterward.

| Aspect                             | Value Function V(s)                                                                          | Q-Function Q(s, a)                                                                                      |
|------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Definition                         | Expected cumulative reward starting from state s, following a policy $\pi$ .                 | Expected cumulative reward starting from state s, taking action a, then following policy $\pi$ .        |
| Formula                            | $V^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1} \mid S_0 = s ight]$ | $Q^{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1} \mid S_0 = s, A_0 = a ight]$ |
| Meaning                            | Expected reward from a state                                                                 | Expected reward from a state-action pair                                                                |
| Used for                           | Evaluating states                                                                            | Evaluating actions                                                                                      |
| What it<br>Evaluates               | How good it is to be in a given state under policy $\boldsymbol{\pi}$                        | How good it is to take a particular action in a given state under policy $\boldsymbol{\pi}$             |
| Use Case                           | Evaluates <b>states</b>                                                                      | Evaluates <b>state-action pairs</b>                                                                     |
| Action<br>Selection                | Needs policy to select action                                                                | Can directly choose best action via argmax_a Q(s, a)                                                    |
| Policy<br>Improvemen<br>t          | Indirect: needs to combine with a policy (e.g., in Actor-Critic methods)                     | Direct: optimal policy can be obtained by maximizing Q-values                                           |
| Computation                        | Aggregates over all actions under a policy                                                   | Evaluates specific actions                                                                              |
| Commonly<br>Used In                | <ul><li>Policy Evaluation</li><li>Value Iteration</li><li>Actor-Critic Algorithms</li></ul>  | <ul><li>- Q-Learning</li><li>- Deep Q-Networks (DQN)</li><li>- SARSA</li></ul>                          |
| Complexity<br>(Dimensiona<br>lity) | Lower dimensionality (since it depends only on state)                                        | Higher dimensionality (depends on both state and action)                                                |
| Storage<br>Requirement<br>s        | Requires storing value for each state                                                        | Requires storing value for each state-action pair                                                       |
| Learning<br>Focus                  | Learn <b>value of being</b> in a state                                                       | Learn <b>value of doing</b> an action in a state                                                        |
| Suitability                        | Suitable for environments where policy is fixed and known                                    | Suitable for learning <b>optimal policies</b> , especially in model-free settings                       |

# Q. Write the bellman equation of calculating updated Q-function considering state S and action A

$$Q(s, a) \leftarrow Q(s, a) + lpha \left[ R_{t+1} + \gamma \cdot \max_{a'} Q(S_{t+1}, a') - Q(s, a) 
ight]$$

#### Where:

- s: current state
- a: current action
- $S_{t+1}$ : next state
- $A_{t+1} \sim \pi(\cdot|S_{t+1})$ : next action sampled from policy
- $R_{t+1}$ : reward received after taking action a in state s
- $\gamma$ : discount factor (0  $\leq$   $\gamma$   $\leq$  1)
- $\alpha$ : learning rate (0 <  $\alpha \le 1$ )
- $\max_{a'} Q(S_{t+1}, a')$ : maximum expected future reward from next state

# Q. Sussman Anomaly

The **Sussman Anomaly** is a classic problem in the field of **Artificial Intelligence (AI) planning**, particularly in **non-linear planning** or **partial-order planning**. It highlights a limitation of early planning systems that used simple goal decomposition. Let me break it down in a simple and detailed way.

#### What Is Planning in AI?

In AI, **planning** refers to generating a sequence of actions that an agent can perform to achieve a goal from an initial state.

A planning system tries to:

- Break the goal into subgoals.
- Solve each subgoal.
- Combine those solutions into a plan.

#### What Is the Sussman Anomaly?

The **Sussman Anomaly** is a **counterexample** that shows how naive **goal decomposition** can fail.

It was introduced by **Gerald Jay Sussman** in the early 1970s to show that solving subgoals independently and then merging them can sometimes **fail to find a solution**.

# **Problem Setup (Block World Example)**

We are working in the **blocks world**, a standard toy domain in AI.

#### **Initial State:**

Three blocks: **A**, **B**, and **C** ON(A, TABLE)

ON(B, TABLE)

ON(C, A)

This means:

- Block A and Block B are on the table.
- Block C is on top of Block A.

#### Goal:

ON(A, B)

ON(B, C)

This means:

- A should be on B.
- B should be on C.

#### Where the Problem Occurs

If we try to solve each goal independently:

# Subgoal 1: Make ON(A, B)

• We might stack A on B. **V** Done.

# Subgoal 2: Make ON(B, C)

- Now we try to put B on C.
- But **A is on B**, so B can't be moved unless A is removed.
- We have to **undo** the previous subgoal to achieve the next one.

So solving goals independently creates interference.

#### Why It's an "Anomaly"

In early planners (like STRIPS), goals were solved **one at a time**, in order, without considering interactions. They assumed:

• Once a subgoal is done, it stays done.

But in this case:

- Solving one subgoal prevents the next.
- Solving the second subgoal undoes the first.

This is the **Sussman Anomaly**: naive decomposition fails due to **interactions between subgoals**.

# **Solution: Nonlinear or Partial-Order Planning**

To solve the anomaly, we use more sophisticated planning methods that:

- Allow actions to be partially ordered.
- Interleave actions for different subgoals.
- Consider interactions (threats, dependencies).

One such planner is NOAH (Nets of Action Hierarchies) or later TWEAK, SNLP, etc.

A valid plan might be:

- 1. Move C to table.
- 2. Move B onto C.
- 3. Move A onto B.

Now the goal is reached without interference.

### **Summary**

| Concept            | Description                                                         |  |
|--------------------|---------------------------------------------------------------------|--|
| Sussman<br>Anomaly | A problem where independent goal solving fails due to interference. |  |
| Domain             | Blocks world (stacking blocks).                                     |  |
| Issue              | Solving subgoal A-B prevents solving B-C.                           |  |

| Lesson | Planning must consider <b>goal interactions</b> .                 |  |
|--------|-------------------------------------------------------------------|--|
| Fix    | Use <b>non-linear planning</b> that can handle interleaved goals. |  |

# Q. What is Markov decision process?

#### **Definition:**

A Markov Decision Process (MDP) is a mathematical framework used to model decision-making in situations where outcomes are partly random and partly under the control of a decision maker (agent).

An MDP provides a formalization for **reinforcement learning problems** and defines the environment in which an agent operates.

### **Components of MDP:**

An MDP is defined by a **5-tuple (S, A, P, R, \gamma)**:

| Compone<br>nt | Description                                                                                                                                            |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| S             | A finite set of <b>states</b> representing all possible situations the agent can be in.                                                                |  |
| A             | A finite set of <b>actions</b> the agent can take. The set of actions may depend on the current state.                                                 |  |
| P             | A <b>transition probability function</b> : $P(s' s,a)$ , which defines the probability of moving to state $s'$ when action $a$ is taken in state $s$ . |  |
| R             | A <b>reward function</b> : R(s,a,s'), which gives the expected reward received after transitioning from state s to state s'                            |  |
| γ             | A <b>discount factor</b> $0 \le \gamma \le 1$ , which determines the importance of future rewards. A value close to 0 makes the agent it far-sighted.  |  |

#### **Markov Property:**

The core assumption in an MDP is the **Markov Property**, which states that:

The future state depends only on the current state and action, and not on the sequence of events that preceded it.

Formally:

$$P(S_{t+1} \mid S_t, A_t, S_{t-1}, A_{t-1}, \dots, S_0, A_0) = P(S_{t+1} \mid S_t, A_t)$$

This "memoryless" property is essential for simplifying the problem and applying dynamic programming techniques.

#### Objective of an Agent in an MDP:

The agent's goal is to learn a **policy** 

 $\pi(a|s)$  that **maximizes the expected cumulative reward** over time:

$$\text{Maximize } \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t R_{t+1} \right]$$

# Q. Write Q-learning algorithm

**Q-learning** is a value-based **off-policy** algorithm used to find the **optimal action-selection policy** for any given finite Markov Decision Process (MDP).

It learns the **optimal Q-values**: the expected future rewards for a state–action pair under the best policy.

Update the Q-value using the Bellman Optimality Equation:

$$Q(s, a) \leftarrow Q(s, a) + lpha \left[ r + \gamma \cdot \max_{a'} Q(s', a') - Q(s, a) 
ight]$$

Where:

• s: current state

• a: action taken

r: reward received

• s': next state

a': possible next actions

•  $\alpha$ : learning rate (0 <  $\alpha \le 1$ )

•  $\gamma$ : discount factor  $(0 \le \gamma \le 1)$ 

**Q-Learning Algorithm Steps** 

| Step | Description                                                                                                |  |  |
|------|------------------------------------------------------------------------------------------------------------|--|--|
| 1    | Initialize Q-values: $Q(s,a) \leftarrow 0$ for all state-action pairs $(s,a)$                              |  |  |
| 2    | Repeat for each episode (until convergence or max episodes):                                               |  |  |
| 3    | $\rightarrow$ Initialize the starting state s                                                              |  |  |
| 4    | $\rightarrow$ Repeat (for each step in the episode):                                                       |  |  |
| 5    | $\rightarrow \rightarrow$ Choose an action a from state s using a <b>policy</b> (e.g., $\epsilon$ -greedy) |  |  |
| 6    | $\rightarrow \rightarrow$ Take action a, observe reward r and next state s'                                |  |  |
| 7    | →→ Update Q-value using:                                                                                   |  |  |
|      | $Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a'} Q(s',a') - Q(s,a)]$                   |  |  |
| 8    | $\rightarrow \rightarrow \text{Set } s \leftarrow s'$                                                      |  |  |
| 9    | → Until state s is terminal                                                                                |  |  |
| 10   | End Episode                                                                                                |  |  |
| 11   | After all episodes, the optimal policy is: $\pi(s) = rg \max_a Q(s,a)$                                     |  |  |

# ARTIFICIAL INTELLIGENCE PyQ ANSWERS ~ FROM MIDSEM

# Q. Explain the role of discount factor in RL, considering $\gamma = 0$ , 1 and varies b/w 0.2 to 0.8

The **discount factor** ( $\gamma$ ) in Reinforcement Learning (RL) plays a crucial role in determining how much future rewards contribute to the agent's decision-making. It is a value between **0** and **1** that balances **immediate vs. future rewards** in the **return (cumulative reward)** calculation.

#### 1. Mathematical Role of Discount Factor

The **return** at time step t:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

where:

- $R_{t+1}$  is the reward at time t+1,
- $\gamma$  determines how much the agent values future rewards.

A **higher**  $\gamma$  makes the agent **more future-focused**, while a **lower**  $\gamma$  makes it **short-sighted**.

# 2. Effects of Different Values of $\gamma$

#### (i) When $\gamma = 0$

- The agent only considers immediate rewards and completely ignores future rewards.
- The return simplifies to G Gt =Rt+1, meaning it behaves in a **greedy manner**, maximizing only the next reward.
- Useful in **one-step decision-making** problems where only the next action matters (e.g., reflex-based tasks).

#### (ii) When $\gamma = 1$

- The agent considers the entire future rewards without discounting.
- It aims for the **longest-term reward maximization**, making it **highly strategic**.
- However, in **infinite-horizon problems**, the return may **not converge**, making it computationally unstable.

#### (iii) When $\gamma$ varies (0.2 to 0.8)

- $\gamma = 0.2 \rightarrow$  The agent values **immediate rewards much more** and slightly considers future rewards.
- $\gamma = 0.5 \rightarrow$  The agent balances short-term and long-term rewards.
- γ = 0.8 → The agent strongly considers future rewards, optimizing for a longer horizon while still discounting somewhat.

#### 3. Practical Considerations

- Small  $\gamma$  (e.g., 0.2 0.4): Good for short-term tasks like robotic arms, where immediate feedback is crucial.
- **Medium γ (e.g., 0.5 0.7)**: Balanced strategy for **episodic tasks** like **board games**, where future outcomes matter but immediate actions are still important.

• **High γ (e.g., 0.8 - 0.99)**: Preferred for **long-horizon tasks** like **autonomous driving** or **stock trading**, where long-term success is critical.

# **4.** Choosing γ in Practice

- If  $\gamma$  is **too low**, the agent acts **short-sighted** and may **miss optimal strategies**.
- If  $\gamma$  is **too high**, the agent may **struggle with long-term credit assignment** and may not learn efficiently.

### Q. Write the properties of MINIMAX game search algorithm

The **Minimax algorithm** is used in **two-player**, **zero-sum games** like Chess, Tic-Tac-Toe, and Checkers. It systematically explores possible moves, assuming both players play optimally.

### 1. Completeness

**Minimax is complete** if the search tree is finite.

It guarantees finding a solution if a terminal state exists.

**Example:** In **Tic-Tac-Toe**, Minimax explores all possible moves, ensuring it finds a winning or drawing strategy.

## 2. Optimality

**Minimax is optimal** if both players play perfectly.

It assumes the opponent plays optimally and chooses the best possible move to minimize the worst-case loss.

**Example:** In **Chess**, Minimax ensures the best possible outcome based on available information.

# 3. Time Complexity

Minimax has exponential time complexity of O(b^d), where:

- b = branching factor (average number of moves per turn).
- d = depth of the game tree.

**Example:** In Chess (b  $\approx$  35, d  $\approx$  100), Minimax becomes infeasible without optimizations like Alpha-Beta Pruning.

# 4. Space Complexity

**Depends on the implementation:** 

**DFS-based Minimax**  $\rightarrow$  O(d) (depth-first, stores only one path at a time).

**BFS-based Minimax**  $\rightarrow$  O(b^d) (breadth-first, stores the entire tree).

# **Example:**

- **Tic-Tac-Toe** (small tree) → Can store the full tree.
- **Chess** (huge tree) → Uses depth-limited search with Alpha-Beta pruning.

#### 5. Deterministic & Zero-Sum

Minimax works in deterministic, zero-sum games.

- **Deterministic:** No randomness; every move leads to a known state.
- **Zero-Sum:** One player's gain is another's loss.

# **Example:**

- Applicable → Chess, Tic-Tac-Toe (Fixed moves, no randomness).
- **Not applicable** → Poker (Random cards, bluffing).

# 6. Limited by Depth and Pruning

**Minimax is inefficient for large trees** but can be improved using:

- **Depth-limited Minimax** Stops at a fixed depth (d).
- Alpha-Beta Pruning Reduces explored nodes, improving efficiency.

**Example:** In Chess, Alpha-Beta Pruning reduces **b^d** complexity to **b^(d/2)**, making deeper searches feasible.

# Q. When do you apply Alpha-Beta Pruning in the Minimax Tree?

**Alpha-Beta Pruning** is applied when we can **avoid evaluating parts of the Minimax tree** that won't affect the final decision. It helps **reduce the number of nodes explored**, making Minimax faster **without changing the result**.

# 1. Pruning Condition

Prune a branch if we find that it cannot influence the final decision.

- $\alpha$  (alpha)  $\rightarrow$  Best value for MAX (maximizing player) so far
- $\beta$  (beta)  $\rightarrow$  Best value for MIN (minimizing player) so far
- If  $\alpha \ge \beta$ , further exploration is **useless**, and we prune that branch.

# 2. When to Apply Alpha-Beta Pruning?

Pruning occurs in two cases:

- 1. Beta Cutoff ( $\beta \leq \alpha$ ) in the Maximizing Level
  - If a MAX node finds a move with a value  $\geq \beta$ , further children are ignored.
- 2. Alpha Cutoff ( $\alpha \ge \beta$ ) in the Minimizing Level
  - If a MIN node finds a move with a value  $\leq \alpha$ , further children are ignored.

#### 3. Benefits of Alpha-Beta Pruning

- Reduces nodes explored from  $O(b^d)$  to  $O(b^d)$  + Much faster!
- Works best when the tree is sorted (Best moves first).
- No change in the final Minimax decision.

#### 4. When to Avoid Alpha-Beta Pruning?

- If the tree is unstructured/random, pruning may not help much.
- Not useful in non-deterministic games (like Poker, where chance affects outcomes).
- Sorting moves before searching increases efficiency but adds extra cost.

# Q. What is the purpose of a Belief Network?

A Belief Network, also known as a Bayesian Network (BN), is a probabilistic graphical model that represents dependencies among random variables using Directed Acyclic Graphs (DAGs). It is used for reasoning under uncertainty in AI.

#### Purpose of a Belief Network

- 1. Probabilistic Reasoning
- Helps **infer hidden (unknown) variables** based on known evidence.
- Computes the **probability of events** occurring.

#### **Example:**

- **Medical Diagnosis:** If a patient has a fever, what is the probability they have the flu?
- **Spam Detection:** Given features like sender and keywords, what is the probability an email is spam?

# 2. Handling Uncertainty in AI

- Real-world AI applications involve uncertainty (e.g., noisy data, incomplete info).
- Bayesian Networks model relationships probabilistically, unlike deterministic logic.

#### **Example:**

 A robotic system must decide if an object in front is a wall or a door based on noisy sensor data.

#### 3. Causal Relationship Representation

- Unlike simple probability models, BNs represent cause-and-effect relationships.
- Helps AI **predict outcomes** when conditions change.

#### **Example:**

- **Traffic Prediction:** If it rains, what is the probability of a traffic jam?
  - $\circ$  Rain  $\rightarrow$  Slippery Roads  $\rightarrow$  More Accidents  $\rightarrow$  Traffic Jam

### 4. Decision Making

- Used in **decision-making systems** to evaluate different actions and their probabilities.
- Supports decision trees, reinforcement learning, and AI agents.

#### **Example:**

• **Self-driving cars:** Given current road conditions and pedestrian movement, what is the best driving action to take?

#### 5. Learning from Data

- Bayesian Networks can be **built from data** using **Bayesian inference**.
- Allows AI to **learn probabilistic dependencies** and improve over time.

# **Example:**

 AI learns which symptoms are highly correlated with specific diseases by analyzing medical datasets.

# Q. Why is Probabilistic Reasoning Needed in AI? What is Probabilistic Reasoning?

Probabilistic reasoning in AI deals with **uncertainty** by assigning probabilities to different outcomes. Instead of making rigid, deterministic decisions, AI can **infer and predict outcomes based on likelihoods**. It is used in **Bayesian networks**, **Hidden Markov Models**, **Decision Trees**, and **Reinforcement Learning**.

# Why Do We Need Probabilistic Reasoning in AI?

#### 1. Handling Uncertainty

- **Real-world data is incomplete, noisy, or ambiguous**—probabilistic reasoning allows AI to make the **best possible decision** even when full information isn't available.
- AI must **infer missing details** instead of assuming absolute truths.

### **Example:**

- A self-driving car detects a blurry object ahead. Is it a pedestrian or just a shadow?
- Using probabilities, the AI can determine the **most likely scenario** and react accordingly.

#### 2. Making Rational Decisions

- AI applications like **medical diagnosis**, **stock prediction**, **and robotics** require **decisionmaking under uncertainty**. - Probabilistic models help AI **weigh different possibilities** and choose the **most rational action**.

#### **Example:**

- In **medical diagnosis**, if a patient has symptoms A, B, and C, what is the probability of **Disease X** vs. **Disease Y**?
- AI computes probabilities and recommends the most likely diagnosis.

## 3. Learning from Data

- AI can learn patterns and trends from data using probability distributions.
- Unlike rule-based systems, probabilistic models can **adapt and update** based on new information.

#### **Example:**

- A spam filter assigns a probability score based on words, sender, and email history to decide if a message is spam or not.
- If a user marks an email as spam, the AI **updates its probability model** to improve future predictions.

# 4. Modeling Cause-and-Effect

- Probabilistic reasoning allows AI to **understand causal relationships** rather than just correlations.
- Helps in **predictive modeling** where past events influence future outcomes.

# **Example:**

- Traffic Prediction System:
  - If it **rains**, the probability of **traffic congestion** increases.
  - If it rains and there's an accident, congestion probability is even higher.

#### 5. Optimizing AI Performance

- AI models like **Hidden Markov Models (HMMs), Bayesian Networks, and Reinforcement Learning** use probability to **balance exploration vs. exploitation**.
- This improves AI's ability to **adapt dynamically**.

#### **Example:**

- Reinforcement Learning in Games
  - AI **chooses moves based on the probability** of winning.
  - Over time, it learns which actions are more **rewarding** and adjusts its strategy.

#### **Applications of Probabilistic Reasoning in AI**

- **Robotics** Navigate uncertain environments.
- Natural Language Processing (NLP) Understand speech and text ambiguities.
- Medical Diagnosis Predict diseases based on symptoms.
- **Fraud Detection** Identify suspicious transactions using probability.
- **Self-Driving Cars** Make safe driving decisions under uncertainty.
- **Weather Forecasting** Predict rain, storms, or temperature changes.

# **Difference Between Games and Search Problems in AI**

| Aspect                   | Games in AI                                                                                                           | Search Problems in AI                                                                                   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Definition               | Games involve <b>two or more agents</b> competing to achieve a goal, where each agent's actions affect the others.    | Search problems involve finding a <b>sequence of actions</b> that leads to a desired goal state.        |
| Number of Agents         | <b>Multi-agent</b> environment with competing entities.                                                               | <b>Single-agent</b> environment, solving a problem independently.                                       |
| Nature of<br>Environment | <b>Adversarial</b> , as agents have <b>conflicting</b> objectives (e.g., one wins, the other loses).                  | <b>Non-adversarial</b> , as there is no competition, only finding an optimal solution.                  |
| Objective                | To maximize an agent's utility while minimizing the opponent's success.                                               | To find the <b>best or optimal path</b> from an initial state to the goal state.                        |
| Decision<br>Process      | Agents make <b>strategic decisions</b> based on the opponent's possible moves.                                        | The search algorithm explores possible paths systematically to find a solution.                         |
| Types of Problems        | Chess, Tic-Tac-Toe, Go, Poker, AlphaGo.                                                                               | Route Planning, Puzzle Solving, Pathfinding, AI Planning.                                               |
| Evaluation               | Uses a <b>utility function</b> or evaluation function to decide the best move.                                        | Uses <b>heuristics</b> , <b>cost functions</b> , <b>and goal tests</b> to evaluate paths.               |
| Complexity               | Often <b>more complex</b> due to the need to predict an opponent's moves (e.g., exponential growth in possibilities). | Complexity depends on the <b>state space</b> and branching factor but is usually <b>deterministic</b> . |
| Algorithms<br>Used       | Minimax, Alpha-Beta Pruning, Monte<br>Carlo Tree Search (MCTS).                                                       | A*, BFS, DFS, Dijkstra's<br>Algorithm, Greedy Best-First<br>Search.                                     |
| Example of<br>States     | In Chess, a state represents <b>board positions of all pieces</b> and the turn of a player.                           | In a pathfinding problem, a state represents the <b>current location</b> of an agent in a graph.        |

# Q. Difference Between Uniform Cost Search (UCS) and Breadth-First Search (BFS)

| Aspect                            | Uniform Cost Search (UCS)                                                                 | Breadth-First Search (BFS)                                                                      |
|-----------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Definition                        | A search algorithm that expands the least-cost node first.                                | A search algorithm that expands nodes level by level.                                           |
| Type of Algorithm                 | <b>Informed Search</b> (uses path cost).                                                  | <b>Uninformed Search</b> (no cost consideration).                                               |
| Expansion<br>Strategy             | Expands the node with the <b>lowest total path cost (g(n))</b> .                          | Expands all nodes at the <b>current depth</b> before moving to the next level.                  |
| Uses a Cost Function?             | Yes, it considers the <b>cumulative cost (g(n))</b> from the start node.                  | No, it treats all edge costs as <b>equal</b> (assumes unit cost).                               |
| Queue Type<br>(Data<br>Structure) | <b>Priority Queue</b> (sorted by path cost).                                              | FIFO Queue (First In, First Out).                                                               |
| Optimality                        | <b>Yes</b> , UCS finds the optimal path when costs are positive.                          | Yes, BFS finds the optimal path only if all edges have the same cost.                           |
| Completeness                      | <b>Yes</b> , UCS is complete if costs are non-negative.                                   | <b>Yes</b> , BFS is complete in a finite state space.                                           |
| Time<br>Complexity                | $O(b^{1+floor(C^*/\epsilon)})$                                                            | O(bd)                                                                                           |
| Space<br>Complexity               | $O(b^{1+floor(C^*/\epsilon)})$                                                            | O(bd)                                                                                           |
| When to Use?                      | When <b>path costs vary</b> and we need the <b>least-cost solution</b> .                  | When <b>all edge costs are equal</b> , and we need the <b>shortest path in terms of steps</b> . |
| Example Use<br>Cases              | Finding the <b>cheapest</b> flight between two cities, shortest path in a weighted graph. | Solving mazes, shortest path problems with uniform cost (e.g., unweighted graphs).              |

# Q. Define evaluation function or heuristic function to solve an informed search problem

# 1. Evaluation Function (f(n)):

- In **informed search**, the **evaluation function** determines the desirability of expanding a node
- It guides the search by assigning a numerical value to each node.
- The most common form is: f(n)=g(n)+h(n) where:
  - g(n) = Cost from the start node to n
  - h(n) = Heuristic estimate of the cost from n to the goal.

#### 2. Heuristic Function (h(n)):

- A **heuristic function** is an approximation of the remaining cost to the goal.
- It is problem-specific and helps the algorithm prioritize nodes.
- A good heuristic function is efficient to compute and leads the search efficiently towards the goal.

# Example: A Search in a Grid (Manhattan Distance Heuristic)\*

Consider a **grid-based pathfinding problem**, where you must move from **start (2,2)** to **goal (6,6)** using up, down, left, or right moves.

# **Heuristic Calculation (Manhattan Distance)**

One common heuristic for grid-based search is the **Manhattan Distance**, given by:

$$h(n)=|x_{goal}-x_n|+|y_{goal}-y_n|$$

For a node at (2,2) with a goal at (6,6):

$$h(2,2)=|6-2|+|6-2|=4+4=8$$

If a move costs **1 unit**, this heuristic gives a reasonable estimate of how far we are from the goal.

### **Choosing a Good Heuristic**

A heuristic should be:

- **1.** Admissible  $\rightarrow$  Never overestimates the actual cost.
- **2. Consistent (Monotonicity Condition)**  $\rightarrow$  If moving from node A to B incurs cost c  $h(A) \le h(B) + c$
- 3. Computationally Efficient  $\rightarrow$  Should be quick to compute.

# Q. Design the heuristic functions for the 8 puzzle problem and show that the heuristic functions are admissible

The **8-puzzle problem** consists of a **3×3 grid** with 8 numbered tiles and one empty space. The goal is to reach a specific arrangement from a given initial configuration by sliding tiles into the empty space.

# **Two Common Heuristic Functions**

- 1. Misplaced Tiles Heuristic (h1 (n))
  - Counts the number of tiles **not in their goal position**.
  - Example:

$$h_1(n) = \sum_{i=1}^8 \mathbb{I}(tile_i 
eq goal\_position_i)$$

• I is an indicator function (1 if true, 0 otherwise).

# 2. Manhattan Distance Heuristic (h2 (n))

- Computes the sum of horizontal and vertical moves needed for each tile to reach its goal position.
- Given by:

$$h_2(n) = \sum_{i=1}^8 (|x_i - x_{\mathrm{goal}}| + |y_i - y_{\mathrm{goal}}|)$$

# **Proof of Admissibility**

A heuristic is **admissible** if it **never overestimates** the actual cost to the goal.

#### 1. Misplaced Tiles Heuristic (h1 (n))

- Each misplaced tile requires at least **one move** to reach the correct position.
- Since each move costs **exactly 1**, the heuristic never **overestimates** the number of moves.
- Thus, h1 (n) is admissible.

# 2. Manhattan Distance Heuristic (h2 (n))

- Each tile must move at least as many steps as Manhattan Distance suggests.
- No tile can reach its goal in fewer moves than its Manhattan Distance.
- Since **tile swaps are not allowed**, h2 (n) is a **lower bound** on the actual cost.
- Thus, h2 (n) is admissible.

#### Which Heuristic is Better?

- h1 (n) (Misplaced Tiles) → Simpler but less accurate.
- h2 (n) (Manhattan Distance) → More informative and generally performs better in A\* search.

# Q. Difference Between A\* and AO\* Search Algorithm

| Aspect                          | A* Search Algorithm                                                                                                                | AO* Search Algorithm                                                                                                          |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Type of<br>Search               | Finds the <b>shortest path</b> in a state-space graph.                                                                             | Finds the <b>optimal solution</b> in an AND-OR graph.                                                                         |
| Search<br>Space                 | Works in <b>state-space graphs or trees</b> .                                                                                      | Works in <b>AND-OR graphs</b> , where nodes represent <b>decisions and subproblems</b> .                                      |
| Graph<br>Type                   | Uses <b>single-path search</b> .                                                                                                   | Uses <b>graph search with AND-OR nodes</b> (useful in problem decomposition).                                                 |
| Node Type                       | Each node represents a <b>state</b> .                                                                                              | Nodes can be AND nodes (subproblems must be solved together) or OR nodes (one subproblem is sufficient to solve the problem). |
| Expansion                       | Expands the most promising node based on $f(n)=g(n)+h(n)$ .                                                                        | Expands nodes <b>recursively</b> based on subproblem dependencies.                                                            |
| Heuristic<br>Function           | Uses a heuristic function h(n) to estimate the cost from node n to the goal.                                                       | Uses a heuristic function that <b>guides search in AND-OR graphs</b> , considering both subproblems and their dependencies.   |
| Cost<br>Function                | Uses $f(n)=g(n)+h(n)$ , where:<br>- $g(n) = \cos t$ from start to n.<br>- $h(n) = \operatorname{estimated} \cos t$ from n to goal. | Uses a cost function based on <b>aggregated cost of all subproblems</b> in AND-OR graphs.                                     |
| Purpose                         | Used for <b>pathfinding and shortest path problems</b> .                                                                           | Used in <b>hierarchical problem-solving</b> and game trees.                                                                   |
| Applicatio<br>n Areas           | - Pathfinding (e.g., Google Maps,<br>Robotics) Game AI (minimax<br>search) Planning and scheduling.                                | - Expert systems Hierarchical problem-<br>solving (e.g., medical diagnosis)<br>Decision-making in uncertain<br>environments.  |
| Optimality                      | Guaranteed optimal solution if $h(n)$ is admissible and consistent.                                                                | Finds an <b>optimal solution in an AND-OR graph</b> but depends on <b>how problems decompose</b> .                            |
| Computati<br>onal<br>Efficiency | Can be computationally expensive for large state spaces.                                                                           | Efficient in <b>hierarchical problem- solving</b> but can be complex when AND- OR dependencies are large.                     |