A SWT para detectar RBNs em corridas de rua

Gabriel Martins de Miranda Universidade de Brasília

www.unb.br gabrielmirandat@h otmail.com

Introdução

- Interesse de empresas de fotografias
- Trabalho manual cansativo e maçante

, Ac

51A 21

1) Threshold para o detector de bordas

- Limites do detector de bordas de Canny de 175 e 320 para 300 e 600
- Objetivo: remover o ruído característico de RBNs falhadas

2) Precisão multiplicada pelas imagens gradiente

- Diminuir este constante de 0.5 para 0.2
- Objetivo: remover bordas irrelevantes que podem gerar ruído

3) Distâncias das cores das CCs

- Alterar restrição das cores de 1600 para 5000
- Objetivo: permitir que CCs sejam unidas mais facilmente, já que podem ocorrer grandes variações de iluminação numa mesma RBN

4) Ângulo entre CCs para chaining

- Mudar ângulo máximo permitido de 30º para 60º
- Objetivo: permitir invariância à rotação das tags que ocorrem durante a corrida

5) Número mínimo de BBs para que se forme uma chain

- Alterar de pelo menos 3 para um mínimo de 2
- Objetivo: permitir que tags que possuem apenas 2 algarismos sejam identificadas

6) Valor mediano para o raio na segunda passada

- Preencher raio com SW da posição tam_vetor_raio/12 em vez da mediana (tam_vetor_raio/2)
- Objetivo: homogeneizar valores SW no algarismo 4 (cruzamento perpendicular)

7) Limitar tamanho máximo dos traçados da SWT

- Restringir larguras de no máximo 30 pixels
- Objetivo: Remover ruído de traçados irrelevantes

Resultados

	Banco 1 - 132 imagens				Banco 2 - 125 imagens				Banco total - 257 imagens
	Identificados	Não identificados	Irreconhecíveis	Acerto	Identificados	Não identificados	Irreconhecíveis	Acerto	Tempo gasto
Nosso algoritmo	102	14	16	87.93%	93	30	2	75.60%	4 min 40 seg
SWT original	76	40	16	65.52%	58	65		47.15%	20 min 48 seg

Table 1: Comparando nosso algoritmo com a SWT original.

Conclusão

- Problemas:
 - imagens borradas
 - RBNs pequenas
 - baixo constraste entre algarismos e fundo
 - ruído

Referências

210

[1] E. O. B. Epshtein and Y. Wexler. Detecting text in natural scenes with stroke width transform. Pages 2963–2970, 2010.

[2] B. T. Ben-Ami, I. and S. Avidan. Racing bib numbers recognition. Pages 19.1–19.10, 2012.

[3] J. Canny. A computational approach to edge detection. PAMI- 8:679 – 698, 1986.