

N-Channel 150-V (D-S) 175°C MOSFET

PRODUCT SUMMARY					
V _{(BR)DSS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)			
150	0.019 @ V _{GS} = 10 V	85 a			

FEATURES

- TrenchFET® Power MOSFET
- 175°C Junction Temperature
- New Low Thermal Resistance Package
- 100% R_g Tested

APPLICATIONS

- Primary Side Switch
- Automotive
 - 42-V EPS and ABS
 - DC/DC Conversion
 - Motor Drives

Ordering Information: SUM85N15-19

SUM85N15-19-E3 (Lead Free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _C = 25°C UNLESS OTHERWISE NOTED)					
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	150		
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current (T _J = 175°C)	T _C = 25°C	L	85 ^a		
	T _C = 125°C	l _D	50 ^a	Α	
Pulsed Drain Current		I _{DM}	180		
Avalanche Current		I _{AR}	50		
Repetitive Avalanche Energy ^b	L = 0.1 mH	E _{AR}	125	mJ	
Maximum Power Dissipation ^b	T _C = 25°C	В	375 ^c	344	
	$T_A = 25^{\circ}C^d$	P _D	3.75	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 175	°C	
Operating Junction and Storage Temperature Ra	inge	T _J , T _{stg}	-55 to 175		

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Limit	Unit	
Junction-to-Ambient	PCB Mount (TO-263)d	R _{thJA}	40	2014	
Junction-to-Case (Drain)		R _{thJC}	0.4	°C/W	

Notes

- Package limited.
- Duty cycle ≤ 1%.
- See SOA curve for voltage derating.
 When mounted on 1" square PCB (FR-4 material).

SUM85N15-19

Vishay Siliconix

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Static	<u>'</u>		II.	•			
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{DS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	150			- v	
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2		4		
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±20 V			±100	nA	
		V _{DS} = 150 V, V _{GS} = 0 V			1	1	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 150 V, V _{GS} = 0 V, T _J = 125°C			50	μΑ	
<u>-</u> 		V_{DS} = 150 V, V_{GS} = 0 V, T_{J} = 175 $^{\circ}$ C			250	1	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \geq 5 \text{ V}, V_{GS} = 10 \text{ V}$	120			Α	
Drain-Source On-State Resistance ^a		$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$		0.015	0.019	Ω	
	r _{DS(on)}	V_{GS} = 10 V, I_D = 30 A, T_J = 125°C			0.038		
		V _{GS} = 10 V, I _D = 30 A, T _J = 175°C			0.050	1	
Forward Transconductance ^a	9fs	V _{DS} = 15 V, I _D = 30 A	25			S	
Dynamic ^b			•				
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz		4750		pF	
Output Capacitance	C _{oss}			530			
Reverse Transfer Capacitance	C _{rss}			220			
Total Gate Charge ^c	Qg			76	110	nC	
Gate-Source Charge ^c	Q _{gs}	V_{DS} = 75 V, V_{GS} = 10 V, I_D = 85 A		21			
Gate-Drain Charge ^c	Q _{gd}			26			
Gate Resistance	Rg		0.5	1.8	3.0	Ω	
Turn-On Delay Time ^c	t _{d(on)}			22	35	ns	
Rise Time ^c	t _r	$V_{DD} = 75 \text{ V. R}_{1} = 0.9 \Omega$		170	250		
Turn-Off Delay Time ^c	t _{d(off)}	V_{DD} = 75 V, R_L = 0.9 Ω I $_D$ \cong 85 A, V_{GEN} = 10 V, R_g = 2.5 Ω		40	60		
Fall Time ^c	t _f			170	250		
Source-Drain Diode Ratings an	d Characteristics	s (T _C = 25°C) ^b	•				
Continuous Current	Is				85		
Pulsed Current	I _{SM}				180	A	
Forward Voltage ^a	V _{SD}	I _F = 85 A, V _{GS} = 0 V		1.0	1.5	V	
Reverse Recovery Time	t _{rr}			130	200	ns	
Peak Reverse Recovery Current	I _{RM(REC)}	$I_F = 50 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		8	12	Α	
Reverse Recovery Charge	Q _{rr}			0.52	1.2	μС	

- Notes a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Vishay Siliconix

THERMAL RATINGS

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08