OrganMIST3D MedMIST

RFA - Hugo Albert

L Descripción

- Colección imágenes biomédicas de estandarizadas al estilo de MNIST, nacida en 2021 como benchmark.
- Imagen 3D con opción de ser descargada en resolución 28x28x28 o 64x64x64.
- 11 clases de órganos (para riñón, pulmón y fémur distingue entre derecho e izquierdo).
- Relativamente balanceado.

64x64

Liver

Kidney left

Spieen

Estado del arte

Fuente	Modelo	ACC
$GitHub: ikboljon/uncertainty_benchmark$	$ResNet18_Ensemble5$	0.909
$GitHub: ikboljon/uncertainty_benchmark$	$ResNet18_Ensemble4$	0.911
MedMNISTv2	ResNet18+3D	0.907
MedMNISTv2	ResNet18+ACS	0.900
MedMNISTv2	ResNet50+ACS	0.889

2 Modelos Iniciales

Modelo	ACC
$Naive\ Bayes\ Gaussiano$	0.664
LDA	0.692
PCA+QDA	0.757
$MLP(1\ HL, 800n)$	0.721
$ResNet18\ Ensemble\ 5\ (baseline)$	0.911

Ajuste de arquitectura

Modelo	ACC
PCA+QDA	0.757
$MLP(1\ HL, 800n)$	0.721
$MLP\ arquitectura\ (1\ HL, 900n)$	0.723
$ResNet18\ Ensemble\ 5\ (baseline)$	0.911

Ajuste de hiperparámetros

Modelo	ACC
PCA+QDA	0.757
$MLP\ arquitectura\ (1\ HL, 900n)$	0.723
$MLP\ (BS\ 128, LR\ 0.0016)$	0.744
$MLP\ (ReduceOnPlateau)$	0.772
$ResNet18\ Ensemble\ 5\ (baseline)$	0.911

GNIS

Modelo	ACC
PCA+QDA	0.757
$MLP\ (ReduceOnPlateau)$	0.772
CNN	0.813
CNN+DA	0.820
$ResNet18\ Ensemble\ 5\ (baseline)$	0.911

Fine-Tuning

- ResNet50V2 adaptando el MLP del top model.
- TODO A LA CLASE DEL PULMÓN IZQUIERDO!!

Ca DenseNet2D

"Densely Connected Convolutional Networks". Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

- Creada para imágenes 2D con 3 canales de color
- Solución: Interpretar nuestras imágenes como 2D con 64 canales de color

Wision Transformer

"AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE". Google Research, Brain Team

- Modificación 1: Extracción de patches con 64 canales.
- Modificación 2: Extracción de patches 3D (PxPxP).

GB ACIEMAMIX

AdEMAMix $\beta_3 = 0.999$

AdEMAMix $\beta_3 = 0.9999$

(b) Adam trajectories.

(c) AdEMAMix trajectories.

"THE ADEMAMIX OPTIMIZER: BETTER, FASTER, OLDER".

Matteo Pagliardini, Pierre Ablin, David Grangier

6.4

"ViViT: A Video Vision Transformer".

Google Research

Wolumentations

GG Results

Modelo	ACC
PCA+QDA	0.757
$MLP\ (ReduceOnPlateau)$	0.772
CNN+DA	0.820
$DenseNet2D\ 64C + DA$	0.884
ViT~64C	0.447
$ViT\ 64C + AdEMAMix$	0.459
ViVit	0.797
ViVit+Volumentations	0.783
$ResNet18\ Ensemble\ 5\ (baseline)$	0.911

Tour ditimo modelo

Modelo	ACC
PCA+QDA	0.757
$MLP\ (ReduceOnPlateau)$	0.772
CNN+DA	0.820
$DenseNet2D\ 64C+DA$	0.884
DenseNet3D+DA	0.928
$ResNet18\ Ensemble\ 5\ (baseline)$	0.911