Résumé de cours : Semaine 16, du 17 janvier au 21.

Les équations différentielles (fin)

1 Équations différentielles linéaires d'ordre 2 (fin)

1.1 Equations linéaires d'ordre 2 à coefficients constants

Ici, (E): y" + ay' + by = f(x), où $f: I \longrightarrow \mathbb{K}$ est continue, et où a et b sont des constantes. L'équation homogène associée est (H): y" + ay' + by = 0.

1.1.1 Résolution de (H) : Il faut savoir le démontrer.

 $\chi = X^2 + aX + b$ est appelé le polynôme caractéristique de (H) ou de (E).

• Premier cas. Si $\Delta = a^2 - 4b \neq 0$, χ admet deux racines complexes distinctes λ et μ .

Alors $(H) \iff \exists (u,v) \in \mathbb{K}^2 \ \forall x \in \mathbb{R} \ y(x) = ue^{\lambda x} + ve^{\mu x}.$

Cas particulier où $(a,b) \in \mathbb{R}^2$ avec $\Delta < 0$: alors $\lambda = \alpha + i\beta$ et $\mu = \alpha - i\beta$, avec $\alpha, \beta \in \mathbb{R}$ et $(H) \iff \exists (u,v) \in \mathbb{R}^2 \ \forall x \in \mathbb{R} \ y(x) = ue^{\alpha x} \cos \beta x + ve^{\alpha x} \sin \beta x$.

• Deuxième cas. Si $\Delta = 0$: χ admet une racine double notée λ .

Alors $(H) \iff \exists (u, v) \in \mathbb{K}^2 \ \forall x \in \mathbb{R} \ y(x) = e^{\lambda x}(u + xv).$

1.1.2 Résolution de l'équation avec second membre

Théorème. On suppose qu'il existe $\lambda \in \mathbb{K}$ et un polynôme P de $\mathbb{K}[X]$ tels que $\forall x \in I \quad f(x) = e^{\lambda x} P(x)$. Alors (E) admet une solution particulière de la forme $x \longmapsto Q(x) e^{\lambda x}$, où Q est une application polynomiale.

Plus précisément, (E) admet sur I une solution particulière de la forme $x \longrightarrow x^m e^{\lambda x} Q(x)$ où Q est un polynôme de $\mathbb{K}[X]$ de même degré que P, avec m=0 lorsque λ n'est pas racine de χ , avec m=1 lorsque λ est une racine simple de χ et avec m=2 lorsque λ est une racine double de χ .

Remarque. Ce théorème est aussi valable pour les équations différentielles de la forme

 $(E): y' + by = e^{\lambda x} P(x)$ où $P \in \mathbb{K}[X]: (E)$ admet sur I une solution particulière de la forme $x \longmapsto Q(x)e^{\lambda x}$, où Q est une application polynomiale.

Plus précisément, (E) admet une solution particulière de la forme $x \longrightarrow x^m e^{\lambda x} Q(x)$ où Q est un polynôme de $\mathbb{K}[X]$ de même degré que P, avec m=0 lorsque $\lambda \neq -b$ et m=1 lorsque $\lambda = -b$ (dans ce cas, $\chi = X + b$).

Remarque. Lorsque f(x) est de la forme $f(x) = P(x)\cos(\omega x)$ où $\omega \in \mathbb{R}$, ou bien de la forme $f(x) = P(x)\sin(\omega x)$, on peut appliquer ce qui précède en se ramenant à $x \mapsto P(x)e^{i\omega x}$.

Remarque. Plus généralement, lorsque f(x) est de la forme $P(x)e^{Q(x)}$, où P et Q sont des polynômes, on peut chercher une solution particulière de la forme $H(x)e^{Q(x)}$, où H est aussi un polynôme.

2 Equations à variables séparables (hors programme)

2.1 Equations à variables séparées

Notation.

Soient I et K deux intervalles infinis et soient $a: I \longrightarrow \mathbb{R}$ et $b: K \longrightarrow \mathbb{R}$ deux applications continues. L'équation différentielle (E): a(t) - b(y)y' = 0 est appelée une équation est à variables séparées. Si A et B sont des primitives de a et de b respectivement,

$$(E) \iff \frac{d(A(t) - B(y(t)))}{dt} = 0$$
, donc les courbes intégrales de (E) ont pour équations cartésiennes $A(x) = B(y) + C$, où $C \in \mathbb{R}$.

En pratique, on écrira $(E) \iff a(t)dt = b(y)dy \iff A(t) = B(y) + C$.

2.2 Cas général

Notation. Soient I et K deux intervalles infinis. Soient a et d deux applications continues de I dans \mathbb{R} et b et c deux applications continues de K dans \mathbb{R} . L'équation (E): a(t)c(y) - b(y)d(t)y' = 0 est appelée une équation est à variables séparables.

En divisant par c(y) et d(t) on se ramene à une équation à variables séparées.

• Plus précisément, soit $y: I \longrightarrow \mathbb{R}$ une application dérivable. Quitte à restreindre l'intervalle I, on supposera que d ne s'annule pas sur I. Ainsi $(E) \iff \frac{a(t)}{d(t)}c(y) - y'b(y) = 0$.

Il faudra ensuite étudier les possibles raccordements des solutions en chaque zéro de d.

• Si $y_0 \in K$ est un zéro de c, l'application constante $y = y_0$ est une solution de (E). Ainsi chaque zéro de c fournit une solution particulière.

On suppose ensuite que $\forall t \in I \ c(y(t)) \neq 0$. Alors $(E) \iff \frac{a(t)}{d(t)} - y' \frac{b(y)}{c(y)} = 0$: c'est une équation à variables séparées, donc on est ramené au a). Il reste ensuite à étudier les possibles recollements de ces dernières solutions avec les solutions particulières $y = y_0$ où y_0 est un zéro de c.

Espaces vectoriels normés

3 Définition d'une norme

Définition. Soit E un \mathbb{K} -espace vectoriel . On appelle norme sur E toute application $\|.\|: E \longrightarrow \mathbb{R}$ telle que, pour tout $(x, y, \lambda) \in E \times E \times \mathbb{K}$,

- $\diamond \|x\| \ge 0$ (positivité).
- $\Rightarrow ||x|| = 0 \Longrightarrow x = 0 (||.|| \text{ est définie}),$
- $\diamond \|\lambda x\| = |\lambda| \|x\| (\|.\| \text{ est homogène}), \text{ et}$
- $|x+y| \le |x+y| \le |x| + |y|$, cette dernière propriété étant appelée l'inégalité triangulaire.

Si $\|.\|$ est une norme sur E, le couple $(E,\|.\|)$ est appelé un espace vectoriel normé.

Remarque. Si E est un espace vectoriel normé, ||0|| = 0.

Corollaire de l'inégalité triangulaire. $\forall (x,y) \in E^2 \mid ||x|| - ||y|| \leq ||x-y||$. Il faut savoir le démontrer.

Définition.

Soient E un espace vectoriel normé et $u \in E$. u est unitaire si et seulement si ||u|| = 1. Si $u \neq 0$, on appelle vecteur unitaire associé à u le vecteur $\frac{u}{||u||}$, qui est bien unitaire.

Définition. Soient E un espace vectoriel normé et F un sous-espace vectoriel de E. La restriction à F de la norme de E fait de F un espace vectoriel normé.

Exemple. Sur \mathbb{R} et sur \mathbb{C} , |.| est une norme.

4 Les normes 1, 2 et ∞ .

4.1 Cas des sommes finies.

Propriété. Sur \mathbb{K}^n , on dispose de trois normes classiques.

$$\|.\|_{1}: \qquad \mathbb{K}^{n} \longrightarrow \mathbb{R}_{+}$$

$$x = (x_{1}, \dots, x_{n}) \longmapsto \|x\|_{1} = \sum_{i=1}^{n} |x_{i}|,$$

$$\|.\|_{2}: \qquad \mathbb{K}^{n} \longrightarrow \mathbb{R}_{+}$$

$$x = (x_{1}, \dots, x_{n}) \longmapsto \|x\|_{2} = \sqrt{\sum_{i=1}^{n} |x_{i}|^{2}}, \text{ et}$$

$$\|.\|_{\infty}: \qquad \mathbb{K}^{n} \longrightarrow \mathbb{R}_{+}$$

$$x = (x_{1}, \dots, x_{n}) \longmapsto \|x\|_{\infty} = \max_{1 \le i \le n} |x_{i}|.$$

Il faut savoir le démontrer.

Propriété. (Hors programme) Soit $p \in]1, +\infty[$.

$$\|\cdot\|_p:$$
 $\mathbb{K}^n\longrightarrow \mathbb{R}_+$

Alors

$$x = (x_1, \dots, x_n) \longmapsto ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$
 est une norme sur \mathbb{K}^n .

Remarque. $\forall x \in \mathbb{K}^n \ \|x\|_p \underset{n \to +\infty}{\longrightarrow} \|x\|_{\infty}$. Cela justifie la notation $\|.\|_{\infty}$.

Propriété. Soient $p \in \mathbb{N}^*$ et E_1, \ldots, E_p p \mathbb{K} -espaces vectoriels munis de normes respectivement notées $\|.\|_{E_1}, \ldots, \|.\|_{E_p}$. Alors $E = E_1 \times \cdots \times E_p$ est un espace vectoriel normé si on le munit de l'une des normes classiques suivantes.

solivations.
$$N_1: \qquad E \longrightarrow \mathbb{R}_+$$

$$x = (x_1, \dots, x_p) \longmapsto N_1(x) = \sum_{i=1}^p \|x_i\|_{E_i},$$

$$N_2: \qquad E \longrightarrow \mathbb{R}_+$$

$$x = (x_1, \dots, x_p) \longmapsto N_2(x) = \sqrt{\sum_{i=1}^p \|x_i\|_{E_i}^2}, \text{ et}$$

$$N_{\infty}: \qquad E \longrightarrow \mathbb{R}_+$$

$$x = (x_1, \dots, x_p) \longmapsto N_{\infty}(x) = \max_{1 \le i \le p} \|x_i\|_{E_i}.$$

4.2 Cas des intégrales sur un intervalle compact

Propriété. Soient $(a, b) \in \mathbb{R}^2$ avec a < b. Sur $\mathcal{C}([a, b], \mathbb{K})$, on dispose de trois normes classiques.

$$\|.\|_{1}: \quad \mathcal{C}([a,b],\mathbb{K}) \longrightarrow \mathbb{R}_{+}$$

$$f \longmapsto \|f\|_{1} = \int_{a}^{b} |f(x)| dx'$$

$$\|.\|_{2}: \quad \mathcal{C}([a,b],\mathbb{K}) \longrightarrow \mathbb{R}_{+}$$

$$f \longmapsto \|f\|_{2} = \sqrt{\int_{a}^{b} |f(x)|^{2} dx}, \text{ et}$$

$$\|.\|_{\infty}: \quad \mathcal{C}([a,b],\mathbb{K}) \longrightarrow \mathbb{R}_{+}$$

$$f \longmapsto \|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

Il faut savoir le démontrer.

Propriété. (Hors programme) Soit $p \in]1, +\infty[$.

$$\|.\|_p: \mathcal{C}([a,b],\mathbb{K}) \longrightarrow \mathbb{R}_+$$

Alors

$$f \longmapsto \|f\|_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}$$
 est une norme sur $\mathcal{C}([a,b],\mathbb{K})$.