Examen de calculabilité et complexité

M1 informatique – 3h

Le 11 janvier 2011

La qualité de la rédaction et de la présentation sera prise en compte dans l'évaluation. Le barème est donné à titre indicatif.

Exercice 1 - Vrai ou faux?

(4 points)

Les affirmations suivantes sont-elles vraies ou fausses? Ne justifiez pas vos réponses. On comptera $+\frac{1}{3}$ point par bonne réponse, $-\frac{1}{3}$ point par mauvaise réponse, et 0 pour une absence de réponse. Si le total est négatif, on donnera 0 à l'exercice.

- 1. Pour toute fonction $f: \mathbb{N} \to \mathbb{N}$ vérifiant $f(n) \geq n$ et f croissante, il existe un langage $A \in \mathsf{DTIME}(2^{f(n)^2})$ qui ne soit pas dans $\mathsf{NTIME}(f(n))$.
- 2. On sait simuler une machine de Turing non déterminisite N fonctionnant en temps t(n) par une machine déterministe M fonctionnant en espace $t(n)^2$.
- 3. Il existe un langage de EXP qui n'est pas dans NL.
- 4. SAT possède un algorithme fonctionnant en espace polynomial.
- 5. Tout langage A tel que $A \neq \emptyset$ et $A \neq \Sigma^*$ est P-difficile pour les réductions \leq_m^p .
- 6. Si SAT $\leq_m^p A$ alors A est NP-complet.
- 7. Si $A \leq_m^p \text{SAT alors } A \in \mathsf{NP}$.
- 8. Si $A \leq_m^p {\epsilon}$ alors $A \in \mathsf{P}$.
- 9. Si $A \leq_m \emptyset$ alors $A = \emptyset$.
- 10. Tout langage récursivement énumérable est indécidable.
- 11. Si A et B sont récursivement énumérables, alors $AB = \{xy : x \in A \land y \in B\}$ est récursivement énumérable.
- 12. Le langage $A = \{M : \forall x, M(0x) \text{ accepte et } M(1x) \text{ rejette}\}$ est décidable.

Exercice 2 (4 points)

- 1. Montrer que le langage $A = \{\langle M \rangle : \forall y \in \Sigma^{\star}, M(y) \text{ s'arrête en } \leq (|y|+1)^2 \text{ étapes} \}$, où M est une machine de Turing déterminisite, est indécidable.
 - Indication : dans l'optique de construire une réduction du problème de l'arrêt, si M est une machine de Turing et x son entrée, on pourra considérer une machine M' qui sur l'entrée y simule |y| étapes de M(x).
- 2. Montrer que pour tout $k \in \mathbb{N}$, le langage $A_k = \{\langle M \rangle : \forall y \in \Sigma^*, M(y) \text{ s'arrête en } \leq k \text{ étapes} \}$ est décidable.

Exercice 3 (3 points)

Soit G un graphe orienté. Montrer que le problème de décider si G possède un circuit (pas nécessairement simple) de taille impaire est dans NL .

Exercice 4 (4 points)

Soit Set Packing (SP) le problème suivant :

- Entrée : un entier n en unaire, m ensembles $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$, un entier $k \leq m$.
- Question : existe-t-il k ensembles S_{i_1}, \ldots, S_{i_k} deux à deux disjoints?

et SP2 la variante suivante (où l'on considère cette fois des couples d'entiers) :

- Entrée : un entier n en unaire, m ensembles $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}^2$, un entier $k \leq m$.
- Question : existe-t-il k ensembles S_{i_1}, \ldots, S_{i_k} deux à deux disjoints?
- 1. Montrer que SP2 se réduit à SP (pour les réductions \leq_m^p).
- 2. On rappelle que Ensemble Indépendant (EI) est le problème NP-complet suivant :
 - Entrée : un graphe non orienté G et un entier k.
 - Question : existe-t-il k sommets sans aucune arête entre eux (ensemble indépendant de taille k)? Montrer que EI se réduit à SP2 (pour les réductions \leq_m^p).
- 3. Montrer que SP est NP-complet.

Exercice 5 (3 points)

- 1. Montrer que si $\mathsf{DSPACE}(n) \subseteq \mathsf{NP}$, alors $\mathsf{PSPACE} \subseteq \mathsf{NP}$. Indication: on pourra utiliser la technique de padding (augmentation artificielle de la taille de l'entrée) vue en cours.
- 2. En déduire que $\mathsf{DSPACE}(n) \neq \mathsf{NP}$. Indication : on pourra utiliser le théorème de hiérarchie en espace.

Exercice 6 (4 points)

Un langage A est dit p-sélectif $(A \in \mathsf{P}\text{-sel})$ s'il existe une fonction $f: \Sigma^{\star} \times \Sigma^{\star} \to \Sigma^{\star}$ calculable en temps polynomial telle que $\forall x,y \in \Sigma^{\star}$:

- $-f(x,y) \in \{x,y\}, \text{ et}$ si $x \in A$ ou $y \in A$ alors $f(x,y) \in A$.
- 1. Montrer que $P \subseteq P$ -sel.
- 2. Montrer que P-sel est clos par complémentaire.
- 3. Montrer que s'il existe un langage A NP-difficile dans P-sel, alors P = NP. Indication: en s'aidant de A, on pourra donner un algorithme polynomial pour SAT qui utilise la propriété $\phi(x_1, \dots, x_n) \in SAT \iff [\phi(0, x_2, \dots, x_n) \in SAT \text{ ou } \phi(1, x_2, \dots, x_n) \in SAT].$