§ 44. Классификация квадрик на плоскости

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение квадрики на плоскости

Цель данного параграфа — указать все типы кривых второго порядка. Начнем с точного определения этого понятия.

Определение

Квадрикой на плоскости (или кривой 2-го порядка) называется множество всех точек плоскости, координаты которых в подходящей системе координат удовлетворяют уравнению 2-го порядка с двумя неизвестными, т. е. уравнению вида

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_1x + 2a_2y + a_0 = 0, (1)$$

где
$$a_{11}^2 + a_{12}^2 + a_{22}^2 \neq 0$$
.

Примеры квадрик на плоскости

Примерами квадрик на плоскости являются кривые, рассмотренные в трех предыдущих параграфах, — эллипс, гипербола и парабола. Рассмотрим еще несколько уравнений вида (1) и выясним, какие квадрики они задают.

- 1) $x^2 y^2 = 0$. Это уравнение равносильно уравнению (x y)(x + y) = 0 и потому задает *пару пересекающихся прямых* с уравнениями x y = 0 и x + y = 0.
- 2) $x^2-1=0$. Это уравнение равносильно уравнению (x-1)(x+1)=0 и потому задает *пару параллельных прямых* с уравнениями x-1=0 и x+1=0.
- 3) $x^2=0$. Это уравнение, очевидно, равносильно уравнению x=0 и потому задает на плоскости прямую (ось ординат). В теории квадрик на плоскости квадрику, задаваемую уравнением $x^2=0$, принято называть *парой совпавших прямых*. Этот термин объясняется следующими соображениями. Рассмотрим пару параллельных прямых $x=\pm a$, где a>0, задаваемую уравнением $x^2=a^2$. Если $a\longrightarrow 0$, то прямые x=a и x=-a «сближаются» и в пределе, при a=0, совпадают друг с другом.
- 4) $x^2 + y^2 = 0$. Это уравнение равносильно равенствам x = y = 0 и потому задает на плоскости *точку* (начало координат).
- 5) $x^2 + 1 = 0$. Точек, координаты которых удовлетворяли бы этому уравнению, не существует. Поэтому его геометрическим образом является *пустое множество*.

Вырожденные квадрики на плоскости (рисунок)

Квадрики, перечисленные в пп. 1)–5) на предыдущем слайде, иногда называют вырожденными. Они изображены на рис. 1.

Рис. 1. Вырожденные квадрики на плоскости

Классификационная теорема

Оказывается, что никаких других квадрик, кроме упомянутых выше в данном параграфе, не существует. А именно, справедлива следующая

Теорема о классификации квадрик на плоскости

Всякая квадрика на плоскости является или эллипсом, или гиперболой, или парой прямых (пересекающихся, параллельных или совпавших), или точкой, или пустым множеством.

Доказательство этой теоремы весьма длинное — ему будет посвящена вся оставшаяся часть данного параграфа. Отметим, однако, что это доказательство несложно по своей сути (оно сводится к простым вычислениям и перебору большого числа возникающих при этом случаев). Еще более важно то, что это доказательство конструктивно: в нем, по сути дела, изложен алгоритм, следуя которому можно определить тип квадрики, заданной произвольным уравнением вида (1), и найти систему координат, в которой уравнение этой квадрики имеет наиболее простой вид. Последнее обстоятельство особенно ценно с точки зрения решения задач.

 Приведение уравнения произвольной квадрики к простейшему виду, описываемое в доказательстве теоремы о классификации квадрик на плоскости, принято называть приведением квадрики к каноническому виду.

Доказательство классификационной теоремы: шаг 1 (1)

Доказательство. Пусть в системе координат Oxy квадрика ℓ задается уравнением (1). Разобьем дальнейшие рассуждения на три шага.

Шаг 1. Проверим прежде всего, что систему $O\!x\!y$ можно повернуть вокруг точки O на некоторый угол α так, что в новой системе координат уравнение той же квадрики ℓ не будет содержать слагаемого с произведением неизвестных.

Если $a_{12}=0$, то уже в исходной системе координат уравнение квадрики ℓ не содержит слагаемого с произведением неизвестных и в качестве искомого α можно взять угол 0° . Поэтому далее можно считать, что

$$a_{12} \neq 0. \tag{2}$$

Повернем систему $O\!xy$ на некоторый угол lpha. В новой системе координат квадрика будет иметь уравнение вида

$$a'_{11}(x')^2 + 2a'_{12}x'y' + a'_{22}(y')^2 + 2a'_{1}x' + 2a'_{2}y' + a'_{0} = 0.$$

Доказательство классификационной теоремы: шаг 1 (2)

Используя формулы (9) из § 14, легко проверить, что

$$2a'_{12} = 2a_{12}(\cos^2 \alpha - \sin^2 \alpha) - 2(a_{11} - a_{22})\sin \alpha \cos \alpha =$$

= $2a_{12}\cos 2\alpha - (a_{11} - a_{22})\sin 2\alpha$.

Следовательно, $2a_{12}^{\prime}=0$ тогда и только тогда, когда

$$2a_{12}\cos 2\alpha = (a_{11} - a_{22})\sin 2\alpha. \tag{3}$$

Ясно, что $\alpha \neq 0$ (в противном случае, т. е. при «повороте» системы координат на 0° , коэффициент при xy останется без изменения и потому будет отличен от 0). Следовательно, и $2\alpha \neq 0$. Без ограничения общности можно считать, что $0 < \alpha < \frac{\pi}{2}$, и потому $0 < 2\alpha < \pi$ (если найдется удовлетворяющий этому ограничению угол α такой, что выполнено равенство (3), то этого будет достаточно для наших целей). Следовательно,

$$\sin 2\alpha \neq 0. \tag{4}$$

Доказательство классификационной теоремы: шаг 1 (3)

Неравенства (2) и (4) позволяют нам разделить обе части равенства (3) на $2a_{12} \sin 2\alpha$. В результате мы получаем следующее уравнение относительно α :

$$\operatorname{ctg} 2\alpha = \frac{a_{11} - a_{22}}{2a_{12}} \,. \tag{5}$$

Это уравнение всегда имеет решение. Повернув систему координат на угол lpha, являющийся решением этого уравнения, мы добьемся поставленной цели — «уберем» из уравнения квадрики слагаемое с произведением неизвестных.

• При решении конкретных задач для выполнения этого шага надо будет использовать формулы поворота системы координат на угол α , в которых фигурируют $\sin \alpha$ и $\cos \alpha$, а не $\cot 2\alpha$ (см. формулы (9) в § 14). Найти $\sin \alpha$ и $\cos \alpha$, зная $\cot 2\alpha$, можно следующим образом. Сначала надо использовать равенство $\operatorname{ctg} 2\alpha = \frac{1-\operatorname{tg}^2\alpha}{2+\alpha}$. Поскольку ${\sf ctg}\,2lpha$ известен, это равенство можно рассматривать как квадратное уравнение относительно $\operatorname{tg} \alpha$ (в самом деле, если положить $t = \operatorname{tg} \alpha$ и $a=\operatorname{ctg}2lpha$, то наше уравнение можно переписать в виде $t^2 + 2at - 1 = 0$). Решив его, мы получим два возможных значения для $\operatorname{tg} \alpha$. Выбрав любое из них, можно с помощью уравнения $1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$ найти два возможных значения для $\cos \alpha$. Вновь можно выбрать любое из них, после чего $\sin \alpha$ однозначно находится из равенства $\sin \alpha = \operatorname{tg} \alpha \cdot \cos \alpha$.

Доказательство классификационной теоремы: шаг 1 (4)

Итак, после поворота на угол α , определяемый уравнением (5), $a'_{12} = 0$. Обозначим через A матрицу квадратичной формы $a_{11}x^2 + a_{22}y^2 + 2a_{12}xy$. После поворота системы координат на угол α мы получим, что в новой системе координат наша квадрика будет иметь уравнение вида (1), в котором сумма слагаемых второй степени образует некоторую квадратичную форму. Матрица D этой формы диагональна и $D = T^{\top}AT$, где T — матрица поворота системы координат на угол α (см. § 14). Поскольку матрица T невырожденна, из следствия о ранге произведения квадратных матриц (см. § 27) вытекает, что r(D) = r(A). Но матрица Aненулевая. Следовательно, $r(A) \neq 0$, откуда $r(D) \neq 0$, а значит и матрица D ненулевая. Таким образом, в уравнении квадрики в новой системе координат по крайней мере один из коэффициентов при квадратах переменных будет отличен от нуля. Другими словами, в новой системе координат уравнение квадрики ℓ имеет вид

$$a_{11}x^2 + a_{22}y^2 + 2a_1x + 2a_2y + a_0 = 0, (6)$$

где по крайней мере один из коэффициентов a_{11} и a_{22} отличен от 0.

Доказательство классификационной теоремы: шаг 2 (1)

Шаг 2. Проверим теперь, что параллельным переносом системы координат можно избавиться от линейных слагаемых. Более точно, мы установим, что:

- а) если $a_{11} \neq 0$, то сдвигом начала системы координат вдоль оси Ox можно получить новую систему координат, в которой в уравнении квадрики ℓ коэффициент при x равен 0;
- 6) если $a_{22} \neq 0$, то сдвигом начала системы координат вдоль оси Oy можно получить новую систему координат, в которой в уравнении квадрики ℓ коэффициент при y равен 0.

Оба этих утверждения доказываются абсолютно аналогично. Поэтому мы ограничимся проверкой только первого из них. Итак, пусть $a_{11} \neq 0$.

В уравнении (6) выделим полный квадрат по x:

$$a_{11}\left(x+\frac{a_1}{a_{11}}\right)^2+a_{22}y^2+2a_2y+a_0-\frac{a_1^2}{a_{11}}=0.$$

Проведем замену неизвестных:

$$\begin{cases} x' = x + \frac{a_1}{a_{11}}, \\ y' = y \end{cases}.$$

Доказательство классификационной теоремы: шаг 2 (2)

Геометрически этой замене неизвестных соответствует параллельный перенос системы координат, при котором начало системы координат переходит в точку с координатами $\left(-\frac{a_1}{a_{22}},0\right)$. В новой системе координат квадрика ℓ имеет уравнение

$$a_{11}(x')^2 + a_{22}(y')^2 + 2a_2y' + a'_0 = 0,$$

где $a_0' = a_0 - \frac{a_1'}{a_{22}}$. Коэффициент при x в этом уравнении равен 0. При необходимости, т. е. в случае, когда $a_{22} \neq 0$, аналогичным образом (выделив полный квадрат по у) можно обнулить коэффициент при у.

Итак, мы можем считать, что уравнение квадрики ℓ имеет один из следующих видов:

$$Ax^2 + By^2 + C = 0$$
, где $A \neq 0$, $B \neq 0$, (7)

$$Dx^2 + 2Ey + F = 0$$
, где $D \neq 0$, (8)

$$Dy^2 + 2Ex + F = 0$$
, где $D \neq 0$. (9)

Если квадрика имеет уравнение вида (8), то, сделав замену неизвестных

$$\begin{cases} x' = y, \\ y' = x, \end{cases} \tag{10}$$

мы придем к уравнению (9). Поэтому далее можно считать, что квадрика имеет либо уравнение вида (7), либо уравнение вида (9)

Доказательство классификационной теоремы: шаг 3, случай $1\ (1)$

Шаг 3. Дальнейшие рассмотрения естественно распадаются на два случая.

Случай 1: квадрика задается уравнением вида (7). Здесь возможны два подслучая.

Подслучай 1.1: $C \neq 0$. В этом случае уравнение (7) можно переписать в виде

$$\frac{x^2}{-C/A} + \frac{y^2}{-C/B} = 1. {(11)}$$

Предположим сначала, что числа $-\frac{C}{A}$ и $-\frac{C}{B}$ больше нуля. Введя обозначения $a=\sqrt{-\frac{C}{A}}$ и $b=\sqrt{-\frac{C}{B}}$, мы получаем уравнение $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. Если $a\geqslant b$, оно является каноническим уравнением эллипса. В противном случае мы получим тот же результат, сделав замену неизвестных (10).

Пусть теперь числа $-\frac{C}{A}$ и $-\frac{C}{B}$ имеют разные знаки. Без ограничения общности можно считать, что $-\frac{C}{A}>0$ и $-\frac{C}{B}<0$ (в противном случае следует сделать замену неизвестных (10)). Введя обозначения $a=\sqrt{-\frac{C}{A}}$, $b=\sqrt{\frac{C}{B}}$, мы получим уравнение $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, т. е. каноническое уравнение гиперболы.

Доказательство классификационной теоремы: шаг 3, случай 1 (2)

Наконец, если числа $-\frac{C}{A}$ и $-\frac{C}{B}$ меньше нуля, то уравнение (11) не имеет решений, и потому его геометрическим образом является пустое множество.

Подслучай 1.2: C=0. При таком C уравнение (7) можно переписать в виде

$$\frac{x^2}{1/A} + \frac{y^2}{1/B} = 0. {(12)}$$

Если числа $\frac{1}{A}$ и $\frac{1}{B}$ имеют одинаковый знак, то уравнение (12) имеет единственное решение: x=y=0. Следовательно, его геометрическим образом является точка (начало координат).

Пусть теперь числа $\frac{1}{A}$ и $\frac{1}{B}$ имеют разные знаки. Умножив, если потребуется, наше уравнение на -1, можно добиться выполнения неравенств $\frac{1}{A}>0$ и $\frac{1}{B}<0$. Введя обозначения $a=\sqrt{\frac{1}{A}}$ и $b=\sqrt{-\frac{1}{B}}$, мы получим уравнение $\frac{x^2}{a^2}-\frac{y^2}{b^2}=0$, которое можно переписать в виде $\left(\frac{x}{a}+\frac{y}{b}\right)\left(\frac{x}{a}-\frac{y}{b}\right)=0$. Оно задает совокупность прямых $\frac{x}{a}+\frac{y}{b}=0$ и $\frac{x}{a}-\frac{y}{b}=0$. Очевидно, что главные векторы этих прямых, т. е. векторы $\vec{n}_1=\left(\frac{1}{a},-\frac{1}{b}\right)$ и $\vec{n}_2=\left(\frac{1}{a},\frac{1}{b}\right)$, не пропорциональны. Следовательно, наши прямые пересекаются (см. теорему о взаимном расположении прямых на плоскости в § 15). Итак, в рассматриваемом случае квадрика есть пара пересекающихся прямых.

Доказательство классификационной теоремы: шаг 3, случай 2 (1)

Случай 2: квадрика задается уравнением вида (9). Здесь также возможны два подслучая.

Подслучай 2.1: $E \neq 0$. При таком E уравнение квадрики можно упростить, избавившись от свободного члена. Для этого перепишем уравнение (9) в виде

$$y^2 = -\frac{2E}{D}x - \frac{F}{D} = -\frac{2E}{D}\left(x + \frac{F}{2E}\right).$$

Сделаем замену неизвестных

$$\begin{cases} x' = x + \frac{F}{2E}, \\ y' = y \end{cases},$$

которая соответствует параллельному переносу системы координат, при котором начало системы координат переходит в точку с координатами $\left(-\frac{F}{2E},0\right)$. В новой системе координат квадрика имеет уравнение

$$(y')^2 = -\frac{2E}{D} \cdot x'.$$

Полагая $p=-\frac{E}{D}$, получаем уравнение $(y')^2=2px'$. Если p>0, то оно является каноническим уравнением параболы. Если же p<0, то мы придем к тому же результату после замены неизвестных

$$\begin{cases} x'' = -x', \\ y'' = y'. \end{cases}$$

Доказательство классификационной теоремы: шаг 3, случай 2 (2)

Подслучай 2.2: E=0. При таком E уравнение (9) можно переписать в виде

$$y^2 = -\frac{F}{D}. ag{13}$$

Если $-\frac{F}{D}>0$, то, полагая $a=\sqrt{-\frac{F}{D}}$, мы получаем уравнение $y^2=a^2$, геометрическим образом которого является пара параллельных прямых y=a и y=-a.

Если $-\frac{F}{D}=0$, то уравнение (13) имеет вид $y^2=0$ и определяет пару совпавших прямых.

Наконец, если $-\frac{F}{D}<0$, то уравнение (13) не имеет решений, и потому его геометрическим образом является пустое множество.

Мы завершили разбор всех возможных случаев и подслучаев. Как видим, в процессе этого разбора возникли все восемь видов квадрик, упомянутых в формулировке теоремы, и не возникло никаких других. Теорема полностью доказана.