

Defining the Accuracy of Eyewall Radius of Maximum Wind Dropwindsondes

Joe Hesse-Withbroe NOAA Ernest Hollings Scholar August 3rd, 2021

Cyclone Overview

What is a Cyclone?

Heat Engine: Produces Energy (Wind) from Temperature Gradient

Cyclone Overview

Eye:

- Very low atmospheric pressure
- Winds fall off very quickly
- Calmest area of storm environment

Eyewall:

- Strongest winds in cyclone Large wind shears, steep wind gradients
- Most violent part of storm

Mature Cyclone Structure

Hurricane Reconnaissance

NOAA Lockheed WP-3D Orion

- Flies through storm around 10,000' MSL, penetrates eyewall several times during flight
- Instruments aboard aircraft measure atmospheric conditions at flight level and sea level, providing radial profile of storm conditions
 - Stepped Frequency Microwave Radiometer (SFMR) estimates surface wind speed directly beneath aircraft by measuring microwave signal associated with breaking waves
- GPS dropsondes deployed off aircraft measure atmospheric conditions over course of fall, providing vertical profile of storm conditions

Hurricane Reconnaissance

Eyewall Penetration:

As aircraft passes through eyewall, operators drop sondes targeting key features of the cyclone: cyclone center and radius of maximum wind (RMW)

Eyewall flares outward \rightarrow Flight level RMW occurs at a larger radius than surface RMW

Chaotic winds near eyewall often displace sonde significantly off intended trajectory

Goal: Analyze historical RMW sonde data to improve the success of future RMW sonde deployments

Datasets

Dataset 1

- 947 Vortex Data Messages (VDMs):
 - High-level overview of one complete pass through storm
 - Basic information on storm structure and conditions
 - From NOAA & Air Force Hurricane
 Hunters 2018-2020 hurricane seasons

Dataset 2

- 172 RMW Sonde drops:
 - Sondes specifically identified as targeting eyewall RMW
 - Contains high-resolution sonde data along with associated flight-level and VDM data
 - From NOAA 2015-2020 hurricane seasons and Air Force 53rd Weather Reconnaissance Squadron 2017-2018 hurricane seasons

'Ideal' Cyclone & RMW Sonde

90% 80%

5.0

7.5

70%

10.0

Distance from center (nm)

60%

12.5

FL

Height (Surface or FL)

SFC

0.0

2.5

Vertical Wind Cross Section

0.9

9.0 Fraction of Max WS

- 0.5

0.0

< 60%

17.5

15.0

FL RMW slightly outside SFC RMW

Slow buildup of FL and SFMR wind speeds outside peak

Steep falloff of wind speeds inside peak

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | Aircraft Operations Center

'Ideal' Cyclone & RMW Sonde

Ideal Sonde:

Actual Cyclones and RMW Sondes

Unpredictable Displacements

Disorganized system (SF RMW > FL RMW)

FL-SFC RMW Separation (nm)
vs
Surface Wind Speed (kts)

AMOSPHARIES OF THE PROPERTY OF

Cat: 3 Basin: EP

Sonde Launch: 2018-08-20 05:07:57

Eye Shape: C Eye Diam: 15 nm Advection: -0.9 nm Circulation: 23.0 deg

Bandwidth 90% SFMR WS: 3.5 nm Bandwidth 90% FL WS: 3.7 nm

× Sonde Drop

× Sonde Splash

90% FL WS Band

90% SFMR WS Band

:::::: Drop Radius

Flight Path

Sonde Trajectory

VdmFile: NOAA2_0214E0B.txt FIFile: 20180820H1_AC.nc FrdFile: D20180820_0507580C.frd

SFMR 90% Wind Speed Band Width ("Target Size")

N=169 Avg=5.30 StDev=3.72

A MOSPHER CHARLES THE PROPERTY OF THE PROPERTY

Cat: 3 Basin: EP

Sonde Launch: 2018-08-20 05:07:57

Eye Shape: C Eye Diam: 15 nm Advection: -0.9 nm Circulation: 23.0 deg

Bandwidth 90% SFMR WS: 3.5 nm Bandwidth 90% FL WS: 3.7 nm

× Sonde Drop

× Sonde Splash

90% FL WS Band

90% SFMR WS Band

:::::: Drop Radius

Flight Path

Sonde Trajectory

VdmFile: NOAA2_0214E0B.txt FIFile: 20180820H1_AC.nc FrdFile: D20180820_0507580C.frd

SFMR RMW-Outer 90% Separation (nm) ("Outbound Buffer")

N=170 Avg=2.89 nm StDev=2.69 nm

SFMR RMW-Outer 90% Separation (nm) by Category

AMOSPHORI TO AMOUNT IN THE PROPERTY OF THE PRO

Name: 0214E

Cat: 3 Basin: EP

Sonde Launch: 2018-08-20 05:07:57

Eye Shape: C Eye Diam: 15 nm Advection: -0.9 nm Circulation: 23.0 deg

Bandwidth 90% SFMR WS: 3.5 nm Bandwidth 90% FL WS: 3.7 nm

VDM FL Max Wind
VDM SF Max Wind

× Sonde Drop

× Sonde Splash

90% FL WS Band

90% SFMR WS Band

:::::: Drop Radius

Flight Path

Sonde Trajectory

VdmFile: NOAA2_0214E0B.txt FIFile: 20180820H1_AC.nc FrdFile: D20180820_0507580C.frd

SFMR RMW-Inner 90% Separation (nm) ("Inbound Buffer")

N=169 Avg=1.74 nm StDev=1.60 nm

SFMR RMW-Inner 90% Separation (nm) by Category

Sonde Normalized r coordinate (nm) vs Altitude (m)

N=172 Avg=-0.105 nm StDev=1.43 nm

Sonde Normalized r coordinate (nm) vs Altitude (m) by Category

Conclusions

Takeaways:

- Relatively large buffers between surface RMW and R-90%
- No consistent patterns in sonde radial displacement – unexpected
- No single crutch for Flight Directors to rely upon – "art vs science" of drops

Future Work:

- Time series analysis of wind speed transects – examine correlations between FL and SFMR wind speeds to predict locations of wind maxima
- Expand dataset to incorporate more RMW sondes (legwork)

Unused slides

Cyclone Overview

Key Ingredients

Tropical Perturbation: Preexisting area of low atmospheric pressure

Vertical Temperature Gradient: Permits extraction of useful work from ocean

Angular Momentum: Rotational motion provides stability to system. Latitude >~ 4° (Coriolis)

Mild Winds: Strong winds overpower newborn convective structures

FL-SFC RMW Separation (nm)

Dataset 2 Example RMW Plots

Dataset 2 Example RMW Plots

N=171 Avg=4.76 StDev=3.57

FL 90% Wind Speed Band Width (nm) by Category

