Úloha č.2

- 1. Uvažujme automat A_1 na obrázku 1.
 - Obsahuje tento automat zeno beh? Dokážte alebo vyvráťte.
 - Obsahuje tento automat timelock? Ak áno, uveďte beh vedúci do timelocku.

Obr. 1: Časovaný automat A_1

Riešenie

- Uvažujme beh $\rho_1 = (A, x = y = 0) \xrightarrow{a_1} (B, x = y = 0) \xrightarrow{a_2} (C, x = y = 0) \xrightarrow{a_4} (A, x = y = 0) \xrightarrow{a_1} \dots$ predstavujúci riadiaci cyklus pre časový automat \mathcal{A}_1 . Pre beh ρ_1 neexistuje konštanta $c \in \mathbb{N}^+$ taká, že $\nu(x) < c \to \nu(x) \not\models g$, kde ν značí ohodnotenie hodín automatu a $g \in \{x \le 1, y < 5\}$. Z toho vyplýva, že žiaden z krokov tohto cyklu nevyžaduje plynutie času a tým je porušená jedna z podmienok neexistencie zeno behov podľa lemmy 7^1 . Beh ρ_1 obsahuje nekonečné množstvo diskrétnych krokov, preto ho podľa definície 6^1 môžeme označiť za zeno beh. Časovaný automat \mathcal{A}_1 obsahuje zeno beh.
- Konfiguráciu c časovaného automatu nazývame timelockom vtedy, ak pre ňu platí $Paths_{div}(c) = \emptyset$, kde $Paths_{div}(c)$ je množina časovo divergentných behov zo stavu c (definícia 5^1). Časovaný automat \mathcal{A}_1 obsahuje timelock, pretože existuje beh $\rho_2 = (A, x = y = 0) \xrightarrow{11} (A, x = y = 11)$ vedúci do konfigurácie automatu (A, x = y = 11) označovanej ako timelock, pretože z nej neexistuje časovo divergentný beh, teda $Paths_{div}((A, x = y = 11)) = \emptyset$.

¹https://www.fit.vutbr.cz/study/courses/MBA/private/prednasky/TA-1.pdf

2. Dokážte, že jazyky časovaných automatov² sú uzavreté voči zjednoteniu a konkatenácii

Riešenie

• Zjednotenie:

Majme dva časované automaty: $\mathcal{A} = (Loc_A, Act_A, \mathcal{C}_A, \hookrightarrow_A, Loc_{0_A}, Inv_A, AP_A, L_A, Loc_{acc_A})$ a $\mathcal{B} = (Loc_B, Act_B, \mathcal{C}_B, \hookrightarrow_B, Loc_{0_B}, Inv_B, AP_B, L_B, Loc_{acc_B})$. Uzavretosť jazykov časovaných automatov voči zjednoteniu dokážeme uvedením metódy pre zostrojenie časovaného automatu \mathcal{AB} , pre ktorý platí:

$$L(\mathcal{AB}) = L(\mathcal{A}) \cup L(\mathcal{B})$$

Bez ujmy na obecnosti predpokladajme, že množiny Loc_A a Loc_B , Act_A a Act_B , \mathcal{C}_A a \mathcal{C}_B sú disjunktné, teda $Loc_A \cap Loc_B = Act_A \cap Act_B = \mathcal{C}_A \cap \mathcal{C}_B = \emptyset$. Automat $\mathcal{AB} = (Loc, Act, \mathcal{C}, \hookrightarrow, Loc_0, Inv, AP, L, Loc_{acc})$ zostrojíme nasledovne:

1) $Loc := Loc_A \cup Loc_B$

6) $Inv := Inv_A \cup Inv_B$

2) $Act := Act_A \cup Act_B$

7) $AP := AP_A \cup AP_B$

3) $\mathcal{C} := \mathcal{C}_A \cup \mathcal{C}_B$

8) $L := L_A \cup L_B$

 $4) \hookrightarrow := \hookrightarrow_A \cup \hookrightarrow_B$

 $C_{I} = L_{A} \cup L_{B}$

5) $Loc_0 := Loc_{0_A} \cup Loc_{0_B}$

9) $Loc_{acc} := Loc_{acc_A} \cup Loc_{acc_B}$

• Konkatenácia:

Budeme postupovať rovnako ako v prípade zjednotenia, avšak pre nový časovaný automat \mathcal{AB} musí platiť nasledovné:

$$L(\mathcal{AB}) = L(\mathcal{A}) \cdot L(\mathcal{B})$$

Opäť môžeme predpokladať disjunktnosť jednotlivých množín automatov \mathcal{A} a \mathcal{B} ako v predošlej úlohe. Postup tvorby automatu \mathcal{AB} je vskutku priamočiary, avšak malou výnimkou je tvorba jeho prechodovej funkcie (bod 5, Obr. 2). Automat $\mathcal{AB} = (Loc, Act, \mathcal{C}, \hookrightarrow, Loc_0, Inv, AP, L, Loc_{acc})$ zostrojíme nasledovne:

1) $Loc := Loc_A \cup Loc_B$

6) $Inv := Inv_A \cup Inv_B$

2) $Act := Act_A \cup Act_B$

7) $AP := AP_A \cup AP_B$

3) $\mathcal{C} := \mathcal{C}_A \cup \mathcal{C}_B$

8) $L := L_A \cup L_B$

4) $Loc_0 := Loc_{0,4}$

9) $Loc_{acc} := Loc_{accB}$

5)
$$\hookrightarrow := \hookrightarrow_B \cup \hookrightarrow_A \setminus \{(q, g, a, r, f) \in \hookrightarrow_A \mid f \in Loc_{acc_A}\}$$

 $\cup \{(q, g, a, r \cup \mathcal{C}_B, f) \mid f \in Loc_{acc_A} \land (q, g, a, r, f) \in \hookrightarrow_A \}$
 $\cup \{(f, g, a, r, q) \mid f \in Loc_{acc_A} \land \exists i \in Loc_{0B} : (i, g, a, r, q) \in \hookrightarrow_B\}$

Obr. 2: Grafické znázornenie tvorby prechodovej funkcie \hookrightarrow .

 $^{^2}$ Uvažujte jazyky nad konečnými slovami s množinou koncových stavov Loc_{acc}

- 3. Uvažujme časovaný automat A_2 na obrázku 3 s množinou atomických predikátov $AP = \{init, error, run\}$ a funkciou L definovanou nasledovne: $L(A) = \{init, run\}, L(D) = \{error\}, L(B) = L(C) = \{run\}.$
 - Zostavte abstrakciu založenú na regiónoch (stačí zostrojiť iba stavy dostupné z počiatočnej konfigurácie).
 - $\bullet\,$ Rozhodnite, či je dostupný stav v ktorom platí predikáterror.
 - Rozhodnite, či platí $A_2 \models \exists (run \ U^{\leq 2} \ error).$
 - Rozhodnite, či platí $(B, x = y = 0) \models \forall (run \ U^{<2} \ init).$

Svoje tvrdenia odôvodnite.

Obr. 3: Časovaný automat A_2

Riešenie

• Abstrakciou časovaného automatu A_2 je prechodový systém obsahujúci iba dostupné stavy z počiatočnej konfigurácie zobrazený na Obr. 4.

Obr. 4: Prechodový systém reprezentujúci abstrakciu založenú na regiónoch.

• Problém dosiahnuteľ nosti pre časované automaty je rozhodnuteľ ný (teorém 11³). Keď že množina počiatočných miest obsahuje práve jedno miesto $Loc_0 = \{A\}$, atomický predikát $error \in L(D)$ a zároveň platí $error \notin L(A) \cup L(B) \cup L(C)$, zadanú úlohu vyriešime zodpovedaním otázky:

existuje beh
$$\rho = (A, x = y = 0) \xrightarrow{s_1} \dots \xrightarrow{s_i} (D, \nu)$$
?

Pre jej zodpovedanie môžeme využiť napríklad aj vytvorený prechodový systém, ktorý obsahuje iba dostupné stavy. Je zrejmé, že jediný stav v ktorom platí predikát error (t.j. stav D) je dostupný a hľadaný beh existuje:

$$\rho = (A, x = y = 0) \xrightarrow{mince} (B, x = y = 0) \xrightarrow{volba_kava} (C, x = y = 0) \xrightarrow{1} (C, x = y = 1) \xrightarrow{chyba} (D, x = y = 1).$$

• Keďže množina počiatočných konfigurácií automatu \mathcal{A}_2 obsahuje iba jednu konfiguráciu $Init_{\mathcal{A}_2} = \{(A, x = y = 0)\}$, aby platil vzťah $\mathcal{A}_2 \models \exists \ (run \ U^{<2} \ error)$ musí v našom prípade platiť $(A, x = y = 0) \models \exists \ (run \ U^{<2} \ error)$ (definícia 5^4 . Označme $\phi = (run \ U^{<2} \ error)$ a počiatočnú konfiguráciu s = (A, x = y = 0). Podľa definície 2^4 , $s \models \exists \phi$ ak $\pi \models \phi$ pre nejaký beh $\pi \in Paths_{div}(s)$.

Uvažujme časovo divergentný beh $\pi_1 = s \xrightarrow{mince} (B, x = y = 0) \xrightarrow{volba_kava} (C, x = y = 0) \xrightarrow{1} (C, x = y = 1) \xrightarrow{chyba} (D, x = y = 1) \dots \in Paths_{div}(s).$ Pri behu π_1 sa časovaný automat \mathcal{A}_2 dostane do miesta D, za jednu časovú jednotku. Pre miesto D platí že $(D, \nu) \models error$, pretože $error \in L(D)$. Tým sme ukázali, že existuje beh z množiny $Paths_{div}(s)$, pre ktorý existuje časový okamih z intervalu $\langle 0; 2 \rangle$, kedy platí formula error. V rámci behu π_1 sa pred časovým okamihom kedy platí formula error (označme ho t), automat \mathcal{A}_2 nachádza v mieste $p \in \{A, B, C\}$ a keď že platí $run \in L(A) \cap L(B) \cap L(C)$ znamená to, že $\forall p \in \{A, B, C\} : p \models run$ a preto v ľubovoľnom časovom okamihu menšom než t platí formula run. V dôsledku toho môžeme povedať, že formulu ϕ spĺňa beh $\pi_1 \in Paths_{div}(s)$, z čoho plynie $s \models \exists \phi$ a preto **platí** $\mathcal{A}_2 \models \exists (run\ U^{<2}\ error)$.

• Označme $\phi = (run\ U^{<2}\ init)$ a s = (B, x = y = 0). Pre platnosť $s \models \forall \phi$ musí $\pi \models \phi$ platiť pre každý beh $\pi \in Paths_{div}(s)$ (definícia 2^4).

Uvažujme beh: $\pi_2 = s \xrightarrow{volba_kava} (C, x = y = 0) \xrightarrow{3} (C, x = y = 3) \xrightarrow{chyba} (D, x = y = 3) \dots \in Paths_{div}(s)$. Časovaný automat \mathcal{A}_2 sa v rámci behu π_2 v ľubovoľnom časovom okamihu nachádza v mieste $p \in \{B, C, D\}$. Z definície funkcie L je zrejmé, že platí $\forall p \in \{B, C, D\} : (p \not\models init)$, pretože $init \notin L(B) \cup L(C) \cup L(D)$. V dôsledku toho vyplýva, že pre beh π_2 neexistuje časový okamih z intervalu (0; 2), v ktorom platí init. Preto na základe definície 3^4 môžeme povedať, že neplatí $s \models \forall \phi$, a teda **neplatí** $(B, x = y = 0) \models \forall (run U^{<2} init)$.

³https://www.fit.vutbr.cz/study/courses/MBA/private/prednasky/TA-1.pdf

 $^{^4} https://www.fit.vutbr.cz/study/courses/MBA/private/prednasky/TA-2.pdf$