Introduction to Statistical Learning – part 2

Outline

- Figues of merit
- Introduction to basic classifiers
- Complexity control
- Dimensionality Reduction
- Regularization

LOSS FUNCTIONS AND FIGURES OF MERIT

Loss Functions and Empirical Risk

- Let us consider a binary classification problem
- Aim: To estimate a function:

$$f: \Re^N \to \{\pm 1\}$$
 $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_l, y_l) \in \Re^N \times \{\pm 1\}$

 The best function f is the one that minimizes the loss function or Expected Risk

$$R[f] = \int l(f(\mathbf{x}), y) dP(\mathbf{x}, y)$$

 The expected risk is approximated by the empirical risk:

$$R_{emp}[f] = \frac{1}{n} \sum_{i=1}^{n} l(f(\mathbf{x}_i), y_i)$$

Loss functions

- The loss function (cost function, objective function) is a measure of how well the predicting model is doing the associated task. Loss functions are minimized in the training set to estimate the parameters of the model.
- In Regression Problems the most well known loss function is the squared loss

$$l(f(\mathbf{x}), y) = (f(\mathbf{x}) - y)^2$$

 Example: Fitting a third order polynomial to data by least squares

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Loss functions

Examples of loss functions in regression:

Loss functions in Classification

Let us consider a binary classification problem:

$$f: \mathfrak{R}^N \to \{\pm 1\} \qquad (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l) \in \mathfrak{R}^N \times \{\pm 1\}$$

Heaviside function

- Indicator function $l(f(\mathbf{x}), y) = \Theta(-yf(\mathbf{x}))$
- Square loss $l(f(x), y) = (1 yf(x))^2$
- Hinge loss l(f(x), y) = max(0, (1 yf(x)))
- Cross-Entropy $\underbrace{l(f(x),t) = -t\ln(f(x)) (1-t)\ln(1-f(x))}_{\text{Here }f(x) \text{ maps to } \{0,1\} } t = (1+y)/2$

All loss functions give a value of zero when f(x)=y

Binary classifiers are Detectors: Signal Detection Theory

Statisticians: Hypothesis testing	Engineers: Detection theory
Test statistics (T(x) and v-threshold)	Detector
Null hypothesis	Noise hypothesis
Alternative hypothesis	Signal+noise hypothesis
Type I error (decide H_1 when H_0 true)	False Alarm
Type II error (decide H_0 when H_1 true)	False Negative (or Miss)
Level of Significance or Risk α	Probability of False Alarm
Probability of Type II error β	Probability of Miss
Power of test (1-β)	Probability of Detection

Decision	H _o true	H _o false	
Accept H _o	1-α	β (unknown) (errot type II)	
Reject H _o	α (error type I)	1-β	

In some cases only the pdf of H_o is known

But....

Then β is unknown.

Receiver Operating Characteristics

There is a trade-off between False Alarms and False Negatives

0.4
0.35
- noise signal 0.25
- 0.2
- 0.15
- 0.1
- 0.05

blue: False Alarms

red: Misses

Threshold for a False Alarm rate of 0.01

Most signals are missed

Statistical Decision Theory: Terminology

Real

Decision

	Normal	Alarm
Normal	True-negatives (TN)	False negative (FN)
Alarm	False positive (FP)	True-positives (TP)

Accuracy (Classification Rate)= (TP+TN)/(TP+TN+FP+FN)

Sensitivity (Recall)=TP/(TP+FN) – Probability to correctly classify an Alarm Specificity=TN/(TN+FP) – Probability to correctly classify a Normal state Precision (Positive Predictive Power)=TP/(TP+FP) – Reliability of Alarm Negative Predictive Power= TN/(TN+FN) – Reliability of no-alarm

Receiver Operating Characteristics

- The optimal threshold depend on the relative costs of the false alarms or the false negatives, and on the prior probabilities of both events
- But...What the priors or the relative costs are not known?

The ROC curve explores the tradeoff for all possible values of the threshold

The area under the curve: AUC is a commonly used figure of merit to evaluate classifiers with an analog output.

Confusion Matrix

 Evaluation of classifiers in multi-class problems is mostly based in the so-called confusion matrix.

INTRODUCTION TO CLASSIFIERS

Discriminant functions

 A convenient way to represent a pattern classifier is in terms of a family of discriminant functions g_i(x) with a simple MAX gate as the classification rule

Assign x to class
$$\omega_i$$
 if $g_i(x) > g_j(x) \ \forall j \neq i$

- How do we choose the discriminant functions g_i(x)
 - Depends on the objective function to minimize
 - Probability of error
 - Bayes Risk

Materials in this lecture adapted from Dr. Ricardo Gutierrez, Texas A&M, USA

Simple Classifiers: Nearest Centroid Classifier

In this case, the discriminant becomes

$$g_{i}(x) = -(x - \mu_{i})^{T}(x - \mu_{i})$$

- This is known as a NEAREST CENTROID CLASSIFIER
- Notice the linear decision boundaries

Materials in this lecture adapted from Dr. Ricardo Gutierrez, Texas A&M, USA

K Nearest Neighbor classifier

■ The kNN classifier is a very intuitive method

- Examples are classified based on their similarity with training data
 - For a given unlabeled example $x_u \in \Re^D$, find the k "closest" labeled examples in the training data set and assign x_u to the class that appears most frequently within the k-subset

■ The kNN only requires

- An integer k
- A set of labeled examples
- A metric to measure "closeness"

Materials in this lecture adapted from Dr. Ricardo Gutierrez, Texas A&M, USA

kNN in action: example 1

- We generate data for a 2-dimensional 3class problem, where the class-conditional densities are multi-modal, and non-linearly separable
- We used kNN with
 - k = five
 - Metric = Euclidean distance

COMPLEXITY CONTROL

An example

Consider the following scenario:

- A GC-MS analysis of urine vapors has to decide if patients has prostatic cancer on the basis of a number of putative biomarkers.
- The system consist of:
 - Urine collection (clinical setting)
 - Sample storage // inventory
 - Robot for automatic feeding the spectrometer
 - HS-GS-MS analysis (biochemical laboratory)
 - A computer that acquires the data
 - A machine learning suite to analyze the data and give a prediction (our part)

An example

Data source:

- The GC-MS instrument
- Preprocessing:
 - Noise reduction
 - Peak detection
 - Peak alignment & matching
- Feature extraction
 - Peak area integration

 Supose literature sais compound A is more present in prostatic cancer urine than in healthy urine

count

Classification

An example

■ Improving predictive ability going multivariate

• Committed to achieve a prediction error of 95% we search for other additional biomarkers.

• We find a good second analyte.

- Both can be combined
- And a separating hyperplane may be found
- Recognition improves to 95.7%

Complexity Control (Algorithmic selection)

- Too simple model:
- Low complexity

- Large training errors
- Large test errors

- Too complex model:
- High complexity

- Zero training errors
- Large test errors
- Poor generalization

Duda, Hart, Stork, 2001

Motivation: Complexity Control

Some optimal classifier exist

The complexity of the model has to be controlled for good performance

23

de Catalunya

Motivation: Complexity Control

- Regression example: polynomial fitting
- Question: What is the best polynomial order to fit the data?
 - A 10th order polynomial predicts perfectly the training data but fits also the noise, producing large errors for the prediction of new samples.

Duda, Hart, Stork, Pattern Classification, 2001

Motivation: Complexity Control

Large Samples/Dim ratio

Complexity of the model

Complexity of the model

DIMENSIONALITY REDUCTION

10.mzXML

The Curse of Dimensionality (Bellman, 1961)

Curse of Dimensionality:

The performance of learning algorithms is clearly sub-optimal when there is a small number of examples / dimensionality ratio

Example of LC-MS data

Fragments/peaks may be found using XCMS, MzMine, Py-MS and others

	Biofluid/Tissue	Sample groups	# samples /group	# XCMS variables	System
Example #1 Retina		КО	11	0.0000000	
	WT	11	4581	LC/ESI-QTOF	
Example #2 Retina		Hypoxia	12		
	Normoxia	13	8146	LC/ESI-QTOF	
Example #3 Serum	- 10000	Untreated	12		
	Treated	12	9877	LC/ESI-TOF	
Example #4	Neuronal cell	КО	15	8221	LC/ESI-QTOF
	cultures	WT	11		

M. Vinaixa, Metabolites, 2012

■ The "curse of dimensionality" [Bellman, 1961]

 Refers to the problems associated with multivariate data analysis as the dimensionality increases

Consider a 3-class pattern recognition problem

- A simple (Maximum Likelihood) procedure would be to
 - Divide the feature space into uniform bins
 - Compute the ratio of examples for each class at each bin and,
 - For a new example, find its bin and choose the predominant class in that bin
- We decide to start with one feature and divide the real line into 3 bins

■ Notice that there exists a lot of overlap between classes ⇒ to improve discrimination, we decide to incorporate a second feature

- Moving to two dimensions increases the number of bins from 3 to 3²=9
 - QUESTION: Which should we maintain constant?
 - The density of examples per bin? This increases the number of examples from 9 to 27
 - The total number of examples? This results in a 2D scatter plot that is very sparse

Moving to three features ...

- The number of bins grows to 3³=27
- To maintain the initial density of examples, the number of required examples grows to 81
- For the same number of examples, the 3D scatter plot is almost empty

de Catalunya

- Of course, our approach to divide the sample space into equally spaced bins was quite inefficient
 - There are other approaches that are much less susceptible to the curse of dimensionality, but the problem still exists
- How do we beat the curse of dimensionality?
 - By reducing the dimensionality
 - By using regularized classifiers
- In practice, the curse of dimensionality means that
 - For a given sample size, there is a maximum number of features above which the performance of our classifier will degrade rather than improve
 - In most cases, the information that was lost by discarding some features is compensated by a more accurate mapping in lowerdimensional space

- Two approaches to perform dim. reduction $\Re^{N} \rightarrow \Re^{M}$ (M<N)
 - Feature selection: choosing a subset of all the features

$$\begin{bmatrix} X_1 & X_2 ... X_N \end{bmatrix} \xrightarrow{\text{feature selection}} \begin{bmatrix} X_{i_1} & X_{i_2} ... X_{i_M} \end{bmatrix}$$

• Feature extraction: creating new features by combining existing ones

$$[x_1 \ x_2...x_N] \xrightarrow{\text{feature extraction}} [y_1 \ y_2...y_M] = f([x_{i_1} \ x_{i_2}...x_{i_M}])$$

- In either case, the goal is to find a low-dimensional representation of the data that preserves (most of) the information or structure in the data
- Linear feature extraction (feature projection)
 - The "optimal" mapping y=f(x) is, in general, a non-linear function whose form is problem-dependent
 - Hence, feature extraction is commonly limited to linear projections **y=Wx**

Signal representation versus classification

- Two criteria can be used to find the "optimal" feature extraction mapping y=f(x)
 - Signal representation: The goal of feature extraction is to represent the samples accurately in a lower-dimensional space
 - Classification: The goal of feature extraction is to enhance the classdiscriminatory information in the lower-dimensional space

■ Within the realm of linear feature extraction, two techniques are commonly used

- Principal Components (PCA)
 - Unsupervised
- Fisher's Linear Discriminant (LDA)
 - Supervised

PCA Geometry

INTRO TO REGULARIZATION

Introduction to regularization

- Some loss functions lead to less complex models. Usually, a penalty term increases the loss function for complex models.
- Examples in linear regression:

$$y_k = f(X_k) + \varepsilon_k = \beta_0 + \sum_{j=1}^p x_{k,j} \beta_j + \varepsilon_k$$

Ridge Regression compared to Ordinary Least Squares

$$\widehat{\boldsymbol{\beta}} = arg \min_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{N} \left(y_i - \boldsymbol{\beta}_0 - \sum_{j=1}^{p} x_{ij} \boldsymbol{\beta}_j \right) \right\}$$

$$\hat{\beta}^{ridge} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

Introduction to regularization

- In Neural Neworks, models can be made simpler by pruning the network.
- Several methodologies have been proposed to remove neurons or connections.

Summary

- The advances in sensing, instrumentation, imaging, wearables is producing a DATA AVALANCHE.
- In many settings, data interpretation becomes a bottleneck.
- The presence of Machine Learning in Health is incresing extremely fast.
- Caution words:
 - In Machine Learning methodological errors leading to overoptimistic results are common.
 - Only precise methodology development, avoiding the use of algorithms as black-boxes and rigorous validation can prevent those errors.

Artificial Intelligence: Sub-Industry Heatmap

2011-2016 (as of 6/15/2016)

