this establishes (3). (1)(1) \neq 1 i.e. if xy \in P(r) then x \in P(r) or y \in P(r) and

(4) If P(r) = P(s) then since $r \in P(r)$, $(r,s) \neq 1$.

s, s, is a rigid element which is non co-prime to r(since property $x = x_1 s_1$ and $s = s_1 s_2$, where $(x_1, s_2) = 1$. Since P(r) \subseteq P(s). If on the other hand (x,s) \neq 1 then by the HCF si tsnt (x, r) \neq (x, x) tsnt saligmi $r \neq (x, x)$ mant $x \mid x$ Conversely let (r,s) # 1 then by (1), r | s or s | r . If

we have assumed that r s) that is (x,s) # 1 implies that

 $(x, r) \neq i \cdot e$. $P(s) \subseteq P(r)$ and combining the two inclusion

relations the result follows.

 $P(r)^{R}$ such that (x,y) = 1 and let co-prime. Suppose on the contrary that there exist x,y in show is that no two non units of this domain ($^{\mathrm{R}_{\mathrm{p}(\mathbf{r})}}$) are Rp(r) in this case) is a valuation domain, all we have to Lemma 9, Ch. 1). To prove that a quasi-local HCF domain ((5) Since R is an HCF domain, R_{p(r)} is an HCF domain (cf

in Rp(r), that is (u, uz) & P(r)Rp(r). But since we assumed Now since v_1, v_2 are units in $R_{p(r)}$ we get (u_1, u_2) = 1 $x = u_1/v_1$; $y = u_2/v_2$ (We can assume that $(u_i, v_i)^{-1}$).

that $x_{\mathfrak{I}}y$ are non units in $P_{(r)}$, $u_{\mathfrak{I}}u_{\mathfrak{A}}$ $\in P(r)$ and so

lishing that no two non units in $R_{p(r)}$ are co-prime which i.e. uz,uz are non co-prime in Rp(r) a contradiction estabfactors of a rigid element r) and thus $(u_1, u_2) = d \in P(r)$ d = (ut ous) is a multiple of rior of rs in R (since ri are at that $t \neq j$ that that such that is (i, j, j) are such that $i, j \neq j$

implies the result.

USINg Lemma 1, we first prove the S. Semirigid Domains.