Modèle du disque unité

Table des matières

1 Isométries 1

. . .

En notant \mathscr{U} le disque complexe unité ouvert, on peut mettre la métrique $\rho^*:=f_*\rho$ avec

$$f \colon \mathfrak{h} \to \mathscr{U}$$

définie par $f(z) = \frac{zi+1}{z+i}$.

On peut montrer que ρ^* est induite par : $ds=\frac{2|dz|}{1-|z|^2}$. Le changement de modèle f devient une isométrie. En écrivant z=a+ib et f(z)=u(z)+iv(z) alors

$$u(z) = \frac{2a}{a^2 + (r+1)^2}; \ v(z) = \frac{a^2 + r^2 - 1}{a^2 + (r+1)^2}$$

ou

$$u(z) = \frac{2/a}{1 + \frac{(r+1)^2}{a^2}}; \ v(z) = \frac{\frac{a^2}{(r+1)^2} + \frac{r-1}{r+1}}{\frac{a^2}{(r+1)^2} + 1}$$

on voit que $i\mathbb{R}$ est envoyé sur i]-1;1[et i va sur 0. Avec les deuxièmes formules on voit que f est conforme.

Remarque 1. Ce serait marrant de voir avec des bases de groebner la conformité, au sens ou u est de degré -1 et v de degré 0.

1 Isométries