

Linear Regression with One Variable

Basic Concepts

Internet Applications

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
(1 21 21 21 21)	1534	315
	852	178
	•••	

Notation:

```
m = Number of training examplesx's = "input" variable / features
```

y's = "output" variable / "target" variable

How do we represent *h* ?

Linear regression with one variable. Univariate linear regression.

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_0 y θ_1 : parameters

How to choose θ_0 θ_1 ?

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Given the hypothesis $h_{\theta}(x) = \theta_0 + \theta_1 x$ in the figure, select the right parametes values:

$$\bigcirc \theta_0 = 0, \theta_1 = 1$$

$$\theta_0 = 0.5, \theta_1 = 1$$

$$\bigcirc \theta_0 = 1, \theta_1 = 0.5$$

$$\bigcirc \theta_0 = 1, \theta_1 = 1$$

Simplified Hypothesis: $h_{\theta}(x) = \theta_1 x$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) =$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$y^{(i)}\big)^2$$

Goal:
$$\min_{\theta_0, \theta_1}^{i=1} J(\theta_0, \theta_1)$$

$$\begin{array}{c}
\overline{\lim}_{i=1} \\
\text{minimize } J(\theta_1)
\end{array}$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\sum_{i=1}^{m} f_{i}$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

(function of the parameter θ_1)

$\theta(x)$

(for fixed θ_1 , this is a function of x)

 $I(\theta_1)$

(function of the parameter θ_1)

Consider m=3 inputs, shown in the figure. The hypothesis function is $h_{\theta}(x) = \theta_1 x$ And the cost function is $J(\theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ Select J(0)

(x)

(for fixed θ_1 , this is a function of x)

(function of the parameter θ_1)

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

Current hypothesis

4000

3000

2000

Size (feet²)

1000

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

Current hypothesis

4000

3000

2000

Size (feet²)

1000

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

2000

Size (feet²)

3000

4000

1000

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

Gradient Descent Algorithm

Have some function $J(\theta_0, \theta_1)$

Want $\min_{ heta_0, heta_1} J(heta_0, heta_1)$

Outline:

- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad (\text{for } j = 0 \text{ and } j = 1)$$
 }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Aspectos Prácticos

What happens in the gradient descent method if θ_1 is already at a local minimum?

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) =$$

$$j=0: \frac{\partial}{\partial \theta_0} J(\theta_0,\theta_1) =$$

$$j=1: \frac{\partial}{\partial \theta_1} J(\theta_0,\theta_1) =$$

Algorithm:

```
repeat until convergence { \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \quad \text{Update} \\ \theta_0 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \quad \text{simultaneously}  }
```


$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

$J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

Which of the following statements are correct?

- ☐ In order for the gradient descent to converge, we must gradually decrease over time.
- The gradient descent ensures that an overall minimum is reached for any J function $J(\theta_0, \theta_1)$
- The gradient descent can converge even if α it remains steady (although α shouldn't be too large or the algorithm may diverge)
- For function $J(\theta_0, \theta_1)$ associated with linear regression, there are no local optimum, there is only one global optimal.

Multiple features

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••			•••	

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••	•••	•••

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_i^{(i)}$ = value of feature j in i^{th} training example.

Hypothesis:

Previously: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Now: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

For convenience of notation, define: $x_0 = 1$

Multivariate linear regression.

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$$

(simultaneously update for every $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $\, heta_0, heta_1)$

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $\, heta_j \,$ for $\, i=0,\ldots,n \,$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Practical aspects I: Feature Scaling

Idea: Make sure features are on a similar scale.

Practical aspects II: Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{size - 1000}{2000}$$
 $x_2 = \frac{\#bedrooms - 2}{5}$ $-0.5 < x_1 < 0.5, -0.5 < x_2 < 0.5$

Practical aspects III: Adjust learning rate $\,\alpha\,$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001, \qquad, 0.01, \qquad, 0.1, \qquad, 1, \dots$$

$$, 1, \dots$$

 $x_3 = (size)^3$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Regularization

Assume we penalize the size of θ_3 θ_4

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Regularization

Smaller values for $\theta_0, \theta_1, \dots, \theta_n$

- "simpler" hypothesis
- Less prone to overfitting

Example:

- Variables: x_1, x_2, \dots, x_{100}
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Regularization

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

When λ is set to an extremely high value, for example, $\lambda=10^{10}$ what happens?

- $lue{}$ The algorithm works well, increasing λ can't hurt it.
- ☐ The algorithm fails to eliminate overfitting.
- ☐ The algorithm suffers underfitting. (It can't even adjust the training data.
- ☐ The descent of the gradient doesn't manage to converge.

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

When λ is set to an extremely high value, for example, $\lambda=10^{10}$ what happens?

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Regresión lineal regularizada

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Gradient descent

Repeat {

eat {
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \qquad \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n)$$

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Regularization factor adjustment

