Genome Sequencing & Assembly

Michael Schatz

March 31, 2015 FDA

Genomics Arsenal in the year 2015

Long Read Sequencing Technology

Moleculo Sequencing

Clever library preparation technique to turn a short read sequencer into a quazi-long read sequencer

- Very high quality reads, excellent data for phasing
- Restricted to ~10kbp max read lengths
- Excited for future advances, 10X genomics

Oxford Nanopore MinION

- Thumb drive sized sequencer powered over USB
- Capacity for 512 reads at once
- Senses DNA by measuring changes to ion flow

Nanopore Sequencing

Nanopore Basecalling

Basecalling currently performed at Amazon with frequent updates to algorithm

Our Data - Yeast W303

Nanopore Accuracy

Alignment Quality (BLASTN)

Of reads that align, average ~64% identity "2D base-calling" improves to ~70% identity

NanoCorr: Nanopore-Illumina Hybrid Error Correction

https://github.com/jgurtowski/nanocorr

- BLAST Miseq reads to all raw Oxford Nanopore reads
- 2. Select non-repetitive alignments
 - First pass scans to remove "contained" alignments
 - Second pass uses Dynamic Programming (LIS) to select set of highidentity alignments with minimal overlaps
- 3. Compute consensus of each Oxford Nanopore read
 - State machine of most commonly observed base at each position in read

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome Goodwin, S, Gurtowski, J et al. (2015) bioRxiv doi: http://dx.doi.org/10.1101/013490

Advantages of Long Reads

In yeast, Nanopore-based assembly is 10x more contiguous In E. coli, Nanopore-based assembly is basically perfect

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome. Goodwin, S*, Gurtowski, J*, Ethe-Sayers, S, Deshpande, P, Schatz, MC†, McCombie WR† (2015) *Under review.*

Advantages of Long Reads

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome.

Goodwin, S*, Gurtowski, J*, Ethe-Sayers, S, Deshpande, P, Schatz, MC†, McCombie WR† (2014) Under review.

Advantages of Long Reads

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome.

Goodwin, S*, Gurtowski, J*, Ethe-Sayers, S, Deshpande, P, Schatz, MC†, McCombie WR† (2014) *Under review*.

Genomic Futures?

23

Zamin Iqbal and 5 others retweeted

GenomeWeb InSequence @InSequence - Oct 20

Oxford Nanopore shows off Promethlon at ASHG. #ASHG14 #nanopore

iGenomics: Mobile Sequence Analysis

Aspyn Palatnick, Elodie Ghedin, Michael Schatz

The worlds first genomics analysis app for iOS devices

First application:

- Handheld diagnostics and therapeutic recommendations for influenza infections
- In a few seconds, iGenomics tells you which antivirals to take or avoid
- Currently in the App Store

Future applications

- Pathogen detection
- Food safety
- Biomarkers
- etc..

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling
- Solid: observed accuracy

$$CNS Error = \sum_{i=\lceil c/2 \rceil}^{c} {c \choose i} (e)^{i} (1-e)^{n-i}$$

PacBio Assembly Algorithms

PBJelly

Gap Filling and Assembly Upgrade

English et al (2012) PLOS One. 7(11): e47768

PacBioToCA & ECTools

Hybrid/PB-only Error Correction

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

HGAP & Quiver

Com	ulver Performance parison to Referen ruber; 3.1 MB; SN	ce Genome
	Initial Assembly	Quiver Consensus
QV	43.4	54.5
Accuracy	99.99540%	99.99964%
Differences	141	11

PB-only Correction & Polishing

Chin et al (2013) Nature Methods. 10:563–569

3rd Gen Long Read Sequencing

3rd Gen Long Read Sequencing

Her2 amplified breast cancer

Breast cancer

- About 12% of women will develop breast cancer during their lifetimes
- ~230,000 new cases every year (US)
- ~40,000 deaths every year (US)

Statistics from American Cancer Society and Mayo Clinic.

Recurrence and metastasis from Gonzalez-Angulo, et al, 2009.

Her2+ breast cancer

- 20% of breast cancers
- 2-3X recurrence risk
- 5X metastasis risk

(Adapted from Slamon et al, 1987)

SK-BR-3

Most commonly used Her2-amplified breast cancer ce

(Davidson et al, 2000)

Can we resolve the complex structural variations, especially around Her2?

Ongoing collaboration between CSHL and OICR to *de novo* assemble the complete cell line genome with PacBio long reads

Improving SMRTcell Performance

PacBio read length distribution

Genome-wide alignment coverage

Genome-wide coverage averages around 54X Coverage per chromosome varies greatly as expected from previous karyotyping results

PacBio and Illumina coverage values are highly correlated but Illumina shows greater variance because of poorly mapping reads

Structural variant discovery with long reads

- 1. Alignment-based split read analysis: Efficient capture of most events BWA-MEM + Lumpy
- 2. Local assembly of regions of interest: In-depth analysis with base-pair precision

 Localized HGAP + Celera Assembler + MUMmer
- **3. Whole genome assembly: In-depth analysis including** *novel sequences* DNAnexus-enabled version of Falcon

Total Assembly: 2.64Gbp Contig N50: 2.56 Mbp Max Contig: 23.5Mbp

Green arrow indicates an inverted duplication.

False positive and missing Illumina calls due to mis-mapped reads (especially low complexity).

Confirmed both known gene fusions in this region

Confirmed both known gene fusions in this region

Joint coverage and breakpoint analysis to discover underlying events

Cancer lesion Reconstruction

By comparing the proportion of reads that are spanning or split at breakpoints we can begin to infer the history of the genetic lesions.

- 1. Healthy diploid genome
- 2. Original translocation into chromosome 8
- 3. Duplication, inversion, and inverted duplication within chromosome 8
- 4. Final duplication from within chromosome 8

Her2+ Breast Cancer Reference Genome

Available *today* **under the Toronto Agreement:**

- Fastq & BAM files of aligned reads
- Interactive Coverage Analysis with BAM.IOBIO
- Whole genome assembly

Available soon

- Whole genome methylation analysis
- Full length cDNA transciptome analysis
- Comparison to single cell analysis of >100 individual cells

http://schatzlab.cshl.edu/data/skbr3/

What should we expect from an assembly?

The resurgence of reference quality genomes

Summary & Recommendations

< 100 Mbp: HGAP/PacBio2CA @ 100x PB C3-P5

expect near perfect chromosome arms

< IGI

> IGI

New Results

> 5GI

Error correction and assembly complexity of single molecule sequencing reads.

Hayan Lee , James Gurtowski , Shinjae Yoo , Shoshana Marcus , W. Richard McCombie , Michael Schatz doi: http://dx.doi.org/10.1101/006395

Caveats

Model only as good as the available references (esp. haploid sequences) Technologies are quickly improving, exciting new scaffolding technologies

Acknowledgements

Schatz Lab

Rahul Amin

Eric Biggers Han Fang

Tyler Gavin

James Gurtowski

Ke Jiang

Hayan Lee

7ak Lemmon

Shoshana Marcus

Giuseppe Narzisi

Maria Nattestad

Aspyn Palatnick

Srividya

Ramakrishnan

Fritz Sedlazeck

Rachel Sherman

Greg Vurture

Alejandro Wences

CSHL

Hannon Lab

Gingeras Lab

lackson Lab

Hicks Lab

Tossifov Lab

Levy Lab

Lippman Lab

Lyon Lab

Martienssen Lab

McCombie Lab

Tuveson Lab

Ware Lab

Wigler Lab

OICR

Karen Ng

Timothy Beck

Yoqi Sundaravadanam

John McPherson

NBACC

Adam Phillippy

Serge Koren

Thank you

http://schatzlab.cshl.edu @mike_schatz