

DELTECH CORPORATION Baton Rouge USA, Monomers

DELTECH CORPORATION Methyl Styrenes

Applications

PROCESS CAPABILITIES

- Alkylation
- Dehydrogenation
- Fractionation
- Pilot Plant
- > R&D

PRODUCTS

- Monomers
 - Methylstyrenes VT pMS
 - t-BS
 - Divinylbenzene
 - Process Styrene
 - m-DiPEB
- Alkylated Aromatics
 - Ethyltoluene
 - p-Ethyltoluene
 - others
- Custom Manufactured Products

Deltech

Products

VT VINYL TOLUENE **CAS No**. 25013-15-14

STYRENE **C A S N o** . 100-42-5

PMS
PARA METYL
STYRENE
C A S N o .
622-97-9

TBS
TERTIARY
BUTYL STYRENE **CAS No.** 1746-23-2

DVB DIVINYL BENZENE **CAS No.** 1321-74-0

Major Applications

Coatings

- Alkyd
- Acrylic
- Urethane
- UV Cure

Unsaturated Polyester composites

- Closed Mold BMC/SMC
- Open Mold Non atomized Mechanical spray applications

VINYL TOLUENE

VT – COMPARISON TO STYRENE

- Higher Boling Point
 - 168°C versus 145°C (styrene)
- Molecular Weight
 - 118 versus 104 (styrene)
- Similar Reactivity
- Monomers
 Value Q
 Value E
 - Styrene 1.00 -0.80
 - VT 1.06 -0.78
- TG °C
 - 88°C versus 98°C (styrene)
- Lower heat of polymerization
 - 14.6kcal/mol (VT) versus 17kcal/mol (styrene)

STYRENE

VINYL TOLUENEADVANTAGES OF VINYL TOLUENE IN COMPARISON TO STYRENE

Higher affinity to aliphatic solvents.
Higher affinity to oils.
Better resistance to water in copolymers.
Improved flow and DOI in copolymers.
Lower volatility – lower vapor concentration during the application and drying processes.
Higher molar volume when combined with resins and oils in general – faster drying time.
Higher operation temperature – lower exotherm – higher productivity.
productivity.

VINYL TOLUENE

MODIFICATION OF RESINS, MONOMERS AND OLIGOMERS VINYL TOLUENE MODIFIED OILS AND ALKYD RESINS

- ✓Vinyl Toluene has been used to modify alkyd resins for many years.
- ✓ Unlike most fast dry systems, the addition of Vinyl Toluene provides compatibility with both aliphatic and aromatic solvents giving the paint formulator a great deal of flexibility in formulating paints.
- ✓ Vinyl Toluene modified resins have good chemical resistance, durability, excellent color solution and color retention properties.
- ✓ Addition of Vinyl Toluene allows for making higher solids resins with excellent gloss, hardness and moisture resistance.
- √Typically the level of VT modification of alkyd resins is between 15% and 40% VT by weight on resin solid content.

MODIFICATION OF RESINS, MONOMERS AND OLIGOMERS VINYL TOLUENE MODIFIED OILS AND ALKYD RESINS

Process for VT Alkyd (Post-Process):

MODIFICATION OF RESINS, MONOMERS AND OLIGOMERS VINYL TOLUENE MODIFIED OILS AND ALKYD RESINS

VT Alkyd (Post-Process)

COMPOSITION	% ON WEIGHT
Soya	14,183
DCO	14,183
Glycerin	8,007
LIOH	0,006
Phthalic Anhydride	15,035
Xylene	1,567
Mineral Spirits	27,373
Vinyl Toluene	20,080
Trigonox B (*)	0,403
Mineral Spirits	1,090
Loss	-1,927
Total	100,000

SPECIFICATION	VALUES
% Solids	70
Specific Weight	0,96+-0,02
Oil Length (%)	41
Vinyl Toluene Content (%)	29
Volatile	MSp
Viscosity	Z5 - Z6
Acid Number	Max 12
Color	Max 8

(*) DI-TERT-BUTYL PEROXIDE

MODIFICATION OF RESINS, MONOMERS AND OLIGOMERS SPECIALTIES ALKYDS

Alkyd Vinyl Acrylate Resin (Post-Process)

COMPOSITION	% ON WEIGHT
Soya	21,799
Glycerin	11,418
Neocat Lithium	0,102
Phthalic Anhydride	20,596
Xylene reflux	2,373
Xylene	26,758
Vinyl Toluene	8,271
IBM	8,271
Trigonox 21 (**)	0,153
Trigonox C (***)	0,259
Total	100,000

SPECIFICATION	VALUES
% Solids	70
Oil Length (%)	30,76
VT/IBM Content(%)	23,34
Volatile	Xylene
Viscosity	Z - Z1
Acid Number	Max 8
Color	Max 6 -7

(**) TERT-BUTYL PEROXY-2-ETHYL HEXANOATE

(***) TERT-BUTYL PEROXY BENZOATE

Applications

- Aerosols
- Sanding sealers, primers and pre-finishing
- Implement Enamels
- Metal Furniture
- Machinery enamels and hammer finishes
- Ink varnishes and VT oils for paper coatings
- Fast dry maintenance enamels
- Stain blocking paints
- Intumescent paints

DRY FALL PAINTS

WATER STAIN REPAIR KIT

HAMMER FINISH

DTM COATINGS

MODIFICATION OF RESINS, MONOMERS AND OLIGOMERS VINYL TOLUENE MODIFIED OILS AND ALKYD RESINS

Paints formulated with a VT alkyds exhibit:

- ✓ Aliphatic solubility
 - ✓VM&P naphtha
 - ✓ Mineral spirits
- ✓ Isobutane / propane solubility for aerosols
- ✓ Soluble / compatible with most other paint solvents
- √ Fast drying with typically 5 –10 minutes set to touch.
- ✓VT alkyds can be used as blending resins in other alkyd systems to speed drying times and develop early hardness.
- √ Higher flash point, lower vapor pressure, lower HAP emissions, and lower odor.
- ✓VT alkyd coatings can be brushed, rolled, dipped or spray applied.
- ✓ Aliphatic versions exhibit extremely flexible recoat and touchup schedules (open time).

Typical Products

- Modified Oils Compatible with LOA
- Conventional Solids Medium VT/Alkyds
- High Solids Medium VT/Alkyd Co Polymers Compatible with MOA

Paint Formulation Property Comparison

	VT/VM&P	SOA/Xylene
Low odor	+++	
Recoat ability	++	
Fast dry	++	+
Cure	+++	+

URETHANE VT OIL

Pre-Vinylated Process (Oil Vinylate).

Urethane VT Oil - Pre-Process		
Composition	% on weight	
(1) Soya	37,55%	
(2) Vinyl Toluene	21,85%	
(3) Trigonox B (*)	0,89%	
(4) Glycerin	3,14%	
(5) Neocat Lithium	0,27%	
(6) TDI 80/20	8,80%	
(7) Mineral Spirits	27,49%	
Total	100,00%	
SPECIFICATION	VALUES	
Solids	72,10%	
Viscosity	Z5	
Excess OH	0,0	

Process for OIL/VT/TDI		
Charge (1). Heat to 160°C under N2		
Add (2) and (3) from separated recipients over 3 hours.		
Hold one hour at 155° - 160°C until reach viscosity (Z1 - Z2).		
Heat to 240° C.		
Hold 30 minutes until reach viscosity (Z4 - Z5)		
Cool to +- 220°C add (4) and (5).		
Heat to 250°C.		
Hold temperature until reach the mono. Hold + 30 minutes		
Drop the temperature to $82^{\circ}C$ through the addition of MSp (7).		
Add 30% of (6).		
Keep the temperature under control (82°C - 93°C).		
Charge the second part of TDI (6).		
Final Procedure.		

URETHANE VT OIL

Traditional Urethane Oil versus Urethane VT Oil

Traditional Urethane Oil		
Composition	% on weight	
Soya	46,4502%	
Glycerin	6,6479%	
Neocat Lithium	0,0328%	
TDI 80/20	18,1467%	
Mineral Spirits	28,7224%	
Total	100,00%	
SPECIFICATION	VALUES	
Solids	71,27%	
Viscosity	Z6	
Excess OH	2,8	

Urethane VT Oil - Pre-Process		
Composition	% on weight	
(1) Soya	37,55%	
(2) Vinyl Toluene	21,85%	
(3) Trigonox B (*)	0,89%	
(4) Glycerin	3,14%	
(5) Neocat Lithium	0,27%	
(6) TDI 80/20	8,80%	
(7) Mineral Spirits	27,49%	
Total	100,00%	
SPECIFICATION	VALUES	
Solids	72,10%	
Viscosity	Z5	
Excess OH	0,0	

Process for Thermoplastic Acrylic Resin:

MODIFICATION OF RESINS, MONOMERS AND OLIGOMERS THERMO-PLASTIC ACRYLIC RESIN

Bulk Process -Road Signs, Varnish for Stone and Concrete

COMPOSITION	% ON WEIGHT
Toluene	33,00
BA	12,00
VT	47,00
AA	1,40
Benzoil Peroxide	0,56
Toluene	2,30
Benzoil Peroxide	0,07
Toluene	2,30
Benzoil Peroxide	0,07
Toluene	1,30
Total	100,000

SPECITICATION	VALUES	
% Solids	60	
Volatile	Toluene	
Viscosity	Z5 - Z6	
Acid Number Max 13		
High solubility in aliphatic solvents		

 $CH = CH_2$

<u>US Patent 3,897,378</u>

- Alkylstyrene-Alkyl acrylate- Butadiene graft polymers are suitable for use in blends with alkyd resins to prepare binders for traffic paint formulations.
- Fast dry 15 mil thick paint can dry in less than 5 minutes.
- Improved adhesion to fillers & reflective glass beads
- · Wear properties.

THERMO-CURABLE ACRYLIC

Bulk Process –Car Refinish – 2 Compounds – Aliphatic Isocyanate

COMPOSITION	% ON WEIGHT
Xylene	50,00
BA	4,9
VT	9,8
AA	0,98
HEMA	2,45
MMA	30,87
Benzoil Peroxide	1,0
Total	100,000

SPECIFICATION	VALUES
% Solids	50
Volatile	Xileno
Viscosity	W - Y
Acid Number	Máximo 15
% OH on resin in solution	0,32
Better DOI and FLOW	

UNSATURATED POLYESTER RESIN FOR UV

$$- \bigcirc OOC - CH = CH - CO \cdot OCH_2 - C \cdot OOC$$

$$CH_3 \mid CH_3 \mid CO \cdot OCH_2 - C \cdot O$$

UNSATURATED POLYESTER FOR UV	% on weight
Propylene Glycol	26,992
Phthalic Anhydride	11,932
Maleic Anhydride	23,655
HQ solution (10% of HQ in Ethyl Alcohol)	0,291
Reactive Diluent (TMPTA/VT 1:1)	37,130
TOTAL	100,000

PROCESS TO PRODUCE AN UNSATURATED POLYESTER FOR UV

Reactive Reducers (unsaturated monomers)

Trimethylolpropane triacrylate (TMPTA) Neopentylglycol diacrilate (NPGDA) Tripropyleneglycol diacrylate (TPGDA)

VINYL ESTER RESIN FOR UV

✓ Vinylester resins are usually terminated by carboxylate or hydroxyl groups at the end of molecules, along with several internal C=C double bonds in each molecule to react with crosslinking monomer, forming three-dimensional structure.

✓ Vinylester resins are produced by esterification of a polyfunctional epoxy resin with an unsaturated mono-carboxylic acid, usually methacrylic, and acrylic acid. The typical structure of a vinylester resin is shown in Figure 1.1.

✓The reactive unsaturation is presented as terminal groups in the polymer (structoterminal), and can be cross-linked by vinyl monomers (unsaturated monomers) in the same way as conventional polyester.

✓ The outstanding physical properties are attributed to the higher reactivity of terminal unsaturation and its regular distribution through the network.

Figura 1.1 – Estrutura Molecular da Resina Epóxi-Acrilica (Young, 1976)

MODIFICATION OF RESINS, MONOMERS AND OLIGOMERS VINYL ESTER RESIN FOR UV

Basic Process:

- ✓ Load the epoxy resin, acrylic acid, reaction initiator, and first part of inhibitor solution to the reactor.
- ✓ Heat the reactor to 100 115°C.
- ✓ Reaction completion is determined by testing acid value to desired end point (MAX 7).
- ✓ The product then is diluted with VT and the second part f inhibitor solution is added.

MODIFICATION OF RESINS, MONOMERS AND OLIGOMERS **VINYL ESTER RESIN FOR UV**

MAIN CHARACTHERISTICS OF THE LOW COST VINYLESTER RESIN -(VINYLESTER-VT)

□Vinyl Toluene when used as a reactive reducer for vinylester resins doesn't show the inconvenience of strong-odor of styrene during the application and drying processes.	
☐The main reason for such characteristic is due to its faster curving cure avoiding by consequence a higher emission of active material in the air.	
□Low cost vinylester resin (VINYLESTER-VT) when combined with other reactive monomers such as TMPTA, TPGDA, HDDA, and DPGDA, etc. yield products with a broad variation of chemical and physical properties.	
□The use of VT in vinylester resins provides a great opportunity to cost reduction mainly when comparing the cost/ benefit between VT and other unsaturated monomers available	
intothe market place.	= CH ₂

For further assistance on products and applications, please contact:

DELTECH PRIAM Chemicals India Pvt Ltd

401-406, 'K' Buliding, Ballard Estate, CST Mumbai 400 001.

Email: amantri@deltechcorp.com

Tel./Mbl.:+91-9820802094 / 9029988760

CIN: U24233MH2012FTC235069

