PH 301 ENGINEERING OPTICS

Lecture_Optical Sources_LED_20

Light Emitting Diode

1962

- **❖** A light emitting diode (LED) is a two-lead semiconductor light source.
- **❖** It is a p-n junction diode that emits light when activated.
- * When a suitable voltage is applied to the leads, electrons are able to recombine with electron holes within device, releasing energy in the form of photons. This effect is called electroluminescence, & the color of light $(E = hv = hc/\lambda)$ is determined by energy gap of semiconductor.
- **❖ LEDs** are typically small (less than 1 mm²) & integrated optical components may be used to shape the radiation pattern.

Blue, green, & red LEDs

Electronic symbol

- Earliest LEDs emitted low-intensity IR light (remote control circuits).
- **❖** Modern LEDs: visible, UV, & IR with very high brightness.
- Unlike a laser, light emitted from an LED is neither coherent nor monochromatic, but spectrum is narrow with respect to human vision, & for most purposes the light from a simple diode element can be regarded as functionally monochromatic.

Bulb-shaped modern retrofit LED lamp

Parts of a conventional LED

Semiconductor Light Source

Formation of depletion region in P-N junction

Recombination of carriers under forward bias in P-N junction

Semiconductor Light Source

- **❖** Very small, operate with low power input, & very efficient.
- ❖ Require merging of two different materials & emission occurs in interface between those two materials.
- ❖ One of the materials has an excess of electrons (n-type) & other has material (p-type). [p-type has a deficit of electrons or an excess of holes (missing electrons)]
- **❖** When a forward bias voltage is placed across this junction, electrons are forced into region from *n*-type material & holes are forced into junction from *p*-type material.
- ❖ These electrons (-ve) & holes (+ve) are attracted to each other & when they collide, they neutralize each other & in the process emit recombination radiation.

- **❖** Electrons in *n*-type material exist (at normal operating temp) at a higher energy (conduction band) than holes (valence band).
- ❖ Energy difference is designated as bandgap of material; amount of energy that is released when recombination radiative process occurs.
- ❖ Different material combinations have different bandgaps & thus emit different wavelengths of light.
- ❖ When forward bias voltage is applied across junction, it produces a current flow in the form of electrons (& holes) flowing into junction. If current is low, incoherent light is emitted from the junction when recombination process occurs – <u>Light Emitting Diode</u> (LED).
- ❖ If current is high enough that there are more electrons in conduction band at a given energy than in valence band, then a population inversion exists & gain is produced.

(a) In GaAs, minimum of conduction band is directly above maximum of valence band. GaAs is a direct bandgap semiconductor.

(c) Recombination of an electron & a hole in Si involves a recombination centre.

(b) In Si, minimum of conduction band is displaced from maximum of valence band. Si is an indirect bandgap semiconductor.

Advantages

- Lower energy consumption (energy efficient),
- Longer lifetime,
- Improved physical robustness,
- Smaller size,
- Faster switching, &
- Fewer environmental concerns linked to disposal

Applications

- Aviation lighting,
- Automotive headlamps,
- Advertising,
- General lighting,
- Traffic signals,
- Camera flashes,
- Lighted wallpaper, ...

Electroluminescence

- > 1907: Electroluminescence was discovered by H. J. Round (British) using a crystal of silicon carbide & cat's-whisker detector.
- > 1927: Oleg Losev (Russian) reported creation of 1st LED.
- > 1953: Kurt Lehovec, Carl Accardo, & Edward Jamgochian (SiC).
- > 1955: Rubin Braunstein, IR using GaAs
- > 1957: Braunstein demonstrated that rudimentary devices could be used for non-radio communication across a short distance.
- > 1961: James R. Biard & Gary Pittman discovered near-IR emission from a tunnel diode (GaAs substrate).
- > 1962: Nick Holonyak at GE, red LED

Braunstein "...had set up a simple optical communications link: Music emerging from a record player was used via suitable electronics to modulate the forward current of a GaAs diode. The emitted light was detected by a PbS diode some distance away. This signal was fed into an audio amplifier and played back by a loudspeaker. Intercepting the beam stopped the music." This setup presaged the use of LEDs for optical communication applications.

Until 1968, VIS & IR LEDs were extremely costly - US \$200 per unit & so had little practical use.

Monsanto Company: Visible LEDs, using gallium arsenide phosphide (GaAsP) to produce red LEDs suitable for indicators.

Hewlett-Packard: Red LEDs, these were bright enough only for use as indicators, as light output was not enough to illuminate an area.

Fairchild Optoelectronics.

> 1994: 1st high-brightness blue LED - Shuji Nakamura, InGaN (Indium Gallium Nitride).

In parallel, Isamu Akasaki & Hiroshi Amano in Nagoya were working on developing important GaN nucleation on sapphire substrates & demonstration of p-type doping of GaN.

2014: Nakamura, Akasaki, & Amano, Nobel prize in Physics.

White LED

▶ In white LED, a Y₃Al₅O₁₂:Ce (known as YAG) phosphor coating on the emitter absorbs some of the blue emission & produces yellow light through fluorescence. Combination of that yellow with remaining blue light appears white.

However, using different phosphors (fluorescent materials) it also became possible to instead produce green & red light.

Working Principle

- ➤ A P-N junction can convert absorbed light energy into a proportional electric current. This process is reversed here (i.e. P-N junction emits light when electrical energy is applied to it). This phenomenon is called electroluminescence.
- > Electroluminescence can be defined as emission of light from a semiconductor under the influence of an electric field.
- ➤ Charge carriers recombine in a forward-biased P-N junction as the electrons cross from N-region & recombine with holes existing in P-region.
- Free electrons are in conduction band of energy levels, while holes are in valence energy band. Thus energy level of holes is less than energy levels of electrons.
 - Some portion of energy must be dissipated to recombine electrons & holes. This energy is emitted in the form of heat & light.

Working Principle

Electrons dissipate energy in the form of heat for silicon & germanium diodes but in gallium arsenide phosphide (GaAsP) & gallium phosphide (GaP) semiconductors, electrons dissipate energy by emitting photons.

If semiconductor is translucent (semi-transparent – allowing light but not detailed shapes), junction becomes source of light as it is emitted, thus becoming an LED. However, when junction is reverse biased, LED produces no light & if the potential is great enough, the device is damaged.

Breakdown

Reverse

I-V diagram of a diode. LED begins to emit light when more than 2 or 3 volts are applied.

For ward

Device Structure

LEDs are fabricated by epitaxially growing doped semiconductor layers on a suitable substrate (eg. GaAs or GaP).

Schematic illustration of typical planar surface emitting LED.

- (a) p-layer grown epitaxially on an n⁺ substrate &
- (b) 1^{st} n^{+} is epitaxially grown & then p region is formed by dopant diffusion into epitaxial layer.

- ➤ Not all light rays reaching semiconductor-air interface can escape because of total internal reflection (TIR).
- \succ Rays with angles of incidence greater than critical angle θ_c become reflected.
- For GaAs-air interface, θ_c is only 16°, which means that much of light suffers TIR.
- > It is possible to shape the surface of semiconductor into a dome or hemisphere so that light rays strike surface at angles less than θ_c therefore do not experience TIR.
- ➤ A common procedure that reduces TIR is encapsulation of semiconductor junction within a transparent plastic medium that has a higher refractive index than air & further also has a domed surface on one side of *pn* junction.

(a) Some light suffers TIR & cannot escape.

(c) Common method of allowing more light to escape from LED is to encapsulate it in a transparent plastic dome.

(b) Internal reflections can be reduced & hence more light can be collected by shaping semiconductor into a dome so that angles of incidence at semiconductor-air interface are smaller than critical angle.

Technology

- LED consists of a chip of semiconducting material doped with impurities to create a p-n junction.
- Current flows easily from p-side, or anode, to n-side, or cathode, but not in reverse direction.
- Charge-carriers electrons & holes flow into junction from electrodes with different voltages.
- When an electron meets a hole, it falls into a lower energy level & releases energy in the form of a photon.
- Wavelength of emitted light, & thus its color, depends on band gap energy of materials forming p-n junction.
- Si/Ge diodes electrons & holes recombine by a non-radiative transition, because these are indirect band gap materials.
- Materials used for LED have a direct band gap with energies corresponding to near-IR, visible, or near-UV light.

LED Materials

Commercial semiconductor materials for visible spectrum is III-V ternary alloys based on alloying GaAs & Gap.

Free space wavelength coverage by different LED materials from visible to IR.

Lifetime & Failure

- Solid-state devices such as LEDs are subject to very limited wear & tear if operated at low currents & at low temperatures.
- > Typical lifetimes are 25,000 to 100,000 hrs, but heat & current settings can extend or shorten this time significantly.
- Most common symptom of LED (& diode laser) failure is gradual lowering of light output & loss of efficiency.
- Whereas in most sources of light (incandescent lamps, discharge lamps, & those that burn combustible fuel, e.g. candles & oil lamps) light results from heat, LEDs only operate if they are kept cool enough.

External Efficiency of an LED

- It quantifies efficiency of conversion of electrical energy into an emitted external optical energy.
- ▶ It incorporates internal efficiency of radiative recombination process & subsequent efficiency of photon extraction from device.
- \triangleright Input of electrical power into an LED is diode current & diode voltage product (IV). If P_{out} is optical power emitted by device then

$$\eta_{external} = \frac{P_{out}(Optical)}{IV} \times 100\%$$

For indirect bandgap semiconductors efficiencies are generally less than 1% whereas for direct bandgap semiconductors with right device structure, efficiencies can be substantial.

Organic Light Emitting Diode

- OLED: electroluminescent material comprising emissive layer of diode is an organic compound.
- Organic material is electrically conductive due to delocalization of pi electrons caused by conjugation over all or part of the molecule, & material therefore functions as an organic semiconductor.
- Organic materials can be small organic molecules in a crystalline phase, or polymers.
- Advantages: thin, low-cost displays with a low driving voltage, wide viewing angle, & high contrast & color gamut.
- Polymer LEDs have added benefit of printable & flexible displays.
- Applications: visual displays for portable electronic devices;
 cellphones, digital cameras, MP3 players, lighting, & televisions.

Quantum dot LEDs

- Quantum dots (QD) are semiconductor nanocrystals in which emission color be tuned from visible to IR.
- QD-LEDs can create almost any color on the CIE diagram. They provide more color options than white LEDs since emission spectrum is much narrower, characteristic of quantum confined states.
- Two types of schemes for QD excitation; one uses photo excitation with a primary light source LED (typically blue or UV LEDs are used)
 & other is direct electrical excitation.
- Structure of QD-LEDs used for electrical-excitation scheme is similar to basic design of OLEDs.
 - A layer of QDs is sandwiched between layers of electrontransporting & hole-transporting materials. An applied electric field causes electrons & holes to move into QD layer & recombine forming an exciton that excites a QD.

Semiconductor Laser & LED

LED	Semiconductor Laser
 Operate at lower current densities, below threshold current. 	 Starts lasing action above threshold current only.
 Incoherent optical source (emitted photons have random phases due to spontaneous emission). 	 Coherent source of light (stimulated emission).
 Wider spectral line width (energy of emitted photon is roughly equal to E_g of semiconductor material). 	 Line width is very narrow.
 Multimode source (supports many optical modes within its structure). 	 Monomode source.
 Low internal quantum efficiency. 	Very high internal quantum efficiency.
 Light emission is very weak. 	 Light emission is very intense.

LED device offers hope in hair-loss battle

Stewart Wills, Opt. Photon News, Sept. 2018

Korean researchers showed that treating shaved mice with a flexible vertical micro-LED patch developed in their lab regrew hair faster than no treatment (Con) or minoxidil injections (MNX).

A micro-LED approach

- Researchers led by Keon Jae Lee of Korea Advanced Institute of Science and Technology (KAIST) demonstrated a smaller-footprint, wearable photostimulator. They created flexible thin-film vertical micro-LEDs (f-VLEDs).
- ➤ Team started by growing layers of high-purity AlGaInP LEDs on a GaAs wafer using metal-organic chemical vapor deposition, & next employing photoresists, RF sputtering & conventional photolithography processes to mark out individual micro-LEDs & add electrodes. Researchers then selectively etched away wafer substrate.
- ightharpoonup Produced 900-LED square array with a thickness of 20 μ m & an active-layer thickness of 3 μ m.
- ➤ Device can produce 10 pulses of 650-nm light per second with a total output of around 30 mW/mm² & at a low forward voltage of 2.8 V.

Taming (mouse) baldness

- ➤ Device can be attached to human skin without overheating or cracking. Additional tests revealed that the device remained mechanically reliable after being bent & unbent 10,000 times at a 5-mm bending radius.
- To see if the device could help tame the dreaded bald spot, team shaved hair off the backs of 12 mice & applied the device to shaved area of four of them, with another four receiving minoxidil (active ingredient in Rogaine & other oral hair-growth treatments) & the remaining four receiving no treatment. After 20 days of periodic irradiation with red LEDs (@ 15 minutes a day), mice treated with micro-LED patch showed significantly faster hair growth, a wider regrowth area & longer hairs relative to minoxidil & control mice.
- ➤ Clinical potential of f-VLED patches in real-time phototherapy. Other applications could be wound healing, acne care, skin lightening & other areas in which phototherapeutic approaches have shown promise.

Given than the width of the relative light intensity versus photon energy spectrum of an LED is typically around $\sim 3k_BT$. What is the linewidth $\Delta\lambda$ in the output spectrum in terms of wavelength?