

L'esordio

L'esordio

Creato da Mort Weisinger e Paul Norris

Le leggi che utilizzeremo

Moto

- velocità
- quantità di moto
- moto parabolico

Le leggi che utilizzeremo

Fisica dei fluidi

- forza e pressione
- spinta di Archimede
- legge di Stevino

Le leggi che utilizzeremo

Energia

- energia cinetica
- lavoro di una forza

Il miglior nuotatore degli oceani

La velocità di Aquaman sui fumetti come nuotatore è circa $3000\,m/s$ (da *Justice for all*)

Il miglior nuotatore degli oceani

E nel film?

Moto parabolico

Moto parabolico

$$x(t) = x_0 + v_x \cdot t$$

Moto parabolico

$$x(t) = x_0 + v_x \cdot t$$

$$y(t) = y_0 + v_y \cdot t - \frac{1}{2}gt^2$$

Come ricavare i dati

Come ricavare i dati

Rhett Allain su Wired

Come ricavare i dati

Rhett Allain su Wired

Tracker

Come ricavare i dati

Rhett Allain su Wired

Tracker

Come ricavare i dati

Rhett Allain su Wired

Tracker

 $8.4 \, m/s = 30.24 \, km/h$

Il miglior nuotatore degli oceani

$$8.4 \, m/s = 30.24 \, km/h$$

Il miglior nuotatore degli oceani

$$8.4 \, m/s = 30.24 \, km/h$$
 pesce vela

$$30\,m/s = 108\,km/h$$

Vita segreta di un pesce

The Brave and the Bold #28, 1960

Vita segreta di un pesce

ingerendo aria in una speciale sacca posta sotto la gola, il pesce palla si gonfia come un pallone, riuscendo così a salire in superficie, dove galleggia capovolto

Spinta di Archimede

Un corpo immerso in un fluido riceve una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

Spinta di Archimede

Un corpo immerso in un fluido riceve una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

$$F_A = \rho_l \cdot g \cdot V$$

Under pressure

Definizioni

Pressione

$$P = \frac{F}{S}$$

Definizioni

Pressione

$$P = \frac{F}{S}$$

Legge di Stevino

$$P = P_0 + \rho_l \cdot g \cdot \Delta h$$

• Pressione sulla superficie del mare $1.01 \cdot 10^5 Pa$

- Pressione sulla superficie del mare $1.01 \cdot 10^5 Pa$
- Pressione sul fondo della Fossa delle Marianne 1.08 · 10⁸ Pa

- Pressione sulla superficie del mare $1.01 \cdot 10^5 Pa$
- Pressione sul fondo della Fossa delle Marianne $1.08 \cdot 10^8 \, Pa$
- Forza che deve sopportare Aquaman sul fondo della Fossa delle Marianne $8.6 \cdot 10^7 N$

- Pressione sulla superficie del mare $1.01 \cdot 10^5 Pa$
- Pressione sul fondo della Fossa delle Marianne $1.08 \cdot 10^8 \, Pa$
- Forza che deve sopportare Aquaman sul fondo della Fossa delle Marianne $8.6 \cdot 10^7 N$
- Calamaro gigante (12 m) e calamaro colossale (15 m)

$$E = \frac{1}{2}mv^2$$
$$L = F \cdot s$$

$$L = F \cdot s$$

• massa proiettile 4 g

- massa proiettile 4 g
- velocità proiettile $900 \, m/s$

- massa proiettile 4 *g*
- velocità proiettile $900 \, m/s$
- p = mv

- massa proiettile 4 g
- velocità proiettile $900 \, m/s$
- p = mv
- distanza da cui sparare $2 \cdot 10^{-5} m$ ovvero una decina di micrometri, dimensioni tipiche di un microbo

