Homework 2 Handed out: Wednesday, September 14, 2022 Due: Wednesday, September 21, 2022 by 11:59pm

# Material covered:

Outcomes 2.1-2.3.

1. Let A be the annulus sector of points  $z = re^{i\theta}$  such that  $\frac{1}{2} \le r \le 1$  and  $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$  (pictured). For each of the following complex functions  $f: \mathbb{C} \to \mathbb{C}$ , sketch f(A), i.e. the image of A under f. Label the images of the points a, b, c, d (i.e. label f(a), f(b), f(c), f(d)).

a) 
$$f(z) = z^2$$

b) 
$$f(z) = \frac{1}{z}$$



### Solution.

a) Write 
$$z = re^{i\theta}$$
 with  $r > 0 - \pi < \theta < \pi$ . Then

$$z^2 = (re^{i\theta})^2 = r^2 e^{i2\theta}.$$

A is the set of points with  $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$  and  $\frac{1}{2} \le r \le 1$ , and this set gets mapped to the annulus sector of points with  $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$  and  $\frac{1}{4} \le r \le 1$ . This set is shown below. The points

$$f(a) = (e^{i\frac{\pi}{4}})^2 = e^{i\frac{\pi}{2}} = i,$$

$$f(b) = \left(\frac{1}{2}e^{i\frac{\pi}{4}}\right)^2 = \frac{1}{4}i,$$

$$f(c) = \left(\frac{1}{2}e^{-i\frac{\pi}{4}}\right)^2 = -\frac{1}{4}i,$$

$$f(d) = (e^{-i\frac{\pi}{4}})^2 = -i,$$

are labeled.



**b)** Write  $z = re^{i\theta}$  with  $r > 0 - \pi < \theta < \pi$ . Then

$$\frac{1}{z} = (re^{i\theta})^{-1} = r^{-1}e^{-i\theta}.$$

A is the set of points with  $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$  and  $\frac{1}{2} \le r \le 1$ , and this set gets mapped to the annulus sector of points with  $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$  and

 $1 \le r \le 2$ . This set is shown below. The points

$$\begin{split} f(a) &= (e^{i\frac{\pi}{4}})^{-1} = e^{-i\frac{\pi}{4}}, \\ f(b) &= \left(\frac{1}{2}e^{i\frac{\pi}{4}}\right)^{-1} = 2e^{-i\frac{\pi}{4}}, \\ f(c) &= \left(\frac{1}{2}e^{-i\frac{\pi}{4}}\right)^{-1} = 2e^{i\frac{\pi}{4}}, \\ f(d) &= (e^{-i\frac{\pi}{4}})^{-1} = e^{i\frac{\pi}{4}}, \end{split}$$

are labeled.



2. For the following functions  $f \colon \mathbb{C} \to \mathbb{C}$ , evaluate the limit

$$\lim_{z \to z_0} f(z)$$

or prove that the limit does not exist. Is f continuous at  $z_0$ ?

$$f(z) = \begin{cases} \frac{z^5 - z}{z + i} & z \neq -i \\ 0 & z = -i \end{cases}, \qquad z_0 = -i.$$

b) 
$$f(z) = \begin{cases} \frac{z^2 + \overline{z}^2}{2i|z|} & z \neq 0 \\ 0 & z = 0 \end{cases}, \qquad z_0 = 0.$$

c) 
$$f(z) = \begin{cases} \frac{x^2y}{(x+iy)(x^2+y^2)} & z \neq 0\\ 0 & z = 0 \end{cases}, \qquad z_0 = 0,$$

where z = x + iy,  $x, y \in \mathbb{R}$ .

**Solution.** a) We start by factoring the numerator:

$$z^5 - z = z(z^4 - 1) = z(z - 1)(z + 1)(z - i)(z + i).$$

Therefore, for  $z \neq -i$ , we have

$$f(z) = z(z-1)(z+1)(z-i).$$

Thus the limit is

$$\lim_{z \to -i} f(z) = \lim_{z \to -i} \left[ z(z-1)(z+1)(z-i) \right]$$
$$= (-i)(-i-1)(-i+1)(-2i) = 4.$$

The limit exists but does not equal f(-i) = 0, so f is discontinuous at z = -i.

We say that f has a removable discontinuity at z=-i because there exists a function

$$\tilde{f}(z) = z(z-1)(z+1)(z-i)$$

which is continuous at z = -i and coincides with f for  $z \neq -i$ . In other words, we can remove the discontinuity by changing the value of f at a single point.

**b)** We suspect that the limit is zero since the absolute value of the numerator scales like  $O(|z|^2)$  while the absolute value of the numerator is O(|z|) as  $z \to 0$ . Indeed, we have from the triangle inequality:

$$|z^2 + \overline{z}^2| \le |z^2| + |\overline{z}^2| = |z|^2 + |\overline{z}|^2 = 2|z|^2.$$

Thus for  $z \neq 0$ , we have the bound

$$|f(z)| = \frac{|z^2 + \overline{z}^2|}{2|z|} \le \frac{2|z|^2}{2|z|} = |z|.$$

The right hand side goes to zero as  $z \to 0$ , so we must have  $|f(z)| \to 0$ ,  $z \to 0$ . Therefore,

$$\lim_{z \to 0} f(z) = 0 = f(0)$$

and f is continuous at z = 0.

c) The absolute value of the numerator and denominator both scale like  $O(|z|^3)$  as  $z \to 0$ . Therefore, either the limit does not exist, or it exists and is a non-zero number.

To determine whether the limit exists, it is useful to write  $z = re^{i\theta}$  with r > 0,  $\theta \in \mathbb{R}$ . Then  $x = r\cos\theta$ ,  $y = r\sin\theta$  and

$$x^2y = r^3\cos(\theta)^2\sin(\theta),$$
  
$$(x+iy)(x^2+y^2) = re^{i\theta} \cdot r^2 = r^3e^{i\theta}.$$

so for  $z \neq 0$  (equivalently r > 0),

$$f(z) = \cos(\theta)^2 \sin(\theta) e^{-i\theta}$$
  
=  $\cos(\theta)^2 \sin(\theta) (\cos \theta - i \sin \theta)$ .

We see that the limit as  $z \to 0$  does not exist, since the limit

$$\lim_{r \searrow 0} f(re^{i\theta}) = \lim_{r \searrow 0} \left[ \cos(\theta)^2 \sin(\theta) (\cos \theta - i \sin \theta) \right]$$

depends on the value of  $\theta$ . For example, approaching z=0 along the positive real axis (corresponding to  $\theta=0$ ) yields

$$\lim_{r \searrow 0} f(r) = \lim_{r \searrow 0} \left[ \cos(0)^2 \sin(0) (\cos(0) - i \sin(0)) \right] = \lim_{r \searrow 0} 0 = 0.$$

while approaching z=0 along the diagonal defined by  $\theta=\pi/4$ , we find a different limit:

$$\lim_{r \searrow 0} f(re^{i\pi/4}) = \lim_{r \searrow 0} \left[ \cos\left(\frac{\pi}{4}\right)^2 \sin\left(\frac{\pi}{4}\right) \left(\cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right)\right) \right]$$
$$= \lim_{r \searrow 0} 2(1+i) = 2(1+i).$$

Therefore,  $\lim_{z\to 0} f(z)$  does not exist. This also implies that f is not continuous at 0.

3. Sketch the image of the rectangle R shown below under the map  $f: \mathbb{C} \to \mathbb{C}$ ,  $f(z) = \sin(z)$ . Label the images of the corners, i.e. the points f(0),  $f(\pi/2)$ ,  $f(\pi/2+i)$ , f(i).



#### Solution.

Write z = x + iy where  $x, y \in \mathbb{R}$  and recall that  $\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$ .

The image of R is

$$f(R) = \{\sin(x)\cosh(y) + i\cos(x)\sinh(y) \mid 0 \le x \le \frac{\pi}{2}, 0 \le y \le 1\}.$$

In order to visualize this set, let us find the boundary.

i. If we fix y = 0 and vary x, we see that the line segment on the real axis gets mapped to

$$\{\sin(t)\cosh(0) + i\cos(t)\sinh(0) \mid 0 \le t \le \frac{\pi}{2}\} = \{\sin(t) + 0i \mid 0 \le t \le \frac{\pi}{2}\} = \{x + 0i \mid 0 \le x \le 1\}.$$

ii. Fixing  $x = \pi/2$  and varying y, we find that the line segment between  $\pi/2$  and  $\pi/2 + i$  gets mapped to

$$\{\sin\left(\frac{\pi}{2}\right)\cosh(t) + i\cos\left(\frac{\pi}{2}\right)\sinh(t) \mid 0 \le x \le \frac{\pi}{2}\} = \{\cosh(t) + 0i \mid 0 \le t \le 1\} = \{x + 0i \mid 1 \le x \le \cosh(1)\}.$$

iii. Similarly, the line segment between 0 and i gets mapped to

$$\{\sin(0)\cosh(t) + i\cos(0)\sinh(t) \mid 0 \le t \le 1\} = \{0 + i\sinh(t) \mid 0 \le t \le 1\} = \{0 + yi \mid 0 \le y \le \sinh 1\}.$$

iv. Finally, the line segment between i and  $\pi/2 + i$  gets mapped to

$$\{\sin(t)\cosh(1) + i\cos(t)\sinh(1) \mid 0 \le t \le 1\}$$

which is a segment from an ellipse with semi-major axis  $\cosh(1)$  and semi-minor axis  $\sinh(1)$ . The set f(R) is shown below with the points f(0),  $f(\pi/2)$ ,  $f(\pi/2+i)$  and f(i) labeled.



- 4. Let z=x+iy where  $x,y\in\mathbb{R}$ . Find the real and imaginary parts of the following expressions in terms of x and y:
  - a)  $e^{1/z}$
  - b)  $\cos(z^2)$

## Solution.

a) Let's start by writing the argument 1/z in terms of x, y:

$$\frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2},$$

Then

$$e^{1/z} = \exp\left(\frac{x - iy}{x^2 + y^2}\right) = e^{\frac{x}{x^2 + y^2}} e^{-i\frac{y}{x^2 + y^2}}$$

which we can rewrite as

$$e^{1/z} = e^{\frac{x}{x^2+y^2}} \left[ \cos \left( \frac{y}{x^2+y^2} \right) - i \sin \left( \frac{y}{x^2+y^2} \right) \right]$$

Thus

Re 
$$(e^{1/z}) = e^{\frac{x}{x^2+y^2}} \cos(\frac{y}{x^2+y^2}),$$
  
Im  $(e^{1/z}) = -e^{\frac{x}{x^2+y^2}} \sin(\frac{y}{x^2+y^2})$ 

**b)** We have 
$$z^2 = (x^2 - y^2) + 2ixy$$
. Recall also that  $\cos(w) = \cos(\text{Re } w) \cosh(\text{Im } w) - i \sin(\text{Re } w) \sinh(\text{Im } w)$ .

Thus

$$\cos(z^2) = \cos(x^2 - y^2)\cosh(2xy) - i\sin(x^2 - y^2)\sinh(2xy)$$

from which we can read the real and imaginary parts:

Re 
$$\cos(z^2) = \cos(x^2 - y^2) \cosh(2xy)$$
,  
Im  $\cos(z^2) = -\sin(x^2 - y^2) \sinh(2xy)$ .

- 5. Find all solutions  $z \in \mathbb{C}$  of the following equations:
  - a)  $e^z = -1$
  - b)  $(\sin(z))^2 = 4$

## Solution.

a) It is convenient to write z=x+iy where  $x,y\in\mathbb{R}$ . We then see that  $1=|e^z|=|e^xe^{iy}|=e^x$  which implies that x=0. The equation is thus equivalent to

$$\cos(y) + i\sin(y) = -1.$$

Equating real and imaginary parts, we see that y is an odd multiple of  $\pi$ . Thus the solutions are

$$z = (2n+1)\pi i, \quad n \in \mathbb{Z}.$$

**b)** Let  $w = \sin(z)$  and start by solving  $w^2 = 4$ . The solutions are  $w = \pm 2$ . We now proceed to solve the equations  $\sin(z) = 2$  and  $\sin(z) = -2$  separately. Write z = x + iy where  $x, y \in \mathbb{R}$  and use

$$\sin(x + iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y).$$

To solve  $\sin(z) = 2$ , equate real and imaginary parts in

$$\sin(x)\cosh(y) + i\cos(x)\sinh(y) = 2$$

to conclude that  $\cos(x)\sinh(y)=0$  and  $\sin(x)\cosh(y)=2$ . The first equation implies that

$$y = 0$$
 or  $x = \frac{(n+1)\pi}{2}, n \in \mathbb{Z}.$ 

Suppose that y = 0. Then  $\sin(z) = \sin(x)$  with x real, and  $\sin(x) = 2$  does not have any solutions. Therefore, we must have

$$x = \frac{(n+1)\pi}{2}, \ n \in \mathbb{Z},$$

and

$$\sin(z) = \sin((n+1)\frac{\pi}{2})\cosh(y) = (-1)^n \cosh(y) = 2.$$

Since cosh is non-negative on the reals, we see that n must be even and  $y = \pm \operatorname{arcosh}(2)$ .

Similarly, we see that the solutions to  $\sin(z) = -2$  are  $z = (n + 1)\pi/2 \pm i \operatorname{arcosh}(2)$  with n odd. Putting the two cases together, the solutions to  $(\sin(z))^2 = 4$  are

$$z = \frac{(n+1)\pi}{2} \pm i \operatorname{arcosh}(2), \quad n \in \mathbb{Z}.$$