Klausur "Mathematik I für Informatik und Wirtschaftsinformatik"

Fachbereich	Matl	hematik
Prof. Dr. Tho	mas	Streicher

SoSe 2018 06.09.2018

Name:					Matrikelnummer:					
Vorname:					Studi	engang	;:			
	Aufgabe	1	2	3	4	5	6	Σ	Note	
	mögliche Punkte	7	7	20	6	10	10	60		
	erreichte Punkte									

Hinweise

Bitte füllen Sie den Kopf dieses Aufgabenblatts **jetzt** und **leserlich in Druckschrift** aus. Versehen Sie **alle Blätter** mit **Ihrem Namen** und **Ihrer Matrikelnummer**.

Sie benötigen kein eigenes Papier. Sollte der Platz unter den Aufgaben Ihnen nicht genügen, können Sie die Seiten am Ende der Klausur verwenden. Kennzeichnen Sie deutlich, zu welcher Aufgabe Ihre Lösungen gehören.

Als Hilfsmittel ist lediglich **ein beidseitig handschriftlich beschriebenes DIN A4 Blatt** bzw. **zwei DIN A4 Seiten** zugelassen.

Geräte zur elektronischen Kommunikation dürfen weder benutzt noch griffbereit gehalten werden. Ein Verstoß hiergegen wird als Täuschungsversuch gewertet.

Die Bearbeitungszeit beträgt 90 Minuten. Der Raum darf erst nach Klausurende verlassen werden.

Bedenken Sie: Wo nicht anders explizit angegeben, sind alle Ergebnisse zu begründen, etwa durch eine Rechnung. Insbesondere werden Lösungswege bewertet.

Tipp: Verschaffen Sie sich einen Gesamtüberblick über die Aufgaben, bevor Sie beginnen. Die Punktebewertung einer Aufgabe sagt nichts über ihre Schwierigkeit aus.

Die Aufgaben beginnen auf der nächsten Seite.

Viel Erfolg!

1. Aufgabe (Teilbarkeit)

(7 Punkte)

Sei $n \in \mathbb{N}_0 := \{0, 1, 2, \ldots\}$ mit der Darstellung

$$n = \sum_{i=0}^{k} a_i 10^i,$$

wobei $k \in \mathbb{N}_0$ und $a_i \in \{0, 1, ..., 9\}$ für alle $i \in \{0, ..., k\}$. Hierbei stellen die a_i die Ziffern der Zahl n dar. Zeigen Sie, dass

$$3|n \Leftrightarrow 3|\sum_{i=0}^{k} a_i$$

gilt, dass also die Zahl n ist genau dann durch 3 teilbar ist, wenn ihre Quersumme durch 3 teilbar ist.

2. Aufgabe (Vollständige Induktion)

(7 Punkte)

Sei $\mathbb{N}_0 := \{0, 1, 2, \ldots\}$ und seien $M, N \subset \mathbb{N}_0$ mit $|N| = n \in \mathbb{N}_0$ und |M| = n + m + 1 mit $m \in \mathbb{N}_0$. Zeigen Sie mittels vollständiger Induktion über n:

Für alle $n, m \in \mathbb{N}_0$ gilt, dass jede Abbildung $f: M \to N$ nicht injektiv ist.

Hinweis: Halten Sie unbedingt den Formalismus der vollständigen Induktion ein.

Si me No	beliebig	. Fix r	1=0 Z	l die be	Kagi tri	ivial, c	la M+(d und	N=
Induktioned	nfang:								
Qi n=1.	Dann ha	Mn	rindu	lens 2 i	Elevark	MIZ	m_2 .		
te gilt	F(m1)=	$F(m_2)$	da	Now e	in Elem	enl hav	<i>b</i> .		
Meo at t									
Induktiona			1):						
Cur ein be				Hugag	e.				
Induktiones		d							
Wir behau		Lucad	Au n	+1. B	em aill	Ne a	Sa.	a ?	
1. Fall: f			V		3"		,		
	(2,11).		a. 7	in G.	lel ima	<i>ا</i> ما	. ch V	nùU ú	ية ما ما منه و
			~~~1 }					, , , , , , , , , , , , , , , , , , ,	<b>F</b>
2. Fall: 16					2-1/-	1 6	И .	~/	
	1420			1, M2 6 f			1, 60	ans	
	$a_{n+1} = f$		. Meo	cul ()	uch crye	khv.			
3. Fall: 11									
Darn 21	rach (IV	f lan.	₁ ) 🤝	N) {a	14.1 }	in A	unhlion		
und.	nach (IV	) will	injelli	s, also	F: M	»Na	eech nich	<i>l</i> .	



#### 3. Aufgabe (Lineare Algebra)

(20 Punkte)

Gegeben sei die Matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

- (a) Bestimmen Sie alle Eigenwerte und die zugehörigen Eigenräume der Matrix. (9,5 P.)
- (b) Geben Sie den Kern, das Bild und den Rang der Matrix an. (3 P.)
- (c) Ist die Matrix invertierbar? (1 P.)
- (d) Ist die Matrix diagonalisierbar? (3 P.) Wenn ja, geben Sie eine Matrix S und eine Diagonalmatrix D an, sodass  $D = S^{-1}AS$  gilt. *Hinweis*: Sie müssen die Matrix  $S^{-1}$  nicht berechnen. Eine Angabe der Matrizen D und S genügt.
- (e) Geben Sie die Eigenwerte von  $A^2$  an. (1 P.)
- (f) Bestimmen Sie die Anzahl der Lösungen des linearen Gleichungssystems (2,5 P.)

$$Ax = \begin{pmatrix} 1 \\ 3 \\ \alpha \end{pmatrix}$$

in Abhängigkeit von  $\alpha \in \mathbb{R}$ .

a) Behackh dax char. Polynom:

$$p_{1}(t) = dit (A - t R) = dit \begin{pmatrix} 1 - t & 0 & 0 \\ 1 & 1 - t & 1 \\ 0 & 1 & 1 - t \end{pmatrix}$$

Galvillung

 $auh 12ii = (1 - t) \cdot dit \begin{pmatrix} 1 - t & 1 \\ 1 & 1 - t \end{pmatrix} = (1 - t) \begin{pmatrix} 1 - t & 1 \\ 1 & 1 - t \end{pmatrix}$ 
 $= (1 - t) \begin{pmatrix} t^{2} - 2t \end{pmatrix} = t \cdot (1 - t) \begin{pmatrix} 1 - 2 \end{pmatrix} = 0$ 

Mho aind  $\lambda_{0} = 0$ ,  $\lambda_{1} = 1$ ,  $\lambda_{2} = 2$  dix EW von  $\lambda_{1}$ .

 $E_{0}(\lambda) = \{ \times : (\lambda \times 10) \}$ 
 $R_{1}(\lambda) = \{ \times : (\lambda \times 10) \}$ 
 $R_{2}(\lambda) = \{ \times : (\lambda \times 10) \}$ 
 $R_{3}(\lambda) = \{ \times : (\lambda \times 10) \}$ 
 $R_{4}(\lambda) = \{ \times : (\lambda \times 10) \}$ 
 $R_{5}(\lambda) = \{ \times : (\lambda \times 10) \}$ 

Si  $\kappa_{1} = s$ . Down git  $\kappa_{2} = -s$  and  $\kappa_{1} = 0$ .

Dahu in  $K_{2}(\lambda) = \{ \cdot : (-\frac{s}{2}) : s_{1} : s_{2} : s_{3} : s_{4} :$ 

$$E_{1}(A) = \{ s : \{(A-I) \times \{0\} \} \}$$

$$\begin{cases} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{cases} \Rightarrow s_{2} = s . \text{ Barm Glyd } s_{1} = s \\ 0 & 0 & 0 & 0 & 0 \end{cases} \Rightarrow s_{2} = s . \text{ Barm Glyd } s_{1} = s \\ 0 & 0 & 0 & 0 & 0 \end{cases} \Rightarrow s_{2} = s \\ \text{Bolur All } E_{1}(A) : \{(\frac{s}{s}) : s_{6}N_{s}\} = c((\frac{s}{s}))_{s} > s_{2} = s \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 &$$

F) We wollen all ~ 6 M Finden, or does  $(\frac{3}{2})$  6 Ria(1) =  $< \{(\frac{3}{2}), (\frac{3}{3})\} > = \{ 1, (\frac{3}{2}), 1_2(\frac{3}{3}), 1_1, 1_2 \in \mathbb{R} \}.$ Equit: Egilt:  $\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Rightarrow \lambda_1 = 1, \quad \lambda_2 = 2 \Rightarrow z = 2.$ The Clegal (3) new fix z = 2 cm Ridd. More that  $A < = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$  at new fix z = 2 Garbon. Ex gilt:  $A \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ ; oleo:  $\{x : Ax = \begin{bmatrix} 3 \\ 2 \end{bmatrix}\} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$  then AWhen hol  $Ax = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$  (curindlish with Locumn)  $\{x = 2 \}$  (where  $x = 2 \}$ 







## 4. Aufgabe ( $\Sigma$ -Algebren und Relationen)

(6 Punkte)

Sei  $\Sigma := (S, F, \operatorname{ar})$  eine einsortige Signatur (S besteht aus genau einer Sorte), A und B einsortige  $\Sigma$ -Algebren zur Signatur  $\Sigma$  und  $h: A \to B$  ein  $\Sigma$ -Homomorphismus. Wir betrachten die Relation

$$x \ker(h) y \iff h(x) = h(y)$$

auf der  $\Sigma$ -Algebra A. Zeigen Sie, dass ker(h) eine Kongruenz auf A ist.

Zu zinge	n: 1)	ber(h)	define	1 Age	wolen	exclation	aut	As	Fir	alle	<u>ک</u> وک	
7		V f 16										
											1	
		81, Y1 6									, yn	
	A					h) f*1					_	
		OFF										
	Chum	Offer	willlich	gil	h(x) :	=hly) A	=> h	(y) =	: h(x)	46	146 As	456
	Prons:	OFfic	ruichllich	gift	h(x)=	hly) 1	h(y)	=hl:	) =>	nle	s)=hlz	راد)
										-	126/5	-
2u 2) :												
		1:.		70 (0		_1	1 .				<b>4</b> .	
		f mit							6151	11	Zniyn	6115
		}=h(y,)										
		zugen:										
Eg	ilf:		n./-									
h	(f Al 8	(1, / Ln	)] =	FB(	hlen	J, , &	h(×n)	)				
			<b>*</b> =	$f^{\mathbf{z}}(\cdot)$	h ( y 1)	1,, hl	$(y_n)$	)				
		Oct H	m,= 1	h(f*	(y11.	14n))	)	D				



#### 5. Aufgabe (Beweisen und Widerlegen)

(10 Punkte)

Entscheiden Sie, welche der folgenden Aussagen wahr oder falsch sind. Geben Sie außerdem jeweils einen Beweis oder ein Gegenbeispiel an. Sollten Sie ein Gegenbeispiel angeben, müssen Sie zudem zeigen, dass dies ein Gegenbeispiel ist.

Sie erhalten für die richtige Antwort jeweils 0,5 und für die richtige Begründung jeweils 2 Punkte.

- (a) Sei  $A \in \mathbb{R}^{n \times n}$  eine orthogonale  $(n \times n)$ -Matrix. Dann gilt  $\det(A) = 1$ .
- (b) Seien X, Y Ringe und  $\varphi: X \to Y$  ein Ringhomomorphismus. Dann ist  $\varphi$  injektiv.
- (c) Die Abbildung  $||\cdot||: \mathbb{R}^n \to \mathbb{R}, x := (x_1, x_2, \dots, x_n) \mapsto ||x|| := \max\{|x_i|, i \in \{1, \dots, n\}\}$  ist eine Norm.
- (d) Sei

$$F_+ := \{(c_n) \text{ Folge in } \mathbb{R} : c_n > 0 \quad \forall n \in \mathbb{N}\}.$$

Seien  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}\in F_+$ . Ist  $a_n\in O(b_n)$ , dann gilt

$$\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}}$$
 konvergiert.

a) Folich. Rep. 
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = B^{n \times n}$$
 all offinautilish orthogonal,

observed  $A = -1$ .

b) Folich  $A = -1$ .

b) Folich  $A = \mathbb{Z}_2 = \mathbb{Z}_2$ ,  $A = \mathbb{Z}_2 = \mathbb{Z}_2$ ,  $A = \mathbb{Z}_2 = \mathbb{Z}_2 = \mathbb{Z}_2$ ,  $A = \mathbb{Z}_2 =$ 

1- Clagl: 1x+y1 = mas [1x;+yi]: 16 [1, n]} = max { |x, | + |y, |: 16 &1,-, n}} = max {1x;1: 16 {1,-,n}} + max { (4;1:16 {1,-,n}} = || × || + || y || 0 d) Tolech. Si  $b_n = 2$ , and  $a_n = \begin{cases} 1 & n \text{ girade} \\ n & \text{ ungeade} \end{cases}$ Bann wind (an), (bn) 6 F. und is gill lant = 1. (bn), also an 6 O(bn), abu (an) divergut.

# 6. Aufgabe (Multiple Choice)

Entscheiden Sie, welche der folgenden Aussagen wahr und welche falsch sind.

### Sie müssen Ihre Antworten nicht begründen.

Für jede richtig ausgefüllte Zeile bekommen Sie 1 Punkt und eine fehlerhaft oder gar nicht ausgefüllte Zeile wird mit 0 Punkten bewertet.

Sollten Sie eine Antwort korrigieren, kennzeichnen Sie eindeutig, welche Antwort gewertet werden soll. Im Zweifel wird die Antwort mit 0 Punkten bewertet.

		wahr	falsch
		waiii	Taiseii
(a)	Die Aussagen $(A \land B) \lor (\neg A \land \neg B)$ und $(A \Leftrightarrow B)$ sind äquivalent.	×	
(b)	Seien A und B Mengen mit $A \cap B = \emptyset$ . Dann ist $A \neq B$ . $A=B=\emptyset$		⅓
(c)	Seien $a,n\in\mathbb{N}^\star:=\{1,2,3,\ldots\}$ . Dann gilt $a^n\equiv a\pmod n$ . $a=16\equiv0$ mod 4		$\boxtimes$
(d)	Seien $x,y\in\mathbb{Z}_{91}$ . Dann gilt: $x\cdot y=0\Rightarrow x=0$ oder $y=0$ .		
(e)	For $s=1$ and $y=13$ gill $s\cdot y=0$ in $\mathbb{Z}_{s1}$ Sei $S\subset\mathbb{C}$ mit $S:=\{s\in\mathbb{C}: s =1\}$ und $\cdot_{\mathbb{C}}$ die Multiplikation zweier komple-	M	
	xer Zahlen. Dann ist $(S, \cdot_{\mathbb{C}})$ eine Gruppe. $(S, \cdot_{\mathbb{C}})$ eine Gruppe. $(S, \cdot_{\mathbb{C}})$	eo il S	1.52 65 FW 51 15265
INV. I New (f)	Elmul: $14 = 4 = 1$ .  Acc: V nucle: 165 da $11 = 1$ Seien $v, w \in \mathbb{R}^3$ zwei linear unabhängige Vektoren mit $v, w \neq (0,0,0)$ . Dann	×	
	ist $\{v, w, v \times w\}$ eine Basis des $\mathbb{R}^3$ . $v_i w_i \vee s w$ and $lin. unabhängig.$		
(g)	Jede orthogonale symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ ist selbstinvers.	×	
	(1 0 0) Tournahinh de Prixens		dallena 1)
(h)	Die Matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ ist positiv definit. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ ist positiv definit. $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ Sei $A \in \mathbb{R}^{n \times n}$ mit rang $(A) < n$ . Dann besitzt das Gleichungssystem $Ax = b$ für		<b>\(\begin{align*} \begin{align*} \be</b>
(i)			$\boxtimes$
	jedes $b \in \mathbb{R}^n$ mindestens eine Lösung. Wen $a(A) \ge 0$ and we be $a(A) \ge 0$ . But Glowhungscythin $a \ge b$	al day	n leine Lorenne
	•	$\overline{}$	
(j)	Sei $(\cdot \cdot)$ ein Skalarprodukt auf $\mathbb{R}^n$ , $  \cdot  $ die von $(\cdot \cdot)$ induzierte Norm auf $\mathbb{R}^n$ und seien $v, w \in \mathbb{R}^n$ linear abhängig. Dann gilt $ (v w)  =   v   \cdot   w  $ .	X	
	V. W lin. abhanging => es existed IOR mit walv. Barm gill	:	
	1(v/w) = 1 (v/1v) = 1 - 1 N N = 1 = N v N · N L v = N v N · N		

(10 Punkte)









