

Group Number 9: Cirillo Francesco Pio Fasolino Alessandra

Overview

SPLIT VALIDATION AND TRAINING SETS

Multilabel stratified split based on class presence

Construction of a **binary matrix** (n_sample × n_classi) which indicates the presence of the classes in each image

	CLASS 0	CLASS 1	CLASS 2	CLASS 3	CLASS 4	CLASS 5	CLASS 6	CLASS 7	CLASS 8
SEMPLE 0000	1	1	0	0	1	0	1	0	0
SEMPLE 0001	1	0	1	1	0	1	0	1	1
SEMPLE 0001	0	1	0	1	0	0	1	1	1
SEMPLE 0002	0	1	0	0	0	1	1	0	1

Split which preserves the **distribution of the classes** between the sample in the training and validation sets.

80% TRAINING SET vs 20% VALIDATION SET

Advantages:

- Balanced split
- Rare classes present in both sets
- Evaluation of the most reliable model

PRE-PROCESSING PIPELINE

Exclusion of mislabeled sample

2 Data Augmentation

Base Augmentation

Resize 256×256, normalization

Rare Augmentation

Horizontal flip, contrast, brightness + Oversampling

Confusion Augmentation

Texture based augmentation (blur, noise, sharpen)

NETWORK ARCHITECTURE SELECTED

NETWORK ARCHITECTURE SELECTED

NETWORK ARCHITECTURE SELECTED

Dataset split

80% Training set

Cross Entropy Loss Function

Dropout

Pre-processing

ASPP **←**--

HYPERPARAMETER SETTING AND LOSS FUNCTION

Two 5x5 Kernels Stride: [3, 7, 3]

probabilities: Flip: 0.5 Brightness: 0.4 Motion Blur: 0.5

GaussianBlur: 0.5

Loss Function: CrossEntropyLoss

Class Weights: [1.0, 1.0, 1.0, 1.0, 5.0, 4.0, 3.5, 0.8, 0.8]

THANKS

DOES ANYONE HAVE ANY QUESTIONS?

