

Machine Learning - Enterprise Ready: Part II

Coding for ML use cases

Repeated content is inevitable and intended

Resources:

The code for this lecture (https://github.com/smurve/HSR2019)

Academic References

<u>TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, Abadi et al 2016 (https://arxiv.org/pdf/1603.04467.pdf)</u>

TensorFlow Estimators:..., Cheng et al 2017 (https://arxiv.org/pdf/1708.02637.pdf)

Popular References

Blog: Framework Comparison (TF, Theano, Keras, DL4J, and others), towardsdatascience.com (https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a)

Tensorflow Documentation (https://tensorflow.org)

What happened before

Data Engineering is Software Engineering

Architectural View on ML in the Enterprise

Parallelize with Computational Graphs

Storing and Retrieving Terabytes

ML Engineering: Data for the Data Scientist

The Estimator Concept

Agenda

- 1) Requirements Engineering
- 1) HPE: High Performance Engineering
- 2) Apache Beam Programming Model
- 3) TF Transform
- 4) Ingesting data fast
- 5) The Estimator Concept

The Return of the Baking Powder Machine

In the previous exercise...

[5]:		beta1	beta2	hour	humidity	weekday
	0	1.818932	2.288381	10	22.241764	3
	1	4.379242	2.375439	13	29.372205	1
	2	-4.938642	2.773292	6	5.953050	3

We tried the hyptothesis:

$$h = A_1 \cdot eta_1 + A_2 \cdot eta_2 + C$$

... we failed to explain the data

```
[32]: pd.DataFrame(errors[0]).hist(bins=30);
```


Requirements Engineering

Build a high-performance training application for the data scientists' model

- F1: Provide the input data at high speed in the desired 170-dimensional format
- F2: Reuse transformations from the preprocessing pipeline
- F3: Monitor performance as the training continues
- F4: Use save points to protect valuable intermediate results
- F5: Provide a simple interface to the model (hypothesis)

High Performance Engineering

Mama, look: No for-loops!

Pre-compute and lookup

Use Hardware efficiently with dedicated libraries

Program in computational graphs that can be executed anywhere

Mama look: No for-loops

See <u>collateral/No_For_Loops.ipynb</u> (collateral/No_For_Loops.ipynb) for more.

The classical approach:

A super-fast one-liner

```
np.sum(np.matmul(detector, np.transpose(np.reshape(samples, [2000, 25])))==3)
```

Computational Graphs

Tensors and Graphs of Tensors

collateral/Tensors Graphs Sessions.ipynb (collateral/Tensors Graphs Sessions.ipynb)

Structural elements

Placeholder s take regular numbers and arrays as input for execution (x)

Constant s represent numbers that are known before execution time.

Variable s can be changed during graph execution

All operators create operator nodes, rather than execute directly

tf.gradient(...) provides means for gradient computations.

Graph s represent the structure of a subset of tensors.

Session s represent the current state of a Graph.

Tensorflow Code Example

```
import tensorflow as tf
x = tf.placeholder(shape=(None,1), dtype=tf.float32)
a = tf.Variable([[.5]], name="weights", dtype=tf.float32)
b = tf.Variable([[-2.]], name="bias", dtype=tf.float32)
y = tf.matmul(x, a) + b
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(y, feed_dict={x: [[2.0], [4.0]]}))
```

Data Processing Pipelines

Built for highly optimized parallel execution of massive workloads

Apache Beam somewhat de facto standard

Alternatives: Spark, Storm, ...

Same interface in batch and real-time (only Java) mode.

Functional Semantics: Map(...) and FlatMap(...)

Nodes must produce serializable output

Pipelines support fork and join architectures.

Apache Beam Pipeline Code

A Production Beam Pipeline in action

Analyze and Transform

Scaling requires first evaluating min_k and max_k

And then, in a second run, compute

$$eta_{i,k}' = rac{eta_{i,k} - min_k(eta_{i,k})}{max_k(eta_{i,k}) - min_k(eta_{i,k})}$$

The tf.transform library achieves all of that with a single line of code:

```
def process_data(row):
    for c in ['beta1', 'beta2']:
        row[c] = tft.scale_to_0_1(row[c])
    return row
```

Re-use the transform function

The transform function can be saved for re-use at prediction time:

```
data_and_metadata, transform_fn = (
    signature_data | "AnalyzeAndTransform"
    >> beam_impl.AnalyzeAndTransformDataset(process_data))

#
# Eventually, save the transform function for re-use at prediction time.
#
_ = (transform_fn | 'WriteTransformFn'
    >> transform fn io.WriteTransformFn(metadata dir))
```

Signature vs Training Stage

- Reproduce all pre-processing steps during prediction!
- Failure leads to "training-serving skew"

Signature vs Training stage

Signature data is what comes during prediction time

It obeys the interface signature of the prediction service

Training data is pre-processed to facilitate effective training

The differences must be carefully dealt with

Failure to do so results in the so-called *training-serving skew*

Requirements for Input Functions

Process any number of files

Create a continuous stream of decoded records

Repeat the data stream (epochs)

Shuffle the data to stabilize learning

Split the data in efficient batch sizes

Automatically iterate over those batches

Prefetch data, use multiple threads in parallel

Use frameworks for infrastructure requirements

See: collateral/InputFunctions.ipynb (collateral/InputFunctions.ipynb)

```
def _input_fn():
    dataset = tf.data.experimental.make_batched_features_dataset(
        file_pattern=filename_pattern,
        batch_size=batch_size,
        features=feature_spec,
        shuffle_buffer_size=options['shuffle_buffer_size'],
        prefetch_buffer_size=options['prefetch_buffer_size'],
        reader_num_threads=options['reader_num_threads'],
        parser_num_threads=options['parser_num_threads'],
        sloppy_ordering=options['sloppy_ordering'],
        num_epochs=options['num_epochs'],
        label_key='humidity')

return dataset.make_one_shot_iterator().get_next()
```

Feature Engineering

collateral/Feature_Engineering.ipynb (collateral/Feature_Engineering.ipynb)

Data in files are not always ideally encoded for ML

Categorical data has to be transformed to numerical data

Days and hours are best one-hot encoded

Feature crosses help detect non-trivial dependencies (e.g. hour of week)

Embeddings help reduce dimensions for large sparse input

These re-encodings trade memory or speed for effectiveness

Creating an input layer for the model

input_layer: the x-interface to the data scientist's work

```
weekday = categorical_column_with_identity('weekday', num_buckets=7)
hour = categorical_column_with_identity('hour', num_buckets=24)
hour_of_week = indicator_column(crossed_column([weekday, hour], 24*7))
all_feature_columns = [beta1, beta2, hour_of_week]
input_layer = tf.feature_column.input_layer(
    features,
    feature_columns=[beta1, beta2, hour_of_week])
```

Entering the *black box* of ML

From 4 numbers per record create 170

array([[0.8050443	,	0.8593288	,	0.	,	0.	1.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,
0.	,	0.	,	0.	,	0.	0.	,

Tensorflow: Programming model and data flow

Tensorflow Estimator

The estimator manages graph, session, checkpoints, logging and lifecycle

The estimator MUST create all tensors in its own context

We provide functions that create tensors - for the estimator to call

- We provide a model function (or maybe, the data scientist)
- We provide input functions
- We provide specifications for the lifecycle
- We provide a general configuration
- We provide an exporter that saves the entire graph (incl. transform functions!)

The model function

```
def model_function(features, labels, mode):
    my_input_layer = input_layer(features)
    linreg = tf.layers.Dense(name="LinReg", units=1)
    hypothesis =linreg(my_input_layer)

#
    # For predictions, we just need the hypothesis.
#
if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(
        tf.estimator.ModeKeys.PREDICT,
        predictions=hypothesis)
```

The model function for training

. . .

```
optimizer = tf.train.AdamOptimizer(learning_rate=1e-0)
train_op = optimizer.minimize(loss,...)

return tf.estimator.EstimatorSpec(
    tf.estimator.ModeKeys.TRAIN,
    loss = loss,
    train_op = train_op)
```

Construct the estimator

Let it train

```
train_spec = tf.estimator.TrainSpec(
    input_fn=train_input_fn,
    max_steps=max_steps)

...

tf.estimator.train_and_evaluate(
    estimator,
    train_spec=train_spec,
    eval_spec=eval_spec)
```

Using the trained model

```
estimator = tf.contrib.predictor.from_saved_model(latest_model)

sample = {
    'beta1': [[1.234],[1.234]],
    'beta2': [[1.234],[1.234]],
    'weekday': [[5], [6]],
    'hour': [[16], [17]]
}

result = estimator(sample)
```

Now, we can explain the data

```
[187]: test_data['diff'].hist(bins=100);
```


The model is able to predict the anomalies

```
[26]: from matplotlib import pyplot as plt
plt.figure(figsize=(8,4))
sns.heatmap(test_data.pivot_table(
    index='weekday', columns='hour',
    values='predicted', aggfunc='mean'), cmap='BuPu');
```

