1 – Seja $\{\varepsilon_t\}$ um processo de ruído branco forte e seja $\{Y_t\}$ definido por:

$$Y_{t} = \phi^{t} Y_{0} + \sum_{i=0}^{t-1} \phi^{i} \varepsilon_{t-i}, t = 1, 2, \dots,$$

em que $Y_0 = 0$ e ϕ uma constante satisfazendo $|\phi| < 1$. Calcule as autocovariâncias $Cov(Y_t, Y_{t+s})$ para s > 0 e t = 1, 2,..., e mostre que o processo $\{Y_t\}$ não é estacionário. Entretanto, verifique que para valores grandes de t ($t \rightarrow \infty$) a dependência em t da $Cov(Y_t, Y_{t+s})$ é negligenciável. Dessa forma, podemos dizer que o processo $\{Y_t\}$ é "aproximadamente estacionário" para valores grandes de t. Mostre ainda que o processo $\{Y_t\}$ pode se escrito da forma recursiva $Y_t = \phi Y_{t-1} + \varepsilon_t, t = 1, 2, \cdots, Y_0 = 0$. Por fim, mostre que se alterarmos a definição acima para Y_0 sendo uma v.a. com média zero independente dos ε_t 's com $Var(Y_0) = \frac{\sigma^2}{1-\phi^2}$ teremos o processo $\{Y_t\}$ sendo estacionário.

(**Observação**: o resultado acima tem implicações em simulação estocásticas de um processo autoregressivo de primeira ordem)

- 2 Implemente no R o resultado acima, assumindo o tamanho da série 50 e $\phi = 0.7$. Mostre o gráfico das séries geradas e o gráfico das FAC's.
- 3 No SIGAA está disponível uma arquivo em Excel sobre um tipo de investimento chamado BOND. Os dados são quadrimensais e vão de 1953 até 1970. Portanto há um total de 72 observações. O objetivo do "take home" é encontrar o "melhor" modelo para a série observada. Faça uma relatório objetivo com as informações relevantes para um bom entendimento. Use o modelo feito em sala de aula dos dados de investimento para servir de base para a construção do relatório. Esta avaliação é para ser entregue impreterivelmente na quarta-feira (19/10/2015) até as 9:00 (manhã) utilizando um editor de texto.