2020 Fall 예측모델 Project

○ 2020011135 소규성 ○ 2020011132 정의석 ○ 2020011136 김지나

안암 로터리의 따름이 하루 대여량은 도대체 얼마일까?

텅 비어 있는 따름이 정류장

사용 데이터 소개 기간: 2017.06.21 - 2019.12.31

- ✓ 서울시 공공자전거 이용현황
- ✓ 공공자전거 대여소 및 자전거 정보

✓ 기상 데이터

강수량, 풍속, 풍향, 미세먼지

Variables

• Data

	cnt_station	cnt_bike	is_rain	is_holiday	cnt
date					
2017-06-21	743	9855	0	0	13.0
2017-06-22	743	9855	0	0	40.0
2017-06-23	790	10415	0	0	39.0
2017-06-24	790	10415	1	0	28.0
2017-06-25	792	10455	0	0	28.0
2019-12-27	1530	19474	0	0	81.0
2019-12-28	1530	19474	0	0	79.0
2019-12-29	1530	19474	0	0	61.0
2019-12-30	1530	19474	0	0	77.0
2019-12-31	1530	19474	0	0	39.0

924 rows × 10 columns

- Target
 - ✓ 안암로터리 정류장 일일 따름이 대여량

1. Data

안암로터리 정류장 일일 따름이 대여량

2017-06-21~2019-12-31

Exploratory Data Analysis

변수 별 상관관계

Target(일별 대여량)과 높은 상관계수를 보이는 변수

- 강한 양의 상관계수 (r ≥ 0.4)
 - ✓ 전국 배치된 따름이(자전거)의 수
 - ✓ 전국 설치된 정거장의 수
- 약한 양의 상관계수 (0.1≦ r ⟨ 0.4)
 - ✓ 연중 주차 수

Exploratory Data Analysis

날짜 변수와 일일 대여량

• 공휴일과일일대여량분포

• 연도별대여량분포

Exploratory Data Analysis

날짜 변수와 일일 대여량

요일별대여량분포

• 주차별대여량분포

1. Data

Exploratory Data Analysis

강수 여부와 일일 대여량

2. Forecasting

A. Time Series

안암로터리 정류장 일일 따름이 대여량 2017-06-21~2019-12-31

2. Forecasting

A. Time Series

안암로터리 정류장 일일 따름이 대여량 2017-06-21~2019-12-31

1) Linear Regression with binary variable

계절성을 반영하는 binary variable 생성 후 Linear Regression 수행

Input Data

time_index													
0	13.0 40.0 39.0 28.0	0	0	0	0	0	1	0	0	0	0	0	0
1	40.0	0	0	0	0	0	1	0	0	0	0	0	0
2	39.0	0	0	0	0	0	1	0	0	0	0	0	0
3	28.0	0	0	0	0	0	1	0	0	0	0	0	0
4	28.0	0	0	0	0	0	1	0	0	0	0	0	0

월 정보를 나타내는 binary variable

• 예측결과

Forecasting Performance		
MAE	53.31	
MAPE	32.34	
RMSE	62.91	

2) Trigonometric Model

계절성을 반영하는 sine, cosine variable 생성 후 Linear Regression 수행

Input Data

Model 2

		Г	Model 1			
time_index	amount		sin_1	cos_1	sin_2	cos_2
0	13.0)	0.000000	1.000000e+00	0.000000e+00	1.0
1	40.0	,	0.500000	8.660254e-01	8.660254e-01	0.5
2	39.0	,	0.866025	5.000000e-01	8.660254e-01	-0.5
3	28.0	,	1.000000	6.123234e-17	1.224647e-16	-1.0
4	28.0	,	0.866025	-5.000000e-01	-8.660254e-01	-0.5

Time을 sine, cosine 값으로 변환한 variable

예측결과

Mod	del1	Mod	del2
MAE	111.52	MAE	69.73
MAPE	58.04	MAPE	46.41
RMSE	120.80	RMSE	78.60

3) Moving Average

일부과거데이터의 단순평균값으로미래시점예측

• 예측방법

$$F_{t+1} = \frac{1}{n} \sum_{j=t+1-n}^{t} D_i$$

- ✓ 과거 n개의data에 대해 동일한 가중치로 미래 예측
- ✓ 미래의예측값 모두 동일
- ✓ Validation set에서,MSE기준으로 n = 5일 때 성능이 가장좋음

• 예측결과 (n = 5)

Forecasting Performance			
MAE	68.29		
MAPE	42.80		
RMSE	78.35		

4-1) Simple Exponential Smoothing

모든과거데이터를사용하여이들의 weighted sum으로 미래예측

• 예측방법

$$L_0 = \frac{1}{n} \sum_{i=1}^n D_i$$
 $L_{t+1} = \alpha D_{t+1} + (1 - \alpha) L_t$
〈예측〉
 $F_{t+1} = L_t$
 $F_{t+n} = L_t$

- \checkmark 과거 모든 data에 대한 weighted sum L_t 로 미래 예측
- ✓ 미래의예측값 모두 동일
- ✓ Validation set에서, $MSE 기준으로 \alpha = 0.9일 때 성능이 가장 좋음$

• 예측결과 $(\alpha = 0.9)$

Forecasting Performance MAE 61.76 MAPE 46.39 RMSE 68.92

4-2) Double Exponential Smoothing

모든과거데이터를사용하여 trend를 반영한미래예측

• 예측방법

$$L_{t+1} = \alpha D_{t+1} + (1 - \alpha)(L_t + B_t)$$
 $B_{t+1} = \beta(L_{t+1} - L_t) + (1 - \beta)B_t$
〈예측〉
 $F_{t+i} = L_t + iB_t \quad i \in \mathbb{Z}$

- ✓ Trend 예측가능
- \checkmark Validation set에서, MSE기준으로 $\alpha=0.1$, $\beta=0.1$ 일 때 성능이 가장 좋음

• 예측 결과 $(\alpha = 0.1, \beta = 0.1)$

Forecasting Performance		
MAE	128.00	
MAPE	76.11	
RMSE 138.44		

5-1) Additive Holt-Winters Exponential Smoothing

Seasonal variation의 산포가 일정한 time series 예측

• 예측방법

$$\begin{split} l_t &= \alpha(y_T - sn_{T-L}) + (1 - \alpha) \big(l_{(T-1)} + b_{(T-1)} \big) \\ b_T &= \beta \big(l_T - l_{(T-1)} \big) + (1 - \beta) b_{(T-1)} \\ sn_T &= \delta(y_T - l_T) - (1 - \delta) sn \\ \langle \mathfrak{A} | & \\ \hat{y}_{T+\tau} &= l_T + \tau b_T + sn_{T+\tau-L} \end{split}$$

✓ Validation set에서,

MSE기준으로 $\alpha=0.6$, $\beta=0.9$, $\delta=0.1$ 일때성능이 가장좋음

• 예측결과 ($\alpha = 0.6$, $\beta = 0.9$, $\delta = 0.1$)

Forecasting Performance		
MAE	1677.11	
MAPE	1402.61	
RMSE	1952.97	

5-2) Multiplicative Holt-Winters Exponential Smoothing

Seasonal variation의 산포가 증가하는 time series 예측

• 예측방법

$$\begin{split} l_t &= \alpha(y_T/sn_{T-L}) + (1-\alpha) \big(l_{(T-1)} + b_{(T-1)} \big) \\ b_T &= \beta \big(l_T - l_{(T-1)} \big) + (1-\beta) b_{(T-1)} \\ sn_T &= \delta(y_T/sn_{T-L}) - (1-\delta) sn_T \\ & \langle 0 | \stackrel{>}{\Rightarrow} \rangle \\ \hat{y}_{T+\tau} &= (l_T + \tau b_T) sn_{T+\tau-L} \end{split}$$

✓ Validation set에서,

MSE기준으로
$$\alpha=0.6$$
, $\beta=0.5$, $\delta=0.2$ 일 때 성능이 가장 좋음

• 예측결과 ($\alpha = 0.6$, $\beta = 0.5$, $\delta = 0.2$)

Forecasting Performance			
MAE	60124645.94		
MAPE	79370725.26		
RMSE	155145463.91		

6) ARIMA

일별데이터 분석

Time Series Decomposition

- ✓ 연단위(365일) 계절성확인할수있고, 증가추세를보이는데이터로서특히 2019년에 대여량이 큰폭증가
- Durbin-Watson Test

Durbin-Watson test

data: df \sim seq(1, tot_len, by = 1) DW = 0.40017, p-value < 2.2e-16 alternative hypothesis: true autocorrelation is greater than 0

✓ 더빗-왓슨 검정 결과 자기상관성이 있는, 차분 등 전처리가 필요한 데이터

Augmented Dickey-Fuller Test

```
Augmented Dickey-Fuller Test
data: boxcox_df
Dickey-Fuller = -2.2644, Lag order = 9, p-value = 0.4664
alternative hypothesis: stationary
```

✓ ACF, PACF 그래프 및 Dickey-Fuller 검정을 통해서도 차분을 통해 정상 시계열로 만들어야 하는 데이터임을 알 수 있음

6) ARIMA

일별데이터분석

Differencing

6) ARIMA

일별데이터분석

1차 차분 결과

Augmented Dickey-Fuller Test

data: lagged_df

Dickey-Fuller = -13.047, Lag order = 9, p-value = 0.01

alternative hypothesis: stationary

• 1차 + 7차(계절) 차분 결과

Augmented Dickey-Fuller Test

data: lagged_df

Dickey-Fuller = -16.717, Lag order = 9, p-value = 0.01

alternative hypothesis: stationary

6) ARIMA

SARIMA(3, 1, 1)(0, 1, 1)[7]

• Result (Ljung-Box test)

ARIMA(3,1,1)(0,1,1)[7]

Coefficients:

ar1 ar2 ar3 ma1 sma1 -0.0301 0.0547 -0.0285 -0.8210 -1.0000 s.e. 0.0600 0.0555 0.0475 0.0493 0.0355

sigma^2 estimated as 3.572: log likelihood=-1609.96 AIC=3231.92 AICc=3232.03 BIC=3259.85

Residuals from ARIMA(3,1,1)(0,1,1)[7]

Prediction

MAE	68.14
MAPE	53.30
RMSE	76.08

6) ARIMA

ARIMA(3, 1, 1)

• Result (Ljung-Box test)

ARIMA(3,1,1)

Coefficients:

ar1 ar2 ar3 ma1 -0.0276 0.0594 -0.0262 -0.8267 s.e. 0.0589 0.0548 0.0472 0.0476

sigma^2 estimated as 3.58: log likelihood=-1608.87 AIC=3227.74 AICc=3227.82 BIC=3251.06

Residuals from ARIMA(3,1,1)

Prediction

MAE	64.91
MAPE	44.10
RMSE	73.03
	如差牙剛
	A

6) ARIMA

일별 데이터 분석 한계점

- ✓ 예측 결과가 좋지 않고, 특히 test data 기간 내 11~12월 급격한 감소 패턴(계절성)을 설명하지 못함
- ✓ 분석에 사용한 R에서는 lag 최대 길이가 350으로 365 단위 계절 차분 불가능할 뿐더러,
- ✓ 365 단위 계절 차분에 대한 의구심

6) ARIMA

해결방안

- ✓ 일별 데이터 → 주별 데이터 변환
- ✓ 365(일) 단위 → 52(주) 단위 계절 차분 사용
- ✓ 주별 대여 건수 예측 후 일별 분배 방식으로 예측 수행

6) ARIMA

주별 데이터 분석

• Time Series Decomposition

✓ 연단위(52주) 계절성 확인할 수 있고, 증가 추세를 보이는 데이터로서 특히 2019년에 대여량이 큰 폭 증가

Durbin-Watson Test

Durbin-Watson test

data: df_org $cnt \sim seq(1, tot_len, by = 1)$ DW = 0.17238, p-value < 2.2e-16 alternative hypothesis: true autocorrelation is greater than 0

✓ 더빗-왓슨 검정 결과 자기상관성이 있는, 차분 등 전처리가 필요한 데이터

Augmented Dickey-Fuller Test

Augmented Dickey-Fuller Test

data: boxcox_df
Dickey-Fuller = -2.1625, Lag order = 4, p-value = 0.5092
alternative hypothesis: stationary

✓ ACF, PACF 그래프 및 Dickey-Fuller 검정을 통해서도 차분을 통해 정상 시계열로 만들어야 하는 데이터임을 알 수 있음

6) ARIMA

주별 데이터 분석

6) ARIMA

주별 데이터 분석

• 1차 차분 결과

Augmented Dickey-Fuller Test

data: lagged_df Dickey-Fuller = -3.8446, Lag order = 4, p-value = 0.01933

alternative hypothesis: stationary

• 1차 + 52차(계절) 차분 결과

Augmented Dickey-Fuller Test

data: lagged_df

Dickey-Fuller = -4.8504, Lag order = 3, p-value = 0.01

alternative hypothesis: stationary

6) ARIMA

ARIMA(1, 1, 1)

• Result (Ljung-Box test)

sigma^2 estimated as 0.004468: log likelihood=142.49 AIC=-278.99 AICc=-278.76 BIC=-270.89

Prediction

MAE	376.83
MAPE	32.96
RMSE	416.95

6) ARIMA

SARIMA(0, 1, 1)(0, 0, 1)[52]

Result (Ljung-Box test)

AIC=-278.99

AICC=-278.76

Prediction

MAE	376.29
MAPE	33.44
RMSE	419.03

6) ARIMA

SARIMA(1, 1, 1) (0, 1, 0) [52]

Result (Ljung-Box test)

ARIMA(1,1,1)(0,1,0)[52]

coefficients:

ar1 ma1 -0.2636 -0.1363 s.e. 0.7382 0.7905

sigma^2 estimated as 0.008134: log likelihood=58.21 AIC=-110.42 AICc=-109.97 BIC=-104.23

Prediction

MAE	395.03
MAPE	28.98
RMSE	494.97

6) ARIMA

SARIMA(1, 1, 1)(0, 1, 1)[52]

Result (Ljung-Box test)

ARIMA(1,1,1)(0,1,1)[52]

Coefficients:

ar1 ma1 sma1 -0.2568 -0.1398 -0.2020 s.e. 0.7589 0.8108 0.6224

sigma^2 estimated as 0.007974: log likelihood=58.26 AIC=-108.52 AICC=-107.77 BIC=-100.28

Prediction

MAE	322.61
MAPE	23.55
RMSE	417.50

6) ARIMA

SARIMA(1, 1, 2)(0, 1, 1)[52]

• Result (Ljung-Box test)

ARIMA(1,1,2)(0,1,1)[52]

Coefficients:

ar1 ma1 ma2 sma1 -0.7983 0.3904 -0.2527 -0.2161 s.e. 0.6218 0.6448 0.3426 0.6365

sigma^2 estimated as 0.008033: log likelihood=58.42 AIC=-106.84 AICC=-105.69 BIC=-96.54

Prediction

MAE	318.07	
MAPE	23.20	
RMSE	413.84	
7	型等里	劃

2. Forecasting: Time Series

6) ARIMA

주별데이터 → 일별데이터 변환

✓ 전년도 요일별 평균 대여 건수를 가중치로 활용하여 주별 예측된 대여 건수를 분배

2. Forecasting: Time Series

6) ARIMA

주별 데이터 vs 일별 데이터

- ✓ MAPE 약 14%p 감소, 기존에 계절성을 반영하지 못해 설명하지 못하던 급격한 감소 추세를 설명할 수 있는 모형 구축
- ✓ 더욱 긴 기간 예측 결과를 보면 3월 말부터 급격히 대여 건수가 반영되었음을 확인할 수 있음

Forecasting Performance

일별 데이터		주별 데이터		
MAE	64.91	MAE	51.51	
MAPE	44.10	MAPE	30.57	
RMSE	73.03	RMSE	73.03	

2. Forecasting

Multivariate Data Analysis

Data

	cnt_station	cnt_bike	is_rain	is_holiday	weekday	weeknum	cnt
date							
2017-06-21	743	9855	0	0	2	25	13.0
2017-06-22	743	9855	0	0	3	25	40.0
2017-06-23	790	10415	0	0	4	25	39.0
2017-06-24	790	10415	1	0	5	25	28.0
2017-06-25	792	10455	0	0	6	25	28.0
2019-12-27	1530	19474	0	0	4	52	81.0
2019-12-28	1530	19474	0	0	5	52	79.0
2019-12-29	1530	19474	0	0	6	52	61.0
2019-12-30	1530	19474	0	0	0	52	77.0
2019-12-31	1530	19474	0	0	1	52	39.0

924 rows × 10 columns

Input Variables

2. Forecasting: Multivariate Data Analysis

Support Vector Machine

데이터 집합을 바탕으로 하여 새로운 데이터가 어느 카테고리에 속할지 선형 분류 또는 비선형 분류 판단

Hyper-parameter

〈Kernel〉

Linear:

$$K(x_1, x_2) = x_1^T x_2$$

Polynomial :

$$K(x_1, x_2) = (x_1^T x_2 + c)^d, c > 0$$

Sigmoid :

$$K(x_1, x_2) = \tanh\{a(x_1^T x_2) + b\}, \quad a, b > 0$$

Gaussian(rbf):

$$K(x_1, x_2) = \exp\{-\frac{||x_1 - x_2||_2^2}{2\sigma^2}\}, \sigma \neq 0$$

• C:

오차 penalty 크기의 Hyper-parameter

• Gamma(r):

결정 경계의 곡률 Hyper-parameter

• Epsilon(ε):

오차 허용 정도의 Hyper-parameter

2. Forecasting: Multivariate Data Analysis

Support Vector Machine

Result

Hyper-parameter tuning

Best Model

	comb	kernel	С	gamma	epsilon	MAE	MAPE	RMSE
	1	rbf	100	0.1	10	96.74804	52.19012	104.0959
Ī	2	poly	0.1	0.1	100	99.51799	51.74427	109.143
I	3	poly	0.001	0.001	100	99.51799	51.74427	109.143
	4	poly	0.001	0.01	100	99.51799	51.74427	109.143

:

	683	sigmoid	100	1	0.01	5908.054	3668.526	6756.238
I	684	sigmoid	100	1	0.001	5908.055	3668.527	6756.24

kernel	C	gamma	epsilon
rbf	100	0.1	10

Forecasting Performance			
MAE 59.4873			
MAPE	49.0630		
RMSE	70.0817		

2. Forecasting: Multivariate Data Analysis

Support Vector Regression

2. Forecasting

Best Model

Forecasting Performance

	Forecasting Model	MAE	MAPE▼	RMSE			
1	SARIMA(1, 1, 2)(0, 1, 1)[52] (Weekly)	51.51	30.57	73.03			
2	Linear Regression	53.31	32.34	62.91			
3	Moving Average	68.29	42.80	78.35			
4	ARIMA(3, 1, 1) (Daily)	64.91	44.10	73.03			
5	Simple Exponential Smoothing	61.76	46.39	68.92			
6	Trigonometric Model (model 2)	69.73	46.41	78.60			
7	SVM	59.49	49.06	70.08			
8	Trigonometric Model(model1)	111.52	58.04	120.80			
9	Double Exponential Smoothing	128.00	76.11	138.44			
10	Additive Holt-Winters Exponential Smoothing	1677.11	1402.61	1952.97			
11	Multiplicative Holt-Winters Exponential Smoothing	60124645.9 4	79370725.2 6	155145463. 91			

비내리는 날 자전거 타기 불편한 것은 자명한 사실이다. <u>서울시 강수 여부와 안암로터리 따릉이 대여량</u>의 숨겨진 상관관계를 알아보자.

Modeling

Observable component: 일별 강수여부, 일일 대여량

- Input
 - ✓ 관찰된강수여부와일일대여량

Result

Hidden State 분석

Result

Hidden State 분석

State 0					
Date	서울 강수량	안암 강수량			
2018-06- 11	10	0.075			
2018-06- 14	29	5.6			
2018-06- 15	16.5	0.183			
2019-04- 10	15.6	0			
:	:	:			

State 2					
Date	서울 강수량	안암 강수량			
2017-06- 24	8.5	4.458			
2017-06- 26	7.7	5.895			
2017-07- 02	6.3	6			
2017-07- 03	6.2	5.5			
:	:	:			

State 0: 서울평균 강수량에 비해 안암의 강수량이 적은 경우

✓ State 2:서울평균 강수량과 안암의 강수량이 비슷한 경우

4. Result

Conclusion and Insights

TIMESERIES

- 계절성을 반영하는 것이 예측 성능을 결정하는 중요한 요소이다.
- ARIMA는 굉장히 강력한 모형이다.

Multivariate Analysis (SVM)

- 각시점 데이터를 i.i.d로 가정하여 예측했음에도 좋은 성능을 내는 것을 확인하였다.
- 적절한 외부변수를 사용했을때 트렌드를 잡아줄 수 있다.

Hidden Markov Model

 예측에 있어서 미처 고려하지 못한 요소를 발견할 수 있게 도와준다.

감사합니다