P. Maurer

ENS Rennes

Recasages: 201, 205, 208, 230, 234, 235, 241

Référence : A retrouver

Théorème de Riesz-Fischer

Dans tout ce qui suit, (X, \mathcal{A}, μ) désigne un espace mesuré, et $p \in [1, +\infty]$.

Définition 1.

- Pour $p < +\infty$, on définit l'espace $\mathcal{L}^p(X, \mathcal{A}, \mu)$ comme l'espace des fonctions f définies sur X à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , telles que $|f|^p$ est μ -intégrable, i.e telles que $||f||_p := \left(\int_X |f|^p d\mu\right)^{1/p}$ soit fini.
- Pour $p = +\infty$, on définit l'espace $\mathcal{L}^{\infty}(X, \mathcal{A}, \mu)$ comme l'espace des fonctions f qui sont μ essentiellement bornées, i.e telles que $||f||_{\infty} = \inf\{c > 0 : \mu(\{|f| > c\}) = 0\}$ soit fini.

Quand il n'y a pas de confusion possible, on note plus simplement $\mathcal{L}^p(\mu)$ l'espace $\mathcal{L}^p(X, \mathcal{A}, \mu)$.

Proposition 2. Soit $f \in L^{\infty}(\mu)$. Alors il existe $N \subset X$ tel que $\mu(N) = 0$ et $|f| \leq ||f||_{\infty}$ sur $X \setminus N$.

Théorème 3. On a l'inégalité de Minkowski : $||f+g||_p \le ||f||_p + ||g||_p$, pour tout $p \in [1, +\infty]$ et $f, g \in \mathcal{L}^p(\mu)$.

Définition 4. On définit l'espace $L^p(\mu)$ comme le quotient de $\mathcal{L}^p(\mu)$ par la relation d'équivalence \sim définie par $f \sim g \iff \mu(\{f \neq g\}) = 0$.

Proposition 5. Pour tout $p \in [1, +\infty]$, $(L^p(\mu), ||\cdot||_p)$ est un espace vectoriel normé.

Théorème 6. (Riesz-Fischer)

Pour tout $p \in [1, +\infty]$, $(L^p(\mu), ||\cdot||_p)$ est un espace de Banach.

Structure de la preuve.

On commence par le cas où $p < +\infty$. Il s'agit de montrer que l'espace $L^p(\mu)$ est complet pour la norme $\|\cdot\|_p$. On se donne donc une suite de Cauchy $(f_n)_{n\in\mathbb{N}}$ d'éléments $f_n\in L^p(\mu)$.

- 1. On montre que $(f_n)_{n\in\mathbb{N}}$ admet une sous-suite qui converge simplement vers une fonction f.
- 2. On vérifie que la convergence a également lieu au sens de la norme $\|\cdot\|_p$.

On traite ensuite le cas $p = +\infty$.

Démonstration.

On commence par le cas où $p < +\infty$.

Quitte à extraire une sous-suite de $(f_n)_{n\in\mathbb{N}}$, le caractère de Cauchy de cette suite nous permet de supposer que l'on a, pour tout $n\geq 1$, $\|f_n-f_{n+1}\|_p\leq 2^{-n}$ (\star) .

On pose alors

$$u_0 = f_0$$
 et pour $k \ge 1$, $u_k = f_k - f_{k-1}$

Alors, pour $N \ge 0$, la somme partielle U_N vérifie $U_N = f_0 + f_1 - f_0 + \cdots + f_N - f_{N-1} = f_N$.

Pour tout $x \in X$, la suite $(V_N(x))_{n\geq 1}$ définie par $\forall N \in \mathbb{N}^*$ $V_N(x) = \sum_{n=0}^N |u_n(x)|$ est croissante et positive, donc elle converge vers une limite $V(x) \in [0, +\infty]$.

Via l'inégalité de Minkowski, on obtient

$$\int_{X} |V_{N}(x)|^{p} d\mu(x) = \int_{X} \left(|f_{0}| + \sum_{n=1}^{N} |f_{n}(x) - f_{n-1}(x)| \right)^{p} d\mu(x)
\leq \left(\sum_{n=1}^{N} \left(\int_{X} |f_{n}(x) - f_{n-1}(x)|^{p} d\mu(x) \right)^{1/p} + ||f_{0}||_{p} \right)^{p}
\leq \left(||f_{0}||_{p} + \sum_{n=1}^{N} 2^{-n} \right)^{p} d'\operatorname{après}(\star),
\leq (||f_{0}||_{p} + 1)^{p}.$$

Le théorème de convergence monotone assure alors que

$$\int_{X} |V(x)|^{p} d\mu(x) = \lim_{N \to +\infty} \int_{X} |V_{N}(x)|^{p} d\mu(x)$$

$$\leq (\|f_{0}\|_{p} + 1)^{p}.$$

Donc $|V|^p$ est μ -intégrable, donc $\mu(\{|V|^p = +\infty\}) = 0$, donc $\mu(\{|V| = +\infty\}) = 0$. Aussi V est finie μ -presque partout. On se donne un sous-ensemble A de X vérifiant $\mu(X \setminus A) = 0$ tel que V soit fini sur A.

Puisque \mathbb{K} est complet, pour tout $x \in A$, la suite $U_N(x)$ converge absolument, donc converge, vers $V(x) \in [0, +\infty[$.

On en déduit que $(f_n(x))_{n\in\mathbb{N}}$ converge simplement sur A vers une limite $f(x)\in\mathbb{K}$. On prolonge la fonction f sur X en posant f(x)=0 pour tout $x\in X\setminus A$.

Par ailleurs, μ -presque partout, on a $|f|^p \le \sum_{n=0}^{+\infty} |u_n|^p = V^p$, donc $f \in L^p(\mu)$.

Montrons que $(f_n)_{n\in\mathbb{N}}$ converge vers f au sens de la norme $\|\cdot\|_p$.

La suite $(|f_n - f|^p)_{n \in \mathbb{N}}$ converge simplement vers zéro, et on a pour μ -presque tout $x \in X$:

$$|f_n(x) - f(x)|^p = \left| \sum_{k=0}^n u_k(x) - \sum_{k=0}^{+\infty} u_k(x) \right|^p$$
$$= \left| \sum_{k=n+1}^{+\infty} u_k(x) \right|^p$$
$$\leq V^p(x)$$

Et $V^p \in L^1(\mu)$. Donc par théorème de convergence dominée, $||f_n - f||_p \to 0$.

On a démontré que si la suite $(f_n)_{n\in\mathbb{N}}$ est de Cauchy dans L^p , alors elle admet une sous-suite convergente dans L^p , donc elle converge dans L^p .

On traite maintenant le cas $p = +\infty$.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $L^{\infty}(\mu)$. Pour $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout p, $q \geq N$ on ait :

$$||f_p - f_q||_{\infty} \le \varepsilon.$$

D'après la proposition 2, pour tout $(p,q) \in [\![N,+\infty[\![^2,$ il existe un ensemble $\mathcal{N}_{p,q} \subset X$ μ -négligeable tel que pour $x \in X \setminus \mathcal{N}_{p,q}$, on ait $|f_p(x) - f_q(x)| \leq ||f_p - f_q||_{\infty} \leq \varepsilon$.

Posons $\mathcal{N} = \bigcup_{p,q \geq N} \mathcal{N}_{p,q}$. Alors $\mu(\mathcal{N}) \leq \sum_{p,q \geq N} \mu(\mathcal{N}_{p,q}) = 0$ donc \mathcal{N} est μ -négligeable et pour tout $x \in X \setminus \mathcal{N}$, on a $|f_p(x) - f_q(x)| \leq \varepsilon$, donc la suite $(f_n(x))_{n \in \mathbb{N}}$ est de Cauchy dans \mathbb{K} , qui est complet : elle converge vers une limite f(x). Pour $x \in \mathcal{N}$, on pose f(x) = 0 (mais cela n'a pas d'importance).

Un passage à la limite quand $q \to +\infty$ donne alors

$$\forall x \in X \setminus \mathcal{N} \quad \forall p \ge N \quad |f_p(x) - f(x)| \le \varepsilon.$$

En particulier, on a $|f(x)| \le \varepsilon + |f_N(x)| \le \varepsilon + \sup_{x \in X \setminus \mathcal{N}} |f_N(x)|$, donc f est bornée sur $X \setminus \mathcal{N}$.

On a alors :

$$\mu\left(\left\{|f| > \sup_{x \in X \setminus \mathcal{N}} |f(x)|\right\}\right) \le \mu(\mathcal{N}) = 0,$$

donc par définition, $||f||_{\infty} \leq \sup_{x \in X \setminus \mathcal{N}} |f(x)| < \infty$. Donc $f \in L^{\infty}(\mu)$.

Par ailleurs, $\sup_{x \in X \setminus \mathcal{N}} |f_p(x) - f(x)| \le \varepsilon$ dès que $p \ge N$, donc on montre de même que $||f_p - f||_{\infty} \le \varepsilon$ pour tout $p \ge N$.

Ceci justifie que $(f_n)_{n\in\mathbb{N}}$ converge vers f au sens de la norme $\|\cdot\|_{\infty}$, donc $L^{\infty}(\mu)$ est complet. \square