Obliczenia naukowe

Lista druga

Mateusz Jachniak 236738

7 listopada 2018

1 Zadanie pierwsze

1.1 Opis problemu

Zadanie polegało na zbadaniu wpływu jakie spowodowała niewielka zmiana danych wejściowych z zadania piątym z listy pierwszej.

1.2 Rozwiązanie

Rozwiązanie jest dokładnie takie same, jak w zadaniu piątym listy pierwszje, jedynie dane wejściowe uległy niewielkiej modyfikacji tzn: $x_4 = 0.5772156649$ na $x_4' = 0.577215664$ oraz $x_5 = 0.3010299957$ na $x_5' = 0.301029995$.

1.3 Wyniki i interpretacja

Tabela z wynikami:

Algorytm	Dane oryginalne		Dane zmodyfikowane	
Algorytm	Float32	Float64	Float32	Float64
Algorytm 1	-0.4999443	1.0251881368296672e- 10	-0.4999443	-0.004296342739891585
Algorytm 2	-0.4543457	-1.5643308870494366e-10	-0.4543457	-0.004296342998713953
Algorytm 3	-0.5	0.0	-0.5	-0.004296342842280865
Algorytm 4	-0.5	0.0	-0.5	-0.004296342842280865

Pierwszą obserwacją jest to, że pomimo zmiany danych wejściowych, wyniki działania algorytmów dla arytmetyki Float32 pozostały bez zmian. Z powodu ograniczeń arytmetyki Float32 liczby x_4 i x_4' są zapisywane dokładnie tak samo. Reprezentacje bitowe liczb x_5 i x_5' różnią się tylko na najmniej znaczącym bicie. Tak mała zmiana wartości danych nie jest możliwa do uchwycenia w arytmetyce Float32, obliczenia były wykonywane na niemal identycznych wartościach, dlatego zakończyły się identycznymi wynikami mimo zmiany danych wejściowych.

W przeciwieństwie do arytmetyki Float32, dla arytmetyki Float64 nastąpiły zmiany wyników. Po zmianie danych wyniki nadal znacznie się różnią od prawdziwej wartości, jednak można zauważyć, że dla wszystkich 4 algorytmów uzyskane wyniki sa podobne.

1.4 Wnioski

Arytmetyka Float32 ma na tyle niską precyzję, że bardzo małe zmiany danych wejściowych nie zawsze powodują zmiany wyników. W arytmetyce Float64 można zauważyć, że małe zmiany danych mogą być o wiele bardziej widoczne w zmianach wyników obliczeń. Będzie to problemem przy obliczaniu zadań źle uwarunkowanych, tak jak w tym przypadku. l

2 Zadanie drugie

2.1 Opis problemu

W zadaniu należało narysować wykres funkcji $f(x) = e^x ln(1 + e^{-x})$ w co najmniej dwóch programach oraz obliczyć granicę $\lim_{x\to\infty} f(x)$ i porównać wynik z wykresami.

2.2 Rozwiązanie

Samodzielnie obliczona wartość granicy: $\lim_{x\to\infty}f(x)=1$. Do narysowania wykresów wykorzystałem strone internetową: "pl.easima.com" oraz WolframAlpha.

2.3 Wyniki i interpretacja

Rysunek 1: f(x) w pl.easima.com

Na załączonych wykresach widać, że rzeczywiście dla małych, dodatnich x wykres funkcji zbiega do wartości 1, jednak wartość funkcji w pewnym momencie gwałtownie spada do 0 i już się nie zmienia. Wykresy sugerują że granicą tej funkcji jest 0. Dzieje się tak ponieważ dla dużych x wartość $1+e^{-x}=1$, natomiast ln(1)=0. Dla dużych x otrzymujemy $f(x)=e^xln(1)=e^x*0=0$. Dodatkowo, widoczne na wykresach zaburzenia wartości spowodowane są redukcją cyfr znaczących przy dodawaniu $1+e^{-x}$.

2.4 Wnioski

Często wykorzystujemy do rysowania wykresów funkcji gotowe programy. Należy jednak mieć na uwadzę to, że komputer ma swoje ograniczenia i mimo, że często narysuje wykres szybciej niż człowiek, to może on w pewnym popełnić błąd. Dlatego też nie należy zawsze ufać maszynie, a samemu czasem rozwiązać problem matematyczny, a dopiero później sprawdzić wyniki i zastanowić się, skąd wzięły się różnice.

3 Zadanie trzecie

3.1 Opis problemu

Zadanie polegało na rozwiązaniu układu równań liniowych Ax = b dla A będącego macierzą Hilberta oraz macierzą losową stopnia n o zadanym wskaźniku uwarunkowania. Układy miały być rozwiązane za pomocą dwóch sposobów: eliminacji Gaussa oraz $x = A^{-1}b$.

3.2 Rozwiązanie

Rozwiązywanie układu równań liniowych zaczynamy od wygenerowania macierzy Hilberta, bądź macierzy losowej przy użyciu odpowiednio funkcji hilb(n) i matcond(n, c) (podanych przez prowadzącego kurs), gdzie n to stopień macierzy, a c zadany wskaźnik uwarunkowania. Następnie tworzymy $x=(1,...,1)^T$ i $b=(0,...,0)^T$ przy użyciu funkcji ones(n) oraz zeros(n) z języka Julia. Wektor prawych stron otrzymujemy poprzez wykonanie b = A * x. Teraz przystępujemy do rozwiązywania układu równań liniowych. Macierze, na których operujemy muszą być nieosobliwe. Macierz Hilberta jest nieosobliwa (wiemy, że jest kwadratowa, a jej wyznacznik jest różny od 0), ale w przypadku macierzy losowej dodatkowo sprawdzamy czy det(A) ! = 0. Układy równań rozwiązujemy poprzez zastosowanie eliminacji Gaussa oraz $x=A^{-1}b$.

3.3 Wyniki i interpretacja

	Macierz Hilberta:				
n	rank(A)	$\operatorname{cound}(A)$	błąd względy eliminacja Gaussa	błąd względy $A^{-1}b$	
1	1	1.0	0.0	0.0	
2	2	19.28147006790397	5.661048867003676e-16	1.4043333874306803e-15	
3	3	524.0567775860644	8.022593772267726e-15	0.0	
4	4	15513.73873892924	4.137409622430382e-14	0.0	
5	5	476607.25024259434	1.6828426299227195e-12	3.3544360584359632e-12	
6	6	1.4951058642254665e7	2.618913302311624e-10	2.0163759404347654e-10	
7	7	4.75367356583129e8	1.2606867224171548e-8	4.713280397232037e-9	
8	8	1.5257575538060041e10	6.124089555723088e-8	3.07748390309622e-7	
9	9	4.931537564468762e11	3.8751634185032475e-6	4.541268303176643e-6	
10	10	1.6024416992541715e13	8.67039023709691e-5	0.0002501493411824886	
11	11	5.222677939280335e14	0.00015827808158590435	0.007618304284315809	
12	11	1.7514731907091464e16	0.13396208372085344	0.258994120804705	
13	11	3.344143497338461e18	0.11039701117868264	5.331275639426837	
14	12	6.200786263161444e17	1.4554087127659643	8.71499275104814	
15	12	3.674392953467974e17	4.696668350857427	7.344641453111494	
16	12	7.865467778431645e17	54.15518954564602	29.84884207073541	
17	12	1.263684342666052e18	13.707236683836307	10.516942378369349	
18	12	2.2446309929189128e18	9.134134521198485	7.575475905055309	
19	13	6.471953976541591e18	9.720589712655698	12.233761393757726	
20	13	1.3553657908688225e18	7.549915039472976	22.062697257870493	

Macierz Hilberta jest przykładem macierzy bardzo źle uwarunkowanej. Wskaźnik uwarunkowania dla macierzy Hilberta H n wynosi dla cond(H 6) = 1.5e7, a dla cond(H 10) = 1.5e13. Im większy wskaźnik uwarunkowania tym wyniki stają się mniej wiarygodne. Jak widać w powyższej tabeli, wskaźnik uwarunkowania

dla macierzy Hilberta rośnie bardzo szybko, przez co nawet dla niewielkich n rozwiązania stają się niepoprawne. Liczone błędy względne rosną bardzo szybko dla wyników działania obu algorytmów.

Macierz losowa o zadanym wskaźniku uwarunkowania:

	1/4) 1/4 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1			
n	rank(A)	$\operatorname{cound}(A)$	błąd względy eliminacja Gaussa	błąd względy $A^{-1}b$
5	5	1.0	2.0471501066083611e-16	2.0471501066083611e-16
5	5	10.0	4.124295487574583e-16	5.768888059150691e-16
5	5	1000.0	1.1998218802869006e-14	2.252543749271376e-14
5	5	1.0e7	1.4616595375180604e-10	9.385703304198744e-11
5	5	1.0e12	1.520839842528324e-5	1.3754086591583209e-5
5	4	1.0e16	0.1372499989215545	0.14523687548277814
10	10	1.0	3.3121136700345433e-16	2.9582808634907537e-16
10	10	10.0	2.1065000811460205e- 16	1.4043333874306804e-16
10	10	1000.0	1.608360289126608e-14	1.9115448498488666e-14
10	10	1.0e7	2.37843535343169e-10	2.1866643517582951e-10
10	10	1.0e12	1.5740419510840757e-5	1.3200726679228422e-5
10	9	1.0e16	0.1805921046121644	0.20610790559801434
20	20	1.0	3.773125249565729e-16	4.385029596794321e-16
20	20	10.0	6.176473131037029e-16	6.454588798442909e-16
20	20	1000.0	9.16169466901524e-15	6.598872780119333e-15
20	20	1.0e7	$2.9606040897065132\mathrm{e}\text{-}12$	5.5028563368800784e-11
20	20	1.0e12	1.7623490988034295e-5	1.6239088298887365e-5
20	19	1.0e16	6.964382220947393e-16	0.031213357423395274

Macierz losowa o zadanym wskaźniku uwarunkowania potwierdza obserwacje zależności między wskaźnikiem uwarunkowania a błędem względnym z macierzy Hilberta. Można tutaj dokładnie obejrzeć wpływ wzrastającego, kontrolowanego wskaźnika uwarunkowania na generowane błędy względne. Wraz ze zwiększeniem $\operatorname{cond}(A)$ rosną błędy względne algorytmów rozwiązywania układu równań liniowych dla macierzy o zadanym n.

3.4 Wnioski

Macierze o wysokim wskaźniku uwarunkowania generują duże błędy w obliczeniach. Pojawienie się macierzy Hilberta podczas obliczeń może sprawić, że otrzymane wyniki będą niewiarygodne. Na szczególną uwagę zasługuje stopień "złośliwości" macierzy Hilberta. Dlatego też numerycznie rozwiązywanie nawet niewielkich układów równań z tą macierzą jest zatem praktycznie niemożliwe, przynajmniej na dzisiejsze czasy.

4 Zadanie czwarte

4.1 Opis problemu

Tutaj treść zadania

4.2 Rozwiązanie

Badanie zachowania pierwiastków wielomianu Wilkinsona zaczynamy od stworzenia postaci naturalnej wielomianu w języku Julia. Współczynniki wielomianu przechowujemy w tablicy. Wielomian Wilkinsona w postaci naturalnej tworzymy poprzez użycie konstruktora Poly z pakietu Polynomials. Postać iloczynową tworzymy przy użyciu funkcji poly. Ważne jest, aby przekazywane do metod poly oraz Poly współczynniki były uporządkowane od współczynników stojących przy najniższych potęgach x. Pierwiastki wielomianu wyliczamy przy użyciu funkcji roots, a wartość wielomianu dla danego argumentu x za pomocą metody polyval.

4.3 Wyniki i interpretacja

W poniższej tabeli przez z k zostały oznaczone wyliczone pierwiastki wielomianu, a przez k dokładne pierwiastki.

1	2	3	4
0.999999999996989	36352.0	38400.0	3.0109248427834245e-13
2.00000000000283182	181760.0	198144.0	2.8318236644508943e-11
2.9999999995920965	209408.0	301568.0	4.0790348876384996e-10
3.9999999837375317	3.106816e6	2.844672e6	1.626246826091915e-8
5.000000665769791	2.4114688e7	2.3346688e7	6.657697912970661e-7
5.999989245824773	1.20152064e8	1.1882496e8	1.0754175226779239e-5
7.000102002793008	4.80398336e8	4.78290944e8	0.00010200279300764947
7.999355829607762	1.682691072e9	1.67849728e9	0.0006441703922384079
9.002915294362053	4.465326592e9	4.457859584e9	0.002915294362052734
9.990413042481725	1.2707126784e10	1.2696907264e10	0.009586957518274986
11.025022932909318	3.5759895552e10	3.5743469056e10	0.025022932909317674
11.953283253846857	7.216771584e10	7.2146650624e10	0.04671674615314281
13.07431403244734	2.15723629056e11	2.15696330752e11	0.07431403244734014
13.914755591802127	3.65383250944e11	3.653447936e11	0.08524440819787316
15.075493799699476	6.13987753472e11	6.13938415616e11	0.07549379969947623
15.946286716607972	1.555027751936e12	1.554961097216e12	0.05371328339202819
17.025427146237412	3.777623778304e12	3.777532946944e12	0.025427146237412046
17.99092135271648	7.199554861056e12	7.1994474752e12	0.009078647283519814
19.00190981829944	1.0278376162816e13	1.0278235656704e13	0.0019098182994383706
19.999809291236637	2.7462952745472e13	2.7462788907008e13	0.00019070876336257925

Powyższa tabela przedstawia wyniki dla wielomianu Wilkinsona o niezaburzonych współczynnikach. Można zauważyć, że wartości wielomianów w postaci naturalnej i iloczynowej różnią się dla pewnych z k . Widoczna jest również różnica między pierwiastkami wyliczonymi, a rzeczywistymi. Wielomian Wilkinsona jest bardzo czuły na odchylenia na poziomie przekazywanych argumentów. Oczekiwanymi wartościami P (z k) oraz p(z k) były zera, natomiast otrzymane wyniki znacznie odbiegają od zera. Dla z k kolo 20 jest to odchylenie nawet o 2.74e13. Zauważyć można także, że nawet stosunkowo niewielkie odchylenia danych wejściowych (dla z k kolo 1 błąd jest na poziomie 13 miejsc po przecinku, co widać w kolumnie aaa) potrafią znacznie wpłynąć na wynik końcowy.

1	2	3	4
0.999999999998357 + 0.0im	20992.0	22016.0	1.6431300764452317e-13
2.0000000000550373 + 0.0im	349184.0	365568.0	5.503730804434781e-11
2.99999999660342 + 0.0im	2.221568e6	2.295296e6	3.3965799062229962e-9
4.000000089724362 + 0.0im	1.046784e7	1.0729984e7	8.972436216225788e-8
4.99999857388791 + 0.0im	4.2535936e7	4.3303936e7	1.4261120897529622e-6
6.000020476673031 + 0.0im	2.04793344e8	2.06120448e8	2.0476673030955794e-5
6.99960207042242 + 0.0im	1.754868736e9	1.757670912e9	0.00039792957757978087
8.007772029099446 + 0.0im	1.852128e10	1.8525486592e10	0.007772029099445632
8.915816367932559 + 0.0im	1.37168464896e11	1.37174317056e11	0.0841836320674414
10.095455630535774 - 0.6449328236240688im	1.4912572850824043e12	1.4912633816754019e12	0.6519586830380406
10.095455630535774 + 0.6449328236240688im	1.4912572850824043e12	1.4912633816754019e12	1.1109180272716561
11.793890586174369 - 1.6524771364075785im	3.2960224849741504e13	3.2960214141301664e13	1.665281290598479
11.793890586174369 + 1.6524771364075785im	3.2960224849741504e13	3.2960214141301664e13	2.045820276678428
13.992406684487216 - 2.5188244257108443im	9.545941965367332e14	9.545941595183662e14	2.5188358711909045
13.992406684487216 + 2.5188244257108443im	9.545941965367332e14	9.545941595183662e14	2.7128805312847097
16.73074487979267 - 2.812624896721978im	2.7420894080997828e16	2.7420894016764064e16	2.9060018735375106
16.73074487979267 + 2.812624896721978im	2.7420894080997828e16	2.7420894016764064e16	2.825483521349608
19.5024423688181 - 1.940331978642903im	4.252502487879955e17	4.2525024879934694e17	2.454021446312976
19.5024423688181 + 1.940331978642903 im	4.252502487879955e17	4.2525024879934694e17	2.004329444309949
20.84691021519479 + 0.0im	1.3743733195398482e18	1.3743733197249713e18	0.8469102151947894

4.4 Wnioski

Problem wyznaczania pierwiastków wielomianu Wilkinsona jest źle uwarunkowany ze względu na zaburzenia współczynników. Nawet niewielkie odchylenia danych wejściowych potrafią całkowicie zaburzyć wyniki, co sprawia, że obliczenia na takim wielomianie są niewykonywalne. Naprawdę zasługuje na miano "złośliwego wielomianu".

5 Zadanie piąte

5.1 Opis problemu

Zadanie polega na symulacji procesu logistycznego wzrostu populacji. Polecenie trzeba wykonać na 3 sposoby - dla zadanych parametrów przeprowadzić symulację dla typów Float32 i Float64 oraz zmodyfikowaną wersję procesu dla typu Float32. Modyfikacja polega na wykonaniu 10 iteracji zgodnie z rekurencyjnym wzorem, zaokrągleniu otrzymanego wyniku do trzech miejsc po przecinku i przyjąć otrzymany wynik jako argument kolejnego rekurencyjnego wywołania funkcji.

5.2 Rozwiązanie

Do przeprowadzenia symulacji użyte zostało podane w opisie problemu wyrażenie. Kolejne wartości wyrażenia, począwszy od p0=0.01 i r=3 były wyliczane iteracyjnie, a wartości pn były zapisywane w tablicy. Tablica ta służyła potem do odtworzenia kolejnych wartości wyrażenia. Obcięcie wyniku po 10 iteracjach w pierwszej części zadania zostało wykonane przy użyciu funkcji bibliotecznej trunc z języka Julia.

5.3 Wyniki i interpretacja

Tabela z wynikami:

n	Float32	Float32(zmodyfikowany)	Float64
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.154071730000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.7229306	0.722	0.722914301179573
11	1.3238364	1.3241479	1.3238419441684408
12	0.037716985	0.036488414	0.03769529725473175
13	0.14660022	0.14195944	0.14651838271355924
14	0.521926	0.50738037	0.521670621435246
15	1.2704837	1.2572169	1.2702617739350768
16	0.2395482	0.28708452	0.24035217277824272
17	0.7860428	0.9010855	0.7881011902353041
18	1.2905813	1.1684768	1.2890943027903075
19	0.16552472	0.577893	0.17108484670194324
20	0.5799036	1.3096911	0.5965293124946907
21	1.3107498	0.09289217	1.3185755879825978
22	0.088804245	0.34568182	0.058377608259430724
23	0.3315584	1.0242395	0.22328659759944824
24	0.9964407	0.94975823	0.7435756763951792
25	1.0070806	1.0929108	1.315588346001072
26	0.9856885	0.7882812	0.07003529560277899
27	1.0280086	1.2889631	0.26542635452061003
28	0.9416294	0.17157483	0.8503519690601384
29	1.1065198	0.59798557	1.2321124623871897
30	0.7529209	1.3191822	0.37414648963928676
31	1.3110139	0.05600393	1.0766291714289444
32	0.0877831	0.21460639	0.8291255674004515
33	0.3280148	0.7202578	1.2541546500504441
34	0.9892781	1.3247173	0.29790694147232066
35	1.021099	0.034241438	0.9253821285571046
36	0.95646656	0.13344833	1.1325322626697856
37	1.0813814	0.48036796	0.6822410727153098
38	0.81736827	1.2292118	1.3326056469620293
39	1.2652004	0.3839622	0.0029091569028512065
40	0.25860548	1.093568	0.011611238029748606

W podpunkcie pierwszym zgodnie z treścią zadania porównuję kolumnę Float32 z Float32(modyfikacja). Od iteracji nr 10 (do której oba przypadki są równe) przez kilka pierwszych iteracji wyniki są dość podobne. Ogromna zmiana następuje w iteracji 20 - wynik jedną metoda to ok, 0.58, a drugą 1.31. Ta róznica sprawia, że od tego momentu wyniki w obu kolumnach są bardzo różne i nie widać żadnej zależności między nimi (jedne rosną, gdy inne maleją itp.)

W podpunkcie drugim zadania dobrze widoczny jest moment, w którym iteracje dla arytmetyki Float32 i Float64 zaczynają dawać różne rezultaty. Dzieje się tak w okolicach 22. iteracji, kiedy dokładność arytmetyki potrzebna na zapisanie wyników wyrażenia rekurencyjnego staje się niewystarczająca, przez co propagacja błędów daje dla tych dwóch iteracji zupełnie nieskorelowane wyniki. Niższa precyzja arymetyki single spowodowała znacznie szybszą akumulację błędu.

5.4 Wnioski

Przyczyną odmiennego zachowania wyników w każdej sytuacji jest fakt, że odwzorowanie logistyczne jest układem chaotycznym tzn. małe zmiany warunków początkowych powodują duże zmiany wyników. Oznacza to, że przy badaniu zależności opisanych równianiem jak w treści zadania konieczna jest wyjątkowa dokładnośc ustalenia warunków początkowych. Sposobem chwilowego opóźnienia zbyt dużej akumulacji błędu jest podwyższenie precyzji arytmetyki, jednak nie jest to rozwiązanie wystarczające, gdyż lpropagowany błąd spowoduje występowanie niepoprawnych wyników w dalszych stadiach procesu.

6 Zadanie szóste

6.1 Opis problemu

Zadanie polega na zbadaniu zachowania równania rekurencyjnego:

$$x_{n+1} = x_n^2 + c \text{ dla n=0,1,...}$$

dla następujących danych:

- 1. $c = -2 i x_0 = 1$
- 2. $c = -2 i x_0 = 2$
- 4. $c = -1 i x_0 = 1$
- 5. $c = -1 i x_0 = -1$
- 6. c= -1 i $x_0 = 0.75$
- 7. $c = -1 i x_0 = 0.25$

6.2 Rozwiązanie

Aby rozwiązać zadanie wykorzystaliśmy pakiet "Plots" w Julii, aby graficznie przedstawić wyniki dla 40 iteracji dla wyżej przedstawionych danych.

6.3 Wyniki i interpretacja

Dla zadanych danych wejściowych eksperymentów można zaobserwować dwa zjawiska: stabilizacji układu sprzężenia zwrotnego oraz niestabilności związanej ze sprzężeniem zwrotnym. W powyższym przypadku, obserwujemy stabilizacje układu sprężenia, jednak następuje ono, dopiero od pewnego momentu (około 10 iteracji).

W tym przykładzie od początku możemy zauważyc stabilizacje układu stężenia.

Przypadki 1 i 2, zachowują się podobnie jak powyżysze, jednak ciekawsza sytuacja kreauje się w trzecim podpunkcie. DODAJ JAKIS MADRY OPIS

6.4 Wnioski

Problem ten pozwolił na zaobserwowanie dwóch zachowań układów sprzężenia zwrotnego: stabilizacji oraz niestabilności. Stabilizację można było zaobserwować jako powtarzanie się przewidywalnych wyników, zaś niestabilność jako generowanie błędnych wyników, spowodowane niewielkimi błędami popełnionymi w początkowych stadiach obliczania wartości wyrażenia. Podobnie jak w zadaniu 5 wprowadzona niestabilność jest skutkiem precyzji arytmetyki double, która była używana do przeprowadzanych w zadaniu obliczeń. Liczba miejsc po przecinku, potrzebnych do przedstawienia kolejnych wyników, zwiększała się, co uniemożliwiało otrzymanie poprawnych wyników.

Rysunek 2: Wykres przedstawia przypadek 6 (niebieski) i 7 (pomarańczowy)

Rysunek 3: Wykres przedstawia przypadek 4 i 5 (są one identyczne, ponieważ $-1^2=1^2)$

Rysunek 4: Wykres przedstawia podpunkty 1(niebieski), 2 (pomarańczowy) oraz 3 (zielony)