Superposition in neural networks II

by N. Elhage et al.

Let us have feature vector $X = [x_1, x_2, x_3, x_4]$, representing a face:

Let us have feature vector $X = [x_1, x_2, x_3, x_4]$, representing a face:

We want to project the 4D face X into a 2D representation $H = [h_1, h_2]$, and then reconstruct the original 4D face from the 2D representation.

Let us also assume that reconstructing the eye and nose features correctly is more important than reconstructing other features.

$$L = \sum_x \sum_i I_i (x_i - x_i')^2$$

Our loss function looks like this, where I_i is the importance of feature i. Let I_1 and $I_2 = 1$, I_3 and $I_4 = 0.5$.

What $H = [h_1, h_2]$ might look like in this case?

Since eye and nose features are more important, a straightforward solution that minimizes the loss function is $H = [x_1, x_2]$

Why not encode lips and head features too?

- We don't have enough dimensions for them.
- They are less important.
- Encoding them would interfere the reconstruction, harming the more important features.

Toy problem But what if the feat

But what if the features are sparse?

...or even more sparse?

We might assume that a good projection into 2D space will encode not only eye and nose features, but others too. This way, the loss function can be fetter minimized.

 $H = [h_1, h_2]$ in this case can look like this:

As Sparsity Increases, Models Use "Superposition" To Represent More Features Than Dimensions

Increasing Feature Sparsity

0% Sparsity

The two most important features are given **dedicated orthogonal dimensions**, while other features are **not embedded**.

80% Sparsity

The four most important features are represented as **antipodal pairs**. The least important features are **not embedded**.

90% Sparsity

All five features are embedded as a pentagon, but there is now "positive interference."

Feature Importance

- Most important
- Medium important
- Least important

Can we quantify superposition?

Let's give it a try. Let us have

• Eye
$$X_1 = [1, 0, 0, 0]^T$$

• Nose
$$X_2 = [0, 1, 0, 0]^T$$

• Lips
$$X_3 = [0, 0, 1, 0]^T$$

• Head
$$X_A = [0, 0, 0, 1]^T$$

Their 2D representations:

•
$$H_1 = [1, 0]^T$$

•
$$H_2 = [0, 1]^T$$

•
$$H_3 = [-1, 0]^T$$

•
$$H_{\Delta} = [0, -1]^{T}$$

And a matrix that transforms X to H:
$$W = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

Can we quantify superposition?

An inverse operation that transforms
$$H$$
 to X is
$$W^{-1} = \text{ReLU}[W^{T}(\cdot)] = \text{ReLU}\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}(\cdot)$$

To quantify superposition, we can

- 1. Calculate and visualize W^TW
- 2. Calculate superposition measure of i^{th} feature representation:

$$D_i \; = \; rac{||W_i||^2}{\sum_j (\hat{W}_i \cdot W_j)^2}$$

3. Calculate dimensions per original feature i: where W_i is ith column of W

Can we quantify superposition?

 $W^T W$

Superposition measure of i th projection

Dimensions per original feature *i*

Space for scribbles

Outline

Superposition can occur when n features are squeezed into m < n dimensions.

- How superposition can look like
- How superposition is handled during computations
- Is superposition good/bad?

1. How superposition can look like

Another toy problem:

Project a high dimensional vector $x \in \mathbb{R}^n$ into a lower dimensional vector $h \in \mathbb{R}^m$ and then reconstruct it.

- features x_i are 0 with probability S (sparsity), or uniformly distributed on [0, 1] otherwise.
- features x_i have importance I_i

$$L = \sum_x \sum_i I_i (x_i - x_i')^2 \, igg|$$

A familiar loss function

1. Models

Linear Model ReLU Output Model
$$h=Wx$$
 $h=Wx$ $x'=W^Th+b$ $x'=\mathrm{ReLU}(W^Th+b)$ $x'=W^TWx+b$

Linear model can't have superposition

But slightly nonlinear model can have it

1. As to why superposition occurs only with nonlinear models

Rewritten linear loss:

$$L \; \sim \; \sum_i \, I_i (1 - ||W_i||^2)^2 \ + \; \sum_{i
eq j} \, I_j (W_j \!\cdot\! W_i)^2$$

Feature benefit is the value a model attains from representing a feature. In a real neural network, this would be analagous to the potential of a feature to improve predictions if represented accurately.

Interference betwen x_i and x_j occurs when two features are embedded non-orthogonally and, as a result, affect each other's predictions. This prevents superposition in linear models.

1. As to why superposition occurs only with nonlinear models

Rewritten non-linear loss:

$$L_1 \ = \ \sum_i \int\limits_{0 \le x_i \le 1} I_i (x_i - \mathrm{ReLU}(||W_i||^2 x_i + b_i))^2 \ + \ \sum_{i
eq j} \int\limits_{0 \le x_i \le 1} I_j \mathrm{ReLU}(W_j \cdot W_i x_i + b_j)^2$$

If we focus on the case $x_i=1$, we get something which looks even more analogous to the linear case:

$$=\sum_i \, I_i (1-\mathrm{ReLU}(||W_i||^2+b_i))^2 \qquad \qquad +\sum_{i
eq j} \, I_j \mathrm{ReLU}(W_j\!\cdot\!W_i+b_j)^2$$

Feature benefit is similar to before. Note that ReLU never makes things worse, and that the bias can help when the model doesn't represent a feature by taking on the expected value.

Interference is similar to before but ReLU means that negative interference, or interference where a negative bias pushes it below zero, is "free" in the 1-sparse case.

1. How the superposition states can look like?

Space for scribbles

2. How superposition is handled during computations

So far the shown examples were about autoencoder-like problems, where hidden state utilizes superposition for data storage.

What if a hidden state in superposition is used an MLP-like problem? How will the weights look like, and how can we analyze them?

2. Yet another toy problem

Learning abs() function:

Given vector $x \in \mathbb{R}^n$, project it into a hidden state vector $h \in \mathbb{R}^m$ and then reconstruct $x' = \operatorname{abs}(x)$ from it.

- features x_i are 0 with probability S (sparsity), or uniformly distributed on [-1, 1] otherwise.
- features x_i have importance I_i

$$L = \sum_x \sum_i I_i (x_i - x_i')^2$$

A familiar loss function

2. Model

Now W_1 and W_2 (instead of a single W before) are learnable matrices.

There exists a simple non-superpositional solution with m = 2n hidden neurons: abs(x) = ReLU(x) + ReLU(-x)

$$h=\mathrm{ReLU}(W_1x)$$

$$y'=\mathrm{ReLU}(W_2h+b)$$

2. Simple Model

There exists a simple non-superpositional solution with m = 2n hidden neurons: abs(x)=ReLU(x)+ReLU(-x)

$$h=\mathrm{ReLU}(W_1x)$$

$$y'=\mathrm{ReLU}(W_2h+b)$$

2. Model with sparsity and superposition

For n = 100, m = 40 and $I_i = 0.8^i$

Neurons (sorted by importance of largest feature)	
monosemantic neurons	1-S~=~1.0
	In the dense regime, all neurons are monosemantic, dedicated to a single feature.
monosemantic neurons	1-S~=~0.3
	Neruons continue to be monosemantic to moderate sparsity levels.

2. Model with sparsity and superposition

2. What about weights?

2. Some kind of inhibition happens

3. Is superposition good/bad?

Pros:

- it allows to store information in less memory, and do computations with less operations
- might be useful for training process observation

Cons:

makes interpretability complicated