Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

B.Sc. Landwirtschaft; B.Sc. Angewandte Pflanzenbiologie - Gartenbau, Pflanzentechnologie

Klausur Mathematik und Statistik

Hochschule Osnabrück

Prüfer: Prof. Dr. Jochen Kruppa Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

30. Juni 2023

Erlaubte Hilfsmittel für die Klausur

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten also ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung keine digitalen Ausdrucke.
- You can answer the questions in English without any consequences.

Ergebnis der Klausur

_____ von 20 Punkten sind aus dem Multiple Choice Teil erreicht.

____ von 74 Punkten sind aus dem Rechen- und Textteil erreicht.

_____ von 94 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
90.0 - 94.0	1,0
85.0 - 89.5	1,3
80.5 - 84.5	1,7
75.5 - 80.0	2,0
71.0 - 75.0	2,3
66.5 - 70.5	2,7
61.5 - 66.0	3,0
57.0 - 61.0	3,3
52.0 - 56.5	3,7
47.0 - 51.5	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.
- Es werden nur Antworten berücksichtigt, die in dieser Tabelle angekreuzt sind!

	A	В	С	D	E	√
1 Aufgabe						
2 Aufgabe						
3 Aufgabe						
4 Aufgabe						
5 Aufgabe						
6 Aufgabe						
7 Aufgabe						
8 Aufgabe						
9 Aufgabe						
10 Aufgabe						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

• Die Tabelle wird vom Dozenten ausgefüllt.

Aufgabe	11	12	13	14	15	16	17
Punkte	9	10	13	12	10	10	10

• Es sind ____ von 74 Punkten erreicht worden.

Eine einfaktorielle ANOVA berechnet eine Teststatistik um zu die Nullhypothese abzulehnen. Welche Aussage über die Teststatistik der ANOVA ist richtig?
A □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 1 annähert kann die Nullhypothese nicht abgelehnt werden.
B □ Die ANOVA berechnet die F-Statistik indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese nicht abgelehnt werden.
C ☐ Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese abgelehnt werden.
D □ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist kann die Nullhypothese abgelehnt werden.
$f E \ \Box$ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.
2 Aufgabe (2 Punkte)
Nachdem Sie in einem Experiment die Daten D erhoben haben, berechnen Sie den Mittelwert und den Median. Der Mittelwert \bar{y} und der Median \tilde{y} unterscheiden sich. Welche Aussage ist richtig?
A □ Da sich der Mittelwert und der Median unterscheiden, ist der Datensatz nicht zu verwenden Mittelwert und Median müssen gleich sein.
B □ Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich keine Outlier in der Daten vor.
C □ Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in der Daten vor.
D □ Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich keine Outlied in den Daten vor. Wir verweden den Datensatz so wie er ist.
E □ Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich Outlier in den Dater vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.
3 Aufgabe (2 Punkte)
Berechnen Sie den Mittelwert und Standardabweichung von y mit 16, 8, 9, 15 und 10.
A □ Es ergibt sich 12.6 +/- 1.825
B □ Es ergibt sich 11.6 +/- 1.825
C □ Es ergibt sich 11.6 +/- 3.65
D ☐ Es ergibt sich 11.6 +/- 13.3
E □ Es ergibt sich 10.6 +/- 6.65

	er Theorie zur statistischen Testentscheidung kann " H_0 ablehnen obwohl die H_0 gilt" in welche ige Analogie gesetzt werden?
A 🗆	In die Analogie eines Rauchmelders: Alarm with fire.
В□	In die Analogie eines Feuerwehrautos: Car without noise.
c □	In die Analogie eines brennenden Hauses ohne Rauchmelder: House without noise.
D 🗆	In die Analogie eines Rauchmelders: Alarm without fire, dem $lpha$ -Fehler.
	In die Analogie eines Rauchmelders: Fire without alarm, dem eta -Fehler.
5 <i>A</i>	Aufgabe (2 Punkte)
sche	n Sie einen Datensatz erstellen, dann ist es ratsam die Spalten und die Einträge in englier Sprache zu verfassen, wenn Sie später die Daten in \mathbf{R} auswerten wollen. Welcher folgende id ist richtig?
A 🗆	Die Spracherkennung von 😱 ist nicht in der Lage Deutsch zu verstehen.
В□	Im Allgemeinen haben Programmiersprachen Probleme mit Umlauten und Sonderzeichen, die in der deutschen Sprache vorkommen. Eine Nutzung der englischen Sprache umgeht dieses Problem auf einfache Art.
c □	Es gibt keinen Grund nicht auch deutsche Wörter zu verwenden. Es ist ein Stilmittel.
D 🗆	Alle Funktionen und auch Anwendungen sind in \mathbf{Q} in englischer Sprache. Die Nutzung von deutschen Wörtern ist nicht schick und das ist zu vermeiden.
E	Programmiersprachen können nur englische Begriffe verarbeiten. Zusätzliche Pakete können zwar geladen werden, aber meist funktionieren diese Pakete nicht richtig. Deutsch ist International nicht bedeutend genug.
6 <i>A</i>	Aufgabe (2 Punkte)
Welc	the Aussage zum mathematische Ausdruck $Pr(D H_0)$ ist richtig?
A 🗆	Die Inverse der Wahrscheinlichkeit unter der die Nullhypothese nicht mehr die Alternativehypothese überdeckt.
В□	Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.
c □	$Pr(D H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1-Pr(H_A)$
D 🗆	Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
E 🗆	$Pr(D H_0)$ ist die Wahrscheinlichkeit die Daten D zu beobachten wenn die Nullhypothese wahr ist.

(2 Punkte) 7 Aufgabe Das Falsifikationsprinzip besagt... **A** □ ... dass Modelle meist falsch sind und selten richtig. **B** ... dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt. **C** ... dass Fehlerterme in statistischen Modellen nicht verifiziert werden können. **D** ... dass Annahmen an statistische Modelle meist falsch sind. **E** ... dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht. 8 Aufgabe (2 Punkte) Welche Aussage über den Welch t-Test ist richtig? **A** □ Der Welch t-Test vergleicht die Varianz von zwei Gruppen. **B** □ Der Welch t-Test ist die veraltete Form des Student t-Test und wird somit nicht mehr verwendet. C ☐ Der Welch t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. D Der Welch t-Test wird angewendet, wenn Varianzheterogenität zwischen den beiden zu vergleichenden Gruppen vorliegt. **E** ☐ Der Welch t-Test ist ein Post-hoc Test der ANOVA und basiert daher auf dem Vergleich der Varianz. 9 Aufgabe (2 Punkte) Die Randomisierung von Beobachtungen bzw. Samples zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig? A ☐ Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr. **B** ☐ Randomisierung sorgt für Strukturgleichheit und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen. C Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. **D** ☐ Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen. **E** \square Randomisierung erlaubt erst die Mittelwerte zu schätzen. Ohne Randomisierung keine Mittelwerte.

Welche statistische Masszahl erlaubt es *Relevanz* mit *Signifikanz* zuverbinden? Welche Aussage ist richtig?
A □ Das Konfidenzintervall. Durch die Visualizierung des Konfidenzintervals kann eine Relevanzschwelle vom Anwender definiert werden. Zusätzlich erlaubt das Konfidenzinterval auch eine Entscheidung über die Signifikanz.
B □ Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β-Fehler erlaubt über die Power eine Einschätzung der Relevanz.
C □ Das Δ. Durch die Effektstärke haben wir einen Wert für die Relevanz, die vom Anwender bewertet werden muss. Da Δ antiproportional zum p-Wert ist, bedeutet auch ein hohes Δ ein sehr kleinen p-Wert.
D □ Die Teststatistik. Durch den Vergleich von T_C zu T_k ist es möglich die H₀ abzulehnen. Die Relevanz ergibt sich aus der Fläche rechts vom dem T_C-Wert.

E □ Das OR. Als Chancenverhältnis gibt es das Verhältnis von Relevanz und Signifikanz wieder.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte.

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 1.1mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 10.5m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser der Eiche im Jahr 1810 als Herodot in der Eiche versteckt werden sollte? (3 Punkte)
- 2. Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 190cm, eine Breite von 90cm sowie eine Länge von 250cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *bequem* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in cm! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! (3 Punkte)
- 5. Unter einer Dicke der Eichenwand von 10*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! (2 Punkte)

Sie erhalten folgende R Ausgabe der Funktion t.test().

```
##
## Two Sample t-test
##
## data: drymatter by Fe
## t = -1.3795, df = 10, p-value = 0.1978
## alternative hypothesis: true difference in means between group high and group low is no
## 95 percent confidence interval:
## -4.856655 1.142370
## sample estimates:
## mean in group ctrl mean in group low
## 16.00000 17.85714
```

- 1. Formulieren Sie das statistische Hypothesenpaar! (2 Punkte)
- 2. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie eine Abbildung in der Sie T_{calc} , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.23|$ einzeichnen! **(4 Punkte)**
- 4. Beschriften Sie die Abbildung entsprechend! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Von Töpfen auf Tischen In einem Experiment wollen Sie die Wuchshöhe von 180 Maispflanzen bestimmen. Bevor Sie überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen Sie die Maispflanzen einpflanzen und müssen dafür Substrat bestellen. Zum anderen müssen Sie die Maispflanzen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Durchmesser von 8cm und eine Höhe von 7cm. Der Kubikmeterpreis für Torf liegt bei 280 EUR.

- 1. Skizzieren Sie den Versuchsplan auf zwei Tischen im Gewächshaus! (2 Punkte)
- 2. Berechnen Sie die benötigten Pflanztöpfe, wenn Sie Randpflanzen mit berücksichtigen wollen! (1 Punkt)
- 3. Welche Fläche in m^2 gegeben der Anzahl an Pflanztöpfen benötigen Sie im Gewächshaus am Anfang der Keimungsphase? (2 Punkte)
- 4. Berechnen Sie die benötigte Menge an Torf, die Sie für das Befüllen der Pflanztöpfe benötigen! Gehen Sie von einem Zylinder für die Pflanztöpfe aus! (2 Punkte)
- 5. Berechnen Sie die Kosten in EUR für Ihre Torfbestellung! (1 Punkt)
- 6. Nach dem Befüllen der Pflanztöpfe haben Sie noch Torf übrig. Welche Menge an Torf hätten Sie benötigt, wenn Sie mit einem *halbierten Kegel* gerechnet hätten? **(2 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die mecklemburgischen Pyramidentage an und Sie sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 72 Grad im Vergleich zu den ägyptischen Pyramiden mit 54 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 38 Königsellen. Eine Königselle misst 52.2cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Die Königspyramide von Meroe soll eine Seitenlänge der Grundfläche, von 38 Königsellen haben. Wie hoch wird die Königspyramide sein? (1 Punkt)
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 3cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m³! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 3 Sklaven, die Ihnen bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Rückenschmerzen entwickelt, als sie von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 80% aus. In eine Schubkarre passen 100 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 11°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die mecklemburgische Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Mittelständler*) mit, das die Pyramide zu flach sei und somit nicht in die mecklemburgische Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 7° ändert! (2 Punkte)

Der Datensatz plant_growth_tbl enthält das Gewicht der Kohlköpfe (weight), die unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen erzielt wurden – dem Faktor group mit den Faktorstufen ctrl, trt1, trt2.

- 1. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus mit den gegebenen Informationen von Df und Sum Sq! (4 Punkte)
- 2. Schätzen Sie den p-Wert der Tabelle mit der Information von $F_{\alpha=5\%}=3.49$ ab. Begründen Sie Ihre Antwort! (2 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
group	2	14.68			
Residuals	20	75.14			

- 3. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA im Bezug auf die möglichen Unterschiede zwischen den Gruppen? Beziehen Sie sich auf den obigen Fragetext bei Ihrer Antwort! (2 Punkte)
- 4. Berechnen Sie einen Student t-Test mit für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%}=2.03$. Begründen Sie Ihre Auswahl! (3 **Punkte**)

group	n	mean	sd
ctrl trt1 trt2	7 9	18.71 20.33	1.11 1.87
LI LZ	/	20.57	2.57

5. Gegebenen der ANOVA Tabelle war das Ergebnis des t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nach einem Feldexperiment mit zwei Düngestufen (A und B) ergibt sich die folgende Datentabelle mit dem gemessenen Trockengewicht (*drymatter*).

trt	drymatter
A	13.5
B	17.3
B	11.1
A	19.0
A	14.9
B	21.3
A	22.3
B	15.3
A	18.5
B	16.3
A B B A	14.8 19.4 20.8 15.5 24.1
B	15.4
A	15.0
A	19.1
B	15.6
A	21.5
B	18.0
A	14.3

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Düngestufen A und B! Beschriften Sie die Achsen entsprechend! **(6 Punkte)**
- 2. Beschriften Sie *einen* der beiden Boxplots mit den gängigen statistischen Maßzahlen! **(2 Punkte)**
- 3. Wenn Sie *keinen Effekt* zwischen den Düngestufen erwarten würden, wie sehen dann die beiden Boxplots aus? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 40 Tagen die ersten Symptome ein; die ersten Toten sind nach 65 Tagen zu beklagen; nach 100 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 237 Mann.

- 1. Stellen Sie den Verlauf der Skorbuterkrankung auf einem Schiff der Flotte dar! Beschriften Sie die Achsen! (4 Punkte)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $7000\mu g/100g$ Vitamin C. Der Bedarf liegt bei 105mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 20 Tage über den Pazifik! (3 Punkte)
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)