STAT 403 Tutorial . Week 4

- 1. Review of Randomization Test
 - Suppose there are b units (plots): labelled as 1,2,3,4,5,6;
 treatments (fertilizers): labelled as A.B.

We hope to conduct an experiment to compare two fertilizers' effects over yield and assess whether B is better than A, i.e.

Ho: A & B are the same v.s. Ha: B is better than A.

- Randomization: treatments should be assigned to units randomly.
 (3 A's and 3 B's)
 - cis. 2005: randomly take 3 balls to assign A; for the rest, assign B.
 - (ii) Using R: "sample (6,3)" number of items to choose.

 number of items to choose from
- Texting statistic: $D = \overline{Y}_{B} \overline{Y}_{A}$ whits: $1 = \frac{3}{3} + \frac{5}{4} + \frac{6}{13} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{$
- . Since there are $\binom{6}{3}$ = 20 (in R: "chrose (6,3)") possible treatment assignments, we can calculate 20 D values, one for each assignment.

[See lost tutorial notes for reference]

In addition, each of the 20 D values occurs with probability to.

This leads to a discrete distribution of D under Ho.

D -3.67 -3 -2.33 Prob. 1 1 2	-1.67 -1 -0.3 1 1 2 2	3 0.33 1	1.67 2.33	3 3.67 10 1 10 1
			p-value= P(D=Dobs) + 1 P(D=Dobs)
11 3 -3 -3 -1 -3 3 prob. mass function	\$ \$\frac{1}{3} \frac{2}{3} \fr	Conclusio	= 7	hypothesis at significance level of 59

2. paired t test and paired randomization test.

Now suppose we have the same treatments and research goal (assess whether B is batter than A). But the 6 plots (units) are divided into 3 pairs (blocks), each consisting of two plots, because the plots within the same block are considered to be homogeneous (for example, they may have similar soil quality).

- We would like to assign one A and one B to every two units in each block. Why?

 BIKI: BIKI

 Because we want to distinguish whether the treatment

 AABB

 (fertilizer) or the block factor (soil quality) caused the difference.
- Randomization: (i) Toss a coin for each block, assign A to the left unit
 if observing heads;
 (ii) In R, "sample (0:1,3, replace=True)".

Ho: A & B the same
Ha: B is better than A

paired t test.

Let
$$D_i = \lceil B - \rceil A$$
 in i-th block, then $D_1 = 2$, $D_2 = 1$, $D_3 = -1$.

The testing statistic $T = \frac{\overline{D}}{\sqrt{S^2/m}} \longrightarrow t_{mai}$ $D = \frac{1}{m}(D_1 + D_2 + \cdots + D_m)$

Therefore, $T_{obs} = \frac{2/3}{\sqrt{7/3} \cdot /3} = 0.53$
 $P-value = P(TzT_{obs}) = 0.32$

("1-pt(0.53,2)")

So basically it's a one-sample t test once Di's have been calculated.

• For each block there are two possible treatment assignments. Since there are 3 blocks, in total there will be $2^3=8$ treatment assignments. Each treatment assignment corresponds to a D value, where the testing statistic $D=\bar{D}=\bar{\gamma}_8-\bar{\gamma}_A$.

Treatment assigned					Ÿ.	Te	D	
	В	A B		B	9	28/3	1/3	< Dobs
A	В	A B		B A	26/3	28/3	2/3	= Dobs
A	В		A	A B	24/3	28/3	73	-) Observed
A	В		A	BA	25/3	24/3	4/3	> Das
В	A	A	В	AB	29/3	25/3	- 4/3	< Das
В	A	Α	В	Ав	23/3	24/2	- 2/3	< Dobs
В	, A	В	A	A B	24/3	24/3	- 3/3	< Dobs
e	, A	В	A	B A	28/3	9	-1/3	< P.bs

This leads to a discrete distribution of D under Ho:

Therefore,
$$p\text{-value} = \frac{1}{2}(D > D \circ b_s) + \frac{1}{2}P(D = D \circ b_s)$$

$$= P(D > \frac{1}{3}) + \frac{1}{2}P(D = \frac{1}{3})$$

$$= \frac{1}{8} + \frac{1}{2} \times \frac{2}{8}$$

$$= 25\%$$

Conclusion: cannot reject null hypothesis at significance level of 5%.