Statistical Analysis

Mariella Paul paulm@cbs.mpg.de

MPI for Human and Cognitive Brain Sciences Berlin School of Mind & Brain

Ways to do ERP statistics

- good way 1: hypothesis-driven
- good way 2: data-driven with correction for multiple testing
- "the bad way": data-driven, no correction for multiple testing

Hypothesis-driven approach

- if you have a hypothesis about a specific ERP component, you can decide to only analyze the relevant time window / electrodes a priori
- this significantly reduces the amount of multiple testing
- e.g. if you expect an N400, you might choose to only analyze 300 600 ms TW and centro-parietal electrodes

Data-driven approach

- if you do not have an a priori hypothesis about time windows or channels, you should analyze all **channel x time pairs**
- with this approach, you run into the multiple comparison problem

The multiple comparison problem

The multiple comparison problem (MCP) applies to all kinds of data when you want to run more than one dependent statistical analysis

MCP: example

- assume you have accuracy data from an experiment with 3 different conditions,
 and you want to statistically compare the accuracies of each condition
- you decide to run three tests: cond 1 vs cond 2, cond 2 vs cond 3 and cond 1 vs cond 3
- because these tests are dependent, you need to adjust your alpha
- Bonferroni correction: alpha/# of tests
- in this case: 0.05/3 = 0.017

MCP with EEG data

in EEG data we have A LOT of dependent data

- usually hundreds of trials (let's assume 100)
- consisting of time samples (let's assume 250)
- measured on dozens channels (let's assume 30)
- we would end up with 100*250*30 = 750 000 tests
- and with Bonferroni correction, would have to adjust alpha to 0.05 / 750 000 =
 0.0000667 -> no effect would ever be significant!

Cluster-based permutation test (CBPT)

- the cluster-based permutation test (Maris and Oostenveld, 2007) solves the MCP in an elegant way
- it creates clusters of channel x time pairs
- effects are only considered to be significant if they are significant over several channel x time pairs, i.e. if they last several milliseconds and are distributed over several electrodes

CBPT: real t-statistic

1. define neighborhood relationships for electrodes (needed for clustering)

CBPT: real t-statistic

- 1. define neighborhood relationships for electrodes (needed for clustering)
- 2. for each condition, collect all trials

CBPT: real t-statistic

- 1. define neighborhood relationships for electrodes (needed for clustering)
- 2. for each condition, collect all trials
- 3. calculate t-values for channel-time pairs for these conditions and sum them over clusters (*real t-statistic*)

CBPT: random t-statistic

1. create a subset 1 and randomly draw as many trials from both conditions as there are in condition A; put the rest of the trials in subset 2

CBPT: random t-statistic

- 1. create a subset 1 and randomly draw as many trials from both conditions as there are in condition A; put the rest of the trials in subset 2
- 2. calculate t-values for cluster-time pairs for these subsets and sum them over clusters (random t-statistic)

CBPT: random t-statistic

- 1. create a subset 1 and randomly draw as many trials from both conditions as there are in condition A; put the rest of the trials in subset 2
- 2. calculate t-values for cluster-time pairs for these subsets and sum them over clusters (random t-statistic)
- 3. repeat steps 1 and 2 a large number of times (resulting many random t-statistics)

CBPT: compute significance

compare real t-statistic with random t-statistics:

if real t-statistic is 2 or more standard deviations (SD) away from the median of random t-statistics, consider the real t-statistic to be significant

t-statistics are normally distributed

", the bad way": visual inspection

- some papers only analyze certain time windows based on "visual inspection"
- this usually means they looked at their data and chose the time window that looked like it might contain a significant effect

What's the problem with this approach?

CBPT in FieldTrip

- we'll perform a cluster-based permutation test in FieldTrip using ft_timelockstatistics
- but first, which conditions do we want to compare?

Open the FieldTrip Tutorial on CBPT to work along

Neighborhood

- the first step of the cluster-based permutation test involves defining neighborhoods
- let's do this in FieldTrip using ft_prepare_neighbourswith
 cfg.method = 'triangulation'

Specify the cfg

- before we use ft timelockstatistics, we need to set up the cfg. Specify:
 - o the channels
 - the latency
- cfg.methoddetermines how we create the random t-statistics
- we'll use cfq.method = 'montecarlo'
- this determines what other cfg options we have
- look at the reference documentation of ft_statistics_montecarloto see what our options are

Specify the cfg

- cfg.correctm determines the way ft_timelockstatistics corrects for multiple testing and should be 'cluster'
- cfg.minnbchan determines the minimum number of channels to be included in a cluster; we'll use 2 since we have relatively few electrodes
- cfg.neighbours-this is where you should specify the neighborhood structure we defined earlier
- cfg.tail defines one- or two-sided test; we want a two-sided test

Specify the cfg

- cfg.alpha determines the alpha value of the statistical test per tail. Given that we're running a two-sided test, what alpha do we need?
- cfg.numrandomizationdetermines how many random t-statistics are computed; this should be a large number, for now, let's take a 1000
- what settings are there for cfg.statistics and which one do we want?
 - dependent samples are within-subject, independent samples between-subject

Design config

- in cfg.design, you need to specify a matrix describing the design:
- e.g. imagine an experiment with 4 trials in the first condition and 3 trials in the second condition:

```
design = [1 1 1 1 1 2 2 2]
```

 use the trial field of your data structures to compute the number of trials in each condition

ft_timelockstatistics and plotting

- now we've finally got the cfg set up and can use ft timelockstatistics!
- you can check the fields poscluster and negcluster of the output of ft timelockstatistics to see if there are any significant clusters
- plot the results by adapting the code for plotting at the bottom of the <u>FieldTrip</u> <u>Tutorial on CBPT</u>
- as a last step, use ft_analysispipelineto output the analysis pipeline