ARJUNA (NEET)

Motion in Plane

DPP-05

- **1.** Which of the following relation is correct for angular acceleration?
 - (A) $\frac{d\alpha}{dt}$
- (B) $\frac{d^2\theta}{dt^2}$
- (C) $\frac{\omega d\omega}{d\theta}$
- (D) All of these
- 2. If the equation for the displacement of a particle moving on a circular path is given by $(\theta) = 2t^3 + 0.5$, where θ is in radians and t in seconds, then the angular velocity of the particle after 2 s from its start is:-
 - (A) 8 rad/s
- (B) 12 rad/s
- (C) 24 rad/s
- (D) 36 rad/s
- 3. A particle moving along a circular path. The angular velocity, linear velocity, angular acceleration and centripetal acceleration of the particle at any instant respectively are $\vec{\omega}$, \vec{v} , $\vec{\alpha}$, \vec{a}_c . Which of the following relation is/are correct.
 - (a) $\vec{\omega} \perp \vec{v}$
- (b) $\vec{\omega} \perp \vec{\alpha}$
- (c) $\vec{v} \perp \vec{a}_c$
- (d) $\vec{\omega} \perp \vec{a}_c$
- (A) a, b, d
- (B) b, c, d
- (C) a, b, c
- (D) a, c, d
- **4.** A fly wheel rotating at 600 rev/min is brought under uniform deceleration and stopped after 2 minutes, then what is angular deceleration in rad/sec²?
 - (A) $\frac{\pi}{6}$
 - (B) 10π
 - (C) $\frac{1}{12}$
 - (D) 300

- 5. The linear and angular acceleration of a particle are 10 m/s² and 5 rad/s² respectively. It will be at a distance from the axis of rotation.
 - (A) 50 m
- (B) $\frac{1}{2}$ m
- (C) 1 m
- (D) 2 m
- **6.** A particle moves in a circle describing equal angle in equal times, its velocity vector-
 - (A) remains constant
 - (B) change in magnitude
 - (C) change in direction
 - (D) changes in magnitude and direction
- 7. A Particle covers equal distance around a circular path, in equal intervals of time. Which of the following quantities connected with the motion of the particle remains constant with time?
 - (A) Displacement
- (B) Velocity
- (C) Speed
- (D) Acceleration
- **8.** A particle is moving along a circular path with uniform speed. Through what angle does its angular velocity change when it completes half of the circular path?
 - $(A) 0^{\circ}$
- (B) 45°
- (C) 180°
- (D) 360°
- **9.** A particle is moving on a circular path of radius r with uniform speed v. What is the displacement of the particle after it has described an angle of 60° ?
 - (A) $r\sqrt{2}$
- (B) $r\sqrt{3}$
- (D) r
- (D) 2r

- **10.** Velocity vector and acceleration vector in a uniform circular motion are related as
 - (A) both in the same direction
 - (B) perpendicular to each other
 - (C) both in opposite direction
 - (D) not related to each other

- 11. The magnitude of the displacement of a particle moving in a circle of radius a with constant angular speed ω varies with time t as
 - (A) $2a \sin \omega t$
- (B) $2a\sin\frac{\omega t}{2}$
- (C) 2a cos ωt
- (D) $2a\cos\frac{\omega t}{2}$

ANSWERS KEY

- 1. **(D)**
- 2. (C)
- **3.** (**D**)
- 4. (A)
- **5. (D)**
- **6.** (C)
- 7. (C)
- 8. (A)
- 9. (C)
- **10.** (B)
- **11.** (**B**)

Note - If you have any query/issue

Mail us at support@physicswallah.org