Labor Elektrotechnik

Versuch 2: Kondensator und Spule

Vorname	Nachname	Immatrikulation #	

Geräte:

- 1 einstellbares Netzgerät
- 1 Funktionsgenerator
- 2 Digitalmultimeter
- 1 Steckbrett mit Bauteilen für den Aufbau

Inhaltsverzeichnis

2.1 Versuch: Kondensator	3
Schaltplan:	3
Messwerttabelle:	3
Diagramm zum Aufladen des Kondensators	4
Erklärung und Rechenweg (R1,C):	4
2.2.1 Versuch: Kondensator Wechselstromverhalten:	5
Messwerttabelle:	5
Rechenweg und Erklärung:	5
2.2.2 Frequenzverhalten des Kondensators C2	7
Tabelle:	7
Rechenweg und Erklärung:	7
Diagramm: Frequenzverhalten des Kondensators:	9
Erklärung des Verhaltens:	9
2.3 Versuch: Wechselstromverhalten einer Spule	10
Widerstandsmessung Rcu:	10
Rechenweg und Erklärung :	10
Diagramm:	12
Erklärung des Verhaltens:	12
3.4 Versuch: Messungen der Phase	13
Diagramm:	13

2.1 Versuch: Kondensator

Schaltplan:

Messwerttabelle:

Widerstand R1 = Ω , über Widerstandsmessung ermittelt

	Aufladevorgang des Kondensators		
t [s]	U _{auf} [V]		
0	0		
2	0,707		
5	1,45		
10	2,44		
20	4,14		
60	8,36		
120	10,75		
200	11,60		

Diagramm zum Aufladen des Kondensators

Erklärung und Rechenweg (R₁,C):

Durch das Diagramm ist sichtbar, dass der Aufladevorgang eines Kondensators nicht linear erfolgt. Die gemessene Spannung $U_{\mathbb{C}}$ beschreibt die Spannung, die sich über den beiden Polen des Kondensators befindet.

Der Nichtlineare Aufladevorgang des Kondensators kann durch die Formel:

$$U_c(t) = U_a \bullet (1 - e^{\frac{-t}{T_e}})$$
 wobei $T_e = R \bullet C$

beschrieben werden.

Da U_c , U_q und die Zeit (t) bereits bekannt sind wird T_e gesucht. Dies kann durch die Umformung der obigen Formel erreicht werden:

$$T_e = \frac{-t}{ln(\frac{-U_c}{Uq} + 1)} [s] = \frac{[s]}{ln(\frac{[V]}{[V]} + 1)}$$

Durch Einsetzen der Daten in der Tabelle kann ein Durchschnittswert für Te berechnet werden:

Da ein Kondensator 5•T_e Sekunden braucht, um vollständig aufzuladen, bedeutet es, dass dieser Kondensator nach ca. 4 Minuten vollständig aufgeladen wäre. Dieser Wert ist aber nicht

ganz richtig, da der Kondensator nach 4 Minuten immer noch am Aufladen war, was auf Messfehler zurückzuführen ist.

2.2.1 Versuch: Kondensator Wechselstromverhalten:

Messwerttabelle:

Messung:				
	C ₁	C ₂		
U [V]	1,67	2,7		
I [mA]	28,5	47,2		
f [Hz]	400	600		
Auswertung:				
	C ₁	C ₂		
Χ _c [Ω]	58,6	35,4		
C [μF]	6,79	4,64		

Rechenweg und Erklärung:

Die kapazitive Induktivität kann durch die Formel:

$$X_c = \frac{1}{2\pi f C} = \frac{U_c}{I_c}$$

$$\frac{1}{[Hz][F]} = \frac{1}{[1/s][As/V]} = [V/A] = [\Omega]$$

berechnet werden.

Somit ist X_{c1}=

$$\frac{1}{2\pi(400Hz)C1} = \frac{2.7V}{0.0285A} = 58.6 \Omega$$

C₁=
$$(\frac{1,67V}{0.0285A} \bullet 2\pi (400Hz))^{-1} = 6,79 \bullet 10^{-6} [As/V] = 6,79\mu\mu F$$

$$\frac{1}{2\pi(600Hz)C1} = \frac{1,67V}{0,0472A} = 35,4\Omega$$

$$(\frac{Uc}{Ic} \bullet 2\pi(f))^{-1} in [As/V] = F$$

$$(\frac{2.7V}{0.0472A} \bullet 2\pi(600Hz))^{-1} = [As/V] = 4.64\mu F$$

2.2.2 Frequenzverhalten des Kondensators C2

Tabelle:

Frequenzverhalten (C2) - Messung		Auswertung		
f [Hz]	I [mA]	U [V] (konstant)	Χ _c [Ω]	C ₂ [µF]
1000	82,2	2,85	34,7	4,59
800	66,2	2,85	43,1	4,62
600	49,8	2,85	57,2	4,64
400	33,9	2,85	84,1	4,73
200	17,0	2,85	168	4,75

Rechenweg und Erklärung:

Die kapazitive Induktivität kann durch dieselbe Formel:

$$X_c = \frac{1}{2\pi f C} = \frac{U_c}{I_c}$$

$$\frac{1}{[Hz][F]} = \frac{1}{[1/s][As/V]} = [V/A] = [\Omega]$$

berechnet werden.

Somit ist X_c=

$$\frac{2,85V}{0,0822A} = 34,7\Omega$$

$$\frac{2,85V}{0,0662A} = 43,1\Omega$$

und C_2 =

$$\left(\frac{Uc}{Ic} \bullet 2\pi(f)\right)^{-1} in \left[As/V\right] = F$$

$$(\frac{2,85V}{0.0822A} \bullet 2\pi (1000Hz))^{-1} = 4,59\mu$$
F

$$(\frac{2,85V}{0,0662A} \bullet 2\pi(800Hz))^{-1} = 4,62\mu$$
F

Diese Ergebnisse zeigen, dass der Zusammenhang zwischen Kapazität und Frequenz nicht linear ist.

Diagramm: Frequenzverhalten des Kondensators:

Erklärung des Verhaltens:

Das Diagramm veranschaulicht den nichtlinearen Zusammenhang zwischen dem Kapazitiven Blindwiderstand und der Frequenz. Desto höher die Frequenz, desto niedriger der Blindwiderstand. Das bedeutet, dass der Wechselstrom bei höheren Frequenzen weniger von dem Kondensator beeinflusst wird, da der Kondensator weniger Zeit für die Auf- und Entladung hat.

2.3 Versuch: Wechselstromverhalten einer Spule

Widerstandsmessung Rcu:

 $R_{CU} = 2,2\Omega$

Frequenzverhalten - Messung		Auswertung			
f [Hz]	I [mA]	U _{eff} [V] (konstant)	Ζ [Ω]	Χ _L [Ω]	L [mH] 2,2 steht drauf
2000	35,55	1	28,11	26,01	2,07
4000	18,44	1	54,23	52,13	2,0741
6000	12,52	1	79,87	77,77	2,0629
8000	9,32	1	107,3	105,2	2,092
10000	7,46	1	134,05	131,94	2,01

Rechenweg und Erklärung:

Der Scheinwiderstand kann durch folgender Formel berechnet werden:

$$Z = \frac{U_{ges}}{I_C}$$

somit ist Z:

$$Z_{1=} \frac{1V}{0.03555A}$$
=28,11 Ω

$$Z_{2=} \frac{1V}{0,01844A}$$
=54,23 Ω

$$Z_{3=} = \frac{1V}{0.01252A}$$
=79,87 Ω

$$Z_{4=} = \frac{1V}{0,00932A} = 107,3 \Omega$$

$$Z_{5=} \frac{1V}{0.00746A}$$
=134,05 Ω

Der Blindwiderstand:

Zur Berechnung von X_L benötigt man zunächst die Spulenspannung U_L

$$U_L = U_{ges} - U_{CU}$$

$$U_{CU} = R_{CU} \bullet I$$

und hier I ist für alle Fälle zu setzen, d.h. von 2KHz bis 10KHz :

 $U_{CU1} = 0,074697 V$

U_{CU2}= 0,038724 V

U_{CU3}= 0,026292 V

```
\begin{array}{l} U_{CU4} \!\!\!\! = 0,\!019572 \; V \\ U_{CU5} \!\!\!\! = 0,\!015666 \; V \\ mit \; U_{ges} \!\!\!\! = 1 \; V \; ist : \\ U_{L1} \!\!\!\! = \!\!\!\! 1 \; V - 0,\!074697 \; V \!\!\!\! = 0,\!925303 \; V \\ U_{L2} \!\!\!\! = 0,\!961276 \; V \\ U_{L3} \!\!\!\! = 0,\!973708 \; V \\ U_{L4} \!\!\!\! = 0,\!980428 \; V \\ U_{L5} \!\!\!\! = 0,\!984334 \; V \end{array}
```

Jetzt man kann die Werten von U_L in folgender Formel einsetzen :

$$X_L = \frac{U_L}{I_L} =$$

 $X_{L1} = 26,01 \Omega$

 $X_{L2} = 52,13 \Omega$

 $X_{L3} = 77,77 \Omega$

 $X_{L4} = 105,2 \Omega$

 $X_{L5} = 131,94 \Omega$

Die folgende Formel wird verwendet, um L zu bestimmen:

$$L = \frac{X_L}{2\pi f}$$

Diagramm:

Erklärung des Verhaltens:

Das Diagramm zeigt das Verhalten des induktiven Blindwiderstand X_L in Abhängigkeit von der Frequenz und man sieht, dass der Blindwiderstand mit steigender Frequenz zunimmt. Die Spule hat einen kleinen Gleichstromwiderstand und einen frequenzabhängigen Wechselstromwiderstand.

3.4 Versuch: Messungen der Phase

Problem mit Messung:

Am Oszilloskop könnte eingestellt werden:

- 1. Kanal 1 Aktiv da gibt es Invert Funktion die aktuell OFF ist. Beim Einschalten wird blaues invertiert, sodass es ähnlich aussieht wie gelbe sinuswelle
- 2. Selbe. Bei ON sind aligned.

Diagramm:

$$\varphi = -9\mathring{0} = -\frac{\pi}{2}$$

Ändert man die Frequenzen, ändert sich auch das Verhalten der Schwingungen und je kleiner die Frequenz, desto länger ist die Schwingungsdauer, also die Periodedauer T.

A- Aus der Beobachtung erkennt man, dass es einen Phasenverschiebungswinkel von -90° gibt.

B- Bleibt unverändert, also konstant, da sich I_C und X_C bei Frequenzänderung aufheben