Scheduling

COSC-361 Stephen Marz

1

Scheduling

· The act of picking which process(es) will use the CPU and in which order.

Short Term vs Long Term

- · Long term is given to new processes.
 - Much like a "promise" that the scheduler will get to it sometime.
- Short term is given to those "tenured" processes.
 - · Has more control and guarantees to already executing processes.

3

COSC 361 1

Cooperative Scheduling

- · Cooperative scheduling cannot halt a running process.
 - The process runs until it:
 - Yields
 - · Waits for a resource
- Can lead to starvation.

Starvation

- The point a which a process has not given enough CPU and the effects are apparent.
- · Example: a customer keeps the waiter at their table, and hence you're unable to order your food.

Preemptive Scheduling

- The OS will interrupt a process to give another a share of the CPU.
- · Can still lead to starvation for critical processes.

COSC 361

6

2

Prioritization

- Some processes may be prioritized above others.
 - They get more time on the CPU than others.
- Starvation can occur if high-priority processes keep getting the CPU over low-priority processes.

ENNESSEE T

7

Arbitration

- What happens if two processes have equal priority?
- Schedulers may incorporate arbitration rules based on:
 - · Creation time
 - · CPU Runtime
 - # of context switches

8 13-Feb-19

NNESSEE 1

8

Batch Scheduling

- Batch scheduling assumes the start and end times are known.
 - · Batch processes run until they're done.
 - Cooperative
- · FCFS (first-come, first-served)
 - The first process uses the CPU until it's done, then the second, then the third, and so on.
- SJF (shortest job first)
 - The scheduler sorts all processes in their runtime order (shortest first).
 - · Most efficient type of batch scheduling algorithm.

9

NNESSEE T

COSC 361 3

Interactive Scheduling

- · Processes with an indefinite runtime.
 - · Most process you work with are interactive.
- · Algorithms
 - · Round-robin
 - · Multi-level
 - · Multi-level feedback

TENNESSEE T

10

Real-time Scheduling

- · Soft-real-time
 - Process must run at a certain time +/- some "slop".
- Hard-real-time
 - Process run at a certain time +/- a very minimal amount of "slop".

11

ENNESSEE T

Definitions

- Quantum (Q) The amount of CPU time a process gets per context switch.
- Quantum Multiplier (xQ) The coefficient given to a Quantum.
 - Ex: 2Q means a process is given 2x the CPU time.

2 13-Feb-19 COS

TENNESSEE T

12

COSC 361 4

Round Robin Scheduling · Priorities are ignored · Starts at the top of the queue, goes to the next, then the next, and so forth. · At the end of the queue, it goes back to the top. · Problems Inefficient

- · Can't handle priorities
- · Can lead to starvation for larger process lists.

13

Multilevel Scheduling

- · Sorts processes in a sub-list based on its priority.
 - · Requires a queue for each potential priority. Ex: Priorities range from 1 to 20 -- we need 20 queues.
- · Round robin is used in each sub-list.
- · Higher priority processes can prevent lower priority processes from ever running.
 - As long as one higher-priority process is running, no lowerpriority process ever runs.

14

Multilevel Feedback

- · Fixes starvation in ML scheduling by dynamically changing priorities.
- · After a process runs, its priority is decremented and it is moved into the next lower queue.
- · This prevents higher priority processes from hogging the CPU.

15

COSC 361 5

MLF Scheduling

- · All processes enter the lowest priority queue N.
 - After process runs, it is put into N-1 queue.
- Queue N is given Q CPU time
- Queue N-1 is given 2Q CPU time
- Queue N-2 is given 3Q CPU time
 - Some MLF algorithms always double Q, but this can lead to unresponsive interactivity amongst processes.
 - · Longer time quantum reduces impact of context switching time.
- Priority is inversely correlated with CPU time. (To favor shorter processes).

16 13-Fe

COSC 361

TENNESSEE 7

16

Completely Fair Scheduler

- · CFS is default Linux scheduler
- It attempts to have a level vruntime
 - vruntime = Amount of CPU a process has been given through its lifetime.
- · Uses red-black trees keyed on vruntime
 - Lowest vruntime always hits the leaf on the leftmost branch.
 - Very efficient to grab next process for scheduling.

17 13-Feb

17

TENNESSEE T

18

COSC 361 6