

Very low drop voltage regulators with inhibit

Datasheet - production data

Features

- Very low dropout voltage (0.4 V)
- Very low quiescent current
- Typ. 50 μA in OFF mode, 600 μA in ON mode
- Output current up to 250 mA
- Logic controlled electronic shutdown
- Output voltages: 2.7; 3.3; 3.5; 5; 8; 12 V
- Automotive-grade product: 2.7 V, 3.3 V V_{OUT} in SO-8 package only
- · Internal current and thermal limit
- Only 2.2 µF for stability
- Available in ± 1% (AB) or 2% (C) selection at 25 °C
- Supply voltage rejection: 70 dB typ. for 5 V version
- Temperature range: from -40 to 125 °C

Description

The L4931 is a very low drop regulator available in SO-8, DPAK, PPAK and TO-92 packages and in a wide range of output voltages.

The very low drop voltage (0.4 V) and the very low quiescent current make it particularly suitable for low noise, low power applications and especially in battery-powered systems.

A TTL compatible shutdown logic control function is available in PPAK and SO-8 packages. This means that when the device is used as a local regulator, a part of the board can be put in standby mode, decreasing the total power consumption. It requires only a 2.2 µF capacitor for stability allowing space and cost saving.

The L4931 is available as automotive-grade in SO-8 package only. This device is qualified according to the specification AEC-Q100 of the automotive market, in the temperature range from 40 °C to 125 °C, and the statistical tests: PAT, SYL, SBL are performed.

Contents L4931

Contents

1	Diagram 5
2	Pin configuration 6
3	Maximum ratings
4	Application circuit 8
5	Electrical characteristics9
6	Typical application
7	Package mechanical data
8	Packaging mechanical data
9	Ordering information
10	Revision history

List of tables

List of tables

Table 1.	Absolute maximum ratings	7
Table 2.	Thermal data	
Table 3.	L4931Cxx27 electrical characteristics	9
Table 4.	L4931Cxx27-TRY (automotive-grade) electrical characteristics	10
Table 5.	L4931ABxx33 electrical characteristics	11
Table 6.	L4931Cxx33 electrical characteristics	12
Table 7.	L4931Cxx33-TRY (automotive-grade) electrical characteristics	13
Table 8.	L4931ABxx35 electrical characteristics	14
Table 9.	L4931Cxx35 electrical characteristics	15
Table 10.	L4931ABxx50 electrical characteristics	16
Table 11.	L4931Cxx50 electrical characteristics	17
Table 12.	L4931ABxx80 electrical characteristics	18
Table 13.	L4931Cxx80 electrical characteristics	19
Table 14.	L4931ABxx120 electrical characteristics	20
Table 15.	L4931Cxx120 electrical characteristics	21
Table 16.	TO-92 mechanical data	23
Table 17.	PPAK mechanical data	25
Table 18.	DPAK mechanical data	27
Table 19.	SO-8 mechanical data	
Table 20.	TO-92 tape and reel mechanical data	31
Table 21.	PPAK and DPAK tape and reel mechanical data	
Table 22.	SO-8 tape and reel mechanical data	
Table 23.	Order codes	36
Table 24.	Document revision history	37

List of figures L4931

List of figures

Figure 1.	Schematic diagram	5
Figure 2.	Pin connections (top view)	
Figure 3.	Test circuit	
Figure 4.	Line regulation vs temperature	. 22
Figure 5.	Dropout voltage vs temperature	. 22
Figure 6.	Supply current vs input voltage	
Figure 7.	Supply current vs temperature	. 22
Figure 8.	Short-circuit current vs dropout voltage	. 22
Figure 9.	SVR vs input voltage signal frequency	. 22
Figure 10.	TO-92 drawings	. 24
Figure 11.	PPAK drawings	. 26
Figure 12.	DPAK drawings	. 28
Figure 13.	DPAK footprint	. 29
Figure 14.	SO-8 drawings	. 30
Figure 15.	TO-92 tape and reel dimensions	. 32
Figure 16.	Tape for PPAK and DPAK	. 34
Figure 17.	Reel for PPAK and DPAK	. 34
Figure 18	SO-8 tane and real dimensions	35

L4931 Diagram

1 Diagram

۷_{IN} V_{OUT} CURRENT LIMIT INHIBIT CONTROL START REFERENCE INHIBIT VOLTAGE DRIVER ERROR AMPLIFIER TERM. PROTEC. O-GND CS12740

Figure 1. Schematic diagram

Pin configuration L4931

2 Pin configuration

Figure 2. Pin connections (top view)

L4931 Maximum ratings

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VI	DC Input voltage	20	V
I _O	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-40 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter	TO-92	DPAK	SO-8	Unit
R _{thJC}	Thermal resistance junction-case		8	20	°C/W
R _{thJA}	Thermal resistance junction-ambient	200	100	55	°C/W

Application circuit L4931

4 Application circuit

Figure 3. Test circuit

Table 3. L4931Cxx27 electrical characteristics

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
	Outrot valta sa	$I_O = 5 \text{ mA}, V_I = 4.7$	V	2.646	2.7	2.754	V
Vo	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 4.7$	V, T _A = -25 to 85 °C	2.592		2.808	V
V _I	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
DV _O	Line regulation	$V_{I} = 3.4 \text{ to } 20 \text{ V}, I_{O}$	= 0.5 mA		3	18	mV
DV _O	Load regulation (1)	$V_I = 3.6 \text{ V}, I_O = 0.5$	to 250 mA		3	18	mV
	Quiescent current	$V_{I} = 3.6 \text{ to } 20 \text{ V}, I_{O}$	= 0 mA		0.6	1	Λ
I _d	ON mode	$V_{I} = 3.6 \text{ to } 20 \text{ V}, I_{O}$	= 250 mA		4	6	mA
	OFF mode	V _I = 6 V			50	100	μΑ
			f = 120 Hz		74		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}$ $V_I = 4.6 \pm 1 \text{ V}$	f = 1 kHz		71		dB
		1 1 1 1 1 1	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kl	-lz		50		μV
	D (1)	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage (1)	$I_O = 250 \text{ mA}, T_A = -$	40 to 125 °C			0.8	V
V _{IL}	Control input logic low	$T_A = -40 \text{ to } 125 ^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	$T_A = -40 \text{ to } 125 ^{\circ}\text{C}$					V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 W,	I _O = 0 to 250 mA	2	10		μF

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

(Refer to the test circuits, T_A = -40 to 125 °C, C_I = 0.1 $\mu F,\, C_O$ = 2.2 μF unless otherwise specified).

Table 4. L4931Cxx27-TRY (automotive-grade) electrical characteristics

Symbol	Parameter	Test o	onditions	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 5 \text{ mA}, V_I = 4.7$	V, T _A = 25 °C	2.646	2.7	2.754	V
Vo	Output voltage	$I_O = 5 \text{ mA}, V_I = 4.7$	· V	2.592		2.808	V
VI	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit	T _A = 25 °C			300		mA
ΔV_{O}	Line regulation	$V_{I} = 3.4 \text{ to } 20 \text{ V}, I_{C}$	= 0.5 mA			20	mV
ΔV_{O}	Load regulation	$V_I = 3.6 \text{ V}, I_O = 0.5$	to 250 mA			38	mV
	Quiescent current	$V_{I} = 3.6 \text{ to } 20 \text{ V}, I_{C}$	= 0 mA			1	mA
I _d	ON mode	$V_1 = 3.6 \text{ to } 20 \text{ V}, I_C$	= 250 mA			6	mA
	OFF mode	V _I = 6 V				100	μΑ
		I _O = 5 mA	f = 120 Hz		74		
SVR	Supply voltage rejection	$V_1 = 4.6 \pm 1 \text{ V}$	f = 1 kHz		71		dB
		T _A = 25 °C	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz, T _A = 25 °C		50		μV
\/	Dropout voltage	$I_{O} = 250 \text{ mA}, T_{A} =$	25 °C		0.4	0.6	V
V _d	Dropout voltage	I _O = 250 mA				0.82	V
V _{IL}	Control input logic low					0.82	V
V _{IH}	Control input logic high			2			V
I ₁	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}, T_{A} = 25 ^{\circ}\text{C}$			10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω T _A = 25 °C	$I_{O} = 0$ to 250 mA,	2	10		μF

Table 5. L4931ABxx33 electrical characteristics

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
\/	Output voltage	$I_O = 5 \text{ mA}, V_I = 5.3$	V	3.267	3.3	3.333	V
Vo	Output voltage	$I_O = 5 \text{ mA}, V_I = 5.3$	V, T _A =-25 to 85 °C	3.234		3.366	V
VI	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_I = 4 \text{ to } 20 \text{ V}, I_O =$	0.5 mA		3	15	mV
ΔV_{O}	Load regulation (1)	V _I = 4.2 V, I _O = 0.5	to 250 mA		3	15	mV
	Quiescent current	$V_{I} = 4.2 \text{ to } 20 \text{ V}, I_{O}$	= 0 mA		0.6	1	^
I _d	ON mode	$V_{I} = 4.2 \text{ to } 20 \text{ V}, I_{O}$	= 250 mA		4	6	mA
	OFF mode	V _I = 6 V			50	100	μA
			f = 120 Hz		73		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}$ $V_I = 5.2 \pm 1 \text{ V}$	f = 1 kHz		70		dB
		V = 3.2 ± 1 V	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kH	-lz		50		μV
.,	D (1)	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage (1)	$I_O = 250 \text{ mA}, T_A = -4$	40 to 125 °C			0.8	V
V _{IL}	Control input logic low	$T_A = -40 \text{ to } 125 ^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω ,	I _O = 0 to 250 mA	2	10		μF

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Table 6. L4931Cxx33 electrical characteristics

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 5 \text{ mA}, V_I = 5.3$	V	3.234	3.3	3.366	V
Vo	Output voltage	$I_O = 5 \text{ mA}, V_I = 5.3$	V, T _A =-25 to 85 °C	3.168		3.432	V
VI	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{I} = 4.1 \text{ to } 20 \text{ V}, I_{O}$	= 0.5 mA		3	18	mV
ΔV_{O}	Load regulation (1)	V _I = 4.3 V, I _O = 0.5	to 250 mA		3	18	mV
	Quiescent current	$V_{I} = 4.3 \text{ to } 20 \text{ V}, I_{O}$	= 0 mA		0.6	1	
I _d	ON mode	$V_{I} = 4.3 \text{ to } 20 \text{ V}, I_{O}$	= 250 mA		4	6	mA
	OFF mode	V _I = 6 V			50	100	μA
			f = 120 Hz		73		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}$ $V_I = 5.3 \pm 1 \text{ V}$	f = 1 kHz		70		dB
		V - 0.5 ± 1 V	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 k	Hz		50		μV
	D (1)	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage (1)	$I_O = 250 \text{ mA}, T_A = -$	40 to 125°C			0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	$T_A = -40 \text{ to } 125 \text{ °C}$	T _A = -40 to 125 °C				V
I _I	Control input current	$V_1 = 6 \text{ V}, V_C = 6 \text{ V}$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω ,	I _O = 0 to 250 mA	2	10		μF

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

(Refer to the test circuits, T_A = -40 to 125 °C, C_I = 0.1 $\mu F,\, C_O$ = 2.2 μF unless otherwise specified).

Table 7. L4931Cxx33-TRY (automotive-grade) electrical characteristics

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 5 \text{ mA}, V_I = 5.3$	V, T _A = 25 °C	3.234	3.3	3.366	V
Vo	Output voltage	$I_O = 5 \text{ mA}, V_I = 5.3$	V	3.168		3.432	V
VI	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit	T _A = 25 °C			300		mA
ΔV_{O}	Line regulation	V _I = 4.1 to 20 V, I _O :	= 0.5 mA			20	mV
ΔV_{O}	Load regulation	$V_1 = 4.3 \text{ V}, I_0 = 0.5 \text{ f}$	to 250 mA			38	mV
	Quiescent current	$V_{I} = 4.3 \text{ to } 20 \text{ V}, I_{O} = 4.3 \text{ to } 10 \text{ V}$	= 0 mA			1	mA
I _d	ON mode	$V_I = 4.3 \text{ to } 20 \text{ V}, I_O = 100 \text{ V}$	= 250 mA			6	IIIA
	OFF mode	V _I = 6 V				100	μΑ
		$I_{O} = 5 \text{ mA}$	f = 120 Hz		73		
SVR	Supply voltage rejection	$V_1 = 5.3 \pm 1 \text{ V}$	f = 1 kHz		70		dB
		T _A = 25 °C	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kH	Hz, T _A = 25 °C		50		μV
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Dropout voltage	$I_O = 250 \text{ mA}, T_A = 2$	5 °C		0.4	0.6	V
V _d	Dropout voltage	I _O = 250 mA				0.82	V
V _{IL}	Control input logic low					0.82	V
V _{IH}	Control input logic high			2			V
I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}, T_{C} = 6 \text{ V}$	V _I = 6 V, V _C = 6 V, T _A = 25 °C		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , T _A = 25 °C	$I_{O} = 0 \text{ to } 250 \text{ mA},$	2	10		μF

Table 8. L4931ABxx35 electrical characteristics

Symbol	Parameter	Test	conditions	Min.	Тур.	Max.	Unit							
\ <u>/</u>	Output valtage	$I_O = 5 \text{ mA}, V_I = 5.9$	5 V	3.465	3.5	3.535	V							
Vo	Output voltage	$I_O = 5 \text{ mA}, V_I = 5.5$	5 V, T _A =-25 to 85 °C	3.43		3.57	V							
V _I	Operating input voltage	I _O = 250 mA				20	V							
l _{out}	Output current limit				300		mA							
ΔV_{O}	Line regulation	$V_{I} = 4.2 \text{ to } 20 \text{ V}, I_{C}$) = 0.5 mA		3	15	mV							
ΔV_{O}	Load regulation (1)	$V_1 = 4.4 \text{ V}, I_0 = 0.5$	5 to 250 mA		3	15	mV							
	Quiescent current	$V_1 = 4.4 \text{ to } 20 \text{ V}, I_0$) = 0 mA		0.6	1	A							
I _d	ON mode	$V_1 = 4.4 \text{ to } 20 \text{ V}, I_0$) = 250 mA		4	6	mA							
	OFF mode	V _I = 6 V			50	100	μΑ							
			f = 120 Hz		73									
SVR	Supply voltage rejection	•	•	•	•		•	_	$I_{O} = 5 \text{ mA}$ $V_{I} = 5.4 \pm 1 \text{ V}$	f = 1 kHz		70		dB
		V = 0.4 ± 1 V	f = 10 kHz		55									
eN	Output noise voltage	B = 10 Hz to 100 H	(Hz		50		μV							
	Dropout voltage (1)	I _O = 250 mA			0.4	0.6	V							
V _d	Dropout voltage (*)	$I_O = 250 \text{ mA}, T_A =$	-40 to 125 °C			0.8	V							
V _{IL}	Control input logic low	$T_A = -40 \text{ to } 125 ^{\circ}\text{C}$	T _A = -40 to 125 °C			0.8	V							
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V							
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ							
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω	e, I _O = 0 to 250 mA	2	10		μF							

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Table 9. L4931Cxx35 electrical characteristics

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
V	Output valtage	$I_O = 5 \text{ mA}, V_I = 5.5$	V	3.43	3.5	3.57	V
Vo	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 5.5$	V, T _A =-25 to 85 °C	3.36		3.64	V
VI	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_1 = 4.3 \text{ to } 20 \text{ V}, I_0$	= 0.5 mA		3	18	mV
ΔV_{O}	Load regulation (1)	$V_1 = 4.5 \text{ V}, I_0 = 0.5$	to 250 mA		3	18	mV
	Quiescent current	$V_{I} = 4.5 \text{ to } 20 \text{ V}, I_{O}$	= 0 mA		0.6	1	
I _d	ON mode	$V_{I} = 4.5 \text{ to } 20 \text{ V}, I_{O}$	= 250 mA		4	6	mA
	OFF mode	V _I = 6 V			50	100	μA
			f = 120 Hz		73		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}$ $V_I = 5.5 \pm 1 \text{ V}$	f = 1 kHz		70		dB
		V = 0.5 ± 1 V	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kl	Hz		50		μV
	D (1)	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage (1)	$I_O = 250 \text{ mA}, T_A = -4$	40 to 125 °C			0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C	T _A = -40 to 125 °C				V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω ,	I _O = 0 to 250 mA	2	10		μF

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Table 10. L4931ABxx50 electrical characteristics

Symbol	Parameter	Test	conditions	Min.	Тур.	Max.	Unit
\ <u>/</u>	Output valtage	$I_{O} = 5 \text{ mA}, V_{I} = 7$	V	4.95	5	5.05	V
Vo	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 7$	V, T _A =-25 to 85 °C	4.9		5.1	V
V _I	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_{I} = 5.8 \text{ to } 20 \text{ V}, I_{G}$	_O = 0.5 mA		3.5	17.5	mV
ΔV_{O}	Load regulation (1)	$V_I = 6 \text{ V}, I_O = 0.5$	to 250 mA		3	15	mV
	Quiescent current	V _I = 6 to 20 V, I _O = 0 mA			0.6	1	A
I _d	ON mode	V _I = 6 to 20 V, I _O = 250 mA			4	6	mA
	OFF mode	V _I = 6 V	V _I = 6 V		50	100	μA
			f = 120 Hz		70		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}$ $V_{I} = 7 \pm 1 \text{ V}$	f = 1 kHz		67		dB
		V - 7 ± 1 V	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100	kHz		50		μV
	Dran aut walta na (1)	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage (1)	I _O = 250 mA, T _A = -40 to 125 °C				0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
I ₁	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$	$V_1 = 6 \text{ V}, V_C = 6 \text{ V}$		10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 g	2, I _O = 0 to 250 mA	2	10		μF

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Table 11. L4931Cxx50 electrical characteristics

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
\/	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 7 \text{ V}$		4.9	5	5.1	V
Vo	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 7 \text{ V},$	$I_O = 5 \text{ mA}, V_I = 7 \text{ V}, T_A = -25 \text{ to } 85 \text{ °C}$			5.2	V
VI	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔV _O	Line regulation	$V_{I} = 5.8 \text{ to } 20 \text{ V}, I_{O}$	= 0.5 mA		3.5	17.5	mV
ΔV_{O}	Load regulation (1)	$V_1 = 6 \text{ V}, I_0 = 0.5 \text{ to}$	250 mA		3	15	mV
	Quiescent current V _I = 6 to 20 V, I _O = 0 mA		0 mA		0.6	1	•
I _d	ON mode	$V_1 = 6 \text{ to } 20 \text{ V}, I_0 =$	V _I = 6 to 20 V, I _O = 250 mA		4	6	mA
	OFF mode	V _I = 6 V	V _I = 6 V		50	100	μA
			f = 120 Hz		70		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}$ $V_I = 7 \pm 1 \text{ V}$ $f = 1 \text{ kHz}$	f = 1 kHz		67		dB
		V - 7 ± 1 V	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kH	-lz		50		μV
.,	D (1)	I _O = 250 mA			0.4	0.6	V
V _d	Dropout voltage (1)	I _O = 250 mA, T _A = -40 to 125 °C				0.8	V
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$	<u>''</u>		10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω ,	I _O = 0 to 250 mA	2	10		μF

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Table 12. L4931ABxx80 electrical characteristics

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit					
V	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 10^{\circ}$	V	7.92	8	8.08	V					
Vo	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 10^{\circ}$	V, T _A =-25 to 85 °C	7.84		8.16	V					
VI	Operating input voltage	I _O = 250 mA				20	V					
l _{out}	Output current limit				300		mA					
ΔV_{O}	Line regulation	$V_{I} = 8.8 \text{ to } 20 \text{ V}, I_{O}$	= 0.5 mA		4	20	mV					
ΔV_{O}	Load regulation (1)	$V_I = 9 \text{ V}, I_O = 0.5 \text{ to}$	250 mA		3	15	mV					
	Quiescent current	$V_{I} = 9 \text{ to } 20 \text{ V}, I_{O} =$	0 mA		0.8	1.6	A					
I _d	ON mode	$V_{I} = 9 \text{ to } 20 \text{ V}, I_{O} =$	250 mA		4.5	7	mA					
	OFF mode	V _I = 6 V	V _I = 6 V		70	140	μA					
		$I_O = 5 \text{ mA}$	f = 120 Hz		67							
SVR	Supply voltage rejection		•		•	_		$I_O = 5 \text{ mA}$ $V_I = 10 \pm 1 \text{ V}$	f = 1 kHz		64	
		V = 10 ± 1 V	f = 10 kHz		55							
eN	Output noise voltage	B = 10 Hz to 100 kH	-lz		50		μV					
	D	I _O = 250 mA			0.4	0.6	V					
V _d	Dropout voltage (1)	I _O = 250 mA, T _A = -40 to 125 °C				0.8	V					
V _{IL}	Control input logic low	$T_A = -40 \text{ to } 125 ^{\circ}\text{C}$				0.8	V					
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V					
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ					
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω ,	I _O = 0 to 250 mA	2	10		μF					

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Table 13. L4931Cxx80 electrical characteristics

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit						
\/	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 10 \text{ N}$	I _O = 5 mA, V _I = 10 V		8	8.16	V						
Vo	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 10 \text{ N}$	$_{O}$ = 5 mA, V_{I} = 10 V, T_{A} =-25 to 85 °C			8.32	V						
V _I	Operating input voltage	I _O = 250 mA				20	V						
l _{out}	Output current limit				300		mA						
ΔV _O	Line regulation	$V_{I} = 8.9 \text{ to } 20 \text{ V}, I_{O}$	= 0.5 mA		4	24	mV						
ΔV_{O}	Load regulation (1)	$V_I = 9.1 \text{ V}, I_O = 0.5$	to 250 mA		3	18	mV						
	Quiescent current	$V_{I} = 9.1 \text{ to } 20 \text{ V}, I_{O}$	= 0 mA		0.8	1.6	•						
I _d	ON mode	V _I = 9.1 to 20 V, I _O = 250 mA			4.5	7	mA						
	OFF mode	V _I = 6 V	V _I = 6 V		70	140	μA						
	SVR I Supply voltage rejection I *		f = 120 Hz		67								
SVR		$I_0 = 5 \text{ mA}$	•	•		•	•	_	$I_O = 5 \text{ mA}$ $V_I = 10.1 \pm 1 \text{ V}$	f = 1 kHz		64	
		V = 10.1 ± 1 V	f = 10 kHz		55								
eN	Output noise voltage	B = 10 Hz to 100 kH	lz		50		μV						
.,	D (1)	I _O = 250 mA			0.4	0.6	V						
V _d	Dropout voltage (1)	I _O = 250 mA, T _A = -40 to 125 °C				0.8	V						
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V						
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V						
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA						
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω ,	I _O = 0 to 250 mA	2	10		μF						

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Table 14. L4931ABxx120 electrical characteristics

Symbol	Parameter	Test	conditions	Min.	Тур.	Max.	Unit												
V	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 14$	ł V	11.88	12	12.12	V												
Vo	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 14$	↓ V, T _A =-25 to 85 °C	11.76		12.24	V												
VI	Operating input voltage	I _O = 250 mA				20	V												
l _{out}	Output current limit				300		mA												
ΔV_{O}	Line regulation	V _I = 12.8 to 20 V,	I _O = 0.5 mA		4	20	mV												
ΔV_{O}	Load regulation (1)	V _I = 13 V, I _O = 0.5	to 250 mA		3	15	mV												
	Quiescent current	$V_{I} = 13 \text{ to } 20 \text{ V}, I_{C}$, = 0 mA		0.8	1.6	Л												
I _d	ON mode	V _I = 13 to 20 V, I _O = 250 mA			4.5	7	mA												
	OFF mode	V _I = 6 V	V _I = 6 V		90	180	μA												
			f = 120 Hz		64														
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}$			_	•		•	_	•	$I_{O} = 5 \text{ mA}$ $V_{I} = 14 \pm 1 \text{ V}$		•	_	f = 1 kHz		61		dB
		V - 14 ± 1 V	f = 10 kHz		55														
eN	Output noise voltage	B = 10 Hz to 100	kHz		50		μV												
.,	D (1)	I _O = 250 mA			0.4	0.6	V												
V _d	Dropout voltage (1)	$I_O = 250 \text{ mA}, T_A =$	-40 to 125 °C			0.8	V												
V _{IL}	Control input logic low	$T_A = -40 \text{ to } 125 ^{\circ}\text{C}$	T _A = -40 to 125 °C			0.8	V												
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V												
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA												
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω	2, I _O = 0 to 250 mA	2	10		μF												

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Table 15. L4931Cxx120 electrical characteristics

Symbol	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit						
\/	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 14 \text{ V}$	V	11.76	12	12.24	V						
Vo	Output voltage	$I_{O} = 5 \text{ mA}, V_{I} = 14 \text{ N}$	V, T _A =-25 to 85 °C	11.52		12.48	V						
VI	Operating input voltage	I _O = 250 mA				20	V						
l _{out}	Output current limit				300		mA						
ΔV_{O}	Line regulation	$V_1 = 12.9 \text{ to } 20 \text{ V}, I_C$) = 0.5 mA		4	24	mV						
ΔV_{O}	Load regulation (1)	$V_I = 13.1 \text{ V}, I_O = 0.5$	5 to 250 mA		3	18	mV						
	Quiescent current	escent current V _I = 13.1 to 20 V, I _O = 0 mA			0.8	1.6	^						
I _d	ON mode	$V_1 = 13.1 \text{ to } 20 \text{ V}, I_C$	V _I = 13.1 to 20 V, I _O = 250 mA		4.5	7	mA						
	OFF mode	V _I = 6 V	V _I = 6 V		90	180	μA						
	SVR I Supply voltage rejection 1		f = 120 Hz		64								
SVR		$I_0 = 5 \text{ mA}$	•	•	•		•	$I_O = 5 \text{ mA}$ $V_I = 14.1 \pm 1 \text{ V}$	•	f = 1 kHz		61	
		V - 14.1 ± 1 V	f = 10 kHz		55								
eN	Output noise voltage	B = 10 Hz to 100 kH	lz		50		μV						
.,	D (1)	I _O = 250 mA			0.4	0.6	V						
V _d	Dropout voltage (1)	$I_O = 250 \text{ mA}, T_A = -4$	10 to 125 °C			0.8	V						
V _{IL}	Control input logic low	T _A = -40 to 125 °C				0.8	V						
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V						
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ						
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω ,	I _O = 0 to 250 mA	2	10		μF						

^{1.} For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Typical application L4931

6 Typical application

Figure 4. Line regulation vs temperature

Figure 5. Dropout voltage vs temperature

Figure 6. Supply current vs input voltage

l_{out}(mA)

300

0

Figure 7. Supply current vs temperature

Figure 8. Short-circuit current vs dropout voltage

Figure 9. SVR vs input voltage signal frequency

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 16. TO-92 mechanical data

Dim.		mm						
Dilli.	Min.	Тур.	Max.					
А	4.32		4.95					
b	0.36		0.51					
D	4.45		4.95					
E	3.30		3.94					
е	2.41		2.67					
e1	1.14		1.40					
L	12.70		15.49					
R	2.16		2.41					
S1	0.92		1.52					
W	0.41		0.56					
V		5°						

Figure 10. TO-92 drawings

Table 17. PPAK mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	2.2		2.4
A1	0.9		1.1
A2	0.03		0.23
В	0.4		0.6
B2	5.2		5.4
С	0.45		0.6
C2	0.48		0.6
D	6		6.2
D1		5.1	
Е	6.4		6.6
E1		4.7	
е		1.27	
G	4.9		5.25
G1	2.38		2.7
Н	9.35		10.1
L2		0.8	1
L4	0.6		1
L5	1		
L6		2.8	
R		0.20	
V2	0°		8°

"GATE" Note 6 Ε-THERMAL PAD *C2* B2-- E1 L2 D1 D L4 A 1 B (4x) Note 7 R С G SEATING PLANE Ľ6 L5 1 GAUGE PLANE 0,25 0078180_F

Figure 11. PPAK drawings

Table 18.DPAK mechanical data

Dim		mm	
Dim. —	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

E -THERMAL PAD c2 *L2* D1 Н <u>b(</u>2x) R C SEATING PLANE (L1) *V2* GAUGE PLANE 0,25 0068772_K

Figure 12. DPAK drawings

Figure 13. DPAK footprint (a)

a. All dimensions are in millimeters.

Table 19. SO-8 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А			1.75
A1	0.10		0.25
A2	1.25		
b	0.28		0.48
С	0.17		0.23
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
k	0°		8°
ccc			0.10

Figure 14. SO-8 drawings

8 Packaging mechanical data

Table 20. TO-92 tape and reel mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A1		4.80	
Т		3.80	
T1		1.60	
T2		2.30	
d		0.48	
Ро	12.5		12.9
P2	5.65		7.05
F1, F2	2.44	2.54	2.94
delta H		±2	
W	17.5	18.00	19
W0	5.7		6.3
W1	8.5		9.25
W2		0.50	
Н		18.50	18.70
H0	15.50		16.50
H1		25.00	
D0	3.8		4.2
t		0.90	
L1		3	
delta P		±1	
u		50	
Ф1		360	
Ф2		30	

Figure 15. TO-92 tape and reel dimensions

Table 21. PPAK and DPAK tape and reel mechanical data

Таре				Reel	
Dim	mm		Dim.	n	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Figure 16. Tape for PPAK and DPAK

34/38

Table 22. SO-8 tape and reel mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
Α			330		
С	12.8		13.2		
D	20.2				
N	60				
Т			22.4		
Ao	8.1		8.5		
Во	5.5		5.9		
Ko	2.1		2.3		
Po	3.9		4.1		
Р	7.9		8.1		

Figure 18. SO-8 tape and reel dimensions

Ordering information L4931

9 Ordering information

Table 23. Order codes

Packages					
TO-92	PPAK	DPAK	SO-8	SO-8 (automotive-grade)	Output voltage
			L4931CD27-TR	L4931CD27-TRY	2.7 V
L4931CZ33-AP		L4931CDT33-TR	L4931CD33-TR	L4931CD33-TRY	3.3 V
		L4931ABDT33-TR	L4931ABD33-TR		3.3 V
			L4931CD35-TR		3.5 V
		L4931ABDT35TR	L4931ABD35-TR		3.5 V
L4931CZ50-AP	L4931CPT50-TR	L4931CDT50-TR	L4931CD50-TR		5 V
		L4931ABDT50-TR	L4931ABD50-TR		5 V
			L4931CD80-TR		8 V
		L4931ABDT80-TR			8 V
			L4931CD120-TR		12 V
			L4931ABD120TR		12 V

L4931 Revision history

10 Revision history

Table 24. Document revision history

Date	Revision	Changes
21-Jun-2004	11	Document updating.
14-Jun-2006	12	Order codes updated.
31-Jan-2008	13	Added: Table 1 and new order codes for Automotive grade products.
20-Feb-2008	14	Modified: Table 23 on page 36.
11-Mar-2008	15	Modified: Table 1 on page 1 and Table 23 on page 36.
15-Jul-2008	16	Modified: Table 1 on page 1 and Table 23 on page 36.
18-Aug-2008	17	Modified: Table 23 on page 36.
30-Oct-2013	18	Changed the L4931ABxx and L4931Cxx to L4931. Updated: Description in cover page. Deleted table1: Device summary. Updated Figure 2: Pin connections (top view), Table 2: Thermal data, Section 5: Electrical characteristics and Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

