Projet numéro 4:

Anticipez les besoins en consommation de bâtiments pour la ville de Seattle

Thomas Zilliox
Janvier 2025

Présentation du Projet

Contexte

- La ville de Seattle veut être neutre en émissions de carbone en 2050.
- Des relevés très coûteux ont été réalisé dans un échantillon de bâtiment

Mission

- Prédire les émissions de CO2 et la consommation totale d'énergie des bâtiments non destinés à l'habitation.
- Évaluer l'importance de l'ENERGY STAR Score.

Sommaire

Résumé des étapes du projet :

- 1) Exploration des données et premier feature engineering
- 2) Algorithme de régression linéaire
- 3) Algorithmes plus complexes: RandomForest, SVM, etc...
- 4) Feature importance global et local

Deux parties:

- Premier filtrage du jeu de données
- Analyse exploratoire plus approfondie

Jeu de données initial : 3376 lignes et 46 colonnes

- Étude sur les bâtiments non-résidentielles (colonne 'BuildingType')
- Filtrage des données aberrantes : colonnes 'Outlier' et 'ComplianceStatus'
- Suppression des lignes dont les valeurs au sein de la colonne 'LargestPropertyUseType' sont nulles (20 lignes)
- Remplacement des valeurs nulles au sein des colonnes SecondLargestPropertyUseType et ThirdLargestPropertyUseType par les valeurs « Non renseigné »
- Remplacement des valeurs nulles au sein des colonnes SecondLargestPropertyUseTypeGFA et ThirdLargestPropertyUseTypeGFA par 0
- Suppression des colonnes non utiles

Jeu de données final : 1544 lignes et 31 colonnes

Corrélations entre les variables numériques :

Suppression des colonnes en doublons :

- 'Electricity(kWh)',
- 'NaturalGas(therms)',
- 'SiteEUIWN(kBtu/sf)',
- 'SourceEUIWN(kBtu/sf)',
- 'SiteEnergyUseWN(kBtu)'

Suppression des colonnes trop corrélées avec d'autres colonnes :

- 'SiteEUI(kBtu/sf)' avec SourceEUI(kBtu/sf)
- 'PropertyGFABuilding(s)' et 'LargestPropertyUseTypeGFA' avec 'PropertyGFATotal'

Création de nouvelles variables :

Âge du bâtiment, Ratio de consommation de gaz et Ratio de consommation d'électricité.

Regroupement des valeurs :

de 'LargestPropertyUseType' en 13 catégories.

Nouvelles suppressions des colonnes :

'SourceEUI(kBtu/sf)', 'SteamUse(kBtu)', 'Electricity(kBtu)', 'NaturalGas(kBtu)'et 'GHGEmissionsIntensity' car on doit se passer des relevés futurs.

Deuxième étape : Sélection des variables et premier algorithme

Trois parties:

Séparation des variables en deux catégories distinctes : catégorielles et numériques

Encodage des variables catégorielles (OneHotEncoder, OrdinalEncoder)

Standardisation des données pour optimiser l'algorithme (RobustScaler)

Deuxième étape : Feature Engineering et premier algorithme

Deuxième étape : Feature Engineering et premier algorithme

Suppression des valeurs extrêmes pour optimiser notre algorithme :

15000 12500 10000

- TotalGHGEmissions > 1000 : 41 lignes supprimées (-3%)
- SiteEnergyUse(kBtu) > 30000000 : 84 lignes supprimées (5,5%)

Avant suppression des valeurs extrêmes :

Après suppression des valeurs extrêmes :

Deuxième étape : Feature Engineering et premier algorithme

Premier essai : Régression linéaire

TotalGHGEmissions

SiteEnergyUse (kBtu)

Scores de l'algorithme

Root Mean Squared Error (RMSE):

131.370

R² Score (Accuracy):

0.269

Root Mean Squared Error (RMSE):

3630815.252

R² Score (Accuracy):

0.488

Troisième étape: Algorithmes plus complexes et validation croisée

Trois parties:

Essai d'algorithmes plus complexes : RandomForest, Extratrees, ElasticNet, SVM et GradientBoostingRegressor

Validation croisée pour optimiser les algorithmes de prédictions

Troisième étape : Algorithmes plus complexes et validation croisée

Troisième Étape: Approches des modélisations étudiées

Graphique des prédictions sans l'ENERGYSTARSCORE :

Troisième Étape: Approches des modélisations étudiées

Graphique des prédictions sans l'ENERGYSTARSCORE :

Troisième étape: Algorithmes plus complexes et validation croisée

Optimisation des hyperparamètres :

TotalGHGEmissions

Modèles testés :

- ExtraTreesRegressor
- GradientBoostingRegressor

5 validations croisées

Meilleurs résultats :

ExtraTreesRegressor GradientBoostingRegressor

Train Score

Test Score

SiteEnergyUse (kBtu)

ExtraTreesRegressor

5 validations croisées

Modèle le plus robuste possible : train score et test score qui ne soient pas trop éloignés

Troisième Étape: Approches des modélisations étudiées

Application de la validation croisée (GridSearchCV) :

Grille des paramètres :

ExtraTreesRegressor	GradientBoostingRegressor
'modeln_estimators':	'modeln_estimators':
[10,20, 50, 100],	[10,20, 50, 100],
'modelmax_depth': [None,	'modelmax_depth': [None,
10, 20,30],	10, 20,30],
'modelmin_samples_split':	'modelmin_samples_split':
[2, 5, 10,15]	[2, 5, 10,15]

Grille des paramètres :	
'modeln_estimators': [10,20, 50, 100],	
'modelmax_depth': [None, 10, 20,30],	
'modelmin_samples_split': [2, 5, 10,15]	

Meilleurs résultats :

Quatrième Étape : Features importances globale et locale

Deux parties:

Feature Importances local

Quatrième Étape: Features importances globale et locale

TotalGHGEmissions:

SiteEnergyUse(kBtu):

Quatrième Étape: Features importances globale et locale

Feature importance locale (méthode SHAP):

Pour notre algorithme de prédiction, avec l'aide de la validation croisée et du GridSearchCV, les meilleurs algorithmes de prédiction à utiliser sont :

- Le ExtraTreesRegressor et le GradientBoostingRegressor pour la prédiction d'émissions de CO2
- Le ExtraTreesRegressor pour la consommation d'énergie

Sans les relevés énergétiques futurs, les variables les plus importantes pour les prédictions de notre modèle sont :

- PropertyGFATotal, ENERGYSTARSCORE et Numberoffloors pour la prédiction d'émissions de CO2
- PropertyGFATotal, ENERGYSTARSCORE et LargestPropertyUseType pour la prédiction de consommation d'énergie

Perspectives d'amélioration :

- Collecte de données supplémentaires (Type de système de chauffage et de refroidissement, Isolation et matériaux de construction.),
- Essai de modèles avancés (XGBoost / LightGBM, Deeplearning),
- Segmentation des modèles et augmentation des données

Merci pour votre attention.