4							
	n/	$n \log_2 n$	n^2	n^3	1.5^n	<u>2</u> n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

WALL-CLOCK RUNTIMES WITH A PROCESSOR PERFORMING MILLION OPERATIONS PER SECOND

DEF: AN ALGORITHM HAS A (WORST-CASE) RUNTIME OF f(-) IF THE ALGORITHM NEVER MAKES MORE THAN f(m) OPERATIONS WHEN RUN ON IN PUTS OF SIZE m.

HOW CAN WE DETERMINE THE RUNTIME OF AN ALGORITHM?

DEF ×INC (A):

RETURN A DI

*INC (10)

THIS PIECE OF CODE REQUIRES AT HOST SOME CONSTANT NUMBER, SAY C, OF OPERATIONS. COMPUTING C IS VEIRY

HARD, BUT IT IS EASY TO OBSERVE THAT C IS SOME CONSTANT (c=27, c=115)

() "IO" WILL BE PUSHED ONTO THE STACK

IT ADDS THE VARIABLE "A" TO THE NAMESPACE

IT ASSIGNS THE VALUE 10 (WHICH 15 POPPED FIROM THE STACK) TO THE VARIABLE A.

PYTHON RECOVERS THE VALUE OF A FROM MEMORY, IT SUMS I TO IT, AND RETURNS THE RESULT

INC (A):

RETURN ATI

("INC(4) TAKES

27 OPERATIONS")

SUPPOSE THAT MAGICALLY WE DE TERMINE TO RUN INC (t). THAT C = 27. OPERATIONS ARE NEEDED

X = 0 X = 1 X

[="+ c'm + 27·m] \((c'+27)·m

y = 0 FOR in RANGE (~): y += F(i)

 $C''' \cdot C'' \cdot m + C''' \cdot C' \cdot m^2 + C''' \cdot 27 \cdot m^2$

O, D, O NOTATIONS

TO AVOID GETTING STUCK INTO TOO HAUY CONSTANTS, WE JUST DISREGARD THEM ALTOGETHER.

SUPPOSE THAT T(x) IS THE RUNTIME OF AN ALGORITHM.

DEF: IF T(m), AND f(m), ARE NON-NEGATIVE, AND T(m)=O(f(m)) INCREASING, FUNCTIONS, WE SAY "T(-) 15 O(f(m))" IF I c, m >0 $T(n) \leq O(f(n)) \forall n \geq n_0, T(n) \leq c \cdot f(n).$

> $T(n) = \mu n^2 + 9 n + r$ with $\mu, 9, 720$ AND N70.

 $\forall m \ge m_0 = 1$, IT HOLDS THAT $q m \le q m^2 \qquad AND$ $R \leq Rm^2$.

I CHOOSE C= p+9+2,

THUS, $T(n) \leq \mu n^2 + q n^2 + 2 n^2$ = (n+9+2)·n2

> GET THAT $\forall m \geqslant m = 1$, $T(m) \leq c \cdot m^2$. I (f(m)= m2)

> > TRUE

(2)

 $T(m) \leq O(m^2)$ THIS IS TIGHTER/PROPERABLE

 $T(n) \leq C \cdot n^3$ THIS IS WEAKER. $T(n) = O(n^3)$

OR FALSE?

"100 m2 = O(m1.5)"? " $n = O(1000^{-1.1})$ "?

" $m \leq O(2^m)^n$?

(3) " m <0(1.1")"? 4

" m < 0 (0.3")"? (5)