بسمه تعالى

آزمایش پنجم آزمایشگاه مدارهای منطقی

استاد حسابي

واحد محاسبات و منطق(ALU) مریم شیران

دانشگاه صنعتی شریف بهار ۱۴۰۲

فهرست

٣	مقدمه و هدف
٣	آشنایی با تراشه ۷۴۱۸۱
٣	١.١-سيگنال های ورودی و خروجی
٣	١.٢ – تجزيه و تحليل تيورى آزمايش
۵	١.٣ – نحوه ی ساخت مدار
۶	۱.۴ — امتحان اجزای مدار
٨	ساخت مدار داخلی ALU
٨	٢.١ – تجزيه و تحليل تيوري آزمايش
٨	٢.٢ – نحوه ی ساخت مدار
٩	٢.٣ – امتحان اجزای مدار
١	منابع و مراجع

مقدمه و هدف

هدف از این آزمایش، آشنایی با واحد محاسبات و منطق (ALU) است. بخش های مختلف این آزمایش در نرم افزار roteus انجام شده است.

آشنایی با تراشه ۷۴۱۸۱

۱.۱ – سیگنال های ورودی و خروجی

خطوط داده D3-D0 - خطوط دستور M2-M0 - یک کلید از نوع button-push برای بازگرداندن مدار به حالت اولیه - داده (Reset) - یک کلید از نوع button-push برای ورودی clock .

این مدار سیگنال خروجی خاصی ندارد. برای بررسی کارکرد درست مدار باید محتویات ثباتهای A و B و خروجی ALU قابل مشاهده باشد.

۱.۲ – تجزیه و تحلیل تیوری آزمایش

شکل کلی مدار مانند تصویر در شرح آزمایش میباشد تنها باید قسمت کنترل کننده را به گونه ای بسازیم که مدار حاصل مانند زیر عمل کند:

Ma	2 M1	MO	Operation
0	0	0	$A \leftarrow D_3 - D_0$
0	0	7	$\mathcal{B} \leftarrow \mathcal{D}_3 - \mathcal{D}_0$
0	1	0	$A \leftarrow A$
0	7	7	$A \leftarrow B$
7	0	0	clear (A)
7	0	7	$A \leftarrow not(A)$
7	7	0	$A \leftarrow and(A,B)$
7	1	7	$A \leftarrow add(A,B)$

برای اینکار به دیتا شیت تراشه ی ۷۴۱۸۱ که به عنوان ALU استفاده میشود نیز نیاز داریم :

	SELE	M = H			
S3 S2 S1 S0				LOGIC	
L	L	L	L	F = A	
L	L	L	н	F = A + B	
L	L	н	L	F = AB	
L	L	н	н	F = 0	
L	н	L	L	F = AB	
L	н	L	н	F = B	
L	н	н	L	F = A ⊕ B	
L	н	н	н	F = AB	
н	L	L	L	F = A + B	
н	L	L	н	F = A ⊕ B	
н	L	H	L	F = B	
н	L	н	н	F = AB	
н	н	L	L	F = 1	
н	н	L	н	F = A + B	
н	н	н	L	F = A + B	
н	н	н	н	F=A	

لازم به ذکر است که این تنها بخشی از دیتاشیت تراشه به ازای ام برابر ۱ میباشد اما چون همین کافی است از اوردن باقی دیتا شیت خودداری شده است .

حال با استفاده از دو جدول بالا جدول زیر را به دست میاوریم:

M_2	M_1	M_0	S_A	S_B	S_3	S_2	S_1	S_0
0	0	0	1	1	×	×	×	×
0	0	1	0	0	1	1	1	1
0	1	0	0	1	1	1	1	1
0	1	1	0	1	1	0	1	0
1	0	0	0	1	0	0	1	1
1	0	1	0	1	0	0	0	0
1	1	0	0	1	1	0	1	1
1	1	1	0	1	1	1	1	0

اکنون هر یک از سیگنال های کنترلی را برحسب ورودی های ${\bf M}$ ساده میکنیم.

$$SA = (m2 + m1 + m0)^{'}$$

$$SB = m2 + m1 + m0'$$

$$S0 = (m1 + m2)' + m0'$$

$$S1 = m2' + m1 + m0'$$

$$S2 = m2 m1 m0 + m2'm1 m0' + m2'm1'm0$$

 $S3 = m2' + m1$

حال مطابق عبارات بالا مدار را ميسازيم.

۱.۳ – نحوه ی ساخت مدار

ابتدا در نرم افزار Proteus، در قسمت Devices دستگاه های مورد نیاز مانند گیتهای Proteus، در نرم افزار LOGICSTATE, BUTTON ،RESISTOR ،NOT ،LOGICTOGGLE ،LOGICPROP ،LOGICPROP ، 120 با 120 ب

نحوه ساخت کلاک مانند آزمایش دوم میباشد.

۱.۴ – امتحان اجزای مدار

در شکل بالا قرار داده ایم : $M_2M_1M_0=000$ و سپس کلاک را اعمال کرده در شکل بالا قرار داده ایم : $M_2M_1M_0=000$ و سپس کلاک را اعمال ایم. عدد ۷ در رجیستر A ذخیره میشود. سپس قرار میدهیم $M_2M_1M_0=100$ و کلاک را اعمال میکنیم رجیستر A ریست میشود.

در شکل زیر نیز عدد ۱۱۰۰ را در ${f B}$ و عدد ${f N}_1$ را در ${f A}$ فخیره کرده ورودی ${f N}_2$ را در شکل زیر نیز عدد ۱۱۱۱ در ${f A}$ فخیره میشود.

ساخت مدار داخلی ALU

در این بخش میخواهیم، یک واحد محاسبات و منطق چهاربیتی(ALU bit-4) طبق شکل زیر بسازیم.

Operation select							
S,	S_2 S_1		So	Cin	Operation	Function	
0	0	0	0	0	F = A	Transfer A	
0	0	0	0	1	F = A + 1	Increment A	
0	0	0	1	0	F = A + B	Addition	
0	0	0	1	1	F = A + B + 1	Add with carry	
0	0	1	0	0	$F = A + \overline{B}$	Subtract with borrow	
0	0	1	0	1	$F = A + \overline{B} + 1$	Subtraction	
0	0	1	1	0	F = A - 1	Decrement A	
0	0	1	1	1	F = A	Transfer A	
0	1	0	0	×	$F = A \wedge B$	AND	
0	1	0	1	×	$F = A \vee B$	OR	
0	1	1	0	×	$F = A \oplus B$	XOR	
0	1	1	1	×	$F = \overline{A}$	Complement A	
1	0	×	×	×	$F = \operatorname{shr} A$	Shift right A into F	
1	1	×	×	×	$F = \sinh A$	Shift left A into F	

۲.۱ – تجزیه و تحلیل تیوری آزمایش

برای طراحی مدار به صورت زیر فکر میکنیم.

A خط اول را سعی میکنیم باهم انجام دهیم در همه ی آنها A با چیزی جمع شده است پس میتوان یک A خط اول را سعی میکنیم باهم انجام دهیم در قد A باشد و ورودی دیگر A یا A باشد و ورودی دیگر چه باشد را میتوان با استفاده از چند طبقه A تایی درست کرد.

A و بعد را نیز سعی میکنیم باهم انجام دهیم در همه ی آن ها خروجی یک عبارت است بر حسب A و B ، پس عبارات ممکن را ساخته و بعد توسط A طبقه B تایی مشخص میکنیم کدام یک مدنظر است.

۲ خط آخر را نیز سعی میکنیم باهم انجام دهیم از یک mux ۴ تایی استفاده میکنیم که متناسب با شیفت به راست یا چپ ورودی های آن به بیت های صحیح و یا ۰ متصل شده اند.

اکنون با استفاده از دو mux ۴ تایی دیگر حاصل نهایی را پیدا میکنیم.

۲.۲ – نحوه ی ساخت مدار

ابتدا در نرم افزار Proteus، در قسمت Devices دستگاههای مورد نیاز مانند گیتهای Proteus، ابتدا در نرم افزار LOGICSTATE ،NOT LOGICTOGGLE ،LOGICPROP

کتابخانهها انتخاب میکنیم تا در پنجره ی سمت چپ قرار بگیرند. حال مدار را مطابق توضیحات بخش تجزیه و تحلیل تیوری میسازیم.

۲.۳ – امتحان اجزای مدار

ورودی عدد A را $A_1A_0=0$ و ورودی عدد $A_3A_2A_1A_0=0$ و ورودی عدد $A_3A_2A_1A_0=0$ میدهیم. $A_3A_2A_1A_0=0$ بیتهای سلکتور را نیز برابر $A_3S_2S_1S_0c_{in}=0$ قرار میدهیم. عدد $A_3A_2A_1A_0=0$ در خروجی نمایش داده می شود که صحیح بوده و برابر $A_3A_2A_1A_0=0$ دو ورودی میباشد.

منابع و مراجع

[1] Mano, M. Morris. Computer system architecture. Prentice-Hall of India, 2003.