Problem Statement

A real estate agent want help to predict the house price for regions in USA.He gave us the dataset to work on to use linear regression model.Create a model that helps him to estimate of what the house would sell for

Import libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: # To import dataset
    df=pd.read_csv('drug csv')
    df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

```
In [3]: # To display top 10 rows
        df.head(10)
```

Out[3]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	M	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
5	22	F	NORMAL	HIGH	8.607	drugX
6	49	F	NORMAL	HIGH	16.275	drugY
7	41	M	LOW	HIGH	11.037	drugC
8	60	M	NORMAL	HIGH	15.171	drugY
9	43	М	LOW	NORMAL	19.368	drugY

Data Cleaning and Pre-Processing

```
In [4]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
```

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype	
0	Age	200 non-null	int64	
1	Sex	200 non-null	object	
2	BP	200 non-null	object	
3	Cholesterol	200 non-null	object	
4	Na_to_K	200 non-null	float64	
5	Drug	200 non-null	object	
<pre>dtypes: float64(1), int64(1), object(4)</pre>				

memory usage: 9.5+ KB

```
In [5]: df.describe()
```

a.columns

Out[5]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

```
In [6]: df.columns
Out[6]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
In [7]: a = df.dropna(axis='columns')
```

Out[7]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')

EDA and Visualization

```
In [8]: sns.pairplot(a)
```

Out[8]: <seaborn.axisgrid.PairGrid at 0x1ed25df0760>

In [9]: sns.distplot(a['Na_to_K'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='Na_to_K', ylabel='Density'>

In [10]: a1=a[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']]

In [11]: sns.heatmap(a1.corr())

Out[11]: <AxesSubplot:>

To Train the Model - Model Building

We are going to train Linear Regression model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output). We could ignore address column as it is not required for our model.

```
In [15]: x=a1[['Age']]
y=a1['Na_to_K']
```

To split my dataset into training and test data

```
In [20]: prediction=lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[20]: <matplotlib.collections.PathCollection at 0x1ed281fcc10>

In [21]: print(lr.score(x_test,y_test))

-0.00980152499671072

In []: