Homework 6

Due: 10PM, December 6, 2020. Please upload your work in Canvas. Late homework will not be accepted.

- 1. Let X_1, X_2, \ldots be an i.i.d. sequence with $E[X_1] = \mu$, $Var(X_1) = \sigma^2 < \infty$. Let N be a non-negative integer valued random variable with E[N] = m, $Var(N) = s^2 < \infty$ that is independent of the sequence X_1, X_2, \ldots . Let $S_n = \sum_{j=1}^n X_j$ with $S_0 = 0$, and consider the random variable S_N . (This is the element of the sequence S_0, S_1, \ldots corresponding to the random index N.) Find the expected value and variance of S_N . Hint: use conditioning.
- 2. Let S_n denote the position of a simple random walk after n steps. (I.e. $S_n = X_1 + \cdots + X_n$ with X_i i.i.d. $P(X_i = 1) = P(X_i = -1) = 1/2$.)
 - (a) For which polynomials g(x) will $g(S_n)$ be a martingale? (Here the coefficients of g cannot depend on n.)
 - (b) Find a degree 3 polynomial h(x,n) (with coefficients possibly depending on n) so that $h(S_n,n)$ is a martingale.
- 3. Let ν and τ be stopping times with respect to the same filtration $\{\mathcal{F}_n\}$. Show that $\min(\nu, \tau)$ and $\nu + \tau$ are also stopping times with respect to $\{\mathcal{F}_n\}$.
- 4. For a parameter $a \in (0,1)$ let $p_a(x_1, x_2, ..., x_n)$ denote the probability that the first n terms in the i.i.d. sequence $X_1, X_2, ...$ of Bernoulli(a) random variables are exactly $x_1, x_2, ..., x_n$. Let $a \neq b$ and

$$Z_n = \frac{p_b(X_1, X_2, \dots, X_n)}{p_a(X_1, X_2, \dots, X_n)}$$

where X_1, X_2, \ldots are i.i.d. Bernoulli(c) random variables. Prove that Z_n is a martingale if and only if c = a.

- 5. Suppose that X_1, X_2, \ldots are i.i.d. with $P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$, and let $S_n = \sum_{k=1}^n X_i$. Show that the sequence $M_n = |S_n| |\{0 \le k < n : S_k = 0\}|$ is a martingale. $(M_n \text{ is the difference of } |S_n| \text{ and the number of visits to 0 up to } n-1.)$
- 6. Let U be uniform on [0,1], and consider a sequence of random variables X_1, X_2, \ldots which are i.i.d. with Bernoulli(U) distribution given U. (One way to generate such a sequence is to take an i.i.d. sequence of Uniform[0,1] random variables V_1, V_2, \ldots that are independent of U, and set $X_k = \mathbf{1}(V_k \leq U)$.) Let $S_n = X_1 + \cdots + X_n$, and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.
 - (a) Find $E[X_{n+1}|\mathcal{F}_n]$.
 - (b) Show that $M_n = \frac{S_n+1}{n+2}$ is a martingale with respect to the filtration \mathcal{F}_n .

Hint: be careful, the random variables X_1, X_2, \ldots are not independent!

You can use the Piazza page to ask for clarifications about a specific problem, but please don't discuss explicit solutions before the deadline. Handing in plagiarized work, whether copied from a fellow student or off the web, is not acceptable and will lead to sanctions.

Bonus problem. Consider a symmetric simple random walk on the plane (i.e. each step is an independent one unit jump to one of the four directions with equal probability) and denote the distance from the origin by S_n . Let $\nu_r = \inf\{S_n > r\}$. Show that $r^{-2}E\nu_2 \to 1$ as $r \to \infty$.

Bonus problems are not graded, and you don't need to submit them. They are provided as an extra challenge for those who are interested.