Chapter 4

Data quality and preprocessing

Data quality and preprocessing

- The third phase of the CRISP-DM methodology is data preparation
- Need to prepare the data in before numerical models can be applied

Food	Age	Distance	Company
Chinese	51	close	good
Italian	43	very close	good
Italian	82	close	good
Burgers	23	far	bad
Chinese	46	very far	good
Chinese	29	too far	bad
Burgers	42	very far	good
Chinese	38	close	bad
Italian	31	far	good

Summary

- Data quality
- Converting to a differente scale type
- Converting to a diferente scale
- Data transformation
- Dimensionality reduction

- It is estimated that the noise ratio can represent 5% or more of the total data set
- Data quality is important and can be affected by internal and external factors:
 - Internal factors can be linked to the measurement process and the collection of information through the attributes chosen
 - External factors are related to faults in the data collection process

Data quality: missing values

Causes for missing values

- An attribute was not considered when the data collection started
- Some attributes were unknown when some object values were collected
- Distraction, misunderstanding or refusal when the values of some attribute were collected
- Lack of necessity to supply the value of some attribute for some objects

- Non-existence of a value for some attributes for particular objects
- Fault in the data collection device
- Cost/difficulty to assign class labels to objects in classification problems

- Approaches to deal with missing data
 - Ignore missing values
 - Remove columns with missing data
 - Modify a learning algorithm to allow it to accept and work with missing values
 - Remove rows with missing values
 - Fill the missing values estimating their value from the values for this attribute in the other objects

Data quality: missing values

- The filling of missing data is the most common approach
 - 1) Create a new value for the attribute, meaning that it was a missing value before
 - 2) Create a new, related, attribute, with Boolean values, whose value will be true if there was a missing value in the related attribute, and false otherwise

3) Estimate the value

- Fill with a location value derived from the attribute values, like mean or median, for quantitative and ordinal, and mode for nominal values
- The previous method by considering, for classification tasks, only the objects from the same class
- A learning algorithm to induce a prediction model to predict the value to be filled in a particular attribute

- Suppose that, due to a data transmission problem, part of our friends data sent to a colleague had missing data
- That data set was filled:
 - Using the mode, for qualitative values
 - Rounded average for quantitative values
 - Both considering only the objects from the same class

- Fill the gaps and compare with the original values
 - It is possible to see many differences ...

Da	Data with missing values			Data	a witho	out missing	values
Food	Age	Distance	Company	Food	Age	Distance	Company
Chinese	51	close	good	Chinese	51	close	good
			good	Italian	43	very close	good
Italian	82		good	Italian	82	close	good
Burgers	23	far	bad	Burgers	23	far	bad
Chinese	46		good	Chinese	46	very far	good
Chinese			bad	Chinese	29	too far	bad
Burgers		very far	good	Burgers	42	very far	good
Chinese	38	close	bad	Chinese	38	close	bad
Italian	31	far	good	Italian	31	far	good

Data quality: redundant data

- Redundant data is the excess of data
 - Redundant objects are those that do not bring any new information to a data set
 - They are irrelevant data
 - In the extreme, redundant data can be duplicated data

- Redundancy occurs mainly in the whole set of attributes
- Redundancy can also occur in the predictive attributes, when the values for a predictive attribute can be derived from the values of other predictive attributes

There is a data preprocessing
technique, named
deduplication,
whose goal is to
identify and remove
copies of objects in
a data set

	Original Data				Deduplicated			
Food	Age	Distance	Company	Food	Age	Distance	Company	
Chinese	51	close	good	Chinese	51	close	good	
Italian	43	very close	good	Italian	43	very close	good	
Italian	43	very close	good					
Italian	82	close	good	Italian	82	close	good	
Burgers	23	far	bad	Burgers	23	far	bad	
Chinese	46	very far	good	Chinese	46	very far	good	
Chinese	29	too far	bad	Chinese	29	too far	bad	
Chinese	29	too far	bad					
Burgers	42	very far	good	Burgers	42	very far	good	
Chinese	38	close	bad	Chinese	38	close	bad	
Italian	31	far	good	Italian	31	far	good	

Data quality: inconsistent data

- Inconsistent values can be found in the predictive and/or target attributes
- An example of an inconsistent value in a predictive attribute is a zip code that does not match with the city name
- Some inconsistencies are easily detected, like when an attribute value violates a known relation between attributes
 - the value of attribute A is larger than the value of attribute B, or
 - the attribute has an invalid value, like a negative value in a predictive attribute that should have only positive values

Data quality: inconsistent data

- In this example we show a data set with the inconsistent values highlighted
- Inconsistent values can be treated as missing values

Friend	Max temp	Weight	Height	Years	Gender	Company
Andrew	25	77	175	10	M	Good
Bernhard	31	1100	195	12	M	Good
Carolina	15	70	172	2	F	Bad
Dennis	20	85	210	16	M	Good
Eve	10	65	168	0	F	Bad
Fred	12	75	173	6	M	Good
Gwyneth	16	75	10	3	F	Bad
Hayden	26	63	165	2	F	Bad
Irene	15	55	158	5	F	Bad
James	21	66	163	14	M	Good
Kevin	300	95	190	1	M	Bad
Lea	13	72	1072	11	F	Good
Marcus	8	83	185	3	F	Bad
Nigel	12	115	192	15	M	Good

Data quality: noisy data

- Noisy data are data that do not fill in the set of standards expected from them
 - Noises can be caused by incorrect or distorted measurements, human error or even contamination of the samples

Data quality: noisy data

- Noise detection can be performed by adaptation of classification algorithms or by the use of noise filters for data pre-processing
- It is not usually possible to be sure that an object is noisy

- It is usually performed by noise filters, which can look for noise in either the predictive attributes or in the target attribute
- Most filters were developed for target attributes
- Many label noise filters are based on the k-NN algorithm
- For sequential data we can use smoothing algorithms like Savitzky-Golay filter or Infinite Impulse Response filter

Data quality: outliers

- In a data set, outliers are anomalous values or objects
- They can also be defined as unusual, despite correct, values of some attributes
 - Different from noisy, outliers can be legitimate values

 There are several data analysis applications whose main goal is to find outliers in a data set

Outlier

Data quality: outliers

- Using the interquartile range to detect outliers
 - Let Q_1 and Q_3 be the 1st and 3rd quartile respectively
 - The interquartile range is given by $IQ = Q_3 Q_1$
- Values below $Q_1 1.5 \times IQ$ or above $Q_3 + 1.5 \times IQ$ are considered too faraway from central values to be reasonable

■ The most common conversion from a nominal scale type to a relative one is the 1 − of − n, also known as **One Hot Encoding**, which transforms n values of a nominal attribute into n binary attributes

Nominal	Relative
Green	001
Yellow	010
Blue	100

- By using the 1 of n method we increase the number of attributes, each one of them with a large number of 0s, i.e., the resulting data set can be quite sparse
- A simple example for 3 DNA sequences with 5 nucleotides each, AATCA, TTACG and GCAAC
 - We encode the nucleotides A, C, T and G by 0001, 0010, 0100 and 1000, respectively

Original DNA	Converted DNA
A A T C A	0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1
T T A C G	0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0
G C A A C	1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0

- To avoid the dimensionality problem of OHE, we can use
 Label Encoding, which assigns a different numerical value to each nominal value
- Careful: Many models can interpret these numerical values as ordered values, whereas there is no ordering in the original column

Nominal	Relative
Green	1
Yellow	2
Blue	3

Converting to a different scale type: ordinal to relative or absolute

- Converting from ordinal to natural numbers:
 - starting with the value 0/1 for the smallest value and, for each next value, add 1 to the previous value
- Converting from ordinal to binary values:
 - the gray code: it keeps the distance between two consecutive values as a different value in one of the binary values
 - the **thermometer code**: it starts with a binary vector with only 0 values and substitute one 0 value by 1, from right to left, as the ordinal value increases

Nominal	Natural number	Gray code	Thermometer code
small	0	000	000
medium	1	001	001
large	2	011	011
very large	3	010	111

- Converting quantitative values to qualitative values is also named discretization:
 - nominal discretization, if the qualitative scale is nominal
 - ordinal discretization, if the qualitative scale is ordinal
- Infinite range to Finite range

- Discretization has two steps:
 - The definition of the number of qualitative values, also named number of bins
 - 2) Given the number of bins, to define the interval of values to be associated with each bin:
 - by width: split the whole range of numbers in intervals with equal size
 - by frequency: use intervals containing equal number of values

Encoding Example

	Original data						Conve	rted data	
Food	Age	Distance	Company	f1	f2	f3	Age	Distance	Company
Chinese	51	close	good	0	0	1	51	2	1
Italian	43	very close	good	0	1	0	43	1	1
Italian	82	close	good	0	1	0	82	2	1
Burgers	23	far	bad	1	0	0	23	3	0
Chinese	46	very far	good	0	0	1	46	4	1
Chinese	29	too far	bad	0	0	1	29	5	0
Burgers	42	very far	good	1	0	0	42	4	1
Chinese	38	close	bad	0	0	1	38	2	0
Italian	31	far	good	1	1	0	31	3	1

Discretization Example

- The chosen intervals for the association:
 - by width were [(2,8), (9,15), (16,22)]
 - by frequency were[(2,5), (7,15), (16,20)]

	Conversion by			
Quantitative	Width	Frequency		
2	Α	Α		
3	Α	Α		
5	Α	Α		
7	Α	В		
10	В	В		
15	В	В		
16	С	С		
19	С	С		
20	С	С		

Converting to a different scale

- Converting data in a scale to another scale of the same type is necessary specially when using distance measures
 - Assuring that all attributes are using the same scale guarantees that all attributes are equally used by the distance measure
- There are two ways to normalize the data:
 - min-max rescaling
 - For every value subtract the minimum value and divide the result by the amplitude
 - standardization
 - For every value subtract the average and divide by the standard deviation

-

Scale conversion example

			Min	-max	Standardization			
Friend	Age	Education	Rescaled age	Rescaled educ.	Rescaled age	Rescaled educ.		
Bernhard	43	2.0	1.0	0.0	0.76	-1.15		
Gwyneth	38	4.2	0.0	1.0	-1.13	0.66		
James	42	4.0	0.8	0.91	0.38	0.49		

Data transformation

- Data transformation might be necessary to perform on a data set to simplify its analysis or to allow the use of some modeling techniques
- Some simple transformations used to improve data summarization are:
 - Apply a logarithmic function to the values of a predictive attribute
 - Conversion to the absolute value

Example

friend	salary	dinner
Andrew	17000	2200
Bernhard	53500	4500
Carolina	69000	6000
Dennis	72000	7100
Eve	125400	10800
Fred	89400	7100
Gwyneth	58750	6000
Hayden	108800	9000
Irene	97200	9600
James	81000	7400
Kevin	21300	2500
Lea	138400	13500
Marcus	830000	92000
Nigel	1000000	120500
·	•	

 Suppose we have the following data illustrating, with two quantitative attributes: the financial income of our friends with how much they spend in dinners per year

Dimensionality reduction

- Benefits of dimensionality reduction:
 - Can reduce the training time, decrease memory needed and improve the performance of ML algorithms
 - Can eliminate irrelevant and/or noisy attributes
 - Allows the induction of simpler and more interpretable models
 - Makes the data visualization easier to understand
 - Can reduce the cost of feature extraction
- There are two alternatives to reduce the number of attributes:
 - Attribute aggregation: a group of attributes is substituted by a new attribute
 - Attribute selection: a subset of the initial attributes is selected

- Attribute aggregation reduces the data to a given number of attributes allowing an easier visualization
 - The selected attributes are those that most differentiate the objects
 - Attribute aggregation techniques project the original data set to a new lower-dimensional space

- Several techniques have been proposed for attribute aggregation in the literature:
 - Principal Component Analysis
 - Independent Component Analysis
 - Multidimensional scaling

Principal Component Analysis

- Linearly projects a data set to another data set whose number of attributes is equal or smaller
- PCA tries to reduce redundancy by combining the original attributes into new attributes
- These new attributes are named principal components
- The principal components are not linearly correlated
- Each principal component is a linear combination of the original attributes
- Columns need to be scaled before applying PCA

https://en.wikipedia.org/wiki/Principal_ component_analysis

Example

Friend	Max temp	Weight	Height	Years	Gend
Andrew	25	77	175	10	M
Bernhard	31	110	195	12	M
Carolina	15	70	172	2	F
Dennis	20	85	180	16	M
Eve	10	65	168	0	F
Fred	12	75	173	6	M
Gwyneth	16	75	180	3	F
Hayden	26	63	165	2	F
Irene	15	55	158	5	F
James	21	66	163	14	M
Kevin	30	95	190	1	M
Lea	13	72	172	11	F
Marcus	8	83	185	3	F
Nigel	12	115	192	15	M

der Using PCA to extract 2 principal components from the left data set. (Gender was converted to numeric)

- Instead of aggregating attributes, another approach to reduce dimensionality is by selecting a subset of the attributes
 - Among the benefits of attribute selection, it can speed up the learning process, since a smaller number of operations will need to be made
- Attribute selection techniques can be roughly divided into three categories:
 - Filters
 - Wrappers
 - Embedded

- Filters look for simple, individual, relations between the predictive attribute values and the target attribute
- They rank the attributes according to this relation and select the first n attributes (n is arbitrary)
- An example of such relation is the Pearson correlation
- Filters disregard the relations between predictive attributes

- Using the Pearson correlation on the excerpt of our list of friends
- If we want to select 3 attributes, years, gender and weight would be selected

Predictive attribute	Correlation
Years	0.89
Gender	0.58
Weight	0.40
Height	0.21
Max temp	0.14

Dimensionality reduction: attribute selection

- Wrappers explicitly use an algorithm to guide the attribute selection process
- At each iteration a subset of the attributes is selected and trained on the given model
- As a result, it selects the subset of predictive attributes that provides the highest predictive performance for the classifier
 - Wrappers usually present a much higher computational cost than filters

 Wrappers are good at detecting interactions between variables

Predictive	Predictive
attribute	performance
Years	0.78
Height	0.46
Gender	0.42
Weight	0.38
Max temp	0.14

Search strategies:

- Exhaustive search: it tests with a predictive algorithm all possible subsets
- Forward selection: it tests all available predictive attributes in order to add to the already selected predictive attributes until the addition does not improve the predictive performance anymore
- Backward selection: it tests the removal of each predictive attribute from the full set of predictive attributes until the removal of more attributes does not improve the predictive performance anymore
- There are other search strategies that use more sophisticated and complex mechanisms and, as a result, produce better attribute subsets. For example Genetic Algorithms, Hill Climbing

Dimensionality reduction: attribute selection

- In the embedded category, the attribute selection is performed as an internal procedure of a predictive algorithm
 - An example of a predictive technique able to perform embedded attribute selection is the decision tree technique

- The curse of dimensionality, or dimensionality curse, relates the proportion between number of objects and number of attributes in a data set
- The number of objects required for efficient training increases exponentially with the increase of the number of attributes
- Increasing the number of attributes without increasing the number of objects, increases the sparsity of the data
- In a very sparse dataset it is very hard to find relations between attributes
- Objects that are sparse differ in many ways, grouping them becomes very hard

Final remarks

- Data quality: missing values, redundant, inconsistent and noisy data, outliers
- Converting to a different scale type and to a different scale
- Data transformation
- Attribute aggregation and selection

Questions?

