	<u>גויות מיוחדות</u>	<u>התפל</u>			
דוגמה	שונות (V(X	תוחלת (E(X	הסתברות לקבלת K	הסבר	התפלגות
ישנם 8 כדורים, מתוכם 3 לבנים. מוציאים 5 כדורים $\frac{\sqrt{2}}{\sqrt{2}}$. ההסתברות שיצאו 2 לבנים: $X\sim B(5,\frac{3}{-})$	n·p·(1-p)	n∙p	$\{0 \le k \le n\}$ $P(n = k) = \binom{n}{n} = k (1 = n)^{n-k}$	X <u>סופר</u> מס' <u>הצלחות</u> מתוך n ניסיונות	<u>התפלגות</u> בינומית
8			$P(x = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$ $P(x \le k) = p(x = 1) + \dots + p(x = k)$	111.0.111	X∼B(n,p)
$P(x=2) = {5 \choose 2} \cdot {3 \choose 8}^2 \cdot {5 \choose 8}^3$				N	n-מס' ניסיונות p- סיכוי להצלחה
טילה קוביה 3 פעמים, כשהתוצאה זוגית מקבלת שקל. מה ההסתברות שביחד יקבלו 3 ש"ח? (X~B(2,1/2),Y~B(3,1/2)=> X+Y~B(5,1/2)	ים, כיוצא "עץ" מקבר שקר. דנה מו	דן מטיל מטבע פעמי	Y~(n2,p) -ı X~B(n1,p X+Y~B(n1+n2,p) T		ל ספו ווצרוווי <u>*בלתי תלויים</u>
$P(x=3) = {5 \choose 3} \cdot (1/2)^3 \cdot (1/2)^2$			S(12-112)p)		
דוגמה	שונות (V(X	תוחלת (E(X	הסתברות לקבלת K	הסבר	התפלגות
ההסתברות לקלוע לסל היא 1/4. מה ההסתברות שנזרוק 4 פעמים <mark>עד ש</mark> נקלע?	$\frac{1-p}{p^2}$	$\frac{1}{p}$	K=1,2,3,∞	X <u>סופר</u> מס' <u>ניסיונות</u> עד	<u>התפלגות</u>
X~G(1/4) P(x=4)=(3/4) ³ ·1/4 מה ההסתברות שנזרוק <mark>יותר מ-</mark> 3 פעמים?	<i>p</i> -	p	$P(x = k) = (1 - p)^{k-1} \cdot p$ $P(x > k) = (1 - p)^{k}$	להצלחה הראשונה <mark>אם רוצים בלי חזרה זה</mark>	<u>גיאומטרית</u> X∼G(p)
P(X>3)=(3/4) ³			$P(x \ge k) = (1-p)^{k-1}$ $P(x < k) = 1 - (1-p)^{k-1}$	<mark>התפלגות אחידה</mark>	סיכוי להצלחה P
מה ההסתברות שנזרוק <mark>לפחות</mark> 3 פעמים? P(X≥3)=(3/4)²			$P(x \le k) = 1 - (1 - p)^k$	(סופר את מספר הכשלונות והצלחה אחת)	בכל ניסיון <mark>*עם חזרה</mark>
מה ההסתברות שמס' הניסיונות גדול מ-10, אם ידוע שניסו כבר 7 פעמים?	nov at last to a	<u>ר זיכרון:</u>		, i	
$P(X>10/x>7)=P(x>3)=(3/4)^3$	P(X=a+k X>a) אם P(X=k) אז	P(X>K1 X> P(X>k1-k			
		ה עדין אותה נוסחא			
מה ההסתברות שנזרוק עד שנקלע, אך לא יותר מ-4?	ע בזריקה הרביעית או n=4 אם		K=1,2,3,n	מבצעים ניסיונות עד	<u>התפלגות</u>
x 1 2 3 4	בכל מקרה נפסיק לזרוק. יש אולי נקלע עוד לפני הזריקה		$P(x = n) = (1 - p)^{n-1}$ (n-a) (n-a)	להצלחה אחת, אבל לא יותר מ-n ניסיונות	<u>גיאומטרית*</u>
Px $(1/4)^1$ $(3/4)^1 \cdot (1/4)^1$ $(3/4)^2 \cdot (1/4)^1$ $(3/4)^3$		הרביעית (טבלה)			
זורקים לסל עד שקולעים פעמיים. מה ההסתברות לזרוק 4 פעמיים? n=4, k=2	$n \cdot \frac{1-p}{p^2}$	$\frac{n}{p}$	K=1,2,3,n	מבצעים חניסיונות עד	<u>התפלגות</u> גוצומטיבות*
$P(x = 2) = {3 \choose 4} \cdot {1 \over 4}^2 \cdot {3 \choose 4}^2$	μ-	Ρ	$P(x = k) = {n-1 \choose k-1} \cdot (1-p)^{k-n} \cdot p^n$	לקבלת k הצלחות	<u>גיאומטרית*</u> <u>בינומי שלילי</u>
$(4-2) = (1) \cdot (\overline{4}) \cdot (\overline{4})$					
דוגמה	שונות (V(X	תוחלת (E(X	הסתברות לקבלת K	הסבר	התפלגות
במרכזיה מסויימת מס' השיחות ב-3 דק' מתפלג פואסונית 2=2 (בכל 3 דק' 2 שיחות). מה ההסתברות שב-3 דק' הראשונות יתקבלו שלוש שיחות?	λ	λ	K=0,1,2∞	'סופר מס' אירועים ליח X	<u>התפלגות</u>
X~P(2)			$P(x = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!}$	זמן, יש לזהות את יחידת הזמן	<u>פואסונית</u> X~P(λ)
$P(x = 3) = \frac{e^{-2} \cdot 2^3}{2!}$					מתפלג X פואסונית (מצוין
$P(x=3) = \frac{e^{-2} \cdot 2^3}{3!}$ מה ההסתברות שב-9 דק' נקבל 3 שיחות?		ואסונית λ ליח' זמן			בשאלה) פרמטר
$Y \sim P(\lambda \cdot 3) = Y \sim P(6)$ $P(Y = 3) = \frac{e^{-6} \cdot 6^3}{2!}$	Υ~P(λ·t) אז ב-t יח' זמן הוא מתפלג 'Y~P(λ·t)				λ
$P(Y=3) = {3!}$	שונות (V(X	תוחלת (E(X	x+y~ <=x~ P(λ1),y~ P(λ2) Κ הסתברות לקבלת	הסבר	התפלגות
י וגבווי באוכלוסייה ישנם 1000 אנשים, מהם 600 תומכים במועמד מסויים לנשיאות המדינה. מוחרים			· ·		
מדגם ובו 100 אנשים. נסמן X— מספר התומכים במועמד במדגםץ מהי התפלגות X ?	$n \cdot \frac{D}{N} \cdot \left(1 - \frac{D}{N}\right) \cdot \left(\frac{N-n}{N-1}\right)$	$n \cdot \left(\frac{D}{N}\right)$	$P(X = K) = \frac{\binom{D}{K} \cdot \binom{N - D}{n - K}}{\binom{N}{N}}$	רוצים למצוא הסתברות למשיכת k מתוך	<u>התפלגות</u> <u>היפר-</u>
k∈{0,1100}			$\binom{N}{n}$	מיוחדים, בְ- n הוצאות,	<u>גיאומטרית</u>
$P(X = K) = \frac{\binom{600}{K} \cdot \binom{400}{100 - K}}{\binom{1000}{1000}}$				מתוך אוכלוסייה בגודל N. <mark>*בלי חזרה</mark>	X~HG(N,D,n) N- גודל
(100)				אם רוצים עם חזרה זה	אוכלוסייה.
				בינומי	D- מס' המיוחדים
					n- מספר הוצאות
דוגמה	שונות (V(X	תוחלת (E(X) m + n	הסתברות לקבלת K	הסבר	התפלגות
מסדרים 10 אנשים בשורה. מה ההסתברות של חיים לעמוד במקום מס' ?? תתקבל אותה הסתברות לכל הערכים בין m ל-n	$(n-m+1)^2-1$	2	m≤k≤n 1	X מקבל ערכים בודדים בין h ל- n <mark>*בלי חזרה</mark>	<u>התפלגות</u> אחידה
X~U(1,10) 1 1	$\frac{(n-m+1)^2-1}{12}$		$P(x = k) = \frac{1}{n - m + 1}$	ערכים שלמים עוקבים,	X~U(m,n)
$P(x=2) = \frac{1}{10-1+1} = \frac{1}{10}$				עם הסתברות זהה לכל ערך	m- ערך קטן n- ערך גדול
	להסתברות בנקודה מסוימת אלא ו			2202	Dispose
דוגמה	עונות (V(X	תוחלת (E(X	הסתברות לקבלת K	הסבר	התפלגות
זמן שחייה בבריכה נע בין 20 דק' ל-40 דק'. מה ההסתברות לשחות <mark>לפחות</mark> 25 דק'? X~U(20,40)	$\frac{(b-a)^2}{12}$	$\frac{a+b}{2}$	a≤k≤b R(v, ≤ k) = k - a	a מקבל רצף ערכים בין X ל- b	<u>משתנה מקרי</u> אחיד רציף
$P(x \ge 25) = \frac{40 - 25}{40 - 20}$		_	$P(x \le k) = \frac{k - a}{b - a}$		X~U(a,b)
40 – 20			$P(x \ge k) = \frac{b - k}{b - a}$	 <u> </u>	
			b – a <u>פונקציית הצפיפות:</u>	a _{E(x)} b	
				מלבן אחד <u>גובה: 1</u> רוחב	
מה ההסתברות לשחות פחות מ-50 דק'? P(X<50)=1			$f(X) = \begin{cases} \frac{1}{b-a} & a \le X \le b \end{cases}$	<u>גובה:</u> רוחב	
מה ההסתברות לשחות יותר מ-50 דק'? (-200,000) מה ההסתברות לשחות יותר מ-50 דק'? (-200,000)			פונקציית ההתפרגות המצטברת:		
,, ,			,		
			$ \int_{\mathcal{L}} 0 \qquad x < a $		
			$F(X) = \begin{cases} 0 & x < a \\ \frac{x - a}{b - a} & a \le x \le b \end{cases}$		
דוגמה	שונות (V(X	תוחלת (E(X	הסתברות לקבלת K	הסבר	התפלגות
p(x <s+t x>t)=p(x<s)< td=""><td>$\frac{1}{\lambda^2}$</td><td>$\frac{1}{\lambda}$</td><td>$P(x \le k) = 1 - e^{-\lambda \cdot k}$</td><td>מודד זמן בין אירועים</td><td><u>משתנה מקרי</u></td></s)<></s+t x>	$\frac{1}{\lambda^2}$	$\frac{1}{\lambda}$	$P(x \le k) = 1 - e^{-\lambda \cdot k}$	מודד זמן בין אירועים	<u>משתנה מקרי</u>
	λ^2	λ	$P(x \ge k) = e^{-\lambda \cdot k}$ פונקציית הצפיפות:	פואסונים X – זמן בין אירועים	<u>מעריכי רציף</u> X~exp(λ)
			<u> </u>	פואסונים,	J
			- · · · · · · · · · · · · · · · · · · ·	α - מס' אירועים ממוצע ביחידת זמן.	
	<u>תכונת חוסר הזיכרוו</u> לכל 0≤, מתקיים :		$f(X) = \begin{cases} \lambda e \end{cases}$ פונקציית ההתפלגות המצטברת:	ביורות וגון.	
	$P(X > s + t \mid X > t) = P(X > s)$				
	$\Gamma(A > S + I \mid A > I) =$	-1 (A > S)	$\int_{E(X)} \int 1 - e^{-\lambda x} X \ge 0$		
מ <u>שתנים מקרים רציפים:</u> כל ההסתברויות של הערכים הבודדים הן אפס.					
<u></u>					
$f.1$ חייבת להיות $\frac{rege}{rege}$ חייבת להיות $\frac{rege}{rege}$ חייבת להיות $\frac{rege}{rege}$ חייבת להיות $\frac{rege}{rege}$					

- $\int_{-\infty}^{\infty} f(x) dx = 1$ (אחרת זו לא פונקצייה חוקית) $\int_{-\infty}^{\infty} f(x) dx = 1$ (אחרת זו לא פונקצייה חוקית) $\int_{-\infty}^{\infty} f(x) dx = 1$ (אחרת זו לא פונקצייה חוקית) $\int_{-\infty}^{\infty} f(x) dx = 1$ (אחרת זו לא פונקצייה חוקית) $\int_{-\infty}^{\infty} f(x) dx = 1$ (אובה בסיס שטח עד לנקודה $\int_{-\infty}^{\infty} f(x) dx = 1$ אורך $\int_{-\infty}^{\infty} f(x) dx = 1$ (אובה בסיס שטח מענגל: $\int_{-\infty}^{\infty} f(x) dx = 1$ (אובה בסיס מטרית או במקרה כזה התוחלת $\int_{-\infty}^{\infty} f(x) dx = 1$ (אם הצפיפות סימטרית את (אובה בסיס מטרית) $\int_{-\infty}^{\infty} f(x) dx = 1$ (אובה בי במצא ציר הסימטריה) $\int_{-\infty}^{\infty} f(x) dx = 1$ (אובה בי במצא בי במצא בי במצא פון במצא ציר הסימטריה) $\int_{-\infty}^{\infty} f(x) dx = 1$ (אובה בי במצאים אינטגל או לחשב את השטח עד לוהודה x כללית 8. כשרוצים לעבור מפונקציית הצפיפות (אוץ) לפונקציית ההתפלגות ($\int_{-\infty}^{\infty} f(x) dx = 1$ 8. כשרוצים לעבור מפונקציית הצפיפות f(x) לפונקציית ההתפלגות x כללית לחשב את השטח עד לנקודה x כללית או לחשב את השטח עד לנקודה x כללית

- - - $F(t) = P(x \le t) = \int_{-\infty}^{\infty} f(x)dx,$