CPE201 Digital Design

By Benjamin Haas

Class 23: State Machines and Counters

Outline

- Finite State Machines
 - Moore
 - Mealy
- Asynchronous Counters
- Synchronous Counters
- Bidirectional Counters

Finite State Machines

Not infinite

Describes how your system reacts to S=1 R=0

inputs and gives out

State Machines

- Moore Output depends on machine state
 - Simpler design, requires more states and circuitry
- Mealy Output depends on machine state and inputs
 - Complex design, less states and circuitry

University of Nevada, Reno

State Machines

- Counters are simple
 - Moore machines
 - No inputs

Sequence Detection

Typical example, but extensible

- Detects sequence of 01, outputs 1 when

Vocab

- Synchronous events happen with a fixed time relationship
 - In counters, CLK goes to all flip-flops
- Asynchronous no fixed time relationship
 - In counters, CLK does not go to all flip-flops

- 2-bits, so 2² counts ______
- LSB = FF0
- C is positive edge triggered
- CLK only goes into FF0, FF1 is fed by Q₀'
- Ripple causes it to be asynchronous

Outputs read in binary 0...3

Ripple Binary Counter

- Other name for Asynchronous Counter
- 3 bits, so 2³ states, counts 0..7
- Exactly matches counting app from FFs
- Just add FFs

Problem

- A large counter = many delay
- If ripple not complete before next CLK
 - The circuit can desynchronize

CLK3

 Q_1

Truth table for a positive edge-triggered J-K flip-flop.

-	Input	s	Outp	outs	
J	K	CLK	Q	$\overline{\mathcal{Q}}$	Comments
0	0	<u> </u>	Q_0	\overline{Q}_0	No change
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	1	\overline{Q}_0	Q_0	Toggle

 \uparrow = clock transition LOW to HIGH

 $Q_0 =$ output level prior to clock transition

Can't just add for JK FFs

- 0, 1, 2, 7, 0, ...

 AND only lets Q2 toggle when Q1 and Q0 are 1, like in counting

	Outputs			J-K Inputs					At the Next Clock Pulse			
Clock Pulse	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0	FF2	FF1	FF0
Initially	0	0	0	0	0	0	0	1	1	NC*	NC	Toggle
1	0	0	1	0	0	1	1	1	1	NC	Toggle	Toggle
2	0	1	0	0	0	0	0	1	1	NC	NC	Toggle
3	0	1	1	1	1	1	1	1	1	Toggle	Toggle	Toggle
4	1	0	0	0	0	0	0	1	1	NC	NC	Toggle
5	1	0	1	0	0	1	1	1	1	NC	Toggle	Toggle
6	1	1	0	0	0	0	0	1	1	NC	NC	Toggle
7	1	1	1	1	1	1	1	1	1	Toggle	Toggle	Toggle
										Counter recycles back to 000.		

^{*}NC indicates No Change.

Truncated Asynchronous Counter

- Usually 2ⁿ states, with n flip-flops
- Reset the counter early, truncate the count
- Create other counts
- There are synch and asynch versions
- Next is MOD10 asynch (counts 0 to 9)

Bidirectional Counter

- Also an up/down coun 0, 1, 2, 3, 4, 5, 4, 3, 2, 3, 4, 5, 6, 7, 6, 5, etc.
- Counts in either direct.

Clock Pulse	Up	Q_2	Q_1	Q_0	Down
0	16	0	0	0)
1	(0	0	1	5
2	(0	1	0	5
3	(0	1	1	5
4	Ç	1	0	0	5
5	(1	0	1	5
6	Ç	1	1	0	5
7	(1	1	1	> ¥

University of Nevada, Rend

Bidirectional Counter

- $J_0 = K_0 = 1$
- $J_1 = K_1 = (Q_0 UP) + (Q_0' DOWN)$
- $J_2 = K_2 = (Q_0 \cdot Q_1 \cdot UP) + (Q_0' \cdot Q_1' \cdot DOWN)$

Clock Pulse	Up	Q_2	Q_1	Q_0	Down
0	10	0	0	0)
1	(0	0	1	5
2	(0	1	0	5
3	(0	1	1	5
4	(1	0	0	5
5	(1	0	1	5
6	(1	1	0	5
7	1 ¢	1	1	1	> ¥

Bidirectional Counter

Copy and paste FF1 and circuitry to

Reading

- This lecture
 - Sections 9.1-9.4
- Next lecture
 - Sections 9.5-9.10