- Design an algorithm to find all palindromes(迴文)
 of length ≥ 2. It does not need to be an optimal
 algorithm, as long as it can solve the problem.
- Analyze the every-case (if exists), worst-case, average-case, and best-case time complexities of your algorithm.
- 3. Textbook exercises 1-15~18, 1-22.

Due date: two weeks.

1-15 Show directly that $f(n) = n^2 + 3n^3 \in (n^3)$. That is, use the definitions of O and Ω to show that f(n) is in both $O(n^3)$ and $\Omega(n^3)$.

1-16 Using the definitions of O and Ω , show that

$$6n^2 + 20n \in O(n^3)$$
, but $6n^2 + 20n \notin \Omega(n^3)$.

1-17 Using the Properties of Order in Section 1.4.2, show that

$$5n^5 + 4n^4 + 6n^3 + 2n^2 + n + 7 \in \Theta(n^5)$$

1-18 Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$, where $a_k > 0$. Using the Properties of Order in Section 1.4.2, show that $p(n) \in \Theta(n^k)$.

1-22 Group the following functions by complexity category.

$$n \ln n$$
 $(\lg n)^2$ $5n^2 + 7n$ $n^{5/2}$
 $n!$ $2^{n!}$ 4^n n^n $n^n + \ln n$
 $5^{\lg n}$ $\lg (n!)$ $(\lg n)!$ \sqrt{n} e^n $8n + 12$ $10^n + n^{20}$

1 (constant) $< \log n < n < n \log n < n^2 < n^3 < 2^n < 3^n \le n!$

名稱	公式	證明
和差	$\log_{lpha} MN = \log_{lpha} M + \log_{lpha} N$	$\begin{split} & \ \Re M = \beta^m \cdot N = \beta^n \\ & \log_\alpha \ MN = \log_\alpha \ \beta^m \beta^n \\ & = \log_\alpha \ \beta^{m+n} \\ & = (m+n) \log_\alpha \beta \\ & = m \log_\alpha \beta + n \log_\alpha \beta \\ & = \log_\alpha \beta^m + \log_\alpha \beta^n \\ & = \log_\alpha M + \log_\alpha N \\ & \log_\alpha \frac{M}{N} = \log_\alpha M + \log_\alpha \frac{1}{N} \\ & = \log_\alpha M - \log_\alpha N \end{split}$
基變換(換底公式)	$\mathrm{log}_{lpha}x = rac{\mathrm{log}_{eta}x}{\mathrm{log}_{eta}lpha}$	設 $\log_{\alpha} x = t$ $\therefore x = \alpha^t$ 兩邊取對數,則有 $\log_{\beta} x = \log_{\beta} \alpha^t$ 即 $\log_{\beta} x = t \log_{\beta} \alpha$ 又: $\log_{\alpha} x = t$ $\therefore \log_{\alpha} x = \frac{\log_{\beta} x}{\log_{\beta} \alpha}$
指係(次方公式)	$\log_{lpha^n} x^m = rac{m}{n} \log_lpha x$	$egin{aligned} \log_{lpha^n} \ x^m &= rac{\ln \ x^m}{\ln \ lpha^n} \ &= rac{m \ln x}{n \ln lpha} \ &= rac{m}{n} \log_lpha x \end{aligned}$

Source:wiki

還原	$\alpha^{\log_{\alpha} x} = x$ $= \log_{\alpha} \alpha^{x}$	
互換	$M^{\log_lpha N} = N^{\log_lpha M}$	設 $b=\log_{lpha}N$, $c=\log_{lpha}M$ 則有 $lpha^c=M$ and $lpha^b=N$. 公式左側是 $(lpha^c)^b$ 公式右側是 $(lpha^b)^c$
倒數	$\log_lpha heta = rac{\ln heta}{\ln lpha} = rac{1}{rac{\ln lpha}{\ln heta}} = rac{1}{\log_ heta lpha}$	
鏈式	$egin{aligned} \log_{\gamma}\!eta & \log_{eta}\!lpha & rac{\ln\!lpha}{\ln\!eta} & rac{\ln\!eta}{\ln\!\gamma} \\ & = rac{\ln\!lpha}{\ln\!\gamma} \\ & = \log_{\gamma}\!lpha \end{aligned}$	

 $\log \log n = \log (\log n)$

 $log^k n = (log n)^k$

Source:wiki