EXAMEN

Jeudi 21 décembre 2017 - Durée : 2h

Exercice 1 (Question de cours):

- 1. Enoncer le Théorème du point fixe concernant les fonctions contractantes sur un intervalle fermé I.
- 2. Démontrer ce théorème.

Exercice 2 : Etudier la limite de $(x+1) \exp\left(\frac{1}{x+1}\right) - x \exp\left(\frac{1}{x}\right)$ quand $x \to +\infty$. On pourra s'aider de l'égalité des accroissements finis (en justifiant son utilisation).

Exercice 3 : Soit a < b et f une fonction de [a, b] à valeurs dans \mathbb{R} , supposée de classe C^2 sur [a, b] et trois fois dérivable sur]a, b[. Le but de cet exercice est de montrer qu'il existe au moins un réel $c \in]a, b[$ tel que

$$f(b) = f(a) + (b - a)\frac{f'(a) + f'(b)}{2} - \frac{(b - a)^3}{12}f^{(3)}(c).$$
 (1)

Pour $\lambda \in \mathbb{R}$ fixé, soit la fonction

$$\varphi_{\lambda}(x) = f(b) - f(x) - (b - x) \frac{f'(x) + f'(b)}{2} + \lambda (b - x)^{3}.$$

- 1. Que peut-on dire de la régularité de φ_{λ} sur l'intervalle [a,b] (continuité, dérivabilité, etc.)?
- 2. Montrer qu'il est possible de choisir $\lambda \in \mathbb{R}$ (que l'on déterminera) pour lequel on peut montrer l'existence de $u \in]a,b[$ tel que $\varphi'_{\lambda}(u)=0$. Cette constante λ est fixée dans la suite de cet exercice.
- 3. Calculer $\varphi'_{\lambda}(x)$ pour tout $x \in [u, b]$ et en déduire l'existence d'un $c \in]u, b[$ tel que $\varphi''_{\lambda}(c) = 0$.
- 4. En déduire (1).
- 5. Interpréter graphiquement l'égalité (1) dans le cas où f est une fonction polynomiale de degré 2.

Exercice 4: Soit $0 = t_0 < t_1 < t_2 < \ldots < t_{p-1} < t_p = 1$ une subdivision de [0,1] et $\varphi : [0,1] \to \mathbb{R}$ une fonction définie sur [0,1]. On dit que φ est une fonction en escalier adaptée à la subdivision $(t_i)_{0 \le i \le p}$ si, pour tout $i = 1, \ldots, p$, φ est une fonction constante sur $]t_{i-1}, t_i[$.

Soit f une application continue sur [0,1]. Le but de cet exercice est de montrer que pour tout $\varepsilon > 0$, il existe des fonctions en escalier φ et ψ telles que

$$\forall x \in [0, 1], \ \varphi(x) \le f(x) \le \psi(x), \tag{2}$$

$$\forall x \in [0, 1], \ 0 \le \psi(x) - \varphi(x) < \varepsilon. \tag{3}$$

Dans tout cet exercice, $\varepsilon > 0$ est fixé.

- 1. Pour tout i = 0, ..., n 1, justifier l'existence de $m_i := \inf_{t \in \left[\frac{i}{n}, \frac{i+1}{n}\right]} f(t)$ et $M_i := \sup_{t \in \left[\frac{i}{n}, \frac{i+1}{n}\right]} f(t)$ et de $x_i, y_i \in \left[\frac{i}{n}, \frac{i+1}{n}\right]$ tels que $f(x_i) = m_i$ et $f(y_i) = M_i$.
- 2. En s'aidant de la question précédente, construire deux fonctions en escalier φ et ψ adaptées à la subdivision $(0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1)$ qui vérifient l'encadrement (2).
- 3. Montrer qu'il existe $n_0 \ge 1$ tel que pour tout $n \ge n_0$, pour tout $i \in \{0, \dots, n-1\}$ et pour tout $x, y \in \left[\frac{i}{n}, \frac{i+1}{n}\right], |f(x) f(y)| < \varepsilon$.
- 4. Déduire des questions précédentes l'inégalité (3).

Exercice 5 : Soit l'équation différentielle suivante :

$$x^{2}y'(x) + (1 - 2x)y(x) = x^{2}.$$
(4)

- 1. Résoudre cette équation sur $]-\infty,0[$ et sur $]0,+\infty[$.
- 2. Existe-t-il des solutions définies sur $\mathbb R$ tout entier? Si oui, lesquelles? Vous justifierez précisément votre réponse.

Fin de l'épreuve.