Aufgabe 1

Minimieren Sie den nachfolgenden DEA unter Verwendung eines in der Vorlesung vorgestellten Verfahrens:

Lösung 1

Schritt 1 Streichen von unerreichbaren Zuständen.

Der Zustand q_2 ist nicht erreichbar und kann damit gestrichen werden.

Schritt 2 Wir fassen die nicht-akzeptierenden Zustände in die mögliche Äquivalenzklasse [1] zusammen und die akzeptierenden Zustände in die mögliche Äquivalenzklasse [2].

Eq	Q	⊢ 0	⊢ 1
	q_0	[1]	[2]
	q_1	[1]	[1]
[1]	q_4	[2]	[2]
[1]	96	[1]	[1]
	97	[1]	[1]
	q_8	[2]	[1]
[2]	<i>q</i> ₃	[2]	[2]
[∠]	q_5	[2]	[2]

Ausgabe: 24.05.2023

Abgabe: n./a.

Schritt 3 Nun Suchen wir nach Zuständen, die sich nicht gleich verhalten, also nicht in					
der selben Äquivalenzklasse liegen können (farbliche Markierungen in der vorherigen					
Tabelle) und unterteilen diese in neue Äquivalenzklassen.					

Eq	Q	$\vdash 0$	⊢ 1
[1]	q_0	[2]	[5]
	q_1	[2]	[2]
[2]	96	[2]	[4]
	97	[2]	[4]
[3]	q_4	[5]	[5]
[4]	<i>q</i> 8	[5]	[1]
[5]	<i>q</i> ₃	[5]	[5]
	95	[5]	[5]

Schritt 4 Dies wiederholen wir solange, bis wir in einer Äquivalenzklasse nur noch Zustände habe, die sich gleich verhalten (die also äquivalent sind).

Eq	Q	$\vdash 0$	⊢ 1
[1]	q_0	[2]	[6]
[2]	q_1	[3]	[3]
[3]	96	[3]	[5]
[2]	97	[3]	[5]
[4]	q_4	[6]	[6]
[5]	q_8	[6]	[1]
[6]	93	[6]	[6]
[o]	q_5	[6]	[6]

Wenn dabei weitere Zustände auftreten, die nicht erreicht werden können, sollten diese ebenfalls gestrichen werden. Hier ist das q_4 .

Schritt 5 Die so erzeugte Transitionstabelle ergibt den minimalen DEA.

