# Big Data Final Project

•••

Group 3 Immortals:

Hongyu Zhai, Yuhan Chen, Sifan Chen

### **Research Questions**

- Which countries/regions are slow/fast to take actions?
- Are there any country/region that is ignoring the rising numbers?
- Are there any country/region being extra cautious?
- What patterns can we find when examining the data?
  - Do countries/regions with low medical resources tend to take more stringent actions?
  - Do countries/regions with high population density tend to take more stringent actions?
  - Do countries/regions with higher percentage of elder people tend to take more stringent actions?
- What about states? Can we find similar patterns in the state level?

# Government Responses Data

- Country Level
  - Oxford University Coronavirus Government Responses Tracker:
    <a href="https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker">https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker</a>
- State Level
  - Kaiser Family Foundations State Data and Policy Actions to Address Coronavirus: <a href="https://www.kff.org/health-costs/issue-brief/state-data-and-policy-actions-to-address-coronavirus/">https://www.kff.org/health-costs/issue-brief/state-data-and-policy-actions-to-address-coronavirus/</a>

### **Medical Resources Data**

#### Country Level

- World Bank Hospital Beds (per 1,000 people): <a href="https://data.worldbank.org/indicator/SH.MED.BEDS.ZS">https://data.worldbank.org/indicator/SH.MED.BEDS.ZS</a>
- World Bank Physicians (per 1,000 people): <a href="https://data.worldbank.org/indicator/SH.MED.PHYS.ZS">https://data.worldbank.org/indicator/SH.MED.PHYS.ZS</a>
- World Bank Nurses (per 1,000 people): <a href="https://data.worldbank.org/indicator/SH.MED.NUMW.P3">https://data.worldbank.org/indicator/SH.MED.NUMW.P3</a>
- World Bank Percentage of Ages 65+: <a href="https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS">https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS</a>
- State Level (summing all county level data)
  - Kaiser Health News Hospital by County: <a href="https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds">https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds</a>
  - Kaiser Health News ICU Beds by County:

    <a href="https://khn.org/wp-content/uploads/sites/2/2020/03/KHN-ICU-bed-county-analysis\_2.zip">https://khn.org/wp-content/uploads/sites/2/2020/03/KHN-ICU-bed-county-analysis\_2.zip</a>

### **Step 1: Preparing the Datasets**

- Download the datasets from the internet.
  - Keep the original filename
  - One folder for each data source
  - Record the date we retrieved the dataset, with the URL to that link (if available).
- Perform necessary cleanup steps
  - Remove the header/footnotes from the table.
  - Every steps detailed in a Jupyter Notebook
    - https://github.com/iamzhaihy/BD2020-Final-Project/blob/master/Data%20Processing.ipynb

# Step 2: Visualization and Exploring

- We made 2 interactive visualizations: one for the countries and one for the states.
- Each visualization shows the stringency\_index (a number we used to measure the stringency of government responses) and the number of confirmed cases.
- By using the slider on top, we are able to see those numbers for each day, and observe how things change.
- Let's do a quick live demo <u>https://iamzhaihy.github.io/BD2020-Final-Project</u>









### Step 3: Try to Make Sense of the Data

- Compute correlations between stringency\_index and other indicators
  - Generally show weak positive relationship
  - Due to the complex nature of governments, simple correlations cannot tell us much.
  - More details can be found in the project report.
- Observe and try to find the pattern
  - For example, almost all red states are taking less stringent actions
  - One interesting exception is Ohio (fast and stringent).
- It is hard to find a strongly correlated indicator.
  - Many factors are affecting the decisions simultaneously.

# **Challenges**

- Diversity of the datasets
  - Different sources
  - Different granularity
  - Different column names
  - Different keys (country names, country codes, etc.)
- How we dealt with it
  - Manual adjustments
  - Study the datasets and try to find an ideal key to perform join

### **Challenges**

- Lack of state level data
  - Hard to find daily policy changes
  - Sources are diverse and chaotic
  - Need to compute stringency\_index by ourselves
- How we dealt with it.
  - Utilize the snapshots on archive.org
  - Manual adjustments using information on Wikipedia
  - Came up with our own encoding rules to compute stringency\_index for states

# **Challenges**

- Visualizing the data
  - Need GeoJSON data.
  - Static visualization shows too little.
  - Extreme values cause trouble for charts (stretched).
- How we dealt with it
  - Use D3 to make interactive visualizations.
    - Viewers can filter what information to be drawn.
  - Study the materials and find the right scaling function.

### Limitations

- stringency\_index simplifies things, but also hides nuances.
  - Only one number is used, so details are lost.
  - We cannot answer the questions like: which countries took most extreme actions to restrict international travel.
- stringency\_index, as the name suggests, only measures the stringency.
- We do not have daily data on state actions
  - No convenient way to collect.
  - Too labor-intensive for three people.
  - Lack of data means we might miss some important changes.

### Limitations

- The indicators we collected are somewhat outdated
  - Data for some countries/regions are last updated more than 10 years ago.
  - We collected and used the best data we can find. JHU and other institutes also rely on the same data.