In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\6_Salesworkload1 - 6_Salesworkload1
 data

Out[2]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLe
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	
7653	6.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	
7654	6.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	
7655	6.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	
7656	6.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	
7657	6.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	

7658 rows × 14 columns

localhost:8888/notebooks/sales (Lasso).ipynb

In [3]: df=data.head(100)

Out[3]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0
95	10.2016	1.0	United Kingdom	18808.0	London (II)	14.0	Non Food	7817.148	0.0
96	10.2016	1.0	United Kingdom	18808.0	London (II)	15.0	Admin	5110.728	0.0
97	10.2016	1.0	United Kingdom	18808.0	London (II)	12.0	Checkout	6209.031	0.0 ;
98	10.2016	1.0	United Kingdom	18808.0	London (II)	16.0	Customer Services	3115.53	0.0
99	10.2016	1.0	United Kingdom	18808.0	London (II)	11.0	Delivery	7209.777	246.0

100 rows × 14 columns

```
In [4]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype				
0	MonthYear	100 non-null	object				
1	Time index	100 non-null	float64				
2	Country	100 non-null	object				
3	StoreID	100 non-null	float64				
4	City	100 non-null	object				
5	Dept_ID	100 non-null	float64				
6	Dept. Name	100 non-null	object				
7	HoursOwn	100 non-null	object				
8	HoursLease	100 non-null	float64				
9	Sales units	100 non-null	float64				
10	Turnover	100 non-null	float64				
11	Customer	0 non-null	float64				
12	Area (m2)	100 non-null	object				
13	Opening hours	100 non-null	object				
d+,,,,	oc. £100+64(7)	object(7)					

dtypes: float64(7), object(7)

memory usage: 11.1+ KB

In [5]: df.describe()

Out[5]:

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	Customer
count	100.0	100.000000	100.000000	100.000000	1.000000e+02	1.000000e+02	0.0
mean	1.0	43781.340000	9.310000	65.340000	1.063110e+06	3.590811e+06	NaN
std	0.0	28146.505061	5.292829	249.349222	1.769242e+06	5.968009e+06	NaN
min	1.0	17647.000000	1.000000	0.000000	0.000000e+00	0.000000e+00	NaN
25%	1.0	18808.000000	5.000000	0.000000	5.300125e+04	2.702460e+05	NaN
50%	1.0	38976.000000	9.000000	0.000000	3.072850e+05	8.339250e+05	NaN
75%	1.0	73949.000000	14.000000	0.000000	9.195138e+05	2.966010e+06	NaN
max	1.0	88253.000000	18.000000	1896.000000	7.476680e+06	2.571973e+07	NaN

```
In [6]: df.columns
```

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1967c60fd00>

Out[8]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetab l es	1759.173	0.0
95	10.2016	1.0	United Kingdom	18808.0	London (II)	14.0	Non Food	7817.148	0.0
96	10.2016	1.0	United Kingdom	18808.0	London (II)	15.0	Admin	5110.728	0.0
97	10.2016	1.0	United Kingdom	18808.0	London (II)	12.0	Checkout	6209.031	0.0 ;
98	10.2016	1.0	United Kingdom	18808.0	London (II)	16.0	Customer Services	3115.53	0.0
99	10.2016	1.0	United Kingdom	18808.0	London (II)	11.0	Delivery	7209.777	246.0

100 rows × 14 columns

localhost:8888/notebooks/sales (Lasso).ipynb

```
In [9]:
          sns.heatmap(da.corr())
 Out[9]: <AxesSubplot:>
                                                                - 1.0
            Time index -
                                                                 - 0.8
              StoreID -
                                                                - 0.6
              Dept_ID -
           HoursLease -
                                                                 - 0.4
            Sales units -
                                                                 0.2
              Turnover -
             Customer -
                                             Sales units.
                                        HoursLease
In [10]: x=da[['MonthYear', 'Time index', 'Dept_ID', 'HoursOwn', 'HoursLease', 'Sales u
          y=da['Turnover']
In [11]: from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [12]: | from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[12]: LinearRegression()
In [13]: print(lr.intercept_)
```

-259254.98998099798

```
In [14]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[14]:

	Co-efficient
MonthYear	0.000000e+00
Time index	1.528216e - 07
Dept_ID	5.265083e+03
HoursOwn	2.913973e+01
HoursLease	-7.318791e+02
Sales units	2.910219e+00
Area (m2)	5.768828e+01

```
In [15]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x19601ca3430>


```
In [16]: print(lr.score(x_test,y_test))
```

0.9493351758128525

```
In [17]: sns.distplot(data['Turnover'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[17]: <AxesSubplot:xlabel='Turnover', ylabel='Density'>


```
In [18]: print(lr.score(x_train,y_train))
```

0.9818934125426865

```
In [19]: from sklearn.linear_model import Ridge,Lasso
```

```
In [20]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Out[20]: Ridge(alpha=10)

```
In [21]: rr.score(x_test,y_test)
```

Out[21]: 0.9493374086792508

```
In [22]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[22]: Lasso(alpha=10)

```
In [23]: la.score(x_test,y_test)
```

Out[23]: 0.9493352067627612

In []: