Algoritmos genéticos

Fernando Elizalde Ramírez

Diseño de algoritmos matemáticos bioinspirados Departamento de Matemáticas Tecnológico de Monterrey

August 24, 2023

Problema de asignación

Consiste en asignar n tareas a n personas, donde la persona i tarda $t_{i,j}$ en realizar la tarea j. El objetivo es minimizar el tiempo total en el que se realizan las n tareas de tal forma que cada tarea sea asignada a una persona y cada persona debe realizar una tarea. Recordemos la formulación matemática.

Una compañía de manufactura desea realizar una jornada de mantenimiento preventivo a sus tres máquinas principales A, B, C. El tiempo que demanda realizar el mantenimiento de cada máquina es de 1 día, sin embargo la jornada de mantenimiento no puede durar más de un día, teniendo en cuenta que la compañía cuenta con tres proveedores de servicios de mantenimiento debe asignarse un equipo de mantenimiento a cada máquina para poder cumplir con la realización del mantenimiento preventivo. Teniendo en cuenta que según el grado de especialización de cada prestador de servicios de mantenimiento el costo de la tarea varía para cada máquina en particular, debe asignarse el equipo correcto a la máquina indicada con el objetivo de minimizar el costo total de la jornada. Los costos asociados pueden verse en la siguiente tabla:

Equipo de	Máquina 1	Máquina 2	Máquina 3
Mantenimiento 1	10	9	5
Mantenimiento 2	9	8	3
Mantenimiento 3	6	4	7

Diseñe un algoritmo genético que resuelva el problema.

① Tipo de cromosoma:

1 Tipo de cromosoma: Binaria

- 1 Tipo de cromosoma: Binaria
- 2 Longitud:

1 Tipo de cromosoma: Binaria

2 Longitud: 9

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización:

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Criterio de infactibilidad:

1 Tipo de cromosoma: Binaria

2 Longitud: 9

3 Criterio de inicialización: aletoria

Oriterio de infactibilidad: Eliminar

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- Criterio de Paro:

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes:

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección:

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Oriterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- O Criterio de selección: Ruleta

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Oriterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce:

- 1 Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Oriterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- Oriterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Oriterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Oriterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9
- Puntos de cruce:

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Oriterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9
- Puntos de cruce: 1

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Oriterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9
- Puntos de cruce: 1
- Lugar de cruce:

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Oriterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9
- Puntos de cruce: 1
- Lugar de cruce: 4

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Criterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9
- Puntos de cruce: 1
- Lugar de cruce: 4
- Probabilidad de mutación

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- Criterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9
- Puntos de cruce: 1
- Lugar de cruce: 4
- Probabilidad de mutación 0.1

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Criterio de infactibilidad: Eliminar
- 6 Criterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9
- Puntos de cruce: 1
- Lugar de cruce: 4
- Probabilidad de mutación 0.1
- Criterio de reemplazo:

- Tipo de cromosoma: Binaria
- 2 Longitud: 9
- 3 Criterio de inicialización: aletoria
- Oriterio de infactibilidad: Eliminar
- Oriterio de Paro: 100 generaciones
- Función fitnes: 1/F.O
- Criterio de selección: Ruleta
- Tamaño de la población: 6
- Probabilidad de cruce: Si de 0.9
- Puntos de cruce: 1
- Lugar de cruce: 4
- Probabilidad de mutación 0.1
- Criterio de reemplazo: se reemplaza toda la generación

cromosoma x ₁₁ x ₁₂ x ₁₃	<i>x</i> ₂₁ <i>x</i> ₂₂	X ₂₃	<i>X</i> 31	X32	<i>X</i> 33
---	---	-----------------	-------------	-----	-------------

cromosoma	<i>x</i> ₁₁	<i>X</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	X22	X23	<i>x</i> ₃₁	X32	X33
Costo	10	9	5	9	8	3	6	4	7

cromosoma	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	X22	X23	<i>x</i> ₃₁	X32	<i>X</i> 33
Costo	10	9	5	9	8	3	6	4	7

Población inicial

	<i>x</i> ₁₁	<i>x</i> ₁₂	X ₁₃	x ₂₁	X22	X ₂₃	<i>X</i> 31	X32	X33	F.O.	Fitnes = $\frac{1}{F.O.}$	Probabilidad	Acumulado
P1	0	0	1	0	1	0	0	1	0	17	0.0588	0.1835	0.1835
P2	0	0	1	0	0	1	1	0	0	14	0.0714	0.2229	0.4064
P2	1	0	0	0	1	1	0	0	0	21	0.0476	0.1486	0.5550
P4	0	0	1	0	1	0	0	0	1	13	0.0500	0.1560	0.7110
P5	1	0	0	0	1	0	0	0	1	18	0.0400	0.1248	0.8358
P6	1	0	0	0	0	1	1	0	0	19	0.0526	0.1642	1.0000

cromosoma	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	X22	X23	<i>x</i> ₃₁	X32	<i>X</i> 33
Costo	10	9	5	9	8	3	6	4	7

Población inicial

	<i>x</i> ₁₁	<i>x</i> ₁₂	X ₁₃	x ₂₁	X22	X ₂₃	X31	X32	X33	F.O.	Fitnes = $\frac{1}{F.O.}$	Probabilidad	Acumulado
P1	0	0	1	0	1	0	0	1	0	17	0.0588	0.1835	0.1835
P2	0	0	1	0	0	1	1	0	0	14	0.0714	0.2229	0.4064
P2	1	0	0	0	1	1	0	0	0	21	0.0476	0.1486	0.5550
P4	0	0	1	0	1	0	0	0	1	13	0.0500	0.1560	0.7110
P5	1	0	0	0	1	0	0	0	1	18	0.0400	0.1248	0.8358
P6	1	0	0	0	0	1	1	0	0	19	0.0526	0.1642	1.0000

Selección de padres

	P(padre 1)=0.0832					l		l		
Padre 2	p(padre 2) = 0.3267	p2	0	0	1	0	0 1	1	0	0

	P(padre 1)=0.0832										
Padre 2	p(padre 2) =0.3267	p2	0	0	1	0	0	1	1	0	0

¿se cruzan?

		P(padre 1)=0.0832										
Pa	dre 2	p(padre 2) =0.3267	p2	0	0	1	0	0	1	1	0	0

 $\hbox{\it ise cruzan?} 0.12 < 0.9$

ſ	padre 1	P(padre 1)=0.0832	p1	0	0	1	0	1	0	0	1	0
ĺ	Padre 2	p(padre 2) = 0.3267	p2	0	0	1	0	0	1	1	0	0

¿se cruzan?0.12 < 0.9 si se cruzan

padre 1	P(padre 1)=0.0832	p1	0	0	1	0	1	0	0	1	0
Padre 2	p(padre 2) =0.3267	p2	0	0	1	0	0	1	1	0	0

¿se cruzan?0.12 < 0.9 si se cruzan

Hijo 1	0	0	1	0	0	1	1	0	0
Hijo 2	0	0	1	0	1	0	0	1	0

	P(padre 1)=0.0832										
Padre 2	p(padre 2) =0.3267	p2	0	0	1	0	0	1	1	0	0

¿se cruzan?0.12 < 0.9 si se cruzan

Hijo 1				0	0	1	1	0	0
Hijo 2	0	0	1	0	1	0	0	1	0

Mutación sip < 0.1

x ₁₁	x ₁₂	X ₁₃	x ₂₁	X ₂₂	X ₂₃	<i>x</i> ₃₁	X32	X33
0.6617	0.2996	0.6206	0.0393	0.7041	0.5877	0.8184	0.2055	0.3608
0.1640	0.1474	0.1961	0.8731	0.8680	0.1153	0.6807	0.2325	0.4337

Teniendo

	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	x ₂₁	X ₂₂	X23	X31	X32	X33	factible
Hijo 1	0	0	1	1	0	1	1	0	0	no
Hijo 2	0	0	1	0	1	0	0	1	0	si

	P(padre 1)=0.0832										
Padre 2	p(padre 2) = 0.3267	p2	0	0	1	0	0	1	1	0	0

ξ se cruzan?0.12 < 0.9 si se cruzan

Hijo 1									
Hijo 2	0	0	1	0	1	0	0	1	0

Mutación sip < 0.1

	x ₁₁	x ₁₂	X ₁₃	x ₂₁	X ₂₂	X ₂₃	<i>x</i> ₃₁	X32	X33
ſ	0.6617	0.2996	0.6206	0.0393	0.7041	0.5877	0.8184	0.2055	0.3608
Ì	0.1640	0.1474	0.1961	0.8731	0.8680	0.1153	0.6807	0.2325	0.4337

Teniendo

	x ₁₁	X ₁₂	<i>x</i> ₁₃	x ₂₁	X22	X23	<i>x</i> ₃₁	X32	<i>X</i> 33	factible
Hijo 1	0	0	1	1	0	1	1	0	0	no
Hiio 2	0	0	1	0	1	0	0	1	0	si

Se obtiene solo un hijo factible

Ì		Y11	Y12	Y12	x ₂₁	Yaa	Yaa	Y21	Yaa	Yaa
ı		711	712	~13	721	722	^23	731	^32	^33
	Hijo 2	0	0	1	0	1	0	0	1	0

	P(padre 1)=0.0832										
Padre 2	p(padre 2) =0.3267	p2	0	0	1	0	0	1	1	0	0

ξ se cruzan?0.12 < 0.9 si se cruzan

Hijo 1	0	0	1	0	0	1	1	0	0
Hijo 2	0	0	1	0	1	0	0	1	0

Mutación sip < 0.1

	<i>x</i> ₁₁	x ₁₂	<i>x</i> ₁₃	x ₂₁	X ₂₂	X ₂₃	<i>x</i> ₃₁	X32	X33
	0.6617	0.2996	0.6206	0.0393	0.7041	0.5877	0.8184	0.2055	0.3608
Ì	0.1640	0.1474	0.1961	0.8731	0.8680	0.1153	0.6807	0.2325	0.4337

Teniendo

	x ₁₁	X ₁₂	X ₁₃	x ₂₁	X22	X ₂₃	X31	X32	<i>X</i> 33	factible
Hijo 1	0	0	1	1	0	1	1	0	0	no
Hiio 2	0	0	1	0	1	0	0	1	0	si

Se obtiene solo un hijo factible

	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	x ₂₁	X22	X ₂₃	<i>x</i> ₃₁	X32	X33
Hijo 2	0	0	1	0	1	0	0	1	0

Repetir desde la generación de padres sin alterar la población inicial hasta obtener 6 hijos factibles, una vez obtenido los 6 hijos, se reemplaza la población inicial por esta nueva generación.

Problema de secuenciación de tareas

Dado un conjunto $M=\{1,2,\cdots,m\}$ de tareas que se van a secuenciar en una sola máquina, cada tarea $i\in M$ tiene un tiempo de procesamiento t_i y una fecha límite d_i para ser realizada. Si la tarea i se completa antes de la fecha límite, incurre en un costo de retención h_i por unidad de tiempo. Una tarea retardada i da como resultado un costo de penalización c_i por unidad de tiempo.

Tarea i	ti	di	hi	Ci
1	10	15	3	10
2	8	20	2	22
3	6	10	5	10
4	7	30	4	8
5	4	12	6	15

Resuelve a optimalidad, usando un solver, considerando los datos de la tabla.

Problema de secuenciación de tareas

Dado un conjunto $M=\{1,2,\cdots,m\}$ de tareas que se van a secuenciar en una sola máquina, cada tarea $i\in M$ tiene un tiempo de procesamiento t_i y una fecha límite d_i para ser realizada. Si la tarea i se completa antes de la fecha límite, incurre en un costo de retención h_i por unidad de tiempo. Una tarea retardada i da como resultado un costo de penalización c_i por unidad de tiempo.

Tarea i	ti	di	hi	Ci
1	10	15	3	10
2	8	20	2	22
3	6	10	5	10
4	7	30	4	8
5	4	12	6	15

- Resuelve a optimalidad, usando un solver, considerando los datos de la tabla.
- ② Diseña un algoritmo genético para determinar la mejor secuencia de tareas S tal que los costos por retención y penalización sean minimizados.
- Implementa tu algoritmo considerando los siguientes datos y compara con la solución óptima:

Apoyo para el modelo matemático

Localización de instalaciones

Dado un conjunto de depósitos potenciales $N=\{1,2,\cdots,n\}$ que almacenan productos que serán entregados a un conjunto de clientes $M=\{1,2,\cdots,m\}$. Existe un costo fijo f_j asociado con el uso del depósito j, una capacidad limitada de productos en el depósito j y un costo de transportación $c_{i,j}$ en función de la cantidad de producto que el depósito j entrega al cliente i. El problema consiste en decidir cuáles depósitos se abrirán y cuál depósito sirve a cada cliente del tal forma que se minimicen los costos.

- Realice el modelo matemático
- Diseña un algoritmo heurístico
- Diseñe un algoritmo genético.

Problema de localización

Caso

$$M = \{1,2,3,4,5\}, N = \{1,2,3\}, f_j = \begin{bmatrix} 5 & 10 & 8 \end{bmatrix}, b_j = \begin{bmatrix} 20 & 30 & 25 \end{bmatrix}, d_i = \begin{bmatrix} 10 & 8 & 15 & 7 & 12 \end{bmatrix} \\ \text{yc}_{ij} = \begin{bmatrix} 2 & 4 & 5 \\ 3 & 3 & 4 \\ 4 & 1 & 2 \\ 5 & 2 & 1 \\ 7 & 6 & 3 \end{bmatrix}$$

A partir de los datos anteriores resuelva el problema de localización mediante

- El modelo matemático
- Un algoritmo heurístico
- Un algoritmo genético.

Compare los resultados obtenidos