FCC Part 15C

Measurement and Test Report

For

SHEN ZHEN WFLY TECHNOLOGY DEVELOPMENT CO., LTD.

Flat 618-619, 6/F Chuangye Building No. 1 Qilin Road, Nanshan District,

Shenzhen, P.R. China

FCC ID: TZVWFT09II

Report Concerns: Equipment Type: RADIO CONTROL SYSTEM Original Report Model: WFT09 II Report No.: STR11088173I Test Date: 2011-08-17 to 2011-08-31 Issue Date: 2011-09-06 Jason chen Lahm peny Jumlyso Tested By: Jason Chen / Engineer Reviewed By: Lahm Peng / EMC Manager Approved & Authorized By: Jandy so/PSQ Manager Prepared By: SEM.Test Compliance Service Co., Ltd 3/F, Jinbao Commerce Building, Xin'an Fanshen Road,

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by SEM.Test Compliance Service Co., Ltd.

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

REPORT NO.: STR11088173I PAGE 1 OF 33 FCC PART 15.247

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards	
1.3 TEST METHODOLOGY	
1.4 TEST FACILITY	
1.5 EUT EXERCISE SOFTWARE	
1.0 ACCESSORIES EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	
3. CONDUCTED EMISSIONS	
3.1 MEASUREMENT UNCERTAINTY	
3.2 TEST EQUIPMENT LIST AND DETAILS	
3.3 TEST PROCEDURE	
3.5 ENVIRONMENTAL CONDITIONS	
3.6 SUMMARY OF TEST RESULTS/PLOTS	
3.7 CONDUCTED EMISSIONS TEST DATA	7
4. §15.203 - ANTENNA REQUIREMENT	10
4.1 Standard Applicable	
4.2 TEST RESULT	
5. POWER SPECTRAL DENSITY	11
5.1 Standard Applicable	
5.2 TEST EQUIPMENT LIST AND DETAILS.	
5.3 TEST PROCEDURE.	
5.4 Environmental Conditions	
5.5 SUMMARY OF TEST RESULTS/PLOTS	12
6. 6-DB BANDWIDTH	15
6.1 STANDARD APPLICABLE	15
6.2 TEST EQUIPMENT LIST AND DETAILS	
6.3 Test Procedure	
6.4 Environmental Conditions	
6.5 SUMMARY OF TEST RESULTS/PLOTS	
7. POWER OUTPUT	18
7.1 STANDARD APPLICABLE	
7.2 TEST EQUIPMENT LIST AND DETAILS	
7.3 TEST PROCEDURE	
7.4 ENVIRONMENTAL CONDITIONS	
8. FIELD STRENGTH OF SPURIOUS EMISSIONS	
8.1 Measurement Uncertainty	
8.3 TEST EQUIPMENT LIST AND DETAILS	
8.4 TEST PROCEDURE.	
8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
8.6 Environmental Conditions	23
8.7 SUMMARY OF TEST RESULTS/PLOTS	23
9. OUT OF BAND EMISSIONS	31
9.1 STANDARD APPLICABLE	31
9.2 TEST EQUIPMENT LIST AND DETAILS	
9.3 TEST PROCEDURE	
9.4 Environmental Conditions	
9.5 Summary of Test Results/Plots	32

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: SHEN ZHEN WFLY TECHNOLOGY DEVELOPMENT CO.,

LTD.

Address of applicant: Flat 618-619, 6/F Chuangye Building No. 1 Qilin Road,

Nanshan District, Shenzhen, P.R.China

Manufacturer: SHEN ZHEN WFLY TECHNOLOGY DEVELOPMENT CO.,

LTD.

Address of manufacturer: Flat 618-619, 6/F Chuangye Building No. 1 Qilin Road,

Nanshan District, Shenzhen, P.R.China

General Description of E.U.T

Items	Description	
EUT Description:	RADIO CONTROL SYSTEM	
Trade Name:	WFLY	
Test Model:	WFT09 II	
Adding Model:	WFT09S II	
Rated Voltage:	12V DC	
RF Output Power:	10.57dBm (Conducted)	
Antenna Gain :	2 dBi	
Frequency range:	2411-2470MHz	
Number of channels:	60	
Channel Separation:	1MHz	
Type of Antenna:	Integral Antenna	
For more information refer to the circuit diagram form and the user's manual.		

Note: The test data is gathered from a production sample, provided by the manufacture. The others models listed in the report have different appearance only of WFT09II without circuit and electronic construction changed, declared by the manufacturer.

1.2 Test Standards

The following report is prepared on behalf of the SHEN ZHEN WFLY TECHNOLOGY DEVELOPMENT CO., LTD. in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

REPORT NO.: STR11088173I PAGE 3 OF 33 FCC PART 15.247

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted with Low Channel, Middle Channel and High Channel, accordingly in reference to the Operating Instructions.

1.4 Test Facility

• FCC – Registration No.: 994117

SEM.Test Compliance Services Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 994117.

• Industry Canada (IC) Registration No.: 7673A

The 3m Semi-anechoic chamber of SEM.Test Compliance Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 7673A.

• CNAS Registration No.: L4062

Shenzhen SEM. Test Electronics Service Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 3/F, Jinbao Commerce Building, Xin'an Fanshen Road, Bao'an District, Shenzhen, P.R.C (518101)

1.5 EUT Exercise Software

The EUT exercise program used during the testing was designed to exercise the system components.

1.6 Accessories Equipment List and Details

Description	Manufacturer	Model	Serial Number
Power Adaptor	TIANXIANG	S024EM1200200	/

1.7 EUT Cable List and Details

Cable Description	Length (M)	Shielded/Unshielded	With Core/Without Core
/	/	/	/

REPORT NO.: STR11088173I PAGE 4 OF 33 FCC PART 15.247

2. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§ 15.203; § 15.247(c)(1)(i)	Antenna Requirement	Compliant
§ 15.207	Conducted Emission	Compliant
§ 15.247(e)	Power Spectral Density	Compliant
§ 15.247(a)(2)	6 dB Bandwidth	Compliant
§ 15.247(b)(3)	Power Output	Compliant
§ 15.209(a)(d)	Radiated Emission	Compliant
§ 15.247(d)	Band edge	Compliant

REPORT NO.: STR11088173I PAGE 5 OF 33 FCC PART 15.247

3. CONDUCTED EMISSIONS

3.1 Measurement Uncertainty

Base on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is ± 2.88 dB.

3.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2010-12-20	2011-12-19
L.I.S.N	Schwarz beck	NSLK8126	8126-224	2010-12-20	2011-12-19
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2010-12-20	2011-12-19

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

3.3 Test Procedure

Test is conducting under the description of ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

3.4 Basic Test Setup Block Diagram

REPORT NO.: STR11088173I PAGE 6 OF 33 FCC PART 15.247

3.5 Environmental Conditions

Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

3.6 Summary of Test Results/Plots

According to the data in section 3.7, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for a Class B device, with the *worst* margin reading of:

-14.72 $dB\mu V$ at 0.162MHz in the Neutral Peak Detector, 0.15-30MHz

3.7 Conducted Emissions Test Data

REPORT NO.: STR11088173I PAGE 7 OF 33 FCC PART 15.247

30 MHz

Plot of Conducted Emissions Test Data

150 kHz

Conducted Disturbance

EUT: RADIO CONTROL SYSTEM

M/N: WFT0911

Operating Condition: Transmitting

Test Specification: L Comment: AC 120V/60Hz

	EDIT PEAK LIST ((Prescan Results)	
Trace1:	-QP		
Trace2:	-AV		
Trace3:			
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1 Max Peak	166 kHz	50.06	-15.09
2 Average	498 kHz	23.26	-22.76
1 Max Peak	738 kHz	33.32	-22.67
2 Average	778 kHz	23.79	-22.21

Plot of Conducted Emissions Test Data

Conducted Disturbance

EUT: RADIO CONTROL SYSTEM

M/N: WFT09II

Operating Condition: Transmitting

Test Specification: N Comment: AC 120V/60Hz

	EDIT PEAK LIST	(Prescan Results)			
Trace1:	-QP	-QP			
Trace2:	-AV	-AV			
Trace3:					
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB		
1 Max Peak	162 kHz	50.63	-14.72		
2 Average	490 kHz	24.54	-21.62		
1 Max Peak	642 kHz	33.29	-22.70		
2 Average	778 kHz	24.90	-21.09		
1 Max Peak	13.67 MHz	35.64	-24.35		

4. §15.203 - ANTENNA REQUIREMENT

4.1 Standard Applicable

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Test Result

This product has a integral and permanent antenna, fulfill the requirement of this section.

REPORT NO.: STR11088173I PAGE 10 OF 33 FCC PART 15.247

5. POWER SPECTRAL DENSITY

5.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2010-12-20	2011-12-19
Attenuator	ATTEN	ATS100-4-20	/	2010-12-20	2011-12-19

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

5.3 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=3KHz, Span = 20MHz.
- 4. Repeat above procedures until all frequency measured was complete.

5.4 Environmental Conditions

Temperature:	20° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

REPORT NO.: STR11088173I PAGE 11 OF 33 FCC PART 15.247

5.5 Summary of Test Results/Plots

Test mode	Test channel	Reading	Limit
Test mode	rest channel	dBm/3kHz	dBm/3kHz
	Low channel (2411MHz)	-3.78	8
Normal Transmitting	Middle channel (2441MHz)	-6.148	8
	High channel (2470MHz)	-8.097	8

REPORT NO.: STR11088173I PAGE 12 OF 33 FCC PART 15.247

Low Channel:

Middle Channel:

High Channel:

6. 6-dB BANDWIDTH

6.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2010-12-20	2011-12-19
Attenuator	ATTEN	ATS100-4-20	/	2010-12-20	2011-12-19

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

6.3 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. The spectrum analyzer as RBW=100KHz (1 % of Bandwidth.), Sweep=auto
- 4. Mark the peak frequency and -6dB (upper and lower) frequency.

6.4 Environmental Conditions

Temperature:	24° C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

6.5 Summary of Test Results/Plots

Test mode	Frequency	6 dB Bandwidth	Limit
	MHz	kHz	kHz
	2411	902	500
Normal Transmitting	2441	906	500
Transmitting	2470	899	500

REPORT NO.: STR11088173I PAGE 15 OF 33 FCC PART 15.247

Low Channel:

Mid Channel:

High Channel:

7. POWER OUTPUT

7.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

7.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2010-12-20	2011-12-19
Attenuator	ATTEN	ATS100-4-20	/	2010-12-20	2011-12-19

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

7.3 Test Procedure

According to section 15.247(b)-power output of the KDB-558074 (2005), the method #1 of the power output option2 was used, the following is the measurement procedure.

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW = 1 MHz, Set VBW \geq 3 MHz.
- 4. Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode.
- 5. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run".
- 6. Trace average 100 traces in power averaging mode.
- 7. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges.

7.4 Environmental Conditions

Temperature:	21° C
Relative Humidity:	55%
ATM Pressure:	1011 mbar

REPORT NO.: STR11088173I PAGE 18 OF 33 FCC PART 15.247

7.5 Summary of Test Results/Plots

Test mode	Frequency	Reading	Output power	Limit
	MHz	dBm	W	W
Normal	2411	10.57	0.011402	1
Normal	2441	9.96	0.009908	1
Transmitting	2470	6.22	0.004187	1

Low Channel:

Middle Channel:

High Channel:

8. FIELD STRENGTH OF SPURIOUS EMISSIONS

8.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 5.10 dB.

8.2 Standard Applicable

According to §15.247(c), 15.205 15.209(b) &15.35 (b), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Section 15.209:

30 - 88 MHz 40 dBuV/m @3M 88 -216 MHz 43.5 dBuV/m @3M 216 -960 MHz 46 dBuV/m @3M Above 960 MHz 54dBuV/m @3M

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply.

Emissions that fall in the restricted bands (15.205) must be less than 54dBuV/m otherwise the spurious and harmonics must be attenuated by at least 20dB.

8.3 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2010-12-20	2011-12-19
EMI Test Receiver	R&S	ESVB	825471/005	2010-12-20	2011-12-19
Positioning Controller	C&C	CC-C-1F	N/A	2010-12-20	2011-12-19
RF Switch	EM	EMSW18	SW060023	2010-12-20	2011-12-19
Pre-amplifier	Agilent	8447F	3113A06717	2010-12-20	2011-12-19
Pre-amplifier	Compliance Direction	PAP-0118	24002	2010-12-20	2011-12-19
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2011-01-09	2012-01-08
Horn Antenna	ETS	3117	00086197	2011-01-09	2012-01-08

8.4 Test Procedure

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

REPORT NO.: STR11088173I PAGE 22 OF 33 FCC PART 15.247

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

8.6 Environmental Conditions

Temperature:	22° C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

8.7 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.247 standards, and had the worst margin of:

-1.64dBμV at 7410MHz in the Horizontal polarization, Transmitting High Channel test mode with, 30 MHz to 25 GHz, 3Meters

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

REPORT NO.: STR11088173I PAGE 23 OF 33 FCC PART 15.247

Test Result/Plots:

Spurious Emission From 30 MHz to 1 GHz

Test mode: Transmitting Low Channel (2411MHz)

Comment: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	30.6379	21.58	6.77	28.35	40.00	-11.65	0	200	peak
2	160.3457	19.38	4.55	23.93	43.50	-19.57	360	100	peak
3	207.8501	18.41	6.86	25.27	43.50	-18.23	0	200	peak

REPORT NO.: STR11088173I PAGE 24 OF 33 FCC PART 15.247

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	32.4059	21.83	6.77	28.60	40.00	-11.40	0	100	peak
2	100.2286	15.21	8.41	23.62	43.50	-19.88	0	200	peak
3	385.2805	18.63	11.25	29.88	46.00	-16.12	360	200	peak

Spurious Emission From 30 MHz to 1 GHz

Test mode: Transmitting Middle Channel (2441MHz)

Comment: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	30.6378	22.08	6.77	28.85	40.00	-11.15	360	200	peak
2	207.8500	19.41	6.86	26.27	43.50	-17.23	360	200	peak
3	390.7225	19.24	11.31	30.55	46.00	-15.45	0	200	peak

REPORT NO.: STR11088173I PAGE 26 OF 33 FCC PART 15.247

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	32.4059	21.83	6.77	28.60	40.00	-11.40	0	100	peak
2	103.8054	14.91	8.11	23.02	43.50	-20.48	0	100	peak
3	393.4723	16.55	11.35	27.90	46.00	-18.10	0	100	peak

Spurious Emission From 30 MHz to 1 GHz

Test mode: Transmitting High Channel (2470MHz)

Comment: Horizontal

N	lo.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
		(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
	1	30.6378	21.58	6.77	28.35	40.00	-11.65	360	100	peak
	2	94.7600	15.07	8.01	23.08	43.50	-20.42	360	100	peak
	3	207.8500	18.41	6.86	25.27	43.50	-18.23	360	100	peak
	4	431.0316	15.68	11.82	27.50	46.00	-18.50	0	200	peak

REPORT NO.: STR11088173I PAGE 28 OF 33 FCC PART 15.247

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	32.4059	22.76	6.77	29.53	40.00	-10.47	360	100	peak
2	103.8054	15.92	8.11	24.03	43.50	-19.47	0	200	peak
3	393.4723	15.87	11.35	27.22	46.00	-18.78	360	200	peak

Spurious Emission above 1GHz

Test Mode: Transmitting

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB	
Low Channel (1G to 25GHz)											
4822.0	PK	46.67	90	V	34.1	5.2	33.0	52.97	74	-21.03	
4822.0	PK	50.74	270	Н	34.1	5.2	33.0	57.04	74	-16.96	
7233.0	PK	48.58	180	V	37.4	6.1	33.5	58.58	74	-15.42	
7233.0	PK	46.69	45	Н	37.4	6.1	33.5	56.69	74	-17.31	
4822.0	AV	37.53	270	V	34.1	5.2	33.0	43.83	54	-10.17	
4822.0	AV	43.16	90	Н	34.1	5.2	33.0	49.46	54	-4.54	
7233.0	AV	41.32	45	V	37.4	6.1	33.5	51.32	54	-2.68	
7233.0	AV	38.57	60	Н	37.4	6.1	33.5	48.57	54	-5.43	
				Middle	Channel (1	G to 25GH	(z)				
4882.0	PK	47.51	45	V	34.1	5.2	33.0	53.81	74	-20.19	
4882.0	PK	49.67	270	Н	34.1	5.2	33.0	55.97	74	-18.03	
7323.0	PK	46.32	45	V	37.4	6.1	33.5	56.32	74	-17.68	
7323.0	PK	48.12	180	Н	37.4	6.1	33.5	58.12	74	-15.88	
4882.0	AV	39.42	270	V	34.1	5.2	33.0	45.72	54	-8.28	
4882.0	AV	40.35	90	Н	34.1	5.2	33.0	46.65	54	-7.35	
7323.0	AV	38.56	60	V	37.4	6.1	33.5	48.56	54	-5.44	
7323.0	AV	37.61	45	Н	37.4	6.1	33.5	47.61	54	-6.39	
				High C	hannel (10	G to 25GHz	.)				
4940.0	PK	47.30	270	V	34.1	5.2	33.0	53.60	74	-20.40	
4940.0	PK	48.46	45	Н	34.1	5.2	33.0	54.76	74	-19.24	
7410.0	PK	48.37	180	V	37.4	6.1	33.5	58.37	74	-15.63	
7410.0	PK	50.14	45	Н	37.4	6.1	33.5	60.14	74	-13.86	
4940.0	AV	38.68	90	V	34.1	5.2	33.0	44.98	54	-9.02	
4940.0	AV	40.86	270	Н	34.1	5.2	33.0	47.16	54	-6.84	
7410.0	AV	41.52	60	V	37.4	6.1	33.5	51.52	54	-2.48	
7410.0	AV	42.36	60	Н	37.4	6.1	33.5	52.36	54	-1.64	

Note: Testing is carried out with frequency rang 30MHz to the tenth harmonics, which above 5th Harmonics is close to the noise base even antenna close up to 1meter distance according the measurement of ANSI C63.4.

REPORT NO.: STR11088173I PAGE 30 OF 33 FCC PART 15.247

9. OUT OF BAND EMISSIONS

9.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

9.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2010-12-20	2011-12-19
EMI Test Receiver	R&S	ESVB	825471/005	2010-12-20	2011-12-19
Positioning Controller	C&C	CC-C-1F	N/A	2010-12-20	2011-12-19
RF Switch	EM	EMSW18	SW060023	2010-12-20	2011-12-19
Pre-amplifier	Agilent	8447F	3113A06717	2010-12-20	2011-12-19
Pre-amplifier	Compliance Direction	PAP-0118	24002	2010-12-20	2011-12-19
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2011-01-09	2012-01-08
Horn Antenna	ETS	3117	00086197	2011-01-09	2012-01-08

9.3 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW, VBW=100KHz, Span=50MHz, Sweep = auto
- 3. Set the Lowest and Highest Transmitting Channel, observed the outside band of 2400MHz to 2438.5MHz, then mark the higher-level emission for comparing with the FCC rules.

9.4 Environmental Conditions

Temperature:	21° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

REPORT NO.: STR11088173I PAGE 31 OF 33 FCC PART 15.247

9.5 Summary of Test Results/Plots

Test mode	Frequency	Limit	Result
rest mode	MHz	dBuV /dB	Result
	2310.00	<54dBuv	Pass
Lowest	2390.00	<54dBuv	Pass
	2400.00	>20dB ATT	Pass
III also ant	2483.50	<54dBuv	Pass
Highest	2500.00	<54dBuv	Pass

Lowest Bandedge

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	45.75	-7.51	38.24	54.00	-15.76	Average Detector
	2310.000	54.46	-7.51	46.95	74.00	-27.05	Peak Detector
2	2361.680	59.01	-7.39	51.62	54.00	-2.38	Average Detector
	2361.680	67.83	-7.39	60.44	74.00	-13.56	Peak Detector
3	2390.000	44.13	-7.34	36.79	54.00	-17.21	Average Detector
	2390.000	52.73	-7.34	45.39	74.00	-28.61	Peak Detector
4	2400.000	47.25	-7.31	39.94	/	/	Average Detector
5	2411.600	103.60	-7.28	96.32	/	/	Average Detector

REPORT NO.: STR11088173I PAGE 32 OF 33 FCC PART 15.247

Highest Bandedge

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2500.000	39.67	-7.08	32.59	54.00	-21.41	Average Detector
	2500.000	49.35	-7.08	42.27	74.00	-31.73	Peak Detector
2	2483.500	42.01	-7.13	34.88	54.00	-19.12	Average Detector
	2483.500	57.68	-7.13	50.55	74.00	-23.45	Peak Detector
3	2470.000	103.89	-7.15	96.74	/	/	Average Detector

***** END OF REPORT *****