1.	$f(x) = 2x^3 - 7x^2 + 4x + 4$	
	(a) Use the factor theorem to show that $(x - 2)$ is a factor of $f(x)$.	(2)
	(b) Factorise $f(x)$ completely.	(4)

2.	$f(x) = 2x^3 - 7x^2 - 10x + 24$	
	(a) Use the factor theorem to show that $(x + 2)$ is a factor of $f(x)$.	(2)
	(b) Factorise $f(x)$ completely.	(4)

3.	$f(x) = 2x^3 - 7x^2 - 5x + 4$	
	(a) Find the remainder when $f(x)$ is divided by $(x-1)$.	(2)
	(b) Use the factor theorem to show that $(x+1)$ is a factor of $f(x)$.	(2)
	(c) Factorise $f(x)$ completely.	(4)

4.	$f(x) = 6x^3 + 13x^2 - 4$	
	(a) Use the remainder theorem to find the remainder when $f(x)$ is divided by	(2x+3). (2)
	(b) Use the factor theorem to show that $(x + 2)$ is a factor of $f(x)$.	(2)
	(c) Factorise $f(x)$ completely.	(4)

5.	$f(x) = 2x^3 + 5x^2 + 2x + 15$	
	(a) Use the factor theorem to show that $(x + 3)$ is a factor of $f(x)$.	(2)
	(b) Find the constants a, b and c such that	
	$f(x) = (x + 3)(ax^2 + bx + c)$	(2)
	(c) Hence show that $f(x) = 0$ has only one real root.	(2)
	(d) Write down the real root of the equation $f(x - 5) = 0$	(1)

$f(x) = ax^3 + bx^2 - 4x - 3$, where a and b are constants.	
Given that $(x - 1)$ is a factor of $f(x)$,	
(a) show that $a + b = 7$	(2)
Given also that, when $f(x)$ is divided by $(x + 2)$, the remainder is 9,	
(b) find the value of a and the value of b , showing each step in your working.	(4)

7.	$f(x) = 6x^3 + 3x^2 + Ax + B$, where A and B are constants.	
	Given that when $f(x)$ is divided by $(x + 1)$ the remainder is 45,	
	(a) show that $B - A = 48$	(2)
	Given also that $(2x + 1)$ is a factor of $f(x)$,	
	(b) find the value of A and the value of B .	(4)
	(c) Factorise $f(x)$ fully.	(3)

8.	$f(x) = ax^3 - 11x^2 + bx + 4$, where a and b are constants.	
	When $f(x)$ is divided by $(x-3)$ the remainder is 55	
	When $f(x)$ is divided by $(x + 1)$ the remainder is -9	
	(a) Find the value of a and the value of b.	(5)
	Given that $(3x + 2)$ is a factor of $f(x)$,	
	(b) factorise $f(x)$ completely.	(4)
_		

9.	$f(x) = 2x^3 - 5x^2 + ax + 18$	
	where a is a constant.	
	Given that $(x - 3)$ is a factor of $f(x)$,	
	(a) show that $a = -9$	(2)
	(b) factorise $f(x)$ completely.	(4)
	Given that	
	$g(y) = 2(3^{3y}) - 5(3^{2y}) - 9(3^y) + 18$	
	(c) find the values of y that satisfy $g(y) = 0$, giving your answers to 2 decimal plants appropriate	aces
	where appropriate.	(3)

(2)
(4)
(3)

11. (a) Factorise completely $9x - x^3$	(2)
The curve C has equation	
$y = 9x - x^3$	
(b) Sketch C showing the coordinates of the points at which the curve cuts the x-axis.	(2)
The line l has equation $y = k$ where k is a constant.	
Given that C and l intersect at 3 distinct points,	
(c) find the range of values for k , writing your answer in set notation.	
Solutions relying on calculator technology are not acceptable.	(3)

$$g(x) = 4x^3 - 12x^2 - 15x + 50$$

(a) Use the factor theorem to show that (x + 2) is a factor of g(x).

(2)

(b) Hence show that g(x) can be written in the form $g(x) = (x + 2) (ax + b)^2$, where a and b are integers to be found.

(4)

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = g(x)

- (c) Use your answer to part (b), and the sketch, to deduce the values of x for which
 - (i) $g(x) \leq 0$
 - (ii) g(2x) = 0

(3)

13.
$$f(x) = 2x^3 - 13x^2 + 8x + 48$$

(a) Prove that (x - 4) is a factor of f(x).

(2)

(b) Hence, using algebra, show that the equation f(x) = 0 has only two distinct roots.

(4)

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x).

(c) Deduce, giving reasons for your answer, the number of real roots of the equation

$$2x^3 - 13x^2 + 8x + 46 = 0$$
 (2)

Given that k is a constant and the curve with equation y = f(x + k) passes through the origin,

(d) find the two possible values of k.

(2)

14	$g(x) = 2x^3 + x^2 - 41x - 70$	
	(a) Use the factor theorem to show that $g(x)$ is divisible by $(x - 5)$.	(2)
	(b) Hence, showing all your working, write $g(x)$ as a product of three linear factors.	(4)
	The finite region R is bounded by the curve with equation $y = g(x)$ and the x -axis, and lies below the x -axis.	
	(c) Find, using algebraic integration, the exact value of the area of R .	(4)

15.	In this question you must show all stages of your working.					
	Solutions relying entirely on calculator technology are not acceptable.					
	$f(x) = 4x^3 + 5x^2 - 10x + 4a$ $x \in \mathbb{R}$					
	where a is a positive constant.					
	Given $(x - a)$ is a factor of $f(x)$,					
	(a) show that					
	$a(4a^2 + 5a - 6) = 0$	(2)				
	(b) Hence	()				
	(i) find the value of a					
	(ii) use algebra to find the exact solutions of the equation					
	f(x) = 3					
		(4)				

A curve C has equation $y = f(x)$ Given that • $f'(x) = 6x^2 + ax - 23$ where a is a constant • the y intercept of C is -12 • $(x + 4)$ is a factor of $f(x)$ find, in simplest form, $f(x)$ (6)	Ó			
 f'(x) = 6x² + ax - 23 where a is a constant the y intercept of C is -12 (x + 4) is a factor of f(x) find, in simplest form, f(x) 	A curve C has equation \mathfrak{z}	y = f(x)		
 f'(x) = 6x² + ax - 23 where a is a constant the y intercept of C is -12 (x + 4) is a factor of f(x) find, in simplest form, f(x) 	Given that			
 the y intercept of C is -12 (x + 4) is a factor of f(x) find, in simplest form, f(x) 		- 23 where <i>a</i> is a co	nstant	
• $(x + 4)$ is a factor of $f(x)$ find, in simplest form, $f(x)$				
find, in simplest form, $f(x)$				
(6)				
	ima, in simplest form, 1	(X)		(6)
				,

17.

Figure 4

Figure 4 shows a sketch of part of the curve C_1 with equation

$$y = 2x^3 + 10 \qquad x > 0$$

and part of the curve C_2 with equation

$$y = 42x - 15x^2 - 7 \qquad x > 0$$

(a) Verify that the curves intersect at $x = \frac{1}{2}$

(2)

The curves intersect again at the point P

(b) Using algebra and showing all stages of working, find the exact x coordinate of P

(5)

Question 17 continued	