

Naive Solution, In a matrix, if you find a O, - make a pointer, and cheek value at - This pointer should not be D - This pointer first moves left of Cow-elem, then right, then top, then bottom botton - At every point check if the value at pointer is not 0, replace it by -1 - At the end replace all -1's by 0 a = 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1

1 1 1 1
$$\times$$
 $\times = i+1;$

-1 \bigcirc 1 1 \times $\times = i+1;$

while $(x < you = size) \in E$

1 1 1 1 1 \times $\times = i+1;$

1 1 1 1 \times $\times = i+1;$
 $(x < you = size) \in E$

if $(a \in x) \in [j] := 0$
 $(a \in x) \in [j] := 0$
 $(x + i+i) \in E$

1 1 1 1 $\times = x = i+1;$
 $(x < you = size) \in E$
 $(x + i+i) \in E$
 $(x + i+i)$

Output: a = 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0

Time complexity: O((N×M) * (N+M))

Troversol by each Traversol for a element pointer.

Space complixity: O(D)

Optimised Solution

Create two sets, to add every

troverse again, and check if index is either in row-set or col-set, if yes, make that element 0

```
0 1 1 1 1 if Ca [i][j] ==0) {
1 1 0 1 1 row - set - in sert(i);
2 1 1 1 0 col-set · in sert(j);
3 1 1 1 1 2
```

(d) cot = 523

 Out you
 1
 0
 1
 0

 O
 0
 0
 0
 0

 0
 0
 0
 0
 0

 1
 0
 1
 0

Time complexity: O(nxm)

Space complexit: O(n+m)