

MGED Standards usage for Toxicogenomics

Philippe Rocca-Serra, EMBL-EBI
Microarray Team

Application to Toxicogenomics - Overview

Toxicogenomics: The study of Stressors (chemical, radiation, environmental factor) and their effects on biological systems.

Evaluation and, potentially, Validation of high-throughput technologies (initially, microarray for gene expression) in classic toxicology and monitoring of genomic response to toxicant exposure.

Evaluation of Bioinformatics requirements for information sharing.

Definition of information sharing policies.

Definition of specification and requirement for data submissions [Applied for complex annotation representation in Tox-MIAMExpress]

How to use the Standards?

Recurrent Questions when setting up pipelines

- i.What Should I use in the model?
- ii.What can I leave out?
- i.e . What is really mandatory and what can be considered as optional!
- -> Need for guidelines on how to use the model
- -> MAGE good practice: a set of rules and guidelines for MAGE-ML users:
 - -ensuring efficient data capture and formatting.
 - -ensuring efficient training (and therefore diffusion of Standards)

MAGE overview

(U. Sarkans)

Adapting MAGE to domain specific application?

Recurrent Issue with first users MAGE

- i.I can not find a class for "...." in MAGE? Should I dump MGED standards?
 - -MAGE is OMG accepted standard for Microarray world.
 - -can not be altered before MAGE-Mk II.

ii.MAGE is array centric and leaves biological world out of the scope of the model

iii. How to reconcile Model and Annotation?

MGED Ontology (MO)

Ontology -WG

C. Stoeckert U.Penn

Standard for experiment annotation

MGED Ontology

- Formal Knowledge Representation
- Tested vs reasoner
- Standard terms
 - Unambiguous description
 - Structured queries
- To be used by
 - Investigators
 - Software
 - Databases

(Stoeckert et al. Nature Gen, 2002)

How can Standards work together?

Description Package:
Feature of the
Ontology Entry Class

- . Association to itself
- ii. Association to DatabaseEntry

PseudoCode for Coding MO in MAGE-ML

A set of rules has been devised

First presented during MGED6 meeting in September 2003

Formally posted March 2004

Extensively Applied for complex annotation representation in Tox-MIAMExpress

```
DatabaseEntry (OntologyEntry) {
   create MAGE DatabaseEntry that references whatever is in
   OntologyEntry.value, if applicable
#rule1:
CreateOE(Term ) {
if (Term == Instance) => {
OE.category = parent of Term ,
OE.value = instance term
OE.OntologyReference = DatabaseEntry(OE);
#rule2:
elsif (Term == Class || Term == Property ) => {
OE.category = term ,
OE.value = term,
OE.OntologyReference = DatabaseEntry(OE);
OE.Association = [ foreach ChildTerm of Term
                    { CreateOE(ChildTerm) }
#rule3:
else (Term == user-defined ) => {
OE.category = parent of Term || base type of Term || Term
OE.value = Term
```


Simplest Case:

Class with instances

```
Example: >>>>>>
```

To be compared to initial way of coding >>>

```
<OntologyEntry category="MaterialType" value="cell_lysate">
  <OntologyReference_assn>
    <DatabaseEntry accession="#cell_lysate"

URI="http://mged.sourceforge.net/ontologies/MGEDontology.php#cell_lysate">
        <Database_assnref>
        <Database_ref identifier="MO"/>
        </Database_assnref>
        </DatabaseEntry>
        </OntologyReference_assn>
        </OntologyEntry>
```

```
<OntologyEntry category="MaterialType" value="cell_lysate">
</OntologyEntry>
```


Subclass/Class:

Rule of thumb:

Go to root class to provide higher level container

(bottom-up)

Subclass

(Same as previous)

```
<OntologyEntry category="Some MO super class ">
 <OntologyReference assn>
  <DatabaseEntry accession="# Some MO super class "</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php# Some MO super
class ">
   <Database assnref>
    <Database ref identifier="MO"/>
   </Database assnref>
  </DatabaseEntry>
 </OntologyReference assn>
 <Associations assnlist>
  <OntologyEntry category="SomeMOClass " value="SomeMOClass ">
   <OntologyReference assn>
    <DatabaseEntry accession="# SomeMOClass "</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php# SomeMOClass ">
     <Database assnref>
      <Database_ref identifier="MO"/>
     </Database assnref>
    </DatabaseEntry>
   </OntologyReference assn>
   <Associations assnlist>
    <OntologyEntry category="SomeMOClass" value="some MO instance">
     <OntologyReference assn>
      <DatabaseEntry accession="#some MO instance"</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php#some MO instance
       <Database assnref>
        <Database_ref identifier="MO"/>
       </Database assnref>
      </DatabaseEntry>
     </OntologyReference_assn>
    </OntologyEntry>
   </Associations_assnlist>
  </OntologyEntry>
```


Example for previous slide

Coding Diploid status

```
<OntologyEntry category="IndividualGenetic Characteristics " value="</pre>
IndividualGenetic Characteristics ">
 <OntologyReference assn>
  <DatabaseEntry accession="# IndividualGenetic Characteristics "</pre>
URI="http://mqed.sourceforge.net/ontologies/MGEDontology.php# IndividualGenetic
Characteristics ">
   <Database assnref>
    <Database ref identifier="MO"/>
   </Database assnref>
  </DatabaseEntry>
 </OntologyReference_assn>
 <Associations assnlist>
  <OntologyEntry category="Ploidy" value="Ploidy">
   <OntologyReference assn>
    <DatabaseEntry accession="#Ploidy"</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php#Ploidy">
     <Database assnref>
      <Database ref identifier="MO"/>
     </Database assnref>
    </DatabaseEntry>
   </OntologyReference assn>
    <OntologyEntry category="Ploidy" value=" diploid">
     <OntologyReference_assn>
      <DatabaseEntry accession="#diploid"</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php#diploid">
       <Database assnref>
        <Database ref identifier="MO"/>
       </Database assnref>
      </DatabaseEntry>
     </OntologyReference_assn>
    </OntologyEntry>
   </Associations assnlist>
  </OntologyEntry>
```


<OntologyEntry category="someMOClass" value="someMOClass">

Class/Constraints:

Rule of thumb:

Create nested structures using mage "association assn"

```
<OntologyReference_assn>
  <DatabaseEntry accession="#someMOClass "</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php# someMOClass">
   <Database_assnref>
    <Database ref identifier="MO"/>
   </Database_assnref>
  </DatabaseEntry>
 </OntologyReference_assn>
 <Associations assnlist>
  <OntologyEntry category="has MO restriction" value="has MO restriction">
   <OntologyReference assn>
    <DatabaseEntry accession="# has MO restriction "</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php#has MO restriction">
     <Database assnref>
      <Database_ref identifier="MO"/>
     </Database_assnref>
    </DatabaseEntry>
   </OntologyReference assn>
   <Associations assnlist>
    <OntologyEntry category="has MO restriction" value="some-value">
    </OntologyEntry>
   </Associations assnlist>
```

```
</OntologyEntry>
</Associations assnlist>
```


Coding Animal Study identifier


```
<OntologyEntry category="Individual" value="Individual">
 <OntologyReference assn>
  <DatabaseEntry accession="#Individual"</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php# Individual">
   <Database assnref>
    <Database ref identifier="MO"/>
   </Database assnref>
  </DatabaseEntry>
 </OntologyReference assn>
 <Associations assnlist>
  <OntologyEntry category="has ID" value=" has ID">
   <OntologyReference_assn>
    <DatabaseEntry accession="# has ID"</pre>
URI="http://mged.sourceforge.net/ontologies/MGEDontology.php# has ID">
     <Database assnref>
      <Database_ref identifier="MO"/>
     </Database assnref>
    </DatabaseEntry>
   </OntologyReference assn>
   <Associations assnlist>
    <OntologyEntry category=" has ID" value="mouse123">
    </OntologyEntry>
   </Associations assnlist>
  </OntologyEntry>
 </Associations assnlist>
```


A case study: Toxicogenomics

- Methods for analysis
- Protocols for data management

EMBL-EBI Toxicogenomics: ILSI case study **BioMaterial Overview**

MIAMExpress-Tox: BioSource characteristics

MIAMExpress-Tox: Biomaterial Details BioSource

"Liver has a marked necrosis"

"Liver has a marked necrosis"

has_value has-class thing has_description has-class string has_database has-class Database has_accession has-class thing has accession version has-class thing

LIVER with

diffuse and

marked necrosis

(entry from

TDMS database)

has description has-class string has database has-class Database has accession has-class thing has accession version has-class thing

EMBL-EBI

Information to be recorded – Obstacles?

- Regulatory bodies focus
 - Tox metadata-centric vision
 - Data submission models
 - Minimal burden on sponsors
 - Transport file
 - Flexibility with the terms
 - Data storage
 - Visualization
 - Verification
 - Emphasis on data review
 - IP issue

- Research community focus
 - Genomic data-centric vision
 - Data submission tools
 - Users support
 - Mandatory data fields
 - Controlled vocabularies
 - Structured databases
 - Query-driven
 - Interoperability
 - Emphasis on data comparability
 - Open source approach

Looking for an optimal level of interaction!

Toxicogenomics WG

- Discussion forum within MGED

EMBL-EBI Compatible Informatics Platform

EMBL-EBI Compatible Informatics Platform

NCTR-FDA

TIS

ArrayExpress

SEND guidelines

version 1.4 3/2/04

SEND+CDISC= **Data Tabulation Model** (DTM)

TDMS

Pharmacogenomic Data Standards

I3C/HL7/CDISC

EMBL-EBI Standards - State of the Art

- Public, community vetted efforts
 - Content
 - Minimal descriptors
 - Terminology
 - Controlled terms, ontology
 - Storage
 - Database models
 - Exchange
 - Interoperability format

Conventional toxicology

- Physical parameters
- Clinical Chemistry
- Histopathology
- ...etc.

Transcriptomics

Proteomics

EMBL-EBI

Standards - State of the Art

- Required
- Regulatory arena
 - SEND and CDISC models (DTM)
- A wealth of terminologies
 - Public, e.g.:
 - NIEHS-NTP, LOINC, RENI
 - Proprietary, e.g.:
 - UMLS, SNOMED
- Problems
 - Species-specific terms hamper cross species comparisons

Conventional toxicology

- Physical parameters
- Clinical Chemistry
- Histopathology
- ...etc.

Transcriptomics

Proteomics

Standards - State of the Art

- Ongoing...
- HUPO-PSI(Proteomics Standards Initiative)
 - Data model and exchange (XML)
 - IntAct, MINT, BIND, DIP and other databases
 - Industry
 - Academia
 - Mass spectrometry Group
 - Weimin Zhu (EBI)
 - Randy Julian (Ely Lilly)
 - Molecular integration Group
 - Henning Hermjakob (EBI)
 - Proteomics integration Group
 - Chris Taylor (EBI)

(Hermjakob et al. Nature Biotech, 2004)

Conventional toxicology

- Physical parameters
- Clinical Chemistry
- Histopathology

...etc.

Transcriptomics

Proteomics

EMBL-EBI

Standards - State of the Art

- Starting...
- Standardized Metabonomics
 Reporting Structures (SMRS)
 - J. Nicholson, J. Lindon, Imperial College, UK
 - Industry
 - FDA (NCTR)
 - Academia

Conventional toxicology

- Physical parameters
- Clinical Chemistry
- Histopathology
- ...etc.

Transcriptomics

Proteomics

EMBL-EBI Synergy — Opportunities

Name	Scope	Exchange format	Database model	CVs	Minimal descriptors	Sample	Tox	uA	Prot	Met
SEND	Model of non- clinical data	Flat file (XML later)	X	×	✓	V	V	X	X	X
CDISC	Model of clinical data	Flat file (XML later)	X	x	✓	V	/	x	x	X
(MGED) MAGE	General model of microarray	XML	√	/	✓	1	<-	V	x	x
(PSI) MIAPE	General model of proteomics	XML	V	√	V	V	x	x	✓	x
(NIEHS -NCT) SysBio -OM	MGED+PSI model of proteomics and metabonomics for CEBS	XML		V	✓	V	V	V	V	V

Xirasagar S et al. CEBS object model for systems biology data, SysBio-OM. Bioinformatics (2004) Mar 25.

Is this enough? Is this tractable?

Toxicogenomics WG

- Consensus on minimal descriptors
 - Extend MIAME to toxicogenomics experiments
 - -> MIAME/Tox
- Toxicology terms harmonization
 - Promote development of ontologies
 - -> Standard Ontology for Functional Genomics (SOFG) conference
- Storage and data sharing
 - -Agree on standard format for toxicological domain
 - -> Use MAGE and the MGED Ontology?
 - -> Develop a specific model for tox data?
 - Adopt proteomics and metabonomics standards
 - -> Interaction with PSI and SMRS initiatives

Acknowledgements

EMBL-EBI

Microarray Informatics

Alvis Brazma, Ugis Sarkans Susanna Sansone

(Toxicogenomics Coordinator)

MGED Society

Angel Pizarro

NIH-NIEHS

National Center Toxicogenomics
Ray Tennant (Director)

Mike Waters

Jennifer Fostel

NCT Microarray Group Richard Paules Pierre Bushel

National Toxicology Programme Skip Eastin

NCTR-FDA

Dan Casciano (Director)
Weida Tong

ILSI-HESI

Syril Pettit
Bill Mattes
Bill Pennie (Chair)