Department of Mathematics

MTL 106 (Introduction to Probability Theory and Stochastic Processes) Major Test (I Semester 2015 - 2016)

Time allowed: 2 hours

Max. Marks: 50

- Let $\Omega = \{0, 1, 2, \ldots\}$. Let \mathcal{F} be the collection of subsets of Ω that are either finite or whose complement is finite. Is \mathcal{F} a σ -field? Justify your answer.
 - (b) Consider a probability space (Ω, \mathcal{F}, P) with $\Omega = \{0, 1, 2\}, \mathcal{F} = \{\emptyset, \{0\}, \{1, 2\}, \Omega\}, P(\{0\}) = \{0, 1, 2\}, \mathcal{F} = \{\emptyset, \{0\}, \{1, 2\}, \Omega\}, P(\{0\}) = \{0, 1, 2\}, \mathcal{F} = \{\emptyset, \{0\}, \{1, 2\}, \Omega\}, P(\{0\}) = \{0, 1, 2\}, \mathcal{F} = \{\emptyset, \{0\}, \{1, 2\}, \Omega\}, P(\{0\}) = \{0, 1, 2\}, \mathcal{F} = \{\emptyset, \{0\}, \{1, 2\}, \Omega\}, P(\{0\}) = \{\emptyset, \{1, 2\},$ $0.5 = P(\{1,2\})$. Give an example of a real-valued function on Ω that is NOT a random (2 + 3 marks)variable. Justify your answer.
- Let X be uniformly distributed random variable over the interval [0,10]. Find the CDF of $Y = \max\{2, \min\{\tilde{a}, X\}\}.$
- For each fixed $\lambda > 0$, let X be a Poisson distributed random variable with parameter λ . Suppose λ itself is a random variable following a gamma distribution with pdf

$$f(\lambda) = \begin{cases} \frac{1}{\Gamma(n)} \lambda^{n-1} e^{-\lambda}, & \lambda > 0 \\ 0, & \text{otherwise} \end{cases}$$

(4 marks) where n is a fixed positive constant. Find the pmf of the random variable X.

- Pick the point (X,Y) uniformly in the triangle $\{(x,y) \mid 0 \le x \le 1 \text{ and } 0 \le y \le x\}$. Calculate $E[(X-Y)^2/X].$
- 5. In a communication system, the carrier signal at the receiver is modeled by $Y(t) = X(t)\cos(2\pi wt +$ Θ) where $\{X(t), t \geq 0\}$ is a zero-mean and wide sense stationary process, Θ is a uniform distributed random variable with interval $(-\pi,\pi)$ and w is a positive constant. Assume that, Θ is independent of the process $\{X(t), t \geq 0\}$. Is $\{Y(t), t \geq 0\}$ wide sense stationary? Justify your answer.

(5 marks)

6 Consider a time-homogeneous discrete time Markov chain $\{X_n, n=0,1,\ldots\}$

$$S = \{0, 1, 2, 3, 4\}$$
 and one-step transition probability matrix $P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$.

- (a) Classify the states of the chain as transient, +ve recurrent or null recurrent.
- (b) When P(X₀ = 2) = 1, find the expected number of times the Markov chain visit state 1 before being absorbed.
 (c) When P(X₀ = 1) = 1, find the probability that the Markov chain absorbs in state 0.

(2 + 3 + 2 marks)

7. Consider a time-homogeneous continuous time Markov chain $\{X(t), t \geq 0\}$ which takes the value 0 and 1 with probability $\pi_0(t)$ and $\pi_1(t)$ at any time t, respectively. Also

$$Prob\{X(t+\Delta t)=1 \mid X(t)=0\} = \alpha \Delta t + o(\Delta t)$$

and

$$Prob\{X(t+\triangle t)=0\mid X(t)=1\}=\beta\triangle t+o(\triangle t).$$

As $\Delta t \to 0$, $o(\Delta t) \to 0$. Assume that, α and β are positive constants. Assume $\pi_0(0) = 1$.

- (a) Draw the state transition diagram for the the Markov chain $\{X(t), t \geq 0\}$.
- Write the Kolmogorov forward equations for the Markov chain $\{X(t), t \geq 0\}$.
- Derive the transient or time-dependent probability distribution of the Markov chain.

$$(2 + 2 + 3 \text{ marks})$$

- 8. (a) Define Poisson process.
 - (b) Let $\{N(t), t \geq 0\}$ be a Poisson process with rate λ . For any $s, t \geq 0$, find $P(N(t+s) N(t) = k/N(u); 0 \leq u \leq t)$
 - (c) Let $\{N(t), t \ge 0\}$ be a Poisson process with rate 5. Compute P(N(2.5) = 15, N(3.7) = 21, N(4.3) = 21).

(3+2+2 marks)

- 9 Consider a M/M/1 queuing model with arrival rate λ and service rate μ .
 - (a) Derive the expression for π_n the steady state probability that n customers in the system.
 - (b) Find the average time spend in the queue by any customer.
 - (c) Find the service rate where customers arrive at a rate of 3 per minute, given that 95% of the time the queue contains less than 10 customers.

(3+2+2 marks)