Rank-74275 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(4) is 1499027801

General information

Number of lines	6
Number of points	29
Number of singular points	1
Number of Eckardt points	0
Number of double points	4
Number of single points	18
Number of points off lines	6
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{6}
Type of lines on points	$4, 2^4, 1^{18}, 0^6$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \mathbf{Pl}(0,0,1,0,0,1)_{108}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \mathbf{Pl}(0,0,0,0,0,1)_{101}$$

$$\ell_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{121} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{121} = \mathbf{Pl}(0,1,1,0,0,1)_{112}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \mathbf{Pl}(1,1,1,0,1)_{150}$$

Rank of lines: (0, 37, 336, 356, 121, 106)

Rank of points on Klein quadric: (0, 108, 101, 1, 112, 150)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 4 Double points: The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_{11} = (0, 1, 1, 0) = \ell_2 \cap \ell_5$$

 $P_{27} = (1, 1, 0, 1) = \ell_4 \cap \ell_5$

Single Points

The surface has 18 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_3 = (0,0,0,1) \ \text{lies on line} \ \ell_3 \\ 2: \ P_4 = (1,1,1,1) \ \text{lies on line} \ \ell_4 \\ 3: \ P_6 = (2,1,0,0) \ \text{lies on line} \ \ell_0 \\ 4: \ P_7 = (3,1,0,0) \ \text{lies on line} \ \ell_0 \\ 5: \ P_{12} = (1,1,1,0) \ \text{lies on line} \ \ell_1 \\ 6: \ P_{15} = (0,2,1,0) \ \text{lies on line} \ \ell_2 \\ 7: \ P_{17} = (2,2,1,0) \ \text{lies on line} \ \ell_1 \\ 8: \ P_{19} = (0,3,1,0) \ \text{lies on line} \ \ell_2 \\ 9: \ P_{22} = (3,3,1,0) \ \text{lies on line} \ \ell_1 \end{array}$

10: $P_{38} = (0,0,1,1)$ lies on line ℓ_3

11: $P_{39} = (1,0,1,1)$ lies on line ℓ_5

 $12: P_{53} = (0,0,2,1) \text{ lies on line } \ell_3 \\ 13: P_{58} = (1,1,2,1) \text{ lies on line } \ell_4$

13 : $P_{58} = (1, 1, 2, 1)$ lies on line ℓ_4 14 : $P_{66} = (1, 3, 2, 1)$ lies on line ℓ_5

15: $P_{69} = (0, 0, 3, 1)$ lies on line ℓ_3

16: $P_{74} = (1, 1, 3, 1)$ lies on line ℓ_4

17: $P_{78} = (1, 2, 3, 1)$ lies on line ℓ_5

The single points on the surface are:

Points on surface but on no line

The surface has 6 points not on any line: The points on the surface but not on lines are:

```
\begin{array}{ll} 0: \, P_{33} = (3,2,0,1) & 4: \, P_{71} = (2,0,3,1) \\ 1: \, P_{36} = (2,3,0,1) & 5: \, P_{75} = (2,1,3,1) \\ 2: \, P_{56} = (3,0,2,1) & \\ 3: \, P_{60} = (3,1,2,1) & \end{array}
```

Line Intersection Graph

	0123	45
$\overline{0}$	0110	00
1	1011	10
2	1101	11
3	0110	10
4	0111	0.1
5	$ \begin{array}{c} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{array} $	10

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_5	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_5	P_2	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5
in point	P_1	P_2	P_2	P_2	P_{11}

Line 3 intersects

Line	ℓ_1	ℓ_2	ℓ_4
in point	P_2	P_2	P_2

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5
in point	P_2	P_2	P_2	P_{27}

Line 5 intersects

Line	ℓ_2	ℓ_4
in point	P_{11}	P_{27}

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$10: P_{15} = (0, 2, 1, 0)$	$20: P_{56} = (3, 0, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	11: $P_{17} = (2, 2, 1, 0)$	$21: P_{58} = (1, 1, 2, 1)$
$2: P_2 = (0,0,1,0)$	$12: P_{19} = (0, 3, 1, 0)$	$22: P_{60} = (3, 1, 2, 1)$
$3: P_3 = (0,0,0,1)$	$13: P_{22} = (3, 3, 1, 0)$	$23: P_{66} = (1, 3, 2, 1)$
$4: P_4 = (1, 1, 1, 1)$	$14: P_{27} = (1, 1, 0, 1)$	$24: P_{69} = (0,0,3,1)$
$5: P_5 = (1, 1, 0, 0)$	$15: P_{33} = (3, 2, 0, 1)$	$25: P_{71} = (2,0,3,1)$
$6: P_6 = (2, 1, 0, 0)$	$16: P_{36} = (2, 3, 0, 1)$	$26: P_{74} = (1, 1, 3, 1)$
$7: P_7 = (3, 1, 0, 0)$	17: $P_{38} = (0, 0, 1, 1)$	$27: P_{75} = (2, 1, 3, 1)$
$8: P_{11} = (0, 1, 1, 0)$	18: $P_{39} = (1, 0, 1, 1)$	$28: P_{78} = (1, 2, 3, 1)$
$9: P_{12} = (1, 1, 1, 0)$	19: $P_{53} = (0, 0, 2, 1)$	