Отчет о выполнении работы №2.4.1. Определение теплоты испарения жидкости

Воейко Андрей Александрович, Б01-109 Долгопрудный, 2021

1 Аннотация.

В работе измеряется давление насыщенного пара жидкости при разной температуре. На основании этих данных при помощи уравнения Клапейрона-Клаузиуса вычисляется теплота пароообразования.

2 Теоретические сведения.

Вычислить теплоту преобразования жидкости напрямую мы не будем, ведь сделать тепловые потери пренебрежимо малыми в условиях институтской лаборатории довольно сложно. Для вычисления теплоты парообразования L воспользуемся уравнением Клапейрона-Клаузиуса, представленного в формуле 1.

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)},\tag{1}$$

где T – температура пара, P – давление насыщенного пара, L – теплота парообразования жидкости, V_2 – объем пара, V_1 – объем жидкости. В нашем случае V_1 составляет $18\cdot 10^{-6}~\frac{\text{м}^3}{\text{моль}}$, а V_2 – $31~cdot 10^{-3}~\frac{\text{м}^3}{\text{моль}}$. V_1 составляет примерно 0,05% от V_2 , так что величиной V_1 можно пренебречь. Таким образом формула 1 принимает вид:

$$\frac{dP}{dT} = \frac{L}{TV},\tag{2}$$

где V — объем пара. Для того, чтобы выразить это V, воспользуемся уравнением Ван-дер-Ваальса:

$$(P + \frac{a}{V^2})(V - b) = RT. \tag{3}$$

Поскольку в работе в качетсве рабочего тела используется вода, коэффиценты a и b соответственно равны 0,4 $\frac{\Pi a \cdot M^6}{MOJIS^2}$ и $26 \cdot 10^{-6}$ $\frac{M^3}{MOJIS}$. Поскольку b составляет менее десятой доли процента от V, можно ей пренебречь. Принебрежение величиной $\frac{a}{V^2}$ приведет к возникновению ошибки менее 3%, а при давлении меньше атмосферного – еще меньше. Таким образом, уравнение Ван-дер-Ваальса для давления менее атмостферного мало отличается от уравнения Менделеева-Клапейрона.

$$V = \frac{RT}{P}. (4)$$

Совмещая уравнения 1 и 4, получаем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}.$$
 (5)

Производные можно найти, как угловые коэффиценты к касательным к, соответственно, кривой P(T) или кривой, у которой по оси абсцисс отложено 1/T, а по оси ординат – $\ln P$.

3 Экспериментальная установка.

3.1 Описание экспериментальной установки.

Экспериментальная установка изображена на рисунке 1. Жидкости и ее пары находятся в ёмкости Ж. К ней-же для измерения давления подключена U-образная трубка У со ртутью в ней. Обе они герметичны и находятся в воде, температуру в которой поддерживает и измеряет термостат А. Для измерения высоты используется труба Т, закрепленная на штангенциркуле Ш. Совмещая отметку на стекле трубы со столбиками ртути путем изменения высоты трубки, можно измерить

Рис. 1: Экспериментальная установка.

разность высот этих столбиков, тем самым определяя давление жидкости.

3.2 Погрешности.

- Штангенциркуль: $\delta_{\text{шт}} = \pm 0, 1$ мм.
- Термометр термостата: $\delta_{\rm T}=\pm 0, 1~^{\circ}C.$

4 Результаты измерений и обработка данных.

4.1 Результаты измерений.

Проведем измерения температуры и давления. Для этого сначала постепенно нагревая воду до примерно 40 градусов, а потом остужая до комнатной температуры, будем измерять разность высот ртутных столбиков. Результаты измерений, а также рызница высот столбиков и давление пара, представлены в таблице 1.

№	$T, ^{\circ}C$	<i>l</i> _{ниж} , см	$l_{ m Bepx},~{ m cm}$	Δl , cm	р, Па
1	$297, 19 \pm 0, 1$	$6,60 \pm 0,01$	$8,80 \pm 0,01$	$2,20 \pm 0,02$	2930 ± 3
2	$298, 19 \pm 0, 1$	$6,55 \pm 0,01$	$8,87 \pm 0,01$	$2,32 \pm 0,02$	3090 ± 3
3	$299, 19 \pm 0, 1$	$6,48 \pm 0,01$	$8,92 \pm 0,01$	$2,44 \pm 0,02$	3250 ± 3
4	$300, 19 \pm 0, 1$	$6,34 \pm 0,01$	$8,95 \pm 0,01$	$2,61 \pm 0,02$	3476 ± 3
5	$301, 19 \pm 0, 1$	$6,24 \pm 0,01$	$9,00 \pm 0,01$	$2,76 \pm 0,02$	3676 ± 3
6	$302, 19 \pm 0, 1$	$6,14 \pm 0,01$	$9,09 \pm 0,01$	$2,95 \pm 0,02$	3929 ± 3
7	$303, 19 \pm 0, 1$	$6,08 \pm 0,01$	$9,14 \pm 0,01$	$3,06 \pm 0,02$	4075 ± 3
8	$304, 19 \pm 0, 1$	$6,00 \pm 0,01$	$9,26 \pm 0,01$	$3,26 \pm 0,02$	4342 ± 3
9	$305, 19 \pm 0, 1$	$5,93 \pm 0,01$	$9,32 \pm 0,01$	$3,39 \pm 0,02$	4515 ± 3
10	$306, 19 \pm 0, 1$	$5,83 \pm 0,01$	$9,46 \pm 0,01$	$3,63 \pm 0,02$	4835 ± 3
11	$307, 19 \pm 0, 1$	$5,73 \pm 0,01$	$9,57 \pm 0,01$	$3,84 \pm 0,02$	5114 ± 3
12	$308, 19 \pm 0, 1$	$5,70 \pm 0,01$	$9,65 \pm 0,01$	$3,95 \pm 0,02$	5261 ± 3
13	$309, 19 \pm 0, 1$	$5,50 \pm 0,01$	$9,73 \pm 0,01$	$4,23 \pm 0,02$	5634 ± 3
14	$310, 19 \pm 0, 1$	$5,39 \pm 0,01$	$9,90 \pm 0,01$	$4,51 \pm 0,02$	6007 ± 3
15	$311, 19 \pm 0, 1$	$5,25 \pm 0,01$	$10,00 \pm 0,01$	$4,75 \pm 0,02$	6327 ± 3
16	$312, 19 \pm 0, 1$	$5,13 \pm 0,01$	$10,22 \pm 0,01$	$5,09 \pm 0,02$	6779 ± 3
17	$313, 19 \pm 0, 1$	$5,00 \pm 0,01$	$10,28 \pm 0,01$	$5,28 \pm 0,02$	7032 ± 3
18	$312, 19 \pm 0, 1$	$5,15 \pm 0,01$	$10,19 \pm 0,01$	$5,04 \pm 0,02$	6713 ± 3
19	$309,89 \pm 0,1$	$5,39 \pm 0,01$	$9,94 \pm 0,01$	$4,55 \pm 0,02$	6060 ± 3
20	$308,49 \pm 0,1$	$5,58 \pm 0,01$	$9,75 \pm 0,01$	$4,17 \pm 0,02$	5554 ± 3
21	$306,88 \pm 0,1$	$5,72 \pm 0,01$	$9,60 \pm 0,01$	$3,88 \pm 0,02$	5168 ± 3
22	$305,83 \pm 0,1$	$5,83 \pm 0,01$	$9,50 \pm 0,01$	$3,67 \pm 0,02$	$ 4888 \pm 3 $
23	$304,00 \pm 0,1$	$6,03 \pm 0,01$	$9,30 \pm 0,01$	$3,27 \pm 0,02$	4362 ± 3
24	$299,44 \pm 0,1$	$6,20 \pm 0,01$	$9,11 \pm 0,01$	$2,91 \pm 0,02$	3876 ± 3
25	$297,69 \pm 0,1$	$6,58 \pm 0,01$	$8,81 \pm 0,01$	$2,23 \pm 0,02$	3023 ± 3

Таблица 1: Результаты измерения разницы высот столбиков.

4.2 Обработка данных.

4.2.1 Графики.

Построим график P(T) на рисунке 2.

Рис. 2: График зависимости давления пара от его температуры.

Теперь погдотовим данные посроения графика с 1/T на оси абсцисс и $\ln P$ в качетсве ординат. На основании этих данных построим график (рис. 3).

No	$1/T \cdot 10^{-3}$	$\ln P$	No॒	$1/T \cdot 10^{-3}$	$\ln P$
1	3,3365	7,983	14	3,3224	8,701
2	3,3354	8,036	15	3,3213	8,753
3	3,3342	8,086	16	3,3204	8,822
$\parallel 4$	3,3331	8, 154	17	3,3193	8,858
5	3,3332	8,210	18	3,3203	8,811
6	3,3309	8,276	19	3,3227	8,706
7	3,3298	8,313	20	3,3242	8,622
8	3,3287	8,376	21	3,3258	8,550
9	3,3277	8,415	22	3,3268	8,494
10	3,3265	8,484	23	3,3289	8,381
11	3,3255	8,540	24	3,3313	8,263
12	3,3245	8,568	25	3,3359	7,996
13	3,3234	8,637			

Таблица 2: Результаты измерения разницы высот столбиков.

Рис. 3: График зависимости $\ln P$ от 1/T.

Как видно, второй график куда лучше подходит для вычислений, так как и в теории, и на практике представляет из себя прямую, что позволяет найти искомую производную путем аппроксимации. Аппроксимируем график к прямой и найдем угловой коэффицент: