Řádný termín 2011/2012 skupina C

$1 \quad (15b)$

Uvažujme jazyk L s rovností a jedním binárním predikátovým symbolem p. Buď R realizace jazyka L, jejímž univerzem je množina $S(\mathbb{Z})$ všech podgrup grupy $(\mathbb{Z},+)$ a v níž platí $p_R(G,H) \iff$ existuje injektivní homomorfismus grup $G \to H$

- 1. Rozhodněte, zda R je modelem teorie uspořádaných množin (5b)
- 2. Uvažujme formuli $\varphi \equiv \forall yp(y,x)$. Popište všechna ohodnocení e proměnných jazyka L taková, že $R \models \varphi[e]$. (10b)

$2 \quad (10b)$

Převeďte formuli $(\forall x p(x,y) \implies \forall x \exists y q(x,x)) \implies \forall x (\exists x p(y,x) \implies q(y,x))$ do prenexního tvaru. Poté ji znegujte a převeďte do tvaru, kde se spojka ¬ nebude vyskytovat u neatomických formulí.

3 (15b)

Mějme množinu $M = \{A, B, C, D, E, F, G, H, I\}$, na které jsou definovány binární operace $+, \cdot$ následujícími tabulkami

+	A	В	С	D	Ε	F	G	Н	I
A	A	В	С	D	Ε	F	G	Η	I
В	В	С	A	E	F	D	Н	Ι	G
С	С	A	В	F	D	E	Н	G	Η
D	D	E	F	G	Η	Ι	A	В	С
E	E	F	D	Η	Ι	G	В	С	A
F	F	D	E	Ι	G	Н	С	A	В
G	G	Η	Η	A	В	С	D	E	F
Н	Н	Ι	G	В	С	A	E	F	D
Ι	I	G	Η	С	A	В	F	D	Ε

•	A	В	С	D	Ε	F	G	Н	I
A	A	A	A	A	Α	Α	A	Α	A
В	Α	В	С	A	В	С	A	В	С
С	Α	С	В	A	С	В	A	С	В
D	Α	A	A	D	D	D	G	G	G
\mathbf{E}	A	В	С	D	\mathbf{E}	F	G	Η	Ι
F	Α	С	В	D	F	E	G	Ι	Η
G	A	Α	A	G	G	G	D	D	D
Н	A	В	С	G	Н	Ι	D	E	F
Ι	A	С	В	G	Ι	Η	D	F	Ε

Rozhodněte, zda algebra $(M,+,\cdot)$ je těleso, obor integrity, komutativní okruh nebo okruh; svá tvrzení dokažte. Pokud $(M,+,\cdot)$ těleso není, pak najděte podmnožinu $N\subset M$ takovou, že $(N,+,\cdot)$ je těleso. Obě operace $+,\cdot$ jsou asociativní a \cdot je distributivní nad +. (Tyto skutečnosti nemusíte ověřovat.)

4 (15b)

Mějme algebru $A = (\mathbb{R}^2, a, b, c)$ typu (2, 1, 0) kde operace $\{a, b, c\}$ jsou dány vztahy

$$a((x_1, x_2), (y_1, y_2)) = (x_1y_1 + x_2y_2, x_1y_2 + x_2y_1)$$

$$b(x_1, x_2) = (-x_1, x_2)$$

$$c = (0, 0)$$

Definujeme relaci ekvivalence $(x_1,x_2)\sim (y_1,y_2)\iff x_1^2+x_2^2=y_1^2+y_2^2$. Rozhodněte, zda \sim je či není kongruence na A (odůvodněte).

5 (15b)

Nad abecedou $\Gamma=\{x,y,z\}$ uvažujeme jazyk $\Sigma=x^*y^+z^*$. Buď $\mu(u,v)=n$ kde n je nejmenší počet změn řetězce u, které je potřeba provést, aby se tento řetězec transformoval na řetězec v. Přitom změnou řetězce rozumíme vypuštění či vložení symbolu nebo nahrazení symbolu jiným symbolem v tomto řetězci. Ověřte (dokažte) zda μ je či není metrika na Σ a v kladném případě určete všechny prvky množiny Σ , které leží v otevřené kouli o poloměru 2 se středem v prvku xyz.

6 (10b)

Uzel v obyčejném grafu se nazývá artikulace, pokud se po jeho odstranění a odstranění s ním incidentních hran zvýší počet komponent grafu. Kolik existuje navzájem neizomorfních lesů o 6 uzlech s právě 1 artikulací? Nakreslete je.