Mreže

Filip Koprivec, Samo Kralj 28. april 2016

> > — C. S. Lewis

KAZALO KAZALO

Kazalo

1	Uvod							3
	1.1	Osnovne definicje						3
	1.2	Supremum in infimum						4
	1.3	B Definicja mreže						5
2	Osn	snovni primeri mrež						5

1 Uvod

Mreža je množica z dodatno strukturo (delno urejenostjo), ki zadošča poguju, da ima poljuben par elementov infimum in supremum. Najprej si bomo pogledali mreže s stališča matematične logike in urejenosti, kasneje pa si jih bomo ogledali še s stališča algebraičnih operacij nad njimi, ter pokazali, zakaj sta ta dva pogleda ekvivalentna.

1.1 Osnovne definicje

Definicija 1:Naj bo \mathcal{L} množica, relacija \leq je (šibka) delna urejenost, če je

- refleksivna (a < a)
- $antisimetrična (a \le b \land b \le a \implies a = b)$
- tranzitivna $(a \le b \land b \le c \implies a \le c)$

Pišemo a je manjši ali enak b, občasno tudi a je pod b.

Opomba: Zgolj iz preprostosti definiramo še drugo relacijo $a \ge b \iff b \le a$, ki je očitno tudi delna urejenost.

Opomba: Poznamo tudi **strogo delno urejenost**, ki jo definiramo kot $a < b \iff a \le b \land a \ne b$

Primer:

Tipičen primer delne urejenosti je kar sama motivacija za vpeljavo relacije. Vzemimo množico realnih števil $\mathbb R$ in na njej relacijo \leq , za katero preprosto preverimo da je delna urejenost.

Trditev 1:Relacija deljivosti (|) na množici ℕ je delna urejenost.

Dokaz. Preverili bomo da ta relacija zadošča vsem zahtevam. Spomnimo se, da a deli b natanko tedaj, kadar obstaja tako celo število k, da zadosti enakosti b = ka, oziroma $a \mid b \iff \exists k \in \mathbb{Z}. \ b = ka$.

- Refleksivnost: a = 1 * a, torej $a \mid a$
- Antisimetričnost: $a \mid b \implies b = k_1 a, b \mid a \implies a = k_2 b$, vstavimo a v prvo enakost in dobimo $b = k_1 k_2 b$, torej $k_1 = k_2^{-1}$, torej $k_1 = k_2 = 1$ in dobimo b = a
- Tranzitivnost: $a \mid b \wedge b \mid c \implies a \mid c$, vemo torej $b = k_1 a$ in $c = k_2 b$, vstavimo prvo enakost v drugo in dobimo $c = \underbrace{k_2 k_1}_{\in \mathbb{Z}} a$ torej $a \mid c$.

Opomba: Preprosto preverimo, da je za poljubno množico \mathcal{A} , relacija \subseteq delna urejenost na potenčni množici množice \mathcal{A} ($P(\mathcal{A})$).

Definicija 2:Množica \mathcal{L} je linearno urejena, če za poljubna x,y velja $x \leq y$ ali $y \leq x$

Primer:

Množica $\mathbb N$ z urejenostjo \leq je linearno urejena, saj za poljubna x in y velja $x \leq y \vee y \leq x$, če pa velja x = y, potem pa sta pravilna celo oba dela izjave. Množica $\mathbb N$ urejena glede na relacijo deljivosti pa **ni** linearno urejena, saj za recimo dve poljubni praštevilo velja $p_1 \nmid p_2 \wedge p_2 \nmid p_1$.

Opomba: Pridstavitem linearno urejenih množic s Hassejevim diagramom nas spominja na premico, od torej tudi izraz. To je lepo vidno na sliki (1a).

Za lepšo predstavo splošnih linearnih urejenih diagramov si pomagamo s Hassejevim diagramom, ki s pomočjo povezav med točkami prikaže relacije med njimi.

Definicija 3:Naj bo \mathcal{L} delno urejena množica glede na neko relacijo, ki o označimo $z \leq$. Hassejev diagram je graf, katerega točke so elementi \mathcal{L} , med točkama x in y pa je povazava natnko tedaj, kadar velja:

$$x \leq y \land \nexists z \in \mathcal{L}. \ x \leq z \leq y$$

Slika 1: Primer Hassejevih diagramov

1.2 Supremum in infimum

Definicija 4:S je supremum x in y, če velja:

- $S \ge x \land S \ge y$ (Zgornja meja)
- $\forall S' \in \mathcal{L} \implies (S' \ge x \land S' \ge y \implies S \le S')$ (Je najmanjša zgornja meja)

Mreže

Torej je S natačna zgornja meja x in y, če je njuna zgornja meja, hkrati pa je vsaka od S različna zgornja meja večja ali enaka S. Označimo: $S=x\vee y$.

Definicija 5:s je infimum x in y, če velja:

- $s \le x \land s \le y$ (Spodnja meja)
- $\bullet \ \forall s' \in \mathcal{L} \implies (s' \leq x \land s' \leq y \implies s' \leq s) \ (\textit{Je največja spodnja meja})$

Torej je s natačna spodnja meja x in y, če je njuna spodnja meja, hkrati pa je vsaka od s različna zgornja meja manjša ali enaka s. Označimo: $s = x \wedge y$.

Opomba: V literaturi se za supremum občasno uporablja tudi oznaka \cup , za infimum pa \cap .

Primer:

- 1. Za množico \mathbb{R} , ki je urejena glede na \leq in poljubni števili x,y velja: $x\vee y=\max\{x,y\}$ in $x\wedge y=\min\{x,y\}$.
- 2. Za množico \mathbb{N} , ki je urejena glede na relacijo deljivosti in poljubni števili x, y velja: $x \vee y = lcm\{x, y\}$ (najmanjši skupni večkratnik) in $x \wedge y = gcd\{x, y\}$ (največji skupni delitelj).

1.3 Definicja mreže

Definicija 6: Množica \mathcal{L} je **mreža**, če za poljuben par x, y v \mathcal{L} obstajata infimum in supremum.

Primer:

Naravna števila so mreža tako za urejenost glede na relacijo \leq , kot tudi za urejenost glede na relacijo deljivosti. To lahko lepo vidimo na sliki (1).

2 Osnovni primeri mrež