

(https://www.bigdatauniversity.com)

Project: Whether a loan is paid off

Deadline: 2019-08-25 23:59:59

Total marks: 7.0

Your information:

- · Fullname:
- Date of birth:
- Place of birth:
- Email:
- · Mobile phone:

In this notebook, we practice all the knowledge and skills that we learned in this course.

We apply the **Logistic Algorithm** to predict: "Whether a loan is paid off on in collection" by accuracy evaluation methods.

Lets first load required libraries:

```
Entrée [1]:
```

```
import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import pandas as pd
import numpy as np
import matplotlib.ticker as ticker
from sklearn import preprocessing
%matplotlib inline
```

About dataset

This dataset is about past loans. The **Loan_train.csv** data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:

Description	Field
Whether a loan is paid off on in collection	Loan_status
Basic principal loan amount at the	Principal
Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule	Terms
When the loan got originated and took effects	Effective_date
Since it's one-time payoff schedule, each loan has one single due date	Due_date
Age of applicant	Age
Education of applicant	Education
The gender of applicant	Gender

Data exploration

*** To predict "Whether a loan is paid off", we need some fields: 'Principal', 'Terms', 'Age', 'Gender', 'Effective date'

The first things we need to do:

- · Identify Variables
- · Univariate Analysis
- · Bi-variate Analysis
- · Handle the Missing Values
- · Handle Outlier Values

Tips: Step by step like Chapter2_Ex1_Housing prices

Load Data From CSV File

```
Entrée [2]: # Read CSV file: loan_train.csv
# code here

Entrée [3]: # Understanding to dataset
# shape
# info
# head(), tail()
# describe()
```

Convert 'due_date', 'effective_date' to date time object

```
Entrée [4]: # code here
```

Data visualization

How many sample of each class is in our data set?

```
Entrée [5]: # code
```

xxx people have paid off the loan on time while **xxx** have gone into collection

Lets plot some columns to underestand data better:

• Use seaborn or matplotlib to draw some plots like that:

```
Entrée [6]: import numpy as np from PIL import Image import matplotlib.pyplot as plt
```

```
Entrée [7]: img1 = np.array(Image.open('Principal_Male_Female.jpg'))
```

```
Entrée [8]: plt.figure(figsize=(10,5))
  plt.imshow(img1, interpolation='bilinear')
  plt.show()
```



```
Entrée [9]: img2 = np.array(Image.open('Age_Male_Female.jpg'))
```

```
Entrée [10]: plt.figure(figsize=(10,5))
   plt.imshow(img2, interpolation='bilinear')
   plt.show()
```


Entrée [11]: # code here

Pre-processing: Feature selection/extraction

Lets look at the day of the week people get the loan

- Make new column 'dayofweek' from 'effective_date'
 - Example: 2016-09-08 => dayofweek is 3 (The day of the week with Monday=0, Sunday=6)

```
Entrée [12]: # code here
```

Lets plot some columns to underestand data better:

```
Entrée [13]: img3 = np.array(Image.open('day_of_week.jpg'))
```

```
Entrée [14]: plt.figure(figsize=(10,5))
   plt.imshow(img3, interpolation='bilinear')
   plt.show()
```



```
Entrée [15]: # code here
```

We see that people who get the loan at the end of the week dont pay it off, so lets use Feature binarization to set a threshold values less then day 4

Make new column 'weekend': =1 if 'dayofweek'>3, else =0

```
Entrée [16]: # code here
```

Convert Categorical features to numerical values

· groupby 'Gender' and count by 'loan status'

```
Entrée [17]: # code here
```

xxx % of female pay there loans while only xxx % of males pay there loan

Lets convert male to 0 and female to 1:

```
Entrée [18]: # code here
```

One Hot Encoding

How about education?

groupby 'education' and count by 'loan_status'

```
Entrée [19]: # code here
```

Feature befor One Hot Encoding

• Print head() data with 5 columns: 'Principal', 'terms', 'age', 'Gender', 'education'

```
Entrée [20]:
```

code here

Use one hot encoding technique to convert categorical variables to binary variables and append them to the feature Data Frame

- Make new dataframe Feature has: 'Principal', 'terms', 'age', 'Gender', 'weekend', 'education'
- In **Feature**: Use one hot encoding technique to convert 'education' to binary variable, then drop column 'Master or Above'

Entrée [21]:

code here

Feature selection

Lets defind feature sets, X:

• X is input, X = Feature

Entrée [22]:

code here

What are our lables?

y is output, y = 'loan status' column

Entrée [23]:

code here

Normalize Data

Data Standardization give data zero mean and unit variance (technically should be done after train test split)

Find the suitable Scaler to scale data of X (if we need to do to have a better prediction)

```
Entrée [24]: # code here
```

Classification

Now, use the training set to build an accurate model. Then use the test set (loan_test.csv) to report the accuracy of the model You should use the following algorithm:

· Logistic Regression

Notice:	

- You can go above and change the pre-processing, feature selection, feature-extraction, and so on, to make a better model.
- You should use either scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.
- You should include the code of the algorithm in the following cells.

Logistic Regression

Entrée []:	
Entrée []:	
Entrée []:	

Model Evaluation using Test set

```
Entrée [25]: from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
# and the others Libraries...
```

Load Test set for evaluation

```
Entrée [26]: # Read CSV file: loan_test.csv
# code here

Entrée [27]: # Model Evaluation

Entrée []:

Entrée []:
```

Report

You should be able to report the accuracy of the built model using different evaluation metrics:

Algorithm	Accuracy Score	F1-score
LogisticRegression	?	?

Thanks for completing this project!

Author: Saeed Aghabozorgi (https://ca.linkedin.com/in/saeedaghabozorgi)

<u>Saeed Aghabozorgi (https://ca.linkedin.com/in/saeedaghabozorgi)</u>, PhD is a Data Scientist in IBM with a track record of developing enterprise level applications that substantially increases clients' ability to turn data into actionable knowledge. He is a researcher in data mining field and expert in developing advanced analytic methods like machine learning and statistical modelling on large datasets.

Copyright © 2018 <u>Cognitive Class (https://cocl.us/DX0108EN_CC)</u>. This notebook and its source code are released under the terms of the <u>MIT License (https://bigdatauniversity.com/mit-license/)</u>.

