

Chapitre VI – Géométrie repérée

Bacomathiques -- https://bacomathiqu.es

TABLE DES MA	TIÈDES T		
TABLE DES MA	THERES TO THE		
I– Le	produit scalaire		
1.	Définition		
2.	Calcul		
3.	Théorème d'Al-Kashi		
II - Géométrie			
1.	Équation cartésienne d'une droite		
2.	Vecteurs directeurs d'une droite		
3.	Vecteurs normaux à une droite		
4.	Description d'un cercle		
2. 3.	Vecteurs directeurs d'une droite5Vecteurs normaux à une droite8		

I – Le produit scalaire

1. Définition

À RETENIR

Définition

Soient $\overrightarrow{u} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ et $\overrightarrow{v} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ deux vecteurs du plan (c'est-à-dire possédant chacun deux coordonnées).

Le **produit scalaire** entre u et v, noté $\overrightarrow{u} \cdot \overrightarrow{v}$ est le réel suivant :

$$\overrightarrow{u}\cdot\overrightarrow{v}=x_1x_2+y_1y_2.$$

À RETENIR

Propriétés

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} des vecteurs du plan et $\lambda \in \mathbb{R}$, on a les propriétés suivantes :

$$-\overrightarrow{u}\cdot\overrightarrow{v}=\overrightarrow{v}\cdot\overrightarrow{u}$$

$$--\overrightarrow{u}\cdot(\overrightarrow{v}+\overrightarrow{w})=\overrightarrow{u}\cdot\overrightarrow{v}+\overrightarrow{u}\cdot\overrightarrow{w}$$

À l'aide du produit scalaire, il est possible de calculer la norme d'un vecteur.

À RETENIR 💡

Calcul de la norme

Soit $\overrightarrow{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur du plan : sa norme (notée $||\overrightarrow{u}||$) vaut $||\overrightarrow{u}|| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}} = \sqrt{x^2 + y^2}$.

ÀLIRE 99

Caractéristiques d'un vecteur

On rappelle qu'un vecteur possède 3 caractéristiques :

- Une **norme** (sa longueur, par exemple si $\overrightarrow{u} = \overrightarrow{AB}$ alors $||\overrightarrow{u}|| = AB$)
- Un **sens** (exemple : "de *A* vers *B*" ou "de haut en bas")
- Une direction (la direction de la droite que porte le vecteur, horizontale ou verticale par exemple)

2. Calcul

Il existe plusieurs méthodes pour calculer le produit scalaire en fonction de la situation dans laquelle on se trouve.

À RETENIR 💡

Calcul avec un angle

Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs du plan et θ l'angle orienté entre les deux. On a :

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\theta)$$

À RETENIR 💡

Calcul avec un projeté orthogonal

Soient A, B et C trois points distincts du plan. On pose P le projeté orthogonal de C sur(AB). Alors:

- Si $P \in [AB)$ alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AP$ Si $P \notin [AB)$ alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AP$

Si on ne possède que les normes de nos vecteurs, il est possible d'utiliser la formule de polarisation.

À RETENIR 💡

Formule de polarisation

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan : $\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} (||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2)$.

À LIRE 👀

Utilisation des formules

Il faut vraiment trouver la formule à utiliser selon l'énoncé de l'exercice.

Par exemple, si on se trouve dans un repère et que l'on a les coordonnées des vecteurs, on pourra utiliser la formule de la définition. À l'inverse, si on ne possède pas les coordonnées de nos vecteurs mais que l'on possède leur normes, il est possible d'utiliser la formule de polarisation.

Voici un tableau récapitulatif pour \overrightarrow{u} et \overrightarrow{v} vecteurs du plan :

Données	Formule	À utiliser si on pos- sède
$\overrightarrow{u} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \overrightarrow{v} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}.$	$\overrightarrow{u} \cdot \overrightarrow{v} = x_1 \times x_2 + y_1 \times y_2$ (Calcul à partir des coordonnées.)	Les coordonnées de \overrightarrow{u} et \overrightarrow{v} .
θ est l'angle orienté entre \overrightarrow{u} et \overrightarrow{v} .	$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \times \overrightarrow{v} \times \cos(\theta)$ (Calcul à partir des normes et d'un angle.)	La norme de \overrightarrow{u} , la norme de \overrightarrow{v} et l'angle θ entre les deux vecteurs.
A et B sont les deux extrémités de \overrightarrow{u} , A et C sont les deux extrémités de \overrightarrow{v} , et P est le projeté orthogonal de C sur (AB) .	$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \pm AB \times AP + \text{si } P \in [AB) \text{ et } - \text{sinon.}$ (Calcul à partir d'une projection orthogonale.)	3 points distincts (qui sont ici A , B et C).
	$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{ \overrightarrow{u} + \overrightarrow{v} ^2 - \overrightarrow{u} ^2 - \overrightarrow{v} ^2}{ (\overrightarrow{u} + \overrightarrow{v}) ^2 - \overrightarrow{u} ^2 - \overrightarrow{v} ^2}$ (Calcul à partir des normes.)	On possède la norme de \overrightarrow{u} , celle de \overrightarrow{v} mais surtout celle de \overrightarrow{u} + \overrightarrow{v} .

3. Théorème d'Al-Kashi

Le **théorème d'Al-Kashi** permet de calculer la longueur des côtés de n'importe quel triangle, qu'il soit rectangle ou non. Ainsi,

À RETENIR 💡

Théorème d'Al-Kashi

Soient A, B et C trois points du plan non alignés (formant donc un triangle). On pose a = BC, b = CA et c = AB. Alors :

$$c^2 = a^2 + b^2 - 2 \times a \times b \times \cos(\widehat{ACB})$$

DÉMONSTRATION

Théorème d'Al-Kashi

En reprenant les notations de l'énoncé : c^2

- $= ||\overrightarrow{AB}||^2$
- = $||\overrightarrow{CB} \overrightarrow{CA}||^2$ (par la relation de Chasles)
- = $||\overrightarrow{CB}||^2 2(\overrightarrow{CB} \cdot \overrightarrow{CA}) + ||\overrightarrow{CA}||^2$ (par la formule de polarisation)
- $= CB^2 2(CB \times CA \times \cos(\widehat{ACB})) + CA^2$
- $= a^2 + b^2 2 \times a \times b \times \cos(\widehat{ACB})$

II - Géométrie

1. Équation cartésienne d'une droite

À RETENIR 💡

Définition

Il est possible de décrire tous les points appartenant à une droite $\mathcal D$ par une équation appelée **équation cartésienne**.

Une équation cartésienne de \mathcal{D} est de la forme ax + by + c = 0 avec $a \neq 0$, $b \neq 0$ et c réels, et où x et y sont des coordonnées de points.

À LIRE 🍑

Il est très facile de dire si oui ou non un point appartient à une droite si l'on possède l'équation cartésienne de cette droite.

Par exemple, on définit la droite \mathcal{D} par l'équation y = x - 1.

Est-ce-que A = (0; 1) appartient à \mathcal{D} ? Remplaçons x et y par les coordonnées de A: 1 = -1: c'est faux donc A n'appartient pas à \mathcal{D} car les coordonnées de A ne vérifient par l'équation cartésienne de \mathcal{D} .

Est-ce-que B = (4;3) appartient à \mathcal{D} ? Remplaçons x et y par les coordonnées de B: 3 = 3: c'est vrai donc B appartient à \mathcal{D} car les coordonnées de B vérifient l'équation cartésienne de \mathcal{D} .

2. Vecteurs directeurs d'une droite

À RETENIR 💡

Définition

Soient \mathscr{D} une droite et \overrightarrow{u} un vecteur du plan non nul. Alors \overrightarrow{u} est un **vecteur directeur** de \mathscr{D} s'il existe deux points A et B appartenants à \mathscr{D} et tels que $\overrightarrow{u} = \overrightarrow{AB}$.

6

De plus, on a la propriété suivante qui peut s'avérer très utile :

À RETENIR 💡

Colinéarité des vecteurs directeurs

 \overrightarrow{v} est un vecteur directeur de \mathscr{D} si et seulement s'il est colinéaire au vecteur \overrightarrow{u} précédent.

Tous les vecteurs directeurs d'une droite sont donc colinéaires entre eux.

À LIRE 👀

Exemple

Soit \mathcal{D} la droite définie par l'équation y = 2x + 1, montrons que $\overrightarrow{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ est un vecteur directeur de \mathcal{D} .

Prenons deux points au hasard situés sur cette droite :

x = 0 donne y = 1, donc le point A = (0, 1) appartient à \mathcal{D} .

x = 1 donne y = 3, donc le point B = (1;3) appartient à \mathcal{D} .

Ainsi, un vecteur directeur de \mathscr{D} est $\overrightarrow{u} = \overrightarrow{AB} = \begin{pmatrix} 1 - 0 \\ 3 - 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Il reste à vérifier que \overrightarrow{u} et \overrightarrow{v} sont bien colinéaires, pour cela on peut utiliser la formule vue en seconde :

 $2 \times 2 - 1 \times 4 = 0$: \overrightarrow{u} et \overrightarrow{v} sont bien colinéaires et donc \overrightarrow{v} est un vecteur directeur de \mathcal{D} .

Il est facile de trouver un vecteur directeur d'une droite dont on connaît l'équation cartésienne.

À RETENIR 🥊

Coordonnées d'un vecteur directeur

Soit \mathcal{D} une droite définie par l'équation ax + by + c = 0. Alors $\overrightarrow{u} = \begin{pmatrix} -b \\ a \end{pmatrix}$ est un vecteur directeur de \mathcal{D} .

À LIRE 🤒

Exemple

Déterminons l'équation cartésienne de la droite \mathscr{D} de vecteur directeur $\overrightarrow{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et passant par A = (1;0).

On a déjà a et b par la propriété précédente :

$$-b=1 \iff b=-1$$

 $a=2$

Une équation cartésienne de la droite est 2x - y + c = 0. Il reste à trouver c. Mais comme \mathcal{D} passe par A, les coordonnées de A vérifient l'équation cartésienne de \mathcal{D} .

Remplaçons x et y par les coordonnées de A dans l'équation cartésienne : $2 + c = 0 \iff c = -2$.

L'équation cartésienne recherchée est donc 2x - y - 2 = 0 ou encore y = 2x - 2.

À RETENIR

Propriétés

Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites respectivement de vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} . Alors :

- \mathcal{D}_1 est parallèle à \mathcal{D}_2 si et seulement si \overrightarrow{u} et \overrightarrow{v} sont colinéaires.
- \mathcal{D}_1 est perpendiculaire à \mathcal{D}_2 si et seulement si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

À RETENIR

Orthogonalité

Si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$ alors \overrightarrow{u} et \overrightarrow{v} sont dits **orthogonaux**.

3. Vecteurs normaux à une droite

À RETENIR 💡

Définition

Soient \mathcal{D} une droite de vecteur directeur \overrightarrow{u} et \overrightarrow{n} un vecteur du plan non nul. Alors \overrightarrow{n} est un **vecteur normal** à \mathcal{D} si \overrightarrow{u} et \overrightarrow{n} sont orthogonaux entre-eux.

De plus, on a la propriété suivante qui peut s'avérer très utile :

À RETENIR 💡

Colinéarité des vecteurs normaux

 \overrightarrow{m} est un vecteur normal à \mathcal{D} si et seulement s'il est colinéaire au vecteur \overrightarrow{n} précédent.

Tous les vecteurs normaux d'une droite sont donc colinéaires entre-eux. Il est facile de trouver un vecteur normal à une droite dont on connaît l'équation cartésienne.

À RETENIR 🧣

Coordonnées d'un vecteur normal

Soit \mathcal{D} une droite définie par l'équation ax + by + c = 0. Alors $\overrightarrow{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal à \mathcal{D} .

Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites respectivement de vecteurs directeurs \overrightarrow{u} et \overrightarrow{v} . Alors :

À RETENIR 💡

 \mathcal{D}_1 est perpendiculaire à \mathcal{D}_2 si et seulement si \overrightarrow{u} est normal à \mathcal{D}_2 .

ÀLIRE 00

Exemple

Déterminons l'équation cartésienne de la droite \mathcal{D} admettant pour vecteur normal $\overrightarrow{n} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ et passant par l'origine O = (0;0).

On a déjà *a* et *b* par la propriété précédente :

a = -1

b = -1

Une équation cartésienne de la droite est -x-y+c=0. Il reste à trouver c. Mais comme $\mathcal D$ passe par l'origine, les coordonnées de O vérifient l'équation cartésienne de $\mathcal D$.

Remplaçons x et y par les coordonnées de O dans l'équation cartésienne : c=0. L'équation cartésienne recherchée est donc -x-y=0 ou encore y=-x.

4. Description d'un cercle

De la même manière que pour les droites, il est possible de décrire l'ensemble des points appartenant à un cercle à l'aide d'une équation.

À RETENIR 🜹

Description par équation cartésienne

Soit \mathscr{C} un cercle de centre $O = (x_O; y_O)$ et de rayon R.

Une équation cartésienne de \mathscr{C} est de la forme $(x-x_O)^2+(y-y_O)^2=R^2$ avec x et y qui sont des coordonnées de points.

On peut de manière équivalente, décrire un cercle à l'aide du produit scalaire.

À RETENIR 🬹

Description par produit scalaire

Soient A et B deux points du plan. Alors l'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est le cercle de diamètre [AB].

DÉMONSTRATION

Description par produit scalaire

On pose $A = (x_A; y_A)$, $B = (x_B; y_B)$ et on cherche les points M = (x; y) tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

Soit O le milieu de [AB]:

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$$

$$\iff (\overrightarrow{MO} + \overrightarrow{OA}) \cdot (\overrightarrow{MO} + \overrightarrow{OB}) = 0$$

$$\iff (\overrightarrow{MO} + \overrightarrow{OA}) \cdot (\overrightarrow{MO} - \overrightarrow{OA}) = 0$$

$$\iff (\overrightarrow{MO} \cdot \overrightarrow{MO}) - (\overrightarrow{OA} \cdot \overrightarrow{OA}) = 0$$

$$\iff MO^2 - OA^2 = 0$$

$$\iff MO = OA$$

Donc l'ensemble cherché est l'ensemble des points situés à une distance OA du point O, c'est bien le cercle de centre O et de diamètre [AB].

En réalité, les deux points précédents sont deux manières différentes de décrire un cercle.