A universality theorem for projectively unique polytopes and a conjecture of Shephard

Karim A. Adiprasito *
Institut für Mathematik, FU Berlin
Arnimallee 2
14195 Berlin, Germany
adiprasito@math.fu-berlin.de

Arnau Padrol[‡]
Institut für Mathematik, FU Berlin
Arnimallee 2
14195 Berlin, Germany
arnau.padrol@upc.edu

January 15, 2013

Abstract

We prove that every rational polytope is the face of a projectively unique polytope. As a corollary, we provide a projectively unique polytope that is not the subpolytope of any stacked polytope. This disproves a classical conjecture in polytope theory, first formulated by Shephard in the seventies.

Using a technique developed by Adiprasito and Ziegler [AZ12], we prove the following universality theorem for projectively unique polytopes.

Theorem 1. If P is any polytope with rational vertex coordinates, then there exists a polytope P' that is projectively unique and contains a face projectively equivalent to P.

Here, a polytope P in \mathbb{R}^d is projectively unique if any polytope P' in \mathbb{R}^d combinatorially equivalent to P is projectively equivalent to P. In other words, for every P' combinatorially equivalent to P, there exists a projective transformation T of \mathbb{R}^d that realizes the given combinatorial isomorphism from P to P'.

We apply this result to a classical conjecture of Shephard. He considered the question whether every polytope is a *subpolytope* of a stacked polytope, i.e. whether it can be obtained as the convex hull of a subset of the vertices of some stacked polytope. While he proved this wrong in [She74], he conjectured it to be true in a combinatorial sense:

Conjecture 2 (Shephard [She74], Kalai [Kal04, p. 468], [Kal12]). Every combinatorial type of polytope can be realized by a subpolytope of a stacked polytope.

The conjecture is true for 3-dimensional polytopes, as seen by Kömhoff in [Kö80], but remained open in all higher dimensions. We use Theorem 1 to disprove the conjecture by finding a high-dimensional counterexample.

Theorem 3. There exists a projectively unique polytope that is not a subpolytope of any stacked polytope.

Since any admissible projective transformation of a stacked polytope is a stacked polytope, no realization of the polytope announced in Theorem 3 is a subpolytope of a stacked polytope. Hence, the preceding theorem clearly provides a counterexample to Conjecture 2.

Corollary 4. There exists a combinatorial type of polytope that can not be realized as a subpolytope of any stacked polytope.

^{*}Supported by DFG within the research training group "Methods for Discrete Structures" (GRK1408) and by the Romanian NASR, CNCS – UEFISCDI, project PN-II-ID-PCE-2011-3-0533.

[‡]Supported by the DFG Collaborative Research Center SFB/TR 109 "Discretization in Geometry and Dynamics"

Proof of Theorem 1

Point configurations, PP configurations and weak projective triples

We recall the basic facts about projectively unique point configurations and polytope-point configurations, compare also [AZ12, Sec. 5.1 & 5.2], [Grü03, Sec. 4.8 Ex. 30], [RG96, Part I].

Definition 5 (PP configurations, Lawrence equivalence, projective uniqueness). A point configuration is a finite collection R of points in \mathbb{R}^d . If H is an oriented hyperplane in \mathbb{R}^d , then we use H_+ resp. H_- to denote the open halfspaces bounded by H. If P is a polytope in \mathbb{R}^d such that $P \cap R = \emptyset$ then the pair (P,R) is a polytope-point configuration, or PP configuration. A hyperplane H is external to P if $H \cap P$ is a face of P.

Two PP configurations (P, R), (P', R') in \mathbb{R}^d are Lawrence equivalent if there is a bijection φ between the vertex sets of P and P' and the sets of R and R', such that, if H is any hyperplane such that the closure of H_- contains P, there exists an oriented hyperplane H' such that the closure of H'_- contains P' and

$$\varphi(\mathcal{F}_0(P)\cap H_-)=\mathcal{F}_0(P')\cap H'_-,\qquad \varphi(R\cap H_+)=R'\cap H'_+,\qquad \varphi(R\cap H_-)=R'\cap H'_-.$$

A PP configuration (P, R) in \mathbb{R}^d is projectively unique if for any PP configuration (P', R') in \mathbb{R}^d Lawrence equivalent to it, and every bijection ϕ that induces the Lawrence equivalence, there is a projective transformation T that realizes ϕ . A point configuration R is projectively unique if the PP configuration (\emptyset, R) is projectively unique, and it is not hard to verify that a polytope P is projectively unique if the PP configuration (P, \emptyset) is projectively unique.

Proposition 6 (Lawrence extensions, cf. [RG96, Lem. 3.3.3 and 3.3.5], [Zie08, Thm. 5]). Let (P, R) be a projectively unique PP configuration in \mathbb{R}^d . Then there exists a $(\dim P + f_0(R))$ -dimensional polytope on $f_0(P) + 2f_0(R)$ vertices that is projectively unique and that contains P as a face.

Definition 7 (Framed polytopes). Let P denote a polytope in \mathbb{R}^d , and let Q be any subset of its vertex set $F_0(P)$, that is, $Q = \{q_1, q_2, q_3, \dots\} \subseteq F_0(P)$. Let P' be any polytope in \mathbb{R}^d combinatorially equivalent of P. Let φ denote the labeled isomorphism from the faces of P to the faces of P'. We say that the polytope P is framed by the set of vertices Q if P = P' for all choices of P' and φ that satisfy $\varphi(q) = q$ for all $q \in Q$.

Examples 8. We record some instances of framed polytopes.

- (i) If P is any polytope, then $F_0(P)$ frames P.
- (ii) If P is a projectively unique polytope, and $Q \subseteq F_0(P)$ is a projective basis for its span, then Q frames P.
- (iii) A 3-cube W is framed by any 7 of its vertices. Similarly, any d-cube, $d \ge 3$, is framed by $2^d 1$ of its vertices.

Definition 9 (Weak projective triple in \mathbb{R}^d). A triple (P, Q, R) of a polytope P in \mathbb{R}^d , a subset Q of $F_0(P)$ and a point configuration R in \mathbb{R}^d is a weak projective triple in \mathbb{R}^d if and only if

- (1) $(\emptyset, Q \cup R)$ is a projectively unique point configuration,
- (2) Q frames the polytope P, and
- (3) some subset of R spans a hyperplane H, called the wedge hyperplane, which does not intersect P.

Definition 10 (Subdirect Cone). Let (P,Q,R) be a weak projective triple in \mathbb{R}^d , seen as canonical subspace of \mathbb{R}^{d+1} . Let H denote the wedge hyperplane in \mathbb{R}^d spanned by vertices of R with $H \cap P = \emptyset$. Let v denote any point not in \mathbb{R}^d , and let \widehat{H} denote any hyperplane in \mathbb{R}^{d+1} such that $\widehat{H} \cap R^d = H$ and \widehat{H} separates v from P. Consider, for every vertex p of P, the point $p^v = \text{conv}\{v, p\} \cap \widehat{H}$. Denote by P^v the pyramid

$$P^v := \operatorname{conv}\Big(v \cup \bigcup_{p \in \mathcal{F}_0(P)} p^v\Big).$$

The PP configuration $(P^v, Q \cup R)$ in \mathbb{R}^{d+1} is a subdirect cone of (P, Q, R).

Lemma 11 ([AZ12, Lemma 5.8.]). For any weak projective triple (P, Q, R) the subdirect cone $(P^v, Q \cup R)$ is a projectively unique PP configuration.

Figure 1: The subdirect cone of the weak projective triple (P, Q, R) in the special case where Q coincides with the vertexset of P

Corollary 12. If (P,Q,R) is a weak projective triple, there exists a projectively unique polytope of dimension dim P + #Q + #R + 1 that contains a face projectively equivalent to P.

Proof. By Lemma 11, the subdirect cone $(P^v, Q \cup R)$ is a projectively unique PP configuration, and by construction, the polytope P^v (of dimension dim P+1) has a facet projectively equivalent to P. Consequently, by Proposition 6, there exists a projectively unique polytope of the desired dimension with a face projectively equivalent to P.

Conclusion of proof

The proof of Theorem 1 relies on the following instance of a projectively unique point configuration.

Proposition 13. Let m be any nonnegative integer, and $d \geq 3$. The set Q_m^d defined as

$$Q_m^d := \{ v \in \mathbb{Z}^d \subset \mathbb{R}^d : ||v||_{\infty} \le 2^m \}$$

is a projectively unique point configuration.

Proof. The proof is by induction on d and m. We start proving that Q_0^3 is projectively unique. This implies that Q_0^d is projectively unique for any $d \geq 3$, and finally that Q_m^d is projectively unique for any $d \geq 3$ and $m \geq 0$.

 Q_0^3 is projectively unique: To see that Q_0^3 is projectively unique, we start with the folklore observation that the vertices $(\pm 1, \pm 1, \pm 1)$, together with the origin (0,0,0), form a projectively unique configuration W (cf. Figure 2a). Clearly, this point configuration is a subset of Q_0^3 . Furthermore, we claim that all remaining vertices of Q_0^3 can be determined from W by affine dependencies only, thereby proving that Q_0^3 is projectively unique since W is projectively unique.

Figure 2: Showing that Q_0^3 is projectively unique.

To see this, notice that the point (1,0,0) of $Q_0^3 \setminus W$ is determined as the intersection of the lines aff $\{(+1,+1,+1), (+1,-1,-1)\}$ and aff $\{(+1,+1,-1), (+1,-1,+1)\}$, which are spanned by vertices of W.

Similarly, all vertices that arise as coordinate permutations and/or sign changes from (+1,0,0) are determined this way. Geometrically, these are the centerpoints of the facets of the cube $[-1,1]^3 = \text{conv } W = \text{conv } Q_0^3$ (cf. Figure 2b).

The remaining vertices of Q_0^3 coincide with the midpoints of the edges of said cube. To determine them, let e be any edge of Q_0^3 and let F_1 and F_2 be the facets of Q_0^3 incident to that edge. Finally, let H be the hyperplane spanned by the centerpoint of Q_0^3 and the centerpoints of F_1 and F_2 . The midpoint of e is the unique point of intersection of e and H (cf. Figure 2c).

 Q_0^d is projectively unique: For $d \geq 4$, consider the projective basis B of \mathbb{R}^d consisting of the vertex $v_0 := (+1, +1, \ldots, +1)$ of $[-1, 1]^d$, together with the neighboring vertices $v_1 := (-1, +1, \ldots, +1)$, $v_2 := (+1, -1, \ldots, +1)$, \ldots , $v_d := (+1, +1, \ldots, -1)$ and the origin $o := (0, \ldots, 0)$ (cf. Figure 3a). We will see that once the coordinates of the elements in B are fixed, then the coordinates of all the remaining points of Q_0^d can be determined uniquely.

Consider the set of points of Q_0^d lying in a common facet of $[-1,1]^d$ that is incident to v_0 ; for example, $R_1 := Q_0^d \cap \operatorname{aff}\{v_0, v_2, \dots, v_d\}$ (cf. Figure 3b). Observe that R_1 is just an affine embedding of Q_0^{d-1} into \mathbb{R}^d . As such, R_1 is projectively unique, and thus it is determined uniquely if a projective basis for its span is fixed.

Clearly, the points v_0, v_2, \ldots, v_d of B form an affine basis for the span of R_1 . Furthermore, the coordinates of the point $w = (+1, -1, \ldots, -1)$, are fixed by B. Indeed, w is the point of intersection of the line $aff\{o, v_1\}$ with the hyperplane $aff\{R_1\}$ (cf. Figure 3c). To sum up, we have that

- \circ the points v_0, v_2, \dots, v_d, w are determined from the points of B by affine dependencies only,
- \circ the points v_0, v_2, \ldots, v_d, w are elements of R_1 , and
- \circ the points v_0, v_2, \ldots, v_d, w form a projective basis for the span of R_1 .

Consequently, $R_1 \cup B$ is a projectively unique point configuration, since B is projectively unique. We can repeat this argumentation for all point configurations

$$R_i := Q_0^d \cap \operatorname{aff}(\{v_0, v_1, v_2, \dots, v_d\} \setminus \{v_i\}), i \in \{1, \dots, d\}.$$

In particular, the configuration

$$\widetilde{Q}_0^d = B \cup \bigcup_{i \in \{1, \dots, d\}} R_i$$

is projectively unique. Moreover, since the last vertex of a cube of dimension $d \geq 3$ is determined by the remaining ones by affine dependencies (cf. [AZ12, Lemma 3.4], compare also Example 8(iii)), the configuration $\widetilde{Q}_0^d \cup \{-v_0\}$ is projectively unique as well. By symmetry, the point configuration

$$-\widetilde{Q}_0^d \cup \{v_0\} = -B \cup \bigcup_{i \in \{1, \dots, d\}} -R_i \cup \{v_0\}$$

is also projectively unique.

Figure 3: Schema for showing that Q_0^d is projectively unique. (The picture displays Q_0^3 for the sake of clarity, but the proof starts with $d \ge 4$)

Clearly, $\widetilde{Q}_0^d \cup \{-v_0\}$ and $-\widetilde{Q}_0^d \cup \{v_0\}$ intersect along a projective basis: for instance, the set B lies in both $-\widetilde{Q}_0^d \cup \{v_0\}$ and $\widetilde{Q}_0^d \cup \{-v_0\}$ and forms a projective basis as desired. Thus, the point configuration $\widetilde{Q}_0^d \cup \{-v_0\} \cup -\widetilde{Q}_0^d \cup \{v_0\}$ is projectively unique.

 Q_m^d is projectively unique: For higher values of m, the proof is recursive. Observe first that the points of Q_m^d correspond to the half-integer points in conv Q_{m-1}^d (cf. Figure 4), and that Q_{m-1}^d is projectively unique by induction hypothesis. Moreover, once the realization of Q_{m-1}^d is fixed, the coordinates of each of the remaining points of Q_m^d can be determined. Indeed, each $1 \times 1 \times 1$ cell of Q_m^d is a shrunken copy of Q_0^d . Since the coordinates of the vertices of this cell are already fixed and contain a projective basis of \mathbb{R}^d , the coordinates of all half-integer points in the cell can be determined because Q_0^d is projectively unique.

Figure 4: Showing that Q_m^3 is projectively unique.

Proof of Theorem 1. Let P denote a polytope in \mathbb{R}^d whose vertices have rational coordinates. We assume that $d \geq 3$, since if $d \leq 2$ we can embed P as a face of a 3-dimensional pyramid. Dilating with a suitable integer factor, we may assume that all vertices of P lie in \mathbb{Z}^d . Furthermore, we can choose some $m \geq 0$ large enough so that the vertices of P can be confined to $\operatorname{vert}(P) \subset Q_m^d \subset \mathbb{Z}^d$, and such that some subset of points of Q_m^d spans a hyperplane that does not intersect P (this can be, for example, a facet hyperplane of $\operatorname{conv} Q_m^d$). Consider the triple (P,Q,R), where Q denotes the vertices of P, and $R := Q_m^d \setminus Q$. Then (P,Q,R) is a weak projective triple, since

- (1) $Q \cup R = Q_m^d$ is a projectively unique point configuration by Proposition 13,
- (2) Q obviously frames P, and
- (3) R, by construction, has a subset that spans a hyperplane that does not intersect P.

Thus, by Corollary 12, there exists a projectively unique polytope (of dimension $d + (2^{m+1} + 1)^d + 1$) that contains a face projectively equivalent to P.

Subpolytopes of stacked polytopes

Our methods make it more convenient to work with the dual formulation of Conjecture 2. We recall some notions:

Definition 14 (Dual-to-stacked polytopes). A polytope is *dual-to-stacked* if it can be obtained from a simplex by a sequence of vertex truncations. A *vertex truncation* is the intersection of a polytope with a halfspace that cuts off exactly one of its vertices (cf. Figure 5).

Figure 5: Truncation of a vertex.

It now only remains to introduce the dual notion to subpolytopes, and apply it to stacked polytopes.

Definition 15 (Substacked polytopes). We call a polytope *substacked* if it can be obtained from a dual-to-stacked polytope by removing some facet-defining inequalities.

Clearly, a polytope (that contains the origin in the interior) is substacked if and only if its polar dual is the subpolytope of a stacked polytope. The proof of Theorem 3 relies on the following simple fact:

Lemma 16. All faces of substacked polytopes are substacked.

Thus, to finish the proof of Theorem 3 it is enough to provide a projectively unique polytope one of whose faces is not substacked. The combination of the following proposition, together with Theorem 1 and Lemma 16, clearly implies Theorem 3.

Proposition 17. There exists a polytope in \mathbb{R}^3 with rational vertex coordinates that is not substacked.

Proof. An ε -net N_{ε} in a metric space X is a set of points in X with the property that no point of X is farther than ε from an element of N_{ε} . Recall the following classical results:

- o Shephard, [She74]: If $\varepsilon > 0$ is sufficiently small, then for any ε -net N_{ε} in the unit sphere $S^2 \subset \mathbb{R}^3$ (with respect to the euclidean metric on \mathbb{R}^3), the polytope conv N_{ε} is not the subpolytope of any stacked polytope.
- o Classical fact, cf. [HW54, Sec. XIII], [Duk03]: Points with rational coordinates are dense in S^2 . In particular, for any $\varepsilon > 0$ there is an ε -net N_{ε} in S^2 whose points have rational coordinates.

Finally, the polar dual of a polytope with rational vertex coordinates has rational vertex coordinates. Thus, if N is a sufficiently dense set of rational points in S^2 , then $(\operatorname{conv} N)^*$, the polar dual to $\operatorname{conv} N$, is not substacked and has vertices in \mathbb{Q}^3 .

References

- [AZ12] K. Adiprasito and G. M. Ziegler, A polytope that is not a subpolytope of any stacked polytope, preprint, available at arxiv.org/abs/1212.5812.
- [Duk03] W. Duke, Rational points on the sphere, Ramanujan J. 7 (2003), no. 1-3, 235–239, Rankin memorial issues.
- [Grü03] B. Grünbaum, Convex Polytopes, second ed., Graduate Texts in Mathematics, vol. 221, Springer, New York, 2003.
- [HW54] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954, 3rd ed.
- [Kal04] G. Kalai, Polytope skeletons and paths, in "Handbook of Discrete and Computational Geometry" (J. E. Goodman and J. O'Rourke, eds.), Chapman & Hall/CRC, Boca Raton, FL, second ed., 2004, pp. 455–476.
- [Kal12] _____, Open problems for convex polytopes I'd love to see solved, July 2012, Talk on Workshop for convex polytopes, Kyoto, slides available on gilkalai.files.wordpress.com/2012/08/kyoto-3.pdf.
- [Kö80] M. Kömhoff, On a combinatorial problem concerning subpolytopes of stack polytopes, Geometriae Dedicata 9 (1980), 73–76 (English).
- [RG96] J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics, vol. 1643, Springer, Berlin, 1996.
- [She74] G. C. Shephard, Subpolytopes of stack polytopes, Israel Journal of Mathematics 19 (1974), 292–296 (English).
- [Zie08] G. M. Ziegler, Nonrational configurations, polytopes, and surfaces, Math. Intelligencer 30 (2008), 36–42.