

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

(A State Government University)

B. Tech, 2024 Minor Degree in

INDUSTRIAL AND SYSTEMS ENGINEERING

Offered By: Industrial Engineering

CURRICULUM

	Minor (INDUSTRIAL AND SYSTEMS ENGINEERING)													
Sl. N o:	Se mes ter	Course Code	Course Title (Course Name)				ss	Total Marks		Credits	Hrs./ Week			
		2.2.		L	Т	P		CIA	ESE					
1	3	MNIET309	Course*/MOOC# Production and Operations Management	3	1	0	5	40	60	4	4			
2	4	MNIET409	Course*/MOOC# Data Analytics and Applications	3	1	0	5	40	60	4	4			
3	5	MNIET509	Course/MOOC Optimisation and Heuristics	3	1	0	5	40	60	4	4			
4	6	MNIET609	Course/MOOC System Dynamics and Simulation	3	0	0	4.5	40	60	3	3			
			Total	20			15	15						

^{*}Students must register for theory courses listed in the 3rd and 4th semesters of the Minor curriculum.

^{*}Students who fail a theory course listed in the Minor curriculum are permitted to register for an alternate MOOC course specified in the Minor curriculum.

SYLLABUS

SEMESTER 3

SEMESTER 3
PRODUCTION AND OPERATIONS MANAGEMENT

Course Code	MNIET309	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:1:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip students with the basics of production and operations management and production planning.
- 2. To familiarise concepts of facility location, layouts, and modern production systems.

SYLLABUS

Module No.	Syllabus Description							
1	Introduction: Definition, scope, and significance in both manufacturing and service sectors. Evolution and historical milestones in operations management. The role of operations strategy in achieving business success. Demand Forecasting: Causal and time series forecasting methods. Moving average, exponential smoothing, trend-cycle-seasonality analysis. Winter's complete model and error analysis. AI-driven forecasting and predictive analytics.	11						
2	Basic Inventory Models: assumptions and performance measures. Inventory systems under risk, service levels, safety stock, joint determination of Q and R, time varying demands – Selective Inventory Control.	11						

	Aggregate Planning: Definition, decision rules, and planning strategies. Methods of aggregate planning (Graphical, Linear Programming, Heuristic). Master Production Scheduling (MPS), Bill of Materials (BOM), structuring and disaggregation. Sustainable inventory management and digital transformation in planning.	
3	Location Selection: Factors affecting plant location. Factor rating method, Centre of Gravity method. Real-world case studies on global facility locations. Plant Layout: Types of layouts. Comparison and selection of layouts based on production needs. Systematic Layout Planning (SLP) and software tools for optimization. Capacity Management: Models for assembly line balancing. Capacity expansion and control strategies. Batch processing, continuous production, and flexible manufacturing systems.	11
4	Job Shop and Production Activity Planning: Scheduling methods (Gantt charts, Johnson's Rule, Theory of Constraints). Shop loading, sequencing, priority dispatching rules. Lean Manufacturing and World-Class Manufacturing: Just-In-Time (JIT), Toyota Production System (TPS). Kanban - Push vs. Pull production. Continuous improvement methodologies (Kaizen, Six Sigma, Total Quality Management - TQM). ERP and Digital Integration in Operations Management: Enterprise Resource Planning (ERP) systems in manufacturing. Role of AI, IoT, and Industry 4.0 in smart manufacturing. Supply Chain 4.0 and automation in production planning.	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome							
CO1	Explain the role and evolution of operations management and various demand forecasting techniques.	K2						
CO2	Apply inventory management models, aggregate planning strategies, and sustainable inventory control techniques.	К3						
CO3	Apply facility layout methodologies and capacity management strategies.	К3						
CO4	Explain production planning and modern manufacturing systems	K2						

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	-	2	-	-	-	-	-	-	2
CO2	3	-	2	-	2	-	-	-	-	-	-	2
CO3	3	-	2	-	2	-	2	-	-	-	-	2
CO4	2	-	2	-	2	-	2	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books											
Sl. No	Title of the Book	Title of the Book Name of the Author/s No. 1										
1	Production and Operations Management	S.N. Chary	McGraw Hill	6 th edition, 2019								
2	Operations and Supply Chain Management	William J. Stevenson, Thomas J. Kull	McGraw Hill	Evergreen edition, 2025								
3	Operations Management: Processes and Supply Chains	Lee J. Krajewski, Manoj K. Malhotra	Pearson	13 th edition, 2021								
4	Operations Management: Sustainability and Supply Chain Management	Jay Heizer, Barry Render, Chuck Munson	Pearson	14 th edition, 2022								

	Reference Books											
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year								
1	Production and Operations Management	R. Panneerselvam	PHI Learning	3 rd edition, 2012								
2	Operations Management: Theory and Practice	B. Mahadevan	Pearson Education India	3 rd edition, 2015								
3	Operations Management: An Integrated Approach	R. Dan Reid, Nada R. Sanders	Wiley	7 th edition, 2020								
4	Production and Operations Management: Concepts, Models, and Behavior	Everett E. Adam Jr., Ronald J. Ebert	Prentice Hall	5th Edition, 1991								

	Video Links (NPTEL, SWAYAM)
	https://archive.nptel.ac.in/courses/112/107/112107238/
Link ID	https://archive.nptel.ac.in/courses/110/105/110105095/
	https://archive.nptel.ac.in/courses/112/107/112107238/

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR

TH	IIRI	SEMEST!	ER B.	ГЕСН	MINO	OR DE	GREE	EXA	MINA	ΓΙΟΝ,	MONTH	I AND	YEAR
	Course Code: MNIET309												
	Course Name: Production and Operations management												
Max. Marks: 60 Duration: 2 Hours 30 Minut												nutes	
								•					
		PART A Answer all questions. Each question carries 3 marks											T =
1												CO	Marks
1		List any manageme		ııstoric	al mil	estones	s in t	he evo	olution	of op	erations	CO1	(3)
2		Mention th										CO1	(3)
3		Define ser	vice lev	el and	its imp	ortanc	e in inv	ventory	systen	ns unde	er risk.	CO2	(3)
4		What is a M	Master	Produc	ction So	chedule	(MPS)? Why	is it ir	nportai	nt?	CO2	(3)
5		List four ir	nportai	nt facto	rs affe	cting p	lant loc	eation d	lecisior	ıs.		CO3	(3)
6		What is Sy for layout			out Pla	nning	(SLP)?	Menti	ion one	softw	are used	CO3	(3)
7		Define Kar			it diffe	rent fro	m pusl	n produ	iction s	ystems	?	CO4	(3)
8		Outline the	conce	pt of J	IT.							CO4	(3)
							ART B						
		Answer any	one fi	ull que	stion fi	rom ea	ch mod	lule. E	ach qu	estion	carries 9	marks	
						Mo	dule 1						
9	a)	Explain the										CO1	(4)
	b)	The nine-n										CO1	(5)
		develop for											
		Month	1	2	3	4	5	6	7	8	9		
			2.70	2	201		207	24.5	220	220	2.10		
		Demand	250	265	284	293	305	315	320	328	240		
10	۵)	Digana th			ta of t	mand .	orvo10	and as	nagama1	ity, in	domond	CO1	(4)
10	a)	Discuss the forecasting	g. Expl	ain ho								COI	(4)
		production								2.44			
	b)	Monthly de		2	Electron 3	ucs Cer	tre for		Vs are	as follo	ws. 9	CO1	(5)
		Month	1	2	3	4	3	6	/	0	9		
		Demand	600	665	654	683	705	695	720	728	740		
								<u>~</u>					
		Estimate de well as sim											
		MSE, bias,											
		prefer? Why									<i>J</i> ==		

						Mod	lule 2							
11	a)	Explain the performance measures of basic inventory models. How do they help in effective inventory management?							ney	CO2	(4)			
	b)	The company uses annually 48,000 units of raw materials costing Rs.2.25 / unit. Placing each order costs Rs. 50/- and the carrying cost is 15% o Unit cost. Suppose that the company follows the EOQ purchasing policy it operates for 300 days an year, the procurement time is 12 days and the safety stock is 500 units. Determine the EOQ, ROP and Total annual inventory cost.							of cy, the	CO2	(5)			
12	a)	Describe any advantages and	two				_	planı	ning.	Comp	are th	neir	CO2	(4)
	b)	The stores of a following table Class, and C C Component code	repai	ir shop	o have	9 iter	ns who						CO2	(5)
		code												
		Price/unit	60	300	125	80	410	700	300	100	300			
		Units/Year	125	40	310	720	425	525	900	90	510			
	Module 3													
13	a)	Explain fixed p	ositio	n layo	out witl	h appl	ication	S					CO3	(4)
	b)	Compare and flexible manufacross these sy	facturi	ng sy									CO3	(5)
14	a)	Describe vario	ous m	odels				ly line	e bala	ncing.	Why	is	CO3	(4)
	b)	There are five facility. The detable.	existi	ng fac	ilities	which	are to						CO3	(5)
		Existing facil	ity		Сс	ordina	ates		N	lo. of	trips o	f		
		(i)			X			7	lo		ear (wi)		
		2			5 14			<u>0</u>		10 21				
		3			12			9			20			
		4		,	25			3		28	30			
		5 F: 1.41	1		24		C :1:4		1		50			
		Find the optime method.	ium Ic	cation	oi th	e new	Tacilit	y base	ea on g	gravity	locat	ıon		
	Module 4													
15	a)	Compare the key elements of Lean Manufacturing and World-Class Manufacturing (WCM). How do JIT and Kaizen contribute to continuous improvement?							CO4	(4)				
	b)	Product X is m unit of A and t of C. Lead time	hree u	nits of	f B. Z i	is mad	le of th	ree un	its of	A and	two uı	nits	CO4	(5)

		two weeks; B is one week and C is three weeks. The beginning inventory						
		for each item is zero.						
		A) Show the bill-of-materials (product structure tree).						
		B) If 1000 units of X are needed in week 10, develop a planning schedule						
		showing when each item should be ordered and in what quantity.						
16	a)	Explain how ERP improves the performance of the firms.	CO4	(4)				
	b)	Explain the impact of automation and Supply Chain 4.0 on production	CO4	(5)				
		planning. Support your answer with relevant examples from industry.						

SEMESTER 4

SEMESTER 4

DATA ANALYTICS AND APPLICATIONS

Course Code	MNIET409	CIE Marks	40
Teaching Hours/Week (L:T:P)	3:1:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To familiarise students with data management concepts and its applications in data analytics.
- 2. To equip students to apply Python's key data analytics libraries to manipulate, visualize, and analyse datasets.
- 3. To enable students to apply machine learning techniques in real-world scenario.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Data Management: Basics of Statistics - measures of central tendency and dispersion, probability distributions. Sampling and sampling plan: Concept of population and sample, types of sampling- random, stratified, systematic, cluster, sampling distribution of sample mean and proportion. Inferential statistics: Confidence interval estimation, hypothesis testing, z-test, t-test, Chi-square test, ANOVA, Type I & Type II errors. Design Data Architecture: Manage the data for analysis - understand various sources of data like Sensors/Signals/GPS etc. Data management, data quality- noise, outliers, missing values, duplicate data and data processing.	11
2	Advanced Python tools: Data handling with pandas, data frames & series, data cleaning - handling missing data, duplicates, outliers, grouping, aggregation, and pivot tables. Data Visualization with Matplotlib & Seaborn - line plots, bar charts, histograms, scatter plots, pair plots, heatmaps, KDE plots for distribution analysis, customizing visualizations. Statistical analysis using SciPy and Stats models: Correlation and covariance, t-tests, ANOVA, regression analysis, non-parametric tests -Wilcoxon, Mann-Whitney, Kruskal-Wallis tests.	11

	Feature engineering and data preprocessing using Scikit-Learn:	
	Handling categorical data (one-hot encoding, label encoding), feature	
	scaling (standardization, normalization), imputation of missing values,	
	train-test split and cross-validation.	
	Data Analytics: Introduction to analytics, introduction to tools and	
	environment, application of modelling in business, databases & Types	
	of data and variables, data modelling techniques, missing imputations	
	etc., need for business modelling.	
	Regression models for data analytics: Simple and multiple linear	
	regression, blue property assumptions, polynomial regression, ridge,	
	lasso, and elastic net regression, practical applications in predictive	
3	modelling. Object Segmentation, regression Vs segmentation, analytics	11
	applications to various business domains.	
	Classification and clustering models for data analytics: Logistic	
	regression, decision trees, random forest, support vector machines	
	(SVM), ROC curve, precision-recall, F1 score. Clustering techniques in	
	data analytics - K-Means clustering, hierarchical clustering.	
	Advanced metrics and model evaluation: Bias-Variance trade off,	
	AUC-ROC, PR curves, Silhouette score.	
	Case Study on Predicting House Prices: Dataset - Kaggle housing	
	prices. Pipeline - data cleaning, feature engineering, regression model.	
	Evaluation metrics - RMSE, R ² .	
	Case Study on Customer Churn Prediction: Dataset - telecom churn	
	data. Pipeline - exploratory data analysis (EDA), classification model.	
	Evaluation metrics - confusion matrix, precision, and recall.	
4	Case Study on Clustering for Market Segmentation: Dataset - mall	11
	customers dataset (Kaggle). Pipeline - K-Means clustering, PCA for	
	dimensionality reduction. Visualization - cluster interpretation using	
	scatter plots and heatmaps. Case Study on Sentiment Analysis on Customer	
	Reviews: Dataset - Amazon or IMDB reviews. Pipeline- Text	
	Preprocessing, TF-IDF Vectorization, Sentiment Classification. Model	
	- Naïve Bayes.	
	- Marve Dayes.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain data management concepts for analysing datasets to derive meaningful insights.	K2
CO2	Apply Python libraries like Pandas, Matplotlib, SciPy, and Scikit-Learn to preprocess, visualize, and perform statistical analysis on real-world datasets	К3
CO3	Utilize regression, classification, and clustering techniques to build predictive models.	К3
CO4	Develop a complete data analytics pipeline, from data acquisition to visualization, to extract actionable insights from complex datasets.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	2	-	-	-	-	-	-	2
CO2	3	3	2	-	2	-	-	-	-	-	-	2
CO3	3	3	2	-	-	-	-	-	-	-	-	2
CO4	3	3	2	-	-	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year				
1	Practical Statistics for Data Scientists	Peter Bruce, Andrew Bruce, Peter Gedeck	O'Reilly	2 nd edition, 2020				
2	Data Science from Scratch: First Principles with Python	Joel Grus	Greyscale Indian Edition	2 nd edition, 2019				
3	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow	Aurélien Géron	O'Reilly	3 rd edition, 2022				
4	Think Stats	Allen Downey	O'Reilly	2 nd edition, 2014				
5	Data Mining: Concepts and Applications	Jiawei Han, Micheline Kamber, Jian Pei	The Morgan Kaufmann Series in Data Management Systems	3 rd Edition, 2012				

	Video Links (NPTEL, SWAYAM)
Link ID	https://onlinecourses.nptel.ac.in/noc25_cs17/

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR

		YEAR		
		Course Code: MNIET409		
		Course Name: Data Analytics and Applications		
Ma	ax. M	Iarks: 60 Duration: 2 Hours 3	0 Minu	ites
		PART A		
		Answer all questions. Each question carries 3 marks	CO	Marks
1		A researcher conducts a two-tailed t-test at a 5% significance level and	CO1	(3)
		obtains a p-value of 0.03. Explain the interpretation of this result. What		
		would be the conclusion if the significance level were changed to 1%?		
		Justify.		
2		Explain the key properties of a Normal Distribution. How is it different from a	CO1	(3)
		Poisson Distribution?		
3		Write Python code to apply label encoding to a categorical column, fill	CO2	(3)
		missing values with the most frequent category, and scale the numerical		
		features.		
4		Write Python code using Pandas to Remove duplicate rows and Fill	CO2	(3)
		missing numerical values with the column mean.		
5		Write the logistic function used in Logistic Regression.	CO3	(3)
		Explain how it models probability for binary classification.		
6		What is the bias-variance trade-off?	CO3	(3)
7		Explain how text data is pre-processed before applying machine learning	CO4	(3)
		models for sentiment classification.		
		Mention steps like tokenization, stop-word removal, and lowercasing.		
8		Explain how missing data and outliers are handled in a real estate dataset	CO4	(3)
		like Kaggle Housing Prices using pandas.		
		PART B		ı
		Answer any one full question from each module. Each question carries 9	marks	
		Module 1		
9	a)	A pharmaceutical company claims its new drug reduces blood pressure by an	CO1	(5)
		average of 10 mmHg. A clinical trial on 50 patients shows a mean reduction of		

		8 mmHg with a standard deviation of 3 mmHg. Conduct a hypothesis test at α		
		= 0.05 to verify the claim. Discuss the implications of Type I and Type II errors		
		in this context.		
•	b)	Define the Central Limit Theorem (CLT). A population has a mean of 50 and	CO1	(4)
		SD of 15. For samples of size 40, describe the sampling distribution of the		
		mean. Calculate the probability that a sample mean exceeds 53.		
10	a)	A disease affects 1% of a population. A test is 99% accurate for positives and	CO1	(5)
		95% accurate for negatives. If a person tests positive, what is the probability		
		they actually have the disease? Explain the practical implications of this result.		
	b)	Explain the step-by-step procedure for conducting a two-tailed hypothesis test	CO1	(4)
		for a population mean when the population standard deviation is unknown.		
		Include the rationale behind using the t-distribution instead of the z-distribution		
		in this scenario.		
		Module 2		
11	a)	A researcher wants to compare the test scores of two independent student	CO2	(5)
		groups (Group A and Group B).		
		Which statistical test from SciPy should be used? Justify your answer and		
		write the code to perform it using NumPy arrays.		
	b)	Given a dataset with continuous and categorical variables, write Python	CO2	(4)
		code using Seaborn and Matplotlib to:		
		Plot a KDE for distribution of a continuous variable		
		Create a bar chart comparing mean values across categories		
		Customize the plot with title, labels, and legend		
12	a)	You are working with a dataset for machine learning that includes:	CO2	(5)
		Missing numeric values, Categorical columns (Gender, City), A target		
		column for prediction		
		Write a Python pipeline using Scikit-Learn to:		
		Impute missing values, encode categorical variables, standardize numeric		
		columns, Split the data for training and testing		
	b)	Explain the difference between group by () and pivot table () in Pandas	CO2	(4)
		with examples.		
		Write a code snippet to show how both are used to compute the average		
		sales per region from a Data Frame with columns: ['Region', 'Salesperson',		
		'Sales'].		

		Module 3		
13	a)	A classification model has a high accuracy but a low F1-score.	CO3	(5)
		(a) Explain how this situation can occur.		
		(b) Discuss the importance of Precision, Recall, and F1-Score in		
		evaluating classification models.		
		(c) Use an example (confusion matrix) to support your explanation.		
	b)	Explain the algorithmic or structural differences between K-Means Clustering	CO3	(4)
		and Hierarchical Clustering. How do their architectures or workflows differ?		
14	a)	Explain with an example how polynomial regression differs from linear	CO3	(5)
		regression. What kind of problems is it suitable for?		
	b)	Differentiate between Ridge Regression and Lasso Regression.	CO3	(4)
		What is the main advantage of Lasso in feature selection?		
		Module 4	<u> </u>	
15	a)	What is the role of R ² and RMSE in evaluating regression models?	CO4	(2)
	b)	Explain the complete pipeline for building a regression model for	CO4	(7)
		predicting house prices. Your answer should include steps such as data		
		collection, exploratory data analysis (EDA), data cleaning, feature		
		engineering, model building, evaluation metrics, and model		
		interpretation.		
16	a)	Why is TF-IDF preferred over simple word counts?	CO4	(2)
	b)	Describe the entire process of performing sentiment analysis on customer	CO4	(7)
		reviews using machine learning.		
		Your answer should include steps like text preprocessing (cleaning,		
		tokenization), feature extraction (TF-IDF), model selection (e.g., Naïve		
		Bayes), and evaluation using classification metrics.		

SEMESTER 5

SEMESTER 5
OPTIMISATION AND HEURISTICS

Course Code	MNIET509	CIE Marks	40
Teaching Hours/Week (L: T:P)	3:1:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To enable students to formulate real-world industrial problems as mathematical models and solve them using appropriate optimization techniques.
- 2. To familiarise heuristic algorithms, highlighting their principles, advantages, limitations, and applications in industrial decision-making.

SYLLABUS

Module No.	Syllabus Description	Contact Hours		
1	Linear Programming: Concept, Formulation & Graphical and Simplex Solution Assignment Models: Concept, Flood's Technique/Hungarian Method, applications including restricted & multiple assignments. Transportation Models: Concept, Formulation, Problem types: Balanced, Unbalanced, Minimization, Maximization Basic initial solution using North West Corner, Least Cost & VAM, and Optimal Solution using MODI. Basic Engineering Applications.	11		
2	Queuing Theory: Concept, Single Server queuing model (M/M/I,), Decision Theory: Concept, Decision under risk (EMV) & uncertainty, Basic Game Theory: Concept, 2 zero sum game with dominance, Pure & Mixed Strategy.			
3	Nonlinear Programming (NLP): Basics, Unconstrained Optimization (Single & Multi-variable), Lagrange Multipliers (Constrained	11		

	Optimization - Basic Cases Only). Applications in Engineering			
	Optimization.			
	Heuristic Optimization: Introduction to Heuristics, Real-world			
	Applications of Heuristics, Greedy Algorithms, Local Search, Genetic			
	Algorithms, Ant Colony Optimization, Particle Swarm Optimization,			
4	Simulated Annealing (Basic Concept & Working Mechanism).	11		
	Multi-objective Optimization Heuristics (Basic concepts only)			
	Software Tools: Introduction to solvers like LINGO, Gurobi, and			
	Python-based tools.			

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Formulate and solve linear programming, transportation and assignment problems.	К3
CO2	Apply queuing theory, game theory, and decision theory to solve industrial and allied problems.	К3
CO3	Solve constrained and unconstrained nonlinear optimization problems using Lagrange multipliers and heuristic methods.	К3
CO4	Explain the importance, features, advantages, limitations, and industrial applications of heuristic optimization algorithms.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	-	-	-	-	-	-	-	2
CO2	3	3	2	-	-	-	-	-	-	-	-	2
CO3	3	3	2	-	-	-	-	-	-	-	-	2
CO4	3	3	2	-	-	-	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Operations Research: Theory And Application	Sharma J. K	Laxmi Publications	6 th Edition, 2017			
2	Engineering Optimization: Theory and Practice	S. S. Rao	New Age International	3 rd Edition, 2004			
3	Operations Research	Srinivasan G.	Prentice Hall India	2 nd Edition, 2010			
4	Quantitative Methods in Management	Vohra N. D.	Tata McGrew Hill	5 th Edition, 2017			

5	Introduction to Management Science	Bernard W. Taylor	Pearson Education	11 th Edition, 2013
6	Principles of Operations Research with Applications to Managerial Decisions	Harvey M. Wagner	Prentice Hall India	2 nd Edition, 1975
7	Modern Heuristic Techniques for Combinatorial Problems	Colin R. Reeves	Orient Black Swan	1st Edition, 1993
8	Metaheuristics for Hard Optimization	Johann Dréo, Alain Pétrowski, Patrick Siarry, Eric Taillard	Springer-Verlag Berlin and Heidelberg Gmbh	1st Edition, 2010

	Reference Books							
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year				
1	Introduction to Operations Research	Frederick S. Hillier, Gerald J. Lieberman	Tata McGrew Hill	11 th edition, 2020				
2	Optimization in Operations Research	Ronald L. Rardin	Pearson Education	2 ^{nd e} dition, 2016				
3	Introduction to Operations Research	Hamdy A. Taha	Pearson Education	10 th edition, 2019				
4	Operations Research: Applications and Algorithms	Wayne L. Winston	Duxbury Press	4 th edition, 2003				
5	Convex Optimization	Stephen Boyd, Lieven Vandenberghe	Cambridge University Press	1 st edition, 2004				
6	Convex Optimization Algorithms	Dimitri P Bertsekas	Athena Scientific	1 st edition, 2015				

7	Metaheuristic Search Concepts- A Tutorial with Applications to Production and Logistics	Günther Zipfel, Roland Braune, Michael Bögl	Springer-Verlag Berlin and Heidelberg GmbH	20 th edition, 2014
8	Meta-Heuristics: Theory and Applications	Ibrahim H. Osman, James P. Kelly	Springer	1 st edition, 1996
9	Meta-Heuristics: Advances and Trends in Local Search Paradigms for optimization	Stefan Voß, Silvano Martello, Ibrahim H. Osman, Cathérine Roucairol	Springer	1 st edition, 1998
10	Genetic Algorithms + Data Structures = Evolution Programs	Z. Michalewicz	Springer-Verlag Berlin and Heidelberg Gmbh	edition, 1994

	Video Links (NPTEL, SWAYAM)						
Module No. Link ID							
1	https://archive.nptel.ac.in/noc/courses/noc21/SEM1/noc21-mg43/						
2	https://archive.nptel.ac.in/noc/courses/noc17/SEM2/noc17-ma18/						
3	https://archive.nptel.ac.in/courses/112/106/112106131/						
4	https://archive.nptel.ac.in/courses/106/106/106106226/						
4	https://archive.nptel.ac.in/courses/110/106/110106134/						

MODEL QUESTION PAPER

FIE	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR								
LIL	Course Code: MNIET509								
	Course Name: Optimisation And Heuristics								
Max	x. Ma	Duration: 2 hours 3	0 minu	tes					
		PART A							
		Answer all questions. Each question carries 3 marks	CO	Marks					
1		What are the components of a linear programming problem? What does	CO1	(3)					
		the non-negativity restriction mean?							
2		What is degeneracy? How does the problem of degeneracy arise in a	CO1	(3)					
		transportation problem? How can we deal with this problem?							
3		If the utilization parameter or traffic intensity is 0.75, what percent of	CO2	(3)					
		time the system will be idle?							
4		With an example illustrate how can entries in a regret table be derived	CO2	(3)					
	from pay off table.								
5		Find the stationary points of the following function and label them:	CO3	(3)					
		$f(x) = x^4 - 10x^3 - 2x^2 + x + 10$							
6		Describe KKT conditions as applied to constrained optimization problem	CO3	(3)					
		with both equality and inequality constraints.							
7		Write notes on pareto optimal set and pareto front.	CO4	(3)					
8		Explain the characteristics of ACO.	CO4	(3)					
		PART B							
	F	Answer any one full question from each module. Each question carries 9	marks						
		Module 1							
9		Using simplex method	CO1	(9)					
		Maximize $Z = 6X + 4Y$							
		Subject to $-2X + Y \le 2$ $X - 5 \le 2$							
		$3X + 2Y \le 9 \qquad X, Y \ge 0$							
10		Five different machines can do five jobs with different profits resulting	CO1	(9)					
		from each assignment as shown:							

				1	1			
		A	В	C	D	Е		
	1	30	37	40	28	40		
	2	40	24	27	21	36		
	3	40	32	33	30	35		
	4	25	38	40	36	36		
	5	29	62	41	34	39		
	Estimate the	e maximum j	profit possib	ole through o	ptimal assig	nment		
			N	Module 2			1	
11	A typist rece	eives, on an	average, 22	letters per da	ay for typing	g. He works	CO2	(9)
	for 8 hours a	a day and tak	xes 20 minut	tes on averag	ge to finish a	letter. The		
	opportunity	cost of a lett	ter waiting to	o be mailed	is Rs. 8/- per	r hour and		
	the equipme	ent operating	cost and the	e salary of th	e typist will	be Rs.		
	400/- per da	y.						
	a) Wha	t is the utiliz	cation rate of	f the typist?				
	b) Wha	t is the avera	age number	of letters wa	iting to be ty	yped?		
	c) Wha	t is the avera	age waiting	time needed	to have a le	tter typed?		
	What is the	total cost of	waiting lette	ers to be mai	led?			
12	Following is	s the payoff	matrix for pl	layer A & B	•		CO2	(9)
	Player	I	II	III	IV	V		
	A→							
	Player B↓							
	1	2	4	3	3	4		
	2	5	6	3	7	8		
	3	6	7	9	8	7		
	4	4	2	8	4	3		
	Using the de	ominance pr	operty obtai	n the optima	al strategies	for both the		
	players and	determine th	e value of the	ne game.				
			N	Module 3				
13	Maximize		$8x_1^2 + 5x_1$	$+6x_2^2$			CO3	(9)
	Subject to		$x_1 + 2x_2$	≤ 9				
		$x_1 + 3$	$3x_2 \le 10$	x_1, x_2	$_2 \ge 0$			
14	Find the min	nimum of the	e following	function usin	ng golden se	ction	CO3	(9)
	search:							

		$f(x) = (x+10)^2 - 0.1x^3$						
		The interval of uncertainty is [-10, 0]. Do 6 iterations						
		Module 4						
15	a)	Describe the ways by which the quality of a heuristic can be assessed.	CO4	(5)				
•	b)	Explain the main components of simulated annealing.	CO4	(4)				
16	a)	Discuss the advantage of non-traditional optimization techniques	CO4	(5)				
	b)	Explain important parameters in Particle Swarm Optimization.	CO4	(4)				

SEMESTER 6

SEMESTER 6

SYSTEM DYNAMICS AND SIMULATION

Course Code	MNIET609	CIE Marks	40
Teaching Hours/Week (L: T: P)	3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To familiarise the fundamental principles of system modelling and simulation.
- 2. To enable students to simulate the behaviour of dynamic systems and to develop competency in model validation and optimization techniques.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Fundamentals of System Modelling: Concept of systems, models and simulation. Classification of models: physical, mathematical and computational models. Continuous and discrete systems: characteristics and applications. Introduction to time-domain and frequency-domain analysis. Overview of system dynamics in engineering applications.	9
2	Dynamic Systems and Simulation Techniques: Introduction to dynamic modelling principles. Representation of physical systems: mechanical, electrical, hydraulic, pneumatic and thermal systems. System response: first-order and second-order systems. Transfer function representation and block diagram algebra. State-space representation of dynamic systems.	9
3	Computational Tools for Simulation: Introduction to simulation methodologies. Modelling and simulation using MATLAB and Simulink. Bond graph modelling approach and causality analysis. Application of simulation techniques for mechanical and electromechanical systems. Verification and validation of simulation models.	9
4	Advanced System Analysis and Optimization: Frequency response analysis: Bode plots and Nyquist plots. Stability analysis and performance measures of systems. System identification and parameter estimation techniques. Introduction to optimization in system modelling. Applications of Monte Carlo simulation in engineering problems.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Explain the fundamental concepts of system dynamics and simulation.	K2				
CO2	Develop mathematical models for various dynamic systems.	К3				
CO3	Apply simulation techniques using computational tools.	К3				
CO4	Identify system performance through simulation models.	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	-	-	-	-	-	-	-	-	-	2
CO2	-	3	3	2	-	-	-	-	-	-	-	2
CO3	-	3	3	2	3	-	-	-	-	-	-	2
CO4	-	3	3	2	3	3	-	-	-	-	-	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	System Dynamics: Modeling, Simulation, and Control	Dean C. Karnopp	John Wiley & Sons	5 th edition, 2012						
2	Introduction to Dynamic Systems: Modeling for Simulation	David G. Luenberger	Wiley	1 st edition, 1979						
3	System Dynamics and Control with Bond Graph Modeling	Amalendu Mukherjee	Springer	1 st edition, 2006						

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Dynamic Modeling and Simulation	Craig A. Kluever	Wiley	1 st edition, 2015				
2	Bond Graphs for Modelling, Control, and Fault Diagnosis	Wolfgang Borutzky	Springer	2 nd edition, 2017				
3	Simulation Modeling and Analysis	Averill M. Law	McGraw-Hill	5 th edition, 2015				
4	Engineering System Dynamics	Forbes T. Brown	CRC Press	2 nd edition, 2006				

Video Links (NPTEL, SWAYAM)		
Link IDs	https://archive.nptel.ac.in/courses/112/107/112107220/	
	https://archive.nptel.ac.in/courses/112/107/112107214/	

MODEL QUESTION PAPER

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B. TECH MINOR DEGREE EXAMINATION, MONTH AND YEAR					
		Course Code: MNIET609				
		Course Name: System Dynamics and Simulation				
Ma	x. M	Tarks: 60 Duration: 2 hours 3	0 minu	tes		
		PART A				
		Answer all questions. Each question carries 3 marks	CO	Marks		
1		Differentiate between deterministic and stochastic systems with examples.	CO1	(3)		
2		List and explain the properties of dynamic systems.		(3)		
3		Derive the transfer function of a torsional system with multiple inertia and damping elements.		(3)		
4		Discuss the significance of poles and zeros in the frequency response of dynamic systems.	CO2	(3)		
5		Describe the process of causality assignment and its effect on simulation in bond graphs.	CO3	(3)		
6		What are the challenges in validation of large-scale simulation models?	CO3	(3)		
7		Explain how Bode plot asymptotes change with multiple pole-zero contributions.	CO4	(3)		
8		Describe the methodology to perform optimization in a multi-variable	CO4	(3)		
		nonlinear dynamic model.				
		PART B				
		Answer any one full question from each module. Each question carries 9	marks			
		Module 1				
9	a)	Explain the components and classification of dynamic systems with suitable examples.	CO1	(5)		
	b)	Discuss how simulation helps in analysing complex systems.	CO1	(4)		
10	a)	With the help of a neat diagram, explain the working of a simple system.	CO1	(5)		
	b)	Describe the steps involved in system modelling.	CO1	(4)		
		Module 2	1			
11	a)	For a first-order system with transfer function $G(s) = 1/(s+3)$, determine its step response.	CO2	(5)		
	b)	Discuss the role of eigenvalues in analysing system stability.	CO2	(4)		

12	a)	A second-order system has the transfer function $G(s) = 25 / (s^2 + 6s + 6s)$	CO2	(5)			
		25). Find its damping ratio and natural frequency.					
	b)	Discuss modelling of electrical systems using differential equations.		(4)			
	Module 3						
13	a)	Model a robotic manipulator joint using bond graph and assign appropriate causality.	CO3	(5)			
	b)	Discuss the complexities of simulating constrained systems in Simulink.	CO3	(4)			
14	a)	Perform a detailed causality analysis and derive state equations for a multi-bond system.	CO3	(5)			
	b)	How would you validate this model using hardware-in-the-loop simulation?	CO3	(4)			
Module 4							
15	a)	Analyse a high-order system using Nyquist criterion and determine phase/gain margins.	CO4	(5)			
	b)	Explain how model reduction techniques affect simulation accuracy.	CO4	(4)			
16	a)	Apply Monte Carlo simulation to estimate system reliability under uncertain input distributions.		(5)			
	b)	Outline a parameter optimization problem in system dynamics and solve using genetic algorithm basics.	CO4	(4)			
