Sequential Logic Design

Flip Flops

By Prof. Sujata Wakchaure

Introduction

• The major aspect of digital system is analysis and design of sequential circuits

Introduction (Contd..)

• Memory Element is some medium in which one bit of information (0 or 1) can be stored

 Present content of memory elements referred to as Present State of memory element

• The new content of the memory element referred to as the **Next State**

Flip Flops

- Flip flop is a basic digital circuit
- It has 2 stable states
 - 1 State
 - 0 State
- It is obtained by using NAND & NOR gate

• What is the difference between flip flop and latch?

Fundamental circuit for flip flop

Fig 1: Cross Coupled Inverters as a Memory Element

- If o/p of G1 to be Q=1 (but Q is I/p to G2) therefore the o/p of G2 will be $\overline{Q}=0$
- Similarly if Q=0 then Q=1

- From above discussion, we note the following points:
- 1. The outputs Q & Q are always complementary
- 2. The ckt has 2 stable states, in one of the stable state Q=1 which is referred to as the 1 state (or set state)
- Whereas in other stable state Q=0 which is referred to as 0 state (or reset state)
- 3. If the ckt is in 1 state, it continues to remain in this state & similarly if it is in 0 state, it continues to remain in this state
- This property of ckt is referred to as Memory i.e. it can store 1-bit of digital information
- Since this information is locked or latched in this ckt, therefore, this ckt is known as a latch

Fig 2: The memory cell with provision for entering data

• Here if we replace inverters G1 & G2 with 2 i/p NAND gates, the other terminals of NAND gates can be used to enter the desired digital information

- If S=0 & R=0, the ckt is exactly same as that of fig1
- If S=1 & R=0, the o/p of G3 will be 0 & the o/p of G4 will be 1
- Since one of the I/P of G1 is 0, its o/p will certainly be 1
- Consequently both the i/p of G2 will be 1 giving an o/p $\overline{Q}=0$
- Hence for this i/p condition, $Q=1 \& \overline{Q}=0$
- Similarly if S=0 & R=1, then o/p will be Q=0 & Q=1
- The 1st of these 2 I/P conditions (S=1,R=0) makes Q=1 i.e. Set State
- Whereas the 2nd I/P condition (S=0, R=1) makes Q=0 i.e. Reset or Clear State

S-R Latch

NOR Gate

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Case 1:

If
$$S=0$$
, $R=1$ => $Q=0$, $Q=1$

If
$$S=0$$
, $R=0$ => $Q=0$, $Q=1$

The outputs are same, that's why this condition is called as Memory

S-R Latch (Contd..)

Case 2:

If
$$S=1$$
, $R=0 \Rightarrow Q=1$, $Q=0$

If
$$S=0$$
, $R=0$ => $Q=1$, $Q=0$

The outputs are same, that's why this condition is called as Memory

Case 3:

If
$$S=1$$
, $R=1 \Rightarrow Q=0$, $Q=0$

If
$$S=0$$
, $R=0$ => $Q=0$, $Q=1$

OR
 $Q=1$, $Q=0$

• So for same configuration when S=0, R=0, we have different o/p

But Q = Q it's not true

They must be complement to each

other

Α	В	Q	Q
0	0	Men	nory
0	1	0	1
1	0	1	0
1	1	Not Used	

S-R Flip Flop

Fig 3: Clocked S-R Flip Flop

- In this ckt if clock pulse is present (CLK=1), its operation is same as that of fig 2
- If CLK=0, the gate G3 & G4 are inhibited, i.e. Their o/p are 1 irrespective of the values of S-R
- In other words, the ckt responds to the I/P S&R only when the clock is present.
- •Assuming that i/p do not change during the presence of the clock pulse, we can express the operation of flip flop in form of truth table for S-R flip flop $_{11}$

• When S*=0, R*=0 the Q & Q can't be determined, it will be contradictory case, that's why not used case

Α	В	Q	Q
0	0	Not I	Jsed
0	1	1	0
1	0	0	1
1	1	Men	nory

• Why we used clock in this ckt, because we don't want our i/p to change accidently, we only wants to change the i/p, when want for that purpose clock is used

•
$$S^* = \overline{(S . CLK)} = \overline{S} + \overline{CLK}$$

•
$$R^* = \overline{(R \cdot CLK)} = \overline{R} + \overline{CLK}$$

Case 1:

CLK = 0
Then S*=1
$$S^* = \overline{S} + \overline{CLK}$$

 $R^* = 1$ $R^* = \overline{R} + \overline{CLK}$

Here value of S & R doesn't matter, that means x x (don't care terms)

So from previous truth table you can see when $S^*=1 \& R^*=1$, we are having the memory i.e. previous state is stored here

• Case 2:

If CLK = 1
$$S=0$$
 R=0
Then $S^*=S+CLK$
 $R^*=R+CLK$
It means $S^*=S=1$
 $R^*=R=1$

Again the last case i.e. 1 1=> memory

• Case 3:

If CLK = 1 S= 0 R=1

Then
$$S^*=1$$
 $R^*=0$
From previous truth table => 10 => 01

• Case 4:

If CLK = 1 S= 1 R=0

Then
$$S^*=0$$
 From previous truth table =>
$$R^*=1 \quad 0 \quad 1 \Rightarrow 1 \quad 0$$

• Case 5:

If CLK = 1 S= 1 R=1

CLK	S	R	Q	Q
0	X	X	Mem	ory
1	0	0	Memory	
1	0	1	0	1
1	1	0	1	0
1	1	1	Not Used	

D Flip Flop

Truth Table for SR Flip Flop

CLK	S	R	Qn+1
0	X	X	Memory
1	0	0	Memory
1	0	1	0
1	1	0	1
1	1	1	Not Used

S & R are always complementary of each other

When D=0 (S=0), then R=1 that means 0 1 D=1 (S=1), then R=0 that means 1 0

CLK	D	Q
0	X	Memory
1	0	0
1	1	1

JK Flip Flop

Truth Table for SR Flip Flop

CLK	S	R	Qn+1
0	X	X	Memory
1	0	0	Memory
1	0	1	0
1	1	0	1
1	1	1	Not Used

• Disadvantage of SR Flip Flop is the last case i.e. 1 1 1 = Not used case

- Working of JK Flip Flop
- Case 1:

Case 2:

$$CLK=1$$
 $J=1$ $K=0$ $Q=1$ $\overline{Q}=0$

Case 3:

$$CLK=1 J=0 K=1$$

$$Q=0 Q=1$$

CLK	J	К	Qn+1
0	X	X	Memory
1	0	0	Memory
1	0	1	0
1	1	0	1
1	1	1	Qn

When Q=0 it will become 1 and again it become 0 That means It is the complement of previous state

Therefore whatever with the value for Qn we are having o/p as \overline{Qn} (Toggling)

T Flip Flop

 Toggling is the controlled change of o/p from 0 to 1 and 1 to 0

CLK	Т	Qn+1
0	X	Memory
1	0	Memory
1	1	1

When T=0 (J=0), then K=0 that means 0 0 => Memory (From TT of JK FF) T=1 (J=1), then K=1 that means 1 1 => \overline{Qn} (From TT of JK FF)

Master Slave Flip Flop

Master Slave Flip Flop (Contd..)

Master Slave Flip Flop (Contd..)

- Master Slave ckt can be implemented for SR and D flip flop also
- Important things in Master Slave flip flop
 - Feedback
 - Clock
- When Clock =1 => Master will operate
- When Clock =0 => Slave will operate
- When clk=1, Qm will change and Q remains same
- When clk=0, Q will change but when Q changes we are having feedback here, but the clock is low, therefore master will not operate, so there is no effect of feedback

Preset And Clear

- They are direct I/P or Overriding I/P or Asynchronous I/P
- While S, R, J, K, D and T are Synchronous I/P
- Whenever Preset and Clear comme into the picture they will change the O/P. i.e. Qn will change directly irrespective of Synchronous I/P

Preset And Clear (Contd..)

Preset And Clear (Contd..)

Preset	Clear	Qn
0	0	Not Used
0	1	1
1	0	0
1	1	Normal

When Pr=0 the O/P=1 i.e. Q=1 Q=0

When Cr=0 the O/P=1 i.e. Q=0 because \overline{Q} =1

Characteristic Table & Excitation Table For SR Flip Flop

Truth Table for SR Flip Flop

CLK	S	R	Q	Q
0	X	X	Mem	ory
1	0	0	Memory	
1	0	1	0	1
1	1	0	1	0
1	1	1	Not Used	

Characteristic Table & Excitation Table For SR Flip Flop (Contd..)

Characteristic Table

Qn	S	R	Qn+1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	X
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	X

Excitation Table

Qn	Qn+1	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Characteristic Table & Excitation Table For D Flip Flop

Truth Table for SR Flip Flop

CLK	D	Qn+1
0	X	Qn
1	0	0
1	1	1

Characteristic Table & Excitation Table For D Flip Flop (Contd..)

Characteristic Table

Qn	D	Qn+1	
0	0	0	D=0 Qn+1=0
0	1	1	D=1 Qn+1=1
1	0	0	
1	1	1	

Qn+1=D

Excitation Table

Qn	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

Characteristic Table & Excitation Table For JK Flip Flop

Truth Table for SR Flip Flop

	Qn+1	K	J	CLK
Momory	Qn	X	X	0
Memory	Qn	0	0	1
	0	1	0	1
	1	0	1	1
	Qn	1	1	1

Characteristic Table & Excitation Table For JK Flip Flop (Contd..)

Characteristic Table

Qn	J	K	Qn+1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Excitation Table

Qn	Qn+1	J	K
0	0	0	X
0	1	1	Χ
1	0	X	1
1	1	X	0

$$Qn+1 = \overline{Qn} . J + Qn . \overline{K}$$

$$J = Qn+1 \qquad K = \overline{Qn+1}$$

Characteristic Table & Excitation Table For T Flip Flop

Truth Table for SR Flip Flop

CLK	Т	Qn+1
0	X	Qn
1	0	Qn
1	1	Qn

Characteristic Table & Excitation Table For T Flip Flop (Contd..)

Characteristic Table

Qn	Т	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

Odd 1's Detector

Excitation Table

Qn	Qn+1	T
0	0	0
0	1	1
1	0	1
1	1	0

Flip Flop Conversions

• Steps:

- 1. Identify available & required Flip Flop
- 2. Make characteristic table of required flip flop
- 3. Make Excitation table for available flip flop
- 4. Write Boolean expression for available flip flop
- 5. Draw the circuit

JK Flip Flop to D Flip Flop

- Step 1: Available Flip Flop = JK FF Required Flip Flop = D FF
- Step 2: Characteristic table of Required FF=> D FF

Qn	D	Qn+1
0	0	0
0	1	1
1	0	0
1	1	1

JK Flip Flop to D Flip Flop (Contd..)

• Step 3: Excitation table of available FF=> JK FF

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Qn	D	Qn+1	J	К
0	0	0	0	X
0	1	1	1	X
1	0	0	X	1
1	1	1	X	0

JK Flip Flop to D Flip Flop (Contd..)

- **Step 4:** Boolean expression for available FF=> JK FF J=D K=D
- Step 5: Draw Circuit

T Flip Flop to D Flip Flop

- Step 1: Available Flip Flop = T FF Required Flip Flop = D FF
- Step 2: Characteristic table of Required FF=> D FF

Qn	D	Qn+1
0	0	0
0	1	1
1	0	0
1	1	1

8/1/2016 41

T Flip Flop to D Flip Flop (Contd..)

Step 3: Excitation table of available FF=> T FF

Qn	Qn+1	T
0	0	0
0	1	1
1	0	1
1	1	0

Qn	D	Qn+1	Т
0	0	0	0
0	1	1	1
1	0	0	X
1	1	1	X

T Flip Flop to D Flip Flop (Contd..)

- **Step 4:** Boolean expression for available FF=> T FF T = D + Qn
- Step 5: Draw Circuit

SR Flip Flop to JK Flip Flop

- Step 1: Available Flip Flop = SR FF Required Flip Flop = JK FF
- Step 2: Characteristic table of Required FF=> JK FF

Qn	J	K	Qn+1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

SR Flip Flop to JK Flip Flop (Contd..)

Step 3: Excitation table of available FF=> SR FF

Qn	Qn+1	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Qn	J	K	Qn+1	S	R
0	0	0	0	0	Χ
0	0	1	0	0	Χ
0	1	0	1	1	0
0	1	1	1	1	0
1	0	0	1	X	0
1	0	1	0	0	1
1	1	0	1	X	0
1	1	1	0	0	1

SR Flip Flop to JK Flip Flop (Contd..)

• **Step 4:** Boolean expression for available FF=> T FF

$$S = \overline{Qn} \cdot J$$
 $R = Qn \cdot K$

• Step 5: Draw Circuit

SR Flip Flop to T Flip Flop

- Step 1: Available Flip Flop = SR FF Required Flip Flop = T FF
- Step 2: Characteristic table of Required FF=> T FF

Qn	Т	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

8/1/2016 47

SR Flip Flop to T Flip Flop (Contd..)

• Step 3: Excitation table of available FF=> SR FF

Qn	Qn+1	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Χ	0

Qn	Т	Qn+1	S	R
0	0	0	0	Х
0	1	1	1	0
1	0	1	X	0
1	1	0	0	1

SR Flip Flop to JK Flip Flop (Contd..)

• **Step 4:** Boolean expression for available FF=> T FF

$$S = \overline{Qn} \cdot T$$
 $R = Qn \cdot T$

• Step 5: Draw Circuit

8/1/2016 49

Home Work

1. Convert JK Flip Flop into SR Flip Flop

2. Convert T Flip Flop into SR Flip Flop