Program 2

Aim: Demonstrate the working model and principle of candidate elimination algorithm.

Program: For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples. **Algorithm:**

Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally specific hypotheses in H For each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S
- If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - h is consistent with d, and some member of S is more specific than h
 - Remove from G any hypothesis that is less general than another hypothesis in G

TABLE 2.5

Candidate-Elimination algorithm using version spaces. Notice the duality in how positive and negative examples influence S and G.

Program:

```
import numpy as np
import pandas as pd
data = pd.DataFrame(data=pd.read_csv('ENJOYSPORT.csv'))
concepts = np.array(data.iloc[:,0:-1])
print(concepts)
target = np.array(data.iloc[:,-1])
print(target)
```

```
def learn(concepts, target):
    specific_h = concepts[0].copy()
    print("initialization of specific_h and general_h")
    print(specific_h)
    general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
    print(general_h)
    for i, h in enumerate(concepts):
        if target[i] == 1:
            for x in range(len(specific_h)):
               if h[x]!= specific_h[x]:
                   specific_h[x] ='?'
                    general_h[x][x] = '?'
                print(specific_h)
        print(specific_h)
        if target[i] == 0:
            for x in range(len(specific_h)):
                if h[x]!= specific_h[x]:
                   general_h[x][x] = specific_h[x]
                   general_h[x][x] = '?'
        print(" steps of Candidate Elimination Algorithm",i+1)
        print(specific_h)
        print(general_h)
    indices = [i for i, val in enumerate(general_h) if val == ['?', '?', '?', '?', '?', '?']]
        general_h.remove(['?', '?', '?', '?', '?'])
    return specific_h, general_h
s_final, g_final = learn(concepts, target)
print("Final Specific_h:", s_final, sep="\n")
print("Final General_h:", g_final, sep="\n")
```

TRAINING DATA: ENJOYSPORT.csv

	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
0	Sunny	Warm	Normal	Strong	Warm	Same	1
1	Sunny	Warm	High	Strong	Warm	Same	1
2	Rainy	Cold	High	Strong	Warm	Change	0
3	Sunny	Warm	High	Strong	Cool	Change	1

OUTPUT:

```
initialization of specific h and general h
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' warm Normal Strong warm Same]
['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'],
['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?']]
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
 ['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
  steps of Candidate Elimination Algorithm 1
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'],
['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?']]
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' '?' 'Strong' 'Warm' 'Same']
  steps of Candidate Elimination Algorithm 2
 ['Sunny' 'Warm' '?' 'Strong' 'Warm' 'Same']
[ Sunny Warm ? Strong Warm Same ]
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'],
['?', '?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?']
['Sunny' 'Warm' '?' 'Strong' 'Warm' 'Same']
 steps of Candidate Elimination Algorithm 3
['Sunny' 'Warm' '?' 'Strong' 'Warm' 'Same']
[['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?'], ['?', '?', '?', '?', '?']

[['Yunny', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?']
e']]
['Sunny' 'Warm' '?' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' '?' 'Strong' '?' 'Same']
['Sunny' 'Warm' '?' 'Strong' '?' '?']
['Sunny' 'Warm' '?' 'Strong' '?' '?']
 steps of Candidate Elimination Algorithm 4
['Sunny' 'Warm' '?' 'Strong' '?' '?']
[['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?'], ['?', '?', '?', '?', '?']
[['?', '?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?']]
Final Specific_h:
['Sunny' 'Warm' '?' 'Strong' '?' '?']
Final General_h:
[['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?', '?']]
```