CS	771A: Int	o to Machine Lea	arning,	IIT Kanpur	Endsem Exam	(16 July 2024)
	ame	ı				40 marks
Ro	ll No	Dept.				Page 1 of 4
1. Thi 2. Wr 3. Wr	ite your nam ite your fina	ne, roll number, depart I answers neatly with a	ment in b a blue/bla	f paper). Please verify. block letters with ink or ack pen . Pencil marks m MCQ – ambiguous cases	ay get smudged.	NO PARTITION OF TECHNOLOGY
	•	•		se (write only in th reply in the space p	_	•
1				$\ \mathbf{x}_i\ _2 \le 2$ for all $i \in \mathbb{R}$ ays ensure that the		
	cc					
2	False, co	nstruct two Merce	r kernel	Is can never be Mer s K_1, K_2 with maps el with map ϕ_3 . Give	ϕ_1,ϕ_2 s.t. the diff	ference

For convex differentiable $f: \mathbb{R} \to \mathbb{R}$, if $f\left(\frac{x+y}{2}\right) > 1$ for some $x, y \in \mathbb{R}$, then we must have $\max\{f(x), f(y)\} > 1$. Justify either using a proof or counter example.

3

Q2 (Almost Uniform) Melbo is constructing a distribution \mathcal{D} with support over 2D vectors of length up to 1 i.e. $\{\mathbf{x} \in \mathbb{R}^2 \colon \|\mathbf{x}\|_2 \leq 1\}$. \mathcal{D} has two parameters $\mathbf{c} \in \mathbb{R}^2$, $\epsilon \in [0,1]$ and assigns a *high* density $\frac{1}{\epsilon}$ in a "dense ball" of radius ϵ centered at \mathbf{c} i.e., in $\{\mathbf{x} \in \mathbb{R}^2 \colon \|\mathbf{x}\|_2 \leq 1, \|\mathbf{x} - \mathbf{c}\|_2 \leq \epsilon\}$ and a *low* density of $\frac{1}{2\pi}$ in the rest of the support i.e., in $\{\mathbf{x} \in \mathbb{R}^2 \colon \|\mathbf{x}\|_2 \leq 1, \|\mathbf{x} - \mathbf{c}\|_2 > \epsilon\}$. We have $\|\mathbf{c}\|_2 \leq 1 - \epsilon$ i.e., the dense ball stays within the support.

- a. For which values of ϵ will $\mathcal D$ be a proper distribution? Find them and show calculations. You may find the fact that $\pi \sqrt{\pi^2 2} \in [0,1]$ and $\pi \sqrt{\pi^2 1} \in [0,1]$ to be useful.
- b. Find out the mean vector $\mu \in \mathbb{R}^2$ of this distribution. Show calculations. (5 + 7 = 12 marks)

Hint: the mean of a uniform distribution over a circle is its centre.

Find out the mean vector of the distribution \mathcal{D} .

CS 771A: Intro to Machine Learning, IIT Kanpur Endsem Exam					(16 July 2024)
Name	40 ma		40 marks		
Roll No		Dept.			Page 3 of 4

Q3 (Positive Linear Regression) We have data features $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^D$ and labels $y_1, ..., y_N \in \mathbb{R}$ stylized as $X \in \mathbb{R}^{N \times D}$, $\mathbf{y} \in \mathbb{R}^N$. We wish to fit a linear model with positive coefficients:

$$\underset{\mathbf{w} \in \mathbb{R}^{D},}{\operatorname{argmin}} \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|_{2}^{2} \text{ s. t. } w_{j} \ge 0 \text{ for all } j \in [D]$$

 Write the Lagrangian for this problem by introducing dual variables Simplify the dual problem (eliminate w) – show major steps. Assun Give a coordinate descent/ascent algorithm to solve the dual. 	
Write down the Lagrangian here (you will need to introduce dual variables and give the	
Derive and simplify the dual. Show major calculations steps.	

Give a coordinate descent/ascent algorithm to solve the dual problem.
Q4. (Kernel Smash) $K_1, K_2, K_3 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are Mercer kernels i.e., for any $x, y \in \mathbb{R}$, we have
$K_i(x,y) = \langle \phi_i(x), \phi_i(y) \rangle$ with $\phi_1(x) = (1,x), \phi_2(x) = (x,x^2), \phi_3(x) = (x^2,x^4,x^6)$. Design a
map ϕ_4 : $\mathbb{R} \to \mathbb{R}^7$ for kernel K_4 s.t. $K_4(x,y) = (K_1(x,y) - K_2(x,y))^2 + 3K_3(x,y)$ for all $x,y \in \mathbb{R}$.

We have $K_i(x,y) = \langle \phi_i(x), \phi_i(y) \rangle$ with $\phi_1(x) = (1,x), \phi_2(x) = (x,x^2), \phi_3(x) = (x^2,x^4,x^6)$. Design a map $\phi_4 \colon \mathbb{R} \to \mathbb{R}^7$ for kernel K_4 s.t. $K_4(x,y) = \left(K_1(x,y) - K_2(x,y)\right)^2 + 3K_3(x,y)$ for all $x,y \in \mathbb{R}$. No derivation needed. Note that ϕ_4 must not use more than 7 dimensions. If your solution does not require 7 dimensions then leave the rest of the dimensions blank or fill with zero. (7 marks) $\phi_4(x) = 0$

