Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou.

- * Name:Beichen Yu Student ID:519030910245 Email: polarisybc@sjtu.edu.cn
- 1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! 1 and prove by contradiction)

Proof. Consider the number n! - 1.

If n! - 1 is a prime, then the proposition is proved.

Otherwise, if n! - 1 is a composite number, then \exists a prime number p which is a prime factor of n! - 1.

If p > n, then the proposition is proved.

Otherwise, if $p \leq n$, then p is a prime factor of n!.

Now that p|n! and p|n!-1, we get p|1, which is obviously impossible.

2. Use the minimal counterexample principle to prove that for any integer $n \geq 7$, there exists integers $i_n \geq 0$ and $j_n \geq 0$, such that $n = i_n \times 2 + j_n \times 3$.

Proof. If there are values of n for which there does not exists such i_n and j_n , then there must be a smallest such value, say n = k.

Since $0 \times 2 + 0 \times 3 = 0$, we have $i_n \ge 1$ or $j_n \ge 1$.

Since k is the smallest value that cannot be written in that form, then k-1 can be written in that form, which means there exists integers $i_{k-1} \ge 0$ and $j_{k-1} \ge 0$, such that $k-1 = i_{k-1} \times 2 + j_{k-1} \times 3$.

However, we have

$$k = k - 1 + 1$$

$$= i_{k-1} \times 2 + j_{k-1} \times 3 + 3 - 2$$

$$= (i_{k-1} - 1) \times 2 + (j_{k-1} + 1) \times 3$$

and

$$k = k - 1 + 1$$

= $i_{k-1} \times 2 + j_{k-1} \times 3 + 2 \times 2 - 3$
= $(i_{k-1} + 2) \times 2 + (j_{k-1} - 1) \times 3$

Since at least one of i_{k-1} and j_{k-1} is not 0, we can make sure k can be written in that form as well. We have derived a contradiction, which allows us to conclude that our original assumption is false.

3. Suppose the function f be defined on the natural numbers recursively as follows: f(0) = 0, f(1) = 1, and f(n) = 5f(n-1) - 6f(n-2), for $n \ge 2$. Use the strong principle of mathematical induction to prove that for all $n \in N$, $f(n) = 3^n - 2^n$.

Proof. We proof the proposition is true for $n \ge 0$ by induction.

Basis step. When n = 0, $f(0) = 3^{0} - 2^{0} = 0$, and the proposition is obviously true.

Introduction Hypothesis. Assume when $0 \le i \le k$ the proposition is true, which means $f(i) = 3^i - 2^i$.

Proof of Induction Step. Now let us prove that when n = k + 1 the proposition is true.

$$f(k+1) = 5f(k) - 6f(k-1)$$

$$= 5 \times (3^k - 2^k) - 6 \times (3^{k-1} - 2^{k-1})$$

$$= (5 - 6 \div 3) \times 3^k - (5 - 6 \div 2) \times 2^k$$

$$= 3 \times 3^k - 2 \times 2^k$$

$$= 3^{k+1} - 2^{k+1}$$

4. An *n*-team basketball tournament consists of some set of $n \geq 2$ teams. Team p beats team q iff q does not beat p, for all teams $p \neq q$. A sequence of distinct teams $p_1, p_2, ..., p_k$, such that team p_i beats team p_{i+1} for $1 \leq i < k$ is called a ranking of these teams. If also team p_k beats team p_1 , the ranking is called a k-cycle.

Prove by mathematical induction that in every tournament, either there is a "champion" team that beats every other team, or there is a 3-cycle.

Proof. Define P(n) be the statement that "in every tournament, either there is a 'champion' team that beats every other team, or there is a 3-cycle". We try to prove that P(n) is true for every $n \ge 2$ by induction.

Basis step. P(2) is true, since there is obviously a team beat another when there are only two teams. P(3) is true as well, since when there are three teams, either a team beats the other two, or there is a 3-cycle.

Introduction Hypothesis. Assume that P(k) is true for $k \ge 2$.

Proof of Induction Step. Let us prove P(k+1).

We divide the k+1 teams into two parts, with k teams in one part and only one team in the other. Since P(k) is true, either there is a "champion" team that beats every other team in the first part, or there is a 3-cycle in the first part.

If the there is a 3-cycle in the first part, then obviously the 3-cycle still exists in the k+1 teams. Then P(k+1) is true.

If there is a "champion" team that beats every other team in the first part, we can define the "champion" team as p_c in $p_1, p_2 \ldots, p_k$, and the team in the other part as p_{k+1} .

If p_{k+1} beats every team in the first part, then p_{k+1} is the "champion" team in the k+1 teams, P(k+1) is true.

If p_{k+1} does not beat all the teams in the first part, then there is a p_i beats p_{k+1} . If p_c beats p_{k+1} , then p_c is the "champion" team in the k+1 teams, P(k+1) is true.

If p_c does not beat p_{k+1} , then p_i is not p_c . So p_i beats p_{k+1} , p_{k+1} beats p_c and p_c beats p_i : there is a 3-cycle, which means P(k+1) is true.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.

2