Derivada de funciones exponenciales y logarítmicas Derivación implícita Derivada de orden superior La derivada como razón de cambio

Henry R Moncada

UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR

September 4, 2024

Definición de Derivación Implícita

Funciones Exponencial y Logarítmicas

- Las funciones exponenciales y logarítmicas son fundamentales en cálculo.
- Veremos cómo derivar estas funciones y aplicaremos reglas específicas para resolver ejemplos.
- La derivación implícita se utiliza cuando una ecuación define una función de manera implícita.
- Se deriva cada lado de la ecuación con respecto a x y se resuelve para $\frac{dy}{dx}$.

Outline

- Derivada de Funciones Exponenciales
 - Ejemplos de Derivadas de Funciones Exponenciales
- Derivada de Funciones Logarítmicas
 - Ejemplos de Derivadas de Funciones Logarítmicas
- O Derivación Implícita
 - Ejemplo de la derivación implícita
- Derivadas de Orden Superior
 - Ejemplo de la Derivadas de Orden Superior
- Derivada como Razón de Cambio
 - Ejemplo de la Derivadas de Razón de Cambio
- Conclusión

Derivada de Funciones Exponenciales

• La derivada de la función exponencial e^x es ella misma (la derivada de e^x es e^x):

$$\frac{d}{dx}(e^x) = e^x.$$

Ejemplo

La derivada de e^{3x} es $3e^{3x}$

• En general, la derivada de a^x , donde a > 0 y $a \neq 1$, la derivada es:

$$\frac{d}{dx}(a^x) = a^x \ln(a).$$

Ejemplo

La derivada de 3^x es $3^x \ln(3)$.

Ejemplos de Derivadas de Funciones Exponenciales

Ejemplo 1

Derivar $f(x) = e^x$.

$$f'(x) = e^x$$

Ejemplo 2

Derivar $f(x) = e^{2x}$.

$$f'(x) = 2e^{2x}$$

Ejemplo 3

Derivar $f(x) = 3^x$.

$$f'(x) = 3^x \ln(3)$$

Ejemplo 4

Derivar $f(x) = 5^{x^2}$.

$$f'(x) = 5^{x^2} \cdot 2x \ln(5)$$

Derivada de Funciones Logarítmicas

• La derivada del funcion logaritmo natural ln(x) es:

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}.$$

Ejemplo

La derivada de ln(2x) es $\frac{2}{2x} = \frac{1}{x}$.

 \bullet Para logaritmos en una base diferente, $\log_a(x)$ (con a>0) , la derivada es:

$$\frac{d}{dx}(\log_a(x)) = \frac{1}{x\ln(a)}.$$

Ejemplo

La derivada de $\log_2(x)$ es $\frac{1}{x \ln(2)}$.

Ejemplos de Derivadas de Funciones Logarítmicas

Ejemplo 1

Derivar $f(x) = \ln(x)$.

$$f'(x) = \frac{1}{x}$$

Ejemplo 2

Derivar $f(x) = \ln(2x)$.

$$f'(x) = \frac{1}{2x} \cdot 2 = \frac{1}{x}$$

Ejemplo 3

Derivar $f(x) = \log_2(x)$.

$$f'(x) = \frac{1}{x \ln(2)}$$

Ejemplo 4

Derivar $f(x) = \log_3(x^2)$.

$$f'(x) = \frac{2x}{x^2 \ln(3)} = \frac{2}{x \ln(3)}$$

Ejemplos: Combinando Funciones Exponenciales y Logarítmicas

En esta presentación, veremos cómo derivar funciones que combinan exponentes y logaritmos. Recordemos las siguientes reglas:

- $\frac{d}{dx}(e^x) = e^x$
- $\frac{d}{dx}(a^x) = a^x \ln(a)$
- \bullet $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$
- \bullet $\frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln(a)}$

Ejemplo

Por ejemplo $f(x) = e^x \ln(x)$, aplicamos la regla del producto:

$$f'(x) = e^x \ln(x) + e^x \cdot \frac{1}{x} = e^x \left(\ln(x) + \frac{1}{x} \right).$$

Ejemplo

Deriva $q(x) = x^x$:

$$g(x) = e^{x \ln(x)}$$

$$g'(x) = e^{x \ln(x)} (\ln(x) + 1) = x^{x} (\ln(x) + 1)$$

Ejemplos : Combinando Funciones Exponenciales y Logarítmicas

Ejemplo 1

Calculemos la derivada de $f(x) = x^2 e^x$.

$$f'(x) = \frac{d}{dx}(x^2e^x)$$

$$= \frac{d}{dx}(x^2) \cdot e^x + x^2 \cdot \frac{d}{dx}(e^x)$$

$$= 2xe^x + x^2e^x = e^x(2x + x^2).$$

Ejemplo 2

Calculemos la derivada de $f(x) = \ln(x) \cdot e^x$.

$$f'(x) = \frac{d}{dx}(\ln(x) \cdot e^x)$$

$$= \frac{d}{dx}(\ln(x)) \cdot e^x + \ln(x) \cdot \frac{d}{dx}(e^x)$$

$$= \frac{1}{x} \cdot e^x + \ln(x) \cdot e^x = e^x \left(\frac{1}{x} + \ln(x)\right).$$

Ejemplos : Combinando Funciones Exponenciales y Logarítmicas

Ejemplo 3

Calculemos la derivada de $f(x) = x \cdot \log_a(x)$.

$$\begin{split} f'(x) &= \frac{d}{dx}(x \cdot \log_a(x)) \\ &= \frac{d}{dx}(x) \cdot \log_a(x) + x \cdot \frac{d}{dx}(\log_a(x)) \\ &= 1 \cdot \log_a(x) + x \cdot \frac{1}{x \ln(a)} = \log_a(x) + \frac{1}{\ln(a)}. \end{split}$$

Ejemplo 4

Calculemos la derivada de $f(x) = e^{x^2} \ln(x)$.

$$f'(x) = \frac{d}{dx} (e^{x^2} \ln(x))$$

$$= \frac{d}{dx} (e^{x^2}) \cdot \ln(x) + e^{x^2} \cdot \frac{d}{dx} (\ln(x))$$

$$= 2xe^{x^2} \ln(x) + e^{x^2} \cdot \frac{1}{x} = e^{x^2} \left(2x \ln(x) + \frac{1}{x} \right).$$

¿Qué es la derivación implícita?

- La derivación implícita se utiliza cuando una función **no está explícitamente** resuelta para una variable, pero necesitamos derivar con respecto a esa variable.
- A menudo se aplica cuando una función está dada en términos de x e y, y queremos encontrar $\frac{dy}{dx}$.

Ejemplo 1

Dada la ecuación $x^2 + y^2 = 25$, encontrar $\frac{dy}{dx}$.

Solucion: Diferenciando ambos lados con respecto a x:

$$2x + 2y\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{x}{3}$$

Dada la ecuación $xy + y^2 = 4$, encontrar $\frac{dy}{dx}$.

Solucion: Diferenciando ambos lados con respecto a x:

$$y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$$
$$\frac{dy}{dx}(x + 2y) = -y$$
$$\frac{dy}{dx} = \frac{-y}{x + 2y}$$

Ejemplo 3

Dada la ecuación $\sin(xy) = x + y$, encontrar $\frac{dy}{dx}$.

Solucion: Diferenciando ambos lados con respecto a x:

$$\cos(xy)\left(y + x\frac{dy}{dx}\right) = 1 + \frac{dy}{dx}$$
$$y\cos(xy) + x\cos(xy)\frac{dy}{dx} = 1 + \frac{dy}{dx}$$
$$(x\cos(xy) - 1)\frac{dy}{dx} = 1 - y\cos(xy) \Rightarrow \frac{dy}{dx} = \frac{1 - y\cos(xy)}{x\cos(xy) - 1}$$

Dada la ecuación $e^{xy}=x+y$, encontrar $\frac{dy}{dx}$.

Solucion: Diferenciando ambos lados con respecto a x:

$$e^{xy}\left(y + x\frac{dy}{dx}\right) = 1 + \frac{dy}{dx}$$
$$ye^{xy} + xe^{xy}\frac{dy}{dx} = 1 + \frac{dy}{dx}$$
$$(xe^{xy} - 1)\frac{dy}{dx} = 1 - ye^{xy}$$
$$\frac{dy}{dx} = \frac{1 - ye^{xy}}{xe^{xy} - 1}$$

Derivadas de Orden Superior

- Una derivada de orden superior se refiere a la derivada de una función que ya ha sido derivada.
- La primera derivada f'(x) representa la pendiente o tasa de cambio de la función original.
- La segunda derivada f''(x) describe la concavidad de la función.
- Las derivadas de orden superior continúan este proceso, proporcionando más información sobre la curvatura y el comportamiento de la función.

Ejemplo:

Encuentra la segunda derivada de $f(x) = x^4 - 3x^2 + 2x - 5$.

$$f'(x) = 4x^3 - 6x + 2,$$

$$f''(x) = 12x^2 - 6.$$

Ejemplo: Derivada de Orden Superior

Ejemplo:

Encuentra la tercera derivada de $g(x) = \sin(x)$.

$$g'(x) = \cos(x),$$

$$g''(x) = -\sin(x),$$

$$g'''(x) = -\cos(x).$$

Ejemplo:

Encuentra la cuarta derivada de $h(x) = e^{2x}$.

$$h'(x) = 2e^{2x},$$

$$h''(x) = 4e^{2x},$$

$$h'''(x) = 8e^{2x},$$

$$h^{(4)}(x) = 16e^{2x}.$$

Ejemplo: Derivada de Orden Superior

Ejemplo 4:

Encuentra la quinta derivada de $k(x) = \ln(x)$.

$$\begin{aligned} k'(x) &= \frac{1}{x}, \\ k''(x) &= -\frac{1}{x^2}, \\ k'''(x) &= \frac{2}{x^3}, \\ k^{(4)}(x) &= -\frac{6}{x^4}, \\ k^{(5)}(x) &= \frac{24}{x^5}. \end{aligned}$$

Derivada como Razón de Cambio

¿Qué es la Derivada?

- La derivada de una función representa la tasa de cambio de la función con respecto a una variable.
- Matemáticamente, si y = f(x), la derivada de y con respecto a x se denota como f'(x) o $\frac{dy}{dx}$.

Derivada como Razón de Cambio

- La derivada de una función representa la razón de cambio instantánea de la función con respecto a su variable independiente.
- Matemáticamente, si y = f(x), entonces la derivada f'(x) representa cómo cambia y con respecto a cambios en x.
- La derivada f'(x) mide cómo cambia la salida de una función en respuesta a un pequeño cambio en la entrada. **Ejemplo:** En física, la velocidad es la derivada de la posición con respecto al tiempo.

Ejemplo 1: Derivada de una función lineal

Considere la función f(x) = 3x + 2.

- La derivada es f'(x) = 3.
- \bullet Esto significa que por cada incremento unitario en x, y aumenta en 3 unidades.

$$f'(x) = \frac{d}{dx}(3x+2) = 3$$

Ejemplo 2: Derivada de una función cuadrática

Considere la función $f(x) = x^2$.

- La derivada es f'(x) = 2x.
- Esto significa que la razón de cambio de y con respecto a x varía linealmente con x.

$$f'(x) = \frac{d}{dx}(x^2) = 2x$$

Ejemplo 3: Derivada de una función exponencial

Considere la función $f(x) = e^x$.

- La derivada es $f'(x) = e^x$.
 - Esto indica que la función crece a una tasa proporcional a su valor actual.

$$f'(x) = \frac{d}{dx}(e^x) = e^x$$

Ejemplo 4: Derivada de una función trigonométrica

Considere la función $f(x) = \sin(x)$.

- La derivada es $f'(x) = \cos(x)$.
- Esto representa la razón de cambio de sin(x) con respecto a x.

$$f'(x) = \frac{d}{dx}(\sin(x)) = \cos(x)$$

Ejemplo 5: Velocidad

Problema: Un coche se mueve a lo largo de una recta, y su posición s(t) en metros viene dada por la función $s(t) = 5t^2 + 2t + 1$. Encuentra la velocidad del coche en el tiempo t = 3segundos.

Solución:

Velocidad
$$v(t) = \frac{ds}{dt} = \frac{d}{dt}(5t^2 + 2t + 1)$$

= $10t + 2$.

Para t = 3:

$$v(3) = 10(3) + 2 = 32 \text{ m/s}.$$

Ejemplo 6: Crecimiento Poblacional

Problema: La población de una ciudad después de t años se modela por la función $P(t) = 1000e^{0.03t}$. Encuentra la tasa de crecimiento poblacional cuando t = 5 años. Solución:

Tasa de crecimiento
$$P'(t) = \frac{d}{dt}(1000e^{0.03t})$$

= $1000 \cdot 0.03e^{0.03t}$
= $30e^{0.03t}$.

Para t = 5:

$$P'(5) = 30e^{0.15} \approx 34.77.$$

• La tasa de crecimiento poblacional es aproximadamente 34.77 personas por año.

Ejemplo 7: Enfriamiento de un Objeto

Problema: La temperatura T(t) de un objeto en un ambiente se modela por la función $T(t) = 100e^{-0.1t} + 20$. Encuentra la tasa de cambio de la temperatura en t = 10 minutos. Solución:

Tasa de cambio de la temperatura
$$T'(t) = \frac{d}{dt}(100e^{-0.1t} + 20)$$

= $100(-0.1)e^{-0.1t}$
= $-10e^{-0.1t}$.

• Para t = 10:

$$T'(10) = -10e^{-1} \approx -3.68.$$

• La tasa de cambio de la temperatura es aproximadamente -3.68 grados por minuto.

Conclusión

O Derivación Exponenciales y Logarítmicas

- Las funciones exponenciales y logarítmicas tienen reglas de derivación específicas.
- Con práctica, estas reglas se vuelven intuitivas y fáciles de aplicar.

② Derivación Implícita

- La derivación implícita es útil para funciones definidas de manera implícita.
- La clave es derivar ambos lados de la ecuación con respecto a x y resolver para $\frac{dy}{dx}$.
- La práctica y la atención a los detalles, especialmente al aplicar la regla de la cadena, son cruciales para evitar errores.

Orden Superior Orden Superior

- Las derivadas de orden superior son herramientas poderosas para analizar el comportamiento de funciones.
- Proveen información detallada sobre la curvatura, concavidad, y otros aspectos de la función.

Derivada como Razón de Cambio

- La derivada proporciona una medida precisa de cómo cambia una función en respuesta a cambios en su variable independiente.
- Los ejemplos muestran cómo se aplica este concepto a diferentes tipos de funciones.