Кластеризация изображений по визуальному подобию с помощью вариационных автоэнкодеров

А.С. Коваленко

ЮФУ

19 апреля 2018 г.

Содержание

- Введение
 - Постановка задачи
 - Обзор подходящих алгоритмов
- 2 Автоэнкодеры
 - Принцип работы
 - Разряженные автоэнкодеры
 - Вариационные автоэнкодеры
- 3 Применение вариационных автоэнкодеров к задаче
 - Пример работы
 - Кластеризация
 - Поиск похожих по визуальному подобию
- 4 Список литературы

Введение

Постановка задачи

Разметка данных всегда трудоемкий процесс. Поэтому алгоритмы машинного обучения не требующие данного этапа актуальны. Класс вариационных автоэнкодеров позволяет решить данную проблему.

Поставим задачу:

Пусть имеется набор изображений:

$$X = \{I_m\}_{m=1}^{N} \tag{1}$$

Требуется разбить данный набор на K классов и ввести операцию сравнения.

Для произвольного изображения найдем M схожих объектов из множества X, отсортированных по убыванию визуального подобия:

$$I_{input} \notin X, S = \{I_{m_k}\}_{k=1}^M$$

Введение

Обзор подходящих алгоритмов

Для решения поставленной задачи могут подойти следующие подходы неконтролируемого обучения и обучения с подкреплением:

- Сиамские нейронные сети
- Ключевые точки (не является алгоритмом машинного обучения)
- Автоэнкодеры

Введение

Обзор подходящих алгоритмов

Для решения поставленной задачи могут подойти следующие подходы неконтролируемого обучения и обучения с подкреплением:

- Сиамские нейронные сети
- Ключевые точки (не является алгоритмом машинного обучения)

Автоэнкодеры

Принцип работы

Определение:

Автоэнкодеры — это нейронные сети прямого распространения, которые восстанавливают входной сигнал на выходе.

Принцип работы

$$g$$
 — энкордер, f — декодер, x — сигнал, h — код сигнала $h = g(x), \; x = f(h)$ $x = f(g(x))$ (2)

Разряженные автоэнкодеры

Автоэнкодер при обучении стремится аппроксимировать функцию (2):

$$x = f(g(x)),$$

минимизируя заданный функционал ошибки:

$$\min_{\omega} L(x, f(g(x))), \tag{3}$$

где ω - параметры автоэнкодера

Определение:

Разряженным называется автоэнкодер, для которого критерий обучения включает также минимизацию разреженности $\Omega(h)$ на кодовом слове h:

$$\min_{\omega} L(x, f(g(x))) + \Omega(h),$$

где $\Omega(h)$ - обычный регуляризатор (пусть L_1), $\Omega(h) = \lambda * ||h||$

Вариационные автоэнкодеры

Рассмотрим работу декодера как некоторый процесс генерации данных X, зависящий от скрытых переменных Z - случайных величин.

Пусть:

- ullet P(X) вероятностное распределение изображений
- ullet P(Z) вероятностное распределение скрытых переменных
- P(Z|X) вероятностное распределение скрытых параметров при заданном изображении X, рассматривается как энкодер
- P(X|Z) вероятностное распределение изображений при заданных скрытых переменных Z, рассматривается как декодер

Вариационные автоэнкодеры

Справедливо:

$$P(X) = \int_{Z} P(X|Z)P(Z)dZ \tag{4}$$

Пространство может быть высокоразмерным, поэтому напрямую хорошо приблизить интеграл не получится. Воспользуемся тем, что для заданного X соответствует небольшое подмножество Z, а для остальных вероятность $P(X|Z) \to 0$. Также при приближении будем семплировать из "оптимальных" Z.

Чтобы понимать какие Z "оптимальные" вводится распределение Q(Z|X), которое будет показывать для X распределение $Z \sim Q$, которое приводит к этому X.

Вариационные автоэнкодеры

Пусть Q(Z|X) будет нормальным распределением:

$$Q(Z|X) = N(\mu(X), \Sigma(X)), \tag{5}$$

где μ и Σ - среднее и матрица ковариации для нормального распределения.

Таким образом семплирование скрытых параметров идет из нормального распределения с параметрами μ , Σ . P(Z|X) также является нормальным распределением.

Связь между (4) и (5) выводится из рассмотрения расстояния Кульбака-Лейблера между Q(Z|X) и P(Z|X).

Вариационные автоэнкодеры

Применение вариационных автоэнкодеров к задаче

Пример работы вариационного автоэнкодера

Применение вариационных автоэнкодеров к задаче

Пример работы вариационного автоэнкодера

Применение вариационных автоэнкодеров к задаче Кластеризация

Построим множество H следующим образом:

$$H = \{g(x)|x \in X\},\tag{6}$$

где X - множество (1), g - вариационный автоэнкодер.

Теперь понизим размерность множества H с помощью метода главных компонент (PCA) или алгоритма распределенного стохастического выделения соседей (t-SNE):

$$\hat{H} = PCA(H), \ \forall h \in \hat{H} \Rightarrow dim(h) = 2$$
 (7)

К множеству \hat{H} можно применять классические алгоритмы кластеризации данных, к примеру k-средних, предварительно выбрав количество классов.

Приведенные выше алгоритмы понижения размерности пространства оптимальны для H, в силу того, что все элементы данного пространства получены семплированием из нормального распределения.

Применение вариационных автоэнкодеров к задаче Кластеризация

Применение вариационных автоэнкодеров к задаче Поиск похожих по визуальному подобию

Пусть H, как и в (6):

$$H = \{g(x) | x \in X\}$$

Подействуем энкодером на входное изображение:

$$h_{input} = g(I_{input})$$

Теперь найдем элементы множества S, это будут M-ближайших элемента из множества H по евклидовой метрике.

Список литературы

P. Flash.

Machine learning: The art and science of algorithms that make sense of data.

2018.

I. Goodfellow.

Deep learning.

2018.

S. Haykin.

Neural networks. a comprehensive foundation.

2016.