AD-771 067

DETONATION TUBE CONDITIONS FOR SIMU-LATING: RP-1/LOX AND VARIOUS AMINE/ N₂O₄ ROCKET ENGINE PLUMES

J. Leng, et al

Grumman Aerospace Corporation

Prepared for:

Defense Advanced Research Projects Agency

November 1973

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

Security Classification			111001
DOCUMENT	CONTROL DATA - R &	D	
(Security classification of title, body of abstract and in	dexing annotation must be en	tered when the	overall report is classified)
I ORIGINATING ACTIVITY (Corporate author)			ECURITY CLASSIFICATION
		Uncle	assified
Grumman Aerospace Corporation		26. GROUP	
		N/	/A
S REPCTY TITLE			,
Detonation tube	conditions for Si	imulating	RP-1/LOX and
Various Amine/N	Oh Rocket Engine	Plumes	
2	2 4		
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)			10.0
Research Memorandum			
5. AUTHOR(5) (First name, middle initial, last name)			
J. Leng and M. W. Slack			
of Tour and and and			
& PEPORT DATE	78. TOTAL NO. OF	PAGES	7b. NO. OF REFS
Name 1072	20		7
November 1973	Se. ORIGINATOR'S		
TO CONTRACT ON GRANT NO.	M. ORIGINA ION -	REPURI NOM	BER(S)
14	TOV.	-03	
6. PROJECT NO.	RM	20T	
N/A			
¢.	Sb. OTHER REPOR	T NO(S) (Any o	ther numbers that may be assigned
	2000000	one	
d.	241	one	
10 DISTRIBUTION STATEMENT			
Approved for Public release; distir	bution unlimited.		
Approved for rubite fereage, arburi	UUULUII WAARAAAA TUUL		
11. SUPPLEMENTARY NOTES	12. SPONSORING MI	LITARY ACTI	VITY
Warra	None		
None			
13 ABSTRACT			
S ABSTRACT			

This memorandum documents the running conditions necessary to simulate RP-1/LOX and various Amine/N₂O₁ rocket engine plumes using the Grumman Detonation Tube Facility to reproduce the chemical and thermodynamic state properties of the rocket engine combustion chamber. Absolute measurements of shortwave infrared (SWIR) radiation from a variety of plumes are being obtained under contract to the Defense Advanced Research Projects Agency (DARPA). The propellant combinations being investigated are UDMH/N₂O₁, A-50/N₂O₁, RP-1/LOX, and H₂/O₂

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U 5 Department of Commerce
Springfield VA 22151

DD . 104.1473

Vnclassified
Security Classification

DETONATION TUBE CONDITIONS FOR SIMULATING RP-1/LOX AND VARIOUS AMINE/N2O4 ROCKET ENGINE PLUMES[†]

by

J. Leng

Fluid Dynamics

and

M. W. Slack

Aerophysics

November 1973

This investigation was partially supported by the Defense Advanced Research Project Agency under Contract No. DAAHO 72-C-0728, "Measurement of IR and VUV Radiation Emitted by Simulated Rocket Exhaust Plumes"

Approved by: Charle &

Charles E. Mack, Jr. Director of Research

ABSTRACT

This memorandum documents the running conditions necessary to simulate RP-1/LOX and various Amine/N $_2$ O $_4$ rocket engine plumes using the Grumman Detonation Tube Facility to reproduce the chemical and thermodynamic state properties of the rocket engine combustion chamber. Absolute measurements of shortwave infrared (SWIR) radiation from a variety of plumes are being obtained under contract to the Defense Advanced Research Projects Agency (DARPA). The propellant combinations being investigated are UDMH/N $_2$ O $_4$, A-50/N $_2$ O $_4$, RP-1/LOX, and H $_2$ /O $_2$.

TABLE OF CONTENTS

Item	Page
Introduction	1
Detonation Tube Test Conditions	2
Discussion	3
References	5

LIST OF TABLES

Table		Page
1	Theoretical Equilibrium Chemical and State Combustion Chamber Properties for Several Propellant Combinations	6
2	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an RP-1/LOX Rocket Engine Plume at 0/F = 2.70	7
3	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating a UDMH/ N_2O_4 Rocket Engine Plume at $O/F = 2.70 \dots$	8
4	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating a UDMH/ N_2O_4 Rocket Engine Plume at $O/F = 2.35 \dots$	10
5	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating a UDMH/ N_2O_4 Rocket Engine Plume at $O/F = 2.00 \dots$	12
6	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an $A-50/N_2O_4$ Rocket Engine Plume at $O/F = 2.30$	14
7	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an A-50/N ₂ O ₄ Rocket Engine Plume at O/F = 2.00	15
8	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an A-50/N ₂ O ₄ Rocket Engine Plume at O/F = 2.00 and Chamber Pressure = 1000. psia	16
9	Chemical and State Properties in the Reflected Detonation Shock Tube for Simulating an A-50/N ₂ O ₄ Rocket Engine Plume at O/F = 1.70	17
10	Comparison of Equilibrium Exit Plane Properties $(A_e/A_* = 40.)$ between Ideal Engine and Ideal Detonation Tube for Slightly Imperfect Simulation of A-50/N ₂ O ₄ Mixtures	19

LIST OF SYMBOLS

speed of sound a A area H enthalpy LM NASA/Grumman Lunar Module molecular weight MIII Mach number M O/F oxidizer to fuel weight ratio psia pounds per square inch absolute P pressure T temperature U velocity ratio of specific heats γ density 0 Subscripts 1 undetonated gas in driven tube 2 driven tube gas behind incident detonation wave after reaction is completed 5 stagnation conditions behind reflected detonation wave rocket engine simulated chamber condition C (usually = shock tube region 5) refers to detonation wave D nozzle exit plane е refers to reflected shock wave R

sonic condition

*

Propellant Terminology

A-50 50% blend by weight of hydrazine and UDMH

LOX liquid oxygen

RP-1 kerosene-type rocket fuel

UDMH unsymmetrical dimethyl hydrazine

INTRODUCTION

The Rocket Plume Simulation Facility of the Grumman Research Department employs a detonation tube to reproduce the chemical and state properties of a rocket combustion chamber (Ref. 1). High temperature, high pressure species generated in this manner expand through contoured nozzles into a large chamber, evacuated to simulate a specific altitude. The facility was originally used to simulate the Grumman Lunar Module ascent, descent, and RCS engine plumes (Refs. 1-3), and then for a NASA Space Shuttle proposal investigation (Ref. 4) and a NASA-funded simulation of high pressure hydrogen/oxygen rocket engine plumes (Ref. 5).

Absolute measurements of SWIR radiation (2 to 5 microns) from a variety of plumes are currently being conducted in the Rocket Plume Simulation Facility, under contract to the Defense Advanced Research Projects Agency (Ref. 6). The propellant combinations under investigation include UDMH/N₂O₄, A-50/N₂O₄, RP-1/LOX, and $\rm H_2/O_2$. Only A-50/N₂O₄ (0/F = 2.0) and $\rm H_2/O_2$ plumes had previously been simulated, and therefore computations of the detonation tube conditions for the other propellant combinations were required.

This memorandum documents the detonation tube running conditions necessary to simulate an RP-1/LOX plume and various $\frac{\text{Amine/N}_2\text{O}_4}{\text{Of plumes.}}$ Note that the detonation tube technique simulates a somewhat ideal combustion chamber since it is devoid of O/F gradients resulting from imperfect mixing or film cooling.

DETONATION TUBE TEST CONDITIONS

Actual rocket engine combustion chamber properties for the RP-1/LOX and Amine/ N_2O_4 propellant combinations that we simulated are listed in Table 1. The corresponding detonation tube test conditions were computed, following the procedure given in Ref. 1, and are presented in Tables 2 through 9. The computer program of Ref. 7 was used for all these calculations. For several of the propellant combinations, two different initial gas mixtures were determined, both of which would produce the same required combustion chamber properties (compare Tables 3a and 3b, 4a and 4b, 5a and 5b, and 9a and 9b). In all cases except one (Table 8) the chamber pressures to be simulated were chosen to be 200. psia.

DISCUSSION

The theoretical accuracy of the simulated combustion chamber properties can be assessed by comparing Table 1 with Tables 2 through 9. Exact simulation was achieved for the RP-1/LOX and UDMH/N $_2$ O $_4$ propellant combinations and also for A-50/N $_2$ O $_4$ at an O/F ratio of 1.7.

For 0/F ratios of 2.0 and 2.3, however, the $A-50/N_2O_4$ simulation (Tables 6 through 8) was imperfect because of thermodynamic constraints (Ref. 1). This resulted in theoretical temperatures between 2 and 5 percent higher than the actual engine theoretical combustion chamber temperatures and also in minor perturbation in the gaseous species concentrations. The nonidealities will be transmitted to the exit plane of a test nozzle, and we therefore compared the equilibrium exit plane properties produced by an engine with those produced by the detonation tube. The results of this comparison are presented in Table 10 and show that the differences in the mole fractions of the major chemical species (H_2O, CO_2, N_2) are negligible and the equilibrium exit plane static temperatures agree to within 5 percent or better. The close agreement between equilibrium static temperature for an ideal engine and the detonation tube simulation is shown in Fig. 1 where both temperatures are displayed against nozzle area ratio for the case of $A-50/N_2O_4$ at an O/F = 2.0. For the three cases where simulation was imperfect, the difference from the ideal rocket combustion chamber can either be neglected or corrected for in the reduction of experimental data. Alternatively, these three cases may be treated as unique, independent combustion chamber conditions in an investigation to determine the dependence of plume observables upon temperature, species concentration, etc.

In summary, the combustion chamber conditions for RP-1/LOX and a variety of $Amine/N_2O_4$ propellant combinations may be simulated with the detonation tube. The simulation is either precise or sufficiently close to the actual rocket combustion chamber conditions for the differences to be negligible or easily corrected for.

REFERENCES

- 1. Leng, J., Oman, R., and Hopkins, H., "A Detonation Tube Technique for Simulating Rocket Plumes in a Space Environment," Grumman Research Department Report RE-286J, May 1967; also published in Journal of Spacecraft and Rockets, Vol. 5, No. 10, pp. 1148-1154, October 1968.
- Leng, J., "Detonation Tube Conditions for Simulating the LM Ascent Engine Plume and the N.A.A. Service Module RCS Engine Plumes," Grumman Research Department Note RN-234, July 1967.
- 3. Leng, J., "Detonation Tube Conditions for Simulating a 1/20 Scale LM Descent Engine Plume at Full, 1/2, 1/4, and 1/10 Throttle," Grumman Research Department Note RN-243, March 1968.
- 4. Leng, J., Osonitsch, C., and Konopka, W., "Experimental Study of Plume Impingement Heating from Orbiter Main Engines," Grumman Alternate Space Shuttle Concepts Study Report 552-1200RD-31, May 1971.
- 5. Hopkins, H., Konopka, W., Leng, J., and Oman, R., "Simulation Experiments Using Hydrogen/Oxygen Gas Mixtures in a High-Pressure Detonation Tube," Grumman Research Department Report RE-456, May 1973; also published as NASA-MSC-05836.
- 6. "Measurement of Infrared Radiation Emitted by Simulated Rocket Exhaust Plumes," Defense Advanced Research Project Agency, Contract No. DAAHO-72-C-0728.
- 7. Gordon, S. and McBride, B., "Computer Program for the Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations," NASA SP-273, Lewis Research Center, Cleveland, Ohio, 1971.

TABLE 1 THEORETICAL EQUILIBRIUM CHEMICAL AND STATE COMBUSTION CHAMBER PROPERTIES FOR SEVERAL PROPELLANT COMBINATIONS

Chamber				Propellants	ants			
Properties	RP-1/LOX		UDMH/N204	7		A-50	A-50/N204	
0/F (wt ratio)	2.7	2.7	2.35	2.0	2.3	2.0	2.0	1.7
Press. (psia)	200.	200.	200.	200.	200.	200.	1000.	200.
$ $ Enthalpy $\left(\frac{\text{cal}}{\text{gm}}\right)$	-175.8	+20.2	+27.6	+36.8	+53.7	+64.1	+64.1	476.9
Temp (°R)	6226.	5861.	5819.	5627.	5740.	. 4929	. 4909	5679.
$^{\gamma}$ mole. wt	1.1269	1.1299 23.484	1.1370 22.451	1.1569 21.154	1.1308 23.159	1.1331 22.239	1.1428 22.570	1.1439
		Mole F	Fractions	(all gaseous)	(snc			
93	0.30304	0.12273	0.15181	0.18367	0.05530	0.07194	96890.0	0.09118
c0 ₂	0.14747	0.08848	0.07119	0.05095	0.06146	0.05139	0.05620	0.03877
¥	0.04059	0.02147	0.02496	0.02363	0.01556	0.02012	0.01308	0.02269
ОЭН	0.00005	0.00002	0.00002	0.00003	0.00001	0.00001	0.00002	0.00001
НО ₂	0.00004	0.00003	0.00001	•	0.00003	0.00002	0.00003	0.00001
H ₂	0.07845	0.05956	0.09106	0.14651	0.04475	0.06983	0.06254	0.11451
Н20	0.30276	0.32814	0.32472	0.30193	0.37475	0.37689	0.39789	0.36419
Z	•	0.00001	0.00001	•	0.00001	0.00001	0.00001	0.00001
HN	ı	0.00001	0.00001	1	ı	0.00001	0.00001	0.00001
NO	ł	0.01307	0.00763	0.00280	0.01648	0.01115	0.01122	0.00540
N2	ı	0.28531	0.27885	0.26919	0.33505	0.33288	0.33788	0.32848
0	0.02192	0.01036	0.00584	0.00177	0.01057	0.00736	0.00449	0.00327
НО	0.07201	0.04795	0.03551	0.01804	0.05043	0.04242	0.03623	0.02729
02	0.03365	0.02286	0.00836	0.00147	0.03556	0.01595	0.01140	0.00419

	P ₁ (psia)	T ₁ (°R)	$H_1(\frac{\text{cal}}{\text{gm}})$	$\rho_1(\frac{\text{slugs}}{\text{ft}^3})$)	$^{\gamma}$ 1	^{mw} 1	$v_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$	
	3.57	536.6	-820.6	0.000525		1.3358	27.311	6771.8	1142.0	
Dug			Mole F	ractions ((a1	1 gaseou	s)			
Region (1)	0 ₂ 0.36	635	н ₂ 0.2	4124	c ₂	H ₄ 0.13	597	co ₂ 0.2	5644	
	P ₂ (psia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	$\rho_2(\frac{\text{slugs}}{\text{ft}^3})$		γ ₂	mw ₂	$v_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$	
0	80.8	5753.	- 459.6	0.000973		1.1204	23.984	3117.4	36 54 . 5	
			Mole F	ractions (al	1 gaseous	s)			
Region	HCO 0.000	002	CO 0.2	9069	C	0, 0.173	333	н 0.0	3206	
Re	OH 0.056	514	но ₂ 0.00002			0.073	392	н,0 0.3	3262	
					0		68	0,0	2652	
	P ₅ (psia)	T ₅ (°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	$\rho_5(\frac{\text{slugs}}{\text{ft}^3})$		^γ 5	™5	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$	
	200.	6226.	-175.4	0.002164		1.1269	23.287	2546.8	386 9.4	
ଚ			Mole F	ractions (a 1	l gaseous)			
Region (5)	HCO 0.000	065	CO 0.3	0304	C	0, 0.147	47	н 0.0	4059	
Reg	он 0.072	201	HO ₂ 0.00	0005	H	0.078	45	H ₂ 0 0.3	0276	
			н202 0.00	0001	0	0. 021	92	o ₂ 0.03365		
			H ₂ O ₂ 0.00	001	U	0.021	.92	02 0.0	3	

1

1

TABLE 3a CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A UDMH/ N_2O_4 ROCKET ENGINE PLUME AT O/F = 2.70

	P ₁ (psia	1) T ₁	(°R)	$H_1(\frac{\text{cal}}{\text{gm}})$	P1($\frac{\text{slugs}}{\text{ft}^3}$	γ ₁	mw ₁	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$
n (i)	4.54	53	6.6	-571.2	0.	000574	1.3719	23.435	6500.3	1249.3
Region				Mole	Frac	tions	(all ga	seous)		
2	02	.2454	46	н ₂ 0.25	251	N ₂ 0	.29125	co ₂ 0	.12626	сн ₄ 0.08452
	P ₂ (psia	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	2(s	lugs ft ³)	^γ 2	mw ₂	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$
	81.56	537	8.4	-240.7	0.	001055	1.1261	24.072	2963.9	3535.8
on ②				Mole i	rac	tions	(all ga	seous)		
Region	нсо с	.0000)1		.10	943	co ₂	0.10707	н	0.01448
2	OH C	.0339	91	но ₂ (00.0	001	н ₂	0.05094	н ₂ о	0.35788
	NO 0.00849		9	N ₂ 0.29492		492	0	0.00594	02	0.01691
	P ₅ (psia) T ₅	(°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	ρ ₅ (ft ³	^γ 5	™ ₅	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$
	200.	586	0.8	+20.2	0.0	002314	1.1299	23.484	2484.3	3743.5
0				Mole F	ract	ions	all ga	seous)		
ion	нсо о	.0000	2	CO O	. 122	273	co ₂	0.08848	н	0.02147
Region	он о	.0479	5	но ₂ 0	.000	003	н ₂	0.05956	н ₂ 0	0.32814
	NO 0	.0130	7	N ₂ 0	.28	531	0	0.01036	02	0.02286
	NH 0	.0000	1	N O	.000	001	NO ₂	0.00001		

-										
	P ₁ (p	sia)	T ₁ (°R)	$H_1(\frac{\text{cal}}{\text{gm}})$	$\rho_1 \left(\frac{\text{slug}}{\text{ft}^3} \right)$	<u>s</u>)	γ ₁	mw ₁	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$
G n	4.2	1	536.6	-574.3	0.0005	71	1.3262	25.190	6510.7	1185.0
Region				Mole	Fraction	s	(all ga	seous)		
- X	02	0.	02569	H ₂ 0.43	469 CH ₄	0.	.00922	co ₂ 0	.21734	N ₂ O 0.31306
	P ₂ (p	sia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	$p_2(\frac{\text{slugs}}{\text{ft}^3})$)	^γ 2	mw ₂	$v_2(\frac{ft}{sec})$	a ₂ (ft/sec)
	81.	26	5374.8	-242.2	0.0010	52	1.1261	24.076	2976.2	3534.5
O uc				Mole	Fraction	s ((all ga	seous)		
Region	нсо	0.	00001	co	0.10934		co ₂	0.10720	н	0.01443
R	ОН	0.	03382	но ₂	-			0.05088	н ₂ о	0.35807
	NO			N ₂ 0.29498			0	0.00592	02	0.01687
	P ₅ (p	sia)	T ₅ (°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	$\rho_{5}\left(\frac{\text{slug}}{\text{ft}^{3}}\right)$	<u>s</u>)	^γ 5	шw ₅	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$
	200	.0	5860.8	+20.2	0.0023	12	1.1299	23.484	2484.3	3743.5
ව				Mole I	raction	s (all gas	seous)		
Region	НСО	0.0	00002	co (.12273		co ₂	0.08848	н	0.02147
Reg	ОН	0.0	04795	но ₂ (.00003		н ₂	0.05956	н ₂ о	0.32814
	NO	0.0	01307	N ₂	.28531	1	0 (0.01036	02	0.02286
	NH	0.0	00001	N C	.00001		NO ₂	0.00001		

TABLE 4a CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A UDMH/ N_2O_4 ROCKET ENGINE PLUME AT O/F = 2.35

	P ₁ (psia) T ₁ (°R)	$H_1\left(\frac{\operatorname{cal}}{\operatorname{gm}}\right)$	$\rho_1(\frac{\text{slugs}}{\text{ft}^3})$	γ ₁	mw ₁	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$
- u	4.48	536.6	-581.5	0.000560	1.3699	23.215	6604.2	1254.6
Region			Mole	Fractions	(all ga	seous)		
	02 0	.23090	н ₂ 0.246	518 N ₂ 0	.29230	co ₂ o	. 12309	сн ₄ 0.10753
	P ₂ (psia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	$2\left(\frac{\text{slugs}}{\text{ft}^3}\right)$	^γ 2	10W ₂	$U_2(\frac{ft}{sec})$	a ₂ (ft/sec)
	81.64	5283.	-241.0	0.001025	1.1406	22.956	2992.6	3611.6
on (2)			Mole F	ractions	(all ga	seous)		
Region	HCO 0	.00001		. 14390	2	0.08413	н	0.01586
2	On O	.02097	но ₂	-	2	0.08517	н ₂ о	0.35249
	NO 0	.00385	N ₂	28711	0 (0.00242	02	0.00407
	P ₅ (psia)	T ₅ (°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	$ \rho_{5}\left(\frac{\text{slugs}}{\text{ft}^{3}}\right) $	^γ 5	mw ₅	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$
	200.0	5819.	+27.6	0.002223	1.1370	22.451	2562.5	3826.8
9			Mole F	ractions	(all gas	seous)		
ion	нсо О.	00002	CO 0	.15181	co ₂	0.07119	н	0.02496
Region	он 0.	.03551	но ₂ 0	.00001	4	0.09106	н ₂ о	0.32472
	NO 0.	00763	4	.27885	0 (0.00584	02	0.00836
	NH 0.	00001	N 0	.00001				

	P ₁ (p	sia)	T ₁ (°R)	$H_1\left(\frac{\operatorname{cal}}{\operatorname{gm}}\right)$	$\rho_1(\frac{s1}{f}$	$\left(\frac{\text{ugs}}{t^3}\right)$	γ ₁	nw 1	UD(ft sec)	$a_1(\frac{ft}{sec})$
e e	j 4.1	5	536.6	-584.6	0.00	0558	1.3243	24.961	6614.	1189.6
Region				Mole	Fracti	ons	(all ga	seous)		
2	02	0.	00918	н ₂ 0.42	858 C	т ₄ 0	.03367	co ₂ o	.21429	N ₂ O 0.31428
	P ₂ (p	s ia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	$\frac{1}{2} \left(\frac{\text{slu}}{\text{ft}} \right)$	$\frac{gs}{3}$)	^γ 2	mw ₂	$u_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$
	81.	34	5279.4	-243.5	0.00	1022	1.1407	22.959	3004.3	3610.6
on (2)				Mole	Fracti	ons	(all ga	seous)		
Region	нсо	0.	00001	CO	0.1438	6	co ₂	0.08421	H	0.01580
2	он 0.02088		но,	-		н ₂	0.08514	н ₂ 0	0.35265	
	NO 0.00383		N ₂				0.00240	02	0.00405	
	P ₅ (p	sia)	T ₅ (°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	$\rho_{5}(\frac{s1}{f})$	ugs t	^γ 5	mw ₅	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$
	200.	0	5819.	+27.6	0.00	2223	1.1370	22.451	2562.5	3826.8
ල				Mole 1	Fracti	ons ((all ga	seous)		
ion	НСО	0.0	00002	CO (0.1518	1	co ₂	0.07119	Н	0.02496
Region	ОН	0.0	03551	но ₂ (0.0000	1	н ₂	0.09106	н ₂ 0	0.32472
	NO	0.0	00763	N ₂	2788	5	0	0.00584	02	0.00836
	NH	0.0	00001	N (0.0000	1				

TABLE 5a CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A UDMH/ N_2O_4 ROCKET ENGINE PLUME AT O/F = 2.00

	P ₁ (psia)	T ₁ (°R)	$H_1(\frac{cal}{gm})$	$\rho_1(\frac{\text{slugs}}{\text{ft}^3})$	γ ₁	mw ₁	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$
n (C)	4.572	536.6	- 572.7	0.000568	1.3674	23.100	6631.1	1256.5
Region			Mole I	Fractions	(all ga	seous)		
8	0,	22122	н ₂ 0.22	703 N ₂ 0	.29550	co ₂ 0	.11352	СН ₄ 0.14273
	P ₂ (psia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	$\frac{1}{2}\left(\frac{\text{slugs}}{\text{ft}^3}\right)$	^γ 2	mw ₂	$U_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$
	82.02	4971.6	-234.8	0.001024	1.1778	21.484	2951.2	3680.4
on (2)			Mole F	ractions	(all ga	seous)		
Region		00001	co c	0.18083	2	0.05747	н	0.01163
2		00681	но ₂	-	2	0.14909	н ₂ о	0.31831
	NO 0.	00080	N ₂	.27441	0	0.00034	02	0.00029
	P ₅ (psia)	T ₅ (°R)	$H_5(\frac{cal}{gm})$	$\rho_{5}(\frac{\text{slugs}}{\text{ft}^{3}})$	^γ 5	шw ₅	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$
	200.0	5626.8	+36.9	0.002156	1.1569	21.154	2671.8	3910.4
9			Mole F	ractions	(all gas	seous)		
Region	нсо 0.0	00003	CO 0	.18367	co ₂	0.05095	н	0.02363
Reg	он о.	01804	но ₂	-	н ₂	0.14651	н ₂ 0	0.30193
	NO 0.0	00280	N ₂ 0	.26919	0 (0.00177	02	0.00147

TABLE 5b CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING A UDMH/ N_2O_4 ROCKET ENGINE PLUYE AT O/F = 2.00

	P ₁ (psi	a) 1	r ₁ (°R)	$H_1(\frac{\operatorname{cal}}{\operatorname{gm}})$	ρ1($\frac{\text{slugs}}{\text{ft}^3}$	γ ₁	nw 1	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$
n O	4.23		536.6	- 575.7	0.	000565	1.3225	24.829	6640.6	1191.9
Region	•			Mole	Frac	tions	(all ga	seous)		
8	СН ₄	0.07	7193	н ₂ 0.40	698	N ₂ 0	.00500	co ₂ 0	20349	N ₂ 0 0.31260
	P ₂ (psi	a) T ₂	2 (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$) ₂ (=	lugs ft ³	^γ 2	mw ₂	$u_2(\frac{ft}{sec})$	a ₂ (ft/sec)
	81.68	4	968.	-236.3	0.	001021	1.1779	21.485	2961.5	3679.1
on (2)				Mole	Frac	tions	(all ga	seous)		
Region		0.00			0.18	081	2	0.05751	Н	0.01156
	OH 0.00676 NO 0.00080		но ₂ N ₂ (N ₂ 0.27444		4	0.149120.00033	H ₂ O	0.31838 0.00029	
	P ₅ (psi	a) T	(°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	ρ ₅ ($\frac{\text{slugs}}{\text{ft}^3}$	^γ 5	™ ₅	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$
	200.0	5	626.8	+36.7	0.0	002153	1.1569	21.154	2671.8	3910.4
O				Mole E	ract	tions ((all ga	seous)	A	
Region	нсо	0.00	003	co (18:	367	co ₂	0.05095	н	0.02363
Reg		0.01		но ₂	•		2	0.14651	н ₂ 0	0.30193
	NO (0.00	280	N ₂ (269	919	0 (0.00177	02	0.00147

TABLE 6 CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN A-50/N₂O₄ ROCKET ENGINE PLUME AT O/F = 2.30

	P ₁ (psia)	T ₁ (°R)	$H_1(\frac{\text{cal}}{\text{gm}})$	$\rho_1(\frac{\text{slugs}}{\text{ft}^3})$	γ ₁	^{mw} 1	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$	
	5.25	536.6	-474.2	0.000571	1.3854	20.196	6523.9	1352.6	
D a			Mole F	ractions (a	11 gaseou	s)			
Region (T	o ₂ 0.2	0413	н ₂ 0.3	9465	N ₂ 0.29	939	co ₂ 0.1	.0183	
	P ₂ (psia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	$\rho_2(\frac{\text{slugs}}{\text{ft}^3})$	γ ₂	mw ₂	$u_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$	
6	82.14	5337.0	-142.5	0.001046	1.1271	23.529	2959.5	3564.3	
a			Mole F	ractions (a	11 gaseous	s)			
Region	нсо -		co 0.0	4757	co, 0.07	106	н 0.0	1149	
2	OH 0.04	010	но ₂ 0.0		H ₂ 0.03	721	H ₂ O 0.39675		
	NO 0.0	245	N ₂ 0.3		0.007	765	0,0	3311	
	P ₅ (psia)	T ₅ (°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	$\rho_5(\frac{\text{slugs}}{\text{ft}^3})$	γ ₅	mw ₅	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$	
	200.0	5821.	+120.0	0.002278	1.1308	22.973	2515.6	3773.3	
9			Mole F	ractions (a	ll gaseous	3)			
Region	HCO 0.00	0001	co 0.0	5834	co, 0.057	48	н 0.0	1827	
Reg	он 0.05	466	но ₂ 0.00	0004	H ₂ 0.048	355	H ₂ O 0.3	6385	
	NO 0.01	755	N ₂ 0.33	3175	0.012	235	0, 0.0	3711	
			N 0.00	0001	NO ₂ 0.000	001			

_							_					
	P ₁ (ps	sia)	T ₁ (°R)	$H_1(\frac{ca}{gm})$	<u>1</u>)	$\rho_1(\frac{\text{slugs}}{\text{ft}^3})$		$^{\gamma}$ 1	mw ₁	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$	
	5.:	30	536.6	-521.6	3	0.000557		1.3847	19.529	6617.0	1374.9	
Region (Mole	e F	ractions (a1:	l gaseou:	s)			
Regi	o ₂	0.17	468	н ₂	0.4	1977	N,	0.29	723	co ₂ 0	.10832	
	P ₂ (ps	ia)	T ₂ (°R)	$H_2(\frac{\text{ca}}{\text{gm}})$	<u>l</u>)	$\rho_2(\frac{\text{slugs}}{\text{ft}^3})$		^γ 2	mw ₂	$u_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$	
0	82.	23	5297.4	-180.	9	0.001018		1.1312	22.697	2994.6	3622.1	
	Mole Fractions (all gaseous)											
Region	HCO -			co c	0.06	5431	CC	0.06	158	н 0.01357		
Re	ОН	0.029	963	но ₂ с	0.00	0001	H ₂	0.059	83	H ₂ O 0	40642	
	NO	0.00	713		34	4187	0	0.004	16	4	.01149	
	P ₅ (ps	ia)	T ₅ (°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	<u>-</u>)	$\rho_{5}(\frac{\text{slugs}}{\text{ft}^{3}})$		^γ 5	mw ₅	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$	
	200	.0	5794.	+89.0	0	0.002208		1.1330	22.175	2562.5	3835.3	
9	Mole Fractions (all gaseous)											
Region (HCO 0.00001			co o	.07	7275	co ₂ 0.05024			н 0.02125		
Reg	ОН	0.043	397	HO ₂ 0	.00	0002	H ₂	0.071	20	н ₂ 0 0.	37280	
	NO	0.011	.55	N ₂ 0	.33		0		89	0, 0,	01658	
	NH	0.000	01	_	.00	0001	NO	2 0.000	01	_		

TABLE 8 CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN A-50/N₂O₄ ROCKET ENGINE PLUME AT O/F = 2.00 AND CHAMBER PRESSURE = 1000. PSIA

	P ₁ (p	sia)	T ₁ (°R)	$H_1(\frac{\text{cal}}{\text{gm}})$	$\rho_1(\frac{\text{slugs}}{\text{ft}^3})$		γ ₁	mw ₁	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$		
	25	.60	536.6	-521.63	0.002693		1.3847	19.529	6751.5	1374.9		
Region (Mole F	ractions (al:	l gaseous)				
Regi	02	0.17	468	н ₂ 0.4	1977	N,	0.29	723	co ₂ 0.1	L0832		
	P ₂ (p	sia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	$\rho_2(\frac{\text{slugs}}{\text{ft}^3})$		γ ₂	mw ₂	$u_2(\frac{ft}{sec})$	$a_2(\frac{ft}{sec})$		
8	411	.01	5554.8	-168.0	0.004905		1.1418	22.932	3043.9	3707.0		
S	Mole Fractions (all gaseous)											
Region	HCO 0.00001			co 0.0	6182	co ₂ 0.06537			н 0.00893			
Re	OH	0.024		но ₂ 0.0	0001	H	0.054	20	H ₂ O 0.4	2175		
	NO	0.00	703	N ₂ 0.3	4550	0	0.002	251	0,0	0788		
	P ₅ (p	sia)	T ₅ (°R)	$H_5(\frac{cal}{gm})$	$\rho_{5}(\frac{\text{slugs}}{\text{ft}^{3}})$		⁷ 5	^{mw} 5	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$		
	100	00.	6136.	+113.0	0.010568		1.1424	22.458	2636.7	3938.6		
9		Mole Fractions (all gaseous)										
Region (HCO 0.00002			co 0.0	7067	co, 0.05386			н 0.01471			
Reg	ОН	0.039	935	но ₂ 0.0	0003	H ₂	0.065	15	H ₂ O 0.3	9048		
	NO	0.012	218	N ₂ 0.3	3568	0		25	0,0	1254		
	NH	0.000	001	N 0.0	0001	NC	0.000	01				

TABLE 9a CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN A-50/N₂O₄ ROCKET ENGINE PLUME AT O/F = 1.70

	P ₁ (ps	sia)	T ₁ (°R)	$H_1(\frac{\operatorname{cal}}{\operatorname{gm}})$	ρ1(slugs ft 3	γ ₁	mw ₁	$v_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$		
<u>e</u>	5.4	4	536.6	-542.2	0.	000555	1.3840	18.947	6679.7	1395.6		
Region		Mole Fractions (all gaseous)										
~	02					_	.29752	co ₂ o	.10745	сн ₄ 0.00932		
	P ₂ (ps	ia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$) ₂ (=	$\frac{lugs}{ft^3}$	γ ₂	™ ₂	$U_2(\frac{ft}{sec})$	a ₂ (ft sec)		
	82.6		5106.6	-198.1	0.	001004	1.1554	21.491	2986.1	3693.6		
on (2)		Mole Fractions (all gaseous)										
Region	HCO	0.0	00001	co (0.08			0.04530	н	0.01291		
8	ОН		01357	но ₂			2	0.10924	н ₂ о	0.39078		
	NO	0.0	00221	N ₂	0.33	637	0	0.00101	02	0.00147		
	P ₅ (ps	ia)	T ₅ (°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	ρ ₅ (ft ³	^γ 5	™ ₅	$U_{R}(\frac{ft}{sec})$	$a_{5}(\frac{ft}{sec})$		
	200.	0	5679.	+76.9	0.0	002132	1.1439	21.090	26 56 . 2	3912.7		
O		Mole Fractions (all gaseous)										
ion	НСО	HCO 0.00001		co c	0.09	118	co ₂	0.03877	н	0.02269		
Region	OH	0.0	02729	но ₂ с	0.00	001	н ₂	0.11451	н ₂ 0	0.36419		
	NO	0.0	00540	N ₂	. 32	848	0 (0.00327	02	0.00419		
	NH	0.0	00001	N C	000	001						

TABLE 9b CHEMICAL AND STATE PROPERTIES IN THE REFLECTED DETONATION SHOCK TUBE FOR SIMULATING AN A-50/N₂O₄ ROCKET ENGINE PLUME AT O/F = 1.70

	P ₁ (psia)		T ₁ (°R)	$T_1(^{\circ}R) \left[H_1\left(\frac{cal}{gm}\right) \right] \rho_1\left(\frac{slugs}{ft^3}\right) \qquad \gamma_1$		γ ₁	mw ₁	$U_{D}(\frac{ft}{sec})$	$a_1(\frac{ft}{sec})$				
ات ص	3.39		536.6	-542.6	0.0005	54	1.3778	19.110	6681.3	1386.7			
Regior		Mole Fractions (all gaseous)											
~	02			H ₂ 0.45	_		26407	co ₂ o	.11777	N ₂ O 0.03601			
	P ₂ (ps	sia)	T ₂ (°R)	$H_2(\frac{\text{cal}}{\text{gm}})$	$\rho_2 \left(\frac{\text{slugs}}{\text{ft}^3}\right)$		^γ 2	mw ₂	$v_2(\frac{ft}{sec})$	a ₂ (ft sec)			
	82.4	8	5106.6	-198.3	0.00100	03	1.1554	21.491	2987.4	3693.6			
On (2)		Mole Fractions (all gaseous)											
Region	нсо 0.		00001	co	0.08713			0.04531	н	0.01290			
2			01355	но ₂	•			0.10924	н ₂ 0				
	NO	0.	00220	N ₂	0.33638	_ () (0.00101	02	0.00147			
	P ₅ (ps	ia)	T ₅ (°R)	$H_5(\frac{\text{cal}}{\text{gm}})$	$\rho_5 \left(\frac{\text{slugs}}{\text{ft}^3}\right)$	-)	γ ₅	™ ₅	$U_{R}(\frac{ft}{sec})$	$a_5(\frac{ft}{sec})$			
	200.0		5679.	+76.9	0.00213	32 1	. 1439	21.090	2656.2	3912.7			
ව		Mole Fractions (all gaseous)											
Region	нсо	0.0	00001	co (0.09118	C	02	.03877	н	0.02269			
Reg	ОН	0.0	12729 HO ₂		0.00001		ı ₂ (11451	н ₂ о	0.36419			
	NO	NO 0.0		N ₂	32848	C) (.00327	02	0.00419			
	NH	0.0	00001	N (.00001								

TABLE 10 COMPARISON OF EQUILIBRIUM EXIT PLANE PROPERTIES $(A_e/A_* = 40.)$ BETWEEN IDEAL ENGINE AND IDEAL DETONATION TUBE FOR SLIGHTLY IMPERFECT SIMULATION OF A-50/N₂O₄ MIXTURES[†]

O/F	2	.0	2	2.0	2	2.3
P _c (psia)	2	00.	10	000.	200.	
	Engine	Det Tube	Engine	Det Tube	Engine	Det Tube
T _e (°K)	1369.	1397.	1333.	1383.	1597.	1681.
P _e (psia)	0.4395	0.4439	2.0918	2.1286	0.4998	0.5130
a _e (ft/sec)	2535.4	2559.7	2503.0	2547.6	2634.8	2691.9
mole. wt	23.663	23.663	23.663	23.663	25.154	25.145
γ _e	1.2420	1.2409	1.2435	1.2415	1.2222	1.2118
M _e	4.114	4.097	4.195	4.167	3.906	3.870
	М	ole. Fract	ions (all	gaseous)		
СО	0.02720	0.02303	0.02606	0.02761	0.00014	0.00040
co ₂	0.10404	0.10321	0.10518	0.10363	0.12669	0.12639
н ₂	0.05811	0.05728	0.05925	0.05770	0.00019	0.00047
н ₂ 0	0.45051	0.45134	0.44937	0.45092	0.49114	0.49051
NO	-	-	-	-	0.00028	0.00040
N ₂	0.36014	0.36014	0.36014	0.36014	0.37275	0.37255
0	-	-	-	-	0.00001	0.00002
ОН	-	-	-	-	0.00040	0.00073
02			•	-	0.00840	0.00853

See Tables 6 through 8.

I

I

Fig. 1 Equilibrium Static Temperature versus Nozzle Area Ratio for $A-50/N_2O_4 @ O/F = 2.0$, $P_c = 200$. psia