Эллиптическая криптография

Эллиптическая криптография

- Безопасность RSA и Elgamal обеспечивается ценой использования больших ключей
- Требуется альтернативный метод, который дает тот же самый уровень безопасности, но с меньшими размерами ключей
- Одним из этих перспективных вариантов является криптография на основе эллиптических кривых (Elliptic Curve Cryptography — ECC)

Эллиптические кривые в вещественных числах

 Эллиптические кривые обычно применяются для вычисления длины кривой в окружности эллипса:

$$y^2 + axy + by = x^3 + cx^2 + dx + e$$

 В криптографии распространение получил частный вид эллиптических кривых (обычная формулировка Вейерштрасса):

$$y^2 = x^3 + ax + b$$

Arr Если дискриминат $\Delta = -16(4a^3 + 27b^2) \neq 0$, уравнение представляет <u>несингулярную</u> (гладкую) эллиптическую кривую, иначе сингулярную (с особыми точками)

Примеры несингулярных эллиптических кривых

- График не имеет особых точек (возврата и самопересечений)
- ullet График имеет две части, если дискриминат Δ положителен и одну часть, если значение дискриминанта Δ отрицательно
- Замечательным свойством несингулярных кривых является то, что любая прямая, проходящая через две различные точки кривой ещё раз пересекает кривую и эта третья точка пересечения является единственной!

Примеры сингулярных эллиптических кривых

При использовании сингулярных кривых стойкость
 эллиптической криптосистемы значительно снижается

Свойства точек эллиптической кривой

- Будем считать, что:
 - На плоскости существует бесконечно удаленная точка О, принадлежащая кривой, в которой сходятся все вертикальные прямые линии

 - Касательная к кривой пересекает точку касания два раза

Сложение точек эллиптической кривой

- Точка О выступает в роли нулевого элемента: О=-О и для любой точки Р на кривой справедливо Р + О = Р
- Вертикальная линия пересекает кривую в двух точках с одной и той же абсциссой (координатой х), например, S = (x, y), T = (x, -y), и в бесконечно удаленной точке: S + T + O = O и T = -S
- Чтобы сложить две точки Р и Q с разными координатами х, следует провести через эти точки прямую и найти точку пересечения ее с эллиптической кривой: P + Q + S = O
- Чтобы удвоить точку Q, следует провести касательную в точке Q и найти другую точку пересечения S с эллиптической кривой. Тогда Q + Q +S= 2 x Q +S=0
- Умножение точки Р эллиптической кривой на положительное число к определяется как сумма к точек Р

Эллиптические кривые в криптографии

- Эллиптические кривые над вещественными числами приводит нас к проблеме округления (открытые и закрытые тексты должны представляться целыми числами!) и служат геометрическими моделями операций над точками
- В криптографии используются только кривые над конечными полями,
 т.е. координаты точек кривой принадлежат конечному полю

Эллиптические кривые в криптографии

 Элементами эллиптической кривой являются пары неотрицательных целых чисел, которые меньше р (p>3) и удовлетворяют частному виду эллиптической кривой

$$y^2 = (x^3 + ax + b) mod p$$

- ullet Такую кривую будем обозначать $E_p(a,b)$. При этом числа a и b должны быть меньше p и должны удовлетворять условию $(4a^3+27b^2)mod\ p
 eq 0$
- ullet Любая точка на $E_p(a,b)$ вычисляется следующим образом:
 - \bigcirc Для значения x, 0 <= x <= p, вычисляется $(x^3 + ax + b) \mod p$
 - Для каждого из полученных на предыдущем шаге значений выясняется имеет ли это значение квадратом целого числа. Если является, то определяется у

Пример-задание

- ullet Задана кривая $E_{13}(1,1)$: $y^2 = (x^3 + x + 1) mod 13$
- [●] Заданы точки P(4, 2), R(3,5) и Q(7,0)
- ullet Проверить принадлежность заданных точек кривой $E_{13}(1,1)$

Ответ на задание

- ullet Для кривой $E_{13}(1,1)$ результаты проверки принадлежности точек P(4,2), R(3,5) и Q(7,0) следующие:
 - Θ Вычисляем (4^3 +4+1) mod 13 = (12 + 4 + 1) mod 13=4= 2^2 (на кривой)

 - Θ Вычисляем (7^3 +7+1) mod 13 = (5+7+1) mod $13=0=0^2$ (на кривой)

Операции над точеками $E_p(a,b)$

- P + Q = P; P + Q = Q + P (KOMMYM.); (P + Q) + R = P + (Q + R) (ACCOLUMN)
- [●] Если P = (x,y), то P + (x,-y) = 0. Точка (x,-y) является отрицательным значением точки P и обозначается -P. Точка -P лежит на эллиптической кривой, т.е. принадлежит E_p (a,b).

 ullet λ - угловой коэффициент секущей, проведенный через точки P и Q

Свойства эллиптической кривой над конечным полем

- Точки эллиптической кривой образуют группу порядка m (количество точек кривой)
- Множество точек, кратных точки Q образуют циклическую подгруппу порядка n: n x Q=0 с базовой точкой Q
- Детали в https://habr.com/ru/post/335906/

Протокол Диффи-Хеллмана для эллиптических кривых (ECDH)

- ullet Группа точек эллиптической кривой $E_p(a,b)$
- В − базовая точка (порождающий элемент) циклической подгруппы точек {kB, k=1,n} порядка n: nB=0
- x, y большие случайные числа такие, что 0 < x < n, 0 < y < n
- Поскольку:

$$xR_2 = x(yB) = xyB$$

 $yR_1 = y(xB) = xyB$

 Стороны фактически создают материал для генерации симметричного ключа (координаты точки xyB)

Шифр Эль-Гамаля на эллиптических кривых

- ullet Получатель выбирает кривую $E_p(a,b)$, точку e_1 на кривой, выбирает секретной число d и вычисляет еще одну точку $e_2 = d \times e_1$
- ullet Открытый ключ $E_p(a,b), e_{1,} e_{2}$
- ullet Отправитель сопоставляет открытому тексту точку P на кривой и создает шифровку C_1, C_2 , выбрав случайное r

$$C_1 = r \times e_1$$
 $C_2 = P + r \times e_2$

● Получатель выполняет расшифровку:

$$C_2 - (d \times C_1) =$$

 $P + r \times d \times e_1 - d \times r \times e_1 = P$

Пример генерации ключа

- $m{\Theta}$ Выбираем кривую $E_{67}(2,3)$
- Выбираем точку e₁=(2,22)
- Выбираем закрытый ключ d=4
- \bullet Вычисляем $e_2 = d \times e_1 = 4 \times (2,22) = (13,45)$

Пример зашифрования

■ Текст представляется точкой Р=(24,26) и выбираем случайное r=2

Пример расшифрования

Расшифровываем шифротекст (35,1)(21,44)

Эллиптическая кривая Curve25519

- Предложена специалистом по компьютерной безопасности, американцем Daniel Bernstein (разработчик хэш-функции CubeHash, поточного шифра Sasla20)
- № Используется кривая $y^2 = x^3 + 486662x^2 + x$ над полем вычетов по модулю простого числа $2^{255} 19$ (что и дало название схеме выработки асимметричных ключей)
- Эллиптическая кривая и набор параметров к ней подобранных таким образом, чтобы обеспечить более высокое быстродействие (в среднем, 20-25%)
- Устойчивость к атакам по побочным каналам (timing attacks)
- Curve25519 используется как обмен ключами по умолчанию в OpenSSH и в IOS

Свойства метода с использованием эллиптической кривой

- Возведение в степень в алгоритме Эль-Гамаля заменено умножением точки на константу в модели
- Умножение в алгоритме Эль-Гамаля заменено сложением точек в модели
- Инверсия в алгоритме Эль-Гамаля мультипликативная инверсия заменяется аддитивной инверсией точки на кривой
- № Вычислительные затраты, поэтому, меньше в модели
- Для того же самого уровня безопасности (вычислительные затраты на атаки) модуль р, будет меньшим в эллиптической системе (ECC), чем в RSA (см. следующий слайд)

Таблица сравнения размеров ключей RSA и ECC (от NIST) для получения одинакового уровня защиты

Размер ключа RSA (биты)	Размер ключа ECC (биты)
1024	160
2048	224
3072	256
7680	384
15360	521

Спасибо за внимание

