

* Let m is macs per unit length of the string. * 3y > acceleration of element. Pa in y direction * vertical component of force acting on this element =Tsin(4+A4)-Tsin4 T (sin (4+ D4) + sin 4) Here 4, 4+ DY are negligibly Small angle. = $T(tan(\Psi+\Delta\Psi)-tan\Psi)$ (tano = slope of the curve 1e. dy) $= T\left(\frac{\partial y}{\partial x}\right) - \left(\frac{\partial y}{\partial x}\right) - D$ By Newton's second law

F = ma mass of PQ = $m \times \Delta X$ $F = m \times \Delta x \frac{\partial^2 y}{\partial t^2} - 2$

	Solution & one dimensional wave equation
	by method of separation of variable.
1	wave equation is
1	
	$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} - 0$
	Let y=XT-2 Diff. 2 p. w.r.t x and t
	Diff. 2 p. w.r.t oc and t
	$\frac{\partial y}{\partial t} = xT \qquad \frac{\partial y}{\partial x} = xT$
9	
	$\frac{\partial y}{\partial t^2} = XT'' \qquad \frac{\partial y}{\partial x^2} = XT$
	Sub. these values in 1
	300 m = 300
	$XT'' = C^2 X''T$
	1 T" X" 90
	TIZZ T = X SIEGK O = ING
fa	X' X' X
	X portoured evolu la cigationia en Ol
	$X''=KX$ $T''=C^2TK$
	$x''-Kx=0$ $T''-Kc^2T=0$
	$\frac{\partial^2 K}{\partial x} = 0 \left[D^2 - K C^2 \right] T = 0$
	m= + \(\frac{1}{4} \)

```
In this case we can expect three different
cases. (Three different values for k)
 Case I (K=p2) kas +ve
  \left(D^2 - P^2\right) x = 0
                             (D^2 - P^2 c^2)T = 0
                                m^2 - p^2c^2 = 0
m^2 = p^2c^2
  A.E \Rightarrow m^2 - p^2 = 0
     m^2 = p^2
                                m = \frac{1}{2} pc
T = C_3 e^{pct} + C_4 e^{-pct}
   x = c_1 e^{px} + c_2 e^{px}
     y=xT => y(x,t) = (c,epx+c,epx) (3ex+c,epct)
  Case II k is -ve (k=-p2)
   (D^2 + P^2)X = 0 (D^2 + P^2c^2)T = 0
   m^2 = -p^2 + \omega + 2 = \omega + 2 = 0
m^2 = -p^2 \qquad (2) - 2i
                              m^2 + p^2c^2 = 0
                              m2 = - 9 c2
    m = \pm iP d = D\beta = P m = \pm iPC
 when mis imaginary atip
 CFZ ex [c, cospx+c2sin Bx] T= C, cospct+Csin pct
 X - e [ C - COS px + C Sinpx
le; X = [c5 cospx + c6 sinpx]
```

Therefore the solution is

Case 3 K=0

$D^2 x = 0$	D2T= 000
$m^2 = 0$	$m^2 = 0$
-1000	m=0,0 3,0=x
CF=(C1+c2x) emx	
$X = (C_0 + C_{10}x)$	T= (C11+42+)

These are the possible solutions. But the Suitable solution is -2 Deuritang: + = m | 9=9 a=1 93 + = m

$$y(x,t) = (c_1 \cos px + c_2 \sin px) \cdot (c_3 \cos pct + c_4 \sin pct)$$