Задание для самостоятельного выполнения

Рогожина Н.А.

07 марта 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Рогожина Надежда Александровна
- студентка 3 курса НФИбд-02-22
- Российский университет дружбы народов
- https://mikogreen.github.io/

Цель

Приобрести практические навыки работы с xcos.

Задание

Задание:

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

1.
$$A = B = 1$$
, $a = 2$, $b = 2$, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;

2.
$$A = B = 1$$
, $a = 2$, $b = 4$, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;

3.
$$A = B = 1$$
, $a = 2$, $b = 6$, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;

4.
$$A = B = 1$$
, $a = 2$, $b = 3$, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π .

Теоретическое введение

Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычислительных задач. Основное окно Scilab содержит обозреватель файлов, командное окно, обозреватель переменных и журнал команд. Программа хсоз является приложением к пакету Scilab. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование хсоз. При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты.

Скопировав визуальные элементы из лабораторной работы, получили следующую схему:

Рис. 1: Схема фигур Лиссажу

Обозначим A и B как амплитуды колебаний, а и b как частоты, а δ как сдвиг фаз. Построим для b = 2 различные варианты δ .

b = 2

Puc. 2: A = B = 1, a = 2, b = 2, δ = 0

Puc. 3: A = B = 1, a = 2, b = 2, $\delta = \pi/4$

Puc. 4: A = B = 1, a = 2, b = 2, $\delta = \pi/2$

Puc. 5: A = B = 1, a = 2, b = 2, $\delta = 3\pi/4$

Puc. 6: A = B = 1, a = 2, b = 2, $\delta = \pi$

Аналогично для \mathbf{b} = 4 различные варианты δ .

Puc. 7: A = B = 1, a = 2, b = 4, δ = 0

Puc. 8: A = B = 1, a = 2, b = 4, $\delta = \pi/4$

Рис. 9: A = B = 1, a = 2, b = 4, $\delta = \pi/2$

Puc. 10: A = B = 1, a = 2, b = 4, $\delta = 3\pi/4$

Рис. 11: A = B = 1, a = 2, b = 4, $\delta = \pi$

Аналогично для \mathbf{b} = 6 различные варианты δ .

Рис. 12: A = B = 1, a = 2, b = 6, δ = 0

Puc. 13: A = B = 1, a = 2, b = 6, $\delta = \pi/4$

Puc. 14: A = B = 1, a = 2, b = 6, $\delta = \pi/2$

Рис. 15: A = B = 1, a = 2, b = 6, $\delta = 3\pi/4$

Puc. 16: A = B = 1, a = 2, b = 6, δ = π

И для b = 8 различные варианты δ .

Рис. 17: A = B = 1, a = 2, b = 8, δ = 0

Puc. 18: A = B = 1, a = 2, b = 8, $\delta = \pi/4$

Puc. 19: A = B = 1, a = 2, b = 8, $\delta = \pi/2$

Рис. 20: A = B = 1, a = 2, b = 8, $\delta = 3\pi/4$

Рис. 21: A = B = 1, a = 2, b = 8, δ = π

Пример

Также, у нас был дан пример с параметрами A = B = 1, a = 3, b = 2, δ = $\pi/2$, мы ее также построили.

Пример

Рис. 22: A = B = 1, a = 3, b = 2, $\delta = \pi/2$

Выводы

Выводы

В ходе лабораторной работы мы визуализировали фигуры, указанные в упражнении, включая показанную в работе, приобрели базовые навыки работы с Scilab.