Design sensitivity in the presence of uncertainties

Jiannan Yang

ISVR Seminar, 25th January 2022

Design in the presence of uncertainties

Uncertainties

Sensitivities

Is variance a good metric?

$$b^2 \mathbb{E}_Y \left[\left(\frac{\partial \ln p}{\partial b} \right)^2 \right]$$

$$\mathbb{E}_{Y}\left[\frac{b_{j}\partial \ln p}{\partial b_{j}}\frac{b_{k}\partial \ln p}{\partial b_{k}}\right] - F_{jk}$$

Change to covariance notation

$$\operatorname{cov}\left(\frac{b_j\partial\ln p}{\partial b_i},\frac{b_k\partial\ln p}{\partial b_k}\right) \longrightarrow \mathbf{F}\mathbf{q}_i = \lambda_i\mathbf{q}_i$$

Principal sensitivities

Ronald Fisher 1912.jpg

Design Entropy

$$\mathbf{Y} = \mathbf{h}(\mathbf{x})$$
 \longrightarrow $H = -\int p(\mathbf{y}|\mathbf{b}) \ln p(\mathbf{y}|\mathbf{b}) d\mathbf{y}$

$$\Delta H \equiv KL [p(\mathbf{y}|\mathbf{b})||p(\mathbf{y}|\mathbf{b} + \Delta \mathbf{b})]$$

$$= \int p(\mathbf{y}|\mathbf{b}) \ln \left[\frac{p(\mathbf{y}|\mathbf{b})}{p(\mathbf{y}|\mathbf{b} + \Delta \mathbf{b})} \right] d\mathbf{y} \circ \circ \circ \circ \circ$$

$$\approx \frac{1}{2} \Delta \mathbf{b}^{\mathsf{T}} \int \frac{1}{p} \nabla p^{\mathsf{T}} \nabla p d\mathbf{y} \Delta \mathbf{b}$$

$$= \frac{1}{2} \Delta \mathbf{b}^{\mathsf{T}} \mathbf{F} \Delta \mathbf{b}$$

Taylor expansion of

the perturbed

density function

Reliability Sensitivity

Require information

Mathematical framework for sensitivity

Likelihood Ratio Method

Obtained at the same time in a single run

Likelihood Ratio Method

$$p(\mathbf{y}|\mathbf{b}) = \int \delta \left[\mathbf{y} - \mathbf{h}(\mathbf{x}) \right] p(\mathbf{x}|\mathbf{b}) d\mathbf{x}$$
$$= \mathbb{E}_X \left[\delta(\mathbf{y} - \mathbf{h}(\mathbf{x})) \right]$$

Free of charge to get gradient!

$$\frac{\partial p(\mathbf{y}|\mathbf{b})}{\partial b_j} = \int \delta \left[\mathbf{y} - \mathbf{h}(\mathbf{x}) \right] \frac{\partial \ln p(\mathbf{x}|\mathbf{b})}{\partial b_j} p(\mathbf{x}|\mathbf{b}) \, d\mathbf{x}$$

$$= \mathbb{E}_X \left[\delta(\mathbf{y} - \mathbf{h}(\mathbf{x})) \frac{\partial \ln p(x|b)}{\partial b_j} \right] \quad \text{Becautivation}$$
availation

Because this term is often available analytically

Likelihood Ratio Method

$$P_{\mathrm{f}}(\mathbf{b}, z) = \int \mathrm{H}(g(\mathbf{y}) - z) p(\mathbf{x}|\mathbf{b}) d\mathbf{x}$$

Free of charge to get gradient!

$$\frac{\partial P_{f}(\mathbf{b}, z)}{\partial b_{j}} = \int H(g(\mathbf{y}) - z) \frac{\partial \ln p(\mathbf{x}|\mathbf{b})}{\partial b_{j}} p(\mathbf{x}|\mathbf{b}) d\mathbf{x}$$

Mathematical framework for sensitivity

Sensitivity Bound

Mathematical framework for sensitivity

Design in the presence of uncertainties

Concept design

Detailed design

High level inclusion of uncertainty

Key performance indicator (KPI)

Toolbox for Engineering Design Sensitivity (TEDS)

KPI: Key Performance Indicator

Example application of TEDS

Example 1
Benchmark Case

Example 2 Design Case

Natural Modes

Example mode shape &

natural frequencies

Two Modes:

rho = 1180 rho_f = 1025

L = 1

 $L_S = 0.2000$ $L_b = 0.1500$

Design Variables

 $L_b = 0.1500$ r = 0.0450 t = 0.0350mb = 3

Free vibration

Natural Frequency Sensitivity

rho	rho_f	L	L_s	L_b	r	t	Mb	Ca
1180	1025	1	0.2	0.15	0.045	0.003	3	1

Nominal Values

$$\mathbf{K}\mathbf{x} = \lambda \mathbf{M}\mathbf{x}$$

$$\frac{\partial \lambda}{\partial b_i} = \mathbf{x}^\mathsf{T} \left[\frac{\partial \mathbf{K}}{\partial b_i} - \lambda \frac{\partial \mathbf{M}}{\partial b_i} \right] \mathbf{x}$$

$$\frac{\partial \omega}{\partial b_i} = \frac{1}{2\omega} \frac{\partial \lambda}{\partial b_i}$$

$$r = \frac{\partial \omega}{\partial b_i} \frac{b_i}{\omega}$$

Fisher Sensitivity

Side view of a

(width=0.5 m)

wave tank

Example 2 - offshore marine riser

A marine riser is a conduit that transfers subsea oil to a surface platform. This example with a marine riser highlights the ubiquitous role of uncertainties for engineering design.

Parameters

<u>Types of</u> <u>Uncertainty</u>

> Wave Interaction

Material

Platform interaction

Fatigue

Random Varia	Mean	Standard deviation	
Morison's equation added mass coefficient	C _a [-]	1.5	0.3
Morison's equation drag coefficient	C _d [-]	1.1	0.22
Marine riser steel density	ρ [kg/m ⁻³]	7840	392
Marine riser Young's modulus	E [GPa]	200	10
Riser internal oil density	ρ _ο [kg/m ⁻³]	920	92
Marine riser top tension	T _o [kN]	4905	490.5
Material S-N curve	α [GPa]	199	19.9
coefficients	δ [-]	3	0.3

S-N law
$$N(s)=\alpha s^{-\delta}$$

 σ_{β} (5000 samples)

Example 2 - offshore marine riser

Large uncertainty about KPI, various QoI considered

QoI: Quantity of Interest

KPI: Key Performance Indicator

Scenario - 2

Metric Toolbox for Digital Twins

Acknowledgement

• Collaborators: Prof. Robin Langley, Dr. Arnau Razquin and Dr. Luis Andrade

This work has been funded by the Engineering and Physical Sciences
Research Council through the award of a Programme Grant "Digital Twins
for Improved Dynamic Design", Grant No. EP/R006768.

Any questions/comments: jy419@cam.ac.uk

