

Mathématiques

Classe: 4^{ème} Mathématiques

Série 27: Fonction In

Nom du prof : M. ZOGHBI Naoufel

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

73.832.000

Exercice 1:

(\$ 30 min

4 pts

On considère la fonction f définie $\sup[0;+\infty[$ par : $\begin{cases} f(x)=x\ln\left(\frac{x+1}{x}\right) & \text{si } x > 0\\ f(0)=0. \end{cases}$

- 1) a) Montrer que f est continue à droite en 0.
 - b) Etudier la dérivabilité à droite de f en 0. Interpréter graphiquement.
 - c) Calculer $\lim_{x\to +\infty} f(x)$. Interpréter graphiquement.
- 2)a) Montrer que pour tout a > 0, on $a : \ln\left(\frac{a+1}{a}\right) > \frac{1}{a+1}$. (on pourra appliquer le théorème des accroissements finis à la fonction ln sur l'intervalle [a ;a+1]).
 - b) Etudier alors les variations de f sur $[0; +\infty[$.
- c) Dresser le tableau de variations de f.
- 3)a) Montrer que f admet une fonction réciproque f⁻¹définie sur un intervalle J que l'on précisera.
- b) Montrer que les courbes représentatives (C_f) et $(C_{f^{-1}})$ se coupent au point O et en un second point A dont on déterminera les coordonnées.
- 4) On a tracé ci-dessous dans un repère orthonormé $\left(0;\vec{i};\vec{j}\right)$ les courbes $\left(\Gamma\right)$ et $\left(\Gamma'\right)$.
- d'équations respectives y = ln(x) et $y = \frac{1}{x}$ ainsi que la droite Δ d'équation y = x.
- a) Construire le point A ainsi la tangente (T) à $(C_{\scriptscriptstyle f})$ en A.
- b) Construire (C_f) et $(C_{f^{-1}})$.
- c) Calculer l'aire de la partie du plan limitée par (C_f) , $(C_{f^{-1}})$ et les droites d'équations respectives x=0 et $x=\frac{1}{2g-1}$.

Exercice 2:

© 25 min

4 pts

On considère la fonction f définie sur
$$[0,+\infty[$$
 par :
$$\begin{cases} f\left(x\right) = \frac{x \ln x}{x-1} & \text{si } x \neq 0 \text{ et } x \neq 1 \\ f(0) = 0 & \text{f}\left(1\right) = 1 \end{cases}$$

On désigne par (C) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1°)a) Montrer que f est continue sur $[0,+\infty[$.
 - b) Etudier la dérivabilité de f à droite en 0.
- 2°) Soit $x \in]0,+\infty[\setminus\{1\}]$ et φ la fonction définie sur]0,+[par :

$$\varphi(t) = \frac{x \ln x - x + 1}{(x - 1)^{2}} (t - 1)^{2} - t \ln t - 1 + t$$

a) Calculer $\varphi(x)$ et $\varphi(1)$.

Montrer qu'il existe un réel c compris entre 1et x tel que $\varphi'(c) = 0$

- b) En déduire que f est dérivable en 1 et que f'(1) = $\frac{1}{2}$.
- c) Donner l'équation da la tangente (T) à la courbe (C) au point d'abscisse 1
- 3°)a) Soit la fonction g définie sur $]0,+\infty[$ par $g(x) = 1-x^2+2x\ln x$

Dresser le tableau de variation de g' puis celui de g et en déduire le signe de g sur $]0,+\infty[$.

- b) Etudier la position de la courbe (C) par rapport à la tangente (T).
- 4°) Dresser le tableau de variation de f et tracer (C) .

Exercice 3:

(5) 30 min

5 pts

On considère la fonction f définie sur $]0;+\infty[$ par f(x)=x - In(x).

- 1) Dresser le tableau de variations de f puis tracer sa courbe représentative \mathscr{C}_f dans un repère orthonormé (O,\vec{i},\vec{j}) .
- **2)** On désigne par (a_n) la suite définie par $a_0 > 1$ et $a_{n+1} = f(a_n)$ $(\forall n \in \mathbb{N})$.
 - **a.** Montrer que $a_n > 1$ $(\forall n \in \mathbb{N})$.
 - **b.** Montrer que la suite (a_n) est convergente et déterminer sa limite.
 - **c.** On pose $b_n = \int_{a_{n+1}}^{a_n} f(t) dt \ (\forall n \in \mathbb{N}).$

 $\label{eq:bn} \mbox{i/ Montrer que } a_{\scriptscriptstyle n+2} \mbox{ In}(a_{\scriptscriptstyle n}) \ \le \ b_{\scriptscriptstyle n} \le \ a_{\scriptscriptstyle n+1} \mbox{ In}(a_{\scriptscriptstyle n}) \ \left(\forall n \in \mathbb{N} \right).$

ii/ Calculer $\lim_{n\to +\infty} b_n$ puis déterminer $\lim_{n\to +\infty} \frac{b_n}{\ln(a_n)}$.

- $\textbf{3)} \; \text{Soit} \, \lambda \in \left]0;1\right[, \text{ on pose I}(\lambda) = \int_{\lambda}^{1} f(x) dx \; \text{ et } \; S_{n} = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right), \; \left(\forall n \in \mathbb{N} \left\{0;1\right\}\right) \right]$
 - **a.** Calculer $I(\lambda)$ puis $\lim_{\lambda \to 0^+} I(\lambda)$.

- $\textbf{b. Montrer que} \quad \frac{1}{n}f\bigg(\frac{k+1}{n}\bigg) \leq \int_{\frac{k}{n}}^{\frac{k+1}{n}}f(t) \ dt \leq \frac{1}{n}f\bigg(\frac{k}{n}\bigg), \ pour1 \leq k \leq n-1.$
- $\textbf{c.} \; \text{En d\'eduire que:} \, S_n \frac{1}{n} f \bigg(\frac{1}{n} \bigg) \leq I \bigg(\frac{1}{n} \bigg) \leq S_n \; \; \text{puis que:} \; I \bigg(\frac{1}{n} \bigg) \leq S_n \leq I \bigg(\frac{1}{n} \bigg) + \frac{1}{n} f \bigg(\frac{1}{n} \bigg).$
- **d.** Montrer alors que $\lim_{n\to +\infty} S_n = \frac{3}{2}$.
- 4) On désigne par (un) la suite définie par $u_n = \frac{\sqrt[n]{n!}}{n}, \ n \ge 2$.
 - **a.** Montrer que $\sum_{k=1}^{n} ln \left(\frac{k}{n} \right) = ln \left(\frac{n!}{n^n} \right)$.
 - **b.** En déduire que $S_n = \frac{n+1}{2n} \ln(u_n)$.
 - **c.** Déduire de ce qui précède que $\lim_{n\to+\infty} u_n = \frac{1}{e}$.

Exercice 4:

6 pts

Soit f la fonction définie sur $[0;+\infty[$ par $\begin{cases} f\left(x\right)=x\ ln\ x\ si\ x\succ0\\ f(0)=0 \end{cases}$

- 1)a. Etudier la continuité et la dérivabilité de f en 0. interpréter graphiquement.
 - b. Dresser le tableau de variations de f .
- 2) On a tracé ci-dessous dans un repère orthonormé $(0; \vec{i}; \vec{j})$ la courbe (Γ) de la fonction $x \mapsto \ln(x)$ et les droites Δ et Δ' d'équations respectives y = x et y = -x.
 - a. Construire les points A et B d'abscisses respectives e et $\frac{1}{e}$.
 - b. Déterminer la position relative de (C_f) et Δ puis la position relative de (C_f) et Δ '.
 - c. Tracer la courbe (C_f).
 - d. Soit S la partie du plan limitée par (C_f) et les droites Δ et Δ '.

Montrer que l'aire de S = $\frac{1}{4}$ $\left(e^2 - \frac{1}{e^2}\right)$.

- 3)a. Montrer que l'équation (En) : f(x)=n (\forall $n \ge 1$) possède, sur [1;+ ∞ [, une unique solution qu'on notera α_n .
 - b. Quelle est la monotonie de la suite (∝_n) ?
 - c. Montrer que $\forall \ n \! \geq \! 3, \alpha_n^{} \leq n$.
 - d. En déduire que \forall $n \ge 3$, $\alpha_n \ge \frac{n}{lnn}$ puis $\alpha_n \le \frac{n}{lnn ln(lnn)}$.
 - e. En déduire $\lim_{n\to +\infty} \frac{ln(n)\alpha_n}{n}$.
- 4) On considère la suite $\left(I_n\right)_{n\geq 0}$ définie par $I_0=\int_1^exdx$ et pour tout $n\geq 1$, $I_n=\int_1^ex\left(\ln x\right)^ndx$
 - a. Calculer Io et I1.
 - b. Montrer que, pour tout $n \in \mathbb{N}$, on a : $2I_{n+1} + (n+1)I_n = e^2$. En déduire I_2 .

Montrer que pour tout $n \in \mathbb{N}^*$, on a : $I_{n+1} \le I_n$.

- d. En déduire que, pour tout $n \in \mathbb{N}^{\star}, \text{ on a}$: $\frac{e^2}{n+3} \leq I_n \leq \frac{e^2}{n+2}$.
- e. Calculer $\lim_{n\to+\infty} I_n$ et $\lim_{n\to+\infty} \frac{I_n}{n}$.

Exercice 5:

(S) 35 min

6 pts

On considère la fonction g définie sur]-1;+ ∞ [par g(x)= $\frac{2x}{x+1}$ -In(1+x). On désigne par (C_g) sa courbe représentative dans un repère orthonormé (O; \vec{i} ; \vec{j}).

- A/1)a) Calculer $\lim_{x \to (-1)^+} g(x)$, $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to +\infty} \frac{g(x)}{x}$. Interpréter graphiquement.
 - b) Calculer g'(x) pour tout réel x > -1. Dresser le tableau de variations de g.
 - c) Montrer que l'équation g(x)=0 admet dans]-1; $+\infty$ [deux solutions 0 et \propto tel que \propto >1.

En déduire le signe de g(x) pour tout $x\in\left]-1;+\infty\right[$.

- d) Tracer (C_g).
- 2) Soit n un entier naturel ≥ 4 .
 - a) Montrer que l'équation $g(x) = \frac{1}{n}$ admet une solution unique u_n dans l'intervalle]0;1[...
 - b) Montrer que la suite (un) est décroissante. En déduire que (un) est convergente et déterminer sa limite.

- 3) On considère la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} \frac{\ln(1+x^2)}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.
 - a) Vérifier que f est impaire.
 - b) Etudier la continuité et la dérivabilité de f en 0.
 - c) Montrer que pout tout réel non nul x, $f'(x) = \frac{1}{x^2}g(x^2)$
 - d) Montrer que $f(\sqrt{\alpha}) = \frac{2\sqrt{\alpha}}{1+\alpha}$ puis dresser le tableau de variations de f.

B/ On considère la fonction F définie \mathbb{R} sur par $F(x) = \int_0^x f(t)dt$.

- 1) Etudier la parité de F.
- 2)a) Calculer pour tout $x \ge 1$, $I = \int_1^x \left(\frac{2 \ln t}{t}\right) dt$.
 - b) En déduire que pour tout $x \ge 1$, $F(x) F(1) = \left(\ln x\right)^2 + \int_1^x \frac{1}{t} \ln\left(1 + \frac{1}{t^2}\right) dt$.
 - c) Montrer que pout tout réel $x \ge 0$, $ln(1+x) \le x$.

En déduire que pour tout $x \ge 1$, $0 \le \int_1^x \frac{1}{t} ln \left(1 + \frac{1}{t^2}\right) dt \le \frac{1}{2}$.

- d) Calculer $\lim_{x \to +\infty} F(x)$ et $\lim_{x \to +\infty} \frac{F(x)}{x}$. Interpréter graphiquement.
- 3)a) Montrer que F est dérivable sur $\mathbb R$ et dresser son tableau de variations.
 - b) Tracer une allure de la courbe représentative (C_F) de F dans un repère orthonormé.