

1장 데이터베이스 개요 및 MySQL 설치

김철학

목차

- 1. 데이터, 정보, 지식
- 2. 데이터베이스 개요
- 3. 데이터베이스 특징
- 4. 데이터베이스 관리 시스템
- 5. 데이터베이스 학습 순서

1. 데이터, 정보, 지식

- 데이터^{Data}는 관찰의 결과로 나타난 정량적 혹은 정성적인 실제 값
- 정보^{Information}는 데이터를 가공, 처리해서 의미를 부여
- 지식^{Knowledge} 은 정보를 바탕으로 사물이나 현상에 대한 이해

2. 데이터베이스 개요

- 데이터베이스Database 는 다수의 사용자가 공유할 수 있도록 통합하여 저장한 운영 데이터 집합
- 조직에 필요한 정보를 얻기 위해 논리적으로 연관된 데이터를 모아 구조적으로 통합된 데이터
- 데이터베이스는 데이터를 쉽게 접근하고 조작할 수 있도록 도와주며, 다양한 응용 프로그램과 연동된 서비스에 개발에 사용

정의	설명
통합 데이터 ^{Integrated data}	데이터를 통합한 개념으로 각자 사용하던 데이터의 중복으로 인한 데이터 불일치 현상을 제거한 통합 데이터
저장 데이터 ^{Stored data}	문서로 보관된 데이터가 아니라 디스크, 테이프 같은 컴퓨터 저장장치에 저장된 데이터를 의미
운영 데이터 ^{Operational data}	조직의 목적을 위해 사용되는 데이터를 의미, 즉 업무를 위한 검색을 목적으로 저장된 데이터
공용 데이터 ^{Shared data}	한 사람 또는 한 업무를 위해 사용되는 데이터가 아니라 공동으로 사용되는 데이터를 의미

3. 데이터베이스 특징

특징	설명
데이터 무결성 ^{Data Integrity}	 데이터의 정확성과 일관성을 유지하는 것을 의미 데이터베이스 시스템은 무결성 제약 조건을 사용하여 데이터의 유효성을 보장
데이터 보안	 데이터에 대한 접근을 제어하고, 불법적인 접근과 수정으로 부터 데이터를 보호 데이터베이스는 사용자 인증, 권한 부여, 암호화 등의 방법을 통해 보안을 유지
데이터 독립성	데이터베이스의 논리적 구조와 물리적 구조가 응용 프로그램으로부터 독립을 의미
데이터 중복 최소화	 데이터의 중복 저장을 최소화하여 일관성을 유지하고 저장 공간을 절약 데이터 중복을 최소화함으로써 데이터 무결성을 향상시키고, 업데이트 시 데이터 일관성을 보장
데이터 공유	여러 사용자가 동시에 동일한 데이터를 사용할 수 있도록 허용
데이터 일관성	 데이터베이스는 일관된 상태를 유지하며, 모든 트랜잭션이 데이터베이스를 일관된 상태로 유지 트랜잭션 처리 중 실패가 발생할 경우 롤백을 통해 데이터의 일관성을 보장
데이터 복구성	 시스템 오류나 장애가 발생했을 때 데이터를 원래 상태로 복구할 수 있는 기능을 제공 데이터베이스 시스템은 백업 및 복구 메커니즘을 통해 데이터 손실을 최소화
효율적인 데이터 접근 및 처리	 데이터베이스는 데이터의 빠르고 효율적인 접근 및 처리를 위해 인덱싱, 최적화된 쿼리 처리, 캐싱 등의 기술 사용 복잡한 쿼리를 최적화하여 빠른 검색 결과를 제공

4. 데이터베이스 관리 시스템

- 데이터베이스 관리 시스템DataBase Management System 는 데이터베이스를 운영·관리 하기 위한 소프트웨어
- 저장 방식에 따라 계층형, 망형, 관계형 DBMS로 분류
- RDBMS 종류로 Oracle, MS-SQL, MySQL, MariaDB, PostgreSQL 등

5. 데이터베이스 학습 순서

- 1장. 데이터베이스 개요와 MySQL 설치
- 2장. SQL 기본
- 3장. 제약 조건
- 4장. SQL 고급
- 5장. 데이터베이스 개체
- 6장. 데이터 모델링
- 7장. 정규화
- 8장. 트랜잭션과 병행 제어

