珠思軌跡-分析轉珠遊戲三消軌跡及通用解

摘要

本研究源自轉珠遊戲,研究平常在轉珠中看不到的軌跡圖,觀察、尋找軌跡關係與樣式、 經整理、比對及統整的的過程後得到:

- 一、探討在 5x6 盤面中,移動一顆「指定珠」移動到特定位置所需要的步數。
- 二、探討在 3x5 盤面中,完成最下層「3 消」所可能出現的樣式圖。
- 三、延伸討論如何在 3x5 盤面中,完成最下層「3 消」所需的最短步數及軌跡。
- 四、利用對稱關係,從四個角落珠選擇適當的「固定珠」位置,縮短步數。
- 五、在完美盤面中,依序消除 3×5 盤面最下層、3×4 盤面最下層、3×3 盤面最下層、3×2 盤面最下層,最終消除 5combo。
- 六、探討、分析 6×5 盤面計算可完成 combo 數及具體方法。
- 七、完成盤面演算法。

壹、 研究動機

自從去年參加科展後,我們發現日常生活中常玩的遊戲都蘊含許多數學的基礎原理,引起我們開始對生活中的事物敏銳觀察,發掘許許多多「生活中的數學」。而轉珠遊戲也變成我們最愛的遊戲。

今年我們想從不同的角度來尋找轉珠的規律,利用不同的方法來建立思考邏輯。同樣結合高年級數學中「圖形對稱」、「圖形旋轉」、「找規律」的單元,利用每週午休或早自修時間練習與討論,從「轉珠的軌跡」尋找其中的「蛛絲馬跡」,思考出轉珠的「通用解」。

貳、 名詞解釋

一、3 消:指在過程中,完成三顆同顏色成一直線或一橫線而被消除的情況。如圖 1,水珠及木珠所示。

圖 1

二、combo:在一次移動中,完成「消除」的總組數,1 組稱為 1combo。在 5x6 的盤面中,最多可完成 10 組「3 消」,稱為 10combo,如圖 2 所示。

圖 2

三、完美盤面:指在盤面中可完全消除的盤面,此消除的 combo 可全由「3 消」所組成。各 色珠的個數須為 3 的倍數。

例如:3x5 盤面,最多可完成 5combo「3 消」,如圖 3。

圖 3

圖 4

四、遊戲方法

(一)介紹:轉珠遊戲是在 5×6 的盤面中將 6 種 (5+1) 顏色的珠子重新作排列,藉由移動「起始珠」與其周遭四顆相鄰珠做位置的交換,重新整理盤面讓連成三顆一直線或多顆以上的珠子進行消除,每消除一組稱之為 1combo,消除的 combo 越多能得到的分數也就越高。

(二)遊戲方法:

圖 5

- 1.先選定任意珠(以暗珠為例)。白色框「暗珠」為起始珠,持續按住往下做連續交換。
- 2.藉由往下移動和「水珠」交換形成 1comb (3 消)。
- 3.再往下和「火珠」交換形成 2combo (3 消)。
- 4.繼續與其周遭四顆相鄰珠做位置的交換。

- 5.可將移動的位置畫成路徑。
- 6.最後放開「起始珠」暗珠,完成這次移動,10combo(3消)。如圖5。

參、 研究目的

- 一、探討在 5x6 盤面中,移動一顆「指定珠」移動到特定位置所需要的步數及軌跡。
- 二、探討在 3x5 盤面中,完成最下層「3 消」所可能出現的樣式圖。
- 三、討論在 3x5 盤面中,完成最下層「3 消」所需的最短步數及軌跡。
- 四、分析四個角落珠選擇適當的「固定珠」位置,縮短步數。
- 五、研究在完美盤面中,依序消除 3×5 盤面最下層、3×4 盤面最下層、3×3 盤面最下層、3×2 盤面最下層,最終消除 5combo。
- 六、探討及分析 6×5 盤面計算可完成 combo 數及具體方法。
- 七、完成盤面演算法。

肆、 研究設備及器材

- 一、模擬轉珠網頁(電腦 Windows 系統),http://louisalflame.github.io/TOSwebsite/drag.html。
- 二、轉珠大師 APP (手機 Android 系統)。
- 三、路徑設計圖 (3x5 及 6x5 空白圖格多張)、鉛筆、多色原子筆及多色螢光筆。
- 四、Inkscape 繪圖軟體。
- 五、桌上思考輔具。

伍、 研究過程與方法

一、研究 1:在 6x5 盤面指定珠移到特定位置所需要的步數

一開始我們慢慢地從 6x5 盤面中的每個位置開始嘗試,測量盤面任何一個珠到左下角的 △位置所需的最短步數。 尋找的過程中我們發現,在 6x5 盤面中其實軌跡是有所規律的,從圖 6 藍線為基準,分成左上半邊和右下半邊,這兩半邊是有對稱關係的。

接著我們將第一排(1,2)、(1,3)、(1,4)、(1,5)和(1,6)分別移動到(1,1)的軌跡畫出來,經過多次的試驗找到最短路徑,如圖 7 所示。

圖 7

第二排,從(2,2)開始找,路徑如圖8。

圖 8

第三排從(3,3)的位置找,如圖9。

圖 9

第四排從(4,4)開始找,如圖 10。

圖 10

第五排從(5,5)開始找,如圖11。

圖 11

最後匯集所有路徑的最短步數做成以下列表,如圖 12。

16	17	18	19	22	25
11	12	13	16	19	24
6	7	10	13	18	23
1	4	7	12	17	22
	1	6	11	16	21

圖 12

二、研究 2: 尋找 3x5 盤面中,所有可能出現的樣式。

為討論方便,我們直接就固定左下角(1,1)為 1,依序往右往上逐排編號,將每格位置定義為 1~15,可見如圖 13。

13	14	15
10	11	12
7	8	9
4	5	6
1	2	3

圖 13

首先要尋找的是 3×2 的圖形,為完成最下排 1-2-3 三消,我們將以格 1 不同的情況來討論所有可能出現的樣式,最後整理後如圖 14 所示,共有 $5\times4\div2=10$,10 種。

圖 14

接著尋找的是 3×3 所出現的樣式,共有 $8\times7\div2=28$,28 種。其中由於 3×2 的樣式包含於 3×3 的樣式中,所以28-10=18,共 18 種,如圖 15。

圖 15

緊接著的是 3x4 所出現的樣式,共有 $11 \times 10 \div 2 = 55$,55 種。其中由於 3x2 及 3x3 的樣式包含於 3x4 的樣式中,所以55-28=27,共 27 種,如圖 16。

圖 16

最後 3x5 所出現的樣式,共有 $14 \times 13 \div 2 = 91$,91 種。其中 $3x2 \times 3x3$ 及 3x4 的樣式包含於 3x5 的樣式中,所以91-55=36,共 36 種,如圖 17 和圖 18。

圖 17

圖 18

三、研究 3: 尋找 3x2、3x3 及 3x4 盤面中,所有樣式的最短路徑。

從**研究 1** 中得知,最短軌跡得盡量避免出現大迴轉的狀況,如此一來找到的步數才會接近最短步數。於是我們慢慢地從**研究 2** 的 91 種樣式中,一個個的尋找最短路徑,並將軌跡一一畫出並記錄最短步數,如圖 19。

剛開始 3x2 圖形是比較簡單的。

圖 19

接著有著上次科展經驗,3×3 圖形是包含去年所提到的基礎樣式,雖然有點複雜但難度 還算適中,如圖 20。

圖 20

3x4 盤面就越來越有挑戰性,每個圖經過大家不段的重複的比對、比較及討論,終於得到以下結果,如圖 21。

圖 21

陸、 研究結果

一、移動指定珠至固定位置

從研究1,可以觀察出最短路徑除了如圖22有對稱的情況以外,軌跡其實是有固定規律, 大致可以分成幾類。「**對角線群」、「對角線右一群」、「對角線右二群」**和「**對角線右三群**」等…, 如圖23。

圖 22 步數對稱圖

16	17	18	19	22	25
11	12	13	16	19	24
6	7	10	13	18	23
1	4	7	12	17	22
	1	6	11	16	21

圖 23 指定位置步數圖

圖 24 群組關係圖

「對角線右一群」可利用第一步,將其旋轉至「對角線群」。基本上路線是相差不大的;但「對角線右二群」並無法利用一步移動到「對角線群」位置,導致中間軌跡需要出現大迴轉,其群數越往右則大迴轉的次數也越多。透過尋找固定點移動的位置,我們發現在轉珠的過程中,必須得讓大迴轉的次數越少,才能將步數縮短。

圖 25 對角線群

由圖 25 的軌跡圖得知,對角線群能找到每 3 步都讓指定珠移動位置的有效移動,形成的軌跡圖每格都轉折的情況產生。同時對角線群的步數成 4,10(4+3+3),16(10+3+3),22(16+3+3)的等差級數,如圖 23。

圖 26 對角線右一群

由圖 26 的軌跡圖得知,為了讓<mark>對角線右一群</mark>可利用第一轉折,將其旋轉至「**對角線群**」, 其步數恰巧都比**對角線群**多 3 步。

圖 27 對角線右二群

由圖 27 的軌跡圖得知,對角線右二群已經開始出現大迴轉,每一次大迴轉的步數都會讓整體的步數增加 5 步。

圖 28 對角線右三群

由圖 28 的軌跡圖觀察,大迴轉的次數又多了一次,步數也再度增加 5 步。

圖 29 其他

最後從圖 29 可以看出,同一排或列的指定珠都只能依照大迴轉的方式來移動到固定位置,每次大迴轉增加的步數就是 5 步。

接著為了將圖 23 做成能適用於右下、右上、左下和左上四個角落固定珠,我們將圖延展成圖 30 的型態。

25	22	19	18	17	16	17	18	19	22	25
24	19	16	13	12	11	12	13	16	19	24
23	18	13	10	7	6	7	10	13	18	23
22	17	12	7	4	1	4	7	12	17	22
21	16	11	6	1		1	6	11	16	21
22	17	12	7	4	1	4	7	12	17	22
23	18	13	10	7	6	7	10	13	18	23
24	19	16	13	12	11	12	13	16	19	24
25	22	19	18	17	16	17	18	19	22	25

圖 30

二、3×5 盤面轉珠的規律

透過研究 2 的路徑,我們在轉珠過程中發現,可利用研究 1 的結果先將兩顆可移動珠並在成相鄰的位置(左右或上下)。接著在將相鄰的珠子移動到固定點的步數圖重新尋找出來。就可以透過固定的模式找出所有 3x5 的最短步數,如圖 31。

圖 31

柒、 討論

一、為什麼只討論 3x5 的完美盤面?

首先我們得從隨機 6x5 盤面會有多少 combo 這件事開始。

遊戲中有六種顏色的珠子,盤面最大為 6x5,考慮到各顏色珠子落下的機率,在盤面至少有一種屬性珠的情況下,最少的能完成的 combo 數是 6combo。最大可完成的 combo 數是 10combo。

6combo 的情況是各色珠的數量是 5 顆,也就是水 5(3+2),火 5(3+2),木 5(3+2),光 5(3+2), 暗 5(3+2)和心 5(3+2),如圖 32。

圖 32

10combo 的情況是水、火、木、光、暗和心是 3 的倍數,恰巧可以湊成 3 消的倍數。如圖 33。

圖 33

由 6combo 的情況推論若將其中一種顏色缺少 1 顆,根據「鴿籠原理」將必定有一種顏色的數量形成 3 的倍數,而形成 7combo。

若其中一種顏色缺少2顆,就有機率讓兩種顏色的數量形成3的倍數,而形成8combo(不

同色)或 7 combo(同色)。因此以落下機率來比對的話,因盤面關係而能完成的 combo 眾數必會落在 7combo 或 8 combo,若我們能固定完成一半盤面 3×5,再利用額外的時間完成 2-3combo,也就達到了盤面的平均上限。

此外,從結論二的結果中,可以想像得出如果將盤面擴充到 6×5 盤面,步數的累積量必定更高,此時就不是普通速度能轉完的。但對於通用解的部分,使用結論二的結果,可以發現的確是有辦法解決 6×5 盤面的。

二、一定只能固定左下角的珠子而去完成盤面嗎?

其實不然,我們可以根據盤面的需求去固定 3×5 盤面的四個角落珠與它相同顏色珠的位置,利用研究 3 的結果完成 3×5 盤面第一排;接著可以利用旋轉、對稱的軌跡,重新再從 3×4 盤面的四個角落去完成盤面的第二排,緊接著再重新從 3×3 的盤面去完成第三排,最後完成第四排和第五排,如圖 34。(完成第四排的同時也會同時完成第五排)

圖 34

圖 35

所以基本上就是在做以下的步驟:

- 1.3×5 盤面,檢查四個角落珠與其他同色珠相關位置。
- 2.選定後依 3x5 樣式完成第一 combo。
- 3.重新檢查 3×4 盤面,檢查四個角落珠去其他色珠相關位置。 (通常會優先選定比較靠近起手珠的兩個角落。)
- 4. 選定後依 3x4 樣式完成第二 combo。
- 5.重新檢查 3×3 盤面,檢查四個角落珠去其他色珠相關位置。 (通常會優先選定比較靠近起手珠的兩個角落。)
- 6.選定後依 3x4 樣式完成第三 combo。
- 7. 選定任意角落,直接完成第四及第五 combo。

依上述步驟,並將研究 $1 \cdot 2 \cdot 3$ 軌跡樣式,加入總共僅有 91 張圖。將其中 3×5 路徑最多 29 步, 3×4 樣式 22 步, 3×3 樣式 15 步, 3×2 樣式 6 步, 29 + 22 + 15 + 6 = 72, 共 72 步。

(實際上並非出現道 72 步, 3×5 盤面透過 3×4 樣式完成 4combo 時,餘下來的三顆同色珠 將會自行掉落後形成 2 次消珠,此情況稱為疊珠,但此情況不在這次討論範圍中,實際完成 盤面可縮短至 22 + 15 + 6 = 43步以下,待可繼續研究。)

三、解決 6x5 盤面的可行性?

未來,可將 6x5 盤面,總共有 $29 \times 28 \div 2 = 406$,共 406 張樣式圖。亦可用相同的步驟檢查陸續完成 $7 \times 8 \times 9$ 甚至 10combo。對數學而言,有限的樣式圖及軌跡,必定能尋找出其中的規則,並偕同電腦完成最大 combo 數。

捌、結論

本研究探討在 5x6 盤面中,針對 3x5 盤面進行「3 消」軌跡及 combo 的探究,過程經歷了觀察、尋找關係與樣式、猜測、檢驗,最後提出在 3x5 完美盤面的通用解。

綜合整個研究獲得主要的結論如下:

- 一、我們找到在 5x6 盤面中,移動一顆「指定珠」移動到特定位置所需要的步數。
- 二、利用「指定珠」移動到特定位置的軌跡,找出軌跡形狀與步數之間的關係(圖 24、25、26、27、28 及 29),並將圖形擴充為通用解圖 (圖 30)。
- 三、我們找到在 3×5 盤面中,完成最下層「3 消」所有出現的樣式圖,共 91 種(圖 15、16、17 及 18)。
- 四、延伸討論出在 3×5 盤面中,完成完成最下層「3 消」所需的最短步數及軌跡,(圖 19、20 及 21),並找出 3×5 及任意盤面路徑及具體的解決方法(圖 31)。
- 五、我們接著利用對稱及旋轉,從四個角落珠選擇適當的「固定珠」位置,縮短步數。
- 六、在完美盤面中,依序消除 3×5 盤面最下層、3×4 盤面最下層、3×3 盤面最下層、3×2 盤面最下層,最終消除 5combo 規律性方法。(圖 34 及 35)
- 七、最後探討、分析 6x5 盤面計算可完成 combo 數及具體方法。
- 八、最後預測完成盤面演算法。

玖、 参考資料與其他

- 一、第54屆全國科展高中組,扭「轉」乾坤
- 二、第57屆全國科展國小組,珠聯璧合
- 三、南一書局(2015)。國小數學學習領域第9冊第五單元線對稱圖形。臺南市:南一。
- 四、南一書局(2015)。國小數學學習領域第 12 冊第二單元怎樣解題。臺南市:南一。
- 五、數字拼圖,http://oddest.nc.hcc.edu.tw/math161.htm
- 六、神魔之塔,http://www.towerofsaviors.com/zh/tutorial
- 七、轉珠模擬軟體,http://louisalflame.github.io/TOSwebsite/drag.html