Started on	Saturday, 21 October 2023, 10:50 AM
State	Finished
Completed on	Saturday, 21 October 2023, 11:29 AM
Time taken	39 mins 14 secs
Grade	9.00 out of 10.00 (90 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	

The threshold γ for the ML detection in the signal detection problem is given as

Select one:

 $\ensuremath{\mathbb{V}}$ Flag question

- $||\bar{s}||^2$
- $2\|\bar{\mathbf{s}}\|^2$
- $\frac{\|\bar{\mathbf{s}}\|}{2}$

Your answer is correct.

The correct answer is: $\frac{\|\bar{\mathbf{s}}\|^2}{2}$

Question **2**

Correct

Mark 1.00 out of 1.00

The probability of error for detection can be evaluated as

Select one:

$$Pr(\mathcal{H}_0) P_{FA} + Pr(\mathcal{H}_1) P_D$$

•
$$\Pr(\mathcal{H}_0) P_{FA} + \Pr(\mathcal{H}_1) P_{MD} \checkmark$$

$$\Pr(\mathcal{H}_1) P_{FA} + \Pr(\mathcal{H}_0) P_D$$

$$Pr(\mathcal{H}_1) P_{FA} + Pr(\mathcal{H}_0) P_{MD}$$

Your answer is correct.

The correct answer is: $\Pr(\mathcal{H}_0) P_{FA} + \Pr(\mathcal{H}_1) P_{MD}$

Question ${\bf 3}$

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

The probability of error for the ML detector in the signal detection problem is

Select one:

$$Q\left(\frac{\|\bar{\mathbf{s}}\|}{\sigma}\right)$$

$$Q\left(\frac{\|\bar{\mathbf{s}}\|}{2\sigma}\right) \checkmark$$

$$\bigcirc Q\left(\frac{2\|\bar{\mathbf{s}}\|}{\sigma}\right)$$

$$Q\left(\frac{\|\bar{\mathbf{s}}\|^2}{2\sigma^2}\right)$$

Your answer is correct.

The correct answer is: $Q\left(\frac{\|\bar{\mathbf{s}}\|}{2\sigma}\right)$

Question **4**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{F}}$ Flag question

Consider the signal

$$\bar{\mathbf{s}} = \begin{bmatrix} 4 \\ 4 \\ -4 \end{bmatrix}$$

and noise variance $\sigma^2 = 3 \ dB$. The probability of error of the ML detector is

Select one:

$$Q\left(\frac{1}{\sqrt{2}}\right)$$

$$Q(\sqrt{2})$$

$$Q(2\sqrt{2}) \checkmark$$

$$Q\left(\frac{1}{4}\right)$$

Your answer is correct.

The correct answer is: $Q(2\sqrt{2})$

Question **5**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

For the Amplitude Shift Keying (ASK) constellation with

$$\frac{E_b}{N_0} = 6 \ dB_f$$
 the BER is given as

Select one:

$$Q(\sqrt{2})$$

	-	$\overline{}$
α	$(2\sqrt{2})$	/つ)
()	1.3	
Y	\ \	_ ,

Your answer is correct.

The correct answer is: Q(2)

Question **6**

Correct

Mark 1.00 out of 1.00

▼ Flag question

Let detector choose \mathcal{H}_1 when $\overline{\mathbf{y}} \in R_1$ and \mathcal{H}_0 when $\overline{\mathbf{y}} \in R_0$. The probability of detection is given as

Select one:

$$\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}}$$

$$\int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_1) \, d\bar{\mathbf{y}}$$

$$\bigcirc \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}}$$

Your answer is correct.

The correct answer is: $\int_{R_1} p(ar{\mathbf{y}}; \mathcal{H}_1) \, dar{\mathbf{y}}$

Question 7

Correct

Mark 1.00 out of 1.00

▼ Flag question

Let detector choose \mathcal{H}_1 when $\overline{\mathbf{y}} \in R_1$ and \mathcal{H}_0 when $\overline{\mathbf{y}} \in R_0$. The probability of false alarm is given as

Select one:

$$\quad \, \, \int_{R_0} p(\bar{\mathbf{y}};\mathcal{H}_1) \, d\bar{\mathbf{y}}$$

$$\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_1) \, d\bar{\mathbf{y}}$$

$$\bigcirc \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}}$$

Your answer is correct.

The correct answer is: $\int_{R_1} p(ar{\mathbf{y}}; \mathcal{H}_0) \, dar{\mathbf{y}}$

Question ${\bf 8}$

Incorrect

Mark 0.00 out of 1.00

Let detector choose \mathcal{H}_1 when $\overline{\mathbf{y}} \in R_1$ and \mathcal{H}_0 when $\overline{\mathbf{y}} \in R_0$. We must have

Select one:

$$\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}} + \int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_1) \, d\bar{\mathbf{y}} = 1$$

$$\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}} + \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_1) \, d\bar{\mathbf{y}} = 1$$

$$\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}} + \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}} = 1$$

Your answer is incorrect.

The correct answer is: $\int_{R_1} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}} + \int_{R_0} p(\bar{\mathbf{y}}; \mathcal{H}_0) \, d\bar{\mathbf{y}} = 1$

Question **9**

Correct

Mark 1.00 out of 1.00

The optimal detector

Select one:

- \bigcirc Maximizes sum of P_D and P_{FA}
- \bigcirc Maximizes both P_D and P_{FA}
- Maximizes P_D for a given P_{FA}
- \bigcirc Minimizes P_D for a given P_{FA}

Your answer is correct.

The correct answer is: Maximizes P_D for a given P_{FA}

Question 10

Correct

Mark 1.00 out of 1.00

The optimal detector for the binary hypothesis testing according to the Neyman-Pearson (NP) criterion is given by the

Select one:

- Maximum Likelihood
- Likelihood Ratio Test
- Minimum Mean Squared Error
- Maximum Aposteriori Probability Rule

Your answer is correct.

The correct answer is: Likelihood Ratio Test

Finish review