CONTINUITY AND COMMON SPACES

COLTON GRAINGER (MATH 6210 TOPOLOGY)

2. Assignment due 2018-09-24

- 2.1. Continuity by nested closures. Let (X, \mathcal{T}) and (Y, \mathcal{W}) be topological spaces. Consider a function $f: X \to Y$. The following are equivalent.
 - (a) f is continuous.
 - (b) $f(\overline{A}) \subset \overline{f(A)}$ for all sets $A \subset X$ in domain.
 - (c) $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ for all sets $B \subset Y$ in the codomain.

Proof sketch. (a) implies (c) implies (b) implies (a). I had proved each implication on paper but misplaced my notes. I may revise this proof in a latter assignment.

- 2.2. **Continuity by nested interiors.** Consider the same spaces (X, \mathcal{T}) and (Y, \mathcal{W}) again with a function $f: X \to Y$. The following are also equivalent.
 - (a) f is continuous.
 - (b) $f^{-1}((B)^{\circ}) \subset (f^{-1}(B))^{\circ}$ for all sets $B \subset Y$ in the codomain.

Proof sketch. (a) implies (b) implies (a). Same case as above.

2.3. Homeomorphic subspaces of the real line [1, No. 18.5]. The subspace (a, b) of **R** is homeomorphic with (0, 1).

Proof. Let $f:(a,b) \to (0,1)$ with $x \mapsto \frac{x-a}{b-a}$. We'll show that f is (i) bijective, (ii) continuous, and (iii) open. Whence f will be a homeomorphism.

- (i) Let f^{-1} : $(0,1) \to (a,b)$ be defined by $y \mapsto (b-a)y + a$. Then $f \circ f^{-1} = \mathrm{id}_{(0,1)}$ and $f^{-1} \circ f = \mathrm{id}_{(a,b)}$, so f has a two-sided inverse, and therefore f is a bijection.
- (ii) Take an open interval $B_{\epsilon}(y) \subset (0, 1)$. Now

$$f^{-1}(B\epsilon(y)) = B_{\delta}(f^{-1}(y)) \subset (a,b)$$
 for $\delta = (b-a)\epsilon$

is open too.

(iii) Suppose $B_{\epsilon'}(x)$ is open in (a,b). Then $f(B_{\epsilon'}(x)) = B_{\delta}(f(x)) \subset (0,1)$ for $\delta' = \frac{\epsilon'}{b-a}$ is open in (0,1). \square

Also, the subspace [a, b] (of **R**) is homeomorphic with [0, 1].

Proof. Extend f above defined to g: [0, 1] \rightarrow [a, b] with the same rule of assignment $x \mapsto \frac{x-a}{b-a}$.

- (i) g^{-1} exists as the extension of f^{-1} and is the two sided inverse of g, whence g is a bijection.
- (ii) Suppose U is open in [0,1], then $U=W\cap [0,1]$ for W \mathbf{R}_{std} -open. So $f^{-1}(U)=f^{-1}(W)\cap [a,b]$, which is open in [a,b] iff $f^{-1}(W)$ is open in \mathbf{R}_{std} . Take any open interval $B_{\epsilon}(y)\subset W$. Then for a radius $\delta=(b-a)\epsilon$ and a point x=(b-a)y+a we have

$$f^{-1}(B_{\epsilon}(y)) = B_{\delta}(z) \subset f^{-1}(W).$$

Hence $f^{-1}(W)$ is the union of open intervals in \mathbf{R}_{std} and therefore open itself.

Date: 2018-09-16. Compiled: 2018-09-24.

- (iii) Suppose *B* is a basis element of the subspace [a, b], then $B = B_{\epsilon'}(x) \cap [a, b]$ and $f(B) = f(B_{\epsilon'}(x)) \cap f([a, b]) = B_{\delta'}(f(x)) \cap [0, 1]$ is open in [0, 1] for $\delta' = \frac{\epsilon'}{b-a}$. \square
- 2.4. Continuous at a single point [1, No. 18.6]. The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbf{Q}, \\ -x^2 & \text{else} \end{cases}$$

is continuous at a single point in the domain, namely 0.

Proof. Let $x \neq 0$ be a real number in the domain. The image f(x) is nested in the open interval $B_{\epsilon}(f(x))$ with $\epsilon = x^2 > 0$. Now consider any open ball $B_{\delta}(x)$ in the domain. Both $\mathbf{R} \setminus \mathbf{Q}$ and \mathbf{Q} are dense in \mathbf{R} , so there's a point $p \in \mathbf{Q}$ and $\alpha \in \mathbf{R} \setminus \mathbf{Q}$ such that $p, \alpha \in B_{\delta}(x)$. Whence we have that the open interval $f(B_{\delta}(x))$ contains both positive and negative points, whereas $B_{\epsilon}(f(x))$ contains either only positive points, if we choose $x \in \mathbf{Q}$, or only negative points, if we choose $x \in \mathbf{R} \setminus \mathbf{Q}$. Hence $f(B_{\delta}(x) \not\subset B_{\epsilon}(f(x))$. Therefore f is not continuous at $x \neq 0$.

If x=0 then for any $\epsilon>0$ there's a $\delta=\sqrt{\epsilon}$ such that $F(B_{\delta}(0))\subset B_{\epsilon}(0)$, so f is continuous at x=0. \square

2.5. Left and right continuity [1, No. 18.7].

- (a) Suppose that $f: \mathbf{R} \to \mathbf{R}$ is right continuous¹ at each point $a \in \mathbf{R}$. Then f is continuous when consider as a function from \mathbf{R}_{ℓ} to \mathbf{R} .
- (b) We exhaustively list the functions
 - which are continuous from \mathbf{R} to \mathbf{R}_{ℓ} , also
 - which are continuous from \mathbf{R}_{ℓ} to itself.

For (a) note \mathbf{R}_{ℓ} is finer than \mathbf{R} (here \mathbf{R}_{ℓ} denotes the topological space on the real numbers endowed with the lower limit topology), so $C_{\mathbf{R}}(\mathbf{R}_{\ell}) \subset C_{\mathbf{R}}(\mathbf{R})$ (where $C_D(Y)$ denotes the set of continuous functions out of some space D into the space Y).

Now I claim $C_{\mathbf{R}}(\mathbf{R}_{\ell})$ is the set of constant functions.

Proof. (⊂) For suppose f is a constant function. Then for all \mathbf{R}_{ℓ} -open U, either $f^{-1}(U) = \emptyset$ or $f^{-1}(U) = \mathbf{R}$, both open in \mathbf{R} . So $f \in C_{\mathbf{R}}(\mathbf{R}_{\ell})$.

(\supset) In the other direction, suppose that $f \in C_{\mathbf{R}}(\mathbf{R}_{\ell})$ with f not constant. Then WLOG there exist a < b such that f(a) < f(b). Let

$$C = \{c \in (a, b) : f(c) \in (f(a), f(b))\}.$$

Since $f \in C_{\mathbf{R}}(\mathbf{R})$ we have the intermediate value property, therefore C is a non-empty bounded set of real numbers. Now let $c = \inf C$. I claim $f^{-1}([f(c), f(b)))$ is not open in \mathbf{R} . Indeed $c \in f^{-1}([f(c), f(b)))$ but for all $\epsilon > 0$ the open interval $B_{\epsilon}(c) \not\subset f^{-1}([f(c), f(b)))$. Why? Because if $c - \epsilon/2 \in f^{-1}([f(c), f(b)))$, then

$$f(c - \epsilon/2) \in [f(c), f(b)) \subset (f(a), f(b))$$

Daniel Fischer: Another way to put the definition is to say that $\tilde{f}: E \cup \{x_0\} \to C$ [is continuous when] defined by

$$\tilde{f}(x) = \begin{cases} f(x), & x \in E \setminus \{x_0\} \\ l, & x = x_0. \end{cases}$$

Proof. Suppose f is right continuous at all points in its domain. That is, suppose $\lim_{x\to a^+} f(x) = f(a)$ for all $a\in \mathbb{R}$. Then for any point $a\in \mathbb{R}$ and any neighborhood Y in the local neighborhood system $\mathcal{U}_{(\mathbb{R},\mathcal{T}_{std})}(f(a))$ about f(a) there's a neighborhood X in the neighborhood system $\mathcal{U}_{(\mathbb{R},\mathcal{T}_{\ell})}(a)$ surrounding a (where \mathcal{T}_{ℓ} denotes the lower limit topology) such that $f(X\setminus\{a\})\subset Y$. Now since $f(\{a\})\subset Y$, we know $f(x)=f(X\setminus\{a\}\cup\{a\})\subset Y$. So $f\colon (\mathbb{R},\mathcal{T}_{\ell})\to (\mathbb{R},\mathcal{T}_{std})$ is continuous at every point in its domain, therefore *continuous*.

¹See discussion from "Definition of limit of function on topological spaces", https://math.stackexchange.com/questions/835978. Mathematics Stack Exchange. Retrieved September 23, 2018.

mle: Let be (A, τ) , (C, ζ) two topological spaces, $f \in C^E$, with $E \subseteq A$, and x_0 an accumulation point of E, a point $l \in C$ is limit of f as x approaches x_0 if $\forall Y \in \mathcal{U}_{(C,\zeta)}(l)(\exists X \in \mathcal{U}_{(A,\tau)}(x_0)(f((X - \{x_0\}) \cap E) \subseteq Y))$ where $\mathcal{U}_{(A,\tau)}(x_0)$ is neighbourhood system for x_0 and $\mathcal{U}_{(C,\zeta)}(l)$ is neighbourhood system for l.

but $c - \epsilon/2 < c = \inf C$, a contradiction. So if f is not constant, then f is not continuous from $\mathbf{R} \to \mathbf{R}_{\ell}$. \square

I conjecture (without proof) $f : \mathbf{R} \to \mathbf{R}_{\ell}$ is continuous iff f is piecewise defined as \mathbf{R}_{std} continuous and monotonically increasing on each set of any partition of \mathbf{R} into countably many half open intervals.

- 2.6. **Maps into the order topology [1, No. 18.8].** Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous maps.
 - (a) The set $\{x : f(x) \le g(x)\}$ is closed in X.
 - (b) The function $h: X \to Y$ defined by $h(x) = \min\{f(x), g(x)\}$ is continuous.

Proof. To show (a) that $K = \{x : f(x) \le g(x)\}$ is closed in X, note that if for all $x \in X$ we have that $f(x) \le g(x)$, then K = X and we're done. So suppose that for some $x \in X$ it's the case that f(x) > g(x). Now we'll argue that K contains all of its limit points.

For contradiction, suppose K has a limit point k such that $k \notin K$ (that is, f(k) > g(x)). Since k is a limit point of K for all open sets V in X (including the pullbacks $f^{-1}(U)$ and $f^{-1}(U)$ of some open $U \in Y$) we that

$$V \cap (K \setminus \{k\}) \neq \emptyset$$
.

Take a X basis element $B \ni f(k)$ such that if B contains no points² c such that $f(c) \le g(c)$. Then $f^{-1}(B)$ is X open and yet

$$f^{-1}(B) \cap (K \setminus \{k\}) \subset \{x : f(x) \in B\} \cap \{x : f(x) \le g(x)\} = \emptyset$$

since if $f(x) \in B$ then f(x) > g(x). Therefore if k is a limit point of K, we must have that $k \in K$. So K is closed.

To show (b) that h is continuous, take any $a \in X$. We will demonstrate that for all Y-open basis sets B(h(a)) there's a X open U such that $h(U) \subset B(h(a))$. Note that if h(a) = f(a) = g(a) we are done, as there exist open $U_f \ni a$ and $U_g \ni a$ satisfying $f(U_f) \subset B(h(a))$ and $g(U_g) \subset B(h(a))$, and $a \in U = U_f \cap U_g$ will satisfy $h(U) \subset B(h(a))$. So without loss of generality, suppose that h(a) = g(a) < f(a) and consider B(h(a)) = B(g(a)). Now, because g is continuous at a, there's an open set $U_g \cap a$ such that $g(U_g) \subset B(g(a))$. Take the open set (its the complement of a set we just proved is closed)

$$V = \{x : g(x) < f(x)\}$$

and we have the desired open set $U_q \cap B$ such that

$$h(U_a \cap V) = g(U_a \cap V) \subset g(U_a) \subset B(g(a))$$

where the first equality is by definition of h and choice of V. \square

2.7. Maps out of the product topology [1, No. 18.12]. Let $F: \mathbf{R} \times \mathbf{R}$ be defined by

$$F(x \times y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } x \times y \neq 0 \times 0, \\ 0 & \text{else.} \end{cases}$$

- (a) F is continuous in each variable separately.
- (b) We compute the restriction $q: \mathbf{R} \to \mathbf{R}$ defined by $g(x) = F(x \times x)$.
- (c) F is not continuous.

Demonstration. Without loss of generality, we'll show that F is continuous in x (since F is symmetric in x and y by relabelling). Fix $y = y_0$ and restrict $F|_{\mathbf{R} \times \{y_0\}}$ to the horizontal line through y_0 . That $F|_{\mathbf{R} \times \{y_0\}}$ is continuous for $(x, y_0) \neq (0, 0)$ is clear, for it's an sum, product, and quotient of continuous functions. Now suppose that $(x, y_0) = (0, 0)$. Then, consider any \mathbf{R} -basis element $B_{\epsilon}(0) \ni 0$ for $\epsilon > 0$. The open set \mathbf{R} maps into $B_{\epsilon}(0)$ since (with $y_0 = 0$) the restriction $F|_{\mathbf{R} \times \{0\}}(x) = 0$ for all $x \in \mathbf{R}$. We've shown (a) that F is continuous in each variable separately.

Now let $q: \mathbf{R} \to \mathbf{R}$ be defined as the composition $q = F \circ h$ where

$$\mathbf{R} \xrightarrow{h} \mathbf{R}^2 \xrightarrow{F} \mathbf{R}$$

²Verify *B* is nonempty, consider $f(k) \in B$.

and $h: x \mapsto (x, x)$. Then

$$g(x) = \begin{cases} \frac{1}{2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

This shows (b).

Lastly, for (c), given g is not continuous from **R** to **R**, yet h is continuous, we must have that F is not continuous. \Box

2.8. **Projections and quotient maps [1, No. 22.3].** Let $\pi_1: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be the projection on the first coordinate, and consider the subspace $A = \{x \times y : x \ge 0 \text{ or } y = 0\}$. The restriction $q: A \to \mathbf{R}$ obtained by $q = \pi_1|_A$ is a quotient map that is neither open nor closed.

Proof. Let the map $q: A \to \mathbf{R}$ be defined by the composition $q(z) = (\pi_1 \circ \iota)(z)$ where π_1 is the first coordinate projection of \mathbf{R}^2 onto \mathbf{R} and ι is the inclusion map of A into \mathbf{R}^2 .

To show that q is a quotient map, note that q is clearly surjective. Further, if U is open in \mathbf{R} , then $\pi_1^{-1}(U)$ is open in \mathbf{R}^2 , whence in A we have the open set $q^{-1}(U) = A \cap \pi^{-1}(U)$. Lastly, suppose that $q^{-1}(U)$ is open in A, and consider

$$x \in (\pi_1 \circ \iota)(q^{-1}(U)) = U.$$

Now $q^{-1}(x) \subset q^{-1}(U)$, so for all $z \in q^{-1}(x)$ there's an $\epsilon_z > 0$ such that

$$q^{-1}(U) \supset B_z = B_{\epsilon_r}(z) \cap A$$
 with $B_{\epsilon_r}(z)$ an open set in \mathbb{R}^2 .

Assuming³ is open, we have that $\pi_1(B_{\epsilon_z}(z)) \supset \pi_1(\iota(q^{-1}(U))) = U$ and $\pi_1(B_{\epsilon_z}(z)) \ni x$. So *U* is open, as desired. Because *q* is a *strongly continuous*, surjective function, we say that *q* is a *quotient map*.

Now to show that q is neither open nor closed. To see that q is not open, consider the A-open set $U = B_{\epsilon}(0 \times 1) \cap A$ where $0 < \epsilon < 1$. Then q(U) = [0, 1), which is not **R**-open. To see that q is not closed, consider the closed set

$$K = \left\{ (x, y) : y \le \frac{1}{1 - x} \text{ and } 1 < x \le 2 \right\}.$$

Its image $q(K) = \pi_1(K) = (1, 2]$ is not closed.

2.9. Equivalence relations and quotient spaces [1, No. 22.4].

(a) Define an equivalence relation \sim on the plane \mathbb{R}^2 by

$$x_0 \times y_0 \sim x_1 \times y_1 \text{ iff } x_0 + y_0^2 = x_1 + y_1^2.$$

I claim the real line **R** is homeomorphic to this equivalence relation's corresponding quotient space \mathbb{R}^2/\sim .

That is, the sets in \mathbb{R}^2 / are exactly the levels curves $x+y^2=c$, i.e., left opening parabolas where for each $c \in \mathbb{R}$ the unique parabola on the level curve has the directrix $x=c-\frac{1}{2}$ and the focus $(c+1/2,0) \in \mathbb{R}^2$. A homeomorphism is apparent—map the level curves satisfying $x+y^2=c$ to the point c on the real line.

(b) Now redefine the previous equivalence relation ~ (again on the plane) by

$$x_0 \times y_0 \sim x_1 \times y_1$$
 iff $x_0^2 + y_0^2 = x_1^2 + y_1^2$.

In this case, the sets in the quotient space are the level curves $x^2 + y^2 = c$, that is, circles about the origin of radius \sqrt{c} . Now \mathbb{R}/\sim is homeomorphic to the half open ray $[0,\infty)$, where such a homeomorphic map can be obtained by mapping the level curves of radius \sqrt{c} to $c \in [0,\infty)$.

 $^{^3}$ I'm not convinced. For example, I'll try to show that π_1 is *not closed* (and therefore, maybe, also not open?) in the next section, so this logic seems a bit circuituous.

2.10. **Restricting to open maps [1, No. 22.5].** Suppose that $p: X \to Y$ is an open map. If A is open in X, then the map $q: A \to p(A)$ obtained by restricting p is an open map.

Proof. We want to show that if U is open in the subspace A then q(U) is open in the subspace p(A). So let U be open in A. Then $U = W \cap A$ is open in X (since W is open in X by definition of a subspace and since A is open in X by assumption). Then $p(W \cap A) = p(W) \cap p(A)$ is Y-open (its a finite intersection of open sets) and thus $q(U) = p(W \cap A)$ is Y-open. \square

- 2.11. Quotienting out *K* in the *K*-topology [1, No. 22.6]. Let *Y* be the quotient space obtained from \mathbf{R}_K by collapsing the set *K* to point, with $p: \mathbf{R}_K \to Y$ as the corresponding quotient map.
 - (a) Y is T_1 but not Hausdorff.
 - (b) The map $p \times p : \mathbf{R}_K \times \mathbf{R}_K \to Y \times Y$ is not a quotient map.⁴

Proof. TODO.

REFERENCES

[1] J. R. Munkres, *Topology*, 2nd ed. Hardcover; Prentice Hall, Inc., 2000 [Online]. Available: http://www.worldcat.org/isbn/0131816292

⁴The diagonal is not closed in $Y \times Y$, but its inverse image is closed in $\mathbf{R}_K \times \mathbf{R}_K$.