1 Sequências

Sequências são listas ordenadas inifinitas de números.

Denota-se:

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots = \left(\frac{1}{n}\right)_{n=1}^{\infty}$$

1.1 Limite de Sequências

Teorema: Sequências que convergem possuem um limite.

Para
$$(a_n)_{n=1}^{\infty}$$
 denota-se $\lim_{n\to\infty} a_n$

Exemplos:
$$\lim_{n\to\infty} \frac{1}{n} = 0$$

$$\lim_{n\to\infty} \frac{n+3}{n} = 1$$

O limite de uma sequência constante é o termo constante.

1.1.1 Propriedades do Limite

Sejam $(a_n)_{n=1}^{\infty}$ e $(b_n)_{n=1}^{\infty}$ convergentes, então:

$$\lim_{n\to\infty} (a_n+b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (a_n-b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (c\cdot a_n) = c\cdot \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty} (a_n\cdot b_n) = \lim_{n\to\infty} a_n\cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} f(a_n) = f\left(\lim_{n\to\infty} a_n\right) \quad \text{se } f(x) \text{ \'e contínua.}$$

$$\lim_{n\to\infty} a_n = \lim_{x\to\infty} f(x) \quad \text{se } a_n = f(n) \text{ e } \lim_{n\to\infty} f(n) \text{ existe.}$$

2 Séries

Uma série é denotada por $\sum\limits_{n=0}^{\infty}a_{n}=a_{0}+a_{1}+a_{2}+\ldots$

A m-ésima soma parcial de uma série $\sum\limits_{n=0}^{\infty}a_n$ é definida por:

$$S_m = a_0 + a_1 + \ldots + a_m = \sum_{n=0}^m a_n$$

Teorema: Se a sequência das somas parciais de uma série converge, então a série converge equivalendo ao limite da sequência. Caso contrário, a série diverge.

1

3 Série Geométrica

Uma série geométrica é uma série formada por uma progressão geométrica de razão $\underline{\mathbf{r}}$.

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \dots$$

3.1 Soma da Série Geométrica

A soma parcial de uma série geométrica é:

Para r = 1:

$$\sum_{n=0}^{m} 1^n = \sum_{n=0}^{m} 1 = m$$

Para $r \neq 1$:

$$S_m = 1 + r + r^2 + r^3 + \dots + r^m$$

 $r \cdot S_m = 1 + r + r^2 + r^3 + \dots + r^m + r^{m+1}$

$$S_m - r \cdot S_m = 1 - r^{m+1}$$

$$S_m \cdot (1 - r) = 1 - r^{m+1}$$

$$\vdots$$

$$S_m = \frac{1 - r^{m+1}}{1 - r}$$

Portanto, o limite da sequência das somas parcias é:

Para r = 1 : $\lim_{m \to \infty} m = \infty$

Para r = -1: $\lim_{m \to \infty} \frac{1 - (-1)^{m+1}}{1 - (-1)}$: divergente

Para |r| < 1: $\lim_{m \to \infty} \frac{1 - r^{m+1}}{1 - r} = \frac{1}{1 - r}$

Para r > 1 : $\lim_{m \to \infty} \frac{1 - r^{m+1}}{1 - r} = \frac{1 - \infty}{1 - r} = \infty$

Para $r < -1: \lim_{m \to \infty} \frac{1 - r^{m+1}}{1 - r}$: divergente

Resultando em:

Para $r = 1 : \infty$

Para r = -1: divergente

Para $|r| < 1 : \frac{1}{1-r}$

Para r > 1 : ∞

Para r < -1: divergente

4 Convergência e Divergência

Teorema: Seja uma série $\sum\limits_{n=0}^{\infty}a_{n}$

Se $\lim_{n\to\infty} a_n \neq 0$, a série diverge.

Se a série converge, então $\lim_{n\to\infty} a_n = 0$ {o oposto não vale}

4.1 Teste da Integral

Teorema: Seja uma série $\sum_{n=0}^{\infty}$ com todos termos positivos, e uma função f(x) que interpola os termos desta série

Se
$$\int_{-\infty}^{\infty} f(x) dx = \infty$$
, então a série diverge para ∞ .

Se
$$\int_{1}^{\infty} f(x) dx < \infty$$
, então a série converge.

Exemplo: Denomina-se série-P a seguinte série: $\sum\limits_{n=1}^{\infty}\frac{1}{n^{p}}$ onde p>0

Para p=1, obtemos a série harmônica $\sum\limits_{n=1}^{\infty}\frac{1}{n},$ que diverge.

Para $p \neq 1$, seja $f(x) = \frac{1}{x^p}$ a função que interpola os termos da série:

$$\lambda = \int_{1}^{\infty} x^{-p} dx = \frac{x^{-p+1}}{-p+1} \Big|_{1}^{\infty}$$

$$\lambda = \lim_{x \to \infty} \frac{x^{-p+1}}{-p+1} - \frac{1^{-p+1}}{-p+1}$$

$$\lambda = \lim_{x \to \infty} \frac{x^{-p+1} - 1}{-p+1}$$

Para p < 1, (1 - p) > 0:

$$\lambda = \lim_{x \to \infty} \frac{x^{-p+1} - 1}{-p+1}$$
$$= \frac{\infty - 1}{-p+1} = \infty$$

Portanto, a série diverge.

Para p > 1, (1 - p) < 0:

$$\lambda = \lim_{x \to \infty} \frac{1}{x^{|-p+1|} \cdot (-p+1)} - \frac{1^{-p+1}}{-p+1}$$

$$= \frac{1}{\infty \cdot (-p+1)} - \frac{1}{-p+1}$$

$$= \frac{1}{-\infty} - \frac{1}{-p+1}$$

$$= \frac{1}{-p+1}$$

Como $\frac{1}{-p+1} < \infty$, a série converge.

5 Estimativas de Somas

O erro contido em uma estimativa de soma S_m é:

$$R_m = S - S_m = \sum_{n=m+1}^{\infty} a_m$$

Portanto:

$$\int_{m+1}^{\infty} f(x) dx \le R_m \le \int_{m}^{\infty} f(x) dx \quad \text{onde } f(x) \text{ interpola os pontos da série.}$$

Exemplo:

$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

A série é convergente como demonstrado pelo teste da integral: $(\frac{1}{3}<\infty)$

$$\int_{1}^{\infty} \frac{1}{x^{4}} dx = \int_{1}^{\infty} x^{-4} dx$$
$$= \frac{-1}{3x^{3}} \Big|_{1}^{\infty}$$
$$= 0 - \frac{-1}{3} = \frac{1}{3}$$

Estimativa do resto usando o teste da integral:

$$R_m \le \int_{m}^{\infty} \frac{1}{x^4} dx = \frac{-1}{3x^3} \Big|_{m}^{\infty}$$
$$= \frac{1}{3m^3}$$

$$R_1: |S - S_1| = |S - 1|$$
 $\leq \frac{1}{3 \cdot 1^3} = \frac{1}{3}$

$$R_2: |S - S_2| = |S - (1 + \frac{1}{16})|$$

= $|S - \frac{17}{16}| \le \frac{1}{3 \cdot 2^3} = \frac{1}{24}$

Calculo de m que satisfaça $R_m < \frac{1}{10000}$:

$$\frac{1}{3m^3} < \frac{1}{10000}$$

$$m^3 > \frac{10000}{3}$$

$$m > \sqrt[3]{\frac{10000}{3}}$$

6 Teste da Comparação

Teorema: Seja $\sum\limits_{n=1}^{\infty}a_n$ e $\sum\limits_{n=1}^{\infty}b_n$ tal que $\forall n:b_n\geq a_n>0,$ então:

$$\sum_{n=1}^{\infty} b_n < \infty \Rightarrow \sum_{n=1}^{\infty} a_n < \infty$$

$$\sum_{n=1}^{\infty} a_n = \infty \Rightarrow \sum_{n=1}^{\infty} b_n = \infty$$

Exemplos:

Seja $a_n = \frac{1}{n^4 + 3n^3 + 5n^2 + n + 5}$, $\sum_{n=1}^{\infty} a_n$ converge pois $\forall n : a_n < \frac{1}{n^4}$, $\sum_{n=1}^{\infty} \frac{1}{n^4}$ converge pelo teste da integral.

$$\sum\limits_{n=1}^{\infty}\frac{\ln n}{n}$$
 diverge, pois $\forall n\geq 3:\frac{1}{n}<\frac{\ln n}{n},$ e $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ diverge.

6.1 Teste da Comparação no Limite

Teorema: Seja $\sum\limits_{n=1}^{\infty}a_n$ e $\sum\limits_{n=1}^{\infty}b_n$ tal que $\forall n:a_n>0 \land b_n>0,$ então:

 $\lim_{n\to\infty}\frac{a_n}{b_n}>0\Rightarrow \text{ambas convergem ou ambas divergem}.$

7 Teorema das Sequências Monótonas

7.1 Sequências Monótonas

Uma sequência $(a_n)_{n=1}^{\infty}$ é monótona se:

 $\forall n : a_n \ge a_{n+1} \qquad \{\text{crescente}\}\$

ou

 $\forall n : a_n \le a_{n+1} \qquad \{\text{decrescente}\}\$

7.2 Sequências Limitadas

Uma sequência é limitada se:

$$\forall n: \exists M > 0: |a_n| < M$$
 ou seja:
$$\forall n: -M < a_n < M$$

5

Exemplo: $a_n = \frac{\sin n}{n}$ é limitada pois $\forall x \in \mathbb{N} : |\sin x| \le 1$, portanto $-1 \le a_n \le 1$.

7.3 Teorema

Se uma sequência é monótona e limitada, então ela é convergente.

Séries Alternadas

Uma série
$$\sum\limits_{n=0}^{\infty}a_{n}$$
 é alternada se:

$$\forall n: a_n \cdot a_{n+1} < 0$$

Teorema: Se uma série $\sum_{n=0}^{\infty} a_n$ é alternada, $|a_n|$ é uma sequência monótona decrescente e $\lim_{n\to\infty} |a_n| = 0$, então a série converge.

Exemplo:
$$\sum\limits_{n=0}^{\infty}\frac{(-1)^n}{n}$$
 é alternada

$$\left|\frac{(-1)^n}{n}\right| = \frac{1}{n} \Rightarrow \text{mon\'otona decrescente}$$

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Portanto, a série converge.

Convergência Absoluta

Dizemos que $\sum_{n=0}^{\infty} a_n$ converge absolutamente se $\sum_{n=0}^{\infty} |a_n|$ converge.

Exemplos: $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2} \text{ \'e absolutamente convergente pois } \sum_{n=0}^{\infty} \frac{1}{n^2} \text{ converge.}$ $\sum_{n=0}^{\infty} \sin n \text{ n\~ao \'e absolutamente convergente pois } \sum_{n=0}^{\infty} |\sin n| \text{ diverge.}$ $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} \text{ n\~ao \'e absolutamente convergente pois } \sum_{n=0}^{\infty} \frac{1}{n} \text{ diverge.}$

Teorema: Se uma série é absolutamente convergente, então ela é convergente.

Obs: Quando uma série converge, mas sem ser absolutamente convergente, dizemos que a série é condicionalmente convergente.

9.1Testes da Razão e da Raiz

Suponha que uma série satisfaça $|a_n| \approx R^n$

• Se R < 1, esperamos que a série seja absolutamente convergente.

6

 $\bullet\,$ Se R>1, esperamos que a série diverja.

9.1.1Teste da Razão

Teorema: Se $\sum_{n=0}^{\infty} a_n$ é tal que $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = L$, então:

- Se L < 1, a série é absolutamente convergente.
- Se L > 1, a série é divergente.
- Se L=1, o teste é inconclusivo.

9.1.2 Teste da Raiz

Teorema: Se $\sum\limits_{n=0}^{\infty}a_n$ é tal que $\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=L,$ então:

- $\bullet\,$ Se L<1, a série é absolutamente convergente.
- Se L > 1, a série é divergente.
- Se L=1, o teste é inconclusivo.

10 Séries de Potências

Uma expressão da seguinte forma é denominada série de potências:

$$\sum_{n=0}^{\infty} c_n \cdot (x-a)^n = c_0 + c_1 \cdot (x-a) + c_2 \cdot (x-a)^2 + \dots$$

 c_n : coeficiente

x : variável

a: centro

Exemplo: Para $c_n = \frac{1}{n+1}$ e a = -3, a série de potências é:

$$\sum_{n=0}^{\infty} \frac{1}{n+1} \cdot (x+2)^n$$

Teorema: O conjunto de valores de x onde uma série de pontências converge é um dos seguintes:

- $\bullet \mathbb{R}$
- {*a*}
- $(a \alpha, a + \alpha), \alpha > 0$ onde α é o raio de convergência.

Teorema: Se $\sum_{n=0}^{\infty} c_n \cdot (x-a)^n$ tem raio de convergência maior que zero, e seja

$$f(x) = \sum_{n=0}^{\infty} c_n \cdot (x - a)^n$$

para x no intervalo de convergência da série, então:

$$f'(x) = \sum_{n=1}^{\infty} n \cdot c_n \cdot (x-a)^{n-1}$$
 para x no interior do invervalo de convergência.

7

$$\int_{c}^{d} f(x) dx = \sum_{n=0}^{\infty} (c_n \cdot \int_{c}^{d} (x-a)^n dx) \quad \text{se } c \in d \text{ estão no interior do intervalo de convergência.}$$

11 Séries de Taylor

A série de Taylor, com centro a, de f(x) é:

$$\sum_{n=0}^{\infty} \frac{f^{[n]}(a)}{n!} \cdot (x-a)^n \quad \text{onde } [n] \text{ indica a } n\text{-\'esima derivada de } f.$$

Quando a = 0, a série denomina-se série de Maclaurin.

Exemplo:

Se $f(x) = \sin x$, sua série de Maclaurin é:

n	$f^{[n]}(x)$	$f^{[n]}(0)$
0	$\sin x$	0
1	$\cos x$	1
2	$-\sin x$	0
3	$-\cos x$	-1
4	$\sin x$	0
:	:	:

$$0 + 1x + \frac{0}{2!} \cdot x^2 + \frac{-1}{3!} \cdot x^3 + \dots$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^m}{(2m+1)!} \cdot x^{2m+1}$$

11.1 Polinômio de Taylor

O polinômio de Taylor centrado em a, de grau N, de f(x) é:

$$\sum_{n=0}^{N} \frac{f^{[n]}(a)}{n!} \cdot (x-a)^{n} = f(a) + f'(a) \cdot (x-a) + \frac{f''(a) \cdot (x-a)^{2}}{2!} + \dots$$

Denota-se $P_{N,a}(x)$.

Exemplo:

Para $f(x) = \sin x$:

$$P_{1,0}(x) = x$$

$$P_{2,0}(x) = x + \frac{0}{2!} \cdot x^2 = x$$

$$P_{3,0}(x) = x - \frac{x^3}{3!}$$

11.2 Resto de Taylor

Considerando $\sum_{n=0}^{\infty} \frac{f^{[n]}(a)}{n!} \cdot (x-a)^n = \lim_{n\to\infty} P_{N,a},$ definimos o resto de Taylor:

$$R_{N,a}(x) = f(x) - P_{N,a}(x)$$

Teorema: Se $\lim_{N\to\infty} R_{N,a} = 0$, a série de Taylor de f(x) converge para f(x).

11.3 Desigualdade de Taylor

Teorema: Seja $M_n > 0$, d > 0, $x \in (a - d, a + d)$.

Se
$$|f^{[N+1]}(x)| \leq M_n$$
, então:

$$|R_{N,a}(x)| \le \frac{M_n \cdot |x-a|^{N+1}}{(N+1)!}$$