Context-free languages

Precedence in arithmetic expressions

bash-3.2\$ python
>>> 2+3*5
17

Grammars describe meaning

EXPR \rightarrow EXPR + TERM EXPR \rightarrow TERM TERM \rightarrow TERM * NUM TERM \rightarrow NUM NUM \rightarrow 0-9

rules for valid (simple) arithmetic expressions

These rules always yield the correct meaning

The grammar of English

SENTENCE → NOUN-PHRASE VERB-PHRASE

NOUN-PHRASE \rightarrow A-NOUN or \rightarrow A-NOUN PREP-PHRASE

The grammar of English

NOUN-PHRASE \rightarrow A-NOUN or \rightarrow A-NOUN PREP-PHRASE

PREP-PHRASE → PREP NOUN-PHRASE

The grammar of (parts of) English

SENTENCE → NOUN-PHRASE VERB-PHRASE

NOUN-PHRASE \rightarrow A-NOUN

NOUN-PHRASE → A-NOUN PREP-PHRASE

VERB-PHRASE → CMPLX-VERB

VERB-PHRASE → CMPLX-VERB PREP-PHRASE

PREP-PHRASE → PREP A-NOUN

A-NOUN \rightarrow ARTICLE NOUN

CMPLX-VERB → VERB NOUN-PHRASE

 $CMPLX-VERB \rightarrow VERB$

ARTICLE → a

 $ARTICLE \rightarrow the$

 $NOUN \rightarrow cat$

 $NOUN \rightarrow girl$

 $NOUN \rightarrow flower$

VERB → likes

VERB → touches

VERB → sees

 $PREP \rightarrow with$

The meaning of sentences

Context-free grammar

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111$$

 $\Rightarrow 000B111 \Rightarrow 000\#111$

derivation

Context-free grammar

- A context-free grammar is given by (V, Σ, R, S) where
 - -V is a finite set of variables or non-terminals
 - $-\Sigma$ is a finite set of terminals
 - -R is a set of productions or substitution rules of the form

$$A \rightarrow \alpha$$

A is a variable and α is a string of variables and terminals

S is a variable called the start variable

Notation and conventions

$$E \rightarrow E + E$$
 $N \rightarrow 0N$
 $E \rightarrow (E)$ $N \rightarrow 1N$

$$E \rightarrow N$$
 $N \rightarrow 0$

$$N \rightarrow 1$$

Variables: E, N

Terminals: +, (,), 0, 1

Start variable: E

shorthand:

$$E \rightarrow E + E \mid (E) \mid N$$

$$N \rightarrow 0N \mid 1N \mid 0 \mid 1$$

conventions:

Variables in **UPPERCASE**

Start variable comes first (typically denoted by S)

Derivation

• A derivation is a sequential application of productions:

derivation

$$E \Rightarrow E + E$$

$$\Rightarrow (E) + E$$

$$\Rightarrow (E) + N$$

$$\Rightarrow (E + E) + 1$$

$$\Rightarrow (E + E) + 1$$

$$\Rightarrow (E + N) + 1$$

$$\Rightarrow (N + N) + 1$$

$$\Rightarrow (N + 1N) + 1$$

$$\Rightarrow (N + 10) + 1$$

$$\Rightarrow (1 + 10) + 1$$

 $E \stackrel{*}{\Rightarrow} (1+10)+1$

$$E \rightarrow E + E \mid (E) \mid N$$

$$N \rightarrow 0N \mid 1N \mid 0 \mid 1$$

$$\alpha \Rightarrow \beta$$
 one production

$$\alpha \stackrel{*}{\Rightarrow} \beta$$
 derivation

(Two derivations are different if they use two different rules at any point.)

Context-free languages

• The language generated by a CFG G is the set of all strings at the end of a derivation

$$L(G) = \{ w : w \in \Sigma^* \text{ and } S \stackrel{*}{\Rightarrow} w \}$$

Questions we will ask:

Given a CFG, what is its language?

Given a language, write a CFG for it.

Analysis example I

$$A \rightarrow 0A1 \mid B$$

 $B \rightarrow \#$

$$L(G) = \{0^n \# 1^n : n \ge 0\}$$

Can you derive:

$$00#11$$
 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$

#

$$A \Rightarrow B \Rightarrow \#$$

00#111

No, there is an uneven number of 0s and 1s

00##11

No, there are too many #

Analysis example 2

$$S \rightarrow SS \mid (S) \mid \epsilon$$

Can you derive

$$S \Rightarrow (S)$$

$$\Rightarrow ()$$

$$()$$

```
S \Rightarrow (S)
\Rightarrow (SS)
\Rightarrow ((S)S)
\Rightarrow ((S)(S))
\Rightarrow (()(S))
\Rightarrow (()(S))
\Rightarrow (()(S))
```

Parse trees

$$S \rightarrow SS \mid (S) \mid \epsilon$$

• A parse tree gives a more compact representation:

Parse trees

One parse tree can represent many derivations

Analysis example 2

```
S \rightarrow SS \mid (S) \mid \epsilon
```

Can you derive

```
(()() No, because there is an uneven number of (and)
```

()) (() No, because there is a prefix with an excess of)

Analysis example 2

$$S \rightarrow SS \mid (S) \mid \varepsilon \qquad L(G) = \{w: \}$$

$$L(G) = \{w:$$

w has the same number of (and) no prefix of w has more) than ()

Parsing rules:

Divide w up in blocks with same number of (and)

Each block is in L(G)

Parse each block recursively

$$L_1 = \{0^n 1^n \mid n \ge 0\}$$

These strings have recursive structure:

```
0000001111111
00000111111
00001111
000111
01
\epsilon
```

$$S \rightarrow 0S1 \mid \epsilon$$

 L_2 = all natural numbers in decimal notation

$$\epsilon$$
, 01, 003 not allowed

$$S \to 0 | LN$$

 $N \to DN | \epsilon$
 $D \to 0 | L$
 $L \to 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

$$\begin{array}{c} 1052870032 \\ \downarrow \quad \text{any number } N \\ \text{leading digit } L \end{array}$$

$$L_3 = \{0^n 1^n 0^m 1^m \mid n \ge 0, m \ge 0\}$$

010011

00110011

These strings have two parts:

000111

$$L_{3} = L_{p}L_{s}$$

$$L_{p} = \{0^{n}1^{n} \mid n \ge 0\}$$

$$L_{s} = \{0^{m}1^{m} \mid m \ge 0\}$$

$$S \rightarrow S_1 S_1$$

$$S_1 \rightarrow 0S_11 \mid \epsilon$$

rules for L_p : $S_1 \rightarrow 0S_11 \mid \epsilon$

 L_{s} is the same as L_{p}

$$L_4 = \{0^n 1^m 0^m 1^n \mid n \ge 0, m \ge 0\}$$

011001

0011

These strings have nested structure:

1100

00110011

outer part: $0^n 1^n$

inner part: 1^m0^m

$$S \rightarrow 0S1 \mid I$$

 $I \rightarrow 1I0 \mid \epsilon$

$$I \rightarrow 1I0 \mid \epsilon$$

 $L_5 = \{x: x \text{ has two } 0\text{-blocks with same number of } 0s\}$

01011, 001011001, 10010101001 allowed

01001000, 01111 not allowed

A: ϵ , or ends in 1

 $C: \epsilon$, or begins with 1

A: ϵ , or ends in 1

C: ϵ , or begins with 1

U: any string

$$S \rightarrow ABC$$

$$A \rightarrow \varepsilon \mid U1$$

$$U \rightarrow 0U \mid 1U \mid \varepsilon$$

$$C \rightarrow \varepsilon \mid 1U$$

$$B \rightarrow 0D0 \mid 0B0$$

$$D \rightarrow 1U1 \mid 1$$

B has recursive structure:

same number of 0s at least one 0

D: begins and ends in 1

Context-free versus regular

• Write a CFG for the language (0 + 1)*111

$$S \rightarrow U111$$

 $U \rightarrow 0U \mid 1U \mid \epsilon$

Can you do so for every regular language?

Every regular language is context-free

From regular to context-free

regular expression

CFG

 \varnothing

grammar with no rules

3

 $S \rightarrow \epsilon$

a (alphabet symbol)

 $S \rightarrow a$

 $E_{1} + E_{2}$

 $S \rightarrow S_1 \mid S_2$

 E_1E_2

 $S \rightarrow S_1 S_2$

 E_1*

 $S \rightarrow SS_1 \mid \epsilon$

(S becomes the new start symbol)

Context-free versus regular

Is every context-free language regular?

$$S \to 0S1 \mid \epsilon$$
 $L_1 = \{0^n 1^n : n \ge 0\}$

Is context-free but not regular

Ambiguity Parsing algorithms Probabilistic Context-Free Grammars

Ambiguity

$$E \rightarrow E + E \mid E * E \mid (E) \mid N$$

$$N \rightarrow 1N \mid 2N \mid 1 \mid 2$$

A CFG is ambiguous if some string has more than one parse tree

Example

Is $S \rightarrow SS \mid x$ ambiguous?

Yes, because

$$S \rightarrow Sx \mid x$$

Sometimes we can rewrite the grammar to remove ambiguity

Divide expression into terms and factors

$$E \rightarrow E + E \mid E * E \mid (E) \mid N$$

$$N \rightarrow 1N \mid 2N \mid 1 \mid 2$$

An expression is a sum of one or more terms

Each term is a product of one or more factors

Each factor is a parenthesized expression or a number

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow (E) \mid 1 \mid 2$$

Parsing example

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow (E) \mid 1 \mid 2$$

Unique parse tree (because +/* is right-binding

- Disambiguation is not always possible because
 - There exist inherently ambiguous languages
 - There is no general procedure for disambiguation
- In programming languages, ambiguity comes from precedence rules, and we can deal with it like in the previous example
- In English, ambiguity is sometimes a problem:

He ate the cookies on the floor.

Ambiguity in English

He ate the cookies on the floor.

Parsing

$$S \rightarrow 0S1 \mid 1S0S \mid T$$

 $T \rightarrow S \mid \epsilon$

input: 0011

How would we program the computer to build a parse tree for us?

Parsing

First idea: Try all derivations

Problems

Trying all derivations may take a very long time

② If input is not in the language, parsing will never stop

When to stop

$$S \rightarrow 0S1 \mid 1S0S \mid T$$

 $T \rightarrow S \mid \epsilon$

Idea 2: Stop when

|derived string| > |input|

Problems

$$S \Rightarrow 0S1 \Rightarrow 0T1 \Rightarrow 01$$

$$1 \qquad 3 \qquad 3 \qquad 2$$

 $S \Rightarrow T \Rightarrow S \Rightarrow T \Rightarrow \dots$

Derived strings may shrink because of "ε-productions"

Derivation may loop because of "unit productions"

Task: remove ε - and unit- productions

Removal of ε-productions

A variable N is nullable if it can derive the empty string

$$N \stackrel{*}{\Rightarrow} \epsilon$$

- ① Identify all nullable variables N
- ② Remove all ϵ -productions carefully (while adding extra productions to compensate for this)
- ③ If start variable S is nullable:
 Add a new start variable S'
 Add special productions S' → S | ε

Example

grammar

$$S \rightarrow ACD$$

$$B \rightarrow \epsilon$$

$$C \rightarrow ED \mid \varepsilon$$

$$D \rightarrow BC \mid b$$

$$E \rightarrow b$$

nullable variables

B C

Repeat the following:

If $X \rightarrow \varepsilon$, mark X as nullable

If $X \rightarrow YZ...W$, all marked nullable, mark X as nullable also.

D

① Identify all nullable variables

Eliminating ε-productions

② Remove all ε -productions carefully

The end result

The old grammar

$$S \rightarrow ACD$$
 $A \rightarrow a$
 $B \rightarrow \epsilon$
 $C \rightarrow ED \mid \epsilon$
 $D \rightarrow BC \mid b$
 $E \rightarrow b$

The new grammar

$$S \rightarrow ACD$$

$$A \rightarrow a$$

$$C \rightarrow ED$$

$$D \rightarrow BC \mid b$$

$$E \rightarrow b$$

$$D \rightarrow C$$

$$S \rightarrow AD$$

$$D \rightarrow B$$

$$S \rightarrow AC$$

$$S \rightarrow A$$

② Remove all ε -productions carefully

Eliminating unit productions

A unit production is a production of the form
 A → B

grammar:

$$S \rightarrow 0S1 \mid 1S0S \mid T$$

 $T \rightarrow S \mid R \mid \epsilon$
 $R \rightarrow 0SR$

unit productions graph:

Removal of unit productions

1 If there is a cycle of unit productions

$$A \rightarrow B \rightarrow ... \rightarrow C \rightarrow A$$

delete it and replace everything with A

replace T by S

Removal of unit productions

② Replace every chain

$$A \to B \to ... \to C \to \alpha$$
 by $A \to \alpha, B \to \alpha, ..., C \to \alpha$

$$S \rightarrow 0S1 \mid 1S0S$$

$$\mid R \mid \epsilon$$

$$R \rightarrow 0SR$$

$$S \rightarrow 0S1 \mid 1S0S$$

$$\mid 0SR \mid \epsilon$$

$$R \rightarrow 0SR$$

 $S \rightarrow R \rightarrow 0SR$ is replaced by $S \rightarrow 0SR$, $R \rightarrow 0SR$

Recap

Problem: If input is not in the language,

parsing will never stop

Solution: 8 Eliminate ϵ productions important to der ↓ Eliminate unit productions

Try all possible derivations but stop parsing when

|derived string| > |input|

Example

$$S \rightarrow 0S1 \mid 0S0S \mid T$$

$$T \rightarrow S \mid 0$$

$$S \rightarrow 0S1 \mid 0S0S \mid 0$$

input: 0011

conclusion: $0011 \notin L$

$$S \Rightarrow 0 \times$$

$$\Rightarrow$$
 0S1 \Rightarrow 001 \times

00S11 too long 00S0S1 too long

$$\Rightarrow$$
 0S0S \Rightarrow 000S \Rightarrow 0000 \times

00S10S too long0000S1 too long00S0S0S too long0000S0S too long

Problems

Trying all derivations may take a very long time

② If input is not in the language, parsing will never stop

Preparations

A faster way to parse: Cocke-Younger-Kasami algorithm

- To use it we must prepare the CFG and convert it to Chomsky Normal Form
 - Step 1. Eliminate ε productions
 - Step 2. Eliminate unit productions
 - Step 3. Add rules for terminals and split longer sequences of non-terminals (next slide)

Chomsky Normal Form

 A CFG is in Chomsky Normal Form if every production* has the form

$$A \rightarrow BC$$
 or $A \rightarrow a$

3rd step of conversion to Chomsky Normal Form:

Noam Chomsky

^{*} Exception: We allow $S \to \varepsilon$ for the start variable only

Cocke-Younger-Kasami (CYK) algorithm

Grammar without ϵ and unit productions in Chomsky Normal Form

Input string

For all cells in last row

If there is a production $A \rightarrow x_i$ Put A in table cell ii

For cells st in other rows (going bottom-up)

If there is a production $A \rightarrow BC$ where B is in cell st and C is in cell (t+1)tPut A in cell st

Cell st remembers all variables able to generate substring $x_s ... x_t$

Cocke-Younger-Kasami algorithm

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

$$x = baaba$$

Idea: We generate each substring of x bottom up

Parse tree reconstruction

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$
 SAC
 $A \rightarrow BA \mid a$
 $A \rightarrow BA \mid$

Tracing back the derivations, we obtain the parse tree

Number of different parse trees

Grammar without ϵ and unit productions in Chomsky Normal Form

Input string

For all cells in last row

If there is a production $A \rightarrow x_i$

Put A : 1 in table cell ii

For cells st in other rows (going bottom-up)

If there is a production $A \rightarrow BC$

where $B: n_B$ is in cell sj and $C: n_C$ is in cell (j+1)t and $A: n_A$ in cell st (if not present assume $n_A = 0$)

Update A : $n_A + n_B * n_C$ in cell st

Cell st remembers for each variable the number of parse trees generating substring $x_s \dots x_t$

Example: Number of parse trees

$$S \rightarrow AB \mid BC$$

 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

$$x = baaba$$

Probabilistic Context Free Grammars (PCFG)

- A PCFG is a probabilistic version of a CFG where each production has a probability.
- Probabilities of all productions rewriting a given non-terminal must add up to 1, defining a distribution for each non-terminal.
- String generation is now probabilistic where production probabilities are used to nondeterministically select a production for rewriting a given non-terminal.

Statistical Parsing

- Statistical parsing uses a probabilistic model of syntax in order to assign probabilities to each parse tree.
- Provides a systematic approach to resolving syntactic ambiguity.

...the notion of "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

— Noam Chomsky (famous linguist)

Every time I fire a linguist, the performance of the recognizer improves.

Fred Jelinek(former head of IBM speech recognition group)

Simple PCFG for English

Grammar

$S \rightarrow NPVP$ $S \rightarrow Aux NPVP$

$$S \rightarrow VP$$

$$NP \rightarrow Pronoun$$

$$NP \rightarrow Det Nominal$$

Nominal → Nominal PP

$$VP \rightarrow Verb$$

$$VP \rightarrow Verb NP$$

$$VP \rightarrow VP PP$$

$$PP \rightarrow Prep NP$$

Prob

Lexicon

Det
$$\rightarrow$$
 the | a | that | this 0.6 0.2 0.1 0.1

Noun
$$\rightarrow$$
 book | flight | meal | money 0.1 0.5 0.2 0.2

Pronoun
$$\rightarrow$$
 I | he | she | me 0.5 0.1 0.1 0.3

Proper-Noun
$$\rightarrow$$
 London | BA 0.8 0.2

$$Aux \rightarrow does$$

Prep
$$\rightarrow$$
 from | to | on | near | through 0.25 0.25 0.1 0.2 0.2

Parse Tree Probability

- Assume productions for each node are chosen independently.
- Probability of a parse tree is the product of the probabilities of its productions.

 $P(D_1) = 0.1 \times 0.5 \times 0.5 \times 0.6 \times 0.6 \times 0.5 \times 0.3 \times 1.0 \times 0.2 \times 0.2 \times 0.5 \times 0.8$ = 0.0000216

Syntactic Disambiguation

 Resolve ambiguity by picking most probable parse tree.

Sentence Probability

 Probability of a given sentence is the sum of the probabilities of all of its parse trees.

```
P("book the flight through London") = P(D_1) + P(D_2) = 0.0000216 + 0.00001296
= 0.00003456
```

Probabilistic CYK: Most Likely Parse Tree

- CYK can be modified for PCFG parsing by including in each cell a probability for each nonterminal.
- Cell *ij* contains the most probable parse tree of each non-terminal that can generate the part of the input word from *i* through *j* together with its associated probability.
- When transforming the grammar to CNF, we set the production probabilities to preserve the probability of derivations.

Probabilistic Grammar Conversion

Original Grammar Chomsky Normal Form	Original Grammar	Chomsky Normal Form
--------------------------------------	------------------	----------------------------

$S \rightarrow NPVP$ $S \rightarrow Aux NPVP$	0.8 0.1	$S \rightarrow NPVP$ $S \rightarrow XIVP$ $XI \rightarrow Aux NP$	0.8 0.1 1.0
$S \rightarrow VP$	0.1	$S \rightarrow book \mid include \mid prefer$ 0.01 0.004 0.006	
		$S \rightarrow Verb NP$ $S \rightarrow VP PP$	0.05 0.03
$NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$	0.2 0.2 0.6	NP → I he she me 0.1 0.02 0.02 0.06 NP → London BA	0.03
Nominal → Noun	0.3	0.16 .04 NP → Det Nominal	0.6
Nominal → Nominal Noun Nominal → Nominal PP	0.2 0.5	Nominal → book flight meal money 0.03 0.15 0.06 0.06	
VP → Verb	0.2	Nominal → Nominal Noun Nominal → Nominal PP	0.2 0.5
$VP \rightarrow Verb NP$ $VP \rightarrow VP PP$	0.5 0.3	$VP \rightarrow book \mid include \mid prefer$ 0.1 0.04 0.06	
PP → Prep NP	1.0	$VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$	0.5 0.3 1.0

Probabilistic CYK Parser: Most Likely Parse Tree

Probabilistic CYK Parser: Sentence Probability

Book the flight through London

More precisely

Sentence probability

For all cells in last row

If there is a production $A \rightarrow x_i$ with probability p

Put A : p in table cell ii

For cells st in other rows (going bottom-up)

If there is a production $A \rightarrow BC$ with probability p

where B : p_B is in cell j and C : p_C is in cell (j+1)t and

A: p_A in cell st (if not present assume $p_A = 0$)

Update A : $p_A + p * p_B * p_C$ in cell st

Most likely parse tree

For all cells in last row

If there is a production $A \rightarrow x_i$ with probability p

Put A : p in table cell ii

For cells st in other rows (going bottom-up)

If there is a production $A \rightarrow BC$ with probability p

where B : p_B is in cell sj and C : p_C is in cell (j+1)t and

A: p_A in cell st (if not present assume $p_A = 0$)

Update A : max $(p_A, p^*p_B^*p_C)$ in cell st

PCFGs and NLP

PCFG is consistent if and only if it generates a finite word with probability 1.

name	#prod	max-scc	Jacobi	Gauss Seidel	SOR ω =1.05	DNewton	SNewton
brown	22866 X	448	312.084(9277)	275.624(7866)	diverge	2.106(8)	2.115(9)
lemonde	32885 ✓	527	234.715(5995)	30.420(767)	$_{ m diverge}$	1.556(7)	2.037(7)
negra	29297 ✓	518	16.995(610)	4.724(174)	4.201(152)	1.017(6)	0.499(6)
swbd	47578 🗶	1123	445.120(4778)	19.321(202)	25.654(270)	6.435(6)	3.978(6)
tiger	52184 ✓	1173	99.286(1347)	16.073(210)	12.447(166)	5.274(6)	1.871(6)
tuebadz	8932 ✓	293	6.894(465)	1.925(133)	6.878(461)	0.477(7)	0.341(7)
wsj	31170 ✓	765	462.378(9787)	68.650(1439)	diverge	2.363(7)	3.616(8)

Pushdown automata

Motivation

Pushdown automata versus NFA

NFA

Pushdown automata

pushdown automaton (PDA)

A PDA is like an NFA with but with an infinite stack

Pushdown automata

pushdown automaton (PDA)

As the PDA is reading the input, it can push / pop symbols from the top of the stack

Building a PDA

$$L = \{0^n 1^n : n \ge 1\}$$

We remember each 0 by pushing x onto the stack

When we see a 1, we pop an x from the stack

We want to accept when we hit the stack bottom

We will use \$ to mark bottom

A PDA in action

Notation for PDAs

read, pop / push

Definition of a PDA

A pushdown automaton is $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where:

- -Q is a finite set of states;
- $-\Sigma$ is the input alphabet;
- $-\Gamma$ is the stack alphabet;
- $-q_0$ in Q is the initial state;
- $F \subseteq Q$ is a set of final states;
- $-\delta$ is the transition function.

$$\delta\!\!: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to \text{subsets of } Q \times (\Gamma \cup \{\epsilon\}) \\ \text{state input symbol} \quad \text{pop symbol}$$

 $\delta : Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow \text{subsets of } Q \times (\Gamma \cup \{\epsilon\})$ state input symbol pop symbol state push symbol

The language of a PDA

- A PDA is nondeterministic, i.e. multiple transitions on same pop/input are allowed
- Transitions may but do not have to push, pop or read input

The language of a PDA is the set of all strings in Σ^* that can lead the PDA to an accepting state after the whole input is read.

Remark: Sometimes acceptance is defined by emptying the stack or even both: empty stack and accepting state. All of these variants correspond to the same class of languages.

Example I

$$L_1 = \{ w \# w^{\mathbb{R}} : w \in \{0, 1\}^* \}$$

$$\Sigma = \{0, 1, \#\}$$

$$\Gamma = \{\$, 0, 1\}$$

#,
$$0#0$$
, $01#10 \in L_1$
 ϵ , $01#1$, $0##0 \notin L_1$

write w on **sead**(w^R from stack

$$L_2 = \{ww^R: w \in \Sigma^*\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{\$, 0, 1\}$$

 ϵ , 00, 0110 $\in L_2$ 1, 011, 010 $\notin L_2$

guess the middle of a string

$$L_3 = \{ w: w = w^R, w \in \Sigma^* \}$$

$$\Sigma = \{0, 1\}$$

$$\epsilon$$
, 1, 00, 010, 0110 ϵ L_3

$$0110110110$$

$$\epsilon$$
, ϵ , ϵ / ϵ

$$0, \epsilon$$
 / ϵ

$$1, \epsilon$$
 / ϵ

$$1, \epsilon$$
 / ϵ

the middle symbols can be ε , 0, or 1

$$L_4 = \{0^n 1^m 0^m 1^n \mid n \ge 0, m \ge 0\}$$

$$\Sigma = \{0, 1\}$$

input: $0^n 1^m 0^m 1^n$

stack: $0^n 1^m$

 $L_5 = \{w: w \text{ has the same number of } 0s \text{ and } 1s\}$

$$\Sigma = \{0, 1\}$$

Strategy: Stack keeps track of excess of 0s or 1s

If at the end, stack is empty, the numbers are equal

$$L_5 = \{w: w \text{ has the same number } 0\text{s and } 1\text{s}\} \mid \Sigma = \{0, 1\}$$

Invariant: In every execution of the PDA:

#1 - #0 on stack = #1 - #0 in input so far

If w is not in L_5 , it must be rejected

$$L_5 = \{w: w \text{ has the same number } 0\text{s and } 1\text{s}\} \mid \Sigma = \{0, 1\}$$

Property: In some execution of the PDA:

stack consists only of 0s or only of 1s (or ε)

If w is in L_5 , some execution will accept

 $L_5 = \{w: w \text{ has the same number 0s and 1s}\} \mid \Sigma = \{0, 1\}$

$$\Sigma = \{0, 1\}$$

$$w = 001110$$

stack
\$0
\$0 \$00
\$ O
\$
\$ \$1
\$

 $L_6 = \{w: w \text{ has two } 0\text{-blocks with the same number of } 0\text{s} \}$

01011, 001011001, 10010101001 allowed

01001000, 01111 not allowed

Strategy: Detect start of the first 0-block
Push 0s on the stack
Detect start of the second 0-block
Pop 0s from the stack

1 Detect start of first 0-block

2 Push 0s on stack

3 Detect start of second 0-block

4 Pop 0s from stack

 $L_6 = \{w: w \text{ has two } 0\text{-blocks with the same number of } 0s\}$

CFG ↔ PDA conversions

CFGs and PDAs

L has a context-free grammar if and only if it is accepted by some pushdown automaton.

A convention

When we have a sequence of transitions like:

pop a, then push b, c, and d

We will abbreviate it like this:

replace a by dcb on the top of the stack (notice the reverse order: the first symbol of the word is at the top of the stack)

Converting a CFG to a PDA

Idea: Use PDA to simulate derivations

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$$

$A \rightarrow 0A1$
$A \rightarrow B$
$\mathrm{B} \longrightarrow \#$

PDA control:	stack:	input:
write start variable	\$A	00#11
replace production in reverse	\$1 A0	00#11
pop terminal and match	\$ 1A	0#11
replace production in reverse	\$11A 0	0#11
pop terminal and match	\$11A	#11
replace production in reverse	\$11B	#11

Converting a CFG to a PDA

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

General CFG to PDA conversion

From PDAs to CFGs

- A simplified PDA:
 - Has a single accept state
 - Empties its stack before accepting
 - Each transition is either a push, or a pop, but not both

Simplifying the PDA $0, \epsilon / a$ $1, a / \epsilon$ $1, b / \epsilon$

• A simplified PDA:

- Has a single accept state √
- Empties its stack before accepting ✓
- Each transition is either a push, or a pop, but not both

Simplifying the PDA $0, \epsilon / a$ $1, a / \epsilon$ $1, b / \epsilon$

- A simplified PDA:
 - Has a single accept state √
 - Empties its stack before accepting ✓
 - Each transition is either a push, or a pop, but not both

Simplifying the PDA $0.\epsilon/a$ $1,a/\epsilon$ $1,b/\epsilon$

- A simplified PDA:
 - Has a single accept state √
 - Empties its stack before accepting ✓
 - Each transition is either a push, or a pop, but not both

A sample run of the PDA on input 00011

 $A_{13} = \{x: x \text{ leads from } q_1 \text{ to } q_3 \text{ and does not dip under red line}\}$

variables: A_{ij}

start variable: A_{0f}

$$A_{ij} \rightarrow aA_{i \bullet j \bullet} b$$

$$A_{ik} \to A_{ij}A_{jk}$$

$$(q_i)$$

$$A_{ii} \rightarrow \epsilon$$

Example: Simplified PDA to CFG

variables: A_{01}, A_{02}, A_{03} ,

productions:

$$A_{12} \rightarrow 0A_{12}1$$

$$A_{12} \rightarrow 0A_{11}$$

$$A_{03} \rightarrow A_{12}$$

Example: Simplified PDA to CFG

Another example

From PDAs to CFGs

- A simplified PDA:
 - Has a single accept state
 - Empties its stack before accepting
 - Each transition is either a push, or a pop, but not both

Limitations of pushdown automata

Non context-free languages

$$L_1 = \{a^n b^n : n \ge 0\}$$

 $L_2 = \{s: s \text{ has the same number of as and bs}\}$
 $L_3 = \{a^n b^n c^n : n \ge 0\}$
 $L_4 = \{ss^R : s \in \{a, b\}^*\}$
 $L_5 = \{ss : s \in \{a, b\}^*\}$

These are not regular

Are they context-free?

An attempt

$$L_3 = \{a^n b^n c^n : n \ge 0\}$$

• Let's try to design a CFG or PDA

$$S \rightarrow aBc \mid \epsilon$$

$$B \rightarrow ??$$
read a / push x
read b / pop x

What would happen if...

• Suppose we could construct some CFG for L_3 , e.g.

$$S \rightarrow BC$$
 $B \rightarrow CS \mid b$
 $C \rightarrow SB \mid a$
...

 Let's do some long derivations

$$S \Rightarrow BC$$
 $\Rightarrow CSC$
 $\Rightarrow aSC$
 $\Rightarrow aBCC$
 $\Rightarrow abCC$
 $\Rightarrow abaC$
 $\Rightarrow abaSB$
 $\Rightarrow abaBCB$
 $\Rightarrow ababCB$
 $\Rightarrow ababCB$

 \Rightarrow ababab

Repetition in long derivations

• If a derivation is long enough, some variable must appear twice on the same path in a parse tree

```
S \Rightarrow BC
\Rightarrow CSC
\Rightarrow aSC
\Rightarrow aBCC
\Rightarrow abCC
\Rightarrow abaC
\Rightarrow abaSB
\Rightarrow abaBCB
\Rightarrow ababAB
\Rightarrow ababAB
\Rightarrow ababAB
\Rightarrow ababAB
```


Pumping example

• Then we can "cut and paste" part of the parse tree

Pumping example

We can repeat this many times

• Every sufficiently large derivation will have a middle part that can be repeated indefinitely

Pumping in general

uvwxy

 uv^2wx^2y

 uv^3wx^3y

uwy

$$L_3 = \{a^n b^n c^n : n \ge 0\}$$

• If L_3 has a context-free grammar G, then

If uvwxy is in G, so are uv^2wx^2y , uv^3wx^3y , uwy, ...

• What happens for aⁿbⁿcⁿ?

• No matter how it is split, $uv^2wx^2y \notin L_3!$

Pumping lemma for context-free languages

• Pumping lemma: For every context-free language ${\cal L}$

There exists a number n such that for every string z in L longer than n, we can write z = uvwxy where

- $\bigcirc |vwx| \leq n$
- $|vx| \geq 1$
- ③ For every $i \ge 0$, the string $uv^i wx^i y$ is in L.

Pumping lemma for context-free languages

• So to prove L is not context-free, it is enough that

For all n there exists z in L longer than n, such that for all ways of writing z = uvwxy where ① $|vwx| \le n$ and ② $|vx| \ge 1$, the string uv^iwx^iy is not in L for some $i \ge 0$.

Proving a language is not context-free

 Just like for regular languages, Eve needs a strategy that wins her this game no matter what Adam chooses

Adam	Eve
I chooses n	chooses $z \in L \ (z > n)$
2 writes $z = uvwxy$	chooses i
$(vwx \le n, vx \ge 1)$	Eve wins if $uv^i w x^i y \notin L$

Adam	Eve
I chooses n	chooses $z \in L \ (z > n)$
2 writes $z = uvwxy$	chooses i
$(vwx \le n, vx \ge 1)$	Eve wins if $uv^i w x^i y \notin L$

$$L_3 = \{a^n b^n c^n : n \ge 0\}$$

I chooses
$$n$$
 $z = a^n b^n c^n$

2 writes
$$z = uvvxy$$
 $i = ?$

a a a ... a a b b b ... b b c c c ... c c
$$\leftarrow u \rightarrow \leftarrow v \rightarrow \leftarrow v \rightarrow \leftarrow x \rightarrow \leftarrow y \rightarrow$$

• Case I: v or x contains two kinds of symbols

a a a ... a a b b b ... b b c c c ... c c
$$\leftarrow v \longrightarrow \leftarrow x \rightarrow$$

Then uv^2wx^2y not in L_3 because pattern is wrong

• Case 2: v and x both contain one kind of symbol

a a a ... a a b b b ... b b c c c ... c c
$$\leftarrow v \rightarrow \leftarrow x \rightarrow$$

Then uv^2wx^2y does not have same number of as, bs, cs

More examples

$$L_1 = \{a^n b^n : n \ge 0\}$$

 $L_2 = \{s: s \text{ has same number of as and bs}\}$
 $L_3 = \{a^n b^n c^n : n \ge 0\}$
 $L_4 = \{ss^R : s \in \{a, b\}^*\}$
 $L_5 = \{ss : s \in \{a, b\}^*\}$

Which is context-free?

$$L_5 = \{ss: s \in \{a, b\}^*\}$$

chooses n

$$z = a^n b a^n b$$

writes z = uvuxy

$$i = ?$$

$$L_5 = \{ss: s \in \{a, b\}^*\}$$

I chooses n

 $z = a^n b^n a^n b^n$

2 writes z = uvwxy

i = ?

$$a a a a a a b b b b b a a a a a a b b b b b$$
 $\leftarrow u \xrightarrow{\times} v \xrightarrow{\times} w \xrightarrow{\times} x \xrightarrow{\times} y \xrightarrow{\longrightarrow} y$

Recall that
$$|vwx| \le n$$

Three cases

vwx is in the second half of aⁿbⁿaⁿbⁿ

Apply pumping with i = 0

Apply pumping with i = 0

$$L_5 = \{ss: s \in \{a, b\}^*\}$$

Case I: uv^0wx^0y looks like $a^jb^ka^nb^n$, where j < n or k < nNot of the form ss

Case 2: uv^0wx^0y looks like $a^nb^ja^kb^n$, where j < n or k < nNot of the form ss

Case 3: uv^0wx^0y looks like $a^nb^na^jb^k$, where j < n or k < nNot of the form ss

This covers all the cases, so L_5 is not context-free.

Which language is context-free?

$$L_1 = \{a^n b^n : n \ge 0\}$$

 $L_2 = \{s : s \text{ has same number of as and bs}\}$
 $L_3 = \{a^n b^n c^n : n \ge 0\}$
 $L_4 = \{s : s \in \{a, b\}^*\}$
 $L_5 = \{s : s \in \{a, b\}^*\}$
 $L_5 = \{s : s \in \{a, b\}^*\}$

Properties of Context-Free languages

Union

Context-free languages

are closed under:

Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Language

Grammar

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \varepsilon$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2 a \mid bS_2 b \mid \varepsilon$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under:

Concatenation

$$L_1$$
 is context free
$$L_1L_2$$
 is context free is context-free

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \varepsilon$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2 a \mid bS_2 b \mid \varepsilon$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1, L_2 with context-free grammars G_1, G_2 and start variables S_1, S_2

The grammar of the concatenation
$$L_1L_2$$
 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under:

Star-operation

L is context free

 L^* is context-free

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \varepsilon$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \varepsilon$$

In general:

For context-free language	L
with context-free grammar	G
and start variable	S

The grammar of the star operation
$$L^*$$
 has new start variable S_1 and additional production $S_1 \to SS_1 \mid \mathcal{E}$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are **not** closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\underbrace{L_1 \cap L_2}_{\text{context-free}}$

Example

$$L_1 = \{a^n b^n c^*\}$$

$$L_2 = \{a * b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \varepsilon$$

$$A \rightarrow aA \mid \varepsilon$$

$$C \rightarrow cC \mid \varepsilon$$

$$B \rightarrow bBc \mid \varepsilon$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under:

complement

 I_{L} is context free $\longrightarrow \overline{L}$ not necessarily

context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$A \rightarrow aAb \mid \varepsilon$$

$$C \rightarrow cC \mid \varepsilon$$

Context-free:

$$S \rightarrow AB$$

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow bBc \mid \varepsilon$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Intersection
of
Context-free languages
and
Regular Languages

The intersection of

a context-free language and a regular language

is a context-free language

$$L_1$$
 context free
$$L_1 \cap L_2$$

$$L_2$$
 regular context-free

Machine M_1

PDA for L_1

context-free

Machine M_2

DFA for L_2 regular

Construct a new PDA
$$M$$
 that accepts $L_1 \cap L_2$

M will simulate in parallel $\,M_1$ and $\,M_2$

 M_1 M_2 DFA ε , b/ctransition M $\varepsilon, b/c$ transition

Example:

context-free

$$L_1 = \{w_1w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

context-free

Automaton for: $L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$

PDA M

In General:

```
M simulates in parallel M_1 and M_2
M accepts string w if and only if
    M_1 accepts string w and
    M_2 accepts string w , i.e.
           L(M) = L_1 \cap L_2
        As M is a PDA, then
    L(M) = L_1 \cap L_2 is context-free.
```

Applications of Regular Closure

The intersection of

a context-free language and

a regular language

is a context-free language

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^n b^n : n \ge 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\} \cap L_1$ context-free

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is **not** context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
 context-free regular context-free

Impossible!!!

Therefore, L is **not** context free

LR(0) grammars

Compiler

A program that reads a program written in one language (source language) and translates it into an equivalent program in another language (target language).

Typically the source language is a high-level language and the target language is a low-level language (machine code).

Compiler Front-end and Back-end

Tokenising computer programs

```
if (n == 0) { return x; }
```

• First the javac compiler does a lexical analysis:

```
if (ID == INT_LIT) { return ID; }
ID = identifier (name of variable, procedure, class, ...)
INT LIT = integer literal (value)
```

• The alphabet of java CFG consists of symbols like:

```
\Sigma = \{\text{if, return, (,) } \{, \}, ;, ==, \text{ID, INT\_LIT, ...}\}
```

Parsing computer programs

```
if (n == 0) { return x; }
Statement
                        if (ID == INT LIT) { return ID; }
if ParExpression Statement
                                     Block
    Expression
    Expression
                 ExpressionRest
                                       BlockStatements }
                                       BlockStatement
    Primary
                 Infixop Expression
                                       Statement
     Identifier
                         Primary
                                        return Expression ;
                         Literal
        ID
                                               Primary
                         INT LIT
                                               Identifier
    the parse tree of a java statement
                                                 ID
```

CFG of the java programming language

```
Identifier:
            ID
QualifiedIdentifier:
            Identifier { . Identifier }
Literal:
            IntegerLiteral
            FloatingPointLiteral
            CharacterLiteral
            StringLiteral
            BooleanLiteral
            NullLiteral
Expression:
            Expression1 [AssignmentOperator Expression1]]
AssignmentOperator:
            /=
            | =
                         . . .
```

```
from http://java.sun.com/docs/books/jls
     /second edition/html/syntax.doc.html#52996
```

Parsing java programs

```
class Point2d {
  /* The X and Y coordinates of the point--instance variables */
  private double x;
  private double y;
  private boolean debug;
                                // A trick to help with debugging
  x = px;
        y = py;
        debug = false;
                                // turn off debugging
  }
  this (0.0, 0.0);
                                 // Invokes 2 parameter Point2D constructor
  // Note that a this() invocation must be the BEGINNING of
  // statement body of constructor
  x = pt.qetX();
        y = pt.qetY();
}
```

Simple java program: about 500 symbols

Parsing algorithms

How long would it take to parse this program?

try all parse trees	about 10^{80} years
CYK algorithm	about 1 week!

- Can we parse faster?
- No! CYK $O(|G|n^3)$ is essentially the fastest known general-purpose parsing algorithm for CFGs

Remark: Coppersmith–Winograd algorithm for multiplying matrices gives an asymptotic worst-case running time $O(n^{2.38} \cdot |G|)$. However, the hidden constant is so high that it is non-practical for present-day computers (Knuth 1997).

Another way of thinking

Scientist:
Find an algorithm that can parse any CFG

Engineer:
Design your CFG
so it can be parsed
very quickly

Left-to-right parsing

$$S \rightarrow Tc^{(1)}$$

$$T \rightarrow TA^{(2)} \mid A^{(3)}$$

$$A \rightarrow aTb^{(4)} \mid ab^{(5)}$$

input: abaabbc

Try to match to the left of •

Items

$$S \to Tc^{(1)} \qquad T \to TA^{(2)} \qquad T \to A^{(3)} \qquad A \to aTb^{(4)} \qquad A \to ab^{(5)}$$

$$S \to \bullet Tc \qquad T \to \bullet TA \qquad T \to \bullet A \qquad A \to \bullet aTb \qquad A \to \bullet ab$$

$$S \to T \bullet c \qquad T \to T \bullet A \qquad T \to A \bullet \qquad A \to a \bullet Tb \qquad A \to a \bullet b$$

$$S \to Tc \bullet \qquad T \to TA \bullet \qquad A \to aT \bullet b \qquad A \to ab \bullet$$

$$A \to aTb \bullet \qquad A \to aTb \bullet$$

- An item is a production augmented with a •
- The item is complete if the is the last symbol

Meaning of items

$$A \rightarrow a \cdot Tb$$

 $A \rightarrow a \cdot b$

$$S \rightarrow Tc^{(1)}$$

$$T \rightarrow TA^{(2)} \mid A^{(3)}$$

$$A \rightarrow aTb^{(4)} \mid ab^{(5)}$$

Items represent possibilities at various stages of the parsing process

Meaning of items

$$A \rightarrow a \bullet Tb$$

$$A \rightarrow a \bullet b$$

$$\bullet \quad b \quad a \quad a \quad b \quad b \quad c$$

$$S \rightarrow Tc^{(1)}$$

$$T \rightarrow TA^{(2)} \mid A^{(3)}$$

$$A \rightarrow aTb^{(4)} \mid ab^{(5)}$$

When a complete item occurs, a part of the parse tree is discovered

LR(0) parsing

Move from left to right

$$A \rightarrow aAb \mid ab$$

Keep track of all possible valid items

Prune the invalid items

When a complete item occurs, build part of parse tree

valid items registry

$$A \rightarrow \bullet aAb \quad A \rightarrow \bullet ab$$

• a a b b

Move from left to right

$$A \rightarrow aAb \mid ab$$

Keep track of all possible valid items

Prune the invalid items

When a complete item occurs, build part of parse tree

valid items registry $A \rightarrow a \bullet Ab \quad A \rightarrow a \bullet b$ $A \rightarrow \bullet aAb \quad A \rightarrow \bullet ab$

Move from left to right

$$A \rightarrow aAb \mid ab$$

Keep track of all possible valid items

Prune the invalid items

Move from left to right

$$A \rightarrow aAb \mid ab$$

Keep track of all possible valid items

Prune the invalid items

Move from left to right

$$A \rightarrow aAb \mid ab$$

Keep track of all possible valid items

Prune the invalid items

Move from left to right

$$A \rightarrow aAb \mid ab$$

Keep track of all possible valid items

Prune the invalid items

Move from left to right

$$A \rightarrow aAb \mid ab$$

Keep track of all possible valid items

Prune the invalid items

When a complete item occurs, build part of parse tree

valid items registry

$$A \rightarrow aAb^{\bullet}$$

two kinds of actions

valid items registry

$$A \rightarrow a \cdot Ab$$
 $A \rightarrow a \cdot b$
 $A \rightarrow a \cdot ab$ $A \rightarrow a \cdot ab$

no complete item in registry

shift

exactly one

complete item

reduce

LR(0) grammars and deterministic PDAs

The PDA for LR(0) parsing is deterministic

- Some context-free languages require nondeterministic PDAs, e.g. $L = \{ww^R : w \in \{a, b\}^*\}$
- The class of deterministic CFGs/PDAs is less expressive than CFGs/PDAs
- What can go wrong with LR(0) parsing?

Parsing computer programs

```
if (n == 0) { return x; }
                        else { return x + 1; }
Statement
     <u>Puxpression statement</u>
    Expression
                                     Block
    Expression
                 ExpressionRest
                                       BlockStatements }
                                       BlockStatement
    Primary
                 Infixop Expression
                                       Statement
    Identifier
                         Primary
                                        return Expression ;
                         Literal
        ID
                                               Primary
                         INT LIT
                                               Identifier
                                                 TD
```

Parsing computer programs

LR(0) parsers cannot tell apart

if ... then from if ... then ... else

When you can't LR(0) parse

• LR(0) parser can perform two actions:

no complete item is valid

shift (S)

there is one valid item, and it is complete

reduce (R)

• What if:

some valid items complete, some not

S / R conflict

more than one valid complete item

R / R conflict

Dangling else

if a then if b then s else s2

Can be interpreted as

- 1. if a then (if b then s) else s2
- 2. if a then (if b then s else s2)

shift-reduce conflict

Hierarchy of context-free grammars

LR(k) = grammars that can be parsed like LR(0) but the decision whether to shift or reduce can be based on the next k symbols