American Tornadoes: Tornado Shocks on U.S. Metropolises

Jesse Anttila-Hughes Ryan McWay[†] Lilla Szini

†Institute for Social Research University of Michigan

5th MUSE Conference February 26th 2021

MOTIVATION

► Tornadoes are primarily a concern for the United States

Source: National Centers for Environmental Information (NOAA)

MOTIVATION

▶ Mainly concentrated near Midwestern and Southern States

MOTIVATION

- ► Tornadoes the deadliest and most destructive weather pattern in the United States (Brook, 1967; Perry and Reynolds, 1993; Curtis and Fagan, 2013)
- ► Natural disasters are highly destructive and disasters should have strong aggregate effects (Hsiang, 2014; Anttila-Hughes, 2013; Botzen et al., 2019)
- ▶ Poverty damages result from natural disasters, and while primarily documented in developing nations, should also see effects in developed nations (Rashed and Weeks, 2003; Donner, 2007; Donner and Rodriquez, 2008)

RESEARCH QUESTIONS

- 1. Do tornadoes create short-run aggregate effects?
- 2. How do tornadoes impact different sectors of local economies?
- 3. Do tornadoes produce an environmental poverty trap?

LITERATURE REVIEW

- 1. Tornadoes
 - ► Tornadoes are the most destructive weather event in the U.S. (Perry and Reynolds, 1993; Brook, 1967)
 - ► Recovery process at household and aggregate level from natural disasters have long time horizons (Baker et al., 2007)
- 2. Disasters and Production
 - ► Recovery takes substantial government investment and averages 10 years (Paul and Che, 2011)
 - ▶ Disasters have massive economic growth effects and are a major hurdle for certain economies (Hsiang, 2010; Anttila-Hughes, 2013; Botzen et al., 2019)
- 3. Environmental Poverty Traps
 - ▶ Demographic vulnerability for poor, less educated, migrant those effected by disasters (Donner, 2007; Donner and Rodriguez, 2008)

DATA

1. Tornadoes

- ► National Weather Service, NOAA
- ▶ Best tracks from 1950 2017 across the United States (N = 63,160)
- 2. Metropolitan Statistical Area (MSA) GDP by Sector
 - ► U.S. Census Bureau
 - ightharpoonup 2001 2018 GDP for 87 sectors and 384 mirco- and metropolis (N = 6,518)
- 3. Treatment Definition
 - ► Tornado Count at the MSA-level for each tornado category in a given year (e.g. Count of tornadoes for category 0–5 in Chicago area in 2015)

DATA

- 1. Tornadoes
 - ► National Weather Service, NOAA
 - ▶ Best tracks from 1950 2017 across the United States (N = 63,160)
- 2. Metropolitan Statistical Area (MSA) GDP by Sector
 - ► U.S. Census Bureau
 - ▶ 2001 2018 GDP for 87 sectors and 384 mirco- and metropolis (N = 6,518)
- 3. Treatment Definition
 - ► Tornado Count at the MSA-level for each tornado category in a given year (e.g. Count of tornadoes for category 0–5 in Chicago area in 2015)

SPATIAL DISTRIBUTION

TORNADO DESCRIPTIVES

Motivation

Variable	Obs	Mean	Std. Dev.	Min	Max
Treated: Exp. Tornado Activity	6,518	.35	.48	0	1
Tornado Count	6,518	.99	2.32	0	36
Tornado Count Cat 0	6,518	.45	1.25	0	25
Tornado Count Cat 1	6,518	.38	1.07	0	16
Tornado Count Cat 2	6,518	.11	.44	0	6
Tornado Count Cat 3	6,518	.04	.23	0	5
Tornado Count Cat 4	6,518	.01	.12	0	4
Tornado Count Cat 5	6,518	0	.03	0	1
Highest Category Tornado	2,245	1.11	1.03	0	5
# of Tornado Injuries	2,249	7.25	61.96	0	1738
# of Tornado Deaths	2,249	.57	5.46	0	158
Dummy: Midwestern State	2,249	.27	.44	0	1
Dummy: Southern State	2,249	.48	.5	0	1
Dummy: Tornado Alley State	2,249	.43	.49	0	1

BALANCE TABLE

Motivation

	(1) Control		(2) Treated		T-test
					Diff.
Variable	Ν	Mean (SE)	Ν	Mean (SE)	P-value
Local GDP (\$)	4,269	25,479,324 (1,207,285)	2,242	52,951,215 (2,748,897)	0.000***
Private Sector GDP (\$)	4,269	22,159,824 (1,089,146)	2,242	46,640,190 (2,472,627)	0.000***
Public Sector GDP (\$)	4,269	3,319,499 (124,274)	2,242	6,311,027 (298,287)	0.000***
Adj. Unemployment Rate	4,050	6.444 (0.044)	2,206	6.018 (0.048)	0.000***

Notes: The value displayed for t-tests are p-values. ***, ***, and * indicate significance at the 1, 5, and 10 percent critical level.

IDENTIFICATION STRATEGY

1. Panel Fixed Effects

$$\gamma_{i,m,y} = \alpha + \delta_{i,m,y} + \theta_m + \tau_y + \epsilon_{i,m,y}$$
 (1)

- \triangleright δ = treatment effect
- \triangleright $\theta = MSA$ fixed effects
- ightharpoonup au = Year fixed effects
- 2. Outcomes of Interest: γ
 - ▶ Log(GDP), Annual Difference in Log(GDP), Unemployment
- 3. Identifying Assumption
 - ► Tornadoes are a plausibly exogenous weather shock conditional on spatial-temporal (MSA and year) fixed effects (Dell et al., 2012; Hsiang, 2016)

IDENTIFICATION STRATEGY

1. Panel Fixed Effects

$$\gamma_{i,m,y} = \alpha + \delta_{i,m,y} + \theta_m + \tau_y + \epsilon_{i,m,y}$$
 (1)

- \triangleright δ = treatment effect
- \bullet $\theta = MSA$ fixed effects
- $\triangleright \tau = \text{Year fixed effects}$
- 2. Outcomes of Interest: γ
 - ► Log(GDP), Annual Difference in Log(GDP), Unemployment
- 3. Identifying Assumption
 - ► Tornadoes are a plausibly exogenous weather shock conditional on spatial-temporal (MSA and year) fixed effects (Dell et al., 2012; Hsiang, 2016)

TORNADO DAMAGES

 Motivation
 Overview
 Literature
 Data
 Methodology
 Results
 Conclusion

 ○○○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

CONTEMPORANEOUS EFFECT: GDP

▶ Lagged GDP

CONTEMPORANEOUS EFFECT: GDP DIFFERENCE

→ Lagged GDP Difference

CONTEMPORANEOUS EFFECT: UNEMPLOYMENT

► Lagged Unemployment

DISCUSSION

- 1. Take Aways
 - 1.1 Tornadoes have no immediate impact on local production
 - 1.2 Robust across nearly all sectors (Not Shown: Available upon request)
- 2. Further Possible Work
 - 2.1 County-level analysis
 - 2.2 Humanitarian Preparedness (FEMA and Aid Relief)
 - 2.3 Explore other possible outcomes
 - ► Household Finances (Micro data)
 - ► Health Coverage (Insurance markets)
 - ► Poverty Measures

DISCUSSION

- 1. Take Aways
 - 1.1 Tornadoes have no immediate impact on local production
 - 1.2 Robust across nearly all sectors (Not Shown: Available upon request)
- 2. Further Possible Work
 - 2.1 County-level analysis
 - 2.2 Humanitarian Preparedness (FEMA and Aid Relief)
 - 2.3 Explore other possible outcomes
 - ► Household Finances (Micro data)
 - ► Health Coverage (Insurance markets)
 - ► Poverty Measures

THE END

Thank You for Your Time!

@RyanMcWay

•00

LAGGED EFFECT: GDP

← Contemporaneous GDP

000

LAGGED EFFECT: GDP DIFFERENCE

◆ Contemporaneous GDP Difference

LAGGED EFFECT: UNEMPLOYMENT

REFERENCES I

Marx Brook. Electric currents accompany tornado activity. American Association for the Advancement of Science, 157 (3795):1434–1436, 1967. URL

https://www.jstor.org/stable/1723338.

Allen Perry and David Reynolds. Tornadoes: The most violent of all atmoshperic phenomena. *Geography*, 78(2):174–178, 1993. URL

https://www.jstor.org/stable/40572501.

Andrew Curtis and William F. Fagan. Capturing damage assessment with a spatial video: An example of a building and street-scale analysis of tornado-related mortality in joplin, missouri, 2011. *Annals of the Association of American Geographers*, 103(6):1522–1538, 2013. URL

https://www.jstor.org/stable/24537566.

REFERENCES II

- Solomon M. Hsiang. The causal effect of environmental catastrophe on long-run economic growth: Evidence from 6,700 cyclones. *NBER Working Paper*, 20352, 2014. URL http://www.nber.org/papers/w20352.
- Jesse Anttila-Hughes. Destruction, disinvestment, and death: Economic and human losses following environmental disaster. 2013. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2220501.
- W.J. Wouter Botzen, Olivier Deschenes, and Mark Sanders. The economic impacts of natural disasters: A review of models and empirical studies. *Review of Environmental Economics and Policy*, 13(2):167–188, 2019. doi: https://www.doi.org/10.1093/reep/rez004.

REFERENCES III

Tarek Rashed and John Weeks. Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. *International Journal of Geographical Information Science*, 17(6):547–576, 2003. doi: https://doi.org/10.1080/1365881031000114071. URL https://www.tandfonline.com/doi/abs/10.1080/1365881031000114071.

William R. Donner. The political ecology of diaster: An analysis of factors influencing u.s. tornado fatalities and injuries, 1998-2000. *Demography*, 44(3):669–685, 2007. URL

https://www.jstor.org/stable/30053107.

REFERENCES IV

William R. Donner and Havidan Rodriquez. Population composition, migration and inequality: The influence of demographic changes on disaster risk and vulnerability. *Social Forces*, 97(2):1089–1114, 2008. URL

https://www.jstor.org/stable/20430904.

Stacey Menzel Baker, David M. Hunt, and Terri L. Rittenburg. Consumer vulnerability as a shared experience: Tornado recovery process in wright, wyoming. *Journal of Public Policy Marketing*, 26(1):6–19, 2007. URL

https://www.jstor.org/stable/30000814.

REFERENCES V

Bimal Kanti Paul and Deborah Che. Opportunities and challenges in rebuilding tornado-impacted greensburg, kansas as 'stronger, better, and greener'. *GeoJournal*, 76(1): 93–108, 2011. URL

```
https://www.jstor.org/stable/41148438.
```

Solomon M. Hsiang. Temperatures and cyclones strongly associated with economic production in the caribbean and central america. *PNAS*, 107(35):15367–15372, 2010. URL

```
https://www.pnas.org/content/pnas/107/35/15367.full.pdf.
```

REFERENCES VI

Melissa Dell, Benjamin F. Jones, and Benjamin A. Olken.
Temperature shocks and economic growth: Evidence from the last half century. 4(3):66–95, 2012. URL

https://scholar.harvard.edu/files/dell/files/aej_temperature.pdf.

Solomon M. Hsiang. Climate econometrics. *NBER Working Paper*, 22181, 2016. URL

https://www.nber.org/papers/w22181.