

QUAD 2-INPUT OPEN DRAIN NAND GATE

- HIGH SPEED
 - $t_{PZ} = 5 \text{ ns} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 1 \mu A (MAX.) AT T_A = 25 ^{\circ}C$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS03

B1R F1R (Ceramic Package) M1R (Micro Package) (Chip Carrier) ORDER CODES: M54HC03F1R M74HC03M1R M74HC03B1R M74HC03C1R

DESCRIPTION

The M54/74HC03 is a high speed CMOS QUAD 2-INPUT OPEN DRAIN NAND GATE fabricated in silicon gate C²MOS technology.

It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

The internal circuit is composed of 3 stages including buffer output, which gives high noise immunity and stable output. This device can, with an external pull-up resistor, be used in wired AND configuration. This device can be also used as a led driver and in any other application requiring a current sink. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

January 1993 1/9

TRUTH TABLE

Α	В	Y
L	L	Z
L	Н	Z
Н	L	Z
Н	Н	L

Z = HIGH IMPEDANCE

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION			
1, 4, 9, 12	1A to 4A	Data Inputs			
2, 5, 10, 13	1B to 4B	Data Inputs			
3, 6, 8, 11	1Y to 4Y	Data Outputs			
7	GND	Ground (0V)			
14 V _{CC}		Positive Supply Voltage			

IEC LOGIC SYMBOL

CIRCUIT DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit			
Vcc	Supply Voltage	-0.5 to +7	V			
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V			
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V			
l _{IK}	DC Input Diode Current	± 20 n				
I _{OK}	DC Output Diode Current	± 20	mA			
Ιο	DC Output Sink Current Per Output Pin	+ 25	mA			
lcc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA			
P _D	Power Dissipation	500 (*)	mW			
T _{stg}	Storage Temperature	-65 to +150	°C			
TL	Lead Temperature (10 sec)	300	°C			

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

(*) 500 mW: ≡ 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V_{CC}	Supply Voltage		2 to 6	V
V_{I}	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T_{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Te	Test Conditions		Value							
Symbol	Parameter	V _{CC}			$T_A = 25$ °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit	
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI – VIH	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
II	Input Leakage Current	6.0	V _I = '	V _I = V _{CC} or GND			±0.1		±1		±1	μΑ
loz	Output Leakage Current	6.0	V _I = V _{IH} or V _{IL} V _O = V _{CC} or GND				±0.5		±5		±10	μΑ
I _{CC}	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			1		10		20	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Test Conditions		Value								
Symbol	Parameter	Vcc			T _A = 25 °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
t _{TLH}	Output Transition	2.0			30	75		95		110		
t _{THL}	Time	4.5			8	15		19		22	ns	
		6.0			7	13		16		19		
t _{PLZ}	Propagation	2.0			16	60		75		90		
	Delay Time	4.5	$RL = 1 K\Omega$		9	12		15		18	ns	
		6.0			8	10		13		15		
t _{PZL}	Propagation	2.0			23	60		75		90		
	Delay Time	4.5	$R_L = 1 K\Omega$		7	12		15		18	ns	
		6.0			6	10		13		15		
C _{IN}	Input Capacitance				5	10		10		10	pF	
C _{PD} (*)	Power Dissipation Capacitance				7						pF	

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC}(opr) = C_{PD} • V_{CC} • f_{IN} + I_{CC}/4 (per Gate)

TYPICAL APPLICATIONS

Plastic DIP14 MECHANICAL DATA

DIM.		mm		inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm		inch			
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7.0			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		15.24			0.600		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	1.52		2.54	0.060		0.100	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO14 MECHANICAL DATA

DIM.		mm		inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	8.55		8.75	0.336		0.344		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S			8° (ı	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

