EXAMEN (ESTIMATION) - CORRIGÉ SUCCINCT

I.Nikiforov

29 novembre 2001

Documents autorisés : Polycopiés distribués, formulaires et notes de cours.

Exercice 1 Soit $\xi_1, \xi_2, \dots, \xi_n$ une suite de variables aléatoires indépendantes, $\xi_i \sim U(a, b)$, où U(a, b) est la distribution uniforme sur [a; b], a < b.

- 1. Calculer la densité et l'espérance mathématique de la variable aléatoire $\max(\xi_1,\ldots,\xi_n)$.
- 2. Calculer la densité et l'espérance mathématique de la variable aléatoire $\min(\xi_1,\ldots,\xi_n)$.

Réponses:

1. La fonction de répartition d'une loi uniforme est définie par :

$$F(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } x \in [a;b] \\ 1 & \text{si } x > b \end{cases}, a < b.$$

La fonction de répartition de la variable $\xi_{(n)} = \max(\xi_1, \dots, \xi_n)$ est (pour les $x \in [a; b]$)

$$F_{\xi_{(n)}}(x) = \mathbb{P}(\xi_{(n)} < x) = \prod_{i=1}^{n} \mathbb{P}(\xi_i < x) = [\mathbb{P}(\xi_i < x)]^n = \left(\frac{x-a}{b-a}\right)^n.$$

La densité de $\xi_{(n)}$ est

$$f_{\xi_{(n)}}(x) = \begin{cases} \frac{d}{dx} \left[\frac{x-a}{b-a} \right]^n = n \frac{(x-a)^{n-1}}{(b-a)^n} & \text{si} \quad x \in [a;b] \\ 0 & \text{si} \quad x \notin [a;b] \end{cases}, a < b.$$

L'espérance mathématique de la variable aléatoire $\xi_{(n)}$ est

$$\mathbb{E}(\xi_{(n)}) = \int_{a}^{b} x f_{\xi_{(n)}}(x) dx = \int_{a}^{b} x n \frac{(x-a)^{n-1}}{(b-a)^{n}} dx = b - \frac{b-a}{n+1}.$$

2. La fonction de répartition de la variable $\xi_{(1)} = \min(\xi_1, \dots, \xi_n)$ est (pour les $x \in [a; b]$)

$$F_{\xi_{(1)}}(x) = \mathbb{P}(\xi_{(1)} < x) = 1 - \prod_{i=1}^{n} \mathbb{P}(\xi_i \ge x) = 1 - \left(\frac{b-x}{b-a}\right)^n.$$

La densité de $\xi_{(1)}$ est

$$f_{\xi_{(1)}}(x) = \left\{ \begin{array}{ll} \displaystyle \frac{d}{dx} \left[1 - \left(\frac{b-x}{b-a} \right)^n \right] = n \frac{(b-x)^{n-1}}{(b-a)^n} & \text{si} \quad x \in [a;b] \\ 0 & \text{si} \quad x \notin [a;b] \end{array} \right., a < b.$$

L'espérance mathématique de la variable aléatoire $\xi_{(1)}$ est

$$\mathbb{E}(\xi_{(1)}) = \int_{a}^{b} x f_{\xi_{(1)}}(x) dx = \int_{a}^{b} x n \frac{(b-x)^{n-1}}{(b-a)^n} dx = a + \frac{b-a}{n+1}.$$

Exercice 2 Soit $\xi_1, \xi_2, \dots, \xi_n$ une suite de variables aléatoires indépendantes, $\xi_i \sim U(a,b)$, où U(a,b) est la distribution uniforme sur [a;b], a < b.

On cherche à estimer le paramètre $\theta = b - a$. Soit

$$\hat{\theta} = \xi_{(n)} - \xi_{(1)},$$

 $où \xi_{(n)} = \max(\xi_1, \dots, \xi_n) \text{ et } \xi_{(1)} = \min(\xi_1, \dots, \xi_n), \text{ un estimateur de } \theta.$

- 1. L'estimateur $\hat{\theta}$ est-il biaisé?
- 2. Supposons que $n \to \infty$. L'estimateur $\hat{\theta}$ est-il asymptotiquement biaisé?

Réponses:

1. En utilisant les résultats de l'exercice 1, on obtient

$$\mathbb{E}_{a,b}(\hat{\theta}) = \mathbb{E}_{a,b}(\xi_{(n)} - \xi_{(1)}) = \frac{n-1}{n+1}(b-a) \neq \theta = b-a.$$

Donc, l'estimateur $\hat{\theta} = \xi_{(n)} - \xi_{(1)}$ est biaisé.

2. L'estimateur $\hat{\theta} = \xi_{(n)} - \xi_{(1)}$ est asymptotiquement non biaisé, car

$$\lim_{n \to \infty} \mathbb{E}_{a,b}(\xi_{(n)} - \xi_{(1)}) = \theta = b - a.$$

Exercice 3 La loi binomiale B(1, p) est définie par :

$$\mathbb{P}(\xi = k) = p^k (1 - p)^{1 - k},$$

où $k \in \{0,1\}$ sont entiers et $0 . Soit <math>(\xi_1, \dots, \xi_n)$ un vecteur aléatoire, où $\xi_i \sim B(1,p)$. On cherche à estimer le paramètre θ tel que

$$\theta(p) = \arcsin \sqrt{p}$$
.

Soit

$$\hat{\theta} = \arcsin\sqrt{\xi} \ avec \ \overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$$

un estimateur de θ . Supposons que $n \to \infty$.

- 1. L'estimateur $\hat{\theta}$ est-il convergent?
- 2. L'estimateur $\hat{\theta}$ est-il asymptotiquement normal?

Réponses:

- 1. En utilisant la loi des grands nombres, on trouve que la moyenne $\overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$ converge en probabilité vers $\mathbb{E}_p(\xi) = p : \overline{\xi} \xrightarrow[\mathbb{D}]{} p$. En utilisant le théorème de continuité, on obtient que $\hat{\theta} = \arcsin\sqrt{\overline{\xi}} \xrightarrow[\mathbb{D}]{} \theta(p) = \arcsin\sqrt{\overline{p}}$.
- 2. L'estimateur $\hat{\theta} = h(\overline{\xi}) = \arcsin\sqrt{\overline{\xi}}$ est asymptotiquement normal car la fonction $h: u \mapsto h(u) = \arcsin\sqrt{u}$ est dérivable, $0 < \left|\frac{dh}{du}(u_0)\right| < \infty$, où $u_0 = \mathbb{E}_p(\xi) = p$, et $\mathbb{E}_p(\xi^2) < \infty$.

Exercice 4 À partir des observations y_1, y_2, \dots, y_n d'une certaine grandeur économique y, on retient le modèle suivant

$$y_i = ay_{i-1} + \xi_i, \quad i = 1, 2, \dots, n.$$

On considère que $\xi_i \sim \mathcal{N}(0, \sigma^2)$, $\sigma^2 > 0$, et $y_0 = 0$.

- 1. Donner l'expression de la log-vraisemblance pour le modèle retenu.
- 2. Déterminer l'estimateur du maximum de vraisemblance \hat{a} de a.

Réponses :

1. La densité conditionnelle de y_i sachant y_{i-1} est

$$f(y_i|y_{i-1}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(y_i - ay_{i-1})^2}{2\sigma^2}\right\}.$$

On obtient la densité des n premières observations y_1,\ldots,y_n sachant y_0 :

$$f_a(y_1,\ldots,y_n \mid y_0) = \prod_{i=1}^n f(y_i|y_{i-1}).$$

D'où on trouve la log-vraisemblance pour le modèle

$$\ln f_a(y_1, \dots, y_n \mid y_0) = -\frac{n}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - ay_{i-1})^2.$$

2. On calcule la dérive partielle

$$\frac{\partial}{\partial a} \left[-\frac{n}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - ay_{i-1})^2 \right] = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - ay_{i-1}) y_{i-1} = 0.$$

D'où on trouve l'estimateur du maximum de vraisemblance de a

$$\hat{a} = \frac{\sum_{i=1}^{n} y_i y_{i-1}}{\sum_{i=1}^{n} y_{i-1}^2} = \frac{\sum_{i=2}^{n} y_i y_{i-1}}{\sum_{i=2}^{n} y_{i-1}^2}.$$