Graph

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- This week, we study graphs.
- Objectives are
 - Understanding the data structure of graphs
 - Able to implement the data structure for dense graphs
 - Able to implement the data structure for sparse graphs
 - Understanding the operations of graphs
 - BFS and DFS traverse
 - Understanding the algorithms on graphs
 - Dijkstra's shortest path algorithm
 - Minimum Spanning Tree

Graphs

- Examples of ordered collections, where each item may have successors and predecessors :
 - List: one predecessor, one successor at most
 - Tree: one predecessor (parent), several successors (children)
 - Graph: several predecessors and successors
- Graph G = (V, E)
 - V = { v_i } : a finite non-empty set of vertices (or nodes)
 - E = { e_i }: a finite (possibly empty) set of edges (or arcs)
 - e_i connects two vertices in V

Graph terminology

- adjacent, neighbor, incident
- path between A and B: a sequence of edges connecting A and B
- connected graph: path from each to every other vertex
- connected component: graph subset containing the set of vertices reachable from a vertex and their edges
- complete graph: edge for every pair of vertices
 - dense graph : close to complete graph $|E| = O(|V|^2)$
 - sparse graph: far from complete graph |E| = O(|V|)

Graph terminology

- Cycle: a path starting from a node and ending the node itself
- Directed edge: an edge with direction (source and destination)
- **Digraph** : Directed graph.
 - Graph with directed edges
- **DAG**: Directed Acyclic Graph
 - Directed graph without cycle

- To store a graph
 - Store a set of vertexes
- - 0,1,2,3,4,5,6,7,8,9
 - Store a set of edges
 - (0,1), (1,3), (2,0), (5,3)...
- How to store?
 - Storing vertexes
 - Simple.
 - Linked list, BST, Hash....
 - Store edges
 - Fundamentally, a pair of values
 - Initially, a two-dimensional matrix
 - Space: $O(V^2)$
 - Time: O(1)
 - However....
 - Graph density becomes problem
 - So, adjacency list
 - Space: O(E)
 - Time: O(E)

Data structure for graphs

Matrix Representation for Dense Graph

- Array Representation : Adjacency Matrix
- Linked Representation : Adjacency List
- Adjacency Matrix
 - A[i][j] = 1 if $(v_i, v_j) \in E$ 0 otherwise
- Adjacency Matrix for weighted graph
 - edge weight value instead of 0/1

		0	1	2	3
		A	В	С	D
0	A	0	0	0	0
1	В	1	0	1	1
2	С	0	0	0	0
3	D	0	0	1	0

		0	1	2	3
		A	В	С	D
0	A	0	0	0	0
1	В	7	0	11	5
2	С	0	0	0	0
3	D	0	0	2	0

Adjacency List Representation for Sparse Graph

- Adjacency matrix :/storage waste for sparse graph
- Adjacency list
 - For each vertex, make a linked list of edges starting from the vertex
 - Edge weight can be stored in 'Edge'
 - Storage efficient

Operations of graph data structure

- Operations on graphs
 - Operation of retrieving vertexes
 - BFS traverse
 - DFS traverse
 - Operation of finding shortest paths
 - The shortest path
 - From vertex 1
 - To vertex 9
 - Operation of finding a set of path to control whole vertexes
 - The minimum spanning tree

Detour: Tree traversing

- Tree
 - Complicated than a list
 - Multiple ways to show the entire dataset
 - If it were a list
 - Just show the values from the beginning to the end
 - Since this is a BST
 - You have to choose what to show at a time
 - The value in LHS
 - The value in RHS
 - The value that you have
- Hence there are multiple traversing approaches

Inserting 3, 2, 0, 5, 7, 4, 6, 1, 9, 8

DFS vs. BFS traverse on graphs

- DFS utilizes
 - Stacks, or recursions that imitates the stack operations
 - Pre-order traverse
 - In-order traverse
 - Post-order traverse
 - In graphs, often only pre-order traverse is used
- BFS utilizes
 - Queues
 - Lever-order traverse
- Having said this,
 - Tree is a directed acyclic graph.
 - Graph may not be a DAG
 - Then....
 - You have to check the repeated visits to avoid falling into a cycle

Single-Source Shortest Path Problem

- One recurring problem in graph
- Happens in
 - Path finding
 - Routing on comm. networks
 - Social networks
- We know where we are
- We want to know how long to travel to our destination
- Terminology
 - Source = where we start
 - Destination = where we arrive

Detour: Dynamic Programming

- Dynamic programming:
 - A general algorithm design technique for solving problems defined by or formulated as recurrences with overlapping subinstances
 - In this context, Programming == Planning
- Main storyline
 - Setting up a recurrence
 - Relating a solution of a larger instance to solutions of some smaller instances
 - Solve small instances once
 - Record solutions in a table
 - Extract a solution of a larger instance from the table

Memoization Table						
Instance	Solution					
F(0)	0					
F(1)	1					
F(2)	1					
F(3)	2					
F(4)	?					

Detour: Tracing Assembly Line Scheduling in DP

Time	1	2	3	4	5	6
L1	9	18	20	24	32	35
L2	12	16	22	25	30	37

Trace	1	2	3	4	5	6
L1		1	2	1	1	2
L2		1	2	1	2	2

Computer science is no more about computers than astronomy is about telescopes.

Dijkstra's algorithm

Memoization Table

- V = the set of vertexe
- W = the set of weights on edges
- s = the source y tex
- Dijkstra's algorithm(V, W,s)
 - dist = {}
 - For itr in V
 - dist[v] = 99999
 - dist[s] = 0
 - While size(V) != 0
 - u = getVertexWithMinDistance(V, dist)
 - V.remove(u)
 - For neighbor in getNeighbors(u)
 - If dist[neighbor] > dist[u]+w(u,neighbor)
 - dist[neighbor] = dist[u]+w(u,neighbor)
 - Return dist

(0)

20

Progress of Dijkstra's algorithm (1)

Progress of Dijkstra's algorithm (2)

Progress of Dijkstra's algorithm (3)

- Time complexity
 - $O((|E|+|V|)\log|V|)$
 - We will not prove this
 - |E|
 - The number can vary
 - It can be close to
 - 1 = dense graph
 - 0 = sparse graph
 - If it is a dense graph,
 - |E| is almost equal to |V| X |V|
 - Then?
 - $O(|V|^2 \log |V|)$
 - More than a quadratic time complexity
 - Pretty expensive!

Minimum Spanning Tree Problem

- Shortest-path problem
 - Path planning from a selected source
 - Many times, algorithm for planning
- Minimum spanning tree
 - Network control problem
 - All vertex coverage with minimum cost
 - Algorithm from network design
 - Telephone network
 - Electricity grid network
 - TV cable network
 - Computer network
 - Road network
 - Evolving to the influence propagation tree
 - Social network influence
 - From one politician to all tweeter accounts

Prim's algorithm

- V = the set of vertexes
- U = the covered set of vertexes
- W = the set of weights on edges
- E = the selected set of edges
- s = the source vertex
- Prim's algorithm(V, W,s)
 - $U = \{s\}, E = \{\}$
 - While U == V
 - edges = Find edges of (src, dst) s.t. $src \in U, dst \in V$
 - e = getEdgeWithMinimumWeight(edges)
 - $E = E \cup \{e\}$
 - $U = U \cup \{e. dst\}$
 - Return E and U

Covered Nodes

Edges of

don't care

Progress of Prim's Algorithm (1)

Progress of Prim's Algorithm (2)

Progress of Prim's Algorithm (3)

- Time complexity
 - $O((|E|+|V|)\log|V|)$
 - We will not prove this
 - Same time complexity to the Dijkstra's algorithm

 $V = \{1,2,3,4,5\}$ $U = \{1,2,3,4,5\}$ $E = \{(1,2),(2,4),(2,3),(3,5)\}$

Further Reading

- Introductions to Algorithms by Cormen et al.
 - pp. 527-619