

## Deep Dive into LLMs

## TOKEN & EMBEDDINGS REVISITED

## QUIZ



https://forms.office.com/e/CgWRRGSrTL

#### PROJECT MILESTONES

- 30.10 Form Groups
- 06.11 Literature Review I
- 13.11 Literature Review II
- 20.11 TBD
- 27.11 TBD
- 04.12 TBD
- 11.12 TBD
- 18.12 TBD
- 08.01 Project presentations

#### LEARNING GOALS

- 1. Understand the Evolution of Language Models: Gain a broad understanding of how language models have evolved, from early methods like n-grams to advanced transformer architectures.
- 2. Grasp Core Concepts of Word Embeddings and RNNs: Understand the significance and limitations of word embeddings and recurrent neural networks, including LSTMs.
- **3. Master the Basics of Attention and Transformers**: Comprehend the fundamentals of attention mechanisms and the architecture of Transformer models, including key components like Multi-Head Attention and Positional Encoding.
- **4. Familiarize with Advanced Models**: Be aware of advancements beyond basic Transformers, including models like BERT and GPT.
- 5. Synthesize and Reflect: Summarize key takeaways from the session and formulate thoughts or questions for further exploration.

# EARLY LANGUAGE MODELS

#### LANGUAGE MODEL

Language Modeling Task:

- Input: sequence of words  $x^1, x^2, ..., x^n$
- Output: prob dist of the next word  $P(x^{(n+1)}|x^t,...,x^1)$

### TYPICAL TASKS

- Text generation
- ? Information Retrieval
- Text Classification
- Grammer checking
- Word Prediction
- Named Entity Recognition (NER)

# STATISTICAL METHODS

### N-GRAMS

- Sentence: "I love cake"
- Unigram: "I", "love", "cake"
- Bigram: "I love", "love cake"
- Trigram: "I love cake"



N-grams can break large texts into manageable pieces

#### STATISTICAL METHODS

■ If "I love to eat" occurs 100 times in the corpus and "I love to eat cake" occurs 90 times, then:

$$P(cake | I, love, to, eat) = \frac{90}{100} = 0.9$$

These methods are simple but have many limitations

#### NEURAL METHODS

- Solution: Neural Networks
- Problem: Neural Networks work with numbers not text

Word Embeddings to the rescue

# WORD EMBEDDINGS

#### STATIC VECTORS

- Feature-based (sparse)
- Count-based (sparse)
- Classical dimensionality reduction (dense)
- Learned dimensionality reduction (dense)

#### PROBLEMS

 In web search if user searches for "New York motel", we would like to match results containing "New York hotel"

```
Motel = [0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
Hotel = [0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]
```

#### IMPORTANCE OF WORD EMBEDDINGS

- Semantic meaning
- Contextual relationships
- Dimensionality reduction
- Improved model performance
- Handling OOV tokens

#### WORD2VEC IDEA

- group of related models that produce word embeddings by utilizing shallow neural networks
- Context-based learning
- train a neural network with a single hidden layer to predict a target word based on its context (neighboring words)
- In the end we use the word embeddings, not the network itself

## WORD2VEC IDEA

students love eating chocolate cake

## CBOW



## SKIP-GRAM



### WORD2VEC VISUALIZATION

https://projector.tensorflow.org

#### GLOVE

 GloVe combines global statistical information (from the entire corpus) with local information (from specific word pairs) to create the word embeddings

## PROBLEM



What to do with Out Of Vocabulary words?

#### FAST TEXT

- builds on the ideas of Word2Vec but introduces two major tweaks to improve the quality of the embeddings:
- 1. Subword Modeling
- 2. Efficient Learning

# NEURAL METHODS

#### SIMPLE NEURAL NETWORKS

Output distribution

$$\hat{y} = \operatorname{softmax}(\operatorname{Uh} + \operatorname{b}_2) \in \mathbb{R}^{|V|}$$

Hidden layer

$$h = f(We + b_1)$$

Concatenated word embeddings  $e = [e^1; e^2; e^3]$ 

Words / one-hot vectors



#### LEARNINGS

#### Improvements over *n-gram* LM:

- No sparsity problem
- Don't need to store all observed n-grams

#### Remaining problems:

- Fixed window is too small
- Enlarging window enlarges W
- We need an architecture that can process any length input

## SIMPLE RNN LANGUAGE MODEL

#### Output distribution

$$\widehat{y^t} = \operatorname{softmax}(\operatorname{Uh^t} + \operatorname{b_2}) \in \mathbb{R}^{|V|}$$



$$h^t = \sigma \left( W_h h^{t-1} + W_e e^t + b_1 \right)$$
  
 
$$h^0$$
 is the initial hidden state

Word embeddings

$$e = Ex^t$$

Words / one-hot vectors



### PROBLEMS OF RNNS

**Exploding Gradients** 

→ Model becomes unstable

Vanishing Gradients

The model doesn't learn anything

#### PROBLEMATIC EXAMPLE

"David had a big presentation scheduled for next week. He spent days preparing the slides, rehearsing his speech, and researching additional material to address potential questions. The night before the big day, he made sure to get a full night's sleep. The next morning, he dressed in his best suit and drove to the office. After one final run-through, he stood before his colleagues and began his

## RNN



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

## LSTM



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

## LSTM



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

#### BIDIRECTIONAL RNN

- So far only processing input from left to right
- Process input from left to right
- → Process input from right to left
- Concatenate the outputs

#### Problem:

- We need access to the entire input sequence
- → Bidirectional RNNs are not applicable to LM

### SEQ2SEQ

 While RNNs can process input of any length they have a fixed length output

What if we want to do machine translation where the length of the output changes?

## SEQ2SEQ



https://d2l.ai/chapter\_recurrent-modern/seq2seq.html

## PROBLEM



#### ATTENTION IDEA

- At each step of the decoding process, the focus of the network is only on a particular part of the input sequence
- Use a direct connection to the encoder
- Which part to focus on?
- Use dot product to measure similarity with the input
- → Compare the hidden state of the decoder with every hidden state of the encoder

#### TASKS UNTIL NEXT WEEK

- Watch the last ten minutes of this Stanford lecture on Attention
- Watch the first 25 Minutes of this Stanford lecture on Attention
- Watch all 4 Videos of the Rasa Attention Series
- Complete the Notebook and play around with different embeddings
- Optional: Watch this Stanford lecture on Transformers