Diszkrét matematika I. feladatok

Tizenequedik alkalom (2013.11.25.-29.)

- 1. Az alábbi **R** relációkra határozd meg dmn(**R**), rng(**R**) halmazokat. $A = \{0, 1, 2\}$ esetén hatátozd meg az A képét $\mathbf{R}(A)$, teljes inverzképét $\mathbf{R}^{-1}(A)$, megszorítását $\mathbf{R}|_A$:
 - a) $\mathbf{R} = \{(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 : y^2 = x\},$ b) $\mathbf{R} = \{(x, y) \in \mathbb{Z}_4 \times \mathbb{Z}_4 : y^2 = x^2\},$ c) $\mathbf{R} = \{(x, y) \in \mathbb{Z}_5 \times \mathbb{Z}_5 : y^2 = x^3 + x + 1\},$ d) $\mathbf{R} = \{(x, y) \in \mathbb{Z}_7 \times \mathbb{Z}_7 : y^2 = x^3 + 2\}.$
- 2. Határozzuk meg az $R \cap S$ relációt, ha R az m osztója n-nek reláció \mathbb{N} -en, S pedig az n = m + 6 reláció \mathbb{Z} -n!
- 3. Határozd meg az $\mathbf{S} \circ \mathbf{R}$ és $\mathbf{R} \circ \mathbf{S}$ szorzatot, ha
 - a) $\mathbf{R} = \{(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 : y^2 = x\} \text{ és } \mathbf{S} = \{(x, y) \in \mathbb{Z}_3 \times \mathbb{Z}_3 : y = 2x\};$
 - b) $\mathbf{R} = \{(x, y) \in \mathbb{Z}_4 \times \mathbb{Z}_4 : y^2 = x^2\} \text{ és } \mathbf{S} = \{(x, y) \in \mathbb{Z}_4 \times \mathbb{Z}_4 : y = 2x\};$
 - c) $\mathbf{R} = \{(x,y) \in \mathbb{Z}_5 \times \mathbb{Z}_5 : y^2 = x^3 + x + 1\} \text{ és } \mathbf{S} = \{(x,y) \in \mathbb{Z}_5 \times \mathbb{Z}_5 : y^2 = x^3 + 1\};$
 - d) $\mathbf{R} = \{(x,y) \in \mathbb{Z}_6 \times \mathbb{Z}_6 : xy = 0\} \text{ és } \mathbf{S} = \{(x,y) \in \mathbb{Z}_6 \times \mathbb{Z}_6 : x^2 + y^2 = 0\};$
 - e) $\mathbf{R} = \{(x, y) \in \mathbb{Z}_7 \times \mathbb{Z}_7 : xy = 1\} \text{ és } \mathbf{S} = \{(x, y) \in \mathbb{Z}_7 \times \mathbb{Z}_7 : x^2 + y^2 = 1\};$
 - f) $\mathbf{R} = \{(x,y) \in \mathbb{Z}_8 \times \mathbb{Z}_8 : x^2y^2 = 0\} \text{ és } \mathbf{S} = \{(x,y) \in \mathbb{Z}_8 \times \mathbb{Z}_8 : x^2 + y^2 = 0\};$
- 4. Legyen $X = \{a, b, c\}$. Határozd meg az összes X-beli binér reláció számát. Keressünk példát a relációtulajdonságok teljesülésére és nemteljesülésére.
- 5. Legyen az $\mathbf{R} \subseteq \mathbb{N} \times \mathbb{N}$ reláció olyan, hogy $n\mathbf{R}m$ $(n, m \in \mathbb{N})$ igaz, ha n és m közös prímosztóinak a száma páros. Vizsgáljuk meg R tulajdonságait.
- 6. Keressünk olvan relációt, amely
 - a) reflexív, de nem tranzitív; b) antiszimmetrikus és reflexív; c) antiszimmetrikus és nem d) nem reflexív, nem tranzitív; e) nem tranzitív, de trichotóm; tranzitív:
 - f) semmi (nem reflexív, nem tranzitív, nem szimmetrikus, nem antiszimmetrikus, nem trichotóm).
- 7. Definiáljunk a következő relációkat Z-n és vizsgáljuk meg tulajdonságait:
 - a) $x\mathbf{R}_1y$, ha $x^2 + y^2$ osztható 2-vel; b) $x\mathbf{R}_2y$, ha $x^2 y^2$ osztható 2-vel.
- 8. Adott X halmaz esetén bizonyítsuk be, hogy \sim ekvivalenciareláció! Mi lesz a \sim által meghatározott osztályozás?
 - a) $X = \mathbb{C}$, $z \sim w$, ha |z| = |w|;
- b) $X = \mathbb{C}$, $z \sim w$, ha z/|z| = w/|w|;
- c) $X = \mathbb{C}$, $z \sim w$, ha $z/w = \pm 1$;
- d) $X = \mathbb{C}, z \sim w, \text{ ha } z/w \in \{\pm 1, \pm i\};$
- e) $X = \mathbb{C}, z \sim w, \text{ ha } (z/w)^n = 1;$
- f) $X = \mathbb{Z}_{15}, x \sim x$, ha $5(x y) \equiv 0 \mod 15$;
- g) $X = \mathbb{N} \times \mathbb{N}$, $(p,q) \sim (r,s)$, ha p+s=r+q; h) $X = \mathbb{Z} \times \mathbb{N}^+$, $(p,q) \sim (r,s)$, ha ps=rq.

Szorgalmi feladatok

- 9. Írjunk programot, mely egy relációról eldönti, hogy reflexív (szimmetrikus, antiszimmetrikus, tranzitív), vagy nem. Számoljuk meg a programmal, hány ekvivalenciareláció, illetve részbenrendezés van egy négvelemű halmazon.
- 10. Aladár és Béla a következő játékot játsszák: először Aladár mond egy részhalmazt az $X = \{1, 2, 3\}$ részhalmazai közül. Utána Béla mond egy másik részhalmazt X-ből, majd újra Aladár stb. A szabály az, hogy mindig csak olyan részhalmazt lehet megnevezni, amely egyetlen korábban megnevezett halmaznak sem részhalmaza. Az veszít, aki utoljára lép (az utolsó lépés mindig a teljes X halmaz lesz). Egy lehetséges játékmenet: $A: \{1\}, B: \{2\}, A: \{1,3\}, B: \{2,3\}, A: \{1,2\}, B: \{1,2,3\},$ és Aladár nyert. Kinek van nyerő stratégiája?