- 1. Видимый поперечник звездного скопления составляет 13', видимая звездная величина 9^m , диаметр скопления равен 6 пк. Считая, что в скоплении содержится 1000 звезд, похожих на Солнце, оцените поглощение света в звездных величинах на 1 кпк в направлении на скопление.
- 2. В Галактике Млечный Путь раз в 20 лет вспыхивают Сверхновые II типа с абсолютной звездной величиной -18^m . Насколько часто такие Сверхновые появляются в небе Земли с блеском ярче Венеры (-4^m) ? Радиус Галактики считать равным 15 кпк, поглощение света составляет $2^m/$ кпк.
- 3. На какое расстояние надо удалиться от Солнца, чтобы его звездная величина стала равна 18^m без учета межзвездного поглощения? А с учетом межзвездного поглощения $2^m/$ кпк?
- 4. Поглощение света атмосферой Земли при наблюдениях в зените составляет 0.23^m . Оцените, каким будет поглощение при наблюдении на зенитном расстоянии 30° и 85° .
- 5. Видимая звездная величина Проциона за пределами земной атмосферы составляет 0.40^m . Найдите видимую звездную величину Проциона в момент верхней кульминации для наблюдателя в Петербурге ($\varphi = 60^\circ$), если известно, что склонение Проциона $\delta = +5^\circ$
- 6. Наблюдатель на Земле исследует некоторую звезду. При наблюдении её в зените её звёздная величина оказалась равной $m_1 = 2.74^m$, а при высоте 45° над горизонтом $m_2 = 2.85^m$. Чему равна звёздная величина m_0 этой звезды при наблюдении вне атмосферы (со спутника, например)?
- 7. В период задымления от лесных пожаров в центральной России летом 2010 года наблюдатель заметил, что Солнце на высоте 20° над горизонтом имело ту же видимую яркость, какая бывает у полной Луны вблизи зенита на ясном небе при чистой атмосфере. Исходя из этого, оцените суммарную массу дымовых частиц, находившихся над одним квадратным метром земной поверхности в этих районах. Считать, что поглощение света в чистой атмосфере в зените равно 0.2^{m} , а дым состоит из черных частиц размером 1 мкм и плотностью 0.6г/см^{3} . Также считать, что поглощение света соответствует законам геометрической оптики (дифракцией на частицах пренебречь).