Supporting information for 'The Point Process Framework for Integrated Modelling of Biodiversity Data'

Kwaku Peprah Adjei, Philip Mostert, Jorge Sicacha Parada, Emma Skarstein, Robert B. O'Hara

Last updated: October 24 2023 at 10:10:11.

Setup

These are the packages we will be using:

```
#devtools::install_github("PhilipMostert/PointedSDMs")
library(PointedSDMs) # model fitting
library(ggplot2) # plotting
library(raster) # ???? Model fitting fails if I exclude this
library(mapproj) # map options for plotting
library(INLA) # functions for specifying mesh
library(dplyr) # data handling
library(sf) # spatial stuff
library(showtext) # font for plot
library(patchwork) # combining figures
```

Downloading data

Before you run this file, make sure you have the following files in the given locations:

- data/environmental_covariates.rds
 - should be in the data folder already.
- data/Norwegian_lakes.rds
 - can be downloaded from https://bird.unit.no/resources/9b27e8f0-55dd-442c-be73-26781dad94c8/content, click on "Innhold"-tab at the bottom of the page and select "Norwegian_lakes.rds".
- data/artsobs_clean.rds
 - created from running the script R/data_preparation.R, see further instructions there.
- data/survey_clean.rds
 - also created from running the script R/data_preparation.R, see further instructions there.

Loading Norway map and making mesh

We begin by making a spatial mesh out of a map of Norway.

Adjusting the mesh to be coarser is the easiest way to decrease the run-time for the model. With the following mesh, the model fitting takes a little more than 1 hour for us, but feel free to change the max.edge or cutoff to get a coarser mesh.

Constrained refined Delaunay triangulation

Setting up covariate data

Next we load the environmental data, which will be used as covariates.

```
covariates_raw <- readRDS("data/environmental_covariates.RDS")

covariates <- covariates_raw %>%
  # Log-transform area of lake
```

```
dplyr::mutate(log_area = log(area_km2)) %>%
# Remove some uninformative variables
dplyr::select(-c(ebint, no_vatn_lnr, eb_waterregionID))

# Choose from
# "decimalLatitude", "decimalLongitude",
# "log_area", "perimeter_m", "distance_to_road",
# "eurolst_bio10", "catchment_area_km2", "SCI", "HFP"

Use <- c("log_area", "eurolst_bio10", "SCI")

cov_pixel <- SpatialPixelsDataFrame(
    points = covariates[,c("decimalLongitude","decimalLatitude")],
    data = covariates[,Use],
    proj4string = CRS(proj),
    tol = 0.340571)

# Scale covariates and convert to terra::rast
cov_raster <- scale(terra::rast(cov_pixel))</pre>
```

Observation data

For this model, we have two observation sets, one which is downloaded from GBIF and one that is a survey dataset (see separate document for download instructions).

```
fishes <- c("Esox_lucius", "Perca_fluviatilis", "Salmo_trutta", "Salvelinus_alpinus")
survey <- readRDS("data/survey_clean.rds") %>%
  filter(species %in% fishes)
artsobs <- readRDS("data/artsobs_clean.rds") %>%
  filter(species %in% fishes)
```

We can plot the observed data points:

```
strip.text = element_text(family = f1, size = 12, face = "italic"),
        plot.tag = element_text(angle = 90, hjust = 0.5),
        plot.tag.position = c(-0.03, 0.45),
        legend.position = "none",
        axis.title = element_blank(),
        axis.text.x = element_blank())
p_survey <- ggplot(survey %>% filter(occurrenceStatus == 1),
       aes(x = decimalLongitude, y = decimalLatitude)) +
  geom_polygon(data = norway, aes(long, lat, group = group),
               color="grey80", fill = "grey95") +
  geom_jitter(color = "darkcyan", size = 0.5, alpha = 0.3) +
  facet_wrap(~species, nrow = 1) +
  coord_map() +
  xlab("Longitude") +
  ylab("Latitude") +
  labs(tag = "Survey data") +
  theme_minimal() +
  theme(text = element_text(family = f1),
        plot.tag = element_text(angle = 90, hjust = 0.5),
        plot.tag.position = c(-0.03, 0.45),
        legend.position = "none",
        axis.title = element_blank(),
        strip.text = element_blank(),
        plot.margin = margin(1 = 30))
p_artsobs / p_survey
```



```
ggsave("figures/presence_points.pdf", height = 5, width = 8)
```

Joint model for four fish species

For the presence/absence survey data, we use a Bernoulli distribution, where the presence probability for species $j \in \{Salmo\ trutta,\ Perca\ fluviatilis,\ Esox\ lucius,\ Salvelinus\ alpinus\}$ depends on some covariates x(s), along with a spatial field $\xi_j(s)$:

$$Y_{PA,j}(s_i) \sim \text{Bernoulli}(p_{PA,j}(s_i))$$

 $\text{cloglog}(p_{PA,j}(s_i)) = \alpha_{PA,j} + x(s_i)^T \beta_j + \xi_j(s_i).$

The presence-only data is fitted with a Poisson point process model, where the intensity depends on the same covariates x(s) and the same spatial field $\xi_j(s)$, plus an additional spatial field $\xi_{\text{bias}}(s)$ that is unique to the citizen science data, but shared across all fish species:

$$Y_{PO,j}(s_i) \sim \text{Poisson}(e^{\eta_{PO,j}(s_i)})$$

$$\eta_{PO,j}(s_i) = \alpha_{PO,j} + x(s)^T \beta_j + \xi_j(s_i) + \xi_{\text{bias}}(s_i).$$

So in summary, for this model we have:

- one bias field, based on CS data and common across all species
- four shared fields, shared across the data sets (survey/citizen science), but separate for each fish species.

Since we have two data sets and four species, that means that we in total have eight sub-models.

We first prepare the model using the intModel function.

```
fish_model_setup <- intModel(</pre>
                                        # Survey data
  survey,
  artsobs,
                                        # Citizen science data
                                        # Covariates
  spatialCovariates = cov_raster,
  speciesName = "species",
                                        # The column containing species name
  speciesSpatial = "copy",
                                        # Copy species fields across data
  Coordinates = c("decimalLongitude", "decimalLatitude"), # Name of coords
  responsePA = "occurrenceStatus",
                                        # Name of response column
  pointsSpatial = NULL,
                                        # NULL since we use speciesSpatial
  Mesh = mesh,
                                        # inla mesh object
  Projection = proj)
                                        # CRS for points and covariates
```

This model has the species specific spatial fields, but we also want a bias field that is shared across the species. We add this using \$addBias.

```
fish_model_setup$addBias("artsobs")
```

For the species specific fields, the default in PointedSDMs is that these are allowed to be different up to a scaling factor (named beta in INLA) across the data sets. That means that for instance the trout-specific spatial field for the citizen science data set is equal to beta times the trout-specific spatial field for the survey data. In practice, this has to do with the copy-option in INLA. But in our model we want them to be the same, not to vary by a factor. So we manually change this using the \$changeComponents function, by setting hyper = list(beta = list(fixed = TRUE)) for each of the four citizen science fields.

```
fish_model_setup$changeComponents(
  'Perca_fluviatilis_artsobs_spatial(
      main = geometry,
      copy = "Perca fluviatilis survey spatial",
      hyper = list(beta = list(fixed = TRUE)))',
  print = FALSE)
fish model setup$changeComponents(
  'Salmo trutta artsobs spatial(
     main = geometry,
      copy = "Salmo_trutta_survey_spatial",
      hyper = list(beta = list(fixed = TRUE))),
  print = FALSE)
fish_model_setup$changeComponents(
  'Salvelinus_alpinus_artsobs_spatial(
      main = geometry,
      copy = "Salvelinus_alpinus_survey_spatial",
      hyper = list(beta = list(fixed = TRUE)))',
  print = FALSE)
fish_model_setup$changeComponents(
  'Esox_lucius_artsobs_spatial(
     main = geometry,
      copy = "Esox lucius survey spatial",
      hyper = list(beta = list(fixed = TRUE)))')
## Components:
## ~-1 + Perca_fluviatilis_survey_spatial(main = geometry, model = Perca_fluviatilis_survey_field) +
##
       Salmo_trutta_survey_spatial(main = geometry, model = Salmo_trutta_survey_field) +
##
       Salvelinus_alpinus_survey_spatial(main = geometry, model = Salvelinus_alpinus_survey_field) +
##
       Esox_lucius_survey_spatial(main = geometry, model = Esox_lucius_survey_field) +
       Perca fluviatilis log area(main = Perca fluviatilis log area,
##
##
           model = "linear") + Salmo_trutta_log_area(main = Salmo_trutta_log_area,
       model = "linear") + Salvelinus_alpinus_log_area(main = Salvelinus_alpinus_log_area,
##
##
       model = "linear") + Esox_lucius_log_area(main = Esox_lucius_log_area,
       model = "linear") + Perca_fluviatilis_eurolst_bio10(main = Perca_fluviatilis_eurolst_bio10,
##
##
       model = "linear") + Salmo_trutta_eurolst_bio10(main = Salmo_trutta_eurolst_bio10,
##
       model = "linear") + Salvelinus alpinus eurolst bio10(main = Salvelinus alpinus eurolst bio10,
##
       model = "linear") + Esox_lucius_eurolst_bio10(main = Esox_lucius_eurolst_bio10,
##
       model = "linear") + Perca_fluviatilis_SCI(main = Perca_fluviatilis_SCI,
##
       model = "linear") + Salmo_trutta_SCI(main = Salmo_trutta_SCI,
##
       model = "linear") + Salvelinus_alpinus_SCI(main = Salvelinus_alpinus_SCI,
##
       model = "linear") + Esox_lucius_SCI(main = Esox_lucius_SCI,
##
       model = "linear") + Perca_fluviatilis_intercept(1) + Salmo_trutta_intercept(1) +
##
       Salvelinus_alpinus_intercept(1) + Esox_lucius_intercept(1) +
##
       artsobs_biasField(main = geometry, model = artsobs_bias_field) +
       Perca_fluviatilis_artsobs_spatial(main = geometry, copy = "Perca_fluviatilis_survey_spatial",
##
##
           hyper = list(beta = list(fixed = TRUE))) + Salmo_trutta_artsobs_spatial(main = geometry,
##
       copy = "Salmo trutta survey spatial", hyper = list(beta = list(fixed = TRUE))) +
##
       Salvelinus_alpinus_artsobs_spatial(main = geometry, copy = "Salvelinus_alpinus_survey_spatial",
           hyper = list(beta = list(fixed = TRUE))) + Esox_lucius_artsobs_spatial(main = geometry,
##
##
       copy = "Esox_lucius_survey_spatial", hyper = list(beta = list(fixed = TRUE)))
```

<environment: 0x5558cb804730>

We may look at which terms are included in each of the eight sub-models by calling **\$updateFormula** with the data sets as the arguments.

```
fish_model_setup$updateFormula(datasetName = "survey")
## $Perca_fluviatilis
  occurrenceStatus ~ Perca_fluviatilis_log_area + Perca_fluviatilis_eurolst_bio10 +
       Perca_fluviatilis_SCI + Perca_fluviatilis_intercept + Perca_fluviatilis_survey_spatial
## <environment: 0x5558d16be740>
##
## $Salmo_trutta
## occurrenceStatus ~ Salmo_trutta_log_area + Salmo_trutta_eurolst_bio10 +
       Salmo_trutta_SCI + Salmo_trutta_intercept + Salmo_trutta_survey_spatial
##
## <environment: 0x5558d16be740>
##
## $Salvelinus alpinus
## occurrenceStatus ~ Salvelinus_alpinus_log_area + Salvelinus_alpinus_eurolst_bio10 +
       Salvelinus_alpinus_SCI + Salvelinus_alpinus_intercept + Salvelinus_alpinus_survey_spatial
## <environment: 0x5558d16be740>
##
## $Esox_lucius
## occurrenceStatus ~ Esox_lucius_log_area + Esox_lucius_eurolst_bio10 +
       Esox_lucius_SCI + Esox_lucius_intercept + Esox_lucius_survey_spatial
##
## <environment: 0x5558d16be740>
fish_model_setup$updateFormula(datasetName = "artsobs")
## $Salvelinus_alpinus
  geometry ~ Salvelinus_alpinus_log_area + Salvelinus_alpinus_eurolst_bio10 +
       Salvelinus_alpinus_SCI + Salvelinus_alpinus_intercept + Salvelinus_alpinus_artsobs_spatial +
##
       artsobs biasField
##
## <environment: 0x5558d16be740>
##
## $Esox_lucius
  geometry ~ Esox_lucius_log_area + Esox_lucius_eurolst_bio10 +
       Esox_lucius_SCI + Esox_lucius_intercept + Esox_lucius_artsobs_spatial +
##
##
       artsobs biasField
## <environment: 0x5558d16be740>
##
## $Salmo_trutta
## geometry ~ Salmo_trutta_log_area + Salmo_trutta_eurolst_bio10 +
##
       Salmo trutta SCI + Salmo trutta intercept + Salmo trutta artsobs spatial +
##
       artsobs biasField
## <environment: 0x5558d16be740>
##
## $Perca fluviatilis
## geometry ~ Perca_fluviatilis_log_area + Perca_fluviatilis_eurolst_bio10 +
       Perca_fluviatilis_SCI + Perca_fluviatilis_intercept + Perca_fluviatilis_artsobs_spatial +
##
       artsobs_biasField
## <environment: 0x5558d16be740>
```

Finally, we actually fit the model using fitISDM.

We may then examine the model summary and save the model for future use.

summary(fish_model)

```
## Summary of 'bruSDM' object:
## inlabru version: 2.9.0
## INLA version: 23.04.24
##
## Types of data modelled:
##
## survey
                          Present absence
## artsobs
                             Present only
## Summary of the fixed effects for the species:
## Summary for Perca_fluviatilis:
##
                                                      sd
                                                           0.025quant
                                                                          0.5quant
                                          mean
## Perca_fluviatilis_log_area
                                   -0.04524608 0.1035409
                                                          -0.24818259 -0.04524608
## Perca_fluviatilis_eurolst_bio10  0.28464161  0.1567597
                                                          -0.02260185 0.28464161
## Perca_fluviatilis_SCI
                                  -0.22540404 0.1681564 -0.55498446 -0.22540404
## Perca_fluviatilis_intercept
                                   -3.15345933 5.3067567 -13.55451132 -3.15345933
                                   0.975quant
                                                     mode kld
## Perca_fluviatilis_log_area
                                    0.1576904 -0.04524608
## Perca fluviatilis eurolst bio10 0.5918851 0.28464161
## Perca_fluviatilis_SCI
                                    0.1041764 -0.22540404
                                                            0
## Perca fluviatilis intercept
                                    7.2475927 -3.15345933
##
## Summary for Salmo_trutta:
##
                                                  sd 0.025quant
                                     mean
                                                                     0.5quant
## Salmo_trutta_log_area
                               0.10578962 0.06349870 -0.01866555 0.10578962
## Salmo_trutta_eurolst_bio10 -0.05242897 0.07977155 -0.20877835 -0.05242897
## Salmo_trutta_SCI
                              -0.09169998 0.06929637 -0.22751837 -0.09169998
                               0.57235066 0.68072409 -0.76184405 0.57235066
## Salmo_trutta_intercept
##
                              0.975quant
                                                mode kld
## Salmo_trutta_log_area
                              0.23024478 0.10578962
## Salmo_trutta_eurolst_bio10 0.10392040 -0.05242897
                                                       0
## Salmo_trutta_SCI
                              0.04411841 -0.09169998
                                                       0
                              1.90654537 0.57235066
## Salmo_trutta_intercept
##
## Summary for Salvelinus_alpinus:
                                            mean
                                                         sd 0.025quant
## Salvelinus_alpinus_log_area
                                     0.381397264 0.07022379 0.2437612
## Salvelinus_alpinus_eurolst_bio10 -0.185761269 0.10308470 -0.3878036
## Salvelinus_alpinus_SCI
                                     0.003861832 0.09880188 -0.1897863
```

```
## Salvelinus_alpinus_intercept
                                     -0.927193806 0.30243462 -1.5199548
##
                                                                      mode kld
                                         0.5quant 0.975quant
## Salvelinus alpinus log area
                                     0.381397264 0.51903337 0.381397264
## Salvelinus_alpinus_eurolst_bio10 -0.185761269 0.01628103 -0.185761269
                                                                             0
## Salvelinus_alpinus_SCI
                                     0.003861832 0.19750996 0.003861832
                                                                             0
                                     -0.927193806 -0.33443284 -0.927193806
                                                                             0
## Salvelinus_alpinus_intercept
## Summary for Esox_lucius:
##
                                                sd 0.025quant
                                                                 0.5quant
                                   mean
## Esox_lucius_log_area
                              0.1585652 0.1211022 -0.07879078 0.1585652
## Esox_lucius_eurolst_bio10 -0.2701033 0.1728488 -0.60888066 -0.2701033
                             -0.1465265 0.1559041 -0.45209296 -0.1465265
## Esox_lucius_SCI
## Esox_lucius_intercept
                             -3.2682549 2.3870826 -7.94685083 -3.2682549
##
                             0.975quant
## Esox_lucius_log_area
                             0.39592114 0.1585652
## Esox_lucius_eurolst_bio10 0.06867412 -0.2701033
                                                      0
                             0.15903989 -0.1465265
                                                      0
## Esox_lucius_SCI
## Esox_lucius_intercept
                             1.41034097 -3.2682549
## Time used:
       Pre = 5.4, Running = 9808, Post = 0.35, Total = 9813
##
## Random effects:
     Name
##
              Model
##
       Perca_fluviatilis_survey_spatial SPDE2 model
##
      Salmo trutta survey spatial SPDE2 model
##
      Salvelinus_alpinus_survey_spatial SPDE2 model
##
      Esox_lucius_survey_spatial SPDE2 model
      artsobs_biasField SPDE2 model
##
##
      Salvelinus_alpinus_artsobs_spatial Copy
##
      Esox_lucius_artsobs_spatial Copy
##
      Salmo_trutta_artsobs_spatial Copy
##
      Perca_fluviatilis_artsobs_spatial Copy
##
## Model hyperparameters:
##
                                                           sd 0.025quant 0.5quant
                                                   mean
## Theta1 for Perca_fluviatilis_survey_spatial
                                                 -2.403 0.137
                                                                  -2.880
                                                                           -2.490
## Theta2 for Perca_fluviatilis_survey_spatial
                                                 -1.208 0.141
                                                                  -1.578
                                                                           -1.230
## Theta1 for Salmo_trutta_survey_spatial
                                                                  -0.889
                                                 -0.445 0.158
                                                                           -0.489
## Theta2 for Salmo_trutta_survey_spatial
                                                                  -1.016
                                                 -0.885 0.122
                                                                           -0.857
## Theta1 for Salvelinus_alpinus_survey_spatial -2.368 0.069
                                                                  -2.543
                                                                           -2.381
## Theta2 for Salvelinus_alpinus_survey_spatial 0.680 0.083
                                                                   0.582
                                                                            0.716
## Theta1 for Esox_lucius_survey_spatial
                                                 -1.685 0.108
                                                                  -1.767
                                                                           -1.650
## Theta2 for Esox_lucius_survey_spatial
                                                 -0.810 0.054
                                                                  -0.837
                                                                           -0.783
## Theta1 for artsobs biasField
                                                 -1.1200.200
                                                                  -1.638
                                                                           -1.146
## Theta2 for artsobs_biasField
                                                                  -3.307
                                                                           -3.053
                                                 -3.041 0.104
                                                 0.975quant
                                                              mode
## Theta1 for Perca_fluviatilis_survey_spatial
                                                     -2.369 - 2.318
## Theta2 for Perca_fluviatilis_survey_spatial
                                                     -1.079 -1.078
## Theta1 for Salmo_trutta_survey_spatial
                                                     -0.347 - 0.313
                                                     -0.561 -0.982
## Theta2 for Salmo_trutta_survey_spatial
## Theta1 for Salvelinus_alpinus_survey_spatial
                                                     -2.239 -2.336
## Theta2 for Salvelinus_alpinus_survey_spatial
                                                      0.912 0.631
## Theta1 for Esox_lucius_survey_spatial
                                                     -1.386 -1.768
## Theta2 for Esox_lucius_survey_spatial
                                                     -0.643 -0.844
```

Predictions and plots

Once the model has been fit, we can look at the predictions from the species-specific shared fields and the bias field.

We define a function that will do species-specific predictions, and save the species predictions, since these take a little time to compute.

```
prediction_list <- list()
for(fish in fishes) {
  prediction_list[[fish]] <- predict_species(
    model = fish_model,
    mesh = mesh,
    mask = norway.poly,
    species = fish
  )
}</pre>
```

Once we have the predictions, we can make some plots. We similarly define a function that makes a plot for one species, and then run this for all four species.

```
plot_preferences <- list(scale_fill_distiller(palette = "BrBG", direction = 1),</pre>
                          coord_map(),
                         xlab(""), ylab(""),
                          theme_minimal(),
                          theme(text = element_text(family = f1),
                                title = element_text(family = f1, size = 10, face = "italic"),
                                legend.key.height = unit(0.3, "cm"),
                                legend.title = element blank(),
                                legend.position = "bottom")
)
plot_species <- function(predictions, species_to_plot, plot_preferences){</pre>
  p <- ggplot() +
    geom_polygon(data = norway, aes(long, lat, group = group),
               color="grey80", fill = "grey95") +
    gg(predictions$speciesPredictions[[species_to_plot]]) +
    labs(title = sub("_", " ", species_to_plot)) +
    plot_preferences
  return(p)
}
```


And finally we predict and plot the bias field, which is shared between all the fish, as it describes the human sampling more than the distribution of the fish.

Bias field

-13.7513.5013.2513.0012.75

```
ggsave("figures/fishplot_biasfield.pdf", width = 3, height = 3)
```

Session info and runtime

This document took 2.89 hours to compile.

Current session info

```
- Session info
setting value
version R version 4.3.1 (2023-06-16)
          Ubuntu 20.04.1 LTS
          x86_64, linux-gnu
system
ui
          X11
language (EN)
collate C.UTF-8
ctype
          C.UTF-8
tz
          Europe/Oslo
date
          2023-10-24
          2.5 @ /usr/bin/ (via rmarkdown)
pandoc
- Packages
package
              * version
                            date (UTC) lib source
base64enc
                0.1 - 3
                           2015-07-28 [1] CRAN (R 4.3.0)
                           2023-06-04 [1] CRAN (R 4.3.0)
blockCV
                3.1 - 3
                           2020-04-26 [4] CRAN (R 4.0.0)
class
                7.3-17
classInt
                0.4 - 10
                           2023-09-05 [1] CRAN (R 4.3.1)
cli
                3.6.1
                           2023-03-23 [1] CRAN (R 4.3.0)
                           2022-02-22 [1] CRAN (R 4.3.0)
clipr
                0.8.0
                0.2-18
                           2020-11-04 [4] CRAN (R 4.0.3)
codetools
colorspace
                2.1-0
                           2023-01-23 [1] CRAN (R 4.3.0)
                           2023-06-07 [1] CRAN (R 4.3.0)
curl
                5.0.1
DBI
                1.1.3
                           2022-06-18 [1] CRAN (R 4.3.0)
                           2022-09-08 [1] CRAN (R 4.3.0)
desc
                1.4.2
details
                0.3.0
                           2022-03-27 [1] CRAN (R 4.3.1)
                           2022-12-11 [1] CRAN (R 4.3.0)
digest
                0.6.31
                           2023-09-03 [1] CRAN (R 4.3.1)
dplyr
              * 1.1.3
e1071
                1.7 - 13
                           2023-02-01 [1] CRAN (R 4.3.0)
                           2023-05-05 [1] CRAN (R 4.3.0)
evaluate
                0.21
                           2023-10-08 [1] CRAN (R 4.3.1)
                1.0.5
fansi
                           2022-07-06 [1] CRAN (R 4.3.0)
farver
                2.1.1
fastmap
                1.1.1
                           2023-02-24 [1] CRAN (R 4.3.0)
fmesher
              * 0.1.2
                           2023-08-25 [1] CRAN (R 4.3.1)
              * 1.5.2
                           2022-02-02 [1] CRAN (R 4.3.0)
foreach
foreign
                0.8-81
                           2020-12-22 [4] CRAN (R 4.0.3)
                           2022-07-05 [1] CRAN (R 4.3.0)
generics
                0.1.3
              * 3.4.4
                           2023-10-12 [1] CRAN (R 4.3.1)
ggplot2
glue
                1.6.2
                           2022-02-24 [1] CRAN (R 4.3.0)
                0.3.4
                           2023-08-21 [1] CRAN (R 4.3.1)
gtable
                0.10
                           2022-12-22 [1] CRAN (R 4.3.0)
highr
                           2023-03-23 [1] CRAN (R 4.3.0)
htmltools
                0.5.5
httr
                1.4.6
                           2023-05-08 [1] CRAN (R 4.3.0)
INLA
              * 23.04.24
                           2023-04-24 [1] local
inlabru
              * 2.9.0
                           2023-08-28 [1] CRAN (R 4.3.1)
                1.0.14
                           2022-02-05 [1] CRAN (R 4.3.0)
iterators
                           2023-06-05 [1] CRAN (R 4.3.0)
jsonlite
                1.8.5
                2.23-18
                           2020-10-29 [4] CRAN (R 4.0.3)
KernSmooth
knitr
                1.43
                           2023-05-25 [1] CRAN (R 4.3.0)
labeling
                0.4.3
                           2023-08-29 [1] CRAN (R 4.3.1)
lattice
                0.20 - 41
                           2020-04-02 [4] CRAN (R 4.0.0)
                           2022-10-07 [1] CRAN (R 4.3.0)
lifecycle
                1.0.3
```

```
2.0.3
                           2022-03-30 [1] CRAN (R 4.3.0)
magrittr
                           2023-01-12 [1] CRAN (R 4.3.1)
mapproj
               1.2.11
                           2022-10-30 [1] CRAN (R 4.3.1)
             * 3.4.1
maps
maptools
               1.1-8
                           2023-07-18 [1] CRAN (R 4.3.1)
Matrix
             * 1.6-1
                           2023-08-14 [1] CRAN (R 4.3.1)
MatrixModels
               0.5 - 2
                           2023-07-10 [1] CRAN
                                                (R 4.3.1)
                           2022-09-26 [1] CRAN (R 4.3.0)
mnormt
               2.1.1
munsell
               0.5.0
                           2018-06-12 [1] CRAN (R 4.3.0)
               2016.8-1.1 2019-06-06 [1] CRAN (R 4.3.0)
numDeriv
patchwork
             * 1.1.2
                           2022-08-19 [1] CRAN (R 4.3.0)
pillar
               1.9.0
                           2023-03-22 [1] CRAN (R 4.3.0)
pkgconfig
               2.0.3
                           2019-09-22 [1] CRAN (R 4.3.0)
               1.8.9
                           2023-10-02 [1] CRAN (R 4.3.1)
plyr
                           2022-11-29 [1] CRAN (R 4.3.1)
               0.1 - 8
png
PointedSDMs
             * 1.3
                           2023-10-12 [1] Github (PhilipMostert/PointedSDMs@699ca57)
proxy
               0.4 - 27
                           2022-06-09 [1] CRAN (R 4.3.0)
                           2022-06-21 [1] CRAN (R 4.3.0)
R.devices
               2.17.1
R.methodsS3
               1.8.2
                           2022-06-13 [1] CRAN (R 4.3.0)
R.oo
               1.25.0
                           2022-06-12 [1] CRAN (R 4.3.0)
               2.12.2
                           2022-11-11 [1] CRAN (R 4.3.0)
R.utils
R.6
             * 2.5.1
                           2021-08-19 [1] CRAN (R 4.3.0)
                           2023-01-12 [1] CRAN (R 4.3.0)
               1.2.5
ragg
             * 3.6-23
                           2023-07-04 [1] CRAN (R 4.3.1)
raster
                           2022-04-03 [1] CRAN (R 4.3.0)
RColorBrewer
               1.1-3
               1.0.11
                           2023-07-06 [1] CRAN (R 4.3.1)
Rcpp
rlang
               1.1.1
                           2023-04-28 [1] CRAN (R 4.3.0)
               2.22
                           2023-06-01 [1] CRAN (R 4.3.0)
rmarkdown
rprojroot
               2.0.3
                           2022-04-02 [1] CRAN (R 4.3.0)
                           2022-08-20 [1] CRAN (R 4.3.0)
scales
               1.2.1
               1.2.2
                           2021-12-06 [1] CRAN (R 4.3.0)
sessioninfo
             * 1.0-14
                           2023-07-11 [1] CRAN (R 4.3.1)
             * 0.9-6
                           2023-05-03 [1] CRAN (R 4.3.1)
showtext
showtextdb
             * 3.0
                           2020-06-04 [1] CRAN (R 4.3.1)
                           2023-04-04 [1] CRAN (R 4.3.0)
               2.1.1
             * 2.1-0
                           2023-10-02 [1] CRAN (R 4.3.1)
sp
                           2022-03-13 [1] CRAN (R 4.3.1)
sysfonts
             * 0.8.8
systemfonts
               1.0.4
                           2022-02-11 [1] CRAN (R 4.3.0)
               1.7 - 46
                           2023-09-06 [1] CRAN (R 4.3.1)
terra
                           2021-10-13 [1] CRAN (R 4.3.0)
textshaping
               0.3.6
               3.2.1
                           2023-03-20 [1] CRAN (R 4.3.0)
tibble
                           2022-10-10 [1] CRAN (R 4.3.0)
tidyselect
               1.2.0
units
               0.8 - 4
                           2023-09-13 [1] CRAN (R 4.3.1)
utf8
               1.2.3
                           2023-01-31 [1] CRAN (R 4.3.0)
               0.6.3
                           2023-06-14 [1] CRAN (R 4.3.1)
vctrs
withr
               2.5.1
                           2023-09-26 [1] CRAN (R 4.3.1)
xfun
               0.39
                           2023-04-20 [1] CRAN (R 4.3.0)
                           2023-04-27 [1] CRAN (R 4.3.0)
xm12
               1.3.4
yaml
               2.3.7
                           2023-01-23 [1] CRAN (R 4.3.0)
[1] /home/ahomev/e/emmass/R/x86_64-pc-linux-gnu-library/4.3
[2] /usr/local/lib/R/site-library
[3] /usr/lib/R/site-library
[4] /usr/lib/R/library
```
