RoHS

COMPLIANT

HALOGEN

FREE

1.4 pC Charge Injection, 100 pA Leakage, Quad SPST Switches

DESCRIPTION

The DG611E, DG612E, and DG613E contain four independently selectable SPST switches. They offer improved performance over the industry standard DG611 and DG611A series. The DG611E and DG612E have all switches normally closed and normally open respectively, while the DG613E has 2 normally open and 2 normally closed switches.

They are designed to operate from a 3 V to 16 V single supply or from \pm 3 V to \pm 8 V dual supplies and are fully specified at +3 V, +5 V and \pm 5 V. All control logic inputs have guaranteed 2 V logic high limits when operating from +5 V or \pm 5 V supplies and 1.4 V when operating from a +3 V supply.

The DG611E, DG612E, and DG613E switches conduct equally well in both directions and offer rail to rail analog signal handling.

1.4 pC low charge injection, coupled with very low switch capacitance: 3 pF, fast switching speed: t_{on}/t_{off} 23 ns/14 ns and excellent 3 dB bandwidth: 1 GHz, make these products ideal for precision instrumentation, high-end data acquisition, automated test equipment and high speed communication applications.

Operation temperature is specified from -40 $^{\circ}$ C to +125 $^{\circ}$ C. The DG611E, DG612E, and DG613E are available in 16 lead SOIC, TSSOP and the space saving 1.8 mm x 2.6 mm miniQFN packages.

FEATURES

- 3 V to 16 V single supply or ± 3 V to ± 8 V dual supply
- Low charge injection (1.4 pC typ.)
- Leakage current < 0.25 nA at 85 °C
- Low switch capacitance (C_{soff} 3 pF typ.)
- Fully specified with single supply operation at 3 V, 5 V, and dual supplies at ± 5 V
- Low voltage, 2.5 V CMOS/TTL compatible
- 1 GHz, 3 dB bandwidth
- Excellent isolation performance (-59 dB at 10 MHz)
- Excellent crosstalk performance (-74 dB at 10 MHz)
- Fully specified from -40 °C to +85 °C and -40 °C to +125 °C
- 16 lead SOIC, TSSOP and miniQFN package (1.8 mm x 2.6 mm)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Precision instrumentation
- Medical instrumentation
- Automated test equipment
- · High speed communications applications
- High-end data acquisition
- · Sample and hold applications
- · Sample and hold systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: Txx for DG611E (miniQFN16) Uxx for DG612E Vxx for DG613E xx = Date/Lot Traceability Code

DG611E miniQFN

D1 | IN1 | IN2 | D2

16 | 15 | 14 | 13

V- 2 | 11 | V+ |

GND 3 | 4 | IN4 | IN3 | D3

Top View

TRUTH TABLE							
LOGIC	DG611E	DG612E					
0	On	Off					
1	Off	On					

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE							
LOGIC	SW1, SW4	SW2, SW3					
0	Off	On					
1	On	Off					

ORDERING INFORMATION							
TEMP. RANGE	PACKAGE	PART NUMBER					
		DG611EEQ-T1-GE4					
	16-pin TSSOP	DG612EEQ-T1-GE4					
		DG613EEQ-T1-GE4					
		DG611EEY-T1-GE4					
-40 °C to +125 °C ^a	16-pin narrow SOIC	DG612EEY-T1-GE4					
		DG613EEY-T1-GE4					
		DG611EEN-T1-GE4					
	16-pin miniQFN	DG612EEN-T1-GE4					
		DG613EEN-T1-GE4					

Note

a. -40 °C to +85 °C datasheet limits apply

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)							
PARAMETER		LIMIT	UNIT				
V+ to V-		-0.3 to +18					
GND to V-		18					
V_S, V_D		(V-) - 0.3 to (V+) + 0.3 or 30 mA, whichever occurs first	V				
Digital inputs ^a		(GND) - 0.3 to 18					
Continuous current (any terminal)		30	mA				
Peak current, S or D (pulsed 1 ms, 10 %	6 duty cycle)	100					
Storage temperature		-65 to +150	°C				
	16-pin TSSOP ^c	450					
Power dissipation (package) ^b	16-pin miniQFN ^d	525	mW				
	16-pin narrow SOIC ^e	640					
	16-pin TSSOP	178					
Thermal resistance (package) b	16-pin miniQFN	152	°C/W				
	16-pin narrow SOIC	125					
ESD / HBM	EIA / JESD22-A114-A	2K	V				
ESD / CDM	EIA / JESD22-C101-A	1K	7 v				
Latch up	JESD78	300	mA				

Notes

- a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 5.6 mW/°C above 70 °C
- d. Derate 6.6 mW/°C above 70 °C
- e. Derate 8 mW/°C above 70 °C
- f. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

Vishay Siliconix

		TEST CONDITIONS	ONS	LIMITS					
PARAMETER	SYMBOL	UNLESS OTHERWISE SPECIFIED	TEMP. b		-40 °C to	+125 °C	-40 °C t	o +85 °C	UNI
	011202	V + = +5 V, V - = -5 V $V_{IN} = 2 V, 0.8 V^a$		TYP. c	MIN. d	MAX. d	MIN. d		1
Analog Switch		TIN = 2 V, 0.0 V							
Analog signal range ^e	V _{ANALOG}	Ι	Full	I _	- 5	5	- 5	5	V
Drain-source	ANALOG		Room	72		115	-	115	1
on-resistance	R _{DS(on)}	$I_S = 1 \text{ mA}, V_D = -3 \text{ V}, 0 \text{ V}, +3 \text{ V}$	Full	-	-	160	_	140	-
			Room	0.6	_	2.5	-	2.5	-
On-resistance match	$\Delta R_{DS(on)}$	$I_S = 1 \text{ mA}, V_D = \pm 3 \text{ V}$	Full	-	_	5	_	4.5	Ω
			Room	15	_	20	_	20	-
On-resistance flatness	R _{flat(on)}	$I_S = 1 \text{ mA}, V_D = -3 \text{ V}, 0 \text{ V}, +3 \text{ V}$	Full	-	_	30	_	25	1
				±					-
	I _{S(off)}	V. 55V.V. 55V	Room	0.0005	-0.1	0.1	-0.1	0.1	
Switch off	-3(011)	$V_{+} = 5.5 \text{ V}, V_{-} = -5.5 \text{ V}$ $V_{D} = +4.5 \text{ V} / -4.5 \text{ V}$	Full	-	-2	2	-0.25	0.25	•
leakage current		$V_S = -4.5 \text{ V} / +4.5 \text{ V}$	Room	±0.006	-0.1	0.1	-0.1	0.1	nA
	I _{D(off)}		Full	_	-2	2	-0.25	0.25	1
Switch on		V+ = 5.5 V, V- = -5.5 V	Room	±0.008	-0.1	0.1	-0.1	0.1	1
leakage current	$I_{D(on)}$	$V_D = V_S = \pm 4.5 \text{ V}$	Full	-	-6	6	-0.25	0.25	-
Digital Control			1						
Input current, V _{IN} low	Ι _Ι L	V _{IN} under test = 0.8 V	Full	0.01	-0.1	0.1	-0.1	0.1	1
Input current, V _{IN} high	I _{IH}	V _{IN} under test = 2 V	Full	0.01	-0.1	0.1	-0.1	0.1	μΑ
Input capacitance e	C _{IN}	f = 1 MHz	Room	3	-	-	-	-	pF
Dynamic Characterist		1 - 1 1111 12	1100111						<u> </u>
Dynamic Characterist	100		Room	23	_	50	<u> </u>	50	
Turn-on time	t _{ON}	D 200 0 0 05 75	Full	-	_	75	_	60	ns
		$R_L = 300 \Omega, C_L = 35 pF$ $V_S = \pm 3 V$	Room	14	_	35	_	35	
Turn-off time	t _{OFF}		Full	-	_	50	_	45	
Dead before sole		D00405 1 1/ 01/	Room	15	_	-	_	- 40	-
Break-before-make time delay	t_{BBM}	DG613E only, $V_S = 3 \text{ V}$ $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Full	-	2	_	2	_	
Charge injection e	0	·	Room	1.4		_	-	_	
Off isolation e	Q _{INJ} OIRR	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$		-59					рC
	OIRR	$R_L = 50 \Omega$, $C_L = 5 pF$	Room	-59	-	-	-	-	dB
Channel-to-channel crosstalk e	X _{TALK}	f = 10 MHz	Room	-74	-	-	-	-	u D
Bandwidth e	BW	$R_1 = 50 \Omega, C_1 = 5 pF$	Room	1	_	_	_	_	GH
Source off capacitance e	C _{S(off)}	2 / 2	Room	3	-	-	-	-	<u> </u>
Drain off capacitance e	C _{D(off)}	f = 1 MHz; V _S = 0 V	Room	3	-	-	-	-	рF
Drain on capacitance e	C _{D(on)}	f = 1 MHz; V _S = V _D = 0 V	Room	7	-	-	-	-	•
Total harmonic distortion e	THD	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	Room	0.13	-	-	-	-	%
Power Supplies			ı	L			I		
			Room	0.001	-	0.1	-	0.1	
Power supply current	l+		Full	-	-	1	-	1	- μΑ
Negative supply	_	V+ = +5 V, V- = -5 V	Room	-0.001	-0.1	-	-0.1	-	
current	l-	$V_{IN} = 0 \text{ V or } 5 \text{ V}$	Full	-	-1	-	-1	-	
		- 114 5 5 5 5 5		-0.001	-0.1	_	-0.1	-	
Ground current	I_{GND}		Room Full	1	-1	-	-1	 	4

Vishay Siliconix

PARAMETER SYMBO CNLESS OTHER\SS SPICIFIED 1			TEST CONDITIONS		LIMITS								
Name	PARAMETER	SYMBOL		TEMP.b		-40 °C to	+125 °C	-40 °C to +85 °C		UNIT			
Analog signal range OxanaLog Full 0 5 0 5 1					TYP.C	MIN. d	MAX. d	MIN. d	MAX. d				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Analog Switch									,			
Position of the property Position of the pr	Analog signal range e	V _{ANALOG}		Full	-	0	5	0	5	V			
On-resistance match On-resistance match On-resistance match On-resistance match On-resistance flatness AR _{OS(on)} I _{S = 1 mA, V_D = 3.5 V I_{S = 1 mA, V_D = 0 V, 3.5 V}}}</sub></sub></sub></sub></sub>		Broger		Room	130	-	170	-	170				
On-resistance match On-resistance flatness AR _{DS(on)} Is = 1 mA, V _D = 3.5 V Full	on-resistance	1 (D2(0H)	$I_S = 1 \text{ mA}, V_D = +3.5 \text{ V}$	Full	-	-	235	-	215				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	On-resistance match	ARDS(on)		Room	0.6	-	5	-		Ω			
Con-resistance flatness Ritation Is = 1 mA, Vp = 0 V, 3.5 V Full - - 100 - 90			$I_S = 1 \text{ mA}, V_D = 3.5 \text{ V}$	Full	-	-	12	-	10				
Switch off leakage current I I I I I I I I I	On-resistance flatness	R _{flat} (an)		Room	29	-	50	-	50				
Switch off leakage current Open		· ilat(on)	$I_S = 1 \text{ mA}, V_D = 0 \text{ V}, 3.5 \text{ V}$	Full	-	-	100	-	90				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		I _{S(off)}	V+ = 5.5 V V- = 0 V	Room		-0.1	0.1	-0.1	0.1				
No control No			$V_D = 4.5 V / 1 V$	Full	-	-2	2	-0.25	0.25				
Switch on leakage current I _{D(on)} V _P = 5.5 V, V _P = 0 V Poul Course	leakage current	la con	$V_S = 1 \text{ V} / 4.5 \text{ V}$	Room	±0.006	-0.1	0.1	-0.1	0.1	nA			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		¹D(off)		Full	-	-2	2	-0.25	0.25				
Digital Control Full 6 6 -0.25 0.25 0.25	Switch on	1		Room	±0.008	-0.1	0.1	-0.1	0.1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	leakage current	ID(on)	$V_D = V_S = 1 \text{ V} / 4.5 \text{ V}$	Full	-	-6	6	-0.25	0.25				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Digital Control												
$ \begin{array}{ c c c c c c c c }\hline \text{Input capacitance} & C_{\text{IN}} & f = 1 \text{MHz} & Room & 4 & - & - & - & - & - & - & - & - & -$	Input current, V _{IN} low	I _{IL}	V _{IN} under test = 0.8 V	Full	0.01	-0.1	0.1	-0.1	0.1	μA			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input current, V _{IN} high	I _{IH}	V _{IN} under test = 2 V	Full	0.01	-0.1	0.1	-0.1	0.1	μ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input capacitance e	C _{IN}	f = 1 MHz	Room	4	-	-	-	-	pl			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic Characterist	ics											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn on time 6			Room	33	-	60	-	60	- ns			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turr-on time		$R_L = 300 \Omega, C_L = 35 pF$	Full	-	-	90	-	80				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-off time e		$V_S = 3 V$	Room	14	-	35	-	35				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn on time			Full	-	-	45	-	40	110			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Break-before-make	t _{BBM}	+	toou	too		Room	19	-	-	-	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	time delay ^e		$R_L = 300 \Omega, C_L = 35 pF$	Full	-	2	-	2	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charge injection e	Q_{INJ}	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$	Full	1.5	-	-	-	-	рC			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Off isolation e	OIRR	P: - 50 O C: - 5 pE	Room	-59	-	-	-	-				
		X _{TALK}		Room	-70	-	-	-	-	d			
	Bandwidth ^e	BW	$R_L = 50 \Omega$, $C_L = 5 pF$	Room	880	-	-	-	-	MH			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C _{S(off)}	f = 1 MHz; V _S = 0 V	Room	3	-	-	-	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain off capacitance e	C _{D(off)}]	Room	3	-	-	-	-	рF			
Power Supplies Power supply current I +	Drain on capacitance e		$f = 1 \text{ MHz}; V_S = V_D = 0 \text{ V}$	Room	7	-	-	-	-				
Power supply current I+	Power Supplies	,											
Negative supply current I- V _{IN} = 0 V or 5 V Room -0.001 -0.1 - -0.1 -	Power supply current	I+			0.001	-		-					
current	Manatina are est		-		-0.001	_n_1		-0.1		μΑ			
1311 1 1		I-	$V_{IN} = 0 V \text{ or } 5 V$		1								
			-										
Ground current I _{GND} Full11 -	Ground current	I _{GND}			1				-	1			

		TEST CONDITIONS	TEMP. b	LIMITS					
PARAMETER	SYMBOL	UNLESS OTHERWISE SPECIFIED			-40 °C to	+125 °C	-40 °C t	o +85 °C	UNIT
		V + = +3 V, V - = -0 V $V_{IN} = 1.4 V, 0.6 V^a$		TYP. °	MIN. d	MAX. d	MIN. d	MAX. d	
Analog Switch			l			l			<u> </u>
Analog signal range e	V _{ANALOG}		Full	-	0	3	0	3	V
Drain source On-resistance	R _{DS(on)}	$I_S = 1 \text{ mA}, V_D = +1.5 \text{ V}$	Room	305	-	420	-	420	Ω
On-resistance	. ,		Full	-	-	600	-	500	
	I _{S(off)}	V+ = 3.3 V. V- = 0 V	Room	± 0.0005	-0.1	0.1	-0.1	0.1	
Switch off leakage current		$V_D = 3 \text{ V} / 0.3 \text{ V}$	Full	-	-2	2	-0.25	0.25	
leakage current	I	$V_S = 0.3 \text{ V} / 3 \text{ V}$	Room	±0.006	-0.1	0.1	-0.1	0.1	nA
	I _{D(off)}		Full	-	-2	2	-0.25	0.25	
Switch on	1	V+ = 3.3 V, V- = 0 V	Room	±0.008	-0.1	0.1	-0.1	0.1	
leakage current	I _{D(on)}	$V_D = V_S = 0.3 \text{ V} / 3 \text{ V}$	Full	-	-6	6	-0.25	0.25]
Digital Control									
Input current, V _{IN} low	I _{IL}	V _{IN} under test = 0.6 V	Full	0.01	-0.1	0.1	-0.1	0.1	
Input current, V _{IN} high	I _{IH}	V _{IN} under test = 1.4 V	Full	0.01	-0.1	0.1	-0.1	0.1	μA
Input capacitance e	capacitance e C _{IN} f = 1 MHz		Room	4	-	-	-	-	рF
Dynamic Characterist	ics								
	t _{ON}		Room	76	-	115	-	115	
Turn-on time		$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	Full	-	-	180	-	155	ns
T ""		$V_S = 2 V$	Room	31	-	58	-	58	
Turn-off time	t _{OFF}		Full	-	-	65	-	60	
Break-before-make		DG613 only, V _S = 2 V	Room	60	-	-	-	-	
time delay	t _{BBM}	$R_L = 300 \Omega$, $C_L = 35 pF$	Full	-	10	-	10	-	-
Charge injection e	Q _{INJ}	$V_{q} = 0 \text{ V}, R_{q} = 0 \Omega, C_{L} = 1 \text{ nF}$	Room	1.4	-	-	-	-	рС
Off isolation e	OIRR	3	Room	-59	-	-	-	-	
Channel-to-channel crosstalk ^e	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$ f = 10 MHz	Room	-71	-	-	-	-	dB
Bandwidth e	BW	$R_L = 50 \Omega, C_L = 5 pF$	Room	830	-	-	-	-	MHz
Source off capacitance e	C _{S(off)}		Room	3	-	-	-	-	
Drain off capacitance e	C _{D(off)}	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$	Room	4	-	-	-	-	рF
Drain on capacitance e	C _{D(on)}	$f = 1 \text{ MHz}; V_S = V_D = 0 \text{ V}$	Room	7	-	-	-	-	
Power Supplies	_(+.)	· · · ·	l				I		
			Room	0.001	-	0.1	_	0.1	
Power supply current	l+		Full	-	-	1	-	1	1
Negative supply			Room	-0.001	-0.1	-	-0.1	-	
current	 - -	$V_{IN} = 0 \text{ V or } 3 \text{ V}$	Full	-	-1	-	-1	-	- μΑ
			Room	-0.001	-0.1	-	-0.1	_	
Ground current	I_{GND}		Full		-1			└──	4

Notes

- a. V_{IN} = input voltage to perform proper function
- b. Room = 25 °C, Full = as determined by the operating temperature suffix
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- e. Guaranteed by design, not subject to production test

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $I_S = 1 \text{ mA}$

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

On-Resistance vs. V_D (Dual Supply)

400

On-Resistance vs. V_D (Single Supply)

On-Resistance vs. Temperature (Dual Supply)

On-Resistance vs. Temperature (Single Supply)

On-Resistance vs. Temperature (Single Supply)

Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Leakage Current vs. Temperature

Leakage Current vs. Temperature

Supply Current vs. Temperature

Leakage Current vs. Temperature

Switching Time vs. Temperature

Supply Current vs. Temperature

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Supply Current vs. Switching Frequency

Supply Current vs. Input Voltage

Supply Current vs. Switching Frequency

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Switching Threshold vs. Supply Voltage (Single Supply)

Switching Threshold vs. Supply Voltage (Dual Supply)

TEST CIRCUITS

Logic Input 0 V 0

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Fig. 1 - Switching Time

Fig. 2 - Break-Before-Make (DG613E)

Fig. 3 - Charge Injection

TEST CIRCUITS

Fig. 4 - Crosstalk

Fig. 5 - Off-Isolation

Fig. 6 - Source / Drain Capacitances

Vishay Siliconix

PRODUC	T SUMMA	RY							
Part number	DG611E	DG611E	DG611E	DG612E	DG612E	DG612E	DG613E	DG613E	DG613E
Status code	2	2	2	2	2	2	2	2	2
Configuration	SPST x 4, NC	SPST x 4, NC	SPST x 4, NC	SPST x 4, NO	SPST x 4, NO	SPST x 4, NO	SPST x 4, comp	SPST x 4, comp	SPST x 4, comp
Single supply min. (V)	3	3	3	3	3	3	3	3	3
Single supply max. (V)	16	16	16	16	16	16	16	16	16
Dual supply min. (V)	3	3	3	3	3	3	3	3	3
Dual supply max. (V)	8	8	8	8	8	8	8	8	8
On-resistan ce (Ω)	72	72	72	72	72	72	72	72	72
Charge injection (pC)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Source on capacitance (pF)	7	7	7	7	7	7	7	7	7
Source off capacitance (pF)	3	3	3	3	3	3	3	3	3
Leakage switch on typ. (nA)	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
Leakage switch off max. (nA)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
-3 dB bandwidth (MHz)	1000	1000	1000	1000	1000	1000	1000	1000	1000
Package	TSSOP-16	SO-16 (narrow) AS	miniQFN-16 (0.55 mm)	TSSOP-16	SO-16 (narrow) AS	miniQFN-16 (0.55 mm)	TSSOP-16	SO-16 (narrow) AS	miniQFN-16 (0.55 mm)
Functional circuit / applications	Multi purpose, instrumentation, medical and healthcare, portable	Multi purpose instrumentatio medical and healthcare, portable							
Interface	Parallel	Parallel							
Single supply operation	Yes	Yes							
Dual supply operation	Yes	Yes							
Turn on time max. (ns)	50	50	50	50	50	50	50	50	50
Crosstalk and off isolation	-59	-59	-59	-59	-59	-59	-59	-59	-59

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?78910.

Thin miniQFN16 Case Outline

DIMENSIONS		MILLIMETERS (1)			INCHES	
DIMENSIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
А	0.50	0.55	0.60	0.020	0.022	0.024
A1	0	-	0.05	0	-	0.002
A3		0.15 ref.			0.006 ref.	
b	0.15	0.20	0.25	0.006	0.008	0.010
D	2.50	2.60	2.70	0.098	0.102	0.106
е		0.40 BSC		0.016 BSC		
Е	1.70	1.80	1.90	0.067	0.071	0.075
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.018	0.020	0.022
N (3)		16	16 16			
Nd ⁽³⁾		4		4		
Ne ⁽³⁾		4		4		

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	HES				
Dim	Min	Max	Min	Max				
Α	1.35	1.75	0.053	0.069				
A ₁	0.10	0.20	0.004	0.008				
В	0.38	0.51	0.015	0.020				
С	0.18	0.23	0.007	0.009				
D	9.80	10.00	0.385	0.393				
Е	3.80	4.00	0.149	0.157				
е	1.27	BSC	0.050	BSC				
Н	5.80	6.20	0.228	0.244				
L	0.50	0.93	0.020	0.037				
0	0°	8°	0°	8°				
ECN: S-0	ECN: S-03946—Rev. F, 09-Jul-01							

DWG: 5300

TSSOP: 16-LEAD

	DI	RS	
Symbols	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
В	0.22	0.28	0.38
С	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
е	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
у	-	-	0.10
θ1	0°	3°	6°
ECN: S-61920-Rev D 23	R-Oct-06		

ECN: S-61920-Rev. D, 23-Oct-06

DWG: 5624

Document Number: 74417 www.vishay.com 23-Oct-06 1

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.