



# System Requirements

NetLogo is designed:

- to run almost any type of computer.
- problems with older, less powerful systems or older versions of system Software.
- If you have any trouble with NetLogo not working on your system, we would like to offer assistance.

Please write **bugs@ccl.northwestern.edu**.



# Application or Applet?

There are two ways to run NetLogo:

- **Download application:** this enables you to run NetLogo as a normal application.
- **Run applet on the web within your browser window.**





# Features

- **Running** on the web is convenient,
- but **downloading** the application has some significant advantages:
  - Fewer compatibility issues with various operating systems and browsers.
  - Starts up faster.
  - Models run faster.
  - Window is resizable.
  - Edit menu is available.
  - Keyboard shortcuts for menu items are available.



# NetLogo Downloads

## Attention Windows users:

- NetLogo runs fastest with the IBM 1.1 VM. Therefore we strongly recommend the "Includes Java VM" option. (Questions? See [below](#).)
- If you are running anti-virus software there may be a long pause (as much as two minutes) near the end of the download process.

---

| Platform                     | includes Java VM                 | without Java VM                  | Instructions<br>(recommended) |
|------------------------------|----------------------------------|----------------------------------|-------------------------------|
| <b>Windows</b>               | <a href="#">Download (15.6M)</a> | <a href="#">Download (10.7M)</a> | <a href="#">View</a>          |
| Mac OS 8 or 9                | <a href="#">Download (14.6M)</a> | <a href="#">Download (10.8M)</a> | <a href="#">View</a>          |
| Mac OS X                     |                                  | <a href="#">Download (10.4M)</a> | <a href="#">View</a>          |
| Linux                        | <a href="#">Download (43.1M)</a> | <a href="#">Download (10.6M)</a> | <a href="#">View</a>          |
| Unix                         |                                  | <a href="#">Download (10.6M)</a> | <a href="#">View</a>          |
| Other Java-enabled Platforms |                                  | <a href="#">Download (10.5M)</a> | <a href="#">View</a>          |



# Sample Model: Wolf Sheep Predation

In this Model, you open and run models:

- pressing buttons,
- changing slider
- and switch values,
- and gathering information from a model using plots and monitors.





# Interface Tab

- The **Interface tab** will fill up with lots of buttons, switches, sliders and monitors.

These interface elements allow you to interact with the Model:

- **Buttons** set up, start, and stop the model.
- **Sliders** and **Switches** alter model settings
- **Monitors** and **Plots** display data.



- you can use the zoom menu at the top of the window.
- To begin the model, you will first need to set it up.



# Controlling the Model: Buttons

- When a button is pressed, the model responds with an action.
  - **Once** buttons do one action and then stop. When the action is finished, the button pops back up.
  - **Forever** buttons do an action over and over again. When you want the action to stop, press the button again. It will finish the current action, then pop back up.
- Most models have a once button called "**setup**" and a forever button called "**go**". Many models also have a once button called "**go once**" or "**step once**"
- You can also stop a model with the "**Halt**" button on the Interface toolbar.
  - The "**Halt**" button may interrupt the model in the middle of an action, and as the result the model could get confused.





# Adjusting Settings: Sliders and Switches

- The settings within a model give you an opportunity to work out different scenarios or hypotheses.
- Altering the settings and then running the model to see how it reacts to those changes can give you a deeper understanding of the phenomena being modeled.
- Switches and sliders** give you access to a model's settings.





# Switches

- Switches are set up in an **on/off** format.
- Switches turn on/off a separate set of directions.
- These directions are usually not necessary for the model to run, but might add another dimension to the model.
- Turning the "grass?" switch on affected the outcome of the model.
  - ◆ Prior to this run, the growth of the grass stayed constant. This is not a realistic look at the predator-prey relationship; so by setting and turning on a grass growth rate, we were able to model all three factors: sheep, wolf and grass populations.





# Sliders

- A slider has a **range** of numeric values that can be adjusted.
- As you move the marker from the **minimum** to the **maximum** value, the number on the right side of the slider is currently set to.

Sheep settings



Wolf settings



- For example, the "initial-sheep" slider has a minimum value of 0 and a maximum value of 250. The model could run with 0 sheep or it could run with 250 sheep, or anywhere in between. Try this out and see what happens.



# Gathering Information: Plots and Monitors

- A purpose to modeling is to gather data on a subject or topic that would be very difficult to do in a laboratory situation.
- NetLogo has two main ways of displaying data to the user:  
**plots and monitors.**

94 ticks  
110 sheep  
1 wolves  
127 grass / 4





# Plots

- The **lines** show what's happening in the model over time.
- To see which line is which, click on "**Pens**" in the upper right corner of the plot window to open the plot pens legend.
- To view or analyze the data from a plot in another program, you can use the "**Export Plot**" item on the File menu.





# Monitors

- The monitor labeled "**time-ticks**" tells us how much time has passed in the model.
- The other monitors show us the population of sheep and wolves, and the amount of grass.
- The numbers displayed in the monitors update continuously as the model runs.





# Changing Graphics Window Settings

The size of the Graphics Window is determined by three separate settings:

**Screen Edge X,**  
**Screen Edge Y,**  
and **Patch Size.**





# The Models Library

The Library contains **four** sections:

- **Sample Models**

The Sample Models section is organized by subject area.

- **Code Examples**

These are simple demonstrations of particular features of NetLogo.

- **HubNet Activities**

This section contains participatory simulations for use in the classroom.

- **Unverified Models**

These models are still in the process of being tested and reviewed for content and accuracy.



# Sample Model: Traffic Basic

In this Model, the focus will start to shift from observing models to manipulating models.





# The Command Center

- The Command Center allows you to enter **commands** or **directions** to the model.
- Commands are **instructions** you can give to: turtles, patches, and the observer.

1



2



3



4





# Working With Colors

- In NetLogo, all colors have a **numeric** value.

- In all of the exercises we have been using the **name** of the color (**16**).

|                | black = 0 |     |     |     |     |     |     |     |     |     | white = 9.999 |
|----------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|
| gray = 5       | 0         | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 9.999         |
| red = 15       | 10        | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 19.999        |
| orange = 25    | 20        | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 29.999        |
| brown = 35     | 30        | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 39.999        |
| yellow = 45    | 40        | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 49.999        |
| green = 55     | 50        | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 59.999        |
| lime = 65      | 60        | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 69.999        |
| turquoise = 75 | 70        | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 79.999        |
| cyan = 85      | 80        | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 89.999        |
| sky = 95       | 90        | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 99.999        |
| blue = 105     | 100       | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 109.999       |
| violet = 115   | 110       | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 119.999       |
| magenta = 125  | 120       | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 129.999       |
| pink = 135     | 130       | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 139.999       |



# Agent Monitors

- We used the set command to change the colors of **all** the cars.
- Let's look at how to change only **one** car's color.
- Click on the red car with the right mouse button.
- From the popup menu, choose "**inspect** turtle 0"
- We can see all of the **variables** of the red car.
- The value of variable can be **changed**.





# Agent Commanders

- An **Agent Commander** found at the bottom of an Agent Monitor.
- You type commands here, just like in the Command Center, but the commands you type here are only done by **this particular turtle**.
- Idem for Patches

| turtle 0    |         |
|-------------|---------|
| who         | 0       |
| color       | 15.0    |
| heading     | 90.0    |
| xcor        | -13.0   |
| ycor        | 0.0     |
| shape       | "car"   |
| pen-down?   | false   |
| label       |         |
| label-color | 9.9999  |
| breed       | turtles |
| hidden?     | false   |
| size        | 1.0     |
| speed       | 0.6     |
| speed-limit | 1       |
| speed-min   | 0       |

| patch -5 4   |        |
|--------------|--------|
| pxcor        | -5     |
| pycor        | 4      |
| pcolor       | 0.0    |
| plabel       |        |
| plabel-color | 9.9999 |



# Procedures

The heart of a NetLogo Model is the **Procedures tab**.

- Keep in mind how people usually think of these three different kinds of agents:
  - The turtles and patches mostly use information about what's **close** to them.
  - The observer typically uses and accesses the **whole** world.
- While patches can't move and often represent some sort of environment, turtles can move around in the world.



# Setup and Go

- To start a new model, select "**New**" from the File menu.
- Then create a once-button called 'setup'.
- Now you have a button called 'setup'. It will execute the procedure 'setup' when pressed,
- set up the NetLogo world.





# Setup



- Now switch to the Procedures Tab and create the 'setup' procedure shown below.





# Press your 'setup'

- Press your 'setup' button when you're done writing the code.





# Go

- Make a forever-button called 'go'. Again, begin by creating a button, but this time check the "**forever**" checkbox in the edit window.

```
to go
    move-turtles
end
```

```
to move-turtles
    ask turtles [
        set heading (random 360)
        fd 1
    ]
end
```



# Patches and Variables

Now you've got 100 turtles **aimlessly** moving around, completely unaware of anything else around them. Let's give these turtles a nice background against which to move:

patches-own [elevation]

to setup

ca

setup-patches

setup-turtles

end



# Patches and Variables

**to setup-patches**

ask patches

[ set elevation (random 10000) ]

diffuse elevation 1

ask patches

[ set pcolor scale-color green elevation 1000 9000 ]

end

**to setup-turtles**

crt 100

ask turtles

[ fd (random screen-edge-x) ]

end



# Landscape

- Press the '**setup**' button back in the model's interface.
- Voila! A lush NetLogo **landscape** complete with turtles and patches appears.





# Globals

```
globals [highest lowest] ;; highest and lowest patch elevation  
to setup-patches  
  ask patches [ set elevation (random 10000) ]  
  diffuse elevation 1  
  ask patches  
    [ set pcolor scale-color green elevation 1000 9000 ]  
  set highest max values-from patches [elevation]  
  set lowest min values-from patches [elevation]  
  ask patches [  
    if (elevation > (highest - 100))  
      [set pcolor white]  
    if (elevation < (lowest + 100))  
      [set pcolor black] ]  
end
```





# Simple Algorithm

to move-turtles

ask turtles

[     set heading (random 360)  
        fd 1]

end

- the turtles cannot see ahead farther than just one patch;
- each turtle can move only one square each turn;
- turtles are blissfully ignorant of each other.



# An Uphill Algorithm

```
; each turtle goes to the highest elevation in a radius of one  
to move-to-local-max
```

```
ask turtles
```

```
[ set heading uphill elevation  
  if ( elevation-of patch-at dx dy > elevation )  
    [ fd 1 ]]  
end
```

- If none of the patches around it have a higher elevation than the patch it is on, it'll stay put.
- Our turtles rapidly arrive at local maxima in our landscape.



# An Uphill Algorithm

- Our goal is to still get the turtles to find an '**optimal maximum**', which is one of the white patches.

to recolor-patches

ask patches

```
[      set elevation pycor  
      set pcolor scale-color green elevation  
          (0 - screen-edge-y) screen-edge-y]
```

end

After Replace the line: diffuse elevation 1  
with repeat 5 [ diffuse elevation 1 ]



Università  
di Modena  
e Reggio  
Emilia



Agents and Pervasive  
Computing Group

# An Uphill Algorithm





# Plot

- NetLogo allows us to plot data as we go along.
- To make plotting work, we'll need to **create** a plot in the Interface tab, and set some settings in it.
- Then we'll add one more procedure to the Procedures tab, which will **update** the plot for us.

```
to do-plots
    set-current-plot "Turtles at Peaks"
    plot count turtles with
        [ elevation >= (highest - 100) ]
end
```



# Plot

- The **plot** primitive adds the next point to a plot.
- we need to tell NetLogo **which plot** we want update.





# HubNet

- HubNet is a technology that lets you use NetLogo to run **participatory simulations** in the classroom.
- In a participatory simulation, a whole class takes part in enacting the behavior of a system as each student controls a part of the system by using an individual device, such as a TI-83+ calculator or a networked computer.
- For example, in the Gridlock simulation, each student controls a traffic light in a simulated city.



# HubNet





# BehaviorSpace

- BehaviorSpace is a software tool integrated with NetLogo that allows you to perform experiments with models.
- It systematically varying the values of sliders and records the results of each corresponding model run.
- This way you can explore the model's "**space**" of possible behaviors and determine which combinations of slider values cause the behaviors of interest.



# References

In the Netlogo site you can find:

- the last version of Netlogo
- the Netlogo User Manual
- the new Netlogo model
- and a group-discussion about Netlogo

<http://www.ccl.sesp.northwestern.edu/netlogo/>

