School of Mathematical and **Computational Sciences**

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Lesson 8

Subgroup generated by subsets of a group 1.

Throughout this lesson, *G* denotes a group.

Proposition 1.1. *If* A *is any nonempty collection of subgroups of* G*, then*

$$\bigcap_{H\in\mathcal{A}}H\leq G.$$

Definition 1.2. Let *A* be any subset of *G*. The **subgroup generated by** *A* is

$$\langle A \rangle := \bigcap_{\substack{A \subseteq H \\ H \le G}} H.$$

This definition says that $\langle A \rangle$ is the smallest subgroup of G that contains A. It is clear that the subgroup generated by a subgroup H is H itself. What would be the subgroup generated by \varnothing ?

(i) If *A* is a finite set, say $A = \{a_1, \dots, a_n\}$, then we simply write **Remark 1.2.1.**

$$\langle A \rangle = \langle a_1, \ldots, a_n \rangle.$$

- (ii) Recall from the previous lesson that $\langle a \rangle$ denotes the cyclic subgroup generated by a. With the definition above, it is easy to see that this is the same as the subgroup generated by $\{a\}$. Thus the notation is unambiguous.
- (iii) If $A, B \subseteq G$, then we write $\langle A, B \rangle$ to mean $\langle A \cup B \rangle$. This subgroup is denoted $A \vee B$.

Definition 1.3. Let $A \subseteq G$. Define

$$\overline{A} = \left\{ a_1^{k_1} a_2^{k_2} \cdots a_n^{k_n} \mid n \in \mathbb{Z}_{\geq 0}, a_i \in A, k_i = \pm 1 \text{ for all } 0 \leq i \leq n \right\}$$

Note that n can vary and the a_i may repeat. We form finite products of elements of A because it would not make sense to form an infinite product of elements in a group. These finite products are called words. Note that A is not required to be finite. We convey $\overline{\emptyset} = \{1\}$. This way \overline{A} is never empty.

Proposition 1.4. *If* A *is any subset of* G*, then* $\langle A \rangle = \overline{A}$.

Proof. We leave to the student to prove that \overline{A} is a subgroup. It is clear that $A \subseteq \overline{A}$. Then $\langle A \rangle \subseteq \overline{A}$ since $\langle A \rangle$ is the smallest subgroup that contains A and \overline{A} is one of the groups that contain A. On the other hand, the product of any two elements of A belongs to $\langle A \rangle$ because $\langle A \rangle$ contains A and it is closed under products. However, \overline{A} consists exactly of any finite product of elements of A. Hence it easy follows $\overline{A} \subseteq \langle A \rangle$. The proof is complete. Remark 1.4.1. In light of this result, we write

$$\langle A \rangle = \left\{ a_1^{k_1} a_2^{k_2} \cdots a_n^{k_n} \mid n \in \mathbb{Z}^+, a_i \in A, k_i \in \mathbb{Z} \text{ and } a_i \neq a_{i+1} \text{ for any } 1 \leq i \leq n \right\}$$

2. Normality, quotient groups and homomorphisms

A useful reference for this section is Hungerford, chapter 1, section 5.

There are two standard groups associated to any group-homomorphism: its kernel and its image. These are important concepts that you need to master.

Definition 2.1. Let $\psi \colon G \to H$ be a morphism of groups. The kernel of ψ is

$$Ker \psi = \{ g \in G \mid \psi(g) = 1_H \}.$$

The image of ψ is

$$\operatorname{Im} \psi = \{ \psi(g) \mid g \in G \}$$

Exercise 1 (Classwork). With ψ as above, prove Ker $\psi \leq G$ and Im $\psi \leq H$.

Proposition 2.2. *Let* ψ : $G \rightarrow H$ *be a group-homomorphism.*

- (i) $\psi(1_G) = 1_H$
- (ii) $\psi(g^{-1}) = (\psi(g))^{-1}$
- (iii) $\psi(g^n) = (\psi(g))^n$

Proof. See Dummit & Foote, page 75.

The only way to interpret $\psi(g)^{-1}$ is as the inverse of $\psi(g)$. Thus we may drop the parenthesis in $(\psi(g))^{-1}$.

Theorem 2.3. Let $N \leq G$. The following conditions are equivalent.

- (i) Left congruence modulo N and right congruence modulo N define the same partition of G.
- (ii) For any $g \in G$, Ng = gN.
- (iii) For any $g \in G$, $gNg^{-1} \subseteq N$. Here $gNg^{-1} = \{gxg^{-1} \mid x \in N\}$.
- (iv) For any $g \in G$, $gNg^{-1} = N$. This means any $g \in G$ normalizes N.

Definition 2.4. If $N \leq G$ satisfies $gNg^{-1} = N$ for any $g \in G$, then we say N is a normal subgroup of G. In this case we use the notation $N \subseteq G$.

By the previous result, N is normal if it satisfies any of the equivalent conditions of Theorem 2.3. The easiest way to verify a subgroup is normal is condition (iii). Thus

$$N \subseteq G \iff gNg^{-1} \subseteq N$$

for any $g \in G$.

Proposition 2.5. *The kernel of any group-homomorphism is a normal subgroup.*

Proof. Classwork. □

Question 1. Is the image a normal subgroup?

Theorem 2.6. Let K and N be subgroups of a group G with $N \subseteq G$. Then

- (i) $N \cap K \triangleleft K$
- (ii) $N \subseteq N \vee K$
- (iii) $NK = N \lor K = KN$
- (iv) If K is normal in G and $K \cap N = \{e\}$, then nk = kn for all $k \in K$ and $n \in N$.

Exercise 2. Provide examples that show when these conditions fail if *N* is not required to be normal in *G*.

- *Proof.* (i) We have to prove that $a(N \cap K)a^{-1} \subseteq N \cap K$ for any $a \in K$. Let $n \in N \cap K$ and $a \in K$. Then $ana^{-1} \in N$ because $N \subseteq G$. Since $n, a \in K$ and $K \subseteq G$, we have $ana^{-1} \in K$. Thus $ana^{-1} \in N \cap K$.
 - (ii) Trivial (Why? Note $N \leq N \vee K$)
- (iii) Exercise
- (iv) Exercise

Exercise 3. Prove (iii) and (iv) of the preceding theorem.

We have introduced normal subgroups for a reason: to make the quotient set of a group by a (normal) subgroup into a group. In this way we can build new groups out of old. Regarding the quotient set G/N, two elements of G, say g and g' define the same equivalence class precisely when g' = gn for some $n \in N$, equivalently when $g^{-1}g' \in N$. The condition that N be normal is precisely what we need to get a well-defined way of multiplying these equivalence classes.

Theorem 2.7. *If* $N \subseteq G$, *then*

$$G/N = \{ xN \mid x \in G \}$$

is a group under the operation (xN)(yN) = (xy)N. Moreover, the order of G/N is |G:N|.

Proof. It suffices to show that the operation is well-defined, that is, whenever we multiply two equivalence classes we must always get the same result no matter the representatives chosen.

If aN = xN and bN = yN, then $ax^{-1} = m \in N$ and $by^{-1} = n \in N$ for some $m, n \in N$. Our goal is to prove that abN = xyN, i.e., that $(ab)(xy)^{-1} \in N$. Note

$$(ab)(xy)^{-1} = aby^{-1}x^{-1} = anx^{-1} = (ana^{-1})ax^{-1} = (ana^{-1})m.$$

Since N is normal, $aNa^{-1} \subseteq N$ so $ana^{-1} \in N$; and we already knew $m \in N$. Because N is closed under products, $(ana^{-1})m \in N$. This part of the proof is complete. The student should verify that the order of G/N is |G:N|.

You may want to take look at this post.

Remark 2.7.1. In additive notation,

(i)
$$G/N = \{g + N \mid g \in G\}$$

(ii)
$$(a+N) + (b+N) = (a+b) + N$$

The next result states that the kernel of any group-homomorphism is a normal subgroup, and that given normal subgroups occur as kernels.

Theorem 2.8.

- (i) If $f: G \to H$ is a group-homomorphism, then $\operatorname{Ker} f \subseteq G$.
- (ii) Conversely, if $N \subseteq G$, then the map (called canonical projection) $\pi : G \to G/N$ defined by $a \mapsto aN$ is an surjective group-homomorphism with

Ker
$$\pi = N$$
.

Proof. (i) If $x \in \text{Ker } f$ and $a \in G$, then

$$f(axa^{-1}) = f(a)f(x)f(a^{-1}) = f(a)1_H f(a^{-1}) = 1_H$$

meaning $axa^{-1} \in \text{Ker } f$. Thus $a \text{ Ker } fa \subseteq \text{Ker } f$ for any $a \in G$.

(ii) Is is clear that π is surjective. (Make sure it is clear to you.) Further, $\pi(ab) = abN = (aN)(bN) = \pi(a)\pi(b)$ so π is a morphism of groups. Finally,

Ker
$$\pi = \{ a \in G \mid \pi(a) = 1_{G/N} \}$$

= $\{ a \in G \mid aN = N \}$
= N .

The proof is complete.

The next results tell us how to factor a group-homomorphism.

Theorem 2.9. If $f: G \to H$ is a group homomorphism and $N \unlhd G$ is a subgroup contained in Ker f, then there is a unique group-homomorphism $\overline{f}: G/N \to H$ such that $f = \overline{f} \circ \pi$, i.e., such that the following diagram commutes.

$$\begin{array}{ccc}
G & \xrightarrow{f} & H \\
\pi \downarrow & & \overline{f} \\
G/N
\end{array}$$

In addition,

- (i) Im $f = \operatorname{Im} \overline{f}$,
- (ii) $\operatorname{Ker} \overline{f} = \operatorname{Ker} f / N$, and
- (iii) \overline{f} is an isomorphism if and only if f is an epimorphism and N = Ker f.

Proof. Define $\overline{f}: G/N \to H: aN \mapsto f(a)$. Then \overline{f} is well-defined, for if aN = bN, then $ab^{-1} \in N \leq \operatorname{Ker} f$, whence $f(ab^{-1}) = 1_H$ and so f(a) = f(b). Moreover

$$\overline{f}((aN)(bN)) = \overline{f}(abN) = f(ab) = f(a)f(b) = \overline{f}(aN)\overline{f}(bN).$$

Finally,

- (i) $f(a) \in \operatorname{Im} f$ if and only if $f(a) = \overline{f}(aN) \in \operatorname{Im} \overline{f}$. Hence $\operatorname{Im} f = \operatorname{Im} \overline{f}$.
- (ii) Note

$$\operatorname{Ker} \overline{f} = \{ x \in G/N \mid \overline{f}(x) = 1_H \}$$

$$= \{ aN \mid f(a) = 1_H \}$$

$$= \{ aN \mid a \in \operatorname{Ker} f \}$$

$$= \operatorname{Ker} f/N$$

(iii) By (i), \overline{f} is epic if and only if f is. Note \overline{f} is monic if and only if $\operatorname{Ker} \overline{f} = \{1_{G/N}\} = \{N\}$ if and only if $\operatorname{Ker} f/N = \{N\}$ if and only if $\operatorname{Ker} f = N$. (Keep in mind that $N \subseteq \operatorname{Ker} f$ by hypothesis, and $\operatorname{Ker} f/N = N$ implies aN = N for all $a \in \operatorname{Ker} f$.) Hence the result.

The proof is now complete.

Exercise 4. Prove that if |G/N| = 1, then G = N.

The important relationship between group-homomorphisms and quotient groups (also called factor groups) is a consequence of the result just proven.

Corollary 2.10 (First Isomorphism Theorem). *If* $f: G \rightarrow H$ *is a group-homomorphism,*

$$G/\operatorname{Ker} f \cong \operatorname{Im} f$$
.

Proof. Let $\psi: G \to \operatorname{Im} f: g \mapsto f(g)$. This way we force ψ to be surjective. Now apply Theorem 2.9 with ψ and $N = \operatorname{Ker} \psi$. Clearly $\operatorname{Ker} \psi = \operatorname{Ker} f$. The following diagram commutes.

The Diamond Theorem says that we can cancel out by paying off the intersection.

Corollary 2.11 (Second Isomorphism Theorem (Diamond Theorem)). *If* $K, N \leq G$ *and* $N \subseteq G$, *then*

$$\frac{NK}{N} \cong \frac{K}{N \cap K}.$$

Proof. We know $N \subseteq NK$ by Theorem 2.6. Let $f = \pi \circ \iota$, where

$$K \stackrel{\iota}{\longrightarrow} NK \stackrel{\pi}{\longrightarrow} \frac{NK}{N}$$

Note f is a group-homomorphism with Ker $f = K \cap N$. Indeed,

$$Ker f = \{x \in K \mid f(x) = N\}$$

$$= \{x \in K \mid xN = N\}$$

$$= \{x \in K \mid x \in N\}$$

$$= K \cap N,$$

where we have used

$$xN = N$$
 if and only if $x \in N$.

Let us see f is epic. Let $nkN \in NK/N$. The normality of N implies that nkN = Nnk = Nk, so

$$nkN = Nk = f(k)$$
.

Hence Im f = NK/N and by the First Isomorphism Theorem,

$$\frac{K}{N\cap K}\cong\frac{NK}{N}.$$

End of the proof.

Corollary 2.12 (Third Isomorphism Theorem). *If* H, $K \subseteq G$ *and* $K \subseteq H$, *then*

$$\frac{H}{K} \leq \frac{G}{K}$$
 and $\frac{G/K}{H/K} \cong \frac{G}{H}$.

Proof. (i) Prove that $\frac{H}{K} \leq \frac{G}{K}$.

- (ii) Define $\psi \colon G/K \to G/H \colon gK \mapsto gH$ and prove ψ is a well-defined epic homomorphism.
- (iii) By the First Isomorphism Theorem,

$$\frac{G/K}{\operatorname{Ker}\psi}\cong G/H.$$

(iv) Notice that

$$\operatorname{Ker} \psi = \{ gK \mid g \in G, \, \psi(gK) = 1_{G/H} \}$$

$$= \{ gK \mid g \in G, \, gH = H \}$$

$$= \{ gK \mid g \in H \}$$

$$= H/K$$

and conclude.

There is still one more isomorphism theorem.

Corollary 2.13. Let $N \subseteq G$. There is a one-to-one correspondence between subgroups of G that contain N and subgroups of G/N. In particular, every subgroup of G/N is of the form A/N with $N \subseteq A \subseteq G$. Furthermore, for all $A, B \subseteq G$ such that $N \subseteq A$ and $N \subseteq B$, it holds

- (i) $A \leq B$ if and only if $A/N \leq B/N$, and
- (ii) $A \subseteq G$ if and only if $A/N \subseteq G/N$.

Proof. Trivialito. (If it is not clear, then the proof is left as an exercise.)

Exercise 5. With the notations as in the statement of the Fourth Isomorphism Theorem, prove

(i) if
$$A \le B$$
, then $|B : A| = |B/N : A/N|$

(ii)
$$\langle A, B \rangle / N = \langle A/N, B/N \rangle$$

(iii)
$$(A \cap B)/N = A/N \cap B/N$$

Here ends the group theory that you will see in this course.