. 411

nosalo++.ososoo

<u>2</u>9/581044 PCT/US98/25964

FIG. 1A

FIG. 1B

FIG. 1C

SUBSTITUTE SHEET (RULE 26)

1000a X = Cbz 1200 X = Cbz-Ala

3a X = Cbz3b X = Cbz-Ala-Val

5a X = Cbz5b X = Cbz-Ala-Val

7 X = BOC

7a X = Cbz-Ala-Val

7b X = Cbz-Ala-Asn

2a X = Cbz

2b X = Cbz-Ala-Val

4a X = Cbz

4b X = Cbz-Ala-Vai

6a X = H

6b X = Cbz-Ala-Val

RO31-8959

ABT-538

FIG. 3

ossetout.cscso

FIG. 5A

FIG. 5B

COSSICH+ . CSCSC

FIG. 5C

SUBSTITUTE SHEET (RULE 26)

CbzHN
$$\stackrel{O}{=}$$
 CbzHN $\stackrel{O}{=}$ CbzHN $\stackrel{O}{=}$ CbzHN $\stackrel{O}{=}$ Cl $\stackrel{O}{=}$ CbzHN $\stackrel{O}{=}$ ChzHN $\stackrel{O}{=}$ CbzHN $\stackrel{O}{=}$ CbzHN $\stackrel{O}{=}$ CbzHN $\stackrel{O}{=}$ 25 $\stackrel{O}{=}$ \stackrel{O}

10/16

compd	FIV PRb	HIV PR ^C		HIV (G48V) ^C	HIV (V82F) ^C	
	$K_{i}(nM)$	$K_{i}(nM)$	$IC_{50}(nM)$	IC ₅₀ (nM)	IC _{.50} (nM)	
1000a	$17000 \pm 300^{\text{d}}$	1.1 ± 0.2^{d}				
1200	41 ± 7 ^d	1.5 ± 0.3^{d}	3.8	20.5	14.9	
2a	NI		60000 ^e			
2 b	7300 ± 300	499 ± 81				
3a	NI		300000 ^e			
3b	9400 ± 900	308 ± 70				
4a	NI		2000 ^e			
4 b	212 ± 23	5.4 ± 0.7	10.3	131.0	86.1	
5a	NI	214 ^e				
5b	46 ± 5	2.5 ± 0.4	7.8	68.7	44.4	
6	3700 ± 600	3.0 ± 0.6	5.0	34.5	24.0	
7a	2600 ± 300	1.5 ± 0.2	4.0	26.1	13.3	
7 b	133000 ± 38000	11.3 ± 1.3				
RO31-8959	76000± 300 ^b	$1.6 \pm 0.6^{\circ}$ 0.0003°		0.0081 ^f	0.0005 [†]	
ABT-538		0.0001 ^f		0.0017 ^f	0.009 ^f	

FIG. 10

11 / 16									
	HIV PR ^C K _i (nM)	1.5±0.3 ^d	$1.4 \pm 0.3^{\circ}$	2.6 ± 0.4 ⁰	0.58 ± 0.1	7.7 ± 1.9			
HO HO NH-V-HA	FIV PR ^D K _I (nM)	41±7d	159±15 ^d	$7,000 \pm 500^{4}$	32 ± 5	142 ± 25			
NH->	Inhibitor (Y)	1b (Ala-Cbz)	9b (Leu-Cbz)	10b (Phe-Cbz)	12 (Ser-Cbz)	13 (Thr-Cbz)			
×-HN ×-HN	HIV PR ^C K _i (nM)	6.5 ± 1.3	0.87 ± 0.12	5.5 ± 0.8	pu				
HO HO NH-X	FIV PR ^b K _i (nM)	62 ± 9	230 ± 34	487 ± 20	248 ± 47				
÷.	Inhibitor (X)	8 (Ala-Cbz)	9 (Leu-Cbz)	10 (Phe-Cbz)	11 (Val-Cbz)	•			

FIG. 11

. •,

,

(i) 2,2-dimethoxypropane, p-TsOH, 80%; (ii) Pd/C, H2, MeOH, 99%; (ii) HBTU, Cbz-Val, Et₃N, CH₃CN, 89%; (iv) HBTU, Cbz-amino acids, Et₃N, CH₃CN; (v) p-TsOH, MeOH.

