Resumão de Química

Ligações Químicas:

Ligações Químicas: União de átomos para atingir a estabilidade.

Regra do Octeto: Átomos se estabilizam com 8 elétrons na camada de valência.

Ligação Intramolecular:

Acontece dentro/para formar a molécula

Ligação Intermolecular:

Acontece entre moléculas diferentes. Para formar substâncias.

Ligação Iônica: Entre Cátions e Ânions, atração eletrostática.

Ligação Covalente:

Compartilhamento de pares de elétrons.

Ligação Metálica: Entre metais

Ligação de Dipolo Permanente (Dipolo - Dipolo): Entre moléculas naturalmente polares.

Ligação Dipolo Induzido – Dipolo Instantâneo: Entre moléculas naturalmente apolares.

Ligação de Hidrogênio: Entre

moléculas polares, com um átomo de hidrogênio se ligando ao Flúor, **O**xigênio ou **N**itrogênio, os 3 + eletronegativos.

- Durante а mudança de estado físico de uma substância ocorre uma alteração (rompimento, formação ou enfraquecimento) de ligações intermoleculares.
- Quando ocorre a formação de novas substâncias, a alteração envolve ligações intramoleculares.

Ligação Covalente:

Os átomos dessa ligação têm tendência a receber elétrons.

Ocorre entre:

Hidrogênio + Hidrogênio Hidrogênio + Ametal Ametal + Ametal

Ligação Simples:

Compartilhamento de um par de elétrons

Ligação covalente simples

Hidrogênio (H,)

Ligação Dupla:

Compartilhamento de 2 pares de elétrons.

Ligação covalente dupla

Dióxido de carbono (CO₂)

Ligação Tripla:

Compartilhamento de 3 pares de elétrons.

Ligação covalente tripla

Nitrogênio (N₂)

Fórmula Molecular: O_2

Representa a quantidade do elemento na molécula.

Fórmula Eletrônica (Lewis): Representa os elétrons.

Fórmula Estrutural: Representa as ligações e a estrutura.

Ligação Metálica:

Tendência a doar elétrons, formando cátions.

Mar de elétrons: Elétrons livres transitando entre os cátions metálicos.

Características: Brilho metálico, sólidos a temperatura ambiente (exceto mercúrio) alta condutividade elétrica e térmica, alta densidade, ligação forte, com altos pontos de fusão e ebulição, resistência a tração, maleáveis, formam lâmina e fios.

Ligações Iônicas:

Ocorrem entre:

Características: Sólidos a temperatura ambiente, altos pontos de fusão, conduzem eletricidade apenas fundidos ou aquosos.

Troca de valores: Em ligações iônicas, os valores das cargas do cátion e do ânion são trocados para formar compostos neutros, desconsiderando-se o sinal das cargas.

Exemplo:

Polaridade das Moléculas:

Fatores que Influenciam:

- Tipo de Ligação
- Diferença de eletronegatividade
- Geometria Molecular
- Camada de Valência e Número de Ligações

- Toda Ligação iônica é
 Polar
- Em ligações covalentes observa-se a diferença de eletronegatividade
- Se os átomos são iguais não tem diferença de eletronegatividade,

molécula APOLAR

Se os átomos forem diferentes tem diferença de eletronegatividade, portanto, molécula POLAR.

Eletronegatividade

Capacidade de atrair elétrons.

FONClBrISCPH

Fui Ontem No Clube Brasileiro I Só Comi Pão Hoje.

Eletronegatividade decrescente, maior no F menor no H.

Oxigênio é mais eletronegativo e atrai os elétrons do Carbono para perto de si, porém cada um atrai para um lado oposto ao outro, assim se anulam, tornando a molécula APOLAR.

Em Geometria com vetores na diagonal, se traça um trapézio entre, (liga a ponta, com um triangulo, de) dois vetores e se considera o vetor central.

Nesse caso os vetores se anulariam e a molécula se tornaria **APOLAR**

Quando o **número de átomos** ligados ao átomo central **é diferente** da quantidade **de nuvens eletrônicas** a molécula é **POLAR**. Se for igual, é APOLAR

O Nitrogênio tem um par de elétrons livres, portanto a molécula de amônia tem 4 nuvens, mas somente 3 átomos ligados ao átomo central, portanto é POLAR, o mesmo acontece com a água:

Já no caso do CH₄, não tem pares de elétrons livres, a quantidade de nuvens é a mesma que a de átomos ligados ao central, tornando-a APOLAR.