Homework on §20 Due: Thursday, April 11

- A. Silverman 20.3.
- B. Suppose that p is a prime with $p \equiv 1 \pmod{3}$. Let $a \in \mathbb{Z}$ with $p \nmid a$.
 - (a) Show that if a is a cubic residue, then $a^{(p-1)/3} \equiv 1 \pmod{p}$.
 - (b) Show the converse.
- C. Write a program that implements the CRT for an arbitrary list of moduli. The input should be a list of ordered pairs $[(a_1, m_1), (a_2, m_2), \ldots, (a_n, m_n)]$ where the m_i are pairwise relatively prime, and the output should be a such that $a \equiv a_i \pmod{m_i}$ for all i. Remember to prove your algorithm works!
- D. Let f(x) be a polynomial, and suppose $m, n \in \mathbb{N}$ with gcd(m, n) = 1. Show that $f(x) \equiv 0 \pmod{mn}$ has a solution if and only if $f(x) \equiv 0 \pmod{m}$ and $f(x) \equiv 0 \pmod{n}$ both have solutions.
- E. (a) Find all solutions to $x^2 \equiv 1 \pmod{143}$ using the Chinese Remainder Theorem.
 - (b) Let p, q be distinct primes. How may solutions does $x^2 \equiv 1 \pmod{pq}$ have?
 - (c) Let p_1, p_2, \dots, p_r be distinct primes. How many solutions does $x^2 \equiv 1 \pmod{p_1 p_2 \cdots p_r}$ have?