AGPSS

aGPSS – Simulation made simple

GPSS

- General Purpose Simulation System.
- Developed by Geoffrey Gordon during 60's of XX century.
- Discrete systems modeling.

GPSS world

- Entities (transactions) traveling through the system.
- Through the blocs.
 - The number of blocs is different depending on the GPSS version used.
 - Minuteman
 - aGPSS
 - JGPSS
 - □ GPSS/H
 - **-** ...

Architecture

- Based in blocs diagrams.
- Blocs joined using lines representing a transactions sets, that makes its movement through the blocs.
- Entities making its path through the system elements.
 Transactions.
- □ Its movement is from bloc to bloc → representing actions or events that affects the entities.

Transactions

- Temporal or permanent.
 - Temporal: created and destroyed.
 - Permanents: dynamic.
- Have attributes.
- □ Individual and unique identifier.

GPSS code example

SIMULATE

*

* ONE-LINE, SINGLE-SERVER QUEUEING MODEL

*

GENERATE	18,6	ARRIVALS EVERY 18 +- 6 MINUTES
ADVANCE	0.5	HANG UP COAT
SEIZE	JOE	CAPTURE THE BARBER
ADVANCE	15,3	HAIRCUT TAKES 15 +- 3 MINUTES
RELEASE	JOE	FREE THE BARBER
TERMINATE	1	EXIT THE SHOP
CT A DT	100/	TC

*

```
START 100 (= TC, transaction counter)
```

END

Blocs

Program logic instructions

Generate

- Creation of model transactions.
- Time between arrivals: random variable.
- □ A: Average interval time.
- \square B: $\frac{1}{2}$ range (A \pm B).
- □ C: Time for the first transaction.
- D: Maximum number of created transactions.
- □ E: Priority level

Terminate

- □ To destroy the transactions.
- □ A: Number to decrement the TC.

Advance

- Stops the transaction movement some time.
- □ A: Average waiting time
- \square B: $\frac{1}{2}$ range

ADVANCE A.B

Example

■ Museum

Modeling simple servers

- People or objects that performs a service.
- □ Limited resource-
- □ Kind:
 - \square Simple \rightarrow 1 server by time unit.
 - \square Complex \rightarrow more than one server by time unit.

Seize

- □ The entity request the server.
- □ A: Identifier of the requested server.

Release

- □ To release a server.
- □ A: Identifier of the released server.

Example: Manual lathe

- A manual lathe process wooden pieces with a 5 ± 2 minutes (uniform distribution). The arrival of the pieces follows a uniform distribution of parameters 7 ± 3 minutes. Develop a GPSS model to simulate the process of 500 pieces.
- □ Pieces arrival: 7±3 (uniform, minutes)
- \square Time to process a piece: 5 ± 2 (uniform, minutes).

Example: Manual lathe (answer)

- □ GENERATE 7,3
- SEIZE TORN
- □ ADVANCE 5,2
- □ RELEASE TORN
- TERMINATE 1

Modeling complex servers

- Is needed to define the server capacity.
- □ STORAGE S(ELEVATOR),6 (H)
- □ ELEVATOR STORAGE 6 (w)
- Is needed to show when the server is requested and when the server is released.
- Via Control -> Capacities (g)

Enter

- Request of one ore more parallel servers.
- Simulates the enter of the entity in the server.
- □ A: server's name.
- □ B: number of servers requested.

Leave

- □ To simulate the release of one or more servers.
- □ A: server's name.
- □ B: number of servers to release.

Arrive (QUEUE on [W])

- To model the queues in front of a server. It measures the time it takes for a transaction to go from the ARRIVE block to the corresponding DEPART block.
 - A: queue identifier.
 - B: Number of entities [W].

Depart

- □ To show that an entity is leaving a queue.
 - A: queue identifier.

Example: Banc Fortuna v1.0

- In a banc the clients arrives following a uniform distribution of 5 to 9 minutes.
- □ 1 single cashier.
- Service time of 2 a 6 minutes, following a uniform distribution.
- □ Simulate 500 clients.

Remember: we want QUEUE information.

Example: Banc Fortuna v1.0 (answer)

 \Box GENERATE 7,2

□ ARRIVE CUA

□ SEIZE CAIXER

DEPART CUA

□ ADVANCE 4,2

□ RELEASE CAIXER

TERMINATE 1

Example: Banc Fortuna v1.1 (answer)

 \Box GENERATE 7,2

ARRIVE CUA

□ SEIZE CAIXER

□ ADVANCE 4,2

□ RELEASE CAIXER

DEPART CUA

TERMINATE 1

Assign or LET

- Allows the modification of the transaction parameters.
- A: parameter's number.
- B: value to assign.
 - ASSIGN COLOR,4
 - ASSIGN TYPE,10
 - ASSIGN TIME,7.5
 - ASSIGN 1+,10
- P\$COLOR To access the attribute
- ADVANCE P\$COLOR

Labels

- □ Is allowed to name the GPSS blocs.
 - □ To access the SNA's.
 - To break the transaction sequence.

SNA's

- Some information related to the model entities.
- Can be used in simulation time.
- Give information about the simulated model.
- Examples:
 - □ C1: Clock
 - N\$label: #Xacts

IF (Test on [W])

- Allows compare values and control the destination of a transaction.
- X: relation operator.
- A: verification operator.
- □ B: Reference value.
- C: number of the destination bloc.

Test

- If the operand C is not defined, TEST is working in conditional mode. The transaction enters in the bloc and, when the condition is true, continues its movement.
- If C is specified, when the condition if false the transaction jumps to C.
- Values for X:
 - E: equal
 - G: bigger
 - GE: bigger or equal.
 - L: les
 - LE: les or equal.
 - NE: no equal.

ASSIGN COLOR,4 TEST E P\$COLOR,4,END ADVANCE 10

END TERMINATE 1

ASSIGN COLOR,5
TEST E P\$COLOR,4,END
ADVANCE 10

END TERMINATE 1

ASSIGN COLOR,5
TEST E P\$COLOR,4
ADVANCE 10

END TERMINATE 1

Example: Banc Fortuna V3.0

- In a banc the clients arrive following an uniform distribution with parameters 5 to 10 (minutes).
- □ 3 tellers.
- Service time: 2 to 5 minutes (uniform distribution).
- Simulate 1 day of work.
- At the end of the day no client must remain in the banc.

Example: Banc Fortuna V3.0 (answer)

CAIXES STORAGE 3

	GENERATE	7.5,2.5	
ENT	QUEUE FILA		
	ENTER CAIXES		But we want to
	DEPART FILA		end the simulation
	ADVANCE	3.5,1.5	by time
SORT	LEAVE CAIXES		
FIN	TERMINATE	500	

Example: Banc Fortuna V3.0 (answer)

CAIXES STORAGE 3

	GENERATE	7.5,2.5						
ENT	QUEUE	FILA						
	ENTER	CAIXES						
	DEPART	FILA	Friday, November 19, 2021 10:55:27					
	DEPART	FILA		START TIME 0.000	END T 240.		ACILITIES 0	STORAGES
	ADVANCE	3.5,1.5		0.000	240.	000 9	U	1
SORT	LEAVE	CAIXES		NAME CAIXES		VALUE 10000.000		
				ENT FILA		2.000 10001.000		
FIN TERMINATE			FIN SORT		7.000 6.000			
				SORT		0.000		
			LABEL	LOC	BLOCK TYPE	ENTRY COUNT		
GENE	RATE	240	ENT	1 2	GENERATE QUEUE	32 32	0	
		•		3 4	ENTER DEPART	32 32	0	0
TERMINATE		1		5	ADVANCE	32	1	ő
			SORT FIN	6 7	LEAVE TERMINATE	31 31	0	0
			FIN	8	GENERATE	1	0	
				9	TERMINATE	1	0	0
START		1						
END								

Example: Banc Fortuna V3.0 (answer)

CAIXES STORAGE 3

GENERATE *7.5*,2.5

TEST LE C1,240,FIN

ENT QUEUE FILA

ENTER CAIXES

DEPART FILA

ADVANCE 3.5,1.5

SORT LEAVE CAIXES

FIN TERMINATE

GENERATE 240

TEST E N\$ENT,N\$SORT

TERMINATE 1

START 1

END

GOTO (Transfer)

Allows to break the sequential movement of a transaction.

Example: TalsaV1.0

- Two automatic lathes.
- \square Arrivals (4 \pm 1 uniform).
- □ Lathe A: 1 to 10 minutes (uniform).
- □ Lathe B: 2 to 15 minutes (uniform).
- Pieces enters in the first free, (we prefer the A).
- Simulate 50 pieces.

Example: TalsaV1.0 (answer)

SIMULATE

GENERATE 4,1

QUEUE MATERIAL

TRANSFER BOTH, UNO, DOS

UNO SEIZE TALAD1

DEPART MATERIAL

ADVANCE *5.5,4.5*

RELEASE TALAD1

TRANSFER ,PROD

DOS SEIZE TALAD2

DEPART MATERIAL

ADVANCE 8.5,6.5

RELEASE TALAD2

PROD TERMINATE 1

START 50

END

IF with station (Gate on [W])

- Controls the transaction flow.
- A: name or number of the analyzed installation.
- B: name of the label.
- □ X: Auxiliary operator.
- GATE NU INST,ALT

Gate (2/2)

- Related to SEIZE i RELEASE
 - U Try if the installation is full.
 - NU Try if the installation is free.
- Related to ENTER i LEAVE
 - SF: Try if the server is full.
 - SNF: Try if the server is not full.
 - SE: Try if the server is empty.
 - SNE: Try if the server is not empty.
- Related to LOGIC
 - LS: Set logic
 - LR: Reset logic.

Example: ViatgesV1.0

- □ The clients call the travel agency following an uniform distribution (3±2 minutes).
- Give the information to the clients follows an uniform distribution of 5 to 8 minutes.
- If the telephone is occupied the client is lost.
- Simulate 8 hours.

Example: ViatgesV1.0 (answer)

S	SIMULATE	
	GENERATE	3,2
	GATE NU	TELEF,NEXT
	SEIZE	TELEF
	ADVANCE	6.5,1.5
	RELEASE	TELEF
NEXT	TERMINATE	
	GENERATE	480
	TERMINATE	1
	START	1

Split

- Allows the creation of new transactions with the same features of active transaction.
- A: N° of new created transactions.
- □ B: Destination of the new transactions (op).
- C: Parameter that receives the serial number.
- SPLIT 10,COPYs,SERIAL
- ADVANCE 5;1 XACTS
- □ TRANSFER, ENDSIM
- COPYs ADVANCE 10;10 XACT

Example: TaladreSplit V1.0

- □ Entities every 8 hours.
- □ Size of the lotes:

Lot size	17	18	19	20	21
Probability	0.1	0.4	0.4	0.05	0.05

- □ Service time 10±5 (in minutes).
- □ Simulate 3000 pieces

Example: TaladreSplit V1.0 (sample)

LOT FUNCTION RN1,D5 .1,16/.5,17/.9,18/.95,19/1,20 **SIMULATE** * ONE-LINE, SINGLE-SERVER QUEUEING MODEL * **GENERATE** 480 FN\$LOT,TAL **SPLIT** TAL QUEUE ALM **SEIZE TALAD DEPART** ALM **ADVANCE** 10,5 **RELEASE TALAD TERMINATE START** 3000

END


```
LOT FUNCTION
                       RN1,D5
.1,17/.5,18/.9,19/.95,20/1,21
   SIMULATE
*
   ONE-LINE, SINGLE-SERVER QUEUEING MODEL
   GENERATE
                       480
   SPLIT
                       FN$LOT,TAL
   TERMINATE
TAL QUEUE
                      ALM
                      TALAD
   SEIZE
   DEPART
                      ALM
                       10,5
   ADVANCE
   RELEASE
                      TALAD
   TERMINATE
   START
                       3000
```

END

Assemble

- □ To synchronize transactions.
- A: Number of transactions we are looking for.

FUNCTION

OK

Cancel

Help

Allows to define a new probability distribution. a Functions \times □ Name FUNCTION A,B -Defined functions X1,Y1/X2,Y2/../Xn,Yn Built-in Type Name X Random function Demo Name Random stream RN New Function Х Value Frequency 10 Demo Name New XY function Random function Delete OK -Definition Cancel Show Value Frequency Help Close Add Delete

FUNCTION

- □ Nom: Reference name of the function.
- A: Function arguments.
- □ B: Type of the function.
 - □ (C,D,E,L,M).
- Xi,Yi: Pair of data to create the distribution function.
 - Xi reference value.
 - Yi is the value that the function returns.

FUNCTION C

- Continuous.
 - □ Given an X value, interpolates and returns a value for Y.
 - As an example:
 - A=RN1
 - The function must be defined between 0 and 1.
 - MyFuncName FUNCTION RN1,C3
 - **0.1,1/0.8,2/1,3**

FUNCTION D

- Discrete.
- Growing values of X.
- If we find a value equals or greater than X we return its related value.
- If we do not find this value, returns the greater value.

FUNCTION E

- Discrete function of attribute value.
 - Returns for an X the attribute value.
 - RESUL FUNCTION X\$VALOR,E3
 1,S\$ALM1/5,S\$ALM2/9,S\$ALM3

FUNCTION L

- Value list
- Returns the value of the X position (argument)
- TIPUS FUNCTION P2,L4
 1,3/2,5/3,8/4,12

FUNCTION M

- Attribute value list
- Returns the value of the attribute in the position X (argument)
- LLISTA FUNCTION X\$NOM,M31,X\$NOM1/2,X\$NOM2/3,X\$NOM3

Functions main aspects

- 1. Functions C,D,L do not admit SNA's ans Y's.
- Functions E, M must have SNA's as Y values.
- 3. Functions L and M cannot use random arguments.
- 4. To use a function:
 - 1. FN(nom).
 - 2. F\$nom(parametres).

Example: Wooden tool v1.0

- Arrivals 5 a 9 minutes (Uniform)
- □ Tool service time (minutes)

Temps de procés	1	2	3	4	5
Freqüència relativa	.4	.3	.15	.10	.05

Model this system during 8 hours.

Resposta Serreria V1.0

SIMULATE

TRAB FUNCTION RN1,D5

.4,1/.7,2/.85,3/.95,4/1,5

GENERATE 7,2

QUEUE UNO

SEIZE MAQ

DEPART UNO

ADVANCE FN\$TRAB

RELEASE MAQ

TERMINATE

*

*Termination control blocks

*

GENERATE 480 TERMINATE 1

START 1

ARRIVE

SEIZE

DEPART

ADVANC

FN\$Dem

RELEASE

Matrix

- □ Name MATRIX A,B,C
- □ A: Matrix type.
- □ B: Rows.
- □ C: Columns.
 - MAGATZEM MATRIX MH,200,4
 - Defines a 200 x 4 matrix.

Msavevalue

- To give or modify the value of a matrix.
- ☐ A: name.
- □ B: row number.
- □ C: column number.
- □ D: information to be stored.

MSAVEVALUE

 $A_iB_iC_iD$

Internal vision of the transaction's movement

Understanding the process interaction paradigm

Example (Blocs)

- 1. Entering 3 ± 1 minutes
- 2. Start Storage
- 3. Entering Resource
- 4. Exit Storage
- 5. Using the resource 3
- 6. Release resource
- 7. Exit system

Example (Programming blocs)

- New entities arrivals
 - \square 3 \pm 1 minutes
- 2. Verification and *capture* of the free resource
- 3. Using the resource
 - 3 minutes
- Release the resource
- 5. The entity leaves the system

Example(+ statistical adquisition)

- New entity arrival
 - \square 3 \pm 1 minutes
- Start of the acquisition of data to represent the accumulation
- 3. Verification and capture of the free lathe
- 4. End of the data acquisition to represent the accumulation
- Turning the raw material
 - 3 minutes
- 6. Release the lathe
- 7. Exit the system

Example (Event chains)

- 1. Enters a new transaction on the system
 - On t enters the new entity i+1 to the future event chain, remaining here until t+u(2,4).
- Verification of the lathe entrance
 - 1. If the entity enter the lathe continues its movement to the next block
 - 2. If the lathe is not free, the entity is send to the end of the current event chain, remaining here until the lathe be free
- 3. Entering in the future event chain, remaining here 3 minutes
- 4. Leaving the future event chain, the lathe is free
- 5. The entity leaves the system

Points of view of a GPSS model

- External vision of the transactions. From the point of view of the block programming
 - The set of blocks that defines the movement of the transactions
- Internal vision of the transactions. From the point of view of the event chains
 - The places where the transactions are send during its movement through the model.

Event chains

- Transactions list
- In any moment
 - Transaction ∈ bloc
 - Transaction ∈ chain
- The transaction makes it movement from:
 - One block to another: no blocking situation, no delay.
 - From a chain to a chain: blocking situation, usually form FEC to CEC
 - From a block to a chain: A blocking situation or a delay in the system (ADVANCE)
 - From a chain to a block: An unblocking situation (or the end of a delay)

Blocking in the event list

- Blocking due to a delay
 - The transaction enters in the block in t1 and leaves the block in t2 (typically an advance)
 - In GPSS only due to ADVANCE and GENERATE.
- Blocking due to a model condition
 - The resource is "full", typically a SEIZE used by any other entity

Type of chains

- Current esdeveniment chain
- 2. Future esdeveniments chain

Current event Chain (CEC)

- Contains the transaction that want move now
 - Some problems prevents this movement
 - Blocking situations
 - Server busy
 - Sorted by decreasing priority (no time)

CEC

■ Move time: Current simulation time

xact id	curBlk	nxtBlk	moveTime	priorityLevel
5	7	8	•••	20
3	12	13		16
8	9	10		12

Future event Chain (FEC)

- The transactions are waiting for the correct time to finish its actions
- Can be caused by
 - A new transaction enters in the model, GENERATE
 - The transaction is in a process delay, ADVANCE
- Sorted by time and priority

FEC

□ 7,2,11 : blocks ADVANCE

□ 9 : block GENERATE

xact id	curBlk	nxtBlk	moveTime	priorityLevel
7	3	4	42.6	3
		1	Ī	
9	Neix	19	47.6	15
	1	•	1	
2	7	8	51.9	12
	_	_		
11	32	33	51.9	16

Example GPSS

GPSS World Simulation Report - TaladreSplit V1.0.3.1

Tuesday, March 08, 2005 10:40:14

START TIME END TIME BLOCKS FACILITIES STORAGES 0.000 493.810 8 1 0

LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 0 0 2 SPLIT 0 0 TAL 3 QUEUE 18 16 0 4 SEIZE 0 DEPART 0 0 6 ADVANCE 0 0 7 RELEASE 0 8 TERMINATE 0

Example GPSS

```
ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY
FACILITY
            2 0.028 6.905 1 3 0 0 0 16
TALAD
QUEUE
          MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
ALM
          17 17 18 1 0.475 13.043 13.810 0
CEC XN PRI M1 ASSEM CURRENT NEXT PARAMETER VALUE
  3
           480.000 1
      0
                                 5
FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE
  2
      0 960.000 2
                           0
```

GENERATE blocs initialization

- On time 0.
- □ In Top-Down order (GPSS/H)
- For each bloc one transaction are created.
- Identifiers are assigned consecutively.
- Assigning the moveTime for each transaction.
- If the moveTime is equals to 0, this transaction I queued in the CEC, otherwise in the FEC.

Transactions movement

SCAN PHASE

UPDATE PHASE

Moving the XACT from FEC to CEC keeping in the CEC the priority order.

FEC XACT

Example (Blocks)

Enter 3 ± 1 minutes

2. Start Store

3. Entering Lathe

4. Leaving Store

5. Turning 3

6. Exit Lathe

7. Exit System

Example (data)

- Interval between generations:
 - \Box (2,2,4,4)
- We only generate 4 entities.

1. Enter	3 ± 1	minutes
----------	---------	---------

- 2. Start Store
- 3. Entering Lathe
- 4. Leaving Store
- 5. Turning 3
- 6. Exit Lathe
- z. Exit System

Steep	Time	CEC	FEC
1	Start	-	-
2	0	_	(1,Out,1,2)

Example (event chains)

Step	Time	CEC	FEC	Comments
1	Inici	-	-	
2	0	-	(1,Out,1,2)	First Xact.
3	2	(1,Out,1,Now)	-	Xact from FEC to CEC.
4	2	-	(2,Out,1,4) (1,5,6,5)	Moving the Xact 1 all that we can, entering in 5 (advance). Generatio of the second Xact.
5	4	(2,Out,1,Now)	(1,5,6,5)	Xact from FEC to CEC.
6	4	(2,2,3,Now)	(1,5,6,5) (3,Out,1,8)	Moving the Xact 2 all that we can, entering the 2 (seize). Generation of the third Xact.

Example (event chains)

Step	Time	CEC	FEC	Comments
7	5	(2,2,3, now) (1,5,6, now)	(3,Out,1,8)	Xact from FEC to CEC.
8	5	-	(3,Out,1,8) (2,5,6,8)	Moving the Xact 1 all that we can, leaving the system. Moving the Xact 2 all that we can, entering the 5 (advance).
9	8	(3, Out,1,now) (2,5,6, now)	-	Xact from FEC to CEC.
10	8	-	(3,5,6,11) (4,Out,1,12) GPSS/H	Moving the Xact 2 all that we can, leaving the system. Moving the Xact 3 all that we can, entering the 5(advance). Programming the next arrival.

Example (event chains)

Step	Time	CEC	FEC	Coments
11	11	(3,5,6,Now)	(4,Out,1,12)	Xact from FEC a CEC.
12	11	-	(4,Out,1,12)	Moving the Xact 3 all than we can, leaves the system.
13	12	(4,Out,1,Now)	-	Xact from FEC a CEC.
14	12	-	(4,5,6,15)	Moving the Xact 4 all that we can, entering the 5 bloc (advance).
15	15	(4,5,6,Now)	-	Xact from FEC to CEC.
16	15	-	-	Moving the Xact 4 all that we can, leave the system.