LAB 6 Supplement: Akaike's Information Criterion (AIC)

1. Akaike's Information Criterion (AIC)

- Metric used for model selection
 - Gives best model (of those examined) based on a tradeoff between fit and number of parameters
 - Based on distances (Kullback-Leibler information) from some "true" model that we don't know
- Lower AIC indicates better model
- Go-to-book on AIC and information theory:
 Burnham and Anderson 2002

AIC calculation from regression

$$AIC = n \log(\frac{RSS}{n}) + 2k + constant$$

- RSS = residual sum of squares (aka SSE)
- n = number of data points
- $k = number of parameters (including the estimated error term, <math>\sigma^2$); 2k acts as a penalty for complexity
- Constant can ignore this b/c identical for models
- Full equation for reference: $AIC = n \left(1 + \log(2\pi \frac{RSS}{n})\right) + 2k$
- To get AIC in R: > AIC(Model1, Model2,...)

AIC Differences (Δ or dAIC)

$$\Delta_i = AIC_i - AIC_{\min}$$

• Rules of thumb:

Δ _i	Level of empirical support for model i
0-2	Substantial
4-7	Considerably less
>10	Essentially none

- dAIC used to compare across models
 - \rightarrow best model has Δ =0; other models have $\Delta_i > 0$
- Use table to evaluate relative support for each model

Example

Table 3. Highest ranking DFA models of Atlantic menhaden recruitment using data spanning two different periods.

Period	Model rank	Covariate	m	ΔΑΙΟ
1959 – 2013	1	AMO (lag 1)	2	0.0
	2	LAND (lag 1)	2	2.1
	3	TEMP_SNE (lag 1)	2	8.1
	4	PCP_SNE	2	10.3
	5	LAND	2	11.0
1987 – 2013	1	LAND (lag 1)	2	0.0
	2	AMO (lag 1)	2	1.6
	3	PCP_SNE	2	5.3
	4	PRED_Ms	2	5.7
	5	PALM_SNE	2	6.2

Models with different covariates and different numbers of common trends (m) were ranked based on AIC differences (Δ AIC). Covariates include the Atlantic Multidecadal Oscillation (AMO), coast-wide menhaden landings (LAND), water temperature (TEMP), precipitation (PCP), predator biomass of striped bass M. saxatilis (PRED_Ms), and the Palmer drought index (PALM). Some models had covariates that were specific to the SNE region (_SNE) and some had covariates lagged by 1 year. Bolded models have substantial support for being the best model.

See more examples in lab...

Akaike weights (w_i)

 The relative likelihood of a model, given the data and the set of R models, can be expressed as "Akaike weights", w_i:

$$w_i = \frac{\exp(-\frac{1}{2}\Delta_i)}{\sum_{r=1}^R \exp(-\frac{1}{2}\Delta_i)}$$

- All w_i values will add to 1
- A given w_i is considered as the "weight of evidence" in favor of model i being the actual best model for the situation at hand given that one of the R models must be the best

Sidenote: AIC corrected for small sample size (AICc)

$$AICc = AIC + \frac{2k(k+1)}{n-k-1}$$

- n = number of data points
- $k = number of parameters (including the estimated error term, <math>\sigma^2$)
- AICc adds a greater penalty for extra parameters to prevent overfitting (i.e., selecting overly complex models)
- Rule of thumb: Use AICc if n/k < 40

AIC summary

- AIC (Akaike's Information Criterion) = Model selection tool
 - Gives <u>relative</u> measure of model fit
 - Lowest AIC indicates best model (of those evaluated)
 - Model MUST use the same response data!
- Δ (i.e. $\Delta_i = AIC_i min(AIC)$) \rightarrow Standardizes AIC values
 - best model has Δ =0; other models have Δ_i >0
- Akaike weights (w_i) -wgt of evidence that model i is the best
- AIC corrected for small sample size (AICc) use if n/k<40

Δ _i	Level of empirical support for model i
0-2	Substantial
4-7	Considerably less
>10	Essentially none