概率论与数理统计

第八章 假设检验

练习:

1、某织物强力指标X的均值 μ_0 =21公斤. 改进工艺后生产一批织物,今从中取30件,测得 \overline{X} =21.55公斤. 假设强力指标服从正态分布 $N(\mu,\sigma^2)$,且已知 σ =1.2公斤,问在显著性水平 α =0.01下,新生产织物比过去的织物强力是否有提高?

解:提出假设: $H_0: \mu \le 21 \Leftrightarrow H_1: \mu > 21$

取统计量
$$Z = \frac{\overline{X} - 21}{\sigma/\sqrt{n}} \sim N(0,1)$$

拒绝域为: $Z > z_{0.01} = 2.33$

代入 σ =1.2, n=30, 并由样本值计算得统计量Z的实测值

$$Z = \frac{21.55 - 21}{1.2/\sqrt{30}} = 2.51 > 2.33$$

落入拒绝域

故拒绝原假设 H_0 ,即新生产织物比过去的织物的强力有提高。

2、设 (X_1, X_2, \dots, X_n) 是来自正态总体 $N(\mu, 100)$ 的一个样本,要检验 $H_0: \mu = 0$ $(H_1: \mu \neq 0)$,在下列两种情况下,分别确定常数 d,使得以 W_1 为拒绝域的检验犯第一类错误的概率为0.05.

(1)
$$n = 1, W_1 = \{x_1 | |x_1| > d\};$$

(2)
$$n = 25, W_1 = \{(x_1, \dots, x_{25}) | | \overline{x} | > d \}, \ \sharp \oplus \overline{x} = \frac{1}{25} \sum_{i=1}^{25} x_i.$$

解 (1) n = 1时, 若 H_0 成立, 则 $\frac{X_1}{10} \sim N(0,1)$,

$$P(X_1 \in W_1) = P(|X_1| > d) = P(\left|\frac{X_1}{10}\right| > \frac{d}{10}) = \Phi(-\frac{d}{10}) + \left(1 - \Phi(\frac{d}{10})\right)$$

$$=2\left(1-\Phi\left(\frac{d}{10}\right)\right)=0.05,$$

能否理解?

$$\Phi\left(\frac{d}{10}\right) = 0.975, \ \frac{d}{10} = 1.96, \ d = 19.6;$$

(2)
$$n = 25$$
时,若 H_0 成立,则 $\sqrt{25} \frac{\overline{X}}{10} \sim N(0,1)$,
$$P((X_1, \dots X_{25}) \in W_1) = P(|\overline{X}| > d)$$

$$= P\left(\left|\frac{\overline{X}}{2}\right| > \frac{d}{2}\right) = \Phi\left(-\frac{d}{2}\right) + \left(1 - \Phi\left(\frac{d}{2}\right)\right)$$

$$=2\left(1-\Phi\left(\frac{d}{2}\right)\right)=0.05,$$

$$\Phi\left(\frac{d}{2}\right) = 0.975, \quad \frac{d}{2} = 1.96, \ d = 3.92.$$

3、设 (X_1, X_2, \dots, X_n) 是来自正态总体 $N(\mu, 9)$ 的一个样本,其中 μ 为未知参数,检验 $H_0: \mu = \mu_0$ $(H_1: \mu \neq \mu_0)$,拒绝域 $W_1 = \{(x_1, \dots, x_n) | | \overline{x} - \mu_0 | \geq C\}$,确定常数 C,使显著性水平为 0.05;

解 (1) 若
$$H_0$$
成立, 则 $\frac{\sqrt{n}(\bar{X} - \mu_0)}{3} \sim N(0,1),$

$$P((X_1, \dots X_n) \in W_1) = P(|\bar{X} - \mu_0| \ge C)$$

$$= P\left(\frac{\sqrt{n}|\bar{X} - \mu_0|}{3} \ge \frac{\sqrt{n}C}{3}\right) = 2\left(1 - \Phi\left(\frac{\sqrt{n}C}{3}\right)\right) = 0.05,$$

$$\Phi\left(\frac{\sqrt{n}C}{3}\right) = 0.975, \frac{\sqrt{n}C}{3} = 1.96, C = \frac{5.88}{\sqrt{n}};$$

§ 2 正态总体均值的假设检验

- ◆单个正态总体均值的检验
- ◆两个正态总体均值差的检验
- ◆基于成对数据的检验(t检验)

- 一、单个总体 $N(\mu, \sigma^2)$ 均值 μ 的检验
 - 1. σ^2 已知,关于 μ 的检验(Z检验)

在上一小节中已讨论过正态总体 $N(\mu, \sigma^2)$,当 σ^2 已知时关于 $\mu = \mu_0$ 的检验问题.在这些检验问题中,我们都是利用 H_0 在为真时服从 N(0,1)分布的统计量 $\frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$ 来确定拒绝域。这种检验法常称为 Z 检验法。

左边假设拒绝域的推导:

形如 $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$ 的假设检验,称为左边检验.

由
$$P\{H_0$$
 为真拒绝 H_0 } = $P_{\mu \in H_0} \{ \overline{X} \le k \}$

$$=P_{\mu\geq\mu_0}\left\{\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\leq\frac{k-\mu_0}{\sigma/\sqrt{n}}\right\}\leq P_{\mu\geq\mu_0}\left\{\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\leq\frac{k-\mu_0}{\sigma/\sqrt{n}}\right\}$$

要控制 $P\{H_0$ 为真拒绝 $H_0\} \leq \alpha$,

只需令
$$P_{\mu \geq \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \leq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} = \alpha.$$

因为
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
, 所以 $\frac{k - \mu_0}{\sigma / \sqrt{n}} = -z_{\alpha}$,

故左边检验的拒绝域为
$$\overline{x} \le \mu_0 - \frac{\sigma}{\sqrt{n}} z_\alpha$$
,即 $z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \le -z_\alpha$.

Z检验法 (σ^2 已知)

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其 H ₀ 为真时的分布	拒绝域
$\mu = \mu_0$	$\mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$ Z \ge z_{\frac{\alpha}{2}}$
$\mu \ge \mu_0$	$\mu < \mu_0$	σ/\sqrt{n} $\sim N(0,1)$	$Z \leq -z_{\alpha}$
$\mu \leq \mu_0$	$\mu > \mu_0$		$Z \ge z_{\alpha}$
第八章	假设检验		

2. σ^2 未知,关于 μ 的检验(t 检验) 设总体 $X \sim N(\mu, \sigma^2)$, 其中 μ, σ^2 未知, 我们来 求检验问题 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ 的拒绝域(显著性水平为 α)。 设 x_1, x_2, \dots, x_n 是来自正态总体X的样本, 由于 σ^2 未知,现在不能利用 $\frac{\overline{x} - \mu_0}{\overline{x}}$ 来确定拒绝 域了。

注意到 S^2 是 σ^2 的无偏估计,我们用 S 来代

替 σ ,采用 $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$ 作为检验统计量。当 $|t| = \left| \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \right|$ 过分大时就拒绝 H_0 ,拒绝域的

形式为
$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge k$$

已知当 H_0 为真时, $\frac{\overline{x}-\mu_0}{s/\sqrt{n}}\sim t(n-1)$,故由

$$\mathbf{P} \{拒绝 H_0 | H_0 为 真\} = P_{\mu_0} \{ \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge k \} = \alpha,$$

得 $k = t_{\alpha/2}(n-1)$,即拒绝域为

$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge t_{\alpha/2} (n - 1)$$

对于正态总体 $N(\mu, \sigma^2)$, 当 σ^2 未知时,关于 μ 的单边检验得拒绝域下表中已给出。

上述利用 t 统计量得出得检验法称为 t 检验法。在实际中,正态总体的方差常为未知,所以我们常用 t 检验法来检验关于正态总体均值的检验问题。

t 检验法 (σ² 未知)

	東假设 H ₀	备择假设 <i>H</i> ₁	检验统计量及其 H ₀ 为真时的分布	拒绝域
Ļ	$u = \mu_0$	$\mu \neq \mu_0$	$t = \frac{\overline{X} - \mu_0}{S}$	$\left t \right \ge t_{\underline{\alpha}} (n-1)$
ļ	$u \ge \mu_0$	$\mu < \mu_0$	$\frac{S}{\sqrt{n}}$ $\sim t(n-1)$	$t \le -t_{\alpha}(n-1)$
	$t \leq \mu_0$	$\mu > \mu_0$		$t \ge t_{\alpha}(n-1)$
14	第八章	假设检验		

例1 某种电子元件的寿命 X (以小时计) 服从正态分布, μ , σ^2 均未知。现测得16只元件的寿命如下:

159 280 101 212 224 379 179 264

222 362 168 250 149 260 485 170

问是否有理由认为元件的平均寿命大于225(小时)?

解: 按题意需检验

$$H_0: \mu \le \mu_0 = 225, H_1: \mu > 225.$$

取 $\alpha = 0.05$ 。由表**8.1**知检验问题的拒绝域为

$$t = \frac{x - \mu_0}{s / \sqrt{n}} \ge t_\alpha (n - 1)$$

现在n = 16, $t_{0.05}(15) = 1.7531$. 又算得 $\overline{x} = 241.5$,s = 98.7259 即得

 $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = 0.6685 < 1.7531.$

t不落在拒绝域,故接受 H_0 ,即认为元件的平均寿命不大于225小时。

二.两个正态总体均值差的检验(t检验)

我们还可以用t检验法检验具有相同方差的两个正态总体均值差的假设。

设 $x_1, x_2, \cdots, x_{n_1}$ 是来自正态总体 $N(\mu_1, \sigma^2)$ 的样本,是来自正态总体 y_{n_2} 的样本且设两样本独立。 又分别记它们的样本均值 ,记样本方 $\overline{z}x$, \overline{y} 为 。 x_1^2, x_2^2 μ_1 ,为为,表知,要特别引起注意的是,在这里假设两总体的方差是相等的。 现在来求检验问题:

$$H_0: \mu_1 - \mu_2 = \delta, H_1: \mu_1 - \mu_2 \neq \delta.$$

(δ 为已知常数)的拒绝域,取显著性水平为

 α 引用下述t统计量作为检验统计量:

其中

$$t = \frac{(\overline{x} - \overline{y}) - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$s_w^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

当 H_0 为真时,已知 $t \sim t(n_1 + n_2 - 2)$ 与单个总体

的 t 检验法相仿, 其拒绝域的形式为

$$\left| \frac{(\overline{x} - \overline{y}) - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| \ge k$$

 $P{拒绝 H_0 | H_0为真}$

$$=P_{\mu_1-\mu_2=\delta}\left\{\frac{(\overline{x}-\overline{y})-\delta}{s_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\geq k\right\}=\alpha$$

可得 $k = t_{\alpha/2}(n_1 + n_2 - 2)$. 于是得拒绝域为

$$|t| = \frac{(\overline{x} - \overline{y}) - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge t_{\alpha/2} (n_1 + n_2 - 2).$$

关于均值差的其它两个检验问题的拒绝域在下表中给出。常用的是 $\delta = 0$ 的情况。

当两种正态总体的方差均为已知时,我们可用Z 检验法来检验两正态总体均值差的假设问题。

关于均值差 $\mu_1 - \mu_2$ 的检验

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\mu_1 - \mu_2 = \delta$	$\mu_1 - \mu_2 \neq \delta$	$Z = \frac{\bar{X} - \bar{Y} - \delta}{\sqrt{2}}$	$ Z \ge z_{\frac{\alpha}{2}}$
$\mu_1 - \mu_2 \ge \delta$	$\mu_1 - \mu_2 < \delta$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$Z \leq -z_{\alpha}$
$\mu_1 - \mu_2 \le \delta$	$\mu_1 - \mu_2 > \delta$	$\sim N(0,1)$ (σ_1^2 , σ_2^2 已知)	$Z \ge z_{\alpha}$

	原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
μ_1 –	$\mu_2 = \delta$	$\mu_1 - \mu_2 \neq \delta$	-	$\left t \right \ge t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)$
μ_1 –	$\mu_2 \ge \delta$	$\mu_1 - \mu_2 < \delta$	$ \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} S_w $ $ \sim t(n_1 + n_2 - 2) $	$t \le -t_{\alpha}(n_1 + n_2 - 2)$
μ_1 –	$\mu_2 \leq \delta$	$\mu_1 - \mu_2 > \delta$	$\begin{pmatrix} \sigma_1^2, \sigma_2^2 未知 \\ \sigma_1^2 = \sigma_2^2 \end{pmatrix}$	$t \ge t_{\alpha} (n_1 + n_2 - 2)$

例2 在平炉进行一项试验以确定改变操作方法的 建议是否会增加钢的得率,试验是在同一只平炉上 进行的。每炼一炉钢时除操作方法外,其它条件都 尽可能做到相同。先用标准方法炼一炉,然后用建 议的新方法炼一炉,以后交替进行,各炼了10炉, 其得率分别为

标准方法 78.1 72.4 76.2 74.3 77.4 78.4 76.0

75.5 76.7 77.3

新方法 79.1 81.0 77.3 79.1 80.0 79.1 79.1

77.3 80.2 82.1

设这两个样本相互独立,且分别来自正态总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$, μ_1, μ_2, σ^2 均未知。问建议的新操作方法能否提高得率?

(取
$$\alpha = 0.05$$
)

解:需要检验假设 $H_0: \mu_1 - \mu_2 \ge 0, H_1: \mu_1 - \mu_2 < 0$. 分别求出标准方法和新方法的样本均值和样本方差如下:

$$n_1 = 10, \overline{x} = 76.23, s_1^2 = 3.325,$$

 $n_2 = 10, \overline{y} = 79.43, s_2^2 = 2.225.$

又,

$$s_w^2 = \frac{(10-1)s_1^2 + (10-1)s_2^2}{10+10-2} = 2.775, t_{0.05}(18) = 1.7341,$$

故拒绝域为

$$t = \frac{\overline{x} - \overline{y}}{s_w \sqrt{\frac{1}{10} + \frac{1}{10}}} \le -t_{0.05}(18) = -1.7341,$$

现在由于样本观察值 t=-4.295<-1.7341,所以拒绝 H_0 ,

即认为建议的新操作方法较原来的方法为优。

小结

在这一节中我们学习了正态总体均值的检验法,有以下两种:单个正态总体均值的检验以及两个正态总体均值差的检验.

作业: 课后习题 4、6、7

练习:

1、在对单个正态总体均值的假设检验中,

当总体方差已知时,选用()

(A) t 检验法 (B) Z 检验法

(C) F 检验法 (D) χ^2 检验法

B

- 2、设 0.5, 1.25, 0.8, 2 是来自总体X的样本,已知 $Y = \ln X \sim N(\mu, 1)$
- (1) 求X的数学期望E(X)=b; (4分)
- (2) 求µ的置信度为0.95的置信区间(4分)
- (3) 利用上述结果,求**b**的置信度为 **0.95**的置信区间; (4分,查表 $Z_{0.025} = 1.96$)

解: (1) 因为 $Y \sim N(\mu, 1)$, 所以 $f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2}}, -\infty < y < \infty$

由 $X = e^{Y}$,所以

$$b = E(X) = E(e^{Y}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{y} e^{-\frac{(y-\mu)^{2}}{2}} dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{u+\frac{1}{2}} e^{-\frac{[y-(\mu+1)]^{2}}{2}} dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{u+\frac{1}{2}} e^{-\frac{[y-(\mu+1)]^{2}}{2}} d[y-(u+1)]$$

$$= e^{u+\frac{1}{2}} \cdot \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{\infty} e^{\frac{t^{2}}{2}} dt$$

$$= e^{u+\frac{1}{2}} \cdot \frac{1}{\sqrt{2\pi}} \cdot \sqrt{2\pi}$$

$$= e^{u+\frac{1}{2}}$$

(2)此为求单个正态总体 σ^2 已知的条件下 μ 在 $\alpha = 0.05$ 下的置信区间

得置信区间为
$$\left\{ \overline{y} \pm \frac{\sigma}{\sqrt{n}} z_{0.025} \right\}$$
 (2分)

$$\overline{m} = \frac{1}{4} (\ln 0.5 + \ln 0.8 + \ln 1.25 + \ln 2) = \frac{1}{4} \ln 1 = 0$$

和
$$z_{0.025} = 1.96$$
 (1分)

可得置信区间为(-0.98, 0.98) (1分)

(3)因为 $x = e^y$ 为单调增函数,而 $b = e^{\mu + \frac{1}{2}}$ (1分)

由
$$-0.98 < \mu < 0.98$$
 得 $-0.98 + \frac{1}{2} < \mu + \frac{1}{2} < 0.98 + \frac{1}{2}$ 即 $-0.48 < \mu + \frac{1}{2} < 1.48$ (**2**分)

所以b的置信度为0.95的置信区间为

$$(e^{-0.48}, e^{1.48})$$
 (1分)

2010-2011学年期末考试题