算法设计与分析-work2

yu wang

March 2024

1 (5 分) 证明 $2n + \Theta(n^2) = \Theta(n^2)$

2 (5 分) 解递归式 T(n) = 2T(n/2) + 1

对于该递归式,我们有 $f(n)=1,a=2,b=2,n^{log_ba}=n,$,于是又 $f(n)=1=O(n^{1-\epsilon}),$ 我们可以取 $\epsilon=0.3,$ 于是该题符合主定理情况一,于是有 $T(n)=\Theta(n^{log_ba})=\Theta(n)$

3 (5 分) 解递归式 $T(n) = 4T(n/2) + n^2$

对于该递归式,我们有 $f(n)=n^2$,a=4,b=2, $n^{log_ba}=n^2$,于是有 $f(n)=n^2=n^{log_ba}$,该题符合主定理情况二,于是有 $T(n)=\Theta(n^{log_ba}lgn)=\Theta(n^2lgn)$

4 (5 分) 解递归式 $T(n) = 2T(n/2) + n^2$

对于该递归式,我们有 $f(n)=n^2$,a=2,b=2, $n^{log_ba}=n$,于是有 $f(n)=n^2=\Omega(n^{1+\epsilon})$,我们可以取 Ω 为 0.9. 接下来我们要判断是不是符合正则条件,如果符合则可以适用主定理的第 3 个情况,由于对于足够大的 n,有 $af(n/b)=2f(n/2)=2\frac{n}{2}\frac{n}{2}=\frac{n^2}{2}\leq \frac{3}{4}n^2$,于是有 $c=\frac{3}{4}$,因此符合正则条件,可以适用主定理的第三个情况,于是有 $T(n)=\Theta(n^2)$

5 (5 分) 解递归式 T(n) = 2T(n/2) + nlgn

对于该递归式,我们有 f(n)=nlgn,a=2,b=2, $n^{log_ba}=n$,,于是 $f(n)=nlgn=\Omega(n)$,但我们不能适用主定理的第三个情况,原因是不存在 $\epsilon>0$ 使得 $nlgn=\Omega(n^{1+\epsilon})$,因为假设存在 $\epsilon>0$, c>0,使得 $nlgn\geq cn^{1+\epsilon}$,我们有:

$$nlgn \ge cn^{1+\epsilon} \Leftrightarrow lgn \ge cn^{\epsilon} \Leftrightarrow c \le \frac{lgn}{n^{\epsilon}}$$

然而由洛必达法则:

$$\lim_{n\to\infty} \frac{lgn}{n^{\epsilon}} = \lim_{n\to\infty} \frac{1/n}{\epsilon n^{\epsilon-1}} = \lim_{n\to\infty} \frac{1}{\epsilon n^{\epsilon}} = 0$$

即 $c \le 0$,这就出现了矛盾,所以不存在 $c > 0, n > n_0$,使得 $nlgn \ge cn^{1+\epsilon}$ 。因此对于这个递归式,我们不能适用主定理,应该使用递归树法来求解。

如果我们将该递归树完全展开,并对递归树求和,我们可以发现递归数的每一层的和都是 $\Omega(n)$,,递归树的高度是 log_2n ,因此递归数的综合为 $\Theta(nlgn)$,,即递归算法的时间复杂度是 $\Theta(nlgn)$

6 (5 分) 解递归式 $T(n) = 2T(\sqrt{n}) + n$

我们令 e^x =n, 则 \sqrt{n} = $e^{\frac{x}{2}}$. 则我们可以令 W(x)=T(e^x),W(x)=2W($\frac{x}{2}$)+x. 对于该递归式,我们有 f(x)=x,a=2,b=2, $x^{log_ba}=x$, 于是有 f(x)= $x^{log_ba}=x$, 该题符合主定理情况二,于是有 T(n)= $\Theta(n^{log_ba}lgn)$ = $\Theta(nlgn)$

7 (10 分) 解递归式 nT(n) = (n-2)T(n-1) + 2

. 对于该递归式,我们将其化简得 $T(n)=\frac{n-2}{n}T(n-1)+\frac{2}{n}$,我们可以知道该递归式不满足主定理式子。我们尝试发现其中的一些规律,T(1) 未

知,T (2) =1, T (3) = $\frac{1}{3}T(2) + \frac{2}{3}=1$,T(4) = $\frac{1}{6}T(3) + \frac{5}{6}=1$, 如此下去,我们可以猜想 T (n) 的为常数 1。下面我们运用强归纳公理来证明猜想。

首先我们确定谓词 P(n): T(n)的时间复杂度为常数 1.

- 2, 证明基本情况 P(1), 从所给的递归式中,我们可以假设 T(1) 的时间复杂度为 1
- 3, 证明一般情况 $\forall n \in N(P(0) \land P(1) \land \cdots \land P(n) \Rightarrow P(n+1))$,,我们假设 T (1),T (2),T (3)T (n) 的时间复杂度都是 1, 则对于 n+1 的情况下,我们由递归式可以得 (n+1)T (n+1) =(n-1)T(n)+2=n-1+2=n+1,所以我们可以求得 T (n+1) =1,于是命题得证,我们可以解出递归式的时间复杂度为常数 1