Algoritmos Numéricos 2^a edição

Capítulo 3: Interpolação polinomial

Capítulo 3: Interpolação polinomial

- 3.1 Polinômios interpoladores
- 3.2 Polinômios de Lagrange
- 3.3 Polinômios de Newton
- 3.4 Polinômios de Gregory-Newton
- 3.5 Escolha dos pontos para interpolação
- 3.6 Erro de truncamento da interpolação polinomial
- 3.7 Comparação das complexidades
- 3.8 Splines cúbicos
- 3.9 *Splines* cúbicos naturais
- 3.10 *Splines* cúbicos extrapolados
- 3.11 Avaliação dos *splines* cúbicos
- 3.12 Comparação dos *splines* cúbicos
- 3.13 Exemplos de aplicação: curva de titulação e interpolação inversa
- 3.14 Exercícios

Polinômios interpoladores

• Seja a tabela

x	0,1	0,6	0,8	11,
y	1,221	3,320	4,953	. ⊱

- \bullet Calcular valor correspondente de y para um dado x não pertencente à tabela.
- ullet Obter função que relaciona as variáveis $x \in y$.
- Polinômios são as funções mais utilizadas para determinar esta relação.
- Polinômio interpolador: construído para aproximar uma função.
- Fundamentais: integração numérica, cálculo de raízes de equações e solução de equações diferenciais ordinárias.
- Esquema simples: solução de um sistema de equações lineares.

Interpolação linear

- Pontos-base (x_0, y_0) e (x_1, y_1) , com $x_0 \neq x_1$, de y = f(x).
- Aproximação de $f(z), z \in (x_0, x_1)$

$$f(x) \approx P_1(x) = a_0 + a_1 x.$$

- $P_1(x)$: polinômio interpolador de grau 1.
- Polinômio interpolador passa pelos pontos-base

$$P_1(x_0) = y_0 \longrightarrow \begin{cases} a_0 + a_1 x_0 = y_0 \\ a_0 + a_1 x_1 = y_1 \end{cases} \Longleftrightarrow \begin{bmatrix} 1 & x_0 \\ 1 & x_1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

• Sistema triangular equivalente

$$\begin{bmatrix} 1 & x_0 \\ 0 & x_1 - x_0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 - y_0 \end{bmatrix}.$$

• Solução do sistema linear

$$a_1 = \frac{y_1 - y_0}{x_1 - x_0}$$
 e $a_0 = y_0 - a_1 x_0$.

Polinômio interpolador

• Polinômio interpolador de grau 1

$$P_1(x) = a_0 + a_1 x = (y_0 - a_1 x_0) + a_1 x = y_0 + a_1 (x - x_0),$$

$$P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0). \tag{1}$$

- $\det(X) = x_1 x_0 \neq 0$: sistema com única solução.
- Por dois pontos passa um único polinômio de grau 1.
- Verifica-se

$$P_1(x_0) = y_0 \text{ e } P_1(x_1) = y_1.$$

Exemplo: interpolação linear

Exemplo 1 Calcular $P_1(0,2)$ e $P_1(0,3)$ a partir da tabela

i	0	1
x_i	0,1	0,6
y_i	1,221	3,320

• Polinômio interpolador de grau 1: $P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$.

$$P_1(0,2) = 1,221 + \frac{3,320 - 1,221}{0,6 - 0,1}(0,2 - 0,1) \rightsquigarrow P_1(0,2) = 1,641.$$

$$P_1(0,3) = 1,221 + \frac{3,320 - 1,221}{0,6 - 0,1}(0,3 - 0,1) \rightsquigarrow P_1(0,3) = 2,061.$$

• Sendo $f(x) = e^{2x}$, os erros cometidos foram

em
$$x = 0.2$$
: $1.641 - e^{2 \times 0.2} = 0.149$,

em
$$x = 0.3$$
: $2.061 - e^{2 \times 0.3} = 0.239$.

Interpretação geométrica da interpolação polinomial

• Legenda o: pontos-base; --: polinômio interpolador de grau 1;-.: polinômio interpolador de grau 2 e --: função $f(x) = e^{2x}$.

Interpolação quadrática

- Pontos-base (x_0, y_0) , (x_1, y_1) e (x_2, y_2) , com x_i distintos, de y = f(x).
- Aproximação de $f(z), z \in (x_0, x_2): f(x) \approx P_2(x) = a_0 + a_1 x + a_2 x^2$.
- $P_2(x)$: polinômio interpolador de grau 2.
- Polinômio interpolador passa pelos pontos-base

$$P_{2}(x_{0}) = y_{0}$$

$$P_{2}(x_{1}) = y_{1} \rightarrow \begin{cases} a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} = y_{0} \\ a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} = y_{1} \iff \begin{bmatrix} 1 & x_{0} & x_{0}^{2} \\ 1 & x_{1} & x_{1}^{2} \\ 1 & x_{2} & x_{2}^{2} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} y_{0} \\ y_{1} \\ y_{2} \end{bmatrix}.$$

$$P_{2}(x_{2}) = y_{2}$$

$$P_{2}(x_{2}) = y_{2}$$

$$P_{3}(x_{2}) = y_{2}$$

$$P_{4}(x_{2}) = y_{2}$$

$$P_{5}(x_{2}) = y_{2}$$

$$P_{6}(x_{2}) = y_{2}$$

$$P_{7}(x_{2}) = y_{2}$$

$$P_{7}(x_{3}) = y_{3}$$

$$P_{7}(x_{2}) = y_{3}$$

$$P_{7}(x_{3}) = y_{3}$$

- X: matriz de Vandermonde.
- $\det(X) = (x_2 x_0)(x_2 x_1)(x_1 x_0) \neq 0$: sistema com única solução.
- Por três pontos passa um único polinômio de grau 2.
- Por n+1 pontos passa um único polinômio de grau n.

Exemplo: interpolação quadrática

Exemplo 2 Calcular $P_2(0,2)$ usando os dados da tabela

i	0	1	2
x_i	0,1	0,6	0,8
y_i	1,221	3,320	4,953

• Cálculo dos coeficientes do polinômio interpolador

$$\begin{bmatrix} 1 & 0,1 & 0,01 \\ 1 & 0,6 & 0,36 \\ 1 & 0,8 & 0,64 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1,221 \\ 3,320 \\ 4,953 \end{bmatrix}.$$

ullet Decomposição LU com pivotação parcial

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0,714 & 1 \end{bmatrix}, \ U = \begin{bmatrix} 1 & 0,1 & 0,01 \\ 0 & 0,7 & 0,63 \\ 0 & 0 & -0,1 \end{bmatrix} \ e \ P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Exemplo: interpolação quadrática

cont.

- Sistema triangular inferior Lt = Py: $t = \begin{bmatrix} 1,221 & 3,732 & -0,567 \end{bmatrix}^T$.
- Sistema triangular superior Ua = t: $a = \begin{bmatrix} 1,141 & 0,231 & 5,667 \end{bmatrix}^T$.
- Polinômio interpolador de grau 2

$$P_2(x) = 1.141 + 0.231x + 5.667x^2 \rightarrow P_2(0.2) = 1.414.$$

• Polinômio passa pelos pontos-base

$$P_2(0,1) = 1,221, P_2(0,6) = 3,320 \text{ e } P_2(0,8) = 4,953.$$

Metodologia alternativa para calcular polinômio $P_n(x)$

- Coeficientes do polinômio interpolador via sistema lineares.
- Conceitualmente simples.
- Requer esforço computacional da ordem de n^3 .
- Por n+1 pontos passa um único polinômio de grau n.
- Metodologia alternativa: evitar a solução de um sistema de equações lineares.
- Interpolação com menor esforço computacional.

Polinômios de Lagrange

- Sejam n+1 pontos-base $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n).$
- Abscissas x_i distintas.
- Valores $y_i = f(x_i)$ e $x \in (x_0, x_n)$.
- ullet Construir um polinômio $L_n(x)$ de grau não superior a n

$$L_n(x_i) = y_i, \ i = 0, 1, 2, \dots, n.$$
 (2)

©2009 FFCf

Fórmula de Lagrange

• Construir n+1 polinômios de grau $n, P_i(x), i=0,1,2,\ldots,n,$

$$P_i(x_i) \neq 0$$
 e $P_i(x_j) = 0, \forall i \neq j.$

• Forma dos polinômios

$$P_0(x) = (x - x_1)(x - x_2)(x - x_3) \dots (x - x_n),$$

$$P_1(x) = (x - x_0)(x - x_2)(x - x_3) \dots (x - x_n),$$

$$P_2(x) = (x - x_0)(x - x_1)(x - x_3) \dots (x - x_n),$$

$$P_n(x) = (x - x_0)(x - x_1)(x - x_2) \dots (x - x_{n-1}),$$

• Forma geral

$$P_i(x) = \prod_{\substack{j=0\\j\neq i}}^{m} (x - x_j), \ i = 0, 1, 2, \dots, n.$$
(3)

Fórmula de Lagrange

cont.

- $L_n(x)$ é de grau não superior a n.
- Escrevendo $L_n(x)$ como combinação linear dos polinômios $P_i(x)$,

$$L_n(x) = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x) + \dots + c_n P_n(x),$$

$$L_n(x) = \sum_{i=0}^{n} c_i P_i(x).$$
(4)

• Em cada x_i , considerando $P_i(x_i) \neq 0$ e $P_i(x_j) = 0$, $\forall i \neq j$,

$$L_n(x_i) = y_i = c_i P_i(x_i) \longrightarrow c_i = \frac{y_i}{P_i(x_i)}$$
, então, $L_n(x) = \sum_{i=0}^n \frac{y_i}{P_i(x_i)} P_i(x)$.

• Polinômio interpolador de Lagrange de grau n

$$L_n(x) = \sum_{i=0}^n y_i \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$
 (5)

Exemplo: polinômio de Lagrange de grau 1

Exemplo 3 Calcular $L_1(0,2)$ a partir da tabela

i	0	$\mid 1 \mid$
x_i	0,1	0,6
y_i	1,221	3,320

• Para n=1,

$$L_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0},$$

$$L_1(0,2) = 1,221 \frac{0,2-0,6}{0,1-0,6} + 3,320 \frac{0,2-0,1}{0,6-0,1}$$

$$L_1(0,2) = 1,641.$$

Comparação dos polinômios via sistema linear e de Lagrange

• Polinômio de grau 1 via sistema linear,

$$P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0),$$

$$P_1(x) = \frac{y_0 x_1 - y_0 x_0 + y_1 x - y_1 x_0 - y_0 x + y_0 x_0}{x_1 - x_0},$$

$$P_1(x) = \frac{y_0(x_1 - x) + y_1(x - x_0)}{x_1 - x_0} = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}.$$

• Polinômio de Lagrange de grau 1,

$$L_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}.$$

• Comparando,

$$P_1(x) = L_1(x).$$

Exemplo: polinômio de Lagrange de grau 2

Exemplo 4 Calcular $L_2(0,2)$ usando os dados da tabela do Exemplo 2

i	0	1	2
x_i	0,1	0,6	0,8
y_i	1,221	3,320	4,953

• Fórmula de Lagrange (5) com n=2

$$L_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)},$$

$$L_2(0,2) = 1,221 \frac{(0,2-0,6)(0,2-0,8)}{(0,1-0,6)(0,1-0,8)} + 3,320 \frac{(0,2-0,1)(0,2-0,8)}{(0,6-0,1)(0,6-0,8)} + 3,320 \frac{(0,2-0,1)(0,6-0,8)}{(0,6-0,1)(0,6-0,8)} + 3,320 \frac{(0,2-0,1)(0,6-0,8)}{(0,6-0,8)} + 3,320 \frac{(0,2-0,8)}{(0,6-0,8)} + 3,320 \frac{(0,2-0,$$

$$4,953 \frac{(0,2-0,1)(0,2-0,6)}{(0,8-0,1)(0,8-0,6)} \rightsquigarrow L_2(0,2) = 1,414.$$

Exemplo: polinômio de Lagrange de grau 2

cont.

- Erro com $L_2(x)$: $1{,}414 e^{2 \times 0{,}2} = -0{,}078$.
- Erro com $L_1(x)$: $1,641 e^{2 \times 0,2} = 0,149$.
- Erro com $L_2(0,2)$ menor que com $L_1(0,2)$.
- Grau do polinômio interpolador aumenta: exatidão melhora.
- Interpolação de Lagrange: menor esforço computacional que sistema linear.

Dispositivo prático

• Seja a matriz

$$G = \begin{bmatrix} x - x_0 & x_0 - x_1 & x_0 - x_2 & \cdots & x_0 - x_n \\ x_1 - x_0 & x - x_1 & x_1 - x_2 & \cdots & x_1 - x_n \\ x_2 - x_0 & x_2 - x_1 & x - x_2 & \cdots & x_2 - x_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n - x_0 & x_n - x_1 & x_n - x_2 & \cdots & x - x_n \end{bmatrix}.$$

• Acrescentando o termo $(x-x_i)/(x-x_i)$ na fração de (5)

$$L_n(x) = \sum_{i=0}^n y_i \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j} \times \frac{x - x_i}{x - x_i} \longrightarrow L_n(x) = G_d \sum_{i=0}^n \frac{y_i}{G_i}.$$
 (6)

- G_d : produto dos elementos da diagonal principal da matriz G.
- G_i : produto dos elementos da (i + 1)-ésima linha de G.

Exemplo: uso do dispositivo prático

Exemplo 5 Determinar $L_2(0,2)$ por (6) usando os dados do Exemplo 4.

• Matriz
$$G = \begin{bmatrix} 0.2 - 0.1 & 0.1 - 0.6 & 0.1 - 0.8 \\ 0.6 - 0.1 & 0.2 - 0.6 & 0.6 - 0.8 \\ 0.8 - 0.1 & 0.8 - 0.6 & 0.2 - 0.8 \end{bmatrix} = \begin{bmatrix} 0.1 & -0.5 & -0.7 \\ 0.5 & -0.4 & -0.2 \\ 0.7 & 0.2 & -0.6 \end{bmatrix}$$

• Produtos de elementos de G.

$$G_d = (0,1)(-0,4)(-0,6) = 0,024, \quad G_0 = (0,1)(-0,5)(-0,7) = 0,035,$$

 $G_1 = (0,5)(-0,4)(-0,2) = 0,040 \text{ e } G_2 = (0,7)(0,2)(-0,6) = -0,084.$

• Usando (6) com n=2,

$$L_2(x) = G_d \left(\frac{y_0}{G_0} + \frac{y_1}{G_1} + \frac{y_2}{G_2} \right).$$

Valor interpolado

$$L_2(0,2) = 0.024 \left(\frac{1,221}{0,035} + \frac{3,320}{0,040} + \frac{4,953}{-0,084} \right) \rightsquigarrow L_2(0,2) = 1,414.$$

Algoritmo: interpolação de Lagrange

```
Algoritmo Polinômio_Lagrange
{ Objetivo: Interpolar valor em tabela usando polinômio de Lagrange }
parâmetros de entrada m, x, y, z
 { número de pontos, abscissas, ordenadas e valor a interpolar }
parâmetros de saída r { valor interpolado }
 r \leftarrow 0
 para i \leftarrow 1 até m faça
   c \leftarrow 1; d \leftarrow 1
   para j \leftarrow 1 até m faça
     se i \neq j então
       c \leftarrow c * (z - x(j)); d \leftarrow d * (x(i) - x(j))
     fimse
   fimpara
   r \leftarrow r + y(i) * c/d
 fimpara
fimalgoritmo
```

||←

Complexidade: interpolação de Lagrange

Operações	Complexidade
adições	$2n^2 + 3n + 1$
multiplicações	$2n^2 + 3n + 1$
divisões	n+1

• n: grau do polinômio interpolador.

Exemplo: uso do algoritmo

Exemplo 6 Resolver o problema do Exemplo 4 utilizando uma implementação do algoritmo.

```
% Os parametros de entrada
m = 3
x = 0.1000      0.6000      0.8000
y = 1.2210      3.3200      4.9530
z = 0.2000
% fornecem o resultado
r = 1.4141
```

©2009 FFCf

Polinômios de Newton

- Pontos (x_i, y_i) , $i = 0, 1, 2, \ldots, n$ da função y = f(x).
- Operador de diferença dividida Δ^i de ordem i:
- Ordem 0: $\Delta^0 y_i = y_i = [x_i].$
- Ordem 1: $\Delta y_i = \frac{\Delta^0 y_{i+1} \Delta^0 y_i}{x_{i+1} x_i} = \frac{y_{i+1} y_i}{x_{i+1} x_i} = [x_i, x_{i+1}].$
- Ordem 2: $\Delta^2 y_i = \frac{\Delta y_{i+1} \Delta y_i}{x_{i+2} x_i} = [x_i, x_{i+1}, x_{i+2}].$
- Ordem n: $\Delta^n y_i = \frac{\Delta^{n-1} y_{i+1} \Delta^{n-1} y_i}{x_{i+n} x_i} = [x_i, x_{i+1}, \dots, x_{i+n}].$

Propriedades dos operadores de diferenças divididas

- Teorema 1 (Diferenças divididas) $Se \ y = f(x) \ for \ um \ polinômio \ de$ grau n, então suas diferenças divididas de ordem n+1 são identicamente nulas, isto é, $[x, x_0, x_1, \dots, x_n] = 0 \ \forall \ x$,
- sendo $\Delta^n y_i = \frac{\Delta^{n-1} y_{i+1} \Delta^{n-1} y_i}{x_{i+n} x_i} = [x_i, x_{i+1}, \dots, x_{i+n}].$

Exemplo 7 Verificar a tabela de diferenças divididas do polinômio $y = 5x^3 - 2x^2 - x + 3$ para alguns pontos x_i no intervalo [0; 0,9]

i	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0	0,0	3,000	-1,20	0,5	5	0
1	0,2	2,760	-1,05	2,5	5	0
2	0,3	2,655	-0,55	5,0	5	
3	0,4	2,600	1,45	8,0		
4	0,7	3,035	5,45			
5	0,9	4,125				

Fórmula de Newton

- Sejam n+1 pontos (x_i, y_i) , $i=0,1,2,\ldots,n$, com x_i distintos, tais que $y_i=P(x_i)$, sendo P(x) um polinômio de grau n.
- Diferença dividida de ordem 1

$$[x, x_0] = \frac{P(x) - P(x_0)}{x - x_0} \to P(x) = P(x_0) + [x, x_0](x - x_0).$$

• Diferença dividida de ordem 2

$$[x, x_0, x_1] = \frac{[x, x_0] - [x_0, x_1]}{x - x_1} \rightsquigarrow [x, x_0] = [x_0, x_1] + [x, x_0, x_1](x - x_1).$$

Substituindo

$$P(x) = P(x_0) + [x_0, x_1](x - x_0) + [x, x_0, x_1](x - x_0)(x - x_1).$$

Fórmula de Newton

cont.

• Diferença dividida de ordem 3

$$[x, x_0, x_1, x_2] = \frac{[x, x_0, x_1] - [x_0, x_1, x_2]}{x - x_2} \sim x_0$$
$$[x, x_0, x_1] = [x_0, x_1, x_2] + [x, x_0, x_1, x_2](x - x_2).$$

Substituindo

$$P(x) = P(x_0) + [x_0, x_1](x - x_0) + [x_0, x_1, x_2](x - x_0)(x - x_1) + [x_0, x_1, x_2](x - x_0)(x - x_1)(x - x_2).$$

Fórmula de Newton

cont.

• Continuando o desenvolvimento de $[x, x_0, x_1, x_2]$,

$$P(x) = P(x_0) + [x_0, x_1](x - x_0) + [x_0, x_1, x_2](x - x_0)(x - x_1) + [x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2) + \dots + [x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}) + [x, x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_n).$$

- Sendo P(x) um polinômio de grau n, pelo Teorema 1 $[x, x_0, x_1, \dots, x_n] = 0.$
- Polinômio de Newton de grau n

$$P_n(x) = y_0 + \Delta y_0(x - x_0) + \Delta^2 y_0(x - x_0)(x - x_1) + \ldots + \Delta^n y_0(x - x_0) \ldots (x - x_{n-1}),$$

$$P_n(x) = y_0 + \sum_{i=1}^n \Delta^i y_0 \prod_{j=0}^{i-1} (x - x_j).$$
 (7)

Exemplo: polinômio de Newton de grau 1

Exemplo 8 Calcular $P_1(0,2)$ a partir dos dados

• Para (7) com n = 1,

$$P_1(x) = y_0 + \Delta y_0(x - x_0).$$

• Tabela de diferenças divididas

i	x_i	y_i	$oxedsymbol{\Delta} y_i$
0	0,1	1,221	4,198
1	0,6	3,320	

• Valor interpolado

$$P_1(0,2) = 1,221 + 4,198(0,2-0,1) \rightsquigarrow P_1(0,2) = 1,641.$$

Comparação dos polinômios via sistema linear e de Newton

• Polinômio de grau 1 via sistema linear,

$$P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0),$$

$$P_1(x) = y_0 + \Delta y_0(x - x_0).$$

• Polinômio de grau 1 de Newton,

$$P_1(x) = y_0 + \Delta y_0(x - x_0).$$

Exemplo: polinômio de Newton de grau 2

Exemplo 9 Determinar $P_2(1,2)$ usando os dados

• Para (7) com n=2,

$$P_2(x) = y_0 + \Delta y_0(x - x_0) + \Delta^2 y_0(x - x_0)(x - x_1).$$

• Tabela de diferenças divididas

i	x_i	y_i	Δy_i	$\Delta^2 y_i$
0	0,9	3,211	-2,010	0,620
1	1,1	2,809	-1,328	
2	2,0	1,614		

Valor interpolado

Exemplo: polinômio de Newton de grau 4

Exemplo 10 Calcular $P_4(0,2)$ a partir de

• Para (7) com n = 4,

$$P_4(x) = y_0 + \Delta y_0(x - x_0) + \Delta^2 y_0(x - x_0)(x - x_1) +$$

$$\Delta^3 y_0(x-x_0)(x-x_1)(x-x_2) +$$

$$\Delta^4 y_0(x-x_0)(x-x_1)(x-x_2)(x-x_3).$$

Exemplo: polinômio de Newton de grau 4 cont.

• Tabela de diferenças divididas

i	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0	0,1	0,3162	1,1575	-1,0317	1,1468	-1,2447
1	0,3	0,5477	0,8480	-0,4583	0,4000	
2	0,4	0,6325	0,7105	-0,2983		
3	0,6	0,7746	0,6210			
4	0,7	0,8367				

• Valor interpolado

$$P_4(0,2) = 0.3162 + 1.1575(0,1) + (-1.0317)(0,1)(-0,1) +$$

$$1,1468(0,1)(-0,1)(-0,2) + (-1,2447)(0,1)(-0,1)(-0,2)(-0,4) \rightsquigarrow$$

$$P_4(0,2) = 0.4456.$$

Avaliação do polinômio de Newton

• Seja o polinômio (7),

$$P_n(x) = y_0 + \sum_{i=1}^n \Delta^i y_0 \prod_{j=0}^{i-1} (x - x_j).$$

• Avaliando pelo processo de Horner,

$$P_n(z) = (\dots(\Delta^n y_0(z - x_{n-1}) + \Delta^{n-1} y_0)(z - x_{n-2}) + \dots + \Delta^2 y_0)(z - x_1) + \Delta y_0)(z - x_0) + y_0.$$

Algoritmo: interpolação de Newton

```
Algoritmo Polinômio_Newton
{ Objetivo: Interpolar valor em tabela usando polinômio de Newton }
parâmetros de entrada m, x, y, z
 { número de pontos, abscissas, ordenadas e valor a interpolar }
parâmetros de saída r { valor interpolado }
 para i \leftarrow 1 até m faça
   Dely(i) \leftarrow y(i)
 fimpara
 { construção das diferenças divididas }
 para k \leftarrow 1 até m-1 faça
                                                                          ||←
   para i \leftarrow m até k + 1 passo -1 faça
     Dely(i) \leftarrow (Dely(i) - Dely(i-1))/(x(i) - x(i-k))
   fimpara
 fimpara
 { avaliação do polinômio pelo processo de Horner }
 r \leftarrow Dely(m)
 para i \leftarrow m-1 até 1 passo -1 faça
   r \leftarrow r * (z - x(i)) + Dely(i)
 fimpara
fimalgoritmo
```

Vetor auxiliar *Dely*

- Construir a tabela de diferenças divididas.
- Economizar espaço de memória: valores de $\Delta^0 y_0$, Δy_0 , ..., $\Delta^n y_0$ são armazenados nas primeiras n+1 posições de **Dely**.
- Para cinco pontos

i	$ x_i $	y_i	$Dely_i^{(1)}$	$Dely_i^{(2)}$	$Dely_i^{(3)}$	$Dely_i^{(4)}$
1	x_0	y_0	$\Delta^0 y_0$	$\Delta^0 y_0$	$\Delta^0 y_0$	$\Delta^0 y_0$
2	$ x_1 $	y_1	Δy_0	Δy_0	Δy_0	Δy_0
3	$ x_2 $	y_2	Δy_1	$\Delta^2 y_0$	$\Delta^2 y_0$	$\mid \Delta^2 y_0 \mid$
4	x_3	y_3	Δy_2	$\Delta^2 y_1$	$\Delta^3 y_0$	$\Delta^3 y_0$
5	x_4	y_4	Δy_3	$\Delta^{2}y_{2}$	$\Delta^3 y_1$	$\Delta^4 y_0$

• onde $Dely_i^{(k)}$ significa i-ésima posição do vetor Dely na k-ésima repetição do comando para $k \leftarrow 1$ até m-1 faça.

Complexidade: interpolação de Newton

Operações	Complexidade
adições	$n^2 + 4n$
multiplicações	n
divisões	$\frac{1}{2}n^2 + \frac{1}{2}n$

• n: grau do polinômio interpolador.

Exemplo 11 Calcular $P_4(0,2)$ a partir dos dados da tabela do Exemplo 10 usando o algoritmo.

```
% Os parametros de entrada m = 5 x = 0.1000 	 0.3000 	 0.4000 	 0.6000 	 0.7000  y = 0.3162 	 0.5477 	 0.6325 	 0.7746 	 0.8367  z = 0.2000 % produzem o resultado r = 0.4456
```

• Seqüência de vetores *Dely* produzida pelo algoritmo

i	x_i	y_i	$Dely_i^{(1)}$	$Dely_i^{(2)}$	$Dely_i^{(3)}$	$Dely_i^{(4)}$
1	0,1	0,3162	0,3162	0,3162	0,3162	0,3162
2	0,3	0,5477	1,1575	1,1575	1,1575	1,1575
3	0,4	0,6325	0,8480	-1,0317	-1,0317	-1,0317
4	0,6	0,7746	0,7105	-0,4583	1,1468	1,1468
5	0,7	0,8367	0,6210	-0,2983	0,4000	-1,2447

©2009 FFCf 3

Exemplo 12 Calcular $P_1(0,2)$, $P_2(0,2)$ e $P_3(0,2)$ usando os dados da tabela do Exemplo 10 e o algoritmo.

```
% Calculo de P1(0,2)
m = 2
x = 0.1000 0.3000
y = 0.3162 \quad 0.5477
z = 0.2000
r = 0.4320
% Calculo de P2(0,2)
m = 3
x = 0.1000 0.3000 0.4000
y = 0.3162 \quad 0.5477 \quad 0.6325
z = 0.2000
r = 0.4423
% Calculo de P3(0,2)
m = 4
x = 0.1000 0.3000 0.4000
                                 0.6000
y = 0.3162
          0.5477
                    0.6325
                                 0.7746
z = 0.2000
r = 0.4446
```

cont.

- Sendo $y = \sqrt{x}$: valor exato $\sqrt{0.2} \approx 0.4472$.
- Diferença entre valor interpolado e exato

n	$P_n(0,2)$	$ P_n(0,2) - \sqrt{0,2} $
1	0,4320	0,0152
2	0,4423	0,0049
3	0,4446	0,0026
4	0,4456	0,0016

• Diferença diminui à medida que grau do polinômio interpolador aumenta.

Polinômios de Gregory-Newton

- Valores das abscissas x_i igualmente espaçados.
- Função y = f(x) passa pelos pontos $(x_i, y_i), i = 0, 1, 2, ..., n$, sendo $x_{i+1} x_i = h \ \forall i$.
- Operador de diferença finita ascendente Δ^i de ordem i:
- Ordem 0: $\Delta^0 y_i = y_i$,
- Ordem 1: $\Delta y_i = \Delta^0 y_{i+1} \Delta^0 y_i = y_{i+1} y_i$,
- Ordem 2: $\Delta^2 y_i = \Delta y_{i+1} \Delta y_i$,
- Ordem $n: \Delta^n y_i = \Delta^{n-1} y_{i+1} \Delta^{n-1} y_i$.

Exemplo: cálculo da tabela de diferenças finitas

Exemplo 13 Verificar a tabela de diferenças finitas

i	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0	3,5	9,82	1,09	0,05	-0,10	2,11
1	4,0	10,91	1,14	-0,05	2,01	
2	4,5	12,05	1,09	1,96		
3	5,0	13,14	3,05			
4	5,5	16,19				

Relação entre os operadores de diferença finita e dividida

$$\Delta^n y_i = \frac{\Delta^n y_i}{n!h^n}. (8)$$

Exemplo 14 Para a tabela do Exemplo 13,

$$\Delta y_0 = \frac{\Delta y_0}{1!h} \sim \frac{10,91 - 9,82}{4,0 - 3,5} = \frac{1,09}{1! \ 0,5} = 2,18 \text{ e}$$

$$\Delta^2 y_1 = \frac{\Delta^2 y_1}{2!h^2} \rightsquigarrow$$

$$\frac{\Delta y_2 - \Delta y_1}{x_3 - x_1} = \frac{\frac{y_3 - y_2}{x_3 - x_2} - \frac{y_2 - y_1}{x_2 - x_1}}{x_3 - x_1} = \frac{\frac{13,14 - 12,05}{5,0 - 4,5} - \frac{12,05 - 10,91}{4,5 - 4,0}}{5,0 - 4,0} = \frac{-0,05}{2! \ 0,5^2} = -0,10.$$

Fórmula de Gregory-Newton

• Polinômio interpolador de Newton

$$P_n(x) = y_0 + \Delta y_0(x - x_0) + \Delta^2 y_0(x - x_0)(x - x_1) + \ldots + \Delta^n y_0(x - x_0) \ldots (x - x_{n-1}).$$

• Variável auxiliar

$$u_x = u(x) = \frac{x - x_0}{h}.$$

• Verifica-se que

$$x - x_0 = hu_x,$$

$$x - x_1 = x - (x_0 + h) = x - x_0 - h = hu_x - h \rightsquigarrow x - x_1 = h(u_x - 1),$$

$$x - x_2 = x - (x_0 + 2h) = x - x_0 - 2h = hu_x - 2h \rightsquigarrow x - x_2 = h(u_x - 2),$$

$$x - x_{n-1} = x - (x_0 + (n-1)h) = x - x_0 - (n-1)h \rightsquigarrow x - x_{n-1} = h(u_x - n + 1).$$

Fórmula de Gregory-Newton

cont.

• Substituindo na fórmula de Newton e aplicando a relação (8) entre operadores,

$$P_{n}(x) = y_{0} + \frac{\Delta y_{0}}{1!h} h u_{x} + \frac{\Delta^{2} y_{0}}{2!h^{2}} h u_{x} h (u_{x} - 1) + \dots + \frac{\Delta^{n} y_{0}}{n!h^{n}} h u_{x} h (u_{x} - 1) \dots h (u_{x} - n + 1).$$

$$P_n(x) = y_0 + \Delta y_0 u_x + \frac{\Delta^2 y_0}{2!} u_x (u_x - 1) + \ldots + \frac{\Delta^n y_0}{n!} u_x (u_x - 1) + \ldots (u_x - n + 1),$$

$$P_n(x) = y_0 + \sum_{i=1}^n \frac{\Delta^i y_0}{i!} \prod_{j=0}^{i-1} (u_x - j). \tag{9}$$

Exemplo: polinômio de Gregory-Newton de grau 1

Exemplo 15 Calcular $P_1(0,2)$, usando os dados da tabela do Exemplo 1

- Usando (9) com n = 1: $P_1(x) = y_0 + \Delta y_0 u_x$.
- Tabela de diferenças finitas

i	x_i	y_i	Δy_i
0	0,1	1,221	2,099
1	0,6	3,320	

- Variável auxiliar $u_x = \frac{x x_0}{h} = \frac{0.2 0.1}{0.5} = 0.2.$
- Valor interpolado: $P_1(0,2) = 1,221 + 2,099(0,2) \rightsquigarrow P_1(0,2) = 1,641.$
- Mesmos resultados: (1) no Exemplo 1, por (5) no Exemplo 3 e por (7) no Exemplo 8.

Comparação dos polinômios via sistema linear e de Gregory-Newton

• Polinômio de grau 1 via sistema linear

$$P_1(x) = y_0 + (y_1 - y_0) \frac{x - x_0}{x_1 - x_0},$$

$$P_1(x) = y_0 + \Delta y_0 u_x.$$

• Polinômio de grau 1 de Gregory-Newton

$$P_1(x) = y_0 + \Delta y_0 u_x.$$

Exemplo: polinômio de Gregory-Newton de grau 2

Exemplo 16 Calcular $P_2(115)$ a partir da tabela $\begin{vmatrix} x & 110 & 120 & 130 \\ y & 2,041 & 2,079 & 2,114 \end{vmatrix}$

- Usando (9) com n = 2: $P_2(x) = y_0 + \Delta y_0 u_x + \frac{\Delta^2 y_0}{2!} u_x (u_x 1)$.
- Tabela de diferenças finitas

i	x_i	y_i	Δy_i	$\Delta^2 y_i$
0	110	2,041	0,038	-0,003
1	120	2,079	0,035	
2	130	2,114		

- Variável auxiliar $u_x = \frac{x x_0}{h} = \frac{115 110}{10} = 0.5.$
- Valor interpolado

$$P_2(115) = 2,041 + (0,038)(0,5) + \frac{-0,003}{2}(0,5)(0,5-1) \rightsquigarrow P_2(115) = 2,060.$$

Algoritmo: interpolação de Gregory-Newton

```
Algoritmo Polinômio_Gregory-Newton
{ Objetivo: Interpolar valor em tabela usando polinômio de Gregory-Newton }
parâmetros de entrada m, x, y, z
 { número de pontos, abscissas, ordenadas e valor a interpolar }
parâmetros de saída r { valor interpolado }
 para i \leftarrow 1 até m faça
   Dely(i) \leftarrow y(i)
 fimpara
 { construção das diferenças finitas }
 para k \leftarrow 1 até m-1 faça
   para i \leftarrow m até k + 1 passo -1 faça
                                                                                    ||←
     Dely(i) \leftarrow Dely(i) - Dely(i-1)
   fimpara
 fimpara
 { avaliação do polinômio pelo processo de Horner }
 u \leftarrow (z - x(1))/(x(2) - x(1))
 r \leftarrow Dely(m)
 para i \leftarrow m - 1 até 1 passo -1 faça
   r \leftarrow r * (u - i + 1)/i + Dely(i)
 fimpara
fimalgoritmo
```

©2009 FFCf

Avaliação do polinômio de Gregory-Newton

• Seja o polinômio (9)

$$P_n(x) = y_0 + \sum_{i=1}^n \frac{\Delta^i y_0}{i!} \prod_{j=0}^{i-1} (u_x - j).$$

• Avaliando pelo processo de Horner,

$$P_n(x) = \left(\left(\left(\dots \left(\Delta^n y_0 \frac{u_x - n + 1}{n} \right) + \dots + \Delta^2 y_0 \right) \frac{u_x - 1}{2} + \Delta y_0 \right) \frac{u_x - 0}{1} \right) + y_0.$$

Vetor auxiliar Dely

- Construir a tabela de diferenças finitas.
- Economizar espaço de memória: valores de $\Delta^0 y_0, \ \Delta y_0, \ \dots, \Delta^n y_0$ são armazenados nas primeiras n+1 posições de **Dely**.
- Para quatro pontos

i	$ x_i $	y_i	$Dely_i^{(1)}$	$Dely_{i}^{(2)}$	$Dely_{i}^{(3)}$
1	x_0	y_0	$\Delta^0 y_0$	$\Delta^0 y_0$	$\Delta^0 y_0$
2	$ x_1 $	y_1	Δy_0	Δy_0	Δy_0
3	$ x_2 $	y_2	Δy_1	$\Delta^2 y_0$	$\Delta^2 y_0$
4	x_3	y_3	Δy_2	$\Delta^2 y_1$	$\Delta^3 y_0$

• onde $Dely_i^{(k)}$ significa i-ésima posição do vetor Dely na k-ésima repetição do comando para $k \leftarrow 1$ até m-1 faça.

Complexidade: interpolação de Gregory-Newton

Operações	Complexidade
adições	$n^2 + 4n + 2$
multiplicações	n
divisões	n+1

- n: grau do polinômio interpolador.
- Comparação com a complexidade do algoritmo de Newton.
- Algoritmo de Gregory-Newton apresenta uma complexidade menor em relação à operação de divisão.

Exemplo 17 Calcular $P_2(115)$ com os dados da tabela do Exemplo 16 usando o algoritmo.

```
% Os parametros de entrada
m = 3
x = 110     120     130
y = 2.0410     2.0790     2.1140
z = 115
% produzem o resultado
r = 2.0604
```

• Seqüência de vetores *Dely* produzida pelo algoritmo

i	x_i	y_i	$Dely_i^{(1)}$	$ Dely_i^{(2)} $
1	110	2,041	2,041	2,041
2	120	2,079	0,038	0,038
3	130	2,114	0,035	-0,003

©2009 FFCf

Escolha dos pontos para interpolação

- Exemplos usando todos os pontos da tabela.
- Escolher n+1 pontos dentre os m valores de uma tabela, sendo m>n+1.
- Construir um polinômio interpolador de grau n.
- Não se devem construir polinômios de grau elevado por causa do erro de arredondamento.
- Deve-se evitar uma extrapolação: $z \notin [x_0, x_n]$.

Exemplo: escolha de pontos

Exemplo 18 Interpolar z=1,4 usando um polinômio de terceiro grau com os dados

	· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2,3	·	
y	0,043	1,928	2,497	3,875	9,000	13,467	19,176	•

- São necessários 4 pontos para determinar um polinômio interpolador de grau 3.
- Ponto interpolado deve ser o mais próximo possível destes 4 pontos.
- Passo 1: escolher 2 pontos, sendo que z = 1, 4 deve estar entre 1,3 e 1,5.
- Passo 2: terceiro ponto será 1,2 e não 2,0: 1,4-1,2<2,0-1,4.
- Passo 3: quarto ponto será 2,0 e não 0,7: 2,0-1,4<1,4-0,7.
- A interpolação cúbica utilizará os quatro pontos

i	0	1	2	3
x_i	1,2	1,3	1,5	2,0
y_i	1,928	2,497	3,875	9,000

Cálculo de $L_3(1,4)$

• Pontos utilizados:

i	0	1	2	3
x_i	1,2	1,3	1,5	2,0
y_i	1,928	2,497	3,875	9,000

• Matriz G para o polinômio de Lagrange

$$G = \begin{bmatrix} 1,4-1,2 & 1,2-1,3 & 1,2-1,5 & 1,2-2,0 \\ 1,3-1,2 & 1,4-1,3 & 1,3-1,5 & 1,3-2,0 \\ 1,5-1,2 & 1,5-1,3 & 1,4-1,5 & 1,5-2,0 \\ 2,0-1,2 & 2,0-1,3 & 2,0-1,5 & 1,4-2,0 \end{bmatrix} = \begin{bmatrix} 0,2 & -0,1 & -0,3 & -0,8 \\ 0,1 & 0,1 & -0,2 & -0,7 \\ 0,3 & 0,2 & -0,1 & -0,5 \\ 0,8 & 0,7 & 0,5 & -0,6 \end{bmatrix}.$$

• Produtos de G

$$G_d = (0,2)(0,1)(-0,1)(-0,6) = 1,2 \cdot 10^{-3},$$

$$G_0 = (0,2)(-0,1)(-0,3)(-0,8) = -4,8 \cdot 10^{-3},$$

$$G_1 = (0,1)(0,1)(-0,2)(-0,7) = 1,4 \cdot 10^{-3},$$

$$G_2 = (0,3)(0,2)(-0,1)(-0,5) = 3,0 \cdot 10^{-3},$$

$$G_3 = (0,8)(0,7)(0,5)(-0,6) = -1,68 \cdot 10^{-1}.$$

Cálculo de $L_3(1,4)$

cont.

• Usando (6) com n = 3,

$$L_3(x) = G_d \left(\frac{y_0}{G_0} + \frac{y_1}{G_1} + \frac{y_2}{G_2} + \frac{y_3}{G_3} \right),$$

$$L_3(1,4) = 1,2 \cdot 10^{-3} \left(\frac{1,928}{-4,8 \cdot 10^{-3}} + \frac{2,497}{1,4 \cdot 10^{-3}} + \frac{3,875}{3,0 \cdot 10^{-3}} + \frac{9,000}{-1,68 \cdot 10^{-1}} \right) \rightsquigarrow$$

$$L_3(1,4) = 3{,}144.$$

Erro de truncamento da interpolação polinomial

- Erro cometido ao aproximar uma função f(x) por polinômio interpolador.
- Sendo $P_n(x)$ um polinômio interpolador de grau n de Lagrange, Newton ou Gregory-Newton,

$$T_n(x) = \frac{f^{n+1}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i), \ x_0 < \xi < x_n.$$
 (10)

- Função f(x) definida no intervalo [a,b] que contém os pontos x_0, x_1, \ldots, x_n .
- Supondo que a derivada $f^{n+1}(x)$ existe e é contínua no intervalo (a,b).
- Na prática, ξ é tomado como o ponto no intervalo $[x_0, x_n] \subset (a, b)$, onde $f^{n+1}(x)$ apresenta o maior valor em módulo.
- Expressão de $T_n(x)$ fornece a cota máxima do erro de truncamento.

Exemplo: erro de truncamento

Exemplo 19 Sendo $f(x) = 2x^4 + 3x^2 + 1$, calcular $P_2(0,1)$ e $T_2(0,1)$ a partir de

x	0,0	0,2	0,4
y	1,0000	1,1232	1,5312

- Cálculo de $P_2(0,1)$: $P_2(x) = y_0 + \Delta y_0 u_x + \frac{\Delta^2 y_0}{2} u_x (u_x 1)$.
- Tabela de diferenças finitas

i	x_i	y_i	Δy_i	$\Delta^2 y_i$
0	0,0	1,0000	0,1232	0,2848
1	$0,\!2$	1,1232	0,4080	
2	0,4	1,5312		

- Variável auxiliar: $u_x = \frac{x x_0}{h} = \frac{0.1 0.0}{0.2} \leadsto u_x = 0.5.$
- Valor interpolado

$$P_2(0,1) = 1,0000 + 0,1232(0,5) + \frac{0,2848}{2}(0,5)(0,5-1) \rightsquigarrow P_2(0,1) = 1,0260.$$

Cálculo do erro de truncamento

• Cálculo de $T_2(0,1)$

$$f(x) = 2x^4 + 3x^2 + 1, \ f'(x) = 8x^3 + 6x, \ f''(x) = 24x^2 + 6, \ f'''(x) = 48x \rightsquigarrow$$

$$\xi = 0,4.$$

$$T_2(x) = \frac{f'''(\xi)}{3!}(x - x_0)(x - x_1)(x - x_2) e$$

$$T_2(0,1) = \frac{48(0,4)}{6}(0,1-0,0)(0,1-0,2)(0,1-0,4) \rightsquigarrow T_2(0,1) = 0,0096.$$

- Cota máxima do erro de truncamento.
- Erro real cometido

$$|f(0,1) - P_2(0,1)| = |1,0302 - 1,0260| = 0,0042 < T_2(0,1).$$

Influência da escolha dos pontos no erro de truncamento

- Erro de truncamento: análise teórica da interpolação.
- Erro de truncamento é diretamente proporcional ao produto das distâncias entre o valor interpolado e os pontos-base

$$T_n(x) = \frac{f^{n+1}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i), \ x_0 < \xi < x_n.$$

• Pontos escolhidos para construir o polinômio interpolador devem ser os mais próximos do ponto a ser interpolado.

Exemplo: influência da escolha dos pontos

Exemplo 20 Verificar a influência da escolha dos pontos, usando a função

$$f(x) = e^x - x^2 - x.$$

• Tabela de f(x)

x	1,1	1,4	1,9	2,1	2,5	3,0	3,2
y	0,6942	0,6952	1,1759	1,6562	3,4325	8,0855	11,0925

- Calcular $P_2(2,2)$: necessários 3 pontos.
- Pontos de abscissas x = 2,1 e x = 2,5.
- Terceiro ponto: escolhido entre $x_a = 1.9$ e $x_b = 3.0$.
- Pontos não igualmente espaçados: método de Lagrange ou de Newton.

Cálculo de $P_2(2,2)$ com $x_a = 1,9$

• Cálculo de $P_{2,a}(2,2)$ por Newton

- Por (7) com n = 2: $P_2(x) = y_0 + \Delta y_0(x x_0) + \Delta^2 y_0(x x_0)(x x_1)$.
- Tabela de diferenças divididas

i	x_i	y_i	Δy_i	$\Delta^2 y_i$
0	1,9	1,1759	2,4015	3,3988
1	2,1	1,6562	4,4408	
2	2,5	3,4325		

Valor interpolado

$$P_{2,a}(2,2) = 1,1759 + 2,4015(2,2-1,9) + 3,3988(2,2-1,9)(2,2-2,1) \sim$$

$$P_{2,a}(2,2) = 1,9983.$$

Cálculo de $T_2(2,2)$ com $x_a=1,9$

• Erro de truncamento, por (10), para n = 2,

$$T_{2,a}(x) = \frac{f'''(\xi)}{3!}(x - x_0)(x - x_1)(x - x_2)$$
, para algum ξ , $x_0 < \xi < x_2$.

• Cota máxima do erro de truncamento

$$f'''(x) = e^x, \ \xi \in (1,9; \ 2,5) \to \xi = 2,5,$$

$$T_{2,a}(2,2) = \frac{e^{2,5}}{6}(2,2-1,9)(2,2-2,1)(2,2-2,5) \rightsquigarrow T_{2,a}(2,2) = -0.0183.$$

- Valor negativo indica interpolação por excesso: $P_{2,a}(2,2) > f(2,2)$.
- Erro real cometido

$$|f(2,2) - P_{2,a}(2,2)| = |1,9850 - 1,9983| = 0,0133 < |T_{2,a}(2,2)|.$$

Cálculo de $P_2(2,2)$ com $x_b = 3,0$

• Cálculo de $P_{2,b}(2,2)$ por Newton

• Tabela de diferenças divididas

i	x_i	y_i	Δy_i	$\Delta^2 y_i$
0	2,1	1,6562	4,4408	5,4058
1	2,5	3,4325	9,3060	
2	3,0	8,0855		

• Valor interpolado

$$P_{2,b}(2,2) = 1,6562 + 4,4408(2,2-2,1) + 5,4058(2,2-2,1)(2,2-2,5) \sim$$

$$P_{2,b}(2,2) = 1,9381.$$

Cálculo de $T_2(2,2)$ com $x_b = 3,0$

• Cota máxima do erro de truncamento

$$f'''(x) = e^x, \ \xi \in (2,1; \ 3,0) \to \xi = 3,0,$$

$$T_{2,b}(2,2) = \frac{e^{3,0}}{6}(2,2-2,1)(2,2-2,5)(2,2-3,0) \leadsto T_{2,b}(2,2) = 0,0803.$$

- Valor positivo indica interpolação por falta: $P_{2,b}(2,2) < f(2,2)$.
- Erro real

$$|f(2,2) - P_{2,b}(2,2)| = |1,9850 - 1,9381| = 0,0469 < |T_{2,b}(2,2)|.$$

• Comparação entre os dois pontos x_i

x_j	$ x_j-2,2 $	$T_{2,j}(2,2)$	$f(2,2) - P_{2,j}(2,2)$
1,9	0,3	-0,0183	-0,0133
3,0	0,8	0,0803	0,0469

Comparação das complexidades: tabelas

Polinômio	Adições	Multiplicações	Divisões
Lagrange	$2n^2 + 3n + 1$	$2n^2 + 3n + 1$	n+1
Newton	$n^2 + 4n$	n	$\frac{1}{2}n^2 + \frac{1}{2}n$
Gregory-Newton	$n^2 + 4n + 2$	n	n+1

- n: grau do polinômio interpolador.
- Polinômios de Newton: menor complexidade para adição.
- Divisão: complexidades lineares de Lagrange e Gregory-Newton, enquanto Newton é quadrático.
- Polinômios de Lagrange: menos eficientes em termos de multiplicação.

Comparação das complexidades: gráficos

- Polinômios de grau $n \leq 2$: preferível utilizar Newton;
- n > 2: Gregory-Newton mais indicado se pontos igualmente espaçados.

Splines cúbicos

• Sejam n + 1 pontos $(x_i, y_i), i = 0, 1, 2, ..., n,$ com

$$x_0 < x_1 < \ldots < x_{n-1} < x_n$$
.

- Construir n polinômios interpoladores cúbicos $s_i(x)$: splines cúbicos.
- Passam por dois pontos sucessivos (x_i, y_i) e (x_{i+1}, y_{i+1}) , sendo cada polinômio utilizado no intervalo $[x_i, x_{i+1}]$.
- Total de *n* polinômios na forma

$$s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i, \ i = 0, 1, 2, \dots, n - 1. \ (11)$$

Condições dos splines cúbicos

• Passam por (x_i, y_i) e são continuos,

$$s_i(x_i) = y_i, \ i = 0, 1, 2, \dots, n - 1 \ e \ s_{n-1}(x_n) = y_n,$$
 (12)

$$s_i(x_{i+1}) = s_{i+1}(x_{i+1}), i = 0, 1, 2, \dots, n-2.$$
 (13)

• Inclinações e concavidades são contínuas,

$$s_i'(x_{i+1}) = s_{i+1}'(x_{i+1}), \ i = 0, 1, 2, \dots, n-2, \tag{14}$$

$$s_i''(x_{i+1}) = s_{i+1}''(x_{i+1}), \ i = 0, 1, 2, \dots, n-2.$$
 (15)

- Obtêm-se por (11) n equações com 4n incógnitas: $a_i, b_i, c_i \in d_i$.
- Condições (12) a (15) fornecem apenas 4n-2 equações.
- ullet São necessárias mais 2 equações para calcular todas as 4n incógnitas.

Cálculo dos coeficientes

• Para $x = x_i$ em (11) e comparando com (12)

$$s_i(x_i) = d_i,$$

$$d_i = y_i, \ i = 0, 1, 2, \dots, n - 1$$
. (16)

• Para $x = x_{i+1}$ em (11) e comparando com (13) em vista de (12)

$$s_i(x_{i+1}) = s_{i+1}(x_{i+1}) = y_{i+1},$$

$$a_i(x_{i+1} - x_i)^3 + b_i(x_{i+1} - x_i)^2 + c_i(x_{i+1} - x_i) + d_i = y_{i+1}.$$

Definindo

$$h_i = x_{i+1} - x_i, (17)$$

• e substituindo (16),

$$a_i h_i^3 + b_i h_i^2 + c_i h_i + y_i = y_{i+1}. (18)$$

Cálculo dos coeficientes

cont.

• As derivadas de (11) são

$$s_i'(x) = 3a_i(x - x_i)^2 + 2b_i(x - x_i) + c_i,$$
(19)

$$s_i''(x) = 6a_i(x - x_i) + 2b_i. (20)$$

• Para $x = x_i$ em (20)

$$s_i''(x_i) = 6a_i(x_i - x_i) + 2b_i,$$

$$b_i = \frac{s_i''(x_i)}{2}, i = 0, 1, 2, \dots, n-1$$

• Para $x = x_{i+1} \text{ em } (20)$

$$s_i''(x_{i+1}) = 6a_i(x_{i+1} - x_i) + 2b_i.$$

• Em vista de (15) e substituindo (17) e (21)

$$s_{i+1}''(x_{i+1}) = 6a_i h_i + 2\frac{s_i''(x_i)}{2}.$$

Cálculo dos coeficientes

cont.

• Explicitando a_i

$$a_{i} = \frac{s_{i+1}''(x_{i+1}) - s_{i}''(x_{i})}{6h_{i}}, i = 0, 1, 2, \dots, n - 1.$$
 (22)

• Substituindo (16), (21) e (22) em (18)

$$\frac{s_{i+1}''(x_{i+1}) - s_i''(x_i)}{6h_i}h_i^3 + \frac{s_i''(x_i)}{2}h_i^2 + c_ih_i + y_i = y_{i+1}.$$

• Explicitando c_i

$$c_{i} = \Delta y_{i} - \frac{s_{i+1}''(x_{i+1}) + 2s_{i}''(x_{i})}{6} h_{i}, \ i = 0, 1, 2, \dots, n-1,$$
 (23)

 \bullet sendo Δy_i o operador de diferença dividida

$$\Delta y_i = \frac{y_{i+1} - y_i}{h_i}.\tag{24}$$

Coeficientes dos splines cúbicos

• Para $i = 0, 1, 2, \dots, n-1$

$$a_i = \frac{s_{i+1}''(x_{i+1}) - s_i''(x_i)}{6h_i},$$

$$b_i = \frac{s_i''(x_i)}{2},$$

$$\frac{c_i = \Delta y_i - \frac{s''_{i+1}(x_{i+1}) + 2s''_i(x_i)}{6}h_i}{d_i = y_i},$$

• sendo

$$\Delta y_i = \frac{y_{i+1} - y_i}{h_i},\\ h_i = x_{i+1} - x_i.$$

Sistema linear subdeterminado

• As inclinações de dois *splines* cúbicos adjacentes $s_{i-1}(x)$ e $s_i(x)$ são iguais no ponto comum (x_i, y_i)

$$s'_{i-1}(x_i) = s'_i(x_i).$$

• Em vista de (19),

$$3a_{i-1}(x_i - x_{i-1})^2 + 2b_{i-1}(x_i - x_{i-1}) + c_{i-1} = 3a_i(x_i - x_i)^2 + 2b_i(x_i - x_i) + c_i.$$

• Substituindo (17), (21), (22) e (23)

$$3\frac{s_{i}''(x_{i}) - s_{i-1}''(x_{i-1})}{6h_{i-1}}h_{i-1}^{2} + 2\frac{s_{i-1}''(x_{i-1})}{2}h_{i-1} + \frac{y_{i} - y_{i-1}}{h_{i-1}} - \frac{s_{i}''(x_{i}) + 2s_{i-1}''(x_{i-1})}{6}h_{i-1}$$

$$= \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{s_{i+1}''(x_{i+1}) + 2s_{i}''(x_{i})}{6}h_{i}.$$

• Simplificando, obtém-se a *i*-ésima equação para $i = 1, 2, 3, \ldots, n-1$ $h_{i-1}s''_{i-1}(x_{i-1}) + 2(h_{i-1} + h_i)s''_i(x_i) + h_is''_{i+1}(x_{i+1}) = 6(\Delta y_i - \Delta y_{i-1}). \quad (25)$

Sistema linear subdeterminado

cont.

- Sistema linear subdeterminado com n-1 equações e n+1 incógnitas.
- Solução: $s_i''(x_i), i = 0, 1, 2, ..., n$.
- Sistema linear (25) é da forma

$$\begin{bmatrix} h_0 2(h_0 + h_1) & h_1 & & & \\ h_1 & 2(h_1 + h_2) & h_2 & & & \\ & h_2 & 2(h_2 + h_3) & h_3 & & \\ & & \ddots & \ddots & \ddots & \\ & & & h_{n-2} 2(h_{n-2} + h_{n-1}) & h_{n-1} \end{bmatrix} \begin{bmatrix} s_0''(x_0) \\ s_1''(x_1) \\ s_2''(x_2) \\ \vdots \\ s_{n-1}'(x_{n-1}) \\ s_n''(x_n) \end{bmatrix} = 6 \begin{bmatrix} \Delta y_1 - \Delta y_0 \\ \Delta y_2 - \Delta y_1 \\ \Delta y_3 - \Delta y_2 \\ \vdots \\ \Delta y_{n-1} - \Delta y_{n-2} \end{bmatrix}$$

- ullet Eliminar 2 incógnitas: sistema linear com matriz quadrada de ordem n-1.
- Esta eliminação pode ocorrer de várias formas.

Splines cúbicos naturais

• Forma mais simples e frequentemente usada de eliminar duas incógnitas do sistema (25)

$$\begin{cases}
 s_0''(x_0) = 0, \\
 s_n''(x_n) = 0
 \end{cases}
 (26)$$

- Substituir $s_0''(x_0)$ na primeira equação do sistema e $s_n''(x_n)$ na última.

• Sistema linear tridiagonal simétrico
$$\begin{bmatrix}
2(h_0+h_1) & h_1 & & & \\
h_1 & 2(h_1+h_2) & h_2 & & \\
& & h_2 & 2(h_2+h_3) & h_3 & \\
& & & \ddots & \ddots & \ddots & \\
& & & & h_{n-2} 2(h_{n-2}+h_{n-1})
\end{bmatrix}
\begin{bmatrix}
s_1''(x_1) & & & \\
s_2''(x_2) & & & \\
s_3''(x_3) & & & \\
\vdots & & & \\
s_{n-1}'(x_{n-1})\end{bmatrix} = 6
\begin{bmatrix}
\Delta y_1 - \Delta y_0 \\
\Delta y_2 - \Delta y_1 \\
\Delta y_3 - \Delta y_2 \\
\vdots \\
\Delta y_{n-1} - \Delta y_{n-2}\end{bmatrix}.$$
(27)

• Solução fornece as n-1 derivadas $s_i''(x_i), i=1,2,3,\ldots,n-1$.

Exemplo: construção do sistema tridiagonal simétrico

Exemplo 21 Dados os pontos (1,2), (2,4), (4,1), (6,3) e (7,3), calcular as segundas derivadas $s_i''(x_i)$, i=0,1,2,3,4 dos splines cúbicos naturais.

• Cálculo de h_i por (17)

$$h_0 = x_1 - x_0 = 2 - 1 \rightsquigarrow h_0 = 1, \quad h_1 = x_2 - x_1 = 4 - 2 \rightsquigarrow h_1 = 2,$$

 $h_2 = x_3 - x_2 = 6 - 4 \rightsquigarrow h_2 = 2, \quad h_3 = x_4 - x_3 = 7 - 6 \rightsquigarrow h_3 = 1.$

• Cálulo de Δy_i , usando (24)

$$\Delta y_0 = \frac{y_1 - y_0}{h_0} = \frac{4 - 2}{1} \rightsquigarrow \Delta y_0 = 2, \quad \Delta y_1 = \frac{y_2 - y_1}{h_1} = \frac{1 - 4}{2} \rightsquigarrow \Delta y_1 = -1,5;$$

$$\Delta y_2 = \frac{y_3 - y_2}{h_2} = \frac{3 - 1}{2} \rightsquigarrow \Delta y_2 = 1, \quad \Delta y_3 = \frac{y_4 - y_3}{h_3} = \frac{3 - 3}{1} \rightsquigarrow \Delta y_3 = 0.$$

Exemplo: construção do sistema tridiagonal simétrico cont.

• Substituindo em (27),

Segundas derivadas

$$s_0''(x_0) = 0; \quad s_1''(x_1) = -4.7; \quad s_2''(x_2) = 3.6; \quad s_3''(x_3) = -2.2; \quad s_4''(x_4) = 0.$$

Exemplo: determinação dos splines cúbicos naturais

Exemplo 22 A partir dos pontos do Exemplo 21, determinar as equações dos quatro *splines* cúbicos naturais na forma

$$s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i, i = 0, 1, 2, \dots, n - 1,$$

• sendo as segundas derivadas

$$s_0''(x_0) = 0; \quad s_1''(x_1) = -4.7; \quad s_2''(x_2) = 3.6; \quad s_3''(x_3) = -2.2; \quad s_4''(x_4) = 0.$$

Spline natural $s_0(x)$

$$a_0 = \frac{s_1''(x_1) - s_0''(x_0)}{6h_0} = \frac{-4.7 - 0}{6 \times 1} \rightsquigarrow a_0 = -\frac{47}{60},$$

$$b_0 = \frac{s_0''(x_0)}{2} = \frac{0}{2} \rightsquigarrow b_0 = 0,$$

$$c_0 = \Delta y_0 - \frac{s_1''(x_1) + 2s_0''(x_0)}{6} h_0 = 2 - \frac{-4.7 + 2 \times 0}{6} \times 1 \leadsto c_0 = \frac{167}{60},$$

$$d_0 = y_0 \leadsto d_0 = 2,$$

$$s_0(x) = -\frac{47}{60}(x-1)^3 + 0(x-1)^2 + \frac{167}{60}(x-1) + 2.$$

Spline natural $s_1(x)$

$$a_1 = \frac{s_2''(x_2) - s_1''(x_1)}{6h_1} = \frac{3.6 - (-4.7)}{6 \times 2} \implies a_1 = \frac{83}{120},$$

$$b_1 = \frac{s_1''(x_1)}{2} = \frac{-4.7}{2} \rightsquigarrow b_1 = -\frac{47}{20},$$

$$c_1 = \Delta y_1 - \frac{s_2''(x_2) + 2s_1''(x_1)}{6} h_1 = -1.5 - \frac{3.6 + 2 \times -4.7}{6} \times 2 \implies c_1 = \frac{13}{30},$$

$$d_1 = y_1 \leadsto d_1 = 4,$$

$$s_1(x) = \frac{83}{120}(x-2)^3 - \frac{47}{20}(x-2)^2 + \frac{13}{30}(x-2) + 4.$$

Spline natural $s_2(x)$

$$b_2 = \frac{s_2''(x_2)}{2} = \frac{3.6}{2} \rightsquigarrow b_2 = \frac{9}{5},$$

$$c_2 = \Delta y_2 - \frac{s_3''(x_3) + 2s_2''(x_2)}{6} h_2 = 1 - \frac{-2,2 + 2 \times 3,6}{6} \times 2 \implies c_2 = -\frac{2}{3},$$

$$d_2 = y_2 \leadsto d_2 = 1,$$

$$s_2(x) = -\frac{29}{60}(x-4)^3 + \frac{9}{5}(x-4)^2 - \frac{2}{3}(x-4) + 1.$$

Spline natural $s_3(x)$

$$a_3 = \frac{s_4''(x_4) - s_3''(x_3)}{6h_3} = \frac{0 - (-2,2)}{6 \times 1} \rightsquigarrow a_3 = \frac{11}{30},$$

$$b_3 = \frac{s_3''(x_3)}{2} = \frac{-2,2}{2} \leadsto b_3 = -\frac{11}{10},$$

$$c_3 = \Delta y_3 - \frac{s_4''(x_4) + 2s_3''(x_3)}{6}h_3 = 0 - \frac{0 + 2 \times -2.2}{6} \times 1 \leadsto c_3 = \frac{11}{15},$$

$$d_3 = y_3 \leadsto d_3 = 3,$$

$$s_3(x) = \frac{11}{30}(x-6)^3 - \frac{11}{10}(x-6)^2 + \frac{11}{15}(x-6) + 3.$$

Derivadas dos *splines* naturais

$$s_0'(x) = -\frac{47}{20}(x-1)^2 + \frac{167}{60}$$
 e $s_0''(x) = -\frac{47}{10}(x-1)$,

$$s_1'(x) = \frac{83}{40}(x-2)^2 - \frac{47}{10}(x-2) + \frac{13}{30} \text{ e } s_1''(x) = \frac{83}{20}(x-2) - \frac{47}{10},$$

$$s_2'(x) = -\frac{29}{20}(x-4)^2 + \frac{18}{5}(x-4) - \frac{2}{3} \text{ e } s_2''(x) = -\frac{29}{10}(x-4) + \frac{18}{5},$$

$$s_3'(x) = \frac{11}{10}(x-6)^2 - \frac{11}{5}(x-6) + \frac{11}{15}$$
 e $s_3''(x) = \frac{11}{5}(x-6) - \frac{11}{5}$.

Continuidade dos *splines* naturais

• Os splines são contínuos: $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$

$$s_0(2) = s_1(2) = 4$$
, $s_1(4) = s_2(4) = 1$ e $s_2(6) = s_3(6) = 3$.

• Primeiras derivadas contínuas: $s'_i(x_{i+1}) = s'_{i+1}(x_{i+1})$

$$s_0'(2) = s_1'(2) = \frac{13}{30}, \quad s_1'(4) = s_2'(4) = -\frac{2}{3} \quad \text{e} \quad s_2'(6) = s_3'(6) = \frac{11}{15}.$$

• Segundas derivadas contínuas: $s_i''(x_{i+1}) = s_{i+1}''(x_{i+1})$

$$s_0''(2) = s_1''(2) = -\frac{47}{10}, \quad s_1''(4) = s_2''(4) = \frac{18}{5} \quad \text{e} \quad s_2''(6) = s_3''(6) = -\frac{11}{5}.$$

Exemplo: interpolação com splines cúbicos naturais

Exemplo 23 Interpolar os valores $z=1,2;\ 2,9;\ 5,2$ e 6,7 usando os *splines* cúbicos naturais obtidos no Exemplo 22.

$$s_0(1,2) = -\frac{47}{60}(1,2-1)^3 + 0(1,2-1)^2 + \frac{167}{60}(1,2-1) + 2 = 2,5504;$$

$$s_1(2,9) = \frac{83}{120}(2,9-2)^3 - \frac{47}{20}(2,9-2)^2 + \frac{13}{30}(2,9-2) + 4 = 2,9907;$$

$$s_2(5,2) = -\frac{29}{60}(5,2-4)^3 + \frac{9}{5}(5,2-4)^2 - \frac{2}{3}(5,2-4) + 1 = 1,9568;$$

$$s_3(6,7) = \frac{11}{30}(6,7-6)^3 - \frac{11}{10}(6,7-6)^2 + \frac{11}{15}(6,7-6) + 3 = 3,1001.$$

Gráficos dos splines cúbicos naturais

- Legenda o: pares (x_i, y_i) ; --: $splines\ s_0(x)$ e $s_2(x)$; -: $s_1(x)$ e $s_3(x)$; e \triangle : valores interpolados.
- $Splines\ s_i(x)$ esboçados além de seus intervalos de utilização $[x_i,x_{i+1}]$.

Algoritmo: Derivadas $s_i''(x_i)$ dos splines cúbicos naturais

```
Algoritmo Splines_naturais
{ Objetivo: Calcular as segundas derivadas para os splines cúbicos naturais }
parâmetros de entrada n, x, y
  { número de pontos dados, abscissas em ordem crescente e ordenadas }
parâmetros de saída s2, CondErro
  { segundas derivadas e condição de erro }
  se n < 3 então, CondErro \leftarrow 1, abandone, fimse; CondErro \leftarrow 0
  { construção do sistema tridiagonal simétrico }
  m \leftarrow n-2; Ha \leftarrow x(2)-x(1); Deltaa \leftarrow (y(2)-y(1))/Ha
  para i \leftarrow 1 até m faça
    Hb \leftarrow x(i+2) - x(i+1); Deltab \leftarrow (y(i+2) - y(i+1))/Hb
    e(i) \leftarrow Hb; d(i) \leftarrow 2 * (Ha + Hb)
    s2(i+1) \leftarrow 6*(Deltab-Deltaa); Ha \leftarrow Hb; Deltaa \leftarrow Deltab
                                                                                                   ||←
  fimpara
  { eliminação de Gauss }
  para i \leftarrow 2 até m faça
    t \leftarrow e(i-1)/d(i-1); \ d(i) \leftarrow d(i) - t * e(i-1); \ s2(i+1) \leftarrow s2(i+1) - t * s2(i)
  fimpara
  { solução por substituições retroativas }
  s2(m+1) \leftarrow s2(m+1)/d(m)
  para i \leftarrow m até 2 passo -1 faça
    s2(i) \leftarrow (s2(i) - e(i-1) * s2(i+1))/d(i-1)
  fimpara
  s2(1) \leftarrow 0; s2(m+2) \leftarrow 0
fimalgoritmo
```

Complexidade: Derivadas $s_i''(x_i)$ dos splines cúbicos naturais

Operações	Complexidade
adições	20n - 47
multiplicações	5n - 13
divisões	3n-7

• n: número de pontos, $n \ge 3$.

Exemplo: uso do algoritmo

Exemplo 24 Resolver o Exemplo 21 usando o algoritmo.

```
% Os parametros de entrada n = 5 x = 1 2 4 6 7 y = 2 4 1 3 3 % produzem os resultados s2 = 0 -4.7000 3.6000 -2.2000 0 CondErro = 0
```

©2009 FFCf

Splines cúbicos extrapolados

- Outra forma de eliminar duas incógnitas do sistema linear (25).
- Impõe-se a condição

$$s_0'''(x_1) = s_1'''(x_1) \quad \text{e} \quad s_{n-2}'''(x_{n-1}) = s_{n-1}'''(x_{n-1}), \tag{28}$$

- sendo $s_i'''(x)$ obtido da derivação de (20).
- Em vista de (22)

$$s_i'''(x) = \frac{s_{i+1}''(x_{i+1}) - s_i''(x_i)}{h_i}, \ i = 0, 1, 2, \dots, n - 1.$$
 (29)

Cálculo das derivadas

- Considere em (28): $s_0'''(x_1) = s_1'''(x_1)$.
- Avaliando em (29)

$$\frac{s_1''(x_1) - s_0''(x_0)}{h_0} = \frac{s_2''(x_2) - s_1''(x_1)}{h_1},$$

$$s_0''(x_0) = \frac{(h_0 + h_1)s_1''(x_1) - h_0s_2''(x_2)}{h_1}.$$

• A partir da condição de (28): $s'''_{n-2}(x_{n-1}) = s'''_{n-1}(x_{n-1})$

$$\frac{s_{n-1}''(x_{n-1}) - s_{n-2}''(x_{n-2})}{h_{n-2}} = \frac{s_n''(x_n) - s_{n-1}''(x_{n-1})}{h_{n-1}},$$

$$s_n''(x_n) = \frac{(h_{n-1} + h_{n-2})s_{n-1}''(x_{n-1}) - h_{n-1}s_{n-2}''(x_{n-2})}{h_{n-2}}.$$

Sistema linear tridiagonal não simétrico

• Substituindo $s_0''(x_0)$ na primeira equação de (25) e $s_n''(x_n)$ na última, tem-se um sistema linear tridiagonal não simétrico

$$\begin{bmatrix} \frac{(h_0+h_1)(h_0+2h_1)}{h_1} & \frac{h_1^2-h_0^2}{h_1} \\ h_1 & 2(h_1+h_2) & h_2 \\ & h_2 & 2(h_2+h_3) & h_3 \\ & & \ddots & \ddots & \ddots \\ & & \frac{h_{n-2}^2-h_{n-1}^2}{h_{n-2}} \frac{(h_{n-1}+h_{n-2})(h_{n-1}+2h_{n-2})}{h_{n-2}} \end{bmatrix} \begin{bmatrix} s_1''(x_1) \\ s_2''(x_2) \\ \vdots \\ s_{n-2}''(x_{n-2}) \\ s_{n-1}''(x_{n-1}) \end{bmatrix}$$

$$= 6 \begin{bmatrix} \Delta y_1 - \Delta y_0 \\ \Delta y_2 - \Delta y_1 \\ \Delta y_3 - \Delta y_2 \\ \vdots \\ \Delta y_{n-1} - \Delta y_{n-2} \end{bmatrix}.$$

(30)

• Solução: derivadas $s_i''(x_i)$, $i = 1, 2, 3, \ldots, n-1$.

Cálculo das derivadas

cont.

• As derivadas $s_0''(x_0)$ e $s_n''(x_n)$ são dadas por

$$s_0''(x_0) = \frac{(h_0 + h_1)s_1''(x_1) - h_0s_2''(x_2)}{h_1},$$

$$s_n''(x_n) = \frac{(h_{n-1} + h_{n-2})s_{n-1}''(x_{n-1}) - h_{n-1}s_{n-2}''(x_{n-2})}{h_{n-2}}.$$
(31)

- A derivada $s_0''(x_0)$ é uma extrapolação linear de $s_1''(x_1)$ e $s_2''(x_2)$.
- E $s_n''(x_n)$ é uma extrapolação linear de $s_{n-2}''(x_{n-2})$ e $s_{n-1}''(x_{n-1})$.
- Esses splines cúbicos se ajustam perfeitamente a uma y = f(x) cúbica.
- Estes splines são também conhecidos como not-a-knot.

Exemplo: construção do sistema tridiagonal não simétrico

Exemplo 25 Dados os pontos (1,2), (2,4), (4,1), (6,3) e (7,3), calcular as segundas derivadas $s_i''(x_i)$, i=0,1,2,3,4 dos splines cúbicos extrapolados.

• Cálculo de h_i por (17)

$$h_0 = x_1 - x_0 = 2 - 1 \rightsquigarrow h_0 = 1, \quad h_1 = x_2 - x_1 = 4 - 2 \rightsquigarrow h_1 = 2,$$

 $h_2 = x_3 - x_2 = 6 - 4 \rightsquigarrow h_2 = 2, \quad h_3 = x_4 - x_3 = 7 - 6 \rightsquigarrow h_3 = 1.$

• Cálculo de Δy_i , usando (24)

$$\Delta y_0 = \frac{y_1 - y_0}{h_0} = \frac{4 - 2}{1} \rightsquigarrow \Delta y_0 = 2, \quad \Delta y_1 = \frac{y_2 - y_1}{h_1} = \frac{1 - 4}{2} \rightsquigarrow \Delta y_1 = -1,5;$$

$$\Delta y_2 = \frac{y_3 - y_2}{h_2} = \frac{3 - 1}{2} \rightsquigarrow \Delta y_2 = 1, \quad \Delta y_3 = \frac{y_4 - y_3}{h_3} = \frac{3 - 3}{1} \rightsquigarrow \Delta y_3 = 0.$$

Exemplo: construção do sistema tridiagonal não simétrico cont.

• Substituindo em (30),

• Por (31)

$$s_0''(x_0) = \frac{(1+2) \times -41/12 - 1 \times 37/12}{2} = -20/3,$$

$$s_4''(x_4) = \frac{(1+2) \times -17/12 - 1 \times 37/12}{2} = -11/3.$$

Segundas derivadas

$$s_0''(x_0) = -\frac{20}{3}, \quad s_1''(x_1) = -\frac{41}{12}, \quad s_2''(x_2) = \frac{37}{12}, \quad s_3''(x_3) = -\frac{17}{12}, \quad s_4''(x_4) = -\frac{11}{3}.$$

Exemplo: determinação dos splines cúbicos extrapolados

Exemplo 26 A partir dos pontos do Exemplo 25, determinar as equações dos quatro *splines* cúbicos extrapolados na forma

$$s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i, i = 0, 1, 2, \dots, n - 1,$$

• sendo as segundas derivadas

$$s_0''(x_0) = -\frac{20}{3}, \quad s_1''(x_1) = -\frac{41}{12}, \quad s_2''(x_2) = \frac{37}{12}, \quad s_3''(x_3) = -\frac{17}{12}, \quad s_4''(x_4) = -\frac{11}{3}.$$

Spline extrapolado $s_0(x)$

$$a_0 = \frac{s_1''(x_1) - s_0''(x_0)}{6h_0} = \frac{-41/12 - (-20/3)}{6 \times 1} \rightsquigarrow a_0 = \frac{13}{24},$$

$$b_0 = \frac{s_0''(x_0)}{2} = \frac{-20/3}{2} \rightsquigarrow b_0 = -\frac{10}{3},$$

$$c_0 = \Delta y_0 - \frac{s_1''(x_1) + 2s_0''(x_0)}{6} h_0 = 2 - \frac{-41/12 + 2 \times -20/3}{6} \times 1 \leadsto c_0 = \frac{115}{24},$$

$$d_0 = y_0 \rightsquigarrow d_0 = 2,$$

$$s_0(x) = \frac{13}{24}(x-1)^3 - \frac{10}{3}(x-1)^2 + \frac{115}{24}(x-1) + 2.$$

Spline extrapolado $s_1(x)$

$$a_1 = \frac{s_2''(x_2) - s_1''(x_1)}{6h_1} = \frac{37/12 - (-41/12)}{6 \times 2} \Rightarrow a_1 = \frac{13}{24},$$

$$b_1 = \frac{s_1''(x_1)}{2} = \frac{-41/12}{2} \rightsquigarrow b_1 = -\frac{41}{24},$$

$$c_1 = \Delta y_1 - \frac{s_2''(x_2) + 2s_1''(x_1)}{6} h_1 = -1.5 - \frac{37/12 + 2 \times -41/12}{6} \times 2 \rightsquigarrow c_1 = -\frac{1}{4},$$

$$d_1 = y_1 \leadsto d_1 = 4,$$

$$s_1(x) = \frac{13}{24}(x-2)^3 - \frac{41}{24}(x-2)^2 - \frac{1}{4}(x-2) + 4.$$

Spline extrapolado $s_2(x)$

$$a_2 = \frac{s_3''(x_3) - s_2''(x_2)}{6h_2} = \frac{-17/12 - 37/12}{6 \times 2} \implies a_2 = -\frac{3}{8},$$

$$b_2 = \frac{s_2''(x_2)}{2} = \frac{37/12}{2} \rightsquigarrow b_2 = \frac{37}{24},$$

$$c_2 = \Delta y_2 - \frac{s_3''(x_3) + 2s_2''(x_2)}{6} h_2 = 1 - \frac{-17/12 + 2 \times 37/12}{6} \times 2 \implies c_2 = -\frac{7}{12},$$

$$d_2 = y_2 \leadsto d_2 = 1,$$

$$s_2(x) = -\frac{3}{8}(x-4)^3 + \frac{37}{24}(x-4)^2 - \frac{7}{12}(x-4) + 1.$$

Spline extrapolado $s_3(x)$

$$a_3 = \frac{s_4''(x_4) - s_3''(x_3)}{6h_3} = \frac{-11/3 - (-17/12)}{6 \times 1} \implies a_3 = -\frac{3}{8},$$

$$b_3 = \frac{s_3''(x_3)}{2} = \frac{-17/12}{2} \rightsquigarrow b_3 = -\frac{17}{24},$$

$$c_3 = \Delta y_3 - \frac{s_4''(x_4) + 2s_3''(x_3)}{6}h_3 = 0 - \frac{-11/3 + 2 \times -17/12}{6} \times 1 \rightsquigarrow c_3 = \frac{13}{12},$$

$$d_3 = y_3 \leadsto d_3 = 3,$$

$$s_3(x) = -\frac{3}{8}(x-6)^3 - \frac{17}{24}(x-6)^2 + \frac{13}{12}(x-6) + 3.$$

Derivadas dos *splines* extrapolados

$$s_0'(x) = \frac{13}{8}(x-1)^2 - \frac{20}{3}(x-1) + \frac{115}{24}, \ s_0''(x) = \frac{13}{4}(x-1) - \frac{20}{3} e s_0'''(x) = \frac{13}{4},$$

$$s_1'(x) = \frac{13}{8}(x-2)^2 - \frac{41}{12}(x-2) - \frac{1}{4}, \ s_1''(x) = \frac{13}{4}(x-2) - \frac{41}{12} e \ s_1'''(x) = \frac{13}{4},$$

$$s_2'(x) = -\frac{9}{8}(x-4)^2 + \frac{37}{12}(x-4) - \frac{7}{12}, \ s_2''(x) = -\frac{9}{4}(x-4) + \frac{37}{12} e s_2'''(x) = -\frac{9}{4},$$

$$s_3'(x) = -\frac{9}{8}(x-6)^2 - \frac{17}{12}(x-6) + \frac{13}{12}, \ s_3''(x) = -\frac{9}{4}(x-6) - \frac{17}{12} e \ s_3'''(x) = -\frac{9}{4}.$$

Continuidade dos *splines* extrapolados

• Os splines são contínuos: $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$

$$s_0(2) = s_1(2) = 4$$
, $s_1(4) = s_2(4) = 1$ e $s_2(6) = s_3(6) = 3$.

• Primeiras derivadas contínuas: $s'_i(x_{i+1}) = s'_{i+1}(x_{i+1})$

$$s_0'(2) = s_1'(2) = -\frac{1}{4}, \ s_1'(4) = s_2'(4) = -\frac{7}{12} \ e \ s_2'(6) = s_3'(6) = \frac{13}{12}.$$

• Segundas derivadas contínuas: $s_i''(x_{i+1}) = s_{i+1}''(x_{i+1})$

$$s_0''(2) = s_1''(2) = -\frac{41}{12}, s_1''(4) = s_2''(4) = \frac{37}{12} \text{ e } s_2''(6) = s_3''(6) = -\frac{17}{12}.$$

 \bullet Terceiras derivadas contínuas: $s_0'''(x_1)=s_1'''(x_1)$ e $s_{n-2}'''(x_{n-1})=s_{n-1}'''(x_{n-1})$

$$s_0'''(x_1) = s_1'''(x_1) : s_0'''(2) = s_1'''(2) = \frac{13}{4},$$

$$s_2'''(x_3) = s_3'''(x_3) : s_2'''(6) = s_3'''(6) = -\frac{9}{4}.$$

Exemplo: interpolação com splines cúbicos extrapolados

Exemplo 27 Interpolar os valores $z=1,2;\ 2,9;\ 5,2;\ 6,7$ usando os *splines* cúbicos extrapolados obtidos no Exemplo 26.

$$s_0(1,2) = \frac{13}{24}(1,2-1)^3 - \frac{10}{3}(1,2-1)^2 + \frac{115}{24}(1,2-1) + 2 = 2,8293;$$

$$s_1(2,9) = \frac{13}{24}(2,9-2)^3 - \frac{41}{24}(2,9-2)^2 - \frac{1}{4}(2,9-2) + 4 = 2,7861;$$

$$s_2(5,2) = -\frac{3}{8}(5,2-4)^3 + \frac{37}{24}(5,2-4)^2 - \frac{7}{12}(5,2-4) + 1 = 1,8720;$$

$$s_3(6,7) = -\frac{3}{8}(6,7-6)^3 - \frac{17}{24}(6,7-6)^2 + \frac{13}{12}(6,7-6) + 3 = 3,2826.$$

Gráficos dos splines cúbicos extrapolados

- Legenda o: pares (x_i, y_i) ; --: $splines\ s_0(x)$ e $s_2(x)$; -: $s_1(x)$ e $s_3(x)$ e \triangle : valores interpolados.
- $Splines\ s_i(x)$ esboçados além de seus intervalos de utilização $[x_i,x_{i+1}]$.

Algoritmo: Derivadas $s_i''(x_i)$ dos *splines* cúbicos extrapolados

```
Algoritmo Splines_extrapolados
{ Objetivo: Calcular as segundas derivadas para os splines cúbicos extrapolados }
parâmetros de entrada n, x, y { número de pontos dados, abscissas em ordem crescente e ordenadas }
parâmetros de saída s2, CondErro { segundas derivadas e condição de erro }
  se n < 4 então, CondErro \leftarrow 1, abandone, fimse; CondErro \leftarrow 0
  { construção do sistema tridiagonal não simétrico }
  m \leftarrow n-2; Ha \leftarrow x(2)-x(1); Deltaa \leftarrow (y(2)-y(1))/Ha
  Hb \leftarrow x(3) - x(2); Deltab \leftarrow (y(3) - y(2))/Hb; d(1) \leftarrow (Ha + Hb) * (Ha + 2 * Hb)/Hb
  c(2) \leftarrow (Hb^2 - Ha^2)/Hb; s2(2) \leftarrow 6 * (Deltab - Deltaa)
  para i \leftarrow 2 até m-1 faça
    Ha \leftarrow Hb; Deltaa \leftarrow Deltab; Hb \leftarrow x(i+2) - x(i+1); Deltab \leftarrow (y(i+2) - y(i+1))/Hb
    d(i) \leftarrow 2 * (Ha + Hb); e(i - 1) \leftarrow Ha; c(i + 1) \leftarrow Hb
    s2(i+1) \leftarrow 6*(Deltab-Deltaa); Ha \leftarrow Hb; Deltaa \leftarrow Deltab
  fimpara
  Ha \leftarrow Hb; Deltaa \leftarrow Deltab; Hb \leftarrow x(n) - x(n-1); Deltab \leftarrow (y(n) - y(n-1))/Hb
  d(m) \leftarrow (Ha + Hb) * (Hb + 2 * Ha)/Ha; e(m-1) \leftarrow (Ha^2 - Hb^2)/Ha; s2(m+1) \leftarrow 6 * (Deltab - Deltaa)
  { eliminação de Gauss }
  para i \leftarrow 2 até m faça
    t \leftarrow e(i-1)/d(i-1); d(i) \leftarrow d(i) - t * c(i); s2(i+1) \leftarrow s2(i+1) - t * s2(i)
  fimpara
  { solução por substituições retroativas }
  s2(m+1) \leftarrow s2(m+1)/d(m)
  para i \leftarrow m até 2 passo -1 faça
    s2(i) \leftarrow (s2(i) - c(i) * s2(i+1))/d(i-1)
  fimpara
  Ha \leftarrow x(2) - x(1); Hb \leftarrow x(3) - x(2); s2(1) \leftarrow ((Ha + Hb) * s2(2) - Ha * s2(3))/Hb
  Ha \leftarrow x(n-1) - x(n-2); Hb \leftarrow x(n) - x(n-1); s2(m+2) \leftarrow ((Ha + Hb) * s2(m+1) - Hb * s2(m))/Ha
fimalgoritmo
```

Complexidade: Derivadas $s_i''(x_i)$ dos splines cúbicos extrapolados

Operações	Complexidade
adições	20n - 37
multiplicações	5n-3
divisões	3n

- n: número de pontos, $n \ge 4$.
- \bullet Operação de potenciação (h^2) contabilizada como uma multiplicação.

Exemplo: uso do algoritmo

Exemplo 28 Resolver o Exemplo 25 usando o algoritmo.

©2009 FFCf

Avaliação dos *splines* cúbicos

• Calculadas as derivadas $s_i''(x_i)$ dos *splines* cúbicos da forma (11),

$$s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i, \ i = 0, 1, 2 \dots, n - 1,$$

• seus coeficientes são

$$a_{i} = \frac{s_{i+1}''(x_{i+1}) - s_{i}''(x_{i})}{6h_{i}},$$

$$b_{i} = \frac{s_{i}''(x_{i})}{2},$$

$$c_{i} = \Delta y_{i} - \frac{s_{i+1}''(x_{i+1}) + 2s_{i}''(x_{i})}{6}h_{i},$$

$$d_{i} = y_{i},$$

$$i = 0, 1, 2, \dots, n - 1,$$

• sendo

$$\begin{cases} h_i = x_{i+1} - x_i, \\ \Delta y_i = \frac{y_{i+1} - y_i}{h_i}, \end{cases} \quad i = 0, 1, 2, \dots, n-1.$$

Algoritmo: avaliar splines cúbicos

```
Algoritmo Splines_avaliar
{ Objetivo: Avaliar os splines cúbicos naturais e extrapolados }
parâmetros de entrada n, x, y, m, z, ts
    número de pontos dados, abscissas em ordem crescente, ordenadas, }
    número de pontos a interpolar, valores a interpolar e tipo de splines
parâmetros de saída sz. CondErro
  { valores interpolados e condição de erro }
  se ts = 0 então
     [s2, CondErro] \leftarrow Splines\_naturais(n, x, y) (algoritmo)
  senão
     [s2, CondErro] \leftarrow \mathbf{Splines\_extrapolados}(n, x, y) \text{ (algoritmo)}
  fimse
  se CondErro \neq 0 então abandone, fim se; CondErro \leftarrow 0
  para j \leftarrow 1 até m faça
     se z(j) \ge x(1) e z(j) \le x(n) então
       { pesquisa binária para localizar o intervalo }
                                                                                                           ||
       inf \leftarrow 1; sup \leftarrow n
       repita
          se sup - inf < 1 então interrompa, fimse
          ind \leftarrow trunca((inf + sup)/2)
          se x(ind) > z(i) então sup \leftarrow ind, senão inf \leftarrow ind, fim se
       fim repita
        { avaliação do spline pelo processo de Horner }
       h \leftarrow x(sup) - x(inf); a \leftarrow (s2(sup) - s2(inf))/(6*h); b \leftarrow s2(inf)*0.5
       c \leftarrow (y(sup) - y(inf))/h - (s2(sup) + 2 * s2(inf)) * h/6; d \leftarrow y(inf); h \leftarrow z(j) - x(inf)
       sz(i) \leftarrow ((a*h+b)*h+c)*h+d
       escreva inf -1, a, b, c, d, z(i), sz(i)
     senão
       sz(j) \leftarrow 0; CondErro \leftarrow CondErro + 1
     fimse
  fimpara
fimalgoritmo
```

Complexidade: avaliar splines cúbicos

Operações	Complexidade
adições	9m
multiplicações	7m
divisões	3m

- m: número de pontos a serem avaliados.
- Desconsiderando as operações da pesquisa binária.

Exemplo: avaliação de *spline* cúbico natural

Exemplo 29 Dados os pontos (1,2), (2,4), (4,1), (6,3) e (7,3), interpolar os valores $z=1,2;\ 0,1;\ 2,9;\ 5,2$ e 6,7 usando os splines cúbicos naturais.

```
% Os parametros de entrada
n = 5
x = 1 2 4 6 y = 2 4 1 3
m = 5
z = 1.2000
         0.1000 2.9000
                            5.2000
                                    6.7000
ts = 0
% produzem os resultados
spline a_i
           b_i c_i d_i z_j
                                                 sz_j
s_0: -0.7833 0.0000 2.7833
                               2.0000
                                       1.2000
                                                2.5504
s_1: 0.6917 -2.3500 0.4333
                               4.0000
                                       2.9000
                                                2.9907
s_2: -0.4833 1.8000 -0.6667
                                      5.2000
                             1.0000
                                                1.9568
s 3:
    0.3667 - 1.1000
                     0.7333
                               3.0000
                                        6.7000
                                                3.1001
sz = 2.5504
          0
                    2.9907
                             1.9568
                                     3.1001
CondErro = 1
```

- CondErro = 1: um valor a interpolar (z(2)) for a do intervalo [1, 7].
- Valor $\boldsymbol{0}$ é atribuído a $\boldsymbol{sz}(\boldsymbol{2})$ (ver Exemplo 23).

©2009 FFCf 113

Exemplo: avaliação de *spline* cúbico extrapolado

Exemplo 30 Dados os pontos (1,2), (2,4), (4,1), (6,3) e (7,3), interpolar os valores $z=1,2;\ 2,9;\ 0,5;\ 5,2;\ 6,7$ e 8,3 utilizando os *splines* cúbicos extrapolados.

```
% Os parametros de entrada
n = 5
x = 1
y = 2
m = 6
z = 1.2000
         2.9000
                  0.5000
                          5.2000
                                   6.7000
                                             8.3000
ts = 1
% produzem os resultados
spline a_i
           b_i c_i d_i
                                        z_j
                                                  sz_j
s_0: 0.5417 -3.3333 4.7917
                                2.0000
                                        1.2000
                                                  2.8293
s_1: 0.5417 -1.7083
                     -0.2500
                              4.0000
                                        2.9000
                                                 2.7861
s_2: -0.3750 1.5417
                     -0.5833
                              1.0000
                                       5.2000
                                                1.8720
s_3:
     -0.3750 \quad -0.7083
                                                  3.2826
                      1.0833
                                3.0000
                                         6.7000
sz = 2.8293
            2.7861
                         0
                             1.8720
                                      3.2826
                                                   0
CondErro = 2
```

- CondErro = 2: dois valores a interpolar (z(3) e z(6)) for a do intervalo [1, 7];
- Variáveis sz(3) e sz(6) recebem valor 0 (ver Exemplo 27).

© 2009 FFCf 114

Comparação dos *splines* cúbicos

• Seja a função

$$f(x) = \begin{cases} e^x, & -2 \le x \le 0, \\ x \operatorname{sen}(5x) + 1, & 0 \le x \le 4, \end{cases}$$

- definida por n pontos distintos $(-2, f(-2)), (-2 + h, f(-2 + h)), (-2 + 2h, f(-2 + 2h)), \dots, (4, f(4)),$
- sendo h = (4 (-2))/(n 1).
- Reconstruir a curva de y = f(x) por meio dos *splines* cúbicos.
- Usar m = 121 pontos.

Splines cúbicos com diferentes números de pontos

Splines naturais dados 7 pontos

Splines extrapolados dados 7 pontos

Splines cúbicos com diferentes números de pontos

Splines naturais dados 13 pontos

Splines extrapolados dados 13 pontos

©2009 FFCf

Comparação de splines cúbicos, com m=121 pontos interpolados

	$n = 7 \ (h = 1)$		$n = 13 \ (h = 0.5)$		$n = 25 \ (h = 0.25)$		$n = 61 \ (h = 0.1)$	
z	Natural	Extrapol	Natural	Extrapol	Natural	Extrapol	Natural	Extrapol
-1,95	0,00625	0,05198	0,00105	0,00189	0,00033	0,00001	0,00006	0,00000
-0.95	0,01625	0,02866	0,00216	0,00222	0,00002	0,00003	0,00000	0,00000
0,05	0,02107	0,02496	0,06784	0,06788	0,03382	0,03382	0,01022	0,01022
1,05	0,11802	0,11486	0,09564	0,09614	0,00626	0,00626	0,00023	0,00023
2,05	0,51399	0,50526	0,23972	0,24657	0,00956	0,00956	0,00016	0,00016
3,05	0,73943	0,77121	0,20128	0,29666	0,00100	0,00062	0,00036	0,00036

Fim

Capítulo 3: Interpolação polinomial