Greg Walsh

DSSA-5104-091 - DEEP LEARNING

Spring 2020

Pima Indians - diabetes prediction

Neural Network for binary classification

```
In [1]: # Import necessary libraries
        from keras.models import Sequential
        from keras.layers import Dense
        from keras import optimizers
        import numpy as np
        from keras.callbacks import EarlyStopping
        from sklearn.metrics import classification_report, confusion_matrix
        import matplotlib.pyplot as plt
        # set random seed for reproducibility
        np.random.seed(7)
        # Load pima indians dataset
        dataset = np.loadtxt("pima-indians-diabetes.csv", delimiter=",")
        # split into input (X) and output (Y) variables
        X = dataset[:,0:8]
        Y = dataset[:,8]
```

Using TensorFlow backend.

```
In [2]: # LR 0.001
        # Reset our variables
        scores = None
        Y predict = None
        adam = None
        rounded = None
        y pred = None
        history = None
        model = None
        # create model
        model = Sequential()
        #12 neurons using relu activation function
        model.add(Dense(12, input_dim=8,activation='relu'))
        # 8 neurons using relu activation function
        model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
        #Single neuron used to produce a probability output in range of 0 to 1
        model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
        # Compile model
        adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay
        =0.0, amsgrad=False)
        model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accurac
        y'])
        # early stopping monitor is a keras lib that will see if the model is changing
        and if not end it
        early stopping monitor = EarlyStopping(monitor='val loss', patience=1)
        # Fit the model
        history = model.fit(X,Y,epochs=1000,batch size=10, verbose=0, callbacks=[early
        _stopping_monitor])
        # Evaluate the model
        scores = model.evaluate(X, Y)
        Y_predict = model.predict(X)
        # Accuracy and Loss
        print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
        print("\n%s: %.2f%%" % (model.metrics_names[0], scores[0]*100))
        # Confusion Matrix
        rounded = [round(i[0]) for i in Y_predict]
        y pred = np.array(rounded,dtype='int64')
        # Confusion Matrix will look at the quality of our outputs from the NN. 0,0 an
        d 1,1 are what we strive for.
        print('======')
        print('Confusion Matrix')
        print('=======')
        CM = confusion matrix(Y, y pred)
        print('True negatives:',CM[0,0]) # No and predicted No | we like this
        print('False negatives:',CM[1,0]) # Yes but predicted No | This is horrible. W
        e want least amount of these.
        print('False positives:',CM[0,1]) # No but predicted Yes | This is okay for th
```

False positives: 79 True positives: 224

```
is use case.
print('True positives:',CM[1,1]) # Yes and predicted Yes | we like this
768/768 [===========] - 0s 94us/step
accuracy: 83.98%
loss: 35.84%
==========
Confusion Matrix
==========
True negatives: 421
False negatives: 44
```

```
In [3]: #Plot figure
        plt.plot(history.history['accuracy'])
        plt.plot(history.history['loss'])
        plt.title('Model Accuracy and Loss in 1000 Epochs with LR of 0.001')
        plt.ylabel('Loss and Accuracy')
        plt.xlabel('Epoch')
        plt.legend(['accuracy', 'loss'], loc='center right')
        plt.text(0,0, 'Model Accuracy and Loss of the \nPima Indian Dataset.\nAccuracy
        increases with more epochs.\nLoss decreases with more epochs')
        plt.show()
        plt.scatter(Y_predict,Y_predict, label = "Predicted Targets")
        plt.scatter(Y,Y, label = "Observed Targets")
        plt.legend()
        plt.title('Observed vs Predicted Targets for 1000 Epochs with LR 0.001')
        plt.show()
        ax = plt.subplot(1,1,1)
        plt.hist(y_pred,alpha=0.8,label="Predicted Targets",color='red')
        ax.legend()
        plt.hist(Y,alpha=0.8, label="Observed Targets")
        ax.legend()
        plt.ylabel("total observations")
        plt.xlabel("obseravtions results")
        plt.title("Observed vs Predicted Targets for 1000 Epochs with LR 0.001")
        plt.show()
```

Model Accuracy and Loss in 1000 Epochs with LR of 0.001

Model Accuracy and Loss of the Pima Indian Dataset. Accuracy increases with more epochs. Loss decreases with more epochs

Observed vs Predicted Targets for 1000 Epochs with LR 0.001

Observed vs Predicted Targets for 1000 Epochs with LR 0.001


```
In [10]: # Run for Learning rate 0.5 and 1000 Epochs
         # Reset our variables
         scores = None
         Y predict = None
         adam = None
         rounded = None
         y pred = None
         history = None
         model = None
         # create model
         model = Sequential()
         #12 neurons using relu activation function
         model.add(Dense(12, input_dim=8,activation='relu'))
         # 8 neurons using relu activation function
         model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
         #Single neuron used to produce a probability output in range of 0 to 1
         model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
         # Compile model (requires completion)
         adam = optimizers.Adam(lr=.5, beta 1=0.9, beta 2=0.999, epsilon=None, decay=0.
         0, amsgrad=False)
         model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accurac
         y'])
         # early stopping monitor is a keras lib that will see if the model is changing
         and if not end it
         early_stopping_monitor = EarlyStopping(monitor='val_loss', patience=1)
         # Fit the model
         history = model.fit(X,Y,epochs=1000,batch_size=10, verbose=0, callbacks=[early
         _stopping_monitor])
         # Evaluate the model
         scores = model.evaluate(X, Y)
         Y_predict = model.predict(X)
         # Accuracy and Loss
         print("\n%s: %.2f%%" % (model.metrics names[1], scores[1]*100))
         print("\n%s: %.2f%%" % (model.metrics_names[0], scores[0]*100))
         rounded = [round(i[0]) for i in Y_predict]
         y pred = np.array(rounded,dtype='int64')
         print('=======')
         print('Confusion Matrix')
         print('=======')
         CM = confusion_matrix(Y, y_pred)
         print('True negatives:',CM[0,0]) # No and predicted No | we like this
         print('False negatives:',CM[1,0]) # Yes but predicted No | This is horrible. W
         e want least amount of these.
         print('False positives:',CM[0,1]) # No but predicted Yes | This is okay for th
         is use case.
         print('True positives:',CM[1,1]) # Yes and predicted Yes | we like this
```

768/768 [===========] - 0s 61us/step

accuracy: 81.64%

loss: 38.33% =========== Confusion Matrix _____ True negatives: 423

False negatives: 64 False positives: 77 True positives: 204

```
In [11]: |#Plot figure
         plt.plot(history.history['accuracy'])
         plt.plot(history.history['loss'])
         plt.title('Model Accuracy and Loss in 1000 Epochs with LR of 0.5')
         plt.ylabel('Loss and Accuracy')
         plt.xlabel('Epoch')
         plt.legend(['accuracy', 'loss'], loc='center right')
         plt.text(0,0, 'Model Accuracy and Loss of the \nPima Indian Dataset.\nAccuracy
         increases with more epochs.\nLoss decreases with more epochs')
         plt.show()
         plt.scatter(Y_predict,Y_predict, label = "Predicted Targets")
         plt.scatter(Y,Y, label = "Observed Targets")
         plt.legend()
         plt.title('Observed vs Predicted Targets for 1000 Epochs with LR 0.5')
         plt.show()
         ax = plt.subplot(1,1,1)
         plt.hist(y_pred,alpha=0.8,label="Predicted Targets",color='red')
         ax.legend()
         plt.hist(Y,alpha=0.8, label="Observed Targets")
         ax.legend()
         plt.ylabel("total observations")
         plt.xlabel("obseravtions results")
         plt.title("Observed vs Predicted Targets for 1000 Epochs with LR 0.5")
         plt.show()
```


Model Accuracy and Loss of the Pima Indian Dataset.
Accuracy increases with more epochs. Loss decreases with more epochs


```
In [8]: # Run for Learning rate 0.1 and 1000 Epochs
        # Reset our variables
        scores = None
        Y predict = None
        adam = None
        rounded = None
        y pred = None
        history = None
        model = None
        # create model
        model = Sequential()
        #12 neurons using relu activation function
        model.add(Dense(12, input_dim=8,activation='relu'))
        # 8 neurons using relu activation function
        model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
        #Single neuron used to produce a probability output in range of 0 to 1
        model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
        # Compile model
        adam = optimizers.Adam(lr=0.00001, beta 1=0.9, beta 2=0.999, epsilon=None, dec
        ay=0.0, amsgrad=False)
        model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accurac
        y'])
        # early stopping monitor is a keras lib that will see if the model is changing
        and if not end it
        early stopping monitor = EarlyStopping(monitor='val loss', patience=1)
        # Fit the model
        history = model.fit(X,Y,epochs=1000,batch_size=10, verbose=0, callbacks=[early
        _stopping_monitor])
        # Evaluate the model efficiency and performance
        scores= model.evaluate(X, Y)
        Y_predict= model.predict(X)
        # Accuracy and Loss
        print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
        print("\n%s: %.2f%%" % (model.metrics_names[0], scores[0]*100))
        rounded = [round(i[0]) for i in Y_predict]
        y_pred = np.array(rounded,dtype='int64')
        print('=======')
        print('Confusion Matrix')
        print('======')
        CM = confusion matrix(Y, y pred)
        print('True negatives:',CM[0,0]) # No and predicted No | we like this
        print('False negatives:',CM[1,0]) # Yes but predicted No | This is horrible. W
        e want least amount of these.
        print('False positives:',CM[0,1]) # No but predicted Yes | This is okay for th
        is use case.
        print('True positives:',CM[1,1]) # Yes and predicted Yes | we like this
```

768/768 [===========] - 0s 53us/step

accuracy: 80.08%

loss: 42.13% =========== Confusion Matrix _____ True negatives: 394

False negatives: 47 False positives: 106 True positives: 221

```
In [9]: #Plot figure
        plt.plot(history.history['accuracy'])
        plt.plot(history.history['loss'])
        plt.title('Model Accuracy and Loss in 1000 Epochs with LR of 0.00001')
        plt.ylabel('Loss and Accuracy')
        plt.xlabel('Epoch')
        plt.legend(['accuracy', 'loss'], loc='center right')
        plt.text(0,0, 'Model Accuracy and Loss of the \nPima Indian Dataset.\nAccuracy
        increases with more epochs.\nLoss decreases with more epochs')
        plt.show()
        plt.scatter(Y_predict,Y_predict, label = "Predicted Targets")
        plt.scatter(Y,Y, label = "Observed Targets")
        plt.legend()
        plt.title('Observed vs Predicted Targets for 1000 Epochs with LR 0.00001')
        plt.show()
        ax = plt.subplot(1,1,1)
        plt.hist(y_pred,alpha=0.8,label="Predicted Targets",color='red')
        ax.legend()
        plt.hist(Y,alpha=0.8, label="Observed Targets")
        ax.legend()
        plt.ylabel("total observations")
        plt.xlabel("obseravtions results")
        plt.title("Observed vs Predicted Targets for 1000 Epochs with LR 0.00001")
        plt.show()
```


400

600

Epoch

800

1000

Model Accuracy and Loss of the Pima Indian Dataset. Accuracy increases with more epochs. Loss decreases with more epochs

200

0

Observed vs Predicted Targets for 1000 Epochs with LR 0.1

From my obersvations is seems the LR will affect the accuracy by a few percentages. It seems to have a greater impact on Loss. However from experimenting the major changes in accuracy and lower loss are running more epochs.

0.001

accuracy: 83.98%

loss: 35.84%

Confusion Matrix

True negatives: 421

False negatives: 44

False positives: 79

True positives: 224

0.5

accuracy: 81.64%

loss: 38.33%

Confusion Matrix

True negatives: 423

False negatives: 64

False positives: 77

True positives: 204

accuracy: 80.08%

0.00001

accuracy: 80.08%

loss: 42.13%

Confusion Matrix

True negatives: 394

False negatives: 47

False positives: 106

True positives: 221