

The growth of parallelism in machine learning inference

Tim Harris

2024-06-18

The growth of parallelism in machine learning inference

U Cambridge Computer lab Microsoft Research

Oracle Labs Amazon S3 Microsoft Research

The growth of parallelism in machine learning inference

U Cambridge computer lab

Microsoft Research Oracle Labs

Amazon S3

Microsoft Research

ONNX Runtime is a cross-platform inference and training machine-learning accelerator.

ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. Learn more \rightarrow

Azure

Explore

oducts v S

ons v Mo

Azure OpenAl Service

Build your own copilot and generative AI applications

Language model growth – a few examples

~1600x over 4 years ~6x annually

Language model growth – a few examples

Introduction

Generating text with LLMs

Parallelism in LLM inference

Input prompt

"Tell me a rhyming poem about a tortoise and a friendly dinosaur"

Possible rhyming poem:

A dinosaur named Rex was feeling rather bored He roamed the land in search of something new to explore He stomped and snorted, making quite a lot of noise But nothing seemed to catch his eye or give him any joy

He wandered to a river where he saw a shiny shell He thought it was a rock or maybe some kind of jewel He picked it up with curiosity and gave a gentle poke But to his great surprise, the shell began to move and spoke

"Hello there, Mr. Dinosaur, you're quite a mighty beast But please don't hurt me, I'm a tortoise, and I want to live in peace I know I'm slow and small, but I have wisdom and a heart And maybe we can be friends, if you're willing to do your part"

- A toy example with a few words
- Real examples may use a <u>metaprompt</u> before the user's input to provide guidance on the kind of output to generate
- Maximum prompt sizes continue to grow - GPT-4 Turbo | OpenAl Help Center
 announced support for prompts with the
 equivalent of 300 pages of text

Key ideas in the computation

Input and output are <u>tokens</u> (few characters, short words, ...) – vocabulary size ~50K+ An <u>embedding layer</u> maps each token to a vector of based of size d_model (<u>model</u> dimension), e.g., 4096 for Llama2

Autoregressive decoder only LLMs generate a new vector of size d_model for token N+1 from the tokens 0..N. i.e., incrementally, one token at a time

An <u>unembedding</u> layer maps the vector d_model back to a token value

int[input_size]

float[input_size, d_model]

int

Looking into an LLM decoder layer – repeated many times, e.g. 96 in GPT-3 175B

- Except for attention:
 - All operators parallelize across tokens, most of these are based on matrix multiply
- Attention:
 - Based on Q K V projections looking back through prior tokens
 - Can cache and re-use state from tokens 0..N when computing attention to generate token N+1

Input prompt

"Tell me a rhyming poem about a tortoise and a friendly dinosaur"

Input prompt

41551757<mark>26422408</mark>163128733894<mark>922264</mark>1683169289323<mark>264</mark>11919</mark>63989

1. Cache lookup – have we seen a prefix of this input?

KV prefix cache hit

41551757<mark>26422408</mark>163128733894

<mark>922264</mark>1683169289323<mark>26411919</mark>63989

 Prompt processing (red) is processing the whole input prompt => compute intensive, expect to be close to achievable h/w capabilities

Existing KV state for prefix

- Prompt processing (red) is processing the whole input prompt => compute intensive, expect to be close to achievable h/w capabilities
- Sampling (yellow), is bottlenecked on memory b/w: for every token we generate we must load the request's cached KV state and model weights. Longer contexts => more KV state
- The more tokens we generate, the more significant the bandwidth b/w bound is for overall performance

Possible rhyming poem:

A dinosaur named Rex was feeling rather bored He roamed the land in search of something new to explore He stomped and snorted, making quite a lot of noise But nothing seemed to catch his eye or give him any joy

He wandered to a river where he saw a shiny shell He thought it was a rock or maybe some kind of jewel He picked it up with curiosity and gave a gentle poke But to his great surprise, the shell began to move and spoke

"Hello there, Mr. Dinosaur, you're quite a mighty beast
But please don't hurt me, I'm a tortoise, and I want to live in peace
I know I'm slow and small, but I have wisdom and a heart
And maybe we can be friends, if you're willing to do your part"

3. Repeat token-by-token generation

1 more output token

Introduction

Generating text with LLMs

Parallelism in LLM inference

Parallelism in LLM inference

Specializing implementations

Interconnect demands
Optimizing for customer latency targets

Pipelining across multi-GPU nodes

Scheduling choices, impact of bubbles

Sharding across GPUs

Implementation of communication – access to remote GPU memory Achieving compute / communication overlap

GEMM implementation & batching

Dividing and scheduling work
Handling varying GPU bottlenecks
Ensuring load balance within a GPU

Parallelism in LLM inference

Specializing implementations

Interconnect demands
Optimizing for customer latency targets

Pipelining across multi-GPU nodes

Scheduling choices, impact of bubbles

Sharding across GPUs

Implementation of communication – access to remote GPU memory Achieving compute / communication overlap

GEMM implementation & batching

Dividing and scheduling work
Handling varying GPU bottlenecks
Ensuring load balance within a GPU

GEMM implementation and batching

Textbook algorithm for basic matmul

In principle we can parallelize any or all of these loops

GEMM implementation and batching

GEMM implementation and batching

Matrices will be in HBM, use tiling to maximize re-use of data from faster shared memory or registers

8 x 8 x 32

8 x 8 x 128

8 x 32 x 16 16 x 16 x 8 16 x 16 x 16

32 x 8 x 16

108 SMs * 4 tensor cores per SM = 432 tensor cores ...all need to be kept busy

https://developer.download.nvidia.com/devblogs/ga100-full-gpu-128-sms.png https://github.com/NVIDIA/cutlass?tab=readme-ov-file – implementation technique

Batching requests – GPU time vs #tokens

Batching requests – GPU time vs #tokens

Increasing and tuning batch sizes

GPU time per token becomes vastly more efficient as we go beyond tiny numbers of tokens Token generation is serial within a request => form batches across multiple requests, specialize attention to run per-request

Divide large prompts into smaller chunks, => can generate tokens as part of each chunk

Parallelism in LLM inference

Specializing implementations

Interconnect demands
Optimizing for customer latency targets

Pipelining across multi-GPU nodes

Scheduling choices, impact of bubbles

Sharding across GPUs

Implementation of communication – access to remote GPU memory Achieving compute / communication overlap

GEMM implementation & batching

Dividing and scheduling work
Handling varying GPU bottlenecks
Ensuring load balance within a GPU

Sharding across GPUs

- Spread weights over more GPUs (more capacity for KV state)
- Run each layer faster
- Potentially form larger batches
- Approach: divide d_model between devices

Sharding across GPUs

- Spread weights over more GPUs (more capacity for KV state)
- Run each layer faster
- Potentially form larger batches
- Approach: divide d_model between devices

- Megatron-LM paper from Nvidia
- See microsoft/msccl, microsoft/mscclpp repos on github for communication techniques

Parallelism in LLM inference

Specializing implementations

Interconnect demands
Optimizing for customer latency targets

Pipelining across multi-GPU nodes

Scheduling choices, impact of bubbles

Sharding across GPUs

Implementation of communication – access to remote GPU memory Achieving compute / communication overlap

GEMM implementation & batching

Dividing and scheduling work
Handling varying GPU bottlenecks
Ensuring load balance within a GPU

- Spread weights and layers over multiple GPUs or VMs
- KV state stays local to each layer

- Spread weights and layers over multiple GPUs or VMs
- KV state stays local to each layer

- Spread weights and layers over multiple GPUs or VMs & divide prompt into chunks
- KV state stays local to each layer

- Spread weights and layers over multiple GPUs or VMs & divide prompt into chunks
- KV state stays local to each layer

- Spread weights and layers over multiple GPUs or VMs & divide prompt into chunks
- KV state stays local to each layer

- Spread weights and layers over multiple GPUs or VMs & divide prompt into chunks
- KV state stays local to each layer

- Spread weights and layers over multiple GPUs or VMs & divide prompt into chunks
- KV state stays local to each layer

Parallelism in LLM inference

Specializing implementations

Interconnect demands
Optimizing for customer latency targets

Pipelining across multi-GPU nodes

Scheduling choices, impact of bubbles

Sharding across GPUs

Implementation of communication – access to remote GPU memory Achieving compute / communication overlap

GEMM implementation & batching

Dividing and scheduling work
Handling varying GPU bottlenecks
Ensuring load balance within a GPU

Specialization

- Two separate implementations: optimize one for prompt, one for sampling
- Ship KV state from prompt to sampling

- Compute-heavy
- Optimize for throughput

- Memory b/w-heavy
- Optimize within a latency target

Wrapping up

Introduction

Generating text with LLMs

Parallelism in LLM inference

Wrapping up

Introduction

Generating text with LLMs

Parallelism in LLM inference

What abstractions would let us reduce per-model work

...per-device work, e.g. moving between GPUs

...link low-level and customer workload-level perf targets

We're hiring!

https://jobs.careers.microsoft.com/ - search #aifx

tiharr@microsoft.com