1 Partial Orderings

Definition:

A relation on a set S is called <u>antisymmetric</u> if, whenever x R y and y R x are both true, then x = y.

Definition:

A relation R on a set S is called a <u>partial ordering relation</u> if it has the following three properties:

- (a) R is reflexive; that is, x R x is true for every $x \in S$.
- (b) R is antisymmetric; that is, whenever y R x and x R y are true, then x = y.
- (c) R is transitive; that is, whenever x R y and y R z are both true, then x R z is true.

equality

Sexample: Is the relation set equality on some particular set S antisymmetric? Is set equality

on some particular set S a partial ordering? Why or why not?

yes: y=x and x=y => x=y

for equality

equivalence relations or effective a

transitive properties area (so satisfied)

Example: Suppose S is the set of real numbers. Is \geq an antisymmetric relation on S? Is \geq a partial ordering on S? 322 2/3

antispm. If y > x and x > y does this mean x = y? Yes being both > and > =.

(422 but 2/4 is perfectly fine) antisym. prop.

reflexive: Is xRx true for all xes? Is x zx for x trealnumbers? yes

transitive) If x Ry a y RZ is x RZ? If x Zy and y ZZ, is x ZZ? Yes Example: Can a relation be both symmetric and antisymmetric? Justify your reasoning.

Yes equality is both: yRxaxRy > x=y

(but usually for the offer)

Example: Can a partial ordering be an equivalence relation? Must a partial ordering be an equivalence relation? Justify your reasoning.

Lyes - equality is both

Zisapartial ordering BUT 322 while 2/23 -fails symmetrice mot an equivalence relation

> but's apartial ordering (passes reflexive, antisymmetric, at transitive properties)

(1,3) a(3,1) both true but 1 ≠ 3 so fails antisymmetric property (reflexive still passes)

Suppose R_1 is a partial order on set S_1 and R_2 is a partial order on set S_2 . Define relation Rby (a_1, a_2) R (b_1, b_2) if and only if one of the following is true:

(a) $a_1 \neq b_1$ and $a_1 R_1 b_1$ OR

(basically do 1 listinorder then the other)

(b) $a_1 = b_1$ and $a_2 R_2 b_2$.

This relation is called the $\frac{1-exicographic order}{1-exicographic order}$ on $S_1 \times S_2$ or the dictionary order.

Example: Suppose Mr Webster is scheduled to interview three applicants for a summer internship at 9:00, 10:00, and 11:00 and Ms Collins is to interview three other applicants at the same times. Unfortunately both Mr Webster and Ms Collins have become ill so all 6 interviews are to be conducted by Ms Herrera. She has decided to schedule the applicants to be interviewed in time order, alphabetically by interviewer. Thus $S_1 = \{9:00,10:00,11:00\}$ and $S_2 = \{\text{Collins, Webster}\}$. What is the order of applicants and how could R_1 and R_2 be character-(9:00, Collins), (9:00, Webster), (10:00, Collins), (10:00, Webster), (11:00, Collins), (11:00, Webster)

R, is numerical order a Rz is alphabetical order (C beforew)

Note:

The prior example is an intentional variation on Example 2.22 in text. See that example for another way to do a lexicographic ordering.

Theorem 2.5:

If R_1 is a partial order on set S_1 and R_2 is a partial order on set S_2 , then the lexicographic order is a partial order on $S_1 \times S_2$.

Why should this work?

We're maintaining the original orders (which were partial orders) within each set, but just interleaving them (which should not cause problems)

Definition:

A partial order R on a set S is called a totaloider(orlinear order) on S if every pair of elements in S can be compared; that is, for every $x, y \in S$, x R y or y R x.

Example: What is an example of a relation on a set that has a total order?

> on the real numbers - Iknow how 241 relate (have (211)) I know how 3 a 97 relate (have (97,3))

For $S_1, 2, 33$ $1 = R = \{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)\}$ **Example:** What is an example of a relation on a set that only permits partial orders?

= on the real numbers ~ (1,2) a(2,1) not in relation

For S={1,2,3} a = again 12 notrelated either way

R={(1,1),(2,2),(3,3)} don't have (1,2) or

(2,1) Definition:

Let R be a partial order on set S. An element $x \in S$ is called a minimal element of S with respect to R if the only element $s \in S$ satisfying s R x is x itself (that is, s R x implies s = x). Let R be a partial order on set S. An element $z \in S$ is called a maximal element of S with respect to R if the only element $s \in S$ satisfying z R s is z itself (that is, z R s implies z = s). Note: No minimal or maximal elements need to exist for a given partial order.

Example: Identify the minimal and maximal elements of S with respect to R, if they exist: S is the set of all integers x such that $0 \le x < 2$ and x R y if $x \le y$.

 $S = \{0,0\}$ $R = \{(0,0), (0,1), (1,1)\}$ O is minimal lismaximal **Example:** Identify the minimal and maximal elements of S with respect to R, if they exist: S is the set of all real numbers x such that $0 \le x < 1$, and x R y if $x \le y$.

minimal: O (nothing smally) [0,1

maximal: none (neverguitereach lacouldalways makesomething bigger)

Example: Identify the minimal and maximal elements of S with respect to R, if they exist: S is the set of all real numbers x such that $0 \le x < 1$, and x R y if $x \ge y$.

minimal: none

maximal! O

Example: Identify the minimal and maximal elements of S with respect to R, if they exist: S is the set of nonempty subsets of $\{1,2,3\}$ and A R B if $A \subseteq B$. $S = \{2,3, \{2,3, \{2,3\}, \{$

maximal: {1,2,3}

Theorem 2.6:

Let R be a partial order on a finite set S. Then S has both a minimal and a maximal element with respect to R.

Example: Why does this theorem not contradict the example above?

> notice Sis not finite

2 Hasse Diagrams

Description:

A Hasse diagram—represents a partial order R on a finite set S by representing each element of S by a point and each pair of distinct points related by R has a line connecting them. Each line is arranged so that the initial point is below its terminal point; that is, an arrow is drawn from the point representing x to the point representing y when x R y and there is no $s \in S$ other than x and y such that x R s and s R y. Hasse diagrams are read from bottom to top so all line segments between points are regarded as pointing upward.

Note: segments need not be drawn with arrows. The direction is implicit in how the Hasse diagram is drawn.

Example: Where will minimal and maximal element(s) of partial order R on set S appear in a Hasse diagram?

(at the top

Example: Create a Hasse diagram for relation R on set S: S is the set of nonempty subsets of $\{1,2,3\}$ and A R B if $A \subseteq B$. $S = \{\{1,2,3\},\{2,3\},\{2,3\},\{1,2,3\},$

Example: Create a Hasse diagram for relation R on set S: S is the set of nonempty subsets of $\{1,2,3\}$ and A R B if $B \subseteq A$.

Example: Create a Hasse diagram for relation R on set S: let R be the partial order "divides" on the set $S = \{2, 3, 4, 6, 12\}$. What does this Hasse diagram indicate about the minimal and maximal element(s) of S?

Example: Create a Hasse diagram for relation R on set S: let R be the partial order "divides" on the set $S = \{2, 3, 9, 12, 14, 36\}$. What does this Hasse diagram indicate about the minimal and maximal element(s) of S?

maxinal: 14,36

minimal: 2,3

max: 5, 14,36 min = 2,3,5