

概率论研究的是什么?

随机现象: 不确定性与统计规律性

研究和揭示随机现象统计规律性 的一门数学学科

主要内容

- 随机事件及其概率
- 随机变量及其分布
- 随机变量的数字特征
- ■多维随机变量
- 大数定律与中心极限 定理

- 数理统计的基本知识
- ■参数估计
- 假设检验
- ■方差分析
- ■回归分析

第一章 随机事件及其概率

- ■样本空间、随机事件及其运算
- ■几何概型与古典概型
- ■概率的定义及其性质
- 条件概率和独立性
- ■全概率公式与贝叶斯公式

1.1随机事件及其运算

一、基本概念

现象:

- ≺ 确定现象
- ✓ 随机现象——在个别试验中 ,其结果呈不确定性,在大 量重复试验中,结果又具有 统计规律性。

Ⅱ随机试验

- ◆ 可在相同条件下重复进行。
- ◆每次试验的可能结果不止一个,并且事先明确试验的所有可能结果。
- ◆ 试验前无法预知究竟哪个结果出现。

Ⅱ样本空间

所有可能结果放在一起构成的集合,记为 Ω 。

工样本点

每一个可能的结果,记为 ω 。

- 例 1.一袋中有三个白球(编号 1, 2, 3)与二个黑球(编号 4, 5),现从中任取两个,观察两球的 1)颜色; 2)号码。
- 解: 1) 令 ω_1 表示两个白球, ω_2 表示两个黑球, ω_3 表示一黑一白, $\Omega = \{\omega_1, \omega_2, \omega_3\}$
 - 2) 令 ω_{ij} (i < j, i, j = 1, 2, 3, 4, 5) 表示两球的号码为 i 和 j,

 $\mathbf{M} = \{ \omega_{12}, \omega_{13}, \omega_{14}, \omega_{15}, \omega_{23}, \omega_{24}, \omega_{25}, \omega_{34}, \omega_{35}, \omega_{45} \}$

注意: 同一随机试验可能有不同的样本空间。即样本点和样本空间是由试验内容而确定的。

Ⅱ随机事件

样本空间的一个子集,简称事件。 事件常用大写字母A、B、C等表示。

Ⅱ基本事件

由一个样本点组成的单点集称为一个基本事件, 记为E.

Ⅱ事件A发生

该子集A中至少有一个样本点出现。

●特殊的事件

☞不可能事件:∅

例 2.一袋中有三个白球(编号 1, 2, 3)与二个黑球(编号 4, 5),现从中任取两个,观察两球的号码。试表示事件"两个球的号码为双数"、"两个球的号码为单数"、"两个球的号码不超过 3"。

解: 令 ω_{ii} (i < j, i, j = 1, 2, 3, 4, 5) 表示两球的号码为 i 和 j, $\Pi = \{ \omega_{12}, \omega_{13}, \omega_{14}, \omega_{15}, \omega_{23}, \omega_{24}, \omega_{25}, \omega_{34}, \omega_{35}, \omega_{45} \}$ 事件A表示两个球的号码为双数, $M = \{ \omega_{\gamma_A} \}$ 事件B表示两个球的号码为单数, $B = \{ \omega_{13}, \omega_{15}, \omega_{35} \}$ 事件C表示两个球的号码均不超过3, $C = \{ \omega_{12}, \omega_{13}, \omega_{23} \}$ "两个球的号码都不超过5" = Ω

"有一个球的号码是6" = \emptyset

二、事件间的关系和运算

(一) 事件间的关系

1.事件 B 包含事件 A:

A 发生必然导致 B 发生, 记为 $B \supset A$,或 $A \subset B$ 。

2.事件 A 与事件 B 相等:

若 $A \supset B$ 且 $B \supset A$,

记为 A = B。

3.事件 A 与事件 B 的和:

A, B中至少有一个发生, 记为 $A \cup B$ 或 A + B。

推广:

1)有限个事件 A_1, A_2, \dots, A_n 的和:

$$A_1, A_2, \dots, A_n$$
 中至少有一个发生,记为: $\bigcup_{i=1}^n A_i$ 或 $\sum_{i=1}^n A_i$ 。

2)可列个事件 $A_1, A_2, \dots, A_n, \dots$ 的和:

 $A_1, A_2, \dots, A_n, \dots$ 中至少有一个发生,

记为:
$$\bigcup_{i=1}^{\infty} A_i$$
 或 $\sum_{i=1}^{\infty} A_i$ 。

4.事件 A 与事件 B 的积:

事件 A 与 B 同时发生,

记为: $A \cap B$ 或AB。

推广:

1)有限个事件 A_1, A_2, \dots, A_n 的积:

$$A_1, A_2, \dots, A_n$$
 同时发生,记为: $\bigcap_{i=1}^n A_i$ 或 $\prod_{i=1}^n A_i$ 。

2)可列个事件 $A_1, A_2, \dots, A_n, \dots$ 的积:

$$A_1, A_2, \dots, A_n, \dots$$
 同时发生,

记为:
$$\bigcap_{i=1}^{\infty} A_i$$
 或 $\prod_{i=1}^{\infty} A_i$ 。

5.事件 A 与事件 B 的差:

若A发生,而B不发生,记为A-B。

6.事件A与事件B互斥(互不相容):

A,B不能同时发生,

记为: $AB=\emptyset$ 。

7.事件 A和事件 B 互逆 (对立):

若A, B中有且仅有一个发生,

即 $A \cup B = \Omega$, $A B = \emptyset$ 。

A的对立事件记为 $\overline{A} = \Omega - A$.

注意:对立≠互斥

互斥+互补=对立.

例3: 掷骰子, 观察掷得的点数。

假设A表示掷出奇数点,则 $A = \{1,3,5\}$

B表示掷出点数不超过五点,则 $B = \{1,2,3,4,5\}$

 $\therefore A \subset B$

若C表示不是偶数,即 $C = \{1,3,5\}$,则A = C $A \cup B = \{1,2,3,4,5\}$, $A \cap B = \{1,3,5\}$ $B - A = \{2,4\}$,

若D表示不超过4的偶数点,即 $D = \{2,4\}$

则 $AD = \emptyset$ A与D互斥(互不相容)

若E表示掷出的是偶数点,即 $E = \{2,4,6\}$

 $A \cup E = \Omega$, $A \cap E = \emptyset$ A与E对立(互逆。

描述随机事件的三种方法:

- ☞ 集合表示:
- ☞ 语言表示:
- ☞ 函数表示 (随机变量)。

随机变量是 @ 的函数。

例如:示性函数
$$I_A(\omega) = \begin{cases} \mathbf{1}, & \omega \in A \\ \mathbf{0}, & \omega \notin A \end{cases}$$

$$I_A = 1 \Leftrightarrow A; \quad I_A = 0 \Leftrightarrow \overline{A}$$

只击中第一枪:
$$A_1\overline{A_2}\overline{A_3}$$

只击中一枪: $A_1\overline{A_2}\overline{A_3}\cup \overline{A_1}A_2\overline{A_3}\cup \overline{A_1}\overline{A_2}A_3$
 $\xi=1$
三枪都未击中: $\overline{A_1}\overline{A_2}\overline{A_3}=\overline{A_1}\cup A_2\cup A_3$
 $\xi=0$
至少击中一枪: $A_1\cup A_2\cup A_3$ $\xi\geq 1$
三枪没有都击中: $\overline{A_1A_2A_3}=\overline{A_1}\cup \overline{A_2}\cup \overline{A_3}$

- 1.交换律: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- 2.结合律: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
- 3.分配律: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 4.德•摩根律: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\bigcup_{i=1}^{n} A_{i} = \bigcap_{i=1}^{n} \overline{A_{i}}, \bigcap_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \overline{A_{i}}$
- 5.对立事件的性质: $\overline{A} = A, A + \overline{A} = \Omega, A\overline{A} = \emptyset$.

例5 设A,B都是随机事件。

试证:
$$\overline{AB} + A\overline{B} + \overline{AB} = \overline{AB}$$

证明: 右边 =
$$\overline{A} + \overline{B}$$

= $\overline{A}\Omega + \Omega \overline{B}$
= $\overline{A}(B + \overline{B}) + (A + \overline{A})\overline{B}$
= $\overline{A}B + \overline{A}\overline{B} + A\overline{B} + \overline{A}\overline{B}$
= $\overline{A}B + A\overline{B} + \overline{A}\overline{B} = \overline{\Xi}$

例6 设A, B, C是随机事件。

试证:
$$(A+B)-AB = A\overline{B} + \overline{A}B$$

证明: 左边 = $(A+B)\overline{AB}$
= $(A+B)(\overline{A}+\overline{B})$
= $A\overline{A} + A\overline{B} + B\overline{A} + B\overline{B}$
= $\emptyset + A\overline{B} + B\overline{A} + \emptyset$
= $A\overline{B} + B\overline{A} = \overline{A}$

事件关系和运算的作用

——将复杂事件化为简单事件。

