Prévoir les bonnes journées : Les prévisions d'émagramme NOAA

- Pour commencer
- Ce que je veux savoir pour aller voler
- Emagramme : définition, altitude, température, trucs et vocabulaire, humidité, rapport de mélange, adiabatique, pseudo adiabatique, quelques règles, utilisation.
- Etudes de cas
- Prévision d'émagramme site Internet NOAA
- Limites
- Références

Pour commencer

- Qui ?
- Quoi?
- Où ?
- Pourquoi ?
- Comment ?
- Quand?
- Combien?

Ce que je veux savoir pour aller voler

- Vent : Forces, directions en fonction de l'altitude, choix du décollage.
- Température : Au sol, en altitude.
- Masse d'air: Stable, instable en fonction de l'altitude, plafond, nébulosité, développement verticaux, risque d'orage, vitesse des ascendances.

Emagramme: définition

- L'émagramme est une représentation graphique XY des caractéristiques de l'atmosphère à un endroit et à un instant donné.
- Le vent est représenté sur l'échelle de droite

Emagramme: altitude

- Les altitudes s'inscrivent en mètres ou en hecto-pascals selon l'axe vertical
- Le réseau des lignes d'égales altitudes est représenté par des lignes horizontales

PRESSION ATMOSPHÉRIQUE

Décroissance en fonction de

Convertir une pression en altitude

- Pour trouver l'altitude qui correspond à une pression, le truc du complément à 1000 :
- Altitude en m =
 (1000-pression HPa)
 x 10

- Pression Altitude
- HPa

m

- 500
- 600
- 800
- 850
- 900
- 1000

Emagramme : température

- Les températures s'inscrivent en °c selon l'axe horizontal
- Le réseau des isothermes, est un réseau de lignes inclinées à droite afin de redresser les courbes d'état

Emagramme : courbe de température

- La courbe de température indique la température de l'atmosphère en fonction de l'altitude.
- Elle nous renseigne sur la capacité convective de la masse d'air.

Trucs et vocabulaire

Dans des conditions définies de pression et de température, l'air atmosphérique ne peut contenir qu'une certaine quantité d'eau sous forme de vapeur. Au delà il y a saturation : eau sous forme liquide.

Point de condensation : conditions de température ou de pression pour lesquelles une particule d'air devient saturée en humidité. Une part de l'humidité contenue sous forme de vapeur devient liquide.

Point de rosée : A pression constante, l'abaissement de la température d'une particule d'air atmosphérique conduit à sa saturation. Dans la littérature il est noté Td.

Emagramme : courbe d'humidité

- A chaque altitude, on mesure la température à laquelle la vapeur d'eau contenue devient liquide (saturation)
- C'est la température (en °C) de point de rosée
- La courbe d'humidité indique l'humidité de l'atmosphère en fonction de l'altitude.

Emagramme : courbe d'humidité

- Elle est toujours à gauche ou superposée à la courbe de température.
- Ecart 0°C = condensation
- Ecart 2°C = humidité forte
- Ecart 7°C = humidité moyenne
- Ecart 15°C = humidité faible

Emagramme: quelques règles

- Plus l'air est humide plus la probabilité de formation des nuages est grande
- La hauteur de la base des cumulus dépend de l'humidité des sols. Un air humide au sol entraine une base de cums peu élevée
- La quantité et le développement des nuages dépendent de l'humidité en altitude

Rapport de mélange

- C'est le rapport de la masse de vapeur d'eau à la masse d'air sec qui la contient. Il est exprimé en g/Kg
- En s'élevant du sol, sans échange avec l'extérieur (en suivant l'adiabatique), une bulle d'air conserve l'humidité transférée du sol.
- Il renseigne sur l'altitude du plafond et s'il y a ou non des cums.
- Gradient = 0,2°C/100m
- Le réseau des iso-r est représenté par les lignes à peine moins inclinées que les isothermes

Adiabatique sèche

- C'est la règle d'évolution d'une bulle du sol au plafond.
- Détente = refroidissement
- Compression = réchauffement
- Adiabatique sèche = sans échange de chaleur avec l'extérieur, sans changement d'état de la vapeur d'eau contenue.
- Gradient = 1°C/100m

Adiabatique sèche

- Détente = refroidissement
- Compression = réchauffement
- Adiabatique = sans échange de chaleur avec l'extérieur, sans changement d'état de la vapeur d'eau.
- Gradient = 1°C/100m
- Le réseau des adiabatiques est formé par les lignes les plus inclinées sur la gauche. Elles représentent l'évolution de la température d'une particule d'air en fonction de l'altitude, sans condensation.

Adiabatique humide ou pseudoadiabatique • C'est la règle d'évolution d'une

- bulle dans le nuage
- Détente = refroidissement
- Compression = réchauffement
- L'évaporation consomme de la chaleur
- La condensation restitue de la chaleur
- Pseudo-adiabatique, sans échange de chaleur avec l'extérieur, avec changement d'état de l'eau contenue.
- Gradient = 0,6°C/100m

Pseudo-adiabatique

- L'évaporation : consomme de la chaleur
- La condensation restitue de la chaleur
- Pseudo-adiabatique, sans échange de chaleur avec l'extérieur, avec changement d'état de l'eau contenue.
- Gradient = 0.6°C/100m
- Le réseau des pseudo-adiabatiques est formé de lignes moins inclinées à gauche que les adiabatiques. Elles représentent l'évolution de la température en fonction de l'altitude, d'une particule d'air dans le nuage.

Emagramme: utilisation

- a) Courbe de température
- b) Courbe d'humidité
- c) Adiabatique sèche
- d) Iso-r
- e) Pseudoadiabatique

Emagramme: utilisation

- a) A partir de l'origine de la courbe de température je trace une parallèle à l'adiabatique. Tant que cette ligne se trouve à droite de la courbe de température, il y a instabilité.
- b) A partir de l'origine de la courbe d'humidité je trace une parallèle à l'iso-R. Si l'intersection de l'iso-R et de l'adiabatique se situe à droite de la courbe de température, il y a cumulufication. Si leur intersection se situe à gauche : thermique bleu.
- c) De cette intersection, en suivant la pseudo adiabatique jusqu'à couper la courbe de température je visualise l'épaisseur des nuages

Récit de vol : P Triaux 22/06/2003

- Force et direction du vent
- Date
- Heure UTC
- Échéance prévision
- Coordonnées de la prévision
- Altitudes
- Isothermes
- Adiabatiques
- Pseudo-adiabatiques
- Iso r
- Courbe d'état
- Courbe d'humidité
- T° au sol
- Stable / instable
- Plafond
- Développement vertical
- Force des ascendances
- Ascendance au plafond

Récit de vol : P Triaux 22/06/2003

- Force et direction du vent
- Date
- Heure UTC
- Échéance prévision
- Coordonnées de la prévision
- Altitudes
- Isothermes
- Adiabatiques
- Pseudo-adiabatiques
- Iso r
- Courbe d'état
- Courbe d'humidité
- T° au sol
- Stable / instable
- Plafond
- Développement vertical
- Force des ascendances
- Ascendance au plafond

Récit de vol : P Triaux 22/06/2003

- Force et direction du vent
- Date
- Heure UTC
- Échéance prévision
- Coordonnées de la prévision
- Altitudes
- Isothermes
- Adiabatiques
- Pseudo-adiabatiques
- Iso r
- Courbe d'état
- Courbe d'humidité
- T° au sol
- Stable / instable
- Plafond
- Développement vertical
- Force des ascendances
- Ascendance au plafond

06/22/2003

18z

2.96

45.63

SPEED (knts)

23

Ohr

Récit de vol JY Figon 14/07/2005

- Force et direction du vent
- Date
- Heure UTC
- Échéance prévision
- Coordonnées de la prévision
- Altitudes
- Isothermes
- Adiabatiques
- Pseudo-adiabatiques
- Iso r
- Courbe d'état
- Courbe d'humidité
- T° au sol
- Stable / instable
- Plafond
- Développement vertical
- Force des ascendances
- Ascendance au plafond

Récit de vol D Lestant 18/08/2007

Force et direction du vent

Date

Heure UTC

Échéance prévision

Coordonnées de la prévision

Altitudes

Isothermes

Adiabatiques

Pseudo-adiabatiques

lso r

Courbe d'état

Courbe d'humidité

T° au sol

Stable / instable

Plafond

Récit de vol D Lestant 10/08/2003

Force et direction du vent

Date

Heure UTC

Échéance prévision

Coordonnées de la prévision

Altitudes

Isothermes

Adiabatiques

Pseudo-adiabatiques

Iso r

Courbe d'état

Courbe d'humidité

T° au sol

Stable / instable

Plafond

Situation anticyclonique

Force et direction du vent

Date

Heure UTC

Échéance prévision

Coordonnées de la prévision

Altitudes

Isothermes

Adiabatiques

Pseudo-adiabatiques

Iso r

Courbe d'état

Courbe d'humidité

T° au sol

Stable / instable

Plafond

Situation perturbée

Force et direction du vent

Date

Heure UTC

Échéance prévision

Coordonnées de la prévision

Altitudes

Isothermes

Adiabatiques

Pseudo-adiabatiques

Iso r

Courbe d'état

Courbe d'humidité

T° au sol

Stable / instable

Plafond

Franchissement d'un relief

Pression:

 1010hPa (en plaine)
 Température:
 12°C
 Td: 8°C

- Aller à http://ready.arl.noaa.gov/READYcmet.php. Renseigner longitude et latitude (point à la place de virgule et décimale en 1/10 et 1/100 de degrés) puis clic sur "continue".
- Sur la ligne sounding, clic sur "choose a forecast data set" puis "GFS model 0-180h 3hrly global" puis « Go ».
- Dans le menu déroulant « heure date » sélectionner le + récent (le + haut) puis clic sur « next ».
- Sur la ligne « Time to plot » sélectionner dans le menu déroulant, l'heure et la date de la prévision souhaitée (ajouter 2H à l'heure indiquée, en été, pour avoir l'heure locale). Sur la ligne « Type » sélectionner « full sounding » ou « Only to 400 mb ». Recopier le code dans la case blanche. Clic sur « Get sounding ».
- L'émagramme apparaît.

Emagramme : les limites

- Utiliser la prévision d'émagramme plutôt que le sondage de la veille
- Acquérir de la dextérité avec l'outil
- L'échéance de la prévision
- Le modèle GFS
- Les situations locales
- Des pilotes en quantité, qualité, au bon endroit au bon moment

Références

- « Démystifions l'émagramme, le « Temp » et l'échauffement de l'atmosphère » Jean OBERSON http://www.soaringmeteo.ch/emmagr.pdf
- « L'émagramme, outil du prévi » JS77
 http://www.meteociel.fr/analyse/index.php?analyse=98
- Prévisions d'émagramme ARL-NOAA http://ready.arl.noaa.gov/READYcmet.php
- Archives ARL-NOAA http://ready.arl.noaa.gov/READYamet.php
- « Une canicule de chien » et « Météo sur Internet » Aérial n°32 et n°53 Christophe CHAMPETIER
- « Prévoir les journées exceptionnelles » Vol Libre n°369 et 370 Arnaud CAMPREDON. Merci à Arnaud pour les schémas en couleur du diaporama
- « Météorologie et vol à voile » http://www.cfvp.org/coursmm.htm nov 2003
- « La météorologie du vol à voile » livre de Tom BRADBURY
- « Météo du vol à voile et du vol libre » livre de Jean Paul FIEQUE
- « Récits de vols » http://cad.parapente.free.fr/ LAVnet carnet de vol JY FIGON P TRIAUX D LESTANT