Recogida, almacenamiento y uso de datos proporcionados por sensores localizados de manera descentralizada.

Introducción

 Hoy en día existen múltiples formas de tener información remota. Pero la mayoría de estas formas tienen sus inconvenientes

Objetivos

- El principal objetivo es desarrollar un sistema de recogida, almacenamiento y tratamiento de información remota
- Además, que sea usable por cualquier tipo de usuario,
- Que guarde los datos localmente para prevenir caídas temporales de la red
- Y únicamente se usara software de libre uso y hardware sustituible

Arquitectura del sistema

 Estarán registrados varios lugares, cada uno con sus sensores e interruptores y varios usuarios con diferentes roles

Tecnologías

{ REST:API }

{ REST:API }

Metodología y planificación

- Dada la modularidad del proyecto se ha escogido una estructura incremental. Se ha distribuido el tiempo en sprints.
- Por cada sprint se han asignado 30 horas con el fin de ser realizados uno cada dos semanas

Clases para la electrónica

Comunicación Arduino-Raspberry Pi

Desde la parte del Arduino

Desde la parte de la Raspberry Pi

Backend: diseño hexagonal

Front: estructura de módulos

Demo

Planificación vs realidad

Recopilación de información, tecnologías, instalación de las herramientas necesarias	30 horas
Montaje de los sensores e interruptores e interacción con Arduino	1 sprint. 30 horas
Comunicación serie entre Arduino y Raspberry Pi y persistencia de la información en Raspberry Pi	1 sprint. 30 horas
Comunicación entre Raspberry Pi y el servidor mediante llamadas HTTP	1 sprint planeado, ampliado a 2 sprints. En total 60 horas
Desarrollo del backend	2 sprints. 60 horas
Desarrollo del frontend	4 sprints. Reducido a 3 sprints. 90 horas
TOTAL	300 horas

Conclusiones

- Se han completado todos los objetivos. El sistema es completamente funcional. Puede ser manejado por un usuario sin conocimientos especiales y de forma remota
- Solamente ha quedado sin desarrollar una mejora para poder personalizar los sensores de cada lugar. Sin embargo físicamente los sensores pueden ser reemplazados por otros. Mientras se respete el tipo analógico o digital

Conclusiones

- Se ha conseguido implementar un sistema completo con múltiples características
- Se han usado múltiples tipos de hardware: desde el microcontrolador Arduino, un microordenador, un servidor y el navegador de los usuarios
- Cada uno de estos componentes de hardware esta controlado por el código desarrollado propio para ellos
- Se ha seguido una estructura de microservicios que permite sustituir cada una de estas partes si en algún momento llega a ser necesario

Gracias por la atención

