Arquitetura de Computadores

Capítulo 18
Computadores Multicore

Desempenho do hardware

- Microprocessadores tiveram aumento de desempenho exponencial
 - Melhorias na organização
 - Aumento da frequência de clock
- Aumento no Paralelismo
 - —Pipelining
 - -Superscalar
 - -Multithreading Simultâneo (SMT)
- Diminuição do retorno
 - Maior complexidade requer mais lógica de controle
 - Aumento na área do chip para coordenação e lógica de transferência de sinal

Organizações Alternativas do Chip

(a) Superscalar

(b) Simultaneous multithreading

Têndencias do Hardware da Intel

Aumento da complexidade

- Consumo de energia cresce exponencialmente com a densidade do chip e freq. de clock
 - Pode usar mais área do chip para cache
- Projeção para 2015
 - 100 bilhões de transistores em uma área de 300mm²
 - Cache de 100MB
 - 1 bilhão de transistores para lógica
- Regra de Pollack:
 - Desemepenho é aprox. proporcional à raiz quadrada do aumento em complexidade
 - Dobrar a complexidade dá 40% mais de desempenho
- Multicore tem o potencial de aumento de desempenho quase linear
- Improvável que um núcleo use toda essa cache efetivamente

Considerações de Energia e Memória

Utilização de Transistores no chip

Efeito no desempenho de Multicores

Desempenho de Software

- Benefícios de desempenho depende da efetiva exploração dos recursos paralelos
- Mesmo pequeno código serial impacta o desempenho
 - 10% inerentemente serial em um sistema com 8 processadores daria ganho de 4.7
- Sobrecarga com comunicação, distribuição de trabalho e coerência de cache
- Algumas aplicações efetivamente exploram processadores multicore

Aplicações Efetivas para Processsadores Multicore

- Banco de dados
- Servidores com transações independentes
- Aplicações multithreaded nativas
- Aplicações multi processos
- Aplicações Java
 - JVM é multithreaded com escalonamento e gerenciamente de memória
- Aplicações com múltiplas instâncias
 - Uma aplicação rodando múltiplas vezes

Organização Multicore

- Número de núcleos de processamento em um chip
- Número de níveis de cache no chip
- Quantidade de cache compartilhada

Organização Multicore

Vantagens da Cache L2 Compartilhada

- Interferência construtiva reduz taxa geral de falha
- Dados compartilhados por múltiplos núcleos não replicados no nível de cache
- Com algoritmos apropriados de substituição de quadros, quant. De cache para cada núcleo é dinâmica
 - —Threads com menos localidade podem ter mais cache
- Comunicação interprocesso mais fácil via memória compartilhada
- Coerência de cache coherency confinada à L1
- L2 dedicada dá a cada núcleo acesso mais rápido
 - Bom para threads com forte localidade
- L3 compartilhada pode também aumentar o desempenho

Projeto organizacional

- Intel Core Duo usa núcleos superscalares
- Intel Core i7 usa multithreading simultâneo (SMT)
 - Escala até o número de threads suportado
 - 4 núcleos SMT, cada um suportando 4 threads aparecem como um 16 núcleos

Organização Intel x86 Multicore - Core Duo (1)

- Dois processadores x86 superescalares,
 L2 cache compartilhada
- L1 dedicada por núcleo
 - -32KB instrução e 32KB dados
- Unidade de controle térmica por núcleo
 - Gerencia a dissipação do calor do chip
 - Maximiza desempenho dentro de algumas restrições
 - -Ergonomia melhorada
- Advanced Programmable Interrupt Controller (APIC)
 - Interrupções entre núcleos
 - Encaminha interrupções para o núcleo apropriado

Intel Core Duo

Front-Side Bus

Organização Intel x86 Multicore - Core i7

- Novembro 2008
- 4 processadoresr x86 SMT
- L2 dedicada, L3 cache compartilhada
- Pré busca especulativa para caches
- Controlador de memória DDR3 no chip
- Caminho de interconexão rápida

Intel Core i7

