1

MULTIPLE SEQUENCE DETECTOR 1100 and 0100

Ganga Gopinath

1

1

CONTENTS

I Components

II sequence detector

Abstract—This manual explains state machines by identify the sequence that detect 1100 and 0100

I. COMPONENTS

Components	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment Display		1
Decoder	7447	1
Flip Flop	7474	2
Bread Board		1
Jumper Wires		20

Table I: .0

II. SEQUENCE DETECTOR

A sequence detector accepts as input a string of bits: either 0 or 1. Its output goes to 1 when a target sequence has been detected. There are two basic types: overlap and non-overlap. In a sequence detector that allows overlap, the final bits of one sequence can be the start of another sequence. Our examples 1100 and 0100 sequence detector. It raises an output of 1 when the last 4 binary bits received 1100 or 0100.

1.STATE DIAGRAM

State diagrams are used to give an abstract description of the behavior of a system. This behavior is represented as a series of events that can occur in one or more possible states. State diagram is represented in Figure 1

Figure 1: State Diagram for Sequence

2. STATE TABLE

From state diagram, state table can be generated in Table II.

Present State	Input	Next state	Output
A B C	X	P Q R	Y
0 0 0	0	1 0 1	0
0 0 0	1	0 0 1	0
0 0 1	0	101	0
0 0 1	1	0 1 0	0
0 1 0	0	0 1 1	0
0 1 0	1	0 1 0	0
0 1 1	0	100	1
0 1 1	1	0 1 0	0
100	0	101	0
100	1	0 0 1	0
101	0	101	0
101	0	0 1 0	0

Table II: .STATE TABLE

3 Karnaugh Map

α	17	•			
AB	$\stackrel{X}{\downarrow}00$	01	11	10	
00	1	0	0	1	
01	0	0	0	1	
11	X	X	X	X	
10	1	0	0	1	
'					

$$P = B'X' + CX'$$

AB	X_{00}	01	11	10
00	0	0	1	0
01	1	1	1	0
11	X	X	X	X
10	0	0	1	0

$$Q = CX + BX'$$

$\setminus CX$									
AB	00	01	11	10					
00	1	1	0	1					
01	1	0	0	0					
11	X	X	X	X					
10	1	1	0	1					
,									

$$R = B'X' + C'X' + B'C'$$
 (3)

$$Y = CX'B$$

4 PROCEDURE

2

7447

(1)

(2)

(4)

- 1. Generate the CLOCK signal using the blink program.
- 2. Connect the Arduino, 7447 ,two 7474 ICs,LED and seven segment according to Table III. 3.Intelligently use the codes in

	INI	PUT			OUTPUT				5V					
	A	В	С	X	P	Q	R	Y	CLOCK	3 V				
Arduino	4	3	2	10	6	7	8	9	13					
7474	5	9			2	12			CLK1	CLK2	1	4	10	13
7474			5				2		CLK1	CLK2	1	4	10	13
	_	_					_					-		_

https://github.com/Gangagopinath/ASSIGNMENT-1/blob/main

LED

Table III: Connection Table