

Report Reference ID:	210165-8TRFWL	
Test specification:	Title 47 – Telecommunication	
	Chapter I – Federal Communications Commission	
	Subchapter B – Common carrier services	
	Part 27 – Miscellaneous wireless communications services	
Applicant:	TEKO Telecom S.p.A.	
	Via Meucci, 24/a	
	I-40024 Castel S. Pietro Terme (BO) (Italy)	
Apparatus:	Very High Power Module	
FCC ID:	XM2-VHPA	
Model:	VHPA0001AWS	
Testing laboratory:		
	Nemko Italy S.p.A.	
	Via Carroccio, 4	
	I-20046 Biassono (Italy)	

	Name and title	Date
Tested by:	G. Curioni, Wireless/EMC Specialist	2012/06/11
Reviewed by:	P. Barbieri, Wireless/EMC Specialist	2012/06/11

Table of contents

Castian 4.	Damant assumances.	•
	Report summary	
1.1 1.2	Test specification	
1.3	Exclusions	
1.4	Registration number	
1.5	Test report revision history	
1.6	Limits of responsibility	
Section 2:	Summary of test results	4
2.1	FCC Part 27, test results	4
Section 3:	Equipment under test (EUT) and application details	5
3.1	Applicant details	5
3.2	Modular equipment	
3.3	Product details	
3.4	Application purpose	
3.5	Composite/related equipment	
3.6	Sample information	
3.7 3.8	EUT technical specifications Operation of the EUT during testing	
3.9	EUT setup diagram	
	Engineering considerations	
4.1	Modifications incorporated in the EUT	
4.1	Deviations from laboratory tests procedures	
4.3	Technical judgment	
_	Test conditions	
5.1	Power source and ambient temperatures	
Section 6:	Measurement uncertainty	
	Test equipment	
	Testing data	
8.1	Clause 27.50 (d) Peak output power at RF antenna connector	
8.2 8.3	Clause 27.52 RF safety	
8.4	Clause 27.53 (h) Radiated spurious emissions	
8.5	Clause 27.53 (f) Radiated spurious emissions within 1559–1610 MHz band	95
8.6	Clause 27.54 Frequency stability	
8.7	Clause 2.1049 Occupied bandwidth	
8.8	Clause 2.1047 Modulation characteristics	130
Section 9:	Filter Frequency Response	
Section 10	: Block diagrams of test set-ups	132
	: EUT photos	
200001111	· F	

Section 1: Report summary Product: VHPA0001AWS

Section 1: Report summary

1.1 Test specification

Specifications

Part 27 - Miscellaneous wireless communications services

1.2 Statement of compliance

Compliance

In the configuration tested the EUT was found compliant

Yes 🛚

No
pparatus against specifications based upon

This report contains an assessment of apparatus against specifications based upon tests carried out on samples submitted at Nemko Canada Inc. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 27. Radiated tests were conducted in accordance with ANSI C63.4-2003.

1.3 Exclusions

Exclusions

None

1.4 Registration number

Registration number:

481407 (10 m Semi anechoic chamber)

1.5 Test report revision history

	The Tract report Forticist Fileson,	
Revision #	Details of changes made to test report	
TRF	Original report issued	

1.6 Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Section 2: Summary of test results Product: VHPA0001AWS

Section 2: Summary of test results

2.1 FCC Part 27, test results		
Part	Test description	Verdict
§27.50(d)	Peak output power at RF antenna connector	Pass
§27.52	RF safety	N/A a)
§27.53(h)	Spurious emissions at RF antenna connector	Pass
§27.53(h)	Radiated spurious emissions	Pass
§27.53(f)	Radiated spurious emissions within 1559–1610 MHz band	N/A b)
§27.54	Frequency stability	N/A c)
§2.1049	Occupied bandwidth	Pass
§2.1047	Modulation characteristics	N/A c)
§2-11-04/EAB/RF	Filter Frequency Response	Pass

Notes:

- a) NO Antenna provided
- b) AWS band
- c) Modulation & frequency conversion circuitry not in use

modular approval

Yes 🗌

Section 3: Equipment under test (EUT) details	Product: VHPA0001AWS

Section 3: Equipment under test (EUT) and application details

3.1 Applicant details		
Applicant complete	Name:	Teko Telecom S.p.A.
business name	Federal Registration Number (FRN):	0018963462
	Grantee code	XM2
Mailing address	Address:	Via Meucci, 24/a
	City:	Castel S. Pietro Terme
	Province/State:	Bologna
	Post code:	40024
	Country:	Italy
	•	
3.2 Modular equipment		
a) Single modular	Single modular approve	
approval	Yes ⊠	No 🗌
b) Limited single	Limited single modular	approval

3.3 Product details		
FCC ID	Grantee code:	XM2
	Product code:	-VHPA
Equipment class	TNB	
Description of	Digital Donor Front-End	
product as it is	Model name/number:	VHPA0001AWS
markata d	Carial number:	20

No 🛛

3.4 Application purpose	
Type of application	Original certification Change in identification of presently authorized equipment Original FCC ID: Grant date: Class II permissive change or modification of presently authorized equipment

3.5 Composite/related e	quipment
a) Composite	The EUT is a composite device subject to an additional equipment authorization
equipment	Yes □ No ⊠
b) Related equipment	The EUT is part of a system that operates with, or is marketed with, another device that
, , ,	requires an equipment authorization
	Yes □ No ⊠
c) Related FCC ID	If either of the above is "yes":
,	has been granted under the FCC ID(s) listed below:
	is in the process of being filled under the FCC ID(s) listed below:
	is pending with the FCC ID(s) listed below:
	has a mix of pending and granted statues under the FCC ID(s) listed below:
	i FCC ID:
	ii FCC ID:
	11 1 60 1B.
3.6 Sample information	
Receipt date:	2012-06-04

Section 3: Equipment under test (EUT) details	Product: VHPA0001AWS

Nemko sample ID	
number:	

3.7 EUT technical specifications			
Operating band:	AWS: Down Link: 2110-2155 MHz, Up Link: 1710-1755 MHz		
Operating frequency:	Wideband		
Modulation type:	CDMA, WCDMA, LTE (QAM and QPSK)		
Occupied bandwidth:	CDMA: 1,25 MHz,		
	WCDMA: 5 MHz		
	LTE: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz		
Channel spacing:	standard		
Emission designator:	CDMA, WCDMA: F9W,		
	LTE: D7W		
RF Output	Down Link: 43dBm (20W)		
	Up Link: 4dBm typical (0,0025W typical)		
Gain	Down Link: 48dB		
	Up Link: 47dB		
Antenna type:	Evternal Antonna is not provided		
	External Antenna is not provided, equipment that has an external 50 Ω RF connector		
	equipment that has an external 50 12 KF connector		
Power source:	28-30 Vdc		

3.8 Operation of the EUT during testing			
Details:	Normal working at max gain with max RF power output (down link and up link)		

Nemko	Section 4: Engineering considerations	Product: VHPA0001AWS
Section 4: Engine	eering considerations	
.1 Modifications incorpo	orated in the EUT	
Modifications	Modifications performed to the EU	T during this assessment
	None ⊠ Yes □, performed by	Client or Nemko
	Details:	

4.2 Deviations from laboratory tests procedures			
Deviations	Deviations from laboratory test procedures None ⊠ Yes □ - details are listed below:		

4.3 Technical judgment	
Judgment	None

Section 5: Test conditions Product: VHPA0001AWS

Section 5: Test conditions

5.1 Power source and ambient temperatures				
Normal temperature, humidity and air pressure test conditions	Temperature: 15–30 ℃ Relative humidity: 20–75 % Air pressure: 860–1060 hPa When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.			
Power supply range:	The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.			

Section 6: Measurement uncertainty

Nemko S.p.A. measurement uncertainty has been calculated using the standard CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modeling – Uncertainty in EMC measurements". All calculations have been performed to provide a confidence level of 95 % and can be found in Nemko S.p.A. document WML1002.

Section 7: Test equipment Product: VHPA0001AWS

Section 7: Test equipment

Identification number	Description	Manufacturer model	s/n	Cal. Due
1a	Vector Signal Generator	Agilent N5182A MXG	MY48180714	May 2013
1b	Vector Signal Generator	Agilent E4438C ESG	MY45094485	Ago 2013
2	Spectrum Analyzer	Agilent E4440A	US40420470	Jul 2012
3	Network Analyzer	Agilent E5071B	MY42301133	Jan 2013
4	Climatic chamber	Angelantoni Hygros 600	7237	Nov 2014

Client's property

Identification number	Equipment	Manufacturer	Model	Serial N°	Cal. due
1	Trilog Broadband Antenna	Schwarzbeck	VULB 9163	VULB 9163-286	04/2013
2	Bilog antenna	Schwarzbeck	STLP 9148-123	123	09/2012
3	Double ridge waveguide horn	Spin	DRH40	061106A40	09/2013
4	Broadband preamplifier	Schwarzbeck	BBV 9718	9718-137	05/2013
5	Broadband preamplifier	Miteq	JS44	1648665	05/2013
6	Spectrum Analyzer 9kHz-40GHz	R&S	FSEK	848255/005	09/2012
7	Controller	EMCO	2090	9511-1099	NSC
8	Antenna Tower	EMCO	2071-2	9601-1940	NSC
9	Turning table Controller	EMCO	1061-1.521	9012-1508	NSC
10	Semi-anechoic chamber	Nemko	3m semi- anechoic chamber	70	04/2013
11	Control room	Siemens	3m control room	3	NSC

Property of Nemko Italy

Specification: FCC Part 27

Section 8: Testing data

8.1 Clause 27.50(d) Peak output power at RF antenna connector

(1) The power of each fixed or base station transmitting in the 2110-2155 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to a peak equivalent isotropically radiated power (EIRP) of 3280 watts. The power of each fixed or base station transmitting in the 2110-2155 MHz band from any other location is limited to a peak EIRP of 1640 watts. A licensee operating a base or fixed station utilizing a power of more than 1640 watts EIRP must coordinate such operations in advance with all Government and non-Government satellite entities in the 2025-2110 MHz band. Operations above 1640 watts EIRP must also be coordinated in advance with the following licensees within 120 kilometers (75 miles) of the base or fixed station: all Broadband Radio Service (BRS) licensees authorized under Part 27 in the 2155-2160 MHz band and all AWS licensees in the 2110-2155 MHz band.

(2) Fixed, mobile, and portable (handheld) stations operating in the 1710–1755MHz band are limited to a peak EIRP of 1 watt. Fixed stations operating in this band are limited to a maximum antenna height of 10 meters above ground, and mobile and portable stations must employ a means for limiting power to the minimum necessary for successful communications.

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13dB.

Special notes

The power was measured using spectrum analyzer with RMS detector / average power meter.

Section 8: Testing data Product: VHPA0001AWS

Test name: Clause 27.52 RF safety

Test date 01-10 June 2012

Test engineer: G. Curioni

Verdict: Pass

Supply input: 100-240 Vac

 Temperature: 25 ℃
 Air pressure: 860-1060 hPa
 Relative humidity: 50 %

Specification: FCC Part 27

RF Output Power at RF connectors

Test data					
Direction	Modulation	Frequency (MHz)	RF output Power (W/MHz)	RF output channel Power (W)	PAR (dB)
Down-link	CDMA (1,25MHz)	2132.5	17.827	22.284	8.89
Down-link	WCDMA (5MHz)	2132.5	4.560	22.803	10.56
Down-link	LTE (QAM, 1,4MHz)	2132.5	14.416	20.183	9.78
Down-link	LTE (QPSK, 1,4MHz)	2132.5	14.450	20.230	9.87
Down-link	LTE (QAM, 3MHz)	2132.5	6.712	20.137	9.76
Down-link	LTE (QPSK, 3MHz)	2132.5	6.697	20.091	9.77
Down-link	LTE (QAM, 5MHz)	2132.5	4.000	19.999	10.71
Down-link	LTE (QPSK, 5MHz)	2132.5	4.000	19.999	10.71
Down-link	LTE (QAM, 10MHz)	2132.5	2.014	20.137	10.50
Down-link	LTE (QPSK, 10MHz)	2132.5	2.014	20.137	10.51
Down-link	LTE (QAM, 15MHz)	2132.5	1.343	20.183	10.39
Down-link	LTE (QPSK, 15MHz)	2132.5	1.336	20.045	10.74
Down-link	LTE (QAM, 20MHz)	2132.5	1.005	20.091	10.77
Down-link	LTE (QPSK, 20MHz)	2132.5	1.000	19.999	10.82
Up-link	CDMA (1,25MHz)	1732.5	2.140x10 ⁻³	2.685x10 ⁻³	8.81
Up-link	WCDMA (5MHz)	1732.5	0.559x10 ⁻³	2.792x10 ⁻³	10.26
Up-link	LTE (QAM, 1,4MHz)	1732.5	1.802x10 ⁻³	2.523x10 ⁻³	10.02
Up-link	LTE (QPSK, 1,4MHz)	1732.5	1.811x10 ⁻³	2.535x10 ⁻³	10.23
Up-link	LTE (QAM, 3MHz)	1732.5	0.841x10 ⁻³	2.523x10 ⁻³	10.84
Up-link	LTE (QPSK, 3MHz)	1732.5	0.849x10 ⁻³	2.547x10 ⁻³	10.95
Up-link	LTE (QAM, 5MHz)	1732.5	0.502x10 ⁻³	2.512.x10 ⁻³	11.03
Up-link	LTE (QPSK, 5MHz)	1732.5	0.507x10 ⁻³	2.535x10 ⁻³	11.07
Up-link	LTE (QAM, 10MHz)	1732.5	0.252x10 ⁻³	2.523x10 ⁻³	11.17
Up-link	LTE (QPSK, 10MHz)	1732.5	0.257x10 ⁻³	2.564.x10 ⁻³	11.28
Up-link	LTE (QAM, 15MHz)	1732.5	0.169x10 ⁻³	2.529x10 ⁻³	11.53
Up-link	LTE (QPSK, 15MHz)	1732.5	0.1.68x10 ⁻³	2.523x10 ⁻³	11.61
Up-link	LTE (QAM, 20MHz)	1732.5	0.126x10 ⁻³	2.512x10 ⁻³	11.50
Up-link	LTE (QPSK, 20MHz)	1732.5	0.128x10 ⁻³	2.553x10 ⁻³	11.55

Transmitting these powers by a $\lambda/2$ dipole tuned on the carriers' frequency we get: erp.

RF Power Output D.L. mod. CDMA

RF Power Output D.L. mod. WCDMA

RF Power Output D.L. mod. 1.4 QAM

RF Power Output D.L. mod. 1.4 QPSK

RF Power Output D.L. mod. 3 QAM

RF Power Output D.L. mod. 3 QPSK

RF Power Output D.L. mod. 5 QAM

RF Power Output D.L. mod. 5 QPSK

RF Power Output D.L. mod. 10 QAM

RF Power Output D.L. mod. 10 QPSK

RF Power Output D.L. mod. 15 QAM

RF Power Output D.L. mod. 15 QPSK

RF Power Output D.L. mod. 20 QAM

RF Power Output D.L. mod. 20 QPSK

RF Power Output U.L. mod. CDMA

RF Power Output U.L. mod. WCDMA

RF Power Output U.L. mod. 1.4 QAM

RF Power Output U.L. mod. 1.4 QPSK

RF Power Output U.L. mod. 3 QAM

RF Power Output U.L. mod. 3 QPSK

RF Power Output U.L. mod. 5 QAM

RF Power Output U.L. mod. 5 QPSK

RF Power Output U.L. mod. 10 QAM

RF Power Output U.L. mod. 10 QPSK

RF Power Output U.L. mod. 15 QAM

RF Power Output U.L. mod. 15 QPSK

RF Power Output U.L. mod. 20 QAM

RF Power Output U.L. mod. 20 QPSK

Section 8: Testing data	Product:	VHPA0001AWS			
Test name: Clause 27.52 RF safe	Test name: Clause 27.52 RF safety				
Test date 01-10 June 2012	Test date 01-10 June 2012 Test engineer: G. Curioni				
Verdict: Pass Supply input: 100-240 Vac					
Temperature: 25 ℃ Air pressure: 86		0-1060 hPa	Relative humidity: 50 %		
Chariffestian, ECC Dort 27					

Specification: FCC Part 27

8.2 Clause 27.52 RF safety

Licensees and manufacturers are subject to the radio frequency radiation exposure requirements specified in sections 1.1307(b), 2.1091, and 2.1093 of this chapter, as appropriate. Applications for equipment authorization of mobile or portable devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

Special notes

The test was performed using E-field probe slowly moving towards the EUT until E-field equivalent to the maximum permitted power density was measured

Equivalent power density was calculated from electric field strength as follows:

$$S_{[mW/cm^2]} = \frac{0.1 \times E^2_{[V/m]}}{120 \times \pi}$$
 $S[W/m^2] = E^2[V/m]/377[\Omega]$

where S is power density and E is electric field strength.

Test data				
Test distance (cm)	Field strength (V/m)	Equivalent power density (mW/cm²)	Limit (mW/cm²)	Margin (mW/cm²)
300				
250				
200				
150				
100				
50				
30				
20				
10				
5				

NOT APPLICABICABLE; External Antenna not provided

8.3 Clause 27.53 (h) Spurious emissions at RF antenna connector

For operations in the 1710-1755 MHz and 2110-2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB.

- (1) Compliance with the provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.
- (2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (3) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

Special notes

- The spectrum was searched from 30 MHz to the 10th harmonic.
- All measurements were performed using a peak detector.
- RBW within 30–1000 MHz was 100 kHz 1 MHz above 1 GHz. VBW was wider than RBW.

CDMA/ LOW BANDEDGE Downlink

Test Data – Spurious Emissions at Antenna Terminals CDMA/ HIGH BAND EDGE Downlink

Test Data – Spurious Emissions at Antenna Terminals CDMA/ LOW BANDEDGE Uplink

Test Data – Spurious Emissions at Antenna Terminals CDMA/ HIGH BAND EDGE Uplink

Test Data – Spurious Emissions at Antenna Terminals WCDMA LOW BANDEDGE Downlink

Test Data – Spurious Emissions at Antenna Terminals WCDMA HIGH BAND EDGE Downlink

Test Data – Spurious Emissions at Antenna Terminals WCDMA LOW BANDEDGE Uplink

Test Data – Spurious Emissions at Antenna Terminals WCDMA HIGH BAND EDGE Uplink

Spurious Emissions at Antenna Terminals Downlink – 1.4 QAM LOW BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 1.4 QAM HIGH BAND EDGE

Spurious Emissions at Antenna Terminals Uplink – 1.4 QAM LOW BAND EDGE

Spurious Emissions at Antenna Terminals Uplink – 1.4 QAM HIGH BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 1.4 QPSK LOW BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 1.4 QPSK HIGH BAND EDGE

Spurious Emissions at Antenna Terminals Uplink – 1.4 QPSK LOW BAND EDGE

Spurious Emissions at Antenna Terminals Uplink – 1.4 QPSK HIGH BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 3 QAM LOW BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 3 QAM HIGH BAND EDGE

Spurious Emissions at Antenna Terminals Uplink – 3 QAM LOW BAND EDGE

Spurious Emissions at Antenna Terminals Uplink – 3 QAM HIGH BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 3 QPSK LOW BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 3 QPSK HIGH BAND EDGE

Spurious Emissions at Antenna Terminals Uplink – 3 QPSK LOW BAND EDGE

Spurious Emissions at Antenna Terminals Uplink – 3 QPSK HIGH BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 5 QAM LOW BAND EDGE

Spurious Emissions at Antenna Terminals Downlink – 5 QAM HIGH BAND EDGE

