Lecture 1: Basic concepts of topological spaces

April 10, 2018

1 Topological space: concepts and examples

A topological space is a set of points, along with a set of neighborhoods for each point, satisfying a set of axioms.

Definition 1.1 Let X be a non-empty set. A collection T of subsets of X is called a topology if it satisfies the following.

- (1) $X, \emptyset \in T$;
- (2) (finite intersection) If $U, V \in T$, then $U \cap V \in T$;
- (3) (infinite union) If each $U_i \in T$ for an index set I, then $\bigcup_{i \in I} U_i \in T$.

Example 1.2 (Euclidean topology) Let $X = \mathbb{R}^n$, the n-dimensional Euclidean space and T the collection of open sets.

Example 1.3 (discrete topology) Let X be a set and T the power set of X, i.e. T is collection of all subsets of X.

A metric space is a set X on which we could talk about "distance".

Definition 1.4 A metric space X is a set together with a distance function $d: X \times X \to \mathbb{R}_{>0}$ such that

- (1) $d(x,y) \ge 0$ and d(x,x) = 0;
- (2) d(x,y) = d(y,x) for any $x, y \in X$;
- (3) $d(x,y) \le d(x,z) + d(z,y)$ for any $x,y,z \in X$.

Example 1.5 The set $X = \mathbb{R}^n$ is a metric space under the distace function $d(x,y) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}$.

Example 1.6 Let C[a,b] be the set of continuous functions on the interval [a,b]. For each $f \in C[a,b]$, define its norm $||f|| = \max_{x \in [a,b]} |f(x)|$. The distance between two functions f,g is defined as d(f,g) = ||f-g||.

Let $B(x_0, r) = \{x \in X \mid d(x, x_0) < r\}$ be the ball of radius r with center x_0 .

Lemma 1.7 Let X be a metric space. The set $\tau_d = \{U \mid U = \cup B(x_i, r_i)\}$ is a topology of X, called metric topology.

Proof. It's enough to check the "finite intersection", while the other two are obvious. For any $x \in U \cap V$, we have $x \in B(x_i, r_i) \cap B(x_i', r_i')$. Choose $r = \min(r_i - d(x, x_i), r_i' - d(x, x_i'))$. Then $B(x, r) \subset U \cap V$.

Definition 1.8 Let T be a topology on X. An element $U \in T$ is called an open set and a subset $V \subset X$ is closed if the complement V^c is open.

Definition 1.9 (1) Let $x \in A \subset X$. The point x is an interior point of A if there exists open set $U \subset A$ containing x. We call A a neighborhood of x. The set of interior points in A is denoted by A° .

(2) Let $x \in X$, $A \subset X$. The point x is an accumulated point of A if every neighborhood of x contains a point in $A \setminus \{x\}$. The set of all accumulated points of A is denoted by A'. The closure \bar{A} of A is $A \cup A'$.

Exercise 1.10 Prove that $x \in \bar{A}$ if and only if every neighborhood U of x has $U \cap A \neq \emptyset$. Prove that \bar{A} is closed.

Definition 1.11 A subset Y of a topological space X is dense if $\bar{Y} = X$. If Y is countable, we call X a separable topological space.

Example 1.12 The set of points with rational coordinates (called rational points) is dense in \mathbb{R}^n . The set of polynomial functions is dense in C[0,1].

2 Continuous functions

Definition 2.1 Let $(X, T_X), (Y, T_Y)$ be two topological spaces. A function $f: X \to Y$ is continuous at a point $x \in X$ if every open set U_Y containing f(x) we have $f^{-1}(U_Y)$ is open. If f is continuous at every point of X, we simply call that f is continuous.

Lemma 2.2 Let $f: X \to Y$ be a function. The following are equivalent.

- (1) f is continuous;
- (2) the preimage $f^{-1}(U_Y)$ is open if U_Y is open in Y;
- (3) the preimage $f^{-1}(C_Y)$ is closed if C_Y is closed in Y;

Proof. It's obvious that (2) and (3) are equivalent by the definition of closeness.

Example 2.3 Let (X,T) be any topological space and (X,dis) the discrete topological space. Then the identity map $f:(X,dis) \to (X,T)$ is continuous, but not the other way.

It's not hard to prove the following.

Lemma 2.4 If $f: X \to Y, g: Y \to Z$ are continuous, then the composite $g \circ f: X \to Z$ is continuous as well.

In Analysis, we have the concept of convergent sequence. In topology, we could have a similar thing:

Definition 2.5 Let $x_1, x_2, \dots, x_n, \dots \in X$. We say $\lim_{n\to\infty} x_n = x_0$ if every neighborhood U of x_0 contains almost all terms x_i (i.e. $\exists N > 0$ we have $x_n \in U$ when n > N).

Corollary 2.6 If $f: X \to Y$ is a continuous map between topological spaces and $x_n \to x$ in X, then $f(x_n) \to f(x)$.

Proof. For every neighborhood U of f(x), we find an open set U' containing f(x). Since f is continuous, $f^{-1}(U')$ is open in X containing x. Therefore, all most all terms x_i lie in $f^{-1}(U')$ and then $f(x_i)$ lie in U'.

But the converse of the previous corollary is not true.

Example 2.7 Let $X = \mathbb{R}$, the set of real numbers, and T the set of subsets $X \setminus Q$, the complements of countable subsets Q in X. If $x_n \to x$ in the topology T, then $x = x_n$ for sufficiently large n. This implies that the identity map $f: (X,T) \to (X,dis)$ maps every convergent sequence to a convergent sequence. But f is not continuous, eg. $f^{-1}([0,1])$ is not open.

3 Homeomorphism

Definition 3.1 A map $f: X \to Y$ between topological spaces is a homeomorphism if

(1) f is bijective; (2) f and its inverse f^{-1} are both continuous.

Two topological spaces X,Y are homeomorphic if there exists a homeomorphism between them.

In topology, we are mainly interested in the invariants under homeomorphisms, i.e. the numbers/functions unchanged by homeomorphisms.

Example 3.2 An open interval (a,b) and \mathbb{R} are homeomorphic.

Example 3.3 The exponential map $e:[0,1)\to S^1=\{x\in\mathbb{C}\mid ||x||=1\}$ given by $t\longmapsto e^{2\pi it}$ is bijective and continuous. But the inverse f^{-1} is not continuous (a sequence $x_i\to e^0$ may have its image $f^{-1}(x_i)\to 0$ or 1), hence not a homeomorphism.

4 Construct new topologies: subs and products

Definition 4.1 Let (X,T) be a topological space and A a subset of X. The subspace (or induced) topology T_A of A is $T_A = \{U \cap A \mid U \in T\}$.

Example 4.2 Let A be a subset of a Euclidean space \mathbb{R}^n . The subspace topology of A is the metric topology on A induced from \mathbb{R}^n . For example, $A = S^2 \setminus N$, a sphere in \mathbb{R}^3 without the north pole, is homeomorphic to the plane \mathbb{R}^2 .

Definition 4.3 Let X be a set and S a set of subsets of X. Suppose that (1) $\bigcup_{B \in S} B = X$; (2) for any $B_1, B_2 \in S$ we have $B_1 \cap B_2 = \bigcup_{i \in I} B_i$ for some index set $I, B_i \in S$. The topology $\langle S \rangle$ generated by S is the minimal topology on X containing S. The set S is called a topology basis of $\langle S \rangle$.

Lemma 4.4 $\langle S \rangle = \{U \mid U = \cup U_i, U_i \in S\}.$

Proof. Since $\langle S \rangle$ is a topology, it's clear that the union $\cup U_i \in \langle S \rangle$. It's enough to check that $\langle S \rangle$ is a topology. Note that both \emptyset and $X \in \langle S \rangle$. The intersection $(\cup U_i) \cap (\cup U_j) = \cup (U_i \cap U_j) \in \langle S \rangle$, since each $U_i \cap U_j \in \langle S \rangle$ by the requirement of S.

Definition 4.5 For two topological spaces $(X, T_X), (Y, T_Y)$, the product topology on $X \times Y$ is the smallest topology containing $\{U \times V \mid U \in T_X, V \in T_Y\}$.

Exercise 4.6 Check that the intersection of two elements in $\{U \times V \mid U \in T_X, V \in T_Y\}$ still lies in $\{U \times V \mid U \in T_X, V \in T_Y\}$.

Lemma 4.7 Let $f: Y \to X_1 \times X_2$ be a map given by $y \longmapsto (f_1(y), f_2(y))$. Then f is continuous if and only if f_1, f_2 are continuous.