

INFO20003 Database Systems

https://powcoder.com

Add Renata Borovica-Gajic

Lecture 11
Query Processing Part I

Remember this? Components of a DBMS

MELBOURNE

- Query Processing Overview
- Selections
- Projections Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Readings: Chapter 12 and 14, Ramakrishnan & Gehrke, Database Systems

Query processing overview

MIELBOUKNE

- Some database operations are EXPENSIVE
- DBMSs can greatly improve performance by being 'smart'
 - e.g., can speed up 1,000,000x over naïve approach

Assignment Project Exam Help

- Main weapons are:
 - clever implementation preximple some perators
 - exploiting 'equivalencies' of relational operators Add WeChat powcoder using cost models to choose among alternatives

Query processing workflow

Relational Operations

MIELBOURNE

- We will consider how to implement:
 - -<u>Selection</u> (σ) Selects a subset of rows from relation
 - -<u>Projection</u> (π) Deletes unwanted columns from relation
 - -Join (M) Assignment property and attemptions
- Operators can be then be composed creating query plans

 Add WeChat powcoder

MELBOURNE

- Query Processing Overview
- Selections
- Projections Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Readings: Chapter 14, Ramakrishnan & Gehrke, Database Systems

Schema for Examples

MIELBOUKNI

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

- Sailors (S): Assignment Project Exam Help
 - -Each tuple is 50 bytes long, 80 tuples per page, 500 pages
 - -N = NPages(S) = 500; p_s=NTuplesPerPage(S) = 80
 - -NTuples(S) = 500°€0 ₩40099t powcoder
- Reserves (R):
 - -Each tuple is 40 bytes long, 100 tuples per page, 1000 pages
 - $-M= NPages(R) = 1000, p_R=NTuplesPerPage(R) = 100$
 - -NTuples(R) = 100000

Simple Selections

MELBOURNE

- ullet Of the form $\sigma_{R.attr\,op\,value}\left(R
 ight)$
- Example:

```
SELECT *
FROM Reserves R
WHERE R.BID > 20;
Assignment Project Exam Help
```

- The best way to perform a selection depends on:
 - 1. available indexes/accessatations
 - expected size of the result (number of tuples and/or number of pages)

Estimate result size (reduction factor)

MELBOURNE

Size of result approximated as:

size of relation $* \prod$ (reduction factors)

- Reduction factori is rusteally Redirect selectivity ellipses timates what portion of the relation will qualify for the given predicate, i.e. satisfy the given confident.
 - This is estimated by the optimizer (Will be laught next week)
 - E.g. 30% of records qualify, or 5% of records qualify

Alternatives for Simple Selections

MELBOURNE

- 1. With no index, unsorted:
 - -Must scan the whole relation, i.e. perform Heap Scan
 - -Cost = Number of Pages of Relation, i.e. NPages(R)
 - -Example: Reserves cost(R)= 1000 IO (1000 pages)
 Assignment Project Exam Help
- 2. With no index, but file is sorted: https://powcoder.com
 - -cost = binary search cost + number of pages containing results
 - -Cost = log₂(NPages(R)) + (PFaN Bages(B)) er
 - -Example: Reserves cost(R)= 10 I/O + (RF*NPages(R))
- 3. With an index on selection attribute:
 - Use index to find qualifying data entries,
 - -Then retrieve corresponding data records
 - -Discussed next....

Index Clustering: Review

MIELBOUKNE

Clustered vs. unclustered

Using an Index for Selections

- MELBOURN
- Cost depends on the number of qualifying tuples
- Clustering is important when calculating the total cost
- Steps to perform:
 - 1. Find qualifying data entries:
 - Go through the sheet typically small, 214 I/O hase of B+tree, 1.2 I/O in case of hash index (negligible if many records retrieved)
 - Once data entries at the one one by one and look up corresponding data records (in the data file)
 - 2. Retrieve data records (Chatalan Miles) der
- Cost:
- Clustered index:
 - Cost = (NPages(H) + NPages(R))*RF
- 2. Unclustered index:
 - Cost = (NPages(I) + NTuples(R))*RF

MELBOURNE

- **Example**: Let's say that 10% of Reserves tuples qualify, and let's say that index occupies 50 pages
- RF = 10% = 0.1, NPages(I) = 50, NPages(R) = 1000, NTuplesPerPage(R) = 100

Assignment Project Exam Help

• Cost:

https://powcoder.com

1. Clustered index:

2. Unclustered index:

Cost =
$$(NPages(I) + NTuples(R))*RF$$

Cost = $(50+100000)*0.1 = 10005 (I/O)$

3. Heap Scan:

Cost = NPages(R) = 1000 (I/O)

General Selection Conditions

MELBOUKNE

- Typically queries have multiple predicates (conditions)
- Example: day<8/9/94 AND rname='Paul' AND bid=5 AND sid=3
- A B-tree index matches (a combination of) predicates that involve only attributes mention of the search key
 - -Index on <a, b, compatches predicates on: (a,b,c), (a,b) and (a)
 - -Index on <a, b, Admetiches at power b=3, but will not used to answer b=3
 - -This implies that only reduction factors of predicates that are part of the prefix will be used to determine the cost (they are called matching predicates (or primary conjuncts))

Selections approach

- 1. Find the cheapest access path
 - An index or file scan with the least estimated page I/O
- 2. Retrieve tuples using it
 - Predicates that match this lifetx Freduce the number of tuples retrieved (and impact the cost)
- 3. Apply the predicates that the part participation on
 - These predicates are used to discard some retrieved tuples, but do not affect number of tuples/pages fetched (nor the total cost)
 - In this case selection over other predicates is said to be done "on-the-fly"

Cheapest Access Path: Example

MELBOURNE

- Example: day < 8/9/94 AND bid=5 AND sid=3
- A B+ tree index on day can be used;
 - -RF = RF(day)
 - -Then, bid ≠5saingluside 3tm Pustjee to hecked For leach retrieved tuple on the fly
- Similarly, a hash intex:operidosids could be used;
 - $-\prod RF = RF(bid)*RF(sid)$
 - -Then, day<8/9/94 must be the Reverse fly
- How about a B+tree on <rname,day>? (Y/N)
- How about a B+tree on <day, rname>? (Y/N)
- How about a Hash index on <day, rname>? (Y/N)

MELBOURNE

- Overview
- Selections
- Projections Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Readings: Chapter 14, Ramakrishnan & Gehrke, Database Systems

MELBOURNE The Projection Operation

MIELBOUKNE

Issue with projection is removing duplicates

SELECT DISTINCT R.sid, R.bid FROM Reserves R Assignment Project Exam Help

 https://powcoder.com
 Projection can be done based on hashing or sorting Add WeChat powcoder

The Projection Operation

MELBOURNE

- Basic approach is to use sorting
 - -1. Scan R, extract only the **needed** attributes
 - -2. Sort the result set (typically using external merge sort)
 - -3. Remove adjacent duplicates Assignment Project Exam Help

External Merge Sort

- If data does not fit in memory do several passes
- Sort runs: Make each B pages sorted (called runs)
- Merge runs: Make multiple passes to merge runs
 - -Pass 2: Produce runs of length B(B-1) pages We will let you know
 - -Pass 3: Produce runs of length B(B-1)2 proces in the passes there are
 - -Pass P: Produce runs of length & Bold engesm

Readings: Chapter 13, Ramakrishnan & Gehrke, Database Systems

MELBOURNE

buffer pages in memory B = 4, each page 2 records, sorting on a single attribute (just showing the attribute value)

MELBOUKNE

MELBOUKNE

MIELBOUKNE

MELBOURNE

MIELBOUKNE

MELBOUKNE

MIELBOUKNE

MIELBOUKNE

MIELBOUKNE

MIELBOUKNE

MIELBOUKNE

MELBOURNE The Projection Operation Cost

- Sorting with external sort:
 - -1. Scan R, extract only the needed attributes
 - -2. Sort the result set using EXTERNAL SORT
 - -3. Remove adjacent duplicates

ReadTable signment Project Frank Helpy projected attributes Cost = WriteProjectedPages + Write pages with projected attributes to disk SortingCost + Sort pages with projected attributes with external sort ReadProjectedPages W Read sprted projected pages to discard adjacent

WriteProjectedPages = NPages(R)* PF

PF: Projection Factor says how much are we projecting, ratio with respect to all attributes (e.g. keeping ¼ of attributes, or 10% of all attributes)

Every time we read and write

SortingCost = 2*NumPasses*ReadProjectedPages

MIELBOUKNE

- Example: Let's say that we project ¼ of all attributes, and let's say that we have 20 pages in memory
- PF = 1/4 = 0.25, NPages(R) = 1000
- With 20 memory pages we can sort in 2 passes
 Assignment Project Exam Help

```
Cost = ReadTable + https://powcoder.com
WriteProjectedPages +
SortingCost + Add WeChat powcoder
ReadProjectedPages
= 1000 + 0.25 * 1000 + 2*2*250 + 250 = 2500 (I/O)
```


Projection based on Hashing

MELBOUKNE

- Hashing-based projection
 - -1. Scan R, extract only the **needed** attributes
 - -2. Hash data into buckets
 - Apply hash function h1 to choose one of B output buffers
 - -3. Remove actioner the property of the proper
 - •2 tuples from different partitions guaranteed to be distinct https://powcoder.com

Add WeChat powcoder

Projection Based on Hashing

MIELBOURNE

Projection based on External Hashing

MELBOURNE

- 1. Partition data into B partitions with h1 hash function
- 2. Load each partition, hash it with another hash function (h2) and **eliminate duplicates**

Projection based on External Hashing

MELBOURNE

1. Partitioning phase:

- -Read R using one input buffer
- –For each tuple:
 - Discard unwanted fields
 - •Apply hash function hat topchoose one of B troutput buffers
- -Result is B-1 partitions (of tuples with no unwanted fields)
 - •2 tuples from different/partitions deprended to be distinct

2. Duplicate elimination phase:

- -For each partition Add WeChat powcoder
 - Read it and build an in-memory hash table
 - -using hash function h2 (<> h1) on all fields
 - while discarding duplicates
- —If partition does not fit in memory
 - Apply hash-based projection algorithm recursively to this partition (we will not do this...)

MELBOUKNE

Cost = ReadTable +

WriteProjectedPages - ReadProjectedPages

Read the entire table and project attributes

WriteProjectedPages + Write projected pages into corresponding partitions

Read partitions one by one, create another hash table and discard duplicates within a bucket

Assignment Project Exam Help

Our example: https://powcoder.com

Cost = ReadTable + Add WeChat powcoder

WriteProjectedPages +

ReadProjectedPages

= 1000 + 0.25 * 1000 + 250 = 1500 (I/O)

MELBOUKNE

- Understand the logic behind relational operators
- Learn alternatives for selections and projections (for now)
 - -Be able to calculate the cost of alternatives
- Important for Assignment 3 as; well Exam Help

https://powcoder.com

Add WeChat powcoder

MELBOURNE

- Query Processing Part II
 - Join alternatives

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder