Overall Results

Hamza

30 September 2019

Meta-analysis

Calculating effect sizes

Here, we calculated our effect sizes (log response ratio lnRR) for our complete data set (all traits).

Meta-analysis overall results (lnRR)

1. Calculating effect sizes (Done)

We calculated our effect sizes (log response ratio lnRR) for our complete data set (all traits).

2. Deciding random effects (Done)

We used AIC values to decide which random effects to use. Combining "Trait", "Paper_ID" and "Cohort ID" yielded the lowest AIC values.

3. Running meta-analysis (overall, and then overall split by exposure type)

I conducted meta-analysis, first on the complete dataset, and then on subsetted data (split by one off and multigenerational exposure)

Plotting overall results

Plotting overall results when split by multigenerational and one off exposure

Running meta-analysis (Overall with moderators, and then overall split by exposure type with moderators) $\frac{1}{2}$

Plotting overall results with moderators

Plotting Overall results with moderators (split by exposure type)

## # A tibble: 11 x 5						
##		ID	<pre>Experiment_Type</pre>	lnRR	ci.lb	ci.ub
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	FO Female	${\tt Multigenerational}$	0.417	0.0521	0.783
##	2	FO Male	${\tt Multigenerational}$	0.302	-0.329	0.934
##	3	FO Both	One off	0.187	0.093	0.282
##	4	FO Female	One off	0.0747	0.0237	0.126
##	5	FO Male	One off	0.0491	-0.0134	0.112
##	6	Both Sex Grand Offspring	Multigenerational	1.05	0.484	1.62
##	7	Female Grand Offspring	${\tt Multigenerational}$	0.117	-0.393	0.627
##	8	Male Grand Offspring	Multigenerational	0.125	-0.386	0.636
##	9	Both Sex Grand Offspring	One off	-0.380	-0.654	-0.107
##	10	Female Grand Offspring	One off	0.0729	0.0235	0.122
##	11	Male Grand Offspring	One off	0.079	0.0306	0.127

Meta-analysis overall results (lnCVR)

4. Calculating effect sizes (Done)

We calculated our effect sizes (lnCVR) for our complete data set (all traits).

5. Running meta-analysis for lnCVR (overall, and then overall split by exposure type)

I conducted meta-analysis using lnCVR, first on the complete dataset, and then on subsetted data (split by one off and multigenerational exposure)

Plotting overall results lnCVR

Plotting overall results when split by multigenerational and one off exposure (lnCVR)

Running meta-analysis $\ln \text{CVR}$ (Overall with moderators, and then overall split by exposure type with moderators)

Plotting overall results with moderators

Plotting Overall results with moderators (split by exposure type)

Difference between treatment and control in means, overal

