

Machine Learning

ITAM

Outline

- Unsupervised learning
- Clustering: Grouping and data segmentation
- Similarity measures
 - Transformation of ordinal, nominal and categorical variables
- Techniques
 - Partition methods
 - EM: k-medias
 - Density methods
 - Hierarchical methods

Objective

- Group data into categories or clusters such that instances that are more closely related belong to the same group
- Sometimes we also want a hierarchy that orders data accroding to their relatedness
 - E.g. A taxonomy

Unsupervised learning

- Clustering algorithms are unsupervised learning algorithms
 - There are no labeled examples from which the model is created

Uses:

- When labeling is expensive
- When label change with time
- When we want to find unsuspected relationships in the data that might be useful for classification
- Whe we want to better understand the data
-

Clustering techniques

- The first step is to define the appropriate criterion for similarity between data instances
 - Normaly this depends on the application
 - How similar are México and Uganda?
 - How similar is a 4 to a 5; a 4 to a 4.1?

 On occasion we are provided with a similarity matrix. Silimarity between pairs

	México	Uganda	Holanda
México	1	0.4	0.3
Uganda	0.4	1	0.2
Holanda	0.3	0.2	1

- Usually they are simetric
- Some algorithms need a difference matrix.

Instance similarity Attribute similarity

- If we don't have such a matrix
 - Define a distance metric between the values in each attribute
 - Define a way to combine the similarities between the attributes
 - Eg. <México, 25> and <Uganda, 30>
 - The distance (similitud) between México and Uganda is 0.4. We can, for example, define the distance between 25 and 30 as |25-30|=5
 - We need a way to generete a single number from 0.4 and 5 (we will see ahead)

Instance similarity Attribute similarity

- Quantitative variables
 - The most common is to define the similitud as:
 - $(X_{i,k} X_{j,k})^2$
 - The squared difference of attribute k of instances i and j
 - There are, of course, others
 - Absolute value....

Instance similarity Attribute similarity

- Ordinal variables
 - E.g.
 - Taste (horrible, so-so, delicious)
 - Grades (A, B, C, F)
 - They can be representes as an ordered list of succesive numbers
 - (i-1)/(M-1)
 - Where i is the i-th value and M is the total number of different values for the given attribute
 - horrible=0/2, so-so=1/2, delicious=2/2
 - Once tranformed they are treated as quantitative variables

- Categorical variables
 - Distance matrix
 - Or substitute the variable for k indicator bits, one for each of its possible values. Each instance will then have k bits with one and only one set to 1 and the rest the value of 0. This is called one-hot encoding

- A common method is to use the Euclidean distance:
 - $\sqrt{(\sum (x_{i,k}-x_{j,k})^2)}$
 - The sum of the squared differences between attributes
 - We can omit the sqrt as it doen't alter the relative distances
- There are other option which might be more appropriate
 - Edit distance, Manhattan distance, Mahalanobis, etc.

- One danger is that attributes of different scales will affect the distance disproportionately
 - Eg. <distance_to_work, age>
 - Dato 1= <2500mts, 35>
 - Dato 2=<2400mts, 15>
 - Dato 3=<2300mts, 34>
 - The distance between d1y d2 is 10400 while between d1 and d3 is 40001.
 - It depends on the applications but at first glance its seems that d1 and d3 are more similar than d1 and d2
- Solution?

 Additionally we can add a weight w_k a to each attribute k the establish the importance of each attribute in determining similarity

$$\sum W_k (X_{i,k} - X_{j,k})^2$$

$$\nabla w_k = 1$$

 A good distance metric can be more important that the particular clustering algorithm used to segment the data

Clustering algorithms

The objective of these algorithms is to divide data into groups such that the similitud between instance pairs within a group is greater that between intances in different groups (or clusters)

Clustering algorithms

- Two important categories :
 - Partition methods
 - Given n instances, classify into k disjoint categories.
 - Distance based: E.g. K-medias, A-priori
 - Density based: DBscan
 - Hierarchical methods
 - They create a hierarchy in the data. They create a tree of clusters, e.g., Cobweb

Clustering algorithms

- We will see:
 - Expectation Maximization
 - k-means
 - Hierarchical
 - DBSCAN
- A general question:
 - Can you learn anything from data without labels?
 - Depends on your assumptions
 - The goodness of your results depend on how your assumptions and reality match up

Clustering algorithms Expectation Maximization (EM)

- We asume we know: que conocemos
 - The number of groups in which data is segmented
 - The distribution of the data
 - The most common assumption is that they are distributed normally
- We don't know
 - The group each instance belongs to
 - Training data don't have the value of the objetive function
 - The parameters of the distribution
 - If we assume the normal distribution we don't know its mean and variance

Clustering algorithms EM

The task is to estimate the unknown parameters of the underlying distributions (mean, variance,..)

- We are going to look at k-means which belongs to the EM family
- It is a very efective simplification of the more general algorithm

- The simplification consists in that we will only estimate the means of the distributions
 - The mean of the distribution i (D_i):
 - $\mu_i = (1/w_i) \sum p_{i,j} \mathbf{x}_j$, where
 - p_{i,j}: is the probability that the instance x_j was generated by distribution D_i
 - w_i: is the sum of all probabilities (p_{i,j}) for all instances x_i that belong to the distribution D_i

- Additionally, since we dont want to estimate the variance, we can set the p_{i,j} using the squared Euclidean distance from the data to the mean μ_i of the distrubution D_i
- distance $(\mathbf{x}_{j}, \boldsymbol{\mu}_{i}) = ||\mathbf{x}_{j} \boldsymbol{\mu}_{i}||^{2}$ and approximate $p_{i,j}$ as

 $p_{i,j} \approx \int 1$ if μ_i is the closest mean to \mathbf{x}_j , 0 otherwise

- The algorithm consists of two phases
 - Expectation
 - Estimate the probability that each instance belongs to each of the distributions
 - Maximization
 - Recompute the means

- Given
 - n training examples
 - An integer k
 - Initial values for the means μ₁, μ₂,..., μ_k
- Do{
 - Classifly the n instances according to their closest mean μ_i
 - For each x_i, compute the distance to each μ_i
 - Mínimo_{i=1,k} (distancia(**x**_i, μ_i))
 - Classify x_i as member of its closest mean
 - Recalculate the new μ_i
 - $\mu_i < --- (1/w_i) \sum p_{i,j} \mathbf{x}_j$
- }while(ther is change in the values of $\mu_1, \mu_2, ..., \mu_k$)

To classify x_q , you compute its distance to all the means. Its classified as member of the closest mean

Clustering algorithms Example k-means

DATOS	media 1	media 2	Pij (clase 1)	Pij (clase2)	Clase 1	Clase 2	media 1	media 2
	-0.5	1					0.144943	0.653655
	Distancia						Distancia	
0.67	1.17	0.33	0	1	0	0.67	0.525057	0.016345
0.19122452	0.691225	0.80878	1	0	0.19122	0	0.046282	0.46243
0.7	1.2	0.3	0	1	0	0.7	0.555057	0.046345
0.17606015	0.67606	0.82394	1	0	0.17606	0	0.031117	0.477595
0.103874	0.603874	0.89613	1	0	0.10387	0	0.041069	0.549781
0.646908	1.146908	0.35309	0	1	0	0.64691	0.501965	0.006747
0.19994854	0.699949	0.80005	1	0	0.19995	0	0.055006	0.453706
0.30341512	0.803415	0.69658	0	1	0	0.30342	0.158472	0.35024
0.0536079	0.553608	0.94639	1	0	0.05361	0	0.091335	0.600047
0.59716748	1.097167	0.40283	0	1	0	0.59717	0.452224	0.056488
0.87234622	1.372346	0.12765	0	1	0	0.87235	0.727403	0.218691
0.46032091	0.960321	0.53968	0	1	0	0.46032	0.315378	0.193334
0.97908235	1.479082	0.02092	0	1	0	0.97908	0.834139	0.325427
		Total =	5	8	0.72472	5.22924		Total =

Clustering algorithms Example k-means

DATOS	media 1	media 2	Pij (clase 1)	Pij (clase2)	Clase 1	Clase 2	media 1	media 2
	0.144943	0.653655					0.171355	0.70369
	Distancia						Distancia	
0.67	0.525057	0.016345	0	1	0	0.67	0.498645	0.03369
0.19122	0.046282	0.46243	1	0	0.1912	0	0.019869	0.51246
0.7	0.555057	0.046345	0	1	0	0.7	0.528645	0.00369
0.17606	0.031117	0.477595	1	0	0.1761	0	0.004705	0.52763
0.10387	0.041069	0.549781	1	0	0.1039	0	0.067481	0.59982
0.64691	0.501965	0.006747	0	1	0	0.6469	0.475553	0.05678
0.19995	0.055006	0.453706	1	0	0.1999	0	0.028594	0.50374
0.30342	0.158472	0.35024	1	0	0.3034	0	0.13206	0.40027
0.05361	0.091335	0.600047	1	0	0.0536	0	0.117747	0.65008
0.59717	0.452224	0.056488	0	1	0	0.5972	0.425812	0.10652
0.87235	0.727403	0.218691	0	1	0	0.8723	0.700991	0.16866
0.46032	0.315378	0.193334	0	1	0	0.4603	0.288966	0.24337
0.97908	0.834139	0.325427	0	1	0	0.9791	0.807727	0.27539
		_						
		Total =	6	7				-

Clustering algorithms Example k-means

DATOS	media 1	media 2	Pij (clase 1)	Pij (clase2)	Clase 1	Clase 2	media 1	media 2
	0.171355	0.70369					0.17136	0.70369
	Distancia					Distancia		1
0.67	0.498645	0.03369	0	1	0	0.67	0.49864	0.03369
0.1912	0.019869	0.51246	1	0	0.1912	0	0.01987	0.51246
0.7	0.528645	0.00369	0	1	0	0.7	0.52864	0.00369
0.1761	0.004705	0.52763	1	0	0.1761	0	0.00471	0.52763
0.1039	0.067481	0.59982	1	0	0.1039	0	0.06748	0.59982
0.6469	0.475553	0.05678	0	1	0	0.6469	0.47555	0.05678
0.1999	0.028594	0.50374	1	0	0.1999	0	0.02859	0.50374
0.3034	0.13206	0.40027	1	0	0.3034	0	0.13206	0.40027
0.0536	0.117747	0.65008	1	0	0.0536	0	0.11775	0.65008
0.5972	0.425812	0.10652	0	1	0	0.5972	0.42581	0.10652
0.8723	0.700991	0.16866	0	1	0	0.8723	0.70099	0.16866
0.4603	0.288966	0.24337	0	1	0	0.4603	0.28897	0.24337
0.9791	0.807727	0.27539	0	1	0	0.9791	0.80773	0.27539
		Total =	6	7				

- Some shortcomings
 - You have to pre-establish the number of clusters k
 - Its sensible to the initial values of the means

Other algorithms

- X-means: an extension of k-means that helps set k
- Fuzzy k-means
- K-medioids
- Hierarchical methods
 - Closest neighbors
 - Furthest neighbors
- Density methods
 - DBSCAN

Exercise

- Download data from UCI
 - I suggest Abalone
- Make a classification model using a the classification technique of your choice
- Execute k-means (do you need to separete in train and test before k-means?)
 - Train a model using the same technique as above for each cluster
 - Take care in combining the results for each cluster
- Compare results
 - Did any metric improve by preprocessing the data first with k-means?