Gazdasági és Pénzügyi modellek

2023.05.31. vizsga

0.FELADAT

$$ax = 113$$
, $ay = 116$, $az = 102$, $av = 108$, $ss = 569$, $ev = 2013$, $reszveny = TSLA$

1.FELADAT

A **set.seed(ss)** beállítja a random szám generátor kezdőértékét, hogy a generált minták ismételhetőek legyenek.

Az **nx** változó értékét beállítjuk 800-ra, ami a generált minták számát jelenti.

A v változóban egy 2x2-es mátrixot hozunk létre a megadott értékek alapján.

A ${\bf w}$ változóba elvégzünk egy Cholesky-faktorizációt a ${\bf v}$ mátrixon, amely előkészíti a transzformációhoz szükséges mátrixot.

A **z1** és **z2** változóban generálunk **nx** darab random mintát az előre meghatározott eloszlásból és transzformáljuk őket.

A zm változóban létrehozunk egy 2 oszlopból álló mátrixot a z1 és z2 értékekből.

A **zn** változóba kiszámítjuk a minták végső értékét a **zm** és **w** mátrixok segítségével.

Így a **zn** változó tartalmazza a kért **nx** elemű kétdimenziós mintarealizációt. --> **print(zn)** (amit ki iratunk)

> print(zn)		[752,]		124.01253348
[,1]	[,2]		-34.66313982	
[1,] -336.81979117	-61.34537765		70.09121024	
[2,] 107.47448189	50.01090566		-81.47557335	
[3,] -60.26161982	-7.76107722		-125.00658785	
[4,] 163.08922379	-4.65329744		66.53329163	
[5,] -233.92697137	18.75255471		-160.73957901	
[6,] -43.45902834	-6.27498745		24.08763229	
[7,] -12.38703815	-279.60985872		36.84031196	
[8,] -45.99879452	-35.60463113		47.55767226	
[9,] -25.45360838	177.64987217	[762,]	-65.68482094	-74.18564603
[10,] -147.52780037	136.85666372		73.83632560	
[11,] 17.23321915	165.62704847		-62.56311346	
[12,] 153.72336032	87.41617362		63.53689349	
[13,] -202.18196408	8.04122225		25.16947905	
[14,] -162.58046936	-153.24597271		33.17431801	
[15,] -135.37845690	100.66921769		144.82472392	
[16,] -113.81174494	-10.83909018		-9.53108163	
[17,] -26.72009828	5.06299979		12.81803088	
[18,] 121.53441752	-75.62465727		-23.99272987	
[19,] 17.91717707	-67.77693638	[772,]	-67.89814391	-130.16352417
[20,] 159.15524505			221.14476400	
[21,] 69.67139154			-19.60106513	
[22,] -18.29470275		[775,]	74.35422376	40.75063687
[23,] -102.85331201	-45.73126808		-51.39062532	
[24,] -5.10683329		[777,]	94.19391830	-42.34812965
[25,] 63.07966286		[778,]	-150.81258207	-76.16129128
[26,] 36.98426830		[779,]	-0.08646487	126.47437468
[27,] -6.87133674		[780,]	15.57257059	-54.32254047
[28,] -23.11765184			111.47377553	
[29,] 25.70310749		[782,]	57.94012410	-78.74737735
[30,] 55.54142134	124.79946932		-2.66438859	
[31,] -91.48228566		[784,]	-32.67976893	-190.03563373
[32,] 51.56345204			-43.24721358	
[33,] -33.99680767			113.59803156	
[34,] 23.00156290		[787,]	1.32603296	149.49935496
[35,] 164.72157862			-190.15116924	
[36,] 143.02283768			253.76826150	
[37,] -33.38320396			53.96915188	
[38,] 59.90137072		[791,]	228.23175588	136.03180664
[39,] -104.72149433		[792,]	-137.22680695	-28.25388103
[40,] 67.91159216			-137.67452308	
[41,] -129.83716105			62.74405032	
[42,] -203.17941242		[795,]	171.48931333	127.89407395
[43,] 243.41431589			-146.49013835	
[44,] 130.54256629		[797,]	0.75491633	-64.62285633
[45,] -152.85399380			155.79341709	
[46,] 66.92862955			-88.36110852	
[47,] -40.84014172		[800,]	87.07847851	147.40662307
[48,] -124.03587247				
. ,,				

Először megbecsüljük a paramétereket a **zn** mintarealizáció alapján. A paraméterek becsléséhez a minta átlagát és a koverencia mátrixát használjuk.

A **mean_zn** változóban tároljuk a **zn** mintarealizáció oszlop átlagát, míg a **cov_zn-**ben a minta kovarancia mátrixát tároljuk.

Ezek után megvizsgáljuk, a marginális eloszlást amelyhez a normális eloszlást használjuk.

```
f(x) = (1 / (σ * sqrt(2π))) * exp(-((x - μ)^2) / (2σ^2))

> marginal_1 = list(mean = mean_zn[1], sd = sqrt(cov_zn[1, 1]))
> marginal_2 = list(mean = mean_zn[2], sd = sqrt(cov_zn[2, 2]))
> print(marginal_1)
$mean
[1] -2.99509

$sd
[1] 109.3131

> print(marginal_2)
$mean
[1] 2.4203

$sd
[1] 107.4921
```

A marginal_1 változóban a perem 1 becslését tároljuk, ahol az átlag (mean) a mean_zn[1], a szórás pedig a négyzetgyök a cov_zn[1, 1] értékből. A marginal_2 változóban ugyanezt tesszük a perem 2-re.

A peremek függetlenségének vizsgálatához a korrelációs mátrixot vizsgálhatjuk:

Ha a korrelációs mátrix diagonális, vagyis a nem-diagonális elemek közelítőleg 0-k, akkor a peremek függetlenek lehetnek.

2.FELADAT

```
> set.seed(569+137)
> n = 800
> rho = 0.8
>
> corr_matrix = matrix(c(1, rho, rho, 1), nrow = 2)
> sample_data = MASS::mvrnorm(n, mu = c(0, 0), Sigma = corr_matrix)
> plot(sample_data, main = "Exponenciális eloszlású mintarealizáció", xlab = "X", ylab = "Y")
```

A **set.seed(569+137)** beállítja a random generátor seed-jét az adott értékre, hogy ismételhetővé tegye a generálást. Az **n** változóban megadja a mintaelemszámot, míg a **rho** változóban tárolja a korrelációs együtthatót.

A **corr_matrix** létrehoz egy 2x2-es korrelációs mátrixot, amelyben az átlós elemek 1-esek (hiszen az adott változók önmagukkal teljes korrelációban vannak), és a nem átlós elemeket a **rho** értéke határozza meg.

A **MASS::mvrnorm()** függvény segítségével generálunk **n** darab mintát az exponenciális eloszlásból a megadott korrelációs mátrix és középérték (0, 0) alapján.

Végül az **plot()** függvény segítségével ábrázoljuk a kapott mintarealizációt, ahol az x tengelyen az első változót, az y tengelyen pedig a második változót ábrázoljuk.

4. FELADAT

```
> set.seed(569+137)
> n = 800
>  rho = 0.8
> corr_matrix = matrix(c(1, rho, rho, 1), nrow = 2)
> sample_data = MASS::mvrnorm(n, mu = c(0, 0), Sigma = corr_matrix)
> plot(sample data, main = "Exponenciális eloszlású mintarealizáció", xlab = "X", ylab = "Y")
> set.seed(569+17)
> lambda = 2
> time_interval = 1000
> poisson_process = rpois(time_interval, lambda)
> plot(poisson_process, type = "s", main = "Poisson folyamat", xlab = "Idő", ylab = "Eseménye$
> event_times = which(poisson_process > 0)
> interarrival_times = diff(event_times)
 mean_interarrival_time = mean(interarrival_times)
> print(mean interarrival time)
[1] 1.156431
```

A **set.seed(569+17)** beállítja a random generátor seed-jét az adott értékre, hogy ismételhetővé tegye a generálást. A **lambda** változóban megadja a Poisson eloszlás várható értékét, míg a **time_interval** változóban tárolja az időintervallum hosszát.

A **rpois()** függvény segítségével generálunk egy Poisson folyamatot a megadott időintervallumra és várható értékre.

Az **plot()** függvénnyel ábrázoljuk a kapott folyamatot. A **type = "s"** paraméterrel lépcsőzetes ábrázolást használunk.

A bekövetkezések között eltelt idő várható értékét a **event_times** változóban tárolt bekövetkezési időpontok alapján számítjuk. Az **interarrival_times** változóban tároljuk a bekövetkezések között eltelt időket, majd ezek átlagát vesszük a **mean_interarrival_time** változóban.

Az eredményt a print() függvénnyel írjuk ki a konzolra.

