Parseo y Generación de Código -2^{do} semestre 2016 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Segundo parcial

NOTA: este parcial es a libro abierto. Se permite tener cualquier material manuscrito o impreso, pero no se permite el uso de dispositivos electrónicos. El parcial dura 3 horas y se califica con una nota numérica de 1 a 10. Se requiere ≥ 4 en ambos parciales para aprobar la materia. Para promocionar se requiere nota ≥ 6 en ambos parciales y promedio ≥ 7 .

Ejercicio 1. Extender la siguiente gramática con atributos sintetizados para generar código para una máquina de pila. La gramática es $G = (\{E, O\}, \{+, *, \mathbf{n}, \mathbf{id}, (,)\}, P, E)$, con las siguientes producciones:

$$E \rightarrow EOE \mid \mathbf{n} \mid \mathbf{id} \mid (E)$$
 $O \rightarrow + \mid *$

La interpretación de las expresiones es la esperada: por ejemplo, $\mathbf{n} + \mathbf{n}$ representa la suma de dos constantes numéricas. Suponemos que las constantes numéricas \mathbf{n} vienen acompañadas de un atributo valor de tipo Int, y que los identificadores \mathbf{id} vienen acompañados de un atributo nombre de tipo String. El código para la máquina de pila es una lista de operaciones. Las operaciones son las siguientes, con la interpretación esperada:

Ejercicio 2. Dado el siguiente programa:

```
x := 0
y := 10
for i = 1 to 10 {
   tmp := x
   x := 2 * (y + i)
   y := tmp - 3 * y
}
result := x + y
```

- a. Generar código de tres direcciones, asignando los registros del siguiente modo: $\{x \mapsto t1, y \mapsto t2, i \mapsto t3, tmp \mapsto t4, result \mapsto t5\}$. Se pueden utilizar más registros (t6, t7, ...) si es necesario. **Nota:** en el código generado no debería aparecer ningún nombre de variable, únicamente registros.
- b. Construir el grafo de flujo de control.

Ejercicio 3. Dado el siguiente programa:

Ejercicio 4. Considerar el lenguaje con los siguientes términos y tipos:

$$M ::= \mathsf{id} \mid (M \circ M) \mid \langle M, M \rangle \mid \mathsf{fst} \mid \mathsf{snd}$$
 $\alpha ::= \mathbf{Bool} \mid \mathbf{Int} \mid (\alpha \times \alpha)$

Los juicios de tipado son de la forma $M: \alpha \to \beta$ y están dados por las siguientes reglas:

$$\frac{1}{\operatorname{id}:\alpha\to\alpha} \text{ T-ID} \qquad \frac{M:\alpha\to\beta \quad N:\beta\to\gamma}{(N\circ M):\alpha\to\gamma} \text{ T-COMPOSE}$$

$$\frac{M:\alpha\to\beta \quad N:\alpha\to\gamma}{\langle M,N\rangle:\alpha\to(\beta\times\gamma)} \text{ T-PAIR} \qquad \frac{1}{\operatorname{fst}:(\alpha\times\beta)\to\alpha} \text{ T-FST} \qquad \frac{1}{\operatorname{snd}:(\alpha\times\beta)\to\beta} \text{ T-SND}$$

- a. Dar una derivación del juicio ($\langle \mathsf{snd}, \mathsf{fst} \rangle \circ \langle \mathsf{snd}, \mathsf{fst} \rangle$) : $(\alpha \times \beta) \to (\alpha \times \beta)$
- b. Proponer tipos τ_1 y τ_2 apropiados para que se pueda derivar el siguiente juicio y exhibir la derivación:

$$\langle (\mathsf{fst} \, \circ \, \mathsf{fst}), \langle (\mathsf{snd} \, \circ \, \mathsf{fst}), \mathsf{snd} \rangle \rangle : \tau_1 \to \tau_2$$

Justificar todas las respuestas.