COMPLEJA

Universidad de Murcia

Author Alonso Oma Alonso Murcia

September 12, 2023

Contents

1	Tema 1:	3
	1.1 El cuerpo \mathbb{C} de los números complejos	3

1 Tema 1:

1.1 El cuerpo \mathbb{C} de los números complejos

Historicamente, un número complejo es $a+i\cdot b$, donde a, $\mathbf{b}\in\mathbb{R}$, y donde el símbolo i cumple $i^2=-1$.

Usando esta regla se define un producto formal

$$(a+ib)\cdot(c+id) = a\cdot(c+id) + ib\cdot(c+id) = ac + iad + ibc + i^2bd = (ac - bd) + i(ad + bc)$$

Definición 1.1. Llamamos \mathbb{C} al conjunto $\mathbb{R}^2 = \{(a,b) \mid a,b \in \mathbb{R}\}$ dotado con las reglas de composición

- Suma: (a,b) + (a',b') = (a+a',b+b')
- **Producto:** $(a,b) \cdot (c,d) = (ac bd, ad + bc)$

Denotaremos $i \equiv (0,1) \in \mathbb{C}$, y si $a \in \mathbb{R} \Rightarrow a \equiv (a,0)$.

En Particular,

$$a + ib = (a, 0) + (0, 1) \cdot (b, 0) \stackrel{PROD}{=} (a, 0) + (0, b) = (a, b)$$
$$i^{2} = (0, 1) \cdot (0, 1) = (-1, 0) = -1$$

Así los elementos $z=(a,b)\in\mathbb{C}$ se identifican con a+ib.

Teorema 1.2. $(\mathbb{C}, +, \cdot)$ es un cuerpo conmutativo tal que

- contiene a $\mathbb{R} \equiv \mathbb{R} \times \{0\}$ como subcuerpo
- $z^2 = -1$ tiene solución

Además, es el menor cuerpo con esas dos propiedades.

Proof. Ejercicio sencillo de álgebra:

- $(\mathbb{C}, +)$ es grupo abeliano.
- $(\mathbb{C}/\{0\},\cdot)$ es grupo abeliano.
- Propiedad distributiva.

La única propiedad no trivial es $z\in\mathbb{C}/\{0\}\Longrightarrow \exists z^{-1}\in\mathbb{C}|z\cdot z^{-1}=z^{-1}\cdot z=1.$

Para probarlo hallamos $z^{-1} = \frac{1}{a+ib}$ formalmente: $z^{-1} = (a+ib)(a-ib) = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2} = (\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}) \in \mathbb{C}$.

Con esta expresión explícita se comprueba que $z \cdot z^{-1} = 1$.

• Claramente $\mathbb C$ contiene a $\mathbb R=\{(a,0)|a\in\mathbb R\}$, y la ecuación $z^2=-1$ tiene solución en $\mathbb C:\ z=\pm i=(0,\pm 1)\in\mathbb C$

3

• Además, cualquier otro cuerpo con esas propiedades debe contener $a+bi, \forall a,b \in \mathbb{R} \Rightarrow \mathbb{C} \subseteq \mathbb{K}$.

Ejercicio 1.3. Si $w \in \mathbb{C}$, probar que $\exists z \in \mathbb{C}$ tal que $z^2 = w$. **Sugerencia:** Escribir w = a + ib, buscar z = x + iy tal que $(x + iy)^2 = a + ib$.

Ejercicio 1.4.

- Operar $\frac{1}{4+4i}$, $\sqrt{3+4i}$, $(1+i)^4$
- Probar que $(\mathbb{C}, +, \cdot)$ no admite ningún orden total.

Definición 1.5. Si $z = a + ib \in \mathbb{C}$, definimos

- Parte real: Re(z) = a
- Parte imaginaria: Im(z) = b
- Módulo: $|z|^2 := \sqrt{a^2 + b^2}$
- Conjugado: $\overline{z} := a ib$

Notar que $Re(z)=\frac{z+\overline{z}}{2},\, Im(z)=\frac{z-\overline{z}}{2i}.$ Además, $|z|^2=z\cdot\overline{z}.$

Proposición 1.6. Propiedades: Si $z, w \in \mathbb{C}$ entonces

- 1. $\overline{z+w} = \overline{z} + \overline{w}, \quad \overline{z\cdot w} = \overline{z} \cdot \overline{w}$
- $2. \ z = \overline{z} \Longleftrightarrow z \in \mathbb{R}$