## **Tutorial: Discussion of questions with answers on MOT and CFT**

Prasant Kumar Nayak

## Calculation of CFSE for few octahedral and tetrahedral complexes

**Step-1**: Determine the oxidation state of central metal ion

**Step-2**: Determine the number of d-electrons present in the central metal cation

**Step-3**: Consider whether it is octahedral or tetrahedral complex

**Step-4**: If it is octahedral complex, then decide about the weak field or strong field cases leading to high spin or low spin complex, respectively

**Step-5**: If it is tetrahedral complex, then consider only high spin complex case

**Step-6**: Once the splitting of d-electrons among  $t_{2g}$  and  $e_{g}$  is decided, the CFSE can be determined by considering the case of octahedral or tetrahedral complex.

## Calculation of CFSE under weak field and strong field cases <u>Weak field</u> <u>Strong field</u>

| d <sup>n</sup> | Configu-rat ion                                          |   | CFSE                       | Confi-gurat ion                                          | Unpaired<br>e <sup>-</sup> s | CFSE                       |
|----------------|----------------------------------------------------------|---|----------------------------|----------------------------------------------------------|------------------------------|----------------------------|
| $d^1$          | $t_{2g}^{1}e_{g}^{0}$                                    | 1 | -0.4 $\Delta_{\rm o}$      | $t_{2g}^{1}e_{g}^{0}$                                    | 1                            | -0.4 $\Delta_{\rm o}$      |
| $d^2$          | $t_{2g}^{2} e_{g}^{0}$                                   | 2 | -0.8 $\Delta_{o}$          | $t_{2g}^{2} e_{g}^{0}$                                   | 2                            | -0.8 $\Delta_{\rm o}$      |
| $d^3$          | $t_{2g}^{2} e_{g}^{0}$ $t_{2g}^{3} e_{g}^{0}$            | 3 | <b>-1.2</b> ∆ <sub>o</sub> | $t_{2g}^{2} e_{g}^{0}$ $t_{2g}^{3} e_{g}^{0}$            | 3                            | <b>-1.2</b> ∆ <sub>o</sub> |
| $d^4$          | $t_{2g}^{3} e_{g}^{1}$                                   | 4 | -0.6 $\Delta_{\rm o}$      | $t_{2g}^{4} e_{g}^{0}$                                   | 2                            | -1.6 $\Delta_{o}$          |
| d <sup>5</sup> | $t_{2g}^{3} e_{g}^{1}$ $t_{2g}^{3} e_{g}^{2}$            | 5 | 0 A <sub>0</sub>           | $t_{2g}^{4} e_{g}^{0}$ $t_{2g}^{5} e_{g}^{0}$            | 1                            | <b>-2.0</b> ∆ <sub>o</sub> |
| d <sup>6</sup> | t <sub>2g</sub> <sup>4</sup> e <sub>g</sub> <sup>2</sup> | 4 | <b>-0.4</b> ∆ <sub>0</sub> | $t_{2g}^{6}e_{g}^{0}$                                    | 0                            | -2.4 ∆ <sub>o</sub>        |
| d <sup>7</sup> | t <sub>2g</sub> <sup>5</sup> e <sub>g</sub> <sup>2</sup> | 3 | <b>-0.8</b> ∆ <sub>0</sub> | t <sub>2g</sub> <sup>6</sup> e <sub>g</sub> <sup>1</sup> | 1                            | <b>-1.8</b> ∆ <sub>0</sub> |
| d <sup>8</sup> | t <sub>2g</sub> <sup>6</sup> e <sub>g</sub> <sup>2</sup> | 2 | -1.2 ∆ <sub>o</sub>        | t <sub>2g</sub> <sup>6</sup> e <sub>g</sub> <sup>2</sup> | 2                            | <b>-1.2</b> ∆ <sub>o</sub> |
| d <sup>9</sup> | t <sub>2g</sub> <sup>6</sup> e <sub>g</sub> <sup>3</sup> | 1 | <b>0.6</b> ∆ <sub>0</sub>  | t <sub>2g</sub> <sup>6</sup> e <sub>g</sub> <sup>3</sup> | 1                            | <b>0.6</b> Δ <sub>ο</sub>  |
| $d^{10}$       | $t_{2\sigma}^{6}e_{\sigma}^{4}$                          | 0 | $0 \Delta_{0}$             | $t_{2g}^{6}e_{g}^{4}$                                    | 0                            | $0.0  \Delta_{0}^{3}$      |



b) +2, +3, +1

c) +3, +1, +1

d) +2, +2, +1

a) N<sub>2</sub>

b) BC

c) NO

4. Which of the following is the most paramagnetic in nature?

5. The highest occupied pi molecular orbital of butadiene will have how many nodes?a) 2b) 1

a) 0 Δo and -1.2 Δo
b) 1.2 Δo and -1.2 Δo
c) -1.2 Λo and -1.2 Λo

c) 0

d) 3

 $\Delta_{\rm o}$ ?

7. Calculate the CFSE values for d3 and d8 configurations of weak field octahedral complexes.

6. Among the complexes [Cr(NH3)6]3+ and [V(NH3)6]2+ which one possesses larger value of

- c) -1.2  $\Delta$ o and -1.2  $\Delta$ o d) -1.2 and 0
- 8. Calculate the CFSE values for d4 and d7 configurations of high spin tetrahedral complexes.
- a) 0 Δo and 0 Δob) 0.18 Δo and 0.54 Δo
- c) -0.54  $\Delta$ o and -0.18  $\Delta$ o d) -0.18  $\Delta$ o and -0.54  $\Delta$ o
- 9. Calculate the magnetic moment of Na<sub>3</sub>[FeF<sub>6</sub>]
  a) 4.9 BM
  b) 5.92 BM, c) 0 BM, d) 2.80 BM