CSE 575: Statistical Machine Learning

Jingrui He

CIDSE, ASU

K-means, GMM, EM

Some Data

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each data point finds out which Center it's closest to (Thus each Center "owns" a set of data points)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each data point finds out which Center it's closest to
- 4. Each Center finds the centroid of the points it owns

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each data point finds out which Center it's closest to
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

Randomly initialize k centers

$$-\mu^{(0)} = \mu_1^{(0)}, ..., \mu_k^{(0)}$$

• **Classify**: Assign each point j∈{1,...m} to nearest center:

$$- C^{(t)}(j) \leftarrow \arg\min_{i} ||\mu_i - x_j||^2$$

• Recenter: μ_i becomes centroid of its point:

$$-\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$$

- Equivalent to $\mu_i \leftarrow$ average of its points!

What is K-means optimizing?

 Potential function F(μ,C) of centers μ and point allocations C:

$$- F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

- Optimal K-means:
 - $-\min_{\mu}\min_{C}F(\mu,C)$

Does K-means converge??? Part 1

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

Fix μ, optimize C

Does K-means converge??? Part 2

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

Fix C, optimize μ

Coordinate descent algorithms

- Want: min_a min_b F(a,b)
- Coordinate descent:
 - fix a, minimize b
 - fix b, minimize a
 - repeat
- Converges!!!
 - if F is bounded
 - to a (often good) local optimum

 $\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$

K-means is a coordinate descent algorithm!

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

Gaussian Bayes classifier reminder

$$P(y = i \mid \mathbf{x}_j) = \frac{p(\mathbf{x}_j \mid y = i)P(y = i)}{p(\mathbf{x}_j)}$$

$$P(y = i \mid \mathbf{x}_{j}) \propto \frac{1}{(2\pi)^{m/2} \|\Sigma_{i}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x}_{j} - \mu_{i})\right] P(y = i)$$

Predicting wealth from age

Predicting wealth from age

Learning modelyear, mpg ---> maker

$$\Sigma = \begin{pmatrix} \sigma^{2}_{1} & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{12} & \sigma^{2}_{2} & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \cdots & \sigma^{2}_{m} \end{pmatrix}$$

General: *O(m²)* parameters

$$\Sigma = \begin{pmatrix} \sigma^{2}_{1} & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{12} & \sigma^{2}_{2} & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \cdots & \sigma^{2}_{m} \end{pmatrix}$$

Aligned: *O(m)* parameters

Aligned: *O(m)* parameters

Spherical: *O(1)* cov parameters

Spherical: *O(1)* cov parameters

Density estimation

What if we want to do density estimation with multimodal or clumpy data?

But we don't see cluster labels!!!

- MLE:
 - argmax $\prod_j P(y_j, x_j)$

- But we don't know y_i's!!!
- Maximize marginal likelihood:
 - argmax $\prod_{j} P(x_j) = \operatorname{argmax} \prod_{j} \sum_{i=1}^{k} P(y_j = i, x_j)$

Special case:

spherical Gaussians and hard assignments

$$P(y = i \mid \mathbf{x}_j) \propto \frac{1}{(2\pi)^{m/2} \left\| \boldsymbol{\Sigma}_i \right\|^{1/2}} \exp \left[-\frac{1}{2} \left(\mathbf{x}_j - \boldsymbol{\mu}_i \right)^T \boldsymbol{\Sigma}_i^{-1} \left(\mathbf{x}_j - \boldsymbol{\mu}_i \right) \right] P(y = i)$$

• If P(X|Y=i) is spherical, with same σ for all classes:

$$P(\mathbf{x}_{j} \mid y = i) \propto \exp \left[-\frac{1}{2\sigma^{2}} \left\| \mathbf{x}_{j} - \mu_{i} \right\|^{2} \right]$$

• If each x_i belongs to one class C(j) (hard assignment), marginal likelihood:

$$\prod_{j=1}^{m} \sum_{i=1}^{k} P(\mathbf{x}_{j}, y = i) \propto \prod_{j=1}^{m} \exp \left[-\frac{1}{2\sigma^{2}} \|\mathbf{x}_{j} - \mu_{C(j)}\|^{2} \right]$$

Same as K-means!!!

- There are k components
- Component i has an associated mean vector μ_i

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_{ι} and covariance matrix $\sigma^{2}I$

Each data point is generated according to the following recipe:

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

 Pick a component at random: Choose component i with probability P(y=i)

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

- 1. Pick a component at random: Choose component i with probability P(y=i)
- 2. Data point $\sim N(\mu_{\nu}, \sigma^2 I)$

The General GMM assumption

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

- 1. Pick a component at random: Choose component i with probability P(y=i)
- 2. Data point $\sim N(\mu_{\iota}, \Sigma_{\iota})$

Unsupervised Learning: not as hard as it looks

Sometimes easy

Sometimes impossible

IN CASE YOU'RE
WONDERING WHAT
THESE DIAGRAMS ARE,
THEY SHOW 2-d
UNLABELED DATA (X
VECTORS)
DISTRIBUTED IN 2-d
SPACE. THE TOP ONE
HAS THREE VERY
CLEAR GAUSSIAN
CENTERS

and sometimes in between

Marginal likelihood for general case

$$P(y = i \mid \mathbf{x}_{j}) \propto \frac{1}{(2\pi)^{m/2} \|\Sigma_{i}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x}_{j} - \mu_{i})\right] P(y = i)$$

Marginal likelihood:

$$\prod_{j=1}^{m} P(\mathbf{x}_{j}) = \prod_{j=1}^{m} \sum_{i=1}^{k} P(\mathbf{x}_{j}, y = i)$$

$$= \prod_{j=1}^{m} \sum_{i=1}^{k} \frac{1}{(2\pi)^{m/2} \|\Sigma_{i}\|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x}_{j} - \mu_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x}_{j} - \mu_{i})\right] P(y = i)$$

Special case:

spherical Gaussians and soft assignments

• If P(X|Y=i) is spherical, with same σ for all classes:

$$P(\mathbf{x}_{j} \mid y = i) \propto \exp\left[-\frac{1}{2\sigma^{2}} \|\mathbf{x}_{j} - \mu_{i}\|^{2}\right]$$

Uncertain about class of each x_j (soft assignment), marginal likelihood:

$$\prod_{j=1}^{m} \sum_{i=1}^{k} P(\mathbf{x}_{j}, y = i) \propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left[-\frac{1}{2\sigma^{2}} \|\mathbf{x}_{j} - \mu_{i}\|^{2} \right] P(y = i)$$

Silly example

Let events be "grades in a class"

```
w_1 = Gets \text{ an } A P(A) = \frac{1}{2}

w_2 = Gets \text{ a} B P(B) = \mu

w_3 = Gets \text{ a} C P(C) = 2\mu

w_4 = Gets \text{ a} D P(D) = \frac{1}{2} - 3\mu

(Note 0 \le \mu \le 1/6)
```

Assume we want to estimate μ from data. In a given class there were

a A's b B's c C's d D's

What's the maximum likelihood estimate of μ given a,b,c,d?

Trivial statistics

P(A) = ½ P(B) =
$$\mu$$
 P(C) = 2μ P(D) = ½- 3μ
P($a,b,c,d \mid \mu$) = $(\frac{1}{2})^a(\mu)^b(2\mu)^c(\frac{1}{2}-3\mu)^d$
log P($a,b,c,d \mid \mu$) = $a\log \frac{1}{2} + b\log \mu + c\log 2\mu + d\log (\frac{1}{2}-3\mu)$

FOR MAX LIKE
$$\mu$$
, SET $\frac{\partial \text{LogP}}{\partial \mu} = 0$

$$\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$$

Gives max like
$$\mu = \frac{b+c}{6(b+c+d)}$$

So if class got

А	В	С	D
14	6	9	10

Max like
$$\mu = \frac{1}{10}$$

Problem with hidden information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

Problem with hidden information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's

Number of D's = d REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know the value of μ we could compute the expected value of a and b

value of
$$a$$
 and b

Since the ratio a:b should be the same as the ratio $\frac{1}{2}$: μ

$$a = \frac{\frac{1}{2}}{\frac{1}{2} + \mu}h \qquad b = \frac{\mu}{\frac{1}{2} + \mu}h$$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ 39

$$\mu = \frac{b+c}{6(b+c+d)}$$

E.M. for our trivial problem

We begin with a guess for μ

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

Define $\mu^{(t)}$ the estimate of μ on the t'th iteration

b^(t) the estimate of b on t'th iteration

$$\mu^{(0)} = \text{initial guess}$$

$$b^{(t)} = \frac{\mu^{(t)}h}{\frac{1}{2} + \mu^{(t)}} = \text{E}\left[b \mid \mu^{(t)}\right]$$

$$E-\text{step}$$

$$\mu^{(t+1)} = \frac{b^{(t)} + c}{6\left(b^{(t)} + c + d\right)}$$

$$= \text{max like est. of } \mu \text{ given } b^{(t)}$$

Continue iterating until converged.

Good news: Converging to local optimum is assured.

Bad news: I said "local" optimum.

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

E.M. Convergence

- Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration [NOT OBVIOUS]
- But it can never exceed 1 [OBVIOUS]

So it must therefore converge [OBVIOUS]

In our ovample		
In our example,		t
suppose we had		Λ
h = 20		U
c = 10		1
d = 10		2
$\mu^{(0)} = 0$		3
Convergence is generally <u>linear</u> : error		
decreases by a constant factor each time step.		

t	μ ^(t)	b ^(t)
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187

Back to unsupervised learning of GMMs – a simple case

A simple case:

We have unlabeled data $\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_m$

We know there are k classes

We know $P(y_1) P(y_2) P(y_3) \dots P(y_k)$

We don't know $\mu_1 \mu_2 ... \mu_k$

We can write P(data
$$| \mu_1 \mu_k$$
)

$$= p(x_1...x_m | \mu_1...\mu_k)$$

$$= \prod_{j=1}^m p(x_j | \mu_1...\mu_k)$$

$$= \prod_{j=1}^m \sum_{i=1}^k p(x_j | \mu_i) P(y = i)$$

$$\propto \prod_{j=1}^m \sum_{i=1}^k \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2\right) P(y = i)$$

EM for simple case of GMMs: The E-step

• If we know $\mu_1,...,\mu_k \to \text{easily compute prob.}$ point x_i belongs to class y=i

$$p(y = i | x_j, \mu_1 ... \mu_k) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2\right) P(y = i)$$

EM for simple case of GMMs: The M-step

- If we know prob. point x_j belongs to class y=i
 - \rightarrow MLE for μ_i is weighted average
 - imagine k copies of each x_j , each with weight $P(y=i|x_j)$:

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

E.M. for GMMs

E-step

Compute "expected" classes of all data points for each class

$$p(y = i|x_j, \mu_1...\mu_k) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2\right) P(y = i)$$
Just evaluate
a Gaussian
at x_i

M-step

Compute Max. like **µ** given our data's class membership distributions

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$