## **Computer Vision**

**Section 2** 

#### Corner

- A corner is a point where **two or more edges meet**, making it a highly distinctive feature.
- Corners are considered stable and unique features because they remain identifiable even under transformations such as scaling, rotation, and slight illumination changes.
- Corners are useful features for various tasks such as object recognition, image matching, motion tracking, and 3D reconstruction.



### Corner Detector (General Definition)







"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

#### Harris Corner Detection

#### **Mathematical Formulation**

- **1.Compute Image Gradients** 
  - Compute the first-order derivatives using Sobel filters.
- 2. Compute the Structure Tensor (Second-Moment Matrix) H
- 3. Compute the Corner Response Function C
- 4. Classify the Feature Points
  - Corner: if C is large and positive
  - Edge: if C is negative
  - Flat Region: if C is close to zero.

### Harris Corner Detection Compute Image Gradients

Input Image

| 0 | 0  | 1  | 4  | 9  |
|---|----|----|----|----|
| 1 | 0  | 5  | 7  | 11 |
| 1 | 4  | 9  | 12 | 16 |
| 3 | 8  | 11 | 14 | 16 |
| 8 | 10 | 15 | 16 | 20 |

5\*5

#### **Differentiation Kernels**

| -1 | 0 | 1 | d/dx |
|----|---|---|------|
|----|---|---|------|

### Harris Corner Detection Compute Image Gradients

Input Image

| 0 | 0  | 1  | 4  | 9  |
|---|----|----|----|----|
| 1 | 0  | 5  | 7  | 11 |
| 1 | 4  | 9  | 12 | 16 |
| 3 | 8  | 11 | 14 | 16 |
| 8 | 10 | 15 | 16 | 20 |

d/dx





| X | x | х | x | х |
|---|---|---|---|---|
| X | 4 | 7 | 6 | х |
| Х | 8 | 8 | 7 | Х |
| Х | 8 | 6 | 5 | Х |
| х | х | х | х | х |

IX

5\*5

5\*5

### Harris Corner Detection Compute Image Gradients

Input Image

| 0 | 0  | 1  | 4  | 9  |
|---|----|----|----|----|
| 1 | 0  | 5  | 7  | 11 |
| 1 | 4  | 9  | 12 | 16 |
| 3 | 8  | 11 | 14 | 16 |
| 8 | 10 | 15 | 16 | 20 |

d/dy





| x | X | X | X | X |
|---|---|---|---|---|
| х | 4 | 8 | 8 | X |
| х | 8 | 6 | 7 | Х |
| х | 6 | 6 | 4 | Х |
| х | Х | Х | Х | Х |

IY

5\*5

5\*5

# Harris Corner Detection Compute the Structure Tensor H

| IX |   |   |   |   |
|----|---|---|---|---|
| X  | X | x | X | x |
| X  | 4 | 7 | 6 | Х |
| X  | 8 | 8 | 7 | Х |
| X  | 8 | 6 | 5 | X |
| X  | X | Х | X | Х |

5\*5

| X | X | X | X | X |
|---|---|---|---|---|
| Х | 4 | 8 | 8 | Х |
| Х | 8 | 6 | 7 | Х |
| Х | 6 | 6 | 4 | Х |
| Х | Х | X | X | X |

IV

5\*5

$$\sum_{IX^2} IX^2 = 4^2 + 7^2 + 6^2 + 8^2 + 8^2 + 7^2 + 8^2 + 6^2 + 5^2 = 403$$

$$\sum_{IX^2} IX^2 = 4^2 + 8^2 + 8^2 + 8^2 + 6^2 + 7^2 + 6^2 + 6^2 + 4^2 = 381$$

$$\sum IX * IY = 4*4+7*8+6*8+8*8+8*6+7*7+8*6+6*6+5*4 = 385$$



# Harris Corner Detection Compute the Harris Response Function C

Н

| 403 | 385 |
|-----|-----|
| 385 | 381 |

 $C = det(H) - k trace(H)^2$ 



$$C = 5318 - 0.04 * (784)^2 = -19268.24$$



#### Harris Corner Detection

#### **Steps to Estimate Corners Using the Harris Detector**

- Convert the image to grayscale.
- Compute the image gradients.
- Construct the structure tensor.
- Compute the Harris response function C.
- Threshold the response to detect strong corners.

### **Harris Corner Detection**



## Thanks