Comparazione di misure di similarità tra stringhe nell'ambito del record linkage

Architetture dati

Introduzione

- Il progetto è basato sull'articolo "A Comparison of Personal Name Matching: Techniques and Practical Issues" di Peter Christen.
- SCOPO: valutare le prestazioni di alcune misure di similarità nell'ambito del record linkage. Le prestazioni sono state valutate in termini di qualità dei matches e di tempo di esecuzione.
- AMBITO: nomi commerciali di società
- STRUMENTI: Python Record Linkage Toolkit

Datasets SP500

- Contiene la lista delle 500 società statunitensi di maggiore capitalizzazione inserite all'interno dell'indice di borsa Standard & Poor 500
- 505 records e 8 colonne

Colonna	Descrizione	
Ticker Symbol	Simbolo azionario	
Security	Nome della società	
SEC Filings	Tipo di rendiconto finanziario	
GICS Sector	Settore in rispetto al GICS	
GICS Sub Industry	Sotto-Industria in rispetto al GICS	
Address of Headquarters	Indirizzo della sede centrale	
Date first added	Anno di inserimento nell'indice	
CIK	Central Index Key	

Datasets FORBES

- Contiene la classifica delle prime 2000 società pubbliche al mondo stilata dalla rivista di economia Forbes
- 2000 records e 9 colonne

Colonna	Descrizione
Rank	Posizionamento
Company	Nome della società
Country	Nazione
Sales	Fatturato (in miliardi di \$)
Profit	Utile (in miliardi di \$)
Assets	Attivo (in miliardi di \$)
Market Value	Capitalizzazione di mercato (in miliardi di \$)
Sector	Settore di riferimento
Industry	Industria di riferimento

Datasets Data quality

	SP500	FORBES
Accuratezza Temporale	1 Maggio 2017	7 Aprile 2017
Accuratezza Semantica		Nomi delle società
Accuratezza Sintattica	Settore e Industria	Settore e Industria
Completezza	Data di primo inserimento (198)	Settore e Industria (197 e 491)

Record Linkage

Pre-Processing

- Conversione di tutti i caratteri in minuscolo
- Rimozione dei caratteri non necessari (&, %, \$, ecc.) e della punteggiatura
- Rimozione degli identificativi della forma societaria (Inc., Co., Ltd., ecc.)

Arthur J. Gallagher & Co. —— arthur j gallagher

Packaged Foods & Meats —— packaged foods meats

Record Linkage Indexing

- APPROCCIO: Sorted Neighborhood
- CHIAVE: Nomi delle società
- FUNZIONE DI CODIFICA FONETICA: Soundex
- Numero di confronti ridotto da 1010000 a 25907

Record Linkage

Confronto e Classificazione

- MISURE DI SIMILARITA': Jaro, Jaro-Winkler, Levenshtein, Damerau-Levenshtein, Smith-Waterman, LCS
- CONFRONTO: Security e Company e GICS Sector e Sector
- Impiego di un record linkage basato su soglia con funzione peso (75% Nome della società e 25% settore)
- Utilizzo di diversi valori soglia: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Risultati

Performance

Threshold

F-measure

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.0 0.1 0.2 0.3

Precision

Risultati Complessità computazionale

Metodo	Tempo (s)
Jaro	0,199
Jaro-Winkler	0,178
Levenshtein	0,404
Damerau-Levenshtein	0,430
Smith-Waterman	8,438
LCS	6,090

Conclusioni

- Non esiste una tecnica migliore delle altre, occorre scegliere la più adatta al formato dei dati.
- Occorre prestare attenzione alla complessità computazionale delle varie tecniche, considerando il volume dei dati da processare.