Transistor Bipolar (BJT) y Pequeña Señal MOSFET-BJT

ELEMENTOS ACTIVOS EL-2207

Contenido

El transistor bipolar BJT

- Construcción, símbolo y funcionamiento
- Curvas características y polarización
- Obtención de Parámetros tales como: resistencia de entrada, resistencia de salida, ganancia de corriente, transconductancia, del transistor a partir de sus curvas características

Contenido

Primer BJT inventado en 1947

- -Bell Laboratories
- -John Bardeen, Walter Brattain y
- William Schockley
- -Premio Nobel de Física en 1956
- -Transistor de Germanio de tres puntos

Aplicaciones BJT:

Alta frecuencia

Compuertas lógicas (antiguamente lógica

TTL, actualmente lógica BiCMOS)

Electrónica de potencia

Transistor bipolar de unión (BJT)

BJT consiste en tres capas semiconductoras

- -dos del mismo tipo de dopado en los extremos
- -una de dopado complementario en el centro

Bipolar = tanto electrones como huecos participan en el flujo de corriente

BJT es un dispositivo de tres terminales: base (dopado complementario), colector y emisor

Dos uniones PN en un BJT

Estructura del transistor bipolar

Do transistors behave like two diodes connected back to back?

BJTs are built such that the base is very narrow

- Juntas PN de base-emisor y basecolector no tienen las mismas dimensiones ni concentraciones de dopado
- ⇒Colector y emisor no son intercambiables
- ⇒No opera como dos diodos en serie
- Dopado de emisor es alto, dopado de base es bajo, dopado de colector menor que el del emisor
- Base es muy angosta, permite difusión de portadores mayoritarios del emisor a través de la base hacia el colector
- Dopado de base es bajo para disminuir recombinación de portadores en la base

Principios de funcionamiento

Electron injected

Si se inyecta un electrón en la zona de dopado tipo p cuando hay polarización inversa, el electrón se desplaza a la zona tipo n debido a los campos eléctricos

Principios de funcionamiento

- Corriente de base: inyección de huecos causada por la fuente conectada a la base
- •Mayoría de electrones alcanzan colector ⇒ I_F ≈ I_C

Corrientes en el transistor bipolar

$$I_C = \alpha I_E$$

 α : factor de transferencia de corriente $\alpha \approx 1$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$I_{\rm C} = \beta I_{\rm B}$$

β: factor de amplificación base-colector, típicamente > 100

$$I_E = I_C + I_B = (\beta + 1)I_B$$

Corriente del Colector vs V_{BE} (útil en Discretos)

$$I_C = \frac{A_E q D_n n_i^2}{N_B W_B} \left(\exp \frac{V_{BE}}{V_T} - 1 \right) , \quad (V_{BE}/V_T) \gg 1$$

$$I_C = I_S \exp \frac{V_{BE}}{V_T} , \quad I_S = \frac{A_E q D_n n_i^2}{N_B W_B}$$

I_S: Corriente de saturación de reversa de junta base-emisor

$$I_E = \boldsymbol{\alpha} I_C = \boldsymbol{\alpha} I_S \exp \frac{V_{BE}}{V_T}$$

Simbología

Dos tipos de transistor bipolar, dados por el dopado del dispositivo: PNP y NPN

La flecha en el símbolo indica la dirección de la corriente técnica

Características de Salida

Curvas Características

Característica de entrada (transferencia)

Característica de salida

Resistencia de salida $\rightarrow \infty$ (caso ideal) Resistencia de salida = r_0

 Se aplica a la región de saturación del MOSFET, donde se comporta como fuente de corriente en paralelo con resistencia

$$I_{D} = \frac{1}{2}K(V_{GS} - V_{TH})^{2} + \frac{1}{2}K(V_{GS} - V_{TH})^{2}\lambda(V_{DS})$$

Constante, independiente de V_{DS} = fuente de corriente ideal I_{DSAT}

$$I = f(V_{DS}) \Longrightarrow$$
 resistencia

Modelo práctico para baja frecuencia:

Modelo para cálculo de pequeña señal

La transconductancia de un MOSFET se define como:

$$g_m = \frac{\partial i_D}{\partial V_{GS}} \bigg|_{V_{GS} = V_{GS}}$$

es decir, g_m es la pendiente de la curva característica de transferencia i_D-v_{GS}, evaluada en el punto de operación

$$g_m = K(V_{GS} - V_{TH}) = \sqrt{2KI_D} = \frac{2I_D}{V_{GS} - V_{TH}}$$

• Modulación de largo de canal causa resistencia de salida $\neq \infty$

I_{D,SAT} es la corriente I_{DS} en saturación sin tomar en cuenta la modulación de largo de canal

 $-V_{\Delta} = -1/\lambda$

$$r_{o} = \frac{1}{g_{d}} = \left[\frac{\partial i_{DS}}{\partial v_{DS}}\right]^{-1} \bigg|_{v_{GS} = V_{GS}} \implies r_{o} = \frac{1}{\lambda I_{DS,SAT}} = \frac{V_{A}}{I_{DS,SAT}}$$

Modelo de Pequeña Señal BJT: Modelo π

$$g_m = \frac{I_C}{V_T} = \frac{\beta I_B}{V_T}$$

$$r_{\pi} = \frac{\beta}{g_m}$$
 Resistencia de entrada en la base

$$g_m V_{be} = \beta i_b$$

Transconductancia y resistencia de entrada π

$$g_{m} = \frac{dI_{C}}{dV_{BE}}$$

$$\Delta I_{B} = \frac{\Delta I_{C}}{\beta} = \frac{g_{m}}{\beta} \Delta V_{BE}$$

$$g_{m} = \frac{d}{dV_{BE}} \left(I_{S} \exp \frac{V_{BE}}{V_{T}} \right)$$

$$= \frac{1}{V_{T}} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$= \frac{I_{C}}{V_{T}}$$

$$\Delta I_{B} = \frac{\Delta I_{C}}{\beta} = \frac{g_{m}}{\beta} \Delta V_{BE}$$

$$r_{\pi} = \frac{\Delta V_{BE}}{\Delta I_{B}} = \frac{\beta}{g_{m}}$$

$$= \frac{I_{C}}{V_{T}}$$

gm se calcula con el valor de la en el punto de operación

Resistencia de Salida r_o

Saturation

region

Active region

Resistencia de salida r_o : modulación de ancho de base causa resistencia de salida $\neq \infty$

La conductancia de salida se calcula como

$$\frac{1}{r_o} = g_o = f\left(\frac{I_{out}}{V_{out}}\right) = \frac{\partial I_C}{\partial V_{CE}}\Big|_Q$$

Extrapolar hasta intersección con Ic =0 Intersección se da en $V_{CE} = -V_A$

V_A : voltaje de Early

$$r_{o} = \frac{V_{A}}{I_{C}'}$$

$$\frac{V_{A}}{-V_{A}}$$
(b)

I_C´ es I_C sin tomar en cuenta la modulación de ancho de base

Integración del Transistor Bipolar

