CS 178 Midterm Exam

Machine Learning and Data Mining: Fall 2019

Monday November 4th, 2019

Your name:	Row/Seat Number:
Your ID #(e.g., 123456789)	UCINetID (e.g.ucinetid@uci.edu)

- Please put your name and ID on every page.
- Total time is 50 minutes. READ THE EXAM FIRST and organize your time; don't spend too long on any one problem.
- Please write clearly and show all your work.
- If you need clarification on a problem, please raise your hand and wait for the instructor or TA to come over.
- You may use **one** sheet containing handwritten notes for reference, and a (basic) calculator.
- Turn in your notes and any scratch paper with your exam.

Problems

1	Bayes Classifiers, (10 points.)	3
2	Nearest Neighbor Regression, (12 points.)	5
3	True/False, (10 points.)	7
4	Support Vector Machines, (10 points.)	ē
5	VC-Dimensionality, (10 points.)	11

Total, (52 points.)

Name:		

Bayes Classifiers, (10 points.)

 $p(x_2 = c | y = 0)$:

Consider the table of measured data given at right. We will use the two observed features x_1 , x_2 to predict the class y. Each feature can take on one of three values, $x_i \in \{a, b, c\}$.

In the case of a tie, we will prefer to predict class y = 0.

(1) Write down the probabilities learned by a naïve Bayes classifier: (4 points.)

p(y=0):	p(y=1):
$p(x_1 = a \mid y = 0) :$	$p(x_1 = a \mid y = 1)$:
$p(x_1 = b y = 0)$:	$p(x_1 = b y = 1)$:
$p(x_1 = c y = 0)$:	$p(x_1 = c y = 1)$:
$p(x_2 = a y = 0)$:	$p(x_2 = a \mid y = 1)$:
$p(x_2 = b y = 0)$:	$p(x_2 = b y = 1)$:

x_1	x_2	y
c	b	0
b	b	0
b	c	0
a	c	1
a	c	1
a	b	1
a	a	1
b	b	1
c	a	1

(2) Using your naïve Bayes model, what value of y would you predict given $(x_1 = a, x_2 = b)$?:(3 points.)

 $p(x_2 = c | y = 1)$:

(3) Using your naïve Bayes model, compute the probabilities: (3 points.) $p(y=0|x_1=b,x_2=c):$ $p(y=1|x_1=b,x_2=c):$

Nearest Neighbor Regression, (12 points.)

For a regression problem to predict y given a scalar feature x, we observe training data (pictured at right):

\boldsymbol{x}	y
1	3
2.3	3
3.3	1
4	2

(1) Compute **training** MSE of a 1-nearest neighbor predictor. (3 points.)

(2) Compute the **leave-one-out** cross-validation error (MSE) of a 1-nearest neighbor predictor. (3 points.)

(3) Compute the **training** MSE of a 2-nearest neighbor predictor. (3 points.)

(4) Compute the **leave-one-out** cross-validation error (MSE) of a 2-nearest neighbor predictor. (3 points.)

Name:	ID#:	

True/False, (10 points.)

Here, assume that we have m data points $y^{(i)}$, $x^{(i)}$, $i = 1 \dots m$, each with n features, $x^{(i)} = [x_1^{(i)} \dots x_n^{(i)}]$. For each of the scenarios below, circle one of "true" or "false" to indicate whether you agree with the statement.

True or **false**: In a soft-margin SVM (i.e., loss $\sum_{j} w_{j}^{2} + R \sum_{i} \epsilon^{(i)}$), increasing the value of R will make the model more likely to overfit.

True or **false**: A soft-margin SVM model is harder to optimize than a hard-margin SVM, since it is not a quadratic program.

True or **false**: A kernel SVM will be more efficient than a linear SVM when the number of training data, m, is large.

True or **false**: Applying "early stopping" by increasing the convergence tolerance in SGD increases the bias of the learner to reduce overfitting.

True or false: When training a perceptron using the logistic negative log-likelihood loss, gradient descent can never become stuck in a local optimum.

True or **false**: Given sufficently many data m, the 1-nearest neighbor classifier error rate approaches the Bayes optimal error rate.

True or **false**: Stochastic gradient descent is often preferred over batch when the number of data points m is very large.

True or **false**: For a perceptron, increasing the regularization penalty of a linear regression model will decrease the resulting model's variance.

True or **false**: For a perceptron, doubling the number of training data available will decrease the resulting model's bias.

True or **false**: For a perceptron, using $2 \times n$ features per data point by adding n random values to each will increase the resulting model's variance.

Support Vector Machines, (10 points.)

Suppose we are learning a linear support vector machine with two real-valued features x_1, x_2 and binary target $y \in \{-1, +1\}$. We observe training data (pictured at right):

x_1	x_2	y
0.5	2	+1
1	1	+1
1	2	+1
1	3	+1
2	2	-1
3.5	3	-1
4	1	-1

Our linear classifier takes the form

$$f(x; w_1, w_2, b) = sign(w_1x_1 + w_2x_2 + b).$$

- (1) Consider the optimal linear SVM classifier for the data, i.e., the one that separates the data and has the largest margin. **Sketch** its decision boundary in the above figure, and **list** the support vectors here. (2 points.)
- (2) Derive the parameter values w_1, w_2, b of this f(x) using these support vectors. What is the length of the margin? (3 points.)

- (3) What is the training error of a linear SVM on these data? (2 points.)
- (4) What is the the leave-one-out cross validation error for a linear SVM trained on these data? (3 points.)

Name:	ID#:	

VC-Dimensionality, (10 points.)

Consider the VC dimension of two classifiers defined using two features x_1, x_2 .

(1) First, consider a simple classifier f_A that predicts class +1 within a ring with inner radius r and a width of w:

$$f_A(x) = \begin{cases} +1 & (r < (x_1^2 + x_2^2) < r + w) \\ -1 & \text{otherwise} \end{cases}$$

Show that this classifier has VC dimension 2. (5 points.)

(2) Now, suppose that we fix w=1, i.e., it is no longer a parameter of the model:

$$f_B(x) = \begin{cases} +1 & (r < (x_1^2 + x_2^2) < r + 1) \\ -1 & \text{otherwise} \end{cases}$$

What is the VC dimension of f_B ? Justify your answer. (5 points.)

Name: ID#:

This page is intentionally blank, use as you wish.

Name: ID#:	Name:		ID#:	
------------	-------	--	------	--

This page is intentionally blank, use as you wish.