BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES AUX POLYGONES

CHRISTOPHE BAL

 $Document,\ avec\ son\ source\ L^{A}T_{E}\!X,\ disponible\ sur\ la\ page\\ https://github.com/bc-writings/bc-public-docs/tree/main/drafts.$

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

Date: 18 Jan. 2025 - 15 Fev. 2025.

Fait 1. Tout n-cycle \mathcal{L} non dégénéré admet une décomposition $\mathcal{L}_1 \cdot \mathcal{L}_2 \cdot ... \cdot \mathcal{L}_s$ vérifiant les conditions suivantes où $s \in \mathbb{N}^*$.

- (1) $\forall i \in [1; s], \mathcal{L}_i \text{ est un } k_i\text{-gone.}$
- (2) $\forall i \in [1; s-1], \mathcal{L}_i \text{ et } \mathcal{L}_{i+1} \text{ sont mariables.}$
- (3) Les surfaces intérieures des k_i -gones \mathcal{L}_i sont disjointes deux à deux.

Pour une telle décomposition, AireGene(\mathcal{L}) = $\frac{1}{2} | \sum_{j} \text{Aire}(\mathcal{L}_{2j+1}) - \sum_{j} \text{Aire}(\mathcal{L}_{2j}) |$.

Démonstration. XXX

ptruvr viz ntersection la plus proche, puis arg de type induction comme dans lexemples!

Fait 2. Si un n-cycle \mathcal{L} , éventuellement dégénéré, n'est pas un n-gone convexe, alors il existe un n-gone convexe \mathcal{P} tel que $\operatorname{Long}(\mathcal{P}) = \operatorname{Long}(\mathcal{L})$ et $\operatorname{AireGene}(\mathcal{P}) > \operatorname{AireGene}(\mathcal{L})$.

Démonstration. Commençons par le cas « hyper-dégénéré » : si tous les sommets de \mathcal{L} sont alignés, son aire généralisée est nulle. Le triangle équilatéral de côté $\frac{1}{3}\text{Long}(\mathcal{L})$ permet de conclure. Supposons maintenant qu'au moins trois sommets non alignés existent. Notons \mathcal{C} l'enveloppe convexe de \mathcal{L} (nous savons que \mathcal{C} contient au moins un triangle).

Exemple où N = C et O = B.

Clairement, $\text{Long}(\mathcal{C}) < \text{Long}(\mathcal{L})$. Justifions que AireGene $(\mathcal{C}) > \text{AireGene}(\mathcal{L})$ en reprenant les notations du fait 1 précédent.

 $2AireGene(\mathcal{L})$

$$= |\sum_{j} \operatorname{Aire}(\mathcal{L}_{2j+1}) - \sum_{j} \operatorname{Aire}(\mathcal{L}_{2j})|$$

$$< \sum_{j} \operatorname{Aire}(\mathcal{L}_{2j+1}) + \sum_{j} \operatorname{Aire}(\mathcal{L}_{2j})$$
Deux k_i -gones, au moins, sont d'orientations différentes.

- $= 2 Aire(\mathcal{C})$
- $= 2 Aire Gene(\mathcal{C})$

Il reste un problème à gérer : \mathcal{C} est un k-gone avec k < n. Une idée simple, formalisée après, est d'ajouter des sommets assez prêts des côtés de \mathcal{C} pour garder la convexité, une longueur strictement supérieure à $\operatorname{Long}(\mathcal{L})$, et une aire généralisée strictement plus grande que $\operatorname{AireGene}(\mathcal{L})$. Si c'est faisable, un agrandissement de rapport r > 1 ramène à la longueur $\operatorname{Long}(\mathcal{L})$ avec une aire supérieure strictement à $\operatorname{AireGene}(\mathcal{L})$. La figure suivante illustre cette idée.

Notons s le nombre de sommets dans \mathcal{C} , de sorte que m = n - s compte les sommets manquants. Si m = 0, il n'y a rien à faire. Sinon, posons $\delta = \frac{\text{Long}(\mathcal{L}) - \text{Long}(\mathcal{C})}{m}$.

(1) Considérons [AB] un côté quelconque de \mathcal{C} . Les droites portées par les côtés « autour » de [AB] « dessinent » une région contenant toujours un triangle ABC dont l'intérieur est à l'extérieur 1 de \mathcal{C} comme dans les deux cas ci-dessous.

- (2) Clairement, le polygone \mathcal{C}_+ obtenu à partir de \mathcal{C} en remplaçant le côté [AB] par les côtés [AC] et [CB] est un convexe avec un sommet de plus que \mathcal{C} .
- (3) Comme HC peut être rendu aussi proche de 0 que souhaité, il est aisé de voir que l'on peut choisir cette distance de sorte que $AC + BC < AB + \delta$. Dès lors, le périmètre de C_+ augmente inférieurement strictement à δ relativement à C.
- (4) En répétant (m-1) fois les étapes 1 à 3, nous obtenons un n-gone convexe \mathcal{C}' tel que $\operatorname{Aire}(\mathcal{C}') > \operatorname{Aire}(\mathcal{L})$ et $\operatorname{Long}(\mathcal{C}') < \operatorname{Long}(\mathcal{C}) + m\delta = \operatorname{Long}(\mathcal{L})$.

Fait 3. Soit $n \in \mathbb{N}_{\geq 3}$ un naturel fixé. Parmi tous les n-cycles de périmètre fixé, il en existe au moins un d'aire généralisée maximale, un tel n-cycle devant être a minima un n-gone convexe.

Démonstration. Notons p le périmètre fixé..

- Munissant le plan d'un repère orthonormé direct $(O; \vec{\imath}, \vec{\jmath})$, on note \mathcal{Z} l'ensemble des n-cycles $\mathcal{L} = A_1 A_2 \cdots A_n$ tels que $\text{Long}(A_1 A_2 \cdots A_n) = p$ et $A_1(0; 0), ^2$ puis $\mathcal{G} \subset \mathbb{R}^{2n}$ l'ensemble des uplets de coordonnées $(x(A_1); y(A_1); \dots; x(A_n); y(A_n))$ pour $A_1 A_2 \cdots A_n \in \mathcal{Z}$.
- \mathcal{G} est clairement fermé dans \mathbb{R}^{2n} . De plus, il est borné, car les coordonnées des sommets des n-cycles considérés le sont. En résumé, \mathcal{G} est un compact de \mathbb{R}^{2n} .
- Nous définissons la fonction $\alpha: \mathcal{G} \to \mathbb{R}_+$ qui à un uplet de \mathcal{G} associe l'aire généralisée du n-cycle qu'il représente. Cette fonction est continue comme valeur absolue d'une fonction polynomiale en les coordonnées.

^{1.} C'est ce que l'on appelle de la « low poetry » .

^{2.} Le mot « Zeile » est une traduction possible de « ligne » en allemand.

• Finalement, par continuité et compacité, α admet un maximum sur \mathcal{G} . Or, un tel maximum ne peut pas être atteint qu'en un n-gone convexe, au moins, selon le fait 2.