Review Exercise 3

Q3. Find the value of 'x' in the following.

- i) $\log_3 x = 5$
- Sol. $\log_3 x = 5$

In exponential form

$$x = 3^5$$

- \Rightarrow x = 243
- ii) $\log_4 256 = x$
- Sol. $\log_4 256 = x$

In exponential form

$$4^{x} = 256$$

$$4^{x} = 4^{4}$$

$$\Rightarrow$$
 $x = 4$

- iii) $\log_{625} 5 = \frac{1}{4} x$
- Sol. $\log_{625} 5 = \frac{1}{4}x$

In exponential form

$$(625)^{\frac{1}{4}x} = 5$$

$$(5^4)^{\frac{1}{4}x} = 5$$

$$5^{4x\frac{1}{4}x} = 5$$

$$5^{x} = 5^{1}$$

$$\Rightarrow$$
 $x = 1$

- iv) $\log_{64} x = -\frac{2}{3}$
- Sol. $\log_{64} x = -\frac{2}{3}$

In exponential form

$$x = 64^{-2}$$

$$x = (4^3)^{\frac{-2}{3}}$$

$$=4^{3\left(-\frac{2}{3}\right)}$$

$$x = 4^{-2}$$

$$x = \frac{1}{4^2}$$

$$x = \frac{1}{16}$$

Q4. Find the value of 'x' in the following.

i) $\log x = 2.4543$

Characteristic = 2

Mantissa = .4543

x = antilog 2.4543

=284.6

ii) $\log x = 0.1821$

Characteristic = 0

Mantissa = .1821

x = antilog 0.1821

$$= 1.521$$

iii) $\log x = 0.0044$

Characteristic = 0

Mantissa = .0044

x = antilog 0.0044

$$x = 1.010$$

iv) $\log x = 1.6238$

Characteristic = $\bar{1}$

Mantissa = .6238

x = antilog 1.6238

x = 0.4205

- Q5. If log2 = 0.3010, log3 = 0.4771 and log 5 = 0.6990, then find the values of the following.
- i) log45
- **Sol.** log45

$$= \log 3^{2} \times 5$$

$$= \log 3^{2} + \log 5$$

$$= 2\log 3 + \log 5$$

$$= 2\log 3 + \log 5$$

$$= 2(0.4771) + 0.6990$$
$$= 0.9542 + 0.6990$$

$$= 1.6532$$

ii)
$$\log \frac{16}{15}$$

$$= \log \frac{2^4}{3 \times 5}$$

$$= \log 2^4 - \log 3 - \log 5$$

$$= 4\log 2 - \log 3 - \log 5$$

$$= 4(0.3010) - 0.4771 - 0.6990$$

$$= 1.2040 - 0.4771 - 0.6990$$

$$= 0.0279$$

$$=\log\frac{48}{1000}$$

$$= \log \frac{16 \times 3}{10^3}$$

$$= \log \frac{2^4 \times 3}{2^3 \times 5^3}$$

$$= \log \frac{2 \times 3}{5^3}$$

$$= \log 2 + \log 3 - \log 5^3$$

$$= \log 2 + \log 3 - 3\log 5$$

$$= 0.3010 + 0.4771 - 3(0.6990)$$

$$= -1.3189$$

$$= -2 + 2 - 1.3189$$

$$= -2 + 0.6811$$

$$= \bar{2}.6811$$

Q6. Simplify the following:

i)
$$\sqrt[3]{25.47}$$

Let $x = (25.47)^{\frac{1}{3}}$ Sol.

Taking log of both sides

$$\log x = \log (25.47)^{\frac{1}{3}}$$
$$= \frac{1}{3} \log(25.47)$$
$$= \frac{1}{3} (1.4060)$$

 $\log x = 0.4687$

Characteristic =
$$0$$

$$Mantissa = .4687$$

$$x = antilog 0.4687$$

$$x = 2.942$$

Let $x = (342.2)^{\frac{1}{5}}$ Sol.

$$Log x = log (342.2)^{\frac{1}{5}}$$

$$= \frac{1}{5}\log(342.2)$$
$$= \frac{1}{5}(2.5343)$$

$$\log x = 0.5069$$

$$Mantissa = .5069$$

$$x = antilog 0.5069$$

$$x = 3.213$$

iii)
$$\frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$$

Sol: Let
$$x = \frac{(8.97)^3 \times (3.95)^2}{(15.37)^{\frac{1}{3}}}$$

Taking log of both sides

$$\log x = \log \frac{(8.97)^3 \times (3.95)^2}{(15.37)^{\frac{1}{3}}}$$

$$= \log(8.97)^{3} + \log(3.95)^{2} - \log(15.37)^{\frac{1}{3}}$$

$$= 3\log(8.97) + 2\log(3.95) - \frac{1}{3}\log(15.37)$$

$$= 3(0.9528) + 2(0.5966) - \frac{1}{3}(1.1867)$$

Objective

1.	If $a^x = n$, then					
	(a)	$a = \log_x n$	(b)	$x = \log_n a$		
	(c)	$x = \log_a n$	(d)	$a = \log_n x$		
_						

- 2. The relation of $y = \log_z x$ implies

 (a) $x^y = z$ (b) $z^y = x$
- 3. The logarithm of unity to any base is _____ (a) ____ (b) ____ 10

(d)

(a) 1 (b) 10 (c) e (d) 0

-1

(c) $x^z = y$

(c)

4. The logarithm of any number to itself as base is_____

(a) 1 (b) 0

(d)

10

- 5. $\log e =$ where $e \approx 2.718$ (a) 0 (b) 0.4343 (c) ∞ (d) 1
- 6. The value of $log\left(\frac{p}{q}\right)$ is ____
 - (a) $\log p \log q$
 - (b) $\frac{\log p}{\log q}$
 - (c) $\log p + \log q$
 - (d) $\log q \log p$
- 7. $\log m^n$ can be written as
 - (a) (log m)ⁿ (b) m log n
 (c) n log m (d) log (mn)

- 8. $\log_{b} a \times \log_{c} b \text{ can be written as}$ (a) $\log_{c} a \text{ (b)} \log_{a} c$ (c) $\log_{a} b \text{ (d)} \log_{b} c$ 9. $\log_{y} x \text{ will be equal to}$ (a) $\frac{\log_{z} x}{\log_{y} z} \text{ (b)} \frac{\log_{x} z}{\log_{y} z}$ (c) $\frac{\log_{z} x}{\log_{z} y} \text{ (d)} \frac{\log_{z} y}{\log_{z} x}$
- - (a) 10 (b) e (c) 2 (d) 1
- 12. The integral part of the common logarithm of a number is called the____
 - (a) Characteristic (b) Mantissa (c) Logarithm (d) None
- 13. The decimal part of the common logarithm of a number is called the _____:
 - (a) Characteristic (b) Mantissa
 - (c) Logarithm (d) None

14.		= log y, then	y is called	l the		
		of x.		-		
		Antilogarithi				
		Characteristi				
15.		the charac		!		
		rithm of a				
		ber will		` '		
		ediately af	ter the	decimal		
	point			_ 1		
	• /	One	` '	Two		
16.	` '	Three		Four		
10.	If the characteristic of the					
	logarithm of a number is 1, that					
	number will have digits in its					
	integ	ral part				
	(a)	2				
	(b)	3				
	(c)	4				
		5				
17.		value of x in	log ₂ x = 5			
	is		~~B) U			
		243	(b)	143		
			(b)			
10	• •	200	(d)	144		
18.		alue of x in	_			
	(a)	284.6	(b)	1.521		

1.1010

The number corresponding to a given logarithm is known as ____

(d)

0.4058

(c)

19.

	(a) Logarithm (b)Antilogarithm				
	(c) Characteristic (d) None				
20.	30600 in scientific notation is				
	(a) 3.06×10^4 (b) 3.006×10^4 (c) 30.6×10^4 (d) 306×10^4				
	(c) 30.6×10^4 (d) 306×10^4				
21.	6.35 x 10 ⁶ in ordinary notation				
	is				
	(a) 6350000 (b) 635000				
ł	(c) 6350 (d) 63500				
22.	A number written in the form				
	a x 10^n , where $1 \le a < 10$ and n is an				
	integer is called				
	(a) Scientific notation				
	(b) Ordinary notation				
	(c) Logarithm notation				
	(d) None				
23.	log p – log q is same as				
	-				
	(a) $\log\left(\frac{q}{p}\right)$				
	(r)				
	(b) $\log(p-q)$				
	(c) $\frac{\log p}{\log p}$				
	log q				
	(d) $\log\left(\frac{p}{q}\right)$				

ANSWER KEY

1.	С	2.	b	3.	d	4.	a	5.	b
6.	a	7.	С	8.	a	9.	c	10.	b
11.	b	12.	a	13.	b	14.	a	15.	a
16.	a	17.	a	18.	a	19.	ь	20.	a
21.	a	22.	a	23.	d	†			