Lab - 10

Dipanshu Goyal 210123083

Ques - 1

a. 10 different asset price paths based on GBM Model in real world.

b. 10 different asset price paths based on GBM Model in risk-neutral world.

The prices of a six-month fixed-strike Asian option with various strike prices are: -

```
************ For K = 90 **********
Asian call option price
                                       = 10.719871273979782
Variance in Asian call option price
                                       = 55.060998883934985
Asian put option price
                                       = 0.30945530614003863
Variance in Asian put option price
                                       = 1.6971352911726028
********** For K = 105 *********
Asian call option price
                                       = 1.7288990250447622
Variance in Asian call option price
                                       = 14.94283097874346
Asian put option price
                                       = 5.923788318090797
Variance in Asian put option price
                                       = 34.844648532841575
******** For K = 110 ********
Asian call option price
                                       = 0.6365947396617387
Variance in Asian call option price
                                       = 5.985861785195261
Asian put option price
                                       = 9.72560976851764
Variance in Asian put option price
                                       = 47.648977059924206
```

Sensitivity Analysis: -

1. Variation with S_0 : -

2. <u>Variation with K</u>: -

3. <u>Variation with r</u>: -

4. Variation with sigma: -

Observations: -

- 1. The price of the call option increases while that of the put option decreases, with an increase in the initial asset price, S0.
- 2. The price of the call option decreases while that of the put option increases, with an increase in the strike prices, K.
- 3. The price of the call option increases while that of the put option decreases, with an increase in the risk-free interest, r.
- 4. The price of both call and put option increases with an increase in sigma.

Ques -2

The prices of a six-month fixed-strike Asian option with various strike prices, after performing variance reduction are: -

```
********** For K = 90 *********
Asian call option price
                                       = 11.142210238234185
Variance in Asian call option price
                                       = 46.64294738547594
Asian put option price
                                       = 0.2489460519879194
Variance in Asian put option price
                                       = 1.15975130667624
************ For K = 105 *********
Asian call option price
                                       = 1.6718732226274844
Variance in Asian call option price
                                       = 11.752896402273667
Asian put option price
                                       = 5.658644971053163
Variance in Asian put option price
                                       = 24.762609678107157
*********** For K = 110 *********
Asian call option price
                                       = 0.6015951299947797
Variance in Asian call option price
                                       = 4.044356770084273
Asian put option price
                                       = 9.96326441457935
Variance in Asian put option price
                                       = 39.324083436338334
```

Observations: –

The price of both call and put options obtained using both with and without variance reduction, are comparable. The respective variances are compared in the following table:

i. For Call Option: -

S No.	Strike Price (K)	Variance (without reduction)	Variance (with reduction)
1.	95	55.060998883934985	46.64294738547594
2.	105	14.94283097874346	11.752896402273667
3.	110	5.985861785195261	4.044356770084273

ii. For Put Option: -

S No.	Strike Price (K)	Variance (without reduction)	Variance (with reduction)
1.	95	1.6971352911726028	1.15975130667624
2.	105	34.844648532841575	24.762609678107157
3.	110	47.648977059924206	39.324083436338334

Sensitivity Analysis after performing Variance Reduction: -

1. Variation with S_0 : -

2. Variation with K: -

3. Variation with r: -

1. Variation with sigma: -

Observations: -

- 1. Earlier, we have quantitatively demonstrated that the variance reduction is achieved. This claim is even more supported by the constructed plots.
- 2. On careful analysis, the fluctuations in the plots seem to be less than the case when variance reduction was not applied. So, the scheme achieves its goal.
- 3. The nature of the plots is consistent with our expectations, which is explained in the last question.