

8.13: Photoelectric Effect Experiment Vinh Q. Tran

Table of Contents

- Overview of the photoelectric effect
- Experiment apparatus
- Data collection
- Cutoff voltages measurement
- Plank constant & work function

• First observed by Heindrich Hertz in 1887 and later explained by Albert Einstein.

- First observed by Heindrich Hertz in 1887 and later explained by Albert Einstein.
- Describe the phenomenon where charged particles are liberated from the metal surface by light of short wavelengths.

- First observed by Heindrich Hertz in 1887 and later explained by Albert Einstein.
- Describe the phenomenon where charged particles are liberated from the metal surface by light of short wavelengths.
- Motivated by the idea of quanta of light (photon), and follow the formular

$$h\nu = K + \phi$$

with h as the Plank constant, v as the light frequency, K as the residual kinetic energy of the charge particle, and ϕ as the work function of the material.

- First observed by Heindrich Hertz in 1887 and later explained by Albert Einstein.
- Describe the phenomenon where charged particles are liberated from the metal surface by light of short wavelengths.
- Motivated by the idea of quanta of light (photon), and follow the formular

$$h\nu = K + \phi$$

with h as the Plank constant, v as the light frequency, K as the residual kinetic energy of the charge particle, and ϕ as the work function of the material.

• In this experiment, we look at $K = eV_{\rm cutoff}$, with $V_{\rm cutoff}$ as the (retarded) cutoff voltage.

• Measurements are made with the wavelengths of $\lambda = 365.0, 404.7, 435.8$, and 546.2 nm, isolated using the filter wheel.

- Measurements are made with the wavelengths of $\lambda = 365.0, 404.7, 435.8$, and 546.2 nm, isolated using the filter wheel.
- Photodiode has a potassium photosurface (cathode) and platinum-rhodium alloy anode ring with high work function.

- Measurements are made with the wavelengths of $\lambda = 365.0, 404.7, 435.8$, and 546.2 nm, isolated using the filter wheel.
- Photodiode has a potassium photosurface (cathode) and platinum-rhodium alloy anode ring with high work function.
- A voltage supply provides a retarding potential *V*, with current *I* measured by a low-noise
 Keithley electrometer.

- Measurements are made with the wavelengths of $\lambda = 365.0, 404.7, 435.8$, and 546.2 nm, isolated using the filter wheel.
- Photodiode has a potassium photosurface (cathode) and platinum-rhodium alloy anode ring with high work function.
- A voltage supply provides a retarding potential *V*, with current *I* measured by a low-noise
 Keithley electrometer.
- All equipment are properly grounded and special care has been paid for geometrical alignment.

 For each wavelength, we make measurements on a large range of voltage, from 0 to deep within the plateau regime, using similar voltage steps.

- For each wavelength, we make measurements on a large range of voltage, from 0 to deep within the plateau regime, using similar voltage steps.
- In response to the high rate of fluctuation in the photoelectric current, for each voltage, we record (on average) 12 consecutive current values I_i .

- For each wavelength, we make measurements on a large range of voltage, from 0 to deep within the plateau regime, using similar voltage steps.
- In response to the high rate of fluctuation in the photoelectric current, for each voltage, we record (on average) 12 consecutive current values I_i .
- For each voltage, we measure the photoelectric current, with the lamp blocked and unblock, surveying and removing background signals.

The current and its uncertainties are reduced following

$$-2\log(\mathcal{L}) = N.\log(2\pi\sigma_I^2) + \sum_{i} \left(\frac{I_i - \mu_I}{\sigma_I}\right)^2$$

$$\mu_I, \sigma_I = \arg\min_{\mu_I, \sigma_I} -2\log(\mathcal{L})$$

15

The current and its uncertainties are reduced following

$$-2\log(\mathcal{L}) = N.\log(2\pi\sigma_I^2) + \sum_{i} \left(\frac{I_i - \mu_I}{\sigma_I}\right)^2$$

$$\mu_I, \sigma_I = \arg\min_{\mu_I, \sigma_I} -2\log(\mathcal{L})$$

The photoelectric current is then obtained

$$I_{\rm pe} = I_{\rm total} - I_{\rm bg}$$

with I_{bg} and I_{total} as the measured currents when the lamp is blocked and unblocked.

16

Background current I_{bg}

Photoelectric current I_{pe}

• We observe that the photoelectric regime (defined as where $I_{\rm pe}>0$) is well fitted by a polynomial, while the plateau regime can be represented by a linear fit (with near-zero slopes in most cases).

- We observe that the photoelectric regime (defined as where $I_{\rm pe}>0$) is well fitted by a polynomial, while the plateau regime can be represented by a linear fit (with near-zero slopes in most cases).
- Polynomial order is determined by the Chow test, with the f-statistics

$$F_{n,n'} = \frac{(\chi_{n'}^2 - \chi_n^2)/(n - n')}{\chi_n^2/(N - n)}$$

Between polynomials of order n and n' < n, and comparing $F_{n,n'}$ to $F_{\alpha=0.05}$.

- We observe that the photoelectric regime (defined as where $I_{\rm pe}>0$) is well fitted by a polynomial, while the plateau regime can be represented by a linear fit (with near-zero slopes in most cases).
- Polynomial order is determined by the Chow test, with the f-statistics

$$F_{n,n'} = \frac{\left(\chi_{n'}^2 - \chi_n^2\right)/(n-n')}{\chi_n^2/(N-n)}$$

Between polynomials of order n and n' < n, and comparing $F_{n,n'}$ to $F_{\alpha=0.05}$.

• n = 3 provides the best results for our data.

- We observe that the photoelectric regime (defined as where $I_{\rm pe}>0$) is well fitted by a polynomial, while the plateau regime can be represented by a linear fit (with near-zero slopes in most cases).
- Polynomial order is determined by the Chow test, with the f-statistics

$$F_{n,n'} = \frac{\left(\chi_{n'}^2 - \chi_n^2\right)/(n-n')}{\chi_n^2/(N-n)}$$

Between polynomials of order n and n' < n, and comparing $F_{n.n'}$ to $F_{\alpha=0.05}$.

- n = 3 provides the best results for our data.
- Using a bi-segment fit (polynomial for $V < V_{\rm cutoff}$, and linear for $V \ge V_{\rm cutoff}$, with smooth transitioning) to determine $V_{\rm cutoff}$.

• Uncertainties are propagated from the uncertainties in voltage as the uncertainties in current are insignificant.

λ	$V_{ m cut\ off}$	$\sim I_{ m pe}(V_{ m cutoff})$
[nm]	[V]	[pA]
365.0 ± 2.0	1.425 ± 0.010	-1.2
404.7 ± 2.0	1.104 ± 0.014	-2.2
435.8 ± 2.0	0.892 ± 0.015	-4.2
546.1 ± 2.0	0.366 ± 0.059	-0.8

- Uncertainties are propagated from the uncertainties in voltage as the uncertainties in current are insignificant.
- Each voltage measurement is treated as a uniform distribution centering at V_i with the width of 0.01 V (the instrument's resolution).

λ	$V_{ m cut\ off}$	$\sim I_{ m pe}(V_{ m cutoff})$
[nm]	[V]	[pA]
365.0 ± 2.0	1.425 ± 0.010	-1.2
404.7 ± 2.0	1.104 ± 0.014	-2.2
435.8 ± 2.0	0.892 ± 0.015	-4.2
546.1 ± 2.0	0.366 ± 0.059	-0.8

- Uncertainties are propagated from the uncertainties in voltage as the uncertainties in current are insignificant.
- Each voltage measurement is treated as a uniform distribution centering at V_i with the width of 0.01 V (the instrument's resolution).
- 10000 Monte Carlo samples of voltages are obtained, each is fitted to obtain a value of V_{cutoff}. The distribution of V_{cutoff} determine the

λ	$V_{ m cut\ off}$	$\sim I_{ m pe}(V_{ m cutoff})$
[nm]	[V]	[pA]
365.0 ± 2.0	1.425 ± 0.010	-1.2
404.7 ± 2.0	1.104 ± 0.014	-2.2
435.8 ± 2.0	0.892 ± 0.015	-4.2
546.1 ± 2.0	0.366 ± 0.059	-0.8

- Uncertainties are propagated from the uncertainties in voltage as the uncertainties in current are insignificant.
- Each voltage measurement is treated as a uniform distribution centering at V_i with the width of 0.01 V (the instrument's resolution).
- 10000 Monte Carlo samples of voltages are obtained, each is fitted to obtain a value of V_{cutoff}. The distribution of V_{cutoff} determine the uncertainty.
- The systematic error of the cutoff voltage measurements is taken as the typical deviation of $V_{\rm cutoff}$ from $V_{I_{\rm pe}=0}$, which is ~ 0.04 V.

λ	$V_{ m cut\ off}$	$\sim I_{ m pe}(V_{ m cutoff})$
[nm]	[V]	[pA]
365.0 ± 2.0	1.425 ± 0.010	-1.2
404.7 ± 2.0	1.104 ± 0.014	-2.2
435.8 ± 2.0	0.892 ± 0.015	-4.2
546.1 ± 2.0	0.366 ± 0.059	-0.8

• Find the optimized values of h and ϕ using the prior

$$e\hat{V}_{\text{cutoff}}(v) = hv - \phi$$

and the negative log likelihood

$$-2\log(\mathcal{L}) = \sum_{i} \frac{\left(V_{\text{cutoff},i} - \hat{V}_{\text{cutoff}}(\nu_{i})\right)^{2}}{\sigma_{V_{\text{cutoff},i}}^{2} + \left(\frac{\partial \hat{V}_{\text{cutoff}}(\nu_{i})}{\partial \nu}\right)^{2} \sigma_{\nu_{i}}^{2}}$$

26

• Find the optimized values of h and ϕ using the prior

$$e\hat{V}_{\text{cutoff}}(\nu) = h\nu - \phi$$

and the negative log likelihood

$$-2\log(\mathcal{L}) = \sum_{i} \frac{\left(V_{\text{cutoff},i} - \hat{V}_{\text{cutoff}}(\nu_{i})\right)^{2}}{\sigma_{V_{\text{cutoff},i}}^{2} + \left(\frac{\partial \hat{V}_{\text{cutoff}}(\nu_{i})}{\partial \nu}\right)^{2} \sigma_{\nu_{i}}^{2}}$$

 The N-sigma gaussian-equivalent uncertainties are obtained using the covariance matrix C

$$(C)_{\theta,\theta'}^{-1} \approx -\frac{\partial^2 \log(\mathcal{L})}{\partial \theta \partial \theta'}$$

$$N^2 = \sum_{\theta,\theta'} (\theta - \theta_0) (C)_{\theta,\theta'}^{-1} (\theta' - \theta'_0)$$

The large uncertainties are due to the degeneration of fitting parameters.

- The large uncertainties are due to the degeneration of fitting parameters.
- Nevertheless, the obtained value of h remains close to the literature's $h = 6.63 \times 10^{-34}$ J s.

- The large uncertainties are due to the degeneration of fitting parameters.
- Nevertheless, the obtained value of h remains close to the literature's $h = 6.63 \times 10^{-34}$ J s.
- Systematic error is propagated from the systematic error of the cutoff voltages and is of the order of $\sim 5\%$ (~ 0.32 J s).

