

February 20, 2019

Ms. Cindi Punihaole Kennedy, Director The Koiiala Center Kahalu'u Bay Education Center P. O. Box 437462 Kamuela, Hawai'i Island, Hawai'i 96743

Dear Ms. Punihaole Kennedy:

This letter is in response to your request of January 31, 2019, asking me to provide a hazard assessment for Kahalu'u Bay corals and other marine organisms. At the time of the request, you also provided environmental concentration data for oxybenzone from five sites that had been collected for Kahalu'u Bay on April 14, 2018. The effect concentrations used for the analysis were obtained from the published scientific literature based on a literature review that I performed.

In undertaking this assessment, there were a number of approaches found in the scientific literature and government guidance documents [e.g., references 1-8] to calculate a hazard (or risk) quotient. I used two different approaches to determine the hazard quotient for Kahalu'u Bay, Hawaii Island.

The first approach I used was based on the U.S. Environmental Protection Agency (U.S. EPA) guidance for pesticides and other chemicals [1] which included an effects determination for Endangered and Threatened species [2]. With this method, the measured environmental concentration (MEC) is compared to a toxicity endpoint (e.g., LC₅₀ that is the concentration of a chemical where 50% of the organisms die or EC₅₀ concentration of the chemical, which results in a 50% adverse effect for a relevant sub-lethal endpoint). For aquatic animals, the lowest EC_{50} or LC_{50} measurements are used as the toxicity endpoint. Thus, the acute risk or hazard quotient, RQ (or HQ) = MEC/most sensitive organism's EC50 or LC50. This quotient then is compared to U.S. EPA's Level of Concern (LOC) for aquatic animals [1, 2]. The LOC is a policy tool used to interpret the RQ (HQ) and determine potential risk and regulatory action. For aquatic animals the presumption for acute high risk is a RQ of 0.5 (LOC), acute restricted use is a RQ of 0.1 (LOC) and for acute endangered species the RQ is 0.05 (LOC) [1, 2]. These calculations are presented in Table 1. I have used an arbitrary color scheme for easier visualization: red ≥ 0.5 is high ecological risk; yellow $\geq 0.1 < 0.5$ is moderate risk and potential for restricted use; green \geq 0.05< 0.1 is low risk.

The second approach I used for determining the hazard (or risk) quotient was based on European Union guidance that is internationally accepted, and has been adopted in the development of several ecological risk assessment guidelines [3-7]. With this method, the actual or predicted environmental concentration is compared to an extrapolated or derived Predicted No-Effect Concentration (PNEC) that is divided by an uncertainty (or assessment) factor (UF). Thus, the **HQ** = (**MEC/PNEC**)***UF**. For this **HQ** determination,

an UF of 1000 was selected for the extrapolation of the EC₅₀ or LC₅₀ values to estimate noeffect values (PNEC) [3, 5, 8]. These calculations are presented in Table 2. I have used an arbitrary color scheme for ease of visualization: $\mathbf{red} \ge 1$ is high, unacceptable risk; \mathbf{yellow} $\ge 0.5 < 1$ is possibility of increased risk; and $\mathbf{green} < 0.5$ is low risk.

Hazard Quotients are an initial tier of an ecological risk assessment and meant as a screening tool. The HQ method is not intended to be predictive for the level or magnitude of risk. Based on the guidance by U.S. EPA [1, 2], the most sensitive organism represented in this dataset is *Stylophora pistillata* and specifically the planula exposed to oxybenzone during a 24h exposure involving light (LC₅₀ = 1.39 μ g/L). Based on these data, Sites HEL1, HEL2, HEL3, and HEL4 exhibited high acute risk; using the EU method of calculating a HQ, all sites indicated high acute risk potential for all organisms examined.

Please let me know if you have any questions or need clarification.

Best Regards,

Cheryl M. Woodley, Ph.D.

Program Manager

Coral Health & Disease Program.

Chery M. Woodley

Attachments:

- 1. Table 1 Hazard quotient for Kahalu'u Bay, Hawai'i Island, Hawaii using U.S. EPA Approach
- 2. Table 2 Hazard quotient for Kahalu'u Bay, Hawai'i Island, Hawaii using European Union Approach
- 3. References

Table 1 Hazard quotient for Kahalu'u Bay, Big Island, Hawaii using US EPA Approach

					HEL 1	HEL 2	HEL 3	HEL 4	HEL 6	Ref.
HQ=MEC/EC ₅₀ (or	LC ₅₀)			Oxybenzone MEC μg/L	440.0	134.0	1721.0	2947.0	5.0	
SPECIES			Toxicity Reference Value μg/L							
Stylophora pistillata	coral cells 4h dark	LC ₅₀	679.00		0.65	0.20	2.53	4.34	0.01	9
Stylophora pistillata	coral cells 4h light	LC ₅₀	42.00		10.48	3.19	40.98	70.17	0.12	9
Pocillopora damicornis	coral cells 4h light	LC ₅₀	8.00		55.00	16.75	215.13	368.38	0.63	9
Acropora cervicornis	coral cells 4h light	LC ₅₀	9.00		48.89	14.89	191.22	327.44	0.56	9
Orbicella annularis	coral cells 4h light	LC ₅₀	74.00		5.95	1.81	23.26	39.82	0.07	9
Montastraea cavernosa	coral cells 4h light	LC ₅₀	52.00		8.46	2.58	33.10	56.67	0.10	9
Porites astreoides	coral cells 4h light	LC ₅₀	340.00		1.29	0.39	5.06	8.67	0.01	9
Porites divaricata	coral cells 4h light	LC ₅₀	36.00		12.22	3.72	47.81	81.86	0.14	9
	Coral Planula (early	life stage)								
Stylophora pistillata	Planula 8h dark	LC ₅₀	12800.00		0.03	0.01	0.13	0.23	0.00	9
Stylophora pistillata	Planula 8h light	LC ₅₀	2900.00		0.15	0.05	0.59	1.02	0.00	9
Stylophora pistillata	Planula 24h dark	LC ₅₀	799.00		0.55	0.17	2.15	3.69	0.01	9

•	1	Ī	ı						
Stylophora pistillata	Planula 24h light	LC ₅₀	1.39	316.55	96.40	1238.13	2120.14	3.60	9
Stylophora pistillata	Planula deformity 8h dark	EC ₅₀	737000.00	0.00	0.00	0.00	0.00	0.00	9
Stylophora pistillata	Planula deformity 8h light	EC ₅₀	133000.00	0.00	0.00	0.01	0.02	0.00	9
Stylophora pistillata	Planula deformity 24h dark	EC ₅₀	137.00	3.21	0.98	12.56	21.51	0.04	9
Stylophora pistillata	Planula deformity 24h light	EC ₅₀	49.00	8.98	2.73	35.12	60.14	0.10	9
	Invertebrat	es							
Paracentrotus lividus	sea urchin	EC ₅₀	3280.00	0.13	0.04	0.52	0.90	0.00	10
Mytilus galloprovincialis	mussels	EC ₅₀	3472.59	0.13	0.04	0.50	0.85	0.00	10
Siriella armata	mysid, crustacean	EC ₅₀	710.76	0.62	0.19	2.42	4.15	0.01	10
Daphnia magna	crustacean 24h immobility	EC ₅₀	2700.00	0.16	0.05	0.64	1.09	0.00	11
Daphnia magna	crustacean 48h immobility	EC ₅₀	1670.00	0.26	0.08	1.03	1.76	0.00	12
Daphnia magna	crustacean 72h immobility	EC ₅₀	1600.00	0.28	0.08	1.08	1.84	0.00	11
Daphnia magna	crustacean 24h	LC ₅₀	7630.00	0.06	0.02	0.23	0.39	0.00	17
Daphnia magna	crustacean 48h	LC ₅₀	1090.00	0.40	0.12	1.58	2.70	0.00	18
	Algae								
Isochrysis galbana	microalgae	EC ₅₀	13.87	31.72	9.66	124.08	212.47	0.36	10
Desmodesmus subspicatus	Green algae growth	EC ₅₀	960.00	0.46	0.14	1.79	3.07	0.01	12
Chlamydomonas reinhardtii	green microalgae	EC ₅₀	1850.00	0.24	0.07	0.93	1.59	0.00	13
Microcystis aeruginosa	cyanobacterium	EC ₅₀	2460.00	0.18	0.05	0.70	1.20	0.00	13
Skeletonema pseudocostatum	algal diatom growth inhibition	EC ₅₀	251.00	1.75	0.53	6.86	11.74	0.02	14
Chlorella vulgaris	green microalgae growth inhibition	EC ₅₀	22400.00	0.02	0.01	0.08	0.13	0.00	15

Chlorella vulgaris	green microalgae growth inhibition 96h	EC ₅₀	6860.00	0.06	0.02	0.25	0.43	0.00	17
Chlorella vulgaris	green microalgae growth inhibition 96h	EC ₅₀	2980.00	0.15	0.04	0.58	0.99	0.00	18
	Fish								
Brachydanio rerio	96h	LC ₅₀	14730.00	0.03	0.01	0.12	0.20	0.00	17
Brachydanio rerio	96h	LC ₅₀	3890.00	0.11	0.03	0.44	0.76	0.00	18

Red - High Risk LOC aquatic animals ≥0.5

Yellow – Moderate Risk, LOC aquatic animals ≥0.1<0.5

Green – Low Risk, LOC ≥0.05<0.1

White – not significant, below threshold for hazard quotient

Table 2 Hazard Quotient for Kahalu'u Bay, Big Island Hawaii using European Union Approach

					HEL 1	HEL 2	HEL 3	HEL 4	HEL 6	Ref.
HQ=MEC/PNE	C*1000			Oxybenzone MEC μg/L	440.0	134.0	1721.0	2947.0	5.0	
SPECIES			Toxicity Reference Value µg/L							
Stylophora pistillata	coral cells 4h dark	LC ₅₀	679.00		648.0	197.3	2534.6	4340.2	7.4	9
Stylophora pistillata	coral cells 4h light	LC ₅₀	42.00		10476.2	3190.5	40976.2	70166.7	119.0	9
Pocillopora damicornis	coral cells 4h light	LC ₅₀	8.00		55000.0	16750.0	215125.0	368375.0	625.0	9
Acropora cervicornis	coral cells 4h light	LC ₅₀	9.00		48888.9	14888.9	191222.2	327444.4	555.6	9
Orbicella annularis	coral cells 4h light	LC ₅₀	74.00		5945.9	1810.8	23256.8	39824.3	67.6	9
Montastraea cavernosa	coral cells 4h light	LC ₅₀	52.00		8461.5	2576.9	33096.2	56673.1	96.2	9
Porites astreoides	coral cells 4h light	LC ₅₀	340.00		1294.1	394.1	5061.8	8667.6	14.7	9
Porites divaricata	coral cells 4h light	LC ₅₀	36.00		12222.2	3722.2	47805.6	81861.1	138.9	9
Cor	ral Planula (early l	ife stage)								
Stylophora pistillata	Planula 8h dark	LC ₅₀	12800.00		34.4	10.5	134.5	230.2	0.4	9
Stylophora pistillata	Planula 8h light	LC ₅₀	2900.00		151.7	46.2	593.4	1016.2	1.7	9
Stylophora pistillata	Planula 24h dark	LC ₅₀	799.00		550.7	167.7	2153.9	3688.4	6.3	9
Stylophora pistillata	Planula 24h light	LC ₅₀	1.39		316546.8	96402.9	1238129.5	2120143.9	3597.1	9

<u>-</u>	i	•		Ī					•	
Stylophora pistillata	Planula deformity 8h dark	EC ₅₀	737000.00		0.6	0.2	2.3	4.0	0.0	9
Stylophora pistillata	Planula deformity 8h light	EC ₅₀	133000.00		3.3	1.0	12.9	22.2	0.0	9
Stylophora pistillata	Planula deformity 24h dark	EC ₅₀	137.00		3211.7	978.1	12562.0	21510.9	36.5	9
Stylophora pistillata	Planula deformity 24h light	EC ₅₀	49.00		8979.6	2734.7	35122.4	60142.9	102.0	9
	Invertebrate	rs								
Paracentrotus lividus	sea urchin	EC ₅₀	3280.00		134.1	40.9	524.7	898.5	1.5	10
Mytilus galloprovincialis	mussels	EC ₅₀	3472.59		126.7	38.6	495.6	848.6	1.4	10
Siriella armata	mysid, crustacean	EC ₅₀	710.76		619.1	188.5	2421.4	4146.3	7.0	10
Daphnia magna	crustacean 24h immobility	EC ₅₀	2700.00		163.0	49.6	637.4	1091.5	1.9	11
Daphnia magna	crustacean 48h immobility	EC ₅₀	1670.00		263.5	80.2	1030.5	1764.7	3.0	12
Daphnia magna	crustacean 72h immobility	EC ₅₀	1600.00		275.0	83.8	1075.6	1841.9	3.1	11
Daphnia magna	crustacean 24h	LC ₅₀	7630.00		57.7	17.6	225.6	386.2	0.7	17
Daphnia magna	crustacean 48h	LC ₅₀	1090.00		403.7	122.9	1578.9	2703.7	4.6	18
	Algae									
Isochrysis galbana	microalgae	EC ₅₀	13.87		31723.1	9661.1	124080.7	212473.0	360.5	10
Desmodesmus subspicatus	Green algae growth	EC ₅₀	960.00		458.3	139.6	1792.7	3069.8	5.2	12
Chlamydomonas reinhardtii	green microalgae	EC ₅₀	1850.00		237.8	72.4	930.3	1593.0	2.7	13
Microcystis aeruginosa	cyanobacterium	EC ₅₀	2460.00		178.9	54.5	699.6	1198.0	2.0	13
Skeletonema pseudocostatum	algal diatom growth inhibition	EC ₅₀	251.00		1753.0	533.9	6856.6	11741.0	19.9	14

Chlorella vulgaris	green microalgae growth inhibition	EC ₅₀	22400.00	19.6	6.0	76.8	131.6	0.2	15
Chlorella vulgaris	green microalgae growth inhibition 96h	EC ₅₀	6860.00	64.1	19.5	250.9	429.6	0.7	17
Chlorella vulgaris	green microalgae growth inhibition 96h	EC ₅₀	2980.00	147.7	45.0	577.5	988.9	1.7	18
	Fish								
Brachydanio rerio	96h	LC ₅₀	14730.00	29.9	9.1	116.8	200.1	0.3	17
Brachydanio rerio	96h	LC ₅₀	3890.00	113.1	34.4	442.4	757.6	1.3	18

RED= Unacceptable Risk ≥1

Yellow= Potential of increased Risk ≥0.5<1.0

Green= Low Risk < 0.5

White= not significant, below threshold for hazard quotient

References

- [1] U.S. Environmental Protection Agency. Technical Overview of Ecological Risk Assessment: Risk Characterization. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-risk (Accessed 4-6-18)
- [2] U.S. Environmental Protection Agency. (2004) Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs, U.S. Environmental Protection Agency. Endangered and Threatened Species Effects Determination. https://19january2017snapshot.epa.gov/sites/production/files/2014-11/documents/ecorisk-overview.pdf (Accessed 4-6-18)
- [3] Environment Canada. Guidance Manual: The Science Behind Environmental Assessments of Priority Substances under the Canadian Environmental Protection Act. https://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=415E464B-1 (Accessed 4-6-18)
- [4] European Commission. (2003) Technical guidance document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the council concerning the placing of biocidal products on the market. Part II. EUR 20418 E/2. Joint Research Centre, Ispra, Italy. https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf (Accessed 4-6-18)
- [5] ChemSafetyPro.com. Chemical Risk Assessment: How to Calculate Predicted No-Effect Concentration (PNEC). http://www.chemsafetypro.com/Topics/CRA/How_to_Calculate_Predicted_No-Effect_Concentration_(PNEC).html (Accessed 4-6-18)
- [6] European Medicines Agency (EMEA). (2006) Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003978.p http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003978.p http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003978.p http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003978.p http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500003978.p https://www.ema.europa.eu/docs/en_GB/document_guideline/2009/10/WC500003978.p https://www.ema.eu/docs/en_GB/document_guideline/2009/10/WC500003978.p https://www.ema.eu/docs/en_GB/document_guideline/2009/10/WC500003978.p https://www.ema.eu/document_guideline/2009/10/WC500003978.p https://www.ema.eu/document_guideline/2009/10/WC500003978.p https://www.ema.eu/document_guideline/2009/10/WC500003978.p <a
- [7] Hernando MD, Mezcua M. Fernandex-Alba AR, Barcelo D. (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. *Talanta*. 69: 334-342.
- [8] Dussault EB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK. (2008) Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. *Environmental Toxicology and Chemistry*. 27: 425-432.
- [9] Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y. (2016) Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and in the U.S. Virgin Islands. *Archives of Environmental Contaminant Toxicology*. 70: 265-288.
- [10] Paredes E, Perez S, Rodil R, Quintana JB, Beiras R. (2014) Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels *Isochrysis galbana*, *Mytilus galloprovincialis*, *Paracentrotus lividus*, and *Siriella armata*. *Chemosphere*. 104: 44-50.
- [11] Molins-Delgado D, Gago-Ferrero P, Diaz-Cruz MS, Barcelo D. (2016) Single and joint ecotoxicity data estimation of organic UV filters and nanomaterials toward selected aquatic organisms. Urban groundwater risk assessment. *Environmental Research*. 145: 126-134.

- [12] Sieratowicz A, Kaiser D, Behr M, Oetken M, Oehlmann J. (2011) Acute and chronic toxicity of four frequently used UV filter substances for *Desmodesmus subspicatus* and *Daphnia magna*. *Journal of Environmental Science and Health* Part A. 46: 1311-1319.
- [13] Mao F, He Y, Kushmaro A, Gin KY-H. (2017) Effects of benzophenone-3 on the green alga *Chlamydomonas reinhardtii* and cyanobacterium *Microcystis aeruginosa*. *Aquatic Toxicology*. 193: 1-8.
- [14] Petersen K, Heiaas HH, Tollefsen KE. (2014) Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of *Skeletonema pseudocostatum*. Aquatic Toxicology. 150:45-54.
- [15] Pablos MV, Garcia-Hortiguela P, Fernandez C. (2015) Acute and chronic toxicity of emerging contaminants, alone or in combination, in *Chlorella vulgaris* and *Daphnia magna*. *Environmental Science and Pollution Research*. 22: 5417-5424.
- [16] Kim S, Choi K. (2014) Occurrences, toxicities and ecological risks of benzophone-3, a common component of organic sunscreen products: A mini-review. *Environment International*. 70: 143-157.
- [17] Sun H-Q, Du Y, Zhang Z-Y, Jiang W-J, Guo Y-M, Lu X-W, Zhang Y-M, Sun L-W. (2016) Acute toxicity and ecological risk assessment of benzophenone and N, N-diethyl-3 methylbenzamide in personal care products. *International Journal of Environmental Research and Public Health*. 13: 925. Doi: 10.3390/ijerph13090925.
- [18] Du Y, Wang W-Q, Pei Z-T, Ahmad F, Xu R-R, Zhang Y-M, Sun L-W. (2017) Acute toxicity and ecological risk assessment of benzophenone-3 (BP-3) and benzophenone-4 (BP-4) in ultraviolet (UV)-filters. *International Journal of Environmental Research and Public Health*. 14: 1414. Doi: 10.3390/ijerph14111414.