Содержание

1	Лин	ейная алгебра: векторы, линейная зависимость, нормы, простран-	
	ства	1	
	1.1	Линейная зависимость векторов	
	1.2	Базис линейного пространства	
	1.3	Скалярное произведение	
	1.4	Нормы векторов	
	1.5	Метрики в \mathbb{R}^n	
	1.6	Что такое линейное пространство?	
		1.6.1 Источники	
2	Матрицы. Их свойства. Транспонированная матрица. Ранг матри-		
	ЦЫ	5	
	2.1	Матрицы и их свойства	
	2.2	Транспонированная матрица	
	2.3	Ранг матрицы	
		2.3.1 Источники	

1 Линейная алгебра: векторы, линейная зависимость, нормы, пространства

1.1 Линейная зависимость векторов

Векторы называются линейно зависимыми, если хотя бы один из них выражается как линейная комбинация других.

Иначе говоря, существует набор чисел $\lambda_1,\dots,\lambda_k$, не все равные нулю, такой что:

$$\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_k \vec{v}_k = \vec{0}.$$

Пример. В \mathbb{R}^2 пусть:

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}.$$

Заметим, что $\vec{v}_2 = 2\vec{v}_1$, значит, они линейно зависимы.

Линейно независимые векторы — такие, что ни один не выражается через другие.

1.2 Базис линейного пространства

Базис — это минимальное количество линейно независимых векторов, через которые можно выразить любой вектор данного пространства.

Рис. 1: Векторы на одной прямой — линейно зависимы

 $B \mathbb{R}^2$ базисом является:

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Любой вектор $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ выражается как:

$$\vec{v} = x\vec{e}_1 + y\vec{e}_2.$$

Рис. 2: Разложение вектора по базису

1.3 Скалярное произведение

Определение: для векторов $\vec{a}, \vec{b} \in \mathbb{R}^n$:

$$\langle \vec{a}, \vec{b} \rangle = \sum_{i=1}^{n} a_i b_i.$$

Смысл: Скалярное произведение связано с углом:

$$\langle \vec{a}, \vec{b} \rangle = \|\vec{a}\| \cdot \|\vec{b}\| \cdot \cos \theta.$$

Если $\langle \vec{a}, \vec{b} \rangle = 0$ — векторы ортогональны (перпендикулярны).

Рис. 3: Скалярное произведение и угол между векторами

1.4 Нормы векторов

Норма (обозначается $\|\vec{v}\|$) — длина вектора. В \mathbb{R}^n могут использоваться разные нормы:

- L^2 -норма (Евклидова): $\|\vec{v}\|_2 = \sqrt{\sum v_i^2}$.
- L^1 -норма (манхэттенская): $\|\vec{v}\|_1 = \sum |v_i|$.
- L^{∞} -норма (максимальная): $\|\vec{v}\|_{\infty} = \max |v_i|$.

1.5 Метрики в \mathbb{R}^n

Метрика $d(\vec{x}, \vec{y})$ — расстояние между векторами. Примеры:

- $d_2(\vec{x}, \vec{y}) = \|\vec{x} \vec{y}\|_2$ обычное евклидово расстояние.
- $d_1(\vec{x}, \vec{y}) = ||\vec{x} \vec{y}||_1$ "по кварталам".

Рис. 4: Разные нормы в \mathbb{R}^2 : как выглядит "единичный круг"

• $d_{\infty}(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\|_{\infty}$ — максимальная разность координат.

Метрики необходимы, например, в машинном обучении, статистике, анализе данных и при построении расстояний в графах.

1.6 Что такое линейное пространство?

Это множество векторов с операциями сложения и умножения на скаляр, подчинённое следующим свойствам:

- 1. Замкнутость (результат операции тоже вектор).
- 2. Ассоциативность и коммутативность.
- 3. Наличие нулевого и противоположного вектора.
- 4. Дистрибутивность по скалярам и векторам.

Примеры:

- \mathbb{R}^n
- Множество всех многочленов степени не выше n
- Множество решений однородной линейной системы

Подпространство — часть пространства, которая сама является векторным пространством.

1.6.1 Источники

- Ш. Л. Ланг, Линейная алгебра.
- Математический анализ и линейная алгебра: Лекции и задачники.
- Википедия: Линейное пространство.

2 Матрицы. Их свойства. Транспонированная матрица. Ранг матрицы

2.1 Матрицы и их свойства

Матрица — это прямоугольная таблица чисел, записанная в виде:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

где a_{ij} — элемент на i-й строке и j-м столбце.

Если m = n, то матрица называется **квадратной**.

Основные типы матриц:

- Нулевая матрица: все элементы равны нулю.
- Диагональная матрица: все элементы вне главной диагонали равны нулю.
- $\it Единичная матрица I_n$: на главной диагонали единицы, остальное нули.

Операции над матрицами:

- Сложение и вычитание поэлементно, если размеры совпадают.
- Умножение на число: каждый элемент умножается на скаляр.
- Умножение матриц: определяется как

$$(AB)_{ij} = \sum_{k} a_{ik} b_{kj},$$

если количество столбцов A равно количеству строк B.

2.2 Транспонированная матрица

Транспонирование — это операция, при которой строки матрицы становятся столбцами. Обозначается A^T .

Если
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad A^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}.$$

Свойства:

•
$$(A^T)^T = A$$
,

$$\bullet \ (A+B)^T = A^T + B^T,$$

•
$$(AB)^T = B^T A^T$$
.

2.3 Ранг матрицы

Ранг матрицы — это наибольшее число линейно независимых строк (или столбцов) матрицы.

Обозначается: $\operatorname{rank}(A)$. Методы вычисления:

- Приведение к ступенчатому виду методом Гаусса.
- Определение максимального размера ненулевого минора.

Пример.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \Rightarrow \text{rank}(A) = 1,$$

так как все строки пропорциональны первой.

Свойства ранга:

- Ранг не меняется при элементарных преобразованиях строк.
- $\operatorname{rank}(A) \leq \min(m, n)$ для матрицы A размера $m \times n$.

2.3.1 Источники

- Ш. Л. Ланг, Линейная алгебра.
- Г.С. Михалев, Дискретная математика.
- Википедия: Матрица.