Numerical methods

Fully numerical solutions, have 3 characteristies
1) Diride domain into grid 2:
1) Diride domain into grid Qi 2) Di defines functional representation 3) define spatial/temporal
3) défine spatial/temporal
differential / integral operators Vu - Fui
What to look for?
1) fix maximum error at maximum distance
2) model complexity (-> mishing)
3) practical needs: seismograms, wavefield
4) how many processors to solve solution Aproces
4) how many processors to solve solution Forces cost-accuracy analysis decides what method is best
ajectules what memori is bear

5) ophinite input parameter

6) run at higher resolution to validate
fix distance rost

surror

Strong is werk form of the wave eguation:

$$\int \int_{t}^{2} u = \nabla \cdot T$$

strong form (FD, PS)

Let's look 24

$$\int_{\Omega} w \cdot \nabla \cdot T dV = \int_{\Omega} w \cdot \nabla \cdot \left(\subseteq \cdot \nabla u \right) dV$$

$$= \int \hat{\mathbf{n}} \cdot \nabla \cdot \mathbf{n} \, dS \stackrel{!}{=} 0$$

$$= \int \hat{\mathbf{n}} \cdot \vec{\mathbf{L}} \cdot \mathbf{w} \, dS \stackrel{!}{=} 0$$

$$\partial_{\mathbf{m}} \Omega = 0$$

with stress-free boundary condition $\hat{n} \cdot T = 0$ on $\partial \Omega$

Finite volume methods: $\int D \cdot f \, dV = \int f \cdot \hat{n} \, dS$ 2i

volume

for each element

conforming

mesh

Finite

differente

(SEM)

Tenite

(DG)

--
increasing (geometrical)

Hexibility & costs