Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE I

On considère les ensembles suivants :

$$E = \{(x, y, z) \in \mathbb{R}^3, x + y - 2z = 0\}$$

$$E = \{(x, y, z) \in \mathbb{R}^3, x - 6y = 0\}$$

$$F = \{(x, y, z) \in \mathbb{R}^3, x - 6y = 0\}$$

$$G = \{(x, y, z) \in \mathbb{R}^3, 2x + y - 3z = 0\}$$

- 1. Montrer que E, F et G sont des sous-espaces vectoriels de \mathbb{R}^3 et en déterminer des bases.
- **2. a.** Sans calculer $E \cap F$, justifier que $\dim(E \cap F) \geq 1$.
 - **b.** Montrer que $(E \cap F) \oplus G = \mathbb{R}^3$
- **3. a.** Justifier que l'on peut trouver une base de $E \cap F$ à l'aide d'un produit vectoriel, puis la déterminer.
 - **b.** Retrouver le résultat $(E \cap F) \oplus G = \mathbb{R}^3$.

EXERCICE II

Soit E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Le but de l'exercice est de montrer que deux sousespaces vectoriels de E de même dimension admettent un supplémentaire commun.

Soient E_1 et E_2 deux sous-espaces vectoriels de E de dimension $r \in [0, n]$.

1. On suppose dans cette question que r = n.

Montrer que E_1 est E_2 ont un supplémentaire commun, c'est-à-dire qu'il existe un sous-espace vectoriel F de $E \text{ tel que } E_1 \oplus F = E_2 \oplus F = E$

- 2. On suppose que r < n et que si F_1 et F_2 sont des sous-espaces vectoriels de E de dimension r + 1 alors ils admettent un supplémentaire commun dans E.
 - **a.** Montrer que $E_1 \cup E_2 \neq E$. Ainsi, il existe $x \in E$ tel que $x \notin E_1$ et $x \notin E_2$.
 - **b.** On note $F_1 = E_1 + \text{Vect}\{x\}$ et $F_2 = E_2 + \text{Vect}\{x\}$. Déterminer $\dim(F_1)$ et $\dim(F_2)$.
 - **c.** Montrer que E_1 et E_2 ont un supplémentaire commun.
- 3. Conclure.

EXERCICE III

EXERCICE III

On considère la matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

On note $E = \{M \in \mathcal{M}_3(\mathbb{R}), MA = AM = M\}$.

- **1. a.** Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ pour les lois usuelles.
 - \mathbf{b} . Montrer qu'aucune matrice de E n'est inversible.
- **2.** Soit $M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix} \in E$
 - a. Montrer que a = c = g = k, h = b, et f = d, puis en déduire une base de E.
 - **b.** On considère le sous-ensemble F de E tel que $F = \left\{ \begin{pmatrix} a & b & a \\ b & c & b \\ a & b & a \end{pmatrix}, (a, b, c) \in \mathbb{R}^3 \right\}$.

Montrer que F est un sous-espace vectoriel de E et en donner une base.

- 3. On note φ l'application de F dans \mathbb{R} qui à toute matrice $M=(a_{i,j})_{1\leq i,j\leq 3}$ de F associe le nombre $\sum\sum a_{i,j}$.
 - a. Montrer que φ est une application linéaire de F dans \mathbb{R} .
 - **b.** Déterminer $\operatorname{Im}(\varphi)$. En déduire la dimension de $\operatorname{Ker}(\varphi)$.
 - c. Déterminer une base de $Ker(\varphi)$.

PROBLEME

L'objectif de ce problème est de montrer par l'absurde que le nombre π est irrationnel (**Théorème de Lambert**, **1761**). On suppose donc qu'il existe deux entiers naturels non nuls p et q tels que $\pi = \frac{p}{q}$.

1. On définit, pour $n \in \mathbb{N}^*$, le polynôme

$$P_n = \frac{1}{n!} X^n (p - qX)^n$$

- a. Déterminer les racines de P_n et leurs multiplicités respectives.
- **b.** Déterminer explicitement les coefficients a_k de P_n .
- **c.** En déduire, à l'aide de la formule de Taylor pour les polynômes, que pour tous les entiers $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$,

$$P_n^{(k)}(0) \in \mathbb{Z}$$

d. Montrer que

$$P_n\left(\frac{p}{q} - X\right) = P_n(X)$$

puis que

$$\forall n \in \mathbb{N}^*, \quad \forall k \in \mathbb{N}, \quad (-1)^k P_n^{(k)} \left(\frac{p}{q} - X\right) = P_n^{(k)}(X)$$

e. En déduire que pour tous les entiers $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$,

$$P_n^{(k)}\left(\frac{p}{q}\right) \in \mathbb{Z}$$

2. On définit pour $n \in \mathbb{N}^*$, l'intégrale

$$I_n = \int_0^{\frac{p}{q}} P_n(t) \sin(t) dt$$

Montrer que

$$\forall n \in \mathbb{N}^*, \quad |I_n| \le \frac{p^{2n+1}}{n!}$$

- **b.** En déduire que (I_n) converge vers 0.
- c. Démontrer que

$$\forall n \in \mathbb{N}^*, \quad I_n > 0$$

3. a. Démontrer que

$$I_n = P_n\left(\frac{p}{q}\right) + P_n(0) + \int_0^{\frac{p}{q}} P'_n(t)\cos(t)dt$$

On admet que l'on obtient, par intégrations par parties successives :

$$\forall n \in \mathbb{N}^*, \quad I_n = \sum_{k=0}^n (-1)^k \left(P_n^{(2k)} \left(\frac{p}{q} \right) + P_n^{(2k)}(0) \right) + (-1)^n \int_0^{\frac{p}{q}} P_n^{(2n+1)}(t) \cos(t) dt$$

- **b.** En déduire que $I_n \in \mathbb{N}^*$.
- c. Conclure.
- 4. Question facultative : démontrer ce qui est admis en 3.a).

Fin de l'énoncé