Резонанс токов в параллельном контуре

Гончаров Марк

9 октября 2020 г.

1 Цель работы

Исследование резонансов токов в параллельном колебательном контуре с изменяемой ёмкостью, получение амплитудно-частотных и фазово-частотных характеристик, определение основных параметров контура.

2 В работе используется

Генератор сигналов, источник напряжения, параллельный колебательный контур с переменной ёмкостью, цифровые вольтметры, двулучевой осциллограф.

3 Теория к эксперименту

Рис. 1а. Схема экспериментального стенда.

Рис. 1б. Колебательный контур.

На установке напряжение $E=E_0cos(\omega t+\varphi_0)$ поступает от генератора на вход источника тока, следовательно ток во внешней цепи

$$I = \frac{E}{R} = I_0 cos(\omega t + \varphi_0).$$

Важными характеристиками в этой цепи являются импедансы ёмкостной и индуктивной ветвей: $Z_C = R_S - \frac{i}{\omega C}, Z_L = R + R_L + i\omega L$, где R_L, R_S есть активные части импедансов катушки и конденсатора соотвественно.

Т.к. добротность в наших установках велика, то можно пользоваться грубым рассчётом

$$Q \approx \frac{\rho}{R_{\Sigma}} = \frac{\omega L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}} \gg 1.$$

Далее идёт рассчёт зависимостей $I_L(t), I_C(t), U(t)$, главный вывод из которых, что для высокодобротного контура в резонансе $\omega = \omega_0$ имеем

$$I_C(\omega_0) = QI_0 = I_L(\omega_0), U(\omega_0) = QI_0\omega_0L.$$

Также можно считать добротность контура, если предварительно найти ширину резонансной кривой $\delta\omega$, тогда

$$Q = \frac{\omega_0}{\delta\omega}.$$

4 Выполнение работы

Рис. 3. Общий вид установки.

Настроим установку, снимем сначала показания частотометра и вольтметра при резонансе для каждого контура. Также снимем АЧХ и ФЧХ контуров 3 и 1.

Контур	E, B	U, B	f_0, кГц
1	0,3	1,72	32,1
2	0,3	1,38	27,8
3	0,3	1	23,2
4	0,3	0,85	21,3
5	0,3	0,72	19,4
6	0,3	0,45	17,7
7	0,3	0,5	16

Рис. 1: Исследование резонансной частоты

ХРА					
Конт	Контур 3				
f	U				
22,5	0,6				
22,59	0,63				
22,7	0,7				
22,76	0,74				
22,83	0,8				
22,89	0,84				
22,94	0,89				
23,04	0,95				
23,2	1				
23,33	0,96				
23,42	0,9				
23,48	0,86				
23,53	0,8				
23,62	0,76				
23,7	0,7				
23,77	0,66				
23,87	0,59				

Рис. 2: АЧХ контур 3

ХРА				
Контур 1				
f	U			
31,37	1,01			
31,49	1,13			
31,56	1,22			
31,62	1,30			
31,68	1,39			
31,75	1,50			
31,8	1,58			
31,9	1,67			
32,1	1,72			
32,3	1,67			
32,4	1,58			
32,47	1,49			
32,52	1,40			
32,59	1,30			
32,68	1,20			
32,76	1,12			
32,84	1,01			

Рис. 3: АЧХ контур 1

ФЧХ				
f/f_0	$\Delta \psi / \psi_{-}$			
0,949	0,426			
0,957	0,391			
0,964	0,356			
0,970	0,311			
0,974	0,289			
0,978	0,250			
0,983	0,205			
0,988	0,159			
1,000	0,000			
1,009	-0,116			
1,014	-0,186			
1,020	-0,233			
1,028	-0,310			
1,032	-0,333			
1,038	-0,357			
1,043	-0,390			
1,048	-0,425			

Рис. 4: ФЧХ контур 3

ФЧХ				
f/f_0	$\Delta\psi/\psi_0$			
0,965	0,412			
0,969	0,382			
0,976	0,333			
0,979	0,313			
0,982	0,273			
0,984	0,250			
0,988	0,198			
0,992	0,125			
1,000	0,000			
1,007	-0,125			
1,012	-0,188			
1,017	-0,250			
1,019	-0,281			
1,022	-0,313			
1,027	-0,355			
1,032	-0,387			
1,037	-0,400			

Рис. 5: ФЧХ контур 1

5 Обработка результатов

Заполним таблицу с найденными и вычисленными измерениями. Индуктивность L контура находим, как $L=\frac{1}{4\pi^2Cf_r}$, где f_r - резонансная частота для данного контура. Волновое сопротивление ищем, как $\rho=\sqrt{\frac{L}{C}}$. На установке нашей было указано значение сопротивления $R_1=1008$ Ом, поэтому $Z_{res}=R_1\frac{U}{E}$, где U - резонансное напряжение, E - напряжение создаваемое источником. Добротность находим через связь ее с Z_{res} и ρ , как $Z_{res}=Q\rho$. С другой стороны $Z_{res}=Q^2R_{\Sigma}$, то есть R_{Σ} найдём отсюда. Далее из лабника $R_{Smax}=10^{-3}\rho$, $R_L=R_{\Sigma}-R_{Smax}-R$, где активное сопротивление R было указано на нашем контуре: R=3.50 Ом.

Запишем все полученные данные, оценим погрешности.

Построим на одном графике АЧХ рассмотренных контуров:

Для сравнения АЧХ, анализа добротности контура построим данные графики в других координатах: $U/U_0(f/f_0)$

Итак, с помощью этого графика мы можем определить добротность каждого из контуров. Величину $\delta\omega=2|\delta\omega|=2/\tau$ называют шириной резонансной кривой $U_C(\omega)$ на уровне $U_C(\omega_0)/\sqrt{2}$, по которой можно определить время релаксации, так как мы знаем резонансную частоту, можем легко найти долбротность контур отсюда, как

$$Q = \frac{\omega_0}{\delta\omega}$$

На уровне $U/U_0 \approx 0.707$ определим разность $\Delta(\frac{f}{f_0})$, ведь добротность можно рассчитывать как $Q=\frac{f_0}{\Delta f}=(\frac{f_2-f_1}{f_0})^{-1}=((\frac{f}{f_0})_2-(\frac{f}{f_0})_1)^{-1}$. Подставляем - имеем $Q\approx (1.02-0.978)^{-1}\approx 23$ для первого и 28 для первого контура. Оценим погрешность этого измерения. Т.к. погрешность измерения f есть 50Γ ц, то $\delta f\approx 0.005$ Поэтому

Depen of = 0,05 kly (ogun Torn un znan noche
39 natoù), roga of ≈ 0,002. Crutaeu 6 = =0,05 nF
(с установич дан один знак поше запетай),
Sc≈ 0,001
1) L= 1 => Sh = Sf + Sc =0,003 => koch.
norperun auso 6 = 3 mily (chequen partirougue
cruta m 4 mx [n)
$3) 3 = \sqrt{\frac{L}{C}} = 3 $
Бд≈ 0, • 3 Ош => патти знак уже не особо
nokazatemunu).

3) Zpez = R 4 Des R gans 4 suppor =)
Sex = 5.10 4, crutam non von epennx Sy= 5.10-3
> 8 ≥p=3 ≈ 284 +8R => 8=p3 ≈ 10-2 => 6z ≈ 30 Qu.
4) Q= = = = = = = = = = = = = = = = = = =
5) RZ = \frac{2}{Q^2} = \frac{3^2}{2} = > \frac{2}{R_{\frac{7}{2}}} = 4.(0^{-3})
5 R R 0,09 Om
6) Rsmax = 10-3 g => GR5 = 3.10-4 Our
д) Дана бым 3 зидия активного сопр-ми
Jeranobru > SR = 10-3 > Rx = Rz1 - Rsnax - R
=> S _{RL} ≈ 15·10 ⁻³ => G _{RL} ≈ 0, 014 Que.

Nº	Сп, нФ	f(0n), кГц	U, B	E, B	L, мкГн	р, Ом	Zрез, Ом	Q	R _Σ , O _M	Rs max, Om	R(L), OM
1	25,1	32,1	1,72	0,3	979	197,5	5780	29,3	6,8	0,198	3,05
2	33,2	27,8	1,38	0,3	987	172,4	4640	26,9	6,4	0,172	2,74
3	47,3	23,2	1,00	0,3	995	145,0	3360	23,2	6,3	0,145	2,62
4	57,4	21,3	0,85	0,3	973	130,2	2860	22,0	5,9	0,130	2,29
5	67,5	19,4	0,72	0,3	997	121,5	2420	19,9	6,1	0,122	2,48
6	82,7	17,7	0,45	0,3	978	108,7	1810	16,6	6,5	0,109	2,92
7	101,6	16,0	0,37	0,3	974	97,9	1440	14,7	6,7	0,098	3,06
Среднее значение		983						2,74			
Среднеквадратическая погрешность среднего значения		4						0,11			
Коэффициент Стьюдента для n = 7, α = 0.95		2,45						2,45			
Случайная погрешность			10						0,22		

Рис. 6: Таблица с учётом кол-ва знаков, уже посчитанных выше погрешностей

f / f_0	U/U_0
0,970	0,6
0,974	0,63
0,978	0,7
0,981	0,74
0,984	0,8
0,987	0,84
0,989	0,89
0,993	0,95
1,000	1
1,006	0,96
1,009	0,9
1,012	0,86
1,014	0,8
1,018	0,76
1,022	0,7
1,025	0,66
1,029	0,59

Рис. 7: Данные АЧХ для 3-го контура

 $\delta rac{f_0}{\Delta f} pprox 0.01$, тогда $\sigma_Q pprox 0.02*23$ для третьего контура. Итого:

$$Q_1 \approx 28 \pm 0.6$$
.

$$Q_3 \approx 23 \pm 0.5$$
.

Аналогичным образом график ФЧХ:

По этому графику ФЧХ в точке 0 легко оценить добротность контура, как $Q \approx \frac{d\psi}{2df} \approx \frac{\pi \Delta y}{2\Delta f} = \frac{3,14*250}{2*15} \approx 27$ для первого и 20.6 для третьего, погрешность такого измерения есть $2\sqrt{\Sigma \delta_i^2}$. Уже подсчитали $\delta f \approx 0.005$ для контура 3, а для фазы: погрешность одного измерения есть $\delta_x \approx 0.05$ условных единиц деления осциллографа. Так как измерения проводились на одном масштабе, то относительная погрешность измерения

f/f_0	U/U_0
0,977	0,587
0,981	0,657
0,983	0,707
0,985	0,757
0,987	0,807
0,989	0,872
0,991	0,919
0,994	0,971
1,000	1,000
1,006	0,971
1,009	0,919
1,012	0,866
1,013	0,814
1,015	0,756
1,018	0,698
1,021	0,651
1,023	0,587

Рис. 8: Данные АЧХ для 3-го контура

 $\delta_{\psi} \approx \sqrt{2}*0.05/1 \approx 0.07$. Эта относительная погрешность намного больше f, поэтому она и определяет всю погрешность - имею относительную погрешность измерения

добротности тогда $\delta_Q \approx 0.14$, то есть $\sigma_Q \approx 3$, в итоге

$$Q_1 \approx 27 \pm 3$$
.

$$Q_3 \approx 21 \pm 2$$
.

Рассмотрим R_L . Оно меняется с частотой хаотично.

Попробуем понять, отчего зависит R_L , как видно из вывода, считая $\rho = \sqrt{\frac{L}{C}}$

$$R_L = \frac{EL}{UCR_1} - R - 10^{-3} \sqrt{\frac{L}{C}}.$$

Мы изменяем C, более того, проанализировав, что $L \approx const$ при изменении ёмкости C. Имеем зависимость $R_L = \frac{\alpha}{U}(\frac{1}{\sqrt{C}})^2 + \beta(\frac{1}{\sqrt{C}}) + \gamma$, что соответствует почти графику параболы (ооочень конечно отдалённомму), что, в принципе, мы и наблюбдаем. Учитывая погрешности, кол-во переменных в этом косвенном измерении, мы получили удовлетворяющую теории картину.

Теперь построим векторные диаграммы тока и напряжения в нашем контуре - все проводимые действия и полученные графики на рисунке ниже.

Рис. 9: Векторные диаграммы нашего контура

6 Вывод

- 1. Я настрадался
- 2. Я устал
- 3. Я хочу спать
- 4. Но зато я научился анализировать АЧХ, ФЧХ
- 5. Находить и анализровать резонанс в цепи.
- 6. Определять добротность разными способами. Убедился, что все описанные в книге способы дают приблизительно одинаковый результат, однако погрешности могут сильно разниться следует выбирать оптимальный, с наименьшей относительной погрешностью.
- 7. Поэтому научился оценивать погрешности многими способами
- 8. Находить взаимосвязь параметров колебательной системы, сдвига фаз

9. Познакомился с фазовыми диаграммами