

Voltage Regulator

The MC1723C is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723C is specified for operation over the commercial temperature range $(0^{\circ} \text{ to } +70^{\circ}\text{C})$.

- Output Voltage Adjustable from 2.0 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01% Line and 0.03% Load Regulation
- Adjustable Short Circuit Protection

Figure 1. Representative Schematic Diagram VC 12 Q 500 1.0k 25k 1.0k 6.2V 15k 15k 10 -0 Vo 100 13 Compensation 5.0pF ² Current 30k 300 150 5.0k 20k Current Sense 6 b V_{ref} 5 | 7 V_{EE} Inverting Noninverting Input

VOLTAGE REGULATOR

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Alternate	Operating Temperature Range	Package
MC1723CD	_		SO-14
MC1723CP	LM723CN μΑ723PC	$T_A = 0^\circ \text{ to } +70^\circ \text{C}$	Plastic DIP

Figure 2. Typical Circuit Connection

Figure 3. Typical NPN Current Boost Connection

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Pulse Voltage from V _{CC} to V _{EE} (50 ms)	V _{I(p)}	50	V _{pk}
Continuous Voltage from V _{CC} to V _{EE}	VI	40	Vdc
Input-Output Voltage Differential	VI-VO	40	Vdc
Maximum Output Current	ΙL	150	mAdc
Current from V _{ref}	I _{ref}	15	mAdc
Current from V _Z	I _Z	25	mA
Voltage Between Noninverting Input and VEE	V _{ie}	8.0	Vdc
Differential Input Voltage	V _{id}	±5.0	Vdc
Power Dissipation and Thermal Characteristics TA = +25°C Derate above TA = +25°C Thermal Resistance, Junction–to–Air	P _D 1/θJA θJA	1.25 10 100	W mW/°C °C/W
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-65 to +175	°C
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS (TA = +25°C, V_{in} 12 Vdc, V_O = 5.0 Vdc, I_L = 1.0 mAdc, R_{SC} = 0, C1 = 100 pF, C_{ref} = 0 and divider impedance as seen by the error amplifier \leq 10 k Ω connected as shown in Figure 2, unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
Input Voltage Range	VI	9.5	-	40	Vdc
Output Voltage Range	Vo	2.0	-	37	Vdc
Input-Output Voltage Differential	VI-VO	3.0	-	38	Vdc
Reference Voltage	V _{ref}	6.80	7.15	7.50	Vdc
Standby Current Drain (I _L = 0, V _{in} = 30 V)	I _{IB}	_	2.3	4.0	mAdc
Output Noise Voltage (f = 100 Hz to 10 kHz) C_{ref} = 0 C_{ref} = 5.0 μF	Vn	<u>-</u>	20 2.5	- -	μV(RMS)
Average Temperature Coefficient of Output Voltage $(T_{low} < T_A < T_{high})$	TCVO	_	0.003	0.015	%/°C
Line Regulation $ (T_A = 25^{\circ}C) \left\{ \begin{array}{l} 12 \ V < V_{in} < 15 \ V \\ 12 \ V < V_{in} < 40 \ V \\ (T_{low} < T_A < T_{high}) \\ 12 \ V < V_{in} < 15 \ V \end{array} \right. $	Reg _{line}	- -	0.01 0.1	0.1 0.5 0.3	% Vo
Load Regulation (1.0 mA < I _L < 50 mA) T _A = 25°C T _{low} < T _A < T _{high}	Reg _{load}	- -	0.03	0.2 0.6	% VO
Ripple Rejection (f = 50 Hz to 10 kHz) $C_{ref} = 0$ $C_{ref} = 5.0 \mu\text{F}$	RR	- -	74 86	_ _	dB
Short Circuit Current Limit (R _{SC} = 10 Ω , V _O = 0)	Isc	_	65	_	mAdc
Long Term Stability	^V _O /^t	_	0.1	_	%/1000 Hr.

NOTE: T_{low} to $T_{high} = 0^{\circ}$ to +70°C

Figure 4. Maximum Load Current as a Function of Input–Output Voltage Differential

Figure 5. Load Regulation Characteristics
Without Current Limiting

Figure 6. Load Regulation Characteristics
With Current Limiting

Figure 7. Load Regulation Characteristics
With Current Limiting

Figure 8. Current Limiting Characteristics

Figure 9. Current Limiting Characteristics as a Function of Junction Temperature

Figure 10. Line Regulation as a Function of Input–Output Voltage Differential

Figure 11. Load Regulation as a Function of Input–Output Voltage Differential

Figure 12. Standby Current Drain as a Function of Input Voltage

Figure 13. Line Transient Response

Figure 14. Load Transient Response

Figure 15. Output Impedance as Function of Frequency

Figure 16. Typical Connection for 2 < VO < 7

For best results 10 k < R1 +R2 < 100 k For minimum drift R3 = R1 R2

Figure 17. Foldback Connection

Figure 18. +5.0 V, 1.0 A Switching Regulator

at T_J = + 25°C

Figure 19. +5.0 V, 1.0 A High Efficiency Regulator

Figure 20. +15 V, 1.0 A Regulator with Remote Sense

Figure 21. –15 V Negative Regulator

Figure 22. +12V, 1.0 A Regulator (Using PNP Current Boost)

MC1723C **OUTLINE DIMENSIONS**

- NOTES:
 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
 POSITION AT SEATING PLANE AT MAXIMUM
 MATERIAL CONDITION.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD
- FLASH.
 4. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.715	0.770	18.16	19.56	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100 BSC		2.54 BSC		
Н	0.052	0.095	1.32	2.41	
ے	0.008	0.015	0.20	0.38	
Κ	0.115	0.135	2.92	3.43	
٦	0.300 BSC		7.62 BSC		
М	0°	10°	0°	10°	
N	0.015	0.039	0.39	1.01	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DER SIDE
- PER SIDE.
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION. SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0 °	7°	0 °	7°
Р	5.80	6.20	0.228	0.244
R	0.25	0.50	0.010	0.019

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81–3–5487–8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609

Motorola Fax Back System - US & Canada ONLY 1-800-774-1848

- http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26629298

HOME PAGE: http://motorola.com/sps/

) MC1723C/D