Theorie der Programmierung Wintersemester 2006/07

Übungsblatt 12

Aufgabe 1

Für jeden Typ τ sei τ stream definiert als der Typ μ s. **unit** $\to \tau * s$. Zeigen Sie: Wenn $\tau_1 <: \tau_2$, dann ist auch τ_1 stream $<: \tau_2$ stream.

Aufgabe 2

Vorgegeben seien zwei Typen vegetable und food mit vegetable <: food. Darauf aufbauend seien die folgenden Typen definiert:

```
cook = \langle cooks : food \rangle
vegetarian\_cook = \langle cooks : vegetable \rangle
guest = \langle eats : food \rightarrow \mathbf{unit} \rangle
vegetarian\_guest = \langle eats : vegetable \rightarrow \mathbf{unit} \rangle
```

- **a.** Welche Subtyp-Beziehungen gelten zwischen den vier angegebenen Typen?
- **b.** Wer darf für wen kochen, d.h. welche Typkombinationen τ_1, τ_2 kommen für die Funktion

let
$$dinner\left(c:\tau_{1}\right)\left(g:\tau_{2}\right)=g\#eats\left(c\#cooks\right)$$
 in . . . in Frage?

Aufgabe 3

Implementieren Sie den Subtyping-Algorithmus für rekursive Typen.