Examenul național de bacalaureat 2024 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(0,2+\frac{3}{10}\right)\cdot 10 = \left(0,2+0,3\right)\cdot 10 =$	3p
	$=0,5\cdot 10=5$	2 p
2.	f(a) = 2a + 3	2p
	2a+3=7, de unde obținem $a=2$	3 p
3.	$x^2 + 2x + 4 = 4 \Rightarrow x(x+2) = 0$	3 p
	x = 0 sau $x = -2$, care convin	2p
4.	$x + \frac{50}{100} \cdot x = 225$, unde x este prețul inițial al obiectului	3 p
	x=150 de lei	2 p
5.	AB = 5	2 p
	BC = 5, deci triunghiul ABC este isoscel	3 p
6.	AC = 4	3 p
	$tg B = \frac{AC}{AB} = \frac{4}{3}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 0 \\ 0 & 4 \end{vmatrix} = 4 \cdot 1 - 0 \cdot 0 =$	3p
	=4-0=4	2 p
b)	$A(3) + 2A(1) = \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 12 \end{pmatrix} =$	3p
	$=3\begin{pmatrix}1&0\\0&4\end{pmatrix}=3A(2)$	2p
c)	$A(x) \cdot A(x^2) = \begin{pmatrix} 1 & 0 \\ 0 & 2^x \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2^{x^2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2^{x+x^2} \end{pmatrix}, \text{ pentru orice număr real } x$	2p
	$\begin{pmatrix} 1 & 0 \\ 0 & 2^{x+x^2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow 2^{x+x^2} = 1, \text{ de unde obţinem } x = 0 \text{ sau } x = -1$	3p
2.a)	$2 \circ 3 = 2 \cdot 3 - 2 - 3 + 2 =$	3 p
	=6-2-3+2=3	2 p
b)	$x \circ 4 = x \cdot 4 - x - 4 + 2 = 3x - 2$, pentru orice număr real x	3 p
	3x-2=x+6, de unde obţinem $x=4$	2p

c)	$(x-2)\circ(x+2)=x^2-2x-2=$	2p
	$=(x-1)^2-3 \ge -3$, pentru orice număr real x	3 p

SUBIECTUL al III-lea (30 de puncte)

CDIL	CTOL al III-lea (30 de punt	cic)
1.a)	$f'(x) = \frac{e^x (x^2 - 3) - e^x \cdot 2x}{(x^2 - 3)^2} =$	3p
	$= \frac{e^x \left(x^2 - 2x - 3\right)}{\left(x^2 - 3\right)^2}, \ x \in (2, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{xf(x)}{e^x} = \lim_{x \to +\infty} \frac{x \cdot \frac{e^x}{x^2 - 3}}{e^x} = \lim_{x \to +\infty} \frac{x}{x^2 \left(1 - \frac{3}{x^2}\right)} =$	3p
	$= \lim_{x \to +\infty} \frac{1}{x \left(1 - \frac{3}{x^2}\right)} = 0$	2p
c)	$f'(x) = 0 \Leftrightarrow x = 3$; $f'(x) \le 0$, pentru orice $x \in (2,3] \Rightarrow f$ este descrescătoare pe $(2,3]$; $f'(x) \ge 0$, pentru orice $x \in [3,+\infty) \Rightarrow f$ este crescătoare pe $[3,+\infty)$	3p
	$f(3) = \frac{e^3}{6}$, deci $f(x) \ge \frac{e^3}{6}$, pentru orice $x \in (2, +\infty)$, de unde obținem $\frac{e^{x-3}}{x^2 - 3} \ge \frac{1}{6}$, pentru orice $x \in (2, +\infty)$	2p
2.a)	orice $x \in (2, +\infty)$ $\int_{2}^{4} (f(x) - \ln x) dx = \int_{2}^{4} (x + \ln x - \ln x) dx = \int_{2}^{4} x dx = \frac{x^{2}}{2} \Big _{2}^{4} =$	3p
	$=\frac{16}{2}-\frac{4}{2}=6$	2p
b)	$\int_{1}^{e} \frac{f(x) - x}{x} dx = \int_{1}^{e} \frac{x + \ln x - x}{x} dx = \int_{1}^{e} \frac{\ln x}{x} dx = \int_{1}^{e} \ln x \cdot (\ln x)' dx = \frac{(\ln x)^{2}}{2} \Big _{1}^{e} =$	3p
	$= \frac{(\ln e)^2}{2} - \frac{(\ln 1)^2}{2} = \frac{1}{2}$	2p
c)	$\int_{1}^{n} f(x)dx = \int_{1}^{n} (x + \ln x)dx = \int_{1}^{n} (x + x' \ln x)dx = \left(\frac{x^{2}}{2} + x \ln x - x\right) \left \frac{1}{1} = \frac{n^{2} - 2n + 1}{2} + n \ln n \right , \text{ pentru}$	3p
	orice număr natural nenul n	
	$\frac{(n-1)^2}{2} + n \ln n = 2 + 3 \ln n \Leftrightarrow (n-3)(n+1+2 \ln n) = 0 \text{ si, cum } n \text{ este număr natural nenul,}$	2p
	obţinem $n=3$	