BECA / Dr. Huson / Geometry 07-Similarity pset ID: 117

Name:

7-7bExam-Similarity

1. Given the following two linear equations:

$$l_1: y = \frac{5}{4}x - 3$$

$$l_2: 5x + 4y = 8$$

Write down the slopes of the two lines.

$$m_1 =$$

$$m_2 =$$

Are the lines parallel, perpendicular, or neither? Justify your answer using the slopes.

- 2. Given $\triangle ABC \sim \triangle DEF$. $m \angle A = 80^{\circ}$ and $m \angle F = 40^{\circ}$. Find the measure of $\angle C$.
- 3. In the diagram below of $\triangle ABC$, D is a point on \overline{BA} , E is a point on \overline{BC} , and \overline{DE} is drawn.

If BD = 7, BA = 21, and BE = 8, what is the length of \overline{BC} so that $\overline{AC} \parallel \overline{DE}$?

4. Find the image of P(3,-5) after the translation $(x,y) \to (x-5,y+8)$.

5. Graph and label $\triangle ABC$ with A(0,0), B(5,6), and C(5,0). Calculate each length:

(a) AC =

(b) BC =

(c) AB =

(d) Write down the equation of the line \overrightarrow{BC} .

(e) Write down the equation of the line \overrightarrow{AB} .

(f) The tangent of an angle is the ratio of the side lengths opposite over adjacent to the angle. Write down the value as a fraction.

 $\tan \angle BAC =$

(g) Find $m \angle A$ with a calculator's inverse tangent function, $m \angle BAC = \tan^{-1}(\frac{opp}{adj})$, rounded to the nearest whole degree.

6. Given $\triangle ABP \sim \triangle JKP$ as shown below. $AB=13.5,\ AP=10.0,\ BP=9,$ and JP=27.0. Find JK.

- 7. The line l has the equation $y = \frac{3}{2}x + 5$. To each line below, circle whether l is parallel, perpendicular, or neither.
 - (a) parallel perpendicular neither $y = \frac{3}{2}x 2$
 - (b) parallel perpendicular neither $y = \frac{2}{3}x + 7$
 - (c) parallel perpendicular neither 3x 2y = -6
- 8. A(-1,4) is one endpoint of \overline{AB} . The segment's midpoint is M(3,1), as shown below. Find the coordinates of the other endpoint, B.

9. The vertices of $\triangle JKL$ have the coordinates J(0,0), K(6,0), and L(6,4), as shown.

Apply a dilation to $\triangle JKL \to \triangle J'K'L'$, centered on the origin and with a scale factor k=1.5. Draw the image $\triangle J'K'L'$ on the set of axes below, labeling the vertices, and make a table showing the correspondence of both triangles' coordinate pairs.

10. Given isosceles $\triangle ABC$ with $\overline{AB} \cong \overline{BC}$, $m \angle A = 53$. Mark and label the diagram, and then find $m \angle B$. (the diagram is not to scale)

11. A translation maps $N(-3,7) \to N'(-4,1)$. What is the image of M(0,-5) under the same translation?

12. Solve each equation for x, rounding to the nearest hundredth.

(a)
$$\tan 50^{\circ} = \frac{x}{10}$$

(c)
$$\sin 35^{\circ} = \frac{x}{3.5}$$

(b)
$$\tan 22^{\circ} = \frac{3}{x}$$

(d)
$$\cos 80^{\circ} = \frac{x}{20}$$

13. Solve for x, rounding to the nearest whole degree.

(a)
$$x = \tan^{-1}(\frac{6}{10})$$

(b)
$$\tan x^{\circ} = \frac{4.2}{2.9}$$

14. A dilation centered at A maps $\triangle ABC \rightarrow \triangle ADE$. Given AB = 9, AC = 6, BD = 18, and DE = 15. Find AD and the scale factor k. Then find AE and BC.

(c)
$$AE =$$

(d)
$$BC =$$

- 15. The line \overrightarrow{AB} has points A(0,2) and B(4,0). Apply a dilation mapping $\overrightarrow{AB} \rightarrow \overrightarrow{A'B'}$ with a factor of k=2 centered at the origin.
 - (a) Draw and label the image on the grid.

(b) Write the coordinates of the points A' and B'.

pset ID: 117

16. The side \overline{AB} of triangle ABC is extended and an altitude to the vertex C is drawn, as shown below. The triangle's height is h=11.0 and its base measures AB=19.1. Find the area of the triangle.

17. Find the midpoint M of \overline{AB} with coordinates A(-3,1) and B(7,5). Mark and label it on the diagram below.

18. Given two parallel lines and a transversal, as shown below. Given $m\angle 1 = 108^{\circ}$.

- (a) Find the measure $m \angle 2$.
- (b) Find the measure $m \angle 8$.
- (c) Given $m \angle 5 = (6x 12)^{\circ}$. Find x.

19. Given two points A = -4.7 and B = 3.3. Find the value of the midpoint M between A and B, and mark and label it on the numberline below.

