

Facultatea de Automatica si Calculatoare Automatica si Informatica Aplicata

Proiect Elemente de Inginerie Mecanica Tema 6

Student: Isarescu Anamaria

Grupa: 30125

An:II

Profesor indrumator: Prof. dr. ing. Tatar Mihai Olimpiu

An universitar: 2022-2023

Cuprins

1.Tema proiectului	3
2. Reductorul	4
2.1. Calculul elementelor geometrice ale angrenajului cilindric cu dinti drepti	4
2.2. Desen	6
3. Mecanismul cu cama si tachet de translatie	7
3.1. Diagrama de variatie a spatiului	8
3.2. Diagrama de variatie a vitezei reduse	9
3.3. Diagrama de variatie a acceleratiei reduse	9
3.4. Cod MATLAB	10
4. Mecanismul pentru transmiterea intermitenta a miscarii	12
4.1. Elemente teoretice si de calcul	12
4.2. Desen mecanism	13
4.3. Diagrama de variatie a vitezei unghiulare si a acceleratiei unghiulare la Crucea de Malta	14
4.4. Cod MATLAB	15
5. Bibliografie	16

1.Tema proiectului

Proiectarea unui sistem mecanic ce are in componenta un reductor, un mecanism cu cama si tachet de translație si un mecanism pentru transmiterea intermitenta a mișcării (mecanism cu cruce de Malta).

2. Reductorul

2.1. Calculul elementelor geometrice ale angrenajului cilindric cu dinti drepti

Nr.crt.	Denumirea mărimii	Simbol	Relația de calcul	Valoarea	Unități de măsură
1.	Numărul de dinți	z_1	-	34	-
	,	\mathbf{z}_2	-	80	-
2.	Coeficienții de deplasare a	X ₁	Se alege din tabelul9.2 sau din conturele de blocare in funcție de ce se urmărește a fi	0.98	-
	profilurilor	X2	îmbunătățit la angrenaj	1.81	-
3.	Modulul	m	Se rotunjește conform STAS 822-61	4.5	mm
4.	Unghiul de angrenare	α	$inv\alpha = inv\alpha_0 + 2\frac{x_1 + x_2}{z_1 + z_2}tg\alpha_0$	25.70	grade
			,unde $\alpha_{\rm o}=20^{\rm o}$		
5.	Coeficientul de modificare a distantei dintre axe	у	$y = \frac{z_1 + z_2}{2} \left(\frac{\cos \alpha_0}{\cos \alpha} - 1 \right)$	2.44302	-
6.	Distanță axială	a	$a = m \frac{z_1 + z_2}{2} \cdot \frac{\cos \alpha_o}{\cos \alpha}$	267.49359	mm
7.	Coeficientul de scurtarea înălțimii dinților	Ψ	$\psi = x_1 + x_2 - y$	0.34698	-
8.	Înălțimea dinților	h	$h = m(2.25 - \psi)$	8.56359	mm
9.	Diametrul cercurilor de	d_1	$d_1 = 2r_1 = mz_1$	153	mm
	divizare	d ₂	$d_2 = 2r_2 = mz_2$	360	mm

10.	Diametrul de cercurilor	dы	$d_{b1}=2r_{b1}=mz_1cos\alpha_{o}$	143.77257	mm
	bază	db2	$d_{b2}=2r_{b2}=mz_2cos\alpha_{o}$	338.2884	mm
11.	Diametrul de cercurilor rostogolire	dw1	$d_{w1} = 2r_{w1} = mz_1 \cdot \frac{cos\alpha_o}{cos\alpha}$	159.55758	mm
		dw2	$d_{w2} = 2r_{w2} = mz_2 \cdot \frac{\cos\alpha_o}{\cos\alpha}$	375.4296	mm
12.	Diametrul de cercurilor	da1	$d_{a1} = 2r_{a1} = m(z_1 + 2 + 2x_1 - 2\psi)$	167.69718	mm
	cap	da2	$d_{a2} = 2r_{a2} = m(z_2 + 2 + 2x_2 - 2\psi)$	382.16718	mm
13.	Diametrul de cercurilor	d f1	$d_{f1} = 2r_{f1} = m(z_1 - 2 + 2x_1 - 0.5)$	150.57	mm
	picior	df2	$d_{f2} = 2r_{f2} = m(z_2 - 2 + 2x_2 - 0.5)$	365.04	mm
14.	Arcele dinților pe cercurile de divizare	S ₁	$s_1 = \frac{\pi \cdot m}{2} + 2m \cdot x_1 t g \alpha_0$	10.27521	mm
		S2	$s_2 = \frac{\pi \cdot m}{2} + 2m \cdot x_2 t g \alpha_0$	12.99407	mm
15.	Gradul de acoperire	3	$\varepsilon = \frac{\sqrt{r_{a2}^2 - r_{b2}^2} + \sqrt{r_{a1}^2 - r_{b1}^2 - asin\alpha}}{\pi m cos \alpha_o}$	1.20977	-

2.2. Desen

3. Mecanismul cu cama si tachet de translatie

- Numarul de ordine : i = 16
- Turatia elementului de antrenare/conducator : n2 = 484.5 [rot/min]
- Cursa maxima a tachetului : 7+0.5*i = 15 [mm]
- Unghiul de rotatie corespunzator fazei de urcare : φu = 66 + i = 82°
- Unghiul de rotatie corespunzator fazei de repaus superior : $\varphi R = 60^{\circ}$
- Unghiul de rotatie corespunzator fazei de repaus inferior : φr = 80°
- Unghiul de rotatie corespunzator fazei de coborare : $\varphi c = 360^{\circ}$ $\varphi u \varphi R \varphi r = 138^{\circ}$
- Unghiul de presiune : $\alpha = 45^{\circ}$
- Legile de miscare :
 - La urcare : sinus
 - La coborare : cosinus

<u>Urcare</u>

- Spațiul : $s = C1 * sin(k\varphi) + C2 * \varphi + C3$ (1)
- Viteza redusă : $\frac{v}{\omega}$ = $kC1 \cos(k\varphi) + C2$ (2)
- Accelerația redusă : $\frac{a}{\omega^2}$ = -k 2C1sin ($k\varphi$) (3)

Condițiile la inceputul fazei de urcare : φ =0; s=0; v=0

Condițiile la sfarsitul fazei de urcare : $\varphi = \varphi u$; s=h; v=0

Din (1) si (2) rezulta : C1 =
$$-\frac{h}{2\pi}$$
; C2 = $\frac{h}{\phi u}$; C3 = 0 ; k = $\frac{2\pi}{\phi u}$

Ecuațiile devin:

$$s = h \left(\frac{\varphi}{\varphi u} - \frac{1}{2\pi} sin \frac{2\pi}{\varphi u} \varphi \right)$$

$$\frac{v}{\omega} = \frac{h}{\omega u} \left(1 - \cos \frac{2\pi}{\omega u} \varphi \right)$$

$$\frac{a}{\omega^2} = \frac{2\pi h}{\omega^2} \sin \frac{2\pi}{\omega} \phi$$

Coborare

- Spațiul : S = C1 $cos(k\varphi)$ + C2 φ + C3 (1)
- Viteza redusă : $\frac{v}{\omega} = -kC1 \sin(k\varphi) + C2$ (2)
- Accelerația redusă : $\frac{a}{\omega^2} = -k^2 C 1 \cos(k\varphi)$ (3)

Condițiile la inceputul fazei : φ =0; s=0; v=0

Condițiile la sfarsitul fazei : φ = φ c; s=h; v=0

Din (1) si (2) rezulta : C1 =
$$-\frac{h}{2}$$
; C2 = 0 ; C3 = $\frac{h}{2}$; k = $\frac{\pi}{\phi c}$

Ecuațiile devin:

$$s = \frac{h}{2} \left(1 - \cos \frac{\pi}{\varphi c} \varphi \right)$$

$$\frac{v}{\omega} = \frac{\pi h}{2\varphi c} \sin \frac{\pi}{\varphi c} \varphi$$

$$\frac{a}{\omega^2} = \frac{\pi^2 h}{2\varphi c^2} \cos \frac{\pi}{\varphi c} \varphi$$

3.1. Diagrama de variatie a spatiului

3.2. Diagrama de variatie a vitezei reduse

3.3. Diagrama de variatie a acceleratiei reduse

3.4. Cod MATLAB

```
%numarul de ordine
i = 16;
%turatia motorului
n16 = (66 + 3 * i) * 10;
%modulul
m = 4.5;
%numerele de dinti ale rotilor
z1 = 34;
z2 = 80;
%analiza cinematica a mecanismului cu cama si tachet de translatie
%cursa maxima a tachetului
h = 7 + 0.5 * i;
%unghiul de rotatie al camei corespunzator fazei de urcare
phiu = 66 + i;
%unghiul de rotatie al camei corespunzator fazei de rapaus superior
phiR = 60;
%unghiul de rotatie al camei corespunzator fazei de rapaus inferior
phir = 80;
%unghiul de rotatie al camei corespunzator fazei de coborare
phic = 360 - phiu - phiR- phir;
sSinUrcare = @(phi)(h*(phi/phiu - 1/(2*pi)*sin(2*pi/phiu*phi)));
vSinUrcare = @(phi)((h/phiu)*(1 - cos(2*pi/phiu*phi)));
aSinUrcare = @(phi)(((2*pi*h)/phiu^2)*sin(2*pi/phiu*phi));
sCosCoborare = @(phi)((h/2)*(1 - cos(pi/phic*phi)));
vCosCoborare = @(phi)(((pi*h)/(2*phic))*sin(pi/phic*phi));
aCosCoborare = \Omega(phi)(((pi^2*h)/(2*phic^2))*cos(pi/phic*phi));
%% deplasare
figure
phi = 0:phiu;
plot(phi,sSinUrcare(phi),'r','LineWidth', 2); title('Spatiu');
hold on
x = [phiu phiu+phiR];
y = [h h];
plot(x,y,'y','LineWidth', 2);
hold on
phi = phiu+phiR:phiu+phiR+phic;
plot(phi,sCosCoborare(phi),'g','LineWidth', 2);
hold on
x=[phiu+phiR+phic 360];
y=[0 \ 0];
plot(x,y,'b','LineWidth', 2);
xlabel({'$\varphi$'},'Interpreter', 'latex'), ylabel('s'), grid;
%% Viteza
figure
phi = 0:phiu;
plot(phi,vSinUrcare(phi),'r','LineWidth', 2); title('Viteza redusa');
hold on
x = [phiu phiu+phiR];
y = [0 \ 0];
plot(x,y,'y','LineWidth', 2);
```

```
hold on
phi=phiu+phiR:phiu+phiR+phic;
plot(phi,vCosCoborare(phi-4),'g','LineWidth', 2)
hold on
x = [phiu+phiR+phic 360];
y=[0 \ 0];
plot(x,y,'b','LineWidth', 2);
xlabel({'$\varphi$'},'Interpreter', 'latex'),
ylabel('$\frac{v}{\omega}$','Interpreter','latex'), grid;
%% Acceleratie
figure
phi = 0:phiu;
plot(phi,aSinUrcare(phi),'r','LineWidth', 2); title('Acceleratia redusa');
hold on
x = [phiu phiu+phiR];
y = [0 \ 0];
plot(x,y,'g','LineWidth', 2);
line([phiu+phiR phiu+phiR],[0 aCosCoborare(phiu+phiR)],'Color','y','LineWidth',2);
hold on
phi = phiu+phiR:phiu+phiR+phic;
plot(phi,aCosCoborare(phi),'b','LineWidth', 2);
line([phiu+phiR+phic phiu+phiR+phic],[aCosCoborare(phiu+phiR+phic)
0],'Color','y','LineWidth',2);
hold on
x = [phiu+phiR+phic 360];
y=[0 \ 0];
plot(x,y,'m','LineWidth', 2);
xlabel({'$\varphi$'},'Interpreter', 'latex'),
ylabel('$\frac{a}{\omega^2}$','Interpreter','latex'), grid;
```

4. Mecanismul pentru transmiterea intermitenta a miscarii

4.1. Elemente teoretice si de calcul

- Turatia elementului de antrenare/conducator : n6 = n2 = n3 = 484.5 [rot/min]
- Numarul d antrenori : na = 1
- Numarul de canale ale Crucii de Malta : z = 5
- Distanta dintre centrele de rotație (O6O7) : L = 50 [mm]
- Calcule pentru mecanismul cu cruce de Malta :

Nr.	Denumirea mărimii	Formule de calcul	Valori rezultate
1	Viteza unghiulară a elementului conducător	$\omega_1 = \frac{\pi n^2}{30}$	$\omega_1 = 50.711 \text{ [rad/s]}$
2	Constanta mecanismului cu cruce de Malta	$\lambda = \frac{R_1}{L} = \sin \varphi_2 = \sin \frac{\pi}{z}$	$\lambda = 0.58778$
3	Lungimea braţului de antrenare (raza elementului de antrenare)	$R_1 = L\sin\varphi_2 = L\sin\frac{\pi}{z}$	$R_1 = 29.389 \text{ [mm]}$
4	Timpul de mişcare în care elementul conducător antrenează elementul condus	$t_m = \frac{2\varphi_1}{\omega_1} = \frac{\pi\left(1 - \frac{2}{z}\right)}{\omega_1}$	$t_m = 0.03715 [s]$
5	Timpul de repaus al elementului condus	$t_r = \frac{2\pi - 2\varphi_1}{\omega_1} = \frac{\pi \left(1 + \frac{2}{z}\right)}{\omega_1}$	$t_r = 0.08668$ [s]
6	Timpul de rotație completă al elementului conducător	$T = t_m + t_r = \frac{2\pi}{\omega_1}$	T = 0.12383 [s]
7	Coeficientul de mișcare	$k_m = \frac{t_m}{T} = \frac{1}{2} - \frac{1}{z}$	$k_{m}=0.3$
8	Coeficientul de repaus	$k_r = \frac{t_r}{T} = \frac{1}{2} + \frac{1}{z}$	$k_r = 0.7$

4.2. Desen mecanism

4.3. Diagrama de variatie a vitezei unghiulare si a acceleratiei unghiulare la Crucea de Malta

4.4. Cod MATLAB

```
lambda = 0.58778;
omega1 = 50.711;
fi2 = @(fi1)(atan((lambda.*sin(fi1))./(1-lambda.*cos(fi1))));
omega2 = @(fi1)(omega1.*((lambda.*(cos(fi1)-lambda))./(1-
2.*lambda.*cos(fi1)+lambda.^2)));
epsilon2 = @(fi1)((-omega1.^2)*((lambda.*(1-lambda.^2)*sin(fi1))./((1-omega1.^2)*(lambda.*(1-lambda.^2)*sin(fi1))./((1-omega1.^2)*(lambda.*(1-lambda.^2)*sin(fi1))./((1-omega1.^2)*(lambda.*(1-lambda.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.^2)*sin(fi1))./((1-omega1.
2.*lambda.*cos(fi1)+lambda.^2).^2)));
fi1 = deg2rad(0:360);
fi3 = deg2rad(-180:180);
figure
plot(rad2deg(fi1),fi2(fi1));title({'$\varphi 2 = f(\varphi 1)$'},'Interpreter',
'latex');xlabel({'$\varphi_1$'},'Interpreter',
'latex');ylabel({'$\varphi 2$'},'Interpreter', 'latex');
figure
plot(rad2deg(fi3),omega2(fi3));title({'$\omega_2 = f(\varphi_1)$'},'Interpreter',
'latex');xlabel({'$\varphi_1$'},'Interpreter', 'latex');ylabel('\omega_2');
figure
plot(rad2deg(fi3),epsilon2(fi3));title({'$\epsilon_2 = f(\varphi_1)$'},'Interpreter',
'latex');xlabel({'$\varphi_1$'},'Interpreter', 'latex');ylabel('\epsilon_2');
```

5. Bibliografie

- Documentație Proiect EIM
- Cursul 6 –EIM "Mecanisme cu came" Prof. Dr. Ing. Mihai Olimpiu Tatar
- Îndrumător de laborator partea 1 : "Elemente de inginerie mecanică" Prof. Dr. Ing. Mihai Olimpiu Tătar