UNIT-3

DATA REPESENTATION

• Number system:
Positional number.

Decimal, binary, octal, hexadecimal.

Non positional number.

- <u>Number</u>: -number is a symbol used for making, majoring and counting.
- Number system are basically of two types:-
 - 1. non positional number
 - 2. positional number
 - 1) Non positional number: The no which has not any position and basis is called non positional number.

Ex: -

- I. For 1
- II. For 2
- III. For 3
- 2) <u>Positional number</u>: the no which as position or basis is called positional number.

Ex:
$$-2585$$

= $2*10^3+5*10^2+8*10^1+5*10^0$

- Positional number system is divided in to four types:
 - i. Decimal number system (10)
 - ii. Binary number system (2)
 - iii. Octal number system (8)
 - iv. Hexa decimal system (16)

i. Decimal number system: -

- The number system which we used in our day to day life is called decimal number system.
- The number which has base 10 is known as decimal number.
- Such as: 0,1,2,3,4,5,6,7,8,9.

Ex: - 234,536

- ii. Binary number system: -
- This is exactly decimal number system accept that bace is 2 instead of (1,0).
- It has only two symbols or digit 0, 1.

Ex: -

$$(1101)_2 = (13)_{10}$$
=1*2³+1*2²0*2¹+1*2⁰
=8+4+0+1
=13

Decimal

- <u>Bit</u>: binary digit is obtained refer to by the common abbreviation. Hence bits in computer technology mean either 0 or 1.
 - A binary system of n bit is called a n bit number.
 - List of 3 bit binary:

Binary

0000 0001 0010

DC	Cillai
	0
	1
	2

0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

- ❖ Note: Decimal number in the fix number of 0 to 2ⁿ-can be represented form as n bit number.
- Byte: Byte is the fixed numbers of absent bit that represent a particular system normally a byte consist of eight bit.

$$1 \text{ kilobyte} = 2^{10} \text{byte} (1024 \text{ bit})$$

Megabyte =
$$2^{20}$$
byte(1024*1024)

Gigabyte =
$$2^{30}$$
byte(1024*1024*1024)

iii. Octal number system: -

In the octal number system basic are 8. hence these are only eight symbol or digit: -0,1,2,3,4,5,6,7.

Ex:
$$-(2057)_8 = (14)_8$$

iv. Hexa decimal system: -

In the hexa decimal number is basis is 16. hence are 16 symbol digit: 0,1,2,3,4,5,6,7,8,9,10(A),11(B),12(C),13(D),14(E),15(F).

Ex: -32D, C23, A23 etc.

Q. Conversion of decimal to binary number

$$(41)_{10} = (101001)_2$$
a r
$$41/2 = 20 1$$

$$20/2 = 10 0$$

$$10/2 = 5 0$$

$$5/2 = 2 1$$

$$2/2 = 1 0$$

$$1/2 = 0 1$$

Q. conversion of binary to decimal

$$(10011)_2 = (?)_{10}$$

 $1*2^4+0*2^3=0*2^2+1*2^1+1*2^0$
 $=16+0+0+2+1$
 $=19$

Q. Conversion of decimal to octal

$$(98)_{10} = (?)_8$$

 $98/8 = 12$ 2

Q. conversion of octal to decimal

$$(142)_8 = (?)_{10}$$

 $1*8^2 + 4*8^1 + 2*8^0$
 $64+32+2=98$ ans...

Q. conversion of decimal to hexadecimal

$$(8256)_{10} = (?)_{16}$$

 $8256/16 = 516$ 0
 $516/16 = 32$ 4
 $32/16 = 2$ 0
 $2/16 = 0$ 2
 $(2040)_{16 \text{ ans...}}$

Q. conversion of hexadecimal to decimal

$$(2040)_{16} = (?)_{10}$$

 $2*16^3 + 0*16^2 + 4*16^1 + 0*16^0$
 $8192 + 64$
 $= (8256)_{10}$

Q. conversion of binary to octal

$$(110111)_2 = (?)_8$$

Note: -

decimal

• <u>RULE:</u>- the base of octal number is 8 but 8 is equal (=) to 2³ there for to convert a binary number to octal number make three byte ,binary group of the binary number.

Ex: -

Right to left

Left to right

Q.
$$(101101101101.110101101101)_2 = (?)_8$$

101 101 101 101. 110 101 101 101

5 5 5 5 5 6 5 5 5

 $(5555.6555)_8$

Q.conversion of octal number fraction to binary fraction.

$$(367422.110523)_{8} = (?)_{2}$$

3 6 7 4 2 1 1. 1 0 5 2 3 011 110 111 100 010 001 001. 001 000 101 010 011

• Rule: -the base of the fractional hexadecimal number 16 but 16=2⁴ three for to convert a binary number to hexadecimal to make four byte binary group of the binary number.

=0111101111100010001001.0010001010101011

Q. <u>conversion of hexadecimal fraction to binary fraction.</u>
(D3FA48.18CD86)₁₆
(1101 0011 1111 1010 0100 1000.0001 1011 1100 011 000 0110)₂

- ➤ Binary arithmetic
 - I. Addition
 - II. Subtraction
 - III. Multiplication
 - IV. Division
 - I. Addition

Binary addition

()+()=()

1+0=0

0+1=0

1+1=0 pulse a carry to next high column

101+100=1001, 1101+1101=11010 1011+1111=11010,

1111+1111=11110,

110110101+111111111=110110100, 1001+0101=1110, 1001+0101=1110.

II. Subtraction

```
Binary subtraction
()-()=()
1-0=1
1-1=0
0 - 1 = 1
         with borrow_from next column.
   110-101=001, 1001-111=010, 1000-111=001, 101010-11111=01011,
   1110-0101=1001, 1010-0101=0101.
           III. Multiplication
Binary multiplication
                   Ex: - 1111*101=1001011
0*0=0
1*1=1
                      11111*1111=111010001
              0*1=0
               1*0=0
           IV. Division
Binary division
0/1 = 0
1/1 = 1
    Ex: - 100001/11=1011
         100001/100=1000.01
```

> Complement

- It is a method.
- It is a rules or pedicure.
- Compliments are used in digital computer for simplifying the subtraction and for logical calculation.
- There are two types of complements for each base=r
 - i (r-1)'s complements
 - ii R's complements

- i <u>(r-1)'s complements:-given a number N is base, digit n. (r-1)'s complement of n is define as (rⁿ-1)-N.</u>
- ii <u>r's complement</u>: given a number N is base 'r' and digit n,r's complements N defined as : (rⁿ-N)= (rⁿ-1)-N+1=(r-1)'s complement + 1
- In the case of decimal number base is equal to 10.
- There are component.
 - i 9's complement
 - ii 10's complement
 - i <u>9's complement</u>: 9's complement defined as (10ⁿ-1)-N where

n=digit.

N=number.

Ex:
$$-(2356)_{10}$$

9's complement
N=2356
N=4
R=10

9's complement= $(r^{n}-1)-N$
= $(10^{4}-1)-2356$
ii 10's complement= $(r^{n}-N)$
= $(10^{4}-2356)$
= $10000-2356$
= 7644 ans...

- In the case of binary number:
 - i 1's complement
 - ii 2's complement
 - i. 1's complement; 1's complement as defined as (2ⁿ-1)-N.

n=digit

N=number

r=base or radix

ii. 2's complement: -2's complement as defined as(2ⁿ-N) where N=digit

N=number

r=2

1's complement=
$$(r^n-1)-N$$

= $(2^4-1)1010$
= $(16-1)-1010$
= $15-1010$
= $1111-1010$
= 0101
2's complement= (r^n-N)
= (2^4-1010)
= $(16-1010)$
= $(16-1010)$
= 6
= 0110

➤ BCD

- BCD stands for binary coded decimal.
- The binary coded decimal (BCD) is one of the early computer codes.
- It is based on the idea of converting each digit of a decimal number in to its binary equivalents the entire decimal value in to a pure binary form.
- It converted each digit in-4-bit initially.
- That means it converted 2⁴=16 character.

- This makes conversion process easier.
- The BCD equivalent of each decimal digit each in the figure.
 - ➤ <u>4-bit BCD</u>

Decimal no	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000

Ex: - binary conversion (BC) –
$$(42)_{10}$$
= $(101010)_2$
But conversion it in BCD $(42)_{10}$ = $(01000010)_{BCD}$

- 4-bit BCD code represent with adding zone position of 2-byte=2⁶=64 character.
- 6-bit BCD represented 64 characters such as 26 letter alphabet, 28 other character or 10 numbers.

➤ 6-bit BCD

Character	Zone	BCD
A	11	0001
I	11	1001
J	10	0001
R	10	1001

S	01	0010
Z	01	1001
L	00	0001
9	00	1001
O	00	0000

➤ Character BCD table

CHARACTER	ZONE	BCD
A	11	0001
В	11	0010
С	11	0011
D	11	0100
Е	11	0101
F	11	0110
G	11	0111
Н	11	1000
I	11	1001
J	10	0001
K	10	0010
L	10	0011
M	10	0100
N	10	0101
O	10	0110
P	10	0111
Q	10	1000
R	10	1001
S	01	0010
T	01	0011
U	01	0100
V	01	0101
W	01	0110
X	01	0111

Y	01	1000
Z	01	1001

Number zone Be

zone i	3CD
00	0001
00	0010
00	0011
00	0100
00	0101
00	0110
00	0111
00	1000
00	1001
00	0000
	00 00 00 00 00 00 00 00

> EBCDIC

- EBCDIC stands for extended binary coded decimal interchange code.
- The major problem of BCD is that only 64(2⁶) different character in it.
- This is not sufficient for providing decimal number (10), lower case letter (28) and upper case letter (28) and other special character (28).
- Hence BCD code extended 6-bit code to 8-bit code.
- The added 2-bit are used at additional zone bit expending the zone to four byte this is called decimal interchange code.
- In this case 2⁸=256 different character can be represented.

➤ 8-BIT EBCDIC

Character zone		EBCDIC
A	1100	0001
I	1100	1001
J	1101	0001

R	1101	1001
S	1110	0010
Z	1110	1001
О	1111	0000
9	1111	1001

NUMBER EBCDIC TABLE

NUMBER	ZONE	EBCDIC
0	1111	0000
1	1111	0001
2	1111	0010
3	1111	0011
4	1111	0100
5	1111	0101
6	1111	0110
7	1111	0111
8	1111	1000
9	1111	1001

CHARACTER ZONE ERCDIC

CHARACTER	ZONE	EBCDIC
A	1100	0001
В	1100	0010
C	1100	0011
D	1100	0100
Е	1100	0101
F	1100	0110
G	1100	0111
Н	1100	1000
I	1100	1001
J	1101	0001
K	1101	0010

L	1101	0011
M	1101	0100
N	1101	0101
O	1101	0110
P	1101	0111
Q	1101	1000
R	1101	1001
S	1110	0010
Τ	1110	0011
U	1110	0100
V	1110	0101
W	1110	0110
X	1110	0111
Y	1110	1000
Z	1110	1001

> ASCII

- ASCII stands for American standard code for information interchange.
- It is widely by several computer manufacturers as there computer interchange code.
- This code is popular in data communication and it used almost exclusively to represent data internally in micro computer.
- ASCII is of two type ASCII-7 and ASCII-8.

■ ASCII-7

7-bit code which allow 128(2⁷) different character. The first 3-bit are indicates zone bit and last 4-bit indicates the digit.

■ <u>ASCII-8</u>

8-bit code which allows 256(2⁸) different character. The first 4-bit are used as zone bit and last 4-bit indicates as digits as digit. It is extend version of ASCII-7.

■ Table of ASCII-7

Character	Zone	Digit
0	011	0000
9	011	1001
A	100	0001
O	100	1111
P	101	0000
Z	101	1010

■ Table of ASCII- 8

Character	Zone	Digit
0	0101	0000
9	0101	1001
A	0101	0001
O	0101	1111
P	1010	0000
Z	1010	1010