ELECTROMAGNETISMO

- E1. [2 puntos] ¿Cuál es el trabajo que ejerce el campo magnético? ¿Es conservativa la fuerza de Lorentz? Demuéstralo. ¿Qué implica esto?
- E2. Considera un capacitor que contiene una carga Q, de placas paralelas lleno de un material con permitividad $\epsilon > \epsilon_0$. Calcula:
 - a. [1 punto] la intensidad de campo,
 - b. [0.5 punto] la capacitancia,
 - c. [1 punto] la fuerza entre las dos placas y
 - d. [0.5 punto] la densidad de energía.
 - e. [1 punto] ¿Qué pasa si quitamos el material y el capacitor esta en el vacío? ¿Qué cantidades disminuyen y cuáles aumentan?
- E3. Una esfera de radio a, con una distribución de carga uniforme en su superficie, rota sobre su diámetro con una velocidad angular constante ω .
 - a. [1 punto] Encuentra la densidad de flujo magnético en el interior de la esfera (r < a).
 - b. [1 punto] Encuentra la densidad de flujo magnético en el exterior de la esfera (r > a).
 - c. [1 punto] Encuentra la densidad de flujo magnético en la esfera (r = a).
 - d. [1 punto] Dibuja las líneas de campo magnético en cualquier punto del espacio.

TERMODINÁMICA

- N.B.: Justifica tus respuestas.
- T1. [4 puntos] Se contempla la construcción de un motor bi-térmico, que en un ciclo recibe 1.2 kJ de un termostato A y cede 0.5 kJ a otro termostato B.
 - a) [2 puntos] Calcula la eficiencia del motor.
 - b) [2 puntos] Las temperaturas de las fuentes de calor son $T_A = 900 \text{ K y } T_B = 420 \text{ K}$. Determina si tal motor se puede construir.
- T2. [6 puntos] Considera un sistema cuya energía interna (denotada aquí E en lugar de U) está dada por $E = aVT^4$, con a una constante.
 - a) [1 punto] Calcula la capacidad calorífica del sistema.
 - b) [2 puntos] Deduce que la entropía está dada por $S=4aVT^3/3,$ suponiendo que S(T=0)=0.
 - c) [1 punto] Demuestra la relación general $\left(\frac{\partial S}{\partial V}\right)_E=\frac{P}{T},$ donde P es la presión.
 - d) [2 puntos] Deduce P en función de T.

MECÁNICA CUÁNTICA

C1.A [1 punto] Considera un pozo de potencial en una dimensión de anchura infinita, descrito mediante $(V_0 > 0)$:

$$V(x) = \begin{cases} 0 & x < 0 \\ -V_0 & x > 0 \end{cases}.$$

Describe la función de onda de una onda-partícula que viaja de izquierda a derecha con número de onda k y es reflejada y transmitida, en términos de coeficientes respectivos R y T, y momentos asociados.

- C1.B [2 puntos] Obtén los coeficientes R y T como función de k, V_0 .
- C1.C [1 punto] Calcula el flujo $\frac{i}{2m\hbar}\psi^*(\overleftarrow{\partial_x} \overrightarrow{\partial_x})\psi$, en la región x > 0.
- C1.D [1 punto] ¿Debe ser igual al de la región x < 0? Explica.
- C2.A [3 puntos] El deuterón, formado por un protón y un neutrón, tiene momento angular total con número cuántico J=1. El espín total de los nucleones puede estar en los estados con números cuánticos S=1, S=0. ¿Cuáles son los momentos angulares orbitales permitidos L, si la paridad del deuterón es 1? (La paridad es $(-)^L$, y $|j_1-j_2| \le j \le j_1+j_2$.)
- C2.B [1 punto] Explica por qué el espín total del sistema neutrón-protón sólo puede tener los valores indicados.
- C2.C [1 punto] Suponiendo que el deuterón se encuentra en un estado $|JM_J\rangle = |11\rangle$, ¿qué efecto tiene aplicar el operador de descenso $J_- = J_x iJ_y$ sobre éste?

FÍSICA MODERNA (PARA MAESTRÍA EN FÍSICA)

- FF1. [3 puntos] Luz ultravioleta de longitud de onda 350 nm se hace incidir sobre una superficie de potasio (función trabajo $2.2\,\mathrm{eV},\,hc=1.24\,\mathrm{eV}\mu\mathrm{m}$). ¿Cuál es la energía cinética máxima de los foto-electrones?
- FF2. [3 puntos] Compara la probabilidad de encontrar a un electrón 1s en un átomo de hidrógeno a una distancia a_0 desde el núcleo con la probabilidad de que esté ubicado a una distancia $a_0/2$. Recuerda que la función de onda radial normalizada del átomo de hidrógeno para un electrón 1s es $\frac{2}{a_0^{3/2}}e^{-r/a_0}$, donde a_0 es el radio de Bohr.
- FF3. [2 puntos] La energía de disociación de la molécula N_2 es 9.8 eV, mientras que para O_2 y F_2 es de 5.1 eV y 1.6 eV, respectivamente. Explica la estabilidad relativa de las moléculas N_2 , O_2 y F_2 .
- FF4. [2 puntos] ¿Hay alguna forma empírica de determinar que tan iónico es un enlace en una molécula? Argumenta.

FÍSICA MODERNA (PARA MAESTRÍA EN FÍSICA MÉDICA)

- FM1. [5 pts] El $^{137}_{55}$ Cs se transforma a través del decaimiento β en un estado excitado del $^{137}_{56}$ Ba, el 94.6% de la veces. Este estado excitado del bario emite un fotón γ de 0.662 MeV.
 - (a) Determina la energía de decaimiento gamma de este proceso.
 - (b) Calcula la energía de retroceso del $^{137}_{56}$ Ba cuando emite el fotón γ . Masas nucleares: $M(^{137}_{55}\text{Cs}) = 127500.0283~\text{MeV}/c^2;~M(^{137}_{56}\text{Ba}) = 127498.3408~\text{MeV}/c^2.$
- FM2. [5 pts] Supón que en un átomo de tungsteno se crea una vacante electrónica en la capa K $(E_{bK} = 69.5 \text{ keV})$, la cual es ocupada por la transición de un electrón de la capa L $(E_{bL} = 11.0 \text{ keV})$.
 - (a) Determina la energía de los rayos X característicos que se producirían debido a esta transición.
 - (b) Supón que en lugar de la emisión de rayos X característicos, se produce el efecto Auger, expulsando del átomo un electrón de la capa M ($E_{b\rm M}=2.5~{\rm keV}$). Determina la energía cinética de este electrón Auger.
 - (c) Ahora, repite el inciso anterior, suponiendo que el electrón expulsado proviene de la capa N ($E_{bN} = 0.5 \text{ keV}$).

MECÁNICA CLÁSICA

- M1. Considera la energía potencial $U(r) = \frac{1}{2}kr^2$ de una partícula moviéndose en un campo de fuerza central.
 - a) [2 puntos] Obtén las condiciones sobre k para las cuales las órbitas circulares del campo de fuerza central son estables.
 - b) [3 puntos] Encuentra el período de las pequeñas oscilaciones alrededor de las órbitas circulares estables.
- M2. [5 puntos] Una partícula que realiza un movimiento armónico simple a lo largo del eje x, tiene una posición dada por $x = A \operatorname{sen} wt$. Encuentra la posición, velocidad y aceleración con respecto a un sistema que rota con velocidad angular constante $\Omega = \Omega \mathbf{k}$.