Epreuve écrite

Examen de fin d'études secondaires 2006	Nom et prénom du candidat
Section: B et C	
Branche: Chimie	
(QC = question de cours [20] ; AT = application	de transfert [18] ; AN = application numérique [22])
1) L'aromaticité	20 points
A) Décrivez le mode d'hybridation de l'atome de	e carbone dans le benzène QC3
B) Expliquez la différence entre une liaison σ et	une liaison π QC2
 C) Décrivez la formation du nuage moléculair conséquences 	e π dans le noyau benzénique et détaillez-en les QC5
D) Etudiez le mécanisme de la nitration du benz	zène QC6
 E) On soumet le chlorobenzène à une réac probabilité des isomères envisageables. 	ction de nitration (monosubstitution). Discutez la QC4
2) La synthèse du Plexiglas®	14 points
A) Le produit de départ est l'acide acrylique, un liaison double C=C)	monoacide carboxylique aliphatique insaturé (une
 α) pour déterminer la formule de l'acide acrylique, on soumet au titrage une solution aqueuse renfermant 1,00 g d'acide acrylique. La consommation en NaOH 1 M vaut 13,90 cm³. Dressez la formule semi-développée de l'acide acrylique 	
 β) proposez une réaction pour mettre en évic dressez l'équation de cette réaction 	lence la liaison double C=C dans l'acide acrylique ; AT3
•	s'appelle acide propénoïque ; il peut être obtenu à propanoïque) ; dresser l'équation qui traduit cette AT2
 C) On soumet l'acide propénoïque à une este indiquez le nom de l'ester 	érification avec le méthanol ; dressez l'équation et AT3
D) Le Plexiglas® est un polymère de l'ester polymérisation	obtenu sub C) ; dressez l'équation globale de la AT2
2) Tampone et indicateurs colorés	11 noints

α) dressez les équations de protolyse qui se déroulent lors de l'addition d'un acide fort et d'une

* quel volume d'une solution d'ammoniac à 25 % (en masse) de masse volumique ρ = 0,883 g/cm³ faut-il ajouter à 500 cm³ d'une solution 1 M d'acide chlorhydrique pour obtenir le

* le tampon ammoniacal convient-il pour cette préparation ? Motivez la réponse !

AT2

AT1

AN5

A) Soit le tampon ammoniacal NH₄⁺/NH₃:

β) on désire préparer un tampon de pH 9,00

base forte à ce tampon

tampon de pH 9,00?

Epreuve écrite

Examen de fin d'études secondaires 2006	Nom et prénom du candidat
Section: B et C	
Branche: Chimie	

B) Au tampon de pH 9,00 préparé sub A) on ajoute une faible quantité de phénolphtaléine ; sachant que le pK_a du couple HInd/Ind de la phénolphtaléine vaut 9,40 , calculez le rapport HInd/Ind de l'indicateur dans la solution tampon AN3

4) Titrage de l'ion hydrogénocarbonate

15 points

La poudre à lever « Dr. Dickmann's Kuchenfix » renferme de l'hydrogénocarbonate de sodium comme unique composant à comportement acido-basique.

Le contenu d'un sachet de cette poudre est dissous dans de l'eau de façon à produire 100 cm³ de solution. Une prise de 10 cm³ de cette solution initiale est soumise au titrage par HCl 0,50 M. L'enregistrement du pH en fonction du volume de la solution titrante est reproduit ci-dessous :

A) Dressez l'équation chimique du titrage

<u>Δ</u>T2

- B) Dégagez le p K_a du couple acide / base en question à partir du diagramme et motivez le raisonnement $\triangle T3$
- C) Calculez:
 - a) la masse d'hydrogénocarbonate de sodium dans le sachet

AN5

b) le pH approximatif de la solution initiale

AN2

c) le pH après addition de 15,0 cm³ de la solution titrante HCl 0,50 M à la prise

AN₃