Билет 4

Фундаментальная система и фундаментальная матрица решений линейной однородной системы

Будем рассматривать однородную систему ДУ вида:

$$\frac{d\vec{x}}{dt} = A\vec{x}; \quad \dot{x}^i = \sum_{k=1}^n a_k^i x^k; \quad i, k = \overline{1, n}$$

Утверждение 0.1. Для однородных систем линейных уравнений верен принцип суперпозиций, т.е если система функций $\varphi_1, \ldots, \varphi_n$ – решение системы уравнений, то любая их линейная комбинация тоже является решением.

Определение 0.1. Пусть имеется система вектор-функций $\vec{\varphi}_1(t), \dots, \vec{\varphi}_n(t)$

$$\vec{\varphi}_i(t) = \begin{pmatrix} \varphi_i^1(t) \\ \dots \\ \varphi_i^n(t) \end{pmatrix}$$

непрерывна на I(x), тогда такая система называется линейно-зависимой на I, если

$$\exists C_1, \dots, C_n : \sum_{i=1}^n |C_i| \neq 0 \& \sum_{i=1}^n C_i \vec{\varphi}_i(t) = 0 \ \forall t \in I$$

В противном случае, система вектор-функций называется линейно-независимой, то есть условие

$$\sum_{i=1}^{n} C_i \vec{\varphi}_i(t) = 0 \ \forall t \in I$$

выполняется только при $C_1 = C_2 = \cdots = C_n = 0$.

Определение 0.2. Пусть система вектор-функций $\vec{\varphi}_1(t), \ldots, \vec{\varphi}_n(t)$ линейно-независима на I и каждая вектор-функция $\vec{\varphi}_i(t)$ является решением системы $\mathcal{J} \mathcal{Y} \frac{d\vec{x}}{dt} = A\vec{x}$. Тогда такая система вектор-функций называется фундаментальной системой решений (ΦCP) данной системы $\mathcal{J} \mathcal{Y}$.

Теорема 0.1. Рассмотрим систему ДУ $\frac{d\vec{x}}{dt} = A\vec{x}$. Если матрица A является непрерывной на отреже [a,b], то система имеет ΦCP на этом отреже.

Теорема 0.2. Пусть система вектор-функций $\vec{\varphi}_1(t), \ldots, \vec{\varphi}_n(t)$ является ΦCP системы ДУ, тогда любое решение этой системы ДУ можно представить, как линейную комбинацию компонентов ΦCP : $\vec{x}(t) = C_1 \vec{\varphi}_1(t) + \cdots + C_n \vec{\varphi}_n(t)$, где C_1 , dots, C_n – произвольные постоянные.

Определение 0.3. Решение системы ДУ вида $\vec{x}(t) = C_1 \vec{\varphi}_1(t) + \cdots + C_n \vec{\varphi}_n(t)$, где C_1 , dots, C_n называется общим решением системы ДУ.

Структура общего решения линейной однородной и неоднородной систем

Введем оператор L такой, что $L=\frac{d}{dt}-A$. Тогда однородная система ДУ $\frac{d\vec{x}}{dt}=A\vec{x}$ запишется в виде $L(\vec{x})=0$, неоднородная система ДУ $\frac{d\vec{x}}{dt}-A\vec{x}=q(t)$ запишется в виде $L(\vec{x})=q(t)$.

Утверждение 0.2. Общее решение неоднородной системф $\mathcal{J} \mathcal{Y} \frac{d\vec{x}}{dt} - A\vec{x} = q(t)$ представляет собой следующее выражение:

$$\vec{x} = \vec{x}^s + \vec{x}_0^{o6}$$

где \vec{x}^s – частное решение линейного неоднородного уравнение, т. е. $L(\vec{x}^s) = q(t)$, а \vec{x}_0^{ob} – общее решение системы линейный однородных уравнений $L(\vec{x}_0^{ob}) = 0$. Таким образом, получаем:

$$L(\vec{x}) = L(\vec{x}^s + \vec{x}_0^{ob}) = L(\vec{x}^s) + L(\vec{x}_0^{ob}) = q(t) + 0$$

Определитель Вронского

Определение 0.4. Пусть на I определена система вектор-функций $\vec{\varphi}_1(t), \dots, \vec{\varphi}_n(t)$, тогда определитель

$$W(t) = \begin{vmatrix} \varphi_1^1(t) \dots \varphi_n^1(t) \\ \dots & \dots \\ \varphi_1^n(t) \dots \varphi_n^n(t) \end{vmatrix}$$

называется определителем Вронского.

Теорема 0.3. Если $\exists t_0 \in I : W(t_0) \neq 0$, то система является линейно независимой на I. Обратное неверно, пример:

$$\varphi_1 = \begin{pmatrix} t \\ 0 \end{pmatrix}, \ \varphi_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 ЛНЗ, но $W(t) = 0$

Доказательство. Будем доказывать от противного: пусть система является линейно-зависимой, тогда $\exists C_1, \ldots, C_n : C_1 \vec{\varphi}_1(t) + \cdots + C_n \vec{\varphi}_n(t) = 0 \ \forall t \in I$. Тогда в определителе Вронского W(t) есть хотя бы два линейно-зависымих столбца, так как $\vec{\varphi}_i(t)$ являются столбцами определителя, но тогда получам, что $W(t) = 0 \ \forall t \in I$ (хотя предпологалось, что $\exists t_0 \in I : W(t_0) \neq 0$). Таким образом, мы получили противоречие, откуда следует, что система является линейно независимой на I.

Свойства Вронскиана

- 1. Если $\exists t_0 \in I : W(t_0) \neq 0$, то система является линейно независимой на I (см. доказательство теоремы).
- 2. Пусть вектор-функции $\vec{\varphi}_1(t), \dots, \vec{\varphi}_n(t)$ являются решениями системы ДУ, и существует точка $t_0 \in I$: $W(t_0) = 0$, тогда система $\vec{\varphi}_1(t), \dots, \vec{\varphi}_n(t)$ является линейно-зависимой.