Techniques for incorporating trait and mixing heterogeneity in population models

► Biology pitch session

Techniques for incorporating trait and mixing heterogeneity in population models

- ► Biology pitch session
- ► August 2025

Techniques for incorporating trait and mixing heterogeneity in population models

- ► Biology pitch session
- ► August 2025

 Develop statistical methods for analyzing and building on mixing data

- Develop statistical methods for analyzing and building on mixing data
 - Exciting, but I'm not necessarily up to date

- Develop statistical methods for analyzing and building on mixing data
 - Exciting, but I'm not necessarily up to date
 - ► A lot of ad hoc COVID stuff, including by me

- Develop statistical methods for analyzing and building on mixing data
 - Exciting, but I'm not necessarily up to date
 - ► A lot of ad hoc COVID stuff, including by me
- Investigate sources and effects of heterogeneity in a dynamical context

- Develop statistical methods for analyzing and building on mixing data
 - Exciting, but I'm not necessarily up to date
 - ► A lot of ad hoc COVID stuff, including by me
- Investigate sources and effects of heterogeneity in a dynamical context
 - ▶ What are the assumptions of classical models?

- Develop statistical methods for analyzing and building on mixing data
 - Exciting, but I'm not necessarily up to date
 - ► A lot of ad hoc COVID stuff, including by me
- Investigate sources and effects of heterogeneity in a dynamical context
 - What are the assumptions of classical models?
 - ► How does emergent heterogeneity interact with explicit heterogeneity?

- Develop statistical methods for analyzing and building on mixing data
 - Exciting, but I'm not necessarily up to date
 - ► A lot of ad hoc COVID stuff, including by me
- Investigate sources and effects of heterogeneity in a dynamical context
 - What are the assumptions of classical models?
 - How does emergent heterogeneity interact with explicit heterogeneity?
- Practical approaches for modeling heterogeneity

- Develop statistical methods for analyzing and building on mixing data
 - Exciting, but I'm not necessarily up to date
 - ► A lot of ad hoc COVID stuff, including by me
- Investigate sources and effects of heterogeneity in a dynamical context
 - What are the assumptions of classical models?
 - ► How does emergent heterogeneity interact with explicit heterogeneity?
- Practical approaches for modeling heterogeneity
 - Includes both algorithms and mathematical analysis

- Develop statistical methods for analyzing and building on mixing data
 - Exciting, but I'm not necessarily up to date
 - ► A lot of ad hoc COVID stuff, including by me
- Investigate sources and effects of heterogeneity in a dynamical context
 - What are the assumptions of classical models?
 - How does emergent heterogeneity interact with explicit heterogeneity?
- Practical approaches for modeling heterogeneity
 - Includes both algorithms and mathematical analysis

► E.g., ages, risk groups, geographica

- ► E.g., ages, risk groups, geographica
- ► Data from surveys, cell phones

- ► E.g., ages, risk groups, geographica
- ▶ Data from surveys, cell phones
- ► Matrices often don't balance

- ► E.g., ages, risk groups, geographica
- ▶ Data from surveys, cell phones
- Matrices often don't balance
 - ► Old people know more young people

- ► E.g., ages, risk groups, geographica
- Data from surveys, cell phones
- Matrices often don't balance
 - Old people know more young people
 - Men have more sex than women

- ► E.g., ages, risk groups, geographica
- Data from surveys, cell phones
- Matrices often don't balance
 - Old people know more young people
 - Men have more sex than women
- What are methods for incorporating these data?

- ► E.g., ages, risk groups, geographica
- Data from surveys, cell phones
- ► Matrices often don't balance
 - Old people know more young people
 - Men have more sex than women
- What are methods for incorporating these data?
- ► How do assumptions propagate to outcomes?

- ► E.g., ages, risk groups, geographica
- Data from surveys, cell phones
- Matrices often don't balance
 - Old people know more young people
 - Men have more sex than women
- What are methods for incorporating these data?
- How do assumptions propagate to outcomes?

► People are in different "groups"

- ► People are in different "groups"
 - sex, age, behaviour

- People are in different "groups"
 - sex, age, behaviour
- ► People get infected at different times, recover at different times

- People are in different "groups"
 - sex, age, behaviour
- People get infected at different times, recover at different times
 - effectively modeled as random

- People are in different "groups"
 - sex, age, behaviour
- People get infected at different times, recover at different times
 - effectively modeled as random

► This is kind of a hodge-podge

- ► This is kind of a hodge-podge
- ► Making multi-group models

- ► This is kind of a hodge-podge
- ► Making multi-group models
- ► Making network models

- ► This is kind of a hodge-podge
- ► Making multi-group models
- Making network models
- ► Making models with simple approximations

- This is kind of a hodge-podge
- Making multi-group models
- Making network models
- Making models with simple approximations
 - ... and testing them

- This is kind of a hodge-podge
- Making multi-group models
- Making network models
- Making models with simple approximations
 - ... and testing them

Structured models

Structured models

Approximations

Approximations

Approximations

Approximations

► Lots of validation in simulated worlds

- Lots of validation in simulated worlds
 - ► Simulate survey answers and movement data with biases

- Lots of validation in simulated worlds
 - ► Simulate survey answers and movement data with biases
 - ► Simulate how disease would spread in these populations

- Lots of validation in simulated worlds
 - Simulate survey answers and movement data with biases
 - Simulate how disease would spread in these populations
 - And what inferences would be made with various methodologies

- Lots of validation in simulated worlds
 - Simulate survey answers and movement data with biases
 - Simulate how disease would spread in these populations
 - And what inferences would be made with various methodologies
 - Simulate outbreaks with lots of unknowns

- Lots of validation in simulated worlds
 - Simulate survey answers and movement data with biases
 - Simulate how disease would spread in these populations
 - And what inferences would be made with various methodologies
 - Simulate outbreaks with lots of unknowns

► This looks like biology to math people and like math to ecologists

- ➤ This looks like biology to math people and like math to ecologists
- ► I suggested Evolution and ecology group

- ➤ This looks like biology to math people and like math to ecologists
- I suggested Evolution and ecology group
 - ▶ It does have people that will understand

- ➤ This looks like biology to math people and like math to ecologists
- ► I suggested Evolution and ecology group
 - ▶ It does have people that will understand
- ► Could be passed a math/stats group

- ➤ This looks like biology to math people and like math to ecologists
- I suggested Evolution and ecology group
 - It does have people that will understand
- Could be passed a math/stats group
 - Most of my reviewers are in math departments, although they all do stuff that could be seen as evolution and ecology

- ➤ This looks like biology to math people and like math to ecologists
- I suggested Evolution and ecology group
 - ▶ It does have people that will understand
- Could be passed a math/stats group
 - Most of my reviewers are in math departments, although they all do stuff that could be seen as evolution and ecology

Scoping

► These phenomena are very important for the spread of infectious disease, and I know a lot about this.

Scoping

- These phenomena are very important for the spread of infectious disease, and I know a lot about this.
- ► I will also talk about other examples, but I really don't know strategically how broad or focused to be

Scoping

- These phenomena are very important for the spread of infectious disease, and I know a lot about this.
- ▶ I will also talk about other examples, but I really don't know strategically how broad or focused to be

► NSERC supports foundational work, new models, etc.

- ▶ NSERC supports foundational work, new models, etc.
- ► Be specific about scoping

- ▶ NSERC supports foundational work, new models, etc.
- Be specific about scoping
- ► Apply for a CIHR grant and try to draw clear lines

- ▶ NSERC supports foundational work, new models, etc.
- ▶ Be specific about scoping
- Apply for a CIHR grant and try to draw clear lines
 - make it clear that work will still be useful without the CIHR grant

- NSERC supports foundational work, new models, etc.
- ► Be specific about scoping
- Apply for a CIHR grant and try to draw clear lines
 - make it clear that work will still be useful without the CIHR grant

► Maybe easiest to stick with things that are infectious

- ► Maybe easiest to stick with things that are infectious
 - ► Definitely include non-human disease systems

- Maybe easiest to stick with things that are infectious
 - Definitely include non-human disease systems
 - ► Bats, bacteria

- Maybe easiest to stick with things that are infectious
 - ▶ Definitely include non-human disease systems
 - Bats, bacteria
 - ► Could include spread of information, ideas, behaviours

- Maybe easiest to stick with things that are infectious
 - Definitely include non-human disease systems
 - ▶ Bats, bacteria
 - Could include spread of information, ideas, behaviours
 - Bacterial signaling?

- Maybe easiest to stick with things that are infectious
 - Definitely include non-human disease systems
 - Bats, bacteria
 - Could include spread of information, ideas, behaviours
 - Bacterial signaling?
 - ► Are there other contexts where it makes sense?

- Maybe easiest to stick with things that are infectious
 - Definitely include non-human disease systems
 - Bats, bacteria
 - Could include spread of information, ideas, behaviours
 - Bacterial signaling?
 - ▶ Are there other contexts where it makes sense?

Metapopulation models

Bacterial co-operation and quorum sensing Viral "behaviour"; can also talk about viral dynamics as another scale for disease modeling