

with multi-coponent fermionic dark matter

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on arXiv:2108.05907 In collaboration with Nicolás Bernal

Dark sectors

Local $U(1)_{\mathcal{X}}$

 $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\overline{\Psi}\mathcal{D}\Psi - h\overline{\Psi}\Psi S$ Diracness protected chiral fermion dark matter $m_{\Psi} = h\langle S \rangle$

Relic abundance

Active Symmetry: $\mathcal{X} \to X$: $\Psi \overline{\Psi} \to SMSM$

Dark Symmetry: $\mathcal{X} \to D$: $\Psi \overline{\Psi} \to \gamma_{\mathcal{D}} \gamma_{\mathcal{D}}$

$$\overline{\Psi}\Psi = \psi_1\psi_2 + \psi_1^{\dagger}\psi_2^{\dagger} \rightarrow \psi_{\alpha}$$
, $\alpha = 1, \dots N' \rightarrow N' > 4$

Local $U(1)_{\mathcal{X}}$

T W T V E

 $\mathcal{L} = -rac{1}{4}V_{\mu
u}V^{\mu
u} + i\overline{\Psi}\mathcal{D}\Psi - h\overline{\Psi}\Psi S$ Diracness protected chiral fermion

dark matter $m_{\Psi} = h \langle S \rangle$

Active Symmetry: $\mathcal{X} \to X$: $\Psi \overline{\Psi} \to SM SM$

Dark Symmetry: $\mathcal{X} \to \mathcal{D}$: $\Psi \overline{\Psi} \to \gamma_{\mathcal{D}} \gamma_{\mathcal{D}}$

multi-component dark matter

 $\alpha = 1, \dots N' \rightarrow N' > 4$

Standard model extended with $U(1)_{\mathcal{X}}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_\mathcal{X}$
L^{\dagger}	2	+1/2	1
Q^{\dagger}	2	-1/6	q
d_R	1	-1/2	d
u_R	1	+2/3	и
e_R	1	-1	е
Н	2	-1/2	h
ψ_{α}	1	0	n_{α}

Table 1: I = q = d = u = e = h = 0 for X = D

$$[SU(3)_c]^2 U(1)_X : [3u+3d] - [3 \cdot 2q] = 0$$

$$[SU(2)_L]^2 U(1)_X : [2l+3 \cdot 2q] = 0$$

$$[U(1)_Y]^2 U(1)_X : [(-2)^2 e + 3(\frac{4}{3})^2 u + 3(-\frac{2}{3})^2 d] - [2(+1)^2 l + 3 \cdot 2(-\frac{1}{3})^2 q] = 0$$

$$u = -e - \frac{2I}{3}$$
, $d = e + \frac{4I}{3}$, $q = -\frac{I}{3}$,

$$u = -e - \frac{2I}{3}$$
, $d = e + \frac{4I}{3}$, $q = -\frac{I}{3}$,

which satisfy

$$U(1)_{Y}[U(1)_{X}]^{2}: \qquad \left[(-2)e^{2} + 3\left(\frac{4}{3}\right)u^{2} + 3\left(-\frac{2}{3}\right)d^{2} \right] - \left[2(+1)l^{2} + 3 \cdot 2\left(-\frac{1}{3}\right)q^{2} \right] = 0$$

$$u = -e - \frac{2I}{3}$$
, $d = e + \frac{4I}{3}$, $q = -\frac{I}{3}$,

which satisfy

$$\mathrm{U}(1)_{Y}[\mathrm{U}(1)_{X}]^{2}: \qquad \left[(-2)e^{2} + 3\left(\frac{4}{3}\right)u^{2} + 3\left(-\frac{2}{3}\right)d^{2} \right] - \left[2(+1)l^{2} + 3\cdot 2\left(-\frac{1}{3}\right)q^{2} \right] = 0$$

For N extra quiral fields ψ_{α} ($\alpha = 1, ..., N$) with \mathcal{X} -charges n_{α} :

$$[SO(1,3)]^2 U(1)_{\mathcal{X}}: \qquad \sum n_{\alpha} + 3(e-2l) = 0,$$
 (1)

$$\left[\mathrm{U}(1)_{\mathcal{X}} \right]^3 , \qquad \sum n_{\alpha}^3 + 3(e - 2I)^3 = 0$$
 (2)

$$u = -m + \frac{4I}{3}$$
, $d = m - \frac{2I}{3}$, $q = -\frac{I}{3}$, $e = m - 2I$,

which satisfy

$$\mathrm{U}(1)_{Y}[\mathrm{U}(1)_{X}]^{2}: \qquad \left[(-2)e^{2} + 3\left(\frac{4}{3}\right)u^{2} + 3\left(-\frac{2}{3}\right)d^{2} \right] - \left[2(+1)l^{2} + 3\cdot 2\left(-\frac{1}{3}\right)q^{2} \right] = 0$$

For N extra quiral fields ψ_{α} ($\alpha = 1, ..., N'$) with \mathcal{X} -charges n_{α} : $m \equiv e - 2I$

$$[SO(1,3)]^2 U(1)_{\mathcal{X}}: \qquad \sum n_{\alpha} + 3m = 0,$$
 (1)

$$[U(1)_{\mathcal{X}}]^3$$
, $\sum n_{\alpha}^3 + 3m^3 = 0$ (2)

$$u = -m + \frac{4I}{3}$$
, $d = m - \frac{2I}{3}$, $q = -\frac{I}{3}$, $e = m - 2I$,

which satisfy

$$U(1)_{Y}[U(1)_{X}]^{2}: \qquad \left[(-2)e^{2} + 3\left(\frac{4}{3}\right)u^{2} + 3\left(-\frac{2}{3}\right)d^{2} \right] - \left[2(+1)^{p^{2}} + 3\cdot 2\left(-\frac{1}{3}\right)q^{2} \right] = 0$$

For N extra quiral fields ψ_{α} ($\alpha=1,\ldots,N'$) with \mathcal{X} -charges n_{α} : $m\equiv e-2I$

$$[SO(1,3)]^2 U(1)_{\mathcal{X}}: \qquad \sum_{\alpha} n_{\alpha} + 3m = 0,$$
 (1)

$$[U(1)_{\mathcal{X}}]^3$$
, $\sum_{\alpha} n_{\alpha}^3 + 3m^3 = 0$ (2)

Any set of integers of integers $(n_1, n_2, \dots n_N)$ which satisfy $(\ref{eq:n_1})$ and $(\ref{eq:n_2})$ can be interpreted as $\mathcal{X} \to D$ symmetry with N chiral fields.

If one integer, m is repetead 3 times, the set can be interpreted as $\mathcal{X} \to X$ symmetry with N' = N - 3 chiral fields.

From: arXiv:1905.13279 [PRL] Costa, $et\ al$

Let a vector \boldsymbol{z} with N non-zero integer entries such that

$$\sum_{i=1}^{N} z_i = 0, \qquad \sum_{i=1}^{N} z_i^3 = 0.$$

We like to build this set of N integers from two subsets $\boldsymbol{\ell}$ and \boldsymbol{k} with sizes

$$\dim(\boldsymbol{\ell}) = \begin{cases} \alpha = \frac{N}{2} - 1, & \text{if } N \text{ even} \\ \beta = \frac{N-3}{2}, & \text{if } N \text{ odd} \end{cases}; \qquad \dim(\boldsymbol{k}) = \begin{cases} \alpha = \frac{N}{2} - 1, & \text{if } N \text{ even} \\ \beta + 1 = \frac{N-1}{2}, & \text{if } N \text{ odd} \end{cases}$$

 \bullet N even: Consider the following two vector-like examples of z such that

$$x = (\ell_1, k_1, \dots, k_{\alpha}, -\ell_1, -k_1, \dots, -k_{\alpha})$$

 $y = (0, 0, \ell_1, \dots, \ell_{\alpha}, -\ell_1, \dots, -\ell_{\alpha})$.

N odd:

$$\mathbf{x} = (0, k_1, \dots, k_{\beta+1}, -k_1, \dots, -k_{\beta+1})$$

$$y = (\ell_1, \dots, \ell_{\beta}, k_1, 0, -\ell_1, \dots, -\ell_{\beta}, -k_1)$$

From any of this, we can build a final z which can includes *chiral* solutions

$$m{x} \oplus m{y} \equiv \left(\sum_{i=1}^N x_i y_i^2
ight) m{x} - \left(\sum_{i=1}^N x_i^2 y_i
ight) m{y} \ .$$

From: arXiv:1905.13279 [PRL] Costa, et~al Let a vector ${\pmb z}$ with N non-zero integer entries such that

$$\sum_{i=1}^{N} z_i = 0 , \qquad \sum_{i=1}^{N} z_i^3 = 0 .$$

We like to build this set of N integers from two subsets $\boldsymbol{\ell}$ and \boldsymbol{k} with sizes

$$\dim(\boldsymbol{\ell}) = \begin{cases} \alpha = \frac{N}{2} - 1, & \text{if } N \text{ even} \\ \beta = \frac{N-3}{2}, & \text{if } N \text{ odd} \end{cases}; \qquad \dim(\boldsymbol{k}) = \begin{cases} \alpha = \frac{N}{2} - 1, & \text{if } N \text{ even} \\ \beta + 1 = \frac{N-1}{2}, & \text{if } N \text{ odd} \end{cases}$$

• N even: Consider the following two vector-like examples of z such that

$$\mathbf{x} = (\ell_1, k_1, \dots, k_{\alpha}, -\ell_1, -k_1, \dots, -k_{\alpha})$$

$$\mathbf{y} = (0, 0, \ell_1, \dots, \ell_{\alpha}, -\ell_1, \dots, -\ell_{\alpha}).$$

• *N* odd:

$$\mathbf{x} = (0, k_1, \dots, k_{\beta+1}, -k_1, \dots, -k_{\beta+1})$$

 $\mathbf{y} = (\ell_1, \dots, \ell_{\beta}, k_1, 0, -\ell_1, \dots, -\ell_{\beta}, -k_1)$

From any of this, we can build a final z which can includes *chiral* solutions

$$oldsymbol{x}\oplusoldsymbol{y}\equiv\left(\sum_{i=1}^Nx_iy_i^2
ight)oldsymbol{x}-\left(\sum_{i=1}^Nx_i^2y_i
ight)oldsymbol{y}\,.$$

pip install anomalies 🕒

https://github.com/restrepo/anomaly/raw/main/solutions.json.

gz

390074 solutions: 4<N<13

✓ <u>Latest version</u>

Released: Nov 30, 2020

Navigation

- E Project descri
- Release history
- ♣ Download files

Project links

** Homepage

Statistics

- GitHub statistics:
- * Stars: 0
- P Forks: 1
- Open issues/PRs: 0

View statistics for this project via <u>Libraries.io</u> ∠, or by using <u>our public</u> dataset on Google BigQuery ∠

Meta

License: BSD

Author: restrepo ☑

Maintainers

Anomalies

Implement the anomaly free solution of arXiv:1905.13729 [PRL]:

Obtain a numpy array z of N integers which satisfy the Diophantine equations

0 >>> (z**3).sum() 0

The input is two lists $\[\]$ and $\[\]$ with any $\[\]$ (N-3)/2 and $\[\]$ linegers for $\[\]$ odd, or $\[\]$ odd, or $\[\]$ and $\[\]$ (N-2-1) for $\[\]$ even (N-4). The function is implemented below under the name: $\[\]$ free (1, k)

Install

\$ pip install anomalies

USAGE

◆3 Log in

September 24, 2021

Dataset Open Access

Set of N integers between -30 and 30 with sum and cubic sum up to zero for 4<N<13

Diego Restrepo

Anomalies

Solutions obtained with the python package: anomalies based on the method to find anomaly free solutions of the standard model extended with an Abelian Dark Symmetry with N right-handed singlet chiral fields described in arXiv:1905.13729 [PRL]:

Data scheme

- T: integer lists → input to obtain the 'solution' by using the anomalies package
- . 'k': integer lists → input to obtain the 'solution' by using hte anomalies package

• 'solution': list
$$ightarrow$$
 of integers, z_i which satisfy $\sum_{i=1}^N z_i = 0$ and $\sum_{i=1}^N z_i^3 = 0$

'n': integer → number of integers in 'solution'. N

USAGE

#Example of JSON file usage in Python with pandas (see also ison module) >>> import pandas as pd

>>> df=pd.read_json('solutions.json') >>> df[:2]

solution acd n 0 [1, 2] [0, -3] [1, 5, -7, -8, 9] 1 5 1 [-2, -1] [0, -1] [2, 4, -7, -9, 10] 1 5

390074 solutions with $5 \le N \le 12$ integers until [32] [JSON]

views downloads See more details.

Versions

Effective Dirac neutrino mass operator

$$\mathcal{L}_{\mathrm{eff}} = h_{
u}^{lpha i} \left(
u_{Rlpha}
ight)^{\dagger} \, \epsilon_{ab} \, L_{i}^{a} \, H^{b} \left(rac{S^{*}}{\Lambda}
ight)^{\delta} + \mathrm{H.c.}, \qquad \mathrm{with} \, \, i = 1, 2, 3 \, ,$$

and $\delta=1,2,\ldots$ for dimension 5 (D-5) or 6 (D-6) operators, etc. Here $h_{\nu}^{\alpha i}$ correspond to dimensionless induced couplings, $\nu_{R\alpha}$ are at least two RHNs ($\alpha=1,2,\ldots$) with the same D or X-charge ν , L_i are the lepton doublets with X-charge -L, H is the SM Higgs doublet with X-charge h=L-m, S is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry with D or X-charge

$$s = -(\nu + m)/\delta,$$

Diracness of non-zero DM and Dirac neutrinos masses from $U(1)_{\mathcal{X}}$

Starting from the extended dataset with the solutions with N integers to the Diophantine equations (??) (??), we apply the following steps

- Check that the solution has two (three) repeated integers to be identified as ν and fix $N_{\nu}=2~(N_{\nu}=3)$.
- For $\delta=1,2,\ldots$ and all the possible combinations for m and ν in the solution, including m=0, find the s value compatible with the effective Dirac neutrino mass operator of D-4 + δ according to eq. $(\ref{eq:compatible})$.
- Interpret the integers in the solution which are different from m and ν as the D-charges for m=0 or X-charges for $m\neq 0$ of a set of singlet chiral fermions: ψ_i , $i=1,\ldots,N_{\text{chiral}}-N_{\nu}$. Then select the solutions for which the condition

$$|n_i + n_j| = |s| \tag{3}$$

which guarantees that all the singlet chiral fermions, ψ_i , acquire masses after the spontaneous symmetry breaking of the gauge Abelian symmetry through $\langle S \rangle$.

Unconditional stability

Two DM candidates with *unconditional* stability. This happens when there are two remnant symmetries such that $\mathbb{Z}_{|s|} \cong \mathbb{Z}_p \otimes \mathbb{Z}_q$ with p and q coprimes and |s| = pq, which guarantee the stability of each lightest state under \mathbb{Z}_p and \mathbb{Z}_q respectively, without imposing any kinematical restriction. For the two DM candidates associated to the set of chiral fields ψ_i and χ_j , we consider below the following two possibilities for |s|

- $\mathbb{Z}_6 \cong \mathbb{Z}_2 \otimes \mathbb{Z}_3$: solutions with at least a set of chiral fields with $\psi_i \sim \left[\omega_6^2 \vee \omega_6^4\right]$ under \mathbb{Z}_6 , and at least a set of chiral fields with $\chi_i \sim \omega_6^3$ under \mathbb{Z}_6 ,
- $\mathbb{Z}_{14} \cong \mathbb{Z}_2 \otimes \mathbb{Z}_7$: solutions with at least a set of chiral fields with $\psi_i \sim \left[\omega_{14}^2 \vee \omega_{14}^6 \vee \omega_{14}^8 \vee \omega_{14}^{10} \vee \omega_{14}^{12}\right]$ under \mathbb{Z}_{14} and at least a set of chiral fields with $\chi_i \sim \omega_{14}^7$ under \mathbb{Z}_{14} ,

where $\omega_{|s|} = e^{i2\pi/|s|}$.

Figure 1: Distribution of solutions with N integers to the Diophantine equations (??) which allow the effective Dirac neutrino operator at D-4 + δ for at least two right-handed neutrinos and have non-vanishing Dirac o Majorana masses for the other singlet chiral fermions in the solution.

48 type of representative solutions

Solution	N	$N_{\rm chiral}$	m	ν	δ	s	N_D	N_M	G_D	G_M
(1, -2, -3, 5, 5, -6)	6	6	0	5	1	-5	2	0	1	0
(3, 3, 3, -5, -5, -7, 8)	7	4	3	-5	2	1	1	0	1	0
(1, -2, 3, 4, 6, -7, -7, -7, 9)	9	9	0	-7	1	7	3	0	1	0
(1, 1, -4, -5, 9, 9, 9, -10, -10)	9	9	0	9	1	-9	3	0	2	0
(1, 2, -6, -6, -6, 8, 9, 9, -11)	9	6	-6	9	1	-3	2	0	1	0
(1, -3, 8, 8, 8, -12, -12, -17, 19)	9	6	8	-12	2	2	2	1	1	1
(8, 8, 8, -12, -12, 15, -17, -23, 25)	9	6	8	-12	2	2	2	0	1	0
(1, -2, -2, 3, 3, -4, -4, 6, 6, -7)	10	10	0	6	1	-6	3	2	2	2
(1, -2, -2, 3, 4, -5, -5, 7, 7, -8)	10	10	0	-5	1	5	4	0	2	0
(1, -2, -2, 3, 5, -6, -6, 8, 8, -9)	10	10	0	-6	1	6	4	0	2	0
(2, 2, 3, 4, 4, -5, -6, -6, -7, 9)	10	10	0	2	1	-2	4	2	2	2
(1, 1, 5, 5, 5, -6, -6, -6, -9, 10)	10	10	0	1	1	-1	4	0	3	0
(2, 2, 4, 4, -7, -7, -9, -9, 10, 10)	10	10	0	10	2	-5	3	0	2	0
(1, 2, 2, -3, 6, 6, -8, -8, -9, 11)	10	10	0	-8	1	8	4	1	2	1
(1, -2, -3, 5, 6, -8, -9, 11, 11, -12)	10	10	0	11	1	-11	4	0	1	0
(1, 1, -3, 4, 4, -7, 8, -10, -10, 12)	10	10	0	-10	2	5	4	0	2	0
(1, 1, -2, -2, -4, 6, -10, 11, 12, -13)	10	10	0	-2	1	2	3	2	1	2
(3, 4, 4, 4, 4, -5, -8, -8, -11, 13)	10	10	0	-8	1	8	2	4	1	4
(4, 4, 5, 6, 6, -9, -10, -10, -11, 15)	10	10	0	6	1	-6	4	0	2	0
(1, -2, -4, 7, 7, -10, -12, 14, 14, -15)	10	10	0	14	1	-14	3	2	1	2
(1, 2, 2, -3, 4, -6, 12, -13, -14, 15)	10	10	0	2	1	-2	4	1	1	1
(1, 4, 4, -7, 8, 8, -9, -12, -12, 15)	10	10	0	8	1	-8	4	2	2	2
(1, 2, 2, -9, -9, 16, 16, 17, -18, -18)	10	10	0	-18	1	18	3	2	2	2
(1, -3, -6, 7, -10, 11, -16, 18, 18, -20)	10	10	0	18	2	-9	4	0	1	0

48 type of representative solutions

Solution	N	$N_{\rm chiral}$	m	ν	δ	s	N_D	N_M	G_D	G_M
(1, -4, 5, -6, -6, 10, -14, 15, 20, -21)	10	10	0	-6	1	6	4	0	1	0
(2, -3, -6, 7, 12, -14, -14, 17, 20, -21)	10	10	0	-14	1	14	4	1	1	1
(3, 6, 6, -7, 8, 8, -14, -14, -17, 21)	10	10	0	-14	1	14	4	1	2	1
(8, 8, 9, 10, 10, -13, -18, -18, -27, 31)	10	10	0	-18	1	18	4	1	2	1
(1, 1, 1, -2, -2, -5, -5, 6, 6, 7, -8)	11	8	1	-2	1	1	3	0	2	0
(1, -2, -2, -2, -3, 4, 4, -5, 6, 7, -8)	11	8	-2	4	1	-2	3	1	1	1
(1, 1, 2, 2, 2, -4, -4, 7, -8, -9, 10)	11	8	2	-4	1	2	2	2	1	2
(2, 2, 2, -4, -4, -5, 7, -8, 9, 10, -11)	11	8	2	-4	1	2	3	0	1	0
(1, -2, -3, -3, -3, 5, 5, -7, 8, 10, -11)	11	8	-3	5	2	-1	3	0	1	0
(3, 3, 3, -4, -4, 7, 7, -8, -9, -9, 11)	11	8	3	-9	2	3	3	0	2	0
(1, 3, 5, -6, -6, -6, 8, -9, 12, 12, -14)	11	8	-6	12	1	-6	3	1	1	1
(1, -2, 6, 6, 6, -7, 8, -9, -12, -12, 15)	11	8	6	-12	1	6	3	0	1	0
(1, 3, 3, 6, 6, 6, -7, -10, -12, -12, 16)	11	8	6	-12	1	6	2	2	1	2
(1, -2, -2, -2, 3, 3, 4, 4, -5, -5, -5, 6)	12	9	-5	-2	1	7	3	0	2	0
(1, 1, -3, 4, 5, 5, 5, -6, -7, -7, -8, 10)	12	9	5	-7	1	2	3	2	1	2
(1, 1, 1, -2, 4, -7, -7, -7, 8, 9, 9, -10)	12	9	-7	9	1	-2	2	3	1	3
(1, 1, -3, -3, -5, -5, -5, 7, 7, 7, 9, -11)	12	9	-5	7	1	-2	3	2	2	2
(1, -3, -3, -3, 4, 6, 7, 9, -10, -10, -10, 12)	12	9	-3	-10	1	13	3	0	1	0
(1, 1, 1, 3, 3, -5, 7, 7, -11, -11, -11, 15)	12	9	1	-11	1	10	3	1	2	1
(1, 1, 1, 3, 5, 5, -5, 5, -9, -9, -13, 15)	12	9	5	-9	2	2	2	3	1	3
(1, -2, -2, 3, 6, -10, -10, -10, 13, 14, 14, -17)	12	9	-10	14	1	-4	4	2	2	2
(1, -3, 9, -11, -13, -13, -13, 15, 15, 15, 21, -23)	12	9	-13	15	1	-2	3	1	1	1

Multi-component dark matter I

Figure 2. Noveles of second Discound Mainess families in section of the 40 times of colutions

Multi-component dark matter II

Figure 2. Compare Fig. 22 but for complete accounting of massive Discount Maintage formations in

Solution: (3, 3, 3, -5, -5, -7, 8)

Field	$SU(2)_L$	$U(1)_Y$	$U(1)_X$	$U(1)_{B-L}$
Li	2	-1/2	-L	-1
e_{Ri}	1	-2	3 – 2 <i>L</i>	-1
ν_{Rlpha}	1	0	-5	-5/3
ψ_{1}	1	0	-7	-7/3
ψ_{2}	1	0	8	8/3
Н	2	1/2	L – 3	0
S	1	0	1	1/3
σ_1^+	1	+2	2L	2
σ_2^+	1	+2	-(2-2L)	4/3

Table 2: Charges for last solution. $i=1,2,3,\ \alpha=1,2,3.$ Note that $\left(\omega_n^d\right)^*=\omega_n^{-d}=\omega_n^{n-d}.$

Neutrino phenomenology with J. Calle and O. Zapata: arXiv:2103.15328 [PRD]

DM Phenomenology: arXiv:1506.05107

Conclusions

In general, we can see that multi-component and multi-generation DM candidates are the trend for gauge Abelian extensions of the SM with massive singlet chiral fermions compatible with the effective Dirac neutrino mass operator of dimension

One parameter $U(1)_X$ SM extension

Fields	SU(2) _L	$U(1)_Y$	$U(1)_X$	$U(1)_{B-L}$	$U(1)_R$	$U(1)_D$	$U(1)_G$	$U(1)^*_{\mathcal{D}}$
L	2	-1/2	1	-1	0	-3/2	-1/2	0
Q	2	-1/6	<i>−I</i> /3	1/3	0	1/2	1/6	0
d_R	1	-1/2	1 + 2I/3	1/3	1	0	2/3	0
u_R	1	+2/3	-1-41/3	1/3	-1	1	-1/3	0
e_R	1	-1	1+2/	-1	1	-2	0	0
Н	2	1/2	-1 - I	0	-1	1/2	-1/2	0
$\sum_{\alpha} n_{\alpha}$	1	0	-3	-3	-3	-3	-3	0
$\sum_{\alpha} n_{\alpha}^3$	1	0	-3	-3	-3	-3	-3	0

solutions with $\sum n_{\alpha} = -3$ and $\sum n_{\alpha}^3 = -3$

Table 3: Possible solutions with at least two repeated charges and until six chiral fermions.

[†] General $\sum n_{lpha}=0$ solutions: see D.B Costa, et al, arXiv:1905.13729 [PRL]

Or··· combine known solutions with $\sum n_{\alpha} = 0$ and $\sum n_{\alpha}^{3} = 0$

Table 3: Possible solutions with at least two repeated charges and until six chiral fermions.

[†] General $\sum n_{\alpha}=0$ solutions: see D.B Costa, et al, arXiv:1905.13729 [PRL]

Or··· combine known solutions

$$(\nu_{R1},\nu_{R2},\psi_{N-2},\cdots) \qquad \text{Ref}$$

$$(-1,-1,-1) \qquad \qquad \text{hep-ph/0611205, S. Khalil [JPG]} \qquad \qquad \text{Not known solution for one-loop neutrino Majorana masses with local U(1)}_{\chi}.$$

$$\left(-\frac{2}{3},-\frac{2}{3},-\frac{4}{3},-\frac{1}{3}\right) \qquad \qquad \text{arXiv:1607.04029, S. Patra , W. Rodejohann, C. Yaguna [JHEP]}$$

$$\left(-\frac{8}{5},-\frac{8}{5},-\frac{2}{5},-\frac{7}{5},+2\right) \qquad \qquad \text{arXiv:1812.05523, with J. Calle, C. Yaguna, O. Zapata [PRD]}$$

$$\left(-1,-1,-\frac{10}{7},-\frac{4}{7},-\frac{2}{7},\frac{9}{7}\right) \qquad \qquad \qquad \text{1808.03352, with N. Bernal, C. Yaguna, O. Zapata [PRD]}$$

$$\left(-\frac{5}{3},-\frac{5}{3},-\frac{7}{3},\frac{8}{3}\right) \qquad \qquad \qquad \text{long progress...} \qquad \qquad \text{method}^{\dagger}$$

Table 3: Possible solutions with at least two repeated charges and until six chiral fermions.

E. Ma, R. Srivastava: arXiv:1411.5042 [PLB]

 $\mathrm{U}(1)_{B-L} \stackrel{\langle S \rangle}{\to} Z_2$

[†] General $\sum n_{\alpha}=0$ solutions: see D.B Costa, et al, arXiv:1905.13729 [PRL]

$$m_{\text{Majorana}}^{\nu} = \frac{h_{\nu}}{\Lambda} L \cdot HL \cdot H$$

Type-I arXiv:1808.03352, II arXiv:1607.04029, III arXiv:1908.04308

$$\mathcal{L} = y(N_R)^{\dagger} L \cdot H + M_N N_R N_R + \text{h.c}$$

$$m_{\text{Majorana}}^{\nu} = \frac{h_{\nu}}{\Lambda} L \cdot H L \cdot H$$
Type-I arXiv:1808.03352, with N. Bernal, C. Yagura, and Ó. Zapata [PRD]

$$U(1)_{B-L} \rightarrow Z_7$$

$$U(1)_{B-1}$$
 $\mathcal{L} = y(N_R)^{\dagger} L \cdot \langle H \rangle + y' \langle S \rangle N_R N_R + \text{h.c}$

$$m_{\text{Majorana}}^{\nu} \stackrel{+}{=} \frac{h_{\nu}}{\Lambda} L \cdot HL \cdot H\frac{S}{\Lambda}$$

Type-I arXiv:1808.03352

Also new terms arise from spontaneous breakdown of a new gauge symmetry

		/	
ν_{R3}	ν_{R2}	S	
-1	-1	2	

$$\mathcal{L} = y(N_R)^{\dagger} L \cdot \langle H \rangle + y \langle S \rangle N_R N_R + \text{h.c}$$

$$m_{\text{Majorana}}^{\nu} \stackrel{+}{=} \frac{h_{\nu}}{\Lambda} L \cdot HL \cdot H\frac{S}{\Lambda}$$

Type-I arXiv:1808.03352

Also new terms arise from sponta neous breakdown of a new gauge symmetry

ν_{R3}	ν_{R2}	$\overline{\psi_{L1}}$	$\psi_{ extit{R}1}$	ψ_{R2}	$\overline{\psi_{L2}}$	S	S'
1	1/	10	4			2	
-1	-y	7	7				

One loop topologies $U(1)_{B-L} \oplus Z_2 \oplus Z_2$

One loop topologies $U(1)_{B-L}$ only!

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

T1-3-E

Fields: f _i	$(\nu_{R3})^{\dagger}$	$(\nu_{R2})^{\dagger}$	$(\nu_{R1})^{\dagger}$	ψ_{L}	$(\psi_R)^{\dagger}$	5
(A)	+4	+4	-5	-r	r	+3
(B)	+ = 5	$+\frac{8}{5}$	$+\frac{2}{5}$	7 - 5	$-\frac{10}{5}$	$+\frac{3}{5}$

 $\psi_{L,R} \to \text{Singlet fermions (quiral)}$

 $\Psi_{L,R} \to \text{Vector-like doublet fermions}$

 $\sigma \to \mathsf{Singlet} \ \mathsf{scalar}$

 $\eta \rightarrow Doublet scalar$

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

${\sf SD^3M+SSDM}$: σ_a (a=1,2) with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

 $\psi_{L,R} \to {\sf Singlet\ fermions\ (quiral)}$

 $\Psi_{L,R}
ightarrow ext{Vector-like doublet fermions}: \qquad {10/5}$

 $\sigma \rightarrow \mathsf{Singlet\ scalar}: 15/5$

Fields: fi	$(\nu_{R3})^{\dagger}$	$(\nu_{R2})^{\dagger}$	$(\nu_{R1})^{\dagger}$	ψ_L	$(\psi_R)^{\dagger}$	S
(A)	+4	+4	-5	-r	r	+3
(B)	$+\frac{8}{5}$	$+\frac{8}{5}$	$+\frac{2}{5}$	7 - 5	$-\frac{10}{5}$	$+\frac{3}{5}$

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

$SD^3M + SSDM$: σ_a (a = 1, 2)

$$M_{\psi} = h_1 \langle S \rangle$$
, $y_2 = 0$:

$$\mathcal{L} = \mathcal{L}_{\mathsf{SD^3M}} + h_3^{ia} \widetilde{(\Psi_R)} \cdot L_i \, \sigma_a + h_2^{\beta a} \left(\nu_{R\beta} \right)^{\dagger} \psi_L \, \sigma_a^* - \mathit{V}(\sigma_a, S, H) \, .$$

with A.F Rivera, W. Tangarife, arXiv:1906.09685 [PRD]

Radiative Type-I seesaw oLocal: only $U(1)_{B-L}!$ arXiv:1812.05523, with J. Calle, C. Yaguna, Ó. Zapata [PRD]

For radiative Dirac models with only $U(1)_X$ see also:

arXiv:1812.01599, 1901.06402, 1902.07259,

1903.01477, 1904.07407, 1907.08630, 1910.09537

1909.00833 1907.11557, 1909.09574

 $\mathcal{O}(50)$ new models mostly with

Example: $U(1)_{B-}$

Pheno analysis with

A. Rivera, W. Tangarife, arXiv:1906.09685 [PRD]

Dirac Radiative Type-I seesaw with Majorana mediators with J. Calle and Ó. Zapata, arXiv:1909.09574

rieids	30(2)L	O(1)Y	$O(1)_{\mathcal{D}}$
L	2	-1/2	0
Q	2	-1/6	0
d_R	1	-1/2	0
u_R	1	+2/3	0
e_R	1	-1	0
Н	2	1/2	0
η	2	1/2	1
S	1	0	2
σ	1	0	3
ν_{R1}	1	0	-4
ν_{R2}	1	0	-4
ν_{R3}	1	0	5
N_{R1}	1	0	1
N_{R2}	1	0	1
N_{R3}	1	0	1
TOTAL			0 22

SH(2),

 $II(1)_{V}$ $II(1)_{D}$

Fields

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{D}}$
L	2	-1/2	0
Q	2	-1/6	0
d_R	1	-1/2	0
u_R	1	+2/3	0
e_R	1	-1	0
Н	2	1/2	0
η	2	1/2	1
S	1	0	2
σ	1	0	3
ν_{R1}	1	0	-4
ν_{R2}	1	0	-4
ν_{R3}	1	0	5
N_{R1}	1	0	1
N_{R2}	1	0	1
N_{R3}	1	0	1
TOTAL			0 22

	- (-)L
L	2
Q	2
d_R	1
u_R	1
e_R	1
Н	2
η	2
5	1
σ	1
ν_{R1}	1
ν_{R2}	1
ν_{R3}	1
N_{R1}	1
N_{R2}	1

1

 N_{R3}

 $\xi_{L\alpha}$

Fields SU(2),

 $U(1)_Y$

-1/2

-1/6

-1/2

+2/3

 $\frac{1/2}{1/2}$

0

0

0

 $U(1)_X$

-1/3

1 + 2I/3

 $\frac{-1 - 4I/3}{1 + 2I}$

3/4 - I 3/2

13/4

3/4

3/4

3/4

3/422

Fields

$$SU(2)_L$$

 L
 2

 Q
 2

 d_R
 1

 e_R
 1

 H
 2

 η
 2

 S
 1

 σ
 1

 ν_{R1}
 1

 ν_{R2}
 1

 N_{R1}
 1

 N_{R2}
 1

 N_{R3}
 1

 $\xi_{L\alpha}$

 $U(1)_{B-L}$

-1

1/3

1/3

1/3

7/4 3/2 13/4

-4

3/4

3/4

3/4

3/4 22

 $U(1)_Y$

-1/2

-1/6

-1/2

+2/3

-1

 $\frac{1/2}{1/2}$

0

0

$$\begin{split} \mathcal{L} \supset &- g' \, Z'_{\mu} \sum_{F} q_{F} \overline{F} \gamma^{\mu} F + \sum_{\phi} \left| \left(\partial_{\mu} + i \, g' \, q_{\phi} \, Z'_{\mu} \right) \phi \right|^{2} \\ &- \left[h_{i\alpha} \overline{L}_{i} \widetilde{\eta} N_{R\alpha} + y_{j\alpha} \overline{\nu_{R_{j}}} \sigma^{*} N_{R\alpha}^{c} + k_{\alpha} \overline{N_{R\alpha}^{c}} N_{R\alpha} S^{*} + \text{h.c.} \right] - \mathcal{V}(H, S, \eta, \sigma) \,. \end{split}$$

 $F\left(\phi\right)$ denote the new fermions (scalars)

$$\begin{split} \mathcal{V}(H,S,\eta,\sigma) = & V(H) + V(S) + V(\eta) + V(\sigma) \\ & + \lambda_{HS}(H^{\dagger}H)(S^{*}S) + \lambda_{2}(H^{\dagger}H)(\sigma^{*}\sigma) + \lambda_{3}(H^{\dagger}H)(\eta^{\dagger}\eta) \\ & + \lambda_{4}(S^{*}S)(\sigma^{*}\sigma) + \lambda_{5}(S^{*}S)(\eta^{\dagger}\eta) + \lambda_{6}(\eta^{\dagger}\eta)(\sigma^{*}\sigma) + \lambda_{7}(\eta^{\dagger}H)(H^{\dagger}\eta) \\ & + \lambda_{8}(\eta^{\dagger}HS^{*}\sigma + \text{h.c.}) \,, \end{split}$$

Neutrino masses and LFV

$$(\mathcal{M}_{\nu})_{ij} = \frac{1}{32\pi^{2}} \frac{\lambda_{8} v_{5}^{2} v_{H}}{m_{\eta_{R}^{0}}^{2} - m_{\sigma_{R}^{0}}^{2}} \sum_{\alpha=1}^{3} h_{i\alpha} k_{\alpha} y_{j\alpha}^{*} \left[F\left(\frac{m_{\eta_{R}^{0}}^{2}}{M_{N_{\alpha}}^{2}}\right) - F\left(\frac{m_{\sigma_{R}^{0}}^{2}}{M_{N_{\alpha}}^{2}}\right) \right] + (R \to I),$$

where $F(x) = x \log x/(x-1)$.

$$\mu o e \gamma$$

$$\left|\sum_{lpha} h_{2lpha} h_{1lpha}^* \right| \lesssim 0.02 \left(rac{m_\chi}{2\, ext{TeV}}
ight)^2.$$

Singlet-doblet complet Day scotogenic DM $V(\eta, \sigma, H)$ $h_{i\alpha}\overline{L_i}\tilde{\eta}N_{R\alpha}$ $g' Z'_{\mu} \sum_{F} q_{F} \overline{F} \gamma^{\mu} F$ $k_{\alpha}N_{R\alpha}^{c}N_{R\alpha}S^{*}$ Dark radiation portal Dark scalar portal

scotogenic DM

 $h_{i\alpha}\overline{L_i}\tilde{\eta}N_{R\alpha}$

A. Ibarra, C. Yaguna, Ó. Zapata, arXiv:1601.01163 [PRD]

scotogenic DM $h_{i\alpha}\overline{L_i}\tilde{\eta}N_{R\alpha}$ $N_{R2}\to \Sigma$ with A. Rivera, arXiv:1907.11938

$$(\chi_1^0 \ \chi_2^0)^T = R(N_R \ \Sigma)^T$$

$$\xi = rac{\left|M_{\Sigma} - m_{\chi_1^0}
ight|}{m_{\chi_1^0}}$$

 $h_{ilpha}\overline{L_i} ilde{\eta}N_{Rlpha} \ N_{R2} o\Sigma$ with A. Rivera, arXiv:1907.11938

$$\sigma v \left(\chi_1^0 \chi_1^0 \to \gamma \gamma \right) = \frac{|\mathcal{B}|^2}{32\pi m_{\chi_1^0}^2}$$

$$\begin{split} & + \frac{-M_{ql}^2 - m^2 + M_{2}^2}{-M_{ql}^2 - m^2 + M_{2}^2} \\ & + \frac{m^2 \sin(n) \cos(n) 2^2 \gamma_{0}^2}{m^2} \left[-\frac{m^2 C_{0} \left(0, -m^2, m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)}{m^2_{c} - m^2_{c}} \right] \\ & + \frac{m^2 \left(m_{c}^2 + m^2 - m^2_{c}\right) C_{0} \left(0, -m^2, m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)}{m^2_{c} - m^2_{c}} \left(-m^2_{c} - m^2_{c} - m^2_{c} \right) C_{0} \left(0, -4m^2, m^2_{c}, m^2_{c}, m^2_{c} \right) \right)}{m^2_{c} - m^2_{c}} \left(-m^2_{c} + m^2 + m^2_{c} \right) \left(-m^2_{c} - m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right) \\ & -\frac{m^2_{c} \cos^2(n) \gamma_{c}^2}{m^2_{c}} \left(-m^2_{c} + m^2 - m^2_{c}, m^2_{c}, m^2_{c} \right) - \frac{2m^2_{c}}{m^2_{c}} C_{0} \left(0, 4m^2, m^2_{c}, m^2_{c}, m^2_{c} \right) \\ & + \frac{\sqrt{2} \sin^2 m^2_{c} \left(m^2_{c} - m^2_{c} \right) \left(-m^2_{c} + m^2 - m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)}{m^2_{c} \left(m^2_{c} + m^2 - m^2_{c} \right) \left(2m^2_{c} - m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right) \\ & + \frac{\sqrt{2} \sin^2 m^2_{c} \left(m^2_{c} + m^2 - m^2_{c} \right) C_{0} \left(0, -m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)}{m^2_{c} \left(m^2_{c} + m^2_{c} - m^2_{c} \right) \left(2m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)} \\ & + \frac{\sqrt{2} \sin^2 m^2_{c} \left(m^2_{c} + m^2_{c} - m^2_{c} \right) C_{0} \left(0, -m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)}{m^2_{c} \left(m^2_{c} + m^2_{c} - m^2_{c} \right) C_{0} \left(0, -m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)} \\ & - m^2_{c} \left(m^2_{c} + m^2_{c} - m^2_{c} \right) C_{0} \left(0, -m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)} \\ & - m^2_{c} \left(m^2_{c} + m^2_{c} - m^2_{c} \right) C_{0} \left(0, -m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)} \\ & - m^2_{c} \left(m^2_{c} + m^2_{c} - m^2_{c} \right) C_{0} \left(m^2_{c} - m^2_{c} + m^2_{c} - m^2_{c}, m^2_{c}, m^2_{c}, m^2_{c} \right)} \\ & - m^2_{c} \left(m^2_{c} + m^2_{c} - m^2_{c} \right) C_{0} \left(m^2_{c} - m^2_{c} + m^2_{c} - m^2_{c}, m^2_{c}, m^2_{c} \right)} \\ & - m^2_{c} \left(m^2_{c} - m^2_{c} \right) C_{0} \left(m^2_{c} - m^2_{c} - m^2_{c} - m^2_{c} \right) C_{0} \left(m^2_{c} - m^2_{c} - m^2_{c} - m^2_{c}, m^2_{c} - m^2_{c} \right) C_{0} \left(m^2_{c} - m^2_{c} - m^2_{c} - m^2_{c} - m^2_{c} - m^2_{c} \right) C_{0} \left(m^2_{c} - m^2_{c} - m^2_{c} - m^2_{c} - m^2_{c} - m^2_{c} \right) C_{0$$

FIMP Scenario $h_{i\alpha}\overline{L_i}\tilde{\eta}N_{R\alpha}$ F. Molinaro, C. Yaguna, Ó. Zapata, arXiv:1405.1259 [JCAP]

$$l\left(\eta^{+}\right) = 3 \times 10^{5} \text{cm}\left(\frac{M_{1}}{1 \text{GeV}}\right) \left(\frac{1 \text{TeV}}{m_{\eta^{+}}}\right)^{2}$$

$$\lesssim 3 \text{ meters} \left(\frac{1 \text{TeV}}{m_{\eta^{+}}}\right)^{2} \text{ for } M_{1} \lesssim 1 \text{MeV}$$

$$N_R N_R \to \nu_R \nu_R$$

$$\Delta N_{\rm eff} \sim 0.2$$

 $k_{\alpha}\overline{N_{R\alpha}^{c}}N_{R\alpha}S^{*}$ $Q_{a_{\mathcal{T}_{k}}}$ $P_{a_{\mathcal{O}_{lat}}}$ $P_{a_{\mathcal{O}_{lat}}}$

 $g' Z'_{\mu} \sum_{F} q_{F} \overline{F} \gamma^{\mu} F$

Dark scalar portal

(One-loop) Dirac neutrino masses

To explain the smallness of Dirac neutrino masses choose $\mathrm{U}(1)_X$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{\mathsf{T.L}} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_X$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{\mathsf{T.L}} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

• Forbids Majorana term: $\nu_R \nu_R$

To explain the smallness of Dirac neutrino masses choose $U(1)_X$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = rac{h_{
u}}{\Lambda} \left(
u_R
ight)^{\dagger} L \cdot HS + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_X$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{\mathsf{T.L}} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$

= $h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} \left(\nu_{R} \right)^{\dagger} L \cdot HS + \text{h.c}$$

• Enhancement to the effective number of degrees of freedom in the early Universe $\Delta N_{\rm eff} = N_{\rm eff} - N_{\rm eff}^{\rm SM}$ (see arXiv:1211.0186)

 $\mathrm{U}(1)_{B-L} \stackrel{\langle S \rangle}{\to} Z_N$

From 1210.6350 and 1805.02025: $\Delta N_{ ext{eff}} = 3 \left(T_{ u_R} / T_{ u_L} ight)^4$

$$\begin{split} \Gamma_{\nu_R}(T) &= n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to \bar{f} f) v \rangle \\ &= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos \theta), \\ s &= 2pq(1 - \cos \theta), \qquad \qquad f_{\nu_R}(k) = 1/(e^{k/T} + 1) \\ n_{\nu_R}(T) &= g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), \qquad \qquad \text{with } g_{\nu_R} = 2 \\ \sigma_f(s) &\simeq \frac{N_C^f(Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{Z'}}\right)^4, \quad \text{In the limit } M_{Z'}^2 \gg s. \end{split}$$

with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N [g(T) + 21/4]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{
m dec}^{
u_R})=H(T_{
m dec}^{
u_R}).$$

A. Solaguren-Beascoa, M. C. Gonzalez-Garcia: arXiv:1210.6350 [PLB]

From 1210.6350 and 1805.02025: $\Delta N_{\text{eff}} = 3 (T_{\nu_P}/T_{\nu_I})^4$

$$\begin{split} \Gamma_{\nu_R}(T) &= n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to \bar{f} f) v \rangle \\ &= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1-\cos\theta), \\ s &= 2pq(1-\cos\theta), \qquad \qquad f_{\nu_R}(k) = 1/(e^{k/T}+1) \\ n_{\nu_R}(T) &= g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), \qquad \qquad \text{with } g_{\nu_R} = 2 \\ \sigma_f(s) &\simeq \frac{N_C^f(Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{Z'}}\right)^4, \quad \text{In the limit } M_{Z'}^2 \gg s. \end{split}$$
 with three right-handed neutrinos, the Hubble parameter is

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{\text{dec}}^{\nu_R}) = H(T_{\text{dec}}^{\nu_R}).$$

 $H(T) = \sqrt{\frac{4\pi^3 G_N [g(T) + 21/4]}{45}} T^2.$

Conclusions

It makes sense to focus our attention on models tha can account for neutrino masses and dark matter (DM) without adhoc symmetries

One-loop Dirac neutrino masses

A single $U(1)_X$ gauge symmetry to explain both the smallnes of Dirac neutrino masses and the stability of Dirac fermion dark matter

- Spontaneously broken $U(1)_X$ generates a radiative Dirac neutrino masses
- A remnant symmetry makes the lightest field circulating the loop stable and good dark matter candidate.
- For T1-2-A: Either Singet Doublet Dirac Dark Matter or Singlet Scalar Dark Matter with extra scalar and vector portal
- Dark symmetry for Majorana mediatiors

