Lecture 5 Top-Down Parsing

Review

- We can specify language syntax using CFG
- A parser will answer whether $s \in L(G)$
 - ... and will build a parse tree
 - ... which we convert to an AST
 - ... and pass on to the rest of the compiler

Outline

- Recursive descent parsing
- Top-down Parsing

How It's Done I: Intro to Top-Down Parsing

- The parse tree is constructed
 - From the top
 - From left to right
- Terminals are seen in order of appearance in the token stream:

· ... As for leftmost derivation

Recursive Descent Parsing

Consider the grammar

```
E \rightarrow T + E \mid T

T \rightarrow (E) \mid int \mid int * T
```

- Token stream is: int * int
- Start with top-level non-terminal E
 - Try the rules for E in order

Recursive Descent Parsing. Example int * int

- Start with start symbol
- Try $E \rightarrow T + E$
- Then try a rule for $T \rightarrow (E)$
 - But (≠ input int; backtrack to
- Try $T \rightarrow int$. Token matches.
 - But + ≠ input *; back to
- Try T → int * T
 - But (skipping some steps) + can't be matched
- Must backtrack to

E

T+E

(E) + E

T+E

int + E

T+E

int*T+E

Recursive Descent Parsing. Example int * int

- Try $E \rightarrow T$
- Follow same steps as before for T
 - And succeed with $T \rightarrow int * T$ and $T \rightarrow int$
 - With the following parse tree

A Recursive Descent Parser. Preliminaries

- Let TOKEN be the type of tokens
 - Special tokens INT, OPEN, CLOSE, PLUS, TIMES
- · Let the global next point to the next token

A (Limited) Recursive Descent Parser (2)

- Define boolean functions that check the token string for a match of
 - A given token terminal bool term(TOKEN tok) { return *next++ == tok; } - The nth production of S: bool $S_n()$ { ... }
 - Try all productions of S: bool S() { ... }

A (Limited) Recursive Descent Parser (3)

- For production $E \rightarrow T$ bool $E_1()$ { return T(); }
- For production E → T + E
 bool E2() { return T() && term(PLUS) && E(); }
- For all productions of E (with backtracking)

A (Limited) Recursive Descent Parser (4)

Functions for non-terminal T

```
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }
bool T() {
  TOKEN *save = next;
  return (next = save, T1())
      || (next = save, T2())
      || (next = save, T3()); \}
```

Recursive Descent Parsing. Notes.

- To start the parser
 - Initialize next to point to first token
 - Invoke E()
- Notice how this simulates the example parse
- Easy to implement by hand
 - But not completely general
 - Cannot backtrack once a production is successful
 - Works for grammars where at most one production can succeed for a non-terminal

Recursive Descent Parsing of $t_1 t_2 \dots t_n$

- At a given moment, have sentential form that looks like this: $t_1 t_2 \dots t_k A \dots, 0 \le k \le n$
- Initially, k=0 and A... is just start symbol
- Try a production for A: if $A \rightarrow BC$ is a production, the new form is $t_1 t_2 \dots t_k BC \dots$
- Backtrack when leading terminals aren't prefix of $t_1 t_2 ... t_n$ and try another production
- Stop when no more non-terminals and terminals all matched (accept) or no more productions left (reject)

When Depth-First Doesn't Work Well

- Consider productions $S \rightarrow S$ a bool $S_1()$ { return S() && term(a); } bool S() { return $S_1()$; }
- 5() goes into an infinite loop
- A <u>left-recursive grammar</u> has a non-terminal $S \rightarrow 5 \rightarrow 5 \alpha$ for some α

Recursive descent does not work in such cases

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

- 5 generates all strings starting with a β and followed by a number of $\alpha's$
- · Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

Elimination of left Recursion. Example

Consider the grammar

$$5 \rightarrow 1 \mid 50$$
 ($\beta = 1$ and $\alpha = 0$)

can be rewritten as

$$S \rightarrow 1 S'$$

 $S' \rightarrow 0 S' \mid \epsilon$

More Elimination of Left Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

- All strings derived from 5 start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' \mid \dots \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \epsilon$

General Left Recursion

The grammar

$$S \rightarrow A \alpha \mid \delta$$
 (1)
 $A \rightarrow S \beta$ (2)

is also left-recursive because

$$S \rightarrow^+ S \beta \alpha$$

- This left recursion can also be eliminated by first substituting (2) into (1)
- See Dragon Book for general algorithm (section 4.3)
- · But personally, I'd just do this by hand.

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) vs. Recursive Descent

- In recursive descent,
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices
- In LL(1),
 - At each step, only one choice of production
 - That is
 - When a non-terminal A is leftmost in a derivation
 - The next input symbol is t
 - There is a unique production $A \rightarrow a$ to use
 - Or no production to use (an error state) ·
- LL(1) is a recursive descent variant without backtracking

But First: Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- · We need to <u>left-factor</u> the grammar

Left-Factoring Example

Starting with the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

Factor out common prefixes of productions

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \varepsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

The LL(1) parsing table (\$ is a special end marker):

	int	*	+	()	\$
T	int Y			(E)		
Ε	ΤX			ΤX		
X			+ E		3	3
У		* T	3		3	3

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - Means "When current non-terminal is E and next input is int, use production $E \to T X$ "
 - This can generate an int in the first position
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if $Y \rightarrow \varepsilon$
 - We'll see later why this is right

LL(1) Parsing Tables. Errors

Blank entries indicate error situations

- Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For the leftmost non-terminal 5
 - We look at the next input token a
 - And choose the production shown at [5,a]
- A stack records frontier of parse tree
 - Non-terminals that have yet to be expanded
 - Terminals that have yet to matched against the input
 - Top of stack = leftmost pending terminal or nonterminal
- · Reject on reaching error state
- · Accept on end of input & empty stack

LL(1) Parsing Algorithm

```
initialize stack = <5,$>
repeat
   case stack of
   <X, rest> : if T[X,next()] == Y_1...Y_n:
        stack \leftarrow <Y_1...Y_n rest>;
        else: error ();
   <t, rest> : scan (t); stack \leftarrow <rest>;
until stack == <>
```

LL(1) Parsing Example

<u>Stack</u>	Input	<u>Action</u>
E \$	int * int \$	ΤX
TX\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
У X \$	* int \$	* T
* T X \$	* int \$	terminal
TX\$	int \$	int Y
int Y X \$	int \$	terminal
У X \$	\$	3
X \$	\$	8
\$	\$	ACCEPT

Constructing Parsing Tables

- LL(1) languages are those definable by a parsing table for the LL(1) algorithm such that no table entry is multiply defined
- Once we have the table
 - Can create table-driver or recursive-descent parser
 - The parsing algorithms are simple and fast
 - No backtracking is necessary
- We want to generate parsing tables from CFG

Predicting Productions I

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

int * int + int

Predicting Productions II

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

```
int * int + int
```

Predicting Productions III

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

int * int + int

- The leaves at any point form a string $\beta A \gamma$ (A=T, $\gamma = \epsilon$)
 - β contains only terminals
 - γ contains any symbols
 - The input string is $\beta b \delta$ (b=int)
 - So $A\gamma$ must derive $b\delta$

Predicting Productions IV

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

 So choose production for T that can eventually derive something that starts with int

Predicting Productions V

· Go back to previous grammar, with

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

Here, YX must match + int

Since + int doesn't start with *, can't use $Y \rightarrow T$

Predicting Productions V

· Go back to previous grammar, with

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

But + can follow Y, so we choose $Y \rightarrow \varepsilon$

FIRST and FOLLOW

- To summarize, if we are trying to predict how to expand A with b the next token, then either:
 - b belongs to an expansion of A
 - Any $A \rightarrow \alpha$ can be used if b can start a string derived from α
 - In this case we say that $b \in First(\alpha)$
 - or b does not belong to an expansion of A, A has an expansion that derives ϵ , and b belongs to something that can follow A (so $S \rightarrow {}^*\beta Ab\omega$)
 - We say that $b \in Follow(A)$ in this case.

Summary of Definitions

- For $b \in T$, the set of terminals; α a sequence of terminal & non-terminal symbols, S the start symbol, $A \in \mathbb{N}$, the set of non-terminals:
- FIRST(α) \subseteq T \cup { ε } $b \in$ FIRST(α) iff $\alpha \rightarrow^* b \dots$ $\varepsilon \in$ FIRST(α) iff $\alpha \rightarrow^* \varepsilon$
- FOLLOW(A) \subseteq T $b \in FOLLOW(A)$ iff $S \rightarrow^* ... A b ...$

Computing First Sets

```
Definition First(X) = { b | X \rightarrow^* b\alpha} \cup {\epsilon | X \rightarrow^* \epsilon}, X any grammar symbol.
```

- 1. First(b) = { b } for b any terminal symbol
- 2. For all productions $X \longrightarrow A_1 \dots A_n$
 - Add First(A_1) { ϵ } to First(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to First(X). Stop if $\epsilon \notin First(A_2)$
 - •
 - Add First(A_n) { ϵ } to First(X). Stop if $\epsilon \notin First(A_n)$
 - Add ε to First(X)
- 3. Repeat 2 until nothing changes ("compute fixed point")

Computing First Sets, Contd.

- That takes care of single-symbol case.
- In general:

```
\begin{split} & FIRST(X_1 \mid X_2...X_k) = \\ & FIRST(X_1) \\ & \cup FIRST(X_2) \quad \text{if } \epsilon \in FIRST(X_1) \\ & \cup \dots \\ & \cup FIRST(X_k) \quad \text{if } \epsilon \in FIRST(X_1X_2...X_{k-1}) \\ & - \{ \epsilon \} \text{ unless } \epsilon \in FIRST(X_i) \quad \forall \text{ i} \end{split}
```

First Sets. Example

For the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

First sets

```
First(() = {()
First()) = {)}
First(int) = {int}
First(+) = {+}
First(*) = {*}
```

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

```
First( T ) = {int, ( }

First( E ) = {int, ( }

First( X ) = {+, \varepsilon }

First( Y ) = {*, \varepsilon }
```

Computing Follow Sets

```
Definition Follow(X) = { b | S \rightarrow^* \beta X b \omega }
```

- 1. Compute the First sets for all non-terminals first
- 2. Add \$ to Follow(S) (if S is the start non-terminal)
- 3. For all productions $Y \longrightarrow ... X A_1 ... A_n$
 - Add First(A_1) { ε } to Follow(X). Stop if $\varepsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_2)$
 - •
 - Add First(A_n) { ε } to Follow(X). Stop if $\varepsilon \notin First(A_n)$
 - Add Follow(Y) to Follow(X)
- 4. Repeat 3 until nothing changes.

Follow Sets. Example

For the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

 $X \rightarrow + E \mid \varepsilon$ $Y \rightarrow * T \mid \varepsilon$

Follow sets

```
Follow( E ) = {), $}
Follow( X ) = {$, )}
Follow( Y ) = {+, ), $}
Follow( T ) = {+, ), $}
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\alpha \rightarrow^* \epsilon$, for each $b \in Follow(A)$ do
 - T[A, b] = α

LL(1) Parsing Table Example

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

	int	*	+	()	\$
T	int Y			(E)		
E	ΤX			ΤX		
X			+ E		3	3
У		* T	3		3	3

```
Follow(E) = {), $}

Follow(X) = {$, )}

Follow(Y) = {+, ), $}

Follow(T) = {+, ), $}

First(T) = {int, (}

First(E) = {int, (}

First(X) = {+, \epsilon}

First(Y) = {*, \epsilon}
```

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1). This happens
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy
 - Predictive parsing (LL(1))
 - Once you build the LL(1) table (or know the FIRST and FOLLOW sets), you can write the parser by hand: recursive descent.
- Next: a more powerful parsing strategy for grammars that are not LL(1)

Assignment

Consider the following CFG, where the set of terminals is $\Sigma = \{a, b, \#, \%, !\}$:

```
S \rightarrow %aT \mid U!

T \rightarrow aS \mid baT \mid \epsilon
```

- $U \rightarrow \#aTU \mid \epsilon$
- (a) Construct the FIRST sets for each of the nonterminals.
- (b) Construct the FOLLOW sets for each of the nonterminals.
- (c) Construct the LL(1) parsing table for the grammar.
- (d) Show the sequence of stack, input and action configurations that occur during an LL(1) parse of the string "#abaa%aba!".