

Arbitrary Waveform Generator Final Presentation Department of Electrical and Computer Engineering

December 1, 2023

Faculty Advisor: Dr. Jens-Peter Kaps

James Schaeffler German Kuznetsov Hussain Zainal Vikram Arunachalam Yifei Gao William Denham

Team Member Introduction

- Bill Denham Project Manager/ PCB Designer
- James Schaeffler MCU Developer
- Yifei Gao MCU Developer / Test Engineer
- German Kuznetsov PCB Designer
- Hussain Zainal GUI Developer
- Vikram Arunachalam GUI Developer

Project Overview and Identification of Need

- Demand for Portable Lab Equipment due to COVID-19 Online Class Shift
- COVID-19 Pandemic Induced Chip Shortage
- Propose an affordable USB All-In-One Lab Device alternative to the AD2 or ADALM200
- Design and Construct an Arbitrary
 Waveform Generator to pair with Logic
 Analyzer, Power Supply and Oscilloscope
- Three Teams: Microcontroller, GUI, and Front-End
 - Microcontroller: Yifei and James
 - GUI: Vikram and Hussain
 - Front-End: German and Bill

FIGURE 1

Global Integrated Circuit (IC) unit shipments across various downturns, quarterly, 1990 to Q2, 2021 (log scale)

Duration of slowdown — Global IC unit shipments per quarter (in billions)

Source: Deloitte analysis based on secondary research and data gathered from publicly available articles and reports.

Above: The chip industry has seen a half-dozen dips and shortages over the decades.

Image Credit: Deloitte

Background Phenomenology

- High Level Programming Languages - Python and C
- Microcontrollers (MCU)
 - Digital-Analog-Converters (DAC)
 - Timers
 - Direct Memory Access (DMA)
- Printed Circuit Board (PCB) Design
- Low-level discrete electronics -OpAmps, Power Regulators, Buck Converters
- Surface Mount (SMD) Soldering
- Knowledge of KiCad and Autodesk Inventor

Project Requirements

Input/output requirements:

- o 2 analog output channels.
- Communication of the device is via USB

• Function requirements

- Create arbitrary waveforms, triangular, rectangular, sine.
- o Bandwidth: around 2MHz.
- The Sample Rate: around 5 Msps
- The output: peak-to-peak 5V, adjustable +-2.5V
- o 20 mA load.
- o utput display the wave, frequency, amplitude and offset selected

• Technology and System-Wide Requirements:

- Cheap
- o Device and GUI must be able to operate on Linux, Windows, and Mac OS Personal Computers

Functional Decomposition / System Overview

- GUI Software
- MCU Software
- AWG Hardware

Functional Decomposition PCB/Hardware

- ±12V Switching Mode PSU
- 2 Analog channels:
 - Gain Control
 - Offset Control

Functional Decomposition MCU Software

- GUI <-> MCU Connection
- PWM based Offset voltage generation
 - o Timers / GPIO
- Gain control
 - o GPIO
- Wave generation
 - o DAC
 - o DMA
 - Timers

Functional Decomposition GUI Software

qweerqwer

AWG Hardware overview

Analog Channel overview (maybe remove this and keep one of the next to)

Analog Channel overview (remove one of these)

Analog Channel overview (remove one of these)

Analog channel Schematic

Analog channel Schematic

PSU Schematic

Connectors Schematic (maybe cut this)

PCB Layout

PCB Assembly

Step 1) Solder paste

Step 2) Component placement

Step 3) Reflow Oven

Step 4) Manual Touchup

SYSTEM ARCHITECTURE

MCU- Hardware Modifications

HSE oscillator on-board from X3 crystal (not provided): for typical frequencies and its capacitors and resistors, refer to the STM32 microcontroller datasheet. Refer to the AN2867 Application note for oscillator design guide for STM32 microcontrollers. The X3 crystal has the following characteristics: 8 MHz, 16 pF, 20 ppm, and DIP footprint. It is recommended to use 9SL8000016AFXHF0 manufactured by Hong Kong X'tals Limited.

The following configuration is needed:

- SB54 and SB55 OFF
- R35 and R37 soldered
- C33 and C34 soldered with 20 pF capacitors
- SB16 and SB50 OFF

MCU – Hardware Modifications

MCU — HARDWARE MODIFICATIONS

Need better pics of board

Connection

Graphical User Interface (GUI)

GUI Breakdown

Arbitrary Waveform Drawer Breakdown

output=dac+offset

Offset Sweep Error Analysis

MCU & PCB Integration Testing - frequency response

Device Demonstration Video

Project Management - Funds Spent

Project Management - Project Work Hours

Project Work Hours

Project Management - Lessons Learned

PCB:

- Choose proper sizes of discrete components
- Allow adequate time for creating custom footprints
- Balance compactness of component placement with ease of assembly

GUI:

- Limit the amount of packages imported to avoid clashes.
- Prioritize making modular code.

MCU:

С

- Project Management / Team Dynamics:
 - Cross-Function/Domain Teaming Being able to work across hardware and software domains
 - Time Management Adhering to hard deadlines, with other class commitments
 - Team Dynamics Proper mix of Technical Skills and Soft Skills allow for the most efficient engineering teams

Questions