

FEG2C3 Elektromagnetika I

Persamaan Maxwell Dalam Material

Program Studi S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom 2014

Tujuan Pembelajaran

 Mahasiswa mengetahui perbedaan persamaan Maxwell dalam material dan dalam vakum

Persamaan Maxwell Dalam Material

Pendahuluan

- Sumber-sumber yang muncul sebagai bentuk reaksi material terhadap medan-medan eksternal yang mengenainya akan mempengaruhi medan-medan eksternal yang awalnya membangkitkan sumber-sumber tersebut.
- Oleh karenanya, persamaan Maxwell (relasi matematis antara medan-medan dan sumber-sumbernya) perlu dimodifikasi untuk memasukkan sumber-sumber yang muncul dalam material.

Persamaan Maxwell Dalam Material

Bentuk Integral

$$\oint_{S} \vec{D} \cdot d\vec{s} = \int_{V} \rho_{V} dV$$

$$\oint_{S} \vec{B} \bullet d\vec{s} = 0$$

$$\oint_{c} \vec{E} \bullet d\vec{l} = -\frac{d}{dt} \int_{s} \vec{B} \bullet d\vec{s}$$

$$\oint_{c} \vec{H} \cdot d\vec{l} = \int_{s} \vec{J} \cdot d\vec{s} + \int_{s} \sigma \vec{E} \cdot d\vec{s} + \frac{d}{dt} \int_{s} \vec{D} \cdot d\vec{s}$$

Bentuk Diferensial

$$\vec{\nabla} \bullet \vec{D} = \rho_{v}$$

$$\vec{\nabla} \bullet \vec{B} = 0$$

$$\vec{\nabla} \bullet \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{H} = \vec{J} + \sigma \vec{E} + \frac{\partial \vec{D}}{\partial t}$$

$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$$

$$\vec{B} = \mu_0 \mu_r \vec{H}$$

Persamaan Maxwell Dalam Ruang Hampa

Bentuk Integral

$$\oint_{S} \vec{D} \bullet d\vec{s} = \int_{V} \rho_{V} dV$$

$$\oint_{S} \vec{B} \bullet d\vec{s} = 0$$

$$\oint_{c} \vec{E} \bullet d\vec{l} = -\frac{d}{dt} \int_{s} \vec{B} \bullet d\vec{s}$$

$$\oint_{c} \vec{H} \cdot d\vec{l} = \int_{s} \vec{J} \cdot d\vec{s} + \frac{d}{dt} \int_{s} \vec{D} \cdot d\vec{s}$$

Bentuk Diferensial

$$\vec{\nabla} \bullet \vec{D} = \rho_{v}$$

$$\vec{\nabla} \bullet \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$\vec{D} = \varepsilon_0 \vec{E}$$

$$\vec{B} = \mu_0 \vec{H}$$

