Classification

Anisha Mittal

```
library("lemon") # Pretty printing of data frames
kint_print.data.frame <- lemon_print
library(mlbench) # Access the data
library(rpart) # For fitting classification trees
library(nnet) # For fitting multinomial logistic regression</pre>
```

```
data("Satellite")
# Re-order class labels alphabetically and remove spacing
Satellite$classes <- gsub(" ", "_", Satellite$classes)</pre>
Satellite$classes <- factor(as.character(Satellite$classes))</pre>
# Rename classes column to y
colnames(Satellite)[37] <- "y"</pre>
# To have the same initial split
set.seed(22021)
N <- nrow(Satellite)</pre>
keep <- sample(1:N, 5000)
test <- setdiff(1:N, keep)</pre>
# Training & validation data
dat <- Satellite[keep,]</pre>
N_train <- nrow(dat)</pre>
# Testing data
dat_test <- Satellite[test,]</pre>
# Function to compute classification accuracy
class_acc <- function(y, yhat) {</pre>
  tab <- table(y, yhat)</pre>
  return( sum(diag(tab))/sum(tab))
  }
# just to identify the classifiers
classifiers <- c("class_tree", "Mlog_reg")</pre>
K <- 5 # set number of folds
R \leftarrow 350 # set number of replicates --- NOTE : could be slow
out <- matrix(NA,R,4)</pre>
colnames(out) <- c(classifiers, "best_fit", "test_fold_acc")</pre>
out <- as.data.frame(out)</pre>
```

```
for ( r in 1:R ) {
  folds <- rep( 1:K, ceiling(N/K))</pre>
  folds <- sample(folds) # random permute</pre>
  folds <- folds[1:N_train] # ensure we got N_train data points
  for ( k in 1:K ) {
    train_fold <- which(folds != k)</pre>
    validation <- setdiff(1:N_train, train_fold)</pre>
    # fit classifiers on the training data
    # ----- classification tree
    fit_ct <- rpart(y ~ ., data = Satellite, subset = train_fold)</pre>
    # ----- logistic regression
    fit_Mlog <- multinom(y ~ ., data = Satellite, subset = train_fold)</pre>
    # Predict classification of the test data observations in the dropped fold
    # Classification Tree
    pred_ct <- predict(fit_ct, type = "class", newdata = dat[validation,])</pre>
    tab_ct <- table(dat$y[validation], pred_ct)</pre>
    out[r,1] <- class_acc(pred_ct, dat$y[validation])</pre>
    # Multinomial logistic Regression
    pred_Mlog <- predict(fit_Mlog, type = "class", newdata = dat[validation,])</pre>
    tab_Mlog <- table(dat$y[validation], pred_Mlog)</pre>
    out[r,2] <- class_acc(pred_Mlog, dat$y[validation])</pre>
    # Accuracy of each Classifier
    acc <- c(class_tree = out[r,1], Mlog = out[r,2] )</pre>
    # Find the best fit and fold accuracy on test data
    best <- names(which.max(acc))</pre>
    switch(best,
       class_tree = {
         predTestCt <- predict(fit_ct, type = "class", newdata = dat_test)</pre>
         tabTestCt <- table(dat$y[test], predTestCt)</pre>
         accBest <- sum(diag(tabTestCt))/sum(tabTestCt)</pre>
       },
       Mlog = {
         predTestLog <- predict(fit_Mlog, type = "class", newdata = dat_test)</pre>
         tabTestLog <- table(dat$y[test], predTestLog)</pre>
         accBest <- sum(diag(tabTestLog))/sum(tabTestLog)</pre>
         }
    out[r,3] \leftarrow best
    out[r,4]<- accBest
 print(r) # print iteration number
```

```
# Check first 25 entries of out data frame head(out,25)
```

${ m class}_{_}$	_tree	$Mlog_reg$	best_fit	$test_fold_acc$
0.815	8698	0.8321465	Mlog	0.1989199
0.802	6183	0.8106747	Mlog	0.1863186
0.798	2018	0.8301698	Mlog	0.1962196
0.820	2899	0.8038647	$class_tree$	0.1962196
0.809	0452	0.8271357	Mlog	0.1953195
0.815	2493	0.8435973	Mlog	0.1980198
0.803	5892	0.7946162	$class_tree$	0.1881188
0.809	3812	0.8053892	$class_tree$	0.1989199
0.839	4816	0.8185444	$class_tree$	0.1917192
0.832	4821	0.8130746	$class_tree$	0.1935194
0.798	2283	0.7992126	Mlog	0.1989199
0.806	6802	0.8522267	Mlog	0.1944194
0.847	4576	0.8414756	class_tree	0.1935194
0.813	8138	0.8248248	Mlog	0.1971197
0.824	2972	0.8012048	$class_tree$	0.1935194
0.808	9552	0.8079602	$class_tree$	0.1944194
0.801	9608	0.8441176	Mlog	0.1971197
0.789	8990	0.8313131	Mlog	0.1944194
0.808	1918	0.8231768	Mlog	0.2025203
0.798	3789	0.8145897	Mlog	0.1944194
0.797	6767	0.8180058	Mlog	0.2007201
0.817	9980	0.8109201	class_tree	0.1962196
0.816	0804	0.8231156	Mlog	0.1980198
0.800	0000	0.7721393	$class_tree$	0.1917192
0.788	1526	0.8192771	Mlog	0.1962196

```
## SUMMARY
# check out the error rate summary statistics
table(out[,3])
##
                    Mlog
## class_tree
##
          104
                     246
tapply(out[,4], out[,3], summary)
## $class_tree
##
     Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
##
    0.1854 0.1899
                    0.1926 0.1927
                                   0.1953
                                            0.1998
##
## $Mlog
                              Mean 3rd Qu.
##
      Min. 1st Qu.
                    Median
   0.1863 0.1935 0.1962 0.1961 0.1989
```

Logistic is better.

1.

When looked at the results for each iteration we see the accuracy for both the models pretty similar. Although, The model classification tree has higher count of best classifier than the multinomial logistic regression. Therefore, classification tree is a better model fit for this data.

.

Looking at the summary statistics of the fold accuracy received from test data, we see that both the classification tree and multinomial logistic regression classifiers again have pretty similar summary statistics. Even though classification tree has higher 1st Qu, 3rd Qu, Median, Max, and Mean accuracy value than Multinomial logistic regression. But still both the models have equal minimum accuracy value.