

Ch 1.3 Regular Expressions (S)

Say that R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \epsilon$
- 3. Ø,
- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- 6. (R_1^*) , where R_1 is a regular expression.

▼ Remark 1

In items 1 & 2, the regular expressions a and ϵ represent the languages $\{a\}$ and $\{\epsilon\}$, respectively. In item 3, the regular expression \emptyset represents the empty language. In items 4, 5, and 6, the expressions represent the languages obtained by taking the union or concatenation of the languages R_1 and R_2 , or the star of the language R_1 , respectively.

▼ Remark 2

The expression ϵ represents the language containing a single string — namely, the empty string — whereas \emptyset represents the language that doesn't contain any strings.

? Example 1.53

Equivalence with Finite Automata

Any regular expression can be converted into a finite automaton that recognizes the language it describes, and vice versa.

Theorem A language is regular *iff* some regular expression describes it.

Lemma If a language is described by a regular expression, then it is regular.

Example 1.58 Convert regular expression to an NFA

Lemma If a language is regular, then it is described by a regular expression.

A generalized nondeterministic finite automaton is a 5-tuple, $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$, where

- 1. *Q* is the finite set of states,
- 2. Σ is the input alphabet
- 3. $\delta:(Q-\{q_{ ext{accept}}\}) imes(Q-\{q_{start}\})\longrightarrow \mathcal{R}$ is the transition function,
- 4. $q_{
 m start}$ is the start state, and
- 5. $q_{\rm accept}$ is the accept state.