Quadratic Programming (QP) Problem: Portfolio Risk Minimization (Markowitz Model)

Problem Definition

The **Markowitz Portfolio Optimization Model** aims to minimize portfolio risk (variance of returns) while achieving a given level of expected return. The decision variable is the allocation of capital among different assets.

We aim to minimize the risk (variance) of a portfolio while achieving a minimum expected return. This is a convex quadratic programming (QP) problem, where the objective function is quadratic (risk) and constraints are linear.

Stocks Considered

We have **10 well-known stocks** with their respective **expected returns** (based on historical performance and market expectations):

Stock	Ticker	Expected Return (Annualized %)
Apple	AAPL	15.0%
Nvidia	NVDA	20.0%
Google (Alphabet)	GOOG	18.0%
Tesla	TSLA	22.0%
Amazon	AMZN	17.0%
Microsoft	MSFT	16.0%
Meta (Facebook)	META	19.0%
Berkshire Hathaway	BRK.B	13.0%
Johnson & Johnson	JNJ	12.0%
JPMorgan Chase	JPM	14.0%

Problem Inputs

- Total Budget: 100% of capital (normalized to 1 for simplicity)
- Expected Return Constraint: The portfolio must at least achieve 16% return
- Covariance Matrix: Represents how stock returns correlate (provided in the code)
- No Short-Selling Constraint: No stock can have negative allocation

Mathematical Formulation

Let ${\bf x}$ be the decision variable (vector of stock allocations).

· Objective: Minimize portfolio variance:

$$\min \frac{1}{2} x^T \Sigma x$$

- · Constraints:
 - · Budget Constraint:

$$\sum x_i = 1$$

· Expected Return Constraint:

$$r^T x \ge 0.16$$

· Non-Negativity Constraint:

$$x_i \ge 0 \quad \forall i$$

Explanation of the Model

- The **objective function** is based on the covariance matrix, ensuring risk minimization.
- The **budget constraint** ensures all capital is invested.
- The expected return constraint forces a minimum portfolio return of 16%.
- The **no short-selling constraint** prevents negative allocations.

Covariance Matrix Explanation

The **covariance matrix** (Σ) is a **key input** in the quadratic programming problem, representing how the returns of different stocks move relative to each other.

What Does It Represent?

- Diagonal Elements ($\Sigma[i, i]$) \rightarrow Variance of each stock (individual risk).
- Off-Diagonal Elements ($\Sigma[i,j]$) \to Covariance between stocks i and j (how they move together).
 - Positive covariance → Stocks tend to move in the same direction.
 - Negative covariance → Stocks tend to move in opposite directions.
 - Zero covariance → Stocks are uncorrelated.

How Is It Used in the Code?

- cp.quad_form(x, Sigma) computes $\mathbf{x}^{\mathsf{T}}\mathbf{\Sigma}\mathbf{x}$, which represents **portfolio variance** (total risk).
- Minimizing this function ensures that the portfolio is optimized for the least risk while maintaining return constraints.

Code Explanation

The code solves a Quadratic Programming (QP) problem using the cvxpy library in Python.

Libraries Used:

- cvxpy → A convex optimization library used to define and solve the optimization problem.
- numpy → Used for handling numerical operations (arrays, matrices).

Key Functions & Their Role:

- cp.Variable(n) \rightarrow Defines the decision variable x, representing asset allocations.
- cp.quad_form(x, Sigma) \rightarrow Computes the quadratic form $x^T\Sigma x$, representing portfolio variance (risk).
- \cdot cp.Minimize() \rightarrow Sets up the objective function to minimize risk.
- \cdot cp.Problem(objective, constraints) \rightarrow Defines the optimization problem.
- problem.solve() → Solves the QP problem and finds the optimal asset allocations.

How It Works:

- 1. Defines **stock data** (returns & covariance matrix).
- 2. Sets **constraints** (budget, expected return, non-negative weights).
- 3. Formulates and **solves** the convex optimization problem.
- 4. Prints optimal portfolio allocation and minimum risk.

Results:

Optimal Portfolio Allocation:

Apple: 0.2337 Nvidia: 0.1945

Google: -0.0000

Tesla: 0.1325

Amazon: 0.0000

Microsoft: 0.0529

Meta: 0.0000

Berkshire Hathaway: 0.1164

Johnson & Johnson: 0.2252

JPMorgan: 0.0447

Minimum Portfolio Risk (Variance): 0.016499636397344742