

ADDITIONAL

LEAF EXTRACTS

LEAF EXTRACTS
CONTAINING
METHYL
ANISIDE

The findings in this report are not to be construed as
Department of the Army publications or recommendations
of the best methods.

Listing of manufacturers or trade names does not
imply endorsement or approval of the use thereof.
However, it is the intention of the Army to consider
the information contained herein in the development
of standardization and procurement procedures.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER HDL-TR-1959	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (Type in 200 characters) Bipolar Transistor and Diode Failure to Electrical Transients—Predictive Failure Modeling versus Experimental Damage Testing, 1 Junction Capacitance Damage Model.		5. TYPE OF REPORT & PERIOD COVERED Technical Report.
6. PERFORMING ORG. REPORT NUMBER		8. CONTRACT OR GRANT NUMBER(s)
7. Author Michael J. Vrabel		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Ele: 6.21.20.A
9. PERFORMING ORGANIZATION NAME AND ADDRESS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783		12. REPORT DATE June 1981
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Materiel Development and Readiness Command Alexandria, VA 22333		13. NUMBER OF PAGES 100 (12) 99
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASSIFICATION UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES DRCMS Code: 612120.H.250011 DA Project: 1L162120AH25 HDL Project: X750E2		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Semiconductor damage Semiconductor transient failure Junction capacitance damage model EMP		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) For all the difficulties engendered in its use, semiconductor device damage data are an integral part of many programs of electromagnetic pulse vulnerability assessment and hardening. Experimental damage data, which are generated only as a result of dedicated efforts, can be expected to be available for only a minor fraction of all semiconductor devices. This limited supply has spurred efforts to develop		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(initials - RL)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

predictive damage models, in order to bypass the tedious experimental requirements for generating damage data. The predictive ability of the best of these models, the junction capacitance damage model, is investigated in detail.

Central to this study is a library of experimental damage data for 46 silicon device types, comprising bipolar transistors and diodes tested at the 10-, 1-, and 0.1- μ s pulse durations. These are devices from the front ends of a number of Army systems and represent radio, field wire, and cable functions with operating ranges in the direct current (dc) to microwave region. Of the 46 experimental devices comprising 68 junction types (collector-to-base and emitter-to-base junctions treated as distinct for all transistors), sufficient published manufacturers' data were available for the damage modeling of 11 junctions. These were supplemented with measured parameters for 27 junction types. No measurable difference was observed between the model's predictive capability by using the experimental parameters and that by using manufacturers' model parameters. The ratios of experimental power to damage (for all tested pulse durations) to predicted value span a range from 0.00077 to 18--a skewed distribution, with 59 percent of all predicted values being overestimates of the power to damage.

With only 16 percent of the test-device population having sufficient published parameters to allow the junction capacitance damage model to be used, it is a valuable exercise to develop alternative, simpler damage models--not so much as a substitute for the junction capacitance model, but rather as a standard for comparison. The first considered was the dc power rating model. It was based on the supposition that there is some correlation between dc power ratings and transient power to damage. No distinction was made in the development of this model between forward or reverse dc ratings. The resultant model was applicable to 88 percent of the test-device population (based on published parameters) and demonstrated an agreement with the experimental power-to-damage data that was approximately two to four times poorer than the junction capacitance model. A second model was developed based on the manufacturers' rating of devices as high power or low power. This model considered the entire population of bipolar transistors and diodes (excluding microwave devices) as equitable to either of two devices with damage constants of 0.089 and 6.1 W-s^{1/2}. This model was applicable to 90 percent of the test population and demonstrated the same level of correlation with the experimental damage data as did the junction capacitance damage model.

A comparison of the predictive capability of the junction capacitance damage model with the scatter in the experimental damage data indicates that the use of the failure model requires an order of magnitude larger conservatism in the lower bounding of device failure than the use of an experimentally established damage curve.

CONTENTS

	<u>Page</u>
1. INTRODUCTION	5
2. EXAMINATION	5
3. RESULTS	7
4. SUMMARY AND FINAL ANALYSIS	22
DISTRIBUTION	95
APPENDIX A.--DAMAGE MODELING COMPUTER CODE	25

FIGURES

1 Histogram of N from damage equation $P_D = Kt^{-N}$	9
2 Histogram of experimental power to damage for pulse duration of 0.1 μ s	11
3 Histogram of experimental power to damage for pulse duration of 1 μ s	11
4 Histogram of experimental power to damage for pulse duration of 10 μ s	12
5 Histogram of maximum deviation of device damage from experimentally established damage curve	12
6 Superimposed histograms of ratio of experimental power to damage to predicted value based on junction capacitance damage model ..	14
7 Confidence level for junction capacitance damage model test of standard population	15
8 Confidence level for junction capacitance damage model test of composite standard population	16
9 Confidence level for dc power rating model	20
10 Confidence level for power class damage model	22

TABLES

1 Junction Capacitance Damage Model	13
2 Constants A_1 , A_2 , and A_3 for Direct Current Power Rating Model $P_D/P_{DC} = A_1 t^{-1} + A_2 t^{-1/2} + A_3$	19
3 Damage Constants for High and Low Power Devices for Power Class Damage Model	21

1. INTRODUCTION

Component transient damage data are an integral part of any comprehensive program of electromagnetic pulse (EMP) vulnerability assessment and hardening. In general, semiconductor devices represent the most vulnerable of components and are the devices that have received the most intensive study. With approximately 75,000 bipolar transistor and diode types alone (of which approximately 2000 have military specifications), experimental damage data, data available only as a result of dedicated efforts, can be expected to be available for only a minor fraction of semiconductor devices. This limitation has spurred efforts to bypass the tedious experimental requirements to generate damage data by developing predictive damage models. Three semiempirical damage models are presently in general use.¹ These are designed to predict the failure level of bipolar transistors and diodes under conditions of reverse bias. There is amassed in the literature much information on the predictive ability of these models, much of it sketchy with no well defined standards for drawing a comparison and some of it contradictory. Based on the most exhaustive of these studies, there appears no clearly superior model.²

The purpose of this study is to focus on one of these, the junction capacitance damage model, and to attempt to establish some standards whereby the user can judge its adequacy. Central to this examination is a library of experimental damage data for 59 device types generated for the Army's former Multiple Systems Evaluation Program. These represent transistors and diodes incorporated into the front ends of a number of tactical single and multichannel radios, associated with circuits operating from the direct current (dc) to the microwave region. These data are taken from the unpublished work of Bruno Kalab of the Harry Diamond Laboratories.

This study is a narrowly defined investigation of the predictive ability of the junction capacitance damage model. It must always be borne in mind that, when the adequacy of the model is judged, it must be considered within the context of all sources of error in a program of EMP vulnerability assessment and hardening. Since model accuracy is a subjective quantity to be measured by the particular needs of the user, no conclusions are to be drawn. Rather, a set of standards is to be developed whereby the effectiveness of the model for particular applications can be judged.

¹DNA EMP (Electromagnetic Pulse) Handbook (U), Defense Nuclear Agency DNA 2114H (July 1979). (CONFIDENTIAL)

²D. R. Alexander, G. L. Brown, and J. B. Almassy, Electromagnetic Susceptibility of Semiconductor Components, Air Force Weapons Laboratory AFWL-TR-74-280 (September 1975).

2. EXAMINATION

Most predictive failure models for semiconductors are based on the work by Wunsch and Bell.³ Based on a thermal model for failure, Wunsch and Bell developed the expression

$$P_D = Kt^{-N} , \quad (1)$$

where P_D is the power to failure for a square pulse, K is a constant characteristic of the device (damage constant), t is the duration of the power pulse, and, for the Wunsch-Bell form of equation (1), $N = 0.5$. This value for N is treated as valid for junction reverse bias in at least the 0.1- to 10- μ s range. It was observed that there existed a measure of correlation between power to damage and P-N junction area. From this observation were developed three analytical models for predicting device failure (under reverse bias) based on manufacturers' specifications.⁴ The first two are called thermal resistance models and are based on a simple resistance-capacitance (R-C) network for which heat flow from the junction area is treated as an analog of current, and temperature drop is treated as an analog of electric potential.

The thermal resistance models (incorporated into the Wunsch-Bell equation) are

$$P_D = A_1 \theta_{JC}^{-B_1 t^{-0.5}} , \quad (2)$$

$$P_D = A_2 \theta_{JA}^{-B_2 t^{-0.5}} , \quad (3)$$

where A_1 , A_2 , B_1 , and B_2 are experimentally determined constants and

$$\theta_{JC} = \frac{T_{J(MAX)} - T_C}{P_D} , \quad (4)$$

³D. C. Wunsch and R. R. Bell, Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors due to Pulse Voltages, IEEE Trans. Nucl. Sci., NS-15 (December 1968), 244-259.

⁴D. C. Wunsch, R. L. Cline, and G. R. Case, Semiconductor Vulnerability, Phase II Report, Theoretical Estimates of Failure Levels of Selected Semiconductor Diodes and Transistors, Braddock, Dunn and McDonald, Inc., Albuquerque, NM, BDM/A-42-69-R (August 1970).

$$\theta_{JA} = \frac{T_{J(MAX)} - T_{AMB}}{P_D}, \quad (5)$$

where $T_{J(MAX)}$ is the maximum operating junction temperature and P_D is the total power dissipation at case temperature "C or ambient temperature T_{AMB} .

The junction capacitance model is based on the relationship between junction area and capacitance. The form of this model (incorporated into the Wunsch-Bell equation) is

$$P_D = A_3 C_j V_{BD}^{B_3 t^{-0.5}}, \quad (6)$$

where A_3 and B_3 are experimentally established constants, C_j is junction capacitance, and V_{BD} is junction breakdown voltage.

To reasonably test model predictions, a representative sample of experimental data is essential. The term "representative" is used advisedly since a small sample taken from a large population must be chosen carefully. All devices are taken from the front ends of an array of Army communications systems. These interface circuits represent radio, field wire, and coaxial cable functions. No devices were prescreened. Instead, all devices were selected on the basis of their proximity to the EMP coupling source with no exclusion on the basis of potential power handling capability, and all devices were chosen without regard to previously published device data. This latter condition insured that all devices were tested employing the same methodology and the same standards. All devices were obtained from federal stocks over a number of years without regard to manufacturer, device lot, or supplier. To the extent that such a selection process defines a general device population selected from among the types of devices of most interest in a transient damage analysis, then the test population can be called representative.

3. RESULTS

This device population (to be referred to as the standard population) was employed in this study:

Silicon devices

2N326A(C-B)	1N752A	CA3018(E-B)
2N328A(E-B)	PC115	SMB52617(C-B)
2N335(C-B)	1N3026B: JAN	SMB52617(E-B)
2N335(E-B)	1N3611	2N1613: JAN(C-B)
2N336: JAN(C-B)	1N3995A	2N1613: JAN(E-B)
2N336: JAN(E-B)	1N3016B	2N1485: JAN(C-B)
2N2484(C-B)	1N4141	2N1485: JAN(E-B)
2N2484(E-B)	10D2	2N3439(C-B)
2N3736(C-B)	2N2857(C-B)	2N3439(E-B)
2N3736(E-B)	2N2857(E-B)	2N706: JAN(C-B)
2N930(C-B)	2N3375(C-B)	2N706: JAN(E-B)
2N930(S-B)	2N3375(E-B)	1R-69-6735
2N2481(C-B)	2N1490: JAN(C-B)	1N2580
2N2481(E-B)	2N1490: JAN(E-B)	1N571A: JAN
2N2907A(C-B)	2N3584(C-B)	1N485B: JAN
2N2907A(E-B)	2N3584(E-B)	1N2991B: JAN
2N2222A(C-B)	2N2894(C-B)	1N3015B: JAN
2N2222A(E-B)	2N2894(E-B)	MO1054
1N4384	2N5829(C-B)	1N746A: JAN
FS911-3465	2N5829(E-B)	1N645: JAN
1N816	2N3013: JAN(C-B)	1N1202RA: JAN
1N21WE	2N3013: JAN(E-B)	1N1731A: JAN
1N914A	CA3018(C-B)	

Germanium devices

2N404A(C-B)	2N396A(E-B)	2N705: JAN(E-B)
2N404A(E-B)	2N428M: JAN(C-B)	2N465M: JAN(C-B)
2N297A(C-B)	2N428M: JAN(E-B)	2N466M: JAN(E-B)
2N297A(E-B)	2N393: JAN(C-B)	2N1042RA: JAN(C-B)
2N526(C-B)	2N393: JAN(E-B)	2N1042RA: JAN(E-B)
2N526(E-B)	2N501A: JAN(C-B)	1N277: JAN
1N270	2N501A: JAN(E-B)	MS1040
2N396A(C-B)	2N705: JAN(C-B)	

Separate collector-to-base (C-B) and emitter-to-base (E-B) damage characteristics for all transistors yield 91 P-N junction types. Power-to-failure curves are available for these devices in the 0.1- to 10- μ s

range, with some exceptions. If, for the devices with damage data in the aforementioned range, a fit is made to equation (1), the histogram for N given in figure 1 results.

Figure 1. Histogram of N from damage equation $P_D = k t^{-N}$ for standard population fitted in 0.1- to 10- μ s range.

It will prove important for this study to consider the spread in the standard population power to damage and to have damage values for all tested devices. Because of test equipment limitations, some of the devices were undamageable, particularly for the shortest pulses. All testing was performed about the 0.1-, 1-, and 10- μ s pulse durations. For devices with data missing at the 0.1- μ s pulse duration, it becomes a simple matter to extrapolate from the 1- and 10- μ s data. An examination of all data revealed that extrapolation could be done with a high level of confidence; as a consequence, no distinction is made between these extrapolated data and measured data. For devices with data missing at the 0.1- and 1- μ s pulse durations, extrapolation becomes much less accurate. By relying on equation (1), data at 10 μ s can be used to extrapolate to 0.1 and 1 μ s:

$$\frac{P_D(1 \mu s)}{P_D(10 \mu s)} = \left(\frac{1}{10}\right)^{-N} \quad \text{and} \quad \frac{P_D(0.1 \mu s)}{P_D(10 \mu s)} = \left(\frac{1}{100}\right)^{-N}. \quad (7)$$

The choice of N is critical. Figure 1 indicates a value anywhere between 0 and 1. If $N = 0.5$ is chosen, then this results in a maximum error at the 1- μs pulse duration of a factor of 3.16 and at the 10- μs pulse duration of a factor of 10. For some devices, the maximum no-damage pulse power is used to improve upon these potential error factors in the choice of extrapolated damage levels. The final situation is no power-to-damage data for any pulse duration. This occurred with a single device (1N3995A). For this device, the junction capacitance model was used to predict damage. The predicted value is compatible with the maximum no-damage power pulse. This compatibility represents the unusual situation of using a model to contribute to a distribution that is part of a test of the model. The predicted value was included since it was considered more important to achieve a complete set of data for the standard device distribution than to be concerned with a single anomalous point. Beyond this distribution, little further use is made of the 1N3995A damage data. The resultant distributions for the standard device population are given in figures 2 through 4. The power-to-damage values for the individual devices are given in appendix A. Sources of uncertainty in the experimental damage data can be classified as these:

- a. The natural variability in the levels to failure in any population used to define a damage curve
- b. The deviation in the makeup of the test population from that which is representative of a population of interest to the user

There is no way that a study can come to terms with the latter source of uncertainty, except to anticipate the interest of the greatest number of users and to select a population accordingly. The former source can be described by using standard error theory. In anticipation of a more detailed description of the level of variability in the test population later in the report, figure 5 presents as a histogram the range in the data defined as

$$V'/V, \text{ for } V' > V,$$

or

$$V/V', \text{ for } V > V',$$

where V' is the experimental damage data point with the largest deviation from the damage curve and V is the corresponding value from the damage curve. These are values for all device types of the standard test population under reverse bias. Figure 5 represents the maximum deviation from the experimentally defined damage curve for a typical population of 9 to 15 tested components.

Figure 2. Histogram of experimental power to damage for pulse duration of $0.1 \mu\text{s}$ for silicon devices of standard population (solid curve) with superimposed curve for germanium devices (dashed curve).

Figure 3. Histogram of experimental power to damage for pulse duration of $1 \mu\text{s}$ for silicon devices of standard population (solid curve) with superimposed curve for germanium devices (dashed curve).

Figure 4. Histogram of experimental power to damage for pulse duration of $10 \mu\text{s}$ for silicon devices of standard population (solid curve) with superimposed curve for germanium devices (dashed curve).

Figure 5. Histogram of maximum deviation of device damage from experimentally established damage curve for all devices of standard population defined as ratio with corresponding point on damage curve.

The most recent form of the junction capacitance damage model, including the experimentally established constants, is given in table 1. A number of difficulties are encountered in applying this model to the standard device population. The model is not applicable to germanium devices. For all silicon transistors, a knowledge of device construction is required--a quantity that is sometimes difficult to obtain from the literature. Similarly, junction capacitance and breakdown voltage are often unobtainable. For transistors, these parameters are rarely available for the base-to-emitter junction. The consequence is that the model, based on published device parameters, is applicable to only 12 percent of the standard device population. If germanium devices are excluded from the standard population, this figure increases to 16 percent. To supplement missing data, experimentally established parameters for junction capacitance and breakdown voltage were employed. These increased the size of the silicon standard population to which the model was applicable to 47 percent.

TABLE 1. JUNCTION CAPACITANCE DAMAGE MODEL

Devices	$K = Pt^{1/2}$
Diodes and nonplanar silicon transistors	$K = 4.97 \times 10^{-3} C_J V_{BD}^{0.57}$
Mesa and planar silicon transistors	$K = 1.66 \times 10^{-4} C_J V_{BD}^{0.992}$

Note: For transistors, $C_J = C_{ob}$ and $V_{BD} = BV_{cbo}$.
Source: DNA EMP (Electromagnetic Pulse) Handbook (U), Defense Nuclear Agency DNA 2114H (July 1979). (CONFIDENTIAL)

It has been reported in the literature that little improvement in the predictive capability of this junction capacitance damage model occurs when experimental input parameters are substituted for published values.² This study supports that conclusion. To compare the predictive capability of the model using experimental and published parameters, the data are presented in two formats. The quantities presented are not the predicted values, but rather the scatter in the

²D. R. Alexander, G. L. Brown, and J. B. Almassy, Electromagnetic Susceptibility of Semiconductor Components, Air Force Weapons Laboratory AFWL-TR-74-280 (September 1975).

predicted values defined as the ratio of the experimental power to damage to the predicted value. These data are presented as a histogram of the population distribution in figure 6. They are presented also as a function of the percentage confidence level. The percentage confidence level is defined as the percent of the subject population with a scatter less than or equal to the given value. For this mode of presentation, the scatter is given as the spread in the data without regard to whether the predicted value is greater or less than the experimental value. This means that for values of the predicted-to-experimental ratio for damage less than 1, the data presented are the inverse of this ratio. This mode of presentation provides a convenient way to judge the utility of the model based on the varying degrees of confidence required by the diversity of potential model users. The corresponding curves for the experimental and published model parameters are given in figure 7.

Figure 6. Superimposed histograms of ratio of experimental power to damage to predicted value based on junction capacitance damage model: experimental parameters for junction capacitance and breakdown voltage (solid curve) and manufacturers' parameters (dashed curve).

Figure 7. Confidence level for junction capacitance damage model test of standard population: published parameters (solid circles) and experimental values for junction capacitance and breakdown voltage (open circles); all extrapolated values for experimental damage data are excluded from standard population.

All further reference to the predictions of the junction capacitance damage model is to a composite of data corresponding to the model predictions based on experimental parameters plus those several devices not included in this lot for which sufficient published parameters were available. The device population can be ascertained from the data

presented in appendix A. This composite curve is presented in figure 8 for the standard population both including and excluding the extrapolated experimental damage values.

Figure 8. Confidence level for junction capacitance damage model test of composite standard population: all extrapolated values for experimental damage data are excluded from standard population (circles) and extrapolated values are included (solid curve).

Much of the convenience of the junction capacitance model is lost because of the limited availability of the requisite published parameters. It is an informative exercise to test the performance of the junction capacitance model by constructing alternative, simpler damage models. The basis for the junction capacitance damage model was the observation that there appeared to be a correlation between junction area and transient power level to damage. It is not an unreasonable supposition to theorize some measure of correlation between device dc power rating and transient power level to failure. This model is to be referred to as the dc power rating model. Since this model is being proposed not so much as a potentially more accurate substitute, but rather as a standard for comparing the junction capacitance model, rigor is sacrificed for convenience of use and general applicability. Since devices such as rectifiers have power ratings for forward bias and devices such as reference diodes have power ratings for reverse bias, no distinction is to be made between forward or reverse bias in developing the model. For diodes without power ratings, but with a maximum rated current, a power rating is derived by selecting a reasonable corresponding junction potential. Similarly, power ratings for transistors are assumed to apply to the C-B and the E-B junctions. By these standards, sufficient published data are available to apply such a model to 88 percent of the standard silicon device population.

To develop and test the dc power rating model, the standard silicon device population is divided into two groups. Population A (containing approximately half the devices) is that segment lacking sufficient information to apply the junction capacitance damage model, but for which dc power ratings (as previously defined) exist. Population B is the same as population A, but contains those devices to which the junction capacitance damage model is applicable. By using population A to develop the dc power rating model and population B to test its predictive capability, a good comparison of the alternative damage models becomes possible. Since experimental data for constructing the model are available about the 0.1-, 1-, and 10- μ s pulse durations, a particularly simple model to fit these data is of the form

$$P_D/P_{DC} = A_1 t^{-1} + A_2 t^{-1/2} + A_3 \quad , \quad (8)$$

where P_D is the average power to damage for population A devices at pulse duration t and P_{DC} is the corresponding average dc power rating. Although an equation of the form of equation (8) can be readily fitted to the device data, care must be used in extrapolating this relationship beyond the pulse durations used for the fit. For data at 0.1, 1, and 10 μ s, constants A_1 , A_2 , and A_3 become (t in units of s)

$$A_1 = 5.1 \times 10^{-7} \frac{P_D(10 \mu s)}{P_{DC}} - 6.7 \times 10^{-7} \frac{P_D(1 \mu s)}{P_{DC}} \quad (9)$$

$$+ 1.6 \times 10^{-7} \frac{P_D(0.1 \mu s)}{P_{DC}},$$

$$A_2 = -2.1 \times 10^{-3} \frac{P_D(10 \mu s)}{P_{DC}} + 2.3 \times 10^{-3} \frac{P_D(1 \mu s)}{P_{DC}} \quad (10)$$

$$- 2.1 \times 10^{-4} \frac{P_D(0.1 \mu s)}{P_{DC}},$$

$$A_3 = 1.6 \frac{P_D(10 \mu s)}{P_{DC}} - 0.68 \frac{P_D(1 \mu s)}{P_{DC}} + 0.052 \frac{P_D(0.1 \mu s)}{P_{DC}} \quad (11)$$

The choice of the ratios of P_D/P_{DC} is based on the nature of the experimental device population. To choose as the ratios of P_D/P_{DC} the average of the selected population requires careful consideration of the definition to be applied to average. The device experimental damage data population is not a normal distribution, and included within this distribution are a number of devices with extrapolated powers to damage. If the average value for P_D/P_{DC} is taken as the arithmetic mean of the distribution, then the error inherent in the extrapolated values, values clustered at the high power end of the distribution, poses the possibility of an average value unrepresentative of the actual population. If the average value is taken as the median value of the distribution, then the uncertainty of the extrapolated values (if their number count is not too large) is eliminated, but at the risk that the median is not the value most representative of the population. Because of these uncertainties, both the arithmetic mean and the median are to be used for all modeling. The values developed to these standards for A_1 , A_2 , and A_3 for population A are given in table 2. The junction capacitance damage model and the dc power rating model applied to population B are compared in figure 9.

The correlation to be drawn between these curves is a function of the confidence level desired in the predictions. It is clearly beyond the scope of this study, being based on a limited data base, to approach the 100-percent level. Although all curves are extended to values approaching 100 percent, this extension is based on very few data

points. The consequence is that caution must be exercised in interpreting into the high confidence region. In the 50- to 90-percent confidence range, the dc power rating model yields a correlation with the experimental power to damage two to four times poorer than the junction capacitance damage model.

TABLE 2. CONSTANTS A_1 , A_2 , AND A_3 FOR
DIRECT CURRENT POWER RATING MODEL P_D/P_{DC}
 $= A_1 t^{-1} + A_2 t^{-1/2} + A_3$

Statistic	A_1 (W-s)	A_2 (W-s ^{-1/2})	A_3 (W)
Arithmetic mean	5.58×10^{-4}	0.309	34.2
Median	9.87×10^{-6}	0.101	22.7

An examination of the spread in the junction capacitance damage model predictions and the spread in the damage data of figures 2 to 4 indicates that it should be possible to define two power levels that cover the range of experimental damage data with a spread comparable to that of the junction capacitance model. As an attempt at such a model, which is called the power class model, all devices are classified as either high or low power devices based on published data.* Transistors are routinely classified as either high or low power--the dividing line, with some exceptions, is a power rating of 1 W. If the same 1-W standard is applied to diodes, then the semiconductor population can be divided into two classes. For model development for those diodes without a power rating, all rectifiers, silicon reference diodes, and varistors are considered high power, and the remaining devices are considered low power. This division results in a model applicable to 90 percent of the standard silicon device population.

*The single exception in this model is microwave class devices. Because of their very low power rating, the preferred model is divided into three power categories. With few data available on transient failure of microwave devices (the standard silicon device population contains one microwave device, the 1N21WE), the best that can be done with the present study is to exclude this category.

Figure 9. Confidence level for dc power rating model: arithmetic mean used as standard for developing model parameters (solid circles), median values employed (squares), and confidence level for junction capacitance damage model (solid curve).

In the development of this model, the same assumption on the power relation of equation (1) is employed as in the junction capacitance damage model ($N = 0.5$), despite the results of figure 1. In this way, the comparison between models minimizes this factor as a source of error and allows a better comparison between the basic damage models. The model is developed by averaging the experimental powers to damage at the 10- μ s pulse duration for that segment of population A applicable to this

model as previously defined for the high power class and low power class of devices. The average is defined, as previously, as both the arithmetic mean and median values. The Vansch-Bell relationship of equation (1) is used to calculate the effective damage constant for the high and low power devices.

$$K_H = 3.16 \times 10^{-3} P_H \quad (12)$$

and

$$K_L = 3.16 \times 10^{-3} P_L \quad , \quad (13)$$

where K_H and K_L are the damage constants for the high and low power class of devices and P_H and P_L are the corresponding average experimental power to damage at 10 μ s for population A devices. The values for K_H and K_L are given in table 3. Using equations (12) and (13) with the damage constant values of table 3 on population B devices results in the confidence level curves of figure 10 (with the junction capacitance damage model curve included for comparison). There is no appreciable difference in the predictive capability of the junction capacitance damage model and the power class damage model. Included in figure 10 is a fourth curve that represents the scatter in the experimental damage data for all population B devices. This curve is the percentage confidence level that a device selected from among the population B test items has a scatter from the experimentally established damage curves less than or equal to the ordinate value.

TABLE 3. DAMAGE CONSTANTS FOR HIGH AND LOW POWER DEVICES FOR POWER CLASS DAMAGE MODEL

Statistic	Damage constant ($W \cdot s^{1/2}$)	
	High power	Low power
Arithmetic mean	6.1	0.089
Median	2.2	0.063

Figure 10. Confidence level for power class damage model: arithmetic mean used as standard for developing model parameters (solid circles), median value employed (squares), confidence level for experimentally established damage curves based on scatter in experimental data (triangles), and junction capacitance damage model confidence level (solid curve).

4. SUMMARY AND FINAL ANALYSIS

Two standards were used to analyze the predictive capability of the junction capacitance damage model. The first was a comparative test based on the development of two alternative, simpler models. Ease of use and general applicability were the criteria for the design of the dc power rating and power class models. These criteria resulted in models

applicable to 88 and 90 percent of the devices of the silicon standard population based on manufacturers' published data compared with 16 percent for the junction capacitance damage model. The dc power rating model was based on the assumption that there exists some measure of correlation between transient level to failure and dc power rating. Since certain classes of devices are rated for forward bias and others are rated for reverse bias, no distinction was made between these conditions for model development.

Despite this nonrigorous mixing of power rating standards, the resultant model provided a level of correlation with the experimental damage data only two to four times poorer than the junction capacitance damage model. The power class model was based on the assumption that all devices (excluding microwave diodes) could be equated to either a high power device with a damage constant of $6.1 \text{ W-s}^{1/2}$ (arithmetic mean) or a low power device with a damage constant of $0.089 \text{ W-s}^{1/2}$ (arithmetic mean). To establish the applicable class for transistors, the manufacturers' catalogings of devices as high or low power were used. Since the dividing line between high and low powers is a rating of 1 W (with some exceptions), the 1-W power rating was used to divide diodes into the applicable classes. The resultant model displayed a level of correlation with the experimental damage data comparable to the level of the junction capacitance damage model. These results do not bode well for the ostensibly more sophisticated junction capacitance damage model.

A second standard to test the predictive capability of the junction capacitance damage model is based on the uncertainty in the failure level of devices resulting from their spread about an experimentally established damage curve. This uncertainty compels the user to place error bars upon the experimental damage data. Also, this uncertainty gives an absolute standard for comparing the junction capacitance damage model. It is standard procedure to define a device failure curve and to bound the lower limit on this curve with a second curve. This lower limit insures a certain measure of confidence that the subject device does not have an actual failure level below the value used. To achieve this same measure of confidence by using predicted failure based on the junction capacitance damage model requires a spread in the low bound approximately one order of magnitude larger than that required of an experimentally determined failure relationship.

In the development of the dc power rating and power class models, some concern must be given to the possibility that the population selected and the standards used produced a fortuitous correlation with the capacitance model. Although the size of the population and the standards used would seem to minimize this possibility, it is a worthwhile exercise to redefine the population and the standards to observe the resultant variation in model predictions. An exhaustive

compendium of such results is given in the appendix. A rigorous comparison among the many predictions is difficult because of the varying standards. Nevertheless, the trend indicates a variation in model predictions, particularly for the power class model, that requires no qualification of the results given in the body of this report.

APPENDIX A.--DAMAGE MODELING COMPUTER CODE

APPENDIX A

Contained within this appendix is a code used to generate many of the data presented in the body of the report and a statistical study of the direct current power rating and power class models based on varying population standards. Included with the code is a single printout of resultant code data. The printout covers only those data for which the arithmetic mean was used for all modeling, and the extrapolated values for experimental power to damage were incorporated into the data base.

Although not indicated in the main body of the report, a study of the performance of the junction capacitance damage model for germanium devices is included. The germanium device model was taken from documentation receiving limited distribution based on a very limited germanium device population. Predictably, the results indicate a much poorer performance of the junction capacitance damage model for the germanium than for the silicon devices.

The nature of the populations and the results for the alternative tests of the proposed models are discernible from the information included in the data output. The quantity of the printed data is indicative of the mass of the data that must be handled in a study of this nature.

APPENDIX A

```

SUBROUTINE SUBFA(B,I,DM511,CMS12,CONST3)
  CONST1=(-3.162*(B-A)*C-B)/(61.54*10.*5.)
  CONST2=(10.-*(B-A)*C+81./676.*C)
  CONST3=B-(17.*C)/CUM511-(10.+93.)*CONST2
  RETURN
END
SUBROUTINE SUBAKA(B,M,KC,PREDCT)
  DIMENSION B(91,3),D(92)
  KV=0
  DO 1 N=KC,KA
    IF(B(N,K).EQ.0.) GO TO 1
    KV=1+KV
    D(M)=ABS(B(N,K))
  1 CONTINUE
  KB=KV/2
  KK=92
  DO 2 M=1,KB
    BG=0.
    DMK=0.
    DMK=0.
    DO 3 K=KC,KA
      IF(D(K)-1.E-3G) GO TO 3
      BG=0.(K)
    KK=K
  3 CONTINUE
  2 CONTINUE
  C=DMKK
  RETURN
END
SUBROUTINE SUBB(MDD,NC,E,AC,ND,PML,PMLR,PMLH)
  DIMENSION A(92,1), PML(91), E(92,1)
  DO 1 N=1,92
    A(M,1)=ABS(E(M,1))
  1 CONTINUE
  NZ=92
  DO 404 M=1,MDD
    BG=0.
    A(NZ,1)=J.
    A(NZ,1)=J.
    DO 405 NC=NC,ND
      IF(PML(N)-ME-1.) GO TO 405
      IF(A(N,1).LE.BG) GC TO 405
      BG=A(N,1)
    NZ=N
  405 CONTINUE
  404 CONTINUE
    PML=A(NZ,1)
    NZ=92
    DO 406 M=1,NC
      BG=0.
      A(NZ,1)=J.
      DO 407 NC=NC,ND
        IF(PML(N)-ME-2.) GO TO 407
        IF(A(N,1).LE.BG) GE TL 4(7)
        BG=A(N,1)
      NZ=N
  407 CONTINUE
    PMLH=A(NZ,1)

```

```

RETURN
END
DIMENSION PHRA(91), PHRB(91), PERCH(300), CM1(6600)
DIMENSION 6(91,3), S(773,251), D(92,1), U(92,1), V(92,01)
DIMENSION SLOPE(91,4), A(92,61), VAL(3,10), C(3,10), DEVICE(400)
DIMENSION TC328A(91), TE328A(91), TC335(91), TE335(91), TC336(91),
LIE336(91), TC2857(91), TE2857(91), TL3375(91), TE3375(91), TC2484(91),
LT224(91), TC3736(91), TE3736(91), TC9304(91), TE9304(91), TC1490(91),
LT1490(91), TC3584(91), TE3584(91), TC5829(91),
LT5829(91), TC3013(91), TE3013(91), TC3018(91), TE3018(91), TC5851(91),
LT5851(91), TC1613(91), TE1613(91), TC2481(91), TE2481(91), TC2901(91),
LIE2901(91), TC2222(91), TE2222(91), TC1485(91), TE1485(91), TC3439(91),
LT3439(91), TC706(91), TE706(91), D1468(91), D2116(91), D752(91),
LT4384(91), DF5911(91), D816(91), D2116(91), D914(91), D752(91),
LTC115(91), D4858(91), D29918(91), D3058(91), D1054(91), D744A(91),
LD3026(91), D3611(91), D3995A(91), D30168(91), D4141(91), D1026(91),
LIE445(91), D12028(91), D173A(91), TC396A(91), TE366A(91), TC420M(91),
LIE428M(91), TC404A(91), TE404A(91), TC1613, TE1613, TC2481, TE2481,
LIE501A(91), TC7054(91), TE7054(91), TC297A(91), TE297A(91), TC466M(91),
LIE466M(91), TC1042(91), TE1042(91), TC526(91), TE526(91), D2776(91),
LIE220(91), D3104(91),
NAMELIST//LISTA/TC328A,TE328A,TC335,TE335,TE336,TE336,TC2857,
LIE2857,TC3375,TE3375,TC2684,TE2684,TC3736,TE3736,TC900,TE930,
LTC1490,TE1490,TC3584,TE3584,TE2894,TE2894,TE529,TE529,TC3013,
LIE3013,TC3018,TE3018,TC35MP,TE35MP,TC1613,TE1613,TC2481,TE2481,
LIE2907,TC2907,TC2222,TE2222,TC1485,TE1485,TC2439,TE3439,TC706,
LIE706,DIE6%,D2580,0751A,04-84,DF591,0816,D21ME,D914A,D752A,
LDCP15,D615,D2991B,D3025B,D1024,D1024,D746A,D3611,D395A,
LDCP2016,D6161,D1002,D645,D1202,D1731A,TC396A,TE396A,TC428M,
LIE428M,TC404A,TE404A,TC393,TE393,TE501A,TC705,TC705,
LIE297A,TE297A,TC466M,TE466M,C1042,E1042,TC526,TE526,D277,D270,
LDS140,DEVICE,SWITCH,PARA,PWRB,PREDCT
READ(5,LISTA)
DO 1 N=1,6
  1
C 51 DEVICES
  A11,N)=TC328A(N)
  A12,N)=TE328A(N)
  A13,N)=TC335(N)
  A14,N)=TE335(N)
  A15,N)=TC336(N)
  A16,N)=TE336(N)
  A17,N)=TC2484(N)
  A18,N)=TE2222(N)
  A19,N)=D4304(N)
  A20,N)=DF5911(N)
  A10,N)=TE3136(N)
  A11,N)=TC280(N)
  A12,N)=TE9304(N)
  A13,N)=TC2681(N)
  A14,N)=TE2894(N)
  A15,N)=TE2807(N)
  A16,N)=TE2971(N)
  A17,N)=TC2222(N)
  A18,N)=TE2222(N)
  A19,N)=D4304(N)
  A20,N)=DF5911(N)
  A121,N)=D816(N)
  A122,N)=D21ME(N)
  A123,N)=D914A(N)
  A124,N)=D752A(N)
  A125,N)=D914A(N)
  A126,N)=D21ME(N)

```

APPENDIX A

C 51 145 DEVICES

A126 • N1 = D30268 (N1)	A127 • N1 = D3611 (N1)
A128 • N1 = D3954 (N1)	A129 • N1 = D36168 (N1)
A130 • N1 = D4161 (N1)	A131 • N1 = D1002 (N1)
A132 • N1 = TC2657 (N1)	
A133 • N1 = TE2657 (N1)	
A134 • N1 = TC3564 (N1)	
A135 • N1 = TE3975 (N1)	
A136 • N1 = TC1490 (N1)	
A137 • N1 = TE1690 (N1)	
A138 • N1 = TC3564 (N1)	
A139 • N1 = TE3564 (N1)	
A140 • N1 = TE3975 (N1)	
A141 • N1 = TE2094 (N1)	
A142 • N1 = TC5829 (N1)	
A143 • N1 = TE5829 (N1)	
A144 • N1 = TC3013 (N1)	
A145 • N1 = TE3013 (N1)	
A146 • N1 = TC3018 (N1)	
A147 • N1 = TE3018 (N1)	
A148 • N1 = TC5M05 (N1)	
A149 • N1 = TE5M05 (N1)	
A150 • N1 = TC1613 (N1)	
A151 • N1 = TE1613 (N1)	
A152 • N1 = TC1605 (N1)	
A153 • N1 = TE1605 (N1)	
A154 • N1 = TC3639 (N1)	
A155 • N1 = TE3439 (N1)	
A156 • N1 = TC706 (N1)	
A157 • N1 = TE706 (N1)	
A158 • N1 = D18696 (N1)	
A159 • N1 = D2580 (N1)	
A160 • N1 = D7514 (N1)	
A161 • N1 = D4856 (N1)	
A162 • N1 = D29918 (N1)	
A163 • N1 = D30252 (N1)	
A164 • N1 = D10544 (N1)	
A165 • N1 = D7464 (N1)	
A166 • N1 = D6454 (N1)	
A167 • N1 = D1222 (N1)	
A168 • N1 = D1731 (N1)	

C GE DEVICES

A69 • N1 = TC4044 (N1)
A670 • N1 = TE4044 (N1)
A671 • N1 = TC297A (N1)
A672 • N1 = TE297A (N1)
A673 • N1 = TC526 (N1)
A674 • N1 = TE526 (N1)
A675 • N1 = D220 (N1)

C GE 145 DEVICES

A76 • N1 = TC3964 (N1)
A77 • N1 = TE3964 (N1)
A78 • N1 = TC428M (N1)
A79 • N1 = TE428M (N1)
A80 • N1 = TC393 (N1)
A81 • N1 = TE393 (N1)
A82 • N1 = TC501A (N1)

```

A103-N)=TE501AIN)
A104-N)=TC051IN)
A105-N)=TE7051IN)
A106-N)=TC466HIN)
A107-N)=TE466HIN)
A108-N)=TC3042IN)
A109-N)=TE042IN)
A110-N)=D2776IN)
A111-N)=DS1247IN)

1 CONTINUE
C AIN.1=EXPERIMENTAL POWER TO DAMAGE AT 10 MICROSECONDS (WATTS)
C AIN.2=EXPERIMENTAL POWER TO DAMAGE AT 1 MICROSECOND (WATTS)
C AIN.3=EXPERIMENTAL POWER TO DAMAGE AT 0.1 MICROSECOND (WATTS)
C AIN.4=CAPACITANCE MODEL DAMAGE CONSTANT (W-51/2) 0-A-T-A. PUNK PARM.
C AIN.5=CAPACITANCE MODEL DAMAGE CONSTANT EXPERIMENTAL PARAMETERS
C AIN.6=MANUFACTURERS DC POWER RATING
DD 200 N=1.91
IF(AIN.31-.NE.0.) GO TD 200
IF(AIN.11-.NE.0.) GO TD 204
IF(AIN.51-.EQ.0.) GO TD 201
DAM1(AIN.51
GO TO 203
201 IF(AIN.41-.EQ.0.) GO TD 202
DAMK=.6IN.41
GO TO 203
202 IF(AIN.61-.EQ.0.) GO TD 201
AIN.31=-VAL1(1.2)*AIN(.6)*10.-.97-VAL(2.2)*AIN(.6)*3162.-
(-VAL(3.2)*AIN.6)
AIN.21=-VAL(1.2)*AIN(.6)*10.-.99-VAL(2.2)*AIN(.6)*1000.
C-VAL(3.2)*AIN.6
AIN.11=-VAL1(2)*AIN(.6)*10.-.95-VAL(2.2)*AIN(.6)*316.2
C-VAL(3.2)*AIN.6
GO TD 200
203 AIN.31=-DAMK*3162.
AIN.21=-DAMK*1000.
AIN.11=-DAMK*316.2
GO TD 200
204 AIN.31=-10.*AIN.11
AIN.21=-3.*AIN.11
200 CONTINUE
DD 206 N=1.91
IF(AIN.21-.LE.0.) GO TD 221
SLOPEIN.21=-ALOG10AIN.11/AIN.21
GO TD 222
221 SLOPEIN.21=-1.
222 IF(AIN.31-.LE.0.) GO TD 223
SLOPEIN.21=-ALOG10AIN.21/AIN.31
GO TD 224
223 SLOPEIN.21=-1.
224 IF(AIN.31-.LE.0.) GO TD 225
SLOPEIN.31=-ALOG10AIN.11/AIN.31)/2.
GO TD 206
225 SLOPEIN.31=-1.
206 CONTINUE
C SLOPE CONTAINS THE POWER FUNCTION FOR THE TIME DEPENDENCY OF POWER TO DAM.
909 FORMAT(2X,1111111111)
WRITE6,*0.0001
802 FORMAT(2X,1024RATIO OF EXPERIMENTAL POWER TO DAMAGE TO DC POWER NO
     MODEL PREDICTED VALUE FOR FOLLOWING MODEL DATA BASE: //1
     WRITE6,*0.09)

```

APPENDIX A

```

609 FORMAT(1X,.14H,.ALL DEVICES/.4X,.22H).-ALL SILICON DEVICES/
  L6X,2MC--ALL GERMANIUM DEVICES/
  L6X,4SH--ALL DEVICES WITHOUT CAPACITANCE MODEL DATA/
  L6X,53H--ALL SILICON DEVICES WITHOUT CAPACITANCE MODEL DATA/
  L6X,55HF--ALL GERMANIUM DEVICES WITHOUT CAPACITANCE MODEL DATA/
  L6X,53H--ALL SILICON DEVICES NOT INCLUDED WITHIN 145 REPORT/
  L6X,55H--ALL GERMANIUM DEVICES NOT INCLUDED WITHIN 145 REPORT/
  L6X,6SH--ALL SILICON DEVICES INCLUDED WITHIN 145 REPORT/
  L6X,51M--ALL GERMANIUM DEVICES INCLUDED WITHIN 145 REPORT//]

WRITE6,810

610 FORMAT(12X,12O)FOR ALL CASES WHERE DATA BASE PERMITS, RATIOS ARE ON
  ELY FOR THF REMAINING SILICON OR GE DEVICES NOT INCLUDED IN DATA BA
  SES//]

WRITE6,951
  FORMAT(12X,.97H)(-J ENTRY INDICATES NO DATA OR NO CALCULATION
  FOR ITEM K, -1 INDICATES NO CALCULATION//)
  WRITE6,254)
254 FORMAT(12X,10H)JUNCTION REVERSE BIAS CONDITIONS ONLY NEGATIVE SJ
  LCN INDICATES ESTIMATED VALUES FOR POWER TO DAMAGE//)
  IF(5WCH,5U,0.) GO TO 46
  WRITE6,47)
47 FORMAT(12X,42W)MEDIAN VALUE USED FOR ALL MODEL DATA BASES//)
  GO TO 48
48 WRITE6,49)
49 FORMAT(12X,45W)ARITHMETIC MEAN USED FOR ALL MODEL DATA BASES//)
46 CONTINUE
  IF(4PREDCT,NE,0.) GO TO 50
  WRITE6,51)
51 FORMAT(12X,81W)ALL PREDICTED VALUES FOR EXP. POWER TO DAMAGE REMOVED
  LD IN DATA BASE CALCULATIONS//)
52 CONTINUE
  WRITE6,53)
53 FORMAT(12X,80W)ALL PREDICTED VALUES FOR EXP. POWER TO DAMAGE INCLUDE
  LD IN DATA BASE CALCULATIONS//)
52 CONTINUE
  WRITE6,909)
  WRITE6,253)
253 FORMAT(125X,.14H EXP. POWER .14H EXP. POWER .14H EXP. POWER
  L14H DAM. CONST. .14H DAM. CONST. .14H DC POWER .14H POWER
  ECLASS)
  WRITE6,27C)
270 FORMAT(125X,.14H TO DAMAGE .14H TO DAMAGE .14H TO DAMAGE
  L14H DATA BOOK .14H EXPERIMENTAL .14H RATING .14H HI
  LCH=2)
  WRITE6,271)
271 FORMAT(125X,.14H AT ICUS .14H AT IUS .14H AT 0.1US .
  L14H PARAMETERS .14H PARAMETERS .14H,14H LOW=1)
  WRITE6,272)
272 FORMAT(125X,.14H (WATTS) .14H (WATTS) .14H (WATTS)
  L14H (WATTS) .14H (WATTS) .14H (WATTS) .14H EXCLUD
  LED=0)
  WRITE6,722)
722 FORMAT(12X,15H)SILICON DEVICES)
  DO 209 N=1,91
  IF(N,NE,49) GO TO 723
  WRITE6,724)
724 FORMAT(12X)
  WRITE6,725)
725 FORMAT(12X,17HGERMANIUM DEVICE)
  723 CONTINUE

```

APPENDIX A

```

KA=4+H-1,I+1
KB=4+H-1,I+2
KC=4+H-1,I+3
KD=4+H-1,I+4
WD=4+H-1,I+5

WRITE(6,208)DEVICE(KA),DEVICE(WD),DEVICE(WC),DEVICE(WD),DEVICE(WC)
FORMAT(6,4A4,3F14.3,F14.6,FI0.0)
CONTINUE
208
DO 413 M=1,92
  U6W,I1=A(W,I1)
CONTINUE
413
DJ 620 M=1,3
  DO 621 M=1,91
    IF(A(IH,I1)-EQ.0.) GO TO 621
    IF(A(IH,M1)-EQ.0.) GO TO 621
    IF(PREDCT.ME.=0.) GO TO 90
    IF(A(MH,M1)-GE.0.) GO TO 621
    ASW,RI=0.
    GO TO 621
  CONTINUE
90
  BCA,M1=ACHN,M1/A(W,I1)
CONTINUE
621
CONTINUE
623
  WRITE(6,214)
  FORMAT(2X,63HFORMAT OF EXPERIMENTAL POWER TO DAMAGE TO DEVICE DC PU
        LMER RATING//)
  WRITE(6,623)
  FORMAT(2Z22.21M 10 USEC ,11M 1 USEC ,11M 0.1 USEC //)
33
  DO 624 M=1,91
    KA=4+H-1,I+1
    KB=4+H-1,I+2
    KC=4+H-1,I+3
    KD=4+H-1,I+4
    WRITE(6,625)DEVICE(KA),DEVICE(WD),DEVICE(WC),DEVICE(WD),DEVICE(WC)
    C1B1N,M1,M=1,31
    FORMAT(6,4A4,2F11.1)
    CONTINUE
624
    DO 3 M=1,3
      IF(SWICH,FE,0.) GO TO 310
      KA=91
      KC=1
      CALL SUBACKA,B,W,C(W,I1,KC,PREDCT)
      GO TO 3
310
    DO 2 M=1,91
      IF(A(MH,I1)-EQ.0.) GO TO 2
      IF(A(IH,M1)-EQ.0.) GO TO 2
      A6W,M1=OSIAIN(M1)
      C1W,I1=ACHN,M1/A(W,I1)
      PT=1,OPT
    CONTINUE
2
    C1W,I1=C(W,I1)/PT
    PT=0.
  CONTINUE
3
  CALL SUBC(H,I1,C(12,1),C(13,1),VAL(1,1),VAL(12,1),VAL(13,1))
  DO 22 M=1,3
    DO 23 M=1,91
      IF(A(MH,M1)-EQ.0.) GO TO 23
      IF(A(IH,M1)-EQ.0.) GO TO 23

```

APPENDIX A

```

NN=NN+46
ALN,NN1=A1NN,NN1/(CIN,NN1,NC1(N,NN1))
23 CONTINUE
22 CONTINUE
C VAL(1,1)-12,11-13,11) ARE THE CONSTANTS FOR THE EXPRESSIONS
C P1=VAL(1,1)-11*NC2+101-5)*NC3 FOR ALL DEVICES
PTQ,
00 6 NN1,3
IF(SWITCH.EQ.0.) GO TO 311
NN=NN
NC=1
CALL SUBAIN,B,N,CIN,2),KC,PREDCT)
GO TO 4
311 DO 5 N=1,48
IF(A1NN,NN1-EQ.0.) GO TO 5
IF(A1NN,NN1-EQ.0.) GO TO 5
A1NN,NN1=A1NN,NN1
CIN,2)=A1NN,NN1/A1NN,NN1+CIN,2)
PT=1,OPT
5 CONTINUE
CIN,2)=CIN,NN2/P1
PT=0,
6 CONTINUE
00 24 N=1,3
00 25 N=1,68
IF(A1NN,NN1-EQ.0.) GO TO 25
IF(A1NN,NN1-EQ.0.) GO TO 25
NN=NN
A1NN,NN1=A1NN,NN1/(CIN,NN1+A1NN,NN1)
25 CONTINUE
24 CONTINUE
CALL SUB(C11,2),C12,2),C13,2),VAL11,2),VAL12,2),VAL13,2))
C VAL(1,2)-12,2)-13,2) ARE CONSTANTS FOR ALL SILICON DEVICES
PTQ,
00 6 NN1,3
IF(SWITCH.EQ.0.) GO TO 312
NN=NN
NC=93
CALL SUBAIN,B,N,CIN,3),KC,PREDCT)
GO TO 6
312 DO 7 N=69,91
IF(A1NN,NN1-EQ.0.) GO TO 7
IF(A1NN,NN1-EQ.0.) GO TO 7
A1NN,NN1=A1NN,NN1
CIN,3)=A1NN,NN1/A1NN,NN1+CIN,3)
PT=1,OPT
7 CONTINUE
CIN,3)=CIN,NN3/P1
PT=0,
8 CONTINUE
CALL SUB(C11,3),C12,3),C13,3),VAL11,3),VAL12,3),VAL13,3))
C VAL(1,3)-12,3)-13,3) ARE CONSTANTS FOR ALL GERMANIUM DEVICES
DO 26 N=1,3
00 27 N=69,91
IF(A1NN,NN1-EQ.0.) GO TO 27
IF(A1NN,NN1-EQ.0.) GO TO 27
NN=NN
A1NN,NN1=A1NN,NN1/(CIN,NN1+A1NN,NN1)
27 CONTINUE
CONTINUE
28

```

APPENDIX A

```

PT=0.
DO 8 N=1,3
  IF ISNTCH.EQ.0.1 GO TO 313
  N=0
  DO 314 N=1,91
    IF ((N=47).EQ.0.) GO TO 314
    IF ((N,M)=EQ.0.) GO TO 314
    IF ((N=4).NE.0.) GO TO 314
    IF ((N=5).NE.0.) GO TO 314
    N=N+1
    IF (P>0.001.EC.0.1) GO TO 60
    IF (P<0.001.EC.0.1) GO TO 60
    IF (P>0.1.EC.0.1) GO TO 60
    IF (P<0.1.EC.0.1) GO TO 60
    CONTINUE
    P=ABS(100.*M))
  60
CONTINUE
314
CONTINUE
N=N+10/2
M=M/2
DO 315 N=1,4000
  86-Q;
  D10=(0)
  DO 316 N=1,91
    IF ((N,6).EQ.0.) GO TO 316
    IF ((N,M)=EQ.0.) GO TO 316
    IF ((N,4)=EQ.0.) GO TO 316
    IF ((N=5).NE.0.) GO TO 316
    IF ((N=51).LE.26,) GO TO 316
    IF ((N).LT.26,) GO TO 316
    BE=0.1N)
    KK=4
    CONTINUE
    CONTINUE
    C(M,4)=DIRK)
  315
CONTINUE
C(M,4)=C(M,4)/PT
  60 TD 6
CONTINUE
  813
  DO 9 N=1,91
    IF ((N,M)=EQ.0.) GO TO 9
    IF ((N,M)=EQ.0.) GO TO 9
    IF ((N=4).NE.0.) GO TO 9
    IF ((N=51).NE.0.) GO TO 9
    A(M,N)=ABSI(A(N,M))
    C(M,4)=A(M,4)/A(N,M)*C(M,4)
    PT=1./PT
    CONTINUE
    C(M,4)=C(M,4)/PT
  PT=0.
    CONTINUE
  CALL SUB((C(1,4),C(2,4),C(3,4),VAL1,4),VAL2,4),VAL(3,4))
  8
  C VAL1,4)-(2,-4,3,4) ARE CONSTANTS FOR ALL DEVICES WITHOUT CAPACITANCE MODEL
  C DATA
  9
  DO 28 N=1,3
    DO 29 N=1,91
      IF ((N,M)=EQ.0.) GO TO 29
      M=M+0.5
      A(M,M)=A(M,M)/(C(M,4)*A(M,4))
  29
    CONTINUE
  28
    DO 10 N=1,3
      IF ISNTCH.EQ.0.) GO TO 10 317
      M=0

```

APPENDIX A

```

DO 318 N=1,48
1FIA(N,6).EQ.0.1 GO TO 318
1FIA(N,4).EQ.0.1 GO TO 316
1FIA(N,6).NE.0.1 GO TO 310
1FIA(N,5).NE.0.1 GO TO 310
NN=1.0NN
IF (PRED1.NE.0.1 GO TO 61
1FIB(N,M).LT.0.1 B(M,N)=0.
CONTINUE
61 DINI=AABS((N,M))
318 CONTINUE
NN=N/2
KK=92
DO 319 K=1,NN
B6=U-
DINKJ=0.
DO 320 N=1,48
1FIA(N,6).EQ.0.1 GO TO 320
1FIA(N,M).EQ.0.1 GO TO 320
1FIA(N,4).NE.0.1 GO TO 320
1FIA(N,5).NE.0.1 GO TO 320
1FIA(N,1).LE.4C1 GO TO 320
B6=D(N)
KK=N
320 CONTINUE
319 CONTINUE
C(M,S)=D(KK)
50 TO 10
317 DO 11 K=1,68
1FIA(N,6).EQ.0.1 GO TO 11
1FIB(N,M).EQ.0.1 GO TO 11
1FIA(N,4).NE.0.1 GO TO 11
1FIA(N,5).NE.0.1 GO TO 11
1FIA(N,1).LE.4C1 GO TO 11
A1M,A1B=(N,M)
C(M,S)=A1M,M1=A1N,M1=C(M,5)
PT=1.0P
11 CONTINUE
C(M,S)=C(M,S)/PT
PT=0.
318 CONTINUE
CALL SUB(C(1,5),C(2,5),C(3,5),VAL11,S1,VAL12,S1,VAL13,S1)
C VAL(1,5)-(2,5)-(3,5) ARE CONSTANTS FOR SI DEVICES WITHOUT CAP. MODEL DATA
C 00 31 M=1,3
00 32 N=1,68
1FIA(N,M).EQ.0.1 GO TO 32
1FIA(N,6).EQ.0.1 GO TO 32
1FIA(N,4).NE.0.1 GO TO 33
1FIA(N,5).EQ.0.1 GO TO 32
1FIA(N,1).NE.0.1 GO TO 32
33 NN=M+18
A(M,N)=A1M,M1=(C(M,S)+0.001)
32 CONTINUE
31 CONTINUE
30 12 N=1,3
1FISWTC(EQ,0.1 GO TO 321
NN=0
DO 322 N=69,91
1FIA(N,6).EQ.0.1 GO TO 322
1FIA(N,M).EQ.0.1 GO TO 322
1FIA(N,4).NE.0.1 GO TO 322
1FIA(N,5).NE.0.1 GO TO 322

```

APPENDIX A

```

NN+1+NN
  IF(PREDICT,NE,0.,) GO TO 62
  IF(I0(N,M),LT,0.,) BN(N,M),=0.
62  CONTINUE
  D111=ABS(BN,M)
322  CONTINUE
  ABS=NN/2
  K1=92
  DO 323 K=1,NNN
  BG=0.
  DCK1=0.
  DO 324 K=69,91
  IF(A(N,61)=EQ,0.,) GO TO 324
  IF(A(N,M)-EQ,0.,) GO TO 324
  IF(A(N,4)-EQ,0.,) GO TO 324
  IF(A(N,5)-EQ,0.,) GO TO 324
  IF(A(N,6)-EQ,0.,) GO TO 324
  IF(A(N,7)-EQ,0.,) GO TO 324
  IF(D(N),LE,ABC) GO TO 324
  BG=0.(M)
323  CONTINUE
324  CONTINUE
325  CONTINUE
  COM,6)*D(CK1)
  60 T0 32
321  DO 13 K=69,91
  IF(A(N,61)=EQ,0.,) GO TO 13
  IF(GA(N,M)-EQ,0.,) GO TO 13
  IF(A(N,4)-EQ,0.,) GO TO 13
  IF(A(N,5)-EQ,0.,) GO TO 13
  IF(A(N,6)-EQ,0.,) GO TO 13
  IF(A(N,7)-EQ,0.,) GO TO 13
  ATN,M)=ABS(A(N,M))
  CIN,6)=A(N,M)/ATN,6)+CIN,6)
  PT=1,OPT
13  CONTINUE
  CIN,6)=CIN,6)/PT
  PT=0.
12  CONTINUE
  CALL SUB(C11,6),C62,6),C13,6),VAL(1,6),VAL(2,6),VAL(3,6)
  VAL(1,6)=12,6)-(3,6) ABS CONSTANTS FOR CF DEVICES WITHOUT CAP. MODEL DATA
  DD 34 M=1,3
  DO 35 M=69,91
  IF(A(N,M)-EQ,0.,) GO TO 35
  IF(A(N,6)-EQ,0.,) GO TO 35
  IF(A(N,5)-EQ,0.,) GO TO 35
  IF(A(N,7)-EQ,0.,) GO TO 35
  3M=M+21
  ATN,M)=A(N,M)/(CIN,6)+ATN,6)
35  CONTINUE
36  CONTINUE
34  CONTINUE
  DO 14 M=1,3
  IF(SWITCH,EQ,0.,) GO TO 325
  KA=31
  KC=1
  CALL SUR(A(KA,6,M,C(M,7),KC,SWITCH)
  GO TO 14
  DO 15 M=1,31
  IF(A(N,6)-EQ,0.,) GO TO 15
  IF(A(N,6)-EQ,0.,) GO TO 15
  ATN,M)=ABS(A(N,M))
  C(K,7)=A(N,M)/ATN,6)+C(K,7)
  PT=1,OPT
15  CONTINUE

```

APPENDIX A

```

C(M,7)=C(M,7)/PT
PT=0.

14    CONTINUE
      CALL SUB(C(1,7),C(12,7),C(13,7),VAL(3,7),VAL(12,7),VAL(13,7))
      C   VAL(1,1)-(2,7)-(3,7) ARE CONSTANTS FOR SI DEVICES NOT IN 145 REPORT
      DD 37 M=1,3
      DD 38 M=32,68
      IF(AIN,M1-EQ,0.) GO TU 38
      IF(AIN,M1-EQ,0.) GO TU 38
      MM=M+24
      AIN,M1-AIN,M1)/(C(M,7)+A(M,6,1))
      38    CONTINUE
      DO 17 M=1,3
      1F (SWITCH-EQ,0.) GO TU 326
      16    CONTINUE
      KC=75
      KC=69
      CALL SUBAIKA,B,M,C(M,6),KC,SWICH)
      DO 17
      TC 17
      DD 16 M=69,75
      IF(AIN,M1-EQ,0.) GO TU 16
      IF(AIN,M1-EQ,0.) GO TU 16
      AIN,M1-ABS(AIN,M1)
      C(M,6)=AIN,M1/AIN,M1+C(M,6)
      PT=1-PT
      16    CONTINUE
      C(M,6)=C(M,6)/PT
      PT=0.

17    CONTINUE
      CALL SUB(CC(1,8),CC(2,8),CC(3,8),VAL(1,8),VAL(2,8),VAL(3,8))
      C   VAL(1,8)-(2,8)-(3,8) ARE CONSTANTS FOR GE DEVICES NOT IN 145 REPORT
      DD 39 P=1,3
      DO 40 S=76,91
      IF(AIN,M1-EQ,0.) GO TU 40
      IF(AIN,M1-EQ,0.) GO TU 40
      M=M+27
      AIN,M1-AIN,M1/CC(M,8)+A(M,6,1)
      40    CONTINUE
      39    CONTINUE
      DO 18 M=1,3
      1F (SWITCH-EQ,0.) GO TU 327
      KA=68
      KC=32
      CALL SUBA(KA,B,M,C(M,9),KC,SWICH)
      DO 19
      TD 18
      327  90,19 6-32,68
      IF(A(M,6)-EQ,0.) GO TU 19
      IF(AIN,M1-EQ,0.) GO TU 19
      AIN,M1-495TA(M,6,1)
      C(M,9)=AIN,M1/AIN,M1+C(M,9)
      PT=1-PT
      19    CONTINUE
      C(M,9)=C(M,9)/PT
      PT=0.

18    CONTINUE
      CALL SUB(CC(1,9),CC(2,9),CC(3,9),VAL(1,9),VAL(2,9),VAL(3,9))
      C   VAL(1,9)-(2,9)-(3,9) ARE CONSTANTS FOR SI DEVICES INCLUDED IN 145 REPORT
      DD 41 M=1,3
      DD 42 M=1,3
      IF(AIN,M1-EQ,0.) GO TU 42

```

APPENDIX A

```

IF(AIN,01,EQ,0.,1) GO TO 42
MM=M+30
AIN(MI)=AIN(MI)/CC(M,9)*A(M,6,1)
CONTINUE
41
DO 20 M=1,3
IF(SWITCH-EQ,0,-1) GO TO 328
KA=91
KC=76
CALL SUPAKA,B,M,CIN,M,103,KC,SWITCH)
20
DO 21 M=76,91
IF(AIN,6,-EQ,0,-1) GO TO 21
IF(AIN,M1-EQ,0,-1) GO TO 21
AIN,M1=ASIA(M,M1)
CIN,103=AIN,M1/AIR,6)+CIN,101
PT=1,-OPT
21
CONTINUE
CIN,103=C(M,101)/PT
PT=0.
20
CONTINUE
CALL SUPAC(1,10),C(2,10),C(3,10),VAL(1,10),VAL(2,10),VAL(3,10),
C VAL(1,10)-C(2,10)-(3,10) ARE CONSTRAINTS FOR OF DEVICES INCLUDED IN 145 REPORT
C
42
CONTINUE
DO 43 M=1,3
DO 44 N=69,75
IF(AIN,N1-EQ,0,-1) GO TO 44
IF(AIN,M1-EQ,0,-1) GO TO 44
MM=M+33
AIN,M1=AIN(M,M1)/CC(M,103)*A(M,6,1)
43
CONTINUE
44
CONTINUE
45
CONTINUE
DO 337 M=1,3
DO 338 N=1,9
AIN,M1=ASCA(M,M1)
338
CONTINUE
337
CONTINUE
DO 500 M=1,3
CS=100,*3.162*0M
OU 501 M=1,91
MM=M+3C
IF(AIN,6,-EQ,0,-1) GO TO 501
IF(AIN,M1-EQ,0,-1) GO TO 501
AIN,M1=AIN(M,M1)/AIN,4)*CS)
501
CONTINUE
500
CONTINUE
DO 502 M=1,3
CS=100,*3.162*0M
OU 503 M=1,91
MM=M+39
IF(AIN,6,-EQ,0,-1) GO TU 503
AIN,M1=AIN(M,M1)/AIN,5)*CS)
503
CONTINUE
502
CONTINUE
DO 511 M=1,3
CS=100,*3.162*0M
OU 512 M=1,91
MM=M+42
IF(AIN,5,-EQ,0,-1) GO TU 513
IF(AIN,M1-EQ,0,-1) GO TU 512

```

APPENDIX A

```

      WRITE(6,214)
      WRITE(6,888)
      888 FORMAT(12X,04HW VALUE FOR RELATIONSHIP: K=P0+L-N) DERIVED FROM E
      EXPERIMENTAL DAMAGE DATA FOR TIME INTERVALS INDICATED//1
      WRITE(6,330)
      330 FORMAT(122X,11H          K          *11H          K          *11H          K          )
      WRITE(6,911)
      911 FORMAT(122X,11H 10-1 USEC ,11H 1-.1 USEC ,11H 10--.1 USEC//1
      DO 250 N=1,91
      K=4*N-11-91
      KB=4*(N-1)-92
      KC=4*(N-1)-93
      KD=4*(N-1)-94
      WRITE(6,251)DEVICE(KA),DEVICE(KB),DEVICE(KC),DEVICE(KD),
      E(SLOPEIN,M1,M=1,3)
      251 FORMAT(16X,4A4,3F11.5)
      CONTINUE
      250 FORMAT(6,214)
      IF(SWITCH.EQ.0.) GO TO 415
      WRITE(6,416)
      416 FORMAT(12X,*3HMEAN VALUES FOR QUANTITIES A THROUGH J FOR PULSE DU
      CATIONS OF 10., 1, AND 0.1 USEC//1
      GO TO 417
      415 WRITE(6,418)
      418 FORMAT(12X,*9HARITHMETIC MEAN VALUES FOR QUANTITIES A THROUGH J FOR
      E. PULSE DURATIONS OF 10., 1, AND 0.1 USEC//1
      417 CONTINUE
      WRITE(6,1121)C(M,11,M=1,3)
      WRITE(6,1121)C(M,2,M=1,3)
      WRITE(6,1121)C(M,31,M=1,3)
      WRITE(6,1121)C(M,41,M=1,3)
      WRITE(6,1121)C(M,51,M=1,3)
      WRITE(6,1121)C(M,61,M=1,3)
      WRITE(6,1121)C(M,71,M=1,3)
      WRITE(6,1121)C(M,81,M=1,3)
      WRITE(6,1121)C(M,91,M=1,3)
      1121 FORMAT(10X,3E12.2)
      WRITE(6,1121)C(M,101,M=1,3)
      WRITE(6,306)
      WRITE(6,551)
      551 FORMAT(120X,76HPOWER TO DAMAGE EQUATION COEFFICIENTS FOR POPULATION
      ES DEFINED BY A THROUGH J//)
      WRITE(6,552)
      552 FORMAT(145X,'1H           -1           -1/2)
      WRITE(6,553)
      553 FORMAT(165X,26HP = K1 T   * K2 T   + K3//)
      WRITE(6,554)
      554 FORMAT(110X,36H    K1       K2       K3       //)
      DO 556 N=1,10
      WRITE(6,557)VAL(1,N),VAL(2,N),VAL(3,N)
      557 FORMAT(10X,2E12.3)
      556 CONTINUE
      WRITE(6,214)
      WRITE(6,504)
      WRITE(6,509)
      504 FORMAT(12X,124HRAVIER OF EXPERIMENTAL POWER TO DAMAGE TO PREDICTED V
      LUE BASED ON JUNCTION CAPACITANCE MODEL: L-MODEL BASED ON O.A.T.A
      E. F7OK]
      509 FORMAT(12X,124HPARAMETERS M-MODEL BASED ON EXPERIMENTAL PARAMETE

```

APPENDIX A

```

ERS N=MODEL BASED ON EXPERIMENTAL PARAMETERS AND, WHERE DATA WAS
LSING J

517 FORMAT(2X,3HBASED ON D.A.J.A. BOOK PARAMETERS)
      WRITE(6,505)
      WRITE(6,505)
      505 FORMAT(22X,1H      L     , 11H      L     , 11H      L     , 11H      L
      L     , 11H      W     , 11H      W     , 11H      N     , 11H      N
      L11H      N     //)
      WR1E16,506)
      506 FORMAT(22X,1H      10    USEC   , 11H      1    USEC   , 11H      0-1  USEC
      LEC   , 11H      1    USEC   , 11H      0-1  USEC   , 11H      10  US
      E11H      0-1  USEC   //)
      00 507 N=1,91
      KAR=6IN-1) 91
      KB=4QU-1) 92
      AC=6QRK-1) 93
      KD=4QN-1) 94
      NWRITE(6,508 DEVICE(MAN),DEVICE(MK),DEVICE(MC),DEVICE(MD),
      CIAIN,M1,M=37,45)
      508 FORMAT(6X,44,9F11.5)
      507 CONTINUE
      00 410 N49,91
      00 411 R=37,45
      ATN,M)=0.
      411 CONTINUE
      410 CONTINUE
      00 375 KJ=1,2
      IF(IKJ.EQ.1) GO TO 378
      00 379 NZ=1,91
      PMRBNZ1=PMRBNNZ1
      379 CONTINUE
      00 TO 380
      00 381 NZ=1,91
      PMRBNZ1=PMRBNNZ1
      380 CONTINUE
      00 381 NZ=1,91
      IF(IKJ.EQ.1) GO TO 376
      ND=1,8
      376 ND=0
      377 DO 380 KK=1,3
      DD=0.
      CC=0.
      PMRL=0.
      PMRH=0.
      PMRAA=0-
      PMRAA=0-
      PMRLB=0-
      PMRHBO=0.
      PMRHBO=0.
      IFLKK=2)361,362,363
      361 ND=91
      NC=1
      6D 10 364
      362 ND=68
      NC=1
      6D 10 364
      363 ND=91
      NC=69
      364 IF(IFSEARCH-EQ.0.,) GO TO 400
      DO 401 N=M,ND
      IF(IFPNM1)-1,1 401,402,403
      402 DD=1,0D

```

APPENDIX A

```

GO TO 401
401 CC=1.*CC
CONTINUE
NDD=DD22.
NCC=CC22.
N2=92
CALL SUBR (NDD, NCC, U, NC, ND, PHR, PML, PHRH)
GO TO 408
DO 340 N=NC, ND
IF (PHRH) -1.340, 341, 342
341 DD=1.*DD
PWRH=AH, I)+PML
GO TO 340
342 CC=1.*CC
PHRH=AH, I)+PHRH
340 CONTINUE
PWRH=PML/DD
PHRH=PHRH/CC
348 PWRH=PML/(1.0E-05)*(-.4)
PHRH=PHRH/(1.0E-15)*(-.4)
PWRH=PML/(1.0E-05)*(-.5)
PHRH=PHRH/(1.0E-05)*(-.5)
WRITE(6,6016)PWRH, PHRH
6016 FORMAT(2X, 2E16.3)
00 347 K=1,2
00 343 M=1,3
17 1K.E.1) GO TO 348
MN=4.8*10*(6*(K-1))+KD
EXP=100.*3.162*MN
PML=PML*0
PHRH=PHRH
GO TO 349
348 MN=4.5*10*(6*(K-1))+KD
EXP=100.*2.512*(M-1)
PML=PML*0
PHRH=PHRH
349 DO 346 N=NC, ND
IF (KJ=0.1) GO TO 450
IF (PHRH) .NE. -.1) GO TO 346
450 IF (PHRH) -1.344, 345, 346
345 AH, MN=AH, M/OPML*EXP
346 GO TO 346
346 AH, MN=AH, M/OPML*EXP
346 CONTINUE
IF (KJ=.4.1) GO TO 460
DO 461 N=NC, ND
PHRH=PHRH
461 CONTINUE
460 CONTINUE
343 CONTINUE
347 CONTINUE
360 CONTINUE
375 CONTINUE
C FOR PHRH LOW POWER DEVICES=1, HIGH POWER=2, EXCLUDED.
C FOR PHRH SAME AS PHRA EXCEPT LIMITED TO DEVICES WITHOUT CAPACITANCE DAMAGE
C MODEL DATA
WRITE(6,214)
WRITE(6,350)
350 FORMAT(2X, 12SHU- EXPERIMENTAL POWER TO DAMAGE/FATIGUE-.4), WHERE K

```

APPENDIX A

APPENDIX A

```

387 WRITE(6,387)
      FORMAT(2X,82H- SAME AS T EXCEPT MACC- LIMITTED TO DEVICES WITHOUT
     1  CAPACITANCE DAMAGE MODEL DATA//)
      WRITE(6,388)
388 FORMAT(122X,1IH U   ,11H V   ,11H X   ,11H Y   ,11H Z   ,11H /
     1
     C11H Y   ,11H H   ,11H K   ,11H P   ,11H R   ,11H S   ,11H T   ,
     C11H N   ,11H M   ,11H L   ,11H J   ,11H I   ,11H O   ,11H F   ,
     H11H D   ,11H E   ,11H G   ,11H B   ,11H C   ,11H D   ,11H E   ,
     H11H F   ,11H G   ,11H H   ,11H I   ,11H J   ,11H K   ,11H L   ,
     H11H M   ,11H N   ,11H O   ,11H P   ,11H Q   ,11H R   ,11H S   ,
     H11H T   ,11H U   ,11H V   ,11H W   ,11H X   ,11H Y   ,11H Z   ,
     H11H / / / )
      DO 389 N=1,91
      KA=4*(N-1)+1
      KB=4*(N-1)+2
      KC=4*(N-1)+3
      KD=4*(N-1)+4
      WRITE(6,359) DEVICE(KA),DEVICE(KB),DEVICE(KC),DEVICE(KD),
     1  DEVICE(N),N=64,72)
389 CONTINUE
      WRITE(6,214)
      WRITE(6,391)
391 FORMAT(122X,1IH X   ,11H Y   ,11H Z   ,11H /
     1
     C11H V   ,11H W   ,11H X   ,11H Y   ,11H Z   ,11H /
     C11H 7   ,11H 8   ,11H 9   ,11H 0   ,11H 1   ,11H /
     WRITE(6,357)
      DO 392 N=1,91
      KA=4*(N-1)+1
      KB=4*(N-1)+2
      KC=4*(N-1)+3
      KD=4*(N-1)+4
      WRITE(6,359) DEVICE(KA),DEVICE(KB),DEVICE(KC),DEVICE(KD),
     1  DEVICE(N),N=73,91)
392 CONTINUE
45      DO 394 N=1,91
      DO 396 N=1,81
      A1R,P1=AB5Data(N,1)
      V1R,N1=A1R,N1
394 CONTINUE
423 DO 299 N=1,25
      KK=1
      BB=0-
      MA=3*KK
      S1,I1=AI1,MA1
302 DO 300 N=1,3
      MA1=MA+KK-1
      DO 301 N=1,91
      IF I1(N,MA1).LE.SINK(N,MA1) GO TO 301
      SINK(N)=A1(N,MA1),
      BB=1-
      N2=N
      MA2=MAA
301 CONTINUE
302 CONTINUE
      IF I1(N,MAA).EQ.0.1 GO TO 299
      A1N2,MAA2)=0.
      BB=0-
      KK=1-MAA
      DO TO 302
299 CONTINUE
      WRITE(6,214)
      WRITE(6,280)
280 FORMAT(5X,59HQUANTITIES A THROUGH J AND L THROUGH Z ORDERED BY MAC
     1  LIMITTED//)

```

APPENDIX A

APPENDIX A

END

/*
 160-SYSIN DB *
 TC328A-20..52..140..3.23..837..4.
 TC328A-9..16..30..0..0..33..4.
 TC328A-20..90..300..305..1.05..15.
 TC335-20..44..100..0..0..293..15.
 TC336-30..70..160..65..0..0..15.
 TC336-70..112..62..5..0..0..15.
 TC2484-42..46..50..0..0..36.
 TC2484-15..48..160..0..0..0..36.
 TC3736-46..72..115..0..0..5..
 TC3736-110..255..90..0..0..5..
 TC930..30..74..180..0..0..3..
 TC930..16..60..230..0..0..0..10..0..3..
 TC2491-10..10..20..3..6..0..36..
 TC2491-18..30..53..0..0..124..36..
 TC2907-20..93..0..135..0..0..4..
 TC2907-53..78..110..0..0..4..
 TC2222-32..95..220..0..0..5..
 TC2222-40..135..400..0..0..0..5..
 TC386-2100..2300..2800..0..16..9..1..3..
 TC5911-1600..2700..4100..0..27..7..0..0..
 TC16..1400..2700..660..0..1..93..0..0..
 Q21MF..1..2..0..3..4..0..0..0..0..0..0..
 Q914A-15..80..420..233..423..-068..
 Q752A-93..360..2300..0..536..4..
 Q96115..510..1350..0..300..0..68..0..0..0..
 Q30268..17000..0..0..0..59..5..1..0..
 Q3611..3000..0..0..0..0..0..0..0..0..0..0..
 C3995A-0..0..0..0..83..910..
 Q30168..13000..0..0..0..0..0..0..0..0..0..
 Q9141..8000..0..0..0..18..1..3..
 Q1002..670..0..0..0..17..7..49..
 TC2057-32..4..16..120..0..0..0..2..
 TC2857..-8..4..2..6..8..-2..0..0..0..-2..
 TC3375..510..1300..0..18..0..-1..0..0..11..-
 TC3375..230..440..1300..0..0..0..11..-
 TC1490..730..2300..700..0..0..75..
 TC1490..1300..3800..1300..0..0..0..75..-
 TC3584..120..377..11..0..0..0..0..2..5..
 TC3584..490..2150..0..000..0..0..0..2..5..
 TC2894..16..50..170..0..0..0..-2..8..
 TC2894..12..19..30..0..0..0..36..-
 TC5829..6..17..47..0..0..-2..
 TC5829..4..10..0..22..0..0..0..-2..
 TC3013..6..-3..21..-100..0..0..-2..6..
 TC3013..20..31..5..52..0..0..0..36..-
 TC3018..5..-8..20..-86..0..0..-3..
 TC3018..10..-10..-22..0..0..0..69..C..-2..
 TC3M05..26..0..0..0..320..-
 TC3M05..20..50..130..0..0..0..-
 TC1613..14..300..2100..-3200..-301..-888..-8..
 TC1613..160..340..75..0..0..103..0..
 TC1485..700..-1100..-1700..0..0..1..-7..
 TC1485..3100..-3000..-290..0..0..0..-1..7..
 TC3439..10..-7..-78..0..0..0..-1..-
 TC3639..180..62..-22..0..0..0..1..-
 TC706..2..-8..17..-93..-0..0..3..-3..
 TC7..6..-8..18..-54..-0..0..3..-3..

APPENDIX A

4H1M36, 4H1L1 4H 4H
 4H1N39, 4H1P54 4H 4H
 4H1N30, 4H1L8 4H 4H
 4H1N61, 4H41 4H 4H
 4H1D52, 4H 4H 4H
 4H2N28, 4H571C, 4H-01 4H 4H
 4H2N28, 4H571E, 4H-01 4H 4H
 4H2N33, 4H751C, 4H-01 4H 4H
 4H2N33, 4H751E, 4H-01 4H 4H
 4H2N14, 4H902J, 4H4H(C, 4H-B)
 4H2N14, 4H302J, 4H4H(E, 4H-B)
 4H2N35, 4H941C, 4H-01 4H 4H
 4H2N35, 4H941E, 4H-01 4H 4H
 4H2N28, 4H941C, 4H-01 4H 4H
 4H2N28, 4H941E, 4H-01 4H 4H
 4H2N58, 4H291C, 4H-01 4H 4H
 4H2N58, 4H291E, 4H-01 4H 4H
 4H2N30, 4H132J, 4H4H(C, 4H-B)
 4H2N30, 4H132J, 4H4H(E, 4H-B)
 4HCA3U, 4H101C, 4H-01 4H 4H
 4HCA3D, 4H101E, 4H-01 4H 4H
 4H5M85, 4H2651, 4H71C(-, 4H-B)
 4H5H85, 4H2651, 4H71E(-, 4H-B)
 4H2N16, 4H133J, 4H4H(C, 4H-B)
 4H2N16, 4H133J, 4H4H(E, 4H-B)
 4H2N14, 4H851J, 4H4H(C, 4H-B)
 4H2N14, 4H851J, 4H4H(E, 4H-B)
 4H2N36, 4H394C, 4H-01 4H 4H
 4H2N36, 4H394E, 4H-01 4H 4H
 4H2N70, 4H633A, 4H4H(C, 4H-B)
 4H2N70, 4H633A, 4H4H(E, 4H-B)
 4H1B-6, 4H9-07, 4H35 4H 4H
 4H1B25, 4H81 4H 4H
 4H1N75, 4H1A8J, 4HAN 4H 4H
 4H1N64, 4H683J, 4HAN 4H 4H
 4H2N74, 4H633A, 4H4H(C, 4H-B)
 4H2N74, 4H633A, 4H4H(E, 4H-B)
 4H1M30, 4H2555J, 4HJAH 4H 4H
 4H1N20, 4H954 4H 4H
 4H1N76, 4H683J, 4HWN 4H 4H
 4H1N64, 4H683J, 4HWN 4H 4H
 4H1N12, 4H022RA, 4H2JAN 4H 4H
 4H1R17, 4H3LAJ, 4HJAH 4H 4H
 4H2N40, 4H611C, 4H-01 4H 4H
 4H2N40, 4H611E, 4H-01 4H 4H
 4H2N29, 4H711C, 4H-01 4H 4H
 4H2N29, 4H711E, 4H-01 4H 4H
 4H2N52, 4H611C(-, 4H-B) 4H 4H
 4H2N52, 4H611E(-, 4H-B) 4H 4H
 4H1N27, 4H80 4H 4H
 4H2N39, 4H641C, 4H-01 4H 4H
 4H2N39, 4H641E, 4H-01 4H 4H
 4H2N42, 4H683J, 4H4H(C, 4H-B)
 4H2N42, 4H683J, 4H4H(E, 4H-B)
 4H2N39, 4H333J, 4H4H(C, 4H-B)
 4H2N39, 4H333J, 4H4H(E, 4H-B)
 4H2N50, 4H1A2J, 4H4H(C, 4H-B)
 4H2N50, 4H1A2J, 4H4H(E, 4H-B)
 4H2N70, 4H551A, 4H4H(C, 4H-B)
 4H2N70, 4H551A, 4H4H(E, 4H-B)

APPENDIX A

APPENDIX A

RATIO OF EXPERIMENTAL POWER TO DAMAGE TO DC POWER MODEL PREDICTED VALUE FOR FOLLOWING MODEL DATA BASES

- A--ALL DEVICES
- B--ALL SILICON DEVICES
- C--ALL GERMANIUM DEVICES
- D--ALL DEVICES WITHOUT CAPACITANCE MODEL DATA
- E--ALL SILICON DEVICES WITHOUT CAPACITANCE MODEL DATA
- F--ALL GERMANIUM DEVICES WITHOUT CAPACITANCE MODEL DATA
- G--ALL SILICON DEVICES NOT INCLUDED WITHIN 145 REPORT
- H--ALL GERMANIUM DEVICES NOT INCLUDED WITHIN 145 REPORT
- I--ALL SILICON DEVICES INCLUDED WITHIN 145 REPORT
- J--ALL GERMANIUM DEVICES INCLUDED WITHIN 145 REPORT

FOR ALL CASES WHERE DATA BASE PERMITS. RATIOS ARE ONLY FOR THE REMAINING SILICON OR GE DEVICES NOT INCLUDED IN DATA BASE

A 0.0 ENTRY INDICATES NO DATA OR NC CALCULATION

FOR ITEM K, -1 INDICATES NO CALCULATION

JUNCTION REVERSE BIAS CONDITIONS ONLY NEGATIVE SIGN INDICATES ESTIMATED VALUES FOR POWER TO DAMAGE

ARITHMETIC MEAN USED FOR ALL MODEL DATA BASES

ALL PREDICTED VALUES FOR EXP. POWER TO DAMAGE INCLUDED IN DATA BASE CALCULATIONS

APPENDIX A

SILICON DEVICES	EXP. POWER TO DAMAGE AT INUS (WATTS)	EXP. POWER TO DAMAGE AT IUS (WATTS)	EXP. POWER TO DAMAGE AT 0-JUS (WATTS)	DC POWER RATING (WATTS)	DAM-CONST.		DC POWER (WATTS)	POWER CLASS
					DAM-CONST. DATA BOOK EXPERIMENTAL PARAMETERS (IN SECS.±.5)	DAM-CONST. DATA BOOK EXPERIMENTAL PARAMETERS (IN SECS.±.5)		
2N3280(C-B)	20.000	52.000	140.000	3.2300	0.8370	0.8370	0.4000	1-
2N3281(C-B)	9.000	16.000	50.000	0.3050	0.3300	0.3300	0.4000	1-
2N3350(C-B)	20.000	80.000	300.000	0.0500	1.0500	1.0500	0.1500	1-
2N3355(C-B)	20.000	44.000	100.000	0.0	0.2930	0.2930	0.1500	1-
2N3360(JANIC-B)	70.000	160.000	600.000	0.6500	0.0	0.1500	0.1500	1-
2N3361(JANIC-B)	75.000	112.000	625.000	0.40	0.0	0.1500	0.1500	1-
2N2484(C-B)	42.000	46.000	50.000	0.0	1.1	0.3600	1.1	1-
2N2484(C-B)	15.000	48.000	160.000	0.0	0.0	0.3600	0.3600	1-
2N3736(C-B)	44.000	72.000	115.000	0.0	0.0	0.5000	0.5000	1-
2N3755(C-B)	110.000	255.000	590.000	0.0	0.0	0.5000	0.5000	1-
2N9301(C-B)	30.000	74.000	160.000	0.058	0.0	0.3000	0.3000	1-
2N9311(E-B)	16.000	60.000	230.000	0.0	0.0	0.3000	0.3000	1-
2N2481(C-B)	10.000	10.000	10.000	0.23	0.0	0.3600	0.3600	1-
2N2491(C-B)	16.000	30.000	53.000	0.0	0.1240	0.1240	0.4000	1-
2N2907A(C-B)	20.000	53.000	135.000	1.1	0.0	0.4000	0.4000	1-
2N2907A(C-B)	53.000	76.000	110.000	0.0	0.0	0.4000	0.4000	1-
2N2222A(C-B)	32.000	85.000	220.000	0.0	0.0	0.5000	0.5000	1-
2N2222A(C-B)	60.000	135.000	400.000	0.0	0.0	0.5000	0.5000	1-
IN4384	210.000	230.000	280.000	1.0	16.90JU	16.90JU	1.3000	2-
F5911-3465	160.000	270.000	410.000	0.0	27.7000	27.7000	0.0	0-
14816	140.000	270.000	640.000	0.0	1.9300	1.9300	0.0	0-
1N21NE	1.100	2.000	3.400	0.0	0.0	0.0	0.0	0-
1M914A	15.000	80.000	420.000	0.2330	0.4230	0.4230	0.0460	1-
1M752A	83.000	340.000	2300.000	0.0	0.5360	0.5360	0.4000	1-
PC115	510.000	1350.000	3500.000	1.6660	J.0	J.0	2.0	2-
1N3U4B:JAN	1700.000	-33719.996	-17000.000	0.0	59.5000	59.5000	1.0000	2-
1N3611	3000.000	3000.000	3000.000	1.40	15.90JU	15.90JU	2.2000	2-
IN3995A	-2624.4-594	-82646.000	-26246.000	0.0	10.0000	10.0000	0.0	0-
IN3016B	1300.000C	-41079.996	-13000.00JU	1.7	23.10JU	23.10JU	1.0000	2-
1N4441	800.000	-35279.996	-60000.000	0.0	18.1000	18.1000	3.0000	2-
1002	670.000	-2117.200	-6700.00JU	1.1	17.70JU	17.70JU	7.9500	1-
2N2857(C-B)	1.2400	16.000	120.000	0.0	0.0	0.2000	0.2000	1-
2N3315(C-B)	0.8400	2.400	8.200	0.0	J.0	0.2000	0.2000	1-
2N3315(C-B)	50.000	1000.000	1600.000	0.0	0.0	11.0000	11.0000	2-
2N3375(C-B)	230.000	440.000	1310.000	1.67	0.0	0.3600	0.3600	2-
2N14901(JANIC-B)	700.000	2300.000	7000.000	0.0	0.0	75.0000	75.0000	2-
2N3514(C-B)	1300.000	3800.000	13500.000	0.0	0.0	2.5000	2.5000	2-
2N3544(C-B)	120.000C	370.000	1200.000	0.0	J.0	2.5000	2.5000	2-
2N30132(JANIC-B)	490.000	2150.000	10000.000	1.0	0.0	0.3600	0.3600	2-
2N2894(C-B)	14.000	50.000	170.000	0.0	0.0	0.3600	0.3600	1-
2N2894(C-B)	12.000	19.000	30.000	0.0	0.0	0.3600	0.3600	1-
2N5828(C-B)	6.000	17.000	47.000	0.0	0.0	0.2000	0.2000	1-
2N5629(C-B)	4.300	10.970	22.000	1.0	J.0	0.2000	0.2000	1-
2N30132(JANIC-B)	4.300	21.600	100.000	0.0	0.0	0.3600	0.3600	1-
2N30132(JANIC-B)	20.000	31.500	92.000	0.0	0.0	0.3600	0.3600	1-
CA3016(C-B)	5.600	20.000	64.000	0.0050	0.0	0.3600	0.3600	1-
CA3016(C-B)	4.000	19.60JU	22.00JU	1.1	0.3000	0.3000	0.3000	1-
SMB52.05171(C-B)	26.000	100.000	320.000	0.0	0.0	0.0	0.0	0-
SMB52.05171(C-B)	20.000	59.00JU	130.000	0.0	0.0	0.0	0.0	0-
2N16132(JANIC-B)	1400.000	2100.000	3200.000	0.3010	0.6680	0.6680	0.8000	1-
2N16132(JANIC-B)	700.000	340.000	750.000	1.0	1.1030	1.1030	0.8000	1-
2N14458(JANIC-B)	700.000	1100.000	1700.000	0.0	1.7000	1.7000	2.0	2-
2N14458(JANIC-B)	3100.000	-3100.000	-29100.000	0.0	1.7000	1.7000	2.0	2-

MANUFACTURERS		PRODUCTS		QUANTITY		UNIT PRICE		TOTAL VALUE	
2N3439(E-B)	10.000	27.00.0	78.00.0	1.000	2.0	0.0	0.0	1.0000	1.0000
2N3439(E-B)	180.000	620.000	2200.000	0.0	1.0	0.0	0.0	0.0	0.0
2N7063JAN(E-B)	2.800	17.00.0	93.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N7063JAN(E-B)	6.800	18.00.0	50.00.0	0.0	1.0	0.0	0.0	0.0	0.0
IR-69-6735	750.00.0	75.00.0	75.00.0	0.0	1.0	0.0	0.0	0.0	0.0
1N2580	17000.000	-53719.996	-170000.000	0.0	1.0	0.0	0.0	0.0	0.0
1N7511A1JAN	240.00.0	25500.000	25500.000	0.0	1.0	0.0	0.0	0.0	0.0
1N6858JAN	100.00.0	435.00.0	2000.00.0	0.0	1.0	0.0	0.0	0.0	0.0
1N2991B1JAN	100.00.0	-31599.996	-100000.000	0.0	1.0	0.0	0.0	0.0	0.0
1N3025B1JAN	1400.00.0	-14000.000	-140000.000	0.0	1.0	0.0	0.0	0.0	0.0
MD1054	25.00.0	32.590	44.00.0	0.0	1.0	0.0	0.0	0.0	0.0
1N746A5JAN	260.00.0	-20000.000	-153800.000	0.0	1.0	0.0	0.0	0.0	0.0
1N6451JAN	5.00.0	580.01.0	1625.01.0	0.0	1.0	0.0	0.0	0.0	0.0
1N1202R1JAN	100.00.0	10000.000	90000.000	0.0	1.0	0.0	0.0	0.0	0.0
1N1731A1JAN	800.00.0	2000.000	57000.000	0.0	1.0	0.0	0.0	0.0	0.0
PLATINUM DEVICES									
2N4C4A1(E-B)	120.00.0	160.00.0	230.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N606A1(E-B)	104.00.0	140.00.0	175.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N297A1(E-B)	2000.00.0	2210.00.0	2700.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N297A1(E-B)	1600.00.0	2100.00.0	3300.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N5264C-E-B	130.00.0	225.00.0	425.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N5264C-E-B	160.00.0	280.00.0	500.00.0	0.0	1.0	0.0	0.0	0.0	0.0
1N270	19.00.0	20.00.0	23.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N396A1C-E-B	115.00.0	170.00.0	230.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N396A1C-E-B	131.00.0	215.00.0	350.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N428H3A1N(E-B)	170.00.0	260.00.0	420.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N428H3A1N(E-B)	220.00.0	280.00.0	335.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N3931JAN(E-B)	300.00.0	1100.00.0	3400.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N3931JAN(E-B)	33.00.0	161.00.0	710.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N501A1AN(E-B)	3.00.0	17.00.0	86.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N501A1AN(E-B)	4.90.0	18.00.0	79.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N7C51JAN(E-B)	7.80.0	15.00.0	30.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N7051JAN(E-B)	3.60.0	6.60.0	12.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N6681JAN(E-B)	470.00.0	800.00.0	1400.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N6666H3JAN(E-B)	660.00.0	790.00.0	930.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N1042R1JAN(E-B)	500.00.0	150.00.0	4000.00.0	0.0	1.0	0.0	0.0	0.0	0.0
2N11622R1JAN(E-B)	36L-10G	17.00.0	750.00.0	0.0	1.0	0.0	0.0	0.0	0.0
1N2771JAN	14.00.0	18.00.0	23.00.0	0.0	1.0	0.0	0.0	0.0	0.0
MS1140	0.440	0.0	0.540	0.0	1.0	0.0	0.0	0.0	0.0

RATIO OF EXPERIMENTAL POWER TO DAMAGE TO DEVICE DC POWER RATING

	50.0	130.0	350.0
2N322A(-8)	22.5	40.0	75.0
2N322A(-3)	133.3	533.3	2100.0
2N3395(C-8)	133.3	293.3	666.7
2N3395E(B-1)	200.0	666.7	1666.7
2N3396JAMIC(-8)	466.7	746.7	4166.7
2N3396JAMIE(-8)	116.7	127.8	338.9
2N3396JAMIE(-3)	116.7	127.8	338.9
2N3396JAMIE(-1)	116.7	127.8	338.9

APPENDIX A

2N37361(C-0)	88.0	144.0	230.0
2N37361(E-0)	220.0	510.0	1180.0
2N9301(C-0)	100.0	246.7	600.0
2N931(E-0)	53.3	200.0	766.7
2N2481(C-0)	27.8	27.8	27.8
2N2481(E-0)	50.0	83.3	147.2
2N2907A(C-0)	50.0	132.5	337.5
2N2907A(E-0)	132.5	195.0	275.0
2N2222A(C-0)	64.0	170.0	440.0
2N2222A(E-0)	80.0	270.0	800.0
IN4384	1615.4	1769.2	2153.8
F5911-3465	0.0	0.0	0.0
IN816	0.0	0.0	0.0
IN21ME	0.0	0.0	0.0
IN914A	220.4	1176.5	6176.5
IN752A	207.5	850.0	5750.0
PL115	0.0	0.0	0.0
IN3068:JAN	17000.0	-53720.0	-170000.0
IN3611	1363.6	1363.6	1363.6
IN3995A	-2624.5	-3300.0	-26244.6
IN30160	13000.0	-41080.0	-130000.0
IN6141	2666.7	-8422.7	-26666.7
1002	705.3	-2228.6	-7052.6
2N28571(C-0)	62.0	80.0	600.0
2N28571(E-0)	4.2	13.3	41.7
2N33751(C-0)	45.5	90.9	163.6
2N33751(E-0)	20.9	40.0	118.2
2N14905:JAN1(C-0)	9.3	30.7	93.3
2N14905:JAN1(E-0)	17.3	50.7	173.3
2N35941(C-0)	60.0	160.0	480.0
2N35941(E-0)	196.0	86.0	4100.0
2N28941(C-0)	38.9	138.9	472.2
2N28941(E-0)	33.3	52.8	83.3
2N582291(C-0)	30.0	85.0	235.0
2N582291(E-0)	21.5	50.0	110.0
2B3013:JAN1(C-0)	11.9	50.3	277.8
2B3013:JAN1(E-0)	55.4	87.5	144.4
CA30181(C-0)	19.3	66.7	213.3
CA30181(E-0)	13.3	33.3	73.3
SM6526517(C-0)	0.0	0.0	0.0
SM6526517(E-0)	0.0	0.0	0.0
2N3613:JAN1(C-0)	1750.0	2625.0	4600.0
2N3613:JAN1(E-0)	200.0	425.0	937.5
2N746:JAN1(C-0)	22.7	60.0	166.7
IR-69-6735	0.0	0.0	0.0
IN2510	1307.7	-17647.1	-17658.2
IN751A:JAN	600.0	27.0	78.0
IN751A:JAN	180.0	620.0	2200.0
IN751A:JAN	9.3	56.7	310.0
2N706:JAN1(C-0)	22.7	60.0	166.7
IN29910:JAN	1000.0	-3160.0	-10000.0
IN36258:JAN	1400.0	-14000.0	-140000.0
MU1054	0.0	0.0	0.0
IN766A:JAN	6500.0	-50000.0	-384500.0
IN665:JAN	1250.0	1450.0	4362.5
IN1202R:JAN	8.3	83.3	750.0
IN1731A:JAN	200.0	500.0	1425.0

APPENDIX A

2N64A(C-B)	8.00	1.066.7
2N64A(E-B)	6.93	933.3
2N97A(C-B)	57.1	62.9
2N97A(E-B)	40.0	60.0
2N526(C-B)	577.8	1060.0
2N526(E-B)	711.1	1288.9
1N270	237.5	250.0
2N396A(C-B)	575.0	650.0
2N396A(E-B)	650.0	1025.0
2N428M:JAN(C-B)	1133.3	1733.3
2N428M:JAN(E-B)	1466.7	1866.7
2N393:JAN(C-B)	8571.4	31426.6
2N393:JAN(E-B)	942.9	4571.4
2N501:JAN(C-B)	50.0	283.3
2N501:JAN(E-B)	81.7	300.0
2N705:JAN(C-B)	52.0	100.0
2N705:JAN(E-B)	24.0	44.0
2N666R:JAN(C-B)	3133.3	5333.3
2N666R:JAN(E-B)	4266.7	5266.7
2N1042RAJAN(C-B)	25.0	75.0
2N1042RAJAN(E-B)	18.0	65.0
1N277:JAN	175.0	225.0
HS1040	6.7	7.3

	A	1 USEC	0.1 USEC	0.01 USEC	B	1 USEC	0.1 USEC	0.01 USEC	C	1 USEC	0.1 USEC	0.01 USEC	D	10 USEC	1 USEC	0.1 USEC	0.01 USEC
2N328A(C-B)	0.04975	0.03766	0.02147	0.05073	0.03411	0.01748	0.00375	0.001050	0.00375	0.0	0.0	0.0	0.14670				
2N328A(E-B)	0.02239	0.01159	0.00460	0.02283	0.01050	0.00375	0.001050	0.00375	0.001050	0.0	0.0	0.0	0.14670				
2N335(C-B)	0.13266	0.15649	0.12269	0.13629	0.13994	0.09990	0.03320	0.013320	0.03320	0.0	0.0	0.0	0.39119				
2N335(E-B)	0.13266	0.15649	0.04090	0.07697	0.03230	0.07697	0.012245	0.05326	0.012245	0.0	0.0	0.0	0.39119				
2N336:JAN(C-B)	0.19899	0.13518	0.06543	0.20293	0.19591	0.020812	0.012245	0.05326	0.012245	0.0	0.0	0.0	0.58679				
2N336:JAN(E-B)	0.46431	0.21629	0.25560	0.47350	0.47350	0.020812	0.012245	0.05326	0.012245	0.0	0.0	0.0	0.58679				
2N2484(C-B)	0.11608	0.03701	0.00852	0.1838	0.03553	0.00694	0.00694	0.00694	0.00694	0.0	0.0	0.0	0.0				
2N2484(E-B)	0.04145	0.03862	0.02126	0.03498	0.02220	0.002220	0.002220	0.002220	0.002220	0.0	0.0	0.0	0.0				
2N3736(C-B)	0.07755	0.04171	0.01411	0.0929	0.03778	0.01169	0.01169	0.01169	0.01169	0.0	0.0	0.0	0.0				
2N3736(E-B)	0.21889	0.4773	0.07239	0.22322	0.13382	0.05894	0.05894	0.05894	0.05894	0.0	0.0	0.0	0.0				
2N930(C-B)	0.09949	0.07145	0.03681	0.10147	0.06472	0.02997	0.02997	0.02997	0.02997	0.0	0.0	0.0	0.29339				
2N930(E-B)	0.05306	0.0793	0.04703	0.05411	0.05248	0.03829	0.03829	0.03829	0.03829	0.0	0.0	0.0	0.15646				
2N2481(C-B)	0.02764	0.00805	0.00170	0.02118	0.00729	0.00139	0.00139	0.00139	0.00139	0.0	0.0	0.0	0.08150				
2N2481(E-B)	1.4975	0.02414	0.00903	0.05073	0.02187	0.00735	0.00735	0.00735	0.00735	0.0	0.0	0.0	0.14670				
2N2907A(C-B)	0.04975	0.03630	0.02070	0.05073	0.03477	0.01666	0.01666	0.01666	0.01666	0.0	0.0	0.0	0.0				
2N2907A(E-B)	0.13183	0.08449	0.01687	0.05116	0.01374	0.05116	0.01374	0.05116	0.01374	0.0	0.0	0.0	0.0				
2N2222A(C-B)	0.06368	0.02924	0.02699	0.06494	0.04461	0.02198	0.02198	0.02198	0.02198	0.0	0.0	0.0	0.0				
2N2222A(E-B)	1.77961	0.01721	0.04906	0.08117	0.07084	0.03996	0.03996	0.03996	0.03996	0.0	0.0	0.0	0.0				
IN4384	1.60721	0.51250	0.13213	1.63905	0.46422	0.10758	0.10758	0.10758	0.10758	0.0	0.0	0.0	0.0				
FS911-3465	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
IN816	0.0	0.C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
IA21ME	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
IN914A	0.21947	0.34079	0.37889	0.22382	0.30850	0.3869	0.3869	0.3869	0.3869	0.0	0.0	0.0	0.0				
IN752A	0.20645	0.24622	0.35273	0.21054	0.22303	0.28720	0.28720	0.28720	0.28720	0.0	0.0	0.0	0.0				
PC115	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
IN3U268:JAN	16.91462	15.56127	10.42856	17.24905	16.09522	8.49121	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
IN3611	1.35634	0.39501	0.08365	1.38361	0.35780	0.06811	0.06811	0.06811	0.06811	0.0	0.0	0.0	0.0				

APPENDIX A

APPENDIX A

	D 1 USEC	E 0.1 USEC	F 10 USEC	G 1 USEC	H 0.1 USEC	I 10 USEC	J 1 USEC	K 0.1 USEC	L 10 USEC	M 1 USEC	N 0.1 USEC	O 10 USEC	P 1 USEC
2N1042RAJAN(C-B)	0.02487	0.02173	0.01227	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1042RAJAN(E-B)	0.01791	0.02462	0.02300	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1777JAN	0.17612	0.06518	0.01764	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MS1040	0.00663	0.00212	0.00051	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N328A1(C-B)	0.12316	0.05773	0.26642	0.14428	0.05311	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N328A1(E-B)	0.03790	0.01237	0.11999	0.04439	0.01138	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N335(C-B)	0.59528	0.32989	0.70465	0.59192	0.30349	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N335(E-B)	0.27790	0.10996	0.71045	0.59156	0.10116	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3361JAN(C-B)	0.44212	0.17594	1.06567	0.51793	0.16166	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3361JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N4841(L-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N26844(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N37361(L-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N37361(E-B)	0.23369	0.09897	0.53284	0.21376	0.09105	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N9301C-B)	0.18946	0.12666	0.28618	0.22197	0.11634	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N9301C-E)	0.02632	0.00458	0.14801	0.03083	0.00422	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N24811(C-B)	0.07895	0.02423	0.26642	0.09249	0.02234	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N24811(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N29071(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N29071(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2222A1(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2222A1(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN6384	1.67616	0.3526	8.61734	1.96356	1.32684	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FS911-3-65	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN816	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN21NE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN916A	1.11458	0.01877	1.17537	1.151570	0.93725	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN752A	0.80529	0.94843	1.10563	0.94337	0.87254	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PC115	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN30266:JAN	50.89406	20.04044	90.58205	59.462102	25.79674	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN3611	1.29191	0.22492	7.26594	1.51343	0.20553	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN5995A	7.86338	4.32884	13.98806	9.21174	3.98250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN3C168	38.91898	21.44269	69.68862	45.59254	19.72691	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN4141	7.98338	4.39850	14.20895	9.35232	4.04655	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1002	2.11139	1.16329	3.75769	2.47344	1.71720	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N28571(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N28571(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N33751(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1490:JAN(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1490:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N35841(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N35841(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N28941(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N28941(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N58291(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N58291(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N30131JAN1(C-B)	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CA30181(C-B)	0.06316	0.03519	0.10301	0.07399	0.03237	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

APPENDIX A

APPENDIX A

APPENDIX A

IN645JAN	0.28189
IN120JAN	0.05206
IN173JAN	0.0
IN240JAN(C-B)	0.0
2N404A(E-B)	0.0
2N404A(E-B)	0.0
2N2971(C-B)	0.0
2N2971(E-B)	0.0
2N526(C-B)	0.0
2N526(E-B)	0.0
2N526(E-B)	0.0
2N270	0.0
2N390A(C-B)	0.0
2N396(E-B)	0.0
2N428H(JAN)(C-B)	0.0
2N428H(JAN)(C-B)	0.0
2N393JAN(C-B)	0.0
2N393JAN(E-B)	0.0
2N5018H(JAN)(C-B)	0.0
2N5018H(JAN)(E-B)	0.0
2N5018(JAN)(C-B)	0.0
2N705JAN(C-B)	0.0
2N705JAN(E-B)	0.0
2N468H(JAN)(C-B)	0.0
2N468H(JAN)(E-B)	0.0
2N1062RAJAN(C-B)	0.0
2N1062RAJAN(E-B)	0.0
IN277JAN	0.0
MS1040	0.0

N VALUE FOR RELATIONSHIP K=POLE(-N) DERIVED FROM EXPERIMENTAL DAMAGE DATA FOR TIME INTERVALS INDICATED

	K 10-1 USEC	K 1-1 USEC	K 10-1 USEC	K 1-1 USEC	K 10-1 USEC	K 1-1 USEC
2N328A(C-B)	1.41497	0.43012	1.42255	0.43012	0.24988	0.27300
2h328A(E-B)	0.24988	0.27300	0.26164	0.26164	0.57403	0.58805
2N335(C-B)	0.6204	0.34242	0.34242	0.34242	0.3555	0.34949
2N335(E-B)	0.34242	0.36798	0.36798	0.36798	0.35952	0.36350
2N336H(JAN)(C-B)	1.36798	0.20412	0.20412	0.20412	0.74666	0.47539
2N336H(JAN)(E-B)	0.20412	0.3951	0.3951	0.3951	0.34621	0.23786
2N2684(C-B)	0.3951	0.51515	0.51515	0.51515	0.52288	0.51401
2N2684(E-B)	0.51515	0.42138	0.42138	0.42138	0.20337	0.20862
2N3736(C-B)	0.42138	0.36515	0.36515	0.36515	0.36431	0.36473
2N3736(E-B)	0.36515	0.39211	0.39211	0.39211	0.38674	0.38908
2N931(C-B)	0.39211	0.57403	0.57403	0.57403	0.58358	0.57880
2N931(E-B)	0.57403	0.	0.	0.	0.	0.
2N2481(C-B)	0.	0.22185	0.22185	0.22185	0.24715	0.223450
2N2481(E-B)	0.	0.42325	0.42325	0.42325	0.46166	0.41465
2N2971(C-B)	0.	0.16782	0.16782	0.16782	0.14930	0.15856
2N2971(E-B)	0.	0.42627	0.42627	0.42627	0.41370	0.41864
2N2222A(C-B)	0.	0.52827	0.52827	0.52827	0.41173	0.50000
2N2222A(E-B)	0.	0.03951	0.03951	0.03951	0.05643	0.06247
1N4386	0.	0.22724	0.22724	0.22724	0.18142	0.20433
FS911-2465	0.	0.28524	0.28524	0.28524	0.37482	0.33003
IN816	0.	0.	0.	0.	0.	0.

APPENDIX A

IN21ME	0.25964	0.23045
1A914A	0.72700	0.72016
1N752A	0.41240	0.43255
PC115	0.42276	0.38818
1N3026B:JAN	-1.00000	-1.00000
1N3611	0.0	0.0
1N3995A	-1.00000	-1.00000
1N30168	-1.00000	-1.00000
1N6141	-1.00000	-1.00000
1D02	-1.00000	-1.00000
2N28571(C-B)	0.11070	0.87006
2N28571(E-B)	-4.9769	3.49884
2N33751(C-B)	0.30103	0.25227
2N33751(E-B)	0.28172	0.47049
2N149C:JAN(C-B)	0.51663	0.48337
2N149U:JAN(E-B)	1.46586	1.53016
2N35841(C-B)	0.48902	0.51098
2N35841(E-B)	1.44226	1.66756
2N28941(C-B)	0.55286	0.53148
2N28941(E-B)	1.19957	1.19337
2N58291(C-B)	0.45230	0.44665
2N58291(E-B)	0.36653	0.36242
2N3C13:JAN(C-B)	0.46875	0.67778
2N3U13:JAN(E-B)	1.19728	0.21769
CA30181(C-B)	0.53760	0.50515
SM0526517(C-B)	0.58503	0.50115
SM0526517(E-B)	0.39794	0.41997
2N16133:JAN(C-B)	0.17609	0.1893
2N16133:JAN(E-B)	0.32736	0.34556
2N14852:JAN(C-B)	0.19629	0.18006
2N14852:JAN(E-B)	1.10000	-1.00000
2N34391(C-B)	0.43146	0.46673
2N34391(E-B)	0.53712	0.55003
2N706:JAN(C-B)	0.78329	0.73003
2N706:JAN(E-B)	1.42276	1.446370
IR-69-6735	1.00000	1.00000
1N258U	-1.00000	-1.00000
IN751A:JAN	1.01773	1.00860
1N685B:JAN	0.63849	0.66254
1N2991B:JAN	-1.00000	-1.00000
1N3025B:JAN	-1.00000	-1.00000
M01054	0.12710	0.11441
IN746A:JAN	-1.00000	-1.00000
1N645:JAN	0.64446	0.44743
1N1202R:JAN	1.00000	0.95224
IN1731A:JAN	0.39794	0.45864
2N404A1(C-B)	0.12494	0.15761
2N404A1(E-B)	0.12909	0.0991
2N297A1(C-B)	0.04139	0.08994
2N297A1(E-B)	0.17609	0.19829
2N526(C-B)	0.23824	0.27221
2N526(E-B)	0.25828	0.23557
1N270	0.02220	0.0670
2N396A1(C-B)	1.6975	1.3228
2N396A1(E-B)	0.19781	0.06517
2N628M1:JAN(C-B)	1.18452	1.20119
2N628M1:JAN(E-B)	0.16474	0.07789
2N3932:JAN(C-B)	0.56427	0.49709
2N3932:JAN(E-B)	0.68561	0.66329

APPENDIX A

2N501A@JAN(C-B)	0.75333	0.70405	0.72869
2N7052@JAN(C-B)	0.56508	0.64235	0.69372
2N7052@JAN(C-B)	0.28460	0.30103	0.29251
2N7052@JAN(C-B)	0.26324	0.25964	0.26144
2N664M@JAN(C-B)	0.23099	0.24304	0.23702
2N664M@JAN(C-B)	0.09145	0.07086	0.08115
2N1042@JAN(C-B)	0.47712	0.42597	0.45134
2N1042@JAN(C-B)	0.47415	0.64461	0.65936
2N1042@JAN(C-B)	0.10914	0.10846	0.10780
1N2775@JAN	0.04139	0.05552	0.04845
MS106G			

ARITHMETIC MEAN VALUES FOR QUANTITIES A THROUGH J FOR PULSE DURATIONS OF 1E-1 AND 0.1 USEC

J-1UE+14	0-35E+14	0-16E+15
0.99E+03	0.38E+04	0.20E+05
0.11E+04	0.25E+04	0.68E+04
0.34E+03	0.11E+04	0.61E+04
-1.19E+13	-9.0E+13	0.66E+14
0.93E+03	0.17E+04	0.40E+04
0.15E+04	0.46E+04	0.14E+05
0.45E+03	0.67E+03	0.30E+04
1.34E+13	-3.2E+14	0.22E+05
0.13E+04	0.33E+04	0.90E+04

POWER TO DAMAGE EQUATION COEFFICIENTS FOR POPULATIONS DEFINED BY A THROUGH J

$$P = K1 T^{-1} + K2 T^{-1/2} + K3$$

K1	K2	K3
0.821E-03	0-249E+01	0-136E+03
0-116E-02	0.256E+01	0.527E+02
-1.863E-16	0-225E+01	0.354E+03
0-446E-03	0-458E+00	0.152E+03
0-558E-03	0-309E+00	0.342E+02
0-145E-04	0-103E+01	0.406E+03
0-603E-04	0-638E+01	0-144E+03
-0-528E-04	0-392E+00	0-327E+03
0.212E-12	0-110E+01	-0-222E+02
-0.101E-03	0.306E+01	0.366E+03

RATIO OF EXPERIMENTAL POWER TO PREDICTED VALUE BASED ON JUNCTION CAPACITANCE MODEL L-MODEL BASED ON D-A-T-A BOOK PARAMETERS N-MODEL BASED ON EXPERIMENTAL PARAMETERS AND WHERE DATA MISSING, BASED ON D-A-T-A. BOOK PARAMETERS

	10 USEC	1 USEC	.1 USEC	0.1 USEC	10 USEC	1 USEC	0.1 USEC	10 USEC	1 USEC	0.1 USEC	10 USEC	1 USEC	0.1 USEC	10 USEC	1 USEC	0.1 USEC	10 USEC	1 USEC	0.1 USEC
2N320A(C-B)	0.01958	0.01610	0.01371	0.007557	0.06214	0.05291	-0.07557	0.06214	0.05291	-0.05291	0.06214	0.05291	-0.05291	0.06214	0.05291	-0.05291	0.06214	0.05291	-0.05291
2N320A(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N325(C-B)	0.20738	0.26234	0.31113	0.3419	0.06325	0.05129	0.03419	0.06325	0.05129	0.03419	0.06325	0.05129	0.03419	0.06325	0.05129	0.03419	0.06325	0.05129	0.03419
2N325(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N330:JAN(C-B)	0.14596	0.10771	0.17786	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N336:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2484(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2484(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3734(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3734(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N930(C-B)	1.63581	1.27619	0.98166	0.45396	0.35413	0.27242	0.45396	0.35413	0.27242	0.45396	0.35413	0.27242	0.45396	0.35413	0.27242	0.45396	0.35413	0.27242	0.45396
2N930(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2481(C-B)	0.15579	0.04927	0.01558	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2481(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2907A(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2907A(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2222A(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2222A(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
F5911-3465	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1N2114	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1N914A	1.20360	0.34261	0.57017	0.11215	0.18916	0.31407	0.18916	0.31407	0.18916	0.18916	0.31407	0.18916	0.31407	0.18916	0.31407	0.18916	0.31407	0.18916	0.31407
1N752A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PC115	2.35117	1.96628	1.52161	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1N3026B:JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1N3611	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1N3695A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1N3016B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1N6141	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1UD2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2857(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2857(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3375(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3375(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1490:JAN(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1490:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3584(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3584(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2894(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2894(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N5829(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N5829(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3013:JAN(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3013:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CAC18(C-B)	3.27550	3.57204	3.61499	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CAC18(E-B)	14.49531	16.33365	16.49531	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SPB526517(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SPB526517(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

APPENDIX A

WEEKA DAMAGE CONSTANT BASED ON HIGH POWER OR LOW POWER RATING FOR ALL DEVICES
WEEKA DAMAGE CONSTANT BASED ON HIGH POWER OR LOW POWER RATING FOR ALL DEVICES

APPENDIX A

APPENDIX A

2H3736(E-B)	0.664
2H2904(E-B)	0.181
2H30(E-B)	0.097
2H2691(E-B)	0.064
2H4811(E-B)	0.109
2H207A(E-B)	0.121
2H207A1(E-B)	0.320
2H2222A(E-B)	0.193
2H2222A1(E-B)	0.241
1M6384	0.566
F5911-3465	0.0
1M616	0.377
1M216	0.0
1M14A	0.091
1M52A	0.501
PC115	0.137
1M3026:JAN	4.581
1M3611	1.808
1M995A	0.0
1M30168	3.503
1M6141	2.156
1002	4.045
2H1577(E-B)	0.075
2H2557(E-B)	0.05
2H3751(E-B)	0.135
2H3751(E-B)	0.062
2H1490:JAN(E-B)	0.78189
2H1190:JAN(E-B)	1.550
2H5844(E-B)	0.032
2H3584(E-B)	0.032
2H2994(E-B)	0.085
2H2994(E-B)	1.072
2H5129(E-B)	0.036
2H5829(E-B)	0.026
2H3013:JAN(E-B)	0.026
2H3013:JAN(E-B)	1.121
(A)3019(E-B)	0.035
CA0181(E-B)	1.024
SH8265171(E-B)	0.0
SH8265171(E-B)	0.0
2H1613:JAN(E-B)	0.452
2H1613:JAN(E-B)	0.966
2H1655:JAN(E-B)	0.189
2H1655:JAN(E-B)	0.835
2H23391(E-B)	0.003
2H4391(E-B)	1.049
2H706:JAN(E-B)	0.017
2H16:JAN(E-B)	0.041
IR-9-6735	0.0
1M638U	4.581
IN71A:JAN	1.449
1M645B:JAN	1.604
1H2991B:JAN	2.695
1H325B:JAN	0.377
MOCS4	0.0
IN76A:JAN	15.697
1H655:JAN	3.019
1H1202A:JAN	1.027
1H1731A:JAN	0.27
2H404A(E-B)	0.0
	0.344
	0.268
	0.317
	0.434
	0.157

APPENDIX A

U* SAME AS O EXCEPT MODEL LIMITED TO DEVICES WITHOUT CAPACITANCE DAMAGE MODEL DATA
 V* SAME AS P EXCEPT MODEL LIMITED TO DEVICES WITHOUT CAPACITANCE DAMAGE MODEL DATA
 W* SAME AS L EXCEPT MODEL LIMITED TO DEVICES WITHOUT CAPACITANCE DAMAGE MODEL DATA
 X* SAME AS K EXCEPT MODEL LIMITED TO DEVICES WITHOUT CAPACITANCE DAMAGE MODEL DATA
 Y* SAME AS S EXCEPT MODEL LIMITED TO DEVICES WITHOUT CAPACITANCE DAMAGE MODEL DATA
 Z* SAME AS T EXCEPT MODEL LIMITED TO DEVICES WITHOUT CAPACITANCE DAMAGE MODEL DATA

APPENDIX A

PC115	-0.293	-0.309	0.301	0.293	0.245	0.190	0.263	0.277	0.269
IN30468:JAN	9.74	1.295	15.89	9.775	9.769	6.72	1.019	13.881	13.881
IN3611	1.725	0.687	0.273	1.725	0.546	0.173	1.546	0.615	0.245
IN395A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN30168	7.474	9.402	11.845	7.475	7.470	7.416	6.698	8.426	10.615
IN4141	4.599	5.786	7.239	4.600	4.597	4.601	4.122	5.185	6.532
10D2	1.454	1.315	16.567	10.455	10.449	10.457	23.804	29.185	37.723
2N2857(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2871(E-B)	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3375(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3375(E-B)	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1490:JAN(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1490:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3504(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3504(E-B)	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2994(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N2994(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N5229(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N5229(E-B)	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3013:JAN(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3013:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CA3018(C-B)	0.090	0.124	0.158	0.091	0.099	0.090	0.026	0.283	0.360
CA3018(E-B)	1.62	0.062	0.054	0.062	0.069	0.034	0.142	0.141	0.124
SMB26517(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SMB26517(E-B)	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SM8526517(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1613:JAN(C-B)	21.845	13.044	7.913	21.847	10.364	4.994	49.740	29.701	18.017
2N1613:JAN(E-B)	2.497	2.112	1.655	2.497	1.678	1.171	5.685	4.809	4.223
2N1485:JAN(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N1485:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3329(C-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N3439(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N706:JAN(C-B)	0.044	0.106	0.230	0.144	0.184	0.145	1.099	0.240	0.524
2N716:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IR-89-6735	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN2580	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN721A:JAN	3.745	15.529	63.055	3.745	12.338	39.799	8.527	35.359	143.574
IN455B:JAN	1.560	2.702	4.445	1.560	2.147	3.121	3.553	6.152	11.261
IN2991B:JAN	5.749	7.232	9.111	5.750	5.746	5.751	5.153	6.482	8.166
IN305B:JAN	0.805	3.204	12.756	0.805	2.546	8.051	0.721	2.872	11.432
M01054	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
IN746A:JAN	40.568	124.230	380.305	40.572	98.701	240.062	92.373	282.868	865.946
IN645:JAN	7.802	3.603	4.018	7.802	2.862	2.346	17.764	8.203	9.149
IN102RA:JAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IN1731A:JAN	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
2N406A(C-B)	1.872	0.994	0.569	1.873	0.790	0.359	0.0	0.0	0.0
2N404AE(B)	1.623	0.870	0.433	1.623	0.691	0.273	0.0	0.0	0.0
2N297A(C-B)	1.150	0.504	0.246	1.150	0.400	0.155	0.0	0.0	0.0
2N297A(F-B)	0.805	0.481	1.301	0.805	0.382	0.190	0.0	0.0	0.0
2N526(C-B)	2.028	1.398	1.051	2.029	1.110	0.663	0.0	0.0	0.0
2N526(E-B)	2.497	1.801	1.236	2.497	1.431	0.780	0.0	0.0	0.0
IN270	0.296	0.124	0.057	0.296	0.099	0.036	0.0	0.0	0.0
2N396A(C-B)	1.794	1.056	0.569	1.795	0.839	0.359	0.0	0.0	0.0
2N396A(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N620M:JAN(C-B)	2.653	1.615	1.039	2.653	1.283	0.656	0.0	0.0	0.0
2N428M:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N593:JAN(C-B)	4.681	6.633	8.467	4.681	5.429	5.307	3.0	0.0	0.0
2N333:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N501A:JAN(C-B)	0.047	0.106	0.213	0.047	0.084	0.134	0.0	0.0	0.0
2N501A:JAN(E-B)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2N705:JAN(C-B)	0.122	0.093	0.074	0.122	0.074	0.074	0.0	0.0	0.0

APPENDIX A

APPENDIX A

2N58291(C-B)	0.0	0.0
2N58291(E-B)	0.0	0.0
2N58291(C-B)	0.0	0.0
2N50132JAN1(C-B)	0.0	0.0
2A30132JAN1(E-B)	0.0	0.0
CA30132C-B)	0.206	0.225
(A3C181E-B)	0.442	0.112
SHB5265171C-B)	0.0	0.0
SHB5265171(E-B)	0.0	0.0
2N16132JAN(C-B)	49.744	23.598
2N16132JAN1(E-B)	5.885	3.821
2N14852JAN1(C-B)	0.0	0.0
2N14852JAN1(E-B)	0.0	0.0
2N363391(C-B)	0.0	0.0
2N363391(E-B)	0.0	0.0
2N7062JAN1(C-B)	0.099	0.191
2N7062JAN1(E-B)	0.0	0.0
IR-69-6335	0.0	0.0
IN2580	0.0	0.0
INT51AJAN	8.528	28.092
IN485B1JAN	3.553	4.888
IN29910JAN	5.153	5.154
IN30258JAN	4.721	2.282
HD1054	0.0	0.0
1M744AJAN	92.382	224.740
IN645FJAN	17.666	6.517
IN12U2RAJAN	3.0	0.0
IN1731AJAN	0.0	0.0
2N606AA(C-B)	0.0	0.0
2N404AE(B)	0.0	0.0
2N297AC(B)	0.0	0.0
2N297AE(B)	0.0	0.0
2N5264C-B)	0.0	0.0
2N5261E-B)	0.0	0.0
IN271	0.0	0.0
2N3932JAN1(E-B)	0.0	0.0
2N3932JAN1(C-B)	0.0	0.0
2N5012JAN1(L-B)	0.0	0.0
2H5012JAN1(E-B)	0.0	0.0
2N7C52JAN(C-B)	0.0	0.0
2N648H2JAN1(E-B)	0.0	0.0
2N396AE(B)	0.0	0.0
2N428H2JAN1(C-B)	0.0	0.0
2N428H2JAN1(E-B)	0.0	0.0
2N3932JAN1(C-B)	0.0	0.0
2N3932JAN1(E-B)	0.0	0.0
2N5012JAN1(L-B)	0.0	0.0
2H5012JAN1(E-B)	0.0	0.0
2N7C52JAN(C-B)	0.0	0.0
2N648H2JAN1(E-B)	0.0	0.0
2N466H2JAN1(C-B)	0.0	0.0
2N466H2JAN1(E-B)	0.0	0.0
2N1042RAJAN(C-B)	0.0	0.0
2N1042RAJAN(E-B)	0.0	0.0
IN2772JAN	0.0	0.0

QUANTITIES A THROUH J AND L WHICH ARE RELATED TO MAGNITUDE

SILICON DEVICES ONLY FOR L, M, AND N

APPENDIX A

23.28696	16.91402	15.56127	14.48367	12.93426	10.46465	9.10403	8.58823
3.52008	7.37478	6.44713	5.95910	5.11189	4.24504	3.91071	2.65313
2.61119	2.44098	2.40429	1.81431	1.80446	1.74115	1.60996	1.54493
1.52561	1.45925	1.39292	1.35674	1.34222	1.30108	1.24260	1.12760
0.9994	0.93809	0.91537	0.80220	0.79595	0.76039	0.70170	0.68983
0.66558	0.61344	0.58627	0.57486	0.57255	0.57209	0.51250	0.50210
0.49076	0.46431	0.43264	0.42003	0.40968	0.39788	0.39501	0.37336
0.35273	0.34079	0.30849	0.29692	0.29677	0.27036	0.25560	0.24622
0.24622	0.24538	0.24538	0.23630	0.21947	0.21889	0.20645	0.19899
0.19519	0.19501	0.18744	0.17950	0.17819	0.17412	0.15449	0.14484
0.13760	0.13632	0.13518	0.13496	0.13266	0.13213	0.12269	0.12111
0.14608	0.11587	0.10735	0.09949	0.08793	0.08155	0.08497	0.08497
0.08365	0.08207	0.08125	0.08077	0.07960	0.07821	0.07239	0.07145
0.07055	0.06543	0.06518	0.06368	0.06169	0.06134	0.05751	0.05649
0.05527	0.05306	0.05174	0.04975	0.04975	0.04975	0.04924	0.04776
0.04703	0.04601	0.04522	0.04287	0.04171	0.04146	0.04090	0.03869
0.03862	0.03838	0.03766	0.03701	0.03681	0.03681	0.03456	0.02897
0.02857	0.02764	0.02726	0.02699	0.02633	0.02535	0.02487	0.02414
0.02614	0.02388	0.02300	0.02317	0.02255	0.02239	0.02147	0.02134
0.02070	0.01931	0.01924	0.01921	0.01821	0.01791	0.01664	0.01738
0.01725	0.01704	0.01690	0.01687	0.01641	0.01529	0.01468	0.01442
0.01327	0.01309	0.01275	0.01227	0.01227	0.01188	0.01159	0.01063
0.01004	0.00995	0.00966	0.00929	0.00929	0.00903	0.00886	0.00829
0.00805	0.00782	0.00775	0.00675	0.00663	0.00578	0.00553	0.00511
0.00460	0.00460	0.00450	0.00416	0.00377	0.00252	0.00212	0.00051
0.00473							
19.20512	17.24905	14.09522	13.19046	13.11016	10.77977	8.49121	6.59523
6.49373	6.63029	3.67336	3.18421	2.70513	2.66291	2.2101	1.77564
1.63989	1.63975	1.42051	1.48361	1.33195	1.32265	1.31087	1.01465
0.82913	0.71560	0.68876	0.65317	0.60879	0.58476	0.47350	0.45655
0.41780	0.41586	0.39959	0.38046	0.35780	0.35227	0.30865	0.22565
0.22582	0.22322	0.22303	0.21054	0.20812	0.20293	0.20293	0.20292
0.19979	0.19887	0.19591	0.18264	0.16978	0.16268	0.13994	0.13444
0.13382	0.13119	0.12245	0.11838	0.11151	0.10989	0.10753	0.09929
0.08117	0.07697	0.07118	0.07084	0.06611	0.06494	0.06472	0.05637
0.05611	0.05328	0.05248	0.05116	0.05073	0.05073	0.04995	0.04883
0.04652	0.04461	0.04228	0.03996	0.03946	0.03883	0.03778	0.03644
0.03798	0.03477	0.03411	0.03353	0.03330	0.03330	0.02997	0.02997
0.02385	0.02359	0.02300	0.02296	0.02263	0.02230	0.02220	0.02198
0.02187	0.02122	0.02099	0.01962	0.01759	0.01749	0.01686	0.01574
0.01531	0.01487	0.01387	0.01385	0.01374	0.01353	0.01329	0.01312
0.01149	0.01066	0.01050	0.01015	0.00947	0.00947	0.00875	0.00866
0.00832	0.00832	0.00817	0.00735	0.00721	0.00708	0.00694	0.00590
0.00466	0.00466	0.00426	0.00416	0.00390	0.00375	0.00366	0.00205
14.72055	12.69399	8.11673	4.04033	3.03070	2.96712	2.12019	1.61771
1.38886	1.0321	0.93952	0.89284	0.75756	0.68906	0.67339	0.65655
0.54713	0.54450	0.51238	0.42404	0.42404	0.40747	0.37103	0.33791

APPENDIX A

J-33674	-28623	0.26519	0.22235	0.22490	0.21720	0.19952	0.17679	0.17427	0.16572
0.11926	0.11264	0.09938	0.08945	0.07733	0.05683	0.05411	0.04924	0.04735	0.04357
0.03975	0.03788	0.02379	0.02031	0.01631	0.01031	0.02987	0.02499	0.02385	0.02357
0.02273	0.01749	0.01705	0.01429	0.01212	0.01169	0.00631	0.00292	0.00126	
63-42088	50.89406	49.87672	47.36677	38.91898	36.14102	29.77527	28.04044	25.16792	23.09212
16-27051	16.02310	13.26353	11.51517	9.19297	7.98338	7.56336	7.02380	7.49997	
5-13437	5.05277	4.73442	4.39850	4.3888	4.10749	4.0081	3.66745	3.32512	
2-99377	2.99392	2.48691	2.36714	2.11139	2.08635	2.06919	2.03415	1.76035	1.69516
1-68701	1.67616	1.64944	1.66647	1.64215	1.53948	1.37372	1.31955	1.22109	
1-17357	1.16329	1.14558	1.08777	1.01055	0.98483	0.94739	0.88624	0.80529	
0-65661	0.64068	0.65978	0.64719	0.60879	0.56679	0.51344	0.50528	0.46184	
0-64212	0.42264	0.39119	0.39119	0.36456	0.35526	0.32989	0.31156	0.29239	0.27790
0-26843	0.22291	0.23685	0.23642	0.23369	0.22492	0.21316	0.19243	0.18969	0.18548
0-17594	0.16765	0.15648	0.15643	0.15256	0.14670	0.14670	0.14670	0.12316	
0-11736	0.10996	0.09897	0.09747	0.08150	0.07895	0.06601	0.06316	0.05773	
0-05664	0.05672	0.05369	0.05113	0.04742	0.04742	0.03912	0.03790	0.03519	0.03299
0-03158	0.02736	0.02632	0.02428	0.01956	0.01555	0.01272	0.01237	0.01210	0.00695
0-010458	0.010137								
90-58205	69.26862	59.62102	58.34615	55.49240	45.59254	34.63632	25.79674	21.26437	19.72691
15-53767	14.2095	13.98436	9.61778	9.35232	9.21174	8.60734	8.4970	7.26594	
6-93615	6.66045	5.32836	4.06655	3.98250	3.75789	3.50712	3.19701	2.91335	2.47344
2-13154	1.96358	1.93114	1.60628	1.51746	1.51343	1.30570	1.21396	1.15537	1.19563
1-07020	1.06567	1.06567	0.94337	0.93725	0.87254	0.71045	0.71045	0.61647	
1-59192	0.52284	0.51793	0.51793	0.47169	0.32556	0.30349	0.28418	0.2376	0.26642
0-26642	0.22197	0.20693	0.16186	0.14801	0.14426	0.14226	0.11989	0.11634	
2-10116	0-09249	0.09105	0.07399	0.07104	0.06289	0.05311	0.04973	0.04704	0.04439
0-03699	0.03237	0.03083	0.02234	0.01136	0.01113	0.00622			
24-16864	16.29904	9.37362	3.35347	3.22408	2.32209	1.21296	1.04763	0.85620	0.77215
1-76107	C-74204	0.69663	0.64482	0.61837	0.61540	0.46451	0.56421	C-55288	0.51384
0-46995	C-8149	0.35661	0.29026	0.28611	0.25419	0.18229	0.17128	0.13113	0.13602
0-07153	C-01153	0.06116	0.06045	0.05565	0.05351	0.04976	0.04281	0.03800	0.03627
0.02346	0.01919	0.01714	C.00443	0.00207					
26-67943	11.03666	10.94316	9.71422	4.42344	4.23573	3.86229	3.06408	1.36789	
1-14039	0.01231	0.00737	0.00441	0.05246	0.01456	0.69287	0.69161	0.57452	
1-55531	1-39099	0.38082	0.21735	0.28169	0.27755	0.27755	0.26833	0.2066	0.18822
0-15265	C-14162	0.13570	0.13033	0.13033	0.12772	0.11730	0.10943	0.09302	
1-68399	1-6555	0.5224	0.5163	0.44740	0.36226	0.33331	0.32377	0.32339	0.31128
0-03040	C-02962	0.02534	0.02172	0.02151	0.01990	0.01955	0.01927	0.01915	0.01860
1-11824	C-01751	0.01631	0.01460	0.01477	0.01459	0.01401	0.01363	0.01313	0.01277
0-01246	C-01246	0.01246	0.01156	0.01155	0.01135	0.01130	0.01109	0.01094	0.01002

APPENDIX A

0.00075	0.00869	0.00820	0.00778	0.00763	0.00713	0.00671	0.00652	0.00648	0.00608
-1.10608	0.1591	0.00578	0.00543	0.00541	0.00509	0.00285	0.00284	0.00274	
93.53462	47.19267	19.25713	19.25611	9.58228	8.00845	7.90335	7.03699	6.86439	
5.96971	3.29391	2.80296	2.69000	2.60275	2.54529	2.15038	1.68500	1.53912	
1.45960	1.38039	1.29136	1.27635	1.26776	1.10728	0.445048	0.39302	0.36107	
0.33786	0.27682	0.19257	0.19257	0.18341	0.15016	0.12763	0.11678	0.11229	
0.07703	-0.6617	0.05615	0.05393	0.04743	0.01497	0.1101	0.03002		
31.69615	24.23669	16.93386	12.87296	6.90781	5.28245	4.97163	4.89295	3.01164	2.844061
2.60091	2.54231	1.31467	1.08358	1.06643	0.87004	0.69837	0.55641	0.42731	0.41226
0.41016	0.38686	0.37287	0.36866	0.28658	0.26636	0.25098	0.24858	0.24703	
1.23398	-0.23365	0.21751	0.1844	0.16931	0.16713	0.16406	0.14915	0.14624	
0.11932	0.09943	0.09322	0.09322	0.09322	0.09192	0.08752	0.08461	0.08127	0.07768
0.7731	0.62267	0.6111	0.5941	0.05327	0.05179	0.04795	0.04512	0.04334	0.04195
0.04178	0.04152	0.04074	0.04004	0.03251	0.03115	0.02709	0.02611	0.02438	0.01806
-0.1788	0.1422	0.01371	0.01253	0.01117	0.00935	0.00870	0.00598	0.00584	0.00305
0.00013									
0.60458	0.53761	0.52397	0.43664	0.38767	0.32083	0.30078	0.28073	0.24604	0.20914
0.17949	0.16977	0.12917	0.07920	0.04318	0.03183	0.03023	0.01891	0.01805	0.01044
18.73335	14.70956	14.49531	10.00529	6.97798	3.61499	3.57206	3.36278	3.27550	2.35117
1.96828	1.63581	1.52161	1.27009	1.21057	0.98166	0.69971	0.57017	0.36641	0.34341
1.31113	0.26234	0.20738	0.21360	0.15579	0.14596	0.10771	0.07786	0.04927	0.01958
0.01610	0.01558	0.01371	0.01371						
1.614206	6.73626	5.92027	5.81498	5.55653	4.98601	4.91271	4.85527	3.30155	2.42220
2.39030	2.36526	2.30324	2.29008	1.87199	1.78011	1.77979	1.77067	1.39921	1.39006
1.39781	1.39693	1.35731	1.13086	1.12968	1.12448	1.12677	1.04891	1.03539	1.00018
1.00018	1.00000	0.90375	0.90359	0.90302	0.75086	0.71207	0.63444	0.59671	0.59192
0.51761	0.48972	0.45908	0.45996	0.43924	0.39298	0.35413	0.31407	0.27242	0.24198
0.22793	0.21587	0.18916	0.18771	0.18267	0.16114	0.15020	0.14278	0.13612	0.13520
0.11973	0.11971	0.11964	0.11215	0.10796	0.09749	0.08625	0.07557	0.06214	0.05668
0.05291	0.05261	0.05129	0.04664	0.04682	0.04325	0.03419	0.02876	0.02445	
								0.00773	

APPENDIX A

18.-33365	14.49531	14.-14206	10.08529	6.73626	5.92027	5.01498	5.55653	4.98601	4.91271
4.-68527	3.6199	3.5729	3.30155	3.27550	2.42220	2.3030	2.36528	2.35117	2.30324
7.-29608	1.96828	1.87199	1.78011	1.77979	1.77867	1.5161	1.39921	1.39781	1.39006
1.-39693	1.35731	1.21057	1.13986	1.12968	1.12948	1.12177	1.06891	1.03539	1.00016
1.-00018	1.00000	0.90375	0.90359	0.90202	0.75088	0.71257	0.69971	0.63444	0.59671
-1.59192	-5.176	0.48972	0.45908	0.45396	0.43924	0.39228	0.36441	0.3513	0.31407
0.-27242	0.24198	0.22793	0.21587	0.18916	0.18871	0.18267	0.16114	0.15020	0.14596
0.-13612	0.13520	0.11973	0.11971	0.11964	0.1125	0.1125	0.10796	0.10771	0.09749
0.-14278	0.07857	0.07557	0.06216	0.05969	0.05291	0.05241	0.05129	0.04669	0.04662
0.-08625	0.0786	0.02876	0.02876	0.02876	0.02876	0.02876	0.02876	0.02876	0.02876
0.-03425	0.03419	0.03425	0.03425	0.03425	0.03425	0.03425	0.03425	0.03425	0.03425
152.-59288	49.86266	25.29985	16.27759	13.91037	8.76486	8.15436	8.15436	8.71535	8.644741
6.-67266	6.-47186	6.-23568	6.-20701	5.-27666	5.-23379	5.-14551	5.-14551	4.-94983	4.-79668
4.-19463	4.-00679	3.-63480	3.-83734	3.-80756	3.-61476	3.-37331	3.-17480	3.-13031	3.-04605
3.02677	2.-96249	2.-76151	2.-42142	2.-28195	1.-99383	1.-98430	1.-96890	1.-87818	1.-86890
1.61225	1.50253	1.44552	1.-38901	1.-37733	1.-62414	1.-6430	1.-00170	1.-00170	0.-38830
0.92270	0.90803	0.84738	0.-84738	0.-81368	0.-81368	0.-75127	0.-74411	0.-72276	0.-71997
0.-69764	0.-69451	0.-68867	0.-65111	0.-64799	0.-65562	0.-65553	0.-62606	0.-62357	0.-62009
-0.60535	-0.58537	-0.56076	-0.51963	-0.51092	-0.49608	-0.47967	-0.45787	-0.43824	-0.43170
-0.42375	-0.42275	-0.42375	-0.42166	-0.41670	-0.41670	-0.39877	-0.39877	-0.3986	-0.3986
0.39346	0.36148	0.35975	0.34892	0.34725	0.-33666	0.-33577	0.-33161	0.-32533	0.-32533
0.30649	0.29745	0.27914	0.-2773	0.-27713	0.-27547	0.-27341	0.-26508	0.-26295	0.-25906
0.25303	0.25042	0.-49214	0.-24095	0.-22819	0.-22219	0.-22819	0.-2187	0.-2187	0.-2187
0.21184	0.2066	0.-20484	0.-2034	0.-19938	0.-1938	0.-19440	0.-19187	0.-18782	0.-18782
0.18074	0.18443	0.-17944	0.-17839	0.-17446	0.-17363	0.-16867	0.-16266	0.-15874	0.-15874
0.15829	0.15637	0.-15134	0.-15134	0.-14954	0.-14631	0.-14390	0.-13890	0.-13832	0.-13832
0.13394	0.13254	0.-13209	0.-12951	0.-12521	0.-12521	0.-12521	0.-12521	0.-12521	0.-12521
0.12461	0.12461	0.12049	0.11963	0.11904	0.-11895	0.-11665	0.-11610	0.-11610	0.-11610
0.10896	0.10896	0.10553	0.10017	0.09922	0.-09922	0.-09391	0.-09227	0.-09227	0.-09227
0.09114	0.09114	0.08533	0.-08154	0.-07851	0.-07838	0.-07763	0.-07513	0.-07477	0.-07477
0.08765	0.08634	0.08533	0.06236	0.05756	0.-05635	0.-05448	0.-05302	0.-05258	0.-05234
0.06962	0.06962	0.06261	0.04961	0.04961	0.-04883	0.-04735	0.-04663	0.-04486	0.-04486
0.05159	0.04985	0.04985	0.04237	0.-04237	0.-04237	0.-04237	0.-03988	0.-03756	0.-03738
0.-04458	0.-04458	0.04257	0.-03207	0.-12976	0.-2976	0.-2976	0.-26992	0.-26992	0.-25904
0.-03486	0.-03631	0.-03068	0.-02962	0.-02282	0.-02282	0.-02282	0.-02183	0.-01878	0.-01753
0.-03632	0.-0292	0.-02692	0.-02692	0.-00648	0.-00648	0.-00648	0.-00325	0.-00325	0.-00325
0.-0292	0.-02492	0.-01191	0.00992	0.00814	0.00814	0.00814	0.00814	0.00814	0.00814
0.-01645	0.-01645	0.-01645	0.-01645	0.-01645	0.-01645	0.-01645	0.-01645	0.-01645	0.-01645
96.-31378	39.-60262	16.-27904	15.-96650	8.-77997	5.-14688	5.-14697	5.-14697	5.-14697	5.-14697
5.16272	5.16272	4.-23861	4.-19572	4.-19498	4.-1933	4.-1933	4.-1933	4.-1933	4.-1933
3.-93515	3.-93267	3.-13056	3.-02757	3.-02704	3.-02513	2.-94275	2.-94275	2.-94275	2.-94275
2.-42017	2.-17814	2.-12917	2.-0393	1.-87835	1.-58410	1.-56410	1.-56410	1.-56410	1.-56410
1.-34025	1.-25245	1.-16848	1.-06440	1.-01762	1.-00179	1.-00179	1.-00179	1.-00179	1.-00179
1.-86136	1.-81395	0.-81395	0.-75134	0.-72003	0.-68873	0.-6724	0.-6724	0.-6724	0.-6724
0.-62612	0.-40561	0.-58239	0.-57424	0.-55444	0.-51968	0.-51483	0.-50493	0.-46967	0.-44553
0.-43828	0.-43828	0.-42379	0.-42379	0.-42379	0.-40593	0.-39358	0.-39358	0.-39358	0.-39358
0.-36378	0.-31662	0.-33184	0.-31682	0.-31682	0.-31311	0.-28720	0.-28720	0.-27722	0.-27722
0.-27248	0.-26732	0.-26615	0.-26302	0.-26297	0.-25848	0.-25045	0.-25045	0.-24216	0.-24216
0.-22767	0.-22177	0.-22018	0.-22018	0.-21193	0.-21193	0.-21193	0.-21193	0.-21061	0.-20979
0.-25562	0.-20144	0.-20036	0.-19376	0.-19376	0.-18784	0.-18784	0.-18784	0.-17257	0.-17257
0.-20662	0.-16214	0.-15841	0.-15841	0.-15841	0.-15438	0.-15135	0.-15135	0.-14833	0.-14833
0.-16831	0.-16831	0.-16831	0.-16831	0.-16831	0.-16831	0.-16831	0.-16831	0.-16831	0.-16831

APPENDIX A

APPENDIX A

4.35656	3.19933	2.98081	2.16786	2.14077	2.04213	1.87793	1.51026	1.49756
4.35656	1.11602	1.08913	1.00324	0.8892	0.86492	0.82234	0.81685	0.78555
4.35656	0.75875	0.75513	0.70794	0.7456	0.63545	0.60911	0.59521	0.58069
4.35656	0.49105	C.46948	0.46067	0.45847	0.45308	0.43557	0.43357	0.40177
4.35656	0.37756	0.33803	0.26138	0.24811	0.22463	0.18878	0.12933	0.09550
4.35656	0.08522	0.05310	0.05310	0.04878	0.04607	0.04055	0.03335	0.03235
4.35656	-0.12481	0.12451	0.12481	0.1788	0.1295	0.0917	0.08390	0.07997
4.35693	3.19942	2.36827	2.31502	2.04231	1.87810	1.72238	1.70095	1.49767
4.35693	1.8923	0.9325	0.88500	0.88500	0.81692	0.72269	0.70800	0.70441
4.35693	0.62366	0.60283	0.55977	0.50487	0.44442	0.47662	0.46952	0.46557
4.35693	0.37569	0.36691	0.34448	0.34044	0.33806	0.30994	0.30142	0.28438
4.35693	0.28597	0.25359	0.23810	0.22465	0.15660	0.12935	0.11916	0.09531
4.35693	0.05310	0.04306	0.04306	0.03875	0.03660	0.03336	0.02229	0.02451
4.35693	0.02042	0.01566	0.01566	0.01421	0.01017			
360.30542	124.22978	63.05457	40.56848	21.86656	16.56728	15.52672	15.48913	13.15096
360.30542	12.75575	12.29514	11.55419	9.77386	9.42116	9.11125	8.40728	7.90163
360.30542	7.47412	7.33553	7.23243	6.83264	5.70595	5.74933	5.68277	5.68277
360.30542	4.66098	4.59946	4.41018	3.60266	3.46182	3.20424	2.70200	2.65255
360.30542	2.49652	2.11191	2.02842	1.87239	1.84555	1.80133	1.79437	1.62274
360.30542	1.61499	1.39758	1.29517	1.23636	1.20736	1.14987	1.0595	1.03855
360.30542	0.38555	0.99384	0.86961	0.80491	0.74182	0.68662	0.61796	0.53312
360.30542	0.56873	0.56873	0.52641	0.50352	0.46692	0.40684	0.46810	0.46810
360.30542	0.44595	0.43480	0.43223	0.39564	0.37269	0.34418	0.32300	0.32307
360.30542	0.31207	0.31898	0.3067	0.29646	0.28322	0.27334	0.27334	0.25511
360.30542	0.24965	0.24727	0.24600	C.23605	0.22996	0.21265	0.18634	0.15825
360.30542	0.14043	0.13105	0.12423	0.12171	0.11181	0.10560	0.09938	0.09317
360.30542	0.09550	0.07418	0.07418	0.06261	0.05687	0.05687	0.05687	0.05687
360.30542	0.04369	-2473						
240.04161	96.70116	40.57208	21.86651	12.33765	10.45696	10.45512	10.44850	10.36362
240.04161	9.77472	9.76854	8.5119	7.80233	7.47610	7.47474	7.47006	7.33419
240.04161	5.74384	5.74384	5.30652	4.99437	4.68140	4.60068	4.59897	5.75005
240.04161	3.74512	3.58971	3.12143	2.86233	2.65279	2.54578	2.53620	2.18504
240.04161	2.16615	2.02860	1.81256	1.79453	1.77495	1.67792	1.62288	1.43117
240.04161	1.29519	1.26311	1.27474	1.17055	1.14997	1.11039	0.83896	0.80498
240.04161	0.78037	0.78037	0.69091	0.66331	0.65551	0.65553	0.49697	0.46814
240.04161	-4.68114	-4.68124	C.40015	C.39480	0.39480	0.38187	0.36519	0.35897
240.04161	0.34545	0.3209	0.31209	0.31209	0.29649	0.29324	0.28093	0.28088
240.04161	0.35697	0.25662	0.24967	0.24549	C.23407	0.21850	0.21716	0.18478
240.04161	-2.7313	0.16102	0.15607	0.15605	0.15527	0.14835	0.14515	0.13422
240.04161	0.18977	0.17252	0.17252	0.09870	0.09051	0.08390	0.08272	0.07997

APPENDIX A

1.174.13	0.06242	0.04935	0.04935	0.04682	0.04682	0.04681	0.04681	0.043590
0.03436	0.01561							
865.94580	282.86792	143.57362	92.37343	49.73953	37.72325	35.35821	29.94441	23.80391
18.01707	17.76411	13.88148	12.4978	11.43181	11.26068	11.01901	10.61525	8.75941
8.52678	8.26230	8.20317	8.16558	6.69837	6.53246	6.48177	6.15238	5.18542
4.80876	4.80876	4.80876	4.72275	4.12208	3.55282	2.94884	2.87167	1.68910
1.15259	1.24948	1.13147	1.1147	1.08204	1.06585	1.06585	1.04661	0.99004
4.34547	4.34547	4.34547	4.34547	4.21346	0.72136	0.71056	0.71056	0.63951
0.56845	0.56845	0.56845	0.56303	0.55382	0.53292	0.52362	0.52260	0.42430
0.46136	0.46136	0.46136	0.46136	0.29441	0.28287	0.27691	0.26278	0.24044
0.35528	0.35528	0.31975	0.31975	0.20606	0.16891	0.14211	0.14143	0.09948
0.22629	0.22629	0.22629	0.22629	0.16891	0.14211	0.14143	0.12387	0.05630
4.0 7.719	22.47405	92.38164	90.62103	49.74396	28.02250	23.80303	23.79097	23.59770
1.7 16.566	11.36201	8.76173	8.76173	2.79465	8.52754	8.17386	7.21554	6.70015
1.2 6.507	5.50411	5.51746	5.77987	5.68502	5.15305	5.14979	4.88810	4.12317
1.0 7.244	7.01144	7.02058	3.82058	3.55314	2.96911	2.666532	2.28155	1.40258
1.0 6.821	1.0 6.821	1.0 6.821	1.0 6.821	1.0 6.821	0.89846	0.83154	0.81137	0.71143
0.7 7.743	0.7 7.743	0.7 7.743	0.7 7.743	0.7 7.743	0.67422	0.63957	0.58432	0.56850
0.5 5.325	0.5 5.325	0.5 5.325	0.5 5.325	0.5 5.325	0.48001	0.37483	0.35531	0.30950
0.3 3.294	0.3 3.294	0.3 3.294	0.3 3.294	0.3 3.294	0.22474	0.22001	0.20678	0.19835
0.1 1.008	0.1 1.008	0.1 1.008	0.1 1.008	0.1 1.008	0.14212	0.11237	0.10661	0.09949
6.65116	3.25581	3.13416	2.73378	2.54715	2.13673	1.73155	1.85267	1.74503
1.21623	0.949508	0.93066	0.93066	0.75618	0.73201	0.71152	0.65693	0.60494
0.52101	0.46591	0.39385	0.39385	0.37116	0.37116	0.32418	0.21202	0.16132
0.11052	0.03143	0.07928	0.07928	0.04537	0.04537	0.03277	0.03473	0.02120
0.02121	0.01745							
4.65158	3.25611	2.73412	2.02372	1.21822	1.74518	1.61620	1.54464	1.47180
0.93077	0.81456	0.76765	0.75625	0.69901	0.66899	0.62607	0.60500	0.53353
0.41334	0.31276	0.29436	0.29436	0.26927	0.26756	0.24337	0.13382	0.11053
0.10182	0.08144	0.05004	0.04537	0.03679	0.03312	0.03128	0.02760	0.01745
0.01338	0.01338							

THE HISTORY OF THE AMERICAN MAGNITUDE

WILSON DEVICES CMX ECB - A TWO N

THE VALUES OF A THRUXTON 1 AND 1 THRUXTON 2 LESS THAN 1

PARAMETERS IMMEDIATELY ABOVE VS PENCENT CONFIDENCE LEVEL		1.956-1.996	1.977-1.986	1.997-1.998	2.005-2.006	2.017-2.017	2.022-2.022
5.86-6.4961	4.70-2.4878	3971.59448	265.55054	239.30551	222.29169	217.35172	208.99220
1956-16553	174.61659	172.89368	150.76247	148.19438	137.93478	127.85776	124.27774
203-76226	112.57052	110.68741	101.56735	107.68738	103.56477	99.01955	97.80827
117.36960	112.85571	86.50399	84.16442	81.50691	78.45815	76.41277	70.87558
94-66460	86.50399	86.50399	84.16442	81.50691	78.45815	76.41277	75.11666
69-36758	68.13472	65.40935	60.92046	59.27774	59.17987	50.68497	57.53593
57-53598	56.70645	55.33992	54.92072	52.38510	51.98700	48.06917	48.03037
46-74003	46.57536	46.28748	44.67032	43.34180	43.47034	41.57863	41.42590
40-61163	40.23239	39.65225	39.47734	37.44860	36.67810	34.18295	34.52055
33-96141	33.50275	30.15247	27.16896	27.01689	26.55507	25.84697	25.99119
25-12170	24.85555	24.45206	24.12196	23.38696	23.32539	22.11182	21.26264
20-93822	20.57672	20.30681	20.10165	20.10164	20.10164	19.34286	18.09148
17-70317	17.38894	17.38814	17.21619	16.91402	16.21138	15.70442	15.34293
15-28255	14.48369	14.17512	13.99524	13.97262	13.81674	12.93426	12.56353
12-38014	12.30714	12.18409	11.95635	11.89980	11.76713	11.43957	11.37300
10-61314	10.46465	10.42855	10.31518	9.31518	6.63703	6.61699	6.52806
8-15069	8.12273	7.91478	7.56553	7.56650	7.53812	7.40972	7.33562
7-29913	6.91432	6.76894	6.47260	6.46713	5.95918	5.82192	5.56800
5-33515	5.12797	5.11189	5.02561	5.02541	5.02541	4.84377	4.62343
4-22193	4.23193	4.07535	4.07535	4.06136	4.06136	4.05543	4.01146
3-91011	3.69874	3.55216	3.36798	3.23840	3.11749	2.93434	2.83502
2-63977	4.62925	2.61119	2.53558	2.51271	2.64098	2.44491	2.40429
2-15765	2.03767	1.99163	1.97514	1.95122	1.64937	1.81431	1.74797
1-74115	1.73957	1.67514	1.63985	1.63014	1.67996	1.60721	1.54900
1-52961	1.45925	1.44964	1.42512	1.41340	1.39292	1.35674	1.32422
1-25535	1.246658	1.243688	1.22689	1.19702	1.12760	1.09225	1.06600

APPENDIX A

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL		72.0 .74447	485.3 J957	273.00926	266.94238	256.67554	240.24832	234.65744	214.50742	182.00642
6.61 40.6	6.59 40.6	6.53 39.8	6.45 39.4	6.42 39.0	6.42 39.6	6.42 39.0	6.41 36.5	7.40 36.1	7.36 35.7	7.30 35.3
7.57 37.6	7.54 37.3	7.54 36.9	7.54 36.5	7.54 36.1	7.54 35.7	7.54 33.3	5.96 33.3	5.82 32.9	5.74 32.5	5.62 32.3
6.95 34.9	6.77 34.5	6.47 34.1	6.47 33.7	6.47 33.3	6.47 33.0	5.13 30.9	5.11 30.5	5.03 30.1	5.03 29.7	5.03 29.7
5.58 32.1	5.57 31.7	5.34 31.3	5.34 30.9	5.34 30.5	5.34 30.1	4.57 28.1	4.56 27.7	4.25 27.3	4.23 26.9	4.23 26.9
5.03 29.3	4.84 28.9	4.62 28.5	4.62 28.1	4.62 27.7	4.62 27.3	4.06 25.3	4.06 24.9	4.01 24.5	4.01 24.1	4.01 24.1
4.08 26.5	4.08 26.1	4.06 25.7	4.06 25.3	4.06 24.9	4.06 24.5	3.70 22.9	3.45 22.5	3.37 22.1	3.24 21.7	3.12 21.3
3.91 23.7	3.91 23.3	3.70 22.9	3.70 22.5	3.70 22.1	3.70 21.7	2.68 20.5	2.68 20.1	2.65 19.7	2.64 19.3	2.61 18.5
2.93 20.9	2.93 20.5	2.68 20.1	2.68 20.1	2.68 20.1	2.68 20.1	2.51 17.7	2.44 17.3	2.44 16.9	2.40 16.5	2.31 15.7
2.53 18.1	2.53 17.7	2.44 17.3	2.44 17.3	2.44 17.3	2.44 17.3	1.99 14.5	1.98 14.1	1.95 13.7	1.85 13.3	1.81 12.9
2.15 15.3	2.04 14.9	1.99 14.5	1.99 14.1	1.99 14.1	1.99 14.1	1.75 12.2	1.75 11.6	1.74 11.2	1.68 10.8	1.64 10.0
1.81 12.4	1.75 12.2	1.75 11.6	1.75 11.2	1.75 11.2	1.75 11.2	1.61 9.2	1.61 8.8	1.55 8.4	1.55 8.0	1.53 7.2
1.63 9.6	1.63 9.2	1.61 8.8	1.61 8.4	1.61 8.4	1.61 8.4	1.45 6.4	1.45 6.0	1.41 5.6	1.36 5.2	1.32 4.4
1.46 6.8	1.32 4.5	1.30 3.6	1.26 3.2	1.25 2.8	1.25 2.4	1.39 0.6	1.39 0.6	1.39 0.6	1.39 0.6	1.20 1.6
1.13 1.2	1.07 0.6	1.07 0.4	1.07 0.4	1.07 0.4	1.07 0.4	0.6	0.6	0.6	0.6	0.0
80										
16.9 40.96	14.1 39.6	13.6 36.6	13.6 36.3	13.6 36.3	13.6 36.3	11.5 34.6	11.5 34.3	11.5 34.3	11.5 34.3	11.5 34.3
11.5 32.00	11.5 32.0	11.5 32.0	11.5 32.0	11.5 32.0	11.5 32.0	9.5 28.5	9.5 28.5	9.5 28.5	9.5 28.5	9.5 28.5
8.2 51204	7.6 22440	7.5 22145	7.3 91707	7.2 80552	7.2 80552	5.9 32.5	5.9 32.2	5.9 32.2	5.9 32.2	5.9 32.2
6.3 52034	5.9 32.5	5.7 20198	5.7 16832	5.6 85227	5.6 85227	4.5 30.5	4.5 30.2	4.5 30.2	4.5 30.2	4.5 30.2
4.5 73665	4.5 50157	4.5 50157	4.4 36788	4.3 55679	4.3 55679	3.3 36781	3.2 85252	3.2 85252	3.2 85252	3.2 85252
35.4 40116	33.3 36783	33.3 36781	32.8 3104	29.8 2693	29.8 2693	26.6 926	26.6 880	26.6 880	26.6 880	26.6 880
27.4 4078	26.6 926	26.6 880	26.1 13394	25.3 34297	25.3 34297	21.3 3541	19.7 1121	19.7 1121	19.7 1121	19.7 1121
21.3 3541	20.5 3452	20.5 3452	19.7 1121	19.7 1121	19.7 1121	17.4 7926	17.4 7926	17.4 7926	17.4 7926	17.4 7926
18.4 7926	17.4 7926	17.4 7926	16.9 66669	15.89 16	15.89 16	13.19046	13.11916	12.99279	12.31952	11.19956
16.0 961	13.19046	13.11916	12.99279	12.31952	12.31952	9.16032	8.49121	8.44766	8.16690	7.62244
9.16032	8.96758	8.52059	8.49121	8.44766	8.44766	7.3971	7.14660	6.95223	6.14713	5.69507
7.3971	7.14660	6.99276	6.99276	6.49328	6.49328	5.0517	4.92817	4.92780	4.92780	4.92780
5.0517	5.0517	4.92817	4.92817	4.92780	4.92780	4.46788	4.31615	3.67336	3.24615	3.24615
4.46788	2.70573	2.66291	2.62843	2.50259	2.50259	2.70573	2.66291	2.62843	2.59350	2.59350
2.70573	2.66291	2.62843	2.62843	2.62843	2.62843	2.02192	1.85024	1.77564	1.71012	1.64260
2.02192	2.0207	1.85024	1.85024	1.85024	1.85024	1.39744	1.33195	1.33195	1.32685	1.31087
1.39744	1.33195	1.33195	1.33195	1.33195	1.33195	72.0 .74 99.6	468.31 98.9	29.3.17 98.9	273.01 97.8	266.94 97.2
234.66 95.6	214.51 95.0	182.01 94.4	169.41 93.9	169.41 93.9	169.41 93.9	137.2 91.7	135.99 91.1	124.28 90.6	122.35 90.0	120.34 89.4
137.2 91.7	135.99 91.1	135.99 91.1	105.60 87.2	95.56 86.7	95.56 86.7	114.34 87.6	85.19 83.3	82.51 82.8	76.22 82.2	75.22 81.7
87.5 83.9	85.19 83.3	85.19 83.3	82.51 82.8	82.51 82.8	82.51 82.8	72.21 80.5	72.21 79.4	72.21 78.9	72.21 78.3	72.21 78.3
57.2 76.1	57.17 75.6	56.86 75.6	56.86 75.6	56.86 75.6	56.86 75.6	50.87 75.6	49.55 75.6	48.23 75.6	47.91 75.6	47.59 75.6
45.73 72.2	45.73 71.7	45.50 71.1	45.05 70.6	44.86 70.1	44.86 70.1	41.97 67.8	41.71 66.7	39.48 66.1	35.48 65.6	31.87 65.0
43.48 68.3	42.40 67.8	41.92 67.2	41.71 66.7	41.71 66.7	41.71 66.7	30.03 64.9	29.57 63.3	29.57 62.8	29.32 62.2	28.76 61.7
32.85 64.4	30.03 64.9	29.57 63.3	29.57 63.3	29.57 63.3	29.57 63.3	27.44 60.6	26.47 59.4	26.11 58.9	25.75 58.3	25.03 57.2
27.44 60.6	26.69 60.0	26.47 59.4	26.47 59.4	26.47 59.4	26.47 59.4	22.42 56.1	21.63 55.6	21.36 55.1	20.53 54.6	19.71 53.9
23.65 56.7	22.42 56.1	21.63 55.6	21.36 55.1	21.36 55.1	21.36 55.1	19.71 52.2	19.54 51.7	19.21 51.1	18.77 50.6	18.48 49.4
19.71 52.2	17.75 48.3	16.97 47.8	15.90 47.2	15.90 47.2	15.90 47.2	14.12 45.4	14.05 43.9	13.19 43.3	12.40 42.8	11.50 41.7
17.75 48.3	16.97 47.8	15.90 47.2	15.90 47.2	15.90 47.2	15.90 47.2	11.21 41.1	10.01 40.0	9.86 39.4	9.37 38.9	9.10 38.3
9.86 39.4	8.49 36.7	8.49 36.1	8.49 36.1	8.49 36.1	8.49 36.1	7.15 32.8	5.10 28.3	5.03 27.8	5.01 27.2	5.01 26.7
5.10 28.3	5.03 27.8	5.03 27.8	4.93 24.4	4.93 24.4	4.93 24.4	4.80 23.9	4.80 23.9	4.75 23.3	4.63 22.8	4.48 22.2
4.93 24.4	4.43 21.1	4.43 20.6	4.43 20.6	4.43 20.6	4.43 20.6	3.46 19.4	3.46 19.4	3.46 19.4	3.24 18.3	3.24 18.3

3.18	17.8	2.84	17.2	2.79	16.7	2.71	16.1	2.66	15.6	2.63	15.0	2.50	14.4
2.46	13.9	2.39	13.3	2.21	12.8	2.19	12.2	2.18	11.7	2.15	11.1	2.11	10.6
2.00	10.0	1.85	9.4	1.78	8.9	1.71	8.3	1.66	7.8	1.64	7.2	1.64	6.7
1.53	6.1	1.45	5.6	1.42	5.0	1.40	4.4	1.38	3.9	1.33	3.3	1.33	2.8
1.31	2.2	1.27	1.7	1.21	1.1	1.08	0.6	1.01	0.0				

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL													
791.90	98.6	343.02	97.1	158.40	95.7	85.54	94.2	82.49	92.8	69.99	91.3	58.67	89.9
57.17	88.4	44.70	87.0	42.24	85.5	41.92	84.1	40.02	82.6	33.54	81.2	33.00	79.7
33.44	78.3	29.59	76.8	26.40	75.6	25.15	73.9	22.95	72.5	22.95	71.0	21.12	69.6
20.31	68.1	18.48	66.7	17.60	65.2	14.72	63.8	12.93	62.3	12.49	60.9	11.18	59.4
10.66	58.0	8.88	56.5	8.38	55.1	8.12	53.6	6.03	52.2	5.74	50.7	5.66	49.3
5.61	47.8	4.60	46.4	4.45	44.9	4.30	43.5	4.04	42.0	3.77	40.6	3.49	39.1
3.03	37.7	2.97	36.2	2.97	34.8	2.96	33.3	2.95	31.9	2.70	30.4	2.52	29.0
2.45	27.5	2.36	26.1	2.36	24.6	2.12	23.2	2.19	21.7	1.95	20.3	1.94	18.8
1.63	17.4	1.82	15.9	1.62	14.5	1.52	13.0	1.49	11.6	1.45	10.1	1.41	8.7
1.39	7.2	1.35	5.8	1.32	4.3	1.12	2.9	1.07	1.4	1.06	0.0		

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL														
727.52051	143.93538	82.67279	80.83562	78.59019	64.30106	63.42088	51.12602	50.89406	30.31335	29.77527	21.08754	19.55699	13.26333	
49.87672	47.36977	41.10047	36.91898	38.14112	37.99892	36.51660	31.66577	30.31335						
28.41876	28.46044	26.38814	25.56302	25.14792	23.09212	21.44269	21.08754	21.08754						
19.17	17.51	18.46269	17.62967	17.3191	16.79245	16.12311	15.83289	15.16847						
12.66631	12.27025	10.55526	10.51517	10.10445	9.19297	9.19401	8.52101	8.11933						
7.90764	7.46338	7.62380	7.69997	6.81661	6.81660	6.81660	6.55462	6.46685						
5.96671	5.92122	5.68375	5.27763	5.21889	5.19658	5.13437	5.05277	4.73942						
4.44596	4.32688	4.27916	4.2977	4.22210	4.10749	4.00081	3.95392	3.72336						
3.66791	3.59838	3.40840	3.32512	3.20965	3.03133	2.99377	2.93392	2.81481						
2.55633	2.55633	2.49691	2.48359	2.37014	2.26184	2.16524	2.11139	2.08635						
2.03619	1.97911	1.94766	1.76035	1.70420	1.69516	1.68701	1.67616	1.64944						
1.64847	1.64216	1.64215	1.54514	1.53948	1.51567	1.49235	1.43512	1.37372						
1.29190	1.24179	1.26179	1.22109	1.17357	1.16329	1.11458	1.05553	1.05438						

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL

727.52051	143.93538	82.67279	80.83562	78.59019	64.30106	63.42088	51.12602	50.89406	30.31335	29.77527	21.08754	19.55699	13.26333
727.525616	143.93538	82.67279	80.83562	78.59019	64.30106	63.42088	51.12602	50.89406	30.31335	29.77527	21.08754	19.55699	13.26333
63.42	93.9	51.13	93.2	50.89	92.4	49.68	91.7	47.37	90.9	41.18	90.2	38.92	89.4
38.14	88.6	38.14	87.9	36.52	87.1	31.67	86.4	31.31	85.6	29.78	84.8	28.62	84.1
28.64	83.3	26.39	82.6	25.56	81.8	25.15	81.1	23.09	80.3	21.46	79.5	21.09	78.8
21.9	7.9	19.56	77.3	19.07	76.5	18.43	75.8	17.63	75.0	17.59	74.2	17.32	73.5
16.79	72.7	16.02	72.0	15.83	71.2	15.15	70.5	13.26	69.7	12.67	68.9	12.27	68.2
12.56	67.4	11.52	66.7	10.11	65.9	9.49	65.2	9.09	64.4	8.52	63.6	8.12	62.9
7.98	62.1	7.91	61.4	7.86	60.6	7.82	59.6	7.70	59.1	6.82	58.3	6.82	57.6
6.62	56.8	6.55	56.1	6.47	55.3	6.39	54.5	5.96	53.8	5.92	53.0	5.68	52.3
5.28	51.5	5.27	50.8	5.20	50.0	5.13	49.2	5.05	48.5	4.74	47.7	4.69	47.0
4.45	46.2	4.47	45.5	4.35	44.7	4.28	43.9	4.23	43.2	4.22	42.4	4.14	41.7
4.00	40.9	3.95	40.2	3.73	39.4	3.67	38.6	3.60	37.9	3.41	37.1	3.33	36.4

APPENDIX A

3.21	35.6	3.07	34.6	2.99	34.1	2.93	33.3	2.81	32.6	2.73	31.8
2.56	30.3	2.49	29.5	2.48	28.9	2.35	28.0	2.26	27.3	2.17	26.5
2.09	25.0	2.07	24.2	2.03	23.5	1.98	22.7	1.95	22.0	1.76	21.2
1.71	19.7	1.71	18.9	1.69	18.2	1.68	17.4	1.65	16.7	1.66	15.2
1.64	14.4	1.55	13.6	1.56	12.9	1.52	12.1	1.49	11.4	1.44	10.6
1.32	9.1	1.29	8.3	1.24	7.6	1.22	6.8	1.17	5.3	1.17	4.8
1.13	3.4	1.11	3.0	1.06	2.3	1.05	1.5	1.02	0.8	1.16	0.5

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL											
237.23941											
90.58205	89.46336	87.86639	69.26862	59.62102	58.34615	55.49240	45.59254	44.76213	41.2691	39.00497	37.26594
32.63686	30.89053	27.0370	25.79674	22.52560	21.25800	21.24437	20.10803	19.72691	19.72691	19.72691	19.72691
15.90043	15.53787	14.2095	14.07564	13.9460	13.51536	10.81229	10.81229	10.81229	10.81229	10.81229	10.81229
9.70733	9.67378	9.35232	9.32662	9.21174	8.60734	8.59563	8.54112	7.45970	7.26594	7.26594	7.26594
7.02931	6.93655	6.93095	6.75330	6.66045	6.17811	5.32836	4.83265	4.50512	4.04655	3.07167	3.07167
3.98250	3.75789	3.75350	3.65280	3.51891	3.50712	3.29499	3.19701	1.93077	1.87675	1.68942	1.68942
3.05963	2.91335	2.47344	2.1934	2.12006	1.96358	1.93114	1.93114	1.93114	1.93114	1.93114	1.93114
1.64749	1.62215	1.60925	1.51746	1.51343	1.47756	1.47756	1.47756	1.47756	1.47756	1.47756	1.47756
1.14608	1.10562	1.07020	1.06695	1.06567	1.06567	1.06567	1.06567	1.06567	1.06567	1.06567	1.06567
237.24 90.9	90.58 97.7	89.46 96.6	87.87 95.4	69.27 94.3	59.62 93.1	59.62 93.1	59.62 93.1	59.62 93.1	59.62 93.1	59.62 93.1	59.62 93.1
55.49 90.6	45.59 89.7	44.76 88.5	36.63 87.4	32.44 86.4	30.89 85.1	30.89 85.1	30.89 85.1	30.89 85.1	30.89 85.1	30.89 85.1	30.89 85.1
25.80 82.8	22.53 81.6	21.26 80.5	21.24 79.3	20.11 78.2	19.73 77.0	19.73 77.0	19.73 77.0	19.73 77.0	19.73 77.0	19.73 77.0	19.73 77.0
15.90 74.7	15.54 73.6	14.21 72.4	14.08 71.3	13.98 70.1	13.52 69.0	13.52 69.0	13.52 69.0	13.52 69.0	13.52 69.0	13.52 69.0	13.52 69.0
10.81 66.7	9.88 65.5	9.71 64.4	9.67 63.2	9.55 62.1	9.32 60.9	9.32 60.9	9.32 60.9	9.32 60.9	9.32 60.9	9.32 60.9	9.32 60.9
8.61 58.6	8.01 57.5	8.34 56.3	7.46 55.2	7.27 54.0	7.03 52.9	7.03 52.9	7.03 52.9	7.03 52.9	7.03 52.9	7.03 52.9	7.03 52.9
6.93 50.6	6.76 49.4	6.66 48.3	6.18 47.1	5.33 46.0	4.83 44.8	4.83 44.8	4.83 44.8	4.83 44.8	4.83 44.8	4.83 44.8	4.83 44.8
4.05 42.5	4.05 41.4	3.98 41.4	3.76 40.2	3.75 39.1	3.75 37.9	3.65 36.8	3.52 35.6	3.52 35.6	3.52 35.6	3.52 35.6	3.52 35.6
3.51 34.5	3.29 33.3	3.20 32.2	3.07 31.0	3.06 29.9	2.91 28.7	2.91 28.7	2.91 28.7	2.91 28.7	2.91 28.7	2.91 28.7	2.91 28.7
2.13 26.4	2.12 25.3	1.96 24.1	1.93 23.3	1.93 23.3	1.93 23.3	1.93 23.3	1.93 23.3	1.93 23.3	1.93 23.3	1.93 23.3	1.93 23.3
1.65 18.4	1.62 17.2	1.61 16.1	1.52 14.9	1.51 13.9	1.41 12.6	1.41 12.6	1.41 12.6	1.41 12.6	1.41 12.6	1.41 12.6	1.41 12.6
1.31 16.3	1.21 9.2	1.18 8.0	1.15 6.9	1.11 5.7	1.07 4.6	1.07 4.6	1.07 4.6	1.07 4.6	1.07 4.6	1.07 4.6	1.07 4.6
1.07 2.3	1.07 1.1	1.06 0.0	1.06 0.0	1.06 0.0	1.06 0.0	1.06 0.0	1.06 0.0	1.06 0.0	1.06 0.0	1.06 0.0	1.06 0.0

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL											
482.32471											
223.57544	140.15243	52.10298	42.62571	27.57031	26.31712	26.16864	23.35890	20.04686	20.04686	20.04686	20.04686
16.99905	16.68712	17.98338	16.56210	16.35523	13.98043	13.91043	9.17362	7.3209	6.61688	6.61688	6.61688
5.03842	5.33918	3.93613	3.49511	3.46518	3.35367	3.2408	2.80621	2.62133	2.32209	2.32209	2.32209
2.12790	1.94614	1.80872	1.77238	1.65422	1.62249	1.61716	1.55083	1.53549	1.53549	1.53549	1.53549
1.31394	1.28345	1.21296	1.16794	1.04783							
482.32 97.8	223.57 95.6	140.15 93.3	52.10 91.1	42.62 88.9	27.57 86.7	26.16 86.4	23.35 86.4	20.04 86.4	20.04 86.4	20.04 86.4	20.04 86.4
24.17 82.2	23.36 80.0	20.10 77.8	19.00 75.6	18.69 73.3	17.97 71.1	16.54 68.9	16.54 68.9	16.54 68.9	16.54 68.9	16.54 68.9	16.54 68.9
16.35 66.7	13.98 64.4	13.98 62.2	9.17 60.0	7.35 57.8	6.62 55.6	5.84 53.3	5.84 53.3	5.84 53.3	5.84 53.3	5.84 53.3	5.84 53.3
5.34 51.1	3.93 48.9	3.52 46.7	3.45 44.4	3.35 42.2	3.22 40.0	2.80 37.8	2.80 37.8	2.80 37.8	2.80 37.8	2.80 37.8	2.80 37.8
2.62 35.6	2.32 33.3	2.13 31.1	1.95 28.9	1.81 26.7	1.77 24.4	1.65 22.2	1.65 22.2	1.65 22.2	1.65 22.2	1.65 22.2	1.65 22.2
1.62 20.0	1.62 17.8	1.55 15.6	1.44 13.3	1.35 11.1	1.31 8.9	1.28 6.7	1.28 6.7	1.28 6.7	1.28 6.7	1.28 6.7	1.28 6.7
1.21 4.6	1.17 2.2	1.17 2.2	1.05 0.0	1.05 0.0	1.05 0.0	1.05 0.0	1.05 0.0	1.05 0.0	1.05 0.0	1.05 0.0	1.05 0.0

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL											
365.37231											
351.51054	351.46631	148.99133	137.07204	131.01691	184.14784	172.94226	169.22473	164.41772	164.41772	164.41772	164.41772
153.45657	153.45657										

APPENDIX A

		PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL			
91.38132	48.53259	88.07243	86.57178	86.47110	83.14532
76.15112	71.37508	68.53600	67.70139	67.55556	61.3274
52.21790	51.38266	51.15213	50.25974	46.48964	46.03694
30.67206	3C.21921	30.02469	27.62216	26.67943	24.75104
11.83664	11.96316	10.7074	10.11359	9.71622	9.13864
7.36946	7.46128	6.55064	5.21287	4.42344	4.22573
3.60296	3.54753	3.15168	3.26478	2.62590	2.55761
1.044118	1.36789	1.22765	1.18E30	1.17349	1.14039
365.37 99.0	351.51 98.0	351.47 97.0	196.53 96.0	184.77 94.9	184.15 93.9
169.22 91.9	166.42 90.9	164.42 89.9	154.41 88.9	153.46 87.9	148.99 86.9
131.02 84.8	128.46 83.8	121.95 82.8	115.05 81.8	114.3 80.8	99.77 79.8
9.18 77.8	86.53 76.8	88.07 75.8	86.57 74.7	86.47 73.7	83.15 72.7
79.37 70.7	78.33 69.7	76.15 68.7	73.39 67.7	71.36 66.7	68.54 65.7
67.56 63.6	61.33 62.6	57.11 61.6	54.83 60.6	53.75 59.6	52.22 58.6
51.15 56.6	50.26 55.6	46.49 54.5	46.04 53.5	39.46 52.5	33.74 51.5
31.79 49.5	30.87 48.5	30.52 47.5	30.02 46.5	27.62 45.5	26.68 44.4
24.62 42.4	19.22 41.4	15.37 40.4	14.41 39.4	11.84 38.4	10.94 37.4
18.11 35.4	9.71 34.3	9.16 33.3	8.53 32.3	7.83 31.3	7.67 30.3
7.37 28.3	7.16 27.3	6.55 26.3	5.31 25.3	4.42 24.2	4.24 23.2
3.84 21.2	3.73 20.2	3.60 19.2	3.60 18.2	3.55 17.2	3.15 16.2
2.63 14.1	2.56 13.1	1.80 12.1	1.74 11.1	1.53 10.1	1.45 9.1
1.37 7.1	1.23 6.1	1.19 5.1	1.17 4.0	1.14 3.0	1.11 2.0
1.13 C.J					1.10 1.0

		PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL			
93.53462	90.81313	66.78993	47.19267	24.73700	19.25713
12.88221	9.58228	6.98666	8.90533	8.87951	8.5281
7.13699	6.86439	6.65963	5.96971	5.46224	5.19288
2.80296	2.76954	2.69600	2.60275	2.54529	2.54438
1.69550	1.53912	1.45879	1.38019	1.29136	1.27635
124.63 97.9	93.53 95.8	90.81 93.8	66.79 91.7	47.19 89.6	26.74 87.5
19.25 83.3	16.55 81.3	17.81 79.2	15.14 77.1	12.98 75.0	9.58 72.9
8.91 68.8	8.88 66.7	8.57 64.6	8.01 62.5	7.91 60.4	7.63 58.3
6.86 54.2	6.66 52.1	5.97 50.0	5.45 47.9	5.19 45.8	5.19 43.8
3.29 39.4	2.96 37.5	2.80 35.4	2.77 33.3	2.77 31.3	2.60 29.2
2.54 25.0	2.35 22.9	2.22 20.8	2.15 18.8	2.12 16.7	1.68 14.4
1.46 10.4	1.31 8.3	1.29 6.3	1.28 4.2	1.27 2.1	1.11 0.0

		PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL			
885.95264	328.13062	177.10061	167.16096	114.88268	106.99916
55.93138	55.372.4	41.01634	38.29422	36.91470	32.09975
24.08441	23.83669	23.9388	23.83694	22.16101	21.85516
16.83386	16.36515	15.95533	12.93724	12.87004	12.30490
10.72753	10.72753	10.72753	10.05706	8.3088	6.90781
5.98367	5.97635	5.36377	5.28245	4.97763	4.89295
4.02282	4.02282	3.98445	2.75434	3.01166	2.71251
2.58495	2.54231	2.49807	2.31577	2.34020	1.8C371
1.566643					1.43190
885.95 96.6	326.13 97.5	177.19 96.3	167.16 95.1	114.88 93.8	107.00 92.6
79.78 90.1	72.92 88.9	70.31 87.7	55.93 86.4	55.37 85.2	41.02 84.0
36.91 81.5	32.11 80.2	31.69 79.0	30.76 77.8	24.97 76.5	24.55 75.3

APPENDIX A

4.18	72.8	23.93	71.6	23.84	71.4	23.07	69.1	22.16	67.9	20.86	66.7	19.31	65.4
8.77	64.2	18.45	63.0	16.83	61.7	16.37	60.5	15.96	59.3	12.94	58.0	12.87	56.8
2.87	55.6	12.07	54.3	11.82	53.1	11.43	51.9	10.88	50.6	10.73	49.4	10.73	48.1
16.36	45.7	10.73	46.9	10.36	45.7	10.00	44.5	9.64	43.2	6.70	40.7	6.26	39.5
5.98	37.1	5.98	37.1	5.91	35.8	5.36	34.6	5.28	33.3	4.97	32.1	4.89	30.9
4.28	26.4	4.27	27.2	4.05	25.9	4.02	24.7	4.02	23.5	3.96	22.2	3.96	22.2
3.49	19.8	3.49	19.8	3.01	18.5	2.71	17.3	2.68	16.0	2.64	14.8	2.60	13.6
2.54	11.1	2.54	11.1	2.44	9.9	2.43	8.6	2.34	7.4	1.80	6.2	1.43	4.9
2.58	12.3	1.31	3.7	1.15	2.5	1.08	1.2	1.07	0.0				

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL				20-30 84.8			
				51.07	87.9	6.98	63.6
72.94	97.1	64.16	93.9	6.2-10	90.9	9.28	66.7
14.50	75.8	12.84	72.7	10.09	69.7	3.61	45.5
4.91	54.5	4.82	51.5	3.81	48.5	3.57	42.4
3.21	33.3	2.91	30.3	2.74	27.3	1.97	21.2
1.52	12.1	1.43	9.1	1.28	6.1	1.75	18.2
						1.02	0.0

1.293-0.2979	408-92798	129.32578	34.-77586	29.-24849	23.-12093	21.-35901	20.-62137	19.-44956	19.-08154
1.6-75563	16.-19331	14.-14276	13.-23296	11.-59400	10.-25745	9.-26303	8.-91684	8.-35863	8.-91498
18.-90519	18.-35334	17.-35187	17.-39658	17.-34653	16.-73626	16.-65792	15.-92027	5.-81498	5.-81498
5.-55563	5.-47421	5.-29977	5.-28651	5.-98651	4.-91271	4.-68527	4.-38727	4.-13261	4.-13261
3.-67078	3.-30155	2.-18402	2.-82383	2.-54465	2.-42220	2.-39030	2.-30324	2.-29408	2.-29408
2.-27686	2.-422286	2.-17802	2.-04197	1.-93198	1.-87199	1.-78011	1.-77867	1.-77867	1.-77867
1.-67586	1.-57619	1.-40635	1.-39921	1.-3981	1.-39693	1.-39781	1.-35731	1.-33177	1.-13986
							1.-10650	1.-04891	1.-00018

1000000 PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL					
1.293e-02	98.8	408.3	97.5	129.33	96.3
2. -62	91.1	19.5	68.9	1.18	87.7
1.3-23	91.5	11.59	80.2	10.26	79.0
6.35	78.8	7.4	71.6	7.35	70.4
5.92	64.2	5.81	63.3	5.56	61.7
4.91	55.6	4.65	54.3	4.63	53.1
3.18	46.9	2.82	45.7	2.54	44.4
2.29	38.3	2.28	37.4	2.21	35.6
1.7	28.6	1.7	28.4	1.78	27.2
				1.69	25.9
				1.68	24.7
				1.58	23.5
				21.36	91.4
				14.14	82.7
				16.09	84.0
				16.76	85.2
				8.86	75.3
				6.35	74.1
				6.66	66.7
				6.2	65.4
				4.99	56.8
				3.30	48.1
				3.67	49.4
				2.37	40.7
				2.39	42.0
				2.04	33.3
				1.93	32.1
				1.87	30.9
				1.40	22.2

1.40	21.0	1.40	19.8	1.40	17.3	1.33	14.9
1.13	12.3	1.13	11.1	1.13	9.9	1.11	8.6
1.04	3.7	1.00	2.5	1.00	1.2	1.00	0.9

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL							
1293.03	99.	129.33	96.9	34.78	95.8	29.25	94.8
20.62	91.7	19.50	90.6	19.08	89.6	18.90	88.5
14.50	84.4	14.14	83.3	13.23	82.3	12.94	81.3
9.28	77.1	9.26	76.0	8.92	75.0	8.36	74.0
7.35	69.8	7.31	68.8	6.85	67.7	6.74	66.7
5.81	62.5	5.56	61.5	5.47	60.4	5.30	59.4
4.69	55.2	4.63	54.2	4.39	53.1	4.13	52.1
3.30	47.9	3.28	46.9	3.18	45.9	2.82	44.9
2.39	40.6	2.37	39.6	2.35	38.5	2.30	37.5
2.18	33.3	2.04	32.3	1.97	31.3	1.93	30.2
1.78	26.1	1.69	25.1	1.68	24.0	1.58	22.9
1.40	16.8	1.40	17.7	1.40	16.7	1.40	15.6
1.14	11.5	1.13	11.4	1.13	9.4	1.13	8.3
1.05	4.2	1.04	3.1	1.00	2.1	1.00	1.0

1.40	17.3	2.9-24849	23-12093	21-3501	20-62137	19-9556	19-08154
18.90089	16.33365	16.75563	16.09331	14.49531	14.14206	13.2226	12.84336
10.08229	9.28408	9.26303	8.91684	8.3563	8.3534	8.35187	7.39658
6.45100	6.73626	6.65792	6.21581	5.92027	5.81498	5.5653	5.47421
4.98601	4.91271	4.68527	4.63233	4.38277	4.13261	3.67078	3.61499
3.27550	3.18412	2.82383	2.74416	2.54465	2.42220	2.39330	2.36520
2.29408	2.27664	2.17827	2.20286	2.04197	1.96826	1.93198	1.87199
1.77867	1.68941	1.67586	1.57619	1.52161	1.42916	1.40435	1.39806
1.39693	1.35731	1.33177	1.21057	1.13886	1.12968	1.12877	1.10740
1.10651	1.04691	1.03539	1.03016	1.00018	1.00000	1.00000	1.00000

1293.038013	267.27861	190.15332	154.32256	152.59288	122.91597	100.79106	83.99255
57.34596	53.2429C	49.86566	45.81412	44.36916	43.62220	43.62220	40.12386
47.12366	39.93217	37.34621	33.59702	33.59702	33.03847	32.59769	27.53943
27.53206	26.74922	26.62144	25.29985	25.07741	23.60226	23.60226	23.48952
22.42144	22.29102	22.29102	21.44490	21.11781	20.41803	20.15820	20.04192
20.00192	19.38289	19.10658	19.01718	18.86195	18.35471	17.74763	16.03673
15.92289	15.74861	14.30456	13.91037	13.37462	13.10773	12.88137	12.73774
12.26338	11.71989	11.58208	11.40920	11.16092	10.83775	10.64858	10.07911
9.93354	9.47625	9.17736	9.16262	9.11906	8.87382	8.76486	8.40677
8.39926	8.35914	8.29927	8.15436	8.15436	8.07477	7.98644	7.98644
7.98644	7.71613	7.71613	7.57054	7.54479	7.46601	7.44563	7.19936
6.74755	6.71535	6.64741	6.66770	6.60770	6.47813	6.47286	6.31750
6.31751	6.29944	6.23568	6.23071	6.14760	5.92889	5.75949	5.59950
5.57276	5.53204	5.42214	5.32429	5.27666	5.23379	5.21194	5.14551
5.14408	5.11548	4.99152	4.94983	4.88192	4.88026	4.79668	4.71978
4.71918	4.58141	4.38222	4.38222	4.19461	4.12981	4.00679	3.99322
3.9523	3.9346	3.80112	3.80112	3.80306	3.77239	3.65750	3.61478
3.60338	3.60838	3.37331	3.35910	3.25746	3.1788	3.13031	3.04605
3.02677	3.1375	3.30869	2.97825	2.97214	2.87974	2.86598	2.77910
2.74151	2.54125	2.51978	2.50774	2.42142	2.39979	2.37755	2.36023
2.35989	2.35989	2.31442	2.28195	2.28184	2.18402	2.08477	2.01582
1.98830	1.9689C	1.95126	1.87818	1.78322	1.68690	1.61266	1.61266

APPENDIX A

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL		1.57348	1.57326	1.53565	1.50255	1.45208	1.44552						
330.36	99.6	307.38	99.2	267.28	98.8	190.15	98.4	154.32	98.0	152.59	97.6	122.92	97.2
100.79	96.8	83.99	96.4	60.79	96.0	43.82	93.2	43.82	92.5	53.24	95.2	49.85	94.8
65.01	94.0	64.37	93.5	43.82	93.2	43.82	92.5	40.12	92.4	40.12	92.0	45.81	94.4
39.93	91.2	37.15	90.8	37.15	90.4	33.60	90.0	33.60	89.6	33.60	89.2	33.60	88.8
32.60	88.6	27.54	88.1	27.53	87.6	26.75	87.1	26.62	86.7	25.30	86.3	25.08	85.9
25.08	85.5	23.60	85.1	23.60	84.6	23.60	84.3	23.49	83.9	22.43	83.5	22.29	83.1
10.65	66.7	10.06	68.3	10.06	67.9	21.12	81.5	20.48	81.1	20.16	80.7	20.16	80.3
22.29	82.7	22.29	82.3	21.44	81.9	19.11	78.7	19.02	78.3	18.86	77.9	18.35	77.5
20.06	79.9	20.06	79.5	19.38	79.1	19.11	78.7	19.02	78.3	18.86	77.9	18.35	77.5
17.75	77.1	17.37	76.7	16.28	76.3	16.04	75.9	15.97	75.5	15.75	75.1	14.36	74.7
13.91	74.3	13.39	73.9	13.37	73.5	13.31	73.1	12.98	72.7	12.76	72.3	12.74	71.9
12.26	71.5	11.12	71.1	11.58	70.7	11.41	70.3	11.41	69.9	10.84	69.5	10.65	69.1
6.32	51.8	6.32	51.4	6.30	51.0	6.30	50.6	6.24	50.2	6.23	49.8	6.16	46.3
5.93	46.0	5.76	48.6	5.73	48.2	5.63	47.8	5.57	47.4	5.53	47.0	5.42	46.6
5.32	46.2	5.32	45.8	5.28	45.4	5.23	45.0	5.21	44.6	5.15	44.2	5.15	43.8
5.14	43.4	5.02	43.0	5.02	42.6	4.99	42.2	4.95	41.8	4.88	41.4	4.84	41.0
6.80	40.6	6.72	40.2	6.72	39.8	6.72	39.4	6.58	39.0	6.38	38.6	6.38	38.2
4.38	37.8	4.19	37.3	4.15	36.9	4.13	36.5	4.01	36.1	3.99	35.7	3.95	35.3
3.93	34.9	3.86	34.5	3.84	34.1	3.81	33.7	3.80	33.3	3.77	32.9	3.66	32.5
3.63	32.1	3.61	31.7	3.61	31.3	3.61	30.9	3.58	30.5	3.57	30.1	3.36	29.7
3.26	29.3	3.17	28.9	3.13	28.5	3.07	28.1	3.05	27.7	3.03	27.3	3.01	26.9
3.01	26.5	2.98	26.1	2.97	25.7	2.94	25.3	2.88	24.9	2.87	24.5	2.78	24.1
2.77	23.7	2.74	23.3	2.74	22.9	2.52	22.5	2.51	22.1	2.42	21.7	2.36	21.3
2.44	20.9	2.40	20.5	2.37	20.1	2.36	19.7	2.36	19.3	2.36	18.9	2.36	18.5
2.32	18.1	2.28	17.7	2.28	17.3	2.18	16.9	2.08	16.5	2.02	16.1	1.99	15.7
1.98	15.3	1.97	14.9	1.96	14.5	1.92	14.1	1.88	13.7	1.76	13.3	1.71	12.9
1.69	12.4	1.65	12.0	1.61	11.6	1.61	11.2	1.60	10.8	1.60	10.4	1.57	10.0
1.57	9.6	1.54	9.2	1.54	8.8	1.57	8.4	1.45	8.0	1.45	7.6	1.44	7.2
1.43	6.8	1.39	6.4	1.39	6.0	1.38	5.6	1.38	5.2	1.34	4.8	1.33	4.4
1.23	4.7	1.22	3.6	1.18	3.2	1.16	2.8	1.10	2.4	1.08	2.0	1.08	1.6
1.07	1.2	1.06	0.6	1.00	0.4	1.00	0.0	1.00	0.0	1.00	0.0	1.00	0.0

423.45801	386.88281	330.35547	194.73956	196.23735	190.13647	159.68643	133.07204	96.31378	76.51775
72.58472	69.42886	69.42886	57.04091	53.23817	53.23817	53.22879	53.22879	50.50171	50.50171
51.50171	44.26514	39.92663	39.02662	37.14291	37.14291	33.97581	33.97581	33.03554	33.03554
32.59460	31.93727	31.56357	31.56357	30.70991	30.70991	29.70688	29.70688	29.70688	29.70688
28.23198	28.05650	28.05650	27.52962	27.52962	27.52962	26.61008	26.61008	25.40749	25.40749
25.25085	24.95099	24.95099	23.74052	23.74052	23.74052	21.47621	21.47621	19.42924	19.42924
18.35307	17.74605	17.17058	16.84811	16.83889	16.27904	15.97146	15.97146	15.96880	15.96880
15.96864	15.01352	14.51695	14.36329	13.88578	13.30955	12.88021	12.88021	12.23324	12.23324
11.82863	11.77633	11.47767	11.40818	11.40667	11.00991	10.97864	10.64764	10.64764	10.64764
11.52119	11.44584	10.44584	10.13034	10.00901	10.00901	9.98040	9.98040	9.71187	9.71187
9.52863	9.39332	9.39332	9.17654	9.12494	8.67303	8.67303	8.67303	8.77997	8.77997
8.40603	8.25743	7.98573	7.98573	7.98573	7.98573	7.98573	7.98573	7.21453	7.21453
7.01413	6.96389	6.94289	6.94289	6.94289	6.82556	6.74195	6.60711	6.60711	6.47756
6.47458	6.31272	6.14661	5.94138	5.79669	5.32382	5.32382	5.32382	5.22292	5.22292
5.16090	5.14689	5.14688	5.14597	5.14597	5.14597	5.14597	5.14597	4.9741	4.9741

APPENDIX A

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL													
4.85393	4.76676	4.74811	4.71937	4.71937	4.71937	4.71937	4.71937	4.71937	4.71937	4.56247	4.56247	4.56247	4.56247
4.50908	4.23861	4.19572	4.19498	4.19498	4.19498	4.19498	4.19498	4.19498	4.19498	4.07115	4.07115	4.07115	4.07115
3.99216	3.93515	3.93267	3.86883	3.86883	3.86883	3.86883	3.86883	3.86883	3.86883	3.75733	3.75733	3.75733	3.75733
3.66997	3.62727	3.48195	3.30297	3.19373	3.19373	3.15636	3.15636	3.15636	3.15636	3.13058	3.13058	3.13058	3.13058
3.02513	3.01348	2.97069	2.67196	2.74891	2.74891	2.35968	2.35968	2.35968	2.35968	2.55498	2.55498	2.55498	2.55498
2.54074	2.42206	2.42163	2.42050	2.42050	2.42050	2.35968	2.35968	2.35968	2.35968	2.28164	2.28164	2.28164	2.28164
2.24452	2.17814	2.12915	2.0393	1.98046	1.98046	1.94237	1.94237	1.94237	1.94237	1.87835	1.87835	1.87835	1.87835
1.74144	1.71706	1.65178	1.59715	1.58410	1.57312	1.56430	1.56430	1.56430	1.56430	1.50260	1.50260	1.50260	1.50260
1.48534	1.45195	1.4032	1.36882	1.37746	1.34225	1.33195	1.33195	1.33195	1.33195	1.22857	1.22857	1.22857	1.22857
1.16096	1.16846	1.14062	1.10118	1.06460	1.01762	1.00179	1.00179	1.00179	1.00179	1.00179	1.00179	1.00179	1.00179
423.46	99.6	386.88	99.2	330.36	98.8	194.74	98.4	194.26	98.0	190.14	97.6	159.69	97.2
133.07	96.6	96.4	76.52	96.0	72.58	95.6	72.58	95.6	69.52	94.8	69.52	94.8	69.52
57.04	94.0	53.24	93.6	53.23	93.4	53.23	92.8	53.23	92.4	50.50	91.4	50.50	91.4
50.50	91.4	46.37	91.6	39.93	90.4	35.40	90.0	37.14	89.6	33.58	88.8	33.58	88.8
33.67	88.4	33.04	88.0	32.59	87.6	31.94	87.1	31.94	86.7	31.56	86.3	31.56	86.3
30.71	85.5	31.13	85.1	29.71	84.7	25.71	84.3	29.71	83.9	28.23	83.5	28.23	83.5
28.06	82.7	28.06	82.3	27.54	81.9	27.53	81.5	27.52	81.1	26.52	80.7	26.52	80.7
25.41	79.9	25.25	79.5	25.25	79.1	24.95	78.7	24.05	78.3	23.74	77.9	23.49	77.5
20.48	77.1	20.21	76.7	19.43	76.3	18.57	75.9	18.35	75.5	18.35	75.1	17.15	74.7
17.17	74.3	16.65	73.9	16.63	73.5	16.22	73.1	16.33	72.7	15.97	72.3	15.97	71.9
15.97	71.5	15.97	71.1	15.01	70.7	14.52	70.3	14.36	69.9	13.39	69.5	13.39	69.1
13.31	68.7	12.88	68.3	12.23	67.9	11.83	67.5	11.83	67.1	11.48	66.7	11.48	66.3
11.41	65.9	11.41	65.5	11.01	65.1	10.98	64.7	10.65	64.3	10.55	63.9	10.55	63.5
1.45	63.1	1.45	62.7	1.10	62.2	1.10	61.8	1.10	61.4	9.98	61.0	9.98	60.6
9.98	60.2	9.71	59.8	9.53	59.4	9.50	59.0	9.39	58.6	9.18	58.2	9.12	57.8
8.67	57.4	8.87	57.0	8.78	56.6	8.77	56.2	8.62	55.8	8.41	55.4	8.26	55.0
7.99	54.6	7.99	54.2	7.99	53.8	7.99	53.4	7.99	53.0	7.74	52.6	7.74	52.2
7.21	51.8	7.1	51.4	6.96	51.0	6.96	50.6	6.96	50.2	6.94	49.8	6.94	49.4
6.74	49.0	6.61	48.6	6.61	48.2	6.48	47.8	6.47	47.4	6.31	46.6	6.31	46.6
6.14	46.2	5.94	45.8	5.79	45.4	5.32	45.0	5.32	44.6	5.32	44.2	5.22	43.8
5.16	43.4	5.16	43.0	5.15	42.6	5.15	42.2	5.15	41.8	5.14	41.4	5.14	41.0
4.99	40.6	4.97	40.2	4.95	39.8	4.86	39.4	4.86	39.0	4.77	38.6	4.77	38.2
4.72	37.8	4.72	37.3	4.72	36.9	4.56	36.5	4.56	36.1	4.54	35.7	4.54	35.3
4.4	34.9	4.24	34.5	4.22	34.1	4.19	33.7	4.19	33.3	4.16	32.9	4.16	32.5
4.01	32.1	3.99	31.7	3.99	31.3	3.94	30.9	3.94	30.5	3.93	30.1	3.87	29.7
3.80	29.3	3.80	28.9	3.81	28.5	3.76	28.1	3.76	27.7	3.67	27.3	3.63	26.9
3.41	26.5	3.48	26.1	3.30	25.7	3.19	25.3	3.16	24.9	3.16	24.5	3.13	24.1
3.03	23.7	3.03	23.3	3.03	22.9	3.01	22.5	2.97	22.1	2.94	21.7	2.94	21.3
2.75	20.9	2.71	20.5	2.55	20.1	2.54	19.7	2.54	19.3	2.46	18.9	2.46	18.5
2.42	18.1	2.42	17.7	2.36	17.3	2.36	16.9	2.36	16.5	2.28	16.1	2.28	15.7
2.24	15.3	2.18	14.9	2.13	14.5	2.13	14.1	2.00	13.7	1.98	13.3	1.94	12.9
1.92	12.4	1.88	12.0	1.81	11.6	1.74	11.2	1.72	10.8	1.65	10.4	1.60	10.0
1.58	9.6	1.57	9.2	1.56	8.8	1.56	8.4	1.50	8.0	1.49	7.6	1.49	7.2
1.45	6.8	1.44	6.4	1.39	6.0	1.38	5.6	1.36	5.2	1.33	4.8	1.25	4.4
1.23	4.0	1.23	3.6	1.16	3.2	1.15	2.8	1.14	2.4	1.10	2.0	1.07	1.6
1.04	1.2	1.04	0.8	1.04	0.4	1.04	0.0	1.00	0.0	1.00	0.0	1.00	0.0
371.09106	345.25195	300.20972	197.19920	160.04168	147.14079	127.47146	104.52576	95.15971	88.06470	37.10910	34.54190	37.10910	34.54190
47.51169	41.61057	41.61057	41.61057	41.61057	41.61057	41.61057	38.52260	38.52260	25.19409	24.47681	24.47681	24.47681	24.47681
34.86190	30.92426	28.55966	27.60786	26.0661	26.0661	26.0661	20.90514	20.90514	20.40528	20.41617	20.41617	20.41617	20.41617
24.35988	23.11697	22.23952	21.90030	21.15593	21.15593	18.0259	16.3214	16.3214	15.9961	15.9961	15.9961	15.9961	15.9961
19.81456	19.72183	19.51364	18.40524	18.0259	18.0259	13.77634	13.35865	13.35865	12.38650	11.83195	11.83195	11.83195	11.83195
13.80394	13.77634	13.77634	13.77634	13.77634	13.77634	13.77634	13.00910	13.00910	9.50234	9.50234	9.50234	9.50234	9.50234
11.04315	10.64381	10.45258	10.45258	10.45258	10.45258	8.645170	8.45170	8.45170	8.32181	8.32181	8.32181	8.32181	8.32181
9.28823	9.04576	8.71048	8.66887	8.66887	8.66887	8.36299	8.36299	8.36299	8.36299	8.28236	8.28236	8.28236	8.28236

APPENDIX A

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL													
		197.20	97.8	160.04	97.3	147.14	96.7	127.47	96.2	107.47	96.7	87.47	96.2
377.09 99.5	345.25 98.9	300.21 98.4	197.20 97.8	160.04 97.3	147.14 96.7	127.47 96.2	107.47 96.7	87.47 96.2	107.47 96.7	87.47 96.2	107.47 96.7	87.47 96.2	107.47 96.7
104.53 95.6	59.16 95.1	48.06 94.5	48.52 94.7	47.51 93.4	41.61 92.9	41.61 92.3	41.61 92.3	41.61 92.3	41.61 92.3	41.61 92.3	41.61 92.3	41.61 92.3	41.61 92.3
41.61 91.8	41.41 91.3	38.52 90.7	38.52 90.2	37.51 89.6	36.84 89.1	36.84 88.5	36.84 88.5	36.84 88.5	36.84 88.5	36.84 88.5	36.84 88.5	36.84 88.5	36.84 88.5
30.92 88.0	28.56 87.4	27.61 86.9	28.01 86.3	26.01 85.8	25.19 85.2	24.48 84.7	24.48 84.7	24.48 84.7	24.48 84.7	24.48 84.7	24.48 84.7	24.48 84.7	24.48 84.7
26.46 84.2	26.40 83.6	24.36 83.1	23.12 82.5	22.24 82.0	21.90 81.4	21.19 80.9	21.19 80.9	21.19 80.9	21.19 80.9	21.19 80.9	21.19 80.9	21.19 80.9	21.19 80.9
20.91 80.3	20.91 79.8	20.81 79.2	20.62 78.7	20.17 78.1	19.81 77.6	19.72 77.0	19.72 77.0	19.72 77.0	19.72 77.0	19.72 77.0	19.72 77.0	19.72 77.0	19.72 77.0
19.51 76.5	18.41 76.0	18.01 75.4	16.56 74.9	16.33 74.3	16.13 73.8	15.70 73.2	15.70 73.2	15.70 73.2	15.70 73.2	15.70 73.2	15.70 73.2	15.70 73.2	15.70 73.2
15.04 72.7	13.07 72.1	13.8 71.6	13.77 71.1	13.36 70.5	13.21 69.9	13.01 69.4	13.01 69.4	13.01 69.4	13.01 69.4	13.01 69.4	13.01 69.4	13.01 69.4	13.01 69.4
12.36 68.9	11.83 66.3	11.24 67.8	11.04 67.2	11.04 66.7	10.64 66.1	10.45 65.6	10.45 65.6	10.45 65.6	10.45 65.6	10.45 65.6	10.45 65.6	10.45 65.6	10.45 65.6
10.45 65.0	10.35 64.5	9.50 63.9	9.46 63.4	9.32 62.8	9.20 62.3	9.20 61.7	9.20 61.7	9.20 61.7	9.20 61.7	9.20 61.7	9.20 61.7	9.20 61.7	9.20 61.7
9.09 61.2	9.05 60.7	8.71 60.1	8.67 59.6	8.47 59.0	8.45 58.5	8.36 57.9	8.36 57.9	8.36 57.9	8.36 57.9	8.36 57.9	8.36 57.9	8.36 57.9	8.36 57.9
8.32 57.4	8.28 56.8	8.28 56.3	8.28 55.7	8.28 55.2	8.28 54.6	8.00 54.1	8.00 54.1	8.00 54.1	8.00 54.1	8.00 54.1	8.00 54.1	8.00 54.1	8.00 54.1
7.85 53.6	7.81 53.0	7.74 52.5	7.57 51.9	7.47 51.4	7.42 50.8	7.28 50.3	7.28 50.3	7.28 50.3	7.28 50.3	7.28 50.3	7.28 50.3	7.28 50.3	7.28 50.3
7.26 49.7	7.26 49.2	7.11 48.6	6.94 48.1	6.91 47.5	6.53 47.0	6.53 46.4	6.53 46.4	6.53 46.4	6.53 46.4	6.53 46.4	6.53 46.4	6.53 46.4	6.53 46.4
6.41 45.9	6.15 45.4	6.01 44.8	5.98 44.3	5.94 43.7	5.81 43.2	5.78 42.6	5.78 42.6	5.78 42.6	5.78 42.6	5.78 42.6	5.78 42.6	5.78 42.6	5.78 42.6
5.76 42.1	5.76 41.5	5.62 41.0	5.55 40.4	5.52 39.9	5.52 39.3	5.33 38.8	5.33 38.8	5.33 38.8	5.33 38.8	5.33 38.8	5.33 38.8	5.33 38.8	5.33 38.8
5.30 38.3	5.30 37.7	5.20 37.2	5.20 36.6	5.18 36.1	5.05 35.5	5.05 35.0	5.05 35.0	5.05 35.0	5.05 35.0	5.05 35.0	5.05 35.0	5.05 35.0	5.05 35.0
6.90 34.6	6.75 33.9	6.66 33.3	6.64 32.8	6.58 32.2	6.58 31.7	6.54 31.1	6.54 31.1	6.54 31.1	6.54 31.1	6.54 31.1	6.54 31.1	6.54 31.1	6.54 31.1
4.41 30.6	4.34 30.1	4.27 29.5	4.14 29.1	4.11 28.4	4.05 27.9	4.05 27.3	4.05 27.3	4.05 27.3	4.05 27.3	4.05 27.3	4.05 27.3	4.05 27.3	4.05 27.3
6.04 26.8	3.94 26.2	3.76 25.7	3.72 25.1	3.66 24.6	3.50 24.0	3.48 23.5	3.48 23.5	3.48 23.5	3.48 23.5	3.48 23.5	3.48 23.5	3.48 23.5	3.48 23.5
3.45 23.0	3.42 22.4	3.39 21.9	3.35 21.3	3.22 20.8	3.13 20.2	3.11 19.7	3.11 19.7	3.11 19.7	3.11 19.7	3.11 19.7	3.11 19.7	3.11 19.7	3.11 19.7
3.08 19.1	3.06 18.6	3.02 18.0	2.85 17.5	2.71 16.9	2.69 16.4	2.65 15.8	2.65 15.8	2.65 15.8	2.65 15.8	2.65 15.8	2.65 15.8	2.65 15.8	2.65 15.8
2.65 15.3	2.61 14.8	2.60 14.2	2.49 13.7	2.45 13.1	2.37 12.6	2.34 12.0	2.34 12.0	2.34 12.0	2.34 12.0	2.34 12.0	2.34 12.0	2.34 12.0	2.34 12.0
2.20 11.5	2.16 10.9	2.07 10.4	1.91 9.8	1.81 9.3	1.77 8.7	1.77 8.2	1.77 8.2	1.77 8.2	1.77 8.2	1.77 8.2	1.77 8.2	1.77 8.2	1.77 8.2
1.67 7.7	1.66 7.1	1.63 6.6	1.55 6.0	1.51 5.5	1.50 4.9	1.45 4.4	1.45 4.4	1.45 4.4	1.45 4.4	1.45 4.4	1.45 4.4	1.45 4.4	1.45 4.4
1.39 3.8	1.39 3.3	1.24 2.7	1.22 2.2	1.22 1.6	1.20 1.1	1.05 0.5	1.05 0.5	1.05 0.5	1.05 0.5	1.05 0.5	1.05 0.5	1.05 0.5	1.05 0.5
1.06 C.0													

PARAMETERS	IMMEDIATELY ABOVE	VS PER CENT CONFIDENCE LEVEL	40-50	50-60	60-70	70-80	80-90	90-95
77.2496:	55.91215	46.96854	46-571	46-3.414	46-3.0414	29.59803	24.60178	21.20746
20.50146	26.50148	18.83405	18.46134	11.73412	10.77902	10.49326	5.29712	4.45169
4.35654	4.33.41	4.3041	3.66776	3.19933	2.98681	2.95833	2.64856	2.63595
2.48900	2.30642	2.30642	2.07213	2.18116	2.10765	2.16786	2.02113	2.13000
2.3646	1.87793	1.85399	1.65013	1.78352	1.68068	1.66112	1.51026	1.69756
1.41933	1.41255	1.32428	1.31795	1.31455	1.27744	1.27394	1.22421	1.21604
1.15721	1.13.46	1.1304	1.116.2	1.10913	1.0324			

APPENDIX A

27.32201 29.97807

30-96494
40-86348

7 - 37496 63.666117

APPENDIX A

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL						
	122.39	98.5	70.37	97.1	63.86	95.5
30.96	87.9	86.4	27.32	84.8	53.0	83.3
18.59	77.3	17.6	75.8	10.69	74.2	0.39
4.45	66.7	4.38	65.2	4.36	63.6	4.40
3.32	56.1	3.23	54.5	3.29	53.0	2.96
2.73	45.5	2.66	43.9	2.37	42.4	2.32
2.13	34.8	2.06	33.3	2.26	31.8	1.98
1.70	24.2	1.66	22.7	1.60	21.2	1.60
1.42	13.6	1.41	12.1	1.31	10.6	1.28
1.13	3.0	1.09	1.5	1.05	0.0	1.05

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL						
	380.30542	124.22978	63.05457	40.56848	22.08990	21.84456
17.58311	16.56311	16.56728	16.09920	16.02228	15.52882	15.46913
13.74413	12.75575	12.29514	11.84463	11.04985	10.73200	10.45419
9.47012	9.40216	9.11125	8.94400	8.40728	8.21656	8.04960
7.47141	7.47142	7.33353	7.28910	7.23243	7.12102	6.832264
5.74933	5.68727	5.36640	4.96919	4.94546	4.70266	4.68098
4.27261	4.16498	4.46412	4.01810	4.00557	3.91910	3.74478
3.56051	3.46182	3.41046	3.37311	3.32589	3.32559	3.23645
3.20424	3.19161	3.08865	2.71590	2.65255	2.52757	2.49652
2.29986	2.26673	2.17557	2.13630	2.11191	2.11191	2.08057
2.01244	1.986	1.89965	1.87239	1.85455	1.80133	1.79437
1.72480	1.71791	1.62274	1.61022	1.61499	1.56633	1.565640
1.24236	1.24236	1.24238	1.23936	1.20736	1.14987	1.05595
1.03655	1.00630					1.03855

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL						
	380.31199	126.23985	63.05797	40.57970	22.08995	21.84457
21.36	93.9	16.38	93.2	17.58	92.4	17.58
16.02	88.6	15.53	87.9	15.49	87.1	13.48
12.76	83.1	12.3	82.6	11.84	81.8	11.05
9.77	78.0	9.47	77.3	9.47	76.5	9.40
-22	72.7	8.5	72.0	8.05	71.2	7.91
-3.3	67.4	7.29	66.7	7.23	65.9	7.12
5.79	62.1	5.75	61.4	5.69	60.6	5.37
4.6	56.8	4.60	56.1	4.55	55.3	4.35
4.02	51.5	4.01	50.8	3.92	50.0	3.74
3.56	46.2	3.48	45.5	3.41	44.7	3.37
3.21	41.9	3.21	41.2	3.21	39.4	3.20
2.69	35.6	2.65	34.8	2.53	34.1	2.50
2.25	30.3	2.18	29.5	2.14	28.8	2.14
2.03	25.0	2.01	24.2	2.01	23.5	1.99
1.87	19.7	1.79	18.9	1.76	18.2	1.76
1.62	14.6	1.62	13.9	1.61	12.9	1.56
1.3	5.1	1.24	8.3	1.24	7.6	1.24
1.15	3.8	1.06	3.0	1.05	2.3	1.04

31

PARAMETERS IMMEDIATELY ACCURATE VS. PER CENT CONFIDENCE LEVEL			
0.65-94565	282-86792	143-57362	92-37343
18-31707	17-78411	17-76091	13-68148
9-16490	8-75941	6-52678	8-42630
6-69847	6-53246	6-48177	6-15238
4-80876	4-61902	4-37376	4-22275
3-55222	3-55222	3-39112	3-12740
2-11996	1-91352	1-90978	1-87644
1-56370	1-54578	1-40733	1-40733
1-17800	1-13147	1-13147	1-13106
0.65-95-98.9	282-86792	143-57362	92-37343
29-94-91.1	29-70-90.0	23-8-88.9	12-96-96.7
12-95-83.3	11-43-82.2	11-26-81.1	11-02-80.6
8-76-75.6	8-53-74.4	8-43-73.3	8-20-72.2
7-07-67.8	7-54-66.7	6-70-65.6	6-53-64.4
5-68-60.0	5-19-58.9	5-15-57.8	4-85-56.7
4-37-52.2	4-22-51.1	4-16-50.0	4-12-48.9
3-61-44.4	3-55-43.3	3-54-42.2	3-35-41.1
2-81-36.7	2-78-35.6	2-36-34.4	2-12-33.3
1-82-28.9	1-61-27.4	1-78-26.7	1-74-25.6

APPENDIX A

1.56	21.1	1.55	20.0	1.41	18.9	1.41	17.8	1.41	16.7	1.39	15.6
1.36	13.3	1.29	12.6	1.27	11.1	1.18	10.0	1.13	8.9	1.13	7.8
1.18	5.6	1.17	4.4	1.17	3.3	1.05	2.2	1.01	1.1	1.01	0.0

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL	CONFIDENCE LEVEL										
	92.38	92.57	92.74	92.91	92.96	93.06	93.14	93.23	93.31	93.40	93.53
23.59770	224.74005	92.30164	40.62103	49.74396	28.13916	28.09250	23.81023	23.80603	23.7909		
17.76569	12.79053	11.37205	10.05147	9.37972	8.99117	8.89917	8.76173	8.76019			
8.52754	8.17366	7.21554	7.01053	7.03603	6.92949	6.92949	6.70015	6.69997	6.69473		
6.51746	6.46752	5.81957	5.77481	5.65502	5.56198	5.30928	5.23481	5.15396	5.15305		
5.1.179	4.88810	4.85243	4.54531	4.46958	4.39674	4.12244	4.11983	4.11983	4.11983		
3.4.4758	3.00509	3.55314	3.12712	3.03165	3.02572	2.96639	2.94911	2.81641	2.81392		
2.66770	2.66532	2.28155	2.27265	2.05339	2.02254	2.03994	1.87627	1.75901	1.75870		
1.71138	1.56356	1.56329	1.54591	1.49258	1.48319	1.40721	1.40721	1.40721	1.40721		
1.38614	1.27131	1.22344	1.23259	1.11240	1.11240	1.06613	1.06613	1.06613	1.06613		
546.56929	546.57969	224.74	97.8	90.62	95.6	49.74	94.4	26.14	93.3	26.09	92.2
23.81	91.1	23.81	50.0	23.79	88.5	23.80	87.8	17.77	86.7	11.37	84.4
10.05	83.3	9.38	62.2	8.9	81.1	8.90	80.0	8.76	78.9	8.75	76.7
8.53	75.6	8.1	74.4	7.22	73.3	7.11	72.2	7.04	71.1	6.70	68.9
6.70	67.8	6.69	66.7	6.52	65.6	6.47	64.4	5.88	63.3	5.77	62.2
5.56	60.0	5.31	58.9	5.23	57.6	4.15	56.7	5.15	55.6	5.15	54.4
4.85	52.2	4.55	51.1	4.45	50.0	4.40	48.9	4.12	47.8	4.12	45.6
3.82	44.6	3.82	43.3	3.81	42.2	3.55	41.1	3.13	40.1	3.03	37.8
2.97	36.7	2.95	35.6	2.81	34.4	2.81	33.3	2.67	32.2	2.67	31.1
2.27	28.9	2.05	27.6	2.02	26.7	2.01	25.6	1.98	24.4	1.76	22.2
1.71	21.1	1.56	20.0	1.56	18.9	1.55	17.6	1.49	16.7	1.48	15.6
1.41	13.3	1.41	12.2	1.39	11.1	1.39	10.0	1.27	8.9	1.22	7.8
1.11	5.6	1.11	4.4	1.08	3.3	1.07	2.2	1.07	1.1	1.07	0.0

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL	CONFIDENCE LEVEL											
	57.31	97.6	47.17	95.2	47.17	92.9	36.16	90.1	28.79	88.1	25.40	85.7
12.27977	9.4825	6.19897	4.71661	4.71661	4.65116	3.25581	3.13416	3.08466	2.73338	2.73338		
2.6909	2.58290	2.55252	2.54715	2.54715	2.16964	2.03673	1.94415	1.91935	1.85247	1.85247		
1.74603	1.66098	1.65305	1.49493	1.49493	1.43264	1.33244	1.29054	1.21620	1.07446	1.07446		
1.03127	1.00495											
57.30559	47.16605	47.16605	36.16063	28.79031	25.40321	23.99173	22.34060	21.59273	12.61418			
57.31	97.6	47.17	95.2	47.17	92.9	36.16	90.1	28.79	88.1	23.99	83.3	
22.04	81.0	21.59	78.6	12.61	76.2	12.28	73.8	9.05	71.4	6.72	66.7	
4.72	64.3	4.65	61.9	3.26	59.5	3.13	57.1	3.06	54.8	2.73	52.4	
2.58	47.6	2.55	45.2	2.55	42.9	2.54	40.5	2.17	38.1	2.04	35.7	
1.92	31.0	1.85	26.6	1.75	26.2	1.66	23.8	1.65	21.4	1.49	16.7	
1.43	14.3	1.32	11.9	1.29	9.5	1.22	7.1	1.07	4.8	1.01	2.4	

PARAMETERS IMMEDIATELY ABOVE VS PER CENT CONFIDENCE LEVEL	CONFIDENCE LEVEL											
	74.72659	74.72659	57.30051	57.29041	36.23682	31.97365	31.97365	27.17761	22.33865	19.98502		
12.27849	5.82121	9.64745	7.47266	7.47266	4.65158	4.09217	4.09217	3.68252	3.43742			
3.39720	3.25610	3.19737	2.73412	2.41579	2.09059	2.0372	1.97822	1.87432	1.74518			
1.65220	1.61620	1.59217	1.54464	1.49479	1.47180	1.42251	1.32232	1.30260	1.22765			
1.07438	1.01118											
74.73	97.6	74.73	95.2	57.3	92.9	57.29	90.5	36.24	88.1	31.97	85.7	

APPENDIX A

27.18	81.1	22.4	78.6	19.99	76.2	12.28	73.8	9.82	71.4	9.05	69.0	7.47	66.7
7.47	64.3	4.65	61.9	4.09	59.5	4.06	57.1	3.88	54.8	3.44	52.4	3.40	50.0
3.26	47.6	3.20	45.2	2.73	42.9	2.42	40.5	2.09	36.1	2.02	35.7	1.98	33.3
1.87	31.0	1.75	28.6	1.65	26.2	1.62	23.8	1.59	21.4	1.54	19.0	1.49	16.7
1.47	14.3	1.43	11.9	1.32	9.5	1.30	7.1	1.23	4.8	1.07	2.4	1.01	0.0

DISTRIBUTION

ADMINISTRATOR DEFENSE TECHNICAL INFORMATION CENTER ATTN DTIC-DDA (12 COPIES) CAMERON STATION, BUILDING 5 ALEXANDRIA, VA 22314	DIRECTOR DEFENSE ADVANCED RSCH PROJ AGENCY ATTN TIO ARCHITECT BUILDING 1400 WILSON BLVD. ARLINGTON, VA 22209	CHIEF LIVERMORE DIVISION, FIELD COMMAND DNA DEPARTMENT OF DEFENSE LAWRENCE LIVERMORE LABORATORY ATTN FCPLR P.O. BOX 808 LIVERMORE, CA 94550
COMMANDER US ARMY RSCH & STD GP (EUR) ATTN CHIEF, PHYSICS & MATH BRANCH FPO NEW YORK 09510	FEDERAL EMERGENCY MANAGEMENT AGENCY ATTN JAMES W. KERR, MITIGATION & RESEARCH WASHINGTON, DC 20472	NATIONAL COMMUNICATIONS SYSTEM OFFICE OF THE MANAGER ATTN NCS-TS, CHARLES D. BOUDON DEPARTMENT OF DEFENSE WASHINGTON, DC 20305
COMMANDER US ARMY ARMAMENT MATERIEL READINESS COMMAND ATTN DRSAAR-LEP-L, TECHNICAL LIBRARY ROCK ISLAND, IL 61299	DEFENSE COMMUNICATIONS ENGINEERING CENTER ATTN CODE R720, C. STANSBERRY ATTN CODE R123, TECH LIB ATTN CODE R400 1960 WIEHLE AVENUE RESTON, VA 22090	DIRECTOR NATIONAL SECURITY AGRNCY ATTN R-52, O. VAN GUNTEN ATTN S232, D. VINCENT DEPARTMENT OF DEFENSE FT. GEORGE G. MEADE, MD 20755
COMMANDER US ARMY MISSILE & MUNITIONS CENTER & SCHOOL ATTN ATSMK-CTD-F REDSTONE ARSENAL, AL 35809	DIRECTOR DEFENSE COMMUNICATIONS AGENCY ATTN CCTC C312 ATTN CODE C313 WASHINGTON, DC 20305	UNDER SECY OF DEF FOR RSCH & ENGRG ATTN G. BARSE ATTN SESS (OS) DEPARTMENT OF DEFENSE WASHINGTON, DC 20301
DIRECTOR US ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY ATTN DRMSY-MP ATTN DRMSY-PO ABERDEEN PROVING GROUND, MD 21005	DIRECTOR DEFENSE INTELLIGENCE AGENCY ATTN RDS-3A ATTN RDS-3A4, POMPOON PLAZA WASHINGTON, DC 20301	COMMANDER BMD SYSTEM COMMAND DEPARTMENT OF THE ARMY ATTN BMDS-C-AOLIB P.O. BOX 1500 HUNTSVILLE, AL 35807
DIRECTOR US ARMY BALLISTIC RESEARCH LABORATORY ATTN DRDAR-TSB-S (STINFO) ATTN DRBR-AM, W. VANANTWERP ATTN DRSTE-EL ATTN DRDAR-BLE ABERDEEN PROVING GROUND, MD 21005	DIRECTOR DEFENSE NUCLEAR AGENCY ATTN DDST, DEP DIR, SCI & TECHNOLOGY ATTN RAEE, ELECTRONIC VULNERABILITY DIV ATTN TITL, TECH LIB DIV ATTN RAEE, EMP EFFECTS DIV WASHINGTON, DC 20305	COMMANDER ERADCOM TECHNICAL SUPPORT ACTIVITY DEPARTMENT OF THE ARMY ATTN DRDCO-COM-ME, G. GAULE ATTN DELSD-L ATTN DELCS-K, A. COHEN ATTN DELET-IR, E. HUNTER FORT MONMOUTH, NJ 07703
HQ USAFA/SAMI WASHINGTON, DC 20330	COMMANDER FIELD COMMAND DEFENSE NUCLEAR AGENCY ATTN FCPR ATTN FCSFN, J. SMITH ATTN FCLAC KIRTLAND AFB, NM 87115	COMMANDER US ARMY ARMOR CENTER ATTN TECHNICAL LIBRARY FORT RHOX, KY 40121
TELEDYNE BROWN ENGINEERING CUMMINGS RESEARCH PARK ATTN DR. MELVIN L. PRICE, MS-44 HUNTSVILLE, AL 35807	DIRECTOR INTERSERVICE NUCLEAR WEAPONS SCHOOL ATTN TTV KIRTLAND AFB, NM 87115	COMMANDER US ARMY COMM-ELEC ENGRG INSTAL AGENCY ATTN CCC-PSO-S ATTN CCC-CRD-SES FT. HUACHUCA, AZ 85613
US ARMY ELECTRONICS TECHNOLOGY & DEVICES LABORATORY ATTN DELET-DD FORT MONMOUTH, NJ 07703	JOINT CHIEFS OF STAFF ATTN J-3 WASHINGTON, DC 20301	COMMANDER US ARMY COMMUNICATIONS COMMAND COMBAT DEVELOPMENT DIVISION ATTN ATSI-CD-MD FT. HUACHUCA, AZ 85613
DIRECTOR ARMED FORCES RADIobiology RESEARCH INSTITUTE DEFENSE NUCLEAR AGENCY ATTN RESEARCH PROGRAM COORDINATING OFFICER NATIONAL NAVAL MEDICAL CENTER BETHESDA, MD 20014	DIRECTOR JOINT STRATEGIC TARGET PLANNING STAFF, JCS ATTN JSAS ATTN JPST ATTN NRI-STINFO LIBRARY OFFUTT AFB OMAHA, NE 68113	CHIEF US ARMY COMMUNICATIONS SYS AGENCY ATTN CCM-RD-T CCM-AD-SV FORT MONMOUTH, NJ 07703
ASSISTANT TO THE SECRETARY OF DEFENSE ATOMIC ENERGY ATTN EXECUTIVE ASSISTANT WASHINGTON, DC 20301		

DISTRIBUTION (Cont'd)

OPM SINGARS
DEPARTMENT OF THE ARMY
ATTN DRCFM-GARS-TM
HQ US ARMY COMMUNICATIONS & ELECTRONICS MATERIEL READINESS COMMAND
FORT MONMOUTH, NJ 07703

PROJECT OFFICER
US ARMY COMMUNICATIONS RES & DEV COMMAND
ATTN DRCFM-ATC
ATTN DRCFM-TDS-BSI
FORT MONMOUTH, NJ 07703

DIVISION ENGINEER
US ARMY ENGINEER DIV, HUNTSVILLE
ATTN HNDED-SR
ATTN A. T. BOLT
P.O. BOX 1600, WEST STATION
HUNTSVILLE, AL 35807

US ARMY INTEL THREAT ANALYSIS DETACHMENT
ROOM 2201, BLDG A
ATTN RM 2200, BLDG A
ARLINGTON HALL STATION
ARLINGTON, VA 22212

COMMANDER
US ARMY INTELLIGENCE & SEC CMD
ATTN TECH INFO FAC
ARLINGTON HALL STATION
4000 ARLINGTON BLVD
ARLINGTON, VA 22212

COMMANDER
US ARMY MISSILE COMMAND
ATTN DRCFM-PE-EA, WALLACE O. WAGNER
ATTN DRCFM-PE-EG, WILLIAM B. JOHNSON
ATTN DRDMI-TBD
ATTN DRDMI-EAA
REDSTONE ARSENAL, AL 35809

COMMANDER
US ARMY TEST AND EVALUATION COMMAND
ATTN DRSTE-PA
ABERDEEN PROVING GROUND, MD 21005

COMMANDER
US ARMY TRAINING AND DOCTRINE COMMAND
ATTN ATORI-OP-SW
FORT MONROE, VA 23651

COMMANDER
WHITE SANDS MISSILE RANGE
ATTN STMS-TE-AN, J. OKUMA
DEPARTMENT OF THE ARMY
WHITE SANDS MISSILE RANGE, NM 88002

OFFICER-IN-CHARGE
CIVIL ENGINEERING LABORATORY
ATTN CODE LO8A (LIBRARY)
ATTN CODE LO8A
NAVAL CONSTRUCTION BATTALION CENTER
PORT HUENEME, CA 93041

COMMANDER
NAVAL AIR SYSTEMS COMMAND
ATTN AIR-350F
WASHINGTON, DC 21360

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
ATTN PME 117-215
WASHINGTON, DC 20360

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
ATTN CODE 015, C. FLETCHER
ATTN RESEARCH LIBRARY
ATTN CODE 7240, S. W. LICHTMAN
SAN DIEGO, CA 92152

COMMANDING OFFICER
NAVAL ORDNANCE STATION
ATTN STANDARDIZATION DIV
INDIAN HEAD, MD 20640

SUPERINTENDENT (CODE 1424)
NAVAL POSTGRADUATE SCHOOL
ATTN CODE 1424
MONTEREY, CA 93940

DIRECTOR
NAVAL RESEARCH LABORATORY
ATTN CODE 4104, EMANUEL L. BRANCATO
ATTN CODE 2627, DORIS R. FOLEN
ATTN CODE 6623, RICHARD L. STATLER
ATTN CODE 6624
WASHINGTON, DC 20375

COMMANDER
NAVAL SHIP ENGINEERING CENTER
DEPARTMENT OF THE NAVY
ATTN CODE 6174D2, EDWARD F. DUFFY
WASHINGTON, DC 20362

COMMANDER
NAVAL SURFACE WEAPONS CENTER
ATTN CODE F32, EDWIN R. RATHBURN
ATTN L. LIBELLO, CODE WR43
ATTN CODE WA51RH, RM 130-108
WHITE OAK, SILVER SPRING, MD 20910

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHLGREN LABORATORY
ATTN CODE DF-56
DAHLGREN, VA 22448

COMMANDER
NAVAL WEAPONS CENTER
ATTN CODE 533, TECH LIB
CHINA LAKE, CA 93555

COMMANDING OFFICER
NAVAL WEAPONS EVALUATION FACILITY
ATTN CODE AT-6
KIRTLAND AIR FORCE BASE
ALBUQUERQUE, NM 87117
OFFICE OF NAVAL RESEARCH
ATTN CODE 427
ARLINGTON, VA 22217

DIRECTOR
STRATEGIC SYSTEMS PROJECT OFFICE
NAVY DEPARTMENT
ATTN NSP-2701, JOHN W. PITSENBURGER
ATTN NSP-2342, RICHARD L. COLEMAN
ATTN NSP-43, TECH LIB
ATTN NSP-27334
ATTN NSP-230, D. GOLD
WASHINGTON, DC 20376

COMMANDER
AERONAUTICAL SYSTEMS DIVISION, AFSC
ATTN ASD-YH-EX
ATTN ENPTV
WRIGHT-PATTERSON AFB, OH 45333

AIR FORCE TECHNICAL APPLICATIONS CENTER
ATTN TFS, M. SCHNEIDER
PATRICK AFB, FL 32325

AF WEAPONS LABORATORY, AFSC
ATTN NT
ATTN NT
ATTN EL, CARL E. BAUM
ATTN ELXT
ATTN SUL
ATTN CA
ATTN ELA, J. P. CASTILLO
ATTN ELP
ATTN ELT, W. PAGE
ATTN NXS
KIRTLAND AFB, NM 87117

DIRECTOR
AIR UNIVERSITY LIBRARY
ATTN AUL-LSE-70-250
DEPARTMENT OF THE AIR FORCE
MAXWELL AFB, AL 36112

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/YSEA
ATTN YSEA
DEPARTMENT OF THE AIR FORCE
HANSCOM AFB, MA 01731

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
ATTN NICD LIBRARY
ATTN ETDP, B. L. BALLARD
WRIGHT-PATTERSON AFB, OH 45433

COMMANDER
OGDEN ALC/MMEDDE
ATTN OO-ALC/MMETH, P. W. BERTHEL
ATTN MMEDO, LEO KIDMAN
ATTN MAJ R. BLACKBURN
DEPARTMENT OF THE AIR FORCE
HILL AFB, UT 84406

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
ATTN TSLD
GRIFFISS AFB, NY 13441

COMMANDER
SACRAMENTO AIR LOGISTICS CENTER
ATTN MMCRS, H. A. PEIMASTRO
ATTN MMIRA, J. W. DEMES
ATTN MASREM, F. R. SPEAR
DEPARTMENT OF THE AIR FORCE
McCLELLAN AFB, CA 95652

SAMSO/IN
AIR FORCE SYSTEMS COMMAND
P.O. BOX 92960
ATTN IND
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(INTELLIGENCE)

DISTRIBUTION (Cont'd)

SAMSO, MN AIR FORCE SYSTEMS COMMAND ATTN MNNH, MAJ M. BARAN ATTN MNNH, CAPT R. I. LAWRENCE NORTON AFB, CA 92409 (MINUTEMAN)	AEROSPACE CORPORATION ATTN C. B. PEARLSTON ATTN IRVING M. GARFUNKEL ATTN JULIAN REINHEIMER ATTN LIBRARY ATTN CHARLES GREENHOW P.O. BOX 92957 LOS ANGELES, CA 90009	CALSPAN CORPORATION P.O. BOX 400 ATTN TECH LIBRARY BUFFALO, NY 14225
SAMSO/YA AIR FORCE SYSTEMS COMMAND ATTN YAFC P.O. BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009	AGBABIAN ASSOCIATES 250 NORTH NASH STREET ATTN LIBRARY EL SEGUNDO, CA 90245	CHARLES STARK DRAPER LABORATORY INC. 555 TECHNOLOGY SQUARE ATTN KENNETH FERTIG ATTN TIC MS 74 CAMBRIDGE, MA 02139
STRATEGIC AIR COMMAND/XPPS ATTN NRI-STINFO LIBRARY ATTN DEL ATTN GARNET E. MATZKE ATTN XPPS, MAJ BRIAN G. STEPHAN OFFUTT AFB, NE 68113	AVCO RESEARCH & SYSTEMS GROUP 201 LOWELL STREET ATTN W. LEPSEVICH WILMINGTON, MA 01887	CINCINNATI ELECTRONICS CORPORATION 2630 GLENDALE-MILFORD ROAD ATTN LOIS HAMMOND ATTN SINCgars-NWE CINCINNATI, OH 45241
DEPARTMENT OF ENERGY ALBUQUERQUE OPERATIONS OFFICE ATTN DOC CON FOR TECH LIBRARY ATTN OPERATIONAL SAFETY DIV P.O. BOX 5400 ALBUQUERQUE, NM 87115	BATTELLE MEMORIAL INSTITUTE 505 KING AVENUE ATTN ROBERT H. BLAZEK ATTN EUGENE R. LEACH COLUMBUS, OH 43201	COLLINS TELECOMMUNICATIONS PRODUCTS DIV ELECTRONIC SYSTEMS GROUP ATTN SINCgars-NWE 855 35TH STREET, NE CEDAR RAPIDS, IA 52406
UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN DOC CON FOR TECHNICAL INFORMATION DEPT ATTN DOC CON FOR L-06, T. DONICH ATTN DOC CON FOR L-545, D. MERKER ATTN DOC CON FOR L-156, E. MILLER ATTN DOC CON FOR L-10, H. KRUGER ATTN DOC CON FOR H. S. CABAYAN P.O. BOX 808 LIVERMORE, CA 94550	BDM CORPORATION 7915 JONES BRANCH DRIVE ATTN CORPORATE LIBRARY MCLEAN, VA 22102	COMPUTER SCIENCES CORPORATION 6565 ARLINGTON BLVD ATTN RAMONA BRIGGS FALLS CHURCH, VA 22046
LOS ALAMOS SCIENTIFIC LABORATORY ATTN DOC CON FOR BRUCE W. NOEL ATTN DOC CON FOR CLARENCE BENTON P.O. BOX 1663 LOS ALAMOS, NM 87545	BDM CORPORATION R.O. BOX 9274 ATTN LIB ALBUQUERQUE INTERNATIONAL ALBUQUERQUE, NM 87119	COMPUTER SCIENCES CORPORATION 1400 SAN MATEO BLVD, SE ATTN RICHARD H. DICKHAUT ATTN ALVIN SCHIFF ALBUQUERQUE, NM 87108
SANDIA LABORATORIES ATTN DOC CON FOR C. N. VITTIOT ATTN DOC CON FOR R. L. PARKER ATTN DOC CON FOR ELMER F. HARTMAN P.O. BOX 5800 ALBUQUERQUE, NM 87115	BENDIX CORPORATION, THE RESEARCH LABORATORIES DIVISION ATTN MAX FRANK BENDIX CENTER SOUTHFIELD, MI 48075	CONTROL DATA CORPORATION P.O. BOX 0 ATTN JACK MEEHAN MINNEAPOLIS, MN 55440
CENTRAL INTELLIGENCE AGENCY ATTN RD/SI, RM 5G48, HQ BLDG FOR OSI/NED/NWB WASHINGTON, DC 20505	BENDIX CORPORATION NAVIGATION AND CONTROL GROUP ATTN DEPT 6401 TETERBORO, NJ 07608	CUTLER-HAMMER, INC. AIL DIVISION ATTN EDWARD KARPEN COMAC ROAD DEER PARK, NY 11729
ADMINISTRATOR DEFENSE ELECTRIC POWER ADMIN DEPARTMENT OF THE INTERIOR ATTN L. O'NEILL INTERIOR SOUTH BLDG, 312 WASHINGTON, DC 20240	BOEING COMPANY P.O. BOX 3707 ATTN HOWARD W. WICKLEIN ATTN D. E. ISBELL ATTN DAVID KEMBLE ATTN B. C. HANRAHAN ATTN KENT TECH LIB SEATTLE, WA 98124	THE DIKEWOOD CORPORATION 1613 UNIVERSITY BLVD, NE ATTN TECH LIB ATTN L. WAYNE DAVID ALBUQUERQUE, NM 87102
DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION ATTN SEC DIV ASE-300 HEADQUARTERS SEC DIV, ASE-300 800 INDEPENDENCE AVENUE, SW WASHINGTON, DC 20591	BOOZ-ALLEN AND HAMILTON, INC. 106 APPLE STREET ATTN R. J. CHRISNER ATTN TECH LIB TINTON FALLS, NJ 07724	THE DIKEWOOD CORPORATION 2716 OCEAN PARK BLVD SUITE 3000 ATTN K. LEE SANTA MONICA, CA 90405
	BROWN ENGINEERING COMPANY, INC. CUMMINGS RESEARCH PARK ATTN FRED LEONARD HUNTSVILLE, AL 35807	E-SYSTEMS, INC. GREENVILLE DIVISION ATTN JOLETA MOORE P.O. BOX 1056 GREENVILLE, TX 75401
	BURROUGHS CORPORATION FEDERAL AND SPECIAL SYSTEMS GROUP ATTN ANGELO J. MAURIELLO CENTRAL AVE AND ROUTE 252 P.O. BOX 517 PAOLI, PA 19301	EFFECTS TECHNOLOGY, INC. 5383 HOLLISTER AVENUE ATTN S. CLOW SANTA BARBARA, CA 93111

DISTRIBUTION (cont'd)

2000 WASHINGTON ANALYTICAL SERVICES
CENTER, INC.
P.O. BOX 10218
ATTN C. JELLEN
ALBUQUERQUE, NM 87114

ELECTRO MAGNETIC APPLICATIONS, INC.
ATTN FREDERICK BRICKEN
ALTN RAY ROBICH
1910 SOUTH GARRISON ST
DENVER, CO 80226

EXXON NUCLEAR COMPANY, INC.
RESEARCH AND TECHNOLOGY CENTER
ATTN DR. A. W. TREVELPEE
2955 GEORGE WASHINGTON WAY
RICHLAND, WA 99352

FAIRCHILD CAMERA AND INSTRUMENT
CORP.
464 SW 12TH STREET
ATTN BBC CON FOR DAVID K. MYERS
MOUNTAIN VIEW, CA 94030

FORD AEROSPACE & COMMUNICATIONS
CORP.
1039 FAIRFAX WAY
ATTN TECHNICAL LIBRARY
PALO ALTO, CA 94303

FORD AEROSPACE & COMMUNICATIONS
CORPORATION
FORD A JAMESBURG ROAD
ATTN 1620 C, ATTINGER
ATTN R. M. PONCELET, JR.
NEWPORT BEACH, CA 92663

FRANKLIN INSTITUTE, THE
20TH STREET AND BROADWAY
ATTN RAMIK H. THOMPSON
PHILADELPHIA, PA 19103

GENERAL DYNAMICS CORP.
ELECTRONICS DIVISION
P.O. BOX 8125
ATTN NSIC LIB
SAN DIEGO, CA 92138

GENERAL DYNAMICS CORPORATION
INTER-DIVISION RESEARCH LIBRARY
KEANNE, MDRA
P.O. BOX 80447
ATTN RESEARCH LIBRARY
SAN DIEGO, CA 92123

GENERAL ELECTRIC CO.-TEMPO
CENTER FOR ADVANCED STUDIES
110 STATE STREET (PO DRAWER 92)
ATTN DABIAQ
ATTN ROYDEN R. MURPHREY
ATTN WILLIAM MCNAMEA
SANTA BARBARA, CA 93102

GENERAL ELECTRIC COMPANY
AEROSPACE ELECTRONICS SYSTEMS
FRANCIS ROAD
ATTN CHARLES M. HOWISON
UTICA, NY 13502

GENERAL ELECTRIC COMPANY
P.O. BOX 8000
ATTN TRIC LIB
BINGHAMTON, NY 13902

GENERAL ELECTRIC CO.-TEMPO
ALEXANDRIA OFFICE
HUNTINGTON BUILDING, SUITE 300
ATTN DABIAQ
2900 HUNTINGTON AVENUE
ALEXANDRIA, VA 22301

GENERAL RESEARCH CORPORATION
SANTA BARBARA DIVISION
ATTN TRIC INFO OFFICE
P.O. BOX 6770
SANTA BARBARA, CA 93111

GEORGIA INSTITUTE OF TECHNOLOGY
GEORGIA TECH RESEARCH INSTITUTE
ATTN K. CURRY
ATLANTA, GA 30332

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION
ATTN NSIC SECURITY COORDINATOR
ATTN NSIC & BBC COORD FOR
HUGH DONNY
ATLANTA, GA 30332

GRUMMAN AEROSPACE CORPORATION
BOOTH SYSTEMS BAY ROAD
ATTN L-01 35
BETHPAGE, NY 11714

GTE SYLVANIA, INC.
ELECTRONIC SYSTEMS GRS-EASTERN
DIV
ATTN CHARLES A. THOMKILL, SECRETARY
ATTN LEONARD E. BLATHFIELD
77 A STREET
BEDFORD, MA 01744

GTE SYLVANIA, INC.
189 B STREET
ATTN CHARLES H. RAMSEY/TOM
ATTN DAVID D. KAZD
ATTN EMIL J. MOROK
ATTN H & V GROUP, MARIO A. NUREPORA
ATTN J. WALDRON
WEBBISH HEIGHTS, MA 02194

HARRIS CORPORATION
HARRIS SEMICONDUCTOR DIVISION
ATTN V PRCS & MGR PROGMB DIV
P.O. BOX 883
MELBOURNE, FL 32901

HAWLETT-PACKARD
MULAKI ROAD
ATTN TRIC INFO CTR, M. WALTER
ONEOKLAWN, NY 11740

HONEYWELL INCORPORATED
AVIONICS DIVISION
3600 HIGHWAY PARKWAY
ATTN NSIC LIB
ATTN RONALD R. JOHNSON
MINNEAPOLIS, MN 55413

HONEYWELL, INCORPORATED
AVIONICS DIVISION
13350 U.S. HIGHWAY 10 NORTH
ATTN M. B. 725-5, STARRY H. GRAPP
ATTN W. X. BURWART
BLU. PETERBORG, FL 33713

HONEYWELL
MARINE SYSTEMS DIV
ATTN RONALD WEISM
1200 E SAN BERNARDINO RD
WEST COVINA, CA 91700

HUGHES AIRCRAFT COMPANY
CENTINELIA AND TELM
ATTN JOHN B. BINGLETARY
ATTN CTDC 6/E110
ATTN KENNETH N. WALKER
COLUSA CITY, CA 90230

ITT RESEARCH INSTITUTE
ELECTRONIC COMPATIBILITY ANAL OTR
NORTH BETHESDA
ATTN AGOAT
ANNAPOLIS, MD 21402

ITT RESEARCH INSTITUTE
10 WEST 19TH STREET
ATTN IRVING N. MINDEK
ATTN JACK E. BRIDGER
CHICAGO, IL 60616

INSTITUTE FOR DEFENSE ANALYSTS
400 ARMY-NAVY DRIVE
ATTN TRIC INFO SERVICES
ARLINGTON, VA 22202

INT'L TEL. & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
ATTN TECHNICAL LIBRARY
ATTN ALEXANDER T. RICHARDSON
NEW YORK, NY 07110

ITT
AEROSPAC/OPITAL DIVISION
1700 E. PONTIAC STREET
ATTN SINGAPORE-NVR
PORT WAYNE, IN 46301

ITT CORPORATION
P.O. BOX 81047
ATTN C. H. WILLIAMS
ATTN DENNIS SWIFT
SAN DIEGO, CA 92138

JANITOR
SANTA BARBARA FACILITY
ATTN W. A. RADABRY
P.O. BOX 2000
SANTA BARBARA, CA 93120

JAYCO
1401 CAMINO DEL MAR
ATTN ERIC P. WEAVER
ATTN RALPH H. HYLAND
DEL MAR, CA 92014

JAYCO
809 B WHITING BERNET, SUITE 400
ATTN LIB
ALEXANDRIA, VA 22304

DISTRIBUTION (Cont'd)

KAMAN INTELLIGENCE CORPORATION
P.O. BOX 7461
ATTN ALARPT P. BREKKE
ATTN W. KOSTER NICH
ATTN WALTER E. KANE
ATTN FRANK H. BHURTON
ATTN JERRY L. LINFIELD
ATTN PHIL TRACY
ATTN WERNER STARK
COLORADO SPRINGS, CO 80913

LITTON SYSTEMS, INC.
DATA SYSTEMS DIVISION
1630 WOODLEY AVENUE
ATTN DMC GP
ATTN MMAP-61
VAN NUYS, CA 91409

LITTON SYSTEMS, INC.
AEROSPACE DIVISION
5115 CALVERT ROAD
ATTN J. KRASCH
COLLEGE PARK, MD 20740

LITTON MILITARY AND SPACE
COMPANY, INC.
P.O. BOX 504
ATTN L. KIRK
ATTN SAMUEL L. TAYLOR
ATTN H. G. THAYER
ATTN GEORGE F. KRATH
ATTN BENJAMIN T. KIKURA
BUNNY VALLEY, CA 94066

LITTON MILITARY AND SPACE
COMPANY, INC.
1251 HANOVER STREET
ATTN TECH ENGR CDR D/POL
PALO ALTO, CA 94304

M.L.T. LINCOLN LABORATORY
P.O. BOX 72
ATTN ERONA LOHRELLIN
LEXINGTON, MA 02173

MARTIN MARIETTA CORPORATION
ORLANDO DIVISION
P.O. BOX 5857
ATTN MONA C. ORLOFF
ORLANDO, FL 32805

MCDONNELL DOUGLAS CORPORATION
P.O. BOX 916
ATTN TOM ANDRE
CIV. LABORATORY, MO 63166

MICROKILL CORP/LSB CORPORATION
5101 BOLOGA AVENUE
ATTN STANLEY KOHNSTEIN
ATTN TECH LIBRARY SERVICE
HUNTINGTON BEACH, CA 92647

MIRTON RESEARCH CORPORATION
P.O. DRAWER 710
ATTN PMD GROUP
ATTN WILLIAM E. HAIR
ATTN S. LINDNER
BANTA SANDIA, CA 91103

MIRTON RESEARCH CORPORATION
EM SYSTEM APPLICATIONS DIVISION
1400 SAN MATRO BLVD., JR, SUITE A
ATTN DAVID P. MERRIMAN
ALBUQUERQUE, NM 87108

MIRTON RESEARCH CORPORATION-SAN
DIEGO
P.O. BOX 1200
ATTN V. A. J. VAN LINT
LA JOLLA, CA 92038

MITRE CORPORATION, THE
P.O. BOX 208
ATTN H. P. FITZGERALD
BEDFORD, MA 01730

MONDEN SYSTEMS, INC.
HELMET STREET
ATTN TECHNICAL LIBRARY
NORWALK, CT 06850

NORTHROP RESEARCH TECHNOLOGY
CENTERS
ONE RESEARCH PARK
ATTN LIBRARY
PALO VERDE PENN, CA 90274

NORTHROP CORPORATION
ELECTRONIC DIVISION
2101 WEST 120TH STREET
ATTN LEW SMITH
ATTN RAD EFFECTN GRP
HAWTHORNE, CA 92250

PYRHON INTERNATIONAL COMPANY
2700 MERCED STREET
ATTN ITC CON
SAN FRANCISCO, CA 94157

R & D ASSOCIATES
P.O. BOX 909
ATTN H. CLAY ROGERS
ATTN CHARLES MO
ATTN RICHARD H. ROHRSHEIM
ATTN ITC CON
ATTN M. GROVER
ATTN C. MCKEEHAN
ATTN J. ROMANOFF
MANHATTAN, NY, 10020

R&D ASSOCIATED
1401 WILSON BLVD
SUITE 500
ATTN J. ROMANOFF
ALEXANDRIA, VA 22304

RAND CORPORATION
1200 MAIN STREET
ATTN LIB-D
ATTN W. HOLLYDAY
PANTA MONICA, CA 90400

RAYTHEON COMPANY
HANOVER ROAD
ATTN GREGORY H. JONES
BEDFORD, MA 01730

RAYTHEON COMPANY
700 BOSTON TURN ROAD
ATTN HAROLD E. KIRKWOOD
BEDFORD, MA 01730

RCA CORPORATION
DAVID BARNOFF RESEARCH CENTER
ATTN GEORGE J. BRICKER
P.O. BOX 432
PRINCETON, NJ 08540

RCA CORPORATION
DAVID BARNOFF RESEARCH CENTER
ATTN SECURITY DEPT, L. MINICH
P.O. BOX 412
PRINCETON, NJ 08540

RCA CORPORATION
CAMDEN COMPLEX
POINT A XOPEN PTHRKT
ATTN OLIVE WHITERHEAD
ATTN H. W. MONTOM
CAMDEN, NJ 08012

REINHOLD INTERNATIONAL CORPORATION
P.O. BOX 3109
ATTN R. J. HODER
ATTN J. L. MUNICH
ATTN V. J. MICHL
ATTN D/241-06K, 031-CAT1
ANAHKIM, CA 92301

REINHOLD INTERNATIONAL CORPORATION
SPACE DIVISION
ATTN R. E. WHITE
12214 NORTH LAKWOOD BOULEVARD
DOWNNEY, CA 90241

REINHOLD INTERNATIONAL CORPORATION
RIS LAFAYETTE STREET
ATTN L-3, DIV TIC (NAOR)
BL. EXCELSIOR, CA 90245

REINHOLD INTERNATIONAL CORPORATION
P.O. BOX 369
ATTN P. A. BHAW
PLAINFIELD, NJ 07043

RANDCOR ASSOCIATES, INC.
95 CANAL STREET
ATTN S-270, R. G. DEBPATHY,
BH P K
NASHUA, NH 03060

REINHOLD APPLICATIONS, INC.
P.O. BOX 271
ATTN FREDERICK H. TRENDE
BERKLEY, CA 94703

REINHOLD APPLICATIONS, INC.
P.O. BOX 2161
ATTN R. PARKER
LA JOLLA, CA 92038

REINHOLD APPLICATIONS, INC.
COMPUTER DIVISION
7100 N. CLEMENT AVENUE
SUITE 700
AUSTIN, TX 78756
HOUSTON, TX 77005

REINHOLD APPLICATIONS, INC.
8400 107TH DRIVE
ATTN ALLEN L. PADHRY
MELVILLE, NY 11747

DISTRIBUTION (cont'd)

HINSON COMPANY
1150 MC KNIDE AVENUE
ATTN TRUCK INFO CTM
LITTLE FAIRFORD, NJ 07424

**SPERRY RAND CORPORATION
SPERRY MICROWAVE ELECTRONICS
P.O. BOX 4644H
ATTN: MARGARET CORT
CLEARWATER, FL 33518**

**SPERRY RAND CORPORATION
SPERRY DIVISION
MARLBOROUGH AVENUE
ATTN: TIRH LHM
WHITE PLAINS, NY 10602**

**ARMENY HAND COMMISSION
ARMENY PHILIPP MURKIN
P.O. BOX 21111
ATTN: D. ANDREW RICHARD
PHOENIX, AZ 85061**

SPERRY CORPORATION
P.O. BOX D
ATTN JOHN H. TIGHE
ATTN ROBERT W. LITTLE
BEDFORD, MA 01730

BIR INTERNATIONAL
111 HAVENWOOD AVENUE
ATTN: ANTHONY JAK WHIPSON
MENTAL PARK, CA 94025

HYPERMEDIA, ENTERTAINMENT AND SOFTWARE, INC.
P.O. BOX 1020
ATTN: ANDREW H. WILSON
LA JOLLA, CA 92033

TEXAS INSTRUMENTS, INC.
P.O. BOX 22000
ATTN: TEL 614
ATTN: RONALD J. MAGIN
ATTN: FRANK BORLEKIN
DALLAS, TX 75260

THW DRINKER & SPACK INC C/O
ONE SPACK PARK
ATTN G. K. ADAMS
ATTN H. K. PERINCH
ATTN L. H. MAGNOLIA
ATTN H. H. HOLLYWAY
ATTN W. SARDANO
REKINDLE BEACH, CA 90278

TEXAS TECH UNIVERSITY
P.O. BOX 8404 NORTH COLLEGE STATION
ATTN: TRAVIS L. KIMMEN
LUBBOCK, TX 79447

UNITED TECHNOLOGIES CORP.
HAMILTON STANDARD DIVISION
ATTN: CHIEF KIOSK ENGINEER
BRADLEY INTERNATIONAL AIRPORT
WINDHAM TWP., CT 06069

WESTINGHOUSE ELECTRIC CORPORATION
ADVANCED ENERGY SYSTEMS DIV.
ATTN: TROY LEE
P.O. BOX 10664
PITTSBURGH, PA. 15236

U.S. ARMY ELECTRONIC RESEARCH
& DEVELOPMENT COMMAND
ATTN: TECHNICAL DIRECTOR, DNDRL-CT
ATTN: LEGAL OFFICE