IE5203 Decision Modeling & Risk Analysis Solutions to Chapter 10 Exercises

P10.1

(a) Given
$$u(x_1,x_2) = k_1 u_1(x_1) + (1-k_1) u_2(x_2)$$

 $70\% \le x_1 \le 90\%$ and $70\% \le x_1 \le 90\%$.

Let
$$u(70\%, 70\%) = u_1(70\%) = u_2(70\%) = 0$$

 $u(90\%, 90\%) = u_1(90\%) = u_2(90\%) = 1$

$$(90\%, 70\%)$$
 \sim 0.4 $(90\%, 90\%)$ $(90\%, 70\%)$ $(70\%, 70\%)$

$$\Rightarrow 0.4 \ u(90\%, 90\%) + 0.6 \ u(70\%, 70\%) = u(90\%, 70\%)$$

$$0.4 \ u(90\%, 90\%) + 0.6 \ u(70\%, 70\%) = k_1 \ u_1(90\%) + (1 - k_1) \ u_2(70\%)$$

$$0.4 \ (1) + 0.6 \ (0) = k_1 \ (1) + (1 - k_1) \ (0)$$

$$\Rightarrow$$
 $k_1 = 0.4$

• Hence the Ministry two-attribute additive utility function is $u(x_1,x_2) = 0.4 u_1(x_1) + 0.6 u_2(x_2)$

(b)

$$(x_1, 76\%)$$
 ~ 0.65

$$0.35$$

$$(x_1, 90\%)$$

$$(x_1, 90\%)$$

$$(x_1, 70\%)$$

$$\Rightarrow 0.65 [k_1 u_1(x_1) + k_2 u_2(90\%)] + 0.35 [k_1 u_1(x_1) + k_2 u_2(70\%)] = k_1 u_1(x_1) + k_2 u_2(76\%)$$

$$\underline{k}_1 u_1(x_1) + 0.65 k_2 u_1(90\%) + 0.35 k_2 u_2(70\%) = \underline{k}_1 u_1(x_1) + k_2 u_2(76\%)$$

Hence $u_2(76\%) = 0.65$.

$$(78\%, x_2) \sim 0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$(70\%, x_2)$$

$$\Rightarrow$$
 0.5 [$k_1 u_1(90\%) + k_2 u_2(x_2)$] + 0.5 [$k_1 u_1(70\%) + k_2 u_2(x_2)$] = $k_1 u_1(78\%) + k_2 u_2(x_2)$

$$0.5 k_1 u_1(90\%) + k_2 u_2(x_2) + 0.5 k_1 u_1(70\%) = k_1 u_1(78\%) + k_2 u_2(x_2)$$

Hence $u_1(78\%) = 0.5$.

• The decision tree for the two teaching techniques is as follows:

Conclusion: Method 2 is preferred to Method 1.

P10.2

 x_1 = Weekly blood shortage ($0 \le x_1 \le 10$) x_2 = Weekly blood outdated ($0 \le x_2 \le 10$)

$$u(x_1, x_2) = 0.4 u_1(x_1) + 0.5 u_2(x_2) + 0.1 u_1(x_1) u_2(x_2)$$
where $u_1(x_1) = 0.582 \left[\exp(1 - \frac{x_1}{10}) - 1 \right]$ and $u_2(x_2) = 1 - \frac{x_2^2}{100}$.

The decision tree is

Conclusion: The hospital should order 28 pints of blood weekly.

Contractor	Cost	Time
	(\$ <i>m</i>)	(months)
A	100	20
В	80	25
<i>B</i> '	100	18
С	79	28
C'	83	26
D	82	26

Cost (\$m)

Given $B' \sim B$ and $C' \sim C$.

By dominance analysis, we have:

$$B \succ D$$
, $D \succ C'$ and $B' \succ A$

Hence $B' \sim B \succ D \succ C' \sim C$ and $B' \succ A$.

Answer: Choose either *B* or *B*'.

Note that although C is an efficient alternative, i.e., on the efficient frontier, it is not optimal to the decision maker because it has the same utility as C, which is non-efficient.

Hence, non-dominance is necessary but not sufficient for optimality with respect to utility.

P10.4

(a) The weights for the main criteria with respect to the Goal are computed:

	Human prod	Economics	Design	Operations	Exact w	RGM
Human Productivity	1	3	3	7	0.513052	0.5159
Economics	1/3	1	2	5	0.246592	0.2474
Design	1/3	1/2	1	7	0.193575	0.1903
Operations	1/7	1/5	1/7	1	0.046781	0.0463

 $\lambda_{max} = 4.212088$, CR= 0.078551 < 10%

The local weights for the alternatives with respect to each criterion are computed:

Human Productivity:

	System A	System B	System C	Exact w	RGM
System A	1	3	5	0.648329	0.6483
System B	1/3	1	2	0.229651	0.2297
System C	1/5	1/2	1	0.122020	0.1220

 $\lambda_{\text{max}} = 3.003695$, CR= 0.003185 < 10%

Economics:

	System A	System B	System C		RGM
System A	1	1/3	1/2	0.157056	0.1571
System B	3	1	3	0.593634	0.5936
System C	2	1/3	1	0.249311	0.2493

 $\lambda_{max} = 3.053622$, CR= 0.046225 < 10%

Design:

	System A	System B	System C	Exact w	RGM
System A	1	1/2	1/7	0.093813	0.0938
System B	2	1	1/5	0.166593	0.1666
System C	7	5	1	0.739594	0.7396

 $\lambda_{\text{max}} = 3.014152$, CR= 0.012200 < 10%

Operations:

	System A	System B	System C	Exact w	RGM
System A	1	3	1/5	0.178178	0.1782
System B	1/3	1	1/9	0.070418	0.0704
System C	5	9	1	0.751405	0.7514

 $\lambda_{\text{max}} = 3.029064, \text{CR} = 0.025055 < 10\%$

The composite weights for the three alternative systems are:

- System A: (0.513052)(0.648329) + (0.246592)(0.157056) + (0.093813)(0.0938) + (0.046781)(0.178178)= 0.397850
- System B: (0.513052)(0.229651) + (0.246592)(0.593634) + (0.193575)(0.166593) + (0.046781)(0.070418)= 0.299750
- System C: (0.513052)(0.122020) + (0.246592)(0.249311) + (0.193575)(0.739594) + (0.046781)(0.751405)= 0.302399

Hence System A should be chosen as it has the highest global weight.

Alternative	Effectiveness	EUAC (\$)
System B	0.299750	80,000
System A	0.397850	100,000
System C	0.302399	110,000

- Efficient Cost-Effective Alternatives are B and A.
- The efficient frontier is shown below:

