Prova TEC

Vinicius Gasparini

2020.1

Sendo A_{MT} definida por $A_{MT} = \{\langle M, w \rangle \mid w \in L(M) \}$, ou seja, é o conjunto de todos os pares possíveis de $\langle M, w \rangle$ ao qual M reconhece w, A só será reconhecível se existir uma função de mapeamento $f: \Sigma^* \to \Sigma^*$ computável onde para todo $w \in A \iff f(w) \in A_{MT}$. Se tal função não existisse, mas existisse uma função que computa $A \leq_m \overline{A_{MT}}$, $\overline{A_{MT}}$ teria que ser reconhecível para sustentar a hipótese primaria de que A é reconhecível. Sendo assim, teríamos A_{MT} e $\overline{A_{MT}}$, A_{MT} reconhecíveis, portanto A_{MT} seria decidível, o que é um absurdo.

Logo, a função de mapeamento f precisa existe e é essencial para A ser reconhecível.

Sendo L livre de contexto, L é decidível. Sabemos que o complemento de qualquer linguagem decidível é decidível também. Portanto, \overline{L} é decidível.

Caso existisse uma máquina reconhecedora para L_d , então poderíamos criar uma redução $L_d \leq_m EQ_{MT}$. Porém, sabe-se que EQ_{MT} não é reconhecível nem co-reconhecível, logo não pode existir uma máquina de Turing que aceite L_d .

Seja uma MT qualquer M e uma palavra qualquer w. Construa a seguinte MT Z:

 $\to Z$ com entrada u: Se u é diferente de 100, rejeite. Senão, rode Mcom w. Se M aceitar, aceite. Senão, rejeite.

Supondo que K é decidível, existe alguma MT Y que decide K. Rodando Y com Z, estaríamos decidindo A_{MT} , o que é um absurdo. Portanto, K é indecidível.

Seja uma MT qualquer M e uma palavra qualquer w. Construa a seguinte MT Z:

 $\to Z$ com entrada u: Se u é diferente do código de Z,rejeite. Senão, rode Mcom w. Se Maceitar, rejeite. Senão, aceite.

Supondo que L_d é reconhecida por alguma MT Y. Rodando Y com o código de Z, estaríamos reconhecendo o complemento de A_{MT} . Como A_{MT} é reconhecível e seu complemento também seria (com base nessa suposição), A_{MT} seria decidível, o que é um absurdo!!!!!!!.