Turing Machine Solutions for Exercise A

Traehan Arnold

Exercise A Solutions

1. TM for $L = \{10^n : n \in \mathbb{N}\}$ and return 10^{n+1}

Idea: The TM reads the input 10^n , moves to the end of the tape, appends an extra 0.

- States: q_0 (start), q_1 (move right to the end), q_2 (write extra 0), q_{accept}
- Alphabet: $\{0,1,B\}$
- Transitions:

$$\delta(q_0, 1) = (q_1, 1, R)$$

$$\delta(q_1,0) = (q_1,0,R)$$

$$\delta(q_1, B) = (q_2, 0, S)$$

$$\delta(q_2, 0) = (q_{\text{accept}}, 0, S)$$

2. TM for $L = \{10^n : n \in \mathbb{N}\}$ and return 1

Idea: Erase all 0s, then move to beginning and keep only 1.

- States: q_0 (start), q_1 (erase 0s), q_2 (go back left), q_3 (halt with 1), q_{accept}
- Alphabet: $\{0, 1, B\}$
- Transitions:

$$\delta(q_0, 1) = (q_1, 1, R)$$

$$\delta(q_1,0) = (q_1, B, R)$$

$$\delta(q_1, B) = (q_2, B, L)$$

$$\delta(q_2, 1) = (q_3, 1, S)$$

$$\delta(q_3, 1) = (q_{\text{accept}}, 1, S)$$

3. TM that swaps 0's and 1's in a binary string

Idea: Read input from left to right, replacing 0 with X (temp), 1 with Y. Then go back and finalize: $X \to 1$, $Y \to 0$.

- States: q_0 (marking), q_1 (return), q_2 (finalizing), q_{accept}
- Transitions:

$$\begin{split} \delta(q_0,0) &= (q_0,X,R) \\ \delta(q_0,1) &= (q_0,Y,R) \\ \delta(q_0,B) &= (q_1,B,L) \\ \delta(q_1,X) &= (q_1,X,L) \\ \delta(q_1,Y) &= (q_1,Y,L) \\ \delta(q_1,B) &= (q_2,B,R) \\ \delta(q_2,X) &= (q_2,1,R) \\ \delta(q_2,Y) &= (q_2,0,R) \\ \delta(q_2,B) &= (q_{\text{accept}},B,S) \end{split}$$