MATH 1060 Vagnozzi

5.3: The Fundamental Theorems of Calculus

Learning Objectives. Upon successful completion of Section 5.3, you will be able to...

- Answer conceptual questions involving the Fundamental Theorem of Calculus.
- Given a graph and areas of designated regions, evaluate area functions.
- Find and verify area functions.
- Evaluate definite integrals using the Fundamental Theorem of Calculus.
- Find areas bounded by functions.
- Evaluate derivatives of definite integrals.
- Evaluate area functions.
- Maximize values of definite integrals and solve integral equations.

The First Fundamental Theorem of Calculus

Recall from Section 4.9 that a function F is called an **antiderivative** of f on an interval [a,b] if

$$F'(x) = f(x)$$
 for all $x \in [a, b]$.

First Fundamental Theorem of Calculus. If f is continuous on [a,b], then the function F defined on [a,b] by

$$F(x) = \int_{a}^{x} f(t) dt$$

is continuous on [a, b], differentiable on [a, b], and has derivative

$$F'(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x) \text{ for all } x \in [a, b].$$

In other words, $F'(x) = f(x) \Longrightarrow F$ is an antiderivative of f.

The First Fundamental Theorem of Calculus (FTC1) establishes that *differentiation* and *integration* are, in a sense, inverse operations, much like multiplication and division. For example...

Example. Find the local extrema for $F(x) = \int_0^x \cos(t) dt$ on the interval $[0, 2\pi]$.

Example. Find the intervals of increase/decrease and the intervals of concavity for

$$F(x) = \int_{1}^{x} (t^{2} - 7t + 10) dt.$$

Example. Find the equation of the line tangent to

$$F(x) = \int_{2}^{x} (3t^{2} - t) dt$$
 at $x = 2$.

Chain Rule for Integral Functions. Let f be a continuous function defined on [a, b] and let u be a continuous function defined on [a, b] so that $a \le u(x) \le b$ for all $x \in [a, b]$. Furthermore, let F be the function defined as follows.

$$F(x) = \int_{a}^{u(x)} f(t) dt$$

Then $F'(x) = f(u(x)) \cdot u'(x)$ for all $x \in [a, b]$.

Example. Find the derivative of $F(x) = \int_0^{x^3} (2z - z^2) dz$.

Example. Find the derivative of each of the following functions.

$$(1) F(x) = \int_1^{\ln x} e^t dt$$

(2)
$$F(x) = \int_{\tan x}^{0} \frac{1}{1+k^2} dk$$

Where does the First Fundamental Theorem lead us? We will begin to see a pattern in the following example.

MATH 1060 Vagnozzi

Example. Use the First Fundamental Theorem of Calculus to evaluate $\int_2^5 (e^t + 2t) dt$.

The Second Fundamental Theorem of Calculus

We now introduce the Second Fundamental Theorem of Calculus (FTC2), sometimes referred to as the Fundamental Theorem of Integral Calculus.

Second Fundamental Theorem of Calculus. Let f be continuous on [a, b] and suppose that F is an antiderivative for f on the same interval. Then

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

Recall the definition of the definite integral as a limit of a Riemann sum.

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) \, dx.$$

The Second Fundamental Theorem of Calculus now allows us to evaluate integrals without dealing with this clunky limit!

Notation for Evaluating Definite Integrals. Because we are subtracting two antiderivatives, the "+C" may be ignored, as C - C = 0.

Example. We previously found that the area under $f(x) = x^2 + 1$ on [0, 2] is $\frac{14}{3}$ through the limit of a Riemann sum. Using FTC2, now find this area directly.

Example. Evaluate the following definite integrals.

$$1$$
 $\int_{-1}^{3} (2+x) dx$

$$\bigcirc 2 \int_{-2}^{-1} \frac{2}{3x} \, dx$$

$$\boxed{4} \int_0^{1000} dx$$

Example (continued). Evaluate the following definite integrals.

$$(5) \int_{4}^{9} \frac{\sqrt{u^3} - 1}{\sqrt{u^3}} \, du$$

$$(6) \int_0^{\frac{\pi}{2}} (2 - 3\sin\theta) \, d\theta$$

$$7) \int_{1}^{\sqrt{3}} \frac{4}{1+x^2} \, dx$$

Example. Solve the equation for
$$x$$
: $\int_0^x (4t-9) dt = -4$.

Example. If x > 0, solve for x: $\int_{x}^{x^2} \frac{1}{t} dt = \pi$.

△ Example. Evaluate the definite integrals.

$$(2) \int_1^5 2\sqrt{x-1} \, dx$$

△ Example (continued). Evaluate the definite integrals.

$$4 \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{2}{\sqrt{1-j^2}} \, dj$$

Example. Find a linear function f passing through (0, -3) with $\int_0^1 f(x) dx = 1$.

MATH 1060 Vagnozzi

Example. Find the maximum and minimum values of $\int_0^x \cos(t) dt$ on the interval $(0, 2\pi)$.

Recall that, for FTC2 to apply, the function f must be continuous on the interval [a, b]. Because of this condition, note that we cannot use FTC2 to evaluate the following.

$$\int_{-1}^{2} \frac{1}{x} dx \neq \ln|x| \Big|_{-1}^{2} = \ln(2) - \ln(1) = \ln(2)$$

Why not?

Connection Back to Limits. The two major thematic elements of calculus, the *derivative* and the *integral*, share a common element: both are limits. In fact, calculus does not exist without the limit!

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Approximating Integrals

Broadly speaking, the main challenge of integration is finding an antiderivative. Sometimes, if the antiderivative is difficult to find, we may approximate a definite integral using the following method.

Integral Approximation. If f is continuous on [a, b], then

$$\int_a^b f(x) \, dx \approx f(a)(b-a) \text{ so long as } b \text{ is "close" to } a.$$

Example. Calculate an approximation to $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} x^2 \cos(x) dx$.

Note: This integral requires a double application of "integration by parts" (MATH 1080).