Основные понятия теории множеств

Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.

Понятие множества — является одним из тех фундаментальных понятий математики, которым трудно дать точное определение, используя элементарные понятия. Поэтому ограничимся описательным объяснением понятия множества.

Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества — «множество есть многое, мыслимое нами как целое».

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

- $a \in X$ «элемент а принадлежит множеству X»;
- а ∉ X «элемент а не принадлежит множеству X»;
- ∀ квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
- ∃ квантор существования: ∃у ∈ В «существует (найдется) элемент у из множества В»;
- ∃! квантор существования и единственности: ∃!b ∈ C «существует единственный элемент b из множества С»;
- : «такой, что; обладающий свойством»;
- \rightarrow символ следствия, означает «влечет за собой»;
- \Leftrightarrow квантор эквивалентности, равносильности «тогда и только тогда».

Множества бывают **конечные** и **бесконечные**. Множества называются **конечным**, если число его элементов конечно, т.е. если существует натуральное число n, являющееся числом элементов множества. $A = \{a_1, a_2, a_3, ..., a_n\}$. Множество называется **бесконечным**, если оно содержит бесконечное число элементов. $B = \{b_1, b_2, b_3, ...\}$. Например, множество букв русского алфавита — конечное множество. Множество натуральных чисел — бесконечное множество.

Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|. **Пустое**множество — множество, не содержащее ни одного элемента — \emptyset . Два множества называются **равными**, если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Множества не равны $X \neq Y$, если в X есть элементы, не принадлежащие X, или в X есть элементы, не принадлежащие X. Символ равенства множеств обладает свойствами:

- X=X; рефлексивность
- если X=Y, Y=X симметричность
- если X=Y,Y=Z, то X=Z транзитивность.

Согласно такого определения равенства множеств мы естественно получаем, что все пустые множества равны между собой или что то же самое, что существует только одно пустое множество.

Подмножества. Отношение включения.

Множество X является подмножеством множества Y, если любой элемент множества $X \in \mathcal{X}$ и множеству Y. Обозначается $X \subseteq Y$.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из X, то используют символ строгого включения \subset : X \subset Y. Связь между символами \subset и \subseteq дается выражением:

$$X \subset Y \Leftrightarrow X \subseteq Y$$
 и $X \neq Y$

Отметим некоторые свойства подмножества, вытекающие из определения:

- 1. Х⊆Х (рефлексивность);
- 2. $[X \subseteq Y \ и \ Y \subseteq Z] \rightarrow X \subseteq Z$ (транзитивность);
- 3. Ø ⊆ М. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество A по отношению к его подмножествам называется **полным** множеством и обозначается I.

Любое подмножество А_і множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества X и пустого множества \emptyset , называется **булеаном** X и обозначается $\beta(X)$. Мощность булеана $|\beta(X)|=2^n$.

Счетное множество — это такое множество A, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) $a_1, a_2, a_3, ..., a_n, ...$ так, чтобы при этом каждый элемент получил ишь один номер n и каждое

натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример. Множество квадратов целых чисел 1, 4, 9, ..., n^2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств.

- перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M={ $m_1,m_2,m_3,...,m_n$ });
- описанием указывается характерное свойства, которым обладают все элементы множества.

Множество полностью определено своими элементами.

Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием $Q=\{n/m, m, n \in \mathbb{Z}, m \neq 0\}$.

Способы задания множества описанием:

а) <u>заданием порождающей процедуры</u> с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — <u>рекурсивный</u>, индуктивный.

$$X=\{x: x_1=1, x_2=1, x_{k+2}=x_k+x_{k+1}, k=1,2,3,...\}$$
 — мн-во чисел Фибониччи.

 $\{$ мн-во элементов x, таких, что $x_1=1,x_2=1$ и произвольное x_{k+1} (при $\kappa=1,2,3,...$) вычисляется по формуле $x_{k+2}=x_k+x_{k+1}\}$ или $X=[x: x_1=1, x_2=1, x_3=2, x_4=3, x_5=5, x_6=8, ...\}$

б) заданием вычислительной процедуры формульной зависимости:

$$X = \{x: x=2\sin(y)+1, y \in \{0, p/2\}\} \Leftrightarrow \{1, 3\}$$

 $X = \{x: x^2-1=0 \Leftrightarrow \{+1,-1\}$

в) заданием характеристического свойства (высказывания), выделяющего элементы данного множества из элементов других множеств — предикатный.

$$A = \{x: x$$
 — четное число $\}; M = \{x: p(x)\}$ — множество x, обладающих свойством

 $N=\{n: n\in \mathbb{Z}, n>0, \mathbb{Z}=\{-..., -2, -1, 0, 1, 2, ...\}$ — множество целых чисел

 $K={m: m=n^2, n∈N}$ — множество всех квадратов натуральных чисел, $N={1, 2, 3, ...}$

 $X={x: 0≤x≤1, x∈N}$ ⇔ 1, 2, 3, ..., где N-мн-во целых чисел.

г) заданием с помощью операций над множествами — аналитический.

Отметим некоторые свойства подмножества, вытекающие из его определения:

Если
$$X \subseteq Y$$
 и $Y \subseteq X \rightarrow X = Y$

Для любого множества само это множество и Ø можно рассматривать как его подмножества, называемые **несобственными**. Все другие подмножества — **собственные**.