Package 'MESHr'

October 23, 2018

Type Package

Title pre- and post processing for MESH	
Version 0.1.1	
Date 2018-10-23	
Author Al Pietroniro, Environment Canada	
Maintainer Kevin Shook <kevin.shook@usask.ca></kevin.shook@usask.ca>	
Description This package contains functions for pre- and post- processing data for the MESH model.	
Depends R (>= 3.1)	
Imports grid, ggplot2, stringr, reshape2, knitr, hydroGOF, raster, rts, readr	
License GPL-3	
LazyData true	
RoxygenNote 6.1.0 NeedsCompilation no VignetteBuilder knitr R topics documented:	
•	_
1 6	2
	2
	4
	5
	5
	6
	7
basinStorageVariablesPlot	8
basinWaterBalancePlot	9
hydroStats	
MESH_streamflows	
PBIAS	3

	read_AEP_csv	13
	read_MESH_OutputTimeseries_csv	14
	read_r2c_raster	16
	read_r2c_shed	17
	read_tb0	18
	simpleHydrograph	19
	write_r2c_shed	21
	write_tb0	22
Index		24

MESHr-package

Functions for MESH pre- and post- processing

Description

The intent of this package is to contain functions do do common tasks for MESH modelling, such as reading output, plotting, and assessing model quality. The first functions will use .csv files - support for netCDF will be added.

References

To cite **MESHr** in publications, use the command citation("MESHr") to get the current version of the citation.

basinPrecipEvapRunoffPlot

Plots basin precipitation evaporation and runoff

Description

Plots basin precipitation evaporation and runoff

Usage

basinPrecipEvapRunoffPlot(basinWaterBalance)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

Value

Returns a ggplot2 line plot of the variable values (mm).

basinRunoffPlot 3

Author(s)

Kevin Shook

See Also

 $read_MESH_OutputTimeseries_csv\ basinStoragePlot\ basinSoilWaterIcePlot$

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinPrecipEvapRunoffPlot(waterBalance)
## End(Not run)</pre>
```

basinRunoffPlot

Plots basin runoff components

Description

Plots basin runoff components

Usage

```
basinRunoffPlot(basinWaterBalance, cumul = FALSE)
```

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

cumul

Optional. If FALSE, then interval values are plotted. If TRUE (the default) then cumulative values are plotted. Note that the cumulative values are determined by summing the interval values *not* by plotting the MESH cumulative variables.

Value

Returns a ggplot2 line plot of the variable values (mm).

Author(s)

Kevin Shook

See Also

 $read_MESH_OutputTimeseries_csv\ basinStoragePlot\ basinSoilWaterIcePlot$

4 basinSnowPlot

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinRunoffPlot(waterBalance)
## End(Not run)</pre>
```

basinSnowPlot

Plots basin snow water equivalent

Description

Plots basin snow water equivalent

Usage

basinSnowPlot(basinWaterBalance)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by $read_MESH_OutputTimeseries_csv$.

Value

Returns a ggplot2 stacked line plot of the basin SWE (mm).

Author(s)

Kevin Shook

See Also

```
read_MESH_OutputTimeseries_csv basinStoragePlot
```

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinSnowPlot(waterBalance)
## End(Not run)</pre>
```

basinSnowRainPondedPlot

basinSnowRainPondedPlot

Plots basin snow and rain in the canopy and ponded water

5

Description

Plots basin snow and rain in the canopy and ponded water

Usage

basinSnowRainPondedPlot(basinWaterBalance)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

Value

Returns a **ggplot2** line plot of the basin variables (mm).

Author(s)

Kevin Shook

See Also

```
read_MESH_OutputTimeseries_csv basinStoragePlot
```

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinSnowRainPondedPlot(waterBalance)
## End(Not run)</pre>
```

basinSoilWaterIcePlot Plots basin soil water and ice

Description

Plots basin soil water and ice

Usage

```
basinSoilWaterIcePlot(basinWaterBalance, layers = c(1, 2))
```

6 basinSoilWaterPlot

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

layers

Optional. A vector of the layers to be plotted. By default layers 1 and 2 are used.

Value

Returns a **ggplot2** line plot of the variable values (mm) faceted by Layer number. The name of the variable is layer, so you can change change the facetting.

Author(s)

Kevin Shook

See Also

read_MESH_OutputTimeseries_csv basinStoragePlot

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinSoilWaterIcePlot(waterBalance)
## End(Not run)</pre>
```

basinSoilWaterPlot

Plots basin soil liquid water

Description

Plots basin soil liquid water

Usage

```
basinSoilWaterPlot(basinWaterBalance, layers = c(1, 2, 3, 4, 5, 6))
```

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

layers

Optional. A vector of the layers to be plotted. By default layers 1 though 6 are used.

Value

Returns a ggplot2 line plot of the variable values (mm).

basinStoragePlot 7

Author(s)

Kevin Shook

See Also

 $read_MESH_OutputTimeseries_csv\ basinStoragePlot\ basinSoilWaterIcePlot$

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinSoilWaterPlot(waterBalance)
## End(Not run)</pre>
```

basinStoragePlot

Plots total basin storage

Description

Plots total basin storage

Usage

```
basinStoragePlot(basinWaterBalance)
```

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv.

Value

Returns a **ggplot2** line plot of the value of STG (mm).

Author(s)

Kevin Shook

See Also

 $read_MESH_OutputTimeseries_csv\ basinStorageVariablesPlot\ basinSoilWaterIcePlot$

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinStoragePlot(waterBalance)
## End(Not run)</pre>
```

 $bas in {\tt StorageVariablesPlot}$

Plots basin water balance storage components

Description

Creates a **ggplot2** stacked area plot of specified water balance storage components. The variables plotted may include:

variable definition

SNCAN Snow component of precipitation intercepted by the canopy

RCAN Rain component of precipitation intercepted by the canopy mm or kg m-2 of water AVG

SNO Snow water equivalent (SWE) of the snow mass

ZPND Depth of water ponded at the surface

LQWS Water equivalent of the volumetric liquid water content of the soil

FZWS Water equivalent of the volumetric frozen water content of the soil

ALWS Water equivalent of the volumetric liquid and frozen water contents of the soil, sum of LQWS and FZWS

Usage

```
basinStorageVariablesPlot(basinWaterBalance, varNames = "",
  layers = c(1, 2, 3, 4, 5, 6))
```

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by $read_MESH_OutputTimeseries_csv$.

varNames Optional. A vector of the names of the variables to be plotted. If not specified,

all of the variables listed above will be plotted.

layers Optional. A vector of the layers to be plotted. By default layers 1 through 6 are

used.

Value

Returns a **ggplot2** stacked area time plot of the variable values (mm).

Author(s)

Kevin Shook

See Also

read_MESH_OutputTimeseries_csv

basinWaterBalancePlot 9

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv")
p <- basinStorageVariablesPlot(waterBalance)
# the plot can have a restricted date range
startDate <- as.Date("2005-10-01", format = "%Y-%m-%d")
endDate <- as.Date("2006-09-30", format = "%Y-%m-%d")
library(ggplot2)
p <- p + xlim(startDate, endDate)
p
# you can also change the colours used, either by
using a defined scale, or by manually specifying them
# This example uses the colours in the package viridis
# which scales from dark to light by reversing the direction
library(viridis)
p <- p + scale_fill_viridis(discrete = TRUE, direction = -1)
p
## End(Not run)</pre>
```

basinWaterBalancePlot Plots basin precipitation cumulative water balance.

Description

As with the basinRunoffPlot, the cumulative values of precipitation, evaporation and runoff (and optionally, delta storage) are computed by the function, rather than by using the MESH variables. This allows the plot to be used on a sub-set of the basin output data.

Usage

basinWaterBalancePlot(basinWaterBalance, accumulate_delta_storage = TRUE)

Arguments

basinWaterBalance

Required. Data frame to be plotted. As read in by read_MESH_OutputTimeseries_csv. Note that because the value of DTSG (delta storage) can be negative, you need to set a threshold value much smaller than zero when you read in the values.

accumulate_delta_storage

Optional. If TRUE (the default), the delta storage is accumulated from the beginning of the data set. If FALSE, the delta storage values in the file are *not* accumulated as they are assumed to be cumualtive values.

Value

Returns a **ggplot2** line plot of the variable values (mm).

10 hydroStats

Author(s)

Kevin Shook

See Also

read_MESH_OutputTimeseries_csv basinStoragePlot basinSoilWaterIcePlot

Examples

```
## Not run:
waterBalance <- read_MESH_OutputTimeseries_csv("Basin_average_water_balance.csv",
missingValueThreshold = -1e6)
p <- basinWaterBalancePlot(waterBalance)
## End(Not run)</pre>
```

hydroStats

Calculates Goodness of Fit statistics for MESH output

Description

This function is a wrapper for the function gof in the package **hydroGOF**. It computes several Goodness of Fit statistics for each station. The output of this function may be used on its own, or to annotate a hydrograph.

Usage

```
hydroStats(MESHvals, stationNames = "", calStart = "", calEnd = "",
  removeMissing = TRUE, doSpearman = FALSE, doPBFDC = FALSE,
  digits = 2, j = 1, norm = "sd", s = c(1, 1, 1),
  method = c("2009", "2012"), lQ.thr = 0.7, hQ.thr = 0.2)
```

Arguments

MESHvals Required. A data frame of output from a MESH run, as produced by readOutputTimeseriesCSV.

stationNames Optional. A vector of strings holding station names. If specified, the station

names will be used in the returned data frame, otherwise the MESH station

numbers will be used.

calStart Optional. The start date of the calibration period. Must be a string in the format

'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the

Validation period.

calEnd Optional. The start date of the calibration period. Must be a string in the format

'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the

Validation period.

hydroStats 11

removeMissing	Required. Should rows with missing values be removed before statistics are calculted? Default is TRUE
doSpearman	Optional. Should Spearman correlation be computed? Default is FALSE.
doPBFDC	Optional. Should percent bias of slope of the midsegment of the FDC be computed? Default is FALSE.
digits	Optional. The number of decimal places for rounding goodness of fit statistics. If 0 the default, then it is not set. Default value is 2. Note that percentages like NRMSE and PBIAS will only use a maximum of one decimal place.
j	Optional. Argument passed to the mNSE function in hydroGOF.
norm	Optional. Argument passed to the nrmse function in hydroGOF.
S	Optional. Argument passed to the KGE function in hydroGOF.
method	Optional. Argument passed to the KGE function in hydroGOF.
lQ.thr	Optional. Argument passed to the pbiassfdc function in hydroGOF.
hQ.thr	Optional. Argument passed to the pbiassfdc function in hydroGOF.

Value

```
Returns a data frame with the following variables: #'
```

station station name or number

me Mean Error

mae Mean Absolute Error

mse Mean Squared Error

rmse Root Mean Square Error

nrmse Normalized Root Mean Square Error (-100% <= nrms <= 100%)

PBIAS Percent Bias

pbiasfdc PBIAS in the slope of the midsegment of the Flow Duration Curve, if selected

RSR Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms / sd(obs). ($0 \le RSR \le +Inf$)

rSD Ratio of Standard Deviations, rSD = sd(sim) / sd(obs)

NSE Nash-Sutcliffe Efficiency (-Inf <= NSE <= 1)

mNSE Modified Nash-Sutcliffe Efficiency

rNSE Relative Nash-Sutcliffe Efficiency

d Index of Agreement ($0 \le d \le 1$)

d1 Modified Index of Agreement

rd Relative Index of Agreement

cp Persistence Index ($0 \le PI \le 1$)

r Pearson Correlation coefficient ($-1 \le r \le 1$)

r.Spearman Spearman Correlation coefficient (-1 <= r.Spearman <= 1), if selected

R2 Coefficient of Determination ($0 \le R2 \le 1$).

Gives the proportion of the variance of one variable that is predictable from the other variable

12 MESH_streamflows

```
bR2 R2 multiplied by the coefficient of the regression line between sim and obs (0 <= bR2 #' <= 1)</li>
KGE Kling-Gupta efficiency between sim and obs (0 <= KGE <= 1)</li>
VE Volumetric efficiency between sim and obs (-Inf <= VE <= 1)</li>
```

If the calibration period is specified, then statistics will be computed separately for the Calibration and Validation periods. The period names and dates will be specified in additional columns.

Author(s)

Kevin Shook

See Also

```
simpleHydrograph gof
```

Examples

```
stats <- hydroStats(MESH_streamflows)
stats$NSE
periodStats <- hydroStats(MESH_streamflows, calEnd = "2010-01-01")
periodStats[,1:7]</pre>
```

MESH_streamflows

MESH streamflow data

Description

A data frame containing MESH outputs for the Simonette river, as read in using the function read_MESH_OutputTimeSeries_csv.

Usage

```
MESH_streamflows
```

Format

A data frame with 4381 rows and 5 variables (including the datetime):

DATE date and time as an R date object **QOMEAS1** measured flows at station 1 **QOSIM1** simulated flows at station 1 **QOMEAS2** measured flows at station 2 **QOSIM2** simulated flows at station 2

PBIAS 13

Source

This data iwas obtained by running MESH.

PBIAS

Compute bias as a percentage

Description

Compute bias as a percentage

Usage

```
PBIAS(obs, sim)
```

Arguments

obs Observed values as a numeric vector.

sim Simulated values values as a numeric vector.

Value

If successful returns the percentage of bias as an integer. If unsuccessful, returns the value FALSE.

Author(s)

Muluneh A. Mekonnen

Examples

```
obs <- runif(100)
sim <- runif(100)
PBIAS(obs, sim)</pre>
```

read_AEP_csv

Reads csv file produced by Alberta Environment and Parks

Description

Reads csv file produced by Alberta Environment and Parks

Usage

```
read_AEP_csv(AEPfile = "", timezone = "", values_only = TRUE)
```

Arguments

AEPfile Required. Name of AEP file to be read in.

timezone Optional. The name of the timezone of the data as a character string. If the

timezone is not specified, your default value (i.e. your time zone) will be used. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. Under Windows or OSX, you can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time. Under Linux you should use 'Etc/GMT+6' or 'Etc/GMT+7'.

values_only ptional. If TRUE (the default), only the time series values will be returned. If

FALSE, the meta data will also be returned.

Value

Returns the time series data as a data frame, with the POSIXct variable datetime as the time stamp. Note that the time series interval may be irregular. If values_only = TRUE, then the returned value will be a list conisting of the time series data frame and the header meta data as a list.

Author(s)

Kevin Shook

See Also

```
read_MESH_OutputTimeseries_csv
```

Examples

```
## Not run:
precip <- read_AEP_csv("05CA805 Skoki Lodge - PC - C.Merged - All.csv",
all_values = FALSE)
# show values
head(precip$values)
# show latitude
precip$header_meta$latitude
## End(Not run)</pre>
```

read_MESH_OutputTimeseries_csv

Reads MESH output .csv file containing timeseries

Description

Reads a file containing any output from a MASH model into a standard R data frame. The names of the variables will be trimmed to remove leading and trailing spaces, and the time variables are combined into a single R date or datetime.

Usage

```
read_MESH_OutputTimeseries_csv(outputFile, timezone = "",
   missingValueThreshold = -0.1)
```

Arguments

outputFile

Required. Name of MESH output file. Must be a .csv file.

timezone

Not required for daily time series. Required for sub-daily time series. The name of the timezone of the data as a character string. This should be the timezone of your data, but omitting daylight savings time. Note that the timezone code is specific to your OS. To avoid problems, you should use a timezone without daylight savings time. You can use 'etc/GMT+6' or 'etc/GMT+7' for Central Standard and Mountain Standard time, respectively. DO NOT use 'America/Regina' as the time zone, as it includes historical changes between standard and daylight savings time.

missingValueThreshold

Optional. Any value smaller than this value will be set to NA_real_ when the file is imported. The default value is -0.1 to prevent zero values from being affected.

Value

If successful, returns a data frame. The first columns will be called 'DATE' for daily values, and will contain a standard R date. For sub-daily timeseries the first column will be called 'DATETIME' and will contain a standard POSIXct date/time. If unsuccessful, returns the value FALSE.

Author(s)

Kevin Shook

See Also

```
simpleHydrograph
```

```
## Not run:
timezone <- 'etc/GMT+6'
outfile <- "Basin_average_water_balance_ts.csv"
output <- read_MESH_OutputTimeseries_csv(outfile, timezone)
## End(Not run)</pre>
```

read_r2c_raster

read_r2c_raster

Reads r2c file to raster brick

Description

This function reads a file containing a time series of 2D values, which is output from a MESH model. It is not intended to read in a file describing a drainage basin. For that purpose, you should be using the function read_r2c_shed. This function returns eiher a **raster** brick or an **rts** rts object, which is a timeseries raster. Each Frame in the original file becomes a separate layer. 'The name of each layer in the **raster** brick is set to the time stamp of each Frame. Because the layer names are standard R variables, they must obey the rules for variable names, inclusing beginning with a character, and not containing spaces. These rule will change the layer names if you are not careful.

Usage

```
read_r2c_raster(r2cFile, NAvalue = NULL, as_rts = FALSE,
   timezone = "", layerNameFormat = NULL)
```

Arguments

r2cFile Required. Name of r2c file containing time series.

NAvalue Optional. If specified, values smaller than NAvalue will be set to NA_real_

as_rts Optional. If TRUE, the returned value will be a rts object, which allows the

creation of 1-D time series, and for temporal aggregation. If FALSE (the default) a standard **raster** brick object is returned, which is better for simple plotting of

the layers.

timezone Optional. If the r2cFile contains date values for each Frame, then the Frame

times are returned as R dates. If there are hours and seconds, then they will be converted to POSIXct datetime values. In this case, you may want to specify the timezone of the data. If the timezone is not specified, your default value will

be used.

layerNameFormat

Optional. Sets the layer names when returning the **raster** brick to avoid con-

flicting with the R variable rules.

Value

Returns eiher a raster brick or an rts rts object.

Author(s)

Kevin Shook

See Also

rts read_r2c_shed

read_r2c_shed 17

Examples

```
## Not run:
temps <- read_r2c_raster("TA_M.r2c", NAvalue = 0, as_rts = FALSE, layerNameFormat = "%b_%Y")
# convert air temps from K to C
temps <- temps - 273.15
plot(temps)
# create an animation and save it as a file
library(animation)
saveGIF(animate(temps, n = 1))
## End(Not run)</pre>
```

read_r2c_shed

Reads r2c file of a MESH watershed

Description

This function reads in a file containing the layers which define a MESH watershed. To read in a file of timeseries, use the function r2c2raster.

Usage

```
read_r2c_shed(r2cFile = "", values_only = TRUE, as_rasters = TRUE)
```

Arguments

r2cFile Required. Name of r2c file.

values_only Optional. If TRUE (the default), then only the values are returned, either as a

raster brick (useful for plotting) or as a 3D array (useful for analysis). If FALSE, then a *list* will be returned, containing the 1) the data, 2) the metadata (the variable names, types and units) are returned for each layer, and 3) the r2c file

header lines.

as_rasters Optional. If TRUE, the layers will be returned as as raster brick. If FALSE, they

will be returned as an array.

Value

Returns eiher an array or a raster brick of values, and optionally, the meta data and file header.

Author(s)

Kevin Shook

See Also

```
read_r2c_raster
```

18 read_tb0

Examples

```
## Not run:
# read in basin as a raster brick
basin <- r2c2basin("MESH_drainage_database.r2c")
# read in as an array
basin_array <- r2c2basin("MESH_drainage_database.r2c", as_rasters = FALSE)
# get meta data as well
basin_array <- r2c2basin("MESH_drainage_database.r2c", values_only = FALSE,
as_rasters = FALSE)
## End(Not run)</pre>
```

read_tb0

Reads a MESH tb0 file

Description

Reads in a tb0 file. The time series values, if present, will be stored in a data frame. Optionally, the meta data will be stored as lists. The meta data are of 2 types, the header values, which refer to the entire file and column values, which pertain to individual columns.

Usage

```
read_tb0(tb0File = "", values_only = TRUE, timezone = "",
   NAvalue = NULL)
```

Arguments

tb0File Required. The name of the file to be read.

values_only Optional. If TRUE (the default), only the time series values will be returned. If

FALSE, the meta data will also be returned. Note that if the value is set to TRUE, and there are no time series values in the file, as for a reservoir file, then an error

will result.

timezone Optional. The data time series have POSIXct datetime values. You may want to

specify the timezone of the data. If the timezone is not specified, your default

value (i.e. your time zone) will be used.

NAvalue Optional. If specified, values smaller than NAvalue will be set to NA_real_

Value

Returns time series as a data frame. If meta data are specified, they are returned as a list of header data and a data frame of column meta data. In this case all three sets of data are combined in a single

Author(s)

Kevin Shook

simpleHydrograph 19

See Also

```
read_r2c_raster read_MESH_OutputTimeseries_csv
```

Examples

```
## Not run:
qvals <- read_tb02("MESH_input_streamflow.tb0", NAvalue = -0.01, values_only = TRUE)
## End(Not run)</pre>
```

simpleHydrograph

Creates hydrograph from MESH output

Description

Creates a **ggplot** hydrograph from MESH output. This function *only* uses values from a single MESH data frame (as read in using readOutputTimeseriesCSV), so does not work with outside sources, such as WSC files. Because this function returns a **ggplot** object, you can change its format in any way you like. The plots produced may be faceted using the commands facet_wrap or facet_grid.

Usage

```
simpleHydrograph(MESHvals, stationNames = "", byStation = TRUE,
  byYear = FALSE, meas = TRUE, sim = TRUE, calStart = "",
  calEnd = "")
```

Arguments

MESHvals	Required. A data frame of output from a MESH run, as produced by read_MESH_OutputTimeseries_csv
stationNames	Optional. A vector of strings holding station names. If specified, the station names will be used in the plots. Otherwise the MESH station numbers will be used.
byStation	Optional. If TRUE (the default) then the plots will be coloured according to the station names. You may want to set this to FALSE if you are facetting by station name.
byYear	Optional. If TRUE then the plots will be able to be facetted by year. Note that this means that the dates are all plotted using the year 2000, so you will see strange results if you set this to TRUE and don't facet by year. Default is FALSE
meas	Optional. Should the measured values be plotted? Default is TRUE. If FALSE, they will be omitted.
sim	Optional. Should the simulated values be plotted? Default is TRUE. If FALSE, they will be omitted.

20 simpleHydrograph

calStart Optional. The start date of the calibration period. Must be a string in the format

'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the

Validation period.

calEnd Optional. The start date of the calibration period. Must be a string in the format

'yyyy-mm-dd'. If specified, values on and after this date will be designated as the Calibration period. The remaining values will be designated as the

Validation period.

Value

If successful, returns a **ggplot2** object. If unsuccessful, returns FALSE. The object can be facetted by the name of the station (the variable is called station). If the option by Year = TRUE, then the object can be facetted by the variable YEAR.

Note

Specifying the calibration start and/or end dates will allow the resulting plot to be facetted by the variable period.

Author(s)

Kevin Shook

See Also

```
read_MESH_OutputTimeseries_csv hydroStats
```

```
# plot hydrograph of all data on single graph
p1 <- simpleHydrograph(MESH_streamflows)</pre>
# add station names, and replot
stations <- c("Station1", "Station2")</pre>
p2 <- simpleHydrograph(MESH_streamflows, stationNames = stations)</pre>
p2
# remove colouring by station, and facet, changing the axis label format
p3 <- simpleHydrograph(MESH_streamflows, stationNames = stations, byStation = FALSE)
# load in all of ggplot2 to modify plots
library(ggplot2)
p3 <- p3 + facet_wrap(~station, nrow = 2) + scale_x_date(date_labels = "%Y")
р3
# plot by year, then facet
p4 <- simpleHydrograph(MESH_streamflows, stationNames = stations, byYear = TRUE)
p4 <- p4 + facet_wrap(~YEAR, scales = "free_y")
p4
# remove colouring for stations, and facet by station and year
p5 <- simpleHydrograph(MESH_streamflows, stationNames = stations, byStation = FALSE, byYear = TRUE)
p5 <- p5 + facet_grid(YEAR~station, scales = "free_y")</pre>
# change colours
```

write_r2c_shed 21

```
plotcols <- c("red", "blue")
p5 <- p5 + scale_colour_manual(values = plotcols)
p5</pre>
```

write_r2c_shed

Write MESH watershed data to r2c file

Description

Write MESH watershed data to r2c file

Usage

```
write_r2c_shed(basin, header, r2cFile = "")
```

Arguments

basin Required. The values defining the basin parameters, as read in by read_r2c_shed.

Can either be and array or a raster brick.

header Required. The header lines from the basin r2c file, as read in by read_r2c_shed

r2cFile Required. The file to be written.

Value

If successful, returns TRUE. If unsucessful, returns FALSE

Author(s)

Kevin Shook

See Also

```
read_r2c_shed
```

```
## Not run:
# read in basin
shed <- read_r2c_shed("MESH_drainage_database.r2c", values_only = FALSE,
as_rasters = FALSE)
# write as another file
write_r2c_shed(shed$basin, shed$header_lines, "new_basin.r2c")
## End(Not run)</pre>
```

22 write_tb0

write_tb0

Writes a MESH tb0 file

Description

Writes a MESH tb0 file

Usage

```
write_tb0(values = NULL, column_meta = NULL, header = NULL,
   NAvalue = -1, tb0File = "")
```

Arguments

values Optional. A data frame of the values to be written, if the file is to be a time seired.

Note that the first column must be called datetime and must be a POSIXct

date/time.

column_meta Required. A data frame containing the following columns #'

columnUnits required columnType required columnName required columnLocationX required columnLocationY required

DA optionalcoeff1 optionalcoeff2 optionalcoeff3 optionalcoeff4 optionalcoeff5 optional

header Required. A list containing the following variables

filetype optional, default is tb0 ASCII EnSim 1.0

datatype optional, default is Time Series

application optional, default is EnSimHydrologicversion optional, default is default is 2.1.23written_by optional, default is default is MESHrcreation_date optional, default is current date/time

source_file optional, default is nothing

name required

projection required, character string
ellipsoid required, character string

start_time required if values are not specified
delta_t required if values are not specified

write_tb0

attributeunits optional, default is nothing **unitconversion** optional, default is nothing

NAvalue Optional. Value to be used for NA_real_ values in the .tb0 file. The default

value is -1, which is not suitable for air temperatures.

tb0File Required. Name of file to be written.

Value

If successful, returns TRUE. If unsuccessful, returns FALSE

Author(s)

Kevin Shook

See Also

read_tb0

Examples

Not run: write_tb0(values, column_meta_data, header, "MESH_values.ts0")

Index

```
*Topic datasets
    MESH_streamflows, 12
basinPrecipEvapRunoffPlot, 2
basinRunoffPlot, 3
basinSnowPlot, 4
basinSnowRainPondedPlot, 5
basinSoilWaterIcePlot, 3, 5, 7, 10
basinSoilWaterPlot, 6
basinStoragePlot, 3-7, 7, 10
basinStorageVariablesPlot, 7, 8
{\tt basinWaterBalancePlot}, 9
gof, 12
hydroStats, 10, 20
MESH\_streamflows, 12
MESHr-package, 2
PBIAS, 13
read_AEP_csv, 13
read_MESH_OutputTimeseries_csv, 3-8, 10,
        14, 14, 19, 20
read_r2c_raster, 16, 17, 19
read_r2c_shed, 16, 17, 21
read_tb0, 18, 23
rts, 16
simpleHydrograph, 12, 15, 19
write_r2c_shed, 21
write_tb0, 22
```