

Deconstruir el modelado no eStan complicado

Una introducción a Stan

Iván Barberá

Modelos cualitativos

Modelos cualitativos

Modelos cualitati<u>vos</u>

Modelos cualitati<u>vos</u>

Ideas

Modelos
cualitativos x ? v

$$y = eta_0 + eta_x \ x \ + eta_z \ z \ + eta_v \ v$$

Modelos cuantitativos

Ideas Datos

$$y = eta_0 + eta_x \ x \ + eta_z \ z \ + eta_v \ v$$

Modelos cuantitativos

Ideas Datos

McElreath 2020 Fig. 1.1 GLM

GAM

Support Vector Machines

LM

Gaussian Process

Random Forest Deep Neural Network

Modelos no lineales

K-Nearest
Neighbour

Ideas Datos cuantitativos

Modelos

(sin estimar)

(estimados)

Modelos

cuantitativos

(sin estimar)

Ideas

Datos

(estimados)

(sin estimar)

$$y=eta_0+eta_x\ x\ +eta_z\ z\ +eta_v\ v$$

$$y = 0.3 + 1.1 \ x + 4 \ z - 2 \ v$$

(estimados)

Ideas → Modelos → Datos

(sin estimar)

Ideas — Modelos — Datos

$$y = eta_0 + eta_x \ x \ + eta_z \ z \ + eta_v \ v$$

Ideas Modelos Datos

$$y=eta_0+eta_x~x~+eta_z~z~+eta_v~v$$
 $y=eta_0+eta_x~x~+eta_z~z~+f(v)$

Ideas → Modelos → Datos

$$y = \beta_0 + \beta_x x + \beta_z z + \beta_v v$$

$$y=eta_0+eta_x\;x\;+eta_z\;z\;+f(v)$$

$$y=f(x,z,v)$$

$$y=eta_0+eta_x\;x\;+eta_z\;z\;+eta_v\;v$$

$$y=eta_0+eta_x\;x\;+eta_z\;z\;+f(v)$$

GAM

$$y=f(x,z,v)$$
 DNN

Modelos cuantitativos

$$y = eta_0 + eta_x \ x \ + eta_z \ z \ + eta_v \ v$$

Modelos cuantitativos estadísticos

$$egin{aligned} y_i &\sim ext{Normal}(\mu_i, \sigma) \ \mu_i &= eta_0 + eta_x \ x_i \ + eta_z \ z_i \ + eta_v \ v_i \end{aligned}$$

$$y_i \sim \mathrm{\,D}_y(\mu_i,\phi_i)$$

$$y_i \sim \mathrm{D}_y(\mu_i,\phi_i) egin{array}{c} ext{Distributional} \ ext{regression} \end{array}$$

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i,\phi_i) \ \mu_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\mu) \end{aligned}$$

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i,\phi_i) \ \mu_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\mu) \ \phi_i &= & f(oldsymbol{x}_i,oldsymbol{ heta}_\phi) \end{aligned}$$

Modelo lineal

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i, \phi_i) \ \mu_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\mu) \ \phi_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\phi) \end{aligned}$$

$$egin{aligned} y_i &\sim & ext{Normal}(\mu_i, \sigma) \ \mu_i &= & lpha + eta \, x_i \end{aligned}$$

Modelo lineal generalizado

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i, \phi_i) & y_i &\sim & \mathrm{Gamma}(\mu_i, \phi) \ \mu_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\mu) & \log(\mu_i) = & lpha + eta \, x_i \ \phi_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\phi) \end{aligned}$$

Modelo lineal generalizado

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i, \phi_i) & y_i &\sim & \mathrm{Bernoulli}(heta_i) \ \mu_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\mu) & \mathrm{logit}(heta_i) = & lpha + eta \, x_i \ \phi_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\phi) \end{aligned}$$

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Frecuentista

Bayesiana

probabilidad como frecue<u>ncia</u>

probabilidad representa incertidumbre

Frecuentista

probabilidad
como frecuencia

Estimadores puntuales y su distribución muestral

Bayesiana

probabilidad representa incertidumbre

Frecuentista

probabilidad
como frecuencia

Estimadores puntuales y su distribución muestral

Bayesiana

probabilidad representa incertidumbre

Distribución de los parámetros condicionada en los datos

Frecuentista

$$\hat{\theta} = \operatorname{argmax}_{\theta}[p(y|\theta)]$$

Frecuentista

$$\hat{ heta} = ext{argmax}_{ heta}[p(y| heta)]$$

Frecuentista

Bayesiana

$$\hat{ heta} = ext{argmax}_{ heta}[p(y| heta)]$$

 $p(\theta)$

Frecuentista

Bayesiana

$$\hat{ heta} = ext{argmax}_{ heta}[p(y| heta)]$$

$$p(heta|y) = rac{p(y| heta) \, p(heta)}{\int p(y| heta) \, p(heta) \, d heta}$$

Frecuentista

Bayesiana

$$\hat{ heta} = \mathrm{argmax}_{ heta}[p(y| heta)]$$

Likelihood

$$p(heta|y) = rac{\widehat{p(y| heta)}\,p(heta)}{\int p(y| heta)\,p(heta)\,d heta}$$

Frecuentista

Bayesiana

Previa

$$\hat{ heta} = \operatorname{argmax}_{ heta}[p(y| heta)]$$

Likelihood

$$p(heta|y) = rac{\widetilde{p(y| heta)}\widetilde{p(heta)}}{\int p(y| heta)p(heta)d heta}$$

Frecuentista

Bayesiana

$$\hat{ heta} = \mathrm{argmax}_{ heta}[p(y| heta)]$$

Likelihood Previa $p(\theta|y) = \frac{p(y|\theta) p(\theta)}{\int p(y|\theta) p(\theta) d\theta}$ Posterior

Prob. marginal de los datos

Frecuentista

Bayesiana

$$\hat{ heta} = \mathrm{argmax}_{ heta}[p(y| heta)]$$

Likelihood

Previa

$$p(heta|y) \propto \widetilde{p(y| heta)} \ \widetilde{p(heta)}$$

en R

Likelihood prior posterior

Inferencia estadística en la práctica

Frecuentista

Bayesiana

- MLE
- Perfiles de likelihood
- Aproximación Normal

Inferencia estadística en la práctica

Frecuentista

- MLE
- Perfiles de likelihood
- Aproximación Normal

Bayesiana

Muestreo de la posteriorMCMC / SMC

Inferencia estadística en la práctica

Frecuentista

- MLE
- Perfiles de likelihood
- Aproximación Normal

Bayesiana

- Muestreo de la posteriorMCMC / SMC
- Aproximaciones
 determinísticas
 Laplace,
 Expectation-Maximization,
 Variational Inference,
 INLA

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Maximum likelihood

- bbmle
- maxLik
- likelihoodAsy
- stats4 (mle)
- stats (optim)
- GA

Distribución posterior

- BayesianTools
- INLA
- Nimble
- JAGS
- Stan
- PyMC
- Turing

Maximum likelihood

- bbmle
- maxLik
- likelihoodAsy
- stats4 (mle)
- stats (optim)
- GA

Distribución posterior

- BayesianTools
- INLA
- Nimble
- JAGS
- Stan
- PyMC
- Turing

Stan

MCMC: Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler (NUTS)

Stan

- MCMC: Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler (NUTS)
- Otros métodos:

Optimización (MAP o MLE)
Laplace Approximation
Automatic Differentiation Variational Inference
Pathfinder

Maximum likelihood

- bbmle
- maxLik
- likelihoodAsy
- stats4 (mle)
- stats (optim)
- GA

Distribución posterior

- BayesianTools
- INLA
- Nimble
- JAGS
- Stan
- PyMC
- Turing

Maximum likelihood

bbmle

- maxLik
- likelihoodAsy
- stats4 (mle)
- stats (optim)
- GA

Distribución posterior

- BayesianTools
- INLA
- Nimble
- JAGS
- Stan
- PyMC
- Turing

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Estimación del modelo

- Marco de inferencia
- Software flexible

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Deconstruir el modelado

Estimación del modelo

Freq vs. Bayes

Una introducción a Stan

Modelo genérico

$$y_i \sim \mathrm{D}_y(\mu_i,\phi_i)$$
 Likelihood $\mu_i = f(oldsymbol{x}_i,oldsymbol{ heta}_\mu) \ \phi_i = f(oldsymbol{x}_i,oldsymbol{ heta}_\phi)$

Modelo genérico

$$y_i \sim \mathrm{D}_y(\mu_i,\phi_i)$$
 Likelihood $\mu_i = f(oldsymbol{x}_i,oldsymbol{ heta}_\mu) \ \phi_i = f(oldsymbol{x}_i,oldsymbol{ heta}_\phi)$

$$oldsymbol{ heta}_{\mu} \sim \ \mathrm{D}_{\mu}(a,b) \ oldsymbol{ heta}_{\phi} \sim \ \mathrm{D}_{\phi}(c,d)$$

Previas

$$egin{aligned} y_i &\sim & \mathrm{D}_y(\mu_i, \phi_i) & y_i \sim & \mathrm{Normal}(\mu_i, \sigma) \ \mu_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\mu) & \mu_i &= & lpha + eta \, x_i \ \phi_i &= & f(oldsymbol{x}_i, oldsymbol{ heta}_\phi) \end{aligned}$$

$$egin{aligned} oldsymbol{lpha} & lpha \sim & ext{Normal}(0,1) \ oldsymbol{ heta}_{\mu} \sim & ext{D}_{\mu}(a,b) & eta \sim & ext{Normal}(0,1) \ oldsymbol{ heta}_{\phi} \sim & ext{D}_{\phi}(c,d) & oldsymbol{\sigma} \sim & ext{Half-Normal}(2) \end{aligned}$$

Caso de estudio:

comportamiento de ballenas en función del ataque por gaviotas

Datos

	A	В	С	D
1	t	grupo	y	X
2	1	1	0	0
3	2	1	0	0
4	3	1	0	0
5	4	1	0	0
6	5	1	0	0
7	6	1	0	0
8	7	1	0	0
9	8	1	0	0
10	9	1	0	0
11	10	1	0	0
12	11	1	1	0
13	12	1	1	0
14	1	2	0	0
15	2	2	0	0
16	3	2	0	0
17	4	2	0	0
18	5	2	0	0
19	6	2	0	0
20	7	2	0	0
21	8	2	0	1
22	9	2	0	1
23	10	2	0	0

Modelo 1

$$y_i \sim ext{Bernoulli}(heta) \ heta \sim ext{Unif}(0,1)$$

$$y = 0$$
: quieta $y = 1$: en movimiento

$$egin{aligned} y_i &\sim & ext{Bernoulli}(heta) & p(y| heta) \ heta &\sim & ext{Unif}(0,1) & p(heta) \end{aligned}$$

Modelo 1

Likelihood	$y_i \sim$	$\mathrm{Bernoulli}(heta)$	$p(y \theta)$
Previa	$\overline{ heta} \sim$	$\mathrm{Unif}(0,1)$	p(heta)

Modelo 2

$$egin{aligned} y_i &\sim ext{Bernoulli}(heta_i) \ heta_i &= ext{logit}^{-1}(lpha+eta\,z_i) \ lpha &\sim ext{Normal}(0,5) \ eta &\sim ext{Normal}(0,2) \end{aligned}$$

Modelo 3
$$y_t \sim \operatorname{Bernoulli}(heta_t)$$
 $heta_t = \operatorname{logit}^{-1}(lpha + eta \, z_t)$ $z_t = z_{t-1}$ $+ \iota \, (1 - z_{t-1}) \, x_{t-1}$ $- \delta \, z_{t-1} \, (1 - x_{t-1})$ $lpha \sim \operatorname{Normal}(0, 5)$ $eta \sim \operatorname{Normal}(0, 2)$ $\iota \sim \operatorname{Unif}(0, 1)$ $\delta \sim \operatorname{Unif}(0, 1)$ $z_1 \sim \operatorname{Unif}(0, 1)$

R y Stan

Transition probabilities as a function of z (row to column)

Formulación del modelo

- Conocimiento del sistema
- Imaginación

Deconstruir el modelado

Estimación del modelo

- Freq vs. Bayes
- bbmle vs. Stan

Una introducción a Stan

Modelos ← Datos cuantitativos

(estimados)

(sin estimar)

Ideas

Jancicacivos

Stan User's Guide

Version 2.35

This is the official user's guide for <u>Stan</u>. It provides example models and programming techniques for coding statistical models in Stan.

- Part 1 gives Stan code and discussions for several important classes of models.
- Part 2 discusses various general Stan programming techniques that are not tied to any particular model.
- Part 3 introduces algorithms for calibration and model checking that require multiple runs of Stan.

mc-stan.org

Texts in Statistical Science

Statistical Rethinking

A Bayesian Course with Examples in R and Stan **SECOND EDITION**

Richard McElreath

Benjamin M. Bolker

Texts in Statistical Science

Statistical Rethinking

A Bayesian Course with Examples in R and Stan SECOND EDITION

Richard McElreath

Texts in Statistical Science

Bayesian Data Analysis

Third Edition

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin

Fin.

