Detection of Monomorphic Nodes in Large Graphs to Improve Privacy of Users in Online Social Networks

Hossein Shafiei

What, Why and How

- What?
 - What is (implicit/explicit)-data privacy in online social networks?
- O Why?
 - Why we should protect implicit-data privacy of users?
- O Hows
 - How can we detect and protect vulnerable users?

Definition & Regulation on Privacy

- European Union GDPR:
 - Data privacy means empowering users to make their own decisions about who can process their data and for what purpose.
- California State CCPA:
 - AB 375 allows any California consumer to demand to see all the information a company has saved on them, as well as a full list of all the third parties that data is shared with

Types of Privacy

- Data Privacy
 - Personal
 - Social
- Context Privacy
 - Location Privacy
 - Temporal Privacy
 - Rate Privacy

Data Privacy

- Scope:
 - Personal: each individual's data (what is your name, what color is your car, ...)
 - Social: data about ones social interactions (who are your friends, what are their jobs ,...),
- Types of User Data:
 - Explicit, such as names, ids, etc.
 - Implicit, indirect data about user that collectively can divulge user's identity

Context Privacy

- Temporal Privacy:
 - When an specific event related to user happens? (e.g., when do they usually tweet)
- Location Privacy:
 - Where an specific event related to user happens? (e.g., From which location a request is initiated)
- Rate Privacy:
 - At which rate user events occur
- O ...

It's a scary new world (1)

- Driver identification
- With only few car sensors:
 - Steering wheel
 - Gyroscope
- Using convolutional neural networks (CNNs)
 - Drivers identified with up to 85% precision

It's a scary new world (2)

- Identification of Individuals based on their hourly cell phone traces
- Using Cellular antennas:
 - Only few spatio-temporal points are enough to uniquely identify 95% of the individuals

It's a scary new world (3)

- Identification of masked users in online social networks
 - Political reasons
 - Commercial incentives
 - Ransomware attacks

Privacy of Users in OSNs

- Exposed by your friends
 - "Tell me who your friends are and I'll tell you who are"
 - Typical approach would be to hide your sensitive friends
 - Even when users hide some of their friends, "links reconstruction attack" could be formed to predict user's hidden friends with high accuracy.

Privacy of Users in OSNs

- Exposed by your interests
 - Users may want to hide their interests, i.e., participated groups to improve their privacy
 - It has been shown that even with hiding 50% of users interests, attacker could predict their other half of interest with accuracy up to 90%.

Privacy of Users in OSNs

- Identification by social trolls
 - A social troll is someone who purposely says something controversial in order to get a rise out of other users
 - Piecemeal gathering of implicit data (Piecemeal Attack)
 - Fusion of those implicit data to identify users or their friends

Piecemeal Attack

Piecemeal Attack

Examples from Farsi twitter

Modeling using Graphs

- Attribute graph
 - Two kind of vertices: (1) users (2) attributes
 - There is an edge between two vertices a₁ and u₁ if u₁ has the attribute a₁
 - |V|vertices and |E| edges
 - Maximum degree of attribute vertices (D_u)
 - Maximum degree of user vertices (D_a)
 - neighboring set of the node u (A_u)

Properties of Attribute graphs

- Clustering coefficient is zero:
 - Lemma: Every cycle in an attribute graph has an even number of nodes. (Thus no triangles)
 - Clustering coefficient is the number of closed triplets (or 3 x triangles) over the total number of triplets
- O D_a << D_u

Attribute graphs

- Neighboring subsets:
 - Lemma: If every 4-cycle that starts from U_x either passes through U_y or passes through attributes connected to U_x, then A_{Ux} ⊆ A_{uy}
 - For example, A_{U3} ⊆ A_{U1} and not the other way

Monomorphism in Attribute Graphs

- O Ux is monomorphic if there is no U_y such that $A_{Uy} \subseteq A_{Ux}$
- There is a O(|V|³)algorithm to detect monomorphic vertices with O(|V|+|E|) storage requirements
- Such graph for Facebook has 10¹² vertices

Detection Approaches

- Centralized
 - Not feasible for large graphs
- Streaming
 - Feeding the vertices and edges gradually to a computation unit
- Massively Parallel
 - Existing approaches are not suitable due to zero clustering

Streaming Approach

- Vertices are fed to a computing machine gradually
- The machine processes the input in a multi-pass manner
- The number of times that the machine linearly scans the memory is an important measure for the performance
- Vertex feed:
 - Randomized (using random walk)
 - Deterministic algorithm (BFS)
 - Approximation algorithm:
 - Weight probability based on number of common ancestors

Streaming Approach

- Randomized (using random walk)
 - O(|V|) space in worst case with O(log²|v|) passes
- Deterministic algorithm
 - O(D_ulog | V|) passes with O(D_u²) space
- Approximation algorithm
 - O(D_ulog | V|) passes with O(D_ulog | V|) space with D_a ratio

Massively Parallel Approach

- The graph is distributed over trusted computation machines
- Machines communicate with each other using message passing or via memory sharing
- Two Types:
 - Vertex-centric: Iteratively execute an algorithm over vertices of a graph for a predefined number
 of times or until they converge to the desired properties.
 - Edge-centric
- Existing approaches:
 - Google's Pregel
 - Facebook's GraphLab

Massively Parallel Approach

 None of the existing approaches perform well for attribute graph due to its clustering coefficient

Our MP Approach

- User nodes are distributed into machines
- Each machine contains a node called the proxy node
- Each node performs a two-hop neighbor discovery using proxy node to communicate with each other
- After O (D_u) iteration the algorithm converges
- T = inbound messages/all messages is an important performance metric.

Our MP Approach

- Node distribution method highly impact T:
 - Randomized
 - Lowest overhead
 - Balanced Hash function (Synch)
 - Optimal with high overhead
 - "Secretary Problem" online algorithm (Asynchronous)
 - Sub-optimal with low overhead (1/e probability)

Evaluation of Streaming Approach

Evaluation of MP Approach

Evaluation of MP Approach

		M=4	M = 8	M = 16
GraphLab	Exec. Time (s)	749	534	313
	Max. Mem. (GB)	743	612	509
Ours	Exec. Time (s)	107	88	59
	Max. Mem. (GB)	340	229	159

Thanks

Any Question?