4 - M - MD - Besprechung am:

Übungsserie - Integralrechnung 1

1. Berechne

a)
$$\int_{0}^{1} 2^{x} dx$$

a)
$$\int_0^1 2^x dx$$
 b) $\int_1^2 10^{x+1} dx$ c) $\int_0^5 e^{-t} dt$

c)
$$\int_0^5 e^{-t} d$$

$$\mathrm{d} \int_{1}^{2} 10^{x} \, \mathrm{d}x$$

e)
$$\int_{-1}^{2} e^{2t} dt$$

f)
$$\int_{0}^{6} e^{1-t} dt$$

g)
$$\int_{0}^{2} x^{3} dx$$

e)
$$\int_{-1}^{2} e^{2t} dt$$
 f) $\int_{1}^{6} e^{1-t} dt$ g) $\int_{0}^{2} x^{3} dx$ h) $\int_{\pi}^{2} \pi \sin t dt$

2. Zeige durch Ausrechnen, dass gilt:
$$\int_a^{a+1} e^x dx = e^a \int_0^1 e^x dx$$

$$\int_a^{a+1} e^x \, \mathrm{d}x = e^a \int_0^1 e^x \, \mathrm{d}x$$

- 3. Zeige: die Fläche zwischen den Graphen von x^3 und $\sqrt[3]{x}$ ist genau die Hälfte der Fläche des Quadrates mit Ecken (0;0),(0;1),(1;0),(1;1).
- 4. Berechne den Mittelwert m von f im gegebenen Intervall und gib $c \in \mathbb{R}$ so an, dass f(c) = m(Mittelwertsatz).
 - a) $f(x) = \sin x$ in $[0, 2\pi]$
 - b) $f(x) = \frac{1}{x^2}$ in [1,10]
 - c) $f(t) = t^4$ in [0,2]
- d) $f(a) = \cos a$ in $[0, \pi/2]$
- 5. Berechne den Inhalt der endlichen Fläche, die von den Graphen eingeschlossen sind. Skizziere zuerst die Funktionen um die integrationsgrenzen zu bestimmen.
 - a) $f(x) = x^2 9$; $g(x) = x^3 9x$. (148/3)
 - b) $f(x) = \sin(x + \frac{\pi}{2})$; $g(x) = 2\cos(x \frac{\pi}{6})$ von 0 bis 2π . (4)
- 6. Bestimme zu den gegebenen Funktionen je eine Stammfunktion.
 - a) $g(t) = -\frac{3t^8}{5}$ b) $h(x) = \frac{x^n}{n!}$ c) $i(k) = -\frac{2}{k}$ d) $j(a) = \frac{1}{\sqrt{a}}$

- e) $k(z) = \sqrt{z} \sqrt[3]{z}$ f) $l(y) = \frac{3y^4 3y^2 + 5y}{4y^2}$ g) $m(x) = \frac{e^x + e^{-x}}{2}$ h) $n(w) = \frac{5}{\cos^2 w}$

- i) $o(x) = 2e^x e^{2x}$
- i) $p(u) = 3 + \tan^2 u$ k) $q(s) = \sqrt{s(s^2 5)}$ l) $r(t) = \cos \omega t$

- 7. Von einer Funktion ist die erste Ableitung sowie eine Zusatzbedingung bekannt. Wie lautet die Funktionsgleichung?
 - a) $f'(x) = 3x^2 4$; f(5) = 54
- b) $f'(u) = -4\cos u$; $f(\pi/2) = 3/2$
 - c) $f'(t) = \frac{t+1}{t+3}$; f(-2) = 0
 - d) $f'(z) = \frac{1}{z} \frac{1}{z^2}$; f(5) = 5

4 - M - MD - Besprechung am:

Übungsserie - Integralrechnung 1

1. Berechne

a)
$$\int_0^1 2^x dx$$

a)
$$\int_0^1 2^x dx$$
 b) $\int_1^2 10^{x+1} dx$

c)
$$\int_{0}^{5} e^{-t} dt$$

$$d) \int_{1}^{2} 10^{x} dx$$

e)
$$\int_{-1}^{2} e^{2t} dt$$
 f) $\int_{-1}^{6} e^{1-t} dt$ g) $\int_{0}^{2} x^{3} dx$

f)
$$\int_{1}^{6} e^{1-t} d$$

g)
$$\int_0^2 x^3 dx$$

h)
$$\int_{0}^{2} \pi \sin t \, dt$$

2. Zeige durch Ausrechnen, dass gilt:
$$\int_{a}^{a+1} e^{x} dx = e^{a} \int_{0}^{1} e^{x} dx$$

$$\int_a^{a+1} e^x \, \mathrm{d}x = e^a \int_0^1 e^x \, \mathrm{d}x$$

- 3. Zeige: die Fläche zwischen den Graphen von x^3 und $\sqrt[3]{x}$ ist genau die Hälfte der Fläche des Quadrates mit Ecken (0;0),(0;1),(1;0),(1;1).
- 4. Berechne den Mittelwert m von f im gegebenen Intervall und gib $c \in \mathbb{R}$ so an, dass f(c) = m(Mittelwertsatz).
 - a) $f(x) = \sin x$ in $[0, 2\pi]$
- b) $f(x) = \frac{1}{x^2}$ in [1,10]
- c) $f(t) = t^4$ in [0,2]
- d) $f(a) = \cos a$ in $[0, \pi/2]$
- 5. Berechne den Inhalt der endlichen Fläche, die von den Graphen eingeschlossen sind. Skizziere zuerst die Funktionen um die integrationsgrenzen zu bestimmen.
 - a) $f(x) = x^2 9$; $g(x) = x^3 9x$. (148/3)
 - b) $f(x) = \sin(x + \frac{\pi}{2})$; $g(x) = 2\cos(x \frac{\pi}{6})$ von 0 bis 2π . (4)
- 6. Bestimme zu den gegebenen Funktionen je eine Stammfunktion.
 - a) $g(t) = -\frac{3t^8}{5}$ b) $h(x) = \frac{x^n}{n!}$ c) $i(k) = -\frac{2}{k}$ d) $j(a) = \frac{1}{\sqrt{a}}$

- e) $k(z) = \sqrt{z} \sqrt[3]{z}$ f) $l(y) = \frac{3y^4 3y^2 + 5y}{4x^2}$ g) $m(x) = \frac{e^x + e^{-x}}{2}$ h) $n(w) = \frac{5}{\cos^2 w}$

- i) $o(x) = 2e^x e^{2x}$ i) $p(u) = 3 + \tan^2 u$ k) $q(s) = \sqrt{s}(s^2 5)$ l) $r(t) = \cos \omega t$
- 7. Von einer Funktion ist die erste Ableitung sowie eine Zusatzbedingung bekannt. Wie lautet die Funktionsgleichung?
 - a) $f'(x) = 3x^2 4$; f(5) = 54 b) $f'(u) = -4\cos u$; $f(\pi/2) = 3/2$
 - c) $f'(t) = \frac{t+1}{t+3}$; f(-2) = 0
- d) $f'(z) = \frac{1}{z} \frac{1}{z^2}$; f(5) = 5