

Завдання 1.

Знайти діаметр, що відповідає напрямку $\mathbf{v} = inom{2}{-3}$, кривої

$$9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0$$

Розв'язок. Запишемо "початкові" умови:

$$\mathcal{A}=egin{pmatrix} 9 & -2 \ -2 & 6 \end{pmatrix},\; \mathbf{b}=egin{pmatrix} 8 \ -4 \end{pmatrix},\; \gamma=-2$$

Нехай $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$. Тоді рівняння діаметру має вид:

$$\langle \mathcal{A}\mathbf{v}, \mathbf{x} \rangle + \langle \mathbf{b}, \mathbf{v} \rangle = 0$$

Знайдемо вектор нормалі прямої $\mathcal{A}\mathbf{v}$ а також вільний член $\langle \mathbf{b}, \mathbf{v} \rangle$:

$$\mathcal{A}\mathbf{v} = egin{pmatrix} 9 & -2 \ -2 & 6 \end{pmatrix} egin{pmatrix} 2 \ -3 \end{pmatrix} = egin{pmatrix} 24 \ -22 \end{pmatrix}, \ \langle \mathbf{b}, \mathbf{v}
angle = 28$$

Отже маємо рівняння 24x-22y+28=0 або 12x-11y+14=0.

Завдання 2.

Знайти рівняння асимптот до гіперболи

$$8x^2 + 6xy - 26x - 12y + 11 = 0$$

Розв'язок. Матриця квадратичної частини рівняння $\mathcal{A} = \begin{pmatrix} 8 & 3 \\ 3 & 0 \end{pmatrix}$ та вектор лінійної частини $\mathbf{b} = \begin{pmatrix} -13 \\ -6 \end{pmatrix}$.

Знайдемо центр симетрії \mathbf{x}_0 . Для цього розв'яжемо рівняння

$$\mathcal{A}\mathbf{x}_0 = -\mathbf{b} \implies \mathbf{x}_0 = -\mathcal{A}^{-1}\mathbf{b}$$

Обернена матриця $\mathcal{A}^{-1}=rac{1}{-9}egin{pmatrix}0&-3\\-3&8\end{pmatrix}=egin{pmatrix}0&1/3\\1/3&-8/9\end{pmatrix}.$ Тому остаточно знаходимо центр симетрії: $\mathbf{x}_0=-egin{pmatrix}0&1/3\\1/3&-8/9\end{pmatrix}egin{pmatrix}-13\\-6\end{pmatrix}=egin{pmatrix}2\\-1\end{pmatrix}.$

Асимптотичні напрямки повинні зануляти квадратичну частину рівняння. Квадратична частина має вид $\langle \mathcal{A}\mathbf{x},\mathbf{x} \rangle$ де $\mathcal{A}=\begin{pmatrix} 8 & 3 \\ 3 & 0 \end{pmatrix}$. Отже підставимо деякий $\mathbf{x}=\begin{pmatrix} x \\ y \end{pmatrix}$. Отримаємо:

$$\langle egin{pmatrix} 8 & 3 \ 3 & 0 \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix}, egin{pmatrix} x \ y \end{pmatrix}
angle = \langle egin{pmatrix} 8x + 3y \ 3x \end{pmatrix}, egin{pmatrix} x \ y \end{pmatrix}
angle = x(8x + 3y) + 3xy \equiv 0$$

Або $8x^2+6xy\equiv 0$, звідки маємо або x=0, або $y=-\frac43x$, тобто напрямні вектори мають вид ${f v}_1=\begin{pmatrix}0\\1\end{pmatrix}, {f v}_2=\begin{pmatrix}3\\-4\end{pmatrix}$. Тому маємо 2 асимптоти:

$$l_1: x=2, \; l_2: rac{x-2}{3} = rac{y+1}{-4} \implies 3y+4x-5 = 0$$

Завдання 3.

Знайти рівняння осей симетрії

$$x^2 - 2xy + y^2 - 10x - 6y + 25 = 0$$

2

Homework #14

Розв'язок. Матриця квадратичної системи рівняння $\mathcal{A} = \begin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix}$.

Характеристичне рівняння: $\chi_{\mathcal{A}}(\lambda)=\lambda^2-2\lambda=\lambda(\lambda-2)$. Рівняння прямої $\langle \mathbf{x},\mathbf{v}\rangle+\delta=0$ є рівнянням осі симетрії якщо $\mathcal{A}\mathbf{v}=\lambda\mathbf{v}\neq0$ або $\mathcal{A}\mathbf{v}=\theta,\langle\mathbf{v},\mathbf{b}\rangle\neq0$. Отже знайдемо власні вектори:

$$\lambda_1=0: \mathrm{Null}egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix} = \{\mathbf{q}=egin{pmatrix} x \ y \end{pmatrix} \in \mathbb{R}^2 \mid x-y=0 \}, \; \mathbf{q}_1=egin{pmatrix} 1 \ 1 \end{pmatrix}$$

$$\lambda_2=2: \mathrm{Null}egin{pmatrix} -1 & -1 \ -1 & -1 \end{pmatrix} = \{\mathbf{q}=egin{pmatrix} x \ y \end{pmatrix} \in \mathbb{R}^2 \mid x+y=0 \}, \; \mathbf{q}_2=egin{pmatrix} 1 \ -1 \end{pmatrix}$$

Для λ_2 коефіцієнт δ визначається як $\delta=\frac{\langle \mathbf{v},\mathbf{b}\rangle}{\lambda}=\frac{1}{2}\langle \begin{pmatrix} 1\\-1 \end{pmatrix}, \begin{pmatrix} -5\\-3 \end{pmatrix}\rangle=\frac{-5+3}{2}=-1$. Тому наше рівняння має вид:

$$x - y - 1 = 0$$

Для λ_1 значення $\langle \mathbf{v}, \mathbf{b} \rangle
eq 0$, а тому вектор \mathbf{q}_1 є віссю симетрії для $orall \delta \in \mathbb{R}.$

Завдання 4.

Знайти асимптотичні напрямки кривої

$$2x^2 - 5xy - 12y^2 - x + 26y - 10 = 0$$

Розв'зок. Матриця квадратичної частини $\mathcal{A}=\begin{pmatrix}2&-5/2\\-5/2&-12\end{pmatrix}$. Знайдемо характеристичний поліном цієї матриці: $\chi_{\mathcal{A}}(\lambda)=\lambda^2+10\lambda-30.25$. Маємо 2 власних числа, що різні за знаком. Отже перед нами може бути або гіпербола, або пара прямих, що перетинаються. Інваріант доповненої матриці J=

$$\detegin{pmatrix} 2 & -5/2 & -1/2 \ -5/2 & -12 & 13 \ -1/2 & 13 & -10 \end{pmatrix}=0$$
. Отже маємо пару прямих і асимптотичний

напрямок збігається з рівнянням цих прямих.

Асимптотичний напрямок зануляє квадратичну частину рівняння $\langle \mathcal{A}\mathbf{x},\mathbf{x} \rangle$. Отже, нам потрібно вирішити рівняння $2x^2-5xy-12y^2=0$. Якщо ввести $\eta=x/y$, то отримаємо квадратне рівняння $2\eta^2-5\eta-12=0$, звідки або $\eta=4$ або

Homework #14 3

 $\eta=-3/2$. Тому маємо x=4y, що відповідає напрямку ${f v}_1=egin{pmatrix}1\\4\end{pmatrix}$ та x=-3y/2 звідки ${f v}_2=egin{pmatrix}-3\\2\end{pmatrix}$.

Завдання 5.

Для поверхні

$$7x^2 + 7y^2 + 16z^2 - 10xy - 8yz - 8xz - 16x - 16y - 8z + 72 = 0$$

знайти діаметральну площину, що відповідає напрямку $\mathbf{v} = egin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$.

Розв'язок. Запишемо початкові умови:

$$\mathcal{A} = egin{pmatrix} 7 & -5 & -4 \ -5 & 7 & -4 \ -4 & -4 & 16 \end{pmatrix}, \; \mathbf{b} = egin{pmatrix} -8 \ -8 \ -4 \end{pmatrix}, \; \gamma = 72$$

Рівняння діаметральної площини має вигляд:

$$\langle \mathcal{A}\mathbf{v}, \mathbf{x} \rangle + \langle \mathbf{b}, \mathbf{v} \rangle = 0$$

Знайдемо вектор нормалі $\mathcal{A}\mathbf{v}=\begin{pmatrix}21\\-39\\36\end{pmatrix}$ та вільний член $\langle\mathbf{b},\mathbf{v}\rangle=0$. Отже рівняння:

$$21x - 39y + 36z = 0$$

Завдання 6.

Для поверхні

$$7x^2 + 6y^2 + 5z^2 - 4xy - 4yz - 6x - 24y + 18z + 30 = 0$$

4

знайти рівняння площин та осей симетрії.

Розв'язок. Запишемо початкові умови:

Homework #14

$$\mathcal{A} = egin{pmatrix} 7 & -2 & 0 \ -2 & 6 & -2 \ 0 & -2 & 5 \end{pmatrix}, \; \mathbf{b} = egin{pmatrix} -3 \ -12 \ 9 \end{pmatrix}, \; \gamma = 30$$

Характеристичний поліном для \mathcal{A} : $\chi_{\mathcal{A}}(\lambda)=\lambda^3-18\lambda^2+99\lambda-162$. Звідси маємо числа $\lambda_1=3,\lambda_2=6,\lambda_3=9$. Відповідні власні вектори $\mathbf{q}_1=$

$$egin{pmatrix} 1 \ 2 \ 2 \end{pmatrix}, \mathbf{q}_2 = egin{pmatrix} -2 \ -1 \ 2 \end{pmatrix}, \mathbf{q}_3 = egin{pmatrix} 2 \ -2 \ 1 \end{pmatrix}$$

Рівняння площин/осей симетрії має вид $\langle {f q}_i, {f x} \rangle + \langle {f q}_i, {f b} \rangle = 0$. Знайдемо вільні члени:

$$egin{aligned} \langle \mathbf{q}_1, \mathbf{b}
angle &= \langle \{-3, -12, 9\}, \{1, 2, 2\}
angle = -9 \ \\ \langle \mathbf{q}_2, \mathbf{b}
angle &= \langle \{-3, -12, 9\}, \{-2, -1, 2\}
angle = 36 \ \\ \langle \mathbf{q}_3, \mathbf{b}
angle &= \langle \{-3, -12, 9\}, \{2, -2, 1\}
angle = 27 \end{aligned}$$

Тому маємо 3 рівняння x+2y+2z-9=0, -2x-y+2z+36=0, 2x-2y+z-27=0.

Завдання 7.

Для поверхні

рівняння:

$$5x^2 - 4y^2 - 4z^2 - 2xy - 2xz + 16yz + 2x - 28y + 20z - 25 = 0$$

знайти множину асимптотичних напрямків.

Розв'язок. Множина асимптотичних напрямків має вид

$$5x^2 - 4y^2 - 4z^2 - 2xy - 2xz + 16yz = 0$$

Матриця квадратичної частини $\mathcal{A}=egin{pmatrix} 5 & -1 & -1 \ -1 & -4 & 8 \ -1 & 8 & -4 \end{pmatrix}$. Характеристичний поліном має вид $\chi_{\mathcal{A}}(\lambda)=(\lambda+12)(\lambda-3)(\lambda-6)$. Оскільки J=0 отрмуємо

$$-4\widetilde{x}^2+\widetilde{y}^2+2\widetilde{z}^2=0$$

Homework #14 5

Це є рівнянням дійсного конусу.

Завдання 8.

Для поверхні

$$2x^2 - 3y^2 - 3z^2 + 10yz - 18y + 14z - 13 = 0$$

знайти діаметр, що паралельний $\mathbf{v} = \{1, -1, 1\}$, не знаходячі центру.

Розв'язок. Як і підсказує підсказка, знайдемо цю пряму як перетин двох діаметральних площин. Вектор нормалі цих площин $\mathbf{n}_1, \mathbf{n}_2$ повинен бути перпендикулярним \mathbf{v} . Якщо поверхня центральна, то ми можемо підібрати ці 2 вектори нормалі.

До квадратичної частини рівняння маємо 2 власних вектора: $\lambda_1=2, \lambda_2=-8$. Розглянемо довільний власний вектор $\mathbf{q}_1=\{x,y,z\}$ для $\lambda_1=2$. Координати цього вектора лежать на площині y=z (для цього ми знайшли $\mathrm{Null}(\mathcal{A}-2E)$). Це означає, що ми отримали множину векторів $\mathbf{q}_1(\mu)=\{\mu,1,1\}$. Оберемо такий параметр μ , щоб вектор $\mathbf{q}_1(\mu)$ був перпендикулярний вектору \mathbf{v} , інакше кажучі, вирішуємо $\langle \mathbf{v},\mathbf{q}_1(\mu)\rangle=0$ відносно μ . Отримаємо $\mu=0$.

Для $\lambda_2=-8$ аналогічно отримаємо множину ${f q}_2(\eta)=\{\eta,5,11\}$. Цей вектор повинен бути перпендикулярним до ${f v}$. З рівняння $\langle {f q}_2(\eta),{f v}\rangle=0$ дістаємо $\eta=-6$.

Далі записуємо рівняння площин $\langle {f q}_i, {f x} \rangle + {1\over \lambda_i} \langle {f b}, {f q}_i \rangle$:

$$\pi_1: y+z-1=0, \ \pi_2: -6x+5y+11z+4=0$$

Наша пряма $l=\pi_1\cap\pi_2$.

Homework #14 6