Springer Finance

Editorial Board

Marco Avellaneda Giovanni Barone-Adesi Francesca Biagini Bruno Bouchard Mark Broadie Emanuel Derman Paolo Guasoni Mathieu Rosenbaum

Springer Finance

Springer Finance is a programme of books addressing students, academics and practitioners working on increasingly technical approaches to the analysis of financial markets. It aims to cover a variety of topics, not only mathematical and computational finance but foreign exchange, term structure, risk management, portfolio theory, equity derivatives, energy finance and commodities, financial economics.

More information about this series at http://www.springer.com/series/3674

Ernst Eberlein • Jan Kallsen

Mathematical Finance

Ernst Eberlein Department of Mathematical Stochastics University of Freiburg Freiburg im Breisgau Germany Jan Kallsen Department of Mathematics Kiel University Kiel Germany

ISSN 1616-0533 ISSN 2195-0687 (electronic)
Springer Finance
ISBN 978-3-030-26105-4 ISBN 978-3-030-26106-1 (eBook)
https://doi.org/10.1007/978-3-030-26106-1

Mathematics Subject Classification (2010): 91G20, 91G80, 60G51, 60G44, 60H05, 60J75, 60H10, 91G10, 91G30, 93E20

JEL Classification: G13, G11, D52, C61

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Mathematical finance provides a quantitative description of financial markets, more specifically markets for exchange-traded assets, using mostly dynamic stochastic models. It is used to tackle three basic issues.

• Valuation of assets

What can reasonably be said about the price of a financial asset? As opposed to economic theory, mathematical finance focuses mainly on *relative* valuation of securities in comparison to other assets. This is particularly useful and in fact indispensable for derivative securities, which are by definition strongly linked to corresponding underlying quantities in the market.

- Optimal or at least reasonable portfolio selection

 How shall an investor choose her portfolio of liquid securities? Here, the focus is on hedging, i.e. on minimising the risk which arises, for example, from selling derivative contracts to customers.
- *Quantification of risk*The random nature of asset prices naturally involves the risk of losses. How can it be quantified reasonably?

Mathematical finance has grown into a field which is by far too broad to be covered in a single book. Markets, products and risks are diverse and so are the mathematical models and methods which they require.

The starting point and focal point of this present monograph is continuous-time stochastic processes allowing for jumps. Most textbooks on mathematical finance are limited to diffusion-type setups, which cannot easily account for abrupt price movements. Such changes, however, play an important role in real markets, which is why models with jumps have become an established tool in the statistics and mathematics of finance. Just as importantly, purely discontinuous processes lead to a much wider variety of, at the same time flexible and tractable, models. For example, their marginal laws are often known explicitly, which is typically not the case for diffusions.

viii Preface

Compared to the abundant literature on continuous models, such as [29, 78, 149, 187, 204, 223, 223, 279], and many more, there still seems to be a scarcity of text-books allowing for processes with jumps. Notable exceptions are the monographs [60] and [38, 160, 276]. Other useful texts such as [143, 263], address more specific questions rather than general principles of financial mathematics.

Our goal is twofold:

- to give an account of general semimartingale theory, stochastic control and specific classes of processes to the extent needed for the applications in the second part
- to introduce basic concepts such as arbitrage theory, hedging, valuation principles, portfolio choice and term structure modelling

In a single monograph, we cannot give a comprehensive overview of stochastic models with and without jumps in mathematical finance. Rather, we provide an introduction to the basic building blocks and principles, helping the reader to understand the advanced research literature and to come up with concrete models and solutions in more specific situations.

The book is divided into two parts. Part I introduces the stochastic analysis of general semimartingales along with the basics of stochastic control theory. We do not cover the whole theory with complete proofs, which can be found in a number of excellent mathematical monographs. Rather, we focus on concepts and results that are needed to apply the theory to questions in mathematical finance. Proofs are mostly replaced by informal illustrations along with references to the literature. Nevertheless, we made an effort to provide mathematically rigorous definitions and theorems.

Part II turns to both advanced models and basic principles of mathematical finance. It differs in style from Part I in the sense that results are stated as engineering-style *rules* rather than precise mathematical theorems with all the technical assumptions. For example, we do not distinguish between local and true martingales, and questions of existence and uniqueness are swept under the rug. This is done deliberately in order to make basic concepts accessible to the mathematically less inclined reader who wants to apply advanced stochastic models in practice and also to the non-specialist who wants to get an overview of the general ideas before delving more thoroughly into the subject.

The theory of Parts I and II simplifies occasionally if one focuses on stochastic processes without jumps. Major changes are summarised in Sect. A.7 for the convenience of the reader. Mathematical finance in the broad sense has produced some insights, which may seem counterintuitive and hence surprising to the novice in the field. We collect links to such results in Sect. A.8. Otherwise, the appendix mostly contains mathematical tools that are needed in the main part on the text.

This book could not have appeared in the present form without the help of many people. An incomplete list includes Aleš Černý, Sören Christensen, Friedrich Hubalek, Simon Kolb, Paul Krühner, Matthias Lenga, Johannes Muhle-Karbe, Arnd Pauwels, and Richard Vierthauer with whom we had long discussions, which had an effect on the contents of the book. Funda Akyüz and Britta Ramthun-Kasan assisted

Preface

with preparing the manuscript. Partial financial support through *DFG Sachbeihilfe 1682/4-1* is gratefully acknowledged. We also benefited from the environment provided by the Freiburg Institute for Advanced Studies (FRIAS). We thank Catriona Byrne and Marina Reizakis from Springer-Verlag for their interest, encouragement and patience.

Errors can hardly be avoided in a text of this size. Since they will be discovered only gradually, we refer to www.math.uni-kiel.de/finmath/~book for an updated list of corrections. On this page, you can also find the *Scilab* code that we have used to generate the figures and numerical examples. Of course, any comments and in particular hints to errors are welcome.

Freiburg im Breisgau, Germany Kiel, Germany June 2019 Ernst Eberlein Jan Kallsen

Contents

Part I Stochastic Calculus

Ov	erview			3
1	Discr	ete Stocl	hastic Calculus	5
	1.1	Process	ses, Stopping Times, Martingales	5
	1.2		stic Integration	18
	1.3		Characteristics	30
	1.4		Processes	36
	1.5		ıl Control	42
		1.5.1	Dynamic Programming	45
		1.5.2	Optimal Stopping	55
		1.5.3	The Markovian Situation	65
		1.5.4	The Stochastic Maximum Principle	73
	1.6	Determ	inistic Calculus	90
		1.6.1	Constant Growth	90
		1.6.2	Integration	91
		1.6.3	Differentiation	93
	Appe	ndix 1: P	Problems	95
			Notes and Comments	96
2	Lévv	Processo	es	97
	2.1		ses, Stopping Times, Martingales	97
	2.2		terisation and Properties of Lévy Processes	107
	2.3		acting Lévy Processes from Simpler Building Blocks	123
	2.4		les	129
		2.4.1	Linear Functions	129
		2.4.2	Brownian Motion with Drift	131
		2.4.3	Poisson and Compound Poisson Processes	134
		2.4.4	Subordinators	136
		2.4.5	The Merton Model	138
		2.4.6	The Kou Model	140

xii Contents

		2.4.7	The Variance-Gamma Process and Extensions	142
		2.4.8	The Normal-Inverse-Gaussian Lévy Process	146
		2.4.9	Generalised Hyperbolic Lévy Processes	149
		2.4.10	The Meixner Process	
		2.4.11	Stable Lévy Motions	154
	2.5	The Lé	vy–Itō Decomposition	
	Appe		roblems	
			Notes and Comments	
3	Stoch	astic Int	tegration	171
	3.1		n General Semimartingale Theory	
		3.1.1	Quadratic Variation	
		3.1.2	Square-Integrable and Purely Discontinuous	
			Martingales	176
	3.2	The Sto	ochastic Integral for Processes	
		3.2.1	A Careless Approach	
		3.2.2	Differential Notation	
		3.2.3	A Careful Approach	
	3.3	The Sto	ochastic Integral for Random Measures	201
	3.4	Itō Sem	nimartingales	213
	3.5	Stochas	stic Differential Equations	215
	3.6	The Do	léans Exponential	218
	3.7	Expone	ential Lévy Processes	221
	3.8	Time-In	nhomogeneous Lévy Processes	225
	3.9	(Genera	alised) Ornstein-Uhlenbeck Processes	226
	3.10	Marting	gale Representation	236
	3.11	Backwa	ard Stochastic Differential Equations	240
	3.12	Change	of Measure	243
	Appe	ndix 1: P	roblems	245
	Appe	ndix 2: N	Notes and Comments	247
4	Semi	martinga	ale Characteristics	249
	4.1		on	
	4.2			
	4.3	Canoni	cal Decomposition of a Semimartingale	264
	4.4		ons	
	4.5	Applica	ations	265
	4.6		gale Problems	
	4.7	-	Theorems	
	4.8		rný and Černý–Ruf Representations	
		4.8.1	Černý-Representable Processes	
		482	Černý_Ruf Representable Processes	

Contents xiii

		endix 1: Problemsendix 2: Notes and Comments	296 298
5			299
3	5.1		299
	5.2	Time-Inhomogeneous Markov Processes	304
	5.3	C	305
	5.4		313
	5.4 5.5		316
		4	
	5.6 5.7	Markov Processes and Semimartingales	318 320
	5.7	Existence and Uniqueness	
		5.7.1 Martingale Problems	321
		5.7.2 Existence	322
		5.7.3 Stochastic Differential Equations	328
		1	332
		5.7.5 Stroock's Existence and Uniqueness Theorem	333
	- 0	1	333
	5.8	The Feller Property	334
		endix 1: Problems	335
	Appe	endix 2: Notes and Comments	336
6	Affin	ne and Polynomial Processes	337
	6.1	Affine Markov Processes	337
	6.2	Moments	350
	6.3	Structure-Preserving Operations	356
	6.4	Change of Measure	359
	6.5	Time-Inhomogeneous Affine Markov Processes	360
	6.6	Polynomial Processes	363
	Appe	endix 1: Problems	370
			372
7	0-4	mal Cantual	373
7	_		
	7.1	Dynamic Programming	373
	7.2	Optimal Stopping.	379
	7.3		385
		7.3.1 Stochastic Control	385
	- ·	1 11 6	389
	7.4	1	393
			393
			396
		7.4.3 The Markovian Situation	399
			402
	Appe	endix 2: Notes and Comments	403

xiv Contents

Par	t II	Mathem	atical Finance	
Ove	rviev	and No	tation	. 407
8	Eau	itv Mode	els	. 409
	8.1		etric Lévy Processes	
		8.1.1	Estimation	
		8.1.2	Multivariate Models and Lévy Copulas	
	8.2		stic Volatility Models	
		8.2.1	Inhomogeneous Lévy Processes via Integration	
		8.2.2	Inhomogeneous Lévy Processes via Time Change	
		8.2.3	Stein and Stein (1991)	
		8.2.4	Heston (1993)	
		8.2.5	Bates (1996)	
		8.2.6	Barndorff-Nielsen and Shephard (2001),	
			Henceforth BNS	. 427
		8.2.7	Carr et al. (2003), Henceforth CGMY	
		8.2.8	Carr and Wu (2003)	
		8.2.9	Carr and Wu (2004) and Affine ARCH-Like Models	
	App	endix 1: I	Problems	
			Notes and Comments	
9	Mar	kets, Str	ategies, Arbitrage	. 439
	9.1		matical Framework	
		9.1.1	Price Processes and Trading Strategies	. 439
		9.1.2	Discounting	. 443
		9.1.3	Dividends	. 445
	9.2	Tradin	g with Consumption	. 449
	9.3		mental Theorems of Asset Pricing	
		9.3.1	Dividends	. 454
		9.3.2	Constraints	. 455
		9.3.3	Bid-Ask Spreads	. 455
	App	endix 1: I	Problems	. 458
			Notes and Comments	
10	Opti	mal Inve	estment	. 461
	10.1		of Terminal Wealth	
		10.1.1	Logarithmic Utility	
		10.1.2	Power Utility	
		10.1.3	Exponential Utility	
	10.2		of Consumption	
		10.2.1	Logarithmic Utility	
		10.2.2	Power Utility	
	10.3		of P&L	
	10.4		Variance Efficient Portfolios	

Contents xv

	10.5	Bid-Ask Spreads	516
		10.5.1 Utility of Terminal Wealth or Consumption	516
		10.5.2 Utility of P&L	528
	Appe	ndix 1: Problems	532
	Appe	endix 2: Notes and Comments	534
11	Arbit	trage-Based Valuation and Hedging of Derivatives	537
	11.1	Derivative Securities	538
	11.2	Liquidly Traded Derivatives	539
		11.2.1 Arbitrage-Based Pricing	539
		11.2.2 American Options and Futures Contracts	542
		11.2.3 Modelling the Market's Risk Neutral Measure	547
	11.3	Over-the-Counter Traded Derivatives	549
	11.4	Hedging Based on Sensitivities	561
	11.5	Computation of Option Prices	565
		11.5.1 Integration	565
		11.5.2 Partial Integro-Differential Equations	568
	11.6	Pricing via Laplace Transform	570
		11.6.1 Integral Representation of Payoffs	571
		11.6.2 Pricing Formulas	573
		11.6.3 Vanilla Options as Fourier Integrals	578
		11.6.4 Options on Multiple Assets	579
	11.7	Arbitrage Theory More Carefully	583
		endix 1: Problems	590
		endix 2: Notes and Comments	592
12	Mear	n-Variance Hedging	595
-	12.1	The Martingale Case	596
	12.1	12.1.1 General Structure	596
		12.1.2 PIDEs for Markov Processes	598
		12.1.3 The Laplace Transform Approach for Affine	370
		Processes	601
	12.2	The Semimartingale Case	607
		endix 1: Problems	614
		endix 2: Notes and Comments	615
13		•	617
	13.1	1	617
		13.1.1 Exact Solution	
		13.1.2 Large Number of Claims	622
	12.2	13.1.3 Small Number of Claims	624
	13.2	Utility of P&L	626
	40.5	13.2.1 Small Number of Claims	633
	13.3	Convex Risk Measures	636
	13.4	Comparison of Valuation and Hedging Approaches	646
		13.4.1 Liquidly Traded Assets	646
		13.4.2 OTC Contracts	647

xvi Contents

	Apper	ndix 1: P	roblems	659
	Apper	ndix 2: N	Totes and Comments	661
14	Intere	est Rate	Models	663
	14.1			663
		14.1.1	Interest Rates	663
		14.1.2	Interest Rate Products	668
		14.1.3	Term Structure Modelling	
	14.2		ate or Factor Model Approach	676
		14.2.1	Affine Short Rate Models	677
		14.2.2	Starting from the Physical Measure	680
		14.2.3	Derivatives	681
		14.2.4	Examples	683
		14.2.5	Profile	690
	14.3	The Hea	ath–Jarrow–Morton Approach	691
		14.3.1	General Framework	691
		14.3.2	Lévy-Driven Term Structure Models	696
		14.3.3	Completeness	698
		14.3.4	Examples	699
		14.3.5	Affine Term Structure Models	702
		14.3.6	Profile	704
	14.4	The For	rward Process Approach	704
		14.4.1	General Idea	704
		14.4.2	Lévy-Driven Forward Process Models	709
		14.4.3	Examples	712
		14.4.4	Affine Forward Process Models	714
		14.4.5	Profile	716
	14.5		saker–Hughston Approach	717
		14.5.1	State-Price Density Processes	717
		14.5.2	Rational Models	719
		14.5.3	Derivatives	720
		14.5.4	Examples	723
	116	14.5.5	Profile	724
	14.6		near-Rational Model Approach	724
		14.6.1	The State-Price Density	724
		14.6.2	Derivatives	726
		14.6.3	Examples	728
	A		Profile	729 729
			roblems	730
	Appei	ilaix 2: IN	Totes and Comments	730
A	Annei	ndix		733
•	A.1		Comments on Measure-Theoretic Probability Theory	733
	A.2		al Supremum	736
	A.3		teristic Functions	737
	11.0	Jimiuct	2 0000000000000000000000000000000000000	, 5 ,

Contents	xvii
----------	------

A.4	The Bilateral Laplace Transform	739		
A.5	Grönwall's Inequality	741		
A.6	Convex Duality	741		
A.7	Comments on Continuous Processes	746		
A.8	Links to Surprising Observations	748		
Reference	es	749		
Index of S	ndex of Symbols			
Index of T	ndex of Terminology			