

Lecturer: Dr. Nguyen Hai Minh

- Other applications of Graphs
 - Shortest Path
 - Circuits
 - Difficult Problems

Shortest Paths

- Many problems can be modeled using graphs with weights assigned to their edges:
 - Airline flight problems
 - Computer networks problems
 - GPS navigation systems

Airline Flight Problems

- Vertices: cities
- Edges: flights
- Weights of edges depend on the problem.
 - Distance between cities
 - Flight fare
 - Flight time
 - ...

Computer Networks Problems

- Vertices: computers
- Edges: lines between computers
- Weights:
 - Communication costs (e.g., monthly cost of leasing a telephone line)
 - Response times of the computers over these lines
 - Distances between computers

Shortest Paths

- The input to the shortest-paths problem is a weighted, directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}$ mapping each edges to realvalued weights.
- \square We define the shortest-path weight $\delta(u, v)$ from uto v by

$$\delta(u,v) = \begin{cases} \min \left\{ w(p) : u \xrightarrow{p} v \right\} \text{ if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

where

where $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$ is the weight of path $p = \langle v_0, v_1, ..., v_k \rangle$

5/20/24

Shortest Paths – Variants

- Single-source shortest paths problem
- Single-destination shortest paths problem
- Single-pair shortest paths problem
- All-pairs shortest paths problem

Shortest Paths - Negative-weight

Negative-weight edges

Shortest path	cost
$s \rightarrow a$	3
s → b	-1
$s \rightarrow c$	5
$s \rightarrow d$	11
s > e	-∞
s > f	-∞
$s \rightarrow g$	-∞

Negative cycles

Shortest Paths

- Cycles:
 - A shortest path cannot contain a cycle
- Representing shortest paths: each vertex v in the graph G has:
 - \blacksquare A predecessor v. π that is another vertex or NIL
 - A shortest-path estimate v. d which is an upper bound on the weight of a shortest path from source s to v

Shortest Paths

- Dijkstra's shortest-path algorithm
 - Determine the shortest path between a given vertex and all other vertices (Single-source shortest paths)
 - Assume that weight of edges ≥ 0
 - The directed graph G is stored in the adjacency-list representation.

Dijkstra's Algorithm Idea

- We maintain a set of vertices S whose final shortest path lengths have already been determined
 - In each time we consider not yet discovered vertices in the graph, and all edges going from a discovered vertex (*u*) to an undiscovered vertex (*v*).
 - We choose an undiscovered vertex with an edge from u to v, that gives the shortest path length.
 - The length from *u* to *v* for each vertex *v*, is given by the length of *u*, plus the weight between *u* and *v*.
- In the initialization step:
 - We include source node S in the set of discovered nodes and set its length to 0.
 - All other lengths are initially infinity.
- Then we keep expanding set S of discovered nodes in a greedy manner.

5/20/24 nhminh @ FIT

Dijkstra's Algorithm

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex $v \in G.V$
- $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

- $2S = \emptyset$
- $3Q = \emptyset$
- 4 for each vertex $u \in G.V$
- 5 INSERT(Q, u)
- 6 while $Q \neq \emptyset$
- u = EXTRACT-MIN(Q)
- 8 $S \neq S \cup \{u\}$
- 9 **for** each vertex v in G.Adj[u]
- 10 / RELAX(u, v, w)
- if the call of RELAX decreased v.d
- 12 \int DECREASE-KEY(Q, v, v.d)

EXTRACT-MIN(H) deletes the element from heap H whose key is minimum, returning a pointer to the element.

RELAX(u, v, w)

- 1 **if** v.d > u.d + w(u, v)
- 2 v.d = u.d + w(u, v)
- $v.\pi = u$

Update the min-priority queue

A weighted directed graph and its adjacency list

Α	B ₈	D ₉	E ₄	
В	C_1			
С	B_2	D_3		
D	C_2	E ₇		
Е	C_1			

Step	Q	S	$(v.d,v.\pi)$				
			A	В	С	D	E
Init	A, B, C, D, E	Ø	(0, NIL)	(∞, NIL)	(∞, NIL)	(∞, NIL)	(∞, NIL)
1	B,C,D,E	A	(0, NIL)	(8, A)	(∞, NIL)	(9, <i>A</i>)	(4, A)
2	B,C,D	A, E	(0, NIL)	(8, A)	(5,E)	(9, A)	(4,A)
3	B,D	A, E, C	(0, NIL)	(7, <i>C</i>)	(5,E)	(8, <i>C</i>)	(4,A)
4	D	A, E, C, B	(0, NIL)	(7, <i>C</i>)	(5,E)	(8, <i>C</i>)	(4,A)
5	Ø	A, E, C, B, D	(0, NIL)	(7, <i>C</i>)	(5,E)	(8, <i>C</i>)	(4, A)

Init the distances and predecessors from A to all v in G.

nhminh @ FIT

Dijkstra's Algorithm – Analysis

- We run through each node once.
- For each node we look into its adjacency list.
- $\rightarrow (|V| + |E|)$ number of operations.
- However, each operation takes time since we need to find the minimum among all possible edges.
- \rightarrow Use a priority queue with each minimum taking $O(\log_2 |V|)$ time.
- As a consequence, we have $O((|V| + |E|) \log_2 |V|)$ complexity.

Dijkstra's Algorithm – Analysis

□ We can improve this complexity to $O(|E| + |V| \log_2 |V|)$ just like in Prim's algorithm; i.e., implement the min-priority queue using Fibonacci Heap.

Dijkstra's Algorithm – Negative Edges

Dijkstra's algorithm fails when the graph has negative weight.

CIRCUITS Eurler Circuit Hamilton Circuit 5/20/24 nhminh @ FI7

CIRCUITS

- ☐ A circuit is simply another name for a type of cycle that is common in some problems.
 - Recall: a cycle in a graph is a path that begins and ends at the same vertex.
- □ Typical circuits either visit every vertex once or visit every edge once.

CIRCUITS – The Bridge Problem

- □ The first application of graphs (early 1700s) by Euler:
 - Two islands in a river are joined to each other and to the river banks by several bridges
 - The bridges → edges in multigraph
 - The land masses → vertices
 - The problem asked whether you can begin at a vertex v, pass through every edge exactly once, and terminate at v.

CIRCUITS – The Bridge Problem

□ No solution exists for this particular configuration of edges and vertices.

Euler Circuits

- Euler circuit: path that begins at a vertex v, passes through every edge in the graph exactly once, and terminates at v.
 - Consider a simple undirected graph rather than a multigraph.
 - Euler circuit exists if and only if each vertex touches an even number of edges (or has an even degree).

Euler Circuits – Example

- Pencil and Paper drawings:
 - Drawing without lifting your pencil or redrawing a line, ending at your starting point.

No solution

Has solution

32

Euler Circuits – Example

Graphs based on previous example

5/20/24 nhminh @ FIT

Euler Circuits – Algorithm

- □ In case the Euler Circuit exists, we can find it by a strategy using DFS that marks edges instead of vertices as they are traversed.
 - You will find a cycle.
 - Then, find the first vertex along the cycle that touches an unvisited edge.
 - Loop until there is no unvisited edge.

- The travelling salesperson problem?
- The three utilities problem
- The four-color problem

The travelling salesperson problem

- A Hamilton circuit is a path that begins at a vertex v, passes through every vertex in the graph exactly once, and terminates at v.
 - → Determine whether a graph contains a Hamilton circuit is difficult!
- The TSP is a variation of this problem:
 - Involves a weighted graph that represent a roadmap.
 - Each edge has a cost.
 - The salesperson must visit every city exactly once and return to the original city with the least cost.
- → Solving this problem is not easy!

The three utilities problem

Is it possible to connect each house to each utility with edges that do not cross one another?

- Generation: Determine whether a given graph is planar?
 - Design an electronic circuit so that the connections do not cross

The four-color problem

- ☐ Given a planar graph, can you color the vertices so that no adjacent vertices have the same color, if you use at most four colors?
 - → The answer is YES, but it is difficult to prove.
 - → In fact, this problem was posed more than a century before it was solved in the 1970s with the use of a computer.

The four-color problem – Example

Use 3 colors to color the following map

The four-color problem – Example

Use 3 colors to color the following map

What's Next?

- After today:
 - Read Textbook 1: Chapter 20, 21, 22
 - Read Textbook 2: Chapter 20

