$11a_5 \ (K11a_5)$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{55} + 2u^{54} + \dots + 2b - 2, \ -3u^{55} - 9u^{54} + \dots + 2a - 1, \ u^{56} + 3u^{55} + \dots + 2u + 1 \rangle \\ I_2^u &= \langle b + u, \ a - u + 1, \ u^2 - u + 1 \rangle \\ I_3^u &= \langle -u^3 + b - u, \ u^3 + a, \ u^{10} + 2u^8 + 3u^6 - u^5 + 2u^4 - u^3 + u^2 - u + 1 \rangle \\ I_4^u &= \langle b - u + 1, \ a - 1, \ u^2 - u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 70 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle u^{55} + 2u^{54} + \dots + 2b - 2, \ -3u^{55} - 9u^{54} + \dots + 2a - 1, \ u^{56} + 3u^{55} + \dots + 2u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{2}u^{55} + \frac{9}{2}u^{54} + \dots + 3u + \frac{1}{2} \\ -\frac{1}{2}u^{55} - u^{54} + \dots + \frac{1}{2}u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{55} - \frac{3}{2}u^{54} + \dots + 2u - \frac{1}{2} \\ \frac{1}{2}u^{55} + u^{54} + \dots - \frac{7}{2}u^{2} + \frac{3}{2}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{55} + \frac{3}{2}u^{54} + \dots + \frac{1}{2}u - \frac{1}{2} \\ \frac{3}{2}u^{55} + 5u^{54} + \dots + \frac{9}{2}u + 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{3}{2}u^{55} + \frac{13}{2}u^{54} + \dots + 4u + \frac{3}{2} \\ -\frac{3}{2}u^{55} - 5u^{54} + \dots - \frac{3}{2}u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{3}{2}u^{55} + \frac{13}{2}u^{54} + \dots + 4u + \frac{3}{2} \\ -\frac{3}{2}u^{55} - 5u^{54} + \dots - \frac{3}{2}u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{3}{2}u^{55} + 6u^{54} + \dots + \frac{21}{2}u + 10$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{56} + 3u^{55} + \dots + 4u + 1$
c_2	$u^{56} + 27u^{55} + \dots + 12u + 1$
c_{3}, c_{7}	$u^{56} + 4u^{55} + \dots + 48u + 16$
<i>C</i> ₅	$u^{56} - 3u^{55} + \dots - 228u + 73$
c_6, c_{10}	$u^{56} - 3u^{55} + \dots - 2u + 1$
<i>c</i> ₈	$u^{56} + 20u^{55} + \dots + 1920u + 256$
c_9,c_{11}	$u^{56} - 19u^{55} + \dots - 12u + 1$

Crossings	Riley Polynomials at each crossing
c_1,c_4	$y^{56} + 27y^{55} + \dots + 12y + 1$
c_2	$y^{56} + 7y^{55} + \dots + 20y + 1$
c_3, c_7	$y^{56} + 20y^{55} + \dots + 1920y + 256$
<i>C</i> ₅	$y^{56} - 13y^{55} + \dots - 28332y + 5329$
c_6, c_{10}	$y^{56} + 19y^{55} + \dots + 12y + 1$
c ₈	$y^{56} + 20y^{55} + \dots + 1892352y + 65536$
c_9, c_{11}	$y^{56} + 39y^{55} + \dots + 68y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.741413 + 0.672947I		
a = 1.020640 + 0.124604I	-1.83234 + 3.68509I	-1.91791 - 2.59302I
b = 1.190130 - 0.747746I		
u = 0.741413 - 0.672947I		
a = 1.020640 - 0.124604I	-1.83234 - 3.68509I	-1.91791 + 2.59302I
b = 1.190130 + 0.747746I		
u = -0.039032 + 1.025260I		
a = -0.99762 + 2.58381I	3.63474 + 3.50294I	5.73768 - 2.63577I
b = 1.10990 - 1.02405I		
u = -0.039032 - 1.025260I		
a = -0.99762 - 2.58381I	3.63474 - 3.50294I	5.73768 + 2.63577I
b = 1.10990 + 1.02405I		
u = -0.806293 + 0.635602I		
a = 0.090255 - 0.375739I	-1.57743 - 4.56872I	-0.30810 + 2.29944I
b = 1.002180 + 0.966962I		
u = -0.806293 - 0.635602I		
a = 0.090255 + 0.375739I	-1.57743 + 4.56872I	-0.30810 - 2.29944I
b = 1.002180 - 0.966962I		
u = -0.648386 + 0.715887I		
a = 0.630315 + 1.140640I	-0.80063 + 3.06781I	-2.68598 - 1.92704I
b = 0.74941 - 1.25701I		
u = -0.648386 - 0.715887I		
a = 0.630315 - 1.140640I	-0.80063 - 3.06781I	-2.68598 + 1.92704I
b = 0.74941 + 1.25701I		
u = 0.008056 + 1.044520I		
a = 0.34660 - 2.52615I	5.16329 - 1.49959I	8.12934 + 2.79503I
b = -0.490688 + 1.158840I		
u = 0.008056 - 1.044520I		
a = 0.34660 + 2.52615I	5.16329 + 1.49959I	8.12934 - 2.79503I
b = -0.490688 - 1.158840I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.834318 + 0.632612I		
a = -0.315424 + 0.311362I	-3.88812 - 9.72427I	-3.19194 + 6.02733I
b = -1.45314 - 0.83959I		
u = -0.834318 - 0.632612I		
a = -0.315424 - 0.311362I	-3.88812 + 9.72427I	-3.19194 - 6.02733I
b = -1.45314 + 0.83959I		
u = 0.706240 + 0.782080I		
a = 0.903733 + 0.855262I	-3.30596 - 3.25886I	-4.12694 + 4.42129I
b = 0.714932 + 0.213648I		
u = 0.706240 - 0.782080I		
a = 0.903733 - 0.855262I	-3.30596 + 3.25886I	-4.12694 - 4.42129I
b = 0.714932 - 0.213648I		
u = -0.809142 + 0.690374I		
a = -0.132159 + 0.772752I	-6.42626 - 1.81700I	-6.48917 + 0.44041I
b = -0.590956 - 0.245751I		
u = -0.809142 - 0.690374I		
a = -0.132159 - 0.772752I	-6.42626 + 1.81700I	-6.48917 - 0.44041I
b = -0.590956 + 0.245751I		
u = 0.665776 + 0.647788I		
a = -0.675953 - 0.217460I	0.195314 - 0.858584I	1.89444 + 2.20489I
b = -0.562560 + 0.722572I		
u = 0.665776 - 0.647788I		
a = -0.675953 + 0.217460I	0.195314 + 0.858584I	1.89444 - 2.20489I
b = -0.562560 - 0.722572I		
u = 0.086309 + 1.094900I		
a = -0.93440 - 2.23738I	4.65334 - 3.96415I	6.86507 + 3.56024I
b = 0.764499 + 1.035920I		
u = 0.086309 - 1.094900I		
a = -0.93440 + 2.23738I	4.65334 + 3.96415I	6.86507 - 3.56024I
b = 0.764499 - 1.035920I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.421784 + 1.014200I		
a = 0.369064 + 0.535358I	-1.28541 - 4.22699I	-4.01501 + 5.50631I
b = -0.703989 - 0.419272I		
u = 0.421784 - 1.014200I		
a = 0.369064 - 0.535358I	-1.28541 + 4.22699I	-4.01501 - 5.50631I
b = -0.703989 + 0.419272I		
u = 0.108576 + 1.120700I		
a = 1.47683 + 2.12600I	2.65983 - 9.01317I	3.42509 + 7.90773I
b = -1.31016 - 0.90819I		
u = 0.108576 - 1.120700I		
a = 1.47683 - 2.12600I	2.65983 + 9.01317I	3.42509 - 7.90773I
b = -1.31016 + 0.90819I		
u = -0.756492 + 0.867475I		
a = 0.290517 + 0.800213I	-5.43275 + 2.85613I	0
b = 1.159040 - 0.076045I		
u = -0.756492 - 0.867475I		
a = 0.290517 - 0.800213I	-5.43275 - 2.85613I	0
b = 1.159040 + 0.076045I		
u = 0.681299 + 0.928530I		
a = 0.26406 - 1.76753I	-2.85461 - 2.07470I	0
b = 0.591539 - 0.113186I		
u = 0.681299 - 0.928530I		
a = 0.26406 + 1.76753I	-2.85461 + 2.07470I	0
b = 0.591539 + 0.113186I		
u = 0.369086 + 0.757930I		
a = -0.437703 - 0.094511I	0.21918 - 1.44616I	1.49529 + 5.27661I
b = 0.097678 + 0.366408I		
u = 0.369086 - 0.757930I		
a = -0.437703 + 0.094511I	0.21918 + 1.44616I	1.49529 - 5.27661I
b = 0.097678 - 0.366408I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.795058 + 0.843444I		
a = -0.417311 - 1.090260I	-8.93548 - 1.17781I	0
b = -1.180470 - 0.171813I		
u = -0.795058 - 0.843444I		
a = -0.417311 + 1.090260I	-8.93548 + 1.17781I	0
b = -1.180470 + 0.171813I		
u = 0.577211 + 1.017300I		
a = -1.49312 + 0.43889I	1.69732 - 2.56463I	0
b = 0.429824 - 0.916159I		
u = 0.577211 - 1.017300I		
a = -1.49312 - 0.43889I	1.69732 + 2.56463I	0
b = 0.429824 + 0.916159I		
u = 0.655505 + 0.994545I		
a = -1.32569 + 1.66014I	1.21543 - 4.31655I	0
b = -0.714267 - 0.869296I		
u = 0.655505 - 0.994545I		
a = -1.32569 - 1.66014I	1.21543 + 4.31655I	0
b = -0.714267 + 0.869296I		
u = -0.778721 + 0.902615I		
a = -0.629642 - 0.554140I	-8.75518 + 7.07324I	0
b = -1.246570 + 0.251884I		
u = -0.778721 - 0.902615I		
a = -0.629642 + 0.554140I	-8.75518 - 7.07324I	0
b = -1.246570 - 0.251884I		
u = -0.665461 + 0.998554I		
a = 1.47958 + 0.98153I	1.02494 + 7.31006I	0
b = -0.27691 - 1.41551I		
u = -0.665461 - 0.998554I		
a = 1.47958 - 0.98153I	1.02494 - 7.31006I	0
b = -0.27691 + 1.41551I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.726835 + 0.312138I		
a = -0.281181 + 0.377427I	-2.11906 - 6.68125I	-3.63435 + 7.13506I
b = -1.23922 - 0.75437I		
u = 0.726835 - 0.312138I		
a = -0.281181 - 0.377427I	-2.11906 + 6.68125I	-3.63435 - 7.13506I
b = -1.23922 + 0.75437I		
u = 0.684722 + 0.999142I		
a = 1.33070 - 2.19241I	-0.85456 - 9.13704I	0
b = 1.27007 + 0.81194I		
u = 0.684722 - 0.999142I		
a = 1.33070 + 2.19241I	-0.85456 + 9.13704I	0
b = 1.27007 - 0.81194I		
u = -0.719216 + 1.009090I		
a = -0.27108 - 1.52502I	-5.45723 + 7.56306I	0
b = -0.514131 + 0.310292I		
u = -0.719216 - 1.009090I		
a = -0.27108 + 1.52502I	-5.45723 - 7.56306I	0
b = -0.514131 - 0.310292I		
u = -0.700131 + 1.033130I		
a = 0.87411 + 2.07026I	-0.38077 + 10.23850I	0
b = 1.01430 - 1.05715I		
u = -0.700131 - 1.033130I		
a = 0.87411 - 2.07026I	-0.38077 - 10.23850I	0
b = 1.01430 + 1.05715I		
u = -0.709774 + 1.044140I		
a = -0.66819 - 2.43467I	-2.6410 + 15.5012I	0
b = -1.47739 + 0.89292I		
u = -0.709774 - 1.044140I		
a = -0.66819 + 2.43467I	-2.6410 - 15.5012I	0
b = -1.47739 - 0.89292I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.654147 + 0.158059I		
a = -0.118708 + 0.847351I	-3.78376 + 0.44619I	-7.44405 + 0.06553I
b = -0.691669 + 0.136107I		
u = 0.654147 - 0.158059I		
a = -0.118708 - 0.847351I	-3.78376 - 0.44619I	-7.44405 - 0.06553I
b = -0.691669 - 0.136107I		
u = -0.027758 + 0.510281I		
a = -1.52541 - 0.24229I	0.62233 - 1.37834I	4.03273 + 4.63788I
b = 0.103096 + 0.749181I		
u = -0.027758 - 0.510281I		
a = -1.52541 + 0.24229I	0.62233 + 1.37834I	4.03273 - 4.63788I
b = 0.103096 - 0.749181I		
u = -0.297177 + 0.240208I		
a = 2.14718 + 0.27245I	-0.23364 + 2.60586I	1.42060 - 2.60390I
b = 0.755501 - 0.780989I		
u = -0.297177 - 0.240208I		
a = 2.14718 - 0.27245I	-0.23364 - 2.60586I	1.42060 + 2.60390I
b = 0.755501 + 0.780989I		

II.
$$I_2^u = \langle b+u, \ a-u+1, \ u^2-u+1 \rangle$$

and Are colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u - 1 \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u - 1 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8u 1

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_9, c_{10}	$u^2 + u + 1$
c_3, c_7, c_8	u^2
c_4, c_6, c_{11}	$u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_9 c_{10}, c_{11}	$y^2 + y + 1$
c_3, c_7, c_8	y^2

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I $a = -0.500000 + 0.866025I$	-4.05977I	3.00000 + 6.92820I
b = -0.500000 + 0.866025I $b = -0.500000 - 0.866025I$	- 4.059111	3.00000 + 0.928201
u = 0.500000 - 0.866025I		
a = -0.500000 - 0.866025I	4.05977I	3.00000 - 6.92820I
b = -0.500000 + 0.866025I		

III. $I_3^u = \langle -u^3 + b - u, \ u^3 + a, \ u^{10} + 2u^8 + 3u^6 - u^5 + 2u^4 - u^3 + u^2 - u + 1 \rangle$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{6} + u^{4} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} + u^{4} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{6} + u^{4} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{21} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{18} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} \\ -u^{7} - u^{5} +$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^5 + 4u^3 + 4u 2$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$u^{10} + 2u^8 + 3u^6 + u^5 + 2u^4 + u^3 + u^2 + u + 1$
c_2	$u^{10} + 4u^9 + 10u^8 + 16u^7 + 19u^6 + 17u^5 + 12u^4 + 7u^3 + 3u^2 + u + 1$
c_3, c_7	$(u^2 - u + 1)^5$
<i>C</i> ₅	$u^{10} + 2u^8 - 2u^7 + 5u^6 - 3u^5 + 8u^4 + u^3 + 5u^2 - 5u + 1$
c ₈	$(u^2 + u + 1)^5$
c_9, c_{11}	$u^{10} - 4u^9 + 10u^8 - 16u^7 + 19u^6 - 17u^5 + 12u^4 - 7u^3 + 3u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$y^{10} + 4y^9 + 10y^8 + 16y^7 + 19y^6 + 17y^5 + 12y^4 + 7y^3 + 3y^2 + y + 1$
c_2, c_9, c_{11}	$y^{10} + 4y^9 + 10y^8 + 12y^7 + 7y^6 - 3y^5 + 8y^4 + 27y^3 + 19y^2 + 5y + 1$
c_3, c_7, c_8	$(y^2 + y + 1)^5$
c_5	$y^{10} + 4y^9 + \dots - 15y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.163836 + 1.020860I		
a = 0.507833 + 0.981695I	-2.02988I	0. + 3.46410I
b = -0.343996 + 0.039167I		
u = 0.163836 - 1.020860I		
a = 0.507833 - 0.981695I	2.02988I	0 3.46410I
b = -0.343996 - 0.039167I		
u = -0.697277 + 0.652229I		
a = -0.550857 - 0.673872I	-2.02988I	0. + 3.46410I
b = -0.146420 + 1.326100I		
u = -0.697277 - 0.652229I		
a = -0.550857 + 0.673872I	2.02988I	0 3.46410I
b = -0.146420 - 1.326100I		
u = -0.650894 + 0.972612I		
a = -1.57143 - 0.31611I	2.02988I	0 3.46410I
b = 0.92053 + 1.28873I		
u = -0.650894 - 0.972612I		
a = -1.57143 + 0.31611I	-2.02988I	0. + 3.46410I
b = 0.92053 - 1.28873I		
u = 0.542795 + 1.051680I		
a = 1.64111 + 0.23362I	2.02988I	0 3.46410I
b = -1.098320 + 0.818054I		
u = 0.542795 - 1.051680I		
a = 1.64111 - 0.23362I	-2.02988I	0. + 3.46410I
b = -1.098320 - 0.818054I		
u = 0.641539 + 0.351198I		
a = -0.026658 - 0.390314I	-2.02988I	0. + 3.46410I
b = 0.668197 + 0.741512I		
u = 0.641539 - 0.351198I		
a = -0.026658 + 0.390314I	2.02988I	0 3.46410I
b = 0.668197 - 0.741512I		

IV.
$$I_4^u = \langle b - u + 1, \ a - 1, \ u^2 - u + 1 \rangle$$

a) Are colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u + 2 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_9, c_{10}	$u^2 + u + 1$
c_3, c_7, c_8	u^2
c_4, c_6, c_{11}	$u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_9 c_{10}, c_{11}	$y^2 + y + 1$
c_3, c_7, c_8	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = 1.00000	0	0
b = -0.500000 + 0.866025I		
u = 0.500000 - 0.866025I		
a = 1.00000	0	0
b = -0.500000 - 0.866025I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} + u + 1)^{2}(u^{10} + 2u^{8} + 3u^{6} + u^{5} + 2u^{4} + u^{3} + u^{2} + u + 1)$ $\cdot (u^{56} + 3u^{55} + \dots + 4u + 1)$
c_2	$(u^{2} + u + 1)^{2}$ $\cdot (u^{10} + 4u^{9} + 10u^{8} + 16u^{7} + 19u^{6} + 17u^{5} + 12u^{4} + 7u^{3} + 3u^{2} + u + 1)$ $\cdot (u^{56} + 27u^{55} + \dots + 12u + 1)$
c_3, c_7	$u^4(u^2 - u + 1)^5(u^{56} + 4u^{55} + \dots + 48u + 16)$
c_4	$(u^{2} - u + 1)^{2}(u^{10} + 2u^{8} + 3u^{6} + u^{5} + 2u^{4} + u^{3} + u^{2} + u + 1)$ $\cdot (u^{56} + 3u^{55} + \dots + 4u + 1)$
c_5	$(u^{2} + u + 1)^{2}(u^{10} + 2u^{8} - 2u^{7} + 5u^{6} - 3u^{5} + 8u^{4} + u^{3} + 5u^{2} - 5u + 1)$ $\cdot (u^{56} - 3u^{55} + \dots - 228u + 73)$
c_6	$(u^{2} - u + 1)^{2}(u^{10} + 2u^{8} + 3u^{6} + u^{5} + 2u^{4} + u^{3} + u^{2} + u + 1)$ $\cdot (u^{56} - 3u^{55} + \dots - 2u + 1)$
c_8	$u^4(u^2+u+1)^5(u^{56}+20u^{55}+\cdots+1920u+256)$
<i>C</i> 9	$(u^{2} + u + 1)^{2}$ $\cdot (u^{10} - 4u^{9} + 10u^{8} - 16u^{7} + 19u^{6} - 17u^{5} + 12u^{4} - 7u^{3} + 3u^{2} - u + 1)$ $\cdot (u^{56} - 19u^{55} + \dots - 12u + 1)$
c_{10}	$(u^{2} + u + 1)^{2}(u^{10} + 2u^{8} + 3u^{6} + u^{5} + 2u^{4} + u^{3} + u^{2} + u + 1)$ $\cdot (u^{56} - 3u^{55} + \dots - 2u + 1)$
c_{11}	$(u^{2} - u + 1)^{2}$ $\cdot (u^{10} - 4u^{9} + 10u^{8} - 16u^{7} + 19u^{6} - 17u^{5} + 12u^{4} - 7u^{3} + 3u^{2} - u + 1)$ $\cdot (u^{56} - 19u^{55} + \dots - 12u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^{2} + y + 1)^{2}$ $\cdot (y^{10} + 4y^{9} + 10y^{8} + 16y^{7} + 19y^{6} + 17y^{5} + 12y^{4} + 7y^{3} + 3y^{2} + y + 1)$ $\cdot (y^{56} + 27y^{55} + \dots + 12y + 1)$
c_2	$(y^{2} + y + 1)^{2}$ $\cdot (y^{10} + 4y^{9} + 10y^{8} + 12y^{7} + 7y^{6} - 3y^{5} + 8y^{4} + 27y^{3} + 19y^{2} + 5y + 1)$ $\cdot (y^{56} + 7y^{55} + \dots + 20y + 1)$
c_3, c_7	$y^4(y^2+y+1)^5(y^{56}+20y^{55}+\cdots+1920y+256)$
<i>C</i> 5	$((y^{2} + y + 1)^{2})(y^{10} + 4y^{9} + \dots - 15y + 1)$ $\cdot (y^{56} - 13y^{55} + \dots - 28332y + 5329)$
c_6, c_{10}	$(y^{2} + y + 1)^{2}$ $\cdot (y^{10} + 4y^{9} + 10y^{8} + 16y^{7} + 19y^{6} + 17y^{5} + 12y^{4} + 7y^{3} + 3y^{2} + y + 1)$ $\cdot (y^{56} + 19y^{55} + \dots + 12y + 1)$
c_8	$y^{4}(y^{2} + y + 1)^{5}(y^{56} + 20y^{55} + \dots + 1892352y + 65536)$
c_9, c_{11}	$(y^{2} + y + 1)^{2}$ $\cdot (y^{10} + 4y^{9} + 10y^{8} + 12y^{7} + 7y^{6} - 3y^{5} + 8y^{4} + 27y^{3} + 19y^{2} + 5y + 1)$ $\cdot (y^{56} + 39y^{55} + \dots + 68y + 1)$