A.1 Laboratorio Semana 1

Catriel Pereira Torrez

miércoles, 8 de enero de 2025 05:02

Pregunta 1	5 pts
La derivada de una función vectorial se obtie función componente.	ene derivando cada
Verdadero	
○ Falso	

Es cierto, ya que:

from todo
$$\overline{t}(t) = x_1(t), x_2(t), \dots, x_n(t)$$

to do $\overline{t}(t) = x_1(t), x_2(t), \dots, x_n(t)$

Pregunta 2	5 pts
La curva dada por $r(t)=\left(2t,3-t,0 ight)$ es una recta que pa el origen.	sa por
○ Verdadero	
Falso	

Para que pase par d'arigen
$$\rightarrow (0,0,0)$$
:

No pasa por el origen:

 $2+=0$
 $3-+=0$
 $+=3$
 $0=0$

Si (0, 0, 0), r(t) tendría que tomar dos valores de t al mismo tiempo,

lo cuál por al reducción al absurdo no pasa por el origen.

Pregunta 3	5 pts
Determine el límite de la siguiente función vectorial $\lim_{t\to 1}\Bigl(\frac{t^2-t}{t-1},\sqrt{t+8},\frac{sen\pi t}{\ln t}\Bigr)$	
$\bigcirc \ (1,0,-\pi)$	
$\bigcirc~(0,2,\pi)$	
$\bigcirc \ (0,0,0)$	
$\textcolor{red}{\bullet} \ (1,3,-\pi)$	

Limbe for componente:

$$\lim_{t\to 1} \frac{t^2-t}{t^2-t} = \lim_{t\to 1} \frac{t(t-4)}{t^2-t} = \lim_{t\to 1} t = 1$$

$$\lim_{t\to 1} \frac{t+8}{t+8} = \lim_{t\to 1} \frac{t(t-4)}{t} = \lim_{t\to 1} \frac{t(t-4)}{t}$$

$$= \lim_{t\to 1} \frac{t(t-4)}{t} = \lim_{t\to 1} \frac{t(t-4)}{t}$$

<u>d(tan(+))</u> = see+

$$\frac{dl \sec(4)1}{dt} = \sec(4) \cdot toun(t)$$

$$\frac{dl \frac{1}{42}}{dt} = \frac{d(1-2)}{dt} = -21^{-3} = -2$$

$$f'(t) = (\sec^2 t, \sec(t), \tanh, \frac{+3}{2})$$

Pregunta 5	5 pts
De la función $f(x,y)=ln(2+x^2+y^2)$, es cierto que:	
\nwarrow Su imagen es $[ln2,\infty)$	
\square Su imagen es $-\infty,\infty$	
\nearrow Su dominio es R^2	
\square Su imagen es $[0,\infty]$	

So imagen es $[\ln 2, et]$, porque evaluando con ID en la función f(x, y) el valor mínimo que puede tener es $\ln 2$ (siendo x, y = 0) y luego, con otros unlores $x, y \neq 0$ be tunción solo crece.

Su sominio es 12, ya que:

2+x2+x2=22 4 (x,y) E/R2

Su maser 10 es 10,000) por b de mostrado

Pregunta 6

5 pts

Si \(r(t)=e^t,sent,Int\), entonces $\lim_{(t o \pi/2)} r(t)$ es

- $argain xe^{\pi/2}, 1, ln(\pi/2)$
- $\bigcirc \ xe^1, 1, ln(\pi/2)$
- $\bigcirc xe^{\pi/2}, 0, ln(\pi/2)$
- $\bigcirc xe^{\pi/2}, -1, ln(\pi/2)$

Sea $r(t) = (e^t, sent, ln t)$ $\lim_{t \to H} r(t):$ $\lim_{t \to H} e^t = e^{t/2}$ $\lim_{t \to H} sent = sen(H) = I$ $\lim_{t \to H} ln(t) = (ln(H))$ $\lim_{t \to H} r(t) = (e^{t/2}, I, ln(T/2))$

En el formulario no existe la respuesta correcta pero asumo que la x se agregó por error delante de e en los incisos.