UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

ESCUELA DE ESTUDIOS GENERALES ÁREA DE INGENIERÍA

PRÁCTICA DIRIGIDA Nº 10

Curso: Álgebra y Geometría Analítica

Tema: Proyección ortogonal, componentes, ángulo entre vectores, paralelismo, ortogonalidad de vectores y aplicaciones.

- 1. Si $\vec{a} = (m, 5) + (3, 3)$, $\vec{b} = 4(-m, -3) 2(1, 2)$ y ambos son paralelos determinar el valor de m.
- 2. El vector $\vec{a}=(x,y)$ es paralelo al vector $\vec{b}=(2,4)$, tal que $\vec{u}=(\frac{x}{\sqrt{5}},\frac{y}{\sqrt{5}})$ es un vector unitario paralelo a ambos. Determinar el vector \vec{a} .
- 3. Hallar la norma de, la suma de los vectores unitarios, $\vec{u} + \vec{v}$ si \vec{u} es paralelo a (4, -3)y \vec{v} es paralelo a (-5,0)
- 4. El vector $\vec{c} = (2, -1)$ es expresado como $\vec{c} = \vec{a} + \vec{b}$, donde los vectores \vec{a} y \vec{b} son paralelos a $\vec{x} = (3m, 4m)$ e $\vec{y} = (-3n, -n)$ respectivamente, siendo $m \neq 0$ y $n \neq 0$. Determinar $\vec{a} - \vec{b}$.
- 5. Para cada par de vectores \vec{a} y \vec{b} calcular la proyección ortogonal de \vec{a} sobre \vec{b} y la componente de \vec{a} en la dirección de \vec{b} .

a)
$$\vec{a} = (-1; -2), \vec{b} = (-4; -2)$$
 b) $\vec{a} = (3; 12), \vec{b} = (6; -5)$

b)
$$\vec{a} = (3; 12), \vec{b} = (6; -5)$$

- 6. Los vectores A y B forman un ángulo de $\theta=30^\circ$. Sabiendo que $\|A\|=\sqrt{3}$ y $\|B\|=1$, calcular el ángulo formado por los vectores V = A + B y W = A - B.
- 7. Sea el rectángulo ABCD, A = (-1, 6); B = (2, 3). B y D son vértices opuestos. \overrightarrow{AC} // (3, 1) y $\overrightarrow{DB} \perp$ (-3,1). Halle los vértices C y D. Rpta: C = (8, 9); D = (5, 12)

Escriba aquí la ecuación.

- 8. Los lados de un triángulo son los vectores \vec{a} , \vec{b} y $\vec{a} + \vec{b}$, si $\|\vec{a}\| = 4$, $\|\vec{b}\| = 6$ y $Comp_{\vec{b}}\vec{a} = 2$. Hallar $||\vec{a} + \vec{b}||$.
- 9. Encontrar los vectores \vec{a} y \vec{b} , tales que $\vec{a} + \vec{b}^{\perp} = (-1, 5)$; $\vec{a}^{\perp} + \vec{b}$ es ortogonal a (-5, 3), y Rpta: $\vec{a} = (-3, 4), \vec{b} = (1, -2)$ $\vec{a} + \vec{b}$ es paralelo a (1, -1).

- 10. Dado los vértices B(-6, 9) y C(5, 7) del rombo ABCD; si la diagonal AC es paralela al vector $\vec{a} = (3, 4)$. Determinar vectorialmente los otros dos vértices del rombo.
- 11. Los vectores \vec{a} y \vec{b} forman un ángulo de 120°, sabiendo que $||\vec{a}|| = 3$ y $||\vec{b}|| = 5$. Determinar $\|\vec{a} + \vec{b}\|$ y $\|\vec{a} - \vec{b}\|$.
- 12. Si A(1, 1), B(-2, -1) y C son los vértices de un triángulo rectángulo ABC, recto en B. Hallar el vértice C, si el área del triángulo es de 19.5 u^2 (Dos soluciones).
- 13. Si $\vec{a} = (x, 2x)$, $\vec{a} \vec{b} = (2x, y)$, $\|\vec{a} \vec{b}\| = \sqrt{80}$ siendo $\vec{a} / / \vec{b}$. Determinar $\|\vec{b}\|$.
- 14. Si A(-1,-3), C(8,0) son los extremos de una diagonal del rectángulo ABCD. Hallar los vértices B y D si el lado AB es paralelo al vector $\vec{v} = (1,1)$.
- 15. Si $\|\vec{a} \vec{b}\| = 9$, $\|\vec{b}\| = 4$ y $Comp_{\vec{b}}(\vec{a} \vec{b}) = -10$; hallar $\|\vec{a}\|^2$
- 16. Sean los vectores en el plano u y v Demuestre que: Si. u.v = 0 si y sólo si
 - a) $||u+v||^2 = ||u||^2 + ||v||^2$
 - b) ||u+v|| = ||u-v||
- 17. En la figura dada, determinar los vectores \overrightarrow{AC} , \overrightarrow{AB} y \overrightarrow{BC} sabiendo que $\|\overrightarrow{AB}\| = 3$, $\overrightarrow{AC}//Y$.

- 18. Demuestre que;
 - a) $Proy_{\overrightarrow{a}}(\vec{b} + \vec{c}) = Proy_{\overrightarrow{a}}\vec{b} + Proy_{\overrightarrow{a}}\vec{c}$ b) $Proy_{\overrightarrow{a}}(T\vec{b}) = T Proy_{\overrightarrow{a}}\vec{b}$, $T \in \mathbb{R}$.
- 19. Sea ABC un triángulo. Si M = (1, 9) y N(6, 2) son los puntos medios de los lados AB y *BC* respectivamente, $\overrightarrow{AB}//(1;1)$ y $Proy_{\overrightarrow{AN}}\overrightarrow{AB} = \frac{8}{5}(3;-1)$. Hallar los vértices del triángulo.
- 20. Dado el triángulo *ABC*, D = (-3; 1), E = (-2; 13) y F = (-12; 9) son respectivamente los puntos medios de AB, BC y AC. Encontrar:
 - a) $Proy_{\overrightarrow{BA}}\overrightarrow{DE}$
 - b) Área del triángulo de vértices *ADF*.
- 21. Los vértices de un triángulo son A(3;-1), B(1;k) y C=(5;2). Halle la ordenada del vértice B sabiendo que el área del triángulo es de 6 u^2 .