Data Science Career Track

Capstone 2 -

Final Report

by Edward Franke 06/11/2019

Detect Pneumonia is chest x-rays Project – Final Report

EXECUTIVE SUMMARY:

The purpose for this project is to find a correlation connected to chest x-rays containing pneumonia that can separate them in real time compared to normal healthy chest x-rays. The dataset is a cleaned dataset from Kaggle.com. Tensorflow and Keras has discovered connections and methods to determine which x-rays have pneumonia with varying success.

IDEA: A model to detect pneumonia is chest x-rays. (problem to solve)

CLIENT: Medical Industry

REASON: Pneumonia is a very serious condition that has the potential for death. I have personal knowledge of how serious it can be. The sooner it can be detected, the better the chance for survival and less damage to the lungs.

DATA: From Kaggle, 2 cleaned datasets with 5863 images and over 112,000 images.

SOLUTION: Create a model or analysis to discover what makes an x-ray image of the chest to have pneumonia and to capture this automatically.

DETAILS: See below.

DELIVERABLES: Code and a presentation outlining the discoveries.

Pneumonia Dataset

Accuracy: 68.91025641025641% Precision: 82.23684210526315% Recall: 64.1025641025641%

Tensorflow and Keras has discovered some connections.

Layer (type)	Output		Param #
input_1 (InputLayer)		64, 64, 3)	0
conv2d_1 (Conv2D)	(None,	64, 64, 16)	448
conv2d_2 (Conv2D)	(None,	64, 64, 16)	2320
max_pooling2d_1 (MaxPooling2	(None,	32, 32, 16)	0
conv2d_3 (Conv2D)	(None,	32, 32, 32)	4640
conv2d_4 (Conv2D)	(None,	32, 32, 32)	9248
batch_normalization_1 (Batch	(None,	32, 32, 32)	128
max_pooling2d_2 (MaxPooling2	(None,	16, 16, 32)	0
conv2d_5 (Conv2D)	(None,	16, 16, 64)	18496
conv2d_6 (Conv2D)	(None,	16, 16, 64)	36928
batch_normalization_2 (Batch	(None,	16, 16, 64)	256
max_pooling2d_3 (MaxPooling2	(None,	8, 8, 64)	0
flatten_1 (Flatten)	(None,	4096)	0
dense_1 (Dense)	(None,	256)	1048832
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	64)	16448
dropout_2 (Dropout)	(None,	64)	0
dense_3 (Dense)	(None,	1)	65
Total params: 1,137,809 Trainable params: 1,137,617 Non-trainable params: 192			

None

```
In [69]:
         1 # Metrics
          3 # Getting predictions
          4 predictions = model.predict(x=x_test)
          5
          6 acc = accuracy_score(y_test, np.round(predictions))*100
          7 tn, fp, fn, tp = confusion_matrix(y_test, np.round(predictions)).ravel()
          9 print('Accuracy: {}%'.format(acc))
         10 print('Precision: {}%'.format(tp/(tp+fp)*100))
         print('Recall: {}%'.format(tp/(tp+fn)*100))
         Accuracy: 79.48717948717949%
         Precision: 76.09561752988047%
         Recall: 97.94871794871794%
In [70]:
         print(confusion_matrix(y_test, np.round(predictions)).ravel())
         [114 120
                   8 382]
```

NIH Dataset

The NIH dataset contains 112,000 x-rays with varying ailments or no ailments. The code used for the Pneumonia dataset is ineffective on this dataset.

Back to orginal code

Code written specifically for this dataset gathers labels from a csv file and is also able to analyze the images to determine the ailment being searched for. This code was originally set to discover Fibromyalgia but was modified to detect Pneumonia.

Tensorflow and Keras has discovered some connections. With the number of Epochs increased, the accuracy will also increased but this will also require decent computer processing power due to the number of images being processed.

