

CÉSAR VALLEJO

CÉSAR VALLEJO

CÉSAR VALLEJO

ARITMÉTICA

Tema: **Promedios Tanto por cient**

Docente: Erick Condeña

CÉSAR VALLEJO

ARITMÉTICA

Tema: Promedios y Tanto por Ciento

Docente: Julio Omar Torres Pérez

OBJETIVOS

Conocer los principales promedios $(\overline{MA}, \overline{MG})$ y \overline{MH}) y las propiedades que tienen.

Comprender los descuentos sucesivos y aumentos sucesivos.

Entender las aplicaciones comerciales y relacionarlas con nuestras actividades cotidianas.

PROMEDIOS

El promedio de un grupo de datos es el valor representativo de dicho grupo y cumple la siguiente condición:

$$\begin{bmatrix} Menor \\ dato \end{bmatrix}$$
 \leq Promedio \leq $\begin{bmatrix} Mayor \\ dato \end{bmatrix}$

Veamos algunos promedios más importantes:

PROMEDIO ARITMÉTICO O MEDIA ARITMÉTICA (\overline{MA})

Se calcula así:

$$\overline{MA} = \frac{(Suma\ de\ datos)}{(Cantidad\ de\ datos)}$$

Ejemplo:

$$\overline{MA}(6; 12; 24) = \frac{6+12+24}{3} = \frac{42}{3} = 14$$

PROMEDIO GEOMÉTRICO O MEDIA GEOMÉTRICA (\overline{MG})

Se calcula así:

$$\overline{MG} = \sqrt{\frac{\binom{Cantidad}{de \ datos}}{\binom{Producto}{de \ datos}}}$$

Ejemplo:

 $\overline{\text{MG}}(6; 12; 24) = \sqrt[3]{6 \times 12 \times 24} = \sqrt[3]{1728} = 12$

PROMEDIO ARMÓNICO O MEDIA ARMÓNICA (MH)

Se calcula así:

$$\overline{MH} = \frac{(Cantidad \ de \ datos)}{(Suma \ de \ las \ inversas)}$$

$$\frac{de \ los \ datos}{de \ los \ datos}$$

Ejemplo:

Entonces:

$$\overline{MH}(a;b) \leq \overline{MG}(a;b) \leq \overline{MA}(a;b)$$
Menor promedio
Mayor promedio

PROPIEDADES

Para dos números *a y b* se cumple:

MA	\overline{MG}	MH
$\overline{MA} = \frac{a+b}{2}$	$\overline{MG} = \sqrt{a.b}$	$\overline{MH} = \frac{2}{\frac{1}{a} + \frac{1}{b}} = \frac{2 \cdot a \cdot b}{a + b}$

Además:

$$\overline{MA}(a;b) \times \overline{MH}(a;b) = (\overline{MG}(a;b))^2$$

$$(a-b)^2 = 4[(\overline{MA}(a;b))^2 - (\overline{MG}(a;b))^2]$$

Para 3 números a, b y c se cumple:

MA	MG	MH
$\overline{MA} = \frac{a+b+c}{3}$	$\overline{MG} = \sqrt[3]{a.b.c}$	$\overline{MH} = \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} = \frac{3. a. b. c}{ab + ac + bc}$

VARIACIÓN DE LA MEDIA ARITMÉTICA $(\Delta \overline{MA})$

Cuando en un conjunto de datos sin variar la cantidad, algunos datos aumentan o disminuyen su valor, entonces la \overline{MA} de ese conjunto de datos se verá alterada y dicha variación se calcula así:

$$\Delta \overline{\text{MA}} = \frac{\begin{pmatrix} \text{Cantidad total} \\ \text{que se aumenta} \\ \text{a los datos} \end{pmatrix} - \begin{pmatrix} \text{Cantidad total} \\ \text{que se disminuye} \\ \text{a los datos} \end{pmatrix}}{(\text{Cantidad total de datos})}$$

Donde:

Si $\Delta \overline{MA}$ < 0 entonces el promedio disminuye.

Si $\Delta \overline{MA} = 0$ entonces el promedio no varía.

Si $\Delta \overline{MA} > 0$ entonces el promedio aumenta.

Además:

$$\overline{MA}_{final} = \overline{MA}_{inicial} + \Delta \overline{MA}$$

REGLA DEL TANTO POR CIENTO

Definición

Es un procedimiento aritmético que consiste en dividir un total en 100 partes iguales para luego considerar tantas de ellas como se indique. Su notación es mediante el símbolo %.

Así tenemos:

La parte sombreada representa:

$$\frac{25}{100} = 25\%$$

En General:

El "a" por ciento =
$$a\% = \frac{a}{100}$$

Tanto por ciento como fracción

• 20%
$$<> \frac{1}{5}$$

• 60%
$$<> \frac{3}{5}$$

• 40% <>
$$\frac{2}{5}$$

• 80%
$$<> \frac{4}{5}$$

• 33,
$$\hat{3}\% <> \frac{1}{3}$$

• 50%
$$<> \frac{1}{2}$$

• 50%
$$<> \frac{1}{2}$$
 • 75% $<> \frac{3}{4}$

•
$$33,3\% <> \frac{1}{3}$$

• $66,6\% <> \frac{2}{3}$

•
$$66,6\% <> \frac{2}{3}$$

Notas:

- Las palabras de, del, de los, de las, indican multiplicar.
- La palabra por, indica dividir.
- El resultado de aplicar el tanto por ciento a una cantidad se denomina porcentaje.
- Cuando se requiera saber el tanto por ciento que representa una cantidad respecto de otra (¿Qué tanto por ciento de "B" es "A"?) se calcula así:

Es, son, será, representan $x\% = \frac{1}{B} \times 100\%$ De, del, de los, de las

Variación Porcentual (∆%**)**

Es el tanto por ciento de aumento o disminución que sufre una cantidad inicial. Se calcula de la siguiente manera:

$$\Delta\% = \left(\frac{\text{Cantidad final } - \text{Cantidad inicial}}{\text{Cantidad inicial}}\right) \times 100\%$$

DESCUENTOS SUCESIVOS

El primer descuento se aplica a la cantidad inicial, y los siguientes descuentos, se irán aplicando a la nueva cantidad que se va teniendo.

Ejemplo:

¿A qué descuento único equivale dos descuentos sucesivos del 30% y 40%?

En forma práctica tenemos:

Inicio: 100%Descuento 30% Descuento 40% (100-30)% (100-40)%

Final: 42%

∴ Equivale a un descuento único del 58%

58%

Nota: Para solo dos descuentos sucesivos $D_1\%$ y $D_2\%$ cumple la siguiente relación:

$$D_{\text{único}} = \begin{bmatrix} D_1 & + & D_2 & - & \frac{D_1 \times D_2}{100} \end{bmatrix} \%$$

AUMENTOS SUCESIVOS

El primer aumento se aplica a la cantidad inicial, y los siguientes aumentos, se irán aplicando a la nueva cantidad que se va teniendo.

Ejemplo:

¿A qué aumento único equivale dos aumentos sucesivos del 30% y 40%?

∴ Equivale a un aumento único del 82%

Nota: Para solo dos aumentos sucesivos $A_1\%$ y $A_2\%$ cumple la siguiente relación:

$$A_{\text{ú}nico} = \begin{bmatrix} A_1 & + & A_2 & + & \frac{A_1 \times A_2}{100} \end{bmatrix} \%$$

APLICACIONES COMERCIALES

El tanto por ciento se utiliza en una gran cantidad de aplicaciones comerciales, aquí estudiaremos los casos de compra - venta.

Veamos:

Incremento

Donde:

* Pc: Precio de costo.

* Pv : Precio de venta

* P_f: Precio fijado o de lista.

* D: Descuento.

 $\ast~G_B$: Ganancia bruta.

* G_N: Ganancia neta.

* G*: Gastos.

* G*: G

Nota:

Algunas veces se puede producir una pérdida, en estos casos:

$$P_V = P_C - P\acute{e}rdida$$

OBSERVACIONES:

- ☐ Las ganancias o pérdidas se representan como un tanto por ciento del precio de costo.
- ☐ Las descuentos o rebajas se representan como un tanto por ciento del precio de fijado.
- ☐ Cuando no se especifica la clase de ganancia se asume la ganancia bruta.

BIBLIOGRAFÍA

Problemas Selectos: Matemáticas, Ciencias Naturales

Selección de preguntas tipo UNI: Aptitud académica, Matemática y Ciencias

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe