Dynamic Element Matching for High-Accuracy Monolithic D/A Converters

RUDY J. VAN DE PLASSCHE

Abstract—A novel way to obtain a very high accuracy in the bit weighting required for monolithic digital-to-analog (D/A) converters will be described. The new method combines passive division using matched elements with a time division concept, needs no trimming, and is insensitive to element aging. A 12-bit monolithic D/A network with internal reference sources, built as a test circuit, demonstrates the versatility of this new technique.

Introduction

ONOLITHIC D/A converters have received considerable attention due to the rapidly expanding digital signal processing and microprocessor markets. Although there are numerous approaches to obtain a high-performance D/A converter, circuit design has settled down around the R-2R ladder network to obtain the required precision in binary weighting of current sources. Here the designer makes use of the excellent matching characteristics and thermal tracking of integrated components. The accuracy of the converter is determined by the matching of the R-2R resistors and of the current source transistors. Using no trimming techniques, a 10-bit D/A converter can be designed having $\frac{1}{2}$ LSB linearity but circuit yield in production is troublesome. Laser trimming techniques are therefore used to improve yield.

Converters based on time division, such as pulsewidth modulators, for example, require no trimming and have a high accuracy. The main disadvantage of these converters is the low conversion speed due to the high degree of filtering required to reduce the ripple on the output signal. To break through the barrier of 10-bit accuracy to achieve 12-, 14-, or in the near future, even 16-bit accuracy in a monolithic form, a new design procedure is required. A proposal will be described here which basically combines passive division using matched elements with a time division method [1]. This method allows high accuracy without trimming in a standard IC process. A 12-bit D/A network built as a test circuit will be described to demonstrate the versatility of this new technique.

STANDARD MONOLITHIC CIRCUIT APPROACHES

A circuit diagram of the three most significant bits of an R-2R ladder network D/A converter is shown in Fig. 1(a). The conversion takes place by summing the collector currents of T_1 , T_2 , and T_3 through the digitally controlled switches S_1 , S_2 , and S_3 . The binary weighting of the currents through T_1 , T_2 , and T_3 requires a scaling of the emitter geometries resulting in equal base-emitter voltages of these transistors.

Manuscript received May 11, 1976; revised July 30, 1976. This paper was presented at the International Solid-State Circuits Conference, Philadelphia, PA, February 1976.

The author is with the Philips Research Laboratories, Eindhoven, The Netherlands.

Fig. 1. (a) Binary weighted currents using an R-2R ladder network. (b) Pulsewidth modulation D/A converter.

TABLE I
COMPARISON OF THREE DIFFERENT RESISTOR FABRICATION PROCESSES

1	Fab. process	Matching tolerance			
		σ(%)		mean(%)	
i		10µ	40µ	10 µ	40 p
١	Diffusion	0.44	0.23	- 0.1	0.07
	Thin film	0.24	0.11	- 0.1	-0.06
Ì	lon implant	0.34	0.12	0.05	0.05

The matching characteristics of the R-2R resistors in the ladder network and of the base-emitter voltages of transistors T_1 , T_2 , and T_3 determine the overall accuracy of the converter.

Three different resistor fabrication techniques are available to the designer as shown in Table I [2]. The data in the column giving the standard deviation for resistors with a linewidth of 10 μ m and 40 μ m show that 10-bit converters with $\frac{1}{2}$ LSB linearity can be fabricated although production yield will be low. A simplified form of a pulsewidth modulator D/A converter is shown in Fig. 1(b). In the digital circuitry a function is performed giving an output voltage equal to $V_{\rm ref}$ for a time T_x which is proportional to the digital input signals a_0 to a_n and zero for the remaining time of the period T. The low-pass filter averages the pulsewidth-modulated signal resulting in the output voltage $V_{\rm out} = (T_x/T) \cdot V_{\rm ref}$. A high degree of filtering is required to reduce the ripple on the output voltage below the required level. The low overall speed of these converter types is a big disadvantage.

New Divider Circuit

The basic scheme of the new divider circuit is shown in Fig. 2(a). It consists of a passive current divider and a set of switches driven by the clock generator f. The total current 2I is divided by the passive current divider into two nearly

Fig. 2. (a) New current divider schematic diagram. (b) Time dependence of various currents in the new divider.

equal parts: $I_1 = I + \Delta I$ and $I_2 = I - \Delta I$. The currents I_1 and I_2 are now interchanged for equal time intervals with respect to the output terminals 3 and 4. At the output terminals currents will then flow whereby the average values are exactly equal and have a dc value equal to I. Fig. 2(b) shows the currents as a function of time. A small ripple current $2\Delta I$ of a frequency f is present on the output currents too. This ripple is a measure for the matching performance of the passive divide-by-two stage. With a simple low-pass filter this small ripple current can be suppressed below the required value and an exact 1 to 2 current ratio is obtained without using any accurate element. If the time intervals during which the currents I_1 and I_2 are interchanged differ by a value Δt [see Fig. 2(b)], there is an error in the 1 to 2 division equal to

$$\frac{\Delta I_{3,4}}{I_{3,4}} = \frac{\Delta t}{t} \cdot \frac{\Delta I}{I}.$$

The total error is the product of two small errors, resulting in a very high overall accuracy. It is not difficult in practice to make $\Delta t/t \leq 0.1$ percent and $\Delta I/I \leq 5$ percent, so an overall accuracy better than 5×10^{-5} can easily be obtained using this division stage. The value of the ripple can be reduced by optimizing the matching characteristics of the passive divide-by-two stage. This reduction of the ripple allows the use of a simple low-pass filter network consisting of only one RC network.

Generally speaking: dynamic element matching can be used advantageously in those cases where a network consists of or can be divided into a number of nearly equal elements. An improvement in overall accuracy can be obtained by a continuous and cyclic interchange of these nearly equal elements. The average value of the output signals is a few orders of magnitude more accurate then the accuracy of the basic network.

PRACTICAL DIVIDER CIRCUIT

The practical divider circuit is shown in Fig. 3. The current mirror T_1 , T_2 performs the passive division of the total current 2I into two nearly equal parts. Two Darlington differential

Fig. 3. Practical current divider stage.

Fig. 4. (a) Binary weighted current network using different switching frequencies. (b) Time dependence of currents flowing in the first and second divider stage.

stages $(T_3 \text{ to } T_{10})$ interchange the currents I_1 and I_2 for equal time intervals between the output terminals 3 and 4. The already discussed improvement in division accuracy with respect to the current mirror is now found. In practice the base currents of the Darlington switches limit the division accuracy. The only criterion determining the overall accuracy for the whole circuit is a high current gain (e.g., $\beta^2 > 10^4$) for the switching transistors. This is not such a big problem while, if necessary, a special high current gain process for the transistor fabrication can be used. The value of the ripple depends on the matching characteristics of the current mirror transistors T_1 and T_2 . This matching can be improved by inserting emitter degeneration resistors across which a voltage drop of about $\frac{1}{4}$ to $\frac{1}{2}$ V is needed for an optimum matching performance. According to Table I a matching better than 0.5 percent for the currents I_1 and I_2 can be obtained with a reasonable circuit yield. This results in a ripple current ≤ 0.5 percent I. No accurate elements are used and aging of elements has no influence on the overall accuracy.

BINARY WEIGHTED CURRENT NETWORK

A binary weighted current network is formed by cascading current-division elements [see Fig. 4(a)]. In the first divider

stage a combination with a reference current source I_{ref} and a current amplifier A_0 is used as an accurate current mirror. This mirror circuit will be described later. To avoid interactions between the individual divider stages the switching frequencies are halved for every following divider stage. In Fig. 4(b) the output currents of the first two stages are shown as a function of time. That no interaction occurs can be explained as follows. The current I^* shows the inaccuracy Δ_1 of the first divider stage [upper diagram of Fig. 4(b)]. In the output current I/2 of the second divider stage we can distinguish the error Δ_2 with the frequency f/2 and the error Δ_1 of the first stage with a frequency f [lower diagram of Fig. 4(b)]. During a half-period of the f/2 clock the average value of the current I/2 does not contain an error term originating from the first divider stage of frequency f. This means that over the total period of the f/2 clock no interactions from the first divider stage are found. An independent operation of the stages is thus indeed obtained.

The disadvantages of halving the switching frequencies are found to be a large increase of the digital circuitry for the generation of the different clock signals and a more difficult suppression of ripple due to the reduction in frequency. Another solution with switches operating at the same frequency is therefore used.

CURRENT NETWORK WITH ONE SWITCHING FREQUENCY

A binary weighted current network with every individual divider stage operating at the same frequency f is shown in Fig. 5. Now the interactions between individual stages must be taken into account. For the error in the first divider stage we may take the same result as obtained in the calculations in Fig. 2. This will be proved in the next section.

Because the time errors are the same for all the divider stages they can be separated from the stage errors. The error term of the second stage (I/2) can then be calculated with: $0 - t_1 = t + \Delta t$ and $t_2 - t_1 = t - \Delta t$. The average value for the output current I/2 becomes

Fig. 5. (a) Binary weighted current network with equal switching frequency. (b) Error analysis results.

Fig. 6. (a) Accurate current mirror. (b) Error analysis results.

$$\overline{I/2} = \frac{I_{\text{ref}}(1 + \Delta_1)\frac{1}{2}(1 + \Delta_2)(t + \Delta t) + I_{\text{ref}}(1 - \Delta_1)\frac{1}{2}(1 - \Delta_2)(t - \Delta t)}{2t}$$

$$\overline{I/2} = \frac{I_{\text{ref}}}{2} \left[1 + \Delta_1\Delta_2 + (\Delta_1 + \Delta_2)\frac{\Delta t}{t} \right]$$

which results in an error term equal to: $\Delta_1 \Delta_2 + (\Delta_1 + \Delta_2) \cdot (\Delta t/t)$.

If the error terms of the individual stages are made small $(\Delta_{1\rightarrow n} \leq 0.5 \text{ percent})$, then the influence of the interactions between the individual divider stages on the overall accuracy of the D/A network can be kept very low. If averaging capacitors are applied between subsequent current dividers all $\Delta_i \Delta_j$ errors due to interaction would be removed.

In Fig. 5(b) the result of the calculations for the first three most important bits is shown. Although an increase of error terms is found with a rising number of the divider stage (e.g., the I/4 error term is $-\Delta_1\Delta_2 + \Delta_1\Delta_3 - \Delta_2\Delta_3$) this increase can be tolerated because in the overall performance a reduction of

this error is found proportional to the bit weight $(I_{\rm ref}/N)$. Now the frequency of the error ripple is the same for all the output currents and can be chosen high to simplify the filtering. A small RC low-pass filter can be incorporated in every switched output terminal. An identical behavior for the new circuit and a very well-trimmed ladder network D/A converter is then found.

ACCURATE CURRENT MIRROR

A detailed circuit diagram of the accurate current mirror is shown in Fig. 6. The basic current mirror consists of the current sources T_1 and T_2 with the Darlington stage $T_{12}T_{13}$ to form the feedback loop. The Darlington differential stages

TABLE II Error Terms of 3-Bit D/A Converter

	ERROR TERMS OF 3 BIT DAC		
Bit	With Cap C	Without Cap C	
Ι*⁄Ι	1 + ∆ ₁ • <u>∆</u> †	$1 - \frac{1}{2}\Delta_1^2 + \Delta_1 \cdot \frac{\Delta t}{t}$	
1/21	$1 + \Delta_1 \Delta_2 + (\Delta_1 + \Delta_2) \cdot \frac{\Delta t}{t}$	$1+\Delta_1\Delta_2+\frac{1}{2}\Delta_1^2+(\Delta_1+\Delta_2)\cdot\frac{\Delta t}{t}$	
1/41	$\begin{array}{l} 1 - \Delta_1 \Delta_2 + \Delta_1 \Delta_3 - \Delta_2 \Delta_3 + \\ (\Delta_1 - \Delta_2 + \Delta_3) \cdot \frac{\Delta_1 t}{t} \end{array}$	$\frac{1 - \Delta_1 \Delta_2 + \Delta_1 \Delta_3 - \Delta_2 \Delta_3 + 1/2 \Delta_1^2 + }{(\Delta_1 - \Delta_2 + \Delta_3) \cdot \frac{\Delta t}{t}}$	

Fig. 7. Schematic diagram of the current reference source.

 T_3 to T_{10} interchange for equal time intervals the currents I_{c1} and I_{c2} with respect to the summing point at the base of T_{13} . Two cases can now be distinguished.

- 1) An averaging capacitor C is connected between the base terminal of T_{13} and the negative supply. The average value of I_{c1} and I_{c2} being \bar{I}_4 is then made equal to I_{in} . Now because the average value \bar{I}_{out} is equal to \bar{I}_4 as was shown earlier (Fig. 2), the complete circuit results in an accurate current mirror $\bar{I}_{out} = I_{in}$.
- 2) The capacitor C is deleted. During the first half-period of the clock the current I_{c2} is then made equal to I_{in} resulting with an error Δ between the transistors T_1 and T_2 in an output current $I_{out} = I_{in} \ (1 + \Delta)$. In the second half clock period I_{c1} and I_{c2} are interchanged so now $I_{in} = I_{c1}$ which results in an output current $I_{out} = I_{in}/1 + \Delta$. If Δ is made small ($\Delta << 1$) then this division can be approximated by a finite expansion resulting in: $I_{out} \cong I_{in} \ (1 \Delta + \Delta^2)$. After averaging over the whole clock period we obtain $I_{out} \cong I_{in} \ (1 + \frac{1}{2}\Delta^2)$. With $\Delta \le 0.5$ percent the error term can be kept very small ($\approx 10^{-5}$). Table II summarizes the results of the error calculations for a 3-bit network incorporating an accurate current mirror. Without the capacitor C a slight decrease in overall accuracy is found.

CURRENT REFERENCE SOURCE

An important part of a D/A converter is the reference source. Because the whole converter operates with currents a current source was taken as a reference source. The simplified circuit diagram is shown in Fig. 7. If the resistor R_2 is deleted, the circuit behaves like a simple current stabilizer. The operation of the circuit is as follows. The resistors R with the operational amplifier A_0 permit equal collector currents to flow through transistors T_1 and T_2 . Transistor T_1 has a p times larger emitter area than transistor T_2 . A stable operation of the circuit will give a voltage drop across resistor R_1 in accordance with this difference in emitter area. Now the current

through T_1 and T_2 can be calculated, resulting in

$$I_1R_1 = \frac{kT}{a}\ln p$$
 $(I_3 = I_4 = I_{c1} = I_{c2}).$

The temperature coefficient of the current I_1 , with temperature-independent resistors, can be calculated, yielding $(1/I_1) \cdot (\partial I_1/\partial T) = 1/T$. Now resistor R_2 is inserted. The current through R_2 is determined by the base-emitter voltage V_{BE_2} of transistor T_2 so that $I_2 = V_{BE_2}/R_2$. The temperature coefficient of the current I_2 can be estimated resulting in

$$\frac{\partial I_2}{\partial T} \cong \frac{V_{BE_2} - V_g}{TR_2}$$

and, with

$$V_{BE_2} \approx \frac{1}{2} V_g, \quad \frac{1}{I_2} \frac{\partial I_2}{\partial T} \approx -\frac{1}{T}$$

 $(V_g \text{ equals bandgap voltage of silicon}).$

The output current $I_{\rm ref}$ is equal to the sum of $I_2+2I_1=I_{\rm ref}$. The temperature coefficient can be adjusted to zero at room temperature by choosing suitable values for R_1 and R_2 . The temperature relation is based on the same principle as in the well-known bandgap voltage sources [3], [4]. Solving the temperature equations for the reference source, an independent equation for the resistor R_2 can be found. With $\partial I_{\rm ref}/\partial T=0$ at $T=T_0$ we obtain

$$R_2 = \frac{V_g + \frac{kT_0}{q}(n-1)}{I_{\text{ref}}}$$

with

$$n \approx 1.4$$

and

$$V_g = 1.205 \text{ V}.$$

With a desired value for I_{ref} at $T = T_0$ the value of R_2 can be calculated. This value is used in the implicit equation for I_1 giving

$$2I_1 + \frac{kT_0}{qR_2} \ln \frac{I_1}{i_{02}} = I_{\text{ref}}.$$

Here i_{02} is the base-emitter diode reverse current of transistor T_2 at $T = T_0$. Then R_1 can be calculated from

$$R_1 = \frac{kT_0}{qI_1} \ln p.$$

These equations are derived from a simplified model for the reference source.

PRACTICAL DIAGRAM OF THE REFERENCE CURRENT SOURCE

The circuit diagram of the practical reference source is shown in Fig. 8. The operational amplifier consists of a differential stage T_3 , T_4 with a p-n-p current mirror (T_5, T_6, T_7) as an active load and a Darlington stage T_8 , T_9 as an output ampli-

Fig. 8. Practical circuit diagram of the reference source.

Fig. 9. Temperature measurements on the reference source.

fier. In this circuit an additional resistor R_c is inserted which consists of a buried base resistor to compensate for the second-order term in the temperature equation. With an extended model and inserting temperature data for the resistor R_c , an optimum value at $I_{\rm ref}=1$ mA for R_c of 170 Ω with $R_1=160$ Ω and $R_2=1237$ Ω is found. (R_1 and R_2 are off-chip resistors). This optimum for R_c is rather flat so variations do not have a large influence on the overall temperature response. Temperature measurements are shown in Fig. 9. Without the compensation resistor R_c the well-known parabolic relation with temperature is found, resulting in a temperature coefficient of 4 ppm/°C over $\Delta T=80$ °C. With the resistor R_c inserted into the circuit, an improvement of about a factor of 10 is obtained giving a TC of 0.5 ppm/°C over $\Delta T=80$ °C.

At high temperatures (above 80°C) the substrate leakage currents of the transistors can no longer be ignored so an increase in the temperature coefficient is found.

SCHEMATIC DIAGRAM OF 12-BIT CURRENT NETWORK

A schematic diagram of the complete 12-bit current network is shown in Fig. 10. A 5-bit high-accuracy divider with a reference source $I_{\rm ref}$ can be distinguished. Furthermore a 7-bit less-accurate divider consisting of 4 bits using switched dividers and 3 bits using a passive division also with a reference source $I_{\rm ref}$ completes the 12-bit network. Because both reference current sources are equal, an additional current divider to set the proper current relationship between the stages for the first 5 and last 7 bits is required. This current divider is ap-

Fig. 10. Schematic diagram of complete 12-bit D/A converter.

Fig. 11. Detailed circuit diagram of the three most significant bits.

plied after the digital input controlled bit current switching is performed and therefore not shown in Fig. 10.

An emitter-coupled multivibrator generates the clock frequency required for the dynamic matching procedure. A detailed circuit diagram of the three most significant bits and the reference source is shown in Fig. 11. Additional bonding pads

Fig. 12. Photomicrograph of the test chip.

TABLE III
PERFORMANCE CHARACTERISTICS OF THE MONOLITHIC
12-BIT D/A TEST CHIP

D/A NETW	ORK DATA	
Resolution :	12 bit	
Accuracy:	≤1/4 L.S.B. or 5•10ີ (linearity)	
Output current:	2mA	
Temp. Coeff. of output current:	5 ppm/°C	
Voltage Coeff. of output current :	1 ppm/V	
Chip size:	2.5×2.5mm	
Maxiclock frequier dynamic matching:	100 kHz	
Power supply :	-15V	

allow filtering of the ripple currents per bit with $C_{\rm ext}$ if needed. High-speed applications are therefore possible too. In low-speed applications filtering at the output summing amplifier can be used, requiring only one capacitor. The voltage drop across the reference current source is stabilized by the Zener diode D_Z . In this way the sensitivity of the reference current to supply variations $[(1/I_{\rm ref})(\partial I_{\rm ref}/\partial V_B)\cong 10^{-4}/V]$, already low, is further improved. A photomicrograph of the test chip is shown in Fig. 12. Table III gives the results of measurements on these test chips.

Conclusion

The dynamic element matching method gives a simple, accurate, and reliable design procedure for high-accuracy monolithic D/A converters. The method requires no trimming and is insensitive to process variations and aging of com-

ponents. The high accuracy obtained in the test circuit shows promise that an increase in the number of bits will be possible. Using a special process combining MOS with bipolar transistors, a 16-bit monolithic converter appears to be on the horizon in the near future.

ACKNOWLEDGMENT

The author wishes to thank D. Goedhart for breadboarding and measuring the circuits and A. Schmitz for the processing of the circuit.

REFERENCES

- K. B. Klaassen, "Digitally controlled absolute voltage division," *IEEE Trans. Instrum. Meas.*, vol. 24, June 1975.
- [2] G. Kelson, H. H. Stellrecht, and D. S. Perloff, "A monolithic 10-b digital-to-analog converter using ion implantation," *IEEE J. Solid-State Circuits*, vol. SC-8, Dec. 1973.
- [3] K. E. Kuyk, "A precision reference voltage source," *IEEE J. Solid-State Circuits*, vol. SC-8, June 1973.
- [4] A. P. Brokaw, ISSCC Dig. Tech. Papers, pp. 188, 189, Feb. 1974.

Rudy J. van de Plassche was born in IJzendijke, The Netherlands, on September 24, 1941. He received the Ir. degree from the University of Technology, Delft, The Netherlands, in 1964.

In 1965 he joined the N. V. Philips Research Laboratories, Eindhoven, The Netherlands, where he was engaged in circuit design for instrumentation and control. Since 1967 he has been involved with research in circuit design for linear integrated circuits.