Homework 1

Kailong Wang

September 20, 2023

Q1: Affine images and preimages of convex sets.

Grade:

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $C \subset \mathbb{R}^n$, $D \subset \mathbb{R}^m$ be convex sets. Show that following sets are convex.

(a) The image of C under the affine map $x \mapsto Ax + b$. That is

$${Ax + b \mid x \in C} \subset \mathbb{R}^m$$
.

(b) The preimage of D under the affine map $x \mapsto Ax + b$. That is

$$\{x \mid Ax + b \in D\} \subset \mathbb{R}^n$$
.

Solution

(a) *Proof.* Let $x_1, x_2 \in C$ and $\lambda \in [0, 1]$, then we have

$$\lambda(Ax_1 + b) + (1 - \lambda)(Ax_2 + b) = A(\lambda x_1 + (1 - \lambda)x_2) + b$$

 $\in A(C) + b.$

Thus, the image of C, A(C) + b is convex.

(b) Proof. Let $y_1, y_2 \in A^{-1}(D-b)$ so that $Ay_1 + b \in D$, $Ay_2 + b \in D$ and $\lambda \in [0,1]$, then we have

$$A(\lambda y_1 + (1 - \lambda)y_2) + b = \lambda(Ay_1 + b) + (1 - \lambda)(Ay_2 + b)$$

$$\in \lambda D + (1 - \lambda)D$$

$$= D.$$

Thus, The preimages of D, $A^{-1}(D-b)$ is convex.

Q2: Affine functions.

Grade:

Suppose that $f: \mathbb{R}^n \to \mathbb{R} \setminus \{-\infty, \infty\}$ always obey the convex function relation at equality, that is,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in \mathbb{R}^n, \lambda \in [0, 1].$$

Show that

- (a) If eq. (1) holds as stated for all $\lambda \in [0,1]$, it in fact holds for all $\lambda \in \mathbb{R}$.
- (b) Any f for which eq. (1) holds must be of the form $f(x) = \langle a, x \rangle + b$ for $\lambda \in \mathbb{R}^n$, $b \in \mathbb{R}$ (that is, f is an inner product with some fixed vector plus a constant).
- (c) Any function of this form has the property eq. (1).

Hint: given f satisfying the condition above, show that $g: x \mapsto f(x) \to f(0)$ is linear. You may then use (without proof, although the proof is very easy) that a linear function $g: \mathbb{R}^n \to \mathbb{R}$ must be of the form $x \mapsto \langle a, x \rangle$ for some $a \in \mathbb{R}^n$.

Solution

Proof. (a) Let $\lambda \in \mathbb{R}$, then we have

$$f(\lambda x + (1 - \lambda)y) = f(\lambda x + (1 - \lambda)y)$$

$$\leq \lambda f(x) + (1 - \lambda)f(y)$$

$$= \lambda f(x) + (1 - \lambda)f(y)$$

$$\leq \lambda f(x) + (1 - \lambda)f(y).$$

Thus, eq. (1) holds for all $\lambda \in \mathbb{R}$.

- (b) Let x=0, then we have $f(0) \leq \lambda f(x) + (1-\lambda)f(y)$, which implies $f(0) \leq (1-\lambda)f(y)$. Let $\lambda=0$, then we have $f(0) \leq f(y)$. Thus, $f(0) \leq f(y)$ for all $y \in \mathbb{R}^n$. Let y=0, then we have $f(x) \leq \lambda f(x) + (1-\lambda)f(0)$, which implies $(1-\lambda)f(0) \geq f(x)$. Let $\lambda=0$, then we have $f(0) \geq f(x)$. Thus, $f(0) \geq f(x)$ for all $x \in \mathbb{R}^n$. Therefore, f(0) = f(x) for all $x \in \mathbb{R}^n$. Let y=0, then we have $f(\lambda x) \leq \lambda f(x) + (1-\lambda)f(0) = \lambda f(x) + (1-\lambda)f(x) = f(x)$. Thus, $f(\lambda x) \leq f(x)$ for all $x \in \mathbb{R}^n$. Let x=0, then we have $f(\lambda x) \leq f(0) = f(x)$. Thus, $f(\lambda x) \leq f(x)$ for all $x \in \mathbb{R}^n$. Therefore, $f(\lambda x) = f(x)$ for all $x \in \mathbb{R}^n$. Thus, f is a constant function. Let f(x) = b, then we have $f(x) = \langle 0, x \rangle + b$. Thus, $f(x) = \langle a, x \rangle + b$ for $\lambda \in \mathbb{R}^n$, $b \in \mathbb{R}$.
- (c) Let $f(x) = \langle a, x \rangle + b$ for $\lambda \in \mathbb{R}^n, b \in \mathbb{R}$, then we have

$$\begin{split} f(\lambda x + (1-\lambda)y) &= \langle a, \lambda x + (1-\lambda)y \rangle + b \\ &= \lambda \langle a, x \rangle + (1-\lambda)\langle a, y \rangle + b \\ &= \lambda (\langle a, x \rangle + b) + (1-\lambda)(\langle a, y \rangle + b) \\ &= \lambda f(x) + (1-\lambda)f(y). \end{split}$$

Thus, f has the property eq. (1).