Distillazione

Come detto, la composizione del vapore generalmente è diversa da quella della miscela liquida dal quale è generato. Questa differenza di concentrazione è alla base del concetto di distillazione come metodo di separazione. L'idea è provocare una parziale evaporazione del liquido, seguita da condensazione del vapore risultante. Il condensato ottenuto sarà arricchito nel o nei componenti più volatili rispetto al liquido di partenza, in accordo con gli equilibri di fase del sistema. Si è così divisa la miscela iniziale in due frazioni di diversa composizione.

Distillazione in continuo con singolo passaggio

Lo schema di lavoro è riportato in Figura 8. La alimentazione F è separata in un distillato D (prodotto di testa) ed un prodotto di coda o fondo B (bottom). La differenza di composizione di B e D dipende dall'equilibrio di fase.

Figure 8. Continuous distillation of a binary mixture a-b A) Flow diagram showing symbols for total molar streams or flow rates (\dot{F} , \dot{L} , etc.) and mole fractions of the more volatile component a (x_F , x_D , etc.); B) A y-x diagram showing equilibrium and operating linesThe y-x diagram can be used to determine the composition of the overhead and bottom product streams (\dot{D} and \dot{B} , respectively).

Miscele binarie

Consideriamo il caso di una miscela binaria e scriviamo i bilanci di materia relativamente allo schema di Figura 8. Il bilancio di materia dell'ebollitore è:

$$\dot{F} = \dot{G} + \dot{L} \tag{3.1}$$

Analogamente, il bilancio di materia per il componente più volatile a della miscela a-b è:

$$\dot{F}x_F = \dot{G}y + \dot{L}x \tag{3.2}$$

Dove x_F è la frazione molare di a nella alimentazione, y nel vapore e x nel liquido di coda L (vedi figura). Quindi, combinando la 3.1 e la 3.2 e ricavando y si ottiene:

$$y = -\frac{\dot{L}}{\dot{G}}x + \left(1 + \frac{\dot{L}}{\dot{G}}\right)x_F \tag{3.3}$$

Che, nel piano x-y, è l'equazione di una retta con pendenza $-\dot{L}/\dot{G}$, anche detta operating line (retta di lavoro), che interseca la diagonale y=x in corrispondenza di x=xF (Figura 8 B). Se si fa la approssimazione (molto vicina alla realtà) che le fasi liquida L e vapore G siano in equilibrio, allora nel boiler (dove è y=y*) vale la relazione vista nel capitolo precedente:

$$y_a^* = \frac{\alpha_{ab} x_a}{1 + (\alpha_{ab} - 1) x_a}$$
 (3.4)

dove α_{ab} è la volatilità relativa. La espressione (3.4) è la curva di equilibrio liquidovapore, indicata come "equilibrium line" in Figura 8B.

I valori di x ed y devono soddisfare sia il bilancio di materia, sia la condizione di equilibrio termodinamico e si possono quindi determinare usando le (3.3) e (3.4), ovvero risolvendo un sistema di due equazioni in due incognite. Dal punto di vista grafico, la soluzione del sistema equivale al punto di intersezione fra retta di lavoro e linea di equilibrio. La successiva condensazione, di tutta la corrente di vapore, non porta a variazioni di composizione e quindi la concentrazione del distillato x_D coincide col valore di y. Questa cosa graficamente è rappresentata nel diagramma x-y dalla intercetta fra la linea orizzontale che va da y* ad x_D (Figura 8B). Dalla figura si vede bene la differenza di concentrazione che c'è fra la testa (x_D) e la coda (x_B). Il fattore decisivo qui è la posizione della curva di equilibrio, ovvero la volatilità relativa per i sistemi ideali. Dalla figura è facile intuire che aumentando il rapporto L/G si aumenta la purezza del distillato (a scapito della sua quantità) e viceversa. Ciononostante, è comunque evidente come si possa ottenere solo una differenza di concentrazione abbastanza limitata fra le due frazioni in uno schema di distillazione come questo.

Miscele multicomponenti

I calcoli sono identici a quelli visti per le miscele binarie. Il bilancio di materia globale fornisce la linea operativa per ogni sostanza *i*:

$$y_i = -\frac{\dot{L}}{\dot{G}}x_i + \left(1 + \frac{\dot{L}}{\dot{G}}\right)x_{Fi} \tag{3.5}$$

Dove x_{Fi} è la frazione molare di i nella alimentazione. L'equilibrio di fase è definito usando la costante di equilibrio K_i . Quindi:

$$y_i^* = K_i x_i \tag{3.6}$$

Per miscele ideali la costante di equilibrio è funzione solo della temperatura, che è la prima incognita che abbiamo. Combinando la (3.5) e la (3.6) si ottiene la seguente relazione per ogni componente x_i :

$$y_{i} = \frac{\left(1 + \frac{\dot{L}}{\dot{G}}\right) x_{Fi}}{1 + \frac{\dot{L}/\dot{G}}{K_{i}(T)}}$$

$$(3.7)$$

E siccome

$$\sum y_i = 1$$

Si ottiene:

$$\sum \frac{\left(1 + \frac{\dot{L}}{\dot{G}}\right) x_{Fi}}{1 + \frac{\dot{L}/\dot{G}}{K_i(T)}} = 1$$
(3.8)

Questo sistema di equazioni si risolve per via iterativa. Prima si assume un valore di tentativo per la temperatura di ebollizione e quindi si determina K_i per ogni componente i. La stima viene poi corretta usando la (3.8).

Un esempio di soluzione che si ottiene per un sistema quaternario (a, b, c, d) è riportato in Figura 9. Il rapporto fra la concentrazione nel liquido distillato (D) e quella nella alimentazione x_{Di}/x_{Fi} è riportato in funzione della quantità relativa di distillato (D/F). La miglior separazione è ottenuta per bassi D/F (ed è ovvio che questo rapporto tenda ad 1 se D/F tende ad uno). Si vede anche che entrambi i componenti di volatilità intermedia (b e c) passano da un massimo di concentrazione durante la distillazione.

Figure 9. Continuous distillation of a mixture of butane (a), pentane (b), hexane (c), and heptane (d) x_{Di} = liquid mole fraction of i in distillate; x_{Fi} = liquid mole fraction of i in feed; \dot{D} = distillate stream; \dot{F} = feed stream

Distillazione discontinua (batch)

Lo schema è riportato in Figura 10. La corrente di vapore \dot{G} si produce fornendo calore al liquido L contenuto nel serbatoio. Il vapore rimosso viene completamente condensato per ottenere un distillato D che viene solitamente raccolto in diversi serbatoi.

Figure 10. Schematic of batch distillation

Miscele binarie

Come nel caso precedente, si procede con un bilancio di materia per la miscela binaria dei componenti a, b. Per un intervallo di tempo infinitesimo dt, si ha:

$$\dot{G}dt + dL = 0 \tag{3.9}$$

$$\dot{G} \cdot y \cdot dt + d(Lx) = 0 \tag{3.10}$$

Dove le frazioni molari del vapore e del liquido y ed x sono riferite al componente più volatile (a).

Poiché

$$\dot{G} = dG/dt$$

Si ottiene la equazione di Rayleigh

$$\frac{dL}{L} = \frac{dx}{y^* - x} \tag{3.11}$$

Nelle miscele ideali, la concentrazione di equilibrio di a in fase vapore (y^*) si può rappresentare con la (3.4) ed una soluzione analitica della equazione differenziale che risulta combinando la (3.4) e la (3.11) è:

$$\frac{L}{L_0} = \left[\frac{x}{x_0}\right]^{1/(\alpha - 1)} \cdot \left[\frac{1 - x_0}{1 - x}\right]^{\alpha/(\alpha - 1)} \tag{3.12}$$

Dove il pedice 0 rappresenta il liquido al tempo iniziale. Le variazioni di concentrazione del componente *a* nel vapore e nel liquido si riportano quindi in funzione del rapporto relativo (Figura 11).

$$\frac{D}{L_0} = 1 - \frac{L}{L_0}$$

Col procedere del tempo, entrambe le fasi si impoveriscono di a. La concentrazione riportata nel grafico è quella di liquido e vapore per ogni istante, quindi il valore della concentrazione nel distillato è un valore intermedio fra quello iniziale e quello istantaneo. Questo valore medio del distillato $x_{\rm Dm}$ (= $y_{\rm m}$) è dato da

$$x_{Dm} = x + \frac{x_0 - x}{D/L_0} \tag{3.13}$$

Equazione che si può interpretare graficamente con l'aiuto di Figura 11.

Figure 11. Batch distillation of a binary mixture a-b showing concentrations of the more volatile component a in the boiler (x) and in the vapor or distillate (y) as a function of the relative amount of distillate D/L_0

Miscele multicomponenti

Procedendo in maniera analoga a quanto visto nei paragrafi precedenti, si possono risolvere anche i casi di miscele multicomponenti. Un esempio è riportato in Figura 12 per un sistema a 4 componenti. Anche in questo caso, il condensato è raccolto in diversi contenitori in modo da ottenere frazioni di composizione variabile.

Figure 12. Course of concentration changes during the batch distillation of a mixture of butane (a), pentane (b), hexane (c), and heptane (d)

— Mole fraction of component in the liquid in the boiler, x_i ; — Mole fraction of component in the distillate, y_i

Distillazione semicontinua

Si usa per esempio quando si hanno liquidi contenenti piccole quantità di impurezze con bassa volatilità. Come schematizzato in Figura 13, la alimentazione è in continuo come corrente F e anche il distillato è rimosso in continuo con portata D. Durante la distillazione, le componenti di bassa volatilità si accumulano nel ribollitore dal quale devono essere rimosse periodicamente tramite apertura della valvola sul fondo dello stesso.

Figure 13. Schematic of semicontinuous distillation

Rettifica in continuo (o distillazione multipla) Idea di base

Come detto, con la distillazione semplice non si ottiene una gran separazione dei componenti e quasi mai si arriva ad avere componenti puri. La Figura 14 mostra una distillazione multipla o rettifica. Il prodotto di testa della prima distillazione viene soggetto ad una seconda distillazione, il cui prodotto di testa a sua volta viene soggetto ad una terza etc. Ognuno di questi stadi corrisponde allo stadio rappresentato in precedenza con la figura 8, relativa ad un singolo passaggio. Come mostrato in Figura 8 B, le concentrazioni di vapore e liquido di ogni passaggio si possono determinare facilmente dal diagramma x-y (Figura 14 B).

Figure 14. Multiple distillation of a binary mixture a-bA) Flow diagram; B) Determination of vapor and liquid mole fractions of component a at each stage on a y-x diagram

In questo modo si può arrivare ad avere frazioni molto pure, cosa che si può vedere bene dalla Figura 14 B.

È anche vero, però, che con questo schema di distillazione ci sono degli *svantaggi importanti*:

- 1. Solo una piccola parte della miscela iniziale viene alla fine recuperata in uno stato di elevata concentrazione
- 2. Ad ogni stadio ci sono dei sottoprodotti, che spesso non possono essere sfruttati.

Entrambi questi svantaggi possono essere evitati se il liquido in uscita dal fondo di ciascun passaggio della distillazione viene mandato al passaggio precedente, come mostrato in Figura 15 A. In questo modo, in realtà il vapore non deve essere condensato prima di ogni passaggio e neanche il liquido deve essere rivaporizzato (Figura 15 B). Al contrario, vapore e liquido possono essere messi in contatto diretto e questo è un vantaggio perché il contatto controcorrente garantisce un buon trasferimento di materia ed energia fra i due. *Il calore liberato dalla condensazione di parte del vapore viene sfruttato per la evaporazione di parte del liquido*.

Figure 15. Improvement of multiple distillation by returning liquid from each distillation step to the previous step with (A) or without (B) condensation

Altra rappresentazione:

Prendiamo lo schema di Figura 18.3. Si supponga di avere due liquidi, uno bassobollente (A) ed uno altobollente (B) e di miscelarli in rapporti diversi in modo da avere tre miscele con frazione molare x_{A1}<x_{A2}<x_{A3} e quindi temperature di ebollizione T₁>T₂>T₃. Si supponga inoltre di inviare continuamente nel recipiente 2 nuova miscela da distillare (F) di composizione x_{A2}, in quantità tale da compensare il liquido scaricato dal recipiente 1 (W) e quello (D) estratto dal recipiente 3. Quando per effetto del riscaldamento attuato mediante un serpentino, la temperatura nel recipiente 1 diventa pari a T₁, il liquido inizia a bollire e produce vapori di equilibrio di composizione y_{A1}. Questi vapori arrivano nel recipiente 2 ed in parte condensano perché T₂<T₁ e così cedono calore al liquido x_{A2} provocandone la parziale ebollizione con emissione di vapori di equilibrio di composizione y_{A2}. A loro volta questi vapori arrivano nel recipiente 3 e ne fanno bollire il liquido con produzione di vapori di equilibrio y_{A3}. Poiché i vapori che lasciano il liquido in ogni recipiente sono più ricchi di questo nel componente più volatile (A) se non si provvedesse in qualche modo a reintegrare in ciascun recipiente l'aliquota di componente volatile asportata dai vapori, è evidente che questi si impoverirebbero progressivamente del componente A e le loro T di ebollizione aumenterebbero. Ad evitare questa cosa, provvedono da un lato i vapori provenienti dal recipiente inferiore (vapori più ricchi del componente A rispetto al liquido del recipiente superiore) e dall'altra il liquido discendente dal recipiente superiore (anche lui più ricco di componente A rispetto al liquido inferiore). Queste considerazioni giustificano il ritorno di parte del condensato (L₀) nel recipiente 3 e lasciano intuire la grandissima importanza di questa frazione di condensato (detta Riflusso) sull'esito della separazione di A e B mediante distillazione. La situazione descritta dalla Figura 18.3 si realizza nella pratica mediante una colonna di frazionamento, schematicamente riprodotta in Figura 19.3. Rispetto al punto di alimentazione, la colonna risulta divisa in due sezioni: di rettifica (la superiore) e di esaurimento o stripping (quella inferiore). La lettera P indica dei piatti che equivalgono ai recipienti dello schema precedente, su ciascuno dei quali si trova una miscela liquida che contiene il componente più volatile in quantità crescente a partire dal piatto di fondo colonna fino a quello di testa colonna. Il vapore passa dal piatto inferiore al superiore attraverso per esempio dei fori ed il liquido scende per troppo pieno.

Per capire come vanno le cose dal punto di vista quantitativo sui vari piatti, si deve ricorrere ai bilanci di materia ed alle relazioni di equilibrio liquido-vapore, mediante le quali l'andamento della distillazione si può seguire per via grafica sul diagramma x-y. Le concentrazioni ottenibili ad ogni passaggio si possono trovare facendo dei bilanci di materia in diverse sezioni della colonna. In generale si usano due diversi metodi per calcolare la efficienza della separazione controcorrente e cioè i concetti di 1) stadi di equilibrio e 2) unità di trasferimento. Delle due, vedremo solo la prima, rimandando ad altri corsi per la seconda.

Stadi di equilibrio

Il concetto è quello di assumere che le fasi liquida e vapore siano elementi di trasferimento di materia indistinti che dove vengono in contatto, sono anche in equilibrio termodinamico. Le fasi sono poi separate; il vapore sale al passaggio successivo ed il liquido scende a quello precedente. Si realizza così il flusso controcorrente mostrato prima e rappresentato nuovamente nella figura seguente:

Sezione di rettifica

Come detto, è quella sopra al piatto di alimentazione. Con riferimento alla Figura seguente, da ogni stadio escono una corrente di liquido ed una di vapore che sono collegate fra loro dall'essere in equilibrio termodinamico. Notare che le portate di liquido e vapore in linea di principio sono variabili lungo la colonna e quindi per ogni piatto ci sono delle specifiche composizioni e portate di liquido (L) e vapore (V). I pedici 0, 1, n etc. si riferiscono agli stadi dai quali *originano* le correnti, essendo 0 lo stadio che deriva dal condensatore di testa. Quindi per esempio dal piatto n escono le correnti V_n di composizione y_n di vapore che sale ed L_n di composizione x_n di liquido che scende. Poiché le due correnti sono supposte essere in equilibrio termodinamico, fra loro valgono le relazioni viste in precedenza relativamente agli equilibri liquidovapore.

A queste relazioni dobbiamo aggiungere i bilanci di materia. Facciamo un bilancio di materia sul componente più volatile attorno alla testa della colonna, ovvero sulla

sezione indicata in rosso nella figura precedente i cui contorni sono evidenziati nella figura seguente:

In condizioni di stato stazionario, la quantità di ogni componente che entra sarà uguale a quella che esce:

$$V_{n+1}y_{n+1} + L_0x_D = V_1y_1 + L_nx_n$$
$$y_{n+1} = \frac{V_1}{V_{n+1}}y_1 + \frac{L_n}{V_{n+1}}x_n - \frac{L_0}{V_{n+1}}x_D$$

Ma poiché la corrente V_I in uscita dal primo piatto è completamente condensata in testa alla colonna, si avrà:

$$y_1 = x_D$$

$$y_{n+1} = \frac{V_{1-}L_0}{V_{n+1}}x_D + \frac{L_n}{V_{n+1}}x_n$$

Infine, osservando che nel condensatore la corrente V_1 viene divisa nelle due correnti D ed L_0 , si ha:

$$V_1 - L_0 = D$$

Da cui:

$$y_{n+1} = \frac{D}{V_{n+1}} x_D + \frac{L_n}{V_{n+1}} x_n$$

Che è la *operating line* (**linea o curva di lavoro superiore**) che mette in relazione la composizione del vapore in ingresso ad un piatto, con quella del liquido che ne esce.

Quindi ricapitolando:

- le composizioni di fase liquida e vapore che escono da un piatto sono in relazione data dall'equilibrio termodinamico;
- le composizioni di liquido e vapore in una stessa sezione della colonna (vapore che lascia il piatto e liquido che entra nel piatto) sono in relazione data dalla linea di lavoro superiore.

In generale, non è detto che le portate di liquido e vapore si mantengano costanti lungo la colonna, motivo per cui si parla di curva di lavoro (anche curva sembra inappropriato, perché in realtà si tratta di una linea spezzata, per il fatto che il sistema è costituito da piatti, ciascuno dei quali è un'entità distinta).

La concentrazione del liquido x_n è legata alla concentrazione del vapore y_{n+1} dal bilancio di materia, cioè le concentrazioni x_n ed y_{n+1} definiscono un punto della linea di lavoro superiore. Al tempo stesso c'è equilibrio fra y_n ed x_n che sono dello stesso stadio. Quindi una linea verticale alla concentrazione x_n deve intersecare la curva di equilibrio in corrispondenza di y_n . Analogamente, una linea orizzontale al livello della concentrazione del vapore y_n deve passare dal punto x_{n-1} sulla linea di lavoro. Il punto di intersezione di x_{n-1} con la curva di equilibrio fornisce la concentrazione del vapore y_{n-1} dello stadio successivo e così via. L'uso alternato della curva di equilibrio e della linea di lavoro per passare da uno stadio di equilibrio all'altro è mostrato nella figura seguente. La linea di lavoro è il luogo degli stati fra i piatti. Il numero n di stadi di equilibrio necessari per raggiungere una desiderata concentrazione è facilmente ricavabile dal grafico ed è un buon indice della difficoltà della separazione.

Predizione della rettifica in base al bilancio di materia

Il grado di rettifica si può predire facilmente con l'aiuto dei bilanci di materia, assumendo che <u>le correnti V ed L non cambino lungo la colonna</u>. Questa assunzione equivale a supporre che le moli complessive che evaporano da un piatto siano uguali alle moli che condensano su quel piatto, ovvero che:

$$\Delta H_{v,A} = \Delta H_{v,B}$$

La curva di lavoro diventa:

$$y_{n+1} = \frac{D}{V}x_D + \frac{L}{V}x_n$$

ovvero è una retta nel piano x,y. Il rapporto L/V è detto rapporto di riflusso interno, però l'uso del <math>rapporto di riflusso esterno (R) è più vantaggioso:

$$R = \frac{L}{D}$$

Poiché

$$V=L+D=RD+D=D(R+1)$$

la retta di lavoro diventa:

$$y_{n+1} = \frac{1}{R+1}x_D + \frac{R}{R+1}x_n$$

Retta di pendenza R/(R+1)

Nel caso limite in cui D=0, cioè non viene raccolto alcun distillato e tutto il vapore condensato viene rimesso in colonna, si ha $R=\infty$, cioè la retta di lavoro ha pendenza unitaria, nonché intercetta pari a zero, per cui coincide con la diagonale del diagramma x,y. In questo caso si parla di <u>rapporto di riflusso infinito o riflusso totale</u>. Per valori finiti di R, si ha una retta che passa per il punto x_D , x_D .

Ma il vapore y_D (ovvero y_I) arriva dal primo piatto ed è in equilibrio con il liquido x_I , quindi percorrendo in senso inverso le tie line si trova x_I che scende dal primo piatto (vedi figura seguente). A sua volta x_I è legato ad y_2 dalla retta di lavoro superiore e così via.

In questo modo, sul diagramma si trovano le composizioni lungo tutta la sezione di rettifica e si vede che gli arricchimenti diventano sempre più piccoli e tendono a zero, quando la retta di lavoro interseca la curva di equilibrio, individuando il cosiddetto punto di **pinch**.

Sezione di stripping

In maniera analoga a quanto fatto nella sezione di rettifica, un bilancio di materia nella sezione di fondo colonna (vedi figura) è il seguente:

$$L'_{m}x_{m} + V'_{N+1}y_{N+1} = L'_{N}x_{N} + V'_{m+1}y_{m+1}$$

$$y_{m+1} = \frac{L'_m}{V'_{m+1}} x_m + \frac{V'_{N+1}}{V'_{m+1}} y_{N+1} - \frac{L'_N}{V'_{m+1}} x_N$$

Che è la *linea di lavoro inferiore* nel caso generale in cui le portate di liquido e vapore cambiano piatto per piatto. Se invece introduciamo l'ipotesi di costanza delle portate di liquido L' e vapore V' si ottiene l'espressione della *retta di lavoro inferiore*:

$$y_{m+1} = \frac{L'}{V'}x_m + y_{N+1} - \frac{L'}{V'}x_N$$

Di nuovo, possiamo definire un rapporto di ribollizione R' (dal significato analogo al rapporto di riflusso):

$$L' = V' + B$$

$$R' = V'/B$$

$$L' = R'B + B$$

$$\frac{L'}{V'} = \frac{R'B + B}{R'B} = \frac{R' + 1}{R'}$$

Quindi facendo un bilancio sulla sezione in verde ed introducendo il rapporto di ribollizione (costante lungo la colonna) l'espressione della retta di lavoro inferiore diventa:

$$L'_{m}x_{m} = Bx_{B} + V'_{m+1}y_{m+1}$$
$$y_{m+1} = \frac{L'}{V'}x_{m} - \frac{B}{V'}x_{B}$$
$$y_{m+1} = \frac{R' + 1}{R'}x_{m} - \frac{1}{R'}x_{B}$$

Anche per la sezione di stripping, la linea di lavoro definisce la relazione fra la concentrazione di vapore e liquido fra due piatti ed è una retta se le portate V' ed L' sono costanti. La *retta di lavoro inferiore* è anche detta *retta di stripping* e passa sempre per il punto x_B , x_B .

In maniera del tutto analoga a quanto fatto per la sezione di rettifica possiamo rappresentare graficamente le composizioni delle fasi liquida e vapore piatto per piatto.

PINCH della pesione di stripping

Osservazione

 x_B ed y_B questa volta sono fra loro in relazione di equilibrio termodinamico perché i vapori arrivano dal ribollitore. Dal piatto di fondo scende un liquido x_N la cui relazione con y_B è data dalla retta di lavoro inferiore e che è in equilibrio con i vapori y_N , etc. Anche in questo caso possiamo individuare un punto di pinch (della sezione di stripping).

Luogo dei punti di intersezione delle rette di lavoro e condizioni termiche della alimentazione

Se pensiamo alla zona di rettifica, il bilancio globale dice che V=L+D ovvero che la corrente di vapore che sale è poi in parte ricircolata ed in parte estratta, quindi <u>nella sezione di rettifica la portata di vapore è maggiore di quella del liquido</u>. Viceversa, nella zona di stripping, siccome parte del liquido che arriva al ribollitore è poi rimesso in colonna come vapore, <u>la portata di liquido è maggiore di quella del vapore</u>. Visto che il piatto di alimentazione è il diaframma di separazione delle due zone, è evidente che su di esso si verifica l'inversione dei due comportamenti. Vediamo allora in maggior dettaglio cosa succede sul piatto di alimentazione. Quest'ultima può entrare in colonna in condizioni termiche differenti. Può trovarsi allo stato liquido ed avere temperatura minore o uguale a quella del liquido che si trova sul piatto dove arriva in colonna. Oppure può arrivare in colonna come misto liquido-vapore, come vapore saturo (secco) o infine come vapore surriscaldato. <u>Da queste condizioni dipende il rapporto fra le quantità di liquido o vapore che passano</u> nelle zone di rettifica e stripping.

Indichiamo con q le moli di liquido che si formano sul piatto di alimentazione in seguito alla introduzione di una mole di alimentazione. Si avrà:

$$q = \frac{H^{v} - H_{F}}{\Delta H_{ev}}$$

Dove H^v è l'entalpia molare dei vapori che lasciano il piatto di alimentazione, H_F è l'entalpia molare della alimentazione e ΔH_{ev} è l'entalpia di evaporazione della alimentazione (cioè la entalpia di vaporizzazione del liquido saturo di composizione x_F). Detta in altri termini, il numeratore di q è la differenza fra la entalpia della fase vapore e quella della alimentazione e quindi q equivale al rapporto fra la entalpia richiesta per evaporare una mole di alimentazione ed il calore di evaporazione della alimentazione. Se, per esempio, si alimenta liquido al punto di ebollizione, sarà q=1, mentre se si alimenta già vapore saturo secco, non serve calore per vaporizzare e sarà q=0.

La lista delle possibilità è quindi:

- *q*>1 alimentazione in fase liquida a temperatura minore della temperatura di ebollizione
- q=1 alimentazione in fase liquida a T = Teb
- 0 < q < 1 alimentazione mista liquido-vapore
- q=0 alimentazione di vapore saturo
- q<0 alimentazione di vapore surriscaldato

Per comprendere meglio il significato di q, si consideri ad esempio il caso di alimentazione liquida a temperatura minore di quella di ebollizione. In questo caso la sua aggiunta sul piatto di alimentazione, che invece è a temperatura di ebollizione, ne determina un raffreddamento che poi si traduce in maggior condensazione dei vapori che arrivano al piatto stesso. Pertanto se anche si aggiunge una mole di liquido, l'aumento delle moli di liquido sul piatto è maggiore di 1. Quindi quando q>1 si ha che il numero di moli di liquido che dal piatto di alimentazione passa a quello sottostante è maggiore del numero di moli di liquido che arriva al piatto di alimentazione dal piatto sovrastante, ovvero che L'>L. Viceversa, se l'alimentazione fosse costituita da vapore surriscaldato, cioè q<0, allora si avrebbe evaporazione di parte del liquido che è sul piatto e quindi in uscita dal piatto una portata di liquido minore di quella in entrata dal piatto superiore (L'<L). Analoghe considerazioni si possono fare per le correnti di vapore V e V'.

È pertanto evidente che le correnti in arrivo ed uscita dal piatto di alimentazione sono in relazione con il valore di *q*. Per calcolare queste relazioni, dobbiamo fare un bilancio di materia nella sezione di colonna intorno al piatto di alimentazione (sezione rossa):

Possiamo anche combinare le rette di lavoro superiore (sezione verde) ed inferiore (sezione blu) per trovare il luogo dei punti nei quali le due si intersecano:

$$Vy = Lx + Dx_D$$
$$V'y' = L'x' - Bx_B$$

Eguagliando le due espressioni si trovano i valori di x^* , y^* luogo dei punti di intersezione delle due rette di lavoro ed il tutto può essere combinato con il bilancio di materia globale sulla colonna:

$$Vy^* = Lx^* + Dx_D$$
$$V'y^* = L'x^* - Bx_B$$

Da cui:

$$(V - V')y^* = (L - L')x^* + Dx_D + Bx_B$$

Bilancio sulla colonna:

$$Fz_F = Dx_D + Bx_B$$

E quindi

$$(V - V')y^* = (L - L')x^* + Fz_F$$

Inoltre:

$$V = V' + (1 - q)F$$
$$L' = L + qF$$

Combinando le ultime tre relazioni si ottiene:

$$y^* = \frac{q}{q-1} x^* - \frac{1}{q-1} z_F$$

Che è l'espressione della *q-line*, ovvero del <u>luogo dei punti di intersezione delle rette di lavoro superiore ed inferiore</u>. La *q*-line passa sempre per il punto (z_F , z_F) e poi ovviamente passa per il punto di intersezione delle rette di lavoro. Se la alimentazione è introdotta come liquido al punto di ebollizione, allora q=1 e la q-line è una retta verticale nello spazio x, y che interseca la retta di lavoro ad $x=z_F$. Se la alimentazione è introdotta come vapore saturo, allora q=0 e la q-line è una retta orizzontale per cui le rette di lavoro si incontrano a $y=z_F$. Se invece la alimentazione è introdotta nella colonna come una miscela liquido/vapore, il punto di intersezione delle due linee operativa sarà intermedio ai due casi limite appena descritti, come è il caso mostrato in Figura 19. Ci possono infine essere anche i casi di liquido sottoraffreddato e vapore surriscaldato.

Nel diagramma *x-y*, il tratto di q-line che interessa è quello compreso fra la curva di equilibrio e la diagonale del quadrato.

Quindi, se si conoscono le condizioni della alimentazione e le composizioni dei prodotti di testa e fondo sono specificate e inoltre si è decisa una delle rette operative, allora la posizione della seconda si ricava automaticamente.

Nei grafici seguenti si ipotizza di conoscere la retta di lavoro superiore (nera) e le condizioni della alimentazione e si determina la retta inferiore (rossa).

Questo significa che c'è una relazione fra i due rapporti di riflusso R ed R'. Se per esempio la alimentazione entra al punto di ebollizione (q=1), si ottiene

$$R' = \frac{D/_F}{1 - D/_F} (R + 1)$$

Se invece q=0, si ha:

$$R' = \frac{D/_F}{1 - D/_F} (R - 1)$$

Il termine D/F è la quantità relativa di prodotto di testa, che si può determinare dai bilanci di materia dopo aver fissato la concentrazione del prodotto:

$$F = D + B$$

$$Fz_F = Dx_D + Bx_B$$

(si usa la lettera z perché la alimentazione può essere sia liquida che vapore)

$$Fz_F = Dx_D + Fx_B - Dx_B$$

$$\frac{D}{F} = \frac{z_F - x_B}{x_D - x_B}$$

Analogamente, si ricava

$$\frac{B}{F} = \frac{x_D - z_F}{x_D - x_B}$$

Unione delle sezioni: metodo di MacCabe e Thiele

Il numero dei piatti teorici ed il numero di piatti effettivi di una colonna, dipendono dalla composizione della alimentazione (z_F), da quella del distillato (x_D), da quella del prodotto di coda (x_B), dal rapporto di riflusso R e dall'andamento della curva di equilibrio. Tanto maggiori sono z_F (concentrazione del volatile nella alimentazione), x_B , ed R e tanto minore è x_D , tanto minore è il numero dei piatti, perché sono richieste condizioni poco stringenti. Viceversa, quanto minori sono x_F , x_B , R e maggiore è x_D , tanto maggiore è il numero dei piatti. Facciamo riferimento alla Figura 19 e supponiamo di conoscere le condizioni della alimentazione. Volendo ottenere le concentrazioni x_D ed x_B di distillato e fondo colonna, cerchiamo il numero di piatti, noto che sia anche R. Con i dati che abbiamo possiamo tracciare la q-line, quindi anche la retta di lavoro superiore e infine la retta di lavoro inferiore che passerà da (x_B , x_B) e dal punto di intersezione fra q-line e retta di lavoro superiore. La Figura 19 mostra la valutazione del numero dei piatti, che procede seguendo le composizioni

dei piatti esattamente come già visto per le due sezioni di rettifica e stripping. Se partiamo dal punto x_D , si passa ad y_D e poi ci si sposta a gradini, sino ad arrivare al valore desiderato per la composizione di fondo colonna. Il numero di gradini coincide con il numero di piatti teorici. Il piatto teorico di alimentazione è quello il cui punto rappresentativo sulla curva di equilibrio coincide o si trova immediatamente a sinistra del punto di intersezione della q-line con la curva di equilibrio (nella figura 19 è il piatto numero 7).

Figure 19. McCabe – Thiele diagram for a binary mixture a – b

Shaded area between the operating line and the equilibrium curve is decisive for operation. Equilibrium stages are also shown.

a) Equilibrium line; b) Feed or φ line; c) Rectifying operating line; d) Stripping operating line

Nella stessa figura il numero di piatti è dato dal numero di vertici dei gradini che toccano la curva di equilibrio e quindi pari a 13. In realtà, se la caldaia di fondo colonna produce vapori in equilibrio con il liquido, allora essa stessa equivale ad un piatto teorico e quindi di piatti in colonna ne bastano 12.

Nella pratica, i piatti in realtà non producono vapori in equilibrio con il liquido ed il numero di piatti reali deve essere aumentato per tenere conto di questa riduzione di efficienza rispetto al teorico. Questa cosa si può anche fare per via grafica come nella figura seguente, per la quale nota la efficienza dei piatti, si può costruire una curva che sostituisce quella di equilibrio ed alla quale corrisponde un minore arricchimento dei vapori (linea tratteggiata). Si procede poi come nel caso precedente.

Osservazione:

In maniera analoga si possono fare i calcoli per colonne con più di un punto di alimentazione o altri punti di estrazione del prodotto (Figura 20). La linea operativa cambia in corrispondenza di ogni ingresso o uscita. La Figura 20 B mostra l'andamento delle linee operative se F_1 è un ingresso in fase vapore ($F_1>0$). La Figura 20 C mostra il corrispondente andamento se F_1 è una rimozione di vapore ($F_1<0$).

Figure 20. Rectification column and McCabe – Thiele diagram for multiple feed entries or side-stream withdrawal A) Flow diagram; B) McCabe – Thiele diagram for two feeds; C) McCabe – Thiele diagram for one feed and one side stream

Rettifica di miscele binarie con rapporto di riflusso infinito

Se i flussi interni V ed L sono molto maggiori di quelli della alimentazione (F) e dei prodotti $(D \in B)$, il rapporto di riflusso interno L/V in tutte le parti della colonna si avvicina ad 1 ed $R=L/D \rightarrow \infty$.

In questo caso speciale, la spesa energetica necessaria per la separazione è molto grande, ma al tempo stesso è richiesto un numero minimo di piatti teorici. Come avevamo visto, e mostrato nella figura 22, la retta di lavoro superiore coincide con la diagonale in quanto il coefficiente angolare è dato da R/(R+1) ed è quindi rappresentata dalla semplice equazione

y=x

poiché la retta di lavoro inferiore deve incrociare la retta di lavoro superiore in corrispondenza della q-line e poiché la q-line incrocia la retta superiore nel punto della alimentazione sulla diagonale, allora anche la retta di lavoro inferiore deve coincidere con la diagonale.

Procedendo come fatto prima per la determinazione dei piatti teorici si trova un numero di piatti che è anche il più piccolo possibile (numero minimo di piatti teorici).

Figure 22. McCabe – Thiele diagram of a binary mixture at infinite reflux ratio

Il caso limite di riflusso infinito si può anche vedere come il caso di una colonna nella quale non si alimenta e non si estrae prodotto:

Si vede che in questo caso, ad ogni passaggio si ha che la composizione delle correnti in entrata ed uscita dai piatti **coincide con la diagonale**. A questo punto è bene fare due osservazioni molto importanti riguardo alle distillazioni e cioè:

- 1) "se una distillazione è possibile a riflusso totale, lo deve essere anche a riflusso parziale" (servirà solo un maggior numero di stadi).
- 2) si definisce **cammino di distillazione** la sequenza delle composizioni della <u>fase liquida</u> di un componente lungo i piatti della colonna. In questo caso il **cammino di distillazione coincide** proprio con la somma delle <u>tie-lines</u>, che sono le linee che indicano le composizioni di due fasi eterogenee in equilibrio.

Nel caso del diagramma *x*, *y* le tie-lines sono in verticale, per cui possiamo vedere meglio il cammino di distillazione nella rappresentazione con diagramma isobaro:

Se invece il riflusso non è infinito, ma parziale, allora il cammino di distillazione coincide con la somma di frazioni di tie-lines:

Il cammino di distillazione può essere descritto per il caso di riflusso infinito anche in maniera analitica. Facciamo riferimento alla figura seguente (per comodità in questo caso la numerazione dei piatti è crescente dal basso verso l'alto).

Partendo dalla relazione fra le composizioni di liquido e vapore espressa in termini di volatilità relativa:

$$y_a^* = \frac{\alpha_{ab} x_a}{1 + (\alpha_{ab} - 1) x_a}$$

Possiamo fare i seguenti passaggi (omettendo i pedici e l'asterisco):

$$1 - y = \frac{1 - x}{1 + \alpha x - x}$$
$$\frac{y}{1 - y} = \frac{\alpha x}{1 - x}$$

Per la frazione sul piatto 0 si ha:

$$\frac{y_0}{1 - y_0} = \alpha \frac{x_0}{1 - x_0}$$

Come abbiamo visto, se il riflusso è infinito, la composizione del vapore coincide con la composizione del liquido che arriva dal piatto sovrastante, cioè $y_0=x_1$.

Di conseguenza:

$$\frac{x_1}{1 - x_1} = \alpha \frac{x_0}{1 - x_0}$$

In maniera analoga, per lo stadio successivo vale la relazione:

$$\frac{x_2}{1 - x_2} = \alpha \frac{x_1}{1 - x_1}$$

Combinando le due si ha:

$$\frac{x_2}{1 - x_2} = \alpha \frac{x_1}{1 - x_1} = \alpha^2 \frac{x_0}{1 - x_0}$$

E quindi per l'n-esimo piatto:

$$\frac{x_n}{1-x_n} = \alpha^n \frac{x_0}{1-x_0}$$

Che può essere riscritta come

$$x_n = \frac{\alpha^n x_0}{1 + (\alpha^n - 1)x_0}$$

Espressione analoga a quella di partenza con la sola differenza che α^n sostituisce α .

Procedendo nello stesso modo nel caso di miscele ternarie si ottiene:

$$x_{an} = \frac{\alpha_{ac}^{n} x_{a0}}{1 + (\alpha_{ac}^{n} - 1) x_{a0} + (\alpha_{bc}^{n} - 1) x_{b0}}$$
$$x_{bn} = \frac{\alpha_{bc}^{n} x_{b0}}{1 + (\alpha_{ac}^{n} - 1) x_{a0} + (\alpha_{bc}^{n} - 1) x_{b0}}$$

Per miscele multicomponenti:

$$x_{in} = \frac{\alpha_{ik}^n x_{i0}}{1 + \sum_{i=1}^{k-1} (\alpha_{ik}^n - 1) x_{i0}}$$

Rettifica di miscele binarie con minimo rapporto di riflusso

È un caso di importanza pratica perché equivale all'utilizzo del minimo diametro possibile per la colonna ed anche del minimo dispendio energetico. Minimo rapporto di riflusso significa che le linee di lavoro di stripping e rettifica si intersecano nel punto di \underline{pinch} (pinch point) e per raggiungere questo stato occorre un numero **infinito** di piatti. La Figura 23 mostra il diagramma x-y per un sistema binario con le minime portate di V ed L.

Figure 23. McCabe – Thiele diagram of a binary mixture at minimum reflux ratio and minimum reboil ratio The operating lines intersect the equilibrium line at the pinch point.

Se le portate V ed L nelle due sezioni sono costanti, le linee di lavoro sono rette e la minima pendenza per la retta di rettifica per il componente più volatile a può essere calcolata nel modo seguente. Partendo dalla retta di lavoro superiore:

$$y_{n+1} = \frac{D}{V}x_D + \frac{L}{V}x_n$$

si vede che L/V è la pendenza della retta di lavoro superiore, per cui dalla Figura 23 si ricava:

$$\left(\frac{L}{V}\right)_{min} = \frac{x_D - y_F^*}{x_D - x_F^*}$$

Ricordando che L/V=R/(R+1), il minimo rapporto di riflusso diventa

$$R_{min} = \frac{x_D - y_F^*}{y_F^* - x_F^*}$$

Visto che le rette di lavoro si incontrano sulla curva di equilibrio, le concentrazioni y_F , ed x_F , sono collegate dall'equilibrio di fase

$$y_a^* = \frac{\alpha_{ab} x_a}{1 + (\alpha_{ab} - 1) x_a}$$

Da cui si ottiene

$$R_{min} = \frac{1}{\alpha - 1} \left(\frac{x_D}{x_F^*} - \alpha \frac{1 - x_D}{1 - x_F^*} \right)$$

Se il prodotto di testa serve come prodotto puro (x_D =1) l'espressione si semplifica in:

$$R_{min} = \frac{1}{(\alpha - 1)x_F^*}$$

Relazioni analoghe si possono ricavare per il riflusso di fondo R'=V/B. La pendenza della linea operativa di stripping si ricava da Figura 23 come:

$$\left(\frac{L}{V}\right)_{max} = \frac{y_F - x_B}{x_F - x_B}$$

Dalla L'/V' = (R'+1)/R' si ricava che il minimo rapporto di ribollizione è

$$R'_{min} = \frac{x_F - x_D}{y_F - x_F}$$

La separazione usando una colonna di rettifica che usa il minimo rapporto di riflusso richiede un numero infinito di stadi n, però anche un modesto aumento di R (dell'ordine del 5-10%) rispetto al minimo, può già risultare in un'operazione economicamente conveniente. Per questo motivo, le relazioni discusse in queste due sezioni in realtà anche se sono per casi limite rivestono un'importanza pratica.

Osservazione: questa definizione di riflusso minimo cade in difetto quando la curva di equilibrio ha un andamento irregolare del tipo rappresentato di seguito. In questo caso, infatti, la retta corrispondente al riflusso minimo definita come prima andrebbe al di fuori dell'area delimitata da diagonale e curva di equilibrio e perderebbe di significato fisico (il bilancio di materia). Il riflusso minimo è quello per cui la retta ha andamento tangente alla curva di equilibrio.

Miscele azeotropiche

Parlando delle curve liquido-vapore, abbiamo visto che esistono dei sistemi per i quali le curve del liquido e del vapore si toccano. In quelle condizioni la evaporazione porta alla formazione di vapori con la stessa composizione del liquido, perciò per queste composizioni, dette azeotropiche, non è possibile separare i componenti con i normali sistemi di distillazione. Per dirla meglio, è possibile operare una distillazione che però non può oltrepassare la composizione azeotropica. L'azeotropo ha lo stesso effetto di un punto di pinch. Il cammino di distillazione si ferma in corrispondenza dell'azeotropo che è quindi la massima separazione ottenibile con un sistema come quelli descritti sin qui. Il problema è affrontabile e risolvibile in molte maniere, sulle quali torneremo in seguito, ma per il momento ci basti tenere a mente questo punto, ovvero la *non possibilità di attraversare un azeotropo mediante distillazione*.

Separazione di miscele azeotropiche sfruttando variazioni di pressione

Le diverse possibilità per fare distillazioni super-azeotropiche verranno discusse in dettaglio nel seguito. Ci limitiamo per ora a vederne una, perché in un certo senso è l'unica che mantiene lo schema classico ed è applicabile al caso in cui la posizione dell'azeotropo sia molto sensibile a variazioni di pressione. Spesso, ci sono miscele che hanno un azeotropo di minimo la cui posizione può essere spostata significativamente variando la pressione del sistema. Un esempio importante è la miscela tetraidrofurano-acqua (Figura 46). Come si vede nella Figura 46 B, questa miscela forma un azeotropo binario di minimo, che si sposta verso il bassobollente (tetraidrofurano) al diminuire della pressione. Una possibile strategia per superare

l'azeotropo binario è fare una prima separazione della sostanza altobollente (acqua) a bassa pressione (0.1 MPa) nella colonna C-1 (Figura 46 A) per ottenere un prodotto di testa D₁ il più possibile vicina all'azeotropo. Poi si aumenta la pressione a 0.8 MPa, e si alimenta D₁nella colonna C-2 nella quale questa composizione è maggiore di quella dell'azeotropo. Il tetraidrofurano può quindi essere rimosso come prodotto di fondo (B₂) della colonna C-2. La testa di C-2 (D₂) preferibilmente allo stato vapore, viene rimandata in C-1 dopo averne ridotto la pressione. Quindi, la colonna C-1 ha una alimentazione liquida (F) ed una vapore (D₂) e per questo la retta di lavoro presenta due cambi di inclinazione (46 B).

Figure 46. Flow diagram (A) and phase diagram (B) for separation of a binary tetrahydrofuran – water mixture in two columns, C-1 and C-2, operating at different pressures

This mixture contains a minimum azeotrope, whose position can be shifted by changing system pressure. Hatched region represents area between the equilibrium curves and the operating lines in which the number of equilibrium steps n or transfer units $N_{\rm OG}$ is determined.

Quello che segue è uno schema analogo, ma alimentando prima nella colonna ad alta pressione, sempre per azeotropo di minimo, con rappresentazione nel diagramma isobaro:

Ed infine uno schema con azeotropo di massimo:

Si vede che in tutti e tre i casi il gioco è quello di fare in modo che nella prima colonna si arrivi ad un prodotto di testa con composizione maggiore di quella azeotropica nelle condizioni di lavoro della seconda colonna.