Omelets need Onions

E-graphs Modulo Theories via Bottom Up E-Matching

Philip Zucker (Draper Labs)

Motivation: AC Sucks

- The Eqsat Paradox
- $ullet \ (x_1 + (x_2 + \ldots (x_{N-1} + x_N) \ldots))$
- ullet #e-classes: 2^N-1

E-Graphs Modulo Theories

- Can we bake in domain specific smarts?
 - Not Just AC: polynomial, linear, sets
- Spirit Guide: EMT ~ SMT SAT
- E-graph sharing makes confusing

Tease Apart the Roles

E-graphs are:

- Term banks add_term : t -> term -> unit
- Term finders match : t -> pat -> subst list
- Equality stores assert_eq : t -> term -> term -> unit

Term Banks Modulo Theories

- Rigid baked in "nice" theories.
- Interning by structural normalization
 - Smart constructors
 - lacksquare Ex: x+0 o x

```
def add(x,y):
  return x if y == 0 else hashcons(("+", x, y))
```

Term Banks Modulo Theories

```
add_term : t -> term -> unit

match : t -> pat -> subst list

assert_eq : t -> term -> term -> unit
?
```

Pattern Matching

- Implicit terms
 - Consider pattern ?x + 0

$$add_term((x + 0) + y)$$

Top Down E-matching

- Scan termbank for term roots
- #substitutions depends on theory
 - \circ Factor F at each theory node of pattern

Theory	Pattern	Theory Factor ${\cal F}$
ADT	$cons(X,Y)=^?\ cons(1,nil)$	1
E-Graph	$foo(X,Y) \in \c^? \{foo(e_1,e_2),bar(e_2)\}$	eclass
MultiSet 1	$[X,Y,Z]=^?[1,2,3]$	(#Vars)!
MultiSet 2	X + Y = ? [1, 2, 3]	#Partitions
Linear	$X+Y=^?42$	∞

KEY IDEA: Bottom Up E-matching

• E-match over the term bank, not on term

```
match: term -> pat -> subst listmatch: termbank -> pat -> subst list
```

- Bind variables by traversing term bank
 - \circ Ex: foo(bar(X),Y)
 ightarrow biz(X)
- Optimizations

```
for X in terms:
    for Y in terms:
        lhs = foo[bar[X], Y]
        if lhs in terms:
        rhs = biz(X)
        add_equality(lhs, rhs)
```

Bottom Up E-matching Plays Nicer with Theories

	TD	BU
Cost	$O(TF^d)$	$O(T^V d \ln(T))$
foo(foo(foo(foo(X))))		
foo(X,Y,Z,W,V,U)		

- Pareto frontier for simplicity-power
 - Grounds fast
 - Only needs canonizer, not expander / unapply

Tying the Knot

```
add_term : t -> term -> unit

match : t -> pat -> subst list

assert_eq : t -> term -> term -> unit
?
```

Q: What does the Union Find do?

```
type t
type id
val is_eq : t -> id -> id -> bool
val fresh : t -> id
val canon : t -> id -> id
val assert_eq : t -> id -> id -> unit
```

But not only a union find presents this interface!

KEY IDEA: Structured E-ids

- Alternative names: Semantic e-ids, Values
- *E-graphs are Models* (for a partial logic)
 - $\circ\downarrow t$ and $t_1=t_2$
- Replace union find with theory specific extensible canonizers
 - Rebuild has the flavor of *ground* Knuth Bendix completion
 - $\circ~$ Stock UF is uninterpreted values e_i and atomic equations $e_i=e_j$
- Merges the concepts of containers, primitives, and e-ids
- E-nodes are interned, seids are ephemeral

Decidable & Cheap

seid	example	Canonizer
Atomic / Uninterp	e_1	Union Find
primitive + uninterp	$Cons(7,e_1)$	Value rooted UF + Unification
Group(oid) Action	$e_1 + 7$	Group UF
Lin Expr	$2e_1-4e_7$	Gauss Elim. / Row Echelon
Ground Terms	$foo(bar(e_7))$	Inner E-Graph

Decidable & Expensive

seid	example	Canonizer
Polynomials	$e_1+6e_4^3$	Grobner Basis
Ground Multiset (AC)	[e1,e1,e2]	Multiset KB / Graver / Hilbert bases
SMT Terms		SMT sweeping
Bool Exprs	$e_1 \wedge e_2 ee e_3$	SAT Sweeping / BDDs / AIGs / Ordered Resolution

Strong (Undecidable) Theories

seid	example	Canonizer
Strings (A)	$e_1e_4e_2$	String Knuth Bendix
Terms w/ Vars	$foo(e_1,X)$	Knuth Bendix

Wild Speculation

seids	Example	Canonizer
Slotted eids?	$\lambda_{ijk}e_3(j,k,i)$?	?
Colored eids?	$\Gamma dash e_{17}$?	?
Non commutative Rings	$\partial_x e_1$?
Towers	Poly <ms<groupact<int>>></ms<groupact<int>	?
Slotted Multisets	$e_{ijk}e_{jk}$?

Related Work

- Normalized Rewriting (Marche)
- Alt-Ergo AC matching
- Extract, Rewrite, and Assert (Koehler et al)
- Mix E-nodes and Containers
- Brute Force SMT E-Graph
- Pavel's Blog Posts

Thank You

- There is still much to do!
- Pre-print https://arxiv.org/abs/2504.14340
- Prototype: https://www.kdrag.com
 - o from kdrag.solvers.egraph import EGraph