杭州电子科技大学学生考试卷(A)卷

考试课程	概率论与	教理的	·计	考试日期	2016年	6月	В	成绩	
课程号	A0714040	数	号		任课教师	が姓名			
考生姓名		学号 (8位)		年级			专业	1,
展目	-	200	H	四	ħ	六	1	1	九
得分									

-、单项选择题(每题5分,共15分)

- 1、对于样本空间中任意两个事件 A 与 B , 下列事件关系中不正确的是(
 - (A) A B = AB

(B) $A \cup B = A \cup (B - AB)$

- (C) $A = AB \cup AB$
- (D) $(A \cup B) B = A$
- 2. 设事件 $A \subseteq B$ 是互不相容,且 P(A) > 0, P(B) > 0,则下列式子正确的是(
 - (A) P(B|A) > 0

(B) P(A|B) = P(A)

(C) P(A|B) = 0

- (D) P(AB) = P(A)P(B)
- 3、若随机变量 X 的概率密度为: $f(x) = \begin{cases} a/(x^2+1), -1 < x < 1 \\ 0.$ 其他 ,则 a 的取值为: (
- (A) $\frac{2}{\pi}$ (B) $\frac{\pi}{2}$ (C) 0
- (D) 无法确定
- 4. 设 X_1, X_2, \cdots, X_n 和 Y_1, Y_2, \cdots, Y_n 均来自正态总体 $N(0, \sigma^2)$ 的两个独立样本,则统计量

$$U = \frac{X_1 + X_2 + \dots + X_n}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_n^2}} \text{ 的分布是 () .}$$

- (A) $\chi^{2}(n)$ (B) t(n) (C) F(n,n)
- (D) 不能确定
- 计量中。关于 µ 的最有效的无偏估计量是(

- (A) $T_1 = \frac{1}{6}(X_1 + X_2) + \frac{1}{3}(X_3 + X_4)$ (B) $T_2 = \frac{1}{5}(X_1 + 2X_2 + 3X_3 + 4X_4)$
- (C) $T_3 = \frac{1}{4}(X_1 + X_2 + X_3 + X_4)$ (D) $T_4 = \frac{1}{5}(X_1 + 2X_2 + X_3 + X_4)$

二、填空题 (每空3分,共18分)

- 1、设事件 A 与 B 相互独立,且满足 $P(A \cup B) = 0.8$,P(B) = 0.5,则 P(AB) = 0.5
- 2、若一批产品中90%是合格品,检查时一个合格品被误认为是次品的概率为0.05,一个次品被误 认为是合格品的概率为 0.05, 则一个经检查后被认为是合格品的产品确是合格品的概率为
 - 3、设随机变量 X 的分布律为: $P\{X=k\}=\frac{k}{10}$, k=1,2,3,4, 则 $P\{\frac{1}{2}< X \leq \frac{5}{2}\}=\frac{1}{2}$
- 4、设随机变量X服从二项分布b(100,0.2),随机变量Y服从正态分布N(5,1),且X与Y的相 关系数 $\rho_{xy} = 0.25$, 则 E(X - 2Y + 1) = _____ , D(X - 2Y + 1) = _____
- 5、设样本 X_1, X_2, \dots, X_6 来自总体N(0,1),且 $Y = (X_1 + X_2)^2 + (X_3 + X_4)^2 + (X_5 + X_6)^2$,要使 变量CY 服从 χ^2 分布,则常数C = _____
- 三、(8 分) 一加法器同时收到 30 个噪声电压 V_{k} $(k=1,2,\cdots,30)$,设它们是相互独立的随机变量,且 都在区间 (0,10) 上服从均匀分布,记 $V=\sum^{\infty}V_{\star}$,求 $P\{V>130\}$ 的近似值. (结果用标准正态分布函数 $\Phi(x)$ 表示, x>0)

西、(15分) 设施机变量(X,Y)的概率分布律为:

Y	0	3	2	
-1	0.1	0.1	0.4	
1	0.1	0.2	0.1	

录(1) 关于Z = X + Y的分布律: (2) 概率 $P\{X + Y \le 1\}$: (3) E(Y)和D(Y): (4) Cov(X,Y).

四(18分)、设二维随机变量(X,Y)的概率函数为:

$$f(x,y) = \begin{cases} Cxy, & 0 < x < 1, 0 < y < x^2; \\ 0, & \text{#.} \end{cases}$$

(1)求常数C: (2)求关于X和Y的边缘概率密度; (3) 问X和Y是否相互独立? 需说明理由: (4)求E(XY). (5) 求 $Z=X^2-Y$ 的分布函数.

六、(10 分) 设总体 X 具有指数分布,其概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0 \\ 0, x \le 0 \end{cases}$,其中 θ 是未知参数,又

 X_1, X_2, \cdots, X_n 为来自该总体的一个样本, x_1, x_2, \cdots, x_n 为样本值。试分别求未知参数 θ 的矩估计量和最大似然估计量 $\hat{\theta}$.

八、(6分) 设两位化验员 A、B 独立地对某种聚合物含氮量用相同的方法各作 10 次测定,其满定值的样本方差依次为 $S_A^2=0.552$ 和 $S_B^2=0.606$. 设 σ_A^2 和 σ_B^2 分别为 A、B 所测定的测定值总体的方差。设 两个总体均为正态的,且两样本独立,问根据这些数据能否推断这种聚合物含氮量的波动性有无显著 的变化. 即检验假设: $H_0:\sigma_A^2=\sigma_B^2$, $H_1:\sigma_A^2\neq\sigma_B^2$,取显著性水平 $\alpha=0.05$. (已知: $F_{0025}(9,9)=4.03$, $F_{005}(9,9)=3.18$)

九(4 分)、设随机变量 X 的密度函数为 $f(x) = \begin{cases} \frac{x^n}{n!}e^{-x}, x > 0\\ 0, x \le 0 \end{cases}$ 用切比雪夫不等式证明:

$$P\{0 < X < 2(n+1)\} \ge \frac{n}{n+1}$$

HDU数学营:797646975 ファルトト

杭州电子科技大学学生考试卷 (A)卷 参考答案

一、单项选择题(每题3分,共15分)

1, D 2, C 3, A 4, B 5, C

二、填空题(每空3分,共18分)

1, 0.3 2, 171/172 3, 0.3 4, 11 16 5, 0.5

$$P\{V > 130\} = P\{\sum_{k=1}^{30} V_k > 130\} = 1 - P\{\sum_{k=1}^{30} V_k \le 130\} = 1 - P\{\frac{\sum_{k=1}^{30} V_k - 30 \times 5}{\sqrt{30 \times \frac{100}{12}}} \le \frac{130 - 30 \times 5}{\sqrt{30 \times \frac{100}{12}}}\}$$

$$= 1 - \Phi(-\frac{2\sqrt{10}}{5}) = 1 - [1 - \Phi(\frac{2\sqrt{10}}{5})] = \Phi(\frac{2\sqrt{10}}{5}) = I(1) + I(2\sqrt{9}) - - - - 2\%$$

四、(15分)

解: (1) 关于 Z = X + Y 的分布律为:

Z	-1	0	1	2	3
P	0.1	0.1	0.5	0.2	0.1

(2) $P\{X+Y \le 1\} = 1 - P\{X+Y=2\} - P\{X+Y=3\} = 0.7$ (3) 关于Y的边缘分布律为:

Y	-1	1	1 (
Р	0.6	0.4	(13)

从而有 $E(Y) = -1 \times 0.6 + 1 \times 0.4 = -0.2$ 。 $E(Y^2) = (-1)^2 \times 0.6 + 1^2 \times 0.4 = 1.0$,故

(4) 关于 X 的边缘分布律为:

^	0	1	2
P	0.2	0.3	0.5

从而有: $E(X) = 0 \times 0.2 + 1 \times 0.3 + 2 \times 0.5 = 1.3$. — 1分 $E(XY) = 0 \times (-1) \times 0.1 + 0 \times 1 \times 0.1 + 1 \times (-1) \times 0.1 + 1 \times 1 \times 0.2 + 2 \times (-1) \times 0.4 + 2 \times 1 \times 0.1 = -0.5$ 解: (1)由 $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$,从而有 $\int_{0}^{1} dx \int_{0}^{x^{1}} Cxy dy = 1$,所以 C = 12: 15 (2)关于 X 的边缘概率密度: $f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy = \begin{cases} \int_{0}^{x^2} 12xydy = 6x^3, & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$ $\downarrow S$ 从而其分布函数为, $F_{\chi}(x) = \int_{-\infty}^{x} f_{\chi}(x) dx = \{\int_{0}^{x} 6x^{5} dx - x^{6}, 0 \le x < 1,$ $f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{\sqrt{y}}^{1} 12xy dx = 6y(1-y), & 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$ 从而其分布函数为: $F_{\gamma}(y) = \int_{-\infty}^{y} f_{\gamma}(y) dy = \left\{ \int_{0}^{y} 6y(1-y) dy = 3y^{2} - 2y^{3}, \quad 0 = x \le 1, \right\}$ (3)显然, $f(x,y) \neq f_x(x) f_y(y)$, 所以 X 和 Y 不相互独立。 (4) $\oplus E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \ f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x^{2}} xy \cdot 12xy \ dx dy = 4/9 -3$ (4) $\oplus E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{AY J} (w, z)$ (5) $\Leftrightarrow F_Z(z) = P\{Z \le z\} = P\{X^2 - Y \le z\}$ $P(z) = P\{X^2 - Y \le z\} = 0$; 13 $F_{Z}(z) = P\{X^{2} - Y \leq z\} = 1 - P\{Y \leq X^{2} - z\} = 1 - \int_{\sqrt{z}}^{1} dx \int_{0}^{\sqrt{z} - z} 12xyxdy = z^{3} + 3z - 3z^{2}$ 当 $z \ge 1$ 时, $F_z(z) = P\{X^2 - Y \le z\} = 1$. 即 分 布 函 数 : $F_z(z) = \begin{cases} 0, & z < 0, \\ z^3 + 3z - 3z^2, 0 \le z < 1, \end{cases}$ $f_z(z) = \begin{cases} 3z^2 + 3 - 6z, 0 \le z < 1, \\ 0, & z \ge 1 \end{cases}$

六、(10分)

解: (1)先来矩估计量: $(\overline{X}) = E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx = \int_{0}^{+\infty} x \cdot \frac{1}{\theta} e^{-x/\theta} dx = \int_{0}^{+\infty} x d(-e^{-x/\theta})$

$$=\left[-xe^{-x/\theta}\right]_{0}^{+\infty}+\int_{0}^{+\infty}e^{-x/\theta}dx=0+\theta\int_{0}^{+\infty}\frac{1}{\theta}e^{-\frac{x}{\theta}}dx=\theta\right\}$$
从而未知參数 θ 的矩估计量 $\hat{\theta}=\bar{X}$ 。 1分 2分

(2)再求最大似然估计量: 其似然函数 $L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \left[\frac{1}{\theta} e^{-x_i/\theta}\right] = \theta^{-n} e^{-\frac{1}{\theta} \sum_{i=1}^{n} x_i}$

取对数 $\ln L(\theta) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} x_i$,令 $\frac{d \ln L(\theta)}{d \theta} = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^{n} x_i = 0$,得 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$,即

未知参数 θ 的最大似然估计量 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$ 。

七、(7分)

#: 由题意, n=25, α=0.05, μ的置信区间为是多: X-M ~ th-1) -- 23

$$\left(\overline{x} \pm \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right) = (\overline{x} - \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{x} + \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)) - - - - s + \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1) - - - s + \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1) - - - s + \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1) - - - - s + \frac{s}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1) + \frac{$$

or (-0.13, 1.13) (-0,127, 1.127). 八、(6分)

解:由题意 $n_1=n_2=10$,需检验假设: $H_0:\sigma_A^2=\sigma_B^2$, $H_1:\sigma_A^2\neq\sigma_B^2$,则拒绝域为:

曲于 $F_{1-\alpha/2}(n_1-1,n_2-1)=\frac{1}{F_{\alpha/2}(n_2-1,n_2-1)}$

从而拒绝域为: $\frac{s_A^2}{s_B^2} \ge F_{0.025}(9,9) = 4.03$ 或 $\frac{s_A^2}{s_B^2} \le F_{1-0.025}(9,9) = \frac{1}{4.03} = 0.248$ 。

现 $\frac{s_A^2}{s_a^2} = \frac{0.552}{0.606} = 0.911$,不在拒绝域内,从而接受 H_0 ,即认为波动性无显著的变化。1 分

九、(4分)

证: 由
$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx = \int_{0}^{+\infty} x \frac{x^{n}}{n!} e^{-x} dx = \int_{0}^{+\infty} \frac{x^{n+1}}{n!} d(-e^{-x})$$

$$= \left[-\frac{x^{n+1}}{n!} e^{-x} \right]_{0}^{+\infty} + \int_{0}^{+\infty} (n+1) \frac{x^{n}}{n!} e^{-x} dx = 0 + (n+1) \int_{0}^{+\infty} \frac{x^{n}}{n!} e^{-x} dx = n+1$$

$$-----1 \%$$
同理,可计算出 $E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx = (n+2)(n+1)$
而 $D(X) = E(X^{2}) - [E(X)]^{2} = (n+2)(n+1) - (n+1)^{2} = (n+1)$
由切比雪夫不等式,得 $P\{0 < X < 2(n+1)\} = P\{-(n+1) < X - (n+1) < n+1\}$ -1%

$$= P\{|X - (n+1)| < n+1\} \ge 1 - \frac{n+1}{(n+1)^{2}} = \frac{n}{n+1}$$