Neural Network Basics

1.	In logistic regression given ${\bf x}$ and parameters $w\in\mathbb{R}^{n_x}$, $b\in\mathbb{R}$. Which of the following best expresses what we want \hat{y} to tell us?	1/1 point
	\bigcirc $\sigma(W\mathbf{x})$	
	$\bigcirc P(y=\hat{y} \mathbf{x})$	
	\bigcirc $P(y=1 \mathbf{x})$	
	$\bigcirc \ \ \sigma(W\mathbf{x}+b)$	
	∠ [™] Expand	
	\bigcirc Correct $ \mbox{Yes. We want the output } \hat{y} \mbox{ to tell us the probability that } y=1 \mbox{ given } x. $	
	1. In logistic regression given the input ${\bf x}$, and parameters $w\in \mathbb{R}^{n_x}, b\in \mathbb{R}$, how do we generate the output \hat{y} ?	1/1 point
	Right, in logistic regression we use a linear function $W\mathbf{x}+b$ followed by the sigmoid function σ , to get an output y , referred to as $\hat{\mathbf{y}}$, such that $0<\hat{y}<1$.	

	○ +∞	
	$igcup \mathcal{L}(\hat{y},y) = -\left(\hat{y} \log y + (1-\hat{y}) \log(1-y) ight)$	
	0.105	
	0.005	
	∠ [™] Expand	
	⊘ Correct	
	Yes. Since $\mathcal{L}(\hat{y},y)=-(y\log\hat{y}+(1-y)\log(1-\hat{y}))$, for the given values we get $\mathcal{L}(\hat{y},y)=-(1\log 0.9+0\log 0.1)$	
	$\sim (y,y) = (1.05000 + 0.05001)$	
_	Suppose that $\hat{y}=0.5$ and $y=0$. What is the value of the "Logistic Loss"? Choose the best option.	1/1 point
۷.	Suppose that $y=0.5$ and $y=0$, what is the value of the Logistic Loss ? Choose the best option.	1/1 point
	$igcup \mathcal{L}(\hat{y},y) = -\left(y\log\hat{y} + (1-y)\log(1-\hat{y}) ight)$	
	0.693	
	○ +∞	
	O.5	
	∠ ⁿ Expand	
	O Samuel	
	$igotimes$ Correct Yes. Given the values of \hat{y} and y we get $\mathcal{L}(0.5,0)=-\left(0\log 0.5+1\log (0.5) ight)pprox 0.693.$	
3.	Suppose img is a $(32,32,3)$ array, representing a $32x32$ image with 3 color channels red, green and blue. How do you reshape this into a column vector x ?	1/1 point
	do you resnape this into a column vector &.	
	x = img.reshape((32*32,3))	
	$x = \text{img.reshape}((32^*32^*3,1))$	
	x = img.reshape((1,32*32,3))	
	x = img.reshape((3,32*32))	
	∠ ⁿ Expand	
	⊘ Correct	

2. Suppose that $\hat{y}=0.9$ and y=1 . What is the value of the "Logistic Loss"? Choose the best option.

1/1 point

3.	Consider the Numpy array x :	1/1 point
	x = np.array([[[1],[2]],[[3],[4]])	
	What is the shape of x?	
	(1, 2, 2)	
	(4,)	
	(2,2,1)	
	(2, 2)	
	⊾ [™] Expand	
	✓ Correct Yes. This array has two rows and in each row it has 2 arrays of 1x1.	
4.	Consider the following random arrays a and b , and c :	1/1 point
	a = np.random.randn(2,3) #a.shape = (2,3)	
i	b = np.random.randn(2,1) *b.shape = (2,1)	
	c = a + b	
1	What will be the shape of C?	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	c.shape = (2, 3)	
	c.shape = (3, 2)	
	c.shape = (2, 1)	
	∠ ⁿ Expand	
	Correct Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.	

1/1 point

 $a = np.random.randn(3,4) \, \# \, a.shape = (3,4)$

b = np.random.randn(1, 4) # b.shape = (1, 4)

c = a + b

What will be the shape of c?

- c.shape = (1, 4)
- c.shape = (3, 1)
- The computation cannot happen because it is not possible to broadcast more than one dimension.
- c.shape = (3, 4)

⊘ Correct

Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.

4. Consider the following random arrays a and b, and c:

a = np.random.randn(3, 3) # a.shape = (3, 3)

 $b = np.random.randn(2,1) \, \# \, b.shape = (2,1)$

c = a + b

What will be the shape of c?

- c.shape = (2, 3, 3)
- The computation cannot happen because it is not possible to broadcast more than one dimension
- c.shape = (2, 1)
- c.shape = (3,3)

⊘ Correct

Yes. It is not possible to broadcast together a and b. In this case there is no way to generate copies of one of the arrays to match the size of the other.

	5.	Consider the two	following random	arrays \boldsymbol{a} and	b
--	----	------------------	------------------	-----------------------------	---

1/1 point

$$a = np.random.randn(4,3) \, \# \, a.shape = (4,3)$$

$$b = np.random.randn(1,3) \, \# \, b.shape = (1,3)$$

$$c = a * b$$

What will be the shape of c?

- The computation cannot happen because it is not possible to broadcast more than one dimension.
- c.shape = (4, 3)
- c.shape = (1, 3)
- The computation cannot happen because the sizes don't match.

⊘ Correct

Yes. Broadcasting is invoked, so row b is multiplied element-wise with each row of a to create c.

5. Consider the two following random arrays a and b:

1/1 point

$$a = np.random.randn(1,3) \, \# \, a.shape = (1,3)$$

$$b = np.random.randn(3,3) \, \# \, b.shape = (3,3)$$

$$c = a * b$$

What will be the shape of c?

- c.shape = (3, 3)
- The computation cannot happen because the sizes don't match.
- The computation cannot happen because it is not possible to broadcast more than one dimension.
- c.shape = (1, 3)

⊘ Correct

Yes. Broadcasting allows row a to be multiplied element-wise with each row of b to from c.

5. Consider the two following random arrays a and b:

 $a = np.random.randn(4,3) \, \# \, a.shape = (4,3)$

 $b = np.random.randn(3,2) \, \# \, b.shape = (3,2)$

c = a * b

What will be the shape of c?

- c.shape = (3, 3)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (4, 3)
- c.shape = (4,2)

∠ Expand

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

1/1 point

1/1 point

6. Suppose you have n_x input features per example. If we decide to use row vectors \mathbf{x}_j for the features and

$$X = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{bmatrix}.$$

What is the dimension of X?

- \bigcirc (m, n_x)
- \bigcirc $(1, n_x)$
- (n_x, m)
- (n_x, n_x)

Z Expand

⊘ Correct

Yes. Each \mathbf{x}_j has dimension $1 imes n_x, X$ is built stacking all rows together into a $m imes n_x$ array.

6.	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}].$ What is the dimension of X?	1/1 point
	\bigcap $(m,1)$	
	(m, n_x)	
	\bigcirc $(1,m)$	
	\bigcirc (n_x, m)	
	∠ [™] Expand	
	Recall that $np.dot(a,b)$ performs a matrix multiplication on a and b , whereas $a*b$ performs an elementwise multiplication.	1/1 point
	Consider the two following random arrays \boldsymbol{a} and \boldsymbol{b} :	
	a = np.random.randn(12288, 150)	
	#a.shape = (12288, 150)	
	b = np.random.randn(150, 45)	
	#b.shape = (150,45)	
	c = np.dot(a,b)	
	What is the shape of c ?	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	c.shape = (12288, 45)	
	c.shape = (12288, 150)	
	c.shape = (150,150)	
	∠ ⁷ Expand	

7. Consider the following array

a=np.array([[2,1],[1,3]])

What is the result of np.dot(a,a)?

- $\bigcirc \quad \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix}$
- $\bigcirc \quad \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$
- The computation cannot happen because the sizes don't match. It's going to be

⊘ Correct

Yes, recall that * indicates the element wise multiplication and that np.dot() is the matrix multiplication. Thus $\begin{pmatrix} (2)(2)+(1)(1) & (2)(1)+(1)(3) \\ (1)(2)+(3)(1) & (1)(1)+(3)(3) \end{pmatrix}.$

8. Consider the following code snippet:

1/1 point

1/1 point

- a.shape = (3,4)
- b.shape = (4, 1)

for i in range(3):

for j in range(4):

c[i][j] = a[i][j]*b[j]

How do you vectorize this?

- c = a*b.T
- \bigcirc c = np.dot(a,b)
- c = a*b
- c = a.T*b

⊘ Correct

Yes. b.T gives a column vector with shape (1,4). The result of c is equivalent to broadcasting a*b.T.

8.	Consider the following code snippet:		1/1 point
0.	a.shape = (3,4)		1/1 point
	b.shape = (4,1)		
	for i in range(3):		
	for j in range(4):		
	c[i][j] = a[i][j] + b[j]		
	How do you vectorize this?		
	c = a.T + b.T		
	c = a + b		
	c = a + b.T		
	c = a.T + b		
	∠ ⁷ Expand ⊘ Correct		
	9. Consider the following arrays: $a=np.array([[1,1],[1,-1]])$ $b=np.array([[2],[3]])$		1/1 point
	c = a + b		
	Which of the following arrays is stored in c ?		
	$\begin{pmatrix} 4 & 4 \\ 5 & 2 \end{pmatrix}$	•	
	$\bigcirc\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1	
	The computation cannot happen because the sizes don't match. It's going to be an "Error"!		
	3 3 4 2	•	

Correct
Yes. The array b is a column vector. This is copied two times and added to the array a to construct the

∠⁷ Expand

array c.

What is the output of J?

- $\bigcirc (a-1)(b+c)$
- $\bigcirc ab + bc + ac$
- $\bigcirc \hspace{0.5cm} (a+c)(b-1)$
- \bigcirc (c-1)(a+c)

∠ Expand

⊘ Correct

Yes.

$$J=u-v+w=ab-(a+c)+bc=ab-a+bc-c=a\left(b-1\right)+c\left(b-1\right)=\left(a+c\right)\left(b-1\right)$$