Grafi Expanders e Codici di Correzione d'Errore

Barbarino Giovanni

Università di Pisa

19 Settembre 2014

000

000

000

000

000

000

000

Trasmissione di Dati

Fatal Error

The file is damaged and could not be opened

• Il Mittente trasmette un messaggio binario di lunghezza *n*

• Il messaggio viene corrotto al massimo di un fattore p < 1

$$\underbrace{10101 \underbrace{10}_{n}^{\leq pn} 11010110}_{11010110}$$

• Il Mittente trasmette un messaggio binario di lunghezza *n*

• Il messaggio viene corrotto al massimo di un fattore p < 1

$$\underbrace{10101 \underbrace{10}_{n} 11010110}_{\leq pn}$$

• Il Mittente trasmette un messaggio binario di lunghezza *n*

• Il messaggio viene corrotto al massimo di un fattore p < 1

$$\underbrace{10101 \underbrace{10}_{p}^{\leq pn} 11010110}_{11010110}$$

• Il Mittente trasmette un messaggio binario di lunghezza *n*

• Il messaggio viene corrotto al massimo di un fattore p < 1

$$\underbrace{10101 \underbrace{\begin{array}{c} \leq pn \\ 10} \\ 11010110 \end{array}}_{n}$$

- Nel 1948 Shannon e Hamming presentano il problema, dando vita ai primi Codici Lineari di Detenzione e Correzione dell'Errore
- Nel 1960, Gallager creò i low-density parity-check code (LDPC), usando grafi sparsi bipartiti
- Berlekamp e Massey, nel 1969, trovarono un algoritmo di decodifica efficiente dei Reed-Solomon codes (RSC), promuovendone la diffusione
- I Turbo Codes nacquero nel 1993 grazie a Berrou, Glavieux, e Thitimajshima, sorpassando i precedenti
- Grazie agli studi sui grafi di Bassalygo, Pinsker e Margulis, nel 1996 i LDPC divennero molto più efficienti, rivaleggiando l'avanzata dei Turbo Codes

- Nel 1948 Shannon e Hamming presentano il problema, dando vita ai primi Codici Lineari di Detenzione e Correzione dell'Errore
- Nel 1960, Gallager creò i low-density parity-check code (LDPC), usando grafi sparsi bipartiti
- Berlekamp e Massey, nel 1969, trovarono un algoritmo di decodifica efficiente dei Reed-Solomon codes (RSC), promuovendone la diffusione
- I **Turbo Codes** nacquero nel 1993 grazie a Berrou, Glavieux e Thitimajshima, sorpassando i precedenti
- Grazie agli studi sui grafi di Bassalygo, Pinsker e Margulis, nel 1996 i LDPC divennero molto più efficienti, rivaleggiando l'avanzata dei Turbo Codes

- Nel 1948 Shannon e Hamming presentano il problema, dando vita ai primi Codici Lineari di Detenzione e Correzione dell'Errore
- Nel 1960, Gallager creò i low-density parity-check code (LDPC), usando grafi sparsi bipartiti
- Berlekamp e Massey, nel 1969, trovarono un algoritmo di decodifica efficiente dei Reed-Solomon codes (RSC), promuovendone la diffusione
- I Turbo Codes nacquero nel 1993 grazie a Berrou, Glavieux e Thitimajshima, sorpassando i precedenti
- Grazie agli studi sui grafi di Bassalygo, Pinsker e Margulis, nel 1996 i LDPC divennero molto più efficienti, rivaleggiando l'avanzata dei Turbo Codes

- Nel 1948 Shannon e Hamming presentano il problema, dando vita ai primi Codici Lineari di Detenzione e Correzione dell'Errore
- Nel 1960, Gallager creò i low-density parity-check code (LDPC), usando grafi sparsi bipartiti
- Berlekamp e Massey, nel 1969, trovarono un algoritmo di decodifica efficiente dei Reed-Solomon codes (RSC), promuovendone la diffusione
- I Turbo Codes nacquero nel 1993 grazie a Berrou, Glavieux e Thitimajshima, sorpassando i precedenti
- Grazie agli studi sui grafi di Bassalygo, Pinsker e Margulis, nel 1996 i LDPC divennero molto più efficienti, rivaleggiando l'avanzata dei Turbo Codes

- Nel 1948 Shannon e Hamming presentano il problema, dando vita ai primi Codici Lineari di Detenzione e Correzione dell'Errore
- Nel 1960, Gallager creò i low-density parity-check code (LDPC), usando grafi sparsi bipartiti
- Berlekamp e Massey, nel 1969, trovarono un algoritmo di decodifica efficiente dei Reed-Solomon codes (RSC), promuovendone la diffusione
- I **Turbo Codes** nacquero nel 1993 grazie a Berrou, Glavieux, e Thitimajshima, sorpassando i precedenti
- Grazie agli studi sui grafi di Bassalygo, Pinsker e Margulis, nel 1996 i LDPC divennero molto più efficienti, rivaleggiando l'avanzata dei Turbo Codes

- Nel 1948 Shannon e Hamming presentano il problema, dando vita ai primi Codici Lineari di Detenzione e Correzione dell'Errore
- Nel 1960, Gallager creò i low-density parity-check code (LDPC), usando grafi sparsi bipartiti
- Berlekamp e Massey, nel 1969, trovarono un algoritmo di decodifica efficiente dei Reed-Solomon codes (RSC), promuovendone la diffusione
- I Turbo Codes nacquero nel 1993 grazie a Berrou, Glavieux, e Thitimajshima, sorpassando i precedenti
- Grazie agli studi sui grafi di Bassalygo, Pinsker e Margulis, nel 1996 i LDPC divennero molto più efficienti, rivaleggiando l'avanzata dei Turbo Codes

Distanza di Hamming

Definizione

Dato lo spazio \mathbb{F}_2^n delle stringhe binarie di lunghezza n, la **Distanza di Hamming** tra due elementi è il numero di bit per cui differiscono.

$$d_H(x,y) = sum(xor(x,y)) = ||x - y||_1$$

$$x = 000100101000$$
 $y = 010010111001$
 $d_H(x, y) = 5$

Soluzione Generale

Distanza di Hamming

Definizione

Dato lo spazio \mathbb{F}_2^n delle stringhe binarie di lunghezza n, la **Distanza di Hamming** tra due elementi è il numero di bit per cui differiscono.

$$d_H(x, y) = sum(xor(x, y)) = ||x - y||_1$$

$$x = 000100101000$$
$$y = 010010111001$$
$$d\mu(x, y) = 5$$

Distanza di Hamming

Definizione

Dato lo spazio \mathbb{F}_2^n delle stringhe binarie di lunghezza n, la **Distanza di Hamming** tra due elementi è il numero di bit per cui differiscono.

$$d_H(x, y) = sum(xor(x, y)) = ||x - y||_1$$

$$x = 000100101000$$

 $y = 010010111001$
 $d_H(x, y) = 5$

Problema I messaggi M sono stringhe di k bit con percentuale di errore p

Codifica Si cerca un **codice** $C \subseteq \mathbb{F}_2^n$, con $n \ge k$, in corrispondenza biunivoca con M

Trasmissione II Mittente sceglie un messaggio in M, e trasmette la stringa in C corrispondente

Correzione II Destinatario riceve il messaggio corrotto, e cerca in C la stringa con distanza minore

- Problema I messaggi M sono stringhe di k bit con percentuale di errore p
 - Codifica Si cerca un **codice** $C \subseteq \mathbb{F}_2^n$, con $n \ge k$, in corrispondenza biunivoca con M
- Trasmissione II Mittente sceglie un messaggio in M, e trasmette la stringa in C corrispondente
 - Correzione II Destinatario riceve il messaggio corrotto, e cerca in C la stringa con distanza minore
 - Decodifica Ricostruita la stringa corretta in C, essa individuerà il messaggio originale in M

Problema I messaggi M sono stringhe di k bit con percentuale di errore p

Codifica Si cerca un **codice** $C \subseteq \mathbb{F}_2^n$, con $n \ge k$, in corrispondenza biunivoca con M

Trasmissione II Mittente sceglie un messaggio in M, e trasmette la stringa in C corrispondente

Correzione II Destinatario riceve il messaggio corrotto, e cerca in C la stringa con distanza minore

Problema I messaggi M sono stringhe di k bit con percentuale di errore p

Codifica Si cerca un **codice** $C \subseteq \mathbb{F}_2^n$, con $n \ge k$, in corrispondenza biunivoca con M

Trasmissione II Mittente sceglie un messaggio in M, e trasmette la stringa in C corrispondente

Correzione II Destinatario riceve il messaggio corrotto, e cerca in C la stringa con distanza minore

Problema I messaggi M sono stringhe di k bit con percentuale di errore p

Codifica Si cerca un **codice** $C \subseteq \mathbb{F}_2^n$, con $n \ge k$, in corrispondenza biunivoca con M

Trasmissione II Mittente sceglie un messaggio in M, e trasmette la stringa in C corrispondente

Correzione II Destinatario riceve il messaggio corrotto, e cerca in C la stringa con distanza minore

Teorema

L'algoritmo è corretto se e solo se per ogni coppia di stringhe distinte nel codice C si ha

$$d_H(x,y) > 2pn$$

Dimostrazione

Se x è la stringa trasmessa, \tilde{x} quella corrotta, e y una qualsiasi stringa in C diversa da x, allora

$$d_H(x, \tilde{x}) \leq pn$$

$$d_H(y, \tilde{x}) \ge d_H(x, y) - d_H(x, \tilde{x}) > 2pn - pn = pn$$

Dunque la stringa in C più vicina a \tilde{x} è \Rightarrow

Teorema

L'algoritmo è corretto se e solo se per ogni coppia di stringhe distinte nel codice C si ha

$$d_H(x,y) > 2pn$$

Dimostrazione.

Se x è la stringa trasmessa, \tilde{x} quella corrotta, e y una qualsiasi stringa in C diversa da x, allora

$$d_H(x, \tilde{x}) \leq pn$$

$$d_H(y,\tilde{x}) \geq d_H(x,y) - d_H(x,\tilde{x}) > 2pn - pn = pn$$

Dunque la stringa in C più vicina a \tilde{x} è x

	Originale	
s_1	10101	
s ₂	10001	
s 3	10111	
<i>S</i> ₄	10010	
<i>S</i> 5	00101	
<i>s</i> ₆	00000	
<i>S</i> 7	11011	
<i>s</i> ₈	01001	

	Originale	Codice
<i>s</i> ₁	10101	000000
<i>s</i> ₂	10001	111000
<i>s</i> ₃	10111	100110
<i>S</i> ₄	10010	010101
<i>S</i> 5	00101	001011
<i>s</i> ₆	00000	110011
<i>5</i> 7	11011	011110
<i>s</i> ₈	01001	101101

	Originale	Codice
s_1	10101	000000
<i>s</i> ₂	10001	111000
<i>s</i> ₃	10111	100110
<i>S</i> ₄	10010	010101
<i>S</i> 5	00101	001011
<i>s</i> ₆	00000	110011
<i>S</i> 7	11011	011110
<i>s</i> ₈	01001	101101

	Originale	Codice
s_1	10101	000000
<i>s</i> ₂	10001	111000
s 3	10111	100110
<i>S</i> ₄	10010	010101
<i>S</i> 5	00101	001011
<i>s</i> ₆	00000	110011
<i>S</i> 7	11011	011110
<i>s</i> ₈	01001	101101

Messaggio Originale
10010

↓
Messaggio Codificato
010101

↓
Messaggio Corrotto
011101

	Originale	Codice
 s ₁	10101	000000
s ₂	10001	111000
s ₃	10111	100110
<i>S</i> ₄	10010	010101
<i>S</i> 5	00101	001011
s 6	00000	110011
<i>S</i> 7	11011	011110
<i>s</i> ₈	01001	101101

Messaggio Originale
10010

↓
Messaggio Codificato
010101

↓
Messaggio Corrotto
011101

Messaggio Corrotto 011101

1

Messaggio Corretto 010101

1

Messaggio Decodificato

	Originale	Codice
<i>s</i> ₁	10101	000000
<i>s</i> ₂	10001	111000
<i>s</i> ₃	10111	100110
<i>S</i> ₄	10010	010101
<i>S</i> 5	00101	001011
<i>s</i> ₆	00000	110011
<i>S</i> 7	11011	011110
<i>s</i> ₈	01001	101101

Messaggio Corrotto 01 <mark>1</mark> 101
↓
Messaggio Corretto
010101

d_H	Corrotto	Codice
4		000000
3		111000
5		100110
1	011101	010101
3		001011
4		110011
2		011110
2		101101

Messaggio Corrotto
011101

↓
Messaggio Corretto
010101

↓
Messaggio Decodificato
10010

	Originale	Codice
s_1	10101	000000
s ₂	10001	111000
<i>s</i> ₃	10111	100110
<i>5</i> ₄	10010	010101
<i>S</i> 5	00101	001011
<i>s</i> ₆	00000	110011
<i>S</i> 7	11011	011110
<i>s</i> ₈	01001	101101

Proprietà dei Codici

Distanza

Distanza

Dato $C \subseteq \{0,1\}^n$ un codice, definiamo la sua **distanza** come la minima distanza tra due stringhe distinte fratto la loro lunghezza

$$D(C) = \frac{\min_{c_1 \neq c_2}^{c_1, c_2 \in C} d_H(c_1, c_2)}{n}$$

• Ogni codice che risolva il problema ha D(C) > 2p

La distanza dà una misura di correttezza del codice

Distanza

Distanza

Dato $C\subseteq\{0,1\}^n$ un codice, definiamo la sua **distanza** come la minima distanza tra due stringhe distinte fratto la loro lunghezza

$$D(C) = \frac{\min_{c_1 \neq c_2}^{c_1, c_2 \in C} d_H(c_1, c_2)}{n}$$

• Ogni codice che risolva il problema ha D(C) > 2p

Distanza

Distanza

Dato $C \subseteq \{0,1\}^n$ un codice, definiamo la sua **distanza** come la minima distanza tra due stringhe distinte fratto la loro lunghezza

$$D(C) = \frac{\min_{c_1 \neq c_2}^{c_1, c_2 \in C} d_H(c_1, c_2)}{n}$$

- Ogni codice che risolva il problema ha D(C) > 2p
- La distanza dà una misura di correttezza del codice

Distanza

Distanza

Dato $C \subseteq \{0,1\}^n$ un codice, definiamo la sua **distanza** come la minima distanza tra due stringhe distinte fratto la loro lunghezza

$$D(C) = \frac{\min_{c_1 \neq c_2}^{c_1, c_2 \in C} d_H(c_1, c_2)}{n}$$

- Ogni codice che risolva il problema ha D(C) > 2p
- La distanza dà una misura di correttezza del codice

Definizione

Dato $C \subseteq \{0,1\}^n$ un codice, definiamo il suo **rate** come

$$R(C) = \frac{\log_2|C|}{n}$$

• Più grande è | C|, più messaggi possiamo codificare

n è il numero di bit trasmessi, che vorremmo essere piccolore
 α Ω Ω è una manus dell'afficianza della edica.

v A(C) è una misura dell'emcienza del codice

Definizione

Dato $C \subseteq \{0,1\}^n$ un codice, definiamo il suo **rate** come

$$R(C) = \frac{\log_2 |C|}{n}$$

● Più grande è | C|, più messaggi possiamo codificare

n è il numero di bit trasmessi, che vorremmo essere piccolo

Definizione

Dato $C \subseteq \{0,1\}^n$ un codice, definiamo il suo **rate** come

$$R(C) = \frac{\log_2 |C|}{n}$$

- Più grande è |C|, più messaggi possiamo codificare
- n è il numero di bit trasmessi, che vorremmo essere piccolo
- R(C) è una misura dell'efficienza del codice

Definizione

Dato $C \subseteq \{0,1\}^n$ un codice, definiamo il suo **rate** come

$$R(C) = \frac{\log_2 |C|}{n}$$

- Più grande è |C|, più messaggi possiamo codificare
- *n* è il numero di bit trasmessi, che vorremmo essere piccolo
- R(C) è una misura dell'efficienza del codice

Definizione

Dato $C \subseteq \{0,1\}^n$ un codice, definiamo il suo **rate** come

$$R(C) = \frac{\log_2 |C|}{n}$$

- Più grande è |C|, più messaggi possiamo codificare
- *n* è il numero di bit trasmessi, che vorremmo essere piccolo
- R(C) è una misura dell'efficienza del codice

Grafo
$$G = (V, E)$$

Bipartito $L \mid \mid R = V$

Codice Generato C è l'insieme delle stringhe $x_1x_2x_3x_4x_5x_6x_7x_8$ tali che

$$\begin{cases} x_1 = 0 \\ x_3 + x_8 = 0 \\ x_2 + x_3 + x_7 = 0 \\ x_1 + x_4 + x_5 + x_8 = 0 \\ x_2 + x_5 + x_6 = 0 \\ x_4 + x_6 + x_7 = 0 \end{cases}$$

Grafo
$$G = (V, E)$$

Codice Generato C è l'insieme delle stringhe $x_1x_2x_3x_4x_5x_6x_7x_8$ tali che

$$\begin{cases} x_1 = 0 \\ x_3 + x_8 = 0 \\ x_2 + x_3 + x_7 = 0 \\ x_1 + x_4 + x_5 + x_8 = 0 \\ x_2 + x_5 + x_6 = 0 \\ x_4 + x_6 + x_7 = 0 \end{cases}$$

Grafo
$$G = (V, E)$$

Bipartito $L \coprod R = V$

$$\begin{cases} x_1 = 0 \\ x_3 + x_8 = 0 \\ x_2 + x_3 + x_7 = 0 \\ x_1 + x_4 + x_5 + x_8 = 0 \\ x_2 + x_5 + x_6 = 0 \\ x_4 + x_6 + x_7 = 0 \end{cases}$$

Grafo
$$G = (V, E)$$

Bipartito $L \coprod R = V$

$$\begin{cases} x_1 = 0 \\ x_3 + x_8 = 0 \\ x_2 + x_3 + x_7 = 0 \\ x_1 + x_4 + x_5 + x_8 = 0 \\ x_2 + x_5 + x_6 = 0 \\ x_4 + x_6 + x_7 = 0 \\ & \end{cases}$$

Grafo
$$G = (V, E)$$

Bipartito $L \coprod R = V$

Codice Generato

C è l'insieme delle stringhe $x_1x_2x_3x_4x_5x_6x_7x_8$ tali che

$$\begin{cases} x_1 = 0 \\ x_3 + x_8 = 0 \\ x_2 + x_3 + x_7 = 0 \\ x_1 + x_4 + x_5 + x_8 = 0 \\ x_2 + x_5 + x_6 = 0 \\ x_4 + x_6 + x_7 = 0 \end{cases}$$

Definizione

Dato G bipartito, allora è detto un (n, m, d)-grafo magico se valgono le seguenti:

Definizione

Dato G bipartito, allora è detto un (n, m, d)-grafo magico se valgono le seguenti:

- |L| = n, |R| = m, d-regolare a sinistra
- $S \subseteq L$, $|S| \le n/10d \implies |N(S)| \ge 5d|S|/8$
- $S \subseteq L$, $n/10d < |S| \le n/2 \implies |N(S)| \ge |S|$

Definizione

$$L(G, k) = \min_{\substack{0 < |S| \le k \\ S \subseteq I}} \frac{|N(S)|}{|S|}$$

Definizione

Dato G bipartito, allora è detto un (n, m, d)-grafo magico se valgono le seguenti:

- |L| = n, |R| = m, d-regolare a sinistra
- $S \subseteq L$, $|S| \le n/10d \implies |N(S)| \ge 5d|S|/8$
- $S \subseteq L$, $n/10d < |S| \le n/2 \implies |N(S)| \ge |S|$

Definizione

$$L(G, k) = \min_{\substack{0 < |S| \le k \\ S \subset I}} \frac{|N(S)|}{|S|}$$

Definizione

Dato G bipartito, allora è detto un (n, m, d)-grafo magico se valgono le seguenti:

- |L| = n, |R| = m, d-regolare a sinistra
- $S \subseteq L$, $|S| \le n/10d \implies |N(S)| \ge 5d|S|/8$
- $S \subseteq L$, $n/10d < |S| \le n/2 \implies |N(S)| \ge |S|$

Definizione

$$L(G, k) = \min_{\substack{0 < |S| \le k \\ S \subset I}} \frac{|N(S)|}{|S|}$$

Definizione

Dato G bipartito, allora è detto un (n, m, d)-grafo magico se valgono le seguenti:

- |L| = n, |R| = m, d-regolare a sinistra
- $S \subseteq L$, $|S| \le n/10d \implies |N(S)| \ge 5d|S|/8$
- $S \subseteq L$, $n/10d < |S| \le n/2 \implies |N(S)| \ge |S|$

Definizione

$$L(G, k) = \min_{\substack{0 < |S| \le k \\ S \subseteq I}} \frac{|N(S)|}{|S|}$$

Definizione

Dato G bipartito, allora è detto un (n, m, d)-grafo magico se valgono le seguenti:

- |L| = n, |R| = m, d-regolare a sinistra
- $S \subseteq L$, $|S| \le n/10d \implies |N(S)| \ge 5d|S|/8$
- $S \subseteq L$, $n/10d < |S| \le n/2 \implies |N(S)| \ge |S|$

Definizione

$$L(G, k) = \min_{\substack{0 < |S| \le k \\ S \subseteq L}} \frac{|N(S)|}{|S|}$$

Teorema

Preso un (n, 3n/4, d)-grafo magico, sia C il codice generato. Allora

$$D(C) > \frac{1}{10d} \qquad R(C) \ge \frac{1}{4}$$

Solitamente, p è molto piccolo, dunque troviamo d tale che

$$\frac{1}{10d} \ge 2p$$

 D(C) e R(C) non dipendono da n, quindi possiamo trovareza codici per messaggi di qualsiasi lunghezza

Dato un grafo bipartito con $|\mathcal{L}|=n, |\mathcal{R}|=m, d$ -regolare a sinistra accestruito casualmente, è al 90% un (n,m,d)-grafo magico

Teorema

Preso un (n, 3n/4, d)-grafo magico, sia C il codice generato. Allora

$$D(C) > \frac{1}{10d}$$
 $R(C) \ge \frac{1}{4}$

Solitamente, p è molto piccolo, dunque troviamo d tale che

$$\frac{1}{10d} \ge 2p$$

 D(C) e R(C) non dipendono da n, quindi possiamo trovare codici per messaggi di qualsiasi lunghezza

Costruzione Rapida

Dato un grafo bipartito con |L| = n, |R| = m, d-regolare a sinistra e costruito casualmente, è al 90% un (n, m, d)-grafo magico

Teorema

Preso un (n, 3n/4, d)-grafo magico, sia C il codice generato. Allora

$$D(C) > \frac{1}{10d}$$
 $R(C) \ge \frac{1}{4}$

ullet Solitamente, p è molto piccolo, dunque troviamo d tale che

$$\frac{1}{10d} \ge 2p$$

 D(C) e R(C) non dipendono da n, quindi possiamo trovare codici per messaggi di qualsiasi lunghezza

Costruzione Rapida

Dato un grafo bipartito con |L| = n, |R| = m, d-regolare a sinistra, e costruito casualmente, è al 90% un (n, m, d)-grafo magico

Teorema

Preso un (n, 3n/4, d)-grafo magico, sia C il codice generato. Allora

$$D(C) > \frac{1}{10d} \qquad R(C) \ge \frac{1}{4}$$

ullet Solitamente, p è molto piccolo, dunque troviamo d tale che

$$\frac{1}{10d} \ge 2p$$

• D(C) e R(C) non dipendono da n, quindi possiamo trovare codici per messaggi di qualsiasi lunghezza

Costruzione Rapida

Dato un grafo bipartito con |L| = n, |R| = m, d-regolare a sinistra, e costruito casualmente, è al 90% un (n, m, d)-grafo magico

Teorema

Preso un (n, 3n/4, d)-grafo magico, sia C il codice generato. Allora

$$D(C) > \frac{1}{10d} \qquad R(C) \ge \frac{1}{4}$$

Solitamente, p è molto piccolo, dunque troviamo d tale che

$$\frac{1}{10d} \ge 2p$$

• D(C) e R(C) non dipendono da n, quindi possiamo trovare codici per messaggi di qualsiasi lunghezza

Costruzione Rapida

Dato un grafo bipartito con |L| = n, |R| = m, d-regolare a sinistra, e costruito casualmente, è al 90% un (n, m, d)-grafo magico

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le component con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempro

Correttezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempre

Correttezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempr

correttezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempr

Lorrettezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempr

Correttezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempr

correttezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempr

correttezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempre

correttezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempre

Correttezza? Riusciamo a ricostruire la stringa originale del codice?

Problema Come correggiamo le stringhe corrotte?

Algoritmo cambiamo le componenti con *la maggior parte* dei controlli sbagliati

Finitezza II numero di controlli sbagliati decresce sempre

Correttezza? Riusciamo a ricostruire la stringa originale del codice?

Belief Propagation

Teorem:

Dato G un grafo bipartito d-regolare a sinistra, supponiamo che la percentuale di corruzione del messaggio sia al massimo p. Se $k = \lfloor pn \rfloor$ e L(G, 2k) > 3d/4, allora il messaggio originale viene ripristinato in O(n) ripotizioni dell'ouristica.

Nota Bene

3d/4 > 5d/8, dunque un grafo che soddisfi L(G,2k) > 3d/44 è anche un grafo magico, ma non è vero il viceversa
Nel 2002 sono stati costruiti per la prima volta dei grafi con L(G,2k) > (1 – δ)d per ogni δ > 0
La Belief Propagazion ha una complessità totale di O(n)

Teorema

Dato G un grafo bipartito d-regolare a sinistra, supponiamo che la percentuale di corruzione del messaggio sia al massimo p.

Se $k = \lfloor pn \rfloor$ e L(G, 2k) > 3d/4, allora il messaggio originale viene ripristinato in O(n) ripetizioni dell'euristica.

Teorema

Dato G un grafo bipartito d-regolare a sinistra, supponiamo che la percentuale di corruzione del messaggio sia al massimo p. Se $k = \lfloor pn \rfloor$ e L(G, 2k) > 3d/4, allora il messaggio originale viene ripristinato in O(n) ripetizioni dell'euristica.

- 3d/4 > 5d/8, dunque un grafo che soddisfi L(G, 2k) > 3d/4 è anche un grafo magico, *ma non è vero il viceversa*
- Nel 2002 sono stati costruiti per la prima volta dei grafi con $L(G,2k)>(1-\delta)d$ per ogni $\delta>0$
- La Belief Propagation ha una complessità totale di O(n)

Teorema

Dato G un grafo bipartito d-regolare a sinistra, supponiamo che la percentuale di corruzione del messaggio sia al massimo p. Se $k = \lfloor pn \rfloor$ e L(G, 2k) > 3d/4, allora il messaggio originale viene ripristinato in O(n) ripetizioni dell'euristica.

- 3d/4 > 5d/8, dunque un grafo che soddisfi L(G, 2k) > 3d/4 è anche un grafo magico, *ma non è vero il viceversa*
- Nel 2002 sono stati costruiti per la prima volta dei grafi con $L(G,2k)>(1-\delta)d$ per ogni $\delta>0$
- La Belief Propagation ha una complessità totale di O(n)

Teorema

Dato G un grafo bipartito d-regolare a sinistra, supponiamo che la percentuale di corruzione del messaggio sia al massimo p. Se $k = \lfloor pn \rfloor$ e L(G, 2k) > 3d/4, allora il messaggio originale viene ripristinato in O(n) ripetizioni dell'euristica.

- 3d/4 > 5d/8, dunque un grafo che soddisfi L(G, 2k) > 3d/4 è anche un grafo magico, *ma non* è vero il viceversa
- Nel 2002 sono stati costruiti per la prima volta dei grafi con $L(G,2k)>(1-\delta)d$ per ogni $\delta>0$
- ullet La Belief Propagation ha una complessità totale di O(n)

Teorema

Dato G un grafo bipartito d-regolare a sinistra, supponiamo che la percentuale di corruzione del messaggio sia al massimo p. Se $k = \lfloor pn \rfloor$ e L(G, 2k) > 3d/4, allora il messaggio originale viene ripristinato in O(n) ripetizioni dell'euristica.

- 3d/4 > 5d/8, dunque un grafo che soddisfi L(G, 2k) > 3d/4 è anche un grafo magico, ma non è vero il viceversa
- Nel 2002 sono stati costruiti per la prima volta dei grafi con $L(G, 2k) > (1 \delta)d$ per ogni $\delta > 0$
- La Belief Propagation ha una complessità totale di O(n)

- Convergenza veloce di Catene di Markov e derandomizzazione di algoritmi
- Studio di gruppi tramite Grafi di Caleyo
- Applicazioni alla teoria della complessità e approssimazioni dila algoritmi No-hard o completi
- Studio di ricoprimenti universali di grafi e alberi infiniti
- Costruzione di superconcentratori e complessità relativa a matrici super regolari
- Applicazioni nella teoria degli embedding in spazi metrici, e utilizzi in algoritmi per problemi di taglio

- Convergenza veloce di Catene di Markov e derandomizzazione di algoritmi
- Studio di gruppi tramite Grafi di Caley
- Applicazioni alla teoria della complessità e approssimazioni di algoritmi Np-hard o completi
- Studio di ricoprimenti universali di grafi e alberi infiniti
- Costruzione di superconcentratori e complessità relativa a matrici super regolari
- Applicazioni nella teoria degli embedding in spazi metrici, e utilizzi in algoritmi per problemi di taglio

- Convergenza veloce di Catene di Markov e derandomizzazione di algoritmi
- Studio di gruppi tramite Grafi di Caley
- Applicazioni alla teoria della complessità e approssimazioni di algoritmi Np-hard o completi
- Studio di ricoprimenti universali di grafi e alberi infinit
- Costruzione di superconcentratori e complessità relativa a matrici super regolari
- Applicazioni nella teoria degli embedding in spazi metrici, e utilizzi in algoritmi per problemi di taglio

- Convergenza veloce di Catene di Markov e derandomizzazione di algoritmi
- Studio di gruppi tramite Grafi di Caley
- Applicazioni alla teoria della complessità e approssimazioni di algoritmi Np-hard o completi
- Studio di ricoprimenti universali di grafi e alberi infiniti
- Costruzione di superconcentratori e complessità relativa a matrici super regolari
- Applicazioni nella teoria degli embedding in spazi metrici, e utilizzi in algoritmi per problemi di taglio

- Convergenza veloce di Catene di Markov e derandomizzazione di algoritmi
- Studio di gruppi tramite Grafi di Caley
- Applicazioni alla teoria della complessità e approssimazioni di algoritmi Np-hard o completi
- Studio di ricoprimenti universali di grafi e alberi infiniti
- Costruzione di superconcentratori e complessità relativa a matrici super regolari
- Applicazioni nella teoria degli embedding in spazi metrici, e utilizzi in algoritmi per problemi di taglio

- Convergenza veloce di Catene di Markov e derandomizzazione di algoritmi
- Studio di gruppi tramite Grafi di Caley
- Applicazioni alla teoria della complessità e approssimazioni di algoritmi Np-hard o completi
- Studio di ricoprimenti universali di grafi e alberi infiniti
- Costruzione di superconcentratori e complessità relativa a matrici super regolari
- Applicazioni nella teoria degli embedding in spazi metrici, e utilizzi in algoritmi per problemi di taglio

- Convergenza veloce di Catene di Markov e derandomizzazione di algoritmi
- Studio di gruppi tramite Grafi di Caley
- Applicazioni alla teoria della complessità e approssimazioni di algoritmi Np-hard o completi
- Studio di ricoprimenti universali di grafi e alberi infiniti
- Costruzione di superconcentratori e complessità relativa a matrici super regolari
- Applicazioni nella teoria degli embedding in spazi metrici, e utilizzi in algoritmi per problemi di taglio

- Convergenza veloce di Catene di Markov e derandomizzazione di algoritmi
- Studio di gruppi tramite Grafi di Caley
- Applicazioni alla teoria della complessità e approssimazioni di algoritmi Np-hard o completi
- Studio di ricoprimenti universali di grafi e alberi infiniti
- Costruzione di superconcentratori e complessità relativa a matrici super regolari
- Applicazioni nella teoria degli embedding in spazi metrici, e utilizzi in algoritmi per problemi di taglio