Linear Page Table Size

Due Sep 26, 2019 at 11:59pmPoints 3Questions 3Time Limit NoneAllowed Attempts Unlimited

This quiz is no longer available as the course has been concluded.

Attempt History

	Attempt	Time	Score
KEPT	Attempt 2	less than 1 minute	3 out of 3
LATEST	Attempt 2	less than 1 minute	3 out of 3
	Attempt 1	4 minutes	0 out of 3

Score for this attempt: **3** out of 3 Submitted Sep 26, 2019 at 11:41pm This attempt took less than 1 minute.

	Question 1	1 / 1 pts
	How big is the page table (in KB) if:	
	bits in virtual address: 32 page size: 4KB pte size: 8 bytes	
Correct!	8,192	
orrect Answer	rs 8,192 (with margin: 0)	

ARG bits in virtual address 32

ARG page size 4k

ARG pte size 8

Recall that an address has two components:

[Virtual Page Number (VPN) | Offset]

The number of bits in the virtual address: 32

The page size: 4096 bytes

Thus, the number of bits needed in the offset: 12

Which leaves this many bits for the VPN: 20

Thus, a virtual address looks like this:

where V is for a VPN bit and O is for an offset bit

To compute the size of the linear page table, we need to know:

- The # of entries in the table, which is 2^(num of VPN bits): 1048576.0
- The size of each page table entry, which is: 8

And then multiply them together. The final result:

8388608 bytes

in KB: 8192.0

in MB: 8.0

Question 2 1 / 1 pts

How big is the page table (in bytes) if:

bits in virtual address: 16

page size: 1KB pte size: 4 bytes

Correct!

256

orrect Answers

256 (with margin: 0)

RG bits in virtual address 16

ARG page size 1k

ARG pte size 4

Recall that an address has two components:

[Virtual Page Number (VPN) | Offset]

The number of bits in the virtual address: 16

The page size: 1024 bytes

Thus, the number of bits needed in the offset: 10

Which leaves this many bits for the VPN: 6

Thus, a virtual address looks like this:

VVVVV|0000000000

where V is for a VPN bit and O is for an offset bit

To compute the size of the linear page table, we need to know:

- The # of entries in the table, which is 2^(num of VPN bits): 64.0
- The size of each page table entry, which is: 4

And then multiply them together. The final result:

256 bytes

Question 3	1 / 1 pts

How big is the page table (in KB) if:

bits in virtual address: 24

page size: 2KB pte size: 4 bytes

Correct!

32

orrect Answers

32 (with margin: 0)

ARG bits in virtual address 24

ARG page size 2k

ARG pte size 4

Recall that an address has two components:

[Virtual Page Number (VPN) | Offset]

The number of bits in the virtual address: 24

The page size: 2048 bytes

Thus, the number of bits needed in the offset: 11

Which leaves this many bits for the VPN: 13

Thus, a virtual address looks like this:

VVVVVVVVVVVVI000000000000

where V is for a VPN bit and O is for an offset bit

To compute the size of the linear page table, we need to know:

- The # of entries in the table, which is 2\(^(num of VPN bits): 8192.0
- The size of each page table entry, which is: 4

And then multiply them together. The final result:

32768 bytes

in KB: 32.0

Quiz Score: 3 out of 3