

Introduction aux NeRF, SDF et 3D GS

Séminaire LASTIG

Camille Billouard (CNES, IGN)

Photosculpture

1859

François Willème

Terminologies

- Field : quantité définie pour des coordonnées spatiales et/ou temporelles
- Neural Net (MLP) : Théorème d'approximation universelle
- Neural Field : Champ paramétré par un MLP

Représentations de scènes

- Explicite: décrit directement la géométrie et la surface des objets à l'aide d'éléments numérotés
- Implicite: décrit une scène avec une fonction ou un field, en n'importe quel point de l'espace
 - SDF

Polygon Mesh

NeRF: radiance en tout point de la scène

Qu'est ce qu'un

- Un Neural Radiance Field (NeRF) est une méthode basée sur l'apprentissage profond pour reconstruire une représentation 3D d'une scène à partir d'images orientées
- Un NeRF apprend à synthétiser des nouvelles vues de la scène
- L'apprentissage est spécifique (il doit être ré-appris) à chaque scène
- Un NeRF contient la géométrie et les propriétés de réflectance de la scène.

Latent Code

Latent Code

MLP

Ce que l'ont veut reconstruire

Latent Code

Signed Distance Field

Echantillonnage des coordonnées MLP

Domaine de reconstruction

Ce que l'ont veut reconstruire

Comment on le reconstruit

Latent Code

Signed Distance Field

Volume Rendering

Sphere Tracing

MLP

Domaine de reconstruction

Rendering différentiable

Ce que l'ont veut reconstruire

Comment on le reconstruit

Ce qu'on observe/mesure

Latent Code

Sphere Tracing

RGB Image

Depth Normal

MLP

Domaine de reconstruction

Rendering différentiable

Domaine du capteur

Ce que l'ont veut reconstruire

Comment on le reconstruit

Ce qu'on observe/mesure

Latent Code

Radiance Field

Depth Normal

Optimisation avec descente du gradient

MLP

Domaine de reconstruction

Rendering différentiable

Domaine du capteur

NeRF

- 1. Tracé de rayons avec échantillonnage de points (coordonnées et directions)
- 2. Estimation de la couleur et de la densité pour chaque point
- 3. Rendu de volume pour estimer la couleur des pixels

*Ilustration:

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mar 2020

Volume rendering

Si le point i a une densité et est visible

$$w_i = T_i \alpha_i$$

^{*} Pas de sampling

0 - Viewset

0 - Viewset

0 - Viewset

encoded scene

0 - Viewset

encoded scene

0 - Viewset

encoded scene

0 - Viewset

encoded scene

0 - Viewset

encoded scene

0 - Viewset

encoded scene

0 - Viewset

encoded scene

SDF: Signed Distance Field

- En apprenant un champs de distance signée à la surface apparente
- NeRF + évaluation de la distance xyz + background à traiter :
 - Mask
 - Modélisation du background avec un NeRF
 - ... donc plus couteux!

**Ilustration*:

SDF: Signed Distance Field

$$\mathcal{S} = \left\{ \mathbf{x} \in \mathbb{R}^3 | f(\mathbf{x}) = 0 \right\}$$

• Fonction en « cloche » centrée en zéro :

$$\phi_s(f(\mathbf{x}))$$

*Ilustration:

Résultats NeuS

Scan ID	24															Mean
PSNR(NeRF)	III.															1
PSNR(Ours)	23.98	22.79	25.21	26.03	28.32	29.80	27.45	28.89	26.03	28.93	32.47	30.78	29.37	34.23	33.95	28.55
SSIM(NeRF)	0.753	0.794	0.780	0.761	0.915	0.805	0.803	0.822	0.804	0.815	0.870	0.857	0.848	0.880	0.879	0.826
SSIM(Ours)	0.732	0.778	0.722	0.739	0.915	0.809	0.818	0.831	0.812	0.815	0.866	0.863	0.847	0.878	0.878	0.820

		w/ mask		w/o mask					
ScanID	IDR	NeRF	Ours	COLMAP	NeRF	UNISURF	Ours		
scan24	1.63	1.83	0.83	0.81	1.90	1.32	1.00		
scan37	1.87	2.39	0.98	2.05	1.60	1.36	1.37		
scan40	0.63	1.79	0.56	0.73	1.85	1.72	0.93		
scan55	0.48	0.66	0.37	1.22	0.58	0.44	0.43		
scan63	1.04	1.79	1.13	1.79	2.28	1.35	1.10		
scan65	0.79	1.44	0.59	1.58	1.27	0.79	0.65		
scan69	0.77	1.50	0.60	1.02	1.47	0.80	0.57		
scan83	1.33	1.20	1.45	3.05	1.67	1.49	1.48		
scan97	1.16	1.96	0.95	1.40	2.05	1.37	1.09		
scan105	0.76	1.27	0.78	2.05	1.07	0.89	0.83		
scan106	0.67	1.44	0.52	1.00	0.88	0.59	0.52		
scan110	0.90	2.61	1.43	1.32	2.53	1.47	1.20		
scan114	0.42	1.04	0.36	0.49	1.06	0.46	0.35		
scan118	0.51	1.13	0.45	0.78	1.15	0.59	0.49		
scan122	0.53	0.99	0.45	1.17	0.96	0.62	0.54		
mean	0.90	1.54	0.77	1.36	1.49	1.02	0.84		

*Tab:

Peng Wang and Lingjie Liu and Yuan Liu and Christian Theobalt and Taku Komura and Wenping Wang NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, 2021

Résultats NeuS

*Ilustration:

Peng Wang and Lingjie Liu and Yuan Liu and Christian Theobalt and Taku Komura and Wenping Wang NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction, 2021

Rappel: Framework

Ce que l'ont veut reconstruire

Radiance Field

Comment on le reconstruit

Ce qu'on observe/mesure

Optimisation avec descente du gradient

MLP

Domaine de reconstruction

Rendering différentiable Domaine du capteur

Framework sans MLP

Ce que l'ont veut reconstruire

Comment on le reconstruit

Ce qu'on observe/mesure

1

Optimisation avec descente du gradient

MLP

Domaine de reconstruction

Tile Rasterizer différentiable

Domaine du capteur

3D GS: Gaussian Splatting

 Gaussian Splatting: en représentant la volumétrie de la scène comme un nuage d'ellipsoïdes de noyau Gaussien

Défini par :

- Position (moyenne μ): localisation (xyz)
- Matrice de covariance Σ : rotation et scaling
- Opacité (α) : transparence
- Couleur (RGB)
- ..

Pipeline 3D GS

*<u>Illustration</u>:

Pipeline 3D GS: Splatting

Moteur de rendu 3D GS

Replication —									
respiredion									
Tile 1	Depth								
Tile 2	Depth								
Tile 1	Depth								
Tile 2	Depth								
Tile 3	Depth								
Tile 4	Depth								
Tile 3	Depth								
1									

Splatting

Tuilage de l'image

Tris des tuiles

Rendu des gaussiennes

Rendu 3D GS

- Parallel Computation

$$C_1 = \alpha'_1 c_1 + \alpha'_1 c_2 (1 - \alpha'_1)$$

$$C_2 = \alpha'_2 c_1 + \alpha'_2 c_2 (1 - \alpha'_2)$$

$$C_3 = \alpha'_3 c_1 + \alpha'_3 c_2 (1 - \alpha'_3)$$

$$C_4 = \alpha'_4 c_1 + \alpha'_4 c_2 (1 - \alpha'_4)$$

$$C = \sum_{i \in \mathcal{N}} c_i \alpha_i' \prod_{j=1}^{i-1} (1 - \alpha_j')$$

$$\alpha_i' = \alpha_i \times \exp\left(-\frac{1}{2}(\boldsymbol{x}' - \boldsymbol{\mu}_i')^{\top} \boldsymbol{\Sigma}_i'^{-1} (\boldsymbol{x}' - \boldsymbol{\mu}_i')\right)$$

$$oldsymbol{\Sigma} = oldsymbol{R} oldsymbol{S} oldsymbol{\Gamma} oldsymbol{R}^ op$$

Pipeline 3D GS

Pipeline 3D GS: contrôle adaptatif

Résultats

Dataset	Mip-NeRF360						Tanks&Temples					Deep Blending						
Method Metric	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.626	23.08	0.463	25m49s	6.79	2.1GB	0.719	21.08	0.379	25m5s	13.0	2.3GB	0.795	23.06	0.510	27m49s	11.2	2.7GB
INGP-Base	0.671	25.30	0.371	5m37s	11.7	13MB	0.723	21.72	0.330	5m26s	17.1	13MB	0.797	23.62	0.423	6m31s	3.26	13MB
INGP-Big	0.699	25.59	0.331	7m30s	9.43	48MB	0.745	21.92	0.305	6m59s	14.4	48MB	0.817	24.96	0.390	8m	2.79	48MB
M-NeRF360	0.792 [†]	27.69 [†]	0.237 [†]	48h	0.06	8.6MB	0.759	22.22	0.257	48h	0.14	8.6MB	0.901	29.40	0.245	48h	0.09	8.6MB
Ours-7K	0.770	25.60	0.279	6m25s	160	523MB	0.767	21.20	0.280	6m55s	197	270MB	0.875	27.78	0.317	4m35s	172	386MB
Ours-30K	0.815	27.21	0.214	41m33s	134	734MB	0.841	23.14	0.183	26m54s	154	411MB	0.903	29.41	0.243	36m2s	137	676MB

Ablation study:

	Truck-5K	Garden-5K	Bicycle-5K	Truck-30K	Garden-30K	Bicycle-30K	Average-5K	Average-30K
Limited-BW	14.66	22.07	20.77	13.84	22.88	20.87	19.16	19.19
Random Init	16.75	20.90	19.86	18.02	22.19	21.05	19.17	20.42
No-Split	18.31	23.98	22.21	20.59	26.11	25.02	21.50	23.90
No-SH	22.36	25.22	22.88	24.39	26.59	25.08	23.48	25.35
No-Clone	22.29	25.61	22.15	24.82	27.47	25.46	23.35	25.91
Isotropic	22.40	25.49	22.81	23.89	27.00	24.81	23.56	25.23
Full	22.71	25.82	23.18	24.81	27.70	25.65	23.90	26.05

Editable, Segmentation, ...

Panoptic Neural Fields

A Semantic Object-Aware Neural Scene Representation

PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics

Liens avec l'information géographique

- Geovisualisation:
 - permet le rendu de vues photoréalistes à partir de n'importe quel point de vue
 - permet (dans certaines conditions) de corriger les ombres et les objets transients
- Reconstruction: un NeRF est un objet très général dont on peut extraire:
 - MNS
 - Maillage
 - Nuage de points
 - Ortho vraie
- Les produits géométriques traditionnels (MNS, nuages de points, maillages) peuvent être utilisés pour initialiser un NeRF (accélérer l'apprentissage)

Merci de votre attention!