Problem Set #2 5/5 points (100%)

Quiz, 5 questions

Congratulations! You passed!

Next Item

1/1 points

This question will give you further practice with the Master Method. Suppose the running time of an algorithm is governed by the recurrence $T(n) = 7 * T(n/3) + n^2$. What's the overall asymptotic running time (i.e., the value of T(n))?

- $\theta(n^2 \log n)$
- $\theta(n \log n)$
- $\theta(n^{2.81})$
- $\theta(n^2)$

a=7, b=3, d=2. Since $b^d > a$, this is case 2 of the Master Method.

3/2/2018, 10:41 PM

5/5 points (100%)

Quiz, 5 questions

2.

This question will give you further practice with the Master Method. Suppose the running time of an algorithm is governed by the recurrence $T(n) = 9 * T(n/3) + n^2$. What's the overall asymptotic running time (i.e., the value of T(n))?

- $\theta(n \log n)$
- $\theta(n^2)$
- $\theta(n^2 \log n)$

Correct

 $a = b^d = 9$, so this is case 1 of the Master Method.

 $\theta(n^{3.17})$

2 of 5

5/5 points (100%)

Quiz, 5 questions

3.

This question will give you further practice with the Master Method. Suppose the running time of an algorithm is governed by the recurrence T(n) = 5 * T(n/3) + 4n. What's the overall asymptotic running time (i.e., the value of T(n))?

- $\theta(n^2)$
- $\theta(n^{5/3})$
- $\theta(n^{\frac{\log 3}{\log 5}})$
- $\theta(n^{2.59})$
- $\theta(n^{\log_3(5)})$

Correct

a = 5, b = 3, d = 1. Since $a > b^d$, this is case 3 of the Master Method.

 $\theta(n\log(n))$

3 of 5 3/2/2018, 10:41 PM

5/5 points (100%)

Quiz, 5 questions

Consider the following pseudocode for calculating a^b (where a and b are positive integers)

```
FastPower(a,b) :
 2
      if b = 1
 3
        return a
 4
     else
        c := a*a
 6
        ans := FastPower(c,[b/2])
7
      if b is odd
       return a*ans
9
      else return ans
10 end
```

Here [x] denotes the floor function, that is, the largest integer less than or equal to x.

Now assuming that you use a calculator that supports multiplication and division (i.e., you can do multiplications and divisions in constant time), what would be the overall asymptotic running time of the above algorithm (as a function of b)?

 $\Theta(\sqrt{b})$

 $\Theta(\log(b))$

Correct

Constant work per digit in the binary expansion of b.

 $\Theta(b)$

 $\Theta(b \log(b))$

3/2/2018, 10:41 PM 4 of 5

5/5 points (100%)

Quiz, 5 questions

5.

Choose the smallest correct upper bound on the solution to the following recurrence: T(1) = 1 and $T(n) \le T([\sqrt{n}]) + 1$ for n > 1. Here [x] denotes the "floor" function, which rounds down to the nearest integer. (Note that the Master Method does not apply.)

- 0(1)
- $O(\sqrt{n})$
- $O(\log \log n)$

Correct

Bingo! This answer may be easiest to see by writing n as $2^{\log n}$ and then noting that every square-root operation cuts the exponent in half.

 $O(\log n)$

5 of 5 3/2/2018, 10:41 PM