Multiview Depth Image Enhancement

Pravin Kumar Rana, Zhanyu Ma, Jalil Taghia, and Markus Flierl

Opponent: Jalil Taghia and Haopeng Li

Internal seminar, Communication Theory, KTH

June 26, 2013

Motivation & Background

Conventional Television

Conventional Television

Multiview imagery

Multiview imagery

Multiview imagery

Multiview imagery

Virtual View Synthesis

Depth Image Based Rendering

Depth Image Based Rendering

Depth Image Based Rendering

- Depth pixels represent shortest distance between object points and the camera plane
- To be estimated from multiview imagery

Depth image

Near

Far

Multiview imagery

Depth Image Based Rendering

Multiview imagery

MPEG Depth Estimation Reference Software (DERS)

MPEG Depth Estimation Reference Software (DERS)

MPEG Depth Estimation Reference Software (DERS)

MPEG Depth Estimation Reference Software (DERS)

Problem: Inter-view depth inconsistency

MPEG Depth Estimation Reference Software (DERS)

Problem: Inter-view depth inconsistency

Depth Enhancement Framework

Overview of Depth Enhancement Framework

Overview of Depth Enhancement Framework

Overview of Depth Enhancement Framework

Concatenation of View Imagery

Concatenation of View Imagery

RGB Color space

- Insensitive to the absolut luminance
- A pixel is described by a vector of three chromaticity coefficients [x y z]^T, where

$$x+y+z=1$$

Why variational Bayes inference (VI)?

 The goal of classification is to partition an image into regions each of which has a reasonably homogeneous visual appearance

 Usually, clustering algorithm, such as Expectation-Maximization suffers from one major drawbacks that the number of clusters has to be known

Variational Bayes inference automatically select the number of clusters

Why Dirichlet mixture model with variational Bayes inference (VI-DMM)?

- The pixel vector in the chromaticity space has
 - nonnegative elements
 - bounded by the interval [0,1]
 - sum to one
 - efficiently modeled by utilizing non-Gaussian distributions
- Assume that these pixel vectors are Dirichlet distributed
- VI-DMM is used to capture the all underlying cluster in multiview imagery
- It reduces complexity

Newspaper Balloons Kendo

Input multiview data

Newspaper Balloons Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Using Gaussian mixture model with variational Bayes inference

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Using Gaussian mixture model with variational Bayes inference

Exploiting the per-pixel association between color and depth

View image

Depth image

Exploiting the per-pixel association between color and depth

View image

Depth image

Concatenated view imagery

Concatenated depth imagery

Newspaper Balloons Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Newspaper

Balloons

Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Depth clusters

Newspaper

Balloons

Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Depth clusters

Difference between color and depth clusters

Members have similar colors pixels

Members may have different depth values

- Why?
 - due to foreground and background depth difference
 - due to inter-view inconsistency

Mean-shift Clustering

- A nonparametric clustering technique
- Does not require prior knowledge of the number of clusters
- Does not constrain the shape of the clusters
- Assigns the mean to depth pixels irrespective of the originating viewpoints
- Bayesian approaches imply higher computational complexity

Experimental Results

Experimental Results

MPEG 3DTV multiview data set

Newspaper (1024 X 768)

Lovebird1 (1024 X 768)

Kendo (1024 X 768)

Balloons (1024 X 768)

Poznan street (1920 X 1088)

Experimental Results

Multiview data	Initial number of mixture components	Active number of mixture components (after convergence)		
set		VI-GMM	VI-DMM	
Lovebird1	100	31	24	
Kendo	100	34	15	

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

Left

Enhanced depth map

Right

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

Left

Reference view

Enhanced depth map

Right

Reference view

Test sequence	Input view pair	Virtual view	Y-PSNR [dB]		
			With MPEG depth maps	With VBIGMM + K-Means depth maps	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster : 12

	Input view pair	Virtual view	Y-PSNR [dB]		
Test sequence			With MPEG depth maps	With VBIGMM + K-Means depth maps	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster : 12

Test sequence: Kendo

With MPEG depth map

With VBDMM Mean-shift depth map

Test sequence: Kendo

With MPEG depth map

With VBDMM Mean-shift depth map

Test sequence: Kendo

Original

With VBDMM + Mean-Shift depth maps

With VBGMM + K-Means depth maps

With MPEG depth maps

Test sequence: Kendo

K-Means

depth maps

With VBDMM Mean-Shift depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

With MPEG depth map

With VBDMM Mean-shift depth map

Original

With VBDMM Mean-Shift depth maps

With VBGMM K-Means depth maps

With MPEG depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

Original

With VBDMM Mean-Shift depth maps

With VBGMM K-Means depth maps

With MPEG depth maps

Conclusions

- The inter-view depth consistency and hence, the free-viewpoint experience improve
- The per-pixel association between depth and color is exploited by classification
- Depth subclassification improves depth maps and hence, view rendering quality
- Both objective and subjective results improve

Future Directions

- A fully probabilistic multiview depth image enhancement
 - With color classification performance
 - With computational efficiency
 - Improve depth sub-clustering

Thank You

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

Multiview color classification

Dirichlet mixture model with variational Bayes inference

^[1] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. New York: Springer, 2006.

^[2] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, "Bayesian estimation of Dirichlet mixture model with variational inference," IEEE Trans. PAMI, submitted, 2013.

Dirichlet Plot Details

- For probability density function of Dirichlet distribution $\alpha = [2\ 10\ 15]$
- For probability density function of Dirichlet mixture model parameters $\alpha_1 = [6\ 2\ 4]$ and $\alpha_2 = [3\ 8\ 5]$ with mixture weights $\pi_1 = 0.3$ and $\pi_2 = 0.7$, respectively.

Probability density function of Dirichlet distribution

Probability density function of Dirichlet mixture model

With MPEG depth map

With VBDMM Mean-shift depth map

With MPEG depth map

With VBDMM Mean-shift depth map

Original depth maps

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

Original depth maps

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

Test sequence: Balloons

With MPEG depth map

With VBDMM Mean-shift depth map

Test sequence: Balloons

With MPEG depth map

With VBDMM Mean-shift depth map

Test sequence: Balloons

Original depth maps

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

Original depth maps

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

With MPEG depth map

With VBDMM Mean-shift depth map

Original

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps