LISTA 3 - CICLO REAIS DE NEGÓCIOS (RBC) DATA DE ENTREGA: 14/08/2025 (23:59)

Exercício 1 (RBC)

Este exercício apresenta uma discussão sobre alguns aspectos teóricos subjacentes à construção dos modelos de Real Business Cycle (RBC). Antes de mais nada, devemos apresentar as hipóteses dessa questão:

- **Tempo:** o tempo é discreto, t = 0, 1, 2, ..., e o horizonte é infinito.
- Preferências: a economia é composta por um continuum de indivíduos iguais que vivem infinitamente e maximizam seu fluxo esperado de utilidade, dado por $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t, l_t)$, em que $\beta \in (0, 1)$. Supõe-se que u(c, l) é côncava e crescente no consumo c e no lazer l, e duas vezes continuamente diferenciável.
- **Dotações:** a única dotação de cada indivíduo é uma unidade de tempo, que pode ser dividida entre trabalho n e lazer l.
- Tecnologia: F(K, N) é duas vezes continuamente diferenciável, côncava e homogênea de grau 1. Além disso, F(K, N) satisfaz as condições de Inada com respeito ao capital. Supomos que o produto da economia pode ser usado para consumo ou investimento, $y_t = c_t + i_t$, e que o capital se deprecia a uma taxa $\delta \in (0, 1)$, sem crescimento.
- Incerteza: o produto y_t é dado por $y_t = A_t F(K_t, N_t)$, em que A_t é um choque aleatório de produtividade, cuja lei de movimento é dada por $\ln(A_t) = \rho \ln(A_{t-1}) + \varepsilon_t$, em que $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$ e $\rho \in (0, 1)$.

Tendo em vista as hipóteses acima, responda aos itens abaixo.

- (a) Monte o problema do planejador central na versão sequencial e na versão recursiva. Obtenha as condições de primeira ordem do problema recursivo e monte o sistema de equações que permite caracterizar as funções políticas de capital, consumo e de oferta de trabalho.
- (b) Suponha que os consumidores sejam donos do estoque de capital e que façam três decisões inter-relacionadas: quanto trabalho oferecer n, quanto capital acumular k' e quanto consumir c. Monte o problema do consumidor representativo na versão recursiva e o problema da firma. Defina um equilíbrio competitivo recursivo para essa economia.
- (c) Obtenha as condições de primeira ordem dos problemas do item 2. O que pode ser afirmado a respeito da conexão entre os problemas dos itens anteriores? Você pode apenas argumentar o que seria feito para demonstrar a equivalência entre os problemas.

- (d) Suponha, agora, que exista um governo nessa economia e que ele cobra impostos sobre a renda do trabalho por meio de uma taxa τ, que pode ser uma função do estado agregado. O governo pega essa receita e gasta com bens públicos que não geram utilidade diretamente para o agente representativo. Diante dessa alteração, repita o que foi feito no item (b).
- (e) A alocação eficiente referente ao problema do item (d) coincidirá com as alocações de equilíbrio do item correspondente? Justifique. Algo mudaria se o governo transferisse a receita desses impostos de forma proporcional ao consumo entre os agentes, em vez de gastar em bens públicos?

Exercício 2 (RBC sem Capital - P1, 2024)

Suponha uma seguinte economia com horizonte infinito e incerteza descrita abaixo:

• Preferências:

$$\mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left[\frac{c_t^{1-\gamma}}{1-\gamma} - \psi \frac{L_t^{1+\phi}}{1+\phi} \right] \right\}$$

• Tecnologia:

$$Y_t = A_t L_t$$

$$C_t \le Y_t$$

$$\ln A_t = \rho \ln A_{t-1} + \varepsilon_t$$

$$\varepsilon_t \sim \text{ iid } \mathcal{N}(0, \sigma^2)$$

Suponha que, apesar da inexistência de capital, existe um mercado intertemporal aberto. Neste mercado são negociados títulos que dão direito a uma unidade de consumo no período seguinte, independente de qual estado seja realizado. Estes títulos sõa negociados aos preços $q(s^t)$ na história s^t e estão disponíveis em oferta líquida zero.

- (a) Escreva o problema do agente representativo em uma implementação centralizada e defina um equilíbrio competitivo (não recursivo).
- (b) Caracterize a alocação de equilíbrio competitivo de forma mais completa possível.
- (c) Como o emprego responde a um choque positivo de produtividade? Como esta resposta depende de γ e de ρ ? Explique.
- (d) Como a taxa de juros livre de risco $(1 + r^f = 1/q(s^t))$ responde a um choque positivo de produtividade? Explique.

Exercício 3 (Simulação de RBC)

Em aula, vimos uma solução analítica para o seguinte modelo de RBC:

$$\max_{C_t, N_t, I_t} \quad \mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left[\ln C_t + \chi \ln(1 - N_t) \right] \right\}$$
s.a.
$$C_t + I_t = z_t K_t^{\alpha} N_t^{1-\alpha}$$

$$K_{t+1} = I_t$$

$$\ln z_t = \rho \ln z_{t-1} + \sigma \varepsilon_t, \quad \varepsilon_t \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$

Ou seja, fizemos hipóteses específicas sobre a função utilidade e a depreciação completa do capital. Neste modelo, chegamos à representação do log do produto como um processo AR(2):

$$\ln Y_{t+1} = (1 - \rho)\Gamma + (\rho + \alpha) \ln Y_t - \alpha \rho \ln Y_{t-1} + \sigma \varepsilon_{t+1}$$

em que $\Gamma \equiv \alpha \ln s + (1 - \alpha) \ln \overline{N}$ e $\ln z_{t+1} = \rho \ln z_t + \sigma \varepsilon_{t+1}$. O código base para a realização deste exercício se encontra na wiki.

- (a) Compute as autocorrelações de primeira e segunda ordem do log do produto.
- (b) Agora, volte ao modelo e veja como as variáveis se relacionam. Compute as autocorrelações de primeira ordem do consumo, investimento, horas trabalhadas, e TFP (resíduo de Solow). Use as variáveis em log.
- (c) Compute o desvio padrão das variáveis do item anterior, assim como o produto. Discuta quanto da variação do (log do) produto é associada à variação de horas, estoque de capital e TFP (todas em logs). Dica: olhe para a função de produção, em logs.
- (d) Como você interpretaria os resultados dos itens anteriores à luz dos fatos estilizados da literatura de *Real Business Cycles*?

Exercício 4 (Oferta de trabalho e RBC - P1, 2023)

Suponha uma economia sem capital com um agente representativo com preferências descritas por

$$\sum_{t=0}^{\infty} \beta^t \left[C_t - \frac{N_t^{1+\phi}}{1+\phi} \right]$$

em que N_t são horas trabalhadas e a produção é dada por

$$Y_t = Z_t N_t$$

e \mathbb{Z}_t é uma sequência pré-determinada de TFP.

- (a) Derive o efeito de equilíbrio de um choque de TFP sobre emprego, produto e a taxa de juros.
- (b) O que acontece se houver crescimento de longo prazo de Z_t ?
- (c) Como preferências da forma

$$\ln(C_t) - \frac{N_t^{1+\phi}}{1+\phi}$$

afetariam o resultado acima? Interprete.

(d) Em que medida o modelo com estas novas preferências teriam sucesso e insucesso em replicar os fatos estilizados de RBC?

Exercício 5 (RBC log-linearizado)

Considere o problema do planejador central de maximizar uma utilidade

$$\mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left[\log(c_t) + \log(l_t) \right] \right\}$$

sujeita a uma restrição de recursos

$$c_t + k_{t+1} = z_t k_t^{\alpha} n_t^{1-\alpha} + (1-\delta)k_t \quad \text{com } k_0 \text{ dado}$$

e uma restrição de dotação de tempo

$$n_t + l_t = 1$$

Suponha que o logaritmo do choque tecnológico siga um processo AR(1):

$$\log(z_{t+1}) = \rho \log(z_t) + \varepsilon_t, \quad \text{com } 0 < \rho < 1$$

onde $\{\varepsilon_{t+1}\}$ é um ruído branco Gaussiano, e a realização inicial z_0 é dada.

- (a) Derive as condições de primeira ordem que caracterizam as escolhas ótimas de consumo, emprego e formação de capital.
- (b) Suponha que os parâmetros do modelo são esses descritos na tabela abaixo.

Símbolo	Nome	Valor
β	fator de desconto	0,99
α	fatia do capital na produção	0,33
δ	depreciação do capital	0,04
ρ	autocorrelação do choque de tecnologia	0,95

(c) Log-linearize o modelo em torno de seu *steady state* determinístico. Mostre que o modelo log-linearizado pode ser escrito da seguinte forma:

$$0 = AX_{t} + BX_{t-1} + CY_{t} + DZ_{t}$$

$$0 = \mathbb{E}_{t} \left\{ FX_{t+1} + GX_{t} + HX_{t-1} + JY_{t+1} + KY_{t} + LZ_{t+1} + MZ_{t} \right\}$$

$$Z_{t+1} = NZ_{t} + \varepsilon_{t+1}$$

Encontre soluções que caracterizem cada um dos coeficientes A, B, \ldots, N . Nas equações acima, X_t é um vetor de variáveis de estado endógenas, Y_t contém as variáveis de controle, e Z_t contém as variáveis de estado exógenas. Como parte da sua resposta, explicite quais variáveis estão contidas em X_t , Y_t e Z_t .