Chapter 6: Inner product spaces

Zelong Kuang 13/05/2024

Contents

A: Inner products and Norms

3

A: Inner products and Norms

Problem: 1

Show that the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2$ to $|x_1y_1| + |x_2y_2|$ is not an inner product on \mathbb{R}^3

Proof. For $((1,1),(1,1)),((-1,-1),(1,1)) \in \mathbb{R}^2 \times \mathbb{R}^2$, we have

$$|1 \cdot 1| + |1 \cdot 1| = 2$$

for both two vectors. But on the same hand, we also have

$$((1,1),(1,1)) + ((-1,-1),(1,1)) = ((0,0),(1,1))$$
$$= |0 \cdot 1| + |0 \cdot 1| = 0$$

This could not be an inner product since it violates the additivity property of inner products.

Problem: 2

Show that the function that takes $((x_1, x_2, x_3), (y_1, y_2, y_3)) \in \mathbb{R}^3 \times \mathbb{R}^3$ to $x_1y_1 + x_3y_3$ is not an inner product on \mathbb{R}^3

Proof. It take (0,1,0) to zero while $(0,1,0) \neq 0$

Problem: 3

Suppose $\mathbb{F}=\mathbb{R}$ and $V\neq\{0\}$. Replace the positivity condition (which states that $\langle v,v\rangle\geq 0$ for all $v\in V$) in the definition of an inner product with the condition that $\langle v,v\rangle>0$ for some $v\in V$. Show that this new definition of an inner product does not change the set of functions from $V\times V$ to \mathbb{R} that are inner products on V.

Proof. We show that the two condition are equivalent on the given space. Suppose the positivity condition is satisfied, then the new condition is obviously true for some $v \in V$.

Now we suppose the new condition is satisfied, then for all $v \in V$, we have

$$\langle v, v \rangle =$$

Problem: 8