Leis dos Grandes Números

- Jogar um dado
 - Qual a probabilidade de "tirar" seis?
 - 1/6 = 0,1666
- Jogar um dado seis vezes, e somar os valores, qual seria o resultado esperado?

$$\frac{1+2+3+4+5+6}{6} = 3.5$$

PE

Jogar um Dado

Jogar um Dado

4	4	3.333333	2.666667	5.166667	3.833333	4.166667	3.5	4.833333	3.5	
4	6	3	3	6	5	6	2	2	6	
1	4	4	3	3	5	6	6	6	2	
3	6	2	4	5	2	5	1	6	3	
6	2	4	3	5	2	1	1	6	5	
6	2	5	2	6	5	1	6	5	2	
4	4	2	1	6	4	6	5	4	3	

Média 3,9 PE₂

Jogar um Dado

Leis dos Grandes Números

- Probabilidade Esperada: 3,5
- PE₁: 4,333
- PE₂: 3,9
- PE₃: 3,539

Quando mais um evento se repete, maior a chance dele se aproximar da probabilidade esperada

Pequenas amostras não tem, necessariamente, as mesmas propriedades da população (enviesamento)

Isso é importante?

Isso é importante?

Isso é importante?

> Performance da equipe na primeira semana

