

EE3414 Multimedia Communication Systems - I

Sampling and Interpolation

Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao

Outline

- Basics of sampling and quantization
 - A/D and D/A converters
- Sampling
 - Nyquist sampling theorem
 - Aliasing due to undersampling:
 - temporal and frequency domain interpretation
 - Sampling sinusoid signals
- Reconstruction from samples
 - Reconstruction using sample-and-hold and linear interpolation
 - Frequency domain interpretation (sinc pulse as interpolation kernel)
- Sampling rate conversion
 - Down sampling
 - Up sampling
 - Demonstration

Analog to Digital Conversion

A2D_plot.m

Two Processes in A/D Conversion

- Sampling: take samples at time nT
 - T: sampling period;
 - $f_s = 1/T$: sampling frequency

$$x[n] = x(nT), -\infty < n < \infty$$

- Quantization: map amplitude values into a set of discrete values $\pm pQ$
 - Q: quantization interval or stepsize

$$\hat{x}[n] = Q[x(nT)]$$

How to determine T and Q?

- T (or f_s) depends on the signal frequency range
 - A fast varying signal should be sampled more frequently!
 - Theoretically governed by the Nyquist sampling theorem
 - $f_s > 2 f_m$ (f_m is the maximum signal frequency)
 - For speech: $f_s >= 8$ KHz; For music: $f_s >= 44$ KHz;
- Q depends on the dynamic range of the signal amplitude and perceptual sensitivity
 - Q and the signal range D determine bits/sample R
 - $2^R = D/Q$
 - For speech: R = 8 bits; For music: R = 16 bits;
- One can trade off T (or f_s) and Q (or R)
 - lower R -> higher f_s ; higher R -> lower f_s
- We consider sampling in this lecture, quantization in the next lecture

Nyquist Sampling Theorem

Theorem:

- If $x_c(t)$ is bandlimited, with maximum frequency $f_m(\text{or } \omega_m = 2\pi f_m)$
- and if $f_s = 1/T > 2 f_m$ or $\omega_s = 2\pi/T > 2 \omega_m$
- Then $x_c(t)$ can be reconstructed perfectly from $x[n] = x_c(nT)$ by using an ideal low-pass filter, with cut-off frequency at $f_s/2$
- $f_{s0} = 2 f_m$ is called the *Nyquist Sampling Rate*

Physical interpretation:

Must have at least two samples within each cycle!

Temporal Domain Interpretation: Sampling of Sinusoid Signals

Sampling above Nyquist rate $\omega_s=3\omega_m>\omega_{s0}$

Reconstructed = original

Sampling under Nyquist rate $\omega_s=1.5\omega_m<\omega_{s0}$

Reconstructed \= original

Aliasing: The reconstructed sinusoid has a lower frequency than the original!

Frequency Domain Interpretation of Sampling

Original signal

Sampling impulse train

Sampled signal ω_s >2 ω_m

Sampled signal ω_s <2 ω_m (Aliasing effect)

The spectrum of the sampled signal includes the original spectrum and its aliases (copies) shifted to $k f_s$, k=+/-1,2,3,... The reconstructed signal from samples has the frequency components upto $f_s/2$.

When $f_s < 2f_m$, aliasing occur.

Sampling of Sinusoid in Frequency Domain

More examples with Sinusoids

- Demo from DSP First, Chapter 4, aliasing and folding demo
 - Aliasing: $f_s < f_m$ (perceived frequency: $f_m f_s$)
 - Folding: $f_m < f_s < 2f_m$ (perceived frequency: $f_s f_m$)
 - No need to distinguish these two phenomena. Both lead to a false frequency lower than the original frequency

Strobe Movie

• From DSP First, Chapter 4, Demo on "Strobe Movie"

How to determine the necessary sampling frequency from a signal waveform?

- Given the waveform, find the shortest ripple, there should be at least two samples in the shortest ripple
- The inverse of its length is approximately the highest frequency of the signal

©Yao Wang, 2006 EE3414: Sampling 12

Sampling with Pre-Filtering

- If $f_s < 2f_m$, aliasing will occur in sampled signal
- To prevent aliasing, pre-filter the continuous signal so that $f_m < f_s/2$
- Ideal filter is a low-pass filter with cutoff frequency at $f_s/2$ (corresponding to sync functions in time)
- •Common practical pre-filter: averaging within one sampling interval

How to Recover Continuous Signals from Samples?

- Connecting samples using interpolation kernels
 - Sampling and hold (rectangular kernels)
 - Linear interpolation (triangular kernels)
 - High order kernels
 - Ideal kernel: sinc function

Sample-and-Hold vs. Linear Interpolation

Reconstruction Using Different Kernels

 Demo from DSP First, Chapter 4, demo on "reconstruction"

Frequency domain interpretation

Original signal

Sampled signal ω_s >2 ω_m

Ideal reconstruction filter (low-pass)

Reconstructed signal (=Original signal)

Ideal Interpolation Filter

$$H_r(f) = \begin{cases} T & |f| < f_s / 2 \\ 0 & otherwise \end{cases}$$

$$h_r(t) = \frac{\sin \pi \, t / T}{\pi \, t / T}$$

$$x_{r}(t) = x_{s}(t) * h_{r}(t) = \sum_{n = -\infty}^{\infty} x[n] h_{r}(t - nT) = \sum_{n = -\infty}^{\infty} x[n] \frac{\sin[\pi(t - nT)/T]}{\pi(t - nT)/T}$$

Sampling Rate Conversion

- Given a digital signal, we may want to change its sampling rate
 - Necessary for image display when original image size differs from the display size
 - Necessary for converting speech/audio/image/video from one format to another
 - Sometimes we reduce sample rate to reduce the data rate
- Down-sampling: reduce the sampling rate
- Up-Sampling: increase the sampling rate

Down-Sampling Illustration

Down-sampling by a factor of 2 = take every other sample

To avoid aliasing of any high frequency content in the original signal, should smooth the original signal before down-sampling --Prefiltering

Down Sampling by a Factor of M

- Take every M-th sample from existing samples
 - T'=MT, fs'=fs/M
- Should apply a prefilter to limit the bandwidth of the original signal to 1/M-th of the original
- Without prefiltering, aliasing occur in the down-sampled signal.
- Ideal prefilter: low pass filter with cut-off frequency at 1/M (maximum digital frequency=1, corresponding to fs/2)
- Practical filter: averaging or weighted average over a neighborhood

Down-Sampling Example

- Given a sequence of numbers, down-sample by a factor of 2,
 - Original sequence: 1,3,4,7,8,9,13,15...
 - Without prefiltering, take every other sample:
 - 1,4,8,13,...
 - With 2-sample averaging filter
 - Filtered value=0.5*self+0. 5*right, filter h[n]=[0.5,0.5]
 - Resulting sequence:
 - 2, 5.5,8.5,14,...
 - With 3-sample weighted averaging filter
 - Filtered value=0.5*self+0.25*left+0.25*right, filter h[n]=[0.25,0.5,0.25]
 - Resulting sequence (assuming zeros for samples left of first):
 - 1.25, 4.5,8,12.5,...

Upsampling by linear interpolation

Missing samples need to be filled from neighboring available samples using interpolation filter

Up Sampling by a Factor of L

- Insert *L-1* samples between every two existing samples
 - *T'=T/L*, *fs'=fs*L*
 - The estimation of the missing samples from original samples is known as interpolation
- Interpolation can be decomposed into two steps
 - Zero-padding: insert L-1 zeros in between every two samples
 - Low-pass filtering: to estimate missing samples from neighbors
 - Simplest interpolation filter: linear interpolation

©Yao Wang, 2006 EE3414: Sampling 24

Up-Sample Example

- Given a sequence of numbers, up-sample by a factor of 2
 - Original sequence: 1,3,4,7,8,9,13,15...
 - Zero-padding:
 - 1,0,3,0,4,0,7,0,...
 - Sample and hold
 - Repeat the left neighbor, filter h[n]=[1,1]
 - 1,1,3,3,4,4,7,7,...
 - With linear interpolation
 - New sample=0.5*left+0. 5*right, filter h[n]=[0.5,1,0.5]
 - Resulting sequence:
 - $-1,2,3,3.5,4,5.5,7,8,\ldots$

Demonstration

- Demonstrate the effect of down-sampling with different pre-filters, and up-sampling with different interpolation filters
- Compare both sound quality and frequency spectrum
- Matlab code (sampling_demo.m)

Down-2 followed by up-2, both using good filters

Down-2 followed by up-2, both using bad filters

Down-4 followed by up-4, both using good filters

Down-4 followed by up-4, both using bad filters

MATLAB Code

• Go through the code

What Should You Know (I)

Sampling:

- Know the minimally required sampling rate:
 - $f_s > 2 f_{max}$ $T_s < T_{0,min} / 2$
 - Can estimate $T_{0,min}$ from signal waveform
- Can illustrate samples on a waveform and observe whether the signal is under-sampled.
- Can plot the spectrum of a sampled signal
 - The sampled signal spectrum contains the original spectrum and its replicas (aliases) at kf_s k=+/-1,2,...
 - Can determine whether the sampled signal suffers from aliasing
- Understand why do we need a prefilter when sampling a signal
 - To avoid alising
 - Ideally, the filter should be a lowpass filter with cutoff frequency at f_s /2.
- Can show the aliasing phenomenon when sampling a sinusoid signal using both temporal and frequency domain interpretation

What Should You Know (II)

Interpolation:

- Can illustrate sample-and-hold and linear interpolation from samples.
- Understand why the ideal interpolation filter is a lowpass filter with cutoff frequency at f_s /2.
- Know the ideal interpolation kernel is the sinc function.
- Interpolation using the sinc kernel is NOT required

Sampling Rate Conversion:

- Know the meaning of down-sampling and upsampling
- Understand the need for prefiltering before down-sampling
 - To avoid aliasing
 - Know how to apply simple averaging filter for downsampling
- Can illustrate up-sampling by sample-and-hold and linear interpolation

References

- McClellan, Schafer and Yoder, DSP First, Chap. 4
 - Has good conceptual / graphical interpretation (copies provided, Sec. 4.3,4.5 not required)
- Y. Wang, *EL514 Lab Manual*, Exp2: Voice and audio digitization and sampling rate conversion. Sec. 1,2. (copy provided)
- Oppenheim and Willsky, Signals and Systems, Chap. 7.
 - Optional reading (More depth in frequency domain interpretation)