Binary Seench Divide: - Split it in half; Conquer - Solve one of the holver Courbine - trivial

Maximm Subanay Problem
Input: An away A of numbers, both positive and negative.
Output: A subanay of A w/ Biggest sum.
with

contiguous region

 $G_{K'}$. A = -5, -6, -3, -2, 7, -6, 2

Algorithm: Consider all possible subanays. "Brute Force" Fint	
for $i = 1$ to n $G(n^2) - for j = i+1 \text{ to } n.$ $Sum = \text{Dum}(A(ij))$ $Sum = \text{Sum}(A(ij))$ refum biggest sum we have seen.	$O(n^3)$ Can be improved $O(n^2)$

Divide and Conquer approach.
Divide: Split problem into two subproblems.
Aleft, Aright Live halves
Conquer: Find Max-subanay of Aleft and Max-Subanay of Aright.
[-5-63-2] [-62]
Aleft Azight. Idea: Consider the subarroug that consists of the two sub-solutions and everything between
Mem. 35 23

Opt. sol: either 1) In Aleff 2) In Aright

Find Max Left Subanay (A, mid).

running Sum = 0

O(n) for i = mid down to 0.

O(i) unning Sum += A[i]

return Max running sum found.

 $T(n) = 2.T(\frac{1}{2}) + O(n)$ T(n) = O(n log n)

Tun fine for impuls
of size n