QIJING JENNY HUANG

♦ Soda Hall #565 ADEPT Lab, Berkeley, CA94720

♦ Email: qijing.huang@eecs.berkeley.edu Cell: +1 510 542 7788

♦ URL: https://people.eecs.berkeley.edu/~qijing.huang/

RESEARCH INTERESTS

Hardware Acceleration, Compiler Optimizations, Design Methodology with High-Level Synthesis (HLS), Machine Learning for Design Automation

EDUCATION

University of California, Berkeley

Sep 2015 - Now

PhD, Electrical Engineering and Computer Science

University of Toronto

Sep 2010 - May 2015

Bachelor of Applied Science, Electrical & Computer Engineering Graduated with High Honours

TECHNICAL SKILLS

Programming & Tools

C/C++, OpenCL, CUDA, Go, OpenMP/MPI, Python, Perl, Java, Scala, Verilog, Chisel, Tcl, Git, Tensorflow, Pytorch, Spark, Quartus, Vivado

PROFESSONAL EXPERIENCE

~ .	~	~ .
Google,	Sunnyvale.	CA

Aug 2020 - Now

· Student Researcher

Google, Sunnyvale, CA

May 2020 - Aug 2019

· Hardware Engineer Intern

Facebook, Menlo Park, CA

May 2019 - Aug 2019

· AI Infrastructure Research Intern

Intel Labs, Santa Clara, CA

June 2016 - Aug 2016

· Parallel Computing Graduate Lab Technician

Altera (Intel FPGA), Toronto, ON

May 2013 - Aug 2014

· Software Engineer

University of Toronto, Toronto, ON

Summer 2013

· Research Assistant

University of Toronto, Toronto, ON

Summer 2012

· Research Assistant

HONORS

University of Toronto Excellence Award

University of Toronto Scholar

- 1. Farshchi, F., Huang, Q., & Yun, H. (2020). Bru: Bandwidth regulation unit for real-time multicore processors. In 2020 ieee real-time and embedded technology and applications symposium (RTAS) (pp. 364–375). (Paper)
- 2. Settaluri, K., Haj-Ali, A., Huang, Q., Hakhamaneshi, K., & Nikolic, B. (2020). Autockt: Deep reinforcement learning of analog circuit designs. In *Design*, automation & test in europe conference & exhibition (DATE) (pp. 1–6). (Paper)
- 3. Haj-Ali, A*, Huang, Q*, Xiang, J., Moses, W., Asanovic, K., Wawrzynek, J., & Stoica, I. (2020). Autophase: Juggling hls phase orderings in random forests with deep reinforcement learning. *Proceedings of Machine Learning and Systems*, 2. (Paper, Slides, Github)
- 4. Huang, Q*, Wang, D*, Gao, Y., Cai, Y., Dong, Z., Wu, B., Keutzer, K., & Wawrzynek, J. (2019). Algorithm-hardware co-design for deformable convolution. In The 5th workshop on energy efficient machine learning and cognitive computing co-located with the 33rd conference on neural information processing systems neurips 2019 (EMC²). (Paper)
- 5. Huang, Q., Yarp, C., Karandikar, S., Pemberton, N., Brock, B., Ma, L., ... Wawrzynek, J. (2019). Centrifuge: Evaluating full-system HLS-generated heterogeneous-accelerator SoCs using FPGA-Acceleration. In *Proceedings of the 38th international conference on computer-aided design (IC-CAD)*. (Paper, Slides, Github)
- 6. Huang, Q*, Haj-Ali, A*, Moses, W., Xiang, J., Stoica, I., Asanovic, K., & Wawrzynek, J. (2019). AutoPhase: Compiler Phase-Ordering for HLS with Deep Reinforcement Learning. In 2019 ieee 27th annual international symposium on field-programmable custom computing machines (FCCM) (pp. 308–308). (Paper)
- 7. Yang, Y., Huang, Q., Wu, B., Zhang, T., Ma, L., Gambardella, G., ... others (2019). Synetgy: Algorithm-hardware co-design for convnet accelerators on embedded FPGAs. In *Proceedings of the 2019 acm/sigda international symposium on field-programmable gate arrays (FPGA)* (pp. 23–32). (Paper, Slides)
- 8. Wu, L., Bruns-Smith, D., Nothaft, F. A., Huang, Q., Karandikar, S., Le, J., ... others (2019). FPGA Accelerated INDEL Realignment in the Cloud. In 2019 ieee international symposium on high performance computer architecture (HPCA) (pp. 277–290). (Paper)
- 9. Farshchi, F., Huang, Q., & Yun, H. (2019). Integrating nvidia deep learning accelerator (nvdla) with risc-v soc on firesim. In 2019 2nd workshop on energy efficient machine learning and cognitive computing for embedded applications (EMC²) (pp. 21–25). (Paper)
- 10. Karandikar, S., Mao, H., Kim, D., Biancolin, D., Amid, A., Lee, D., ... others (2018). FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the public cloud. In *Proceedings of the 45th annual international symposium on computer architecture (ISCA)* (pp. 29–42). (Paper)
- 11. Cheng, S., Huang, Q., & Wawrzynek, J. (2017). Synthesis of program binaries into FPGA accelerators with runtime dependence validation. In 2017 international conference on field programmable technology (FPT) (pp. 96–103). (Paper, Slides, Best Paper Award)
- 12. Huang, Q., Lian, R., Canis, A., Choi, J., Xi, R., Calagar, N., ... Anderson, J. (2015). The effect of compiler optimizations on high-level synthesis-generated hardware. *ACM Transactions on Reconfigurable Technology and Systems (TRETS)*, 8(3), 14. (Paper)

- 13. Huang, Q., Lian, R., Canis, A., Choi, J., Xi, R., Brown, S., & Anderson, J. (2013). The effect of compiler optimizations on high-level synthesis for FPGAs. In 2013 ieee 21st annual international symposium on field-programmable custom computing machines (FCCM) (pp. 89–96). (Paper)
- 14. Canis, A., Choi, J., Fort, B., Lian, R., Huang, Q., Calagar, N., ... others (2013). From software to accelerators with LegUp high-level synthesis. In *Proceedings of the 2013 international conference on compilers, architectures and synthesis for embedded systems* (p. 18). (Paper)

OTHER RESEARCH PROJECTS

Golang HLS (Report)(Github)	2017
JCGAN Car Image Synthesis with GAN (Report)(Github)	
Spark Twitter Language Classifier on GPU (Report)(Github)	2016
Reconfigurable Garp Coprocessor in Chisel (Report)(Github)	

TEACHING ASSISTANTSHIPS

CS267 Applications of Parallel Computers

CS61C Great Ideas in Computer Architecture

INVITED TALKS AND LECTURES

ML for Computer Architecture and Systems Workshop at ISCA (MLArchSys)

· Algorithm-Hardware Co-Design for Edge DNN Deployment and ML for Hardware Design

Google (Slides) Host: Phitchaya Mangpo Phothilimthana 2020

2020

· AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep Reinforcement Learning

Xilinx (Slides) Host: Kees Vissers 2019

· Synetgy: Algorithm-hardware Co-design for ConvNet Accelerators on Embedded FPGAs

EECS151/251 Introduction to Digital Design and Integrated Circuits (Slides) 2019, 2020

 \cdot Deep Learning Accelerators and High-level Synthesis

PROFESSIONAL SERVICE

Conference Review

- · 2020 FPGA
- · 2019 FPGA, FPL
- \cdot 2018 FPGA, FCCM
- · 2016 FPGA

Artifact Evaluation

· 2020 ASPLOS

Student Organization

· 2017 Women in Computer Science and Electrical Engineering (WICSE) Treasurer