# Measurement of $D\overline{D}$ Decays from the $\psi(3770)$ Resonance

Andy Julin

University of Minnesota - Twin Cities

May 11th, 2017

Andy Julin (UMN) Thesis Defense May 11th, 2017 1 / 64

### Overview

- Introduction
- 2 Theoretical Background
- 3 Accelerator and Detector
- 4 Analysis Software
- 5 Measurement of the  $D\overline{D}$  Cross Section
- **6** Measurement of the Non- $D\overline{D}$  Branching Fraction
- Conclusion

# Introduction

### Introduction

Describe basic meaning of  $\psi(3770) o D\overline{D}$  cross section

Andy Julin (UMN) Thesis Defense

### Previous Measurements

Show list of previous experimental results Explain need for interference

## Really Quick Overview

Describe need to measure decay products
Describe background subtraction
Describe getting counts to determine cross section

# Theoretical Background

### **Fundamental Forces**

- 1) Electromagnetic (QED)
  - Responsible for attracting / repelling electrically charged objects
  - Mediated by the massless photon  $(\gamma)$
  - Very precisely calculable using perturbation theory
- 2) Weak
  - Responsible for radioactive decays and flavor changes
  - ullet Mediated by the very heavy  $W^\pm$  and Z
  - Led to discovery of C and CP violation
- 3) Strong (QCD)
  - Responsible for binding together hadrons
  - Mediated by the massless gluon (g)
  - Complicated calculations not described by perturbation theory
- 4) Gravity Negligible at this mass scale

### Standard Standard Model Slide



### Charmonium

Resonances formed by a  $c\bar{c}$  pair:  $J/\psi$ ,  $\psi(2S)$ ,  $\psi(3770)$ , ...

- ullet  $\psi(2S)$  and  $\psi(3770)$  originally interpreted as excited states of  $J/\psi$
- Evidence of mixed-states suggests more complicated picture



Andy Julin (UMN) Thesis Defense May 11th, 2017 10 / 64

### **OZI** Rule



- Requires three gluons for decay
- Very narrow decay width
  - $\Gamma_{\psi(2S)} = 0.286 \, \text{MeV}$

- Decays via open charm  $(D\overline{D})$
- Much wider decay width
  - $\Gamma_{\psi(3770)} = 27.5 \,\mathrm{MeV}$

Addition of  $D\overline{D}$  decays introduces drastically different behavior!

| Andy Julin (UMN) | Thesis Defense | May 11th, 2017 | 11 / 64

# Accelerator and Detector

# Institute of High Energy Physics (IHEP)

BESIII is hosted at the IHEP Campus located in Beijing, China



## Accelerator - Beijing Electron-Positron Collider II (BEPCII)

- Oreate positrons by firing electrons into stationary material
  - Generates high energy  $\gamma$ s which interact with material to form  $e^+e^-$
- Separate newly created positrons magnetically
- Accelerate positrons in linear accelerator and feed into storage ring
- Accelerate electrons and feed into the oppositely circulating ring
  - Electrons readily available, so extraction from photons unnecessary
- Focus each beam using magnets along storage rings until collision





# Detector - Beijing Spectrometer III (BESIII)

Collision of beams tuned to occur at central point of detector

Beams angled during collision to improve integrated luminosity

#### Four main subdetector systems:

- Main Drift Chamber
- Time-of-Flight
- Electromagnetic Calorimeter
- Muon Identifier





# Main Drift Chamber (MDC)

- Reconstruct charged tracks from interactions with sense wires (hits)
  - Wires surrounded by ionizable gas
  - Initial ionization due to particle triggers avalanche of electrons
  - High electric field near wires draws in released electrons to measure energy deposited
- Determine properties of particle from curvature in magnetic field
  - Radius determines momentum
  - Direction determines charge
- Energy deposition rate (dE/dx) helps determine particle candidate

### **BESIII Event Display**



# Time-of-Flight (ToF)

- Measure particle velocity using travel time after initial collision
  - Scintillator bands located at 0.81 m and 0.86 m from interaction point
  - Attached to photomultiplier tubes to measure light output
- Helps distinguish between  $K^{\pm}$  and  $\pi^{\pm}$  candidates at lower momenta
  - Combined with dE/dx measurements in MDC to set particle hypothesis

# 

#### ToF Measurements



# Electromagnetic Calorimeter (EMC)

- Measure energy deposited by electron and photon tracks
  - Other particles are generally relativistic and thereby minimum ionizing
    - These deposit relatively constant energy, independent of momenta
  - Use CsI(TI) crystals attached to photodiodes to measure energy
    - Energy lost primarily in gaps of arrangement or out the back of crystals
- Allows reconstruction of purely neutral decays, such as  $\pi^0 o \gamma \gamma$



Andy Julin (UMN) Thesis Defense May 11th, 2017 18 / 64

# Muon Identifier (MUC)

- Identify tracks traversing through multiple layers as muons
  - Most particle types will be stopped before reaching the MUC
    - Electrons susceptible to Bremsstrahlung radiation
    - Kaons and pions susceptible to strong interactions
  - Requires muons with  $p > 0.4 \,\text{GeV}$  for appropriate curvature



### Triggering System

- Events filtered through two-step process
  - L1: Hardware Extracts information from various subdetectors
    - MDC
      - Examines the number of superlayers each track passes through Superlayer: a collection of wires at same radial distance
      - Applies a cut on minimum transverse momentum for each
    - ToF
      - Examines number of hits in barrel and endcap regions
      - Checks for hits which are on opposite sides of the detector
    - EMC
      - Examines clustering of deposited energy around local maximum
  - L3: Software Assembles information to decide if potentially relevant
- Quickly and efficiently removes non-physics background events
  - $\bullet$  e.g., reduces beam-related backgrounds from  ${\sim}13\,\text{MHz}$  to  ${\sim}1\,\text{kHz}$

# **Analysis Software**

21 / 64

### Monte Carlo Generation

- Create simulations of detector construction and particle interactions
  - Model material composition and detector arrangement in GEANT4
  - Simulate particle decay behavior using physics generators
  - Generate decays which could be mistaken as  $D\overline{D}$  in reconstruction  $e^+e^- \to \tau^+\tau^-, \quad e^+e^- \to \gamma\psi(2S), \quad e^+e^- \to q\overline{q}, \quad \dots$
- Process samples using BESIII Offline Software System (BOSS)
  - Use information gathered by subdetectors to reconstruct events
  - ullet Extract relevant physical parameters ( $\Delta E,\ m_{BC},\ \ldots$ ) from each
- Identify contributions of generated background samples seen in data
  - Process both data and Monte Carlo (MC) samples identically
  - Subtract background components from data to determine signal events

### Monte Carlo Generators

#### KKMC

- Used to model electroweak interactions:  $e^+e^- \rightarrow f\bar{f} + (n)\gamma$  $f = \{\mu^-, \tau^-, u, d, s, c, b\}$  and  $(n)\gamma = (additional photons)$
- Decays ff pair based on involved fermions (TAUOLA, PYTHIA)
- Takes into account initial- and final-state radiation (ISR / FSR)
  - For resonances, only handles ISR, then passes off  $\gamma^*$  to BesEvtGen

#### BesEvtGen

- Handles resonance decay as well as radiative effects
  - Reduced E<sub>cm</sub> such that only lower mass resonances can be produced
- Babayaga
  - Used to model QED processes:  $e^+e^- \rightarrow \{e^+e^-, \mu^+\mu^-, \gamma\gamma\}$
  - Very accurate results; estimated theoretical uncertainty of 0.1 %
    - High precision required for determination of integrated luminosity

### D-Tagging

• Reconstruct D candidates from decays  $D \to \{\pi^{\pm}, \ K^{\pm}, \ \pi^{0}, \ K_{S}^{0}\}$ 

- Modes selected based on reconstruction efficiency
  - High branching fractions
  - Manageable number of tracks (multiplicity)
- Search through track combinations for those matching reconstructed modes
  - Take best set per mode based on

$$\Delta E = |E_{
m beam} - E_{
m tag}|$$
  $m_{
m BC} = \sqrt{E_{
m beam}^2 - |ec{p_{
m tag}}|^2}$ 

• Allows multiple candidates per event

#### Reconstructed Modes

(0) 
$$D^0 \to K^- \pi^+$$

(1) 
$$D^0 \to K^- \pi^+ \pi^0$$

(3) 
$$D^0 \to K^- \pi^+ \pi^+ \pi^-$$

(200) 
$$D^+ \to K^- \pi^+ \pi^+$$

(201) 
$$D^+ \to K^- \pi^+ \pi^+ \pi^0$$

(202) 
$$D^+ \to K_S^0 \pi^+$$

(203) 
$$D^+ \to K_S^0 \pi^+ \pi^0$$

(204) 
$$D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$$

(205) 
$$D^+ \to K^+ K^- \pi^+$$

<sup>\*</sup>Charge conjugation implied

### Selection Cuts

| $\pi^\pm$ and ${\mathcal K}^\pm$ Selection |                           |                 |  |
|--------------------------------------------|---------------------------|-----------------|--|
| Vertex (xy)                                | $V_{xy} < 1  \mathrm{cm}$ |                 |  |
| Vertex(z)                                  | $ Vz  < 10  \mathrm{cm}$  |                 |  |
| MDC Angle                                  | $ \cos \theta  < 0.93$    |                 |  |
| Pion Probability                           | $P(\pi) > 0$ ,            | $P(\pi) > P(K)$ |  |
| Kaon Probability                           | P(K) > 0                  | $P(K) > P(\pi)$ |  |

### $\gamma$ Selection

| Min. Energy (Barrel) | $E_{EMC} > 25MeV$                         | $( \cos\theta <0.80)$           |
|----------------------|-------------------------------------------|---------------------------------|
| Min. Energy (Endcap) | $E_{EMC} > 50MeV$                         | $(0.84 <  \cos \theta  < 0.92)$ |
| TDC Timing           | $(0 \le t \le 14) \times 50  \mathrm{ns}$ |                                 |

|              | $\pi^0 	o \gamma \gamma$ Selection | $K_S^0 	o \pi^+\pi^-$ Selection      |
|--------------|------------------------------------|--------------------------------------|
| Nominal Mass | $115 < m_{\pi^0} [{ m MeV}] < 150$ | $487 < m_{K_s^0} [\text{MeV}] < 511$ |
| Fit Quality  | $\chi^2 <$ 200, Converged          | $\chi^2 < 100$ , Converged           |

# Measurement of the $D\overline{D}$ Cross Section

#### Procedure

Derive theoretical model used to describe cross section List data samples used for measurement Determine  $E_{\rm cm}$  and  $\mathcal L$  for each data point Identify signal and background components Measure efficiency of reconstruction Combine everything to determine cross section Assess systematic uncertainties

# Derivation of $\sigma(\psi(3770) \to D\overline{D})$ - Part I

Show derivation of cross section

Andy Julin (UMN) Thesis Defense May 11th, 2017 28 / 64

# Derivation of $\sigma(\psi(3770) \to D\overline{D})$ - Part II

Show derivation of cross section

Andy Julin (UMN) Thesis Defense May 11th, 2017 29 / 64

### Form Factors

Explain form factor choices and describe necessary modifications

30 / 64

Andy Julin (UMN) Thesis Defense May 11th, 2017

## Data Samples

Show scan data and describe usage  $\psi(3770)$ , R-scan, and XYZ-scan samples

Andy Julin (UMN) Thesis Defense May 11th, 2017 31 / 64

# Center-of-Mass Energy

Describe measurement and correction process

Andy Julin (UMN) Thesis Defense May 11th, 2017 32 / 64

# Luminosity

Describe measurement process

Andy Julin (UMN) Thesis Defense May 11th, 2017 33 / 64

### Monte Carlo Generation

List included MC samples and explain KKMC modification

Andy Julin (UMN) Thesis Defense May 11th, 2017 34 / 64

## Signal Determination

Describe process of 2D fitting to  $\Delta E$  and  $m_{\rm BC}$ Show example results plot near  $\psi(3770)$ 

### Born Level Event Contribution

Show splitting of Born / ISR events in  $m_{BC}$ 

Andy Julin (UMN) Thesis Defense May 11th, 2017 36 / 64

## **Efficiency Correction**

Describe process of averaging efficiency over all decay modes

Andy Julin (UMN) Thesis Defense May 11th, 2017 37 / 64

#### **CP** Violation Correction

Quickly list process of correcting for CP

Andy Julin (UMN) Thesis Defense May 11th, 2017 38 / 64

## **Cross Section Fitting**

Describe procedure of obtaining  $\psi(3770)$  parameters

Andy Julin (UMN) Thesis Defense May 11th, 2017 39 / 64

## Exponential Results

Show Exponential results

Andy Julin (UMN) Thesis Defense May 11th, 2017 40 / 64

#### Vector Dominance Model Results

Show VDM results

Andy Julin (UMN) Thesis Defense May 11th, 2017 41 / 64

#### Results Overview

Describe quality of fit and interference implication

42 / 64

Andy Julin (UMN) Thesis Defense May 11th, 2017

## Systematic Uncertainties

Describe process of measuring systematics

Andy Julin (UMN) Thesis Defense May 11th, 2017 43 / 64

### Systematics

```
Luminosity \pi^{\pm}/K^{\pm} Tracking \pi^0 Tracking K_S^0 Tracking Single Tag Fitting PDG Branching Fractions Meson Radii *MC Iteration *MC ISR Generation
```

\*Intermediate Resonances

## Model Dependent Systematic

Form Factor assumption

Andy Julin (UMN) Thesis Defense May 11th, 2017 45 / 64

#### Final Results

Show final results with systematics Compare to KEDR and PDG

46 / 64

# Measurement of the Non-DD Branching Fraction

#### Procedure

Event Selection Hadron Cut Methods Signal Counting Fits MC Background Subtraction Efficiency Extrapolation  $D\overline{D}$  Multiplicity Correction Examination of Results for  $\psi(3770)$  Data Background Investigation Examination of Results for Scan Data

#### Data Samples

Show 3650 Data Sets Mention energy measurement

Andy Julin (UMN) Thesis Defense May 11th, 2017 49 / 64

#### **Event Selection**

Charged Track Selection Neutral Track Selection Background Rejection

Andy Julin (UMN) Thesis Defense May 11th, 2017 50 / 64

#### Hadronic Selection

Show SHAD, LHAD, and THAD cut tables

Andy Julin (UMN) Thesis Defense May 11th, 2017 51 / 64

## Signal Counting

Show signal counting fits for data

Andy Julin (UMN) Thesis Defense May 11th, 2017 52 /

## Background Subtraction

List MC samples considered (and note those excluded)
Relate to total number of hadrons found for future extrapolation

## Efficiency Extrapolation

Repeat procedure for new continuum data Extrapolate efficiency based on  $E_{\rm cm}$  Show extrapolation plots for SHAD, LHAD, and THAD

## Procedure for $\psi(3770)$ Data

Repeat procedure for  $\psi(3770)$  data Introduction of new backgrounds and  $D\overline{D}$  component

Andy Julin (UMN)

#### $D\overline{D}$ Correction

Create multiplicity distributions from single-tag events Obtain correction factors for R1 and R2 separately Example plots for  $D^0$  and  $D^+$  of R1

#### Reconstruction Efficiencies

Show example backgrounds for SHAD Describe correction used for  $\gamma\psi(2S)$  events Point out cross sections used by Derrick for  $\psi(3770)$  data

57 / 64

## Initial Attempt - $\psi(3770)$ Data

Show cross section / branching fractions Point out likely high values due to  $\psi(2S)$  shape

Andy Julin (UMN) Thesis Defense May 11th, 2017 58 / 64

## Background Investigation - Part I

Describe alternate estimation for  $\psi(2S)$  events Show branching fraction results with estimation

59 / 64

#### Background Investigation - Part II

Describe alternate estimation ignoring  $\psi(2S)$  events Show branching fraction results with estimation

#### Procedure for Scan Data

Using best information available from  $\psi(3770)$  results Show hadronic cross section over region

#### Results for Scan Data

Show non- $D\overline{D}$  cross section over region Show non- $D\overline{D}$  branching fraction over region

## Conclusion

#### Conclusion

Show overview of measurements for  $D\overline{D}$  cross section and non- $D\overline{D}$  branching fraction List results of parameters for  $\psi(3770)$  List branching fraction range for non- $D\overline{D}$