OSH Homework 1

Problem 1

Job set

Name	Arrive Time	Time Required	Deadline	Difficulty
OSH, Lab	2 days ago	2 days	10 days left	3
Write a VGG16 Network	5 days ago	3 days	20 days left	4
Probability, Homework	today	1 day	6 days left	2
Read PRML	10 days ago	20 days	100 days left	3
Differential Equations, Homework	yesterday	2 days	10 days left	5
CSAPP Malloc Lab, Report	today	1 day	20 days left	1

Schedulable?

$$U = \sum_{i=1}^{n} \frac{T_{\text{cost}}(i)}{T_{\text{remains}}(i)}$$
$$= \frac{2}{10} + \frac{3}{20} + \frac{1}{6} + \frac{20}{100} + \frac{2}{10} + \frac{1}{20}$$
$$\approx 0.967$$

we have $U \leq 1$ So the set of jobs is schedulable.

Scheduler

PRINCIPLE: Earliest deadline first

- 1. Probability, Homework
- 2. OSH, Lab
- 3. Differential Equations, Homework
- 4. CSAPP Malloc Lab, Report
- 5. Write a VGG16 Network
- 6. Read PRML

Problem 2

Code for Context Switch:

```
1 ;void swtch(struct context **old, struct context *new);
2 swtch:
3 ;save old registers
4 movq 8(%rsp), %rax ;put old ptr into eax
5
   popq 0(%rax) ;save old IP
6 movq %rsp, 8(%rax)
    movq %rbx, 16(%rax)
7
8 movq %rcx, 24(%rax)
9 movq %rdx, 32(%rax)
10 movq %rsi, 40(%rax)
    movq %rdi, 48(%rax)
11
12
    movq %rbp, 56(%rax)
13
14
    ;load new registers
15 movq 8(%rsp), %rax
    movq 56(%rax), %rbp
16
    movq 48(%rax), %rdi
17
    movq 40(%rax), %rsi
18
19
    movq 32(%rax), %rdx
20
    movq 24(%rax), %rcx
21
    movq 16(%rax), %rbx
22
    movq 8(%rax), %rsp
23
    pushq 0(%rax)
24 ret
```