

## Regression

# Benötigt: -

#### Aufgabe 1: Auslenkung einer Spiralfeder

Gegeben ist das Drehmoment einer Spiralfeder als Funktion der Auslenkung aus einer Messreihe:

| M in Nm          | 0.188224 | 0.209138 | 0.230052 | 0.250965 | 0.313707 |
|------------------|----------|----------|----------|----------|----------|
| $\varphi$ in rad | 0.698132 | 0.959931 | 1.134464 | 1.570796 | 1.919862 |

- öffne neues Skript "spiralfeder.m"
- erstelle ein Diagramm  $M = f(\varphi)$  mit den Messwerten als rote Kreissymbole
- ermittle durch Regression die Koeffizienten einer Gerade, die den Zusammenhang der Messwerte möglichst gut beschreibt
  - mit den ermittelten
    Koeffizienten berechne man die
    Funktionswerte y der Gerade
    für x-Werte im Bereich (0,6 ...
    2,0) und stelle diese als
    durchgezogene Kurve in dem
    bereits vorhandenen Diagramm
    dar
- neben ordentlichen
   Achsenbeschriftungen ist im
   Diagrammtitel die gefundene
   Geradengleichung anzugeben



#### Aufgabe 2: Elastizitätsmodul eines Verbundwerkstoffes

Gegeben ist das Spannungs-Dehnungs-Diagramm eines Verbundwerkstoffes mit der mechanischen Spannung  $\ ^{\circ}$  und der Dehnung  $\ ^{\varepsilon}$  .

Das Elastizitätsmodul  $E=\sigma/\varepsilon$  in Pa=N/m2 entspricht dabei der Steigung des Spannungs-Dehnungs-Diagramms.

| σ | in MPa | 0        | 306      | 612     | 917      | 1223    | 1529    |
|---|--------|----------|----------|---------|----------|---------|---------|
| € | in m/m | 0        | 0.00183  | 0.00360 | 0.005324 | 0.00702 | 0.00867 |
| σ | in MPa | 1835     | 2140     | 2446    | 2752     | 2767    | 2896    |
| ε | in m/m | 0.010244 | 0.011774 | 0.01329 | 0.01479  | 0.015   | 0.0156  |

- öffne neues Skript "elastizitaetsmodul.m"
- erstelle ein Diagramm  $\sigma = f(\epsilon)$  mit den Messwerten als rote Kreissymbole
- ermittle durch Regression die Koeffizienten einer Gerade, die den Zusammenhang der Messwerte möglichst gut beschreibt
- mit den ermittelten Koeffizienten berechne man die Funktionswerte y der Gerade für x-

- Werte im Bereich (0,0 ... 0,016) und stelle diese als durchgezogene Kurve in dem bereits vorhandenen Diagramm dar
- neben ordentlichen Achsenbeschriftungen ist im Diagrammtitel der gefundene Wert für das Elastizitätsmodul anzugeben
- betrachtet man das Diagramm, so erkennt man, dass die gefundene Gerade nicht durch den Ursprung geht, d.h. zur Verbesserung suchen wir eine Ursprungsgerade mittels Regression deren Steigung dem Elastizitätsmodule entspricht
- setzen sie daher die
   Gleichung y = E\*x derart
   an, dass sie alle
   Messpunkte erfüllt. Das
   so entstehende
   überbestimmte
   Gleichungssystem Ax=b
   ist mit x=A\b regressiv
   zu lösen
   mit der ermittelten
- mit der ermittelten
   Steigung zeichne man die
   Gerade in das
   vorhandene Diagramm
   als punktierte Linie ein
- für die Legende gebe man einmal "Messwerte" an und für die beiden



anderen Kurven den jeweiligen Wert des Elastizitätsmoduls

### Aufgabe 3: Wärmeausdehnung von Stahl

Es geht darum, das Verhalten einer Stahlachse beim Abkühlen zu beschreiben, um eine sichere Presspassung zu gewährleisten. Die Frage ist dabei von entscheidender Bedeutung, mit welchem Kältemittel (Eis, Kunsteis, flüssiger Stickstoff) zu arbeiten ist.

|                                        | , ,    | 1      |        | P      |        |        | t .    |       |
|----------------------------------------|--------|--------|--------|--------|--------|--------|--------|-------|
| T in °C                                | 26.7   | 15.6   | 4.4    | -6.7   | -17.8  | -28.9  | -40    | -51.1 |
| $\alpha$ in $\mu m/m/^{\circ}C$        | 11.65  | 11.45  | 11.23  | 11.02  | 10.8   | 10.55  | 10.3   | 10.04 |
|                                        |        |        |        |        |        |        |        | ı     |
| T in °C                                | -62.2  | -73.3  | -84.4  | -95.6  | -106.7 | -117.8 | -128.9 | -140  |
| $\alpha \text{ in } \mu m/m/^{\circ}C$ | 9.77   | 9.5    | 9.16   | 8.84   | 8.5    | 8.14   | 7.74   | 7.34  |
|                                        | '      |        |        |        |        | •      | ,      | '     |
| T in °C                                | -151.1 | -162.2 | -173.3 | -184.4 | -195.6 | -206.7 |        |       |
| $\alpha \text{ in } \mu m/m/^{\circ}C$ | 6.89   | 6.44   | 5.99   | 5.53   | 4.97   | 4.41   |        |       |

- öffne neues Skript "stahl.m"
- erstelle ein Diagramm  $\alpha$  in  $m/m/{}^{\circ}C = f(T \text{ in } {}^{\circ}C)$  mit den Messwerten als rote Kreissymbole
- ermittle durch Regression die Koeffizienten einer Gerade, die den Zusammenhang der Messwerte möglichst gut beschreibt

- mit den ermittelten Koeffizienten berechne man die Funktionswerte y der Gerade für x-Werte im Bereich (-210°C ... 30°C) und stelle diese als durchgezogene Kurve in dem bereits vorhandenen Diagramm dar
- ermittle durch Regression die Koeffizienten eines Polynoms 2. Ordnung, die den Zusammenhang der Messwerte möglichst gut beschreibt
- mit den ermittelten Koeffizienten berechne man die Funktionswerte y des Polynoms für x-Werte im Bereich (-210°C ... 30°C) und stelle diese als punktierte Kurve in dem bereits vorhandenen Diagramm dar
- neben ordentlichen Achsenbeschriftungen ist ein passende Diagrammtitel anzugeben
- für die Legende gebe man einmal "Messwerte" an und für die beiden anderen Kurven die zugrunde liegende Struktur für die Regression

