Fundamentos matemáticos del aprendizaje profundo

 1° cuatrimestre $20\bar{2}5$

Práctica 10: Clasificación

Ejercicio 1. Sea $S = (I_1 \times I_1) \cap (\mathbb{Q} \times \mathbb{Q})$ el conjunto de los puntos con coordenadas racionales en $[0,1] \times [0,1]$.

- (a) Demuestre que S es una relación transitiva.
- (b) ¿Es S una relación de equivalencia?

Ejercicio 2. Demuestre que k puntos están en posición general si y solo si existe un único hiperplano de dimensión (k-1) que los contiene.

Ejercicio 3. Sean P_1, \ldots, P_k , k puntos en \mathbb{R}^k en posición general, y sea $\mathcal{H} = \mathbb{S} + \mathbf{p}$ el único hiperplano de dimensión (k-1) que los contiene. Demuestre que el conjunto $\{P_2 - P_1, \ldots, P_k - P_1\}$ forma un sistema de vectores independientes en \mathbb{R}^k que genera \mathbb{S} .

Ejercicio 4. Considere dos números reales distintos $x_1, x_2 \in \mathbb{R}$. Demuestre que existe una única función afín f(x) = ax + b tal que $f(x_1) = 1$ y $f(x_2) = 2$.

Ejercicio 5. Sea \mathcal{G} un cluster en \mathbb{R}^n .

- (a) Demuestre que $hull(\mathcal{G})$ es un conjunto convexo.
- (b) Pruebe que $\text{hull}(\mathcal{G})$ es el conjunto convexo más pequeño en \mathbb{R}^n que contiene a \mathcal{G} .
- (c) Demuestre que

$$\operatorname{hull}(\mathcal{G}) = \left\{ \sum_{i=1}^{k} \lambda_i \mathbf{x}_i \colon \sum_{i=1}^{k} \lambda_i = 1, \ \lambda_i \ge 0 \right\}.$$

Ejercicio 6. Sea $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ una función afín no degenerada, es decir, $\Phi(\mathbf{x}) = W\mathbf{x} + \mathbf{b}$ con det $W \neq 0$. Considere dos clusters linealmente separables en \mathbb{R}^2 , \mathcal{G}_1 y \mathcal{G}_2 . Demuestre que $\Phi(\mathcal{G}_1)$ y $\Phi(\mathcal{G}_2)$ son linealmente separables. En otras palabras, las funciones afines preservan la separabilidad lineal.

Ejercicio 7. Sea \mathcal{G} un cluster finito de puntos y denote por g su centro de gravedad. Demuestre que $g \in \text{hull}(\mathcal{G})$.

Ejercicio 8. Demuestre que una familia de clusters $\mathfrak{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_k\}$ en \mathbb{R}^n es convexamente separable si y solo si la familia es mutuamente convexamente separable, es decir, cualquier par de clusters \mathcal{G}_i y \mathcal{G}_j son convexamente separables para todo $i \neq j$.

Ejercicio 9. (a) Si A y B son dos conjuntos convexos tales que $A \cap B = \emptyset$, entonces A y B son linealmente separables.

(b) Si \mathcal{G}_1 y \mathcal{G}_2 son dos clusters tales que $\text{hull}(\mathcal{G}_1) \cap \text{hull}(\mathcal{G}_2) = \emptyset$, entonces \mathcal{G}_1 y \mathcal{G}_2 son linealmente separables.

Ejercicio 10. (a) Encuentre el gradiente $\nabla_{W,b,\lambda}G$, donde G está dado por

$$G(W, b, \lambda) = \frac{1}{2} \sum_{i=1}^{N} (f_{W,\lambda,b}(x_i, y_i) - \alpha)^2 + \frac{1}{2} \sum_{j=1}^{M} (f_{W,\lambda,b}(\bar{x}_j, \bar{y}_j) - \bar{\alpha})^2,$$

(b) Escriba la recursión del descenso de gradiente para la secuencia de aproximaciones del mínimo.

Ejercicio 11. Considere p clusters, $\mathcal{G}_1, \ldots, \mathcal{G}_p$, de puntos en \mathbb{R}^2 . Escriba la función de costo que asocia el vector $\mathbf{e}_j \in \mathbb{R}^p$ como etiqueta para el cluster \mathcal{G}_j , para todo $j = 1, \ldots, p$.