Stochastic Approximation of Network Reliability

Xinhan Liu

Prof.dr.ir. Rob Kooij

Prof.dr.ir. Piet Van Mieghem

Network Reliability

Network Reliability

Undirected graph G(N, L)

Each link independently operational with

probability p

Nodes always operational

Network Reliability = Pr[G is connected]

Always operational

— Operational with p

Network Reliability Polynomial $Rel_G(p)$

$$Rel_G(p) = \sum_{i=0}^{L-N+1} F_i(1-p)^i p^{L-i}$$

F_i: # of sets of i links, whose removal leave G connected

NP-hard

$$F_0 = 1$$

 $F_1 = 5$

$$Rel_G(p) = p^5 + 5p^4(1-p)$$

 $\{G_{p_l}(N) \text{ is connected }\} \Longrightarrow \{D_{min} \ge 1\}$: always true

Connected Graph

Main assumption: $\{D_{min} \ge 1\} \Longrightarrow \{G_{p_l}(N) \text{ is connected } \}$ for large N and p_l

$$D_{min} > 0$$

$$Pr[G \text{ is connected}] = Pr[D_{min} \ge 1] + o(1)$$

Stochastic approximation:
$$Rel_G(p) \approx \overline{Rel}_G(p) = (1 - \varphi_D(1 - p))^N$$

Where
$$\varphi_D(z) = E[z^D] = \sum_{j=0}^{N-1} \Pr[D=j]z^j$$

ER graphs with N=200, different link density

BA model with N=500, different numbers of edges per new node k_{min}

Accurate and based solely on degree distribution

Tree graph with N = 10 nodes and L=9 links

Work bad for small N and p_l

Node reliability polynomial $nRel_G(p)$

Network Reliability

Undirected graph G(N, L)

Each node independently operational with

probability p

Links always operational

Network Reliability = Pr[G is connected]

Node reliability polynomial $nRel_G(p)$

$$nRel_G(p) = \sum_{k=0}^{N} S_k (1-p)^{N-k} p^N$$

 S_k : # of sets of connected subgraph of G with k nodes

NP-hard

Stochastic approximation: $nRel_G(p) \approx \overline{nRel}_G(p) = (1 - \varphi_D(1 - p))^{Np}$

Where
$$\varphi_D(z) = E[z^D] = \sum_{j=0}^{N-1} \Pr[D=j]z^j$$

ER graphs with N=200, different link density

BA model with N=500, different numbers of edges per new node k_{min}

Work bad for small N and p_l

Enhancing Network Reliability by Adding *l* Edges

Adding l links to maximize the network reliability $Rel_G(p)$ or node reliability $nRel_G(p)$

NP-hard

Reliability based k-GRIP problem

$$Rel_{G}(p) \approx (1 - \varphi(1 - p))^{N}$$

$$nRel_{G}(p) \approx (1 - \varphi(1 - p))^{Np}$$

$$nRel_{G}(p) \approx (1 - \varphi(1 - p))^{Np}$$

Depend on $1 - \varphi(1 - p)$

$$1 - \varphi(1 - p) = \frac{1}{N} \sum_{i=1}^{N} (1 - (1 - p)^{d_i})$$

Objective:

$$\max_{A} 1 - \varphi_{D+A}(1-p)$$

$$= \max_{A=[a_1, a_2, ..., a_N]} \sum_{i=1}^{N} \left(1 - (1-p)^{d_i + a_i}\right)$$

Subject to:

$$s.t. \sum_{i=1}^{N} a_i = 2k, a_i \ge 0, a_i \in \mathbb{Z}$$

Greedily add links between nodes with the lowest degrees

Greedy Algorithm

Algorithm 1 Greedy Lowest-Degree Pairing Edge Addition Algorithm

Input: a graph G, number of links to add k

Output: a new graph G^*

- 1: Generate the degree vector \mathbf{d} for graph G
- 2: **for** t = 1 to k **do**
- 3: Sort nodes by their degree in ascending order
- 4: Find node i with the smallest degree
- 5: Find node j with the smallest degree that is not connected to i
- 6: Add link between nodes i and j in the graph
- 7: Update the graph G and the degree vector \mathbf{d} after adding the new link
- 8: end for
- 9: Return the new graph G^*

Greedy Algorithm

N = 1365 nodes, L = 5263 links, 500 links are added

Thank You

Paper: Node Reliability: Approximation, Upper Bounds, and Applications to Network Robustness

