Classificação de Ataques de Rede com Random Forest e SVM

Utilizando o Dataset CIC-IDS2017

Jhonatas Gomes Ribeiro

Instituto Federal de Ciência e Tecnologia do Piauí - IFPI

Introdução e Contexto

Problema

A crescente sofisticação das ameaças cibernéticas e a proliferação de dispositivos conectados tornam a segurança de redes uma preocupação central no cenário tecnológico mundial.

Solução

Sistemas de Detecção de Intrusões (IDS) eficazes são essenciais para identificar atividades maliciosas na rede, garantindo integridade, confidencialidade e disponibilidade das informações.

Desafio

Explorar o potencial do Aprendizado de Máquina para aprimorar a capacidade dos IDS em reconhecer padrões de ataque de rede e tráfego anômalo.

Objetivo do Trabalho

Classificar diferentes tipos de ataques de rede usando Random Forest e SVM no dataset CIC-IDS2017, avaliando e comparando o desempenho de cada modelo em termos de métricas como acurácia, precisão, recall e F1-score.

"A utilização de técnicas de aprendizado de máquina surge como desafio importante para aprimorar a capacidade dos IDS's em reconhecer padrões de ataque de rede."

O Dataset: CIC-IDS2017

O CIC-IDS2017 (Canadian Institute for Cybersecurity - Intrusion Detection System 2017) é um dataset de detecção de intrusões reconhecido por ser completo e realista, simulando cenários de rede próximos aos ambientes reais.

E Coleta de Dados

A coleta ocorreu de 3 a 7 de julho de 2017 (5 dias úteis), com tráfego de segunda-feira sendo apenas atividades normais. O sistema B-Profile foi utilizado para simular comportamento humano e gerar tráfego baseado em protocolos de rede.

Tipos de Ataques

- > Brute Force (FTP e SSH)
- > DoS e DDoS (Hulk, GoldenEye, Slowloris, Slowhttptest)
- > Web Attack (Brute Force, XSS, SQL Injection)
- > Infiltration, Botnet, Heartbleed, Port Scan

Distribuição das Classes de Ataque no Dataset CIC-IDS2017 - Notável desbalanceamento com predominância de tráfego normal

Composição do Dataset

8 arquivos CSV, resultando em 2.830.743 linhas e 79 colunas após concatenação.

Algoritmos de Classificação

Random Forest

Algoritmo de ensemble que utiliza múltiplas árvores de decisão para classificação, combinando seus resultados através de votação majoritária.

Funcionamento:
 Cria múltiplas árvores usando subconjuntos aleatórios de dados.

Bagging:
 Amostragem com reposição para diferentes conjuntos de treino.

Vantagens

- · Alta precisão
- · Robusto a overfitting
- · Lida bem com dados desbalanceados

Desvantagens

- · Computacionalmente intensivo
- · Modelos grandes (memória)

Support Vector Machine (SVM)

Algoritmo que busca encontrar um hiperplano ótimo que maximize a margem entre as classes, transformando dados não linearmente separáveis.

- ✓ Funcionamento: Encontra o hiperplano com a maior margem possível.
- ✓ **LinearSVC:** Implementação eficiente para grandes conjuntos de dados.

Vantagens

- · Eficaz em espaços de alta dimensão
- · Bom para classificação binária
- · Boa generalização

Desvantagens

- · Escala mal com grandes datasets
- · Requer escalonamento de features

Técnicas Essenciais

Pré-Processamento de Dados

Limpeza (valores infinitos/ausentes), padronização de nomes de colunas e remoção de duplicatas para garantir a qualidade dos dados.

Seleção de Características

Reduz a dimensionalidade dos dados e melhora o desempenho do modelo, identificando os atributos mais relevantes.

SMOTE

Cria amostras sintéticas para classes minoritárias, balanceando o conjunto de dados de treinamento e melhorando a capacidade do modelo de identificar ataques.

Dados Desbalanceados

Aplicação do SMOTE

Dados Balanceados

Metodologia

Etapas do Trabalho

2

Carregamento

Análise Exploratória

Pré-processamento

Agrupamento

Concatenação dos 8 arquivos CSV do dataset CIC-IDS2017

Verificação da distribuição de classes e identificação de valores ausentes/infinitos

O dataset original apresenta grande desbalanceamento, com predominância de tráfego normal (BENIGN) e diversos tipos de ataques com frequências variadas.

Principais desafios:

15 classes diferentes de tráfego

Desbalanceamento extremo (alguns ataques raros)

Grande volume de dados (2.8 milhões de registros)

Agrupamento de Classes

Estratégia de agrupamento em 4 categorias principais:

Tráfego Normal: BENIGN

Ataque DoS/DDoS:

DoS Hulk, DDoS, DoS GoldenEye, DoS slowloris, DoS Slowhttptest

Ataque de Varredura: PortScan

Outros Ataques/Raros:

FTP-Patator, SSH-Patator, Bot, Web Attack, Infiltration, Heartbleed

Limpeza, padronização e tratamento de dados inconsistentes

Agrupamento de rótulos em categorias mais amplas para balanceamento

Metodologia

Preparação Final dos Dados

2

Divisão

Escalonamento

Seleção

Balanceamento

Separação em conjuntos de treino (70%) e teste (30%) com estratificação

Padronização das features com StandardScaler (média 0, desvio padrão 1) Seleção das características mais relevantes com SelectKBest

Aplicação de SMOTE para equalizar as classes

Balanceamento com SMOTE

O SMOTE (Synthetic Minority Over-sampling Technique) cria amostras sintéticas para as classes minoritárias, gerando novos exemplos entre pontos existentes.

Benefícios:

Reduz o viés do modelo para a classe majoritária

Melhora a capacidade de generalização

Aumenta a precisão na detecção de classes raras

Distribuição das Classes após Balanceamento com SMOTE

Balanceamento com SMOTE

Synthetic Minority Oversampling Technique

O que é SMOTE?

Éuma técnica de balanceamento de dados que cria amostras sintéticas para classes minoritárias, em vez de simplesmente duplicar instâncias existentes

O algoritmo funciona selecionando exemplos próximos no espaço de características e interpolando novos exemplos sintéticos entre eles.

Como Funciona

- Seleciona um exemplo da classe minoritária
- Encontra seus k vizinhos mais próximos (geralmente k=5)
- Seleciona aleatoriamente um desses vizinhos
- Cria um novo exemplo sintético ao longo da linha entre os dois pontos
- Repete até atingir o balanceamento desejado

Comparação da Distribuição de Classes Antes e Depois do SMOTE

Classe de Ataque

Benefícios do SMOTE

Reduz o viés do modelo

Aumenta recall em classes raras

Melhora a generalização

Evita overfitting

Seleção de Características

Y Por que Selecionar Features?

- Redução de dimensionalidade: Diminui a complexidade do modelo
- Melhoria de desempenho:
 Reduz o tempo de treinamento e inferência
- ✓ Prevenção de overfitting: Elimina características irrelevantes
- ✓ Interpretabilidade: Facilita a compreensão do modelo

Características Mais Relevantes

As características mais importantes para a classificação de ataques de rede incluem:

> Duração do fluxo

Contagem de flags

> Bytes por segundo

> Tempo entre pacotes

Pacotes por segundo

Tamanho do cabeçalho

> Tamanho médio de pacotes

Bytes da janela inicial

Treinamento e Avaliação dos Modelos

Instanciação:

RandomForestClassifier com random_state=42 e n_jobs=-1 para utilizar todos os núcleos da CPU

Análise de Importância: Utilização de feature_importances_ para identificar as características mais relevantes

Instanciação:

LinearSVC com random_state=42 e max_iter=10000 para garantir convergência

Análise de Importância:

Utilização dos coeficientes do modelo (coef_) para inferir a importância das características

Etapas Comuns

Treinamento

Ajuste do modelo aos dados de treino balanceados e com características selecionadas

Inferência

Realização de previsões no conjunto de teste e medição do tempo de inferência

Avaliação

Cálculo de métricas: acurácia, precisão, recall, F1-score e matriz de confusão

Comparação

Análise comparativa entre os modelos baseada em métricas de desempenho e tempos de execução

Resultados: Random Forest

Métricas de Classificação

Acurácia

0.9968

Precisão (ponderada)

0.9970

F1-Score (ponderado)

0.9968

Recall (ponderado)

0.9968

Visualização de Desempenho

Desempenho por Classe

Classe de Ataque	Precisão	Recall	F1-Score
Ataque DoS/DDoS	1.00	1.00	1.00
Ataque de Varredura	0.99	0.99	0.99
Outros Ataques/Raros	0.79	0.95	0.87
Tráfego Normal	1.00	1.00	1.00

Eficiência Computacional

Tempo de Treinamento

10.50 minutos

Tempo de Inferência

2.32 segundos

Resultados: SVM (LinearSVC)

Métricas de Classificação

Acurácia

0.8615

Precisão (ponderada)

0.9644

F1-Score (ponderado) **0.9044**

Recall (ponderado)

0.8615

Visualização de Desempenho

Desempenho por Classe

Classe de Ataque	Precisão	Recall	F1-Score
Ataque DoS/DDoS	0.87	0.90	0.88
Ataque de Varredura	0.65	1.00	0.79
Outros Ataques/Raros	0.05	0.93	0.09
Tráfego Normal	1.00	0.85	0.92

Eficiência Computacional

Tempo de Treinamento

23.84 minutos

Tempo de Inferência

0.23 segundos

Discussão Comparativa

Desempenho de Classificação

Análise de Desempenho

Random Forest: Superou o SVM em todas as métricas, alcançando acurácia próxima de 100%. Seu desempenho em "Outros Ataques/Raros" (F1: 0.87) demonstrou a eficácia do SMOTE.

SVM: Acurácia geral inferior (0.86). Desempenho limitado com classes minoritárias (F1: 0.09 para "Outros Ataques/Raros") e ataques específicos.

Eficiência Computacional

Treinamento: Random Forest foi mais rápido (10.50 min vs 23.84 min do SVM).

Inferência: SVM foi significativamente mais rápido (0.23 seg vs 2.32 seg do Random Forest).

Trade-off: Agilidade do SVM na inferência é crítica para detecção em tempo real, mas Random Forest oferece maior precisão.

Conclusão e Trabalhos Futuros

Conclusão Principal

Random Forest foi a melhor escolha para a classificação de ataques no CIC-IDS2017, com acurácia geral de 0.99. Sua capacidade de generalização, impulsionada pelo SMOTE e seleção de características, foi evidente.

Limitações do SVM

Desempenho inferior em classes minoritárias, apesar da inferência rápida. Precisão baixa (0.05) para "Outros Ataques/Raros" indica dificuldade em generalizar para classes menos representadas.

Importância das Etapas

O trabalho ressalta a importância de pré-processamento, seleção de características e balanceamento de classes para IDSs eficazes. Estas etapas foram cruciais para o bom desempenho dos modelos.

Comparação de Desempenho

Trabalhos Futuros

- Explorar outras estratégias de kernel em SVM para melhorar o desempenho em classes minoritárias.
- Investigar outras técnicas de seleção de características para identificar atributos mais relevantes para cada tipo de ataque.
- Aplicar modelos de deep learning para desempenho aprimorado, especialmente em cenários com grande volume de dados
- Desenvolver sistemas híbridos que combinem a precisão do Random Forest com a velocidade de inferência do SVM
- Implementar e testar os modelos em ambientes de rede reais para validar sua eficácia em condições operacionais.

Obrigado pela atenção!

- Jhonatas Gomes Ribeiro
- instituto Federal de Ciência e Tecnologia do Piauí IFPI
 - ihonatasgomes2003@gmail.com