L1S2 MI/MP - ALGÈBRE 2 - UNIVERSITÉ D'AVIGNON - ANNÉE 2021/2022

Feuille 3 : Sous-espaces vectoriels de K^n $(K = \mathbb{R} \text{ ou } K = \mathbb{C})$

Exercice 1. Parmi les ensembles suivants, lesquels sont des sous-espaces vectoriels de \mathbb{R}^2 muni des lois usuelles? Faire un dessin.

$$E_{1} = \{(x,y) \in \mathbb{R}^{2} / 2x - 8y = 0\} \quad E_{2} = \{(x,y) \in \mathbb{R}^{2} / x = 1\}$$

$$E_{3} = \{(x,x) / x \in \mathbb{R}\} \qquad E_{4} = \{(x,y) \in \mathbb{R}^{2} / x^{4} + (x-y)^{2} = 0\}$$

$$E_{5} = \{(x,y) \in \mathbb{R}^{2} / xy \ge 0\} \qquad E_{6} = \{(x,y) \in \mathbb{R}^{2} / x^{2} - y^{2} = 0\}$$

Exercice 2. Parmi les ensembles suivants, lesquels sont des sous-espaces vectoriels de \mathbb{R}^3 muni des lois usuelles?

$$E_{1} = \{(x, y, z) \in \mathbb{R}^{3} / x = y^{2} + z^{2}\}$$

$$E_{2} = \{(x, y, z) \in \mathbb{R}^{3} / x = y + z \text{ et } x + y = 0\}$$

$$E_{3} = \{(x, y, z) \in \mathbb{R}^{3} / x = y + z \text{ ou } x + y = 0\}$$

$$E_{4} = \{(x, y, z) \in \mathbb{R}^{3} / xy = z\}$$

$$E_{5} = \{(x, y, z) \in \mathbb{R}^{3} / x = y = z\}$$

$$E_{6} = \{(x, y, z) \in \mathbb{R}^{3} / x = 0\}$$

Exercice 3. Dans chacun des cas suivants, E est un espace vectoriel muni des lois usuelles et A est une partie de E. Déterminer l'espace vectoriel engendré par A et en donner un supplémentaire dans E.

- 1) $E = \mathbb{R}^2$ et $A = \{(1,2)\}$. Représenter graphiquement $\operatorname{vect}(A)$.
- 2) $E = \mathbb{R}^3$ et $A = \{(1,0,0), (1,1,0)\}.$

Exercice 4. Soit F, G deux sev de \mathbb{R}^n .

- 1) Que signifie l'écriture $F \oplus G$? Que signifie que F et G sont deux sev supplémentaires dans \mathbb{R}^n ?
- 2) Trouver un supplémentaire dans \mathbb{R}^4 de

$$F = \{(x, y, z, t) \in \mathbb{R}^4 ; x - 2y = 0 \text{ et } y - 3z + t = 0\}.$$

Exercice 5. Soit $F = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0\}$. Montrer que F est le sous-espace vectoriel de \mathbb{R}^3 engendré par $\{(1, 0, -1), (0, -1, -1)\}$. Donner un sous-espace supplémentaire de F dans \mathbb{R}^3 .

Exercice 6. On considère dans \mathbb{R}^n une famille de 4 vecteurs linéairement indépendants $\{e_1, e_2, e_3, e_4\}$. Que peut-on dire de n? Les familles suivantes sont-elles libres?

- (i) $\{e_2, 2e_2, e_3\}$
- (i) $\{e_1, -e_3\}$
- (i) $\{e_1, 2e_1 + e_4, e_4\}$
- (i) $\{3e_1+e_3,e_3,e_2+e_3\}$
- (i) $\{2e_1 + e_2, e_1 3e_2, e_4, e_2 e_1\}$

Exercice 7. Les familles suivantes sont-elles libres?

- 1. (v_1, v_2, v_3) dans \mathbb{R}^3 avec $v_1 = (1, 0, 1), v_2 = (0, 2, 2)$ et $v_3 = (3, 7, 1)$.
- 2. (v_1, v_2, v_3) dans \mathbb{R}^3 avec $v_1 = (1, 0, 0), v_2 = (0, 1, 1)$ et $v_3 = (1, 1, 1)$.
- 3. (v_1, v_2, v_3) dans \mathbb{R}^4 avec $v_1 = (1, 0, 0, 0), v_2 = (0, 1, 1, 0)$ et $v_3 = (1, 1, 1, 1)$.
- 4. (v_1, v_2, v_3, v_4) dans \mathbb{R}^4 avec $v_1 = (1, 1, 0, 0), v_2 = (1, 2, 0, 0), v_3 = (0, 1, 1, 1)$ et $v_4 = (0, 0, 1, 1)$.

Exercice 8. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . Soient a_1, a_2, a_3 trois vecteurs de \mathbb{R}^3 définis par $a_1 = (0, -2, 3), a_2 = (1, 2, 1), a_3 = (3, 0, -4)$.

- 1) Montrer que (a_1, a_2, a_3) est une base de \mathbb{R}^3 .
- 2) Soit u le vecteur de coordonnées (1,1,1) dans la base (a_1,a_2,a_3) . Quelles sont ses coordonnées dans la base (e_1,e_2,e_3) ?
- 3) Soit v le vecteur de coordonnées (1,1,1) dans la base (e_1,e_2,e_3) . Quelles sont ses coordonnées dans la base (a_1,a_2,a_3) ?

Exercice 9. Soit dans \mathbb{R}^3 la famille $\{u_1, u_2, u_3\}$ définie par $u_1 = (1, a, 3)$, $u_2 = (1, 1, a)$, $u_3 = (a, 1, 3)$. Etudier suivant les valeurs de a l'indépendance linéaire de la famille et préciser à chaque fois qu'elle est liée une relation de liaison.

Exercice 10. Soit dans \mathbb{R}^3 , u = (3,7,0), v = (5,0,-7), w = (2,3,-1), t = (1,-1,-2). Montrer que $\{w,t\}$ et $\{u,v\}$ sont deux familles libres et qu'elles engendrent le même sev de \mathbb{R}^3 .

Exercice 11. Montrer qu'il existe deux réels x, y tels que (-2, x, y, 3) appartienne au sous-espace vectoriel de \mathbb{R}^4 engendré par les deux vecteurs (1, -1, 1, 2) et (-1, 2, 3, 1).

Exercice 12. Montrer que l'ensemble $F := \{(a,0,0,b) ; a,b \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^4 ; donner deux vecteurs de \mathbb{R}^4 permettant de recouvrir F à l'aide de combinaisons linéaires. Trouver un système d'équations cartésiennes de F.

Exercice 13. 1) Soit a = (2, -1, 1) et b = (1, 0, 1). Trouver une équation cartésienne de Vect(a, b). 2) Même question dans \mathbb{R}^4 avec a = (1, 2, 3, 4) et b = (2, 1, 2, 1).

Exercice 14. Soit $E := \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0\}, a = (1, -2, 3), b = (2, 1, -1), et F = Vect(a, b).$

- 1) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 . Déterminer $E \cap F$.
- 2) Calculer $E \cap F$ et en déduire que E et F ne sont pas en sommes directes.
- 3) Trouver la dimension de E et de F, calculer $\dim(E) + \dim(F)$, et retrouver le résultat de la question 2.

Exercice 15. Soit G le sev de \mathbb{R}^4 engendré par (1, -1, 2, -2), (4, 0, 1, -5) et (3, 1, -1, -3) et soit H l'espace défini par $H = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = 0 \text{ et } x - y - +z + 2t = 0\}.$

- 1) Déterminer la dimension de G, montrer que H est un sev de \mathbb{R}^4 et trouver sa dimension.
- 2) Déterminer les dimensions de $G \cap H$ et de G + H.
- 3) Trouver un sev F de \mathbb{R}^4 tel que $(G+H) \oplus F = \mathbb{R}^4$.

Exercice 16. 1) Peut-on exprimer les vecteurs u = (1,1,1) et u' = (2,2,-4) comme combinaison linéaire de v = (1,0,2), w = (2,1,0) et t = (-1,1,-6)?

- 2) La famille (v, w, t) est-elle une base de \mathbb{R}^3 ?
- 3) Exprimer w comme combinaison linéaire de v et t.
- 4) Compléter la famille (v,t) de façon à obtenir une base de \mathbb{R}^3 .
- 5) Déterminer les coordonnées de u et u' dans cette nouvelle base.

Exercice 17. Soit $\mathcal{F} = \{x_1, ..., x_p\}$ une famille de p vecteurs de \mathbb{R}^n . Soit A la matrice de taille (n, p) dont les colonnes sont les vecteurs $x_1, ..., x_p$. Démontrer que les assertions suivantes sont équivalentes :

- 1. La famille \mathcal{F} est liée.
- 2. Il existe $i \in \{1,...,n\}$ et des réels $(\beta_i)_{i\neq i}$ tels que

$$x_i = \sum_{j \neq i} \beta_j x_j$$

- 3. L'équation Ay=0 (d'inconnue $y\in\mathbb{R}^p$) admet au moins une solution non triviale $y^0\neq 0$
- 4. L'équation Ay = 0 admet une infinité de solutions.
- 5. L'algorithme du pivot de Gauss effectué sur la matrice A aboutit à une matrice contenant un nombre de pivots strictement inférieur à p.

Exercice 18. Soit A la partie de \mathbb{R}^4 définie par

$$A = \{(x, y, z, t) \in \mathbb{R}^4 : 2x + 3y + z = 0, 4x - y + t = 0\}.$$

Trouver une base de A après avoir vérifié qu'il s'agit bien d'un sous-espace vectoriel de \mathbb{R}^4 .

Exercice 19. Vrai ou faux? (Si c'est vrai, on demande une preuve, sinon un contre-exemple).

- 1. Lorsque \mathcal{F} est une famille libre, tout élément de \mathcal{F} peut être écrit comme une combinaison linéaires des autres vecteurs de \mathcal{F} .
- 2. Les vecteurs colonnes d'une matrice A de taille (4,5) sont forcément liées.
- 3. Si 3 vecteurs de \mathbb{R}^3 sont dans un un même plan affine, alors ces trois vecteurs sont nécessairement liés.
- 4. Si $\{u,v\}$ est libre et si $\{u,v,w\}$ est liée, alors on a nécessairement que $w \in Vect(u,v)$.
- 5. Si une famille de vecteurs de \mathbb{R}^n compte strictement moins de n vecteurs alors elle est libre.

Exercice 20. (pour revoir le cours). Soit F et G deux sev de \mathbb{R}^n tels que $F \subset G$ et dim(F) = dim(G). Montrer que F = G.

Exercice 21. 1) Caractériser les sous-espaces vectoriels de \mathbb{R}^3 .

- 2) Montrer que deux plans vectoriels se coupent toujours au moins suivant une droite dans \mathbb{R}^3 .
- 3) Montrer que l'intersection entre deux sous-espaces vectoriels de dimension 3 de \mathbb{R}^4 contient au moins un plan.
- 4) Montrer que dans \mathbb{R}^n , l'intersection entre k hyperplans est de dimension au moins n-k (réccurence).

Exercice 22. Soit $\{u_1, ..., u_n\}$ une famille libre de n vecteurs de \mathbb{R}^p et soit pour $1 \le k \le n-1$, $v_k = u_k + u_{k+1}$ et $v_n = u_n + u_1$. La famille $\{v_1, ..., v_n\}$ est-elle libre, génératrice?

Exercice 23. On considère dans \mathbb{R}^4 les vecteurs $u_1 = (1, 2, 3, 4)$, $u_2 = (1, 1, 1, 3)$, $u_3 = (2, 1, 1, 1)$, $u_4 = (-1, 0, -1, 2)$, $u_5 = (2, 3, 0, 1)$. Soit $F = Vect(u_1, u_2, u_3)$, $G = Vect(u_4, u_5)$. Calculer $\dim(F)$, $\dim(G)$, $\dim(F \cap G)$, et $\dim(F + G)$.

Exercice 24. Soit E et F les deux sous-espaces vectoriels de \mathbb{R}^4 définis par :

$$E = \{(x, y, z, t) \in \mathbb{R}^4 ; x + y + z + t = 0 \text{ et } x + 2y - z + t = 0 \text{ et } -x - y + 2z + 2t = 0\},\$$

$$F = \{(x, y, z, t) \in \mathbb{R}^4 ; x + 3y + 4t = 0\}.$$

A-t-on $E \oplus F = \mathbb{R}^4$?

Exercice 25. Soit dans \mathbb{R}^4 $u_1 = (1, 1, 1, 2)$, $u_2 = (0, 2, 0, 0)$, $u_3 = (1, -1, 2, 2)$, et $u_4 = (1, -1, 2, 3)$. Soit $\{e_1, e_2, e_3, e_4\}$ la base canonique de \mathbb{R}^4 . Montrer que $\{u_1, u_2, u_3, u_4\}$ est une base de \mathbb{R}^4 . Exprimer e_i dans la base $\{u_1, u_2, u_3, u_4\}$, i = 1, 2, 3, 4. Puis exprimer un vecteur $x \in \mathbb{R}^4$ quelconque dans cette base.

Exercice 26. (exercice facultatif / hors programme). Soit $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ l'ensemble des matrices symétriques et anti-symétriques de taille n.

1) Montrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$, calculer leur dimension et montrer que

$$M_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R}).$$

- 2) Montrer qu'une matrice quelconque de $A_3(\mathbb{R})$ n'est pas inversible.
- 3) Montrer que le produit de deux matrices symétriques A et B est symétrique (resp. anti-symétrique) si et seulement si AB = BA (resp. AB = -BA).