

Universität Heidelberg

Numerik Zusammenfassung

by Charles Barbret

Inhaltsverzeichnis

1 Fehleranalyse

1.1

Zahlendarstellung und Rundungsfehler Schema für Gleitkomma Zahl:

$$x = \pm m * b^{\pm e} \tag{1}$$

```
Basis b \in \mathbb{N} b \geq 2^{1}
Mantisse m = m_1 b^{-1} + m_2 b^{-2} + ... \in \mathbb{R}^2
Exponent e = e_1b^1 + e_2b^2 + \dots \in \mathbb{N}_0
\forall m_i \in m \text{ und } \forall e_i \in e \text{ gilt } e_i, m_i \in \{0, ..., b-1\}
Sollte b = 10 sein befinden wir uns im Dezimalsystem
    \Rightarrow Es gibt keine Ziffer i, 9 = 10 - 1 \Leftrightarrow b - 1 q.e.d
Jede Ziffer (m_i, e_i, b, \pm, \pm) braucht man eine Speicherzelle, wobei b im Com-
puter bereits eingespeichert ist
    ⇒ muss nicht explizit angegeben werden
X wird gespeichert als: (\pm)[m_1, ..., m_r](\pm)[e_{s-1}, ..., e_0]
    ====== [12pt,a4paper]article graphicx [utf8]inputenc [ngerman]babel
datetime
    breqn
    hyperref
    amssymb
    soul
```

 $^{^{1} \}text{Beispiel: } 2^{e} \text{ oder } 10^{e}$

 $^{^2}$ Beispiel: $m_1=3, m_2=1, m_3=4 \Rightarrow m=314$ normal kommt nach m_1 ein Komma, also m=3,14

Universität Heidelberg

Numerik Zusammenfassung

by Charles Barbret

Inhaltsverzeichnis

2 Fehleranalyse

2.1 Zahlendarstellung und Rundungsfehler Schema für Gleitkomma Zahl

$$x = \pm m * b^{\pm e}$$

Basis $b \in \mathbb{N}$ b $\geq 2^3$

Mantisse $m = \overline{m_1}b^{-1} + m_2b^{-2} + \dots \in \mathbb{R}^4$

Exponent $e = e_1b^1 + e_2b^2 + \dots \in \mathbb{N}_0$

 $\forall m_i \in m \text{ und } \forall e_i \in e \text{ gilt } e_i, m_i \in \{0, ..., b-1\}$

Sollte b = 10 sein befinden wir uns im Dezimalsystem

 \Rightarrow Es gibt keine Ziffer i, $9 = 10 - 1 \Leftrightarrow b - 1$ q.e.d

Jede Ziffer (m_i, e_i, b, \pm, \pm) braucht man eine Speicherzelle, wobei b im Computer bereits eingespeichert ist

 \Rightarrow muss nicht explizit angegeben werden

X wird gespeichert als: $(\pm)[m_1,\ldots,m_r](\pm)[e_{s-1},\ldots,e_0]$

r + 1 Einträge um m zu speichern (\pm ist ein Eintrag)

s + 1 Einträge um s zu speichern (\pm ist ein Eintrag)

 $X_{max/min} = \pm (1 - b^{-}r) * b^{b^{s}-1} 5$

 $X_{posmin/negmax} = \pm b^{-b^{s'}} 6$

2.1.1 Rundungsoperation

 $||x - rd(x)|| = min_{y \in A} ||x - y||^{7}$

Dies verläuft von D \rightarrow A, wobei D:= $[X_{min}, x_{negmax}]\{0\}[X_{posmin}, X_{max}]$ ist und A die Menge der darstellbaren Zahlen ⁸

$$rd(x) = \pm \begin{cases} m_1 \dots m_{53} * 2^e & f\ddot{u}rm_{54} = 0\\ (m_1 \dots m_{53} + 2^{-53}) * 2^{e9} & f\ddot{u}rm_{54} = 1 \end{cases}$$

Der absolute Rundungsfehler sieht aus:

$$|x - rd(x)| \le \frac{1}{2}b^{-s}b^e$$

³Beispiel: 2^e oder 10^e

 $^{^4}$ Beispiel: $m_1=3, m_2=1, m_3=4 \Rightarrow m=314$ normal kommt nach m_1 ein Komma, also m=3,14

⁵1 oder 0 für erste Speicherzelle, sonst nur 1en

 $^{^61}$ oder 0 für erste Speicherzelle, eine 1, sonst nur 0
en

⁷Wobei diese Operation x als nächst darstellbare Zahl zurück gibt

⁸D gibt die Theoretisch minimalen Zahlen bis Theoretisch maximalen Zahlen an

TODO: insert image absolut weil er noch vom Exponenten abhängt

Der relative Fehler:

$$\left|\frac{x - rd(x)}{x} \le \frac{1}{2} \frac{b^{-r}b^e}{|m|b^e}\right|$$