Autoencoders

CNN4N Journal Club

Amr Elsawy

Autoencoders (AE)

- Encoding
- Auto means self-supervision where we do not need labels.
- AE consists of two parts
 - encoder, encoding path, contracting path
 - decoder, decoding path, expanding path

Cont.

- Think of E and D as two similar networks with D the inverse of E.
- AE represents an identity mapping that reconstructs data \tilde{x} from itself x.

$$D(E(.)) \rightarrow I$$

$$D(E(.)) \to I$$
$$\tilde{x} = D(E(x))$$

Fully Connected AE (FAE)

Encoder

Decoder

Results

Conv AE (CAE)

Encoder

Decoder

Results

Denoising Conv AE (DAE)

- Think of DAE as reconstructing the data \tilde{x} from the noisy data $x + \epsilon$.
- Interestingly, we do not have to change the architecture.
- Just change the input data.

$$\tilde{x} = D(E(x + \epsilon))$$
 $\xrightarrow{x + \epsilon} DAE$

If AE and DAE have the same architecture, so what is the difference?

Results

Cont.

What do you think of this?

Comparison

Further Reading

[1] https://keras.io/examples/vision/autoencoder/

Thanks ©