## Final Project Report

## Team Member

Foo Jia Yin (106062361)

## **Topic**

Parallelism and Acceleration in Recommendation Systems (Parallelized Collaborative filtering with CUDA)

## Introduction

In the era of big data, recommendation system is widely utilized in from commercial e-shops to social networks, product review sites other SaaS applications. Many websites collect user profiles to provide some valuable information through personalized recommendation.

Collaborative filtering (CF) is a very common technique used in recommender systems. The key idea of collaborative filtering is to recommend items based on similarity measures between users or items. For instance, the items recommended to a user are those preferred by similar users. The technique is widely used due to its properties that (1) a single algorithm works on any kind of item and (2) it can handle the complexity of users' preference.

Due to the increasing scale of data in these applications is constantly increasing, in some practices, the computational time of collaborative filtering algorithm may be unsatisfying. Different approaches have been proposed to deal with the problem of scalability of recommender systems' algorithms. This project focus on implementation of parallelism approaches with CUDA and compare the computational time with the sequential approach.

#### Dataset

Source: https://grouplens.org/datasets/movielens/

| Dataset          | Movie (M) | User (U) | Ratings (N) |
|------------------|-----------|----------|-------------|
| tiny (for debug) | 5         | 5        | 21          |
| 100k             | 943       | 1682     | 100000      |
| small            | 610       | 9725     | 100836      |
| 1m               | 6040      | 3706     | 1000209     |

## **Implementation**

The goal is to predict the rating of unrated items for every user. Then, items with high predicted rating can be recommended to each user.

There are two approaches to implement Collaborative Filtering: (1) by user-user similarity and (2) by item-item similarity, both have been implemented in this project. Here we use item-item similarity for demonstration since the algorithms is totally same.

#### 1. Data structure

- M = no of items, U = no of users, N = no of ratings
- Rating = <user id OR item id, value>

```
struct Rating {
   int id;
   double value;
};
```

- Rating ratings[N] sort by item and divided to M items
- int count[M] (no of ratings for each movie)
- double magnitudes[M]
- double similarities[M\*M]
- double predictions[M\*N] (output)

## 2. Input processing

mapUser():

- Read each (user, item, rating) input
- Group ratings to (item, (user, ratings)) pairs by insert the ratings into self-sorted multimap (from STL)
- Hence, the ratings is now sorted by items

```
multimap<int, Rating> ratingsMap;
readInput(filename, 0, ratingsMap);
```

Time complexity: O(NlogN)

Parallelization: Not implemented is this step.

3. Data standardization + Calculate rating magnitude of each item magnitude = ||r|| for each movie is calculated by the following equation:

$$||r_x|| = \sqrt{\sum_{i \in N} x_i^2}$$

calculateMagnitude(): For each item

- Calculate the mean of each item
   (we can treat missing data as 0, by doing this, the missing data will not have effect on items' similarities)
- For each user-item rating,
  - Substract the rating by its mean
  - Add the square of rating to the sum
- magnitude[m] = square root of the sum
- Time complexity: O(N)

## Parallelization:

- Since the calculation of each item is independent, it can be parallelized to calculateMagnitude<<<M, 1>>>()
- Each thread performs independent calculation on each item
- Time complexity for each thread: user that rate the item = O(U)

## 4. Calculate item-item similarity

There are several similarity metrics can be used. In this implementation, cosine similarity is used as the similarity measure.

$$sim(\boldsymbol{x}, \boldsymbol{y}) = cos(\boldsymbol{r}_{\boldsymbol{x}}, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{y}}||}$$

calculateSimilarity(): For each item-item pair (m<sub>1</sub>,m<sub>2</sub>)

- mag\_prod = magnitude[m<sub>1</sub>] \* magnitude[m<sub>2</sub>]
- For each user u that has rated m<sub>1</sub> and m<sub>2</sub> dot\_prod += rating[u,m<sub>1</sub>] \* rating[u,m<sub>2</sub>]
- similarities[m<sub>1</sub>,m<sub>2</sub>] = dot\_prod / mag\_prod;
- Time complexity: O(M<sup>2</sup>U)

#### Parallelization:

- Since the calculation of each item with all another item is independent, it can be parallelized to calculateSimilarities<<<M, 1>>>()
- Each thread performs independent calculation on each item, iterate through all other item
- Why not <<<M\*M, 1>>>? Data locality of one item is preserved in each thread
- Time complexity for each thread: O(MU)

## 5. Regroup the ratings by users

mapUser():

- Read each (user, item, rating) input
- Group ratings to (user, (item, ratings)) pairs by insert the ratings into self-sorted multimap (from STL)
- Hence, the ratings is now sorted by users

```
multimap<int, Rating> ratingsMap;
readInput(filename, 0, ratingsMap);
```

Time complexity: O(NlogN)

Parallelization: Not implemented is this step.

## 6. Predict rating for each user-item

The rating  $r_{xi}$  of user x to item i is predicted based on the similarities between the item and other items those have been rated by the user:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

predictRatings(): For each user-item pair (u,m<sub>1</sub>)

- For each item that has been rated by the user (u,m<sub>2</sub>)
  - sum rating += similarities[m<sub>1</sub>,m<sub>2</sub>] \* rating[u, m<sub>2</sub>]
  - sum sim += similarities[m<sub>1</sub>,m<sub>2</sub>]
- predict rating[u, m<sub>1</sub>] = sum rating / sum sim
- Time complexity: O(UM<sup>2</sup>)

#### Parallelization:

- Since the calculation of each user with all another item is independent, it can be parallelized to predictRatings<<<U, 1>>>()
- Each thread performs independent calculation on each user, iterate through all other item
- Why not <<<U\*M, 1>>>? Data locality of one user is preserved in each thread
- Time complexity for each thread: O(M<sup>2</sup>)

# Optimization

## 1. Optimizing pairwise operation

The time elapsed is mainly determined by calculateSimilarity() function, which is very time-consuming. It consists of pairwise operations of M\*M.

#### Method 1:

for (int i = index; i < M; i+=stride )
 for (int j = 0; j < M; j++)
 // job with constant length</pre>

• Problem: Half of the calculation is duplicated

#### Method 2:

Problem: total time is determined by the last completed job



i (each thread)

i (each thread)

## Method 3 (Currently used):

```
for (int i = index; i < N; i+=stride ) for (int j = 0; j < N; j++) if ((i + j) \% 2 \&\& i < j) || (i + j) \% 2 == 0 \&\& i > j)) // job with constant length
```

Workload of each thread is now j/2

# 2. Optimizing data structure

Method 1:

 Data structure: use separate array for count, user id, rating, magnitudes, similarities

```
int movieList[M]; int userCount[M]; int userId[N];
double u_ratings[N]; magnitudes[M];
```

## Result: time elapsed (ms)

| dataset   | algorithm | Sequential | Parallel 1 <32,32>    |
|-----------|-----------|------------|-----------------------|
| 4x5       | item      | 0.008      | 0.24                  |
|           | user      | 0.008      | 0.34                  |
| 610x9125  | item      | 2605.565   | 7343.519 / 2323.9     |
|           | user      | 116.78     | 769.604 / 421.8       |
| 943x1682  | item      | 728.141    | 7343.519 / 989.608    |
|           | user      | 567.318    | 4557.879 / 3373.767   |
| 6040x3264 | item      | 4421.31    | 47038.702 / 23848.671 |
|           | user      | 8090.46    | 1365.302 / 711.995    |

Red: before optimizing pairwise operation, Blue: after optimizing pairwise operation

 Experimented with other combinations <<< blockPerGrid \* threadPerBlock>>>, but still slower than sequential code

#### Method 2:

• Try to group the data for each item and user into profiles

```
struct Rating {
    int id;
    double value;
};

struct Profile1 {
    int count;
    double magnitude;
    Rating* ratings;
};

struct Profile2 {
    int count;
    Rating* ratings;
};
```

 Dynamically allocate memory for each item / user during mapMovie() / mapUser()

## For each item:

```
int cnt = m_u_ratings.count(it->first);
  cudaMallocManaged(&mData[m], sizeof(T) + sizeof(Rating) * cnt);
  mData[m]->count = cnt;
  mData[m]->ratings = (Rating*) mData[m] + sizeof(mData);
  movieList[m] = it->first;
```

## Result: time elapsed (ms)

| dataset   | mode | Sequential         | Parallel 2 <m,1></m,1> |
|-----------|------|--------------------|------------------------|
| 4x5       | item | 0.01               | 0.876                  |
|           | user | 0.012              | 0.88                   |
| 610x9125  | item | 2510.706           | 523.93                 |
|           | user | Segmentation fault | 285.996                |
| 943x1682  | item | 467.644            | 150.769                |
|           | user | 308.696            | 155.981                |
| 6040x3264 | item | 9283.719           | Segmentation fault     |
|           | user | 17495.76           | Segmentation fault     |

- Generally faster than the sequential code
- Problem 1: Presence of pointer Ratings\* makes things complicated and hard to debug, I don't recommend anyone doing like this
- Problem 2: Undergoes segmentation fault due to failure of cudaMalloc() / cudaMallocManaged(), even there are enough memory in GPU. I can't fix that.

## Method 3 (Currently used):

Back to method 1, but group id and rating value together as Rating
 Item id, user id, rating → item id, rating(movie id, value)

```
struct Rating {
   int id;
   double value;
};
```

- No more passing pointer, yay!
- If a value in array is repeatedly used, use a register in kernel to store it For example,

sim = similarities[m\*M + ratings[n].id]

| Result: time elapsed (ms | Result: | time | elapsed | (ms) |
|--------------------------|---------|------|---------|------|
|--------------------------|---------|------|---------|------|

| dataset   | mode | Sequential         | Parallel 2 <m,1></m,1> | Parallel 3 <m,1></m,1> |
|-----------|------|--------------------|------------------------|------------------------|
| 4x5       | item | 0.01               | 0.876                  | 0.619                  |
|           | user | 0.012              | 0.88                   | 0.61                   |
| 610x9125  | item | 2510.706           | 523.93                 | 384.981                |
|           | user | Segmentation fault | 285.996                | 101.199                |
| 943x1682  | item | 467.644            | 150.769                | 86.457                 |
|           | user | 308.696            | 155.981                | 75.279                 |
| 6040x3264 | item | 9283.719           | Segmentation fault     | 2675.681               |
|           | user | 17495.76           | Segmentation fault     | 4003.035               |

- Obvious improvement in speed
- No more segmentation fault

# ${\bf 3.} \quad {\bf Experiment\ on\ other\ <<< blockPerGrid\ *\ threadPerBlock>>> combination}$

Conclusion:

- <<<M, 1>>> for item-based and <<<U, 1>>> for user-based achieve the best result
- Only in some cases, <<<M/8, 8>>> or <<<U/8, 8>>> perform better

| dataset   | mode | Parallel 2 <m,1></m,1> | Parallel 2 <m 8,8=""></m> |
|-----------|------|------------------------|---------------------------|
| 943x1682  | item | 384.981                | 362.527                   |
| 6040x3264 | user | 4003.035               | 3435.059                  |

• More threadPerBlock may result in segmentation fault

## Instructions

## 1. Input files

- There are 4 datasets placed under input/
  - input/ratings\_tiny.dat
  - input/ratings 100k.dat
  - input/ratings small.dat
  - input/ratings 1m.dat
- Input format

Movielens dataset is modified to meet the following input format:

- First line: *U M N* (specifying no. of users, no. of movies, no. of ratings)
- Following by N lines of: user\_id movie\_id rating
- *U, M, N* are integers. *user\_id, movie\_id* are integers start from 1, where as *ratings* is between 1.0~5.0.

## 2. Compilation and Execution

Evaluating performance

(This will print time elapsed in each stage and GPU memory used)

```
make eval && srun -p ipc21 --gres=gpu:1 -N 1 ./eval input/[dataset]
[mode] [threadNo]
For example,
```

```
make eval && srun -p ipc21 --gres=gpu:1 -N 1 ./eval input/ratings_1m
.dat user 8
```

Print predict ratings

(Output file will contain U\*M-N lines of user id movie id rating)

```
make predict && srun -p ipc21 --gres=gpu:1 -N 1 ./predict input/[dat
aset] [mode] [threadNo] > [Outputfile]
```

For example,

```
make predict && srun -p ipc21 --gres=gpu:1 -N 1 ./predict input/rati
ngs_1m.dat user 8 > Output.txt
```

Evaluating performance of method 2

```
make v2 && srun -p ipc21 --gres=gpu:1 -N 1 ./v2 input/[dataset] [mod
e]
```

• Evaluating performance of sequential code

```
make seq && ./seq input/[dataset] [mode]
```

# Appendix: Time elapsed in each stage

# Sequential

| Dataset   | algorithm | Input             | Calculate | Calculate   | Predict | Total    |
|-----------|-----------|-------------------|-----------|-------------|---------|----------|
|           |           | <b>Processing</b> | Magnitude | Similarites | Ratings |          |
| 4x5       | item      | 0.129             | 0.003     | 0.004       | 0.003   | 0.01     |
|           | user      | 0.075             | 0.003     | 0.006       | 0.003   | 0.012    |
| 943x1682  | item      | 90.959            | 0.269     | 465.615     | 1.76    | 467.644  |
|           | user      | 82.573            | 0.263     | 308.433     | 0.016   | 308.696  |
| 610x9125  | item      | 83.326            | 0.428     | 2507.027    | 3.251   | 2510.706 |
|           | user      | 87.705            | 0.252     | 147.057     | Seg.    | fault    |
| 6040x3264 | item      | 931.874           | 2.649     | 9255.989    | 25.081  | 9283.719 |
|           | user      | 782.601           | 2.7322    | 17493.03    | 0.005   | 17495.76 |

# Parallel 2 <M,1>

| Dataset   | algorithm | Input              | Calculate          | Calculate   | Predict | Total   |
|-----------|-----------|--------------------|--------------------|-------------|---------|---------|
|           |           | <b>Processing</b>  | Magnitude          | Similarites | Ratings |         |
| 4x5       | item      | 0.298              | 0.34               | 0.028       | 0.508   | 0.876   |
|           | user      | 0.214              | 0.299              | 0.036       | 0.545   | 0.88    |
| 943x1682  | item      | 57.347             | 1.538              | 99.15       | 50.081  | 150.769 |
|           | user      | 48.434             | 1.522              | 90.162      | 64.297  | 155.981 |
| 610x9125  | item      | 113.392            | 3.054              | 462.547     | 58.329  | 523.93  |
|           | user      | 48.088             | 3.343              | 113.224     | 169.429 | 285.996 |
| 6040x3264 | item      | Segmentation fault |                    |             |         |         |
|           | user      |                    | Segmentation fault |             |         |         |

# Parallel 3 <M,1>

| Dataset   | mode | Input<br>Processing | Calculate<br>Magnitude | Calculate<br>Similarites | Predict<br>Ratings | Total    |
|-----------|------|---------------------|------------------------|--------------------------|--------------------|----------|
| 4x5       | item | 72.93               | 0.279                  | 0.027                    | 0.313              | 0.619    |
|           | user | 82.56               | 0.27                   | 0.037                    | 0.303              | 0.61     |
| 943x1682  | item | 116.509             | 0.917                  | 83.855                   | 1.685              | 86.457   |
|           | user | 128.393             | 0.853                  | 73.501                   | 0.925              | 75.279   |
| 610x9125  | item | 126.718             | 1.076                  | 379.831                  | 4.074              | 384.981  |
|           | user | 140.972             | 1.021                  | 99.201                   | 0.977              | 101.199  |
| 6040x3264 | item | 762.175             | 5.902                  | 2655.184                 | 14.595             | 2675.681 |
|           | user | 545.094             | 6.094                  | 3990.43                  | 6.511              | 4003.035 |