INTRODUCTION AUX SYSTÈMES INFORMATIQUES

Matière se base sur les cours des Profs. Peña, Perez-Uribe, Mosqueron, Max Mignotte

Introduction

Les systèmes informatiques jouent un rôle de plus en plus important dans notre société

Système informatique

- L'objectif d'un système informatique est d'automatiser le traitement de l'information
- Le but du cours est de vous familiariser avec les notions de bases
 - sur lesquelles repose la technologie des systèmes informatiques
 - qui sont indispensables à la compréhension des cours plus avancés

Introduction aux systèmes informatiques

- À la fin du cours
 - En tant qu'utilisateur, vous serez conscients des capacités, forces, faiblesses d'un système informatique donné et comprendrez le jargon des informaticiens
 - En tant que **programmeur**, vous écrirez de meilleurs programmes : plus rapides et plus efficaces
 - En tant qu'analyste système, vous serez capables d'acheter un système informatique qui répond mieux aux besoins d'une application ou d'une entreprise
 - En tant qu'administrateur système, vous serez capables de spécifier, configurer, optimiser et mettre à jour un système informatique

Système informatique

 Système informatique est composé de quatre éléments essentiels

Données	Représentation fondamentale des faits et des observations (données numériques, alphanumériques, graphiques etc.)
Matériel	Traite ou manipule les données, les stocke, ou les transfère aux dispositifs d'entrées/sorties
Logiciel	Fournit les instructions au matériel spécifiant quelle tâche doit être accomplie et dans quel ordre • Logiciel d'applications • Logiciel système
Communication	est constituée de logiciel et matériel; fournit la capacité de partager ou traiter les données entre (par) différents ordinateurs ou utilisateurs

Comment déchiffrer une publicité d'ordinateur

Ordi jeu Strix ASUS - Noir étoile (Ryzen 7 3700X AMD/DD 2 To/SSD 512 Go/RAM 16 Go/GeForce RTX 2070 SUPER)

Système informatique

- Un système informatique est un ensemble de composants de type logiciel (software) et matériel (hardware), mis ensemble pour collaborer dans l'exécution d'une application
- Le principal composant matériel est l'ordinateur
- Un informaticien doit comprendre le fonctionnement de tous les composants d'un système, sans se limiter au logiciel

COMPOSANT DONNÉES

- Dans un ordinateur, toute l'information est sous forme de bits qui sont regroupés en octets (bytes = 8 bits)
 - Il faut qu'il y ait un codage de cette information
 - Le codage dépend du type des données

■ Type de données

- définit la nature des valeurs que peut prendre une donnée, ainsi que les opérateurs qui peuvent lui être appliqués
- Plusieurs types de données plusieurs codages

COMPOSANT MATÉRIEL

Processeur, ordinateur

Processeur

 un dispositif de traitement d'information qui fait l'exécution du code

Ordinateur

• un processeur réalisé en matériel pouvant exécuter du code en langage machine (x86, ARM, MIPS, ...)

Ordinateur

- l'ordinateur est un dispositif de calcul universel
- L'universalité de l'ordinateur est possible grâce à la programmation: l'utilisateur doit indiquer par un programme les pas à suivre pour exécuter une tâche particulière
- On peut voir 4 grandes parties dans un ordinateur:

Ordinateur

- Un ordinateur est une machine électronique composée de plusieurs parties interconnectées par des fils (bus)
- Le bus est un ensemble de fils électriques interconnectant les différents composants
- A tout moment, tout fil dans l'ordinateur se trouve à un voltage haut ou bas interprété comme un 1 ou un 0

Ordinateur

- Modèle typique: architecture de Von Neumann (code et données dans la même mémoire)
- · L'unité de contrôle (U.C.) décide quoi faire quand

Modèle de Von Neumann, plus de détails

- 1. Séparation entre l'unité de commande et l'unité arithmétique; exécution des instructions
- 2. l'idée du programme enregistré : les instructions, au lieu d'être codées sur un support externe (ruban, cartes, tableau de connexions), sont enregistrées dans la mémoire selon un codage conventionnel

https://interstices.info/le-modele-darchitecture-de-vonneumann/

COMPOSANT LOGICIEL

- Côté logiciel
 - le système d'exploitation
 - les applications
- L'objectif du logiciel
 - offrir aux utilisateurs des fonctionnalités adaptées à leurs besoins
 - masquer les caractéristiques physiques du matériel
- Composant LOGICIEL
 - Est structuré en couches chacune offrant des services de plus en plus évolués au niveau supérieur

Logiciel, programmation

 Un programme est un algorithme écrit pour exécution dans un ordinateur

L'abstraction en informatique

- La solution d'un problème en informatique va du niveau le plus abstrait vers le niveau le plus détaillé
- Un grand système informatique est organisé de façon hiérarchique: une partie prend ses ordres de la partie hiérarchique supérieure et, à son tour, peut transmettre ses ordres à des parties inférieures hiérarchiquement
- Il n'est pas nécessaire de connaître complètement chaque niveau d'un système informatique pour l'utiliser correctement

Niveaux d'abstraction en informatique

Niveaux d'abstraction en informatique

- Les niveaux
 - Application; Algorithme; Langage de haut niveau
 - Système d'exploitation
 - Architecture de la machine
 - Microarchitecture
 - Circuits logiques
 - Dispositifs électroniques
- A chaque niveau on peut utiliser un langage différent

Niveaux d'abstraction en informatique

Niveaux d'abstraction d'un système informatique

- Un système informatique peut être vu comme une suite de couches, chaque couche étant construite sur les couches précédentes
- Une couche représente un certain niveau d'abstraction et comporte divers objets et opérations sur ces objets

Exemple: les ingrédients d'un Smartphone

OEM: Original Equipment Manufacturer

Le monde informatique

- La grande majorité des microprocesseurs se trouvent non pas dans les ordinateurs, sur les bureaux, mais "embarqués" dans la plupart des outils qui nous entourent (voitures, chaussures, machines à café, postes de télé et de radio, téléphones mobiles, etc)
- Une Mercedes classe S: 65 processeurs

Que trouve-t-on dans le coffre d'un véhicule autonome ?

Le modèle Roborace (prototype autonome) conçu par Nvidia, embarque un ordinateur de bord qui adapte automatiquement sa conduite en fonction des retours de ses capteurs

Technologie

■ Cette évolution a été permise par l'évolution de la technologie, qui a permis une miniaturisation croissante des dispositifs électroniques (le transistor)

Loi de Moore

- En avril 1965, six ans après l'invention du circuit intégré, Gordon Moore, co-fondateur d'Intel réalisa une prédiction connue comme la loi de Moore: ■ 2002: 90 nm le nombre de transistors dans un circuit intégré sera multiplié par deux chaque année
- La loi est appliquée à tous les paramètres de la technologie, notamment vitesse et performance

10th Gen Intel Core i9-10980HK

- Ce qui est vrai, c'est qu'Intel introduit un nouveau processus de fabrication tous les 2 ans:
- 2000: 0.13 m
- 2006: 65 nm
- 2008: 45 nm
- 2010: 32 nm
- 2012: 22 nm
- 2014: 14nm
- 2016: 10nm
- 2018: 7nm

Ivy bridge de Intel (3D transistors)

Processeurs Core M de Intel (Q4 2014)

Loi de Moore

le premier microprocesseur commercialisé par Intel en 1971 intégrait 2 300 transistors d'une finesse de gravure de 10 μ m (micromètres), la génération de microprocesseurs actuels en intègre plus de 4 300 000 000, soit 1 869 565 fois plus.

27

La Loi de Moore, toujours d'actualité?

« La cadence a ralenti ces dernières années. Elle est aujourd'hui sur le point de s'arrêter. À force de graver des composants électroniques toujours plus fins, années après années, passant du micro au nano, de l'échelle du cheveu à celle des bactéries, l'industrie de la microélectronique a fini par atteindre l'atome. La limite est là. La course à la miniaturisation s'achève. En 2018, seuls trois industriels au monde étaient encore en lice pour graver des composants électroniques de 7 nm (nanomètres): Intel, Samsung et TSMC, le fournisseur taïwanais d'Apple. Seuls les deux derniers sont aujourd'hui capables de franchir l'obstacle suivant des 5 nm. IBM, Toshiba, Sony... tous les autres géants de l'électronique ont déclaré forfait. Et si la prochaine étape, fixée à 3 nm, est peut-être atteignable, personne, sans doute, n'ira au-delà. En 2021, 2022 au plus tard, il en sera fini de la loi de Moore. » Hugo Leroux. Science&Vie

La Loi de Moore, toujours d'actualité?

- La limite est physique
 - on s'approche de l'échelle de l'atome, où les lois quantiques de l'infiniment petit prévalent
- Avec 5 nm, le plus petit des transistors actuels équivaut à seulement 10 atomes de silicium mis bout à bout
 - Échappement des électrons
 - de ralentissement des performances
 - de dysfonctionnements
- La démarche lancée l'an dernier et baptisée "More than Moore" essaie à ce titre de réfléchir au futur et à l'après miniaturisation
 - Fabrication de puces en 3D, changement de matériaux ou encore combinaison de plusieurs fonctions sont notamment à l'ordre du jour

1997

2011

2015

iPhone 4S > 10 milliards op/sec 140g

Smartphones > 100 milliards op/sec

DEEP BLUE (IBM)

> 10 milliards opérations/sec 200 million mouvements/sec 1.5 Tonnes

COMPOSANT COMMUNICATION

- Très peu de systèmes informatiques modernes fonctionnent indépendamment
 - Ils sont reliés à d'autres appareils via une connexion réseau
- Le composant Communication est constituée de logiciel et de matériel
 - Fournit la capacité de partager ou traiter les données entre (par) différents ordinateurs ou utilisateurs