

MACHINE LEARNING - FOUNDATIONS

TUTORIAL - WEEK 2

IIT Madras Online Degree

Outline

- 1. LINEAR APPROXIMATION
- 2. HIGHER ORDER APPROXIMATIONS
- 3. MULTIVARIATE LINEAR APPROXIMATION
- 4. DIRECTIONAL DERIVATIVES

Linear approximation (Linearization)

Def:

Approximation of any function using a linear function .

Linear approximation (Linearization)

Def:

Approximation of any function using a linear function .

Need:

· Linear functions are easier to work with.

Linear approximation (Linearization)

Def:

Approximation of any function using a linear function .

Need:

- · Linear functions are easier to work with.
- Finding approximate values of functions at certain points when exact values are not known.

The equation

The linear approximation L(x) of a function f(x) at point a is given by:

$$\boxed{L(x) = f(a) + f^{'}(a)(x - a)}$$

The equation

The linear approximation L(x) of a function f(x) at point a is given by:

$$\boxed{L(x) = f(a) + f^{'}(a)(x - a)}$$

This is indeed the equation of a tangent line:

$$y-y_1=m(x-x_1)$$

$$y=y_1+m(x-x_1)$$

The equation

The linear approximation L(x) of a function f(x) at point a is given by:

$$\boxed{L(x) = f(a) + f^{'}(a)(x - a)}$$

This is indeed the equation of a tangent line:

$$y-y_1=m(x-x_1)$$

$$y=y_1+m(x-x_1)$$

If
$$x_1=a$$
, $y_1=f(a)$ and $m=f^\prime(a)$, we get,

$$y = f(a) + f^{\prime}(a)(x-a)$$

Compute the approximate value of $\sqrt{50}$.

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x)=\sqrt{x}$ and a=49.

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x) = \sqrt{x}$ and a = 49.

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x) = \sqrt{x}$ and a = 49.

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

$$f(49) = \sqrt{49} = 7$$

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x)=\sqrt{x}$ and a=49.

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

$$f(49) = \sqrt{49} = 7$$

$$f'(49) = \frac{1}{(2)(\sqrt{49})} = \frac{1}{14}$$

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x) = \sqrt{x}$ and a = 49.

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

$$f(49) = \sqrt{49} = 7$$

$$f'(49) = \frac{1}{(2)(\sqrt{49})} = \frac{1}{14}$$

$$L(x) = f(49) + f'(49)(x - 49)$$

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x) = \sqrt{x}$ and a = 49.

$$\begin{array}{rcl} f^{'}(x) & = & \frac{1}{2}x^{-\frac{1}{2}} \\ f(49) & = & \sqrt{49} = 7 \\ f^{'}(49) & = & \frac{1}{(2)(\sqrt{49})} = \frac{1}{14} \\ L(x) & = & f(49) + f^{'}(49)(x - 49) \\ L(x) & = & 7 + \frac{1}{14}(x - 49) \end{array}$$

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x) = \sqrt{x}$ and a = 49.

$$\begin{array}{rcl} f^{'}(x) & = & \frac{1}{2}x^{-\frac{1}{2}} \\ f(49) & = & \sqrt{49} = 7 \\ f^{'}(49) & = & \frac{1}{(2)(\sqrt{49})} = \frac{1}{14} \\ L(x) & = & f(49) + f^{'}(49)(x - 49) \\ L(x) & = & 7 + \frac{1}{14}(x - 49) \end{array}$$

Approximate value of $\sqrt{50} = L(50) = 7 + \frac{1}{14}(50 - 49) = 7 + \frac{1}{14} =$ **7.071**

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x) = \sqrt{x}$ and a = 49.

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

$$f(49) = \sqrt{49} = 7$$

$$f'(49) = \frac{1}{(2)(\sqrt{49})} = \frac{1}{14}$$

$$L(x) = f(49) + f'(49)(x - 49)$$

$$L(x) = 7 + \frac{1}{14}(x - 49)$$

Approximate value of $\sqrt{50} = L(50) = 7 + \frac{1}{14}(50 - 49) = 7 + \frac{1}{14} =$ **7.071**

• Note 1: Actual value of $\sqrt{50}$ (up to 3 decimal places) is 7.071.

Compute the approximate value of $\sqrt{50}$.

The closest known value to $\sqrt{50}$ is $\sqrt{49}$, so we set $f(x) = \sqrt{x}$ and a = 49.

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$

$$f(49) = \sqrt{49} = 7$$

$$f'(49) = \frac{1}{(2)(\sqrt{49})} = \frac{1}{14}$$

$$L(x) = f(49) + f'(49)(x - 49)$$

$$L(x) = 7 + \frac{1}{14}(x - 49)$$

Approximate value of $\sqrt{50} = L(50) = 7 + \frac{1}{14}(50 - 49) = 7 + \frac{1}{14} = 7.071$

- Note 1: Actual value of $\sqrt{50}$ (up to 3 decimal places) is 7.071.
- Note 2: L(100) gives 10.64 while the actual value of $\sqrt{100}$ is 10.

Compute the approximate value of $e^{0.017}$.

Compute the approximate value of $e^{0.017}$.

The closest known value to $e^{0.017}$ is e^0 , so we set $f(x)=e^x$ and a=0.

$$f^{'}(x) = e^x$$

Compute the approximate value of $e^{0.017}$.

The closest known value to $e^{0.017}$ is e^0 , so we set $f(x)=e^x$ and a=0.

$$f'(x) = e^x$$
$$f(0) = 1$$

Compute the approximate value of $e^{0.017}$.

The closest known value to $e^{0.017}$ is e^0 , so we set $f(x)=e^x$ and a=0.

$$f'(x) = e^x$$

$$f(0) = 1$$

$$f'(0) = 1$$

Compute the approximate value of $e^{0.017}$.

The closest known value to $e^{0.017}$ is e^0 , so we set $f(x)=e^x$ and a=0.

$$f'(x) = e^x$$

 $f(0) = 1$
 $f'(0) = 1$
 $L(x) = f(0) + f'(0)(x - 0)$

Compute the approximate value of $e^{0.017}$.

The closest known value to $e^{0.017}$ is e^0 , so we set $f(x)=e^x$ and a=0.

$$f'(x) = e^{x}$$

$$f(0) = 1$$

$$f'(0) = 1$$

$$L(x) = f(0) + f'(0)(x - 0)$$

$$L(x) = 1 + 1(x) = 1 + x$$

Compute the approximate value of $e^{0.017}$.

The closest known value to $e^{0.017}$ is e^0 , so we set $f(x)=e^x$ and a=0.

$$f'(x) = e^x$$
 $f(0) = 1$
 $f'(0) = 1$
 $L(x) = f(0) + f'(0)(x - 0)$
 $L(x) = 1 + 1(x) = 1 + x$

Approximate value of $e^{0.017} = L(0.017) = 1 + 0.017 = 1.017$

Compute the approximate value of $e^{0.017}$.

The closest known value to $e^{0.017}$ is e^0 , so we set $f(x)=e^x$ and a=0.

$$f'(x) = e^{x}$$

$$f(0) = 1$$

$$f'(0) = 1$$

$$L(x) = f(0) + f'(0)(x - 0)$$

$$L(x) = 1 + 1(x) = 1 + x$$

Approximate value of $e^{0.017} = L(0.017) = 1 + 0.017 = 1.017$

• Note 1: Actual value of $e^{0.017}$ is also 1.017.

Compute the approximate value of $e^{0.017}$.

The closest known value to $e^{0.017}$ is e^0 , so we set $f(x)=e^x$ and a=0.

$$f'(x) = e^{x}$$

$$f(0) = 1$$

$$f'(0) = 1$$

$$L(x) = f(0) + f'(0)(x - 0)$$

$$L(x) = 1 + 1(x) = 1 + x$$

Approximate value of $e^{0.017} = L(0.017) = 1 + 0.017 = 1.017$

- Note 1: Actual value of $e^{0.017}$ is also 1.017.
- Note 2: L(1) gives 2 while the actual value of e is 2.718.

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

Let $f(x) = \sqrt{x+4}$, what is f(6)?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

$$f(5) = \sqrt{5+4} = 3$$

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

$$f(5) = \sqrt{5+4} = 3$$

$$f'(5) = \frac{1}{(2)(\sqrt{9})} = \frac{1}{6}$$

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

$$f(5) = \sqrt{5+4} = 3$$

$$f'(5) = \frac{1}{(2)(\sqrt{9})} = \frac{1}{6}$$

$$L(x) = f(5) + f'(5)(x-5)$$

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

$$f(5) = \sqrt{5+4} = 3$$

$$f'(5) = \frac{1}{(2)(\sqrt{9})} = \frac{1}{6}$$

$$L(x) = f(5) + f'(5)(x-5)$$

$$L(x) = 3 + \frac{1}{6}(x-5) = 3 + \frac{x-5}{6}$$

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

$$f(5) = \sqrt{5+4} = 3$$

$$f'(5) = \frac{1}{(2)(\sqrt{9})} = \frac{1}{6}$$

$$L(x) = f(5) + f'(5)(x-5)$$

$$L(x) = 3 + \frac{1}{6}(x-5) = 3 + \frac{x-5}{6}$$

Approximate value of $f(6) = L(6) = 3 + \frac{6-5}{6} = 3 + \frac{1}{6} = \frac{19}{6} = 3.1666$

Let $f(x) = \sqrt{x+4}$, what is f(6)?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

$$f(5) = \sqrt{5+4} = 3$$

$$f'(5) = \frac{1}{(2)(\sqrt{9})} = \frac{1}{6}$$

$$L(x) = f(5) + f'(5)(x-5)$$

$$L(x) = 3 + \frac{1}{6}(x-5) = 3 + \frac{x-5}{6}$$

Approximate value of $f(6) = L(6) = 3 + \frac{6-5}{6} = 3 + \frac{1}{6} = \frac{19}{6} = 3.1666$

• Note: Actual value of $f(6) = \sqrt{10}$ is 3.1622. Why?

Higher order approximations

Linear Approximation

$$L(x) = f(a) + f'(a)(x - a)$$

Higher order approximations

Linear Approximation

$$L(x) = f(a) + f'(a)(x - a)$$

Quadratic Approximation

$$L(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^{2}$$

Higher order approximations

Linear Approximation

$$L(x) = f(a) + f'(a)(x - a)$$

Quadratic Approximation

$$L(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^{2}$$

Higher-order Approximations

$$\begin{split} L(x) &= f(a) + f^{(1)}(a)(x-a) + \frac{f^{(2)}(a)}{2}(x-a)^2 + \\ &\quad + \frac{f^{(3)}(a)}{3 \cdot 2}(x-a)^3 + \frac{f^{(4)}(a)}{4 \cdot 3 \cdot 2}(x-a)^4 \dots \end{split}$$

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

$$f''(x) = -\frac{1}{4}(x+4)^{-\frac{3}{2}}$$

$$f'''(x) = \frac{3}{8}(x+4)^{-\frac{5}{2}}$$

1

Let
$$f(x) = \sqrt{x+4}$$
, what is $f(6)$?

The closest known value to $\sqrt{x+4}$ is $\sqrt{9}$ with x=5, so we set $f(x)=\sqrt{x+4}$ and a=5.

$$f'(x) = \frac{1}{2}(x+4)^{-\frac{1}{2}}$$

$$f''(x) = -\frac{1}{4}(x+4)^{-\frac{3}{2}}$$

$$f'''(x) = \frac{3}{8}(x+4)^{-\frac{5}{2}}$$

$$f(5) = \sqrt{5+4} = 3$$

$$f'(5) = \frac{1}{(2)(\sqrt{9})} = \frac{1}{6}$$

$$f''(5) = -\frac{1}{108}$$

$$f'''(5) = \frac{1}{(24)(27)}$$

11

$$L(x) = f(5) + f'(5)(x - 5) + \frac{f''(5)}{2}(x - 5)^2 + \frac{f'''(5)}{(3)(2)}(x - 5)^3 + \dots$$

$$L(x) = 3 + \frac{1}{6}(x - 5) - \frac{1}{(108)(2)}(x - 5)^2 + \frac{1}{(24)(27)(6)}(x - 5)^3$$

$$L(x) = f(5) + f'(5)(x - 5) + \frac{f''(5)}{2}(x - 5)^2 + \frac{f'''(5)}{(3)(2)}(x - 5)^3 + \dots$$

$$L(x) = 3 + \frac{1}{6}(x - 5) - \frac{1}{(108)(2)}(x - 5)^2 + \frac{1}{(24)(27)(6)}(x - 5)^3$$

Approximate value of $f(6) = L(6) = 3 + \frac{1}{6}(6-5) - \frac{1}{(108)(2)}(6-5)^2 + \frac{1}{(24)(27)(6)}(6-5)^3 = 3.1622$

$$L(x) = f(5) + f'(5)(x - 5) + \frac{f''(5)}{2}(x - 5)^2 + \frac{f'''(5)}{(3)(2)}(x - 5)^3 + \dots$$

$$L(x) = 3 + \frac{1}{6}(x - 5) - \frac{1}{(108)(2)}(x - 5)^2 + \frac{1}{(24)(27)(6)}(x - 5)^3$$

Approximate value of
$$f(6) = L(6) = 3 + \frac{1}{6}(6-5) - \frac{1}{(108)(2)}(6-5)^2 + \frac{1}{(24)(27)(6)}(6-5)^3 = 3.1622$$

MULTIVARIATE LINEAR APPROXIMA-

TION

Linear approximation of functions involving multiple variables

The linear approximation of a function f of two variables x and y in the neighborhood of (a,b) is:

$$L(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

Find the linearization of $f(x,y)=xe^{xy}$ at (1,0). Use it to approximate f(1.1,-0.1).

Find the linearization of $f(x,y)=xe^{xy}$ at (1,0). Use it to approximate f(1.1,-0.1).

$$\frac{\partial f}{\partial x}(x,y) = xe^{xy}y + e^{xy} = xye^{xy} + e^{xy}$$
$$\frac{\partial f}{\partial y}(x,y) = xe^{xy}x = x^2e^{xy}$$

Find the linearization of $f(x,y)=xe^{xy}$ at (1,0). Use it to approximate f(1.1,-0.1).

$$\frac{\partial f}{\partial x}(x,y) = xe^{xy}y + e^{xy} = xye^{xy} + e^{xy}$$
$$\frac{\partial f}{\partial y}(x,y) = xe^{xy}x = x^2e^{xy}$$

Here (a, b) = (1, 0).

Here (a, b) = (1, 0).

Find the linearization of $f(x,y)=xe^{xy}$ at (1,0). Use it to approximate f(1.1,-0.1).

$$\frac{\partial f}{\partial x}(x,y) = xe^{xy}y + e^{xy} = xye^{xy} + e^{xy}$$
$$\frac{\partial f}{\partial y}(x,y) = xe^{xy}x = x^2e^{xy}$$
$$f(1,0) = e^0 = 1$$

Find the linearization of $f(x,y)=xe^{xy}$ at (1,0). Use it to approximate f(1.1,-0.1).

$$\frac{\partial f}{\partial x}(x,y) = xe^{xy}y + e^{xy} = xye^{xy} + e^{xy}$$
$$\frac{\partial f}{\partial y}(x,y) = xe^{xy}x = x^2e^{xy}$$

Here (a, b) = (1, 0).

$$f(1,0) = e^{0} = 1$$

$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial x}(1,0) = e^{0} = 1$$

Find the linearization of $f(x,y)=xe^{xy}$ at (1,0). Use it to approximate f(1.1,-0.1).

$$\frac{\partial f}{\partial x}(x,y) = xe^{xy}y + e^{xy} = xye^{xy} + e^{xy}$$
$$\frac{\partial f}{\partial y}(x,y) = xe^{xy}x = x^2e^{xy}$$

Here (a, b) = (1, 0).

$$f(1,0) = e^{0} = 1$$

$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial x}(1,0) = e^{0} = 1$$

$$\frac{\partial f}{\partial y}(a,b) = \frac{\partial f}{\partial y}(1,0) = e^{0} = 1$$

$$L(x,y) \quad = \quad f(1,0) + \frac{\partial f}{\partial x}(1,0)(x-1) + \frac{\partial f}{\partial y}(1,0)(y-0)$$

$$\begin{array}{lcl} L(x,y) & = & f(1,0) + \frac{\partial f}{\partial x}(1,0)(x-1) + \frac{\partial f}{\partial y}(1,0)(y-0) \\ \\ & = & 1 + 1(x-1) + 1(y) \\ \\ & = & x + y \end{array}$$

$$L(x,y) = f(1,0) + \frac{\partial f}{\partial x}(1,0)(x-1) + \frac{\partial f}{\partial y}(1,0)(y-0)$$

$$= 1 + 1(x-1) + 1(y)$$

$$= x + y$$

$$f(1.1,-0.1) = L(1.1,-0.1)$$

$$= 1.1 - 0.1 = 1$$

$$\begin{array}{lcl} L(x,y) & = & f(1,0) + \frac{\partial f}{\partial x}(1,0)(x-1) + \frac{\partial f}{\partial y}(1,0)(y-0) \\ & = & 1 + 1(x-1) + 1(y) \\ & = & x + y \\ f(1.1,-0.1) & = & L(1.1,-0.1) \\ & = & 1.1 - 0.1 = 1 \end{array}$$

The actual value of f(1.1, -0.1) = $1.1e^{-0.11} = \frac{1.1}{1.11628} = 0.98542$

•
$$f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$$

•
$$f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$$
 = Rate of change of f as we vary x (keeping y fixed).

- $f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$ = Rate of change of f as we vary x (keeping y fixed).
- $f_y(x,y) = \frac{\partial f}{\partial y}(x,y)$

- $f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$ = Rate of change of f as we vary x (keeping y fixed).
- $f_y(x,y) = \frac{\partial f}{\partial y}(x,y)$ = Rate of change of f as we vary y (keeping x fixed).

- $f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$ = Rate of change of f as we vary x (keeping y fixed).
- $f_y(x,y) = \frac{\partial f}{\partial y}(x,y)$ = Rate of change of f as we vary y (keeping x fixed).
- Directional derivative of $f(\boldsymbol{x}, \boldsymbol{y})$

- $f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$ = Rate of change of f as we vary x (keeping y fixed).
- $f_y(x,y) = \frac{\partial f}{\partial y}(x,y)$ = Rate of change of f as we vary y (keeping x fixed).
- Directional derivative of f(x, y) = Rate of change of f if we allow both x and y to change simultaneously (in some direction (u)).

- $f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$ = Rate of change of f as we vary x (keeping y fixed).
- $f_y(x,y) = \frac{\partial f}{\partial y}(x,y)$ = Rate of change of f as we vary y (keeping x fixed).
- Directional derivative of f(x,y) = Rate of change of f if we allow both x and y to change simultaneously (in some direction (u)).

$$\begin{split} D_{\overline{u}}f(x,y) &= \nabla f \cdot u \\ &= \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right] \cdot [u_1, u_2] \\ &= u_1 \frac{\partial f}{\partial x} + u_2 \frac{\partial f}{\partial y} \end{split}$$

- $f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$ = Rate of change of f as we vary x (keeping y fixed).
- $f_y(x,y) = \frac{\partial f}{\partial y}(x,y)$ = Rate of change of f as we vary y (keeping x fixed).
- Directional derivative of f(x,y) = Rate of change of f if we allow both x and y to change simultaneously (in some direction (u)).

$$\begin{split} D_{\overline{u}}f(x,y) &= \nabla f \cdot u \\ &= \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right] \cdot [u_1, u_2] \\ &= u_1 \frac{\partial f}{\partial x} + u_2 \frac{\partial f}{\partial y} \end{split}$$

Directional derivative can be considered to be a weighted sum of partial derivatives.

Find the derivative of f(x,y)=xcos(y) in the direction of $\overrightarrow{u}=[2,1]$.

Find the derivative of f(x,y) = xcos(y) in the direction of $\vec{u} = [2,1]$.

$$\begin{split} \frac{\partial f}{\partial x} &= \cos(y) \\ \frac{\partial f}{\partial y} &= -x \sin(y) \end{split}$$

Find the derivative of f(x,y) = xcos(y) in the direction of $\vec{u} = [2,1]$.

$$\begin{split} \frac{\partial f}{\partial x} &= \cos(y) \\ \frac{\partial f}{\partial y} &= -x \sin(y) \end{split}$$

Unit vector in the direction of $\vec{u} = \left[\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right]$

Find the derivative of f(x,y) = xcos(y) in the direction of $\vec{u} = [2,1]$.

$$\begin{aligned} \frac{\partial f}{\partial x} &= \cos(y) \\ \frac{\partial f}{\partial y} &= -x \sin(y) \end{aligned}$$

Unit vector in the direction of \overrightarrow{u} = $\left[\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}}\right]$

$$\begin{split} D_{\overline{u}}f(x,y) &= u_1 \frac{\partial f}{\partial x} + u_2 \frac{\partial f}{\partial y} \\ &= \frac{2}{\sqrt{5}}\cos(y) - \frac{1}{\sqrt{5}}x\sin(y) \end{split}$$

Find the derivative of $f(x,y)=x^2-xy$ in the direction of $\overrightarrow{u}=0.6i+0.8j$ at the point (2,-3).

Find the derivative of $f(x,y)=x^2-xy$ in the direction of $\vec{u}=0.6i+0.8j$ at the point (2,-3).

$$\frac{\partial f}{\partial x} = 2x - y$$
$$\frac{\partial f}{\partial y} = -x$$

Find the derivative of $f(x,y)=x^2-xy$ in the direction of $\vec{u}=0.6i+0.8j$ at the point (2,-3).

$$\frac{\partial f}{\partial x} = 2x - y$$
$$\frac{\partial f}{\partial y} = -x$$

 \overrightarrow{u} is already a unit vector. $u_1=0.6, u_2=0.8.$

Find the derivative of $f(x,y)=x^2-xy$ in the direction of $\vec{u}=0.6i+0.8j$ at the point (2,-3).

$$\frac{\partial f}{\partial x} = 2x - y$$
$$\frac{\partial f}{\partial y} = -x$$

 \overrightarrow{u} is already a unit vector. $u_1=0.6, u_2=0.8.$

$$\begin{split} D_{\overline{u}}f(x,y) &= 0.6(2x-y) + 0.8(-x) \\ &= 0.6(2x-y) - 0.8x \end{split}$$

Find the derivative of $f(x,y)=x^2-xy$ in the direction of $\vec{u}=0.6i+0.8j$ at the point (2,-3).

$$\frac{\partial f}{\partial x} = 2x - y$$
$$\frac{\partial f}{\partial y} = -x$$

 \overrightarrow{u} is already a unit vector. $u_1=0.6, u_2=0.8.$

$$\begin{split} D_{\overline{u}}f(x,y) &= 0.6(2x-y) + 0.8(-x) \\ &= 0.6(2x-y) - 0.8x \end{split}$$

$$\begin{split} D_{\overline{u}}f(2,-3) &= 0.6(2(2)+3) - 0.8(2) \\ &= 0.6(7) - 1.6 \\ &= 4.2 - 1.6 \\ &= 2.6 \end{split}$$

