Química Propriedades Periódicas

Prof. Diego J. Raposo UPE – Poli 2025.1

Elétrons de valência

- Como vimos, há dois tipos de elétrons:
 - Elétrons do caroço (configuração de gás nobre);
 - Elétrons de valência (todos os outros).
- A força de atração entre elétrons de valência e o núcleo determina muitas das propriedades dos elementos, inclusive o grau e o tipo de reatividade;
- Sendo uma força eletrostática, ela depende de dois fatores:
 - Da distância média dos elétrons de valência ao núcleo;
 - Da carga que efetivamente os elétrons de valência sentem ao interagir com o núcleo.
- Através desses dois fatores também podemos entender e fazer previsões com os padrões evidenciados pela tabela periódica: as chamadas propriedades periódicas.

--- CONFIGURAÇÕES ELEFRÔNICAS DE ÍONS

AMETAIS => TENDÉNCIA A FORMER ÂNIONS

(ELÉTRONS ACRESCENTADOS NO

SURNÍVEL + ENERGÉTICO)

Na (Z=11): 10

2027

+ EXTERNO (30' -1e 30'39'

METAIS => TENDÉNOIA & Na: 102

FORMAR CÉTIONS

2127

(ELETRONS RETIRADOS DO SUBNÍVEL + EXTERNO)

Usar exemplo do Fe

TABLE 1.4 Characteristics of Metals and Nonmetals

Metals Nonmetals

Physical properties

good conductors of electricity poor conductors of electricity

malleable ductile not ductile lustrous not lustrous

typically: solid; high melting point;

good conductors of heat

Chemical properties

react with acids form basic oxides (which react with acids)

form cations

form ionic halides

not malleable

typically: solid, liquid, or gas; low melting

point; poor conductors of heat

do not react with acids

form acidic oxides (which react with bases)

form anions

form covalent halides

(a) The internuclear distance is apportioned between adjacent cations and anions in the ionic structure, as shown

Figure 7.9 Ionic Radii (in Picometers) of the Most Common Oxidation States of the s-, p-, and d-Block Elements

General trends in first ionization energies of A group elements with position in the periodic table. Exceptions occur at Groups IIIA and VIA.

E PRECISO MAIS ENERGIA 1/ PETIRAR E

PE AMETAIS QUE DE METAIS: METAIS = I, BAIXO
AMETAIS = I, ALTO

TABLE 6-1 First Ionization Energies (kJ/mol of atoms) of Some Elements

Н																	Не
1312																	2372
Li	Be											В	C	N	O	F	Ne
520	899											801	1086	1402	1314	1681	2081
Na	Mg											Al	Si	P	S	Cl	Ar
496	738											578	786	1012	1000	1251	1521
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
419	599	631	658	650	652	717	759	758	757	745	906	579	762	947	941	1140	1351
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
403	550	617	661	664	685	702	711	720	804	731	868	558	709	834	869	1008	1170
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
377	503	538	681	761	770	760	840	880	870	890	1007	589	715	703	812	890	1037

General trends in electron affinities of A group elements with position in the periodic table. There are many exceptions.

					,			, ,					
1	H											He	
	-73												0
2	Li	Be			В		C	N		O	F	Ne	
2	-60	(~0)	1			-29	-122		0	-141	-328		0
3	Na	Mg		Cu	Al		Si	P		S	Cl	Ar	
3	-53	(~0)	1	-118		-43	-134		-72	-200	-349		0
4	K	Ca	VV	Ag	Ga		Ge	As		Se	Br	Kr	
4	-48	(~0)	1N	-125		-29	-119		-78	-195	-324		0
5	Rb	Sr	VV	Au	In		Sn	Sb		Te	I	Xe	
5	-47	(~0)	NN	-282		-29	-107		-101	-190	-295		0
6	Cs	Ba	VV		Tl		Pb	Bi					
O	-45	(~0)	1N			-19	-35		-91				
			V										

Figure 7.13 Electron Affinities (in kJ/mol) of the s-, p-, and d-Block Elements

	1																	18
1	H -72.8	2			≥0 kJ	/mol		13	14	15	16	17	He ≥0					
2	Li -59.6	Be ≥0														O -141,0	F -328.2	Ne ≥0
3	Na -52.9	Mg ≥0	3	41.0 3341 73.0 3004 349.6												Ar ≥0		
4	K -48.4	Ca –2.4	Sc –18	Ti -8	V -51	Cr -65.2	Mn ≥0	Fe -15	Co -64.0	Ni -111.7	Cu -119.2	Zn ≥0	Ga -40	Ge -118.9	As -78	Se -195.0	Br -324.5	Kr ≥0
5	Rb -46.9	Sr -5.0	Y -30	Zr -41	Nb -86	Mo -72.1	Tc -60	Ru -101.0	Rh -110.3	Pd -54.2	Ag -125.9	Cd ≥0	In -39	Sn -107.3	Sb -101.1	Te -190.2	I -295.2	Xe ≥0
6	Cs -45.5	Ba -14.0	La -45	Hf ≥0	Ta -31	W -79	Re -20	Os -104.0	Ir -150.9	Pt -205.0	Au -222.7	Hg ≥0	TI -37	Pb -35	Bi -90.9	Po -180	At -270	Rn ≥0
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
	Lanthanides 6			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Actinides 7	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Bons estudos!