

Analiza algorytmów dla dominowania rzymskiego słabo spójnego Analysis of algorithms for weakly connected Roman domination

inż. Paulina Brzęcka

30 czerwca 2025

POLITECHNIKA Definicja problemu

Definicja

Funkcję dominującą rzymską słabo spójną (WCRDF) na grafie G definiuje się jako taką funkcję dominującą rzymską $f\colon V(G)\to\{0,1,2\}$, dla której zbiór wierzchołków

$$\{u \in V(G) : f(u) \in \{1, 2\}\}$$

stanowi jednocześnie słabo spójny zbiór dominujący.

Wagę funkcji f definiuje się jako:

$$f(V) = \sum_{u \in V} f(u)$$

Liczbą dominowania rzymskiego słabo spójnego grafu G nazywamy najmniejszą możliwą wagę funkcji f spełniającej powyższe warunki i oznaczamy ją symbolem:

$$\gamma^{\mathrm{wc}}_R(G)$$

- analiza algorytmów dla dominowania rzymskiego słabo spójnego,
- opisanie już istniejących rozwiązań i opracowanie własnych,
- analiza i porównanie ich skuteczności,
- znalezienie możliwych praktycznych zastosowań.

Pytania badawcze

- Jakie algorytmy są w stanie znaleźć WCRDF? Które z nich są w stanie znaleźć dodatkowo najmniejszą sumę wag WCRDF?
- Czy czas i jakość działania algorytmów będzie uzależniony od klasy grafów?
- Czy i jakie algorytmy heurystyczne mogą skutecznie przybliżyć wartość liczby dominowania rzymskiego słabo spójnego w czasie krótszym niż dokładne algorytmy?
- Czy hiperparametry algorytmu mrówkowego można dostroić w taki sposób, aby ten algorytm znajdował liczbę dominowania rzymskiego słabo spójnego bliską optymalnej?

Algorytm	Złożoność czasowa
brute familyorce	$O(3^n \cdot n^2)$
liniowy dla drzew	O(n)
programowania liniowego 1	wykładnicza
programowania liniowego 2	wykładnicza
mrówkowy	$O(num_iterations \cdot num_ants \cdot n^2)$
aproksymacyjny	wykładnicza
zachłanny	$O(n^2)$ - grafy rzadkie, $O(n^3)$ - grafy gęste

Tabela: Porównanie złożoności czasowej różnych klas algorytmów

TreeLinear Weakly connected Roman domination number: 17

Approx Weakly connected Roman domination number: 36

Zastosowania praktyczne

Rysunek: Rozmieszczenie zabezpieczeń sieci energetycznych.

Długość geograficzna

Długość geograficzna

- udało się odpowiedzieć na pytania badawcze,
- konieczność doboru właściwego algorytmu do grafu lub klasy grafu,
- słaba jakość rozwiązań algorytmu mrówkowego,
- pokazanie potencjalnych rozwiązań praktycznych w ujęciu teoretycznym.

Dalsze kierunki badań

- implementację i testy potencjalnych ulepszeń dla algorytmu zachłannego,
- rozszerzenie testów na inne klasy, jak i na inne wielkości grafów,
- podniesienie jakości wyników algorytmu mrówkowego, między innymi poprzez inną implementację heurystyki lokalnej oraz strategii feromonowej
- opracowanie algorytmów dokładnych, rozwiązywalnych w czasie wielomianowym dla innych klas grafów
- weryfikację i przełożenie teoretycznych rozważań na temat praktycznych zastosowań tego problemu na praktyczną analizę i realizację

它们 POLITECHNIKA GDAŃSKA