第三篇

热学

第7章 熟力学基础

四、热力学第二定律的统计意义和熵的概念

- 1. 克劳修斯熵
 - ◆卡诺定理
 - 工作在两确定的热源之间的
 - 一切可逆机的效率相等(P174):

$$\eta_{\overline{\scriptscriptstyle \Pi \hspace{-.07cm} J}} = 1 - \frac{T_2}{T_1}$$

一切不可逆机的效率,小于可逆热机的效率,

$$\eta_{$$
不可 $}<1-rac{T_2}{T_1}$

$$\eta_c \leq 1 - \frac{T_2}{T_1}$$

对可逆卡诺循环:

$$\eta_c = 1 - \frac{|Q_2|}{Q_1} = 1 - \frac{T_2}{T_1}$$

$$\frac{Q_1}{T_1} = \frac{|Q_2|}{T_2}$$

或:
$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$$

从低温热源 的吸热量 任意一个可逆循环,都可以看成由无数(N)个卡诺循环所组成:

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$$

对其中第
$$i$$
 个有: $\frac{Q_{1i}}{T_{1i}} + \frac{Q_{2i}}{T_{2i}} = 0$

对N个卡诺循环:

$$\sum_{i}^{N} \left(\frac{Q_{1i}}{T_{1i}} + \frac{Q_{2i}}{T_{2i}} \right) = 0$$
或
$$\sum_{i}^{2N} \frac{Q_{i}}{T_{i}} = 0$$

克劳修斯等式

即:
$$\oint \frac{dQ}{T} = 0$$
 其中, T 是热源的温度

(1) 熵的定义

$$\oint_{A1B2A} \frac{dQ}{T} = 0 \longrightarrow \int_{A1B} \frac{dQ}{T} + \int_{B2A} \frac{dQ}{T} = 0$$

$$\int_{A1B} \frac{\mathrm{d}Q}{T} = -\int_{B2A} \frac{\mathrm{d}Q}{T}$$

或
$$\int_{L1} \frac{\mathrm{d}Q}{T} = \int_{L2} \frac{\mathrm{d}Q}{T} = \int_{L3} \frac{\mathrm{d}Q}{T} = \dots = \int_{A}^{D} \frac{\mathrm{d}Q}{T}$$

$$\int_{L1} \frac{\mathrm{d}Q}{T} = \int_{L2} \frac{\mathrm{d}Q}{T} = \int_{L3} \frac{\mathrm{d}Q}{T} = \dots = \int_{A}^{B} \frac{\mathrm{d}Q}{T}$$

可见 \int_{T}^{∞} 积分值只由初末态决定,与积分路径无关!

$$\rightarrow$$
与重力场相似 $\int_a^b mg dl = E_{pa} - E_{pb}$

一定存在一个态函数,它的增量只与状态有关, 而与变化的路径无关。

——态函数"熵"——记为"S"

"熵"的定义式(对可逆过程) 克劳修斯熵公式

$$S_B - S_A = \int_A^B \frac{dQ}{T}$$
 { S_A : 初态的熵 S_B : 末态的熵

对无限小的可逆过程 $dS = \frac{dQ}{T}$

说明:

(1) 熵是系统的状态参量的函数,是相对量系统每个状态的熵值: $S = S_0 + \int_T^x \frac{dQ}{T}$

- (2) 令参考态 x_0 的熵 $S_0=0$,则任意平衡态的熵值S都是相对于 $S_0=0$ 的参考态而言的.
- (3) "S"的单位: J/K
- (4) S 与内能 E 一样是客观存在的物理量,但是 ΔS 不能直接测量,只能计算。

对不可逆过程,此积分是多少?

$$S_B - S_A = \int_A^B \frac{\mathrm{d}Q}{T}$$

可构造一循环.

根据卡诺定理,对不可逆循环过程有:

$$\oint \frac{\mathrm{d}Q}{T} < 0$$

即

$$\oint \frac{\mathrm{d}Q}{T} < 0$$

$$1 - \frac{|Q_2|}{Q_1} < 1 - \frac{T_2}{T_1}$$

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} < 0$$

$$S_2 - S_1 > \int_1^{-\frac{QQ}{T}}$$
不可逆
 $S_2 - S_2 = \int_1^2 \frac{\mathrm{d}Q}{T}$

不可逆过程

$$=S_2-S_1$$

此积分不是熵

$$S_2 - S_1 \ge \int_1^2 \frac{\mathrm{d}Q}{T}$$

可逆过程:
$$S - S_0 = \int_{x_0}^x \frac{dQ}{T} dS = \frac{dQ}{T}$$
不可逆过程: $S - S_0 > \int_{x_0}^x \frac{dQ}{T} dS > \frac{dQ}{T}$

2. 熵增加原理

在绝热(或孤立)系统中:

熵增加原理: 在孤立(或绝热)系统中,可逆过程 系统的熵变为零,不可逆过程系统的 力学第二定律 熵值向着熵增加的方向进行。

热力学第二定律 的数学表述

即: 孤立系统的熵永不减少 $\Delta S \geq 0$

3. 熵的计算

基本公式:
$$S_B - S_A = \int_A^B \frac{dQ}{T}$$
 $\begin{cases} dS = \frac{dQ}{T} \\ dQ = dE + dA \end{cases}$

注意: 在计算熵变时,积分路径必须是连接初末两态的可逆过程。

由于熵是与过程无关的态函数,所以若实际过程是不可逆过程,一般可利用有相同初末态的可逆过程来计算熵变。

比如: $T_B = T_A$ \rightarrow 可逆的等温过程 $P_B = P_A$ \rightarrow 可逆的等压过程 $V_B = V_A$ \rightarrow 可逆的等容过程

注意:不能用可逆的绝热过程($\Delta S=0$)代替不可 逆绝热过程($\Delta S>0$)

10

- 例9. 将v mol的理想气体从 (T_1,V_1) 到 (T_2,V_2) 经过:
 - (1)可逆定容加热到(T_2 , V_1),然后经可逆等温到(T_2 , V_2);
 - (2)可逆等温膨胀到 (T_1,V_2) ,然后经可逆定容到 (T_2,V_3) 。

求熵增量 ΔS .

解: (1) 等容
$$\Delta S_1 = \int_{T_1}^{T_2} \frac{dQ}{T} = \int_{T_1}^{U} \frac{C_{V,m} dT}{T}$$

$$= \nu C_{V,m} \ln \frac{T_2}{T_1}$$
等温 $\Delta S_2 = \int_{T_1}^{dQ} \frac{Q}{T} = \int_{T_1}^{Q} \frac{P dV}{T}$

$$= \int_{V_1}^{V_2} \frac{\nu R dV}{V} = \nu R \ln \frac{V_2}{V_1}$$

$$\Delta S^{(1)} = \Delta S_1 + \Delta S_2 = \nu C_{V,m} \ln \frac{T_2}{T_1} + \nu R \ln \frac{V_2}{V_1^{11}}$$

$$\Delta S^{(1)} = \nu C_V \ln \frac{T_2}{T_1} + \nu R \ln \frac{V_2}{V_1}$$

等温

$$\Delta S_1 = \int \frac{dQ}{T} = \int \frac{PdV}{T}$$

$$= \int_{V_1}^{V_2} \frac{\nu RdV}{V} = \nu R \ln \frac{V_2}{V_1}$$

等容
$$\Delta S_2 = \int_{T_1}^{T_2} \frac{dQ}{T} = \int \frac{\nu C_{V,m} dT}{T}$$

$$= \nu C_{V,m} \ln \frac{T_2}{T}$$

$$= \nu C_{V,m} \ln \frac{T_2}{T_1}$$

$$\Delta S^{(2)} = \Delta S_1 + \Delta S_2 = \nu C_V \ln \frac{T_2}{T_1} + \nu R \ln \frac{V_2}{V_1}$$

$$\Delta S^{(1)} = \Delta S^{(2)}$$

例10.设两个物体A、B的温度分别为 T_1 和 T_2 且 $T_1>T_2$ 。当它们接触后有热量dQ>0由A传向B,将两者看成一个孤立系统,求此系统的熵变。

解:因dQ很小A、B的温度可视为不变,故可设想 A、B均经历了一个可逆的等温过程。

$$\therefore dS_A = \frac{dQ_A}{T_1} = \frac{-dQ}{T_1}$$
$$dS_B = \frac{dQ_B}{T_2} = \frac{dQ}{T_2}$$

$$dS = dS_A + dS_B = dQ \frac{1}{T_2} - \frac{1}{T_1} > 0$$

$$T_1 = T_2$$
 (温差无限小), $dS=0$ 可逆过程

例11. 使理想气体经可逆定压加热过程,从 (T_1, P) 变化到 (T_2, P) ,求 ΔS .

解:
$$dQ = \nu C_{P,m} dT$$

$$\Delta S = \int_{1}^{2} \frac{dQ}{T}$$

$$= \nu C_{P,m} \int_{T_{1}}^{T_{2}} \frac{dT}{T}$$

$$= \nu C_{P,m} \ln \frac{T_{2}}{T_{1}}$$

$$= \nu C_{P,m} \ln \frac{V_{2}}{V_{1}}$$

$$P$$
 T_1
 T_2
 V

问: 以上计算中, T是哪里的温度? 例12 1 kg的水在温度为0 °C,压强为1 atm下凝结为冰。试求其熵变(水的凝固热=3.333×10⁵J/kg)。

解: 此过程是一个等温等压过程,而且水和冰在此条件下可平衡共存,因此是一个可逆过程。

$$\therefore \Delta S = \int \frac{dQ}{T} = \frac{1}{T} \int dQ = \frac{Q}{T}$$

系统放热, 故

$$Q = -m\lambda = -1 \times 3.333 \times 10^{5} = -3.333 \times 10^{5} J$$

$$\therefore \Delta S = \frac{Q}{T} = \frac{-3.333 \times 10^{5}}{273} = -1220 J / K$$

注意:该系统与环境有热交换,不是一个孤立系统,系统的熵减少不违反熵增加原理。

对于这个可逆过程,系统与环境构成一个熵不变的孤立系统。

例13. 计算 ν mol理想气体绝热自由膨胀的熵变。 (设 $V \rightarrow 2V$)

解: 对该过程有 Q = 0 A = 0 $\Delta E = 0$ $\rightarrow T_1 = T_2$ 可设计一个可逆等温膨胀过程连接初末态,

例13. 计算 ν mol理想气体绝热自由膨胀的熵变。 (设 $\nu \rightarrow 2V$)

解: 对该过程有 Q=0 A=0 $\Delta E=0$ $\rightarrow T_1=T_2$ 可设计一个可逆等温膨胀过程连接初末态, 此等温过程的熵变: $PV=\nu$ RT

$$\Delta S = \int \frac{\mathrm{d}Q}{T} = \int \frac{P\mathrm{d}V}{T} = \nu R \ln \frac{V_2}{V_1}$$

$$\Delta S = \nu R \ln \frac{V_2}{V_1} = \nu R \ln 2 > 0$$

理想气体绝热自由膨胀过程的熵增加

例14: 500° C的钢片放入绝热油槽中冷却。油的初温为20°C,钢片的质量为 m_1 = 1.302×10^{-1} kg,比热容为 $c = 4.61 \times 10^{2}$ J/(kg K),油的热容量为C = 2000J/K。求钢片与油组成的系统的熵变。

解设达到热平衡时的温度为T 钢片放出的热量等于油吸收的热量,所以

 $m_1c(T_1-T)=C(T-T_2) \rightarrow T=307 \text{ K}$

$$\Delta S_{\text{fp}} = \int_{T_1}^{\overline{d}Q} = \int_{T_1}^{T} \frac{m_1 c \, dT}{T} = m_1 c \ln \frac{T}{T_1} = -55.4 \, \text{J/K}$$

$$\Delta S_{\text{in}} = \int \frac{dQ}{T} = \int_{T_2}^{T} \frac{CdT}{T} = C \ln \frac{T}{T_2} = 2000 \times \ln \frac{307}{293} = 93.0 \text{J/K}$$

系统总熵变为:

$$\Delta S = -55.4 + 93.0 = 37.6 (J/K)$$

问题:

若油槽很大,油量很多,结果又如何? 此时,可将油槽和油视为一个很大的恒温热 源,钢片的放入对油温的改变可忽略。

热平衡时的温度T 就是油的温度,即

$$T = T_{\text{in}} = 20^{\circ} \text{ C} = 293 \text{ K}$$

对钢片: $\Delta S_1 = m_1 c \ln \frac{T}{T_1} = -58.2 \text{ J/ K}$

对油:
$$\Delta S_2 = \frac{Q_2}{T_2} = \frac{-m_1 c (T - T_1)}{T_2} = 98.3 \text{ J/K}$$
系统总熵变为: $\Delta S = 3.76 \times 10(...)$

$$\Delta S = 3.76 \times 10(J/K)$$

$$\Delta S = \Delta S_1 + \Delta S_{\overline{z}} - 58.2 + 98.3 = 4.01 \times 10(J/K)$$

结果不同

已学内容回顾

$$\int_{L1} \frac{\mathrm{d}Q}{T} = \int_{L2} \frac{\mathrm{d}Q}{T} = \int_{L3} \frac{\mathrm{d}Q}{T} = \dots = \int_{A}^{B} \frac{\mathrm{d}Q}{T}$$

"熵"的定义式(对可逆过程)

克劳修斯熵公式

$$S_B - S_A = \int_A^B \frac{\mathrm{d}Q}{T}$$

$$S_2 - S_1 > \int_1^2 \frac{\mathrm{d}Q}{T}$$
不可逆

注: 此积分不是熵

已学内容回顾

熵增加原理

在绝热(或孤立)系统中:

$$dQ = 0$$
 $\left\{ egin{array}{ll} S = S_0 \\ \hline egin{array}{ll} egin{array}{ll} egin{array}{ll} S = S_0 \\ \hline egin{array}{ll} S > S_0 \\ \hline \end{array}
ight.
ight.$

熵增加原理: 在孤立(或绝热)系统中,可逆过程 系统的熵变为零,不可逆过程系统的 力学第二定律 熵值向着熵增加的方向进行。

热力学第二定律 的数学表述

即: 孤立系统的熵永不减少 $\Delta S \geq 0$

例11. 使理想气体经可逆定压加热过程,从 (T_1, P) 变化到 (T_2, P) ,求 ΔS .

解:
$$dQ = \nu C_{P,m} dT$$

$$\Delta S = \int_{1}^{2} \frac{dQ}{T}$$

$$= \nu C_{P,m} \int_{T_{1}}^{T_{2}} \frac{dT}{T}$$

$$= \nu C_{P,m} \ln \frac{T_{2}}{T_{1}}$$

$$= \nu C_{P,m} \ln \frac{V_{2}}{V_{1}}$$

$$P$$
 T_1
 T_2
 V

问: 以上计算中, T是哪里的温度?

6.5 温熵图

dA = PdV,P - V 图上曲线下面积为做的功;

熵是状态量,又 dQ=TdS,

T-S 图上曲线下面积为吸的热。

热机效率: $\eta = \frac{\Lambda_{\beta}}{Q_1}$

a $Q_{\hat{\beta}} = A_{\hat{\beta}}$ b

对热机循环: $A_{\beta} = Q_1 - Q_2$

可逆卡诺循环热机:

$$\eta = 1 - \frac{T_2}{T_1} = \frac{$$
矩形 $abcd$ 的面积 矩形 $abef$ 的面积

矩形abef 的面积 = $\int T \cdot dS = Q_1$ 矩形cdfe 的面积 = $|Q_2|$

4. 热力学第二定律的统计意义

(1) 气体分子位置的分布规律

气体的自由膨胀

2/	ヘム	计片	丛	- 古冊 -	方式
J		Π'n		رناظ	刀工

左半边	abc	ab	bc	ac	a	b	c	0
右半边	0	c	a	b	bc	ac	ab	abc

(微观态数 2^3 , 宏观态数4, 每一种微观态概率 $(1/2^3)$)

微观态: 在微观上能够加以区别的每一种分配方式

宏观态: 宏观上能够加以区分的每一种分布方式

对于孤立系统,各个微观态出现的概率是相同的

4个分子时的分配方式

左半边	abcd	abc	bcd	cda	dab	ab	bc	cd
右半边	0	d	a	b	c	cd	ad	ab
	da	ac	bd	a	b	c	d	0
	bc	db	ac	bcd	cda	dab	abc	abcd

(微观态数24, 宏观态数5,每一种微观态概率(1/24))

可以推知有 N 个分子时,分子的总微观态数 2^{N} ,总宏观态数(N+1),每一种微观态概率 $(1/2^{N})$

20个分子的位置分布

宏观	见状态	一种宏观状态对应的微观状态数		
左20	右0	1		
左18	右2	190		
左15	右5	15504		
左11	右9	167960		
左10	右10	184756		
左9	右11	167960		
左5	右15	15504		
左2	右18	190		
左0	右20	1		

包含微观状态数最多的宏观状态是出现的概率最大的状态

(2) 热力学第二定律的统计意义

讨论:全部分子自动收缩到左边的 宏观态出现的概率是多少?

$$\Omega = \left(\frac{1}{2^{N_A}}\right) = \frac{1}{2^{6 \times 10^{23}}} \cong 0$$

全部分子自动收缩到左边的宏观态 原则上虽然可以出现,但实际上可能出现吗?

对于1023个分子组成的宏观系统来说,均匀分布这种 宏观态的概率几乎或实际上为100%。

◆ 对应于微观状态数最多的宏观态 就是系统的平衡态。

孤立系统总是从非平衡态向平衡态过渡。

热二律的统计意义:一个不受外界影响的"孤立系 统",其内部发生的过程,总是由几率小的状态向 几率大的状态进行,由包含微观状态数目少的宏观 状态向包含微观状态数目多的宏观状态进行。

(3)波尔兹曼熵

热力学概率Ω:

某一宏观态所对应的微观状态数目, 叫该宏观态的热力学概率, 用Ω 表示。

热力学概率与熵有直接的函数关系,这便是联系熵与热力学概率的玻耳兹曼公式:

 $S = k \ln \Omega$

k是玻耳兹曼常数。玻耳兹曼公式诠释了熵的统计意义。因为热力学概率越大的状态越紊乱,所以熵是系统紊乱程度或无序程度的量度。

Ludwig Boltzmann 1844 —1906

$$S = K \log W$$

小节

热一律...一切热力学过程都应满足能量守恒。

但满足能量守恒的过程是否一定都能进行?

<u>热二律...满足能量守恒的过程不一定都能进行!</u> 过程的进行还有个方向性的问题。

以下几种说法是否正确?

◆ 功可以完全转变成热,但热不能完全变成功?

◆ 热量不能从低温物体传到高温物体?

卡诺循环

卡诺制冷机

不存在理想热机 不存在理想制冷剂

热力学第二定律

克劳修斯熵、玻尔兹曼熵(热二律的微观解释)

"宇宙演化的方向、命运……