

Generated by marco on 17 January 2022, 18:27:21

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents Setup 2 1.1 Command history 2 ${\bf Configuration}$ 2 1.2 Datasets 3 3 2.1 $\mathrm{sm}_{-}\mathrm{pj}$ 2.2 $\mathrm{dm}_{-}\mathrm{pj}$ 3 Histos and cuts 4 3.1 ${\bf Histogram}\ 1$ 4 3.2 ${\bf Histogram}~2$ 5 3.3 ${\bf Histogram}~3$ 6 7 3.4 Histogram 4 3.5 ${\bf Histogram}~5$ 8

1 Setup

1.1 Command history

```
ma5>import output_pp_xdxdxj/bin/internal/ufomodel
ma5>import output_pp_vlvlxj/Events/run_sm_ptj200/unweighted_events.lhe.gz as sm_pj
ma5>import output_pp_xdxdxj/Events/run_dm_ptj200/unweighted_events.lhe.gz as dm_pj
ma5>set main.lumi = 0.1
ma5>set main.stacking_method = normalize2one
ma5>set sm_pj.type = background
ma5>set sm_pj.backcolor = none
ma5>set sm_pj.linecolor = red
ma5>set dm_pj.type = signal
ma5>set dm_pj.backcolor = none
ma5>set dm_pj.linecolor = green
ma5>
ma5>
ma5>plot MET 251 150 650 [logY]
ma5>plot P(j) 251 150 650 [logY]
ma5>plot PT(j) 251 150 650 [logY]
ma5>plot Y(j) 51 -5 5
ma5>plot PHI(j) 41 -4 4
ma5>submit output_ma5_analysis_ptj200
```

1.2 Configuration

- MadAnalysis version 1.9.32 (2021/07/16).
- Histograms given for an integrated luminosity of 0.1fb⁻¹.

2 Datasets

$2.1 \quad sm_pj$

• Sample consisting of: background events.

• Generated events: 10000 events.

 \bullet Normalization to the luminosity: 1057+/- 4 $\,$ events.

• Ratio (event weight): 0.11.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
output_pp_vlvlxj/- Events/run_sm_ptj200/- unweighted_events.lhe.gz	10000	10.6 @ 0.34%	0.0

2.2 dm_pj

• Sample consisting of: signal events.

• Generated events: 10000 events.

 \bullet Normalization to the luminosity: 22+/- 1 $\,$ events.

• Ratio (event weight): 0.0022.

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
$output_pp_xdxdxj/-$			
$Events/run_dm_ptj200/-$	10000	0.221 @ 0.28%	0.0
$unweighted_events.lhe.gz$			

3 Histos and cuts

3.1 Histogram 1

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
sm_pj	1.0	1.0	260.898	71.47	0.0	0.43
dm_pj	1.0	1.0	270.292	75.4	0.0	0.37

Figure 1.

3.2 Histogram 2

* Plot: P (j)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$\mathrm{sm}_{\mathbf{p}}$	1.0	1.0	553.943	414.7	0.0	25.73
dm_pj	1.0	1.0	645.019	538.5	0.0	31.69

Figure 2.

3.3 Histogram 3

* Plot: PT (**j**)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$\mathrm{sm}_{\mathbf{p}}$	1.0	1.0	261.136	71.9	0.0	0.4476
$\mathrm{dm}_{\mathrm{pj}}$	1.0	1.0	270.314	75.33	0.0	0.3744

Figure 3.

3.4 Histogram 4

* Plot: Y (j)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$\mathrm{sm}_{\mathtt{pj}}$	1.0	1.0	0.0107917	1.298	0.0	0.0
dm_pj	1.0	1.0	-0.00516148	1.404	0.0	0.0

Figure 4.

3.5 Histogram 5

* Plot: PHI ($\mathbf j$)

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
sm_pj	1.0	1.0	- 0.000580689	1.821	0.0	0.0
$\mathrm{dm}_{\mathbf{p}}$	1.0	1.0	0.0107691	1.805	0.0	0.0

Figure 5.