IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Peter C. Van Buskirk, et al.

Title

: ISOTROPIC DRY CLEANING PROCESS FOR NOBLE METAL

INTEGRATED CIRCUIT STRUCTURES

U.S. Serial No.: New Continuation of Prior Copending U.S. Patent Application No.

09/093,291

Prior Application Filing Date: June 8, 1998

Prior Application Group Art Unit: 1746

Prior Application Examiner: A. Olsen

Customer No.: 25559

"Express Mail" mailing label number: EL051867347US

Date of Deposit:

January 24, 2001

I hereby certify that this document is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to BOX PATENT APPLICATION, Assistant Commissioner for Patents, Washington, DC 20231.

<u>Lee Ann DiL</u>ello

(Typed or printed pame of person mailing paper or fee)

(Signature of person mailing paper or fee)

Assistant Commissioner for Patents Washington, D.C.20231

PRELIMINARY AMENDMENT

Sir:

Prior to examining the instant application on the merits, please amend the specification as follows:

IN THE SPECIFICATION

Please amend the specification by inserting before the first line the sentence -- This is a continuation of U.S. Application No. 09/093,291, filed on June 8, 1998, now pending.--

IN THE CLAIMS

Please cancel claims 1, 5-11, 15-22, 28-51.

Please add the following new claims:

48. A method for removing a noble metal residue comprising iridium, from a microelectronic device structure disposed in a chamber, the method comprising contacting the microelectronic device structure with a cleaning gas comprising gasphase XeF₂, wherein the gas phase XeF₂ is continually flowed through the chamber in combination with an energetic dissociation source selected from the group consisting of a plasma source, an ion source, an ultra violet source and a laser source, to at least partially remove the noble metal residue.

- 49. A method for removing a noble metal residue comprising iridium, from a microelectronic device structure disposed in a chamber, wherein elemental silicon is present, the method comprising evacuating the chamber, filling the chamber with a cleaning gas comprising XeF₂, and retaining the cleaning gas in the chamber to react with the residue, to effect the removal of the noble metal residue from the microelectronic device structure.
- 50. A method for removing a noble metal residue comprising iridium, from a microelectronic device structure disposed in a chamber, the method comprising

evacuating the chamber, filling the chamber with a cleaning gas comprising XeF₂ and one or more radicals selected from the group consisting of SiF₂ and SiF₃, and retaining the cleaning gas in the chamber to react with the residue, to effect the removal of the noble metal residue from the microelectronic device structure.

- 51. A method for removing from a microelectronic device structure a noble metal residue including at least one metal selected from the group consisting of platinum, palladium, iridium and rhodium, the method comprising contacting the microelectronic device structure with a gas-phase reactive halide composition comprising SiF₄, to remove the residue.
- 52. A method for removing from a microelectronic device structure a noble metal residue including at least one metal selected from the group consisting of platinum, palladium, iridium and rhodium, the method comprising contacting the microelectronic device structure with a gas-phase reactive halide composition comprising Si₂F₆, to remove the residue.
- 53. A method for removing from a microelectronic device structure a noble metal residue including at least one metal selected from the group consisting of platinum, palladium, iridium and rhodium, the method comprising contacting the microelectronic device structure with a gas-phase reactive halide composition:
 - (a) comprising a halide component selected from the group consisting of SF_6 , SiF_4 , Si_2F_6 , SiF_2 radical, SiF_3 radical, and XeF_2 , in an amount effective to a least partially remove the residue; and

Docket No.: ATMI-272-Con

The probability and the probability of the probabil

(b) lacking a nitrogen- or phosphorous-containing π -acceptor ligand.

REMARKS

This is a continuation of application serial no. 09/093,291, now allowed.

An early examination on the merits is earnestly solicited.

Date: January 24, 2001

Respectfully submitted,

Oliver A.M. Zitzmann Attorney for Applicant

Reg. No. 38,691

Advanced Technology Materials Inc.

7 Commerce Drive Danbury, CT 06810

Telephone: (203) 794-1100

Facsimile: (203) 797-2544

Agent Ref: 272-CON.