

MSC. BUI QUOC KHANH

KHANHBQ@HANU.EDU.VN

- There is 1 most specific hypothesis h<sub>1</sub>= YZ and 1 most general hypothesis h<sub>2</sub>=Z
- No conjunction in between S2 and G2, so as VS={h<sub>1</sub>, h<sub>2</sub>}

#### Training set

| Χ | Υ | Z | W | С |
|---|---|---|---|---|
| 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |

Seen instances

Unseen instances

| X | Y | Z | W | С | C(YZ) | C(Z) |
|---|---|---|---|---|-------|------|
| 0 | 1 | 1 | 0 | 1 | 1     | 1    |
| 1 | 1 | 1 | 1 | 1 | 1     | 1    |
| 0 | 1 | 0 | 0 | 0 | 0     | 0    |
| 0 | 0 | 1 | 1 | ? | 0     | 1    |
| 0 | 0 | 0 | 0 | ? | 0     | 0    |
| 0 | 1 | 0 | 1 | ? | 0     | 0    |
| 0 | 0 | 0 | 1 | ? | 0     | 0    |
| 0 | 1 | 1 | 1 | ? | 1     | 1    |
| 1 | 0 | 0 | 0 | ? | 0     | 0    |
| 1 | 0 | 0 | 1 | ? | 0     | 0    |
| 1 | 0 | 1 | 0 | ? | 0     | 1    |
| 1 | 0 | 1 | 1 | ? | 0     | 1    |
| 1 | 1 | 0 | 0 | ? | 0     | 0    |
| 1 | 1 | 0 | 1 | ? | 0     | 0    |
| 1 | 1 | 1 | 0 | ? | 1     | 1    |
| 0 | 0 | 1 | 0 | ? | 0     | 1    |

Over the training set the class label according to YZ and Z coincides with the target function

Seen instances

Unseen instances

Beyond C

| X               | Y               | Z      | W               | С   | C(YZ) | C(Z) |
|-----------------|-----------------|--------|-----------------|-----|-------|------|
| 0               | 1               | 1      | 0               | 7   | 1     | 1    |
| 7               | 1               | 1      | 7               | 1   | 1     | 1    |
| 0               | 7               | 0      | 0               | 0   | 0     | 0    |
| 0               | 0               | 1      | 1               | ?   | 0     | 1    |
| 0               | 0               | 0      | 0               | ?   | 0     | 0    |
| 0               | 1               | 0      | 1               | ?   | 0     | 0    |
| 0               | 0               | 0      | 1               | ?   | 0     | 0    |
| 0               | 1               | 1      | 1               | ?   | 1     | 1    |
| 1               | 0               | 0      | 0               | ?   | 0     | 0    |
| 1               | 0               | 0      | 1               | ?   | 0     | 0    |
| 1               | 0               | 1      | 0               | ?   | 0     | 1    |
| 1               | 0               | 1      | 1               | ?   | 0     | 1    |
| 1               | 1               | 0      | 0               | ?   | 0     | 0    |
| 1               | 1               | 0      | 1               | ?   | 0     | 0    |
| 1               | 1               | 1      | 0               | ?   | 1     | 1    |
| a <b>ø</b> dida | t <b>ø</b> Elim | nation | - <b>Q</b> hanl | BQ/ | 0     | 1    |

The class is unknown

The class according to YZ

The class according to Z

Seen instances

Unseen instances

| X | Υ | Ζ | W | С | C(YZ)         | C(Z)             |
|---|---|---|---|---|---------------|------------------|
| 0 | 1 | 1 | 0 | 1 | 1             | 1                |
| 1 | 1 | 1 | 1 | 1 | 1             | 1                |
| 0 | 1 | 0 | 0 | 0 | 0             | 0                |
| 0 | 0 | 1 | 1 | ج | 0             | 1                |
| 0 | 0 | 0 | 0 | ? | 0             | 0                |
| 0 | 1 | 0 | 1 | ? | 0             | 0                |
| 0 | 0 | 0 | 1 | ? | 0             | 0                |
| 0 | 1 | 1 | 1 | ? | 1             | 1                |
| 1 | 0 | 0 | 0 | ? | 0             | 0                |
| 1 | 0 | 0 | 1 | ? | 0             | 0                |
| 1 | 0 | 1 | 0 | ? | 0             | 1                |
| 1 | 0 | 1 | 1 | ? | 0             | 1                |
| 1 | 1 | 0 | 0 | ? | 0             | 0                |
| 1 | 1 | 0 | 1 | ? | 0             | 0                |
| 1 | 1 | 1 | 0 | ? | 1             | 1                |
| 0 | 0 | 1 | 0 | ? | <b>o</b> Beyo | n <b>ø</b> l Car |

What is the true target function?

If we assume that it is a conjunction, then it is either YZ or Z

Otherwise, it is one of the 2<sup>13</sup> -2 remaining possible functions (not conjunctions)

Seen instances

Unseen instances

| Χ | Υ | Ζ | W          | С     | C(YZ)  | C(Z)     |
|---|---|---|------------|-------|--------|----------|
| 0 | 1 | 1 | 0          | 1     | 1      | 1        |
| 1 | 1 | 1 | 1          | 1     | 1      | 1        |
| 0 | 1 | 0 | 0          | 0     | 0      | 0        |
| 0 | 0 | 1 | 1          | ?     | 0      | 1        |
| 0 | 0 | 0 | 0          | ?     | 0      | 0        |
| 0 | 1 | 0 | 1          | ?     | 0      | 0        |
| 0 | 0 | 0 | 1          | ?     | 0      | 0        |
| 0 | 1 | 1 | 1          | ?     | 1      | 1        |
| 1 | 0 | 0 | 0          | ?     | 0      | 0        |
| 1 | 0 | 0 | 1          | ?     | 0      | 0        |
| 1 | 0 | 1 | 0          | ?     | 0      | 1        |
| 1 | 0 | 1 | 1          | ?     | 0      | 1        |
| 1 | 1 | 0 | 0          | ?     | 0      | 0        |
| 1 | 1 | 0 | 1          | ?     | 0      | 0        |
| 1 | 1 | 1 | 0          | ?     | 1      | 1        |
| 0 | 0 | 1 | <b>0</b> B | eyond | Gandid | ațe Elir |

Assume that the target function is a conjunction, i.e., either YZ or Z

Since  $Z \ge YZ$  then  $YZ=1 \rightarrow Z=1$ 

The two models agree

Seen instances

Unseen instances

|   | Χ | Υ | Ζ | W | С | C(YZ)           | C(Z)   |
|---|---|---|---|---|---|-----------------|--------|
|   | 0 | 1 | 1 | 0 | 1 | 1               | 1      |
|   | 1 | 1 | 1 | 1 | 1 | 1               | 1      |
| 1 | 0 | 1 | 0 | 0 | 0 | 0               | 0      |
|   | 0 | 0 | 1 | 1 | ? | 0               | 1      |
|   | 0 | 0 | 0 | 0 | ? | 0               | 0      |
|   | 0 | 1 | 0 | 1 | ? | 0               | 0      |
|   | 0 | 0 | 0 | 1 | ? | 0               | 0      |
| 1 | 0 | 1 | 1 | 1 | 1 | 1               | 1      |
|   | 1 | 0 | 0 | 0 | ? | 0               | 0      |
|   | 1 | 0 | 0 | 1 | ? | 0               | 0      |
|   | 1 | 0 | 1 | 0 | ? | 0               | 1      |
|   | 1 | 0 | 1 | 1 | ? | 0               | 1      |
|   | 1 | 1 | 0 | 0 | ? | 0               | 0      |
|   | 1 | 1 | 0 | 1 | ? | 0               | 0      |
|   | 1 | 1 | 1 | 0 | 1 | 1               | 1      |
|   | 0 | 0 | 1 | 0 | ? | B <b>g</b> yond | Gandid |

Assume that the target function is a conjunction, i.e., either YZ or Z

Since  $Z \ge YZ$  then  $YZ=1 \rightarrow Z=1$ 

The two models agree

Hence, C=1

If an instance is classified positive by the most specific model YZ then it is classified positive with confidence 100%

Seen instances

Unseen instances

| X | Υ | Z | 8 | U | C(YZ)        | C(Z)        |
|---|---|---|---|---|--------------|-------------|
| 0 | 1 | 1 | 0 | 1 | 1            | 1           |
| 1 | 1 | 1 | 1 | 1 | 1            | 1           |
| 0 | 1 | 0 | 0 | 0 | 0            | 0           |
| 0 | 0 | 1 | 1 | ? | 0            | 1           |
| 0 | 0 | 0 | 0 | 0 | 0            | 0           |
| 0 | 1 | 0 | 1 | 0 | 0            | 0           |
| 0 | 0 | 0 | 1 | 0 | 0            | 0           |
| 0 | 1 | 1 | 1 | 1 | 1            | 1           |
| 1 | 0 | 0 | 0 | 0 | 0            | 0           |
| 1 | 0 | 0 | 1 | 0 | 0            | 0           |
| 1 | 0 | 1 | 0 | ? | 0            | 1           |
| 1 | 0 | 1 | 1 | ? | 0            | 1           |
| 1 | 1 | 0 | 0 | 0 | 0            | 0           |
| 1 | 1 | 0 | 1 | 0 | 0            | 0           |
| 1 | 1 | 1 | 0 | 1 | 1            | 1           |
| 0 | 0 | 1 | 0 | ? | eyond (<br>0 | tandic<br>1 |

Assume that the target function is a conjunction, i.e., either YZ or Z

Since  $Z \ge YZ$  then  $Z=0 \rightarrow YZ=0$ 

The two models agree

Hence, C=0

If an instance is classified negative by the most general model Z then it is classified negative with confidence 100%

Seen instances

Unseen instances

| X | Υ | Z | W | С     | C(YZ) | C(Z)       |
|---|---|---|---|-------|-------|------------|
| 0 | 1 | 1 | 0 | 1     | 1     | 1          |
| 1 | 1 | 1 | 1 | 1     | 1     | 1          |
| 0 | 1 | 0 | 0 | 0     | 0     | 0          |
| 0 | 0 | 1 | 1 | ?     | 0     | 1          |
| 0 | 0 | 0 | 0 | 0     | 0     | 0          |
| 0 | 1 | 0 | 1 | 0     | 0     | 0          |
| 0 | 0 | 0 | 1 | 0     | 0     | 0          |
| 0 | 1 | 1 | 1 | 1     | 1     | 1          |
| 1 | 0 | 0 | 0 | 0     | 0     | 0          |
| 1 | 0 | 0 | 1 | 0     | 0     | 0          |
| 1 | 0 | 1 | 0 | ?     | 0     | 1          |
| 1 | 0 | 1 | 1 | ?     | 0     | 1          |
| 1 | 1 | 0 | 0 | 0     | 0     | 0          |
| 1 | 1 | 0 | 1 | 0     | 0     | 0          |
| 1 | 1 | 1 | 0 | 1     | 1     | 1          |
| 0 | 0 | 1 | 0 | ? Bey |       | ndida<br>1 |

What about the other instances?

They can be classified as class 1 or 0 with the same probability

- Let's assume that the target function is a conjunction either Z or YZ
  - A new instance e classified as positive by the most specific hypothesis YZ is classified positively by the most general hypothesis Z as well. Hence, e is classified positive with confidence 100%
  - A new instance e classified negatively by the most general hypotheses Z is classified as negative by the most specific hypothesis YZ as well. Then, e is classified negatively with confidence 100%
  - A new instance e classified positive by Z and negative by YZ will be classified as positive (or negative) with confidence 50%

## Classifying by using the VS the EnjoySport example



All models (hypotheses compatible with the examples)

# Classifying by using the VS the EnjoySport example

#### Unseen instances

| Instance | Sky   | Temp | Humid  | Wind   | Water | Forecst | EnjoySpt |
|----------|-------|------|--------|--------|-------|---------|----------|
| А        | Sunny | Warm | Normal | Strong | Cool  | Change  | ?        |
| В        | Rainy | Cold | Normal | Light  | Warm  | Same    | ?        |
| С        | Sunny | Warm | Normal | Light  | Warm  | Same    | ?        |
| D        | Sunny | Cold | Normal | Strong | Warm  | Same    | ?        |

#### **MODELS**

- <sunny,warm,?,strong,?,?>
- <sunny,?,?,strong,?,?>
- <sunny,warm,?,?,?,?>
- <?,warm,?,strong,?,?>
- <sunny,?,?,?,?,?>
- . <?,warm,?,?,?,?>

A: Yes 100% (it is classified by S)

B: No 100% (it is not classified by G)

C: classified by 3 classifiers of the VS out of 6 (50% confidence)

D: classified positive by 2 classifiers out of 6 (33% confidence)

Beyond Candidate Elimination - KhanhBQ

# Classifying by using the VS the EnjoySport example

#### Unseen instances

| Instance | Sky   | Temp | Humid  | Wind   | Water | Forecst | EnjoySpt   |
|----------|-------|------|--------|--------|-------|---------|------------|
| А        | Sunny | Warm | Normal | Strong | Cool  | Change  | Yes (100%) |
| В        | Rainy | Cold | Normal | Light  | Warm  | Same    | No (100%)  |
| С        | Sunny | Warm | Normal | Light  | Warm  | Same    | yes/ (50%) |
| D        | Sunny | Cold | Normal | Strong | Warm  | Same    | No (66%)   |

#### MODELS

- <sunny,warm,?,strong,?,?>
- <sunny,?,?,strong,?,?>
- <sunny,warm,?,?,?,?>
- <?,warm,?,strong,?,?>
- <sunny,?,?,?,?,?>
- <?,warm,?,?,?,?>

A: Yes 100% (it is classified by S)

B: No 100% (it is not classified by G)

C: classified by 3 classifiers of the VS out of 6 (50% confidence)

D: classified positive by 2 classifiers out of 6 (33% confidence)

- If a new instance x satisfies the most specific hypothesis in VS, then it satisfies all hypotheses in VS. Hence, x is classified with confidence 100% (as if the target function were known)
- If a new instance x does not satisfy any of the most general hypotheses in VS then it is classified as negative with confidence 100%
- If an instance x is classified positive by some of the hypotheses in VS we have less confidence in classifying it as positive than case 1 above

## The non-determinism of the classification task

- Using only the training data, one can learn a number of hypotheses compatible with the training set (i.e., h(x)=f(x), for each x)
- Classification uses data about the past to foresee the future. But what is the hypothesis that correctly predicts the future? No one knows!
- Induction is not truth-preserving, non-deterministic
- Inductive task: predict what is the next number in the series 1, 4, 9, 16, ?
- If the generator polynomial (prediction function) is n2, then the number is n=25
- If it is  $(-5n^4 + 50^3 151n^2 + 25n 120)/24$ , then n=20

#### Inductive learning assumption

• The Inductive Learning Assumption (ILA): Any hypothesis found to represent the target function well over a sufficiently large set of training examples will also approximate the target function well over unobserved examples

# Beyond conjunctions DNF hypotheses

- What is the probability that a concept is representable by a conjunction?
- Consider a training set S with n boolean attributes. There are
  - $x = 2^n$  possible instances
  - $y = 3^n$  conjunctive hypotheses constructible over S(<?, 0,..., 1>, <0,?,...,?>, ...)
  - z = 2<sup>x</sup> concepts that can be defined over S (we are assuming binary classification)
- The probability is then y/z with merely 5 attributes it is equal to 243/4.294.967.296 --- very small!

| Χ | Υ | Ζ | W     | С      |
|---|---|---|-------|--------|
| 0 | 1 | 1 | 0     | ?      |
| 1 | 1 | 1 | 1     | ?      |
| 0 | 1 | 0 | 0     | ?      |
| 0 | 0 | 1 | 1     | ?      |
| 0 | 0 | 0 | 0     | ?      |
| 0 | 1 | 0 | 1     | ?      |
| 0 | 0 | 0 | 1     | ?      |
| 0 | 1 | 1 | 1     | ?      |
| 1 | 0 | 0 | 0     | ?      |
| 1 | 0 | 0 | 1     | ?      |
| 1 | 0 | 1 | 0     | ?      |
| 1 | 0 | 1 | 1     | ?      |
| 1 | 1 | 0 | 0     | ?      |
| 1 | 1 | 0 | 1     | ?      |
| 1 | 1 | 1 | 0     | ?      |
| 0 | 0 | 1 | o Bey | ond Ca |

2<sup>16</sup> possible target functions

3<sup>4</sup> possible conjunctive functions

Prob = 0.001

# Beyond conjunctions DNF hypotheses

| Х | Υ | Z | С |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |

A disjunctive normal form (DNF) hypothesis is a disjunction of conjunctions of attribute constraints

DNF hypothesis space is complete

$$h = <0,1,0> + <1,1,1> = \bar{X}Y\bar{Z} + XYZ$$

$$h = \bar{X}Y\bar{Z} + X\bar{Y}\bar{Z}$$
 is a model

# Beyond conjunctions DNF hypotheses

| Х | Υ | Z | С |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |

No conjunctive model Use DNF

Find-S => h= 
$$\bar{X}Y\bar{Z} + X\bar{Y}\bar{Z}$$

Model: the disjunction of the observed positive examples

Problem: any new instance is classified as negative h(1,0,1) = 0, h(0,0,1) = 0, ....
Useless, no generalization capability!

#### Using DNF hypotheses

| X | Υ | Z | С |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |

Cand-Elim 
$$\rightarrow$$
 S= { XYZ + XYZ }
$$G = \{ not(XYZ + XYZ) \}$$

Using DNF with CE produces trivial results:

S boundary the disjunction of the observed positive examples G boundary the negation of the disjunction of the observed negative examples

#### Using DNF hypotheses



Any new instance is classified with confidence 50% - useless!!

### Using DNF hypotheses

 The only instances classified with confidence 100% are those in the training set

The others are classified with confidence 50%!!

### The Futility of DNF Learning

- If the DNF space is used, CE induces trivial classifiers (no generalization capabilities)
- $S = \{s\}$ , with s = disjunction of positive examples
- G = {g}, with g = Negated disjunction of negative examples
- Only training examples will be unambiguously classified

#### Beyond Candidate Elimination

- Conjunctive hypothesis space too narrow –no conjunctive models may exist
- DNF space complete, but FindS and CE generate only trivial DNF models (no generalization capabilities)

#### Beyond CE algorithm

| А | В | С | D | class |
|---|---|---|---|-------|
| 0 | 0 | 0 | 1 | 1     |
| 0 | 1 | 0 | 1 | 1     |
| 0 | 1 | 0 | 0 | 1     |
| 1 | 0 | 0 | 0 | 0     |
| 1 | 0 | 1 | 0 | 1     |
| 1 | 1 | 1 | 1 | 1     |

CE outcome: Trivial DNF

A BCD V ABCD V ABCD V ABCD (S boundary induced by CE)

not (ABCD) (G boundary)

- zero errors over the TS
- no generalization capability (every new instance is classified as negative)

Algorithms that learn non-trivial DNF models needed!!

- Example AV C
  - zero errors over the TS (model)
  - more generalization capability (e.g., 0110 and 0111 will be classified positive)

### Approximate Hypotheses

| Х | Υ | Z | С |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |

- DNF by CE:  $S = \{\overline{X}Y\overline{Z} \ V \ \overline{X}\overline{Y}Z\}$ ,  $G = not(\overline{X} \ \overline{Y} \ \overline{Z})$  useless
- No other DNF model exists

#### Approximate hypotheses:

• X: 1 error

Y: 1 error

not Z: 1 error

not X: 2 errors

not Y: 2 errors

• ...

#### Approximate Solutions

- Non-trivial models may not exist, so approximate solutions are needed
- Even when non-trivial models exist, approximate solutions are preferred because of the overfitting problem

## Overfitting

- Real-world training data may be noisy (instances erroneously classified)
- Thus, a hypothesis that exactly fits the training data may be wrong and have bad generalization capabilities
- Overfitting occurs when the model is too tailored over the training data so as it may reflect its contingent properties rather than its structural properties

#### Mammal training data - h = <warm, yes, yes, ?> is a model

| Name       | Body Temp | Gives birth | 4-legged | hibernates | mammal |
|------------|-----------|-------------|----------|------------|--------|
|            |           |             |          |            |        |
| Porcupine  | warm      | Yes         | Yes      | Yes        | yes    |
| cat        | warm      | Yes         | Yes      | no         | yes    |
| bat        | warm      | yes         | no       | yes        | no     |
| whale      | warm      | yes         | No       | No         | No     |
| salamander | cold      | No          | Yes      | Yes        | No     |
| k. dragon  | cold      | No          | Yes      | No         | No     |
| Python     | cold      | No          | No       | Yes        | No     |
| Salmon     | cold      | No          | No       | No         | No     |
| Eagle      | warm      | No          | No       | No         | no     |
| Guppy      | cold      | Yes         | No       | No         | no     |

beyond Canalagle Elimination - KhannibQ

#### Mammal training data - $h = \langle warm, yes, yes, ? \rangle$ is a model

| Name       | Body Temp | Gives birth | 4-legged | hibernates | mammal |
|------------|-----------|-------------|----------|------------|--------|
|            |           |             |          |            |        |
| Porcupine  | warm      | Yes         | Yes      | Yes        | yes    |
| cat        | warm      | Yes         | Yes      | no         | yes    |
| bat        | warm      | yes         | no       | yes        | no     |
| whale      | warm      | yes         | No       | No         | No     |
| salamander | cold      | No          | Yes      | Yes        | no     |
| k. dragon  | cold      | No          | Yes      | No         | no     |
| Python     | cold      | No          | No       | Yes        | no     |
| Salmon     | cold      | No          | No       | No         | no     |
| Eagle      | warm      | No          | No       | No         | no     |
| Guppy      | cold      | Yes         | No       | No         | no     |

| Name         | Body Temp | Gives birth | 4-legged | hibernates | mammal | Predicted label |
|--------------|-----------|-------------|----------|------------|--------|-----------------|
| Human        | warm      | Yes         | No       | No         | yes    | no              |
| pigeon       | warm      | No          | No       | No         | no     | no              |
| elephant     | warm      | yes         | Yes      | No         | yes    | yes             |
| Leopard seal | cold      | yes         | No       | No         | по     | no              |
| turtle       | cold      | No          | Yes      | No         | по     | no              |
| penguin      | cold      | No          | по       | No         | по     | no              |
| eel          | cold      | No          | No       | No         | по     | no              |
| dolphin      | warm      | yes         | No       | No         | yes    | no              |

- Elephant is correctly classified as mammal
- Both humans and dolphins are misclassified they are not 4-legged
- All other instances are correctly classified
- 25% test errors

#### Mammal training data - $h_1$ = <warm, yes, ?, ?> NOT a model

| Name       | Body Temp | Gives birth | 4-legged | hibernates | mammal |
|------------|-----------|-------------|----------|------------|--------|
|            |           |             |          |            |        |
| Porcupine  | warm      | Yes         | Yes      | Yes        | yes    |
| cat        | warm      | Yes         | Yes      | no         | yes    |
| bat        | warm      | yes         | no       | yes        | no     |
| whale      | warm      | yes         | No       | No         | No     |
| salamander | cold      | No          | Yes      | Yes        | No     |
| k. dragon  | cold      | No          | Yes      | No         | No     |
| Python     | cold      | No          | No       | Yes        | No     |
| Salmon     | cold      | No          | No       | No         | No     |
| Eagle      | warm      | No          | No       | No         | no     |
| Guppy      | cold      | Yes         | No       | No         | no     |

Beyond Candidate Elimination - KhanhBC

Unseen instances  $h = \langle warm, yes, ?, ? \rangle - 0$  test errors

| Name         | Body Temp | Gives<br>birth | 4-legged | hibernates | mammal | Predicted label |
|--------------|-----------|----------------|----------|------------|--------|-----------------|
| Human        | warm      | Yes            | No       | No         | yes    | yes             |
| pigeon       | warm      | No             | No       | No         | no     | no              |
| elephant     | warm      | yes            | Yes      | No         | yes    | yes             |
| Leopard seal | cold      | yes            | No       | No         | no     | no              |
| turtle       | cold      | No             | Yes      | No         | no     | no              |
| penguin      | cold      | No             | no       | No         | no     | no              |
| eel          | cold      | No             | No       | No         | no     | no              |
| dolphin      | warm      | yes            | No       | No         | yes    | yes             |

- h = <warm, yes, yes, ?>
  - compatible with training data
  - 0% training errors, 25% test errors
- $h_1 = \langle warm, yes, ?, ? \rangle$ 
  - NOT compatible with training data
  - 20% training errors, 0% test errors
- h<sub>1</sub> (not a model) performs better than h (model) over unseen data!

### Overfitting due to lack of examples

#### Training set for classifying mammals

| name       | Body temp | Gives birth | Four-legged | hibernates | mammal |
|------------|-----------|-------------|-------------|------------|--------|
| salamander | cold      | no          | yes         | yes        | no     |
| Guppy      | cold      | yes         | по          | no         | no     |
| Eagle      | warm      | No          | No          | No         | no     |
| Poorwill   | warm      | No          | No          | Yes        | no     |
| Platypus   | warm      | No          | Yes         | Yes        | yes    |

- The only representative mammal is the platypus!!!
- h = <warm, no, yes, yes> is a model
- According to h both humans and elephants are NOT mammals!

## Overfitting

• **Definition (Mitchell):** a hypothesis h is said to overfit the training data if there is another hypothesis h' such that h has a smaller error over the training examples, but h' has a smaller error over the unseen examples

#### Inductive learning assumption

- Real-world training data are noisy
- So, approximate solutions are in general preferred
- Search problem: Find h ∈ H that well approximates the training set
- The Inductive Learning Assumption (ILA): Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

#### Conclusions

- Find-S and CE algorithms
  - Conjunctive Space: models may not exist
  - DNF space: trivial solutions (no generalization capabilities)
  - Not robust to overfitting
- Algorithms generating non-trivial DNF models are needed
- Approximate solutions are preferred the overfitting problem
- Need to devise learning algorithms capable of inducing models that well approximate the training data and are robust to overfitting