Algorithms Chapter 12 Binary Search Trees

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- What is a binary search tree?
- Querying a binary search tree
- Insertion and deletion

```
Search trees: { a. search
b. min, max
c. predecessor, successor
d. insert. delet
```

Search trees are data structures that support many dynamicset operations.

- PREDECESSOR, Successor, Insert, and Delete.

 (a,d)

 (b,d)
- Can be used as both a dictionary and as a priority queue.
- ト Basic operations take time proportional to the height of the tree, i.e., $\Theta(h)$. 基本動作時間 $\Theta(h)$ ⇒ 樹高
 - For complete binary tree with n nodes: worst case $\Theta(\lg n)$.
 - For linear chain of *n* nodes: worst case $\Theta(n)$. **埃** θ (logn) ~ θ (n)
- Different types of search trees include binary search trees, red-black trees (Chapter 13), and B-trees (Chapter 18).

```
~ 可控制高度 ——
```

Overview

Binary search trees

- We represent a binary tree by a linked data structure in which each node is an object.
- Each node contains the fields
 - key and possibly other satellite data.
 - ▶ *left*: points to left child.
 - right: points to right child.
 - p: points to parent. p[root[T]] = NIL.

- Stored keys must satisfy the binary-search-tree property.
 - ▶ If y is in left subtree of x, then key[y] < key[x]. 左子橇 < 我
 - ▶ If y is in right subtree of x, then $key[y] \ge key[x]$. 右子樹 ≥ 我

Figure 12.1 Binary search trees

(a) (b) 擁有相同性質,但 (a) 樹高較低, 較有效率

- ▶ A binary search tree on 6 nodes with height 2.
- ▶ A less efficient binary search tree with height 4 that contains the same keys.

有子binary search tree 的性质, Inorder tree walk 栽們可將key 值由小到大印出

- ▶ The binary-search-tree property allows us to print keys in a binary search tree in order, recursively.
- ▶ Elements are printed in monotonically increasing order.

```
INORDER-TREE-WALK(x)
```

- 1. if $x \neq NIL$
- 2. INORDER-TREE-WALK(left[x]) Ep 左子 植
- 3. print key[x] です 盲 こ
- 4. INORDER-TREE-WALK(right[x]) Er 右 子 桂寸
- ▶ The inorder tree walk prints the keys in each of the two binary search trees from Figure 12.1 in the order 2, 3, 4, 5, 7, 8.

Properties of binary search trees

▶ **Theorem** If x is the root of an n-node subtree, then the call INORDER-TREE-WALK(x) takes $\Theta(n)$.

Proof: inorder_tree_walk(α) 執行時間為θ(n)

- T(0) = c, as It takes constant time on an empty subtree.
- ▶ Left subtree has k nodes and right subtree has n-k-1 nodes.
- ▶ d: the time to execute INORDER-TREE-WALK(x), exclusive of the time spent in recursive calls. 假設左樹有k個桌.右樹有n-k-1個桌
- ▶ Prove by substitution method: T(n) = (c+d)n + c. $\xi \in \mathbb{R}$
- For n = 0, we have $(c+d) \cdot 0 + c = c = T(0)$.
- For n > 0, T(n) = T(k) + T(n-k-1) + d [left child] = ((c+d)k+c) + ((c+d)(n-k-1)+c) + d $= (c+d)n+c-(c+d)+c+d \quad c: 當 植為空所需時間$ $= (c+d)n+c. \qquad d: 只執行1,3 行時間$

⁷ T(n) = 印左子樹所需時間 + 印右子樹所需時間 + 執行 1, 3 行時間

Outline

- What is a binary search tree?
- Querying a binary search tree
- Insertion and deletion

C: 常樹為空所需時間

d:只轨行1,3 行時間

$$T(n) = dn + C(n+1) = (C+d)n + C$$

子節吳指標為空⇒共有內+1個

- 工每個卓都有父節卓, root 沒有 > 有 n-1個子節卓
- п 每個臭配置 2個 э n *(左子+右子) = 2n
- 亚為空=全-用到=2n-(n-1)=n+1

Operations on binary search trees

- ▶ We shall examine SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR operations. 時間≤糖高的常數倍
- \blacktriangleright The running times of these operations are all O(h).

- ▶ On most computers, the iterative version is more efficient. 遞迴時要將目前的资料存到stack,返迴時要pop(compiler做的)
- **Time:** The algorithm visiting nodes on a downward path from the root. Thus, running time is O(h).

Minimum and maximum

- ▶ The binary-search-tree property guarantees that
 - b the minimum key of a binary search tree is located at the leftmost node, and 最小:最左的文
 - b the maximum key of a binary search tree is located at the rightmost node. 最大:最右的莫
- Traverse the appropriate pointers (left or right) until NIL is reached.

TREE-MINIMUM(x)

1. while $left[x] \neq NIL$ 2. do $x \leftarrow left[x]$ 3. return xTREE-MAXIMUM(x)

1. while $right[x] \neq NIL$ 2. do $x \leftarrow right[x]$

Time: Both procedures visit nodes that form a downward path from the root to a leaf. Both procedures run in O(h) time.

Successor and predecessor_{1/2}

- Assuming that all keys are distinct, the successor of a node x is the node y such that key[y] is the smallest key > key[x].
- ▶ The structure of a binary search tree allows us to determine the successor of a node without ever comparing keys.
- If x has the largest key in the binary search tree, then we say that x's successor is NIL.
- There are two cases:
 - If node x has a non-empty right subtree, then x's successor is the minimum in x's right subtree.
 - ▶ If node x has an empty right subtree and x has a successor y, then y is the lowest ancestor of x whose left child is also an ancestor of x.

右子樹、不空右子樹是最小的那個空。最小祖先滿足其左子 Successor and predecessor_{2/2} 工也是祖先中 15 Tree-Successor(x) **if** $right[x] \neq NIL$ return Tree-Minimum(right[x] $y \leftarrow p[x]$ **while** $y \neq NIL$ and x = right[y] $x \leftarrow y$ $y \leftarrow p[y]$ return *y*

- ▶ The successor of the node with key 13 is the node with key 15.
- **Time:** Since we either follow a path up the tree or follow a path down the tree. The running time is O(h).
- ▶ TREE-PREDECESSOR is symmetric to TREE-SUCCESSOR.

13 的左子是9自己 15 的左子是6,6也是13 的祖先

Outline

- What is a binary search tree?
- Querying a binary search tree
- Insertion and deletion

Insertion and deletion insert 和 delete 会改变 植

- ▶ The operations of insertion and deletion cause the dynamic set represented by a binary search tree to change.
- ▶ The binary-search-tree property must hold after the change.
- Insertion is more straightforward than deletion.
 insert 比較容易

在做完 insert 和 delete 後, binary-search-tree 的性 览雲維 持下去

Insertion

```
Tree-Insert(T, z)
     y \leftarrow \mathsf{NIL}; x \leftarrow root[T] \neg
2. while x \neq NIL
                                                                                    18
3. y \leftarrow x
                                     找父親出
4. if key[z] < key[x]
5. x \leftarrow left[x]
          else x \leftarrow right[x]
    p[z] \leftarrow y
7.
    if y = NIL
                                                                         Inserting an item
          root[T] \leftarrow z /* Tree T was empty */
9.
                                                                            with key 13
      else if key[z] < key[y] 
left[y] ← z 
tt 攵親大放右
tt 攵親小放左
10.
11.
     else right[y] \leftarrow z
12.
```

Time: Since we follow a path down the tree. The running time is O(h).

Deletion

- ▶ TREE-DELETE is broken into three cases.
- ▶ Case 1: z has no children. 沒有兒子, 在特刪
 - ▶ Delete z by making the parent of z point to NIL, instead of to z.
- ▶ Case 2: z has one child. 有 個兒子, 將兒子連到父親
 - ▶ Delete z by making the parent of z point to z's child, instead of to z.
- **Case 3:** z has two children.
 - z's successor y has either no children or one child.
 (y is the minimum node with no left child in z's right subtree.)
 - ▶ Delete *y* from the tree (via Case 1 or 2).
 - ▶ Replace z's key and satellite data with y's.

 可以證明下 個最多只有 個兒子

 →最多 delete 2 只

 ③ 将下 個 刪 除

沒有兒子, 血接刪

有-個兒子,將兒子連到父親

Deletion

```
DELETE(T, z)

if left[z] = NIL or right[z] = NIL 7

y: 真正冊) 除 動臭
Tree-Delete(T, z)
   y \leftarrow z
3. else y \leftarrow \text{Tree-Successor}(z)
4. if left[y] \neq NIL
5. x \leftarrow left[y]  x : y  唯 - 有可能的兒子
6. else x \leftarrow right[y]
7. if x \neq NIL
    IT X ≠ NIL
p[x] ← p[y] ] 設定×的新父親
    if p[y] = NIL
    root[T] \leftarrow x
else if y = left[p[y]] 設定  >  為新父親的左子或右子
10.
11.
    left[p[y]] \leftarrow x
else right[p[y]] \leftarrow x
12.
13.
    if y \neq z
14.
    key[z] \leftarrow key[y]
15.
    copy y's satellite data into z → 複製り的資料到と
16.
                                                  Time: O(h).
    return y
17.
```