Zestaw 2

Zadanie 1. Niech A, B będą zbiorami mierzalnymi i niech $\mathbb{P}(B) > 0$. Pokaż, że $\mathbb{E}(\mathbf{1}_A|B) = \mathbb{P}(A|B).$

Zadanie 2. Niech g będzie funkcją stałą i niech f będzie funkcją całkowalną. $Poka\dot{z}, \dot{z}e \mathbb{E}(f|g)$ jest funkcją stałą i równą $\mathbb{E}(f)$.

Zadanie 3. Niech $\{A_i\}_{i\in I}$ bedzie przeliczalnym rozbiciem przestrzeni Ω i takim, $\dot{z}e$ dla dowolnego i $\mathbb{P}(A_i) > 0$. Wyka \dot{z} , $\dot{z}e$ wtedy $\mathbb{E}X = \sum_{i \in I} \mathbb{E}(X|A_i)\mathbb{P}(A_i)$.

Zadanie 4. Niech $\Omega = [0,1]$ i niech \mathbb{P} będzie miarą Lebesgue'a na tym odcinku. $Znajd\acute{z} \mathbb{E}(f|\mathcal{F}) \ je\acute{s}li$

- $f(x) = \sqrt{x}$ i \mathcal{F} jest generowane przez zbiory [0, 1/4) i [1/4, 1],
- f(x) = -x i \mathcal{F} jest generowane przez zbiory [0, 1/4) i [1/3, 1].

Zadanie 5. Niech zmienne losowe X, Y będą określone na pewnej przestrzeni probabilistycznej w następujący sposób

- $\begin{array}{ll} -X(x)=2x^2, & Y(x)=1-|2x-1|,\\ -X(x)=2x^2, & Y(x)=1-\frac{1}{2}\left|3x-1\right|,\\ -X(x)=x^2, & Y(x)=2\mathbf{1}_{[0,1/2)}+x\mathbf{1}_{[1/2,1]}. \end{array}$

 $Znajd\acute{z} \mathbb{E}(X|Y).$

Zadanie 6. Niech $(\Omega = [0,1], \mathcal{F} = \mathcal{B}_{[0,1]}, \lambda)$ będzie przestrzenią probabilistyczną. Niech $Y(\omega) = \omega(1-\omega)$. Udowodnij, że dla dowolnej zmiennej losowej Xokreślonej na tej przestrzeni zachodzi

$$\mathbb{E}(X|Y)(\omega) = \frac{X(\omega) + X(1-\omega)}{2}.$$

Zadanie 7. Niech X_1, X_2, \ldots będzie ciągiem niezależnych i całkowalnych zmiennych losowych o tym samym rozkładzie normalnym $(\mathcal{N}(\mu, \sigma))$ i niech τ będzie zmienną losową o rozkładzie Poissona z parametrem λ niezależną od tego ciągu. Znajdź wartość oczekiwaną zmiennej losowej

$$\xi \stackrel{d}{=} \sum_{n=1}^{\tau} X_n.$$

Zadanie 8. Niech $\{X_i\}$ będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie i takim, że $\mathbb{E}|X_i| < \infty$. Niech $S_n = \sum_{i=1}^n X_i$ i niech $\mathcal{F}_n =$ $\sigma(S_n, S_{n+1}, S_{n+2}, \dots)$. Wyznacz

- $-\mathbb{E}(X_1|\mathcal{F}_n),$
- $\mathbb{E}\left(\sum_{i=1}^{n} a_i X_i | \mathcal{F}_n\right), \ gdzie \sum_{i=1}^{n} a_i = 1.$

Zadanie 9. Niech zmienna losowa X będzie całkowalna z kwadratem. Określmy $Var(X|\mathcal{F}) = \mathbb{E}\left((X - \mathbb{E}(X|\mathcal{F}))^2|\mathcal{F}\right)$. Udowodnij, że

$$\begin{aligned} VarX = & \mathbb{E}\left(Var(X|\mathcal{F})\right) + Var\left(\mathbb{E}(X|\mathcal{F})\right) \\ & \left(\mathbb{E}(X|\mathcal{F})\right)^2 \leq \mathbb{E}(X^2|\mathcal{F}) \\ & VarX \geq Var\left(\mathbb{E}(X|\mathcal{F})\right). \end{aligned}$$

Zadanie 10. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną i niech $B \in$ \mathcal{F} bedzie taki, że $\mathbb{P}(B) > 0$. Udowodnij, że $\mathbb{P}_B(A) = \mathbb{P}(A|B)$ jest rozkładem prawdopodobieństwa na B z σ -ciałem \mathcal{F}_B składającym się ze wszystkich $A \in \mathcal{F}$ takich, że $A \subset B$.

Zadanie 11. Co to znaczy, że σ -ciała \mathcal{F}, \mathcal{G} są niezależne? Co można powiedzieć o σ-ciele, które jest niezależne od siebie samego?