LISTING OF THE CLAIMS

The following listing, if entered, replaces all prior versions of the claims in the present application.

- (Currently Amended) A method of managing network communication comprising:
 - terminating a first transmission control protocol ("TCP") connection at a first
 network element, wherein said first TCP connection is between said first
 network element and a second network element, and said first TCP
 connection is intended to be terminated at a third network element;
 - initiating a second TCP connection between said first network element and a third network element;
 - establishing communications between said second and said third network elements via said first network element;
 - determining need for data transfer between said second and said third network
 elements by monitoring an amount of space available in at least one of a
 plurality of data buffers detecting that acknowledged data is being
 removed from a transmit buffer for said first TCP connection, wherein
 removal of said acknowledged data frees space in said transmit buffer;
 - in response to said detecting, transferring data from a receive buffer for said second TCP connection to said transmit buffer; and
 - transferring said data between from said transmit buffer to said second and said third network element[[s]].
 - 2. (Original) The method of claim 1, wherein said second network element initiates said first TCP connection for said third network element.
 - (Original) The method of claim 1, wherein said communications between said second and said third network elements are established using said first and said second TCP connections.

- (Currently Amended) The method of claim 1, wherein said communications between said second and said third network elements form[[s]] an end-to-end TCP connection.
- (Original) The method of claim 1, wherein said first network element is a proxy server.
- (Currently Amended) The method of claim [[1]] 5, wherein a control unit of said proxy server monitors said <u>transmit buffer plurality of buffers</u>.
- (Currently Amended) The method of claim [[1]] 6, wherein said control
 unit transfers said data between said second and said third network elements.
- (Currently Amended) The method of claim [[1]] 5, wherein said proxy server supports transparent communications between said second and said third network elements
- 9. (Canceled)
- 10. (Canceled)
- 11. (Currently Amended) The method of claim [[9]] $\underline{1}$, wherein said receive buffer is pre-allocated.
- (Currently Amended) The method of claim [[9]] 1, wherein said receive buffer is dynamically allocated.
- (Currently Amended) The method of claim [[10]] 1, wherein said transmit buffer is pre-allocated.
- (Currently Amended) The method of claim [[10]] 1, wherein said transmit buffer is dynamically allocated.

- 15. (Original) The method of claim 1, wherein said second network element is one of a plurality of clients.
- (Currently Amended) The method of claim [[1]] 15, wherein one of a
 plurality of applications on said client initiates said first TCP connection for said
 client.
- (Original) The method of claim 1, wherein said third network element is one of a plurality of servers.
- 18. (Currently Amended) The method of claim [[1]] 17, wherein a data switching unit of said proxy server determines which one of said plurality of servers to use for said second TCP connection.
- (Original) The method of claim 1, further comprising: monitoring said first TCP connection.
- (Currently Amended) The method of claim 19, further comprising: receiving a request for data from said second network element application; and determining whether said request requires said second TCP connection with one of said plurality of servers.
- 21. (Original) The method of claim 20, wherein data switching unit receives said request for data via said control unit.
- (Original) The method of claim 20, wherein said determining of said second TCP connection is done by said data switching unit.
- 23. (Currently Amended) The method of claim 20, further comprising:

if said request does not require said second TCP connection with one of said plurality of servers,

servicing said request for data, and

closing said connection with said second network element elient.

- 24. (Currently Amended) The method of claim 23, wherein said request for data is served by passing data from said data switching unit to said control unit for transmission to an said application on said second network element elient.
- (Original) The method of claim 23, further comprising:
 if said request requires said second TCP connection with one of said plurality of servers.

selecting a first server from said plurality of servers, and initiating said second TCP connection with said first server.

- (Original) The method of claim 25, wherein said application requests said end-to-end TCP connection with said first server.
- 27. (Currently Amended) The method of claim 25, further comprising: receiving said data on said second TCP connection from said first server; storing said data in said receive buffer of said second TCP connection[[:]] transferring said data from said receive buffer to said transmit buffer of said first

TCP connection; monitoring space in said transmit buffer; and

if said transmit buffer has space,

determining whether said first TCP connection needs additional data.

(Currently Amended) The method of claim 27, further comprising:
 if said first TCP connection needs said additional data,

requesting said additional data from said first server; and repeating said steps of receiving, storing, <u>detecting, and</u> transferring, monitoring and <u>determining</u> until said request for data from said

application is served.

- 29. (Original) The method of claim 28, wherein said additional data is transferred into said transmit buffer without a request for said additional data.
- (Original) The method of claim 28, further comprising: if said request for data from said application is served, closing said first TCP connection with said client.
- 31. (Original) The method of claim 30, wherein said closing of said connection is done by said control unit upon a receiving a request for closing said connection from said data switching unit.
- 32. (Currently Amended) A network device configured to comprising: terminate a first transmission control protocol ("TCP") connection at a first network element, wherein said first TCP connection is between said first network element and a second network element, and said first TCP connection is intended to be terminated at a third network element; initiate a second TCP connection between said first network element and a third network element:
- establish communications between said second and said third network elements via said first network element:
- determine need for data transfer between said second and said third network elements by monitoring an amount of space available in at least one of a plurality of data buffers;
- detect that acknowledged data is being removed from a transmit buffer for said first TCP connection, wherein removal of said acknowledged data frees space in said transmit buffer;
- in response to detection of the acknowledged data being removed, transfer data from a receive buffer for said second TCP connection to said transmit buffer; and
- transfer said data between from said transmit buffer to said second and said third

network element[[s]].

- (Original) The network device of claim 32, wherein said second network element initiates said first TCP connection for said third network element.
- 34. (Original) The network device of claim 32, wherein said communications between said second and said third network elements are established using said first and said second TCP connections.
- (Currently Amended) The network device of claim 32, wherein said communications between said second and said third network elements form[[s]] an end-to-end TCP connection.
- (Original) The network device of claim 32, wherein said first network element is a proxy server.
- (Currently Amended) The network device of claim [[32]] 36, wherein a control unit of said proxy server monitors said <u>transmit buffer plurality of buffers</u>.
- (Currently Amended) The network device of claim [[32]] 37, wherein said control unit transfers said data between said second and said third network elements.
- (Currently Amended) The network device of claim [[32]] 36, wherein said proxy server supports transparent communications between said second and said third network elements.
 - 40. (Canceled)
 - 41. (Canceled)

- (Currently Amended) The network device of claim [[40]] 32, wherein said receive buffer is pre-allocated.
- 43. (Currently Amended) The network device of claim [[40]] 32, wherein said receive buffer is dynamically allocated.
- 44. (Currently Amended) The network device of claim [[41]] 32, wherein said transmit buffer is pre-allocated.
- 45. (Currently Amended) The network device of claim [[41]] 32, wherein said transmit buffer is dynamically allocated.
- 46. (Original) The network device of claim 32, wherein said second network element is one of a plurality of clients.
- (Currently Amended) The network device of claim [[32]] 46, wherein one
 of a plurality of applications on said client initiates said first TCP connection for
 said client.
- 48. (Original) The network device of claim 32, wherein said third network element is one of a plurality of servers.
- 49. (Currently Amended) The network device of claim [[32]] 48, wherein a data switching unit of said proxy server determines which one of said plurality of servers to use for said second TCP connection.
- (Currently Amended) The network device of claim 32, wherein said processor network device is further configured to monitor said first TCP connection.
- 51. (Currently Amended) The network device of claim 50, wherein said processor network device is further configured to receive a request for data from

an said application on a client[[:]] and determine whether said request requires said second TCP connection with one of a said plurality of servers.

- 52. (Currently Amended) The network device of claim 51, wherein a data switching unit receives said request for data via a said control unit.
- (Currently Amended) The network device of claim 51, wherein said determining of said second TCP connection is done by [[said]] a data switching unit.
- 54. (Currently Amended) The network device of claim 51, wherein said processor network device is further configured to if said request does not require said second TCP connection with one of said plurality of servers,

service said request for data, and

close said connection with said client.

- 55. (Original) The network device of claim 54, wherein said request for data is served by passing data from said data switching unit to said control unit for transmission to said application on said client.
- 56. (Currently Amended) The network device of claim 54, wherein said processor network device is further configured to if said request requires said second TCP connection with one of said plurality of servers,

select a first server from said plurality of servers, and initiate said second TCP connection with said first server.

- 57. (Original) The network device of claim 56, wherein said application requests said end-to-end TCP connection with said first server.
- 58. (Currently Amended) The network device of claim 56, wherein said processor network device is further configured to receive said data on said second TCP connection from said first server;

store said data in said receive buffer of said second TCP connection;

transfer said data from said receive buffer to said transmit buffer of said

first TCP connection:

monitor space in said transmit buffer; and if said transmit buffer has space;

determine whether said first TCP connection needs additional data.

 (Currently Amended) The network device of claim 58, wherein said processor <u>network device</u> is further configured to if said first TCP connection needs said additional data.

request said additional data from said first server; and
repeat said steps of receiving, storing, transferring, monitoring and
determining until said request for data from said application is
served.

- (Original) The network device of claim 59, wherein said additional data is transferred into said transmit buffer without a request for said additional data.
- (Currently Amended) The network device of claim 59, wherein said processor network device is further configured to if said request for data from said application is served,

close said first TCP connection with said client.

- 62. (Original) The network device of claim 61, wherein said closing of said connection is done by said control unit upon a receiving a request for closing said connection from said data switching unit.
- 63. (Currently Amended) A network device comprising: means for terminating a first transmission control protocol ("TCP") connection at a first network element, wherein said first TCP connection is between said first network element and a second network element, and said first TCP connection is intended to be terminated at a third network element.

- means for initiating a second TCP connection between said first network element and a third network element:
- means for establishing communications between said second and said third network elements via said first network element;
- means for determining need for data transfer between said second-and-said third network elements by monitoring an amount of space available in at least one of a plurality of data buffers detecting that acknowledged data is being removed from a transmit buffer for said first TCP connection, wherein removal of said acknowledged data frees space in said transmit buffer;
- means for transferring data from a receive buffer for said second TCP connection
 to said transmit buffer, in response to detection that acknowledged data is
 being removed from said transmit buffer; and
- means for transferring said data between from said transmit buffer to said second and said third network element[[s]].
- (Original) The network device of claim 63, wherein said second network element initiates said first TCP connection for said third network element.
- 65. (Original) The network device of claim 63, wherein said communications between said second and said third network elements are established using said first and said second TCP connections.
- 66. (Currently Amended) The network device of claim 63, wherein said communications between said second and said third network elements form[[s]] an end-to-end TCP connection.
- 67. (Original) The network device of claim 63, wherein said first network element is a proxy server.
- (Currently Amended) The network device of claim [[63]] 67, wherein a control unit of said proxy server monitors said <u>transmit buffer plurality of buffers</u>.

- (Currently Amended) The network device of claim [[63]] 68, wherein a said control unit transfers said data between said second and said third network elements.
- (Currently Amended) The network device of claim [[63]] 67, wherein said proxy server supports transparent communications between said second and said third network elements.
- 71. (Canceled)
- 72. (Canceled)
- 73. (Currently Amended) The network device of claim [[71]] <u>63</u>, wherein said receive buffer is pre-allocated.
- 74. (Currently Amended) The network device of claim [[71]] <u>63</u>, wherein said receive buffer is dynamically allocated.
- 75. (Currently Amended) The network device of claim [[72]] <u>63</u>, wherein said transmit buffer is pre-allocated.
- 76. (Currently Amended) The network device of claim [[72]] <u>63</u>, wherein said transmit buffer is dynamically allocated.
- 77. (Previously Presented) The network device of claim 63, wherein said second network element is one of a plurality of clients.
- (Currently Amended) The network device of claim [[63]] 77, wherein one
 of a plurality of applications on said client initiates said first TCP connection for
 said client.

- (Previously Presented) The network device of claim 63, wherein said third network element is one of a plurality of servers.
- (Currently Amended) The network device of claim [[63]] 79, wherein a
 data switching unit of <u>a said</u> proxy server determines which one of said plurality
 of servers to use for said second TCP connection.
- 81. (Previously Presented) The network device of claim 63, further comprising:

means for monitoring said first TCP connection.

- 82. (Currently Amended) The network device of claim 81, further comprising: means for receiving a request for data from an said application on a client; and means for determining whether said request requires said second TCP connection with one of a said plurality of servers.
- 83. (Currently Amended) The network device of claim 82, wherein a data switching unit receives said request for data via a said control unit.
- 84. (Currently Amended) The network device of claim 82, wherein said determining of said second TCP connection is done by a said data switching unit.
- 85. (Original) The network device of claim 82, further comprising: means for servicing said request for data if said request does not require said second TCP connection with one of said plurality of servers; and means for closing said connection with said client if said request does not require said second TCP connection with one of said plurality of servers.
- 86. (Original) The network device of claim 85, wherein said request for data is served by passing data from said data switching unit to said control unit for transmission to said application on said client.

- 87. (Original) The network device of claim 85, further comprising:
- means for selecting a first server from said plurality of servers if said request requires said second TCP connection with one of said plurality of servers; and
- means for initiating said second TCP connection with said first server if said request requires said second TCP connection with one of said plurality of servers.
- (Original) The network device of claim 87, wherein said application requests said end-to-end TCP connection with said first server.
- (Currently Amended) The network device of claim 87, further comprising: means for receiving said data on said second TCP connection from said first server;
- means for storing said data in said receive buffer of said second TCP connection;

 means for transferring said data from said receive buffer to said transmit buffer of

 said first TCP connection:
- means for monitoring space in said transmit buffer; and
- means for determining whether said first TCP connection needs additional data if said transmit buffer has space.
- (Currently Amended) The network device of claim 89, further comprising: means for requesting said additional data from said first server if said first TCP connection needs said additional data;
- means for repeating said steps of receiving, storing, transferring, monitoring if
 said first TCP connection needs said additional data; and
 means for determining until said request for data from said application is served.
- means for determining until said request for data from said application is served
- (Original) The network device of claim 90, wherein said additional data is transferred into said transmit buffer without a request for said additional data.
- 92. (Original) The network device of claim 90, further comprising:

- means for closing said first TCP connection with said client if said request for data from said application is served.
- 93. (Original) The network device of claim 92, wherein said closing of said connection is done by said control unit upon a receiving a request for closing said connection from said data switching unit.
- 94. (Currently Amended) A computer program product for managing network communication, encoded in computer readable media, said program product comprising a set of instructions executable on a computer system, said set of instructions configured to
- terminate a first transmission control protocol ("TCP") connection at a first
 network element, wherein said first TCP connection is between said first
 network element and a second network element, and said first TCP
 connection is intended to be terminated at a third network element;
- initiate a second TCP connection between said first network element and a third network element;
- establish communications between said second and said third network elements via said first network element;
- determine need for data transfer between said second and said third network
 elements by monitoring an amount of space available in at least one of a
 plurality of data buffers;
- detect that acknowledged data is being removed from a transmit buffer for said first TCP connection, wherein removal of said acknowledged data frees space in said transmit buffer;
- in response to detection of the acknowledged data being removed, transfer data from a receive buffer for said second TCP connection to said transmit buffer; and
- transfer said data between from said transmit buffer to said second and said third network element[[s]].
- 95. (Original) The computer program product of claim 94, wherein said

second network element initiates said first TCP connection for said third network element.

- 96. (Original) The computer program product of claim 94, wherein said communications between said second and said third network elements are established using said first and said second TCP connections.
- (Currently Amended) The computer program product of claim 94, wherein said communications between said second and said third network elements form[[s]] an end-to-end TCP connection.
- 98. (Original) The computer program product of claim 94, wherein said first network element is a proxy server.
- (Currently Amended) The computer program product of claim [[94]] <u>98</u>,
 wherein a control unit of said proxy server monitors said plurality of buffers.
- 100. (Currently Amended) The computer program product of claim [[94]] 99, wherein said control unit transfers said data between said second and said third network elements.
- 101. (Currently Amended) The computer program product of claim [[94]] 98, wherein said proxy server supports transparent communications between said second and said third network elements.
- 102. (Canceled)
- 103. (Canceled)
- 104. (Currently Amended) The computer program product of claim [[102]] 94, wherein said receive buffer is pre-allocated.

- 105. (Currently Amended) The computer program product of claim [[102]] 94, wherein said receive buffer is dynamically allocated.
- (Currently Amended) The computer program product of claim [[103]] 94, wherein said transmit buffer is pre-allocated.
- 107. (Currently Amended) The computer program product of claim [[103]] 94, wherein said transmit buffer is dynamically allocated.
- 108. (Original) The computer program product of claim 94, wherein said second network element is one of a plurality of clients.
- 109. (Currently Amended) The computer program product of claim [[94]] 108, wherein one of a plurality of applications on said client initiates said first TCP connection for said client.
- 110. (Original) The computer program product of claim 94, wherein said third network element is one of a plurality of servers.
- 111. (Currently Amended) The computer program product of claim [[94]] 110, wherein a data switching unit of said proxy server determines which one of said plurality of servers to use for said second TCP connection.
- 112. (Original) The computer program product of claim 94, wherein said set of instructions is further configured to: monitor said first TCP connection.
- 113. (Currently Amended) The computer program product of claim 112, wherein said set of instructions is further configured to: receive a request for data from an said application on a client; and determine whether said request requires said second TCP connection with one of a said plurality of servers.

- 114. (Currently Amended) The computer program product of claim 113, wherein a data switching unit receives said request for data via a said control unit.
- 115. (Original) The computer program product of claim 113, wherein said determining of said second TCP connection is done by said data switching unit.
- 116. (Previously Presented) The computer program product of claim 113, wherein said set of instructions is further configured to:

if said request does not require said second TCP connection with one of said plurality of servers,

service said request for data, and close said connection with said client.

- 117. (Original) The computer program product of claim 116, wherein said request for data is served by passing data from said data switching unit to said control unit for transmission to said application on said client.
- 118. (Original) The computer program product of claim 116, wherein said set of instructions is further configured to:

if said request requires said second TCP connection with one of said plurality of servers.

select a first server from said plurality of servers, and initiate said second TCP connection with said first server.

- 119. (Original) The computer program product of claim 118, wherein said application requests said end-to-end TCP connection with said first server.
- 120. (Currently Amended) The computer program product of claim 118, wherein said set of instructions is further configured to: receive said data on said second TCP connection from said first server; store said data in said receive buffer of said second TCP connection; transfer said data from said receive buffer to said transmit buffer of said first TCP.

connection:

monitor space in said transmit buffer; and

if said transmit buffer has space,

determine whether said first TCP connection needs additional data.

121. (Currently Amended) The computer program product of claim 120, wherein said set of instructions is further configured to: if said first TCP connection needs said additional data, request said additional data from said first server; and repeat said steps of receiving, storing, transferring, monitoring and

determining until-said-request for data from said-application is served.

- 122. (Original) The computer program product of claim 121, wherein said additional data is transferred into said transmit buffer without a request for said additional data.
- 123. (Original) The computer program product of claim 121, wherein said set of instructions is further configured to:

if said request for data from said application is served,

close said first TCP connection with said client

124. (Original) The computer program product of claim 123, wherein said closing of said connection is done by said control unit upon a receiving a request for closing said connection from said data switching unit.