LECTURE 4-A

NORMAL PLANES IN PR3

Recall In \mathbb{R}^2 , specifying a normal vector in to ℓ and a point $P \in \mathcal{C}$ completely determines ℓ .

We saw that this doesn't work in \mathbb{R}^3 .

Lots of lines can be orthogonal to a given vector in:

In fact: the equation $\hat{x} \cdot (\hat{x} - \hat{p}) = 0$ describes a plane in \mathbb{R}^3

there is exactly one plane in \mathbb{R}^3 passing through the point P and arthogonal to \mathring{n} .

Definition: a normal vector to a plane is a non-zero vector unit which is orthogonal (perpendicular) to the plane.

IF \vec{A} , \vec{B} are any two points in the plane, then $\vec{n} \cdot (\vec{A}\vec{B})$ must be 0.

So from the above discussion, the following definition makes sense:

Definition: The normal form of the equation of the plane P in \mathbb{R}^3 passing through the point P so with normal vector \vec{n} is

$$\vec{w} \cdot (\vec{x} - \vec{p}) = 0 \qquad \alpha \quad \vec{w} \cdot \vec{x} = \vec{w} \cdot \vec{p}$$

* Here \vec{p} is the position vector of D \vec{x} is the position vector of an arbitrary point of D.

 $\overrightarrow{p} \times is \text{ orthogonal is } \overrightarrow{n}$ $(\overrightarrow{x} - \overrightarrow{p})$ $\overrightarrow{OP} = \overrightarrow{p}$ $(\overrightarrow{x} - \overrightarrow{p}) = 0$

General form: If we know $\vec{n} = \begin{bmatrix} a \\ b \end{bmatrix}$, $P = (p_1, p_2, p_3)$, then $\vec{p} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$.

We can write $X = (x_1 y_1 z_1)$, so $\vec{r} = \begin{bmatrix} x \\ z \end{bmatrix}$, and then

the equation $\vec{x} \cdot \vec{x} = \vec{x} \cdot \vec{p}$ becomes

ax + by + cz = d, where $d = ap_1 + bp_2 + cp_3$.

L"general 6m" for the equation of the plane P.

Example Find a normal form and a general form for the equation of a plane passing through P = (1,0,-2) and having a normal vector $\vec{M} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$.

Solution: Normal form: $\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$

i.e.
$$\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} \chi \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}.$$

· To find the general form, expand and simplify.

$$2x - y + 3z = -4$$

Exercise: Is the point (0,7,-1) in this plane?

Solution: We just need to check if x=0, y=7, -1=2 satisfies the general equation:

LHS: $2 \times 0 - 7 + 3(-1) = -7 - 3 = -10$

RHS: 4

They are not equal, so no, the point does not lie on the plane-

Now consider the line $\hat{\vec{x}} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$, $t \in \mathbb{R}$

Questian: Does it intersect the plane 2x - y + 3z = -4, and if so, what is the intersection?

Warm-up question:

Let P be any plane in IR3 and L any line.

How many points can be in the intersection Pn 2?

Solution: P 12 can consist of 0, 1 or infinitely many points.

Back to the question:

How do we know if a point X = (x, y, z) is in both

the line
$$\hat{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$$
, $t \in \mathbb{R}$

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1-t \\ 2t \\ -1+4t \end{bmatrix}$$
and the plane $2x - y + 3z = -4$?

For some

want 2(1-t) - (2t) + 3(-1+4t) = -4

Exercise: Solve fir t!

(By previous exercise, you expect 0, 1 cr 00-many solutions.)

Solution 2-3 + 8t = -4

$$\Rightarrow 8t = -3$$
 $\Rightarrow t = -3/8$

Remarks: . There is exactly one solution

the intersection consists of exactly one point X = (1+3/8, 2(-3/8), -1+4(-3/8)) = (1/8, -6/8, -5/2)

" You can check that $X \in \mathbb{R}$ and $X \in \mathbb{R}$.

Summary of the lecture:

. To define a plane in \mathbb{R}^3 we can specify one point \mathbb{R}^3 in the plane and one vector in normal to the plane

more $\hat{x} = \hat{x} \cdot \hat{p}$ general form: ax + hy + cz = dwhere $\hat{x} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$, $d = \hat{x} \cdot \hat{p}$.

- Given a line Q and a plane P in \mathbb{R}^3 , the intersection will consist of
 - · nothing
 - · exactly one point

OR

· infinitely many points (the whole line 2)

You should be able to:

- · write down equations for planes in \mathbb{R}^3 in normal form \mathcal{F} general form
- · given such an equation, identify points in the plane &calculate the intersection with a line.