Elettronica T 12-06-2024	Ritirato	A	D	Totale
cognome	matricola			
nome	firma			

A1 Si consideri il circuito a OPAMP di figura. Nell' ipotesi che l'OPAMP sia ideale ed in alto guadagno, si calcoli la funzione di trasferimento $H(j\omega)$. Esplicitare i passaggi

$$H(j\omega) = \frac{R_1 + R_2 + j\omega c (R_1 R_2 + R_1 R_3 + R_2 R_3)}{R_2 + j\omega C R_2 R_3}$$

A2 Si calcoli ora la relazione statica V_{OUT} - V_{IN} e se ne tracci il grafico per $V_{IN} \in [0V..5V]$. Esplicitare i passaggi

$$H(0) = \frac{R_1 + R_2}{R_2}$$

- 1. Determinare l'espressione booleana al nodo O
- 2. Dimensionare i transistori nMOS e pMOS in modo che i tempi di salita e discesa, al nodo F, siano inferiori o uguali a 100pS. Si ottimizzi il progetto per minimizzare l'area occupata da tutti i transistori.

Si tenga conto che i transistori dell'inverter di uscita hanno le seguenti geometrie : Sp=300, Sn=150.

Esplicitare i passaggi

Parametri tecnologici:

Rrif p =10Kohm Rrif n= 5Kohm Cox = 7 fF/ μ m² Lmin = 0.25 μ m V_{CC} =3.3V

