

International Research Journal on Advanced Engineering and Management

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0156 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 961-965

AI-Driven Skin Cancer Detection for Early Intervention using Deep Learning

Sandeep Shukla¹, Abhishek Palve², Nikita Shinde³, Madhavi Patil⁴, Nisha Vishwakarma⁵

¹Assistant Professor, Computer Engineering, Guru Gobind Singh College of Engineering and Research Centre, Nashik, India.

^{2,3,4,5}UG, Computer Engineering, Guru Gobind Singh College of Engineering and Research Centre, Nashik, India.

Email ID: sandeep.g.shukla@gmail.com¹, abhishekpalve55@gmail.com², nikitashinde761@gmail.com³, madhavipatil2106@gmail.com⁴, nishavishwakarma1214@gmail.com⁵

Abstract

Skin cancer is a significant global health issue, with increasing incidence rates posing a challenge to healthcare systems. This research presents an AI-driven system for skin cancer detection and patient prioritization, aimed at addressing the shortage of dermatologists and facilitating early intervention. Utilizing the HAM10000 dataset, we trained an Xception convolutional neural network to classify skin lesions into seven distinct categories: Actinic Keratosis (akiec), Basal Cell Carcinoma (bcc), Benign Keratosis (bkl), Melanoma (mel), Dermatofibroma (df), Melanocytic Nevus (nv), and Vascular Lesion (vasc). The system features a user-friendly interface for image upload, automated segmentation, and classification prediction, accompanied by a downloadable PDF report. We emphasize the system's role as a prioritization tool, not a definitive diagnostic solution. The model achieved an accuracy of 89% on the test dataset, demonstrating its potential to enhance early detection and streamline patient management in dermatology.

Keywords: Convolutional Neural Network; Deep Learning; Early Detection; HAM10000; Image Segmentation; Patient Prioritization; Skin Cancer; Xception.

1. Introduction

Skin cancer is a prevalent and potentially lifethreatening disease, with early detection being crucial for improving patient outcomes. According to GLOBOCAN 2022 data, there were approximately 331,722 new cases of melanoma skin cancer worldwide. The increasing number of skin-related ailments, coupled with a shortage of dermatologists, poses a significant challenge to healthcare systems. In many regions, the ratio of patients to dermatologists is excessively high, leading to long wait times and delayed diagnoses. This study aims to develop and evaluate an AI-driven system for skin cancer detection and patient prioritization. By employing deep learning techniques, we seek to create a tool that can assist in the early identification cancer, thereby facilitating intervention. Our approach focuses on the application of the Xception model, known for its efficiency in image classification tasks, to the analysis of skin lesion images from the HAM10000 dataset. The primary objective of this research is to demonstrate

the feasibility of using AI to enhance the efficiency of skin cancer diagnosis and patient management. This system is designed to be a preliminary assessment tool, allowing medical professionals to prioritize patients based on the likelihood of malignancy, ensuring that those with higher risk factors receive prompt attention [1-3].

Figure 1 Treatment Skin Cancer

2. Related Work

The application of deep learning in medical imaging has seen significant advancements, with numerous studies exploring the use of convolutional neural networks

International Research Journal on Advanced Engineering and Management

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0156 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 961-965

(CNNs) for skin cancer detection. Research has shown the efficacy of models like ResNet and Inception in analyzing dermatological images, shown in Figure 1 [4-7].

2.1. Segmentation Techniques

Various segmentation techniques have been investigated to improve the accuracy of lesion analysis. Common segmentation techniques used in previous studies include:

- **Thresholding:** Simple and fast, but may struggle with low contrast images.
- **Region-based methods:** More robust, but can be computationally intensive.
- **Edge detection:** Effective for well-defined lesions, but sensitive to noise.
- Deep learning-based segmentation: Highly accurate, but requires large datasets and computational resources. Specifically, U-Net and Mask R-CNN architectures have shown promising results in segmenting skin lesions.

2.2. Deep Learning Models

Our work builds upon these studies, focusing on the Xception architecture and its application to the HAM10000 dataset. Xception is known for its depthwise separable convolutions, which offer a balance between performance and computational efficiency. We also explore the integration of image segmentation to enhance classification accuracy. This section will provide a comprehensive review of existing literature, highlighting the strengths and limitations of current approaches and emphasizing the novelty of our research [8-11].

3. Method

3.1. Dataset

The HAM10000 dataset, comprising 10,015 dermatoscopic images, was utilized for training and evaluating our model. This dataset includes seven different diagnostic categories: Actinic Keratosis (akiec), Basal Cell Carcinoma (bcc), Benign Keratosis (bkl), Melanoma (mel), Dermatofibroma (df), Melanocytic Nevus (nv), and Vascular Lesion (vasc). The distribution of images across these categories is as follows: akiec: 327, bcc: 514, bkl: 1099, df: 115, mel: 1113, nv: 6705, vasc: 142. We preprocessed the images by resizing them to 71x71 pixels, normalizing them, and applying data augmentation techniques to enhance the model's

performance. Class imbalance was addressed using oversampling and undersampling techniques to ensure equitable learning across all categories [12].

3.2. Model Architecture

We employed the Xception model, a deep convolutional neural network known for its high performance in image classification tasks, Figure 2. The model was customized for skin lesion classification by adjusting the output layer and loss function. The choice of Xception was motivated by its efficiency and effectiveness in feature extraction and classification. The model architecture consists of:

- Xception (weights='imagenet', include_top=False, input_shape=(71, 71, 3))
- Flatten layer
- Dense layer (64 neurons, ReLU activation)
- Dropout layer (0.2)
- Dense layer (7 neurons, Softmax activation)

Figure 2 Xception Model Architecture

3.3. Image Processing and Segmentation

Images uploaded by the user are resized to 71x71 pixels and normalized. The model then performs classification on this processed image. The system could be enhanced by integrating a U-Net based segmentation model to accurately delineate lesion

OPEN CACCESS IRJAEM

International Research Journal on Advanced Engineering and Management

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0156 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025

Page No: 961-965

boundaries. This would provide a more precise input to the classification model, Figure 3 [13-14].

Figure 3 Segmentation Process

3.4. Training and Evaluation

The model was trained using a cross-validation strategy with 5 folds, with detailed parameters such as batch size (32), learning rate (0.001), and epochs (50) being specified. Performance was evaluated using metrics including accuracy, precision, recall, F1-score, and AUC. Confusion matrix analysis was conducted to assess the model's performance across different lesion categories.

3.5. User Interface and System Design

A user-friendly interface was developed to facilitate image upload, segmentation visualization, and prediction results display. The system's architecture and workflow will be detailed, along with an explanation of the patient prioritization mechanism. The interface includes a disclaimer, informing users of the system's limitations as a diagnostic tool. The system provides a progress bar during image analysis and displays results with clear urgency indicators.

3.6. PDF Report Generation

The system generates a downloadable PDF report containing prediction results and relevant information for healthcare providers. The content and format of the report will be described, Figure 4.

4. Results and Discussion

4.1. Quantitative Results

The Xception model achieved an accuracy of 89%, a precision of 0.89, a recall of 0.89, and an F1-score of 0.89 on the test dataset. These results demonstrate the model's effectiveness in classifying skin lesions.

Figure 4 System Architecture

Figure 5 Xception Model Accuracy

4.2. Oualitative Results

Visual examples of successful predictions will be provided, along with an analysis of common misclassifications, Figure 5 & 6.

Figure 6 Qualitative Results

International Research Journal on Advanced Engineering and Management

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0156 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 961-965

4.3.Discussion

The system demonstrates potential for effective patient prioritization, but it has limitations. Potential biases may arise from:

- Dataset Bias: The HAM10000 dataset may not fully represent diverse skin types and lesion presentations.
- **Model Bias:** The Xception model may have inherent biases affecting its performance on certain lesion types.
- Lack of Segmentation: The absence of detailed segmentation may limit the model's ability to accurately identify lesion boundaries.
- Generalization limitations: The model may struggle with images taken in variable lighting, or with different image capture devices.

These limitations highlight the need for ongoing research and refinement to improve the system's accuracy and reliability, shown in Figure 7.

Figure 7 Qualitative Results

5. Ethical Considerations

- Data Privacy: Uploaded images are processed locally and not stored on any external servers.
- Bias Mitigation: Data augmentation and balanced dataset training were used to minimize biases.
- **Transparency:** A disclaimer is provided, emphasizing the system's role as a prioritization tool, not a diagnostic replacement.

• **User Agreement:** Users must accept the disclaimer before using the model.

Conclusion

This research presents an AI-driven system for skin cancer detection and patient prioritization, aimed at addressing the shortage of dermatologists early intervention. facilitating Utilizing HAM10000 dataset, we trained an Xception convolutional neural network to classify skin lesions into seven distinct categories. The system features a user-friendly interface for image upload, automated classification segmentation, and prediction, accompanied by a downloadable PDF report. We emphasize the system's role as a prioritization tool, not a definitive diagnostic solution. The model achieved an accuracy of 89% on the test dataset, demonstrating its potential to enhance early detection and streamline patient management in dermatology. Future work will focus on model improvements, clinical validation, and integration with healthcare systems.

Acknowledgements

The authors would like to express their sincere gratitude to Prof. S.G. Shukla, our project guide, for their invaluable guidance, mentorship, unwavering support throughout this research. We are also thankful to the Computer Engineering and Electrical Engineering Department of Guru Gobind Singh College of Engineering and Research Centre for hosting the ICESM (International Conference on Engineering, Science and Management) conference, providing a vital platform for the dissemination of this work. Additionally, we extend our appreciation to RSP Conference Hub, the event partner, for their contributions to the success of the conference.

References

- [1]. R Raja Sekar; Y Jagan Mohan Reddy; K Nani; C Sai Prathap Reddy; K Chiranjeevi; K Vikram, "Skin Cancer Prediction Using Deep Learning Techniques", 2023 4th International Conference on Signal Processing and Communication (ICSPC), IEEE Conference, 2023.
- [2]. Magdy, H. Hussein, R. F. Abdel-Kader and K. A. E. Salam, "Performance Enhancement of Skin Cancer Classification Using

OPEN CACCESS IRJAEM

International Research Journal on Advanced Engineering and Management

e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 961-965

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0156

- Computer Vision," in IEEE Access, vol. 11, 72120-72133, 2023, doi: 10.1109/ACCESS.2023.3294974.
- Li, Zhenwei, Qing Ji, Xiaoli Yang, Yu Zhou, [3]. and Shulong Zhi. 2023. "An Identification Method of Feature Interpretation Melanoma Using Machine Learning" Applied Sciences 13, 18: no. 10076.
 - https://doi.org/10.3390/app131810076
- [4]. K. Mridha, M. M. Uddin, J. Shin, S. Khadka and M. F. Mridha, "An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System," in IEEE Access, vol. 11, 41003-41018, 2023, 10.1109/ACCESS.2023.3269694.
- [5]. Mohammad Ali Kadampur, Sulaiman Al Riyaee, Skin cancer detection: Applying a deep learning based model driven architecture in the cloud for classifying dermal cell images, Informatics in Medicine Unlocked, Volume 18,2020,100282,ISSN 2352-9148,https://doi.org/10.1016/j.imu.2019.100
- [6]. L. Wei, K. Ding and H. Hu, "Automatic Skin Cancer Detection in Dermoscopy Images Based on Ensemble Lightweight Deep Learning Network," in IEEE Access, vol. 8, 99633-99647, pp. 2020. doi: 10.1109/ACCESS.2020.2997710.
- Felmingham, C.M., Adler, N.R., Ge, Z. et [7]. al. The Importance of Incorporating Human Factors in the Design and Implementation of Artificial Intelligence for Skin Cancer Diagnosis in the Real World. Am J Clin Dermatol 22, 233-242 (2021).https://doi.org/10.1007/s40257-020-00574-4
- [8]. Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.; Mahnashi, M.H. Skin Cancer Detection: A Review Using Deep Learning Techniques. Int. J. Environ. Res. Public Health 2021, 18, 5479. https://doi.org/10.3390/ijerph18105479.

- [9]. Akepati Sankar Reddy and Gopinath M. P, "A Comprehensive Review On Skin Cancer Detection Strategies Using Deep Neural Networks", Journal Of Computer Science 2022
- [10]. Areej A. Malibari A, Jaber S. Alzahrani B, Majdy M. Eltahir C, Vinita Malik D E, Marwa Oba yya F, Mesfer Al Duhayyim G, Aloísio Neto H, Victor Hugo V. Lira C. De Albuquerque, "Optimal Deep Neural Network-Driven Computer-Aided Diagnosis Model For Skin Cancer", Computers And Electrical Engineering, 2022
- [11]. Noortaz Rezaoana, Mohammad Shahadat Hossain, Karl Andersson "Detection and Classification Of Skin Cancer By Using A Parallel CNN Model", IEEE, 2020.
- Shumaila [12]. Mehwish Dildar. Akram, Muhammad Irfan, Hikmat Ullah Khan, Muhammad Ramzan, Abdur Rehman Mahmood, Soliman Ayed Alasdair, Abdul Hakeem M Saeed, Mohammed Olaythah Alraddadi and Mater Hussen Mahnashi, "Skin Cancer Detection: A Review Using Deep Learning Techniques", Mdpi Int. J. Environ. Res. Public Health 2021
- [13]. Oluwatobi O. Kushimo, Ayodeji Olalekan Salau, Oladapo J. Adeleke & Doyinsola S. Olaoye, "Deep Learning Model to Improve Melanoma Detection in People of Color", Arab Journal of Basic and Applied Sciences, 2023
- [14]. Maryam Nagvi, Syed Qasim Gilani, Tehreem Syed, Oge Marques and Hee-Cheol Kim, "Skin Cancer Detection Using Learning—A Review", Mdpi Diagnostics 2023.

OPEN ACCESS IRJAEM