```
In [4]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler
```

In [5]: data=pd.read_csv(r"C:\Users\user\Downloads\fiat500_VehicleSelection_Dataset.csv
data

Out[5]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	pop	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	pop	73	3074	106880	1	41.903221	12.495650
		•••						
1533	1534	sport	51	3712	115280	1	45.069679	7.704920
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870
1535	1536	pop	51	2223	60457	1	45.481541	9.413480
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270
1537	1538	pop	51	1766	54276	1	40.323410	17.568270

1538 rows × 9 columns

In [6]: data = data[['engine_power','price']]
 data.columns=['Eng','pri']

In [7]: data.head()

Out[7]:

	Eng	prı
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700

```
In [8]: data.tail()
```

Out[8]:

	Eng	pri
1533	51	5200
1534	74	4600
1535	51	7500
1536	51	5990
1537	51	7900

In [9]: data.info()

In [10]: data.describe()

Out[10]:

	Eng	pri
count	1538.000000	1538.000000
mean	51.904421	8576.003901
std	3.988023	1939.958641
min	51.000000	2500.000000
25%	51.000000	7122.500000
50%	51.000000	9000.000000
75%	51.000000	10000.000000
max	77,000000	11100.000000

In [11]: data.fillna(method='ffill')

Out[11]:

	Eng	pri
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700
1533	51	5200
1534	74	4600
1535	51	7500
1536	51	5990
1537	51	7900

1538 rows × 2 columns

```
In [12]: sns.lmplot(x='Eng',y='pri',data=data,order=2,ci=None)
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x24d4ad9e550>


```
In [13]: x=np.array(data['Eng']).reshape(-1,1)
y=np.array(data['pri']).reshape(-1,1)
```

In [14]: | data.dropna(inplace=True)

C:\Users\user\AppData\Local\Temp\ipykernel_14576\1368182302.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data.dropna(inplace=True)

```
In [15]: X_train,X_test,y_train,y_test = train_test_split(x, y, test_size = 0.25)
# Splitting the data into training data and test data
regr = LinearRegression()
regr.fit(X_train, y_train)
print(regr.score(X_test, y_test))
```

0.04590006464038987

```
In [16]: y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color = 'r')
plt.scatter(X_test, y_test, color = 'b')
plt.show()
```



```
In [17]: df500 = data[:][:500]
sns.lmplot(x = "Eng", y = "pri", data = df500, order = 1, ci = None)
```

Out[17]: <seaborn.axisgrid.FacetGrid at 0x24d4ae4c9d0>


```
In [18]: df500.fillna(method = 'ffill', inplace = True)
    x = np.array(df500['Eng']).reshape(-1, 1)
    y = np.array(df500['pri']).reshape(-1, 1)
    df500.dropna(inplace = True)
    X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.25)
    regr = LinearRegression()
    regr.fit(X_train, y_train)
    print("Regression:",regr.score(X_test, y_test))
    y_pred = regr.predict(X_test)
    plt.scatter(X_test, y_test, color = 'k')
    plt.scatter(X_test, y_pred, color = 'b')
    plt.show()
```

Regression: 0.06060556865917399


```
In [19]: plt.figure(figsize = (10, 10))
sns.heatmap(data.corr(), annot = True)
```

Out[19]: <Axes: >


```
In [20]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    #Train the model
    model = LinearRegression()
    model.fit(X_train, y_train)
    #Evaluating the model on the test set
    y_pred = model.predict(X_test)
    r2 = r2_score(y_test, y_pred)
    print("R2 score:",r2)
```

R2 score: 0.06060556865917399

Linear Regression Model:

The train score for lr model is 0.07044869503034379 The test score for lr model is 0.06060556865917399

```
In [22]: ridgeReg = Ridge(alpha=10)
    ridgeReg.fit(X_train,y_train)
    #train and test scorefor ridge regression
    train_score_ridge = ridgeReg.score(X_train, y_train)
    test_score_ridge = ridgeReg.score(X_test, y_test)
    print("\nRidge Model:\n")
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.0704484488473529 The test score for ridge model is 0.06072435996774295

```
In [23]: #Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(X_train,y_train)
train_score_ls =lasso.score(X_train,y_train)
test_score_ls =lasso.score(X_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.07044703060496171 The test score for ls model is 0.06091259156026785

```
In [27]: from sklearn.linear_model import ElasticNet
    regr=ElasticNet()
    regr.fit(x,y)
    print(regr.coef_)
    print(regr.intercept_)

    [-128.05913739]
    [15219.18170389]

In [28]: y_pred_elastic=regr.predict(X_train)

In [29]: mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
    print("Mean Squared Error on test set",mean_squared_error)

    Mean Squared Error on test set 4453163.692237161
In []:
```