# JOHN JAY COLLEGE OF CRIMINAL JUSTICE

The City University of New York 524 West 59th Street, New York, NY, 10019

## Syllabus for:

| MAT 301-01                                      | Probability and Statistics 1 |  |
|-------------------------------------------------|------------------------------|--|
| MAT 301-01H Honors Probability and Statistics 1 |                              |  |

**Professor's name: Nicholas Petraco** 

**Contact hours:** Any time. Just email me at the address below.

Course Format: Asynchronous instruction with optional live Zoom tutorials and

review sessions to be announced throughout the semester.

E-mail address: npetraco@gmail.com

Course website: <a href="https://npetraco.github.io/MAT301/">https://npetraco.github.io/MAT301/</a>

## **Course Description:**

The purpose of this course is to acquaint undergraduate science students with statistical methods that are applicable to data they will encounter in their scientific careers, as well as issues and pitfalls to be aware of when applying these methods.

It is not adequate to simply learn the "theory" behind the methodology encountered in this course. It must be applied on real data of practical interest to the sciences. As such this course will build expertise in the general scientific/statistical computing environment R (<a href="http://www.r-project.org/">http://www.r-project.org/</a>). The course assumes minimal knowledge of computers and statistical procedures. It is designed to build the student's skill set and confidence in both of these areas. Topics covered will include basic data descriptive tools, graphing, probability theory, discrete/continuous distributions, estimation and hypothesis testing.

This is an asynchronous instruction-based course. This means that the entire course is on-line and there is no officially scheduled or required live meeting time. Course lecture materials will be posted on the following website:

#### https://npetraco.github.io/MAT301/

Announcements and important reminders will be emailed to you. As such **you must give** me an email address that you check on a regular basis. It will be our only official method of communication.

Most lectures posted to the course website will be accompanied by short videos which will be posted to YouTube. A link to the videos will be sent to you in email when it is posted. Periodic live tutorial and review sessions over Zoom will be scheduled throughout the semester in email. They are not mandatory and will be recorded. After they have occurred, links to the recordings will be sent out to the class. Homework and Exams will be given through WebAssign. See below for details.

### **Learning outcomes:**

By the end of the course students will be able to:

- 1. Choose an appropriate probability or statistical model for a particular problem.
- 2. Know what conditions are typically required for the use of particular probability and statistical models, and be able to assess whether those conditions are reasonably met.
- 3. Interpret calculated solutions of particular statistical models.
- 4. Make appropriate inferences using the chosen statistical models.
- 5. Use the R software system to handle datasets, display datasets graphically, and do probability computations, statistical analyses, and computer simulation.

## Requirements / course policies

Unethical/unprofessional conduct which includes cheating will result in a failing grade and referral for additional action. These include copying others work and sharing work when explicitly forbidden.

No make up exams will be given. Failure to take a scheduled examination without a valid and independently supported official documentation from a medical provider at least 48 hours in advance (unless the emergency is induced by force majeure, subsequent to the 48 hour cutoff, where in a valid and independently supported official documentation from a medical provider is still required) will result in a zero grade for that examination.

### **Required Electronic Text and Resources:**

Probability and Statistics for Engineering and the Sciences - 9e J. L. Devore

• The Assignments/Electronic Text can be purchased at:

https://www.webassign.net/

• In order to purchase click on "Enter Class Key":



- The WebAssign website will probably prompt you to log into your account. If you don't have an account, create one.
- When you log in, you should see a place to enter the class key:



# **CAREFUL: NOTE YOUR SECTION!!!!!!!**

- o Students Registered for Petraco MAT 301-01 Probability and Statistics 1:
  - Class Key: jjay.cuny 2630 0167
- Students Registered for Petraco, MAT 301-01H Honors Probability and Statistics 1:

Class Key: jjay.cuny 3023 9341

• After logging in/creating-account, eventually the website will prompt you

# to purchase the materials for the class:





• Purchase "Probability and Statistics for Engineering and the Sciences – 9/e by Devore, Homework and eBook (single term access only)", which should be ~\$90.00:

# **Suggest supplementary text (NOT REQUIRED):**

Statistics: An introduction using R, 2<sup>nd</sup> ed.

Crawley

ISBN-10: 1118941098

# **Grading:**

The grades for this course are based on homework (25%), two exams (50%) and a final (25%).

# **Course lecture posting calendar:**

| Week                        | Lecture Topics                  | Sub Topics                                 | HW and Exam Dates                |
|-----------------------------|---------------------------------|--------------------------------------------|----------------------------------|
| Feb 1-5 Introd              | Introduction                    | Introduction                               |                                  |
|                             |                                 | Important Definitions                      |                                  |
|                             |                                 | Basic Graphing                             |                                  |
| Feb 8-12                    | Introduction and Tutorial for R |                                            | Feb 12: HW Set 1 Due             |
| Feb 15-19 Summarizing Da    | Summarizing Data 1-3            | Mean, Median, Mode                         | Feb 22: HW Set 2 Due             |
|                             |                                 | Variance and Standard Deviation            |                                  |
|                             |                                 | Range and Quantiles                        |                                  |
| Feb 22-26 Probability       | Probability 1-2                 | Definitions                                | Mar 1: HW Set 3 Due              |
|                             |                                 | Axions and Theorems                        |                                  |
| March 1-5                   | Probability 3-4                 | Conditional Probability and Bayes' Theorem | Mar 8: HW Set 4 Due              |
|                             |                                 | Example Problems                           |                                  |
| March 8-12                  | Review and Exam I               |                                            | Mar 12: Exam 1                   |
| March 15-19                 | Important Distributions 1-3     | Permutations and Combinations              | Mar 22: HW Set 5 Due             |
| ,                           | ·                               | Discrete Probability Mass                  |                                  |
|                             |                                 | Discrete Moments                           |                                  |
| March 22-26 Important Distr | Important Distributions 4-5     | Discrete Distributions                     | Mar 29: HW Set 6 Due             |
|                             | •                               | Continuous Distributions                   |                                  |
| Mar 29-Apr 2 Point          | Point Estimation 1-3            | Maximum Likelihood Estimators              | Apr 5: HW Set 7 Due              |
|                             |                                 | Sampling Distributions                     |                                  |
|                             |                                 | Unbiased Estimators                        |                                  |
| April 5-9 Point E           | Point Estimation 4-6            | Example Problems                           | Apr 12: HW Set 8 Due             |
|                             |                                 | Bootstrap Estimation                       |                                  |
|                             |                                 | Bootstrap Fails                            |                                  |
| April 12-16                 | Review and Exam II              |                                            | Apr 16: Exam 2                   |
| April 19-23                 | Interval Estimation 1-2         | Definitions and Theory                     | Apr 26: HW Set 9 Due             |
|                             |                                 | Computing Confidence Intervals             |                                  |
| April 26-30 In              | Interval Estimation 3-4         | Reference Formulas                         | May 3: HW Set 10 Due             |
|                             |                                 | Bootstrap Confidence Intervals             |                                  |
| May 3-7 Hy                  | Hypothesis Testing 1-3          | Definitions and Theory                     | May 10: HW Set 11 Due            |
|                             |                                 | One Sample Hypothesis Tests                |                                  |
|                             |                                 | Two Sample Hypothesis Tests                |                                  |
| May 10-14 A                 | Analysis of Variance 1-3        | Definitions and Theory                     | May 17: HW Set 12 Due            |
|                             |                                 | Example Problems                           |                                  |
|                             |                                 | Post Hoc Testing                           |                                  |
| May 17-21                   | Regression 1-3                  | Definitions and Theory                     | May 20: HW Set 13 Due            |
|                             | -                               | Workflow                                   | TENTATIVE May 21: Exam 3 (Final) |
|                             |                                 | Example Problems                           |                                  |

College wide policies for undergraduate courses (see the *Undergraduate Bulletin*, Chapter IV Academic Standards, and CUNY Flexible Grading Policy for Spring 2020)

- A. Incomplete Grade Policy
- **B.** Extra Work During the Semester
- C. Americans with Disabilities Act (ADA) Policies

"Qualified students with disabilities will be provided reasonable academic accommodations if determined eligible by the Office of Accessibility Services (OAS). Prior to granting disability accommodations in this course, the instructor must receive written verification of a student's eligibility from the OAS which is located at L66 in the new building (212-237-8031). It is the student's responsibility to initiate contact with the office and to follow the established procedures for having the accommodation notice sent to the instructor."

Source: Reasonable Accommodations: A Faculty Guide to Teaching College Students with Disabilities, 4th ed., City University of New York, p.3. (http://www.jjay.cuny.edu/studentlife/Reasonable Accommodations.pdf)

### Statement of the College Policy on Plagiarism

Plagiarism is the presentation of someone else's ideas, words, or artistic, scientific, or technical work as one's own creation. Using the ideas or work of another is permissible only when the original author is identified. Paraphrasing and summarizing, as well as direct quotations require citations to the original source.

Plagiarism may be intentional or unintentional. Lack of dishonest intent does not necessarily absolve a student of responsibility for plagiarism.

It is the student's responsibility to recognize the difference between statements that are common knowledge (which do not require documentation) and restatements of the ideas of others. Paraphrase, summary, and direct quotation are acceptable forms of restatement, as long as the source is cited.

Students who are unsure how and when to provide documentation are advised to consult with their instructors. The Library has free guides designed to help students with problems of documentation. (John Jay College of Criminal Justice Undergraduate Bulletin, <a href="http://www.jjay.cuny.edu/academics/654.php">http://www.jjay.cuny.edu/academics/654.php</a>, see Chapter IV Academic Standards)