1 La función medida

Definición 1.1 Sea \mathcal{F} un álgebra. Una medida es una función $\mu: \mathcal{F} \to [0, \infty) \cup \{+\infty\}$ que satisface:

- 1. Conjunto vacío: $\mu(\emptyset) = 0$.
- 2. Aditividad contable: Si E_n , $n \in \mathbb{N}$ es una secuencia de eventos disjuntos $(E_i \cap E_j)$ cuando $i \neq j$):

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i).$$

Si \mathcal{F} es un σ álgebra, entonces $(\Omega, \mathcal{F}, \mu)$ es llamado un espacio de medida. De acuerdo a la definición de función probabilidad, esta es una función de probabilidad que satisface $\mu(\Omega) = 1$.

Proposición 1.1 (continuidad de la medida) Una medida con $\mu(\Omega) < \infty$ satisface las siguientes propiedades:

1. Aditividad finita: para una secuencia de conjuntos disjuntos E_1, \ldots, E_k ,

$$\mu\left(\sum_{i=1}^k E_k\right) = \sum_{i=1}^k \mu(E_i).$$

- 2. Si $E_n \nearrow E, E \in \mathcal{F}$ y $E_n \in \mathcal{F}$ para todo $n \in \mathbb{N}$, entonces $\mu(E_n) \nearrow \mu(E)$.
- 3. Si $E_n \searrow E, E \in \mathcal{F}, E_n \in \mathcal{F}$ para todo $n \in \mathbb{N}$ y $\mu(E_1) < \infty$, entonces $\mu(E_n) \searrow \mu(E)$.
- 4. Sub-aditividad contable: Si $E \in \mathcal{F}$ y $\cup_n E_n \in \mathcal{F}$, entonces:

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} \mu(E_i).$$

La primera propiedad sigue de la aditividad contable de la función medida y escribiendo $E_l = \emptyset$ para $l > \overline{k}$.

Probamos a continuación la <u>segunda propiedad</u>. Definimos la siguiente secuencia de conjuntos disjuntos $B_1 = E_1$ y $B_k = E_k \setminus E_{k-1}$, donde $E = \bigcup_{n \in \mathbb{N}} B_n$ y $E_n = \bigcup_{k=1}^n B_k$.

Por contabilidad y aditividad finita de μ :

$$\mu(E) = \sum_{n \in \mathbb{N}} \mu(B_n) = \lim_{n \to \infty} \sum_{k=1}^n \mu(B_k) = \lim_{n \to \infty} \mu(E_n)$$

Lo que prueba, la segunda propiedad.

Para probar la siguiente propiedad, notemos que $E_1 \setminus E_n \nearrow E_1 \setminus E$, junto con la propiedad anterior, implica que:

$$\mu(E_1) - \mu(E_n) = \mu(E_1 \setminus E_n) \nearrow \mu(E_1 \setminus E) = \mu(E_1) - \mu(E).$$

Para probar, la última propiedad $B = E_1$ y $B_n = E_n \cap E_1^c \cap \cdots \cap E_{n-1}^c$ para $n \in \mathbb{N}$. Nota que B_k es una secuencia de conjuntos disjuntos y $\bigcup_{n=1}^k B_n = \bigcup_{n=1}^k E_n$, para todo $k \in \mathbb{N}$. Desde que $B_k \subset E_k$, tenemos:

$$\mu\left(\bigcup_{n=1}^k E_k\right) = \mu\left(\bigcup_{n=1}^k B_k\right) = \sum_{n=1}^k \mu(B_k) \le \sum_{n=1}^k \mu(E_k).$$

Ahora, cuando $k \to \infty$ y usando la segunda propiedad, sobre el lado izquierdo aplicado a los conjuntos $E_k' = \bigcup_{n=1}^k E_n \nearrow \bigcup_{n \in \mathbb{N}} E_k$ se tiene el resultado deseado.

1.1 Medida cero

Definición 1.2 Decimos que *A* es un conjunto de medida cero si $\mu(A) = 0$.

Estos conjuntos actuan como un elemento cero con medida. Si tenemos un conjunto B, entonces resulta que si A tiene medida cero, entonces se cumple que $\mu(B) = \mu(B \cup A)$. Esto es más o menos como decir la medida de no se interesa por estos conjuntos. Algunos ejemplos importantes:

- 1. Un subconjunto de un conjunto de medida cero también tiene medida cero.
- 2. Cada subespacio k dimensional de \mathbb{R}^n tiene medida cero si k < n. En otras palabras, la línea no tienen área y los planos no tienen volumen.
- 3. La unión contable de conjuntos de medida cero, también tiene medidad cero.

Proposición 1.2 Un conjunto contable de puntos tiene medida cero.

Corolario 1.1 Los números racionales en el intervalo unidad, tienen medida cero.

Definición 1.3 Una proposición A(x) que dependen de un número real se dice que es verdadera casi en todas partes si $\{x : A(x) \text{ es falso}\}$ tiene medida cero.

El siguiente resultado, determina si una función es Riemann integrable.

Proposición 1.3 Una función acotada $f:[a,b] \to \mathbb{R}$ es Riemann integrable si y sólo si es continua en casi todas partes de [a,b].

2 Referencias

- 1. Measure, integrals and martingales, René Schilling Cambridge University Press 2005.
- 2. Probability, The Analysis of Data, volumen 1 Guy Lebanon.