Aufgabe 1

Sei
$$V = \mathbb{R}^3, \beta_a(x,y) = x^T \cdot A_a \cdot y(x,y \in V, a \in \mathbb{R}), M = \{a \in \mathbb{R} | \beta_a \text{ ist Skalarprodukt} \}$$
 und $A_a = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & a^2 \end{pmatrix}$.

- (a) Bestimme M.
- (b) Wähle für jedes $a \in \mathbb{R} \setminus M$ ein $x \in V \setminus \{0\}$ so, dass $\beta_a(x, x) \leq 0$ ist.

Aufgabe 2

Sei $S \in \mathbb{R}^{n \times n}_{reg}$ und <,> mit $< x,y>:=x^TSy(x,y\in\mathbb{R}^n)$ ein Skalarprodukt. Zeige: β mit $\beta(x,y)=x^TS^{-1}y$ ist ebenfalls ein Skalarprodukt.

Aufgabe 3

Für eine reelle $(n \times n)$ -Matrix $(n \ge 2)$ A mit $A = ((a_{i,j}))_{i,j \in \{1,\dots,n\}}$ gelte $\det A_1 > 0$, $\det A_2 > 0$, ..., $\det A_{n-1} > 0$, wobei $A_k := ((a_{i,j}))_{i,j \in \{1,\dots,k\}}$. Zeige:(a) $a_{nn} \le 0 \Rightarrow \det A \le 0$.

- (b)Die Aussage det $A \leq 0 \Rightarrow a_{nn} \leq 0$ ist falsch.
- (c)Untersuche für n=1.