Olympiades Nationales de Mathématiques 2018

tour Niveau 7C

25 mars 2018 Durée 4 h

L'épreuve est notée sur 100 points. Elle est composée de cinq exercices indépendants ; Toute réponse doit être justifiée et les solutions partielles seront examinées ;

Calculatrice non autorisée

Exercice 1: (20 points)

1° Montrer que $\forall x \in]1; +\infty[$ on a : $\frac{\ln x}{x-1} < \frac{1}{\sqrt{x}}$.

 2° En déduire que pour tout entier $n \ge 2$, $\prod_{k=2}^{n} lnk < \frac{\sqrt{n!}}{n}$

Exercice 2; (20 points)

On considère l'équation (E) : $1 + 2^x + 2^{2x+1} = y^2$ où (x,y) sont des entiers relatifs.

1° Donner une solution particulière de (E).

2° Montrer que pour tout couple (x,y) solution de l'équation (E), si $x \ne 0$ alors $x \ge 3$ et $y = 2^{x-1} \times m + n$ (avec m impair et n = 1 ou n = -1).

3° Déterminer tous les couples (x,y) d'entiers relatifs qui vérifient l'équation (E).

Exercice 3: (20 points)

On considère l'intégrale : $\varphi(x) = -\int_0^x \ln(\cos y) dy$, pour $x \in \left[0, \frac{\pi}{2}\right]$

1° Montrer que: $\varphi(x) = 2\varphi\left(\frac{\pi}{4} + \frac{x}{2}\right) - 2\varphi\left(\frac{\pi}{4} - \frac{x}{2}\right) - x \ln 2$.

 2° En prolongeant ϕ par continuité en $\frac{\pi}{2}$ trouer alors la valeur exacte de $\phi\bigg(\frac{\pi}{2}\bigg)$.

Exercice 4: (20 points)

1° Donner les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et $\sin\left(\frac{5\pi}{12}\right)$

2° Trouver l'ensemble des couples $(x,y) \in \mathbb{R}^2$ solutions du système :

$$\begin{cases} x^5 - 10x^3y^2 + 5xy^4 = 8(\sqrt{6} + \sqrt{2}) \\ 5x^4y - 10x^2y^3 + y^5 = 8(\sqrt{6} - \sqrt{2}) \end{cases}$$

Exercice 5: (20 points)

Un octogone convexe $A_1A_2A_3...A_8$ est inscrit dans un cercle de rayon non nul. $A_1A_3A_5A_7$ est un carré d'aire égale à 5. $A_2A_4A_6A_8$ est un rectangle d'aire égale à 4. Déterminer, en justifiant, l'aire maximale de l'octogone.

FIN.