Implementing Text and Image Classification Using Neural Networks in scikit-learn

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Representing text as features

Term Frequency (TF) and Inverse Document Frequency (IDF)

Representing images as features

Single channel and multi-channel images

Text and image classification

Encoding Text Data in Numeric Form

d = "This is not the worst restaurant in the metropolis,
not by a long way"

Document as Word Sequence

Model a document as an ordered sequence of words

```
d = "This is not the worst restaurant in the metropolis,
not by a long way"

("This", "is", "not", "the", "worst", "restaurant", "in", "the",
"metropolis", "not", "by", "a", "long", "way")
```

Document as Word Sequence

Tokenize document into individual words

Represent Each Word as a Number

Represent Each Word as a Number

Represent Each Word as a Number

$$d = [x_0, x_1, ... x_n]$$

Document as Tensor

Represent each word as numeric data, aggregate into tensor

Numeric Representations of Text

One-hot Frequency-based Prediction-based

Numeric Representations of Text

One-hot Frequency-based Prediction-based

Represent each word in text by its presence or absence

Numeric Representations of Text

One-hot Frequency-based Prediction-based

Frequency-based Embeddings

Frequency-based Embeddings

Capture how often a word occurs in a document i.e. the **counts** or the **frequency**

Frequency-based Embeddings

Captures how often a word occurs in a **document** as well as the **entire corpus**

Tf-Idf

Frequently in a single document

Might be important

Frequently in the corpus

Probably a common word like "a", "an", "the"

Frequency-based Embeddings

Count TF-IDF Co-occurrence

Similar words will occur together and will have similar context

Context Window

A window centered around a word, which includes a certain number of neighboring words

Co-occurrence

The number of times two words w1 and w2 have occurred together in a context window

Word Embeddings

One-hot Frequency-based Prediction-based

Predictions-based embeddings

Numerical representations of text which capture meanings and semantic relationships, generated using ML models

Magic

Word embeddings capture meaning

"Queen" ~ "King" == "Woman" ~ "Man"

"Paris" ~ "France" == "London" ~ "England"

Dramatic dimensionality reduction

Demo

Performing classification on text data using neural networks in scikit-learn

Encoding Image Data in Numeric Form

Image Recognition

Images represented as pixels

Identify edges, colors, shapes

A photo of a horse

Encoding Image Data in Numeric Form

Images as Matrices

RGB values are for color images

R, G, B: 0-255

0, 0, 255

3 values to represent color, 3 channels

Grayscale Images

Grayscale Images

Each pixel represents only intensity information

0.0 - 1.0

Grayscale Images

Images as Matrices

Images can be represented by a 3-D matrix

Images as Tensors

The number of channels

The height and width of each image in the list

The number of images

Demo

Performing classification on image data using neural networks in scikit-learn

Summary

Representing text as features

Term Frequency (TF) and Inverse Document Frequency (IDF)

Representing images as features

Single channel and multi-channel images

Text and image classification