190031249 P.MOHITH

MP-1 TUTORIAL-3

1. Demonstrate Two Phase Simplex method in Linear Programming. Bounded variable problem.

QUESTION:

Minimum Z=x1+x2

Subject to:

2x1 + x2 >= 4

X1 + 7x2 >= 7

And x1, x2 >= 0

Converting minimization to maximization

maximize $z = -x_1 + (-x_2)$

Subject to: $2x_1 + n_2 \ge 4$ $x_1 + 7x_2 \ge 7$

X1, x, 20

converting inequalities to equalities

2x1+ n2 - 11 + A1 = 4.

 $x_1 + 7x_2 - s_2 + A_1 = 7$

phase - I

Maximize on, + 0x2+0s, +0se-A,-Az Subject to

$$2x_1 + 2x_2 - s_1 + A_1 = 4$$

 $2x_1 + 2x_2 - s_2 + A_2 = 7$

Initial Table

CB; Cj O O O O -1 -1

BV X1 X2 1 S A7 A2 Sol

-1 A1 2 1 -1 O 1 O Y

-1 A2 1
$$\overline{P}$$
 O -1 O 1 \overline{P}

Zj -3 -8 1 1 -1 -1

CS Scanned With

190031249 P.MOHITH

2 Entering variable = x2 leaving variable = A2 bey element = 7

Iteration-1

CBi	c.	0	0	0	0	-1	-1	
	B·V	7 (XL	1.,.	SL	A	AL	1501
-1	A	[13/7]	0	-1	1/7	1.	-1/7)	3
0	α_{ν}	1/7		0	-1/7	0	1/2	
,	Zj	-13/7	0		-1/7	-1	14	
	<i>cj-2j</i>	13/7	O	-1	1/7	0	-8/7	

Entering variable: x,

leaving variable: A1

keyelement: 13/7

Iteration-II

CBi Cj O O O O -1 - 1

B·V
$$n_1$$
 n_2 n_3 n_4 n_5 n_5 n_6 n

phase-1 terminates because both the artificial variables have been removed from the basis

phase - 2:

CB	· cj	7	-1.	0	.0	,			
	BV	n	XL	S ₁	52	sol			
-1.	. N4	1	0	-7/13	1/13.	21/13			
-1	X	- O	1	1/13	-14/91	10/13			
•	Zj	-1	-1-	6/13	1/13	-31/13			
	cj-2j	0	0	-6/1,3	-1/13				
$a_1 = \frac{21}{13}$									

$$\alpha_2 = 10/3$$

$$(\text{maximi})$$
 $Z = -31/13$

Since the problem is of minimization minimize & cjaj = maximize & (cj)xj Hence Z (minimize) = 31/13 $x_1 = \frac{21}{13}$ x2 = 10/13