UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

T 1	
Facultatea	

Numărul legitimației de bancă _	
Numele	
Prenumele tatălui	
Prenumele	

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică

VARIANTA A

1. Să se rezolve inecuația 3x-1 < 2x+2. (6 pct.)

a)
$$(1,4)$$
; b) $(10,\infty)$; c) $(-1,1)$; d) $(2,\infty)$; e) $(5,11)$; f) $(-\infty,3)$.

2. Fie $M = \left\{ X \in \mathcal{M}_2(\mathbb{C}) \middle| X^2 = \begin{pmatrix} -1 & -2 \\ 4 & -1 \end{pmatrix} \right\}$, unde $\mathcal{M}_2(\mathbb{C})$ reprezintă mulțimea matricelor pătratice de ordinul doi, cu elemente în \mathbb{C} . Pentru $X \in M$, notăm cu S(X) suma pătratelor elementelor matricei X. Să se calculeze $S = \sum_{X \in M} S(X)$. (6 pct.)

a)
$$S = 5$$
; b) $S = 4$; c) $S = 11$; d) $S = 3$; e) $S = 7$; f) $S = 1$.

- 3. Suma soluțiilor reale ale ecuației $\sqrt{2x+1} = x-1$ este: (6 pct.) a) 4; b) 2; c) 3; d) 5; e) 0; f) 1.
- 4. Să se rezolve sistemul $\begin{cases} 2x y = 7 \\ x + 2y = 6 \end{cases}$ (6 pct.)

a)
$$x = 1, y = 4$$
; b) $x = 1, y = 3$; c) $x = 4, y = 1$; d) $x = 2, y = 2$; e) $x = 2, y = 3$; f) $x = 2, y = 4$.

 Să se determine x ∈ R astfel încât numerele x, 8, 3x+2 să fie (în această ordine) în progresie aritmetică. (6 pct.)

a)
$$\frac{1}{3}$$
; b) $\frac{1}{6}$; c) $\frac{2}{5}$; d) $\frac{3}{4}$; e) $\frac{5}{2}$; f) $\frac{7}{2}$.

6. Multimea soluțiilor inecuației $x^2 - 3x \le 0$ este: (6 pct.)

a)
$$(3,\infty)$$
; b) $[1,\infty)$; c) $[2,\infty)$; d) $(-3,3)$; e) $[0,3]$; f) $[-1,3]$.

7. Să se rezolve ecuația $\log_2(x+1) = 3$. (6 pct.)

a)
$$x = 5$$
; b) $x = 2$; c) $x = 6$; d) $x = 1$; e) $x = 4$; f) $x = 7$.

8. Să se calculeze suma soluțiilor reale ale ecuației $x^3 + 2x^2 - 3x = 0$. (6 pct.)

- 9. Să se determine $a \in \mathbb{R}$ astfel încât sistemul $\begin{cases} ax y + z = 0 \\ 2x + y z = 0 \end{cases}$ să aibă şi soluții nenule. (6 pct.) x + y + 2z = 0
 - a) a = 5; b) a = -2; c) a = 1; d) a = -4; e) a = 4; f) a = -5.
- 10. Să se calculeze determinantul 2 0 1 0 2 3 . (6 pct.)
 - a) 2; b) -11; c) 4; d) -2; e) -3; f) 9.
- 11. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x$. Să se calculeze f'(1). (6 pct.) a) -1; b) 3; c) 6; d) 4; e) 5; f) 7.
- 12. Să se rezolve ecuația $3^{2x-1} = 27$. (6 pct.) a) x = -1; b) x = 4; c) x = 1; d) x = -2; e) x = 2; f) x = 0.
- 13. Pentru a > 0, considerăm funcția $f:[0,a] \to \mathbb{R}_+$, $f(x) = \frac{1}{1+x^2}$. Dacă V(a) este volumul corpului obținut prin rotirea graficului funcției f în jurul axei Ox, să se calculeze $\lim V(a)$. (6 pct.)
 - a) $\frac{\pi^2}{3}$; b) π^2 ; c) $\frac{\pi^2}{6}$; d) $\frac{\pi^2}{8}$; e) $\frac{\pi^2}{2}$; f) $\frac{\pi^2}{4}$.
- 14. Considerăm funcția $f:[-1,1] \to \mathbb{R}$, $f(x) = \frac{\pi}{2} 2 \operatorname{arctg} \sqrt{\frac{1-x}{1+x}}$, dacă $x \in (-1,1]$, și $f(-1) = -\frac{\pi}{2}$. Fie $M = \{m \in \mathbb{R} \mid \text{ecuația } f(x) = mx \text{ are trei soluții reale și distincte} \}$. Atunci: (6 pct.)
 - a) $M = \left[1, \frac{\pi}{4}\right]$; b) $M = \left[0, \frac{\pi}{3}\right]$; c) $M = \left(1, \frac{\pi}{2}\right]$; d) $M = \left(\frac{\pi}{3}, \frac{\pi}{2}\right]$; e) $M = \left[\frac{\pi}{4}, \frac{\pi}{3}\right]$; f) $M = \left(0, \frac{\pi}{4}\right]$.
- 15. Fie polinoamele $f = X^3 + aX^2 + 18$ și $g = X^3 + bX + 12$, unde $a, b \in \mathbb{R}$. Să se calculeze S = a + b știind că polinoamele f și g au două rădăcini comune. (6 pct.)
 - a) S = -2; b) S = 4; c) S = 3; d) S = -1; e) S = 0; f) S = 1.