Barrier Functions: Bridging the Gap between Planning from Specifications and Safety-Critical Control

Petter Nilsson and Aaron D. Ames

Department of Mechanical and Civil Engineering California Institute of Technology

December 17, 2018

Specifications in Control

How do we make systems safe and reliable as system complexity and interconnectivity grows?

Specifications:

- Succinct and precise way to define system behavior
- Facilitate system modularity and interconnections
- Synthesis algorithms convert specifications into controllers

Specifications in Control

How do we make systems safe and reliable as system complexity and interconnectivity grows?

Specifications:

- Succinct and precise way to define system behavior
- Facilitate system modularity and interconnections
- Synthesis algorithms convert specifications into controllers

Specifications in Control

How do we make systems safe and reliable as system complexity and interconnectivity grows?

Specifications:

- Succinct and precise way to define system behavior
- Facilitate system modularity and interconnections
- Synthesis algorithms convert specifications into controllers

Specifications: Low-level vs High-level

	Low-level	High-level
Time scale	Short	Long
Specification	Invariance-driven	Assume/guarantee-driven
Model	Nonlinear ODE	Abstract model
Methods	HJB ¹ , SoS ² , CBF ³	LTL synth ⁴ , MDPs ⁵
Decisions	Smooth	Discrete
Dimensionality	High	Low
Uncertainty	Model, perception	Environment
Human analogy	Spinal cord	Brain

Full space gridding intractable for many high-dimensional systems

Need sparse high-level abstractions

 $[\textbf{Among others: }^{1}\textbf{Tomlin, }^{2}\textbf{Korda}\\ \& \textbf{Henrion, }^{3}\textbf{Ames et al, }^{4}\textbf{Kress-Gazit, Tabuada, }^{5}\textbf{Bertsekas}]$

Specifications: Low-level vs High-level

	Low-level	High-level
Time scale	Short	Long
Specification	Invariance-driven	Assume/guarantee-driven
Model	Nonlinear ODE	Abstract model
Methods	HJB ¹ , SoS ² , CBF ³	LTL synth ⁴ , MDPs ⁵
Decisions	Smooth	Discrete
Dimensionality	High	Low
Uncertainty	Model, perception	Environment
Human analogy	Spinal cord	Brain

Full space gridding intractable for many high-dimensional systems

Need sparse high-level abstractions

[Among others: ¹Tomlin, ²Korda&Henrion, ³Ames et al, ⁴Kress-Gazit, Tabuada, ⁵Bertsekas]

2/14

Specifications: Low-level vs High-level

	Low-level	High-level
Time scale	Short	Long
Specification	Invariance-driven	Assume/guarantee-driven
Model	Nonlinear ODE	Abstract model
Methods	HJB ¹ , SoS ² , CBF ³	LTL synth ⁴ , MDPs ⁵
Decisions	Smooth	Discrete
Dimensionality	High	Low
Uncertainty	Model, perception	Environment
Human analogy	Spinal cord	Brain

Full space gridding intractable for many high-dimensional systems

Need sparse high-level abstractions

 $[\textbf{Among others: }^{1}\textbf{Tomlin, }^{2}\textbf{Korda}\\ \& \textbf{Henrion, }^{3}\textbf{Ames et al, }^{4}\textbf{Kress-Gazit, Tabuada, }^{5}\textbf{Bertsekas}]$

Bridging the Gap

Guarantees when planning on an Abstract Roadmap?

How to relate a low-dimensional roadmap to a high-fidelity model?

- Road map consists of nodes and edges
- Approach: equip graph edges with certificates for invariance and reachability
 - Invariance for low-level safety
 - Reachability for high-level/low-level connection

Control Systems and Transition Systems

• $\Sigma = (\mathcal{X}, \mathcal{X}_0, \mathcal{U}, \mathcal{D}, f, h_{\mathcal{X}})$ is a **control system** over a continuous space \mathcal{X}

$$\dot{x} = f(x, u, d), \quad x \in \mathcal{X}, \ u \in \mathcal{U}, \ d \in \mathcal{D}, \ h_{\mathcal{X}} \text{ output map.}$$

• $\mathcal{T}=(\mathbb{X},\mathbb{X}_0,\mathbb{U},\longrightarrow,h_{\mathbb{X}})$ is a **transition system** over discrete space \mathbb{X}

$$\xi \stackrel{\mu}{\longrightarrow} \xi', \quad \xi \in \mathbb{X}, \ \mu \in \mathbb{U}, \ h_{\mathbb{X}} \ \text{output map}.$$

Objective

Construct abstraction \mathcal{T} embedded in a lower dimension so that a policy for \mathcal{T} can be implemented on Σ .

Alternating Simulation Relation for Planning

Definition

 $\mathcal{R} \subset \mathcal{X} \times \mathbb{X}$ is an alternating planning relation from Σ to \mathcal{T} if:

- 1 For all $x_0 \in \mathcal{X}_0$ there exists $\xi_0 \in \mathbb{X}_0$ such that $x_0 \mathcal{R} \xi_0$,
- 2 For $x\mathcal{R}\xi$, $h_{\mathcal{X}}(x) \in h_{\mathbb{X}}(\xi)$,

3 For $\xi \in \mathbb{X}$ and $\mu \in \mathbb{U}$ there exists a feedback controller u(t,x) such that the resulting u-controlled trajectory $\mathbf{x}(t)$ for some T satisfies

$$\mathbf{x}(T) \in \bigcup_{\xi':\xi \xrightarrow{\mu} \xi'} \mathcal{R}^{-1}(\xi'), \qquad \mathbf{x}([0,T)) \subset \mathcal{R}^{-1}(\xi) \cup \bigcup_{\xi':\xi \xrightarrow{\mu} \xi'} \mathcal{R}^{-1}(\xi').$$

We say that \mathcal{T} simulates Σ and write $\Sigma \leq_{\text{plan}} \mathcal{T}$.

Petter Nilsson (Caltech) December 17, 2018 6 / 14

Relation Preserves LTL Satisfiability

LTL notation:

- Specification: φ
- Transition system \mathcal{T} controlled by policy $\pi_{\mathcal{T}}$ satisfies specification: $(\mathcal{T}, \pi_{\mathcal{T}}) \models \varphi$
- Closed-loop control system satisfies specification: $(\Sigma, \pi_{\Sigma}) \models \varphi$

Theorem

If $\Sigma \leq_{\text{plan}} \mathcal{T}$ and $\pi_{\mathcal{T}}$ is a policy such that $(\mathcal{T}, \pi_{\mathcal{T}}) \models \varphi$, then there exists a controller π_{Σ} for Σ such that $(\Sigma, \pi_{\Sigma}) \models \varphi$.

Proof: Construct hybrid event-driven controller...

Embedding Abstraction in Lower Dimension

Planning space $x \in \mathcal{X}$ and higher-order space $v \in \mathcal{V}$:

$$\Sigma: \left\{ \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = f(\mathbf{x}, \mathbf{v}) + g_u(\mathbf{x}, \mathbf{v})\mathbf{u} + g_d(\mathbf{x}, \mathbf{v})\mathbf{d} \right\}$$

Road map from subsets $\{X_i\} \subset \mathcal{X}$:

- Nodes correspond to sets $\{X_i\}$.
- Edges correspond to pairs of sets (X_i, X_j)

Abstract states $\xi_{ij} \in \mathbb{X}$ correspond to edges

 $\xi_{ii}: X_i$ being kept invariant

Embedding Abstraction in Lower Dimension

Planning space $x \in \mathcal{X}$ and higher-order space $v \in \mathcal{V}$:

$$\Sigma: \left\{ \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = f(\mathbf{x}, \mathbf{v}) + g_u(\mathbf{x}, \mathbf{v})\mathbf{u} + g_d(\mathbf{x}, \mathbf{v})\mathbf{d} \right\}$$

How to ensure reachability and invariance in planning space?

Abstract states $\xi_{ij} \in \mathbb{X}$ correspond to edges

 ξ_{ij} : transitioning from X_i to X_j

 X_i being kept invariant

9/14

Control Barrier Function Certificates

 X_i can be kept **invariant** if $\exists h_i^{\mathrm{inv}}(x, v), \kappa_i^{\mathrm{inv}} \in \mathcal{K}_{\infty}$ such that $\forall x, v$

$$h_i^{\text{inv}}(x, \mathbf{v}) \ge 0 \implies x \in X_i,$$

 $\kappa_i^{\text{inv}}(h_i^{\text{inv}}(x, \mathbf{v})) + \max_{u \in \mathcal{U}} \min_{d \in \mathcal{D}} \mathcal{L} h_i^{\text{inv}}(x, \mathbf{v}, u, d) \ge 0.$

 X_j can be **reached** from X_i if $\exists h_{ij}^{\mathrm{rch}}, \kappa_{ij}^{\mathrm{rch}}, T_{ij}$ such that $\forall x, v$

$$\begin{split} & h_i^{\text{inv}}(\boldsymbol{x}, \boldsymbol{v}) \geq 0 \implies h_{ij}^{\text{rch}}(\boldsymbol{0}, \boldsymbol{x}, \boldsymbol{v}) \geq 0, \\ & h_{ij}^{\text{rch}}(\boldsymbol{T}_{ij}, \boldsymbol{x}, \boldsymbol{v}) \geq 0 \implies h_j^{\text{inv}}(\boldsymbol{x}, \boldsymbol{v}) \geq 0, \\ & \kappa_{i,j}^{\text{rch}}(h_{ij}^{\text{rch}}(\boldsymbol{t}, \boldsymbol{x}, \boldsymbol{v})) + \max_{\boldsymbol{u} \in \mathcal{U}} \min_{\boldsymbol{d} \in \mathcal{D}} \mathcal{L} h_{ij}^{\text{rch}}(\boldsymbol{t}, \boldsymbol{x}, \boldsymbol{v}, \boldsymbol{u}, \boldsymbol{d}) \geq 0. \end{split}$$

Control Barrier Function Certificates

$$X_{i} \text{ can be kept } \underset{i}{\textbf{Invariant}} \text{ if } \exists h_{i}^{\text{inv}}(x,v), \kappa_{i}^{\text{inv}} \in \mathcal{K}_{\infty} \text{ such that } \forall x, \textbf{\textit{v}}$$

$$h_{i}^{\text{inv}}(x,v) \geq 0 \implies x \in X_{i},$$

$$\kappa_{i}^{\text{inv}}(h_{i}^{\text{inv}}(x,v)) + \max_{u \in \mathcal{U}} \min_{d \in \mathcal{D}} \mathcal{L}h_{i}^{\text{inv}}(x,v,u,d) \geq 0.$$

$$X_{j} \text{ can be } \underset{i}{\textbf{reacher}} \text{ Exists } u \text{ such that for all } d,$$

$$h_{i}^{\text{inv}}(x,v) \geq \lim_{u \in \mathcal{U}} \frac{dh_{i}^{\text{inv}}(x,v)}{dt} \geq -\kappa_{i}^{\text{inv}}(h_{i}^{\text{inv}}(x,v))$$

$$h_{ij}^{\text{reh}}(T_{ij},x,k) + \max_{u \in \mathcal{U}} \min_{d \in \mathcal{D}} \mathcal{L}h_{ij}^{\text{reh}}(t,x,v,u,d) \geq 0.$$

 X_j can be reached from X_i if $\exists h_{ij}^{\mathrm{rch}}, \kappa_{ij}^{\mathrm{rch}}, T_{ij}$ such that $\forall x, v$

$$\begin{array}{l}
\left(h_{i}^{\text{inv}}(x, \mathbf{v}) \geq 0\right) \Longrightarrow h_{ij}^{\text{rch}}(0, x, \mathbf{v}) \geq 0, \\
h_{ij}^{\text{rch}}(T_{ij}, x, \mathbf{v}) \geq 0 \Longrightarrow \left(h_{j}^{\text{inv}}(x, \mathbf{v}) \geq 0, \right) \\
\kappa_{i,j}^{\text{rch}}(h_{ij}^{\text{rch}}(t, x, \mathbf{v})) + \max_{u \in \mathcal{U}} \min_{d \in \mathcal{D}} \mathcal{L}h_{ij}^{\text{rch}}(t, x, \mathbf{v}, u, d) \geq 0.
\end{array}$$

 $\kappa_i^{\rm inv}(h_i^{\rm inv}(x,$

 X_j can be reached from X_i if $\exists h_{ij}^{\mathrm{rch}}, \kappa_{ij}^{\mathrm{rch}}, T_{ij}$ such that $\forall x, v$

$$\begin{array}{l}
\left(h_{i}^{\text{inv}}(x, \mathbf{v}) \geq 0\right) \Longrightarrow h_{ij}^{\text{rch}}(0, x, \mathbf{v}) \geq 0, \\
h_{ij}^{\text{rch}}(T_{ij}, x, \mathbf{v}) \geq 0 \Longrightarrow \left(h_{j}^{\text{inv}}(x, \mathbf{v}) \geq 0, \right) \\
\kappa_{i,j}^{\text{rch}}(h_{ij}^{\text{rch}}(t, x, \mathbf{v})) + \max_{u \in \mathcal{U}} \min_{d \in \mathcal{D}} \mathcal{L}h_{ij}^{\text{rch}}(t, x, \mathbf{v}, u, d) \geq 0.
\end{array}$$

Abstraction Satisfies Simulation Relation

For a road map $\mathcal T$ where each edge and node has a certificate, consider relation $\mathcal R$

$$(x, v)\mathcal{R}\xi_{ii} \iff h_i^{\mathrm{inv}}(x, v) \geq 0,$$

 $(x, v)\mathcal{R}\xi_{ij} \iff \exists t \in [0, T_{ij}] \text{ s.t. } h_{ij}^{\mathrm{rch}}(t, x, v) \geq 0.$

Theorem

Assume that $\mathcal{X}_0 \subset \bigcup_{\xi \in \mathbb{X}_0} \mathcal{R}^{-1}(\xi)$. Then \mathcal{R} is an alternating planning relation from Σ to \mathcal{T} and thus $\Sigma \preceq_{\mathrm{plan}} \mathcal{T}$.

Example: Quadrotor Planning

12D Quadrotor dynamics:

$$\Sigma: egin{aligned} m\ddot{\mathbf{r}} &= -mge_z + \mathbf{F}_w R(\xi)e_z \ \dot{\xi} &= T(\xi)\Omega \ J\dot{\Omega} &= au - \Omega imes J\Omega \end{aligned}$$

3D-embedded road map \mathcal{T}

Environment:

Surveillance specification

$$\varphi = \Box \neg D \bigwedge_{i=1}^{3} \Box \Diamond C_{i}$$

"Avoid danger and always eventually visit target regions"

Trajectory-Centric Certificates for Quadrotor

• Invariance CBF for $\{\|r - r_0(t)\| \le \epsilon(t)\}$ (if control unbounded):

$$h_0(t, r, \xi) = \frac{\epsilon(t)^2 (1 - \beta) - \|r - r_0(t)\|^2}{-\frac{\epsilon^2 \beta}{\pi/2} a_1 \arctan\left(a_2 (r - r_0(t))^T R(\xi) e_3 + a_3\right).}$$

• Reachability CBFs by interpolating $r_0(t)$ and $\epsilon(t)$:

[Wu & Sreenath, Safety-Critical Control of a 3D Quadrotor With Range-Limited Sensing, DSCC'16]

Petter Nilsson (Caltech) December 17, 2018 12 / 14

Example: Results

CBFs designed to stay within 2m of nominal path.

CBF conditions activated in wind disturbance

Summary

- Planning and LTL synthesis in low dimension, safety w.r.t. high-fidelity model
 - Quadrotor example: 12D model, 3D planning
- Planning relation as contract to relate control system to roadmap
 - Enforce task specifications on full model
- Control barrier functions as edge certificates
 - CBFs also enforce safety specifications on full model

Petter Nilsson (Caltech) December 17, 2018 14 / 14

Thank you

