Wiederholung Jede Permutat.

· Jede Permentation ist Produkt disjunkter Eykel.

· Jeder k- Eyhel uit Produkt von h-1 Trausporitionen.

· Jede Transporition ist Produkt von Nachbartransporitionen.

 $\sigma \pi \in S_n : \qquad Sgn \pi = \Pi \frac{\Pi(i) - \pi(j)}{i - j} \in \{1, -1\}.$

 $sgn(\pi\sigma) = (sgn\pi).(sgn\sigma)$

 $sgn(\pi^{-1}) = sgn \pi$

sogn 7 = -1 fui tion Transposition

Sgn (T1 ··· Tr) = (-1) " für T11 ··· Tr Trausponitioner

sgn (T) = (-1) k-1 für einen k- Eyhel T

· R komm. Ring mit 1 +0, m, n e N $A = \begin{cases} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{nn} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{cases} \qquad \alpha_{nj} \in \mathbb{R}$ $A = (\alpha_{ij}) \in R^{m \times n}$ i-te Zeile von A: Zeiler-n-Tupel

azj

E R

Spalter-m-Tupel j'-te Spalte von A: En = n-reihige in heits mot nix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{n \times n}$

R mxn

abelidue (Gruppe mit:

-
$$(a_{ij})$$
 + (b_{ij}) := $(a_{ij} + b_{ij})$ (a_{ij}) , (b_{ij}) e $\mathbb{R}^{m\times n}$

- Null mabrix $O \in \mathbb{R}^{m\times n}$

- $-(\alpha_{ij})$ = $(-\alpha_{ij})$.

A = $(a_{ij}) \in \mathbb{R}^{m\times n}$, $c \in \mathbb{R}$: $cA := (ca_{ij}) \in \mathbb{R}^{m\times n}$

A = $(a_{ij}) \in \mathbb{R}^{m\times n}$, $B = (b_{ij}) \in \mathbb{R}^{m\times n}$

$$A = (a_{ij}) \in \mathbb{R}$$

$$A = (a_{ij}) \in \mathbb{R}^{m \times n}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

$$A \cdot B = (c_{ij}) \in \mathbb{R}^{m \times \ell}$$

Cij: Sindrag der (1×1) - Madrix Zi. sj.,
zi: i-te Züle von A, sj. j-te Spalte von B

Matrixmultiplikation (Forts.)

Proposition

$$A, A' \in R^{m \times n}$$
, $B, B' \in R^{n \times l}$, $C \in R^{l \times k}$

$$ightharpoonup A(BC) = (AB)C$$

$$ightharpoonup$$
 $\mathrm{E}_m A = A \mathrm{E}_n = A$

$$(A + A')B = AB + A'B$$
$$A(B + B') = AB + AB'$$

A (BC) = (AB) C
$$A = R^{m \times n}$$
, $A = (a_{ij})$, $B = (b_{ij}) \in R^{n \times n}$, $C = (c_{ij}) \in R^{e \times n}$. $(x_{ij}) - c_{int} t_{rag}$ von BC :

$$\sum_{\beta=1}^{4} b_{\alpha\beta} c_{\beta j}$$

$$(i_{ij}) - \dots \qquad A(BC)$$
:
$$\sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$(i_{i}\beta) - \dots \qquad AB$$
:
$$\sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$\sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$E_{m} A = A , \qquad A = (a_{ij}) \in R^{m \times n}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta j}$$

$$i - t_{\alpha} = \sum_{\alpha=1}^{4} \sum_{\alpha=1}^{4} a_{i\alpha} b_{\alpha\beta} c_{\beta$$

Matrixmultiplikation (Forts.)

Korollar

A E R ": quadralische Matrix

 $R^{n \times n}$ wird ein Ring mit:

► Multiplikation: A B

► Eins:

Bemerkung

 $R^{n \times n}$ ist nicht kommutativ für $n \ge 2$.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Nulli sist nicht kommutativ für
$$n \ge 2$$
.

Nulli siste i. $(01)(01) = (00)$

$$(01)(00) = (00)$$

$$(01)(00) = (01)$$

$$(01)(00) = (01)$$

$$(01)(00) = (01)$$

Matrixmultiplikation (Forts.)

Definition

Allgemeine lineare Gruppe vom Grad n über R:

$$\mathrm{GL}_n(R) := (R^{n \times n})^{\times}$$

Beispiel

$$A=egin{pmatrix} 1 & 2 \ -1 & -1 \end{pmatrix} \in \mathrm{GL}_2(\mathbb{Z}) \ \mathrm{mit}$$
 $A \cdot A^{-1} = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$

$$A^{-1} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$$

Transposition von Matrizen

Definition

$$A \in R^{m \times n}$$

$$A = (a_{ij})_{1 \le i \le m}$$

$$1 \le j \le n$$

 $A = (a_{ij})_{1 \le i \le m}$, $Eiler von A = Spaller von A^t$ $1 \le j \le n$

Transponierte von A:

$$A^{t} = \begin{pmatrix} \alpha_{ji} \end{pmatrix}_{1 \leq j \leq n, \quad t \in \mathbb{R}^{n \times m}}$$

Beispiel

$$\begin{pmatrix} 1 & 0 & -2 \\ 2 & -1 & 3 \end{pmatrix}^t = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ -2 & 3 \end{pmatrix}$$

Transposition von Matrizen (Forts.)

Proposition

$$A, B \in R^{m \times n}$$
, $C \in R^{n \times l}$, $D \in GL_n(R)$

$$(a) \blacktriangleright (A^t)^t = A$$

$$(h) \triangleright (A+B)^t = A^t + B^t$$

$$(c) \blacktriangleright (AC)^t = C^t A^t$$

$$(\mathscr{A}/\triangleright \mathrm{E}_n^t) = \mathrm{E}_n$$

$$\mathscr{C} \to D^t \in \mathrm{GL}_n(R) \ \mathrm{mit} \ (D^t)^{-1} = (D^{-1})^t$$

Berreis de Proposition

(c)
$$A = (a_{ij}) \in \mathbb{R}^{m \times n}$$
, $A^{t} = (a_{ij}) \in \mathbb{R}^{n \times m}$, $a_{ij}' = a_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{n \times l}$, $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{n \times l}$, $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$
 $C = (c_{ij}) \in \mathbb{R}^{l \times n}$, $C_{ij}' = c_{j}a_{ij}'$

(e) $D^{t} \cdot (D^{-1})^{t} = (D^{-1} \cdot D)^{t} = E_{n}^{t} = E_{n}^{t} \cdot (D^{-1})^{t} \cdot D^{t}$ (e) $D^{t} \cdot (D^{-1})^{t} \cdot D^{t} = (D^{-1} \cdot D)^{t} = E_{n}^{t} \cdot (D^{-1})^{t} \cdot D^{t}$

$$(D^{-1})^t$$
. $D^t = (D \cdot D^{-1})^t = E_n^t = E_n$.

13. Dezember 2018

Lineare Gleichungssysteme

Lineare Gleichungssysteme

Setup

- ► K Körper
- ▶ $m, n \in \mathbb{N}$

Ein lineares Gleichungssystem (LGS) aus m Gleichungen und n Unbekannten x_j für $j \in \underline{n}$ über K:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

wobei $a_{ij}, b_i \in K$ für $i \in \underline{m}, j \in \underline{n}$.

Kurz:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \qquad i-te \quad Gleichung$$

für alle $i \in \underline{m}$.

Definition

Gegeben sie ein LGS über K wie oben.

Eine *Lösung* des LGS ist ein *n*-Tupel
$$\begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} \in K^n \ (=K^{n \times 1})$$
 mit

$$\sum_{j=1}^{n} a_{ij} s_{j} = b_{i}$$

$$\in \mathcal{K}$$

für alle $i \in \underline{n}$.

Matrix-Formulierung für LGS

Gegeben sie ein LGS über K wie oben.

Definition

- ▶ $A := (a_{ij}) \in K^{m \times n}$: Koeffizientenmatrix des LGS
- ▶ $b := (b_i) \in K^m$: rechte Seite des LGS

$$(A,b) = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix} \in K^{m \times (n+1)}$$
 erweiterte Koeffizientenmatrix

- ▶ Lösungsmenge: $\mathbb{L}(A,b) \subseteq K^n$ Menge alle Lönunger
- ▶ Das LGS heißt homogen, falls $b = 0 \in K^m$.
- ▶ Das LGS heißt *inhomogen*, falls $b \neq 0 \in K^m$.

Matrix-Formulierung für LGS (Forts.)

Bemerkung

$$M_{a} \text{Initial plaid}$$
 $A \in K^{m \times n}$
 $S \in K^{n}$
 $A \in K^{m \times n}$
 $A \in K^{m \times n}$

Matrix-Formulierung für LGS (Forts.)

Schreibweise

Schreiben LGS mit erweiterter Koeffizientenmatrix (A, b) formal:

$$Ax = b.$$
 $X = \begin{pmatrix} x_n \\ \vdots \\ x_n \end{pmatrix}$ Spalte von Unbekannten.

Beispiel

Das LGS

$$2x_1 + x_2 - x_3 = 5$$

 $x_1 - x_2 = 1$

wird als Matrixgleichung geschrieben:

$$\underbrace{\begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} 5 \\ -1 \end{pmatrix}}_{b}.$$

Matrix-Formulierung für LGS (Forts.)

Es sei $A \in K^{m \times n}$ und $b \in K^m$.

Definition

$$\varphi_A: K^n \to K^m, \qquad v \mapsto Av$$

Bemerkung

(a) \blacktriangleright Für jedes $s \in \mathbb{L}(A, b)$ gilt

$$\mathbb{L}(A, b) = s + \mathbb{L}(A, 0) := \{ s + u \mid u \in \mathbb{L}(A, 0) \}.$$

- ▶ Bild von φ_A : $\varphi_A(K^n) = \{b \in K^m \mid Ax = b \text{ lösbar}\}.$
- ▶ Faser von φ_A zu $b \in K^m$:

$$\varphi_A^{-1}(\{b\}) = \{s \in K^n \mid As = b\} = \mathbb{L}(A, b).$$

```
Bild Px: \mathcal{Q}_{A}(K^{n}) = \{\mathcal{Q}_{A}(v) \mid v \in K^{n}\}
                   = 1 Ar (reK")
Be Rel: be Bild (PA) (E) L(A,b) + P
Bew: == " be Bild (PA / =) - I ve K" mit Av = b
                       =) VE $ (A, b)
(=" Sei se L(A,b) =) As = b -) be Bild(PA).
Bewein des Bewerhung (a1: Sei se 4(A,b).
 Bel: L(A,b) = s+ L(A,0) (= { s+u | u ∈ L(A,0)}
 Ben: 2" Z.z. A(stu) = b V u mit Au = 0.
           A(s+u) = As + Au = b+0 & u ∈ L(A,0) /
 " Sei s' \( 4(A,b). => As' = b = As
     =) A(s'-s) = As' - A_1 = 0, u := s'-s \in L(A,0)
     =) s' = s+u & s+ 1(A10)
```

Beispiel

$$K = \mathbb{R}$$

Lösungen sind z.B.
$$\begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix}$$
 und $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$.

Wie findet man alle Lösungen?

Beispiele

Es sei $K = \mathbb{R}$ und m = n = 2. Nehme x, y statt x_1, x_2 .

$$Tx + y = 2$$

$$Tx - y = 0$$

$$= \begin{cases} x = y, & \text{Sefze in } T = \text{ein}: 2x = 2 \\ = x = 1, & \text{y} = 1 \end{cases}$$

$$= \begin{cases} x = 1, & \text{y} = 1 \end{cases}$$

Satz

Die Lösungsmenge eines LGS ändert sich nicht, wenn

- (a) ► zwei Gleichungen vertauscht werden, oder
- (b) ▶ das c-fache $(c \in K)$ einer Gleichung zu einer anderen addiert wird, oder
- (c) \triangleright eine Gleichung mit einem $c \in K$ ($c \neq 0$) multipliziert wird.

Definition

Die Umformungen aus dem Satz heißen Äquivalenzumformungen.

Beweis des Satres: (a) u- (c) hlar. (b) C.B.d.A: die onter zwei Gleidunger I: $a_{11} \times_1 + a_{12} \times_2 + \cdots + a_{1n} \times_n = b_1$ T: $a_{21} \times_1 + a_{22} \times_2 + \cdots + a_{2n} \times_n = b_2$ $II': a_{11} \times_1 + a_{12} \times_2 + \cdots + a_{1n} \times_n = b_1$ II': (can +an) x1 + (can +azz) x2 + ... + (can + azn) x2 = cb, +b2 $S \in K^n$ mit $\sum_{j=1}^n a_{j} s_{j} = b_1 , \sum_{j=1}^n a_{2j} s_{j} = b_2$ =) s ist Losung von I' und $\sum_{j=1}^{n} (ca_{1j} + a_{2j}) s_{j} = c(\sum_{j=1}^{n} a_{1j} s_{j}) + \sum_{j=1}^{n} a_{2j} s_{j} = cb_{1} + b_{2}$ s int Loung vor II'. II outelit aus I'I' durch Addition des (-c)-fachen um I'auf II'

Beispiel

Es sei $K = \mathbb{R}$ und m = n = 2. Nehme x, y statt x_1, x_2 .

$$T: x + y = 2$$

$$T : X - y = 0$$

$$T: X - y = 0$$

$$T: X - y = 0$$

$$T: X - y = 0$$

Das LGS

hat die erweiterte Koeffizientenmatrix

$$\begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 1 & 2 & 2 & 3 & 5 \\ 2 & 4 & 0 & 3 & 5 \\ 0 & 0 & 3 & 2 & 3 \end{pmatrix} \in \mathbb{Q}^{4 \times 5}.$$

Die Äquivalenzumformungen des LGS können an dieser Matrix durchgeführt werden.

$$\frac{1}{1}: x_1 + 2x_2 + 3 = 1 \implies x_1 + 2x_2 = -2$$

$$= 1 x_1 = -2 - 2x_2$$

Elementare Transformationen

Definition

Eine elementare Zeilentransformation ist eine Abbildung

$$t: K^{m\times n} \to K^{m\times n}, \quad A \mapsto t(A),$$

von einem der drei Typen τ, α, μ , wobei $1 \le i, j \le m$ und $c \in K$:

- $ightharpoonup au_{ij}$: vertauscht die *i*-te und *j*-te Zeile von A.
- ho $\alpha_{ij}(c), i \neq j$: addiert das c-fache der j-ten Zeile zur i-ten Zeile von A.
- $\blacktriangleright \mu_i(c)$ mit $c \neq 0$: multipliziert die *i*-te Zeile von A mit c.

Schreibweise

 $A \rightsquigarrow B$, falls $B \in K^{m \times n}$ aus $A \in K^{m \times n}$ durch eine endliche Folge elementarer Zeilentransformationen hervorgeht.

Elementare Transformationen (Forts.)

Bemerkung

Es seien $(A, b), (A', b') \in K^{m \times (n+1)}$ erweiterte Koeffizientenmatrizen von LGS.

Ist
$$(A, b) \rightsquigarrow (A', b')$$
, dann ist

$$\mathbb{L}(A,b) = \mathbb{L}(A',b').$$