stats.<t/norm/chi2/f>.???

help(<ชื่อฟังก์ชัน>)

H₀ ใช้ =, ≤, ≥ H₁ ใช้≠,>,<

np.mean() np.sqrt() np.std(????, ddof=???) np.var(???, ddof=???) np.array([???]) #1d

np.array([[???], [???]]) #2d O = pd.crosstab(???, ???) O = np.array(O) n = df.shape[0]

11

12

การประมาณ μ แบบช่วง:

- ทราบ
$$\sigma^2$$

$$x-Z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\leq \mu \leq x+Z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}$$
 - ไม่ทราบ σ^2 แต่ $n\geq 30$

- ไม่ทราบ
$$\sigma^2$$
 แต่ $n \geq 30$

$$2 \quad x - Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le x + Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

- เมทราบ
$$\sigma^2$$
 แต $n \ge 30$

$$2 \quad x - Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le x + Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$
- ไม่ทราบ σ^2 , $n < 30$

$$3 \quad x - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le x + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$
, $\nu = n - 1$

การทดสอบ μ 1 ประชากร:

- ทราบ
$$\sigma^2$$

- ทราบ
$$\frac{\sigma^2}{Z}$$

$$Z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- ไม่ทราบ $\overset{\mathsf{v}}{\sigma}^2$ แต่ $n \geq 30$

$$Z = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

ztest(x1=??? alternative=<'larger'/'smaller'/'two-sided'>)

- ไม่ทราบ
$$\sigma^2$$
 , $n < 30$

[8]
$$t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}}, v = n - 1$$

stats.ttest_1samp(a=???, popmean=???, alternative=<'two-sided'/'greater'/'less'>)

การทดสอบ P 1 ประชากร:

$$Z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0 Q_0}{n}}}$$

proportions_ztest(count=???, nobs=???,

> alternative=<'two-sided'/'smaller'/'larger'>, prop var=???<1ประชาคือvalue/2ประชาไม่ต้องระบุ>)

การทดสอบ P 2 ประชากร:

$$\boxed{ 14 } Z = \frac{(\hat{p}_1 - \hat{p}_2) - P_0}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} , \hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2}$$

การทดสอบ 🆊 2 ประชากรไม่อิสระ มีลักษณะเป็นคู่:

$$\begin{array}{c|c}
\boxed{15} & t = \frac{d - d_0}{\sqrt{\frac{s_d^2}{n}}}, v = n - 1 \\
& s_d^2 = \frac{\sum (x_1 - x_2)}{n} \\
s_d^2 = \frac{\sum (x_1 - x_2)^2 - nd^2}{n - 1}
\end{array}$$

การประมาณ σ^2 แบบช่วง: การประมาณ P แบบช่วง:

$$\hat{\mathbf{q}} = \hat{p} - Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} \le P \le \hat{p} + Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

การประมาณ
$$P$$
 แบบช่วง:

 \hat{q} การประมาณ σ^2 แบบช่วง:

 \hat{q} $\hat{p} - Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} \le P \le \hat{p} + Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$
 $\frac{5}{\chi_{1-\frac{\alpha}{2}}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2}$

การทดสอบ $oldsymbol{\mu}$ 2 ประชากรอิสระ:

- ทราบ
$$\sigma_1^2$$
 และ σ_2^2
$$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \quad \boxed{9}$$
 - ไม่ทราบ σ_1^2 และ σ_2^2 แต่ $n_1, n_2 \geq 30$
$$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad \boxed{10}$$

$$Z = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 [10]

- ไม่ทราบ
$$\sigma_1^2$$
 และ σ_2^2 $n_1, n_2 < 30$ รู้ว่า $\sigma_1^2 = \sigma_2^2$ - $t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$, $v = n_1 + n_2 - 2$

โดยที่ $s_p^2=rac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}$ - ไม่ทราบ σ_1^2 และ σ_2^2 $n_1,n_2<30$ รู้ว่า $\sigma_1^2\neq\sigma_2^2$

$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

stats.ttest ind(a=???,

equal var=<True/False>,

alternative=<'two-sided'/'greater'/'less'>)

การทดสอบ σ^2 1 ประชากร:

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \quad v = n-1$$
 [16]

การทดสอบ σ^2 2 ประชากร

$$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} \qquad \text{dfn} \qquad \text{dfd}$$

$$v_1 = n_1 - 1, \quad v_2 = n_2 - 1 \quad \boxed{17}$$

การตั้งสมติฐานใช้ σ_1^2/σ_2^2

Chi-Square Test > ทดสอบอัตราส่วน:

$$[18] \chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}, \nu = k - 1$$

stats.chisquare(f obs=???, f exp=???)

Chi-Square Test > ทดสอบความเป็นอิสระ:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}, v = (r-1)(c-1)$$

$$E_{ij} = \frac{R_{i}C_{j}}{N}$$

chi2 cal, p val, dof, E = stats.chi2 contingency(???, correction=False)

สัมประสิทธิ์สหสัมพับธ์

$$20 r = \frac{n \sum XY - (\sum X) (\sum Y)}{\sqrt{n \sum X^2 - (\sum X)^2} \sqrt{n \sum Y^2 - (\sum Y)^2}}$$

r, p val = stats.pearsonr(x, y)

การทดสอบเกี่ยวกับสัมประสิทธิ์สหสัมพันธ์:

H_o: x กับ y ไม่มีความสัมพันธ์เชิงเส้น

$$t=rac{r}{S_r}$$
, $S_r=\sqrt{rac{1-r^2}{n-2}}$, $v=n-2$ 2-tailed

การวิเคราะห์การถดถอยอย่างง่าย:

$$\hat{y} = b_0 + b_1 x_i$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

x = ???

y = ???

lr = sm.OLS(y, x wconst).fit()print(lr.summary())

การทำนาย y:

y_hat = lr.predict(x)

การทดสอบสมมติฐานค่า $oldsymbol{eta}_1$ โดยการวิเคราะห์ความแปรปรวน:

$$v_1 = 1$$
, $v_2 = n - 2$

$$MSR = \frac{SSR}{1} , SSR = b_0 \sum y + b_1 \sum xy - n\bar{y}^2$$

$$MSE = \frac{SSE}{n-2}$$
 , $SSE = SST - SSR$, $SST = \sum y^2 - n\bar{y}^2$

สัมประสิทธิ์การตัดสินใจ:

$$23 r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

การเปิด Jupyter Lab :

เปิดโปรแกรม Anaconda Prompt แล้วพิมพ์คำสั่ง

- 1. เปิดโปรแกรม Anaconda Prompt (คลิกขวาที่ shortcut icon ที่ desktop เลือก run as administrator) แล้วพิมพ์คำสั่ง
- 3. conda activate ProgStat Py3 11
- 4. jupyter lab
- 5. สร้าง notebook แล้วทำการ import library ตามด้านขวา

คำสั่งในการ import library:

import pandas as pd import numpy as np

from scipy import stats import statsmodels.api as sm

from statsmodels.stats.weightstats import ztest

from statsmodels.stats.proportion import proportions ztest

*หากเกิด error ไม่พบ library statsmodels ให้พิมพ์คำสั่ง (ใน Notebook): %pip install statsmodels