PAUTA CONTROL III - MICROECONOMÍA II

PROFESOR: JUAN PABLO TORRES MARTÍNEZ SEMESTRE PRIMAVERA - 2023

Pregunta 1. Considere un modelo de bilateral uno-a-uno entre agentes de $M = \{m_1, m_2, m_3\}$ y $W = \{w_1, w_2, w_3\}$ en el cual las preferencias cumplen:

		\succ_{m_3}			
w_2	w_1	w_1 w_3 w_2 m_3	m_1	m_2	m_1
w_1	w_2	w_3	m_3	m_3	m_2
w_3	w_3	w_2	m_2	m_1	m_3
m_1	m_2	m_3	w_1	w_2	w_3

(a) Encuentre los emparejamientos estables y aquellos que están en el núcleo.

Comenzaremos escogiendo un lado del mercado y aplicando el algoritmo de aceptación diferida, el cual sabemos que siempre implementa emparejamientos estables.

Cuando el grupo M hace las propuestas, en la primera etapa del algoritmo m_1 le propone a w_2 , mientras que m_2 y m_3 le proponen a w_1 . Se forman las parejas (w_2, m_1) y (w_1, m_3) . La oferta de m_2 es rechazada. En la segunda etapa, m_2 le hace una propuesta a w_2 , quien la acepta y rechaza m_1 . Luego, se forman las parejas (w_2, m_2) y (w_1, m_3) . En la tercera etapa, m_1 le hace una propuesta a w_1 , la cual es aceptada pues $m_1 \succ_{w_1} m_3$. Finalmente, en la cuarta etapa m_3 le hace una propuesta a w_3 , quien la acepta. Se genera el emparejamiento $\mu = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}$.

Cuando el grupo W hace las propuestas, en la primera etapa del algoritmo w_2 le propone a m_2 , mientras que w_1 y w_3 le proponen a w_1 . Se forman las parejas (m_1, w_1) y (m_2, w_2) . La oferta de w_3 es rechazada. En la segunda etapa, w_3 le hace una propuesta a w_2 , quien la rechaza. En la tercera etapa, w_3 le hace una propuesta a w_3 , la cual es aceptada. Se genera el emparejamiento $\mu = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}.$

Concluimos que, cuando se implementa aceptación diferida, se genera el mismo emparejamiento independiente del lado del mercado que hace las propuestas. Eso nos asegura que μ es el único emparejamiento estable, pues μ es al mismo tiempo el peor y el mejor emparejamiento estable para cada agente en $M \cup W$.

Roth y Sotomayor (1985) demostraron que, en modelos bilaterales uno-a-uno con con preferencias estrictas, el núcleo y el conjunto de emparejamientos estables coinciden.

(b) Si los agentes de W son colegios con un cupo y los miembros de M son estudiantes, determine si existe un estudiante que tiene incentivos a reportar preferencias falsas cuando se implementa el mecanismo de Boston y los otros estudiantes/colegios reportan sus verdaderas preferencias. En caso afirmativo, identifique a ese estudiante y describa uno de sus posibles reportes falsos.

Si implementamos el mecanismo de Boston, asumiendo que los agentes de W son colegios con un cupo y los miembros de M son estudiantes, en la primera etapa el colegio w_1 recibe propuestas de los estudiantes m_2 y m_3 , mientras que el colegio w_2 recibe una propuesta del estudiantes m_1 .

El colegio w_1 acepta a m_3 y ambos salen del mercado. El colegio w_2 acepta la propuesta de m_1 y ambos salen del mercado. Se forman las parejas (m_3, w_1) y (m_1, w_2) . En la segunda etapa, el estudiante m_2 le hace una propuesta a w_3 (el único colegio que queda en la plataforma), la cual es aceptada. Se genera el emparejamiento $\eta = \{(m_1, w_2), (m_2, w_3), (m_3, w_1)\}$.

Note que el estudiante m_2 quedó en el colegio w_3 , su peor alternativa. El problema es que m_2 no era competitivo para entrar al colegio w_1 y mientras postulaba a ese colegio se llenaron los cupos en su segunda mejor opción, el colegio w_2 . Por lo tanto, asumiendo que los otros colegios/estudiantes reportan sus verdaderas preferencias, el estudiante m_2 tiene incentivos a reportar una preferencia en la cual pone a w_2 como su mejor alternativa. Con esta estrategia, m_2 postula a w_2 en la primera etapa del mecanismo de Boston (junto con el estudiante m_1). Como w_2 considera a m_2 su mejor alternativa, lo acepta definitivamente.

Pregunta 2. En el contexto de modelos de emparejamiento bilateral uno-a-uno entre agentes de $M = \{m_1, m_2, m_3\}$ y $W = \{w_1, w_2, w_3\}$, considere mecanismos que están definidos para todo perfil de preferencias completas, transitivas y estrictas $(\succ_h)_{h\in M\cup W}$ tales que:

- Para cada $m \in M, \succ_m$ está definida en $W \cup \{m\}$.
- Para cada $w \in W$, \succ_w está definida en $M \cup \{w\}$.

Justificando detalladamente sus argumentos, demuestre que no existe ningún mecanismo estable que sea Pareto eficiente para los agentes de M.

Sabemos que el mecanismo que implementa el algoritmo de aceptación diferida con los agentes de M haciendo las propuestas, denotado por AD_M , siempre genera el mejor de los emparejamientos estables para los agentes de M. Por lo tanto, AD_M es el único mecanismo estable que es candidato a ser Pareto eficiente para los agentes de M. Sin embargo, no es difícil encontrar ejemplos de perfiles de preferencia $\succ = (\succ_h)_{h \in M \cup W}$ para los cuales $AD_M[\succ]$ es Pareto ineficiente para los agentes de M.

Como $M = \{m_1, m_2, m_3\}$ y $W = \{w_1, w_2, w_3\}$, si consideramos las preferencias descritas en la pregunta anterior tenemos que $AD_M[\succ] = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}$. Y este emparejamiento es Pareto ineficiente para los agentes de M, pues es dominado por el emparejamiento $\{(m_1, w_2), (m_2, w_1), (m_3, w_3)\}$.

Pregunta 3. En el contexto de elección escolar, describa detalladamente el mecanismo *Top Trading Cycles* (TTC) y demuestre que siempre implementa emparejamientos que son Pareto eficientes para los estudiantes. Además, asumiendo que hay al menos dos colegios y uno de ellos tiene al menos tres cupos, muestre que el resultado de TTC puede no ser estable.

El mecanismo TTC es caracterizado por las siguientes reglas:

- Etapa 1. Cada estudiante anuncia su colegio preferido y cada colegio anuncia al estudiante que está en el primer lugar de prioridad según su ranking. Se forma al menos un ciclo. Para cada ciclo, los estudiantes son asignados al colegio que anunciaron. Los colegios que llenaron sus vacantes se retiran del mecanismo.
- Etapa k. Cada estudiante que aún no tiene colegio, anuncia su colegio preferido entre aquellos que aún tienen vacantes. Cada colegio anuncia al estudiante con mayor prioridad entre aquellos que aún no han sido asignados a un colegio. Se forma al menos un ciclo. Para cada ciclo, los estudiantes son asignados al colegio que anunciaron. Los colegios que llenaron sus vacantes se retiran del mecanismo.
- El algoritmo termina cuando todos los estudiantes han sido asignados a un colegio (asumiendo que hay más cupos que estudiantes). O cuando ya no hay colegios en la plataforma.

Vamos a probar que el resultado de TTC es Pareto eficiente. Sea E al conjunto de estudiantes. Fije un perfil de preferencias de los estudiantes $\succ = (\succ_e)_{e \in E}$. Denote por $E_k(\succ) \subseteq E$ al conjunto de estudiantes a los cuales se les adjudica un cupo en un colegio en la etapa k de TTC cuando las preferencias son \succ .

Asuma, por contradicción, que existe una redistribución de las vacantes en los colegios que domina en el sentido de Pareto el resultado de TTC (desde la perspectiva de los estudiantes). Sea \tilde{E} el conjunto (no vacío) de estudiantes que mejora luego de la redistribución de las vacantes. Sea $h \in \tilde{E}$ el estudiante que salió en la etapa más temprana de TTC. Esto es, entre los estudiantes que mejoran luego de la redistribución de las vacantes, h es el que está en el $E_k(\succ)$ con menor índice k.

Como h mejora luego de la redistribución, debe haber recibido una vacante que no estaba disponible en la etapa de TTC en la cual él salió. Luego, le quitó la vacante a otro estudiante que salió antes, el cual debe estar peor, pues h fue el primero a salir entre los que mejoraban. Contradicción.

Vamos a mostrar que el resultado de TTC puede no ser estable cuando hay dos colegios y uno de ellos tiene tres cupos. Sean c_1 y c_2 los colegios y $\{e_1, e_2, e_3, e_4\}$ los estudiantes. El colegio c_1 tiene tres cupos, el colegio c_2 tiene un cupo y las preferencias de los estudiantes y los órdenes de prioridad de los colegios vienen dados por:¹

\succ_{c_1}	\succ_{c_2}	\succ_{e_1}	\succ_{e_2}	\succ_{e_3}	\succ_{e_4}
e_1	e_2 e_3 e_4 e_1	c_2	c_1	c_2	c_2
e_2	e_3	c_1	c_2	c_1	c_1
e_3	e_4				
e_4	e_1				

Al aplicar TTC, en la primera etapa se forma el ciclo $e_1 \rightarrow c_2 \rightarrow e_2 \rightarrow c_1 \rightarrow e_1$. Por lo tanto, la única vacante del colegio c_2 es adjudicada al estudiante e_1 , mientras que el estudiantes e_2 recibe un cupo en el colegio c_1 . En la segunda etapa, los estudiantes e_3 y e_4 se adjudican una de las vacantes restantes de c_1 . Este resultado es inestable. Efectivamente, el estudiante e_3 siempre va a preferir estar en el colegio c_2 (su mejor opción) y el colegio c_2 le da más prioridad al estudiante e_3 que al estudiante e_1 .

¹Este es uno de los cientos de ejemplos que Ud. podría haber dado.