Historia de las bases de datos

Antigüedad:

Los sistemas de bases de datos fueron desarrollados por oficinas gubernamentales, bibliotecas, hospitales y organizaciones empresariales.

- 1884 Herman Hollerit crea maquina perforadora
- 1950
 - Se inventa la cinta magnética
 - Bases de datos basadas en sistemas de archivos secuenciales
- 1960:
 - Modelo de red -> CODASYL
 - Modelo jerárquico -> IMS
 - Éxito comercial -> SABRE
 - Discos duros
- 1970-1972:

E.F Codd publica articulo modelo base datos relacional.

1974-1977:

System R -> SEQUEL -> SQL/DS, DB2, Albase, Oracle, Non-Stop SQL Ingres -> QUEL -> Ingres Corp., MS SQL Server, Sybase, PACE

1976:

Modelo Entidad Relación por P. Chen.

1980:

SQL lenguaje de consulta estándar.

Sistemas datos relacionales = Éxito comercial

DB2 principal producto IBM

IBM PC -> PARADOX, RBASE 5000, RIM, Dbase III-IV, OS/, Watcom SQL

1990:

Desarrollo de aplicaciones -> Oracle Developer, PowerBuilder, VB Productividad personal -> ODBC, Excel, Access Prototipo -> Sistema Gestión Base Datos Objetos (ODBMS)

1990:

Aumento inversión negocios online = Demanda conectores bases datos:

- Front Page
- Páginas Active Server
- Servidores Java
- Dream Weaver
- ColdFusion
- Enterprise Java Beans
- Oracle Developer 2000
 Uso CGI, GCC, MySQL, Apache -> Solución código abierto a internet

• 2000:

Nuevas aplicaciones interactivas PDA Transacciones de punto de venta Consolidación de proveedores Microsoft, IBM, Oracle

Tipos de Archivos

Un archivo es una estructura de información creada por el SO para poder almacenar datos.

Sistema FAT: 8caracte.tre

Según contenido:

- Planos → Ficheros de texto o ASCII
 - o Configuración: .ini .inf .conf
 - Código fuente: .sql .java .c
 - Página web: .html .php .asp .xml
 - Enriquecidos: .rtf .ps .tex
- Binarios → Requieren formato para interpretarse
 - Imagen: .jpg .gif .bmp
 - Vídeo: .mpg .mov .avi
 - Comprimidos: .zip .gz .tar .rar
 - Ejecutables: .exe .com .cgi
 - o Procesadores de texto: .doc .odt

Según su acceso:

- Archivos secuenciales
- Archivos de acceso aleatorio
- Archivos indexados

<u>Archivos secuenciales</u>

- · Primeros, cintas magnéticas
- · Lectura ordenada obligatoria
- No permite retroceso
- Monousuarios
- Estructura rígida de campos
- · Lecturas parciales pero escrituras totales
- EOF (End Of File)
- Borrado: Hay que reescribir todo menos el registro a borrar
- · No deja huecos

Archivos de acceso aleatorio:

- Disquetes y discos duros
- Posición = NumRegistro * LongRegistro

1 byte por carácter

Nombre: 40 caracteres ANSI Población: 60 caracteres ANSI Longitud = 40 + 60 = 100 Primer registro posición 0 Segundo registro posición 100

- Posicionamiento inmediato
- Registros de longitud fija
- Apertura lectura y/o escritura
- Uso concurrente
- Borrado de registros mediante ceros o marcado
- Deja muchos huecos

Archivos indexados:

- Archivos de acceso aleatorio con utilidad para acceder directamente al registro buscado
- La estructura guarda índices a las posiciones de los registros
- Árbol de búsqueda de claves

Antes de SGBD

- Cada programa tenia:
 - Conjunto de archivos de datos
 - o Conjunto de programas que gestionaban estos archivos
- Cada programa gestionaba sus ficheros de datos

Problemas cuando:

- Aumenta el numero de usuarios
- Aumentan las necesidades de los programas
- Necesidad de interconectar programas

Desventajas de un Sistema Gestor de Archivos:

- Redundancia e inconsistencia de los datos
- Dependencia de los datos física-lógica
- Dificultad para tener acceso a los datos y ampliaciones
- Separación y aislamiento de los datos
- Problemas de atomicidad
- Dificultad para el acceso concurrente
- Dependencia de la estructura del archivo con el lenguaje de programación.
- Problemas en la seguridad de los datos
- · Problemas de integridad de datos

SGBD

- · Base de Datos + Sistema Gestor
- Colección de datos interrelacionados y un conjunto de programas para almacenar y acceder a esos datos de una manera fácil y efectiva

Características:

- · Independencia física y lógica
- Eficaz acceso a los datos
- Mantener la integridad y consistencia
- Permiten la concurrencia
- Mecanismos de respaldo y recuperación
- Coherencia de datos
- Redundancia controlada
- Administración centralizada
- Seguridad de los datos
- Uso de transacciones

Ventajas:

- · Sin datos redundantes
- · Coherencia e integridad de datos
- Seguridad
- Privacidad
- · Fácil acceso a los datos
- Fácil recuperación
- Flexible

Desventajas:

- Coste
- Complejidad
- Rendimiento

Concepto de Transacción

(ACID Atomicity Consistency Isolation Durability)

- Atomicidad
- Consistencia
- Aislamiento
- Durabilidad

Arquitectura SGBD

- Nivel interno
 - Muestra la estructura de almacenamiento físico de la BD.
- Nivel conceptual/lógico
 - Realiza una descripción completa de la estructura de la BD pero no ofrece detalles de los datos almacenados en la BD.
 - Define que datos hay almacenados y como se relacionan.
- Nivel externo
 - Vistas de partes de la BD, para restringir o simplificar.

Ventajas de la arquitectura

- Independencia lógica
- Independencia física

Funciones SGBD

- Cuatro operaciones fundamentales:
 - Creación e inserción
 - Consulta
 - Actualización
 - Borrado
- Objetivos:
 - Visión abstracta de los datos
 - Velocidad y seguridad

Función de Definición

- Lenguaje SQL de definición
- Nivel interno:
 - Espacio físico
 - Longitud de campos
 - Modo de representación
 - Caminos de acceso, punteros, indice
- Nivel conceptual
 - o Definición de entidades, atributos y relaciones
 - Autorización de accesos
- Nivel externo
 - Construcciones gráficas de tablas y relaciones
- Todo se almacena en el Diccionario de Datos

Función Manipulación

- Utiliza lenguaje DML
- Nivel interno
 - Algoritmos eficientes de acceso a los datos
- Nivel conceptual
 - o Abstracción de la parte interna, construcción de consultas o actualizaciones
- Nivel externo
 - Vistas a usuarios. Herramientas gráficas

Componentes de un SGBD

- Componentes humanos. USUARIOS
- Componentes técnicos
 - Componentes funcionales
 - Componentes de procesamiento de consultas
 - Componentes de gestión de almacenamiento
 - Implementación física del sistema
 - Archivos de datos
 - Diccionario de datos

Usuarios

- Administradores → Diseño físico
- Diseñadores → Diseño lógico
- Programadores → Implementan los programas
- Usuarios finales → Utilizan el resultado final

Consultas y almacenamiento

Consultas

- Procesador de consultas
- Optimizador de consultas

Almacenamiento

- Gestor de datos
- Comprobador de integridad
- · Gestor de transacciones
- Planificador

Implementación física del sistema

- Archivos de datos
- Diccionario de datos
- Índices
- Datos estadísticos

Ejecución de procesos en un SGBD

- Primero analiza la instrucción SQL
- Valida la sentencia
- Genera un plan de acceso para la sentencia
- Optimiza el plan de acceso
- Ejecuta la instrucción ejecutando el plan de acceso

Tipos de SGBD

- Según el modelo
 - Jerárquico
 - Red
 - Relacional
 - Orientado a objetos. UML y XML.
- Según arquitectura
 - Centralizadas
 - Cliente/Servidor
 - Distribuidas. Homogéneos y heterogéneos.

NoSQL

- La BD proporciona un mecanismo para el almacenamiento y recuperación de datos diferente a las relaciones utilizadas en las BD relacionales.
- Existen desde finales de los años 1960.
- Se usan en grandes aplicaciones de datos y en tiempo real.
- · MongoDB, Apache Cassandra y Redis.

Fases del diseño en una Base de Datos

- Análisis de requerimientos
- Diseño conceptual → Diagrama entidad relación
- Diseño lógico → Conjunto de esquemas de relación. Operación mecánica.
 - Normalización → Eliminar redundancia y posibles anomalías.
- Diseño físico → Implementar base de datos.

Conceptos SGBD

Figure 1: A table in relational model.

Lenguajes de SGBD

SQL → Structured Query Language

DDL → Lenguaje de Definición de Datos Se utiliza para especificar el esquema de la BD.

- CREATE → Crear instancia
- $\bullet \quad \mathsf{ALTER} \to \mathsf{Alterar} \ \mathsf{estructura}$
- DROP → Eliminar instancia
- TRUNCATE → Eliminar tabla en una instancia
- RENAME → Cambiar nombre instancia

DML → Lenguaje de Manipulación de Datos Se utiliza para acceder y manipular datos en una BD.

- SELECT → Leer registros tabla
- INSERT → Insertar registros tabla
- UPDATE → Actualizar datos tabla
- DELETE → Borrar todos los registros de la tabla

DCL → Lenguaje de Control de Datos

Se utiliza para conceder y revocar el acceso de usuario en una BD.

- GRANT → Conceder acceso
- REVOKE → Revocar acceso