Лекция 2: Структура, методы роста и исследования полупроводников.

Строение идеальных кристаллов.

- •Кристаллы, анизотропия их физических свойств.
- •Трансляционная симметрия и кристаллические решётки.
- •Точечные группы симметрии кристаллов.
- •Элементарная ячейка. Примитивная ячейка, базис, способ Вигнера-Зейтца построения примитивной ячейки.
- •Основные типы кристаллических решёток. Координационное число. Решётка алмаза и цинковой обманки.
- •Способ задания кристаллографических плоскостей и направлений в кристалле, индексы Миллера.
- •Полярные и неполярные кристаллы.
- •Основные типы кристаллических решеток полупроводников

Структура и симметрия кристаллов

Геометрическая правильная внешняя форма (подобие форм малых и больших кристаллитов)

Анизотропия свойств

17-19 века. Работы Стенона, Гаюи, Зибера – кристаллы состоят из маленьких элементов.

Кристалл CaF_2 - октаэдр

Трансляционная симметрия:

$$\mathbf{r}'=\mathbf{r}+\mathbf{n}_1\mathbf{a}+\mathbf{n}_2\mathbf{b}+\mathbf{n}_3\mathbf{c}$$

Векторы трансляций. Примитивные векторы трансляций

Примитивная ячейка Вигнера-Зейтца

Примитивная ячейка: элементарная ячейка с минимальным объёмом ²

Основные типы кристаллических решёток

Плоские решётки

Пример двумерного кристалла – графен.

Пять двухмерных решеток Браве

Решетка	Элементарная ячейка	Точечная группа симметрии
Косоугольная	Параллелограмм; $a \neq b$, $\phi \neq 90^{\circ}$	2
Квадратная	Квадрат; $a = b$, $\phi = 90^{\circ}$	4mm
Гексагональная	60° -ный ромб; $a = b$, $\varphi = 120^{\circ}$	6mm
Примитивная прямоугольная	Прямоугольник; $a \neq b$, $\varphi = 90^{\circ}$	2mm
Центрированная прямоугольная	Прямоугольник; $a \neq b$, $\varphi = 90^{\circ}$	2mm

Гексагональная решётка — **2 атома в примитивной ячейке!**

Сравнить гексагональную и

3

Объёмные решётки

Элементарные ячейки четырнадцати пространственных решеток Браве

Ромбическая F

Ромбическая Р

Ромбическая С

Ромбическая 1

Кристаллографическая система	Число ячеек в системе	Символ ячейки	Характеристики элементарной ячейки
Триклинная	1	P	$a \neq b \neq c; \alpha \neq \beta \neq \gamma$
Моноклипная	2	P, C	$a \neq b \neq c$; $\alpha = \gamma = 90^{\circ} \neq \beta$
Ромбическая	4	P, C, I, F	$a \neq b \neq c$: $\alpha = \beta = \gamma = 90^{\circ}$
Тетрагональная	2	P, I	$a = b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$
Кубическая	3	P, I, F	$a = b = c$; $\alpha = \beta = \gamma = 90^{\circ}$
Тригональная	1	R	$a = b = c; \ \alpha = \beta = \gamma < 120^{\circ}, \ \neq 90^{\circ}$
Гексагональная	1 1	p	$a = b \neq c; \ \alpha = \beta = 96^{\circ}, \ \gamma = 126^{\circ}$

Всего 230 типов кристал-лических решёток!

Решётка + Базис = Кристаллическая структура

Базис может содержать от одного атома (простые кристаллы) до сотен атомов (сложные молекулярные соединения, кристалл из белка).

Помимо трансляционной симметрии - точечные группы симметрии:

Вращение

Инверсия

Вращение со смещением

Комбинации этих преобразований пространства. 5

Пример кубической кристаллической решётки — структура поваренной соли - NaCl

Кремний, полупроводники класса A3B5, A2B6

Гранецентрированная (ГЦК) с базисом

Решётка типа алмаза

ГЦК с базисом (0;0;0) и (1/4;1/4;1/4) –

кремний, германий, алмаз.

Не примитивная, содержит 8 атомов!!!

4 + 6 половинок + 8 осьмушек

Цинковая обманка

Полупроводники типа АЗБ5 и А2Б6 – арсенид галлия и др.

Примитивная ячейка ГЦК решётки

Ромбоэдрическая ячейка (гранями являются ромбы). В базисе 2 атома, значит в примитивной ячейке 1 узел, но 2 атома!

Кристаллические плоскости. Индексы Миллера

Индексы Миллера некоторых наиболее важных плоскостей кубического кристалла

(100)

(110)

Вид плоскости (111) кремния

11

Строим плоскости по индексам Миллера

Чтобы построить плоскость по индексам Миллера (hkl), нужно взять обратные значения индексов (1/h, 1/k, 1/l) и отложить их в единицах постоянной решетки на координатных осях, а затем соединить эти точки прямой, получив искомую плоскость.

Расстояния между плоскостями

Индексы Миллера для гексагональных кристаллов

Индекс Миллера — Браве для гексагональной плотноупакованной

В отличие от кубического кристалла направлений 4. Но первые три не независимы - в сумме они дают ноль!

Итак: Кристаллическая структура это Решётка + Базис

Координационное число. От 4 до 12 — в трёхмерном случае. Плотность упаковки. Максимум 74%. Как соотносится с координационным числом? В кремнии 34%.

Радиус координационных сфер – первая, вторая и т.д.

Главное свойство кристаллов – трансляционная симметрия (дальний порядок) и анизотропия свойств.

Квазикристаллы. Дан Шехтман – Нобелевская премия по химии 2011 года (открыл в 1982 году). 15

Оси симметрии какого порядка возможны в кристаллах?

Атомная модель Al-Pd-Mn квазикристалла

Реальные кристаллы. Методы их роста и исследования структуры. Дефекты.

- •Электронная микроскопия.
- •Дифракция рентгеновских лучей в кристаллах. Закон Брэгга.
- •Обратная решётка. Зоны Бриллюэна. Выделенные (высокосимметричные) точки и направления в кристаллах с кубической симметрией.
- •Дефекты кристаллов: точечные дефекты, комплексы дефектов, дислокации, примеси.
- •Методы роста полупроводников и полупроводниковых плёнок.

Чем исследовать объекты расстояния между которыми доли нанометра?

Энергия фотона

$$E = h \nu = h \frac{c}{\lambda}$$

Длина волны электрона:

$$\lambda(A) \cong 12 \cdot \epsilon^{-1/2}(3B)$$

Эрнст Август Фридрих Руска

– Нобелевская премия по физике 1986 г.

За фундаментальную работу по электронной оптике и за создание первого электронного микроскопа

Электронная микроскопия

0.6`nm

0.73 nm

работы Л. И. Фединой (Phys. Rev. B, v.61, p. 10336, 2000) 19

Экспериментальные методы исследования структуры кристаллов.

Открытие дифракции рентгеновских лучей, закон Брэгга.

$2d*\sin\theta=n\lambda$

Макс фон Ла́уэ – Нобелевская премия по физике 1914 г.

За открытие дифракции рентгеновских лучей на кристаллах

Уильям Генри Брэгг и Уильям Лоренс Брэгг — Нобелевская премия по физике 1915 г. За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей

Обратная решётка. Зоны Бриллюэна.

Надо просуммировать по всем узлам!

Условия максимумов при рассеянии рентгеновских лучей

Векторы обратной решётки:

$$A=2\pi[bxc]/(a\cdot[bxc])$$

Условие максимума в рассеянии (без вывода)

$$\Delta \vec{\mathbf{k}} = n\vec{\mathbf{A}} + m\vec{\mathbf{B}} + l\vec{\mathbf{C}}$$

$$\vec{\mathbf{A}} = 2\pi \frac{\vec{\mathbf{b}} \times \vec{\mathbf{c}}}{V_c}, \ \vec{\mathbf{B}} = 2\pi \frac{\vec{\mathbf{c}} \times \vec{\mathbf{a}}}{V_c}, \ \vec{\mathbf{C}} = 2\pi \frac{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}{V_c}$$

Сфера Эвальда – так как рассеяние упругое!

Зона Бриллюэна- это примитивная ячейка Вигнера-Зейтца в обратном пространстве!

Главные точки и направления зоны Бриллюэна кремния (ГЦК решётка)

Форма – усечённый октаэдр (отсекли 6 вершин!)

Реальные кристаллы. Точечные дефекты.

Вакансии и междоузлия. Пары Френкеля

Зарядовое состояние вакансии.

Удельный объем вакансии.

Поля механических напряжений вокруг вакансии.

Взаимодействие дефектов. Комплексы дефектов

Энергетический спектр дефектов. Примеси.

Протяжённые дефекты. Дислокации

Краевая дислокация

Винтовая дислокация

- •Вектор Бюргерса.
- •Скольжение.
- •Пластичность кристалла
- •Поля упругих напряжений вокруг дислокаций.

b — вектор Бюргерса.

•Дислокационнные сетки

Граница зёрен в поликристалле с малым углом разориентировки

Методы роста объёмных полупроводников и полупроводниковых плёнок

Объемные кристаллы

1. Метод Чохральского

2. Метод бестигельной зонной плавки

Кристалл не касается стенок тигля. Разогрев — СВЧ методом.

Полупроводниковые плёнки

- 1. Жидко-фазная эпитаксия
- 2. Физическое распыление и осаждение
- 3. Химическое осаждение + химическое осаждение стимулированное плазмой

Плазмохимическая линия нанесения p-i-n структуры СЭ фирмы «Uni-Solar» (США)

Химическое осаждение и ПХО

системе

Различные способы разряда

Осаждение, стимулированное плазменным разрядом

Послоевое осаждение - ALD

4. Молекулярно-лучевая эпитаксия

РАЗРАБОТКА НАУЧНЫХ ОСНОВ ВЫРАЩИВАНИЯ ПОЛУПРОВОДНИКОВЫХ СТРУКТУР МЕТОДОМ МОЛЕКУЛЯРНО-ЛУЧЕВОЙ ЭПИТАКСИИ

Управляемый синтез полупроводниковых многослойных квантоворазмерных наноструктур

МЛЭ в ИФП СО РАН

Установки МЛЭ

Разработанная в Институте физики полупроводников СО РАН система выращивания гетероэпитаксиальных структур кадмий - ртуть — теллур методом молекулярно - лучевой эпитаксии

Вопросы на экзамене:

- 1. Структура кристаллов. Элементарная ячейка, примитивная ячейка, базис. Индексы Миллера.
 - 2. Экспериментальные методы исследования кристаллов. Закон Брэгга. Обратная решетка. Зоны Бриллюэна.
 - 3. Дефекты в кристаллах. Методы роста полупроводников и полупроводниковых пленок.