Notations:

 Y_{ij} : response measurement for subject i at time t_{ij}

 Y_i : n by 1 vector of response measurements for subject i

 X_{ijk} : explanatory variable k observed at time t_{ij} (sometimes we use $X_{ij} = t_{ij}$)

 X_{ij} : p by 1 vector of explanatory variables at time t_{ij}

 X_i : n by p matrix of covariates for subject i

Properties of \overline{Y} and S:

Define $\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$ as an n by 1 vector and $S = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})(Y_i - \bar{Y})^T$ as an n by n matrix

where Y_i is a n by 1 vector of independent and identically distributed samples from a multivariate distribution with mean μ (n by 1) and covariance matrix Σ (n by n). Then \overline{Y} and S are unbiased for μ and Σ , respectively.

In particular, $E(\overline{Y}) = \mu$ and $E(S) = \Sigma$:

(1)
$$E(\bar{Y}) = \frac{1}{N} \sum_{i=1}^{N} E(Y_i) = \mu$$
, and $V(\bar{Y}) = \frac{1}{N^2} \sum_{i=1}^{N} V(Y_i) = \frac{1}{N} \Sigma$

(2) First,
$$E(Y_{ij}Y_{ik}) = Cov(Y_{ij}, Y_{ik}) + E(Y_{ij})E(Y_{ik}) = \Sigma_{jk} + \mu_j \mu_k$$
. Therefore, we have $E(Y_i Y_i^T) = \Sigma + \mu \mu^T$.

Second, we have
$$E(Y_i\overline{Y}^T)=\frac{1}{N}E\left(Y_i\sum_{k=1}^NY_k^T\right)=\frac{1}{N}E\left(Y_iY_i^T+(N-1)Y_iY_k^T\right)=\frac{1}{N}E(\Sigma+\mu\mu^T+(N-1)\mu\mu^T)=\frac{1}{N}E(\Sigma+N\mu\mu^T)$$

Third, we have
$$E(\overline{Y}\overline{Y}^T) = \frac{1}{N^T}E\left((\sum_{k=1}^N Y_i)(\sum_{k=1}^N Y_k^T)\right) = \frac{1}{N^2}E\left(NY_iY_i^T + N(N-1)Y_iY_k^T\right) = \frac{1}{N^2}E(N\Sigma + N\mu\mu^T + N(N-1)\mu\mu^T) = \frac{1}{N}E(\Sigma + N\mu\mu^T)$$

Therefore, we have

$$E(S) = \frac{N}{N-1} E\left((Y_i - \bar{Y})(Y_i - \bar{Y})^T \right)$$
$$= \frac{N}{N-1} \left(\Sigma + \mu \mu^T - 2 \left(\frac{1}{N} \Sigma + \mu \mu^T \right) \right)$$
$$+ \left(\frac{1}{N} \Sigma + \mu \mu^T \right) = \Sigma$$

Multivariate normal distribution:

If Y (n by 1) $^{\sim}$ MVN (μ , Σ), then the density function for Y is given by

$$f(Y) = (2\pi)^{-n/2} |\Sigma|^{-1/2} e^{-\frac{1}{2}(Y-\mu)^T \Sigma^{-1}(Y-\mu)}$$

Because $\int f(Y)dY = \int_{y_1} \int_{y_2} \cdots \int_{y_n} f(Y)dy_n \dots dy_2 dy_1 = 1$

Therefore
$$\int e^{-\frac{1}{2}(Y-\mu)^T \Sigma^{-1}(Y-\mu)} dY = (2\pi)^{n/2} |\Sigma|^{1/2}$$

One can verify that $E(Y) = \mu$, and $V(Y) = \Sigma$.

Malhalanobis Distance:

- -- In the univariate setting, standardized residuals are often used to measure the distance of value from the mean
- -- In the multivariate setting, we define

$$D^2 = (Y - \mu)^T \Sigma^{-1} (Y - \mu)$$

And the observed value

$$O_i^2 = (Y_i - \bar{Y})^T S^{-1} (Y - \bar{Y})$$

Transformation of MVN random variables:

When $Y \sim MVN$ (μ, Σ) , then Z = AY + C also follows a MVN distribution, where A is an r by n matrix; C is an r by 1 vector; Z is an r by 1 vector.

$$Z \sim MVN (A\mu + C, A\Sigma A^T)$$

Also,

$$D^2 = (Y - \mu)^T \Sigma^{-1} (Y - \mu) \sim \chi_n^2$$

The above holds because $Y \sim MVN$ $(\mu, \Sigma) \rightarrow Y - \mu \sim MVN$ $(0, \Sigma) \rightarrow \Sigma^{-\frac{1}{2}}(Y - \mu) \sim MVN$ $(0, \Gamma) \rightarrow D^2$ is a summation of the square of n random variables that follow a standard normal distribution.

Marginals of MVN:

If
$$Y \sim MVN(\mu, \Sigma)$$
, then $Y_i \sim N(\mu_i, \Sigma_{ii})$.

Joint MVN implies marginal normality. But the reverse is not true.

Conditional of MVN:

We are interested in split the Y vector into part: $Y = (Y_1, Y_2)$, where Y1 is a q by 1 vector and Y2 is an r by 1 vector, q+r=n.

Then the conditional distribution of Y1 | Y2 is also a MVN:

$$Y_1|Y_2 \sim MVN(\mu_{1|2}, \Sigma_{1|2})$$

Where:

$$\begin{split} \mu_{1|2} &= \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (Y_2 - \mu_2) \\ \Sigma_{1|2} &= \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \\ \mu &= {\mu_1 \choose \mu_2}, \Sigma = {\Sigma_{11} \quad \Sigma_{12} \choose \Sigma_{21} \quad \Sigma_{22}} \end{split}$$

Distribution of sample mean and variance

If
$$Y \sim MVN(\mu, \Sigma)$$
, then

$$\overline{Y} \sim MVN \ (\mu, \Sigma/N)$$
 $(N-1)S \sim W_n(\Sigma, N-1)$

Where a random n by n matrix W is said to follow an n-dimensional Wishart distribution $W_n(\Sigma,N)$, with N degree of freedom and parameter Σ , if W can be represented as $W=\sum_j X_j X_j^T$, where Xj, j=1, ..., N, are i.i.d. from MVN (0, Σ). Provided that N>n, the density function of W is given by

$$f(W; \Sigma, N) = \frac{|W|^{1/2(N-n-1)}e^{tr(-1/2\Sigma^{-1}W)}}{2^{\frac{nN}{2}}|\Sigma|^{\frac{N}{2}}\Gamma_n(\frac{N}{2})}$$

For n=1, with $\Sigma=\sigma^2$, then $W_1(\sigma^2,N)=\sigma^2\chi_N^2$. In addition, $E(W)=N\Sigma$.