

Neste capítulo apresentamos os fundamentos essenciais sobre os números e introduzimos as principais notações que usaremos neste documento.

1.1 Os conjuntos de números reais

Notação 1.1.1

- \mathbb{N} é o conjunto dos números inteiros naturais, $\mathbb{N} = \{1, 2, \ldots\}$.
- $\bullet \ \mathbb{N}_0 = \{0\} \cup \mathbb{N}.$
- \mathbb{Z} é o conjunto dos números inteiros relativos, $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$.
- Q é o conjunto dos números rationais dado por

$$\mathbb{Q} = \left\{ \frac{p}{q}, \ p \in \mathbb{Z}, q \in \mathbb{N} \right\}.$$

• R é o conjunto dos números reais.

NOTA 1.1.1 A construção do conjunto $\mathbb R$ é uma tarefa complexa que sai completamente deste curso. Uma propriedade importante dos números reais que deriva desta construção é que para qualquer $x \in \mathbb R$, existe sempre uma sucéssão $(r_i)_{i \in \mathbb N}$ de elementos de $\mathbb Q$ tal que $\lim_{i \to \infty} r_i = x$. O conjunto $\mathbb R$ pode ser visto como o conjunto 'limite' de todas as sucessões de $\mathbb Q$.

1.1.1 Rudimentos de estruturas algébricas

Definição 1.1.1

Seja A um conjunto, definimos o operador binario * (ou lei interna) como uma relação que para quaisquer a, b de A associar um elemento a*b de A.

- O operador é associativo se $\forall a, b, c \text{ temos } (a * b) * c = a * (b * c).$
- O operador é comutativo se $\forall a, b \text{ temos } a * b = b * a$.
- O elemento e é neutro por * se para qualquer $a \in A$ temos a * e = e * a = a.
- a é um elemento simétrico se existe $b \in A$ tal que a * b = b * a = e.

Um conjunto A associative e que possui um elemento neutro cujos todos elementos admite um elemento simétrico é um grupo.

Existem dois operadores nos conjuntos dos números que são as operações da adição + e da multiplicação \times . Os operadores - e / deduzem-se das duas operações anteriores: -a é o elemento simetrico de a pela adição enquanto 1/a é o elemento simétrico de a pela multiplicação.

Definição 1.1.2

Sejam A um conjunto e * um operador sobre este conjunto. O subconjunto $B \subset A$ é fechado pelo operador * se para quaisquer $a, b \in B$ temos $a * b \in B$.

Em \mathbb{N} ou \mathbb{N}_0 podemos sempre addicionar ou multiplicar mas por exemplo $2-3\notin\mathbb{N}_0$ ou $\frac{1}{2}\notin\mathbb{N}$.

Em \mathbb{Z} , podemos adicionar, mutiplicar, substrair mas $\frac{1}{2} \notin \mathbb{Q}$. No final, as quatro operações aritméticas são válidas nos conjuntos \mathbb{Q} e \mathbb{R} com uma restrição muito importante: **É proibido dividir por 0.**

NOTA 1.1.2 Os conjuntos $\mathbb Q$ e $\mathbb R$ chamam-se corpos porque todas as operações aritméticas são validas. O conjunto $\mathbb C$ dos números complexos é também um corpo.

1.1.2 Ordem em \mathbb{R}

O corpo $\mathbb R$ é totalmente ordenado no sentido que podemos sempre comparar dois elementos x e y quaisquer com a relação de ordem < ou >. O conjunto $\mathbb R$ tem a propriedade de tricotomia no sentido seguinte.

Proposição 1.1.1 (Tricotomia)

Sejam $x, y \in \mathbb{R}$ então, uma e só uma das três asserções é verificada

- 1. x = y;
- 2. x < y;
- 3. x > y.

Introduzimos outras relações de ordem $x \le y$ significa x < y ou x = y enquanto $x \ge y$ significa x > y ou x = y.

NOTA 1.1.3 Da propriedade de tricotomia deduzimos que o contrário de x < y (resp. x > y) é $x \ge y$ (resp. $x \le y$).

Definição 1.1.3

Seja $x \in \mathbb{R}$. Dizemos que x é positivo se x>0. Dizemos que x é não negativo se $x\geq 0$. Do mesmo modo, dizemos que x é negativo se x<0. Dizemos que x é não positivo se $x\leq 0$.

Notamos por \mathbb{R}^+ os números positivos e por \mathbb{R}^- os números negativos.

NOTA 1.1.4 Notamos por \mathbb{R}^+_0 os números não negativos e por \mathbb{R}^-_0 os números não positivos.

Temos as propriedades seguintes.

Proposição 1.1.2

Sejam $x, y, z \in \mathbb{R}$ tal que x < y.

- x + z < y + z e x z < y z.
- Se z > 0 então xz < yz.
- Se z < 0 então xz > yz.

Cuidado quando simplificar. Por exemplo se -2x < 4y então x > -2y.

NOTA 1.1.5 As propriedades são válidas com a relação \leq . Além de mais, temos relações semelhantes com > e \geq .

1.2 Subconjuntos de \mathbb{R}

Dizemos que A é um subconjunto de \mathbb{R} (notamos $A \subset \mathbb{R}$ se ele é constituído por elementos de \mathbb{R} . Um caso particular é o conjunto vazio \emptyset que não tem elementos. Podemos realizar operações simples com os conjuntos.

Definição 1.2.1 (união, intersecção, complementar)

Sejam A e B dois subconjuntos de \mathbb{R} .

- $A \cup B = \{x \in \mathbb{R}; x \in A \text{ ou } x \in B\},\$
- $A \cap B = \{x \in \mathbb{R}; x \in A \in x \in B\},\$
- $\overline{A} = \{x \in \mathbb{R} \text{ e } x \notin A\}.$
- $A \setminus B = A \cap \overline{B} = \{x \in A \text{ e } x \notin B\},\$

Usando a ordem total de \mathbb{R} , introduzimos as seguintes noções.

Definição 1.2.2

Seja A um subconjunto de \mathbb{R} .

- $m \in \mathbb{R}$ é um minorante de A se $\forall x \in A, m \leq x$.
- $m \in A$ é um mínimo de A se $\forall x \in A, m < x$.
- $M \in \mathbb{R}$ é um majorante de A se $\forall x \in A, M \geq x$.
- $M \in A$ é um máximo de A se $\forall x \in A, M \geq x$.

Proposição 1.2.1

Se A admite um máximo, então é único. Se A admite um míximo, então é único.

DEMONSTRAÇÃO. Supomos que temos dois máximos M_1 e M_2 . A definição implica que temos $M_1 \leq M_2$ (M_2 é um máximo e $M_1 \in A$) e $M_2 \leq M_1$ (M_1 é um máximo e $M_2 \in A$). Em conclusão, a propriedade de Tricotomia implica $M_1 = M_2$. A prova é igual para o mínimo. \square

NOTA 1.2.1 Cuidado! A diferença essencial entre um majorante e o máximo é que o majorante pode ser um ponto qualquer de \mathbb{R} enquanto o máximo deve pertenecer ao conjunto.

Definição 1.2.3

Seja A um subconjunto de \mathbb{R} .

- A é limitado inferiormente se existe pelo menos um minorante.
- A é limitado superiormente se existe pelo menos um majorante.
- A é limitado se existe pelo menos um minorante e um majorante.

NOTA 1.2.2 Se um subconjunto A não tem majorante, então isto significa que para qualquer valor $M \in \mathbb{R}$ existe sempre um $x \in A$ tal que x > M.

Quando um subconjunto é limitado inferiormente ou superiormente podemos então introduzir a noção de supremo, ínfimo.

Definição 1.2.4

Seja A um subconjunto de \mathbb{R} .

- $m \in \mathbb{R}$ é um ínfimo de A $(m = \inf A)$ se $\forall \varepsilon > 0, \exists x \in A; x < m + \varepsilon$.
- $M \in \mathbb{R}$ é um supremo de A $(M = \sup A)$ se $\forall \varepsilon > 0, \exists x \in A; x > M \varepsilon$.

Proposição 1.2.2 (Axioma do supremo em \mathbb{R})

Se A é limitado inferiormente então existe um único ínfimo.

Se A é limitado superiormente então existe um único supremo.

EXEMPLO 1.2.1 O conjunto $]-\infty,4]$ tem um supremo (4) e um máximo (4). Não tem nem ínfimo, nem mínimo

O conjunto $]-\infty,4[$ tem um supremo (4) mas não tem máximo.

1.2.1 Intervalos de \mathbb{R}

Um caso particular de subconjuntos de \mathbb{R} são os intervalos.

Notação 1.2.1

Seja $a, b \in \mathbb{R}$ tal que a < b.

X	$-\infty$	-2		-1		1	$+\infty$
x-2	-	0	+		+		+
x-1	-		-	0	+		+
x+1	-		-		-	0	+
×	-	0	+	0	-	0	+

- intervalo $]-\infty, a[=\{x \in \mathbb{R}; x < a\},\$
- intervalo $]-\infty,a]=\{x\in\mathbb{R};\ x\leq a\},\$
- intervalo $[a,b] = \{x \in \mathbb{R}; x \ge a \in x \le b\},$
- intervalo $a, b = \{x \in \mathbb{R}; x > a \in x < b\}$

NOTA 1.2.3 Podemos também definir do modo semelhante os intervalos $]b,+\infty[$, $[b,+\infty[$, [a,b[e]a,b].

EXEMPLO 1.2.2 Consideramos o intervalo A = [1, 2]. 1 é ao mesmo tempo o mínimo e o ínfimo de A. 2 é ambos o máximo e o supremo de A.

Consideramos o intervalo B=]1,2[. 1 não é um mínimo mas é um minorante e 1 é o ínfimo. 2 não é um máximo mas é um majorante e 2 é o supremo.

Consideramos o intervalo $C =]1, +\infty[$. Não temos nem majorante, nem máximo, nem supremo.

Consideramos o intervalo $D = \{1, 3, 5, ...\}$. Não temos nem majorante, nem máximo, nem supremo. 1 é ao mesmo tempo o mínimo é o ínfimo.

Exercício 1.2.1 Determinar os x tal que $(x^2 - 1)(2x + 4) < 0$.

Escrevemos (x-1)(x+1)(2x+4) < 0 e introduzimos a tabela de sinal Concluimos que $x \in]-\infty-2[\cup]-1,1[.$

1.2.2 Módulo

Definição 1.2.5 (Módulo)

Para qualquer $x \in \mathbb{R}$, definimos o módulo de x, notado por |x|, a quantidade

$$|x| = \begin{cases} x & \text{se } x \ge 0, \\ -x & \text{se } x < 0. \end{cases}$$

NOTA 1.2.4 Uma outra definição do módulo é

$$|x| = \max\{-x, x\}.$$

Deste última definição, é facil verificar que se |x| = 0 então x = 0.

Proposição 1.2.3

Seja $\alpha > 0$.

- $|x| < \alpha \Leftrightarrow -\alpha < x < \alpha$.
- $|x| \le \alpha \Leftrightarrow -\alpha \le x \le \alpha$.
- $|x| > \alpha \Leftrightarrow x < -\alpha \text{ ou } x > \alpha$.
- $|x| > \alpha \Leftrightarrow x < -\alpha \text{ ou } x > \alpha$.

Exercício 1.2.2 Determinar os x tal que |2x - 3| < 1.

A relação |2x-3| < 1 é equivalente á -1 < 2x-3| < 1, quer dizer -1+3 < 2x| < 1+3, seja ainda 1 < x < 2. Conclusão $x \in]1,2[$.

Exercício 1.2.3 Determinar os x tal que $|-3x+5| \ge 1$.

A relação $|-3x+5| \ge 1$ é equivalente á $-3x+5 \le -1$ ou $-3x+5 \ge 1$. A primeira desigualde dá $-3x \le -1-5$, seja ainda $x \ge 2$. Do mesmo modo temos $-3x+5 \ge 1$, seja ainda $x \le \frac{4}{3}$. Conclusão $x \in]-\infty, \frac{4}{3}] \cup [2, +\infty[$.

O módulo satisfaz várias propriedades importantes.

Proposição 1.2.4

Sejam $x, y \in \mathbb{R}$. Então temos

- $x \leq |x|$,
- $\bullet ||xy| = |x||y|,$
- $\bullet ||x+y| \le |x| + |y|,$
- $\bullet |x| |y| \le |x y|,$
- $\bullet \ 2|xy| \le x^2 + y^2.$

Demonstração. Vamos provar as várias propriedades.

A primeira desigualdade é evidente porque $x \leq \max\{-x, x\}$.

Para provar a segunda asserção temos de distinguir quatro situações em função do sinal de x e y. Tratamos só o caso x < 0 e y < 0. Neste caso |xy| = xy enquanto |x| = -x e |y| = -y. Deduzimos então

$$|x||y| = (-x)(-y) = xy = |xy|.$$

Para a terceira desigualdade, notamos que se x=0 o resultado é evidente. Agora supomos que $x\neq 0$ então temos a equivalência

$$|x + y| \le |x| + |y| \iff |1 + t| \le 1 + |t| \text{ com } t = \frac{x}{y}.$$

Se $t \ge 0$ temos $1 + t \ge 0$ e então |1 + t| = 1 + t = 1 + |t|.

Agora supomos que t < 0 então t < 1 + t < 1 seja ainda $|1 + t| < \max(|t|, 1) < 1 + |t|$.

A quarta desigualdade vem da propriedade

$$|x| = |x - y + y| < |x - y| + |y|$$

e concluimos que $|x| - |y| \le |x - y|$.

Para a última desigualdade usamos ao mesmo tempo que $(x+y)^2=x^2+y^2+2xy\geq 0$ e $(x-y)^2=x^2+y^2-2xy\geq 0$. Obtemos assim que $x^2+y^2\geq -2xy(1)$ e $x^2+y^2\geq 2xy(2)$. Se $xy\geq 0$ temos com a relação (2): $2|xy|=2xy\leq x^2+y^2$. Por outro lado se xy<0 temos a relação (1): $2|xy|=-2xy< x^2+y^2$.

Exercício 1.2.4 Mostrar que para qualquer $\varepsilon > 0, \, X, Y \in \mathbb{R}$, temos $|XY| \leq \frac{\varepsilon}{2} X^2 + \frac{1}{2\varepsilon} Y^2$. Escrevemos apenas $XY = X \sqrt{\varepsilon} \frac{Y}{\sqrt{\varepsilon}}$ e usamos a ultima desigaldade da proposição anterior com $x = X \sqrt{\varepsilon}$ e $y = \frac{Y}{\sqrt{\varepsilon}}$.

1.3 Topologia elementar

Introduzimos aqui alguns elementos de topologia que vão permitir tratar, nos próximos capítulos, a noção de limite e continuidade.

Definição 1.3.1

Seja A um subconjunto de \mathbb{R} .

- A é aberto se $\forall x \in A, \exists \varepsilon > 0$ tal que $|x \varepsilon, x + \varepsilon| \subset A$.
- A é fechado se \overline{A} é aberto.

NOTA 1.3.1 Designamos o intervalo $B(x,\varepsilon)=]x-\varepsilon, x+\varepsilon[$ por bola aberta centrada em x de raio ε e temos

$$B(x,\varepsilon) = \{ y \in \mathbb{R}; \ |x-y| < \varepsilon \}.$$

EXEMPLO 1.3.1 Os conjuntos]1,4[ou $]-\infty,5[$ são abertos enquanto os conjuntos $[-1,1],[1,+\infty[$ são fechados. Os conjuntos \emptyset e $]-\infty,+\infty[=\mathbb{R}$ são abertos e fechados.

Proposição 1.3.1

A reunião ou a interseção de um número finito de conjuntos abertos é um conjunto aberto.

A reunião ou a interseção de um número finito de conjuntos fechados é um conjunto fechado.

A reunião de um número infinito de conjuntos abertos é um conjunto aberto.

A interseção de um número infinito conjuntos fechados é um conjunto fechado.

EXEMPLO 1.3.2 O conjunto $]1,4[\cup]-\infty,5[$ é aberto enquanto o conjunto $[-1,1]\cup[1,+\infty[$ é fechado. O conjunto $[1,4]\cup]-\infty,5[$ nem é aberto, nem é fechado.

Exercício 1.3.1 Demonstrar que qualquer conjunto aberto, não vazio, contém sempre um elemento de \mathbb{Q} .

Seja A um conjunto não vazio, então existe $x \in A$. Para este x existe $\varepsilon > 0$ tal que $]x - \varepsilon, x + \varepsilon[\subset A$ visto que A é aberto. Agora, sabemos que existe uma sucessão $r_i \in \mathbb{Q}$ tal que $\lim_{i \to \infty} r_i = x$. Por consequência, existe um índice N_0 talque $|r_{N_0} - x| < \varepsilon$ quer dizer $r_{N_0} \in B(x, \varepsilon) \subset A$. Concluimos que existe sempre um elemento $r_{N_0} \in \mathbb{Q}$ no conjunto A.

Definição 1.3.2

Seja A um subconjunto de \mathbb{R} . O ponto $x \in \mathbb{R}$ é ponto de acumulação de A se

$$\forall \varepsilon > 0, \ B(x,\varepsilon) \cap A \setminus \{x\} \neq \emptyset.$$

Por outras palavras, $\forall \varepsilon, \exists y \in A, y \neq x \text{ tal que } |x - y| < \varepsilon.$

NOTA 1.3.2 Existem um grande quantidade de definições para classificar os pontos de \mathbb{R} , como ponto aderente, ponto isolado, ponto fronteira... Esta classificação está fora do alcance deste documento.

Definição 1.3.3

Seja A um subconjunto de \mathbb{R} . O ponto $x \in A$ é ponto isolado de A se

$$\exists \varepsilon > 0, \ B(x, \varepsilon) \cap A \setminus \{x\} = \emptyset.$$

EXEMPLO 1.3.3 Seja $A = \{\frac{1}{n}, n \in \mathbb{N}\}$, então todos os pontos de A são isolados de A enquanto o ponto 0 é um ponto de acumulação.

Definição 1.3.4

Seja A um subconjunto de \mathbb{R} . Dizemos que o conjunto é conexo se para qualquer $x, y \in A$ e para qualquer $t \in [0, 1]$, os pontos $tx + (1 - t)y \in A$.

 $\operatorname{NOTA}\ 1.3.3$ Os conjuntos conexos de $\mathbb R$ são os intervalos.

Exemplo 1.3.4 O conjunto [-5,5] é conexo enquanto o conjunto $[-5,0[\cup]0,5[$ não é conexo (falta o zero).

Definição 1.3.5 Seja $x \in \mathbb{R}$. Um conjunto \mathcal{V}_x é uma vizinhança de x se existe $\varepsilon > 0$ tal que $]x - \varepsilon, x + \varepsilon[\subset$ \mathcal{V}_x

Exemplo 1.3.5 O intervalo [-1,1] é uma vizinhança de 0 porque $]-\frac{1}{2},\frac{1}{2}[\subset [-1,1]$ (aqui $\varepsilon=1/2$).