MAT1014	Discrete Mathematics and Graph Theory				J	C	
		3	1	0	0	4	
Pre-requisite	Nil S			Syllabus Version			
			1.0				

Course Objectives:

- 1. To address the challenge of the relevance of lattice theory, coding theory and algebraic structures to computer science and engineering problems.
- 2. To use number theory, in particular congruence theory to cryptography and computer science problems.
- 3. To understand the concepts of graph theory and related algorithm concepts.

Expected Course Outcome:

At the end of this course, students are expected to

- 1. form truth tables, proving results by truth tables, finding normal forms,
- 2. learn proof techniques and concepts of inference theory
- 3. understand the concepts of groups and application of group codes, use Boolean algebra for minimizing Boolean expressions.
- 4. learn basic concepts of graph theory, shortest path algorithms, concepts of trees and minimum spanning tree and graph colouring, chromatic number of a graph.
- 5. Solve Science and Engineering problems using Graph theory.

Module:1 | Mathematical Logic and Statement Calculus | 6 hours

Introduction-Statements and Notation-Connectives—Tautologies—Two State Devices and Statement logic -Equivalence - Implications—Normal forms - The Theory of Inference for the Statement Calculus.

Module:2 Predicate Calculus 4 hours

The Predicate Calculus - Inference Theory of the Predicate Calculus.

Module:3 Algebraic Structures 5 hours

Semigroups and Monoids - Groups - Subgroups - Lagrange"s Theorem Homomorphism - Properties-Group Codes.

Module:4 Lattices 5 hours

Partially Ordered Relations -Lattices as Posets – Hasse Digram – Properties of Lattices.

Module:5 Boolean algebra 5 hours

Boolean algebra - Boolean Functions-Representation and Minimization of Boolean Functions – Karnaugh map – McCluskey algorithm.

Module:6 Fundamentals of Graphs 6 hours

Basic Concepts of Graph Theory – Planar and Complete graph - Matrix representation of Graphs – Graph Isomorphism – Connectivity–Cut sets-Euler and Hamilton Paths–Shortest Path algorithms.

	,			
Module:7	Trees, Fundamental circuits, Cut sets,	12 hours		
	Graph colouring, covering, Partitioning			
Trees - pr	operties of trees - distance and centres in tree	-Spanning trees - Spanning tree		
algorithms-	Tree traversals- Fundamental circuits and cut-s	ets. Bipartite graphs - Chromatic		
number – C problem.	Chromatic partitioning – Chromatic polynomial - n	natching – Covering– Four Colour		
37 11 0				
Module:8	Contemporary Issues	2 hours		
Industry Ex	pert Lecture			
	Total Lecture hours:	45 hours		
Tutorial	A minimum of 10 problems to be worked	15 hours		
	out by students in every Tutorial class.			
	 Another 5 problems per Tutorial Class to 			
	be given as home work.			
Mode of Ev	valuation			
Individual I	Exercises, Team Exercises, Online Quizzes, Online,	Discussion Forums		
Text Book	(s)			
	Mathematical Structures with Applications to Com	puter Science, J.P. Trembley and		
R. Mano	ohar, Tata McGraw Hill-35 th reprint, 2017.	•		
2. Graph th	neory with application to Engineering and Computer	r Science, Narasing Deo, Prentice		
Hall Ind	ia 2016.	-		

Reference Books

- 1. Discrete Mathematics and its applications, Kenneth H. Rosen, 8th Edition, Tata McGraw Hill, 2019.
- 2. Discrete Mathematical Structures, Kolman, R.C.Busby and S.C.Ross, 6th Edition, PHI, 2018.
- 3. Discrete Mathematics, Richard Johnsonbaugh, 8th Edition, Prentice Hall, 2017.
- 4. Discrete Mathematics, S. Lipschutz and M. Lipson, McGraw Hill Education (India) 2017.
- 5. Elements of Discrete Mathematics—A Computer Oriented Approach, C.L.Liu, Tata McGraw Hill, Special Indian Edition, 2017.
- 6. Introduction to Graph Theory, D. B. West, 3rd Edition, Prentice-Hall, Englewood Cliffs, NJ, 2015.

2015.						
Mode of Evaluation						
Digital Assignments, Quiz, Continuous Assessments, Final Assessment Test						
Recommended by Board of Studies	03-06-2019					
Approved by Academic Council	No.55	Date	13-06-2019			