路由器的一个重要指标是接口线速转发性能,下面对这个指标予以说明:

1、以太网接口线速转发指标

IP 短报文通常以 40 字节计算,而以太帧最短长度为 64 字节,即便是 40 字节甚至更短的 IP 报文,封装到以太帧后,也会填充至 64 字节。所以对于以太帧,我们以 64 字节为短包标准计算。

根据 Ethernet 的 CSMA/CD 的工作原理,报文在发送之前,要先侦听一段时间(IPG Inter-Packet Gap 空闲帧,8Byte,96bit-time),如果在这段时间内线路空闲,则可以发送;

以太网帧结构为 8 个字节的前导码,其中 7 个字节为 AA(其二进制形式为 01010101)用于与接收端同步,因为电平一高一低,很容易取得同步;第 8 个字 节为 AB(帧定界符),用于定界,标明从现在开始后面的内容真正的是以太网帧 了。

以太网帧结构示意图如下:

综上所述,一个最短以太帧其实际长度为:

 $(12+7+1+64) \times 8=84 \times 8=672$ bit/Packet

那么单端口的吞吐量又是如何来的呢?以 GE(1000Mbps, 1000 Mega Bits Per Second)接口为例:

单口吞吐量=1000M/〔(64+7+1+12)×8〕=1488095pps, 即 1.488Mpps

10BASE-T 接口线速转发 14,880pps, (可参见 RFC2544 的计算值)

100BASE-TX 接口线速转发 148,809pps

1000BASE-T/S/LX 接口线速转发 1,488,095pps

10GBAS-X/R 接口线速转发 14,880,952pps

万兆以太网标准内容包括 10GBASE-X、10GBASE-R 和 10GBASE-W 三种

类型。10GBASE—X 使用一种特紧凑包装,含有 1 个较简单的 WDM 器件、4 个接收器和 4 个在 1300nm 波长附近以大约 25nm 为间隔工作的激光器,每一对发送器/接收器在 3.125Gbps 速度(数据流速度为 2.5Gbps)下工作。10GBASE—R 是一种使用 64B/66B 编码(不是在千兆以太网中所用的 8B/10B)的串行接口,数据流为 10.000Gbps,因而产生的时钟速率为 10.3Gbps。10GBASE—W 是广域网接口,与 SDH STM-48/OC192 兼容,其时钟为 9.953Gbps,数据流为 9.585Gbps(这个数字的计算在下面的 POS 接口中说明)。10G 以太网接口的结构示意图如下:

总之,以太网接口线速转发指标如下:

接口速率	线速转发指标(pps)
10M Ethernet	14880
100M FE	148809
1000M GE	1488095
10GE	14880952

2、POS 接口线速转发指标

POS 接口的物理链路采用 SDH 帧格式。而 SDH 同步数字序列是一个级数倍增的 金字塔序列,包括 STS-1(OC-1)、STS-3(OC-3、STM-1)、STM-12(OC-12、STM -4)、STS-48(OC-48、STM-16)、STS-192(OC-192、STM-64)等。其中 STS-1 帧

格式为基本帧格式,其他速率均是 STS-1 的整数倍(3×N倍)。下面是 STS-1 帧格式示意图:

STS-1 帧共有 9 行、90 列,其中 3 列用于基本开销,这 3 列中,又有 3 行是用于段开销 SOH,6 行用于线路开销(LOH)。剩余的 87 列×9 行用来承载负荷,成为同步净荷包封(Synchronous Payload Envelope, SPE)。SPE 中,又有一列(9 个字节)是用于通道开销(POH)。

SDH 帧之间是连续的,中间没有间隔。每个 STS-1 帧传送时间为 0.125ms(即 125us),也就是说,STS-1 接口和线路每秒中要传送 8000 个帧。

因此, STS-1 的速率/带宽可以计算如下:

线路带宽=(90 列×9 行 字节)/帧 ×8 比特/字节×8000 帧/秒 = 51.840Mbps 开销带宽=(3 列×9 行 字节)/帧 ×8 比特/字节×8000 帧/秒 = 1.728Mbps 负载带宽=(87 列×9 行 字节)/帧 ×8 比特/字节×8000 帧/秒 = 50.112Mbps 其他 STS/STM 是 STS-1 的倍数,于是可得 STM-N(或 STS-3N)的带宽计算公式: 线路带宽=(N×3×90×9)字节/帧×8 比特/字节×8000 帧/秒=N×155.52Mbps 开销带宽=(N×3× 3×9)字节/帧×8 比特/字节×8000 帧/秒=N×5.184Mbps 负载带宽=(N×3×87×9)字节/帧×8 比特/字节×8000 帧/秒=N×150.336Mbps 通过这个计算公式,可以获得下面的数据:

接口类型		线路带宽(Mbps)	开销带宽(Mbps)	负载带宽(Mbps)	
155M	STM-1	OC-3	155.52	5.184	150.336
622M	STM-4	OC-12	622.08	20.736	601.344
2.5G	STM-16	OC-48	2488.32	82.944	2405.376
10G	STM-64	OC-192	9953.28	331.776	9621.504

注意,负载带宽也并非完全的净负载,其中包括了通道开销(POH)带宽。不管是什么样的接口速率,每一帧中都必定有9个字节(1列)是用于通道开销的。

对于 POS 接口来说, SDH 帧结构的 SPE 中封装的是链路层 PPP 帧。PPP 的帧的格式如下:

PPP 帧的分界符为 0x7E 字符(即首尾为 0 比特,中间连续 6 个 1 比特的字节)。 PPP 帧的开始和结束都要加上或填充这个帧分界符。不过,两个 PPP 帧之间可以 共用一个 0x7E 字符,即它即作为一个 PPP 帧的尾符,同时也作为另一个 PPP 帧的首符。PPP 帧承载 IP 包时,最端长度为 44,因此,至少要占用 45 个自己。 这里以 2.5G 为例,计算转发率。

理论上,假设 SPE 为净负载, PPP 帧连续发送,那么帧/包转发率为:

2405.376Mbps / ((44+1)×8) = 6681600 \circ \$\Pi\$ 6.6816Mpps

但是,实际转发率要比上面的数值小。一方面,如上所述,SPE 并非净负载,还应扣除 POH 通道开销。另一方面,SPE 为定长结构,PPP 帧不能全部都连续起来,有些带宽作为中间空隙被浪费了。对于 44 字节报文,2.5G 接口的实际标称转发率为 6372765pps(取自 smartbits 测试仪器的标称指)。

在 IP 包长度为 40 字节时, PPP 帧长度为 48, 假定宽带利用率相当,由此推算,此时的线速转发率约为:

 $6372765 \times 44 \times 8 / (48 \times 8) = 5.841 \text{Mpps}$

3、转发指标总结

在帧长度为64字节时,各种接口的转发率为:

接口类型	64字节(pps)	
POS 155M CRC-16	348,491	
POS 622M CRC-16	1,412,830	
POS 2.5G CRC-16	5,651,321	
POS 10G CRC-16	22,605,232	
POS 155M CRC-32	335,818	
POS 622M CRC-32	1,361,455	
POS 2.5G CRC-32	5,445,818	
POS 10G CRC-32	21,783,273	
ATM 155M	174,245	
ATM 622M	706,415	
ATM 2.5G	2,825,660	
ATM 10G	11,302,642	
10M Ethernet	14,880	
FE	148,809	
GE	1,488,095	
GE MPLS	1,420,464	
10GE(LAN)	14,880,952	

4、华为 NE 核心路由器设备接口线速性能

本次工程,山东通信公司要求在 IP 包长 40 字节的情况下,所有接口达到线速转发。

NE5000 本次配置了 4 端口 2.5G 接口板和 10 端口 GE 接口板,这两块单板的转发性能为 25Mpps。4 端口 2.5G 接口最大转发报文数量为 4×5.841M=23.364M; 10 端口 GE 接口的最大转发报文数量为 10×1488095=14.881M,这都小于25Mpps,因此在端口满配置和满负载情况下,所有接口都能达到线速转发;

NE80 本次配置了 4 端口 GE 接口板,这块单板的转发性能为 6Mpps,在 4 个 GE 接口全部跑满的情况下,最大转发的报文数量为 4×1488095=5952380,小于 6Mpps,没有超过接口板的转发能力,所以仍然能够达到线速转发。