DM 16 Éléments de correction

	Dosage des ions cuivre (II) dans une bouillie Bordelaise par iodométrie	
	Étude préalable au dosage : analyse d'une courbe intensité-potentiel	
1	électrode 1 : contre-électrode électrode 2 : électrode de travail électrode 3 : électrode de référence appareil 4 : générateur appareil 5 : ampèremètre appareil 6 : voltmètre	
2	la branche de courant positif est une oxydation et on est en deçà du potentiel standard de l'eau donc il s'agit de $3I^- \to I_3^- + 2e^-$ la branche de courant négatif pour $i \le 20~\mu A$ est la réduction $I_3^- + 2e^- \to 3I^-$ qui admet un palier de diffusion la branche de courant négatif pour $i \ge 20~\mu A$ est le mur du solvant du à la réduction de l'eau : $2H^+ + 2e^- \to H_2$	
3	Sur la courbe i-E, on remarque que l'axe des abscisses est coupé en un unique point, il s'agit d'un couple rapide.	
4	Le palier observer est limité par la diffusion de ${\rm I}_3^-$ au voisinage de l'électrode.	
5	A courant nul on est à l'équilibre, on a donc le potentiel d'équilibre sur l'électrode donné par la formule de Nernst $E(I_3^-/I^-) = E_{I_3^-/I^-}^\circ + \frac{\alpha}{2} \log_{10} \left(\frac{[I_3^-]}{[I^-]^3}\right) = E_{I_3^-/I^-}^\circ + \frac{\alpha}{2} \log_{10} \left(\frac{C_2/C^\circ}{(C_1/C^\circ)^3}\right)$ L'application numérique donne $E(I_3^-/I^-) = 0,48$ V	
	Dosage potentiométrique des ions cuivre (II) dans la bouillie bordelaise	
	D'abord quelques remarques générale. L'étape 1 sert à dissoudre le sulfate de cuivre. L'étape 2 sert à transformer les ions cuivre II en ion iodure que l'on peut doser. L'étape 3 est le dosage des ions iodure que l'on étudie.	

_		
6	On donne dans l'énoncé que l'on impose une circulation du courant	
	de 1 μ A, donc $i_a = i_c = 1 \mu$ A, donc on est sur les branches à	
	l'anode de $3I^- \rightarrow I_3^- + 2e^-$ et à la cathode de $I_3^- + 2e^- \rightarrow 3I^-$.	
	C'est un couple rapide qui donne deux valeurs de potentiel pour	
	l'électrode de travail et la contre-électrode très proche, d'où un	
	$\Delta E_{V=0mL}$ très faible de moins de 20 mV.	
7	Pour $\Delta E_{V \leq V_{eq}}$, on remarque que le courant limite de diffusion	
	diminue pour la cathode. C'est normal car la réaction de titrage	
	consomme les ions iodure I_3^- , donc la concentration en I_3^- dimi-	
	nue, mais ils sont toujours présent donc on a toujours $\Delta E_{V \leq V_{eq}}$	
	faible.	
	Pour $\Delta E_{V \geq V_{eq}}$, on a consommé tous les ions iodure donc la réac-	
	tion à la cathode devient celle du couple de l'eau $2H^+ + 2e^- \rightarrow$	
	2H ₂ . Le potentiel de la cathode devient donc environ 0 V, donc	
	$\Delta E_{V \geq V_{eq}} = 4.8 \text{ V}.$	
	L'allure de la courbe $\Delta E = f(V)$ est un saut de tension entre une	
	tension proche de 0 V avant l'équivalence et une tension proche	
	de 4,8 V après l'équivalence.	
	do 1,0 7 apros requiremento.	
	D'autres remarques générales. On remarque que le saut de tension	
	est d'autant plus abrupte que la circulation de courant est faible,	
	mais il faut néanmoins imposer une circulation de courant pour	
	observer une tension non nulle après équivalence. On remarque	
	aussi que la circulation de courant n'a pas pour but ici le for-	
	çage de la réaction car on ne veut pas reformer des ions iodure à	
	l'anode, mais juste détecter l'équivalence. D'où le deuxième intérêt	
	d'utiliser un courant très faible.	
3	On a V_{eq} donc il a fallu introduire CV_{eq} mole de $S_2O_3^{2-}$ pour être	
,		
	en proportion stoechiométrique avec I_3^- . Or la réaction de titrage	
	est $I_3^- + 2S_2O_3^{2-} = \dots$ donc il y avait initialement $CV_{eq}/2$ mole de	
	I_3^- .	
	Or les ions iodures ont été formé par précipitation des ions cuivre	
	II en suivant la réaction $2Cu_{(aq)}^{2+} + 5I_{(aq)}^{-} = 2CuI_{(s)} + I_{3(aq)}^{-}$, donc	
	il y avait initialement $2 \times CV_{eq}/2 = CV_{eq}$ mole d'ion cuivre II.	
	On a prélevé V_s de solution à doser sur le volume total V_{fiole} dans	
	lequel le cuivre a été dissout.	
	Donc il y avait initialement $\frac{V_{fiole}}{V_s}CV_{eq}=0,05$ mol de cuivre.	
	Dans la bouillie bordelaise on a bien $0, 2\frac{m}{M} = 0, 05$ mol de cuivre	
	en utilisant l'application numérique de l'énoncé et la fraction mas-	
	sique de 20%.	
	1 22440 40 2070.	