Machine Learning

Shahid Mahmood Awan, PhD

Al.Meetup

31st March 2018

University of Management and Technology, Lahore

Can you read it?

IN73LL1G3NC3 15 7H3 4B1L17Y 70 4D4P7 70 CH4NG3.

- 573PH3N H4WK1NG

Can you recognize this?

9

Recognize the Fruit...

What is Learning?

How do we learn?

What can machines do?

Learn from Experience
Make a mental model
out of observed data
and the re-tune it after
seeing more and more
data?

Traditional Programming

Machine Learning

• Example Problem: Face Recognition

 Can you hand write all the rules to recognize a particular face?

Example Problem: Face Recognition

- Training data: a collection of images and labels (names)
- Evaluation criterion: correct labeling of new images

SPAM SPAM

- Example problem: spam detection.
- Data consists of information from 4601 email messages, in a study to try to predict whether the email was "spam". The data were collected in Hewlett-Packard labs and donated by George Forman.

- Objective: design an automatic spam detector.
- Supervised learning problem: class variables email/spam classification problem.

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

- Learning is any process by which a system improves performance from experience." ~ Herbert Simon
- Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by <P, T, E>.

Machine Learning is only possible because there is a structure/pattern in this world

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

<u>Training data = Feature Vectors extracted from the raw data</u>

Supervised Learning: Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning

Unsupervised Learning

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states -> actions that tells you what to do in a given state
- Examples:
 - Credit assignment problem
 - Game playing
 - Robot in a maze
 - Balance a pole on your hand

Reinforcement Learning

ML in a Nutshell

• Every ML algorithm has three components:

Representation

• (Linear Regression, Neural Networks, SVM, Decision Trees, Naïve Bayes, etc.)

Optimization

• (Gradient Descent, Dynamic Programming, Divide and Conquer, Evolutionary Computation, etc.)

Evaluation

(Accuracy, Precision, Recall, Cost/Utility, etc.)

Machine Learning Task

 At the very core, ML tries to fit a model on the data or finds out a decision boundary to separate the data belonging to various classes

Linear Classifier/Expert

It is all about finding the "right Hyper-plane" to separate vectors that belong to

different classes

Playing with intercept and slope

Math Functions

Choice of features

Beautiful Dance Moves

Formulation as a ML Task

Handwritten Digits Recognition

Linear Classifier/Expert

We can understand the simple linear classifier

$$y^* = f(x; \theta) = sign(\theta \cdot x) = sign(\theta_1 x_1 + \cdots + \theta_d x_d),$$

as a way of combining expert opinion (binary features)

Linear Classifier/Expert

• How do we adjust the parameters θ based on the labeled examples?

- Gradient Descent
- Standard loss/cost/objective function measures the squared error between y and the true value t
 - $J(\theta) = \Sigma (y y^{\hat{}})^2$
- we can update the parameters:

• $\theta_{\text{new}} = \theta + \lambda \cdot \partial J(\theta)/\partial \theta$, where λ = Learning Rate. $J(\theta)$ = disparity b/w target and actual value

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

What can ML do today?

- Play a decent game of table tennis?
- Play the game of jeopardy?
- Drive safely along a curving mountain?
- Drive safely at Chowburjy Chowk?
- Buy weekly grocery on the web?
- Buy weekly grocery in Hyper star?
- Converse successfully with a person for an hour?
- Perform surgical operation?
- Put away the dishes and fold the laundry?
- Translate spoken Chinese into English at real time?
- Write an intentional funny story?

Significant Breakthroughs
Garry Kasparov
vs

Deep Blue (1997)

Human versus machine

IBM WATSON (2011)

Playing table tennis

Autonomous driving

Autonomous Robots

robocup

Machine Translation

Zhé shi fûnyî shihê wô de qîyê shîyong?

Recommender systems

Customers who viewed this item also viewed these products

Amazon !!

Today's Recommendations For You

Here's a daily sample of items recommended for you. Click here to see all recommendations.

The Innocent (Kindle Edition) by David Baldacci \$14.99

514.99

Fix this recommendation

The Expats: A Novel (Kindle Edition) by Chris Pavone

★★★★☆ (65) \$12.99

Fix this recommendation

Stolen Prey (Kindle Edition) by John Sandford \$14.99

014.00

Fix this recommendation

Fall from Grace (Kindle Edition) by Richard North Patterson

***** (32) \$12.99

Fix this recommendation

Handwriting recognition

ML at UMT

Smart Cane for the Blind

User Identification through Gesture Recognition on Android

ML at UMT

Activity Recognition in Smart Homes

Object Recognition based on Sketches