2002 G3

Ezra Guerrero Alvarez

January 21, 2022

2002 G3

2002 G3

The circle S has center O, and BC is a diameter of S. Let A be a point of S such that $\angle AOB < 120^{\circ}$. Let D be the midpoint of the arc AB which does not contain C. The line through O parallel to DA meets the line AC at I. The perpendicular bisector of OA meets S at E and at F. Prove that I is the incenter of the triangle CEF.

Let I' be the incenter of $\triangle CEF$. We will show that $\overline{OI'} \parallel \overline{AD}$ and $I' \in \overline{AC}$, which implies the result. First, note that A and D are on the same arc \widehat{EF} from the $\angle AOB < 120^\circ$ condition. Then, as $\triangle EAO$ and $\triangle FAO$ are equilateral,

$$\angle EDF = \frac{1}{2}(360^{\circ} - 120^{\circ}) = 120^{\circ}.$$

Also, $\angle EI'F = 90^{\circ} + \frac{1}{2}\angle C = 90^{\circ} + 30^{\circ} = 120^{\circ}$. Now, note that

$$\angle I'ED = \angle I'EF + \angle FED = \frac{1}{4}\angle FOC + 30^\circ + \frac{1}{4}\angle AOB = 30^\circ - \frac{1}{4}\angle AOB + 30^\circ + \frac{1}{4}\angle AOB = 60^\circ.$$

This implies that I'EDF is a parallelogram. Hence, the midpoint of $\overline{DI'}$ coincides with that of \overline{EF} , which coincides with that of \overline{AO} , implying that DAI'O is a parallelogram. This gives $\overline{OI'} \parallel \overline{AD}$. Finally, since A is the midpoint of \widehat{EF} , I' lies on \overline{AC} , so I' = I as desired.