import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
import seaborn as sns
import scipy
Definir o estilo globalmente
plt.style.use('seaborn')

Feature: Description

Campaign 1: Accepted if the customer accepted the offer in the 1st campaing, Rejected otherwise;

Campaign 2: Accepted if the customer accepted the offer in the 2nd campaing, Rejected otherwise;

Campaign 3: Accepted if the customer accepted the offer in the 3rd campaing, Rejected otherwise;

Campaign 4: Accepted if the customer accepted the offer in the 4th campaing, Rejected otherwise;

Campaign 5: Accepted if the customer accepted the offer in the 5th campaing, Rejected otherwise;

Campaign 6: Accepted if the customer accepted the offer in the 6th campaing, Rejected otherwise;

Complain: 1 if the customer complained in the last 2 years;

Customer_Days: Days since customer enrollment with the company;

Education: customer's level of education;

Marital: customer's marital status;

Kidhome: number of small children in customer's household;

Teenhome: number of teenagers children in customer's household;

Income: customer's yearly household income;

MntFishProducts : amount spent on fish products in the last 2 years;
MntMeatProducts : amount spent on meat products in the last 2 years;

MntFruit: amount spent on fruit products in the last 2 years;

MntSweetProducts: amount spent on sweet products in the last 2 years;

 $\label{lem:mount_spent} \textbf{MntWines}: amount \ spent \ on \ wines \ products \ in \ the \ last \ 2 \ years;$

MntGoldProds: amount spent on gold products in the last 2 years;

NumDealsPurchases: number of purchases made with discount;

 $\label{lem:numCatalogPurchases} \textbf{NumCatalogPurchases}: number of purchases made using catalogue; \\$

 $\textbf{NumStorePurchases}: number of purchases \ made \ drectly \ in \ stores;$

NumWebPurchases: number of purchases made through company's web site;

NumWebVisitsMonth: number of visits to company's web site in the last month;

Recency: number of days since the last purchase;

df=pd.read_csv(r"/content/partialdf_ifood.csv")
df

	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	${\tt MntMeatProducts}$	MntFishProducts	${\tt MntSweetProducts}$	MntGold
0	58138.0	0	0	58	635	88	546	172	88	
1	46344.0	1	1	38	11	1	6	2	1	
2	71613.0	0	0	26	426	49	127	111	21	
3	26646.0	1	0	26	11	4	20	10	3	
4	58293.0	1	0	94	173	43	118	46	27	
2200	61223.0	0	1	46	709	43	182	42	118	
2201	64014.0	2	1	56	406	0	30	0	0	
2202	56981.0	0	0	91	908	48	217	32	12	
2203	69245.0	0	1	8	428	30	214	80	30	
2204	52869.0	1	1	40	84	3	61	2	1	
2205 rd	ows × 29 co	olumns								>
,										,

```
colors = ['#FEA500', '#EA0031', '#8A011B', '#FF94C2']

df['maritalStatus'] = df['maritalStatus'].str.replace('marital_','')

df['educationLevel'] = df['educationLevel'].str.replace('education_','')
```

```
Data transformation
##original df transformations:
df.replace({
    'AcceptedCmp1': {1: 'Accepted', 0: 'Declined'},
    'AcceptedCmp2': {1: 'Accepted', 0: 'Declined'},
    'AcceptedCmp3': {1: 'Accepted', 0: 'Declined'},
    'AcceptedCmp4': {1: 'Accepted', 0: 'Declined'},
    'AcceptedCmp5': {1: 'Accepted', 0: 'Declined'},
    'Response' : {1: 'Accepted', 0: 'Declined'},
                 : {1: 'True', 0: 'False'}
    'Complain'
   },inplace=True)
df.rename(columns={
    'AcceptedCmp1': 'Campaign 1',
    'AcceptedCmp2':'Campaign 2',
    'AcceptedCmp3':'Campaign 3',
    'AcceptedCmp4':'Campaign 4',
    'AcceptedCmp5':'Campaign 5',
    'Response': 'Campaign 6',
   },inplace=True)
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2205 entries, 0 to 2204
    Data columns (total 29 columns):
     # Column
                              Non-Null Count Dtype
                              2205 non-null
                                               float64
         Kidhome
                              2205 non-null
                                               int64
                              2205 non-null
                                               int64
         Teenhome
                              2205 non-null
         Recency
                                               int64
                              2205 non-null
                                               int64
         MntWines
                              2205 non-null
         MntFruits
                                               int64
     6
         MntMeatProducts
                              2205 non-null
                                               int64
         MntFishProducts
                              2205 non-null
                                               int64
         MntSweetProducts
     8
                              2205 non-null
                                               int64
         MntGoldProds
                              2205 non-null
                                               int64
     10
         NumDealsPurchases
                              2205 non-null
                                               int64
     11 NumWebPurchases
                              2205 non-null
                                               int64
     12
         NumCatalogPurchases 2205 non-null
                                               int64
                              2205 non-null
     13
         NumStorePurchases
                                               int64
     14
         NumWebVisitsMonth
                              2205 non-null
                                               int64
                              2205 non-null
     15
        Campaign 3
                                               object
                              2205 non-null
     16
         Campaign 4
                                               object
     17
         Campaign 5
                              2205 non-null
                                               object
     18
         Campaign 1
                              2205 non-null
     19
         Campaign 2
                              2205 non-null
                                               object
```

```
2205 non-null
20 Complain
                                          object
                        2205 non-null
21 Campaign 6
                                          object
                                          int64
24 MntTotal 2205 non-null 25 MntRegularProds 205 AcceptedCmpOut
                         2205 non-null
22 Age
                                          int64
                                          int64
                                          int64
                                          int64
 27 maritalStatus
                         2205 non-null
                                          object
28 educationLevel
                          2205 non-null
                                          object
dtypes: float64(1), int64(19), object(9)
memory usage: 499.7+ KB
```

Univariate Analysis

Numerical variables

Histograms

df_numerical.hist(figsize=(16,16), color = '#EA0031')

Box-Plots

```
plt.figure(figsize=(16, 12)) # Ajuste o tamanho conforme necessário
sns.set(style="whitegrid")
# Calcula a média de todas as colunas numéricas uma única vez
means = df[colunas_numericas].mean()
for i, coluna in enumerate(colunas_numericas, 1):
    plt.subplot(3, 7, i) # Ajuste para a quantidade correta de subplots, 3 linhas e até 7 colunas aqui
    sns.boxplot(y=df[coluna], color='#EA0031')
    # Plotagem da média para a coluna atual
    \# plt.scatter espera coordenadas x, y. Usamos '0' para x porque temos apenas uma categoria.
    plt.scatter(0, means[coluna], color='#FEA500', label='Média', zorder=5)
    plt.title(coluna)
    if i == 1:
       plt.legend(loc="upper left")
    plt.title(coluna)
plt.tight_layout()
plt.show()
```


Statistics

```
def calc_statistics(df):
          # Central tendency and position statistics
          means = round(df.mean(), 3) # Mean
          trimmed\_means = round(df.apply(lambda \ x: \ stats.trim\_mean(x, \ 0.05)), \ 3) \\ \ \# \ Calculates \ trimmed \ mean, \ excluding \ the \ bottom \ and \ bottom \ bot
          \verb|modes| = \verb|df.mode().iloc[0]| \verb|# Mode. Since a column can have multiple modes, we take the first one.
          first_quartile = df.quantile(0.25) # First quartile
          medians = df.median() # Second quartile // median
          third_quartile = df.quantile(0.75) # Third quartile
          # Dispersion statistics
          iqr = third_quartile - first_quartile # Interquartile Range
          variance = round(df.var(), 3) # Variance
          {\tt standard\_deviation = round(df.std(), 3)} \quad {\tt\# Standard \ Deviation}
          coefficient_variation = round((standard_deviation / means) * 100, 3) # Coefficient of Variation
          # Combines all the results into a new DataFrame
          statistics df = pd.DataFrame({
                     'Mean': means,
                     'Trimmed Mean': trimmed_means,
                     'Mode': modes,
                     '1st Quartile': first_quartile,
                     'Median': medians,
                     '3rd Quartile': third_quartile,
                     'IQR': iqr,
                     'Variance': variance,
                     'Standard Deviation': standard_deviation,
                     'Coefficient of Variation (%)': coefficient_variation
          })
          return statistics_df
df_estatisticas = calc_statistics(df_numerical)
df_estatisticas
```

	Mean	Trimmed Mean	Mode	1st Quartile	Median	3rd Quartile	IQR	Variance	Standard Deviation	Coefficient of Variation (%)	E
MntWines	306.165	274.828	2.0	24.0	178.0	507.0	483.0	1.139021e+05	337.494	110.233	
MntFruits	26.403	20.809	0.0	2.0	8.0	33.0	31.0	1.582805e+03	39.784	150.680	
MntMeatProducts	165.312	138.323	7.0	16.0	68.0	232.0	216.0	4.743009e+04	217.785	131.742	
MntFishProducts	37.756	30.523	0.0	3.0	12.0	50.0	47.0	3.005741e+03	54.825	145.209	
MntSweetProducts	27.128	21.385	0.0	1.0	8.0	34.0	33.0	1.691715e+03	41.130	151.615	
MntGoldProds	44.057	37.787	3.0	9.0	25.0	56.0	47.0	2.676636e+03	51.736	117.430	
NumDealsPurchases	2.318	2.096	1.0	1.0	2.0	3.0	2.0	3.557000e+00	1.886	81.363	
NumWebPurchases	4.101	3.932	2.0	2.0	4.0	6.0	4.0	7.493000e+00	2.737	66.740	
NumCatalogPurchases	2.645	2.388	0.0	0.0	2.0	4.0	4.0	7.832000e+00	2.799	105.822	
NumStorePurchases	5.824	5.663	3.0	3.0	5.0	8.0	5.0	1.050900e+01	3.242	55.666	
NumWebVisitsMonth	5.337	5.346	7.0	3.0	6.0	7.0	4.0	5.825000e+00	2.414	45.231	
Income	51622.095	51630.889	7500.0	35196.0	51287.0	68281.0	33085.0	4.290310e+08	20713.064	40.124	
Recency	49.009	49.001	56.0	24.0	49.0	74.0	50.0	8.370670e+02	28.932	59.034	
Age	51.096	51.071	44.0	43.0	50.0	61.0	18.0	1.370260e+02	11.706	22.910	
MntTotal	562.765	517.364	39.0	56.0	343.0	964.0	908.0	3.317033e+05	575.937	102.341	
MntRegularProds	518.707	472.892	16.0	42.0	288.0	884.0	842.0	3.067468e+05	553.847	106.775	
AcceptedCmpOverall	0.299	0.188	0.0	0.0	0.0	0.0	0.0	4.630000e-01	0.680	227.425	
Kidhome	0.442	0.413	0.0	0.0	0.0	1.0	1.0	2.890000e-01	0.537	121.493	

```
# Criar uma figura. Ajuste o tamanho conforme necessário
fig, ax = plt.subplots(figsize=(10, 4)) # Largura e altura da figura em polegadas
# Esconder os eixos
ax.axis('tight')
ax.axis('off')
# Preparar dados com índice incluído
data_with_index = df_estatisticas.reset_index().values # Reset index para converter o indice em uma coluna
column_labels = ['Index'] + list(df_estatisticas.columns) # Adiciona 'Index' à lista de rótulos de coluna
# Criar a tabela no gráfico
table = ax.table(cellText=data_with_index, colLabels=column_labels, loc='center')
# Ajustar o tamanho da fonte e largura das colunas conforme necessário
table.auto_set_font_size(False)
table.set_fontsize(10)
table.auto_set_column_width(col=list(range(len(column_labels))))  # Ajusta a largura das colunas
plt.savefig("df_estatisticas_with_index.png", dpi=300, bbox_inches='tight') # Ajuste a resolução conforme necessário
# Mostrar a imagem
plt.show()
```

Index	Mean	Trimmed Mean	Mode	1st Quartile	Median	3rd Quartile	IQR	Variance	Standard Deviation	Coefficient of Variation (%)
MntWines	306.165	274.828	2.0	24.0	178.0	507.0	483.0	113902.091	337.494	110.233
MntFruits	26.403	20.809	0.0	2.0	8.0	33.0	31.0	1582.805	39.784	150.68
MntMeatProducts	165.312	138.323	7.0	16.0	68.0	232.0	216.0	47430.091	217.785	131.742
MntFishProducts	37.756	30.523	0.0	3.0	12.0	50.0	47.0	3005.741	54.825	145.209
MntSweetProducts	27.128	21.385	0.0	1.0	8.0	34.0	33.0	1691.715	41.13	151.615
MntGoldProds	44.057	37.787	3.0	9.0	25.0	56.0	47.0	2676.636	51.736	117.43
NumDealsPurchases	2.318	2.096	1.0	1.0	2.0	3.0	2.0	3.557	1.886	81.363
NumWebPurchases	4.101	3.932	2.0	2.0	4.0	6.0	4.0	7.493	2.737	66.74
NumCatalogPurchases	2.645	2.388	0.0	0.0	2.0	4.0	4.0	7.832	2.799	105.822
NumStorePurchases	5.824	5.663	3.0	3.0	5.0	8.0	5.0	10.509	3.242	55.666
NumWebVisitsMonth	5.337	5.346	7.0	3.0	6.0	7.0	4.0	5.825	2.414	45.231
Income	51622.095	51630.889	7500.0	35196.0	51287.0	68281.0	33085.0	429031013.055	20713.064	40.124
Recency	49.009	49.001	56.0	24.0	49.0	74.0	50.0	837.067	28.932	59.034
Age	51.096	51.071	44.0	43.0	50.0	61.0	18.0	137.026	11.706	22.91
MntTotal	562.765	517.364	39.0	56.0	343.0	964.0	908.0	331703.325	575.937	102.341
MntRegularProds	518.707	472.892	16.0	42.0	288.0	884.0	842.0	306746.774	553.847	106.775
AcceptedCmpOverall	0.299	0.188	0.0	0.0	0.0	0.0	0.0	0.463	0.68	227.425
Kidhome	0.442	0.413	0.0	0.0	0.0	1.0	1.0	0.289	0.537	121.493
Teenhome	0.507	0.482	0.0	0.0	0.0	1.0	1.0	0.296	0.544	107.298
Customer_Days	2512.718	2513.052	2826.0	2339.0	2515.0	2688.0	349.0	41032.031	202.564	8.062

QQ plot

```
import statsmodels.api as sm
import matplotlib.pyplot as plt
# Calcular o número de subplots necessários
num_cols = len(df_numerical.columns)
num_rows = (num_cols + 3) // 4
# Configurar o layout dos subplots
fig, axes = plt.subplots(num rows, 4, figsize=(16, num rows * 4))
axes = axes.flatten() if num_rows > 1 else [axes]
# Plotar QQ plots para as variáveis
for i, column in enumerate(df_numerical.columns):
   ax = axes[i]
    # Plotar QQ plot
   sm.qqplot(df_numerical[column], line ='45', ax=ax, marker='o', markeredgecolor='#FEA500', markerfacecolor='#FEA500')
   ax.set_title(column)
   ax.set_xlabel('Theoretical Quantiles')
   ax.set_ylabel('Sample Quantiles')
   ax.grid(True)
# Remover eixos desnecessários
for i in range(num_cols, num_rows * 4):
    fig.delaxes(axes[i])
# Ajustar layout
plt.tight_layout()
plt.show()
```


Skewness and Kurtosis

```
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm, kurtosis
# Calcular o número de subplots necessários
#num cols = len(df numerical.columns)
#num_rows = (num_cols + 3) // 4 # Arredondamento para cima
# Configurar o layout dos subplots
fig, axes = plt.subplots(5, 4, figsize=(12,12))
# Flattening the axes array if num_rows = 1
axes = axes.flatten() if num_rows > 1 else [axes]
# Plotar histogramas com curva sinoidal e valores de skewness e kurtosis
for i, column in enumerate(df_numerical.columns):
   ax = axes[i]
   # Plotar histograma
   sns.histplot(df_numerical[column], kde=False, color='#FEA500', stat='density', bins=20, ax=ax)
   # Calcular skewness e kurtosis
   skew = df_numerical[column].skew()
   kurt = kurtosis(df_numerical[column], fisher=False)
   # Gerar dados para a curva sinoidal
   x = np.linspace(df_numerical[column].min(), df_numerical[column].max(), 100)
   y = norm.pdf(x, df_numerical[column].mean(), df_numerical[column].std()) * kurt
   # Plotar a curva sinoidal
   ax.plot(x, y, label=f'Skewness: \{skew:.2f\} \setminus Kurt:.2f\}', color='\#8A011B')
   ax.set_title(column)
   ax.set_xlabel('Value')
   ax.set_ylabel('Density')
   ax.legend()
   ax.grid(True)
#plt.delaxes(plt.subplot(3, 3, 7))
# Ajustar layout
plt.tight_layout()
plt.show()
```



```
import statsmodels.api as sm
import matplotlib.pyplot as plt
# Calcular o número de subplots necessários
num_cols = len(df_numerical.columns)
num_rows = (num_cols + 3) // 4
# Configurar o layout dos subplots
fig, axes = plt.subplots(num rows, 4, figsize=(16, num rows * 4))
axes = axes.flatten() if num_rows > 1 else [axes]
# Plotar QQ plots para as variáveis
for i, column in enumerate(df_numerical.columns):
   ax = axes[i]
    # Plotar QQ plot
   sm.qqplot(df_numerical[column], line ='45', ax=ax, marker='o', markeredgecolor='#FEA500', markerfacecolor='#FEA500')
   ax.set_title(column)
   ax.set_xlabel('Theoretical Quantiles')
   ax.set_ylabel('Sample Quantiles')
   ax.grid(True)
# Remover eixos desnecessários
for i in range(num_cols, num_rows * 4):
    fig.delaxes(axes[i])
# Ajustar layout
plt.tight_layout()
plt.show()
```



```
from scipy.stats import shapiro
# Empty list to store the results
results = []
# Perform Shapiro's normality test for each numerical variable
for column in df_numerical.columns:
    stat, p_value = shapiro(df_numerical[column])
    \ensuremath{\text{\#}} Determine if the variable is normal or not based on the p-value
    is_normal = 'Normality confirmed' if p_value > 0.05 else 'Normality not confirmed'
    # Add the results to the list
    results.append({
        'Variable': column,
        'P-value': p_value,
        'Normality': is_normal
    })
# Create a DataFrame from the list of results
normality_results = pd.DataFrame(results)
# Print or save the DataFrame with the results
normality_results
```


Categorical Variables

Mode

	Campaign 1	Campaign 2	Campaign 3	Campaign 4	Campaign 5	Campaign 6	maritalStatus	educationLevel	Complain	\blacksquare
0	Declined	Declined	Declined	Declined	Declined	Declined	Married	Graduation	False	

Stacked Bar Plots

Campaign Acceptance

```
# Calcular a contagem de ocorrências de cada valor em cada coluna categórica
contagem_por_valor_cmp = pd.DataFrame({col: cmp_categorical[col].value_counts() for col in cmp_categorical.columns})

# Transpor o DataFrame para ter as variáveis categóricas como índices
contagem_por_valor = contagem_por_valor_cmp.transpose()

# Plotting
plt.figure(figsize=(8, 6))
plt.bar(contagem_por_valor.index, contagem_por_valor['Declined'], label='Declined',color='#EA0031')
plt.bar(contagem_por_valor.index, contagem_por_valor['Accepted'], bottom=contagem_por_valor['Declined'], label='Accepted',color='#EA0031')
plt.bar(contagem_por_valor.index, contagem_por_valor['Accepted'], bottom=contagem_por_valor['Declined'], label='Accepted',color='#EA0031')
plt.valoel('Campaign waves')
plt.valoel('Campaign waves')
plt.valoel('No of customers')
plt.title('Campaign Acceptance')
plt.legend()

# Display the plot
plt.show()
```


count_complain = pd.DataFrame(df_categorical['Complain'].value_counts())
Transpor o DataFrame para ter as variáveis categóricas como índices
count_complain = count_complain
count_complain

count

Complain

1.

True 20

Next steps:

View recommended plots

Pie Charts

Customers Complain

False

2185

plt.tight_layout()

```
count_complain = pd.DataFrame(df_categorical['Complain'].value_counts())

plt.figure(figsize=(4, 4))  # Ajuste o tamanho conforme necessário
sns.set(style="whitegrid")

# plt.scatter espera coordenadas x, y. Usamos '0' para x porque temos apenas uma categoria.
plt.pie(count_complain['count'], labels=count_complain.index, autopct='%1.1f%', startangle=140, colors=colors)
plt.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
if i == 1:
    plt.legend(loc="upper left")
plt.title('Percentage of customers that complained')
```

Percentage of customers that complained

Campaign Acceptance

```
plt.figure(figsize=(16, 12)) # Ajuste o tamanho conforme necessário
sns.set(style="whitegrid")
pie_chart_camp_acctpce = contagem_por_valor.transpose()
for i, coluna in enumerate(pie_chart_camp_acctpce, 1):
   plt.subplot(3, 7, i) # Ajuste para a quantidade correta de subplots, 3 linhas e até 7 colunas aqui
   # plt.scatter espera coordenadas x, y. Usamos '0' para x porque temos apenas uma categoria.
   plt.pie(pie chart camp acctpce[coluna], labels=pie chart camp acctpce.index, autopct='%1.1f%%', startangle=140, colors=
   plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
   if i == 1:
       plt.legend(loc="upper left")
   plt.title(coluna)
plt.tight_layout()
          Campaign 1
                               Campaign 2
                                                   Campaign 3
                                                                        Campaign 4
                                                                                            Campaign 5
                                                                                                                 Campaign 6
```


contagem_por_valor_edu = pd.DataFrame(df_categorical['educationLevel'].value_counts())
contagem_por_valor_edu.transpose()

educationLevel	Graduation	PhD	Master	2n Cycle	Basic	\blacksquare
count	1113	476	364	198	54	

Bar Plots

Education Level

```
# Calcular a contagem de ocorrências de cada valor em cada coluna categórica
contagem_por_valor_edu = pd.DataFrame(df_categorical['educationLevel'].value_counts())

contagem_por_valor_edu = contagem_por_valor_edu.reindex(['Basic', '2n Cycle', 'Graduation', 'Master', 'PhD'])
# Plotar gráficos de barras para cada coluna categórica
plt.figure(figsize=(8, 6))
sns.barplot(x=contagem_por_valor_edu.index, y=contagem_por_valor_edu['count'], data=contagem_por_valor_edu, color='#EA0031'
plt.title(f'Occurrences Count by Category Education Level')
plt.xlabel('Education Level')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.show()
```


Marital Status

```
# Calcular a contagem de ocorrências de cada valor em cada coluna categórica
contagem_por_valor_marit = pd.DataFrame(df_categorical['maritalStatus'].value_counts())

contagem_por_valor_marit = contagem_por_valor_marit.reindex(['Single', 'Divorced', 'Widow', 'Together', 'Married'])
# Plotar gráficos de barras para cada coluna categórica
plt.figure(figsize=(8, 6))
sns.barplot(x=contagem_por_valor_marit.index, y=contagem_por_valor_marit['count'], data=contagem_por_valor_marit, color='#F
plt.title(f'Occurrences Count by Marital Status')
plt.xlabel('Marital Status')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.show()
```


Bivariate Analysis

Possiveis combinações para analisar:

- Cat x Cat;
- Cat x Num;
- Num x Num;

— Dadas as variáveis do dataset, podemos considerar como importante para o negocio perceber qual o perfil do publico e a eficiencia de campanhas publicitárias.

Cat x Cat:

- AcceptedN + Response x maritalStatus;
- AcceptedN + Response x educationLevel;
- Complain x maritalStatus;
- Complain x educationLevel

Cat x Num:

- $\bullet \ \ 'MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds', 'MntTotal'\ x\ maritalStatus;$
- 'MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds', 'MntRegularProds' x Complain;
- 'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth', 'MntTotal' x maritalStatus;
- 'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth' x educationLevel;
- 'NumDealsPurchases', NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth' x Complain;
- 'Income' x maritalStatus; makes no sense for business logic
- 'Income' x educationLevel; makes no sense for business logic
- 'Recency' x maritalStatus;
- 'Recency' x educationLevel;
- · 'Recency' x Complain;
- 'Age' x maritalStatus; makes no sense for business logic
- 'Age' x educationLevel; makes no sense for business logic
- 'AcceptedCmpOverall' x maritalStatus;
- 'AcceptedCmpOverall' x educationLevel;
- 'AcceptedCmpOverall' x Complain;

Num x Num:

- Numerical variables Correlation Matrix Correlation analysis
 - o Extract some relevant correlations and make scatter-plots

Categorical x Categorical

Campaign x maritalStatus/educationLevel

Contigency Table | Campaign x MaritalStatus

```
def generate_cont_table_cat1_dfcat2(cat1,df_cat_2):
    list_dfs_cont_tables = []
    for col in df_cat_2.columns:
        col_df_cat1_x_cat2 = pd.crosstab(index=df_categorical[cat1], columns=[cmp_categorical[col]], rownames=[cat1],margins=Tr
        list_dfs_cont_tables.append(col_df_cat1_x_cat2)
        print(col_df_cat1_x_cat2)
    return list_dfs_cont_tables
```

list_cmp_x_mart_status = generate_cont_table_cat1_dfcat2('maritalStatus',cmp_categorical)

Campaign 1 maritalStatus	Accepted	Declined	Total
	10	210	220
Divorced	12	218	230
Married	62	792	854
Single	31	446	477
Together	32	536	568
Widow	5	71	76
Total	142	2063	2205
Campaign 2	Accepted	Declined	Total
maritalStatus			
Divorced	5	225	230
Married	7	847	854
Single	5	472	477
Together	12	556	568
Widow	1	75	76
Total	30	2175	2205
Campaign 3	Accepted	Declined	Total
maritalStatus	Accepted	Dectined	Totat
Divorced	20	210	230
Married	63	791	854
	39	438	654 477
Single	37	531	568
Together			
Widow	4	72	76
Total	163	2042	2205
Campaign 4	Accepted	Declined	Total
maritalStatus			
Divorced	18	212	230
Married	62	792	854
Single	32	445	477
Together	42	526	568
Widow	10	66	76
Total	164	2041	2205
Campaign 5	Accepted	Declined	Total
maritalStatus			
Divorced	13	217	230
Married	66	788	854
Single	32	445	477
Together	43	525	568
Widow	7	69	76
Total	161	2044	2205
Campaign 6	Accepted	Declined	Total
maritalStatus			
Divorced	48	182	230
Married	98	756	854
Single	109	368	477
Together	60	508	568
Widow	18	58	76
Total	333	1872	2205
.5.00	333	1072	2203

ChiSquare Test | Campaign x MaritalStatus

```
from scipy.stats import chi2_contingency
```

Next steps:

```
 {\tt campaign\_names = ["Campaign 1", "Campaign 2", "Campaign 3", "Campaign 4", "Campaign 5", "Campaign 6"] } \\
results_marital = pd.DataFrame(columns=campaign_names, index=["Chi2 Statistic", "P-value"])
# Calcular o qui-quadrado e o p-valor para cada tabela de contingência
for campaign, table in zip(campaign_names, list_cmp_x_mart_status):
    chi2, p, dof, expected = chi2_contingency(table.iloc[:-1, :-1]) # Exclui a linha e coluna 'Total'
    results_marital[campaign] = [chi2, p]
# Mostra os resultados
print("Chi-Squared Test of Independence: Marital Status vs. Marketing Campaigns\n")
results marital
    Chi-Squared Test of Independence: Marital Status vs. Marketing Campaigns
                  Campaign 1 Campaign 2 Campaign 3 Campaign 4 Campaign 5 Campaign 6
     Chi2 Statistic
                     2.141445
                                 5.737514
                                             2.142255
                                                         4.071607
                                                                     1.871900 5.055983e+01
                     0.709762
                                 0.219627
                                             0.709614
                                                         0.396402
                                                                     0.759305 2.758648e-10
       P-value
```

Stacked Bar Plot | Campaign x MaritalStatus

View recommended plots

```
# Agrupar os dados por "maritalStatus" e calcular as contagens para cada resposta da ultima campanha
df_grouped = df.groupby('maritalStatus')['Campaign 6'].value_counts().unstack().fillna(0)
df_grouped = df_grouped.reindex(['Single', 'Divorced', 'Widow', 'Together', 'Married'])
df_percent = df_grouped.div(df_grouped.sum(axis=1), axis=0) * 100

# Criar um plot empilhado
ax = df_percent.plot(kind='bar', stacked=True, figsize=(10, 7), color=['#EA0031', '#FEA500'])
ax.set_ylabel('Percentage')
ax.set_xlabel('Marital Status')
ax.set_title('Percentage Stacked Barplot of Marital Status vs. Campaign 6 Acceptance')
plt.xticks(rotation=0) # Mantém os rótulos na horizontal
plt.legend(title='Response', labels=['Accepted', 'Declined'], bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```


Contigency Table | Campaign x EducationLevel

 $list_cmp_x_edu_level = generate_cont_table_catl_dfcat2('educationLevel', \ cmp_categorical)$

	3		_
Campaign 1 educationLevel	Accepted	Declined	Total
2n Cycle	14	184	198
Basic	0	54	54
Graduation	80	1033	1113
Master	18	346	364
PhD	30	446	476
Total	142	2063	2205
Campaign 2	Accepted	Declined	Total
educationLevel	Ассерсси	Decerned	Totat
2n Cycle	2	196	198
Basic	0	54	54
Graduation	16	1097	1113
Master	2	362	364
PhD	10	466	476
Total	30	2175	2205
Campaign 3	Accepted	Declined	Total
educationLevel	Accepted	Dectined	Totat
2n Cycle	15	183	198
Basic	6	48	54
Graduation	78	1035	1113
Master	24	340	364
PhD	40	436	476
Total	163	2042	2205
Campaign 4	Accepted	Declined	Total
educationLevel			
2n Cycle	9	189	198
Basic	0	54	54
Graduation	79	1034	1113
Master	31	333	364
PhD	45	431	476
Total	164	2041	2205
Campaign 5	Accepted	Declined	Total
educationLevel			
2n Cycle	10	188	198
Basic	0	54	54
Graduation	86	1027	1113
Master	27	337	364
PhD	38	438	476
Total	161	2044	2205
Campaign 6	Accepted	Declined	Total
educationLevel			
2n Cycle	22	176	198
Basic	2	52	54
Graduation	152	961	1113
Master	56	308	364
PhD	101	375	476
Total	333	1872	2205

ChiSquare Test | Campaign X EducationLevel

```
results_educacional = pd.DataFrame(columns=campaign_names, index=["Chi2 Statistic", "P-value"])
```

Calcular o qui-quadrado e o p-valor para cada tabela de contingência
for campaign, table in zip(campaign_names, list_cmp_x_edu_level):
 chi2, p, dof, expected = chi2_contingency(table.iloc[:-1, :-1]) # Exclui a linha e coluna 'Total'
 results_educacional[campaign] = [chi2, p]

Mostra os resultados

print("Relationship between Education Level and Marketing Campaign Effectiveness:Chi-Squared Statistics and P-values.\n")
results_educacional

Relationship between Education Level and Marketing Campaign Effectiveness:Chi-Squared Statistics and P-values.

		Campaign I	Campaign 2	Campaign 3	Campaign 4	Campaign 5	Campaign 6	₩	
	Chi2 Statistic	6.245760	4.703369	2.390748	10.357209	6.367169	23.656607	ıl.	
	P-value	0.181531	0.319109	0.664300	0.034822	0.173355	0.000094		
Next	steps:	 View recommen	ided plots						

Stacked Bar Plot | Campaign x EducationLevel

```
# Agrupar os dados por "educationLevel" e calcular as contagens para cada resposta da "Proposta 4"
df_grouped_proposal = df.groupby('educationLevel')['Campaign 4'].value_counts().unstack().fillna(0)
df_grouped_proposal = df_grouped_proposal.reindex(['Basic', '2n Cycle', 'Graduation', 'Master', 'PhD'])
# Calcular porcentagens
\label{eq:df_proposal} df\_percent\_proposal = df\_grouped\_proposal.div(df\_grouped\_proposal.sum(axis=1), axis=0) * 100 \\
# Agrupar os dados por "educationLevel" e calcular as contagens para cada resposta da "Response"
\label{eq:df_grouped_response} \ = \ df.groupby(\ 'educationLevel')[\ 'Campaign 6'].value\_counts().unstack().fillna(0)
df_grouped_response = df grouped response.reindex(['Basic', '2n Cycle', 'Graduation', 'Master', 'PhD'])
# Calcular porcentagens
\label{eq:df_grouped_response.sum} $$ df_percent_response = df_grouped_response.sum(axis=1), axis=0) * 100 $$ $$ axis=0, axi
# Criar figura e eixos para os subplots
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(14, 7))
# Gráfico "educationLevel" vs. "Proposal 4"
ax_proposal = df_percent_proposal.plot(kind='bar', stacked=True, ax=axes[0], color=['#8A011B', '#FF94C2'])
ax_proposal.set_ylabel('Percentage')
ax_proposal.set_xlabel('Education Level')
ax_proposal.set_title('Education Level vs. Campaign 4')
ax_proposal.legend(title='Response', labels=['Accepted', 'Declined'])
ax\_proposal.set\_xticklabels(ax\_proposal.get\_xticklabels(), \ rotation=0)
# Gráfico "educationLevel" vs. "Response"
ax_response = df_percent_response.plot(kind='bar', stacked=True, ax=axes[1], color=['#8A011B', '#FF94C2'])
ax_response.set_ylabel('Percentage')
ax_response.set_xlabel('Education Level')
ax response.set title('Education Level vs. Campaign 6')
ax\_response.legend(title='Response', \ labels=['Accepted', \ 'Declined'])
ax_response.set_xticklabels(ax_response.get_xticklabels(), rotation=0)
# Ajustar o layout
plt.tight_layout()
```


 $\label{lem:marit_status_x_edu_level = pd.crosstab(index=df_categorical['educationLevel'], columns=[df_categorical['maritalStatus']], remarit_status_x_edu_level$

res = chi2_contingency(marit_status_x_edu_level)
print("Qui-Quadrado:", res.statistic)
print("p-value:", res.pvalue)

Qui-Quadrado: 16.205244635440557 p-value: 0.9085792991588382

Complain x maritStatus/educationLevel

 $count_complain_x_marital_status = pd.crosstab(index=df_categorical['Complain'], \ columns=[df_categorical['maritalStatus']], \\ count_complain_x_marital_status$

res = chi2_contingency(count_complain_x_marital_status)
print("Qui-Quadrado:", res.statistic)
print("p-value:", res.pvalue)

Qui-Quadrado: 1.9324785924349863 p-value: 0.9968319335103694

 $count_complain_x_edu_lvl = pd.crosstab(index=df_categorical['Complain'], \ columns=[df_categorical['educationLevel']], \ rowname count_complain_x_edu_lvl$

educationLevel	2n Cycle	Basic	Graduation	Master	PhD	Total	-
Complain							11.
False	195	54	1099	362	475	2185	
True	3	0	14	2	1	20	
Total	198	54	1113	364	476	2205	

res = chi2_contingency(count_complain_x_edu_lvl)
print("Qui-Quadrado:", res.statistic)
print("p-value:", res.pvalue)

Qui-Quadrado: 5.923340529293711 p-value: 0.8216621735632803

Auto combinações Campaign x Campaign

```
from itertools import combinations
list_contingency_tables = []
```

column_combinations = list(combinations(cmp_categorical.columns, 2))

Calcular tabelas de contingência para cada combinação de colunas for col1, col2 in column_combinations:

contingency_table = pd.crosstab(index=cmp_categorical[col1], columns=cmp_categorical[col2], margins=True, margins_name= list_contingency_tables.append(contingency_table)

list_contingency_tables

·	1			
Campaign	1	45	0.7	1.42
Accepted		45	97	142
Declined		119	1944	2063
Total	_	164	2041	2205,
Campaign	5	Accepted	Declined	Total
Campaign	1			
Accepted		68	74	142
Declined		93	1970	2063
Total		161	2044	2205,
Campaign	6	Accepted	Declined	Total
Campaign	1			
Accepted		79	63	142
Declined		254	1809	2063
Total		333	1872	2205,
Campaign	3	Accepted	Declined	Total
Campaign	2			
Accepted		7	23	30
Declined		156	2019	2175
Total		163	2042	2205,
Campaign	4	Accepted	Declined	Total
Campaign	2			
Accepted		22	8	30
Declined		142	2033	2175
Total		164	2041	2205,
Campaign	5	Accepted	Declined	Total
Campaign	2	Ассерсси	Decerned	Totat
Accepted	_	17	13	30
Declined		144	2031	2175
Total		161	2044	2205,
Campaign	6	Accepted	Declined	Total
Campaign	2	Accepted	Dectined	Totat
Accepted	2	20	10	30
Declined		313	1862	2175
Total		333	1872	2205,
	1		Declined	Total
Campaign	4	Accepted	pectined	TOLAL
Campaign	3	0	160	160
Accepted		164	163	163
Declined		164	1878	2042
Total	_	164	2041	2205,
Campaign	5	Accepted	Declined	Total
Campaign	3			
Accepted		24	139	163
Declined		137	1905	2042
Total	_	161	2044	2205,
Campaign	6	Accepted	Declined	Total
Campaign	3			
Accepted		77	86	163
Declined		256	1786	2042
Total		333	1872	2205,
Campaign	5	Accepted	Declined	Total
Campaign	4			
Accepted		59	105	164
Declined		102	1939	2041
Total		161	2044	2205,
Campaign	6	Accepted	Declined	Total
Campaign	4			
Accepted		62	102	164
Declined		271	1770	2041
Total		333	1872	2205.

```
# Sua lista de tabelas de contingência
contingency_tables = [
       {'Campaigns': '1_vs_2', 'Table': [[13, 129], [17, 2046]]},
       {'Campaigns': '1_vs_3', 'Table': [[24, 118], [139, 1924]]}, {'Campaigns': '1_vs_4', 'Table': [[45, 97], [119, 1944]]},
      {'Campaigns': '1_vs_4', 'Table': [[45, 97], [119, 1944]]}, {'Campaigns': '1_vs_5', 'Table': [[68, 74], [93, 1970]]}, {'Campaigns': '1_vs_6', 'Table': [[79, 63], [254, 1809]]}, {'Campaigns': '2_vs_3', 'Table': [[7, 23], [156, 2019]]}, {'Campaigns': '2_vs_4', 'Table': [[22, 8], [142, 2033]]}, {'Campaigns': '2_vs_5', 'Table': [[17, 13], [144, 2031]]}, {'Campaigns': '2_vs_6', 'Table': [[20, 10], [313, 1862]]}, {'Campaigns': '2_vs_6', 'Table': [[20, 163], [164, 1779]]}
       {'Campaigns': '3_vs_4', 'Table': [[0, 163], [164, 1878]]}, 
{'Campaigns': '3_vs_5', 'Table': [[24, 139], [137, 1905]]}, 
{'Campaigns': '3_vs_6', 'Table': [[77, 86], [256, 1786]]},
      {'Campaigns': '4_vs_5', 'Table': [[59, 105], [102, 1939]]}, 
{'Campaigns': '4_vs_6', 'Table': [[62, 102], [271, 1770]]}, 
{'Campaigns': '5_vs_6', 'Table': [[91, 70], [242, 1802]]}
results = []
for entry in contingency_tables:
       # Convertendo a lista para uma matriz numpy
       table_np = np.array(entry['Table'])
       # Calculando o teste qui-quadrado e o valor p
       chi2, p_value, _, _ = chi2_contingency(table_np)
       # Adicionando a coluna 'Correlation'
       correlation = 'Correlated' if p_value < 0.05 else 'Not Correlated'</pre>
       results.append({'Campaigns': entry['Campaigns'], 'Chi-Square': chi2, 'P-value': p_value, 'Correlation': correlation})
results_df = pd.DataFrame(results)
results df
```

	Campaigns	Chi-Square	P-value	Correlation
0	1_vs_2	62.639104	2.482747e-15	Correlated
1	1_vs_3	18.589962	1.620717e-05	Correlated
2	1_vs_4	125.932519	3.181188e-29	Correlated
3	1_vs_5	362.983125	6.309928e-81	Correlated
4	1_vs_6	191.107224	1.822433e-43	Correlated
5	2_vs_3	9.052296	2.623652e-03	Correlated
6	2_vs_4	182.248340	1.565067e-41	Correlated
7	2_vs_5	102.232472	4.937391e-24	Correlated
8	2_vs_6	59.061336	1.528330e-14	Correlated
9	3_vs_4	13.000458	3.114147e-04	Correlated
10	3_vs_5	13.166574	2.849873e-04	Correlated
11	3_vs_6	139.089324	4.210775e-32	Correlated
12	4_vs_5	210.674675	9.787502e-48	Correlated
13	4_vs_6	69.325569	8.348030e-17	Correlated
14	5_vs_6	228.927232	1.021640e-51	Correlated

Next steps: View recommended plots

Categorical x Numerical

Analizing the amount spent in products in the last 2 years and its distribution across the categorical variables maritalStatus / educationLevel / Complain:

Categorical K>2: maritalStatus, educationLevel

Kruskal-Wallis test (K>2) | MaritalStatus and Education Level x Numerical Variables

```
mnt spnt prds = df[['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds', 'Mnt
```

```
import pandas as pd
import scipy
from itertools import product
from scipy.stats import kruskal
def kruskal_wallis_test(df, categorical_vars, numerical_vars):
    results = []
    for cat_var, num_var in product(categorical_vars, numerical_vars):
        groups = []
        for group, data in df.groupby(cat_var):
            groups.append(data[num_var])
        # Perform Kruskal-Wallis test
        stat, p_value = scipy.stats.kruskal(*groups)
        \# Add a column indicating association based on p-value association = 'Associated' if p_value < 0.05 else 'Not associated'
        results.append({'Categorical Variable': cat_var, 'Numerical Variable': num_var, 'Statistic': stat, 'P-value': p_val
    test_results = pd.DataFrame(results)
    test_results = test_results.sort_values(by='P-value')
    return test_results
kover2_cat = df_categorical[['maritalStatus','educationLevel']]
krusk_df = kruskal_wallis_test(df, kover2_cat, df_numerical)
krusk_df
```

	Categorical Variable	Numerical Variable	Statistic	P-value	Is Group Associated?	
20	educationLevel	MntWines	205.144383	2.942432e-43	Associated	1
31	educationLevel	Income	140.002639	2.818900e-29	Associated	
35	educationLevel	MntRegularProds	119.664537	6.299556e-25	Associated	
13	maritalStatus	Age	99.025820	1.585692e-20	Associated	
22	educationLevel	MntMeatProducts	97.498064	3.352347e-20	Associated	
33	educationLevel	Age	89.548469	1.642170e-18	Associated	
34	educationLevel	MntTotal	87.181501	5.224231e-18	Associated	
24	educationLevel	MntSweetProducts	74.762165	2.237275e-15	Associated	
23	educationLevel	MntFishProducts	73.648564	3.847585e-15	Associated	
29	educationLevel	NumStorePurchases	71.777040	9.565442e-15	Associated	
21	educationLevel	MntFruits	69.398399	3.040798e-14	Associated	
25	educationLevel	MntGoldProds	65.532434	1.987445e-13	Associated	
27	educationLevel	NumWebPurchases	60.513955	2.262084e-12	Associated	
28	educationLevel	NumCatalogPurchases	55.231919	2.905023e-11	Associated	
38	educationLevel	Teenhome	53.907004	5.504007e-11	Associated	
18	maritalStatus	Teenhome	32.373905	1.604334e-06	Associated	
30	educationLevel	NumWebVisitsMonth	28.410744	1.029633e-05	Associated	
37	educationLevel	Kidhome	13.112661	1.073823e-02	Associated	
39	educationLevel	Customer_Days	12.947385	1.153576e-02	Associated	
17	maritalStatus	Kidhome	12.643445	1.315601e-02	Associated	
5	maritalStatus	MntGoldProds	9.035275	6.022381e-02	Not associated	
6	maritalStatus	NumDealsPurchases	7.620047	1.065308e-01	Not associated	
7	maritalStatus	NumWebPurchases	7.615049	1.067418e-01	Not associated	
8	maritalStatus	NumCatalogPurchases	7.456202	1.136562e-01	Not associated	
0	maritalStatus	MntWines	7.145067	1.284178e-01	Not associated	
36	educationLevel	AcceptedCmpOverall	6.852647	1.438831e-01	Not associated	
11	maritalStatus	Income	5.983661	2.003718e-01	Not associated	
15	maritalStatus	MntRegularProds	5.581177	2.326856e-01	Not associated	
14	maritalStatus	MntTotal	5.220184	2.654420e-01	Not associated	
9	maritalStatus	NumStorePurchases	4.260477	3.719004e-01	Not associated	
3	maritalStatus	MntFishProducts	4.254075	3.727112e-01	Not associated	
26	educationLevel	NumDealsPurchases	4.085517	3.945560e-01	Not associated	
10	maritalStatus	NumWebVisitsMonth		4.359712e-01	Not associated	
1	maritalStatus	MntFruits	3.223624		Not associated	
2	maritalStatus	MntMeatProducts	3.154049	5.323846e-01	Not associated	
32	educationLevel	Recency		6.351056e-01	Not associated	
12	maritalStatus	Recency	1.556823	8.165305e-01	Not associated	
19	maritalStatus	Customer_Days		9.251314e-01	Not associated	
16	maritalStatus	AcceptedCmpOverall		9.331356e-01	Not associated	
4	maritalStatus	MntSweetProducts		9.469646e-01	Not associated	

Next steps: View recommended plots

Numerical variables that has association with educationLevel

 $list_num_edu_lvl_associated = krusk_df[(krusk_df['Categorical Variable'] == 'educationLevel') \& (krusk_df['Is Group Associated List_num_edu_lvl_associated List_num_edu_$

```
['MntWines',
 'Income',
 'MntRegularProds',
 'MntMeatProducts',
 'Age',
```

```
'MntTotal',
'MntSweetProducts',
'MntFishProducts',
'NumStorePurchases',
'MntFruits',
'MntGoldProds',
'NumWebPurchases',
'NumCatalogPurchases',
'Teenhome',
'NumWebVisitsMonth',
'Kidhome',
'Customer_Days']
```

Numerical variables that has association with maritalStatus

```
list_num_marit_status_associated = krusk_df[(krusk_df['Categorical Variable'] == 'maritalStatus') & (krusk_df['Is Group Associated = krusk_df['Is Group A
list\_num\_marit\_status\_associated
              ['Age', 'Teenhome', 'Kidhome']
def box_plot_list_num_x_categorical(cat_var, list_of_numerical):
     plt.figure(figsize=(16, 16)) # Ajuste o tamanho conforme necessário
      sns.set(style="whitegrid")
      num_values = df[list_of_numerical]
      cat_values = df[cat_var]
      for i, product in enumerate(num_values, 1):
                 plt.subplot(5, 4, i) # Ajuste para a quantidade correta de subplots, 3 linhas e até 7 colunas aqui
                  sns.boxplot(x=cat_values,y=num_values[product], color='#EA0031')
                 # Calculate mean for each category
                 means = num_values.groupby(cat_values)[product].mean()
                 # Plot mean for each category
                  x_values = range(len(means))
                 plt.scatter(x_values, means, color='#FEA500', label='Média', zorder=5)
                  if i == 1:
                             plt.legend(loc="upper left")
                  plt.title(product)
      plt.tight_layout()
      plt.show()
```

Box-Plot K>2 and Associated | Education Level x Num

```
box_plot_list_num_x_categorical('educationLevel',list_num_edu_lvl_associated)
```


box_plot_list_num_x_categorical('maritalStatus',list_num_marit_status_associated)

Categorical K=2: Campaign N, Complain

Mann-Whitney U test (K=2) | Campaign N, Complain x Numerical Variables

```
import pandas as pd
import scipy.stats as stats
from itertools import product
def mann_whitney_u_test(df, categorical_vars, numerical_vars):
           results = []
            for cat_var, num_var in product(categorical_vars, numerical_vars):
                       groups = []
                       for group, data in df.groupby(cat_var):
                                  groups.append(data[num_var])
                       # Perform Mann-Whitney U test
                      stat, p_value = stats.mannwhitneyu(*groups)
                       # Add a column indicating association based on p-value
                      association = 'Associated' if p_value < 0.05 else 'Not associated'
                       results.append({'Categorical Variable': cat var, 'Numerical Variable': num var, 'Statistic': stat, 'P-value': p val
           test_results = pd.DataFrame(results)
           test_results = test_results.sort_values(by='P-value')
            return test_results
categorical_vars = ['Campaign 1', 'Campaign 2', 'Campaign 3', 'Campaign 4', 'Campaign 5', 'Campaign 6', 'Complain'] # List
num without cmp accpt = df numerical.drop('AcceptedCmpOverall', axis=1,)
numerical\_vars = num\_without\_cmp\_accpt.columns.tolist() \\ \begin{tabular}{ll} \# List of numerical variables from df\_numerical variables from
mannwhitneyu_results = mann_whitney_u_test(df, categorical_vars, numerical_vars)
mannwhitneyu_results
```


highest_p_value_rows = mannwhitneyu_results.loc[mannwhitneyu_results.groupby('Categorical Variable')['P-value'].idxmin()]
highest_p_value_rows_associated = highest_p_value_rows[highest_p_value_rows['Is Group Associated?'] == 'Associated']
highest_p_value_rows_associated

E	Is Group Associated?	P-value	Statistic	Numerical Variable	Categorical Variable	
	Associated	1.535550e-55	261680.5	Income	Campaign 1	11
	Associated	7.049267e-11	55205.0	MntWines	Campaign 2	19
	Associated	6.975071e-11	217426.5	MntGoldProds	Campaign 3	43
	Associated	2.681020e-48	281912.0	MntWines	Campaign 4	57
	Associated	3.031723e-78	310193.5	Income	Campaign 5	87
	Associated	7.035959e-28	426970.0	NumCatalogPurchases	Campaign 6	103

Box-Plot K=2 and Associated | Campaing N x Most associated numerica varaibles

```
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(16, 4)) # Adjust the size as needed
sns.set(style="whitegrid")
# Define the number of rows and columns for subplots
num_plots = len(highest_p_value_rows_associated)
num_cols = 6 # Assuming you want 6 columns
num_rows = -(-num_plots // num_cols) # Ceiling division to calculate the number of rows
for i, (_, row) in enumerate(highest_p_value_rows_associated.iterrows(), 1):
    plt.subplot(num_rows, num_cols, i) # Adjust for the correct number of subplots
    num value = df[row['Numerical Variable']]
    cat_value = df[row['Categorical Variable']]
    # Plot box plot
    sns.boxplot(x=cat_value, y=num_value, color='#EA0031')
    # Calculate mean for each category
    means = num_value.groupby(cat_value).mean()
    # Plot mean for each category
    x_values = range(len(means))
    \verb|plt.scatter(x_values, means, color='\#FEA500', label='Mean', zorder=5)|
    plt.title(row['Categorical Variable'] + " x " + row['Numerical Variable'])
    if i == 1:
        plt.legend(loc="upper left")
plt.tight_layout()
plt.show()
```

list_num_cmp5_associated


```
list_num_cmp1_associated = mannwhitneyu_results[(mannwhitneyu_results['Categorical Variable'] == 'Campaign 1') & (mannwhitneyu_results['Categorical Variable'] == 'Categorical Variable'] == 'Categorical Variable' == 'Categorica
list_num_cmp1_associated
                  ['Income'
                        'MntTotal'
                      'MntRegularProds',
                       'MntWines'
                       'NumCatalogPurchases',
                       'MntMeatProducts'
                       'MntSweetProducts'
                       'MntFishProducts'
                       'NumWebVisitsMonth'
                       'NumStorePurchases'
                       'NumWebPurchases',
                       'Kidhome'
                       'NumDealsPurchases',
                       'MntGoldProds',
                       'MntFruits',
                      'Teenhome']
list num cmp2 associated = mannwhitneyu results[(mannwhitneyu results['Categorical Variable'] == 'Campaign 2') & (mannwhitneyu results['Categorical Variable']
list_num_cmp2_associated
                  ['MntWines',
                       'MntTotal'
                       'MntRegularProds',
                       'Income'
                       'NumCatalogPurchases',
                       'Kidhome'
                       'NumStorePurchases',
                       'MntGoldProds'
                       'MntMeatProducts'
                       'NumDealsPurchases']
list_num_cmp3_associated = mannwhitneyu_results[(mannwhitneyu_results['Categorical Variable'] == 'Campaign 3') & (mannwhitneyu_results['Categorical Variable'] == 'Categorical Variable'] == 'Categorical Variable' == 'Categorica
list num cmp3 associated
                  ['MntGoldProds',
                        'NumCatalogPurchases',
                       'NumStorePurchases'
                       'Age'
                       'NumWebVisitsMonth',
                       'Teenhome']
list num cmp4 associated = mannwhitneyu results[(mannwhitneyu results['Categorical Variable'] == 'Campaign 4') & (mannwhitneyu results['Categorical Variable']
list\_num\_cmp4\_associated
                  ['MntWines'
                        'MntRegularProds',
                       'MntTotal',
                       'Income',
                       'NumStorePurchases',
                       'NumCatalogPurchases',
                       'NumWebPurchases'.
                        'Kidhome'
                       'MntMeatProducts',
                       'Age'
                       'MntGoldProds']
list_num_cmp5_associated = mannwhitneyu_results[(mannwhitneyu_results['Categorical Variable'] == 'Campaign 5') & (mannwhitneyu_results['Categorical Variable']
```

['Income', 'MntTotal',

```
'MntRegularProds',
      'MntWines',
      'MntMeatProducts',
      'NumCatalogPurchases',
      'NumWebVisitsMonth',
      'NumDealsPurchases',
      'MntSweetProducts',
      'MntFruits',
      'NumStorePurchases',
      'MntFishProducts',
      'Kidhome'
      'Teenhome'
      'MntGoldProds',
      'NumWebPurchases']
list_num_cmp6_associated = mannwhitneyu_results[(mannwhitneyu_results['Categorical Variable'] == 'Campaign 6') & (mannwhitneyu_results['Categorical Variable']
list\_num\_cmp6\_associated
     ['NumCatalogPurchases',
      'MntTotal',
      'MntMeatProducts',
      'MntRegularProds',
      'Recency'
      'MntWines'
      'Customer Days',
      'MntGoldProds',
      'NumWebPurchases',
      'Income'
      'Teenhome'
      'MntFruits'
      'MntSweetProducts',
      'MntFishProducts',
      'Kidhome'
      'NumStorePurchases']
list_num_complain_associated = mannwhitneyu_results[(mannwhitneyu_results['Categorical Variable'] == 'Complain') & (mannwhitneyu_results['Categorical Variable']
list_num_complain_associated
```

Analizing the purchases in the last 2 years and its distribution across the categorical variables maritalStatus / educationLevel:

Numerical x Numerical

Correlation Matrix

Defining key correlations in business perspectives:

```
spearman_corr = df_numerical.corr(method='spearman')
# Criar o heatmap
plt.figure(figsize=(14, 6))
sns.heatmap(spearman_corr, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Spearman Correlation Matrix')
plt.show()
```


df_numerical.columns

```
Index(['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts',
    'MntSweetProducts', 'MntGoldProds', 'NumDealsPurchases',
    'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases',
    'NumWebVisitsMonth', 'Income', 'Recency', 'Age', 'MntTotal',
    'MntRegularProds', 'AcceptedCmpOverall', 'Kidhome', 'Teenhome',
    'Customer_Days'],
    dtype='object')
```

Correlation Evaluation