Chapter 13: Functions of Several Variables

Illya Starikov

December 13, 2016

Contents

13.1	Planes and Surfaces
13.2	Graphs and Level Curves
13.3	Limits and Continuity 6
13.4	Partial Derivatives
13.5	The Chain Rule
13.6	Directional Derivatives and the Gradient
13.7	Tangent Planes and Linear Approximation
13.8	Maximum/Minimum Problems
13.9	Lagrange Multipliers

13.1 Planes and Surfaces

Plane in \mathbb{R}^3

Given a fixed point P_0 and a nonzero **normal vector n**, the set of points P in \mathbb{R}^3 for which $\overrightarrow{P_0P}$ is orthogonal to **n** is called a **plane**.

General Equation of a Plane in \mathbb{R}^3

The plane passing through the point $P_0(x_0, y_0, z_0)$ with a nonzero normal vector $\mathbf{n} = \langle a, b, c \rangle$ is described by the equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 or $ax + by + cz = d$ (1)
where $d = ax_0 + by_0 + cz_0$.

Parallel and Orthogonal Planes

Two distinct planes are **parallel** if their respective normal vectors are parallel (that is, the normal vectors are scalar multiples of each other). Two planes are **orthogonal** if their respective normal vectors are orthogonal (that is, the dot product of the normal vectors is zero).

Cylinder

Given a curve C in a plane P and a line ℓ not in P, a **cylinder** is the surface consisting of all lines parallel to ℓ that pass through C.

Trace

A **trace** of a surface is the set of points at which the surface intersects a plane that is parallel to one of the coordinate planes. The trace in the coordinate planes are called **xy-trace**, the **xz-trace**, and the **yz-trace**.

Quadratic Surfaces

Name	Standard Equation	Features
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	All traces are ellipses.
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z = z_0 >$ 0 are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ are ellipses for all z_0 . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ with $ z_0 > c $ are ellipses. Traces with $x = x_0$ and $y = y_0$ are hyperbolas.
Elliptic cone	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z = z_0 \neq$ 0 are ellipses. Traces with $x = x_0$ or $y = y_0$ are hyperbolas or intersecting lines.
Hyperbolic paraboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.

N	2	m	Δ

Standard Equation

Features

Graph

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

All traces are ellipses.

Elliptic paraboloid

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Traces with $z = z_0 > 0$ are ellipses.

Traces with $x = x_0$ or $y = y_0$ are parabolas.

Hyperboloid of one sheet

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Traces with $z=z_0$ are ellipses for all z_0 . Traces with $x=x_0$ or $y=y_0$ are hyperbolas.

Hyperboloid of two sheets

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

 $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Traces with $z = z_0$ with $|z_0| > |c|$ are ellipses. Traces with $x = x_0$ and $y = y_0$ are hyperbolas.

Elliptic cone

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

Traces with $z = z_0 \neq 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are hyperbolas or intersecting lines.

Hyperbolic paraboloid

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Traces with $z = z_0 \neq 0$ are hyperbolas.

Traces with $x = x_0$ or $y = y_0$ are parabolas.

13.2 Graphs and Level Curves

Function, Domain, and Range with Two Independent Variables

A function z = f(x, y) assigns to each point (x, y) in a set D in \mathbb{R}^2 a unique real number z in a subset of \mathbb{R} . The set D is the **domain** of f. The **range** of f is the set of real numbers z that are assumed as the points (x, y) vary over the domain.

Function, Domain, and Range with n Independent Variables

The **function** $y = f(x_1, x_2, ..., x_n)$ assigns a unique real number y to each point $(x_1, x_2, ..., x_n)$ in a set D in \mathbb{R}^n . The set D is the **domain** of f. The **range** is the set of real numbers y that are assumed as the points $(x_1, x_2, ..., x_n)$ vary over the domain.

13.3 Limits and Continuity

Limit of a Function of Two Variables

The function f has the **limit** L as P(x, y) approaches $P_0(a, b)$ written

$$\lim (x, y) \to (a, b) f(x, y) = \lim P \to P_0 f(x, y) = L$$
 (2)

if, given any $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x, y) - L| < \varepsilon \tag{3}$$

whenever (x, y) is in the domain of f and

$$0 < |PP_0| = \sqrt{(x-a)^2 + (y-b)^2} < \delta \tag{4}$$

Limits of Constant and Linear Functions

Let a, b, and c be real numbers.

- 1. Constant functions $f(x, y) = c : \lim_{(x,y)\to(a,b)} c = c$
- 2. Linear function $f(x, y) = x : \lim_{(x,y)\to(a,b)} x = a$
- 3. Linear function $f(x, y) = y : \lim_{(x,y)\to(a,b)} y = b$

Limit Laws and Functions of Two Variables

Let L and M be real numbers and suppose that $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and $\lim_{(x,y)\to(a,b)} g(x,y) = M$. Assume c is a constant, and $\forall m,n\in\mathbb{Z}$.

- 1 Sum $\lim_{(x,y)\to(a,b)} (f(x,y)+g(x,y)) = L+M$
- 2 Difference $\lim_{(x,y)\to(a,b)} (f(x,y)-g(x,y)) = L-M$
- 3 Constant multiple $\lim_{(x,y)\to(a,b)}cf(x,y)=cL$
- 4 Product $\lim_{(x,y)\to(a,b)} f(x,y) \cdot g(x,y) = L \cdot M$
- 5 Quotient $\lim_{(x,y)\to(a,b)}\left[\frac{f(x,y)}{g(x,y)}\right]=\frac{L}{M}$

6 Power $\lim_{(x,y)\to(a,b)} (f(x,y))^n = L^n$

7 m/n **Power** If m and n have no common factors and $n \neq 0$, then $\lim_{(x,y)\to(a,b)} [f(x,y)]^{m/n} = L^{m/n}$, where we assume L > 0 if n is even.

Interior and Boundary Points

Let R be a region in \mathbb{R}^2 . An **interior point** P of R lies entirely within R, which means it is possible to find a disk centered at P that contains only points of R.

A **boundary point** Q of R lies on the edge of R in the sense that *every* disk centered at Q contains at least one point in R and at least one point not in R.

Open and Closed Sets

A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all its boundary points.

Two-Path Test for Nonexistence of Limits

If f(x, y) approaches two different values as (x, y) approaches (a, b) along two different paths in the domain of f, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Continuity

A function f is continuous at the point (a, b) provided

- 1. f is defined at (a, b).
- 2. $\lim_{(x,y)\to(a,b)} f(x,y)$ exists.
- 3. $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$

Continuity of Composite Functions

If u = g(x, y) is continuous at (a, b) and z = f(u) is continuous at g(a, b), then the composite function z = f(g(x, y)) is continuous at (a, b).

13.4 Partial Derivatives

The partial derivative of f with respect to x at the point (a, b) is

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}.$$
 (5)

The partial derivative of f with respect to y at the point (a, b) is

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}.$$
 (6)

provided these limits exists.

Equality of Mixed Partial Derivatives

Assume that f is defined on an open set D of \mathbb{R}^2 , and f_{xy} and f_{yx} are continuous throughout D. Then $f_{xy} = f_{yx}$ at all points of D.

Differentiability

The function z = f(x, y) is **differentiable at** (a, b) provided $f_x(a, b)$ and $f_y(a, b)$ exist and the change $\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$ equals

$$\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y, \tag{7}$$

where for fixed a and b, ε_1 and ε_2 are functions that depend only on Δx and Δy , with $(\varepsilon_1, \varepsilon_2) \to (0, 0)$ as $(\Delta x, \Delta y) \to (0, 0)$. A function is **differentiable** on an open set R if it is differentiable at every point on R.

Conditions for Differentiability

Suppose the function f has partial derivatives f_x and f_y defined on an open set containing (a, b), with f_x and f_y continuous (a, b). Then f is differentiable at (a, b).

Differentiability Implies Continuity

If a function f is differentiable at (a, b), then it is continuous at (a, b)

13.5 The Chain Rule

Chain Rule (One Independent Variable)

Let z be a differentiable function of x and y on its domain, where x and y are differentiable functions of t on an interval I. Then

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}.$$
 (8)

Chain Rule (Two Independent Variables)

Let z be a differentiable function of x and y, where x and y are differentiable functions of s and t. Then

$$\frac{dz}{ds} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \text{and} \quad \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \tag{9}$$

$$\frac{\partial z}{\partial x} \qquad \frac{\partial z}{\partial y} \qquad \frac{\partial z}{\partial$$

Implicit Differentiation

Let F be differentiable on its domain and suppose that F(x, y) = 0 defines y as a differentiable function of x. Provided $F_y \neq 0$.

$$\frac{dy}{dx} = -\frac{F_x}{F_y} \tag{10}$$

13.6 Directional Derivatives and the Gradient

Directional Derivative

Let f be a differentiable at (a, b) and let $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ be a unit vector in the xy-plane. The **directional derivatives of** f **at** (a, b) in the direction of \mathbf{u} is

$$D_u f(a, b) = \lim_{h \to 0} \frac{f(a + h\cos\theta, b + h\sin\theta) - f(a, b)}{h}$$
 (11)

provided the limit exits.

Directional Derivative

Let f be differentiable on (a, b) and let $\mathbf{u} = \langle u_1, u_2 \rangle$ be a unit vecor in the x, y-plane. The directional derivative of f at a (a, b) in the direction of u is

$$D_u f(a, b) = \langle f_x(a, b), f_y(a, b) \rangle \cdot \langle u_1, u_2 \rangle$$
 (12)

Gradient (Two Dimensions)

Let f be differentiable at the point (x, y). The **gradient** of f at (x, y) is the vector-valued function

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = f_x(x, y) \hat{\mathbf{i}} + f_y(x, y) \hat{\mathbf{j}}$$
(13)

Directions of Change

Let f be differentiable at (a, b) with $\nabla f(a, b) \neq \mathbf{0}$

- 1. f has its maximum rate of increase at (a, b) in the direction of the gradient $\nabla f(a, b)$. The rate of increase in this direction is $|\nabla f(a, b)|$
- 2. f has its maximum rate of decrease at (a, b) in the direction of $-\nabla f(a, b)$. The rate of decrease in this direction is $-|\nabla f(a, b)|$.
- 3. The directional derivative is zero in any direction orthogonal to $\nabla f(a, b)$.

The Gradient and Level Curves

Given a function f differentiable at (a, b), the line tangent to the level curve of f at (a, b) is orthogonal to the gradient $\nabla f(a, b)$, provided $\nabla f(a, b) \neq \mathbf{0}$.

Gradient and Directional Derivative in Three Dimensions

Let f be differentiable at the point (x, y, z). The **gradient** of f at (x, y, z) is the vector-valued function

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$
 (14)

$$= f_x(x, y, z)\hat{\mathbf{i}} + f_y(x, y, z)\hat{\mathbf{j}} + f_z(x, y, z)\hat{\mathbf{k}}$$
 (15)

The **directional derivative** of f in the direction of the unit vector $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ at the point (a, b, c) is $D_u f(a, b, c) = \nabla f(a, b, c) \cdot \mathbf{u}$

13.7 Tangent Planes and Linear Approximation

Let F be differentiable at the point $P_0(a, b, c)$ with $\nabla F(a, b, c) \neq \mathbf{0}$. The plane tangent to the surface F(x, y, z) = 0 at P_0 , called the **tangent plane**, is the plane passing through P_0 orthogonal $\nabla F(a, b, c)$. An equation of the tangent plane is

$$F_x(a, b, c)(x-a) + F_y(a, b, c)(y-b) + F_z(a, b, c)(z-c) = 0.$$
 (16)

Tangent Plane for z = f(x, y)

Let f be differentiable at the point (a, b). An equation of the plane tangent to the surface z = f(x, y) at the point (a, b, f(a, b)) is

$$z = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b)$$
(17)

Linear Approximation

Let f be differentiable at (a, b). The linear approximation to the surface z = f(x, y) at the point (a, b, f(a, b)) is the tangent plane at that point, given by the equation

$$L(x, y) = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b)$$
(18)

The Differential dz

Let f be differentiable at the point (a, b). The change in z = f(x, y) as the independent variables change from (a, b) to (a + dx, b + dy) is denoted by the differential dz:

$$\Delta z \approx dz = f_x(a, b)dx + f_y(a, b)dy \tag{19}$$

13.8 Maximum/Minimum Problems

Local Maximum/Minimum Values

A function f has a **local maximum value** at (a,b) if $f(x,y) \leq f(a,b)$ for all (x,y) in the domain of f in some open disk centered at (a,b). A function f has a **local minimum value** at (a,b) if $f(x,y) \geq f(a,b)$ for all (x,y) in the domain of f in some open disk centered at (a,b). Local maximum and local minimum values are also called **local extreme values** or **local extrema**.

Derivatives and Local Maximum/Minimum Values

If f has a local maximum or minimum value at (a, b) and the partial derivatives f_x and f_y exist at (a, b) then $f_x(a, b) = f_y(a, b) = 0$.

Critical Point

An interior point (a, b) in the domain of f is a **critical point** of f is either

- 1. $f_x(a, b) = f_y(a, b) = 0$, or
- 2. one (or both) of f_x or f_y does not exist at (a, b)

Saddle Point

A function f has a **saddle point** at a critical point (a, b) if, in every open disk centered at (a, b), there are points (x, y) for which f(x, y) > f(a, b) and points for which f(x, y) < f(a, b)

Second Derivative Test

Suppose that the second partial derivative of f are continuous throughout an open disk centered at the point (a, b), where $f_x(a, b) = f_y(a, b) = 0$. Let $D(x, y) = f_{xx}(x, y)f_{yy}(x, y) - (f_{xy}(x, y))^2$.

- 1. If D(a, b) > 0 and $f_{xx}(a, b) < 0$, then f has a local maximum value at (a, b).
- 2. If D(a, b) > 0 and $f_{xx}(a, b) > 0$, then f has a local minimum value at (a, b).

- 3. If D(a, b) < 0, then f has a saddle point at (a, b).
- 4. If D(a, b) = 0, then the test is inconclusive.

Absolute Maximum/Minimum Values

If $f(x, y) \le f(a, b)$ for all (x, y) in the domain of f, then f has an **absolute** maximum value at (a, b). If $f(x, y) \ge f(a, b)$ for all (x, y) in the domain of f, then f has an **absolute minimum value** at (a, b).

Finding Absolute Maximum/Minimum Values on Closed, Bounded Sets

Let f be continuous on a closed bounded set R in \mathbb{R}^2 . To find the absolute maximum and minimum values of f on R:

- 1. Determine the values of f at all critical points in R.
- 2. Find the maximum and minimum values of f on the boundary of R.
- 3. The greatest function values found in Step 1 and 2 is the absolute maximum value of f on R, and the least function value found in Steps 1 and 2 is the absolute minimum value of f on R.

13.9 Lagrange Multipliers

Parallel Gradients (Ball Park Theorem)

Let f be a differentiable function in a region of \mathbb{R}^2 that contains the smooth curve C given by g(x,y)=0. Assume that f has a local extreme value (relative to values of f on C) at a point P(a,b) on C. Then $\nabla f(a,b)$ is orthogonal to the line tangent to C at P. Assuming $\nabla g(a,b) \neq 0$, it follows that there is a real number λ (called a **Lagrange multiplier**) such that $\nabla f(a,b) = \lambda \nabla g(a,b)$.

Method of Lagrange Multipliers in Two Variables

Let the objective function f and the constraint function g be differentiable on a region of \mathbb{R}^2 with $\lambda g(x,y) \neq 0$ on the curve g(x,y) = 0. To locate the maximum and minimum values of f subject to the constraint g(x,y) = 0, carry out the following steps.

1. Find the values of x, y and λ (if they exist) that satisfy the equations

$$\nabla f(x, y) = \lambda \nabla g(x, y)$$
 and $g(x, y) = 0$ (20)

2. Among the values (x, y) found in Step 1, select the largest and smallest corresponding function values, which are the maximum and minimum values of f subject to the constraint.

Method of Lagrange Multipliers in Three Variables

Let f and g be differentiable on a region of \mathbb{R}^3 with $\nabla g(x, y, z) neq 0$ on the surface g(x, y, z) = 0. To locate the maximum and minimum values of f subject to the constraint g(x, y, z) = 0, carry out the following steps.

1. Find the values of x, y, z and λ that satisfy the equations

$$\nabla f(x, y, z) = \lambda \nabla q(x, y, z) \quad \text{and} \quad q(x, y, z) = 0$$
 (21)

2. Among the points (x, y, z) found in Step 1, select the largest and smallest corresponding values of the objective function. These values are the maximum and minimum values of f subject to the constraint.