Capítulo 8 — Teste de Hipóteses

Testes à dispersão e à localização - Quadro resumo

Testes à dispersão (variância	Uma amostra, população Normal, amostra de qualquer dimensão	Teste do χ ²
	Duas amostras independentes, populações Normais, amostras de quaisquer dimensões	Teste F
Testes à Localização (valor esperado)	Uma amostra, população qualquer, amostra de grande dimensão	Teste Z
	Uma amostra, população Normal, amostra de pequena dimensão	Teste t
	Duas amostras independentes, populações quaisquer, amostras de grandes dimensões	Teste Z
	Duas amostras independentes, populações Normais, amostras de pequenas dimensões	Teste t
	Duas amostras emparelhadas, populações quaisquer, amostras de grandes dimensões	Teste Z
	Duas amostras emparelhadas, populações Normais, amostras de pequenas dimensões	Teste t
Testes à Localização (proporção Binomial)	Uma amostra, população dicotómica, amostra de grande dimensão	Teste Z
	Duas amostras independentes, populações dicotómicas, amostras de grandes dimensões	Teste Z

 $\textbf{Definição dos valores críticos dos testes} \text{ (para a tomada de decisão de rejeição - ou não - de } H_s \text{ a um nível de significância de } \alpha\%):$

- Para um teste bilateral (sinal ≠ em H,), são definidos dois valores críticos, um na cauda direita da distribuição (Vc,) e outro na cauda esquerda (Vc,). Estes valores são obtidos na distribuição da ET (admitindo que H, é verdadeira), de tal forma que P(ET ≥ Vc,) = α/2 e P(ET ≤ Vc,) = α/2.
- Para um teste unilateral à direita (sinal > em H_i), o valor crítico é definido na cauda direita da distribuição: $P(ET \ge Vc_a) = \alpha$.
- Para um teste unilateral à esquerda (sinal < em H.), o valor crítico é definido na cauda esquerda da distribuição: P(ET ≤ Vc,) = α.

Teste à Variância (σ²) de uma população Normal

Hipóteses	Estatística de teste
$H_{\scriptscriptstyle e}:\;\sigma^{\scriptscriptstyle c}=\sigma^{\scriptscriptstyle c}_{\scriptscriptstyle e}$	$ET = (N-1) \cdot \frac{s^2}{\sigma_0^2}$
$H_1: \sigma_2 \neq \sigma_0^2 \text{ ou } \sigma_2 < \sigma_0^2 \text{ ou } \sigma_2 > \sigma_0^2$	·
	Quando H ₀ é verdadeira, ET segue uma distribuição χ^2_{N-1}

Teste ao Valor Esperado (µ) de uma população

Hipóteses	Estatística de teste
A	mostra de grande dimensão (s \approx σ)
$H_{\circ}: \mu = \mu_{\circ}$	$ar{X}-\mu_0$
	$ET = \frac{X - \mu_0}{\sigma / \sqrt{N}}$
$H_1: \mu \neq \mu_0 \text{ ou } \mu < \mu_0 \text{ ou } \mu > \mu_0$	
	Quando H _s é verdadeira, ET segue uma distribuição N(0,1)
Amostra de	pequena dimensão, população Normal (s ≠ σ)
$H_{\circ}: \mu = \mu_{\circ}$	$\bar{X} - \mu_0$
	$ET = \frac{X - \mu_0}{s / \sqrt{N}}$
H₁ : μ≠ μ₀ ou μ < μ₀ ou μ > μ₀	3/ VIV
	Quando H é verdadeira. ET segue uma distribuição to

Teste à Proporção Binomial (p) (amostra de grande dimensão)

Hipóteses	Estatística de teste
$H_{\scriptscriptstyle 0}: p=p_{\scriptscriptstyle 0}$	$ET = \frac{\hat{p} - p_0}{}$
$H_i: p \neq p_0 \text{ ou } p < p_0 \text{ ou } p > p_0$	$\sqrt{\frac{p_0\cdot (1-p_0)}{N}}$

Quando H₀ é verdadeira, ET segue uma distribuição N(0,1)

Teste à razão de Variâncias (σ_A^2/σ_B^2) de duas populações Normais

Hipóteses	Estatística de teste
$ ext{H}_{ ext{o}}:rac{\sigma_A^2}{\sigma_B^2}=1$	$ET = \frac{S_A^2}{S_B^2} \qquad \text{(ver nota)}$
$H_i: \frac{\sigma_A^2}{\sigma_B^2} \neq 1 \text{ ou } \frac{\sigma_A^2}{\sigma_B^2} < 1 \text{ ou } \frac{\sigma_A^2}{\sigma_B^2} > 1$	Quando H_{\circ} é verdadeira, ET segue uma distribuição F_{N_A-1,N_B-1}
$H_{\circ}: \frac{\sigma_A^2}{\sigma_B^2} = r_0$	$ET = r_0 \cdot \frac{S_A^2}{S_B^2}$
$H_i: \frac{\sigma_A^2}{\sigma_B^2} \neq r_0 \text{ ou } \frac{\sigma_A^2}{\sigma_B^2} < r_0 \text{ ou } \frac{\sigma_A^2}{\sigma_B^2} > r_0$	Quando H _o é verdadeira, ET segue uma distribuição F_{N_A-1,N_B-1}

Nota: A estatística de teste pode ser definida colocando sempre em numerador a amostra com o maior valor da variância amostral (i.e., a $ET = \frac{s_A^2}{s_B^2}$ corresponde a valores das variâncias amostrais tais que: $s_A^2 \ge s_B^2$). Desta forma o valor crítico do teste deve ser sempre procurado na cauda direita da distribuição F.

Teste à Diferença entre Valores Esperados (μ_a - μ_b) de duas populações (Amostras Independentes)

Hipóteses	Estatística de teste
Amostras de grandes dimensões $(s_A^2 \approx \sigma_A^2 \text{ e } s_B^2 \approx \sigma_B^2)$, p	opulações com variâncias diferentes $(\sigma_A^2 \neq \sigma_B^2)$
$H_{\circ}:\mu_A-\mu_B=\delta_0$	$ET = \frac{(\bar{X}_A - \bar{X}_B) - \delta_0}{\sqrt{\sigma^2/N_1 + \sigma^2/N_2}}$
$H_1: \mu_A - \mu_B \neq \delta_0$ ou $\mu_A - \mu_B > \delta_0$ ou $\mu_A - \mu_B < \delta_0$	$\sqrt{\sigma_A/N_A} + \sigma_B/N_B$
	Quando H₀ é verdadeira, ET segue uma distribuição N(0,1)
Amostras de grandes dimensões $(s_A^2 \approx \sigma_A^2 \text{ e } s_B^2 \approx \sigma_B^2)$, populações com variâncias iguais ($\sigma_A^2 = \sigma_B^2$)
$\left(ext{a variância comum}\left(\sigma^2 ight) ext{pode ser estima}$	Quando H ₀ é verdadeira, ET segue uma distribuição N(0,1), populações com variâncias iguais $(\sigma_A^2 = \sigma_B^2)$ ada por: $\sigma^2 = \frac{(N_A - 1) \cdot s_A^2 + (N_B - 1) \cdot s_B^2}{N_A + N_B - 2}$ $ET = \frac{(\bar{X}_A - \bar{X}_B) - \delta_0}{\sigma \cdot \sqrt{1/N_A + 1/N_B}}$
$H_{\scriptscriptstyle 0}:\mu_A-\mu_B=\delta_0$	$ET = \frac{(\bar{X}_A - \bar{X}_B) - \delta_0}{\bar{X}_B - \bar{X}_B}$
$H_1: \mu_A - \mu_B \neq \delta_0$ ou $\mu_A - \mu_B > \delta_0$ ou $\mu_A - \mu_B < \delta_0$	$\sigma \cdot \sqrt{1/N_A + 1/N_B}$
	Quando H₀ é verdadeira, ET segue uma distribuição N(0,1)
Amostras de pequenas dimensões, populações Nor	mais com variâncias diferentes $(\sigma_A^2 \neq \sigma_B^2)$
$H_{\circ}:\mu_A-\mu_B=\delta_0$	$ET = \frac{(\bar{X}_A - \bar{X}_B) - \delta_0}{\sqrt{s^2/N_A + s^2/N_B}}$
$H_1: \mu_A - \mu_B \neq \delta_0$ ou $\mu_A - \mu_B > \delta_0$ ou $\mu_A - \mu_B < \delta_0$	$LT = \sqrt{s_A^2/N_A + s_B^2/N_B}$
O número de graus de liberdade é dado por: $GL = \frac{(s_A^2/N_A + s_B^2/N_B)^2}{(s_A^2/N_A)^2} + \frac{(s_B^2/N_B)^2}{N_B - 1}$	
Amostras de pequenas dimensões, populações N	
$\left(a \text{ variância comum } (s^2) \text{ pode ser estima} \right)$	ada por: $s^2 = \frac{(N_A - 1) \cdot s_A^2 + (N_B - 1) \cdot s_B^2}{N_A + N_B - 2}$
$H_{\circ}: \mu_A - \mu_B = \delta_0$	$ET = \frac{(\bar{X}_A - \bar{X}_B) - \delta_0}{S \cdot \sqrt{1/N_A + 1/N_B}}$
$H_1: \mu_A - \mu_B \neq \delta_0 \text{ ou } \mu_A - \mu_B > \delta_0 \text{ ou } \mu_A - \mu_B < \delta_0$	$s \cdot \sqrt{1/N_A + 1/N_B}$

Teste à Diferença entre Valores Esperados (µ, - µ,) de duas populações (Amostras Emparelhadas)

O número de graus de liberdade é dado por: $GL = N_A + N_B - 2$

Admita-se que, para um mesmo elemento amostral, se dispõem de resultados, não independentes, obtidos "antes e depois" de um dado acontecimento. Nestas condições, a variável aleatória diferença entre pares de observações (ou diferença relativa entre pares de observações) pode servir de base à realização de testes de localização. Existindo N

observações emparelhadas de duas populações A e B, (x_A^n, x_B^n) , com $n=1,\ldots,N$, a partir delas podem obter-se N observações da variável Δ : diferença entre observações emparelhadas, tais que $\Delta^n=x_A^n-x_N^n$, com $n=1,\ldots,N$.

Nota: em certas situações é preferível utilizar a variável diferença relativa: $\Delta^n = (x_A^n - x_N^n)/x_A^n$). O teste incide sobre o valor esperado da variável Δ^n (μ_Δ).

Hipóteses	Estatística de teste
Amostras de grandes dimensões $(s_A \approx \sigma_A)$	
$H_{\circ}:\mu_{\Delta}=\delta_{0}$	$ET = \frac{\bar{\Delta} - \delta_0}{\sigma_{\Delta}/\sqrt{N}}$
	$ET = \frac{1}{\sigma_{\Delta}/\sqrt{N}}$
$H_1: \mu_{\Delta} \neq \delta_0 \text{ ou } \mu_{\Delta} < \delta_0 \text{ ou } \mu_{\Delta} > \delta_0$	
	Quando H₀ é verdadeira, ET segue uma distribuição N(0,1)
Amostras de pequenas dimensões, populações Normais $(s_{\Delta} \neq \sigma_{\Delta})$	
$\mathrm{H}_{\scriptscriptstyle 0}$: $\mu_{\Delta}=\delta_0$	$ET = rac{ar{\Delta} - \delta_0}{s_A/\sqrt{N}}$
	$EI = \frac{1}{S_A/\sqrt{N}}$
$H_1: \mu_{\Delta} \neq \delta_0$ ou $\mu_{\Delta} < \delta_0$ ou $\mu_{\Delta} > \delta_0$	Δ, .
	Quando H $_{0}$ é verdadeira, ET segue uma distribuição t_{N-1}

Teste à Diferença entre Duas Proporções Binomiais (p_A-p_B) (amostras de grandes dimensões)

Hipóteses	Estatística de teste
$H_{\circ}: p_A - p_B = p_0$	$ET = \frac{(\hat{p}_A - \hat{p}_B) - p_0}{\frac{(\hat{p}_A - \hat{p}_B) - p_0}{\hat{p}_A - \hat{p}_B}}$
$\mathbf{H}_{\scriptscriptstyle \mathrm{I}}: p_{\scriptscriptstyle A}-p_{\scriptscriptstyle B} \neq p_0 \text{ ou } p_{\scriptscriptstyle A}-p_{\scriptscriptstyle B} < p_0 \text{ ou } p_{\scriptscriptstyle A}-p_{\scriptscriptstyle B} > p_0$	$\sqrt{\frac{\hat{p}_{A} \cdot (1 - \hat{p}_{A})}{N_{A}} + \frac{\hat{p}_{B} \cdot (1 - \hat{p}_{B})}{N_{B}}}$
	Quando H ₀ é verdadeira, ET segue uma distribuição N(0,1)
$H_{\circ}: p_A - p_B = 0$	$ET = \frac{(\hat{p}_A - \hat{p}_B)}{}$
$H_1: p_A - p_B \neq 0$ ou $p_A - p_B < 0$ ou $p_A - p_B > 0$	$ET = \frac{(\hat{p}_A - \hat{p}_B)}{\sqrt{\hat{p}_0 \cdot (1 - \hat{p}_0) \cdot \left(\frac{1}{N_A} + \frac{1}{N_B}\right)}}$
$\left(com: \hat{p}_0 = \frac{Y_A + Y_B}{N_A + N_B}\right)$	Quando $H_{\mbox{\tiny 0}}$ é verdadeira, ET segue uma distribuição $N(0,1)$

Formulário adaptado de:

Estatística

Rui Campos Guimarães, José A. Sarsfield Cabral Verlag Dashöfer

Quando H_{\circ} é verdadeira, ET segue uma distribuição t_{GL}

Testes Exatos

Teste à Proporção Binomial (p)

Y: número de sucessos em N repetições de uma experiência de Bernoulli, em que p é a probabilidade de sucesso na experiência de Bernoulli

Hipóteses	Estatística de teste
$H_{\circ}: p=p_{\circ}$	ET = Y
$H_{\scriptscriptstyle 1}: p \neq p_{\scriptscriptstyle 0} \text{ ou } p < p_{\scriptscriptstyle 0} \text{ ou } p > p_{\scriptscriptstyle 0}$	Quando H ₀ é verdadeira, ET segue uma distribuição $B(N,p)$

Teste à Média de uma Distribuição de Poisson (λ)

Y: número de ocorrências de um processo de Poisson com taxa média de ocorrências igual a λ

Hipóteses	Estatística de teste
$H_{\circ}: \lambda = \lambda_0$	ET = Y
$H_1: \lambda \neq \lambda_0 \text{ ou } \lambda < \lambda_0 \text{ ou } \lambda > \lambda_0$	Quando H, é verdadeira, ET segue uma distribuição $Poisson(\lambda)$

Nota: nestes testes é mais prático obter diretamente o valor de prova a partir do valor de ET em vez de obter o valor crítico.