

Database Design and Implementation

MOD002589

Faculty: Science and Technology

Department: Computing and Technology

Academic Year: 2020/21

Trimester: 1

Contents

1		Re	quire	ement Analysis	(15%)	4
	1.1	1	Des	scription of the three websites	chosen	4
1.	1.1			http://www.pizzahut.ae		4
		1.1	.2	http://www.papajohns.ae		4
		1.1	.3	http://www.dominos.ae		4
	1.2	2	List	of data fields (Entities and the	ir attributes)	4
		1.2	.1	List of data fields from website	e 1	5
		1.2	.2	List of data fields from website	e 2	13
		1.2	.3	List of data fields from website	e 3	21
	1.3	3	Fin	alised List		29
		1.3	.1	The generic list		29
2		Dat	taba	se design	(25%)	30
	:	2.1	.2	Extended Entity Relationship	Model	31
	2.2	2	Noi	rmalised Model		32
	2.3	3	Dat	abase Schema		34
3.		Dat	taba	se implementation	(10%)	40
4.		SQ	L Q	ueries	(50%)	53
	4.′	1	Qu	ery 1		54
		4.1	.1	For what purpose will this que	ery be used in business terms?	54
		4.1	.2	Query in natural language		54
		4.1	.3	SQL Code and output		54
		4.1	.4	Explain the output of the data	(was this what was predicted?)	54
	4.2	2	Qu	ery 2		55
		4.2	.1	For what purpose will this que	ery be used in business terms?	55
		4.2	.2	Query in natural language		55

4.2.3	SQL Code and output55
4.2.4	Explain the output of the data (was this what was predicted?) 55
4.3	Query 3 56
4.3.1	For what purpose will this query be used in business terms? 56
4.3.2	Query in natural language56
4.3.3	SQL Code and output56
4.3.4	Explain the output of the data (was this what was predicted?) 56
4.4 C	Query 4 57
4.4.1	For what purpose will this query be used in business terms? 57
4.4.2	Query in natural language57
4.4.3	SQL Code and output57
4.4.4	Explain the output of the data (was this what was predicted?) 58
4.5 C	Query 559
4.5.1	For what purpose will this query be used in business terms? 59
4.5.2	Query in natural language59
4.5.3	SQL Code and output59
4.5.4	Explain the output of the data (was this what was predicted?) 60
5. Refe	rences61

1. Requirement Analysis

1.1 Description of the three websites chosen

All the three websites chosen are the storefront of companies that compete within the same industry: Restaurants. After analysing the website's purchasing function involved registration of a new customer, browsing different types of pizzas, selecting a pizza, adding it to cart and finally making a payment.

- 1.1.1 www.pizzahut.ae
- 1.1.2 www.papajohns.ae
- 1.1.3 www.dominos.ae

1.2 List of Data-fields

Three lists of data-fields are presented in the sub-sections below. The attributes have been collected after analysing the steps required to purchase a pizza on all of the three websites successfully. The steps include: Login/Sign-up a new customer, browsing the pizzas', browsing products other than the pizza, adding the products selected to cart, option to add extras, inputting the delivery address, making a payment, and track the order.

Some of the attributes are selected based on the user's input, others were selected based on the information displayed on the website.

1.2.1 List of data-fields from pizzahut.ae website

• My Profile page

Figure 1: Screenshot of "My Profile" section of "My Account" page on the Pizza Hut website.

Address Page

Figure 2: Screenshot of "Add new address" page on the Pizza Hut website.

6

Menus Page

Figure 3: Screenshot of the "Menus" on the Pizza Hut website

This screenshot shows the different sections on the website that have a name each and upon clicking a section it would show the description of the chosen section.

Pizza Menu

Figure 4: Screenshot of the list of attributes specific to the pizza on Pizza Hut website.

Non-Pizza

Figure 5: Screenshot of list of attributes of specific to non-pizza items in Pizza Hut website.

Your Cart

Figure 6: Screenshot of the Your Cart page on Pizza Hut website.

Orders Details

Figure 7: Screenshot of "Order summary" section on the Pizza Hut website.

• Payment

Figure 8: Screenshot of "Payment" page on the Pizaa Hut website.

Table 1, below, contains data-fields extracted during the analysis of the pizahut.ae website.

CUSTOMER	PIZZA	Delivery_fee
First_Name	Pizza_name	Total_price
Last_Name	Description	ORDERS
Mobile	Size	Order_number
Email	Crust	Order_date
Password	Add-ons	Restaurant_address
Orders*	Price	Order_items(*)
Address*	NON-PIZZA	Order_price
Favourites*	Name	Delivery_fee
ADDRESS	Description	Total_price
City	Price	Payment_info
Area	Menu	PAYMENT
Building_name	CART	Merchant_name
Flat_no	Food_name	Reference_number
Building_no	Food_description	Amount_pay
Floor_no	Food_quantity	Order_number
Address_Type	Price	Card_number
MENUS	Voucher_code	Expiry_date
Name	Recommendations	Security_code
Description	Price_from	

1.2.2 List of data-fields from dominos.ae website.

My Profile Page

Figure 8: Screenshot of the "My profile" page on the Dominos website.

Address Page

Figure 9: Screenshot of "Add address" page on Dominos website.

Menus

VIEW ALL PIZZA CHICKEN SIDES DRINKS DESSERTS

Figure 10: Screenshot of the "menus" of the Dominos website.

• Pizza Menu

Figure 11: Screenshot of the "Pizza menu" of the Dominos website.

• Non_pizza Menu

Figure 12: Screenshot of Non-Pizza items on the Dominos website.

Your Cart

Figure 13: Screenshot of Cart page on the Dominos website.

Orders

Figure 14: Screenshot of the "Order summary" section on the Dominos website.

• Payment Page

Figure 15: Screenshot of the Payment page on the dominos website.

Table 2, below, contains data-fields extracted during the analysis of the dominos.ae website.

CUSTOMER	Description	Recommendations
First_Name	Size	ORDERS
Last_Name	Crust	Order_number
Email	Cheese	Order_date
Phone_number	Sauce	Restaurant_address
Password	Toppings	Delivery_time
Alternate_number	NON_PIZZA	Quantity
Birthday	Name	Description
Address	Description	Order_total
ADDRESS	Price	Tax
Address_Type	Menu	Deposit
Building_number	CART	Delivery_charge
Apartment_name	Food_name	Total
Area	Food_quantity	Payment_info
Floor_number	Choose_dessert	PAYMENT
Apartment_number	Choose_chicken	Payment_Type
Delivery_instructions	Choose_drinks	Cardholder_name
MENUS	Offer_code	Card_number
Name	Food_price	Expiration_date
Description	Delievry_charge	Security_code
PIZZA	VAT	
Pizza_name	Order_total	

1.2.3 List of data-fields from dominos.ae website.

• My Profile Page

Figure 16: Screenshot of the "My account" page on the Papa Johns' website.

Address Page

Figure 17: Screenshot of the "Add address" page on the Papa Johns' website.

• Menus

PIZZAS STARTERS BEVERAGES SALADS PASTAS EXTRAS KIDS MEAL

Figure 8: Screenshot of the Menus on the Papa Johns' website.

• Pizza Menu

Figure 18: Screenshot of the Pizza Menus on the Papa Johns' website.

Non-Pizza Menu

Figure 19: Screenshot of the "Non_pizza" menus on the Papa Johns' website.

Your Cart

Figure 20: Screenshot of Cart page on the Papa Johns' website.

Orders

Order Confirmation

Thank you for placing your Papa John's pizza order via our Online Ordering service.

Please find below the details of your order:

Customer ID: 36436

Online Order Number: 99999900048032

Order Type: Delivery Method of Payment: cash

Requested Delivery Time: ASAP

Restaurant:

MUNTAZAH, MUNTA Muntazah, Doha, Qatar. Doha, Qatar. Tel: 44 719843.

Call 44 247272

Order Detail:

	49.00	
pings	ppings	

Total QAR 49.00
Delivery Fee QAR 5.00
Grand Total QAR 54.00

Figure 21: Screenshot of the "Order Summary" section on the Papa Johns' website.

• Payment Page

Secure payment ♠

Figure 22: Screenshot of the "Payment" section on the Papa Johns' website.

Table 3, below, contains data-fields extracted during the analysis of the papajohns.ae website.

CUSTOMER	Description	VAT_total
First_name	PIZZA	Grand_total
Last_name	Name	Promo_code
Email	Quantity	ORDERS
Mobile_number	Size	Customer_ID
Phone	Price	Order_number
Password	Description	Order_type
Email_deals	Toppings	Payment_method
Date_of_birth	NON_PIZZA	Delivery_time
Address	Name	Restaurant_address
Text_deals	Quantity	Order_items
ADDRESS	Size	Quantity
Apartment_number	Price	Total
Location	Description	Delivery_fee
Building_number	Menu	Grand_total
Area_name	CART	PAYMENT
Road_number	Food_name	Card_number
Name_Location	Food_price	Expiry_month
City	Food_quantity	Expiry_year
Landmark	Size	Cardholder_name
MENUS	Sub_total	Securiy_code
Name	Delivery_charge	

1.3 Finalised List

Table 4, below, contains the final list of data-fields chosen after the analysis of the three websites chosen.

CUSTOMER	Date_added	Grand_total
Customer_ID	PIZZA	PAYMENT
First_name	Pizza_ID	Payment_ID
Last_name	Name	Payment_reference
Email	Price	Amount
Password	NON_PIZZA	Payment_date
Date_of_birth	Non_Pizza_ID	INGREDIENTS
Address	Name	Ingredient_ID
Email_offers	Price	Name
ADDRESS	Menu	Price
Address_ID	CART	STAFF
City	Cart_ID	Staff_ID
Area	Promo_code	Fist_name
Building_number	Recommendations	Last_name
Floor_number	Quantity	Email
Apartment_number	ORDERS	Password
Address_type	Order_ID	
MENUS	Order_date	
Menu_ID	Restaurant_address	
Name	Order_items	
Description	Order_total	

2. Database design

2.1 Extended Entity Relationship Model

Figure 23, on the next page represents the Extended Entity Relationship Model, which is base for a normalised model shown in figure 24.

As shown in the model shown in figure 23:

- Customer can have "0 to many" addresses
- An address can belong to only one customer
- Customer can have "0 to many" payments made
- A payment can only be unique to the specific customer
- Customer can have "0 to many" orders
- Each order can be placed by one customer only
- A staff can register "0 to many" orders
- Each order can only be registered by one staff only
- Store can have one or many staff members
- Each staff member can only be working in one store
- Orders can have one or more products
- A product can belong to "0 to many" orders
- A store can have 1 or many menus
- A menu can belong to only one store
- A menu can have 1 or many products
- A product can belong to 1 or many menus
- A Pizza can have 1 or many ingredients
- An ingredient can belong to 1 to many pizzas
- Products is a parent table and has the child tables; pizza and non_pizza.

Extended relationships between entities have been added. Aggregation is when if one entity instance is deleted the related instances will exist. Composition is when destroying one entity will destroy the other entity as well.

1839616 MOD002589 Extended Entity Relationship Model 31

1839616 MOD002589 INGREDIENTS Ingredient_ID INT(7) Ingredient_name VARCHAR(100) DECIMAL(10,2) Ingredient_price ORDERS PK Order_ID INT(10) ADDRESS PIZZA CUSTOMER FK Customer_ID INT(7) PK Address_ID PK Pizza_ID INT(10) INT(10) Customer_ID INT(7) FK Staff_ID INT(10) FK Customer_ID INT(7) **PRODUCTS** FK Product_ID INT(10) VARCHAR(50) First_name Store_ID INT(5) VARCHAR(100) PK Product_ID INT(10) Crust_ID INT(5) Last_name VARCHAR(50) Order_date DATETIME VARCHAR(100) Area VARCHAR(100) Size_ID INT(5) VARCHAR(100) Order_total DECIMAL(10,2) VARCHAR(20) TEXT VARCHAR(100) Building_number Description Name Password VARCHAR(250) VARCHAR(20) Order_status VARCHAR(20) DECIMAL(10,2) Price Date_of_birth DATE VARCHAR(10) Promo_code VARCHAR(20) Email_offers TINYINT(1) Address_type VARCHAR(20) NON_PIZZA Non_pizza_ID INT(10) FK PAYMENT Product_ID INT(10) STAFF PK Payment_ID INT(10) 1..1 Name VARCHAR(100) Staff_ID INT(10) FK Customer_ID INT(7) DECIMAL(10,2) Price Store_ID STORES MENUS Payment_reference VARCHAR(100) First_name VARCHAR(50) Store_ID INT(5) PK Menu ID INT(5) DECIMAL(10,2) VARCHAR(50) Last_name Staff_ID INT(10) INT(5) Store_ID DATETIME Payment_date VARCHAR(250) VARCHAR(100) Password VARCHAR(250) Store_address Description TEXT VARCHAR(200) - Building - Street VARCHAR(200) - Postcode CHAR(7) Delivery_type TINYINT(1) Collection - Delivery TINYINT(1)

Figure 23: Extended Entity Relationship Model

2.2 Normalised Model

The EERD in figure 23 has been normalised using normalisation techniques. Normalisation involves examining the relationships between attributes and ensure that there is no data redundancy to improve consistency.

The EERD in figure 23 is normalised to 3NF (Third normal form).

1NF is when an entity has an identifying key and there is no repeating attributes. The EERD has unique identifying keys but has repeating attributes in store, products, pizza, crust_ID, size_ID and ingredients tables. The EERD fails 1NF. To pass 1NF separate tables have been made for all attrubutes. Hence the EERD passes 1NF.

The Staff ID has been removed from the stores table.

The initial model did not contain any composite primary keys, therefore it passes the second normal form (2NF).

The 2NF EERD passes 3NF as it is in 2NF and no non-key attribute depends on any other non-key attribute.

- Pizza_ingredients table added to store ingredients used in each pizza.
- Crust and size tables added to store the attributes of the pizza.
- Pizza_specifications added to store the attributes of each pizza depending on the customer's choice
- Missing attributes are added to the tables.
- Order items to store details of the products ordered.
- Data types have been checked

Normalised Extended Entity Relationship Model

Figure 24: Normalised Extended Entity Relationship Model

2.3 Database Schema

Customer				
Attribute Name	Туре	Description		
Customer_ID	Int(7)	Primary Key, indexed, unique. 107 billion customers		
First_name	Varchar(50)	Holds customer's first name		
Last_name	Varchar(50)	Holds customer's last name		
Email	Varchar(100)	Holds customer's email		
Password	Varchar(250)	Holds customer's password. Encrypted form		
Date_of_birth	Date	Holds customer's date of birth		
Email_offers	Tinyint(1)	Holding customer's choice on receiving email offers		

Figure 25: Description of attributes stored in the customer table.

Address					
Attribute Name	Туре	Description			
Address_ID	Int(10)	Primary key, 107 billion possible addresses			
Customer_ID	Int(7)	Holds customer. Indexed. Referenced from customer table			
City	Varchar(100)	Holds customer's city			
Area	Varchar(100)	Holds customer's area			
Building_number	Varchar(20)	Holds customer's building number			
Floor_number	Varchar(20)	Holds customer's floor number			
Apartment_number	Varchar(20)	Holds customer's apartment number			
Address_type	Varchar(20)	Holds address per address_ID; "Home", "Business"			

Figure 26: Description of attributes stored in the address table.

Store				
Attribute Name	Туре	Description		
Store_ID	Int(5)	Primary key, Unique		
Name	Varchar(250)	Holds store's name		
Building	Varchar(200)	Holds store's building		
Street	Varchar(200)	Holds store's street		
Postcode	Char(7)	Holds store's postcode		
Delivery	Tinyint(1)	Holding store's choice of offering delivery option		
Collection	Tinyint(1)	Holding store's choice of offering collection option		

Figure 27: Description of attributes stored in the store table.

Staff					
Attribute Name	Туре	Description			
Staff_ID	Int(10)	Primary key, unique			
Store_ID	Int(5)	Holds stores, Indexed, Referenced from stores table			
First_name	Varchar(50)	Holds staff's first name			
Last_name	Varchar(50)	Holds staff's last name			
Email	Varchar(100)	Holds staff's email			
Password	Varchar(250)	Holds staff's password. Encrypted form			

Figure 28: Description of attributes stored in the staff table.

Menus				
Attribute Name	Туре	Description		
Menu_ID	Int(5)	Primary key, unique		
Store_ID	Int(5)	Holds stores', Referenced from stores table		
Name	Varchar(100)	Holds menu's name		
Description	Text	Holds menu's description		
Date_added	Datetime	Holds the date the menu was added		

Figure 29: Description of attributes stored in the menus table.

Menu_items			
Attribute Name Type Description			
Menu_ID	Int(5)	Holds menu, composite key, referenced from menu table	
Product_ID	Int(5)	Holds product, composite key, referenced from product table	

Figure 28: Description of attributes stored in the menu_items table.

Products			
Attribute Name	Туре	Description	
Product_ID	Int(10)	Primary key, unique	
Name	Varchar(100)	Holds products' name	
Description	Text	Holds products' description	
Price	Decimal(10,2)	Holds products' price	

Figure 28: Description of attributes stored in the product table.

Pizza			
Attribute Name	Туре	Description	
Pizza_ID	Int(10)	Primary key, unique	
Product_ID	Int(10)	Holds products, referenced from products table	

Figure 29: Description of attributes stored in the pizza table.

Pizza_Specifications			
Attribute Name Type Description			
Pizza_ID	Int(10)	Holds pizza, composite key, referenced from pizza table	
Crust_ID	Int(5)	Holds crust, composite key, referenced from crust table	
Size_ID	Int(5)	Holds size, composite key, referenced from size table	

Figure 30: Description of attributes stored in the pizza_specifications table.

Crust		
Attribute Name	Туре	Description
Crust_ID	Int(5)	Primary key, unique
Crust_name	Varchar(50)	Holds crusts' name

Figure 31: Description of attributes stored in the crust table.

Size				
Attribute Name	Туре	Description		
Size_ID	Int(5)	Primary key, unique		
Size	Enum('small', 'medium', 'large')	Holds sizes available as a drop down. Pre-defined		

Figure 32: Description of attributes stored in the size table.

Ingredients			
Attribute Name	Туре	Description	
Ingredient_ID	Int(7)	Primary key, unique	
Ingredient_name	Varchar(100)	Holds ingredient's name	
Ingredient_price	Decimal(10,2)	Holds ingredient's price	

Figure 33: Description of attributes stored in the ingredients table.

Pizza_ingredients			
Attribute Name	Туре	Description	
Pizza_ID	Int(10)	Holds pizza, composite key, referenced from pizza table	
Ingredient_ID	Int(7)	Holds ingredients, composite key, referenced from ingredients table	

Figure 34: Description of attributes stored in the Pizza_ingredients table.

Non_Pizza			
Attribute Name Type Description			
Non_pizza_ID	Int(10)	Primary key, unique	
Product_ID	Int(10)	Holds product, referenced from product table	

Figure 35: Description of attributes stored in the Non_pizza table.

Orders			
Attribute Name	Туре	Description	
Order_ID	Int(10)	Primary key, unique	
Customer_ID	Int(7)	Holds customer, referenced from customer table	
Staff_ID	Int(10)	Holds staff, referenced from staff table	
Store_ID	Int(5)	Holds store, referenced from store table	
Order_date	Datetime	Holds the date the order was made	
Delivery_fee	Decimal(5,2)	Holds delivery fee of an order	
Order_total	Decimal(10,2)	Holds total price of an order	
Order_status	Enum(Holds order status	
Promo_code	Varchar(10)	Holds promo codes	

Figure 36: Description of attributes stored in the order table.

Order_items			
Attribute Name	Туре	Description	
Order_ID	Int(10)	Holds orders, composite key, referenced from orders table	
Product_ID	Int(10)	Holds product, composite key, referenced from products table	
Quantity	Int(2)	Holds quantity of the products being ordered	
Price	Decimal(10,2)	Holds price	

Figure 37: Description of attributes stored in the order_items table.

Payment			
Attribute Name	Туре	Description	
Payment_ID	Int(10)	Primary key, unique	
Customer_ID	Int(7)	Holds customer, referenced from customer table	
Payment_reference	Varchar(100)	Holds payment reference for a payment	
Amount	Decimal(10,2)	Holds amount to be paid	
Payment_date	Datetime	Holds date the payment was made	

Figure 38: Description of attributes stored in payment table.

3. Database implementation

The database for the proposed system is built using phpMyAdmin, version 5.0.3. The database server provided is MariaDB, version 10.4.14.

Figure 39 shows the list of tables that use the storage engine (InnoDB). The number of rows represent the number of records (test data) that was entered. Some records were entered manually, whereas others (i.e rows in the customer, address, payment and staff tables) have been auto generated using filldb.info website (FillDB, 2016).

Figure 40: Details of tables in the proposed database.

The SQL statement generated upon creating and inserting data into the tables is displayed on the next page. The details of indexes, constraints and auto increments for respective tables have also been shown in pages 49, 50 and 51 resepctively.

Figure 40: Details of implementation of customer table

Figure 41: Details of implementation of address table

Figure 42: Details of implementation of store table

```
CREATE TABLE `staff` (
    staff_id` int(10) NOT NULL,
    store_id` int(5) NOT NULL,
    first_name` varchar(50) NOT NULL,
    inst_name` varchar(50) NOT NULL,
    inst_name` varchar(250) NOT NULL,
    inst_name` varchar(
```

Figure 43: Details of implementation of staff table

Figure 44: Details of implementation of menus table

```
-- Table structure for table `menu_items`
CREATE TABLE `menu_items` (
   menu_id` int(5) NOT NULL,
   product id` int(10) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='table to store menu items';
-- Dumping data for table `menu_items`
INSERT INTO `menu_items` (`menu_id`, `product_id`) VALUES
(1, 2),
(2, 22),
(3, 26),
(4, 1),
(5, 4),
(6, 24),
(7, 6),
(8, 20),
(9, 3),
(10, 13),
(11, 2),
(12, 25),
(13, 5),
(14, 22),
(15, 11),
(16, 26),
(17, 12),
(18, 23),
(19, 17),
(20, 16);
```

Figure 45: Details of implementation of menu_items table

```
CREATE TABLE 'products'

'product_id' int(10) MOT NULL,
'name' varcha(100) NOT NULL,
'name' varcha(100) NOT NULL,
'description' text NOT NULL,
'Description', 'Description', 'Description', 'price') VALUES
'Listed Text Nutrien', 'Price of Nutrien', 'Description', 'price') VALUES
'Listed Text Nutrien', 'Price of Nutrien', 'Description', 'price') VALUES
'Listed Text Nutrien', 'Price of Nutrien', 'Description', 'price') VALUES
'Listed Text Nutrien', 'Price of Nutrien', 'Special', 'Special', 'Special', 'Price of Nutrien', 'Price of N
```

Figure 46: Details of implementation of products table

Figure 47: Details of implementation of pizza table

```
-- Table structure for table `pizza_specifications`
-- CREATE TABLE `pizza_specifications` (
    `pizza_id` int(10) NOT NULL,
    `crust_id` int(5) NOT NULL,
    `size_id` int(5) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='table to store pizza attributes';
-- Dumping data for table `pizza_specifications`
-- INSERT INTO `pizza_specifications` (`pizza_id`, `crust_id`, `size_id`) VALUES
(2, 1, 3),
(2, 3, 3),
(2, 4, 2),
(3, 1, 3),
(3, 2, 2),
(4, 5, 1),
(4, 6, 3);
```

Figure 48: Details of implementation of pizza_specifications table

```
-- Table structure for table `crust`
-- CREATE TABLE `crust` (
    `crust_id` int(5) NOT NULL,
    `crust_name` varchar(50) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='table to store pizza crusts''';
-- Dumping data for table `crust`
-- INSERT INTO `crust` (`crust_id`, `crust_name`) VALUES
(1, 'Thin \'n crispy'),
(2, 'Pan'),
(3, 'Pizza mia'),
(4, 'Cheese crust'),
(5, 'stuffed crust'),
(6, 'Cheese stuffed crust');
```

Figure 49: Details of implementation of crust table

```
-- Table structure for table `size`

-- CREATE TABLE `size` (
    `size_id` int(5) NOT NULL,
    `size_name` enum('small','medium','large') NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='table to store pizza sizes''';

-- Dumping data for table `size`
-- INSERT INTO `size` (`size_id`, `size_name`) VALUES
(1, 'small'),
(2, 'medium'),
(3, 'large');
```

Figure 50: Details of implementation of size table

Figure 51: Details of implementation of ingredients table

```
-- Table structure for table `pizza_ingredients`
CREATE TABLE `pizza_ingredients` (
   pizza_id` int(10) NOT NULL,
  ingredient_id int(7) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='table to store pizza ingredients';
-- Dumping data for table `pizza_ingredients`
INSERT INTO `pizza_ingredients` (`pizza_id`, `ingredient_id`) VALUES
(1, 2),
(1, 3),
(2, 4),
(2, 6),
(3, 7),
(3, 8),
(4, 11),
(4, 12),
(5, 5),
(5, 10),
(6, 1),
(6, 5);
```

Figure 52: Details of implementation of pizza_ingredients table

```
-- Table structure for table `non_pizza`
CREATE TABLE `non_pizza` (
  `non_pizza_id` int(10) NOT NULL,
  `product_id` int(10) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='table to store non-pizza products';
-- Dumping data for table `non_pizza`
INSERT INTO `non_pizza` (`non_pizza_id`, `product_id`) VALUES
(1, 6),
(2, 7),
(3, 8),
(4, 9),
(5, 10),
(6, 11),
(7, 12),
(8, 13),
(9, 14),
(10, 15),
(11, 16),
(12, 17),
(13, 18),
(14, 19),
(15, 20),
(16, 21),
(17, 22),
(18, 23),
(19, 24),
(20, 25),
(21, 26);
```

Figure 53: Details of implementation of non_pizza table

```
CREATE TABLE 'orders' (
    'order_id' int(10) NOT NULL,
    'customer_id' int(7) NOT NULL,
    'staff_id' int(10) NOT NULL,
    'staff_id' int(10) NOT NULL,
    'store_id' int(5) NOT NULL,
    'store_id' int(5) NOT NULL,
    'order_date' datetime NOT NULL,
    'order_date' datetime NOT NULL,
    'order_fotal' decimal(10,2) NOT NULL,
    'order_status' enum('received','being prepared','out for delivery','ready for collection','completed') NOT NULL,
    'promo_code' varchar(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='table to store orders''';

--- Dumping data for table 'orders'

INSERT INTO 'orders' ('order_id', 'customer_id', 'staff_id', 'store_id', 'order_date', 'delivery_fee', 'order_total', 'order_status', 'promo_code') VALUES
(1, 1, 1, '2020-12-09 21:50:23', '5.00', '30.00', 'out for delivery', 'PZ50'),
(2, 2, 1, 1, '2017-12-09 23:02:31', '6.50', '40.00', 'out for delivery', NULL),
(3, 3, 1, 1, '2020-12-10 07:58:20', '5.00', '40.00', 'out for delivery', NULL),
(5, 4, 6, 3, '2018-01-09 02:59:39', NULL, '36.00', 'being prepared', 'NE20'),
(6, 8, 1, 1, '2017-12-09 17:12:47', '4.50', '52.00', 'completed', NULL),
(7, 2, 13, 7, '2020-12-09 23:03:04', '4.50', '52.00', 'completed', NULL),
(8, 3, 13, 7, '2020-12-09 23:03:04', '4.50', 'ready for collection', 'SD35');
```

Figure 54: Details of implementation of orders table

```
CREATE TABLE `order_items` (
    `order_id' int(10) NOT NULL,
    `product_id' int(10) NOT NULL,
    `product_specification' varchar(150) DEFAULT NULL COMMENT 'Product Specifications chosen by the customers are shown here',
    `quantity' int(2) NOT NULL,
    `price' decimal(10,2) NOT NULL

ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='table to store order items''';

--
-- Dumping data for table `order_items`

INSERT INTO `order_items` (`order_id', `product_id', `product_specification', `quantity', `price`) VALUES
(1, 2, 'Thin\'n crispy crust and large size', 1, '42.00'),
    (1, 9, 'No cheese', 2, '10.00'),
    (2, 3, 'Pan crust and medium sized', 2, '40.00'),
    (2, 7, NULL, 4, '16.00'),
    (2, 22, 'large Cola', 1, '3.00'),
    (3, 4, 'Stuffed crust and small sized', 3, '65.00'),
    (4, 4, 'Cheese stuffed crust and large sized', 2, '34.00'),
    (5, 2, 'pizza mia crust and large sized', 1, '43.00'),
    (5, 2, 'large milkshake', 2, '10.00'),
    (7, 3, 'Thin\'n crispy crust and large sized', 4, '32.00'),
    (8, 2, 'Cheese crust and medium size', 2, '40.00');
```

Figure 55: Details of implementation of order_items table

Figure 56: Details of implementation of payment table

```
-- Indexes for dumped tables
                                                              -- Indexes for table `size`
                                                              ALTER TABLE `size`
-- Indexes for table `address`
                                                               ADD PRIMARY KEY (`size_id`);
ALTER TABLE `address`
  ADD PRIMARY KEY ('address_id'),
                                                              -- Indexes for table `ingredients`
  ADD KEY `customer_id` (`customer_id`);
                                                             ALTER TABLE `ingredients`
-- Indexes for table `customer`
                                                               ADD PRIMARY KEY (`ingredient_id`);
ALTER TABLE `customer`
 ADD PRIMARY KEY ('customer_id');
                                                              -- Indexes for table `pizza ingredients`
                                                             ALTER TABLE `pizza_ingredients`
-- Indexes for table `store`
                                                               ADD PRIMARY KEY (`pizza_id`,`ingredient_id`),
                                                               ADD KEY `ingredient_id` (`ingredient_id`);
ALTER TABLE `store`
 ADD PRIMARY KEY (`store_id`);
                                                              -- Indexes for table `non pizza`
-- Indexes for table `staff`
                                                              ALTER TABLE `non pizza`
                                                               ADD PRIMARY KEY (`non_pizza_id`),
ALTER TABLE 'staff'
                                                               ADD KEY `product_id` (`product_id`);
 ADD PRIMARY KEY (`staff_id`),
  ADD KEY `store_id` (`store_id`);
                                                              -- Indexes for table `orders`
-- Indexes for table `menus`
                                                             ALTER TABLE `orders'
ALTER TABLE 'menus'
                                                               ADD PRIMARY KEY (`order_id`),
 ADD PRIMARY KEY (`menu_id`),
ADD KEY `store_id` (`store_id`);
                                                               ADD KEY `customer_id` (`customer_id`),
ADD KEY `staff_id` (`staff_id`),
ADD KEY `store_id` (`store_id`);
-- Indexes for table `menu_items`
                                                              -- Indexes for table `order_items`
ALTER TABLE `menu_items`
  ADD PRIMARY KEY ('menu_id', 'product_id'),
                                                             ALTER TABLE `order_items`
  ADD KEY `product_id` (`product_id`);
                                                               ADD PRIMARY KEY ('order_id', 'product_id'),
                                                               ADD KEY `product_id` (`product_id`);
-- Indexes for table `products`
ALTER TABLE 'products'
                                                              -- Indexes for table `payment`
 ADD PRIMARY KEY ('product_id');
                                                             ALTER TABLE 'payment'
                                                               ADD PRIMARY KEY (`payment_id`),
-- Indexes for table `pizza`
                                                               ADD KEY `customer_id` (`customer_id`);
ALTER TABLE 'pizza'
 ADD PRIMARY KEY ('pizza_id'),
 ADD KEY `product_id` (`product_id`);
-- Indexes for table `pizza_specifications`
ALTER TABLE `pizza_specifications`
 ADD PRIMARY KEY (`pizza_id`,`crust_id`,`size_id`),
ADD KEY `pizza_id` (`pizza_id`),
ADD KEY `crust_id` (`crust_id`),
ADD KEY `size_id` (`size_id`);
-- Indexes for table `crust`
ALTER TABLE `crust`
  ADD PRIMARY KEY (`crust_id`);
```

Figure 57: Details of the indexes

```
-- Constraints for table `address`
ALTER TABLE `address`
   ADD CONSTRAINT `address_ibfk_1` FOREIGN KEY (`customer_id`) REFERENCES `customer` (`customer_id`) ON DELETE CASCADE ON UPDATE CASCADE;
   ADD CONSTRAINT `staff_ibfk_1` FOREIGN KEY (`store_id`) REFERENCES `store` (`store_id`) ON DELETE CASCADE ON UPDATE CASCADE;
-- Constraints for table 'menus'
ALTER TABLE `menus
   ADD CONSTRAINT 'menus_ibfk_1' FOREIGN KEY ('store_id') REFERENCES 'store' ('store_id') ON DELETE CASCADE ON UPDATE CASCADE;
-- Constraints for table `menu_items`
ALTER TABLE `menu_items
   THE TABLE MEMOLITURE MEMOLITURE (") TO ADD CONSTRAINT MEMOLITURE (") ON DELETE CASCADE ON UPDATE CASCADE, ADD CONSTRAINT `menu_items_ibfk_3` FOREIGN KEY (`menu_id`) REFERENCES `menus` (`menu_id`) ON DELETE CASCADE ON UPDATE CASCADE;
-- Constraints for table `pizza
   ADD CONSTRAINT `pizza_ibfk_1` FOREIGN KEY (`product_id`) REFERENCES `products` (`product_id`) ON DELETE CASCADE ON UPDATE CASCADE;
-- Constraints for table `pizza_specifications`
ALTER TABLE `pizza_specifications`
   ADD CONSTRAINT `pizza_specifications_ibfk_1` FOREIGN KEY (`pizza_id`) REFERENCES `pizza` (`pizza_id`) ON DELETE CASCADE ON UPDATE CASCADE,
ADD CONSTRAINT `pizza_specifications_ibfk_2` FOREIGN KEY (`crust_id`) REFERENCES `crust` (`crust_id`) ON DELETE CASCADE ON UPDATE CASCADE,
ADD CONSTRAINT `pizza_specifications_ibfk_3` FOREIGN KEY (`size_id`) REFERENCES `size` (`size_id`) ON DELETE CASCADE ON UPDATE CASCADE;
-- Constraints for table `pizza_ingredients`
ALTER TABLE `pizza_ingredients`

ADD CONSTRAINT `pizza_ingredients_ibfk_1` FOREIGN KEY (`ingredient_id`) REFERENCES `ingredients` (`ingredient_id`) ON DELETE CASCADE ON UPDATE CASCADE,

ADD CONSTRAINT `pizza_ingredients_ibfk_2` FOREIGN KEY (`pizza_id`) REFERENCES `pizza` (`pizza_id`) ON DELETE CASCADE ON UPDATE CASCADE;
-- Constraints for table `non pizza`
--
ALTER TABLE `non_pizza`
ADD CONSTRAINT `non_pizza_ibfk_1` FOREIGN KEY (`product_id`) REFERENCES `products` (`product_id`) ON DELETE CASCADE ON UPDATE CASCADE;
ALTER TABLE `orders`
   ADD CONSTRAINT `orders_ibfk_1` FOREIGN KEY (`customer_id`) REFERENCES `customer` (`customer_id`),
ADD CONSTRAINT `orders_ibfk_2` FOREIGN KEY (`store_id`) REFERENCES `store` ('store_id`),
ADD CONSTRAINT `orders_ibfk_3` FOREIGN KEY (`staff_id`) REFERENCES `staff` (`staff_id`);
-- Constraints for table `order items`
ALTER TABLE `order_items`
ADD CONSTRAINT `order_items_ibfk_1` FOREIGN KEY (`product_id`) REFERENCES `products` (`product_id`),
ADD CONSTRAINT `order_items_ibfk_2` FOREIGN KEY (`order_id`) REFERENCES `orders` (`order_id`) ON DELETE CASCADE ON UPDATE CASCADE;
-- Constraints for table 'payment'
ALTER TABLE 'payment'
                         `payment_ibfk_1` FOREIGN KEY (`customer_id`) REFERENCES `customer` (`customer_id`) ON DELETE CASCADE ON UPDATE CASCADE;
```

Figure 58: Details of the constraints

```
-- AUTO_INCREMENT for table 'address'
ALTER TABLE 'address'
 MODIFY 'address_id' int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=21;
-- AUTO_INCREMENT for table `customer`
ALTER TABLE 'customer'
  MODIFY 'customer_id' int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=11;
-- AUTO_INCREMENT for table `store`
ALTER TABLE 'store'
MODIFY 'store_id' int(5) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=11;
-- AUTO_INCREMENT for table `staff`
ALTER TABLE `staff`
MODIFY `staff_id` int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=21;
-- AUTO_INCREMENT for table `menus`
ALTER TABLE 'menus'
  MODIFY 'menu_id' int(5) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=21;
-- AUTO_INCREMENT for table `products`
ALTER TABLE 'products'
MODIFY 'product_id' int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=27;
-- AUTO_INCREMENT for table `pizza`
ALTER TABLE 'pizza'
MODIFY 'pizza'id' int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=7;
-- AUTO_INCREMENT for table `crust`
ALTER TABLE 'crust'
MODIFY 'crust_id' int(5) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=7;
-- AUTO_INCREMENT for table 'size'
ALTER TABLE 'size'
MODIFY 'size_id' int(5) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=4;
-- AUTO_INCREMENT for table 'ingredients'
ALTER TABLE 'ingredients'
MODIFY 'ingredient_id' int(7) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=13;
-- AUTO_INCREMENT for table 'non_pizza'
ALTER TABLE 'non_pizza'
  MODIFY 'non_pizza_id' int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=22;
-- AUTO_INCREMENT for table 'orders'
ALTER TABLE 'orders'
MODIFY 'order_id' int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=9;
-- AUTO_INCREMENT for table 'payment'
ALTER TABLE 'payment'
  MODIFY 'payment_id' int(10) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=11;
```

Figure 59: Details of auto increment

4. SQL Queries

The queries in this section consist of SQL SELECT queries designed to imitate real business situations and their business purpose.

There are a total of 5 queries shown and all of them are SELECT queries. SELECT statement selects data from the database and stores the data in a result table. The queries also consists of at least a JOIN and WHERE or any other function.

4.1 Query 1

4.1.1 Business purpose of the query

As a marketing manager, I would like to know the customers who have an account on the website, but failed to make an order, providing they have agreed to receive offers through email. I would like to send them a voucher coupon.

4.1.2 Query in natural language

Show names and emails of customers who have an account on the website but have failed to make an order. Customers who agreed to receive email offers have been displayed.

4.1.3 SQL code and output

Figure 60: Query 1 SQL code

Customer Name	Email
Kylee Haley	gerardo.mraz@example.net
Bonita O'Keefe	rempel.theresia@example.com

Figure 61: Query 1 output

4.1.4 Explanation of query's output

The query produced the output that was expected, out of 10 customers from the database there are 5 customers who haven't made an order but only 2 have agreed to receive email offers and others have not.

4.2 Query 2

4.2.1 Business purpose of the query

As a purchasing manager, I would like to know which pizza was best selling, so I can put it in an upcoming promotional offer.

4.2.2 Query in natural language

Show the names and product ID's of the best selling products along with the number of items sold. Order the list by number of items sold, in descending order.

4.2.3 SQL code and output

```
SELECT products.product_id AS 'Product ID',
    products.name AS 'Product name',
    SUM(order_items.quantity) AS 'Number sold'

FROM
    order_items

JOIN products
    ON(products.product_id = order_items.product_id)

INNER JOIN pizza
    WHERE(pizza.product_id = order_items.product_id)

GROUP BY products.product_id = order_items.product_id)

GROUP BY SUM(order_items.quantity) DESC

LIMIT 1
```

Figure 63: Query 2 SQL code

Product ID	Product name	Number sold	
3	Super Supreme	6	

Figure 64: Query 2 output

4.2.4 Explanation of query's output

Product ID	Product name	Number sold
3	Super Supreme	6
	Dynamite Shrimp	5
2	Cheeky Chicken	4

The table above shows all the pizzas that were sold in descending order and the query produces the best selling pizza which was "Super Supreme".

4.3 Query 3

4.3.1 Business purpose for the query

As the line manager, I want to know how many orders a staff member has registered and the total sales generated by the staff member, providing they have registered an order, and to give the staff member with the most registered orders a pay raise.

4.3.2 Query in natural language

Displays the name of the staff member that has registered the most orders and the total sales generated by the staff member.

4.3.3 SQL code and output

Figure 65: SQL code for Query 3

Staff ID	Staff name	Number of Orders	Total sales
1	Camila Reilly	4	149.00
13	Quinn Lockman	2	80.50
6	Annie Padberg	1	36.00
3	Rosalinda Buckridge	1	45.00

Figure 66: output for query 3

4.3.4 Explanation of query's output

The query produces all the names of the staff member and their staff IDs' of staff that have registered an order and displays the number of orders each staff has registered in descending order and total sales generated by the staff member.

4.4 Query 4

4.4.1 Business purpose for the query

As a software developer, I would like to send an email to the customer to notify them that they can collect the order once the order status changes to "ready for collection".

4.4.2 Query in natural language

Send an email to the customer regarding order collection as the order status is "ready for collection".

4.4.3 SQL code and output

Figure 67: SQL code for query 4

Order ID	Order status	Customer Name	Customer Email
8	ready for collection	Darrel Braun	bergnaum.providenci@example.com
2	ready for collection	Bonita O'Keefe	rempel.theresia@example.com
7	ready for collection	Romaine Swaniawski	chris46@example.com

Figure 68: output for query 4

4.4.4 Explanation of query's output

The query produces the result expected and displays all the orders that are ready to be collected. The table below shows all the orders placed. Exactly 3 orders are ready for collection.

order_id	customer_id	staff_id	store_id	order_date	delivery_fee	order_total	order_status	promo_code
1	1	1	1	2020-12-09 21:50:23	5.00	30.00	out for delivery	PZ50
2	5	1	1	2019-12-09 23:49:15	NULL	27.00	ready for collection	NULL
3	3	1	1	2017-12-09 23:02:31	6.50	40.00	out for delivery	NULL
4	1	3	2	2020-12-10 07:58:20	5.00	45.00	completed	NULL
5	4	6	3	2018-01-09 02:59:39	NULL	36.00	being prepared	RE20
6	8	1	1	2017-12-09 17:12:47	4.50	52.00	completed	NULL
7	2	13	7	2020-12-07 17:18:35	NULL	33.00	ready for collection	45WE
8	3	13	7	2020-12-09 23:03:04	4.50	47.50	ready for collection	SD35

4.5 Query 5

4.5.1 Business purpose for the query

As the store manager I would like to notify the store to update its menu if it has been added before the year 2017 to attract more customers.

4.5.2 query in natural language

Show the name of the stores that have had their menu added before the year 2017

4.5.3 SQL code and output

Figure 70: SQL code for query 5

Store Name	Menu ID	Date Added for menu	
Pizza Hut - Fermville	_	2015-12-02 09:51:01	
Pizza Hut - New soledad	3	2012-12-07 14:42:37	

Figure 71: output for query 5

4.5.4 Explanation of query's output

The query produces all the names of the stores that have had their menu added before 2017 with store name in ascending order. The table below shows all the menus added for each store and it can be seen that only 2 stores have had their menus added before 2017.

menu_id	store_id	name	description	date_added
1	1	Starters and pizzas for Ferm store	This menu consists of all pizzas - Fermville	2017-12-09 09:51:01
2	1	Drinks and sides menu for Ferm store	This menu consists of all sides - Fermville	2015-12-02 09:51:01
3	2	Drinks menu for soledad store	This menu consists of all the drinks - soledad	2012-12-07 14:42:37
4	2	Starters and pizzas for new soledad store	This is the starters menu for soledad Store	2020-12-07 03:38:46
5	3	Pizzas menu for south store	this is the menu for all pizzas in south store	2020-12-01 03:38:46
6	3	Drinks menu for south store	This menu stores all drinks for south store	2020-12-10 03:43:19
7	4	Starters menu for west store	Stores all starters for the west store	2020-12-03 03:43:19
8	4	Drinks menu for west	This stores all drinks for west store	2020-11-10 03:45:27
9	5	Starters menu for jasper store	Stores all starters for the jasper store	2020-12-01 03:47:38
10	5	Drinks menu for jasper store	This stores all drinks for jasper store	2020-11-02 03:47:53
11	6	Starters menu for lionel store	Stores all starters for the lionel store	2020-10-09 03:48:00
12	6	Drinks menu for leionI store	This stores all drinks for lionel store	2020-10-18 03:48:05
13	7	Starters menu for rowland store	Stores all starters for the rowland store	2020-12-05 03:48:16
14	7	Drinks menu for rowland store	This stores all drinks for rowland store	2020-12-03 03:48:22
15	8	Starters menu for lockman store	Stores all starters for the lockman store	2020-11-20 03:48:27
16	8	Drinks menu for lockman store	This stores all drinks for lockman store	2020-11-22 03:48:32
17	9	Starters menu for harmon store	Stores all starters for the harmon store	2020-11-25 03:48:38
18	9	Drinks menu for harmon store	This stores all drinks for harmon store	2020-10-21 03:48:45
19	10	Starters menu for lake store	Stores all starters for the lake store	2020-11-29 03:48:50
20	10	Drinks menu for lake store	This stores all drinks for lake store	2020-10-09 03:48:56

REFERENCES

items, H., Vernon, M. and Altamimi, A., 2020. *How To Get A List/Result Of Best Selling Items*. [online] Database Administrators Stack Exchange. Available at: https://dba.stackexchange.com/questions/52476/how-to-get-a-list-result-of-best-selling-items [Accessed 2 December 2020].

Drkusic, E., 2020. *Learn SQL: SQL Query Examples*. [online] SQL Shack - articles about database auditing, server performance, data recovery, and more. Available at: https://www.sqlshack.com/learn-sql-sql-query-examples/ [Accessed 11 November 2020].

Guru99.com. 2020. *What Is Normalization? 1NF, 2NF, 3NF, BCNF Database Example*. [online] Available at: https://www.guru99.com/database-normalization.html [Accessed 3 December 2020].

W3schools.com. 2020. *PHP Mysql Insert Multiple Records*. [online] Available at: https://www.w3schools.com/php/php_mysql_insert_multiple.asp [Accessed 6 December 2020].