III. Optimale Portfolioselektion

Schon bei der Bewertung amerikanischer Optionen haben wir gesehen, dass Optimierungsprobleme in der Finanzmathematik eine wichtige Rolle spielen. Ein weiteres Optimierungsproblem sind optimale Investitionsentscheidungen. Zur Lösung solcher Probleme werden wir die *dynamische Programmierung* verwenden.

Beispiel 3.1.1 (Apfelbäume)

(Beispiel auf Folie.)

3.1.1. Problemstellung

Wir betrachten Optimierungsprobleme in diskreter Zeit mit endlichen Zeithorizont T. Sei X ein Markov-Prozess, der Werte im Zustandsraum $\mathscr X$ annimmt. Sei $\mathscr A$ die Menge der zulässigen Handlungen. Falls der Prozess im Zustand $x \in \mathscr X$ ist und man eine Handlung $a \in \mathscr A$ wählt, bekommt man einen Gewinn von r(x,a). Der Prozess springt zu einem neuen Zustand und hat dabei die Verteilung $P(x,a,\cdot)$. Das Ziel ist es, die Handlungen so zu wählen, dass man

$$\sup E\left[\sum_{t=0}^{T-1} \beta^t r(X_t, a_t) + \beta^T R(X_T)\right]$$

erhält. Hier ist $\beta \in (0,1]$ der Diskontfaktor und $R(\cdot)$ beschreibt den Gewinn zum Endzeitpunkt T. Die Handlung a_t wird zur Zeit t gewählt und darf nur von Informationen bis zur Zeit t abhängen.

3.1.2. Lösung

Wir definieren die Wertfunktion

$$V_T(x) = R(x)$$

$$V_t(x) = \sup E[\sum_{i=t}^{T} \beta^{i-t} r(X_i, a_i) + \beta^{T-t} R(X_T) \mid X_t = x]$$

für t = T - 1, ..., 0.

Dann erfüllt die Wertfunktion die Bellman-Gleichung

$$V_t(x) = \sup_{a \in \mathcal{A}} \{ r(x, a) + \beta \int V_{t+1}(y) P(x, a, dy) \}.$$

3.2. Bestimmung optimaler Portfolios durch dynamische Programmierung

Sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum. Seien R_t^k , t = 1, ..., T, k = 1, ..., d Zufallsvariablen auf diesem Wahrscheinlichkeitsraum. Wir betrachten einen Finanzmarkt mit einem Bond und d risiko-

behafteten Anlagemöglichkeiten (Aktien). Sei r_t die Verzinsung der risikolosen Anlage im Intervall [t-1,t), $r_t \in \mathbb{R}_+$ und sei R_t^k die zufällige Verzinsung der k-ten Aktie im Intervall [t-1,t). Wir nehmen an, dass die Zufallsvektoren $R_t = (R_t^1, \ldots, R_t^d)$ unabhängig sind mit gegebener Verteilung.

Sei a_t^k der Betrag, der zur Zeit t in die k-te Aktie investiert wird und X_t das Vermögen zur Zeit t. Dann ist $X_t - \sum_{k=1}^d a_t^k$ der Betrag, der zur Zeit t in die risikolose Anlagemöglichkeit investiert wird. Sei $X_0 = x \in \mathbb{R}$ das Anfangsvermögen. Dann gilt für $t = 0,1,\ldots,T-1$: $X_{t+1} = r_{t+1}(X_t - \sum_{k=1}^d a_t^k) + \sum_{k=1}^d a_t^k R_{t+1}^k = X_{t+1}^a$. Wir nehmen an, dass die Investitionsentscheidung zur Zeit t nur vom Vermögen zur Zeit t abhängt.

Definition 3.2.1

Ein Anlagepolitik $\pi = (f_0, f_1, ..., f_{T-1})$ ist eine Folge von Entscheidungsregeln $f_t : \mathbb{R} \to \mathbb{R}^d$, wobei $f_t(x) = (f_t^1(x), ..., f_t^d(x))$ ist. Dabei gibt $f_t^k(x)$ den Betrag an, der zur Zeit t in die k-te Aktie investiert wird, in Abhängigkeit vom Vermögen x zur Zeit t.

Für eine gegebenene Anlagepolitik $\pi = (f_0, f_1, ..., f_{T-1})$ gilt $X_1 = X_1^{f_0(x)}, ..., X_{t+1} = X_{t+1}^{f_t(x)}$

Definition 3.2.2

Für $t=0,1,\ldots,T$ und $x\in\mathbb{R}$ sei $V_t(x)\coloneqq\sup_{\pi}E_{\pi}[U(X_T)\mid X_t=x]$, wobei $U:\mathbb{R}\to\mathbb{R}$ eine Nutzenfunktion ist. $V_t(x)$ ist der maximale erwartete Nutzen vom Endvermögen, wenn man zum Zeitpunkt t mit Kapital x startet. Falls

$$E_{\pi^*}[U(X_T) \mid X_t = x] = \sup_{\pi} E_{\pi}[U(X_T) \mid X_t = x],$$

dann ist π^* eine *optimale Anlagepolitik* für das (T-t)-stufige Problem.

Wir suchen $V_0(X)$ und π^* für das T-stufige Problem. $V_t(x)$ kann rekursiv berechnet werden:

Satz 3.2.3

Es gilt für $x \in \mathbb{R}$: $V_T(x) = U(x)$ und für t = T - 1, ..., 0:

$$\begin{split} V_t(x) &= \sup_{a = (a_1, \dots, a_d) \in \mathbb{R}^d} E[V_{t+1}(X_{t+1}^a) \mid X_t = x] \\ &= \sup_{a = (a_1, \dots, a_d) \in \mathbb{R}^d} E[V_{t+1}(r_{t+1}(x - \sum_{k=1}^d a_k) + \sum_{k=1}^d a_k R_{t+1}^k) \mid X_t = x] =: UV_{t+1}(x) \end{split}$$

Beweis

Sei $x \in \mathbb{R}$. Für t = T gilt $V_T(x) = \sup_{\pi} E[U(X_T) \mid X_T = x] = U(x)$.

Sei $t=T-1,\ldots,0$. Wir zeigen zuerst $V_t(x)\leq UV_{t+1}(x)$. Sei π eine beliebige Anlagepolitik. Dann gilt

$$\begin{split} E_{\pi}[U(X_T) \mid X_t = x] &= E_{\pi}[E_{\pi}[U(X_T) \mid X_{t+1}^{f_t(x)}] \mid X_t = x] \\ &\leq E_{\pi}[V_{t+1}(X_{t+1}^{f_t(x)}) \mid X_t = x] \\ &\leq UV_{t+1}(x). \end{split}$$

Nun bilde das Supremum über alle Anlagepolitiken π . Dann gilt $V_t(x) \leq UV_{t+1}(x)$.

Wir zeigen nun $V_t(x) \ge UV_{t+1}(x)$ für t = T - 1, ..., 0 und $x \in \mathbb{R}$.

Für $\varepsilon > 0$ existiert eine Entscheidungsregel $f_t(x)$, so dass

$$E[V_{t+1}(X_{t+1}^{f_t(x)}) \mid X_t = x] = E[V_{t+1}(r_{t+1}(x - \sum_{k=1}^d f_t^k) + \sum_{k=1}^d f_t^k R_{t+1})] \ge UV_{t+1}(x) - \varepsilon$$

für alle $x \in \mathbb{R}$.

Sei nun t = T - 1 und π die Anlagepolitik, die aus diesen Entscheidungsregeln besteht. Dann folgt

$$E_{\pi}[U(X_T)\mid X_{T-1}=x]\geq UV_T(x)-\varepsilon\geq V_{T-1}-\varepsilon.$$

Bilde nun das Supremum über alle Anlagepolitiken π . Dann gilt $V_{T-1}(x) \ge UV_T(x) - \varepsilon$. Mit $\varepsilon \to 0$ folgt $V_{T-1}(x) \ge UV_T(x)$.

Sei nun t = T - 2:

$$\begin{split} E_{\pi}[U(X_T) \mid X_{T-2} = x] &= E_{\pi}[E_{\pi}[U(X_T) \mid X_{T-1}] \mid X_{T-2} = x] \\ &\geq E_{\pi}[V_{T-1}(X_{T-1}) \mid X_{T-2} = x] - \varepsilon \\ &\geq UV_{T-1}(x) - 2\varepsilon \\ &\geq V_{T-2}(x) - 2\varepsilon \end{split}$$

Bilde das Supremum über alle Anlagepolitiken π . Dann folgt $V_{T-2}(x) \ge UV_{T-1}(x) - 2\varepsilon$. Mit $\varepsilon \to 0$ folgt $V_{T-2}(x) \ge UV_{T-1}(x)$.

Durch vollständige Induktion folgt die Behauptung.

Bemerkung 3.2.4

• Zur Erinnerung: Für HARA-Nutzenfunktionen gilt

$$\frac{1}{ARA(x)} = -\frac{u'(x)}{u''(x)} = Ax + B$$

mit Konstanten A, B.

• Häufig wird diese Klasse von Nutzenfunktionen in der Portfoliooptimierung betrachtet. Unter gewissen Annahmen lassen sich hier teilweise explizite Lösungen ermitteln.

Beispiel 3.2.5

Exponentieller Nutzen: Wir beschränken uns auf den Fall d=1. Sei $U(x)=-e^{-\gamma x}$ für $\gamma>0$. Hier ist ARA $(x)=-\frac{U''(x)}{U'(x)}=\gamma$ und daher $U''(x)=-\gamma U'(x)$. Die zufällige Verzinsung der Aktie sei normalverteilt, das heißt $R\sim N(\mu,\sigma^2)$. Wir berechnen die optimale Strategie und die Wertfunktion.

Idee: Wir versuchen eine analytische Form der Wertfunktion zu ermitteln. Wir beginnen bei T und arbeiten uns nach vorne durch:

$$V_T(x) = E[U(X_T) | X_T = x] = U(x).$$

Anwendung der dynamischen Programmierung liefert

$$\begin{split} V_{T-1}(x) &= \sup_{a_{T-1}} E[V_T(X_T) \mid X_{T-1} = x] \\ &= \sup_{a_{T-1}} E[V_T(r_T(x - a_{T-1}) + a_{T-1}R_T)] \\ &= \sup_{a_{T-1}} E[U(r_T(x - a_{T-1}) + a_{T-1}R_T)] \\ &= \sup_{a_{T-1}} E[-\exp(-\gamma(r_T(x - a_{T-1}) + a_{T-1}R_T))] \\ &= \sup_{a_{T-1}} (-1)e^{-\gamma r_T x} e^{\gamma r_T a_{T-1}} E[e^{-\gamma a_{T-1}R_T}] \\ &= \sup_{a_{T-1}} (-1)e^{-\gamma r_T x} e^{\gamma r_T a_{T-1}} e^{\mu(-\gamma a_{T-1}) + \frac{\sigma^2}{2} \gamma^2 a_{T-1}^2} \\ &= \sup_{a_{T-1}} (-1)e^{-\gamma r_T x} \exp(a_{T-1}\gamma(r_T - \mu) + \frac{1}{2} a_{T-1}^2 \gamma^2 \sigma^2) \end{split}$$

Wir berechnen das Infimum von $h_{T-1}(a) := a\gamma(r_T - \mu) + \frac{1}{2}a^2\gamma^2\sigma^2$:

$$h'(a) = \gamma(r_T - \mu) + a\gamma^2\sigma^2 = 0 \iff a = \frac{\mu - r_T}{\sigma^2} \frac{1}{\gamma}$$

und h''(a) > 0. Einsetzen liefert

$$V_{T-1}(x) = U(xr_T) \exp(\frac{\mu - r_T}{\sigma^2} \frac{1}{\gamma} (r_T - \mu) \gamma + \frac{(\mu - r_T)^2}{\sigma^2 \sigma^2} \frac{1}{\gamma^2} \gamma^2 \frac{\sigma^2}{2})$$

$$= U(r_T x) \underbrace{\exp(-\frac{1}{2} \frac{(\mu - r_T)^2}{\sigma^2})}_{=:h_T}$$

Dann für t = T - 2:

$$V_{T-2}(x) = \sup_{a} E[U(r_T X_{T-1}) \exp(-\frac{1}{2} \frac{(\mu - r_T)^2}{\sigma^2}) \mid X_{T-2} = x]$$

$$= \dots = \sup_{a} b_T(-1) e^{-\gamma r_T r_{T-1} x} \exp(a\gamma r_T (r_{T-1} - \mu) + \frac{1}{2} a^2 \gamma^2 r_T^2 \sigma^2)$$

Ähnlich wie zuvor ist $h_{T-2}(a) := a\gamma r_T(r_{T-1} - \mu) + \frac{1}{2}a^2r_T^2\sigma^2$ und

$$h'(a) = 0 \iff a = \frac{\mu - r_{T-1}}{\sigma^2} \frac{1}{\gamma} \frac{1}{r_T}.$$

Damit gilt

$$V_{T-2}(X) = U(r_T r_{T-1} x) \underbrace{b_T \exp(-\frac{(\mu - r_{T-1})^2}{2\sigma^2})}_{=:b_{T-1}}$$

Wir "raten" jetzt die analytische Form der Wertfunktion und der optimalen Strategie und beweisen das durch Induktion.

Es gilt für alle t = T - 2, ..., 1, 0

$$V_t(x) = U(r_{t+1} \cdot \dots \cdot r_T x) b_{t+1}$$
$$f_t = \frac{\mu - r_{t+1}}{\sigma^2} \frac{1}{\gamma} \frac{1}{r_{t+2} \cdot \dots \cdot r_T}$$

was für t = T - 1, T - 2 schon gezeigt ist. Wir zeigen den Schritt von t + 1 nach t.

$$\begin{split} V_{t}(x) &= \sup_{a} E[V_{t+1}(X_{t+1}^{a}) \mid X_{t} = x] \\ &= \sup_{a} E[V_{t+1}(r_{t+1}(x-a) + aR)] \\ &= \sup_{a} E[U(\underbrace{r_{t+2} \cdot \dots \cdot r_{T}}_{=:\tilde{r}}(r_{t+1}(x-a) + aR))] \cdot b_{t+2} \\ &= \sup_{a} (-1)b_{t+2} \exp(-\gamma \tilde{r} r_{t+1}(x-a)) E[\exp(-\gamma \tilde{r} aR)] \\ &= \sup_{a} (-1)b_{t+2} \exp(-\gamma \tilde{r} r_{t+1}(x-a)) \exp(-\gamma \tilde{r} a\mu + \frac{1}{2}\sigma^{2}\gamma^{2}\tilde{r}^{2}a^{2}) \\ &= \sup_{a} (-1) \exp(-\gamma \tilde{r} r_{t+1}x) \exp(-a\tilde{r}\gamma(\mu - r_{t+1}) + \frac{1}{2}a^{2}\gamma^{2}\tilde{r}^{2}\sigma^{2}) \end{split}$$

Wie zuvor ist $h_t(a) := -a\tilde{r}\gamma(\mu - r_{t+1}) + \frac{1}{2}a^2\gamma^2\tilde{r}^2\sigma^2$ und

$$h'_t(a) = 0 \iff a = \frac{\mu - r_{t+1}}{\sigma^2} \frac{1}{\gamma} \frac{1}{\tilde{r}}$$

Dann gilt

$$V_t(x) = U(r_{t+1} \cdot \dots \cdot r_T x) \underbrace{b_{t+2} \exp(-\frac{(\mu - r_{t+1})^2}{2\sigma^2})}_{=:b_{t+1}}.$$

Man sieht hier, dass

$$-\frac{V'(x)}{V''(x)} = -\frac{b_{t+1}U'(r_{t+1}\cdots r_Tx)r_{t+1}\cdots r_T}{b_{t+1}U''(r_{t+1}\cdots r_Tx)(r_{t+1}\cdots r_T)^2}$$

$$= -\frac{U'(r_{t+1}\cdots r_Tx)}{U''(r_{t+1}\cdots r_Tx)} \frac{1}{r_{t+1}\cdots r_T}$$

$$= \frac{1}{ARA(r_{t+1}\cdots r_Tx)} \frac{1}{r_{t+1}\cdots r_T}$$

$$= \frac{1}{\gamma} \frac{1}{r_{t+1}\cdots r_T}$$

Für die optimale Strategie gilt $f_t = -\frac{V_t'}{V_t''} \cdot h$, wobei h nur von den Variablen abhängt, die die Dynamik des Marktes beschreiben.

3.3. Optimale Portfolios in vollständigen Märkten

Wir betrachten einen arbitragefreien, vollständigen Markt, das heißt es existiert ein eindeutiges äquivalentes Martingalmaß Q. Sei $U: \mathbb{R} \to \mathbb{R}$ eine Nutzenfunktion mit

$$\lim_{x \to -\infty} U'(x) = +\infty \qquad \qquad \lim_{x \to +\infty} U'(x) = 0$$

(beziehungsweise für $U:(0,\infty)\to\mathbb{R}$: $\lim_{x\to 0}U'(x)=+\infty$).

3.3.1. Problemstellung

Wir bezeichnen wie im zweiten Kapitel (Definition 2.3.2) mit (V_t^{φ}) den Vermögensprozess und (B_t) ist der Preisprozess des Bondes. Ziel ist nun die Bestimmung von

$$\sup_{\varphi} E[U(V_T^{\varphi})]$$

unter der Nebenbedingung, dass $V_0^{\varphi} = v_0$, wobei φ Handelsstrategien (insbesondere selbstfinanzierend) sind. Zuvor haben wir dieses Problem mit Hilfe der dynamischen Programmierung gelöst. Jetzt werden wir anders vorgehen und dabei die Vollständigkeit des Marktes ausnutzen.

3.3.2. Lösung

Fasse die Abbildung $\varphi \mapsto E[U(V_T^{\varphi})]$ als eine Verknüpfung zweier Abbildungen auf:

- (1) Die erste Abbildung ist $\varphi \mapsto V_T^{\varphi}$, das heißt der Handelsstrategie wird eine Zufallsvariable zugeordnet, die das Endvermögen beschreibt.
- (2) Die zweite Abbildung ist $X \mapsto E[U(X)]$, das heißt der Zufallsvariable wird der erwartete Nutzen, also eine reelle Zahl, zugeordnet.

Die Vorgehensweise ist wie folgt:

- (1) Lösung des statischen Optimierungsproblems: Maximiere E[U(X)] für $X \in \mathcal{X} \coloneqq \{X \text{ ist } \mathcal{F}_T \text{messbar, integrierbar bezüglich } P \text{ und } Q \text{ sowie } E_Q[\frac{X}{B_T}] = v_0\}.$
- (2) Repräsentationsproblem: Sei X^* eine Lösung von (1). Bestimme φ , so dass $V_0^{\varphi} = \nu_0$ und $V_T^{\varphi} = X^*$. Da der Markt vollständig ist, existiert eine solche Strategie. Dann ist φ die gesuchte optimale Strategie für das ursprüngliche Problem.

Im Folgenden ermitteln wir einen Kandidaten X^* mit Hilfe des Lagrange-Ansatzes. Wir setzen $Z \coloneqq \frac{dQ}{dP}$. Dann ist $E_Q[\frac{X}{B_T}] = E[Z \cdot \frac{X}{B_T}]$.

Sei

$$L(X,c) := E[U(X)] - c \cdot (E[\frac{ZX}{B_T}] - v_0)$$

die Lagrange-Funktion. Dann gilt für die Ableitungen:

$$\frac{\partial}{\partial X}L(X,c) = E[U'(X) - c\frac{Z}{B_T}] \stackrel{!}{=} 0$$

$$\frac{\partial}{\partial c}L(X,c) = E[\frac{ZX}{B_T}] - \nu_0 \stackrel{!}{=} 0$$

Sei I die Umkehrfunktion von U'. Dann erfüllt X^* mit $U'(X^*) = c \frac{Z}{B_T}$, also $X^* = I(c \frac{Z}{B_T})$ die erste Nebenbedingung und c wird so gewählt, dass

$$E_Q\left[\frac{I(c\frac{Z}{B_T})}{B_T}\right] = E\left[\frac{ZI(c\frac{Z}{B_T})}{B_T}\right] = \nu_0.$$

Bemerkung 3.3.1

• Da die Menge aller bezüglich P,Q integrierbaren Zufallsvariablen mit $E_Q[\frac{X}{B_T}] \le v_0$ konvex ist und U streng konkav und streng wachsend ist, ist die Eindeutigkeit der Lösung klar, und es

muss gelten $E_Q[\frac{X^*}{B_T}] = v_0$, da aus $E_Q[\frac{X^*}{B_T}] < v_0$ sofort folgen würde, dass $X^* + v_0 - E_Q[\frac{X^*}{B_T}]$ echt besser wäre.

- Da $\lim_{x\to -\infty} U'(x) = +\infty$, $\lim_{x\to +\infty} U'(x) = 0$ und U''(x) < 0 gilt, folgt, dass die Werte $(0,\infty)$ von U' angenommen werden. Daher ist $I(c\frac{Z}{B_T})$ wohldefiniert für alle c > 0.
- Wir zeigen die Optimalität von $X^* = I(c\frac{Z}{B_T})$. Aus der Konkavität von U folgt für alle $X \in \mathcal{X}$:

$$U(X) \le U(X^*) + U'(X^*)(X - X^*) = U(X^*) + c\frac{Z}{B_T}(X - X^*)$$

die Bildung des Erwartungswertes bezüglich P liefert

$$EU(X) \le EU(X^*) + \underbrace{cE_Q[\frac{1}{B_T}(X - X^*)]}_{\le 0}.$$

Daher ist X^* optimal.

Beispiel 3.3.2

Wir betrachten die exponentielle Nutzenfunktion $U(x) = -e^{-\gamma x}$ für ein $\gamma > 0$. Dann gilt $U'(x) = \gamma e^{-\gamma x}$ und daher $I(y) = -\frac{1}{\gamma} \log(\frac{y}{\gamma})$.

Dann gilt für das optimale Endvermögen $X_T^* = I(c\frac{Z}{B_T}) = -\frac{1}{\gamma}\log(\frac{1}{\gamma}\cdot c\frac{Z}{B_T})$ und für die Konstante c gilt $E_Q[\frac{X_T^*}{B_T}] = \nu_0$. Daraus folgt dann

$$\begin{split} v_0 &= E_Q[\frac{X_T^*}{B_T}] \\ &= -\frac{1}{\gamma} \int (\log(\frac{c}{\gamma}) + \log(\frac{Z}{B_T})) \frac{1}{B_T} dQ \\ &= -\frac{1}{\gamma} \log(\frac{c}{\gamma}) E[\frac{Z}{B_T}] - \frac{1}{\gamma} \int \log(\frac{Z}{B_T}) \frac{1}{B_T} \frac{dQ}{dP} dP \\ &= -\frac{1}{\gamma} \log(\frac{c}{\gamma}) E[\frac{Z}{B_T}] - \frac{1}{\gamma} E[\frac{Z}{B_T} \log \frac{Z}{B_T}] \\ &\iff \log(\frac{c}{\gamma}) = (-\gamma v_0 - E[\frac{Z}{B_T} \log \frac{Z}{B_T}]) \frac{1}{E[\frac{Z}{B_T}]} \\ &\iff c = \gamma \exp\left(\frac{-\gamma v_0 - E[\frac{Z}{B_T} \log \frac{Z}{B_T}]}{E[\frac{Z}{B_T}]}\right) \end{split}$$

Daher ist das optimale Endvermögen

$$\begin{split} X_T^* &= -\frac{1}{\gamma} \log(\frac{c}{\gamma} \frac{Z}{B_T}) \\ &= \frac{1}{\gamma} \log \gamma - \frac{1}{\gamma} \log \frac{Z}{B_T} - \frac{1}{\gamma} \log c \\ &= \frac{1}{\gamma} \log \gamma - \frac{1}{\gamma} \log \frac{Z}{B_T} - \frac{1}{\gamma} \left(\log \gamma + \frac{-\gamma \nu_0 - E[\frac{Z}{B_T} \log \frac{Z}{B_T}]}{E[\frac{Z}{B_T}]} \right) \\ &= -\frac{1}{\gamma} \log \frac{Z}{B_T} + \frac{\nu_0 + \frac{1}{\gamma} E[\frac{Z}{B_T} \log \frac{Z}{B_T}]}{E[\frac{Z}{B_T}]} \end{split}$$

und der erwartete Nutzen ist

$$\begin{split} E[U(X_T^*)] &= E[-\exp(-\gamma(-\frac{1}{\gamma}\log\frac{Z}{B_T} + \frac{\nu_0 + \frac{1}{\gamma}E[\frac{Z}{B_T}\log\frac{Z}{B_T}]}{E[\frac{Z}{B_T}]}))] \\ &= -\exp\left(-\gamma\nu_0\frac{1}{E[\frac{Z}{B_T}]} - \frac{E[\frac{Z}{B_T}\log\frac{Z}{B_T}]}{E[\frac{Z}{B_T}]}\right)E[\frac{Z}{B_T}] \end{split}$$

Bemerkung 3.3.3

Interessant am Beispiel 3.3.2 ist, dass die Formeln für das optimale Vermögen, den optimalen erwarteten Endnutzen etc. nur über $\frac{Z}{B_T}$ vom zugrundeliegenden Marktmodell abhängen.