Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently amended) Carboxamides A carboxamide of the formula (I)

$$A \xrightarrow{N} \underset{R^1}{\stackrel{M}{\underset{L^1}{\bigvee}}} \underset{L^2}{\stackrel{L^2}{\underset{R}{\bigvee}}} R \qquad \qquad (I)$$

in which

R¹ stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or

(C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine, and/or

bromine atoms, or combinations thereof in each case; or -C(=O)C(=O)R², -CONR³R⁴ or -CH₂NR⁵R⁶,

- R² stands for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, halo-C₁-C₄-alkoxy₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case,
- R³ and R⁴ stand independently of one another in each case for hydrogen, C₁-C₈ alkyl, C₁-C₄-alkoxy₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case, or
- R³ and R⁴, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,
- R⁵ and R⁶ stand independently of one another for hydrogen, C₁-C₈-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case, or
- R⁵ and R⁶, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄

alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

- R⁷ stands for hydrogen or C₁-C₆ alkyl,
- M stands in each case for is a phenyl, pyridine or pyrimidine, pyridazine or pyrazine ring with a single substitution by R⁸ or for a thiazole ring substituted by R⁸.
- R⁸ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl, <u>or</u>
- R⁸ also stands for methoxy,
- R^{8-A}—stands for hydrogen, methyl, methylthio or trifluoromethyl,
- L^1 stands for C_1 - C_{10} alkylene (alkanediyl),
- Q stands for O, S, SO, SO₂ or NR⁹,
- L² stands for a direct link, SiR¹⁰R¹¹ or CO,
- R stands for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl or C₃-C₆ cycloalkyl,
- R⁹ stands for hydrogen, C₁-C₈ alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl or C₃-C₆ cycloalkyl,

 R^{10} and R^{11} stand independently of one another for hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl or C_1 - C_6 haloalkyl,

A stands for the is a group of the formula (A1)

$$R^{12}$$
 R^{13}
 R^{14}
(A1), in which

- R¹² stands for hydrogen, cyano, halogen, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkyl or C₁-C₄ haloalkylthio, in each case with 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,
- R^{13} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or C_1 - C_4 alkylthio,
- R¹⁴ stands for hydrogen, [[c]] $\underline{C_1}$ -C₄ alkyl, hydroxy-C₁-C₄ alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-alkyl in each case with 1 to 5 halogen atoms, or phenyl,

or

A stands for the group of the formula (A2)

 R^{15} -and R^{16} -stand independently of one another for hydrogen, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl with 1 to 5 halogen atoms,

R¹⁷—stands for halogen, cyano or C₁-C₄-alkyl, or C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy with 1 to 5 halogen atoms in each case,

or

A stands for the group of the formula (A3)

$$R^{19}$$
 (A3), in which

 $R^{48}\hbox{-and-}R^{49}\hbox{-stand-independently of one another for hydrogen, halogen,} \\ C_4\hbox{-}C_4\hbox{-alkyl-or-}C_4\hbox{-haloalkyl-with-1-to-5-halogen-atoms,}$

R²⁰—stands-for-hydrogen, halogen, C₁-C₄-alkyl or-C₁-C₄-haloalkyl with 1-to 5 halogen atoms,

or

A stands for the group of the formula (A4)

(A4), in which

R²¹—stands or hydrogen, halogen, hydroxy, eyano, C₁-C₆-alkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-haloalkylthio in each case with 1 to 5 halogen atoms,

Of

A stands for the group of the formula (A5)

R²²—stands for halogen, hydroxy, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄—alkylthio, C₁-C₄—haloalkyl, C₁-C₄—haloalkylthio—or—C₁-C₄—haloalkoxy in each case with 1 to 5 halogen atoms,

R²³—stands for hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy-in-each case with 1 to 5 halogen atoms, C₁-C₄-alkylsulfinyl or C₁-C₄ alkylsulfonyl,

or

A stands for the group of the formula (A6)

$$\mathbb{R}^{25}$$
 \mathbb{Q}^{1} \mathbb{R}^{24}

(A6), in which

 R^{24} stands for C_1 - C_4 -alkyl or C_4 -C₄-haloalkyl with 1 to 5 halogen atoms,

R²⁵ stands for C₁-C₄ alkyl,

Q¹ stands for S (sulfur), SO, SO₂ or CH₂,

p stands for 0, 1 or 2, whereby R²⁵ stands for identical or various groups if p is 2,

or

A stands for the group of the formula (A7)

(A7), in which

R²⁶ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (Λ8)

(A8), in which

R²⁷—stands for C₁-C₄-alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A9)

R²⁸-and R²⁹-stand-independently of one another for hydrogen, halogen, amino, C₁-C₄-alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R³⁰—stands-for-hydrogen, halogen, C₁-C₄-alkyl-or-C₁-C₄-haloalkyl-with

1 to 5 halogen atoms,

Oľ

A stands for the group of the formula (A10)

 R^{31} -and- R^{32} -stand-independently-of one another for hydrogen, halogen, amino, nitro, C_1 - C_4 -alkyl-or- C_4 -haloalkyl-with-1 to 5 halogen atoms,

R³³—stands for hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄ haloalkyl with

1 to 5 halogen atoms,

A stands for the group of the formula (A11)

R³⁴—stands for hydrogen, halogen, amino, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl-or-C₁-C₄-haloalkyl with 1-to-5 halogen atoms,

R³⁵—stands for halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A12)

 R^{36} —stands-for hydrogen, halogen, amino, C_1 - C_4 -alkylamino, di- $(C_1$ - C_4 -alkyl)amino, cyano, C_1 - C_4 -alkyl-or C_1 - C_4 -haloalkyl-with 1 to 5 halogen atoms,

 R^{37} stands for halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl with 1 to 5 halogen atoms,

 Θ r

A stands for the group of the formula (A13)

(A13), in which

R³⁸ stands for halogen, C₁ C₄ alkyl or C₄ -haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A14)

(A14), in which

R³⁹ stands for hydrogen or C₁-C₄ alkyl,

 R^{40} —stands for halogen or C_4 - C_4 -alkyl,

or

A stands for the group of the formula (A15)

(A15), in which

R⁴¹ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A16)

(A16), in which

R⁴²—stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A17)

(A17), in which

R⁴³—stands-for halogen, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄—haloalkyl, C₁-C₄—haloalkylthio—or—C₁-C₄ haloalkoxy with 1-to 5 halogen atoms in each case,

or

A stands for the group of the formula (A18)

(A18), in which

- $R^{44} = stands \ for \ hydrogen, \ cyano, \ C_1-C_4 \ alkyl, \ C_1-C_4 haloalkyl \ with \ 1 \ to$ $5 \ halogen \ atoms, \ C_1-C_4 alkoxy \ C_1-C_4 alkyl, \ hydroxy \ C_1-C_4 alkyl,$ $C_1-C_4 alkylsulfonyl, \quad di(C_1-C_4 alkyl)aminosulfonyl, \quad C_1-C_6$ $alkylcarbonyl \ or \ in \ each \ case \ possibly \ substituted \ phenylsulfonyl$ $or \ benzoyl,$
- R⁴⁵—stands for hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms;
- R⁴⁶—stands—for hydrogen, halogen, cyano, C₁-C₄—alkyl—or C₁-C₄
 haloalkyl with 1 to 5 halogen atoms,
- R⁴⁷—stands for hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A19)

R⁴⁸ stands for C₁-C₄-alkyl.

2. (Currently amended) Carboxamides A carboxamide of the formula (I) according to Claim 1, in which R does not stand for alkoxy, if L²-stands for a direct link

$$A \xrightarrow{N} \underbrace{M}_{R^1} \underbrace{L^1_{Q} L^2_{R}}$$
 (I)

in which when L^2 is a direct link, R is hydrogen, C_1 - C_8 alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkynyl or C_3 - C_6 cycloalkyl.

- 3. (Currently amended) Carboxamides A carboxamide of the formula (I) according to Claim 1 or 2, in which
 - R¹ stands for hydrogen, C₁-C₆ alkyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or
 - (C₁-C₆ alkyl)carbonyl, (C₁-C₄ alkoxy)carbonyl, (C₁-C₃-alkoxy-C₁-C₃-alkyl)earbonyl, (C₃-C₆ cycloalkyl)carbonyl; (C₁-C₄ haloalkyl)carbonyl, (C₁-C₄ haloalkoxy)carbonyl, (halo-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine, and/or

bromine atoms, or combinations thereof in each case; or -C(=O)C(=O)R², -CONR³R⁴ or -CH₂NR⁵R⁶,

- stands for hydrogen, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case,
- R³and R⁴ stand independently of one another in each case for hydrogen, C₁-C₆ alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case, or
- R³ and R⁴, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,
- R⁵ and R⁶ stand independently of one another for hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case, or
- R⁵ and R⁶, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄

alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

- R⁷ stands for hydrogen or C₁-C₄ alkyl,
- M stands for one of the following cyclics

whereby the bond marked with an asterisk is linked to the amide,

- R^8 stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl, <u>or</u>
- R⁸ also stands for methoxy,

R^{8-A}—stands for hydrogen, methyl, methylthio or trifluoromethyl,

 L^1 stands for C_1 - C_{10} alkylene (alkanediyl),

- Q stands for O, S, SO, SO₂ or NR⁹,
- L² stands for a direct link, SiR¹⁰R¹¹ or CO,
- R stands for hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_1 - C_3 -alkylthio- C_1 - C_3 -alkyl or C_1 - C_4 haloalkyl or C_3 - C_6 cycloalkyl,
- R^9 stands for hydrogen, C_1 - C_6 alkyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_1 - C_3 -alkylthio- C_1 - C_3 -alkyl or C_3 - C_6 cycloalkyl,
- R^{10} and R^{11} stand independently of one another preferably for C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl or C_1 - C_3 -alkylthio- C_1 - C_3 -alkyl,
- A stands for the group of the formula (A1)

$$R^{12}$$
 R^{13}
 R^{14}
(A1), in which

- R¹² stands for hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine, and/or bromine atoms, or combinations thereof, trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl or aminocarbonylethyl,
- R¹³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio or ethylthio,

R¹⁴ stands for hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine, and/or bromine atoms, or combinations thereof, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl,

or

A stands for the group of the formula (A2)

R¹⁵-and R¹⁶-stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R¹⁷ stands for fluorine, chlorine, bromine, eyano, methyl, ethyl, C₁-C₂
haloalkyl-or C₁-C₂-haloalkoxy in each ease with 1 to 5 fluorine,
chlorine and/or bromine atoms;

or

A stands for the group of the formula (A3)

Amdt. dated May 21, 2010 - 19 - Reply to Office Action of February 23, 2010

R¹⁸ and R¹⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R²⁰ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl with 1-to 5-fluorine, chlorine and/or bromine atoms,

OF

A stands for the group of the formula (A4)

(A4), in which

R²¹—stands for hydrogen, fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁-C₂-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or C₁-C₂ haloalkylthio in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A5)

(A5), in which

R²²—stands for fluorine, chlorine, bromine, iodine, hydroxy, C₁-C₄
alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio,
trifluoromethylthio, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy in each
case with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{23} —stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, C_1 - C_4 —alkyl, methoxy, ethoxy, methylthio, ethylthio, C_1 - C_2 haloalkyl or C_1 - C_2 -haloalkoxy in each case with 1 to 5 fluorine, chlorine—and/or—bromine—atoms, C_1 - C_2 -alkylsulfinyl—or— C_1 - C_2 alkylsulfonyl,

or

A stands for the group of the formula (A6)

$$\mathbb{R}^{25}$$
 \mathbb{Q}^{1} \mathbb{R}^{24}

(A6), in which

R²⁴—stands for methyl, ethyl or-C₁-C₂-haloalkyl-with 1 to 5 fluorine, chlorine and/or bromine atoms,

R²⁵ stands for methyl or ethyl,

Q¹ stands for S (sulfur), SO₂ or CH₂,

p stands for 0 or 1,

or

A stands for the group of the formula (A7)

(A7), in which

R²⁶—stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A8)

(A8), in which

R²⁷—stands for methyl, ethyl, trifluoromethyl, difluoromethyl, difluoromethyl,

Of

A stands for the group of the formula (A9)

(A9), in which

R²⁸ and R²⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁰ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

Of

A stands for the group of the formula (A10)

R³¹ and R³² stand independently of one another for hydrogen, fluorine, ehlorine, bromine, amino, nitro, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³³—stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or

C₁-C₂-haloalkyl-with 1 to 5 fluorine, chlorine and/or bromine

atoms,

or

A stands for the group of the formula (A11)

R³⁴ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄-alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁵—stands for fluorine, chlorine, bromine, methyl, ethyl-or C₁-C₂ haloalkyl-with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A12)

R³⁶ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1-to 5 fluorine, chlorine and/or bromine atoms,

R³⁷—stands—for—fluorine, chlorine, bromine, methyl, ethyl—or—C₁—C₂—haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A13)

(A13), in which

Reply to Office Action of February 23, 2010

R³⁸ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

stands for the group of the formula (A14)

(A14), in which

R³⁹—stands-for hydrogen, methyl or ethyl,

R⁴⁰ stands for fluorine, chlorine, bromine, methyl or ethyl,

or

stands for the group of the formula (A15)

(A15), in-which

R⁴¹ stands for methyl, ethyl-or-C₁-C₂-haloalkyl-with-1-to-5-fluorine, chlorine and/or-bromine atoms,

or

stands for the group of the formula (A16)

$$\mathbb{R}^{N}$$

(A16), in which

R⁴²—stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

θř

A stands for the group of the formula (A17)

(A17), in which

R⁴³ stands for fluorine, chlorine, bromine, iodine, hydroxy, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

 Λ stands for the group of the formula (Λ 18)

(A18), in which

- R⁴⁴ stands for hydrogen, methyl, ethyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₄-alkoxy C₁-C₄-
- R⁴⁵ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 -haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,
- R⁴⁶—stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, isopropyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,
- R⁴⁷ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 -haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A19)

R⁴⁸ stands for methyl, ethyl, n-propyl or isopropyl.

- 4. (Currently amended) A process for synthesizing the carboxamides a carboxamide of the formula (I) according to Claim 1, characterized in that comprising
 - (a) reacting a carboxylic acid derivatives the derivative of formula (II)

$$\bigwedge_{A}^{O} \chi^{1} \qquad (II)$$

in which

A has the meanings specified above is as defined in claim 1 and

X¹ stands for halogen or hydroxy,

are reacted with an aniline derivatives derivative of the formula (III)

$$\begin{array}{c|c}
 & M \\
 & M \\
 & R \\
 & R
\end{array}$$
(III)

in which

R¹, M, Q, L² and R have the meanings specified above, are as defined in claim 1 and

L³ stands for hydrogen or C₁-C₉ alkyl,

possibly optionally in the presence of a catalyst, possibly optionally in the presence a condensation agent, possibly optionally in the presence of an acid binder and possibly optionally in the presence of a diluent,

or

(b) carboxamides reacting a carboxamide of the formula (1V)

$$A \xrightarrow{N} H \xrightarrow{L_1} H$$
 (IV)

in which M, L¹, Q and A have the meanings specified above are as defined in claim 1

are reacted with a compound of the formula (V),

$$Y^{L^2}R$$
 (V)

in which

L² and R have the meanings specified above are as defined in claim 1 and

Y stands for halogen, triflate (trifluoromethylsulfonyl), mesylate (methylsulfonyl) or tosylate (4-methylphenylsulfonyl),

in the presence of a base and in the presence of a dilution medium,

or

(c) <u>carboxamides</u> <u>reacting a carboxamide</u> of the formula (I-a)

Amdt. dated May 21, 2010 - 29 - Reply to Office Action of February 23, 2010

$$A \xrightarrow{N} H \xrightarrow{L_{Q}^{1}} R$$
 (I-a)

in which M, L¹, Q, L², R and A have the meanings specified above are ad defined in claim 1,

are reacted with halides a halide of the formula (VI)

$$R^{1-A} X^2$$
 (VI)

in which

X² stands for chlorine, bromine or iodine,

R^{1-A} stands for C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl, (C₁-C₃-alkyl, halo-(C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case;

 $(C_1-C_8 \text{ alkyl})$ carbonyl, $(C_1-C_8 \text{ alkoxy})$ carbonyl, $(C_1-C_4-\text{alkoxy}-C_1-C_4-\text{alkyl})$ carbonyl, $(C_3-C_8 \text{ cycloalkyl})$ carbonyl; $(C_1-C_6 \text{ haloalkyl})$ carbonyl,

(C₁-C₆ haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine, and/or bromine atoms, or combinations thereof in each case; or -C(=O)C(=O)R², -CONR³R⁴ or -CH₂NR⁵R⁶,

whereby R², R³, R⁴, R⁵ and R⁶ have the meanings specified above are as defined in claim 1,

in the presence of a base and in the presence of a dilution medium.

- 5. (Currently amended) Media for combating undesirable microorganisms, characterized by containing A composition comprising at least one carboxamide of the formula (I) according to Claim 1 together with extenders and/or surface active materials and one or more extenders, surface active materials, or combinations thereof.
- 6. (Cancelled)
- 7. (Currently amended) Processes A process for combating undesired microorganisms, characterized in that carboxamides comprising applying a carboxamide of the formula (I) according to claim 1 are applied to

DUNKEL *et al.* Appl. No. 10/588,491

Amdt. dated May 21, 2010 - 31 - Reply to Office Action of February 23, 2010

microorganisms, and/or their environment, or a combination thereof in accordance with Claim 1.

- 8. (Currently amended) Processes for synthesizing materials A process for preparing a composition to combat undesired microorganisms, characterized in that carboxamides comprising mixing a carboxamide of the formula (I) according to claim 1 with one or more extenders, surface active materials, or combinations thereof are mixed with extenders and/or surface active materials according to Claim 1.
- 9. (Cancelled)