A FIRST COURSE

IN

SDE

A FIRST COURSE

IN

SDE

MAT4500 Notebook

Prof. Sang Hu

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notat	ions	ix
1	Week1	1
1.1	Tuesday	1
1.1.1	Analogs of deterministic differential equations	1
1.1.2	Optimal Stopping	2
1.1.3	Stochastic Control	3
2	Week2	3
2.1	Tuesday	3
2.1.1	Optimal order quantity	3
2.1.2	Non-perishable Products	4
2.2	Thursday	6
2 2 1	Discrete Time Mauless Chaine	6

Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Tuesday

1.1.1. Analogs of deterministic differential equations

Problem 1. Consider the first order homogeneous ODE

$$\begin{cases} \frac{dN(t)}{dt} = a(t)N(t) \\ N(0) = N_0 \end{cases}$$

N(t) is described as the **size** of population at time t; a(t) is the given (deterministic) function describing the **rate** of growth of population at time t; N_0 is a given constant.

The question raises: What if a(t) is no longer deterministic, instead a(t) is subject to some random effect, e.g.,

$$a(t) = r(t) \cdot \text{noise}$$
, or $r(t) + \text{noise}$,

where r(t) is deterministic, and the "noise" term is something random. Then how to solve the corresponding differential equation?

Problem 2. Suppose Q(t) describes the charge at time t in an electricity circuit.

$$\begin{cases} LQ''(t) + RQ'(t) + \frac{1}{C}Q(t) = F(t), \\ Q(0) = Q_0, \quad Q'(0) = Q'_0 \end{cases}$$

L is described as the **inductance**, R is the **resistance**, C is the **capacity**, and F(t) is the **potential source**.

The Question raises: what if F(t) involves some randomness? e.g.,

$$F(t) = G(t) + \text{noise}$$

where G(t) is deterministic. How to solve the problem?

The differential equations with some coefficients involved randomness are called the stochastic differential equations. Clearly, solutions to SDEs should also involved "randomness".

1.1.2. Optimal Stopping

Problem 3. Suppose someone holds an asset (e.g., stock, house, etc.) He plans to sell it at some future time. Denote X(t) to be the price of the asset at time t, satisfying

$$\frac{\mathrm{d}X(t)}{\mathrm{d}t} = rX(t) + \alpha X(t) \cdot \text{noise}$$

where r, α are given constants. Our goal is to choose time τ to solve

$$\max_{\tau \geq 0} \mathbb{E} X(\tau)$$

where the optimal solution τ^* is the optimal stopping time.

1.1.3. Stochastic Control

Problem 4 (Portfolio Selection). Suppose a person wants to invest into i) a risk-less/safe asset (e.g., bond); or ii) a risky asset (e.g., stock).

The price of the saft asset $X_0(t)$ satisfies

$$\frac{\mathrm{d}X_0(t)}{\mathrm{d}t} = \rho X_0(t),$$

where $\rho > 0$ is a given constant. Therefore, X(t) is exponentially growing function.

The price of risky assrt $X_1(t)$ satisfies

$$\frac{\mathrm{d}X_1(t)}{\mathrm{d}t} = \mu X_1(t) + \sigma X_1(t) \cdot \text{noise}$$

where $\mu, \sigma > 0$ are the given constants.

Suppose u(t) is the fraction of his wealth to be invested into the risky asset; the remaining 1-u(t) part to be invested into the saft asset. The wealth at time t is denoted to be v(t). Suppose the person has the utility function $U(\cdot)$. The terminal time is T. The objective function is

$$\max_{u(t),0 \le t \le T} \mathbb{E}[U(v^u(T))]$$

If we impose no-shot selling constant, we further require

$$0 \le u(t) \le 1, \forall t \in [0, T]$$

Problem 5 (Option Pricing). Suppose at time 0, a person in the long position in an European call option has the right to buy the asset at a specified price *K* at some future time *t*. How much the person should pay to the short position for the option? We can model this problem by Black-Sholes Formula.