Лабораторная работа 3.2.5

Вынужденные колебания в электрическом контуре

Работу выполнили:

Морозов Матвей Бабушкина Татьяна 678 группа

Цель работы: исследование вынужденных колебаний и процессов их установления.

В работе используются: генератор звуковой частоты, осциллограф, вольтметр, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

Схема установки

Обработка результатов

1) Изменяя частоту генератора в обе стороны от резонансной, сняли зависимость показаний вольтметра U от показаний частотометра ν . Результаты занесём в таблицу 1.

Таблица 1. Зависимость U от f при R=0 Ом.

	гаолица 1 . Зависимоств θ от f при $H = 0$ ом.									
No॒	U , м B	f, Гц	U/U_0	f/f_0	№	U, mB	f, Гц	U/U_0	f/f_0	
1	0, 2	1278	0,02	0,8023	19	8, 2	1583	0,82	0,9937	
2	0,8	1396	0,08	0,8763	20	8,8	1585	0,88	0,9950	
3	1, 2	1449	0,12	0,9096	21	9, 2	1589	0,92	0,9975	
4	1,6	1482	0,16	0,9303	22	9,6	1590	0,96	0,9981	
5	2,0	1506	0,20	0,9454	23	10,0	1593	1,00	1,0000	
6	2, 5	1520	0,25	0,9542	24	9, 2	1607	0,92	1,0088	
7	3,0	1530	0,30	0,9605	25	8,8	1609	0,88	1,0100	
8	3, 2	1543	0,32	0,9686	26	8,0	1615	0,80	1,0138	
9	4,0	1551	0,40	0,9736	27	7,5	1617	0,75	1,0151	
10	4, 5	1556	0,45	0,9768	28	6,6	1623	0,66	1,0188	
11	4, 8	1558	0,48	0,9780	29	6, 2	1625	0,62	1,0201	
12	5,0	1561	0,50	0,9799	30	5, 6	1631	0,56	1,0239	
13	5, 1	1563	0,51	0,9812	31	5,0	1636	0,50	1,0270	
14	5, 5	1566	0,55	0,9831	32	4, 2	1642	0,42	1,0308	
15	6, 1	1570	0,61	0,9856	33	3,5	1659	0,35	1,0414	
16	6, 5	1573	0,65	0,9874	34	3,0	1670	0,30	1,0483	
17	7,2	1576	0,72	0,9893	35	2,5	1680	0, 25	1,0546	
18	7,8	1579	0,78	0,9912	36	1,6	1736	0, 16	1,0898	

Построим на одном графике резонансные кривые в координатах $U/U_0=f(\nu/\nu_0),$ где U_0 – напряжение при резонансной частоте $\nu_0.$

Определим добротность по формуле $Q = \frac{\omega_0}{2\Delta\Omega}$

 $\begin{array}{c} \mathbf{\Gamma}\mathbf{pa}\mathbf{\varphi}\mathbf{u}\mathbf{\kappa} \ \mathbf{1} \\ \mathrm{Зависимости} \ U/U_0 = f(\nu/\nu_0) \ \mathrm{пр}\mathbf{u} \ R = 0 \ \mathrm{Om} \ \mathbf{u} \ R = 100 \ \mathrm{Om}. \end{array}$

Получим: $Q_{R=0} = 36,364; \quad Q_{R=100} = 7,407$

Таблица 2. Зависимость U от f при R = 100 Ом.

ца ∠.	зависи:	мость ι	$^{\prime}$ OT J Π	ри $\kappa = 10$
No	U, mB	f, Гц	U/U_0	f/f_0
1	0, 5	1050	0,07	0,6563
2	1,0	1205	0, 14	0,7531
3	1,6	1303	0,23	0,8144
4	2,0	1349	0,29	0,8431
5	2, 2	1385	0,32	0,8656
6	3,0	1429	0,43	0,8931
7	3, 5	1453	0,50	0,9081
8	4,0	1478	0,58	0,9238
9	4,6	1500	0,66	0,9375
10	5, 1	1520	0,73	0,9500
11	5,75	1539	0,83	0,9619
12	6, 1	1558	0,88	0,9738
13	6,6	1576	0,95	0,985
14	6,8	1583	0,98	0,9894
15	7,0	1600	1,00	1,0000
16	6,8	1625	0,98	1,0156
17	6, 6	1633	0,95	1,0206
18	6,4	1646	0,92	1,0288
19	6,0	1663	0,86	1,0394
20	5,8	1677	0,83	1,0481
21	5, 4	1688	0,78	1,055
22	5,0	1708	0,72	1,0675
23	4, 5	1733	0,65	1,0831
24	4,0	1768	0,58	1,105
25	3,5	1803	0, 5	1,1269
26	3,0	1873	0,43	1,1706
27	2,5	1947	0,36	1,2169
28	2,0	2089	0,29	1,3056
29	1,6	2310	0,23	1,4438

2) Устанавдиваем в режиме цуг резонансную частоту генератора. Измеряем на экране осциллографа амплитуды двух колебаний U_k и U_{k+n} в режиме нарастания колебаний, разделённых целым числом n периодов, и амплитуду установившихся колебаний U_0 при R=0 и R=100 Ом. Вычисляем добротность

$$Q = \frac{\pi n}{\ln \frac{U_0 - U_k}{U_0 - U_{k+n}}}, \ \sigma_Q = \frac{Q^2}{\pi n} \sqrt{\frac{2\sigma_U^2}{(U_0 - U_k)^2} + \frac{2\sigma_U^2}{(U_0 - U_{k+n})^2}}$$

Результаты измерений и вычислений в таб. 3.

Таблица 3.

	Idomina o.									
	R	=0		R = 100 Om						
U_k , дел	U_{k+n} , дел	n	U_0 , дел	Q	U_k , дел	U_{k+n} , дел	n	U_0 , дел	Q	
1,2	2,2	6		27 ± 5	1,2	3,8	6		7 ± 4	
3,0	6,0	11	7,0	25 ± 5	1,8	3,8	5	4,0	7 ± 4	
4,2	6,0	8		24 ± 7	2,2	3,8	4		6 ± 4	
1,2	5,0	9		26 ± 4	2,4	3,8	3		5 ± 3	

3) Измеряем на экране осциллографа амплитуды двух колебаний U_k и U_{k+n} в режиме затухания.

Вычисляем добротность

$$Q = \frac{\pi n}{\ln \frac{U_k}{U_{k+n}}}, \ \sigma_Q = \frac{Q^2}{\pi n} \sqrt{\frac{\sigma_U^2}{U_k^2} + \frac{\sigma_U^2}{U_{k+n}^2}}$$

Результаты измерений и вычислений в таб. 4.

Таблица 4.

	R = 0		R = 100 Om				
U_k , дел	U_{k+n} , дел	n	Q	U_k , дел	U_{k+n} , дел	n	Q
6	1	17	30 ± 4	3,2	2	1	7 ± 2
5,4	1	16	30 ± 4	3,2	1,4	2	$7,6 \pm 1,4$
3,2	1	11	30 ± 5	3,2	1	3	8 ± 2
2,4	1	8	29 ± 7	3,2	0,6	4	8 ± 2

4) Вычисляем теоретическое значение добротности контура

$$Q = \frac{1}{R+R_L}\sqrt{\frac{L}{C}}, \ \sigma_Q = Q\sqrt{\frac{\sigma_R^2+\sigma_{R_L}^2}{(R+R_L)^2} + \left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_C}{C}\right)^2}$$

Сводим в таб. 5 все полученные значения добротности.

Таблица 5.

R, Ом	$Q_{ m pe}$ з	$\langle Q \rangle_{\nearrow}$	$\langle Q \rangle_{\searrow}$	$Q_{ m Teop}$					
0	36, 36	26 ± 3	30 ± 3	$32,7 \pm 0,3$					
100	7,41	6 ± 2	$7,7 \pm 1,0$	$7,65 \pm 0,07$					