Exercises Week 4

Machine Learning/Advanced Machine Learning IT University of Copenhagen

Fall 2019

Theoretical Exercises 4.1: from the Book

As stated on learnit, solve the following exercises from the book:

- (7.11.11)
- (8.11.10.)

Theoretical Exercises 4.2. EM

Assume data points $x_n \in \mathbb{R}^D$ are given and you know the data is separated into K classes. The goal is to (1) estimate the classes, each represented by one cluster center $m_k \in \mathbb{R}^D$, and (2) to estimate to which of these cluster centers each data point x_n belongs to, hence minimize:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \boldsymbol{x}_n - \boldsymbol{m}_k \|_2^2,$$
 (Ex. 4.2.1)

where r_{nk} is an indicator variable, which is one if \boldsymbol{x}_n belongs to \boldsymbol{m}_k , else zero. In the EM-algorithm the estimation of the unknowns \boldsymbol{m}_k and r_{nk} is alternated, by fixing one of them while estimating the other.

(a) Assume m_k are known, estimate the binary values r_{nk} . Keep in mind that for each n one k must be assigned.

Hint: Consider that this can be done independently for each single data point x_n .

$$J_n(r_{nk}) = \sum_{k=1}^{K} r_{nk} \| \boldsymbol{x}_n - \boldsymbol{m}_k \|_2^2$$
 (Ex. 4.2.2)

(b) Assume r_{nk} are known, estimate m_k . Compute the derivative of J with respect to m_k , set it to zero and then deduce the estimates for m_k . By rewriting

$$J = \sum_{k=1}^{K} J_k(\mathbf{m}_k),$$
 (Ex. 4.2.3)

we can focus on one cluster center k at a time by:

$$J_k(\mathbf{m}_k) = \sum_{n=1}^{N} r_{nk} \|\mathbf{x}_n - \mathbf{m}_k\|_2^2$$
 (Ex. 4.2.4)

Hint:
$$\|\boldsymbol{x}_n - \boldsymbol{m}_k\|_2^2 = (\boldsymbol{x}_n - \boldsymbol{m}_k)^{\mathrm{T}}(\boldsymbol{x}_n - \boldsymbol{m}_k)$$

Programming Exercise 4.3: K-means

In this task the K-means algorithm shall be implemented and applied.

- (a) Implement the K-means algorithm by yourself, see Fig. 7.3 in the book.
- (b) The file iris.txt contains the Iris data set¹. It consists of a total of 150 samples, with 50 for each of the three classes, while each sample is composed of 4 values, hence the data matrix $X \in \mathbb{R}^{150\times 4}$. Choose K=3 to estimate the three classes by your implementation of the K-means clustering, i.e. for each data point $x_i \in \mathbb{R}^4$ assign one of three classes. *Hint:* Consider that the absolute values of the true and estimated labels can differ. In the following example the three classes are 100% correctly estimated: provided true labels: 1, 1, 2, 3, 3

provided true labels: 1, 1, 2, 3, 3 estimated labels: 0, 0, 3, 2, 2

- (c) Perform the clustering based on two of the four variables (columns), such that $x_i \in \mathbb{R}^2$. Test all 6 variants: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). Remember that the initialization is based on random samples and hence the outcome will differ if you repeat the experiments. For a better comparison choose the same K random starting samples for each version.
- (d) Using the ground truth labels provided in iris_labels.txt compute the percent of correctly classified samples, and fill the entries of the confusion matrix for results of (b) and (c).

		estimated class		
		class 1	class 2	class 3
true class	class 1			
	class 2			
	class 3			

- Which classes are most often confused? (Please refer to the original labels.)
- Which of the variants in (c) is same as good as (b)?
- (e) (**NOT mandatory**) Apply your implementation to perform a color segmentation with different K of an image. You can use the gray and/or color image provided on learnit.

¹https://en.wikipedia.org/wiki/Iris_flower_data_set