Review

YAO ZHAO

Implementation: Prim's Algorithm

Implementation. Use a priority queue ala Dijkstra.

- Maintain set of explored nodes 5.
- For each unexplored node v, maintain attachment cost a[v] = cost of cheapest edge v to a node in S.
- $O(n^2)$ with an array $O(m \log n)$ with a binary heap.

For a completely connected graph

Use heap or array?

- ▶ Why array faster than heap?(Prim's algorithm)
- Observe the following graph,

In a completely connected graph: m = n(n-1)/2O(mlogn) \rightarrow O(n²logn) > O(n²)

Adjacency matrix

	0	1	2	3
0	-	1	2	3
1	1	-	1	2
2	2	1	-	1
3	3	2	1	_

Prim(array)

VS

Dijkstra(array)

	1	2	3	4
1	-	1	1	5
2	1	-	6	3
3	1	6	-	1
4	5	3	1	-

Prim

index	1	2	3	4
loop1	0	1	1	5
loop2	0	1	1	5->3
loop3	1	1	1	3->1

explored 1 → select(1,2) → next node 2 explored 2 → select(1,3) → next node 3 explored 3 → select(3,4) → end

1 3	1 3	1 3
5	5	5
6	6	6
3	3 4	3

Dijkstra

index	1	2	3	4
loop1	0	1	1	5->4
loop2	0	1	1	4->2
loop3	0	1	1	2
loop4	0	1	1	2

explored 1 \rightarrow select(1,2) update a[4] to 4 \rightarrow next node 3 explored 2 \rightarrow select(1,3) update a[4] to 2 \rightarrow next node 3 explored 3 \rightarrow select(3,4) \rightarrow next node 4 explored 4 \rightarrow reach target \rightarrow end

Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain set for each connected component.
- O(m log n) for sorting and O(m α (m, n)) for union-find.

$$m \le n^2 \Rightarrow log m is O(log n)$$
 essentially a constant

Kruskal

Kruskal:

- 1. Sorting all the edges
- 2. Finding the edge(n, m) with the smallest weight
- 3. Whether node n and node m are in a same tree? If yes, skip
 If no, merge two trees
- 4. If the number of node is N, we should merge N-1 times.
- 5. When merge two trees, add the w value

How to merge two trees (n, m)? Union-find

- 1. Find root of n and m respectively
- 2. If root of n equals to root of m, n and m is in a same tree. Skip
- 3. Get the height of root n and root m if(rootN.height > rootM.height) rootM.parent =rootN else if(rootN.height<rootM.height) rootN.parent=rootM else rootM.parent=rootN rootN.height++;

index	1	2	3	4	5	6	7
node	Α	В	С	D	Е	F	G
parent	0	0	0	0	0	0	0
height	0	0	0	0	0	0	0

index	1	2	3	4	5	6	7
node	Α	В	С	D	Е	F	G
parent	0	0	0	1	0	0	0
height	1	0	0	0	0	0	0

index	1	2	3	4	5	6	7
node	Α	В	С	D	Е	F	G
parent	0	0	0	1	3	0	0
height	1	0	1	0	0	0	0
f(root).	heig	ght <c< th=""><th>d(root</th><th>.). he</th><th>ight</th><th></th><th></th></c<>	d(root	.). he	ight		
index	1	2	3	4	5	6	7
node	Α	В	С	D	Е	F	G
parent	0	0	0	1	3	1	0
height	1	0	1	0	0	0	0

b(root). height <a(root). height b.parent =a index

index	1	2	3	4	5	6	7
node	Α	В	С	D	Е	F	G
parent	0	1	0	1	3	1	0
height	1	0	1	0	0	0	0

e(root). height ==b(root). height

c.parent = a index

a. height ++

index	1	2	3	4	5	6	7
node	Α	В	С	D	Е	F	G
parent	0	1	1	1	3	1	0
height	2	0	1	0	0	0	0

e(root). height >g (root). height g.parent=a

index	1	2	3	4	5	6	7
node	Α	В	С	D	Е	F	G
parent	0	1	1	1	1	1	1
height	2	0	1	0	0	0	0