Deformation theory of Galois representations

MA842 at BU Spring 2020

Robert Pollack

January 22, 2020

These are notes for Robert Pollack's course MA842 at BU Spring 2020.

The course webpage is http://math.bu.edu/people/rpollack/Teach/842spring2020.html.

Lecture 1 21/1/2018

1 Background

Let E_k denote the Eisenstein series of weight k, k > 2.

$$E_k = \frac{-B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n \in M_k(\mathrm{SL}_2(\mathbf{Z})).$$

Where B_k are the Bernoulli numbers and

$$\sigma_{k-1}(n) = \sum_{d|n, d>0} d.$$

 E_2 however is not holomorphic, so not a modular form.

Fix N a prime, notation has stuck from Mazur's Eisenstein ideal paper.

Then there exists a unique Eisenstein series on $\Gamma_0(N)$ of weight 2.

$$E_2^{(N)} = \frac{N-1}{12} + \sum_{n=1}^{\infty} \sigma(n)q^n.$$

Funny observation: if $N \equiv 1 \pmod{p}$ for prime p > 3. Then $p \mid ((N-1)/12)$, so $E_2^{(N)}$ "looks cuspidal".

Then we hope that there exists a cuspidal eigenform $f \in S_2(\Gamma_0(N))$ such that

$$f \equiv E_2^{(N)} \qquad \text{`` mod } p''.$$

This is in fact true, due to Koike in the 70's, there exists $f \in S_2(\Gamma_0(N))$ such that

$$a_{\ell}(f) \equiv 1 + \ell \pmod{p}$$

for all $\ell \neq N, p$.

Question 1.1 How many such *f* are there?

Merel '96:

$$f$$
 is unique $\iff \prod_{i=1}^{(N-1)/2} i^i$ is not a p -th power modulo N .

Wake and Wang-Erickson describe the dimension of the space of such *f* using Massey products (higher cup products).

Method: Galois deformations!

1.1 Galois representations

We write

$$G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) = \varprojlim_{F/\mathbf{Q}, \text{fin. galois}} \operatorname{Gal}(F/\mathbf{Q})$$

a profinite group.

$$\rho: G_{\mathbf{O}} \to \mathrm{GL}_2(\mathbf{Q}_p)$$

a continuous homomorphism. Then view $\mathrm{GL}_2(\mathbf{Q}_p)$ as $\mathrm{Aut}(V)$ for a 2-dimensional \mathbf{Q}_p vector space and fix a 2-dimensional \mathbf{Z}_p -lattice

$$T \subseteq V$$

which is $G_{\mathbf{Q}}$ stable. Then we can take

$$\bar{\rho}: G_{\mathbf{Q}} \to \mathrm{GL}_2(\mathbf{F}_p)$$

this is unique (w.r.t. the choice of T) only up to semisimplification. So we say two Galois representations ρ_1 , ρ_2 are congruent if

$$\bar{\rho}_1^{\text{ss}} \simeq \bar{\rho}_2^{\text{ss}}$$
.

We say ρ_1 , ρ_2 are deformations of

$$\bar{\rho}_1 = \bar{\rho}_2$$

(imagine this is reducible).

Start with

$$\bar{\rho}: G_{\mathbf{O}} \to \mathrm{GL}_2(\mathbf{F}_n)$$

consider "all" deformations of $\bar{\rho}$ in good cases there exists a "universal" deformation of $\bar{\rho}$.

 R^{univ} a local ring with maximal ideal \mathfrak{m}_R such that

$$R/\mathfrak{m}_R = \mathbf{F}_p$$
.

$$\rho^{\text{univ}} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(R^{\text{univ}})$$

such that if $\rho: G_{\mathbb{Q}} \to GL_2(R)$ is a deformation of $\bar{\rho}$ then there exists

$$R^{\mathrm{univ}} \to R$$

such that

$$G_{\mathbf{Q}} \xrightarrow{\rho^{\text{univ}}} GL_2(R^{\text{univ}})$$
.
$$GL_2(R)$$

1.2 Modular forms

$$f = \sum a_n q^n \in S_k(\Gamma_0(N))$$

an eigenform leads to

$$\rho_f \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(K), \ K/\mathbf{Q}_p \text{ finite}$$

with the property that for all $\ell \nmid Np$ we have

$$\operatorname{Tr}(\rho_f(Frob_\ell)) = a_\ell.$$

Modular forms can be congruent

 $a_{\ell}(f_1) \equiv a_{\ell}(f_2) \pmod{p}$ for all but finitely many ℓ

1

$$\bar{\rho}_{f_1}^{\mathrm{ss}} \simeq \bar{\rho}_{f_2}^{\mathrm{ss}}.$$

There exists a ring, the Hecke algebra **T** parametrizing all f's with the same $\bar{\rho}$.

$$f \leadsto \rho_f \implies R^{\text{univ}} \to \mathbf{T}$$

so hope

$$R^{\mathrm{univ}} \simeq \mathbf{T}$$
.

Wiles proof of FLT proved one of these.

Many more such theorems in the past couple of decades.

Wake and Wang-Erickson show that the dimension of

$$\{f: f \equiv E_2^{(N)}\} \leftrightarrow \operatorname{rank} \mathbf{T} = \operatorname{rank} R^{\operatorname{univ}}.$$

$$a_{\ell}(f) \equiv 1 + \ell \pmod{p}$$

 $\implies \bar{\rho}^{ss} = \mathbf{1} \oplus \mu_{p}$

but there does not exist R^{univ} in this context.

The fix is to use pseudorepresentations instead of representations.

1.3 Pseudorepresentations

Let *G* be a group.

Then a pseudorepresentation T is a map

$$T: G \to A$$

for A a ring satisfying

1.

$$T(xy) = T(yx)$$

2.

$$T(x)T(y)T(z) - T(x)T(yz) - T(y)T(xz) - T(z)T(xy) + T(xyz) + T(xzy) = 0$$

and the analogous formulae for higher dimensions.

Fact 1.2 If A is an algebraically closed field of characteristic \neq 2. Then for a given pseudorepresentation T there exists a true representation ρ such that

$$T = \text{Tr}(\rho)$$
.

But this does not hold in general.

Universal pseudodeformation rings always exist. Wake and Wang-Erickson use $R^{\rm univ} = {\rm universal}$ pseudodeformation ring.