Find the domain and range of the function

 $Q19. f(x,y) = x^2 + y^2$

The given function is defined for any value of it undy.
Thus, the domain of the given function is entire plane
of R2 of R2.

... Domain $f = \{(x, y) \in \mathbb{R}^2 \}$

for Range of 1

As we know n2+y2>0. Thus,

0 = 2 < \infty (\infty \cos \infty \cos \i

... Range $f = [0, \infty)$

point body in any in aftered by all acquired house Q20: $f(x,y) = e^{xy}$ | $f(x,y) = e^{xy}$

The given function f is defined for any value of a and y. Thus, the domain of f is entire plane of R2

... Domain = { (x, y) & R2 }

Range of f

As we know exy > 0. Thus,

The given formation is at fined for all waters of a could g

- Ada, 11 - 1 1 2 1 4 2 - 1 2 1 2 1

encept as the thus, domain of give function is the

satisf of prom 182 and that eggs

0<2<20

 \therefore Range $f = (0, \infty)$

1 2 - 1 (4. 2) = Alle.

Q21. g(x,y) = x Jy

The given function g is defined for any value of x and for $y \ge 0$. Thus, domain of g is a subset plane of \mathbb{R}^2 such that $y \ge 0$.

· Domain 13 = { (x, y) & R2 / y ≥ 0 }

Q22. f(x,y) = y/sx

The given function f is defined for all values of y and any value of x > 0. Thus, domain of f is a subset plane of R^2 where x > 0.

.. Domainf = { (x, y) & R2 / x > 0 y

For range of fWe know $-\infty < \frac{y}{\sqrt{x}} < \infty$. Thus, $-\infty < z < \infty$: Range $f = (-\infty, \infty)$ or R

 $Q23. x = \frac{x+y}{xy}$

The given function is defined for all values of x and y except xy = 0. Thus, domain of given function is the subset of plane R^2 such that $xy \neq 0$.

.. Domain, = 9 (2,4) ER2/xy = 03

in Pange of f

As we know $-\infty < \underbrace{z+y} < \infty$. Thus, $-\infty < z < \infty$ Range $f = (-\infty, \infty)$ or R

924 7 = xy

The given function is defined for all values of x and y such that $x \neq y$. Thus, domain of given function is the subset of plane R^2 such that $x \neq y$.

: Domain = { (x, y) ER2 / x + y].

For range of $\frac{1}{4}$ are know, $-\infty < \frac{xy}{x-y} < \infty$, thus, $\frac{x-y}{x-y} = -\infty < x < \infty$

... Range f = (-00, 00) or R

925 f(x,y) = \(4-x^2-y^2 \)

The domain D of f is the set of points (x, y) such that

4-22-y2 20

Thus, D is the set of all points lying on or inside the circle 22+42 = 4

.. Domain = { (x, y) & R2 | x2+y2 = 47

Range of f

we have, $x = \sqrt{4 - x^2 - y^2} = \sqrt{4 - (x^2 + y^2)}$ Since, $x^2 + y^2 \ge 0$ we obtain,

$$0 \le x \le \sqrt{4} = 2$$

$$\therefore Range_f = [0, 2]$$

$$Q26 \cdot f(x,y) = \sqrt{4 - x^2 - 4y^2} = \sqrt{4 - (x^2 + 4y^2)}$$

The domain D of f is the set of all points (x, y) such that

Thus, D is the set of all points lying on or inside the ellipse $x^2 + 4y^2 \le 4$

$$\Rightarrow \frac{x^2}{y} + \frac{y^2}{1} \leq 1$$

Range of f

We have,
$$f(x,y) = \sqrt{4 - (x^2 + 4y^2)}$$

Since, $x^2 + 4y^2 \ge 0$, we obtain,

 $0 \le x \le \sqrt{4} = 2$
 $\therefore Range_f = [0,2]$

The domain D of f is the set of all points (x, y) such

-16 2+y 61

This is because the value of cost o lies between -1 and +1.

Domainf = {(n,y) ER2 | -1 = x+y = 1 y

Q27. $f(x,y) = arc \cos(x+y)$ The domain D of f is set of all points (x,y) such that

$$-1 \leq x+y \leq +1$$

... Domain
$$f = \{(n, y) \in \mathbb{R}^2 | -1 \le n + y \le 1 \}$$

For Range f

As we know the value of cos - (x+y) lies between -1 and +1.

$$for -1,$$
 $for +1,$ $z = cos^{-1}(-1) = \pi$ $z = cos^{-1}(1) = 0$

Q28. f(x,y) = arc sin(y/x)

The domain D of f is set of points (x,y) such that $-1 \le y/x \le 1$ where $x \ne 0$

... Domain
$$f = \{(x,y) \in \mathbb{R}^2 \mid -n \leq y \leq x, n \neq 0\}$$

For range of f

As we know the value of sin (y/n) lies between -1 and +1.

For -1,

$$z = \sin^{-1}(-1) = -\frac{\pi}{2}$$
For +1,
 $z = \sin^{-1}(-1) = \frac{\pi}{2}$

Q29. f(x,y) = ln(y-x-y)The domain D of f is a set of points (x,y) such that 4-x-y>0 $\Rightarrow x+y<4$

Thus domain is a plane defined by the condition x-y=4... Domain $f = \{(x,y) \in \mathbb{R}^2 | x+y < 4 \ \}$

for range of f

As we know z+y<4, we obtain, $0 \le z < \infty$ \vdots Range $f = [0, \infty)$

Q30. f(x,y) = ln(xy-6)The domain D of f is a set of points (x,y) such that xy-6>0 xy>6 xy>6 y=0 y=0y=0

For range fWe have, $z = \ln (xy - 6)$ Since xy > 6, we obtain, $0 \le z < \infty$ $\therefore Range_f = [0, \infty)$

33. f(x, y) = 4

The surface represented by $f(x,y) = 4 \cdot (i \cdot e \cdot x = u)$ is a plane parallel to my plane that includes the point (0,0,u) in it.

34. f(x,y) = 6-2n-3y

As we know,

Z = f(n, y) = 6 - 2n - 3y

 \Rightarrow 2n+3y+z=6 is a plane in Euclidean space.

Put x = y = 0 in (), we get:

Z = 6

Put x= z=0 in O, we get:

3 y = 6

y = 2

Put y= z = o in (), we get:

2 gx= 6

.'. gx= 3

Thus. points (3,0,0), (0,2,0) and (0,0,6) lie in the plane .

35. $f(x, y) = y^2$ 4. we know, x = f(x, y). Thus, $z = y^2 - 0$

Equation @ represents a parabola. In Euclidian space, it represents a parabolic surface as shown in figure below.

Q36.
$$g(x,y) = \frac{1}{2}y$$

We know,
 $z = g(x,y)$. Thus,
 $z = \frac{y}{2}$

Equation () represents a plane that contains origin in fuclidean space. It is as shown in figure below:

The above equation can be written as:

$$Z = -(n^2 + y^2)$$

$$\Rightarrow x^2 + y^2 = -x - 0$$

The above equation represents a downward facing cone as shown in diagram below:

Q38.
$$x = \frac{1}{2} \sqrt{x^2 + y^2}$$

Squaring both sides, we get:
 $4x^2 = x^2 + y^2$
 $\therefore x^2 + y^2 = 4x^2$

Above equation represents the equation of a double napped cone. The sketch is as shown below:

Q39.
$$f(x,y) = e^{-x}$$

We know,
 $z = f(x,y)$. Thus,
 $z = e^{-x}$ — i

Put
$$x = 0$$
, $x = e^{-0} = e^{0} = 1$

Thus, egn () represents a curved surface in Euclidean space as shown in figure below:

contour map of the surface using level curves for the given c-values

the level curves of a function of two variables are the curves with equations f(x,y) = C, where c is a constant (in the range of f). A graph of the various level curves of a function is called a contour map.

Take c-values from G= 0 to Cy = 4.

$$f(x,y) = c_4$$

$$\Rightarrow x+y=4$$

4 1 - 12 - 2 1 - 2

5 25 4 5 4 - C - C

9 - 1 - 1 - 2

Janesy - Million

CONTOUR MAP:

Put co = 0, ..., c2 = 2 for above function. Thin,

$$\Rightarrow 2n+3y-5=0$$

CONTOUR MAP:

$$\Rightarrow n^2 + 4y^2 = 0$$

$$\frac{x \mid 0}{y \mid 0}$$

for
$$c_g = 3$$
, $f(x, y) = 3$
 $\Rightarrow x^2 + 4y^2 = 3$

for
$$c_2 = 2$$
, $f(x,y) = 2$

$$=) x^2 + 4y^2 = 2$$

Here, the level curves form ellipses.

CONTOUR MAP:

Q52.
$$f(x,y) = \sqrt{9 - n^2 - y^2}$$

Put $c_0 = 0, \ldots, c_2 = 2$ in above function. Thus, for $c_0 = 0$, $f(x, y) = c_0$ $\Rightarrow \sqrt{9 - n^2 - y^2} = 0$ $\Rightarrow g - x^2 - y^2 = 0$ $\therefore n^2 + y^2 = 9$

for
$$c_1 = 1$$
, $f(x, y) = c_1$

$$\Rightarrow \sqrt{9 - x^2 - y^2} = 1$$

$$\Rightarrow 9 - x^2 - y^2 = 1$$

$$\therefore x^2 + y^2 = 8$$

for
$$c_2 = 2$$
, $f(x, y) = c_2$

$$\Rightarrow \sqrt{9 - x^2 - y^2} = 2$$

$$\Rightarrow 9 - x^2 - y^2 = 4$$

$$\therefore x^2 + y^2 = 5$$

Put co = 0, ..., co = 2 in above function. Then,

for
$$c_0:0$$
,
$$f(x,y)=c_0$$

$$\Rightarrow xy=0$$

$$\frac{x}{y}$$

for
$$c_1 = 1$$
,
 $f(x, y) = c_1$
 $\Rightarrow xy = 1$
 $\frac{x_1 + \frac{1}{1} \cdot \frac{5}{15}}{\frac{1}{15} \cdot \frac{1}{15}}$

for
$$c_2 = 2$$
,
 $f(x, y) = 2$
 $\Rightarrow xy = 2$

Here, the level curves produce a rectangular hyperbola.

