

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

INVENTORS: Anthony J. GREWE; William R. BULLMAN; & Steven E. STRAUSS

CASE: BULLMAN 7-26-6

TITLE: SIMPLIFYING DSL DEPLOYMENT VIA ANALOG/DSL COMBINATION SOLUTION

PATENT APPLICATION TRANSMITTAL LETTER

Box PATENT APPLICATION

Assistant Commissioner for Patents
Washington, D.C. 20231

Jc515 U.S. PTO
09/665594
09/19/00

SIR:

Enclosed are the following papers relating to the above-named application for patent:

Specification (including cover sheet, claims and Abstract) - 23 pages
8 informal sheets of drawings
1 Assignment with Cover Sheet - 5 pages
Declaration and Power of Attorney - 5 pages

CLAIMS AS FILED				
	NO. FILED	NO. EXTRA	RATE	CALCULATIONS
Total Claims	33 - 20 =	13	x \$18 =	\$234
Independent Claims	3 - 3 =	0	x \$78 =	\$0
Multiple Dependent Claim(s), if applicable			\$260 =	\$0
Basic Fee				\$690
			TOTAL FEE:	\$924

Please file the application and charge **Lucent Technologies Deposit Account No. 12-2325 under Order No. BULLMAN 7-26-6** the amount of **\$924** to cover the filing fee. A copy of this letter is enclosed. To correct any non-payment or improper payment of a required fee, the Commissioner is authorized to charge or to credit **Deposit Account No. 12-2325 under Order No. BULLMAN 7-26-6**.

Please address all correspondence to **FARKAS & MANELLI, PLLC, 2000 M Street, N.W. 7th Floor, Washington, DC 20036-3307**, and all telephone calls to William H. Bollman at (202) 261-1000.

Respectfully submitted,

William H. Bollman, Reg. No. 36,457
Attorney for Applicants

Date: September 19, 2000

Farkas & Manelli, PLLC
2000 M Street, N.W. 7th Floor
Washington, DC 20036-3307
(202) 261-1000

APPLICATION UNDER UNITED STATES PATENT LAWS

Invention: **SIMPLIFYING DSL DEPLOYMENT VIA ANALOG/DSL COMBINATION SOLUTION**

Inventors: Anthony J. GREWE;
William R. BULLMAN; and
Steve E. STRAUSS

Farkas & Manelli P.L.L.C.
2000 M Street, N.W.
7th Floor
Washington, D.C. 20036-3307
Attorneys
Telephone: (202) 261-1000

This is a:

- Provisional Application
- Regular Utility Application
- Continuing Application
- PCT National Phase Application
- Design Application
- Reissue Application
- Plant Application

SPECIFICATION

SIMPLIFYING DSL DEPLOYMENT VIA ANALOG/DSL COMBINATION SOLUTION

BACKGROUND OF THE INVENTION

5 1. Field of the Invention

This invention relates generally to deployment and use of digital data services via a telephone line. More particularly, it relates to the use an analog/DSL modem to automatically and/or remotely determine a capability of potential subscribers' telephone line to support DSL services in
10 addition to analog voice services.

2. Background of Related Art

The growing demand for access to networked resources (such as via the Internet) has led to increasing interest in higher speed
15 broadband connections. A typical way to access network resources is via dial-up connections using analog dial modems.

The advent of digital subscriber line ("DSL") services has enabled a promising way to access network resources. DSL is a copper loop transmission technology which utilizes the existing voice telephony
20 copper (i.e., telephone line), but delivers a higher information rate than analog dial-up technology.

Fig. 8 shows the frequency spectrums of traditional analog voice and asymmetric DSL.

Voice telephony and current analog dial-up modems limit
25 their transmission spectrums to a 0 to 3.4 kHz range for a voice channel
801 as shown in Fig. 8. The highest information rate currently achievable within a 3.4 kHz spectrum is 56 kbps.

DSL achieves a higher information rate by using a broader range of frequencies than an analog voice channel **801**. For example,
30 asymmetric DSL ("ADSL) utilizes frequencies up to 1.2 MHz for faster

data services versus using an analog voice channel. As shown in Fig. 8, ADSL technologies utilize a separate upstream channel **802** and downstream channel **803**. Today, ADSL transmits an asymmetric data stream at up to 1 Mbps upstream (to the network) and up to 7 Mbps downstream (to the subscriber).

Transmission of data over a broader range of frequencies using DSL technologies such as ADSL requires complementary DSL devices at each end of a copper loop.

Fig. 6 shows a general topology for conventional DSL services.

In particular, Fig. 6 shows a typical subscriber location **601** with DSL service and plain old telephone ("POT") service. A subscriber's personal computer **602** is connected to a DSL modem **603**. The DSL modem **603** is connected via inside wiring **604** to a network interface device ("NID") **607**. At the NID, the inside wiring **604** is connected to a DSL service line **608a**. The DSL service line **608a** is routed to a serving central office **609**. The DSL service line is connected via a main distribution frame ("MDF") **613** to a complementary DSL device **612** (such as a DSL access multiplexer or "DSLAM") within the central office **609**. A high speed connection **614** (such as a T1, DS3, etc.) connects the complementary DSL device **612** to a data network (such as the Internet).

As shown in Fig. 8, DSL service is typically provided using a separate service line from a subscriber's traditional POT service. A subscriber's telephone **605** is connected via inside wiring **606** to the NID **607**. Of note, a subscriber's POT service line **608b** is separate from the dedicated DSL service line **608a**. At the NID, a subscriber's POT service is routed via the POT service line **608b** to the service central office **609** into the MDF **613**. The subscriber's POT service is then routed to the public switched telephone network ("PSTN") **611**.

One problem with DSL services is that they are difficult to deploy because a separate service line may be required. Moreover, there are many inefficiencies in the current process which has slowed the deployment of DSL.

5 It is desirable for DSL network service providers to deploy service quickly when requested by their subscribers. Furthermore, quick deployment of DSL service can reduce operations costs, increase revenue, improve customer satisfaction and speed up deployment.

10 Today, DSL deployment requires four steps: (1) prequalification; (2) copper provisioning; (3) turning on the service; and (4) post installation issues.

Fig. 7 shows a conventional process of deploying DSL.

In particular, in step 701 a subscriber submits an initial request to a network service provider for DSL service.

15 In step 702, a network service provider will conduct a prequalification of a subscriber.

20 Prequalification attempts to determine whether a subscriber location can support DSL service. However, DSL has several limitations which prevent deployment under certain circumstances. For instance, several factors which might prohibit a subscriber's location from supporting DSL services include:

- Distance from the central office is too far (e.g. greater than 12,500 feet for ADSL).
- Subscriber location is served by a remote terminal.
- Bridge taps are present in the copper pair.
- Load coils are present in the copper pair.

25 Typically, a network service provider will estimate a subscriber's distance from their serving central office based on an address and phone number. Also, a network service provider will check written records to determine if any limiting factors are present (e.g. remote

terminal, bridge taps, load coils, etc.). If the distance is estimated to be too far, or if written records indicate the presence of any limiting factors, then a network service provider will often not even attempt to deploy DSL service to that subscriber because of cost concerns.

5 In step 703, if a subscriber location passes prequalification, a network service provider then provisions a connection from the subscriber's location 601 to the central office 609 and finally to the service provider's complementary DSL device 612 via the MDF 613. This process is known as copper provisioning and requires coordination between the
10 network service provider and the local exchange carrier ("LEC").

In steps 704 and 705, if copper provisioning is successful, the next step is to turn on DSL service over the delivered connection 608a (i.e., telephone line). Turning on DSL service involves terminating the connection at the appropriate point on a service provider's complementary
15 DSL device 612 and installing a DSL modem 603 and any necessary inside wiring 604 at the subscriber's location 601. This is done by the network service provider from whom the subscriber ordered DSL service.

Ideally, when turning on service a technician arrives at the subscriber's location 601, installs the inside wiring 604, installs the DSL
20 modem 603, tests the DSL service and leaves the premises within ninety minutes.

Unfortunately, there are many inefficiencies with the current process during each of the steps 701-706.

During prequalification, the written records available to a
25 network service provider are often inaccurate. In addition, the written records often cover only the copper pair used for a DSL service line 608a from the central office 609 to the NID 609. Written records often do not provide complete information as to the state of inside wiring 604 within the subscriber location 601. Inside wiring 604 may be a myriad of wire types,
30 gauges, and of any configuration which can impact the performance of

DSL. As a result, network service providers are often forced to dispatch technicians to a subscriber's location and install new inside wiring.

During copper provisioning, coordination with the LEC often takes a substantial amount of time (e.g. several weeks) to provision a connection from the subscriber's location **601** to the central office **609**. Provisioning a connection from the MDF **613** to the service provider's complementary DSL device **612** may also take a substantial amount of time.

In addition, there are often errors which may not be discovered until later. For example, a misconnection to a wrong location other than the subscriber location **601**, or a misconnection at the MDF **613** or a misconnection at the service provider's complementary DSL device **612** may be discovered late in the process.

Moreover, when turning on the service, the technician may discover misconnections at the service provider's complementary DSL device **612** or at the subscriber's location **601**. For instance, the technician may discover load coils and/or bridge taps during testing which were not identified in the written records. Also, the distance from the central office **609** to the subscriber's location **601** may have been inaccurately estimated causing a need to down-grade DSL service from that which was ordered initially. Any of these problems can lead to lost revenue to the network service provider as well as subscriber dissatisfaction.

Post installation issues **706** can also be difficult. For example, troubleshooting DSL service can be a lengthy and difficult process. When a problem with DSL service occurs, a network service provider may need to dispatch a technician. During troubleshooting, a technician must usually travel to the subscriber location **601** to check for a failure in the DSL modem **603**, in the subscriber's PC **602**, or in the inside wiring **604**. The technician may also need to travel to the central office

609 to check the service provider's complementary DSL device 612 or verify the connection from the MDF 613. If the equipment is in order, the technician may then have to use DSL test equipment which places tones on the DSL service line 608a to detect any problems. This process is
5 labor intensive and can take a substantial amount of time.

Accordingly, as described above, DSL deployment is a labor intensive process with many inefficiencies.

Thus, there is need for an improved process and apparatus for deploying DSL in a way and at a cost that meets the expectations of
10 both the consumer as well as the DSL network service provider.

SUMMARY OF THE INVENTION

In accordance with the principles of the present invention, a method for deploying digital subscriber line (DSL) service via a
15 combination analog/DSL modem comprises logging a subscriber into a network site via an analog modem portion of a combination analog/DSL modem; determining a suitability of a service line used by the subscriber for supporting DSL service via the combination analog/DSL modem; and approving installation of DSL service on the service line when the
20 suitability is determined to support DSL service.

In accordance with another aspect of the present invention, a computer program product for deploying DSL services via a combination analog/DSL modem comprises a computer usable medium having computer readable program code, the computer readable program code
25 including: program code for logging into a network site via an analog modem portion of a combination analog/DSL modem; program code for determining a suitability of a service line for DSL services via the combination analog/DSL modem; and program code for installing DSL services when said service line is determined to be suitable to support
30 DSL services.

In accordance with another aspect of the present invention, a combination analog/DSL modem comprises an analog modem module; a DSL modem module; a parameter test module adapted to measure at least one parameter of a service line via the analog modem module; and a 5 parameter reference module adapted to correlate the measurement by the parameter test module to a suitability for supporting services via the DSL modem module.

BRIEF DESCRIPTION OF THE DRAWINGS

10 Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:

Fig. 1 shows an exemplary topology for DSL services in accordance with the principles of the present invention.

15 Fig. 2 shows a more detailed depiction of a combination analog/DSL modem.

Fig. 3 shows a more detailed view of a serving central office.

Fig. 4 shows an exemplary process for deploying DSL, in accordance with the principles of the present invention.

20 Fig. 5 shows how post installation issues such as troubleshooting may be handled as part of deploying DSL service, in accordance with the principles of the present invention.

25 Fig. 6 shows the bandwidth of a traditional analog voice channel and the bandwidth of the upstream and downstream channels of conventional asymmetric DSL technology.

Fig. 7 shows a general topology for conventional DSL services.

Fig. 8 shows a conventional process for deploying DSL services.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention provides an automated process for deploying DSL services using a combination analog/DSL modem.

Fig. 1 shows an exemplary topology for DSL services in accordance with the principles of the present invention.

In particular, as shown in Fig. 1, a subscriber location 101 includes subscriber equipment 103 (e.g. a personal computer), a combination analog/DSL modem 107, a traditional telephone 105, and a splitter 106 is shown within a subscriber location 101.

The subscriber's equipment 103 is connected to a combination analog/DSL modem 104. The combination analog/DSL modem 104 is connected to a splitter 106 via inside wiring 107a. The splitter 106 allows the copper service line 109 to be used for simultaneous DSL transmission and transmission using the analog voice channel. The splitter 106 is connected to a NID 108 via inside wiring 107b. Analog voice traffic from a telephone 105 is also routed through the splitter 106 to the NID 108.

From the NID 108, a copper service line 109 carries the DSL and analog voice traffic to a serving central office 110. DSL traffic is routed to a data network 112 (e.g. the Internet). A network site 113 is accessible via the data network 112. Analog voice traffic is routed to the PSTN 114.

Fig. 2 is a more detailed depiction of the combination analog/DSL modem shown in Fig. 1.

In particular, a controller 201, a parameter test module 203, parameter reference module 202, DSL modem module 205, and analog modem module 204 is shown within a combination analog/DSL modem 109.

The controller 201 controls the operations of the combination analog/DSL modem. The controller controls the passing of

information between the parameter test module 203 and DSL modem module 205, and analog modem module 204. The controller 201 also allows the subscriber to select data transmission using the DSL modem module 205 or analog modem module 204.

- 5 The parameter test module 203 in conjunction with the parameter reference module 202 allows for testing of the wiring between the combination analog/DSL modem 104 and the serving central office 110. The parameter test module 203 uses algorithms and DSP code known by those of ordinary skill in the art to measure several parameters.
- 10 Suitable parameters measured may include signal amplitude, return echo, tip voltage, ring voltage, capacitance and /or impedance to determine, e.g., line length, noise, presence of load coils, and presence of bridge taps.

15 Although several parameters are disclosed, other parameters which may affect suitability of supporting DSL service may be implemented within the principles of the present invention.

- 20 The parameter reference module 202 correlates the parameters measured by the parameter test module 203 to a suitability of the copper service line 109 for supporting DSL service. For example, line length may be correlated to the measured capacitance, e.g., by using 0.078-0.086 μ F/mile, in determining whether the service line 109 is too long (e.g. greater than 12,500 ft).

25 Although a correlation of capacitance to line length is disclosed, other correlations to determine a suitability for a copper service line 109 may be implemented within the principles of the present invention.

- 30 The analog modem 204 allows for data transmission using an analog dial-up session known by those of ordinary skill in the art. The analog modem 204 preferably allows for data transmission up to 56 kbps using an analog voice channel.

Although a 56 kbps analog modem is shown, other analog modems which use an analog voice channel may be implemented within the principles of the present invention.

The DSL modem **205** allows for data transmission using
5 DSL technology. The DSL modem **205** preferably uses ADSL technology known by those of ordinary skill in the art.

Although ADSL technology is disclosed, other DSL technologies which allow for simultaneous DSL transmission and analog voice channel transmission over the same service line may be
10 implemented within the principles of the present invention.

Fig. 3 shows a more detailed view of a serving central office.

In particular, an MDF **301**, POTS splitter **302**, complementary DSL device **303**, and analog dial point of presence ("POP") **304** is shown.

15 The MDF **301** aggregates incoming service lines and routes traffic to appropriate locations. Analog dial-up session traffic from the analog modem module **204** is routed to the analog dial POP **304**. Analog voice traffic from the telephone **105** is routed to the POTS splitter **302** and to the PSTN **114**. DSL data traffic from the DSL modem module **205** is
20 also routed to the POTS splitter **302** but directed to the data network **112**.

The POTS splitter **302** acts as a corresponding device for the splitter **106** located at the subscriber's location **101**. The POTS splitter **302** and splitter **106** are devices known by those of ordinary skill in the art which operate in conjunction to allow for simultaneous DSL and
25 analog voice channel transmission over the service line **109**.

Although a splitters, other DSL technologies which allow for simultaneous DSL and analog voice channel transmission over the same service line may be implemented within the principles of the present invention.

The complementary DSL device 303 serves as a corresponding modem device to the DSL modem module 205 which connects to the data network 112 via a high speed connection 111. The complementary DSL device 303 is preferably a DSL access multiplexer ("DSLAM") as known by those of ordinary skill in the art.

The analog dial POP 304 serves as a corresponding modem device to the analog modem module 204 which also connects to the data network 112 via a high speed connection 113. The analog dial POP 304 preferably supports up to 56 kbps as known by those of ordinary skill in the art.

High speed connections 111 and 113 preferably support at least T1 speeds (i.e. 1.5 Mbps) or higher as known by those of ordinary skill in the art.

Although a 56 kbps analog dial POP is shown, other analog dial POPs which use an analog voice channel may be implemented within the principles of the present invention.

Fig. 4 shows an exemplary process of deploying DSL in accordance with the principles of the present invention.

In particular, in step 401 a subscriber via the analog portion of a combination analog/DSL modem logs into a network site to request DSL service.

Preferably, the subscriber may log into a network site 113 by inserting a computer program product 102 (e.g. a diskette or CD) to initiate an analog dial-up session via the analog modem module 204 of the combination analog/DSL modem 104. The subscriber may receive the computer program product 102 via a directed mailing or by any wide variety of means.

Preferably, upon logging into the network site 113, the user is prompted to provide certain information such as address, and phone

number. However, other information may be requested from the user in accordance with the principles of the present invention.

In step 202, a series of parameter tests is performed by the combination analog/DSL modem 104. As noted above, these parameter tests are handled automatically without the need for manual intervention by the combination analog/DSL modem 104 using algorithms and DSP code known by those of ordinary skill in the art to measure several parameters.

These measured parameters are then passed automatically to the network service provider operating the network site 113.

In step 203, a suitability for supporting DSL services is automatically determined by the network service provider based on an analysis of the parameters measured by the combination DSL/analog modem 104.

The parameters measured by the combination DSL/analog modem 104 may be automatically compared without manual intervention to the technical requirements of DSL, although manual assistance may be provided within the scope of the present invention. The resulting suitability determined is then passed automatically to the network service provider.

In step 203b, if the measured parameters are not within technical limits, then the subscriber is notified that DSL service is not available. The notification may also include the reason why DSL service is not available (e.g. distance too far, bridge tap detected, etc.).

Notification may be delivered to the subscriber by a wide variety of ways such as email, or written notification. Preferably, the subscriber is notified via email within 24 hours.

Although, email or written notification is disclosed, other types of notification which allow for quick delivery, e.g., within 24 hours may be used in accordance with the principles of the present invention.

In step 203a, if the measured parameters are within technical limits, the subscriber is informed that DSL service is available. The network service provider may then substantially immediately offer DSL service to that subscriber, without requiring the dispatch of any personnel (and potentially without the expenditure of any man-hours). A subscriber may be informed by a wide variety of means such as email, or written notification. Preferably, the subscriber is immediately informed via email.

In step 204, a subscriber responds positively to the offer of
10 DSL service and submits an order. A subscriber may submit an order by replying to a notification email, filling out a written notification sent to the subscriber, or calling the network service provider. Preferably, the subscriber submits an order via email.

In step 205, the network service provider responds to the
15 subscriber's order by provisioning a connection between the subscriber's location 101 and the network service provider's complimentary DSL device 108, and updates service turn-on and billing information. Preferably, this would occur, e.g., within 24 hours.

In step 206, the network service provider informs the
20 subscriber that DSL service has been turned on. Notification may be by a wide variety of means such as email or written notification. Preferably, the subscriber is notified via a suitably fast and automatic mechanism, e.g., email perhaps in conjunction with a written notification by regular mail.

In step 207, the subscriber turns on DSL service by
25 selecting the DSL portion of the combination analog/DSL modem 104, and substantially immediately gains access to network resources.

Fig. 5 shows how post installation issues such as troubleshooting may be handled as part of automatic deployment of DSL service, in accordance with the principles of the present invention.

In particular, in step **208**, the subscriber discovers a problem with his/her DSL service, and accordingly notifies the network service provider. A problem may be noted at any time, and by any of a wide variety of symptoms, such as slow performance, error messages, etc.

5 Notification to the network service provider may be by any of a wide variety of means such as email, or phone call. Preferably, the network service provider is notified via a suitably fast mechanism, e.g., via email.

10 In step **209**, the network service provider may respond to the problem report by the subscriber. In order to troubleshoot the DSL service, the subscriber or network service provider may remotely and automatically direct the combination analog/DSL modem **104** into a test mode.

15 In step **210**, the network site **113** is logged into for troubleshooting, and the combination analog/DSL modem **104** initiates any one of a series of tests via the analog modem module **204** or DSL modem module **205** to determine the current suitability of the service line. These troubleshooting tests are preferably handled automatically without manual effort. The results of these troubleshooting tests may then be 20 passed automatically to the network service provider for analysis.

25 In step **211**, the network service provider may analyze the remotely received information and appropriately isolate and potentially resolve the problem without ever having dispatched a repair crew to the subscriber's premises. Diagnosis may be performed by a wide variety of ways without manual effort.

Ideally, within 24 hours the service turn-on and billing information are updated and the subscriber is notified by the network service provider. In response, the DSL modem module **205** of the combination analog/DSL modem **104** would be selected and a subscriber

would immediately have broadband access to the desired network resources.

Also, since the combination DSL/analog modem **104** is located at the actual location, i.e., **101**, where DSL service is delivered, 5 troubleshooting and testing can be initiated at any time by the subscriber or network service provider.

Thus, the present invention provides a method for automating and improving the process of deploying DSL.

Accordingly the deployment of DSL service is improved and 10 made more efficient by reducing the manual effort and other inefficiencies required for the implementation of DSL services over a telephone line.

While the invention has been described with reference to exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention 15 without departing from the true spirit and scope of the invention.

CLAIMS

What is claimed is:

1. A method for deploying digital subscriber line (DSL) service via a combination analog/DSL modem, said method comprising:

5 receiving a subscriber login request into a network site via an analog modem portion of a combination analog/DSL modem;

determining a suitability of a service line used by said subscriber for supporting DSL service via said combination analog/DSL modem; and

10 approving installation of DSL service on said service line when said suitability is determined to support DSL service.

2. The method for DSL service via a combination analog/DSL modem according to claim 1, further comprising:

15 substantially immediately after said step of approving, providing DSL service to said combination analog/DSL modem.

3. The method for DSL service via a combination analog/DSL modem according to claim 1, wherein:

20 said network site is accessed via a separate connection to an Internet.

4. The method for DSL service via a combination analog/DSL modem according to claim 1, further comprising:

providing at least one of an address and a telephone number to said network site via said analog modem portion of said
5 combination analog/DSL modem.

5. The method for deploying DSL service via a combination analog/DSL modem according to claim 1, wherein said determining said suitability of said service line further comprises:

10 performing a measurement of at least one parameter of said service line using said analog modem portion of said combination analog/DSL modem.

6. The method for deploying DSL service via a combination
15 analog/DSL modem according to claim 5, wherein said performing of said measurement further comprises:

measuring an amplitude of a signal transmitted over said service line.

20 7. The method for deploying DSL service via a combination analog/DSL modem according to claim 5, wherein said performing of said measurement further comprises:

measuring a return echo over said service line.

25 8. The method for deploying DSL service via a combination analog/DSL modem according to claim 5, wherein said performing of said measurement further comprises:

measuring a tip voltage of said service line.

9. The method for deploying DSL service via a combination analog/DSL modem according to claim 5, wherein said performing of said measurement further comprises:

measuring a ring voltage of said service line.

5

10. The method for deploying DSL service via a combination analog/DSL modem according to claim 5, wherein said performing of said measurement further comprises:

measuring a capacitance of said service line.

10

11. The method for deploying DSL service via a combination analog/DSL modem according to claim 5, wherein said performing of said measurement further comprises:

measuring an impedance of said service line.

15

12. The method for deploying DSL service via a combination analog/DSL modem according to claim 1, further comprising:

informing said subscriber that DSL service is not available when said service line is determined to not support DSL service.

20

13. The method for deploying DSL service via a combination analog/DSL modem according to claim 12, further comprising:

informing said subscriber of a reason that DSL service is not
25 available.

14. The method for deploying DSL service via a combination analog/DSL modem according to claim 1, further comprising:

selecting a DSL modem portion of said combination
30 analog/DSL modem.

15. The method for deploying DSL service via a combination analog/DSL modem according to claim 14, further comprising:

5 troubleshooting said installed DSL service by causing said analog modem portion of said combination analog/DSL modem to determine suitability of said service line

16. A computer program product for deploying digital
10 subscriber line (DSL) services via a combination analog/DSL modem, the computer program product comprising a computer usable medium having computer readable program code thereon, the computer readable program code including:

15 program code for logging into a network site via an analog modem portion of a combination analog/DSL modem;

program code for determining a suitability of a service line for DSL services via said combination analog/DSL modem; and

program code for installing DSL services when said service line is determined to be suitable to support DSL services.

17. The computer program product according to claim 16,
further comprising:

program code for accessing said network site via a separate
connection to an Internet.

5

18. The computer program product according to claim 16,
further comprising:

program code for providing at least one of an address and a
telephone number to said network site via said analog modem portion of
10 said combination analog/DSL modem.

19. The computer program product according to claim 16,
wherein program code for determining a suitability of a service line further
comprises:

15 program code for directing said analog modem portion of
said combination analog/DSL modem to measure at least one parameter
of said service line.

20

20. The computer program product according to claim 19,
wherein said at least one parameter comprises:
an amplitude of a signal transmitted over said service line.

25

21. The computer program product according to claim 19,
wherein said at least one parameter comprises:

a return echo over said service line.

30

22. The computer program product according to claim 19,
wherein said at least one parameter comprises:
a tip voltage of said service line.

23. The computer program product according to claim 19,
wherein said at least one parameter comprises:
a ring voltage of said service line.

5 24. The computer program product according to claim 19,
wherein said at least one parameter comprises:
a capacitance of said service line.

10 25. The computer program product according to claim 19,
wherein said at least one parameter comprises:
an impedance of said service line.

15 26. The computer program product according to claim 16,
further comprising:
program code for selecting a DSL modem portion of said
combination analog/DSL modem.

20 27. A combination analog/DSL modem comprising:
an analog modem module;
a DSL modem module;
a parameter test module adapted to measure at least one
parameter of a service line via said analog modem module; and
a parameter reference module adapted to correlate said
measurement by said parameter test module to a suitability for supporting
25 services via said DSL modem module.

28. The combination analog/DSL modem of claim 27,
wherein:
said parameter test module is adapted to measure an
30 amplitude of a signal transmitted over said service line.

29. The combination analog/DSL modem of claim 27,
wherein:

5 said parameter test module is adapted to measure a return
echo over said service line.

30. The combination analog/DSL modem of claim 27,
wherein:

10 said parameter test module is adapted to measure a tip
voltage of said service line.

31. The combination analog/DSL modem of claim 27,
wherein:

15 said parameter test module is adapted to measure a ring
voltage of said service line.

32. The combination analog/DSL modem of claim 27,
wherein:

20 said parameter test module is adapted to measure a
capacitance of said service line.

33. The combination analog/DSL modem of claim 27,
wherein:

25 said parameter test module is adapted to measure an
impedance of said service line.

ABSTRACT

An improved method using a combination analog/DSL modem for deploying DSL services is disclosed. A combination analog/DSL modem is preferably utilized at the subscriber premises. A telephone line is tested using the analog portion of the modem. In combination with information provided by the subscriber and records, a suitability of the service line for DSL services may be accurately determined. DSL service is then ordered by the subscriber. Preferably, DSL services are deployed on top of the existing analog voice service line allowing service turn on within a short period of time. The subscriber can have the ability to access a network using the DSL portion of their combination modem. If during modem testing it is determined that the telephone line would not support DSL service, the subscriber would be informed that DSL service is currently not available for them. However, the subscriber could continue to use the analog portion of their combination modem.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6
 Dom Ant

Fig. 7

Prior Art

Fig. 8
Prior Art

IN THE UNITED STATES
PATENT AND TRADEMARK OFFICE

Declaration and Power of Attorney

As the below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

We believe that we are the original, first and joint inventors of the subject matter which is claimed and for which a patent is sought on the invention entitled **SIMPLIFYING DSL DEPLOYMENT VIA ANALOG/DSL COMBINATION SOLUTION** the specification of which is attached hereto.

We hereby state that we have reviewed and understand the contents of the above identified specification, including the claims, as amended by an amendment, if any, specifically referred to in this oath or declaration.

We acknowledge the duty to disclose all information known to me which is material to patentability as defined in Title 37, Code of Federal Regulations, 1.56.

We hereby claim foreign priority benefits under Title 35, United States Code, 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

None

We hereby claim the benefit under Title 35, United States Code, 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, 112, we acknowledge the duty to disclose all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

None

We hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

We hereby appoint the following attorney(s) with full power of substitution and revocation, to prosecute said application, to make alterations and amendments therein, to receive the patent, and to transact all business in the Patent and Trademark Office connected therewith:

Thomas J. Bean	(Reg. No. 44528)
Lester H. Birnbaum	(Reg. No. 25830)
Richard J. Botos	(Reg. No. 32016)
Jeffery J. Brosemer	(Reg. No. 36096)
Kenneth M. Brown	(Reg. No. 37590)
Donald P. Dinella	(Reg. No. 39961)
Guy Eriksen	(Reg. No. 41736)
Martin I. Finston	(Reg. No. 31613)
William S. Francos	(Reg. No. 38456)
Barry H. Freedman	(Reg. No. 26166)
Julio A. Garceran	(Reg. No. 37138)
Jimmy Goo	(Reg. No. 36528)
Anthony Grillo	(Reg. No. 36535)
Stephen M. Gurey	(Reg. No. 27336)
John M. Harman	(Reg. No. 38173)
Matthew J. Hodulik	(Reg. No. 36164)
Michael B. Johannessen	(Reg. No. 35557)
Mark A. Kurisko	(Reg. No. 38944)
Irena Lager	(Reg. No. 39260)
John B. MacIntyre	(Reg. No. 41170)
Christopher N. Malvone	(Reg. No. 34866)
Scott W. McLellan	(Reg. No. 30776)
Martin G. Meder	(Reg. No. 34674)
John C. Moran	(Reg. No. 30782)
Michael A. Morra	(Reg. No. 28975)
Gregory J. Murgia	(Reg. No. 41209)
Claude R. Narcisse	(Reg. No. 38979)
Joseph J. Opalach	(Reg. No. 36229)
Neil R. Ormos	(Reg. No. 35309)
Eugen E. Pacher	(Reg. No. 29964)
Jack R. Penrod	(Reg. No. 31864)
Gregory C. Ranieri	(Reg. No. 29695)
Scott J. Rittman	(Reg. No. 39010)
Ferdinand M. Romano	(Reg. No. 32752)
Eugene J. Rosenthal	(Reg. No. 36658)
Bruce S. Schneider	(Reg. No. 27949)
Ronald D. Slusky	(Reg. No. 26585)
David L. Smith	(Reg. No. 30592)
Ozer M. N. Teitelbaum	(Reg. No. 36698)
John P. Veschi	(Reg. No. 39058)

David Volejnicek	(Reg. No. 29355)
Charles L. Warren	(Reg. No. 27407)
Jeffrey M. Weinick	(Reg. No. 36304)
Eli Weiss	(Reg. No. 17765)

We hereby appoint the attorney(s) on ATTACHMENT A as associate attorney(s) in the aforementioned application, with full power solely to prosecute said application, to make alterations and amendments therein, to receive the patent, and to transact all business in the Patent and Trademark Office connected with the prosecution of said application. No other powers are granted to such associate attorney(s) and such associate attorney(s) are specifically denied any power of substitution or revocation.

Full name of 1st joint inventor: **William R. BULLMAN**

Inventor's signature Will R. Bullman Date 9-14-00

Residence: **Bethlehem, Northampton County, Pennsylvania**

Citizenship: **USA**

Post Office Address: **3836 Post Drive, Bethlehem, Pennsylvania 18017**

Full name of 2nd joint inventor: **Anthony J. GREWE**

Inventor's signature Anthony J. Grewe Date 9-14-00

Residence: **Fogelsville, Lehigh County, Pennsylvania**

Citizenship: **USA**

Post Office Address: **8318 Countryside Lane, Fogelsville, Pennsylvania 18051
1771 Creek View Drive, 19140**

04/00

Full name of 3rd joint inventor: **Steven E. STRAUSS**

Inventor's
signature

Date

9-14-2006

Residence: **Orefield, Lehigh County, Pennsylvania**

Citizenship: **USA**

Post Office Address: **1714 Laurel Lane, Orefield, Pennsylvania 18069**

04/00

ATTACHMENT A

Attorney Name(s): William H. Bollman, Esq. Reg. No.: 36,457

Telephone calls should be made to Farkas & Manelli pllc at:

Phone No.: 202-261-1000

Fax No.: 202-887-0336

All written communications are to be addressed to:

Farkas & Manelli pllc
2000 M Street, N.W.
7th Floor
Washington, D.C. 20036-3307

04/00