Барановичи 1994 г. (Решения)

9-1. Так как Меркурий планета, ближайшая к Солнцу, то ее наблюдению с земли мешает солнечный свет. Меркурий может быть виден либо утром, перед восходом Солнца, либо вечером, сразу

заката. Оптимальные после условия наблюдения Меркурия реализуются когда он максимальном на **УГЛОВОМ** удалении от Солнца, т.е. когда угол между направлениями на планету и на Солнце с Землей максимален. Пусть 1 января Земля находится в точке $E_{\scriptscriptstyle I}$. Тогда Меркурий находится в точке M_1 , такой, что прямая $E_{I}M_{I}$ орбите является касательной

Меркурия. К 25 апреля (т.е. через время $\tau = 115$ суток — учтите, что 1980 год — високосный) Земля сместится в точку M_2 , повернувшись вокруг Солнца на угол φ , причем

$$\varphi = \frac{2\pi}{T_0}\tau,\tag{1}$$

где $T_0=365$ суток — период обращения Земли вокруг Солнца. За этот же промежуток времени Меркурий сместится в точку M_2 , сделав еще один полный оборот вокруг Солнца, т.е. угол поворота Меркурия вокруг Солнца равен $2\pi+\varphi$, следовательно,

$$2\pi + \varphi = \frac{2\pi}{T}\tau,\tag{2}$$

где T – искомый период обращения Меркурия. Из уравнений (1) – (2) можно найти

$$T = \frac{\tau T_0}{\tau + T_0} \approx 87.5 \text{ cymor.}$$

Отметим, что из (1) – (2) можно получить известное в астрономии соотношение между сидерическим (истинным) T и синодическим (наблюдаемым) τ периодом обращения

$$\frac{1}{T} = \frac{1}{\tau} + \frac{1}{T_0}.$$

9-2. Так как резистор и лампа включены в цепь последовательно, то сумма падений напряжения на лампе U и резисторе $U_{\it R}={\it IR}$ равна напряжению источника $U_{\it 0}$:

$$U_0 = U + IR$$
.

Кроме того, сила тока одинакова во всех элементах цепи, поэтому ток $I=\beta U^2$ (по условию) будет течь и через резистор. Таким образом, получили уравнение относительно напряжения U на лампе

$$U_0 = U + \beta R U^2,$$

которое имеет два корня

$$U = \frac{-1 \pm \sqrt{1 + 4\beta RU}}{2\beta R}.$$

Отрицательный корень следует отбросить, так как газоразрядная лампа не может служить источником напряжения. Окончательно получим значение силы тока

$$I = \beta U^{2} = \frac{\left(\sqrt{1 + 4\beta RU_{0}} - I\right)^{2}}{4\beta R^{2}}.$$

9-3. Во второй калориметр Федя залил кипящую воду, т.е. ее температура $t_2 = 100^{\circ}\,C$. Так как при измерении термометр показал температуру $t_1 = 99.2^{\circ}\,C$, то следует утверждать, что сам термометр имеет теплоемкость C_T , пренебречь который нельзя. Запишем уравнение теплового баланса для первого измерения: вода отдала термометру количество теплоты $Q = cm(t_2 - t_1)$ (где c — удельная теплоемкость воды, m — ее масса), столько же получил термометр $Q = C_T(t_1 - t_k)$, поэтому

$$cm(t_2 - t_1) = C_T(t_1 - t_k). \tag{1}$$

Обозначим t_k — температура, которая установится в первом калориметре, после опускания в него горячего термометра. Рассуждая аналогично, можно записать уравнение теплового баланса во втором случае

$$cm(t_x - t_k) = C_T(t_I - t_x).$$
(2)

Решая совместно (1) — (2) получим

$$t_k = \frac{t_1(t_2 - t_1) + t_k(t_1 - t_k)}{t_2 - t_k} \approx 21.1^{\circ} C$$
.