Избрани въпроси от хидродинамиката

Калоян Стоилов

11 февруари 2022 г.

I Изменение на количеството на движение

Количеството движение или още - импулс в механиката на твърди тела се нарича $\mathbf{K} = m\mathbf{v}$ (често се бележи с p, но при нас това е налягането). Вторият закон на Нютон гласи, че скоростта на изменение на импулса е равно на равнодействащата сила $\mathbf{F} = \frac{d\mathbf{K}}{dt} = \frac{dm\mathbf{v}}{dt} = m\dot{\mathbf{v}}$. Законът е в сила за тела, непроменящи масата си.

I.1 Масови и повърхностни сили

Нека τ е обем от флуид с маса M. Масовата сила е действащата на флуида в обема сила, която не зависи от взаимодействието с други части на флуида. Нека \mathbf{F}_M е главния вектор на силите (т.е. равнодействащата сила), действащи на флуида във τ . Средна масова сила, действаща върху маса M се нарича $F_{avg} = \frac{\mathbf{F}_M}{M}$. Масова сила \mathbf{F} в точка B, наричаме

(1)
$$\mathbf{F} = \lim_{\tau \to \{B\}} F_{avg} = \lim_{\tau \to \{B\}} \frac{\mathbf{F}_M}{M}$$

Ако знаем **F** в коя да е точка от τ , то може да получим **F**_M. Наистина, нека $\Delta \tau$ е обем с маса $\Delta m = \rho \Delta \tau$, на който действа **F**_a $vg\Delta m$. Разбивайки τ на такива обеми, може да съберем всички такива сили и след граничен преход получаваме:

(2)
$$\mathbf{F}_{M} = \iiint_{\tau} \mathbf{F} dm = \iiint_{\tau} \rho \mathbf{F} d\tau$$

Нека обемът е ограничен от повърхнина S. Флуидът извън τ , действа на този във τ през S чрез повърхностни сили. Нека приближим част от повърхнината с равнинна част ΔS с нормала \mathbf{n} , а главния вектор на силите, действащи ѝ е ΔF_S^n . Средното напрежение, действащо на площта е $\mathbf{t}_{avg}^n = \frac{\Delta F_S^n}{\Delta S}$. Напрежение \mathbf{t}^n на повърхностни сили, действащи в точка B, наричаме

(3)
$$\mathbf{t} = \lim_{\Delta S \to \{B\}} \mathbf{t}_{avg}^n = \lim_{\Delta S \to \{B\}} \frac{\Delta F_S^n}{\Delta S}$$

Отново сумираме всички такива сили за S и след граничен преход главният вектор на повърхностните сили e:

(4)
$$\mathbf{F}_{S} = \iint_{S} d\mathbf{F}_{S}^{n} = \iint_{S} \mathbf{t}^{n} dS$$

I.2 Интегрална форма на закона за изменение на количеството на движение

В малък обем $\Delta \tau$ с маса $\rho \Delta \tau$ ще имаме импулс $\Delta \mathbf{K} = \rho \mathbf{v} \Delta \tau$. Така количеството движение на флуида ще бъде

(5)
$$\mathbf{K} = \iiint_{\tau} \rho \mathbf{v} d\tau$$

Тъй като силите, действащи на au или са масови, или повърхностни, то вторият закон на Нютон придобива вида:

(6)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{\tau} \rho \mathbf{v} \mathrm{d}\tau = \iiint_{\tau} \rho \mathbf{F} \mathrm{d}\tau + \iint_{S} \mathbf{t}^{n} \mathrm{d}S$$

Не бива да забравяме, че и самият обем au се мени с времето. Тогава ще имаме

(7)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint \rho \mathbf{v} \mathrm{d}\tau = \iiint \frac{\mathrm{d}\rho \mathbf{v}}{\mathrm{d}t} + \rho \mathbf{v} \nabla \cdot \mathbf{v} \mathrm{d}\tau$$

Така получаваме интегралната форма на закона за изменение на количеството движение

(8)
$$\iiint_{\tau} \frac{\mathrm{d}\rho \mathbf{v}}{\mathrm{d}t} + \rho \mathbf{v} \nabla \cdot \mathbf{v} - \rho \mathbf{F} \mathrm{d}\tau = \iint_{S} \mathbf{t}^{n} \mathrm{d}S$$

І.3 Изменение на интегрално количество

Нека Q бъде някаква величина - скаларна или векторна, която е дефинирана поточково в обем τ . Тогава изменението по времето на общата величина за обема ще бъде

$$(9) \frac{\mathrm{d}}{\mathrm{d}t} \iiint Q \mathrm{d}\tau$$

Тъй като говорим за флуиди и самият обем се мени с времето. Да разгледаме $\tau(t+\Delta t) - \tau(t)$. За достатъчно малко време и малка площ ΔS по границата S(t), може да разглеждаме че се движи със скорост $\mathbf{v} \cdot \mathbf{n}$ към нова повърхнина $S(t+\Delta t)$. Така изменението на обема над тази площ ще може да се пресметне като обем на прав криволинеен цилиндър

(10)
$$\Delta \tau = h \Delta S = (\mathbf{v} \cdot \mathbf{n}) \Delta t \Delta S$$

След граничен преход и изразявайки обема чрез интеграл по елементарни обеми получаваме:

(11)
$$\frac{\iiint\limits_{\tau(t+\Delta t)-\tau(t)} d\tau}{\Delta t} = \iint\limits_{S} \mathbf{v} \cdot \mathbf{n} dS$$

Сега може да получим аналог на формулата за диференциране на Лайбниц

(12)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{\tau} Q \mathrm{d}\tau = \iiint_{\tau} \frac{\partial Q}{\partial t} \mathrm{d}\tau + \iint_{S} Q(\mathbf{v} \cdot \mathbf{n}) \mathrm{d}S$$

Може да забележим, че ако Q е скаларна величина, то $Q(\mathbf{v} \cdot \mathbf{n}) = (Q\mathbf{v}) \cdot \mathbf{n}$. Използвайки теоремата на Гаус-Остроградски, то

(13)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{\tau} Q \mathrm{d}\tau = \iiint_{\tau} \frac{\partial Q}{\partial t} \mathrm{d}\tau + \iiint_{\tau} \nabla \cdot (Q\mathbf{v}) \mathrm{d}\tau$$

Лесно може да се провери, че

(14)
$$\nabla \cdot (Q\mathbf{v}) = \nabla Q \cdot \mathbf{v} + Q\nabla \cdot \mathbf{v} = \nabla Q \cdot \dot{\mathbf{x}} + Q\nabla \cdot \mathbf{v}$$

Остава да забележим, че

(15)
$$\frac{\partial Q}{\partial t} + \nabla Q \cdot \dot{\mathbf{x}} = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

След използване на линейността на интеграла получаваме

(16)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{\tau} Q \mathrm{d}\tau = \iiint_{\tau} \frac{\mathrm{d}Q}{\mathrm{d}t} + Q\nabla \cdot \mathbf{v} \mathrm{d}\tau$$

Ако Q е векторна величина, то може да го разгледаме покомпонентно и пак получаваме същата формула.

І.4 Формула на Коши

Нека τ бъде триъгълна пирамида с прав тристенен ъгъл при върха си - началото на координатната система. Тогава може да се опише като съвкупност от 4 повъхнини:

- 1. S_x е стената перпендикулярна на оста x.
- 2. S_y е стената перпендикулярна на оста y.
- 3. S_z е стената перпендикулярна на оста z.
- 4. S_n е стената срещу тристенният ъгъл на координатната система.

Тогава \mathbf{t}^{-x} , \mathbf{t}^{-y} , \mathbf{t}^{-z} ще са напреженията по съответните първи три стени. Нека \mathbf{t}^n бъде по четвъртата. Така се достига до формулата на Коши

(17)
$$\iiint_{\tau} \frac{\mathrm{d}\rho \mathbf{v}}{\mathrm{d}t} + \rho \mathbf{v} \nabla \cdot \mathbf{v} - \rho \mathbf{F} \mathrm{d}\tau = \iint_{S_{v}} \mathbf{t}^{-x} \mathrm{d}S + \iint_{S_{v}} \mathbf{t}^{-y} \mathrm{d}S + \iint_{S_{v}} \mathbf{t}^{-z} \mathrm{d}S + \iint_{S_{v}} \mathbf{t}^{n} \mathrm{d}S$$

II Безразмерни течения

Ще разгледаме вискозни течения с непроменлива динамична вискозност μ . Същото предполагаме и за масовите сили \mathbf{g} . Експериментални изследвания върху течения с модели/макети могат да служат за качествено/количествено характеризиране на по-големи обекти, които на практика могат да се ползват (напр. кораби, самолети). За тази цел се използва обезразмеряване.

II.1 Безразмерен запис на уравнения на течения

Нека разгледаме системата от уравнения на Навие-Стокс и уравнението на непрекъснатостта

(18)
$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = \mathbf{g} - \frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

Разглеждаме тяло с характерна дължина l. Правим смяна на координатите, като искаме да разпишем уравненията в следната система

(19)
$$\xi = \frac{x}{l}, \, \eta = \frac{y}{l}, \, \zeta = \frac{z}{l}, \, \tau = \frac{t}{\frac{l}{v}}$$

Въвеждаме безразмерни функции

(20)
$$\mathbf{u} = \frac{l}{\mathbf{v}}\mathbf{v}, \Pi = \frac{l^2}{\mathbf{v}^2}\frac{p}{\rho}, \gamma = \frac{l^3}{\mathbf{v}^2}\mathbf{g}$$

Трябва да ги запишем като функции на новите координати. За да сведем уравненията използваме, че

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial (\frac{\mathbf{v}}{l}\mathbf{u})}{\partial \tau} \frac{d\tau}{dt} = \frac{\mathbf{v}^{2}}{l^{3}} \frac{\partial \mathbf{u}}{\partial \tau}$$

$$\mathbf{v} \cdot \nabla \mathbf{v} = \frac{\mathbf{v}}{l} \mathbf{u} \cdot \nabla \frac{\mathbf{v}}{l} \mathbf{u} = \frac{\mathbf{v}^{2}}{l^{2}} \mathbf{u} \cdot (\frac{\partial \mathbf{u}}{\partial \xi} \frac{d\xi}{dx} + \frac{\partial \mathbf{u}}{\partial \eta} \frac{d\eta}{dy} + \frac{\partial \mathbf{u}}{\partial \zeta} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{3}} \mathbf{u} \cdot (\frac{\partial \mathbf{u}}{\partial \xi} + \frac{\partial \mathbf{u}}{\partial \eta} + \frac{\partial \mathbf{u}}{\partial \zeta})$$

$$(23)$$

$$\nabla \cdot \mathbf{v} = 0 \iff \frac{\partial u_{x}}{\partial \xi} + \frac{\partial u_{y}}{\partial \eta} + \frac{\partial u_{z}}{\partial \zeta} = 0$$

$$(24)$$

$$\mathbf{v} \nabla^{2} \mathbf{v} = \mathbf{v} \nabla \cdot \frac{\mathbf{v}}{l} (\frac{\partial \mathbf{u}}{\partial \xi} \frac{d\xi}{dx} + \frac{\partial \mathbf{u}}{\partial \eta} \frac{d\eta}{dy} + \frac{\partial \mathbf{u}}{\partial \zeta} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{2}} (\frac{\partial^{2} \mathbf{u}}{\partial \xi^{2}} \frac{d\xi}{dx} + \frac{\partial^{2} \mathbf{u}}{\partial \eta^{2}} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{3}} (\frac{\partial^{2} \mathbf{u}}{\partial \xi} + \frac{\partial^{2} \mathbf{u}}{\partial \eta^{2}} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{3}} (\frac{\partial^{2} \mathbf{u}}{\partial \xi} + \frac{\partial^{2} \mathbf{u}}{\partial \eta^{2}} + \frac{\partial^{2} \mathbf{u}}{\partial \zeta^{2}})$$

$$(25)$$

$$\frac{1}{\rho} \nabla p = \nabla \frac{p}{\rho} = \frac{\mathbf{v}^{2}}{l^{2}} (\frac{\partial \Pi}{\partial \xi} \frac{d\xi}{dx} + \frac{\partial \Pi}{\partial \eta} \frac{d\eta}{dy} + \frac{\partial \Pi}{\partial \zeta} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{3}} (\frac{\partial \Pi}{\partial \xi} + \frac{\partial \Pi}{\partial \eta} + \frac{\partial \Pi}{\partial \zeta})$$

Съкращаваме и получаваме системата

(26)
$$\frac{d\mathbf{u}}{d\tau} = \gamma - \nabla\Pi + \nabla^2\mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

Тук операторите са спрямо новите ни променливи ξ, η, ζ , като вече единицата за дължина е характерната дължина на тялото, т.е. l.

II.2 Подобни координати

Нека имаме две подобни тела със съответни характерни дължини $l_1,\ l_2$ - те ще определят линейния мащаб за двете задачи. Изразяваме съответно течения с кинематични вискозности $\mathbf{v}_i = \frac{\mu_i}{\rho_i}$ в координати $x_i, y_i, z_i, t_i, \quad i=1,2$. Да забележим, че $[\mathbf{v}_i] = \frac{L^2}{T},$ а $[l_i] = L$. Така за мащаб по времето може да вземем $\frac{l_i^2}{\mathbf{v}_i},\ i=1,2$. За обезразмерени уравнения въвеждаме координати

(27)
$$\xi_{i} = \frac{x_{i}}{l_{i}}, \, \eta_{i} = \frac{y_{i}}{l_{i}}, \, \zeta_{i} = \frac{z_{i}}{l_{i}}, \, \tau_{i} = \frac{t_{i}}{\frac{l_{i}^{2}}{v_{i}}}, \quad i = 1, 2$$

Подобни координати на двете течения наричаме тези, за които всички двойки безразмерни величини съвпадат. След тези преобразузавания и двете безразмерни тела имат характерни дължини 1 и са геометрически еднакви.

II.3 Подобие при вискозни течения

Иска ни се с едно течение да оприличим друго - както например имаме геометрично подобие на фигури и сме извели някакво свойство/количество за една от тях, лесно може да го получим за другата. И тъй нека имаме две течения със съответни величини

(28)
$$l_i, \mathbf{v}_i, \mathbf{g}_i, \mathbf{v}_i, \frac{p_i}{\rho_i}, \quad i = 1, 2$$

II.4 Безразмерни характерни числа