

TRANSFORMAÇÃO: CONTEXTO EDIT. Muitas vezes pode ser útil em termos de negócio ou em termos analíticos transformar as variáveis existentes ou mesmo criar novas variáveis. Exemplo: num-of-doors wheel-base length car-id release-date body-style width height price 15471 11/02/2001 sedan 93,7 157,3 63,8 50,6 7.609 four 22441 14/07/2014 ? hatchback 93.7 157.3 63.8 50.6 8.558 32254 14/11/2024 four wagon 103,3 174,6 64,6 59,8 48.921 Criar variáveis **Dummy*** para que esta informação seja considerada em por todas as técnicas analíticas. * Será explicado nos seguintes slides que tipo de variáveis são as Dummy DATA SCIENCE & BUSINESS ANALYTICS

EXER	EXERCÍCIO I	
Linha 1	Sobre o Carros5 criar uma nova variável numérica com base na variável num-of-doors	Ana
Linha 2	Criar variáveis Dummy para a variável body-style	Sara
Linha 3	Converter as variáveis wheel-base, length, width e height para centímetros sem casas decimais	Carolina M
Linha 4	Converter a variável price para euros com 2 casas decimais	Carolina L
Linha 5	Com base na análise dos valores da variável price , criar uma nova variável com 3 níveis de preço: alto, médio e baixo .	Joana
Linha 6	Rever o exercício I da sessão 4 e criar variáveis <i>Dummy</i> que indicam, para cada observação / variável se foi ou não alvo de tratamento <i>outliers</i> .	Filipa
DATA SCIENC	E & BUSINESS ANALYTICS Módulo 3 – Exploratory Data Analysis – Sessão 5	

VISUALIZAÇÃO DE DADOS: MOTIVAÇÃO

EDIT.

Ainda que as métricas **estatísticas descritivas** das variáveis nos permitam ter informação sobre o comportamento dos dados, muitas vezes elas **pode ser enganadoras**.

Imaginem 4 conjuntos de dados, cada um com 2 variáveis:

Conjunto	Pares	Média X	Desvio Padrão X	Média Y	Desvio Padrão Y	Correlação entre X e Y
1	(x ₁ , y ₁)					
2	(x ₂ , y ₂)	9	11	7.5	4125	0,816
3	(x ₃ , y ₃)	9	11	7,5	4,125	Y = 3 + 0,5 X
4	(x ₄ , y ₄)					

Imaginemos que o nosso objetivo é **prever os valores de Y** em função dos valores de **X**, parece que em qualquer dos conjuntos, a **equação Y = 3 + 0,5 X é igualmente ajustada**.

Fonte: Quarteto de Anscombe – Wikipédia, a enciclopédia livre

DATA SCIENCE & BUSINESS ANALYTICS

Módulo 3 – Exploratory Data Analysis – Sessão

19

VISUALIZAÇÃO DE DADOS: MOTIVAÇÃO

Ainda que todas as métricas **estatísticas descritivas** dos 4 conjuntos **sejam iguais**, inclusivamente a correlação entre as variáveis X e Y, o comportamento de cada conjunto de dados é muito diferente.

No que toca à previsão de Y com base em X, o que podemos concluir da visualização dos dados?

Fonte: Quarteto de Anscombe – Wikipédia, a enciclopédia livre

DATA SCIENCE & BUSINESS ANALYTICS

Módulo 3 – Exploratory Data Analysis – Sessão 5

20

20

VISUALIZAÇÃO DE DADOS: TIPOS DE VISUALIZAÇÃO

EDIT.

* Análise Univariada (cont.)

Outra visualização muito útil que já falamos foi a Box-Plot. Permite o nível de concentração ou dispersão dos dados e existências de *outliers*.

BoxPlot Price

* Análise Bivariada (2 variáveis)

DATA SCIENCE & BUSINESS ANALYTICS

Módulo 3 – Exploratory Data Analysis – Sessão 5

23

23

VISUALIZAÇÃO DE DADOS: **TIPOS DE VISUALIZAÇÃO**

Análise Multivariada (2 ou mais variáveis)

Um exemplo de uma análise multivariada são os Heatmaps que permitem avaliar correlações entre variáveis.

Se quisermos **prever o valor da variável price**, qual parece ser a **variável mais relevante**?

Porque é que essa conclusão **pode estar incorreta**?

DATA SCIENCE & BUSINESS ANALYTICS

lódulo 3 – Exploratory Data Analysis – Sessão

26

EXER	EDIT.	
Linha 1	Analisar a distribuição da variável price através de uma Boxplot . Que conclusões se podem tirar deste gráfico?	Alexandre
Linha 2	Escolher uma variável que seja adequado ser analisada via gráfico de barras e começar por criar uma tabela de frequências.	Carolina L
Linha 3	Criar um gráfico de barras e um Pie Chart com base na tabela de frequências criada no passo anterior.	Filipa
Linha 4	Explorar via Scatter Plot a relação entre a variável hoursepower e a variável price. Que tipo de relação parece que as variáveis apresentam?	Nuno
Linha 5	Criar um Heatmap para explorar a correlação entre todas as variáveis quantitativas. Que conclusões podemos retirar desta representação gráfica?	José P M
DATA SCIENC	E & BUSINESS ANALYTICS Módulo 3 – Exploratory Data Analysis – Sessão 5	30

