

AES

(Advanced Encryption Standard)

Nhóm 2 GVHD: TS. Tạ Thị Kim Huệ

//x// I. Giới thiệu

MALES Block Cipher

II. AES Block Cipher

/III. Transform

1. SubBytes()

$$b_i^{'} = b_i \oplus b_{(i+4) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+6) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus c_i$$

$$\begin{bmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ b'_6 \\ b'_7 \end{bmatrix} \begin{bmatrix} 1 \\ b_0 \\ b \\ b'_7 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

July 1. SubBytes()

		У															
		0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
	0	63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	f7	CC	34	a5	e 5	f1	71	d8	31	15
	3	04	c 7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e 3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
x	8	cd	OC	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e 7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	C	ba	78	25	2e	1c	a6	b4	6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e 9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

July 1. SubBytes()

e.g.:
$$state = \begin{pmatrix} 00 & 3C & 6E & 47 \\ 1F & 4E & 22 & 74 \\ 0E & 08 & 1B & 31 \\ 54 & 59 & 0B & 1A \end{pmatrix} \Rightarrow S_box(State) = \begin{pmatrix} 63 & EB & 9F & A0 \\ C0 & 2F & 93 & 92 \\ AB & 30 & AF & C7 \\ 20 & CB & 2B & A2 \end{pmatrix}$$

2. ShiftRows()

$$s'_{r,c} = s_{r,(c+shift(r,Nb)) \mod Nb}$$
 for $0 < r < 4$ and $0 \le c < Nb$,

	2	S			<i>S</i> ,					
$S_{0,0}$	$S_{0,1}$	<i>S</i> _{0,2}	$S_{0,3}$		$S_{0,0}$	$S_{0,1}$	$S_{0,2}$	$S_{0,3}$		
$S_{1,0}$	<i>S</i> _{1,1}	<i>S</i> _{1,2}	<i>S</i> _{1,3}		<i>S</i> _{1,1}	<i>S</i> _{1,2}	<i>S</i> _{1,3}	<i>S</i> _{1,0}		
$S_{2,0}$	<i>S</i> _{2,1}	<i>S</i> _{2,2}	$s_{2,3}$	- ■■■	$S_{2,2}$	S _{2,3}	$S_{2,0}$	S _{2,1}		
$S_{3,0}$	S _{3,1}	S _{3,2}	S _{3,3}	———	$S_{3,3}$	S _{3,0}	S _{3,1}	S _{3,2}		

2. ShiftRows()

$$\begin{pmatrix} 63 & EB & 9F & A0 \\ C0 & 2F & 93 & 92 \\ AB & 30 & AF & C7 \\ 20 & CB & 2B & A2 \end{pmatrix} \implies \begin{pmatrix} 63 & EB & 9F & A0 \\ 2F & 93 & 92 & C0 \\ AF & C7 & AB & 30 \\ A2 & 20 & CB & 2B \end{pmatrix}$$

3. MixColumns()

$$a(x) = \{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\}.$$

$$\begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} \quad \text{for } 0 \le c < \mathbf{Nb}.$$

$$s'_{0,c} = (\{02\} \bullet s_{0,c}) \oplus (\{03\} \bullet s_{1,c}) \oplus s_{2,c} \oplus s_{3,c}$$

$$s_{1,c}' = s_{0,c} \oplus (\{02\} \bullet s_{1,c}) \oplus (\{03\} \bullet s_{2,c}) \oplus s_{3,c}$$

$$s'_{2,c} = s_{0,c} \oplus s_{1,c} \oplus (\{02\} \bullet s_{2,c}) \oplus (\{03\} \bullet s_{3,c})$$

$$s'_{3,c} = (\{03\} \bullet s_{0,c}) \oplus s_{1,c} \oplus s_{2,c} \oplus (\{02\} \bullet s_{3,c}). \frown$$

3. MixColumns()

$$\begin{pmatrix} 02\,03\,01\,01 \\ 01\,02\,03\,01 \\ 01\,01\,02\,03 \\ 03\,01\,01\,02 \end{pmatrix} \begin{pmatrix} 63\ EB\ 9F\ A0 \\ 2F\ 93\ 92\ C0 \\ AF\ C7\ AB\ 30 \\ A2\ 20\ CB\ 2B \end{pmatrix} = \begin{pmatrix} BA\ 84\ E8\ 1B \\ 75\ A4\ 8D\ 40 \\ F4\ 8D\ 06\ 7D \\ 7A\ 32\ 0E\ 5D \end{pmatrix}$$

4. AddRoundKey()

$$[s'_{0,c}, s'_{1,c}, s'_{2,c}, s'_{3,c}] = [s_{0,c}, s_{1,c}, s_{2,c}, s_{3,c}] \oplus [w_{round*Nb+c}]$$
 for $0 \le c < Nb$.

s _{0,0}	s _{0,1}	S _{0,2}	s _{0,3}
s _{1,0}	s _{1,1}	S _{1,2}	s _{1,3}
S _{2,0}	s _{2,1}	S _{2,2}	s _{2,3}
s _{3,0}	s _{3,1}	S _{3,2}	s _{3,3}

s' _{0,0}	<i>s</i> _{0,1}	s' _{0,2}	s' _{0,3}
s' _{1,0}	<i>s</i> _{1,1}	s _{1,2}	s' _{1,3}
s' _{2,0}	<i>s</i> _{2,1}	S' _{2,2}	s' _{2,3}
s' _{3,0}	S' _{3,1}	s _{3,2}	s' _{3,3}

4. AddRoundKey()

$$\begin{pmatrix} 54 & 4F & 4E & 20 \\ 77 & 6E & 69 & 54 \\ 6F & 65 & 6E & 77 \\ 20 & 20 & 65 & 6F \end{pmatrix} \oplus \begin{pmatrix} 54 & 73 & 20 & 67 \\ 68 & 20 & 4B & 20 \\ 61 & 6D & 75 & 46 \\ 74 & 79 & 6E & 75 \end{pmatrix} = \begin{pmatrix} 00 & 3C & 6E & 47 \\ 1F & 4E & 22 & 74 \\ 0E & 08 & 1B & 31 \\ 54 & 59 & 0B & 1A \end{pmatrix}$$

e.g.,
$$69 \oplus 4B = 22$$

$$0110 \ 1001$$

$$0100 \ 1011$$

$$0010 \ 0010$$

EA	B5	31	7F	
D2	8D	2B	8D	
73	ВА	F5	29	
21	D2	60	2f	

Ta có RC[1] = 1 Mà RC[j] = 2 * RC[j - 1] RC[9] = 1B

AC	19	28	57
77	FA	D1	5c
66	DC	29	00
F3	21	41	6E

(a) Overall algorithm

(b) Function g

VIV. Encryption & Decryption

DECRYPTION

1V. Encryption & Decryption

DECRYPTION

Shift Right

									3	7							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e 3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e 9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	c3	4e
	3	80	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5d	65	b6	92
	5	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
×	7	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
_ ×	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	с5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	С	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
l	d	60	51	7f	a9	19	b5	4a	0d	2d	e 5	7a	9f	93	с9	9c	ef
	е	a0	e	3b	4d	ae	2a	f5	b0	с8	eb	bb	3с	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

$$\begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix} = \begin{bmatrix} 0e & 0b & 0d & 09 \\ 09 & 0e & 0b & 0d \\ 0d & 09 & 0e & 0b \\ 0b & 0d & 09 & 0e \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix}$$

V. Modes

- 1. ECB mode: Electronic Code Book mode
- 2. CBC mode: Cipher Block Chaining mode
- 3. CFB mode: Cipher FeedBack mode
- 4. OFB mode: Output FeedBack mode
- 5. CTR mode: Counter mode

VI. Applications

Wireless security

Encrypted browsing

General file encryption

Processor security

VII. References

- Dworkin, M. J., Barker, E. B., Nechvatal, J. R., Foti, J., Bassham, L. E., Roback, E., & Dray Jr., J. F. (2001, November 26). Advanced Encryption Standard (AES). NIST.
 https://www.nist.gov/publications/advanced-encryption-standard-aes
- Arrag, Sliman & Hamdoun, A. & Tragha, Abderrahim & Khamlich, Salaheddine. (2012). Design and Implementation A different Architectures of mixcolumn in FPGA. International Journal of VLSI Design & Communication Systems. 3.