Study	Non-responder Res	sponder	Standardised Mean Difference	SMD	95%-CI	Weight (fixed)	Weight (random)
Chaput 2017	17	9	 = 	0.38 [-	-0.44; 1.20]	8.3%	8.3%
Frankel 2017	15	24	- 1	0.07 [-	-0.57; 0.72]	13.2%	13.2%
Gopalakrishnan 2017	13	30	- 4	0.01 [-	-0.64; 0.66]	13.0%	13.0%
Matson 2018	26	16	 	0.28 [-	-0.34; 0.91]	14.0%	14.0%
Routy NSCLC 2017	46	41		-0.08 [-	-0.50; 0.34]	31.0%	31.0%
Routy RCC 2017	21	45		0.05 [-	-0.47; 0.57]	20.5%	20.5%
Fixed effect model	138	165	\	0.07 [-	-0.17; 0.30]	100.0%	
Random effects model				-	0.17; 0.30]		100.0%
Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0.91						