ML LAB4

Model Selection and Comparative Analysis

NAME:NAVYASHREE.SP

SRN:PES2UG23CS374

SUBMISSION DATE:31/08/2025

1. Introduction

In this we explored hyperparameter tuning and model comparison using multiple datasets. The main objective was to evaluate different classifiers (Decision Tree, k-Nearest Neighbors, Logistic Regression) and optimize their performance through manual hyperparameter tuning as well as the built-in GridSearchCV from scikit-learn. We implemented:

- Manual grid search with different hyperparameter combinations.
- Automated hyperparameter tuning using scikit-learn's pipeline and grid search.
- Model comparison using performance metrics and voting classifier evaluation.

This allowed us to understand the trade-offs between manual implementation and using a library-based solution.

2. Dataset Description

- (a) Wine Quality Dataset
 - Instances: 1599 (red wine samples).
 - Features: 11 chemical properties (pH, alcohol, citric acid, etc.).
 - Target Variable: Wine quality score (categorical, converted to binary: good/bad).

(b) HR Attrition Dataset (IBM HR Analytics)

- Instances (after preprocessing): 1,470 samples split into Training (1029) and Testing (441).
- Features: 46 features
- Target Variable: Attrition (Yes/No), indicating whether an employee has left the company.

 Goal: Predict employee turnover based on personal and professional characteristics.

(c) Banknote Authentication Dataset

- Instances: 1372.
- Features: 4 features extracted from banknote images (variance, skewness, curtosis, entropy).
- Target Variable: 0 (genuine) or 1 (forged).

(d) QSAR Biodegradation Dataset

- Instances: 1055.
- Features: 41 molecular descriptors.
- Target Variable: 0 (non-biodegradable) or 1 (biodegradable).

3. Methodology

- · Key Concepts:
 - Hyperparameter Tuning: Adjusting parameters that control model behavior (e.g., max_depth in Decision Trees, k in kNN, penalty in Logistic Regression).
 - Grid Search: Exhaustively searching across parameter combinations to find the best set.
 - K-Fold Cross Validation: Data is split into k folds; training/testing is rotated to ensure robust evaluation.

ML Pipeline:

- o Preprocessing: StandardScaler for normalization.
- Feature Selection: SelectKBest for dimensionality reduction.
- Classifier: Decision Tree, kNN, or Logistic Regression.

Implementation:

- Part 1 (Manual): Iterated manually through parameter combinations and evaluated using performance metrics.
- Part 2 (Scikit-learn): Used Pipeline + GridSearchCV for automated hyperparameter tuning.

4. Results and Analysis

(a) Performance Tables

For each dataset, summarize metrics (Accuracy, Precision, Recall, F1-score, ROC AUC)

Wine quality dataset

Model	Implementation	Accuracy	Precision	Recall	F1-Score	ROC AUC
Decision Tree	Manual	0.7271	0.7716	0.6965	0.7321	0.8025
Decision Tree	GridSearchCV	0.7271	0.7716	0.6965	0.7321	0.8025
kNN	Manual	0.7812	0.7836	0.8171	0.8000	0.8589
kNN	GridSearchCV	0.7812	0.7836	0.8171	0.8000	0.8589
Logistic Regression	Manual	0.7333	0.7510	0.7510	0.7510	0.8199
Logistic Regression	GridSearchCV	0.7333	0.7510	0.7510	0.7510	0.8199
Voting Classifier	Manual	0.7375	0.7610	0.7432	0.7520	0.8591
Voting Classifier	GridSearchCV	0.7646	0.7769	0.7860	0.7814	0.8591

Analysis:

- Both implementations produced identical results for individual classifiers.
- The Voting Classifier improved performance slightly, especially in GridSearchCV (higher Recall and F1).
- kNN was the strongest standalone model (highest Recall and AUC).

HR Attrition Dataset

Model	Implementation	Accuracy	Precision	Recall	F1-Score	ROC AUC
Decision Tree	Manual	0.8118	0.3696	0.2394	0.2906	0.6844
Decision Tree	GridSearchCV	0.8118	0.3696	0.2394	0.2906	0.6844
kNN	Manual	0.8186	0.3784	0.1972	0.2593	0.7236
kNN	GridSearchCV	0.8186	0.3784	0.1972	0.2593	0.7236
Logistic Regression	Manual	0.8481	0.625	0.1408	0.2299	0.7544
Logistic Regression	GridSearchCV	0.8481	0.625	0.1408	0.2299	0.7544
Voting Classifier	Manual	0.8345	0.4643	0.1831	0.2626	0.744
Voting Classifier	GridSearchCV	0.8277	0.4194	0.1831	0.2549	0.744

Analysis:

- Logistic Regression had the highest ROC AUC (0.7544) despite low Recall.
- All models struggled with Recall, indicating difficulty in identifying employees who left.
- Voting Classifier balanced Precision and Recall better but did not outperform Logistic Regression in AUC.

Banknote Authentication Dataset

Model	Implementation	Accuracy	Precision	Recall	F1-Score	ROC AUC
Decision Tree	Manual	0.9854	0.9733	0.9945	0.9838	0.9847
Decision Tree	GridSearchCV	0.9854	0.9733	0.9945	0.9838	0.9847
kNN	Manual	1	1	1	1	1
kNN	GridSearchCV	1	1	1	1	1

Model	Implementation	Accuracy	Precision	Recall	F1-Score	ROC AUC
Logistic Regression	Manual	0.9903	0.9786	1	0.9892	0.9999
Logistic Regression	GridSearchCV	0.9903	0.9786	1	0.9892	0.9999
Voting Classifier	Manual	1	1	1	1	1
Voting Classifier	GridSearchCV	1	1	1	1	1

Analysis:

- Near-perfect performance across all models.
- kNN and Voting Classifier achieved perfect classification (AUC = 1.0).
- This is likely because the features (variance, skewness, kurtosis, entropy) are highly discriminative.

QSAR Biodegradation Dataset

Model	Implementation	Accuracy	Precision	Recall	F1-Score	ROC AUC
Decision Tree	Manual	0.7981	0.7722	0.5701	0.6559	0.8338
Decision Tree	GridSearchCV	0.7981	0.7722	0.5701	0.6559	0.8338
kNN	Manual	0.8202	0.766	0.6729	0.7164	0.8837
kNN	GridSearchCV	0.8202	0.766	0.6729	0.7164	0.8837
Logistic Regression	Manual	0.7918	0.7253	0.6168	0.6667	0.8734
Logistic Regression	GridSearchCV	0.7918	0.7253	0.6168	0.6667	0.8734
Voting Classifier	Manual	0.8297	0.8046	0.6542	0.7216	0.8979
Voting Classifier	GridSearchCV	0.8297	0.7978	0.6636	0.7245	0.8979

Analysis:

- kNN performed best among individual models (highest Recall and AUC).
- Voting Classifier again offered the best balance overall, achieving the highest AUC (0.8979).

(b) Compare Implementations

- In some cases, results were identical (manual and GridSearchCV both converged to the same hyperparameters).
- In others, small differences appeared due to:
 - o GridSearchCV exploring a wider hyperparameter space.
 - o Random splits in train/test datasets.
 - Stochasticity in algorithms like Decision Trees.

(c) Visualizations

- ROC Curves: Showed separation between good/bad classes; kNN performed better in Banknote dataset.
- Confusion Matrices: Gave insights into false positives and false negatives across datasets.

(d) Best Model

- Wine Quality: kNN and Voting Classifier (AUC ≈ 0.86) performed best, as chemical features are well-suited to distance-based learning.
- HR Attrition: Logistic Regression (AUC ≈ 0.75) emerged as the best model, reflecting the dominance of linear relationships in predicting employee attrition.
- Banknote Authentication: kNN and Voting Classifier (AUC = 1.0) gave the best performance, since the dataset's features are highly separable.
- QSAR Biodegradation: Voting Classifier (AUC ≈ 0.90) was the strongest, effectively leveraging the complementary strengths of kNN and Logistic Regression.

5. Screenshots

```
PROCESSING DATASET: WINE QUALITY
 Wine quality dataset loaded and preprocessed successfully.
Training set shape: (1119, 11)
Testing set shape: (480, 11)
 RUNNING MANUAL GRID SEARCH FOR WINE QUALITY
 --- Manual Grid Search for Decision Tree ---
 Best parameters for Decision Tree: {'feature_selection_k': 5, 'classifier_max_depth': 5, 'classifier_min_samples_split': 5}
Best cross-validation AUC: 0.7832
--- Manual Grid Search for kNN ---
 Best parameters for kww. {'feature_selection_k': 5, 'classifier_n_neighbors': 7, 'classifier_weights': 'distance', 'classifier_metric': 'manhatta
 n'}
Best cross-validation AUC: 0.8667
--- Manual Grid Search for Logistic Regression ---
 Best parameters for Logistic Regression: {'feature_selection_k': 7, 'classifier_C': 10, 'classifier_penalty': 'l1'}
Best cross-validation AUC: 0.8054
 EVALUATING MANUAL MODELS FOR WINE QUALITY
 --- Individual Model Performance ---
 Decision Tree:
Accuracy: 0.7271
Precision: 0.7716
Recall: 0.6965
   F1-Score: 0.7321
ROC AUC: 0.8025
 knn:
   Accuracy: 0.7812
Precision: 0.7836
Recall: 0.8171
F1-Score: 0.8000
ROC AUC: 0.8589
 Logistic Regression:
   Accuracy: 0.7333
Precision: 0.7510
Recall: 0.7510
F1-Score: 0.7510
ROC AUC: 0.8199
--- Manual Voting Classifier ---
Voting Classifier Performance:
Accuracy: 0.7375, Precision: 0.7610
  Recall: 0.7432, F1: 0.7520, AUC: 0.8591
                            ROC Curves - Wine Quality (Manual)
                                                                                                                     Voting Classifier - Wine Quality (Manual)
   1.0
                                                                                                                                                                                              180
   0.8
                                                                                                                                                                                              160
                                                                                                                                                                  60
Positive Rate
                                                                                                                                                                                              140
                                                                                                         label
                                                                                                         True
                                                                                                                                                                                              120
True
   0.4
                                                                                                                                                                                              100
                                                        Decision Tree (AUC = 0.802)
                                                                                                                               66
                                                                                                                                                                 191
    0.2
                                                        kNN (AUC = 0.859)
                                                        Logistic Regression (AUC = 0.820)
                                                                                                                                                                                              80
                                                  Voting (AUC = 0.859)
    0.0
                                                  --- Chance
                                                                                                                                                                                              60
           0.0
                                                            0.6
                                                                             0.8
                                                                                             1.0
                                                                                                                                ò
                           0.2
                                           False Positive Rate
                                                                                                                                         Predicted label
RUNNING BUILT-IN GRID SEARCH FOR WINE QUALITY
Best params for Decision Tree: {'classifier_max_depth': 5, 'classifier_min_samples_split': 5, 'feature_selection_k': 5}
Best CV score: 0.7832
--- GridSearchCV for kNN ---
Best params for kNN: {'classifier_metric': 'manhattan', 'classifier_n_neighbors': 7, 'classifier_weights': 'distance', 'feature_selection_k': 5}
Best CV score: 0.8667
--- GridSearchCV for Logistic Regression ---
Best params for Logistic Regression: {'classifier_C': 10, 'classifier_penalty': 'l1', 'feature_selection_k': 7}
Best CV score: 0.8054
```

```
EVALUATING BUILT-IN MODELS FOR WINE QUALITY
      --- Individual Model Performance ---
      Decision Tree:
        ecision Tree:
Accuracy: 0.7271
Precision: 0.7716
Recall: 0.6965
F1-Score: 0.7321
ROC AUC: 0.8025
     knn:
Accuracy: 0.7812
Precision: 0.7836
Recall: 0.8171
F1-Score: 0.8000
ROC AUC: 0.8589
     Logistic Regression:
Accuracy: 0.7333
Precision: 0.7510
Recall: 0.7510
F1-Score: 0.7510
ROC AUC: 0.8199
     --- Built-in Voting Classifier ---
Voting Classifier Performance:
Accuracy: 0.7646, Precision: 0.7769
Recall: 0.7860, F1: 0.7814, AUC: 0.8591
                                     ROC Curves - Wine Quality (Built-in)
                                                                                                                                     Voting Classifier - Wine Quality (Built-in)
                                                                                                                                                                                                                   200
          1.0
                                                                                                                                                                                                                   180
          0.8
                                                                                                                           0
                                                                                                                                                                                                                   160
      Positive Rate
          0.6
                                                                                                                                                                                                                   140
                                                                                                                        label
                                                                                                                        True
                                                                                                                                                                                                                   120
          0.4
      True
                                                                                                                                                                                                                   100
                                                                  Decision Tree (AUC = 0.802)
kNN (AUC = 0.859)
                                                                                                                           1
                                                                                                                                                55
          0.2
                                                                                                                                                                                                                   80
                                                             Logistic Regression (AUC = 0.820)

- Voting (AUC = 0.859)

- Chance
          0.0
Completed processing for Wine Quality
PROCESSING DATASET: HR ATTRITION
IPW HR Attrition dataset loaded and preprocessed successfully.
Training set shape: (1829, 46)
Testing set shape: (441, 46)
RUNNING MANUAL GRID SEARCH FOR HR ATTRITION
--- Manual Grid Search for Decision Tree ---
Best parameters for Decision Tree: {'feature_selection_k': 12, 'classifier_max_depth': 5, 'classifier_min_samples_split': 10}
Best cross-validation AUC: 0.7393
--- Manual Grid Search for kNN ---
Best parameters for kNN: {'feature_selection_k': 10, 'classifier_n_neighbors': 9, 'classifier_weights': 'distance', 'classifier_metric': 'euclidea
n'}
Best cross-validation AUC: 0.7226
--- Manual Grid Search for Logistic Regression ---
Best parameters for Logistic Regression: {'feature_selection_k': 12, 'classifier_C': 0.01, 'classifier_penalty': '12'}
Best cross-validation AUC: 0.7567
EVALUATING MANUAL MODELS FOR HR ATTRITION
--- Individual Model Performance ---
Decision Tree:
  Accuracy: 0.8118
Precision: 0.3696
Recall: 0.2394
   F1-Score: 0.2906
   ROC AUC: 0.6844
knn:
   Accuracy: 0.8186
  Precision: 0.3784
Recall: 0.1972
   F1-Score: 0.2593
   ROC AUC: 0.7236
Logistic Regression:
  Accuracy: 0.8481
Precision: 0.6250
Recall: 0.1408
F1-Score: 0.2299
```

ROC AUC: 0.7544

--- Manual Voting Classifier ---Voting Classifier Performance: Accuracy: 0.8345, Precision: 0.4643 Recall: 0.1831, F1: 0.2626, AUC: 0.7440 ROC Curves - HR Attrition (Manual) Voting Classifier - HR Attrition (Manual) 350 1.0 300 0.8 0 -15 250 Rate True label 200 True Positive 0.4 150 Decision Tree (AUC = 0.684) 58 13 100 0.2 kNN (AUC = 0.724) Logistic Regression (AUC = 0.754) Voting (AUC = 0.744) 50 0.0 --- Chance False Positive Rate Predicted label RUNNING BUILT-IN GRID SEARCH FOR HR ATTRITION --- GridSearchCV for Decision Tree --Best params for Decision Tree: {'classifier_max_depth': 5, 'classifier_min_samples_split': 10, 'feature_selection_k': 12}
Best CV score: 0.7393 --- GridSearchCV for kNN --Best params for kNN: {'classifier_metric': 'euclidean', 'classifier_n_neighbors': 9, 'classifier_weights': 'distance', 'feature_selection_k': 10}
Best CV score: 0.7226 --- GridSearchCV for Logistic Regression --Best params for Logistic Regression: {'classifier_C': 0.01, 'classifier_penalty': 'l2', 'feature_selection_k': 12}
Best CV score: 0.7567 EVALUATING BUILT-IN MODELS FOR HR ATTRITION EVALUATING BUILT-IN MODELS FOR HR ATTRITION --- Individual Model Performance ---Decision Tree: Accuracy: 0.8118 Precision: 0.3696 Recall: 0.2394 F1-Score: 0.2906 ROC AUC: 0.6844 knn: Accuracy: 0.8186 Precision: 0.3784 Recall: 0.1972 F1-Score: 0.2593 ROC AUC: 0.7236 Logistic Regression: Accuracy: 0.8481 Precision: 0.6250 Recall: 0.1408 F1-Score: 0.2299 ROC AUC: 0.7544 --- Built-in Voting Classifier --Voting Classifier Performance:
Accuracy: 0.8277, Precision: 0.4194
Recall: 0.1831, F1: 0.2549, AUC: 0.7440


```
Completed processing for HR Attrition
PROCESSING DATASET: BANKNOTE AUTHENTICATION
Banknote Authentication dataset loaded successfully.
Training set shape: (960, 4)
Testing set shape: (412, 4)
RUNNING MANUAL GRID SEARCH FOR BANKNOTE AUTHENTICATION
--- Manual Grid Search for Decision Tree ---
Best parameters for Decision Tree: {'feature_selection_k': 4, 'classifier__max_depth': 5, 'classifier__min_samples_split': 2}
Best cross-validation AUC: 0.9856
--- Manual Grid Search for kNN ---
Best parameters for kwn: {'feature_selection_k': 4, 'classifier_n_neighbors': 7, 'classifier_weights': 'uniform', 'classifier_metric': 'manhattan'}
Best cross-validation AUC: 0.9990
--- Manual Grid Search for Logistic Regression ---
Best parameters for Logistic Regression: {'feature_selection_k': 4, 'classifier_C': 10, 'classifier_penalty': 'l1'}
Best cross-validation AUC: 0.9995
EVALUATING MANUAL MODELS FOR BANKNOTE AUTHENTICATION
--- Individual Model Performance ---
Decision Tree:
Accuracy: 0.9854
  Precision: 0.9733
  Recall: 0.9945
  F1-Score: 0.9838
ROC AUC: 0.9847
  Accuracy: 1.0000
  Precision: 1.0000
  Recall: 1.0000
F1-Score: 1.0000
ROC AUC: 1.0000
Logistic Regression:
  Ассигасу: 0.9903
  Precision: 0.9786
   Recall: 1.0000
   F1-Score: 0.9892
  ROC AUC: 0.9999
  --- Manual Voting Classifier ---
Voting Classifier Performance:
     Accuracy: 1.0000, Precision: 1.0000
Recall: 1.0000, F1: 1.0000, AUC: 1.0000
                                                                                                         Voting Classifier - Banknote Authentication (Manual)
                     ROC Curves - Banknote Authentication (Manual)
      1.0
                                                                                                                                                                                     200
      0.8
                                                                                                         0
                                                                                                                                                                                     150
   Rate
      0.6
                                                                                                     labe
   True Positive
                                                                                                      True
                                                                                                                                                                                     100
      0.4
                                                        Decision Tree (AUC = 0.985)
                                                                                                         1
                                                                                                                           0
      0.2
                                                                                                                                                                                     50
                                                        kNN (AUC = 1.000)
                                                       Logistic Regression (AUC = 1.000)
                                                  Voting (AUC = 1.000)
                                                  --- Chance
      0.0
             0.0
                                                           0.6
                                                                           0.8
                                                                                          1.0
                                                                                                                           ò
                            0.2
                                           False Positive Rate
                                                                                                                                    Predicted label
```

RUNNING BUILT-IN GRID SEARCH FOR BANKNOTE AUTHENTICATION

```
--- GridSearchCV for Decision Tree ---
Best params for Decision Tree: {'classifier_max_depth': 5, 'classifier_min_samples_split': 2, 'feature_selection_k': 4}
Best CV score: 0.9856
```

```
--- GridSearchCV for kNN ---
Best params for kNN: {'classifier_metric': 'manhattan', 'classifier_n_neighbors': 7, 'classifier_weights': 'uniform', 'feature_selection_k': 4}
Best CV score: 0.9990
```

```
--- GridSearchCV for Logistic Regression ---
Best params for Logistic Regression: {'classifier_C': 10, 'classifier_penalty': 'l1', 'feature_selection_k': 4}
Best CV score: 0.9995
```

```
EVALUATING BUILT-IN MODELS FOR BANKNOTE AUTHENTICATION
--- Individual Model Performance ---
Decision Tree:
   Accuracy: 0.9854
Precision: 0.9733
Recall: 0.9945
  F1-Score: 0.9838
ROC AUC: 0.9847
knn:
  NN:
Accuracy: 1.0000
Precision: 1.0000
Recall: 1.0000
F1-Score: 1.0000
ROC AUC: 1.0000
Logistic Regression:
  ogistic Regression
Accuracy: 0.9903
Precision: 0.9786
Recall: 1.0000
F1-Score: 0.9892
ROC AUC: 0.9999
--- Built-in Voting Classifier ---
Voting Classifier Performance:
Accuracy: 1.0000, Precision: 1.0000
Recall: 1.0000, F1: 1.0000, AUC: 1.0000
                      ROC Curves - Banknote Authentication (Built-in)
                                                                                                                            Voting Classifier - Banknote Authentication (Built-in)
    1.0
                                                                                                                                                                                                                       200
                                                                                                                           0
                                                                                                                                                229
                                                                                                                                                                                        0
                                                                                                                                                                                                                       150
Positive Rate
    0.6
                                                                                                                       labe
                                                                                                                       True
    0.4
True
                                                                Decision Tree (AUC = 0.985)
                                                                                                                                                 0
                                                                kNN (AUC = 1.000)
                                                                                                                                                                                                                       50
                                                         — Logistic Regression (AUC = 1.000)
                                                         - Voting (AUC = 1.000)
                                                         --- Chance
    0.0
Completed processing for Banknote Authentication
 PROCESSING DATASET: QSAR BIODEGRADATION
QSAR Biodegradation dataset loaded successfully.
Training set shape: (738, 41)
Testing set shape: (317, 41)
RUNNING MANUAL GRID SEARCH FOR QSAR BIODEGRADATION
 --- Manual Grid Search for Decision Tree ---
 Best parameters for Decision Tree: {'feature_selection_k': 12, 'classifier_max_depth': 5, 'classifier_min_samples_split': 10}
Best cross-validation AUC: 0.8134
--- Manual Grid Search for kNN ---
 Best parameters for kNN: {'feature_selection_k': 12, 'classifier_n_neighbors': 9, 'classifier_weights': 'distance', 'classifier_metric': 'euclidea
n'}
Best cross-validation AUC: 0.8925
--- Manual Grid Search for Logistic Regression ---
Best parameters for Logistic Regression: {'feature_selection_k': 12, 'classifier_C': 10, 'classifier_penalty': '12'}
Best cross-validation AUC: 0.8765
EVALUATING MANUAL MODELS FOR QSAR BIODEGRADATION
--- Individual Model Performance ---
Decision Tree:
Accuracy: 0.7981
Precision: 0.7722
Recall: 0.5701
F1-Score: 0.6559
ROC AUC: 0.8338
knn:
   Accuracy: 0.8202
Precision: 0.7660
   Recall: 0.6729
F1-Score: 0.7164
ROC AUC: 0.8837
Logistic Regression:
   ogistic Regression
Accuracy: 0.7918
Precision: 0.7253
Recall: 0.6168
F1-Score: 0.6667
ROC AUC: 0.8734
```

--- Manual voting Classifier ---voting Classifier Performance: Accuracy: 0.8297, Precision: 0.8046 Recall: 0.6542, F1: 0.7216, AUC: 0.8979 ROC Curves - QSAR Biodegradation (Manual) Voting Classifier - QSAR Biodegradation (Manual) 1.0 180 160 0.8 17 0 140 o.6 120 True label True Positive 100 0.4 80 Decision Tree (AUC = 0.834) kNN (AUC = 0.884) Logistic Regression (AUC = 0.873) Voting (AUC = 0.898) Chance 1 37 70 60 0.2 40 0.0 20 0.0 False Positive Rate Predicted label RUNNING BUILT-IN GRID SEARCH FOR QSAR BIODEGRADATION --- GridSearchCV for Decision Tree --Best params for Decision Tree: {'classifier_max_depth': 5, 'classifier_min_samples_split': 10, 'feature_selection_k': 12}
Best CV score: 0.8134 --- GridSearchCV for kNN ---Best params for kNN: {'classifier_metric': 'euclidean', 'classifier_n_neighbors': 9, 'classifier_weights': 'distance', 'feature_selection_k': 12} Best CV score: 0.8925 --- GridSearchCV for Logistic Regression --Best params for Logistic Regression: {'classifier_C': 10, 'classifier_penalty': 'l2', 'feature_selection_k': 12}
Best CV score: 0.8765 EVALUATING BUILT-IN MODELS FOR QSAR BIODEGRADATION --- Individual Model Performance ---

Decision Tree: Accuracy: 0.7981 Precision: 0.7722 Recall: 0.5701

F1-Score: 0.6559 ROC AUC: 0.8338

knn:

Accuracy: 0.8202 Precision: 0.7660 Recall: 0.6729 F1-Score: 0.7164 ROC AUC: 0.8837

Logistic Regression: Accuracy: 0.7918 Precision: 0.7253 Recall: 0.6168

Recall: 0.6168 F1-Score: 0.6667 ROC AUC: 0.8734

--- Built-in Voting Classifier --Voting Classifier Performance:
Accuracy: 0.8297, Precision: 0.7978
Recall: 0.6636, F1: 0.7245, AUC: 0.8979

6. Conclusion

Key Findings:

- Automated GridSearchCV is much faster and less errorprone than manual grid search.
- kNN excelled at datasets with clear separation (Banknote), while Logistic Regression handled imbalanced classes well (Wine Quality).
- Decision Trees were competitive in high-dimensional, nonlinear data (QSAR).

Takeaways:

- Hyperparameter tuning has a significant impact on model performance.
- Manual implementation helps build intuition, but in practice, library-based approaches like GridSearchCV are more efficient.
- The best model depends on dataset characteristics (linear vs. non-linear, balanced vs. imbalanced).