Power Management

Motivation for Power Management

- Power consumption is a critical issue in system design today
 - Mobile systems face battery life issues
 - High performance systems face heating issues

Intuition

- Systems and components are:
 - □ Designed to deliver peak performance, but ...
 - □ Not needing peak performance most of the time
- Dynamic Power Management (DPM)
 - Shut down components during idle times
- Dynamic Voltage Frequency Scaling (DVFS)
 - Reduce voltage and frequency of components

Power and Energy Relationship

Low Power vs. Low Energy

- ☐ Minimizing the **power consumption** is important for
 - the design of the power supply
 - the design of voltage regulators
 - the dimensioning of interconnect
 - cooling
- ☐ Minimizing the **energy consumption** is important due to
 - restricted availability of energy (mobile systems)
 - limited battery capacities (only slowly improving)
 - very high costs of energy (solar panels, in space)
 - dependability
 - long lifetimes, low temperatures

Dynamic Voltage Frequency Scaling (DVFS)

Power consumption of CMOS circuits (ignoring leakage):

 $P = \alpha C_L V_{dd}^2 f$ with

 α : switching activity

C_L: load capacitance

 V_{dd} : supply voltage

f: clock frequency

Variable-voltage/frequency

W

Basic Idea of DVFS

→ Slow and Steady wins the race!

Commercial DVFS Processors

- Transmeta Crusoe
- AMD K2+ (PowerNow Technology)
- Intel SpeedStep
- XScale

M

DVFS :: PXA27x Clock Overview

DVFS:: How to Change?

- Reconfigure PLL
 - Modify a few registers
 - Operate in a completely new configuration
 - □ Take a lot of time(~ a few ms)
- Normal<->Turbo
 - Modify only CP14 register
 - □ Change between preset frequencies
 - ☐ Take only a little time (under us)

DVFS :: PXA27x Operating Modes

Core Run Freq (MHz)	CLKCFG[T]	Core Turbo Freq (MHz)	CLKCFG[T]	ськсяснт	CCCR[L]	cccR[2N]	System Bus (MHz)	CLKCFG[B]	CLK_MEM (MHz)	CCCR[A]	SDCLK<2:1> SDRAM Clocks (MHz)	MDREFR[KxDB2]†#†	Synchronous Flash (MHz)	MDREFR[K0DB4]	MDREFR[K0DB2]	LCD (MHz)
13 [†]	х	_	Х	Х	Х	Х	13	Х	13	Х	13	Х	13	Х	Х	13 or 26 ^{††}
91 ^{†††}	0	_	_	0	7	2	45	0	91	0	45	1	22.5	1	1	91
104	0	104	1	0	8	2	104	1	104	1	104	0	52	0	1	52
156	0	156	1	1	8	6	104	1	104	1	104	0	52	0	1	52
208	0	208	1	0	16	2	104	0	104	0	104	0	52	1	Х	104
208	0	208	1	0	16	2	208	1	208	1	104	1	52	1	Х	104
208	0	312	1	0	16	3	104	0	104	0	104	0	52	1	Х	104
208	0	312	1	0	16	3	208	1	208	1	104	1	52	1	Х	104
208	0	416	1	0	16	4	208	1	208	1	104	1	52	1	Х	104
208	0	520	1	0	16	5	208	1	208	1	104	1	52	1	Х	104
208	0	624 ^{†††††}	1	0	16	6	208	1	208	1	104	1	52	1	Χ	104

DVFS:: Usage

- dvfm
 - voltage and frequency scaling utility
- Usage
 - □ # dvfm l_value 2n_value fast_bus_mode turbo_mode mem_clk_conf
- Examples
 - □ # dvfm 16 5 1 2 1
 - 520Mhz Turbo Mode
 - □ # dvfm 16 3 1 2 1
 - 312Mhz Normal Mode

Xscale DVFS Settings

V-f setting (MHz/V)	Active Power (mW)	Idle Power (mW)	dvfm setting
624/1.5	925	260	dvfm 16 6 1 2 1
520/1.5	747	222	dvfm 16 5 1 2 1
416/1.4	570	186	dvfm 16 4 1 2 1
312/1.3	390	154	dvfm 16 3 1 2 1
208/1.2	279	129	dvfm 16 2 1 2 1
104/1.1	116	64	dvfm 8 2 1 2 1

Successful DVFS Technique

Understand workload variations of your target

2. Devise efficient ways to detect them

 Devise efficient ways to utilize the detected workload variations using available H/W supports

Non Real-Time Jobs

- Non Real-Time Jobs
 - No timing constraints
 - No periodic executions
 - Unknown execution time

It is hard to predict the future workload!!

DVFS for Non Real-Time Jobs

- Basic Approach:
 - □ Predict workload based on history information
 - Usually based on some variations of interval scheduler
 - PAST, FLAT
 - LONG_SHORT, AGED_AVERAGE
 - CYCLE, PATTERN, PEAK

Key Question

How can we predict the future workload?

- Based on long term history:
 Hard to adapt quickly for the changed workload
- Based on short term history:
 ▶Too many clock/voltage changes

PAST

- Looking a fixed window into the past
- Assume the next window will be like the previous one

- If the past window was
 - ☐ mostly busy ⇒ increase speed
 - ☐ mostly idle ⇒ decrease speed

Example: PAST

$$Utilization = \frac{\text{busy time}}{\text{window size}}$$

FLAT

- Try to smooth speed to a global average
- Make the utilization of next window=<const>
 - Set speed fast enough to complete the predicted new work being pushed into the coming window

M

Example: FLAT

Increase/Decrease the speed♪ the next utilization to be 0.7♪

LONG-SHORT

- Look up the last 12 windows
 - □ Short-term past : 3 most recent windows
 - Long-term past : the remaining windows
- Workload Prediction
 - the utilization of next window will be a weighted average of these 12 windows' utilizations

M

Example: LONG-SHORT

utilization = # cycles of busy interval / window size♪

$$f_{clk} = 0.276 \times f_{\text{max}}$$

AGED-AVERAGE

Employs an exponential-smoothing method

- Workload Prediction
 - The utilization of next window will be a weighted average of all previous windows' utilizations
 - geometrically reduce the weight

M

Example: AGED_AVERAGE

utilization = # cycles of busy interval / window size♪

$$f_{clk} = average \times f_{max}$$

PATTERN

- Workload Prediction
 - □ Convert the n-most recent windows' utilizations into a pattern in alphabet {A, B, C, D}.
 - ☐ Find the same pattern in the past
 - ☐ Use the pattern to predict utilization

M

Example: PATTERN

Dynamic Power Management

- Power manageable components support multiple power states. Eg:
 - □ Active
 - □ Off

$$P_{tr} = P_{off->active} + P_{active->off}$$

$$T_{tr} = T_{off->active} + T_{active->off}$$

4

Power Manageable Components

M

Energy/Performance Tradeoff for DPM

Break Even Time

Minimum idle time for amortizing the cost of component shutdown

$$T_{off}P_{off} + T_{tr}P_{tr} = T_{idle}P_{active}$$
 $T_{be} = T_{idle} = T_{tr} + T_{off}$

$$T_{be} = T_{idle} = T_{tr} + T_{off}$$

DPM Applicability

- If idle period length < T_{be}
 - □ Not possible to save energy by turning off
- Need accurate estimation of upcoming idle periods:
 - □ Underestimation: potential energy savings lost
 - □ Overestimation: performance delay + energy loss
- Challenge: Manage energy/performance tradeoff

DPM Policies

- Control procedures that take DPM decisions
- Can be implemented in hardware or software
 - Software offers higher degree of configurability for complex systems

Goal: Maximize energy savings while minimizing performance delay

Classification of DPM Policies

- Timeout Policies
- Predictive Policies
- Stochastic Policies
- Hybrid Policies

Classification of DPM Policies

- Timeout Policies
- Predictive Policies
- Stochastic Policies
- Hybrid Policies

Timeout Policies

- Use elapsed idle time to predict the total idle period duration
- O Assumption:

•
$$P(T_{idle} > (T_o + T_{be}) | T_{idle} > T_o) \approx 1$$

- T_o is referred to as the timeout
 - Can be fixed or adaptive

Fixed Timeout Policies

- $T_o = T_{be}$ is 2-competitive (Karlin et al, SODA'90)
 - Energy consumption in worst case is twice that of oracle policy

Fixed Timeout Policy

- However, the approach limited to components with 2 power states
- Irani et al, TECS'03 extend this work for components with multiple power states
 - □ Define a sets of timeouts: one for each state
 - □ Enter the low power state as its respective timeout expires

Fixed Timeout Policy

(Irani et al, TECS'03)

M

Adaptive Timeout Policy

- Dynamically adjust T_o based on their observation of the workload
- Douglis et al, USENIX'95 propose several heuristics to adapt timeout. Eg:
 - □ Initialize T_o to T_{be}
 - □ Observe length of idle period T_{idle}
 - $| \Box | \text{ If } T_{\text{idle}}^n > (T_o^n + T_{\text{be}}), \text{ then } T_o^{n+1} = T_o^n x$
 - \Box Else, $T^{n+1}_{o} = T^{n}_{o} + x$
- Set floor and ceiling values to avoid getting too aggressive or conservative

Timeout Policies

Advantages

- Extremely simple to implement
- Safety (in terms of performance delay) can be easily improved by increasing T_o

Disadvantages

- Waste energy while waiting for T_o to expire
- Heuristic in nature: no guarantee on energy savings or performance delay
- Always incur performance penalty on wakeup: no mechanism to wake before request arrival

Classification of DPM Policies

- Timeout Policies
- Predictive Policies
- Stochastic Policies
- Hybrid Policies

Take the DPM decision as soon as the idle period begins by predicting the length of upcoming idle period

```
 □ If T<sub>pred</sub> > T<sub>be</sub>, perform shutdown
 □ Else, stay awake
```

 Addresses the energy wastage issue of timeout policies while waiting for timeout to expire

- Hwang et al propose an online predictive policy
- Uses exponential average of previous idle period lengths to perform prediction:

$$T_{\text{pred}}^{n} = \alpha T_{\text{idle}}^{n-1} + (1-\alpha) T_{\text{pred}}^{n-1}$$

 Value of α controls the tradeoff between recent and past history

- Chung et al use adaptive learning trees
- Capable of managing multiple power states
- Transforms sequence of optimal decisions in previous idle periods into discrete events
- Maintains a window of previous events
- Redfptives Leamming Ande updates PCL and tree structure

- Advantages
 - More aggressive than timeout policies
- Disadvantages
 - Depend a lot on correlation between past and future events
 - □ Tend to be aggressive in shutdown and hence higher performance latency
 - □ Heuristic with no performance guarantees

Classification of DPM Policies

- Timeout Policies
- Predictive Policies
- Stochastic Policies
- Hybrid Policies

Stochastic Policies

- Try to derive optimal policies for the given power and performance constraints
 - □ Referred to as *policy optimization*
- Model the system and workload as stochastic processes
- Policy optimization reduces to a stochastic optimization problem

M

System Model

Discrete Time Markov Model (Paleologo et al, DAC'98)

- Models the system using markov decision processes
- Discrete time setting (time slots)
- System composition of SP, SR, SQ models
- Defines cost metrics for each state and command pair

Power Manager

- PM observes the system state (S X R X Q) every time slot and issues command 'a'
- Markovian stationary policies optimal for this system model
- Policy derived through policy optimization under given energy/ performance constraints

$$\mathbf{M}_{\pi} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_6 \\ x_6 \\ x_8 \end{bmatrix} \begin{bmatrix} 0.4 & 0.6 \\ 0.2 & 0.8 \\ 0.5 & 0.5 \\ 1.0 & 0.0 \\ 0.4 & 0.6 \\ 0.8 & 0.2 \\ 0.8 & 0.2 \\ 1.0 & 0.0 \end{bmatrix}$$

(Benini et al, TCAD'99)

Discrete Time Model

- Advantages:
 - □ Optimal policy => no longer heuristic
- Disadvantages
 - □ Discrete time => high overhead
 - Optimal only if the modeling assumptions hold
 - Geometric state transition times
 - Stationary workload

Continuous Time Markov Model (Qui et al, TCAD'01)

- Model the system in continuous time space using CTMDP
- Cost associated with commands and states
- Policy optimization done to derive optimal policy
- Event driven policy, i.e. when system state changes
 - State transition times exponential

Continuous Time Model

- Advantages:
 - □ Optimal policy
 - □ Event driven => lesser overhead
- Disadvantages
 - Optimal only if the modeling assumptions hold
 - Exponential state transition times
 - Stationary workload

- Bequestisterarrivalities: -> depends on state 10 for Sexponential distribution
- State transition times of SP:
 - If idle: pareto

Important from DPM perspective

TISMDP Model

SMDP Model

Time Indexed SMDP Model

TISMDP Model

- Advantages:
 - □ Optimal and event driven policy
 - System model based on real world device and workload characteristics
- Disadvantages
 - □ Sub-optimal for non stationary workloads
 - Stationary workload assumption

Classification of DPM Policies

- Timeout Policies
- Predictive Policies
- Stochastic Policies
- Hybrid Policies

Hybrid Policies

- Extension of policies from previous three classes
- Ideas:
 - Stochastic policies for non stationary workloads
 - Perform selection among multiple DPM policies

Stochastic Policies for non stationary workloads

- Chung et al, TC'02 extend the DTMDP model (TCAD'99) for handling non stationary workloads
- Key ideas:
 - □ Policy pre-characterization
 - □ Parameter learning
 - □ Policy interpolation

Policy Pre-characterization

Ŋ

Parameter Learning

Uses Maximum Likelihood Estimation

Policy Interpolation

: Selected Decision Tables

: Selected rows for CS

$$R_{01} < \hat{R}_0 < R_{02}$$

$$R_{13} < \stackrel{\wedge}{R}_{1} < R_{14}$$

Performs linear interpolation on selected decision tables for probability distribution of actions (Chung et al, TC'02)

Policy interpolation model

- Advantages:
 - □ Takes non stationary workloads into account
 - Adapts with changing workloads
- Disadvantages
 - Not globally optimal
 - □ Discrete time model => overhead
 - Markovian workload assumption

Selection among multiple policies

- Dhiman et al, ICCAD'06 propose a framework for selection among multiple policies
- Based on the observation that different policies outperform each other under different workloads
- Employ an online learning algorithm to perform policy selection
- Learning algorithm provides performance bounds on convergence to the best suited policy

Online Learning for DPM

Online learning based model

- Advantages:
 - ☐ Adapts with changing workloads
 - Controller converges to the best suited policy
- Disadvantages
 - Performance as good as that of the best policy in the set

Quantitative Comparison (Lu et al)

						-
Algorithm	P	N_{sd}	N_{wd}	T_{ss}	T_{bs}	
	desktop					
off-line	1.64	164	0	166	0	← Oracle
SM	1.92	156	25	147	18.2	← TISMDP
CA	1.94	160	15	142	17.6	← Karlin
SW	1.97	168	26	134	18.7	Policy Interpolation
$\tau = 30$	2.05	147	18	142	30.0	
LT	2.07	379	232	62	5.7	Learning Tree
ATO3	2.09	147	26	138	29.9	
ATO1	2.19	141	37	135	27.6	
ATO2	2.22	595	430	41	4.1	
$\tau = 120$	2.52	55	3	238	120.0	
DM	2.60	105	39	130	48.9	← DTMDP
EA	2.99	595	503	30	7.6	Exponential Average
always-on	3.48	-	-	-	-	