Course	18MAB101T	Course	CALCUL	JS AND LINE	AR ALGEBRA	Co	ourse	В	Basic Sciences	L	Т	P	С
Code		Name				Cat	egory			3	1	0	4
L						J .					1		
Pre-	Nil		Co-	Nil			Progre	ssiv	Nil				
requisite	:		requisit	:			e Cour	ses					
Courses			Course										
Course Of	fering Departmer	t Mathe.	matics	•	Data Book / Codes/	Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:						ing					Pı	rogra	m L	earni	ng O	utco	mes	(PLC	D)			
CLR-1:	Application of Matrices	in problems of Science and Engineering		1	2	3		1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5
CLR-2:		axima minima, composite function and Jacobian in solving rea- time application problems Terential Equations in problems of Science and Engineering			Λ	ıt.		dge		oment								ıce				
CLR-4: CLR-5: CLR-6:	Utilize the concepts of ra Application of Sequences	dius of curvature, evolute, envelope in problems of Science and Engineering and Series in all problems involving Science and Engineering ematical techniques for the different solutions required in Science and Engineering applications		of Thinking	Expected Proficiency	ed Attainmen		Ingineering Knowledge	n Analysis	& Developm	sis, Design,	ι Tool Usage	& Culture	Invironment &		ual & Team	munication	Mgt. & Finan	ong Learning		2	3
Course Le	earning Outcomes	At the end of this course, learners will be able to:	'	Level o	Expect	Expect	4	Engine	Problen	Design	Analysi	Modern	Society	Enviror	Ethics	Individual &	Comm	Project	Life Lo	PSO - 1	PSO - 2	PSO –
CLO-1:	Apply Matrices, Eigenve	thus and Eigen Vectors Reduce to Quadratics form in Science and Engineering problem solving		2	8	8		H	-	H	-	-	-	-	-	H	-	-	H	-	-	-
CLO-2:	Apply Maxima and Mi	nima, Jacobian, and Taylor series to solve problems in Science and Engineering		2	8 5	8		Н	-	-	Н	Н	-	-	-	-	-	-	-	-	-	-
CLO-3:	Solve the different types of Differential Equations in Science and Engineering applications				8 5	8		-	Н	-		-	-	-	-	Н	-	-	Н	-	-	-
CLO-4:	Identify Radius, Centre,	envelope and Circle of of curvature and apply them in the problem solving		2	9	9		Н	Н	-	Н	-	-	-	-	Н	-	-	Н	-	-	-
CLO-5:	O-5: Apply convergence and divergence of series using different test and apply sequences and Series in the problem solving				9	8		-	Н	Н	-	-	,	-	-	Н	-	-	Н	-	-	-
CLO-6:	Identify, Analyze and Apply mathematical techniques to arrive at solutions in Science and Engineering				9	9		Н		Н	-	-	-	-	-	Н	-	-	Н	-	-	-

Durat	ion (hour)	12	12	12	12	12
S-1	-1 SLO-1 Characteristic equation Functions of two variables – Partial derivatives		J J		Radius of Curvature – Cartesian coordinates	Series of Positive terms — Test of Convergence-
	SLO-2	Eigen values of a real matrix Total differential		s of a real matrix Total differential Linear equations of second order with constant coefficients when PI=sinx or cosx		Comparison test — Integral test-
S-2	SLO-1	Eigen vectors of a real matrix	Total differential	Linear equations of second order with constant coefficients when PI=polynomial	Radius of Curvature – Polar coordinates	Comparison test – Integral test-
	SLO-2	Eigen vectors of a real matrix	Taylor's expansion with two variables up to second order terms	Linear eqn. of second order with constant coefficients when PI=exp. with sinx / Cosx	Radius of Curvature – Polar coordinates	Comparison test — Integral test
S-3	SLO-1	Properties of Eigen values	Taylor's expansion with two variables up to third order terms	Linear eqn. of second order with constant coefficients when PI= exp.l with polynomial	Circle of curvature	D'Alemberts Ratio test,
	SLO-2	Cayley – Hamilton theorem	Maxima and Minima	Linear eqn. of 2 nd order with const. coeff. when PI=polynomial with sinax or cosax	Circle of curvature	D'Alemberts Ratio test,
S-4	SLO-1	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14

	SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 6	Applications of Radius of curvature in engineering	Problem solving using tutorial sheet 14
S-5	SLO-1	Finding A inverse using Cayley – Hamilton theorem	Maxima and Minima	Linear equations of second order variable coefficients	Centre of curvature	Raabe's root test.
	SLO-2	Finging higher powers of A using Cayley – Hamilton theorem	Maxima and Minima	Linear equations of second order variable coefficients	Centre of curvature	Raabe's root test.
S-6	SLO-1	orthogonal reduction of a symmetric matrix to diagonal form	Maxima and Minima	Homogeneous equation of Euler type	Centre of curvature	Covergent of Exponential Series
	SLO-2	orthogonal reduction of a symmetric matrix to diagonal form	Constrained Maxima and Minima by Lagrangian Multiplier method	Homogeneous equation of Legendre's Type	Evolute of a parabola	Cauchy's Root test
S-7	SLO-1	orthogonal reduction of a symmetric matrix to diagonal form	Constrained Maxima and Minima by Lagrangian Multipliermethod	Homogeneous equation of Legendre's Type	Evolute of an ellipse	Log test
	SLO-2	orthogonal reduction of a symmetric matrix to diagonal form	Constrained Maxima and Minima by Lagrangian Multipliermethod	Equations reducible to homogeneous form	Envelope of standard curves	Log test
S-8	SLO-1	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
	SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 9	Applications of Curvature in engineering	Problem solving using tutorial sheet 15
S-9	SLO-1	Reduction of Quadratic form to canonical	Jacobians of two Variables	Equations reducible to homogeneous form	Beta Gamma Functions	Alternating Series: Leibnitz test
	SLO-2	Quadratic form to canonical form by orthogonal transformations	Jacobians of Three variables	Variation of parameters	Beta Gamma Functions and Their Properties	Alternating Series: Leibnitz test
S- 10	SLO-1	Quadratic form to canonical form by orthogonal transformations	Jacobians problems	Variation of parameters	Sequences – Definition and Examples	Series of positive and Negative terms.
	SLO-2	Orthogonal matrices	Jacobians Problems	Simultaneous first order equations with constant co-efficient.	Series — Types of Convergence	Series of positive and Negative terms.
S-11	SLO-1	Reduction of quadratic form to canonical form	Properties of Jacobians and Problems	Simultaneous first order equations with constant co-efficient.	Series of Positive terms — Test of Convergence-	Absolute Convergence
	SLO-2	Reduction of quadratic form to canonical form	Properties of Jacobians and problems	Simultaneous first order equations with constant co-efficient.	Comparison test – Integral test-	Conditional Convergence
S- 12	SLO-1	Problem solving using tutorial sheet 3	Application of Taylor's series Maxima Minima Jacobians in Engineering	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13	Problem solving using tutorial sheet 13
	SLO-2	Applications of Matrices in Engineering	Application of Taylor's series Maxima Minima Jacobians in Engineering	Applications of Differential Equation in engineering	Problem solving using tutorial sheet 13	Applications Convergence of series in engineering

Learning	1. B. H. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
Resources	2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
	3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi,2008

- Ramana B. V., Higher Engineering Mathematics, Tata M.Graw Hill New Delhi, 11th Reprint, 2010
 G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002
 N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

Learning Asse	essment										
	Bloom's	m's Continuous Learning Assessment (50% weightage)									nation (50%
	Level of	CLA -	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%) CLA – 4 (10%)#		(10%)#	weigl	ntage)
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Understand										
Level 2	Apply	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
	Analyze										
Level 3	Evaluate	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Create										

Total	100 %	100 %	100 %	100 %	100 %

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry		Experts from Higher Technical Institutions	Internal Experts
1. Mr.V.Maheshwaran, CTS, Chennai, maheshwar	anv@yahoo.com	1. Dr.K.C.Sivakumar, IIT, Madras, keskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technolog	ies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Dr. Srinivasan, SRMIST