信号与线性系统分析

CCongCirno

2024年7月1日

目录

目录			Ι
插图			VI
第一章	信号与	i系统	1
1.1	绪论		. 1
	1.1.1	信号的概念	. 1
	1.1.2	系统的概念	. 2
1.2	信号的	1描述和分类	. 2
	1.2.1	信号的描述	. 2
	1.2.2	信号的分类	. 2
		1.2.2.1 连续信号和离散信号	. 3
		1.2.2.2 模拟信号、抽样信号和数字信号	4
		1.2.2.3 周期信号	4
		1.2.2.4 能量信号和功率信号	5
		1.2.2.5 一维信号和多维信号	6
	1.2.3	几种典型确定性信号	6
		1.2.3.1 指数信号	6
		1.2.3.2 正弦信号	. 7
		1.2.3.3 复指数信号	. 7
		1.2.3.4 抽样信号	. 8
1.3	信号的]基本运算	9
	1.3.1	信号的加法和乘法	9
	1.3.2	信号的时间变换	9
		1.3.2.1 信号的反转	9
		1.3.2.2 信号的平移	9
		1.3.2.3 信号的展缩	10
		1.3.2.4 信号的混合运算	10
	1.3.3	信号的微分和积分	10
1.4	阶跃函	「数和冲激函数	11

	1.4.1 单位阶跃函数	11
	1.4.2 单位冲激函数	12
	1.4.3 冲激函数的性质	13
	1.4.4 单位样值序列和单位阶跃序列	15
	1.4.4.1 单位样值序列	15
	1.4.4.2 单位阶跃序列	15
1.5	系统的描述	16
	1.5.1 系统的分类	16
	1.5.2 系统的数学模型	16
	1.5.3 系统的框图描述	17
1.6	系统的特性与分析方法	18
	1.6.1 系统的特性	18
	1.6.1.1 线性	18
	1.6.1.2 时不变性	19
	1.6.1.3 微分与积分特性	19
	1.6.1.4 因果性	19
	1.6.1.5 稳定性	20
	1.6.2 系统的分析方法	20
第二章		21
2.1		21
	variable in the second	21
	1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	23
	· · · · · · · · · · · · · · · · · · ·	23
2.2		25
		25
	2.2.2 阶跃响应	
2.3	卷积积分 2	
	2.3.1 信号的时域分解与卷积积分	
	2.3.2 卷积的图解法	
2.4	卷积积分的性质	28
	2.4.1 卷积代数运算	28
	2.4.2 与冲击函数或阶跃函数的卷积	29
	2.4.3 卷积的微积分性质	30
第 二音	离散系统的时域分析 3	32
炉 —早	内以示约[1]的 <i>以为</i> 们) 4
第四章	傅里叶变换和系统的频域分析 3	33
4.1	信号分解为正交函数	33
	4.1.1 矢量正交与正交分解	33
10000000000000000000000000000000000000	生系统分析 ————————————————————————————————————	т
百万马线	生系统分析 ————————————————————————————————————	1-

目录	₹	孠

	4.1.2	信号正交与正交函数集	33
	4.1.3	信号的正交分解	34
4.2	傅里叶	-级数	35
	4.2.1	傅里叶级数的三角式	35
	4.2.2	波形的对称性与谐波特性	36
	4.2.3	傅里叶级数的指数形式	37
	4.2.4	周期信号的功率	39
4.3	周期信	号的频谱	39
	4.3.1	周期信号频谱的概念	39
	4.3.2	周期信号频谱的特点	40
	4.3.3	频带宽度	41
4.4	非周期]信号的频谱	42
	4.4.1	傅里叶变换	42
	4.4.2	常用函数的傅里叶变换	43
4.5	傅里叶	- 变换的性质	46
	4.5.1	傅里叶变换的线性性质	46
	4.5.2	奇偶虚实性	46
	4.5.3	对称性	47
	4.5.4	尺度变换性质	47
	4.5.5	傅里叶变换的时移特性	47
	4.5.6	频移性质	48
	4.5.7	卷积性质	48
	4.5.8	时域的微分和积分	48
	4.5.9	频域的微分和积分	49
	4.5.10	相关定理	49
4.6	能量谱	和功率谱	50
	4.6.1	帕斯瓦尔关系	50
	4.6.2	能量谱密度	51
	4.6.3	功率谱	51
4.7	周期信	号的傅里叶变换	52
	4.7.1	正、余弦的傅里叶变换	52
	4.7.2	一般周期信号的傅里叶变换	52
	4.7.3	傅里叶系数与傅里叶变换关系	53
4.8	LTI 系	统的频域分析	53
	4.8.1	虚指数函数作用于 LTI 系统的响应	53
	4.8.2	一般信号 $f(t)$ 用于 LTI 系统的响应	54
	4.8.3	频率响应的求法	55
	4.8.4	无失真传输与滤波	55
4.9	取样定	'理	58

目录	目录
	4.9.1 信号的取样
	4.9.2 时域取样定理
	1.0.2
第五章	连续系统的 s 域分析 60
5.1	拉普拉斯变换
	5.1.1 从傅里叶变换到拉普拉斯变换
	5.1.2 收敛域
	5.1.3 单边拉氏变换
	5.1.4 常见函数的拉普拉斯变换63
	5.1.5 单边拉氏变换与傅里叶变换的关系64
5.2	拉普拉斯变换性质
	5.2.1 拉氏变换的线性性质
	5.2.2 拉氏变换的尺度变换
	5.2.3 拉氏变换的时移特性
	5.2.4 拉氏变换的复频移特性66
	5.2.5 拉氏变换的时域的微分特性
	5.2.6 拉氏变换的时域积分特性
	5.2.7 拉氏变换的卷积定理
	5.2.8 s 域微分和积分定理
	5.2.9 初值定理和终值定理
5.3	拉普拉斯逆变换
	5.3.1 零、极点的概念
	5.3.2 拉氏逆变换的过程
5.4	复频域分析
	5.4.1 微分方程的变换解
	5.4.2 系统函数
	5.4.3 系统的 s 域框图
	5.4.4 用拉氏变换法分析电路的步骤
	5.4.5 电路的 s 域模型
** \ \ \	
第六章	离散系统的 z 域分析 75
第七章	系统函数 76
7.1	系统函数与系统特性
	7.1.1 系统函数的零、极点分布图
	7.1.2 系统函数与系统的因果性
	7.1.3 系统函数与时域响应
	7.1.4 系统函数与频率响应
7.2	系统的稳定性
	7.2.1 稳定系统的的定义
信号与线	生系统分析

目录			目录
	7.2.2	连续稳定系统的充分必要条件	. 79
7.3	信号流	图	. 79
	7.3.1	信号流图	. 79
	7.3.2	梅森公式	. 82
7.4	系统的]结构	. 83
	7.4.1	直接实现	. 83
	7.4.2	级联实现	. 83
	7.4.3	并联实现	. 84
第八章	系统的	7状态变量分析	85
参考文献	猒		86

插图

1.1	系统组成	2
1.2	连续信号	3
1.3	离散信号	3
1.4	模拟、抽样、数字信号	4
1.5	指数信号	6
1.6	抽样信号	8
1.7	信号的反转	9
1.8	信号的平移	9
1.9	信号的展缩	10
1.10	信号的微分	10
		11
		11
		12
1.14	冲激偶	14
		15
	. —	15
1.17	连续系统的基本单元 1	17
1.18	离散系统的基本单元 1	17
4.1	奇谐函数 3	37
4.2		37
4.3		39
4.4		40
4.5		40
4.6		10
4.7	门函数	43
4.8	单边指数函数的频谱函数图像 4	43
4.9		14
4.10		45
4.11	无失真传输幅频相频特性 5	56

插图

4.12	理想低通滤波器幅频相频特性	56
4.13	理想低通滤波器的阶跃响应	57
4.14	取样信号恢复原信号	59
	V_{M} , Z_{M} , G_{M} G_{M} G_{M} G_{M}	
5.1	指数函数因果信号的拉氏变换收敛域	61
5.2	指数函数反因果信号的拉氏变换收敛域	62
5.3	双边指数函数信号的拉氏变换收敛域	62
5.4	系统的 s 域框图	72
5.5	电阻元件的 s 域模型	73
5.6	电感元件的 s 域模型	73
5.7	电容元件的 s 域模型	73
7.1	零、极点分布图	76
7.2	系统框图与流图的转换	80
7.3	支路串联	81
7.4	支路并联	81
7.5	混联	81
7.6	自环的消除	81
7.7	梅森公式直接构造	83

第一章 信号与系统

学习要点:

- 认识本课程领域的一些名词、术语。
- 学习信号运算规律、熟悉表达式与波形的对应关系。
- 理解冲激信号的特性
- 了解本课程研究范围、学习目标
- 初步了解本课程用到的主要方法和手段

1.1 绪论

1.1.1 信号的概念

信号1是信息的载体

辨析:

• 消息: 人们常常把来自外界的各种报道统称为消息。

• 信息2: 通常把消息中有意义的内容称为信息。

• 信号: 信号是信息的载体, 通过信号传递信息。

¹指电信号

²本课程中对"信息"和"消息"两词不加严格区分

1.1.2 系统的概念

图 1.1 系统组成

信号处理:对信号进行加工/变换

信号传输:通信(长距离)

1.2 信号的描述和分类

1.2.1 信号的描述

信号: 信息的物理体现, 随时间变化

分类: 电信号/非电信号

基本形式: 随时间变化的电压 v(t)/电流 $i(t)^1$

描述: 时间的函数2, 图形表示为波形

1.2.2 信号的分类

• 用途: 电视信号/雷达信号...

• 时间特性:确定/随机信号、连续³/离散⁴信号、模拟/数字信号、周期/非周期信号、能量/功率信号...

¹本课程内不区分电压信号和电流信号

²本课程内信号和函数说法上等价

³时间和幅值均连续

⁴时间和幅值均离散,又称序列

1.2.2.1 连续信号和离散信号

图 1.2 连续信号

对于连续时间信号, 其要求定义域连续, 可包含间断点, 值域可以不连续

图 1.3 离散信号

对于离散信号, 其仅在离散时刻有定义, 且离散点间隔可以不等, 通常取间隔 T, 表示为 f(kT), 简写为 f(k)。

等间隔的离散信号称为序列, 其中 k 为序号。

图1.3可以表示为以下形式:

$$f(k) = \begin{cases} 1, & k = -1 \\ 2, & k = 0 \\ -1.5, & k = 1 \end{cases}$$

$$2, & k = 2 \\ 0, & k = 3 \\ 1, & k = 4 \\ 0, & \not\equiv dk \end{cases}$$

$$(1.2.1)$$

信号与线性系统分析 —3-

1.2.2.2 模拟信号、抽样信号和数字信号

图 1.4 模拟、抽样、数字信号

对于模拟信号,其时间和幅值均连续,是连续时间信号,经过抽样后变换为抽样信号。 抽样信号时间离散但幅值连续,经过量化后变换为数字信号。 数字信号时间和幅值均离散,是离散时间信号。

1.2.2.3 周期信号

定义在 $(-\infty,\infty)$ 区间,每隔一定时间 T (或整数 N),按相同规律重复变化的信号。 连续周期信号 f(t) 满足

$$f(t) = f(t + mT), m = 0, \pm 1, \pm 2, \dots$$
 (1.2.2)

离散周期信号 f(t) 满足

$$f(k) = f(k+mN), m = 0, \pm 1, \pm 2, \dots$$
 (1.2.3)

满足上述关系的最小 T(或整数 N) 称为该信号的周期。

不具有周期性的信号称为非周期信号。

性质1.2.1 连续周期信号的周期

两个周期信号 x(t), y(t) 的周期分别为 T_1 和 T_2 , 若其周期之比 T_1/T_2 为有理数,则其和信号 x(t)+y(t) 仍然是周期信号,其周期为 T_1 和 T_2 的最小公倍数。

性质1.2.2 正弦序列的周期

对于离散周期信号 $f(k) = \sin(\beta k)$ 。

信号与线性系统分析 —4--

仅当 ^{2π} 为整数时,正弦序列才具有周期

$$N = \frac{2\pi}{\beta} \tag{1.2.4}$$

 $\frac{2\pi}{\beta}$ 为有理数时,正弦序列仍具有周期性,其周期为

$$N = M \cdot \frac{2\pi}{\beta} \tag{1.2.5}$$

其中 M 取使 N 为整数的最小整数。

当 $\frac{2\pi}{\beta}$ 为无理数时,为非周期序列。

容易得知,两个周期信号的和不一定是周期信号,但两周期序列之和一定是周期序列。

1.2.2.4 能量信号和功率信号

定义1.2.2 能量信号

满足以下条件的连续信号称为能量信号

$$E = \int_{-\infty}^{\infty} |f(t)|^2 dt < \infty \tag{1.2.6}$$

满足以下条件的离散信号称为能量信号

$$E = \sum_{k=-\infty}^{\infty} |f(k)|^2 < \infty \tag{1.2.7}$$

即能量有界,此时有P=0

定义1.2.3 功率信号

满足以下条件的连续信号称为功率信号

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(t)|^2 dt < \infty$$
 (1.2.8)

满足以下条件的离散信号称为功率信号

$$P = \lim_{N \to \infty} \frac{1}{N} \sum_{k = -\frac{N}{2}}^{\frac{N}{2}} |f(k)|^2 < \infty$$
 (1.2.9)

即功率有界,此时有 $E = \infty$

信号与线性系统分析 -5-

- 一般周期信号为功率信号, 时限信号1为能量信号。
- 一些非周期信号也是非能量信号,例如: $\varepsilon(t)$ 是功率信号, $t\varepsilon(t)$ 、 e^t 是非功率非能量信号, $\delta(t)$ 是无定义的非功率非能量信号。

1.2.2.5 一维信号和多维信号

定义1.2.4 一维信号

只由一个自变量描述的信号, 如语音信号。

定义1.2.5 多维信号

由多个自变量描述的信号,如图像信号。

1.2.3 几种典型确定性信号

1.2.3.1 指数信号

图 1.5 指数信号

定义1.2.6	指数信号
形如以下形式的信号为指数信号	
$f(t) = Ke^{\alpha t}$	(1.2.10)
$\alpha = 0$ 时为直流(常数)	
$\alpha < 0$ 时指数衰减	
$\alpha>0$ 时指数增长	

¹有限时间区间不为零的非周期信号

定义1.2.7 单边衰减指数信号
$$f(t) = \begin{cases} 0, & t < 0 \\ e^{-\frac{t}{\tau}}, & t \geq 0 \end{cases} \tag{1.2.11}$$
 时间常数,代表信号的衰减速度
$$\tau = \frac{1}{|\alpha|} \tag{1.2.12}$$

1.2.3.2 正弦信号

定义1.2.8		正弦信号
形如以下形式的信号为正弦信号	<u>=</u>	
	$f(t) = K\sin(\omega t + \theta)$	(1.2.13)
周期	$T = \frac{2\pi}{\omega}$	(1.2.14)
角频率	$\omega=2\pi f$	(1.2.15)

1.2.3.3 复指数信号

定义1.2.10	复指数信号
复指数信号	
$f(t) = Ke^{(\sigma + j\omega)t} = Ke^{\sigma t}\cos(\omega t) + jKe^{\sigma t}\sin(\omega t)$	(1.2.17)
 复频率	
$s = \sigma + j\omega$	(1.2.18)
其中 σ 的量纲为 $1/s,\;\omega$ 的量纲为 rad/s	

信号与线性系统分析 ——7—

特点:不能产生,用来描述各种信号,用于信号分析及运算简化。

当 $\sigma = 0, \omega = 0$ 时,为直流信号

当 $\sigma > 0, \omega = 0$ 时,为升指数信号

当 $\sigma < 0, \omega = 0$ 时,为衰减指数信号

当 $\sigma = 0, \omega \neq 0$ 时,为等幅振荡

当 $\sigma > 0, \omega \neq 0$ 时,为增幅振荡

当 $\sigma < 0, \omega \neq 0$ 时,为衰减振荡

1.2.3.4 抽样信号

*

图 1.6 抽样信号

定义1.2.11		抽样信号
抽样信号	$Sa(t) = \frac{\sin t}{t}$	(1.2.19)

性质1.2.3 抽样信号的性质
$$Sa(-t) = Sa(t)$$

$$t = 0, Sa(t) = 1 \quad (\lim_{t \to 0} Sa(t) = 1)$$

$$Sa(t) = 0, t = \pm n\pi, n = 1, 2, 3 \cdots$$

$$\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}, \int_{-\infty}^\infty \frac{\sin t}{t} dt = \pi$$

$$\lim_{t \to \pm \infty} Sa(t) = 0$$

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$$

$$(1.2.20)$$

信号与线性系统分析 -8-

1.3 信号的基本运算

1.3.1 信号的加法和乘法

同一瞬时两信号对应值相加(相乘) 离散序列相加、乘对应值相加(相乘)

1.3.2 信号的时间变换

1.3.2.1 信号的反转

图 1.7 信号的反转

定义1.3.1 信号的反转

将 $f(t) \rightarrow f(-t), f(k) \rightarrow f(-k)$ 称为对信号 $f(\cdot)$ 的反转或反折。

1.3.2.2 信号的平移

(a) 平移前原始信号 f(t) (b) 平移信号 f(t-1)

图 1.8 信号的平移

定义1.3.2 信号的平移

将 $f(t) \rightarrow f(t-t_0), f(k) \rightarrow f(k-k_0)$ 称为对信号 $f(\cdot)$ 的平移。

若 $t_0($ 或 $k_0)>0$,则将 $f(\cdot)$ 右移,否则左移。

信号与线性系统分析 -9-

1.3.2.3 信号的展缩

- (a) 压缩前原始信号 f(t) (b) 压缩信号 f(2t)

图 1.9 信号的展缩

定义1.3.3 信号的展缩

将 $f(t) \rightarrow f(at)$ 称为对信号 f(t) 的尺度变换。

若 a > 1,则波形沿横坐标压缩。

若 0 < a < 1,则扩展。

离散信号一般不作尺度变换。

1.3.2.4 信号的混合运算

对正向运算 $f(t) \rightarrow f(at+b)$, 先平移再展缩最后再反转。 对逆向运算 $f(at+b) \rightarrow f(t)$, 先反转展缩, 最后平移。

1.3.3 信号的微分和积分

- (a) 微分前原始信号 (b) 信号微分

图 1.10 信号的微分

- (a) 积分前原始信号 (b) 信号积分

图 1.11 信号的积分

1.4 阶跃函数和冲激函数

函数本身有不连续点 (跳变点) 或其导数与积分有不连续点的一类函数统称为奇异信号或奇异 函数。

1.4.1 单位阶跃函数

图 1.12 单位阶跃函数

定义1.4.1 单位阶跃函数
$$u(t) = \begin{cases} 1, & t>0 \\ 0, & t<0 \end{cases}$$

$$(1.4.1)$$

$$t=0$$
 处发生跳变,或认为 $u(t)=\frac{1}{2}$

对单位阶跃函数作平移可得延迟单位阶跃信号。

信号与线性系统分析 -11-

性质1.4.1 单位阶跃函数的性质

可以通过平移和加减运算表示某些函数

可以表示某些函数的区间(乘上阶跃函数的组合)

阶跃函数的积分

$$\int_{-\infty}^{t} \varepsilon(\tau)d\tau = t\varepsilon(t) \tag{1.4.2}$$

1.4.2 单位冲激函数

图 1.13 单位冲激函数

定义1.4.2 单位冲激函数

设一矩形脉冲 $p_{\tau}(t)$ 的宽为 τ ,高为 $\frac{1}{\tau}$,面积为 1

$$\delta(t) = \lim_{\tau \to 0} p_{\tau}(t) \tag{1.4.3}$$

或由狄拉克定义

$$\begin{cases} \delta(t) = 0 & (t \neq 0) \\ \int_{-\infty}^{\infty} \delta(t)dt = 1 \end{cases}$$
 (1.4.4)

且

$$\int_{-\infty}^{\infty} \delta(t)dt = \int_{0_{-}}^{0_{+}} \delta(t)dt = 1$$

$$(1.4.5)$$

t=0 时, $\delta(t)\to\infty$, 为无界函数。

1.4.3 冲激函数的性质

性质1.4.2		冲激函数的取样性
冲激函数的取样性	$f(t)\delta(t) = f(0)\delta(t)$	(1.4.6)
	$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0)$	(1.4.7)

性质1.4.3		冲激函数的奇偶性
冲激函数为偶函数		
	$\delta(-t) = \delta(t)$	(1.4.8)

性质1.4.4	冲激函数的比例性
冲激函数的展缩变换有以下性质 $\delta(at) = \frac{1}{ a }\delta(t)$	(1.4.9)
结合平移 $\delta(at-t_0) = \frac{1}{ a }\delta(t-\frac{t_0}{a})$	(1.4.10)

性质1.4.5 冲激函数的微积分性质
 冲激函数与阶跃函数有以下关系
$$\varepsilon(t) = \int_{-\infty}^t \delta(\tau) d\tau \qquad \qquad (1.4.11)$$
 或
$$\delta(t) = \frac{d\varepsilon(t)}{dt} \qquad \qquad (1.4.12)$$

引入冲激函数后, 间断点导数也连续。

性质1.4.6

复合函数形式的冲激函数

设 f(t) 有 n 个不相等的实根 $t_i(i=1,2,\ldots,n)$,则

$$\delta[f(t)] = \sum_{i=1}^{n} \frac{1}{|f'(t_i)|} \delta(t - t_i)$$
(1.4.13)

若 f(t) 有重根,则 $\delta[f(t)]$ 无意义。

图 1.14 冲激偶

性质1.4.7 冲激偶的性质

冲激偶即冲激函数的导数, 有以下性质

$$f(t)\delta'(t) = f(0)\delta'(t) - f'(0)\delta(t)$$
(1.4.14)

$$\int_{-\infty}^{\infty} f(t)\delta'(t)dt = -f'(0)$$
(1.4.15)

$$\int_{-\infty}^{t} \delta'(t)dt = \delta(t) \tag{1.4.16}$$

$$\int_{-\infty}^{\infty} \delta'(t)dt = 0 \tag{1.4.17}$$

-14-

$$\delta^{(n)}(at) = \frac{1}{|a|} \cdot \frac{1}{a^n} \delta^{(n)}(t)$$
 (1.4.18)

1.4.4 单位样值序列和单位阶跃序列

1.4.4.1 单位样值序列

图 1.15 单位样值序列

定义1.4.3		单位样值序列
单位样值序列	$\varepsilon(k) \stackrel{\text{def}}{=} \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$	(1.4.19)

性质1.4.8	单位样值序列的取样性
单位样值序列的取样性 $f(k)\delta(k-k_0)=f(k_0)\delta(k-k_0)$	(1.4.20)
$\sum_{k=-\infty}^{\infty} f(k)\delta(k-k_0) = f(k_0)$	(1.4.21)

1.4.4.2 单位阶跃序列

图 1.16 单位阶跃序列

定义1.4.4 单位阶跃序列
$$\varepsilon(k) \stackrel{\mathrm{def}}{=} \begin{cases} 1, & k \geq 0 \\ 0, & k < 0 \end{cases} \tag{1.4.22}$$

性质
$$1.4.9$$
 单位样值序列和单位阶跃序列的关系
$$\delta(k)=\varepsilon(k)-\varepsilon(k-1) \qquad \qquad (1.4.23)$$

$$\varepsilon(k)=\delta(k)+\delta(k-1)+\dots \qquad (1.4.24)$$

1.5 系统的描述

系统是由若干个有相互关联的单元组合而成的具有特定功能的整体。

1.5.1 系统的分类

- 连续(时间)系统/离散(时间)系统/混合系统(连续和离散系统的组合)
- 动态系统/即时系统(记忆/无记忆系统)

1.5.2 系统的数学模型

连续系统解析描述: 微分方程

离散系统解析描述: 差分方程

1.5.3 系统的框图描述

图 1.17 连续系统的基本单元

微分器用积分器表示

图 1.18 离散系统的基本单元

根据微分方程画系统框图:

例:
$$ay''(t) + by'(t) + cy(t) = df'(t) + ef(t)$$

设辅助函数 $f(t) = ax''(t) + bx'(t) + cx(t)$

由 LTI 特性: y(t) = ex(t) + dx'(t)

辅助函数移项可得: $x''(t) = f(t) - \frac{b}{a}x'(t) - \frac{c}{a}x(t)$

对于框图求微分方程, 逆向过程即可

1.6 系统的特性与分析方法

1.6.1 系统的特性

1.6.1.1 线性

性质1.6.1 线性系统的性质 $y(\cdot) \text{ 为系统的响应}, \ f(\cdot) \text{ 为系统的激励}, \ \mathbb{P} \ y(\cdot) = T[f(\cdot)]$ 齐次性 $f(\cdot) \to y(\cdot) \Rightarrow af(\cdot) \to ay(\cdot)$ (1.6.1) 可加性 $\begin{cases} f_1(\cdot) \to y_1(\cdot) \\ f_2(\cdot) \to y_2(\cdot) \end{cases} \Rightarrow f_1(\cdot) + f_2(\cdot) \to y_1(\cdot) + y_2(\cdot)$ 即线性性质

性质1.6.2 线性系统的条件

 $af_1(\cdot) + bf_2(\cdot) \rightarrow ay_1(\cdot) + by_2(\cdot)$

判断一个系统是否属于线性系统,需要满足以下三个条件

可分解性

$$y(\cdot) = y_{zi}(\cdot) + y_{zs}(\cdot) \tag{1.6.4}$$

(1.6.3)

零状态线性

$$T[\{af_1(t) + bf_2(t)\}, \{0\}] = aT[\{f_1(\cdot)\}, \{0\}] + bT[\{f_2(\cdot)\}, \{0\}]$$
(1.6.5)

零输入线性

$$T[\{0\}, \{ax_1(0) + bx_2(0)\}] = aT[\{0\}, \{x_1(0)\}] + bT[\{0\}, \{x_2(0)\}]$$
(1.6.6)

1.6.1.2 时不变性

性质1.6.3 线性时不变系统的性质 线性时不变系统满足以下性质 $y_{zs}(t-t_d) = T[\{f(t-t_d)\},\{0\}] \eqno(1.6.7)$

直观判断方法: $f(\cdot)$ 前出现变系数,或有反转、展缩变换,则系统为时变系统

1.6.1.3 微分与积分特性

性质1.6.4	LTI 系统的微分	分和积分特性
微分特性		
	$f(t) \to y_{zs}(t) \Rightarrow f'(t) \to y'_{zs}(t)$	(1.6.8)
积分特性		
	$f(t) \to y_{zs}(t) \Rightarrow \int_{-\infty}^{t} f(x)dx \to \int_{-\infty}^{t} y_{zs}(t)dx$	(1.6.9)

1.6.1.4 因果性

定义1.6.1 因果系统

零状态响应不会出现在激励之前的系统即因果系统,即 $t=t_0$ 时 f(t) 加入,当 $t< t_0$ 时, $y_{zs}(t)=0$

判断方法:输出不超前输入

定义1.6.2 因果信号

t=0 接入系统的信号称为因果信号,可表示为 $f(t)=f(t)\varepsilon(t)$

1.6.1.5 稳定性

定义1.6.3 稳定系统

一个系统,若对有界的激励 $f(\cdot)$ 所产生的零状态响应 $y_{zs}(\cdot)$ 也是有界时,则称该系统为有界输入有界输出稳定,简称稳定。即若 $f(\cdot)<\infty$,其 $y_{zs}(\cdot)<\infty$ 则称系统是稳定的。

1.6.2 系统的分析方法

求解的基本思路:

- 把零输入响应和零状态响应分开求。
- 把复杂信号分解为众多基本信号之和,根据线性系统的可加性:多个基本信号作用于线性系统所引起的响应等于各个基本信号所引起的响应之和。

采用的数学工具:

• 时域: 卷积积分与卷积和。

• 频域: 傅里叶变换。

• 复频域: 拉普拉斯变换与 Z 变换。

第二章 连续系统的时域分析

2.1 LTI 连续系统的响应

2.1.1 微分方程的经典解

LTI 连续系统由常系数 n 阶线性常微分方程表示

定义2.1.1

常系数 n 阶线性常微分方程

常系数 n 阶线性常微分方程

$$y^{n}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_{1}y^{(1)}(t) + a_{0}y(t) = b_{m}f^{(m)}(t) + b_{m-1}f^{m-1}(t) + \dots + b_{1}f^{(1)}(t) + b_{0}f(t)$$

$$(2.1.1)$$

公式2.1.1

微分方程的齐次解

列特征方程

$$\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0} = 0$$
 (2.1.2)

解出特征根, 齐次解的形式由特征根确定。

若为 n 个单实特征根

$$y_h(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t}$$
 (2.1.3)

若为 r 重实根

$$y_h(t) = (c_{r-1}t^{r-1} + c_{r-2}t^{r-2} + \dots + c_1t + c_0)e^{\lambda t}$$
(2.1.4)

若为 1 对共轭复根 $\lambda_{1,2} = \alpha + j\beta$

$$y_h(t) = [C\cos(\beta t) + D\sin(\beta t)]e^{\alpha t}$$
(2.1.5)

齐次解又叫固有响应或自由响应。

公式2.1.2 微分方程的特解

特解的形式由激励函数 f(t) 的形式确定。

若激励为常数

$$y_p(t) = C (2.1.6)$$

若激励为 t^m , 且特征根均不为 0

$$y_p(t) = P_m t^m + P_{m-1} t^{m-1} + \dots + P_1 t + P_0$$
(2.1.7)

若激励为 t^m , 且 r 重特征根为 0

$$y_p(t) = t^r (P_m t^m + P_{m-1} t^{m-1} + \dots + P_1 t + P_0)$$
(2.1.8)

若激励为 $e^{\alpha t}$, 且 $\alpha \neq$ 特征根

$$y_p(t) = Pe^{\alpha t} (2.1.9)$$

若激励为 $e^{\alpha t}$, 且 α = 特征根

$$y_p(t) = (P_1 t + P_0)e^{\alpha t} (2.1.10)$$

若激励为 $e^{\alpha t}$, 且 $\alpha = r$ 重特征根

$$y_p(t) = (P_r e^r + P_{r-1} e^{r-1} + \dots + P_0)e^{\alpha t}$$
 (2.1.11)

若激励为 $\cos(\beta t)$, $\sin(\beta t)$, 且特征根 $\neq \pm i\beta$

$$y_p(t) = P_1 \cos(\beta t) + P_2 \sin(\beta t) \tag{2.1.12}$$

接着将特解代入响应 y(t), 通过系数比较法列方程解出特解系数

特解又叫强迫响应。

公式2.1.3 微分方程的全解(一)

求解微分方程的全解步骤如下:

由公式2.1.1及公式2.1.2可得齐次解的形式以及特解

全解可用下式表示

$$y(t) = y_h(t) + y_p(t) (2.1.13)$$

列出全解后根据初始条件(y(0), y'(0) 的值)列出方程组解出系数即可

注意全解的定义域范围为 $t \ge 0$,最后写出的答案乘上 $\varepsilon(t)$ 或写出 t 的取值范围即可

2.1.2 关于 0_ 0+ 状态的转换

性质2.1.4 冲激函数匹配法

在 t=0 时刻,根据激励的冲激函数及其系数确定响应的的冲激函数系数,且左右两边冲激函数各阶导数系数平衡相等。

如 $y'(t) + 3y(t) = 3\delta'(t)$,由于方程右边有 $3\delta'(t)$,故左边 y'(t) 含 $3\delta'(t)$,y(t) 含 $3\delta(t)$,但由于右边不存在 $3\delta(t)$,故 y'(t) 包含 $-9\delta(t)$ 抵消 3y(t) 中的 $9\delta(t)$,此时 y(t) 含有 $-9\varepsilon(t)$,冲激函数及其各阶导数系数平衡相等,故可得 t=0 时 y(t) 跳变,且 $y(0_+)-y(0_-)=-9$

2.1.3 零输入响应和零状态响应

公式2.1.5 微分方程的全解(二)

微分方程的全解还可以用零输入响应和零状态响应表示

$$y(t) = y_{zi}(t) + y_{zs}(t) \quad (t \ge 0)$$
(2.1.14)

公式2.1.6 零输入响应

零输入响应求解步骤同公式2.1.1类似,先列微分方程的特征方程解特征根,根据特征根确定解的形式。

例如特征方程有 n 个单特征实根时

$$y_{zi}(t) = \sum_{j=1}^{n} C_{zij} e^{\lambda_j t}$$
 (2.1.15)

列出零输入响应后, 代入初始条件解出系数

初始条件

$$y_{zi}^{(j)}(0_{+}) = y_{zi}^{(j)}(0_{-}) = y^{(j)}(0_{-})$$
(2.1.16)

 $y_{zi}(t)$ 定义域为 $t \ge 0$

公式2.1.7 零状态响应

零状态响应解的形式与对应齐次方程通解相似,参考公式2.1.1,区别在于需要加上特解 $y_p(t)$,形式的规则同公式2.1.2

例如特征方程有 n 个单特征实根时

$$y_{zs}(t) = \sum_{j=1}^{n} C_{zsj} e^{\lambda_j t} + y_p(t)$$
 (2.1.17)

对于通解 $y_n(t)$,根据 t > 0 时激励 f(t) 的形式确定

例如

$$f(t) = \varepsilon(t) \quad (t > 0) \Rightarrow f(t) = 1 \Rightarrow y_p(t) = C$$
 (2.1.18)

零状态响应已有初始条件

$$y_{zs}(0_{-}) = y'_{zs}(0_{-}) = 0 (2.1.19)$$

将初始条件及零状态响应代入原方程可解出特解系数

剩余系数可通过性质 2.1.4 冲激函数匹配法求出 $y_{zs}(0_+), y'_{zs}(0_+)$, 再代入 t>0 时的方程 求解

冲激函数匹配法过程

根据激励的冲激项及其系数列出 $y_{zs}(t)$ 各阶导数项,假设激励的冲激项为 $a\delta(t)$,响应的最高阶导数为 y''(t)

$$\begin{cases} y_{zs}''(t) = a\delta(t) + r_1(t) \\ y_{zs}'(t) = r_2(t) \\ y_{zs}(t) = r_3(t) \end{cases}$$
 (2.1.20)

其中 $r_i(t)$ 为不含 $\delta(t)$ 的某函数

方程组系数代入原微分方程根据系数平衡解出

两侧同时从 0_- 到 0_+ 积分可得 $y_{zs}(0_+), y'_{zs}(0_+)$

积分满足

$$\int_{0_{-}}^{0_{+}} y_{zs}''(t)dt = y_{zs}'(0_{+}) - y_{zs}'(0_{-})$$

$$\int_{0_{-}}^{0_{+}} r(t)dt = 0$$

$$\int_{0_{-}}^{0_{+}} a\delta(t)dt = a$$
(2.1.21)

 $y_{zs}(t)$ 定义域为 $t \ge 0$

信号与线性系统分析-24-

2.2 冲激响应和阶跃响应

2.2.1 冲激响应

定义2.2.1 冲激响应

由单位冲激函数 $\delta(t)$ 所引起的零状态响应称为单位冲激响应

$$h(t) = T[\{0\}, \delta(t)]$$
 (2.2.1)

定义2.2.2 冲激响应的数学模型

LTI 系统的冲激响应的数学模型由 n 阶微分方程表示

$$\frac{d^{n}h(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}h(t)}{dt^{n-1}} + \dots + a_{1}\frac{dh(t)}{dt} + a_{0}h(t) = b_{m}\frac{d^{m}\delta(t)}{dt^{m}} + b_{m-1}\frac{d^{m-1}\delta(t)}{dt^{m-1}} + \dots + b_{1}\frac{d\delta(t)}{dt} + b_{0}\delta(t)$$
(2.2.2)

公式2.2.1 冲激响应的求解-形式

由于 $t \ge 0$ 时等式右边为 0, 因此冲激函数响应的齐次解形式相同。

解与特征根有关,对于特征根均为单根的情况

$$h(t) = \left[\sum_{i=1}^{n} c_i e^{\lambda_i t}\right] \varepsilon(t)$$
 (2.2.3)

与 n, m 相对大小有关

- 当 n > m 时, h(t) 不含 $\delta(t)$ 及其各阶导数
- 当 n=m 时, h(t) 包含 $\delta(t)$
- 当 n < m 时,h(t) 包含 $\delta(t)$ 及其各阶导数

公式2.2.2 冲激响应的求解-系数

求解系数可由公式 2.1.7 中冲激函数匹配法求得各阶 0_+ 值代入求解或奇异函数项平衡法直接解出系数(若响应包含冲激项、用此方法)

奇异函数项平衡法将 h(t) 各阶导数代入原方程后根据系数平衡列方程组求解即可

线性时不变法先设 $h_1(t)$ 满足

$$\frac{d^n h_1(t)}{dt^n} + a_{n-1} \frac{d^{n-1} h_1(t)}{dt^{n-1}} + \dots + a_1 \frac{dh_1(t)}{dt} + a_0 h_1(t) = \delta(t)$$
 (2.2.4)

再根据冲激函数匹配法得到 $h_1(t)$ 的各阶 0_+ 值,代入原式求解 $h_1(t)$ 最后根据线性时不变性

$$h(t) = b_m \frac{d^m h_1(t)}{dt^m} + b_{m-1} \frac{d^{m-1} h_1(t)}{dt^{m-1}} + \dots + b_1 \frac{dh_1(t)}{dt} + b_0 h_1(t)$$
 (2.2.5)

 $h_1(t)$ 的各阶导数忽略冲激项即可

2.2.2 阶跃响应

定义2.2.3 阶跃响应
由单位阶跃函数
$$\varepsilon(t)$$
 所引起的零状态响应称为单位阶跃响应
$$g(t) = T[\{0\}, \varepsilon(t)] \tag{2.2.6}$$

2.3 卷积积分

2.3.1 信号的时域分解与卷积积分

定义2.3.1 信号的时域分解 对于任意的信号,均可以用若干个冲激函数叠加表示。 定义 p(t) 如下图

则对于任意函数,有

$$\hat{f}(t) = \sum_{k=-\infty}^{\infty} f(k\Delta\tau) \cdot \Delta\tau \cdot p(t - k\Delta\tau)$$
 (2.3.1)

因此

$$f(t) = \lim_{\Delta \tau \to 0} \hat{f}(t) = \int_{-\infty}^{\infty} f(\tau) \delta(t - \tau) d\tau$$
 (2.3.2)

定义2.3.2 卷积积分

已知定义在区间 $(-\infty,\infty)$ 上的两个函数 $f_1(t)$ 和 $f_2(t)$,则定义积分

$$f(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau \tag{2.3.3}$$

为 $f_1(t)$ 和 $f_2(t)$ 的卷积积分,简称卷积。记为

$$f(t) = f_1(t) * f_2(t)$$
 (2.3.4)

例如对于 $y_{zs}(t)$

$$y_{zs}(t) = \int_{-\infty}^{\infty} f(\tau)h(t-\tau)d\tau = f(t) * h(t)$$
 (2.3.5)

2.3.2 卷积的图解法

性质2.3.1 卷积的图解法

对于卷积积分

$$f(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau$$
 (2.3.6)

图解法求卷积过程可分解为四步:

信号与线性系统分析 -27-

第一步换元

$$t \to \tau \Rightarrow f_1(\tau), f_2(\tau)$$
 (2.3.7)

第二步反转平移(画出 $f_1(t)$ 和 $f_2(t-\tau)$ 的图像*)

$$f_2(\tau) \to f_2(-\tau) \to f_2(t-\tau)$$
 (2.3.8)

第三步将信号重叠部分相乘(分类讨论区间),列出对应式子。

第四步按分类讨论的区间将相乘后的图形进行积分。

若求某一时刻的卷积积分值、反转平移步骤直接平移对应单位后相乘积分即可。

*此处 τ 带负号,因此 t > 0 时图像右移,t < 0 时图像左移

2.4 卷积积分的性质

2.4.1 卷积代数运算

性质2.4.1	卷积积分的交换律	
卷积积分满足交换律		
	$f_1(t) * f_2(t) = f_2(t) * f_1(t)$	(2.4.1)

性质2.4.2 卷积积分的分配律

卷积积分满足分配律

$$f_1(t) * [f_2(t) + f_3(t)] = f_1(t) * f_2(t) + f_1(t) * f_3(t)$$
(2.4.2)

即系统并联时总的响应为子系统响应之和。

性质2.4.3 卷积积分的结合律

卷积积分满足结合律

$$[f(t) * f_1(t)] * f_2(t) = f(t) * [f_1(t) * f_2(t)]$$
(2.4.3)

即系统级联时总的响应等于子系统响应的卷积。

性质2.4.4 卷积积分的时移特性

若 $f_1(t) * f_2(t) = f(t)$,则

$$f_1(t-t_1) * f_2(t-t_2) = f_1(t-t_2) * f_2(t-t_1) = f(t-t_1-t_2)$$
 (2.4.4)

2.4.2 与冲击函数或阶跃函数的卷积

性质2.4.5

与冲激函数卷积的筛选性

f(t) 与 $\delta(t)$ 卷积积分满足

$$f(t) * \delta(t) = \delta(t) * f(t) = f(t)$$

$$(2.4.5)$$

即定义2.3.1

$$f(t) * \delta(t) = \int_{-\infty}^{\infty} f(\tau)\delta(t - \tau)d\tau = f(t)$$
 (2.4.6)

推广

$$f(t) * \delta(t - t_0) = f(t - t_0)$$
(2.4.7)

根据性质2.4.4再次推广

$$f(t - t_1) * \delta(t - t_2) = f(t - t_1 - t_2)$$
(2.4.8)

性质2.4.6 与阶跃函数卷积

与阶跃函数卷积满足

$$f(t) * \varepsilon(t) = \int_{-\infty}^{\infty} f(\tau)\varepsilon(t - \tau)d\tau = \int_{-\infty}^{t} f(\tau)d\tau$$
 (2.4.9)

推广

$$\varepsilon(t) * \varepsilon(t) = t\varepsilon(t) \tag{2.4.10}$$

但 $\varepsilon(t)*\varepsilon(-t)$ 不存在。该性质可简记为求原函数的积分上限函数。

2.4.3 卷积的微积分性质

性质2.4.7 卷积的微分性质

若 $f(t) = f_1(t) * f_2(t) = f_2(t) * f_1(t)$, 则:

$$f^{(1)}(t) = f_1^{(1)}(t) * f_2(t) = f_1(t) * f_2^{(1)}(t)$$
(2.4.11)

证明:

$$f^{(1)}(t) = \frac{d}{dt} \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau = \int_{-\infty}^{\infty} f_1(\tau) \frac{d}{dt} f_2(t-\tau) = f_1(t) * f_2^{(1)}(t)$$
 (2.4.12)

 $f_1^{(1)}(t) * f_2(t)$ 同理。

性质2.4.8 卷积的积分性质

若 $f(t) = f_1(t) * f_2(t) = f_2(t) * f_1(t)$, 则:

$$\int_{-\infty}^{t} \left[f_1(\tau) * f_2(\tau) \right] d\tau = \left[\int_{-\infty}^{t} f_1(\tau) d\tau \right] * f_2(t) = f_1(t) * \left[\int_{-\infty}^{t} f_2(\tau) d\tau \right]$$
(2.4.13)

性质2.4.9 卷积的微积分性质

在 $f_1(-\infty) = 0^*$ 或 $f_2^{(-1)}(\infty) = 0^\dagger$ 前提下,有

$$f_1(t) * f_2(t) = f_1^{(1)}(t) * f_2^{(-1)}(t)$$
 (2.4.14)

条件推导:

该式成立要以原式进行一次微分再积分能够还原为条件、即

$$\int_{-\infty}^{t} \frac{d\left[f_1(\tau) * f_2(\tau)\right]}{d\tau} d\tau = f_1(t) * f_2(t) - \lim_{t \to -\infty} \left[f_1(t) * f_2(t)\right]$$
(2.4.15)

即满足

$$\lim_{t \to -\infty} [f_1(t) * f_2(t)] = 0 \tag{2.4.16}$$

即

$$f_1(-\infty) = f_2(-\infty) = 0 (2.4.17)$$

性质推广:

$$f^{(i)}(t) = f_1^{(j)}(t) * f_2^{(i-j)}(t)$$
(2.4.18)

^{*}先微分再积分

[†]先积分再微分

因此,对于求解连续时间系统的零状态响应还可以使用杜阿密积分。

公式2.4.10 杜阿密积分

杜阿密积分

$$y_{zs}(t) = f(t) * h(t) = f^{(1)} * h^{(-1)}(t) = f^{(1)}(t) * g(t) = \int_{-\infty}^{\infty} f^{(1)}(\tau)g(t-\tau)d\tau$$
 (2.4.19)

信号与线性系统分析 ——31—

第三章 离散系统的时域分析

第四章 傅里叶变换和系统的频域分 析

4.1 信号分解为正交函数

4.1.1 矢量正交与正交分解

定义4.1.1 矢量正交 矢量正交指矢量 $V_x=(v_{x1},v_{x2},v_{x3})$ 与 $V_y=(v_{y1},v_{y2},v_{y3})$ 的内积为零,即

$$\boldsymbol{V}_{x}\boldsymbol{V}_{y}^{T} = \sum_{i=1}^{3} v_{xi}v_{yi} = 0$$
(4.1.1)

定义4.1.2 矢量正交集与正交分解

矢量正交集指由两两正交的矢量组成的矢量集合。

正交分解即任意向量用矢量正交集中的向量表示。

4.1.2 信号正交与正交函数集

定义4.1.3 信号正交 定义在 (t_1,t_2) 区间的 $\varphi_1(t)$ 和 $\varphi_2(t)$ 满足

$$\int_{t_1}^{t_2} \varphi_1(t)\varphi_2(t)dt = 0 \tag{4.1.2}$$

则称 $\varphi_1(t)$ 和 $\varphi_2(t)$ 在区间 (t_1, t_2) 正交。

可简记为函数内积为 0。

定义4.1.4 正交函数集

若 n 个函数 $\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t)$ 构成一个函数集, 这些函数在区间 (t_1, t_2) 满足

$$\int_{t_1}^{t_2} \varphi_i(t)\varphi_j(t)dt = \begin{cases} 0, & i \neq j \\ K_i \neq 0, & i = j \end{cases}$$

$$(4.1.3)$$

则称此函数集为在区间 (t_1, t_2) 的正交函数集。

若该正交函数集之外不存在函数与集合内函数正交,则称此函数集为完备正交函数集。

常见的两个在区间 $(t_0, t_0 + T)(T = \frac{2\pi}{\Omega})$ 上的完备正交函数集:

三角函数集

$$\{1, \cos(n\Omega t), \sin(n\Omega t), n = 1, 2, \dots\}$$
 (4.1.4)

虚指数函数集

$$\left\{ e^{\mathrm{j}n\Omega t}, n = 0, \pm 1, \pm 2, \dots \right\}$$
 (4.1.5)

4.1.3 信号的正交分解

定义4.1.5 信号的正交分解

设有 n 个函数 $\varphi_1(t), \varphi_2(t), \dots, \varphi_n(t)$ 在区间 (t_1, t_2) 构成一个正交函数空间。将任一函数 f(t) 用这 n 个正交函数的线性组合来近似,可表示为

$$f(t) \approx C_1 \varphi_1(t) + C_2 \varphi_2(t) + \dots + \varphi_n(t)$$
(4.1.6)

当近似函数与原函数的均方误差为 0 时

$$f(t) = \sum_{i=1}^{\infty} C_i \varphi_i(t)$$
 (4.1.7)

$$C_i = \frac{1}{K_i} \int_{t_1}^{t_2} f(t)\varphi_i(t)dt \tag{4.1.8}$$

$$K_{i} = \int_{t_{1}}^{t_{2}} \varphi_{i}^{2}(t)dt \tag{4.1.9}$$

信号与线性系统分析 -34-

公式4.1.1 巴塞瓦尔能量公式

巴塞瓦尔能量公式

$$\int_{t_1}^{t_2} f^2(t)dt = \sum_{i=1}^{\infty} C_i^2 K_i$$
 (4.1.10)

表示在区间 (t_1, t_2) 上 f(t) 所含能量恒等于 f(t) 在完备正交函数集中分解的各正交分量能量之和。

4.2 傅里叶级数

4.2.1 傅里叶级数的三角式

定义4.2.1 三角函数集

三角函数集

$$\{1, \cos(n\Omega t), \sin(n\Omega t), n = 1, 2, \dots\}$$
 (4.2.1)

在一个周期内是一个完备的正交函数集。

由积分可知

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\Omega t) \cdot \sin(m\Omega t) dt = 0$$
 (4.2.2)

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(n\Omega t) \cdot \cos(m\Omega t) dt = \begin{cases} \frac{T}{2}, & m = n \\ 0, & m \neq n \end{cases}$$

$$(4.2.3)$$

$$\int_{-\frac{T}{2}}^{\frac{T}{2}} \sin(n\Omega t) \cdot \sin(m\Omega t) dt = \begin{cases} \frac{T}{2}, & m = n \\ 0, & m \neq n \end{cases}$$

$$(4.2.4)$$

定义4.2.2 傅里叶级数的三角函数形式

设 f(t) = f(t + mT), 即 f(t) 为周期信号,且 $\Omega = \frac{2\pi}{T}$, 满足狄里赫利(Dirichlet)条件,可分解为以下三角级数,称为傅里叶级数。

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\Omega t) + \sum_{n=1}^{\infty} b_n \sin(n\Omega t)$$

$$(4.2.5)$$

信号与线性系统分析 —35–

其中系数 a_n 和 b_n 称为傅里叶系数,满足

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(n\Omega t) dt$$
 (4.2.6)

$$b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(n\Omega t) dt$$
 (4.2.7)

且 a_n 是 n 的偶函数, b_n 是 n 的奇函数。

合并同频率项

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + \varphi_n)$$
(4.2.8)

其中

$$A_0 = a_0$$

$$A_n = \sqrt{a_n^2 + b_n^2}$$

$$\varphi_n = -\arctan \frac{b_n}{a_n}$$
(4.2.9)

可见 A_n 是 n 的偶函数, φ_n 是 n 的奇函数。

且有

$$a_n = A_n \cos \varphi_n, \ b_n = -A_n \sin \varphi_n, \ n = 1, 2, \dots$$
 (4.2.10)

合并同频率项式中的 $\frac{A_0}{2}$ 称为直流分量, $A_1\cos(\Omega t + \varphi_1)$ 称为基波或一次谐波,

 $A_n \cos(n\Omega t + \varphi_n)$ 称为 n 次谐波。

4.2.2 波形的对称性与谐波特性

性质4.2.1		波形的对称性
波形为偶函数时满足		
	f(t) = f(-t)	(4.2.11)
此时 $b_n = 0$,展开为余弦级数。		
波形为奇函数时满足		
	f(t) = -f(-t)	(4.2.12)
此时 $a_n = 0$,展开为正弦级数。		

信号与线性系统分析 -36-

-37-

性质4.2.2 波形的谐波特性

图 4.1 奇谐函数

f(t) 为奇谐函数 $f(t) = -f(t\pm \frac{T}{2})$ 时,傅里叶级数满足

$$a_0 = a_2 = \dots = b_2 = b_4 = 0 \tag{4.2.13}$$

即只含奇次谐波分量, 不含偶次谐波分量。

图 4.2 偶谐函数

f(t) 为偶谐函数 $f(t) = f(t \pm \frac{T}{2})$ 时,傅里叶级数满足

$$a_1 = a_3 = \dots = b_1 = b_3 = 0 \tag{4.2.14}$$

即只含偶次谐波分量,不含奇次谐波分量。

4.2.3 傅里叶级数的指数形式

定义4.2.3		傅里叶级数的指数形式
虚指数函数集	$\left\{e^{jn\Omega t}, n=0,\pm 1,\pm 2,\dots\right\}$	(4.2.15)
傅里叶级数的指数形式	~	,
庙田山石粉	$f(t) = \sum_{n = -\infty}^{\infty} F_n e^{jn\Omega t}$	(4.2.16)
傅里叶系数 	$F_n = \frac{1}{T} \int_{-\infty}^{\infty} f(t)e^{-jn\Omega t} dt$	(4.2.17)
由欧拉公式	$e^{i\theta} = \cos\theta + i sin\theta$	(4.2.18)

可推导出

$$\cos x = \frac{e^{jx} + e^{-jx}}{2} \tag{4.2.19}$$

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j} \tag{4.2.20}$$

则三角函数形式的傅里叶级数可推导为

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + \varphi_n)$$

$$= \frac{A_0}{2} + \sum_{n=1}^{\infty} \frac{A_n}{2} \left[e^{j(n\Omega t + \varphi_n)} + e^{-j(n\Omega t + \varphi_n)} \right]$$

$$= \frac{A_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} A_n e^{j\varphi_n} e^{jn\Omega t} + \frac{1}{2} \sum_{n=1}^{\infty} A_n e^{-j\varphi_n} e^{-jn\Omega t}$$

$$(4.2.21)$$

 $\diamondsuit A_{-n} = A_n, \varphi_{-n} = \varphi_n, A_0 = A_0 e^{\mathrm{j}\varphi_0} e^{\mathrm{j}0\Omega t}, \varphi_0 = 0, \quad \text{M}$

$$f(t) = \frac{A_0}{2} + \frac{1}{2} \sum_{n=1}^{\infty} A_n e^{j\varphi_n} e^{jn\Omega t} + \frac{1}{2} \sum_{n=-1}^{-\infty} A_n e^{j\varphi_n} e^{jn\Omega t}$$

$$= \frac{1}{2} \sum_{n=-\infty}^{\infty} A_n e^{j\varphi_n} e^{jn\Omega t}$$

$$(4.2.22)$$

性质4.2.3 傅里叶系数之间的关系

傅里叶系数之间满足以下关系

$$F_n = \frac{1}{2} A_n e^{j\varphi_n} = |F_n| e^{j\varphi_n} = \frac{1}{2} (a_n - jb_n)$$
(4.2.23)

$$F_0 = \frac{A_0}{2} \tag{4.2.24}$$

$$|F_0| = \frac{1}{2}\sqrt{a_n^2 + b_n^2} = \frac{1}{2}A_n \tag{4.2.25}$$

$$\varphi_n = \arctan\left(-\frac{b_n}{a_n}\right) \tag{4.2.26}$$

$$a_n = A_n \cos \varphi_n \tag{4.2.27}$$

$$b_n = -A_n \sin \varphi_n \tag{4.2.28}$$

其中 n 的奇函数有: $a_n, A_n, |F_n|$

n 的偶函数有: b_n, φ_n

4.2.4 周期信号的功率

公式4.2.4 Parseval 等式

周期信号一般为功率信号, 其平均功率为

$$P = \frac{1}{T} \int_0^T f^2(t)dt = \left(\frac{A_0}{2}\right)^2 + \sum_{n=1}^\infty \frac{1}{2} A_n^2 = \sum_{n=-\infty}^\infty |F_n|^2$$
 (4.2.29)

其中 $\left(\frac{A_0}{2}\right)^2$ 为直流功率, $\sum_{n=1}^{\infty} \frac{1}{2} A_n^2$ 为各次谐波功率和。

4.3 周期信号的频谱

4.3.1 周期信号频谱的概念

对于傅里叶级数 $f(t) = \frac{A_0}{2} + \sum\limits_{n=1}^{\infty} A_n \cos(n\Omega t + \varphi_n)$

图 4.3 振幅频谱

振幅频谱为 $A_n \sim \omega$ 曲线时为单边谱线, $|F_n| \sim \omega$ 曲线时为双边谱线。

图 4.4 相位频谱

求某傅里叶级数的频谱图,先求出其基波角频率,再根据各次谐波分量作图。 求某傅里叶级数的双边频谱图,先化为指数形式,写出 F_n 各值再做图。

4.3.2 周期信号频谱的特点

以幅度为 1, 脉冲宽度为 τ 的周期矩形脉冲为例, 其周期为 T

图 4.5 周期矩形脉冲

其频谱 F_n 满足

$$F_{n} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\Omega t} dt = \frac{1}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-jn\Omega t} dt = \frac{1}{T} \left. \frac{e^{-jn\Omega t}}{-jn\Omega} \right|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} = \frac{\tau}{T} \frac{\sin \frac{n\Omega \tau}{2}}{\frac{n\Omega \tau}{2}}$$
(4.3.1)

令 $Sa(x) = \frac{\sin(x)}{x}$ (取样函数),则

$$F_n = \frac{\tau}{T} Sa(\frac{n\Omega\tau}{2}) = \frac{\tau}{T} Sa(\frac{n\pi\tau}{T}), n = 0, \pm 1, \pm 2, \dots$$
 (4.3.2)

设 $T = 5\tau$,则

图 4.6 周期矩形脉冲的幅频曲线

特点:

- 周期信号的频谱具有谐波(离散)性,谱线位置是基频 Ω 的整数倍
- 频谱一般具有收敛性, 总趋势减小
- T 一定时, τ 变小,此时 $\Omega=\frac{2\pi}{T}$ (谱线间隔)不变,但两零点间谱线数目 $\frac{\omega_1}{\Omega}=\frac{2\pi}{\frac{2\pi}{T}}=\frac{T}{\tau}$ 增多
- τ 一定时, T 增大, 间隔 Ω 减小, 频谱变密, 幅度减小 ($T \to \infty$ 时, 谱线间隔趋于零, 过渡到非周期信号的连续频谱, 各频率分量幅度趋于无穷小)

4.3.3 频带宽度

由频谱的收敛性可知、信号的功率集中在低频段。

公式4.3.1 部分功率公式

$$P_{in} = F_0^2 + |F_1|^2 + \dots + |F_{i-1}|^2 + |F_{i-1}|^2 + \dots + |F_{i-1}|^2$$
(4.3.3)

定义4.3.1 频带宽度

在满足一定失真条件下,信号可以用某段频率范围内的信号表示,此频率范围称为频率宽度。

对于矩形脉冲信号一般把第一个零点作为信号的频带宽度,记为

$$B_{\omega} = \frac{2\pi}{\tau} \tag{4.3.4}$$

或

$$B_f = \frac{1}{\tau} \tag{4.3.5}$$

-41-

带宽与脉宽成反比。

对于一般的周期信号,将幅度下降为 $0.1|F_n|_{\text{max}}$ 的频率区间定义为频带宽度。

系统的通频带 > 信号的带宽时, 信号才不失真。

4.4 非周期信号的频谱

4.4.1 傅里叶变换

定义4.4.1	傅里叶变换
f(t) 的傅里叶变换	
$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$	(4.4.1)
 简记为	
$F(j\omega) = \mathscr{F}[f(t)]$	(4.4.2)
$F(j\omega)$ 的傅里叶逆变换	
$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega$	(4.4.3)
 简记为	
$f(t) = \mathscr{F}^{-1}\left[F(j\omega)\right]$	(4.4.4)
$F(j\omega)$ 一般是复函数,写为	
$F(j\omega) = F(j\omega) e^{j\varphi(\omega)} = R(\omega) + jX(\omega)$	(4.4.5)
 傅里叶变换存在的充分条件	
$\int_{-\infty}^{\infty} f(t) dt < \infty$	(4.4.6)
 运用下列关系可以方便计算一些积分	
$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) d\omega$	(4.4.7)
$F(0) = \int_{-\infty}^{\infty} f(t)dt$	(4.4.8)

信号与线性系统分析 ——42—

4.4.2 常用函数的傅里叶变换

公式4.4.1 门函数的傅里叶变换

门函数记为 $g_{\tau}(t)$

图 4.7 门函数

其傅里叶变换为

$$F(j\omega) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-j\omega t} dt = \tau \cdot \operatorname{Sa}(\frac{\omega \tau}{2})$$
 (4.4.9)

当频谱函数为实函数或虚函数时,只需要幅度频谱函数 $|F(j\omega)|$ 即可表示整个频谱函数,否则还需要相位频谱函数 $\varphi(\omega)$ 。

公式4.4.2 单边指数函数的傅里叶变换

单边指数函数

$$f(t) = e^{-\alpha t} \varepsilon(t) \ (\alpha > 0) \tag{4.4.10}$$

傅里叶变换

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$= \int_{0}^{\infty} e^{-(\alpha+j\omega)t}dt$$

$$= \frac{1}{\alpha+j\omega}$$

$$= \frac{1}{\sqrt{\alpha^{2}+\omega^{2}}}e^{-\arctan\frac{\omega}{\alpha}}$$
(4.4.11)

即

0

- (a) 单边指数函数的幅度频谱
- (b) 单边指数函数的相位频谱

图 4.8 单边指数函数的频谱函数图像

$$|F(j\omega)| = \frac{1}{\sqrt{\alpha^2 + \omega^2}}, \ \varphi(t) = -\arctan\frac{\omega}{\alpha}$$
 (4.4.12)

公式4.4.3

双边指数函数的傅里叶变换

双边指数函数

$$f(t) = e^{-\alpha|t|} \ (\alpha > 0) \tag{4.4.13}$$

傅里叶变换

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$= \int_{-\infty}^{0} f(t)e^{-j\omega t}dt + \int_{0}^{\infty} f(t)e^{-j\omega t}dt$$

$$= \frac{1}{\alpha - j\omega} + \frac{1}{\alpha + j\omega}$$

$$= \frac{2\alpha}{\alpha^2 + \omega^2}$$
(4.4.14)

图 4.9 双边指数函数的频谱函数图像

公式4.4.4

冲激函数的傅里叶变换

对于冲激函数 $\delta(t)$, 其傅里叶变换为

$$F(j\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt = 1 \tag{4.4.15}$$

对于冲激偶 $\delta'(t)$, 其傅里叶变换为

$$F(j\omega) = \int_{-\infty}^{\infty} \delta'(t)e^{-j\omega t}dt = j\omega$$
 (4.4.16)

定义4.4.2

广义傅里叶变换

由于一些信号使用定义方法求解傅里叶变换不满足绝对可积条件,故使用构造函数序列的方法求解。

构造一个函数序列 $\{f_{\alpha}(t)\}$ 满足 $\lim_{\alpha \to ?} f_{\alpha}(t) = f(t)$

此时对应的频谱函数序列 $\{F_{\alpha}(\mathrm{j}\omega)\}$ 也满足 $\lim_{\alpha\to?}F_{\alpha}(\mathrm{j}\omega)=F(\mathrm{j}\omega)$

这种方法即广义傅里叶变换。

公式4.4.5 直流信号的傅里叶变换

以 f(t) = 1 为例,构造函数序列 $f_{\alpha}(t) = e^{-\alpha|t|}$,满足

$$\lim_{\alpha \to 0} f_{\alpha}(t) = 1 \tag{4.4.17}$$

故其频谱函数

$$F(j\omega) = \lim_{\alpha \to 0} F_{\alpha}(j\omega) = \lim_{\alpha \to 0} \frac{2\alpha}{\alpha^2 + \omega^2}$$
 (4.4.18)

当 $\omega \neq 0$ 时, $F(j\omega) = 0$

当 $\omega = 0$ 时

$$F(j\omega) = \lim_{\alpha \to 0} \int_{-\infty}^{\infty} \frac{2\alpha}{\alpha^2 + \omega^2} d\omega = \lim_{\alpha \to 0} \int_{-\infty}^{\infty} \frac{2}{1 + (\frac{\omega}{\alpha})^2} d\frac{\omega}{\alpha} = \lim_{\alpha \to 0} 2 \arctan \frac{\omega}{\alpha} \Big|_{-\infty}^{\infty} = 2\pi$$
(4.4.19)

故频谱函数为

$$F(j\omega) = 2\pi\delta(t) \tag{4.4.20}$$

公式4.4.6 符号函数的傅里叶变换

符号函数

$$\operatorname{sgn}(t) = \begin{cases} 1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$$
 (4.4.21)

构造一个函数序列

$$f_{\alpha}(t) = \begin{cases} e^{-\alpha t}, & t > 0 \\ -e^{\alpha t}, & t < 0 \end{cases} \quad (\alpha > 0)$$
 (4.4.22)

满足 $\lim_{\alpha \to 0} f_{\alpha}(t) = \operatorname{sgn}(t)$ 此时 $F_{\alpha}(j\omega)$

$$F_{\alpha}(j\omega) = \frac{1}{\alpha + j\omega} - \frac{1}{\alpha - j\omega} = -\frac{j2\omega}{\alpha^2 + \omega^2}$$
 (4.4.23)

故符号函数的频谱函数为

$$F(j\omega) = \lim_{\alpha \to 0} F_{\alpha}(j\omega) = \frac{2}{i\omega}$$
 (4.4.24)

(a) 符号函数的幅度频谱 (b) 符号函数的相位频谱

图 4.10 符号函数的频谱函数图像

信号与线性系统分析 -45-

公式4.4.7 阶跃函数的傅里叶变换 阶跃函数的傅里叶变换 $\varepsilon(t) = \frac{1}{2} + \frac{1}{2} \mathrm{sgn}(t) \tag{4.4.25}$ 故其傅里叶变换为 $F(\mathrm{j}\omega) = \pi\delta(\omega) + \frac{1}{\mathrm{j}\omega} \tag{4.4.26}$

4.5 傅里叶变换的性质

4.5.1 傅里叶变换的线性性质

性质
$$4.5.1$$
 傅里叶变换的线性性质 如果 $f_1(t)\longleftrightarrow F_1(\mathrm{j}\omega), f_2(t)\longleftrightarrow F_2(\mathrm{j}\omega),$ 那么
$$[af_1(t)+bf_2(t)]\longleftrightarrow [aF_1(t)+bF_2(t)] \tag{4.5.1}$$

4.5.2 奇偶虚实性

性质4.5.2 傅里叶变换的奇偶虚实性 如果 $f_1(t)$ 是实函数,且 $f(t) \longleftrightarrow F(j\omega) = |F(j\omega)| e^{j\varphi(\omega)} = R(\omega) + jX(\omega)$ 其中 $|F(j\omega)| = \sqrt{R^2(\omega) + X^2(\omega)}$ $\varphi(\omega) = \arctan\left(\frac{X(\omega)}{\omega}\right)$,那么 $R(\omega) = R(-\omega), \quad X(\omega) = -X(-\omega) \\ |F(j\omega)| = |F(-j\omega)|, \quad \varphi(\omega) = -\varphi(-\omega) \\ f(-t) \longleftrightarrow F(-j\omega) = F^*(j\omega)^\dagger \qquad (4.5.2)$ If f(t) = f(-t) then $X(\omega) = 0$, $F(j\omega) = R(\omega)$ If f(t) = -f(-t) then $R(\omega) = 0$, $F(j\omega) = jX(\omega)$ 简记为实部和幅度为偶函数,虚部和相位为奇函数。 自变量取反时频谱函数自变量取反,即与原频谱函数共轭。 原函数为偶函数时频谱函数为实函数,原函数为奇函数时频谱函数为虚函数。 「非表示共轭

4.5.3 对称性

性质4.5.3 傅里叶变换的对称性

如果 $f(t) \longleftrightarrow F(\omega)$, 那么

$$F(t) \longleftrightarrow 2\pi f(-\omega)$$
 (4.5.3)

证明:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega$$
 (4.5.4)

t 换为 −t 得

$$f(-t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{-j\omega t} d\omega$$
 (4.5.5)

t 换元为 ω , 原有 ω 换元为 t

$$f(-\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(jt)e^{-j\omega t}dt$$
 (4.5.6)

即

$$2\pi f(-\omega) = \int_{-\infty}^{\infty} F(jt)e^{-j\omega t}dt^*$$
(4.5.7)

 $*_j$ 表示函数为复函数,因此 F(t) 和 F(jt) 等价

4.5.4 尺度变换性质

性质4.5.4 傅里叶变换的尺度变换性质

如果 $f(t) \longleftrightarrow F(j\omega)$, 那么

$$f(at) \longleftrightarrow \frac{1}{|a|} F\left(j\frac{\omega}{a}\right)$$
 (4.5.8)

a 为非零实数。

4.5.5 傅里叶变换的时移特性

性质
$$4.5.5$$
 傅里叶变换的时移特性 如果 $f(t)\longleftrightarrow F(\mathrm{j}\omega)$,那么
$$f(t-t_0)\longleftrightarrow e^{-\mathrm{j}\omega t_0}F(\mathrm{j}\omega) \tag{4.5.9}$$
 t_0 为实数。

4.5.6 频移性质

性质
$$4.5.6$$
 傅里叶变换的频移性质 如果 $f(t)\longleftrightarrow F(\mathrm{j}\omega)$,那么
$$F\left[\mathrm{j}(\omega-\omega_0)\right]\longleftrightarrow e^{\mathrm{j}\omega_0t}f(t) \tag{4.5.10}$$
 ω_0 为实数。

频移性质常用于信号的调制,信号调制的作用是频谱搬移和频谱复用。

4.5.7 卷积性质

定理4.5.7 时域卷积定理 如果
$$f_1(t) \longleftrightarrow F_1(j\omega), \ f_2(t) \longleftrightarrow F_2(j\omega), \ 那么
$$f_1(t) * f_2(t) \longleftrightarrow F_1(j\omega)F_2(j\omega)$$
 (4.5.11)
$$f_1(t)f_2(t) \longleftrightarrow \frac{1}{2\pi}F_1(j\omega) * F_2(j\omega)$$
 (4.5.12)$$

4.5.8 时域的微分和积分

定理4.5.8 傅里叶变换的时域微分定理		傅里叶变换的时域微分定理
如果 $f(t) \longleftrightarrow F(j\omega)$,那么		
	$f^{(n)}(t) \longleftrightarrow (j\omega)^n F(j\omega)$	(4.5.13)

信号与线性系统分析 ——48—

如果
$$f^{(n)}(t) \longleftrightarrow F_n(j\omega)$$
 且 $f(\infty) + f(-\infty) = 0$,那么
$$F(j\omega) = \frac{F_n(j\omega)}{(j\omega)^n}$$
 (4.5.14)

定理4.5.9

傅里叶变换的时域积分定理

如果 $f(t) \longleftrightarrow F(j\omega)$, 那么

$$\int_{-\infty}^{t} f(t)dt \longleftrightarrow \pi F(0)\delta(t) + \frac{F(j\omega)}{j\omega}$$
(4.5.15)

4.5.9 频域的微分和积分

如果 $f(t) \longleftrightarrow F(j\omega)$, 那么

$$(-jt)^n f(t) \longleftrightarrow F^{(n)}(j\omega)$$
 (4.5.16)

定理4.5.11

定理4.5.10

傅里叶变换的频域积分定理

傅里叶变换的频域微分定理

如果 $f(t) \longleftrightarrow F(j\omega)$, 那么

$$\pi f(0)\delta(t) + \frac{f(t)}{-\mathrm{j}t} \longleftrightarrow \int_{-\infty}^{\omega} F(\mathrm{j}x)dx$$
 (4.5.17)

其中

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) d\omega \tag{4.5.18}$$

4.5.10 相关定理

定义4.5.1 相关函数

相关函数即两函数间的相关性函数。对于函数 f(t), 其自相关函数为

$$R(\tau) = \int_{-\infty}^{\infty} f(t)f(t-\tau)dt \tag{4.5.19}$$

根据卷积的定义, 可以写为

$$R(\tau) = f(t) * f(-t)$$
 (4.5.20)

证明:

证毕。

同理,设 $f_1(t)$, $f_2(t)$,其互相关函数为

$$R_{12}(\tau) = f_1(t) * f_2(-t)$$
(4.5.22)

$$R_{21}(\tau) = f_2(t) * f_1(-t) \tag{4.5.23}$$

定理4.5.12	相关定理
如果 $f_1(t) \longleftrightarrow F_1(j\omega), f_2(t) \longleftrightarrow F_2(j\omega), f(t) \longleftrightarrow F(j\omega),$ 那么	
$\mathscr{F}[R_{12}(\tau)] = F_1(\mathrm{j}\omega)F_2^*(\mathrm{j}\omega)$	(4.5.24)
$\mathscr{F}[R_{21}(\tau)] = F_2(j\omega)F_1^*(j\omega)$	(4.5.25)
$\mathscr{F}[R(\tau)] = F(\mathrm{j}\omega) ^2$	(4.5.26)
其中 * 表示共轭, $F^*(j\omega) = F(-j\omega)_{\circ}$	

4.6 能量谱和功率谱

4.6.1 帕斯瓦尔关系

定义4.6.1		帕斯瓦尔关系
帕斯瓦尔关系	$E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2 d\omega$	(4.6.1)

信号与线性系统分析 ——50—

4.6.2 能量谱密度

定义4.6.2 能量谱密度

能量谱指单位频率内信号的能量,记为 $E(\omega)$ 。

在频带 df 内信号的能量为 $E(\omega)df$, 因而信号在整个频率范围内的总能量

$$E = \int_{-\infty}^{\infty} E(\omega)df = \frac{1}{2\pi} \int_{-\infty}^{\infty} E(\omega)d\omega$$
 (4.6.2)

由帕斯瓦尔关系可得

$$E(\omega) = |F(j\omega)|^2 \tag{4.6.3}$$

即

$$R(\tau) \longleftrightarrow E(\omega)$$
 (4.6.4)

能量谱函数与自相关函数是一对傅里叶变换对。

4.6.3 功率谱

定义4.6.3 功率谱

功率谱指单位频率的信号功率,记为 $P(j\omega)$ 。

在频带 df 内信号的总功率为 $P(\omega)df$, 因而信号在整个频率范围的总功率

$$P = \int_{-\infty}^{\infty} P(\omega)df = \frac{1}{2\pi} \int_{-\infty}^{\infty} P(\omega)d\omega$$
 (4.6.5)

因此

$$P(\omega) = \lim_{T \to \infty} \frac{|F_T(j\omega)|^2}{T}$$
(4.6.6)

即

$$R(\tau) \longleftrightarrow P(\omega)$$
 (4.6.7)

功率有限信号的功率谱与自相关函数是一对傅里叶变换对。

4.7 周期信号的傅里叶变换

4.7.1 正、余弦的傅里叶变换

公式4.7.1 正弦函数的傅里叶变换

由定义4.2.3可知,正弦函数满足

$$\sin \omega_0 t = \frac{1}{2j} (e^{j\omega_0 t} - e^{-j\omega_0 t})$$
(4.7.1)

由公式4.4.5、性质4.5.6可得

$$\sin \omega_0 t \longleftrightarrow -j\pi \delta(\omega - \omega_0) + j\pi \delta(\omega + \omega_0)$$
(4.7.2)

公式4.7.2 余弦函数的傅里叶变换

由定义4.2.3可知,余弦函数满足

$$\cos \omega_0 t = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$$
 (4.7.3)

由公式4.4.5、性质4.5.6可得

性质4.7.3

$$\cos \omega_0 t \longleftrightarrow \pi \delta(\omega + \omega_0) + \pi \delta(\omega - \omega_0) \tag{4.7.4}$$

一般周期信号的傅里叶变换

4.7.2 一般周期信号的傅里叶变换

对于一般的周期信号,由性质4.5.6,满足

$$f_T(t) = \sum_{n = -\infty}^{\infty} F_n e^{jn\omega t} \longleftrightarrow F_T(j\omega) = 2\pi \sum_{n = -\infty}^{\infty} F_n \delta(\omega - n\Omega)$$
 (4.7.5)

可见周期信号的傅里叶变换是冲激序列,即离散谱*。易知非周期信号的频谱为连续谱。 对于周期为 T 的冲激序列 $\delta_T(t) = \sum_{m=-\infty}^{\infty} \delta(t-mT)$,其傅里叶系数

$$F_n = \frac{1}{T} \int_{-\frac{T}{T}}^{\frac{T}{2}} \delta_T(t) e^{-jn\Omega t} dt = \frac{1}{T}$$
 (4.7.6)

其傅里叶变换为

$$\mathscr{F}\left[\delta_T(t)\right] = \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(\omega - n\Omega) = \Omega \sum_{n=-\infty}^{\infty} \delta(\omega - n\Omega)$$
 (4.7.7)

记
$$\delta_{\Omega}(\omega) = \sum_{n=-\infty}^{\infty} \delta(\omega - n\Omega)$$
,则

$$\delta_T(t) \longleftrightarrow \Omega \delta_{\Omega}(\omega)$$
 (4.7.8)

对于任一周期信号 f(t),我们截取其中一个周期 $\left(-\frac{T}{2}, \frac{T}{2}\right)$,即单脉冲信号 $f_0(t)$,由性质 2.4.5和性质 2.4.4,则

$$f_T(t) = \delta_T(t) * f_0(t) \tag{4.7.9}$$

由定理4.5.7

$$F(j\omega) = \Omega \delta_{\Omega}(\omega) \cdot F_0(j\omega) = \Omega \sum_{n=-\infty}^{\infty} F_0(jn\Omega) \delta(\omega - n\Omega)$$
 (4.7.10)

*冲激仅存在于谐波频率处,谱线幅度不是有限值,是冲激函数,换言之无限大

4.7.3 傅里叶系数与傅里叶变换关系

公式4.7.4

傅里叶系数与傅里叶变换关系

由性质4.7.3中 $F(j\omega)$ 的两种形式可知, $F_0(j\omega)$ 和 F_n 关系满足

$$F_n = \frac{1}{T} F_0(j\omega) \bigg|_{\omega = n\Omega} \tag{4.7.11}$$

4.8 LTI 系统的频域分析

4.8.1 虚指数函数 $e^{j\omega t}$ 作用于 LTI 系统的响应

定义4.8.1

频率响应函数

设 LTI 系统的冲激响应为 h(t), 当激励为 $e^{j\omega t}$ 时, 其零状态响应为

$$y(t) = h(t) * e^{j\omega t} = \int_{-\infty}^{\infty} h(\tau)e^{j\omega(t-\tau)}d\tau = \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau \cdot e^{j\omega t}$$
(4.8.1)

信号与线性系统分析 -53-

其中 $\int_{-\infty}^{\infty}h(\tau)e^{-\mathrm{j}\omega\tau}d\tau$ 正好为 $\mathscr{F}[h(t)]$,记为 $H(\mathrm{j}\omega)$,称为系统的频率响应函数,即

$$y(t) = H(j\omega)e^{j\omega t} \tag{4.8.2}$$

 $H(j\omega)$ 反应了 y(t) 的幅度和相位随频率的变化。

*幅度为1的虚指数函数

4.8.2 一般信号 f(t) 用于 LTI 系统的响应

性质4.8.1 傅里叶变换频域分析法

由 LTI 系统的齐次性和可加性可知,一般信号 f(t) 作用于系统的时候,响应满足

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega \longleftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) F(j\omega) e^{j\omega t} d\omega \tag{4.8.3}$$

即

$$f(t) \longleftrightarrow y(t) = \mathscr{F}^{-1}[F(j\omega)H(j\omega)]$$
 (4.8.4)

$$Y(j\omega) = F(j\omega)H(j\omega) \tag{4.8.5}$$

因此频率响应可以定义为

$$H(j\omega) = \frac{Y(j\omega)}{F(j\omega)} \tag{4.8.6}$$

$$H(j\omega) = |H(j\omega)| e^{j\theta(\omega)} = \frac{|Y(j\omega)|}{|F(j\omega)|} e^{j[\varphi_y(\omega) - \varphi_f(\omega)]}$$
(4.8.7)

 $|H(j\omega)|$ 称为幅频响应(幅频特性), $\theta(\omega)$ 称为相频响应(相频特性)。

 $|H(j\omega)|$ 是 ω 的偶函数, $\theta(\omega)$ 是 ω 的奇函数。

性质4.8.2

指数形式傅里叶级数频域分析法

设 LTI 系统的激励为 $f_T(t) = \sum_{n=-\infty}^{\infty} F_n e^{\mathrm{j}n\Omega t}$, 则响应

$$y(t) = h(t) * f_T(t) = \sum_{n = -\infty}^{\infty} F_n \left[h(t) * e^{jn\Omega t} \right] = \sum_{n = -\infty}^{\infty} F_n H(j\omega) e^{jn\Omega t}$$
(4.8.8)

因此

$$Y_n = F_n H(jn\Omega) \tag{4.8.9}$$

信号与线性系统分析 -54-

即

$$y(t) = \sum_{n = -\infty}^{\infty} F_n H(jn\Omega) e^{jn\Omega t}$$
(4.8.10)

性质4.8.3

三角函数形式傅里叶级数频域分析法

设 LTI 系统的激励为 $f_T(t)=\frac{A_0}{2}+\sum_{n=1}^{\infty}A_n\cos(n\Omega t+\varphi_n)$,频率响应函数为 $H(\mathrm{j}\omega)=|H(\mathrm{j}\omega)|e^{\mathrm{j}\theta(\omega)}$ 则响应

$$y(t) = \frac{A_0}{2}H(0) + \sum_{n=1}^{\infty} A_n |H(jn\Omega)| \cos[n\Omega t + \varphi_n + \theta(\omega)]$$
 (4.8.11)

4.8.3 频率响应 $H(j\omega)$ 的求法

性质4.8.4

已知微分方程求解频率响应

方程两边同时取傅里叶变换,可得 $H(j\omega)$ 关于 $Y(j\omega)$ 和 $F(j\omega)$ 的方程。

移项即可得 $H(j\omega) = \frac{Y(j\omega)}{F(i\omega)}$

根据 $Y(j\omega) = H(j\omega)F(j\omega)$ 可以进一步求响应 y(t)。

性质4.8.5

已知电路求解频率响应

根据电路列出 $H(j\omega)=rac{Y(j\omega)}{F(j\omega)}$,标出电路各元件的阻抗即可根据各回路列方程解得所需比值。

电感元件阻抗 j ωL ,电容元件阻抗 $\frac{1}{\mathrm{j}\omega C}$,电阻元件阻抗 R。

4.8.4 无失真传输与滤波

定义4.8.2

无失真传输

无失真传输是指输出信号和输入信号相比,信号只有幅度的大小和出现的时间先后不同,没有波形上的变化。设输入信号为 f(t),即满足

$$y(t) = Kf(t - t_d) (4.8.12)$$

频谱关系满足

$$Y(j\omega) = Ke^{-j\omega t_d} F(j\omega) \tag{4.8.13}$$

无失真传输满足以下条件

$$h(t) = K\delta(t - t_d) \tag{4.8.14}$$

$$H(j\omega) = \frac{Y(j\omega)}{F(j\omega)} = Ke^{-j\omega t_d}$$
(4.8.15)

即

$$|H(j\omega)| = K, \quad \theta(\omega) = -\omega t_d$$
 (4.8.16)

图 4.11 无失真传输幅频相频特性

根据输入信号判断输出信号是否失真只需要看输入信号的各次谐波频率对应的 $|H(j\omega)|$ 是否相等, $\theta(\omega)$ 的值是否在同一条过原点的直线上(即保证 t_d 相同)即可。

系统的群时延为

$$\tau = -\frac{d\theta(\omega)}{d\omega} \tag{4.8.17}$$

定义4.8.3 失真相关概念

幅度失真是指各频率分量幅度产生不同程度衰减。

相位失真是指各频率分量产生的相移不与频率成正比,使各频率分量在时间轴上的相对位置发生变化。

线性失真是指只存在幅度或相位失真, 不产生新的频率成分。

非线性失真是指产生新的频率成分的失真。

定义4.8.4 理想低通滤波器

具有如下图所示的幅频相频特性的系统称为理想低通滤波器。

图 4.12 理想低通滤波器幅频相频特性

 ω_c 称为截止角频率,频率响应可以写为

$$H(j\omega) = \begin{cases} e^{-j\omega t_d}, & |\omega| < \omega_c \\ 0, & |\omega| > \omega_c \end{cases} = g_{2\omega_c}(\omega)e^{-j\omega t_d}$$
 (4.8.18)

理想低通滤波器的冲激响应为

$$h(t) = \mathscr{F}^{-1}[H(j\omega)] = \mathscr{F}^{-1}\left[g_{2\omega_c}(\omega)e^{-j\omega t_d}\right] = \frac{\omega_c}{\pi} \operatorname{Sa}\left[\omega_c(t - t_d)\right]$$
(4.8.19)

显然不是因果系统,因此理想低通滤波器不存在。

理想低通滤波器的阶跃响应

$$g(t) = h(t) * \varepsilon(t) = \int_{-\infty}^{t} \frac{\omega_c}{\pi} \frac{\sin\left[\omega_c(\tau - t_d)\right]}{\omega_c(\tau - t_d)} d\tau = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\omega(t - t_d)} \frac{\sin x}{x} dx \qquad (4.8.20)$$

定义正弦积分为

$$Si(x) = \int_0^y \frac{\sin x}{x} dx \tag{4.8.21}$$

则阶跃响应可以写为

$$g(t) = \frac{1}{2} + \frac{1}{\pi} Si \left[\omega_c(t - t_d) \right]$$
 (4.8.22)

图 4.13 理想低通滤波器的阶跃响应

其中最小值位置为 $t_d - \omega$, 最大值位置为 $t_d + \omega$, 上升时间 $t_r = 2 \cdot \frac{\pi}{\omega_c}$

$$g_{max}(t) = \frac{1}{2} + \frac{\text{Si}(\pi)}{\pi} = 1.0895$$

显然,只要 $\omega_c < \infty$,必有振荡,该由频率截断效应引起的振荡称为吉布斯现象。

性质4.8.6 物理可实现系统条件

从时域特性上来说, 物理可实现系统的冲激响应满足

$$h(t) = 0, \quad t < 0 \tag{4.8.23}$$

从频域特性来说,满足佩利-维纳准则(必要条件)

$$\int_{-\infty}^{\infty} |H(j\omega)|^2 d\omega < \infty \tag{4.8.24}$$

信号与线性系统分析 -57-

且

$$\int_{-\infty}^{\infty} \frac{|\ln|H(j\omega)||}{1+\omega^2} d\omega < \infty \tag{4.8.25}$$

从该准则可看出,对于物理可实现系统,其幅频特性可在某些孤立频率点上为 0,但不能在某个有限频带内为 0。

4.9 取样定理

4.9.1 信号的取样

定义4.9.1 理想取样

理想取样,又叫周期单位冲激取样,设取样脉冲为 $s(t) = \delta_{T_s}(t)$,则

$$s(t) = \delta_{T_s}(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_s) \longleftrightarrow S(j\omega) = \omega_s \sum_{n = -\infty}^{\infty} \delta(\omega - n\omega_s)$$
 (4.9.1)

则

$$f_s(t) = f(t)\delta_{T_s}(t) = \sum_{n = -\infty}^{\infty} f(nT_s)\delta(t - nT_s)$$
(4.9.2)

$$F_s(j\omega) = \mathscr{F}[f(t)\delta_{T_s}(t)] = \frac{1}{2\pi}F(j\omega) * \omega_s \delta_{\omega_s}(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} F[j(\omega - n\omega_s)]$$
(4.9.3)

性质4.9.1 冲激取样信号的频谱

设 T_s 为取样间隔, ω_s 为取样角频率。当 ω_s 满足下式时频谱不发生混叠,可以从 $F_s(j\omega)$ 中取出 $F(j\omega)$,即从 $f_s(t)$ 中恢复原信号 f(t)。

$$\omega_s \ge 2\omega_m \tag{4.9.4}$$

4.9.2 时域取样定理

一个频谱在区间 $(-\omega_m,\omega_m)$ 以外为 0 的带限信号 f(t),可唯一地由其在均匀间隔 $T_s\left[T_s\leq \frac{1}{2f_m}\right]$ 上的样点值 $f(kT_s)$ 确定。

信号与线性系统分析 -58-

性质4.9.3 取样信号恢复原信号

理想低通滤波器

$$H(j\omega) = \begin{cases} T_s, & |\omega| < \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$
 (4.9.5)

则将取样信号通过理想低通滤波器即可恢复原信号

$$F(j\omega) = F_s(j\omega)H(j\omega) \longleftrightarrow f(t) = f_s(t) * h(t)$$
(4.9.6)

其中 ω_c 满足 $\omega_m \leq \omega_c \leq \omega_s - \omega_m$

图 4.14 取样信号恢复原信号

即

$$f(t) = f_s(t) * h(t) = \left[\sum_{n = -\infty}^{\infty} f(nT_s) \delta(t - nT_s) \right] * \left[T_s \frac{\omega_s}{\pi} \operatorname{Sa}(\omega_c t) \right]$$
$$= T_s \frac{\omega_s}{\pi} \sum_{-\infty}^{\infty} f(nT_s) \operatorname{Sa}\left[\omega_c (t - nT_s)\right]$$
(4.9.7)

当 $\omega_s = 2\omega_m$,则 $\omega_c = \omega_m$, $T_s = \frac{2\pi}{\omega_s} = \frac{\pi}{\omega_c}$,此时

$$f(t) = \sum_{n=-\infty}^{\infty} f(nT_s) \operatorname{Sa}\left[\omega_c(t - nT_s)\right]$$
(4.9.8)

恢复原信号必须满足两个条件,一是 f(t) 必须是带限信号,二是取样频率不能太低,满足

$$f_s \ge 2f_m \tag{4.9.9}$$

或者取样间隔满足

$$T_s \le \frac{1}{2f_m} \tag{4.9.10}$$

否则会产生混叠。

其中 $f_s=2f_m$ 称为奈奎斯特频率, $T_s=\frac{1}{2f_m}$ 称为奈奎斯特间隔。

第五章 连续系统的 s 域分析

5.1 拉普拉斯变换

5.1.1 从傅里叶变换到拉普拉斯变换

定义5.1.1 拉普拉斯变换

为满足函数的绝对可积条件求解傅里叶变换,可用一个衰减因子 $e^{-\sigma t}$ (σ 为实数) 乘信号 f(t) 使得 $f(t)e^{-\sigma}$ 在 $t\to\infty$ 时信号幅度趋于 0,此时 $f(t)e^{-\sigma}$ 的傅里叶变换存在,即

$$F_b(\sigma + j\omega) = \mathscr{F}\left[f(t)e^{-\sigma t}\right] = \int_{-\infty}^{\infty} f(t)e^{-(\sigma + j\omega)t}dt$$
 (5.1.1)

甘傅甲叶逆变塩为

$$f(t)e^{-\sigma} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_b(\sigma + j\omega)e^{j\omega t} d\omega$$
 (5.1.2)

即

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_b(\sigma + j\omega) e^{(\sigma + j\omega)t} d\omega$$
 (5.1.3)

令 $s = \sigma + j\omega$, $d\omega = \frac{ds}{j}$, 则有

$$F_b(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$$
 (5.1.4)

$$f(t) = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} F_b(s) e^{st} ds$$
 (5.1.5)

 $F_b(s)$ 称为 f(t) 的双边拉普拉斯变换,又称为象函数;

f(t) 称为 $F_b(s)$ 的双边拉普拉斯逆变换,又称为原函数。

5.1.2 收敛域

定义5.1.2 收敛域

只有适当的 σ 值才能使得积分收敛,信号 f(t) 的拉普拉斯变换存在,其中 σ 的取值范围 称为 $F_b(s)$ 的收敛域。

公式5.1.1

指数函数因果信号的拉普拉斯变换

指数函数因果信号

$$f(t) = e^{\alpha t} \varepsilon(t) \tag{5.1.6}$$

拉普拉斯变换

$$F_{b}(s) = \int_{0}^{\infty} e^{\alpha t} e^{-st} dt = \frac{e^{-(s-\alpha)t}}{-(s-\alpha)} \Big|_{0}^{\infty} = \frac{1}{s-\alpha} \left[1 - \lim_{t \to \infty} e^{-(\sigma-\alpha)t} e^{-j\omega t} \right]$$

$$= \begin{cases} \frac{1}{s-\alpha}, & \text{Re}[s] = \sigma > \alpha \\ \text{$\pi \in $,} & \sigma = \alpha \end{cases}$$

$$\text{$\pi \in $,} \qquad \sigma < \alpha$$

$$\text{$\pi \in $,} \qquad \sigma < \alpha$$

故收敛域如下图

图 5.1 指数函数因果信号的拉氏变换收敛域

公式5.1.2

指数函数反因果信号的拉普拉斯变换

指数函数反因果信号

$$f(t) = e^{\beta t} \varepsilon(-t) \tag{5.1.8}$$

拉普拉斯变换

$$F_{b}(s) = \int_{-\infty}^{0} e^{\beta t} e^{-st} dt = \left. \frac{e^{-(s-\beta)t}}{-(s-\beta)} \right|_{-\infty}^{0} = \frac{1}{-(s-\beta)} \left[1 - \lim_{t \to -\infty} e^{-(\sigma-\beta)t} e^{-j\omega t} \right]$$

$$= \begin{cases} \mathcal{F}, & \text{Re}[s] = \sigma > \beta \\ \mathcal{F}, & \sigma = \beta \end{cases}$$

$$= \begin{cases} \frac{1}{-(s-\beta)}, & \sigma < \beta \end{cases}$$
(5.1.9)

公式5.1.3

双边指数函数信号的拉普拉斯变换

双边指数函数信号

$$f(t) = \begin{cases} e^{\beta t}, & t < 0 \\ e^{\alpha t}, & t > 0 \end{cases}$$
 (5.1.10)

由公式5.1.1和公式5.1.2可知, 其拉普拉斯变换为

$$F_b(s) = \frac{1}{s - \alpha} + \frac{1}{-(s - \beta)} \quad , \quad \alpha < \text{Re}[s] = \sigma < \beta$$
 (5.1.11)

故收敛域如下图

图 5.3 双边指数函数信号的拉氏变换收敛域

双边拉氏变换必须写出收敛域,因为不同原函数对应的象函数可能相同,但收敛域不同。

5.1.3 单边拉氏变换

定义5.1.3 单边拉普拉斯变换

设信号的初始时刻为坐标原点,此时在 t < 0 时 f(t) = 0,拉普拉斯变换为

$$F(s) = \int_{0_{-}}^{\infty} f(t)e^{-st}dt$$
 (5.1.12)

$$f(t) = \left[\frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s)e^{st}ds\right] \varepsilon(t)$$
 (5.1.13)

简记为

$$F(s) = \mathcal{L}[f(t)] \tag{5.1.14}$$

或

$$f(t) \longleftrightarrow F(s)$$
 (5.1.15)

其收敛域一定是 $Re[s] > \alpha$, 可以省略。

5.1.4 常见函数的拉普拉斯变换

冲激函数的拉普拉斯变换*为

$$\delta(t) \longleftrightarrow \int_0^\infty \delta(t)e^{-st}dt = 1$$
 (5.1.16)

*本课程主要讨论单边拉普拉斯变换, 若无特殊说明均为单边

公式5.1.5

公式5.1.4

指数函数的拉普拉斯变换

冲激函数的拉普拉斯变换

指数函数的拉普拉斯变换为

$$e^{s_0 t} \longleftrightarrow \frac{1}{s - s_0} \quad , \quad \sigma > \operatorname{Re}[s_0]$$
 (5.1.17)

公式5.1.6

阶跃函数的拉普拉斯变换

阶跃函数的拉普拉斯变换为

$$\varepsilon(t) \longleftrightarrow \frac{1}{s} \quad , \quad \sigma > 0$$
 (5.1.18)

1 的拉普拉斯变换也为 $\frac{1}{s}$ 。

公式5.1.7

余弦函数的拉普拉斯变换

余弦函数的拉普拉斯变换为

$$\cos \omega_0 t = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t}) \longleftrightarrow \frac{s}{s^2 + \omega_0^2}$$
(5.1.19)

公式5.1.8

正弦函数的拉普拉斯变换

正弦函数的拉普拉斯变换为

$$\sin \omega_0 t = \frac{1}{j2} (e^{j\omega_0 t} - e^{-j\omega_0 t}) \longleftrightarrow \frac{\omega_0}{s^2 + \omega_0^2}$$
(5.1.20)

公式5.1.9

周期信号的拉普拉斯变换

周期信号的拉普拉斯变换为

$$F_T(s) = \int_0^\infty f_T(t)e^{-st}dt = \sum_{n=0}^\infty \int_{nT}^{(n+1)T} f_T(t)e^{-st}dt$$
 (5.1.21)

$$\sum_{n=0}^{\infty} e^{-nsT} \int_{0}^{T} f_{T}(t)e^{-st}dt = \frac{1}{1 - e^{-sT}} \int_{0}^{T} f_{T}(t)e^{-st}dt$$
 (5.1.22)

当 $f_T(t) = \delta_T(t)$ 时,有

$$\delta_T(t) \longleftrightarrow \frac{1}{1 - e^{-sT}}$$
 (5.1.23)

5.1.5 单边拉氏变换与傅里叶变换的关系

性质5.1.10

单边拉氏变换与傅里叶变换的关系

为保证积分限一致, 讨论该关系的前提是 f(t) 是因果信号。

单边拉氏变换

$$F(s) = \int_0^\infty f(t)e^{-st}dt \quad , \quad \text{Re}[s] > \sigma_0 \tag{5.1.24}$$

傅里叶变换

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$
 (5.1.25)

当 $\sigma_0 < 0$ 时,收敛域包含 $s = j\omega$,因此在 $s = j\omega$ 处满足

$$F(s) = \int_0^\infty f(t)e^{-j\omega t}dt = F(j\omega)$$
 (5.1.26)

当 $\sigma_0 = 0$ 时,收敛域边界为 j ω 轴,此时

$$F(j\omega) = \lim_{\sigma \to 0} F(s) \tag{5.1.27}$$

当 $\sigma_0 > 0$ 时, $F(j\omega)$ 不存在

对于 $\sigma_0 = 0$ 的情况给出一个例子,例如 $f(t) = \varepsilon(t) \longleftrightarrow \frac{1}{\varepsilon} \quad (\sigma > 0)$,此时

$$F(j\omega) = \lim_{\sigma \to 0} = \lim_{\sigma \to 0} \frac{1}{\sigma + j\omega} = \lim_{\sigma \to 0} \frac{\sigma}{\sigma^2 + \omega^2} + \lim_{\sigma \to 0} \frac{-j\omega}{\sigma^2 + \omega^2}$$
 (5.1.28)

其中易知 $\lim_{\sigma \to 0} \frac{-j\omega}{\sigma^2 + \omega^2} = \frac{1}{j\omega}$,而 $\lim_{\sigma \to 0} \frac{\sigma}{\sigma^2 + \omega^2}$ 需要讨论 ω

 $\omega \neq 0$ 时, $\lim_{\sigma \to 0} \frac{\sigma}{\sigma^2 + \omega^2} = 0$;

 $\omega = 0$ 时,根据狄拉克定义, $\delta(t)$ 可以等价为

$$\delta(t) = \lim_{a \to 0_+} \frac{1}{\pi} \frac{a}{a^2 + x^2} \tag{5.1.29}$$

因此

$$\lim_{\sigma \to 0} \frac{\sigma}{\sigma^2 + \omega^2} = \pi \delta(t) \tag{5.1.30}$$

即

$$F(j\omega) = \pi\delta(\omega) + \frac{1}{j\omega}$$
 (5.1.31)

5.2 拉普拉斯变换性质

5.2.1 拉氏变换的线性性质

$$a_1 f_1(t) + a_2 f_2(t) \longleftrightarrow a_1 F_1(s) + a_2 F_2(s) \quad \operatorname{Re}[s] > \max(\sigma_1, \sigma_2)$$
 (5.2.1)

5.2.2 拉氏变换的尺度变换

性质5.2.2 拉普拉斯变换的尺度变换

若
$$f(t) \longleftrightarrow F(s)$$
 Re $[s] > \sigma_0$,且 $a > 0$,则

$$f(at) \longleftrightarrow \frac{1}{a}F(\frac{s}{a})$$
 (5.2.2)

信号与线性系统分析

5.2.3 拉氏变换的时移特性

性质5.2.3 拉普拉斯变换的时移特性

若 $f(t) \longleftrightarrow F(s)$ Re $[s] > \sigma_0$, 且 $t_0 > 0$, 则

$$f(t-t_0)\varepsilon(t-t_0)\longleftrightarrow e^{-st_0}F(s) \quad \operatorname{Re}[s] > \sigma_0$$
 (5.2.3)

与尺度变换结合

$$f(at - t_0)\varepsilon(at - t_0) \longleftrightarrow \frac{1}{a}e^{-\frac{t_0}{a}s}F(\frac{s}{a})$$
 (5.2.4)

5.2.4 拉氏变换的复频移特性

性质5.2.4 拉普拉斯变换的复频移特性

若 $f(t) \longleftrightarrow F(s)$ Re $[s] > \sigma_0$,且 $s_a = \sigma_a + j\omega_a$,则

$$f(t)e^{s_a t} \longleftrightarrow F(s - s_a) \quad \text{Re}[s] > \sigma_0 + \sigma_a$$
 (5.2.5)

5.2.5 拉氏变换的时域的微分特性

定理5.2.5 拉普拉斯变换的微分定理

若 $f(t) \longleftrightarrow F(s)$ Re $[s] > \sigma_0$, 则

$$f'(t) \longleftrightarrow sF(s) - f(0_{-})$$
 (5.2.6)

进一步推导可得

$$f^{(n)}(t) \longleftrightarrow s^n F(s) - \sum_{m=0}^{n-1} s^{n-1-m} f^{(m)}(0_-)$$
 (5.2.7)

若 f(t) 为因果函数

$$f^{(n)}(t) \longleftrightarrow s^n F(s) \quad \text{Re}[s] > \sigma_0$$
 (5.2.8)

5.2.6 拉氏变换的时域积分特性

定理5.2.6

拉普拉斯变换的积分定理

若 $\mathcal{L}[f(t)] = F(s)$,则

$$\mathcal{L}\left[\int_{-\infty}^{t} f(\tau)d\tau\right] = \frac{F(s)}{s} + \frac{f^{(-1)}(0_{-})}{s}$$
 (5.2.9)

若 f(t) 为因果信号,且 $f^{(n)}(0_{-})=0$,则

$$\left(\int_{0_{-}}^{t}\right)^{n} f(x)dx \longleftrightarrow \frac{F(s)}{s^{n}} \tag{5.2.10}$$

同理, 若 f(t) 为因果信号, 若 $f^{(n)}(t) \longleftrightarrow F_n(s)$, 则

$$f(t) \longleftrightarrow \frac{F_n(s)}{s^n}$$
 (5.2.11)

5.2.7 拉氏变换的卷积定理

定理5.2.7

拉普拉斯变换的时域卷积定理

若因果函数
$$f_1(t) \longleftrightarrow F_1(s)$$
 Re $[s] > \sigma_1$, $f_2(t) \longleftrightarrow F_2(s)$ Re $[s] > \sigma_2$, 则

$$f_1(t) * f_2(t) \longleftrightarrow F_1(s)F_2(s)$$
 (5.2.12)

定理5.2.8

拉普拉斯变换的复频域卷积定理

若因果函数
$$f_1(t) \longleftrightarrow F_1(s)$$
 Re $[s] > \sigma_1$, $f_2(t) \longleftrightarrow F_2(s)$ Re $[s] > \sigma_2$, 则

$$f_1(t)f_2(t) \longleftrightarrow \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} F_1(\eta)F_2(s-\eta)d\eta$$
 (5.2.13)

5.2.8 s 域微分和积分定理

定理5.2.9

s 域微分和积分定理

若 $f(t) \longleftrightarrow F(s)$, Re $[s] > \sigma_0$, 则

$$(-t)^n f(t) \longleftrightarrow \frac{d^n F(s)}{ds} \tag{5.2.14}$$

信号与线性系统分析 -67-

特别地

$$\frac{f(t)}{t} \longleftrightarrow \int_{s}^{\infty} F(\eta) d\eta \tag{5.2.15}$$

5.2.9 初值定理和终值定理

定理5.2.10 初值定理

设函数 f(t) 不含 $\delta(t)$ 及其各阶导数(即 F(s) 为真分式,若 F(s) 为假分式则化为真分式)

$$f(0_{+}) = \lim_{t \to 0_{+}} f(t) = \lim_{s \to \infty} sF(s)$$
 (5.2.16)

定理5.2.11 终值定理

若 f(t) 当 $t \to \infty$ 时存在, 并且 $f(t) \longleftrightarrow F(s)$, $Re[s] > \sigma_0$, $\sigma_0 < 0$, 则

$$f(\infty) = \lim_{s \to 0} sF(s) \tag{5.2.17}$$

5.3 拉普拉斯逆变换

5.3.1 零、极点的概念

定义5.3.1 真分式和假分式

若象函数为 s 的有理分式,则可写成

$$F(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$
(5.3.1)

若 $m \ge n$, 则 F(s) 为假分式,可以用多项式除法化为

$$F(s) = P(s) + \frac{B_0(s)}{A(s)}$$
(5.3.2)

若 m < n, 则 F(s) 为真分式,可以写为

$$F(s) = \frac{B(s)}{A(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$
(5.3.3)

信号与线性系统分析 -68-

零点与极点 定义5.3.2

若 F(s) 为真分式,则可分解为

$$F(s) = \frac{B(s)}{A(s)} = \frac{b_m(s - z_1)(s - z_2)\dots(s - z_m)}{a_n(s - p_1)(s - p_2)\dots(s - p_n)}$$
(5.3.4)

其中 z_1, z_2, \ldots, z_m 为 B(s) 的根,称为 F(s) 的零点。

另外, p_1, p_2, \dots, p_n 为 A(s) 的根, 称为 F(s) 的极点*。 $*_{A(s) = 0} \Rightarrow F(s) = \infty$

$$^*A(s) = 0 \Rightarrow F(s) = \infty$$

拉氏逆变换的过程 5.3.2

公式5.3.1 单阶实数极点的逆变换

极点为单阶实数时, 象函数可化为

$$F(s) = \frac{B(s)}{(s - p_1)(s - p_2)\dots(s - p_n)}$$
 (5.3.5)

其中 p_1, p_2, \ldots, p_n 均为不等实根,F(s) 为真分式。

进一步地, 象函数可化为

$$F(s) = \frac{K_1}{s - p_1} + \frac{K_2}{s - p_2} + \dots + \frac{K_n}{s - p_n}$$
 (5.3.6)

其中

$$K_i = (s - p_i)F(s)|_{s=p_i}$$
 (5.3.7)

对应可得拉普拉斯逆变换

$$\mathcal{L}^{-1}\left[\frac{1}{s-n_i}\right] = e^{p_i t} \varepsilon(t) \tag{5.3.8}$$

若原来的象函数为假分式,则先用多项式除法化为真分式。

根据定义5.3.1,P(s) 对应的逆变换满足

$$\mathcal{L}^{-1}[1] = \delta(t) \tag{5.3.9}$$

$$\mathcal{L}^{-1}[s^n] = \delta^{(n)}(t)$$
 (5.3.10)

信号与线性系统分析

公式5.3.2 共轭复数极点的逆变换

极点为共轭复数时, 象函数可化为

$$F(s) = \frac{B(s)}{A_1(s) [(s+\alpha)^2 + \beta^2]} = \frac{F_1(s)}{(s+\alpha - j\beta)(s+\alpha + j\beta)}$$
(5.3.11)

共轭极点为 $-\alpha \pm j\beta$

进一步地象函数可化为

$$F(s) = \frac{K_1}{s + \alpha - j\beta} + \frac{K_2}{s + \alpha + j\beta} + \dots$$
 (5.3.12)

其中

$$K_1 = (s + \alpha - j\beta)F(s)|_{s = -\alpha + j\beta} = \frac{F_1(-\alpha + j\beta)}{2j\beta}$$
(5.3.13)

$$K_2 = (s + \alpha + j\beta)F(s)|_{s = -\alpha - j\beta} = \frac{F_1(-\alpha - j\beta)}{-2j\beta}$$
(5.3.14)

可见 K_1 , K_2 构成共轭关系

$$K_1 = A + jB = |K_1|e^{j\theta}$$
 $K_2 = A - jB = K_1^* = |K_1|e^{-j\theta}$ (5.3.15)

故

$$F_0(s) = \frac{K_1}{s + \alpha - j\beta} + \frac{K_1^*}{s + \alpha + j\beta} = \frac{|K_1|e^{j\theta}}{s + \alpha - j\beta} + \frac{|K_1|e^{-j\theta}}{s + \alpha + j\beta}$$
(5.3.16)

逆变换为

$$f_0(t) = \mathcal{L}^{-1}[F_0(s)] = e^{-\alpha t} (K_1 e^{\beta t} + K_1^* e^{-\beta t})$$

$$= 2|K_1|e^{-\alpha t} \cos(\beta t + \theta)\varepsilon(t)$$

$$= 2e^{-\alpha t} [A\cos(\beta t) - B\sin(\beta t)]$$
(5.3.17)

公式5.3.3 极点含重根的逆变换

对于重根的部分

$$\frac{F_1(s)}{(s-p_1)^k} = \frac{K_{11}}{(s-p_1)^k} + \frac{K_{12}}{(s-p_1)^{k-1}} + \dots + \frac{K_{1(k-1)}}{(s-p_1)^2} + \frac{K_{1k}}{s-p_1}$$
(5.3.18)

求 K_11

$$K_{11} = F_1(s)|_{s=p_1} = (s-p_1)^k F(s)|_{s=p_1}$$
 (5.3.19)

求其他系数

$$K_{1i} = \frac{1}{(i-1)!} \frac{d^{i-1}}{ds^{i-1}} F(s)|_{s=p_1} \quad i = 1, 2, 3, ..., k$$
 (5.3.20)

信号与线性系统分析

要求拉普拉斯逆变换,根据定理5.2.9可知

$$\mathscr{L}\left[t^{n}\varepsilon(t)\right] = \frac{n!}{s^{n+1}}\tag{5.3.21}$$

根据性质5.2.4, 有

$$\mathcal{L}^{-1}\left[\frac{1}{(s-p_1)^{n+1}}\right] = \frac{1}{n!}t^n e^{p_1 t} \varepsilon(t)$$
 (5.3.22)

由此可得重根项的逆变换。

5.4 复频域分析

5.4.1 微分方程的变换解

定义5.4.1 微分方程的变换解

描述 n 阶系统的微分方程的一般形式为

$$\sum_{i=0}^{n} a_i y^{(i)}(t) = \sum_{j=0}^{m} b_j f^{(j)}(t)$$
 (5.4.1)

系统的初始状态为 $y(0_{-}), y^{(1)}(0_{-}), \dots, y^{(n-1)}(0_{-})$ 。

根据定理5.2.5,对方程两边微分

$$\left[\sum_{i=0}^{n} a_{i} s^{i}\right] Y(s) - \sum_{i=0}^{n} a_{i} \left[\sum_{p=0}^{i-1} s^{i-1-p} y^{(p)}(0_{-})\right] = \left[\sum_{j=0}^{m} b_{j} s^{j}\right] F(s)$$
 (5.4.2)

整理可得

$$Y(s) = \frac{M(s)}{A(s)} + \frac{B(s)}{A(s)}F(s) = Y_{zi}(s) + Y_{zs}(s)$$
(5.4.3)

对 Y(s) 进行拉普拉斯逆变换即可得微分方程的全解。

其中含衰减指数的项组成暂态分量 $y_t(t)$,其余的为稳态分量 $y_s(t)$ 。

^{*}又叫自由响应,反应系统的固有频率

[†]又叫强迫响应,形式由激励函数确定

5.4.2 系统函数

5.4.3 系统的 s 域框图

图 5.4 系统的 s 域框图

由 s 域框图求微分方程方法与第1.5节相同,即设辅助函数 X(s) 作为激励输入处加法器输出,再写出 Y(s) 的表达式,最后用拉普拉斯逆变换即可。

5.4.4 用拉氏变换法分析电路的步骤

根据时域特性先列时域微分方程,再求其拉普拉斯变换,或直接根据电路的 s 域模型建立代数方程。

求解s域方程再做拉普拉斯逆变换即可。

5.4.5 电路的 s 域模型

定义
$$5.4.3$$
 电阻元件的 s 域模型
$$+ U(s) -$$
 图 5.5 电阻元件的 s 域模型 表达式
$$u(t) = Ri(t) \Rightarrow U(s) = RI(s) \tag{5.4.7}$$

定义
$$5.4.4$$
 电感元件的 s 域模型
$$\frac{I_L(s)}{sL} \underbrace{SL}_{LiL(0-)} \underbrace{I_L(s)}_{sL} \underbrace{I_L(s)$$

定义5.4.5 电容元件的 s 域模型
$$I(s) = \frac{1}{sC} \underbrace{U_C(0_-)}_{+} \underbrace{U_C(s)}_{-} - \underbrace{U_C(s$$

信号与线性系统分析 -73-

或

$$U_C(s) = \frac{1}{sC}I(s) + \frac{u_C(0_-)}{s}$$
(5.4.11)

定义5.4.6 基尔霍夫定律的 s 域模型

基尔霍夫电流定律(KCL)

$$\sum i(t) = 0 \Rightarrow \sum I(s) = 0 \tag{5.4.12}$$

即节点电流代数和为零。

基尔霍夫电压定律(KVL)

$$\sum u(t) = 0 \Rightarrow \sum U(s) = 0 \tag{5.4.13}$$

即回路电压代数和为零(要定电压参考方向,同向正反之负)。

求电路响应的步骤:

- 画 0_ 等效电路, 求初始状态
- 画 s 域等效模型
- 列 s 域方程(用节点分析法或网孔分析法, 节点分析法设参考电位)
- 解 s 域方程, 求响应的拉普拉斯变换 U(s) 或 I(s)
- 用拉普拉斯逆变换求出 u(t) 或 i(t)

第六章 离散系统的 z 域分析

第七章 系统函数

7.1 系统函数与系统特性

7.1.1 系统函数的零、极点分布图

定义7.1.1 零、极点分布图

由系统函数定义可知 LTI 系统是复变量 s 或 z 的有理分式,即

$$H(\cdot) = \frac{B(\cdot)}{A(\cdot)} \tag{7.1.1}$$

其中 $A(\cdot) = 0$ 的根 p_1, p_2, \ldots, p_n 称为系统函数的极点。

 $B(\cdot)$ 的根 $\xi_1, \xi_2, \dots, \xi_m$ 称为系统函数的零点。

用 × 表示极点, o 表示零点画在复平面上即可得零、极点分布图。

Example.

$$H(s) = \frac{2(s+2)}{(s+1)^2(s^2+1)}$$
(7.1.2)

$$\begin{array}{c|c} & & j\omega \\ & & \\ & & \\ \hline & & \\$$

图 7.1 零、极点分布图

7.1.2 系统函数 $H(\cdot)$ 与系统的因果性

定义7.1.2 系统的因果性

因果系统是指系统的零状态响应 $y_{zs}(\cdot)$ 不会出现于 $f(\cdot)$ 之前的系统。

连续因果系统的充分必要条件是冲激响应满足

$$h(t) = 0 \quad t < 0 \tag{7.1.3}$$

或者系统函数 H(s) 的收敛域为 $\operatorname{Re}[s] > \sigma_0$

离散因果系统的充分必要条件是单位响应满足

$$h(k) = 0 \quad k < 0 \tag{7.1.4}$$

或者系统函数 H(z) 的收敛域为 $|z| > \rho_0$

7.1.3 系统函数 $H(\cdot)$ 与时域响应 $h(\cdot)$

H(s) 的极点在 s 平面上的位置可分为极点在左半开平面、虚轴和右半开平面三类。

性质7.1.1

极点在左半开平面的连续因果系统的时域响应

极点在左半开平面时,若系统函数有负实单极点 $p = -\alpha(\alpha > 0)$,则 A(s) 中有因子 $(s+\alpha)$,其所对应的响应函数为

$$h_1(t) = Ke^{-\alpha t}\varepsilon(t) \tag{7.1.5}$$

若有一对共轭复极点 $p_{12} = -\alpha \pm \mathrm{i}\beta$,则 A(s) 中有因子 $[(s+\alpha)^2 + \beta^2]$,其所对应的响应 函数为

$$h_2(t) = Ke^{-\alpha t}\cos(\beta t + \theta)\varepsilon(t) \tag{7.1.6}$$

若有 r 重极点,则 A(s) 中有因子 $(s+\alpha)^r$ 或 $[(s+\alpha)^2+\beta^2]^r$,其所对应的响应函数为

$$h_3(t) = K_i t_i e^{-\alpha t} \varepsilon(t) \quad (i = 0, 1, 2, \dots, r - 1)$$
 (7.1.7)

或

$$h_3(t) = K_i t^i e^{-\alpha t} \cos(\beta t + \theta) \varepsilon(t) \quad (i = 0, 1, 2, \dots, r - 1)$$
 (7.1.8)

以上三种情况在 $t \to \infty$ 时,响应均趋于 0,为暂态分量,该系统稳定。

信号与线性系统分析 -77-

性质7.1.2

极点在虚轴上的连续因果系统的时域响应

极点在虚轴上时,若系统函数有负实单极点 p=0 或 $p_{12}=\pm j\beta$,则响应函数为

$$h_1(t) = K\varepsilon(t) \tag{7.1.9}$$

或

$$h_2(t) = K\cos(\beta t + \theta)\varepsilon(t) \tag{7.1.10}$$

此时响应为稳态分量,对应系统稳定。

若系统函数有 r 重极点, 相应 A(s) 中有 s^r 或 $(s^2 + \beta^2)^r$, 其响应函数为

$$h_2(t) = K_i t^i \varepsilon(t) \quad (i = 0, 1, 2, \dots, r - 1)$$
 (7.1.11)

或

$$h_3(t) = K_i t^i \cos(\beta t + \theta) \varepsilon(t) \quad (i = 0, 1, 2, \dots, r - 1)$$
 (7.1.12)

此时响应为递增函数,对应系统不稳定。

性质7.1.3

极点在右半开平面的连续因果系统的时域响应

极点在右半开平面时, 其对应的响应函数都是递增的, 系统不稳定。

由以上性质可知, LTI 连续因果系统的 h(t) 函数形式由 H(t) 的极点确定。

7.1.4 系统函数与频率响应

定义7.1.3 全通函数

若系统的幅频响应 $|H(j\omega)|$ 为常数,则称为全通系统,其相应的 H(s) 称为全通函数。 凡极点位于左半开平面,零点位于右半开平面,并且所有零点与极点相对于虚轴一一镜像 对称的系统函数 H(s) 即为全通函数。

定义7.1.4 最小相移函数

对于有相同幅频特性的系统函数而言,右半开平面没有零点的系统函数称为最小相移函数。

第七章 系统函数 7.2 系统的稳定性

7.2 系统的稳定性

7.2.1 稳定系统的的定义

定义7.2.1 系统的稳定性

一个系统若对任意的有界输入,其零状态响应也是有界的,则称该系统为有界输入有界输出(BIBO*)稳定的系统,简称为稳定系统。

即若系统对所有激励 $|f(\cdot)| \leq M_f$,其零状态响应 $|y_{zs}(\cdot)| \leq M_y$ (M 为有限常数),则称系统稳定。

*Bound Input Bound Output

定理7.2.1

7.2.2 连续稳定系统的充分必要条件

连续稳定系统的充分必要条件中, 时域条件为

$$\int_{-\infty}^{\infty} |h(t)| dt \le M \tag{7.2.1}$$

连续稳定系统的充分必要条件

s 域条件为若 H(s) 的收敛域包含虚轴,则该系统必是稳定系统。

对于因果系统, 若 H(s) 的极点均在左半开平面,则该系统必是稳定系统。

7.3 信号流图

7.3.1 信号流图

定义7.3.1 信号流图

信号流图是由结点和有向线段组成的几何图形。可以简化系统的表示并便于计算系统函数。

第七章 系统函数 7.3 信号流图

定义7.3.2 信号流图的常用术语

结点表示系统中的变量或信号的点。

连接两个结点之间的有向线段称为支路,支路上的权值又称支路增益,是两结点间的系统函数(转移函数)。

源点是只有出支路的结点,又称输入结点;汇点是只有入支路的结点,又称输出结点;有入有出的结点称为混合结点。

沿箭头方向从一个结点到其他结点的路径(多个支路)称为路径。

如果通路与任一结点相遇不多于一次,则称为开通路;闭合的路径称为闭通路,又称回路或环;相互没有公共结点的回路,称为不接触回路;只有一个结点和一条支路的回路称为自回路。

前向通路是从源点到汇点的开通路。

前向通路增益和回路增益是通路中各支路增益的乘积。

性质7.3.1 信号流图的基本性质

信号只能沿支路箭头方向传输,且支路的输出 = 该支路的输入与支路增益的乘积。

当结点有多个输入时,该结点将所有的输入支路的信号相加,并将和信号传输给所有与该结点相连的输出支路。

混合结点可通过增加一个增益为1的出支路而变为汇点。

系统框图与信号流图的转换如下

图 7.2 系统框图与流图的转换

注意加法器前引入了增益为1的支路。

第七章 系统函数 7.3 信号流图

性质7.3.2 信号流图的简化

$$X_1 \circ \begin{array}{c|c} H_1 & H_2 \\ \hline & X_3 \end{array} \circ X_2 \longrightarrow X_1 \circ \begin{array}{c|c} H_1H_2 \\ \hline & X_2 \end{array}$$

图 7.3 支路串联

支路串联

$$X_2 = H_2 X_3 = H_1 H_2 X_1 \tag{7.3.1}$$

$$X_1 \stackrel{\text{H}_1}{\longleftarrow} X_2$$
 $X_2 \stackrel{\text{H}_1+\text{H}_2}{\longleftarrow} X_2$

图 7.4 支路并联

支路并联

$$X_2 = H_1 X_1 + H_2 X_1 = (H_1 + H_2) X_1 (7.3.2)$$

(a) 多入支路单出支路混联

(b) 多出支路单入支路混联

图 7.5 混联

多入支路单出支路混联

$$H_4 = H_3 X_3 = H_3 (H_1 X_1 + H_2 X_2) = H_1 H_3 X_1 + H_2 H_3 X_2$$
 (7.3.3)

多出支路单入支路混联

$$X_3 = H_2 X_2 = H_1 H_2 X_1 \tag{7.3.4}$$

$$X_4 = H_3 X_2 = H_1 H_3 X_1 \tag{7.3.5}$$

$$\begin{array}{c} H_{1} \\ X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} H_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{4} \\ X_{4} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} H_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{4} \\ X_{4} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} H_{2} \\ 1 - H_{3} \\ \end{array} \begin{array}{c} X_{4} \\ X_{5} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ \end{array} \begin{array}{c} X_{1} \\ X_{3} \\ \end{array} \begin{array}{c} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{2} \\ X_{3} \\ X_{3} \\ X_{4} \\ X_{4} \\ X_{4} \\ X_{5} \\ X_$$

图 7.6 自环的消除

自环的消除

$$H_3 = H_1 X_1 + H_2 X_2 + H_3 X_3 = \frac{H_1}{1 - H_3} X_1 + \frac{H_2}{1 - H_3} X_2$$
 (7.3.6)

第七章 系统函数 7.3 信号流图

信号流图的化简过程不一定相同、但结果一定相同。

7.3.2 梅森公式

公式7.3.3 梅森公式

系统函数 $H(\cdot)$ 记为 H, 梅森公式为

$$H = \frac{1}{\Delta} \sum_{i} p_i \Delta_i \tag{7.3.7}$$

其中 Δ 称为特征行列式, 其表达式

$$\Delta = 1 - \sum_{j} L_{j} + \sum_{m,n} L_{m} L_{n} - \sum_{p,q,r} L_{p} L_{q} L_{r} + \dots$$
 (7.3.8)

其中 $\sum_{j} L_{j}$ 为不同回路增益之和。

 $\sum_{m,n} L_m L_n$ 为两两不接触*的回路的乘积增益之和。

 $\sum_{p,q,r} L_p L_q L_r$ 为三三不接触的回路的乘积增益之和。

 p_i 是第 i 条前向通路的增益, Δ_i 是与第 i 条前向通路不接触的子图的特征行列式,又叫前向通路的余因子。

*即在所有回路里两回路没有公共结点

使用梅森公式根据信号流图求解系统函数步骤:

- 列出所有回路的增益,符号 L_i
- 求特征行列式
- 列出所有前向通路的增益, 符号 p_i
- 求各前向通路的余因子 Δ_i

信号与线性系统分析 -82-

第七章 系统函数 7.4 系统的结构

7.4 系统的结构

7.4.1 直接实现

性质7.4.1

通过梅森公式直接实现构造信号流图

将系统函数化为以下形式

$$H(s) = \frac{b_m s^{-(n-m)} + b_{m-1} s^{-(n-m+1)} + \dots + b_0 s^{-n}}{1 - (-a_{n-1} s^{-1} - a_{n-2} s^{-2} - \dots - a_0 s^{-n})}$$
(7.4.1)

其中分子每项为一条前向通路,分母除1外每项为一条回路。构造可得

图 7.7 梅森公式直接构造

7.4.2 级联实现

性质7.4.2

级联实现构造信号流图

将 H 分解为若干一阶或二阶的系统函数的乘积,即

$$H = H_1 H_2 \dots H_n \tag{7.4.2}$$

将分解后的系统级联即可。

其中一阶系统函数形式为

$$H_i(s) = \frac{s + b_0}{s + a_0} \tag{7.4.3}$$

其中二阶系统函数形式为

$$H_i(s) = \frac{s^2 + b_{1i}s + b_{0i}}{s^2 + a_{1i}s + a_{0i}}$$
(7.4.4)

第七章 系统函数 7.4 系统的结构

7.4.3 并联实现

性质7.4.3 并联实现构造信号流图

将 H 展开为部分分式,将每个分式分别作为支路增益,再将各支路并联。

即将 H 化为以下形式再构造

$$H(s) = \frac{b_0}{s} + \frac{b_1}{s + a_1} + \frac{b_2}{s + a_2} + \dots + \frac{b_n}{s + a_n}$$
 (7.4.5)

信号与线性系统分析 —84—

第八章 系统的状态变量分析

参考文献

- [1] 吴大正, 杨林耀, 张永瑞, 王松林, 郭宝龙. 信号与线性系统分析 [M]. 5 版. 北京: 高等教育 出版社, 2019.
- [2] MR_Promethus. 信号流图、梅森公式、系统结构 [OL]. (2020-07-04)[2024-06-06]. https://blog.csdn.net/qq_44431690/article/details/107121049