SC223 - Linear Algebra

Aditya Tatu

Lecture 17

September 12, 2023

Vector Spaces

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V.$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x.$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
 - $\forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot : \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that $1 \cdot v = v, \forall v \in V$.
- ▶ **Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v$, and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u$.
- ► Compatibility of field and scalar multiplication:

 $\forall a, b \in \mathbb{F}, \forall u \in V, (a \times b) \cdot u = a \cdot (b \cdot u).$

Properties of Vector Spaces

- **Proposition 1:** Every vector space has a unique additive identity.
- Proposition 2: Every vector in a vector space has a unique additive

_inverse.

- Proposition 3: $\forall v \in V, 0 \cdot v = \theta$
- **Proposition 4:** $\forall a \in \mathbb{F}, a \cdot \theta = \theta$.
- Proposition 5: $\forall v \in V, (-1) \cdot v = -v$.

Since W+D, JUEW. Since W is dosed worst. D-UEW >PEW

Definition: (Subspace) Let $(V, +, \cdot)$ be a vector space over \mathbb{F} . A subset $W \subseteq V$ is said to be a **subspace** of V if $(W, +, \cdot)$ is a Vector space over \mathbb{F} .

- **Definition:** (Subspace) Let $(V, +, \cdot)$ be a vector space over \mathbb{F} . A subset $W \subseteq V$ is said to be a **subspace** of V if $(W, +, \cdot)$ is a Vector space over \mathbb{F} .
- ullet Note on notation: Capitals(U) for subspaces, small letters(u) for vectors(elements).

- **Definition:** (Subspace) Let $(V, +, \cdot)$ be a vector space over \mathbb{F} . A subset $W \subseteq V$ is said to be a **subspace** of V if $(W, +, \cdot)$ is a Vector space over \mathbb{F} .
- ullet Note on notation: Capitals(U) for subspaces, small letters(u) for vectors(elements).
- Examples:

- **Definition:** (Subspace) Let $(V, +, \cdot)$ be a vector space over \mathbb{F} . A subset $W \subseteq V$ is said to be a **subspace** of V if $(W, +, \cdot)$ is a Vector space over \mathbb{F} .
- ullet Note on notation: Capitals(U) for subspaces, small letters(u) for vectors(elements).
- Examples:
- ▶ For any vector space V, V and $\{\theta\}$ are always subspaces. These are called **trivial subspaces**.

- **Definition:** (Subspace) Let $(V, +, \cdot)$ be a vector space over \mathbb{F} . A subset $W \subseteq V$ is said to be a **subspace** of V if $(W, +, \cdot)$ is a Vector space over \mathbb{F} .
- ullet Note on notation: Capitals(U) for subspaces, small letters(u) for vectors(elements).
- Examples:
- ▶ For any vector space V, V and $\{\theta\}$ are always subspaces. These are called **trivial subspaces**.
- ► $V = \mathbb{R}^2$, $W = \{(x, y) \in V \mid ax + by = c\}$.

- **Definition:** (Subspace) Let $(V, +, \cdot)$ be a vector space over \mathbb{F} . A subset $W \subseteq V$ is said to be a **subspace** of V if $(W, +, \cdot)$ is a Vector space over \mathbb{F} .
- lacktriangle Note on notation: Capitals(U) for subspaces, small letters(u) for vectors(elements).
- Examples:
- ▶ For any vector space V, V and $\{\theta\}$ are always subspaces. These are called **trivial subspaces**.
- $V = \mathbb{R}^2$, $W = \{(x, y) \in V \mid ax + by = c\}$. W is a subspace iff c = 0.

- **Definition:** (Subspace) Let $(V, +, \cdot)$ be a vector space over \mathbb{F} . A subset $W \subseteq V$ is said to be a **subspace** of V if $(W, +, \cdot)$ is a Vector space over \mathbb{F} .
- ullet Note on notation: Capitals(U) for subspaces, small letters(u) for vectors(elements).
- Examples:
- ▶ For any vector space V, V and $\{\theta\}$ are always subspaces. These are called **trivial subspaces**.
- $V = \mathbb{R}^2$, $W = \{(x, y) \in V \mid ax + by = c\}$. W is a subspace iff c = 0.
- ▶ $V = \mathcal{P}(\mathbb{R}), W = \mathcal{P}_n(\mathbb{R})$, where $\mathcal{P}_n(\mathbb{R})$ denotes the set of all polynomials of one variable with real coefficients with degree at most n.

- **Definition:** (Subspace) Let $(V, +, \cdot)$ be a vector space over \mathbb{F} . A subset $W \subseteq V$ is said to be a **subspace** of V if $(W, +, \cdot)$ is a Vector space over \mathbb{F} .
- ullet Note on notation: Capitals(U) for subspaces, small letters(u) for vectors(elements).
- Examples:
- ▶ For any vector space V, V and $\{\theta\}$ are always subspaces. These are called **trivial subspaces**.
- $V = \mathbb{R}^2$, $W = \{(x, y) \in V \mid ax + by = c\}$. W is a subspace iff c = 0.
- ▶ $V = \mathcal{P}(\mathbb{R}), W = \mathcal{P}_n(\mathbb{R})$, where $\mathcal{P}_n(\mathbb{R})$ denotes the set of all polynomials of one variable with real coefficients with degree at most n.
- $\blacktriangleright V = \mathcal{L}^2(\mathbb{R}), W = \{ f \in V \mid \int_{-\infty}^{\infty} f(t) \ dt = 0 \}.$

 $lackbox{ Proposition 6:}$ A non-empty subset W of a vector space V is a subspace if and only if

- ullet Proposition 6: A non-empty subset W of a vector space V is a subspace if and only if
- ▶ *W* is closed with respect to vector addition, and

- ullet **Proposition 6:** A non-empty subset W of a vector space V is a subspace if and only if
- ► W is closed with respect to vector addition, and
- ightharpoonup W is closed with respect to scalar multiplication.

- ullet **Proposition 6:** A non-empty subset W of a vector space V is a subspace if and only if
- ▶ W is closed with respect to vector addition, and
- ▶ *W* is closed with respect to scalar multiplication.
- Familiar examples of Subspaces: Let $A \in \mathbb{R}^{m \times n}$.

- ullet Proposition 6: A non-empty subset W of a vector space V is a subspace if and only if
- ▶ W is closed with respect to vector addition, and
- ightharpoonup W is closed with respect to scalar multiplication.
- Familiar examples of Subspaces: Let $A \in \mathbb{R}^{m \times n}$. Then, C(A), $N(A^T)$ and N(A), $C(A^T)$ are subspaces of \mathbb{R}^m and \mathbb{R}^n respectively.

Four fundamental Subspaces of A.

- ullet Let U, W be subspaces of V.
- Is $U \cup W$ a subspace of V?

- ullet Let U, W be subspaces of V.
- Is $U \cup W$ a subspace of V? No.
- Is $U \cap W$ a subspace of V?

- ullet Let U, W be subspaces of V.
- Is $U \cup W$ a subspace of V? No.
- Is $U \cap W$ a subspace of V? Yes.

- ullet Let U, W be subspaces of V.
- Is $U \cup W$ a subspace of V? No.
- Is $U \cap W$ a subspace of V? Yes.
- **Definition:** (Sum of subspaces): Let U_1, \ldots, U_n be subspaces of V.

The sum of subspaces U_1, \ldots, U_n is defined as:

$$U_1 + \ldots + U_n =: \{u_1 + u_2 + \ldots + u_n \mid u_i \in U_i, i = 1, \ldots, n\}$$

- ullet Let U, W be subspaces of V.
- Is $U \cup W$ a subspace of V? No.
- Is $U \cap W$ a subspace of V? Yes.
- **Definition:** (Sum of subspaces): Let U_1, \ldots, U_n be subspaces of V. The **sum of subspaces** U_1, \ldots, U_n is defined as:

$$U_1 + \ldots + U_n =: \{u_1 + u_2 + \ldots + u_n \mid u_i \in U_i, i = 1, \ldots, n\}$$

• **Proposition 7:** The sum of subspaces U_1, \ldots, U_n of V is a subspace.

• If $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$, we say that (u_1, \ldots, u_n) is a decomposition of v.

- If $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$, we say that (u_1, \ldots, u_n) is a decomposition of v.
- Is this decomposition unique?

- If $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$, we say that (u_1, \ldots, u_n) is a decomposition of v.
- Is this decomposition unique?
- **Definition:** (Direct Sum of Subspaces) In a VS V with subspaces U_1, \ldots, U_n , $W = U_1 + \ldots + U_n$ is said to be a **Direct Sum** if $\forall w \in W$, w is **uniquely** expressed as a sum of elements $w_i \in U_i, i = 1, \ldots, n$.

- If $v = u_1 + \ldots + u_n, u_i \in U_i, i = 1, \ldots n$, we say that (u_1, \ldots, u_n) is a decomposition of v.
- Is this decomposition unique?
- **Definition:** (Direct Sum of Subspaces) In a VS V with subspaces U_1, \ldots, U_n , $W = U_1 + \ldots + U_n$ is said to be a **Direct Sum** if $\forall w \in W$, w is **uniquely** expressed as a sum of elements $w_i \in U_i, i = 1, \ldots, n$.
- Direct sum notation: $W = U_1 \oplus U_2 \oplus \ldots \oplus U_n$.

Proposition 8: Let U_1, \ldots, U_n be subspaces of V. Then $V = U_1 \oplus \ldots \oplus U_n$ if and only if: (1) $V = U_1 + \ldots + U_n$, and (2) The only representation of $\theta \in V$ is (θ, \ldots, θ) .

• **Proposition 9:** Let V be a VS with subspaces U_1, U_2 . Then $V = U_1 \oplus U_2$ iff $V = U_1 + U_2$ and $U_1 \cap U_2 = \{\theta\}$.