Les lois discrètes usuelles

Les exercices à regarder sont mentionnés par une *.

Exercice 1 : "La propriété d'absence de mémoire"

1. Montrer que si X est une VAR suivant une loi géométrique alors X vérifie la propriété d'absence de mémoire :

$$\forall k \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ P_{X>n}(X>n+k) = P(X>n+k|X>n) = P(X>k)$$

- 2. Interpréter ce résultat en considérant une suite d'épreuves répétées.
- (*)Exercice 2 : On effectue des lancers consécutifs de 3 dés équilibrés : D_1 , D_2 et D_3 de manière à obtenir trois 6. Après le premier lancer, on ne relance les dés que dans le cas où nous n'avons pas obtenu trois 6 et ainsi de suite.
 - 1. On note X_i la variable aléatoire égale au rang d'apparition du premier 6 pour le dé D_i . Reconnaître la loi de X_i .
 - 2. Soit X la variable aléatoire égale au nombre de lancers nécessaires à la réalisation des trois 6:
 - (a) Calculer les fonctions de répartition F_{X_i} .
 - (b) En déduire la fonction de répartition de X.
 - (c) Déterminer la loi de probabilité de X.
 - (d) Calculer si elle existe l'espérance de X.
- (*)Exercice 3 : Soit $X \hookrightarrow \mathcal{G}(\frac{2}{3})$. Donner sa fonction de répartition.
- (*)Exercice 4 : Soit X une variable suivant une loi de Poisson de paramètre $\lambda > 0$. Calculer $E[\frac{1}{1+X}]$.

Exercice 5: Soit X une variable suivant une loi binomiale $\mathcal{B}(n,p)$.

- 1. Calculer $E\left[\frac{1}{1+X}\right]$.
- 2. Si a > 0 et $p = \frac{1}{2}$, calculer $E\left[\frac{a^X}{2n}\right]$.

Exercice 6 : Soient $n \in \mathbb{N}^*$ et X une variable aléatoire suivant une loi binomiale $\mathcal{B}(n, \frac{1}{2})$. Quelle est la probabilité que X soit multiple de 3?

- (*)Exercice 7: Soient $n \in \mathbb{N}^*$, $p \in]0,1[$ et une variable aléatoire X suivant une la loi binomiale $\mathcal{B}(n,p)$. On définit Y la variable aléatoire :
 - Si $X = k \in \mathbb{N}^*$ alors Y = k.
 - Si X=0 alors Y prend une valeur quelconque dans [1, n].

Déterminer la loi de Y et calculer son espérance.

Exercice 8 : Soit X une variable aléatoire discrète suivant une loi de Poisson de paramètre $\lambda > 0$.

- 1. Donner une majoration de $P(X \ge n)$ pour $n > \lambda 1$.
- 2. En déduire qu'au voisinage de l'infini $P(X \ge n) \underset{n \to +\infty}{\sim} P(X = n)$.

(*)Exercice 9:

- 1. Soit $\lambda \in \mathbb{R}$, montrer que $\frac{e^{\lambda} + e^{-\lambda}}{2} = \sum_{n=0}^{+\infty} \frac{\lambda^{2k}}{(2k)!}$.
- 2. Soient X une variable aléatoire suivant un loi de Poisson de paramètre λ et Y la variable aléatoire égale à 0 si X est pair et 1 sinon. Déterminer la loi et l'espérance de Y.

Exercice 10: Le nombre N de clients entrant dans un magasin est supposé suivre une loi de Poisson de paramètre λ : $N \hookrightarrow \mathcal{P}(\lambda)$. Albert et Barnabé distribuent des prospectus aux clients à raison de 1 prospectus par client. Albert parie qu'à la fin de la journée ils auront distribué un nombre pair de prospectus, alors que Barnabé soutient le contraire. Qui a le plus grande chance de gagner le pari ?

Exercice 11 : On étudie la vente de téléviseurs dans un grand magasin. On suppose que le nombre de téléviseurs vendus en une semaine définit une VAD X qui suit une loi de poisson de moyenne 12. La probabilité pour qu'un client qui achète un téléviseur choisisse la marque S est 1/4.

- 1. Déterminer la probabilité que l'on achète moins de 9 ou plus de 15 téléviseurs. Un des vendeurs a enregistré 8 ventes cette semaine. Quelle est la probabilité que ses collègues réunis en aient vendu autaunt ou moins?
- 2. Soit Y le nombre de téléviseurs de marque S vendus cette semaine. Quelle est la loi de Y conditionnée par l'événement X=k. i.e. Calculer $P_{X=k}(Y=l)$ pour tout $l \in \mathbb{N}^*$. Calculer la probabilité de l'événement Y=3 sachant que X=12 et de l'événement Y>1 sachant que X=10?
- 3. Calculer P(Y = k) et reconnaître la loi suivie par Y. Quelle est son espérance?

Exercice 12 : Soient les deux variables aléatoires $X \hookrightarrow \mathcal{B}(n, \frac{1}{2})$ et $Y \hookrightarrow \mathcal{G}(\frac{2}{3})$. Pour chacune de ces deux VAD, y a-t-il plus de chances d'obtenir un résultat pair ou un résultat impair?