Caso di studio di Metodi Avanzati di Programmazione

AA 2019-2020

Corso A

Data Mining

Lo scopo del data mining è l'estrazione (semi) automatica di *conoscenza* nascosta in voluminose basi di dati al fine di renderla disponibile e direttamente utilizzabile

Aree di Applicazione

1. previsione

utilizzo di valori noti per la previsione di quantità non note (es. stima del fatturato di un punto vendita sulla base delle sue caratteristiche)

2. classificazione

individuazione delle caratteristiche che indicano a quale gruppo un certo caso appartiene (es. discriminazione tra comportamenti ordinari e fraudolenti)

3. Regressione

Predizione del valore di un attributo numerico associato a un esempio sulla base di valori osservati per altri attributi dell'esempio medesimo

3. segmentazione

individuazione di gruppi con elementi omogenei all'interno del gruppo e diversi da gruppo a gruppo (es. individuazione di gruppi di consumatori con comportamenti simili)

4. associazione

individuazione di elementi che compaiono spesso assieme in un determinato evento (es. prodotti che frequentemente entrano nello stesso carrello della spesa)

5. sequenze

individuazione di una cronologia di associazioni (es. percorsi di visita di un sito web)

. . .

Regressione

Considerando dati storici relativi a passati clienti e pagamenti, predire l'ammontare del debito del cliente con la banca

Dati di un nuovo cliente: Paolo Rossi, 35,37.000, architetto, Bari, ?

Regressione

- Apprendimento induttivo da esempi per imparare la definizione di una funzione di regressione
- Gli esempi usati per l'apprendimento sono descritti come vettori di coppie attributo-valore per i quali è nota l'attributo classe (target)
- Nella regressione l'attributo target è numerico

Regressione: Alberi di Regressione

Le funzioni di regressione sono apprese in forma di albero dove:

- ogni nodo interno rappresenta una variabile,
- un arco verso un nodo figlio rappresenta un possibile valore per quella proprietà, e
- una foglia il valore predetto per la classe a partire dai valori delle altre proprietà, che nell'albero è rappresentato del cammino (*path*) dalla nodo radice (*root*) al nodo foglia.

Un albero di regressione viene costruito utilizzando tecniche di apprendimento a partire dall'insieme dei dati iniziali (*training set*) per i quali è nota la classe

Induzione di Alberi di decisione Input

Input: una collezione di esempi di apprendimento (training set), ciascun esempio è una tupla di valori per un prefissato insieme di attributi (variabili indipendenti)

$$A = \{A_1, A_2, ..., A_m\}$$

e un attributo di classe numerico (variabile dipendente/target). L'attributo A_i è descritto come continuo o discreto a seconda che i sui valori siano numerici o nominali.

L'attributo di classe C è numerico e ha valori nell'insieme dei numeri reali

Induzione di Alberi di Regressione

Input

X1	X2	Y
A	A	1
A	A	1
A	A	1
A	A	1
A	В	1,5
A	В	1,5
A	В	1,5
В	В	10
A	В	1,5
A	В	1,5
В	C	10
В	В	10
В	C	10
В	C	10
A	A	1

Induzione di Alberi di Regressione

Alberi di Regressione: congiunzione di condizioni

Alberi di Regressione: disgiunzione di condizioni

Alberi di Regressione: regole di regressione

Tipo di test

Ciascun nodo interno è associato ad un test che coinvolge un attributo A_i.

Se A_i è discreto:

• un test con z alternative, una per ciascun valore assunto da A_i

Tipo di test

Ciascun nodo interno è associato ad un test che coinvolge un attributo A_i.

Se Ai è continuo:

• un test con 2 alternative sulla base di una soglia θ : Ai $\leq \theta$ vs. Ai $> \theta$.

Selezionare i test

Domanda: Come determinare quale attributo permette di costruire la migliore funzione de regressione?

Risposta: Varianza!!!

Sia:

- S la porzione di esempi di training correntemente analizzati
- Y la variabile di classe

La varianza di Y in S è calcolata come:

$$var(S) = \sum_{i \in S} (Y(i) - \bar{Y})^2 = \sum_{i \in S} Y(i)^2 - \frac{(\sum_{i \in S} Y(i))^2}{size(S)}$$

Selezionare i test

var(S) è una misura della variabilità contenuta in S.

 Assume 0 se solo tutti gli eventi sono associati allo stesso valore di Y

Selezionare i test

• Sia S_1 , ..., S_t il partizionamento di S per il test t sull'attributo $A_{i,:}$

$$\operatorname{var}(S,t) = \sum_{i} \operatorname{var}(S_{i})$$

Il criterio basato sulla varianza sceglie il test t che minimizza var(S,t)

Selezionare i test

Esempio

X2	Y
A	1
A	1
A	1
A	1
В	1,5
В	1,5
В	1,5
В	10
В	1,5
В	1,5
C	10
В	10
C	10
C	10
A	1
	A A A B B B B C B C C C

Alberi di decisione

Selezionare i test

15 esempi di apprendimento

Varianza per X1

Il test su X1 partiziona S come segue:

$$var(S,X1)=var(S, X1=A)+var(S, X1=B)=0.625+0=0.625$$

Alberi di decisione

Selezionare i test

15 esempi di apprendimento

Varianza per X2

Il test su X2 partiziona S come segue:

$$var(S,X2)=var(S, X2=A)+var(S, X2=B)+var(S, X3=C)=0+103.21+0=103.21$$

Selezionare i test

Definire le soglie per test continui

- Come identificare le possibili soglie θ per l'attributo continuo A?
 - 1. ordinare gli esempi sulla base dei valori dell'attributo A (quicksort)
 - 2. per ciascuna valore distinto risultante dall'ordinamento considerare una possibile soglia per un test A<= soglia vs A>soglia.

Definire le soglie per test continui

Esempio

```
1 \rightarrow \text{var}(S,X2 \le 1,X2 \ge 1) = 232.69
2 \rightarrow \text{var}(S,X2 \le 2,X2 \ge 2) = 180.625
2
2
   \rightarrow var(S,X2<=5,X2>5)=192.85
5
5
   \rightarrow var(S,X2<=6,X2>6)=128.22
6
6
6
10 \rightarrow \text{var}(S,X2 \le 10,X2 > 10) = 177.30
12 \rightarrow \text{var}(S,X2 \le 12,X2 > 12) = 219.375
14
```

X1	X2	Y
A	2	1
A	2	1
A	1	1
A	2	1
A	5	1,5
A	5	1,5
A	6	1,5
В	6	10
A	6	1,5
A	6	1,5
В	10	10
В	5	10
В	12	10
В	14	10
A	1	1

Induzione di Alberi di Regressione

Algoritmo

```
learnTree(Table S, int begin, int end) {
  if( isLeaf(S begin, end)
       root=new LeafNode(S, begin, end);
  else //split node
       root=determineBestSplitNode(S, begin, end);
       childTree=new DecisionTree[root.getNumberOfChildren()];
       for(int i=0;i<root.getNumberOfChildren();i++) {</pre>
               childTree[i] = new RegressionTree();
               childTree[i].learnTree(trainingSet, root.begin, root.end);
```

Caso di studio

- Progettare e realizzare un sistema client-server denomianto "Regression Tree Miner".
- Il server include funzionalità di data mining per l'apprendimento di alberi di regressione e uso degli stessi come strumento di previsione.
- Il client è un applet Java che consente di effettuare previsioni usufruendo del servizio di predizione remoto

Istruzioni

- Non si riterrà sufficiente un progetto non sviluppato in tutte le su parti (client-server, accesso al db, serializzazione,...
- Le estensioni aggiungono funzionalità, non le rimuovono