G6 tel que $L(G6)=\{a^nb^nc^n \mid n > 0\}$

Type 1 G6 = $({a, b, c}, {A,B,C}, P_1, A),$	Type 1
$P_1:A \rightarrow aABC / aBC$	$A \rightarrow aABc / aBc$
cB →Bc	$cB \rightarrow Bc$
$aB \rightarrow ab$	$aB \rightarrow ab$
$bC \rightarrow bc$	$bB \rightarrow bb$
$bB \rightarrow bb$	
$cC \rightarrow cc$	

G6.2 tel que L(G6.2)= $\{a^mb^na^m: m \ge n \ge 0\}$

Type 1 $\{a^mb^nc^m: m \ge n \ge 0\}$	Type 0 $\{a^mb^na^m: m \ge n \ge 0\}$	
$S \rightarrow aSBc / aSc / \epsilon$ $cB \rightarrow Bc$	$S'' \rightarrow S / S'$ $S' \rightarrow aaS' / \varepsilon$	$S'' \rightarrow S / S'$ $S' \rightarrow aaS' / \varepsilon$
$aB \rightarrow ab$	$S \rightarrow aSBa / aba$	$S \rightarrow aSBa / aSa /aba$
$bB \rightarrow bb$	$B \rightarrow \varepsilon$ $aB \rightarrow Ba$	aB →Ba bB → bb
	$bB \rightarrow bb$	

G7 tel que L(G7) = { $0^{i}1^{j}2^{k}$, i, j, $k \ge 0$ et k= max(i,j) }

Type 0	Type 0
$A \rightarrow 0AB2 / D / E / \varepsilon$	$L' = \{ 0^{i}1^{j}2^{j} / i \le j \} \text{ ou }$
$D \rightarrow 1D2 / \epsilon$	$L'' = \{ 0^{i}1^{j}2^{i} / i \ge j \}$
$E \rightarrow 0E2 / \epsilon$	$S \rightarrow A/C$
2B →B2	$A \rightarrow 0AB2 / 1A2 / \epsilon$
$0B \rightarrow 01$	$C \rightarrow 0CB2 / 0C2 / \varepsilon$
$1B \rightarrow 11$	$2B \rightarrow B2$
	$0B \rightarrow 01$

G8 tel que L(G8) = $\{w \in \{a, b, c\}^* / |w|_a \equiv 1[2] \text{ et } |w|_b \equiv 1[2]\}$

	a pair b pair (A)	a impair b pair (B)	a pair b impair(C)	a impair b impair(D)
A		a	b	
В	a			b
С	b			a
D	a	b		

Type 2	Type 2 sans ε
$A \rightarrow aB / bC / cA$	$A \rightarrow aB / bC / cA$
$B \rightarrow aA / bD / cB$	$B \rightarrow aA / bD / cB / b$
$C \rightarrow bA / aD / cC$	$C \rightarrow bA / aD / cC / a$
$D \rightarrow aA / bB / cD / \epsilon$	$D \rightarrow aA / bB / cD / c$

Le complément de L= $\{a^n b^n / n \ge 0\}$

 $\begin{array}{lll} \overline{L} {=} \{a^n \ b^n w \ avec \ w {\neq} \epsilon \ \} \ {\cup} \quad \{a^n \ b^m \ avec \ n {\neq} m\} \ {\cup} \quad \{bw \ , w {\in} X^* \ \} \\ \overline{L} {=} \quad L_1 \qquad {\cup} \qquad L_2 \qquad {\cup} \qquad L_3 \end{array}$

G ₁ : Type 2	G ₂ : Type 2	G ₃ : Type 3			
$A \rightarrow BC$	$D \rightarrow aDb/E/F$	$G \rightarrow bH$			
$B \rightarrow aBb / ab$		$H \rightarrow aH / bH / a / b$			
$C \rightarrow aC / bC / a / b$	$F \rightarrow bF / b$				
G_{T}					

 $S \rightarrow A/D/G$

 $A \rightarrow BC$

 $B \rightarrow aBb / ab$

 $C \rightarrow aC / bC / a / b$

 $D \rightarrow aDb/E/F$

 $E \rightarrow aE / a$

 $F \rightarrow bF / b$

 $G \rightarrow bH$

 $H \rightarrow aH / bH / a / b$

EXERCICE 2

les mots binaires divisibles par 2

Type 3		
$S \rightarrow 1A$		
$A \rightarrow 1A/0A/0$		

les mots divisibles par 3

		≡0[3]	A	≡1[3]	В	≡2[3]	С
≡0[3]	A	0		1			
≡1[3]	В	1				0	
≡2[3]	С			0		1	

Type 3	Type 3 sans ε
$S \rightarrow 1B / 0$	$S \rightarrow 1B/0$
$A \rightarrow 0A / 1B / \varepsilon$	$A \rightarrow 0A / 1B / 0$
$B \rightarrow 1A/0C$	$B \rightarrow 1A/0C/1$
$C \rightarrow 0B / 1C$	$C \rightarrow 0B / 1C$

les mots binaires divisibles par 6

Type 3	
$S \rightarrow 1B/0$	
$A \rightarrow 0A / 1B / 0$	
$B \rightarrow 1A/0C$	
$C \rightarrow 0B / 1C$	

les mots binaires non divisibles par 20

L= non divisibles par 4 ou non divisibles par 5

 $L = L_1 \qquad \cup \qquad L_2$

- G_1

- 1									
		≡0[4]	A	≡1[4]	В	≡2[4]	C	≡3[4]	D
≡0[4]	A	0		1					
≡1[4]	В					0		1	
≡2[4]	С	0		1					
≡3[4]	D					0		1	

G_1	G_1 sans ϵ
$S_1 \rightarrow 1B$	$S_1 \rightarrow 1B/1$
$A \rightarrow 0A / 1B$	$A \rightarrow 0A / 1B / 1$
$B \rightarrow 0C / 1D / \varepsilon$	$B \rightarrow 0C / 1D / 0 / 1$
$C \rightarrow 0A / 1B / \varepsilon$	$C \rightarrow 0A / 1B / 1$
$D \rightarrow 0C / 1D / \varepsilon$	$D \rightarrow 0C / 1D / 0 / 1$

- G₂

		≡0[5]	Е	≡1[5]	F	≡2[5]	G	≡3[5]	Н	≡4[5]	Ι
≡0[5]	E	0		1							
≡1[5]	F					0		1			
≡2[5]	G	1								0	
≡3[5]	Н			0		1					
= 4[5]	I							0		1	

G_2	G_2 sans ϵ
$S_2 \rightarrow 1F$	$S_2 \rightarrow 1F / 1$
$E \rightarrow 0E/1F$	$E \rightarrow 0E/1F/1$
$F \rightarrow 0G / 1H / \varepsilon$	$F \rightarrow 0G / 1H / 0 / 1$
$G \rightarrow 0I / 1E / \varepsilon$	$G \rightarrow 0I / 1E / 0$
$H \rightarrow 0F / 1G / \varepsilon$	$H \rightarrow 0F / 1G / 0 / 1$
$I \rightarrow 0H / 1I / \epsilon$	$I \rightarrow 0H / 1I / 0 / 1$

L= non divisibles par 4 ou non divisibles par 5

G_{T}	
$S \rightarrow S_1 / S_2$	
$S_1 \rightarrow 1B/1$	
$A \rightarrow 0A / 1B / 1$	
$B \rightarrow 0C / 1D / 0 / 1$	
$C \rightarrow 0A / 1B / 1$	
$D \rightarrow 0C / 1D / 0 / 1$	
$S_2 \rightarrow 1F/1$	
$E \rightarrow 0E/1F/1$	
$F \rightarrow 0G / 1H / 0 / 1$	
$G \rightarrow 0I / 1E / 0$	
$H \rightarrow 0F / 1G / 0 / 1$	
$I \rightarrow 0H / 1I / 0 / 1$	

 $L = \{|w|_a - 2|w|_b \equiv 1[4] \}$

		≡0[4]	A	≡1[4]	В	≡2[4]	C	≡3[4]	D
≡0[4]	A			a		b			
≡1[4]	В					a		b	
≡2[4]	С	b						a	
≡3[4]	D	a		b					

G	G sans ε
$A \rightarrow aB / bC$	$A \rightarrow aB / bC / a$
$B \rightarrow aC / bD / \epsilon$	$B \rightarrow aC / bD$
$C \rightarrow aD / bA$	$C \rightarrow aD / bA$
$D \rightarrow aA / bB$	$D \rightarrow aA / bB / b$

EXERCICE 4

$$L(G) = \{w / |w|_a = |w|_b \text{ et } w \in \{a, b\}^* \}$$

1. $G_1: S \to aSb / abS / baS / bSa / Sab / Sba / \epsilon$ cette grammaire ne permet pas de generer tous les mots. Contre exemple aabbbbaa $\notin L(G_1)$

G ₂ Type 2	G ₃ Type 2	G ₄ Type 2	G ₅ Type 0
$S \rightarrow aSbS / bSaS / \epsilon$		$S \rightarrow aB / bA$ $A \rightarrow a / aS / bAA$	$S \rightarrow aSA / bSB / \epsilon$ $AB \rightarrow BA$
	407 047 55	$B \rightarrow b/bS/aBB$	$A \rightarrow a$
			$B \rightarrow b$

2. Dych2= $\{w \in \{a, b\}^*/|w|_a=|w|_b \text{ et } \forall w_1 \text{ facteur gauche de } w \text{ alors } |w_1|_a\geq |w_1|_b\}$

 $G_4: S \rightarrow aSbS / \epsilon$

EXERCICE 5

G ₂ Type 2	G3 Type 2	G ₄ Type 1
$S \to ABC$ $A \to aAb / \varepsilon$	$S \rightarrow A/B$ $A \rightarrow aAb / aaaC / a / \varepsilon$	$S \rightarrow aSa / bSb / c$
$B \rightarrow bB / \epsilon$ $C \rightarrow bCc / \epsilon$	$ \begin{vmatrix} C \rightarrow aC/\epsilon \\ B \rightarrow aBb / Bb / \epsilon \end{vmatrix} $	
G ₆ Type 0		
$S' \rightarrow DSF$ $S \rightarrow aAS / bBS / \epsilon$ $Aa \rightarrow aA$ $Ab \rightarrow bA$ $Ba \rightarrow aB$ $Bb \rightarrow bB$	$Da \rightarrow aD$ $Db \rightarrow bD$ $AF \rightarrow Fa$ $BF \rightarrow Fb$ $DF \rightarrow \epsilon$	

G ₇ Type 2	G ₈ Type 2
$S \rightarrow A / B$ $A \rightarrow 0A2 / C$ $C \rightarrow 1C / C2 / \varepsilon$ $B \rightarrow 0B / D$	$X^* S \rightarrow aS / bS / \epsilon$
$D \rightarrow 1D2 / E$ $E \rightarrow 2E / \varepsilon$	
G ₉ Type 0	G ₁₀ Type 0
S'→SF	$S' \rightarrow DSF$
S→aSa/ aDAa	$S \rightarrow aSb/A/B$
A→AbB/bB	$A \rightarrow aAC/\epsilon$
$Ba \rightarrow aB$	$B \rightarrow bBC/\epsilon$
$Bb \rightarrow bB$	$Cb \rightarrow bC$
$Da \rightarrow aD$	$Da \rightarrow aD$
$Db \rightarrow bD$	$Db \rightarrow bD$
$BF \rightarrow Fb$	$CF \rightarrow Fab$
$DF \rightarrow \varepsilon$	$DF \rightarrow \varepsilon$

$$L(G)=\{b^ia^j\ i+j\neq 0\}$$

S |-Sa |-bSa |-bSaa.....

```
L(G)\subseteq L
Montrons par récurrence sur |w| que, si S \rightarrow^n_G w, alors w = b^i a^j avec i+j=n
- pour |w|=1:
 w=a on a a \in L(G) car S \rightarrow a et a \in L
  w=b on a b\inL(G) car S\rightarrowb et b\inL
- |w|=n hypothèse de récurrence est que w=b^ia^j \in L(G) et b^ia^j \in L
   S \vdash^{i} b^{i}S \vdash^{j-1} b^{i}sa^{j-1} \vdash b^{i}a^{j}
démontrons pour w' d'ordre supérieur
-|w'|=n+1 \ \forall \ w \in L(G) \Rightarrow w \in L
  w \in L(G)
  1. S \models^{i} b^{i} S \models^{j-1} b^{i} s a^{j-1} \models b^{i} s a a^{j-1} \models^{a} b^{i} a^{j+1} \in L
    Hypothèse de récurrence
      S \not \models^i b^i S \not \models^{j\text{-}1} b^i s a^{j\text{-}1} \not \models b^i s a a^{j\text{-}1} \not \models^b b^{i\text{+}1} a^j \in L
   Hypothèse de récurrence
2. S \mid b^i b^i S \mid b^{j-1} b^i b^i s a^{j-1} \mid b^i b^i s a^{j-1} \mid a^j b^{j+1} a^j \in L
    Hypothèse de récurrence
      S \not \models^{i} b^{i} S \not \models^{j-1} b^{i} s a^{j-1} \not \models b^{i} b s a^{j-1} \not \models^{b} b^{i+2} a^{j-1} \in L
   Hypothèse de récurrence
pour |w'|=n+1 \ \forall \ w' \in L(G) \Rightarrow w' \in L \ donc \ L(G) \subseteq L
```

```
- pout n=1 S \rightarrow a ou S \rightarrow b, a \in L et b \in L
- pour n=k+1 S \rightarrow_G Sa \rightarrow^k_G w (respectivement pour bS)
appliquons le lemme fondamental avec u_1=S et u_2=b il existe w_1,w_2, k_1,k_2 u_1 \rightarrow^{k_1} G w_1, u_2 \rightarrow^{k_2} G w_2 k=k_1+k_2
avec w= w_1w_2 nous avons u_2=a, k_2=0, w_2=a donc k=k_1 et S \rightarrow^k_G w_1
Par hypothèse de récurrence on a w_1=b^ia^j avec i+j=k donc Sa \rightarrow^k_G b^ia^{j+1}
w = w_1 w_2 = b^i a^j a = b^i a^{j+1} \in L
L \subseteq L(G): \forall w \in L w = b^i a^j i + j \neq 0
- i=0 et j\neq 0 w=a^{j} S \vdash^{j-1} Sa j-1 \vdash a^{j}
- j=0 et i\neq 0 w=a^{i} S | -i^{-1} b | -i^{-1} S | -b^{i}
-j=0 et i\neq 0 w=b<sup>i</sup>a<sup>j</sup> S | -i b i S | -i b i a<sup>j-1</sup>S | -b<sup>i</sup>a<sup>j</sup>
ou par récurrence sur n=|w|, que pour tout n b^i a^j \in L(G)
- pour n=1 donc i=1 ou j=1 w=a\in L(G) ou w=b\in L(G)
- démontrons pour n+1 b^i a^{j+1} \in L donc b^i a^{j+1} \in L(G)
 si la propriété est vraie pour n on a donc w=b^ia^j \in L(G) avec |w|=n S \to_G^n b^ia^j
 comme on a S \rightarrow Sa donc S \rightarrow_G Sa \rightarrow_G^n b<sup>i</sup>a<sup>j</sup>a
comme on a L(G)\subseteq L et L\subseteq L(G) alors L=L(G)
```

----Solution 2-----

 $L=\{a^nb^p\ a^q\ tq\ p=2n+q\ \}$

G Type 2	
$S \rightarrow S_1 S_2$	
$S_1 \rightarrow aS_1bb/\epsilon$	
$S \rightarrow S_1S_2$ $S_1 \rightarrow aS_1bb / \epsilon$ $S_2 \rightarrow bS_2a / \epsilon$	

EXERCICE 8

- **1.** Type 2
- **2.** $L(G) = (a^ib^i)(a^jb^j) \cup (a^ib^i)(b^ka^k)(a^jb^j) \cup (a^k(a^ib^i)(a^jb^j) b^k) = (a^ib^i)(b^ka^k)(a^jb^j) \cup (a^k(a^ib^i)(a^jb^j) b^k) = (a^ib^i)(a^jb^i) \subseteq (a^k(a^ib^i)(a^jb^j) b^k) = (a^ib^i)(a^jb^i) \subseteq (a^k(a^ib^i)(a^jb^i) b^k) = (a^ib^i)(a^jb^i) \subseteq (a^k(a^ib^i)(a^jb^i) b^k) = (a^ib^i)(a^jb^i) \subseteq (a^k(a^ib^i)(a^jb^i) b^k) = (a^ib^i)(a^jb^i) \cup (a^k(a^ib^i)(a^jb^i) b^k) = (a^ib^i)(a^ib^i) \cup (a^k(a^ib^i)(a^jb^i) b^k) = (a^ib^i)(a^ib^i) \cup (a^k(a^ib^i)(a^ib^i) b^k) = (a^ib^i)(a^ib^i) \cup (a^ib^i)(a^ib^i)(a^ib^i) \cup (a^ib^i)(a^ib^i) \cup (a^ib^i)(a^ib^i)(a^ib^i)(a^ib^i) \cup (a^ib^i)(a^i$

EXERCICE 9

 $L(G) = \{0^{i}1^{i}2^{j} \text{ avec } i, j \ge 0\} \cup \{0^{i}1^{j}2^{j} \text{ avec } i, j \ge 0\}$

EXERCICE 10

1. S \rightarrow 0S0S / S0S0 / 1S / ε

2

		≡0[2] A	≡1[2] B
≡0[2]	A	1	0
≡1[2]	В	0	1

G type 3	G type 3 sans ε
$A \rightarrow 1A / 0B / \epsilon B \rightarrow 1B / 0A$	$A \rightarrow 1A/ 0B/1$ $B \rightarrow 1B/ 0A/ 0$

on a L⊆L(G)

comme on a $L(G)\subseteq L$ et $L\subseteq L(G)$ alors L=L(G)

```
1. abab \notin L(G)
         aabb \in L(G)
         aaaaab \notin L(G)
         aabbb \notin L(G)
2. L(G) = \{a^ib^j / i + j = 2n\}
  L(G)\subseteq L
 Montrons par récurrence sur |w| que, si S \downarrow^*_G w, alors w = a^ib^j avec i+j=n avec n pair
  - pour |\mathbf{w}|=0:
     w=\varepsilon on a \varepsilon \in L(G) car S \rightarrow \varepsilon et \varepsilon \in L
  - |w|=n hypothèse de récurrence est que w = a^i b^j avec i+j=n et a^i b^j \in L
         S \mid a^i S b^j \mid a^i b^j
  démontrons pour w' d'ordre supérieur
  -|w|=n+2 \ \forall \ w \in L(G) \Rightarrow w \in L
      w \in L(G)
       1. S \models^{\hat{*}} a^i S b^j \models a^i a a S b^j \models a^{i+2} b^j \in L i+2+j est pair
                                     Hypothèse de récurrence
     3. S 
ightharpoonup a^iSbb^j 
ightharpoonup a^iSbbb^j 
ightharpoonup a^iSbb^j 
ightharpoonup a
     4. S 
ightharpoonup a^i a S b^j \ | a^i a S b b^j \ | a^{i+1} b^{j+1} \in L \quad i+1+j+1 \text{ est pair}
                                    Hypothèse de récurrence
  pour |w|=n+1 \ \forall \ w \in L(G) \Rightarrow w \in L \ donc \ L(G) \subseteq L
  L\subseteq L(G)
  w∈ L donc w=aibj avec i+j=n avec n est pair
```

1

G type 2

 $S \rightarrow AB$

 $A \rightarrow 0A1 / 01$

 $B \rightarrow 0B/0$

2. $L_1 = Init(L) = \{w / wx \in L\}$

G Type 2

 $S \rightarrow A/BC$

 $A\, \rightarrow 0A1\,/\,0A\,/\,\epsilon$

 $B \rightarrow 0B1/01$

 $C \rightarrow 0C/0$

2. $L_2 = Fin(L) = \{w \mid xw \in L\}$

G Type 2

 $S \rightarrow AB$

 $A \rightarrow 0A1/1A/\epsilon$

 $B \ \to 0 B \, / \, \epsilon$

			T.	Т				
a^{2^n}	$\{a^nb^m/n\}$	$\leq m \leq 2n$	$\{ 0^i 1^j / i \ge j \ge 0 \}$	$\{ w \in \{a, b\}^+ / w \equiv 0[3] \}$	'	$\{\ 0^{i}1^{j}\ /\ i\neq j,\ i\geq 0,\ j\geq 0\ \}$		
$S \rightarrow BCD$ $C \rightarrow AC / a$ $Aa \rightarrow aaA$ $AD \rightarrow D$ $Ba \rightarrow aB$ $BD \rightarrow \varepsilon$	$S \rightarrow aSbB / \epsilon$ $B \rightarrow b / \epsilon$		$S \rightarrow 0S1 / 0S / \epsilon$	$S \rightarrow AAAS / AAA$ $A \rightarrow a / b$		$\{ 0^{i}1^{j} / i > j \text{ ou } i < j \}$ $S \rightarrow S_{0} / S_{1}$ $S_{0} \rightarrow 0S_{0}1 / 0S_{0} / 0$ $S1 \rightarrow 0S_{1}1 / S_{1}1 / 1$		
toutes les suite	s de abc			$ \mathbf{w} _{\mathbf{a}} > \mathbf{w} _{\mathbf{b}}$				
$S \rightarrow abcA / Aa$ $A \rightarrow \varepsilon$ $Aa \rightarrow Sa$ $cA \rightarrow cS$	abc			$S \rightarrow bSa / aSb / abS / baS / Sab / Sba / Sa / aS / a$				
$\boxed{\{ a^{2n}b^{3m} / n \geq 1}$	$m \ge 0$	${a^nb^mc^k/0}$	$\leq n \leq m \leq k$ }		{ a.b ²ⁿ	$a / n \ge 0$		
S → aaS / Sbl		$B \rightarrow bBE / Eb \rightarrow bE ;$	$S \rightarrow ACD$ $C \rightarrow aCB / B / E / \epsilon$ $B \rightarrow bBE / bE$ $Eb \rightarrow bE ; E \rightarrow EE ; ED \rightarrow cD ; Ec \rightarrow Aa \rightarrow aA ; Ab \rightarrow bA ; Ac \rightarrow cA ; AD \rightarrow cD ; Ec \rightarrow cA ; AD \rightarrow cA ; Ac \rightarrow cA ; $					
	≤ n/2 }	{ w ∈ {a, b	$(a, c, d)^* / w = a^n b^m$	$\{a^nb^mc^{n+m} / n, m \ge 0\}$				
$S \rightarrow aS / aaSb / \epsilon$		$S \rightarrow ABC$ $B \rightarrow bBc \mid$ $Ab \rightarrow aA$ $A \rightarrow \varepsilon$ $cC \rightarrow Cd$ $C \rightarrow \varepsilon$	$B \rightarrow bBc \mid \varepsilon$ $Ab \rightarrow aA$ $A \rightarrow \varepsilon$ $cC \rightarrow Cd$		$S \rightarrow aSc \mid A$ $A \rightarrow bAc \mid \varepsilon$			
a^{n^2}		a^{n^2}		$ \mathbf{w} _{\mathbf{a}} \neq \mathbf{w} _{\mathbf{b}}$				
$S' \rightarrow ISO/ \epsilon$ $S \rightarrow aSa /A$ $aA \rightarrow B$ $aB \rightarrow BC$ $Ca \rightarrow aCD$ $Da \rightarrow aD$ $CO \rightarrow O$ $DO \rightarrow Oa$ $IB \rightarrow E$ $Ea \rightarrow aE$ $EO \rightarrow \epsilon$		$S' \rightarrow ISC$ $S \rightarrow aSa$ $aA \rightarrow AI$ $Ba \rightarrow aE$ $Ca \rightarrow aC$ $IA \rightarrow D$ $Da \rightarrow \varepsilon$ $DO \rightarrow \varepsilon$	/A B BC C		A / BbB bA / bAaA / aA / ε bB / bBaB / bB / ε			