RS 09 (HA) zum 21.12.2012

Paul Bienkowski, Hans Ole Hatzel

20. Dezember 2012

1. Flussdiagramm:

2. a) Flipflop mit Multiplexer:

D	\mathbf{E}	CLK	Q^+
*	*	0	Q
*	*	1	Q
*	0	↑	Q
*	1	↑	D

Flipflop mit Taktausblendung:

D	E	CLK	Q^+
*	*	0	Q
*	0	*	Q
*	1	↑	D
*	↑	1	D

- b) Solche Schaltungen werden in einem synchronen System wie etwa einer CPU als Buffer eingesetzt.
- c) Schaltung 2 speichert auch bei Vorderflanke auf dem Enable-Eingang (E) falls der Clock-Eingang (C) aktiv ist. Das umgeht die Synchronisation über den Clock-Eingang während einer Taktphase.

Vorteil von Schalltung 2 ist, das weniger Bauelemente (AND-Gatter statt Multiplexer) benötigt werden. Außerdem bietet die zweite Schaltung ein einfacheres Zeitverhalten, da das Ausgabesignal (Q) nicht als Eingang für den Multiplexer verwendet wird.

Schaltung 1 hat zudem eine höhere Vorlaufzeit da der Multiplexer das Datensignal verzögert. Im Gegensatz dazu hat Schaltung eine höhere Haltezeit, da hier der Takt durch das AND-Gatter minimal verzögert wird.

3. a) Zustandsdiagramm des Ampel-Automaten:

b) Zustandstabelle:

i	z_2	z_1	z_0	z_2^+	z_1^+	z_{0}^{+}	rt_H	ge_H	gr_H	rt_N	ge_N	gr_N
*	0	0	0	0	0	1	1	0	0	1	0	0
*	0	0	1	0	1	0	1	1	0	1	0	0
0	0	1	0	0	1	0	0	0	1	1	0	0
1	0	1	0	0	1	1	0	0	1	1	0	0
*	0	1	1	1	0	0	0	1	0	1	0	0
*	1	0	0	1	0	1	1	0	0	1	0	0
*	1	0	1	1	1	0	1	0	0	1	1	0
*	1	1	0	1	1	1	1	0	0	0	0	1
*	1	1	1	0	0	0	1	0	0	0	1	0

c) KV-Diagramme für die Folgezustands-Codierung:

Die Ausgangsfunktionen für die Ampellichter kann man auch ohne Hilfe von KV-Diagrammen aus der Tabelle ablesen:

$$rt_{H} = z_{2} \vee \overline{z_{1}}$$

$$ge_{H} = z_{2} \vee \overline{z_{0}}$$

$$gr_{H} = \overline{z_{2}}z_{1}\overline{z_{0}}$$

$$rt_{N} = \overline{z_{2}} \vee \overline{z_{1}}$$

$$ge_{N} = \overline{z_{2}} \vee \overline{z_{0}}$$

$$gr_{N} = z_{2}z_{1}\overline{z_{0}}$$