Exercícios de MATLAB

1 fminunc

1.1 Resolva o problema Aluffi-Pentini,

$$\min_{x} f(x) \equiv 0.25x_1^4 - 0.5x_1^2 + 0.1x_1 + 0.5x_2^2,$$

considerando o valor inicial (-1, 0.5),

- a) usando o método quasi-Newton sem fornecer as primeiras derivadas da função objectivo.
- b) usando o método quasi-Newton com procura unidimensional, fornecendo as primeiras derivadas da função objectivo.
- c) usando o método de Newton com regiões de confiança, fornecendo as primeiras derivadas da função objectivo.
- d) usando o método de Newton com regiões de confiança, fornecendo as primeiras e segundas derivadas da função objectivo.
- 1.2 No planeamento da produção de dois produtos, uma determinada companhia espera obter lucros iguais a P:

$$P(x_1, x_2) = \alpha_1(1 - e^{-\beta_1 x_1}) + \alpha_2(1 - e^{-\beta_2 x_2}) + \alpha_3(1 - e^{-\beta_3 x_1 x_2}) - x_1 - x_2,$$

em que x_1 é a quantia gasta para produzir e promover o produto 1, x_2 é a quantia gasta para produzir e promover o produto 2 e os α_i e β_i são constantes definidas. P, x_1 e x_2 estão em unidades de 10^5 euros. Calcule o lucro máximo para as seguintes condições:

$$\alpha_1 = 3$$
, $\alpha_2 = 4$, $\alpha_3 = 1$, $\beta_1 = 1.2$, $\beta_2 = 1.5$, e $\beta_3 = 1$.

- (a) Resolva o problema usando o método quasi-Newton sem fornecer as primeiras derivadas da função objectivo. Considere a aproximação inicial (1,1).
- (b) Resolva o problema usando o método quasi-Newton com procura unidimensional, fornecendo as primeiras derivadas da função objectivo. Considere a aproximação inicial da alínea anterior.
- (c) Resolva novamente o problema mas seleccione agora o método de Newton com regiões de confiança.
- 1.3 Suponha que pretendia representar um número positivo A na forma de um produto de quatro factores positivos x_1, x_2, x_3, x_4 . Para A = 2401, determine esses factores de tal forma que a sua soma seja a menor possível.

Formule o problema como um problema de optimização sem restrições em função das três variáveis x_1, x_2 e x_3 .

A partir da aproximação inicial $(x_1,x_2,x_3)^{(1)}=(6,7,5)$, use o método quasi-Newton (com fórmula DFP), para calcular esses factores. Na paragem do processo iterativo use $\varepsilon_1=\varepsilon_2=0.0001$.

1.4 Resolva o problema Epistatic Michalewicz

$$\min_{x} f(x) \equiv -\sum_{i=1}^{n} \sin(y_i) \left(\sin\left(\frac{iy_i^2}{\pi}\right) \right)^{2m}$$

$$y_i = \begin{cases}
x_i \cos(\theta) - x_{i+1} \sin(\theta), & i = 1, 3, 5, \dots, < n \\
x_i \sin(\theta) + x_{i+1} \cos(\theta), & i = 2, 4, 6, \dots, < n \\
x_i & i = n
\end{cases}$$

pelo método quasi-Newton (sem fornecer derivadas) para n=5 e para n=10. Considere $\theta = \frac{\pi}{6}, \ m=10 \text{ e o valor inicial } x^{(1)} = \left\{ \begin{array}{ll} 2, & i=1,3,5,\ldots, \leq n \\ 1, & i=2,4,6,\ldots, \leq n \end{array} \right..$

1.5 Considere o problema Griewank

$$\min_{x} f(x) \equiv 1 + \frac{1}{4000} \sum_{i=1}^{n} x_i^2 - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right).$$

Resolva-o pelo método quasi-Newton com fórmula DFP para n=10 e n=25. Considere o valor inicial $x^{(1)}=(1,1,\ldots,1)^T$.

2 fminsearch

2.1 Resolva o problema

$$\min_{x \in \mathbb{R}^2} f(x_1, x_2)$$

com $f(x_1, x_2) = \max\{|x_1|, |x_2 - 1|\}$. Como aproximação inicial considere o ponto (1, 1).

2.2 Considere o seguinte problema não diferenciável

$$\min_{x \in \mathbb{R}^2} f(x) \equiv \max\{x_1^2 + x_2^4, (2 - x_1)^2 + (2 - x_2)^2, 2e^{-x_1 + x_2}\}.$$

A partir da aproximação inicial $x = (1, -0.1)^T$, calcule a solução, usando o método mais adequado. Repita o processo com a seguinte aproximação inicial $x = (2, 2)^T$.

Resolva novamente o problema a partir de $x = (-10, -10)^T$.

Com qual das aproximações iniciais o processo exigiu menos cálculos da função objectivo?

2.3 Considere o seguinte problema não diferenciável

$$\min_{x \in \mathbb{R}^n} f(x) \equiv n \left(\max_{1 \le i \le n} x_i \right) - \sum_{i=1}^n x_i.$$

Para n=2 e a partir da aproximação inicial $x_i=i-(\frac{n}{2}+0.5), i=1,\ldots,n$, calcule a solução.

Repita a resolução considerando agora n=5 e TolX= 10^{-20} . Resolva ainda acrescentando a opção MaxFunEvals=10000. Acrescente ainda a opção MaxIter=10000. Comente os resultados.

2.4 Considere o seguinte problema não diferenciável

$$\min_{x \in \mathbb{R}^n} f(x) \equiv \prod_{i=1}^n x_i - \left(\min_{1 \le i \le n} x_i\right).$$

Para n=2 e a partir da aproximação inicial $x_i=i-(\frac{n}{2}+0.5),\,i=1,\ldots,n,$ calcule a solução.

Repita a resolução considerando agora n=5 e MaxFunEvals= 5000.

2.5 Considere o seguinte problema não diferenciável

$$\min_{x \in \mathbb{R}^2} f(x) \equiv \max \left\{ x_1^2 + x_2^2, \ x_1^2 + x_2^2 + \omega(-4x_1 - x_2 + 4), \ x_1^2 + x_2^2 + \omega(-x_1 - 2x_2 + 6) \right\}.$$

A partir da aproximação inicial $x=(-1,5)^T$, calcule a solução, usando o método mais adequado e considerando $\omega=500$. A partir da mesma aproximação inicial, volte a resolver o problema, mas agora fazendo $\omega=1000$.

Repita mais uma vez considerando $\omega = 1500$.

Para que valor de ω , o processo iterativo é mais eficiente?

2.6 Considere o seguinte problema não diferenciável

$$\min_{x \in \mathbb{R}^4} f(x) \equiv \max_{1 \le i \le 21} |u_i(x)|$$

em que

$$u_i(x) = x_4 - (x_1t_i^2 + x_2t_i + x_3)^2 - \sqrt{t_i}$$

para $1 \le i \le 21$.

A partir da aproximação inicial $x_i=1,\ i=1,\ldots,4,$ calcule a solução, usando o método mais adequado e os seguintes valores $t_i=0.25+0.75(i-1)/20,\ i=1,\ldots,21.$

Repita o processo mas agora considere os seguintes parâmetros $t_i=0.2i,\,i=1,\ldots,21.$