Fakultät Informatik und Mathematik Vorlesung Datenverarbeitungssysteme Prof. Dr. Rudolf Hackenberg Wintersemester 2014/2015

Weihnachts-Übungsblatt - Lösung

1. Umrechnen

a) zwischen verschiedenen Zahlensystemen

Basis 2	3	7	8	13	16 (0-F)
10101010	20022	332	252	101	AA
1001101	2212	140	115	5C	4D
100100011101	10012102	6542	4435	10A6	91D
111000110110	11222202	13415	7066	186B	E36
101000001	102220	636	501	1B9	141
10100111	20012	326	247	СВ	A7

b) Komplementbildung zur obigen Tabelle:

Basis 2	3	7	8 (8 Z.)	13	16 (4 Z.)
01010110			126		56
0110011			51		33
011011100011			3343		6-E3
000111001010			77770412		FFF10A
010111111			277		BF
1011001			177531		FF59

c) Alle Rechenschritte sollen in einem 16 Bit Binärsystem erfolgen. (Ohne Umrechnung in Dez.)

(167+3638)Zwischenergebnis (Binär): 111011011101 *4 ZE (Bin): 11101101110100 +13 ZE (Bin): 11101110000001 (Siehe Befehlsblätter) ZE: 1110111000000100 shl, 2 -AE ZE (Bin): 1110110101010110 ZE (Bin): 0111011010101011 shr, 1

/30 ZE (Bin): 11111110100 Rest: 10011

d) Alle Rechenschritte sollen im Hexadezimalsystem erfolgen. (Ohne Umrechnung in Dezimal!)

 (FF+FF)
 ZE (Hex):
 1FE

 +FEFA
 ZE (Hex):
 100F8

 *A3
 ZE (Hex):
 A39DE8

 /4
 ZE (Hex):
 28E77A

 -FFFFFE
 ZE (Hex):
 -D71884

- e) Wie viele Operationen verarbeitet eine CPU mit 2,5GHz in 7 Minuten?
- 7 Minuten = 420 Sekunden, 2,5 Ghz = 2,5 *10 \square Hz, 420s * 2,5*10 \square Hz = 10500000000000
- f) Wie hoch ist der Beschleunigungsfaktor wenn man die Aufgabe parallelisiert und 30% von einer zweiten, gleich schnellen CPU verarbeitet werden?

105000000000 operationen aufteilen: 70%=73500000000, 30%=31500000000,

 $315000000000/2,5*10 \square Hz = 126s, 735000000000/2,5*10 \square Hz = 294s$

beide laufen parallel, also bei 294s fertig => Faktor=294s/420s=1,4285 => 43 % schneller!

Fakultät Informatik und Mathematik Vorlesung Datenverarbeitungssysteme Prof. Dr. Rudolf Hackenberg Wintersemester 2014/2015

2. Fachbegriffe

Erläutern Sie folgende Begriffe

EVA Prinzip	Register
Stack	Bus
Indirekte Adressierung	Harvard-Architektur
Befehlszyklus	Rechenwerk
Leitwerk	Steuerleitung
Sprungbefehl	E/A Werk
Interrupt	Befehlszähler
Ablaufsteuerung	Flags
Unterprogramm	Assembler

=> SIEHE SKRIPT, bzw. WIKIPEDIA.DE

3. Programmiertechnik

a) Schreiben Sie ein Assemblerprogramm, das die Zahlen von 10 bis 0 im Speicher mittels des Bubble Sort (Siehe Wikipedia.de) Algorithmus aufsteigend sortiert.

- b) Erstellen Sie Flussdiagramme zu folgenden Assemblerprogrammen:
- Vergleich zweier einzugebender Wörter
- Quick Sort (Siehe Wikipedia.de)
- c) Erläutern Sie den Unterschied zwischen:
- Interrupt, Makro und Unterprogramm

Interrupt: unterbricht aktuelles Programm komplett, Befehlszähler und Flags auf Stack gesichert, Rücksprung mit IRET der alles wieder vom Stack holt, langsamer als ein Unterprogrammaufruf Makro: kein Stack, da der Code nur kopiert wird => größerer Code, schnell weil keine Rücksprünge nötig, Parameterübergabe sehr einfach

Unterprogramm: EINE Kopie im Speicher (auch bei mehreren Aufrufen) => Speicherersparnis, langsamer als Macros wegen Stackoperationen (Rücksprünge usw), können einfach aus anderen Programmiersprachen aufgerufen werden

- Zugriffen auf den Hauptspeicher und externe I/O Geräte
- Den Befehlen IRET und RET.

IRET ist der Rücksprung aus einem Interrupt, RET ist der Rücksprung aus einem Unterprogramm

Fakultät Informatik und Mathematik Vorlesung Datenverarbeitungssysteme Prof. Dr. Rudolf Hackenberg Wintersemester 2014/2015

4. Assembler

Was steht in den Registern und den Flags bei Erreichen des Breakpoints?

Reg	Wert	Flag	Wert
Reg AX		С	
BX		Z	
CX		S	
DX		O	
SI		P	
SP			
ΙP			