Quiz 1 (Monsoon 2024)

International Institute of Information Technology, Hyderabad

Time: 1 hour and 15 minutes

Total Marks: 20

Instructions: Answer ALL questions.

This is a CLOSED book and only OPEN class notes examination. NO query in examination hall is allowed.

27 August 2024

1. Consider the deterministic finite automaton (DFA) M as shown in Figure 1. Write the formal description of M. Note that the alphabet is $\{a, b\}$. Also, find the language of M.

Figure 1: State diagram of the four-state finite automaton M

[5]

2. Design a finite automaton to recognize the regular language of all strings that contain the string 001 as a substring.

[5]

a* b a b a k

a* b b b*, a* b b b* a a b b*

a* b a a a b b*.

Mid Semester Examination (Monsoon 2024) International Institute of Information Technology, Hyderabad

Time: 1 hour and 30 minutes

Total Marks: 40

Instructions: Answer <u>ANY FOUR</u> questions from the following FIVE questions.

This is a closed book and notes examination.

Regular calculator is allowed.

NO query in examination hall is permitted.

- Y. (a) Give an algorithm to convert a k-tape Turing machine to a single-tape Turing machine. Also, define formally the computation of a k-tape Turing machine.
 - (b) Let G be a connected undirected graph and define CONNECTED := $\{\langle G \rangle | G \text{ is a connected undirected graph} \}$. Note that an undirected graph G is connected if every node (vertex) can be reached from every other node by traveling along the edges of the graph G. Prove that this language is in the class P.

$$[(3+2) + 5 = 10]$$

- 2. (a) Define an enumerator. Prove that a language is Turing-recognizable if and only if some enumerator enumerates it.
 - (b) Consider the Boolean satisfiability problem SAT := $\{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$. In proving SAT is NP-complete, the 2×3 windows are used to formulate ϕ_{move} in the Boolean formula $\phi = \phi_{start} \wedge \phi_{cell} \wedge \phi_{accept} \wedge \phi_{move}$. Discuss the role of legal 2×3 windows and then derive ϕ_{move} using those 2×3 windows.

$$[(1+4)+5=10]$$

- 3. (a) Let CLIQUE := $\{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$. Prove that CLIQUE is NP-hard. Also, show the construction of the undirected graph G with the 3cnf-Boolean formula $\phi = (x_1 \vee x_2 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_1} \vee \bar{x_2}) \wedge (x_2 \vee x_3 \vee \bar{x_3})$.
 - (b) Show that the class of regular languages is closed under the star operation.

$$[(3+2)+5=10]$$

- 4. (a) Define decidable, undecidable, tractable and intractable problems. Give examples of an undecidable problem and an intractable problem.
 - (b) An oracle is a language $L \subseteq \{0,1\}^*$. An oracle Turing machine is the same as a normal Turing machine, only with the addition of a second tape, called the oracle tape. The cells on the oracle tape can contain either blanks, 0's, or 1's. Cook Reduction is a reduction computed by a deterministic polynomial time oracle Turing machine. Karp-reduction is a polynomial-time many-one reduction. Show that, if $NP \neq P$, there exists an infinite sequence of sets $\{S_1, S_2, \ldots\}$ in $NP \setminus P$ such that S_{i+1} is Karp-reducible to S_i , but S_i is not Cook-reducible to S_{i+1} .

Prove that if every set in NP can be Cook-reduced to some set in NP \cap CoNP, then NP = CoNP.

$$[(2+2)+6=10]$$

- 8. (a) Define NP-hard and NP-complete complexity classes. If a language B is NP-complete and $B \leq_p C$ for some language C in NP, then show that C is also NP-complete.
 - (b) Let G be an undirected graph, and define the following problem:

LPATH := $\{\langle G, a, b, k \rangle | G \text{ contains a simple path of length at least } k \text{ from vertex } a \text{ to vertex } b\}$. Show that LPATH is NP-complete.

[(2+2) + 6 = 10]

********* End of Question Paper ************

Quiz 2 (Monsoon 2024)

International Institute of Information Technology, Hyderabad

Time: 1 hour and 15 minutes

Total Marks: 20

Instructions: Answer ALL questions.

This is a CLOSED book and only OPEN class notes examination.
NO query in examination hall is allowed.

18 October 2024 (Friday)

X. Define the following problem:

2SAT := $\{\langle \phi \rangle | \phi \text{ is a 2cnf satisfiable Boolean formula} \}$.

- (a) Prove that 2SAT is in NL.
- (b) Prove that 2SAT is also NL-complete. [Hint: Use the log-space reduction: \overline{PATH} to 2SAT.]

[4 + 6 = 10]

2. Let $f: N \to N$ be a function such that $f(n) \ge n$, where N be the set of natural numbers. Show that for any such function $f: N \to N$, the space complexity class SPACE(f(n)) remains the same whether we define the class by using the single-tap Turing machine (TM) model or the two-tape read-only input TM model.

[5 + 5 = 10]

*********** End of Question Paper *************

End Semester Examination (Monsoon 2024) International Institute of Information Technology, Hyderabad

Time: 3 hours Total Marks: 70

Instructions: Q1 is COMPULSORY, and answer ANY FIVE questions

from the remaining questions Q2-Q8.

This is a closed book and notes examination.

Regular calculator is allowed.

NO query is allowed in the examination hall.

Q1. Answer all the questions in this part.

- (a) Which is the following is TRUE?
 - A) $TIME(2^n) \subseteq TIME(2^{2n+1})$
 - B) $TIME(2^n) \neq TIME(2^{n+1})$
 - \mathcal{L}) $TIME(2^n) \subset TIME(2^{2n})$
 - D) $NTIME(n) \subseteq PSPACE$
- (b) Let us consider an elliptic curve $E_p(a, b)$ over Z_p , where p is prime and p > 3. Let #E denote the number of points on $E_p(a, b)$. Then, which one of the following is TRUE?
 - A) $p + 1 \le \#E \le p + 1 + 2\sqrt{p}$
 - B) $p + 1 2\sqrt{p} \le \#E \le p + 2\sqrt{p}$
 - C) $p \le \#E \le p + 1 + 2\sqrt{p}$
 - (B) $p+1-2\sqrt{p} \le \#E \le p+1+2\sqrt{p}$
- (c) In RSA public key cryptosystem, we know that $gcd(e, \phi(n)) = 1$. Then, the encryption exponent e must be
 - A) Even
 - B) Odd
 - C) Any number
 - D) None of these
- (d) If $A \in P$, then $P^A = \underline{P}$.
- (e) Which of the following statement(s) is/are TRUE?
- NP = PEAT
- \bigcirc A) If $NP = P^{SAT}$, then NP = coNP.
 - B) An oracle A exists whereby $P^A \neq NP^A$.
 - (c) An oracle B exists whereby $P^B = NP^B$.
- \times D) $TQBF \in SPACE(n^{1/3})$.
- (f) If $A \in TIME(t(n))$, then A has circuit complexity $N^{c(n)}$.
- (g) A language $L \subseteq \{0,1\}^*$ is in RP if and only if there is a probabilistic polynomial time Turing machine M such that
 - $x \in L \implies Pr(M(x) = 1) \ge \frac{1}{2}$

•
$$x \notin L \implies Pr(M(x) = 0) = 1$$

- (h) Let $CNF_{H1}=\{\langle\phi\rangle|\phi$ is a satisfiable cnf-formula where each clause contains any number of positive literals and at most one negated literal. Furthermore, each negated literal has at most one occurrence in ϕ }. Then,
 - A) CNF_{H1} is NP-complete
 - B) CNF_{H1} is L-complete
 - C) CNF_{H1} is P-complete
 - D CNF_{H1} is NL-complete
- (i) Let $ADD = \{\langle x, y, z \rangle | x, y, z > 0 \text{ are binary integers and } x + y = z \}$. Then,
 - A) $ADD \in NL$
 - B) $ADD \in P$
 - (C) $ADD \in L$
 - D) $ADD \in PP$
- (j) For any space function $f: N \to N$, where $f(n) \ge n$, which one of the following is TRUE?
 - A) $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
 - B) $NSPACE(f(n)) \subseteq SPACE(f^2(n \log n))$
 - C) $NSPACE(f(n)) \subseteq SPACE(f^3(n))$
 - D) $NSPACE(f(n)) \subseteq SPACE(f^3(n \log n))$
- (k) Out of the following relationships, which one is valid?
 - A) $P \subseteq NP \subseteq PSPACE \subseteq NPSPACE$
 - B) $P \subseteq NP \subseteq PSPACE = NPSPACE$
 - C) $P \subseteq NP \subseteq PSPACE \subseteq NPSPACE$
 - D) $P \subseteq NL \subseteq PSPACE \subseteq NPSPACE$
- (1) If a Turing machine M runs in f(n)-space and w is an input of length n, then the number of configurations of M on w is (e) radion + (m) = 2 204
 - A) $2^{\circ(f(n))}$
 - B) $n^2 2^{o(f(n))}$
 - C) $n2^{\circ(f(n))}$
 - D) $n2^{o(f(n\log n))}$
- (m) Out of the following relationships, which is/are TRUE?
 - A) If any NL-complete language is in L, then L = NL.
 - B) $NL \subset P$.
 - C) L ⊆ coNL.
 - D) Any PSPACE-hard language is also NP-hard. NP & PAPACE
- (n) Let TRIPLE-SAT = $\{ \langle \phi \rangle | \phi \text{ has at least three satisfying assignments} \}$. Then, TRIPLE-SAT is in
 - A) Ponly
 - B) NP-complete
 - C) NP-hard only
 - D) NP only
- (o) Recall that a directed graph is strongly connected if every two nodes are connected by a directed path in each direction. Let STRONGLY-CONNECTED = $\{\langle G \rangle | G \text{ is a strongly con-}$ nected graph }. Then,

- A) STRONGLY-CONNECTED is in NL only
- B) STRONGLY-CONNECTED is PSPACE-complete.
- Ø) STRONGLY-CONNECTED is NL-complete.
- D) STRONGLY-CONNECTED is L only.
- (p) Which one is TRUE?
- A) For any two real numbers ϵ_1 and ϵ_2 with $1 \le \epsilon_1 < \epsilon_2$, $TIME(n^{\epsilon_1}) \subset TIME(n^{\epsilon_2})$.
 - B) For any two real numbers ϵ_1 and ϵ_2 with $0 \le \epsilon_1 < \epsilon_2$, $TIME(n^{\epsilon_1}) \subseteq TIME(n^{\epsilon_2})$.
 - C) For any two real numbers ϵ_1 and ϵ_2 with $0 \le \epsilon_1 < \epsilon_2$, $TIME(n^{\epsilon_1}) \subset TIME(n^{\epsilon_2})$.
 - D) For any two real numbers ϵ_1 and ϵ_2 with $1 \le \epsilon_1 < \epsilon_2$, $TIME(n^{\epsilon_1}) \subseteq TIME(n^{\epsilon_2})$.
- (q) With respect to the random oracle SAT, which one of the following is/are TRUE?
- B) P = NP $O(NP \subseteq P^{SAT})$ $O(NP \subseteq P^{SAT})$ $O(NP \subseteq P^{SAT})$ $O(NP \subseteq P^{SAT})$ $O(NP \subseteq P^{SAT})$ (r) The complexity needed for the quantum Shor's algorithm to factor an large N to be factored is
 - A) $O((N \log N)^2)$
 - B) $O((N \log N)^3)$
 - C) $O((\log N)^2)$
 - $O((\log N)^3)$

 - (s) The depth of a circuit is by (?)
- Q2. (a) Define a bipartite graph. Let BIPARTITE := $\{\langle G \rangle | \text{ undirected graph } G \text{ is bipartite}\}$.

A coloring of a graph G=(V,E) is a function $f:V\to\{1,2,\cdots,k\}$ defined for all $i\in V$. If $(u,v) \in E$, then $f(u) \neq f(v)$. Thus, for a fixed k, define kCOLOR := $\{\langle G \rangle | \text{ undirected graph } G \text{ is } \{(u,v) \in E, \text{ then } f(u) \neq f(v) \}$. k-colorable, that is, no two adjucent nodes of G will be given the same color $\}$.

Prove that 2COLOR \leq_p BIPARTITE.

- (b) Prove that if P = NP and $L \in P \{\emptyset, \Sigma^*\}$, then L is NP-complete.
- [5 + 5 = 10]
- Q3. (a) Let $ALL_{NFA} := \{\langle A \rangle | A \text{ is a NFA and } L(A) = \Sigma^* \}$. Show that it can be decided by O(n)-space non-deterministic Turing machine (NTM), where n is the size of the input string.
 - (b) If f and g are log-space computable functions, show that the composition of f and g denoted by $f \circ g$, is also log-space computable function. Using this result, show that if $A \leq_L B$ and $B \leq_L C$, then $A \leq_L C$.
 - [5 + 5 = 10]
- Q4. (a) Let TQBF = { $\langle \phi \rangle | \phi$ is a true fully quantified Boolean formula}. Show that TQBF restricted to formulas where the part following the quantifies is in CNF (conjunctive normal form) is still PSPACE-complete.
 - (b) Let $EQ_{REX} = \{\langle R, S \rangle | R \text{ and } S \text{ are equivalent regular expressions} \}$. Show that $EQ_{REX} \in$ PSPACE.

[5 + 5 = 10]

Q5. (a) State the Integer Factorization Problem (IFP). Prove that IFP $\in BQP$ using the Shor's algorithm.

(b) Let \uparrow represent the exponentiation operation. If R is a regular expression and k is a non-negative integer, $R \uparrow$ is equivalent to the concatenation of R with itself k times. In other words, $R^k = R \uparrow$ $k = R \circ R \circ \cdots R$ (k times).

Let $EQ_{REX\uparrow} = \{\langle Q, R \rangle | Q \text{ and } R \text{ are equivalent regular expressions with exponentiation} \}$.

Prove that $EQ_{REX\uparrow}$ is EXPSPACE-complete.

[5 + 5 = 10]

Q6. (a) For a circuit C and input setting x, let C(x) be the value of C on x. Define

CIRCUIT-VALUE := $\{\langle C, x \rangle | C \text{ is a Boolean circuit and } C(x) = 1\}.$

Prove that CIRCUIT-VALUE is P-complete.

/(b) Define the unique-sat problem to be USAT = $\{\langle \phi \rangle | \phi \text{ is a Boolean formula that has a single}\}$ satisfying assignment}. Show that $USAT \in P^{SAT}$. [5 + 5 = 10]

Q7. (a) Define the bounded-error quantum polynomial time (BQP) complexity class. Prove that $BPP \subseteq BQP$. BQP.

(b) Prove that the Diffie-Hellman key exchange protocol is secure against a passive adversary under the NP-hard problem, known as Discrete Logarithm Problem (DLP). [5 + 5 = 10]

Q8. (a) Discuss the role of the blockchain technology in the blockchain-envisioned secure data delivery and collection Internet of Things (IoT)-enabled Internet of Drones (IoD) environment. What is the role of the NP-hard problem, known as the Elliptic Curve Decisional Diffie-Hellman Problem 2 +2 Adva (ECDDHP) in the secure access control mechanism used in this scheme?

(b) State the "time hierarchy theorem". Using this theorem, prove that $P \subset EXPTIME$.