Docket No. 1163-0349P

Reply to Office Action dated January 27, 2005

Art Unit: 2133

Page 2 of 13

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

LISTING OF CLAIMS

Claims 1 – 25 (Canceled)

- 26. (Currently Amended) An error correction method according to claim 25 27 wherein a switching circuit is used to create the frames.
- 27. (Currently Amended) An error correction method according to claim 25 which further includes: adapted to correct data from a transmitter that applies a first error correction code and a second error correction code to the data, and that creates frames having a plurality of blocks, a first group of the blocks having the data and one of the error correction codes, and a second group of the blocks having at least another error correction code, which comprises the steps of:

decoding the first group of blocks to recover the data and the first error correction codes;

determining from the first error correction codes whether there are errors in the data;

transferring the data to an output circuit, when it is determined from the first error correction codes that there are no errors in the data;

Docket No. 1163-0349P

Reply to Office Action dated January 27, 2005

Art Unit: 2133

Page 3 of 13

decoding the second error correction codes in the second group of blocks, when the first error correction codes cannot correct the codes;

determining from the second error correction codes whether there are any errors in the data;

transferring the data to the output circuit, if it is determined that there are no errors in the data; and

outputting the decoded data from the output circuit, when it is determined that there are no errors in the data applied to the output circuit.

- 28. (Currently Amended) An error correction method according to claim 25 27, wherein the first error correction code is a block code and the second error correction code is a convolution code.
- 29. (Currently Amended) An error correction method according to claim 27 which further includes applying a third error correction code to the data which is to be transmitted and creating a third group of blocks having at least the third error correction codes, wherein the third error correction codes include an indication of data length.

30. (Cancelled)

Docket No. 1163-0349P

Reply to Office Action dated January 27, 2005

Art Unit: 2133 Page 4 of 13

31. (Previously Presented) An error correction method according to claim 29, which further includes creating an additional block having a repetition of the third error correction code.

32. (Cancelled)

33. (Currently Amended) An error correction method according to claim 32 which further includes: adapted to correct data from a transmitter that applies a first error correction code to data which is to be transmitted, that creates frames having a plurality of blocks, a first group of the blocks having the data and the first error correction code, and a second group of the blocks having at least data, and applying a second error correction code to the blocks, which comprises the steps of:

decoding the first group of blocks to recover the data and the first error correction codes;

determining from the first error correction codes whether there are errors in the data;

transferring the data to an output circuit, when it is determined from the first error correction codes that there are no errors in the data;

decoding the second error correction codes in the second group of blocks, when the first error correction codes cannot correct the codes;

determining from the second error correction codes whether there are any errors in the data;

Docket No. 1163-0349P

Reply to Office Action dated January 27, 2005

Art Unit: 2133 Page 5 of 13

transferring the data to the output circuit, if it is determined that there are no errors in the data; and

outputting decoded data from the output circuit, when it is determined that there are no errors in the data applied to the output circuit.

- 34. (Currently Amended) An error correction method according to claim 32 33, wherein the first error correction code is a block code and the second error correction code is a convolution code.
- 35. (Currently Amended) An error correction method according to claim 32 33 wherein at least one error correction code includes a data length.
 - 36. (Cancelled)
- 37. (Currently Amended) An error correction method according to claim 36 which further includes:— adapted to correct data from a transmitter that applies a first full error correction code to data which is to be transmitted, that selectively applies a partial second error correction code of the same type to the data, and creates frames having a plurality of blocks, a first group of the blocks having the data and the first full error correction code and a second group of the blocks having the data and the partial second error correction code, which comprises the steps of:

Docket No. 1163-0349P

Reply to Office Action dated January 27, 2005

Art Unit: 2133 Page 6 of 13

decoding the first group of blocks to recover the data and first error correction codes;

determining from the first error correction codes whether there are errors in the data;

transferring the data to an output circuit, when it is determined from the first error correction codes that there are no errors in the decoded data;

decoding the second error correction codes in the second group of blocks, when the first error correction codes cannot correct the errors;

determining from the second error correction codes whether there are any errors in the data;

transferring the data to the output circuit, if it is determined that there are no errors in the data; and

outputting decoded data from the output circuit, when it is determined that there are no errors in the data applied to the output circuit.

- 38. (Currently Amended) An error correction method according to claim 36 37, wherein the first error correction code and the second error correction code are convolution codes having different rates.
- 39. (Currently Amended) An error correction method according to claim 36 37 wherein the which further includes:

Docket No. 1163-0349P

Reply to Office Action dated January 27, 2005

Art Unit: 2133 Page 7 of 13

decoding the first group of blocks to recover the data and first error

correction codes;
determining from the first error correction codes whether there are errors
in the data;
transferring the data to an output circuit, when it is determined from the
first error correction codes that there are no errors in the data;
decoding the second error correction codes in the second group of blocks
is done with the same decoding circuit used to decode the first error correction code,
when the first error correction codes cannot correct the errors;
determining from the second error correction codes whether there are any
errors in the data;
transferring the data to the output circuit, if it is determined that there are
no errors in the data; and
there are no errors in the data applied to the output circuit.

U.S. Application No. 09/911,735 Docket No. 1163-0349P Reply to Office Action dated January 27, 2005 Art Unit: 2133

Page 8 of 13

40. (Currently Amended) A method according to claim 25 27,

wherein the data is input transmitted from a digital camera;

wherein the applying a first error correction code step, the applying a second error correction code step and the creating frames step are performed on a programmed computing device; and

wherein the encoded data in the frames is transmitted on a <u>first</u> wireless device.

- 41. (Previously Presented) A method according to claim 40, wherein the encoded data is received on a <u>second</u> wireless device and decoded on a programmed computing device.
 - 42. (Canceled).