Docente/i

Luigi Orsina / Adriana Garroni

Disequazioni

Con due moduli

$$\{x\in\Re\colon |x-a|+|x-b|\le c\}$$

01

 $x - a \le c$

$$x - b \le c$$

02

|Grafico|

03

- calcolare il segno dei due moduli (01);
- disegnare il grafico del segno (02);
- creare un sistema per ogni zona del grafico: se il segno del modulo è negativo in quella zona dovrai cambiarne il segno (03);
- fai l'unione tra i sistemi (04).

Formula con modulo

$${x \in \Re: |x - a| \le b} = {x \in \Re: a - b \le x \le a + b} = [a - b, a + b]$$

Logaritmi

Proprietà

$a^{\log_a(b)} = b \operatorname{con} a > 0 e \neq 1 e b > 0$	$log_a(b \times c) = log_a(b) + log_a(c)$
$\log_a(b^c) = c \times \log_a(b)$	$\log_a(\frac{b}{c}) = \log_a(b) - \log_a(c)$
$\log_a(b) = \frac{\log_c(b)}{\log_c(a)} \operatorname{con} c > 1$	$\log_a(b) = \frac{1}{\log_b(a)}$

Prodotti notevoli

Quadrato del binomio

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

Cubo del binomio

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Somma per differenza

$$a^2 - b^2 = (a + b)(a - b)$$

Differenza di cubi

$$(x + y)(x^2 - xy + y^2) = x^3 + y^2$$
 oppure
 $(x - y)(x^2 + xy + y^2) = x^3 - y^2$

Razionalizzazione

Semplice

$$\frac{Q}{\sqrt{A}} = \frac{Q}{\sqrt{A}} x \frac{\sqrt{A}}{\sqrt{A}} = \frac{Q\sqrt{A}}{\sqrt{A}} \text{ o in generale } \frac{Q}{\sqrt[n]{A^m}} = \frac{Q}{\sqrt{A}} x \frac{\sqrt[n]{A^{n-m}}}{\sqrt[n]{A^{n-m}}} = \frac{Q\sqrt[n]{A^{n-m}}}{\sqrt[n]{A^{m+n-m}}} = \frac{Q\sqrt[n]{A^{n-m}}}{\sqrt[n]{A^{m+n-m}}} = \frac{Q\sqrt[n]{A^{n-m}}}{\sqrt[n]{A^{m+n-m}}} = \frac{Q\sqrt[n]{A^{n-m}}}{\sqrt[n]{A^{m-m}}} = \frac{Q\sqrt[n]{A^{m-m}}}{\sqrt[n]{A^{m-m}}} = \frac{Q\sqrt[n]$$

Somma o differenza di radici quadratiche

$$\frac{Q}{\sqrt{a}+\sqrt{b}} = \frac{Q}{\sqrt{a}+\sqrt{b}} x \frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}} = \frac{Q(\sqrt{a}-\sqrt{b})}{a-b}$$
 oppure

$$\frac{Q}{\sqrt{a}-\sqrt{b}} = \frac{Q}{\sqrt{a}-\sqrt{b}} x \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}} = \frac{Q(\sqrt{a}+\sqrt{b})}{a-b}$$

poiché in entrambi i casi

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b$$

Somma o differenza di radici cubiche

$$\frac{Q}{\sqrt[3]{a_-} + \sqrt[3]{b}} = \frac{Q}{\sqrt[3]{a_-} + \sqrt[3]{b}} x \frac{\sqrt[3]{a^2} - \sqrt[3]{a}\sqrt[3]{b} + \sqrt[3]{b^2}}{\sqrt[3]{a^2} - \sqrt[3]{a}\sqrt[3]{b} + \sqrt[3]{b^2}} = \frac{Q(\sqrt[3]{a^2} - \sqrt[3]{a}\sqrt[3]{b} + \sqrt[3]{b^2})}{a+b} \text{ oppure}$$

$$\frac{Q}{\sqrt[3]{a} - \sqrt[3]{b}} = \frac{Q}{\sqrt[3]{a} - \sqrt[3]{b}} x \frac{\sqrt[3]{a} + \sqrt[3]{a}\sqrt[3]{b} + \sqrt[3]{b^2}}{\sqrt[3]{a} + \sqrt[3]{a}\sqrt[3]{b} + \sqrt[3]{b^2}} = \frac{Q(\sqrt[3]{a} + \sqrt[3]{a}\sqrt[3]{b} + \sqrt[3]{b^2})}{a - b}$$

Potenze

Regola del	a ⁿ · a ^m = a ^{n+m}	$2^3 \cdot 2^4 = 2^{3+4} = 128$		
prodotto	$a^n \cdot b^n = (a \cdot b)^n$	$3^2 \cdot 4^2 = (3 \cdot 4)^2 = 144$		
Regola del	$\frac{a^n}{a^m} = a^{n-m}$	$\frac{2^5}{2^3} = 2^{5-3} = 4$		
quoziente	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	$\frac{4^3}{2^3} = \left(\frac{4}{2}\right)^3 = 8$		
	$(b^n)^m = b^{n \cdot m}$	$(2^3)^2 = 2^{3 \cdot 2} = 64$		
Regole delle	$_{b}n^{m} = _{b}(n^{m})$	$_{2}3^{2} = _{2}(3^{2}) = _{512}$		
potenze	$^{m}\sqrt{(b^{n})} = b^{n/m}$	$^{2}\sqrt{(2^{6})} = 2^{6/2} = 8$		
	$b^{1/n} = {}^{n}\sqrt{b}$	$8^{1/3} = {}^{3}\sqrt{8} = 2$		
Esponenti negativi	$b^{-n} = \frac{1}{b^n}$	$2^{-3} = \frac{1}{2^3} = 0.125$		

N su radice di N

$$rac{Qn}{H\sqrt{n}}=rac{Q\sqrt{n}}{H}$$
 con Q, H polinomi generici cioè $rac{n}{\sqrt{n}}=rac{\sqrt{n}}{1}$

Quoziente di potenze con la stessa base

$$\frac{a^n}{a^m} = a^{m-n} \circ \frac{a^n}{a^m} = \frac{1}{a^{m-n}} se m > n \circ \frac{a^n}{a^m} = \frac{a^{m-n}}{1} se m < n$$

Insiemi

Monotonia

$$E = \{a_n \, \forall \, n \in \, \aleph\}$$

Se a_n è monotona crescente \nearrow

$$inf(E) = a_0$$
 $\sup(E) n \in \aleph = \lim_{n \to \infty} a_n$ $m(E) = inf(E)$ $\not\equiv M(E)$

Quindi esiste il minimo di E ed è uguale ad inf(E), ma non esiste il massimo

Se a_n è monotona decrescente \searrow

$inf(E) n \in \aleph = \lim_{n \to \infty} a_n$	$sup(E) = a_0$	$\not\exists m(E)$	M(E) = sup(E)
---	----------------	--------------------	---------------

Quindi esiste il massimo di E ed è uguale a sup(E), ma non esiste il minimo

Dimostrazione che
$$inf(E) \neq min(E)$$
, $con inf(E) \rightarrow 1$, $a_n = \frac{11n+10}{11n+8}$:
$$\exists_{\overline{n}} \in \aleph con \ a_{\overline{n}} = 1 \Leftrightarrow \frac{11\overline{n}+10}{11\overline{n}+8} = 1 \Leftrightarrow 11\overline{n} + 10 = 11\overline{n} + 8 \Leftrightarrow 10 \neq 8$$

Intervallo

 $E = \{a_n, n \in \aleph\}, non \`e mai un intervallo$

Se c'è una successione a_n con n che appartiene ai naturali E non è mai un intervallo.

Successioni

Operazioni

$$a_n \to L$$
, $b_n \to M$

$a_n \pm b_n \to L \pm M$	$a_n * b_n \to L * M$	$\frac{a_n}{b_n} \to \frac{L}{M} con M \neq 0$

Forme indeterminate

<u>∞</u> ∞	∞ × 0	∞ − ∞	0 0
∞^0	0^0	$1^{\pm\infty}$	

Gerarchia degli infiniti

Numero di nepero

$$\lim_{n\to\infty} \left(1 + \frac{A}{a_n}\right)^{a_n} = e^A o se \lim_{n\to\infty} \left(1 - \frac{A}{a_n}\right)^{a_n} cioè \lim_{n\to\infty} \left(1 + \frac{-A}{a_n}\right)^{a_n} = e^{-A}$$

Semplificazione

$$A^{n^{x} \times \frac{n^{y}}{n^{y}}} = (A^{n^{y}})^{\frac{n^{x}}{n^{y}}}$$

oppure se abbiamo una somma/differenza

$$\lim_{n \to \infty} \left(1 + \frac{A}{a_n + x} \right)^{a_n} = \left(1 + \frac{A}{a_n + x} \right)^{a_n \times \frac{a_n + x}{a_n + x}} = \left(e^A \right)^1$$

Stirling

$$n! \simeq n^n e^{-n} \sqrt{2\pi n}$$
 cioè
$$\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1$$

Limiti Notevoli Fratti

Se $a_n \to 0$ allora

$\frac{\log_e(1+a_n)}{a_n} = 1$	$\frac{tg(a_n)}{a_n} = 1$	$\frac{1-\cos(a_n)}{\left(a_n\right)^2} = \frac{1}{2}$
$\frac{e^{a_n}-1}{a_n}=1$	$\frac{arcsen(a_n)}{a_n} = 1$	$\frac{\left(a_{n}\right)^{2}}{1-\cos(a_{n})}=2$
$\frac{\sin a_n}{a_n} = 1$	$\frac{arctg(a_n)}{a_n} = 1$	

Limiti Notevoli

Se $a_n \to 0$ allora

$\log_e(1+a_n) \simeq a_n$	$tg(a_n) \simeq a_n$	$1 - \cos(a_n) \simeq \frac{(a_n)^2}{2}$
$e^{a_n}-1\simeq a_n$	$arcsen(a_n) \simeq a_n$	
$sen(a_n) \simeq a_n$	$arctg(a_n) \simeq a_n$	

Monotonia

 $a_{n+1} \geq a_n \, per \, vedere \, se \, \grave{\mathbf{e}} \, monotona \, crescente \, \, = a_{n+1} - a_n \geq \, 0$

 $a_{n+1} \le a_n$ per vedere se è monotona decrescente $= a_{n+1} - a_n \le 0$

Se nello svolgimento il denominatore è positivo, possiamo escluderlo in quanto non utile nel determinare il segno della disequazione. Quindi confrontiamo solo i numeratori.

Quinar commontiarno colo i numeratori.

Goniometria

Valori fondamentali

gradi	rad	sen(α)	cos(a)	$tg(\alpha)$	gradi	rad	sen(α)	cos(a)	$tg(\alpha)$
0°	0	0	1	0	180°	π	0	- 1	0
30°	<u>π</u> 6	1/2	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	210°	<u>7π</u> 6	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	<u>π</u> 4	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	225°	<u>5π</u> 4	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1

60°	<u>π</u> 3	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$	240°	<u>4π</u> 3	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	-	270°	$\frac{3\pi}{4}$	- 1	0	-
120°	<u>2π</u> 3	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	300°	<u>5π</u> 3	$-\frac{\sqrt{3}}{2}$	1/2	$-\sqrt{3}$
135°	<u>3π</u> 4	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	- 1	315°	<u>7π</u> 4	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	- 1
150°	<u>5π</u> 6	1/2	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	330°	<u>11π</u> 6	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$

Periodicità

$sen(\alpha)$	$cos(\alpha)$	$tg(\alpha)$
2π	2π	π