Integrierter Kurs IV

Theoretische Physik II Tom Folgmann

26. April 2023

Einleitung und Wellenfunktion

Einleitung Bei der Auffassung kleinster Teilchen gab es Probleme mit dem Teilchenmodell.	VL 1 25.04.2023, 08:15
$\hfill \Box$ Stelle dieses Problem $deutlich$ dar. Skizziere eine Lösung desselben.	(№1)
Schwarzkörperstrahlung	
Jede sogenannte $Mode$ mit der Frequenz $\nu=c_0/\lambda$ des elektromagnetischen Feldes kann beliebige Energien enthalten, enthält jedoch nach dem $\ddot{A}quipositionsprinzip$ im Mittel die Energie $E=k_B\cdot T$, bekannt als das $Rayleigh$ - $Jeans$ - $Gesetz$.	
Photoeffekt	
Compton Effekt	
$[\rightarrow$ IK4 Exp. II]	
Welleneigenschaften der Materie	
$[\rightarrow$ IK4 Exp. II]	
Doppelspaltexperiment mit Elektronen	
[o IK4~Exp.~II]	
$\hfill\Box$ Lies im Skript der Experimentalphysik II die Inhalte der Überschriften nach.	(№2)
→ Was ist die Wellenfunktion beim Doppelspaltexperiment? Wie erklärt man, daß ein Elektron durch beide Spalten gehen kann? Was passiert mit einem einzeln eingestrahlten Elektron?	(№2.1)
\rightarrow Wie lautet die de Broglie Relation?	(№2.2)

Theoretische Physik II Skript

(&2.3) \rightarrow Kann man das Doppelspaltexperiment auch mit massiveren Teilchen oder Molekülen durchführen? Gibt es hierbei eine Grenze? Recherchiere den Beitrag zur Doppelspaltuntersuchung der $Universit \"{a}t Konstanz$.

.....

Welle-Teilchen-Dualismus

Wir haben beobachtet:

- \rightarrow elektromagnetische Wellen verhalten sich wie Teilchen
- \rightarrow materielle Teilchen verhalten sich wie Wellen

Als Ziel unserer folgenden Untersuchungen setzen wir eine einheitliche Theorie, welche sowohl die Wellen- als auch die Teilcheneigenschaften beschreibt.

Wellenfunktion und Wahrscheinlichkeitsinterpretation

Wir wollen den folgenden Zusammenhang herstellen:

freies Teilchen	ebene Welle
Impuls $p \in \mathbb{R}^3$	Wellenvektor $k \in \mathbb{R}^3$
Energie $E(p) = p^2/2m$	Kreisfrequenz $\omega(k) = \hbar k^2/2m = c_0$.
	$\begin{aligned} k _2 & \text{Amplidute am Ort } r(t) \text{ mit } \psi(t,r(t)) = \\ & C \cdot \exp\Bigl(\mathring{\imath}(\langle r(t),k \rangle - \omega \cdot t) \Bigr) \to \textit{Wellen-funktion} \end{aligned}$

Tabelle 1: Gegenüberstellung der Teilchen- und Welleneigenschaften.

Es kommen nun die folgenden Fragen auf:

- \rightarrow Wie hängen p und k zusammen?
- \to Was ist die physikalische Bedeutung von $\psi \in C^1(\mathbb{R} \times \mathbb{R}^3, \mathbb{R})$?

Es stellt sich heraus, daß wir die erste Frage bereits mit der de Broglie Relation [\rightarrow IK4 Exp II] beantworten können: $p(k) = \hbar \cdot k$, wobei $\hbar := h/(2\pi)$ mit $h = 6.6 \cdot 10^{-34} \mathrm{J}\,\mathrm{s}$. Für die Energie finden wir aus der Schwarzkörperstrahlung den Zusammenhang $E(\omega) = \hbar \cdot \omega$ (Einstein/Planck) mit $\omega = 2\pi \cdot \nu$. In die Funktion ψ eingesetzt folgt

$$\psi(t,r(t)) = C \cdot \exp\Biggl(\frac{\stackrel{\circ}{\imath} \cdot (\langle p,r(t),-\rangle \, E(p) \cdot t)}{\hbar}\Biggr).$$

Für die Dispersion der Welle gilt

$$E(\omega) = \hbar \cdot \omega = \begin{cases} \frac{\hbar^2 \cdot k^2}{2 \cdot m} & m > 0 \\ \hbar \cdot c_0 \cdot ||k||_2 & \text{sonst} \end{cases} = \begin{cases} \frac{\langle p, p \rangle}{2 \cdot m} & m > 0 \\ c_0 \cdot ||p||_2 & \text{sonst} \end{cases}$$

Theoretische Physik II Skript

Für die physikalische Interpretation müssen wir uns der Wahrscheinlichkeitsinterpretation widmen:

Teilchen	Welle
Aufenthaltswahrscheinlichkeit	Intensität der Welle $ \psi(t,r(t)) ^2$
des Teilchens (pro Volumen) am	
Ort $r(t)$ zur Zeit $t \in \mathbb{R}$	

Prinzipiell ist es möglich, den *Ort* zum *Zeitpunkt* eines Teilchens zu kennen; anders ist es bei quantenmechanischen Wellen. Wir bemerken:

- $\rightarrow \ \psi$ bezeichnet man auch als Wahrscheinlichkeitsamplitude.
- \rightarrow Die Aufenthaltswahrscheinlichkeit des durch rbeschriebenen Teilchens ist gegeben als Integral

$$P(t,V) := \int |\psi(t,x)|^2 \ \lambda|_V (dx) =: \mu(V)$$

mit Wahrscheinlichkeitsmaß $P(t,\cdot)=:\mu$ auf $(\mathbb{R}^3,\sigma(\mathbb{R}^3))$. Auf einem Spurraum $(\Omega,\sigma(\Omega),\mu|_{\Omega})$ erweitern wir

$$P(t,V) := \begin{cases} \int \left| \psi(t,x) \right|^2 \, \lambda |_V \left(dx \right) & V \in \sigma(\mathbb{R}^3) \\ \infty & \text{sonst} \end{cases}.$$

 \rightarrow Aus der Wahrscheinlichkeitsmaß-Eigenschaft $\mu(\mathbb{R}^3)=1$ folgt

$$P(t, \mathbb{R}^3) = \int \left| \psi(t, x) \right|^2 \lambda |_V (dx) = 1.$$

 \to In einem Volumen $W \subseteq V \subseteq \mathbb{R}^3$ gilt $\mu|_V(W) = \lambda(V) \cdot |C|^2$ und für W = V folgt $|C|^2 = \frac{1}{\lambda(V)}$.

Ebene Wellen beschreiben also Teilchen mit wohldefiniertem Impuls $p = \hbar \cdot k$, aber vollständig unbestimmtem Ort.

Wellenpakete

Als nächstes beschäftigen wir uns mit der Frage, wie wir Teilchen mit genau definiertem Aufenthaltsort beschreiben. Wir wenden uns hierbei an das Prinzip der Superposition, konkreter der Fourier-Summation, bei der wir eine Funktion $f \in \mathcal{L}^2(\mathbb{R}^3)$ zerlegen in Funktionen des Typus der ebenen Welle:

$$\psi(t,r(t)) = \frac{1}{(2\cdot\pi)^3} \int \left(\exp\biggl(\stackrel{\circ}{\imath} \cdot (\langle x,r(t)\rangle - \frac{\hbar\cdot x}{2\cdot m} \cdot t) \biggr) \right)_{x\in\mathbb{R}^3} \, \tilde{\psi}|_V \quad V \subseteq \mathbb{R}^3,$$

wobei $(\mathbb{R}^3, \sigma(\mathbb{R}^3), \tilde{\psi})$ ein Maßraum ist.

Literatur