

机器学习工程师直通车

深度学习部分

讲师: 智亮

本节目标

- 1. 感知器的前向计算
- 2. 神经网络的前向计算
- 3. 损失函数与梯度
- 4. 神经网络的训练
- 5. 神经网络的反向传播

inputs weights

$$y = f(w_1x_1 + w_2x_2 + w_3x_3 + bias)$$

$$= f(w_1x_1 + w_2x_2 + w_3x_3 + w_0x_0), x_0 = 1$$

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

矩阵乘法运算

dot product:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 0.1 & 0.2 & 0.3 \\ 0.4 & 0.5 & 0.6 \end{bmatrix} = \begin{bmatrix} 1*0.1 + 2*0.4 & 1*0.2 + 2*0.5 & 1*0.3 + 2*0.6 \\ 3*0.1 + 4*0.4 & 3*0.2 + 4*0.5 & 3*0.3 + 4*0.6 \\ 5*0.1 + 6*0.2 & 5*0.2 + 6*0.5 & 5*0.3 + 6*0.6 \end{bmatrix} = \begin{bmatrix} 0.9 & 1.2 & 1.5 \\ 1.9 & 2.6 & 3.3 \\ 2.9 & 4.0 & 5.1 \end{bmatrix}$$

$$\mathbb{R}[m,n]\cdot\mathbb{R}[n,p]\to\mathbb{R}[m,p]$$

element-wise product / Hadamard product :

$$\begin{bmatrix} 1 & 3 & 2 \\ 1 & 0 & 0 \\ 1 & 2 & 2 \end{bmatrix} \odot \begin{bmatrix} 0 & 0 & 2 \\ 7 & 5 & 0 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1*0 & 3*0 & 2*2 \\ 1*7 & 0*5 & 0*0 \\ 1*2 & 2*1 & 2*1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 4 \\ 7 & 0 & 0 \\ 2 & 2 & 2 \end{bmatrix}$$

感知器的前向计算

$$logit = w_0 x_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + ... + w_n x_n$$

 $w_0 = b$ (bias, 偏置), $x_0 = 1$
 $w = [w_0, w_1, w_2, \cdots, wn], x = [x_0, x_1, x_2, \cdots, x_n]$

则
$$logit = w \cdot x$$

output = f(logit),

感知器的前向计算

感知器的前向计算

向量化

例如

$$x_1 = \begin{bmatrix} -1.0, 3.0, 2.0 \end{bmatrix}$$
 $w = \begin{bmatrix} 4.0, -3.0, 5.0 \end{bmatrix}$ $x_2 = \begin{bmatrix} 2.0, -1.0, 5.0 \end{bmatrix}$ $b = 2.0$ $x_3 = \begin{bmatrix} -2.0, 0.0, 3.0 \end{bmatrix}$ $x_4 = \begin{bmatrix} 4.0, 1.0, 6.0 \end{bmatrix}$

•
$$MX = \begin{bmatrix} -1.0 & 3.0 & 2.0 \\ 2.0 & -1.0 & 5.0 \\ -2.0 & 0.0 & 3.0 \\ 4.0 & 1.0 & 6.0 \end{bmatrix}$$

•
$$\mathbb{N}_{4}$$
 [1.6 , 1.6 , 0.6]
$$\log X = \begin{bmatrix} -1.0 & 3.0 & 2.0 \\ 2.0 & -1.0 & 5.0 \\ -2.0 & 0.0 & 3.0 \\ 4.0 & 1.0 & 6.0 \end{bmatrix}$$
 $\log its = \begin{bmatrix} -1.0 & 3.0 & 2.0 \\ 2.0 & -1.0 & 5.0 \\ -2.0 & 0.0 & 3.0 \\ 4.0 & 1.0 & 6.0 \end{bmatrix} \cdot \begin{bmatrix} 4.0 \\ -3.0 \\ 5.0 \end{bmatrix} + 2.0$
$$= \begin{bmatrix} -1.0 & 38.0 & 9.0 & 45.0 \end{bmatrix}^{T}$$

•
$$\mathbb{M}$$
 output = $f(x) = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$

感知器的运用

• 使用感知器可以完成一些基础逻辑操作

• 例如:逻辑与

x1	x2	output
1	1	1
1	0	0
0	1	0
0	0	0

用感知器实现逻辑运算

逻辑非

逻辑与非

用感知器实现逻辑运算

x1	x2	output
1	1	1
1	0	0
0	1	0
0	0	0

$$w_1 x_1 + w_2 x_2 + b = 0$$

特征 (feature) 真值 (ground truth)

$$x_1 + x_2 - 1 = 0$$

 $2x_1 + 2x_2 - 3 = 0$

通过真值表求解

$$\begin{cases} 1 \times w_1 + 1 \times w_2 + b &> 0 \\ 1 \times w_1 + 0 \times w_2 + b &\leq 0 \\ 0 \times w_1 + 1 \times w_2 + b &\leq 0 \\ 0 \times w_1 + 0 \times w_2 + b &\leq 0 \end{cases} \longrightarrow \begin{cases} w_1 = & 2 \\ w_2 = & 2 \\ b = & -3 \end{cases} \begin{cases} w_1 = & 1 \\ w_2 = & 1 \\ b = & -1 \end{cases}$$

可能的一些解:

$$\begin{cases} w_1 = 2 \\ w_2 = 2 & \text{if } \begin{cases} w_1 = 1 \\ w_2 = 1 \\ b = -1 \end{cases} \\ \begin{cases} w_2 = 1 \\ b = -1 \end{cases}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -0.5 \\ -1 & 1.5 \end{bmatrix}$$

直接进行数值求解一组可能的解:

$$\begin{cases} w_1 = -1 \\ w_2 = 4 \\ b = -3 \end{cases}$$

