

Rec'd PCTO 15 OCT 2004
10/511336

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
23 octobre 2003 (23.10.2003)

PCT

(10) Numéro de publication internationale
WO 03/087562 A1

(51) Classification internationale des brevets⁷ :
F02D 41/40, 35/02, 41/14

de Gisy, F-78943 Velizy-Villacoublay Cedex (FR). DELPHI TECHNOLOGIES INC. [US/US]; P.O. Box 5052, Troy, MI 48007 (US).

(21) Numéro de la demande internationale :
PCT/FR03/01100

(72) Inventeurs; et

(22) Date de dépôt international : 8 avril 2003 (08.04.2003)

(73) Inventeurs/Déposants (pour US seulement) : VERMONET, Claire [FR/FR]; 7, Avenue Victor Hugo, F-75116 Paris (FR). SOUCHON, Vincent [FR/FR]; 3, villa du clos Malevert, F-75011 Paris (FR). MEISSONNIER, Guillaume [FR/FR]; 1, Bourges, F-41190 Landes le Gaulois (FR).

(25) Langue de dépôt : français

(74) Mandataire : GRYNWALD, Albert: Cabinet Grynwald, 127, rue du Faubourg Poissonnière, F-75009 Paris (FR).

(26) Langue de publication : français

(81) États désignés (national) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM,

(30) Données relatives à la priorité :
02/04815 17 avril 2002 (17.04.2002) FR

[Suite sur la page suivante]

(54) Title: DIESEL ENGINE COMPRISING A DEVICE FOR CONTROLLING THE FLOW OF INJECTED FUEL

(54) Titre : MOTEUR DIESEL COMPORTANT UN DISPOSITIF DE CONTRÔLE DU DEBIT D'INJECTION DE CARBURANT

(57) Abstract: The invention relates to a diesel engine comprising a device for controlling the flow of injected fuel with at least one fuel injector supplying a combustion chamber, controlled by a processor provided with means (80) for controlling a series of operations of the injector of differing durations, means for measuring a minimal activation time ($\Delta T_{MA} + \Delta T$) between the issuing of a command and the beginning of an injection and means for subsequently controlling the injector as a function of the measured minimal activation time. According to the invention, the engine is characterised in comprising means for determining the heat output (dQ) brought about by the mixture of air and fuel injected into the chamber and to measure the minimum activation time using said determinations.

(57) Abrégé : L'invention se rapporte à un moteur diesel comportant un dispositif de contrôle du débit d'injection de carburant comprenant au moins un injecteur de carburant, alimentant une chambre de combustion, commandé par un processeur muni de moyens (80) pour commander une série d'activations de l'injecteur de différentes durées. de moyens pour mesurer un temps minimal d'activation($\Delta T_{MA} + \Delta T$) entre l'émission d'une commande et le début d'une injection, et de moyens pour commander ultérieurement l'injecteur en fonction du temps minimal d'activation mesuré. Conformément à l'invention, le moteur est caractérisé en ce qu'il comprend des moyens pour évaluer le dégagement de chaleur (dQ) effectué par le mélange d'air et de carburant injecté dans la chambre et mesurer le temps minimal d'activation à partir de ces évaluations.

WO 03/087562 A1

HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) **États désignés (régional)** : brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Déclaration en vertu de la règle 4.17 :

— relative à la qualité d'inveneur (règle 4.17.iv)) pour US seulement

Publiée :

— avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

**MOTEUR DIESEL COMPORTANT UN DISPOSITIF DE CONTRÔLE DU DEBIT
D'INJECTION DE CARBURANT**

La présente invention se rapporte à un moteur diesel comportant un dispositif de contrôle du débit d'injection de carburant.

Dans un moteur 10 diesel (figure 1) à rampe commune, 5 chaque cylindre 12, 14, 16 et 18 comporte une chambre de combustion 13₁₂, 13₁₄, 13₁₆ ou 13₁₈ dans laquelle est injecté un carburant au moyen d'un injecteur 20₁₂, 20₁₄, 20₁₆ ou 20₁₈ relié à la rampe commune 22. Dans cette dernière, le carburant est maintenu à haute pression par une pompe 24 connectée, via un 10 conduit 26, au réservoir (non représenté) du véhicule, permettant ainsi d'effectuer des injections de carburant dans chaque cylindre à des pressions élevées, généralement comprises entre 200 et 1600 bars.

Le fonctionnement de chaque injecteur 20_i est contrôlé 15 par une unité 28 qui commande la quantité de carburant injectée par cet injecteur dans la chambre 13_i. Pour cela, cette unité 28 reçoit des informations telles que le couple C requis par le conducteur du véhicule ou la pression P du carburant dans la rampe commune, et commande en conséquence une durée d'ouverture 20 ou d'activation de l'injecteur 20_i telle que ce dernier injecte

dans la chambre 13; la quantité de carburant nécessaire à l'obtention du couple requis par le conducteur.

Cette durée d'activation est déterminée en fonction de la quantité de carburant devant être injectée dans les chambres 5 et de la pression de carburant dans la rampe commune. La durée d'activation dépend en outre des caractéristiques de l'injecteur, c'est pourquoi elle est prédéterminée par le constructeur, par exemple de façon empirique. Toutefois, il est connu que le fonctionnement d'un injecteur équipant un véhicule 10 présente des écarts par rapport au fonctionnement prédéterminé. En effet, la prédétermination est effectuée au moyen d'un injecteur modélisé ne prenant en compte ni les tolérances acceptées lors de l'usinage des injecteurs, ni surtout l'usure 15 de ces derniers comme expliqué ci-dessous à l'aide de la figure 2 qui représente le fonctionnement d'un injecteur 20_i après un certain temps de fonctionnement, par exemple l'injecteur 20₁₂, et d'un injecteur modélisé utilisé pour déterminer les données mémorisées dans l'unité 28.

Sur cette figure 2 on a représenté la quantité de carburant injectée en milligrammes (axe des ordonnées 32) dans 20 la chambre de combustion du cylindre i par l'injecteur modélisé (courbe 34) en fonction d'une durée (axe des abscisses 30) d'activation de cet injecteur déterminée en microsecondes. La courbe 36 correspond à l'injection effectuée par l'injecteur 20₁₂ 25 usé.

A partir de la courbe 34, on constate dans un premier temps que, pour un injecteur modélisé, il existe un temps minimal ΔT_{MA} d'activation à compter de l'émission de la commande d'injection (instant T_{28}) avant que l'injection de carburant ne 30 débute dans la chambre et que, dans un deuxième temps, la quantité de carburant injectée varie linéairement par rapport au temps, ce rapport entre quantité de carburant injectée et temps d'activation étant dénommé par la suite pente de fonctionnement de l'injecteur modélisé.

La courbe 36 montre que pour l'injecteur réel 20₁₂ usé, le temps minimal d'activation est plus important : ΔT_{MA} et Δt . En outre, la pente de fonctionnement de l'injecteur 20₁₂ est moins importante que celle de l'injecteur modélisé.

5 Ces écarts présentent des inconvénients gênants pour le fonctionnement du moteur. En effet, lorsqu'un injecteur fonctionne avec un décalage Δt et/ou avec une pente de fonctionnement modifiée, les durées d'activation commandées par l'unité 28 provoquent l'injection d'une quantité de carburant 10 dans les chambres de combustion distincte de la quantité optimale prédéterminée. Par exemple, en considérant qu'une quantité K_m (figure 2) de carburant doit être injectée dans le cylindre 12, l'unité 28 commande une durée d'activation ΔT_K déterminée à partir de la courbe 34. Toutefois, l'injecteur 20₁₂ 15 introduit alors réellement une quantité K_{12} de carburant déterminée par la courbe 36, sensiblement plus faible que la quantité attendue du fait des écarts de fonctionnement dus aux tolérances, à l'usinage et/ou à l'usure des injecteurs.

Ces écarts sont d'autant plus gênants que la pression 20 du carburant est élevée car lorsque cette pression augmente, les écarts en quantités de carburant injectées entre un injecteur, par exemple ayant déjà fonctionné un certain temps, et un injecteur modélisé croissent généralement.

Ces écarts provoquent une baisse des performances 25 (couple, puissance), une augmentation du bruit de combustion et/ou une augmentation des émissions polluantes du moteur, en particulier des oxydes d'azote.

Ces problèmes peuvent concerner l'ensemble des cylindres d'un moteur ou chaque cylindre séparément.

30 La présente invention résulte de la constatation que la correction du décalage Δt d'injection d'un injecteur est suffisante pour corriger de façon satisfaisante les écarts de fonctionnement des injecteurs réels par rapport au fonctionnement prédéterminé, comme décrit ci-dessous à l'aide 35 des figures 3 et 4.

Sur la figure 3 on a représenté des écarts $\Delta g'$ (axe des ordonnées 42), mesurés en milligrammes, entre, d'une part, la quantité de carburant commandée (axe des abscisses 40), également en milligrammes, à un premier injecteur présentant 5 seulement un décalage Δt d'injection, et, d'autre part, la quantité de carburant, en milligrammes, réellement injectée par cet injecteur. Différentes mesures 44₁, 44₂, 44₃, 44₄, 44₅ et 44₆ réalisées à différentes pressions de carburant à l'injection (respectivement 230, 540, 680, 810, 950 et 1200 bars pour les 10 courbes 44₁ à 44₆) montrent que l'écart Δg le plus important intervient pour des commandes de carburant inférieures à 15 milligrammes, notamment pour des commandes de l'ordre de 7 milligrammes. Ces mesures se rapportent à un décalage Δt , sans modification de pente par rapport à l'injecteur modélisé.

15 Sur la figure 4 on a représenté les écarts mesurés $\Delta g'$ (axe des ordonnées 42') en milligrammes entre la quantité de carburant commandée (axe des abscisses 40'), également indiquée en milligrammes, et la quantité de carburant réellement injectée dans le cas où l'on tient compte pour l'injecteur testé non 20 seulement d'un décalage Δt mais aussi d'une pente de fonctionnement modifiée.

En comparant les écarts Δg et $\Delta g'$, on observe que pour des quantités de carburant commandées inférieures à 15 milligrammes, l'écart Δg de la figure 3, où seul un décalage Δt 25 à l'injection est pris en compte, est pratiquement égal à l'écart $\Delta g'$ de la figure 4 où le même décalage Δt à l'injection et une pente de fonctionnement distincte sont considérées.

Par ailleurs, la réglementation, notamment européenne, tend à limiter la quantité de carburant injectée dans les 30 chambres de combustion à 15 mg dans les conditions habituelles de conduite. Autrement dit, les quantités injectées qui seraient supérieures à cette valeur ne sont pas représentatives de la majorité des parcours effectués par un véhicule, notamment des parcours urbains.

Pour déterminer la durée d'activation minimale (ΔT_{MA} et Δt) réellement nécessaire à cet injecteur afin d'effectuer une injection de carburant dans la chambre de combustion, c'est-à-dire le temps minimal d'activation de l'injecteur, on peut 5 effectuer une série d'activations de durées croissantes d'un injecteur de telle sorte que, lorsqu'une injection de carburant est détectée, on attribue la durée minimale détectée comme durée d'activation minimale.

Toutefois, il peut être difficile de détecter une 10 faible injection de carburant par exemple pour l'injection pilote, notamment du fait que cette dernière est proche du PMH qui génère une injection de carburant supérieure à l'injection de carburant propre à l'injection pilote.

C'est pourquoi, l'invention concerne un moteur diesel 15 comportant un dispositif de contrôle du débit d'injection de carburant comprenant au moins un injecteur de carburant, alimentant une chambre de combustion, commandé par un processeur muni de moyens pour commander une série d'activations de l'injecteur de différentes durées, des moyens pour mesurer un 20 temps minimal d'activation entre l'émission d'une commande et le début d'une injection, et de moyens pour commander ultérieurement l'injecteur en fonction du temps minimal d'activation mesuré, caractérisé en ce qu'il comprend des moyens pour évaluer le dégagement de chaleur effectué par le mélange 25 d'air et de carburant injecté dans la chambre et mesurer le temps minimal d'activation à partir de ces évaluations.

Au moyen de mesures de dégagements de chaleur, la détection d'une injection de carburant, et donc la détermination du temps minimal d'activation, s'effectue avec une grande 30 précision.

Dès lors, en comparant le temps minimal d'activation mesuré (ΔT_{MA} et Δt) avec le temps minimal d'activation prédéterminé (ΔT_{MA}), le processeur peut déterminer le décalage (Δt) affectant cet injecteur. Le décalage (Δt) étant déterminé, 35 le processeur peut corriger ses commandes vis-à-vis de

l'injecteur en considérant que la durée d'activation minimale nécessaire pour débuter une injection est égale au temps minimal d'activation prédéterminé (ΔT_{MA}) modifié par le décalage (Δt), positif ou négatif, déterminé par mesure. Ainsi, les durées 5 d'activation commandées par le processeur sont corrigées de ce décalage (Δt).

Dans une réalisation, les moyens pour commander les durées d'activation comprennent des moyens pour modifier un temps minimal d'activation prédéterminé d'un décalage résultant 10 de la mesure.

Selon une réalisation, le processeur comporte des moyens pour que les activations utilisées pour mesurer la pression soient distinctes des activations commandant les injections principales de carburant destinées à générer un 15 couple au moteur.

Selon un mode de réalisation, le processeur comporte des moyens pour que les activations correspondent à des injections pilotes destinées à établir des conditions optimales de température dans le cylindre vis-à-vis des injections 20 principales.

Dans une réalisation, le processeur comprend des moyens pour évaluer le dégagement de chaleur effectué par le mélange d'air et de carburant dans la chambre et mesurer le temps minimal d'activation à partir de ces évaluations.

25 Dans une réalisation, le processeur comporte des moyens pour déterminer le dégagement de chaleur à partir de mesures de pression dans la chambre.

Selon une réalisation, le processeur comporte des moyens pour évaluer le dégagement de chaleur à partir des 30 mesures de pression à l'aide d'une relation du type :

$$\delta Q = 1/(\gamma - 1) * (\gamma P * dV + V * dP),$$

où δQ est le dégagement de chaleur, P et V la pression et le volume du mélange dans la chambre, dP et dV leurs variations et γ est une constante.

Dans une réalisation, le processeur comprend des moyens pour déterminer le temps minimal d'activation en évaluant le dégagement de chaleur moyen sur un intervalle du cycle moteur comprenant l'injection pilote.

5 Dans une réalisation, le moteur comprend plusieurs injecteurs alimentés en carburant par une rampe commune.

Selon une réalisation, la série d'activations de l'injecteur est effectuée à pression d'alimentation et régime constants.

10 Dans une réalisation, le processeur comprend des moyens pour effectuer de façon périodique les séries d'activations.

L'invention concerne aussi un processeur de commande du débit d'injection de carburant dans un moteur à combustion interne comprenant des moyens pour commander une série 15 d'activations de différentes durées à un injecteur alimentant une chambre de combustion, des moyens pour mesurer un temps minimal d'activation entre l'émission d'une commande et le début d'une injection, et des moyens pour commander ultérieurement cet 20 injecteur en fonction du temps minimal d'activation mesuré, caractérisé en ce qu'il comprend des moyens pour évaluer le dégagement de chaleur effectué par le mélange d'air et de carburant dans la chambre et mesurer le temps minimal d'activation à partir de ces évaluations.

25 Dans une réalisation, le processeur comprend des moyens pour modifier un temps minimal d'activation prédéterminé d'un décalage résultant de la mesure.

Selon un mode de réalisation, le processeur comprend 30 des moyens pour que les activations utilisées pour mesurer le temps minimal d'activation soient distinctes des activations commandant les injections principales de carburant destinées à générer un couple au moteur.

Dans une réalisation, le processeur comporte des moyens pour que les activations correspondent à des injections 35 pilotes destinées à établir des conditions optimales de

température dans le cylindre vis-à-vis de l'injection principale.

D'autres caractéristiques et avantages de l'invention apparaîtront avec la description de certaines de ses 5 réalisations effectuée ci-dessous à titre non limitatif en se référant aux dessins ci-annexés sur lesquels :

La figure 1, déjà décrite, représente un moteur diesel connu équipé d'une rampe commune,

la figure 2, déjà décrite, représente des écarts de 10 fonctionnement entre un injecteur réel et un injecteur modélisé,

les figures 3 et 4, déjà décrites, représentent des écarts de fonctionnement entre des injecteurs réels et un injecteur modélisé,

la figure 5 représente des mesures de pression dans 15 une chambre de combustion suivant une première réalisation de l'invention,

la figure 6 représente des évaluations de dégagements de chaleur dans une chambre de combustion suivant une deuxième réalisation de l'invention,

20 la figure 7 représente des évaluations de dégagements de chaleur mesurés dans différentes chambres de combustion suivant différents temps d'activation des injecteurs de ces chambres,

la figure 8 est un diagramme représentant, sous forme 25 de blocs, différentes opérations effectuées par une unité centrale conforme à l'invention,

la figure 9 est un diagramme, également sous forme de blocs, d'une opération représentée sur la figure 8,

30 la figure 10 représente une linéarisation de mesures effectuées dans une chambre de combustion conformément à l'invention,

la figure 11 représente une utilisation de la linéarisation décrite à la figure 10,

35 les figures 12 et 13 représentent des mesures de courant conformément à une troisième réalisation de l'invention,

les figures 14 et 15 représentent des mesures de courant conformément à une quatrième réalisation de l'invention, et

la figure 16 représente une combinaison de la 5 troisième et de la quatrième réalisations de l'invention.

Les diverses réalisations de l'invention décrites ci-dessous sont relatives à des moteurs diesel comprenant des cylindres munis d'un injecteur de carburant commandé par une unité centrale (microprocesseur). Cette unité comprend des 10 moyens, conformes à l'invention, pour effectuer une série d'activations de différentes durées pour chaque injecteur et mesurer le temps minimal d'activation de l'injecteur de façon à modifier les durées d'activation commandées à cet injecteur d'un décalage (Δt) déterminé entre le temps minimal d'activation 15 mesuré et le temps minimal d'activation prédéterminé.

Par ailleurs, dans ces réalisations, la mesure du temps minimal d'activation d'un injecteur s'effectue en détectant les variations d'un paramètre de la chambre de combustion modifié par une injection de carburant, cette chambre 20 comprenant des moyens pour transmettre ces détections à l'unité.

Dans une première réalisation, le paramètre physique détecté est la pression dans les chambres de combustion. A cet effet, chaque chambre comporte un capteur mesurant sa pression interne et transmettant ces mesures à l'unité centrale, cette 25 dernière comprenant des moyens pour recevoir ces mesures et déterminer le temps minimal d'activation mesuré.

Dans cette première réalisation, comme dans toutes les réalisations décrites ci-dessous, les séries d'activations commandées à des injecteurs pour détecter leur décalage sont 30 distinctes des activations commandant l'injection de carburant, dite injection principale, qui fournit le couple du moteur. Plus précisément, ces activations correspondent à des injections de carburant, dites pilotes, qui permettent d'établir dans les chambres de combustion des conditions optimales de température 35 et de pression vis-à-vis de l'injection principale postérieure.

Ces deux injections, pilote et principale, sont représentées sur le diagramme de la figure 5 où l'axe 52 des ordonnées correspond à la pression mesurée en bars dans une chambre de combustion d'un cylindre et l'axe 50 des abscisses 5 correspond à l'angle du vilebrequin de ce cylindre, c'est-à-dire le parcours du cycle à quatre temps (injection, compression, combustion/ détente et échappement) de combustion effectuée par ce cylindre. L'angle 0 correspond à la position du piston au Point Mort Haut (PMH), les angles négatifs correspondent aux 10 étapes d'injection et de compression et les angles positifs correspondent aux étapes de combustion/détente et d'échappement.

La mesure de la pression dans la chambre alimentée par l'injecteur testé est effectuée pour différentes durées croissantes d_1 , d_2 , d_3 et d_4 d'activation à une pression de 15 carburant à l'injection constante telle que 200, 400, 600, 800, 1200 ou 1600 bars. Une courbe D_i indiquant la pression mesurée dans le cylindre en fonction de l'avancement du cycle de combustion est alors obtenue, à une pression donnée de carburant 20 à l'injection, pour chaque durée d_i d'activation de l'injecteur.

On observe alors que la durée d_1 (courbe D_1) est telle qu'aucune injection pilote n'est effectuée tandis que les durées d_2 (courbe D_2), d_3 (courbe D_3) et d_4 (courbe D_4) engendrent une 25 injection pilote caractérisée par une augmentation 56 de pression, due à l'injection pilote, tandis qu'une deuxième augmentation 58 de pression est engendrée par l'injection principale.

En commandant une série d'injections pilotes de différentes durées d'activation à chaque cycle, une unité de commande peut établir la durée minimale d'activation d'un 30 injecteur en vérifiant la présence d'une augmentation 56 de pression pour cette durée qui correspond alors au temps minimal d'activation mesuré pour cet injecteur. L'unité détermine le décalage Δt de cet injecteur c'est-à-dire l'écart entre le temps minimal d'activation prédéterminé et le temps minimal 35 d'activation mesuré, et commande alors correctement l'injecteur

en affectant ultérieurement (après ces mesures) les durées d'activation commandées à cet injecteur d'un décalage Δt .

Chaque courbe de la figure 5 est obtenue grâce à une pluralité d'essais effectués lorsque le moteur est à régime et à charge fixés, la quantité de carburant injectée lors de l'injection principale étant aussi constante.

Il peut être difficile de mesurer l'augmentation de pression due à l'injection pilote, notamment du fait que cette dernière est proche du PMH qui génère une augmentation de pression supérieure à l'augmentation de pression propre à l'injection pilote. Dans ce cas, les mesures peuvent être insuffisamment précises. C'est pourquoi, dans une deuxième réalisation de l'invention, des mesures de chaleur dégagée dans une chambre de combustion sont utilisées comme le paramètre physique permettant de déterminer un décalage d'un injecteur. De tels dégagements de chaleurs peuvent être déterminés, par exemple, à partir des mesures de pression effectuées précédemment. La détection des injections de carburant, et donc la détermination du temps minimal d'activation mesuré s'effectue alors avec une plus grande précision comme décrit ci-dessous.

Le dégagement de chaleur δQ effectué dans une chambre de combustion lors d'une injection de carburant engendre une variation de la pression de la chambre. En effet, en considérant le premier principe de la thermodynamique appliqué au système composé par le mélange gazeux d'air et de carburant injecté dans le cylindre, on peut écrire :

$$dU = \delta W + \delta Q \quad (1)$$

où dU est la variation d'énergie interne du carburant, et δQ et δW sont la chaleur et le travail reçus par ce mélange.

Le mélange étant considéré comme un gaz parfait, on peut aussi écrire :

$$dU = n * Cv * dT \quad (2) \quad \text{et} \quad PV = nRT \quad (3)$$

où n est le nombre de moles du mélange et Cv sa capacité calorifique, dT est sa variation de température et P , V et T

sont respectivement sa pression, son volume et sa température, R étant une constante égale à 8,314.

Le travail élémentaire δw du mélange en extension étant égal à $-PdV$, la relation (1) devient :

$$5 \quad \delta Q = n * Cv * dT + PdV \text{ (1bis).}$$

En différenciant (3) on obtient alors

$$n * dT = (P * dV + V * dP) / R,$$

ce qui permet de développer l'équation (1bis) en

$$10 \quad \delta Q = (Cv / R + 1) * P * dV + Cv / R * VdP \text{ (1ter).}$$

Pour un gaz parfait, on a la relation $Cv/R=1/(\gamma-1)$ avec γ coefficient polytropique, $\gamma \approx 1.34$, qui permet d'obtenir, à partir de (1ter) :

$$\delta Q = 1 / (\gamma - 1) * (\gamma P * dV + V * dP). \quad (4)$$

δQ se décompose en $\delta Q = \delta Q_{\text{combustion}} + \delta Q_{\text{parois}}$ où $\delta Q_{\text{combustion}}$ représente la chaleur reçue par le mélange lors de la combustion et δQ_{parois} la chaleur perdue aux parois. Dans un premier temps, on néglige le terme δQ_{parois} .

La relation entre le dégagement de chaleur et l'avancement du cycle de fonctionnement du cylindre est représentée sur la figure 6 qui détermine le dégagement de chaleur dQ (axe 62 des ordonnées) évalué en joules par degré de vilebrequin dans une chambre de combustion en fonction de l'avancement du cycle de combustion dans le cylindre (axe 60 des abscisses) mesuré en degrés de vilebrequin. Cette figure 6 a été obtenue en appliquant la formule (4) ci-dessus à des mesures de pression obtenues comme représentées à la figure 5, le volume V et la variation dV du mélange gazeux étant obtenus à partir du volume de la chambre et de sa variation.

Sur cette figure 6 on a représenté différentes courbes (D'_1 , D'_2 , D'_3 et D'_4) représentant les dégagements de chaleur évalués en fonction de différentes durées (respectivement d'_1 , d'_2 , d'_3 et d'_4) d'activation de l'injecteur testé à des pressions constantes d'injection de carburant dans la chambre telles que 200, 400, 800, 1200 ou 1600 bars. On observe alors qu'un dégagement de chaleur (zone 56' de la figure 6) révélant

une injection pilote se détecte plus aisément qu'une augmentation de pression telle que précédemment décrite (zone 56 de la figure 5), notamment du fait qu'au PMH, postérieur à l'injection pilote, il ne se produit pas de dégagement de chaleur. On constate aussi que pour la durée d_1 d'activation correspondant à la courbe D_{i1} , aucune injection pilote n'est effectuée.

Dès lors, la détection du temps minimal d'activation au moyen des dégagements de chaleur calculés est plus précise, comme montré sur la figure 7 qui représente des mesures de dégagements de chaleur (axe 72 des ordonnées) en joules par degré de vilebrequin, en fonction de différentes durées d'activation mesurées en microsecondes (axe 74 des abscisses) pour quatre injecteurs testés i_1 (courbe D_{i1}), i_2 (courbe D_{i2}), i_3 (courbe D_{i3}), et i_4 (courbe D_{i4}). Une mesure de dégagement de chaleur est obtenue, pour un injecteur i_j et pour une durée d'activation d_j donnée, en intégrant la surface 56' de la figure 6 obtenue avec l'injecteur i_j et la durée d_j d'activation.

On constate ainsi que le dégagement de chaleur passe d'une valeur nulle à une valeur positive lorsque l'injection pilote a effectivement lieu dans le cylindre, aux alentours de 265 microsecondes, une telle variation étant plus simple à détecter qu'une variation dans la croissance d'un paramètre, comme effectué selon le premier mode de réalisation.

Par ailleurs, les essais effectués par des mesures de chaleur montrent une très faible dispersion dans les résultats obtenus ainsi qu'une grande robustesse pour les différentes pressions auxquelles ont été effectuées ces tests.

Sur la figure 8 est représenté un diagramme des opérations effectuées par une unité 80 corigeant les commandes d'injection émises vis-à-vis de quatre injecteurs conformément à l'invention. A cet effet, cette unité 80 est informée du régime R et du couple C du moteur de façon à détecter (bloc 82) si le moteur opère à un point de fonctionnement auquel une détermination du décalage d'injection doit être effectuée, ce

point étant défini par des conditions de couple C et de régime R du moteur ainsi que par la pression P du carburant à l'injection, cette pression P étant imposée par les conditions de couple C et de régime R.

5 Si tel est le cas, l'unité 80 effectue une détermination (bloc 84) qui fixe les instants d'injection de carburant à des valeurs prédéterminées. Dans cet exemple, ces instants sont fixés, pour l'injection principale, à plus quinze degrés et pour l'injection pilote à moins quinze degrés de 10 vilebrequin. L'instant d'injection principale est fixé préalablement à l'instant d'injection pilote de façon à assurer le maintien du couple C délivré par le moteur et à ne pas perturber la marche du véhicule lors de la mesure.

Après une période de stabilisation du moteur d'environ 15 100 cycles, le régime R, le couple C et la quantité K de carburant injectée lors de l'injection principale sont mémorisés par l'unité 80.

Ensuite, pour chaque injecteur i considéré dans le moteur, l'unité 80 effectue une série d'opérations 86 évaluant 20 le décalage de l'injecteur i dans les conditions précédemment mémorisées de régime R, de couple C et de quantité de carburant injecté K. Ainsi, la série d'opérations 86 peut être effectuée quatre fois, une fois pour chaque injecteur i, de façon à déterminer un décalage $\Delta t_i(P)$ de chaque injecteur i à la 25 pression P d'injection de carburant.

Chaque série d'opérations 86 comprend cinq suites 90 d'évaluation du décalage $\Delta t_i(P)$ de l'injecteur considéré. Lorsqu'une suite 90 d'évaluations est amorcée pour un injecteur (bloc 88), les opérations suivantes sont effectuées:

30 Une première opération (bloc 92) détermine un seuil S_{dq} de dégagement de chaleur (utilisé comme décrit ultérieurement) en évaluant le dégagement dQ_m de chaleur moyen mesuré peu avant que l'injection pilote de carburant soit effectuée, puis en ajoutant à cette valeur moyenne dQ_m une quantité constante telle 35 qu'un dégagement de chaleur supérieur au seuil S_{dq} soit

détectable par rapport au dégagement moyen dQ_m . Dans cet exemple, quatre cycles de mesures sont utilisés pour calculer le dégagement dQ_m de chaleur moyen et la quantité constante ajoutée est de 0,15 J/deg.

5 Lors d'une deuxième opération (bloc 94), l'unité 80 détermine une durée Δt_f d'activation initiale faible, par exemple correspondant à l'injection de 0,01 milligramme de carburant, pour débuter la série des différentes durées d'activation et la détermination (bloc 96) du décalage $\Delta t_i(P)$
10 affectant l'injecteur i comme décrit ultérieurement à l'aide de la figure 9. Puis, le décalage $\Delta t_i(P)$ étant mesuré, sa valeur est mémorisée (bloc 98) en association avec la pression P d'injection utilisée afin de linéariser les mesures sur un domaine de pression, comme décrit ultérieurement à l'aide des
15 figures 10 et 11.

La détermination du décalage $\Delta t_i(P)$ représentée à la figure 9 utilise un calcul automatique pour déterminer la valeur de la durée d'activation la plus faible entraînant une injection pilote de carburant dans le cylindre, c'est-à-dire un dégagement de chaleur. A cet effet, les diverses durées d'activation commandées par l'unité 80 sont considérées comme composées d'une partie fixe Δt_f , et d'une partie variable X_0 . La détermination de la durée d'activation minimale, ou du temps minimal d'activation d'un injecteur, consiste donc à rechercher une valeur de X_0 minimale, dite X_{m0} , telle qu'après un temps d'activation égal à $\Delta t_f + X_{m0}$ le dégagement de chaleur mesuré dans la chambre de combustion soit supérieur à S_{dQ} .

Une telle recherche peut être effectuée à l'aide de divers procédés. Dans cet exemple, une dichotomie est utilisée
30 pour réduire un intervalle délimité par des variables initiales X_{max} et X_{min} définies lors d'une opération d'initiation de la dichotomie (bloc 108) de façon telle que, pour une durée d'activation égale à $\Delta t_f + X_{max}$, un dégagement de chaleur dû à l'injection pilote soit détecté et que, pour une durée
35 d'activation égale à $\Delta t_f + X_{min}$, cette injection pilote ne soit

pas détectée, tandis que la variable X_0 est alors fixée à $X_{\max} + X_{\min} / 2$.

Puis, le calculateur 80 effectue des mesures de dégagement de chaleur (bloc 96) pour une durée d'activation égale à $\Delta t_f + X_0$, comme décrit à l'aide de la figure 6, c'est-à-dire en intégrant le dégagement 56' mesuré pour un délai d'activation de $\Delta t_f + X_0$.

En d'autres termes, lors d'une opération 96, on mesure le dégagement $dQ_m(\Delta t_f + X_0)$ de chaleur moyen sur la période $[\alpha_{\min} ; \alpha_{\max}]$ où α_{\min} et α_{\max} correspondent à des valeurs d'angles de vilebrequin respectivement préalables et postérieures à l'angle du vilebrequin où se produit l'éventuelle injection pilote.

En comparant (bloc 112) ce dégagement $dQ_m(\Delta t_f + X_0)$ moyen avec le seuil S_{dQ} de dégagement précédemment calculé sur ce même intervalle $[\alpha_{\min} ; \alpha_{\max}]$, on détermine si le dégagement $dQ_m(\Delta t_f + X_0)$ mesuré est supérieur au seuil S_{dQ} auquel cas on peut déduire que X_{\min} est plus proche de X_{om} que X_{\max} . Dans ce cas, la variable X_{\min} est maintenue à sa valeur initiale, et la variable X_{\max} prend la valeur de la variable X_0 , la valeur de cette dernière variable X_0 étant la moyenne $(X_{\min} + X_{\max}) / 2$ de ces nouvelles bornes $(X_{\min}; X_{\max})$ (bloc 114).

Inversement, si le dégagement $dQ_m(\Delta t_f + X_0)$ mesuré est inférieur au seuil S_{dQ} , on peut déduire que X_{\max} est plus proche de X_{om} que X_{\min} . Dans ce cas, la variable X_{\max} est maintenue à sa valeur initiale, la variable X_{\min} prend la valeur de la variable X_0 , la valeur de cette dernière variable X_0 étant calculée à partir des nouvelles bornes $(X_{\min}; X_{\max})$ (bloc 116).

Un test de convergence (opération 118) permet de vérifier si la période $[X_{\min} ; X_{\max}]$ satisfait à un critère de convergence donné, indicatif de la précision voulue dans le calcul du temps minimal d'activation ($\Delta t_f + X_0$). Si ce critère de convergence est satisfait, c'est-à-dire si l'intervalle $[X_{\min}; X_{\max}]$ est inférieur à une durée donnée, l'unité 80 détermine la dernière valeur de X_0 comme étant égale à X_{om} , c'est-à-dire telle que le temps minimal d'activation mesuré est $\Delta t_f + X_{\text{om}}$ dans

les conditions données (pression et régime) de fonctionnement (bloc 120).

5 Sinon, la période $[X_{\min} ; X_{\max}]$ étant trop grande, le calcul du dégagement de chaleur moyen sur la nouvelle période est effectué (bloc 96) ainsi que le test 112 sur cette nouvelle valeur et les opérations (blocs 114 et 116) déjà décrites.

Le stockage de ce résultat (bloc 98 de la figure 8) permet d'effectuer la moyenne des cinq valeurs calculées pour chaque paire donnée de conditions de pression et de régime.

10 Ces conditions de fonctionnement sont choisies de façon à couvrir l'ensemble de la plage de fonctionnement du moteur. A cet effet, en considérant que cette plage s'étend de 200 à 1600 bars (figure 10), une linéarisation des décalages mesurés est effectuée sur des plages de pression couvrant 200
15 bars de variation, telle qu'une plage allant de 400 à 600 bars.

Par la suite, lorsque le moteur fonctionne à une pression P comprise dans une telle plage de linéarisation, la valeur du décalage considéré pour cette pression P correspond à la valeur déterminée par cette linéarisation (figure 11).

20 Dans une autre réalisation de l'invention, on détecte le retard d'injection d'un injecteur en mesurant le courant ionique créé par une combustion de carburant. A cet effet, on intègre un capteur de courant ionique dans la chambre, par exemple à l'aide d'une bougie de préchauffage située dans le
25 cylindre, cette bougie de préchauffage jouant le rôle d'une électrode transmettant un courant lorsque des ions issus d'une combustion sont situés à sa proximité. Dans une autre réalisation, l'injecteur est utilisé comme électrode.

La figure 12 représente un tel courant électrique (axe
30 des ordonnées 122) exprimé en volts en fonction des différentes durées d'activation des injecteurs testés. Sur cette figure 12, les mesures maximales de courant ionique relatives à quatre injecteurs i'_1 , i'_2 , i'_3 et i'_4 sont représentées. Ces durées d'activation sont exprimées en microsecondes (axe des abscisses

120). On observe alors qu'une augmentation des durées d'activation génère une augmentation du courant ionique mesuré.

Toutefois, de par sa nature locale, la mesure du courant ionique donne des mesures plus dispersées que celles concernant une pression ou un dégagement de chaleur. C'est pourquoi, comme représenté sur la figure 13 pour un injecteur 5 i_1 , on peut réaliser plusieurs mesures de courant ionique pour une même durée d'activation et considérer la moyenne $\langle i_1 \rangle$ de ces courants d'activation comme la mesure associée à cette durée 10 afin de déterminer la durée minimale 125 d'activation générant une injection pilote.

Une autre réalisation de l'invention utilise la détection du courant ionique généré par l'injection principale pour détecter la réalisation d'une injection pilote. En effet, 15 en effectuant une injection pilote préalable à l'injection principale, la quantité principale de carburant brûle sensiblement plus tôt que lorsqu'elle arrive dans une chambre plus froide.

Sur cette figure 14 est représenté l'instant où 20 l'injection principale est détectée, cet instant étant défini par des degrés vilebrequin (axe des ordonnées 128) dans la chambre de combustion en fonction de différentes durées d'activation (axe des abscisses 130) commandées à des injecteurs i_5 , i_6 , i_7 et i_8 pour des injections pilotes.

On remarque, dans un premier temps, que la 25 distribution des mesures effectuées dans cette réalisation diffère de la distribution des mesures de courant effectuées dans la réalisation précédemment décrite. De fait, les mesures montrées à la figure 14 sont relatives à l'instant mesuré de l'injection principale de carburant, détecté par la mesure d'un courant ionique. Ainsi, en l'absence d'injection pilote (durée 30 d'activation comprise entre 50 et 175 microsecondes), l'injection principale est détectée pour des valeurs de degrés vilebrequins comprises majoritairement entre huit et dix degrés. 35 Inversement, en présence d'injection pilote (durée d'activation

comprise entre 200 et 400 microsecondes), l'injection principale débute plus rapidement pour se stabiliser à cinq degrés de virebrequins.

On remarque aussi, dans un deuxième temps, que la 5 variation de la valeur mesurée (degrés de virebrequins) est plus importante, et donc plus facilement détectable dans cette réalisation que la variation de courant ionique dans la réalisation précédemment décrite. De fait, le courant ionique créé par l'injection principale est plus important que le 10 courant ionique créé par une injection pilote et sa mesure plus aisée.

De façon analogue à la réalisation précédemment décrite, des mesures multiples relatives à un injecteur i_i (figure 15) peuvent être utilisées pour obtenir une mesure 15 moyenne $\langle i_i \rangle$ utilisée pour déterminer le seuil 133 indiquant la durée minimale d'activation générant une injection pilote.

Toutefois, les mesures de degrés virebrequins ont aussi une distribution étendue et la durée d'injection minimale, où débute la diminution du courant ionique, peut être de 20 détermination insuffisamment précise.

C'est pourquoi, dans une réalisation, on utilise une combinaison de la détection des deux phénomènes décrits ci-dessus, c'est-à-dire la détection d'un courant ionique dû à une injection pilote et l'influence de cette injection sur 25 l'injection principale pour obtenir une détection fine et linéaire de l'instant d'injection comme représenté sur la figure 16.

Sur cette figure 16 est représentée la mesure de courant ionique (axe 136 des ordonnées) effectuée dans un cylindre pour des durées d'activation d_4 (courbe D_4), d_5 (courbe 30 D_5) et d_6 (courbe D_6) d'activation distinctes de son injecteur. Les mesures de courant étant représentées suivant l'avancement 35 du cycle en degrés de virebrequins (axe 138 des abscisses), on remarque qu'en présence d'une injection pilote (courbes D_5 et D_6), l'injection principale est plus rapide et débute vers 3

degrés vilebrequins tandis qu'en l'absence d'injection pilote (courbe D₄), l'injection principale n'est détectée que vers huit degrés vilebrequins. Par ailleurs, on détecte l'injection pilote (courbes D₅ et D₆) vers moins huit degrés vilebrequins.

5 Dans une réalisation de l'invention, les mesures de décalages et les mémorisations qui en résultent sont effectuées périodiquement, par exemple tous les 1000 km parcourus par le véhicule.

10 Dans une variante de l'invention, les mesures et mémorisations sont effectuées lors des révisions du véhicule.

REVENDICATIONS

1. Moteur diesel comportant un dispositif de contrôle du débit d'injection de carburant comprenant au moins un injecteur de carburant, alimentant une chambre de combustion, commandé par un processeur muni de moyens (80) pour commander une série d'activations de l'injecteur de différentes durées, de moyens pour mesurer un temps minimal d'activation ($\Delta T_{MA} + \Delta t$) entre l'émission d'une commande et le début d'une injection, et de moyens pour commander ultérieurement l'injecteur en fonction du temps minimal d'activation mesuré, caractérisé en ce qu'il comprend des moyens pour évaluer le dégagement de chaleur (dQ) effectué par le mélange d'air et de carburant injecté dans la chambre et mesurer le temps minimal d'activation à partir de ces évaluations.

2. Moteur selon la revendication 1 caractérisé en ce que les moyens pour commander les durées d'activation comprennent des moyens pour modifier un temps minimal d'activation prédéterminé (ΔT_{MA}) d'un décalage (Δt) résultant de la mesure.

3. Moteur selon la revendication 2 caractérisé en ce que le processeur comporte des moyens pour que les activations utilisées pour mesurer le dégagement de chaleur soient distinctes des activations commandant les injections principales de carburant destinées à générer un couple au moteur.

4. Moteur selon la revendication 3 caractérisé en ce que le processeur comporte des moyens pour que les activations utilisées pour mesurer le dégagement chaleur correspondent à des injections pilotes destinées à établir des conditions optimales de température dans le cylindre vis-à-vis des injections principales destinées à fournir le couple moteur.

5. Moteur selon l'une des revendications précédentes caractérisé en ce que le processeur comporte des moyens pour déterminer le dégagement de chaleur à partir de mesures de pression dans la chambre.

6. Moteur selon la revendication 5, caractérisé en ce que le processeur comporte des moyens pour déterminer le dégagement de chaleur à partir de mesures de pression dans la chambre à l'aide d'une relation du type :

$$\delta Q = 1/(\gamma - 1) * (\gamma P * dV + V * dP),$$

où δQ est le dégagement de chaleur, P et V la pression et le volume de ce mélange dans la chambre, dP et dV leurs variations et γ est une constante.

7. Moteur selon l'une des revendications précédentes, caractérisé en ce que le processeur comprend des moyens pour déterminer le temps minimal d'activation mesuré en évaluant le dégagement de chaleur moyen sur un intervalle du cycle moteur comprenant l'injection pilote.

8. Moteur selon l'une des revendications précédentes caractérisé en ce qu'il comprend plusieurs injecteurs alimentés en carburant par une rampe commune.

9. Moteur selon l'une des revendications précédentes caractérisé en ce que la série d'activations de l'injecteur est effectuée à pression d'alimentation et à régime constants.

10. Moteur selon l'une des revendications précédentes caractérisé en ce que le processeur comprend des moyens pour effectuer de façon périodique les séries d'activations.

11. Processeur de commande du débit d'injection de carburant dans un moteur à combustion interne comprenant des moyens pour commander une série d'activations de différentes durées à un injecteur alimentant une chambre de combustion, des moyens pour mesurer un temps minimal d'activation ($\Delta T_M + \Delta t$) entre l'émission d'une commande et le début d'une injection, et des moyens pour commander ultérieurement cet injecteur en fonction du temps minimal d'activation mesuré, caractérisé en ce qu'il comprend des moyens pour évaluer le dégagement de chaleur (dQ) effectué par le mélange d'air et de carburant dans la chambre et mesurer le temps minimal d'activation à partir de ces évaluations.

12. Processeur selon la revendication 11 caractérisé en ce qu'il comprend des moyens pour modifier un temps minimal d'activation prédéterminé (ΔT_{MA}) d'un décalage (Δt) résultant de la mesure.

13. Processeur selon la revendication 11 ou 12 caractérisé en ce qu'il comprend des moyens pour que les activations utilisées pour mesurer le temps minimal d'activation soient distinctes des activations commandant les injections principales de carburant destinées à générer un couple moteur.

14. Processeur selon la revendication 13 caractérisé en ce qu'il comporte des moyens pour que les activations correspondent à des injections pilotes destinées à établir des conditions optimales de température dans le cylindre vis-à-vis de l'injection principale.

1/9

FIG_1FIG_2

2/9

FIG_3FIG_4

3/9

FIG_5

FIG_6

5/9

FIG_8

6/9

FIG_9

7/9

FIG_12FIG_13

8 / 9

FIG_14FIG_15

9/9

FIG_16

INTERNATIONAL SEARCH REPORT

Inter. Application No.

PCT/FR 03/01100

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 F02D41/40 F02D35/02 F02D41/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 F02D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 070 836 A (WAHL ET AL.) 10 December 1991 (1991-12-10) the whole document	1-4, 11-13
A	WO 99 61771 A (MECEL DELCO ELECTRONICS CORPORATION) 2 December 1999 (1999-12-02) the whole document	1,2,4, 8-14
A	DE 43 12 587 A (BOSCH) 20 October 1994 (1994-10-20) abstract; figures	1-3, 11-13
A	US 6 062 193 A (GATELLIER) 16 May 2000 (2000-05-16) abstract; figures	1-3, 11-13
		-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

4 August 2003

12/08/2003

Name and mailing address of the ISA

 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl;
 Fax: (+31-70) 340-3016

Authorized officer

Kooijman, F

INTERNATIONAL SEARCH REPORT

Inter Application No
PCT/FR 03/01100

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 1 132 596 A (DELPHI TECHNOLOGIES) 12 September 2001 (2001-09-12) abstract column 8, line 35 - line 51; figures -----	1,11
A	US 5 941 213 A (ISHII ET AL.) 24 August 1999 (1999-08-24) abstract; figures -----	1,11

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interr. application No.

PCT/FR 03/01100

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5070836	A	10-12-1991	DE	3929747 A1	14-03-1991
			DE	59000690 D1	11-02-1993
			EP	0416265 A1	13-03-1991
			JP	3100350 A	25-04-1991
			JP	3236915 B2	10-12-2001
WO 9961771	A	02-12-1999	WO	9961771 A1	02-12-1999
			DE	69807532 D1	02-10-2002
			DE	69807532 T2	16-01-2003
			EP	1082533 A1	14-03-2001
DE 4312587	A	20-10-1994	DE	4312587 A1	20-10-1994
			FR	2704023 A1	21-10-1994
			GB	2277173 A ,B	19-10-1994
			JP	6317230 A	15-11-1994
US 6062193	A	16-05-2000	FR	2754015 A1	03-04-1998
			DE	69719438 D1	10-04-2003
			EP	0834650 A1	08-04-1998
			JP	10184420 A	14-07-1998
EP 1132596	A	12-09-2001	DE	10011619 'A1	13-09-2001
			EP	1132596 A2	12-09-2001
US 5941213	A	24-08-1999	JP	2978964 B2	15-11-1999
			JP	10077886 A	24-03-1998

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale No
PCT/FR 03/01100

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	EP 1 132 596 A (DELPHI TECHNOLOGIES) 12 septembre 2001 (2001-09-12) abrégé colonne 8, ligne 35 – ligne 51; figures -----	1,11
A	US 5 941 213 A (ISHII ET AL.) 24 août 1999 (1999-08-24) abrégé; figures -----	1,11

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No

PCT/FR 03/01100

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US 5070836	A 10-12-1991	DE 3929747 A1 DE 59000690 D1 EP 0416265 A1 JP 3100350 A JP 3236915 B2	14-03-1991 11-02-1993 13-03-1991 25-04-1991 10-12-2001
WO 9961771	A 02-12-1999	WO 9961771 A1 DE 69807532 D1 DE 69807532 T2 EP 1082533 A1	02-12-1999 02-10-2002 16-01-2003 14-03-2001
DE 4312587	A 20-10-1994	DE 4312587 A1 FR 2704023 A1 GB 2277173 A ,B JP 6317230 A	20-10-1994 21-10-1994 19-10-1994 15-11-1994
US 6062193	A 16-05-2000	FR 2754015 A1 DE 69719438 D1 EP 0834650 A1 JP 10184420 A	03-04-1998 10-04-2003 08-04-1998 14-07-1998
EP 1132596	A 12-09-2001	DE 10011619 A1 EP 1132596 A2	13-09-2001 12-09-2001
US 5941213	A 24-08-1999	JP 2978964 B2 JP 10077886 A	15-11-1999 24-03-1998