随机算法

东南大学计算机学院 方效林

本章内容

- 随机算法的基本概念
- 随机采样问题
- 第k小元素问题的随机算法
- Sherwood随机化方法
- 判断字符串是否相等问题
- 子串匹配问题
- 求最近点对的随机算法
- 素数测试

■ 例子

- □判断函数 f(x₁,x₂,...x_n)在区域 D中是否恒为0, f 很复杂,不能数学化简,如何判断就很麻烦
- □ 若随机产生一个n维坐标 $(r_1,r_2,...,r_n) \in D$,代入 得 $f(r_1,r_2,...,r_n) \neq 0$,则可判定区域D内f不恒为0
- 。若对很多个随机产生的坐标进行测试,结果次次均为0,则可说f≠0的概率是非常小
- 有不少问题,目前只有效率很差的确定性求解 算法,但用随机算法去求解,可以很快地获 得相当可信的结果

ĸ,

随机算法的基本概念

■ 随机算法

□ 随机算法是一种使用概率和统计方法在其执行过程 中对于下一计算步骤作出随机选择的算法

■ 随机算法的优越性

□ 对于有些问题: 算法简单

□ 对于有些问题: 时间复杂性低

□ 对于有些问题: 同时兼有简单和时间复杂性低

- 随机算法分类
 - □ 随机数值算法
 - Monte Carlo算法
 - □ Las Vegas算法
 - □ Sherwood算法
- 随机数值算法
 - 主要用于数值问题求解
 - □ 算法的输出往往是近似解
 - □ 近似解的精确度与算法执行时间成正比

- 随机算法分类
 - □ 随机数值算法
 - Monte Carlo算法
 - Las Vegas算法
 - □ Sherwood算法
- Monte Carlo算法
 - □ 主要用于求解需要准确解的问题
 - □算法可能给出错误解
 - □ 获得精确解概率与算法执行时间成正比

■ 随机算法分类

- □ 随机数值算法
- Monte Carlo算法
- □ Las Vegas算法
- □ Sherwood算法

■ Las Vegas算法

- □ □旦找到一个解, 该解一定是正确的
- □找到解的概率与算法执行时间成正比
- □ 增加对问题反复求解次数, 可是求解无效的概率任 意小

■ 随机算法分类

- □ 随机数值算法
- Monte Carlo算法
- Las Vegas算法
- □ Sherwood算法

■ Sherwood算法

- □ 一定能够求得一个正确解
- □ 确定算法的最坏与平均复杂性差别大时, 加入随机性, 即得到Sherwood算法
- □ 消除最坏行为与特定实例的联系

- 随机算法分析的目标
 - □ 平均时间复杂性: 时间复杂性随机变量的均值
 - □ 获得正确解的概率
 - □ 获得优化解的概率
 - □ 解的精确度估计

計算π値

- □ 设有一个半径为 r 的圆及其外切四边形
- □ 向正方形随机地投掷n个点, 设k个点落入圆内
- □ 投掷点落入圆内的概率为 (πr²)/(4r²)= π/4.
- □ 用k/n逼近π/4, 即k/n≈π/4, 于是 π ≈ (4k)/n.

м

随机数值算法

計算π值

```
k=0;

for i=1 to n do

随机地产生四边形中的一点(x, y);

if x²+y²≤1 then

k=k+1;

return (4k)/n;
```

- 时间复杂性=O(n), n是随机样本的大小
- 解的精确度随着随机样本大小n增加而增加

随机数值算法

- 计算积分 $\int_a^b g(x) dx$
 - 强大数定律
 - ▶ 假定{s(x)}是相互独立同分布的随机变量序列,如果 它们有有限的数学期望E(s(x))=a, 则

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n s(x_i) = \mathbf{a} = \mathbf{E}(\mathbf{s}(\mathbf{x}))$$

- 计算积分

- 独立同分布

- > 令f(x)=1/(b-a)为概率密度函数, a ≤ x ≤ b
- ightharpoonup {s(x)}为离散随机变量,期望 $E(s(x)) = \sum s(x)f(x)$
- Arr {s(x)}若为连续型的,期望 $E(s(x)) = \int_a^b s(x)f(x)dx$
- 令g(x)=s(x)f(x), 则期望 $E(s(x)) = \int_a^b g(x) dx$

随机数值算法

- 计算积分 $\int_a^b g(x) dx$
 - 强大数定律
 - $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n s(x_i) = \mathbf{a} = \mathbf{E}(\mathbf{s}(\mathbf{x}))$
 - 计算积分
 - \Rightarrow 令g(x)=s(x)f(x), 则期望 $E(s(x)) = \int_a^b g(x) dx$

 - $= \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n g(x_i) / f(x_i)$
 - $= \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} g(x_i)$

м

随机数值算法

- 计算积分 $\int_a^b g(x) dx$
 - R=0;
 - ¬ for i=1 to n do
 - □ 随机产生[a, b]中点x;
 - \blacksquare R=R+g(x);
 - return (b-a)*R/n
- 时间复杂性=O(n), n是随机样本的大小
- 解的精确度随着随机样本大小n增加而增加

第k小元素(Las Vegas)

■ 输入: S={x₁, x₂, ..., x_n}, 整数k, 1≤k≤n.

■ 输出: S中第k小元素.

第k小元素(Las Vegas)

■ 随机算法

- 在n个数中随机的找一个数A[i]=x, 然后将其余n-1 个数与x比较, 分别放入三个数组中:
- □ S₁(元素均 < x), S₂(元素均=x), S₃(元素均 > x)
 - 若|S₁|≥k 则调用Select(S₁,k);
 - 若|S₁|<k 但(|S₁|+|S₂|)≥k, 则第k小元素就是x;
 </p>
 - ► 否则有(|S₁|+|S₂|)< k, 调用Select(S₃,k-|S₁|-|S₂|)。

第k小元素(Las Vegas)

定理

□ 若以等概率方法在n个数中随机取数,则该算法用 到的比较次数的期望值不超过4n

□ 证明:

- ▶ 设C(n)是输入规模为n时,算法比较次数的期望值, 并设取到任一个数的概率相同。假定取到第j小的数
- ▶ 若j>k,则需要调用Select(S₁,k)。
 - □ ∵|S₁|= j-1(因为x是第j小的数), ∴调用Select(k,S₁)的比较 次数的期望值为C(j-1)。
- ▶ 若j = k,则直接返回第j个元素,无需继续进行比较。
- - □ $: |S_3| = n-j$, ∴本次调用的比较次数的期望值是C(n-j)

・ 第k小元素(Las Vegas)

$$C(n) = n + \frac{1}{n} \left(\sum_{j=k+1}^{n} C(j-1) + \sum_{j=1}^{k-1} C(n-j) \right)$$

$$= n + \frac{1}{n} \left(\sum_{i=k}^{n-1} C(i) + \left(C(n-1) + C(n-2) + \dots + C(n-k+1) \right) \right)$$

$$= n + \frac{1}{n} \left(\sum_{i=n-k+1}^{n-1} C(i) + \sum_{i=k}^{n-1} C(i) \right)$$
 由于C(i)是非减函数,即i\lceil n/2 \rceil时取得最大值

$$C(n) \le n + \frac{1}{n} \left(\sum_{i=n-\frac{n}{2}+1}^{n-1} C(i) + \sum_{i=\frac{n}{2}}^{n-1} C(i) \right)$$
 归纳法证明 C(n) ≤ 4n

м

第k小元素(Las Vegas)

• 归纳法证明
$$C(n) \le n + \frac{1}{n} \left(\sum_{i=n-\frac{n}{2}+1}^{n-1} C(i) + \sum_{i=\frac{n}{2}}^{n-1} C(i) \right) \le 4n$$

- _ 当n=1时, C(1) ≤4显然成立
- 假设当n<m时, C(n) ≤4n成立
- □ 证明当n=m时,

$$C(n) = n + \frac{1}{n} \left(\sum_{i=n-\frac{n}{2}+1}^{n-1} C(i) + \sum_{i=\frac{n}{2}}^{n-1} C(i) \right)$$

$$\leq n + \frac{1}{n} \left(\sum_{i=n-\frac{n}{2}+1}^{n-1} 4i + \sum_{i=\frac{n}{2}}^{n-1} 4i \right) \leq n + \frac{1}{n} \left(8 \sum_{i=\frac{n}{2}}^{n-1} i \right) \leq 4n$$

Sherwood随机化方法

■ 一般过程

- □ 若问题已经有平均性质较好的确定性算法,
- □ 但是该算法在最坏情况下效率不高,
- □ 引入一个随机数发生器(通常服从均匀分布)
- □ 将一个确定性算法改成一个随机算法
- □ 例如:
 - 快速排序,每次选择一个基准数,比它小的放左边, 大的放右边,如此递归
 - 平均效率很好,但是最坏情况下,每次选择的基准若都是最小的,或是最大的,算法效率不高
 - ▶ 可随机预处理(洗牌),使输入均匀分布,再运行算法

.

判断字符串是否相等(Monte Carlo)

- 设A处有一个长字符串x(e.g. 长度为10⁶),
- B处也有一个长字符串y,
- A将x发给B,由B判断是否有x=y
 - □首先由A发一个x的长度给B,若长度不等,则x≠y
 - □ 若长度相等,则采用"取指纹"的方法:
 - ▶A对x进行处理,取出x的"指纹",将指纹发给B
 - ▶ 由B检查x的指纹是否等于y 的指纹
 - ▶ 若取k次指纹(每次指纹不同),每次两者结果均相同, 则认为x与y是相等的。
 - ▶随着k的增大,误判率可趋于0

- 字符串X的指纹取法
 - □ 令字符串x的二进制编码,长度为n,则 x < 2ⁿ
 - □ $\mathbf{p}(\mathbf{x}) \equiv \mathbf{x}(\mathbf{mod} \, \mathbf{p})$ 作为 \mathbf{x} 的指纹,
 - ▶其中p是小于2n²的素数,
 - p 二进制长度: log₂p≤ log₂(2n²) +1=O(log₂n),
 - ▶ f(x)的二进制长度≤ log₂p,即传输长度可大大缩短
 - □ x 的二进制是106位,即n=106,则 p < 2×10¹²≈2^{40.8631}
 - □ f(x)位数不超过41位,传输一次指纹 f 可节省约2.5万倍
 - \square 根据下面所做的分析,错判率小于 $\frac{1}{10^6}$
 - □ 若取5次指纹,错判率小于 $\frac{1}{10^{30}}$

- 错判率分析
- $f(x) \equiv x \pmod{p}$ 作为x的指纹
- □ B接到指纹f(x)后与f(y)比较,
- □ 若f(x)≠f(y), 当然有x≠y。
- □ 若f(x)=f(y)而x≠y,此时是一个错误匹配
- □ 错误匹配的概率有多大?
 - ▶随机取一个小于2n²的素数p,则对于给定的x和y,

■ 错判率分析

 $f(x) \equiv x \pmod{p}$ 作为x的指纹

→ 错判率 P_{fail} = $\frac{x\neq y$,但使得f(x)=f(y)的小于 $2n^2$ 的素数的个数小于 $2n^2$ 的素数的总个数

数论定理1: 设 π (n)是小于n的素数个数,则 π (n) $\approx \frac{n}{\ln n}$

则小于2n²的素数的总个数为: $\pi(2n^2) \approx \frac{n^2}{\ln n}$

数论定理2: a≡b (mod p) iff p整除|a-b|

使得f(x)=f(y)的素数的个数 = 能够整除|x-y|的素数的个数

数论定理3: 若 a < 2^n ,则能整除a的素数个数不超过 π (n)个

∵|x-y|<max{x,y}≤2ⁿ-1, ∴能整除|x-y|的素数个数≤ π(n)

错判率
$$P_{fail} = \frac{\pi(n)}{\pi(2n^2)} = \frac{1}{n}$$

数论定理1:设 π (n)是小于n的素数个数,则 π (n) $\approx \frac{n}{\ln n}$

n=500 1000 10^4 10^5 10^6 10^7 10^8 10^9 π (n)=95 168 1229 9592 78498 664579 5761445 50847478

M

子串匹配问题

■ 给定两个字符串:

■ 判断Y是否为X的子串?

X="maintenance", Y="ten"是S的子串,Y在X中的位置为4

■ 判断Y是否为X的子串?

$$□$$
 记X(j)= $x_j x_{j+1}...x_{j+m-1}$

(xy+z)(mod p) =(x(y mod p)+z)(mod p)

数论定理4:

- □ 逐一比较X(j)的指纹 f(X(j)) 与Y的指纹 f(Y)
- □ f(X(j+1))可根据f(X(j))计算,故算法可很快完成
 - ▶ 不失一般性, 令X和Y都是0-1串 (二进制编码)
 - $> f(X(j+1)) = (x_{i+1}...x_{i+m}) \pmod{p}$
 - $= (2(x_{j+1}...x_{j+m-1})+x_{j+m}) \pmod{p}$
 - $= (2(x_{j+1}...x_{j+m-1}) + 2^mx_j 2^mx_j + x_{j+m}) \pmod{p}$
 - $= (2(x_i x_{i+1} ... x_{i+m-1}) 2^m x_i + x_{i+m}) \pmod{p}$
 - $= (2 ((x_j x_{j+1}...x_{j+m-1}) \mod p) 2^m x_j + x_{j+m}) (\mod p)$
 - $= (2*f(X(j)) (2^m \mod p)x_i + x_{i+m}) \pmod p$

被余数都在p附近,与p相差很小,只需一两次加减法即可求余 [-(p-1), 2p-1]

■ 出错的概率

- 当Y≠X(j), 但f(Y)=f(X(j))时产生错误
- □ 而f(Y)=f(X(j)) 当且仅当p能整除|Y-X(j)|
 - ▶ 当p能整除|Y-X(j)|时, p当然也能整除
 - $ightharpoonup Z = |Y-X(1)| \times |Y-X(2)| \times ... \times |Y-X(j)| \times ... \times |Y-X(n-m+1)|$
 - $\rightarrow : |Y-X(j)| < 2^m$
 - $ightharpoonup : Z = |Y-X(1)| |Y-X(2)| ... |Y-X(n-m+1)| < (2^m)^{n-m+1} \le 2^{mn}$

数论定理3: 若 a < 2^n ,则能整除a的素数个数不超过 π (n)个

▶∴能整除Z的素数的个数不超过π(mn)个

$$ho$$
 $P_{fail} = \frac{x \pi 0 cy, 能够整除Z的素数的个数}{小于2mn2的素数的总个数} = \frac{\pi (mn)}{\pi (2mn2)} = \frac{1}{n}$

- 字符串的穷举模式匹配算法
 - 。 匹配失败时,目标串T回溯,模式串P从头开始

时间复杂度O(m*n)

- 字符串的穷举模式匹配算法
 - 。 匹配失败时,目标串T回溯,模式串P从头开始

■ KMP算法

例子: P中重复出现abcd, 但是e和x不匹配时, 可直接向右滑动4个字符开始匹配, 可少匹配4趟

p_{i-3}

p_{i-4}

KMP算法

P

 p_3

 p_2

 p_1

 $\mathbf{p}_{\mathbf{0}}$

 p_2

 p_1

若P[0, j-2] ≠ P[1, j-1], 可少匹配1趟

若又P[0, j-3] ≠ P[2, j-1], 可少匹配2趟

若又P[0, j-4] ≠ P[3, j-1], 可少匹配3趟

类推直到前缀P[0, k+1] ≠ 后缀P[j-k-2, j-1] 但是前缀P[0, k] =后缀 P[j-k-1, j-1] 时, 可少匹配 j-k-2 趟, 相当于P直接向右滑动 j-k-2 个字符

■ KMP算法

□ 对模式串P进行预处理,计算可以滑过多少个字符

next(j)直观含义: [0, j-1] 中前缀和后缀相等的最大长度

next(j)直观作用:可滑过j-next(j)位不用匹配

下标j	0	1	2	3	4	5	6	7	8	
P	а	b	С	d	а	b	С	d	е	
next(j)	-1	0	0	0	0	1	2	3	4	

■ KMP算法

。对模式串P进行预处理,计算可以滑过多少个字符

$$\mathsf{next}(j) = \begin{cases} -1, \ \exists \ j = 0 \\ k+1, \ \exists \ 0 \le k < j-1, \ \mathsf{且使p_0p_1...p_k=p_{j-k-1}p_{j-k}...p_{j-1}} \mathsf{的最大数} \\ 0, \ \mathsf{其他情况} \end{cases}$$

next(j)=-1表示匹配失败时,T的指针加1,P的指针指向p[0]

next(j)=k+1表示匹配失败时,P的指针指向p[k+1],

next(j)=0表示匹配失败时, P的指针指向p[0]

■ KMP算法

。对模式串P进行预处理,计算可以滑过多少个字符

$$\mathsf{next}(j) = \left\{ \begin{array}{l} -1, \ \ \exists \ j = 0 \\ \\ k+1, \ \ \exists \ 0 \le k < j\text{-}1, \ \texttt{且使p}_0 \mathsf{p}_1 \dots \mathsf{p}_k = \mathsf{p}_{\mathsf{j-k-1}} \mathsf{p}_{\mathsf{j-k}} \dots \mathsf{p}_{\mathsf{j-1}} \mathsf{的最大数} \\ \\ 0, \ \ \mathsf{其他情况} \end{array} \right.$$

next(j)=-1表示匹配失败时,T的指针加1,P的指针指向p[0]

next(j)=k+1表示匹配失败时,P的指针指向p[k+1],

next(j)=0表示匹配失败时, P的指针指向p[0]

KMP算法

。对模式串P进行预处理,计算可以滑过多少个字符

next(j)=-1表示匹配失败时, T的指针加1, P的指针指向p[0]

next(j)=k+1表示匹配失败时, P的指针指向p[k+1],

next(j)=0表示匹配失败时, P的指针指向p[0]

子串匹配问题

■ KMP算法

□ 对模式串P进行预处理,计算可以滑过多少个字符

可按定义直接计算next,下面介绍一种快速的计算next的方法

子串匹配问题

KMP算法

□ 对模式串P进行预处理,计算可以滑过多少个字符

可按定义直接计算next,下面介绍一种快速的计算next的方法

```
j=0;k=-1;next[0]=-1;
                           下标i
                                     0
                                                      3
                                                                 5
                                                                                        9
                                                           4
                                                                                  8
                                                                                             10
while(j<pLength) {
                             P
                                     a
                                                      b
                                                                                  b
                                                                                        a
                                                           C
                                                                 a
                                                                            a
                                                                                             X
  if(k==-1 || ch[j]==ch[k]) {
                          next(i)
                                                      1
                                                           2
                                                                                  3
                                                                                        4
    i++;k++;next[i]=k;
  else k = next[k];
                                            next(10)=2+1=3
```

子串匹配问题

KMP算法

□ 对模式串P进行预处理,计算可以滑过多少个字符

可按定义直接计算next,下面介绍一种快速的计算next的方法

```
下标i
j=0;k=-1;next[0]=-1;
                                      0
                                                       3
                                                                  5
                                                                                         9
                                                            4
                                                                                   8
                                                                                              10
while(j<pLength) {
                             P
                                                       b
                                                                                   b
                                                                                         e
                                      a
                                                            C
                                                                  a
                                                                              a
                                                                                               X
  if(k==-1 || ch[j]==ch[k]) {
                           next(i)
                                                            2
                                                                                   3
                                                                                         4
    i++;k++;next[i]=k;
  else k = next[k];
                                                   next(10)=0
```

■ RSA加密算法用到大素数

公钥: (n,e)	n是两个大素数p和q的乘积 (p和q必须保密), e与(p-1)(q-1)互质
私钥: (n,d)	$e \times d \equiv 1 \pmod{(p-1)(q-1)}$
加密	C = Me (mod n)
解密	M = C ^d (mod n)

例: 令p=3, q=11, n=p×q=3×11=33; (p-1)(q-1)=2×10=20; 取e=3, (3与20互质) ed-1=kφ(n), 有ed+φ(n)k=1 使用扩展欧几里德算法 即3×d=1 mod 20, 可取d=7 明文25, 加密得密文16=25³ mod 33 密文16, 解密得明文25=167 mod 33

其中关键过程是得到两个大素数,但是当今判断一个非常大的数是否 是素数并非简单的事

.

素数测试

大整数的素因子分解

- □如n=10⁶⁰(比已知最大素数小很多),
- □ 若算法时间复杂度为O(n),设高速计算机
- □ 每秒1亿亿次(10¹⁶)基本运算,则需10⁴⁴秒,
- □ 大于10⁴²分钟,大于10⁴⁰小时,大于10³⁸天,
- □ 大于1035年!
- □ O(n)时间的算法绝对不能接受!

- 求a^m(mod n)的算法(m≤n)
 - m的二进制表示为b_kb_{k-1}…b₁b₀ (b_k=1, k≈log₂m)
 - > 例: $m=41=b_kb_{k-1}...b_1b_0=101001_{(2)}$, (k=5)

v

素数测试

求a^m(mod n)的算法(m≤n)

- ▶ 求a^m可以用下述方法:
 - □从m的二进制的高位到低位,平方,遇1还要乘a
- ▶ 例如,计算a⁴¹,
- ▶ 初始C=1
- b_5 =1: C=C²=1, ∴ b_5 =1, C=a*C=a;
- $b_5b_4=10$: C=C²=a²
- $b_5b_4b_3=101$: C=C²=a⁴, $b_3=1$, C=a*C=a⁵
- $b_5b_4b_3b_2=1010$: C=C²=a¹⁰
- $b_5b_4b_3b_2b_1=10100$: C=C²=a²⁰
- $b_5b_4b_3b_2b_1b_0=101001$: C=C²=a⁴⁰,∴b₀=1,C=a*C=a⁴¹

- 求a^m(mod n)的算法(m≤n)
 - ▶ 求a^m可以用下述方法:
 - □从m的二进制的高位到低位,平方,遇1还要乘a
 - ン模运算有规则: (x*y)%n =((x%n) * (y%n)) % n

每一步求模的好处是:

C的最大值不超过n-1,

中间值不超过max{(n-1)²,a(n-1)}

求a^m(mod n)时不会占用很多空间

- ▶ 求a^m(mod n)可在求a^m过程中的每一步求模
- EXPMOD(a,m,n)
- > C=1;
- for j=k to 0 do
- ightharpoonup C=C²(mod n)
- if $b_j=1$ then C=a*C (mod n)
- return C

м

素数测试

- 求a^m(mod n)的算法(m≤n)
 - ▶ 求a^m可以用下述方法:
 - □从m的二进制的高位到低位,平方,遇1还要乘a
 - ン:模运算有规则: (x*y)%n =((x%n) * (y%n)) % n
 - ▶ 求a^m(mod n)可在求a^m过程中的每一步求模
 - ▶ 例如,计算a⁵ mod n
 - ▶ 初始C=1
 - b_2 =1: C=C² mod n, ∴ b_2 =1, C=a*C mod n;
 - $b_2b_1=10$: C=C² mod n
 - $b_2b_1b_0=101$: C=C² mod n, ∴b₀=1, C=a*C mod n

■ Fermat小定理

- □ 若n为素数, 0<a<n, 则有aⁿ⁻¹ ≡ 1(mod n)
- □ 即若aⁿ⁻¹ ≠ 1(mod n),则n必为合数
- 。而条件aⁿ⁻¹≡1(mod n)是素数的必要条件,非充分
 - n是合数,对任意a,也可能aⁿ⁻¹≡1(mod n),称之为 Carmichael数,例如前几个561,1105,1729, 2465,...,小于1亿只有255个Carmichael数
 - ▶ Carmichael数虽然分布很稀,但仍有无穷多个

用与n互质的a去测试,Carmichael数会漏网a从(2,3,...,n-1)全部判断不现实

定理:设n是一个奇合数,则使得Miller-Rabin算法回答为"合数"的a(合数的证据数)在{1,2,...n-1}中至少有一半(≥(n-1)/2)

素数测试

■ Miller-Rabin算法

总的时间复杂度O(log³n)

- 定理:设n为素数,且0<x<n,则当x²≡1(mod n)时, 必有 x=1 或 x=n-1
- □ 推论: 当0<x<n 且 x²≡1(mod n)成立时,若x≠1且 x≠n-1,则n是合数 n-1=m*2^q

```
O(log^3n) > x=a^m (mod n);
```

q≤O(log n) > for i=1 to q do

 $O(log^2n) \rightarrow y = x^2 \pmod{n};$

- if y=1 且 x≠n-1且 x≠1 then //此时满足推论
- return "n为合数";
- \rightarrow X = y;
- if x≠1 then return "n为合数"
- > else return "n为素数" //此时满足Fermat小定理

 $a^{n-1} = a^{m*2q}$

м

素数测试

Carmichael数561:

- □ n-1=560=2⁴*35,即有q=4,m=35。
- **□ 假定选a=7,则a^m=7³⁵≡241(mod 561)。**
 - **735. 770. 7140. 7280. 7560**
 - ▶ mod n 后分别为: 241, 298, 166, 67, 1
 - \rightarrow x=7²⁸⁰ \equiv 67(mod 561),