

Summer Project 2023

Pritish Karmakar 21MS179

Contents

1	Gau	ssian curve and its fourier transform
	1.1	Standard normal
	1.2	Fourier transform of Standard normal

List of Figures

	Standard Normal curve	
2	Fourier transform of Standard Normal	2
	List of Tables	

1 Gaussian curve and its fourier transform

1.1 Standard normal

Figure 1: Standard Normal curve

```
import matplotlib.pyplot as plt
import numpy as np
plt.style.use("classic")

def f(t):
    return np.exp(-(t)**2/2)/(np.sqrt(2*np.pi))

xv = np.linspace(-7,7,1000)
yv = f(xv)

plt.plot(xv, yv, lw=1)
plt.xlabel("$t$")
plt.ylabel("$f(t)$")
plt.grid(True)
```

1.2 Fourier transform of Standard normal

If $f(t) = \int_{-\infty}^{\infty} g(\omega) e^{i\omega t} d\omega$, then fourier transform of that is $g(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$. Here, $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

$$g(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)\cos(\omega t)dt - i\frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)\sin(\omega t)dt$$

...... Code Block

```
import numpy as np
import matplotlib.pyplot as plt
from scipy integrate import quad
\mathbf{def} \ \mathbf{f} \ (\mathbf{t}):
    return np. \exp(-(t)**2/2)/(\text{np.sqrt}(2*\text{np.pi}))
\mathbf{def} ft(y):
    int_re = lambda t: f(t)*np.sin(y*t)
    int im = lambda t: f(t)*np.cos(y*t)
    g_re = quad(int_re, -np.inf, np.inf)[0]/(2*np.pi)
    g_{im} = quad(int_{im}, -np.inf, np.inf)[0]/(2*np.pi)
    return g re -1j*g im
g = np.frompyfunc(ft, 1, 1)
xv = np. linspace(-7,7,1000)
yv = np.abs(g(xv))
plt.plot(xv, yv, lw=1)
plt.xlabel("$\omega$")
plt.ylabel("$abs(g(\omega))$")
plt.grid(True)
```


Figure 2: Fourier transform of Standard Normal