STATS310A - Lecture 3

Persi Diaconis Scribed by Michael Howes

9/28/21

Contents

I	Homework	1
2	Extending measures	1
3	Uniqueness of the extension	3
4	Comments on homework	4

1 Homework

Read chapters 3 and 4. Do book questions 3.6, 3.7, 3.8, 4.5, 4.15 in the books. If $\xi_n > 0$, $\xi_n \to \infty$ and $\frac{\xi_n}{\sqrt{n}} \to 0$, then

$$P\{S_n > \sqrt{n}\xi_n\} \ge \exp(-(1+o(1))\xi_n^2/2).$$

See canvas for more details. There are some hints for textbook questions in the back of the textbook.

2 Extending measures

Recall our set up: Ω is a set, \mathcal{F}_0 is an algebra of subsets of Ω , P is a probability measure on \mathcal{F}_0 . A set $A \subseteq \Omega$ is measurable if

$$P^*(E) = P^*(E \cap A) + P^*(E \cap A^c),$$

for all $E \subseteq \Omega$. Where we defined

$$P^*(B) = \inf \left\{ \sum_{i=1}^{\infty} P(A_i) : A_i \in \mathcal{F}_0 \text{ and } B \subseteq \bigcup_{i=1}^{\infty} A_i \right\}.$$

Let \mathcal{M} be the set of measurable subsets of Ω . We have been proving the following:

Theorem 1. Let P^* and \mathcal{M} be as above, then

- \mathcal{M} is σ -algebra.
- P^* is a probability on \mathcal{M} .
- P^* extends P on $\mathcal{F}_0 \subseteq \mathcal{M}$.
- P^* is unique

9/28/21 STATS310A - Lecture 3

Last time we showed that \mathcal{M} is an algebra. We used the key trick that $A \in \mathcal{M}$ if and only if

$$P^*(E) \ge P^*(E \cap A) + P^*(E \cap A^c),$$

since the other inequality always holds by subadditivity.

Step 1 If $A_i \in \mathcal{M}$ is a countable collection of disjoint sets, then for every $E \subseteq \Omega$,

$$P^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) = \sum_{i=1}^{\infty} P^* (E \cap A_i).$$

Proof. We first prove the above for finite unions A_1, \ldots, A_n . If n = 1, then we simply have

$$P^*(E \cap A_1) = P^*(E \cap A_1).$$

Suppose n = 2. Since $A_1 \in \mathcal{M}$ and $A_1 \cap A_2 = \emptyset$, we have

$$P^*(E \cap (A_1 \cup A_2)) = P^*(E \cap (A_1 \cup A_2) \cap A_1) + P^*(E \cap (A_1 \cup A_2) \cap A_1^c)$$

= $P^*(E \cap A_1) + P^*(E \cap A_2)$.

Thus the result holds for n=2. Since \mathcal{M} is a field we can use induction to conclude the result for general $n \in \mathbb{N}$. Now suppose $A = \bigcup_{i=1}^{\infty} A_i$, where the sets A_i are disjoint and measurable. Let $F_n = \bigcup_{i=1}^n A_i$, then

$$P^*(E \cap A) \ge P^*(E \cap F_n)$$
$$= \sum_{i=1}^n P^*(E \cap A_i).$$

Thus $P^*(E \cap A) \ge \sum_{i=1}^{\infty} P^*(E \cap A)$. Also $P^*(E \cap A) \le \sum_{i=1}^{\infty} P^*(E \cap A_i)$ by countable subadditivity. \square

Step 2 The collection \mathcal{M} is a σ -algebra and P^* is countably additive on \mathcal{M} .

Proof. If $E = \Omega$ in step 1, then we can immediately see that P^* is countably additive on \mathcal{M} . To show \mathcal{M} is a σ -algebra, we need to show that \mathcal{M} is closed under countable unions.

Let $A_i \in \mathcal{M}$ for each $i \in \mathbb{N}$. If we define $A_i' = A_i \cap \left(\bigcup_{j=1}^{i-1} A_j^c\right)$, then $A_i' \in \mathcal{M}$, the sets A_i' are disjoint and $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} A_i'$. Thus we may assume that the sets A_i are disjoint.

As before, define

$$F_n = \bigcup_{i=1}^n A_i$$
 and $A = \bigcup_{i=1}^\infty A_i$.

Note that $A^c \subseteq F_n^c$. We know that $F_n \in \mathcal{M}$ and thus for any $E \subseteq \Omega$,

$$P^{*}(E) = P^{*}(E \cap F_{n}) + P^{*}(E \cap F_{n}^{c})$$

$$= \sum_{i=1}^{n} P^{*}(E \cap A_{i}) + P^{*}(E \cap F_{n}^{c})$$

$$\geq \sum_{i=1}^{n} P^{*}(E \cap A_{i}) + P^{*}(E \cap A^{c}).$$

Letting n go to infinity we can conclude

$$P^*(E) \ge \sum_{i=1}^{\infty} P^*(E \cap A_i) + P^*(E \cap A^c) = P^*(E \cap A) + P^*(E \cap A^c),$$

thus $A \in \mathcal{M}$.

9/28/21 STATS310A - Lecture 3

Step 3 $\mathcal{F}_0 \subseteq \mathcal{M}$.

Proof. Pick $A \in \mathcal{F}_0$, $E \subseteq \Omega$ and $\varepsilon > 0$. Find a collection $(A_i)_{i=1}^{\infty}$ such that $E \subseteq \bigcup_{i=1}^{\infty} A_i$, $A_i \in \mathcal{F}_0$ and $\sum_{i=1}^{\infty} P(A_i) \leq P^*(A) + \varepsilon$. Let $B_n = A_n \cap A$ and $C_n = A_n \cap A^c$. Then $E \cap A \subseteq \bigcup_{n=1}^{\infty} B_n$ and $E \cap A^c \subseteq \bigcup_{n=1}^{\infty} C_n$ and $B_n, C_n \in \mathcal{F}_0$. Thus

$$P^*(E \cap A) \le \sum_{n=1}^{\infty} P(B_n) \text{ and } P^*(E \cap A^c) \le \sum_{n=1}^{\infty} P(C_n).$$

Thus

$$P^*(E) \ge \sum_{n=1}^{\infty} P(A_n) - \varepsilon$$

$$= \left(\sum_{n=1}^{\infty} P(B_n) + P(C_n)\right) - \varepsilon$$

$$= \left(\sum_{n=1}^{\infty} P(B_n) + \sum_{n=1}^{\infty} P(C_n)\right) - \varepsilon$$

$$\ge P^*(E \cap A) + P^*(E \cap A^c) - \varepsilon.$$

Letting ε go to 0, we see that $P^*(E) \geq P^*(E \cap A) + P^*(E \cap A^c)$ so $A \in \mathcal{M}$.

Step 4 If $A \in \mathcal{F}_0$, then $P^*(A) = P(A)$. (see proof in the textbook).

3 Uniqueness of the extension

We will use the $\pi - \lambda$ theorem.

Definition 1. A collection of sets \mathcal{P} is a π -system if \mathcal{P} is closed under finite intersection.

Definition 2. A collection of sets L is a λ -system if

- (a) $\Omega \in L$,
- (b) $A \in L$ implies $A^c \in L$,
- (c) L is closed under countable disjoint unions.

Example 1. If $\Omega = \{1, 2, 3, 4\}$, then

$$S = \{\emptyset, \Omega, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\},$$

is a λ -system but not a π -system and not an algebra.

The following is due to Dynkin and is a clean substitute for monotone class arguments.

Theorem 2. If \mathcal{P} is a π -system and L is a λ -system and $\mathcal{P} \subseteq L$, then $\sigma(\mathcal{P}) \subseteq L$.

As an immediate application we have the following.

Proposition 1. Suppose \mathcal{F}_0 is an algebra of subsets of Ω and P is a probability on \mathcal{F}_0 . If P' and P'' are two probability measures on $\sigma(\mathcal{F}_0)$ that extend P, then P' = P''.

Proof. Let $L = \{A \in \sigma(\mathcal{F}_0) : P'(A) = P''(A)\}$. Then L is a λ -system and since \mathcal{F}_0 is a π -system contained in L, we have $\sigma(\mathcal{F}_0) \subseteq L$ and thus P' and P'' agree on $\sigma(\mathcal{F}_0)$.

9/28/21 STATS310A - Lecture 3

Note that in the case of section 2 we know that $\sigma(\mathcal{F}_0) \subseteq \mathcal{M}$.

Corollary 1. Lebesgue measure $(P^* \text{ on } (0,1])$ is the unique extension of length to the Borel sets.

Important note: When extending from \mathcal{F}_0 to \mathcal{M} , we started with a probability on \mathcal{F}_0 . This means that if $A \in \mathcal{F}_0$ and $(A_i)_{i=1}^{\infty}$ is a countable disjoint collection of sets in \mathcal{F}_0 such that $A = \bigcup_{i=1}^{\infty} A_i$, then $P(A) = \sum_{i=1}^{\infty} P(A_i)$. Proving this in the Lebesgue measure case requires the Heine-Borel theorem. We need to use compactness of closed, bounded intervals at some point.

4 Comments on homework

- 3.6-3.8 are similar to what we have done in class but for finitely additive measures.
- 4.5 is about limit superiors and limit inferiors.
- 4.15 is about showing that the square free numbers have density $6\pi^2$!