Chapter 12 Sound

INTENSITY OF A SPHERICAL WAVE

This equation assumes that there is no absorption in the medium.

intensity =
$$\frac{P}{4\pi r^2}$$

HARMONIC SERIES OF A VIBRATING STRING OR A PIPE OPEN AT BOTH

$$f_n = n \frac{\nu}{2L}$$
 $n = 1, 2, 3, \dots$

HARMONIC SERIES OF A PIPE CLOSED AT ONE END

$$f_n = n \frac{v}{4L}$$
 $n = 1, 3, 5, \dots$

frequency difference = number of beats per second

Chapter 13 Light and Reflection

SPEED OF ELECTROMAGNETIC WAVES

$$c = f\lambda$$

This book uses the value $c = 3.00 \times 10^8$ m/s for the speed of EM waves in a vacuum or in air.

LAW OF REFLECTION

angle of incidence (θ) = angle of reflection (θ')

MIRROR EQUATION

This equation is derived assuming that the rays incident on the mirror are very close to the principal axis of the mirror.

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

MAGNIFICATION OF A CURVED MIRROR

$$M = \frac{h'}{h} = -\frac{q}{p}$$

Chapter 14 Refraction

INDEX OF REFRACTION

For any material other than a vacuum, the index of refraction varies with the wavelength of light.

$$n = \frac{c}{v}$$

SNELL'S LAW

 $n_i \sin \theta_i = n_r \sin \theta_r$