

Teste Intermédio de Matemática A

Versão 1

Teste Intermédio

Matemática A

Versão 1

Duração do Teste: 90 minutos | 13.03.2012

12.º Ano de Escolaridade

Decreto-Lei n.º 74/2004, de 26 de março

Na sua folha de respostas, indique de forma legível a versão do teste.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Áreas de figuras planas

Losango:
$$\frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Polígono regular: Semiperímetro × Apótema

Sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Áreas de superfícies

Área lateral de um cone:
$$\pi rg$$
 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volumes

Pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Cone:
$$\frac{1}{3} \times \acute{A}rea \ da \ base \times Altura$$

Esfera:
$$\frac{4}{3}\pi r^3$$
 $(r-raio)$

Trigonometria

$$sen(a+b) = sen a cos b + sen b cos a$$

$$cos(a+b) = cos a cos b - sen a sen b$$

$$tg(a+b) = \frac{tga + tgb}{1 - tga} tgb$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n} \right) \quad (k \in \{0, \dots, n-1\} \quad \text{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \ v - u \ v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

- Os cinco itens deste grupo s\u00e3o de escolha m\u00edltipla. Em cada um deles, s\u00e3o indicadas quatro op\u00f3\u00e3es, das quais só uma está correta.
- Escreva na sua folha de respostas apenas o número de cada item e a letra correspondente à opção que selecionar para responder a esse item.
- Não apresente cálculos, nem justificações.
- Se apresentar mais do que uma opção, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- 1. Seja Ω o espaço de resultados associado a uma experiência aleatória.

Sejam $A \in B$ dois acontecimentos incompatíveis $(A \subset \Omega \in B \subset \Omega)$

Qual das afirmações seguintes é necessariamente verdadeira?

(A)
$$P(A \cup B) = P(A \cap B)$$

(B)
$$P(A) + P(B) = 1$$

(C)
$$P(A \cap B) = 0$$

(D)
$$P(A \cap B) = P(A) \times P(B)$$

 ${f 2.}\;\;$ O comprimento, em centímetros, das peças produzidas por uma máquina é uma variável aleatória X com distribuição normal, de valor médio 6

Sabe-se que P(X > 7) = 0.1

Escolhe-se ao acaso uma peça produzida por essa máquina e mede-se o seu comprimento.

Considere os acontecimentos:

A: «o comprimento da peça escolhida é inferior a 7 cm»

B: «o comprimento da peça escolhida é superior a 6 cm»

Qual é o valor da probabilidade condicionada $P(A \mid B)$?

(A)
$$\frac{3}{5}$$

(B)
$$\frac{4}{5}$$

(C)
$$\frac{7}{9}$$

(A)
$$\frac{3}{5}$$
 (B) $\frac{4}{5}$ (C) $\frac{7}{9}$

3. Considere a sucessão (u_n) , definida por $u_n = \left(1 + \frac{1}{n}\right)^n$

Seja f uma função contínua, de domínio \mathbb{R}^+

Sabe-se que $\lim f(u_n) = 0$

Qual das seguintes expressões pode definir a função f?

(A)
$$1 - \ln x$$

(B)
$$1 + \ln x$$

(C)
$$x - \ln x$$

(D)
$$x + \ln x$$

4. Para um certo valor de α e para um certo valor de β , é **contínua** no ponto 0 a função g, definida por

$$g(x) = \begin{cases} \frac{e^{2x} - 1}{x} & \text{se } x < 0 \\ \alpha & \text{se } x = 0 \\ \beta - \frac{\ln(1+x)}{x} & \text{se } x > 0 \end{cases}$$

Qual é esse valor de α e qual é esse valor de β ?

- (A) $\alpha = 1$ e $\beta = 2$
- **(B)** $\alpha = 2$ e $\beta = 3$
- (C) $\alpha = 1$ e $\beta = 3$
- (D) $\alpha = 2$ e $\beta = 1$
- **5.** Na Figura 1, está representado, em referencial o.n. xOy, a sombreado, o quadrado [OABC]

Figura 1

Os pontos $A \in C$ pertencem aos semieixos positivos $Oy \in Ox$, respetivamente.

Considere que um ponto P se desloca sobre o semieixo positivo Ox, iniciando o seu movimento na origem do referencial e percorrendo todos os pontos desse semieixo.

Para cada posição do ponto P, considere o segmento de reta que é a intersecção da reta AP com o quadrado [OABC]

Seja f a função que, à abcissa x do ponto P, faz corresponder o comprimento do referido segmento.

Qual dos gráficos seguintes pode ser o gráfico da função f?

GRUPO II

Nas respostas aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

- 1. Uma turma de 12.º ano é constituída por 14 raparigas e 10 rapazes.
 - 1.1. Os alunos da turma vão dispor-se em duas filas para tirarem uma fotografia de grupo.

Combinaram que:

- os rapazes ficam sentados na fila da frente;
- as raparigas ficam na fila de trás, em pé, ficando a delegada numa das extremidades e a subdelegada na outra extremidade, podendo cada uma destas duas alunas ocupar qualquer uma das extremidades.

Escreva uma expressão que dê o número de maneiras diferentes de, nestas condições, os jovens se poderem dispor para a fotografia.

Nota – Não calcule o valor da expressão que escreveu.

1.2. Vão ser escolhidos aleatoriamente dois jovens desta turma, para constituirem uma comissão que participará num congresso.

Seja X o número de raparigas que integram a comissão.

Construa a tabela de distribuição de probabilidades da variável aleatória X

Apresente as probabilidades na forma de fração irredutível.

- **2.** Seja f a função, de domínio \mathbb{R}^+ , definida por $f(x) = 2 + \log_3 x$ Resolva os três itens seguintes **sem recorrer à calculadora**.
 - 2.1. Determine o conjunto dos números reais para os quais se tem

$$f(x) \ge 4 + \log_3(x - 8)$$

Apresente a sua resposta na forma de intervalo de números reais.

- **2.2.** Determine o valor de $f(36^{1000}) f(4^{1000})$
- **2.3.** Seja g a função, de domínio \mathbb{R}^+ , definida por g(x) = x + f(x)Mostre que $\exists c \in]1,3[:g(c)=5$

3. Um vírus atacou os frangos de um aviário.

Admita que x dias após o instante em que o vírus foi detetado, o número de frangos infetados é dado aproximadamente por

$$f(x) = \frac{200}{1 + 3 \times 2^{3 - 0.1x}}$$

(considere que x = 0 corresponde ao instante em que o vírus foi detetado).

Resolva os dois itens seguintes sem recorrer à calculadora, a não ser para efetuar cálculos numéricos.

3.1. No instante em que o vírus foi detetado, já existiam frangos infetados.

Passados alguns dias, o número de frangos infetados era dez vezes maior.

Quantos dias tinham passado?

3.2. Para tentar verificar se um frango está infetado, o veterinário aplica um teste que ou dá positivo ou dá negativo.

Sabe-se que:

- quando o frango está infetado, a probabilidade de o teste dar positivo é 96%
- quando o frango não está infetado, a probabilidade de o teste dar negativo é 90%

Trinta dias após o instante em que o vírus foi detetado, existiam no aviário $450\,$ frangos **não** infetados. Nesse dia, de entre todos os frangos do aviário (infetados e não infetados), o veterinário escolheu, ao acaso, um frango e aplicou-lhe o teste.

O teste deu negativo.

Qual é a probabilidade de o frango escolhido não estar infetado?

Apresente o resultado na forma de dízima, arredondado às milésimas.

4. Para cada valor de k, a expressão

$$f(x) = \begin{cases} k + xe^x & \text{se } x \le 0\\ \frac{2x + \ln x}{x} & \text{se } x > 0 \end{cases}$$

define uma função, de domínio \mathbb{R} , cujo gráfico tem:

- uma assíntota horizontal, quando $x \to +\infty$
- uma assíntota horizontal, quando $x \to -\infty$

Existe um valor de k para o qual as duas assíntotas são coincidentes, ficando assim o gráfico de f com uma única assíntota horizontal.

Determine esse valor de k, sem recorrer à calculadora.

FIM

COTAÇÕES

GRUPO I

	10 pontos	
	10 pontos	
_	-	50 pontos
GRUPO II		
1.1.	15 pontos	
1.2.	20 pontos	
2.1.	20 pontos	
2.2.	15 pontos	
2.3.	20 pontos	
3.1.	20 pontos	
3.2.	20 pontos	
	20 pontos	
		150 pontos
TOTAL		200 pontos
	GRUPO II 1.1. 1.2. 2.1. 2.2. 2.3. 3.1. 3.2.	