课程概述

CS13104: 计算机系统导论

simple@hit.edu.cn,新技术楼900室

第1讲, Sep. 3, 2018

本章内容提要

- ■课程主题
- ■五个事例
- ■可执行程序的生成与执行
- ■计算机系统层次模型
- 本课程在CS/CE课程体系中的地位
- ■课程考核与学术诚信

回顾:计算机思维导论

计算之树

■ 计算思维(抽象)

- 从计算机学科中提炼出来的 一种"普适"思维方式
- 面向所有人、所有领域
- 无需深入了解计算机系统
- 对计算机专业学生来说:必需, 但远远不够!

■ 系统思维(具体)

("计算机思维")

- 从计算机角度去分析问题和 解决问题的方法
- 首先取决于对计算机系统的 了解

课程Subject:抽象很好但别忘记具体实际!

- 多数计算机科学/工程的课程都强调抽象
 - 抽象数据(类)型
- ■抽象是有局限的
 - 特别是在出现bug(程序缺陷-故障/错误)时
 - 需要理解底层实现的细节

本课程的一个重要论述:
Abstraction Is Good But Don't
Forget Reality
抽象很好, 但别忘记具体情况

事例1:

程序示例:test2

int未必是整数, float未必是实数

- ■例 1: x² ≥ 0?
 - Float's: Yes!
 - Int's:
 - **40000 * 40000 = 1600000000**
 - 50000 * 50000 **?**?

 $(2^{31} = 2,147,483,648)$

- 例 2: (x + y) + z = x + (y + z)?
 - 无符号/有符号 Int: Yes!
 - 浮点数Float:
 - (1e20 + -1e20) + 3.14 --> 3.14
 - 1e20 + (-1e20 + 3.14) --> ?? 0

理解这个问题需要知道: 机器级数据的表示范围 浮点数的表示与运算规则 高级语言中的运算规则

计算机的算术运算

- 不要假设所有的"通常"数学特性
 - 因为数据表示的有限性
 - 整数操作满足 "循环"特性
 - 交换律,结合律,分配律
 - 浮点操作满足"排序" 特性
 - 单调性,符号值

事例2:

汇编! 汇编!

■ 代码一

```
理解该问题需要知道:
```

编译器如何优化机器数如何表示

机器指令的含义与执行

除法错异常的处理

```
int a= 0x80000000;
int b = a/-1;
printf("%d\n",b);
运行结果: -2,147,483,648
```

通过反汇编得知除以-1被优化成取负指令neg,故未发生除法溢出

■代码二

```
int a= 0x80000000;
int b = -1;
int c = a/b;
printf("%d\n",c);
```

a/b采用除法指令idiv实现,但并不生成OF标志,实际是靠除法前的判断,发现超出表示范围,发出"除法错"异常

运行结果为"floating point exception",检测出了溢出

不同! Why?

So,你不得不懂汇编

- 有可能是, 你永远不用汇编语言写程序
 - 编译器比你更好更耐心
- 但是: 汇编是机器级执行模型的关键
 - 了解存在Bug程序的行为
 - 调整程序性能
 - 理解编译器所做或不做的优化
 - 理解程序低效的根源
 - 实现系统软件
 - 编写 /对抗 恶意软件(malware)

程序示例:test1

事例3:存储引用Bug

```
typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824; /* Possibly out of bounds */
  return s.d;
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14
fun(6) -> Segmentation fault
```

■ 结果是面向特定系统的

```
typedef struct {
  int a[2];
  double d;
} struct_t;
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14
fun(6) -> Segmentation fault
```

注释:

理解该问题需要知道:

机器数表示 栈帧中数据的布局

Location accessed by fun(i)

关于存储

RAM随机存储器是一个非物理抽象

- ■存储器不是无限的
 - 存储器需要分配与管理
 - 很多应用是受存储支配/控制的
- ■存储引用错误特别致命
 - 在时间和空间上的影响都是深远的
- ■存储器性能是不一致的
 - Cache与虚拟存储器的效率会严重影响程序性能
 - 针对存储系统的特点编写程序, 会大幅提升程序运行速度

存储引用错误

- C and C++ 不提供任何存储保护
 - 数组访问的越界
 - 无效指针值
 - 滥用 malloc/free
- ■导致令人讨厌的bug
 - bug造成的任何影响依赖于系统和编译器
 - 可能在bug生成很久才被察觉到
- ■怎么办?
 - 用 Java, Ruby, Python, ML, ...编程
 - 使用或开发工具来发现引用错 (e.g. Valgrind)

事例4:存储系统的性能

4.3ms 2.0 GHz Intel Core i7 Haswell 81.8ms

两个程序功能一样、算法一样, 时间空间复杂度一样, 执行时间why?

- ■存储器的层次化组织
- 性能 依赖于访问模式
 - 包括怎样遍历多维数组

理解该问题需要知道: 数组的存放方式 Cache机制 访问局部性

为什么性能不同

性能比不断增加的复杂性更重要

事子

- 性能无法预测
 - 很容易能看到,代码编写不同,会引起10:1 性能变化
 - 一定要多层次优化: 算法,数据表示, 过程, 循环
- ■优化性能一定要理解系统
 - 程序是怎么编译和执行的
 - 怎样测量系统性能和定位瓶颈
 - 不破坏代码的模块化与整体性, 怎么改进性能

第5个事例: 除了执行程序计算机还要做很多

- ■进行数据的输入输出
 - I/O系统对程序的可靠性和性能很关键
- ■通过网络互相通讯
 - 网络环境下会出现很多系统级问题
 - 多个进程的并发操作
 - 不可靠媒体的拷贝
 - 交叉平台的兼容性
 - 复杂的性能问题

上述5个事例表明:需要用"系统思维"分析具体问题

课程的视角

- ■大多数系统类课程都是以构建为中心
 - 计算机体系结构
 - 用Verilog设计流水线处理器
 - OS
 - 实现OS的示例部分
 - 编译器
 - 编写简单语言的编译器
 - 网络
 - 实现并模拟网络协议

本课程的视角

- 本课程是以程序员为中心—程序员的角度认识系统
 - 目标:通过更多地理解底层系统,成为更高效的程序员
 - 能够发现并有效地排除bug
 - 能理解并调整程序性能
 - 为CS/SE的后续系统课程打基础
 - 编译、操作系统、计算机网络、计算机体系结构、嵌入式系统、存储系统等。
- ■程序员的角度,最关心
 - 程序是怎么形成的?
 - 程序是怎么运行的?

可执行程序是怎么生成的?

经典的 "hello.c"C-源程序

```
#include <stdio.h>
int main()
{
  printf("hello, world\n");
}
```

hello.c的ASCII文本表示

```
# i n c l u d e < s p > < s t d i o .
35 105 110 99 108 117 100 101 32 60 115 116 100 105 111 46
h > \n \n i n t < s p > m a i n () \n {
104 62 10 10 105 110 116 32 109 97 105 110 40 41 10 123
\n < s p > < s p > < s p > p r i n t f (" h e l
10 32 32 32 32 112 114 105 110 116 102 40 34 104 101 108
l o , < s p > w o r l d \ n " ) ; \n }
108 111 44 32 119 111 114 108 100 92 110 34 41 59 10 125
```

功能:输出"hello,world" 计算机不能直接执行hello.c!

以下是GCC+Linux平台中的处理过程 printf.o |预处理| 编译 链接 hello 汇编 hello.o hello.i hello.c hello.s (cpp) (cc1) (as) (ld) 源程序 可重定 源程序 (文本) 位目标 (文本) 言程序 程序

可执行程序是怎么执行的?

数据经常在各存储部件间传送。故现代计算机大多采用"缓存"技术! 所有过程都是在CPU执行指令所产生的控制信号的作用下进行的。

计算机系统层次模型

功能转换:上层是下层的抽象,下层是上层的实现 程序执行结果 底层为上层提供支撑环境! 不仅取决于 算法、程序编写 最終用户 应用 (问题) 而且取决于 算法 软 语言处理系统 编程 (语言) 程序员 件 操作系统 操作系统/虚拟机 ISA-机器语言 所有软件功能都 微体系结构 指令集体系结构 (ISA) 建立在ISA之上 ISA是对硬件的抽象 架构师 微体系结构 不同计算机课程 硬 功能部件 处于不同层次 件 电路 必须将各层次关 电子工程师 联起来解决问题 器件

最高层抽象就是点点鼠标、拖拖图标、敲敲键盘,但这背后有多少层转化啊!

本课程在CS/CE课程体系中的角色

计算机大类专业课程选择框架(总学分:主修 159.5+辅修 21.0)

	学校要求		
类别	课程	学期	学分
公共基础课			23.0
	思想道德修养	1秋	2.0
	中国近现代史纲要	1春	2.0
	毛泽东思想…概论	2 秋	4.0
	马克思主义基本原理	2春	3.0
	军训及军事理论	1秋	3.0
	大学外语	1-2 学年	6.0
	体育	1-2 学年	3.0
数学与自	然科学基础课		24.5
	微积分	1秋1春	11.0
	代数与几何	1秋	4.0
	概率论与数理统计	2 秋	3.0
	生命科学基础与应用	1秋	1.0
	大学物理Ⅲ	1春	4.5
	大学物理实验Ⅱ	1春	1.0
人文与社	人文与社会科学基础课		10.0
	(经管类选1)	4 秋前	1.5
	(环境与法律类选 1)	4 秋前	1.5
	(工程伦理类选 1)	4 秋前	1.5
	(心理学类选 1)	4 秋前	1.5
	(文学艺术与审美类选 1)	4 秋前	1.5
	(文学艺术与审美类选 1)	4 秋前	1.5
讲座	文化素质教育讲座	4 秋前	1.0
创新创业	创新创业课		
	年度创新项目实践	1春-2秋	1.0
	(学生选择课程与实践)	4 秋前	3.0

学院·大类专业要求			
类别	课程	学期	学分
数学与	数学与自然科学基础课		8.0
	集合论与图论	1春	4.0
	数理逻辑	2 秋	2.0
	近世代数	2春	2.0
专业基	础课		30.0
	计算机专业导论	1秋	2.0
	高级语言程序设计	1秋	3.0
	数字逻辑与数字系统设计	1春	3.5
	计算机系统 1-计算机组织	2秋	2.5
	计算机系统 II-操作系统	2 秋	2.5
	数据结构与算法	2 秋	3.5
	算法设计与分析(含数值算法)	2春	4.0
	软件构造 I-面向对象方法	2春	2.5
	软件构造 II-面向质量的软件构造	2春	2.5
	形式语言与自动机	2春	2.0
	信息安全概论	2春	2.0
跨学科课程		6.0	
	(学生选择课程)	2-3 学年	3.0
	(学生选择课程)	2-3 学年	3.0
其他课	程 (计学分)		4.0
	企业短期实训	2夏	2.0
	独立学习与技术交流	3夏	1.0
	领导力训练	2-3 学年	1.0
国际课	国际课程(不少于 1.0 学分)		
	(可与其他类别课程共享)		1.0
毕业设计			14.0
	毕业设计	4春	14.0

	<u> </u>			
学院-专业要求				
主修专业	主修专业 (学生选择专业)			
类别 课程		学期	学分	
专业限选课:	四类课程中分别选一	•	12.0	
限选 1	计算机网络 (课程+实验)	3 秋	3.0	
限选 2	编译系统 (课程+实验)	3 秋	3.0	
限选 3	数据库系统 (课程+实验)	3春	3.0	
限选 4	人工智能 (课程+实验)	3春	3.0	
专业核心课-方	- 方向系列:九个方向选一(参	见另表)	12.0	
系列 1/I	(课程+P&WIM)	3 秋	4.5	
系列 1/II	(课程+P&WIM)	3春	4.5	
系列 1/III	(课程:按选修处理)	3 春/4 秋	3.0	
注	: P&WIM-Project & Writing Inte	nsive Module,		
专业选修课:满足专业方向选修和总学分要求 13				
专业选修 1	(学生选择)	3 秋-4 秋	2.0	
专业选修 2	(学生选择)	3 秋-4 秋	2.0	
专业选修 3	(学生选择)	3 秋-4 秋	2.0	
专业选修 4	(国际课程中选1)	3 秋-4 秋	2.0	
专业选修 5	(视野拓展型课程选1)	3 秋-4 秋	2.0	
专业选修 6	(视野拓展型课程选 1)	3 秋-4 秋	2.0	
辅修专业-专业	L核心课-方向系列		15.0	
限选	(学生选择-辅修用)	3-学年	3.0	
系列 2/I	(课程+ P&WIM)	3 秋	4.5	
系列 2/II	(课程+ P&WIM)	3春	4.5	
系列 2/III	(课程:按选修处理)	3 春/4 秋	3.0	
辅修专业-专业	6.0			
辅修-选修1	(学生选择)	3 秋/夏	2.0	
辅修-选修2	(学生选择)	3春/夏	2.0	
辅修-选修3	(视野拓展型课程选1)	3 秋/4 秋	2.0	

各专业方向-分学期-专业核心课程,暨大学分系列课程

系列课程 专业方向	课程 I(3 秋)	课程 II(3 春)	课程 Ⅲ(3 春/4 秋)	课程 I-II-III 联合实现的实验-复杂工程 问题求解能力训练(3 秋 3 春或 4 秋)
专业公共课				
计算机大类/软件工程大类	计算机网络	数据库系统		仅存在对应各课程的实验,各课程间无联系。
	编译系统	人工智能		
专业方向		I		
A1-计算机工程	计算机组织与体系结构	操作系统设计与实现	嵌入式系统设计与实现	典型(嵌入式)计算机的设计、实现与分析
A2-计算机科学	随机计算	随机算法	计算理论	典型随机数据处理系统的设计、实现与分析
A3-并行与分布	并行与分布系统	并行与分布算法	云计算	典型并行/分布算法的设计、实现与分析
B1-自然语言处理	机器学习	自然语言处理	信息检索	典型机器学习系统设计、实现与分析
B2-视听觉信息处理	视听觉信号处理	模式识别与深度学习	视听觉信息理解	典型视听觉信息系统设计、实现与分析
B3-数据科学与大数据技术	大数据计算基础	大数据分析	数据挖掘	典型大数据系统的设计、实现与分析
C1/1-信息安全-网络安全	密码学原理与应用	网络安全	软件安全	典型内容安全系统的设计、实现与分析
C1/2-信息安全-内容安全	系统安全	信息内容安全	逆向分析	典型网络安全系统的设计、实现与分析
D1-生物信息学	生物信息学	基因组信息学	系统生物学	生物信息学算法设计、实现与分析
E1-物联网工程	信息物理系统-理论与建模	信息物理系统-技术与系统	信息物理系统-分析与验证	典型信息物理系统的设计、实现与分析

软件工程大类专业课程选择框架(总学分:主修 159.5)

•				
		学校要求		
类	别	课程	学期	学分
公共	基础			23.0
		思想道德修养	1秋	2.0
		中国近现代史纲要	1春	2.0
		毛泽东思想概论	2 秋	4.0
		马克思主义基本原理	2春	3.0
		军训及军事理论	1秋	3.0
		大学外语	1-2 学年	6.0
		体育	1-2 学年	3.0
数学	与自	然科学基础课		24.5
		微积分	1秋1春	11.0
		代数与几何	1秋	4.0
		概率论与数理统计	2 秋	3.0
		生命科学基础与应用	1 秋	1.0
		大学物理 III	1春	4.5
		大学物理实验Ⅱ	1春	1.0
女人	与社	会科学基础课		8.5
		(文学艺术与审美类选 1)	1-2 学年	1.5
		(文学艺术与审美类选 1)	1-2 学年	1.5
		(环境与法律类选 1)	1-2 学年	1.5
		(心理学类选 1)	1-2 学年	1.5
		软件与社会	1-2 学年	1.5
讲	座	文化素质教育讲座	4 秋前	1.0
创新	创业	 课		4.0
		年度创新项目实践	1春-2秋	1.0
		IT 企业创业与管理	4 秋前	1.0
		(学生选择课程与实践)	4 秋前	2.0

	学院-大类专业要	k	
类别	课程	学期	学分
数学与	数学与自然科学基础课		8.0
	集合论与图论	1春	2.0
	数理逻辑	2 秋	2.0
	计算方法	2春	2.0
	运筹学	2春	2.0
专业基	出课		26.0
	软件工程专业导论	1秋	3.0
	高级语言程序设计	1秋	3.0
	基于平台的软件开发(选一)	1春	2.5
	计算机系统 1-计算机组织	2 秋	2.5
	计算机系统 II-操作系统	2 秋	2.5
	数据结构与算法	2 秋	2.5
	算法设计与分析	2春	3.0
	软件构造 I-面向对象方法	2春	2.5
	软件构造 II-面向质量的软件构造	2春	2.5
	软件项目管理	2春	2.0
商务类课程			7.5
	(财会与金融类课程选1)	1-3 学年	2.0
	(企业管理类课程选1)	1-3 学年	2.0
	(市场营销选1)	1-2 学年	2.0
	商务谈判	1-2 学年	1.5
其他课程(计学分)		4.0	
	企业实训	2夏	2.0
	独立学习与技术交流	3夏	1.0
	领导力训练	2-3 学年	1.0
毕业设	; †		14.0
	毕业设计	4春	14.0

	学院-专业要求	:			
主修专业	主修专业 (学生选择专业)				
类别	课程	学期	学分		
专业限选课	:		12.0		
限选 1	计算机网络 (课程+实验)	3 秋	3.0		
限选 2	编译系统 (课程+实验)	3 秋	3.0		
限选 3	数据库系统 (课程+实验)	3春	3.0		
限选 4	人工智能 (课程+实验)	3春	3.0		
专业核心课	-必修系列		9.0(或 6.0)		
系列 1/I	(课程+P&WIM)	3 秋	4.5(或 3.0)		
系列 1/II	(课程+P&WIM)	3春	4.5(或 3.0)		
	注:P&WIM-Project & Writing Int	ensive Module			
专业核心课	-方向系列(本专业或跨专业)		6.0(或 9.0)		
系列 2/1	(课程+P&WIM)	3 秋	3.0(或 4.5)		
系列 2/II	(课程+P&WIM)	3 春	3.0(或 4.5)		
注:两个	核心课系列必修,但只需完成	1 个系列的 F	P&WIM。		
专业选修课	:满足专业方向选修和总学分要求		4.0		
专业选修 1	(国际课程中选 1)	3 秋-4 秋	2.0		
专业选修 2	(视野拓展型课程选1)	3 秋-4 秋	2.0		
		T			
国际课程(不少于 2.0 学分)	T			
	(可与其他类别课程共享)		2.0		
工业实习	Γ	T	9.0		
	工业实习 (在企业)	4 秋	9.0		

各专业方向-分学期-专业核心课程,暨大学分系列课程

系列课程专业方向	课程 I(3 秋)	课程 II(3 春)	课程 I-II 联合实现的实验-复杂工程问题求解能力训练(3 秋 3 春)
专业公共课			
软件工程大类	计算机网络	数据库系统	仅存在对应各课程的实验,各课程间无联系。
	编译系统	人工智能	
专业方向			
F1-软件工程 (必修)	软件过程与工具 I-需求分析与系统设计 软件过程与工具 II-软件过程与配置管理	软件架构与中间件 I-软件体系结构与中间件 软件架构与中间件 II-软件测试与质量保障	典型软件系统的设计、实现与分析
		移动开发	
N1-服务工程 (可选一)	面向服务的软件系统	服务工程与应用	典型服务系统的设计、实现与分析
N2-移动互联网与数字媒体 (可选一)	移动互联网技术	数字媒体技术	面向数字媒体的典型移动系统设计、实现与分析
S-其他学科方向 (可选一)	跨学科核心课程 I+P&WIM (要求 I 和 II 必须同一学科)	跨学科核心课程 II+P&WIM (要求 I 和 II 必须同一学科)	典型 XX 学科计算系统的设计、实现与分析

作弊: 描述

- 什么是作弊?
 - 共享代码: 通过拷贝, 重敲, 看看,或提供文件
 - 口述: 一个人向其他人口头描述代码.
 - 辅导: 一行一行地帮你的朋友写实验
 - 网上搜索答案
 - 从以前的课程或作业中拷贝代码
 - 只被允许使用我们提供的代码,或来自课程网站的代码(CS:APP website)
- 什么不是作弊?
 - 解释怎么使用系统和工具
 - 帮助其他人进行高层次的设计问题

作弊:后果

- 对作弊的处罚:
 - 不及格!
 - 会被蔑视
- 作弊的检查:
 - 我们有专业的代码剽窃检查工具
- ■不要作弊!
 - 提早动手
 - 实在做不下去可以请教助教

教材

- Randal E. Bryant and David R. O'Hallaron,
 - Computer Systems: A Programmer's Perspective, Third Edition (CS:APP3e),
 Pearson, 2016 深入理解计算机系统 3-机械工业出版社
 - http://csapp.cs.cmu.edu
 - 这本书对这门课很重要!
 - 如何解决实验
 - 练习题中有典型的考试题目
- ■计算机系统基础
 - 南京大学 袁春风

课程组成

- ■大班讲授
 - 概念为主
- 复习-练习-习题
 - 习题检验, 代码验证
- 实验 (8次)
 - 课程的心脏
 - 每次1-2 周
 - 提供对系统的某方面的深入理解
 - 编程和测试
- ■考试
 - 测试你对概念和原理的理解

获得帮助

- 课程 Web网站: http://www.cs.cmu.edu/~213
 - 完整的课程资料
 - 课件、作业、测验、答案
 - 作业的说明

政策:实验和检查

- ■考试
 - 一纸开卷
 - 只占50%

评分

考核环节	建议分 值 比例	考核/评价细则
实验	30%	1.linux下C工具应用; 3学时; 2分 2.数据表示 ; 3学时; 4分 3.破解:二进制炸弹; 3学时; 4分 4.漏洞攻击 ; 3学时; 4分 5.Cache高速缓冲器; 3学时; 4分 6.链接实验; 3学时; 4分 7.微壳TinyShell ; 3学时; 4分 8.存储器分配 ; 3学时; 4分
作业	10%	平时作业5次:汇编2次,组原1次,编译连接1次,OS1次
大作业	10%	大作业 3 次:汇编 3 分、组原 4 分、 OS3 分,格式为毕设论文的正文。
期末考试	50%	一纸开卷试卷

程序与数据

- ■主题
 - 位操作,算术预算,汇编语言程序
 - C控制与数据结构的表示
 - 包括体系结构与编译的方面
- ■作业
 - L1 (datalab): 位操作
 - L2 (bomblab): 拆除一个二进制炸弹
 - L3 (attacklab):代码注入攻击的基础知识

存储器层次

- ■主题
 - 存储技术,存储层次, 高速缓冲器, 磁盘, 局部性
 - 包括体系结构与编译的方面

- ■作业
 - L4 (cachelab): 建立一个 cache模拟器, 并为局部性进行优化.
 - 学习如何在你的程序中利用局部性.

异常控制流

- ■主题
 - 硬件异常, 进程, 进程控制, Unix信号, 非局部跳转
 - 包括体系结构、OS与编译的方面
- ■作业
 - L5 (tshlab): 编写自己的 Unix 外壳.
 - 第一次引入并发

虚拟存储器

- ■主题
 - 虚拟存储器, 地址翻译, 动态存储器分配
 - 包括体系结构、OS的方面
- ■作业
 - L6 (malloclab): 编写你自己的存储器分配程序包
 - 真实感受下系统底层的编程

Welcome and Enjoy!