

# Computer Vision

**Image Formation** 

Technische Hochschule Rosenheim Winter 2024/25 Prof. Dr. Jochen Schmidt



# Sensors

### Types of Image Sensors



- Area sensor
  - e.g. CCD, CMOS chip
- Line sensor
  - Like area sensor, but pixels arranged in a line
- Point sensor
  - only records a single intensity value
- not only in the visible spectrum
  - also IR, UV, X-ray, radio waves (radar sensor), ...

### CCD Sensor



- CCD = Charge Coupled Device
- consists of (interline sensor)
  - light-sensitive pixels, separated by bars and potential barriers
  - shift registers
    - not sensitive to light
    - take up about half of the chip area
- Full-frame sensor
  - uses almost the entire surface as a sensor
  - Charges are pushed through the light-sensitive area during readout
  - therefore mechanical shutter necessary (avoids exposure during readout)



Horizontal shift register

### Interline CCD sensor





## Blooming/Smear (CCD)



### Blooming



- is created during the exposure
- typically limited
- completely overexposed

#### Smear



- is created during the readout
- Strips always up to the edge
- not completely overexposed

### **CCD Sensor**



- inexpensive
- Low weight/size
- Insensitive to shocks and electromagnetic fields

### **CMOS Sensor**



- CMOS = Complementary Metal Oxide Semiconductor
- Detection of photons as with CCD
- Reading out the values
  - Direct control of individual pixels via transistors/address lines
  - Arbitrary image regions selectable
  - No shift registers necessary
- Advantages over CCD:
  - Control/processing electronics can be integrated directly on the chip
  - Free and random pixel access
  - Greater dynamic range
  - Low power consumption
  - Wide temperature range
  - No blooming, smear, shutter lag
- Disadvantages
  - less sensitive
  - higher noise



### Color sensors



- Light sensors in cameras ("imagers") detect the intensity of the light, (almost) regardless of the wavelength
- only gray images can be acquired
- Color information:
  - either optical separation of the light according to wavelength, use 3 sensors each for R, G, B Disadvantage: complex



• or use of a color filter array (CFA), i.e. filters on each individual pixel Disadvantage: Loss of sensitivity due to filter

## CFA - Examples







Cburnett, Wikimedia Commons, CC-BY-SA-3.0



Dicklyon, Wikimedia Commons, Public Domain

# Typical Technical Specifications ...



### ... of commercial CCD/CMOS cameras for machine vision

| Number of pixels                 | 640 x 480 up to 4800 x 3200                                                    |
|----------------------------------|--------------------------------------------------------------------------------|
| Pixel size                       | 1.4 x 1.4 μm <sup>2</sup> up to 10 x 10 μm <sup>2</sup>                        |
| Sensor size                      | 1/4" to 1", more rarely up to 35mm (mostly 4:3, diagonal from 4.5mm to 43.3mm) |
| Exposure time (Belichtungszeit)  | 10μs to several seconds                                                        |
| Frame rate                       | 3Hz to 200Hz                                                                   |
| Color depth                      | 8 bit to 16 bit per channel (internally often more)                            |
| Shutter<br>( <i>Verschluss</i> ) | global or rolling                                                              |
| Scanning Method                  | Interlace or Progressive Scan                                                  |

## Digital Images





- Binary image1 bit / pixel
- Gray value image8 bit / pixel10, 12, 16 bit / pixel
- Color image (RGB)
  8 bit / color channel
  10, 12, 16 bit / color channel
  (often more internally)



# Optical Imaging



## Pinhole Camera Model (Lochkameramodell)





$$x = -\frac{b}{z_c} x_c$$

$$y = -\frac{b}{z_c} y_c$$

# Imaging with a Single Lens



### Parallel incident light beams are bundled in the focal plane



### Thin Lens Model





Imaging equation:  $\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$ 

### Depth of field (Schärfentiefe) is limited

Only the plane at distance  $g = \frac{bf}{b-f}$  is in focus on the image plane

## Bundle Limitation: Aperture and Field Stop





Field stop: limits the field of view/image field (determines image region)

(Feldblende)

Aperture stop: limits the opening of the light beam

(Aperturblende) position in front of/behind/between lenses

determines the depth of field

# Optical Paths





## Projections/Perspectives, Visibility & Occlusion



entocentric - the "normal" perspective projection/pinhole camera model





telecentric - also "parallel projection", "orthogonal projection"





#### hypercentric





## Example





Scene (aluminum profiles)



entocentric



telecentric

telecentric/hypercentric: lens must be larger than the object Telecentric lenses are available up to approx. 30cm diameter

# Example of a Hypercentric Perspective







### Selecting a lens



- Perspective
- Focal length (Brennweite)
  - fixed (which?) or zoom (which range? manual/motor?)
  - suitable for the image sensor
- Size matching the image sensor
- Working distance (Arbeitsabstand)
- Lens speed (*Lichtstärke*)
  - depending on aperture stop and quality of optics
- Resolution
  - suitable for the sensor
  - measured in line pairs/mm (lp/mm)
- Lens mount (Objektivanschluss) suitable for the camera
- Filter thread necessary? (Filtergewinde)
- Quality of the optics imaging errors
  - geometric (e.g. radial distortions)
  - chromatic (refractive index depends on wavelength)

### Sources



[Beyerer16] Beyerer, J., Puente Leon, F., Frese, Ch.: *Machine Vision*, Springer, 2016.