What I have learnt today

Author: 秦宇轩(Qin Yuxuan) Last complied at 2025-06-30

Contents

2025		 	 	 	 	 	 	 1
06-30: F^{\times}	is cyclic . $$	 	 	 	 	 	 	 1

2025

06-30: F^{\times} is cyclic

For finite field F, the multiplicative group F^{\times} is cyclic. This result can be used to prove that every finite field is gained from a quotient like $F_p[x]/(\pi(x))$, for some prime p and monic irreducible $\pi(x)$.

Main idea: a group G is cyclic iff there is an element g such that $h=g^k$ for any other element h and some k, so we must have ord g=|G|. But by Lagrange theorem we alyways have ord $g\mid |G|$ for any g in G, so it suffices to prove $|G|\leq \operatorname{ord} g$. Thanks to the lemma below, we have $h^{\operatorname{ord} g}=1$ for all h. So the polynomial $x^{\operatorname{ord} g}=1$ has $|F^\times|$ roots, which implies $|F^\times|\leq \operatorname{ord} g$.

Lemma: In finite ablian group, the order of every element divides the maximal order. (It's fun to prove)

Ref. Finite Field by Conrad.