CSE 575 Statistical Machine Learning

Lecture 17 YooJung Choi Fall 2022

Clustering

- Given a large collection of objects $x_1, x_2, ..., x_N$, can we group similar objects together?
- Central to cluster analysis are:
 - Notion of the degree of similarity / dissimilarity
 - Efficient clustering algorithms

Market segmentation

Image segmentation

Document analysis

GMM for clustering

• Recall: latent variable interpretation of Gaussian mixture models

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \sum_{k=1}^{K} p(z = k) \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- We can interpret the latent variable *z* as the *cluster*
- Soft clustering: GMM assigns a probability that a point \mathbf{x} belongs to cluster z=k:

$$p(z = k | \mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

• For hard clustering: assign \mathbf{x} to the most likely cluster

$$\operatorname{argmax}_k p(z = k \mid \mathbf{x})$$

K-means clustering

• Define "similarity" in terms of squared Euclidean (L2) distance

$$d(\mathbf{x}_n, \mathbf{x}_m) = \|\mathbf{x}_n - \mathbf{x}_m\|^2 = \sum_{i=1}^{D} (x_{ni} - x_{mi})^2$$

- Clustering: finding a mapping from each object \mathbf{x}_n to cluster \mathcal{C}_n
- Centroid-based clustering: represent each cluster by a centroid (a representative prototype) μ_k
- Objective: group objects to minimize the within-cluster sum of squared distances:

$$\underset{C,\mu}{\operatorname{argmin}_{C,\mu}} \sum_{k=1}^{K} \sum_{n:C_n=k} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

Non-convex optimization

• Iteratively optimize the following, a la expectation maximization

$$\operatorname{argmin}_{C,\boldsymbol{\mu}} \sum\nolimits_{k=1}^K \sum\nolimits_{n:C_n=k} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

- Recall: EM for GMMs (informally)
 - E-step: guess the values of latent variable z_n for each \mathbf{x}_n
 - M-step: update the parameters π_k , μ_k , Σ_k based on the guesses from the E-step
- K-means algorithm (informally): iteratively,
 - Guess the cluster C_n for each \mathbf{x}_n
 - Update μ_k based on the assigned clusters

• Iteratively optimize the following, a la expectation maximization

$$\operatorname{argmin}_{C,\mu} \sum\nolimits_{k=1}^K \sum\nolimits_{n:C_n=k} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

- 1. Guess the cluster C_n for each \mathbf{x}_n
 - Fix μ_k and minimize the following w.r.t C

$$\sum_{k=1}^{K} \sum_{n:C_n=k} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2 = \sum_{n=1}^{N} \sum_{k=1}^{K} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$
Indicator function
$$\sum_{k=1}^{K} \sum_{n:C_n=k} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2 = \sum_{n=1}^{N} \sum_{k=1}^{K} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$$

• Therefore, $C_n = \operatorname{argmin}_k ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$

Assign each point to the closest cluster

Exercise: $\sum_{n:C_n=k} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2$ equivalent to $\frac{\frac{1}{2N_k}\sum_{n,m:C_n=C_m=k}\|\mathbf{x}_n-\mathbf{x}_m\|^2$

$$\frac{1}{2N_k} \sum_{n,m:C_n = C_m = k} ||\mathbf{x}_n - \mathbf{x}_m||$$

 Iteratively optimize the following, a la expectation maximization $\operatorname{argmin}_{C,\mu} \sum_{k=1}^{K} \sum_{n:C=-k} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$

K-means tries to minimize pairwise squared distances of points in the same cluster

- Update μ_k based on the assigned clusters
 - Fix C and minimize the following w.r.t μ

$$\sum_{k=1}^{K} \sum_{n:C_n=k} ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2 = \sum_{k=1}^{K} \sum_{n:C_n=k} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T (\mathbf{x}_n - \boldsymbol{\mu}_k)$$

• Take the partial derivative w.r.t. μ_k and set it to zero

$$\frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n:C_n = k} (\mathbf{x}_n - \boldsymbol{\mu}_k)^T (\mathbf{x}_n - \boldsymbol{\mu}_k) = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n:C_n = k} (\mathbf{x}_n^T \mathbf{x}_n - 2\boldsymbol{\mu}_k^T \mathbf{x}_n + \boldsymbol{\mu}_k^T \boldsymbol{\mu}_k) = \sum_{n:C_n = k} (-2\mathbf{x}_n + 2\boldsymbol{\mu}_k) = 0$$

• Therefore, $\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$ where $N_k = |\{n:C_n=k\}|$

Represent each cluster with the mean of all points in that cluster

Putting everything together

- 1. Initialize $\mu_1, \mu_2, ..., \mu_K$
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize $\mu_1, \mu_2, ..., \mu_K$
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize $\mu_1, \mu_2, ..., \mu_K$
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize $\mu_1, \mu_2, ..., \mu_K$
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize μ_1 , μ_2 , ..., μ_K
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize μ_1 , μ_2 , ..., μ_K
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize μ_1 , μ_2 , ..., μ_K
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize μ_1 , μ_2 , ..., μ_K
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize μ_1 , μ_2 , ..., μ_K
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

Putting everything together

- 1. Initialize μ_1 , μ_2 , ..., μ_K
- 2. Until convergence, repeat:
 - 1. For every n, set

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$\mu_k = \frac{1}{N_k} \sum_{n:C_n=k} \mathbf{x}_n$$
 where $N_k = |\{n:C_n=k\}|$

K-means: convergence

Objective function value J is decreased in each E step & M step, in every iteration

$$J(C, \mu) = \sum_{k=1}^{K} \sum_{n:C_n = k} ||\mathbf{x}_n - \mu_k||^2$$

- K-means always converges
- Algorithm is not guaranteed to converge to the global optimum
- Results depend on initialization

K-means++

- Improved initialization for K-means
- Intuition: spread out the centroids
- Algorithm:
 - 1. Select an initial cluster center uniformly at random
 - 2. Compute $d(\mathbf{x}) = ||\mathbf{x} \boldsymbol{\mu}_k||^2$ for each point, where k is the nearest center
 - 3. Sample the next centroid, with probability proportional to $d(\mathbf{x})$
 - 4. Repeat until K centroids have been chosen

How to choose K

- May be given as part of the problem
- May need to choose K: Elbow method (possibly with cross-validation)

Application: image segmentation

Gaussian mixture models

 Points that lie on this ellipse have the same contribution from the corresponding Gaussian component to their density

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

K-means

 Points that lie on this circle have the same contribution from the corresponding centroid when assigning clusters

$$C_n = \operatorname{argmin}_k \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Analogous to a GMM with a spherical covariance matrix

i.e.
$$\Sigma_k = \epsilon_k I$$

Gaussian mixture models

• The contours (ellipses) of equal contribution from the respective components can have different shapes and sizes

K-means

 The contours (circles/spheres) have the same shape and size across clusters

Analogous to a GMM with a shared covariance matrix

i.e.
$$\Sigma_k = \Sigma = \epsilon I$$

• Hypothesis: K-means clustering is a special case of clustering given by a Gaussian mixture model with a shared, spherical covariance matrix approaching zero i.e. $\Sigma_k = \epsilon I$, $\epsilon \to 0$

$$p(z = k \mid \mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} = \frac{\pi_k (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}}{\sum_{k=1}^K \pi_k (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}}$$

$$= \frac{\pi_k (2\pi)^{-\frac{D}{2}} |\boldsymbol{\epsilon}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T (\boldsymbol{\epsilon})^T (\mathbf{x} - \boldsymbol{\mu}_k)\right\}}{\sum_{k=1}^K \pi_k (2\pi)^{-\frac{D}{2}} |\boldsymbol{\epsilon}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T (\boldsymbol{\epsilon})^T (\mathbf{x} - \boldsymbol{\mu}_k)\right\}}$$

$$= \frac{\pi_k \exp\left\{-\frac{1}{2\epsilon} ||\mathbf{x} - \boldsymbol{\mu}_k||^2\right\}}{\sum_{k=1}^K \exp\left\{-\frac{1}{2\epsilon} ||\mathbf{x} - \boldsymbol{\mu}_k||^2\right\}} \longrightarrow \begin{cases} 1 \text{ if } k = \operatorname{argmin}_k ||\mathbf{x} - \boldsymbol{\mu}_k||^2 \text{ as } \epsilon \to 0 \\ 0 \text{ otherwise} \end{cases}$$

GMM

- Probabilistic
 - Finer grained, can express uncertainty
 - Can incorporate prior knowledge w/ Bayesian approach
- EM tends to take more iterations to converge
 - Initializing with K-means clusters works quite well
- More parameters: $O(K \cdot D^2)$
 - π_k , μ_k , Σ_k for each k=1,...,K
- Elliptical/hyperbolic clusters

K-means

- Non-probabilistic
 - Directly solve for hard clustering
- Tends to converge faster
- Fewer parameters: $O(K \cdot D)$
 - μ_k for each k=1,...,K
- Spherical clusters
 - Thus, a good idea to normalize data beforehand