MOD300 Anvendt Python programmering og modellering

Enrico Riccardi¹

Department of Mathematics and Physics, University of Stavanger (UiS). 1

09.10.2025

© 2025, Enrico Riccardi. Released under CC Attribution 4.0 license

MC4pi

Calculate pi from a circle:

$$A = \pi * r^2$$

How does it change as a function of the number of trials?

MC4all

Calculate the Area of any object:

$$A = N_{in}/N_{TOT} * A_{TOT}$$

How does it change as a function of the number of trials?

Of any object

Calculate the area of this complex function

$$f = (x*x + y*y - 1)**3 - (x*x) * (y**3)$$

MC integration

$\int_{a}^{b} f(x)dx = \frac{b-a}{4}$ $\int_{a}^{b} f(x)dx = \frac{b-a}{4}$ $\int_{a}^{b} f(x)dx = \frac{f(x)}{a} + \frac{f(x)}{a} +$

advanced MC method

Importance sampling

Bias and Variance?

Central limit theorem	The birthday paradox
The average of an independent random variable follows a normal distribution. Skeptical? Try it youself!? Make a histogram of the averages on different sets of random points. To make it easier, use only 0 and 1 values.	 Write a function that gives a random date (day and month). Make a function that takes as input the number of person in a group and return 1 if at least 2 people have the same bday, 0 if not. Make a function that calculate P of two people having the same bday. Determine how many people we need to have 50% probability for it.
MC Applications	
Random walk	