

Big Data - Foundations and Applications Lesson #2 - Data Science Platforms

Ivanovitch Silva July, 2017

Agenda

- Data Science War
- Anaconda
- My First Notebook
- Version Control System
- Intro to Python for Data Science

DataCamp Learn data analysis for free,

DATA SCIENCE WARS

R and Python are waging war:
while both programming languages are gaining prominence
in the data analytics community, they are fighting
to become data scientists' language of choice.

Which side are you taking?

Language Rank Types		Types	Spectrum Ranking
1.	С	□ 🖵 🛢	100.0
2.	Java	\bigoplus \square \square	98.1
3.	Python	₩ 🖵	98.0
4.	C++		95.9
5.	R	₽	87.9
6.	C#	\oplus \Box \Box	86.7
7.	PHP	(1)	82.8
8.	JavaScript		82.2
9.	Ruby	⊕ 🖵	74.5
10.	Go	₩ 🖵	71.9

Guido van Rossum

"I have this hope that there is a better way. Higher-level tools that actually let you see the structure of the software more clearly will be of tremendous value."

Version 3.x (https://www.python.org/downloads/)

Modern open source analytics platform powered by Python

Why Anaconda?

- Anaconda is a distribution of packages built for data science.
- It comes with conda, a package and environment manager.
- You'll be using conda to create environments for isolating your projects that use different versions of Python and/or different packages.

Refresh

Environments

Projects (beta)

Learning

Community

Documentation

Developer Blog

Feedback

An extremely brief tutorial

Introduction to Git

```
script.py
                                                               you
                                                    import math
if name == "__main__":
                                                    print(10 + 10)
   print("Welcome to a script!")
                                                    if name == " main ":
                                                        print("Welcome to a script!")
                  coworker
if name == "__main__":
    print("Welcome to a script!")
    print("Here's my amazing contribution to this project!")
                                   merge
               import math
               print(10 + 10)
               if name == " main ":
```

print("Here's my amazing contribution to this project!")

print("Welcome to a script!")

Installing Git

https://git-scm.com/downloads

First step: create a repository (repo)

- 1. Create a folder named DataScience.
- 2. Navigate into this folder and initialize a Git repository (git init)
- 3. Run Is -la to check the contents of the DataScience folder

Creating files in the repo

1. Create a file named README.md with the following content:

My first git project

2. Create a file named script.py with this content:

```
if __name__ == "__main__":
    print("10")
```


Checking file status

Verify the status of files: git status

- 1. Check the status of the repo.
- 2. Add script.py to the staging area.
- 3. Add README.md to the staging area.

Configuring identity in Git

git config --global user.email "your.email@domain.com"

git config --global user.name "Your name"

Committing changes

Type git commit -m "Initial commit. Added script.py and README.md" to make the first commit to the repository with an informative message.

Reviewing the commit history

Description:

1. Run git log to explore the commit history of the repository.

Remote repositories

- Share our code with others and build a portfolio
- Collaborate with others on a project and build code together.
- Download and use code others have created

Remote repositories

Here's how we'd typically clone the <u>Amazon Deep Learning repo</u> from GitHub:

• git clone https://github.com/amznlabs/amazon-dsstne.git

Remote repositories [exercise]

- 1. Clone the "fast style transfer" project from Github to your local repository.
- 2. https://github.com/lengstrom/fast-style-transfer
- 3. Show history from git lot
- 4. Clone the material of course

... go back to "DataScience" repo!!!

Github integration

Create a Github account

- Create a personal account. Select a unique username and password and enter your email.
- Choose a plan. If you select the free plan, all of your code (which is organized in repositories) will be public. Select the free plan for now.
 You can always upgrade to a paid plan later on, which would allow you to have private repositories.
- Read the GitHub <u>Hello World guide</u>.

Branch on repository

- Every Git repository consists of one or more branches.
- The main branch of a Git repo is typically called master.
- Use the git branch command to visualize the current branch of project

Pushing repo to Github

Pushing repo to Github [Exercise]

- Use the git remote command to visualize information about the repo.
- Create a repository in Github

git remote add origin https://github.com/<your_github_user>/hello-world.git git push -u origin master

See the following notebooks for additional info

Git and a Version Control - Introduction to Git.ipynb Git and a Version Control - Git Remotes.ipynb Git and a Version Control - Git Branches.ipynb

Introduction to Python for Data Science

- Python versions
- Basic data types
- List
- Files and Loops
- If statements
- Dictionaries
- Functions and Packages

Notebook: "Intro Python for Data Science.ipynb"

References

- http://rogerdudler.github.io/git-guide/
- http://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
- Dataquest.io
- Datacamp.com

Lesson #2

