

SDD System Design Document

NetGun

Versione	2.0
Data	02/02/2023
Destinatario	Professore Carmine Gravino
Presentato da	Carlo Colizzi, Giulio Incoronato, Antonio Mazzarella

Team Members

Nome	Informazioni di contatto
Carlo Colizzi	c.colizzi@studenti.unisa.it
Giulio Incoronato	g.incoronato2@studenti.unisa.it
Antonio Mazzarella	a.mazzarella5@studenti.unisa.it

Revision History

Data	Versione	Descrizione	Autori
1/12/2022	0.1	Stesura della sezione revision history, team members e del Sommario	Giulio Incoronato
2/12/2022	0.2	Stesura dell'introduzione e dello scopo del sistema	Carlo Colizzi
3/12/2022	0.3	Definizione degli obiettivi di design e completamento del primo paragrafo	Tutto il gruppo
4/12/2022	0.4	Definizione dell'architettura del sistema	Tutto il gruppo
5/12/2022	0.5	Stesura del secondo paragrafo e inizio decomposizione del sistema	Carlo Colizzi, Giulio Incoronato
6/12/2022	0.6	Decomposizione e diagramma delle componenti completate	Carlo Colizzi, Giulio Incoronato
7/12/2022	0.7	Stesura e definizione del	Carlo Colizzi

		mapping software/hardwar e	
8/12/2022	0.8	Aggiunta del Deployment Diagram	Tutto il gruppo
8/12/2022	0.9	Aggiunta dell'albero descrittore dei file persistenti	Giulio Incoronato
9/12/2022	1.0	Definizione del controllo globale del software e delle condizioni limite	Carlo Colizzi, Giulio Incoronato
9/12/2022	1.1	Verifica e correzione degli errori	Tutto il gruppo
10/12/2022	1.1	Aggiunto un diagramma sui servizi dei sottosistemi	Antonio Mazzarella, Giulio Incoronato
11/12/2022	1.2	Chiusura del paragrafo 4 e aggiunta del glossario	Giulio Incoronato
15/11/2022	1.3	Verifica e correzione degli errori	Tutto il gruppo
02/02/2023	2.0	Revisione del documento	Giulio Incoronato, Carlo Colizzi

Sommario

Team Members	2
Revision History	3
1 Introduzione	6
1.1 Scopo del Sistema	6
1.2 Design Goals	6
1.3 Design Trade-off	9
1.4 Definizioni, acronimi e abbreviazioni	10
1.5 Riferimenti	10
1.6 Organizzazione del Documento	11
2 Architettura del sistema corrente	12
3 Architettura del sistema proposto	13
3.1 Panoramica	13
3.2 Decomposizione in sottosistemi	13
3.3 Mapping Hardware/Software	16
3.4 Gestione dei dati persistenti	18
3.5 Controllo globale del software	19
3.6 Condizioni limite	20
4 Servizi dei Sottosistemi	23

1 Introduzione

1.1 Scopo del Sistema

NetGun ha l'obiettivo di essere un Framework per il Penetration Testing (Testing Black Box di infrastrutture in rete).

È possibile racchiudere il sistema il 3 componenti principali. La componente per lo scanning, la componente per l'enumerazione dei dati raccolti, e le utilities che assistono l'utente in tutte le fasi del pre e post scanning.

Inoltre, ha il fine di facilitare una pratica complessa come i Penetration Test, così da permettere ai PT di concentrarsi su aspetti più delicati, automatizzando e velocizzando i task alla base di questo tipo di Testing.

1.2 Design Goals

In questa sezione si andranno a presentare i Design Goals, ovvero le qualità sulle quali il sistema deve essere focalizzato, qualsiasi decisione di Design fatta, avrà come cardine il rispetto dei Design Goal sotto descritti.

I Design Goal del Progetto sono divisi nelle seguenti categorie:

- Performance
- Modificability
- Legibility
- Robustness
- Portability

Rank	ID Design Goal	Descrizione	RNF di origine				
	Categoria: Performance						
3	DG_1 Velocità di accesso ai dati persistenti	Il sistema dovrà permettere un tempo di accesso ai dati persistenti minore di un secondo	RNF_9				
8	DG_2 Tempo di Risposta dello Scanner non deterministico	Il sistema non può garantire un tempo di risposta deterministico per ogni Scan, a causa dell affidabilità della rete	RNF_2				
1	DG_3 Incremento del Throughput	Il sistema deve permettere un incremento del Throughput, aumentando il numero di richieste inviate al server in un intervallo di tempo (Tutto ciò in un ambiente virtualizzato).	RNF_1				
	Categ	goria: Modificability					
4	DG_4	Il sistema deve	RNF_3				

	Manutenzione e Miglioramento facilitati	permettere una facile modificabilità data dalla modularità delle sue componenti. Si intende realizzare questo goal tramite un forte disaccoppiamento dei sottosistemi.	
5	DG_5 Leggibilità del codice	Il sistema deve garantire commenti per le sezioni chiave, per favorire la collaborazione della community Open Source	RNF_5
	Cate	goria: Robustness	
2	DG_6 Robustezza agli errori causati dalla rete	Il sistema deve garantire un'elevata robustezza, gestendo qualsiasi errore causato dalla rete	RNF_10
	Cate	goria: Deployment	

	dati		
	Cate	egoria: Portability	
7	DG_8 Portabilità su sistemi Linux- Debian	Il sistema deve permettere un'alta portabilità data dalla Virtual Machine di Python e dalla persistenza gestita tramite file	RNF_6

1.3 Design Trade-off

Trade-off	Descrizione
Tempi di risposta vs Memoria	Per migliorare i tempi di risposta del programma, tutti i dati persistenti saranno caricati in memoria già dall'avvio del software. Con conseguente aumento della Memoria occupata.
Costi vs Memoria	Per azzerare i costi relativi all'hosting dei server di storage, il software conterrà tutti i dati in file locali. A discapito della Memoria di massa occupata.

1.4 Definizioni, acronimi e abbreviazioni

Vengono riportate di seguito alcune definizioni presenti nel documento corrente:

- **Sottosistema:** un sottoinsieme dei servizi del dominio applicativo, formato da servizi legati da una relazione funzionale.
- Design Goal: le qualità sulle quali il sistema deve essere focalizzato.
- **Dati persistenti:** dati che sopravvivono all'esecuzione del programma che li ha creati e che dunque vengono salvati.
- Mapping Hardware/Software: studio della connessione fra parti fisiche e logiche di cui si compone il sistema
- **SDD:** System Design Document.
- RAD: Requirements Analysis Document.

1.5 Riferimenti

Di seguito una lista di riferimenti ad altri documenti utili durante la lettura:

- Requirements Analysis Document (RAD)
- System Design Document (SDD)
- Object Design Document (ODD)
- Test Plane (TP)
- Test Case Specification (TCS)
- Codice Sorgente
- Matrice di tracciabilità
- Il Documento segue le metodologie presentate nel libro: Object-Oriented Software Engineering, di Bernd Bruegge & Allen H. Dutoit

1.6 Organizzazione del Documento

Questo documento di System Design è composto da quattro sezioni:

Introduzione: Viene descritto in generale lo scopo del sistema, gli obiettivi di design che il sistema propone di raggiungere.

Architettura software corrente: Viene descritto lo stato attuale dell'architettura del software già presente.

Architettura software proposta: Viene descritto come il sistema sarà definito e partizionato in sottosistemi, il loro mapping Hardware/Software, la gestione dei dati persistenti. Verranno poi presentate la struttura dei singoli sottosistemi e le boundary conditions riguardanti l'intero sistema.

Glossario: Contiene la lista dei termini usati nel documento con annessa spiegazione

2 Architettura del sistema corrente

Attualmente non esiste un software che abbia le stesse funzionalità volute in NetGun, essendo questo un progetto di Greenfield Engineering. Nonostante ciò, possiamo distinguere dei competitor che hanno funzionalità simili come Nessus, OpenVAS, Zenmap, etc...

ZenMap

3 Architettura del sistema proposto

3.1 Panoramica

Il sistema proposto è basato sullo stile architetturale Three Tier. Così da separare la logica di presentazione, di business e di accesso ai dati.

Lo stile architetturale Three Tier è stato scelto al fine di migliorare aspetti di qualità come:

- Modificabilità
- Leggibilità

Nello sviluppo del sistema sarà usato Python come linguaggio.

Per lo sviluppo della view sarà utilizzata la libreria Python Tkinter.

Per la gestione dei dati persistenti saranno usati file XML.

3.2 Decomposizione in sottosistemi

I sottosistemi individuati sono:

- Scan: si occupa di gestire lo scan da effettuare sul Target e i filtri con i quali configurarlo
- Research CVE: si occupa delle funzionalità di ricerca Common Vulnerabilities and Exposures sui servizi del Target
- Test Misconfigurations: si occupa di testare le mal configurazioni sui servizi del Target
- Report: si occupa delle funzionalità riguardanti l'elaborazione e l'esportazione di Report ottenuti dalle analisi effettuate
- Test Network Performance: si occupa di testare la stabilità della rete dell'utente
- Tips: si occupa di fornire all'utente dei consigli riguardo l'utilizzo dei servizi offerti dal Target
- Persistenza: Si occupa di gestire la persistenza dei dati tramite File
- Storage Manager: Si occupa di gestire i file di persistenza, la loro ottimizzazione, e l'interazione dell'intero sistema con questi

Component Diagram

Tramite questo Component Diagram è possibile comprendere la struttura Three Tier del sistema, distinguendo: Presentation Tier, Logic Tier e Data Tier, con i relativi sottosistemi che li compongono.

È possibile tramite la lollipop notation comprendere quali tier offrono un servizio e quali lo utilizzano.

3.3 Mapping Hardware/Software

Il Sistema che si desidera sviluppare, per essere utilizzato, necessità di una Python Virtual Machine eseguita su Sistemi Operativi Linux Debian-Based (Preferibilmente distribuzioni per il Penetration Testing).

La memorizzazione sarà gestita tramite file XML. Questi saranno Analizzati e Serializzati in Memoria di Massa dopo il primo avvio del sistema, consentendo così una riduzione significativa dei tempi di accesso ai dati persistenti.

Per poter usufruire della maggior parte delle funzionalità del sistema, è necessario che l'Hardware della macchina Host abbia una NIC (Network Interface Card) con tecnologia wireless o wired;

Il Sistema effettuerà Scansioni e Test di rete basandosi sullo standard TCP/IP per la comunicazione.

Run-Time Environment: Python VM

O.S.: Linux Debian-Based

Storage: XML Files and Serialized Files

Hardware Components Required: NIC

Communications Standard: TCP/IP

Deployment Diagram

Il Software che sarà sviluppato si basa su una piattaforma Hardware avente un Sistema Operativo Linux Debian-Based con Macchina virtuale Python installata.

Il software dovrà essere eseguito nel Run-Time Environment della Python VM, e dovrà aver accesso al File System.

3.4 Gestione dei dati persistenti

Introduzione

Per la gestione dei dati persistenti del sistema, si è deciso di utilizzare i file così da mantenere minimi i tempi di accesso alle informazioni.

La scelta di utilizzo dei file è stata presa al fine di mantenerci quanto più possibile coerenti con I design goals stabiliti, potendo contare su:

- Costi nulli per la persistenza dei dati, in quanto l'utilizzo di un DBMS avrebbe richiesto il mantenimento di un server, con conseguente aumento dei costi
- Velocità di accesso ai dati persistenti, poiché si intende utilizzare tecniche di ottimizzazione per diminuire il tempo di lettura medio dei file, come la serializzazione in memoria.
- Modificabilità poiché tramite file, si rende semplice la modifica da parte degli utenti anche dei dati persistenti, favorendo lo sviluppo e il miglioramento del sistema attraverso la community Open Source.

Le scelte sopra elencate hanno l'obiettivo principale di favorire: l'abbassamento dei costi di mantenimento delle informazioni, e lo sviluppo del software attraverso la community Open Source

Schema ad Albero descrivente la struttura dei file

Descrizione dei dati persistenti nei file:

- Misconfigurations: Contiene un insieme di mal configurazioni
- Tips: Contiene un insieme di consigli per l'utente

Formato dei dati persistenti

I dati saranno archiviati utilizzando il formato XML (eXtensible Markup Language), il quale permetterà una facile modifica da parte della community Open-Source.

3.5 Controllo globale del software

Il sistema NetGun richiede una continua interazione, quindi ogni funzionalità viene avviata dopo un'interazione o comando impartito dall'utente tramite l'uso dell'interfaccia grafica. Per questo motivo il sistema è di tipo Event-Driven Control.

Ogni volta quindi che l'utente avvierà un evento, quest'ultimo verrà gestito da un suo Handler, che indirizzerà l'intero controllo di flusso al sottosistema specifico per la funzionalità richiesta dall'utente.

3.6 Condizioni limite

Nel seguente paragrafo verranno presentate le boundary conditions inerenti a:

- 1. Avvio del sistema
- 2. Spegnimento del sistema
- 3. Fallimento del sistema

Avvio del sistema

Identif	ficativo	UCB	C_1 - Avvio del Sistema	Data	10/12/2022
				Versione	1.0
				Autori	Gianni
Descri	izione	Lo U	C permette l'avvio del sistem	a	
Attore	principale	Uten	te		
Attori	secondati	NA			
Entry	condition	L'utente avvia il sistema			
Exit co	ondition	II sis	tema viene avviato correttam	ente	
succe	On ss				
Exit co	ondition	II sis	tema non viene avviato corre	ttamente	
	On failure				
	Flusso di eventi principale				
Utente		a			
2	Sistema	Verifica la sanità dei dati persistenti e rende disponibili le sue funzionalità all'utente e rende disponibili i dati, se sono sani.			

Spegnimento del sistema

Identif	icativo	UCB Siste	C_2 - Spegnimento del	Data	10/12/2022
				Versione	1.0
				Autori	Gianni
Descri	izione	Lo U	C permette lo spegnimento d	del sistema	
Attore	principale	Uten	te		
Attori	secondati	NA			
Entry	condition	L'utente spegne il sistema			
Exit co	ondition	II sis	tema viene spento correttam	ente	
succes	On ss				
Exit co	ondition	II sis	tema non viene spento corre	ttamente	
	On failure				
	Flusso di eventi principale				
1 Utente E		Esegue sulla macchina il co	Esegue sulla macchina il comando di spegnimento del sistema		
2	Sistema		Chiude tutti i processi e terr	nina la sua esecuzione	

Fallimento del sistema

Identif	icativo	UCBC_3 - Fallimento Sistema	del	Data	10/12/2022
				Versione	1.0
				Autori	Gianni
Descri	izione	Lo UC definisce il com	nportamento	del Sistema in caso di fal	limento
Attore	principale	Utente			
Attori	secondati	NA			
Entry	condition	L'utente viene terminato inaspettatamente			
Exit co	ondition	Il sistema viene riavviato correttamente			
succes	On ss				
Exit co	ondition	Il sistema non viene ri	avviato		
failure	On failure				
		Flusso	di eventi prir	ncipale	
1 l	Utente	Include UCBC_	1		
, ,		Flusso di Eventi Altern	nativo: II siste	ema non può avviarsi	
2.a1		Sistema		Invia un messaggio di el avvisare l'utente che il s puo' avviarsi per un prob sconosciuto	istema non

4 Servizi dei Sottosistemi

In questa sezione verranno descritti i servizi di ogni sottosistema precedentemente elencati:

Servizi offerti dal Logic tier per il Presentation tier:

ScanController

Servizio	Descrizione
StartShallowScan	Questa funzionalità permette avviare una scansione non dettagliata
StartDeepScan	Questa funzionalità permette avviare una scansione dettagliata

ResearchCVE_Controller

Servizio	Descrizione
ShowCVE	Questa funzionalità permette di ricercare delle CVE per una data versione di un servizio, utilizzando il National Vulnerability Database (NVD)

Report_Controller

Servizio	Descrizione
ExportReport	Questa funzionalità permette di creare ed esportare un report

TestMisConfiguration_Controller

Servizio	Descrizione
TestMisConfiguration	Questa funzionalità permette di testare una malconfigurazione su un servizio
ShowMisConfiguration	Questa funzionalita' mostra le possibili misconfigurations di un servizio

TestNetworkPerfomanceController

Servizio	Descrizione
TestNetworkPerfomance	Questa funzionalità permette di testare le performance della rete che il sistema utilizzerà

TipsController

Servizio	Descrizione
ShowTips	Questa funzionalità permette di mostrare i tips consigliati per l'utente

Servizi offerti dal Data tier per il Logic tier:

DAOTestMisConfiguration

Servizio	Descrizione
ParseMissConfigurationFile	Questa funzionalità permette di convertire il formato XML del file delle miss configurations

DAOTipsController

Servizio	Descrizione
ParseTips	Questa funzionalità permette di convertire il formato XML del file dei tips