

Proof. Consider the segment \overline{BC} . Let A be a point off the line \overline{BC} . Let D be a point such that A-C-D. Then $\angle DCB$ is an exterior angle to the triangle $\triangle ABC$ with remote interior angle $\angle B$. Then by the Exterior Angle Theorem, $\angle DCB > \angle B$. Thus, there exists a point $E \in \angle DCB$ such that $\angle B \cong ECB$. By segment translation we may assume that $\overline{CE} \cong \overline{AB}$.

Since $E \in \angle^{\circ}DCB$, we know that $E \in H^{\circ}(\overrightarrow{BC}, D)$. On the other hand, A and D are on opposite sides of \overrightarrow{BC} since A - C - D. So E and A are on opposite sides of \overrightarrow{BC} by Plane Separation. Let $F \in \overline{AE} \cap \overrightarrow{BC}$. In particular, A - F - E.

We also have that $E \in H^{\circ}(\overrightarrow{CD}, B) = H^{\circ}(\overrightarrow{AC}, B)$, since $E \in \angle^{\circ}DCB$. Since $\angle ABC$ and $\angle ECB$ are congruent alternate interior angles to the pair of lines \overrightarrow{AB} and \overrightarrow{CE} , we conclude that $\overrightarrow{AB} \parallel \overrightarrow{CE}$ by the Alternate Interior Angle Theorem. In particular $\overrightarrow{AB} \parallel \overrightarrow{CE}$. So, $E \in H^{\circ}(\overrightarrow{AB}, C)$, which shows that $E \in \angle^{\circ}BAC$. The Between-Cross Lemma then shows that B - F - C.

Finally, the angles $\angle AFB \cong \angle EFC$ since they are vertical angles (remember that A-F-E and B-F-C). Therefore, $\triangle AFB \cong \triangle EFC$ by AAS. In particular, $\overline{BF} \cong \overline{FC}$. This provides the existence of midpoints.

Let B and B' be midpoints of AC, and let \leq be an ordering of \overrightarrow{AC} such that $A \leq C$. Without the loss of generality, we may assume that $B' \leq B$. In particular, A - B' - B - C. Then

$$\overline{AB'} \leq \overline{AB} \cong \overline{BC} \leq \overline{B'C} \cong \overline{AB'}.$$

Hence, $\overline{AB'} \cong \overline{AB}$. But by the uniqueness of Segment Translation, we conclude that B = B', that is, midpoints are unique.

Proof. Consider the segment \overline{BC} . Let A be a point off the line \overline{BC} . Let D be a point such that A-C-D. Then $\angle DCB$ is an exterior angle to the triangle $\triangle ABC$ with remote interior angle $\angle B$. Then by the Exterior Angle Theorem, $\angle DCB > \angle B$. Thus, there exists a point $E \in \angle^{\circ}DCB$ such that $\angle B \cong ECB$. By segment translation we may assume that $\overline{CE} \cong \overline{AB}$.

Since $E \in \angle^{\circ}DCB$, we know that $E \in H^{\circ}(\overrightarrow{BC}, D)$. On the other hand, A and D are on opposite sides of \overrightarrow{BC} since A - C - D. So E and A are on opposite sides of \overrightarrow{BC} by Plane Separation. Let $F \in \overline{AE} \cap \overrightarrow{BC}$. In particular, A - F - E.

We also have that $E \in H^{\circ}(\overrightarrow{CD}, B) = H^{\circ}(\overrightarrow{AC}, B)$, since $E \in \angle^{\circ}DCB$. Since $\angle ABC$ and $\angle ECB$ are congruent alternate interior angles to the pair of lines \overrightarrow{AB} and \overrightarrow{CE} , we conclude that $\overrightarrow{AB} \parallel \overrightarrow{CE}$ by the Alternate Interior Angle Theorem. In particular $\overrightarrow{AB} \parallel \overrightarrow{CE}$. So, $E \in H^{\circ}(\overrightarrow{AB}, C)$, which shows that $E \in \angle^{\circ}BAC$. The Between-Cross Lemma then shows that B - F - C.