Finite Markov Decision Process

Hello!

I am Dido Choi

Brake Control Logic Developer

MDP(Markov Decision Process)

[1] MDP Graph

This problem involves evaluative feedback, as in bandits, but also an **associative aspect**—choosing different actions in different situations → MAB(Multi-Arm Bandit) has no state-transition probability)

MDPs are a mathematically idealized form of the reinforcement learning problem for which precise theoretical statements can be made.

MDP(Markov Decision Process) VS MAB

Actions change state

of the world

Learn	model
of out	comes

Given model of stochastic outcomes

[Zhou, 2015]

Multi-armed bandits	Reinforcement Learning
Decision theory	Markov Decision Process

Actions don't change state of the world

[1] MAB vs MDP

[1] Suspension Control using RL

Conditional Probability

$$A \in \mathcal{F}$$
 $\Pr(A) > 0$

이 주어졌다고 하자. 임의의 사건 $B \in \mathcal{F}$ 에 대하여, A에 대한 B의 조건부 확률은 다음과 같다.

$$\Pr(B|A) = rac{\Pr(A\cap B)}{\Pr(A)}$$

 $P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(B \cap A)}{P(A)} = \frac{P(B \cap A)}{P(B \cap A)} = \frac{P(B|A) P(A)}{P(B \cap A)} = \frac{P(B|A) P(A)}{P(A)} = \frac{P(B|A)}{P(A)} = \frac{P($

[1] Conditional Probability Definition

[2] Conditional Probability

^[2] https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=alwaysneoi&logNo=100148922781&view=img_13

Trajectory
$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, ...$$

Dynamics of MDP $p(s', r | s, a) \doteq \Pr\{S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a\}$
for all $s', s \in S$, $r \in R$, and $a \in A(s)$

We also know that
$$\sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) = 1, \text{ for all } s \in \mathcal{S}, a \in \mathcal{A}(s).$$

$$p(s'|s,a) \doteq \Pr\{S_t = s' \mid S_{t-1} = s, A_{t-1} = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a).$$

a three-argument function $p: S \times S \times A \rightarrow [0,1]$

$$P_{SS'}^{a} = P[S_{t+1} = s' | S_t = s, A_t = a]$$

Expected Rewards: State-Action

$$r: \mathbb{S} \times \mathcal{A} \to \mathbb{R}$$
:

$$r(s,a) \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r \mid s, a),$$

Expected Rewards: State-Action-Next State

$$r: \mathbb{S} \times \mathcal{A} \times \mathbb{S} \to \mathbb{R}$$
,

$$r(s, a, s') \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r \mid s, a)}{p(s' \mid s, a)}.$$

MDP: Recycling Robot

그리드월드 문제에서의 MDP

(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)
(1, 2)	(2, 2)	R:-1.0 (3, 2)	(4, 2)	(5, 2)
(1, 3)	R:-1.0 (2, 3)	R:10	(4, 3)	(5, 3)
(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)
(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)

상태 (1, 1)에서 행동 "우"를 했을 경우

- 1. 상태 (2, 1)에 갈 확률은 0.8
- 2. 상태 (1, 2)에 갈 확률은 0.2

Purposes and Rewards

Problem of Short-term Reward

Sparse Reward, Delayed Reward

The agent's goal is to maximize the total amount of reward it receives

Reward Hypothesis

That all of what we mean by goals and purposes can be well thought of as the maximization of the expected value of the cumulative sum of a received scalar signal (called reward).

Returns and Episodes

Discounted Return(Episodic Tasks)

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

Discounted Return(Continuing Tasks), Discount Rate

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=1}^{\infty} \gamma^k R_{t+k+1},$$

where γ is a parameter, $0 \le \gamma \le 1$, called the discount rate.

Discounted Return(Continuing Tasks) → Recurrence Relation

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots) \qquad t < T$$

$$= R_{t+1} + \gamma G_{t+1}$$

Discounted Return(Continuing Tasks) → All rewards are 1

$$G_t = \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1-\gamma}.$$

Unified Notation for Episodic and Continuing Tasks

Unified Discounted Return

$$G_t \doteq \sum_{k=t+1}^{I} \gamma^{k-t-1} R_k,$$

including the possibility that $T = \infty$ or $\gamma = 1$ (but not both).

Policy and Value Functions

A policy is a mapping from states to probabilities of selecting each possible action

State-value Function

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right], \text{ for all } s \in \mathbb{S},$$

Action-value Function

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a\right]$$

Bellman Equation

Bellman Expectation Equation of State-value Function

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \Big]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \text{ for all } s \in \mathcal{S},$$

Backup Diagram

Bellman Equation

Bellman Expectation Equation of Action-value Function

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

$$q_{\pi}\left(s,a\right) = \sum_{s',r} p\left(s',r|s,a\right) \left[r + \sum_{a' \in \mathcal{A}} \pi\left(a'|s'\right) \cdot \gamma q_{\pi}\left(s',a'\right)\right]$$

Backup Diagram

Optimal Policy

Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot of reward over the long run. For finite MDPs, we can precisely define an optimal policy in the following way. Value functions define a partial ordering over policies. A policy π is defined to be better than or equal to a policy π' if its expected return is greater than or equal to that of π' for all states. In other words, $\pi \geq \pi'$ if and only if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in S$. There is always at least one policy that is better than or equal to all other policies. This is an *optimal policy*.

Optimal policy is also called 'Deterministic Policy'

- Deterministic Policy: $a=\pi(s)$
- Stochastic Policy: $\pi(a|s) = P[A_t = a|S_t = s]$

Optimal State-value Function

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s),$$

for all $s \in S$.

Optimal Action-value Function

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a),$$

for all
$$s \in S$$
 and $a \in A(s)$.

Between Optimal State-value Function and Optimal State-action Function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a].$$

Bellman Optimality Equation of State-value Function

$$\begin{split} v_*(s) &= \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a) \\ &= \max_a \mathbb{E}_{\pi_*}[G_t \mid S_t \! = \! s, A_t \! = \! a] \\ &= \max_a \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t \! = \! s, A_t \! = \! a] \\ &= \max_a \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t \! = \! s, A_t \! = \! a] \\ &= \max_a \sum_{s',r} p(s',r | s,a) \big[r + \gamma v_*(s') \big]. \end{split}$$

Bellman Optimality Equation of Action-value Function

$$q_*(s, a) = \mathbb{E} \Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a \Big]$$
$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma \max_{a'} q_*(s', a') \Big].$$

Backup Diagram

Figure 3.4: Backup diagrams for v_* and q_*

-Thanks!

Any questions?