Quantum and Classical Query Complexities of Functions of Matrices

Changpeng Shao

Academy of Mathematics and Systems Science, Chinese Academy of Sciences based on joint work with Ashley Montanaro (University of Bristol & Phasecraft) arXiv:2311.06999 (STOC 2024)

QuSoft Seminar 7 March 2025

Outline of the talk

- ► Background and motivations
- Lower bounds of query complexity
- ► BQP-completeness
- Conclusions

Background and motivations

Lower bounds of query complexity

BQP-completeness

Conclusion

Quantum linear algebra plays an important role in the exploration of quantum advantages.

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.
- ▶ The HHL algorithm for linear systems: computing $A^{-1}|\mathbf{b}\rangle$. Greatly promoted the development of quantum linear algebra [Harrow-Hassidim-Lloyd, '08].

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.
- ▶ The HHL algorithm for linear systems: computing $A^{-1}|\mathbf{b}\rangle$. Greatly promoted the development of quantum linear algebra [Harrow-Hassidim-Lloyd, '08].
- Has wide applications, such as
 - Quantum recommendation systems: computing $A_{\geq \delta}|i\rangle$, where $A_{\geq \delta}$ is the truncation by keeping singular values larger than δ [Kerenidis-Prakash, '16].
 - ▶ Solving linear differential equations: computing $e^{At}|\mathbf{b}\rangle$ [Berry, '10].

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.
- ▶ The HHL algorithm for linear systems: computing $A^{-1}|\mathbf{b}\rangle$. Greatly promoted the development of quantum linear algebra [Harrow-Hassidim-Lloyd, '08].
- Has wide applications, such as
 - Quantum recommendation systems: computing $A_{\geq \delta}|i\rangle$, where $A_{\geq \delta}$ is the truncation by keeping singular values larger than δ [Kerenidis-Prakash, '16].
 - ▶ Solving linear differential equations: computing $e^{At}|\mathbf{b}\rangle$ [Berry, '10].
- ▶ All these problems can be described as functions of matrices: computing $f(A)|\mathbf{b}\rangle$.

- Quantum linear algebra plays an important role in the exploration of quantum advantages.
- ▶ Hamiltonian simulation: computing $e^{iAt}|\mathbf{b}\rangle$, where A is Hermitian. A fundamentally important problem in quantum computing.
- ► The HHL algorithm for linear systems: computing $A^{-1}|\mathbf{b}\rangle$. Greatly promoted the development of quantum linear algebra [Harrow-Hassidim-Lloyd, '08].
- Has wide applications, such as
 - Quantum recommendation systems: computing $A_{\geq \delta}|i\rangle$, where $A_{\geq \delta}$ is the truncation by keeping singular values larger than δ [Kerenidis-Prakash, '16].
 - Solving linear differential equations: computing $e^{At}|\mathbf{b}\rangle$ [Berry, '10].
- ▶ All these problems can be described as functions of matrices: computing $f(A)|\mathbf{b}\rangle$.
- ► Can be solved by a similar idea to HHL, but more efficiently by quantum singular value transform [Gilyén-Su-Low-Wiebe, '18].

Assume A is Hermitian and $\|A\| \le 1$ for simplicity.

Assume A is Hermitian and $||A|| \le 1$ for simplicity.

Given a unitary of the form

$$U = \begin{pmatrix} A & * \\ * & * \end{pmatrix},$$

for any 1-bounded polynomial f(x) of degree d, there is a quantum circuit that implements a unitary

$$\widetilde{U} = \begin{pmatrix} f(A) & * \\ * & * \end{pmatrix}.$$

Moreover, the circuit uses U, U^{\dagger} and the controlled forms O(d) times in total.

Assume A is Hermitian and $||A|| \le 1$ for simplicity.

Given a unitary of the form

$$U = \begin{pmatrix} A & * \\ * & * \end{pmatrix},$$

for any 1-bounded polynomial f(x) of degree d, there is a quantum circuit that implements a unitary

$$\widetilde{U} = \begin{pmatrix} f(A) & * \\ * & * \end{pmatrix}.$$

Moreover, the circuit uses U, U^{\dagger} and the controlled forms O(d) times in total.

As a direct result, we can compute $f(A)|\mathbf{b}\rangle$.

Assume A is Hermitian and $||A|| \le 1$ for simplicity.

Given a unitary of the form

$$U = \begin{pmatrix} A & * \\ * & * \end{pmatrix},$$

for any 1-bounded polynomial f(x) of degree d, there is a quantum circuit that implements a unitary

$$\widetilde{U} = \begin{pmatrix} f(A) & * \\ * & * \end{pmatrix}.$$

Moreover, the circuit uses U, U^{\dagger} and the controlled forms O(d) times in total.

As a direct result, we can compute $f(A)|\mathbf{b}\rangle$.

Still works if f is not a polynomial, just consider its polynomial approximation.

This talk

Motivations: For functions of matrices,

- QSVT is optimal in many cases, how about the general case?
- ▶ What is the quantum-classical separation?

This talk

Motivations: For functions of matrices,

- QSVT is optimal in many cases, how about the general case?
- What is the quantum-classical separation?

To better understand the above questions, we consider the following weaker problem

Problem (Approximate an entry of f(A))

Let $f(x):[-1,1] \to [-1,1]$ be a function, let A be sparse and Hermitian with $\|A\| \le 1$. Given two indices i,j and accuracy ε , compute $\langle i|f(A)|j\rangle \pm \varepsilon$.

If $A=UDU^{-1}$ is the eigenvalue decomposition, then $f(A):=Uf(D)U^{-1}$, where f is applied to the eigenvalues.

A is called s-sparse if the number of nonzero entries in each row/column is at most s.

Query complexity

For a sparse matrix $A = (A_{i,j})$, we are given 2 (commonly used) oracles:

where p_{ij} is the index of the j-th nonzero entry in the i-th row.

In the quantum case, we assume the oracles can be used in superposition, e.g., $\sum \alpha_{i,j}|i,j\rangle|0\rangle\mapsto\sum \alpha_{i,j}|i,j\rangle|A_{i,j}\rangle$

The query complexity is the minimal number of calls to the oracles to solve the problem.

Background and motivations

Lower bounds of query complexity

BQP-completeness

Conclusion

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^m)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{m-1},j}$$

The complexity is $O(s^{m-1})$

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^m)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{m-1},j}$$

The complexity is $O(s^{m-1})$

For x^m , there is an approximation polynomial of degree $\Theta(\sqrt{m})$, so can be improved to $s^{\widetilde{O}(\sqrt{m})}$ [Sachdeva & Vishnoi, 2014]

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^m)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{m-1},j}$$

The complexity is $O(s^{m-1})$

- For x^m , there is an approximation polynomial of degree $\Theta(\sqrt{m})$, so can be improved to $s^{\widetilde{O}(\sqrt{m})}$ [Sachdeva & Vishnoi, 2014]
- ► The problem is known to be BQP-complete [Janzing & Wocjan, 2007]

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^m)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{m-1},j}$$

The complexity is $O(s^{m-1})$

- For x^m , there is an approximation polynomial of degree $\Theta(\sqrt{m})$, so can be improved to $s^{\widetilde{O}(\sqrt{m})}$ [Sachdeva & Vishnoi, 2014]
- ► The problem is known to be BQP-complete [Janzing & Wocjan, 2007]
- Our result: $\widetilde{\Omega}((s/2)^{(\sqrt{m}-1)/6})$

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^m)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{m-1},j}$$

The complexity is $O(s^{m-1})$

- For x^m , there is an approximation polynomial of degree $\Theta(\sqrt{m})$, so can be improved to $s^{\widetilde{O}(\sqrt{m})}$ [Sachdeva & Vishnoi, 2014]
- ► The problem is known to be BQP-complete [Janzing & Wocjan, 2007]
- Our result: $\widetilde{\Omega}((s/2)^{(\sqrt{m}-1)/6})$

Quantum algorithms:

▶ Upper bound by QSVT $O(s\sqrt{m}/\varepsilon)$

Classical algorithms:

ightharpoonup Assume A is s-sparse, then by definition

$$(A^m)_{i,j} = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_{d-1}} A_{i,k_1} A_{k_1,k_2} \cdots A_{k_{m-1},j}$$

The complexity is $O(s^{m-1})$

- For x^m , there is an approximation polynomial of degree $\Theta(\sqrt{m})$, so can be improved to $s^{\widetilde{O}(\sqrt{m})}$ [Sachdeva & Vishnoi, 2014]
- ► The problem is known to be BQP-complete [Janzing & Wocjan, 2007]
- Our result: $\widetilde{\Omega}((s/2)^{(\sqrt{m}-1)/6})$

Quantum algorithms:

- ▶ Upper bound by QSVT $O(s\sqrt{m}/\varepsilon)$
- Our result (lower bound): $\Omega(\sqrt{m})$

General case (our results)

Assume f is continuous, A is s-sparse and Hermitian, then computing $f(A)_{i,j} \pm \varepsilon$ costs

	Quantum algorithm	Classical algorithm
Upper bound	O(sd/arepsilon)	$O(s^{d-1})$
Lower bound	$\Omega(d)$	$\widetilde{\Omega}((s/2)^{(d-1)/6})$

where $d = \widetilde{\deg}_{\varepsilon}(f)$ is the approximate degree:

$$\widetilde{\deg}_{\varepsilon}(f) \quad = \quad \min\{d: |f(x)-g(x)| \leq \varepsilon, \forall x \in [-1,1], \\ g(x) \text{ is a polynomial of degree } d\}.$$

The quantum lower bound is similar to the famous polynomial method for Boolean functions [Beals, Buhrman, Cleve, Mosca, de Wolf, FOCS '98].

Key theorem in the proofs

Theorem (Key theorem)

Let $f:[-1,1] \to [-1,1]$ be continuous with odd part $f_{\mathrm{odd}}(x) = \frac{f(x) - f(-x)}{2}$, then there is a symmetric tridiagonal matrix

$$A = \begin{pmatrix} 0 & b_1 & & & & \\ b_1 & 0 & b_2 & & & & \\ & b_2 & \ddots & \ddots & & \\ & & \ddots & \ddots & b_{n-1} \\ & & & b_{n-1} & 0 \end{pmatrix}_{n \times n}$$

satisfying
$$b_i \neq 0$$
, $||A|| \leq 1$ and $f(A)_{1,n} \geq \varepsilon$, where $n = \widetilde{\deg}_{\varepsilon}(f_{\text{odd}}) + O(1)$.

Proof. linear semi-infinite programming + dual polynomial method + properties of tridiagonal matrices.

Parity problem: Given $x_1, \ldots, x_n \in \{0, 1\}$, compute $x_1 \oplus \cdots \oplus x_n$, the quantum query complexity is $\Theta(n)$

Parity problem: Given $x_1, \ldots, x_n \in \{0, 1\}$, compute $x_1 \oplus \cdots \oplus x_n$, the quantum query complexity is $\Theta(n)$

We construct a weighted graph G:

- ▶ **vertices:** (i, b), where $i \in \{0, 1, ..., n\}, b \in \{0, 1\}$
- **edges:** an edge between (i-1,b) and $(i,b\oplus x_i)$
- weights: chosen carefully

For example, $(x_1, x_2, x_3, x_4) = (0, 1, 1, 0)$, then G is

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

- ▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$
- ▶ Case 2: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$, then we hope to find appropriate weights such that $\langle 0,0|f(A)|n,1\rangle \geq \varepsilon$ for some ε . The weights are determined by our key theorem.

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

- ▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$
- ▶ Case 2: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$, then we hope to find appropriate weights such that $\langle 0,0|f(A)|n,1\rangle \geq \varepsilon$ for some ε . The weights are determined by our key theorem.

As a result, if we can estimate $\langle 0,0|f(A)|n,1\rangle$, we then can solve the parity problem, which is known hard.

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

- ▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$
- ▶ Case 2: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$, then we hope to find appropriate weights such that $\langle 0,0|f(A)|n,1\rangle \geq \varepsilon$ for some ε . The weights are determined by our key theorem.

As a result, if we can estimate $\langle 0,0|f(A)|n,1\rangle$, we then can solve the parity problem, which is known hard. It is very important to ensure that $n=\widetilde{\deg}(f)+O(1)$ in the key theorem.

Essentially, G consists of two paths

$$(0,0) - (1,x_1) - (2,x_1 \oplus x_2) - \dots - (n,x_1 \oplus \dots \oplus x_n)$$

$$(0,1) - (1,1 \oplus x_1) - (2,1 \oplus x_1 \oplus x_2) - \dots - (n,1 \oplus x_1 \oplus \dots \oplus x_n)$$

Let A be the adjacency matrix of G (essentially two symmetric tridiagonal matrices).

- ▶ Case 1: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 0$, then $\langle 0, 0 | f(A) | n, 1 \rangle = 0$
- ▶ Case 2: if $x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1$, then we hope to find appropriate weights such that $\langle 0,0|f(A)|n,1\rangle \geq \varepsilon$ for some ε . The weights are determined by our key theorem.

As a result, if we can estimate $\langle 0,0|f(A)|n,1\rangle$, we then can solve the parity problem, which is known hard. It is very important to ensure that $n=\widetilde{\deg}(f)+O(1)$ in the key theorem. This idea is inspired by the no fast-forwarding theorem. [Berry, Ahokas, Cleve, Sanders, Comm. Math. Phys. '07]

Lower bound's proof of classical algorithms

Forrelation problem (Aaronson & Ambainis, 2015):

Given $g_1, g_2 : \{0, 1\}^n \to \{\pm 1\}$, let $D_i = \operatorname{diag}(g_i(x) : x \in \{0, 1\}^n)$, $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, define

$$\Phi(g_1, g_2) := \langle 0^n | H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} | 0^n \rangle
= \frac{1}{2^{3n/2}} \sum_{x,y \in \{0,1\}^n} (-1)^{x \cdot y} g_1(x) g_2(y).$$

The goal is to compute $\Phi(g_1,g_2) \pm 1/3$

Lower bound's proof of classical algorithms

Forrelation problem (Aaronson & Ambainis, 2015):

Given $g_1, g_2 : \{0, 1\}^n \to \{\pm 1\}$, let $D_i = \operatorname{diag}(g_i(x) : x \in \{0, 1\}^n)$, $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, define

$$\Phi(g_1, g_2) := \langle 0^n | H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} | 0^n \rangle
= \frac{1}{2^{3n/2}} \sum_{x,y \in \{0,1\}^n} (-1)^{x \cdot y} g_1(x) g_2(y).$$

The goal is to compute $\Phi(g_1,g_2) \pm 1/3$

For this problem, the classical query complexity is lower bounded by $\Omega(\sqrt{2^n}/n)$, while the quantum query complexity is 1.

Feynman's clock construction

Let $U = U_{N-1} \cdots U_2 U_1$ be a unitary operator, define

$$A = \begin{pmatrix} 0 & b_1 U_1^{\dagger} \\ b_1 U_1 & 0 & b_2 U_2^{\dagger} \\ & b_2 U_2 & \ddots & \ddots \\ & & \ddots & \ddots \end{pmatrix}$$

Feynman's clock construction

Let $U = U_{N-1} \cdots U_2 U_1$ be a unitary operator, define

$$A = \begin{pmatrix} 0 & b_1 U_1^{\dagger} & & & \\ b_1 U_1 & 0 & b_2 U_2^{\dagger} & & \\ & b_2 U_2 & \ddots & \ddots & \\ & & \ddots & \ddots & \end{pmatrix}$$

Let $|\psi_t\rangle:=|t\rangle\otimes U_t\cdots U_1|0\rangle$, then

$$A|\psi_t\rangle = b_{t-1}|\psi_{t-1}\rangle + b_{t+1}|\psi_{t+1}\rangle$$

In subspace $\{|\psi_t\rangle: t=0,1,\ldots,N-1\}$, A is a symmetric tridiagonal matrix of dimension N.

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$

$$\begin{split} H^{\otimes n} &= (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H) \\ \mathsf{Now} \ N &= 3n+2, \\ |\psi_0\rangle &= |0\rangle \otimes |0\rangle \\ |\psi_{N-1}\rangle &= |N-1\rangle \otimes H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} |0\rangle \end{split}$$

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$

Now
$$N = 3n + 2$$
,

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle |\psi_{N-1}\rangle = |N-1\rangle \otimes H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} |0\rangle$$

Let
$$|\phi_{N-1}\rangle = |N-1\rangle \otimes |0\rangle$$
, then

$$\langle \phi_{N-1}|f(A)|\psi_0\rangle = \langle \psi_{N-1}|f(A)|\psi_0\rangle \cdot \Phi(g_1, g_2)$$

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$
 Now $N = 3n + 2$,
$$|\psi_0\rangle = |0\rangle \otimes |0\rangle \\ |\psi_{N-1}\rangle = |N-1\rangle \otimes H^{\otimes n}D_1H^{\otimes n}D_2H^{\otimes n}|0\rangle$$
 Let $|\phi_{N-1}\rangle = |N-1\rangle \otimes |0\rangle$, then
$$\langle \phi_{N-1}|f(A)|\psi_0\rangle = \langle \psi_{N-1}|f(A)|\psi_0\rangle \cdot \Phi(g_1,g_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 an entry of $f(A)$ Easy Hard

$$H^{\otimes n} = (H \otimes I \otimes \cdots \otimes I)(I \otimes H \otimes \cdots \otimes I) \cdots (I \otimes I \otimes \cdots \otimes H)$$

Now
$$N = 3n + 2$$
,

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle |\psi_{N-1}\rangle = |N-1\rangle \otimes H^{\otimes n} D_1 H^{\otimes n} D_2 H^{\otimes n} |0\rangle$$

Let
$$|\phi_{N-1}\rangle = |N-1\rangle \otimes |0\rangle$$
, then

$$\begin{array}{cccc} \langle \phi_{N-1}|f(A)|\psi_0\rangle &=& \langle \psi_{N-1}|f(A)|\psi_0\rangle \cdot \Phi(g_1,g_2) \\ \downarrow & & \downarrow & \downarrow \\ \text{an entry of } f(A) & \text{Easy} & \text{Hard} \\ \downarrow & & & \end{array}$$

Background and motivations

Lower bounds of query complexity

BQP-completeness

Conclusion

BQP-completeness

Definition (PromiseBQP)

PromiseBQP is the set of promise problems (Π_{YES}, Π_{NO}) that can be solved by a uniform family of quantum circuits. Namely, there is a quantum circuit Y such that the application of Y to the computational basis state $|x,0\rangle$ produces the state

$$Y|x,0\rangle = \alpha_{x,0}|0\rangle \otimes |\psi_{x,0}\rangle + \alpha_{x,1}|1\rangle \otimes |\psi_{x,1}\rangle$$

such that

- for every $x \in \Pi_{YES}$ it holds that $|\alpha_{x,1}|^2 \ge 2/3$ and
- for every $x \in \Pi_{NO}$ it holds that $|\alpha_{x,1}|^2 \le 1/3$.

Equivalently, $|\alpha_{x,1}|^2 - |\alpha_{x,0}|^2 \ge 1/3$ if $x \in \Pi_{YES}$ and $|\alpha_{x,1}|^2 - |\alpha_{x,0}|^2 \le -1/3$ if $x \in \Pi_{NO}$.

Why we care about BQP-completeness

- ► It defines the hardest problems in BQP BQP = problems can be solved efficiently on a quantum computer
- ► It characterizes the power of quantum computing So we learn what quantum computers can do that classical computers may struggle with.

If a BQP-complete is outside P, it confirms that quantum computers can solve problems that classical ones cannot efficiently.

Known examples: computing e^{iAt}, A^{-1}, A^d ; approximating the Jones polynomial, etc.

Entry estimation problem

Problem

Let $f(x): [-1,1] \to [-1,1]$ be a continuous function, let A be an $n \times n$ sparse Hermitian matrix such that $||A|| \le 1$. Let $\varepsilon_1, \varepsilon_2 \in (0,1)$ and i,j be two indices. Assume that one of the following holds:

- ▶ YES case: if $f(A)_{ij} \ge \varepsilon_1$,
- ▶ NO case: if $f(A)_{ij} \leq -\varepsilon_2$.

Decide which is the case.

Entry estimation problem

Problem

Let $f(x): [-1,1] \to [-1,1]$ be a continuous function, let A be an $n \times n$ sparse Hermitian matrix such that $||A|| \le 1$. Let $\varepsilon_1, \varepsilon_2 \in (0,1)$ and i,j be two indices. Assume that one of the following holds:

- ▶ YES case: if $f(A)_{ij} \ge \varepsilon_1$,
- ▶ NO case: if $f(A)_{ij} \leq -\varepsilon_2$.

Decide which is the case.

Theorem

Assume that $\widetilde{\deg}(f) = \Omega(\operatorname{polylog}(n))$. Then the "entry estimation problem" is PromiseBQP-complete.

Proof sketch

▶ The proof is already hidden in the proof of classical lower bounds

Proof sketch

- ▶ The proof is already hidden in the proof of classical lower bounds
- ► Recall

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle, \quad |\psi_{N-1}\rangle = |N-1\rangle \otimes U|0\rangle, \quad |\phi_{N-1}\rangle = |N-1\rangle \otimes |0\rangle$$

Proof sketch

- The proof is already hidden in the proof of classical lower bounds
- ► Recall

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle, \quad |\psi_{N-1}\rangle = |N-1\rangle \otimes U|0\rangle, \quad |\phi_{N-1}\rangle = |N-1\rangle \otimes |0\rangle$$

▶ Let $U = Y^{\dagger}Z_1Y$, then [replace $|0\rangle$ with $|x,0\rangle$]

$$\begin{split} \langle \phi_{N-1} | f(A) | \psi_0 \rangle &= \langle \psi_{N-1} | f(A) | \psi_0 \rangle \cdot \langle x, 0 | U | x, 0 \rangle \\ &= \langle \psi_{N-1} | f(A) | \psi_0 \rangle \cdot (|\alpha_{x,1}|^2 - |\alpha_{x,0}|^2) \\ &= \begin{cases} \geq \varepsilon/3 & \text{if } x \in \mathsf{YES} \\ \leq -1/3 & \text{if } x \in \mathsf{NO} \end{cases} \end{split}$$

because $\langle \psi_{N-1}|f(A)|\psi_0\rangle \in [\varepsilon,1].$

Background and motivations

Lower bounds of query complexity

BQP-completeness

Conclusion

Conclusion

For functions of matrices, we proved

	Quantum algorithm	Classical algorithm
Upper bound	O(sd/arepsilon)	$O(s^{d-1})$
Lower bound	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

- From the point of approximate degree,
 - quantum algorithm is optimal
 - quantum-classical separation is exponential
- Estimating an entry of functions of matrices is BQP-complete.

Conclusion

For functions of matrices, we proved

	Quantum algorithm	Classical algorithm
Upper bound	O(sd/arepsilon)	$O(s^{d-1})$
Lower bound	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

- From the point of approximate degree,
 - quantum algorithm is optimal
 - quantum-classical separation is exponential
- Estimating an entry of functions of matrices is BQP-complete.

Open questions:

- ▶ Lower bound in terms of ε in the quantum case? $\Omega(1/\varepsilon)$?
- ► Any applications to quantum PCP? [Gharibian, Le Gall, Dequantizing the Quantum Singular Value Transformation, STOC'22]

Conclusion

For functions of matrices, we proved

	Quantum algorithm	Classical algorithm
Upper bound	O(sd/arepsilon)	$O(s^{d-1})$
Lower bound	$\Omega(d)$	$\Omega((s/2)^{(d-1)/6})$

- From the point of approximate degree,
 - quantum algorithm is optimal
 - quantum-classical separation is exponential
- Estimating an entry of functions of matrices is BQP-complete.

Open questions:

- ▶ Lower bound in terms of ε in the quantum case? $\Omega(1/\varepsilon)$?
- ► Any applications to quantum PCP? [Gharibian, Le Gall, Dequantizing the Quantum Singular Value Transformation, STOC'22]

Thanks very much for your time!