Geometria Amalítica

Aula 8: mudança de base

Conteudo

Mudança de Base }

Motivação

Matriz mudança de base

Proposições

Corolário

Motivação

Plano inclinado

$$-N_{x} = N \sin(\alpha + ii) \mid N = \sqrt{N_{x}^{2} + N_{y}^{2}}$$

$$N_{y} = N \cos \alpha$$

$$P_{x} = P \sin \alpha$$

$$P_{y} = P \cos \alpha$$

$$P = \sqrt{P_{x}^{2} + P_{y}^{2}}$$

Obs: mudança de base devido uma rotação.

Matriz mudança de base

Relacionando as bases

Bases
$$\begin{cases} E = (\vec{e}_1, \vec{e}_2, \vec{e}_3) \\ F = (\vec{f}_1, \vec{f}_2, \vec{f}_3) \end{cases}$$

$$\vec{f}_{1} = a_{11} \vec{e}_{1} + a_{21} \vec{e}_{2} + a_{31} \vec{e}_{3}$$

$$\vec{f}_{2} = a_{12} \vec{e}_{1} + a_{21} \vec{e}_{2} + a_{32} \vec{e}_{3}$$

$$\vec{f}_{3} = a_{12} \vec{e}_{1} + a_{22} \vec{e}_{2} + a_{32} \vec{e}_{3}$$

$$\vec{f}_{3} = a_{13} \vec{e}_{1} + a_{23} \vec{e}_{2} + a_{33} \vec{e}_{3}$$

Aplicação

$$\overrightarrow{u} = (x_1, x_2, x_3)_E$$

$$\overrightarrow{u} = (Y_1, Y_2, Y_3)_E$$

$$\begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \end{bmatrix} = M_{EF} \begin{bmatrix} Y_{1} \\ Y_{2} \\ Y_{3} \end{bmatrix}_{F}$$

Definição

Dadas as bases \sqsubseteq e \digamma consideremos as coordenadas de f_i , f_i e f_j na base \sqsubseteq , ou seja, os números reias α_{ij} . A matriz

$$M_{EF} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

é a matriz mudança de base, de 📒 para 🦰.

Obs: "de E para

"entende-se
como

"transformação
de base E, para
vetores na base

"".

Proposições

Se
$$E = (\vec{e_1}, \vec{e_2}, \vec{e_3}), F = (\vec{f_1}, \vec{f_2}, \vec{f_3})$$
 e $G = (\vec{g_1}, \vec{g_2}, \vec{g_3})$ são bases, então
$$M_{EF} M_{FG} = M_{EG}$$

Toda matriz mudança de base possui <u>matriz inversa.</u>

$$M_{\text{EF}} = M_{\text{EF}} M_{\text{EF}}$$

$$1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

matriz identidade

Corolário

A matriz mudança de base de F para E é a <u>matriz inversa</u> da matriz mudança de base de E para F, ou seja,

$$M_{EE} = M_{EE}^{-1}$$