Credit
Card
Fraud
Detection

Machine Learning Project Summary

March 29, 2025

Chervin Daniel

BIU DS-18

Project Overview

Credit card fraud causes major financial losses and reduces user trust.

Goal: Build a machine learning model to detect fraud with minimal false positives.

Challenge: Only ~0.5% of transactions are fraudulent.

Approach: Use advanced techniques like feature engineering and SMOTE for better detection.

Data Handling

Initial dataset: 34.6 million rows; reduced to 300,000 for analysis.

Tools employed: Utilized Dask for effective data processing.

Feature engineering: Included Temporal, Geographical, Demographic, and Transactional features.

Data quality assessment: Ensured no missing values, preserved outliers, and implemented log transformations.

Fraud Visualization

Exploratory Data Analysis (EDA)

Fraud rate: approximately 0.5%.

Characteristics of fraudulent transactions often include:

Higher transaction amounts

Occurrence in categories such as entertainment and groceries

Happening during atypical hours

Major indicators: transaction category, amount (log_amt), and hour of occurrence.

Feature Selection

Feature	Lasso	Ridge	LinearSVC	GradientBoosting	RandomForest
category	~	<u>~</u>	<u>~</u>		<u>~</u>
log_amt	~	<u>~</u>	<u>~</u>		<u>~</u>
unix_time	~	×	×		<u>~</u>
trans_day_of_week	~	×	<u>~</u>	×	×
is_weekend	<u>~</u>	×	×	×	×
trans_hour	<u>~</u>	×	<u>~</u>	×	<u>~</u>
age_group	~	×	×	×	×
area_cat		×	×	×	×
log_time_since_last_trans	<u>~</u>	×	<u>~</u>	×	×
log_city_pop	<u>~</u>	×	×	×	×

Class Imbalance

Technique	Accuracy	Precision	Recall	F1-Score
ROS	0.9992	1.0000	0.8416	0.9140
RUS	0.9793	0.1867	0.9593	0.3126
SMOTE	0.9991	0.9222	0.8846	0.9030
SMOTETomek	0.9990	0.9093	0.8846	0.8968

Model Development Models evaluated: Linear Regression, Decision Tree, Random Forest, AdaBoost, Gradient Boosting Machine, Support Vector Machine, XGBoost.

Optimization conducted using RandomizedSearchCV.

Leading models: Random Forest and XGBoost.

Model Performance

- Accuracy: 99.97% for both Random Forest (RF) and XGBoost.
- XGBoost: Exhibits greater precision (False Positives = 3).
- RF: Demonstrates superior recall (False Negatives = 7).
- Recommendation: Opt for XGBoost to reduce false positives.

Model Selection

Model	Accuracy	Precision	Recall	F1-Score
Linear Regression	0.8801	0.8969	0.8601	0.8781
Decision Tree	0.9972	0.9964	0.9979	0.9972
Random Forest	0.9997	0.9996	0.9998	0.9997
Adaptive Boosting (ADABoost)	0.9672	0.9856	0.9485	0.9667
Gradient Boosting Machine (GBM)	0.9868	0.9948	0.9788	0.9868
XGBoost Classifier	0.9997	0.9998	0.9997	0.9997

Model Optimization

RF Version	TN	FP	FN	TP	Notes
Default	41,595	18	10	41,923	Solid performance
Optimized	41,601	12	7	41,926	Fewer errors (both FP and FN)

Interpretation

- The optimized model shows a reduction in both false positives and false negatives, improving both precision and recall.
- Q False Negatives (FN) dropped from 10 → 7, which is important in fraud detection (fewer missed frauds).
- **V** False Positives (FP) also dropped from 18 → 12, helping avoid incorrectly flagging legitimate transactions.

XGB Version	TN	FP	FN	TP	Notes
Default	41,604	9	14	41,919	Strong baseline performance
Optimized	41,610	3	12	41,921	Improved precision and reduced false positives

Interpretation

- ✓ The optimized XGBoost model reduced false positives from 9 → 3, improving precision and reduce interruptions.
- Salse negatives also dropped slightly (14 → 12), improving recall and catching more frauds.
- True positives (TP) and true negatives (TN) slightly increased, indicating overall better classification accuracy.

Deployment and Key Insights

Deployed as a real-time API for fraud detection, it can accommodate two strategies:

- Tailored for in-person transactions, focusing on reducing false positives (FP), minimizing interruptions, and prioritizing accuracy.
- Tailored for online transactions, aiming to lower false negatives (FN) while emphasizing recall.

Key Takeaways:

- Importance of class balancing
- Impact of spatial and temporal factors
- The application of ensemble models and resampling techniques enhances performance.