Machine Learning Application Stroke Prediction

Davide Germinario, Gaelle Debree, Riccardo Scuriatti

INDEX

- 1. Importing the dataset
- 2. Cleaning the data
- 3. Descriptive analysis
- 4. Performance of predictive methods

5. K-means clustering

1. IMPORTING DATASET

Stroke Prediction

The following dataset present 11 clinical features for predicting stroke events.

Source: Kaggle


```
[ ] # Importing the dataset
  import pandas as pd
  df = pd.read_csv('healthcare-dataset-stroke-data.csv')
```

2. CLEANING THE DATASET

VARIABLES DESCRIPTION

[] df.head()

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1

- **id**: unique identifier
- **gender**: "Male", "Female" or "Other"
- age: age of the patient
- **hypertension**: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
- **heart_disease**: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- ever_married: "No" or "Yes"

- work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"
- **Residence_type**: "Rural" or "Urban"
- avg_glucose_level: average glucose level in blood
- **bmi**: body mass index
- smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown" (if the smoking status is unavailable for this patient)
- **stroke**: 1 if the patient had a stroke or 0 if not

STEPS

- Remove 'ID' and 'Work type'
- transform 'Smoking status'
- Dummy for 'Gender', 'Married' and 'Residence'
- Deal with NAs
- Deal with Outliers

REMOVE 'ID' AND 'Work Type'

```
# Drop the 'id' and 'work_type' columns
columns_to_drop = ['id', 'work_type']
df = df.drop(columns=columns_to_drop, axis=1)
```

DEALING WITH 'Smoking_Status'

DUMMY FOR 'Gender', 'Married' AND 'Residence'

```
df['gender'] = (df['gender'] == 'Female').astype(int)
df['ever_married'] = (df['ever_married'] == 'Yes').astype(int)
df['Residence_type'] = (df['Residence_type'] == 'Urban').astype(int)
```

DEALING WITH NAS

The only column which is showing NA values is BMI which shows 201 NAs, we decide to fill the missing data with the mean of the column.

```
# See if my data contains NaNs
nan_count = df.isna().sum()
print(nan_count)
```

```
Residence_type 0
avg_glucose_level 0
bmi 201
stroke 0
```

```
[ ] #Handling missing values by filling with the mean of the column
df['bmi'].fillna(df['bmi'].mean(), inplace=True)
```

DEALING WITH OUTLIERS

- We calculate the first quartile (Q1), third quartile (Q3), and interquartile range (IQR) for the current column.
- Calculates lower and upper bounds to identify outliers .
- Filters the df_filtered DataFrame to include only the rows where the current column values fall within the calculated bounds.

3. DESCRIPTIVE ANALYSIS

DESCRIPTIVE STATISTICS

Mean of each column:	
gender	0.589843
age	40.896406
hypertension	0.074243
heart_disease	0.039171
ever_married	0.622865
Residence_type	0.507857
avg_glucose_level	91.477067
bmi	27.811399
stroke	0.037577
<pre>smoking_status_formerly smoked</pre>	0.161239
smoking_status_never smoked	0.363243
smoking_status_smokes	0.152585

DESCRIPTIVE STATISTICS

4. PERFORMANCE OF PREDICTING METHODS

DEFINE THE TARGET AND FEATURES

Defining the target variable of our analysis:

Stroke: this is the variable that we want to predict

Define the features of our analysis:

 All other variables: these are all the variables that we will use to predict the stroke one

```
# Splitting the data into features (X) and target label (y)
X = df_filtered.drop(['stroke'], axis=1)
# Including only 'stroke' in y
y = df_filtered['stroke']
```

SELECTING RELEVANT FEATURES

We use the Random Forest classifier to plot the features' importance. We select only the three most important features since all the others have a very low importance.

- 1. Average glucose level
- 2. Body Mass Index (BMI)
- 3. Age

These features will be used to perform the further predictions.

DEFINING TRAINING AND TESTING SAMPLE

PERFORMANCE OF THE MODELS

	Accuracy	Precision	Recall	F1-Score	AUC-ROC
KNN	0.956	0.929	0.956	0.939	0.5
Logistic Regression	0.959	0.92	0.959	0.939	0.628
Decision Tree	0.92	0.93	0.92	0.925	0.56
Random Forest	0.953	0.92	0.953	0.936	0.781

The Random **Forest** is the model for which the <u>area below</u> the ROC curve is the highest, seems to be the model predicting the best the stroke risk whereas the KNN model presents the worse performance.

5. K-MEANS CLUSTERING

ELBOW METHOD


```
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import numpy as np
# Selecting features for clustering
features for clustering = df filtered[['age', 'avg glucose level', 'bmi']]
# Standardizing the features
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features_for_clustering)
# Finding the optimal number of clusters using the elbow method
inertia = []
for i in range(1, 11):
    kmeans = KMeans(n clusters=i, random state=42)
    kmeans.fit(scaled features)
    inertia.append(kmeans.inertia )
# Plotting the elbow graph
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11), inertia, marker='o')
plt.title('Elbow Method For Optimal Number of Clusters')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```

3 CLUSTERS

	gender	age	hypertension	heart_disease	ever_married	Residence_type	avg_glucose_level	bmi	stroke	smoking_status_formerly smoked	smoking_status_never smoked	smoking_status_smokes
cluster												
0	0.589901	54.260500	0.115621	0.064181	0.849929	0.510618	80.890788	31.095230	0.056630	0.220859	0.399245	0.178858
1	0.592347	17.547196	0.002208	0.001472	0.199411	0.509198	86.259779	21.896947	0.002943	0.065489	0.280353	0.090508
2	0.585980	44.634699	0.085433	0.037240	0.726177	0.499452	123.812903	28.993549	0.044907	0.165389	0.403067	0.184009

Cluster 0	Cluster 1	Cluster 2			
Older	Younger	Middle-age			
High health risks	Low health risks	Future health complications			

CONCLUSION

• **Strong correlation** between high level of glucose, high BMI, higher age and risk of stroke.

- Logisitic Regression Model seems to be outstanding all other models to predict the stroke, even if the AUC below the Random Forest ROC curve is the highest one.
- The use of **3 clusters** would be optimal in this analysis.

REPRODUCIBILITY

Colab:

https://colab.research.google.com/drive/1bmWEGOlSx9s3sNmf1KjWf6LqcQWL_Cld?usp=sharinq

Stroke predictions dataset: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset