Analyse — CM: 5

Par Lorenzo

03 octobre 2024

Example 0.1.

- $(n)_{n\in\mathbb{N}}$ est la suite des entiers.
- $((-1)^n)_{n\in\mathbb{N}}$ est la suite alternant entre 1 et -1.
- $(F_n)_{n\in\mathbb{N}}$ définie par $F_0=1, F_1=1, F_{n+2}=F_{n+1}+F_n$ est la suite de Fibonacci.

Remarques 0.1. Ne pas confondre la fonction avec une suite $((\sqrt{n})_{n\in\mathbb{N}})$ différent de $f(x) = \sqrt{x}$

0.0.1 Suites majorées, minorées, bornées

Définition 0.1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombre réels.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **majorée** si $\exists M\in\mathbb{R}, \forall n\in\mathbb{N}, u_n\leq M$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **minorée** si $\exists M\in\mathbb{R}, \forall n\in\mathbb{N}, M\leq u_n$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **bornée** si la suite $(u_n)_{n\in\mathbb{N}}$ est majorée et minorée. (i.e. $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, |u_n| \leq M$)

Définition 0.2.

La suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** si $\forall n\in\mathbb{N}, u_{n+1}\geq u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est **strictement croissante** si $\forall n\in\mathbb{N}, u_{n+1}>u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si $\forall n\in\mathbb{N}, u_{n+1}\leq u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante si $\forall n\in\mathbb{N}, u_{n+1}< u_n$.

On dit que la suite est **monotone** si elle est croissante ou décroissante.

Remarques 0.2. Pour vérifier la monotonie d'une suite:

Soit $u_{n+1} - u_n \ge 0 \implies croissante$

Soit on calcule (avec $u_n \neq 0$) $\frac{u_{n+1}}{u_n} \geq 1 \implies croissante$ On préfère la première pour les suites arithmétiques et la deuxième pour les suites

On préfère la première pour les suites arithmétiques et la deuxième pour les suites géométriques.

0.1 Limites

0.1.1 Limit finie, limite infinie

Définition 0.3. La suite $(u_n)_{n\in\mathbb{N}}$ admet pour limite $l\in\mathbb{R}$ si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |u_n - l| \le \varepsilon$$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers l'quand n tend vers l'infini, ou

$$\lim_{n \to \infty} u_n = l$$

Remarques 0.3. On utilise ε pour parler d'un nombre très petit.

Définition 0.4. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si elle devient aussi grande que l'on souhaite quand n devient grand, autrement dit

$$\forall A > 0, \exists N \in \mathbb{N}, \forall n \geq N, u_n \geq A$$

La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si elle devient aussi petite que l'on souhaite quand n devient grand, autrement dit

$$\forall A > 0, \exists N \in \mathbb{N}, \forall n > N, u_n < -A$$

Définition 0.5.

 $(u_n)_{n\in\mathbb{N}}$ converge si elle admet une limite finie.

 $(u_n)_{n\in\mathbb{N}}$ diverge si elle admet l'infini comme limite ou si elle n'a pas de limite.

Proposition 0.1.

Si une suite converge, alors sa limite est unique.

Démonstration 0.1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui admet deux limite, $l_1\neq l_2$.

$$\lim_{n \to +\infty} u_n = l_1 \implies \forall \varepsilon_1, \exists N_1 \in \mathbb{N}, \forall n \ge N_1, |u_n - l_1| \le \varepsilon_1$$

$$\lim_{n \to +\infty} u_n = l_2 \implies \forall \varepsilon_2, \exists N_2 \in \mathbb{N}, \forall n \ge N_2, |u_n - l_2| \le \varepsilon_2$$

Pour
$$\varepsilon_1 = \varepsilon = \varepsilon_2 > 0$$

$$\exists N = \max(N_1, N_2), \forall n \ge \mathbb{N}, |u_n - l_1| < \varepsilon \ et \ |u_n - l_2| < \varepsilon$$

$$Donc |l_1 - l_2| = |l_1 - u_n + u_n - l_2| = |(l_1 - u_n) + (u_n - l_2)| \le |l_1 - u_n| + |u_n - l_2| < \varepsilon + \varepsilon = 2\varepsilon$$

$$Il \ suffit \ de \ prendre \ \varepsilon < \frac{|l_1 - l_2|}{2}, \ ainsi$$

$$|l_1 - l_2| < 2\varepsilon \le |l_1 - l_2|$$

Ce qui est absurde, Finalement $l_1 = l_2$

0.1.2Propriétés des limites

Propriétés

1. $\lim_{n\to+\infty} u_n = l \iff \lim_{n\to+\infty} (u_n - l) = 0 \iff \lim_{n\to+\infty} |u_n - l| = 0$

2. $\lim_{n\to+\infty} u_n = l \implies \lim_{n\to+\infty} |u_n| = |l|$

Remarques 0.4. C'est en général faux dans l'autre sens. Par exemple pour $u_n = (-1)^n$, $|u_n| = 1 \ donc \ \lim_{n \to \infty} |u_n| = 1 \ mais \ (u_n)_{n \in \mathbb{N}} \ n'a \ pas \ de \ limite \ (-1, 1, -1, 1, ...).$

Proposition 0.2.

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes.

$$\lim_{n \to +\infty} u_n = l \implies \forall \delta \in \mathbb{R}, \lim_{n \to +\infty} (\delta u_n) = \delta l$$

$$\lim_{n \to +\infty} u_n = l \ et \ \lim_{n \to +\infty} v_n = l' \implies \lim_{n \to +\infty} (u_n + v_n) = l + l' \ et \ \lim_{n \to +\infty} (u_n \times v_n) = l \times l'$$

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N, l \neq 0 \ et \ u_n \neq 0 \implies \lim_{n \to +\infty} \frac{1}{u_n} = \frac{1}{l}$$

Démonstration 0.2.

$$\lim_{n \to +\infty} u_n = l \implies \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N, |u_n - l| \le \varepsilon$$

$$\implies \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N, |\delta| |u_n - l| \le |\delta| \varepsilon$$

$$\implies \forall \varepsilon' > 0, \exists N \in \mathbb{N}, n \ge N, |\delta u_n - \delta l| \le |\delta| \varepsilon = \varepsilon'$$

$$\implies \lim_{n \to +\infty} \delta u_n = \delta l$$

$$\lim_{n \to +\infty} u_n = l \implies \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N, |u_n - l| \le \varepsilon$$

$$\lim_{n \to +\infty} v_n = l' \implies \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N, |v_n - l'| \le \varepsilon$$

$$|u_n - l| + |v_n - l'| \ge |u_n - l + v_n - l'| = |(u_n + v_n) - (l + l')|$$

$$\implies |(u_n + v_n) - (l + l')| \le 2\varepsilon = \varepsilon'$$

À compléter

$$\lim_{n \to +\infty} u_n = l \implies \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N, |u_n - l| \le \varepsilon$$

$$\lim_{n \to +\infty} v_n = l' \implies \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N, |v_n - l'| \le \varepsilon$$

$$|u_n \times v_n - l \times l'| = |u_n \times v_n - l \times v_n + l \times v_n - l \times l'|$$

$$= |v_n(u_n - l) + l(v_n - l')|$$

$$\le |v_n(u_n - l)| + |l(v_n - l')|$$

$$= |v_n||u_n - l| + |l||v_n - l'|$$

\hat{A} faire

$$\lim_{n \to +\infty} u_n = l \implies \forall \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N, |u_n - l| \le \varepsilon$$