Assignment Math45-Module-02-Exercises due 09/10/2020 at 11:59pm PDT

1. (1 point) Select all of the functions belwo which satisfy the differential equation y'' + y = 0. There may be more than one correct box that needs to be checked.

- A. y = 0
- B. $y = \cos(x) + \sin(x)$
- C. $y = 3\cos(x)$
- D. $y = \sin(x)$
- E. y = cos(x)
- F. $y = e^x$
- G. $y = \sin(3x)$
- H. None of the above

Consister the function $y = xe^{2x}$. Which of the following differential equations is this a solution for?

- A. $v' = e^{2x} + 1$
- B. y' = xy
- C. y' = 0
- D. $y' 2y = e^{2x}$

The function $f(x) = \frac{1}{x-2}$ satisfies the differential equation (x-2)f'(x) + f(x) = 0 (you may assume this, but it would be good practice to check it yourself!). The function f(x) is a solution for the differential equation on which of the following intervals? (Note: You should check to be sure the derivative f'(x) is also defined on this interval.)

• A. $(-\infty, \infty)$

- B. $(-\infty,2) \cup (2,\infty)$
- C. $(-\infty, 2)$

4. (1 point)

Consider the intervals

- A. $(-\infty, 8)$
- B. $(-\infty, 8]$
- $C.(8,\infty)$
- D. [8,∞)
- E. $(-\infty, 8) \cup (8, \infty)$
- F. $(-\infty, \infty)$.

Choose the interval which is the domain of the given function. (Not every interval may match with a function, and some intervals might be used more than once.)

- (a) The domain of e^{x-8} is [Choose/A/B/C/D/E/F].
- (b) The domain of $\frac{1}{(x-8)^6}$ is [Choose/A/B/C/D/E/F].
- (c) The domain of ln(x-8) is [Choose/A/B/C/D/E/F].
- (d) The domain of ln(8-x) is [Choose/A/B/C/D/E/F].
- (e) The domain of $\sqrt{x-8}$ is [Choose/A/B/C/D/E/F].
- (f) The domain of $\frac{1}{\sqrt{x-8}}$ is [Choose/A/B/C/D/E/F].

What is the domain of the function $y = \sqrt{2x-2}$?

- A. $(-\infty, \infty)$
- B. [1,∞)
- C. (1,∞)

What is the domain of the derivative $y' = \frac{1}{\sqrt{2x-2}}$?

- A. [1,∞)
- B. (1,∞)
- C. $(-\infty, \infty)$

The function $y = \sqrt{2x-2}$ satisfies the differential equation y'y = 1 (you may assume this, but it would be good practice to check it yourself!). The function y is a solution for the differential equation on which of the following intervals? (Note: the interval must be valid for the function, and its derivative.)

- A. $(-\infty, \infty)$
- B. [1,∞)
- C. (1,∞)

6. (1 point) For the equation given below, find $\frac{dy}{dx}$.

$$5x^3y^2 - 4x^2y = 5.$$

$$\frac{dy}{dx} =$$

7. (1 point) Suppose the following are all solutions to a differential equation. Mark those that could be written as explicit solutions. There may be more than one correct box that needs to be checked.

- A. $ye^y = x$
- B. $y^2 = 3x^3 x$
- C. y(1+x) = x
- D. $y^3 = 1 + x$
- E. $v = e^{3x}$

- F. $y^4 = y^2 e^x$
- G. None of the above

8. (1 point)

Choose the best answer for the corresponding solution of a differential equation.

- (a) The solution $y = c_1 \sin(x) + c_2 \cos(x)$ is a
 - Choose
 - particular solution
 - 1-parameter family of solutions
 - 2-parameter family of solutions
- (b) The solution $y = Ce^{5x}$ is a
 - Choose
 - particular solution
 - 1-parameter family of solutions
 - 2-parameter family of solutions
- (c) The solution $y = \ln(x 4)$ is a
 - Choose
 - particular solution
 - 1-parameter family of solutions
 - 2-parameter family of solutions

(d) The solution y = 0 is also called the

- Choose
- null solution
- zero parameter
- trivial solution

9. (1 point)

Suppose $y = x^2 + 4$ is a solution to a differential equation. Which of the following is its integral curve. (In each graph, the graph of $y = x^2$ is in black, while the graph of $y = x^2 + 4$ is in (thicker) red.)

The correct graph is graph

- A
- E
- C
- D

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

10. (1 point) Enter a value for π