Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 11

Abgabetermin: Freitag, 05.02.2021, 9:15 Uhr

Aufgabe 1. (Kummer-Erweiterung¹) (6 Punkte) Es sei K ein Körper, $n \in \mathbb{N}_{\geq 2}$ teilerfremd zu char(K) und es gelte $\mu_n \subset K$. Weiter sei $f = X^n - a \in K[X]$ irreduzibel und L ein Zerfällungskörper von f. Zeigen Sie:

- (a) (2 Punkte) L/K ist galoissch und es gilt L = K(b) für eine Nullstelle b von f.
- (b) (3 Punkte) Die Abbildung

$$\psi \colon \operatorname{Gal}(L/K) \to L^{\times}, \quad \sigma \mapsto \frac{\sigma(b)}{h}$$

ist unabhängig von der Wahl von b und definiert einen injektiven Gruppenhomomorphismus, dessen Bild gleich $\mu_n \subset K^\times \subset L^\times$ ist. Folgern Sie, dass $\operatorname{Gal}(L/K)$ zyklisch ist.

(c) (1 Punkt) Falls $\mu_n \not\subset K$, so ist $\operatorname{Gal}(L/K)$ nicht notwendigerweise zyklisch.

Aufgabe 2. (Gruppenoperation) (6 Punkte, je 1,5 Punkte) Es sei p eine Primzahl und

$$G := \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p) \mid a, b, d \in \mathbb{F}_p, \ a \neq 0 \neq d \right\}$$

die Gruppe der invertierbaren oberen Dreiecksmatrizen. Als Untergruppe von $GL_2(\mathbb{F}_p)$ operiert G auf $V := \mathbb{F}_p^2$.

- (a) Zeigen Sie, dass $M := \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ ein Repräsentantensystem der Bahnen ist.
- (b) Bestimmen Sie für jedes $x \in M$ die Isotropiegruppe G_x .
- (c) Bestimmen Sie für jedes $x \in M$ die Bahn Gx und verifizieren Sie $\#G_x \cdot \#(Gx) = \#G$.
- (d) Bestimmen Sie für jedes $x \in M$ den Index $(G : G_x)$ und verifizieren Sie damit die Bahnengleichung $\#V = \sum_{x \in M} (G : G_x)$.

Aufgabe 3. (Sylowsätze) (6 Punkte) Zeigen Sie:

- (a) (2 Punkte) Jede Gruppe G der Ordnung 2020 besitzt einen nicht-trivialen (d.h. $\neq 1$ und $\neq G$) Normalteiler, der kommutativ ist.
- (b) (1 Punkt) Es gibt (bis auf Isomorphie) genau eine Gruppe von Ordnung 2021.
- (c) (3 Punkte) Jede Gruppe G von Ordnung 36 besitzt einen nicht-trivialen Normalteiler. (Hinweis: In dem Fall, dass die Strategie aus (a) fehlschlägt, betrachten Sie die Operation von G (durch Konjugation) auf der Menge ihrer 3-Sylowgruppen.)

Aufgabe 4. (Auflösbarkeit der \mathfrak{S}_4) (6 Punkte, je 2 Punkte) Zeigen Sie:

(a) Ist $(x_1 \ldots x_r)$ ein r-Zykel in \mathfrak{S}_n und $\sigma \in \mathfrak{S}_n$ beliebig, so gilt

$$\sigma(x_1 \ldots x_r)\sigma^{-1} = (\sigma(x_1) \ldots \sigma(x_r)).$$

- (b) Definiere $\mathfrak{V}_4 := \{ id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \} \subset \mathfrak{S}_4$. Dann gilt $\mathfrak{V}_4 \triangleleft \mathfrak{S}_4$.
- (c) $1 \triangleleft \mathfrak{V}_4 \triangleleft \mathfrak{A}_4 \triangleleft \mathfrak{S}_4$ ist eine Normalreihe mit abelschen Faktoren. Folgern Sie, dass \mathfrak{S}_4 auflösbar ist.

¹Diese Aufgabe zeigt die Umkehrung von Satz 4.66.