2020/8/17 深度学习笔记

深度学习符号

此笔记中使用的数学符号参考自《深度学习》和 Deep learning specialization

常用的定义

• 原版符号定义中, $x^{(i)}$ 与 x_i 存在混用的情况, 请注意识别

数据标记与上下标

- 上标 (i) 代表第 i 个训练样本
- 上标^[l] 代表第 l 层
- m 数据集的样本数
- 下标 x 输入数据
- 下标 y 输出数据
- n_x 输入大小
- ny 输出大小 (或者类别数)
- $n_h^{[l]}$ 第 l 层的隐藏单元数
- L 神经网络的层数
- 在循环中
 - $egin{aligned} & o & n_x = n_h^{[0]} \ & o & n_y = n_h^{[L+1]} \end{aligned}$

神经网络模型

- $X \in \mathbb{R}^{n_x \times m}$ 代表输入的矩阵
- $x^{(i)} \in \mathbb{R}^{n_x}$ 代表第 i 个样本的列向量
- $Y \in \mathbb{R}^{n_y \times m}$ 是标记矩阵
- $y^{(i)} \in \mathbb{R}^{n_y}$ 是第 i样本的输出标签
- $W^{[l]} \in \mathbb{R}^{l \times (l-1)}$ 代表第 [l] 层的权重矩阵
- $b^{[l]} \in \mathbb{R}^l$ 代表第 [l] 层的偏差矩阵
- $\hat{y} \in \mathbb{R}^{n_y}$ 是预测输出向量
 - 。 也可以用 $a^{[L]}$ 表示

正向传播方程示例

- $a = q^{[l]}(W_x x_{\perp}^{(i)} b_1) = q^{[l]}(z_1)$
 - 。 其中, $g^{[l]}$ 代表第 l 层的激活函数
- $\hat{y} = softmax(W_h h + b_2)$

通用激活公式

- $ullet \ a_j^{[l]} = g^{[l]}(z_j^{[l]}) = g^{[l]}(\sum_k w_{jk}^{[l]} a_k^{[l-1]} + b_j^{[l]})$
 - 。 j 当前层的维度
 - 。 k 上一层的维度

损失函数

- J(x, W, b, y) 或者 $J(\hat{y}, y)$
- 常见损失函数示例
 - $\begin{array}{ll} \circ & J_{CE}(\hat{y},y) = -\sum_{i=0}^{m} y^{(i)} log \hat{y}^{(i)} \\ \circ & J_{1}(\hat{y},y) = -\sum_{i=0}^{m} |y^{(i)} \hat{y}^{(i)}| \end{array}$

深度学习图示

• 节点: 代表输入、激活或者输出

• 边:代表权重或者误差

提供两种等效的示意图

详细的网络

常用于神经网络的表示,为了更好的审美,我们省略了一些在边上的参数的细节(如 $w_{ij}^{[l]}$ 和 $b_i^{[l]}$ 等)。

简化网络

2020/8/17 深度学习笔记

两层神经网络的更简单的表示。