Variáveis Aleatórias

Variáveis Aleatórias Discretas

Exemplo 1: Um empresário pretende estabelecer uma empresa para montagem de um produto composto de uma esfera e um cilindro. As partes são adquiridas em fábricas diferentes (A e B) e a montagem consistirá em juntar as duas partes e pintá-las. O produto acabado deve ter o comprimento (definido pelo cilindro) e a espessura (definida pela esfera) dentro de certos limites, e isso só poderá ser verificado após a montagem.

Para estudar a viabilidade de seu empreendimento, o empresário quer ter uma idéia da distribuição do lucro por peça montada. Sabe-se que cada componente pode ser classificado como bom, longo ou curto, conforme sua medida esteja dentro da especificação, maior ou menor que a especificada, respectivamente.

Além disso, foram obtidos dos fabricantes o preço de cada componente (\$5,00) e as probabilidades de produção de cada componente com as características bom, longo ou curto. Esses valores estão na tabela 1.

Tabela 1 -

Produto	Fábrica A (Cilindro)	Fábrica B (Esfera)
Dentro das especificações (Bom: B)	0,80	0,70
Maior que as especificações (Longo: L)	0,10	0,20
Menor que as especificações (Curto: C)	0,10	0,10

Se o produto final apresentar algum componente com a característica C (curto), ele será irrecuperável, e o conjunto será vendido como sucata ao preço de \$5,00. Cada componente longo poderá ser recuperado a um custo adicional de \$5,00. Se o preço de venda de cada unidade for de \$25,00, como seria a distribuição de frequências da variável X (lucro por conjunto montado)?

A construção dessa distribuição de frequências vai depender de certas suposições que faremos sobre o comportamento do sistema considerado. Com base nessas suposições, estaremos trabalhando com um modelo da realidade, e a distribuição que obtivermos será uma distribuição teórica, tanto mais próxima da distribuição de frequências real quanto mais fiéis à realidade forem as suposições.

Como os componentes vêm de fábricas diferentes, vamos supor que a classificação dos cilindros e da esfera, segundo suas características, sejam eventos independentes. Dessa forma, podemos obter o espaço amostral em questão utilizando um diagrama de árvore:

Tabela 2 -

Produto	Probabilidade	Lucro por montagem (X)
BB	$0.80 \times 0.70 = 0.56$	25 - 10 = 15 (Preço de venda - Custo de cada componente)
BL	$0.80 \times 0.20 = 0.16$	25 - 10 - 5 = 10 (Preço de venda - Custo de cada componente - Custo
		adicional de recuperação pela presença do componente longo)
BC	$0.80 \times 0.10 = 0.08$	5 - 10 = -5 (Preço de venda do conjunto como sucata - Custo de cada
		componente)
LB	0,07	25 - 10 - 5 = 10
LL	0,02	25 - 10 - 10 = 5
LC	0,01	5 - 10 = -5
СВ	0,07	5 - 10 = -5
CL	0,02	5 - 10 = -5
CC	0,01	5 - 10 = -5

Com os dados da tabela 2, vemos que o lucro por montagem (X) pode assumir um dos seguintes valores:

15, se ocorrer o evento $A_1=\{BB\}$

10, se ocorrer o evento A₂={BL, LB}

5, se ocorrer o evento $A_3=\{LL\}$

-5, se ocorrer o evento A₄={BC, LC, CB, CL, CC}

Cada um desses eventos tem uma probabilidade associada, ou seja,

 $P(A_1)=0,56$

 $P(A_2)=0,23$

 $P(A_3)=0.02$

 $P(A_4)=0,19$

o que nos permite escrever a função da tabela 3, que é um modelo teórico para a distribuição da variável (X), que o empresário poderá usar para julgar a viabilidade econômica do projeto que ele pretende realizar. Aqui, x é o valor da variável aleatória X e p(x) é a probabilidade de X assumir o valor x.

Tabela 3 -

X	15	10	5	-5
p(x)	0,56	0,23	0,02	0,19

Exemplo 2: Se considerarmos Y como sendo a variável 'custo de recuperação de cada conjunto produzido', verificamos que Y irá assumir os valores:

0, se ocorrer o evento $B_1=\{BB, BC, LC, CB, CL, CC\}$

5, se ocorrer o evento $B_2=\{BL, LB\}$

10, se ocorrer o evento $B_3=\{LL\}$

A função de probabilidade da variável aleatória Y está representada na tabela 4.

Tabela 4 -

Х	0	5	10
p(x)	0,75	0,23	0,02

Uma variável aleatória (v.a.) X do tipo discreto, estará bem caracterizada se indicarmos os possíveis valores $x_1, x_2, ..., x_n, ...$ que ela pode assumir e as respectivas probabilidades $p(x_1), p(x_2), ..., p(x_n), ...$, ou seja, se conhecermos a sua função de probabilidade. Também usaremos a notação p(x)=P(X=x).

Definição: Uma função X, definida no espaço amostral Ω e com valores num conjunto enumerável de pontos da reta é dita uma *variável aleatória discreta*.

Definição: Denomina-se *função de probabilidade da v. a. discreta X*, que assume os valores x_1 , x_2 , ..., x_n , ..., a função $\{x_i, p(x_i)\}$ onde i=1, 2, ..., que a cada valor de x_i associa a sua probabilidade de ocorrência, isto é, $p(x_i) = P(X=x_i) = p_i$, i=1, 2, ...

1. Esperança matemática e variância de uma variável aleatória discreta

Uma pergunta que logo ocorreria ao empresário do exemplo 1 é qual o lucro médio por conjunto montado que ele espera conseguir. Da tabela 3, observamos que 56% das montagens devem produzir um lucro de \$15,00, 23% um lucro de \$10,00, e assim por diante. Logo, o lucro esperado por montagem será dado por:

Lucro médio = $(0.56 \times 15) + (0.23 \times 10) + (0.02 \times 5) + (0.19 \times -5) = 9.85

Isto é, caso sejam verdadeiras as suposições feitas para determinar a distribuição da v. a., o empresário espera ter um lucro de \$9,85 por conjunto montado.

Definição: Dada a v.a. discreta X, assumindo os valores $x_1, x_2, ..., x_n$, chamamos *valor médio ou* esperança matemática de X:

$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

Definição: Chamamos de variância de uma v.a. X o valor:

$$Var(X) = E[X - E(x)]^2 = E(X^2) - [E(X)]^2$$

Propriedades da Esperança Matemática

- i. Propriedade 1: Se X = c, onde c é uma constante, então E(X) = c.
- ii. Propriedade 2: Suponha-se que c seja uma constante e X seja uma variável aleatória. Então E(cX) = cE(X).
- iii. Propriedade 3: Sejam X e Y duas variáveis aleatórias quaisquer. Então, E(X+Y) = E(X) + E(Y).

- a) Se Y = aX + b, onde a e b são constantes, então E(Y) = aE(X) + b. Em linguagem corrente: o valor esperado de uma *função linear de X*. Isto não será verdadeiro, a menos que se trate de função linear.
- **b)** Sejam *n* variáveis aleatórias $X_1, X_2, ..., X_n$. Então, $E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$.

Propriedades da Variância

- i. Propriedade 1: Se c é uma constante, então Var(X+c) = Var(X).
- ii. Propriedade 2: Suponha-se que c seja uma constante e X seja uma variável aleatória. Então $Var(cX) = c^2Var(X)$.
- iii. Propriedade 3: Se (X, Y) for uma variável aleatória bidimensional, e se X e Y forem independentes. Então, Var(X+Y) = Var(X) + Var(Y).

Comentário: É importante compreender que a variância *não é*, em geral, *aditiva*, como o é o valor esperado. Com a hipótese complementar de independência a propriedade torna-se válida. A variância também não possui a propriedade de linearidade do valor médio, isto é, Var(aX+b)≠aVar(X)+b. Em vez disso, teremos Var(aX+b)=a²Var(X).

2. Função de Distribuição Acumulada

Definição: Dada a variável aleatória X, chamaremos de função de distribuição acumulada (f.d.a.), ou simplesmente função de distribuição (f.d.) a função:

$$F(x) = P(X \le x)$$

Voltando ao problema do empresário e usando a função de probabilidade de X definida na tabela 3, a f.d.a. de X será dada por

$$F(x) = \begin{cases} 0, se \ x < -5 \\ 0,19, se \ -5 \le x < 5 \\ 0,21, se \ 5 \le x < 10 \\ 0,44, se \ 10 \le x < 15 \\ 1, se \ x \ge 15 \end{cases}$$

onde:

$$P(X \le -5) = 0.19$$

$$P(X \le 5) = P(X = -5) + P(X = 5) = 0.21$$

$$P(X \le 10) = P(X = -5) + P(X = 5) + P(X = 10) = 0,44$$

$$P(X \le 15) = 1$$

Exercício:

Um vendedor de equipamento pesado pode visitar, num dia, um ou dois clientes, com probabilidade de 1/3 ou 2/3, respectivamente. De cada contato, pode resultar a venda de um equipamento por \$50.000,00 (com probabilidade 1/10) ou nenhuma venda (com probabilidade 9/10). Indicando por Y o valor total de vendas diárias desse vendedor:

- a) Escreva a função de probabilidade de Y.
- b) Calcule o valor total esperado de vendas diárias.
- c) Encontre o desvio padrão do valor total de vendas diárias.
- d) Escreva a função de distribuição de Y.

Modelos Probabilísticos para Variáveis Aleatórias Discretas

3. Modelo Binomial

Exemplo 1: Suponha que peças saiam de uma linha de produção e sejam classificadas como defeituosas (D) ou não defeituosas (N), isto é, perfeitas. Admita que três dessas peças, da produção de um dia, sejam escolhidas ao acaso e classificadas de acordo com esse esquema. O espaço amostral para esse experimento, Ω , pode ser assim, representado:

 $\Omega = \{DDD, DDN, DND, NDD, NND, NDN, DNN, NNN\}$

Suponhamos que seja 0,2 a probabilidade de uma peça ser defeituosa e 0,8 de ser não defeituosa. Admitamos que essas probabilidades sejam as mesmas para cada peça. Finalmente, admita-se que a classificação de qualquer peça em particular, seja independente da classificação de qualquer outra peça. Empregando essas suposições, segue-se que as probabilidades associadas aos vários resultados do espaço amostral, Ω , são:

Tabela 1 -

Resultado	Probabilidade
DDD	$0,2^{3}$
DDN	$(0,8).(0,2)^2$
DND	$(0,8).(0,2)^2$
NDD	$(0,8).(0,2)^2$
NND	$(0,8)^2.(0,2)$
NDN	$(0,8)^2.(0,2)$
DNN	$(0,8)^2.(0,2)$
NNN	0.8^{3}

Desejamos conhecer quantas peças defeituosas seriam encontradas. Isto é, desejamos estudar a v. a. X: Número de peças defeituosas. Conseqüentemente, o conjunto dos valores possíveis de X é {0, 1, 2, 3}. Poderemos obter a distribuição de probabilidade de X da seguinte maneira:

X = 0, se, e somente se, ocorrer NNN;

X = 1, se, e somente se, ocorrer DNN, NDN ou NND;

X = 2, se, e somente se, ocorrer DDN, DND ou NDD;

X = 3, se, e somente se, ocorrer DDD.

Então,

$$P(X = 0) = 0.8^3$$

 $P(X = 1) = 3.[(0.8)^2.(0.2)]$

 $P(X = 2) = 3.[(0.8).(0.2)^{2}]$

 $P(X = 3) = 0.2^3$

Definição: Consideremos um experimento e seja A algum evento associado. Admita-se P(A) = p e, conseqüentemente, $P(A^C) = 1 - p$. Considerem-se n repetições do experimento. Suponha-se que P(A) = p permaneça a mesma para todas as repetições.

A variável aleatória X será assim definida: X = Número de vezes que o evento A tenha ocorrido. Denominaremos X de variável aleatória binomial, com parâmetros $n \in p$. Seus valores possíveis são: 0, 1, 2, ..., n.

Teorema: Seja X uma variável binomial baseada em *n* repetições. Então, a função de probabilidade de X é dada por:

$$P(X = k) = {n \choose k} p^{k} (1-p)^{n-k}, \quad k = 0, 1, 2, ..., n.$$
 1.1

Onde $\binom{n}{k}$ representa o coeficiente binomial calculado por:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Usaremos a notação: $X \sim b$ (n, p), para indicar que a variável aleatória X segue a distribuição binomial com parâmetros $n \in p$.

A média e a variância de uma variável aleatória binomial, com parâmetros n e p são dadas, respectivamente, por:

$$E(X) = n.p$$

 $Var(X) = n.p.(1 - p)$

Exemplo: Suponha que 5% de todas as peças que saiam de uma linha de produção sejam defeituosas. Se 10 dessas peças forem escolhidas e inspecionadas, pede-se:

- a) Identifique a variável aleatória estudada. Quais valores ela pode assumir?
- b) Calcule o número médio de peças defeituosas e, também, o desvio padrão.
- c) Qual será a probabilidade de que:
 - i. No máximo 2 sejam defeituosas.
 - ii. Exatamente 7 sejam defeituosas.
 - iii. No máximo 8 sejam defeituosas.
 - iv. Mais de 7 sejam perfeitas.

Exercício: Cada amostra de ar tem 10% de chance de conter uma certa molécula rara. Considere que as amostras sejam independentes com relação à presença da molécula rara. Encontre a probabilidade de que nas próximas 18 amostras:

- a) Exatamente 2 contenham a molécula rara. 0,2835
- b) No mínimo 4 amostras contenham a molécula rara. 0,0982
- c) De 3 a 7 amostras contenham a molécula rara. 0,2660
- d) O número médio e a variância de moléculas raras. 1,8 e 1,62

4. Distribuição Poisson

Consideremos as seguintes variáveis aleatórias:

- √ X₁ = Número de chamadas recebidas por uma central telefônica durante um período de 30 minutos;
- ✓ X_2 = Número de bactérias em um litro de água não-purificada;
- ✓ X₃ = Número de partículas radiativas que, em um experimento de laboratório, entram em um contador durante um milissegundo;
- √ X₄ = Número de acidentes com automóveis particulares em determinado trecho de estrada, no período de 12 horas.

Note-se que em todos esses exemplos a variável aleatória consiste na contagem de eventos discretos que ocorrem em um meio contínuo (tempo, volume). Essas variáveis tomam os valores 0, 1, 2, ..., e seu comportamento pode ser descrito pela chamada distribuição de Poisson cuja função de probabilidade é:

$$P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$
, $X = 0, 1, 2, ...$ 5.1

Onde $\lambda > 0$ é o parâmetro da distribuição, sendo referido como a *taxa de ocorrência*, ou seja, o número médio de eventos ocorrendo no intervalo considerado. Utiliza-se a notação: $X \sim Po(\lambda)$.

Teorema: Se X tiver distribuição de Poisson com parâmetro λ , então o valor esperado e a variância são:

$$E(X) = \lambda$$

$$Var(X) = \lambda$$
5.2

Teorema: Seja X uma variável aleatória distribuída binomialmente com parâmetro *p* (baseado em *n* repetições de um experimento). Isto é

$$P(X = k) = {n \choose k} p^{k} (1-p)^{n-k}$$

Admita-se que quando $n \to \infty$, $p \to 0$, de modo que $n.p \to \lambda$. Nessas condições teremos:

$$\lim_{n\to\infty} P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

que é a distribuição de Poisson com parâmetro λ .

O Teorema acima diz, essencialmente, que poderemos obter uma aproximação das probabilidades binomiais com as probabilidades da distribuição Poisson, toda vez que *n* seja grande e *p* seja pequeno. Por esse motivo a distribuição Poisson também é chamada "distribuição dos eventos raros".

Exemplo: Um PABX recebe, em média, cinco chamadas por minuto.

- a) Defina a variável aleatória.
- b) Calcule a probabilidade de que:

- i.) Durante um intervalo de um minuto:
 - 1. O PABX não receba chamadas.
 - 2. Receba, no máximo, 2 chamadas.
 - 3. Receba mais de duas chamadas.
- ii.) Durante um intervalo de quatro minutos, qual a probabilidade de que haja 5 chamadas?

Exercício: Falhas ocorrem, ao acaso, ao longo do comprimento de um fio delgado de cobre. Suponha que o número de falhas siga a distribuição de Poisson, com uma média de 2,3 falhas por milímetro.

- a) Determine a probabilidade de existir exatamente 2 falhas em 1 milímetro de fio. 0,2652
- b) Determine a probabilidade de existir entre 2 e 4 falhas em 1 milímetro de fio. 0,2033
- c) Determine a probabilidade de 10 falhas em 5 milímetros de fio. 0,1129
- d) Determine a probabilidade de existir, no mínimo, uma falha em 2 milímetros de fio. 0,99

Variáveis Aleatórias Contínuas

Definição: Uma variável aleatória X, definida sobre o espaço amostral Ω e assumindo valores num intervalo de número reais, é dita uma *variável aleatória contínua*.

Exemplos: Salário de indivíduos, tempo de espera em uma fila, precipitação pluviométrica, altura, temperatura, etc.

Definição: Diz-se que X é uma variável aleatória contínua, se existir uma função f(x), denominada *função densidade de probabilidade* (fdp) de X que satisfaça às seguintes condições: a) $f(x) \ge 0$, para todo x;

- b) A área definida por f(x) é igual a 1, ou seja, $\int_{-\infty}^{+\infty} f(x)dx = 1$;
- c) Para quaisquer $a \in b$, com $-\infty < a < b < +\infty$, teremos $P(a \le X \le b) = \int_a^b f(x) dx$.

Uma consequência de c) é que, para qualquer valor especificado de X, digamos x_0 , teremos $P(X = x_0) = 0$, porque $P(X = x_0) = \int_0^{x_0} f(x) dx = 0$.

Na prática, isso poderia parecer contraditório. Então a probabilidade de um indivíduo ter exatamente 1,75m de altura é zero? É impossível existir um indivíduo com essa estatura? Para resolver isso, devemos admitir que a precisão dos instrumentos de medida é limitada. Na prática, 1,75 não se distingue de qualquer outro valor no intervalo, digamos, [1,745; 1,755], ou [1,7495; 1,7505]. O que nos interessa é, na realidade, a probabilidade de a variável aleatória estar em um intervalo, por pequeno que seja, e a probabilidade correspondente então já não é zero.

Em consequência disso – e ao contrário do que ocorre com as v. a. discretas – é indiferente considerarmos, ou não, os extremos quando especificamos um intervalo de uma v. a. contínua:

$$P(a < x < b) = P(a \le X < b) = P(a < x \le b) = P(a \le X \le b)$$

Comentário: f(x) não representa probabilidade alguma! Anteriormente já salientamos que, por exemplo, P(X = 2) = 0 e, conseqüentemente, f(2) certamente não representa essa probabilidade. Somente quando a função for integrada entre dois limites, ela produzirá uma probabilidade.

Exemplo: Considere a função descrita a seguir:

$$f(x) = \begin{cases} \frac{x-3}{2} & , \text{se } 3 \le x \le 5\\ 0 & , \text{caso contrário} \end{cases}$$

- a) Verifique se a função acima é uma função densidade de probabilidade (fpd).
- b) Se a função for uma fdp, calcule P(3,3<X<4).

Exercício 1: Arqueólogos estudaram uma certa região e estabeleceram um modelo teórico para a variável C, *comprimento de fósseis da região* (em cm). Suponha que C é uma variável aleatória contínua com a seguinte função densidade de probabilidade:

$$f(c) = \begin{cases} \frac{1}{40} \left(\frac{c}{10} + 1 \right) &, \text{ se } 0 \le c \le 20\\ 0 &, \text{ caso contrário} \end{cases}$$

Qual a probabilidade de um fóssil, escolhido ao acaso nessa região, apresente comprimento:

- a) Inferior a 8 centímetros.
- b) Superior a 15 centímetros.
- c) Entre 5 e 17 centímetros.

Média e Variância para Variáveis Aleatórias Contínuas

O valor esperado ou média da variável aleatória contínua X, com função densidade dada por f(x), é dada pela expressão:

$$E(X) = \mu = \int_{-\infty}^{+\infty} xf(x)dx$$

Para uma variável aleatória X com densidade f(x), a variância é dada por:

$$Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

Como no caso discreto, a variância é a medida de dispersão mais utilizada na prática. Aqui podemos, também, utilizar a expressão alternativa:

$$Var(x) = E(X^2) - \mu^2$$

com E(X2) sendo calculado como:

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx$$

O desvio padrão é a raiz quadrada da variância e, como já sabemos, tem a mesma unidade de medida da variável original, o que facilita sua interpretação.

Exercício 2: Num teste educacional com crianças, o tempo para a realização de uma bateria de questões de raciocínio verbal e lógico é medido e anotado para ser comparado com um modelo teórico. Este teste é utilizado para identificar o desenvolvimento da crianças e auxiliar a aplicação de medidas corretivas. O modelo teórico considera *T*, tempo de teste em minutos, como uma variável aleatória contínua com função densidade de probabilidade dada por:

$$f(t) = \begin{cases} \frac{1}{40}(t-4), se \ 8 \le t < 10\\ \frac{3}{20}, se \ 10 \le t \le 15\\ 0, caso \ contrário \end{cases}$$

- a) Calcule o tempo médio de teste em minutos.
- b) Calcule o desvio padrão do tempo de teste em minutos.
- c) Calcule a probabilidade de uma criança gastar entre 9 e 12 minutos na realização do teste.
- d) Sabendo-se que a criança demorou mais de 8 minutos na realização do teste, qual a probabilidade de que tenha gastado menos de 14 minutos.

Modelos Probabilísticos para Variáveis Aleatórias Contínuas

5. Distribuição Uniforme

A distribuição de probabilidade de uma variável aleatória X contínua mais simples é a distribuição uniforme.

Uma v. a. X tem distribuição uniforme se sua função densidade de probabilidade é da forma:

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{, se } \alpha \le x \le \beta \\ 0 & \text{, caso contrário} \end{cases}$$

A Figura 1 ilustra a função de densidade uniforme:

Figura 1 – Função de densidade uniforme.

O valor esperado e a variância para uma v. a. X contínua com distribuição Uniforme podem ser obtidos como a seguir:

$$E(X) = \frac{\alpha + \beta}{2}$$

$$Var(X) = \frac{(\beta - \alpha)^2}{12}$$

Usaremos a notação X ~ U (α , β) para indicar que a variável aleatória X tem distribuição Uniforme no intervalo de α a β .

Para uma variável aleatória uniformemente distribuída, para qualquer intervalo de c a d, onde $\alpha \le c < d \le \beta$, a probabilidade $P(c \le X \le d)$ é calculada por:

$$P(c \le X \le d) = \int_{c}^{d} \frac{1}{\beta - \alpha} dx = \frac{d - c}{\beta - \alpha}$$

Exemplo 1: A dureza H de uma peça de aço pode-se supor ser uma variável aleatória contínua uniformemente distribuída sobre o intervalo de 50 a 70.

- ✓ Escreva a função de densidade da dureza do aço.
- ✓ Encontre a dureza média do aço e o desvio padrão.
- ✓ Calcule a probabilidade de uma peça de aço apresentar dureza:
 - i. Entre 55 e 65.
 - ii. Inferior a 60.
 - iii. Superior a 66.

Exercício 1: Devido à presença de quantidades variáveis de impurezas, o ponto de fusão de certa substância pode ser considerado uma v. a. contínua distribuída uniformemente no intervalo de 100°C a 125°C.

- a) Calcule o ponto médio de fusão da substância.
- b) Calcule a probabilidade da substância fundir-se:
 - i. Antes de 105°C.
 - ii. Depois de 115°C.
 - iii. Entre 110°C e 120°C.

6. Distribuição Exponencial

Definição: Uma v. a. X tem distribuição exponencial se sua função de densidade de probabilidade é da forma:

$$f(x) = \begin{cases} \alpha e^{-\alpha x} &, x > 0 \ e \ \alpha > 0 \\ 0 &, para \ quaisquer \ outros \ valores \end{cases}$$

A notação que utilizaremos para representar que uma v. a. contínua X tem distribuição exponencial é: $X \sim \text{Exp}(\alpha)$.

Apresentamos na Figura 2 o gráfico da distribuição exponencial para três valores diferentes para o parâmetro (α).

Figura 2 – Distribuição exponencial para α = 2, α = 1 e α = 0,5.

A distribuição exponencial é o modelo probabilístico usual para situações tais como tempo de espera em uma fila, tempo de sobrevivência de um paciente após o início de um tratamento, tempo de vida de material eletrônico.

A média e a variância da distribuição exponencial são:

$$E(X) = \frac{1}{\alpha}$$
$$Var(X) = \frac{1}{\alpha^2}$$

Para uma variável aleatória contínua X distribuída exponencialmente, para qualquer intervalo de a até b, a probabilidade $P(a \le X \le b)$ é calculada por:

$$P(a \le X \le b) = \int_a^b \alpha e^{-\alpha x} dx = -e^{-\alpha x} \Big|_a^b = e^{-\alpha a} - e^{-\alpha b}$$

Lembre-se de que a inclusão ou não dos extremos a e b não altera o cálculo efetuado acima.

Propriedade de falta de memória: Considere uma variável aleatória contínua X com distribuição exponencial e parâmetro α . Considere também s e t > 0, então temos que:

$$P(X \ge t + s / X \ge s) = \frac{P(X \ge t + s \cap X \ge s)}{P(X \ge s)} = \frac{P(X \ge t + s)}{P(X \ge t + s)}$$

Supondo que X representa o tempo de vida de um equipamento, podemos fazer a seguinte interpretação para a propriedade da falta de memória: a probabilidade do equipamento durar pelo menos *t+s* anos, sabendo-se que já está funcionando a pelo menos *s*, é igual a probabilidade de um equipamento novo durar pelo menos *t* anos. Em outras palavras, a informação da "idade" do equipamento pode ser esquecida e o que importa, para o cálculo da probabilidade, é quantos anos a mais queremos que dure.

Exemplo 2: A vida útil de uma lâmpada é modelada através da distribuição exponencial com parâmetro 1/8000.

- a) Calcule o tempo médio de duração dessas lâmpadas.
- b) Calcule a probabilidade de que uma lâmpada dure pelo menos 4000 horas.
- c) Sabe-se que o fabricante garante a reposição de uma lâmpada caso ela dure menos de 50 horas. Determine a probabilidade de haver troca por defeito na fabricação.
- d) Uma lâmpada é colocada em teste. Calcule a probabilidade de que ela dure pelo menos 10000 horas, sabendo-se que ela já está em funcionamento a pelo menos 6000 horas.

Exercício 2: A vida de certa marca de lâmpada tem uma distribuição aproximadamente exponencial com média de 1000 horas.

- a) Determinar a porcentagem das lâmpadas que queimarão antes de 1000 horas.
- b) Após quantas horas terão queimado 50% das lâmpadas?

7. Distribuição Normal

O modelo fundamental em probabilidades e inferência estatística é o modelo normal.

Definição: A variável aleatória X, que tome todos os valores reais $-\infty < x < +\infty$, tem uma distribuição normal (ou gaussiana) se sua função densidade de probabilidade for da forma:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$$

Os parâmetros da distribuição normal são a média e a variância, onde $-\infty < \mu < +\infty$ e $\sigma > 0$. Utilizaremos a notação X ~ N (μ , σ^2) para representar que a v. a. X tem distribuição Normal com parâmetros μ e σ^2 .

A Figura 3 mostra a função densidade de probabilidade de uma v. a. com distribuição normal:

Figura 3 – Função densidade de probabilidade da distribuição normal.

Propriedades:

- ✓ A curva que representa a distribuição de probabilidade é freqüentemente descrita como curva em forma de sino ou curva de Gauss;
- ✓ A distribuição é simétrica em torno da média; assim, as medidas de tendência central (média, mediana e moda) apresentam o mesmo valor.
- ✓ A distribuição normal fica delimitada pelo seu desvio padrão e sua média. Para cada combinação de valores de média e desvio padrão gera uma distribuição Normal diferente;
- ✓ A área sob a curva corresponde à 1.
- ✓ O ponto de máximo da curva da distribuição normal ocorre guando $x = \mu$.

✓ Se X tiver a distribuição normal com média = 0 e variância = 1, ou seja, X ~ N (0, 1), diremos que X possui a distribuição normal reduzida ou distribuição normal padrão. Isto é, sua função densidade de probabilidade pode ser escrita como

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-(x)^2}{2}}$$

A importância da distribuição normal reduzida está no fato de que ela está tabelada. Sempre que X tiver a distribuição N (μ , σ^2), poderemos sempre obter a forma reduzida, pela adoção de uma função linear se X, como indica o seguinte teorema:

Teorema: Se X tiver a distribuição N (μ , σ^2), e se Y = aX + b, então Y terá a distribuição N ($a\mu$ +b, $a^2\sigma^2$). O fato de que E(Y) = $a\mu$ +b e Var(Y) = $a^2\sigma^2$ decorre imediatamente das propriedades do valor esperado e da variância vistos anteriormente.

Corolário: Se X tiver distribuição N (μ , σ^2) e se $Z = \frac{x - \mu}{\sigma}$, então Z terá distribuição N (0, 1). Como Z é uma função linear de X, então o teorema acima se aplica.

Em torno da média registra-se uma probabilidade maior de ocorrência. À medida que nos afastamos da média, as probabilidades de ocorrência vão diminuindo.

A distribuição Normal depende dos parâmetros: média (μ) e desvio padrão (σ). A depender dos valores da média e do desvio, diferentes serão os formatos das curvas.

A Figura 4 apresenta três curvas distintas, com mesmo desvio padrão, porém com médias diferentes:

Figura 4 – Distribuições com mesmo desvio padrão e médias diferentes.

A Figura 5 apresenta três curvas distintas, com a mesma média, porém com desvios diferentes.

Figura 5 – Distribuições com mesma média e desvios diferentes.

3.1 Tabulação da distribuição normal:

Suponha-se que X ~ N (0, 1). Nesse caso,

$$P(a \le X \le b) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{\frac{-(x)^2}{2}} dx$$

Esta integral não pode ser calculada pelos caminhos comuns. A dificuldade reside no fato de que não podemos aplicar o teorema fundamental do cálculo, porque não podemos achar uma

função cuja derivada seja igual a $e^{\frac{-x^2}{2}}$. Contudo métodos de integração numérica podem ser empregados para calcular integrais da forma acima, e de fato tais probabilidades têm sido tabeladas (Veja o Anexo 1).

A utilização notável da tabulação da distribuição normal reduzida é devida ao fato de que se X tiver qualquer distribuição N (μ , σ^2), a função tabelada pode ser empregada para calcularmos probabilidades associadas a X. Simplesmente empregamos o teorema para salientar que se X tiver distribuição N (μ , σ^2), então $Z = \frac{x - \mu}{\sigma}$ terá distribuição N (0, 1).

Exemplo: Suponha-se que a carga de ruptura de um tecido de algodão (em libras) seja normalmente distribuída com média igual a 165 libras de variância igual a 9 libras². Além disso, admita-se que uma amostra desse tecido seja considerada defeituosa se não suporta pelo menos 162 libras. Qual é a probabilidade de que um tecido escolhido ao acaso seja defeituoso?

Exemplo: Considere que a pontuação obtida por diferentes candidatos em um concurso público seguem uma distribuição aproximadamente normal, com média igual a 140 e desvio padrão igual a 20 pontos. Suponha que um candidato é escolhido ao acaso. Calcule as probabilidades à seguir:

- a) Apresentar uma pontuação entre 140 e 165,6. 0,3997
- b) Apresentar uma pontuação entre 127,4 e 140. 0,2357
- c) Apresentar uma pontuação entre 117,2 e 157. 0,6752
- d) Apresentar uma pontuação inferior a 127. 0,2578
- e) Apresentar uma pontuação superior a 174,2. 0,0436
- f) Apresentar uma pontuação inferior a 167,4. 0,9147
- g) Apresentar uma pontuação entre 155,4 e 168,4. 0,1428
- h) Qual é a nota x, de tal forma que entre a média e o valor de x estivessem 27,04% dos candidatos? 154,8
- i) Qual é a nota superada por apenas 1% dos candidatos? 186,6
- j) Qual é a nota superada por 97% dos candidatos? 102,4
- k) Qual é o intervalo de notas, simétrico em relação à média, onde se encontram 90% dos candidatos? 107,20 a 172,80

Exercício: Suponha que as medidas da corrente em um pedaço de fio sigam a distribuição normal, com um média de 10 miliamperes e uma variância de 5 miliamperes. Qual a probabilidade da medida da corrente:

- a) De no máximo 12 miliamperes.
- b) De pelo menos 13 miliamperes.
- c) Um valor entre 9 e 11 miliamperes.
- d) Maior do que 8 miliamperes.
- e) Determine os limites simétricos, em torno da média, que incluam 90% de todas as medidas da corrente.
- f) Determine o valor para o qual a probabilidade de uma medida da corrente estar abaixo desse valor seja 0,80.

Exercício teórico:

- 1. Dado que Z é uma variável aleatória normal padrão, calcule as probabilidades à seguir:
 - a. P(-1,5<Z<0) **0,4332**
 - b. P(0<Z<0,83) **0,29673**
 - c. P(Z>-0,23) **0,59095**
 - d. P(Z<1,20) 0,88493
 - e. P(-1,98<Z<0,49) **0,66408**
 - f. P(0,52<Z<1,22) **0,1903**
 - g. P(-1,75<Z<-1,04) **0,10912**
- Dado que Z é uma variável aleatória normal padrão, encontre z para cada uma das situações:
 - a. A área entre 0 e z é 0,4750. 1,96
 - b. A área entre 0 e z é 0,2291. **0,61**
 - c. A área à direita de z é 0,1314. 1,12
 - d. A área à esquerda de z é 0,6700. 0,44
 - e. A área à esquerda de z é 0,2119. -0,8
 - f. A área à direita de z é 0,6915. -0,5
 - g. A área entre –z e z é 0,9030. –1,66 e +1,66
- 3. Seja X uma variável aleatória contínua com distribuição normal e média igual a 5 e variância igual a 4. Determine:
 - a. P(X<6) **0,69146**
 - b. P(X<3) **0,15865**
 - c. P(X>5,6) **0,38208**
 - d. P(X>4,3) 0,63683
 - e. P(7<X<8) **0,09185**
 - f. P(2<X<4) **0,24173**
 - g. P(3,8<X<6,1) **0,43459**
 - h. P(X<a)=0,3085 a = 4
 - i. P(X < b) = 0.8728 b = 7.28
 - j. P(X>c)=0.0222 c = 9.02
 - k. P(X>d)=0.9750 d = 1.08

3.2 Aproximação normal à binomial:

Quando n é grande e p não está muito próximo de 0 nem de 1, a distribuição normal constitui boa aproximação da normal, o que permite tratar uma v. a. binomial b (n; p) como uma v. a. normal. E como na binomial a média é np e a variância é np(1-p), n sendo o número de provas e p a probabilidade de sucesso, padronizamos a variável aleatória da mesma forma já vista considerando a média = np e o desvio padrão igual a $\sqrt{np(1-p)}$.

Ao realizarmos cálculos de probabilidade de uma v. a. binomial pela aproximação da normal utiliza-se uma correção chamada de *correção de continuidade* pelo fato de que pretendemos aproximar uma distribuição discreta por uma distribuição contínua. Tal correção consiste em subtrair 0,5 do valor inferior e somar 0,5 ao valor superior.

Exemplo: Consideremos uma v. a. X ~ b (15; 0,4). Calcule as probabilidades abaixo utilizando a aproximação pela distribuição normal:

- a) $P(7 \le X \le 10)$
- b)P($X \leq 3$)
- c) $P(X \ge 12)$
- d) P(X = 9)

3.2 Aproximação normal à Poisson:

A distribuição Poisson, quando o parâmetro λ cresce, aproxima-se da distribuição normal com média e variância iguais a λ . Em geral, fazemos a aproximação quando $\lambda \geq 25$.

Exemplo: Se a ocorrência de falhas é uma v. a. com distribuição Poisson com média 0,2 por m², qual a probabilidade de o número de falhas em 5000 m² de tecido estar:

- a) Entre 975 e 1025?
- b) Inferior a 1000?
- c) Superior a 950?
- d) igual a 1010?

ANEXO 1 – Tabela da Distribuição Normal Padrão

DISTRIBUIÇÃO NORMAL PADRÃO

Z	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998

ANEXO 2 – Tabela da Distribuição Binomial

)									
n	х	0,01	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95
2	0	0,9801	0,9025	0,8100	0,7225	0,6400	0,5625	0,4900	0,4225	0,3600	0,3025	0,2500	0,2025	0,1600	0,1225	0,0900	0,0625	0,0400	0,0225	0,0100	0,0025
	1	0,0198	0,0950	0,1800	0,2550	0,3200	0,3750	0,4200	0,4550	0,4800	0,4950	0,5000	0,4950	0,4800	0,4550	0,4200	0,3750	0,3200	0,2550	0,1800	0,0950
	2	0,0001	0,0025	0,0100	0,0225	0,0400	0,0625	0,0900	0,1225	0,1600	0,2025	0,2500	0,3025	0,3600	0,4225	0,4900	0,5625	0,6400	0,7225	0,8100	0,9025
3	0	0,9703	0,8574	0,7290	0,6141	0,5120	0,4219	0,3430	0,2746	0,2160	0,1664	0,1250	0,0911	0,0640	0,0429	0,0270	0,0156	0,0080	0,0034	0,0010	0,0001
	1	0,0294	0,1354	0,2430	0,3251	0,3840	0,4219	0,4410	0,4436	0,4320	0,4084	0,3750	0,3341	0,2880	0,2389	0,1890	0,1406	0,0960	0,0574	0,0270	0,0071
	2	0,0003	0,0071	0,0270	0,0574	0,0960	0,1406	0,1890	0,2389	0,2880	0,3341	0,3750	0,4084	0,4320	0,4436	0,4410	0,4219	0,3840	0,3251	0,2430	0,1354
	3	0,0000	0,0001	0,0010	0,0034	0,0080	0,0156	0,0270	0,0429	0,0640	0,0911	0,1250	0,1664	0,2160	0,2746	0,3430	0,4219	0,5120	0,6141	0,7290	0,8574
4	0	*	,	,	•	,	,	,	•	,	,	•	,	0,0256	,	•	,	•	,	•	,
	1		•		•	-	•	•		•		•		0,1536		-			•	-	
	2	*	,	,	,	,	,	,	,	,	,	,	,	0,3456	,	,	,	,	•	,	•
	3													0,3456							
	4	0,0000	0,0000	0,0001	0,0005	0,0016	0,0039	0,0081	0,0150	0,0256	0,0410	0,0625	0,0915	0,1296	0,1785	0,2401	0,3164	0,4096	0,5220	0,6561	0,8145
_	_																				
5		,	•	•	•	,	,	,	,	,	,	•	,	0,0102	,	•	,	,	,	•	,
	1	*	,	•	,	•	,	,	•	,	•	,	•	0,0768	•	,	•	•	,	,	,
	2			•	-	•		•		•		-		0,2304			•				
	3	-,	0,0011	- ,	,	,	,	,	,	,	,	,	,	0,3456	,	,	,	,	•	,	•
	4													0,2592							
	5	0,0000	0,0000	0,0000	0,0001	0,0003	0,0010	0,0024	0,0053	0,0102	0,0185	0,0313	0,0503	0,0778	0,1160	0,1681	0,2373	0,3277	0,4437	0,5905	0,7738
6	0	0.0415	0.7251	0.5214	0 2771	0.2621	0.1700	0 1176	0.0754	0.0467	0.0277	0.0156	0 0002	0,0041	0.0010	0.0007	0.0002	0.0001	0.0000	0.0000	0.0000
O	1	*	,	•	,	•	,	,	•	,	•	,	•	0,0041	•	,	•	•	,	,	,
	2	*	,	•	,	•	,	,	•	,	•	,	•	0,0309	•	,	•	•	,	,	,
	3	*	,	,	,	,	,	,	,	,	,	,	,	0,1362	,	,	,	,	•	,	•
	4													0,3110							
	5	,	0.0000	•	•	,	,	,	,	,	,	•	,	0,1866	,	•	,	,	,	•	,
	6	-,	-,	-,	-	•		•		•		-		0,0467			•				•
	Ü	0,000	0,000	0,000	0,000	0,000.	0,0002	0,000.	0,00.0	0,00	0,0000	0,0.00	0,02	0,0 .0.	0,0.0.	0,0	0,00	0,202	0,0111	0,001.	0,. 00 .
7	0	0.9321	0.6983	0.4783	0.3206	0.2097	0.1335	0.0824	0.0490	0.0280	0.0152	0.0078	0.0037	0,0016	0.0006	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000
	1			•	-	•		•		•		-		0,0172			•				
	2	0,0020	0,0406	0,1240	0,2097	0,2753	0,3115	0,3177	0,2985	0,2613	0,2140	0,1641	0,1172	0,0774	0,0466	0,0250	0,0115	0,0043	0,0012	0,0002	0,0000
	3													0,1935							
	4	*	,	•	,	•	,	,	•	,	•	,	•	0,2903	•	,	•	•	,	,	,
	5	0,0000	0,0000	0,0002	0,0012	0,0043	0,0115	0,0250	0,0466	0,0774	0,1172	0,1641	0,2140	0,2613	0,2985	0,3177	0,3115	0,2753	0,2097	0,1240	0,0406
	6	0,0000	0,0000	0,0000	0,0001	0,0004	0,0013	0,0036	0,0084	0,0172	0,0320	0,0547	0,0872	0,1306	0,1848	0,2471	0,3115	0,3670	0,3960	0,3720	0,2573
	7	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0006	0,0016	0,0037	0,0078	0,0152	0,0280	0,0490	0,0824	0,1335	0,2097	0,3206	0,4783	0,6983

											ŗ)									
n	Χ	0,01	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95
8	0	0,9227	0,6634	0,4305	0,2725	0,1678	0,1001	0,0576	0,0319	0,0168	0,0084	0,0039	0,0017	0,0007	0,0002	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000
	1	0,0746	0,2793	0,3826	0,3847	0,3355	0,2670	0,1977	0,1373	0,0896	0,0548	0,0313	0,0164	0,0079	0,0033	0,0012	0,0004	0,0001	0,0000	0,0000	0,0000
	2	0,0026	0,0515	0,1488	0,2376	0,2936	0,3115	0,2965	0,2587	0,2090	0,1569	0,1094	0,0703	0,0413	0,0217	0,0100	0,0038	0,0011	0,0002	0,0000	0,0000
	3	0,0001	0,0054	0,0331	-,	•	0,2076	,	,	•	0,2568	,	•	0,1239	-,	0,0467	0,0231	0,0092	0,0026	0,0004	0,0000
	4	0,0000	0,0004	0,0046	0,0185	-,	0,0865	-,	-,	0,2322	•	,	•	•	•	0,1361	,	0,0459	0,0185	0,0046	0,0004
	5	0,0000	0,0000	0,0004	-,	-,	0,0231	0,0467	,	0,1239	•	,	•	0,2787	-,	0,2541	-,	0,1468	0,0839	0,0331	0,0054
	6	0,0000	0,0000	0,0000	- ,	-,	-,	-,	0,0217	-,-	-,	-,	-,	•	,	,	0,3115	•	0,2376	0,1488	0,0515
	7	.,	0,0000	-,	0,0000	•	-,	•	,	•	•	•	•	0,0896	-,	-, -	-,	-,	•	0,3826	,
	8	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0007	0,0017	0,0039	0,0084	0,0168	0,0319	0,0576	0,1001	0,1678	0,2725	0,4305	0,6634
•	•	0.0405	0.0000	0.0074	0.0040	0.4040	0.0754	0.0404	0.0007	0.0404	0.0040		0 0000	0.0000	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
9	0	l '	•	•	,	•	•	,	•	,	,	,	,	•	,	,	•	0,0000	•	,	,
	1	.,	-,	0,3874	-,	-,	0,2253	-,	-,	-,	-,	0,0176	-,	-,	-,	0,0004	-,	0,0000	0,0000	0,0000	-,
	2	-,	•	0,1722	,	•	0,3003	•	,	•	•	•	•	0,0212	•	,	,	0,0003	0,0000	0,0000	-,
	3 4	· ·	0,0077 0.0006	•	,	•	0,2336 0,1168	•	,	0,2508	•	•	•	0,0743 0,1672	•	,	,	0,0028 0.0165	0,0006 0.0050	0,0001	0,0000
	5	0.0000	-,	- ,	-,	•	0.0389	•	,	•	•	•	•	0.2508	•	,	,	0.0661	0.0283	0.0074	-,
	6	0.0000	0.0000	0.0001	-,	-,	0,0389	-,	-, -	-, -	-, -	-, -	-,	0,2508	-, -	-, -	-,	0.1762	0,0263	0.0446	-,
	7	-,	0.0000	0.0000	-,	•	0,0007	,	,	•	•	,	•	0,2300	,	,	•	0.3020	-,	0,0440	- ,
	8	.,	0.0000	0.0000	-,	•	0.0001	•	,	0,0212	•	•	•	0,0605	•	,	,	0.3020	-,	0.3874	- ,
	9	-,	0,0000	-,	-,	-,	0.0000	-,	-,	•	•	•	•	0,0101	•	,	,	-,	- ,	- ,	-,
	Ü	0,000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0000	0,0020	0,0010	0,0101	0,0207	0,0101	0,0101	0,1012	0,2010	0,007	0,0002
10	0	0,9044	0,5987	0,3487	0,1969	0,1074	0.0563	0,0282	0,0135	0.0060	0.0025	0,0010	0,0003	0,0001	0,0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000
	1	0,0914	0,3151	0,3874	0,3474	0,2684	0,1877	0,1211	0,0725	0,0403	0,0207	0,0098	0,0042	0,0016	0,0005	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000
	2	0,0042	0,0746	0,1937	0,2759	0,3020	0,2816	0,2335	0,1757	0,1209	0,0763	0,0439	0,0229	0,0106	0,0043	0,0014	0,0004	0,0001	0,0000	0,0000	0,0000
	3	0,0001	0,0105	0,0574	0,1298	0,2013	0,2503	0,2668	0,2522	0,2150	0,1665	0,1172	0,0746	0,0425	0,0212	0,0090	0,0031	0,0008	0,0001	0,0000	0,0000
	4	0,0000	0,0010	0,0112	0,0401	0,0881	0,1460	0,2001	0,2377	0,2508	0,2384	0,2051	0,1596	0,1115	0,0689	0,0368	0,0162	0,0055	0,0012	0,0001	0,0000
	5	0,0000	0,0001	0,0015	0,0085	0,0264	0,0584	0,1029	0,1536	0,2007	0,2340	0,2461	0,2340	0,2007	0,1536	0,1029	0,0584	0,0264	0,0085	0,0015	0,0001
	6	0,0000	0,0000	0,0001	0,0012	0,0055	0,0162	0,0368	0,0689	0,1115	0,1596	0,2051	0,2384	0,2508	0,2377	0,2001	0,1460	0,0881	0,0401	0,0112	0,0010
	7	0,0000	0,0000	0,0000	0,0001	0,0008	0,0031	0,0090	0,0212	0,0425	0,0746	0,1172	0,1665	0,2150	0,2522	0,2668	0,2503	0,2013	0,1298	0,0574	0,0105
	8	0,0000	0,0000	0,0000	0,0000	0,0001	0,0004	0,0014	0,0043	0,0106	0,0229	0,0439	0,0763	0,1209	0,1757	0,2335	0,2816	0,3020	0,2759	0,1937	0,0746
	9	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0005	0,0016	0,0042	0,0098	0,0207	0,0403	0,0725	0,1211	0,1877	0,2684	0,3474	0,3874	0,3151
	10	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0003	0,0010	0,0025	0,0060	0,0135	0,0282	0,0563	0,1074	0,1969	0,3487	0,5987

											F)									
n	Х	0,01	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95
11	0	0,8953	0,5688	0,3138	0,1673	0,0859	0,0422	0,0198	0,0088	0,0036	0,0014	0,0005	0,0002	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	1	0,0995	0,3293	0,3835	0,3248	0,2362	0,1549	0,0932	0,0518	0,0266	0,0125	0,0054	0,0021	0,0007	0,0002	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	2	0,0050	0,0867	0,2131	0,2866	0,2953	0,2581	0,1998	0,1395	0,0887	0,0513	0,0269	0,0126	0,0052	0,0018	0,0005	0,0001	0,0000	0,0000	0,0000	0,0000
	3	0,0002	0,0137	0,0710	0,1517	0,2215	0,2581	0,2568	0,2254	0,1774	0,1259	0,0806	0,0462	0,0234	0,0102	0,0037	0,0011	0,0002	0,0000	0,0000	0,0000
	4	0,0000	0,0014	0,0158	0,0536	0,1107	0,1721	0,2201	0,2428	0,2365	0,2060	0,1611	0,1128	0,0701	0,0379	0,0173	0,0064	0,0017	0,0003	0,0000	0,0000
	5	0,0000	0,0001	0,0025	0,0132	0,0388	0,0803	0,1321	0,1830	0,2207	0,2360	0,2256	0,1931	0,1471	0,0985	0,0566	0,0268	0,0097	0,0023	0,0003	0,0000
	6	0,0000	0,0000	0,0003	0,0023	0,0097	0,0268	0,0566	0,0985	0,1471	0,1931	0,2256	0,2360	0,2207	0,1830	0,1321	0,0803	0,0388	0,0132	0,0025	0,0001
	7	0,0000	0,0000	0,0000	0,0003	0,0017	0,0064	0,0173	0,0379	0,0701	0,1128	0,1611	0,2060	0,2365	0,2428	0,2201	0,1721	0,1107	0,0536	0,0158	0,0014
	8	.,	0,0000	-,	-,	-,	0,0011	-,	-,	-,	-,	-,	-,	- ,	-, -	-,	-,	-,	-, -	-,-	-,
	9	-,	0,0000	-,	-,	-,	0,0001	-,	-,	-,	-,-	-,	-,	-,	-,	-,	-,	0,2953	-,	-, -	-,
	10	.,	0,0000	-,	-,	•	0,0000	•	,	•	,	•	•	,	,	,	•	•	,	•	,
	11	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0002	0,0005	0,0014	0,0036	0,0088	0,0198	0,0422	0,0859	0,1673	0,3138	0,5688
	_																				
12	0	l '	•	•	•	,	0,0317	,	•	,	•	•	•	•	,	,	•	*	•	*	*
	1	-, -	-,-	-,	- ,	-,	0,1267	- , -	-,	- , -	- ,	- ,	- ,	-,	,	,	•	0,0000	,	•	,
	2	-,	-,	-,	-, -	-,	0,2323	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,
	3	l '	•	•	•	,	0,2581	,	•	,	•	0,0537	•	-,-	-,	-,	0,0004	-,	0,0000	0,0000	-,
	4	l '	•	•	•	,	0,1936	,	•	,	•	•	•	•	•	,	0,0024	-,	0,0001	0,0000	-,
	5	.,	-,	-,	-,	-,	0,1032	-,	-,	-, -	-, -	-,	-,	-,	-,	- ,	-,-	0,0033	-,	0,0000	-,
	7	-,	0,0000	-,	-,	-,	0,0401 0.0115	-,	-, -	0,1766	•	•	•	0,1766	,	0,0792	-,	-,	0,0040 0.0193	0,0005 0.0038	-,
	8	.,	0.0000	-,	-,	-,	0,0113	-,	-,	,	•	•	•	•	•	,	,	0,0332	-,	-,	-,
	9	.,	0.0000	-,	-,	•	0.0024	•	,	0.0125	,	•	•	0,2120	,	,	•	•	0,0003	0.0852	,
	10	-,	0.0000	-,	-,	-,	0,0004	-,	-,	0,0125	- , -	-,	-,	-, -	-,	-,	-,	0,2302	-,	0,0652	- ,
		-,	-,	-,	-,	•	0.0000	,	,	•	•	•	•	,	,	,	•	0,2062	•	-,	-,
		.,	-,	-,	-,	-,	0,0000	-,	-,	•	,	•	•	,	,	,	•	•	,	•	,
	12	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0000	0,0022	0,0057	0,0136	0,0317	0,0007	0,1422	0,2024	0,5404

											ŗ)									
<u>n</u>	Χ	0,01	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95
13	0	0,8775	0,5133	0,2542	0,1209	0,0550	0,0238	0,0097	0,0037	0,0013	0,0004	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	1	0,1152	0,3512	0,3672	0,2774	0,1787	0,1029	0,0540	0,0259	0,0113	0,0045	0,0016	0,0005	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	2	0,0070	0,1109	0,2448	0,2937	0,2680	0,2059	0,1388	0,0836	0,0453	0,0220	0,0095	0,0036	0,0012	0,0003	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000
	3	-,	0,0214	-,	-,	,	0,2517	•	•	0,1107	•	•	-,	0,0065	-,	-,	0,0001	0,0000	0,0000	0,0000	0,0000
	4	•	0,0028	•	,	,	0,2097	•	•	•	•	•	•	,	•	0,0034	•	0,0001	0,0000	0,0000	-,
	5	-,	-,	0,0055	-,	•	0,1258	,	•	•	•	0,1571	-,	-,	-,	0,0142	-,	0,0011	0,0001	0,0000	-,
	6	-,	0,0000	-,	-,	,	0,0559	•	•	0,1968	•	•	•	,	•	0,0442	•	0,0058	0,0011	-,	-,
	7	-,	-,	-,	-,	,	0,0186	•	•	•	•	•	•	-,	-,	0,1030	-,	-,	-,	0,0008	-,
	8	-,	0,0000	-,	-,	-,	0,0047	- , -	-,	0,0656	-,	-, -	-,	- /	-, -	0,1803	-,	0,0691	-,	0,0055	-,
	9	0,0000	-,	0,0000	-,	-,	•	0,0034	•	0,0243	•	•	•	,	•	0,2337	•	0,1535	0,0838	0,0277	-,
	10	0,0000	-,	0,0000	-,	•	0,0001	,	•	0,0065	,	,	•	•	,	•	•	-, -	-,	0,0997	- / -
	11	-,	0,0000	0,0000	-,	-,	-,	0,0001	-,	0,0012	-,	- ,	- , -	-,	-,	0,1388	-,	-,	-,	0,2448	-,
	12	-,	0,0000	0,0000	-,	-,	0,0000	0,0000	-,	-,	0,0005	-,	-,	-,-	-,	0,0540	-,	0,1787	- /	0,3672	•
	13	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0004	0,0013	0,0037	0,0097	0,0238	0,0550	0,1209	0,2542	0,5133
4.4	0	0.0007	0.4077	0.0000	0.4000	0.0440	0.0470	0.0000	0.0004	0.0000	0.0000	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	0	-,	0,4877 0.3593	-,	,	•	0,0178 0,0832	,	•	0,0008	•	,	•	0,0000	-,	0,0000	-,	0,0000	-,	0.0000	-,
	2	-,	-,	-,	-,	,	0,0832	•	•	•	•	•	•	,	•	0.0000	•	-,	-,	0.0000	-,
	2	•	0.0259	•	,	,	0,1802	•	•	•	•	•	•	-,	-,	-,	-,	-,	-,	-,	-,
	4	-,	0.0037	- ,	-,	-,	0,2402	-,	-,	-,	-,	- , -	-,	-,	-,	-,	-,	0.0000	0.0000	0.0000	-,
	5	-,	-,	-,	-,	-,	0,2202	-,	-, -	-,	-,	- ,	- ,	-,	-,	- ,	-,	-,	-,	0.0000	-,
	6	•	•	•	,	,	0,0734	•	•	•	•	•	•	,	•	•	•	-,	0.0003	0.0000	
	7	0.0000	,	0.0002	•	,	0.0280	•	•	•	•	•	•	,	•	•	•	0.0092	0.0019	0.0002	-,
	8	-,	0.0000	0.0000	-,	-,	0,0082	-,	-,	-, -	-,	-,	-,	-, -	-,	0,1262	-,	0.0322	-,	0.0013	-,
	9	0.0000	-,	0.0000	-,	•	0.0018	,	•	•	•	,	•	•	•	*	•	- ,	-,	0.0078	-,
	10	0.0000	-,	0.0000	-,	•	0,0003	,	•	,	,	,	•	•	,	0,2290	•	0.1720	-,		0.0037
	11	0.0000		0.0000	-,	,	•	0.0002	•	0.0033	•	,	•	,	•	0.1943	•	-,	-,	0.1142	-,
		-,	-,	0,0000	-,	-,	0,0000	-,	-,	-,	0,0019	- , -	-,	-,	-,	0,1134	-, -	-,	-,	0,2570	-,
		-,	0,0000	-,	-,	•	0,0000	,	•	0,0001	•	,	•	-,	-,	-, -	-,	-,	-, -	0,3559	-, -
	14	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0008	0,0024	0,0068	0,0178	0,0440	0,1028	0,2288	0,4877

											-)									
n	Х	0,01	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95
15	0	0,8601	0,4633	0,2059	0,0874	0,0352	0,0134	0,0047	0,0016	0,0005	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	1	0,1303	0,3658	0,3432	0,2312	0,1319	0,0668	0,0305	0,0126	0,0047	0,0016	0,0005	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	2	0,0092	0,1348	0,2669	0,2856	0,2309	0,1559	0,0916	0,0476	0,0219	0,0090	0,0032	0,0010	0,0003	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	3	0,0004	0,0307	0,1285	0,2184	0,2501	0,2252	0,1700	0,1110	0,0634	0,0318	0,0139	0,0052	0,0016	0,0004	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000
	4	0,0000	0,0049	0,0428	0,1156	0,1876	0,2252	0,2186	0,1792	0,1268	0,0780	0,0417	0,0191	0,0074	0,0024	0,0006	0,0001	0,0000	0,0000	0,0000	0,0000
	5	0,0000	0,0006	0,0105	0,0449	0,1032	0,1651	0,2061	0,2123	0,1859	0,1404	0,0916	0,0515	0,0245	0,0096	0,0030	0,0007	0,0001	0,0000	0,0000	0,0000
	6	0,0000	0,0000	0,0019	0,0132	0,0430	0,0917	0,1472	0,1906	0,2066	0,1914	0,1527	0,1048	0,0612	0,0298	0,0116	0,0034	0,0007	0,0001	0,0000	0,0000
	7	0,0000	0,0000	0,0003	0,0030	0,0138	0,0393	0,0811	0,1319	0,1771	0,2013	0,1964	0,1647	0,1181	0,0710	0,0348	0,0131	0,0035	0,0005	0,0000	0,0000
	8	0,0000	0,0000	0,0000	0,0005	0,0035	0,0131	0,0348	0,0710	0,1181	0,1647	0,1964	0,2013	0,1771	0,1319	0,0811	0,0393	0,0138	0,0030	0,0003	0,0000
	9	0,0000	0,0000	0,0000	0,0001	0,0007	0,0034	0,0116	0,0298	0,0612	0,1048	0,1527	0,1914	0,2066	0,1906	0,1472	0,0917	0,0430	0,0132	0,0019	0,0000
	10	0,0000	0,0000	0,0000	0,0000	0,0001	0,0007	0,0030	0,0096	0,0245	0,0515	0,0916	0,1404	0,1859	0,2123	0,2061	0,1651	0,1032	0,0449	0,0105	0,0006
	11	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0006	0,0024	0,0074	0,0191	0,0417	0,0780	0,1268	0,1792	0,2186	0,2252	0,1876	0,1156	0,0428	0,0049
	12	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0004	0,0016	0,0052	0,0139	0,0318	0,0634	0,1110	0,1700	0,2252	0,2501	0,2184	0,1285	0,0307
	13	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0003	0,0010	0,0032	0,0090	0,0219	0,0476	0,0916	0,1559	0,2309	0,2856	0,2669	0,1348
	14	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0005	0,0016	0,0047	0,0126	0,0305	0,0668	0,1319	0,2312	0,3432	0,3658
	15	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0005	0,0016	0,0047	0,0134	0,0352	0,0874	0,2059	0,4633
20	0	l '	,	•	,	•	,	•	•	,	•	,	,	,	•	,	•	0,0000	,	•	,
	1	l '	,	•	,	•	,	•	•	,	•	,	,	0,0000	•	,	•	,	-,	0,0000	-,
	2	· ·	•	,	,	,	,	,	,	,	,	,	,	,	,	•	•	0,0000	•	0,0000	-,
	3													0,0000					•	0,0000	•
	4																	0,0000			
	5	l '	,	•	,	•	,	•	•	,	•	,	,	,	•	,	•	0,0000	,	•	,
	6	l '	•	,	,	•	,	,	•	•	,	•	•	0,0049	,	,	,	,	-,	0,0000	- ,
	7	l '	•	,	,	,	,	,	,	,	,	•	•	•	,	,	,	0,0000	•	0,0000	-,
	8	l '	•	,	,	•	,	,	•	•	,	•	•	0,0355	,	,	,	,	-,	0,0000	- ,
	9	l '	•	,	,	•	,	,	•	•	,	•	•	•	,	,	,	0,0005	•	0,0000	- ,
	10			-														0,0020			
	11	l -			•	-	•	•	-		-				-			0,0074		•	•
	12	l '	,	•	,	•	,	•	•	,	•	,	,	,	•	,	•	0,0222	,	•	,
	13 14	l '	,	•	,	•	,	•	•	,	•	,	,	,	•	,	•	0,0545	,	•	,
	15	l '	•	,	,	•	,	,	•	•	,	•	•	•	,	,	,	0,1091 0,1746	•	•	,
	16	l '	•	,	,	•	,	,	•	•	,	•	•	•	,	,	,	0,1746	•	•	,
	17	l '	,	•	,	•	,	•	•	,	•	,	,	,	•	,	•	0,2162	,	•	,
	18	l '	,	•	,	•	,	•	•	,	•	,	,	,	•	,	•	0,2034	,	•	,
	19	l '	,	•	,	•	,	•	•	,	•	,	,	,	•	,	•	0,1309	,	•	,
		l '	,	•	,	•	,	•	•	,	•	,	,	,	•	,	•	0,0376	,	•	,
	20	1 0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0002	0,0000	0,0032	0,0115	0,0300	0,1210	0,5565