Question Number	Scheme	Marks
5(a)	Gradient $PR = \frac{6}{-6} = -1$, Gradient $QS = \frac{8}{8} = 1$	M1A1
	Product = $-1 \Rightarrow$ perpendicular	A1 (3)
(b)	(i) $PR = \sqrt{6^2 + 6^2} = 6\sqrt{2} \left(= \sqrt{72} \right)$	M1
	(ii) $QS = \sqrt{8^2 + 8^2} = 8\sqrt{2} \ \left(=\sqrt{128}\right)$	A1 (2)
(c)	Area = $\frac{1}{2}$ " $6\sqrt{2}$ "×" $8\sqrt{2}$ " = 48 (units ²)	M1A1 (2)
		[7]

Part	Mark	Notes
(a)	M1	Finds the gradient of <i>PR</i> and <i>QS</i> using a correct method. This may be on a diagram.
		Gradient $PR = \frac{7-1}{4-10} = \frac{6}{-6} = -1$, Gradient $QS = \frac{8-0}{11-3} = \frac{8}{8} = 1$
	A1	Both gradients correct Gradient $PR = -1$, Gradient $QS = 1$
	A1	Finds the product of the two gradients with a statements that as the product $= -1$ then the lines are perpendicular.
(b)	M1	For either $PR = \sqrt{6^2 + 6^2} = \sqrt{72}$ or $6\sqrt{2}$ OR $QS = \sqrt{8^2 + 8^2} = \sqrt{218}$ or $8\sqrt{2}$ correct
	A1	For both $PR = \sqrt{6^2 + 6^2} = \sqrt{72}$ or $6\sqrt{2}$ AND $QS = \sqrt{8^2 + 8^2} = \sqrt{218}$ or $8\sqrt{2}$ correct
(c)	M1	<i>PQRS</i> is a kite so $=\frac{1}{2}$ " $6\sqrt{2}$ "×" $8\sqrt{2}$ " =
	A1	Area = $48 \left(\text{units}^2 \right)$
	ALT Use	es determinants
	M1	Area = $\frac{1}{2} \begin{pmatrix} 4 & 3 & 10 & 11 & 4 \\ 7 & 0 & 1 & 8 & 7 \end{pmatrix}$
		$= \frac{1}{2} ([4 \times 0 + 3 \times 1 + 10 \times 8 + 11 \times 7] - [3 \times 7 + 10 \times 0 + 11 \times 1 + 4 \times 8])$
		= Allow one slip in a product.
	A1	Area = $48 \left(\text{units}^2 \right)$

USEFUL SKETCH

