12 Mathematics Methods 2021

Test 1 – Differentiation and Logarithms

Section 1: Calculator-free

Time allowed: 25 minutes	Maximum marks: 25	
Name:	Teacher:	Foster Kelly
Instructions:		

- Show all working clearly.
- Sufficient detail must be shown for marks to be awarded for reasoning.
- A formula sheet will be provided.
- No calculators or personal notes are permitted.

Question 1

[2, 2 = 4 marks]

Calculate the following;

a)
$$\log 1000\sqrt{10}$$

b)
$$\log_{81} 3$$

Question 2

[2, 3 = 5 marks]

 $\label{eq:Differentiate} \mbox{ Differentiate the following (do not simplify your answers).}$

a)
$$y = \frac{3x^2 - 5x}{6x - 5}$$

b)
$$f(x) = (8-x)(7x^2+4x)^3$$

Question 3 [5 marks]

Determine the coordinates of any points on the function $y=-\frac{6}{(x-4)}$ whose tangents are parallel to the line 3x-2y=6

Question 4 [4 marks]

The graph of $y = -\log_b(x+c) + d$ is drawn below.

If there is a vertical asymptote at x = 1, determine the values of b, c and d.

Question 5

[3, 4 = 7 marks]

Solve each of the following equations for x;

a)
$$16^{x+1} = (\sqrt{8})^{6x-2}$$

b)
$$12(2^x) = 7 + \frac{10}{2^x}$$
 (giving answer in form $a + \log_2 b$)

12 Mathematics Methods 2021

Test 1 – Differentiation and Logarithms

Section 2: Calculator-assumed

Time allowed: 20 minutes	Maximum marks: 20	
Name:	Teacher:	Foster Kelly
Instructions:		

- Show all working clearly.
- Sufficient detail must be shown for marks to be awarded for reasoning.
- A formula sheet will be provided.
- Calculators and 1xA4 double-sided page of personal notes are permitted.

Question 6 [4 marks]

Use the *increments formula* to determine the percentage change in the radius of a sphere when its surface area decreases by 3%.

Question 7 [2, 2 = 4 marks]

The graph of the **derivative**, f'(x), is drawn below.

- a) On the graph above, sketch a possible graph of the second derivative f''(x).
- b) Determine the x values of any stationary points, and their nature, on f(x).

A closed cylindrical can, with base radius r and height h, has a volume of 250π cm³.

a) Show that the total area, $A~{\rm cm}^2$, of metal required to make the can is given by $A=2\pi r^2+\frac{500\pi}{r}$

- b) If the material for the curved side of the can costs \$0.001 per $\rm cm^2$ and the material for each of the circular ends costs \$0.003 per $\rm cm^2$, determine;
- i. The area of material used to minimise cost.

ii. The minimum cost to produce a can.

Two particles, P and Q, both travel along the same straight line.

Their displacements, s metres, after t seconds ($t \ge 0$) from a fixed-point θ on the line are given by;

$$s_P = 3t^3 - 81t + 5$$

$$s_Q = -2(t-1)(t-4)$$

a) Calculate the initial distance between the particles.

b) At what time(s), does particle *P* change direction?

c) At t=4, is particle Q speeding-up or slowing-down? Justify your answer.