Московский физико-технический институт Факультет молекулярной и химической физики

Лабораторная работа «ИЗМЕРЕНИЕ ВРАЩАТЕЛЬНОЙ И КОЛЕБАТЕЛЬНОЙ ТЕМПЕРАТУР В ГАЗОВОМ РАЗРЯДЕ ПО СПЕКТРУ МОЛЕКУЛЫ»

Выполнили: студент 3 курса 642 группы ФМХФ Гадецкий Дмитрий, студент 3 курса 642 группы ФМХФ Маслак Никита

Обработка результатов измерений

Приводим графики полученных спектров:

Далее проводим сравнения положения полученных пиков, соответствующих одним переходам: Это требуется в связи с особенностью установки. Шкала по длине волны в ходе эксперимента могла сдвинуться.

Проведем идентификацию и соотнесение наблюдаемых полос:

Переход $\nu' \to \nu''$	$0 \rightarrow 0$	$2\rightarrow3$	$1\rightarrow 2$	$0\rightarrow 1$	$2\rightarrow 4$	$0\rightarrow 2$	$2\rightarrow 5$	$1 \rightarrow 4$	$1\rightarrow 3$
Длина волны, А	3370	3499	3535	3575	3709	3804	3942	3997	3754

Вычисление вращательной температуры:

Для вычисления вращательной температуры выберем участок неразрешенной вращательной структуры и прологарифмируем его. По наклону прямой зависимости $lg(I) = f(\lambda)$, используя рассчитанную зависимость тангенса угла наклона от значения вращательной температуры, определим значение вращательной температуры в центральной части разряда.

Привожу полученные значения вращательных температур для представленных зависимостей:

$$T_{1,2} \approx 1300 \ K, \ T_3 \approx 1000 \ K$$

Определение колебательной температуры:

По спектрам полос $0 \to 1$, $1 \to 2$, $2 \to 3$ и $0 \to 2$, $1 \to 3$, $2 \to 4$ определим колебательную температуру в центральной части разряда и в приэлектродных областях, используя соотношение:

$$ln(\frac{I_{\nu'\nu''}}{\nu_{\nu'\nu''}^4 q_{\nu'\nu''}}) = -\frac{G(\nu')}{0.6925T_{vib}} + C$$

Найдем интенсивности пиков:

$$S23 = 2.85$$
; $S12 = 9.83$; $S01 = 19.71$; $S24 = 2.92$; $S13 = 7.06$; $S02 = 7.8$

Итак, построим необходимую зависимость для двух серий:

Откуда:

$$T_{1vib} \approx 2 \cdot 10^4 K \ T_{2vib} \approx 6.5 \cdot 10^3 K$$

Заключение

В данной работе были получены электронно-колебательно-вращательные спектры, качественный вид которых был представлен в зависимости от внешних параметров (P,I). Также были посчитаны вращательные температуры по электронно-колебательно-вращательным спектрам излучения второй положительной системы азота при разных токах и давлениях, а так же колебательные температуры. Используемая методика нахождения этих температур даёт адекватные, но грубые результаты. Оказалось, что при повышении давления в газе вращательная температура увеличивается. Также видно, что в представленной неравновесной системе колебательная температура значительно превосходит вращательную.