

Summer term 2025

Prof. Dr. Sebastian Hensel Dr. Simon Gritschacher

Topology II

Sheet 1

Let $\Delta^n \subseteq \mathbb{R}^{n+1}$ be the standard *n*-simplex. For $i = 0, \ldots, n$ let $d^i \colon \Delta^{n-1} \to \Delta^n$ be the inclusion of the face opposite the *i*-th vertex, that is, the map defined by

$$d^{i}(t_{0},...,t_{n-1})=(t_{0},...,t_{i-1},0,t_{i},...,t_{n-1}).$$

Let X be a topological space. A Δ -complex structure on X is a collection of sets $S = \{S_n\}_{n\geq 0}$ where the elements of S_n are maps $\sigma \colon \Delta^n \to X$ satisfying the following conditions:

- (i) for every $n \geq 1$, $\sigma \in S_n$ and $0 \leq i \leq n$ we have that $\sigma \circ d^i \in S_{n-1}$
- (ii) for every $n \geq 0$ and $\sigma \in S_n$ the map $\sigma|_{\Delta^n \setminus \partial \Delta^n} : \Delta^n \setminus \partial \Delta^n \to X$ is injective, and each point of X lies in the image of precisely one such restriction
- (iii) a subset $A \subseteq X$ is open if and only if $\sigma^{-1}(A)$ is open for every $\sigma \in \bigcup_{n>0} S_n$.

The following figure shows an example of a Δ -complex structure on the 2-torus T:

This Δ -complex structure has $S_0 = \{v\}$, $S_1 = \{a, b, c\}$, $S_2 = \{U, L\}$ and $S_n = \emptyset$ for $n \geq 3$. The arrows and the labels in the picture are meant to tell us how the maps $v \colon \Delta^0 \to T$, $a \colon \Delta^1 \to T$, $U \colon \Delta^2 \to T$ etc. look like. (Recall that the edges of Δ^n carry a natural orientation once an ordering of the n+1 vertices has been chosen.)

Exercise 1. Construct Δ -complex structures on the Klein bottle K, on $\mathbb{R}P^2$, on an orientable closed surface Σ_g of genus $g \geq 2$, and on the "dunce hat", i.e., on the following quotient space:

Exercise 2. Let X be a space equipped with a Δ -complex structure S. Let $C_*(X)$ be the singular chain complex of X. Recall that $C_n(X)$ is the free abelian group generated by the set of all maps $\sigma \colon \Delta^n \to X$. For each $n \geq 0$, we let $C_n^{\Delta}(X) \subseteq C_n(X)$ be the subgroup generated by the set S_n .

- (a) Show that $C_*^{\Delta}(X)$ defines a subcomplex of $C_*(X)$. We denote its homology by $H_*^{\Delta}(X)$.
- (b) Compute $H_*^{\Delta}(X)$ for X = K, $\mathbb{R}P^2$, Σ_g and the dunce hat, using the Δ -complex structures from Exercise 1.

Exercise 3. Let X be a space equipped with a Δ -complex structure.

- (a) Show that the Δ -complex structure gives rise to a CW-structure on X.
- (b) Let $C_*^{cell}(X)$ denote the cellular chain complex with respect to the CW-structure from (a). Show that there is an isomorphism of chain complexes

$$C_*^{\Delta}(X) \cong C_*^{cell}(X)$$
,

The last exercise shows that $H^{\Delta}_*(X) \cong H^{cell}_*(X) \cong H_*(X)$ (where the last isomorphism was proved in Topology I). In particular, this shows that the homology groups $H^{\Delta}_n(X)$ are independent of the choice of Δ -complex structure.