Final Project: Engineering Data Analysis

STAT 4160: Experimental Design

University of Virginia

Adam Chow, Rhiannon Staley

Fall 2023

Problem

Semiconductor manufacturing processes have long and complex assembly flows, so matrix marks and automated 2d-matrix readers are used at several process steps throughout factories. Unreadable matrix marks negatively affect factory run rates because manual entry of part data is required before manufacturing can resume.

A 2⁴ factorial experiment was conducted to develop a 2d-matrix laser mark on a metal cover that protects a substrate-mounted die. The design factors are:

- 1. Laser Power (9 and 13 W)
- 2. Laser Pulse Frequency (4000 and 12,000 Hz)
- 3. Matrix Cell Size (0.07 and 0.12 in.)
- 4. Writing Speed (10 and 20 in./sec.)

The response variable is the unused error correction (UEC). This is a measure of the unused portion of the redundant information embedded in the 2d-matrix. A UEC of 0 represents the lowest reading that still results in a decodable matrix, while a value of 1 is the highest reading. A DMX Verifier was used to measure UEC.

Question

Which factor(s) and/or interactions seem to have the greatest effect on UEC and warrant further study?

Fit the Appropriate Model

2⁴ factorial design:

ANOVA Reduction

To test the significance of our model effects, we will move forward with a half-normal plot which will allow us to estimate the significance of main effects and interactions.

			he GLM endent			3			
Source	DF		of Squa			Square	F Va	lue	Pr > F
Model	15	0.25357500		0.01690500					
Error	0	0.000000		-					
Corrected To	tal 15		0.25357	500					
	R-Square	Co	eff Var	Roo	t MSE	UEC M	ean		
	1.000000					0.716	250		
Source		DF	Туре	ISS	Mean	Square	F۷	'alue	Pr > I
LaserPower		1	0.1024	0000	0.1	0240000			
LaserPulseFre	quency	1	0.0016	0000	0.00160000				
LaserPowe*La	serPulse	1	0.0012	2500	0.00122500				
MatrixCellSize		1	0.07022500		0.0	7022500			
LaserPowe*Ma	trixCell	1	0.01210000		0.01210000				
LaserPuls*Mat	rixCell	1	0.0025	0000	0.0	0250000			
LaserP*LaserP	*Matrix	1	0.0020	2500	0.0	0202500			
WritingSpeed		1	0.0506	2500	0.0	5062500			
LaserPowe*Wr		1	0.0004	0000	0.00040000				
LaserPuls*Wri		1	0.0004		-	0040000		•	
LaserP*LaserP		1	0.0012			0122500		•	
MatrixCel*Writ	• •	1	0.0056			0562500	-		
LaserP*Matrix*		1	0.0016		-	0160000		•	
LaserP*Matrix*		1	0.0016		-	0160000	-	•	
Lase*Lase*Ma	tr*Writi	1	0.0000	2500	0.0	0002500			

As seen in the output of our ANOVA table there are no F or p-values, because of the lack of replication in this experiment. Because of this, there are no degrees of freedom available to estimate the residual variability (SSE), meaning that we cannot test the significance of any of our model effects.

Looking at the half-normal plot, the effects that appear at first to be significant are LaserPower, MatrixCellSize, WritingSpeed, LaserPower*MatrixCellSize, MatrixCellSize*WritingSpeed, LaserFreq*MatrixCellSize, LaserFreq*MatrixCellSize*WritingSpeed, LaserPower*LaserFreq*MatrixCellSize, and LaserPower*LaserFreq*MatrixCellSize*WritingSpeed.

After plotting the Half-Normal Plot and identifying potentially significant interactions, we have decided to first remove the 4-way interaction to see how much the model changes. We specifically chose the 4-way interaction between LaserPower*LaserFreq*MatrixCellSize*WritingSpeed due to the Effect Hierarchy Principle, which states that lower order interactions are more likely to be important than higher order interactions. When combined with the evidence of insignificance in the half normal plot, this interaction was an obvious removal for our model.

		Т	he GLM	Proc	edure				
		Dep	endent	Varia	ble: UE				
Source	DF	Sum	of Squa	res	Mean Square		F Va	lue	Pr > F
Model	14	0.25355000		0.01811071		724	1.43	0.0291	
Error	1	0.00002500		500	0.00002500				
Corrected Tot	t al 15		0.25357	500					
								1	
	R-Square	-	eff Var		ot MSE	UEC M			
	0.999901	0.	698080	0.0	005000	0.716	3250		
Source		DF	Type	ISS	Mean	Square	F	/alue	Pr > F
LaserPower		1	0.1024			240000		96.00	0.0099
LaserPulseFree	quency	1	0.0016	0000	0.00	160000		64.00	0.0792
LaserPowe*Las	serPulse	1	0.0012	2500	0.00	122500	١.	49.00	0.0903
MatrixCellSize		1	0.0702	2500	0.0	7022500	28	09.00	0.0120
LaserPowe*Ma	trixCell	1	0.0121	0000	0.0	1210000	4	84.00	0.0289
LaserPuls*Matr	rixCell	1	0.0025	0000	0.00	250000	1	00.00	0.0635
LaserP*LaserP	*Matrix	1	0.0020	2500	0.00	202500		81.00	0.0704
WritingSpeed		1	0.0506	2500	0.0	5062500	20	25.00	0.014
LaserPowe*Wri	itingSpe	1	0.0004	0000	0.00	0040000		16.00	0.1560
LaserPuls*Writ	ingSpe	1	0.0004	0000	0.00	0040000		16.00	0.1560
LaserP*LaserP	*Writin	1	0.0012	2500	0.00	122500	<u> </u>	49.00	0.0903
MatrixCel*Writi	ngSpe	1	0.0056	2500	0.00)562500	2	25.00	0.0424
LaserP*Matrix*	Writin	1	0.0016	0000	0.00	160000	'	64.00	0.0792
LaserP*Matrix*	Writin	1	0.0016	0000	0.00	160000		64.00	0.0792

After removing the highest order interaction, the Global F-Statistic is 724.23 with a p-value of 0.0291. However, there are still insignificant terms based on p-value like LaserFreq, LaserFreq, LaserFreq*MatrixCellSize, LaserPower*LaserFreq*MatrixCellSize, LaserPower*LaserFreq*WritingSpeed, LaserPower*LaserFreq*WritingSpeed, LaserPower*MatrixCellSize*WritingSpeed, and LaserFreq*MatrixCellSize*WritingSpeed.

At the α = 0.05 significance level, all insignificant terms except one, (LaserPower*WritingSpeed) seem to include LaserFrequency, we will remove that from the model and see how the numbers change. We are able to remove all Laser Frequency 3-way interactions, 2-way interaction, and the

main effect because the Effect Heredity Principle does not apply in this case, due to the insignificance of the LaserFrequency main effect.

			Dep	endent	Varial	ole: UE0				
Source	21		Sum	of Squa	res	Mean Square		F Va	alue	Pr > F
Model		7	0.2429750		500	0.03471071		26	6.20	<.0001
Error		8		0.01060	000	0.001	132500			
Corrected To	cted Total 15			0.25357	500					
	R-S	Square	Co	eff Var	Roo	t MSE	UEC N	lean		
	0.0	58198								
	0.8	100190	5.	082101	0.0	36401	0.716	250		
	0.8	956196	5.0	082101	0.0	36401	0.716	5250		
Source	0.8	150 190	DF	082101 Type			0.716		V alue	Pr > F
Source LaserPower	0.8	100190			ISS	Mean		F	Value 77.28	
	0.8	30190	DF	Туре	I SS 0000	Mean 0.10	Square	FV		<.000
LaserPower			DF 1	Type 0.1024	I SS 0000 2500	Mean 0.10	Square 0240000	FV	77.28	<.000
LaserPower WritingSpeed	ritin		DF 1	Type 0.1024 0.0506	ISS 0000 2500 0000	0.10 0.08 0.00	Square 0240000 5062500	F\	77.28 38.21	<.000° 0.000° 0.597°
LaserPower WritingSpeed LaserPowe*Wi	ritin	gSpe	DF 1 1 1 1	Type 0.1024 0.0506 0.0004	1 SS 0000 2500 0000 2500	0.10 0.05 0.00 0.07	Square 0240000 5062500 0040000	FY	77.28 38.21 0.30	<.0001 0.0003 0.5977 <.0001
LaserPower WritingSpeed LaserPowe*Wi MatrixCellSize	riting	gSpe Cell	DF 1 1 1 1 1 1	Type 0.1024 0.0506 0.0004 0.0702	1 SS 0000 2500 0000 2500 0000	Mean 0.10 0.00 0.00 0.00 0.00	Square 0240000 5062500 0040000 7022500	FY	77.28 38.21 0.30 53.00	Pr > F <.0001 0.0003 0.5977 <.0001 0.0165 0.0733

While the Global F-Statistic has significantly decreased, the p-value has also decreased as well. However, there are still a few terms that are insignificant like LaserPower*WritingSpeed, MatrixCellSize*WritingSpeed, and LaserPower*MatrixCellSize*WritingSpeed.

At the α = 0.05 significance level, both the 3-way interaction and the 2-way interactions involving WritingSpeed are deemed insignificant, meaning they can all also be removed from the final model.

		•	The GLM	Proc	edure				
		De	pendent '	Varia	ble: UE				
Source	DF	Sum of Squares		Mean Square		F Val	ue	Pr > F	
Model			0.23535	000	0.058	383750	35.	.51	<.0001
Error	11		0.01822	500	0.00	165682			
Corrected Tot	tal 15		0.25357	500					
			ooff Var	Ro	MSE	LIEC M	ean		
	0.92812		.682936		ot MSE 040704	UEC M	-		
Source	•	8 5	.682936	0.0	040704	0.716	250	ilue	Pr > F
	•			0.0	040704 Mean	0_0	250 F Va	ilue	
Source LaserPower MatrixCellSize	0.92812	28 5 DF	.682936	0.0 I SS	040704 Mean 0.10	0.716	F Va		Pr > F <.0001 <.0001
LaserPower	0.92812	DF 1	.682936 Type 0.10240	0.0 1 SS 0000 2500	040704 Mean 0.10 0.07	0.716 Square 240000	F Va 61	1.81	<.0001

As seen in the output above, this is the best model we've had so far, and is the one we will continue with after checking for assumptions. While we have removed many interaction terms and effects, all of the interactions are now significant with p-values below the $\alpha=0.05$ significance level, with the Global F-statistic and p-value following the same trend. Moving forward, we will use this model to finish our analysis.

Verify Assumptions for Inference

Before any reduction to our ANOVA model, this is what the assumptions looked like.

Based on the non-linearity of the QQ-Plot and the less than normal distribution of the histogram, we can assume that this data does not meet the normality assumption. Based on the Residual vs. Predicted plot, the data points do not necessarily indicate any sort of fanning out pattern. Because there is no evidence of us not meeting this assumption, we can assume that this data does meet the assumption of constant variance. After we reduced the ANOVA model to only include LaserPower, CellSize, LaserPower*MatrixCellSize, and WritingSpeed this is what the assumptions look like.

Based on the generally normal distribution of the histogram, and the linearity of the QQPlot, we can assume that this reduced model meets the normality assumption. Based on the Residual vs. Predicted Values plot, we can see that there is no significant fanning out pattern. This means we can assume that the data meets the constant variance assumption. Because our reduced model meets the normality and constant variance assumptions, we do not need to transform the response variable or re-run the ANOVA. Moving forward, we will continue to use the final reduced model.

Pairwise Testing

	Ad	ı	The GLI Least So for Mult	uares		s: Tukey	
LaserF	Power MatrixCel		MatrixCellSize UEC LSMEAN		LSMEAN Numbe		
-1		-1		0.67500000			
-1		1		0.59750000		2	
1		-1		0.	89000000		3
1		1	1		70250000		4
L	Least S				t LaserPov Mean(j) / P	ve*MatrixCell r > t	
		t for H0:	LSMean	(i)=LS t Varia	Mean(j) / P	r > t	
i	i/j	t for H0:	LSMean	(i)=LS	Mean(j) / P		
	i/j	t for H0:	ependen 2.692	(i)=LS t Varia 2	Mean(j) / P	r > t	
i	1/j	t for H0:	ependen 2.692	(i)=LS t Varia 2 2646	Mean(j) / Prable: UEC 3 -7.46992	r > t 4 -0.95546	
i. 1	1/j 1	t for H0: De 1	2.692 0.0	(i)=LS t Varia 2 2646 0843	Mean(j) / Prable: UEC 3 -7.46992 <.0001 -10.1626	4 -0.95546 0.7765 -3.6481	

LSMEAN number 3 is the only group number with every pairwise interaction with a p-value less than 0.0002 and the absolute value of the test statistic t being greater than 6.5. This pairwise p-value displays extreme significance: the most significant pair of LaserPower*MatrixCellSize is where LaserPower is 13 Watts (1) and MatrixCellSize is 0.07 inches (-1).

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey

		H0:LSMean	I=LSMean2
LaserPower	UEC LSMEAN	t Value	Pr > t
-1	0.63625000	-7.86	<.0001
1	0.79625000		

In the pairwise test on the main effect of the variable LaserPower, it is clear that this main effect is statistically significant with a p-value of <0.0001 and a t value of -7.86. With the negative t value, this indicates that the 9 Watt LaserPower level (-1) is more significant than the 13 Watt level (1).

Adjustme	The GLM Prod Least Squares nt for Multiple Co	Means	Гикеу
		H0:LSMean	1=LSMean2
MatrixCellSize	UEC LSMEAN	t Value	Pr > t
-1	0.78250000	6.51	<.0001

0.65000000

In the pairwise test on the main effect of the variable MatrixCellSize, it is clear that this main effect is statistically significant with a p-value of <0.0001 and a t value of 6.51. With the positive t value, this indicates that the 0.12 inches MatrixCellSize level (1) is more significant than the 0.07 inches level (-1).

Adjustme	The GLM Pro- Least Squares ent for Multiple C	Means	ıkey	
		H0:LSMean1=LSMean2		
WritingSpeed	UEC LSMEAN	t Value	Pr > t	
-1	0.77250000	5.53	0.0002	
1	0.66000000			

In the pairwise test on the main effect of the variable WritingSpeed, it is clear that this main effect is statistically significant with a p-value of 0.0002 and a t value of 5.53. With the positive t value, this indicates that the 20 in./sec WritingSpeed level (1) is more significant than the 10 in./sec level (-1).

Conclusion

Based on the analysis that we have conducted, we have very strong evidence to suggest that the main effects LaserPower, MatrixCellSize, and WritingSpeed and the interaction term LaserPower*MatrixCellSize all have effects on UEC and warrant further study.

Upon further analysis, we determined that LaserPower at the 9 Watt level, MatrixCellSize at 0.12 inches, and WritingSpeed at 20 in./sec are more significant factors in terms of predicting effects on the Unused Error Correction (UEC) of 2-d matrix readers for semiconductor manufacturer processes. This means that these levels of factors have greater effects than their respective counterparts, indicating that these levels of the variables warrant further study.

The specific interaction term MatrixCellSize*LaserPower is most significant at the 0.07 in./13 Watt level, indicating that this level of the interaction warrants further study.