EEE5502 Foundations of Digital Signal Processing Code 4

Hudanyun Sheng

Question #3:

(a) The DFT of x[n] is shown in the plot below:

Figure 1: The DFT of signal x[n]

(b) The under-complete DFT of x[n] for K=10 is shown in the plot below:

Figure 2: The under-complete DFT of signal x[n]

(c) The over-complete DFT of x[n] for K=1000 is shown in the plot below:

Figure 3: The over-complete DFT of signal x[n]

Compare to the result from part (b), with more samples, the over-complete DFT is able to be similar to the original DFT, though being redundant.

Also, based on part (f) of Question #2, we learned that only when kx = k, we got meaningful values, otherwise we would always get zero. For part b when K < N, kx cannot equal k, so we never get meaningful values; in part(c) K_iN , it is possible that kx = k, so we get meaningful values at those frequency.

Question #4:

The plots for x[n], h[n], and y[n] is shown in the plots below:

Figure 4: x[n] in the frequency domain

Figure 5: h[n] in the frequency domain

Figure 6: y[n] in the frequency domain

It is obvious that in the frequency domain $H(\omega)$ acts as a low pass filter, so that only signal at low frequency of $X(\omega)$ is preserved in $Y(\omega)$ after the transform, with a weaken in magnitude, since when convolution, $H(\omega)$ also acts as an average filter.