

Chapter 1: Introduction to GeoAl

Chapter 2: GeoAl's Thousand-Year History

Chapter 3: Philosophical Foundations of GeoAl

Birth of Al

- 1940s-1950s: Theoretical foundations in cognitive science and computer sciences
- 1956 Dartmouth Workshop for Al
- "Can machines think like human?"

1956 Dartmouth Conference: The Founding Fathers of AI

John MacCarthy

Marvin Minsky

Claude Shannon

Ray Solomonoff

Alan Newell

Trenchard More

Herbert Simon

Oliver Selfridge

Nathaniel Rochester

Strong AI and Weak AI

- Strong AI: a sufficiently programmed computer would be intelligent and would think in the way that human do.
- Weak AI: the use of methods on intelligent behavior to make computers more efficient at solving problems.

Classes of AI Problems

 Cognitive approach: models of human memory structure and reasoning process (e.g., cognitive maps for route-finding decisions)

 Engineering approach: construct computer programs with respect to specific problem solving (e.g., knowledge-based GI systems); or have the capabilities for understanding, processing, and generating natural language.

Systematic Research in Al

- Search: find procedures that minimize required search effort, especially for large spaces of objects; led to development of knowledge-based systems
- Representation: efficient representation, storage, and retrieval of domain knowledge;
- using "semantic network" or "frame structure"
- Learning: learning from experience and learning from analogy
- Decision-Making: planning for a sequence of actions

Booms and Winters of Al periods

Hype Cycle for Artificial Intelligence, 2021

gartner.com

Science for AI and AI for Science

Al in Geographical Sciences

- Spatial scene classification
- Geographic object detection and localization
- Spatial interpolation and downscaling
- Spatiotemporal predictions and modeling
- Multisource and multimodal data fusion
- Linking physical models and machine learning

Reichstein et al. (2019, Nature) Brown et al. (2022, Sci. Data) Li & Hsu (2020, IJGIS) Zhu et al. (2020, IJGIS) Li, Gao et al. (2021, IJGIS)

Al in Geography

- "It is not often that geography is touched by a development having the potential to affect substantially all of the practical, technical, methodological, theoretical and philosophical aspects of our work."
- "... as an integral part of a wider intellectual enterprise that is already revolutionizing many of our views about science and the world."

Al in Geography

- Program: symbolic phase
- Neural Nets: machine learning phase
- Speculations: science fiction phase
- Being Human: fear, vision of the future

Al in Geography

- Why do we need AI in geography and GIS?
- What kinds of geographic research involving AI you learned (explanation, engineering, pedagogy)?
- What are the key geographical questions that we can now address better using AI rather than traditional approaches?
- What are the unsolved problems that can now be solved with AI?
- Are there any new theories or intelligent approaches to building analysis models and data exploration pipelines in geographic information systems?

Definitions of GeoAl

- GeoAl is the integration of geospatial studies and Al, especially for developing data-driven and knowledge-guided machine learning methods.
- GeoAl can be considered as a subject to develop intelligent computer programs to mimic the processes of human perception, spatial reasoning, and discovery about geographical phenomena and dynamics.
- GeoAl aims to advance our knowledge and solve problems in humanenvironmental interaction systems using Al, with a focus on spatial contexts and roots in geography or geographic information science (GIScience).

The boom in GeoAl

GeoAl Topics in ACM SIGSPATIAL

	GeoAI Workshop Proceedings			
Research Topics	2017	2018	2019	2021
Geospatial image processing	Li, W. et al.[30]	Xu, Y. et al.[64]	Chen et al. [6]	
	Law, S. et al.[27]	Sun, T. et al. [54]	Dorji et al. [12]	
	Collins, C.B. et al. [9]	Srivastava, S. et al. [52]	Law et al. [26]	
	Duan, W. et al. [13]		Liang et al. [33]	
			Xin et al. (2019) [62]	
	Kulkarni, V. et al. [25]	Sun, T. et al. [54]	Yin et al. [70]	
Transportation	Murphy, J. et al.[40]	Van Hinsbergh, J. et al [58]		
modeling and	Li, Q. et al.[29]	Pourebrahim, N. et al [42]	Xing et al.[63]	
analysis	21, Q. et un[27]	roureoranin, rv. et ar [12]	Yin et al.[69]	
anary 515			Mai et al.[37]	
			war et al.[57]	
Digital humanities	Duan Wat al [12]		Toughted at al. [56]	
Digital humanities	Duan, W. et al. [13]		Tavakkol et al. [56]	
Public health		Xi, G. et al. [61]	Yang et al. [68]	
Disaster response			Peng et al. [41]	
Social media and		Pourebrahim, N. et al[42]	Yuan et al. [72]	Kravi, E. et al.[22]
geo-text analysis		Elgarroussi, K., et al.[14]	Snyder et al. [49]	,
		Swan, B. et al. [55]	Soliman et al. [50]	Levering, A. et al. [28]
		Aydin, O. et al. [2]		Gurav, R. et al. [17]
Methods and		- 5, [-]		Ying, C. et al. [7]
techniques				Bowman, J. et al. [3]
teemiques				Rahman, M. M. et al. [43]
				Woźniak, S. et al. [60]
				Wozman, S. et al. [00]
Novel applications	Majic, I. et al. [38]	Chow, T. E. [8]	Li and Huang [31]	Rao, J. et al. [44]
and visions	wiajie, i. et al. [36]	CHOW, I. E. [0]	Li aliu riualig [31]	Kau, J. et al. [44]
GeoAI platforms				Iyer, C. V. K. et al. [20]
and systems				
Data generation				Chen, Y. et al. [32]

Hu, Y., Gao. S., Lunga, D., Li, W., Newsam, S., and Bhaduri, B. (2019) GeoAl at ACM SIGSPATIAL: Progress, Challenges, and Future Directions. *ACM Newsletter*.

GeoAI Moonshot

- What is the current state-of-the-art in integrating results from Al research into GIScience?
- What are the historical roots of GeoAl?
- Are there core topics that jointly drive this emerging community forward?

Moonshot: Can we develop an artificial GIS analyst that passes a domain-specific Turing Test by 2030?

GeoAI for Science and the Science of GeoAI

JOURNAL OF SPATIAL INFORMATION SCIENCE

HOME / ARCHIVES / NO. 29 (2024) / Invited Articles

GeoAl for Science and the Science of GeoAl

Wenwen Li

Arizona State University

Samantha T. Arundel

United States Geological Survey

Song Gao

University of Wisconsin - Madison

Michael F. Goodchild

University of California, Santa Barbara

Yingjie Hu

SUNY Buffalo

Shaowen Wang

University of Illinois Urbana-Champaign

Alexander Zipf

University of Heidelberg

DOI: https://doi.org/10.5311/JOSIS.2024.29.349

(Li et al. 2024)

Ethics of GeoAl

- Independent research (Who benefits)
- Minimizing socioeconomic risks
- Participants and their rights
- Confidentiality and anonymity
- Results dissemination, findability, interoperability, reusability

Janowicz (2023, Chapter 3, Handbook of GeoAI);

Sustainability of GeoAl

- Carbon emissions, energy and water consumption in AI model training
- Inter-generational prioritization of how to utilize resources across space (think spatially and sustainably)

Janowicz (2023, Chapter 3, Handbook of GeoAl); Shi et al. (2023, AGILE)

Biases of GeoAl

- Model bias (data, population demographics, global vs. local)
- Perception bias (experience, local knowledge)

Kang et al. (2023, Landscape and Urban Planning)

Geography According to ChatGPT

The distance between Ukraine and Russia according to Google Search and ChatGPT. Note that ChatGPT also changes the border length across queries. The proper answer should be **zero**, even though ChatGPT makes a very convincing statement that at the border where both countries touch, their distance is 5 miles.