Spectral theory, Volterra integral operators and the Sturm-Liouville theorem

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

December 5, 2016

1 Banach algebras

Let A be a complex Banach algebra with unit element e. Let G(A) be the set of invertible elements of A. For $x \in A$, the **resolvent set of** x is

$$\rho(x) = \{ \lambda \in \mathbb{C} : \lambda e - x \in G(A) \}.$$

The **spectrum of** x is

$$\sigma(x) = \mathbb{C} \setminus \rho(x) = \{ \lambda \in \mathbb{C} : \lambda e - x \not\in G(A) \}.$$

The spectral radius of x is

$$r(x) = \sup\{|\lambda| : \lambda \in \sigma(x)\}.$$

One proves that $\sigma(x) \subset \mathbb{C}$ is compact and nonempty and

$$r(x) = \lim_{n \to \infty} \left\| x^n \right\|^{1/n},$$

the spectral radius formula.¹ If r(x) = 0 we say that x is quasinilpotent.² $x \in A$ is quasinilpotent if and only if $\sigma(x) = \{0\}$.

Lemma 1. If $x \in A$ is quasinilpotent and $|\lambda| > 0$, then $S_n = \sum_{j=0}^n \lambda^j x^j \in A$ is a Cauchy sequence, and

$$(e - \lambda x) \sum_{n=0}^{\infty} \lambda^n x^n = e.$$

¹Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.

²We say that $x \in A$ is **nilpotent** if there is some $n \ge 1$ such that $x^n = 0$, and if x is nilpotent then by the spectral radius formula, x is quasinilpotent.

Proof. Let $0 < \epsilon < |\lambda|^{-1}$. There is some n_{ϵ} such that $||x^n||^{1/n} \le \epsilon$ for $n \ge n_{\epsilon}$. For $n > m \ge n_{\epsilon}$,

$$||S_n - S_m|| \le \sum_{j=m+1}^n |\lambda|^j ||x^j|| \le \sum_{j=m+1} |\lambda|^j \epsilon^j,$$

and because $|\lambda|\epsilon < 1$, it follows that $S_n \in A$ is a Cauchy sequence and so converges to some $S \in A$, $S = \sum_{n=0}^{\infty} \lambda^k x^k$. Now,

$$(e - \lambda x)S = (e - \lambda x)S_n + (e - \lambda x)(S - S_n)$$

$$= S_n - \lambda xS_n + (e - \lambda x)(S - S_n)$$

$$= S_n - \sum_{j=1}^{n+1} \lambda^j x^j + (e - \lambda x)(S - S_n)$$

$$= e - \lambda^{n+1} x^{n+1} + (e - \lambda x)(S - S_n).$$

Because x is quasinilpotent it follows that $||(e - \lambda x)S - e|| \to 0$.

For $x \in A$ and $\lambda \in \rho(x)$, let

$$R_x(\lambda) = (x - \lambda e)^{-1}$$
.

Lemma 2. If $x \in A$ is quasinilpotent and $\lambda \in \mathbb{C}$ then

$$(e - \lambda x)^{-1} = \sum_{n=0}^{\infty} \lambda^n x^n$$

and if $|\lambda| > 0$ then

$$R_x(\lambda) = -\lambda^{-1} (e - \lambda^{-1} x)^{-1} = -\lambda^{-1} \sum_{n=0}^{\infty} \lambda^{-n} x^n.$$

2 Volterra integral operators

Let I=[0,1] and let μ be Lebesgue measure on I. C(I) is a Banach space with the norm

$$||f||_{\infty} = \sup_{x \in I} |f(x)|, \qquad f \in C(I).$$

 $L^1(I)$ is a Banach space with the norm

$$||f||_{L^1} = \int_I |f(x)| dx, \qquad f \in L^1(I).$$

For $f: I \to \mathbb{C}$, let

$$|f|_{\text{Lip}} = \sup_{x,y \in I, x \neq y} \frac{|f(x) - f(y)|}{|x - y|}.$$

Let $\operatorname{Lip}(I)$ be the set of those $f: I \to \mathbb{C}$ with $|f|_{\operatorname{Lip}} < \infty$. It is a fact that $\operatorname{Lip}(I)$ is a Banach space with the norm $||f||_{\operatorname{Lip}} = ||f||_{\infty} + |f|_{\operatorname{Lip}}$.

$$\operatorname{Lip}(I) \subset C(I) \subset L^1(I)$$
.

 $A=\mathcal{L}(C(I))$ is a Banach algebra with unit element e(f)=f and with the operator norm:

$$||T|| = \sup_{f \in C(I), ||f||_{\infty} \le 1} ||Tf||_{\infty}, \quad T \in A.$$

For $K: I \times I \to \mathbb{C}$ and for $x, y \in I$ define

$$K_x(y) = K(x, y), \qquad K^y(x) = K(x, y).$$

Let $K \in C(I \times I)$. For $f \in L^1(I)$ define $V_K f : I \to \mathbb{C}$ by

$$V_K f(x) = \int_0^x K(x, y) f(y) dy, \qquad x \in I.$$

Lemma 3. If $K \in C(I \times I)$ and $f \in C(I)$ then $V_K f \in C(I)$.

Proof. For $x_1, x_2 \in I, x_1 > x_2,$

$$V_K f(x_1) - V_K f(x_2) = \int_0^{x_1} K(x_1, y) f(y) dy - \int_0^{x_1} K(x_2, y) f(y) dy + \int_0^{x_1} K(x_2, y) f(y) dy - \int_0^{x_2} K(x_2, y) f(y) dy = \int_0^{x_1} \left[K(x_1, y) - K(x_2, y) \right] f(y) dy + \int_{x_2}^{x_1} K(x_2, y) f(y) dy.$$

Let $\epsilon > 0$. Because $K: I \times I \to \mathbb{C}$ is uniformly continuous, there is some $\delta_1 > 0$ such that $|(x_1, y_1) - (x_2, y_2)| \le \delta_1$ implies $|K(x_1, y_1) - K(x_2, y_2)| \le \epsilon$. By the absolute continuity of the Lebesgue integral, there is some $\delta_2 > 0$ such that $\mu(E) \le \delta_2$ implies $\int_E |f| d\mu \le \epsilon$. Therefore if $|x_1 - x_2| < \delta = \min(\delta_1, \delta_2)$ then

$$|V_K f(x_1) - V_K f(x_2)| \le \int_0^{x_1} \epsilon |f(y)| dy + ||K||_{\infty} \int_{x_2}^{x_1} |f(y)| dy$$

$$\le \epsilon ||f||_{L^1} + ||K||_{\infty} \epsilon.$$

It follows that $V_K f: I \to \mathbb{C}$ is uniformly continuous, so $V_K f \in C(I)$.

 $\|V_K f\|_{\infty} \leq \|K\|_{\infty} \|f\|_{\infty}$ so $\|V_K\| \leq \|K\|_{\infty}$, hence $V_K : C(I) \to C(I)$ is a bounded linear operator, namely $V_K \in A$. We call V_K a **Volterra integral operator**.

³Walter Rudin, Real and Complex Analysis, third ed., p. 113, Exercise 11.

⁴http://individual.utoronto.ca/jordanbell/notes/L0.pdf, p. 8, Theorem 8.

For $x \in I$,

$$V_K^2 f(x) = \int_0^x K(x, y_1) V_K f(y_1) dy_1 = \int_0^x K(x, y_1) \left(\int_0^{y_1} K(y_1, y_2) f(y_2) dy_2 \right) dy_1.$$

$$\begin{split} V_K^3 f(x) &= V_K^2 V_K f(x) \\ &= \int_0^x K(x, y_1) \int_0^{y_1} K(y_1, y_2) V_K f(y_2) dy_2 dy_1 \\ &= \int_0^x K(x, y_1) \int_0^{y_1} K(y_1, y_2) \int_0^{y_2} K(y_2, y_3) f(y_3) dy_3 dy_2 dy_1. \end{split}$$

For $n \geq 2$,

$$V_K^n f(x) = \int_{y_1=0}^x \int_{y_2=0}^{y_1} \cdots \int_{y_n=0}^{y_{n-1}} K(x, y_1) K(y_1, y_2) \cdots K(y_{n-1}, y_n) f(y_n) dy_n \cdots dy_1.$$

We prove that V_K is quasinilpotent.⁵

Theorem 4. If $K \in C(I \times I)$ then

$$||V_K^n|| \le \frac{||K||_{\infty}^n}{n!},$$

and thus $V_K \in A = \mathcal{L}(C(I))$ is quasinilpotent.

Proof. Let

$$\Phi_n(x) = \int_0^x \int_0^{y_1} \cdots \int_0^{y_{n-1}} dy_n \cdots dy_1
= \int_0^x \int_0^{y_1} \cdots \int_0^{y_{n-2}} y_{n-1} dy_{n-1} \cdots dy_1
= \int_0^x \int_0^{y_1} \cdots \int_0^{y_{n-3}} \frac{y_{n-2}^2}{2} dy_{n-2} \cdots dy_1
= \int_0^x \frac{y_1^{n-1}}{(n-1)!} dy_1
= \frac{x^n}{n!}.$$

For $x \in I$,

$$|V_K^n f(x)| \le ||K||_{\infty}^n ||f||_{\infty} \int_0^x \int_0^{y_1} \cdots \int_0^{y_{n-1}} dy_n \cdots dy_1$$

$$= ||K||_{\infty}^n ||f||_{\infty} \Phi_n(x)$$

$$= ||K||_{\infty}^n ||f||_{\infty} \frac{x^n}{n!}.$$

 $^{^5{\}rm Barry~Simon},~Operator~Theory.~A~Comprehensive~Course~in~Analysis,~Part~4,~p.~53,~Example~2.2.13.$

Hence

$$||V_K^n|| \leq \frac{||K||_{\infty}^n}{n!}.$$

Then

$$\|V_K^n\|^{1/n} \le \frac{\|K\|_{\infty}}{(n!)^{1/n}}.$$

Using $(n!)^{1/n} \to \infty$ we get $\|V_K^n\|^{1/n} \to 0$. Thus $V_K \in A$ is quasinilpotent.

Theorem 4 tells us that V_K is quasinilpotent and then Lemma 2 then tells us that for $\lambda \in \mathbb{C}$,

$$(e - \lambda V_K)^{-1} = \sum_{n=0}^{\infty} \lambda^n V_K^n \in A.$$
 (1)

3 Sturm-Liouville theory

Let $Q \in C(I)$ and for $u \in C^2(I)$ define

$$L_Q u = -u'' + Q u.$$

Lemma 5. If $u \in C^2(I)$ and

$$L_Q u = 0,$$
 $u(0) = 0,$ $u'(0) = 1,$

then

$$u(x) = x + \int_0^x (x - y)Q(y)u(y)dy, \qquad x \in I.$$

Proof. For $y \in I$, by the fundamental theorem of calculus⁶ and using u'(0) = 1,

$$\int_0^y u''(t)dt = u'(y) - u'(0) = u'(y) - 1.$$

Using $L_Q u = 0$,

$$u'(y) = 1 + \int_0^y u''(t)dt = 1 + \int_0^y Q(t)u(t)dt.$$

For $x \in I$, by the fundamental theorem of calculus and using u(0) = 0,

$$\int_0^x u'(y)dy = u(x) - u(0) = u(x).$$

Thus

$$u(x) = \int_0^x u'(y)dy$$

=
$$\int_0^x \left(1 + \int_0^y Q(t)u(t)dt\right)dy$$

=
$$x + \int_0^x \left(\int_0^y Q(t)u(t)dt\right)dy.$$

 $^{^6}$ Walter Rudin, Real and Complex Analysis, third ed., p. 149, Theorem 7.21.

Applying Fubini's theorem,

$$u(x) = x + \int_0^x Q(t)u(t) \left(\int_t^x dy\right) dt$$
$$= x + \int_0^x Q(t)u(t)(x - t)dt.$$

Lemma 6. If $u \in C(I)$ and

$$u(x) = x + \int_0^x (x - y)Q(y)u(y)dy, \qquad x \in I,$$

then $u \in C^2(I)$ and

$$L_Q u = 0,$$
 $u(0) = 0,$ $u'(0) = 1.$

Proof.

$$u(x) = x + \int_0^x (x - y)Q(y)u(y)dy, \qquad x \in I,$$

then

$$u(x) = x + x \int_0^x Q(y)u(y)dy - \int_0^x yQ(y)u(y)dy,$$

and using the fundamental theorem of calculus,

$$u'(x) = 1 + \int_0^x Q(y)u(y)dy + xQ(x)u(x) - xQ(x)u(x) = 1 + \int_0^x Q(y)u(y)dy$$

hence

$$u''(x) = Q(x)u(x),$$

and so

$$L_Q u = -u'' + Q u = -Q u + Q u = 0.$$

u(0) = 0 and u'(0) = 1, so

$$L_Q u = 0,$$
 $u(0) = 0,$ $u'(0) = 1.$

Lemma 7. Let $Q \in C(I)$ and let K(x,y) = (x-y)Q(y), $K \in C(I \times I)$. Let $u_0(x) = x$, $u_0 \in C(I)$. Then $\sum_{j=0}^n V_K^j$ is a Cauchy sequence in $A = \mathcal{L}(C(I))$, and $u = \sum_{n=0}^\infty V_K^n u_0 \in C(I)$ satisfies $u = (e - V_K)^{-1} u_0$.

Proof. $V_K \in C(I)$ is quasinilpotent so applying (1) with $\lambda = 1$,

$$(e - V_K)^{-1} = \lim_{n \to \infty} \sum_{j=0}^{n} V_K^j \in A.$$

Then

$$(e - V_K)^{-1} u_0 = \left(\lim_{n \to \infty} \sum_{j=0}^n V_K^j \right) u_0 = \lim_{n \to \infty} (V_K^j u_0) = \sum_{n=0}^\infty V_K^n u_0.$$

Hence $u = (1 - V_K)^{-1}u_0$, and so $(1 - V_K)u = u_0$, i.e. $u = u_0 + V_K u$, i.e. for $x \in I$,

$$u(x) = u_0(x) + \int_0^x K(x, y)u(y)dy.$$

Theorem 8. Let $Q \in C(I)$ and let K(x,y) = (x-y)Q(y), $K \in C(I \times I)$. Let $u_0(x) = x$, $u_0 \in C(I)$. Then $\sum_{j=0}^n V_K^j$ is a Cauchy sequence in $A = \mathcal{L}(C(I))$, and $u = \sum_{n=0}^{\infty} V_K^n u_0 \in C(I)$ satisfies $u \in C^2(I)$,

$$L_Q u = 0,$$
 $u(0) = 0,$ $u'(0) = 1.$

Proof. By Lemma 7, $u=(e-V_K)^{-1}u_0$, i.e. $(e-V_K)u=u_0$, i.e. $u-V_Ku=u_0$, i.e. for $x\in I$,

$$u(x) = x + V_K u(x) = x + \int_0^x K(x, y)u(y)dy = x + \int_0^x (x - y)Q(y)u(y)dy.$$

Lemma 6 then tells us that $u \in C^2(I)$ and

$$L_O u = 0,$$
 $u(0) = 0,$ $u'(0) = 1.$

4 Gronwall's inequality

Let $f \in L^1(I)$. We say that $x \in I$ is a **Lebesgue point of** f if

$$\frac{1}{r} \int_{x}^{x+r} |f(y) - f(x)| dy \to 0, \qquad r \to 0,$$

which implies

$$\frac{1}{r} \int_{x}^{x+r} f(y) dy \to f(x), \qquad r \to 0.$$

The **Lebesgue differentiation theorem**⁷ states that for almost all $x \in I$, x is a Lebesgue point of f. Let

$$F(x) = \int_0^x f(y)dy, \qquad x \in I,$$

SO

$$F(x+r) - F(x) = \int_{x}^{x+r} f(y)dy.$$

If x is a Lebesgue point of f then

$$\frac{F(x+r) - F(x)}{r} = \frac{1}{r} \int_{x}^{x+r} f(y) dy \to f(x),$$

which means that if x is a Lebesgue point of f then

$$F'(x) = f(x)$$
.

We now prove Gronwall's inequality.8

Theorem 9 (Gronwall's inequality). Let $g \in L^1(I)$, $g \ge 0$ almost everywhere and let $f: I \to \mathbb{R}$ be continuous. If $y: I \to \mathbb{R}$ is continuous and

$$y(t) \le f(t) + \int_0^t g(s)y(s)ds, \qquad t \in I,$$

then

$$y(t) \le f(t) + \int_0^t f(s)g(s) \exp\left(\int_s^t g(u)du\right) ds, \qquad t \in I.$$

If f is increasing then

$$y(t) \le f(t) \exp\left(\int_0^t g(s)ds\right), \quad t \in I.$$

Proof. Let z(t) = g(t)y(t) and

$$Z(t) = \int_0^t z(s)ds, \qquad t \in I.$$

By hypothesis, $g \ge 0$ almost everywhere, and by the Lebesgue differentiation theorem, Z'(t) = z(t) for almost all $t \in I$. Therefore for almost all $t \in I$,

$$Z'(t) = z(t) = g(t)y(t) \le g(t) \left(f(t) + \int_0^t g(s)y(s)ds \right) = g(t)f(t) + g(t)Z(t).$$

That is, there is a Borel set $E\subset I,\ \mu(E)=1,$ such that for $t\in I,\ Z$ is differentiable at t and

$$Z'(t) - g(t)Z(t) \le g(t)f(t).$$

⁷Walter Rudin, *Real and Complex Analysis*, third ed., p. 138, Theorem 7.7

⁸Anton Zettl, Sturm-Liouville Theory, p. 8, Theorem 1.4.1.

For $s \in E$, using the product rule,

$$\left[\exp\left(-\int_0^s g(u)du\right)Z(s)\right]' = \exp\left(-\int_0^s g(u)du\right)\left[Z'(s) - g(t)Z(s)\right].$$

For $t \in I$, as $\mu(E) = 1$,

$$\int_0^t \left[\exp\left(-\int_0^s g(u)du\right) Z(s) \right]' ds$$

$$= \int_{[0,t]\cap E} \left[\exp\left(-\int_0^s g(u)du\right) Z(s) \right]' ds$$

$$= \int_{[0,t]\cap E} \exp\left(-\int_0^s g(u)du\right) \left[Z'(s) - g(s)Z(s) \right] ds$$

$$\leq \int_{[0,t]\cap E} \exp\left(-\int_0^s g(u)du\right) g(s)f(s)ds$$

$$= \int_0^t g(s)f(s) \exp\left(-\int_0^s g(u)du\right) ds.$$

But

$$\int_0^t \left[\exp\left(-\int_0^s g(u)du\right) Z(s) \right]' ds = \left[\exp\left(-\int_0^s g(u)du\right) Z(s) \right]_0^t$$
$$= \exp\left(-\int_0^t g(u)du\right) Z(t).$$

So

$$\exp\left(-\int_0^t g(u)du\right)Z(t) \le \int_0^t g(s)f(s)\exp\left(-\int_0^s g(u)du\right)ds.$$

Therefore,

$$y(t) \le f(t) + \int_0^t g(s)y(s)ds$$

$$= f(t) + Z(t)$$

$$\le f(t) + \exp\left(\int_0^t g(u)du\right) \int_0^t g(s)f(s) \exp\left(-\int_0^s g(u)du\right) ds$$

$$= f(t) + \int_0^t g(s)f(s) \exp\left(\int_0^t g(u)du - \int_0^s g(u)du\right) ds$$

$$= f(t) + \int_0^t g(s)f(s) \exp\left(\int_s^t g(u)du\right) ds.$$

Suppose that f is increasing. Let

$$G(s) = \int_0^s g(u)du, \quad s \in I.$$

For $t \in I$,

$$\begin{split} y(t) &\leq f(t) + \int_0^t g(s)f(s) \exp\left(\int_s^t g(u)du\right) ds \\ &\leq f(t) + \int_0^t g(s)f(t) \exp\left(\int_s^t g(u)du\right) ds \\ &= f(t) \left[1 + \int_0^t g(s) \exp\left(\int_s^t g(u)du\right) ds\right] \\ &= f(t) \left[1 + \int_0^t g(s)e^{G(t) - G(s)} ds\right] \\ &= f(t) \left[1 + e^{G(t)} \int_0^t g(s)e^{-G(s)} ds\right]. \end{split}$$

Let $H(s) = e^{-G(s)}$, with which

$$y(t) \le f(t) \left[1 + \frac{1}{H(t)} \int_0^t g(s)H(s)ds \right].$$

If s is a Lebesgue point of g then

$$H'(s) = -G'(s)e^{-G(s)} = -g(s)H(s).$$

Hence

$$\begin{split} y(t) &\leq f(t) \left[1 - \frac{1}{H(t)} \int_0^t H'(s) ds \right] \\ &= f(t) \left[1 - \frac{1}{H(t)} \left[H(t) - H(0) \right] \right] \\ &= f(t) \left[1 - 1 + \frac{H(0)}{H(t)} \right] \\ &= f(t) e^{G(t)} \\ &= f(t) \exp \left(\int_0^t g(u) du \right). \end{split}$$

Let K(x,y)=(x-y)Q(y). Let $u=\sum_{n=0}^{\infty}V_K^nu_0\in C(I)$. Lemma 7 tells us that $u=(e-V_K)^{-1}u_0$, i.e. $(e-V_K)u=u_0$, i.e. $u=u_0+V_Ku$, i.e. for $x\in I$,

$$u(x) = x + \int_0^x (x - y)Q(y)u(y)dy.$$

Then

$$|u(x)| \le x + \int_0^x |x - y||Q(y)||u(y)|dy \le x + \int_0^x |Q(y)||u(y)|dy.$$

Applying Gronwall's inequality we get

$$|u(x)| \le x \exp\left(\int_0^x |Q(y)| dy\right), \qquad x \in I.$$
 (2)

5 The spectral theorem for positive compact operators

The following is the spectral theorem for positive compact operators.⁹

Theorem 10 (Spectral theorem for positive compact operators). Let H be a separable complex Hilbert space and let $T \in \mathcal{L}(H)$ be positive and compact. There are countable sets $\Phi, \Psi \subset H$ and $\lambda_{\phi} > 0$ for $\phi \in \Phi$ such that (i) $\Phi \cup \Psi$ is an orthonormal basis for H, (ii) $T\phi = \lambda_{\phi}\phi$ for $\phi \in \Phi$, (iii) $T\psi = 0$ for $\psi \in \Psi$, (iv) if Φ is infinite then 0 is a limit point of Λ and is the only limit point of Λ .

Suppose that H is infinite dimensional and that T is a positive compact operator with $\ker(T)=0$. The spectral theorem for positive compact operators then says that there is a a countable set $\Phi\subset H$ and $\lambda_{\phi}>0$ for $\phi\in\Phi$ such that Φ is an orthonormal basis for H, $T\phi=\lambda_{\phi}\phi$ for $\phi\in\Phi$, and the unique limit point of $\{\lambda_{\phi}:\phi\in\Phi\}$ is 0. Let $\Phi=\{\phi_n:n\geq 1\},\,\phi_n\neq\phi_m$ for $n\geq m$, such that $n\geq m$ implies $\lambda_{\phi_n}\leq\lambda_{\phi_m}$. Let $\lambda_n=\lambda_{\phi_n}$. Then $\lambda_n\downarrow 0$. Summarizing, there is an orthonormal basis $\{\phi_n:n\geq 1\}$ for H and $\lambda_n>0$ such that $T\phi_n=\lambda_n\phi_n$ for $n\geq 1$ and $\lambda_n\downarrow 0$.

6 Q > 0, Green's function for L_Q

Suppose $Q \in C(I)$ with Q(x) > 0 for 0 < x < 1. Let K(x,y) = (x-y)Q(y), $K \in C(I \times I)$, and $u_0(x) = x$, $u_0 \in C(I)$. Let

$$u = \sum_{n=0}^{\infty} V_K^n u_0 \in C(I).$$

By Theorem 8, $u \in C^2(I)$ and

$$L_O u = 0,$$
 $u(0) = 0,$ $u'(0) = 1.$

If $f \in C(I)$ and f(x) > 0 for 0 < x < 1 then

$$V_K f(x) = \int_0^x (x - y)Q(y)f(y)dy > 0.$$

By induction, for 0 < x < 1 and for $n \ge 1$ we have $V_K^n f(x) > 0$. Hence for 0 < x < 1,

$$u(x) = \sum_{n=0}^{\infty} (V_K^n u_0)(x) > 0.$$

For $x \in I$,

$$u(x) = x + \int_0^x (x - y)Q(y)u(y)dy = x + x \int_0^x Q(y)u(y)dy - \int_0^x yQ(y)u(y)dy.$$

⁹Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 102, Theorem 3.2.1.

Using the fundamental theorem of calculus,

$$u'(x) = 1 + \int_0^x Q(y)u(y)dy.$$

Then because Q(y) > 0 for 0 < y < 1 and u(y) > 0 for 0 < y < 1,

$$u'(x) > 1,$$
 $0 < x < 1.$

Using $u(x) = x + \int_0^x (x - y)Q(y)u(y)dy$ and Q > 0 we get

$$u(x) > x$$
, $0 < x < 1$.

Let $u_1(x) = u(x)$ and $u_2(x) = u(1-x)$. Then

$$L_Q u_1 = 0,$$
 $u_1(0) = 0,$ $u_1'(0) = 1$

and

$$L_O u_2 = 0,$$
 $u_2(1) = 0,$ $u_2'(1) = -1.$

A fortiori,

$$u_1(x) > 0,$$
 $u'_1(x) > 0,$ $0 < x < 1,$

and as $u_2'(x) = -u'(1-x)$,

$$u_2(x) > 0,$$
 $u_2'(x) < 0,$ $0 < x < 1.$

For 0 < x < 1 let

$$W(x) = u_1'(x)u_2(x) - u_1(x)u_2'(x).$$

 $u'_1 > 0, u_2 > 0$ so $u'_1 u_2 > 0$. $u_1 > 0, u'_2 < 0$ so $-u_1 u'_2 > 0$, hence W > 0.

$$W' = (u'_1u_2 - u_1u'_2)'$$

$$= u''_1u_2 + u'_1u'_2 - u'_1u'_2 - u_1u''_2$$

$$= u''_1u_2 - u_1u''_2$$

$$= (Qu_1)u_2 - u_1(Qu_2)$$

$$= 0.$$

Therefore there is some $W_0 > 0$ such that $W(x) = W_0$ for all 0 < x < 1.

Define

$$G(x,y) = \frac{u_1(x \wedge y)u_2(x \vee y)}{W_0}, \quad (x,y) \in I \times I.$$

 $x \wedge y = \min(x,y), \ x \vee y = \max(x,y).$ Because $(x,y) \mapsto x \wedge y$ and $(x,y) \mapsto x \vee y$ are each continuous $I \times I \to I$, it follows that $G \in C(I \times I)$. G(x,y) = G(y,x).

G is the Green's function for L_Q . Let $(x,y) \in I \times I$. If x > y then

$$G^{y}(x) = \frac{u_1(y)u_2(x)}{W_0}$$

and so

$$L_Q G^y(x) = \frac{u_1(y)}{W_0} L_Q u_2(x) = 0.$$

If x < y then

$$G^{y}(x) = \frac{u_1(x)u_2(y)}{W_0}$$

and so

$$L_Q G^y(x) = \frac{u_2(y)}{W_0} L_Q u_1(x) = 0.$$

$Q > 0, L^2(I)$

 $L^{2}(I)$ is a separable complex Hilbert space with the inner product

$$\langle f, g \rangle = \int_{I} f \overline{g} d\mu, \qquad f, g \in L^{2}(I).$$

Define $T_Q: L^2(I) \to L^2(I)$ by

$$(T_Q g)(x) = \int_I G(x, y)g(y)dy.$$

 $T_Q:L^2(I)\to L^2(I)$ is a Hilbert-Schmidt operator. To It is immediate that G(y,x)=G(x,y) and $\overline{G}=G$. Then by Fubini's theorem, for $f, g \in L^2(I)$,

$$\begin{split} \langle T_Q g, f \rangle &= \int_I (T_Q g)(x) \overline{f(x)} dx \\ &= \int_I \left(\int_I G(x, y) g(y) dy \right) \overline{f(x)} dx \\ &= \int_I g(y) \overline{\left(\int_I G(y, x) f(x) dx \right)} dy \\ &= \int_I g(y) \overline{\left(T_Q f)(y) dy} \\ &= \langle g, T_Q f \rangle \,. \end{split}$$

Therefore $T_Q: L^2(I) \to L^2(I)$ is self-adjoint. We now establish properties of T_Q .¹¹ Let

$$N^k(I) = \{ f \in C^k(I) : f(0) = 0, f(1) = 0 \}.$$

¹⁰Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 96, Theorem 3.1.16.

¹¹Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 106, Proposition 3.2.8.

Lemma 11. Let $Q \in C(I)$, Q(x) > 0 for 0 < x < 1. Let $g \in L^2(I)$ and let $f = T_Q g$,

$$f(x) = (T_Q g)(x) = \int_I G(x, y)g(y)dy = \int_I G_x g d\mu.$$

Then $f \in N^0(I)$.

If $g \in C(I)$ then $f \in C^2(I)$ and

$$L_Q f = g$$
.

Proof. For $x \in I$,

$$f(x) = \int_0^x \frac{u_1(x \wedge y)u_2(x \vee y)}{W_0} g(y)dy + \int_x^1 \frac{u_1(x \wedge y)u_2(x \vee y)}{W_0} g(y)dy$$
$$= \int_0^x \frac{u_1(y)u_2(x)}{W_0} g(y)dy + \int_x^1 \frac{u_1(x)u_2(y)}{W_0} g(y)dy$$
$$= u_2(x) \int_0^x \frac{u_1(y)g(y)}{W_0} dy + u_1(x) \int_x^1 \frac{u_2(y)g(y)}{W_0} dy.$$

It follows that $f \in C(I)$.

Suppose $g \in C(I)$. Then by the fundamental theorem of calculus,

$$f'(x) = u'_2(x) \int_0^x \frac{u_1(y)g(y)}{W_0} dy + u_2(x) \frac{u_1(x)g(x)}{W_0}$$

$$+ u'_1(x) \int_x^1 \frac{u_2(y)g(y)}{W_0} dy - u_1(x) \frac{u_2(x)g(x)}{W_0}$$

$$= u'_2(x) \int_0^x \frac{u_1(y)g(y)}{W_0} dy + u'_1(x) \int_x^1 \frac{u_2(y)g(y)}{W_0} dy.$$

Because $u'_1, u'_2 \in C(I)$ it follows that $f' \in C(I)$, i.e. $f \in C^1(I)$. Then

$$f''(x) = u_2''(x) \int_0^x \frac{u_1(y)g(y)}{W_0} dy + u_2'(x) \frac{u_1(x)g(x)}{W_0}$$

$$+ u_1''(x) \int_x^1 \frac{u_2(y)g(y)}{W_0} dy - u_1'(x) \frac{u_2(x)g(x)}{W_0}$$

$$= u_2''(x) \int_0^x \frac{u_1(y)g(y)}{W_0} dy + u_1''(x) \int_x^1 \frac{u_2(y)g(y)}{W_0} dy - \frac{W(x)g(x)}{W_0}$$

$$= u_2''(x) \int_0^x \frac{u_1(y)g(y)}{W_0} dy + u_1''(x) \int_x^1 \frac{u_2(y)g(y)}{W_0} dy - g(x).$$

Because $g \in C(I)$ it follows that $f'' \in C(I)$, i.e. $f \in C^2(I)$. Furthermore, because $u_1'' = Qu_1$ and $u_2'' = Qu_2$,

$$f''(x) = Q(x)u_2(x) \int_0^x \frac{u_1(y)g(y)}{W_0} dy + Q(x)u_1(x) \int_x^1 \frac{u_2(y)g(y)}{W_0} dy - g(x)$$

= $Q(x)f(x) - g(x)$.

We now establish more facts about T_O .¹²

Lemma 12. Let $Q \in C(I)$, Q(x) > 0 for 0 < x < 1.

1. If $f_1, f_2 \in N^2(I)$ then

$$\int_{I} f_1 L_Q f_2 dx = \int_{I} (f_1' f_2' + Q f_1 f_2) dx.$$

- 2. If $f \in N^2(I)$ and $L_Q f = 0$, then f = 0.
- 3. If $f \in N^2(I)$ then $f = T_O L_O f$.
- 4. $T_O \ge 0$.
- 5. $\ker T_Q = 0$.

Proof. First, doing integration by parts,

$$\int_{I} f_{1}(-f_{2}'' + Qf_{2})dx = -\int_{\partial I} f_{1}f_{2}' + \int_{I} f_{1}'f_{2}'dx + \int_{I} Qf_{1}f_{2}dx$$

$$= \int_{I} f_{1}'f_{2}'dx + \int_{I} Qf_{1}f_{2}dx$$

$$= \int_{I} (f_{1}'f_{2}' + Qf_{1}f_{2})dx.$$

Second, using the above with $f_1 = f$ and $f_2 = f$, with $f \in C^2(I)$ real-valued,

$$\int_{I} f(-f'' + Qf) dx = \int_{I} (|f'|^{2} + Q|f|^{2}) dx.$$

Using -f'' + Qf = 0,

$$\int_{I} (|f'|^2 + Q|f|^2) dx = 0.$$

Because Q(x) > 0 for 0 < x < 1, it follows that |f| = 0 almost everywhere. But f is continuous so f = 0. For $f = f_1 + if_2$, if -f'' + Qf = 0 and f(0) = 0, f(1) = 0 then as Q is real-valued, we get $f_1 = 0$ and $f_2 = 0$ hence f = 0.

Third, say $f \in C^2(I)$ is real-valued, f(0) = 0, f(1) = 0, and $g = L_Q f = -f'' + Q f \in C(I)$. Let $h = T_Q g$. By Lemma 11, $h \in C^2(I)$ and

$$-h'' + Qh = g,$$
 $h(0) = 0,$ $h(1) = 0.$

Let F = f - h. Then using -f'' + Qf = g we get

$$F'' = f'' - h'' = (Qf - q) - (Qh - q) = Q(f - h) = QF.$$

 $^{^{12} \}mathrm{Barry}$ Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 107, Proposition 3.2.9.

Furthermore,

$$F(0) = f(0) - h(0) = 0 - 0 = 0,$$
 $F(1) = f(1) - h(1) = 0 - 0 = 0.$

Because f is real-valued so is g, and because g is real-valued it follows that $h=T_Qg$ is real-valued. Thus F is real-valued and so by the above, F=0. That is, f=h, i.e. $f=T_Qg$. For $f=f_1+if_2$, if f(0)=0, f(1)=0 and g=-f''+Qf, let $g=g_1+ig_2$. As Q is real-valued we get $g_1=-f_1''+Qf_1$ and $g_2=-f_2''+Qf_2$. Then $f_1=T_Qg_1$ and $f_2=T_Qg_2$. Thus

$$f = f_1 + if_2 = T_O g_1 + iT_O g_2 = T_O (g_1 + ig_2) = T_O g_2$$

Fourth, let $g \in C(I)$ and let $f = T_Q g$. By Lemma 11, $f \in C^2(I)$ and

$$-f'' + Qf = g,$$
 $f(0) = 0,$ $f(1) = 0.$

Then using the above,

$$\langle g, T_Q g \rangle = \langle -f'' + Qf, f \rangle$$

$$= \int_I (-f'' + Qf) \overline{f} dx$$

$$= \int_I (\overline{f}' f' + Q \overline{f} f) dx$$

$$= \int_I (|f'|^2 + Q|f|^2) dx.$$

Because $Q \geq 0$ we have $\langle g, T_Q g \rangle \geq 0$. For $g \in L^2(I)$ let $g_n \in C(I)$ with $\|g_n - g\|_{L^2} \to 0$. Then $\langle g_n, T_Q g_n \rangle \to \langle g, T_Q g \rangle$ as $n \to \infty$, and because $\langle g_n, T_Q g_n \rangle \geq 0$ it follows that $\langle g, T_Q g \rangle \geq 0$. Therefore $T_Q \geq 0$, namely T_Q is a positive operator.

Let $f \in N^2$ and let g = -f'' + Qf. Then $f = T_Q g$. This means that $N^2 \subset \operatorname{Ran}(T_Q)$. One checks that N^2 is dense in $L^2(I)$, so $\operatorname{Ran}(T_Q)$ is dense in $L^2(I)$. If $f \in \ker(T_Q)$ and $g \in L^2(I)$ then $\langle f, T_Q^* g \rangle = \langle T_Q f, g \rangle = 0$. Hence $\ker(T_Q) \perp \operatorname{Ran}(T_Q^*)$. But T_Q is self-adjoint which implies that $\ker(T_Q) \perp \operatorname{Ran}(T_Q)$. Because $\operatorname{Ran}(T_Q)$ is dense in $L^2(I)$ it follows that $\ker(T_Q) = 0$. \square

We now prove the Sturm-Liouville theorem. 13

Theorem 13 (Sturm-Liouville theorem). Let $Q \in C(I)$, Q(x) > 0 for 0 < x < 1. There is an orthonormal basis $\{u_n : n \ge 1\} \subset N^2(I)$ for $L^2(I)$ and $\lambda_n > 0$, $\lambda_m < \lambda_n$ for m < n and $\lambda_n \to \infty$, such that

$$L_Q u_n = \lambda_n u_n, \qquad n \ge 1.$$

¹³Barry Simon, Operator Theory. A Comprehensive Course in Analysis, Part 4, p. 105, Theorem 3.2.7, p. 110, Exercise 7.

Proof. We have established that T_Q is a positive compact operator with ker $T_Q=0$. The spectral theorem for positive compact operators then tells us that there is an orthonormal basis $\{\phi_n:n\geq 1\}$ for $L^2(I)$ and $\gamma_n>0$ such that $T_Q\phi_n=\gamma_n\phi_n$ for $n\geq 1$ and $\gamma_n\downarrow 0$. By Lemma 11, $T_Q\phi_n\in N^0(I)$. Let

$$u_n = \frac{1}{\gamma_n} T_Q \phi_n \in N^0(I).$$

Because $T_Q \phi_n = \gamma_n \phi_n$ we have $u_n = \phi_n$ in $L^2(I)$ and so

$$u_n = \frac{1}{\gamma_n} T_Q u_n.$$

Let $v_n = T_Q u_n$. Because $u_n \in C(I)$, Lemma 11 tells us that $v_n \in N^2(I)$ and $L_Q v_n = u_n$. But $u_n = \frac{1}{\gamma_n} v_n$ so $u_n \in N^2(I)$ and

$$L_Q u_n = \frac{1}{\gamma_n} L_Q v_n = \frac{1}{\gamma_n} u_n.$$

Let $\lambda_n = \frac{1}{\gamma_n}$. Then $\lambda_n > 0$, $\lambda_m \leq \lambda_n$ for $m \leq n$, $\lambda_n \to \infty$, and

$$L_Q u_n = \lambda_n u_n, \qquad n \ge 1.$$

To prove the claim it remains to show that the sequence λ_n is strictly increasing. Let $\lambda > 0$ and suppose that $f, g \in N^2(I)$ satisfy

$$L_O f = \lambda f, \qquad L_O g = \lambda g.$$

Let W(x) = f(x)g'(x) - g(x)f'(x), the Wronskian of f and g. Either W(x) = 0 for all $x \in I$ or $W(x) \neq 0$ for all $x \in I$. Using f(0) = 0 and g(0) = 0 we get W(0) = 0. Therefore W(x) = 0 for all $x \in I$ and W = 0 implies that f, g are linearly dependent.

Suppose by contradiction that $\lambda_n = \lambda_m$ for some $n \neq m$. Applying the above with $\lambda = \lambda_n = \lambda_m$, $f = u_n, g = u_m$ we get that u_n, u_m are linearly dependent, contradicting that $\{u_n : n \geq 1\}$ is an orthonormal set. Therefore $m \neq n$ implies that $\lambda_m \neq \lambda_n$.

8 Other results in Sturm-Liouville theory

14

¹⁴B. M. Levitan and I. S. Sargsjan, Spectral Theory: Selfadjoint Ordinary Differential Operators, p. 11.