Colles semaine 2 : suites et puissances de matrices (rappels)

1 Rappels sur les suites numériques

1.1 Suites de référence

Suites arithmétiques

- ▶ Relation de récurrence, pour une raison $r \in \mathbb{R}$ constante : $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + r$.
- Terme général $\forall n \in \mathbb{N}, \quad u_n = u_0 + rn.$
- Formule de sommation $\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} u_k = (n+1) \frac{u_0 + u_n}{2}, \ (en \ particulier \sum_{k=0}^{n} k = \frac{n(n+1)}{2}.)$

Suites géométriques

- ▶ Relation de récurrence, pour une raison $q \in \mathbb{R}$ constante : $\forall n \in \mathbb{N}$, $u_{n+1} = q u_n$.
- Terme général $\forall n \in \mathbb{N}, \quad u_n = u_0 q^n$.
- Formule de sommation $\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} u_k = \frac{u_0 u_{n+1}}{1 q}, \qquad (en \ particulier \sum_{k=0}^{n} q^k = \frac{1 q^{n+1}}{1 q})$

Suites arithmético-géométriques

- ▶ Relation de récurrence, pour $a, b \in \mathbb{R}$ constantes, $a \neq 1, \forall n \in \mathbb{N}, u_{n+1} = au_n + b$,
- Équation du point fixe : on trouve $\ell \in \mathbb{R}$ tel que $\ell = a\ell + b$.
- Obtention d'une suite géométrique en soustrayant : $u_{n+1} \ell = a(u_n \ell)$
- Conclusion terme général $\forall n \in \mathbb{N}, \quad u_n \ell = a^n(u_0 \ell)$

1.2 Exemples de suites définies par récurrence $u_{n+1} = f(u_n)$

- ► Transformation de relations $f(x) \longleftrightarrow x$ en relations $u_{n+1} \longleftrightarrow u_n$ (exemple: $\langle \forall x, f(x) \leqslant x \rangle$ implique $\langle \forall n, u_{n+1} \leqslant u_n \rangle$, soit (u_n) décroissante)
- Exploitation de telles relations par récurrence

(exemple: «
$$\forall x, \ 0 \leqslant f(x) \leqslant \frac{x}{2}$$
 » implique « $\forall n, \ 0 \leqslant u_n \leqslant \frac{u_0}{2^n}$ »)

▶ le théorème de la limite monotone

Une suite numérique **croissante** et **majorée** converge. Une suite numérique **décroissante** et **minorée** converge.

▶ le théorème de convergence par encadremnt (« des gendarmes »)

Si (u_n) vérifie $\forall n \in \mathbb{N}, a_n \leqslant u_n \leqslant b_n$, où $(a_n), (b_n)$ convergent vers **la même** limite ℓ , alors (u_n) converge aussi, et $\lim (u_n) = \ell$.

2 Exemples de calculs de puissances de matrices

Soit A une matrice carrée (« petite » : 2×2 ou 3×3)

- Verification par récurrence d'une formule pour A^n , $n \in \mathbb{N}$.
- Formule de puissance (exponentiation) pour les matrices diagonales.
- Exemples de formule de similitude $A = PDP^{-1}$. Vérification a posteriori de la formule $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$.
- Exemples de matrices N nilpotentes; telles que N^2 ou N^3

(Exploitation pour simplifier l'écriture des puissances de (p.ex.)
$$T = I_2 + N$$
.)

Reconnaître des suites remarquables (1.1) pour des coef. de A^n et déduction de terme g^{al} .