

Ipsos Project 1 Topic Modeling

Presented By:

Group: 6

Anne-Fleur Hilbert Member:

Jingyi Wang

Diqin Du

Jingya Zhang

Date: 2023.03.24

Sonia Zhang Xinyao Ren **Jason Darsono** Zike Li

Agenda

- 01. Exploratory Data Analysis
- 02. Web Scraping & Topic Modeling
- 03. Topic Evaluation
- 04. Result Analysis
- 05. Conclusion & Recommendation
- 06. Further Improvement
- 07. Reference

► 01 Exploratory Data Analysis

Exploratory Data Analysis

Overview

- ▶ Over 33 million records
- ▶ No missing values in key columns

Exploratory Data Analysis

Top 10 Visited URL Domain

Invalid Email

Over 2 million URLs are email related

Invalid Media

Over 2 million URLs are social media

Invalid URL

Overall, above 70%URLs are invalid

Sampling Methodology

Considerations for Sampling

Why

Computational Capacity

Running NLP algorithms on large datasets requires a large computer memory availability

Time Constraints

➤ The Large dataset of approximately ~33M observations Not feasible to complete modelling the whole dataset

How

Random Sampling

- Draw random URL observations from dataset based on z-score sample size (95% CI, 5% error margin)
- Panel data, i.e. time-dependent, consider sampling for each individual date

Stratified Sampling

- Sample by taking into account the demographic of the population dataset i.e. age, gender, etc.
- Not feasible with current constraints

Z-Score Random Sampling Calculation

Date	No. of URLs	Sample
2022-12-01	1.11M	384
2022-12-02	1.11M	384
2022-12-03	1.06M	384
	•••	
2022-12-31	0.97M	384
Total	32.96M	11,904

► 0 2 Web Scraping & Topic Modeling

Web Scraping & Topic Modelling Script Logic: 7 Steps

Web Scraping & Topic Modelling Script Logic

Relevant Steps Taken in the Script Logic

- Check if the URL is stored in the invalid URL file
- Check if the URL is stored in the **visited** URL file
- Fetch the response of the **unvisited** URL by request
- Check if web response is valid, i.e. text scraped is **not null_**and **response status 200**
 - Parse texts stored based on various html tags:
 <title>, <h1>, <h2>, ..., <h5>, , etc.
 - Tokenization, Lemmatization, Stop words removal, punctuation removal, weight token, and filter token.
- Run selected modelReturn top keywords as topics

5

7

- Coherence score
- Invalid URLs_are tagged as NA
- Previously visited URLs are tagged with stored topics
- Unvisited URLs_are tagged with model results

URL Processing – Visited URL, Invalid URL, and User URL

Load Visited URL Data

- Page URL
- Weighted Topics
- Coherence Model

Load Invalid URL Data

Page URL

Load User URL Data

- User Information
- Date
- Time
- Page Domain
- Page URL

Page_Url	Topics	Coherence
m.fabguys.com/my/hotlist	{'password': 0.0705713, 'term': 0.0620159, 'email': 0.0620056, 'instead': 0.0619904, 'usc': 0.0619826, 'register': 0.0619735, 'username': 0.06196737, 'free': 0.0619600, }	1
google.com	{'搜尋': 0.8583557, 'google': 0.8583546, '私隱權政策_條款 ': 0.75324129, '廣告關於': 0.6130930}	0.324355

- 1 et.tidal.com
- 2 dealsalecode.com/store/kwik-fit
- 3 r.competitions.greatbritishchefs.com/mk/cl/f/vktdhhs6ftoqu68...
- 4 digital-business.co-operativebank.co.uk/error-msg
- 5 blob:www.fedex.com/488b4ea9-1a66-49b9-9871-9ea80977b559
- 6 bet365.com
- 7 oxfordhealthimms.co.uk/flu_p2

Panelist_ID	 Date	Time	Page Domain	PageUrl
183657124262342352	 21/12/2022	8:13:00	m.facebook.co m	m.facebook.com
183657124262342352	 21/12/2022	9:40:46	m.facebook.co m	m.facebook.com/v3.1/ dialog/oauth
183657124262342352	 21/12/2022	9:41:09	goodreads.com	goodreads.com/revie w/list/34000602- natasha-farrow

URL Processing – Valid or Invalid URL

What Are Invalid URLs

- Includes the URL only
- Recorded from the previous web scraping and text processing results
- Conditions: response status <> 200 or response status == -1 or length (response raw text) == 0

What Purpose Do Invalid URLs Serve

- Stored for future invalid detection
- If the new input URL exists in the invalid URL,
 then skip this URL directly

Examples of Invalid URLs Stored

<u>Example 1:</u> http://oxfordhealthimms.co.uk/forms/flu_p2

<u>Example 2:</u> https://www.amazon.co.uk/comfy-original-oversized-wearable-blanked/dp/b07s651gsw

=

URL Processing – Visited or Unvisited URL

What Are Visited URLs

- Includes the visited Page URL, weighted topics, and coherence model
- The historical URLs that have been processed by web scraping, text processing, and topic modeling results

What Can We Do with Historical Visited URLs

- If the new input URL exists in the visited URL,
 then skip web scraping, text processing for the URL
- Fetch tag with topics directly from the recorded file

Page Url	Weighted Topics	Coherence
mail.google.com/mail/u/0	{'gmail': 0.1694327, 'sign': 0.1595286, 'private_browse': 0.0834950, 'window_sign': 0.083494, 'help': 0.0834948, }	0.8347921865
citizensadvice.org.uk/housing/repairs -in-rented-housing/repairs-common- problems/repairs-damp	{'repair_damp': 0.0391627, 'citizen_advice': 0.03916261, 'insulate_home': 0.0299050, 'action_damp': 0.0298993, 'deal_penetrate': 0.02989912 }	0.4650934195
ebay.co.uk	{'cars_fashion': 0.078113087, 'learn': 0.049841159, 'health_beauty': 0.04972137, 'spring_sale': 0.04970311, 'today_deal': 0.04966279, 'floorcare_refurb': 0.04965522, }	0.3898685333
nhs.uk	{'nhs_strike': 0.197653763, 'condition_healthy': 0.19765372, 'donor_research': 0.19765372, 'live_kickstart': 0.19765372, 'health_medicines': 0.1976536, 'life_blood': 0.1976536, 'march_covid': 0.1976535, }	0.220709381

Step I – Send request to URL

- Get response by sending a request with unvisited URL
- Call the function: get_response_by_url

Step II – Retrieve status and text

- A Extract the raw text and status code from the response
- If the exception occurs in the request, return status = 1, and content = None
- Otherwise, return status and content extracted from response

Filter the Exceptions

Res	ponse Status	Details
1XX		Informational response
2XX		Successful
•	200	ОК
•	201	Created
•	202	Accepted
•	203	Non-Authoritative
•	204	No content
•	205	Reset content
3XX		Redirection
4XX		Client error
5XX		Server error

Text Processing – General Parser and Cleansing

Acquire Text by Tag

- ➤ Parse raw text and acquire all the text from URL by HTML tag with extract_content_by_tag function
- ➤ Title, header (h1-h5), emphasis (bold, strong), and plain text (p, list, span)

Normalise Text

- ➤ Change all the words to **lowercase**
- > Strip leading and trailing space

Remove Punctuation

- Remove all the punctuation by regular expression pattern
- ➤ Punctuations are provided by the **library string** and some **edge cases** (e.g., "â©â£—""...")

Parse Text

Parse raw text and perform lemmatization with Spacy

Remove Stop Words

- > Remove all the **stop words**
- Stop words are provided by the library nltk.corpus.stopwords and spacy.lang.en.stop_words

Remove Words

Remove words if the word is too long or too short

Text Processing – General Parser and Cleansing

Step 2 – Parse Text

Stemming –

- Porter, Lancaster, Snowball (Porter2)
- Test Performance –
- Run time: 42.02s
- Average stemmed: 490 tokens

Lemmatization –

- NLTK WordNet, SpaCy Lemmas
 Test Performance:
- Run time: 19.96s
- Average lemmatized: 136 tokens

Step 3 – Normalise Text

ABCDEFG.....UVWXYZ

abcdefg uvwxyz

= Text Processing – Customized Parser and Cleansing

Weight Tokens

- Weight the important tokens by duplicating the extracted tokens for several times
- ➤ The weight can be customized by users (here set weight = 2)

Process Tokens

- Further process the generated tokens for by_page_url mode
- ➤ If the user selects by_panelist_id mode, for each type of token, the tokens for the same panelist_id will be merged together before topic modeling

Filter URL

- Filter the URL by total number of all types of tokens
- ➤ If the length of all tokens is 0, the URL will not be used for modelling

Topic Modelling – N-gram models

			80
_	Uni-gram	Bi-gram	Tri-gram
I. Topic modelling score	 Single-word tokens High chance of missing correlated word-pairs 	 Word-pair tokens Combine correlated word-pairs to create contextual meaning, such as "fixed rate" 	 Group of 3 words Capture meaningful phrases from combined words such as "cost of living"
Token length (average)	2,222	1,328 <i>(-40.2%)</i>	966 (-56.5%)
Coherence score (average)	0.363	0.408 (+12.4%)	0.403 (+11.0%)
II. Code run-time breakdo	wn		
 N-gram generation 	+1.67s	+6.42s	+11.11s
 Topic generation 	60.39s	64.88s	65.52s
 Coherence model training 	2610.58s	2764.80s	3095.39s

Topic Modelling – Algorithms Selection

Latent Dirichlet Allocation

- Generative probabilistic model
- Mixture of topics with probability distribution
- Works well for large topics and large document

Non-negative Matrix Factorisation

- Linear algebraic machine learning approach
- Reduction into term-topic and document topic matrix
- Works well for large topics and small documents

Latent Semantic Indexing

- Dimensionality reduction using Single Value **Decomposition**
- Works well for few topics but large documents

Term-freq. Inverse document-frequency

Weigh keywords based on relevance

Model Performance Evaluation (Coherence Score)

Distribution of model coherence score

	1 LDA	2 NMF	3 LSI
Mean	0.408	0.427	0.408
S.D.	0.156	0.147	0.163
Run time	39.72s	35.96s	4.64s

Note: models tested on selected sample of 690 observations

► 03 Topic Evaluation

utilise TextRazor

- To be attempted, additional effort and
 - Build rule-based text matching scriptto compare against our model
 - Add fuzzy matching logic if needed
- Mean confidence Score: 0.860

► 04 Result Analysis

Result Analysis – Overall Top 10 Topic Preference

Hottest topics category

- Social Networking
- Technology
- News
- Entertainment
- Retail & Commerce

Similarity

- Hottest topics are similar
- Order of hot topics are similar

Difference

- Ratio of hottest topics in each model
- Order of less hot topic may different in each model

= Result Analysis – Topic Preference by Gender

Hottest topics category

- Social Networking
- Technology
- News
- Entertainment

Similarity

- ► Hottest topics are similar
- Order of hot topics are similar

Difference

Female prefer retail & commerce (shop, product)

Result Analysis – Topic Preference by Age

Hottest topics category

- Privacy
- Service

Similarity

- ► Hottest topics are similar
- Order of hot topics are similar

Difference

- <34 talk more about entertainment and education
- <54 prefer social networking

Result Analysis – Topic Preference by Social Grade

Hottest topics category

- Privacy
- Service
- Work

Similarity

- Similarity for people in 'AB' and 'DE' grades
- Order of hot topics are similar

Difference

- 'C1' grade: social networking and news
- 'C2' grade: retail & commerce and news

► 05 Conclusion & Recommendation

Technical – Web Scraping & Topic Modeling

- Record historic URL status for further acceleration by filtering
- Consider important tokens (title, header, emphases)
- Provide different topic generation mode for user to select (by_page_url and by_panelist_id)
- > Provide different models LDA and NMF with bigram tokens based on efficiency and effectiveness
 - Note1: we tried different text processing and token extraction techniques (e.g., stemming and lemmatization, bigram and trigram, etc.), where the others are less efficiency or effectiveness
 - Note2: we tried different topic models (e.g., LDA, NMF, LSI, STM, etc.) and finally select LDA and NMF, where the others are less efficiency or effectiveness

Result – Overall Topic Preference

- > Social Networking, Technology, News, Entertainment, and Retail & Commerce are hottest topics
- Content of hottest topics and order of hottest topics are similar in different models
- Ratio of hottest topics in different models are different
- > The order of less hot topic may different extracted by different topic model

► 06 Further Improvement

Further Improvement

Web Scraping

> Accelerate the process of web scraping, e.g., multithreading or distributed computing techniques

Text Processing

- > Cache the extracted tokens for creating different topic models for acceleration
- > Extract and filter to get more precise and useful tokens targeting to the given target topic
- > Provide a reasonable *customized method for setting the weights* of important tokens

Topic Modelling

- > Try and compare other *different topic models* for model selection
- > Try different parameters with different topic models for model selection
- > Improve the effectiveness of topic models, e.g., by **ensemble** different topic models in tagging

► 07 Reference

- [1] https://www.projectpro.io/recipes/compute-model-perplexity-of-lda-model-gensim
- [2] https://people.revoledu.com/kardi/tutorial/Python/NLP1.html#:~:text=To%20separate%20the%20text%20or, text%20synthesis%20or%20text%20generation.&text=To%20separate%20a%20sentence%20into,w%2B')%20as %20our%20tokenizer
- [3] https://ourcodingclub.github.io/tutorials/topic-modelling-
- python/#:~:text=Topic%20modelling%20is%20an%20unsupervised,actually%20a%20collection%20of%20tweets.
- [4] https://www.kaggle.com/code/thebrownviking20/topic-modelling-with-spacy-and-scikit-learn
- [5] https://www.kaggle.com/code/datajameson/topic-modelling-nlp-amazon-reviews-bbc-news
- [6] https://towardsdatascience.com/text-analysis-basics-in-python-443282942ec5
- [7] https://www.machinelearningplus.com/nlp/gensim-
- tutorial/#10howtocreatebigramsandtrigramsusingphrasermodels

