Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2111 Laboratorio de Circuitos Eléctricos Profesor. Ing. Carlos Mauricio Segura Quirós II Semestre 2019

Experimento 12

Resonancia en circuitos RLC serie y paralelo

I. Objetivo:

Investigar experimentalmente el comportamiento en función de la frecuencia en cuanto a magnitud y fase de los circuitos RLC en serie y paralelo. Además, investigar el fenómeno de la resonancia en los circuitos RLC serie y paralelo

II. Cuestionario previo:

- 1. Defina los siguientes términos: Resonancia, Frecuencia de Resonancia, Frecuencia de Resonancia Natural, Coeficiente de Amortiguamiento Exponencial y factor de calidad.
- 2. Investigue las relaciones matemáticas importantes para los circuitos Resonantes serie y paralelo. Calcule teóricamente las frecuencias de resonancia.
- 3. Simule los circuitos de medición en un software apropiado (PSpice, MultiSim, por ejemplo) haciendo un barrido de frecuencia y obtenga las gráficas de la corriente I_T y fase entre V_T e I_T en función de la frecuencia para ambos gráficos.

III. Materiales y equipo:

- 1 generador de funciones
- 1 ORC.
- 1 multímetro
- 1 juego de cables (UTP Cat5) (Aportado por el Estudiante)
- 1 placa protoboard (Aportado por el Estudiante)
- 3 resistencias de 100Ω (Aportado por el Estudiante)
- 1 condensador de 22nF (Aportado por el Estudiante)
- 1 bobina de 10H
- 1 adaptador de enchufe

IV. Circuitos de medición:

Figura 1 Circuito de medición 1

Figura 2 Circuito de medición 2

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2111 Laboratorio de Circuitos Eléctricos Profesor. Ing. Carlos Mauricio Segura Quirós II Semestre 2019

V. Procedimiento:

- 1. Monte el circuito de medición #1. Asegúrese de aislar la tierra del ORC con la del generador. Las tensiones V_C y V_L se pueden obtener intercambiando la posición del condensador por la del inductor.
- 2. Ajuste V_{Tpp} a 4V. Varíe la frecuencia entre 100Hz y 1kHz y determine para cual frecuencia se obtiene una I_T máxima.
- 3. Dibuje las señales V_T, I_T, V_C y V_L para la frecuencia obtenida anteriormente.
- 4. Mida los valores pico-pico de los voltajes y corrientes que se piden en la siguiente tabla. Anote además el ángulo de desfase entre las magnitudes que se especifican. Adopte por convención un ángulo positivo para especificar adelanto (negativo para atraso).

Tabla 1 Mediciones para el circuito RLC serie

f (Hz)	I _{Tpp} (mA)	∠I _T /V _T (°)	V _{Cpp} (V)	V _{Lpp} (V)
100				
200				
275				
300				
350				
375				
400				
500				
600				
700				
800				
900				
1000				

- 5. Monte el circuito de medición #2.
- 6. Ajuste V_{Tpp} a 4V. Varíe la frecuencia entre 100Hz y 1kHz determinando para cual frecuencia se obtiene la I_T mínima.
- 7. Mida, obtenga y dibuje las señales V_T, I_T, I_C e I_L para la frecuencia obtenida.
- 8. Mida los valores pico-pico de los voltajes y corrientes que se piden en la tabla. Anote además el ángulo de desfase entre las magnitudes que se especifican. Adopte, por convención, un ángulo positivo para especificar adelanto (negativo para atraso).

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2111 Laboratorio de Circuitos Eléctricos Profesor. Ing. Carlos Mauricio Segura Quirós II Semestre 2019

Tabla 2 Mediciones para el circuito RLC paralelo

f (Hz)	I _{Tpp} (mA)	∠I _T /V _T (°)	I _{Cpp} (V)	I _{Lpp} (V)
100				
200				
275				
300				
350				
400				
500				
600				
700				
800				
900				
1000				

VI. Evaluación:

- 1. ¿Qué ángulo de fase existe entre la tensión total y la corriente en el circuito RLC serie a la frecuencia donde la corriente fue máxima?
- 2. ¿Qué ángulo de fase existe entre la corriente total y la tensión V_L para la frecuencia en la que la corriente total fue mínima?
- 3. À partir de los datos de la tabla #1 determine para cada valor de frecuencia los valores de la magnitud de la impedancia total ZT. Incluya estos valores en la misma tabla.
- 4. A partir de los datos de la tabla #2 determine para cada valor de frecuencia los valores de la magnitud de la admitancia total Y_T. Incluya los valores en la tabla.
- 5. Grafique en función de la frecuencia las siguientes magnitudes:

Para el circuito serie: I_T, V_L, V_C, Z_T Para el circuito paralelo: I_T, I_L, I_C, Y_T