```
In [1]: %matplotlib inline
         ### import libraries
         import numpy as np
         import pandas as pd
         \textbf{import} \ \texttt{matplotlib.pyplot} \ \textbf{as} \ \texttt{plt}
         from matplotlib import style
         import seaborn as sns
In [2]: data = pd.read_csv('health care diabetes.csv')
In [3]: data.head()
            Pregnancies
                        Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age
                                                                                                         Outcome
                                                                      33.6
                                                                                                      50
                             148
                                                                                               0.627
         1
                              85
                                             66
                                                           29
                                                                    0
                                                                       26.6
                                                                                               0.351
                                                                                                      31
                                                                                                                 0
         2
                      8
                             183
                                             64
                                                            0
                                                                    0 23.3
                                                                                               0.672
                                                                                                      32
                                                                                                                 1
         3
                              89
                                                                       28.1
                                                                                               0.167
                                                                                                      21
                                                                                                                 0
                      1
                                             66
                                                           23
                                                                   94
         4
                      0
                             137
                                             40
                                                           35
                                                                  168
                                                                      43.1
                                                                                               2.288
                                                                                                      33
                                                                                                                 1
In [4]: data.isnull().any()
Out[4]: Pregnancies
                                        False
         Glucose
                                        False
         BloodPressure
                                        False
         SkinThickness
                                        False
         Insulin
                                        False
                                        False
         {\tt DiabetesPedigreeFunction}
                                        False
         Age
                                        False
         Outcome
                                        False
         dtype: bool
In [5]: data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 768 entries, 0 to 767
       Data columns (total 9 columns):
        #
            Column
                                         Non-Null Count Dtype
        0
            Pregnancies
                                         768 non-null
                                                           int64
                                         768 non-null
                                                           int64
        1
            Glucose
            BloodPressure
                                         768 non-null
                                                           int64
        3
            SkinThickness
                                         768 non-null
                                                           int64
        4
            Insulin
                                         768 non-null
                                                           int64
        5
            BMI
                                         768 non-null
                                                           float64
        6
            DiabetesPedigreeFunction
                                         768 non-null
                                                           float64
        7
                                         768 non-null
                                                           int64
            Age
        8
            Outcome
                                         768 non-null
                                                           int64
       dtypes: float64(2), int64(7)
       memory usage: 54.1 KB
In [6]: Positive = data[data['Outcome']==1]
         Positive.head(5)
Out[6]:
                        Glucose BloodPressure SkinThickness
                                                               Insulin BMI DiabetesPedigreeFunction Age
            Pregnancies
                                                                                                         Outcome
         0
                      6
                                                           35
                                                                      33.6
                                                                                                      50
                             148
                                                                                               0.627
         2
                      8
                             183
                                             64
                                                            0
                                                                    0
                                                                       23.3
                                                                                               0.672
                                                                                                      32
         4
                      0
                             137
                                             40
                                                           35
                                                                  168 43.1
                                                                                               2.288
                                                                                                      33
                                                                                                                 1
         6
                      3
                                             50
                                                                                                      26
                              78
                                                           32
                                                                   88
                                                                      31.0
                                                                                               0.248
                                                                                                                 1
         8
                      2
                             197
                                             70
                                                           45
                                                                  543 30.5
                                                                                               0.158
                                                                                                      53
                                                                                                                 1
In [7]: data['Glucose'].value_counts().head(7)
Out[7]: Glucose
         99
                17
         100
                17
         111
                14
         129
                14
         125
                14
         106
                14
         112
                13
         Name: count, dtype: int64
In [0]: nlt hist(data['Glucose'])
```

```
THE INT. PERMITSE (MARKET OFFICES 1)
Out[8]: (array([ 5., 0., 4., 32., 156., 211., 163., 95., 56., 46.]),
array([ 0., 19.9, 39.8, 59.7, 79.6, 99.5, 119.4, 139.3, 159.2,
179.1, 199.]),
          <BarContainer object of 10 artists>)
        200
        175
        150
        125
        100
         75
         50
         25
          0
                                    75
                                                  125
                                                         150
                                                                 175
                      25
                             50
                                           100
                                                                        200
 In [9]: data['BloodPressure'].value_counts().head(7)
 Out[9]: BloodPressure
         70
               57
         74
               52
         78
               45
         68
               45
         72
               44
               43
         64
         80
               40
         Name: count, dtype: int64
In [10]: plt.hist(data['BloodPressure'])
109.8, 122. ]),
          <BarContainer object of 10 artists>)
        250
        200
        150
        100
         50
```

In [11]: data['SkinThickness'].value_counts().head(7)

```
Out[11]: SkinThickness
           32
                   31
           30
                   27
           27
                   23
           23
                   22
           33
                   20
           28
                   20
           Name: count, dtype: int64
In [12]: plt.hist(data['SkinThickness'])
Out[12]: (array([231., 107., 165., 175., 78., 9., 2., 0., 0., 1.]), array([ 0. , 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99. ]),
            <BarContainer object of 10 artists>)
          200
          150
          100
           50
                  0
                                20
                                              40
                                                            60
                                                                          80
                                                                                       100
In [13]: data['Insulin'].value_counts().head(7)
Out[13]: Insulin
           105
                    11
           130
           140
                      9
           120
                      8
           94
                      7
           180
                      7
           Name: count, dtype: int64
In [14]: plt.hist(data['Insulin'])
Out[14]: (array([487., 155., 70., 30., 8., 9., 5., 1., 2., 1.]), array([ 0. , 84.6, 169.2, 253.8, 338.4, 423. , 507.6, 592.2, 676.8,
                    761.4, 846. ]),
            <BarContainer object of 10 artists>)
          500
          400
          300
          200
          100
                  0
                                 200
                                                  400
                                                                  600
                                                                                  800
```

```
In [15]: data['BMI'].value counts().head(7)
Out[15]: BMI
            32.0
                      13
            31.6
                      12
            31.2
                      12
            0.0
                      11
            32.4
                      10
            33.3
                      10
            30.1
                      9
            Name: count, dtype: int64
In [16]: plt.hist(data['BMI'])
Out[16]: (array([ 11., 0., 15., 156., 268., 224., 78., 12., 3., 1.]), array([ 0. , 6.71, 13.42, 20.13, 26.84, 33.55, 40.26, 46.97, 53.68, 60.39, 67.1 ]),
             <BarContainer object of 10 artists>)
           250
           200
           150
           100
            50
                              10
                                        20
                                                   30
                                                              40
                                                                         50
                                                                                   60
                                                                                              70
```

In [17]: data.describe().transpose()

Out[17]:		count	mean	std	min	25%	50%	75%	max
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
	Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
	BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
	Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
	ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
	DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
	Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
	Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

10/

In []:

Week 2


```
In [19]: Positive['BMI'].value_counts().head(7)
```

```
Out[19]: BMI
32.9 8
31.6 7
33.3 6
31.2 5
30.5 5
32.0 5
34.3 4
Name: count, dtype: int64
```

In [20]: plt.hist(Positive['Glucose'], histtype='stepfilled', bins=20)

In [21]: Positive['Glucose'].value_counts().head(7)

```
Out[21]: Glucose
            125
                    7
            128
                    6
            129
            115
                    6
            158
                    6
            146
                    5
            124
                    5
            Name: count, dtype: int64
In [22]: plt.hist(Positive['BloodPressure'], histtype='stepfilled', bins=20)
Out[22]: (array([16., 0., 0., 0., 0., 1., 0., 1., 6., 6., 19., 37., 56., 36., 41., 31., 7., 4., 4., 3.]),

array([ 0. , 5.7, 11.4, 17.1, 22.8, 28.5, 34.2, 39.9, 45.6, 51.3, 57. , 62.7, 68.4, 74.1, 79.8, 85.5, 91.2, 96.9, 102.6, 108.3, 114. ]),
             [<matplotlib.patches.Polygon at 0x1f3cf6bac10>])
           50
           40
           30
           20
           10
                              20
                                                       60
                                                                    80
                                                                                100
                                           40
In [23]: Positive['BloodPressure'].value counts().head(7)
Out[23]: BloodPressure
            70
                   23
            76
                   18
            78
                   17
            74
                   17
            72
                   16
            0
                   16
            80
                   13
            Name: count, dtype: int64
In [24]: plt.hist(Positive['SkinThickness'], histtype='stepfilled', bins=20)
Out[24]: (array([88., 1., 4., 10., 18., 30., 41., 34., 23., 15., 1., 1., 1.,
             0., 0., 0., 0., 0., 1.]),
array([ 0. , 4.95, 9.9 , 14.85, 19.8 , 24.75, 29.7 , 34.65, 39.6 ,
                      44.55, 49.5 , 54.45, 59.4 , 64.35, 69.3 , 74.25, 79.2 , 84.15,
                      89.1 , 94.05, 99. ]),
             [<matplotlib.patches.Polygon at 0x1f3cf89ef50>])
```


In [25]: Positive['SkinThickness'].value_counts().head(7)

```
Out[25]: SkinThickness
                          14
                32
                30
                           9
                33
                           9
                39
                           8
                37
                           8
                36
                           8
                Name: count, dtype: int64
In [26]: plt.hist(Positive['Insulin'], histtype='stepfilled', bins=20)
Out[26]: (array([141., 6., 23., 33., 24., 12., 7., 7., 2., 1., 5., 3., 1., 1., 0., 0., 0., 0., 1.]),
array([ 0., 42.3, 84.6, 126.9, 169.2, 211.5, 253.8, 296.1, 338.4, 380.7, 423., 465.3, 507.6, 549.9, 592.2, 634.5, 676.8, 719.1, 761.4, 803.7, 846. ]),
                 [<matplotlib.patches.Polygon at 0x1f3cf91f9d0>])
```



```
In [27]: Positive['Insulin'].value counts().head(7)
Out[27]: Insulin
         0
                138
         130
                  6
         180
                  4
         175
                  3
                  3
         156
                  2
         185
         194
                  2
         Name: count, dtype: int64
In [28]: #Scatter plot
In [29]: BloodPressure = Positive['BloodPressure']
         Glucose = Positive['Glucose']
         SkinThickness = Positive['SkinThickness']
         Insulin = Positive['Insulin']
         BMI = Positive['BMI']
In [30]: plt.scatter(BloodPressure, Glucose, color=['b'])
         plt.xlabel('BloodPressure')
         plt.ylabel('Glucose')
         plt.title('BloodPressure & Glucose')
         plt.show()
```


In [34]: ### correlation matrix
data.corr()

Out[34]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	
	Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0
	Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0
	BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0
	SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0
	Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0
	ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0
	DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0
	Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1
	Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0

In [35]: ### create correlation heat map
sns.heatmap(data.corr())


```
In [36]: plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True,cmap='viridis') ### gives correlation value
```

Out[36]: <Axes: >

In [37]: plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True) ### gives correlation value

Out[37]: <Axes: >

In [38]: # Logistic Regreation and model building

In [39]: data.head(5)

```
Out[39]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
         0
                     6
                            148
                                           72
                                                         35
                                                                 0 33.6
                                                                                          0.627
                                                                                                 50
                                                                                                            1
                             85
                                           66
                                                         29
                                                                 0 26.6
                                                                                          0.351
                                                                                                 31
                                                                                                            0
         1
                      1
         2
                      8
                            183
                                           64
                                                          0
                                                                 0
                                                                   23.3
                                                                                          0.672
                                                                                                 32
                                                                                                            1
         3
                      1
                             89
                                           66
                                                         23
                                                                94 28.1
                                                                                          0.167
                                                                                                 21
                                                                                                            0
          4
                     0
                                                                                                 33
                                                                                                            1
                            137
                                           40
                                                         35
                                                               168 43 1
                                                                                          2 288
In [40]: features = data.iloc[:,[0,1,2,3,4,5,6,7]].values
         label = data.iloc[:,8].values
In [41]: #Train test split
         from sklearn.model selection import train test split
         X_train,X_test,y_train,y_test = train_test_split(features,
                                                           test_size=0.2,
                                                           random_state =10)
In [42]: #Create model
         from sklearn.linear_model import LogisticRegression
         model = LogisticRegression()
         model.fit(X_train,y_train)
Out[42]: • LogisticRegression
         LogisticRegression()
In [43]: print(model.score(X_train,y_train))
         print(model.score(X_test,y_test))
        0.7719869706840391
        0.7662337662337663
         from sklearn.metrics import confusion_matrix
         cm = confusion_matrix(label,model.predict(features))
Out[44]: array([[446, 54],
                 [122, 146]], dtype=int64)
In [45]: from sklearn.metrics import classification report
         print(classification_report(label,model.predict(features)))
                                    recall f1-score support
                      precision
                   0
                           0.79
                                      0.89
                                                0.84
                                                            500
                   1
                           0.73
                                      0.54
                                                0.62
                                                            268
            accuracy
                                                0.77
                                                            768
                           0.76
                                      0.72
                                                0.73
           macro avg
                                                            768
        weighted avg
                           0.77
                                      0.77
                                                0.76
                                                            768
In [46]: #Preparing ROC Curve (Receiver Operating Characteristics Curve)
         from sklearn.metrics import roc_curve
         from sklearn.metrics import roc auc score
         # predict probabilities
         probs = model.predict_proba(features)
         # keep probabilities for the positive outcome only
         probs = probs[:, 1]
         # calculate AUC
         auc = roc_auc_score(label, probs)
         print('AUC: %.3f' % auc)
          # calculate roc curve
         fpr, tpr, thresholds = roc_curve(label, probs)
         # plot no skill
         plt.plot([0, 1], [0, 1], linestyle='--')
         # plot the roc curve for the model
         plt.plot(fpr, tpr, marker='.')
        AUC: 0.837
```

Out[46]: [<matplotlib.lines.Line2D at 0x1f3d21d97d0>]

```
In [47]: #Applying Decission Tree Classifier
          from sklearn.tree import DecisionTreeClassifier
          model3 = DecisionTreeClassifier(max_depth=5)
          model3.fit(X_train,y_train)
Out[47]: v
                  DecisionTreeClassifier
         DecisionTreeClassifier(max_depth=5)
In [48]: model3.score(X_train,y_train)
Out[48]: 0.8289902280130294
In [49]: model3.score(X_test,y_test)
Out[49]: 0.77272727272727
In [50]: #Applying Random Forest
          \textbf{from} \  \, \textbf{sklearn.ensemble} \  \, \textbf{import} \  \, \textbf{RandomForestClassifier}
          model4 = RandomForestClassifier(n_estimators=11)
          model4.fit(X_train,y_train)
Out[50]: v
                    RandomForestClassifier
          RandomForestClassifier(n_estimators=11)
In [51]: model4.score(X_train,y_train)
Out[51]: 0.993485342019544
In [52]: model4.score(X_test,y_test)
Out[52]: 0.7207792207792207
In [53]: #Support Vector Classifier
```

In [57]: model5.score(X_train,y_train)

from sklearn.svm import SVC
model5 = SVC(kernel='rbf',

 $model5.fit(X_train,y_train)$

SVC
SVC(gamma='auto')

Out[53]: v

gamma='auto')

```
Out[57]: 1.0
In [58]: model5.score(X_test,y_test)
Out[58]: 0.6168831168831169
In [59]: #Applying K-NN
         from sklearn.neighbors import KNeighborsClassifier
         model2 = KNeighborsClassifier(n_neighbors=7,
                                      metric='minkowski',
                                      p = 2
         model2.fit(X_train,y_train)
Out[59]: v
                  KNeighborsClassifier
         KNeighborsClassifier(n neighbors=7)
In [60]: #Preparing ROC Curve (Receiver Operating Characteristics Curve)
         from sklearn.metrics import roc_curve
         from sklearn.metrics import roc_auc_score
         # predict probabilities
         probs = model2.predict_proba(features)
         # keep probabilities for the positive outcome only
```

```
probs = probs[:, 1]
 # calculate AUC
 auc = roc_auc_score(label, probs)
 print('AUC: %.3f' % auc)
 # calculate roc curve
 fpr, tpr, thresholds = roc_curve(label, probs)
 print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".format(tpr,fpr,thresholds))
 # plot no skill
 plt.plot([0, 1], [0, 1], linestyle='--')
 # plot the roc curve for the model
 plt.plot(fpr, tpr, marker='.')
 plt.xlabel("False Positive Rate")
 plt.ylabel("True Positive Rate")
AUC: 0.836
True Positive Rate - [0.
                                 0.06716418\ 0.23880597\ 0.44776119\ 0.60074627\ 0.75373134
 0.88059701 0.98507463 1.
                                                                 0.
                                                                       0.02 0.056 0.12 0.248 0.428 0.668 1.
                                 ], False Positive Rate - [0.
] Thresholds - [2.
                                      0.85714286\ 0.71428571\ 0.57142857\ 0.42857143
0.28571429 0.14285714 0.
```

Out[60]: Text(0, 0.5, 'True Positive Rate')


```
In [61]: #Precision Recall Curve for Logistic Regression

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
# predict probabilities
probs = model.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
```

```
yhat = model.predict(features)
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.624 auc=0.726 ap=0.727

Out[61]: [<matplotlib.lines.Line2D at 0x1f3d3b07350>]


```
In [62]: #Precision Recall Curve for KNN
         \begin{tabular}{ll} from $$ sklearn.metrics import precision\_recall\_curve \end{tabular}
         from sklearn.metrics import f1 score
         from sklearn.metrics import auc
         from sklearn.metrics import average precision score
         # predict probabilities
         probs = model2.predict_proba(features)
         # keep probabilities for the positive outcome only
         probs = probs[:, 1]
         # predict class values
         yhat = model2.predict(features)
         # calculate precision-recall curve
         precision, recall, thresholds = precision_recall_curve(label, probs)
          # calculate F1 score
         f1 = f1_score(label, yhat)
         # calculate precision-recall AUC
         auc = auc(recall, precision)
         # calculate average precision score
         ap = average precision score(label, probs)
         print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
         # plot no skill
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
          # plot the precision-recall curve for the model
         plt.plot(recall, precision, marker='.')
```

Out[62]: [<matplotlib.lines.Line2D at 0x1f3d3d47a90>]

f1=0.658 auc=0.752 ap=0.709


```
In [63]: #Precision Recall Curve for Decission Tree Classifier
         from sklearn.metrics import precision_recall_curve
         from sklearn.metrics import f1_score
         from sklearn.metrics import auc
         from sklearn.metrics import average precision score
         # predict probabilities
         probs = model3.predict_proba(features)
         # keep probabilities for the positive outcome only
         probs = probs[:, 1]
         # predict class values
         yhat = model3.predict(features)
         # calculate precision-recall curve
         precision, recall, thresholds = precision_recall_curve(label, probs)
         # calculate F1 score
         f1 = f1_score(label, yhat)
         # calculate precision-recall AUC
         auc = auc(recall, precision)
         # calculate average precision score
         ap = average_precision_score(label, probs)
         print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
         # plot no skill
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
         # plot the precision-recall curve for the model
         plt.plot(recall, precision, marker='.')
```

f1=0.714 auc=0.815 ap=0.768
Out[63]: [<matplotlib.lines.Line2D at 0x1f3d3dbd9d0>]


```
In [64]: #Precision Recall Curve for Random Forest
          \begin{tabular}{ll} from $$ sklearn.metrics import precision\_recall\_curve \end{tabular}
          from sklearn.metrics import f1_score
          from sklearn.metrics import auc
          from sklearn.metrics import average_precision_score
          # predict probabilities
          probs = model4.predict_proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # predict class values
          yhat = model4.predict(features)
          # calculate precision-recall curve
          precision, recall, thresholds = precision_recall_curve(label, probs)
          # calculate F1 score
          f1 = f1_score(label, yhat)
          # calculate precision-recall AUC
          auc = auc(recall, precision)
          # calculate average precision score
          ap = average precision_score(label, probs)
          print('f1=\%.3f auc=\%.3f ap=\%.3f' % (f1, auc, ap))
          # plot no skill
          plt.plot([0, 1], [0.5, 0.5], linestyle='--')
          # plot the precision-recall curve for the model
          plt.plot(recall, precision, marker='.')
        f1=0.908 auc=0.963 ap=0.955
```

Out[64]: [<matplotlib.lines.Line2D at 0x1f3d3ad80d0>]

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js