DIGITAL CIRCUITS

Week-1, Lecture-2 Introduction

Sneh Saurabh 3rd August, 2018

Digital Circuits: Announcements/Revision

Digital Circuits Introduction

Signal

What is **Signal**?

Quantity that carries data/information

Examples of Signal

- Speech, Audio
- Image, Video
- Biomedical signals, Radar signals, Seismic signals, etc.

Quantity that varies with time/space

An example of speech signal: vowel "aa"

Signal (Examples)

Electrocardiography (ECG): records electrical activity of the heart over a period of time

Stock price (of Apple) varying with time [Not a natural Signal]

Analog Signals

What is an **Analog Signal**?

- Analog signal is continuous in time and can take any value (between some minimum and maximum limits)
- Speech, audio, biomedical signals, radar signals, seismic signals, etc

- y = f(t): t is continuous
- y can taken any value within a range

Analog Systems

https://en.wikipedia.org/wiki/Signal

Discrete time signal

What is a *Discrete time signal*?

- Analog signal is observed at certain points of time
- The observation is made at constant or variable rate. This is known as sampling

- y = f(t):
 - \bullet t = nT
 - *n* is an integer {0, 1, 2, 3, 4, ...}
 - T is sampling period
- y can taken any value within a range

https://en.wikipedia.org/wiki/Discrete_time_and_continuous_time

Digital signal

What is a *Digital signal*?

- Discrete in time as well as amplitude
- Amplitude can take values from a discrete set of values

- y = f(t):
 - t = nT
 - *n* is an integer {0, 1, 2, 3, 4, ...}
 - T is sampling period
- y can taken values from a discrete set of values. For example: {0, 1, 2, 3, 4, 5, 6, 7}

https://en.wikipedia.org/wiki/Digital_signal _(signal_processing)

Analog to Digital signal

Two Steps:

- **1. Sampling**: discrete time of measurement
- 2. Quantization: replaces exact value with a value from a discrete set

Accuracy:

- 1. Sampling rate
- 2. Discrete levels of amplitude

Analog System vs. Digital System (1)

Instruments

Analog System vs. Digital System (2)

Analog System vs. Digital System (3)

https://keralaitnews.com/6385/ddk-trivandrum-ends-analogue-terrestrial-tv-transmission-goes-digital#prettyPhoto

Analog System vs. Digital System (4)

- Quality of service
- Maintenance, Flexibility
- Delay (?)

Logic Circuits and Binary Levels

- V_{DD} to V_{1,min} taken as logic "1"
- V_{0,max} to V_{SS} taken as logic "0"
- Example:
 - V_{DD}=1.2V, : V_{1.min}=0.8V
 - V_{SS}=0V, : V_{0,max}=0.4V
 - What will be logic value for 0.9 V, 0.3 V?

- There is a margin for error
- Noise immunity