Базовые понятия

 Φ азовое пространство — совокупность всех начальных точек X или всех возможных состояний системы. Фазовая траектория — кривая в фазовом пространстве, составленная из точек, представляющих состояние динамической системы в последовательные моменты времени в течение всего времени эволюции.

Эволюция системы соответствует движению изображающей точки у фазовой плоскости вдоль траектории $\Gamma = \bigcup_t G^t X_0$. Для динамической системы с непрерывным временем траектории непрерывные кривые для динамической системы с дискретным временем, траектория— дискретные, подмножество фазовой плоскости.

Динамическая система с непрерывным временем задается системой дифференциальных уравнений $\dot{x} = F(x)$. Она позволяет найти состояние в любой момент времени по начальному состоянию. Если правая часть явно от времени не зависит, то динамическая система - автономная, иначе -

Динамическая система с дискретным временем: x(n+1) = F(x(n)).

1 Определение динамической системы

Рассмотрим систему, состояние которой определяется вектором $x(t) \in \mathbb{R}^n$. Предположим, что эволюция системы определяется одно-параметрическим семейством операторов $G^t, t \in R$ или $t \in Z$, таких, что состояние системы в момент t: $x(t,x_0=G^tx_0)$ где x_0 – начальное состояние (начальная точка). Предположим также, что эволюционные операторы удовлетворяют двум следующим свойствам, отражающим детерминистический характер описываемых процессов.

Первое свойство: G^0 – тождественный оператор, т.е. $x(0,x_0)=x_0$, для любых x_0 . Это свойство означает, что состояние системы не может изменяться самопроизвольно.

Второе свойство эволюционных операторов имеет вид: $\hat{x}(t_1 + t_2, x_0) = x(t_1, x(t_2, x_0)) = x(t_1, x(t_2, x_0))$ $x(t_2, x(t_1, x_0))$ Согласно ему, система приходит в одно и то же финальное состояние независимо от того, достигается ли оно за один временной интервал $t_1 + t_2$, или за несколько последовательных интервалов t_1 и t_2 , суммарно равных $t_1 + t_2$.

Совокупность всех начальных точек или всех возможных состояний системы называется фазовым пространством, а пара (X,G^t) , где семейство эволюционных операторов удовлетворяют условиям выше – динамической системой (ДС).

Иначе говоря, динамическая система — объект или процесс, для которого однозначно определено понятие состояния, как совокупности некоторых величин в данный момент времени и задан закон эволюции начального состояния с течением времени. По этому закону можно прогнозировать будущее состояние динамической системы.

2 Условия грубости динамических систем на плоскости

Так как динамические системы изменяются вместе со входящими в них параметрами, но при малости изменений качественные черты поведения сохраняются, вводится свойства грубости. Грубость — устойчивость структуры разбиения фазовой плоскости динамических систем на траектории по отношению к малым изменениям динамической системы. Для плоскости: пусть есть система:

$$\begin{cases} \dot{x} = P(x, y) \\ \dot{y} = Q(x, y) \end{cases}$$

где
$$P$$
 и Q - гладкие функции, система диссипативна.

Система — грубая, если существует число $\delta > 0$, что все динамические системы вида:

$$\begin{cases} \dot{x} = P(x, y) + p(x, y) \\ \dot{y} = Q(x, y) + q(x, y) \end{cases}$$

в которых аналитические функции удовлетворяют условию $|p(x,y)| + |q(x,y)| + \left|\frac{\partial p}{\partial x}\right| + \left|\frac{\partial q}{\partial x}\right| +$

 $\left| \frac{\partial p}{\partial y} \right| + \left| \frac{\partial q}{\partial y} \right| < \delta$, имеют такую же структуру разбиения на положительные полутраектории, что

Переход от одной грубой ДС к другой происходит через негрубую ДС.

ДС на прямой устойчива (структурно грубая), если для всех состоянии равновесия $\lambda_i(\mu) \neq 0$.

3 Бифуркация состояний равновесия динамических систем на прямой

Значение параметра, при котором ДС является негрубой, называется бифуркационным.

4 Метод линеаризации определения устойчивости состояний равновесия

Рассматриваем систему n-ого порядка: $\dot{x} = F(x), x \in \mathbb{R}^n, F(x)$ - гладкая вектор-функция. Пусть система имеет состояние равновесия $x = x^*$

Введем малое возмущение $\dot{\xi} = F(x^* + \xi)$, разложим правую часть в ряд Тейлора: $\dot{\xi} = A\xi + \dots$, где

A - матрица Якоби m с элементами $a_{ik}=\frac{\partial F_i}{\partial x_k}|_{x=x^*},$ и отбросим все нелинейные по ξ слагаемые.

Этим мы линеаризовали систему.

Решения ищем в виде $\xi = Ce^{\lambda t}, C$ - матрица-столбец. Подставив это решение в линеаризованное уравнение мы перейдем к системе линейных однородных уравнений, которая имеет нетривиальное решение, если $det(A-\lambda E)=0$. Это уравнение эквивалентно $a_0\lambda^n+a_1\lambda^{n-1}+\cdots+a_n=0$ - характеристическому уравнению. Его корни - характерестические показатели состояния равновесия $x = x^*$

- 1. Все корни имеют отрицательные вещественные части ($Re\lambda_i < 0$) состояние равновесия системы асимптотически устойчиво
- **2.** Среди корней есть корень с Re > 0 состояние равновесия неустойчиво по Ляпунову
- 3. Среди корней нет значений с Re > 0, но есть корень с Re = 0 состояние равновесия может быть как устойчивым, так и неустойчивым

5 Линейный осциллятор. Основные свойства

Осциллятор - простейшая динамическая система с двумерным фазовым портретом Уравнение ЛО: $\ddot{x}+2\delta\dot{x}+\omega_0^2=0,\quad 2\delta=\frac{R}{L},\quad \omega_0^2=\frac{1}{LC}$ δ - потери, ω_0 - частота собственных колебаний

1. Без потери энергии

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\omega_0^2 x \end{cases} \qquad \lambda_{1,2} = \pm i\omega_0$$

Состояние равновесия в начале координат - центр

Свойства:

* Гармонические колебания происходят с частотой ω_0 , амплитудой $A=\sqrt{x_0^2}+\frac{y_0^2}{x_0^2}$ и фазой

$$tgarphi=rac{\omega_0x_0}{\omega_0^2}\;(x_0\;\mathrm{id}\;y_0$$
 - в момент $T)$

- Жолебания изохронны не зависят от начальных условий
- Энергия системы сохраняется
- 2. С потерями энергии ($\delta \neq 0$)

$$\begin{cases} \dot{x}=y \\ \dot{y}=-2\delta y-\omega_0^2 x \end{cases}$$
 $\lambda^2+2\delta \lambda+\omega_0^2=0$ - характерестическое ур-е

* Затухающий процесс $(\delta > 0, \delta^2 < \omega_0^2)$:

$$\omega = \sqrt{\omega_0^2 - \delta^2}, \quad \lambda_{1,2} = -\delta \pm i\omega_0$$

Состояние равновесия - устойчивый фокус, затухающие колебания с изоклиной - экспонентой

* Затухающий апериодический процесс $(\delta > 0, \delta^2 > \omega_0^2)$:

$$\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$$
, состояние равновесия - устойчивый узел

 $\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2},$ состояние равновесия - устойчивый узел * Отрицательное затухание ($\delta < 0$): энергия растет во времени, состояние равновесия - неустойчивый фокус при $\delta^2 < \omega_0^2$ или неустойчивый узел при $\delta^2 \geqslant \omega_0^2$

6 Резонанс в линейном осцилляторе

Резонанс — неограниченное возрастание амплитуды вынужденных колебаний, когда частота внешней силы близка к собственной частоте, линейного осциллятора.

1. Консервативный случай (без потери энергии)

$$W$$
 - не диссипирует. $a=\frac{F_0}{|\omega_0^2-\omega^2|}$ - амплитуда вынужденных колебаний переменной $\mathbf{x}(\mathbf{t})$.

При резонансе измерение переменных во времени - непереодическое: $x(t) = t \frac{F_0}{2t} sin(\omega_0 t)$

2. Диссипативный случай (с потерями энергии)

$$a_{max} \to \omega_{max} < \omega_0, \quad \omega_{max} = \sqrt{\omega_0^2 - 2\delta^2}, \quad a_{max} = \frac{F_0}{2\delta\sqrt{\omega_0^2 - 2\delta^2}}, \quad \delta \uparrow a_{max} \downarrow$$

Характеристики резонансных свойств

Добротность -
$$Q = \frac{\pi}{d} = \frac{\omega_0}{2\delta}$$

Логарифмический коэффициент затухания - $d=\delta T=rac{2\pi\delta}{\omega}$

7 Определение предельного цикла. Характеристики

Предельный цикл — замкнутая изолированная фазовая траектория. Замкнутая фазовая траектория называется изолированный, если существует достаточно малое кольцеобразная окрестность этой траектории, внутри которой нет других замкнутых траекторий.

Предельному циклу соответствует периодический процесс.

Характеристики:

- * Мультипликатор S: S<1 ПЦ устойчивый, S>1 ПЦ неустойчивый. Всегда S>0
- * Характерестический показатель λ : $\lambda < 0$ ПЦ устойчивый, $\lambda > 0$ ПЦ неустойчивый. λ можем получить в уравнении при линеаризации системы

Связь характеристик: $\lambda = \frac{1}{T_0} ln(S)$

8 Автоколебания и автоколебательная система. Мягкий и жесткий режимы возбуждения

Автоколебательная система — диссипативная система, совершающая незатухающие колебания при отсутствии колебательного воздействия извне. В этих системах возникает баланс между действиями диссипативных потерь и внутренних механизмов, компенсирующих потери. Автоколебания — незатухающие колебания в нелинейной диссипативной системе, форма и свойства которых в определенных пределах не зависит от начальных условий и определяется параметрами самой системы.

1. Мягкий режим

 $\gamma < 0$ - автоколебаний нет, $\gamma = 0$ - суперкритическая бифуркация Андронова-Хопфа ($\lambda_i < 0$), $\gamma > 0$ - неустойчивое состояние равновесия + появление одного устойчивого предельного цикла на фазовой плоскости. $\gamma \uparrow A \uparrow$

Состояние равновесия $\gamma=0$ - безопасная граница устойчивости, то есть при ее нарушении система переходят в качественно новое состояние, но не покидает при $0<\gamma\ll 1$ окрестности предыдущего состояния.

2. Жесткий режим

 λ < 0 - состояние равновесия локально устойчиво, λ = 0 - состояние равновесия теряет устойчивость \rightarrow автоколебания возникают скачком (жестко), $\lambda \uparrow A \uparrow$, затем квазистатически $\lambda \downarrow A \uparrow$ от

 $\lambda>0$, а потом совсем исчезают скачком. Рождение и исчезновение АК происходит при разных λ - наблюдается гестерезис. $\lambda=0$ - опасная граница устойчивости состояния равновесия, так как поведение системы менятеся резко

Свойства автоколебательных систем

- * Источник энергии для компенсации диссипации постоянен и находится внутри самой системы
- * Система содержит колебательную подсистему и активный нелинейный элемент
- * В изолированной колебательной системе происходят затухающие колебательные процессы, а активный элемент может усиливать колебания и их нелинейно ограничивать
- * Между колебательной подсистемой активным элементом существует обратная связь, регулирующая поступление энергии от источника
- * Автоколебания в определенных пределах не зависят от начальных условиях и определяются параметрами системы
- Жатематическим образом периодических автоколебаний является предельной цикл

Бифуркационные сценарии рождения периодических движений динамических систем на плоскости

Значение параметра		μ < 0	$\mu = 0$	$\mu > 0$
Бифуркация		Фазовые портреты		
I	Андронова-Хопфа	(a)	(a)	
	Двукратный предельный цикл (седло-узловая циклов)	(A)		
II	Петля сепаратрис седла (седловая гомоклиническая бифуркация)	(X)		
	Петля сепаратрис седло-узла (седло-узловая гомоклиническая бифуркация)			

10 Дисперсия, ее физическая природа и проявления

Дисперсия — зависимость фазовой скорости волны от ее частоты. Связь между частотой и волновым числом гармонической волны определяется пространственными и временными масштабами среды и называется дисперсионным соотношением.

У каждой компоненты волнового пакета будет своя V_{Φ} , возникает его деформация. Наличием собственных масштабов объясняется эффект частичного непропускания волны Область прозрачности: $k \in Re$ - распространение без искажения гармонической волны Область непрозрачности: $k \in Im$ - нераспространение.

11 Простые волны. Основные свойства и условия существования

 $U_t + C(U)U_x = 0$ — нелинейное уравнение простой волны. C(U)— дифференцируемая функция (скорость от состояния среды). Характеристики — линии, вдоль которых переменная U(x,t) будет оставаться постоянной и равной по значению для каждого соответствующего значения x.

12 Параметрические системы. Основные свойства

Параметрически системы — системы, где внешнее воздействие находится внутри системы и может изменять ее параметры.

Резонансные. Период изменения параметров находится в целочисленном соотношении с периодом собственных колебаний. В такт с изменением энергии, соответствующей собственным колебаниям, вносится энергия, вызванная работой внешнего воздействия. При определенных условиях может привести к эффекту раскачки колебаний за счет накапливающейся в системе энергии.

Нерезонансные. Параметры изменяются очень быстро или очень медленно в сравнении с характерными временными масштабами изменения переменных системы.

- 1. Параметрическая система, находящаяся в начальный момент в состоянии равновесия, останется в этом состоянии при t>0 (дергая за нитку, маятник нельзя раскачать)
- 2. Состояния равновесия параметрической системы могут быть как устойчивы, так и неустойчивы
- 3. Если параметры системы таковы, что она неустойчива и система выведена из состояния равновесия, то в ней возникают колебания, амплитуда которых $\uparrow exp$. Процесс возрастания размаха

в колебаний при периодическом нарастании колебаний — параметрический резонанс.

- 13 Релаксационные колебания
- 14 Локальные бифуркации состояний равновесия трехмерных систем
- 15 Локальные бифуркации периодических движений трехмерных систем