Main_with_outputs

June 20, 2021

0.0.1 Introduction

In this Milestone(3), we are concerned with the efficiency of differend Neural Networks; fit_time, prediction_time, accuracy, etc. Although the structure of this MS is like the previous MS, but we have done a thorough and comprehensive study on the performance of the models. Five models has been tested deeply; please note that if you have completely random NN, the accuracy should be around 4%. While our models can easily provide more than 50%.

Group members: Hamid Pour Mohammad, Mehdi Naghi Lou, Saeid Entezari.

```
[1]: import tensorflow as tf
from tensorflow import keras as ks
import numpy as np
from pandas import read_csv, concat, DataFrame
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
from time import time
```

```
[2]: from pandas import read_csv
     df=read_csv('data_clean.csv') # importing the data
     def sampler(df, n): # It chooses n samples from df (encoding and cleaning are
      \hookrightarrow considered)
         df_s=df.sample(n)
         encoder=LabelEncoder() # encoding the labels
         encoder.fit(df_s['target_tag'])
         global encoder_classes # saving the order of the classes
         encoder classes=encoder.classes
         df_s['target_tag']=encoder.transform(df_s['target_tag'])
         # we have a reason to delete the 164th feature! Explanation is too long;
      →but in short, it's because of
         # the intercurrent variables. So, let's get rid of it:
         df_s= concat([df_s.iloc[:,1:164], df_s.iloc[:,165:]], axis=1)
         return df_s
     # converting probabilities to classes, and make confusion matrix:
     def confusion_matrix_func(model, X_test, Y_test):
```

0.0.2 Evaluating the models:

As the metrics, we want to use confusion matrix first. Because it shows us how many predictions are correct, without considering the importance of each class; no class is superior in our research. On the other hand, some of wrong predictions are important. because some of them show the better choice to classify a Tweet; and some of them show the correlations and overlapping of different classes. For example, 'gym' and 'bodybuilding' are overlapping according to the confusion matrix, and you can find correlations and overlapping very well. Also, almost all the classes have the same number of samples, so we consider the accuracy of prediction, as another metric. Please note that our metric is sparse_categorical_accuracy, because we have 27 classes. Neural network models can find the correlations between various words in the texture of tweets; so they can provide accurate predictions if they have been trained well.

0.0.3 Changing the complexity:

In the below link: https://www.innoarchitech.com/blog/machine-learning-an-in-depth-non-technical-guide-part-3 you can read:

"In machine learning, model complexity often refers to the number of features or terms included in a given predictive model, as well as whether the chosen model is linear, nonlinear, and so on. It can also refer to the algorithmic learning complexity or computational complexity."

Thus, we will change the number of features (kept features) in each model, and explore optimal value. Also, we change the structure of the model (it means the comlexity of the structure of the model will change too).

```
[5]: # These lists will be utlized for comparing the models:
    fit_time_list=[]
    predict_time_list=[]
    best_accuracy_list=[]
    best_val_accuracy_list=[]
    min_loss_list=[]
    min_val_loss_list=[]
    bias_list=[]
    variance_list=[]
```

0.0.4 Model 1:

In this model, we are utilizing a NN with two hidden layers; 400 nodes for each hidden layer. The activation function is relu (it's sigmoid for output layer). The optimizing algorithm is SGD with lr=0.1. Also, we have considered regularization to have 0.01 impact coefficient. About loss function and metric, they are sparse_categorical_crossentropy and sparse_categorical_accuracy.

```
[6]: # model 1:
     # Let's train some different forms of model_1:
     # different number of features; changing the complexity:
     n_kept_features = list(range(200, df.shape[1]+1, 240)) + [df.shape[1]-3]
     accuracy_list=[]
     val_accuracy_list=[]
     print('Validation Curve process for model_1:')
     print('(Please note that our metric is accuracy: sparse categorical accuracy)')
     start_time=time() # time for fitting
     for n in n_kept_features:
         acc=[] # calculate the accuracy for a few times
         val_acc=[] # calculate the validation accuracy for a few times
         for i in range(3): # training a few times, to find the average
             df_sample=sampler(df, 3000) # choose some samples
             X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
      →n], df_sample['target_tag'])
             reg_coef_1=0.01 # impact coefficient of regularization
             model_1=ks.models.Sequential()
             model_1.add(ks.layers.Dense(units=400, activation=ks.activations.relu,_
      →input_dim=X_train.shape[1],
                                         kernel_regularizer=ks.regularizers.
      →12(reg_coef_1)))
             model_1.add(ks.layers.Dense(units=400, activation=ks.activations.relu,
                                         kernel_regularizer=ks.regularizers.
      \rightarrow12(reg_coef_1)))
             model_1.add(ks.layers.Dense(units=27, activation=ks.activations.
      →sigmoid))
             model_1.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
      →sparse_categorical_crossentropy,
                          metrics=ks.metrics.sparse categorical accuracy)
             history=model_1.fit(X_train, Y_train, validation_split=0.1, epochs=7,_
      ⇒batch size=30, verbose=0)
             acc.append( np.mean( np.sort(history.
      →history['sparse_categorical_accuracy'])[-3:] ) )
             val_acc.append( np.mean( np.sort(history.
      →history['val_sparse_categorical_accuracy'])[-3:] ) )
```

```
accuracy_list.append(np.mean(acc))
         val_accuracy_list.append(np.mean( val_acc ))
         print(f'{n} features: done')
     end_time=time()
     print(f'\nThe optimal value for the Complexity (n_f) is: {n_kept_features[np.
     →argmax(val_accuracy_list)]}')
     plt.plot(n_kept_features, accuracy_list, label='Training accuracy')
     plt.plot(n_kept_features, val_accuracy_list, label='Validation accuracy')
     plt.xlabel('Complexity (number of features)'), plt.ylabel('Accuracy score (or ...
     →performance)')
     plt.title('Validation Curve')
    plt.legend()
    Validation Curve process for model_1:
    (Please note that our metric is acuuracy: sparse_categorical_accuracy)
    200 features: done
    440 features: done
    680 features: done
    920 features: done
    1160 features: done
    1400 features: done
    1640 features: done
    1784 features: done
    The optimal value for the Complexity (n_f) is: 1400
[6]: <matplotlib.legend.Legend at 0x7f82c9ab1810>
```


Confusion Matrix for model_1:

[7]:		animal	architecture	art	biology	bodybuilding	business	\
0	animal	20	0	2	0	0	0	
1	architecture	0	6	0	0	0	0	
2	art	1	0	16	0	0	0	
3	biology	0	0	0	7	0	0	
4	bodybuilding	0	0	0	0	0	0	

5	bu	siness	0		0 0			0	0
6		covid	0		0 0			0	0
7		ulture	0		0 0			0	0
8		ection		0				0	0
9	_	eering	0		0 0			0	0
10	f	ashion	0		0 1			0	0
11		food	0		0 0			0	0
12	gove	rnment	0		0 0	0		0	0
13		gym	0		0 0	0		0	0
14	inno	vation	0		0 0	0		0	0
15		job	0		0 0	0		0	0
16		love	0		0 1	0		0	0
17	mar	keting	0		0 0	0		0	0
18	m	edical	0		0 0	0		0	0
19		pet	11		0 0	0		0	0
20	ph	armacy	0		0 0	0		0	0
21	p	hysics	0		0 0	1		0	0
22	pol	itical	0		0 0	0		0	0
23	s	cience	0		0 1	0		0	0
24		solar	0		0 0	0		0	0
25	tech	nology	0		0 0	0		0	0
26		travel	0		1 0	0		0	0
	covid	culture	election	•••	marketing	medical	pet	pharmacy	physics \
0	0	0	0	•••	3	0	0	0	0
1	0	0	0		6	0	0	_	
2			v	•••	U	U	U	0	0
	0	0	0		1	0	0	0	0 0
3	0	0							
3 4			0	•••	1	0	0	0	0
	0	0	0 0		1 0	0	0	0 0	0 19
4	0	0 0	0 0 0		1 0 0	0 0	0 0 0	0 0 0	0 19 0
4 5	0 0 3	0 0 0	0 0 0 0		1 0 0 14	0 0 0 0	0 0 0 0	0 0 0 0	0 19 0 5
4 5 6	0 0 3 12	0 0 0 0	0 0 0 0		1 0 0 14 3	0 0 0 0	0 0 0 0	0 0 0 0	0 19 0 5
4 5 6 7 8 9	0 0 3 12 1 0	0 0 0 0 16	0 0 0 0 0 0		1 0 0 14 3 5	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 19 0 5 0 0
4 5 6 7 8	0 0 3 12 1 0	0 0 0 0 16	0 0 0 0 0 0 0		1 0 0 14 3 5	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 19 0 5 0 0
4 5 6 7 8 9	0 0 3 12 1 0	0 0 0 0 16 0	0 0 0 0 0 0		1 0 0 14 3 5 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 19 0 5 0 0
4 5 6 7 8 9 10	0 0 3 12 1 0 1	0 0 0 0 16 0 0	0 0 0 0 0 0 0		1 0 0 14 3 5 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 19 0 5 0 0 0
4 5 6 7 8 9 10	0 0 3 12 1 0 1 0	0 0 0 0 16 0 0	0 0 0 0 0 0 0		1 0 0 14 3 5 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 19 0 5 0 0 0 0
4 5 6 7 8 9 10 11 12	0 0 3 12 1 0 1 0	0 0 0 0 16 0 0 0	0 0 0 0 0 0 0		1 0 0 14 3 5 0 0 0 9	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 19 0 5 0 0 0 0
4 5 6 7 8 9 10 11 12 13	0 0 3 12 1 0 1 0 0	0 0 0 0 16 0 0 0	0 0 0 0 0 0 0 0		1 0 0 14 3 5 0 0 0 9 5	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 19 0 5 0 0 0 0 0
4 5 6 7 8 9 10 11 12 13 14	0 0 3 12 1 0 1 0 0 1	0 0 0 0 16 0 0 0 0	0 0 0 0 0 0 0 0		1 0 0 14 3 5 0 0 0 9 5 1 5	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 19 0 5 0 0 0 0 0
4 5 6 7 8 9 10 11 12 13 14 15	0 0 3 12 1 0 1 0 0 1 0 0	0 0 0 16 0 0 0 0			1 0 0 14 3 5 0 0 0 9 5 1 5 2 4 21		0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 19 0 5 0 0 0 0 0 0 0 0
4 5 6 7 8 9 10 11 12 13 14 15 16	0 0 3 12 1 0 1 0 0 1 0 0	0 0 0 0 16 0 0 0 0 0	0 0 0 0 0 0 0 0		1 0 0 14 3 5 0 0 0 9 5 1 5 2 4 21 5			0 0 0 0 0 0 0 0 0	0 19 0 5 0 0 0 0 0 0 0
4 5 6 7 8 9 10 11 12 13 14 15 16 17	0 0 3 12 1 0 1 0 0 1 0 0 0	0 0 0 0 16 0 0 0 0 0			1 0 0 14 3 5 0 0 0 9 5 1 5 2 4 21			0 0 0 0 0 0 0 0 0	0 19 0 5 0 0 0 0 0 0 0 0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0 0 3 12 1 0 1 0 0 0 1 0 0 0	0 0 0 0 16 0 0 0 0 0 0			1 0 0 14 3 5 0 0 0 9 5 1 5 2 4 21 5			0 0 0 0 0 0 0 0 0 0	0 19 0 5 0 0 0 0 0 0 0 0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0 0 3 12 1 0 1 0 0 0 1 0 0 0	0 0 0 0 16 0 0 0 0 0 0 0			1 0 0 14 3 5 0 0 0 9 5 1 5 2 4 21 5 3		0 0 0 0 0 0 0 0 0 0 0		0 19 0 5 0 0 0 0 0 0 0 0 0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0 0 3 12 1 0 1 0 0 0 1 0 0 0 1 0 0 0	0 0 0 0 16 0 0 0 0 0 0 0			1 0 0 14 3 5 0 0 0 9 5 1 5 2 4 21 5 3		0 0 0 0 0 0 0 0 0 0 0 0		0 19 0 5 0 0 0 0 0 0 0 0 0 0

23	0	0	0	3	0	0	0	0
24	0	0	0	0	0	0	0	0
25	0	0	0	5	0	0	0	0
26	3	0	0	4	0	0	0	0

	noli+icol	aaianaa	aalam	+0.000010000	+1
0	political 0	science	solar O	technology 7	travel
0 1	0	0	0	14	0
2	0	0	0	8	0
3	0	0	0	2	0
4	0	0	0	4	0
5	0	0	0	9	0
6	0	0	0	11	0
7	0	0	0	13	0
8	0	0	0	11	0
9	0	0	0	19	0
10	0	0	0	7	0
11	0	0	0	15	0
12	0	0	0	10	0
13	0	0	0	10	0
14	0	1	0	22	0
15	0	1	0	0	0
16	0	0	0	16	0
17	0	0	0	6	0
18	0	0	0	20	0
19	0	0	0	4	0
20	0	0	0	8	0
21	0	0	0	5	0
22	0	0	0	8	0
23	0	5	0	19	0
24	0	0	18	0	0
25	0	1	0	25	0
26	0	0	0	11	14
	•	·	•		- -

[27 rows x 28 columns]

```
loss=[]
   val_loss=[]
   for i in range(2): # training a few times, to find the average
       df_sample=sampler(df, n_s)
       X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
 reg coef 1=0.01
       model_1=ks.models.Sequential()
       model_1.add(ks.layers.Dense(units=400, activation=ks.activations.relu,_
 →input_dim=X_train.shape[1],
                                   kernel_regularizer=ks.regularizers.
 \rightarrow12(reg_coef_1)))
       model_1.add(ks.layers.Dense(units=400, activation=ks.activations.relu,
                                   kernel_regularizer=ks.regularizers.
 \rightarrow12(reg coef 1)))
       model_1.add(ks.layers.Dense(units=27, activation=ks.activations.
 →sigmoid))
       model_1.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.

→sparse_categorical_crossentropy,
                    metrics=ks.metrics.sparse_categorical_accuracy)
       history=model_1.fit(X_train, Y_train, validation_split=0.1, epochs=17,__
 →batch size=5, verbose=0)
       loss.append( np.mean( np.sort(history.history['loss'])[:3] ) )
       val_loss.append( np.mean( np.sort(history.history['val_loss'])[:3] ) )
   loss_list.append(np.mean( loss ))
   val_loss_list.append(np.mean( val_loss ))
   print(f'{n_s} samples: done')
min_loss_list.append(min(loss_list))
min_val_loss_list.append(min(val_loss_list))
print(f'\nBias: {np.mean(loss list[-2:]+val loss list[-2:])}')
print(f'Variance: {np.mean(np.array(val loss list[-2:])-np.array(loss list[-2:
→]))/2}')
print("""According to the amount of bias and variance, it seems that we have⊔
→enough data. Please
note that we have 100,000 samples (in total). And it is almost a good model.""")
plt.plot(n_samples, loss_list, label='loss')
plt.plot(n_samples, val_loss_list, label='val_loss')
plt.xlabel('Number of samples'), plt.ylabel('Loss_
plt.title('Learning curve')
plt.legend()
```

Learning Curve process for model_1:

700 samples: done 1200 samples: done 1700 samples: done 2200 samples: done 2700 samples: done 3000 samples: done

Bias: 2.575176378091176

Variance: 0.20309215784072887

According to the amount of bias and variance, it seems that we have enough data.

Please

note that we have 100,000 samples (in total). And it is almost a good model.

[8]: <matplotlib.legend.Legend at 0x7f82d83ab3d0>

Please note that we are using regularization with 0.01 impact coefficient. Without regularization, we have to deal with overfitting.

```
[9]: bias_list.append( np.mean(loss_list[-2:]+val_loss_list[-2:]) )
variance_list.append( np.mean(np.array(val_loss_list[-2:])-np.

→array(loss_list[-2:]))/2 )
```

0.0.5 Fine tunning other hyper-parameter of the model:

Now, we like to fine tune other hyper-parameter of the model; it's batch_size. Because we have understood that it is very important to have a good batch_size.

```
[16]: # model 1:
      # Fine tunning another hyper-model of model_1; batch_size or learning rate can_
      \rightarrowbe tunned.
      # Here, we go for the batch_size:
      n f=600
      n_batch_sizes=[1, 3, 5, 8, 12, 15] # different number of batch size
      accuracy_list=[]
      val_accuracy_list=[]
      print('Fine tunning another hyper-parameter of model_1:')
      for n_b_s in n_batch_sizes:
         accuracy=[]
         val accuracy=[]
         for i in range(2): # training a few times, to find the average
             df sample=sampler(df, 1000)
             X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
      reg coef 1=0.01
             model_1=ks.models.Sequential()
             model 1.add(ks.layers.Dense(units=400, activation=ks.activations.relu,,,
       →input_dim=X_train.shape[1],
                                         kernel_regularizer=ks.regularizers.
      →12(reg_coef_1)))
             model_1.add(ks.layers.Dense(units=400, activation=ks.activations.relu,
                                         kernel_regularizer=ks.regularizers.
      →12(reg_coef_1)))
             model_1.add(ks.layers.Dense(units=27, activation=ks.activations.
       →sigmoid))
             model_1.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
       ⇒sparse_categorical_crossentropy,
                           metrics=ks.metrics.sparse_categorical_accuracy)
             history=model_1.fit(X_train, Y_train, validation_split=0.1, epochs=10,__
       →batch_size=n_b_s, verbose=0)
              accuracy.append( np.mean( np.sort(history.
       →history['sparse_categorical_accuracy'])[-3:] ) )
              val_accuracy.append( np.mean( np.sort(history.
       →history['val_sparse_categorical_accuracy'])[-3:] ) )
         accuracy_list.append(np.mean( accuracy ))
         val_accuracy_list.append(np.mean( val_accuracy ))
```

```
print(f'Batch_size = {n_b_s} : done')

print(f'\nBest Batch_size: {n_batch_sizes[ np.argmax(val_accuracy_list) ]}')

plt.plot(n_batch_sizes, accuracy_list, label='Training accuracy')

plt.plot(n_batch_sizes, val_accuracy_list, label='Validation accuracy')

plt.xlabel('Batch_size'), plt.ylabel('Accuracy (sparse_categorical_accuracy)')

plt.title('Effect of batch_size on accuracy')

plt.legend()
```

Fine tunning another hyper-parameter of model_1:

Batch_size = 1 : done
Batch_size = 3 : done
Batch_size = 5 : done
Batch_size = 8 : done
Batch_size = 12 : done
Batch_size = 15 : done

Best Batch_size: 3

[16]: <matplotlib.legend.Legend at 0x7f82f34fb290>

0.0.6 Model 2:

In the second model, we are utilizing a NN with 3 hidden layers; 350, 400, 100 nodes for hidden layers. Actually, we are making the NN deeper. The activation function is relu (it's sigmoid for output layer). The optimizing algorithm is SGD with lr=0.1 and batch_size=5. Also, we have considered regularization to have 0.01 impact coefficient. About loss function and metric, they are sparse categorical crossentropy and sparse categorical accuracy.

```
[17]: # model_2:
      # Let's train some different forms of model 2:
      # different number of features; changing the complexity:
      n_kept_features = list(range(300, df.shape[1]+1, 300)) + [df.shape[1]-3]
      accuracy_list=[]
      val_accuracy_list=[]
      print('Validation Curve process for model_2:')
      print('(Please note that our metric is accuracy: sparse categorical accuracy)')
      start_time=time() # time for fitting
      for n in n kept features:
          acc=[] # calculate the accuracy for a few times
          val_acc=[] # calculate the validation accuracy for a few times
          for i in range(3): # training a few times, to find the average
              df_sample=sampler(df, 3000) # choose some samples
              X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
       →n], df_sample['target_tag'])
              reg_coef_2=0.01 # impact coefficient of regularization
              model_2=ks.models.Sequential()
              model_2.add(ks.layers.Dense(units=350, activation=ks.activations.relu,_
       →input_dim=X_train.shape[1],
                                          kernel_regularizer=ks.regularizers.
       \rightarrow12(reg_coef_2)))
              model_2.add(ks.layers.Dense(units=400, activation=ks.activations.relu,
                                           kernel_regularizer=ks.regularizers.
       →12(reg_coef_2)))
              model 2.add(ks.layers.Dense(units=100, activation=ks.activations.relu,
                                          kernel_regularizer=ks.regularizers.
       \rightarrow12(reg_coef_2)))
              model_2.add(ks.layers.Dense(units=27, activation=ks.activations.
       →sigmoid))
              model_2.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
       ⇒sparse_categorical_crossentropy,
                           metrics=ks.metrics.sparse_categorical_accuracy)
              history=model_2.fit(X_train, Y_train, validation_split=0.1, epochs=7,_
       →batch size=5, verbose=0)
```

```
acc.append( np.mean( np.sort(history.
       →history['sparse_categorical_accuracy'])[-3:] ) )
              val_acc.append( np.mean( np.sort(history.
       →history['val_sparse_categorical_accuracy'])[-3:] ) )
          accuracy_list.append(np.mean(acc))
          val_accuracy_list.append(np.mean( val_acc ))
          print(f'{n} features: done')
      end_time=time()
      print(f'\nThe optimal value for the Complexity (n_f) is: {n_kept_features[np.
      →argmax(val_accuracy_list)]}')
      plt.plot(n_kept_features, accuracy_list, label='Training accuracy')
      plt.plot(n_kept_features, val_accuracy_list, label='Validation accuracy')
      plt.xlabel('Complexity (number of features)'), plt.ylabel('Accuracy score (or_
      →performance)')
      plt.title('Validation Curve')
      plt.legend()
     Validation Curve process for model_2:
     (Please note that our metric is acuuracy: sparse_categorical_accuracy)
     300 features: done
     600 features: done
     900 features: done
     1200 features: done
     1500 features: done
     1784 features: done
     The optimal value for the Complexity (n_f) is: 1784
[17]: <matplotlib.legend.Legend at 0x7f8304301910>
```


Confusion Matrix for model_2:

```
[18]:
                          animal
                                   architecture
                                                   art
                                                        biology
                                                                  bodybuilding
                                                                                  business
      0
                 animal
                                                     3
                                               0
                                                               0
                                                                               0
                                                                                          0
                                0
                                                     2
                                                                               0
                                                                                          0
      1
           architecture
                                              17
                                                               0
      2
                     art
                                2
                                               0
                                                    22
                                                               0
                                                                               0
                                                                                          3
                                0
                                                     0
                                                                               0
                                                                                          0
      3
                biology
                                                0
                                                              18
           bodybuilding
                                0
                                                0
                                                     1
                                                               0
                                                                                          0
```

5	bu	siness	0		1	0	3		0	5	,
6		covid	1		0	0	0		0	C)
7		ulture	0		1	1	0		0	1	
8	el	ection	0		0	0	0		0	2	2
9	engin	eering	0		2	0	0		0	C)
10	f	ashion	0		0	2	0		0	C)
11		food	0		0	1	0		0	1	
12	gove	rnment	0		0	0	0		0	4	
13		gym	0		0	0	0		0	C)
14	inno	vation	0		1	0	1		0	3	3
15		job	0		0	0	0		0	1	
16		love	1		0	0	0		0	C)
17	mar	keting	0		0	0	1		0	C)
18	m	edical	0		0	1	0		0	C)
19		pet	3		0	0	0		0	C)
20	ph	armacy	0		0	0	0		0	C)
21	_	hysics	1		0	1	14		0	C)
22	_	itical	0		0	0	1		0	C)
23	_	cience	0		2	0	1		0	C)
24		solar	0		1	0	0		0	C)
25	tech	nology	0		0	0	0		0	2)
26		travel	0		2	1	0		0	2)
		7 4	-						,		`
	covid	culture	election	•••	market	ing	medical	pet	pharmacy	physics	\
0	covia 1	culture 0	election 0		market	ing 1	medical 1	pet 3	pharmacy 0	pnysics 0	\
0 1					market	_					\
	1	0	0	•••	market	1	1	3	0	0	\
1	1 0	0 1	0 0		market	1	1 2	3 0	0	0	`
1 2	1 0 0	0 1 1	0 0 0		market	1 0 3	1 2 2	3 0 0	0 0	0 0 0	\
1 2 3	1 0 0	0 1 1 0	0 0 0		market.	1 0 3 0	1 2 2 0	3 0 0 0	0 0 0	0 0 0 7	`
1 2 3 4	1 0 0 0	0 1 1 0 0	0 0 0 0		market.	1 0 3 0 2	1 2 2 0 1	3 0 0 0	0 0 0 0 0	0 0 0 7 0	`
1 2 3 4 5	1 0 0 0 0	0 1 1 0 0	0 0 0 0 0		market	1 0 3 0 2 10	1 2 2 0 1 5	3 0 0 0 0	0 0 0 0 0	0 0 0 7 0 1	`
1 2 3 4 5 6	1 0 0 0 0 0 0	0 1 1 0 0 1 1	0 0 0 0 0		market	1 0 3 0 2 10 2	1 2 2 0 1 5	3 0 0 0 0 0	0 0 0 0 0	0 0 7 0 1 0	`
1 2 3 4 5 6 7	1 0 0 0 0 0 0 10	0 1 1 0 0 1 1 8	0 0 0 0 0 0		market.	1 0 3 0 2 10 2 4	1 2 2 0 1 5 6 3	3 0 0 0 0 0 0	0 0 0 0 0 0	0 0 7 0 1 0	`
1 2 3 4 5 6 7 8	1 0 0 0 0 0 0 10 0	0 1 1 0 0 1 1 1 8	0 0 0 0 0 0		market.	1 0 3 0 2 10 2 4 2	1 2 2 0 1 5 6 3	3 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 7 0 1 0 0	\
1 2 3 4 5 6 7 8	1 0 0 0 0 0 10 0 0	0 1 1 0 0 1 1 8 1	0 0 0 0 0 0 0		market	1 0 3 0 2 10 2 4 2	1 2 2 0 1 5 6 3 0 2	3 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 7 0 1 0 0 0	\
1 2 3 4 5 6 7 8 9 10	1 0 0 0 0 0 10 0 0	0 1 1 0 0 1 1 8 1 0	0 0 0 0 0 0 0		market	1 0 3 0 2 10 2 4 2 2 0 5	1 2 2 0 1 5 6 3 0 2	3 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 7 0 1 0 0 0	,
1 2 3 4 5 6 7 8 9 10	1 0 0 0 0 0 10 0 0 0	0 1 1 0 0 1 1 1 8 1 0 0	0 0 0 0 0 0 0 0		market	1 0 3 0 2 10 2 4 2 2 0 5	1 2 2 0 1 5 6 3 0 2 1 5	3 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 7 0 1 0 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13	1 0 0 0 0 0 10 0 0 0	0 1 1 0 0 1 1 8 1 0 0 0 0	0 0 0 0 0 0 0 0		market	1 0 3 0 2 10 2 4 2 2 0 5 5	1 2 2 0 1 5 6 3 0 2 1 5 3	3 0 0 0 0 0 0 0 0 0		0 0 7 0 1 0 0 0 1 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 0 0 0 0 0 10 0 0 0 0	0 1 1 0 0 1 1 1 8 1 0 0 0 0 0 0 0 0 0 0			market	1 0 3 0 2 10 2 4 2 2 0 5 5 3 4	1 2 2 0 1 5 6 3 0 2 1 5 3 1 3	3 0 0 0 0 0 0 0 0 0 0		0 0 7 0 1 0 0 0 1 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 0 0 0 0 0 10 0 0 0 0	0 1 1 0 0 1 1 8 1 0 0 0 0			market	1 0 3 0 2 10 2 4 2 2 0 5 3 4 0	1 2 2 0 1 5 6 3 0 2 1 5 3 1 3 0	3 0 0 0 0 0 0 0 0 0 0		0 0 7 0 1 0 0 0 1 0 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 0 0 0 0 0 10 0 0 0 0 0	0 1 1 0 0 0 1 1 8 1 0 0 0 0 0 0 0 0 0 0			market	1 0 3 0 2 10 2 4 2 2 0 5 5 3 4 0 2	1 2 2 0 1 5 6 3 0 2 1 5 3 1 3 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 7 0 1 0 0 0 0 0 0 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 0 0 0 0 0 10 0 0 0 0 0 0	0 1 1 0 0 1 1 8 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0			market	1 0 3 0 2 10 2 4 2 2 0 5 5 3 4 0 2 12	1 2 2 0 1 5 6 3 0 2 1 5 3 1 3 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 7 0 1 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 0 0 0 0 0 10 0 0 0 0 0 0 0	0 1 1 0 0 0 1 1 1 8 1 0 0 0 0 0 0 0 0 0			market	1 0 3 0 2 10 2 4 2 2 0 5 5 3 4 0 2 12 3	1 2 2 0 1 5 6 3 0 2 1 5 3 1 3 0 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 1 1 8 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0			market	1 0 3 0 2 10 2 4 2 2 0 5 5 3 4 0 2 12 3 0	1 2 2 0 1 5 6 3 0 2 1 5 3 1 3 0 0 1 2 1 2 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 1 1 8 1 0 0 0 0 0 0 1 1 1 1			market	1 0 3 0 2 10 2 4 2 2 0 5 5 3 4 0 2 12 3 0 0	1 2 2 0 1 5 6 3 0 2 1 5 3 1 3 0 0 1 2 1 2 0 0 1 2 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 1 1 8 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0			market	1 0 3 0 2 10 2 4 2 2 0 5 5 3 4 0 2 12 3 0	1 2 2 0 1 5 6 3 0 2 1 5 3 1 3 0 0 1 2 1 2 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0	

```
23
              0
                                                                 0
       0
                       0 ...
                                   1
                                            6
                                                0
                                                         0
24
       0
              0
                       0 ...
                                    0
                                            0
                                                0
                                                         0
                                                                 0
                                    2
                                                         0
25
       0
              0
                                            3
                                                0
                                                                 0
       0
              0
                                    5
                                            2
                                                0
                                                         0
                                                                 0
26
```

	political	science	solar	technology	travel
0	0	0	0	1	3
1	0	2	0	1	5
2	0	0	0	2	0
3	0	1	0	0	0
4	0	0	0	0	0
5	0	5	0	3	2
6	0	2	0	2	1
7	0	0	0	2	2
8	0	1	0	1	1
9	0	5	0	4	0
10	0	1	0	0	1
11	0	3	0	0	3
12	0	3	0	4	0
13	0	0	0	1	1
14	0	6	0	9	1
15	0	2	0	0	0
16	0	0	0	0	2
17	0	3	0	0	2
18	0	0	0	1	0
19	0	0	0	0	0
20	0	0	0	1	0
21	0	4	0	1	0
22	0	4	0	4	0
23	0	10	0	1	1
24	0	1	18	1	0
25	0	2	0	11	0
26	0	1	0	0	10

[27 rows x 28 columns]

```
loss=[]
    val_loss=[]
   for i in range(2): # training a few times, to find the average
        df_sample=sampler(df, n_s)
       X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
 reg_coef_2=0.01
       model_2=ks.models.Sequential()
       model_2.add(ks.layers.Dense(units=350, activation=ks.activations.relu,_
 →input_dim=X_train.shape[1],
                                    kernel regularizer=ks.regularizers.
 \rightarrow12(reg_coef_2)))
        model_2.add(ks.layers.Dense(units=400, activation=ks.activations.relu,
                                    kernel_regularizer=ks.regularizers.
 \rightarrow12(reg coef 2)))
        model_2.add(ks.layers.Dense(units=100, activation=ks.activations.relu,
                                    kernel_regularizer=ks.regularizers.
 →12(reg_coef_2)))
        model_2.add(ks.layers.Dense(units=27, activation=ks.activations.
 →sigmoid))
        model_2.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
 →sparse_categorical_crossentropy,
                     metrics=ks.metrics.sparse_categorical_accuracy)
       history=model_2.fit(X_train, Y_train, validation_split=0.1, epochs=15,__
 ⇒batch_size=5, verbose=0)
        loss.append( np.mean( np.sort(history.history['loss'])[:3] ) )
        val_loss.append( np.mean( np.sort(history.history['val_loss'])[:3] ) )
   loss_list.append(np.mean( loss ))
   val loss list.append(np.mean( val loss ))
   print(f'{n_s} samples: done')
min_loss_list.append(min(loss_list))
min_val_loss_list.append(min(val_loss_list))
print(f'\nBias: {np.mean(loss_list[-2:]+val_loss_list[-2:])}')
print(f'Variance: {np.mean(np.array(val_loss_list[-2:])-np.array(loss_list[-2:])
→]))/2}')
print("""According to the amount of bias and variance, it seems that we have⊔
→enough data. Please
note that we have 100,000 samples (in total). And it is almost a good model.""")
plt.plot(n_samples, loss_list, label='loss')
plt.plot(n_samples, val_loss_list, label='val_loss')
```

Learning Curve process for model_2:

700 samples: done 1200 samples: done 1700 samples: done 2200 samples: done 2700 samples: done

Bias: 2.830942004919052

Variance: 0.15106539924939455

According to the amount of bias and variance, it seems that we have enough data.

Please

note that we have 100,000 samples (in total). And it is almost a good model.

[19]: <matplotlib.legend.Legend at 0x7f830421a410>

Please note that we are using regularization with 0.01 impact coefficient. Without regularization, we have to deal with overfitting.

```
variance_list.append( np.mean(np.array(val_loss_list[-2:])-np.
       →array(loss_list[-2:]))/2 )
[21]: # model_2:
      # Fine tunning another hyper-model of model_2; batch_size or learning rate can_
      \rightarrow be tunned.
      # Here, we go for the batch_size:
      n f=600
      n_batch_sizes=[2, 5, 8, 12, 15] # different number of batch_size
      accuracy list=[]
      val_accuracy_list=[]
      print('Fine tunning another hyper-parameter of model_2:')
      for n_b_s in n_batch_sizes:
          accuracy=[]
          val accuracy=[]
          for i in range(2): # training a few times, to find the average
              df_sample=sampler(df, 700)
              X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
       →n_f], df_sample['target_tag'])
              reg_coef_2=0.01
              model_2=ks.models.Sequential()
              model_2.add(ks.layers.Dense(units=350, activation=ks.activations.relu,_
       →input_dim=X_train.shape[1],
                                           kernel_regularizer=ks.regularizers.
       \rightarrow12(reg_coef_2)))
              model_2.add(ks.layers.Dense(units=400, activation=ks.activations.relu,
                                           kernel_regularizer=ks.regularizers.
       \rightarrow12(reg coef 2)))
              model_2.add(ks.layers.Dense(units=100, activation=ks.activations.relu,
                                           kernel_regularizer=ks.regularizers.
       \rightarrow12(reg_coef_2)))
              model_2.add(ks.layers.Dense(units=27, activation=ks.activations.
       →sigmoid))
              model_2.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
       →sparse_categorical_crossentropy,
                            metrics=ks.metrics.sparse categorical accuracy)
              history=model_2.fit(X_train, Y_train, validation_split=0.1, epochs=10,_
       →batch_size=n_b_s, verbose=0)
              accuracy.append( np.mean( np.sort(history.
       →history['sparse_categorical_accuracy'])[-3:] ) )
              val_accuracy.append( np.mean( np.sort(history.
       →history['val_sparse_categorical_accuracy'])[-3:] ) )
```

[20]: bias list.append(np.mean(loss list[-2:]+val_loss list[-2:]))

```
accuracy_list.append(np.mean( accuracy ))
   val_accuracy_list.append(np.mean( val_accuracy ))
   print(f'Batch_size = {n_b_s} : done')

print(f'\nBest Batch_size: {n_batch_sizes[ np.argmax(val_accuracy_list) ]}')
plt.plot(n_batch_sizes, accuracy_list, label='Training accuracy')
plt.plot(n_batch_sizes, val_accuracy_list, label='Validation accuracy')
plt.xlabel('Batch_size'), plt.ylabel('Accuracy (sparse_categorical_accuracy)')
plt.title('Effect of batch_size on accuracy')
plt.legend()
```

Fine tunning another hyper-parameter of model_2:

Batch_size = 2 : done
Batch_size = 5 : done
Batch_size = 8 : done
Batch_size = 12 : done
Batch_size = 15 : done

Best Batch_size: 8

[21]: <matplotlib.legend.Legend at 0x7f82d81a0dd0>

0.0.7 Model 3:

In the third model, we are utilizing a NN with 2 hidden layers; 350 and 350 nodes for hidden layers. The activation function is still relu (it's sigmoid for output layer). But now, the optimizing algorithm is ADAM with batch_size=10, and starting learning_rate=0.005. Also, we have considered Dropout layers after each layers of nodes, with 0.8 probability. About loss function and metric, they are sparse_categorical_crossentropy and sparse_categorical_accuracy.

```
[30]: # model_3:
      # Let's train some different forms of model 3:
      # different number of features; changing the complexity:
      n_kept_features=[200, 500, 1000, 1500, df.shape[1]-3]
      accuracy_list=[]
      val_accuracy_list=[]
      print('Validation Curve process for model_3:')
      print('(Please note that our metric is accuracy: sparse categorical accuracy)')
      start_time=time() # time for fitting
      for n in n kept features:
          acc=[] # calculate the accuracy for a few times
          val_acc=[] # calculate the validation accuracy for a few times
          for i in range(3): # training a few times, to find the average
              df_sample=sampler(df, 3000) # choose some samples
              X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
       →n], df_sample['target_tag'])
              model_3=ks.models.Sequential()
              model_3.add(ks.layers.Dense(units=350, activation=ks.activations.relu,_
       →input_dim=X_train.shape[1]))
              model_3.add(ks.layers.Dropout(0.8))
              model 3.add(ks.layers.Dense(units=350, activation=ks.activations.relu))
              model_3.add(ks.layers.Dropout(0.8))
              model_3.add(ks.layers.Dense(units=27, activation=ks.activations.
       →sigmoid))
              model_3.compile(optimizer=ks.optimizers.Adam(0.005), loss=ks.losses.
       ⇒sparse_categorical_crossentropy,
                           metrics=ks.metrics.sparse_categorical_accuracy)
              history=model_3.fit(X_train, Y_train, validation_split=0.1, epochs=7,_
       ⇒batch_size=10, verbose=0)
              acc.append( np.mean( np.sort(history.
       →history['sparse_categorical_accuracy'])[-3:] ) )
              val_acc.append( np.mean( np.sort(history.
       →history['val_sparse_categorical_accuracy'])[-3:] ) )
          accuracy_list.append(np.mean(acc))
```

Validation Curve process for model_3:

(Please note that our metric is acuuracy: sparse_categorical_accuracy)

200 features: done 500 features: done 1000 features: done 1500 features: done 1784 features: done

The optimal value for the Complexity (n_f) is: 1000

[30]: <matplotlib.legend.Legend at 0x7f82f370f450>

Plese note that we are utilizing Dropout; this is why Validation accuracy is greater than Training accuracy.

Confusion Matrix for model_3:

[31]:			animal	architecture	art	biology	bodybuilding	business \	١
	0	animal	7	0	0	0	0	0	
	1	architecture	0	16	1	0	0	0	
	2	art	0	1	14	0	0	0	
	3	biology	0	0	0	22	0	0	
	4	bodybuilding	0	0	0	0	2	0	
	5	business	0	0	0	3	0	0	
	6	covid	0	0	0	0	0	0	
	7	culture	0	0	0	0	0	0	
	8	election	0	0	0	0	0	0	
	9	engineering	0	0	0	1	0	0	
	10	fashion	0	0	1	0	0	0	
	11	food	0	0	0	0	0	0	
	12	government	0	0	0	0	0	0	
	13	gym	0	0	0	0	1	0	
	14	innovation	0	0	0	0	0	0	
	15	job	0	0	0	0	0	0	
	16	love	1	0	2	0	0	0	
	17	marketing	0	0	0	1	0	0	
	18	medical	0	0	0	0	0	0	
	19	pet	1	0	0	0	0	0	
	20	pharmacy	0	0	0	1	0	0	
	21	physics	0	0	0	11	0	0	
	22	political	0	0	0	0	0	0	

23	s	cien	ce	2			0	0		3	0	1	L
24		sol		0			0	0		0	0	C)
25	tech	nolo	gу	0			0	0		0	0	C)
26		trav	el	0			0	1		0	0	C)
	covid	cul	ture	elec	tion	•••	marketi	ing	medical	pet	pharmacy	physics	\
0	0		0		0	•••		0	0	0	0	0	
1	0		1		0	•••		0	0	0	0	0	
2	0		0		0	•••		0	0	0	0	0	
3	0		0		0	•••		2	0	0	0	1	
4	0		0		0	•••		0	0	0	0	0	
5	0		0		0	•••		2	0	0	0	0	
6	0		0		0	•••		0	0	0	0	0	
7	0		6		0			0	0			0	
8	0		0		0	•••		0	0		0	0	
9	0		0		0			0	0			0	
10	0		0		0	•••		0	0		0	0	
11	0		0		0	•••		0	0			0	
12	0					•••							
			0		0	•••		0	0		0	0	
13	0		0		0	•••		0	0			0	
14	0		0		0	•••		0	0			0	
15	0		0		0	•••		0	0			0	
16	0		0		0	•••		0	0		0	0	
17	0		0		0	•••		2	0			0	
18	0		0		0	•••		0	5	0	0	0	
19	0		0		0	•••		0	0	4	0	0	
20	0		0		0	•••		0	0	0	0	0	
21	0		0		0	•••		5	0	0	0	9	
22	0		0		0	•••		0	0	0	0	0	
23	0		0		0	•••		0	0	0	0	0	
24	0		0		0	•••		0	0	0	0	0	
25	0		0		0			1	0	0	0	0	
26	0		0		0			0	0		0	0	
					-				_		_	•	
	politi	cal	scier	ıce	solar	t	echnolog	зу	travel				
0		0		0	0			0	2				
1		0		1	0			1	4				
2		0		0	0			0	3				
3		0		1	0			0	0				
4		0		2	0			2	5				
5		0		0	0			1	1				
6		0		0	0			0	9				
7		0		1	0			0	2				
8		0		0	0			0	0				
9		0		0	0			3	5				
10		0		0	0			0	1				
11		0		2	0			0	0				

```
12
              0
                         0
                                 0
                                               0
                                                         0
13
              0
                                 0
                                                         0
                         1
                                               1
                                                         3
14
              0
                         0
                                 0
                                               0
              0
                         2
                                 0
                                                         0
15
                                               1
16
              0
                         0
                                 0
                                               0
                                                         3
                                 0
                                                         2
17
              0
                         0
                                               1
18
              0
                         0
                                 0
                                               0
                                                         1
              0
                         0
                                 0
                                                         1
19
                                               1
                                                         2
20
              0
                         0
                                 0
                                               0
21
              0
                         0
                                 0
                                               0
                                                         1
22
              0
                         0
                                 0
                                               0
                                                         1
23
              0
                         1
                                 0
                                               0
                                                         4
24
              0
                         0
                                33
                                               0
                                                         0
25
              0
                         0
                                 0
                                               6
                                                         1
26
              0
                         0
                                 0
                                               0
                                                        12
```

[27 rows x 28 columns]

```
[32]: # model_3:
      # Now, we are exploring the Learning Curve process:
      n_f=600 # let's set the number of features to be 600 for here (we are still in_{\sqcup}
      \hookrightarrow model_3):
      n_samples=[700, 1200, 1700, 2200, 2700] # number of data samples we are using_
      loss_list=[]
      val_loss_list=[]
      print('Learning Curve process for model_3:')
      for n_s in n_samples:
          loss=[]
          val_loss=[]
          for i in range(2): # training a few times, to find the average
              df_sample=sampler(df, n_s)
              X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
       →n_f], df_sample['target_tag'])
              model_3=ks.models.Sequential()
              model_3.add(ks.layers.Dense(units=350, activation=ks.activations.relu,_
       →input_dim=X_train.shape[1]))
              model 3.add(ks.layers.Dropout(0.8))
              model_3.add(ks.layers.Dense(units=350, activation=ks.activations.relu))
              model_3.add(ks.layers.Dropout(0.8))
              model_3.add(ks.layers.Dense(units=27, activation=ks.activations.
       →sigmoid))
              model_3.compile(optimizer=ks.optimizers.Adam(0.005), loss=ks.losses.
       ⇔sparse_categorical_crossentropy,
```

```
metrics=ks.metrics.sparse_categorical_accuracy)
             history=model_3.fit(X_train, Y_train, validation_split=0.1, epochs=10, __
       ⇒batch_size=10, verbose=0)
             loss.append( np.mean( np.sort(history.history['loss'])[:3] ) )
             val_loss.append( np.mean( np.sort(history.history['val_loss'])[:3] ) )
         loss_list.append(np.mean( loss ))
         val_loss_list.append(np.mean( val_loss ))
         print(f'{n_s} samples: done')
      min_loss_list.append(min(loss_list))
      min_val_loss_list.append(min(val_loss_list))
      print(f'\nBias: {np.mean(loss_list[-2:]+val_loss_list[-2:])}')
      print(f'Variance: {np.mean(np.array(val_loss_list[-2:])-np.array(loss_list[-2:])
      →]))/2}')
      print("""According to the bias and variance, it is not obvious if the data is \Box
      →enough or not, for this
      model. It seems that he model is not performing well (maybe, Dropout is not_{\sqcup}
      ⇒suitable for this model.)""")
      plt.plot(n samples, loss list, label='loss')
      plt.plot(n_samples, val_loss_list, label='val_loss')
      plt.xlabel('Number of samples'), plt.ylabel('Loss_
      plt.title('Learning curve')
      plt.legend()
     Learning Curve process for model_3:
     700 samples: done
     1200 samples: done
     1700 samples: done
     2200 samples: done
     2700 samples: done
     Bias: 2.7787423829237623
     Variance: -0.16706370313962293
     According to the bias and variance, it is not obvious if the data is enough or
     not, for this
     model. It seems that he model is not performing well (maybe, Dropout is not
     suitable for this model.)
[32]: <matplotlib.legend.Legend at 0x7f82e9129650>
```


As we know, since we are using Dropout, the Training Loss is not comprehensive. Also, the learning curve does not seems to be very helpful.

On the other hand, we should note that we have 100,000 samples (in total). Anyway we are not sure model_3 can be useful for these data.')

```
[33]: bias_list.append( np.mean(loss_list[-2:]+val_loss_list[-2:]) )
variance_list.append( np.mean(np.array(val_loss_list[-2:])-np.

→array(loss_list[-2:]))/2 )
```

```
df_sample=sampler(df, 700)
        X train, X test, Y train, Y test = train test_split( df_sample.iloc[:,1:

→n_f], df_sample['target_tag'])
        model_3=ks.models.Sequential()
        model 3.add(ks.layers.Dense(units=350, activation=ks.activations.relu,,,
 →input_dim=X_train.shape[1]))
        model_3.add(ks.layers.Dropout(0.8))
        model_3.add(ks.layers.Dense(units=350, activation=ks.activations.relu))
        model_3.add(ks.layers.Dropout(0.8))
        model_3.add(ks.layers.Dense(units=27, activation=ks.activations.
 →sigmoid))
        model_3.compile(optimizer=ks.optimizers.Adam(0.005), loss=ks.losses.

→sparse_categorical_crossentropy,
                     metrics=ks.metrics.sparse_categorical_accuracy)
        history=model_3.fit(X_train, Y_train, validation_split=0.1, epochs=8,_
 ⇒batch_size=n_b_s, verbose=0)
        accuracy.append( np.mean( np.sort(history.
 →history['sparse_categorical_accuracy'])[-3:] ) )
        val_accuracy.append( np.mean( np.sort(history.
 →history['val_sparse_categorical_accuracy'])[-3:] ) )
    accuracy_list.append(np.mean( accuracy ))
    val_accuracy_list.append(np.mean( val_accuracy ))
    print(f'Batch_size = {n_b_s} : done')
print(f'\nBest Batch size: {n_batch_sizes[ np.argmax(val_accuracy_list) ]}')
plt.plot(n_batch_sizes, accuracy_list, label='Training accuracy')
plt.plot(n_batch_sizes, val_accuracy_list, label='Validation accuracy')
plt.xlabel('Batch size'), plt.ylabel('Accuracy (sparse_categorical_accuracy)')
plt.title('Effect of batch_size on accuracy')
plt.legend()
Fine tunning another hyper-parameter of model_3:
Batch_size = 2 : done
Batch_size = 5 : done
Batch size = 8 : done
Batch size = 12 : done
Batch size = 15 : done
Best Batch size: 12
```

[34]: <matplotlib.legend.Legend at 0x7f82d87d9850>

0.0.8 Model 4:

In the forth model, we are utilizing a NN with 4 hidden layers; 400, 300, 150, 150 nodes for hidden layers. Actually, we are making the NN deeper. The activation function is relu (it's sigmoid for output layer). The optimizing algorithm is SGD with lr=0.1 and batch_size=5. Also, we have considered regularization to have 0.01 impact coefficient. About loss function and metric, they are sparse_categorical_crossentropy and sparse_categorical_accuracy.

```
[35]: # model_4:
    # Let's train some different forms of model_4:
    # different number of features; changing the complexity:
    n_kept_features=[200, 500, 1000, 1500, df.shape[1]-3]
    accuracy_list=[]
    val_accuracy_list=[]

    print('Validation Curve process for model_4:')
    print('(Please note that our metric is accuracy: sparse_categorical_accuracy)')
    start_time=time() # time for fitting
    for n in n_kept_features:
        acc=[] # calculate the accuracy for a few times
        val_acc=[] # calculate the validation accuracy for a few times
        for i in range(2): # training a few times, to find the average
```

```
df_sample=sampler(df, 3000) # choose some samples
       X train, X test, Y train, Y test = train test_split( df_sample.iloc[:,1:
 →n], df_sample['target_tag'])
       reg_coef_4=0.01 # impact coefficient of regularization
       model 4=ks.models.Sequential()
       model_4.add(ks.layers.Dense(units=400, activation=ks.activations.relu,_
 →input_dim=X_train.shape[1],
                                   kernel_regularizer=ks.regularizers.
 →12(reg_coef_4)))
       model_4.add(ks.layers.Dense(units=300, activation=ks.activations.relu,
                                   kernel_regularizer=ks.regularizers.
→12(reg_coef_4)))
       model_4.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                   kernel_regularizer=ks.regularizers.
 \rightarrow12(reg_coef_4)))
       model_4.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                   kernel_regularizer=ks.regularizers.
 →12(reg_coef_4)))
       model_4.add(ks.layers.Dense(units=27, activation=ks.activations.
 →sigmoid))
       model 4.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
 ⇒sparse_categorical_crossentropy,
                    metrics=ks.metrics.sparse_categorical_accuracy)
       history=model_4.fit(X_train, Y_train, validation_split=0.1, epochs=7,_
 →batch size=5, verbose=0)
       acc.append( np.mean( np.sort(history.
 val_acc.append( np.mean( np.sort(history.
 →history['val_sparse_categorical_accuracy'])[-3:] ) )
   accuracy_list.append(np.mean(acc))
   val_accuracy_list.append(np.mean( val_acc ))
   print(f'{n} features: done')
end_time=time()
print(f'\nThe optimal value for the Complexity (n_f) is: {n_kept_features[np.
→argmax(val_accuracy_list)]}')
plt.plot(n kept features, accuracy list, label='Training accuracy')
plt.plot(n_kept_features, val_accuracy_list, label='Validation accuracy')
plt.xlabel('Complexity (number of features)'), plt.ylabel('Accuracy score (or ...
→performance)')
plt.title('Validation Curve')
plt.legend()
```

```
Validation Curve process for model_4:
(Please note that our metric is acuuracy: sparse_categorical_accuracy)
200 features: done
500 features: done
1000 features: done
1500 features: done
1784 features: done
```

The optimal value for the Complexity (n_f) is: 1500

[35]: <matplotlib.legend.Legend at 0x7f8304077950>


```
predict_time_list.append(end_time-start_time)
c_m
```

Confusion Matrix for model_4:

[36]:				animal	arc	hit	ecture	art		bod	ybuilding		
C			animal	0			0	0	0		0	6	
1		chit	ecture	0			0	0	0		0	4	
2			art	0			0	0	0		0	S	
3			iology	0			0	0	0		0	2	
4		-	ilding	0			0	0	0		0	C	
5	5	bu	siness	0			0	0	0		0	3	3
6	3		covid	0			0	0	0		0	7	•
7			ulture	0			0	0	0		0	7	•
8		el	ection	0			0	0	0		0	1	
9	e:	_	eering	0			0	0	0		0	3	}
1	LO	f	ashion	0			0	0	0		0	4	
1	l 1		food	0			0	0	0		0	2	2
1	l2 į	gove	rnment	0			0	0	0		0	S)
1	L3		gym	0			0	0	0		0	4	=
1	L4 :	inno	vation	0			0	0	0		0	4	=
	L5		job	0			0	0	0		0	C)
1	16		love	0			0	0	0		0	S)
1	L7	mar	keting	0			0	0	0		0	5	•
1	L8	m	edical	0			0	0	0		0	11	
1	L9		pet	0			0	0	0		0	1	
2	20	ph	armacy	0			0	0	0		0	3	3
2	21	p	hysics	0			0	0	0		0	1	
2	22	pol	itical	0			0	0	0		0	3	3
2	23	s	cience	0			0	0	0		0	5	•
2	24		solar	0			0	0	0		0	C)
2	25 ·	tech	nology	0			0	0	0		0	6	;
2	26		travel	0			0	0	0		0	1	
	CO.	vid	culture	e elect	ion	•••	market	ing	medical	pet	pharmacy	physics	\
C)	13	()	0	•••		0	0	0	0	0	
1	L	10	()	0	•••		0	0	0	0	0	
2	4	15	()	0	•••		0	0	0	0	0	
3		2)	0	•••		0	0	0	0	16	
4		2)	0	•••		0	0	0	0	0	
5		8)	0	•••		0	0	0	0	1	
6		20)	0	•••		0	0	0	0	0	
7		21)	0	•••		0	0	0	0	0	
8		9)	0	•••		0	0	0	0	0	
9		12)	0	•••		0	0	0	0	0	
1	LO	3	()	0	•••		0	0	0	0	0	

11	7	0	0	•••	0	0	0	0	0
12	22	0	0	•••	0	0	0	0	0
13	10	0	0	•••	0	0	0	0	0
14	18	0	0	•••	0	0	0	0	0
15	4	0	0	•••	0	0	0	0	0
16	26	0	0	•••	0	0	0	0	0
17	4	0	0	•••	0	0	0	0	1
18	11	0	0	•••	0	0	0	0	0
19	8	0	0	•••	0	0	0	0	0
20	7	0	0	•••	0	0	0	0	2
21	1	0	0	•••	0	0	0	0	19
22	6	0	0	•••	0	0	0	0	2
23	7	0	0	•••	0	0	0	0	4
24	1	0	0	•••	0	0	0	0	2
25	13	0	0	•••	0	0	0	0	0
26	13	0	0	•••	0	0	0	0	0

	political	science	solar	technology	travel
0	0	1	0	0	7
1	0	1	0	0	7
2	0	3	0	0	1
3	0	8	0	0	0
4	0	0	0	0	8
5	0	12	0	0	0
6	0	1	0	0	3
7	0	2	0	0	2
8	0	1	0	0	2
9	0	4	0	0	7
10	0	23	0	0	2
11	0	3	0	0	8
12	0	2	0	0	2
13	0	0	0	0	11
14	0	6	0	0	1
15	0	0	0	0	13
16	0	4	0	0	0
17	0	16	0	0	2
18	0	11	0	0	2
19	0	0	0	0	14
20	0	2	0	0	3
21	0	6	0	0	0
22	0	4	0	0	0
23	0	10	0	0	2
24	0	5	21	0	0
25	0	4	0	0	2
26	0	1	0	0	9

[27 rows x 28 columns]

```
[37]: # model_4:
      # Now, we are exploring the Learning Curve process:
      n f=600 # let's set the number of features to be 600 for here (we are still in_{\sqcup}
       \hookrightarrow model_4):
      n_samples=[700, 1200, 1700, 2200, 2700] # number of data samples we are using
       \rightarrowhere
      loss list=[]
      val_loss_list=[]
      print('Learning Curve process for model_4:')
      for n_s in n_samples:
          loss=[]
          val loss=[]
          for i in range(2): # training a few times, to find the average
              df sample=sampler(df, n s)
              X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
       →n_f], df_sample['target_tag'])
              reg_coef_4=0.01 # impact coefficient of regularization
              model_4=ks.models.Sequential()
              model_4.add(ks.layers.Dense(units=400, activation=ks.activations.relu,_
       →input_dim=X_train.shape[1],
                                           kernel_regularizer=ks.regularizers.
       →12(reg_coef_4)))
              model_4.add(ks.layers.Dense(units=300, activation=ks.activations.relu,
                                           kernel_regularizer=ks.regularizers.
       \rightarrow12(reg coef 4)))
              model_4.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                           kernel_regularizer=ks.regularizers.
       \rightarrow12(reg_coef_4)))
              model_4.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                           kernel_regularizer=ks.regularizers.
       →12(reg_coef_4)))
              model_4.add(ks.layers.Dense(units=27, activation=ks.activations.
       →sigmoid))
              model_4.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
       ⇒sparse_categorical_crossentropy,
                            metrics=ks.metrics.sparse_categorical_accuracy)
              history=model_4.fit(X_train, Y_train, validation_split=0.1, epochs=15,__
       →batch_size=5, verbose=0)
              loss.append( np.mean( np.sort(history.history['loss'])[:3] ) )
              val_loss.append( np.mean( np.sort(history.history['val_loss'])[:3] ) )
          loss_list.append(np.mean( loss ))
          val_loss_list.append(np.mean( val_loss ))
```

```
print(f'{n_s} samples: done')
min_loss_list.append(min(loss_list))
min_val_loss_list.append(min(val_loss_list))
print(f'\nBias: {np.mean(loss_list[-2:]+val_loss_list[-2:])}')
print(f'Variance: {np.mean(np.array(val_loss_list[-2:])-np.array(loss_list[-2:
 →]))/2}')
print("""According to the amount of bias and variance, it seems that we have⊔
 →enough data. Please
note that we have 100,000 samples (in total). And it is almost a good model.""")
plt.plot(n samples, loss list, label='loss')
plt.plot(n_samples, val_loss_list, label='val_loss')
plt.xlabel('Number of samples'), plt.ylabel('Loss_
 plt.title('Learning curve')
plt.legend()
Learning Curve process for model_4:
700 samples: done
1200 samples: done
1700 samples: done
2200 samples: done
2700 samples: done
Bias: 2.9437675972779593
Variance: 0.08559971054395055
According to the amount of bias and variance, it seems that we have enough data.
Please
note that we have 100,000 samples (in total). And it is almost a good model.
```

[37]: <matplotlib.legend.Legend at 0x7f82b81adb50>

Please note that we are using regularization with 0.01 impact coefficient. Without regularization, we have to deal with overfitting.

```
[38]: bias_list.append( np.mean(loss_list[-2:]+val_loss_list[-2:]) )
variance_list.append( np.mean(np.array(val_loss_list[-2:])-np.

→array(loss_list[-2:]))/2 )
```

```
reg_coef_4=0.01 # impact coefficient of regularization
        model_4=ks.models.Sequential()
        model_4.add(ks.layers.Dense(units=400, activation=ks.activations. relu,_
 →input_dim=X_train.shape[1],
                                    kernel regularizer=ks.regularizers.
 →12(reg_coef_4)))
        model_4.add(ks.layers.Dense(units=300, activation=ks.activations.relu,
                                    kernel_regularizer=ks.regularizers.
 →12(reg_coef_4)))
        model_4.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                    kernel regularizer=ks.regularizers.
 →12(reg_coef_4)))
        model_4.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                     kernel_regularizer=ks.regularizers.
 →12(reg_coef_4)))
        model_4.add(ks.layers.Dense(units=27, activation=ks.activations.
 →sigmoid))
        model_4.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
 ⇒sparse_categorical_crossentropy,
                     metrics=ks.metrics.sparse_categorical_accuracy)
        history=model_4.fit(X_train, Y_train, validation_split=0.1, epochs=15,__
 →batch_size=n_b_s, verbose=0)
        accuracy.append( np.mean( np.sort(history.
 →history['sparse_categorical_accuracy'])[-3:] ) )
        val accuracy.append( np.mean( np.sort(history.
 →history['val_sparse_categorical_accuracy'])[-3:] ) )
    accuracy_list.append(np.mean( accuracy ))
    val_accuracy_list.append(np.mean( val_accuracy ))
    print(f'Batch_size = {n_b_s} : done')
print(f'\nBest Batch_size: {n_batch_sizes[ np.argmax(val_accuracy_list) ]}')
plt.plot(n batch sizes, accuracy list, label='Training accuracy')
plt.plot(n_batch_sizes, val_accuracy_list, label='Validation accuracy')
plt.xlabel('Batch size'), plt.ylabel('Accuracy (sparse_categorical_accuracy)')
plt.title('Effect of batch_size on accuracy')
plt.legend()
Fine tunning another hyper-parameter of model 4:
Batch size = 2 : done
Batch size = 5 : done
Batch_size = 8 : done
Batch_size = 12 : done
Batch_size = 15 : done
```

[39]: <matplotlib.legend.Legend at 0x7f82e361d2d0>

0.0.9 Model 5:

In the fifth model, we are utilizing a NN with 4 hidden layers; 350, 350, 500, 150 nodes for hidden layers. Actually, we are not changing the depth, but increasing the number of nodes. The activation function is relu (it's sigmoid for output layer). The optimizing algorithm is SGD with lr=0.1 and batch_size=15. Also, we have considered regularization to have 0.01 impact coefficient. About loss function and metric, they are sparse_categorical_crossentropy and sparse_categorical_accuracy.

```
[41]: # model_5:
    # Let's train some different forms of model_5:
    # different number of features; changing the complexity:
    n_kept_features=[200, 500, 1000, 1500, df.shape[1]-3]
    accuracy_list=[]
    val_accuracy_list=[]

    print('Validation Curve process for model_5:')
    print('(Please note that our metric is accuracy: sparse_categorical_accuracy)')
    start_time=time() # time for fitting
```

```
for n in n_kept_features:
   acc=[] # calculate the accuracy for a few times
   val_acc=[] # calculate the validation accuracy for a few times
   for i in range(2): # training a few times, to find the average
        df_sample=sampler(df, 3000) # choose some samples
        X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
reg_coef_5=0.01 # impact coefficient of regularization
       model_5=ks.models.Sequential()
       model_5.add(ks.layers.Dense(units=350, activation=ks.activations.relu,_
 →input_dim=X_train.shape[1],
                                   kernel_regularizer=ks.regularizers.
→12(reg_coef_5)))
       model_5.add(ks.layers.Dense(units=350, activation=ks.activations.relu,
                                    kernel_regularizer=ks.regularizers.
\rightarrow12(reg_coef_5)))
       model_5.add(ks.layers.Dense(units=500, activation=ks.activations.relu,
                                    kernel_regularizer=ks.regularizers.
\rightarrow12(reg coef 5)))
       model_5.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                   kernel_regularizer=ks.regularizers.
\rightarrow12(reg_coef_5)))
       model_5.add(ks.layers.Dense(units=27, activation=ks.activations.
→sigmoid))
       model_5.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
⇒sparse_categorical_crossentropy,
                     metrics=ks.metrics.sparse_categorical_accuracy)
       history=model_5.fit(X_train, Y_train, validation_split=0.1, epochs=7,_
 →batch_size=15, verbose=0)
        acc.append( np.mean( np.sort(history.
⇔history['sparse_categorical_accuracy'])[-3:] ) )
        val acc.append( np.mean( np.sort(history.
 →history['val sparse categorical accuracy'])[-3:] )
   accuracy_list.append(np.mean(acc))
   val_accuracy_list.append(np.mean( val_acc ))
   print(f'{n} features: done')
end_time=time()
print(f'\nThe optimal value for the Complexity (n_f) is: {n_kept_features[np.
→argmax(val_accuracy_list)]}')
plt.plot(n_kept_features, accuracy_list, label='Training accuracy')
plt.plot(n_kept_features, val_accuracy_list, label='Validation accuracy')
```

Validation Curve process for model_5:

(Please note that our metric is acuuracy: sparse_categorical_accuracy)

200 features: done 500 features: done 1000 features: done 1500 features: done 1784 features: done

The optimal value for the Complexity (n_f) is: 1000

[41]: <matplotlib.legend.Legend at 0x7f82b82c50d0>


```
[42]: # model_5:
    # average fitting time (for various n_kept_features):
    fit_time_list.append( (end_time-start_time)/len(n_kept_features) )
    best_accuracy_list.append(max(accuracy_list))
    best_val_accuracy_list.append(max(val_accuracy_list))
```

Confusion Matrix for model_5:

[42]:				animal	arc	hitect	ure	art	biolog	у р	odybuilding	busines	s \
(0		animal	0			0	0		0	0	()
	1	architecture		0			0	3		0	0	()
	2	art		0			0	13		0	0	()
;	3	biology		0			0	0		0	0	()
•	4	bodybu	ilding	0			0	0		0	0	()
	5	bu	siness	0			0	0		0	0	()
	6		covid	0			0	1		0	0	()
	7		ulture	0			0	1		0	0	()
;	8	el	ection	0			0	0		0	0	()
	9	_	eering	0			0	0		0	0	()
	10	f	ashion	0			0	4		0	0	()
	11		food	0			0	0		0	0	()
	12	gove	rnment	0			0	0		0	0	()
	13		gym	0			0	0		0	0	()
	14	inno	vation	0			0	0		0	0	()
	15		job	0			0	0		0	0	()
	16		love	0			0	0		0	0	()
	17		keting	0			0	0		0	0	()
	18	m	edical	0			0	0		0	0	()
	19		pet	0			0	0		0	0)
	20	-	armacy	0			0	0		0	0	()
	21	_	hysics	0			0	0		0	0	()
	22	-	itical	0			0	2		0	0)
	23	science		0			0	0		0	0)
	24	solar		0			0	0		0	0)
	25	0,		0			0	0		0	0)
:	26	travel		0			0	0		0	0	()
	_	covid	culture			ma	rket	_	medical	-			\
	0	2	(0	•••		2	3			0	
	1	0	(0	•••		14	13		1 0	0	
	2	0	(0	•••		10	2		1 0	0	
	3	0)	0	•••		3	C		0 0	32	
	4	0	()	0	•••		0	3	}	2 0	0	

6 3 0 0 13 11 1 0 1 7 0 0 0 9 10 1 0 0 8 0 0 0 4 6 0 0 0 9 0 0 0 10 5 0 0 1 10 0 0 10 5 0 0 1 10 0 0 2 2 1 0 0 11 0 0 3 11 1 0 0 12 0 0 3 11 1 0 0 13 0 0 3 10 0 0 0 14 0 0 4 2 0 0 0 15	5	0	0	0	•••	9	6	0	0	2
8 0 0 0 4 6 0 0 0 9 0 0 0 10 5 0 0 1 10 0 0 0 2 2 1 0 0 11 0 0 0 3 0 2 0 0 12 0 0 0 3 11 1 0 0 13 0 0 0 3 6 4 0 0 14 0 0 8 10 0 0 0 15 0 0 4 2 0 0 0 15 0 0 5 3 4 0 0 17 0 0 12 12 2 0 4 18 0 0 7 15 0 0 0	6	3	0	0		13	11	1	0	1
9 0 0 0 10 5 0 0 1 10 0 0 0 2 2 1 0 0 11 0 0 0 3 0 2 0 0 12 0 0 0 3 11 1 0 0 13 0 0 0 3 6 4 0 0 14 0 0 0 8 10 0 0 0 15 0 0 0 4 2 0 0 0 16 1 0 0 5 3 4 0 0 17 0 0 0 12 12 2 0 4 18 0 0 10 14 2 0 0 20 0 0 7 15	7	0	0	0		9	10	1	0	0
10 0 0 0 2 2 1 0 0 11 0 0 0 3 0 2 0 0 12 0 0 0 3 11 1 0 0 13 0 0 0 3 6 4 0 0 14 0 0 0 8 10 0 0 0 15 0 0 0 4 2 0 0 0 16 1 0 0 5 3 4 0 0 17 0 0 0 12 12 2 0 4 18 0 0 0 10 14 2 0 0 19 0 0 0 7 15 0 0 0 20 0 0 7	8	0	0	0	•••	4	6	0	0	0
11 0 0 0 3 0 2 0 0 12 0 0 0 3 11 1 0 0 13 0 0 0 3 6 4 0 0 14 0 0 0 8 10 0 0 0 15 0 0 0 4 2 0 0 0 16 1 0 0 5 3 4 0 0 17 0 0 0 12 12 2 0 4 18 0 0 10 14 2 0 0 19 0 0 7 15 0 0 0 20 0 0 7 15 0 0 28 22 0 0 0 0 0 0 <t< td=""><td>9</td><td>0</td><td>0</td><td>0</td><td></td><td>10</td><td>5</td><td>0</td><td>0</td><td>1</td></t<>	9	0	0	0		10	5	0	0	1
12 0 0 0 3 11 1 0 0 13 0 0 0 3 6 4 0 0 14 0 0 0 8 10 0 0 0 15 0 0 0 4 2 0 0 0 16 1 0 0 5 3 4 0 0 17 0 0 0 12 12 2 0 4 18 0 0 0 10 14 2 0 0 19 0 0 0 2 2 14 0 0 20 0 0 7 15 0 0 2 21 0 0 0 0 0 0 2 23 0 0 13 2 2 <t< td=""><td>10</td><td>0</td><td>0</td><td>0</td><td></td><td>2</td><td>2</td><td>1</td><td>0</td><td>0</td></t<>	10	0	0	0		2	2	1	0	0
13 0 0 0 3 6 4 0 0 14 0 0 0 8 10 0 0 0 15 0 0 0 4 2 0 0 0 16 1 0 0 5 3 4 0 0 17 0 0 0 12 12 2 0 4 18 0 0 0 10 14 2 0 0 19 0 0 0 2 2 14 0 0 20 0 0 7 15 0 0 0 21 0 0 0 6 8 0 0 2 23 0 0 0 13 2 2 0 2 24 0 0 0 1 <td< td=""><td>11</td><td>0</td><td>0</td><td>0</td><td></td><td>3</td><td>0</td><td>2</td><td>0</td><td>0</td></td<>	11	0	0	0		3	0	2	0	0
14 0 0 0 8 10 0 0 0 15 0 0 0 4 2 0 0 0 16 1 0 0 5 3 4 0 0 17 0 0 0 12 12 2 0 4 18 0 0 0 10 14 2 0 0 19 0 0 0 2 2 14 0 0 20 0 0 7 15 0 0 0 21 0 0 0 0 0 28 22 0 0 6 8 0 0 2 23 0 0 13 2 2 0 2 24 0 0 8 16 0 0 1 <td>12</td> <td>0</td> <td>0</td> <td>0</td> <td>•••</td> <td>3</td> <td>11</td> <td>1</td> <td>0</td> <td>0</td>	12	0	0	0	•••	3	11	1	0	0
15 0 0 0 4 2 0 0 0 16 1 0 0 5 3 4 0 0 17 0 0 0 12 12 2 0 4 18 0 0 0 10 14 2 0 0 19 0 0 0 2 2 14 0 0 20 0 0 7 15 0 0 0 21 0 0 0 0 0 28 22 0 0 6 8 0 0 2 23 0 0 13 2 2 0 2 24 0 0 8 16 0 0 1	13	0	0	0	•••	3	6	4	0	0
16 1 0 0 5 3 4 0 0 17 0 0 0 12 12 2 0 4 18 0 0 0 10 14 2 0 0 19 0 0 0 2 2 14 0 0 20 0 0 0 7 15 0 0 0 21 0 0 0 0 0 0 28 22 0 0 0 6 8 0 0 2 23 0 0 0 13 2 2 0 2 24 0 0 0 1 0 0 0 1 25 0 0 8 16 0 0 1	14	0	0	0	•••	8	10	0	0	0
17 0 0 0 12 12 2 0 4 18 0 0 0 10 14 2 0 0 19 0 0 0 2 2 14 0 0 20 0 0 0 7 15 0 0 0 21 0 0 0 0 0 0 28 22 0 0 0 6 8 0 0 2 23 0 0 0 13 2 2 0 2 24 0 0 0 1 0 0 0 25 0 0 8 16 0 0 1	15	0	0	0	•••	4	2	0	0	0
18 0 0 0 10 14 2 0 0 19 0 0 0 2 2 14 0 0 20 0 0 0 7 15 0 0 0 21 0 0 0 0 0 0 28 22 0 0 0 6 8 0 0 2 23 0 0 0 13 2 2 0 2 24 0 0 0 8 16 0 0 1	16	1	0	0	•••	5	3	4	0	0
19 0 0 0 2 2 14 0 0 20 0 0 0 7 15 0 0 0 21 0 0 0 0 0 0 0 28 22 0 0 0 6 8 0 0 2 23 0 0 0 13 2 2 0 2 24 0 0 0 0 1 0 0 0 25 0 0 0 8 16 0 0 1	17	0	0	0	•••	12	12	2	0	4
20 0 0 0 7 15 0 0 0 21 0 0 0 0 0 0 28 22 0 0 0 6 8 0 0 2 23 0 0 0 13 2 2 0 2 24 0 0 0 0 1 0 0 0 25 0 0 0 8 16 0 0 1	18	0	0	0	•••	10	14	2	0	0
21 0 0 0 0 0 0 0 28 22 0 0 0 6 8 0 0 2 23 0 0 0 13 2 2 0 2 24 0 0 0 0 1 0 0 0 25 0 0 0 8 16 0 0 1	19	0	0	0	•••	2	2	14	0	0
22 0 0 0 6 8 0 0 2 23 0 0 0 13 2 2 0 2 24 0 0 0 0 1 0 0 0 25 0 0 0 8 16 0 0 1	20	0	0	0	•••	7	15	0	0	0
23 0 0 0 13 2 2 0 2 24 0 0 0 0 1 0 0 0 25 0 0 0 8 16 0 0 1	21	0	0	0	•••	0	0	0	0	28
24 0 0 0 0 1 0 0 0 25 0 0 0 8 16 0 0 1	22	0	0	0	•••	6	8	0	0	2
25 0 0 0 8 16 0 0 1	23	0	0	0	•••	13	2	2	0	2
	24	0	0	0	•••	0	1	0	0	0
26 0 0 0 6 2 16 0 0	25	0	0	0	•••	8	16	0	0	1
	26	0	0	0		6	2	16	0	0

	political	science	solar	technology	travel
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	0	
3	_	-	-	-	1
	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	0	0	0	0	2
7	0	0	0	0	0
8	0	0	0	0	0
9	0	0	0	0	0
10	0	0	0	0	0
11	0	0	0	0	0
12	0	0	0	0	0
13	0	0	0	0	0
14	0	0	0	0	0
15	0	0	0	0	0
16	0	0	0	0	1
17	0	0	0	0	0
18	0	0	0	0	0
19	0	0	0	0	0
20	0	0	0	0	1
21	0	0	0	0	0
		-			
22	0	0	0	0	0

```
23
           0
                          0
                                       0
                                               0
24
           0
                          20
                                       0
                                               0
                    0
25
           0
                    0
                           0
                                       0
                                               1
                           0
26
```

[27 rows x 28 columns]

```
[43]: # model_5:
      # Now, we are exploring the Learning Curve process:
      n = 600 # let's set the number of features to be 600 for here (we are still in
      \rightarrow model 5):
      n_samples=[700, 1200, 1700, 2200, 2700] # number of data samples we are using_
       \rightarrowhere
      loss_list=[]
      val_loss_list=[]
      print('Learning Curve process for model_5:')
      for n_s in n_samples:
          loss=[]
          val loss=[]
          for i in range(2): # training a few times, to find the average
              df_sample=sampler(df, n_s)
              X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
       reg_coef_5=0.01 # impact coefficient of regularization
              model 5=ks.models.Sequential()
              model_5.add(ks.layers.Dense(units=350, activation=ks.activations.relu,_
       →input_dim=X_train.shape[1],
                                          kernel_regularizer=ks.regularizers.
       \rightarrow12(reg_coef_5)))
              model_5.add(ks.layers.Dense(units=350, activation=ks.activations.relu,
                                          kernel_regularizer=ks.regularizers.
       →12(reg_coef_5)))
              model_5.add(ks.layers.Dense(units=500, activation=ks.activations.relu,
                                          kernel_regularizer=ks.regularizers.
       \rightarrow12(reg_coef_5)))
              model_5.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                          kernel_regularizer=ks.regularizers.
       →12(reg_coef_5)))
              model_5.add(ks.layers.Dense(units=27, activation=ks.activations.
       →sigmoid))
              model_5.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
       →sparse_categorical_crossentropy,
                           metrics=ks.metrics.sparse_categorical_accuracy)
```

```
history=model_5.fit(X_train, Y_train, validation_split=0.1, epochs=15,__
 ⇒batch size=5, verbose=0)
        loss.append( np.mean( np.sort(history.history['loss'])[:3] ) )
        val_loss.append( np.mean( np.sort(history.history['val_loss'])[:3] ) )
    loss list.append(np.mean( loss ))
    val_loss_list.append(np.mean( val_loss ))
    print(f'{n s} samples: done')
min_loss_list.append(min(loss_list))
min_val_loss_list.append(min(val_loss_list))
print(f'\nBias: {np.mean(loss_list[-2:]+val_loss_list[-2:])}')
print(f'Variance: {np.mean(np.array(val_loss_list[-2:])-np.array(loss_list[-2:])
 →]))/2}')
print("""According to the amount of bias and variance, it seems that we have
 ⇔enough
data. Please note that we have 100,000 samples (in total)""")
plt.plot(n_samples, loss_list, label='loss')
plt.plot(n_samples, val_loss_list, label='val_loss')
plt.xlabel('Number of samples'), plt.ylabel('Loss_
 plt.title('Learning curve')
plt.legend()
Learning Curve process for model 5:
700 samples: done
1200 samples: done
1700 samples: done
2200 samples: done
2700 samples: done
Bias: 2.908160348733266
Variance: 0.05389159917831432
According to the amount of bias and variance, it seems that we have enough
data. Please note that we have 100,000 samples (in total)
```

[43]: <matplotlib.legend.Legend at 0x7f82b839aa10>

Please note that we are using regularization with 0.01 impact coefficient. Without regularization, we have to deal with overfitting.

```
[44]: bias_list.append( np.mean(loss_list[-2:]+val_loss_list[-2:]) )
variance_list.append( np.mean(np.array(val_loss_list[-2:])-np.

array(loss_list[-2:]))/2 )
```

```
X_train, X_test, Y_train, Y_test = train_test_split( df_sample.iloc[:,1:
 →n_f], df_sample['target_tag'])
        reg_coef_5=0.01 # impact coefficient of regularization
        model_5=ks.models.Sequential()
        model 5.add(ks.layers.Dense(units=350, activation=ks.activations.relu,,,
 →input_dim=X_train.shape[1],
                                     kernel_regularizer=ks.regularizers.
 \rightarrow12(reg_coef_5)))
        model_5.add(ks.layers.Dense(units=350, activation=ks.activations.relu,
                                     kernel_regularizer=ks.regularizers.
 \rightarrow12(reg_coef_5)))
        model_5.add(ks.layers.Dense(units=500, activation=ks.activations.relu,
                                     kernel_regularizer=ks.regularizers.
 \rightarrow12(reg_coef_5)))
        model_5.add(ks.layers.Dense(units=150, activation=ks.activations.relu,
                                     kernel_regularizer=ks.regularizers.
 \rightarrow12(reg_coef_5)))
        model_5.add(ks.layers.Dense(units=27, activation=ks.activations.
 →sigmoid))
        model_5.compile(optimizer=ks.optimizers.SGD(0.1), loss=ks.losses.
 ⇒sparse_categorical_crossentropy,
                      metrics=ks.metrics.sparse_categorical_accuracy)
        history=model_5.fit(X_train, Y_train, validation_split=0.1, epochs=5,_
 →batch_size=n_b_s, verbose=0)
         accuracy.append( np.mean( np.sort(history.
 →history['sparse_categorical_accuracy'])[-3:] ) )
         val_accuracy.append( np.mean( np.sort(history.
 →history['val_sparse_categorical_accuracy'])[-3:] ) )
    accuracy_list.append(np.mean( accuracy ))
    val_accuracy_list.append(np.mean( val_accuracy ))
    print(f'Batch_size = {n_b_s} : done')
print(f'\nBest Batch_size: {n_batch_sizes[ np.argmax(val_accuracy_list) ]}')
plt.plot(n_batch_sizes, accuracy_list, label='Training accuracy')
plt.plot(n_batch_sizes, val_accuracy_list, label='Validation accuracy')
plt.xlabel('Batch size'), plt.ylabel('Accuracy (sparse_categorical_accuracy)')
plt.title('Effect of batch_size on accuracy')
plt.legend()
Fine tunning another hyper-parameter of model_5:
Batch_size = 2 : done
```

46

Batch_size = 5 : done Batch_size = 8 : done Batch_size = 12 : done Batch_size = 15 : done

Best Batch_size: 2

[46]: <matplotlib.legend.Legend at 0x7f82c9e56f50>

Comparing the models:

```
[58]:
                  total_number_of_layers
                                         number_of_hidden_nodes
                                                                   fit_time \
                                                                  13.065566
        model 1
                                                             800
                                       5
      1 model 2
                                                             850 43.287993
      2 model_3
                                       6
                                                             700
                                                                  23.715857
      3 model 4
                                       6
                                                                  30.815356
                                                            1000
      4 model_5
                                       6
                                                            1350 15.592041
        prediction_time
                         best_accuracy
                                         best_val_accuracy min_loss
                                                                      min_val_loss
      0
                0.294317
                               0.461180
                                                  0.420247
                                                                          2.698786
                                                            1.545587
      1
                0.222327
                               0.416626
                                                  0.376296 2.179018
                                                                          2.981330
      2
                0.213158
                               0.256187
                                                  0.392099 2.796139
                                                                          2.575549
                                                  0.212593 2.761690
      3
                0.230614
                               0.226173
                                                                          2.933845
                0.240349
                               0.218436
                                                  0.226667
                                                            2.675062
                                                                          2.924040
            bias variance overfit controling
                                Regularization
        2.575176 0.203092
        2.830942 0.151065
                                Regularization
                                       Dropout
      2 2.778742 0.167064
      3 2.943768 0.085600
                                Regularization
      4 2.908160 0.053892
                                Regularization
```

0.0.10 Important results:

- 1. Four or five layers should be enough for our task.
- 2. We need about 1000 nodes to creat a good model.
- 3. Regularization is beter than Dropout for this task.
- 4. It's better to increase the number of nodes at the primary layers, and then decrease them.