Introduzione alla Geometria Algebrica

Quadriche - un veloce ripasso

Gianluca Occhetta

Forme bilineari

V spazio vettoriale su \mathbb{K} ; una forma bilineare su V è un'applicazione

$$\phi: V \times V \to \mathbb{K}$$

che sia lineare in entrambi gli argomenti. La forma bilineare si dice simmetrica se $\phi(\mathbf{u},\mathbf{v})=\phi(\mathbf{v},\mathbf{u})$ per ogni $\mathbf{u},\mathbf{v}\in V$

Se $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ è una base di V possiamo rappresentare φ con una matrice simmetrica $A = [a_{ij}]$ ponendo $a_{ij} = \varphi(\mathbf{a}_i, \mathbf{a}_j)$

Se
$$\mathbf{u} = \sum_{i=1}^n u_i \mathbf{a}_i$$
 e $\mathbf{v} = \sum_{j=1}^n v_j \mathbf{a}_j$ allora

Forme bilineari

Se $\mathcal{A}'=\{\mathbf{a}_1',\ldots,\mathbf{a}_n'\}$ è un'altra base di V, allora esiste una matrice invertibile $C\in\mathsf{GL}(n,\mathbb{K})$ tale che, per ogni $\mathbf{v}\in V$

$$\begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix} = \begin{bmatrix} & C & \end{bmatrix} \begin{bmatrix} v_1' \\ v_2' \\ \dots \\ v_n' \end{bmatrix}$$

Possiamo dunque scrivere

$$\varphi(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T A \mathbf{v} = \mathbf{u}'^T C^T A C \mathbf{v}'$$

trovando che la matrice di ϕ nella nuova base è

$$A' = C^T A C$$

cioè A e A' sono matrici congruenti

Forme bilineari

Una base $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ di V si dice ϕ -coniugata se

$$\varphi(\mathbf{a}_i, \mathbf{a}_j) = 0$$
 per $i \neq j$

La matrice rappresentativa di ϕ rispetto a una tale base è diagonale

Teorema (Lagrange)

Se Char $\mathbb{K} \neq 2$, dim V>0 e ϕ è una forma bilineare simmetrica, allora esiste una base ϕ -coniugata

Equivalentemente, se Char $\mathbb{K} \neq 2$, una matrice simmetrica è congruente ad una matrice diagonale

Forme quadratiche

Data ϕ forma bilineare simmetrica, la forma quadratica associata $\Phi:V\to K$ è definita ponendo

$$\Phi(\mathbf{u}) = \phi(\mathbf{u}, \mathbf{u})$$

Si noti che Φ non è lineare, ma è omogenea di grado 2:

$$\Phi(\lambda \mathbf{u}) = \phi(\lambda \mathbf{u}, \lambda \mathbf{u}) = \lambda^2 \phi(\mathbf{u}, \mathbf{u}) = \lambda^2 \Phi(\mathbf{u})$$

Come conseguenza del Teorema di Lagrange, esiste una base $\mathcal{A}=\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ di V nella quale

$$\Phi(\mathbf{v}) = \sum_{i=1}^n \lambda_i v_i^2$$

dove v_i sono le componenti di \mathbf{v} rispetto alla base \mathcal{A} .

Forme quadratiche complesse

A meno di riordinare gli elementi della base ${\mathcal A}$ possiamo assumere che la matrice A che rappresenta Φ sia

$$A = \mathsf{Diag}(\lambda_1, \ldots, \lambda_r, 0, \ldots, 0)$$

con r uguale al rango di A

Con l'ulteriore cambiamento di base $\mathbf{a}_i'=\mathbf{a}_i/\eta_i$ per $i=1,\ldots,r$ con $\eta_i^2=\lambda_i$ la matrice di Φ diventa

$$A_r = \left[\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array} \right]$$

Dunque ogni matrice simmetrica di rango r è congruente ad A_r , e quindi tutte le matrici simmetriche dello stesso rango sono congruenti.

Iperquadriche

Sia ora V uno spazio vettoriale di dimensione n+1, e $\mathbb{P}^n=\mathbb{P}(V)$

Data $\Phi:V\to\mathbb{K}$ forma quadratica non nulla, una (iper)quadrica è l'insieme dei punti $[\mathbf{x}]\in\mathbb{P}(V)$ tali che $\Phi(\mathbf{x})=0$

Scelta una base $\mathcal{A}=\{\mathbf{a}_0,\ldots,\mathbf{a}_n\}$ di V, se A è la matrice rappresentativa di Φ , scrivendo $\mathbf{x}=\sum_{i=0}^n x_i\mathbf{a}_i$ possiamo descrivere la quadrica come l'insieme dei punti di $\mathbb{P}(V)$ tali che

$$\mathbf{x}^{t} A \mathbf{x} = \begin{bmatrix} x_{0} & x_{1} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ \dots \\ x_{n} \end{bmatrix} = 0$$

cioè come il luogo di zeri di un polinomio omogeneo di secondo grado

Iperquadriche

Sia Q è una quadrica associata a Φ forma quadratica la cui matrice rappresentativa A ha rango r

Esiste un cambio di base in V tale che la matrice rappresentativa di Φ nella nuova base è A_r

Il cambio di base induce una proiettività di $\mathbb{P}(V)$, che manda Q nell'iperquadrica di equazione

$$x_0^2 + \dots + x_{r-1}^2 = 0$$

In particolare due iperquadriche sono proiettivamente equivalenti se e solo se le loro matrici rappresentative hanno lo stesso rango

Punti singolari

Un punto ${\bf y}$ di un'iperquadrica ${\bf Q}$ si dice singolare se ogni retta per ${\bf y}$ ha (almeno) due intersezioni con ${\bf Q}$ in ${\bf y}$

Sia $\mathbf{y} \in Q$ un punto, e sia ℓ una retta che passa per \mathbf{y} , i cui punti si possono dunque scrivere come $\lambda \mathbf{y} + \mu \mathbf{z}$; intersecando ℓ e Q troviamo

$$0 = (\lambda \mathbf{y} + \mu \mathbf{z})^T A (\lambda \mathbf{y} + \mu \mathbf{z}) = 2\lambda \mu \mathbf{z}^T A \mathbf{y} + \mu^2 \mathbf{z}^T A \mathbf{z}$$

La soluzione $\mu = 0$, che corrisponde a \mathbf{y} è doppia sse $\mathbf{z}^T A \mathbf{y} = 0$ In particolare \mathbf{y} è singolare sse $\mathbf{z}^T A \mathbf{y} = 0 \ \forall \mathbf{z}$, cioè sse $A \mathbf{y} = \mathbf{0}$

I punti singolari di $Q\subset \mathbb{P}^n$ sono quindi un sottospazio lineare, di dimensione $n-\mathrm{rk}(A)$

Un'iperquadrica senza punti singolari si dice liscia; ciò accade sse ${\sf rk}(A) = n+1$

Classificazione

Vediamo la classificazione delle quadriche in $\mathbb{P}^3_\mathbb{C}$

Rango	Forma canonica	Singolarità	
4	$x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$	Ø	quadrica liscia
3	$x_0^2 + x_1^2 + x_2^2 = 0$	[0:0:0:1]	cono quadrico
2	$x_0^2 + x_1^2 = 0$	$x_0=x_1=0$	due piani distinti
1	$x_0^2 = 0$	$x_0 = 0$	un piano doppio

Classificazione

Vediamo la classificazione delle coniche in $\mathbb{P}^2_\mathbb{C}$

Rango	Forma canonica	Singolarità	
3	$x_0^2 + x_1^2 + x_2^2 = 0$	Ø	conica liscia
2	$x_0^2 + x_1^2 = 0$	[0:0:1]	due rette distinte
1	$x_0^2 = 0$	$x_0 = 0$	una retta doppia