

Clustering (= Classification non-supervisée)

Fichiers sur

https://github.com/mkirschpin/CoursPython

http://kirschpm.fr/cours/PythonDataScience/

https://wordstream-files-prod.s3.amazonaws.com/s3fs-public/machine-learning.png

Types of Machine Learning

https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/

Apprentissage supervisé / non supervisé

supervised learning

unsupervised learning

Trois grands types de clustering

- Séparer les éléments en groupes (clusters) disjoints
- Les clusters ne sont pas connus à l'avance
- Clustering par partition
 - Une division des données en sous-ensembles (clusters) « patatoides »
 - Ex.: K-Means, K-Medians, Fuzzy C-Means

Clustering hiérarchique

- Un ensemble de clusters emboités les uns dans les autres, avec une structure hiérarchique (arbre)
- Ex.: Agglomerative (linkage), Divisive

Clustering par densité

- Une division en *clusters* s'appuie sur la **densité** estimée des clusters
- Ex.: DBScan

Clustering par Partition (le plus utilisé)

- Une bonne méthode de regroupement
 - Exemple d'application : customer segmentation
- Permet de garantir :
 - Une grande similarité intra-groupe
 - Une faible similarité inter-groupe
- Quelques limitations :
 - N'est pas adapté à des « formes » complexes
 - Peut produire des résultats différents à chaque exécution

Fonctionnement K-means

- Prendre K points (au hasard) comme centroïdes initiaux
- Répéter
 - Former K clusters en assignant les points à leur centroïde le plus proche
 - Mettre à jour le centroïde de chaque cluster jusqu'à ce que qu'aucun centroïde ne bouge

Notion de distance

- Chaque cluster contient les points les plus proches
 - Distance Euclidienne ≈ métrique MSE
 - Attention à la Normalisation
- Aucune étiquette n'est nécessaire

Clusters peuvent être interprétés

K-means

from sklearn.cluster import KMeans Création objet modèle means = KMeans(n_clusters=3) On doit indiquer le nombre de clusters K On construit le modèle (fit) labels = means.fit_predict(X) means.fit(X) Ou Dataframe avec les données (features) en entrée (sans colonne 'target' car apprentissage **non supervisé**) On récupère les labels (clusters) attribués à chaque valeur means.labels means.cluster centers On récupère le centre (centroide) de chaque clusters

Fonctionnement K-means (hyperparamètres)

- Choix des centroides de départ est déterminant
 - Mauvais choix → difficultés à converger → résultat + médiocre
- Hyperparamètres : init et n_init
 - -init: méthode d'initialisation
 - Valeurs : **k-means++**, random ou n-array (*k clusters*, *n features*)
 - -n_init : nb de fois l'algo sera exécuté avec ≠ centroid seeds
 - Valeur par défaut : 10

Fonctionnement K-means (choix du k)

- Comment choisir son K?
 - Tester des multiples valeurs!
- Comment évaluer la qualité de son cluster ?
 - Pas de labels disponibles (« ground truth »)

Inertie (attribut inertia_)

- Somme des distances au carré entre un point et son centroide
- Une faible inertie correspond à une faible distance intra-cluster
- Inertie 0 théorique : autant des clusters que des points

means.inertia

Fonctionnement K-means (choix du k)

Silhouette Score

 – À quel point un élément est similaire à son propre cluster comparé aux éléments sur les autres clusters

$$silhouette = \frac{B - A}{\max(A, B)}$$

A → distance moyenne entre un point et les autres points du *cluster plus proche (inter-cluster)*

B → distance moyenne entre un point et les autres points de son cluster (intra-cluster)

Score entre [-1, 1]

1 → clusters + dense et mieux séparés

from sklearn.metrics import silhouette_score

scoef = silhouette_score(X,means.labels_)

On lui indique les données (X) et les labels obtenus

Etude du dataset

- Créer le DataFrame avec les données aléatoires

```
import pandas as pnd
from sklearn.datasets import make_blobs

x,y = make_blobs(n_samples=150, centers=4, n_features=2, cluster_std=[1, 1.5, 2, 2.3], random_state=42)

df_blobs = pnd.DataFrame ({'x1' : x[:,0] , 'x2' : x[:,1], 'y' : y })

df_blobs.sample(25)
On n'oublie pas les imports

On n'oublie pas les imports

Création d'un dataset de 150
 éléments plus ou moins dispersés autour de 4 centres

x1 x2 y
```

Deux features seulement pour rendre la visualisation plus facile

	x1	x2	у
53	-2.972615	8.548556	0
27	-2.165579	7.251246	0
121	-10.193867	9.277608	3
141	-1.696672	10.370526	0

- Visualisation des données
 - On peut afficher les données sur un plan 2D

Création d'un graphique de type **scatter** à partir de notre **dataframe**

L'observation des différentes combinaisons de *features 2 par 2* peut nous montrer les *features* les plus propices à la séparation en clusters

Exemple clustering

- Créer le modèle K-Means
- Entraîner le modèle

On va d'abord **éliminer la colonne y,** et ne garder que les features.

```
X = df_blobs.drop(columns=['y'])
```

On n'oublie pas l'import

```
from sklearn.cluster import KMeans

Méthode d'initialisation : k-means++

km = KMeans(init='k-means++', n_clusters=3)

Entrainement du modèle
(seulement avec les features)

km.fit( X )
```

Important : modèle non supervisé, donc on ne fournit pas de target avec le **fit**

Exemple clustering

– Afficher les labels créés lors du clustering :

-Visualisation

On utilise les labels comme indicateur de couleur dans l'échelle « viridis ».

- Exemple clustering : comment trouver le bon K ?
 - On va tester plusieurs valeurs de K
 - Pour plus de fun : on va augmenter le nombre de points dans le dataset

```
x,y = make_blobs(n_samples=1000, centers=6, n_features=2,
                 cluster std=[3.5, 4.5, 3.0, 2.5, 1.5, 2.0],
                 random state=7)
X = pnd.DataFrame (\{'x1' : x[:,0] , 'x2' : x[:,1] \})
X.describe()
```

X.plot(kind='scatter', x=['x1'], y = ['x2']

	X1	x2
count	1000.000000	1000.000000
mean	-0.160541	1.148996
std	6.515354	5.811310
min	-16.541976	-16.697765

- Exemple clustering : comment trouver le bon K ?
 - Définir les valeurs de K à tester
 - Enregistrer les valeurs d'inertie et le Silhouette score pour les comparer

```
from sklearn.metrics import silhouette_score

n_clusters = [3, 4, 5, 6, 7, 8, 9]
inerties = []

Deux tableaux pour garder l'inertie et le silhouette score
```

```
for k in n_clusters:
    km = KMeans(n_clusters=k, init='k-means++', n_init=12, random_state=7)
    km.fit(X)

scoef = silhouette_score(X,km.labels_)
    inerties.append(km.inertia_)
    silhouettes.append(scoef)

print ('inertie =', km.inertia_, 'silhouette score=', scoef)
```


- Exemple clustering : comment trouver le bon K?
 - On peut aussi afficher les clusters et leurs centroide

```
Pour chaque valeur de k, on va créer un modèle
for k in n clusters:
    km = KMeans(n_clusters=k, init='k-means++', n_init=12, random_state=7)
    km.fit(X)
                                                 Puis, on récupère le score silhouette
    scoef = silhouette_score(X,km.labels_)
                                                 et l'inertie et on les garde
    inerties.append(km.inertia_)
                                                     Création de la figure et plot des
    silhouettes.append(scoef)
                                                     points colorés avec leur label.
    fig, ax = plt.subplots(1,1, figsize=(10,5))
    X.plot(kind='scatter', x=['x1'], y=['x2'], c=km.labels_,
           colormap='viridis', ax=ax, title=f'{k} clusters')
    ax.plot(km.cluster_centers_[:,0], km.cluster_centers_[:,1],'k^', ms=12,
                                                                     alpha=0.35)
Plot des centroides
```

L'attribut cluster_centers_ est une liste contenant le centroide de chaque cluster.

km.cluster_centers_[:,0] donne les 'x1' des centroides, km.cluster_centers_[:,1] le 'x2'

- Exemple clustering : comment trouver le bon K ?
 - On peut aussi afficher les clusters et leurs centroide

- Exemple clustering : comment trouver le bon K ?
 - Comparer les valeurs d'inertie et le score silhouette

```
fig, axs = plt.subplots(1,2, figsize=(18,7))

axs[0].set_title('inertie')

axs[0].plot(n_clusters,inerties, marker='o', color='green', linewidth=2, markersize=12)

axs[1].set_title('silhouette score')

axs[1].plot(n_clusters,silhouettes, marker='+', color='darkblue', linewidth=2, markersize=12)

Dans le 1er espace (axs[0]), on plotte les valeurs de k (n_clusters) vs les inerties.
```

Au 2^{ème} espace (**axs[1]**), on plotte les valeurs de k (**n_clusters**) vs les valeurs du score **silhouette.**

Exemple : Analyse Titanic

- « Segmentation » des passager du Titanic
 - Mieux comprendre la population, pas que en fonction de la survie
- Dataset avec plus de features : titanic.csv
 - Survival, Sex, Age
 - pclass: Ticket class (1 = 1st, 2 = 2nd, 3 = 3rd)
 - sibsp: nb de personne de la famille (enfant, épouses...)

• parch: nb de parents / enfants

RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

Data	cotumns (total 12 cotumns).						
#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				

Exemple : Analyse Titanic

- Nettoyage des données
 - Supprimer les colonnes qui ne nous intéressent pas
 - Remplir les données manquantes (âge notamment)

```
df_titanic['Age'].fillna (df_titanic['Age'].mean(),inplace=True)
```

df_titanic.info()

	Survived	Pclass	Sex	Age	SibSp	Parch
437	1	2	female	24.000000	2	3
343	0	2	male	25.000000	0	0
226	1	2	male	19.000000	0	0
383	1	1	female	35.000000	1	0
309	1	1	female	30.000000	0	0
119	0	3	female	2.000000	4	2

RangeIndex: 891 entries, 0 to 890 Data columns (total 6 columns):

Data	columns (total 6 columns):						
#	Column	Non-Null Count	Dtype				
0	Survived	891 non-null	int64				
1	Pclass	891 non-null	int64				
2	Sex	891 non-null	object				
3	Age	891 non-null	float6				
4	SibSp	891 non-null	int64				
5	Parch	891 non-null	int64				
	df titar	nic.sample(15)					
	41_5164						

• Exemple : Analyse Titanic

- Nettoyage des données
 - Il faut « encoder » la colonne « Sex »

```
df_titanic = pnd.get_dummies(df_titanic, columns=['Sex'],drop_first=True)
df_titanic.info()
```

- Créer des nouvelles colonnes : NbFamily et Alone

```
df_titanic['FamilyNb'] = df_titanic['SibSp'] + df_titanic['Parch']
df titanic['Alone'] = ( df titanic['FamilyNb'] == 0)
                                                    RangeIndex: 891 entries, 0 to 890
df_titanic.drop(columns=['SibSp','Parch'],
                                                    Data columns (total 6 columns):
                 inplace=True)
                                                        Column
                                                                 Non-Null Count Dtype
df titanic.info()
                                                        Survived 891 non-null
                                                                                int64
                                                        Pclass
                                                                 891 non-null
                                                                                int64
                                                        Age 891 non-null
                                                                                float64
                                                        Sex_male 891 non-null
                                                                                uint8
                                                        FamilyNb
                                                                 891 non-null
                                                                                int64
```

5

Alone

891 non-null

bool

• Exemple : Analyse Titanic

	Survived	Pclass	Age	Sex_male	FamilyNb	Alone
699	0	3	42.000000	1	0	True
206	0	3	32.000000	1	1	False
592	0	3	47.000000	1	0	True
817	0	2	31.000000	1	2	False
430	1	1	28.000000	1	0	True

df_titanic.sample(15)

df_titanic. describe()

	Survived	Pclass	Age	Sex_male	FamilyNb
count	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.647587	0.904602
std	0.486592	0.836071	13.002015	0.477990	1.613459
min	0.000000	1.000000	0.420000	0.000000	0.000000
25%	0.000000	2.000000	22.000000	0.000000	0.000000
50%	0.000000	3.000000	29.699118	1.000000	0.000000
75%	1.000000	3.000000	35.000000	1.000000	1.000000
max	1.000000	3.000000	80.000000	1.000000	10.000000

Exemple : Analyse Titanic

- Construction du modèle

```
from sklearn.cluster import KMeans
km = KMeans(n_clusters=4, random_state=42)
km.fit(df titanic)
                                                   21081.28798483158
print(km.inertia )
print (df titanic.columns)
print (km.cluster centers )
Index(['Survived', 'Pclass', 'Age', 'Sex male', 'FamilyNb', 'Alone'], dtype='object')
[3.60000000e-01\ 2.48000000e+00\ 2.08400000e+01\ 6.20000000e-01
 7.44000000e-01 6.32000000e-011
[3.73239437e-01\ 1.71126761e+00\ 5.16408451e+01\ 6.90140845e-01
 6.47887324e-01 6.05633803e-011
[5.79710145e-01 2.63768116e+00 4.77057971e+00 5.36231884e-01
 3.27536232e+00 2.89855072e-021
[3.69767442e-01\ 2.35348837e+00\ 3.16040554e+01\ 6.67441860e-01
 7.02325581e-01 6.76744186e-0111
```


- Exemple : Analyse Titanic
 - Interprétation des labels (clusters) obtenus

```
df_titanic['labels'] = km.labels_
df_titanic.groupby('labels').describe().transpose()
```

	labels	0	1	2	3
Survived	count	250.000000	142.000000	69.000000	430.000000
	mean	0.360000	0.373239	0.579710	0.369767
	std	0.480963	0.485377	0.49/222	0.483304
	min	0.000000	0.000000	0.000000	0.000000
	25%	0.000000	0.000000	0.000000	0.000000
	50%	0.000000	0.000000	1.000000	0.000000
	75%	1.000000	1.000000	1.000000	1.000000
	max	1.000000	1.000000	1.000000	1.000000
Pclass	count	250.000000	142.000000	69.000000	430.000000
	mean	2.480000	1.711268	2.637681	2.353488
	std	0.756232	0.830116	0.593371	0.825398
	min	1.000000	1.000000	1.000000	1.000000
	25%	2.000000	1.000000	2.000000	2.000000
	50%	3.000000	1.000000	3.000000	3.000000
	75%	3.000000	2.000000	3.000000	3.000000
	max	3.000000	3.000000	3.000000	3.000000
Age	count	250.000000	142.000000	69.000000	430.000000

Age	count	250.000000	142.000000	69 000000	430.000000
	mean	20.840000	51.640845	4.770580	31.604055
	std	3.361488	8.025086	3.390390	3.533436
	min	13.000000	42.000000	0.420000	27.000000
	25%	18.000000	45.000000	2.000000	29.699118
	50%	21.000000	50.000000	4.000000	29.699118
	75%	24.000000	56.000000	8.000000	34.000000
	max	26.000000	80.000000	12.000000	41.000000
Sex_male	count	250.000000	142.000000	69.000000	430.000000
	mean	0.620000	0.690141	0.536232	0.667442
	std	0.486360	0.464072	0.502339	0.471679
	min	0.000000	0.000000	0.000000	0.000000
	25%	0.000000	0.000000	0.000000	0.000000
	50%	1.000000	1.000000	1.000000	1.000000
	75%	1.000000	1.000000	1.000000	1.000000
	max	1.000000	1.000000	1.000000	1.000000
FamilyNb	count	250.000000	142.000000	69 000000	430.000000
	mean	0.744000	0.647887	3.275362	0.702326
	std	1.313532	1.105737	1.640173	1.573304