# Recommending Products Based on the Latent Factors Model



Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

#### Overview

Understand the latent factors model for collaborative filtering

Contrast the latent factors model and the nearest neighbors model

Use optimization techniques to solve for latent factors

- Stochastic gradient descent

#### Collaborative Filtering Techniques

#### Nearest Neighbors Model



Use the ratings of "most similar" users

## Latent Factor Analysis



Solve for underlying factors that drive the ratings



Analogous to PCA (Principal Components Analysis)

in matrix algebra



Why are some products rated high and others low?

Why do some users like certain products?

Are there some underlying factors that influence all users' ratings?

|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| U <sub>1</sub> | 3              | 4              | -              | -              |                |
| U <sub>2</sub> | 3              | 2              | -              | -              | 5              |
| U <sub>3</sub> | -              | 2              | -              | 5              | 4              |
| U <sub>4</sub> | -              | -              | 4              | -              | -              |
| U <sub>5</sub> | 1              | -              | -              | -              | -              |
| U <sub>6</sub> | 3              | 4              | -              | -              | 5              |

Once underlying factors are known

Predict any rating for a product by a user

|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| U <sub>1</sub> | 3              | 4              | -              | -              | -              |
| U <sub>2</sub> | 3              | 2              | -              | •              | 5              |
| U <sub>3</sub> | -              | 2              | -              | 5              | 4              |
| U <sub>4</sub> | -              | -              | 4              | -              | -              |
| U <sub>5</sub> | 1              | -              | -              | -              | -              |
| U <sub>6</sub> | 3              | 4              | -              | -              | 5              |



|   |                | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> |
|---|----------------|----------------|----------------|----------------|
|   | U <sub>1</sub> |                |                |                |
|   | U <sub>2</sub> |                |                |                |
| • | U <sub>3</sub> |                |                |                |
|   | U <sub>4</sub> |                |                |                |
|   | U <sub>5</sub> |                |                |                |
|   | U <sub>6</sub> |                |                |                |



|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| F <sub>1</sub> |                |                |                |                |                |
| F <sub>2</sub> |                |                |                |                |                |
| F <sub>3</sub> |                |                |                |                |                |



Users described by some underlying factors

|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| F <sub>1</sub> |                |                |                |                |                |
| F <sub>2</sub> |                |                |                |                |                |
| F <sub>3</sub> |                |                |                |                |                |

Products described by the same underlying factors



Solve using known ratings



Use the solution to find unknown ratings

This representation is analogous to content based filtering





|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| F <sub>1</sub> |                |                |                |                |                |
| F <sub>2</sub> |                |                |                |                |                |
| F <sub>3</sub> |                |                |                |                |                |

#### Content Based Filtering

# Rate every product against the relevant attributes

| Product | F1 | F2 | F3 | F4 |
|---------|----|----|----|----|
| Α       | 0  | 3  | 2  | 5  |
| В       | 5  | 2  | 3  | 4  |
| С       | 4  | 5  | 2  | 1  |
| D       | 3  | 4  | 5  | 2  |

Rate the user on the importance he/she gives to these factors

| User | F1 | F2 | F3 | F4 |
|------|----|----|----|----|
| A    | 0  | 3  | 2  | 5  |

Ex: Average of ratings of products that the user already likes

#### Data Representation



#### Content Based Filtering vs Latent Factor Analysis



Factors are identified by experts

Factors are derived using machine learning techniques



Factors are product attributes

Factors may be related to product attributes or may be abstract

#### Contrasting the Nearest Neighbors Model and Latent Factor Analysis







**Data Representation** 

**Model Updates** 

**Memory Usage** 







**Data Representation** 

**Model Updates** 

**Memory Usage** 

#### Nearest Neighbors Model













**Data Representation** 

Observable attributes vs hidden driving factors

**Model Updates** 

**Memory Usage** 







Data Representation

Observable attributes vs hidden driving factors

**Model Updates** 

Memory Usage

#### Nearest Neighbors Model



|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| U <sub>1</sub> | 3              | 4              | -              | -              | -              |
| U <sub>2</sub> | 3              | 2              | -              | -              | 5              |
| U <sub>3</sub> | ı              | 2              | -              | 5              | 4              |
| U <sub>4</sub> | -              | -              | 4              | -              | -              |
| U <sub>5</sub> | 1              | -              | -              | -              | -              |
| U <sub>6</sub> | 3              | 4              | -              | -              | 5              |



Recommendations

#### Nearest Neighbors Model

#### Online updates

|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| U              | 3              | 4              | -              | -              | -              |
| U <sub>2</sub> | 3              | 2              | -              | -              | 5              |
| U <sub>3</sub> | -              | 2              | 7              | 5              | 4              |
| U <sub>4</sub> | -              | -              | 4              | -              | -              |
| U <sub>5</sub> | 1              | -              | -              | -              | -              |
| U <sub>6</sub> | 3              | 4              | -              | -              | 5              |

Active user



Recommendations

|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| U <sub>1</sub> | 3              | 4              | -              | -              | -              |
| U <sub>2</sub> | 3              | 2              | -              | -              | 5              |
| U <sub>3</sub> | -              | 2              | -              | 5              | 4              |
| U <sub>4</sub> | -              | -              | 4              | -              | -              |
| U <sub>5</sub> | 1              | -              | _              | -              | -              |
| U <sub>6</sub> | 3              | 4              | -              | -              | 5              |



|                | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|
| U <sub>1</sub> |                |                |                |
| U <sub>2</sub> |                |                |                |
| U <sub>3</sub> |                |                |                |
| U <sub>4</sub> |                |                |                |
| U <sub>5</sub> |                |                |                |
| U <sub>6</sub> |                |                |                |



|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| F <sub>1</sub> |                |                |                |                |                |
| F <sub>2</sub> |                |                |                |                |                |
| F <sub>3</sub> |                |                |                |                |                |

|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| U <sub>1</sub> | 3              | 4              | -              | -              | -              |
| U <sub>2</sub> | 3              | 2              | -              | -              | 5              |
| U <sub>3</sub> | -              | 2              | -              | 5              | 4              |
| U <sub>4</sub> | -              | -              | 4              | -              | -              |
| U <sub>5</sub> | 1              | -              | -              | -              | -              |
| U <sub>6</sub> | 3              | 4              | -              | -              | 5              |







Recommendations



#### Offline updates

|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| U <sub>1</sub> | 3              | 4              | -              | -              | -              |
| U <sub>2</sub> | 3              | 2              | -              | -              | 5              |
| U <sub>3</sub> | -              | 2              | 7              | 5              | 4              |
| U <sub>4</sub> | -              | _              | 4              | -              | -              |
| U <sub>5</sub> | 1              | -              | -              | -              | -              |
| U <sub>6</sub> | 3              | 4              |                | -              | 5              |















Data Representation

Observable attributes vs hidden driving factors

**Model Updates** 

Online vs offline updates

**Memory Usage** 







Data Representation

Observable attributes vs hidden driving factors

Model Updates

Online vs offline updates

**Memory Usage** 

#### Nearest Neighbors Model

|                | P <sub>1</sub> | P <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | P <sub>5</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|
| U <sub>1</sub> | 3              | 4              | -              | -              | •              |
| U <sub>2</sub> | 3              | 2              | -              | -              | 5              |
| U <sub>3</sub> | -              | 2              | -              | 5              | 4              |
| U <sub>4</sub> | -              | -              | 4              | -              | -              |
| U <sub>5</sub> | 1              | _              | -              | -              | -              |
| U <sub>6</sub> | 3              | 4              | -              | -              | 5              |

Ratings kept in-memory at all times

User recommendations computed on-demand

|                | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> |
|----------------|----------------|----------------|----------------|
| U <sub>1</sub> |                |                |                |
| U <sub>2</sub> |                |                |                |
| U <sub>3</sub> |                |                |                |
| U <sub>4</sub> |                |                |                |
| U <sub>5</sub> |                |                |                |
| U <sub>6</sub> |                |                |                |



Rating matrix is decomposed offline

All recommendations can easily be pre-computed as a one off







Data Representation

Observable attributes vs hidden driving factors

Model Updates

Online vs offline updates

**Memory Usage** 

In-memory vs precomputed







**Data Representation** 

Observable attributes vs hidden driving factors

**Model Updates** 

Online vs offline updates

**Memory Usage** 

In-memory vs precomputed

#### Decomposing the Rating Matrix

#### Using is Easy, Building is Hard







**Building an engine** 

### Solving for Factors

R

|                | 11 | 12                     | 13 | 14 | 15 |
|----------------|----|------------------------|----|----|----|
| U <sub>1</sub> | 2  | 4                      |    |    |    |
| U <sub>2</sub> | 3  | +                      |    | -  | 5  |
| U <sub>3</sub> | -  | <b>r</b> <sub>32</sub> | -  | 5  | 4  |
| U <sub>4</sub> | -  | -                      | 4  | -  |    |
| U <sub>5</sub> | 1  | -                      | -  | -  | _  |
| U <sub>6</sub> | 3  | 4                      | -  | -  | 5  |



|   |                | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> |
|---|----------------|----------------|----------------|----------------|
|   | U <sub>1</sub> |                |                |                |
|   | U <sub>2</sub> |                |                |                |
| , | U <sub>3</sub> |                | p <sub>3</sub> |                |
|   | U <sub>4</sub> |                |                |                |
|   | U <sub>5</sub> |                |                |                |
|   | U <sub>6</sub> |                |                |                |



|                | l <sub>1</sub> | 12                    | <b>I</b> <sub>3</sub> | 14 | <b>I</b> 5 |
|----------------|----------------|-----------------------|-----------------------|----|------------|
| Ę              |                |                       |                       |    |            |
| F <sub>2</sub> |                | <b>q</b> <sub>2</sub> |                       |    |            |
| F <sub>3</sub> |                |                       |                       |    |            |

#### Solving for Factors



rui = pu. qi



#### Solve the set of equations

# Equations = # Known ratings

#### Solving for Factors



#### Solving for Factors





#### Find pu and qi such that

$$\Sigma (r_{ui} - p_u, q_i)^2$$

Total error is minimized



# min $\Sigma(r_{ui}-p_u,q_i)^2$

Add a term to penalize the model for the number of factors



$$\min \sum (r_{ui} - p_{u}.q_{i})^{2} + \lambda(||p_{u}||^{2} + ||q_{i}||^{2})$$

Add a term to penalize the model for the number of factors



$$\min \sum (r_{ui} - p_{u}.q_{i})^{2} + \lambda(||p_{u}||^{2} + ||q_{i}||^{2})$$

Regularization term



$$\min \sum (r_{ui} - p_{u} \cdot q_{i})^{2} + \lambda(||p_{u}||^{2} + ||q_{i}||^{2})$$

$$Regularization factor$$



## min E(p<sub>u</sub>, q<sub>i</sub>)

A standard optimization problem

#### Demo

# Solve for latent factors using the Stochastic Gradient Descent method (SGD)

- Set up a function to compute error
- Set up a function to implement SGD

#### Set up the data

Functions to access relevant information

Initialize factor matrices

### Update the factor matrices

Minimize the error using SGD

#### Construct a rating matrix

The representation needed for collaborative filtering

#### Compute the error

Set up a function to measure RMSE

#### Set up the data

Functions to access relevant information

#### Construct a rating matrix

The representation needed for collaborative filtering

### Setting Up the Rating Matrix

|                |                                                             | -2                                                                           | 3                                                                                              | - 4                                                                                                                                                                    | 15                                                                                                                                                                                                             |
|----------------|-------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U <sub>1</sub> | 3                                                           | 4                                                                            | -                                                                                              | -                                                                                                                                                                      | 4                                                                                                                                                                                                              |
| U <sub>2</sub> | 3                                                           | 5                                                                            | 3                                                                                              | 4                                                                                                                                                                      | 5                                                                                                                                                                                                              |
| U <sub>3</sub> | 4                                                           | 2                                                                            | -                                                                                              | 5                                                                                                                                                                      | 4                                                                                                                                                                                                              |
| U <sub>4</sub> | 3                                                           | -                                                                            | 4                                                                                              | 5                                                                                                                                                                      | 2                                                                                                                                                                                                              |
| U <sub>5</sub> | 1                                                           | -                                                                            | 4                                                                                              | 2                                                                                                                                                                      | 1                                                                                                                                                                                                              |
| U <sub>6</sub> | 3                                                           | 4                                                                            | -                                                                                              | 2                                                                                                                                                                      | 5                                                                                                                                                                                                              |
|                | U <sub>2</sub> U <sub>3</sub> U <sub>4</sub> U <sub>5</sub> | U <sub>2</sub> 3<br>U <sub>3</sub> 4<br>U <sub>4</sub> 3<br>U <sub>5</sub> 1 | U <sub>1</sub> 3 4 U <sub>2</sub> 3 5 U <sub>3</sub> 4 2 U <sub>4</sub> 3 - U <sub>5</sub> 1 - | U1       3       4       -         U2       3       5       3         U3       4       2       -         U4       3       -       4         U5       1       -       4 | U1       3       4       -       -         U2       3       5       3       4         U3       4       2       -       5         U4       3       -       4       5         U5       1       -       4       2 |

pandas.pivot\_table

### Setting Up the Rating Matrix

|   |      |      |        |   | U <sub>1</sub> | 3 | 4 | - | - |
|---|------|------|--------|---|----------------|---|---|---|---|
|   | Heer | ICDN | Dating |   | U <sub>2</sub> | 3 | 5 | 3 | 4 |
|   | User | ISBN | Rating |   | U <sub>3</sub> | 4 | 2 | - | 5 |
|   |      |      |        |   | U <sub>4</sub> | 3 | - | 4 | 5 |
| I |      |      |        | l | U <sub>5</sub> | 1 | - | 4 | 2 |
|   |      |      |        |   | Us             | 3 | 4 | - | 2 |

scipy.coo\_matrix

coo\_matrix((values,(rowsource, columnsource)))

### Creating a Rating Matrix



### Creating a Rating Matrix



### Creating a Rating Matrix



### Creating a Rating Matrix

|       |     | 3053 |   |   |
|-------|-----|------|---|---|
|       | 4   | N II |   |   |
|       | 2   | -    |   | 5 |
| 10633 | -2- | 0    | 5 | 4 |
|       | -   | 4    | - |   |
|       | -   | -    | - |   |
|       | 4   |      | - | 5 |

#### Set up the data

Functions to access relevant information

Initialize factor matrices

#### Construct a rating matrix

The representation needed for collaborative filtering

#### Set up the data

Functions to access relevant information

Initialize factor matrices

#### Construct a rating matrix

The representation needed for collaborative filtering

#### Compute the error

Set up a function to measure RMSE

#### Set up the data

Functions to access relevant information

Initialize factor matrices

### Update the factor matrices

Minimize the error using SGD

#### Construct a rating matrix

The representation needed for collaborative filtering

#### Compute the error

Set up a function to measure RMSE



Stochastic Gradient Descent

$$\sum (r_{ui}-p_{u}.q_{i})^{2}+\lambda(||p_{u}||^{2}+||q_{i}||^{2})$$

Total error across all ratings



Stochastic Gradient Descent

$$\sum (r_{ui}-p_{u}.q_{i})^{2}+\lambda(||p_{u}||^{2}+||q_{i}||^{2})$$

Look at the error for 1 rating



Stochastic Gradient Descent

$$e(p_u, q_i)=(r_{ui}-p_u,q_i)^2+\lambda(||p_u||^2+||q_i||^2)$$

Look at the error for 1 rating



Stochastic Gradient Descent





Stochastic Gradient Descent



Compute the initial value of the error



Stochastic Gradient Descent



Compute the slope at that point



Stochastic Gradient Descent



Take a small step in the downward direction of the slope



Stochastic Gradient Descent



Take a small step i.e. update pu and qi by a small value



Stochastic Gradient Descent



Repeat until you reach a minimum



Stochastic Gradient Descent



Take a small step i.e. update pu and qi by a small value



Stochastic Gradient Descent





Stochastic Gradient Descent





Stochastic Gradient Descent





Stochastic Gradient Descent





Stochastic Gradient Descent

While max # allowed steps is not reached:





Stochastic Gradient Descent



```
eui=rui-np.dot(P[u,:],Q[:,i])
P[u,:]=P[u,:]+gamma*2*(eui*Q[:,i]-lamda*P[u,:])
Q[:,i]=Q[:,i]+gamma*2*(eui*P[u,:]-lamda*Q[:,i])
```

#### $\varepsilon_{ui} = r_{ui} - p_{u} \cdot q_{i}$

```
eui=rui-np.dot(P[u,:],Q[:,i])
P[u,:]=P[u,:]+gamma*2*(eui*Q[:,i]-lamda*P[u,:])
Q[:,i]=Q[:,i]+gamma*2*(eui*P[u,:]-lamda*Q[:,i])
```

```
p_{u} = p_{u} + \gamma \left( -\frac{\partial E(p_{u}, q_{i})}{\partial p_{u}} \right)
eui=rui-np.dot(P[u,:],Q[:,i])
P[u,:]=P[u,:]+gamma*2*(eui*Q[:,i]-lamda*P[u,:])
Q[:,i]=Q[:,i]+gamma*2*(eui*P[u,:]-lamda*Q[:,i])
```

### $p_u = p_u + \gamma (2(\epsilon_{ui}q_i - \lambda p_u))$

```
eui=rui-np.dot(P[u,:],Q[:,i])
P[u,:]=P[u,:]+gamma*2*(eui*Q[:,i]-lamda*P[u,:])
Q[:,i]=Q[:,i]+gamma*2*(eui*P[u,:]-lamda*Q[:,i])
```

```
q_{i} = q_{i} + \gamma \left( - \frac{\partial E(p_{u}, q_{i})}{\partial q_{i}} \right)
eui=rui-np.dot(P[u,:],Q[:,i])
P[u,:]=P[u,:]+gamma*2*(eui*Q[:,i]-lamda*P[u,:])
Q[:,i] \neq Q[:,i]+gamma*2*(eui*P[u,:]-lamda*Q[:,i])
```

#### $q_i = q_i + \gamma (2(\epsilon_{ui}p_u - \lambda q_i))$

```
eui=rui-np.dot(P[u,:],Q[:,i])
P[u,:]=P[u,:]+gamma*2*(eui*Q[:,i]-lamda*P[u,:])
Q[:,i] \( \big Q[:,i] + gamma*2*(eui*P[u,:]-lamda*Q[:,i] \)
```

### Summary

Understand the latent factors model for collaborative filtering

Contrast the latent factors model and the nearest neighbors model

Use optimization techniques to solve for latent factors

- Stochastic gradient descent