МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«Самарский национальный исследовательский университет имени академика С. П. Королева»

(Самарский университет)

Институт информатики и кибернетики Прикладные математика и физика

Описание архитектуры системы по созданию веб-приложения по курсу: "Технологии программирования"

- -	еподаватель Белоусов А. А
	(подпись
	Студент Чернов В. А
	6301-0303011
_	
	(подпись

СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ СИСТЕМЫ С БИЗНЕС-ЦЕЛЯМИ, БИЗНЕС-ЗАДАЧАМИ И ПОЛЬЗОВАТЕЛЬСКИМИ СЦЕНАРИЯМИ

Веб-приложение - сайт с моделью, использующей технологии машинного обучения, которая будет классифицировать данные, а также прогнозировать дальнейшие результаты.

Данный раздел описывает связь функций системы с бизнес-целями и сценариями использования.

Роли пользователей:

- Студенты;
- Научные сотрудники;
- Лаборанты;
- Программисты.

Бизнес-цели:

BG1 Увеличение числа пользователей сайта через предоставление качественного сервиса классификации на основе методов машинного обучения

F1-1 Предоставление различного функционала

UC1-1-1 Выбор данных

Я, как пользователь, хочу загружать свои данные для их классификации

Актор	Пользователь
Триггер	Пользователь открыл боковую
	панель
Результат	Просмотр бегунков для входных
	данных
Основной поток	1. Пользователь находится на
	главной странице

2. Пользователь открывает
боковую панель
3. Перед пользователем
входные данные
4. Пользователь загружает свой
набор входных данных

UC1-1-2 Выбор модели классификации

Я, как пользователь, хочу выбирать модель классификации данных

Актор	Пользователь
Триггер	Пользователь открыл боковую
	панель
Результат	Просмотр раздела "модель
	классификации"
Основной поток	1. Пользователь находится на
	главной странице
	2. Пользователь открывает
	боковую панель
	3. Перед пользователем выбор
	модели

UC1-1-3 Проверки модели классификации на устойчивость

Я, как пользователь, хочу знать, устойчива ли модель, которую выбрал

Актор	Пользователь
Триггер	Пользователь получил некоторые
	данные
Результат	Просмотр раздела "устойчивость
	данной модели"
Основной поток	1. Пользователь находится на
	главной странице
	2. Пользователь получает
	некоторые данные после
	работы классификатора
	3. Перед пользователем
	устойчивость модели

классификации, которую он
выбрал

ОПИСАНИЕ АРХИТЕКТУРЫ СИСТЕМЫ

Данный раздел описывает необходимые сервисы, приложения и технологии для создания курсового проекта.

Haписание и запуск веб-приложения при помощи Python

Чтобы построить модель и опубликовать её где-нибудь, понадобятся библиотеки streamlit, pandas и scikit-learn. Взглянем на общую схему проекта. Он будет состоять из двух больших частей: Frontend и Backend.

Во Frontend-части приложения, а именно, на веб-странице, будет боковая панель, находящаяся слева, в которой можно будет вводить входные параметры модели. Эти данные будут передаваться Backend, где предварительно обученная модель будет производить классификацию, используя заданные характеристики. Результаты классификации отправляются

— Frontend.

В Backend-части приложения то, что ввёл пользователь, сохраняется в датафрейме, который будет использоваться в виде тестовых данных для модели. Потом будет построена модель для обработки данных. В ней будет применяться алгоритм из библиотеки scikit-learn. И наконец, модель будет применена для классификации данных, введённых пользователем. Кроме того, будут возвращаться и данные о прогностической вероятности. Это позволит нам определить степень достоверности результатов классификации.