Сьогодні 19.04.2024

Yροκ №59-60

Виконання завдань (підготовка до контрольної роботи).

Повідомлення мети уроку

Ви зможете:

- виконувати завдання різних рівнів складності з теми «Найважливіші органічні сполуки»;

- повторити алгоритми розв`язування задач;

- підготуватися до контрольної роботи.

Сьогодні

Актуалізація опорних знань

Що називають органічними речовинами?

Дайте визначення вуглеводнів.

Що називають гомологами?

Які гомологічні ряди вуглеводнів ви знаєте?

Назвіть відомі вам класи оксигеновмісних органічних сполук.

Встанови відповідність

Установіть відповідність між назвою та формулою вуглеводнів.

Назва		Формула		
1	метан	Α	C ₂ H ₂	
2	ете <u>н</u>	Б	C ₂ H ₄	
3	етан —	18	C ₂ H ₆	
4	етин	Γ	CH ₄	
		Д	C ₆ H ₆	

Встанови відповідність

Установіть відповідність між видом формули речовини та наведеним конкретним прикладом.

Назва виду формул			Приклад	
1	Молекулярна ү	а	CH ₃ -CH ₃	
2	Електронна	6	Н Н	
			H : C : C : H	
			й й	
3	Структурна	В	H H	
			н—с—с—н	
			 Н Н	
4	Напівструктурна	Г	CH ₃ COO ⁻ +H ⁺	
		Д	C ₂ H ₆	

- А. мають однаковий кількісний склад;
- Б. мають однаковий якісний склад;
- В. мають різний кількісний склад;
- Г. подібні за хімічною будовою;
- Д. виявляють схожі хімічні властивості.

Відповідь:

- Б. мають однаковий якісний склад;
- В. мають різний кількісний склад;
- Г. подібні за хімічною будовою;
- Д. виявляють схожі хімічні властивості.

Оберіть формули гомологів метану.

A. C₂H₄;

Б. С₆Н₁₄;

B. C₅H₁₀; Г. С2H₆.

Розташуйте назви насичених вуглеводнів за збільшенням кількості атомів Карбону в молекулі.

А. декан; Б. етан;

Б. етан; В. бутан;

В. бутан; Г. гептан;

Г. гептан. А. декан.

Складіть рівняння реакцій горіння зазначених речовин.

А. метан;

Б. етен;

В. етанол;

Г. гептан.

A.
$$CH_4+2O_2=CO_2 \uparrow +2H_2O$$

5.
$$C_2H_4+3O_2=2CO_2\uparrow+2H_2O$$

B.
$$C_2H_5OH+3O_2=2CO_2 \uparrow +3H_2O$$

B.
$$C_7H_{16}+110_2=7C0_2\uparrow+8H_20$$

Відповідь: найбільша сума коефіцієнтів – Г; найменша сума коефіцієнтів -А.

Гомолог метану масою 11 г займає об'єм 5,6 л (н. у.). Установіть формулу сполуки

Дано:

m(C_nH_{2n+2})=11 г V(C_nH_{2n+2})=5,6 л (C_nH_{2n+2})-?

Розв`язання:

1.Обчислимо кількість речовини гомологу метану за нормальних умов:

$$v = \frac{m}{M}$$
; v $(C_n H_{2n+2}) = \frac{5.6 \text{ л}}{22.4 \text{ л/моль}} = 0$, 25 моль

2. Визначимо молярну масу гомологу метану:

$$M = \frac{m}{\nu}$$
; M ($C_n H_{2n+2}$)= $\frac{11\Gamma}{0.25 \text{ моль}}$ = 44 г/моль

Отже, 12n+2n+2=44

14n=44-2

14n=42

n=42:14=3

Таким чином, молекулярна формула гомолога метану – C_3H_8 .

Відповідь: C_3H_8 .

Обчисліть, де більше молекул— в етані масою 3 г чи метані об'ємом 2,24 л (н. у.).

Дано:

N (C₂H₆)-? N (CH₄)-?

Розв`язання:

1. Обчислимо кількість речовини етану:

$$v=\frac{m}{M}$$
;

 $M(C_2H_6)=30$ г/моль;

$$v(C_2H_6)=\frac{3\Gamma}{30\Gamma/{
m MOJB}}=0,1$$
моль

2. Визначимо число молекул в етані:

$$N=v\cdot N_A$$
;

N (
$$C_2H_6$$
)=0,1 моль·6,02·10²³г/моль=0,6·10²³

3. Обчислимо кількість речовини метану за нормальних умов:

$$v = \frac{V}{Vm}$$
; v (CH_4)= $\frac{2,24 \text{ л}}{22,4 \text{ л/моль}}$ =0,1моль

4. Визначимо число молекул в метані:

$$N(CH_4)=0,1$$
 моль 6,02 · 10^{23} г/моль = $0,6 \cdot 10^{23}$

Відповідь: число молекул в етані і метані однакове.

Розв`язання:

1. Відносна густина алкану за повітрям дорівнює:

 $D_{\text{пов}}\left(C_{n}H_{2n+2}\right)$ =М ($C_{n}H_{2n+2}$) :М(повітря).

Відповідно, молярна маса алкану дорівнює: М

 $(C_n H_{2n+2}) = D_{\text{пов}} (C_n H_{2n+2}) \cdot M$ (повітря 14n=16-2

М (C_nH_{2n+2})=0,55·29=16 г/моль або: 14n=14

 $M(C_nH_{2n+2})=(12n+2n+2=16)$ n=14:14=1

Таким чином, молекулярна формула алкану - ${
m CH_4}$. Це — метан.

Обчислимо масову частку Карбону в метані: $W = \frac{n \cdot Ar}{V}$

 $Mr(CH_4)=16$

 $D_{\text{IIOB}}(C_nH_{2n+2}) = 0.55$

W(C)-?

W (C)= $\frac{1.12}{16}$ =0,75, a6o 75%.

Відповідь: метан, W (C)=75%.

Установіть відповідність між назвою органічної сполуки та групою атомів, наявною в її молекулі.

Органічна сполука	Характеристична група
Етанол	-c"OH
Етанова кислота	-NH ₂ -c ¹ O _{OH}
Аміноетанова кислота	-OH
	-c ^{//} OH

Установіть відповідність між назвою кислоти та її молекулярною формулою.

Назва к	ислоти	Формула кислоти		
1	карбонатна	4	CH₃COOH	
2	олеїнова	Б	C ₁₇ H ₃₅ COOH	
3	етанова	В	C ₁₇ H ₃₃ COOH	
4	стеаринова	1 Γ	H ₂ CO ₃	
		Д	C ₁₆ H ₃₁ COOH	

Гідрування етену відбувається за схемою $C_2H_4 + H_2 \rightarrow C_2H_6$. Визначте об'ємний склад суміші етену з воднем, якщо об'єм суміші після реакції зменшився на 20 л і залишилося 4 л водню. Об'єми газів виміряно за однакових умов.

Суміш газів зменшилася на 20 л за рахунок утворення 20 л етану. На об'ємні співвідношення вказують коефіцієнти рівняння. За рівнянням реакції прореагував етен (1об'єм) і водень(1 об'єм) з утворенням етану (1 об'єм). Маємо, що у реакцію вступив етен об'ємом 20 л і водень об'ємом 20 л, та залишилося 4 л водню. Отже, суміш складалася з етену об'ємом 20 л і водню об'ємом 24 л. Відповідь: 20 л етену і 24 л водню.

Який об'єм хлору (н. у.) приєднався до етину, якщо маса утвореного продукту дорівнює 33,6 г?

Дано: Ро m(C₂H₂Cl₄)=33,6 г За V(Cl₂)-? С₂

Розв'язання:

Записуємо рівняння реакції: $C_2H_2 + 2Cl_2 = C_2H_2Cl_4$

 $M_r(C_2H_2Cl_4)=2\cdot Ar(C)+2\cdot Ar(H)+4\cdot Ar(Cl)=2\cdot 12+2\cdot 1+4\cdot$

35,5=168,

 $M(C_2H_2Cl_4)=168$ г/моль.

 $v(C_2H_2CI_4)=m(C_2H_2CI_4)/M(C_2H_2CI_4)=33,6 \text{ r}: 168$

г/моль = 0,2 моль.

 $v(Cl_2)=2v\cdot v(C_2H_2Cl_4)=2\cdot 0,2$ моль=0,4 моль.

 $V(Cl_2)=v(Cl_2)\cdot Vm=0,4$ моль·22,4 л/моль=8,96 л.

Відповідь: V(Cl₂)=8,96 л.

А. магній;

Б. магній оксид;

В. калій гідроксид;

Г. Метан.

Відповідь: Г. Метан.

Обчисліть масові частки та відношення мас елементів у аміноетановій кислоті.

$$M(NH2CH2COOH)=75г/моль$$

$$\omega(H) = \frac{1.5}{75г/моль} = 0,066=6,7\%$$

$$\omega(N) = \frac{1.14}{75 г/моль} = 0,186=18,7\%$$

$$\omega(C) = \frac{2.12}{75 г/моль} = 0,32=32\%$$

$$\omega(O) = \frac{2.16}{75 г/моль} = 0,426=42,6\%$$

Об'єм води, якою розбавляють 200 г розчину з масовою часткою сахарози 50 % та одержують новий розчин з масовою часткою цієї сполуки 20 %, дорівнює

- А) 50 мл.
- Б) 100 мл.
- В) 300 мл.
- Г) 200 мл.

$$\begin{split} &m(C_{12}H_{22}O_{11}) = m_1(p-hy) \cdot \omega_1(C_{12}H_{22}O_{11}) = 200 \cdot 0,5 = 100 \ r \\ &m_2(p-hy) = \frac{m(C_{12}H_{22}O_{11})}{\omega_2(C_{12}H_{22}O_{11})} = \frac{100 \ r}{0,2} = 500 \ r \\ &m(H_2O) = 500 - 200 = 300 \ r \\ &V(H_2O) = 300 \ \text{мл} \end{split}$$

Виконати завдання 16 с.139

Робота в парах

Де більше атомів Карбону: у порції етанової кислоти масою 90 г чи в порції глюкози масою 90 г?

Дано:

M(CH₃COOH)=90 r,

Знайти:

де більше атомів

Карбону?

Розв'язання:

 $M_r(CH_3COOH) = 2 \cdot A_r(C) + 4 \cdot A_r(H) + 2 \cdot A_r(O) = 2 \cdot 12 + 4 \cdot 1 + 2 \cdot 16 = 60$ тому $M(CH_3COOH)=60$ г/моль.

 $v(CH_3COOH) = \frac{m(CH_3COOH)}{M(CH_3COOH)} = \frac{90}{60} = 1.5 моль$

 $M_r(C_6H_{12}O_6)=6\cdot A_r(C)+12\cdot A_r(H)+6\cdot A_r(O)=6\cdot 12+12\cdot 1+6\cdot 16=180$, тому $M(C_6H_{12}O_6)=180$ г/моль.

 $v(C_6H_{12}O_6) = \frac{v(C_6H_{12}O_6)}{M(C_6H_{12}O_6)} = \frac{90}{180} = 0.5 \text{ моль, N(CH}_3COOH) = v(CH_3COOH) \cdot N_a = 1,5 \text{ моль 6,02}$

 $\cdot 10^{23}$ моль $^{-1} = 9.03 \cdot 10^{23}$, N(C₆H₁₂O₆)=v(C₆H₁₂O₆)·N_a=0.5моль $\cdot 6.02 \cdot 10^{23}$ моль $^{-1}$

 1 =3,01·10²³, N₁(C)=2·N(CH₃COOH)=2·9.03·10²³=18.06·10²³

 $N_2(C)=6\cdot N(CH_3COOH)=2\cdot 3.01\cdot 10^{23}=18.06\cdot 10^{23}$

Відповідь: $N_1(C) = N_2(C)$.

Робота в парах

Однаковою чи різною буде масова частка розчиненої речовини в таких розчинах:

- а) виготовленому з 0,25 моль глюкози і 255 мл води;
- б) виготовленому з 0,5 моль метанолу і 84 мл води?

а)Дано:

 $v(C_6H_{12}O_6)$ =0,25 моль $V(H_2O)$ =225 мл

 $W(C_6H_{12}O_6)-?$

W(CH₃OH)-?

Розв'язання:

Mr(C₆H₁₂O₆)=6·Ar(C)+12·Ar(H)+6·Ar(O)=6·12+12·1+6·16=180, тому M(C₆H₁₂O₆)=180 г/моль,

 $m(C_6H_{12}O_6)=v(C_6H_{12}O_6)\cdot M(C_6H_{12}O_6)=0,25$ моль · 180 г/моль=45 г $m(poзчину)=m(H_2O)+m(C_6H_{12}O_6)=255$ г + 45 г = 300 г $m(C_6H_{12}O_6)=255$ г + 45 г = 300 г $m(C_6H_{12}O_6)=255$

w(C₆H₁₂O₆)=m(C₆H₁₂O₆)/m(розчину)=45 г : 300 г=0,15, або 15%.

б)v(CH₃OH)=0,5 моль V(H₂O)=84 мл

Розв'язання:

 $Mr(CH_3OH)=Ar(C)+4\cdot Ar(H)+Ar(O)=12+4\cdot 1+16=32$, тому $M(CH_3OH)=32$ г/моль $m(CH_3OH)=v(CH_3OH)\cdot M(CH_3OH)=0,5$ моль \cdot 32 г/моль=16 г $m2(poзчину)=m_2(H_2O)+m(CH_3OH)=84$ г + 16 г = 100 г $w(CH_3OH)=m(CH_3OH)/m(poзчину)=16$ г : 100 г=0,16, або 16%

1. Підготуватися до контрольної роботи.