Name: Luke Trujillo Due Date: Monday, 2/17/20

143 Hw #2

Problem 1. Show $\mathbb{R}P^n$ is a differentiable manifold by definition.

Solution: Recall that $\mathbb{R}P^n$ is the set of all lines which pass through the origin of \mathbb{R}^{n+1} . Let $(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1}$. Then we can also see that $\mathbb{R}P^n$ can be identified as the quotient sapec $\mathbb{R}^{n+1} - \{0\}/\sim$ with the equivalence relation $(x_1, \ldots, x_{n+1}) \cong (\lambda x_1, \ldots, \lambda x_{n+1})$ where $\lambda \in \mathbb{R} - \{0\}$. In this interpretation, the points of $\mathbb{R}P^n$ will be denoted by the equivalence classes, denoted as $[x_1, x_2, \ldots, x_{n+1}]$. Notice that

$$[x_1,\ldots,x_{n+1}] = \left[\underbrace{x_1}^{i-\text{th coordinate}},\ldots,\underbrace{x_{n+1}}_{x_i}\right].$$

for any nonzero x_i in the representation x_1, \ldots, x_{n+1} of the equivalence class. Define subsets $V_i \subset \mathbb{R}P^n$ by

$$V_i = \{ [x_1, x_2, \dots, x_{n+1}] \mid x_i \neq 0 \} \quad i = 1, 2, \dots, n.$$

The claim to prove now is that $\mathbb{R}P^n$ can be covered by the sets V_1, \ldots, V_n . This is obtained by the maps $\varphi_i : \mathbb{R}^n \to M$

$$\varphi_i(y_1,\ldots,y_n)=[y_1,\ldots,y_{i-1},1,y_i,\ldots,y_n]$$

where $y_j = \frac{x_j}{x_i}$. First, observe that the maps are injective; for if

$$[y_1,\ldots,y_{i-1},1,y_{i+1},\ldots,y_n]=[y_1',\ldots,y_{i-1}',1,y_{i+1}',\ldots,y_n']$$

then there exists a scalar λ such that

$$(y_1, \ldots, 1, \ldots, y_n) = (\lambda y'_1, \ldots, \lambda, \ldots, \lambda y'_n) \implies \lambda = 1.$$

Hence the points must be equal. Next, observe that

$$\bigcup_{i=1}^{n} \varphi_{i}\left(\mathbb{R}^{n}\right) = \left\{\left[y_{1}, \ldots, 1, \ldots, y_{n}\right] \mid (y_{1}, \ldots, y_{n}) \in \mathbb{R}^{n}, i = 1, 2, \ldots, n\right\} = \mathbb{R}P^{n}.$$

Next, consider $\varphi_i^{-1}(V_i \cap V_j)$, and observe that

$$\varphi_i^{-1}(V_i \cap V_j) = \{(y_1, \dots, y_n) \mid y_j \neq 0\}.$$

Since this is the complement of $\{(y_1, \ldots, y_n) \mid y_j = 0\}$, a closed set, we see that it must be open. Now suppose i > j; then observe that

$$\begin{split} \varphi_{j}^{-1} \circ \varphi_{i}(y_{1}, \dots, y_{n}) &= \varphi_{j}^{-1}[y_{1}, \dots, y_{i-1}, 1, y_{i}, \dots, y_{n}] \\ &= \varphi_{j}^{-1} \left[\underbrace{y_{1}}_{y_{j}}, \dots, \underbrace{y_{j-1}, 1}_{y_{j-1}}, \underbrace{1}_{y_{j+1}}, \dots, \underbrace{y_{i-1}}_{y_{j}}, \frac{1}{y_{j}}, \underbrace{y_{i}}_{y_{j}}, \dots, \underbrace{y_{n}}_{y_{j}} \right] \\ &= \left(\underbrace{y_{1}}_{y_{j}}, \dots, \underbrace{y_{j-1}}_{y_{j}}, \underbrace{y_{j+1}}_{y_{j}}, \dots, \underbrace{y_{i-1}}_{y_{j}}, \frac{1}{y_{j}}, \underbrace{y_{i}}_{y_{j}}, \dots, \underbrace{y_{n}}_{y_{j}} \right). \end{split}$$

which is differentiable as $y_j \neq 0$. The case is the same if j > i; it's simply a matter of notational difference. In this case,

$$\varphi_{j}^{-1} \circ \varphi_{i}(y_{1}, \dots, y_{n}) = \varphi_{j}^{-1}[y_{1}, \dots, y_{i-1}, 1, y_{i}, \dots, y_{n}]$$

$$= \varphi_{j}^{-1} \left[\underbrace{y_{1}}{y_{j}}, \dots, \underbrace{y_{i-1}}{y_{j}}, \frac{1}{y_{j}}, \underbrace{y_{i}}{y_{j}}, \dots, \underbrace{y_{j-1}}_{y_{j-1}}, \underbrace{1}_{y_{j+1}}, \dots, \underbrace{y_{n}}_{y_{j}} \right]$$

$$= \left(\underbrace{y_{1}}{y_{j}}, \dots, \underbrace{y_{i-1}}_{y_{j}}, \frac{1}{y_{j}}, \underbrace{y_{j}}_{y_{j}}, \dots, \underbrace{y_{j-1}}_{y_{j}}, \underbrace{y_{j+1}}_{y_{j}}, \dots, \underbrace{y_{n}}_{y_{j}} \right).$$

which is also differentiable since $y_j \neq 0$. In either case, we see that $\varphi_j^{-1} \circ \varphi_i$ is differentiable. In total, we see that $\mathbb{R}P^n$ is a differentiable manifold, as desired.

Problem 2. Show why the set of tangent vectors which tangent to all the curves starting from a point on a manifold M form a linear space (called a tangent space at p of M, denoted T_pM).

Solution: Let $\alpha: (-\varepsilon, \varepsilon) \to M$ be a curve on M where $\alpha(0) = p$. Recall that if \mathcal{D} denotes the set of differentiable functions f on M defined at p, then the tangent vectors at p are given by the function $\alpha'(0): \mathcal{D} \to \mathbb{R}$ where

$$\alpha'(0)f = \frac{d(f \circ \alpha)}{dt}\Big|_{t=0}.$$

Let $x: U \subset \mathbb{R}^n \to M$ be a parameterization where $p \in x(U)$. Then $x^{-1} \circ \alpha : (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ is differentiable. That is, $x^{-1} \circ \alpha = (x_1(t), \dots, x_n(t))$ for some differentiable $x_i(t)$. So we see that

$$\frac{d(f \circ \alpha)}{dt}\Big|_{t=0} = \frac{d}{dt} f \circ x(x_1(t), \dots, x_n(t))\Big|_{t=0}$$
$$= \frac{d}{dt} f(x_1(t), \dots, x_n(t))\Big|_{t=0}$$
$$= \sum_{i=1}^n x_i'(0) \frac{\partial f}{\partial x_i}\Big|_{t=0}$$

Thus we see that $\alpha'(0)(f) = \sum_{i=1}^n x_i'(0) \frac{\partial f}{\partial x_i}\Big|_{t=0}$; hence we may express the operator $\alpha'(0)$: $\mathcal{D} \to \mathbb{R}$ in the basis $\left(\frac{\partial}{\partial x_i}\right)_0$, where the zero denotes the evaluation at zero. This basis is orthogonal, since each $\left(\frac{\partial}{\partial x_i}\right)_0$ demonstrates the tangent vector of the map $x(0,\ldots,x_i,\ldots,0)$, where the x_i appears in the i-th coordinate. Moreover, this is the dual basis of $\{dx_1,\ldots,dx_n\}$. Therefore we see that T_pM can be endowed with an n-orthogonal vector, which shows that it is an n-dimensional vector space, as desired.

Problem 3. Show we can put a differentiable structure on a tangent bundle of a differentiable manifold.

Solution: Let M be a differentiable n-manifold. Denote the tangent bundle as the set

$$TM = \{(p, v) \mid p \in M, v \in T_pM\}.$$

We'll show that TM itself, known as the **tangent bundle**, is itself a manifold.

Since M is differentiable, there exists a (maximal) differentiable structure $\{(U_{\alpha}), \varphi_{\alpha}\}$ with $\alpha \in \lambda$, an indexing set, with $\varphi_{\alpha} : U_{\alpha} \to M$ which satisfy the three properities required of a differentiable manifold.

Denote the coordinates of U_{α} by $(x_1^{\alpha}, \dots, x_n^{\alpha})$, and suppose we denote $\left\{\frac{\partial}{\partial x_1^{\alpha}}, \dots, \frac{\partial}{\partial x_n^{\alpha}}\right\}$ as the basis for the tangent space induced by $\varphi_{\alpha}(U_{\alpha})$. Now define the functions $\psi_{\alpha}: U_{\alpha} \times \mathbb{R}^n \to TM$ as

$$\psi_{\alpha}((x_1^{\alpha},\ldots,x_n^{\alpha}),(u_1,\ldots,u_n)) = \left(\varphi_{\alpha}(x_1^{\alpha},\ldots,x_n^{\alpha}),\sum_{i=1}^n u_i \frac{\partial}{\partial x_i^{\alpha}}\right)$$

Observe that this map makes sense since $\varphi_{\alpha}(x_1^{\alpha}, \dots, x_n^{\alpha})$ is of course a point p on M and $\sum_{i=1}^n u_i \frac{\partial}{\partial x_i^{\alpha}}$ is a vector in T_pM . Hence the above tuple is in TM.

We must now show that our set of maps, $(U_{\alpha} \times \mathbb{R}^n, \psi_{\alpha})$, establish that TM is a differentiable manifold. First observe that these maps are injective. Injectivity in the first coordinate is inherited from the injectivity of each φ_{α} . It is easy to see that injectivity is established in the second coordinates since

$$\sum_{i=1}^{n} u_i \frac{\partial}{\partial x_i^{\alpha}} = \sum_{i=1}^{n} u_i' \frac{\partial}{\partial x_i^{\alpha}} \implies u_i = u_i', i = 1, 2, \dots, n.$$

Hence each ψ_{α} must be injective.

Now observe that

$$\bigcup_{\alpha \in \lambda} \psi_{\alpha} (U_{\alpha} \times \mathbb{R}^{n}) = \bigcup_{\alpha \in \lambda} \{ (p, v) \mid p \in \varphi_{\alpha}(U_{\alpha}), v \in T_{p}M \} = TM.$$

This is because firstly $\bigcup_{\alpha \in \lambda} \varphi_{\alpha}(U_{\alpha}) = M$ and secondly since $(u_1, \ldots, u_n) \in \mathbb{R}^n$ is allowed to vary, we see that

$$\psi_{\alpha}(U_{\alpha} \times \mathbb{R}^{n}) = \bigcup_{(x_{1}^{\alpha}, \dots, x_{n}^{\alpha}) \in U_{\alpha}} \psi_{\alpha}(\{(x_{1}^{\alpha}, \dots, x_{n}^{\alpha})\} \times \mathbb{R}^{n})$$

$$= \bigcup_{(x_{1}^{\alpha}, \dots, x_{n}^{\alpha}) \in U_{\alpha}} \left\{ \left(\varphi_{\alpha}(x_{1}^{\alpha}, \dots, x_{n}^{\alpha}), \sum_{i=1}^{n} u_{i} \frac{\partial}{\partial x_{i}^{\alpha}} \right) \mid (u_{1}, \dots, u_{n}) \in \mathbb{R}^{n} \right\}$$

$$= \left\{ (\varphi_{\alpha}(x_{1}^{\alpha}, \dots, x_{n}^{\alpha}), v) \mid (x_{1}^{\alpha}, \dots, x_{n}^{\alpha}) \in U_{\alpha}, v \in \operatorname{span} \left\{ \frac{\partial}{\partial x_{1}^{\alpha}}, \dots, \frac{\partial}{\partial x_{n}^{\alpha}} \right\} \right\}$$

$$= \left\{ (p, v) \mid p \in \varphi_{\alpha}(U_{\alpha}), v \in T_{p}M \right\}$$

since span $\left\{\frac{\partial}{\partial x_1^{\alpha}}, \dots, \frac{\partial}{\partial x_n^{\alpha}}\right\} = T_{\varphi_{\alpha}(x_1^{\alpha}, \dots, x_n^{\alpha})}M$. Hence we are able to appropriately cover TM with our set of maps.

Now suppose $\psi_{\alpha}(U_{\alpha} \times \mathbb{R}^n) \cap \psi_{\beta}(U_{\beta} \times \mathbb{R}^n) = W$ is nonempty. Then $U_{\alpha} \cap U_{\beta}$ is nonempty, and therefore is an open set, so that $\psi_{\alpha}^{-1}(W) = U_{\alpha} \cap U_{\beta} \times \mathbb{R}^n$ is an open set.

Finally, consider $(p, v) \in W$. Then we have that

$$(p,v) = (\varphi_{\alpha}(x_1^{\alpha}, \dots, x_n^{\alpha}), d\varphi_{\alpha}(v_{\alpha}))$$
$$= (\varphi_{\beta}(x_1^{\beta}, \dots, x_n^{\beta}), d\varphi_{\beta}(v_{\beta}))$$

for some $(x_1^{\alpha}, \dots, x_n^{\alpha}) \in U_{\alpha}, (x_1^{\beta}, \dots, x_n^{\beta}) \in U_{\beta}$, and $v_{\alpha}, v_{\beta} \in \mathbb{R}^n$. Now observe that

$$\psi_{\beta}^{-1} \circ \psi_{\alpha}((x_1^{\alpha}, \dots, x_n^{\alpha}), v_{\alpha}) = \psi_{\beta}^{-1}(\varphi_{\alpha}(x_1^{\alpha}, \dots, x_n^{\alpha}), d\varphi_{\alpha}(v_{\alpha}))$$
$$= (\varphi_{\beta}^{-1} \circ \varphi_{\alpha}(x_1^{\alpha}, \dots, x_n^{\alpha}), d(\varphi_{\beta}^{-1} \circ \varphi_{\alpha})(v_{\alpha})).$$

But we already know that $\varphi_{\beta}^{-1} \circ \varphi_{\alpha}$ is differentiable. Hence, $\psi_{\beta}^{-1} \circ \psi_{\alpha}$ must also be differentiable. Thus we see that the tangent bundle of a differentiable manifold is also a differentiable manifold, as $\{(U_{\alpha}, \psi_{\alpha})\}_{\alpha \in \lambda}$ provides a differentiable stucture on TM.

Problem 4. If M is a manifold and G is a group that acts discontinuously on M, Show M/G is a manifold (see page 23).

Solution: For this to work, we actually need M to be a differentiable manifold. This will show up later.

To show this, let p be a point of M and consider the neighborhood U of p such that $U \cap \varphi_g(U) = \emptyset$ for all nontrivial $g \in G$; a neighborhood which is guaranteed to exist since we suppose G acts discontinuously on M.

Since M is a differentiable manifold, pick a parameterization $x:V\to M$ such that $x(V)\subset U$. Then we see that $\pi\circ x:V\to M/G$ is an injective mapping. For if $\pi(p_1)=\pi(p_2)$ for some distinct $p_1,p_2\in x(V)$, then $p_1=g'p_2$ for some $g'\in G$. In this case, G then no longer acts discontinuously (as then $U\cap\varphi_{g'}(U)\neq\varnothing$). Hence this mapping $y=\pi\circ x:V\to M/G$ is injective.

As $y: V \to M/G$ covers M/G, we see must show that for any for any two analogous mappings $y_1 = \pi \circ x_1: V_1 \to M/G$ and $y_2 = \pi \circ x_2: V_2 \to M/G$, we have that $y_1(V_1) \cap y_2(V_2) \neq 0$ implies that $y_1^{-1} \circ y_2$ is differentiable.

Define

$$\pi_1 = \pi \Big|_{x_1(V_1)} : x_1(V_1) \to M/G$$

 $\pi_2 = \pi \Big|_{x_2(V_2)} : x_2(V_2) \to M/G.$

Suppose $y_1(V_1) \cap y_2(V_2) \neq \emptyset$. Then for $q \in y_1(V_1) \cap y_2(V_2)$, let $r = (\pi_2 \circ x_2)^{-1}(p)$. Let W be a neighborhood of r such that $(\pi_2 \circ x_2)(W) \subset y_1(V_1) \cap y_2(V_2)$. Then

$$y_1^{-1} \circ y_2 \Big|_W = x_1^{-1} \circ \pi_1^{-1} \circ \pi_2 \circ x_2.$$

Note that x_1^{-1} and x_2 are necessarily differentiable; hence for $y_1^{-1} \circ y_2$ to be differentiable, we need $\pi_1^{-1} \circ \pi_2$ to be differentiable on the restriction of $x_2(W)$. To show this, suppose $p_2 = \pi_1^{-1} \circ \pi_2(p_1)$. Then $\pi_1(p_2) = \pi_2(p_1)$, so that p_1 and p_2 are in the same equivalence class in M/G. Therefore, $p_1 = gp_2$ for some element $g \in G$. However, we know that the only function which achieves this is the *unique* diffeomorphism $\varphi_g : M \to M$. Hence we see that

$$\pi_1^{-1} \circ \pi_2 = \varphi_g \Big|_{x_2(W)} = \varphi_g \Big|_{x_2(W)}$$

so that $\pi_1^{-1} \circ \pi_2$ is differentiable on the restriction of $x_2(W)$. Hence we see that

$$y_1^{-1} \circ y_2 \Big|_W = x_1^{-1} \circ \pi_1^{-1} \circ \pi_2 \circ x_2$$

is differentiable, and that the mapping (V, y) provides a differentiable structure on M/G, as desired.