GATE-EC2023

Jay Vikrant EE22BTECH11025

Q65ST.2023:Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables with mean 0 and variance 1, all of them defined on the same probability space. For n=1,2,3,..., let

$$Y_n = \frac{1}{n}(X_1X_2 + X_3X_4 + \dots + X_{2n-1}X_{2n}) \tag{1}$$

Then which of the following statements is/are true?

- (A) $\{\sqrt{n}Y_n\}_{n\geq 1}$ converges in distribution to a standard normal random variable.
- (B) $\{Y_n\}_{n\geq 1}$ converges in 2nd mean to 0.
- (C) $\{Y_n + \frac{1}{n}\}_{n \ge 1}$ converges in probability to 0.
- (D) $\{X_n\}_{n\geq 1}$ converges almost surely to 0.

Solution: As X_i is a sequence of independent and identically distributed random variables

$$E(X_i X_{i+1}) = E(X_i) E(X_{i+1}) = 0$$
(2)

$$\implies E(Y_n) = 0$$
 (3)

$$Var(X_iX_{i+1}) = E(X_i^2X_{i+1}^2) - [E(X_iX_{i+1})]^2 = 1$$
 (4)

$$\implies Var(Y_n) = 1$$
 (5)

(A) For $\{\sqrt{n}Y_n\}_{n\geq 1}$ to converges in distribution to a standard normal random variable,

$$\lim_{n\to\infty} F_{\sqrt{n}Y_n}(x) = 0 \tag{6}$$

(13)

$$\lim_{n\to\infty} F_{\sqrt{n}Y_n}(x) = \lim_{n\to\infty} \frac{1}{\sqrt{n}} F_{(X_1X_2)}(x) + (7)$$

$$\dots + \frac{1}{\sqrt{n}} F_{(X_2nX_{2n-1})}(x) \qquad (8)$$

$$= \lim_{n\to\infty} \frac{1}{\sqrt{n}} F_{X_1}(x) F_{X_2}(x) + (9)$$

$$\dots + \frac{1}{\sqrt{n}} F_{X_{2n}}(x) F_{X_{2n-1}}(x) \qquad (10)$$

$$\therefore F_{X_i} = F_{X_{i+1}}, X_i \sim \mathcal{N}(0, 1)$$

$$(11)$$

$$= \lim_{n\to\infty} \sqrt{n} \left(\frac{1}{\sqrt{2\pi}} e^{x^2} \right) \qquad (12)$$

(B) For 2nd mean to be converging to 0,

$$\lim_{n\to\infty} E(|Y_n - 0|^2) = \lim_{n\to\infty} E(Y_n^2)$$
 (14)
= $\lim_{n\to\infty} \frac{1}{n} + [E(Y_n)^2]$ (15)

$$: [E(Y_n)]^2 = 0 (16)$$

$$= \lim_{n \to \infty} \frac{1}{n} = 0 \tag{17}$$

Thus, $\{Y_n\}_{n\geq 1}$ converges in 2nd mean to 0 Hence, option (B) is correct.

(C) For $\{Y_n + \frac{1}{n}\}_{n \ge 1}$ to be converging $Y_n + \frac{1}{n} \xrightarrow{p} 0$

$$\lim_{n\to\infty} E(Y_n + \frac{1}{n}) = \lim_{n\to\infty} E(Y_n) + \frac{1}{n}$$
 (18)

$$:: E(Y_n) = 0 \tag{19}$$

$$= \lim_{n \to \infty} \frac{1}{n} = 0 \tag{20}$$

Hence, option (C) is correct.

(D) let $\{X_n\}_{n\geq 1}$ almost surely converges to 0. Then, $\{X_n\}_{n\geq 1}$ in probability must converge to 0. $\lim_{n\to\infty} \Pr(X_n)$ may or may not be zero. so, our initial assumption is incorrect Hence, option (D) is incorrect.

So, option (A) is correct

= 0