Bioinformatics II Winter Term 2016/17

Chapter 7: Biological Imaging

Jun.-Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de

E-Mail: schultz@cs.uni-bonn.de

Office: Friedrich-Ebert-Allee 144, 53113 Bonn

December 20, 2016

Job Opportunity

We are looking for an experienced web
 designer who is willing to set up a relatively
 simple page for the VMV 2017 symposium

Forming Groups for Second Project

- Second project will be due on January 31
- Again, you can work in groups of two
 - Groups of three are acceptable if it helps avoid forcing people to work alone
 - Please tell Shekoufeh by January 9 if you have not found a group, but would like to be part of one
 - We will only allow you to form groups of three if nobody is left alone; we will announce this via the mailing list and in the lecture

7.1 Light Microscopy

Optical Microscopy

- Developed in 17th century
- Based on visible light
- 8 V 9 B 6 G 2 Y 9 O 0 R
- Objects illuminated from above (reflected) or below (transmitted)
- Often combined with CCD camera
- Magnification through lenses

Imaging Without Optics?

- No sharp image without optics
- Simplest remedy:
 Pinhole camera

Imaging with Pinhole Camera

Photograph made with small pinhole

Photograph made with larger pinhole

Importance of Lenses

- Convex lenses allow you to create a bright and sharp image
- Rays parallel to the optical axis get focused to a point on the axis, with focal length f

Lens Optics

• Thin Lens Equation: Point at distance s from the lens and h from the axis (upward) is transferred to image point at distance s' from lens and h' from axis (downward):

$$\frac{1}{f} = \frac{1}{s} + \frac{1}{s'}$$

$$\frac{h}{s} = \frac{h'}{s'}$$

mages from Martin Welk

Imaging with Lenses

- Objects within the focus plane are sharp, all others get increasingly blurred
- Change focal plane by varying distance between lens and sensor
- Most optical systems work with multiple lenses, partly to reduce aberrations

Fluorescence Microscopy

- Fluorescence: Property of some substances to absorb light at a certain wavelength, and emit light at a longer wavelength
 - Fluorescence microscopy uses only those wavelengths
 - Large selection of often very selective fluorescent stains in biology
 - Can use multiple stains with different wavelengths

Confocal Microscopy

- 3D fluorescence microscopy
 - Scan with a point light source (e.g., laser)
 - Block light from outside focal plane

Light Sheet Fluorescence Microscopy

- Fluorescence microscopy with illumination from the side
- Faster than confocal, resolution often worse
- Reduce stripe artifacts by pivoting

LSFM with 3D Feedback Tracking

- Astigmatic lens leads to anisotropic out-of-focus blur, can detect axial position!
 - Real-time feedback allows for tracking

Diffraction Limit in the Pinhole Camera

Observation:

Decreasing the pinhole size beyond an optimal value again introduces blur

Diffraction

- Light has wave characteristics
 - Huygens Principle: Every point on a wavefront can be considered as a source of spherical wavelets
- Imposes resolution limit for light microscopy (≈200nm, magnification below 2000x)
 - Abbe's formula (wavelength λ , refractive index n, aperture angle α):

$$d = \frac{\lambda}{2n\sin\alpha}$$

7.2 Electron Microscopy

Electron Microscopy

- Developed in 1930s
- Uses beams of focused, highly accelerated electrons instead of light
 - Have wave characteristics with wavelengths on the order of picometers (10⁻¹² m)
 - According to Abbe's formula, this greatly increases the achievable resolution
- Transmission Electron Microscopy (TEM)
 - Similar principle as optic microscope, with electromagnetic coils replacing lenses
 - Requires ultra-thin samples (down to 50nm)
 - Samples have to tolerate vacuum
 - Dehydration, plastic substrates, rapid freezing
 - Imaging is often destructive

Scanning Electron Microscopy (SEM)

- First commercialized in 1960s
- Focused electron beam scans the object
 - Emitted electrons are recorded and information across the scan is combined into an image
 - Mostly: Secondary electrons, emitted by atoms that were excited by the electron beam
 - Resolution worse than with TEM, around 1nm
 - No ultra-thin sectioning, but chemical fixation of biological tissue and coating with electrically conductive material

Red / White Blood Cells

Tongue of a butterfly

Imaging the Connectome at Cellular Level

Cellular-Level Connectomics

- Ultra-Thin Serial Section Electron Microscopy
- 1mm³ of brain tissue amounts to 20,000 slices
 à 40 gigapixel, total of 800 TB of image data

Image Source: Pfister et al., Visualization in Connectomics, arXiv 2012

7.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI)

 Based on the magnetic resonance of atomic nuclei (mostly hydrogen)

- Requires a strong static magnetic field, and high-frequency electromagnetic pulses
- Nondestructive, safe on volunteers, flexible contrasts,
 3D imaging
- Typical image resolution:
 Several mm³

Examples: Multi-Contrast (T1/T2-weighting)

Nuclear Magnetic Moment

- Human body consists of ≈70% H₂0
- Hydrogen atoms possess a nuclear magnetic moment μ

- When exposed to a static external magnetic field \mathbf{B}_0 , the z-components of the nuclear magnetic moments align with \mathbf{B}_0 .
- Two possible orientations of the magnetic moments: parallel and anti-parallel

Nuclear Magnetic Resonance

 At equilibrium, there is a tiny excess of spins in the lower energy state

• The ensemble average of all nuclear magnetic moments is a measurable macroscopic magnetization $M_0 \sim B_0$

- Nuclear Magnetic Resonance:
 - Electromagnetic wave perpendicular to ${\pmb B}_{\pmb 0}$ at ω_0 lifts spins into the higher energy state
 - Magnetization starts to precess with $\omega_0 \sim B_0$

Relaxation

- Following an excitation, the magnetization returns to its equilibrium state
- Longitudinal magnetization regains its equilibrium value M₀
- Transverse magnetisation decays to zero
- Both happen exponentially, transverse decay is faster

MR Signal Reception

 Faraday's law: "A changing magnetic flux induces a voltage in a conductive loop."

(cf. bicycle dynamo)

 Maximize the area of the loop by orienting it perpendicular to the transverse plane

Spatial Encoding

The basic idea of MRI:

Make the precessional frequency a function of space!

- The "spectrum" then reflects spatial distribution.
- Linear field gradients of the B-field in z-direction,
 e.g. G_x = dB₇/dx

Frequency Encoding

The Fourier
 Transformation
 allows us to
 transform that
 frequency
 information back to
 spatial location

Spatial Frequency

Images in Frequency Space

Image Reconstruction

Application of inverse 2D Fourier Transform:

Slide from Jody Culham

Structural vs. Functional MRI

Structural MRI studies brain anatomy

Functional MRI studies brain function

Images from Jody Cullham

fMRI: The Raw Data

• In **structural MRI**, we take one high-resolution image (e.g., 1x1x1 mm³)

 In functional MRI, we repeatedly (e.g., every 2 sec) take low-resolution images (e.g., 3x3x5 mm³)

fMRI: Activations

- In fMRI, an activation is measured by taking the difference between the signal for different tasks
- Example stimulus: Checkerboard OFF (60 sec) ON (60 sec) OFF ...
- Example MR response:

Where Does the Signal Come From?

- BOLD effect: MR intensity is Blood Oxygenation Level Dependent
- Oxygenated Blood
 - Diamagnetic: (weakly) counteracts the local magnetic field
 - Effect similar to water
 - (Almost) no change in signal
- Deoxygenated Blood
 - Paramagnetic: (slightly)
 enhances the field
 - Decreases T_2^*
 - Attenuates the MR signal

rat breathing pure oxygen

rat breathing normal air

Temporal Complexity of BOLD Response

MR response to flashing visual stimulus

Red: Increased MR

Signal

Blue: Decreased MR

Signal

How Does BOLD Relate to Neuronal Activity?

 Typical example of the time course of the MR signal change in response to an extended stimulus:

Mechanism: Initial Dip

- Stimulus increases neuronal activity, which requires more oxygen and increases the amount of deoxygenated blood
 - Leads to a decrease in MR signal intensity
- "Initial dip" rather weak and not observed in all studies
 - If observed, often spatially more restricted than main peak

Mechanism: Rise

- Local blood flow increases, providing more oxygenated blood and overcompensating the additional need from neural activity
 - Change in signal strength between 5% (primary sensory stimulation) and 0.1-0.5% (cognitive tasks)
 - Basis of most fMRI studies

Mechanism: Overshoot / Plateau

- While neuronal activity persists, increased oxygen uptake continues to be overcompensated
 - In "blocked" fMRI design with extended phases of stimulation, a plateau follows an initial overshoot

Mechanism: Post-Stimulus Undershoot

- Many studies observe a post-stimulus undershoot in MR intensity that often persists for tens of seconds
 - Mechanism still not fully agreed upon [van Zijl et al., 2012]
 - May indicate uncoupling of metabolic and blood flow response:
 - Blood flow returns to baseline earlier than need for oxygen
 - Much oxygen used while "cleaning up" after activity

Mechanism: Overview

 fMRI provides a rather indirect measure of neuronal activity

Electrophysiology

 Taking electrical measurements in the cortex allows us to monitor the neuronal activity:

What Does BOLD Measure?

 Logothetis et al. 2001 performed simultaneous electrophysiology and fMRI in monkeys

Conclusion:

- BOLD correlates more clearly with
 - local field potentials

 (post-synaptic
 potentials; input) than
 with
 - multi-unit activity

 (action potentials,
 output)

Summary: Functional MRI

- BOLD effect: MR intensity reduced by presence of deoxygenated blood
- Amount of deoxygenated blood changes during neuronal activity
 - After initial dip, additional need for oxygen is overcompensated, leading to a stronger signal
 - Mechanism still not known in detail, but found to correlate mostly with local field potentials
- Observing signal change over time allows us to draw conclusions about brain activity
 - Tradeoff between temporal and spatial resolution

Introduction to Diffusion MRI

Goal: Investigate the microstructure of biological tissue using Magnetic Resonance Imaging (MRI)

Challenge: Voxel size is far too large to resolve the structures of interest

Voxel size

Axon (nerve fiber) size

Introduction to Diffusion MRI

Approach: Use water molecules as a contrast agent

Exploits their spontaneous heat motion at the desired spatial scale

Analogy: Observe diffusion of ink on paper

Kleenex

Newspaper

DTI: Glyphs and Tractography

Studying the Human Connectome

- Connectome = complete map of the connections in the human brain
- Even larger-scale than Genome (3x10⁹ base pairs vs. ≈10¹⁴ synapses)
- NIH Human Connectome Project (1,500 subjects)

[Schultz/Seidel 2008]

 Rhineland Study (Bonn): Prospective study with 30,000 participants, piloting now

Summary

- Advantages of MRI as an imaging modality:
 - No ionizing radiation
 - No contrast agents (except for specific use cases)
 - Well-suited for soft tissue such as brain
 - Signal from protons, abundant in H₂0
 - Fast enough for functional imaging
 - Flexible sequences offer variety of contrasts
 - different physical properties (T₁, T₂, diffusion, etc.)
 - Can be made quantitative (with some effort)
 - Flexible orientation of slices

7.4 Other Imaging Modalities

Computed Tomography (CT/CAT)

- Introduced in 1968, Nobel Prize in 1979
- Based on measuring X-ray absorption from many different directions
 - Algorithmic reconstruction of a slice image
 - Multiple slices combined into a 3D volume
 - Often acquired simultaneously
- Can achieve sub-mm voxel size
 - e.g., inspect fine fractures

MRI vs. CT: Applications

- CT ideally suited for skeletal structures
- MRI provides a larger variety of contrasts for soft tissue (e.g., brain)
- Unlike MRI, CT is quantitative
 - Disclaimer: Some variants of MRI can also be made quantitative
- CT cheaper and more widely available

CT scan

MRI scan

MRI vs. CT: Safety

 X-ray radiation in CT is ionizing and potentially harmful to biological tissue

- Rules on allowable dose

 MRI has no known harmful effects, safe to use on healthy volunteers

Footnote: Beware of implants

...and office chairs

Images from Preim / Botha

Skin

Interface

Ultrasound

Ultrasound

- Based on transmitting highfrequency (MHz) acoustic waves and measuring their echo
- Simple, cheap, safe, but relatively poor image quality (noise level, sharpness, shadows...)
- Real-time results
- Combining measurements from a tracked ultrasound probe allows for 3D reconstructions

Transducer

Echo

Tissue

Summary

- The wide range of imaging techniques used in biology includes
 - Light microscopy (few hundred nm resolution)
 - Fluorescence microscopy (high specificity, 3D)
 - Electron microscopy (down to pm resolution)
 - Magnetic Resonance Imaging (cm resolution, but noninvasive, 3D, functional / diffusion available)
 - -CT
 - Ultrasound

References

- B. Preim, C. Botha: Visual Computing for Medicine: Theory, Algorithms, and Applications, Morgan Kaufmann, 2014
 - E-book available within UBonn network!
- M. A. Flower (Ed): Webb's Physics of Medical Imaging, 2nd edition, CRC Press 2012
- Magnets, Spins and Resonances, Siemens Healthcare (available online)