CPE 300L DIGITAL SYSTEM ARCHITECTURE AND DESIGN LABORATORY

LABORATORY 6 DESIGN, SIMULATION AND TESTING OF THE SUMMATION ALGORITHM ON THE GENERAL DATAPATH I

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS

OBJECTIVE

Learn on implementing the general datapath: implement the datapath and its component.

INTRODUCTION

Simple computer architecture can be decomposed into a) datapath for executing operations b) control unit for controlling datapath operations. A datapath is specified by a set of its components, i.e., combinational components for performing microoperations and moving data to and from registers, where data on which operations are performed are stored. For a large number of registers, the latter can be organized into a register file with shared ports of access for reading and writing. The datapath is to be supplied with a conditional logic for implementing conditional statements. Generally, the datapath can contain also on-board memory and interface logic.

SUMMATION CIRCUIT

Summation Algorithm:

```
1 \text{ sum} = 0
2 INPUT n
3 WHILE (n \neq 0) {
     sum = sum + n
5
     n = n - 1
6 }
7 OUTPUT sum
```

CPE 300L DIGITAL SYSTEM ARCHITECTURE AND DESIGN LABORATORY

Fig. 1. Summation algorithm

ALU_2	ALU_1	ALU_0	Operation
0	0	0	Pass through A
0	0	1	A and B
0	1	0	A OR B
0	1	1	NOT A
1	0	0	A + B
1	0	1	A - B
1	1	0	A+1
1	1	1	A-1

 SH_1 SH_0 Operation 0 0 Pass through Shift left and fill with 0 01 Shift right and fill with 0 1 0 Rotate right 1

(b)

Fig. 2. Datapath with ALU

Fig. 3. Register file 4x8

LAB DELIVERIES

PRELAB DELIVERIES

- 1. Understand the objective of the summation algorithm and explain how the algorithm works.
- 2. Identify the components in the general datapath from Fig 2 and explain the use of each component with respect to the summation algorithm?
- 3. What are all the input and output signals shown in Fig 2 associated with each block, explain all of them.
- 4. Write a Verilog code for the ALU described in Fig 2b and verify using the Modelsim.

LAB EXPERIMENTS

Demonstrate all the experiments to TA.

1. Implementation of the Datapath I

Write a Verilog code for all the components identified from prelab 2. Verify the operation of each component in Modelsim.

2. Implementation of the Datapath II

Create a module called DP with all the signal and stich the components verified in experiment 1 as a complete datapath module.

POSTLAB REPORT

Include the following elements in your postlab report:

	e reme wing erem	ents in your postiao report.		
Section	Element			
1	Theory of operation			
	Include a brief description of every element and phenomenon that appears during the			
	experiments.			
	a. Describe how the digital circuit design can be tested			
	b. What is the datapath in general? Provide an example.			
2	Prelab report			
	Results of the experiments			
3	Experiment	Experiment Results		
	1	Verilog code, testbenches and waveforms		
	2	Verilog Code		
	Answer the questions			
4	Question no.	Question		
	1	What are the control words for the datapath?		
5	Conclusions			
	Write down your conclusions, things learned, problems encountered during the lab and how			
	they were solved, etc.			