Problem Set #8

Given: Mon., Nov. 05 **Recommended Completion Date:** Mon., Nov. 12 **Do not submit for grading**

Problem 1: Air at ambient temperature of 25°C and a velocity of 0.5 m/s flows over a 50 W incandescent bulb whose surface temperature is at 140°C. the bulb may be approximated as a sphere of 50 mm diameter. What is the rate of heat loss by convection to the air?

Ans.: 10.29 W

Problem 2: To enhance heat transfer from a square shape chip of width W = 4 mm on a side, a copper pin fin ($k_{copper} = 380 \text{ W/m-°C}$) is brazed to the surface of the chip. The fin length is L = 12 mm and the diameter is D = 2mm. Atmospheric air at $U_{\infty} = 10 \text{ m/s}$; $T_{\infty} = 300 \text{ K}$ is in cross flow over the fin. The surface of the chip and the base of the fin are maintained at a temperature of $T_{Base} = 350 \text{ K}$.

- a) What is the average convection heat transfer coefficient for the surface of the fin?
- b) Neglecting radiation heat transfer, what is the fin heat transfer rate?
- c) Assuming the same convection coefficient obtained in part (a) for the exposed portion of the chip surface, determine the total rate of heat transfer from the chip.

Ans.: (a)
$$h = 223.3 \text{ W/m}^2$$
-°C; (b) 0.826 W; (c) $q_{total} = 0.97 \text{ W}$.

Problem 3: Water at an inlet temperature (bulk temperature) of 10° C is pumped at the rate of 5 kg/s through a horizontal metal pipe ($k_{\text{pipe}} = 25 \text{ W/m-}^{\circ}\text{C}$) of inside diameter $D_{\text{i}} = 0.05 \text{ m}$, outside diameter $D_{\text{o}} = 0.06 \text{ m}$, and a total length L = 10 m. The inside surface of the tube may be assumed smooth. Saturated steam at $T_{\text{sat}} = 125^{\circ}\text{C}$ condenses on the outside surface of the pipe: $h_{\text{outside}} = 25000 \text{ W/m}^2\text{-}^{\circ}\text{C}$. the latent heat of condensation of the steam at 125°C is $h_{\text{fg}} = 2.2 \times 10^6 \text{ J/kg}$. The properties of the water may be assumed constant at the following values:

$$\rho = 1000 \text{ kg/m}^3$$
; $c_p = 4180 \text{ J/kg-°C}$; $\mu = 1.2 \times 10^{-3} \text{ kg/m-s}$; $k = 0.585 \text{ W/m-°C}$

- a) Calculate the rate of condensation of the steam.
- b) What is the total pressure drop in the pipe?

Ans.: (a) 0.20425 kg/s; (b) 1.15×10^4 Pa

Problem 4: Consider fully developed fluid flow and heat transfer in a duct of non-circular cross section and unknown roughness.

Duct geometry: Perimeter of cross section = 0.08 m; Cross sectional area = 5×10^{-4} m². Total length of the duct = 2 m.

Flow and heat transfer:
$$u_{av} = 8 \text{ m/s}$$
; $T_w = 200^{\circ}\text{C}$; $T_{b1} = 20^{\circ}\text{C}$; $T_{b2} = 160^{\circ}\text{C}$
Fluid properties: $\rho = 1 \text{ kg/m}^3$; $c_p = 1000 \text{ J/kg-°C}$; $\mu = 2 \times 10^{-5} \text{ kg/m-s}$; $k = 0.025 \text{ W/m-°C}$

a) Find the average heat transfer coefficient; b) What is the total pressure drop in the pipe?

Ans.: (a) $37.6 \text{ W/m}^2 ^\circ\text{C}$; (b) $82.94 \text{ Pa} (\text{N/m}^2)$

Selected Problems from the Textbook: Please do the following problems 6th Edition: 8.25, 8.84 or 7th Edition: 8.29, 8.90