Краткий курс геометрии если все совсем плохо

Иван Попов

12 мая $2022\ \mbox{г}.$

Оглавление

1	Roz	векторная алгебра				
1	1.1	Сторная алгеора Действия над векторами и их свойства(Аксиомпатика Вейля)				
	1.1	1.1.1	Сложение векторов	5 5		
		1.1.2	Свойства сложения векторов	6		
		1.1.3	Умножение вектора на число	6		
		1.1.4	Свойства умножения вектора на число	6		
		1.1.4	Скалярное произведение двух векторов	7		
		1.1.6	Свойства скалярного произведения двух векторов	7		
		1.1.0 $1.1.7$		7		
		1.1.7	Векторое произведение двух векторов для пространства размерности 3	7		
			Свойства векторного произведения двух векторов			
		1.1.9	Псевдоскалярное произведение двух векторов	8		
		1.1.10	Свойства псевдоскалярного произведение двух векторов	8		
		1.1.11	Смешаное произведение трех векторов	8		
			Свойства смешаного произведения трех векторов	8		
	1.2	Взаим	ное расположение векторов, линейная зависимость и базис	8		
		1.2.1	Взаимное расположение векторов	8		
		1.2.2	Линейная зависимость	9		
		1.2.3	Базис	9		
		1.2.4	Взаимосвязь между базисами	9		
2	Дей	Действия над векторами в координатной форме				
		2.0.1	Сложение векторов в координатной форме	11		
		2.0.2	Умножение вектора на число	11		
		2.0.3	Скалярное произведение векторов	11		
	2.1	Псевд	оскалярное произведение векторов в координатной форме в двухмерном			
			ранстве	11		
		рное произведение двух векторов в координатной форме в трехмерном				
			рном простанстве	12		
		аное произведение трех векторов в координатной форме в трехмерном				
		вектор	рном простанстве	12		
	2.4	Векто	рное произведение n-1 векторов в координатной форме в n-мерном век-			
		торног	м простанстве	12		
	2.5	Смеша	аное произведение п векторов в координатной форме в п-мерном век-			
		торног	м простанстве	12		

OГЛAВЛЕНИE

3	Орт	гогонализация и нормизация системы векторов	13							
	3.1	Для двух двухмерных векторов	13							
	3.2	Для двух трехмерных векторов	14							
	3.3	Для трех трехмерных векторов	15							
4	Кординатные системы									
	Вид	ды и связь между ними	17							
	4.1	Декартова прямоугольная координатная система	17							
	4.2	Общая декартова координатная система	17							
5	Деление отрезка в заданном соотношении									
	5.1	На две равные части	19							
	5.2	На две произвольные части	19							
6	Ура	авнение прямой на плоскости	21							
	6.1	Параметрическое уравнение	21							
	6.2	Каноническое	21							
	6.3	Общего вида	21							
	6.4	Уравнение в отрезках	22							
7	Спо	особы задания прямой на плоскости	23							
	7.1	По точке и направляющему вектору или по двум точкам	23							
		7.1.1 Каноническое	23							
		7.1.2 Параметрическое	23							
		7.1.3 Общего вида	23							
	7.2	По точке принадлежащей и вектору нормали	24							
		7.2.1 Общего вида	24							
		7.2.2 Параметрическое уравнение	24							
		7.2.3 Каноническое уравнение	$\overline{24}$							
8	Прямая на плоскости									
	8.1	Взаимное расположение двух прямых на плоскости	25							
	8.2	Угол между прямыми на плоскости	26							
	8.3	Расстояние от точки до прямой	26							
	8.4	Расстояние от прямой до прямой	26							
	0	8.4.1 Переход к расстоянию от точки до прямой	26							
		8.4.2 Частная формула для параллельных прямых	$\frac{1}{27}$							
		8.4.3 Примечания	27							
9	Геог	метрическое место точек на плоскости	29							
	9.1	Кривые второго порядка	29							
	9.2	Определение типа кривой	29							
	J. _	9.2.1 Первый $(a_{12}=0)$ - простой	29							
		9.2.2 Второй $(a_{12} \neq 0)$ Всё плохо	30							
10	Кри	ивые второго порядка	31							
	_	Эллипс	31							
		10.1.1 Основные факты	31							
		10.1.2 Геометрические свойства	31							
	10.2	Гипербола	32							

ОГЛАВЛЕНИЕ	3

	10.2.1	Основные факты	32
	10.2.2	Геометрические свойства	32
10.3	Параб	ола	33
	10.3.1	Основные факты	33
	10.3.2	Геометрические свойства	33

OГЛAВЛЕНИЕ

Векторная алгебра

Направленный отрезок - отрезок с указаным направлением. Направление задается при помощи точки начала и точки конца.

 $\overline{AB} \in \overrightarrow{d}$ - направленный отрезок является представителем вектора \overrightarrow{d}

Рис. 1.1: Направленный отрезок \overline{AB}

Внимание Направленный отрезок равен только себе

Совокупность напраленых отрезков является вектором.

1.1 Действия над векторами и их свойства (Аксиомпатика Вейля)

1.1.1 Сложение векторов

Правило треугольника

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

Правило параллелограма

$$\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{AC}$$

Правило замкнутой ломаной многоугольника

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EF}$$

1.1.2 Свойства сложения векторов

$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$

$$\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$$

$$\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{a} = \overrightarrow{a}$$

1.1.3 Умножение вектора на число

$$\begin{array}{l} k*\overrightarrow{a}=\overrightarrow{b}\\ k>0=>\overrightarrow{a}\uparrow\uparrow\overrightarrow{b}\\ k<0=>\overrightarrow{a}\uparrow\downarrow\overrightarrow{b}\\ |k|>1=>|\overrightarrow{a}|<|\overrightarrow{b}|\\ 0<|k|<1=>|\overrightarrow{a}|>|\overrightarrow{a}|>|\overrightarrow{b}|\\ k=0=>k\overrightarrow{a}=\overrightarrow{0}$$
 - нуль вектор
$$k=\pm 1=>|\overrightarrow{a}|=|\overrightarrow{b}| \end{array}$$

1.1.4 Свойства умножения вектора на число

$$\begin{array}{l} (k*m)*\overrightarrow{a}=k(m*\overrightarrow{a})=m(k*\overrightarrow{a})\\ (k+m)*\overrightarrow{a}=k\overrightarrow{a}+m\overrightarrow{a}\\ \alpha*(\overrightarrow{a}+\overrightarrow{b})=\alpha*\overrightarrow{a}+\alpha*\overrightarrow{b} \end{array}$$

1.1. ДЕЙСТВИЯ НАД ВЕКТОРАМИ И ИХ СВОЙСТВА (АКСИОМПАТИКА ВЕЙЛЯ) 7

1.1.5 Скалярное произведение двух векторов

Результат: скаляр

Геометрический смысл: угол между двумя векторами

$$\overrightarrow{a} * \overrightarrow{b} = (\overrightarrow{a}, \overrightarrow{b})$$

$$\overrightarrow{a} * \overrightarrow{b} = k = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos \angle (\overrightarrow{a} \overrightarrow{b})$$

$$k > 0 => \angle \overrightarrow{a} \overrightarrow{b} \in (0^{\circ}..90^{\circ})$$

$$k < 0 => \angle \overrightarrow{a} \overrightarrow{b} \in (90^{\circ}..180^{\circ})$$

$$k > 0 => \overrightarrow{a} \uparrow \uparrow \overrightarrow{b}$$

$$k = 0 => \overrightarrow{a} \perp \overrightarrow{b} \text{ или } \overrightarrow{a} = \overrightarrow{0} \text{ или } \overrightarrow{b} = \overrightarrow{0}$$

$$\overrightarrow{a} * \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos \angle (\overrightarrow{a} \overrightarrow{b})$$

$$\cos \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a}}{|a|} * \frac{\overrightarrow{b}}{|b|}$$

1.1.6 Свойства скалярного произведения двух векторов

$$\overrightarrow{a} * \overrightarrow{b} = \overrightarrow{b} * \overrightarrow{a}$$

$$\overrightarrow{a} * (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} * \overrightarrow{b} + \overrightarrow{a} * \overrightarrow{c}$$

$$(k * \overrightarrow{a}) * \overrightarrow{b} = k * (\overrightarrow{a} * \overrightarrow{b})$$

$$\overrightarrow{a} * \overrightarrow{a} = \overrightarrow{a}^2 = |\overrightarrow{a}|^2$$

1.1.7 Векторое произведение двух векторов для пространства размерности 3

Результат: вектор

модуль результата (\overrightarrow{c}) равен площади параллелограма натянутого на векторы \overrightarrow{a} и \overrightarrow{b} $\overrightarrow{a} \times \overrightarrow{b} = [\overrightarrow{a} * \overrightarrow{b}]$ $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \ \overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{b}$

1.1.8 Свойства векторного произведения двух векторов

$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a} (\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$$

$$\begin{array}{l} (k*\overrightarrow{a})\times\overrightarrow{b}=k*(\overrightarrow{a}\times\overrightarrow{b})\\ \overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{0}=>\overrightarrow{a}||\overrightarrow{b}$$
или $\overrightarrow{a}=\overrightarrow{0}$ или $\overrightarrow{b}=\overrightarrow{0}$

1.1.9 Псевдоскалярное произведение двух векторов

Результат: скаляр

характеризует ориентацию угла между векторами при помощи знака

$$\overrightarrow{a} \vee \overrightarrow{b} = m$$

$$\overrightarrow{a} \vee \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \sin \angle (\overrightarrow{a} \overrightarrow{b})$$

$$\sin \angle (\overrightarrow{a} \overrightarrow{b}) = \frac{\overrightarrow{a} \vee \overrightarrow{b}}{|\overrightarrow{a}| * |\overrightarrow{b}|}$$

1.1.10 Свойства псевдоскалярного произведение двух векторов

$$\begin{array}{l} \overrightarrow{a} \vee \overrightarrow{b} = -\overrightarrow{b} \vee \overrightarrow{a} \\ (\overrightarrow{a} + \overrightarrow{b}) \vee \overrightarrow{c} = \overrightarrow{a} \vee \overrightarrow{c} + \overrightarrow{a} \vee \overrightarrow{b} \\ (k * \overrightarrow{a}) \vee \overrightarrow{b} = k * (\overrightarrow{a} \vee \overrightarrow{b}) \\ \overrightarrow{a} \vee \overrightarrow{b} = 0 => \overrightarrow{a} || \overrightarrow{b} \text{ или } \overrightarrow{a} = \overrightarrow{0} \text{ или } \overrightarrow{b} = \overrightarrow{0} \end{array}$$

1.1.11 Смешаное произведение трех векторов

Результат: скаляр

результат смешаного произведения представляет собой объем паралелепипеда натянутого

на данные векторы

$$(\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}) = \overrightarrow{a} * (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c}$$

Порядок операций: Сначала выполняется векторное умножение (×), а только затем скалярное (*)

$$n=0 \Rightarrow \overrightarrow{a}=\overrightarrow{0} \mid\mid \overrightarrow{b}=\overrightarrow{0} \mid\mid \overrightarrow{c}=\overrightarrow{0} \mid\mid \overrightarrow{a}=\lambda \overrightarrow{b}+\mu \overrightarrow{c}$$
 $n>0 \Rightarrow$ Ориентация векторов такая же как в базисе $\overrightarrow{i}\overrightarrow{j}\overrightarrow{k}$ $n<0 \Rightarrow$ Ориентация векторов не такая как в базисе $\overrightarrow{i}\overrightarrow{j}\overrightarrow{k}$

1.1.12 Свойства смешаного произведения трех векторов

1.2 Взаимное расположение векторов, линейная зависимость и базис

1.2.1 Взаимное расположение векторов

Коллениарность - расположение двух векторов когда они параллельны: $\overrightarrow{a} || \overrightarrow{b}$ а также $\overrightarrow{a} = k * \overrightarrow{b}$

1.2. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ВЕКТОРОВ, ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И БАЗИС9

Ортогональность - расположение двух векторов когда они перпендикулярны: $\overrightarrow{a} \perp \overrightarrow{b}$ Компланарность - расположение двух и более векторов когда они коллениарны (параллельны) одной плоскости или лежат в ней: $\overrightarrow{c} = k * \overrightarrow{d} + m * \overrightarrow{b}$

1.2.2 Линейная зависимость

Линейная комбинация — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов $\lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \lambda_3 \overrightarrow{a_3} + \dots + \lambda_n \overrightarrow{a_n} = \overrightarrow{0}$

Линейная комбинация (Система) является линейно зависимой если хотябы 1 $\lambda \neq 0$ и/или если имеется хотябы один $\overrightarrow{0}$.

Если система имеет линейно зависимую подсистему, то она линейно зависима.

Если мы не имеем ни одного 0, то система линейно не зависима и мы имеем размер векторного пространства $n = div(\overrightarrow{a_1}; \overrightarrow{a_2}; \overrightarrow{a_3}; ...; \overrightarrow{a_n})$

1.2.3 Базис

Базис - это упорядоченная СЛНВ (система линейно независимых векторов) в векторном пространстве.

Виды базисов:

- Ортогональный
- Ортонормированый например $(\overrightarrow{i} \overrightarrow{j} \overrightarrow{k})$
- Произвольный (Афинный)

Базис позволяет определить координаты вектора

Взаимосвязь между базисами

Пусть дан базис $\beta = \{\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}'\}$ и базис $\beta' = \{\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}\}$, где $n = \dim(V)$ Тогда координаты векторов базиса β в базисе β' будут представлять собой линейную ком-

ойнацию.
$$\overrightarrow{e_1'} = a_1^1 * \overrightarrow{e_1} + a_1^2 * \overrightarrow{e_2} + ... a_1^n * \overrightarrow{e_n}$$
 из чего мы получим:
$$\overrightarrow{e_1} \{a_1^1, a_1^2, ..., a_1^n\}_\beta$$

где a_i^j - координаты

Формула перехода:
$$\overrightarrow{e_j'} = a_j^i * \overrightarrow{e_i} = \sum_{i=1}^n a_j^i * \overrightarrow{e_i} \ j = \overline{1,n}$$

Пример: $\overrightarrow{x} \in V^n$ $\overrightarrow{x}\{x_1, x_2, ..., x_n\}_{\beta} \text{ и } \{y_1, y_2, ..., y_n\}_{\beta'}$ $\overrightarrow{x} = y^1 \overrightarrow{e_1'} + y^2 \overrightarrow{e_2'} + ... + y^n \overrightarrow{e_n'} = y^j \overrightarrow{e_i'} = y^1 (a_1^i \overrightarrow{e_i}) + y^2 (a_2^i \overrightarrow{e_i}) + ... + y^n (a_n^i \overrightarrow{e_i}) = (y^1 a_1^1 + y^2 a_2^1 + ... + y^n a_n^1) \overrightarrow{e_1'} + (y^1 a_1^2 + y^2 a_2^2 + ... + y^n a_n^2) \overrightarrow{e_2'} + ... + (y^1 a_1^n + y^2 a_2^n + ... + y^n a_n^n) \overrightarrow{e_n'}$ Из этого можно сделать вывод: $\overrightarrow{x} = x^1 \overrightarrow{e_1'} + x^2 \overrightarrow{e_2'} + ... + x^n \overrightarrow{e_n'}$, где $x^i = y^1 a_1^i + y^2 a_2^i + ... + y^n a_n^i$ $x^{i} = y^{j}a_{j}^{i}$ - формулы перехода от старых координат к новым.

Действия над векторами в координатной форме

Пусть даны векторы $\overrightarrow{x}\{x^1,x^2,...,x^n\}$ и $\overrightarrow{y}\{y^1,y^2,...,y^n\}$

2.0.1 Сложение векторов в координатной форме

$$\overrightarrow{x}+\overrightarrow{y}=x^{1}\overrightarrow{e_{1}}+x^{2}\overrightarrow{e_{2}}+\ldots+x^{n}\overrightarrow{e_{n}}+y^{1}\overrightarrow{e_{1}}+y^{2}\overrightarrow{e_{2}}+\ldots+y^{n}\overrightarrow{e_{n}}=(x^{1}+y^{1})\overrightarrow{e_{1}}+(x^{2}+y^{2})\overrightarrow{e_{2}}+\ldots+(x^{n}+y^{n})\overrightarrow{e_{n}}=z^{1}\overrightarrow{e_{1}}+z^{2}\overrightarrow{e_{2}}+\ldots+z^{n}\overrightarrow{e_{n}}$$

$$\boxed{x^{i}+y^{i}=z^{i};i=\overline{1,n}}$$

2.0.2 Умножение вектора на число

$$\overrightarrow{p}=k\overrightarrow{x}=k(x^1\overrightarrow{e_1}+x^2\overrightarrow{e_2}+\ldots+x^n\overrightarrow{e_n})=kx^1\overrightarrow{e_1}+kx^2\overrightarrow{e_2}+\ldots+kx^n\overrightarrow{e_n} \boxed{p^i=k*x^i;i=\overline{1,n}}$$

2.0.3 Скалярное произведение векторов

 $\overrightarrow{x}*\overrightarrow{y}=(x^1\overrightarrow{e_1}+x^2\overrightarrow{e_2}+\ldots+x^n\overrightarrow{e_n})*(y^1\overrightarrow{e_1}+y^2\overrightarrow{e_2}+\ldots+y^n\overrightarrow{e_n})=(x^1y^1\overrightarrow{e_1}\overrightarrow{e_1}+x^1y^2\overrightarrow{e_1}\overrightarrow{e_2}+\ldots+x^ny^n\overrightarrow{e_n}\overrightarrow{e_n})<=$ простое раскрытие произведения скобок В частности для $V^3\beta\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$ - ортогонального и ортонормированного базиса: $\overrightarrow{x}*\overrightarrow{y}=(x^1\overrightarrow{i}+x^2\overrightarrow{j}+x^3\overrightarrow{k})*(y^1\overrightarrow{i}+y^2\overrightarrow{j}+y^3\overrightarrow{k})=x^1y^1\overrightarrow{i}^2+x^1y^2\overrightarrow{i}\overrightarrow{j}+x^1y^3\overrightarrow{i}\overrightarrow{k}+x^2y^1\overrightarrow{i}\overrightarrow{j}+x^2y^2\overrightarrow{j}^2+x^2y^3\overrightarrow{j}\overrightarrow{k}+x^3y^1\overrightarrow{i}\overrightarrow{k}+x^3y^2\overrightarrow{j}\overrightarrow{k}+x^3y^3\overrightarrow{k}^2=>x^1y^1+x^2y^2+x^3y^3$ Итого: В ортонормированом и ортогональном базисе $\overrightarrow{x}*\overrightarrow{y}=x^1y^1+x^2y^2+\ldots+x^ny^n$

2.1 Псевдоскалярное произведение векторов в координатной форме в двухмерном пространстве

$$\overrightarrow{x}\{x^1,x^2\}\overrightarrow{y}\{y^1,y^2\}$$
 в $\beta\{\overrightarrow{i},\overrightarrow{j}\}$ определены своими координатами $\overrightarrow{x}\lor\overrightarrow{y}=x^1y^2-x^2y^1$

Данный вариант подходит только для пространтства размерности 2!

2.2 Векторное произведение двух векторов в координатной форме в трехмерном векторном простанстве

$$\beta\{\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\}$$

$$\overrightarrow{x}\times\overrightarrow{y}=\begin{vmatrix}x^1 & x^2 & x^3\\y^1 & y^2 & y^3\\\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\end{vmatrix}=(x^2y^3-x^3y^2)*\overrightarrow{i}+(x^3y^1-x^1y^3)*\overrightarrow{j}+(x^1y^2-x^2y^1)*\overrightarrow{k}=\{x^2y^3-x^3y^2,x^3y^1-x^1y^3,x^1y^2-x^2y^1\}$$

2.3 Смешаное произведение трех векторов в координатной форме в трехмерном векторном простанстве

$$\overrightarrow{x}\{x^{1}, x^{2}, x^{3}\} \overrightarrow{y}\{y^{1}, y^{2}, y^{3}\} \overrightarrow{z}\{z^{1}, z^{2}, z^{3}\}$$

$$(\overrightarrow{x} \overrightarrow{y} \overrightarrow{z}) = (\overrightarrow{x} \times \overrightarrow{y}) * \overrightarrow{z} = \begin{vmatrix} x^{1} & x^{2} & x^{3} \\ y^{1} & y^{2} & y^{3} \\ z^{1} & z^{2} & z^{3} \end{vmatrix} = (x^{2}y^{3} - x^{3}y^{2}) * z^{1} + (x^{3}y^{1} - x^{1}y^{3}) * z^{2} + (x^{1}y^{2} - x^{2}y^{1}) * z^{3} = \dots$$

2.4 Векторное произведение n-1 векторов в координатной форме в n-мерном векторном простанстве

$$\begin{split} \beta &= \{\overrightarrow{i^1}, \overrightarrow{i^2}, ..., \overrightarrow{i^n}\}, dim(V) = n \\ |\overrightarrow{i^k}| &= 1, \overrightarrow{i^k} \perp \overrightarrow{i^c} (e \neq k) \\ \overrightarrow{y} &= \overrightarrow{x_1} \times \overrightarrow{x_2} \times ... \times \overrightarrow{x_{n-1}} = \begin{vmatrix} x_1^1 & x_1^2 & ... & x_1^n \\ x_2^1 & x_2^2 & ... & x_2^n \\ ... & ... & ... & ... \\ x_{n-1}^1 & x_{n-1}^2 & ... & x_{n-1}^n \\ \overrightarrow{i^1} & \overrightarrow{i^2} & ... & \overrightarrow{i^n} \end{vmatrix} \text{ где } \overrightarrow{x_1} \{x_1^j\}, \overrightarrow{x_2} \{x_2^j\}, ..., \overrightarrow{x_{n-1}} \{x_{n-1}^j\}; j = \overline{1,n} \end{split}$$

2.5 Смешаное произведение n векторов в координатной форме в n-мерном векторном простанстве

$$\begin{split} \beta &= \{\overrightarrow{i^1}, \overrightarrow{i^2}, ..., \overrightarrow{i^n}\}, dim(V) = n \\ |\overrightarrow{i^k}| &= 1, \overrightarrow{i^k} \perp \overrightarrow{i^e} (e \neq k) \\ \overrightarrow{y} &= (\overrightarrow{x_1} \ \overrightarrow{x_2} \ ... \ \overrightarrow{x_n}) = \begin{vmatrix} x_1^1 & x_1^2 & ... & x_1^n \\ x_2^1 & x_2^2 & ... & x_2^n \\ ... & ... & ... & ... \\ x_n^1 & x_n^2 & ... & x_n^n \end{vmatrix} \text{ где } \overrightarrow{x_1^j} \{x_1^j\}, \overrightarrow{x_2^j} \{x_2^j\}, ..., \overrightarrow{x_n} \{x_n^j\}; j = \overline{1,n} \end{split}$$

Ортогонализация и нормизация системы векторов

Дано:

Цель: найти векторы $\overrightarrow{a'}$ и $\overrightarrow{b'}$, такие что их модули равны и векторы перпендикулярны. $\overrightarrow{a'}$, $\overrightarrow{b'}$: $|\overrightarrow{a'}| = |\overrightarrow{b'}| = 1$; $\overrightarrow{a'} \perp \overrightarrow{b'} \leftrightarrow \overrightarrow{a'} * \overrightarrow{b'} = 0$

Для двух двухмерных векторов

$$\overrightarrow{a}\{a^1,a^2\},\overrightarrow{b}\{b^1,b^2\}$$

Щаг первый Определим вектор $\overrightarrow{a'}$: $\overrightarrow{a'} = \overrightarrow{a} = a^1, a^2$

Шаг второй Определим вектор $\overrightarrow{b'}$: Мы знаем что $\overrightarrow{a'} \perp \overrightarrow{b'}$, а значит мы можем воспользоваться формулой: $a'^1b'^1 + a'^2b'^2 = 0$ $a'^1 \neq 0 \Rightarrow b'^1 = -\frac{a'^2}{a'^1}b'^2$ В итоге: $\overrightarrow{b'} = \{-\frac{a^2}{a^1}b', b'\}$

$$a'^{1}b'^{1} + a'^{2}b'^{2} = 0$$

 $a'^{1} \neq 0 \Rightarrow b'^{1} = -\frac{a'^{2}}{2}b'^{2}$

В итоге:
$$\overrightarrow{b'} = \{-\frac{a^2}{a^1}b', b'\}$$

Как частный случай можно использовать формулу: $\overrightarrow{b'}=\{-a'^2,a'^1\}$ или $\{a'^2,-a'^1\}$

Шаг третий Проверка ориентации:

Если $\det\begin{pmatrix} a^1 & a^2 \\ b^1 & b^2 \end{pmatrix}$ и $\det\begin{pmatrix} a'^1 & a'^2 \\ b'^1 & b'^2 \end{pmatrix}$ имеют одинаковый знак, то ориентация совпала и можно переходить к нормированию. Иначе требуется вернуться на шаг 2 и выбрать другой вариант из частного случая.

Нормирование Вектор считается нормированным, если его модуль равен 1.

Формула нормирования на примере вектора $\overrightarrow{a}\{a^1,a^2\}$: $\overrightarrow{a}=\{\frac{a^1}{\sqrt{(a^1)^2+(a^2)^2}},\frac{a^2}{\sqrt{(a^1)^2+(a^2)^2}}\}$

3.2Для двух трехмерных векторов

$$\overrightarrow{a} \{a^1, a^2, a^3\}$$

$$\overrightarrow{b} \{b^1, b^2, b^3\}$$

$$\overrightarrow{a}, \overrightarrow{b} \in V^3$$

$$egin{aligned} \mathbf{H}\mathbf{ar} \ \mathbf{1} & \text{Получим вектор } \overrightarrow{a'} \\ \overrightarrow{a'} &= \overrightarrow{a} &= \{a^1, a^2, a^3\} \\ \overrightarrow{a'} \perp \overrightarrow{b'} & \end{aligned}$$

Шаг 2 Получим вектор $\overrightarrow{b'}$

Вектор $\overrightarrow{b'}$ является линейно зависимым для векторов \overrightarrow{a} и \overrightarrow{b} , а значит его можно получить следующим способом:

 $\overrightarrow{b'} = m\overrightarrow{a} + k\overrightarrow{b} = ka^1, ka^2, ka^3 + mb^1, mb^2, mb^3 = ka^1 + mb^1, ka^2 + mb^2, ka^3 + mb^3$ Так как $\overrightarrow{a} \perp \overrightarrow{b'}$, то косинус угла между ними равен нулю, а значит $\overrightarrow{a} * \overrightarrow{b'} = 0$

Следовательно: $a^1(ka^1 + mb^1) + a^2(ka^2 + mb^2) + a^3(ka^3 + mb^3) = 0$

Спустя несколько преобразований мы получим $k((a^1)^2+(a^2)^2+(a^3)^2)+m(a^1b^1+a^2b^2+a^3b^3)=$

РЕШИМ УРАВНЕНИЕ

Вариант 1

$$m = (a^{1})^{2} + (a^{2})^{2} + (a^{3})^{2}$$

$$k = -(a^{1}b^{1} + a^{2}b^{2} + a^{3}b^{3})$$

Вариант 2

$$m = -((a^1)^2 + (a^2)^2 + (a^3)^2)$$

$$k = (a^1b^1 + a^2b^2 + a^3b^3)$$

Заменим m и n в формуле вектора $\overrightarrow{b'}$ на полученые значения.

ighthar 3 проверим ориентацию: Получим векторы $ightharpoonup \overrightarrow{c} = \overrightarrow{a} imes \overrightarrow{b}$

Проверим их коллениарность при помощи векторного произведения:

Если
$$\overrightarrow{c} \times \overrightarrow{c'} = 0$$

, то переходим далее, иначе ищем ошибку в вычислениях. Проверим соонаправленность векторов: $\lambda = \frac{\overrightarrow{c}}{c'} = \frac{c^1}{c'^1} = \frac{c^2}{c'^2} = \frac{c^3}{c'^3}$ Если $\lambda > 0$, тогда переходим к нормированию, иначе повторим попытку используя другой вариант из шага 2.

15

Нормирование Формула нормирования на примере вектора $\overrightarrow{a}\{a^1, a^2, a^3\}$:

$$\overrightarrow{a} = \left\{ \frac{a^1}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}, \frac{a^2}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}}, \frac{a^3}{\sqrt{(a^1)^2 + (a^2)^2 + (a^3)^2}} \right\}$$

Для трех трехмерных векторов

$$\overrightarrow{a} \{a^1, a^2, a^3\}$$

$$\overrightarrow{b} \{b^1, b^2, b^3\}$$

$$\overrightarrow{c} \{c^1, c^2, c^3\}$$

$$\overrightarrow{a} \perp \overrightarrow{b} \perp \overrightarrow{c}$$

$$\overrightarrow{b'} \perp \overrightarrow{c'}$$

Получим векторы $\overrightarrow{a'}$ и $\overrightarrow{b'}$

$$\overrightarrow{a'} = \overrightarrow{a}$$

 $\overrightarrow{a'} = \overrightarrow{a}$ $\overrightarrow{b'}$ получаем из варианта для двух трехмерных векторов. $\overrightarrow{c'} = \overrightarrow{a'} \times \overrightarrow{b'}$

$$\overrightarrow{c}' = \overrightarrow{a}' \times \overrightarrow{b}'$$

Проверим ориентацию:

$$\Delta 1 = \begin{vmatrix} a^1 & a^2 & a^3 \\ b^1 & b^2 & b^3 \\ c^1 & c^2 & c^3 \end{vmatrix} \Delta 2 = \begin{vmatrix} a'^1 & a'^2 & a'^3 \\ b'^1 & b'^2 & b'^3 \\ c'^1 & c'^2 & c'^3 \end{vmatrix}$$

Если $\Delta 1$ и $\Delta 2$ имеют одинаковый знак, то с ориентацией все хорошо и стоит переходить к нормированию.

Кординатные системы Виды и связь между ними

4.1 Декартова прямоугольная координатная система

$$V^2 \qquad \beta = \{\overrightarrow{e^1}, \overrightarrow{e^2}\}$$

Координаты в декартовой системе - произведение числа на базисный вектор. К примеру координаты некоторого вектора $\overrightarrow{d} \in \beta$ будут выглядеть как:

$$\overrightarrow{a} = \{a^1 * \overrightarrow{e^1}, a^2 * \overrightarrow{e^2}\}$$

Обычно мы не замечаем $\overrightarrow{e^i}$, так как мы в большинстве случаев работаем в ортонормированном базисе где они равны единице.

4.2 Общая декартова координатная система

Деление отрезка в заданном соотношении

5.1На две равные части

Дано:

 $N(\eta,\nu)$ M(x,y)

|MS| = |SN|

Цель: найти координаты точки S

цель: наити координаты точки S
$$\boxed{ \text{ Расстояние между точками: } \rho = \sqrt{(\eta - \lambda)^2 + (\nu - \mu)^2} \ \overline{MS} = \frac{1}{2} \overline{MN} }$$

$$\{s^1 - \lambda; s^2 - \mu\} = \frac{1}{2} \{\eta - \lambda, \nu - \mu\}$$

$$\begin{cases} s^1 = \lambda + \frac{1}{2}(\eta - \lambda) \\ s^2 = \mu + \frac{1}{2}(\nu - \mu) \end{cases} \Leftrightarrow \begin{cases} s^1 = \frac{1}{2}(\eta + \lambda) \\ s^2 = \frac{1}{2}(\nu + \mu) \end{cases}$$
 (5.1)

Итого координаты точки: $S(\frac{\eta+\lambda}{2},\frac{\nu+\mu}{2})$

5.2На две произвольные части

Дано:

M(x,y) $N(\eta, \nu)$

Цель: найти координаты точки S

 $\overline{MS}: \overline{MN} = \frac{m}{n}$

$$\begin{cases} s^1 = \lambda + \frac{m}{m+n}(\eta - \lambda) \\ s^2 = \mu + \frac{m}{m+n}(\nu - \mu) \end{cases}$$
 (5.2)

 $S(\frac{m\eta+n\lambda}{m+n}, \frac{m\nu+n\mu}{m+n})$

$$\overline{MS}: \overline{MN} = k$$

$$S(\frac{k\eta + \lambda}{k+1}, \frac{k\nu + \mu}{k+1})$$

Отрицательный результат означает что такая точка находится вне отрезка

Уравнение прямой на плоскости

 $M\in (AB)\longleftrightarrow \exists \lambda\in\mathbb{R}:AM=\lambda\overline{AB},$ где координаты точки $\mathrm{M}(\mathrm{x},\mathrm{y}).$ Отсюда: $\{x-a^1,y-a^2\}=$ $\lambda \{b^1 - a^1, b^2 - a^2\}$

6.1Параметрическое уравнение

$$\begin{cases} x - a^1 = \lambda(b^1 - a^1) \\ y - a^2 = \lambda(b^2 - a^2) \end{cases} \Leftrightarrow \begin{cases} x = a^1 + \lambda(b^1 - a^1) \\ y = b^1 + \lambda(b^2 - a^2) \end{cases}$$
(6.1)

 Γ де a^1 и b^1 - координаты точки принадлежащей, а (b^1-a^1) и (b^2-a^2) координаты на-

Каноническое

 $\frac{x-a^1}{b^1-a^1}=\frac{y-a^2}{b^2-a^2}=\lambda$ При условии того что a и b не дают 0

Общего вида 6.3

$$\begin{vmatrix} x-a^1 & b^1-a^2 \\ y-a^1 & b^2-a^2 \end{vmatrix} = 0 = (x-a^1)(b^2-a^2) - (b^1-a^1)(y-a^2) = xb^2 - xa^2 - a^1b^2 + a^1a^2 - b^1y + b^1a^2 + a^1y - a^1a^2 = (b^2-a^2)x + (a^1-b^1)y - (a^1b^2-a^2b^1)$$

Введем обозначения:

$$A = b^2 - a^2$$
$$B = a^1 - b^1$$

$$C = a^2 b^1 - a^1 b^2$$

Отсюда можно получить l:Ax+By+c=0<- линейное уравнение 2х неизвестных если $A\neq 0||B\neq 0$

6.4 Уравнение в отрезках

Получаемое из общего вида при условии что $C \neq 0$ $l: \frac{x}{a} + \frac{y}{b} = 1$ или $\frac{x}{\frac{c}{a}} + \frac{y}{\frac{c}{b}} = \frac{-c}{c}$

Способы задания прямой на плоскости

7.1 По точке и направляющему вектору или по двум точкам

$$l^A\in l,\overrightarrow{p}||l$$
 $A(a^1,a^2),B(b^1,b^2),\overrightarrow{p}\{p^1,p^2\}$ или $p\{b^1-a^1,b^2-a^2\}$

7.1.1 Каноническое

$$l: \frac{x-a^1}{p^1} = \frac{y-a^2}{p^2}$$

7.1.2 Параметрическое

l:

$$\begin{cases} x = a^1 + \lambda * p^1 \\ y = b^1 + \lambda * p^2 \end{cases}$$

$$(7.1)$$

7.1.3 Общего вида

Пусть:
$$p^2=A$$

$$-p^1=B$$

$$p^1a^2-p^2a^1=C$$
 Тогда $Ax+By+C=0$
 Или $l:\begin{vmatrix}x-a^1&b^1-a^2\\y-a^1&b^2-a^2\end{vmatrix}=p^2x-p^2a^1-p^1y+p^1a^2=p^2x-p^1y+(-p^2a^1+p^1a^2)$

7.2 По точке принадлежащей и вектору нормали

$$\begin{array}{l} l^A \in l, \overrightarrow{n} \perp l \\ A(a^1, a^2), B(b^1, b^2), \overrightarrow{n}\{n^1, n^2\} \end{array}$$

7.2.1 Общего вида

$$\overrightarrow{AM}*\overrightarrow{n}=0->\{x-a^1;y-a^2\}*\{n^1;n^2\}=0$$
 Откуда
$$n^1(x-a^1)+n^2(y-a^2)=0$$

$$n^1x+n^2y-(n^1a^1+n^2a^2)=0$$

$$n^1x+n^2y+(-n^1a^1-n^2a^2)=0$$

$$A=n^1$$

$$B=n^2$$

$$C=-(n^1a^1+n^2a^2)$$

7.2.2 Параметрическое уравнение

$$\begin{cases} x - a^1 = \lambda(b^1 - a^1) \\ y - a^2 = \lambda(b^2 - a^2) \end{cases} \quad \lambda \in \mathbb{R}$$
 (7.2)

7.2.3 Каноническое уравнение

$$l: \frac{x-a^1}{-n^2} = \frac{y-a^2}{n^1}$$

Прямая на плоскости

$$l_1: A^1x + B^1y + C^1 = 0$$

$$l_2: A^2x + B^2y + C^2 = 0$$

8.1 Взаимное расположение двух прямых на плоскости

Существует три вида расположения двух прямых на плоскости:

- $l_1||l_2|$
- $l_1 \cap l_2$
- $l^1 \equiv l^2$

Определить взаимное расположение можно при помощи решения системы уравнений:

$$\begin{cases} A^{1}x + B^{1}y + C^{1} = 0\\ A^{2}x + B^{2}y + C^{2} = 0 \end{cases}$$
(8.1)

Если:

- одно решение прямые пересекаются (2)
- множество решений прямые совпадают (3)
- нет решений прямые параллельны (1)

Определить взаимное расположение можно при помощи пропорции: $\frac{A^1}{A^1} = \frac{B^1}{B^2} = \frac{C^1}{C^2}$ Если:

- $\frac{A^1}{A^1} \neq \frac{B^1}{B^2} \neq \frac{C^1}{C^2}$ прямые пересекаются (2)
- $\frac{A^1}{A^1} = \frac{B^1}{B^2} = \frac{C^1}{C^2}$ прямые совпадают (3)
- $\frac{A^1}{A^1} = \frac{B^1}{B^2} \neq \frac{C^1}{C^2}$ прямые параллельны (1)

Определить взаимное расположение можно при помощи векторов нормали:

- $\overrightarrow{n^1} \not | \overrightarrow{n^2}$ прямые пересекаются (2)
- $\overrightarrow{n^1}||\overrightarrow{n^2}$ прямые параллельны (1) или прямые совпадают (3)

8.2 Угол между прямыми на плоскости

$$\begin{array}{l} l_1:A_1x+B_1y+C_1=0 & \overrightarrow{n_1}\{a_1,b_1\} & \overrightarrow{p_1}\{-b_1,a_1\} \\ l_2:A_2x+B_2y+C_2=0 & \overrightarrow{n_2}\{a_2,b_2\} & \overrightarrow{p_2}\{-b_2,a_2\} \\ \hline \\ \mbox{Углом между двумя прямыми считают наименьший образовавшийся} \ \varphi \in [0^\circ,90^\circ] \cos \angle \left\langle \overrightarrow{p^1},\overrightarrow{p^2}\right\rangle = \\ |\frac{\overrightarrow{p^1}*\overrightarrow{p^2}}{|\overrightarrow{p^1}*|\overrightarrow{p^2}|}| = > \frac{|\overrightarrow{p^1}*\overrightarrow{p^2}|}{|\overrightarrow{p^1}*|\overrightarrow{p^2}|} = > \frac{|a^1a^2+b^1b^2|}{\sqrt{a_1^2+b_1^2*\sqrt{a_2^2+b_2^2}}} = \frac{|\overrightarrow{n^1}*\overrightarrow{n^2}|}{|\overrightarrow{n^1}*|\overrightarrow{n^2}|} \\ \cos \angle \left\langle l^1,l^2\right\rangle = |\cos \angle \left\langle \overrightarrow{p^1},\overrightarrow{p^2}\right\rangle| \\ l1:A_1x+B_1y+C_1=0->\overrightarrow{n_1}\{A_1,B_1\} \\ l2:A_2x+B_2y+C_2=0->\overrightarrow{n_2}\{A_2,B_2\} \\ \overrightarrow{n_1}\vee\overrightarrow{n_2}=\begin{vmatrix} A_1 & B_1\\ A_2 & B_2 \end{vmatrix} = |\overrightarrow{n_1}|*|\overrightarrow{n_2}|*\sin(\varphi) \\ \sin(\varphi)=\frac{|A_1B_2-A_2B_1|}{\sqrt{A_1^2+B_1^2*}\sqrt{A_2^2+B_2^2}} \\ |tg(\varphi)|=|\frac{A_2B_1-A_1B_2}{B_1B_2+A_1A_2}| \\ \end{array}$$

8.3 Расстояние от точки до прямой

$$l: Ax + By + C = 0$$

$$M(m_1, m_2) \rho(M; l) = \frac{|A_1 m_1 + B m_2 + C|}{\sqrt{A^2 + B^2}}$$

8.4 Расстояние от прямой до прямой

Существует два варианта:

- конкретное значение, если прямые параллельны
- неопределенное расстояние, если прямые пересекаются

8.4.1 Переход к расстоянию от точки до прямой

$$\begin{array}{l} l: A_1x + B_1y + C_1 = 0 - > \overrightarrow{n_1}\{A_1, B_1\} \\ m: A_2x + B_2y + C_2 = 0 - > \overrightarrow{n_2}\{A_2, B_2\} \\ M(m_1, m_2) \in m \end{array}$$

 Φ актически все сводится к поиску расстояния от точки, принадлежащей одной из прямых

до второй прямой.
$$\rho(l;m) = \frac{|C^1 - \frac{A^1}{A^2} * C^2}{\sqrt{A^2 + B^2}}$$

27

8.4.2 Частная формула для параллельных прямых

Если преобразовать уравнение прямой m с учетом пропорциональности первых двух коэфициентов в уравнениях прямых l и m,оно примет вид $A_1+B_1+C'=0$ и мы можем использовать данное уравнение:

$$\rho(l;m) = \frac{|C' - C_1|}{\sqrt{A^2 + B^2}}$$

8.4.3 Примечания

$$\begin{split} a*b*sin(\phi) &= |\overrightarrow{a}|*|\overrightarrow{b}|*\sqrt{1-cos^2(\phi)}|\\ a*b*sin(\phi) &= |\overrightarrow{a}|*|\overrightarrow{b}|*\sqrt{1-(\frac{\overrightarrow{a}*\overrightarrow{b}}{|\overrightarrow{a}|*|\overrightarrow{b}|})^2}\\ a*b*sin(\phi) &= |\overrightarrow{a}|*|\overrightarrow{b}|*\sqrt{\frac{3^2*\overrightarrow{b}^2-(a*b)^2}{|\overrightarrow{a}|*|\overrightarrow{b}|}}| \end{split}$$

Геометрическое место точек на плоскости

9.1 Кривые второго порядка

Уравнение кривой второго порядка выглядит следующим образом:

$$\gamma : a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{10}x + 2a_{20}y + a_{00} = 0$$

Где

 $a_{11}x^2 + 2a_{12}xy + a_{22}y^2$ - коэфициенты квадратичной формы

 $2a_{10}x + 2a_{20}y$ - линейные компоненты

 a_{00} - свободный член.

ранее коэфициент квадратичной формы мы встерчали в подсчете модуля вектора в афинном пространстве, и фактически он является симметрической матрицей: $g(x;y) = a_{11}x^2 + a_{12}x^2 + a_{13}x^2 + a_{14}x^2 + a_{14}x^2 + a_{15}x^2 + a$

$$a_{12}xy + a_{22}y^2 = A \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$

9.2 Определение типа кривой

Для определения кривой есть два варианта:

9.2.1 Первый $(a_{12}=0)$ - простой

Стандартно

Все решается путем выделения полного квадрата: $a_{11}(x^2+2\frac{a_{10}}{a_{11}}x)+a_{22}(y^2+2\frac{a_{20}}{a_{22}}y)+a_{00}=0$... = $(\frac{a_{10}}{a_{11}})^2+(\frac{a_{20}}{a_{22}})^2-a_{00}$

Но это сработает при условии что $a_{11}, a_{22} \neq 0$

$$a_{11} = 0$$

$$\begin{array}{l} a_{22}y^2 + 2a_{10}x + 2a_{20}y + a_{00} = 0 \\ 2a_{10}x + a_{22}(y + \frac{a_{20}}{a_{22}})^2 = (\frac{a_{20}}{a_{22}})^2 - a_{00} \end{array}$$

$$\begin{aligned} a_{22} &= 0 \\ a_{11}x^2 + 2a_{10}x + 2a_{20}y + a_{00} &= 0 \\ a_{11}\left(x + \frac{a_{10}}{a_{11}}\right)^2 + 2a_{20}y &= \left(\frac{a_{10}}{a_{11}}\right)^2 - a_{00} \end{aligned}$$

9.2.2 Второй $(a_{12} \neq 0)$ Всё плохо

Метод 1 алгебраический

Путем перехода
$$A\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \leadsto B\begin{pmatrix} b_{11} & 0 \\ 0 & b_{22} \end{pmatrix}$$
 $det \left(A-\lambda E\right)=0$ <- характеристическое уравнение
$$\begin{vmatrix} a_{11}-\lambda & a_{12} \\ a_{12} & a_{22}-\lambda \end{vmatrix}=(a_{11}-\lambda)(a_{22}-\lambda)-a_{12}^2=a_{11}a_{22}-\lambda(a_{11}+a_{22})+\lambda^2-a_{12}^2=\lambda^2-\lambda(a_{11}+a_{22})-a_{12}^2+a_{11}a_{22}=0$$
 Решив полученое уравнение мы получим λ_1 и λ_2 $g'(x';y')=\lambda_1(x')^2+\lambda_2(y')^2$ Собственные векторы:

$$\lambda_i = \begin{cases} (a_{11} - \lambda_i)x + a_{12}y = 0\\ a_{12}x + (a_{22} - \lambda_i)y = 0 \end{cases}$$

$$(9.1)$$

Решения данного уравнения дадут $\overrightarrow{n_1}\{\eta,\mu\}$ для λ_1 и $\overrightarrow{n_2}\{\phi,\psi\}$ для λ_2

Тривиальное решение (нулевое) НЕ ИСПОЛЬЗУЕТСЯ!

И это даст нам вектроры нового базиса, а значит получим формулу перехода:

$$\begin{cases} x = \eta x' + \phi y' \\ y = \mu x' + \psi y' \end{cases}$$
 (9.2)

Итого:

 $\gamma:\lambda_1(x')^2+\lambda_2(y')^2+2(a_{10}\eta+a_{20}\mu)x'+2(a_{10}\phi+a_{20}\psi)y'+a_{00}=0$ Отсюда мы уже можем перейти в первый вариант

Кривые второго порядка

10.1 Эллипс

10.1.1 Основные факты

Эллипс - множество точек на плоскости, для каждой из которых сумма расстояний до двух фиксированных точек F_1 и F_2 , называемых фокусами, является констаной, величина которой больше расстояния между фокусами.

Расстояние F_1F_2 между фокусами - фокальное расстояние. Обозначается как 2c.

Если М - точка, принадлежащая эллипсу, то отрезки F_1M и F_2M - фокальные радиусы точки М.

По определению для любой точки М эллипса $F_1M + F_2M = const.$ Эту величину принято обозначать 2a. Из определения следует что a > c В прямоугольной системе координат $O_{\overrightarrow{r}, \overrightarrow{r}, \overrightarrow{r}}$,

где О - середина отрезка F_1F_2 , а \overrightarrow{i} $\uparrow \uparrow \overrightarrow{OF_1}$, эллипс имеет уравнение:

$$\left|rac{x^2}{a^2}+rac{y^2}{b^2}
ight|=1<$$
- каноническое уравнение эллипса $\left|
ho$ где $b^2=a^2-c^2$

Если F_1 и F_2 совпадают, то мы получим окружность радиуса а. В этом случае фокусы эллипса совпадают с центром окружности. Окружность - частный случай эллипса. При этом c=0 => a=b, и в итоге мы получаем уравнение $x^2+y^2=a^2$

10.1.2 Геометрические свойства

- Эллипс ограничен на поскости: все его точки принадлежат прямоугольнику со сторонами которые являются касательными параллельными осям.
- Эллипс, заданый каноническим уравнением симметричен относительно начала координат и осей координат. Эллипс, отличный от окружности, других центров и осей симметрии не имеет. Центр симметрии является центром эллипса.
- Прямая, проходящая через фокусы, называется первой или фокальной осью симметрии, а перпендикую ей второй осью симметрии. Каждая ось пересекается с эллипсом в двух точках: $A_1(a,0), A_2(-a,0), B_1(0,b), B_2(0,-b)$. Эти точки называются вершинами эллипса. Отрезки $A_1A_2=2a$ и $B_1B_2=2b$ называются соответственно большой и малой осями эллипса, а а и b большой и малой полуосями эллипса.

Эксцентриситетом эллипса называется отношение фокального расстояния эллипса в его большей оси:

$$\mathcal{E} = rac{c}{a} <$$
- Эксентриситет

Отсюда следует $0 < \mathcal{E} < 1$. При этом, если $\mathcal{E} = 0$, то эллипс является окружностью. С увеличением эксцентриситета уменьшается "ширина"эллипса, он делается более "продолговатым".

Дирректрисами эллипса называются две прямые, параллельные второй оси и отстоящие от нее на расстоянии $\frac{a}{\mathcal{E}}$, где а большая(действительная полуось), а \mathcal{E} - эксентриситет.

$$x = \pm \frac{a}{\mathcal{E}} <$$
- директрисы

<u>Директрисы эллипса не</u> пересекают его. У окрожности директрисс не существует.

Эллипс есть множество всех точек плоскости, для каждой из которых отношение растояния до фокуса к расстоянию от этой точки есть величина постоянная, которая равна эксцентриситету

10.2 Гипербола

10.2.1 Основные факты

Гипербола - множество точек на плоскости, для каждой из которых модуль разности расстояний до двух фиксированых точек F_1 и F_2 , называемых фокусами есть величина постоянная, меньшая, чем расстояние между фокусами.

Расстояние F_1F_2 между фокусами - фокальное расстояние, обозначается 2с.

Если М - точка, принадлежащая гиперболе, то отрезки F_1M и F_2M - фокальные радиусы точки М.

По определению для любой точки М эллипса $|F_1M+F_2M|=const.$ Эту величину принято обозначать 2a. Из определения следует что a < c

В прямоугольной системе координат $O_{\overrightarrow{i}\overrightarrow{j}}$, где O - середина отрезка F_1F_2 , а \overrightarrow{i} $\uparrow\uparrow$ $\overrightarrow{OF_1}$, гипербола имеет уравнение:

$$\left[rac{x^2}{a^2} - rac{y^2}{b^2} = 1 <$$
- каноническое уравнение эллипса $\left[
ho rge b^2 = c^2 - a^2
ight]$

10.2.2 Геометрические свойства

- Внутри полосы ограниченой $x = \pm a$ точек гиперболы нет.
- Гипербола, заданая каноническим уравнением симметрична относительно начала координат и осей координат. Центр симметрии является центром гиперболы, ось проходящая через фокусы, называется первой или фокальной осью симметрии, а перпендикая ей второй или мнимой осью симметрии.
- Фокальная ось симметрии пересекает гиперболу в двух точках $A_1(a,0), A_2(-a,0)$. Вторая ось симметрии не пересекает гиперболу. Точки A_1 и A_2 называются вершинами гиперболы, а отрезок A_1A_2 действиетльной осью. Числа а и в называются соответсвтеноо действительной и мнимой полуосями гиперболы.

Ассимптотами гиперболы называются прямые, к которым неограничено приблежается гипербола, при неограниченом возрастании абсцисс ее точек.

10.3. ПАРАБОЛА 33

 $y=\pm rac{b}{z}x<$ - уравнения асимптот | **Эксцентриситетом** гиперболы называется отношение фокального расстояния гиперболы к ее большой оси:

 $\mathcal{E} = \frac{c}{a}$

 $\overline{\text{Отсюда}}$ следует, что $\mathcal{E}{>}1$

Чем больше эксцентриситет, тем гипербола "шире".

Гипербола, полуоси которой равны (a=b), называется равностононней. Ее каноническое уравнение имеет вид: $x^2 - y^2 = a^2$

Эксентриситет любой равносторонней гиперболы равен $\sqrt{2}$. Асимптотами равносторонней гиперболы являются биммектрисы координатных углов у=х и у=-х.

Равносторонняя гипербола является графиком функции обратной пропорциональности. Дирректрисами гиперболы называются две прямые, параллельные второй оси и отстоящие от нее на расстоянии $\frac{a}{\mathcal{E}}$, где а - действительная полуось, а \mathcal{E} - эксцентри-

 $x=\pm rac{a}{\mathcal{E}}<$ - уравнения директрис

Директрисы гиперболы не пересекают ее.

10.3 Парабола

10.3.1 Основные факты

Параболой называется множество всех точек плоскости, равноудаленных от фиксированной точки F, называемой фокусом, и фиксированной прямой d, называемой директрисой. Расстояние от фокуса до директрисы называется фокальным параметром параболы и обозначается через р. Очевидно, p=FD, где D - проекция точки F на прямую d.

Если М - точка данной параболы, то отрезок FM называется фокальным радиусом точки

По определению, для любой точки М параболы $FM = \rho(M,d)$

В прямоугольной системе координат $O_{\overrightarrow{i}\overrightarrow{j}},$ где O - середина отрезка DF, а \overrightarrow{i} $\uparrow\uparrow$ $\overrightarrow{OF},$ парабола имеет уравнение:

 $y^2=2px<$ - Каноническое уравнение параболы $x = -\frac{p}{2} <$ - Уравнение директрисы параболы Фокус имеет координаты $F(\frac{p}{2},0)$

10.3.2 Геометрические свойства

- Все точки параболы принадлежат полуплоскости $x\geqslant 0$
- Прямая ОF является осью симметрии параболы и называется осью параболы. Центров симметрии парабола не имеет. Точка О пересечения оси с параболой называется ее вершиной.
- Оси выбраной системы координат имеют только одну общую точку с параболой ее вершину. Любая другая прямая 1 проходящая через точку О, пересекает параболу в двух точках.

Чем больше фокальный параметр параболы, тем больше парабола "вытянута"вдоль оси Oy.

Точки параболы обладают свойством, аналогичным свойству точек эллипса (гиперболы): отношение расстояний от каждой точки параболы до фокуса к расстоянию от нее до директрисы - постоянно: для параболы это отношение равно 1, по этому "единица эксцентриситет любой параболы.