Matemática IV - Funções de Variáveis Complexas Prof. Gabriel Ponce

RA (Legível):

1	2	3	4	5	Total	

Observação:

- 1) Este simulado é formado através de um banco de problemas selecionado pelo docente e não necessariamente tem relação com formato, nível de dificuldade, ou qualquer outro aspecto das provas de MA044/Funções de Variável Complexa na sua disciplina. Use este simulado apenas como uma forma adicional de estudo.
- 2) Não se esqueça de verificar as hipóteses dos teoremas necessários antes de aplica-los.
- 3) Justifique bem suas soluções.

Simulado de Matemática IV - Funções de Variáveis Complexas

Prof. Gabriel Ponce

- 1. a) (1.5) Seja $z = 1 + \sqrt{3} \cdot i$. Determine z^{2019} . Obs: coloque o resultado final na forma x + iy.
 - **b)** (1.0) Sejam $a, b, c \in \mathbb{C}$ tais que:

$$|c - a| = |c - b| = \frac{|a - b|}{2}.$$

Prove que, para todo número complexo $z \in \mathbb{C}$ temos:

$$|z - a| \cdot |z - b| \ge \left(|z - c| - \frac{|a - b|}{2}\right)^2$$

- 2. Prove que dois números complexos não nulos z_1 e z_2 tem o mesmo módulo se, e somente se, existem números complexos c_1 e c_2 tais que $z_1=c_1c_2$ e $z_2=c_1\overline{c_2}$.
- 3. a) Use a fórmula binomial e a fórmula de Moivre para escrever

$$\cos n\theta + i \sin n\theta = \sum_{k=0}^{n} {n \choose k} \cos^{n-k} \theta (i \sin \theta)^k,$$

n=0,1,2,... Defina o inteiro m da seguinte forma: m=n/2 se n é par e m=(n-1)/2 caso n seja ímpar. Mostre que

$$\cos n\theta = \sum_{k=0}^{m} {n \choose 2k} \cos^{n-2k} \theta \cdot (-1)^k \cdot \sin^{2k} \theta,$$

 $n=0,1,2,\ldots.$

b) Escreva $x = \cos \theta$ na somatória do final da parte (a). Mostre que fazendo essa substituição, $\cos n\theta$ vira um polinômio em x:

$$T_n(x) = \sum_{k=0}^{m} {n \choose 2k} x^{n-2k} (1-x^2)^k,$$

 $n = 0, 1, 2, \dots$