Show that $\lim_{x\to 0} \sin(1/x)$ does not exist.

Solution. Suppose, to the contrary, that there exists an $L \in \mathbb{R}$ such that $L = \lim_{x \to 0} \sin(1/x)$. Let $\epsilon = 1/2$; then there exists a $\delta > 0$ such that $|\sin(1/x) - L| < \epsilon = 1/2$. According to the Archimedean property of the real numbers, there exists $n \in \mathbb{N}$ such that

$$\frac{1}{2n\pi + \pi/2} < \frac{1}{2n\pi} < \delta.$$

If $x = \frac{1}{2n\pi}$, $|\sin(1/x) - L| = |L| < 1/2$. If $x = \frac{1}{2n\pi + \pi/2}$, $|\sin(1/x) - L| = |1 - L| < 1/2$. There is no real number L satisfying both |L| < 1/2 and |1 - L| < 1/2, so our assumption leads to a contradiction. Therefore, $\lim_{x \to 0} \sin(1/x)$ does not exist.

2 Thomae's function, also known as the ruler function, is defined as

25 pts

$$f(x) = \begin{cases} 1/q & \text{if } x = p/q \text{ (x is rational), with } p \in \mathbb{Z} \text{ and } q \in \mathbb{N} \text{ coprime,} \\ 0 & \text{if x is irrational.} \end{cases}$$

Since every rational number has a unique representation with coprime $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, the function is well-defined. Note that q = 1 is the only number in \mathbb{N} that is coprime to p = 0. Prove the following properties of this function.

(a) f is **periodic** with period 1: f(x+n) = f(x) for all integer n and all real x.

Solution. For all $x \in \mathbb{R} \setminus \mathbb{Q}$, f(x+n) = f(x) = 0, since $(x+n) \in \mathbb{R} \setminus \mathbb{Q}$ implies $x \in \mathbb{R} \setminus \mathbb{Q}$. For all $x \in \mathbb{Q}$, there exists a unique pair of coprime integers $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ such that x = p/q. Consider x + n = (p + nq)/q. If d divides p and q, it divides p + nq and p. Conversely, if d divides p + nq and q, it divides (p + nq) - nq = q and p. Hence, $\gcd(p + nq, q) = \gcd(p, q) = 1$. Therefore, f(x + n) = 1/q = f(x).

(b) f is **discontinuous** at all rational numbers.

Solution. Assume an arbitrary rational c = p/q, with a unique pair of coprime integers $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Then f(c) = 1/q. Pick $\epsilon = 1/(2q)$. No matter how small $\delta > 0$ is taken, there is an irrational number $x \in (c - \delta, c + \delta)$ which implies

$$|f(x) - f(c)| = \left| 0 - \frac{1}{q} \right| = \frac{1}{q} > \frac{1}{2q} = \epsilon.$$

Therefore, f is discontinuous on \mathbb{Q} .

 $\frac{\text{(c)}}{\text{6 pts}} f \text{ is continuous at all irrational numbers.}$

Solution. Since f is periodic with period 1, and $0 \in \mathbb{Q}$, it suffices to check all irrational points in the interval [0, 1]. Assume an arbitrary irrational $c \in [0, 1] \setminus \mathbb{Q}$. Then f(c) = 0. Let $\epsilon > 0$ be given. According to the Archimedean property of the real numbers, there exists $k \in \mathbb{N}$ such that $1/k < \epsilon$. Define a set S as

$$S = \left\{ r \in [0, 1] \cap \mathbb{Q} \mid f(r) \ge \frac{1}{k} \right\}.$$

There exist only finitely many rational numbers (reduced to lowest terms) in I having denominator not greater than k, so the set S is finite. Take $\delta = \min\{|c-r| : r \in S\}$. Then,

$$|x - c| < \delta \implies |f(x) - f(c)| \le \frac{1}{k} < \epsilon.$$

Therefore, f is continuous on $\mathbb{R} \setminus \mathbb{Q}$.

 $\frac{\text{(d)}}{\text{5 pts}} f \text{ is nowhere differentiable.}$

Solution. For rational numbers, this follows from discontinuity. Let $x \in \mathbb{R} \setminus \mathbb{Q}$, and let $\delta > 0$ be given. By Archimedes' principle, choose $q \in \mathbb{N}$ such that $1/q < \delta$. Also, there exists $p \in \mathbb{Z}$ such that $p-1 \le qx < p$. Then $x < r = p/q \le x + 1/q$ implies $r \in N(x, \delta) \cap \mathbb{Q}$ and $f(r) \ge 1/q$. We have

$$\left| \frac{f(r) - f(x)}{r - x} \right| \ge 1,$$

but for $y \in N(x, \delta) \setminus \mathbb{Q}$,

$$\left| \frac{f(y) - f(x)}{y - x} \right| = 0.$$

Therefore, the limit $\lim_{t\to x} \frac{f(t)-f(x)}{t-x}$ does not exist, so f is not differentiable on $\mathbb{R}\setminus\mathbb{Q}$.

(e) f is Riemann integrable on any interval and the integral evaluates to 0 over any set.

Solution. We will check Riemann integrability of Thomae's function over an arbitrary interval [a, b]. Let $\epsilon > 0$ be given. According to Archimedean property of the real numbers, there exists $k \in \mathbb{N}$ such that $\frac{1}{k} < \frac{\epsilon}{2(b-a)}$. Define a set S as

$$S = \left\{ r \in \mathbb{Q} \cap [a, b] \mid f(r) \ge \frac{1}{k} \right\}.$$

There exist only finitely many rational numbers (reduced to lowest terms) in [a, b] having denominator not greater than N, so the set S is finite. Let $\{y_1, y_2, \dots, y_n\}$ be an enumeration of points in S such that $0 < y_1 < y_2 < \dots < y_n = 1$. Choose partition points $x_0, x_1, x_2, \dots, x_{2n}$ such that

$$0 = x_0 < x_1 < y_1 < x_2 < x_3 < y_2 < x_4 < \dots < x_{2n-1} < y_n = x_{2n} = 1$$

and such that $y_j - \frac{\epsilon}{4n} < x_{2j-1} < y_j \le x_{2j} < y_j + \frac{\epsilon}{4n}$ so that $\sum_{j=1}^n \Delta x_{2j} < \sum_{j=1}^n \frac{\epsilon}{2n} < \frac{\epsilon}{2}$.

$$U(f, P) - L(f, P) = \sum_{j=1}^{n} \sup f([x_{2j-1}, x_{2j}]) \Delta x_{2j} + \sum_{j=0}^{n-1} \sup f([x_{2j}, x_{2j+1}]) \Delta x_{2j+1}$$

$$< \sum_{j=1}^{n} \Delta x_{2j} + \frac{\epsilon}{2(b-a)} \sum_{j=0}^{n-1} \Delta x_{2j+1}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2(b-a)} \times (b-a) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

For any refinement P of P_0 , $U(f,P)-L(f,P)=U(f,P)\leq U(f,P)<\epsilon$. Therefore, f is Riemann integrable on [a,b]. Since L(f,P) is always zero, $\int_a^b f(x)\,dx=0$.

3 Let \mathscr{R} denote the set of all Riemann integrable functions. If two functions $f \in \mathscr{R}$ and $g \in \mathscr{R}$, 10 pts then the composition $f \circ g \in \mathcal{R}$? If true, prove it; if false, give a counterexample.

Solution. False. Let

$$f(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x \le 0 \end{cases}$$

and

$$g(x) = \begin{cases} 1/q & \text{if } x = p/q \text{ (x is rational), with } p \in \mathbb{Z} \text{ and } q \in \mathbb{N} \text{ coprime,} \\ 0 & \text{if x is irrational.} \end{cases}$$

These functions f and g are both Riemann integrable, but the composition $f \circ g$ is the Dirichlet function

$$(f \circ g)(x) = \begin{cases} 1 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational,} \end{cases}$$

which is **NOT** Riemann integrable. Therefore, a composition of two Riemann integrable functions is not necessarily Riemann integrable.

4 Show that $\frac{\sin x_2 - \sin x_1}{x_2 - x_1}$ does **NOT** attain neither maximum nor minimum values for two distinct arbitrary real numbers x_1 and x_2 .

Solution. By the mean value theorem, there exists a $c \in \mathbb{R}$ strictly between x_1 and x_2 such that

$$\left| \frac{\sin x_2 - \sin x_1}{x_2 - x_1} \right| = \left| \cos c \right| \le 1.$$

Let $x_1 = 0$. Taking limits where $x_2 = x$ approaches to 0, we have

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

1 is the only possible maximum value. Assume, for the sake of contradiction, there exist two distinct real numbers x_1 and x_2 such that

$$\begin{split} \frac{\sin x_2 - \sin x_1}{x_2 - x_1} &= 1, \\ \sin x_2 - \sin x_1 &= x_2 - x_1, \\ \sin x_1 - x_1 &= \sin x_2 - x_2. \end{split}$$

Let $f(x) = \sin x - x$. To check if f is injective, one evaluates its derivative $f'(x) = \cos x - 1 \le 0$. f is strictly decreasing because f'(x) < 0 almost everywhere. f is injective, so there exist no such two distinct real numbers. Thus, $\frac{\sin x_2 - \sin x_1}{x_2 - x_1}$ does **NOT** attain a maximum value. Similarly, one can also prove that it does **NOT** attain a minimum value either.

5 Show that $\cosh(\sinh x) < \sinh(\cosh x)$ for any real number x.

10 pts

Solution. The inequality trivially holds for x = 0 because

$$\cosh(\sinh 0) = \cosh 0 = 1 < \sinh 1 = \sinh(\cosh 0).$$

Plugging -x to x gives the same inequality, so it is enough to show that the inequality holds for any positive number x. It follows from

$$\begin{split} e^{y} - 1 &= \int_{0}^{y} e^{t} dt \\ &> \int_{0}^{y} (1 + t) dt \\ &> \int_{0}^{y} \left(1 + \frac{t}{\sqrt{1 + t^{2}}} \right) dt \\ &= y + \sqrt{1 + y^{2}} - 1 \end{split}$$

that $e^y > y + \sqrt{1+y^2}$ for any positive number y. By the mean value theorem, there exists a $c \in (y, \sqrt{1+y^2})$ such that

$$\sinh \sqrt{1+y^2} - \sinh y = \left(\sqrt{1+y^2} - y\right) \cosh c$$

$$= \frac{\cosh c}{\sqrt{1+y^2} + y}$$

$$> e^{-y} \cosh y$$

$$\ge e^{-y}$$

$$= \cosh y - \sinh y.$$

Therefore, $\cosh y < \sinh \sqrt{1+y^2}$. Letting $y = \sinh x$ gives $\cosh(\sinh x) < \sinh(\cosh x)$.

6 Evaluate the following integrals.

25 pts

Solution. Using the substitution $x = \tan t$, we have

$$\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\sec^2 t} \sec^2 t dt = t + C = \tan^{-1} x + C.$$

(b)
$$\int \frac{1}{ax^2 + bx + c} dx$$
 $(b^2 - 4ac < 0)$

Solution. Since $b^2 - 4ac < 0$, we have $a \neq 0$ and $c \neq 0$. Let $p = \frac{b}{2a}$ and $q = \frac{4ac - b^2}{4a^2}$, then

$$\int \frac{1}{ax^2 + bx + c} \, dx = \frac{1}{a} \int \frac{1}{\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}} \, dx = \frac{1}{a} \int \frac{1}{(x+p)^2 + q} \, dx.$$

Using the substitution $x + p = \sqrt{q} \tan t$, we have

$$\begin{split} \frac{1}{a} \int \frac{1}{(x+p)^2 + q} \, dx &= \frac{1}{a} \int \frac{1}{q \sec^2 t} \sqrt{q} \sec^2 t \, dt \\ &= \frac{t}{a\sqrt{q}} + C \\ &= \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \left(\frac{x+p}{\sqrt{q}} \right) + C \\ &= \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \left(\frac{2ax + b}{\sqrt{4ac - b^2}} \right) + C. \end{split}$$

6

$$\frac{\mathbf{(c)}}{15 \text{ pts}} \int \sqrt{\tan x} \, dx$$

Solution 1. Using the substitution $\tan x = t^2$, we have $dx = \frac{2t}{t^4 + 1}dt$, and

$$\int \sqrt{\tan x} \, dx = 2 \int \frac{t^2}{t^4 + 1} \, dt$$

$$= 2 \int \frac{t^2}{\left(t^2 - \sqrt{2}t + 1\right) \left(t^2 + \sqrt{2}t + 1\right)} \, dt$$

$$= \frac{1}{\sqrt{2}} \int \left(\frac{t}{t^2 - \sqrt{2}t + 1} - \frac{t}{t^2 + \sqrt{2}t + 1}\right) \, dt.$$

Now solving: $\int \frac{t}{t^2 - \sqrt{2}t + 1} dt$

$$\int \frac{t}{t^2 - \sqrt{2}t + 1} dt = \int \frac{\frac{1}{2} (2t - \sqrt{2}) + \frac{1}{\sqrt{2}}}{t^2 - \sqrt{2}t + 1} dt$$

$$= \frac{1}{2} \int \frac{2t - \sqrt{2}}{t^2 - \sqrt{2}t + 1} dt + \frac{1}{\sqrt{2}} \int \frac{1}{t^2 - \sqrt{2}t + 1} dt$$

$$= \frac{1}{2} \ln (t^2 - \sqrt{2}t + 1) + \tan^{-1} (\sqrt{2}t - 1) + C_1.$$

Now solving: $\int \frac{t}{t^2 + \sqrt{2}t + 1} dt$

$$\int \frac{t}{t^2 + \sqrt{2}t + 1} dt = \int \frac{\frac{1}{2} (2t + \sqrt{2}) - \frac{1}{\sqrt{2}}}{t^2 + \sqrt{2}t + 1} dt$$

$$= \frac{1}{2} \int \frac{2t + \sqrt{2}}{t^2 + \sqrt{2}t + 1} dt - \frac{1}{\sqrt{2}} \int \frac{1}{t^2 + \sqrt{2}t + 1} dt$$

$$= \frac{1}{2} \ln (t^2 + \sqrt{2}t + 1) - \tan^{-1} (\sqrt{2}t + 1) + C_2.$$

Plugging in solved integrals, we have

$$\int \sqrt{\tan x} \, dx = \frac{1}{2\sqrt{2}} \ln \left(\frac{\tan x - \sqrt{2 \tan x} + 1}{\tan x + \sqrt{2 \tan x} + 1} \right) + \frac{1}{\sqrt{2}} \left[\tan^{-1} \left(\sqrt{2 \tan x} + 1 \right) + \tan^{-1} \left(\sqrt{2 \tan x} - 1 \right) \right] + C.$$

Solution 2. Let $I = \int \sqrt{\tan x} \, dx$, $J = \int \sqrt{\cot x} \, dx$. Using the substitution $\tan x = t^2$, we have $dx = \frac{2t}{t^4 + 1} dt$, and

$$I + J = \int \left(t + \frac{1}{t}\right) \frac{2t}{t^4 + 1} dt$$

$$= 2 \int \frac{1 + \frac{1}{t^2}}{\left(t - \frac{1}{t}\right)^2 + 2} dt$$

$$= 2 \int \frac{\sqrt{2} \sec^2 u}{2 \sec^2 u} du \qquad \left(t - \frac{1}{t} = \sqrt{2} \tan u\right)$$

$$= \sqrt{2}u + C_1$$

$$= \sqrt{2} \tan^{-1} \left(\frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}}\right) + C_1.$$

Also,

$$I - J = \int \left(t - \frac{1}{t}\right) \frac{2t}{t^4 + 1} dt$$

$$= 2 \int \frac{1 - \frac{1}{t^2}}{\left(t + \frac{1}{t}\right)^2 - 2} dt$$

$$= 2 \cdot \frac{1}{2\sqrt{2}} \int \left(\frac{1}{u - \sqrt{2}} - \frac{1}{u + \sqrt{2}}\right) du \qquad \left(t + \frac{1}{t} = u \ge 2\right)$$

$$= \frac{1}{\sqrt{2}} \ln\left(\frac{u - \sqrt{2}}{u + \sqrt{2}}\right) + C_2$$

$$= \frac{1}{\sqrt{2}} \ln\left(\frac{\sqrt{\tan x} + \sqrt{\cot x} - \sqrt{2}}{\sqrt{\tan x} + \sqrt{\cot x} + \sqrt{2}}\right) + C_2.$$

Therefore,

$$I = \frac{(I+J) + (I-J)}{2},$$

$$\therefore \int \sqrt{\tan x} \, dx = \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\tan x - 1}{\sqrt{2 \tan x}} \right) + \frac{1}{2\sqrt{2}} \ln \left(\frac{\tan x - \sqrt{2 \tan x} + 1}{\tan x + \sqrt{2 \tan x} + 1} \right) + C.$$

8

Solution 3. Let $I = \int \sqrt{\tan x} \, dx$, $J = \int \sqrt{\cot x} \, dx$. For x such that both $\sin x$ and $\cos x$ are positive,

$$J + I = \int \frac{\cos x + \sin x}{\sqrt{\cos x \sin x}} dx$$

$$= \int \frac{\cos x + \sin x}{\sqrt{\frac{1 - (\sin x - \cos x)^2}{2}}} dx$$

$$= \sqrt{2} \int \frac{1}{\sqrt{1 - t^2}} dt \qquad (\sin x - \cos x = t)$$

$$= \sqrt{2} \sin^{-1} t + C_1$$

$$= \sqrt{2} \sin^{-1} (\sin x - \cos x) + C_1.$$

Also,

$$J - I = \int \frac{\cos x - \sin x}{\sqrt{\cos x \sin x}} dx$$

$$= \int \frac{\cos x - \sin x}{\sqrt{\frac{(\sin x + \cos x)^2 - 1}{2}}} dx$$

$$= \sqrt{2} \int \frac{1}{\sqrt{t^2 - 1}} dt \qquad (\sin x + \cos x = t)$$

$$= \sqrt{2} \cosh^{-1} t + C_2$$

$$= \sqrt{2} \cosh^{-1} (\sin x + \cos x) + C_2.$$

For x such that both $\sin x$ and $\cos x$ are negative, $\sqrt{\sin x} \sqrt{\cos x} = -\sqrt{\sin x \cos x}$. Therefore,

$$\begin{split} I &= \frac{(J+I) - (J-I)}{2}, \\ &\therefore \int \sqrt{\tan x} \, dx \\ &= C + \begin{cases} \frac{1}{\sqrt{2}} \left[\sin^{-1}(\sin x - \cos x) - \cosh^{-1}(\sin x + \cos x) \right] & \text{if } \sin x > 0 \text{ and } \cos x > 0, \\ -\frac{1}{\sqrt{2}} \left[\sin^{-1}(\sin x - \cos x) + \cosh^{-1}(-\sin x - \cos x) \right] & \text{if } \sin x < 0 \text{ and } \cos x < 0. \end{cases} \end{split}$$

9