Storage Systems (3)

Dr. Jun Zheng
CSE325 Principles of Operating
Systems
12/2/2019

Availability

- *Module availability* measures service as alternate between the 2 states of accomplishment and interruption (number between 0 and 1, e.g. 0.9)
- Mean Time To Repair (MTTR) measures
 Service Interruption
- Mean Time Between Failures (MTBF) = MTTF+MTTR
- Module availability = MTTF / (MTTF + MTTR)

Dependability of Disk Arrays

- □ with many more devices, dependability decreases: N devices generally have 1/Nth of the reliability of a single device.
 - ☐ Reliability metric: MTTF
 - □ 50,000 Hours ÷ 70 disks = 700 hours
 - ☐ Disk system MTTF: Drops from 6 years to 1 month!
- ☐ Result: disk array have many more faults than a small number of large disks

RAID

☐ Add redundant disks to tolerate faults: ☐ Dependability increases ☐ If a single disk fails: the lost information is reconstructed from the redundant information ☐ RAID: redundant array of inexpensive disks ☐ Spread the data over multiple disks: striping ☐ If second disk fail while the first one is being repaired, cannot recover □ Not a problem: MTTF of a disk is tens of years, while MTTR is hours -> redundancy makes the measured reliability of 100 disks much higher than that of a single disk ☐ Different RAID levels: 0 - 6

RAID o - No Redundancy

- ☐ Data are striped but there is no redundancy to tolerate disk failure
 - ☐ Data is divided into blocks and is spread in a fixed order among all the disks in the array.
- ☐ Improves the performance for large access because many disks operate in parallel
- ☐ No space overhead, no fault tolerance

Disk 0	Disk l	Disk 2	Disk 3	Disk 4
Block 1	Block 2	Block 3	Block 4	Block 5
Block 6	Block 7	Block 8	Block 9	Block 10
Block 11	Block 12	Block 13	Block 14	Block 15
Block 16	Block 17	Block 18	Block 19	Block 20
Block 21	Block 22	Block 23	Block 24	Block 25/

RAID 1: Disk Mirroring/Shadowing

- ☐ The disk is fully duplicated onto its "mirror" (or more)
 - ☐ Very high availability can be achieved
- ☐ Bandwidth sacrifice on write:
 - ☐ Logical write = two physical writes
 - ☐ Reads may be optimized
- ☐ Most expensive solution: 100% capacity overhead
- ☐ (RAID 2 no longer used, so skip)

RAID 0+1

RAID 1+0

RAID 3 – Parity Disk (Bit-Interleaved)

10010011 11001101 10010011

logical record

Striped physical records

P contains sum of other disks per stripe mod 2 ("parity") If disk fails, subtract P from sum of other disks to find missing information

RAID 3 – Parity Disk

- ☐ Sum computed across recovery group to protect against hard disk failures, stored in P disk
- ☐ Logically, a single high capacity, high transfer rate disk: good for large transfers
- ☐ Wider arrays reduce capacity costs
 - □ 33% capacity cost for parity if 3 data disks and 1 parity disk

Inspiration for RAID 4 (Block-interleaved)

- ☐ RAID 3 relies on parity disk to discover errors on Read
- ☐ But every sector has an error detection field
- ☐ To catch errors on read, rely on error detection field vs. the parity disk
- ☐ Allows independent reads to different disks simultaneously

RAID 4 – High I/O Rate Parity

Inspiration for RAID 5

- □ RAID 4 works well for small reads
- ☐ Small writes (write to one disk):
 - ☐ Option 1: read other data disks, create new sum and write to Parity Disk
 - ☐ Option 2: since P has old sum, compare old data to new data, add the difference to P
- ☐ Small writes are limited by Parity Disk: Write to Do, D5 both also write to P disk

Problems of Disk Arrays: Small Writes

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

RAID 5 – High I/O Interleaved Parity

