Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

February 23, 2015

Today:

- Graphical models
- Bayes Nets:
 - Representing distributions
 - Conditional independencies
 - Simple inference
 - Simple learning

Readings:

- Bishop chapter 8, through 8.2
- Mitchell chapter 6

Conditional Independence, Revisited

- We said:
 - vve sald: Each node is conditionally independent of its non-descendents, given its immediate parents.
- Does this rule give us all of the conditional independence relations implied by the Bayes network?
 - No!

给成化为,那么从水平的地工

- E.g., X1 and X4 are conditionally indep given {X2, X3}
- But X1 and X4 not conditionally indep given X3 1具另先定分,X1,X4不斜约2

For this, we need to understand D-separation

Easy Network 1: Head to Tail

prove A cond indep of B given C?

ie.,
$$p(a,b|c) = p(a|c) p(b|c) = -344 \frac{1}{2}$$

ないからい =
$$\frac{P(a|b|c)}{P(c)} = \frac{P(a|b|c)}{P(b|c)} = \frac{P(a)P(c|a)P(b|c)}{P(c)} = \frac{P(a|b|c)}{P(c|a)P(b|c)}$$

立物が立: $P(a|b) = \mathbb{E}P(a|b|c) = \mathbb{E}P(a)P(c|a)P(b|c)$ 本流化節指

$$\mathbb{E}P(a|b|c) = \mathbb{E}P(a|b|c) = \mathbb{E}P(a)P(c|a)P(b|c) \neq \mathbb{E}P(a|P(b))$$

Easy Network 2: Tail to Tail

prove A cond indep of B given C? ie., p(a,b|c) = p(a|c) p(b|c) $P(a,b|c) = \frac{P(c)P(a|c)P(b|c)}{P(c)}$ = P(a|c)P(b|c)

Easy Network 3: Head to Head

prove A cond indep of B given C? ie., p(a,b|c) = p(a|c) p(b|c)

$$\frac{P(a,b,c)}{P(c)} = \frac{P(a,b,c)}{P(c)} = \frac{P($$

Easy Network 3: Head to Head

prove A cond indep of B given C? NO!

Summary:

- p(a,b)=p(a)p(b)
- p(a,b|c) NotEqual p(a|c)p(b|c)

e.g.,

- A=earthquake)原本不相关
- B=breakIn
- 故的不再独立。

X and Y are conditionally independent given Z, if and only if X and Y are D-separated by Z.

[Bishop, 8.2.2]

Suppose we have three sets of random variables: X, Y and Z

X and Y are <u>D-separated</u> by Z (and therefore conditionally indep, given Z) iff every path from every variable in X to every variable in Y is <u>blocked</u>
被观测的相当预制.

A path from variable X to variable Y is **blocked** if it includes a node in Z such that either

 $A \longrightarrow Z \longrightarrow B$ $A \longleftarrow Z \longrightarrow B$

- 1. arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z
- 2. or, the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z

为分分通过三相连可能有舒通路了有都满足才能说明加强。

X and Y are <u>**D-separated**</u> by Z (and therefore conditionally indep, given Z) iff every path from every variable in X to every variable in Y is <u>**blocked**</u>

A path from variable A to variable B is **blocked** if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z

2.or, the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z

X and Y are **D-separated** by Z (and therefore conditionally indep, given Z) iff every path from any variable in X to any variable in Y is **blocked** by Z

A path from variable A to variable B is **blocked** by Z if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z \nearrow B \nearrow A \longrightarrow Z \longrightarrow B

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z

X and Y are **D-separated** by Z (and therefore conditionally indep, given Z) iff every path from any variable in X to any variable in Y is **blocked**

A path from variable A to variable B is **blocked** if it includes a node such that either

- 1. arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z
- 2. or, the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z

a indep of b given c? $\sqrt{}$ a indep of b given f? $\sqrt{}$

D-separation

 \mathbf{Q} : When are nodes X independent of nodes Y given nodes E?

A: When every undirected path from a node in X to a node in Y is descent separated by E.

Markov Blanket 马尔可夫毯

The Markov blanket of a node x_i comprises the set of parents, children and co-parents of the node. It has the property that the conditional distribution of x_i , conditioned on all the remaining variables in the graph, is dependent only on the variables in the Markov blanket.

from [Bishop, 8.2]

What You Should Know

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- BN = Graph plus parameters of CPD's
 - Defines joint distribution over variables
 - Can calculate everything else from that
 - Though inference may be intractable
- Reading conditional independence relations from the graph
 - Each node is cond indep of non-descendents, given only its parents
 - X and Y are conditionally independent given Z if Z D-separates every path connecting X to Y
 - Marginal independence : special case where Z={}

Inference in Bayes Nets

タイプは実存は対数上す。 P(X) (を) = 国(X1, X2 X3, … Xn) In general, intractable (NP-complete)

For certain cases, tractable

- Assigning probability to fully observed set of variables
- Or if just one variable unobserved
- Or for singly connected graphs (ie., no undirected loops)
 - 线性》村 Belief propagation
- Sometimes use Monte Carlo methods 弄羊 (但异样也是解 Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions

Example

- Bird flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose

Prob. of joint assignment: easy

 Suppose we are interested in joint assignment <F=f,A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?=P(f)P(a)P(s|f,a)P(h|s)P(n|s)~火灰球站. P(f|a|s,h)=P(f|a|s,h,h|)=P(f|a|s,h,N=1)+P(f|a|s,h,N=9)=> 8次来话

P(H)= 写h, P(f, A=9, S=s, H=h, N=n)=>时间爆炸; 2x4次新酒 有4个值没被观测=>24个式3相加=>2t(n-1)次乘法.

Prob. of marginals: not so easy

How do we calculate P(N=n)?

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

Hint: random sample of F according to $P(F=1) = \theta_{F=1}$:

- draw a value of r uniformly from [0,1]
- if r<θ then output F=1, else F=0

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

Hint: random sample of F according to $P(F=1) = \theta_{F=1}$:

- draw a value of r uniformly from [0,1]
- if r<θ then output F=1, else F=0

Solution:

- draw a random value f for F, using its CPD
- then draw values for A, for S|A,F, for H|S, for N|S

Generating a sample from joint distribution: easy

Note we can estimate marginals

like P(N=n) by generating many samples

from joint distribution, then count the fraction of samples

for which N=n

Similarly, for anything else we care about
$$P(F=1|H=1, N=0) = \frac{P(F=1, H=1, N=0)}{P(H=1, N=0)} = \frac{P(F=1, H=1, N=0)}{P(H=1, N=0)} = \frac{P(F=1, H=1, N=0)}{P(H=1, N=0)} = \frac{P(F=1, H=1, N=0)}{P(H=1, N=0)}$$

→ weak but general method for estimating <u>any</u> probability term...

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - Variable elimination
 - Belief propagation
- Often use Monte Carlo methods
 - e.g., Generate many samples according to the Bayes Net distribution, then count up the results
 - Gibbs sampling
- Variational methods for tractable approximate solutions

see Graphical Models course 10-708

罗斯人网络 无同有科图 可以有环

组:可以直接相连点组合. 为1. X4不直接相连

$$\phi_c(x_c) = e$$
 $Z = \sum_{n=0}^{\infty} \phi_n(x_c)$

规范系数

 $\frac{1}{2} \operatorname{Energy} Function$ $\frac{1}{2} \operatorname{Energy} Function$

Nouse Carlo

SGND: 军特方法, 第441个特本根据非科本案样.

Yrt1 = かと一学以下(x)+も、 そんが(v,d) 双超多数。