İTMO

THE MOVIE DATABASE ANALYSIS

From Collection to Insight

COURSE:

BIG DATA & TECHNOLOGIES

PRESENTED BY:

SYED MUHAMMAD SHAJEE RAZA ABU BAKAR

SYSTEM OVERVIEW

OBJECTIVE

Leverage big data technologies to analyze TMDB movie records, identify trends, and build a predictive model forecasting popular genres for 2026 using machine learning.

Why TMDB?

TMDB (The Movie Database) is used because it provides rich, accurate, and up-to-date data about movies, TV shows, and cast details. It's a reliable source for building entertainment-related applications or analyses.

Data Gathering from TMDB API - Foundation for Big Data Processing

From raw movie data to meaningful insights – this **5Vs** breakdown shows how we turned millions of TMDB records into a clean, powerful dataset ready for analytics, recommendations, and smart decision-making.

VOLUME	VARIETY	VELOCITY	VERACITY	VALUE
Extracted: 15 Million Movie IDs	Collected: Diverse Fields	9 ' N		Supports analytics, recommendations, and business decisions
Retrieved: 0.4 Million Movies	Metadata: Title, Cast, Crew Roles	Rate Limit Handling, Rate limit of 40 requests per 10 seconds	Retry Logic, Response Filtering	Enables meaningful insights into movie trends, user preferences, and performance metrics
Stored: Parquet Format	Date, Budget, Revenue, Popularity, Vote Count	Parallel Execution for Throughput, via Thread Pooling	Deduplication, Final Validation	High-quality, curated dataset ready for downstream use in BI, ML, or reporting tools

Data Gathering: Tools, Technologies & Methodology | Readiness

Methodology

Why Apache Spark?

- Dataset Size: ~400K movies with ~20+ columns, including financial and textual metadata
- EFFICIENT PROCESSING OF LARGE PARQUET FILES
- DISTRIBUTED COMPUTING FOR FAST TRANSFORMATIONS (E.G., FILTERING, AGGREGATING)

Data Pipeline Overview:

Data Overview:

TOTAL ROWS: ~400,000 TOTAL COLUMNS: 22

STEP	What we did		
Date Parsing	Converted release_date to proper date format and extracted year		
Null Handling	Filtered out invalid budget/revenue/genre values		
Outlier Removal	Removed future years (e.g., 2030), zero-budget movies		
Genre/Cast Splitting	Used split()+ explode()to normalize genres and actors		
Derived Metrics	Created profit and ROI fields for financial analysis		

```
root
               -- id: long (nullable = true)
               |-- title: string (nullable = true)
               |-- original_title: string (nullable = true)
               |-- release date: string (nullable = true)
               -- runtime: long (nullable = true)
               |-- budget: long (nullable = true)
               -- revenue: long (nullable = true)
               -- popularity: double (nullable = true)
               -- vote average: double (nullable = true)
               |-- vote count: long (nullable = true)
               |-- imdb_id: string (nullable = true)
               |-- genres: string (nullable = true)
SCHEMA
               -- production companies: string (nullable = true)
               |-- production countries: string (nullable = true)
               -- spoken_languages: string (nullable = true)
               -- cast: string (nullable = true)
               |-- director: string (nullable = true)
               -- director of photography: string (nullable = true)
               |-- writers: string (nullable = true)
               |-- producers: string (nullable = true)
               |-- music_composer: string (nullable = true)
               -- index level 0 : long (nullable = true)
             Total Rows: 398260
             Total Columns: 22
```

TMDB MOVIE DATASET

OVERVIEW

```
Total Rows (Movies): 398260
Total Columns: 22
Titles Available: 398260 (100.00%)
Contains financial data (budget/revenue): True
Contains genre & cast information: True
```


Top 10 Years by Movie Count:

Top Genres by Count

++	+
genre	total
++	+
Drama	145119
Comedy	85413
Documentary	53778
Romance	37342
Thriller	30707
Action	28979
Horror	27692
Crime	24294
TV Movie	21933
Animation	19409
++	+
only showing	top 10 rows

Genre Proportions by Movie Count

Proportional Distribution of Movie Genres

which actor appeared in the most movies in 2023

·	+
cast_member movie_	count
+	+
Eric Roberts	46
Woo Yeol	25
Yogi Babu	21
Im Tae-mok	21
Min Do-yoon	20
Johny Antony	19
Si Woo	19
Bayoumi Fouad	17
Shawn C. Phillips	17
Shota Umino	17
+	+
only showing top 10 rows	

Genre Popularity Over Time

·		·		
release_year	genre	movie_count		
+		·		
1970	Action	184		
1970	Adventure	147		
1970	Animation	95		
1970	Comedy	542		
1970	Crime	199		
1970	Documentary	180		
1970	Drama	1023		
1970	Family	115		
1970	Fantasy	68		
1970	History	72		
1970	Horror	108		
1970	Music	122		
1970	Mystery	59		
1970	Romance	200		
1970 5	cience Fiction	41		
1970	TV Movie	161		
1970	Thriller	111		
1970	War	89		
1970	Western	72		
1971	Action	214		
+				
only showing top 20 rows				

Note: In the code, while plotting, you have the option to select and plot the data for any year you want.

VISUALIZATIONS

Top movies by revenue over time

VISUALIZATIONS

Budget vs. ROI (Big Data Stats)

	title	budget	revenue	roi	release_year
0	Titanic	\$200,000,000	\$2,264,162,353	1,032%	1997
1	Jurassic World	\$150,000,000	\$1,671,537,444	1,014%	2015
2	Barbie	\$145,000,000	\$1,445,638,421	897%	2023
3	Frozen II	\$150,000,000	\$1,453,683,476	869%	2019
4	Spider-Man: No Way Home	\$200,000,000	\$1,921,847,111	861%	2021
5	Top Gun: Maverick	\$170,000,000	\$1,488,732,821	776%	2022
6	Frozen	\$150,000,000	\$1,274,219,009	749%	2013
7	Inside Out 2	\$200,000,000	\$1,698,863,816	749%	2024
8	Star Wars: The Force Awakens	\$245,000,000	\$2,068,223,624	744%	2015
9	Star Wars: Episode I - The Phantom Menace	\$115,000,000	\$924,317,558	704%	1999

TOP 10 MOVIES BY ROI WITH BUDGET > 100M

GENRE POPULARITY PREDICTION PIPELINE

ML Pipeline

WHAT WE DID:

- DATA CLEANING: PROCESSED ~400K TMDB RECORDS-PARSED DATES, FILTERED YEARS, AND EXPLODED GENRES INTO ROWS.
- FEATURE ENGINEERING (PYSPARK ML): ENCODED GENRES (STRINGINDEXER) AND MERGED FEATURES (VECTORASSEMBLER) FOR ML INPUT.
- MODEL TRAINING (SPARK MLLIB): TRAINED A RANDOM FOREST MODEL (50 TREES) ON GENRE/YEAR DATA, VALIDATED WITH RMSE.
- PREDICTIONS & VIZ (PANDAS/SEABORN): PREDICTED 2026 GENRE POPULARITY AND VISUALIZED THE TOP 10 GENRES WITH STYLED BAR PLOTS.

Top Predicted Genres for 2026 (Popularity Score)

RESULTS

MODEL RMSE = 3.63

"OUR OBJECTIVE WAS TO LEVERAGE BIG DATA TECHNOLOGIES TO ANALYZE TMDB MOVIE RECORDS, IDENTIFY TRENDS, AND BUILD A PREDICTIVE MODEL FORECASTING POPULAR GENRES FOR 2026. WITH THESE RESULTS, WE'VE SUCCESSFULLY EXECUTED THE END-TO-END PIPELINE-FROM DATA PROCESSING TO ACTIONABLE PREDICTIONS."

THANK YOU FOR YOUR TIME!

its More than a UNIVERSITY