

Práctica 6 Modificaciones examen

MIPS multiciclo

Control de excepciones [0,5 puntos]

- Si en el estado S3 el código de operación es desconocido, transitar a un nuevo estado de excepción
 - Permaneceremos en este nuevo estado de excepción de manera permanente y se encenderá uno de los leds de la barra de leds.

- Probar en FPGA que se hace control de excepciones con código de operación desconocido
 - Cambiar el código de operación de alguna de las instrucciones por un con código de operación inexistente (por ejemplo, "111111") o utilizar el programa proporcionado (examenExcepcion.coe)

Instrucción jal (salto incondicional relativo a PC) [0,5 puntos]

– jal dir PC <- PC + 4 + 4 * SignExt(inmed)</p>

Tipo I:						
con memoria						
salto condicional						

- Código de operación: "000011"
- Probar en FPGA que el resultado mostrado por los displays es correcto para los valores introducidos (probar con valores 2 y 5)
 - Utilizar el programa proporcionado (examenJAL.coe)
 - Sigue siendo el mismo algoritmo de multiplicación mediante sumas iterativas de casa que incluye esta nueva instrucción

Instrucciones de desplazamiento [0,5 puntos]

Añadir instrucción desplazamiento a la derecha:

Tipo R: aritmético-lógicas

- Desplaza un bit a la derecha y replica el MSB (despla. aritmético)
- funct: "000000"

Añadir instrucción desplazamiento a la izquierda:

- sll1 rd, rs

Tipo R:

aritmético-lógicas

3	1 26	21	16	11	6	0
	ор	rs	rt	rd	shamt	funct
	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- Desplaza un bit a la izquierda y pone un 0 en el LSB (despla. lógico)
- funct: "000010"

Instrucciones de desplazamiento [0,5 puntos]

- Probar en FPGA que el resultado mostrado por los displays es correcto para los valores introducidos (probar con valores 2 y 5)
 - Utilizar el programa proporcionado (examenSHIFT.coe)
 - En este caso es el algoritmo de multiplicación mediante sumas iterativas que utilizaba desplazamientos

Instrucción mostrar en la barra de leds los 8 LSB de un registro [1 punto]

- Añadir instrucción para mostrar el contenido de un registro en ese instante en la barra de leds:
 - mrl rs leds <- rs[7:0], PC <- PC + 4</p>

- Código de operación : "111100"
- Probar en FPGA que coincide el resultado mostrado por los displays y en la barra de leds para los valores introducidos (probar con valores 2 y 5)
 - Utilizar el programa proporcionado (examenMRL.coe)
 - Sigue siendo el mismo algoritmo de multiplicación mediante sumas iterativas de casa que incluye esta nueva instrucción