Cyber Security Concepts

Lecture-2

Cyber Security: Terminology

- Cyber Space- interconnected digital environment of networks, services, systems, and processes
- Cyber incident- cyber event that involves a loss of information security or impacts business operations
- Cyber insurance: insurance that covers or reduces financial loss to the insured caused by a cyber incident
- Cyber-Physical Systems (CPS): are systems composed of physical systems (hardware), software systems and potentially other types of systems (e.g., human systems). These are closely integrated and networked to deliver some global behaviour.

Cyber Security: Terminology

•Cyber-Physical Systems (CPS): are systems composed of physical systems (hardware), software systems and potentially other types of systems (e.g., human systems). These are closely integrated and networked to deliver some global behaviour.

Cyber Security: Concept

Cyber Security: Concept

What is Software Security?

Software security is a kind of computer security that focuses on the secure design and implementation of software.

Using the best language, tools, methods

•Focus of study:

The Code

Software: Concepts

Software: Concepts

System Software	Application Software	
System software are mainly designed for managing system resources.	Application software are designed to accomplish tasks for specific purposes.	
 Programming of system software is complex. 	 Programming of application software is comparatively easy. 	
A computer cannot run without system software.	A computer can easily run without application software.	
System software do not depend on application software.	 Application software depend on system software and cannot run without system software. 	

Software: Concepts

Software Security vs Application Security

Software Security	Application Security	
Proactive	Reactive	
Build security in	Build security around	
Preventive costs	Corrective costs	
Design for securityTesting for securitySoftware security education	 Network centric approach Protect software after development 	
	 Finding and fixing security issues 	

What is the most effective way to protect software?

©USC-CSSE

What is Network Security?

- Network security:
 - Protection of the underlying networking infrastructure from unauthorized access and misuse.

What is Application Security?

- Application security
 - •aims to protect Software code, Software and hardware system, Data against cyber threats.
 - introduce a secure software development life cycle to development teams.

What is Web Security?

- Process, technology or method for protecting
 - Web servers, web applications, and web services against different security threats that exploit vulnerabilities in an application's code.
 - Critical to the business continuity

The web and the use of DNS services specifically are part of 91% of all malware attacks

Email and web together are a key part for 99% of successful breaches.

- Commonly, prime target by the threat actors
 - Ease of execution

What is Mobile Application Security?

 Mobile app security is the practice of safeguarding high-value mobile applications and your digital identity from fraudulent attack in all its forms.

What is Information Security?

- Information security
 - Protecting information and information systems from unauthorized use, assess, modification or removal.
 - Two sub-categories
 - Physical environment by ensuring the premises is secure
 - No one can access information electronically
 - Concerned with making sure data in any form is kept secure and is a bit more broad than cybersecurity

What is Cyber Security?

Cybersecurity = security of information systems, applications and networks in the face of attacks, accidents and failures with the goal of protecting operations and assets

availability, integrity and secrecy

 Protection of internet-connected systems such as hardware, software and data from cyberthreats

Cyber Security: Concept

Cyber Security: ?

Let's clarify the Network security in brief ...

Network Security: Overview

- Network security:
 - Protection of the underlying networking infrastructure from unauthorized access and misuse.

The web and the use of DNS services specifically are part of 91% of all malware attacks

Email and web together are a key part for 99% of successful breaches.

Network Security: Overview

in Network Protocol layers

Layer	Device / Protocols	Function	Cyberattack / Threat Examples
7. Application	FTP, HTTP, IMAP, SMTP	User interface	Ransomware, Viruses, Worms, Malware, Botnets, Keyloggers,
6. Presentation	JPG, MPEG, PNG	Data format; encryption	Rootkits, ARP Spoofing, Man-in-the-Middle attack, Spyware, Cache Poisoning, DNS-redirecting
5. Session	SQL, RPC, NFS	Process to process communication	
4. Transport	TCP, UDP	End-to-end communication maintenance	RIP Attacks, SYN Flooding
3. Network	L3 Switches, Routers	Routing data, logical addressing, WAN delivery	IP Smurfing, Address spoofing, Misconfigured devices,
2. Data Link	L2 Switches, Bridges	Physical addressing, LAN delivery	Vulnerable old firmwares, Default passwords
1. Physical	Physical cabling	Transmitting bits	Environmental and physical threats: Dust, Water, Rodents

Network Security: Overview

in Network Protocol layers

Network Security: Commonly used placeholders in Security

•Alice and Bob: Alice wants to send a message to Bob

Alice

- Eve: an eavesdropper, is usually a passive attacker
- •Mallory: a malicious attacker; unlike Eve, Mallory can modify messages, substitute her own messages, replay old messages, and so on

Network Security: Overview Issues

- A sends a file to B: E intercepts it and reads it
 - How to send a file that looks gibberish to all but the intended receiver?
- A send a file to B: M intercepts it, modifies it, and then forwards it to B
 - How to make sure that the document has been received in exactly the form it has been sent
- M sends a file to B pretending it is from A
 - How to make sure your communication partner is really who (s)he claims to be
- A sends a message to B: M is able to delay the message for a while
 - How to detect old messages
- A sends a message to B. Later A (or B) denies having sent (received) the message
 - How to deal with electronic contracts
- E learns which user accesses which information although the information itself remains secure
- M prevents communication between A and B: B will reject any message from A because they look unauthentic

- Snooping or Eavesdropping:
 - Threat against confidentiality

- Traffic analysis:
 - Threat against confidentiality

- Masquerade:
 - Threat against Integrity

- Replay:
 - Threat against Integrity

- Modification of message:
 - Threat against Integrity

- Denial of service (DoS):
 - Threat against Availability

References

• Chapter -1: Cryptography and Network Security Principles and Practices, Fourth Edition. By William Stallings.