7-11-2021 16:30

Fall 2021-2022

EEE 313: Electronic Circuit Design Midterm #1

Name and S	urname:
Student ID:	

Signature:

Exam Duration: 120 minutes

Question#	Your score	Out of
1		20
2		15
3		30
4		35
Total:		100

Instructions:

- 1. Calculators without extensive memory are allowed
- 2. Clearly explain all your answers in order to receive credit
- 3. Put a box around your final answer
- 4. Cheat sheets are not allowed
- 5. Indicate the units for your final answers
- 6. Write your student ID on the bottom of every page

- **Q1. (20 points)** In the following circuit it is required that I_{REF} = 200 μ A and I_Q = 100 μ A. It is given that M_1 and M_2 are matched, K_{n3}/K_{n4} = 4, all transistors have V_{TN} = 1 V, λ = 0, and R_D = 20 $K\Omega$.
 - a) (15 points) Find K_{n4} , K_{n3} , K_{n2} , and K_{n1} . Verify the states of the transistors.
 - b) (5 points) Find the range of R_{D} such that all transistors are SAT.

Q2. (15 points) For the circuit below V_{TP} = -0.8 V, K_p = 200 $\mu A/V^2$.

- a) (5 points) Find V_S and V_{SD} for $\lambda = 0$. Verify the state of the transistor.
- b) (10 points) Find V_S and V_{SD} for λ = 0.02 V^{-1} . Verify the state of the transistor. +5 V

Q3. (30 points) Design the common source amplifier shown below using an n-channel MOSFET (enhancement or depletion type) with λ = 0. The quiscent values are to be I_{DQ} = 6 mA, V_{GSQ} = 2.8 V, and V_{DSQ} = 10 V. The transconductance is g_m = 2.2 mA/V. Let R_L = 1 k Ω , small signal AC voltage gain A_V = -1, and small signal AC input impedance R_{in} = 100 k Ω . Find R_1 , R_2 , R_S , R_D , K_n , and V_{TN} . Verify the state of the transistor. C_{C1} and C_{C2} are very large, and V_{in} is a small-signal AC input.

Q4. (35 points) For the circuit below $V_{TN} = 0.8 \text{ V}$, $k_n' = 100 \,\mu\text{A/V}^2$, W/L = 20, λ = 0.02 V⁻¹, and $I_Q = 5 \,\text{mA}$. C_{C1} and C_{C2} are very large, and V_i is a small-signal AC input.

- a) Find the quiscent values of V_{GS} , V_{DS} , and I_D . You may take λ = 0 in this part. Verify the state of the transistor.
- b) Find g_m and r_o using results of part "a", and derive and determine the small-signal AC voltage gain $A_v = v_o/v_i$.
- c) Derive and determine the small-signal AC output impedance Ro.
- d) What is the small-signal AC voltage gain if v_i has a source impedance of 10 k Ω ?
- e) What is the unloaded small-signal AC voltage gain of the amplifier?

