Macros e criação de ambientes

Bhaskara Akaria

Outubro de 2020

Resumo

Esse artigo tem por função apresentar algumas das funcionalidades do La para desenvolver trabalhos envolvendo fórmulas matemáticas simples bem como fórmulas mais complexas. A principal referência para consulta rápida é o artigo desenvolvido pela Sociedade America de Matemática intitulada *Short Math Guide*.

1 Fórmula de Bhaskara

Vamos demonstrar umas das fórmulas mais conhecidas dentro da Matemática. O que será feito agora é a dedução de uma expressão matemática para obter as soluções da equação quadrática definida por

$$ax^2 + bx + c = 0. ag{1}$$

onde a, b e c são os coeficientes e x a variável incógnita. Resolver a equação (1) significa encontrar os valores dex que farão com que a relação de igualdade na equação quadrática seja satisfeita.

1.1 Dedução da Fórmula de Bhaskara

Vamos deduzir agora a conhecida fórmula de Bhaskara. Multiplicando ambos os membros da equação (1) por 4a obtemos

$$4a^2x^2 + 4abx + 4ac = 0. (2)$$

A equação (2) pode ser reescrita como

$$(2ax)^2 + 2(2ax)b = -4ac. (3)$$

Somando b^2 em ambos os membros da equação (3) temos

$$(2ax)^{2} + 2(2ax)\frac{b}{b} + \frac{b^{2}}{b^{2}} = \frac{b^{2}}{a^{2}} - 4ac.$$
 (4)

A equação (4) pode ser escrita como

$$(2ax + b)^2 = b^2 - 4ac. ag{5}$$

Resta agora isolar x. Portanto,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. ag{6}$$

Casos particulares

• b = 0. Neste caso a equação (1) é dada na forma

$$ax^2 + c = 0$$

a qual pode ser resolvida levando-se em conta que:

$$ax^2 + c = 0 \Leftrightarrow ax^2 = -c \Leftrightarrow x^2 = -\frac{c}{a}$$

para $\frac{c}{a}$ < 0, a equação terá duas raízes reais simétricas

$$x_1 = \sqrt{-\frac{c}{a}}$$
 e $x_2 = -\sqrt{-\frac{c}{a}}$.

No caso, $\frac{c}{a}>0$ as raízes serão complexas com Re(x)=0 e completamente simétricas, ou seja, $x_1=\overline{x_2}$

$$x_1 = i\sqrt{\frac{c}{a}}$$
 e $x_2 = -i\sqrt{\frac{c}{a}}$.

• c = 0. Neste caso a equação (1) é dada na forma

$$ax^2 + bx = 0$$

a qual pode ser resolvida levando-se em conta que:

$$ax^2 + bx = 0 \Leftrightarrow x(ax + b) = 0.$$

De fato, neste caso tem-se necessariamente que x=0 ou ax+b=0, sendo esta última alternativa equivalente a $x=-\frac{b}{a}$

$$x_1 = 0$$
 e $x_2 = -\frac{b}{a}$.

• b = c = 0. Neste caso a equação (1) é dada na forma

$$ax^2 = 0$$

cuja raiz dupla é 0

$$x_1 = x_2 = 0$$
.

1.2 Discriminante e o estudo das raízes

Dada a solução geral (5) de (1), a expressão que aparece sob a raiz quadrada é chamada de **discriminante** da equação quadrática, e é comumente denotada pela letra grega delta maiúsculo (Δ).

Uma equação quadrática com coeficientes reais tem duas raízes reais, ou então duas raízes complexas. O discriminante da equação determina o número e a natureza das raízes. Há apenas três possibilidades:

• Se $b^2 - 4ac > 0$, a equação (1) tem duas raízes reais e distintas:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} e x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

No caso de equações quadráticas com coeficientes inteiros, se o discriminante for um quadrado perfeito, então as raízes são números racionais - em outros casos eles podem ser irracionais quadráticos.

• Se $b^2 - 4ac = 0$, a equação (1) tem duas raízes reais e iguais:

$$x_1 = x_2 = \frac{-b}{2a}.$$

• Se $b^2-4ac<0$, a equação não possui qualquer raiz real. Em vez disso, ela possui duas raízes complexas distintas, que são conjugadas uma da outra:

$$x_1 = \frac{-b}{2a} + i \frac{\sqrt{-(b^2 - 4ac)}}{2a}$$
 e $x_2 = \frac{-b}{2a} - i \frac{\sqrt{-(b^2 - 4ac)}}{2a}$