Mecha tronics

Day 3 – 4 Supervised Learning Regression

Outline

- Regression problem
- Linear Regression Model
 - Model training
 - Cost function
 - Gradient Descent
 - Learning Rate
- Evaluate regression model performance
- Multiple Linear Regression Model
 - Features selection
- Polynomial Regression Model
- The Problem of Overfitting

Regression Problem

Carbon dioxide Emissions Prediction

- Selected 7 input features
- Predicted CO2 Emissions as an output target
- Using Multiple Linear Regression Model

Regression Problem

Linear Regression Model

 $(x^{(1)}, y^{(1)}) = (20, 4)$

 $(x^{(2)}, y^{(2)}) = (30, 6)$

On training set

index	x (feature)	y (target)
1	20	4
2	30	6
3	40	8
100	1000	50

Notation

$$x^{(1)} = 20$$

$$y^{(1)} = 4$$

$$x^{(2)} = 30$$

$$y^{(2)} = 6$$

<u>Meaning</u>

x = input variable or feature

y = output variable or target

m = number of training sample

 $(x^{(i)}, y^{(i)}) = i^{th}$ training sample

i = index (1st, 2nd, 3rd, 4th, ...)

Model training

Linear regression model: the model

x (feature) e.g. Engine Size (L)	y (target) e.g. CO2 emission (g/km)
20	4
30	6
40	8
1000	50

<u>Simple / Univariable Linear Regression</u>

Linear Regression with one variable (single feature of x)

w, b are models' parameters

w = coefficient or "weight"

b = y-intercept or "bias"

Linear regression model: plot examples

$$f(x) = 0x + 1.5$$

w =

b =

$$f(x) = 0.5x$$

w =

b =

$$f(x) = 0.5x + 1$$

W =

b =

Code 1: finding coefficient and Intercept

```
from sklearn.linear model import LinearRegression
import numpy as np
data = [[2, 6], [4, 10], [6, 11], [8, 14], [10, 22], [12,
25]]
data = np.array(data)
x = data[:, 0].reshape(-1, 1)
y = data[:, 1].reshape(-1, 1)
model = LinearRegression()
model.fit(x, y)
y 5 = model.predict([[5]])
print('x = 5, y =', y 5[0, 0])
y 9 = model.predict([[9]])
print('x = 9, y = ', y 9[0, 0])
y 11 = model.predict([[11]])
print('x = 11, y =', y 11[0, 0])
print('intercept =', model.intercept_[0])
print('coefficient =', model.coef [0, 0])
```

In Scikit-Learn

model.fit(__,__) For Train Model use:

For Make prediction use: model.predict(___)

```
x = 5, y = 10.838095238095237
x = 9, y = 18.495238095238093
x = 11, y = 22.323809523809523
intercept = 1.26666666666664
coefficient = 1.9142857142857146
```

Linear regression model: Cost function

$$\hat{y}^{(i)} = f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Determine: w, b which make $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

Minimize : <u>Squared error cost function</u>

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Use $\frac{1}{2m}$ is simplifies the gradient of cost function during obtimization.

Model: $f_{w,b}(x) = wx + b$

Parameter: w, b

Cost function: $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$

Goal: minimize J(w, b)

Simplified

Model: $f_w(x) = wx$, b = 0

Parameter: w

Cost function: $J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2$

Goal: minimize J(w)

Example 1

Defined: w = 1

$$f_w(x) = x$$

$$f_{w}(1) = 1$$

$$f_w(1) = 1$$
, $f_w(2) = 2$, $f_w(3) = 3$

$$f_w(3) = 3$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (w(x^i) - y^{(i)})^2 = \frac{1}{2(3)} (0 + 0 + 0) = 0$$

Example 2

Defined: w = 0.5

$$f_w(x) = x$$

$$f_w(1) = 0.5, f_w(2) = 1, f_w(3) = 1.5$$

$$f_w(2) = 1$$

$$f_w(3) = 1.5$$

$$J(w) = \frac{1}{2(3)} ((0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2) = 0.58$$

Example 3

Defined: w = 0

$$f_w(x) = x$$

$$f_w(1) =$$

$$f_w(2) =$$

$$f_w(1) = f_w(2) = f_w(3) =$$

$$J(w) =$$

Goal for linear regression (In general cases): minimize J(w, b)

Linear regression model: Gradient Descent

Model cost function : J(w,b) for linear regression or any model

Goal: minimize J(w, b)

Outline: 1. Start with some w, b (e.g. w = 0, b = 0)

2. Changing w, b to reduce J(w, b)

until it settle at/near a minimum value.

Linear regression model: Gradient Descent Algorithms

Repeat until convergence {

$$w = w - \alpha \frac{\partial J(w, b)}{\partial w}, \qquad b = b - \alpha \frac{\partial J(w, b)}{\partial b}$$
 }
$$\alpha = \text{Learning rate}$$

Simultaneously update w and b

$$new_{-}w = w - \alpha \frac{\partial J(w, b)}{\partial w}$$

$$new_{-}b = b - \alpha \frac{\partial J(w, b)}{\partial b}$$

Linear regression model :Learning rate (α)

$$w = w - \alpha \frac{\partial J(w, b)}{\partial w}$$

- If α is too small : Gradient descent may be slow from take a lot of iterations.
- If α is too large : Gradient descent may Overshoot or never reach to minimum J(w,b) or fail to converge (diverge)

Smaller α (update 8 times)

Optimal α (update 5 times)

Larger α never reach to minimum

Linear regression model :Learning rate (α)

https://www.digitalocean.com/community/tutorials/intro-to-optimization-in-deep-learning-gradient-descent

Summary for model learning

Linear regression model

$$f_{w,b}(x) = wx + b$$

Cost function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent algorithm

Repeat until convergence
$$\{ w = w - \alpha \frac{\partial J(w,b)}{\partial w}, b = b - \alpha \frac{\partial J(w,b)}{\partial b} \}$$

Code 2 : find coefficient and Intercept

```
from sklearn.linear model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
x = list(range(5, 61, 5))
y = [8, 42, 102, 113, 148, 206, 202, 230, 360, 354, 427, 432]
plt.scatter(x, y)
plt.show()
x = np.array(x).reshape(-1, 1)
model = LinearRegression()
model.fit(x, y)
x_{predict} = [[8], [18], [33], [59]]
y predict = model.predict(x predict)
for (i, p) in enumerate(x predict):
    y pred = '{:.2f}'.format(y predict[i])
    print(f'x = {p[0]} predicted y = {y pred})
print()
ic = '{:.2f}'.format(model.intercept )
ce = '{:.2f}'.format(model.coef [0])
print(f'Linear equation is: y = {ic} + ({ce})x')
```



```
x = 8 predicted y = 23.87
x = 18 predicted y = 103.38
x = 33 predicted y = 222.64
x = 59 predicted y = 429.37
```

Linear equation is: y = -39.74 + (7.95)x

Code 2

```
y_predict_all = model.predict(x)
plt.scatter(x,y)
plt.plot(x,y_predict_all,color='red')
plt.xlabel("x")
plt.ylabel("y")
plt.show()
```


Evaluate regression model performance

R-squared or Coefficient of determination – model's accuracy

$$R^{2} = 1 - \frac{\sum_{i}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i}^{n} (y^{(i)} - \bar{y}^{(i)})^{2}}$$

$$y^{(i)} = actual y$$
 $R^2 \in [0,1]$ $\hat{y}^{(i)} = predicted y$ $\bar{y}^{(i)} = average \ of \ actual y$ $R^2 = 0.8$ (Accuracy =80%) $R^2 = 0.05$ (Accuracy =5%)

Evaluate regression model performance

Mean Squared Error (MSE)

$$MSE = \frac{\sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}}{m}$$

Root Mean Squared Error (RMSE) – same unit with $y^{(i)}$ and $\hat{y}^{(i)}$)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2}{m}} = \sqrt{MSE}$$

Code 3: Use gestational age for predict birth of newborn

	А	В
1	Gestational_Age_wks	Birth_Weight_gm
2	34.7	1895
3	36	2030
4	29.3	1440
5	40.1	2835
6	35.7	3090
7	42.4	3827
8	40.3	3260
9	37.3	2690
10	40.9	3285
11	38.3	2920
12	38.5	3430
13	41.4	3657
14	39.7	3685
15	39.7	3345
16	41.1	3260
17	38	2680
18	38.7	2005

STAGES OF PREGNANCY

shutterstock.com · 1865507542

Code 3: Training Linear Regression and evaluate model

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import r2_score

df = pd.read_excel('birth_weight.xlsx')
with pd.option_context('display.max_rows', 6): display(df)
x = df['Gestational_Age_wks']
y = df['Birth_Weight_gm']

plt.figure(figsize=(4, 3))
plt.scatter(x, y)
plt.show()
```

	${\bf Gestational_Age_wks}$	Birth_Weight_gm
0	34.7	1895
1	36.0	2030
2	29.3	1440
14	41.1	3260
15	38.0	2680
16	38.7	2005

17 rows \times 2 columns

Code 3: Training Linear Regression and evaluate model

```
x = np.array(x).reshape(-1, 1)
                                                              MSE: 151544.06
model = LinearRegression()
                                                              RMSE: 389.29
model.fit(x, y)
                                                              R-Squared: 0.67
y predict = model.predict(x)
                                                               y = -4020.05 + (180.46)x
mse = mean squared error(y, y predict)
rmse = np.sqrt(mse)
print('MSE:', '{:.2f}'.format(mse))
print('RMSE:', '{:.2f}'.format(rmse))
                                                                3500
score = model.score(x, y)
                                                              Birth_Weight (gram)
#score = r2 score(y, y predict)
                                                                3000
print('R-Squared:', '{:.2f}'.format(score))
ic = '{:.2f}'.format(model.intercept )
                                                                2500
ce = '{:.2f}'.format(model.coef [0])
print(f'y = \{ic\} + (\{ce\})x')
                                                                2000
                                                                1500
# plt.figure(figsize=(4, 3))
# plt.scatter(x, y)
                                                                           32.5
                                                                                 35.0
                                                                                       37.5
                                                                      30.0
                                                                                            40.0
# plt.plot(x,y predict,'red')
                                                                            Gestational age (week)
# plt.xlabel("Gestational age (week)")
# plt.ylabel("Birth Weight (gram)")
```

plt.show()

Multiple Linear Regression

X1	X2	X3	Υ
Engine Size (L)	Cylinders	Fuel Consumption (L/100 km)	CO2 emission (g/km)
20	2	10	4
30	4	12	6
40	6	16	8
•••	•••	***	***
1000	6		50

Multiple variables (features)

Model:

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b = \vec{w} \cdot \vec{x} + b$$

dot product

Features:

$$\vec{x} = [x_1 \ x_2 \ x_3 \ \dots \ x_n]$$

Parameters:

$$\overrightarrow{w} = [w_1 \ w_2 \ w_3 \ \dots \ w_n]$$

$$b = a number$$

Gradient Descent for Multiple Linear Regression

Parameters: $\vec{w} = [w_1 \ w_2 \ w_3 \ \dots \ w_n]$ and b

Model: $f_{\vec{w},b}(\vec{x}) = \vec{w} \cdot \vec{x} + b$

Cost function : $J(\vec{w}, b)$

Gradient descent: Repeat until convergence $\{w_j = w_j - \alpha \frac{\partial J(\vec{w},b)}{\partial w_j}, b = b - \alpha \frac{\partial J(\vec{w},b)}{\partial b}\}$

 $w_j = w$ of feature jth

Code 4: Multiple linear regression

```
import numpy as np
d = [[8, 4, 45],
    [7, 5, 44],
     [8, 6, 50],
     [6, 6, 43],
     [9, 5, 45],
     [8, 3, 44],
     [9, 4, 40],
     [6, 5, 43]]
d = np.array(d)
x = d[:, 0:2]
y = d[:, 2]
model = LinearRegression()
model.fit(x, y)
ic = '{:.2f}'.format(model.intercept )
ce1 = '{:.2f}'.format(model.coef [0])
ce2 = '{:.2f}'.format(model.coef [1])
print(f'y = \{ic\} + (\{ce\})x1 + (\{ce2\})x2')
x \text{ predict} = [[6, 6], [7, 6]]
y predict = model.predict(x predict)
p 6 6 = '{:.2f}'.format(y predict[0])
p 7 6 = '{:.2f}'.format(y predict[1])
print(f'x1 = 6, x2 = 6, y = \{p 6 6\}')
print(f'x1 = 7, x2 = 6, y = \{p \ 7 \ 6\}')
```

```
y = 31.37 + (180.46)x1 + (1.51)x2

x1 = 6, x2 = 6, y = 44.92

x1 = 7, x2 = 6, y = 45.67
```

Code 5: Predict CO2 emission

```
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
df = pd.read csv('co2-emission.csv')
with pd.option_context('display.max_rows', 8): display(df)
x1 = df['volume']
x2 = df['weight']
y = df['co2']
plt.scatter(x1, y, c='b')
plt.xlabel('volume')
plt.ylabel('co2')
plt.show()
plt.scatter(x2, y, c='r')
plt.xlabel('weight')
plt.ylabel('co2')
plt.show()
```

import pandas as pd

```
model volume weight co2
         car
                          1000
                                   790
                                         99
      Toyota
                  Aygo
 1 Mitsubishi Space Star
                          1200
                                  1160
                                        95
       Skoda
                          1000
                                   929
                 Citigo
                                         95
         Fiat
                   500
 3
                           900
                                   865
                                        90
32
        Ford
                 B-Max
                          1600
                                  1235 104
       BMW
                          1600
                                  1390 108
33
                                  1405 109
34
        Opel
                 Zafira
                          1600
                   SLK
                          2500
                                  1395 120
35 Mercedes
```

 $36 \text{ rows} \times 5 \text{ columns}$


```
x = df[['volume', 'weight']]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0)
model = LinearRegression()
model.fit(x train, y train)
# Predict CO2 emission when engine volume: 2300, car weight: 1300
x \text{ predict} = [[2300, 1300]]
y predict = model.predict((x predict))
for (i, x_p) in enumerate(x_predict):
    co2 = '{:,.0f}'.format(y predict[i])
    print(f'Engine size: \{x p[0]\}, weight: \{x p[1]\}, CO2 emission: \{co2\}')
score = model.score(x test, y test)
print('R-Squared:', '{:.2f}'.format(score))
ic = '{:.2f}'.format(model.intercept )
ce1 = '{:.4f}'.format(model.coef [0])
                                                          Engine size: 2300, weight: 1300, CO2 emission: 107
ce2 = '{:.4f}'.format(model.coef [1])
                                                         R-Squared: 0.39
                                                         y = 79.52 + (0.0075)x1 + (0.0081)x2
print(f'y = \{ic\} + (\{ce1\})x1 + (\{ce2\})x2')
```

Feature Selection

Correlation Coefficient (r)

$$r \in [-1,1]$$

- r = 0 : Not have relation between each variables
- r > 0 : Positive relation
- r < 0 : Negative relation

• Large |r| more relation than small |r|

Code 6: Feature Selection

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
df = pd.read csv('stock index price.csv')
with pd.option_context('display.max_rows', 6): display(df)
x1 = df['interest rate']
x2 = df['unemployment_rate']
y = df['stock index price']
plt.figure(figsize=(4, 3))
plt.scatter(x1, y, c='b')
plt.xlabel('interest rate')
plt.ylabel('stock_index_pric')
plt.show()
plt.figure(figsize=(4, 3))
plt.scatter(x2, y, c='r')
plt.xlabel('unemployment_rate')
plt.ylabel('stock_index_pric')
plt.show()
display(df.corr().round(2))
print()
```

	interest_rate	unemployment_rate	stock_index_price
0	2.75	5.3	1464
1	2.50	5.3	1394
2	2.50	5.3	1357
21	1.75	6.2	822
22	1.75	6.2	704
23	1.75	6.1	719

24 rows × 3 columns


```
display(df.corr().round(2))
print()
```

	interest_rate	unemployment_rate	stock_index_price
interest_rate	1.00	-0.93	0.94
unemployment_rate	-0.93	1.00	-0.92
stock_index_price	0.94	-0.92	1.00

Write code for predict stock price when : Interest rate = 2, unemployment rate = 5 and Interest rate = 2.2, unemployment rate = 5.7

Mean Squared Error: 29.99

R2 Score: 0.99

Root Mean Squared Error: 5.48


```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

df=pd.read_csv("co2.csv")
df.rename(columns={'Make': 'Brand'}, inplace=True)
print(df.info())
print(df.isnull().sum())
print(df.head(15))
```



```
df.hist(bins=30, figsize=(15, 10))
plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(12, 6))
sns.scatterplot(x='Engine Size(L)', y='CO2 Emissions(g/km)', hue='Fuel Type', data=df)
plt.title('Engine Size vs CO2 Emissions')
plt.show()

plt.figure(figsize=(12, 6))
sns.scatterplot(x='Fuel Consumption Comb (L/100 km)', y='CO2 Emissions(g/km)', hue='Fuel Type', data=df)
plt.title('Fuel Consumption Comb vs CO2 Emissions')
plt.show()
```



```
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
numeric transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')),
    ('scaler', StandardScaler())
])
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most frequent')),
    ('onehot', OneHotEncoder(handle unknown='ignore'))
1)
```

Create model with Pipeline

- imputer: uses SimpleImputer(strategy='median') to handle missing values in the numerical columns by replacing them with the median value of the respective column.
- scaler: uses StandardScaler() to standardize the numerical features.

- imputer: uses SimpleImputer(strategy='most_frequent') to handle missing values in the categorical columns by replacing them with the most frequent category in the respective column.
- onehot: uses OneHotEncoder(handle_unknown='ignore') to perform one-hot encoding on the categorical features. The handle_unknown='ignore' parameter allows the encoder to handle unseen categories during prediction by simply ignoring them.

```
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)
])
```

preprocessor: This is a ColumnTransformer object that combines the numeric_transformer and categorical_transformer to preprocess the entire dataset.

```
('num', numeric_transformer, numeric_features)
Applies the numeric_transformer to the columns listed in numeric_features.
```

```
('cat', categorical_transformer, categorical_features)
Applies the categorical_transformer to the columns listed in categorical features.
```

model: This is a Pipeline object that defines the complete machine learning model.

preprocessor: applies the preprocessor to preprocess the input data.
regressor: uses LinearRegression() to train a linear regression
model on the preprocessed data.

```
model.fit(X train, y train)
y pred = model.predict(X test)
mse = mean squared error(y test, y pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y pred)
print(f'Mean Squared Error: {mse:.2f}')
print(f'R^2 Score: {r2:.2f}')
print(f'Root Mean Squared Error: {rmse:.2f}')
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, edgecolors=(0, 0, 0))
plt.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
plt.xlabel('Actual CO2 Emissions (g/km)')
plt.ylabel('Predicted CO2 Emissions (g/km)')
plt.title('Actual vs Predicted CO2 Emissions')
plt.show()
```

Mean Squared Error: 29.99

R^2 Score: 0.99

Root Mean Squared Error: 5.48

Polynomial Regression

Using when Non-Linear relation:

$$f_{\vec{w},b} = w_1 x^1 + w_2 x^2 + \dots + w_n x^n$$

n = poly nominal degree

Code 7: Plot polynomial regression

```
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
import matplotlib.pyplot as plt
import numpy as np
pf = PolynomialFeatures(degree=2) #1, 2, 3, 4
x = np.array(list(range(1, 11))).reshape(-1, 1)
x poly= pf.fit transform(x)
y = [45, 50, 60, 80, 110, 150, 200, 300, 500, 1000]
model = LinearRegression()
model.fit(x poly, y)
y predict = model.predict(x poly)
plt.scatter(x, y, color='b')
plt.plot(x, y_predict, color='r')
plt.show()
```


Exercise: from Code 7

Write code for polynomial degree = 1, 3 and 10 And determine R-squared (R2), MSE and RMSE

From Code 7

Plot of each Polynomial degrees

Code 8 : Predict machine pressure from temperature

```
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear model import LinearRegression
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import r2_score
x = [0, 20, 40, 60, 80, 100]
y = [0.0002, 0.0012, 0.0060, 0.0300, 0.0900, 0.2700]
plt.figure(figsize=(4, 3))
plt.scatter(x, y, color='b')
plt.show()
pf = PolynomialFeatures(degree=3)
x = np.array(x).reshape(-1, 1)
x poly = pf.fit transform(x)
model = LinearRegression()
model.fit(x poly, y)
```


Code 8

```
y_predict = model.predict(x_poly)
plt.figure(figsize=(4, 3))
plt.scatter(x, y, color='b')
plt.plot(x, y predict, color='r')
plt.show()
score = r2_score(y, y_predict)
print("Model's Accuracy =",score)
1.1.1
# predict machine psi when temp = 50, 70 and 95
x \text{ predict} = [[50], [70], [95]]
y predict = model.predict(pf.transform(x predict))
for (i, x p) in enumerate(x predict):
    pressure = '{:.4f}'.format(y_predict[i])
    print(f'Temperature = \{x_p[0]\}, Pressure (psi) = \{pressure\}')
1.1.1
```


Model's Accuracy = 0.9966691251761722

```
Temperature = 50, Pressure (psi) = 0.0081
Temperature = 70, Pressure (psi) = 0.0512
Temperature = 95, Pressure (psi) = 0.2145
```

From code 8

Model's Accuracy = 0.6903499726039811

Underfit (High Bias)

Model's Accuracy = 0.9966691251761722

Model's Accuracy = 1.0

Overfit (High Variance)

The problem of Overfitting

Bias refers to the error due to the model's simplistic assumptions in fitting the data. A high bias means that the model is unable to capture the patterns in the data and this results in under-fitting.

Variance refers to the error due to the complex model trying to fit the data. High variance means the model passes through most of the data points and it results in over-fitting the data.

Addressing overfitting

- 1. Collect more training set samples
- 2. Select feature to include/exclude
 - All features + insufficient data = Overfitting
- 3. Regularization technique

Assignment: Car Price Prediction Model

The primary goal of this project is to develop a machine learning model capable of accurately predicting the price of cars based on various attributes such as make, model, year, mileage, and other relevant features.

Data Source: Kaggle

Steps Overview

- Data Preprocessing: Handling missing data, outliers, and encoding categorical features.
- 2. Exploratory Data Analysis (EDA): Visualizing feature distributions and relationships to the target variable (car price).
- 3. Training machine learning models: Linear Regression
- 4. Evaluation: Assessing models using performance metrics such as R² and Mean Squared Error

Assignment (key)

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression

df = pd.read_csv('CarPrice_Assignment.csv')
df.head()
```

cai	r_ ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	carlength	carwidth	carheight	curbweight	enginetype	cylindernumber	enginesize	fuelsystem b
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	2548	dohc	four	130	mpfi
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	2548	dohc	four	130	mpfi
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	171.2	65.5	52.4	2823	ohcv	six	152	mpfi
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	176.6	66.2	54.3	2337	ohc	four	109	mpfi
4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	176.6	66.4	54.3	2824	ohc	five	136	mpfi

Mecha tronics

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 205 entries, 0 to 204 Data columns (total 26 columns): Column Non-Null Count Dtype car_ID 205 non-null int64 symboling int64 205 non-null CarName 205 non-null object fueltype 205 non-null object aspiration 205 non-null object doornumber 205 non-null object carbody 205 non-null object drivewheel object 205 non-null object enginelocation 205 non-null wheelbase 205 non-null float64 float64 carlength 205 non-null carwidth 205 non-null float64 float64 carheight 205 non-null curbweight int64 205 non-null enginetype 205 non-null object cylindernumber 205 non-null object enginesize 205 non-null int64 fuelsystem 205 non-null object boreratio float64 18 205 non-null 19 float64 stroke 205 non-null int64 highwaympg 205 non-null price 205 non-null float64 dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB

```
df.drop(columns = ['car_ID', 'symboling', 'CarName', ], inplace = True)
# df.head()
df['doornumber'] = df['doornumber'].replace({'four': 4, 'two': 2}).astype('int64')
df['cylindernumber'] = df['cylindernumber'].replace({'four': 4, 'six': 6, 'five': 5, 'eight': 8, 'two': 2, 'three': 3, 'twelve': 12}).astype('int64')

correlation_matrix = df.select_dtypes(include=['int64', 'float64']).corr()
plt.figure(figsize=(30,30))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
```


Correlation Matrix using: Seaborn

python install package pip install seaborn

import library import seaborn as sns

```
corr_matrix = df.select_dtypes(include=['int64', 'float64']).corr()
# df.select_dtypes(include=['int64', 'float64'])
corr_matrix['price'].sort_values(ascending=False)

final_coulmns = ['enginesize', 'curbweight', 'horsepower', 'carwidth',
'cylindernumber', 'carlength', 'wheelbase', 'boreratio', 'citympg',
'highwaympg','fueltype', 'aspiration', 'carbody', 'drivewheel',
'enginelocation', 'enginetype', 'price']
car_df = df[final_coulmns]
# car_df.head()
```

price	1.000000
enginesize	0.874145
curbweight	0.835305
horsepower	0.808139
carwidth	0.759325
cylindernumber	0.718305
carlength	0.682920
wheelbase	0.577816
boreratio	0.553173
carheight	0.119336
stroke	0.079443
compressionratio	0.067984
doornumber	0.031835
peakrpm	-0.085267
citympg	-0.685751
highwaympg	-0.697599
Name: price, dtype:	float64

For some categorical data like:

Before encoding:

	enginesize	curbweight	horsepower	carwidth	cylindernumber	carlength	wheelbase	boreratio	citympg	highwaympg	fueltype	aspiration	carbody	drivewheel	enginelocation	enginetype	price
0	130	2548	111	64.1	4	168.8	88.6	3.47	21	27	gas	std	convertible	rwd	front	dohc	13495.0
1	130	2548	111	64.1	4	168.8	88.6	3.47	21	27	gas	std	convertible	rwd	front	dohc	16500.0
2	152	2823	154	65.5	6	171.2	94.5	2.68	19	26	gas	std	hatchback	rwd	front	ohcv	16500.0
3	109	2337	102	66.2	4	176.6	99.8	3.19	24	30	gas	std	sedan	fwd	front	ohc	13950.0
4	136	2824	115	66.4	5	176.6	99.4	3.19	18	22	gas	std	sedan	4wd	front	ohc	17450.0

After encoding:

	enginesize	curbweight	horsepower	carwidth	cylindernumber	carlength	wheelbase	boreratio	citympg	highwaympg	price	fueltype_gas	aspiration_turbo	carbody_hardtop	carbody_hatchback	carbody_sedan
0	130	2548	111	64.1	4	168.8	88.6	3.47	21	27	13495.0	1	0	0	0	0
1	130	2548	111	64.1	4	168.8	88.6	3.47	21	27	16500.0	1	0	0	0	0
2	152	2823	154	65.5	6	171.2	94.5	2.68	19	26	16500.0	1	0	0	1	0
3	109	2337	102	66.2	4	176.6	99.8	3.19	24	30	13950.0	1	0	0	0	1
4	136	2824	115	66.4	5	176.6	99.4	3.19	18	22	17450.0	1	0	0	0	1

carbody_wagon	drivewheel_fwd	${\sf drivewheel_rwd}$	$engine location_rear$	$enginetype_dohcv$	$enginetype_I$	$enginetype_ohc$	$enginetype_ohcf$	$enginetype_ohcv$	$enginetype_rotor$
0	0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	0
0	1	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0


```
x = car_df.drop(['price'], axis=1)
y = car df[['price']]
x train, x test, y train, y test =
train test split(x.values, y.values, random state=42,
test size=0.2)
# Print the shape of the splits
print(f"Train features shape: {x train.shape}")
print(f"Test features shape: {x test.shape}")
print(f"Train labels shape: {y_train.shape}")
print(f"Test labels shape: {y test.shape}")
scale = StandardScaler()
x train sc = scale.fit transform(x train)
x_test_sc = scale.fit_transform(x_test)
```

Train features shape: (164, 25)
Test features shape: (41, 25)
Train labels shape: (164, 1)
Test labels shape: (41, 1)

```
def error metrics(y train_true, y train_pred, y test_true, y test_pred):
    errors = {}
    # Errors for train data
    errors["Train MSE"] = mean squared error(y train true, y train pred)
    errors["Train RMSE"] = np.sqrt(errors["Train MSE"])
    errors["Train R2 Score"] = r2 score(y train true, y train pred)
    # Errors for test data
    errors["Test_MSE"] = mean_squared_error(y_test_true, y_test_pred)
    errors["Test RMSE"] = np.sqrt(errors["Test MSE"])
    errors["Test R2 Score"] = r2 score(y test true, y test pred)
    return errors
model evaluation = []
model = LinearRegression()
                                                                                {'Train MSE': 4795967.326218939,
model.fit(x train sc, y train)
                                                                                 'Train RMSE': np.float64(2189.9697089729207),
y train pred = model.predict(x train sc)
                                                                                  'Train R2 Score': 0.9195818034920166,
                                                                                  'Test MSE': 17626555.2325218,
y test pred = model.predict(x test sc)
                                                                                  'Test RMSE': np.float64(4198.399127348637),
error_model = error_metrics(y_train, y_train_pred, y_test, y_test_pred)
                                                                                  'Test R2 Score': 0.7767208328621653}
error model
error_model['Model Name']='Linear Regression'
error model
model evaluation = (pd.DataFrame([error model]))
model evaluation
                                            Train MSE Train RMSE Train R2 Score
                                                                              Test MSE Test RMSE Test R2 Score
                                                                                                               Model Name
                                       0 4.795967e+06 2189.969709
                                                                   0.919582 1.762656e+07 4198.399127
                                                                                                    0.776721 Linear Regression
```


INSTITUTE OF ENGINEERING

