1

1.a

Let $gh_1g^{-1}, gh_2g^{-1} \in gHg^{-1}$. We wish to show the following:

$$gHg^{-1} \neq \emptyset \tag{1}$$

$$gh_1g^{-1} \cdot (gh_2g^{-1})^{-1} \in gHg^{-1} \tag{2}$$

proving that gHg^{-1} is a subgroup of G.

(1): We have that $H \leq G$, so $e \in H$. Thus $geg^{-1} = gg^{-1} = e \in gHg^{-1}$, and so $gHg^{-1} \neq \emptyset$.

(2): $h_2 \in H$, so $h_2^{-1} \in H$, and thus $(gh_2g^{-1})^{-1} = gh_2^{-1}g^{-1} \in gHg^{-1}$.

$$gh_1g^{-1} \cdot gh_2^{-1}g^{-1} = gh_1g^{-1}gh_2^{-1}g^{-1}$$

= $gh_1h_2^{-1}g^{-1}$

 $h_1h_2^{-1}$ is an element of H, so $gh_1h_2^{-1}g^{-1}$ is an element of gHg^{-1} , and therefore gHg^{-1} is a subgroup of G.

1.b

Let $g \in G$. We know that $gHg^{-1} \leq G$. $|gHg^{-1}| = |H|$, and since H is the only subgroup of G with order n, it must be the case that $gHg^{-1} = H$, and so $H \leq G$.

2

Let
$$H_1 = \langle (r^2, e) \rangle = \{(e, e), (r^2, e)\}, \text{ and } H_2 = \langle (j, e) \rangle = \{(e, e), (j, e)\}.$$

Notice that r^2 commutes with every element in D_4 , so $H_1 \leq G$.

We have that $(r, e)H_2 = \{(r, e), (rj, e)\} \neq \{(r, e), (r^3j, e)\} = H_2(r, e)$, so $H_2 \not \subseteq G$.

Finally, both groups have order 2, and are therefore isomorphic since there only exists a single group (up to isomorphism) of order 2.

3

3.a

Let $g \in G$, and $z \in Z(G)$. We wish to show that $gzg^{-1} \in Z(G)$.

$$gzg^{-1} = gg^{-1}z$$
$$= z \in Z(G)$$

Thus $gZg^{-1} \subseteq Z(G)$, and so $Z(G) \subseteq G$.

3.b

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})$ and $Z = \begin{pmatrix} w & x \\ y & z \end{pmatrix} \in Z(GL_2(\mathbb{R}))$. We want Z such that AZ = ZA for any A, so we have the following equation:

$$AZ = ZA$$

$$\begin{pmatrix} aw+by & ax+bz \\ cw+dy & cx+dz \end{pmatrix} = \begin{pmatrix} wa+xc & wb+xd \\ ya+zc & yb+zd \end{pmatrix}$$

Which gives us the following system of equations:

$$aw + by = wa + xc$$

$$ax + bz = wb + xd$$

$$cw + dy = ya + zc$$

$$cx + dz = yb + zd$$

Examine the equation aw + by = wa + xc. This gives us by = cx, but b and c are arbitrary (and in particular, it could be the case that $b \neq c$, where $b \neq 0 \neq c$), so it must be the case that x = y = 0. Now substituting this back into the equation ax + bz = wb + xd, we get bz = wb, so we now have that w = z. Thus our general Z is of the form $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$. More specifically,

$$Z(GL_2(\mathbb{R})) = \{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \mid a \in \mathbb{R} \setminus \{0\} \}.$$

3.c

 $1331=11^3$, so by Lagrange's Theorem, the order of Z(G) can be 1, 11, 11^2 , or 11^3 . Z(G) has at least one element other than the identity, so it cannot have order 1. Since G is nonabelian, there are at least two elements in G which do not commute with one another, and thus both cannot cannot be in Z(G), so it also cannot have order 11^3 .

Suppose for a contradiction that $|Z(G)| = 11^2$. Then |G/Z(G)| = 11. Since the order of G/Z(G) is prime, then by Lagrange's Theorem, it has no nontrivial subgroups, meaning G/Z(G) is cyclic. Let $\langle aZ(G)\rangle = G/Z(G)$. Then any $g \in G$ can be rewritten as a^kz from some integer k and some $z \in Z(G)$. z is in the centre, so by definition $a^kz = za^k$. This means that

$$gh = a^m z_1 a^n z_2$$

$$= a^{m+n} z_1 z_2$$

$$= a^{n+m} z_2 z_1$$

$$= a^n z_2 a^m z_1$$

$$= gh,$$

which implies that G is abelian, a contradiction, and so |Z(G)| = 11.

4

Let $re^{i\theta} \in H$ and $se^{i\phi} \in G$. Of course r=1 by definition of H, so $re^{i\theta} \cdot se^{i\phi} = se^{i(\theta+\phi)}$. Since any two elements of H differ only by θ , they form a circle centered on the origin. Any coset of H will simply be all of these points rotated (if $\phi \neq 0$) and/or lengthened (if $\phi \neq 1$), and will remain a circle centered on the origin. This mental image leads naturally to the following isomorphism:

$$f: G/H \longrightarrow \mathbb{R}^+$$

$$se^{i\phi}H \longmapsto s$$

5

5.a

Let m = |gH|, and n = |g|. Since $g^n = e$, we have that $(gH)^n = g^nH = eH = H$. Thus m is no greater than n. This means that we can rewrite n as n = qm + r, where q and r are integers and $0 \le r < m$.

We rewrite H as $(gH)^n = (gH)^{qm+r}$.qm is a multiple of the order of gH, so $(gH)^{qm} = H$ and $(gH)^{qm+r} = (gH)^r$, and we're left with $H = (gH)^r$. It cannot be the case that $r \neq 0$, since it would contradict the definition of m as the smallest positive integer m such that $(gH)^m = H$. Thus r = 0, and we have n = qm for some integer q.

5.b

We consider a single element of $\langle [6]_{42} \rangle$, $[0]_{42}$, and see how many times we must add $[4]_{42}$ to it until it is once again an element in $\langle [6]_{42} \rangle$.

$$1 \cdot [4]_{42} + [0]_{42} = [4]_{42} \not\in \langle [6]_{42} \rangle$$

$$2 \cdot [4]_{42} + [0]_{42} = [8]_{42} \not\in \langle [6]_{42} \rangle$$

$$3 \cdot [4]_{42} + [0]_{42} = [12]_{42} \in \langle [6]_{42} \rangle$$

Thus the coset $[4]_{42} + \langle [6]_{42} \rangle$ has order 3 in $\mathbb{Z}_{42} \langle [6]_{42} \rangle$.

5.c

Let
$$G = \mathbb{Z}_{12}$$
, $H = \langle [2]_{12} \rangle$, $g_1 = [2]_{12}$, and $g_2 = [6]_{12}$.

 g_1H and g_2H are clearly the same coset, and $|g_1|=6\neq 2=|g_2|.$