Contrat Été 2023

CARNET DE BORD, UNIVERSITÉ MCGILL

RÉALISÉ DANS LE CADRE D'UN PROJET POUR

ISMER-UQAR

20/10/2023

Table des matières

1	Debuggage et implémentation transfert de masse – $<2023-10-16~Mon>$	2
	1.1 Vérifier que ce n'est pas un problème de viscosité – $<2023-10-16~Mon>$	2
	1.2 « Stencil » de transfert de masse	2
2	Solution à la dérive de Stokes – < 2023-10-16 Mon >	5

1 Debuggage et implémentation transfert de masse – <2023-10-16 Mon>

1.1 Vérifier que ce n'est pas un problème de viscosité – <2023-10-16 Mon>

Avant tout, David a remarqué que les champs étaient très bruités, ce qui signifie qu'il y a clairement un manque à gagner en terme de viscosité. N'oublions pas que nous sommes passées d'une viscosité au 4ème degré vers une viscosité au second degré quand nous cherchions le problème au bord, il y a quelques semaines.

En sommes, de nouveaux test ont été effectuées pour le schéma de viscosité exprimé par

$$\mathbf{D} = Ah_2 \cdot \nabla^2 \mathbf{u} - Ah_4 \cdot \nabla^4 \mathbf{u}. \tag{1.1}$$

En ce mardi matin, les résultats sont exprimés dans le tableau 1.

Table 1 – Résumé des expériences réalisées dans le but de retrouver la bonne viscosité.

$\overline{Ah_2}$	Ah_4	dx	$\min(^{L_{d}\!\!/_{ ext{dx}}})$	Nombre d'itér.
[-]	[-]	[km]	[-]	[-]
0.0	$(1 \times 10^{-5}) \times dx^4$	3.9	5.363	736 272 (Active)
0.0	$(2 \times 10^{-5}) \times dx^4$	3.9	5.363	736 272 (Active)
0.0	$(5 \times 10^{-5}) \times dx^4$	3.9	5.363	113
0.0	$(1 \times 10^{-4}) \times dx^4$	3.9	5.363	48
0.0	$(5\times10^{-4})\times dx^4$	3.9	5.363	23

En somme, il semble que tous nos problèmes venaient bel et bien du changement de viscosité que nous avions appliqué pour régler le problème d'ondes de Kelvin aux bord (problème qui a été réglé il y a deux rapports).

1.2 « Stencil » de transfert de masse

Louis-Philippe propose d'utiliser un stencil à 21 points pour redistribuer la masse. En gros, on en retirerait sur le point fautif pour rejouter du h aux points des alentours, ce qui en fait une redistribution horizontale de la masse.

Figure 1 – Stencil de redistribution de la masse.

2 Solution à la dérive de Stokes – <2023-10-16 Mon>

Grossièrement, il est sorti deux possibilités pour régler le problème des petites échelles qui sortent de Wavewatch :

⇒ Il serait possible de diminuer la résolution de Wavewatch et de réinterpoler les points de courants à l'aide de la méthose employée dans la figure 2.

$$u(4,4) = (1/9) \cdot u(1,1) + (2/9) \cdot u(2,1) + (2/9) \cdot u(1,2) + (4/9) \cdot u(2,2). \tag{2.1}$$

 ${\tt Figure} \ 2- \textit{\textit{w Stencil \textit{\textit{w} utilis\'e pour obtenir le champs aux plus grandes \'echelles}.$

Références