5. 데이터 전처리

5.1 이상치 확인 및 정제

5.1.1 이상치

• Definition

- 결측치 혹은 값이 크게 차이가 나는 데이터
- 이상치는 측정의 변동성, 실험의 오류, 측정 장비의 이상 등으로 발생할 수 있음
- 이상치는 분석 모델의 성능을 떨어뜨리거나 분석 결과에 악영향을 줄 수 있음 ☞ 제거 혹은 처리 필요

Ŷ 이상치의 종류

(1) 관측값의 형식과 다른 형식의 값으로 표시된 결측치	(2) 관측값의 형식과 같은 형식의 값으로 표시된 결측치	(3) 자료 수집의 오류로 발 생한 이상치	(4) 다른 관측치들과는 현 저히 차이나는 실제 관 측치	
몸무게	성적	거실 온도	일자별 게임시간	
60,0	90	22,4	2	
55,5	85	22,3	1	
ERROR	999	2345	17	
70,5	100	22,1	4	

📏 더 알아보기

- 😮 : 데이터가 너무 많아서 일일이 확인하기 어려운데 이상치를 한방에 확인할 수 있을까요?
- 😊 : 4.2 상자그림에서 배운 IQR 방식을 사용하여 이상치를 확인할 수 있습니다!

■ 예제

wine 데이터 세트의 color_intesnity 컬럼에서 IQR 방식으로 이상치를 탐색해보기

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_wine

# 데이터 가져오기
wine_load = load_wine()
wine = pd.DataFrame(wine_load.data, columns=wine_load.feature_names)
wine['Class'] = wine_load.target
wine['Class'] = wine['Class'].map({0:'class_0', 1:'class_1', 2:'class_2'})
wine.head()
```

Out[]:		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_in
	0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	
	1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	
	2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	
	3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	
	4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	

```
In []: # box plot 그리기
   plt.boxplot(wine['color_intensity'])
   plt.title('color_intensity')
   plt.show()
```



```
In []: import numpy as np

# 이상치 함수

def outliers_iqr(dt, col):
    quartile_1, quartile_3 = np.percentile(dt[col], [25, 75])
    iqr = quartile_3 - quartile_1
    lower_whis = quartile_1 - (iqr * 1.5)
    upper_whis = quartile_3 + (iqr * 1.5)
    outliers = dt[(dt[col] > upper_whis) | (dt[col] < lower_whis)]
    return outliers[[col]]
```

```
In []: # 이상치 확인
outliers = outliers_iqr(wine,'color_intensity')
outliers
```

Out[]:	color_intensity		
		151	10.80	
		158	13.00	
		159	11.75	
		166	10.68	

🔳 예제

이상치를 제거하거나 대체하는 방식으로 데이터 전처리를 수행해보기

1. 이상치 제거

```
In []: # 인덱스 기준으로 이상치 행 추출
drop_index = wine[wine.index.isin(outliers.index)].index
drop_index

Out[]: Int64Index([151, 158, 159, 166], dtype='int64')

In []: print("이상치 삭제 전:", wine.shape)
# 이상치 삭제
drop_wine = wine.drop(drop_index)
print("이상치 삭제 후:", drop_wine.shape)
이상치 삭제 전: (178, 14)
이상치 삭제 후: (174, 14)
2. 이상치 대체
```

• 이상치를 결측치로 변환 후 결측치 대체 방식 사용

```
In []: # 인덱스를 기준으로 이상치를 결측치로 변경
wine.loc[drop_index, 'color_intensity'] = np.nan
print("결축치:", wine['color_intensity'].isnull().sum())
```

결측치: 4

```
In []: # 결측치를 평균값으로 대체
wine['color_intensity'].fillna(wine['color_intensity'].mean(), inplace=True)
# 확인
wine.loc[drop_index, 'color_intensity']

Out[]: 151     4.908678
     158     4.908678
     159     4.908678
     166     4.908678
Name: color_intensity, dtype: float64
```

5.2 범주형 변수 처리

범주형 변수는 값이 수학적 연산으로 모델을 생성하는 대부분의 분석 도구에서 직접 사용할 수 없어 특별한 처리가 필요합니다. 이를 인코딩이라고 부르며 라벨 인코딩과 원핫 인코딩이 대표적입니다.

5.2.1 라벨 인코딩

Definition

```
알파벳 순서로 숫자를 할당
         • 변환된 숫자가 순위를 잘못 나타내는지 확인 필요
In [ ]: from sklearn.preprocessing import LabelEncoder
       # 라벨 인코딩을 위한 데이터 생성
       item_label = ['b','a','c','d','a','b']
       # 라벨 인코딩 객체 생성
       encoder = LabelEncoder()
       # 라벨 인코딩 수행
       encoder.fit(item_label)
       encoder
Out[]: ▼ LabelEncoder
       LabelEncoder()
In []: # 라벨 인코딩 결과 확인
       vars(encoder)
Out[]: {'classes_': array(['a', 'b', 'c', 'd'], dtype='<U1')}</pre>
         • 중복이 제거되며 각 원소마다 라벨이 부여됨
In [ ]: # 라벨 인코딩 적용
        test_label = ['a','a','b','d','c']
       digit_label = encoder.transform(test_label)
       print(digit_label)
        [0 0 1 3 2]
In []: # 라벨 인코딩 원복
       print(encoder.inverse_transform(digit_label))
```

5.2.2 원핫 인코딩

['a' 'a' 'b' 'd' 'c']

Color		Red	Green	Yellow
Red		1	0	0
Green	One Unit Foresting	0	1	0
Yellow	One Hot Encoding	0	0	1

• Definition

범주형 변수를 이진화 시킴

• 0 또는 1로써 범주형 변수를 표현하는 기법

• 원핫 인코딩 수행시 배열 형태가 생성됨

oh_df

• 범주가 다양할 경우 0이 많아지는 문제가 발생함

```
In [ ]: from sklearn.preprocessing import OneHotEncoder
        import pandas as pd
        # 원핫 인코딩을 위한 데이터 생성
        data_dic = {'label':['Apple', 'Banana', 'Pear', 'Apple', 'Mango']}
        df = pd.DataFrame(data_dic)
Out[]:
            label
           Apple
        1 Banana
        2
             Pear
        3
           Apple
        4 Mango
In []: # 원핫 인코딩 객체 생성
        oh = OneHotEncoder(sparse_output=False)
        # 원핫 인코딩 수행
        oh.fit(df)
Out[]: ▼
                    OneHotEncoder
        OneHotEncoder(sparse_output=False)
In []: # 원핫 인코딩 결과 확인
        vars(oh)
Out[]: {'categories': 'auto',
         'sparse': 'deprecated',
         'sparse_output': False,
         'dtype': numpy.float64,
         'handle_unknown': 'error',
         'drop': None,
         'min_frequency': None,
         'max_categories': None,
         '_infrequent_enabled': False,
         'n_features_in_': 1,
         'feature_names_in_': array(['label'], dtype=object),
         'categories_': [array(['Apple', 'Banana', 'Mango', 'Pear'], dtype=object)],
         '_drop_idx_after_grouping': None,
         'drop_idx_': None,
         '_n_features_outs': [4]}
In []: # 원핫 인코딩 적용
        oh_encoded = oh.transform(df)
        oh_encoded
Out[]: array([[1., 0., 0., 0.],
               [0., 1., 0., 0.],
               [0., 0., 0., 1.],
               [1., 0., 0., 0.],
               [0., 0., 1., 0.]])
```

In []: oh_df = pd.DataFrame(oh_encoded.astype('int'), columns=oh.get_feature_names_out(['label']), index=df.index)

```
Out[]:
             label_Apple label_Banana label_Mango label_Pear
          0
                                                   0
          1
                       0
                                                   0
                                                               0
          2
                       0
                                     0
                                                   0
                                                               1
          3
                                     0
                                                   0
                                                               0
          4
                       0
                                     0
                                                               0
```

```
In []: # 원핫 인코딩 원복
oh.inverse_transform(pd.DataFrame([1, 0, 0, 0]).T)
```

Out[]: array([['Apple']], dtype=object)

📏 더 알아보기

- 😗 : 언제 어떤 인코딩을 사용해야 하나요?
- 😀 : Label 인코딩은 범주형 변수가 순서가 있거나, 범주 고유값의 개수가 많아 One-hot 적용시 메모리에 이슈가 있을 때 사용합니다. (예시: 학년, 직급등)
- 👙 : One-hot 인코딩은 순서가 없으며 고유값의 개수가 많지 않을때 사용합니다. (예시: 과일가게에서 파는 과일의 종류)

5.3 데이터 분할

Definition

분석 모델을 학습하고 성과를 확인하기 위해서 데이터를 Train과 Test 세트로 나누는 것

train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=None, train_size=None, stratify=None)

- X: 독립변수(데이터프레임)
- y: 종속변수(list)
- test_size: 테스트 사이즈 비율
- stratify: 동일 비율로 나눌 컬럼

■ 예제

iris 데이터를 train 0.8, test 0.2 비율로 나누어보기

```
In []: import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
iris = pd.DataFrame(iris.data, columns=iris.feature_names)
iris['Class'] = load_iris().target
iris['Class'] = iris['Class'].map({0:'Setosa', 1:'Versicolour', 2:'Virginica'})
print("총 데이터 수: ",len(iris))
```

총 데이터 수: 150

```
In []: from sklearn.model_selection import train_test_split
# 데이터 분할
X_train, X_test, y_train, y_test = train_test_split(iris.drop(columns='Class'), iris['Class'], test_size = 0.2, print('X_train :', X_train.shape, ' X_test :', X_test.shape)
print('y_train :', y_train.shape, ' y_test :', y_test.shape)

X_train : (120, 4) X_test : (30, 4)
y_train : (120,) y_test : (30,)
```

📏 더 알아보기

- 😗 : 데이터 분할이 잘못되어 문제집에 없는 문제가 수능에 나오면 어떻게 되나요?
- 😀 : 데이터 분할을 적절히 하지 못해 불균형이 일어나게 된다면, 분석모델의 성능평가에 대한 신뢰성이 떨어지게 됩니다. 이럴 경우 데이터 분할을 적절히 수행하여 모든 문제가 골고루 분할되도록 하는 층화추출 기법으로 해결할 수 있습니다.

♀ 층화 추출

• 층화추출을 통해 데이터를 골고루 분배할 수 있음

■ 예제

임의로 분할한 데이터셋의 클래스 분포를 확인하고, 층화추출을 통해 target의 불균형 문제를 해결해보기

```
In []: # 임의 데이터 분할
        X_train, X_test, y_train, y_test = train_test_split(iris.drop(columns='Class'), iris['Class'], test_size = 0.2,
        # 클래스 분포 확인
        y_train.value_counts()
Out[]: Virginica
                      43
        Versicolour
                      38
        Setosa
       Name: Class, dtype: int64
In [ ]: # 층화추출로 iris['Class']를 고루게 분포시킴
        X_train, X_test, y_train, y_test = train_test_split(iris.drop(columns='Class'),
                                                           iris['Class'], test_size = 0.2,
                                                           stratify =iris['Class'])
        # 클래스 분포 확인
        y_train.value_counts()
Out[]: Virginica
                      40
        Setosa
                      40
        Versicolour
                      40
```

5.4 데이터 스케일링

Name: Class, dtype: int64

현업에서 학습에 사용되는 데이터들은 각 컬럼이 가지는 값의 범위가 다양합니다. 예를들어 태양광 발전량 예측을 위해 사용하는 컬럼 중 온도는 약 -10~35 이고 강수량은 0~1,000까지 나타날 수 있습니다. 이렇게 각 컬럼별 단위가 크게 차이가 날 경우 분석모델은 대체로 값이 큰 쪽에 편향되어 학습을 하고, 값이 작은 쪽의 영향은 작다고 판단하기에 좋은 성능을 낼 수 없습니다. 따라서 각 컬럼의 범위를 균일화 하는 스케일링을 통해 이러한 문제를 해결해야 합니다.

↑ 데이터 스케일링 수행 시점

데이터 스케일링은 학습 데이터에 대해서만 수행하며, 분석 모델 설계, 학습 시 validation, test 데이터는 아직 보지 못했다고 가정하기 때문에 데이터를 분할한 뒤 사용합니다.

5.4.1 Standard Scaler

• 데이터를 평균이 0, 분산이 1인 정규분포로 스케일링함

■ 예제

In []: # 원본 분포

iris 데이터에 대한 데이터 분포를 확인하고 standard scaling을 수행한 뒤 분포를 재확인해보기

```
# 데이터 프레임을 넘파이 배열로 변환
        # 각 컬럼별이 아닌 모든 데이터의 연산을 수행하기 위함 (dataframe.function()은 컬럼별 연산)
        print ('Train_scaled (%.2f, %.2f) (%.2f, %.2f)'%(np.array(X_train).min(),
                                                         np.array(X_train).max(),
                                                         np.array(X_train).mean(),
                                                         np.array(X_train).std()))
        print ('Test_scaled (%.2f, %.2f) (%.2f, %.2f)'%(np.array(X_test).min(),
                                                        np.array(X_test).max(),
                                                        np.array(X_test).mean(),
                                                        np.array(X_test).std()))
        Train_scaled (0.10, 7.90) (3.47, 1.99)
        Test_scaled (0.10, 7.40) (3.43, 1.92)
In [ ]: from sklearn.preprocessing import StandardScaler
        StdScaler = StandardScaler()
        # Train 데이터의 fitting과 스케일링
        StdScaler.fit(X_train)
        X_{train_sc} = StdScaler.transform(X_train)
        # Test 데이터의 스케일링
        X_test_sc = StdScaler.transform(X_test)
        # 결과 확인
        print('\t\t(min, max) (mean, std)')
        print ('Train_scaled (%.2f, %.2f) (%.2f, %.2f)'%(X_train_sc.min(),
                                                         X_train_sc.max(),
                                                         X_train_sc.mean(),
                                                        X_train_sc.std()))
        print ('Test_scaled (%.2f, %.2f) (%.2f, %.2f)'%(X_test_sc.min(),
                                                       X_test_sc.max(),
                                                       X_test_sc.mean(),
                                                        X_test_sc.std()))
                        (min, max) (mean, std)
        Train_scaled (-2.48, 2.70) (-0.00, 1.00)
        Test scaled (-2.01, 3.17) (-0.03, 0.98)
```

5.4.2 Min-max Scaler

- 컬럼들을 0과 1 사이의 값으로 스케일링 하는 방식
- 최솟값이 0 최댓값이 1

■ 예제

iris 데이터에 min-max scaling을 수행한 뒤 분포를 확인해보기

X_test_sc.mean(),
X_test_sc.std()))

(min, max) (mean, std) Train_scaled (0.00, 1.00) (0.46, 0.27) Test_scaled (0.00, 1.09) (0.45, 0.26)

🤚 꿀팁

- scaling은 수치형 컬럼들에 대해 적용
- scaling은 이상치에 민감하기에 이상치 처리 후 수행
- 분류분석일 경우 standard
- 회귀분석일 경우 min-max

5.5 차원 축소

분석 모델을 구축하기 위해 다양한 데이터를 수집하게 됩니다. 이때, 목적이 되는 종속변수를 예측하기 위해 다양한 요인들을 모두 고려한다는 취지로 많은 독립변수를 사용하게되면 오히려 성능이 떨어지는 경우를 확인할 수 있습니다. 이는 차원의 저주라고 불리는 문제로 야기되며, 이를 해결하기위해 여러개의 컬럼을 몇 개로 축소하는 설명변수 선택 혹은 주성분 분석과 같은 차원축소 기법이 사용됩니다.

↑ 차원의 저주

- 컬럼이 늘어날수록 차원도 1차원, 2차원, 3차원으로 늘어남
- 차원이 늘어날수록 데이터 간의 거리가 멀어지고, 이는 전체 영역에서 대한 데이터의 설명력이 줄어듦을 뜻함

5.5.1 설명변수 선택

- EDA에서 상관관계가 높았던 설명변수만을 사용 ☞ 해석이 용이함
- 그러나 고차원적으로 갈 수록 데이터간의 상관관계를 고려하기 어려움

5.5.2 주성분 분석(PCA)

- 여러 컬럼을 사용하는 대신 이를 잘 나타내는 주성분들로만 선택하여 사용
- 주성분 분석은 수치형 데이터에만 사용
- 스케일 차이가 주성분에 영향을 주는것을 방지하기 위해 스케일링 수행
- 주성분의 개수를 알아내는 방법은 분산 설명력의 누적 합을 보거나 scree plot의 꺾인점(=elbow point)을 확인
- 분산 설명력의 누적합이 0.9 이상인 지점
- scree plot에서 기울기가 급격히 감소하는 지점 직전

■ 예제

iris 데이터셋에 대해 주성분 분석을 수행하여 차원을 축소해보기

```
In []: import pandas as pd
    from sklearn.datasets import load_iris
    iris = load_iris()
    iris = pd.DataFrame(iris.data, columns=iris.feature_names)
    iris['Class'] = load_iris().target
    iris['Class'] = iris['Class'].map({0:'Setosa', 1:'Versicolour', 2:'Virginica'})
    iris.head()
```

```
Out[]:
           sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                                                                   0.2 Setosa
                      4.9
                                     3.0
                                                    1.4
                                                                   0.2 Setosa
                      4.7
        2
                                     3.2
                                                    1.3
                                                                   0.2 Setosa
        3
                      4.6
                                     3.1
                                                    1.5
                                                                   0.2 Setosa
        4
                      5.0
                                     3.6
                                                    1.4
                                                                   0.2 Setosa
In []: # 수치형 데이터만 추출
        x = iris.drop(columns = 'Class')
        # 수치형 변수 정규화
        from sklearn.preprocessing import StandardScaler
        x = StandardScaler().fit_transform(x)
        pd.DataFrame(x).head()
Out[]:
                                             3
        0 -0.900681 1.019004 -1.340227 -1.315444
        1 -1.143017 -0.131979 -1.340227 -1.315444
        3 -1.506521 0.098217 -1.283389 -1.315444
        4 -1.021849 1.249201 -1.340227 -1.315444
In [ ]: from sklearn.decomposition import PCA
        pca = PCA(n_{components} = 4)
        pca_fit = pca.fit(x)
        print('고유 값 : ', pca.singular_values_)
print('분산 설명력: ', pca.explained_variance_ratio_)
        고유 값: [20.92306556 11.7091661 4.69185798 1.76273239]
        분산 설명력: [0.72962445 0.22850762 0.03668922 0.00517871]
         💆 주성분 분석 결과해석
          • 분산 설명력이 2번째 주성분까지 누적 0.9를 넘었으므로 주성분을 2개 선택함
          • 기존 4차원의 데이터를 2차원으로 축소
         ₹ 분산 설명력
```

전체 데이터에서 각 주성분이 설명할 수 있는 분산의 비율
 누적하여 0.9 이상이면 해당 개수까지 주성분으로 선택

Scree plot으로 주성분 개수 구하기

plt.xlabel('Number of Components')

plt.ylabel('Cumulative Explained Variance')
plt.plot(pca.explained_variance_ratio_ , 'o-')

In []: import matplotlib.pyplot as plt

plt.title('Scree Plot')

■ 예제

plt.show()

🙎 scree plot 결과해석

• 그래프의 기울기가 2.0 지점에서 급격히 줄어들기 때문에 0, 1 두개를 주성분으로 선택할 수 있음

🤳 예제

plt.show()

iris 데이터에 대해 PCA를 수행하여 적절한 주성분 개수를 찾고, 전체 데이터를 주성분에 대해 시각화 해보기

```
In []: # PCA 객체 생성 (주성분 개수 2개 생성)
        pca = PCA(n_components = 2)
        # 2개의 주성분을 가진 데이터로 변환
        principalComponents = pca.fit_transform(x)
        principal_iris = pd.DataFrame (data = principalComponents, columns =['pc1', 'pc2'])
        principal_iris.head()
Out[]:
                         pc2
                pc1
        0 -2.264703
                     0.480027
        1 -2.080961 -0.674134
        2 -2.364229 -0.341908
        3 -2.299384 -0.597395
        4 -2.389842 0.646835
In [ ]: import matplotlib.pyplot as plt
        import seaborn as sns
        plt.title('2 component PCA' )
        sns.scatterplot (x = 'pc1', y = 'pc2',
                         hue = iris.Class,
                         data = principal_iris)
```

2 component PCA

↑ 주성분 분석의 시각화 기능

- 주성분 분석은 차원의 저주를 해결하기 위해 컬럼을 줄이는 역할을 수행하는 것 이외로 시각화에 사용됨
- 100개의 컬럼이 있는 데이터셋이면 100차원의 데이터 ☞ 우리는 3차원만을 시각화 할 수 있음
- 따라서 주성분 분석을 통해 우리가 인지할 수 있는 차원으로 데이터를 줄여 시각화에 사용될 수 있음
- 주성분 분석으로 차원이 줄어들었어도 분산 설명력에 의거해 전체 데이터를 잘 설명할 수 있음

5.6 데이터 불균형 문제 처리

데이터 불균형 문제는 클래스 분포가 극도로 불균형하여 일부 클래스가 다른 클래스에 비해 압도적으로 많은 데이터를 가지고 있을 때 발생합니다. 예를 들어, 이진 분류 문제에서 긍정 클래스(예: 사기 거래)가 전체 데이터의 1%를 차지하고, 부정 클래스(예: 정상 거래)가 99%를 차지하는 경우, 모델이 부정 클래스만 예측해도 높은 정확도를 보일 수 있습니다. 이는 모델이 소수 클래스의 패턴을 제대로 학습하지 못하게 하여 예측 성능이 저하됩니다. 즉, 데이터 불균형 문제는 모델의 예측 성능을 저하시킬 수 있는 중요한 문제입니다. 이를 해결하기 위해 다양한 기법을 활용할 수 있으며 이번 섹션에서는 그 중 sampling에 대해 다루어 보겠습니다.

5.6.1 언더샘플링

Definition

작은 클래스에 맞추어 전체 데이터를 감소하는 기법으로 불균형은 해결할 수 있으나 데이터가 적은 경우 학습 성능을 떨어뜨릴 수 있음

■ 예제

언더샘플링 수행 해보기

In []: import numpy as np import pandas as pd from sklearn.datasets import make_classification from collections import Counter from imblearn.under_sampling import RandomUnderSampler

```
# 언더샘플링을 위한 불균형 데이터 생성
x, y = make_classification(n_samples=2000, n_features=6, weights=[0.95], flip_y=0)
print(Counter(y))
```

Counter({0: 1900, 1: 100})

```
In [ ]: # 언더샘플링 수행
```

undersample = RandomUnderSampler()
x_under, y_under = undersample.fit_resample(x, y)
print(Counter(y_under))

Counter({0: 100, 1: 100})

5.6.2 오버샘플링

• Definition

다수 레이블에 맞춰 소수 레이블의 데이터를 증식시키는 방법으로 일반적으로 언더 샘플링보다 보통 유용함

■ 예제

오버샘플링 수행 해보기

```
In []: from imblearn.over_sampling import RandomOverSampler
# 오버샘플링 수행
oversample = RandomOverSampler()
x_over, y_over = oversample.fit_resample(x, y)
print(Counter(y_over))
```

Counter({0: 1900, 1: 1900})

🔥 꿀팁

- 데이터 불균형 문제는 분류 문제에 주로 사용됨 ☞ 종속변수에 대한 처리
- 회귀 문제에서 범주형 데이터에 불균형이 있을 경우 사용할 수 있음 ☞ 설명변수에 대한 처리