From Compressing Lamba-Letrec Terms to Recognizing Regular-Expression Processes

Clemens Grabmayer

Department of Computer Science Gran Sasso Science Institute L'Aquila, The Netherlands

> DCM-2013 Rome July 2, 2023

- 1. Maximal sharing of functional programs
 - ▶ higher-order λ -term graphs

2. Process interpretation of regular expressions

▶ LEE-witnesses: graph labelings based on a loop-condition LEE

- 1. Maximal sharing of functional programs
 - from terms in the λ -calculus with letrec to:
 - higher-order λ -term graphs
 - first-order λ -term graphs
 - \blacktriangleright λ -NFAs, and λ -DFAs
 - minimization / readback / efficiency / Haskell implementation
- 2. Process interpretation of regular expressions

▶ LEE-witnesses: graph labelings based on a loop-condition LEE

- 1. Maximal sharing of functional programs
 - from terms in the λ -calculus with letrec to:
 - higher-order λ -term graphs
 - first-order λ -term graphs
 - \blacktriangleright λ -NFAs, and λ -DFAs
 - minimization / readback / efficiency / Haskell implementation
- 2. Process interpretation of regular expressions
 - Milner's questions, known results
 - structure-constrained process graphs:
 - ▶ LEE-witnesses: graph labelings based on a loop-condition LEE
 - preservation under bisimulation collapse
 - readback: from graph labelings to regular expressions

- Comparison desiderata
- 1. Maximal sharing of functional programs
 - from terms in the λ -calculus with letrec to:
 - higher-order λ -term graphs
 - first-order λ -term graphs
 - \blacktriangleright λ -NFAs, and λ -DFAs
 - minimization / readback / efficiency / Haskell implementation
- 2. Process interpretation of regular expressions
 - Milner's questions, known results
 - structure-constrained process graphs:
 - ▶ LEE-witnesses: graph labelings based on a loop-condition LEE
 - preservation under bisimulation collapse
 - readback: from graph labelings to regular expressions
- Comparison results

 λ -calculus with letrec under unfolding semantics

Not available: term graph interpretation that is studied under ±

▶ graph representations used by compilers were not intended for use under <=>

- λ -calculus with letrec under unfolding semantics
 - Not available: term graph interpretation that is studied under ±
 - ▶ graph representations used by compilers were not intended for use under
 - Desired: term graph interpretation that:
 - natural correspondence with terms in λ_{letrec}
 - ▶ supports compactification under <>>
 - efficient translation and readback

- λ -calculus with letrec under unfolding semantics
 - Not available: term graph interpretation that is studied under ±
 - ▶ graph representations used by compilers were not intended for use under
 - Desired: term graph interpretation that:
 - lacktriangleright natural correspondence with terms in $oldsymbol{\lambda}_{\mathsf{letrec}}$
 - ▶ supports compactification under <>>
 - efficient translation and readback
- Regular expressions under process semantics (bisimilarity

 →)
 - Given: process graph interpretation $P(\cdot)$, studied under \Longrightarrow
 - ▶ not closed under ⇒, and ⇔, modulo ⇔ incomplete

- λ -calculus with letrec under unfolding semantics
 - Not available: term graph interpretation that is studied under ±
 - ▶ graph representations used by compilers were not intended for use under
 - Desired: term graph interpretation that:
 - natural correspondence with terms in λ_{letrec}
 - ▶ supports compactification under <>>
 - efficient translation and readback
- Regular expressions under process semantics (bisimilarity

 →)
 - Given: process graph interpretation $P(\cdot)$, studied under \leftrightarrow
 - ▶ not closed under ⇒, and ⇔, modulo ⇔ incomplete
 - *Desired:* reason with graphs that are $P(\cdot)$ -expressible modulo \leftrightarrow (at least with 'sufficiently many')
 - understand incompleteness by a structural graph property

structure constraints (L'Aquila)

Maximal sharing of functional programs

(joint work with Jan Rochel)

Maximal sharing: example (fix)

$$L \longmapsto^{\llbracket \cdot \rrbracket_{\mathcal{H}}} \mathcal{G}$$

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$

$$L \longmapsto^{\llbracket \cdot \rrbracket_{\mathcal{H}}} \mathcal{G} \longmapsto G$$

- 1. term graph interpretation $\lceil \cdot \rceil$.
 - of $\lambda_{\mathsf{letrec}}$ -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$

- 1. term graph interpretation [⋅].
 - of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$

- 1. term graph interpretation $\lceil \cdot \rceil$.
 - of λ_{letrec} -term L as:
 - a. higher-order term graph $G = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $\llbracket \cdot \rrbracket$.
 - of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0
- 3. readback rb of f-o term graph G_0 yielding program $L_0 = \text{rb}(G_0)$.

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0
- 3. readback rb of f-o term graph G_0 yielding program $L_0 = \text{rb}(G_0)$.

Interpretation

Running example

instead of:

$$\lambda f$$
. let $r = f(fr)$ in r

$$\lambda f$$
. let $r = f r$ in r

we use:

$$\lambda x$$
. λf . let $r = f(f r x) x$ in r

$$\lambda x$$
. λf . let $r = f r x$ in r

$$\longrightarrow$$
max-sharing

 L_0

$$L_0 = \lambda x. \lambda f. \operatorname{let} r = f r x \operatorname{in} r$$

$$L_0 = \lambda x. \lambda f. \operatorname{let} \mathbf{r} = f \mathbf{r} x \operatorname{in} \mathbf{r}$$

syntax tree

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

syntax tree (+ recursive backlink)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

syntax tree (+ recursive backlink)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

syntax tree (+ recursive backlink, + scopes)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

syntax tree (+ recursive backlink, + scopes, + binding links)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

higher-order term graph (with scope sets, Blom [2003])

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

higher-order term graph (with scope sets, Blom [2003])

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with scope vertices with backlinks (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with scope vertices with backlinks

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

$$\lambda$$
-term-graph $\llbracket L_0
rbracket_{\mathcal{T}}$

 $L_0 = \lambda x. \lambda f. \operatorname{let} r = f r x \operatorname{in} r$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree (+ recursive backlink)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree (+ recursive backlink)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree (+ recursive backlink, + scopes)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

 λ -higher-order-term-graph $\llbracket L
rbracket_{\mathcal{H}}$

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph with scope vertices with backlinks (+ scope sets)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

 λ -term-graph $[\![L]\!]_{\mathcal{T}}$

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation λ_{letrec} -term $L \mapsto \lambda$ -term-graph $[\![L]\!]_{\mathcal{T}}$

- \blacktriangleright defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: \sim minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

$$\llbracket L_1 \rrbracket_{\lambda^{\infty}} = \llbracket L_2 \rrbracket_{\lambda^{\infty}} \iff \llbracket L_1 \rrbracket_{\mathcal{T}} \stackrel{\text{def}}{=} \llbracket L_2 \rrbracket_{\mathcal{T}}$$

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation λ_{letrec} -term $L \mapsto \lambda$ -term-graph $[\![L]\!]_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: \sim minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

$$[\![L_1]\!]_{\lambda^{\infty}} = [\![L_2]\!]_{\lambda^{\infty}} \iff [\![L_1]\!]_{\mathcal{T}} \stackrel{\longleftrightarrow}{\longleftrightarrow} [\![L_2]\!]_{\mathcal{T}}$$

Collapse

bisimilarity between λ -term-graphs

functional bisimilarity and bisimulation collapse

Bisimulation collapse: property

Theorem

The class of eager-scope λ -term-graphs is closed under functional bisimilarity \geq .

 \Longrightarrow For a λ_{letrec} -term L

the bisimulation collapse of $[\![L]\!]_{\mathcal{T}}$ is again an eager-scope λ -term-graph.

defined with property:

defined with property:

defined with property:

Theorem

For all eager-scope λ -term-graphs G:

$$(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

defined with property:

Theorem

For all eager-scope λ -term-graphs G:

$$(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

idea:

- 1. construct a spanning tree T of G
- 2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

()
$$\lambda f$$
. let $r = f r$ in r

$$(f[r = f r]) r$$

$$(f[r =?]) f r$$

$$(f[r =?]) f r$$

$$(f[r =?]) f r$$

$$(v_1[] \cdots v_n[] v_{n+1}[r = ?]) r$$

$$(v_1 \cdots v_n v_{n+1}) \overset{!}{\underset{r}{\bigvee}} r$$

Maximal sharing: complexity

- 1. interpretation
 - of λ_{letrec} -term L with |L| = n as λ -term-graph $G = \|L\|_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse $\mid\downarrow$ of f-o term graph G into G_0
 - $in time <math>O(|G|\log|G|) = O(n^2 \log n)$
- 3. readback rb of f-o term graph G_0 yielding λ_{letter} -term $L_0 = \text{rb}(G_0)$.
 - $in time O(|G|\log|G|) = O(n^2 \log n)$

Theorem

Computing a maximally compact form $L_0 = (\text{rb} \circ |\downarrow \circ [\![\cdot]\!]_{\mathcal{T}})(L)$ of L for a λ_{letrec} -term L requires time $O(n^2 \log n)$, where |L| = n.

Demo: console output

readback of minimised DFA: λx . λy . let F = y F x in F

jan:~/papers/maxsharing-ICFP/talks/ICFP-2014>

```
jan:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
λ-letrec-term:
\lambda x. \lambda f. let r = f(f r x) x in r
derivation:
               ----- 0
               (x f[r]) f (x f[r]) r (x) x
------ @ ------- S
(x f[r]) f r (x f[r]) x

(x f[r]) f r (x f[r]) x

(x f[r]) f (x f[r]) f r x

(x f[r]) f (f r x)

(x f[r]) x
(x f[r]) f (f r x) x
                                                                             (x f[r]) r
(x f) let r = f (f r x) x in r
                                   (x) \lambda f. let r = f(f r x) x in r
() \lambda x. \lambda f. let r = f(f r x) x in r
writing DFA to file: running-dfa.pdf
readback of DFA:
\lambda x. \lambda v. let F = v (v F x) x in F
writing minimised DFA to file: running-mindfa.pdf
```

Demo: generated λ -NFAs

Resources (maximal sharing)

- tool maxsharing on hackage.haskell.org
- papers and reports
 - Maximal Sharing in the Lambda Calculus with Letrec
 - ▶ ICFP 2014 paper
 - accompanying report arXiv:1401.1460
 - ► Term Graph Representations for Cyclic Lambda Terms
 - ▶ TERMGRAPH 2013 proceedings
 - extended report arXiv:1308.1034
 - ▶ Vincent van Oostrom, CG: Nested Term Graphs
 - ▶ TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
 - ▶ Unfolding Semantics of the Untyped λ -Calculus with letrec
 - ▶ Ph.D. Thesis, Utrecht University, 2016

(work started with Wan Fokkink)

Regular expressions (S.C. Kleene, 1951)

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the grammar:

$$e, f := 0 \mid 1 \mid a \mid (e + f) \mid (e \cdot f) \mid (e^*)$$
 (for $a \in A$).

Regular expressions (S.C. Kleene, 1951)

Definition

The set Reg(A) of regular expressions over alphabet A is defined by the grammar:

$$e, f := 0 \mid 1 \mid a \mid (e + f) \mid (e \cdot f) \mid (e^*)$$
 (for $a \in A$).

Note, here:

- ▶ symbol 0 instead of Ø
- ▶ symbol 1 used (often dropped, definable as 0*)
- ▶ no complementation operation ē
 - which is not expressible under language interpretation

Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi-Elgot-Wright, 1958)

Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi-Elgot-Wright, 1958)

Language semantics $[\![\cdot]\!]_L$ of reg. expr's (Copi-Elgot-Wright, 1958)

$$0 \stackrel{L}{\longmapsto} \text{ empty language } \varnothing$$

$$1 \stackrel{L}{\longmapsto} \{\epsilon\} \qquad (\epsilon \text{ the empty word})$$

$$a \stackrel{L}{\longmapsto} \{a\}$$

$$e + f \stackrel{L}{\longmapsto} \text{ union of } L(e) \text{ and } L(f)$$

$$e \cdot f \stackrel{L}{\longmapsto} \text{ element-wise concatenation of } L(e) \text{ and } L(f)$$

$$e^* \stackrel{L}{\longmapsto} \text{ set of words formed by concatenating words in } L(e),$$

$$\text{ and adding the empty word } \epsilon$$

$$\llbracket e \rrbracket_L := L(e) \quad \text{(language defined by } e\text{)}$$

Process semantics of regular expressions $[\cdot]_P$ (Milner, 1984)

Process semantics of regular expressions $[\cdot]_P$ (Milner, 1984)

```
0 \stackrel{P}{\longmapsto} \operatorname{deadlock} \delta, \text{ no termination}
1 \stackrel{P}{\longmapsto} \operatorname{empty-step \ process} \epsilon, \text{ then terminate}
a \stackrel{P}{\longmapsto} \operatorname{atomic \ action} \ a, \text{ then terminate}
e+f \stackrel{P}{\longmapsto} (\operatorname{choice}) \operatorname{execute} \ \llbracket e \rrbracket_P \operatorname{or} \ \llbracket f \rrbracket_P
e \cdot f \stackrel{P}{\longmapsto} (\operatorname{sequentialization}) \operatorname{execute} \ \llbracket e \rrbracket_P, \operatorname{then} \ \llbracket f \rrbracket_P
e^* \stackrel{P}{\longmapsto} (\operatorname{iteration}) \operatorname{repeat} (\operatorname{terminate} \operatorname{or} \operatorname{execute} \ \llbracket e \rrbracket_P)
```

Process semantics of regular expressions $[\cdot]_P$ (Milner, 1984)

```
0 \stackrel{P}{\longmapsto} \text{deadlock } \delta, no termination
     1 \stackrel{P}{\longmapsto} empty-step process \epsilon, then terminate
     a \stackrel{P}{\longmapsto} atomic action a, then terminate
e + f \xrightarrow{P} (choice) execute [e]_P or [f]_P
 e \cdot f \stackrel{P}{\longmapsto}  (sequentialization) execute [e]_P, then [f]_P
   e^* \stackrel{P}{\longmapsto} (iteration) repeat (terminate or execute [e]_P)
 [e]_P := [P(e)]_{\leftrightarrow} (bisimilarity equivalence class of process P(e))
```


$$P(a(a(b+ba))*0)$$

$$P((aa(ba)^*b)^*0)$$

$$P(a \cdot (a \cdot (b + b \cdot a))^* \cdot 0)$$

$$P((a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0)$$

$$P(a \cdot (a \cdot (b + b \cdot a))^* \cdot 0)$$

$$P((a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0)$$

$$P(a \cdot (a \cdot (b + b \cdot a))^* \cdot 0)$$

$$P((a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0)$$

$$P(a \cdot (a \cdot (b + b \cdot a))^* \cdot 0)$$

$$P((a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0)$$

$$P(a \cdot (a \cdot (b + b \cdot a))^* \cdot 0)$$

$$P((a \cdot a \cdot (b \cdot a)^* \cdot b)^* \cdot 0)$$

$$P(a(a(b+ba))^*0)$$

$$P((aa(ba)*b)*0)$$

$$P(a(a(b+ba))*0)$$

$$P((aa(ba)*b)*0)$$

$$P(a(a(b+ba))*0)$$

$$P((aa(ba)*b)*0)$$

$$P(a(a(b+ba))*0)$$

$$P((aa(ba)*b)*0)$$

$$P(a(a(b+ba))*0)$$

$$P((aa(ba)*b)*0)$$

$$P(a(a(b+ba))^*0)$$

$$P((aa(ba)^*b)^*0)$$

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- ▶ *V* is a set of *vertices*,
- $v_s \in V$ is the *start vertex*,
- ▶ $T \subseteq V \times A \times V$ the set of *transitions*,
- ▶ $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- ▶ *V* is a set of *vertices*,
- $v_s \in V$ is the *start vertex*,
- ▶ $T \subseteq V \times A \times V$ the set of *transitions*,
- ▶ $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Restriction

Here we only consider **finite** and **start-vertex** connected process graphs.

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- ▶ *V* is a set of *vertices*,
- $v_s \in V$ is the *start vertex*,
- ▶ $T \subseteq V \times A \times V$ the set of *transitions*,
- ▶ $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Restriction

Here we only consider **finite** and **start-vertex** connected process graphs.

Correspondence with NFAs

With the finiteness restriction, process graphs can be viewed as:

▶ nondeterministic finite-state automata (NFAs),

that are studied under bisimulation, not under language equivalence.

Definition

A process graph over actions in A is a tuple $G = \langle V, v_s, T, E \rangle$ where:

- ▶ *V* is a set of *vertices*,
- ▶ $v_s \in V$ is the *start vertex*,
- ▶ $T \subseteq V \times A \times V$ the set of *transitions*,
- ▶ $E \subseteq V \times \{\downarrow\}$ the set of *termination extensions*.

Restriction

Here we only consider finite and start-vertex connected process graphs.

Correspondence with NFAs

With the finiteness restriction, process graphs can be viewed as:

▶ nondeterministic finite-state automata (NFAs),

that are studied under bisimulation, not under language equivalence.

Antimirov (1996): NFA-definition of $P(\cdot)$ via partial derivatives.

O C-des MS interpret collapse readback c d lit PI pi Milner's ax Milner's questions loop-elim LEE LEE-witness collapse readback 1r-less line

 $? \in im(P(\cdot))$?

Expressible process graphs (under bisimulation →)

Expressible process graphs (under bisimulation →)

▶ Not every finite-state process is $P(\cdot)$ -expressible.

- ? $P(\cdot)$ -expressible ?
 - $[\cdot]_{P}$ -expressible

Not every finite-state process is $P(\cdot)$ -expressible.

? $P(\cdot)$ -expressible ?

 $[\cdot]_{P}$ -expressible

not $P(\cdot)$ -expressible

- ▶ Not every finite-state process is $P(\cdot)$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.

? $P(\cdot)$ -expressible ?

 $[\cdot]_{P}$ -expressible

not $P(\cdot)$ -expressible

not $[\cdot]_P$ -expressible

- ▶ Not every finite-state process is $P(\cdot)$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Fewer identities hold for \triangle_P than for $=_L$: $\triangle_P \subsetneq =_L$.

- ▶ Not every finite-state process is $P(\cdot)$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Fewer identities hold for $\stackrel{\smile}{\longrightarrow}_P$ than for $=_I$: $\stackrel{\smile}{\longrightarrow}_P$ \subsetneq $=_I$.

Properties of P and $[\cdot]_P$

- ▶ Not every finite-state process is $P(\cdot)$ -expressible.
- ▶ Not every finite-state process is $\llbracket \cdot \rrbracket_P$ -expressible.
- ▶ Fewer identities hold for $\stackrel{\longleftarrow}{}_P$ than for $=_L$: $\stackrel{\longleftarrow}{}_P \subsetneq =_L$.

Complete axiomatization of = (Aanderaa/Salomaa, 1965/66)

Axioms:

(B1)
$$e + (f + g) = (e + f) + g$$
 (B7) $e \cdot 1 = e$
(B2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$ (B8) $e \cdot 0 = 0$
(B3) $e + f = f + e$ (B9) $e + 0 = e$
(B4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (B10) $e^* = 1 + e \cdot e^*$
(B5) $e \cdot (f + g) = e \cdot f + e \cdot g$ (B11) $e^* = (1 + e)^*$
(B6) $e + e = e$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } \left(\text{if } \{\epsilon\} \notin L(f) \right)$$

$$non-empty-word$$

$$property$$

Sound and unsound axioms with respect to \triangle_P

Axioms:

(B1)
$$e + (f + g) = (e + f) + g$$
 (B7) $e \cdot 1 = e$
(B2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$ (B8) $e \cdot 0 = 0$
(B3) $e + f = f + e$ (B9) $e + 0 = e$
(B4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (B10) $e^* = 1 + e \cdot e^*$
(B5) $e \cdot (f + g) = e \cdot f + e \cdot g$ (B11) $e^* = (1 + e)^*$
(B6) $e + e = e$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } \left(\text{if } \{\epsilon\} \notin L(f) \right)$$

$$non-empty-word$$

$$property$$

Sound and unsound axioms with respect to \triangle_P

Axioms:

(B1)
$$e + (f + g) = (e + f) + g$$
 (B7) $e \cdot 1 = e$
(B2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$ (B8) $e \cdot 0 = 0$
(B3) $e + f = f + e$ (B9) $e + 0 = e$
(B4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (B10) $e^* = 1 + e \cdot e^*$
(B5) $e \cdot (f + g) = e \cdot f + e \cdot g$ (B11) $e^* = (1 + e)^*$
(B6) $e + e = e$ (B8)' $0 \cdot e = 0$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} \text{ FIX } \left(\text{if } \{\epsilon\} \notin L(f) \right)$$

$$non-empty-word$$

$$property$$

Adaptation for $\stackrel{\longleftarrow}{\longrightarrow}_P$ (Milner, 1984) (Mil = Mil⁻ + RSP*)

Axioms:

(B1)
$$e + (f + g) = (e + f) + g$$
 (B7) $e \cdot 1 = e$
(B2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$
(B3) $e + f = f + e$ (B9) $e + 0 = e$
(B4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (B10) $e^* = 1 + e \cdot e^*$
(B11) $e^* = (1 + e)^*$
(B6) $e + e = e$ (B8)' $0 \cdot e = 0$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} RSP^* (if \{\epsilon\} \notin L(f))$$
non-empty-word
property

Adaptation for $\stackrel{\longleftarrow}{P}$ (Milner, 1984) (Mil = Mil⁻ + RSP*)

Axioms:

(B1)
$$e + (f + g) = (e + f) + g$$
 (B7) $e \cdot 1 = e$
(B2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$ (B8)' $0 \cdot e = 0$
(B3) $e + f = f + e$ (B9) $e + 0 = e$
(B4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (B10) $e^* = 1 + e \cdot e^*$
(B11) $e^* = (1 + e)^*$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} RSP^* (if \{\epsilon\} \notin L(f))$$
non-empty-word
property

Adaptation for $\stackrel{\longleftarrow}{P}$ (Milner, 1984) (Mil = Mil⁻ + RSP*)

Axioms:

(B1)
$$e + (f + g) = (e + f) + g$$
 (B7) $e \cdot 1 = e$
(B2) $(e \cdot f) \cdot g = e \cdot (f \cdot g)$ (B8)' $0 \cdot e = 0$
(B3) $e + f = f + e$ (B9) $e + 0 = e$
(B4) $(e + f) \cdot g = e \cdot g + f \cdot g$ (B10) $e^* = 1 + e \cdot e^*$
(B11) $e^* = (1 + e)^*$

$$\frac{e = f \cdot e + g}{e = f^* \cdot g} RSP^* (if \{\epsilon\} \notin L(f))$$
non-empty-word
property

Milner's questions

Q2. Complete axiomatization: Is Mil complete for \leq_P ?

Milner's questions

Q1. Recognition: Which structural property of finite process graphs characterizes $P(\cdot)$ -expressibility modulo \rightleftharpoons ?

Q2. Complete axiomatization: Is Mil complete for \triangle_P ?

Q1. Recognition: Which structural property of finite process graphs characterizes $P(\cdot)$ -expressibility modulo \rightleftharpoons ?

Q2. Complete axiomatization: Is Mil complete for \Leftrightarrow_P ?

- Q1. Recognition: Which structural property of finite process graphs characterizes $P(\cdot)$ -expressibility modulo \leq ?
 - definability by well-behaved specifications (Baeten/Corradini, 2005)

Q2. Complete axiomatization: Is Mil complete for \Leftrightarrow_P ?

- Q1. Recognition: Which structural property of finite process graphs characterizes $P(\cdot)$ -expressibility modulo \leq ?
 - ▶ definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Complete axiomatization: Is Mil complete for \triangle_P ?

- Q1. Recognition: Which structural property of finite process graphs characterizes $P(\cdot)$ -expressibility modulo \rightleftharpoons ?
 - ▶ definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Complete axiomatization: Is Mil complete for \triangle_P ?
 - ▶ Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - every iteration e^* occurs as part of a 'no-exit' subexpression $e^* \cdot 0$

- Q1. Recognition: Which structural property of finite process graphs characterizes $P(\cdot)$ -expressibility modulo \rightleftharpoons ?
 - ▶ definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Complete axiomatization: Is Mil complete for \leq_P ?
 - ▶ Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - every iteration e^* occurs as part of a 'no-exit' subexpression $e^* \cdot 0$
 - ► Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)

- Q1. Recognition: Which structural property of finite process graphs characterizes $P(\cdot)$ -expressibility modulo \rightleftharpoons ?
 - ▶ definability by well-behaved specifications (Baeten/Corradini, 2005)
 - ▶ that is decidable (super-exponentially) (Baeten/Corradini/G, 2007)
- Q2. Complete axiomatization: Is Mil complete for \leq_P ?
 - ▶ Mil is complete for perpetual-loop expressions (Fokkink, 1996)
 - every iteration e^* occurs as part of a 'no-exit' subexpression $e^* \cdot 0$
 - ► Mil is complete when restricted to 1-return-less expressions (Corradini, De Nicola, Labella, 2002)
 - ► Mil⁻ + one of two stronger rules (than RSP*) is complete (G, 2006)

Well-behaved form, looping palm trees

$$P((aa(ba)*b)*)$$

Well-behaved form, looping palm trees

well-behaved form

(Corradini, Baeten)

$$P((aa(ba)*b)*) \qquad P((1 \cdot aa(1 \cdot ba)* \cdot 1 \cdot b)*(1 \cdot 1))$$

Well-behaved form, looping palm trees

well-behaved form (Corradini, Baeten)

$$P((1 \cdot aa(1 \cdot ba)^* \cdot 1 \cdot b)^*(1 \cdot 1))$$

looping palm tree

$$P((aa(ba)*b)*)$$

Definition

A process graph is a loop chart if:

L-1.

L-2.

L-3.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2.
- L-3.

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.

L-3.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

loop chart

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

loop chart

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

loop chart

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Definition

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Loop chart

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Loop chart

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Loop chart

Definition

A process graph is a loop chart if:

- L-1. There is an infinite path from the start vertex.
- L-2. Every infinite path from the start vertex returns to it.
- L-3. Termination is only possible at the start vertex.

Loop elimination, and properties

- $\longrightarrow_{\text{elim}}$: eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune : remove a transition to a deadlocking state

Loop elimination, and properties

- →_{elim} : eliminate a transition-induced loop by:
 - removing the loop-entry transition(s)
 - garbage collection
- → prune : remove a transition to a deadlocking state

Lemma

- (i) $\longrightarrow_{\text{elim}}$ is terminating.
- (ii) $\longrightarrow_{\text{elim}} \cup \longrightarrow_{\text{prune}}$ is terminating and confluent.

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 (G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace*{1cm}} \mathsf{elim}$$

 \wedge G_0 has no infinite trace).

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace*{1cm}} \mathsf{elim} \right. \\ \land G_0 \text{ has no infinite trace} \left. \right).$$

Lemma (by using confluence properties)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an $\longrightarrow_{\text{elim}}$ normal form without an infinite trace.

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace{1cm}} \mathsf{elim} \right.$$

$$\land G_0 \text{ has no infinite trace} \right).$$

Lemma (by using confluence properties)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an $\longrightarrow_{\text{elim}}$ normal form without an infinite trace.
- (iii) There is an $\rightarrow_{\text{elim,prune}}$ normal form without an infinite trace.

Definition

A process graph G satisfies LEE (loop existence and elimination) if:

$$\exists G_0 \left(G \longrightarrow_{\mathsf{elim}}^* G_0 \xrightarrow{\hspace*{1cm}} \mathsf{elim} \right.$$
 $\land G_0$ has no infinite trace $)$.

Lemma (by using confluence properties)

For every process graph G the following are equivalent:

- (i) LEE(G).
- (ii) There is an $\longrightarrow_{\text{elim}}$ normal form without an infinite trace.
- (iii) There is an $\longrightarrow_{\text{elim.prune}}$ normal form without an infinite trace.
- (iv) Every $\longrightarrow_{\text{elim}}$ normal form is without an infinite trace.
- (v) Every $\longrightarrow_{\text{elim.prune}}$ normal form is without an infinite trace.

LEE holds

LEE holds

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

• entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$,

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- ▶ branch steps $\xrightarrow{\langle a, \text{br} \rangle}$,

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

- L1.
- L2.
- L3.

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1.
- L2.
- L3.

$$\begin{split} \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \to_{[n]} \ \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \to_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \to_{[m]} \ \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

$$\langle a, br \rangle$$
 ... a a

$$ightharpoonup$$
 branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.

L2.

L3.

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \ \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \ \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

$$\mathcal{L}(v_2, o_{\llbracket 1 \rrbracket}, o_{\mathsf{br}, \llbracket > 1 \rrbracket})$$
 is loop subchart

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

- L1.
- L2.
- L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1.
- L2.
- L3.

$$\begin{split} \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \to_{[n]} \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \to_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \to_{[m]} \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

$$\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- \blacktriangleright entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n\in\mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1.
- L2.
- L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \ \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \ \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

$$\mathcal{L}(v_1, o_{[2]}, o_{\mathsf{br},[>2]})$$
 is loop subchart

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{(a,br)}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a LEE-witness, if:

L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

L2.

L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart} \text{ induced} \\ \mathsf{by} \text{ entry steps} \rightarrow_{[n]} \mathsf{from} \ v \\ \mathsf{followed} \text{ by branch steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or} \text{ entry steps} \rightarrow_{[m]} \mathsf{with} \ m > n, \\ \mathsf{until} \ v \text{ is reached again} \end{split}$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \rightarrow_{[n]} \Rightarrow \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.
- L2.
- L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- ightharpoonup branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.
- L2. No infinite →_{br} path from start vertex.L3.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \ \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \ \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.
- L2. No infinite \rightarrow_{br} path from start vertex.
- L3. Overlapping/touching loop subcharts gen. from-different-vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$
$$\mathcal{L}(v_1, \rightarrow_{[2]}, \rightarrow_{\mathsf{br},[>2]})$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- \blacktriangleright entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n\in\mathbb{N}$, written $\xrightarrow{a}_{\lceil n\rceil}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.
- L2. No infinite \rightarrow_{br} path from start vertex.
- L3. Overlapping/touching loop subcharts gen. from-different-vertices have different entry-step levels.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}, [>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \ \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \ \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

$$\mathcal{L}(v_2, \rightarrow_{\boxed{1}}, \rightarrow_{\mathsf{br}, [>1]})$$
$$\mathcal{L}(v_1, \rightarrow_{\boxed{2}}, \rightarrow_{\mathsf{br}, [>2]})$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- ightharpoonup branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.
- L2. No infinite \rightarrow_{br} path from start vertex.
- L3. $\mathcal{L}(w_i, \rightarrow_{\lfloor n_i \rfloor}, \rightarrow_{\mathsf{br}, \lfloor > n_i \rfloor})$ for $i \in \{1, 2\}$ loop charts $\land w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \Longrightarrow n_1 \neq n_2$.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

LEE-witness

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{(a,br)}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

- L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.
- L2. No infinite \rightarrow_{br} path from start vertex.
- L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{\text{br},[>n_i]})$ for $i \in \{1, 2\}$ loop charts $\land w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \implies n_1 \neq n_2.$

$$\begin{split} \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \to_{[n]} \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \to_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \to_{[m]} \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

no!

$$\mathcal{L}(v_0, \rightarrow_{\text{[1]}}, \rightarrow_{\text{br},[>1]})$$
nota loop chart

no!

$$\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$
 not a loop chart

$$\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$
 not a loop chart

$$\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$
 not a loop chart

 $\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ infinite $\rightarrow_{\mathsf{br}}$ path not a loop chart from start vertex

 v_2

no!

(L1.) violated:

$$\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$$

not a loop chart

 v_0 v_1 v_2

no!

(L2.) violated:

infinite \rightarrow_{br} path from start vertex

no!

(L1.) violated:

 $\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ not a loop chart

no!

(L2.) violated:

infinite \rightarrow_{br} path from start vertex

no!

(L3.) violated:

overlapping loop charts have samelevel

no!

(L1.) violated:

 $\mathcal{L}(v_0, \rightarrow_{[1]}, \rightarrow_{\mathsf{br},[>1]})$ not a loop chart

no!

(L2.) violated:

infinite \rightarrow_{br} path from start vertex

no!

(L3.) violated:

overlapping loop charts have same level

$$\mathcal{L}(v_2, \rightarrow_{\llbracket 1 \rrbracket}, \rightarrow_{\mathsf{br}, \llbracket > 1 \rrbracket}) \\ \mathcal{L}(v_0, \rightarrow_{\llbracket 2 \rrbracket}, \rightarrow_{\mathsf{br}, \llbracket > 2 \rrbracket})$$

LEE-witness

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{\lceil n \rceil}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \\ \text{is a loop subchart, or trivial} \end{pmatrix}$.
- L2. No infinite \rightarrow_{br} path from start vertex.
- L3. $\mathcal{L}(w_i, \rightarrow_{\lfloor n_i \rfloor}, \rightarrow_{\text{br}, \lfloor > n_i \rfloor})$ for $i \in \{1, 2\}$ loop charts $\land w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \implies n_1 \neq n_2$.

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) &\coloneqq \mathsf{subchart} \ \mathsf{induced} \\ \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \mathsf{from} \ v \\ \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \mathsf{with} \ m > n, \\ \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

$$\mathcal{L}(v_2, o_{ extsf{1}]}, o_{ extsf{br},[>1]}) \ \mathcal{L}(v_0, o_{ extsf{2}]}, o_{ extsf{br},[>2]})$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{[n]}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, \text{br} \rangle}$, written $\xrightarrow{a}_{\text{br}}$ or \xrightarrow{a} .

Definition

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \rightarrow_{[n]} \Rightarrow \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from start vertex.
- I-L3. $\mathcal{L}(w_i, \rightarrow_{\lfloor n_i \rfloor}, \rightarrow_{\operatorname{br}, \lfloor > n_i \rfloor})$ for $i \in \{1, 2\}$ loop charts $\land w_1 \neq w_2 \land w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \Longrightarrow n_1 < n_2.$

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br},[>n]}) \coloneqq & \mathsf{subchart} \ \mathsf{induced} \\ & \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \ \mathsf{from} \ v \\ & \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[m]} \ \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is} \ \mathsf{reached} \ \mathsf{again} \end{split}$$

$$\mathcal{L}(v_2, o_{\llbracket 1 \rrbracket}, o_{\mathsf{br}, \llbracket > 1 \rrbracket}) \ \mathcal{L}(v_0, o_{\llbracket 2 \rrbracket}, o_{\mathsf{br}, \llbracket > 2 \rrbracket})$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{\lceil n \rceil}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

I-L1.
$$\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$$
.

- I-L2. No infinite \rightarrow_{br} path from start vertex.
- I-L3. $\mathcal{L}(w_i, \rightarrow_{\lfloor n_i \rfloor}, \rightarrow_{\operatorname{br}})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \wedge w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \implies n_1 < n_2.$

$$\begin{split} \mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq & \mathsf{subchart induced} \\ & \mathsf{by entry steps} \rightarrow_{[n]} \mathsf{from} \ v \\ & \mathsf{followed by branch steps} \rightarrow_{\mathsf{br}} \\ & \mathsf{or entry steps} \rightarrow_{[m]} \mathsf{with} \ m > n, \\ & \mathsf{until} \ v \ \mathsf{is reached again} \end{split}$$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}}) \ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}})$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- entry steps $\xrightarrow{\langle a, [n] \rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{\lceil n \rceil}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

A loop-branch labeling is a layered LEE-witness, if:

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from start vertex.
- I-L3. $\mathcal{L}(w_i, \rightarrow_{[n_i]}, \rightarrow_{\operatorname{br}})$ for $i \in \{1, 2\}$ loop charts $\wedge w_1 \neq w_2 \wedge w_1 \in \mathcal{L}(w_2, \ldots, \ldots) \implies n_1 < n_2.$
- $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\operatorname{br}}) \coloneqq \operatorname{subchart \ induced}$ by entry steps $\rightarrow_{[n]}$ from v followed by branch steps $\rightarrow_{\operatorname{br}}$

until v is reached again

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}}) \\ \mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}})$$

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{\lceil n \rceil}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from start vertex.
- I-L3. A loop subchart generated by a vertex contained in another generated loop subchart has lower level.
- $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq \mathsf{subchart} \ \mathsf{induced} \\ \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \mathsf{from} \ v \\ \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}}$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}})$$
 $\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}})$
layered
LEE-witness

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- ▶ entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n \in \mathbb{N}$, written $\xrightarrow{a}_{\lceil n \rceil}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from start vertex.
- I-L3. A loop subchart generated by a vertex contained in another generated loop subchart has lower level.
- $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq \mathsf{subchart} \ \mathsf{induced} \\ \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \mathsf{from} \ v \\ \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}}$

$$\mathcal{L}(v_2, \rightarrow_{[1]}, \rightarrow_{\mathsf{br}})$$
 $\mathcal{L}(v_0, \rightarrow_{[2]}, \rightarrow_{\mathsf{br}})$
layered
LEE-witness

loop-branch labeling: marking transitions $\stackrel{a}{\rightarrow}$ as:

- \blacktriangleright entry steps $\xrightarrow{\langle a,[n]\rangle}$ for $n\in\mathbb{N}$, written $\xrightarrow{a}_{\lceil n\rceil}$,
- \blacktriangleright branch steps $\xrightarrow{\langle a, br \rangle}$, written \xrightarrow{a}_{br} or \xrightarrow{a} .

Definition

- I-L1. $\forall n \in \mathbb{N} \forall v \in V \begin{pmatrix} v \to_{[n]} \Rightarrow \mathcal{L}(v, \to_{[n]}, \to_{\mathsf{br}}) \\ \text{is a loop subchart} \end{pmatrix}$.
- I-L2. No infinite \rightarrow_{br} path from start vertex.
- I-L3. A loop subchart generated by a vertex contained in another generated loop subchart has lower level.
- $\mathcal{L}(v, \rightarrow_{[n]}, \rightarrow_{\mathsf{br}}) \coloneqq \mathsf{subchart} \ \mathsf{induced} \\ \mathsf{by} \ \mathsf{entry} \ \mathsf{steps} \rightarrow_{[n]} \mathsf{from} \ v \\ \mathsf{followed} \ \mathsf{by} \ \mathsf{branch} \ \mathsf{steps} \rightarrow_{\mathsf{br}}$

LEE versus LEE-witness

Theorem

For every process graph G:

 $\mathsf{LEE}(G) \iff G \text{ has a LEE-witness.}$

LEE versus LEE-witness

Theorem

For every process graph G:

 $\mathsf{LEE}(G) \iff G \text{ has a LEE-witness.}$

Proof.

⇒: record loop elimination

LEE versus LEE-witness

Theorem

For every process graph G:

 $\mathsf{LEE}(G) \iff G \text{ has a LEE-witness.}$

Proof.

- ⇒: record loop elimination
- carry out loop-elimination as indicated in the LEE-witness, in inside—out direction, e.g.:

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness \widehat{G} of a process graph G can be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}' of G.

LEE and (layered) LEE-witness

Lemma

Every layered LEE-witness is a LEE-witness.

Lemma

Every LEE-witness \widehat{G} of a process graph G can be transformed by an effective procedure (cut-elimination-like) into a layered LEE-witness \widehat{G}' of G.

Lemma

For every process graph G the following are equivalent:

- (i) LEE(*G*).
- (ii) G has a LEE-witness.
- (iii) G has a layered LEE-witness.

Observation

▶ LEE is not invariant under bisimulation.

Observation

▶ LEE is not invariant under bisimulation.

Observation

▶ LEE is not invariant under bisimulation.

Observation

- ▶ LFF is not invariant under bisimulation.
- ▶ LEE is not preserved by converse functional bisimulation.

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

$$LEE(G_1) \wedge G_1 \stackrel{\longrightarrow}{=} G_2 \implies LEE(G_2)$$
.

Proof (Idea).

Use loop elimination in G_1 to carry out loop elimination in G_2 .

$$P(a(a(b+ba))*0)$$

$$P(a(a(b+ba))*0)$$

$$P(a(a(b+ba))*0)$$

$$P(a(a(b+ba))*0)$$

$$P(a(a(b+ba))*0)$$

P((aa(ba)*b)*0)

$$P(a(a(b+ba))*0)$$

$$P((aa(ba)^*b)^*0)$$

$$P(a(a(b+ba))*0)$$

$$P((aa(ba)*b)*0)$$

$$P(a(a(b+ba))*0)$$

$$P((aa(ba)*b)*0)$$

Collapsing LEE-witnesses

$$P(a(a(b+ba))*0)$$

$$P((aa(ba)*b)*0)$$

LEE under functional bisimulation

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

LEE under functional bisimulation / bisimulation collapse

Lemma

(i) LEE is preserved by functional bisimulations:

$$\mathsf{LEE}(G_1) \wedge G_1 \rightharpoonup G_2 \implies \mathsf{LEE}(G_2)$$
.

(ii) LEE is preserved from a process graph to its bisimulation collapse:

$$\mathsf{LEE}(G) \land C$$
 is bisimulation collapse of $G \Longrightarrow \mathsf{LEE}(C)$.

Idea of Proof for (i)

Use loop elimination in G_1 to carry out loop elimination in G_2 .

Readback

Lemma

Process graphs with LEE are $P(\cdot)$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}(A) \left(G \stackrel{\boldsymbol{\longleftarrow}}{\smile} P(e) \right).$$

$$\begin{split} s(v_0) &= & 0^* \cdot a \cdot s(v_1) \\ &=_{\mathsf{Mil}^-} a \cdot s(v_1) \\ &=_{\mathsf{Mil}^-} a \cdot \left(a \cdot (b + b \cdot a)\right)^* \cdot 0 \\ s(v_1) &= & \left(a \cdot s(v_2, v_1)\right)^* \cdot 0 \\ &=_{\mathsf{Mil}^-} \left(a \cdot (b + b \cdot a)\right)^* \cdot 0 \\ s(v_2, v_1) &= & 0^* \cdot \left(b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1)\right) \\ &=_{\mathsf{Mil}^-} 0^* \cdot \left(b \cdot 1 + b \cdot a\right) \\ &=_{\mathsf{Mil}^-} b + b \cdot a \\ s(v_1, v_1) &= & 1 \\ s(v_0, v_1) &= & 0^* \cdot a \cdot s(v_1, v_1) \\ &= & 0^* \cdot a \cdot 1 \\ &=_{\mathsf{Mil}^-} a \end{split}$$

LEE-witness

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = \left(a \cdot s(v_2, v_1)\right)^* \cdot 0$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = \left(a \cdot s(v_2, v_1)\right)^* \cdot 0$$

$$s(v_2,v_1) = 0^* \cdot \left(b \cdot s(v_1,v_1) + b \cdot s(v_0,v_1)\right)$$

$$s(v_1, v_1) = 1$$

 $s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$s(v_1, v_1) = 1$$

 $s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$
 $= 0^* \cdot a \cdot 1$

layered LEE-witness

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$s(v_1, v_1) = 1$$

$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

 $=_{Mil} a$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$=_{\mathsf{Mil}^-} 0^* \cdot (b \cdot 1 + b \cdot a)$$

$$s(v_1, v_1) = 1$$

$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

$$=_{\mathsf{Mil}^-} a$$

$$s(v_0) = 0^* \cdot a \cdot s(v_1)$$

$$s(v_1) = (a \cdot s(v_2, v_1))^* \cdot 0$$

$$s(v_2, v_1) = 0^* \cdot (b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1))$$

$$=_{\mathsf{Mil}^-} 0^* \cdot (b \cdot 1 + b \cdot a)$$

$$=_{\mathsf{Mil}^-} b + b \cdot a$$

$$s(v_1, v_1) = 1$$

$$s(v_0, v_1) = 0^* \cdot a \cdot s(v_1, v_1)$$

$$= 0^* \cdot a \cdot 1$$

$$=_{\mathsf{Mil}^-} a$$

 $s(v_0) = 0^* \cdot a \cdot s(v_1)$

Readback from layered LEE-witness (example)

$$\begin{split} s(v_1) &= & \left(a \cdot s(v_2, v_1)\right)^* \cdot 0 \\ &=_{\mathsf{Mil}^-} \left(a \cdot (b + b \cdot a)\right)^* \cdot 0 \\ s(v_2, v_1) &= & 0^* \cdot \left(b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1)\right) \\ &=_{\mathsf{Mil}^-} 0^* \cdot \left(b \cdot 1 + b \cdot a\right) \\ &=_{\mathsf{Mil}^-} b + b \cdot a \\ s(v_1, v_1) &= & 1 \\ s(v_0, v_1) &= & 0^* \cdot a \cdot s(v_1, v_1) \\ &= & 0^* \cdot a \cdot 1 \\ &=_{\mathsf{Mil}^-} a \end{split}$$

$$\begin{split} s(v_0) &= & 0^* \cdot a \cdot s(v_1) \\ &=_{\mathsf{Mil}^-} a \cdot s(v_1) \\ \\ s(v_1) &= & \left(a \cdot s(v_2, v_1)\right)^* \cdot 0 \\ &=_{\mathsf{Mil}^-} \left(a \cdot (b + b \cdot a)\right)^* \cdot 0 \\ \\ s(v_2, v_1) &= & 0^* \cdot \left(b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1)\right) \\ &=_{\mathsf{Mil}^-} 0^* \cdot \left(b \cdot 1 + b \cdot a\right) \\ &=_{\mathsf{Mil}^-} b + b \cdot a \\ \\ s(v_1, v_1) &= & 1 \\ s(v_0, v_1) &= & 0^* \cdot a \cdot s(v_1, v_1) \\ &= & 0^* \cdot a \cdot 1 \\ &=_{\mathsf{Mil}^-} a \end{split}$$

$$\begin{split} s(v_0) &= & 0^* \cdot a \cdot s(v_1) \\ &=_{\mathsf{Mil}^-} a \cdot s(v_1) \\ &=_{\mathsf{Mil}^-} a \cdot \left(a \cdot (b + b \cdot a)\right)^* \cdot 0 \\ s(v_1) &= & \left(a \cdot s(v_2, v_1)\right)^* \cdot 0 \\ &=_{\mathsf{Mil}^-} \left(a \cdot (b + b \cdot a)\right)^* \cdot 0 \\ s(v_2, v_1) &= & 0^* \cdot \left(b \cdot s(v_1, v_1) + b \cdot s(v_0, v_1)\right) \\ &=_{\mathsf{Mil}^-} 0^* \cdot \left(b \cdot 1 + b \cdot a\right) \\ &=_{\mathsf{Mil}^-} b + b \cdot a \\ s(v_1, v_1) &= & 1 \\ s(v_0, v_1) &= & 0^* \cdot a \cdot s(v_1, v_1) \\ &= & 0^* \cdot a \cdot 1 \\ &=_{\mathsf{Mil}^-} a \end{split}$$

Lemma

Process graphs with LEE are $P(\cdot)$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}(A) \left(G \stackrel{\boldsymbol{\longleftarrow}}{\smile} P(e) \right).$$

Lemma

Process graphs with LEE are $[\cdot]_P^{\text{1-r}}$ -expressible:

Lemma

Process graphs with LEE are $[\cdot]_{D}^{1+1}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathbf{1}r \setminus \star}(A) \left(G \stackrel{\smile}{\hookrightarrow} P(e) \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

Lemma

Process graphs with LEE are $[\cdot]_{P}^{1+\uparrow \star}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathbf{1}r \setminus \star}(A) \left(G \stackrel{\smile}{\hookrightarrow} P(e) \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

- for no iteration subexpression f* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

• $(a \cdot (1+b))^*$

Lemma

Process graphs with LEE are $[\cdot]_{P}^{\frac{1}{2}r/\star}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathbf{1}r \setminus \star}(A) \left(G \stackrel{\smile}{\hookrightarrow} P(e) \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

- for no iteration subexpression f* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

•
$$(a \cdot (1+b))^*$$

Lemma

Process graphs with LEE are $[\cdot]_{P}^{\frac{1}{2}r/\star}$ -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathbf{1}r \setminus \star}(A) \left(G \stackrel{\smile}{\hookrightarrow} P(e) \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

- for <u>no</u> iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

$$(a \cdot (1+b))^*$$

Lemma

Process graphs with LEE are $[\cdot]_{P}^{1+\uparrow \star}$ -expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) $(e \in \text{Reg}^{1r} \land (A))$ if:

- for <u>no</u> iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot (1+b))^*$
- ×

 $(a \cdot (0^* + b))^*$

Lemma

Process graphs with LEE are $[\cdot]_{P}^{1+1}$ -expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

- for <u>no</u> iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot (1+b))^*$
- $(a \cdot (0^* + b))^*$

X

Lemma

Process graphs with LEE are $[\cdot]_{P}^{1+1}$ -expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

- for <u>no</u> iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and

Clemens Grabmayer

p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot (1+b))^*$
- $(a \cdot (0^* + b))^*$
- $a \cdot (a \cdot (b + b \cdot a))^* \cdot 0$

Lemma

Process graphs with LEE are [.] 1rt - expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

- for no iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - ▶ p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

- $(a \cdot (1+b))^*$
- $(a \cdot (0^* + b))^*$
- $a \cdot (a \cdot (b+b\cdot a))^* \cdot 0 \checkmark$

Lemma

Process graphs with LEE are $[\cdot]_{P}^{1+1}$ -expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under-*) ($e \in \text{Reg}^{1r}(A)$) if:

- for <u>no</u> iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

 $(a \cdot (1+b))^*$

×

 $(a^*(b^*+c\cdot 0)^*)^*$

 $(a \cdot (0^* + b))^*$

- ×
- $a \cdot (a \cdot (b+b\cdot a))^* \cdot 0$

Lemma

Process graphs with LEE are [] 1 -expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{\pm r/\star}(A)$) if:

- for \underline{no} iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - ▶ p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

$$(a \cdot (1+b))^*$$

$$(a^*(b^*+c\cdot 0)^*)^*$$

×

$$(a \cdot (0^* + b))^*$$

Lemma

Process graphs with LEE are [] 1 -expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{\pm r/\star}(A)$) if:

- for \underline{no} iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - ▶ p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

$$(a \cdot (1+b))^*$$

$$(a^*(b^*+c\cdot 0)^*)^*$$

$$(a \cdot (0^* + b))^*$$

$$(a^*(b^*+c\cdot 0))^*$$

$$a \cdot (a \cdot (b+b\cdot a))^* \cdot 0 \checkmark$$

$$(a^*(b^*+c\cdot 0))^*$$

×

Lemma

Process graphs with LEE are [] 1 -expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{\pm r/\star}(A)$) if:

- for \underline{no} iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - ▶ p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

$$(a \cdot (1+b))^*$$

$$(a^*(b^*+c\cdot 0)^*)^*$$

$$(a \cdot (0^* + b))^*$$

$$(a^*(b^*+c\cdot 0))^*$$

$$a \cdot (a \cdot (b + b \cdot a))^* \cdot 0 \checkmark$$

$$(a^*(b^*+c\cdot 0))^*$$

Lemma

Process graphs with LEE are [] 1 -expressible:

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

- for \underline{no} iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - ▶ p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

$$(a \cdot (1+b))^*$$

$$(a^*(b^*+c\cdot 0)^*)^*$$

$$(a \cdot (0^* + b))^*$$

$$(a \cdot (0 + b))$$

$$(a^*(b^*+c\cdot 0))^*$$

$$(a^*(b+c\cdot 0))^*$$

$$a \cdot (a \cdot (b+b\cdot a))^* \cdot 0$$

×

X

Lemma

Process graphs with LEE are [] 1 -expressible:

$$\mathsf{LEE}(G) \implies \exists e \in \mathsf{Reg}^{\mathbf{1}r \setminus \star}(A) \left(G \stackrel{\boldsymbol{\leftarrow}}{} P(e) \right).$$

Definition (Corradini, De Nicola, Labella (here intuitive version))

A regular expression e is 1-return-less(-under- \star) ($e \in \text{Reg}^{1r/\star}(A)$) if:

- for \underline{no} iteration subexpression f^* of e does P(f) proceed to a process p such that:
 - p has the option to immediately terminate, and
 - ▶ p has the option to do a proper step, and terminate later.

Non-/Examples of 1-return-less regular expressions

$$(a \cdot (1+b))^*$$

$$(a^*(b^*+c\cdot 0)^*)^*$$

$$(a \cdot (0^* + b))^*$$

$$(a \cdot (0^* + b))^*$$

$$(a^*(b^*+c\cdot 0))^*$$

$$a \cdot (a \cdot (b+b\cdot a))^* \cdot 0$$

$$(a^*(b+c\cdot 0))^*$$

×

Characterization of expressibility^{1r}/_∗ modulo ↔

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $[\cdot]_{P}^{1+/\star}$ -expressible modulo $\stackrel{\smile}{\longrightarrow}$.
- (ii) LEE(*C*).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $[\cdot]_P^{\frac{1}{1}}$ -expressible modulo $\stackrel{\smile}{\longrightarrow}$.
- (ii) LEE(*C*).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question:

Q1. Which structural property of finite process graphs characterizes $P(\cdot)$ -expressibility modulo \Leftrightarrow ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $[\cdot]_{P}^{1+\backslash \star}$ -expressible modulo $\underline{\longleftrightarrow}$.
- (ii) LEE(*C*).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question restricted:

Q1'. Which structural property of finite process graphs characterizes $\|\cdot\|_{P}^{1+t}$ -expressibility modulo \cong ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $[\cdot]_{P}^{1+\backslash \star}$ -expressible modulo $\underline{\longleftrightarrow}$.
- (ii) LEE(*C*).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Milners characterization question restricted, and adapted:

Q1". Which structural property of collapsed finite process graphs characterizes $\|\cdot\|_{D}^{1+1}$ expressibility modulo \Leftrightarrow ?

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $[\cdot]_P^{1r/*}$ -expressible modulo $\stackrel{\smile}{\longrightarrow}$.
- (ii) LEE(*C*).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:

- Q1". Which structural property of collapsed finite process graphs characterizes $\|\cdot\|_{D}^{1+1/4}$ -expressibility modulo \Leftrightarrow ?
 - ▶ The loop-existence and elimination property LEE.

Theorem

For every process graph G with bisimulation collapse C the following are equivalent:

- (i) G is $[\cdot]_P^{1+/*}$ -expressible modulo \leq .
- (ii) LEE(*C*).
- (iii) C has a LEE-witness.
- (iv) C has a layered LEE-witness.

Answering Milners characterization question restricted, and adapted:

- Q1". Which structural property of collapsed finite process graphs characterizes $\|\cdot\|_{D}^{1+1/4}$ -expressibility modulo \Leftrightarrow ?
 - ▶ The loop-existence and elimination property LEE.

Also yields: efficient decision method of $\|\cdot\|_{P}^{1+k}$ -expressibility modulo \leq .

graphs with LEE / a (layered) LEE-witness

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

```
graphs with LEE / a (layered) LEE-witness
```

- ⊊ graphs whose collapse satisfies LEE
- = graphs that are $[\cdot]_P^{\frac{1}{4}r}$ -expressible modulo $\stackrel{\checkmark}{=}$

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

- $[\cdot]_{P}^{1r/\star}$ -expressible graphs
- ⊊ graphs with LEE / a (layered) LEE-witness
- ⊊ graphs whose collapse satisfies LEE
- = graphs that are $\|\cdot\|_{P}^{\frac{1}{1+1}}$ -expressible modulo \Leftrightarrow

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

```
[]]_{P}^{\text{1-t}}-expressible graphs

\subseteq graphs with LEE / a (layered) LEE-witness
```

- ⊊ graphs whose collapse satisfies LEE
- = graphs that are $[\cdot]_P^{\frac{1}{2}r/\star}$ -expressible modulo \leftrightarrow
- \subseteq graphs that are $P(\cdot)$ -expressible modulo $\stackrel{\triangle}{=}$

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

```
[\cdot]_P^{1+\wedge}-expressible graphs

⊊ graphs with LEE / a (layered) LEE-witness

⊊ graphs whose collapse satisfies LEE

= graphs that are [\cdot]_P^{1+\wedge}-expressible modulo \hookrightarrow

⊊ graphs that are P(\cdot)-expressible modulo \hookrightarrow

⊊ finite process graphs
```

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

Benefits of the class of process graphs with LEE:

- ▶ is closed under ⇒
- ▶ forth-/back-correspondence with 1-return-less regular expressions

Application to Milner's questions yields partial results:

- Q1: characterization/efficient decision of $[\cdot]_P^{1+/*}$ -expressibility modulo $\stackrel{\triangle}{=}$
- Q2: alternative compl. proof of Mil on 1-return-less expressions (C/DN/L)

Comparison results: structure-constrained graphs

```
\lambda-calculus with letrec under =_{\lambda^{\infty}}

Not available: graph interpretation that is studied under \leftrightarrow
```

```
Regular expressions under \nleftrightarrow_P

Given: graph interpretation P(\cdot), studied under bisimulation \nleftrightarrow

not closed under \beth, and \nleftrightarrow, incomplete under \nleftrightarrow
```

Comparison results: structure-constrained graphs

```
\lambda-calculus with letrec under =_{\lambda^{\infty}}

Not available: graph interpretation that is studied under \hookrightarrow

Defined: int's [\![\cdot]\!]_{\mathcal{T}}/[\![\cdot]\!]_{\mathcal{T}} as higher-order/first-order \lambda-term graphs

• closed under \Rightarrow (hence under collapse)

• back-/forth correspondence with \lambda-calculus with letrec

• efficient translation and readback
```

```
Regular expressions under \Leftrightarrow_P
```

```
Given: graph interpretation P(\cdot), studied under bisimulation \Leftrightarrow not closed under \Rightarrow, and \Leftrightarrow, incomplete under \Leftrightarrow
```

translation is inverse of readback

Comparison results: structure-constrained graphs

```
\lambda-calculus with letrec under =_{\lambda^{\infty}}

Not available: graph interpretation that is studied under \hookrightarrow

Defined: int's [\![\cdot]\!]_{\mathcal{H}}/[\![\cdot]\!]_{\mathcal{T}} as higher-order/first-order \lambda-term graphs

closed under \Rightarrow (hence under collapse)

back-/forth correspondence with \lambda-calculus with letrec
```

- efficient translation and readback
- translation is inverse of readback

```
Regular expressions under \Leftrightarrow_P
```

```
Given: graph interpretation P(\cdot), studied under bisimulation \Leftrightarrow not closed under \Rightarrow, and \Leftrightarrow, incomplete under \Leftrightarrow Defined: class of process graphs with LEE / (layered) LEE-witness
```

- ▶ closed under ⇒ (hence under collapse)
- ▶ back-/forth correspondence with 1-return-less expr's
- ► contains the collapse of a process graph G $\iff G$ is $\llbracket \cdot \rrbracket_{p}^{1+h^*}$ -expressible modulo \cong