Lazy Selection

Carlos Requena López

November 20, 2018

Contents

1	Introduction	1
2	Analysis and expectations	1
3	Implementation	1
4	Results	1
5	Conclusion	1
Α	Appendix - code listing	1

1 Introduction

2 Analysis and expectations

Algorithm 1: LazySelect

Input: A set S of segments

Output: The autopartition binary tree

- 1 Pick a random permutation of S and take the first element;
- 2 Extend this element into a line and create a node with it in the tree;
- 3 Filter the segments strictly to the left in the left child;
- 4 Filter the segments strictly to the right in the right child;
- 5 for segment in all segments that intersect do
- add its subsegment laying on the left part to the left child;
- add its subsegment laying on the right part to the right child;

end

- 8 while left or right have segments in them do
- Repeat this procedure recursively on both sets;

end

$$n + 2\sum_{i=1}^{n-1} \frac{1}{i+1} \le n + 2nH_n \tag{1}$$

- 3 Implementation
- 4 Results
- 5 Conclusion

A Appendix - code listing

References

[1] Rajeev Motwani and Prabhakar Raghavan. *Randomized Algorithms*. Cambridge University Press, New York, NY, USA, 1995.