

What is claimed is:

1. A method for inhibiting the formation of Coniferophyta pollen, which comprises applying a pollinosis inhibiting effective amount of a composition comprising a prohexadione compound as an active ingredient to the Coniferophyta plant to be treated.
2. The method according to claim 1, wherein said prohexadione compound is a cyclohexanedionecarboxylic acid derivative of the following formula (AI) or a salt thereof:

wherein A represents -OR₂ or -NR₃R₄,

B represents a hydroxyl group, and -NHOR₁ group or a metal salt or ammonium salt thereof,

R represents an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms,

R₁ represents an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, a haloalkenyl group having 3 to 6 carbon atoms or an alkynyl group having 3 to 6 carbon atoms, and

R₂, R₃ and R₄ independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 10 carbon atoms, an alkylthioalkyl group having 2 to 10 carbon atoms, an alkenyl group having 3 to 6 carbon atoms, an alkynyl group having 5 or 6 carbon atoms, or a phenyl group or an aralkyl group having 1 to 6 carbons, and

R₃ and R₄ may form a 5- or 6-membered heterocyclic ring together with the carbon atom to which they are bonded and the ring may further contain a carbon atom or sulfur atom.

3. The method according to claim 2, wherein A in the formula (AI) represents an -OR₂ group.

4. The method according to claim 2, wherein A in the formula (AI) represents an -NR₃R₄ group.

5. The method according to claim 2, wherein R in the formula (AI) represents a cycloalkyl group having 3 to 6 carbon atoms.

6. The method according to claim 2, wherein said prohexadione compound is represented by the following formula AIa:

7. The method according to claim 1, wherein said prohexadione compound is represented by the following formula BI:

wherein R represents a hydrogen atom or an alkyl group, and R¹ represents an alkyl group.

8. The method according to claim 1, wherein said prohexadione compound is represented by the following formula (CI):

wherein R¹ represents a hydrogen atom or a lower alkyl group, R² represents a lower alkyl group, R³ represents a hydrogen atom, an alkyl group, an alkenyl group, a hydroxyalkyl group, a cycloalkyl group, morpholino group, an aminoalkyl group, an N-alkylaminoalkyl group, an N,N-dialkylaminoalkyl group, an alkoxycarbonylalkyl group, a group of the formula:

- (CH₂)_lR⁴

(wherein R⁴ represents a lower alkyl group, a lower alkylthio group, a benzylthio group, an anilino group, a morpholino group, a piperazino group or a piperidino group, and l represents an integer of 2 or 3);

a group of the formula:

(wherein X represents a halogen atom, a lower alkyl group, a lower alkoxy group, a phenoxy group or an alkoxycarbonylalkyloxy group, m represents an integer of 0 or 1, and n represents an integer of 0 to 2);

a group of the formula:

-CH₂R⁵

(wherein R⁵ represents a furyl group, a thenyl group or a pyridyl group),

or

a group of the formula:

(wherein R^5 is as defined above).

9. The method according to claim 1, wherein said prohexadione compound is represented by the following formula (DI):

wherein R^1 represents a hydrogen atom, a lower alkyl group or a phenyl group, X represents an oxygen atom or a sulfur atom, R^2 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkylthioalkyl group, an alkoxy carbonylmethyl group, a benzyl group substituted with a halogen atom, a group of the formula:

(wherein Y represents a carbonyl group, a sulfonyl group or a sulfonate group, Z represents a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a cyano group or

a trifluoromethyl group, m represents 0 or 1, and n represents an integer of 1 or 2, with the proviso that when n represents 2, Z may be a combination of different groups or atoms), a furyl group or a thienyl group.

10. The method according to claim 1, wherein said Coniferophyta plant is *Cryptomeria japonica*.