

神经科学原理 (第六版)

OpenHUTB 经典之作

组织: 开源湖工商 时间: 2025年6月 反馈: 内容修改链接

献辞

为了纪念 特里夏·戈德曼·拉基奇 (1937-2003) 爱德华·埃瓦茨 (1926-1985) 爱德华·琼斯 (1939-2011)

美国人研究的动物疯狂地奔跑着,表现出令人难以置信的兴奋,最后偶然达到了预期的结果。德国人观察 到的动物静静地坐着思考,最后从它们的内在意识中演化出解决方案。

> 伯特兰·罗素《哲学纲要》 1925 年

目录

第一部分 总论	1
第1章 大脑和行为	4
1.1 关于大脑与行为之间的关系,提出了2种相反的观点	4
1.2 大脑具有不同的功能区域	7
1.3 认知能力局部化的第一个有力证据来自语言障碍研究	9
1.4 心理过程是大脑中基本处理单元之间相互作用的产物	16
1.5 要点	18
第2章 基因和行为	19
2.1 了解分子遗传学和遗传可能性对研究人类行为至关重要	19
2.2 对基因组结构和功能的理解正在不断演变	20
2.2.1 基因排列在染色体上	23
2.3 基因型和表现型之间的关系通常很复杂	24
2.4 基因在进化中得以保存	25
2.5 可以在动物模型中研究行为的遗传调控	26
2.5.1 转录振荡调节苍蝇、小鼠和人类的昼夜节律	27
2.5.2 蛋白激酶的自然变异调节果蝇和蜜蜂的活性	37
2.5.3 神经肽受体调节几种物种的社会行为	38
2.6 人类遗传综合症的研究为社会行为的基础提供了初步见解	39
2.6.1 人类脑部疾病是基因与环境相互作用的结果	39
2.6.2 罕见的神经发育综合症为社会行为、知觉和认知的生物学提供了见解	40
2.7 精神疾病涉及多基因特征	41
2.7.1 孤独症谱系障碍遗传学的研究进展凸显了罕见突变和新生突变在神经发育障碍中的作用	41
2.7.2 精神分裂症基因的鉴定凸显了罕见风险变异和常见风险变异的相互作用	42
2.8 神经精神疾病遗传基础的观点	43
2.9 要点	44
2.10 术语表	44
第 3 章 神经细胞、神经回路和行为	46
3.1 神经系统有两类细胞	46
3.1.1 神经细胞是神经系统的信号单元	46
3.1.2 胶质细胞支撑神经细胞	51
3.2 每个神经细胞都是调节特定行为回路的一部分	51
3.3 信号在所有神经细胞中的组织方式相同	55
3.3.1 输入组件产生分级本地信号	56
3.3.2 触发区决定产生动作电位	56
3.3.3 导电成分传播全有或全无动作电位	58
3.3.4 输出组件释放神经递质	58
3.3.5 牵张反射通路说明了神经信号从感觉到运动的转变	59
3.4 神经细胞在分子水平上的差异最大	59

		1. 16.111.56.11.15년 15.15.15.15.15.15.15.15.15.15.15.15.15.1	40
		人类的功能性核磁共振成像研究启发了动物的神经生理学研究	
		功能性核磁共振成像研究挑战了认知心理学和系统神经科学的理论	
		功能性核磁共振成像研究检验了动物研究和计算模型的预测	
		上核磁共振成像研究需要仔细解读	
		的进步取决于技术和概念的进步	
6.6	要点		109
第二部	『分	神经系统细胞的细胞生物学和分子生物学	110
第7章	神经系	系统的细胞	113
		· C和胶质细胞具有许多结构和分子特征	113
		} 架决定细胞形状	
		5. 5. 颗粒和细胞器沿轴突和树突主动运输	
		快速轴突运输携带膜细胞器	
	7.3.2	慢速轴突运输携带细胞溶质蛋白和细胞骨架的元素	127
7.4		也分泌细胞一样,蛋白质也是在神经元中制造的	
	7.4.1	分泌蛋白和膜蛋白在内质网中合成和修饰	128
		分泌蛋白在高尔基复合体中被修饰	
7.5	表面朋	是和细胞外物质在细胞内循环	130
7.6	胶质组	田胞在神经功能中发挥多种作用	130
		胶质细胞形成轴突的绝缘鞘	
	7.6.2	星形胶质细胞支持突触信号传递	135
		小胶质细胞在健康和疾病中具有多种功能	
7.7	脉络丛	A和室管膜细胞产生脑脊液	139
第8章	离子证	通道	142
8.1	离子通	通道是跨越细胞膜的蛋白质	143
8.2	所有细	田胞中的离子通道都有几个功能特征	145
		可以记录通过单个离子通道的电流	
	8.2.2	通过通道的离子通量不同于自由溶液中的扩散	146
8.3	离子通	通道的结构是从生物物理学、生物化学和分子生物学研究中推断出来的	149
	8.3.1	离子通道可以按基因家族进行分组	150
	8.3.2	\mathbf{K}^{+} 通道结构的 \mathbf{X} 射线晶体学分析提供了对通道渗透性和选择性机制的深入了解	154
	8.3.3	电压门控 K ⁺ 通道结构的 X 射线晶体学分析提供了对通道门控机制的深入了解	156
	8.3.4	Cl 通道选择性渗透的结构基础揭示了通道和转运蛋白之间的密切关系	159
8.4	要点		160
第9章	膜电值	立和神经元的被动电特性	162
		型膜的电荷分离产生静息膜电位	162
9.2	静息膊	連电位由非门控离子通道和门控离子通道决定	164
	9.2.1	神经胶质细胞中的开放通道仅可渗透 K ⁺	165
		静息神经细胞中的开放通道可渗透3种离子	
		Na^+ 、 K^+ 和 Ca^{2+} 的电化学梯度由离子的主动传输建立	
		Cl ⁻ 也被主动运输	

9.3	静息膜中离子通量的平衡在动作电位期间被取消	170
9.4	不同离子对静息膜电位的贡献可以通过戈德曼方程量化	170
9.5	神经元的功能特性可以表示为等效回路	171
9.6	神经元的被动电特性影响电信号	174
	9.6.1 薄膜电容减缓了电信号的时程	176
	9.6.2 膜和细胞质电阻影响信号传导的效率	177
	9.6.3 大轴突比小轴突更容易兴奋	178
	9.6.4 被动膜特性和轴突直径影响动作电位传播速度	178
9.7	要点	180
& 10 ×	× Иыбър. П. ~L и. ф. р.	104
	章 传播信号: 动作电位 	182
10.	L 动作电位由离子流过电压门控通道产生	
	10.1.1 使用电压钳记录通过电压门控通道的钠和钾电流	
	10.1.2 电压门控钠电导和钾电导是根据它们的电流计算的	
	10.1.3 可以根据 Na ⁺ 通道和 K ⁺ 通道的特性重建动作电位	
	2 电压门控的机制已从电生理测量中推断出来	
	3 电压门控 Na ⁺ 通道根据离子的大小、电荷和水合能量选择 Na ⁺	
10.4	4 单个神经元具有丰富多样的电压门控通道,可扩展其信号传递能力	
	10.4.1 电压门控通道类型的多样性由多种遗传机制产生	
	10.4.2 电压门控 Na ⁺ 通道	
	10.4.3 电压门控 Ca ²⁺ 通道	
	10.4.4 电压门控 K+ 通道	
	10.4.5 电压门控超极化激活循环核苷酸门控通道	
	5 细胞质 Ca ²⁺ 可控制离子通道的门控	
10.6	5 兴奋性特性因神经元类型而异	200
	7 神经元区域之间的兴奋性特性不同	
10.8	3 神经元兴奋性是可塑的	202
10.9	9 要点	203
第三部	邓分 突触传递	204
第 11 章	章 突触传递概述	207
11.	· 突触主要是电突触或化学突触	207
11.2	2 电突触提供快速信号传输	207
	11.2.1 电突触处的细胞通过间隙连接通道连接	208
	11.2.2 电传输允许互连细胞的快速同步激活	
	11.2.3 间隙连接在胶质细胞功能和疾病中发挥作用	213
11.3	3 化学突触可以放大信号	
	11.3.1 神经递质的作用取决于突触后受体的特性	214
	11.3.2 突触后受体的激活直接或间接地控制了离子通道	
11.4	4 电突触和化学突触可以共存并相互作用	
	5 要点	
	章 直接门控传输: 神经肌肉突触	218
12	神经肌肉接头且有专门的率触前结构和率触后结构	218

		12.1.1 膜通透性的局部变化导致突触后电位变化	220
		12.1.2 神经递质乙酰胆碱以离散包的形式释放	223
	12.2	单个乙酰胆碱受体通道传导全有或无电流	224
		12.2.1 终板的离子通道可渗透 Na ⁺ 和 K ⁺	225
		12.2.2 4 大因素决定终板电流	226
	12.3	乙酰胆碱受体通道具有与产生肌肉动作电位的电压门控通道不同的特性	226
		12.3.1 递质结合在乙酰胆碱受体通道中产生一系列状态变化	228
		12.3.2 分子研究和生物物理学研究揭示了乙酰胆碱受体的低分辨率结构	229
		12.3.3 乙酰胆碱受体通道的高分辨率结构通过 X 射线晶体研究揭示	230
	12.4	要点	232
	12.5	后记: 终板电流可从等效回路中计算	232
第	13 章	中枢神经系统的突触整合	236
		中枢神经元接收兴奋性输入和抑制性输入	236
		兴奋性和抑制性突触具有独特的超微结构并针对不同的神经元区域	
	13.3	兴奋性突触传递由可渗透阳离子的离子型谷氨酸受体通道介导	239
		13.3.1 离子型谷氨酸受体由一个大基因家族编码	
		13.3.2 谷氨酸受体由一组结构模块构成	239
		13.3.3 N-甲基-D-天冬氨酸和 α -氨基-3-羟基-5-甲基-4-异恶唑丙酸受体由突触后密度的蛋白质网络	
		组织	242
		13.3.4 N-甲基-D-天冬氨酸受体具有独特的生物物理和药理学特性	
		13.3.5 N-甲基-D-天冬氨酸受体的特性是长期突触可塑性的基础	
		13.3.6 N-甲基-D-天冬氨酸受体导致神经精神疾病	
	13.4	快速抑制性突触作用由离子型 γ -氨基丁酸和甘氨酸受体-可渗透 Cl^- 的通道介导	
		13.4.1 离子型谷氨酸、 γ -氨基丁酸和甘氨酸受体是由 2 个不同的基因家族编码的跨膜蛋白	
		13.4.2 通过 γ 氨基丁酸 A 和甘氨酸受体通道的 Cl^- 电流通常会抑制突触后细胞	
		中枢神经系统中的一些突触动作依赖于其他类型的离子型受体	
	13.6	神经元将兴奋性和抑制性突触动作整合为单一输出	
		13.6.1 突触输入整合在轴突初始段	255
		13.6.2 γ-氨基丁酸能神经元的亚类靶向其突触后靶神经元的不同区域以产生具有不同功能的抑制	
		作用	
	10.7	13.6.3 树突是可以放大突触输入的电激发结构	
	13.7	要点	263
第	14 章	突触传递和神经元兴奋性的调节: 第二信使	264
	14.1	环磷酸腺苷通路是了解最多的由 G 蛋白偶联受体启动的第二信使信号级联	265
	14.2	由 G 蛋白偶联受体启动的第二信使通路具有共同的分子逻辑	
		14.2.1 G蛋白家族激活不同的第二信使通路	
		14.2.2 磷脂酶 C 水解磷脂产生 2 个重要的第二信使, 肌醇 1,4,5-三磷酸和甘油二酯	
		受体酪氨酸激酶构成代谢受体的第二大家族	
	14.4	几类代谢物可以作为跨细胞信使	
		14.4.1 磷脂酶 A_2 水解磷脂释放花生四烯酸以产生其他第二信使	
		14.4.2 内源性大麻素是抑制突触前递质释放的跨细胞信使	
		14.4.3 气态第二信使一氧化氮是一种刺激环鸟苷-3,5-单磷酸盐合成的跨细胞信号	
	14.5	代谢型受体的生理作用不同干离子型受体	274

		14.5.1 第二信使级联可以增加或减少多种离子通道的开放	274
		14.5.2 G 蛋白可以直接调节离子通道	275
		14.5.3 环磷酸腺苷依赖性蛋白质磷酸化可以关闭 K+ 通道	279
	14.6	第二信使可以赋予突触传递持久的影响	280
	14.7	调质可以通过改变内在兴奋性或突触强度来影响回路功能	281
		14.7.1 多种神经调质可以汇聚到同一个神经元和离子通道上	281
		14.7.2 为什么有这么多调质?	283
	14.8	要点	283
toka .	4 m -30	NA retain 14.	20 =
	•		285
		递质释放受突触前末梢去极化调控	
	15.2	Ca ²⁺ 内流激发释放	
		15.2.2 几类 Ca ²⁺ 通道介导递质释放	
	15 2	15.2.2 几尖 Ca	
		遊原以重丁早位梓成 · · · · · · · · · · · · · · · · · · ·	
	13.4	15.4.1 突触小泡通过胞吐作用释放递质并通过胞吞作用回收	
		15.4.2 电容测量提供了对胞吐和胞吞动力学的洞察力	
		15.4.3 胞吐作用涉及临时融合孔的形成	
		15.4.4 突触小泡循环包括几个步骤	
	15 5	突触囊泡的胞吐仰仗高度保守的蛋白结构	
	13.3	15.5.1 突触蛋白对囊泡的抑制和动员很重要	
		15.5.2 可溶性 N-乙基马来酰亚胺敏感因子附着受体蛋白催化囊泡与细胞质膜融合	
		15.5.3 Ca ²⁺ 与突触结合蛋白的结合触发递质释放	
		15.5.4 融合机制嵌入在活性区的保守蛋白质支架中	
	15.6	递质释放的调控是突触可塑性的基础	
		15.6.1 细胞内游离钙的活动依赖性变化可以在释放中产生持久的变化	
		15.6.2 突触前末梢的轴突突触调节递质释放	
	15.7	要点	
	-		314
		化学信使必须满足4个标准才能被视为神经递质	
	16.2	只有少数小分子物质作为递质	
		16.2.1 乙酰胆碱	
		16.2.2 生物胺递质	
		16.2.3 氨基酸递质	
	160	16.2.4 三磷酸腺苷和腺苷	
		小分子递质被主动吸收到囊泡中	
		许多神经活性肽充当递质	
		肽和小分子递质在几个方面有所不同	
		肽和小分子递质可以同时释放	
			<i>32</i> 8 330
	111 ^		

第	四部	分 感知	331
第	17 章	感觉编码	334
	17.1	心理物理学将感觉与刺激的物理特性联系起来	334
		17.1.1 心理物理学量化刺激属性的感知	336
	17.2	刺激在神经系统中由神经元的放电模式表示	338
		17.2.1 感觉受体对特定类别的刺激能量作出响应	339
		17.2.2 每个感觉器官都有多个感觉受体亚类	
		17.2.3 受体的群体编码将感觉信息传递给大脑	
		17.2.4 动作电位序列表示刺激的时间动态	
		17.2.5 感觉神经元的感受野提供有关刺激位置的空间信息	
	17.3	中枢神经系统回路完善感官信息	
		17.3.1 受体表面在每个感觉系统的早期阶段都以拓扑映射表示	
		17.3.2 感觉信息在大脑皮层的并行通路中被处理	
		17.3.3 来自大脑的反馈通路调节感觉编码机制	
		17.3.4 自上而下的学习机制影响感官处理	
	17.4	要点	
	1,	3.m · · · · · · · · · · · · · · · · · · ·	002
第	•	体感系统的受体	353
	18.1	背根神经节神经元是体感系统的初级感觉受体细胞	353
		周围体感神经纤维以不同的速率传导动作电位	
	18.3	体感系统使用多种特殊受体	
		18.3.1 机械受体介导触觉和本体感受	359
		18.3.2 专门的末梢器官有助于机械感觉	362
		18.3.3 本体感受器测量肌肉活动和关节位置	367
		18.3.4 热受体检测皮肤温度的变化	367
		18.3.5 伤害受体介导疼痛	369
		18.3.6 痒是一种独特的皮肤感觉	369
		18.3.7 内脏感觉代表五脏六腑的状态	371
	18.4	动作电位编码将体感信息传递给大脑	371
		18.4.1 感觉神经节提供了群体对躯体刺激的响应快照	372
		18.4.2 体感信息通过脊神经或脑神经进入中枢神经系统	372
	18.5	要点	376
松	10 ૐ	触觉	378
邾	-	触见 主动触觉和被动触觉有不同的目标	
		手有 4 种类型的机械受体	
	19.2	19.2.1 细胞的感受野决定了它的触觉敏感区	
		19.2.2 两点辨别测试测量触觉敏锐度	
		19.2.3 慢适应纤维检测物体的压力和形状	
		19.2.4 快适应纤维检测运动和振动	
	40 -	19.2.5 慢适应纤维和快适应纤维对抓握控制都很重要	
	19.3	触觉信息在中央触摸系统中处理	
		19.3.1 脊髓、脑干和丘脑回路分离触觉和本体感觉	
		19.3.2 体感皮层被组织成功能专门化的柱状体	
		19.3.3 皮层柱状体按体位图组织	394

	19.3.4 皮层神经元的感受野整合来自邻近受体的信息	396
19.4	触摸信息在连续的中央突触中变得越来越抽象	401
	19.4.1 认知触觉由次级躯体感觉皮层中的神经元介导	401
	19.4.2 主动触摸参与后顶叶皮层的感觉运动回路	405
19.5	大脑体感区的病变会产生特定的触觉缺陷	405
19.6	要点	408
第 20 章	宿觉	409
	有害损伤激活温度伤害受体、机械伤害受体和多模态伤害受体	409
	来自伤害受体的信号被传送到脊髓背角的神经元	
	痛觉过敏既有外周起源也有中枢起源	
	4种主要的上行通路将伤害性信息从脊髓传递到大脑	
	几个丘脑核将伤害性信息传递给大脑皮层	
	疼痛的感知源于皮层机制并受其控制	
	20.6.1 前扣带回和岛叶皮层与疼痛感知有关	
	20.6.2 痛觉受伤害性和非伤害性传入纤维活动平衡的调节	
	20.6.3 大脑的电刺激产生镇痛	
20.7	阿片肽有助于内源性疼痛控制	
	20.7.1 内源性阿片肽及其受体分布在疼痛调节系统中	
	20.7.2 吗啡通过激活阿片受体来控制疼痛	
	20.7.3 对阿片类药物的耐受和依赖是截然不同的现象	
20.8	要点	
	2.m · · · · · · · · · · · · · · · · · · ·	
-	000076 Em41476 1 //	435
	视觉感知是一个构建的过程	
21.2	视觉处理由膝纹通路调制	439
21.3	大脑皮层的离散区域处理形状、颜色、运动和深度	443
21.4	视觉通路中连续中继的神经元感受野为大脑如何分析视觉形状提供了线索	445
21.5	视觉皮层被组织成专门的神经元柱	448
21.6	内在皮层回路转换神经信息	452
21.7	视觉信息由各种神经编码表示	452
21.8	要点	456
第 22 章	低层视觉处理: 视网膜	457
22.1	光感层对视觉图像进行采样	460
	22.1.1 眼光学限制了视网膜图像的质量	460
	22.1.2 有 2 种类型的光受体: 视杆细胞和视锥细胞	460
22.2	光转导将光子的吸收与膜电导的变化联系起来	461
	22.2.1 光激活光受体中的色素分子	461
	22.2.2 兴奋的视紫红质通过 G 蛋白转导蛋白激活磷酸二酯酶	464
	22.2.3 多重机制关断级联	465
	22.2.4 光转导缺陷导致疾病	
22.3	神经节细胞将神经图像传输到大脑	
	22.3.1 神经节细胞的 2 种主要类型是给光细胞和撤光细胞	466
	22.3.2 许多神经节细胞对图像中的边缘响应强烈	
	22.3.3 神经节细胞的输出强调刺激的时间变化	

	22.3.4 视网膜输出强调移动物体	466
	22.3.5 几种神经节细胞类型通过并行通路投射到大脑	469
22.4	中间神经元网络塑造视网膜输出	470
	22.4.1 并行通路起源于双极细胞	470
	22.4.2 空间滤波通过侧抑制实现	471
	22.4.3 时间滤波发生在突触和反馈回路中	471
	22.4.4 彩色视觉始于视锥细胞选择性回路	472
	22.4.5 先天性色盲有多种形式	472
	22.4.6 视杆细胞回路和视锥细胞回路在视网膜内部合并	473
22.5	视网膜的灵敏度适应光照的变化	475
	22.5.1 光适应在视网膜处理和视觉感知中很明显	476
	22.5.2 多重增益控制发生在视网膜内	477
	22.5.3 光适应改变空间处理	477
22.6	要点	477
<i>ti</i> t. a.a).		
-	中层视觉处理和视觉元素	480
	物体几何内部模型帮助大脑分析形状	
	深度感知有助于将物体与背景分离	
	局部运动线索定义目标轨迹和形状	
23.4	上下文决定视觉刺激的感知	
	23.4.1 亮度和颜色感知取决于上下文	
22.5	23.4.2 感受野属性取决于上下文	
23.5	皮层连接、功能架构、感知密切相关	
	23.5.1 感知学习需要皮层连接的可塑性	
	23.5.2 视觉搜索依赖于视觉属性和视觉形状的皮层表示	
22.6	23.5.3 认知过程影响视觉感知	
23.0	安点	490
第 24 章	高层视觉处理:从视觉到认知	500
24.1	高层视觉处理与目标识别有关	500
24.2	下颞皮层是目标识别的主要中心	501
	24.2.1 临床证据表明下颞皮层对于目标识别至关重要	502
	24.2.2 下颞皮层中的神经元编码复杂的视觉刺激,并按功能特化的柱进行组织	503
	24.2.3 灵长类动物的大脑包含用于面部处理的专用系统	504
	24.2.4 下颞皮层是参与目标识别的皮层区域网络的一部分	504
24.3	目标识别依赖于感知恒常性	505
24.4	目标的分类感知简化了行为	507
24.5	视觉记忆是高层视觉处理的一个组成部分	507
	24.5.1 隐式视觉学习导致神经元响应选择性的变化	507
	24.5.2 视觉系统与工作记忆和长期记忆系统相互作用	509
24.6	视觉记忆的联想回忆依赖于处理视觉刺激的皮层神经元自上而下的激活	513
24.7	要点	513
kk of in	。 沙····································	E15
	注 注意力和动作的视觉处理 土脑补偿阻减运动以创建视觉世界的稳定主要	515
25.1	大脑补偿眼球运动以创建视觉世界的稳定表示	
	- 4J.1.1 发 - 型 - 型 - 型 - 型 - 型 - 型 - 型 - 型 - 型 -	212

	25.1.2 动眼神经本体感觉有助于精确的空间感知和行为	
25.2	视觉审查由注意力和唤醒回路驱动	. 522
25.3	顶叶皮层为运动系统提供视觉信息	. 525
25.4	要点	. 527
第 26 音	:耳蜗的听觉处理	530
	- 1446157 足足径 - 耳朵具有 3 个功能部分	
	听力始于耳朵对声音能量的捕捉	
	耳蜗的流体动力学和机械装置向受体细胞提供机械刺激	
20.0	26.3.1 基底膜是声频的机械分析仪	
	26.3.2 柯蒂氏器是耳蜗中机电转导的部位	
26.4	毛细胞将机械能转化为神经信号	
20.1	26.4.1 发状纤维束的偏转引发机电转导	
	26.4.2 机械力直接打开转导通道	
	26.4.3 直接机电转导速度很快	
	26.4.4 耳聋基因提供了机械传导机制的组成部分	
26.5	动态反馈机制决定毛细胞的敏感性	
20.3	26.5.1 毛细胞被调整到特定的刺激频率	
	26.5.2 毛细胞适应持续刺激	
	26.5.3 声能在耳蜗中被机械地放大	
	26.5.4 耳蜗放大会扭曲声音输入	
	26.5.5 霍普夫分岔为声音检测提供了一般原理	
26.6		
	毛细胞使用专门的带状突触	
20.7		
	26.7.1 螺旋神经节中的双极神经元支配耳蜗毛细胞	
26.0	26.7.2 耳蜗神经纤维编码刺激频率和水平	
	感音神经性聋很常见,但可以治疗	
26.9	要点	. 558
第 27 章	前庭系统	559
	内耳的前庭迷路包含5个受体器官	. 559
	27.1.1 毛细胞将加速刺激转化为受体电位	. 561
	27.1.2 半规管感知头部旋转	. 561
	27.1.3 耳石器官感知线性加速度	. 563
27.2	前庭中央核整合前庭、视觉、本体感受和运动信号	. 565
	27.2.1 前庭连合系统传递双边信息	
	27.2.2 联合半规管和耳石信号改善惯性感知并减少平移与倾斜的歧义	. 569
	27.2.3 前庭信号是头部运动控制至关重要的组成部分	
27.3	当头部移动时, 前庭-眼动反射使眼睛稳定	
	27.3.1 旋转前庭-眼动反射补偿头部旋转	
	27.3.2 平移前庭-眼动反射补偿线性运动和头部倾斜	
	27.3.3 眼动响应补充了前庭-眼动反射	
	27.3.4 小脑调节前庭-眼动反射	
	27.3.5 丘脑和大脑皮层使用前庭信号进行空间记忆以及认知和感知功能	
	27.3.6 前庭信息存在于丘脑中	
	14% HAD HE A TONE LEVEL 1	

	27.3.7 前庭信息广泛分布于大脑皮层	575
	27.3.8 前庭信号对于空间定向和空间导航至关重要	576
27.	4 临床综合症阐明正常的前庭功能	577
	27.4.1 热量灌注作为前庭诊断工具	577
	27.4.2 双侧前庭功能减退干扰正常视力	577
27.	5 要点	577
第 28 i	章 听觉处理的中枢神经系统	580
	1 声音向有听觉的动物传达多种类型的信息	
	2 中央通路中声音的神经表征始于耳蜗核	
	28.2.1 耳蜗神经以并行通路将声学信息传递到音调组织的耳蜗核	
	28.2.2 耳蜗腹核提取有关声音的时间信息和频谱信息	
	28.2.3 耳蜗背核将声学与体感信息相结合,利用频谱线索定位声音	
28	3 哺乳动物的上橄榄复合体包含用于检测耳间时间差和强度差的独立回路	
20.	28.3.1 内侧上橄榄生成耳间时差图	
	28.3.2 外侧上橄榄检测耳间强度差	
	28.3.3 上橄榄复合体向耳蜗提供反馈	
	28.3.4 抑制下丘外侧丘系形状响应的腹侧核和背侧核	
28	4 传入听觉通路在下丘汇聚	
20.	- 128.4.1 来自下丘的声音位置信息在上丘中创建声音的空间映射	
28	5 下丘传输声音信息给大脑皮层	
20.	28.5.1 沿着上行通路刺激选择性逐渐增加	
	28.5.2 听觉皮层映射声音的众多层面	
	28.5.3 来自下丘的第二声音定位通路涉及凝视控制的大脑皮层	
	28.5.4 大脑皮层中的听觉回路被分离成分开的处理流	
	28.5.5 大脑皮层调节皮下听觉区域的感觉处理	
28	6 大脑皮层形成复杂的声音表示	
20.	28.6.1 听觉皮层使用时间编码和速率编码来表征时变声音	
		598
	28.6.2 灵长类有专门的皮层神经元编码音调与和音	
	28.6.3 食虫蝙蝠有皮层区域专门负责行为相关的声音特征	
20	- 26.0.4 可见反层沙及处理说话可的严重反馈 · · · · · · · · · · · · · · · · · · ·	
26.	/ 安	003
第 29 🗈	章 嗅觉和味觉:化学感觉	606
29.	1 一大群嗅觉受体启动嗅觉	606
	29.1.1 哺乳动物共享一大类气味受体	606
	29.1.2 不同的受体组合编码不同的气味	609
29.	2 嗅觉信息沿着通往大脑的通路转化	609
	29.2.1 气味由分散在鼻子中的神经元编码	609
	29.2.2 嗅球中的感觉输入按受体类型排列	611
	29.2.3 嗅球向嗅觉皮层传递信息	613
	29.2.4 嗅觉皮层的输出到达更高的皮层和边缘区域	614
	29.2.5 人类的嗅觉敏锐度各不相同	614
29.	3 气味引发特征性先天行为	614
	29.3.1 在 2 个嗅觉结构中检测到信息素	614

	29.3.2 无脊椎动物嗅觉系统可用于研究气味编码和行为	615
	29.3.3 嗅觉线索引起线虫的模式化行为和生理响应	
	29.3.4 嗅觉策略发展迅速	619
29.	4 味觉系统控制味觉	619
	29.4.1 味觉有 5 种反映基本饮食需求的亚模式	619
	29.4.2 味蕾中发生促味剂检测	619
	29.4.3 每种味觉形态都由不同的感觉受体和细胞检测	620
	29.4.4 味觉信息从外围传递到味觉皮层	625
	29.4.5 对味道的感知取决于味觉、嗅觉和体感输入	
	29.4.6 昆虫具有驱动先天行为的特定形态的味觉细胞	626
29.	5 要点	626
第五音	部分 运动	628
	章 感觉运动控制原理	631
	1 运动控制对神经系统提出挑战	
	2 可以自主地、有节奏地或反射性地控制动作	
	3 运动命令通过感觉运动过程的层次结构产生	
30.	4 运动神经信号受前馈和反馈的控制	
	30.4.1 快速运动需要前馈控制	
	30.4.2 反馈控制使用感官信号来纠正动作	
	30.4.3 对身体当前状态的估计依赖于感觉信号和运动信号	
	30.4.4 预测可以补偿感觉运动延迟	
•	30.4.5 感觉处理因动作和感知而异	
30.	5 运动规划将任务转化为有目的的移动	
	30.5.1 许多动作都采用了模式化的方式	
	30.5.2 运动规划可以是降低成本的最佳选择	
	30.5.3 最佳反馈控制以任务依赖的方式纠正误差	
30.	6 多个过程有助于运动学习	
	30.6.1 基于误差的学习涉及适应内部感觉运动模型	
	30.6.2 技能学习的成功依赖于多个过程	
20	30.6.3 感觉运动表征约束了学习	
	7 要点	
	章 运动单元和肌肉动作	653
31.	1 运动单元是运动控制的基本单元	
	31.1.1 一个运动单元由一个运动神经元和多条肌肉纤维组成	
	31.1.2 运动单元的属性各不相同	
	31.1.3 身体活动可以改变运动单元的特性	
	31.1.4 肌肉力量受运动单元募集和放电率的控制	
21	31.1.5 来自脑干的输入改变运动神经元的输入-输出特性	
31.	21.21. 四世界/// (2.1.21. 21.21.	
	31.2.1 肌节是收缩蛋白的基本组织单位	
	31.2.2 不可收缩的元素提供必要的结构支撑	
	7.1.7、7、1/4 4位 7.1 BV 4光 工 111 红 24 24 28 7百。 大 13 利力果 13	ຸດຕາ

	31.2.4 肌肉扭矩取决于肌肉骨骼几何结构	665
31.3	不同的动作需要不同的激活策略	668
	31.3.1 收缩速度可以在大小和方向上变化	668
	31.3.2 运动涉及许多肌肉的协调	670
	31.3.3 肌肉工作取决于激活模式	671
31.4	要点	674
第 32 音	近 脊髓中的感觉-运动整合	675
	· 育體中的反射通路产生肌肉收缩的协调模式	
32.1	32.1.1 牵张反射可抵抗肌肉的拉长	
32.2	等髓中的神经元网络有助于反射响应的协调	
32.2	32.2.1 牵张反射涉及单突触通路	
	32.2.1 年 版	
	32.2.3 牵张反射还涉及多突触通路	
	, ,	
	32.2.4 高尔基肌腱器官向脊髓提供力敏感反馈	
	32.2.5 皮肤反射产生复杂的运动,起到保护和姿势功能的作用	
22.2	32.2.6 中间神经元上感觉输入的汇聚增加了反射对运动的贡献的灵活性	
32.3	感觉反馈和下行运动命令在共同的脊髓神经元处相互作用以产生自主运动	
	32.3.1 肌肉纺锤体感觉传入活动通过大直径单突触反射通路强化运动的中央指令	
	32.3.2 通过下行输入调节大直径抑制性中间神经元和闰绍细胞协调关节肌肉活动	
	32.3.3 下行运动命令可能会促进或抑制反射通路中的传输	
	32.3.4 下行输入通过改变初级感觉纤维的突触效率来调节脊髓的感觉输入	
32.4	部分自主运动下行命令通过脊髓中间神经元传递	
	32.4.1 C3-C4 节段的本体脊髓神经元调节上肢运动的部分皮层脊髓命令	
	32.4.2 脊髓反射通路中的神经元在运动前被激活	
	本体感受反射在调节自主运动和自动运动中起着重要作用	
	脊髓反射通路经历长时变化	
32.7	中枢神经系统的损伤会导致反射响应的特征性改变	
	32.7.1 脊髓下行通路中断经常导致痉挛	
	32.7.2 人类脊髓损伤导致一段脊髓休克期,随后出现反射亢进	
32.8	要点	693
第 33 章	竞 移动	695
33.1	移动需要产生精确协调的肌肉激活模式	699
33.2	步进的运动模式是在脊髓水平组织的	699
	33.2.1 负责移动的脊髓回路可以根据经验进行修改	703
	33.2.2 脊髓移动网络被组织成节律生成回路和模式生成回路	703
33.3	来自移动肢体的体感输入调节移动	707
	33.3.1 本体感觉调节步进的时间和幅度	707
	33.3.2 皮肤中的机械受体允许行走以适应意外障碍	710
33.4	脊髓上结构负责步进的启动和自适应控制	710
	33.4.1 中脑核启动并维持移动和控制速度	710
	33.4.2 启动移动的中脑核投射到脑干神经元	712
	33.4.3 脑干核团在移动过程中调节姿势	712
33.5	视觉引导移动涉及运动皮层	714

	33.6	移动规划涉及后顶叶皮层	714
	33.7	小脑调节下行信号的时间和强度	718
	33.8	基底神经节改变皮层和脑干回路	718
	33.9	计算神经科学提供了对移动回路的见解	718
	33.10	D 人类移动的神经元控制与四足动物相似	719
	33.11	1 要点	720
第	-	运动皮层的自主运动	722
	34.1	自主运动是行动意图的身体表现	
		34.1.1 理论框架有助于解释行为和自主控制的神经基础	
		34.1.2 许多额叶皮层和顶叶皮层区域参与自主控制	
		34.1.3 下行运动命令主要由皮层脊髓束传递	
		34.1.4 在运动开始之前施加一个延迟期,将规划与执行动作相关的神经活动隔离开	
	34.2	顶叶皮层提供有关世界和身体的信息,用于状态估计以规划和执行运动动作	
		34.2.1 顶叶皮层将感觉信息与运动动作联系起来	
		34.2.2 身体位置和运动在后顶叶皮层的几个区域表示	
		34.2.3 空间目标在后顶叶皮层的几个区域都有体现	
		34.2.4 内部产生的反馈可能影响顶叶皮层活动	732
	34.3	前运动皮层支持运动选择和规划	733
		34.3.1 内侧前运动皮层参与自主行为的情境控制	733
		34.3.2 背侧前运动皮层参与规划手臂的感觉引导运动	735
		34.3.3 背侧前运动皮层参与应用管理行为的规则(关联)	739
		34.3.4 腹侧前运动皮层参与规划手的运动动作	739
		34.3.5 前运动皮层可能有助于指导运动行为的感知决策	739
		34.3.6 当观察到其他人的运动动作时,几个皮层运动区会活跃	743
		34.3.7 自主控制的许多方面分布在顶叶和前运动皮层	743
	34.4	初级运动皮层在运动执行中起着重要作用	743
		34.4.1 初级运动皮层包括运动外围的详细映射	746
		34.4.2 初级运动皮层中的一些神经元直接投射到脊髓运动神经元	746
		34.4.3 初级运动皮层的活动反映了运动输出的许多时空特征	749
		34.4.4 初级运动皮层活动也反映了运动的高阶特征	756
		34.4.5 感觉反馈迅速传递到初级运动皮层和其他皮层区域	757
		34.4.6 初级运动皮层是动态的和适应性强的	757
	34.5	要点	761
kk	25 Ja	보고 <u>한</u> 번 약한 약한 대한 소년 이번 소년 시간	763
邾	-	凝视的控制 眼球被 6 块眼外肌所移动	
	33.1	35.1.1 眼球运动在眼眶中旋转眼球	
		35.1.2 6 块眼外肌形成 3 个兴奋-拮抗对	
		35.1.3 两只眼睛的运动是协调的	
	25.0	35.1.4 眼外肌由 3 对颅神经控制	
	<i>5</i> 5.2	6 种神经元控制系统保持目标的瞄准	
		35.2.1 主动固定系统使中央凹保持对静止目标的注视,以实现准确的视线定位。	
	25.2	35.2.2 眼跳系统将中央凹指向感兴趣的对象	769 770
	17 1	#K がた B717~ V117/2 P24 7/7 二二 HXI 二二	/ / / 1

	35.3.1 桥脑网状结构产生水平眼跳	770
	35.3.2 中脑网状结构中产生垂直眼跳	773
	35.3.3 脑干病变导致眼球运动的典型缺陷	773
35.4	眼跳通过上丘由大脑皮层进行控制	774
	35.4.1 上丘将视觉信息和运动信息整合到脑干的动眼神经信号中	
	35.4.2 头侧上丘促进视觉固定	
	35.4.3 基底神经节和大脑皮层的 2 个区域控制上丘	
	35.4.4 眼跳的控制可以通过经验来修改	
	35.4.5 一些快速的视线转移需要协调的头部和眼睛运动	
35.5	平滑跟踪系统保持移动的目标在中央凹上	
	聚散系统将眼睛对齐到不同深度的目标上	
	要点	
33.7	× 5m · · · · · · · · · · · · · · · · · ·	, , ,
第 36 章	i 姿态	785
36.1	平衡和定向是姿势控制的基础	785
	36.1.1 姿势平衡控制身体的重心	785
	36.1.2 姿势定向能预示平衡障碍	787
36.2	姿势响应和预期姿势调整使用模式化的策略和协同作用	787
	36.2.1 自动姿势响应补偿突然的干扰	789
	36.2.2 预期姿势调整补偿自主运动	795
	36.2.3 姿势控制与运动相结合	795
36.3	必须整合和解释体感、前庭和视觉信息以保持姿势	795
	36.3.1 体感信号对于自动姿势响应的时间和方向很重要	
	36.3.2 前庭信息对于在不稳定表面和头部运动期间的平衡很重要	
	36.3.3 视觉输入为姿势系统提供方向和运动信息	
	36.3.4 来自单一感官形态的信息可能是模棱两可的	
	36.3.5 姿势控制系统使用结合了内部平衡模型的身体模式	
36.4	姿势的控制取决于任务	802
	36.4.1 任务要求决定了每个感觉系统在姿势平衡和定向中的作用	802
36.5	姿势控制分布在神经系统中	
	36.5.1 脊髓回路足以维持反重力支持但不足以维持平衡	802
	36.5.2 脑干和小脑整合姿势的感觉信号	
	36.5.3 脊髓小脑和基底神经节在姿势适应中很重要	
	36.5.4 大脑皮层中心有助于姿势控制	
36.6	要点	
kk an de	حور ل	000
第 37 章	[小脑 - 小脑损伤导致明显的症状和体征	809
37.1	7. 加加切份等致明显的症状和体征	
	37.1.2 损伤会影响特定的感知能力和认知能力	
27.2	37.1.2 损伤会影响特定的感知能刀和认知能刀 · · · · · · · · · · · · · · · · · · ·	
31.2	7.1. 小脑是一个大的皮层下脑结构	
	37.2.1 小脑是一个大的皮层下脑结构	
27.2	37.2.3 不同的运动由纵向功能区控制	
5/.5	小腿皮层用基准相阻基坐锁凹陷的里发切形里儿组成	ð1/

		37.3.1 小脑皮层分为 3 个功能专门层	817
		37.3.2 攀缘纤维和苔藓纤维传入系统编码和处理信息的方式不同	819
		37.3.3 小脑微回路架构建议进行规范计算	821
	37.4	假设小脑执行几种一般计算功能	822
		37.4.1 小脑有助于前馈感觉运动控制	822
		37.4.2 小脑结合了运动装置的内部模型	822
		37.4.3 小脑整合感觉输入和伴随发送	823
		37.4.4 小脑有助于时间控制	823
	37.5	小脑参与运动技能学习	823
		37.5.1 攀缘纤维活动改变平行纤维的突触效能	824
		37.5.2 在几种不同的运动系统中,小脑是运动学习所必需的	825
		37.5.3 学习发生在小脑的几个部位	826
	37.6	要点	826
松	20 ≱ ≿	基底神经节	830
邾	•	基底神经节网络由 3 个主输入核、2 个主输出核和 1 个内部核组成	
	36.1	38.1.1 纹状体、丘脑底核和黑质致密部/腹侧被盖区是基底神经节的 3 个主要输入核	
		38.1.2 黑质网状部和内部苍白球是基底神经节的 2 个主要输出核	
		38.1.3 外部苍白球主要是基底神经节的内部结构	
	38.2	基底神经节的内部回路调节组件如何相互作用	
	30.2	38.2.1 基底神经节的传统模型强调直接通路和间接通路	
		38.2.2 详细的解剖分析揭示了一个更复杂的组织	
	38 3	基底神经节与外部结构的连接以可重入回路为特征	
	50.5	38.3.1 输入定义基底神经节的功能区域	
		38.3.2 输出神经元投射到提供输入的外部结构	
		38.3.3 可重入回路是基底神经节回路的基本原理	
	38.4	生理信号为基底神经节的功能提供了更多线索	
		38.4.1 纹状体和丘脑底核主要接收来自大脑皮层、丘脑和中脑腹侧的信号	
		38.4.2 腹侧中脑多巴胺神经元接收来自外部结构和其他基底核的输入	
		38.4.3 去抑制是基底神经节输出的最终表达	
	38.5	在整个脊椎动物进化过程中,基底神经节一直高度保守	
		动作选择是基底神经节研究中反复出现的主题	
		38.6.1 所有脊椎动物都面临从多个竞争选项中选择一种行为的挑战	838
		38.6.2 动机、情感、认知和感觉运动处理需要选择	839
		38.6.3 配置基底神经节的神经结构用于做出选择	839
		38.6.4 基底神经节促进选择的内在机制	840
		38.6.5 基底神经节的选择功能受到质疑	840
	38.7	强化学习是选择架构的固有属性	841
		38.7.1 内部强化是由基底核内的相位性多巴胺信号调制的	841
		38.7.2 外部强化可以通过在传入结构中操作来偏向选择	
		基底神经节的行为选择受目标导向和习惯控制	
	38.9	基底神经节疾病可能与选择障碍有关	
		38.9.1 选择机制可能容易受到多种潜在故障的影响	
		38.9.2 帕金森病可以部分地视为未能选择感觉运动选项	
		38.9.3 亨廷顿病可能反映了直接通路和间接通路之间的功能失衡	845

		38.9.4 精神分裂症可能与抑制非选择选项的普遍失败有关	845
		88.9.5 注意缺陷多动障碍和图雷特综合症也可能以非选择性选项的侵入为特征	846
		38.9.6 强迫症反映了病态主导选项的存在	846
		38.9.7 成瘾与强化机制和习惯性目标的紊乱有关	
	38.10	要点	846
第:	39 章	脑机接口	848
	39.1	卤机接口测量和调节神经活动以帮助恢复失去的能力	848
		39.1.1 人工耳蜗和视网膜假体可以恢复失去的感觉能力	848
		39.1.2 运动脑机接口和交流脑机接口可以恢复失去的运动能力	848
		39.1.3 病理性神经活动可以通过深部脑刺激和抗癫痫脑机接口来调节	850
		39.1.4 替换零件脑机接口可以恢复失去的大脑处理能力	850
		39.1.5 测量和调节神经活动依赖于先进的神经技术	851
	39.2	卤机接口利用许多神经元的活动来解码运动	852
		39.2.1 解码算法根据神经活动估计预期的运动	854
		39.2.2 离散解码器估计运动目标	855
		39.2.3 连续解码器估计运动每时每刻的细节	855
	39.3	乏动脑机接口和沟通脑机接口性能和能力的提高使临床转化成为可能	857
		39.3.1 受试者可以使用交流脑机接口键人消息	857
		39.3.2 受试者可以使用脑机接口控制的假臂伸手抓取物体	858
		39.3.3 使用脑机接口刺激瘫痪手臂,受试者可以够到并抓住物体	860
	39.4	生脑机接口控制期间,受试者可以使用皮层刺激提供的感觉反馈	860
	39.5	卤机接口可用于推进基础神经科学	863
	39.6	卤机接口引发新的神经伦理学考虑	864
	39.7	要点	864
<i>bb</i> -	े के	分 情绪、动机和内稳态的生物学	866
和	// pl	7	ouu
/14	40 章	ye. 1	869
	40.1	领神经与脊神经同源	
		40.1.1 颅神经调节面部和头部的感觉功能和运动功能以及身体的自动功能	
		40.1.2 颅神经成群离开颅骨,常一起受伤	
	40.2	项神经核团的组织遵循与脊髓的感觉区和运动区相同的基本规划	
		10.2.1 胚胎的颅神经核具有节段性组织	
		40.2.2 成人颅神经核具有柱状的组织	
		40.2.3 脑干的组织在 3 个重要方面不同于脊髓	
	40.3	面干网状结构中的神经元群协调稳态和生存所需的反射行为和简单行为	
		40.3.1 颅神经反射涉及单突触脑干中继和多突触脑干中继	
		10.3.2 模式发生器协调更复杂的模式化行为	
		10.3.3 呼吸控制提供了模式发生器如何集成到更复杂行为中的示例	
	40.4	面干中的单胺能神经元调节感觉、运动、自动功能和行为功能	
		10.4.1 许多调节系统使用单胺作为神经递质	
		10.4.2 单胺能神经元具有许多细胞特性	
		10.4.3 自动管控和呼吸由单胺能通路调节	
		10.4.4 痛觉受单胺镇痛通路的调节	888

	40.4.5 单胺能通路促进运动活动	. 890
	40.4.6 上行的单胺能投射调节前脑系统的动机和奖励	. 890
	40.4.7 单胺能神经元和胆碱能神经元通过调节前脑神经元来维持觉醒	. 890
40	.5 要点	. 893
笙 41	章 下丘脑: 生存的自动控制、激素控制和行为控制	895
	.1 內稳态将生理参数保持在一个狭窄的范围内,这对生存至关重要	
	2 下丘脑协调稳态调节	
	41.2.1 下丘脑通常分为头尾之间的 3 个区域	
	41.2.2 模态特异性下丘脑神经元将内感受性感觉反馈与控制适应性行为和生理响应的输出联系起	
	41.2.3 模态特异性下丘脑神经元也接收关于预期稳态挑战的下行前馈输入	
41	.3 自动系统将大脑与生理响应联系起来	
	41.3.1 自动系统中的内脏运动神经元被组织成神经节	
	41.3.2 节前神经元位于脑干和脊髓的 3 个区域	
	41.3.3 交感神经节投射到全身的许多目标	
	41.3.4 副交感神经节支配单个器官	
	41.3.5 肠神经节调节胃肠道	
	41.3.6 乙酰胆碱和去甲肾上腺素是自动运动神经元的主要递质	
	41.3.7 自动响应涉及自动区域之间的合作	
41	.4 内脏感觉信息传递到脑干和高层脑结构	
	.5 自主神经功能的中枢控制可能涉及导水管周围灰质、内侧前额叶皮层和杏仁核	
	.6 神经内分泌系统通过激素将大脑与生理响应联系起来	
	41.6.1 垂体后叶的下丘脑轴突末梢将催产素和加压素直接释放到血液中	
	41.6.2 垂体前叶中的内分泌细胞响应下丘脑神经元释放的特定因子而分泌激素	
41	.7 专用的下丘脑系统控制特定的稳态参数	
	41.7.1 体温由正中视前核中的神经元控制	. 914
	41.7.2 水平衡和相关的口渴驱动由终板、正中视前核和穹隆下器官血管器官中的神经元控制	. 915
	41.7.3 能量平衡和相关的饥饿驱动由弓状核中的神经元控制	. 917
41	.8 下丘脑中的性二态区域控制着性、攻击性和育儿	. 923
	41.8.1 性行为和攻击性受视前下丘脑区和腹内侧下丘脑核亚区的控制	. 923
	41.8.2 视前下丘脑区控制养育行为	. 924
41	.9 要点	. 924
笙 42	章 情感	926
•	.1 对情绪神经回路的现代探索始于 19 世纪末	
	.2 杏仁核与后天恐惧和先天恐惧有关	
1.2	42.2.1 杏仁核与动物天生的恐惧有关	
	42.2.2 杏仁核对人类的恐惧很重要	
	42.2.3 杏仁核的作用延伸到积极情绪	
47	.3 情绪响应可以通过消退和调节来更新	
	.4 情绪会影响认知过程	
	.5 许多其他大脑区域有助于情绪处理	
	.6 功能性神经影像学有助于我们理解人类的情绪	
r2	42.6.1 功能成像已经确定了感觉的神经相关性	
	42.6.2 情绪与内稳态有关	
	M4:B 4:4:0:0 M27::::::::::::::::::::::::::::::::::::	/

42.7	要点	939
第 43 章	5 动机、奖励和上瘾状态	942
43.1	动机状态影响目标导向的行为	942
	43.1.1 内部刺激和外部刺激都有助于激励状态	942
	43.1.2 奖励可以满足短期和长期的监管需求和非监管需求	942
	43.1.3 大脑的奖励回路为目标选择提供了生物底物	942
	43.1.4 多巴胺可以作为一种学习信号	944
43.2	吸毒成瘾是一种病态的奖励状态	946
	43.2.1 所有滥用药物都以神经递质受体、转运体或离子通道为目标	947
	43.2.2 反复接触滥用药物会导致持久的行为适应	949
	43.2.3 通过重复药物暴露在大脑奖励区域诱导持久的分子适应	950
	43.2.4 持久的细胞和回路适应调制药物成瘾状态的各个方面	950
	43.2.5 自然成瘾与药物成瘾共享相同的生物学机制	953
43.3	要点	954
<i>k</i> & 4.4 →	c H-CHI-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.55
	and the second	955
	睡眠包括交替的快速眼动睡眠和非快速眼动睡眠	
44.2	上行的唤醒系统促进觉醒	
	44.2.1 脑干和下丘脑的上行觉醒系统支配前脑	
	44.2.2 上行觉醒系统受损导致昏迷	960
	44.2.3 由相互抑制的神经元组成的回路控制从觉醒到睡眠和从非快速眼动睡眠到快速眼动睡眠的	060
44.2	转变	
44.3		
	44.3.1 睡眠的稳态压力取决于体液因素	
	44.3.3 睡眠的昼夜节律控制取决于下丘脑中继	
44.4	44.3.4 睡眠不足会损害认知和记忆	
	· 睡眠随年龄发化 · · · · · · · · · · · · · · · · · · ·	
44.3	世	
	44.5.1 矢眠 可能是田	
	44.5.3 发作性睡病是由食欲神经元的缺失引起的	
	44.5.4 快速眼动睡眠行为障碍是由快速眼动睡眠麻痹回路故障引起的	
	44.5.5 不宁腿综合症和周期性肢体运动障碍扰乱睡眠	
11.0	44.5.6 非快速眼动异态睡眠包括梦游、梦话和夜惊	
	,睡眠有很多功能	
44.7	要点	9/1
第七部	邓分 行为的发育和出现	973
第 45 辛	章 神经系统的塑造	976
-	· 神经管起源于外胚层	
73.2	45.2.1 神经板的发育由组织区的信号诱导	

		45.2.2 神经诱导由肽生长因子及其抑制剂介导
	45.3	神经管的头尾模式涉及信号梯度和二级组织中心
		45.3.1 神经管在发育早期就区域化了
		45.3.2 来自中胚层和内胚层的信号定义了神经板的头尾模式
		45.3.3 来自神经管内组织中心的信号会影响前脑、中脑和后脑 982
		45.3.4 抑制性相互作用将后脑分成几个部分
	45.4	神经管的背腹模式涉及不同头尾水平的类似机制985
		45.4.1 腹侧神经管由脊索和底板分泌的音猬蛋白形成图案 987
		45.4.2 背神经管由骨形态发生蛋白组成
		45.4.3 背腹模式机制沿神经管的头尾范围得到保护
	45.5	局部信号决定神经元的功能子类
		45.5.1 头尾位置是运动神经元亚型的主要决定因素
		45.5.2 局部信号和转录回路进一步使运动神经元亚型多样化
	45.6	发育中的前脑受内在和外在影响
		45.6.1 感应信号和转录因子梯度建立区域分化
		45.6.2 传入输入也有助于区域化
	45.7	要点
第	-	神经细胞的分化与存活 1000
	46.1	神经祖细胞的增殖涉及对称和不对称细胞分裂
		放射状胶质细胞充当神经祖细胞和结构支架1000
		神经元和神经胶质细胞的生成受 Delta-Notch 信号传导和基本螺旋-环-螺旋转录因子的调节 1002
		大脑皮层的层数是通过新生神经元的顺序添加而建立的
	46.5	神经元从它们的起源位置长距离迁移到它们的最终位置
		46.5.1 兴奋性皮层神经元沿神经胶质指南径向迁移1005
		46.5.2 皮层中间神经元在皮层下出现并切向迁移到皮层1008
		46.5.3 周围神经系统中的神经嵴细胞迁移不依赖于支架1009
	46.6	结构创新和分子创新是人类大脑皮层扩展的基础1012
	46.7	内在程序和外在因素决定神经元的神经递质表现型1013
		46.7.1 神经递质的选择是神经元分化转录程序的核心组成部分1013
		46.7.2 来自突触输入和目标的信号可以影响神经元的递质表现型1013
	46.8	神经元的存活受来自神经元靶标的神经营养信号的调节
		46.8.1 神经生长因子的发现证实了神经营养因子假说
		46.8.2 神经营养物质是研究最透彻的神经营养因子
		46.8.3 神经营养因子抑制潜伏细胞死亡程序
	46.9	要点
松	47 辛	轴突的生长和引导 1025
粐	-	轴突和树突之间的差异在发育早期就出现了
		树突的形成受到内在因素和外在因素的共同影响
		例类的形成受到内在囚系和外在囚系的共同影响
		全
		视网膜神经节轴突的生长以一系列离散步骤为导向
	41.3	祝 内 展 中 空 下 抽 矢 的 生 云 以 一 系 列 嵩 似
		47.5.1 生长锥在枕父叉处友献
		47.J.2 裀犬寸凹凸了的炒皮什人脚甲烷供柳间盲亏

47.6	引导一些脊髓神经元的轴突穿过中线	
	47.6.1 轴突导向因子引导发育中的传导轴突穿过中线	
	47.6.2 化学引诱物因子和化学排斥物因子促成中线模式	
47.7	要点	1047
笙 48 音	定突触的形成和消除	1048
	· 入水ののののでは、	
10.1	48.1.1 识别分子促进视觉系统中选择性突触的形成	
	48.1.2 感觉受体促进嗅觉神经元的靶向	
	48.1.3 不同的突触输入被定向到突触后细胞的离散域	
	48.1.4 神经激活增强突触特异性	
48.2	神经肌肉接头处揭示了突触分化的原理	
70.2	48.2.1 运动神经末梢的分化是由肌纤维组织的	
	48.2.2 突触后肌肉膜的分化由运动神经组织	
	48.2.3 神经调节乙酰胆碱受体基因的转录	
	48.2.4 神经肌肉接头在一系列步骤中成熟	
19.2	中枢突触和神经肌肉接头以相似的方式发育	
40.5	48.3.1 神经递质受体定位于中央突触	
19.1	一些突触在出生后就消失了	
	神经胶质细胞调节突触的形成和消除	
	要点	
46.0	女总	. 10/1
第 49 章	全 经验和突触连接的细化	1075
49.1	人类心理功能的发育受早期经验的影响	1076
	49.1.1 早期经历对社会行为有终生影响	1076
	49.1.2 视觉感知的发育需要视觉经验	1076
49.2	视觉皮层双眼回路的发育取决于产后活动	1078
	49.2.1 视觉经验影响视觉皮层的结构和功能	1078
	49.2.2 电激活的模式组织双眼回路	1080
49.3	关键时期视觉回路的重组涉及突触连接的改变	1084
	49.3.1 皮层重组取决于兴奋和抑制的变化	1084
	49.3.2 突触结构在关键时期发生改变	1085
	49.3.3 丘脑输入在关键时期被重塑	1086
	49.3.4 突触稳定有助于结束关键期	1087
49.4	独立于经验的自发神经活动导致早期回路完善	1087
49.5	依赖于活动的连接细化是大脑回路的一个普遍特征	1089
	49.5.1 视觉系统开发的许多方面都依赖于活动	1091
	49.5.2 感官模态在关键时期得到协调	1091
	49.5.3 不同的功能和脑区有不同的发育关键期	1092
49.6	关键时期可以在成年期重新开启	1092
	49.6.1 视觉映射和听觉映射可以在成人中对齐	1095
	49.6.2 双眼回路可以在成人中重塑	1095
49.7	要点	
-	:受损大脑的修复	1100
50.1	轴突的损伤会影响神经元和邻近细胞	1100

		50.1.1 轴突变性是一个活跃的过程	.1100
		50.1.2 轴突切开导致附近细胞的响应性响应	.1101
	50.2	受伤后中央轴突再生不良	. 1104
	50.3	治疗干预可能促进受伤中枢神经元的再生	.1105
		50.3.1 环境因素支持受伤轴突的再生	.1108
		50.3.2 髓磷脂的成分抑制神经突生长	.1108
		50.3.3 损伤引起的疤痕阻碍轴突再生	.1109
		50.3.4 内在增长计划促进再生	.1109
		50.3.5 完整轴突形成新的连接可导致损伤后功能的恢复	.1113
	50.4	受伤大脑中的神经元死亡,但可以产生新的神经元	.1113
	50.5	治疗干预可能会保留或替换受伤的中枢神经元	.1116
		50.5.1 神经元或其祖细胞的移植可以替代丢失的神经元	.1116
		50.5.2 刺激损伤区域的神经形成可能有助于恢复功能	.1116
		50.5.3 非神经元细胞或其祖细胞的移植可以改善神经元功能	.1120
		50.5.4 功能恢复是再生疗法的目标	.1120
	50.6	要点	.1120
第	•	神经系统的性别分化	1124
	51.1	基因和激素决定男性和女性之间的生理差异	
		51.1.1 染色体性别指导胚胎的性腺分化	
		51.1.2 性腺合成促进性别分化的激素	
	~ o	51.1.3 类固醇激素生物合成障碍影响性别分化	
	51.2	神经系统的性别分化产生性二态行为	
		51.2.1 勃起功能由脊髓中的性二态回路控制	
		51.2.2 鸟类的鸣叫由前脑中的性二态回路控制	
	~	51.2.3 哺乳动物的交配行为受下丘脑中的性二态神经回路控制	
	51.3	环境线索调节性二态行为	
		51.3.1 信息素控制小鼠的伴侣选择	
		51.3.2 早期经验改变了后来的母性行为	
	~	51.3.3 一套核心机制是大脑和脊髓中许多性二态的基础	
	51.4	人脑是性二态的	
		51.4.1 人类的性二态可能源于荷尔蒙作用或经验	
	51.5	51.4.2 大脑中的二态结构与性别认同和性取向都相关	
	51.5	要点	1142
第	八部	3分 学习、记忆、语言与认知	1145
የ የ	50 de	W 그 fu 는 lat	1140
邦	-	学 习和记忆	1148
	52.1	短期记忆和长期记忆涉及不同的神经系统	
		52.1.1 短期记忆维持与即时目标相关信息的瞬态表示	
	50.0	52.1.2 存储在短期记忆中的信息有选择地转移到长期记忆中	
	52.2	内侧颞叶对情景式长期记忆至关重要	
		52.2.1 情景记忆处理涉及编码、存储、检索和整合	
		52.2.2 情景记忆涉及内侧颞叶和联合皮层之间的相互作用	
			1176

	52.2.4 海马体通过建立关系联想来支持情景记忆	.1159
52.3	5 内隐记忆支持人类和动物的一系列行为	.1159
	52.3.1 不同形式的内隐记忆涉及不同的神经回路	.1160
	52.3.2 内隐记忆可以是关联的或非关联的	.1161
	52.3.3 操作性条件反射涉及将特定行为与强化事件相关联	.1163
	52.3.4 联想学习受到有机体生物学的限制	.1164
52.4	· 记忆中的错误和缺陷揭示了正常的记忆过程	.1164
	;要点	
笙 53 音	重 内隐记忆的细胞机制和个性的生物基础	1166
	内隐记忆的存储涉及突触传递有效性的变化	
33.1	53.1.1 突触传递的突触前抑制导致习惯化	
	53.1.2 敏化涉及突触传递的突触前促进	
	53.1.3 经典威胁条件反射涉及促进突触传递	
52.2	95.1.5	
33.2	. 内愿记忆的长期行间沙及田外外或脉苷-蛋白尿酶 A-外外或脉苷应各化片结合蛋白通断月号的天 触变化	
	53.2.1 环磷酸腺苷信号在长期致敏中起作用	
	· · · · · · · · · · · · · · · · · · ·	
	53.2.2 非编码核糖核酸在转录调控中的作用	
	53.2.3 长期突触促进是突触特定的	
	53.2.4 维持长期突触促进需要局部蛋白质合成的类似朊病毒的蛋白质调节剂	
5 2.2	53.2.5 存储在感觉运动突触中的记忆在检索后变得不稳定但可以重新稳定	
53.3	5 果蝇防御响应的经典威胁条件反射也使用环磷酸腺苷-蛋白激酶 A-环磷酸腺苷应答元件结合蛋白	
	通路	
	哺乳动物的威胁学习记忆涉及杏仁核	
	一学习引起的大脑结构变化有助于形成个性的生物学基础	
53.6	5 要点	.1188
第 54 章	章 海马体和外显记忆存储的神经基础	1189
54.1	哺乳动物的外显记忆涉及海马体的突触可塑性	
	54.1.1 不同海马通路的长时程增强对于外显记忆存储至关重要	.1191
	54.1.2 不同的分子机制和细胞机制有助于长时程增强的表达形式	.1193
	54.1.3 长时程增强有早期和晚期	.1196
	54.1.4 脉冲时间依赖性可塑性为改变突触强度提供了更自然的机制	.1198
	54.1.5 海马体中的长时程增强作用使其可用作记忆存储机制	.1198
	54.1.6 空间记忆取决于长时程增强	.1199
54.2	2 外显记忆存储也依赖于突触传递的长时程抑制	.1203
54.3	;记忆存储在细胞集合中	.1205
54.4	海马体的不同分区处理外显记忆的不同方面	.1205
	54.4.1 齿状回对于模式分离很重要	.1207
	54.4.2 阿蒙角 3 区对于模式完成很重要	.1207
	54.4.3 阿蒙角 2 区编码社交记忆	.1207
54.5	, 。海马体形成外部世界的空间映射	.1208
	54.5.1 内嗅皮层神经元提供独特的空间表征	.1209
	54.5.2 位置细胞是空间记忆底物的一部分	.1212
54.6	、海口体功能紊乱导致的自体考记权障碍	

54.7	要点	1214
第 55 章	· 语言	1216
55.1	语言有许多结构层次: 音素、词素、单词和句子	1216
	儿童的语言习得遵循通用模式	
	55.2.1 "普遍主义者"婴儿在1岁时变得语言专业化	1218
	55.2.2 视觉系统参与语言的产生和感知	1219
	55.2.3 韵律线索早在子宫内就已习得	1221
	55.2.4 转移概率有助于区分连续语音中的单词	1221
	55.2.5 语言学习有关键期	1221
	55.2.6 "父母语"说话风格增强语言学习	1222
	55.2.7 成功的双语学习取决于学习第二语言的年龄	1222
55.3	一种新的语言神经基础模型已经出现	1223
	55.3.1 许多专门的皮层区域有助于语言处理	1223
	55.3.2 语言的神经结构在婴儿期迅速发育	1224
	55.3.3 左半球主导语言	1225
	55.3.4 韵律根据传达的信息同时影响右半球和左半球	1226
55.4	失语症的研究为语言处理提供了见解	1226
	55.4.1 布洛卡失语症是由左额叶的大损伤引起	1226
	55.4.2 韦尼克失语症是由于左侧后颞叶结构受损所致	1229
	55.4.3 传导性失语症由后语言区的一部分受损引起	1229
	55.4.4 全面性失语症源于多个语言中心的广泛受损	1230
	55.4.5 布洛卡区和韦尼克区附近区域受损导致经皮层失语症	
	55.4.6 不太常见的失语症涉及对语言重要的其他大脑区域	1231
55.5	要点	
第 56 章	决策和意识	1234
	感知的鉴别需要一个决策规则	1234
	56.1.1 一个简单的决策规则是对证据表示阈值的应用	
	56.1.2 涉及深思熟虑的感知决策模仿了涉及认知能力的现实生活决策的各个方面	
56.2	皮层感觉区域的神经元为决策提供嘈杂的证据样本	
	证据积累到阈值解释了速度与准确性的权衡	
	顶叶和前额叶联合皮层中的神经元代表一个决策变量	
	感知决策是从证据样本进行推理的模型	
	偏好决策使用了关于价值的证据	
	决策为理解思维过程、认知状态和意识状态提供了一个框架	
	意识可以通过决策的镜头来理解	
	要点	
Raka F Yur	al Merellanda	4.5.
第九部	3分 神经系统疾病	1256
	周围神经和运动单元疾病	1259
	周围神经疾病、神经肌肉接头疾病、肌肉疾病可以在临床上加以鉴别	
57.2	多种疾病以运动神经元和周围神经为目标	1263
	57.2.1 运动神经元疾病不影响感觉神经元(肌萎缩侧索硬化症)	1263

	57.2.2 周围神经疾病影响动作电位传导	. 1266
	57.2.3 已经确定一些遗传性周围神经病变的分子基础	. 1267
57.3	神经肌肉接头突触传递障碍有多种原因	. 1270
	57.3.1 重症肌无力是神经肌肉接头疾病研究最充分的例子	. 1270
	57.3.2 肌无力综合症和肉毒杆菌中毒也会改变神经肌肉传递	. 1272
57.4	骨骼肌疾病可以遗传或后天获得	
	57.4.1 皮肌炎是获得性肌病的一个例证	. 1272
	57.4.2 肌肉萎缩症是最常见的遗传性肌病	. 1273
	57.4.3 一些遗传性骨骼肌疾病由电压门控离子通道的遗传缺陷引起	. 1277
57.5	要点	.1280
第 58 章	5 癫痫发作和癫痫	1281
58.1	癫痫发作和癫痫的分类对于发病机制和治疗很重要	. 1281
	58.1.1 癫痫发作是大脑功能的暂时性破坏	. 1282
	58.1.2 癫痫是一种反复发作的慢性疾病	. 1283
58.2	脑电图代表皮层神经元的集体活动	. 1283
58.3	局灶性癫痫发作起源于一小群神经元	. 1285
	58.3.1 癫痫病灶中的神经元有异常的爆发活动	. 1285
	58.3.2 环绕抑制的崩溃导致同步	. 1288
	58.3.3 癫痫发作活动的传播涉及正常的皮层回路	. 1293
	全身性癫痫发作由丘脑皮层回路驱动	
58.5	定位发作病灶对癫痫的手术治疗至关重要	. 1297
58.6	长时间癫痫发作会导致脑损伤	
	58.6.1 反复惊厥发作是一种医疗急症	
	58.6.2 兴奋性毒性是癫痫发作相关脑损伤的基础	
58.7	导致癫痫发展的因素知之甚少	
	58.7.1 离子通道突变是癫痫的遗传原因之一	
	58.7.2 获得性癫痫的起源是对损伤的适应不良响应	
58.8	要点	. 1304
-	有意识和无意识的心理过程障碍	1305
	有意识和无意识的认知过程具有不同的神经相关性	
	在脑损伤后能以夸张的形式看到感知过程中的有意识和无意识过程之间的差异	
	行动的控制在很大程度上是无意识的	
	有意识地回忆是一个创造性的过程	
59.5	行为观察需辅以主观报告	
	59.5.1 主观报告的验证具有挑战性	
- 0 -	59.5.2 装病和癔症会导致不可靠的主观报告	
59.6	要点	. 1317
	着精神分裂症的思想障碍和意志障碍	1319
60.1	精神分裂症的特征是认知障碍、缺陷症状和精神病症状	
	60.1.1 精神分裂症具有在生命的第 2 个和第 3 个 10 年发病的特征性疾病过程	
	60.1.2 精神分裂症的精神病症状往往是发作性的	
	精神分裂症的风险受基因的高度影响	
60.3	精神分裂症的特点是大脑结构和功能异常	. 1322

	(0.2.1 LIP) + FLAT II NOTE L PANTATATATATATATATA	1004
	60.3.1 大脑皮层中灰质的丢失似乎是由突触联系的丢失而不是细胞的丢失引起的	
	60.3.2 青春期大脑发育异常可能导致精神分裂症	
	抗精神病药物作用于大脑中的多巴胺能系统	
60.5	要点	1330
第 61 音	宣情绪障碍和焦虑	1331
-	情绪障碍可分为两大类: 单相抑郁症和双相情感障碍	
01.1	61.1.1 重度抑郁症与正常的悲伤有很大不同	
	61.1.2 重度抑郁症通常在生命早期开始	
	61.1.3 双相情感障碍的诊断需要躁狂发作	
61.2	焦虑症代表恐惧回路的显著失调	
	遗传和环境风险因素都会导致情绪和焦虑症	
	· 抑郁和压力共享重叠的神经机制	
	可以通过神经影像学识别与情绪和焦虑症有关的人脑结构和回路的功能障碍	
01.3	61.5.1 识别功能异常的神经回路有助于解释症状并可能提出治疗建议	
	61.5.2 海马体积的减少与情绪障碍有关	
61.6	可以有效治疗严重的抑郁症和焦虑症	
01.0	可以有效行行厂里的抑制症和焦虑症 · · · · · · · · · · · · · · · · · · ·	
	61.6.2 氯胺酮显示出作为治疗重度抑郁症的快速起效药物的前景	
	61.6.3 心理疗法可有效治疗重度抑郁症和焦虑症	
	61.6.4 电休克疗法对抑郁症非常有效	
	61.6.5 正在开发新形式的神经调节来治疗抑郁症	
	61.6.6 双相情感障碍可用锂盐和几种抗惊厥药物治疗	
	61.6.7 第二代抗精神病药物是双相情感障碍的有效治疗方法	
61.7	要点	1347
第 62 章	5 影响社会认知的障碍:孤独症谱系障碍	1349
62.1	孤独症谱系障碍表现型具有共同的行为特征	1349
62.2	孤独症谱系障碍表现型也有明显的认知异常	1350
	62.2.1 孤独症谱系障碍的社交沟通受损:心智失明假说	1350
	62.2.2 其他社会机制导致孤独症谱系障碍	1354
	62.2.3 孤独症患者缺乏行为灵活性	1354
	62.2.4 一些孤独症患者有特殊才能	1354
62.3	遗传因素增加孤独症谱系障碍的风险	1355
	62.3.1 罕见的遗传综合症为孤独症谱系障碍的生物学提供了初步见解	1356
	62.3.2 脆性 X 综合症	1356
	62.3.3 雷特综合症	1357
	62.3.4 威廉综合症	1357
	62.3.5 神经发育综合症提供对社会认知机制的洞察	1358
62.4	孤独症谱系障碍常见形式的复杂遗传学正在得到阐明	
	遗传学和神经病理学正在阐明孤独症谱系障碍的神经机制	
	62.5.1 可以使用系统生物学方法解释遗传发现	
	62.5.2 孤独症谱系障碍基因已在多种模型系统中得到研究	
	62.5.3 尸检和脑组织研究提供了对孤独症谱系障碍病理学的洞察力	
62.6	基础科学和转化科学的进展为阐明孤独症谱系障碍的病理生理学提供了途径	

62.7	要点
	神经系统神经退行性疾病的遗传机制 1365
	亨廷顿病涉及纹状体的退化1365
	脊髓延髓肌萎缩由雄激素受体功能障碍引起1360
63.3	遗传性脊髓小脑性共济失调症状相似,但病因不同
63.4	帕金森病是老年人常见的退行性疾病
63.5	普遍表达的基因受损后发生选择性神经元丢失
63.6	动物模型是研究神经退行性疾病的有效工具
	63.6.1 小鼠模型重现神经退行性疾病的许多特征
	63.6.2 无脊椎动物模型表现出进行性神经变性
63.7	神经退行性疾病的发病机制遵循多种通路
	63.7.1 蛋白质错误折叠和降解导致帕金森病
	63.7.2 蛋白质错误折叠触发基因表达的病理改变
	63.7.3 线粒体功能障碍加剧神经退行性疾病
	63.7.4 细胞凋亡和半胱天冬酶改变神经变性的严重程度
63.8	了解神经退行性疾病的分子动力学表明治疗干预的方法
	要点
第 64 章	大脑老化 1379
64.1	大脑的结构和功能随年龄变化
64.2	相当一部分老年人的认知能力下降是显著的并且使人虚弱
64.3	阿尔茨海默病是痴呆症最常见的原因
64.4	阿尔茨海默病患者的大脑因萎缩、淀粉样斑块和神经原纤维缠结而改变
	64.4.1 淀粉样斑块含有有助于阿尔茨海默病病理学的有毒肽
	64.4.2 神经原纤维缠结含有微管相关蛋白
	64.4.3 已经确定了阿尔茨海默病的危险因素
64.5	现在可以很好地诊断阿尔茨海默病,但可用的治疗方法并不令人满意
	要点