RDF Resource Description Framework

Fulvio Corno, Laura Farinetti

Politecnico di Torino

Dipartimento di Automatica e Informatica

e-Lite Research Group - http://elite.polito.it

Outline

- RDF Design objectives
- RDF General structure
- RDF Vocabularies
- Serialization: XML
- Semantic features
- RDF Schema

SW Technology Stack

A common language for describing resources

- The Resource Description Framework (RDF) is a language for representing information about resources in the World Wide Web
- Particularly intended for representing metadata about Web resources
- RDF can also be used to represent information about things that can be identified on the Web, even when they cannot be directly retrieved on the Web

RDF Design goals

- having a simple data model
- having formal semantics and provable inference
- using an extensible URI-based vocabulary
- using an XML-based syntax
- supporting use of XML schema datatypes
- allowing anyone to make statements about any resource

Simple yet powerful

- RDF has an abstract syntax that reflects a simple graph-based data model
- RDF has formal semantics with a rigorously defined notion of entailment providing a basis for well founded deductions

Basic principles (1/2)

- Clearly separate
 - Model structure (RDF graph)
 - Interpretation Semantics (Entailment)
 - ☐ Concrete **Syntaxes** (XML, TN, N3, ...)
- Only two datatypes
 - □ URI/URIref: everything is a URI
 - Literal
 - ☐ String or other XSD datatype

Basic principles (2/2)

- Integrated with the Web
 - □ Uses XMLSchema datatypes
 - May reference http-retrievable resources
- Open world assumption
 - □ Allows anyone to make statements about any resource
 - No guaranteed completeness
 - No guaranteed consistency

Outline

- RDF Design objectives
- RDF General structure
- RDF Vocabularies
- Serialization: XML
- Semantic features
- RDF Schema

Key concepts

- Graph data model
- URI-based vocabulary
- Datatypes
- Literals
- XML serialization syntax
- Expression of simple facts
- Entailment

Graph data model

- Triple: subject, predicate, object
- Expression: collection of triples
 - RDF graph

Terminology and constraints

- Subject and Object are called Nodes
- Predicate and Property are synonyms
- Special unnamed nodes: Blank Nodes
- Subject may be: URI reference or blank node
- Predicate must be: URI reference
- Object may be: URI reference, literal or blank node

The Triples and the Graph

- The <u>assertion of an RDF triple</u> says that some relationship, indicated by the predicate, holds between the things denoted by subject and object of the triple.
- The <u>assertion of an RDF graph</u> amounts to asserting all the triples in it, so the meaning of an RDF graph is the conjunction (logical AND) of the statements corresponding to all the triples it contains.

Expression of Simple Facts

- Some simple facts indicate a relationship between two things → one triple
 - □ the predicate names the relationship
 - □ the subject and object denote the two things

Information in triples

http://xmlns.com/foaf/0.1/workplaceHomepage

http://directory.com/people#FulvioCorno

http://www.polito.it/

RDF

CompanyHomePage

PersonID	Homepage
FulvioCorno	http://www.polito.it/

Relational database

First order logic predicate

```
HasCompanyHomePage(
'FulvioCorno',
'http://www.polito.it/');
```

But...

- Relational database tables may have an arbitrary number of columns
- First order logic predicates may have an arbitrary number of places (arguments)
- RDF triples may only have one subject and one object
 - □ Complex statements have to be <u>decomposed</u> for representation as RDF triples

Example

- Represent in RDF the following statement
- "there is a Person identified by http://www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr."

Example

URIs represent (almost) everything

- Nodes (subject or object)
 - □ individuals: Eric Miller, identified by http://www.w3.org/People/EM/contact#me
 - □ kinds of things: Person, identified by http://www.w3.org/2000/10/swap/pim/contact#Person
 - □ values of properties: mailto:em@w3.org as the value of the mailbox property
- Predicates
 - properties of things: mailbox, identified by http://www.w3.org/2000/10/swap/pim/contact#ma ilbox

Non-URI information

- Literals (only as objects, never as subjects)
 - ☐ The name "Eric Miller"
 - ☐ The title "Dr."
 - May be localized
 - "Dr."@en
 - "Dott."@it
 - ☐ May be typed with XMLSchema data types
 - "27"^^<http://www.w3.org/2001/XMLSchema#integer>
 - "37"^^xsd:integer
 - "1999-08-16"^^xsd:date

URIs are more than URLs

- URL = uniform resource locator
 - □ Designed to locate, and <u>retrieve</u>, resources on the web
- URI = uniform resource *identifier*
 - More general
 - Identifies also resources that do <u>not</u> have a network location
 - Every person or organization can independently create URIs, and use them to identify "things" (either concrete or abstract)

URIref = URI#fragmet

- URIref = URI reference
- A single URI may define many different resources
 - E.g., the URI references an RDF file with many definitions
- To identify a single **fragment** inside the URI, we use the '#' notation
 - □ E.g., http://example.org/index#person

Name space shortcut. Equivalent to

http://www.w3.org/2000/10/swap/pim/contact#fullName

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
            xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
 <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
    contact:fullName Eric Miller
    <contact:mailoox rdf:resource="mailto:em@w3.org"/>
   <contact:personalTitle>Dr.</contact:personalTitle>
 </contact:Person>
</rdf:RDF>
              Subject
                                         Object
                          Predicate
```

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
             xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
  <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
    <contact:fullName>Eric Miller</contact:fullName>
    contact:mailbox rdf:resource="mailto:emew3.org"/>
    <contact:personalTitle>br.</contact.personalTitle>
  </contact:Person>
</rdf:RDF>
                            Predicate
               Subject
                                           Object
```

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
            xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
 <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
   <contact:fullName>Eric Miller</contact:fullName>
   <contact:mailbox rdf:resource="mailto:emcw3.org"/>
    Contact:personalTitle>Dr.
</rdf:RDF>
                          Predicate
              Subject
                                        Object
```

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
             xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
  <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
    <contact:fullName>Eric Miller</contact:fullName>
    <contact:mailbox rdf:resource="mailto:emew3.org"/>
    <contact:personalTitle>Dr.</contact.personalTitle>
 </contact:Person>
</rdf:RDF>
                            Predicate
               Subject
                                           Object
                                          rdf:type
```

"Triple" or "Turtle" notation

```
<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#fullName>
"Eric Miller" .
<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#mailbox>
<mailto:em@w3.org> .
<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#personalTitle>
"Dr." .
<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2000/10/swap/pim/contact#Person> .
```

"Triple" or "Turtle" notation (abbreviated)

```
w3people:EM#me contact:fullName "Eric Miller" .
w3people:EM#me contact:mailbox <mailto:em@w3.org> .
w3people:EM#me contact:personalTitle "Dr." .
w3people:EM#me rdf:type contact:Person .
```

More details on the turtle syntax and further abbreviations will be shown in the SPARQL chapter

Example

```
@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntaxns# .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/#> .

<http://www.w3.org/TR/rdf-syntax-grammar>
   dc:title "RDF/XML Syntax Specification (Revised)";
   :editor [
        :fullName "Dave Beckett";
        :homePage <http://purl.org/net/dajobe/>
   ] .
```

Hands-on exercise

- Model as an RDF graph a subset of the following assertions:
 - Oracle Corporation (NASDAQ: ORCL) and Sun Microsystems (NASDAQ: JAVA) announced today they have entered into a definitive agreement under which Oracle will acquire Sun common stock for \$9.50 per share in cash.
 - □ […]
 - □ Sun Microsystems, Inc. (NASDAQ: JAVA) develops the technologies that power the global marketplace. [...] Sun can be found in more than 100 countries and on the Web at http://www.sun.com.
 - □ Oracle (NASDAQ: ORCL) is the world's largest enterprise software company. For more information about Oracle, please visit our Web site at http://www.oracle.com.

Source: http://www.oracle.com/us/corporate/press/018363

Outline

- RDF Design objectives
- RDF General structure
- Serialization: XML
- XML Serialization
- Semantic features
- RDF Schema

RDF vocabularies

- A set of URIref is called vocabulary
- Common vocabularies collect URIrefs under the same name space, so that all nodes may be reached with QNames such as:
 - □ prefix:nodeName
- The name space is chosen to represent the organization responsible for the definitions
- Every elaboration in RDF must first resolve all prefixes, so that only absolute URIs are used by the algorithms

Common prefixes

- prefix rdf:, namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#
- prefix rdfs:, namespace URI: http://www.w3.org/2000/01/rdf-schema#
- prefix dc:, namespace URI: http://purl.org/dc/elements/1.1/
- prefix owl:, namespace URI: http://www.w3.org/2002/07/owl#
- prefix xsd:, namespace URI: http://www.w3.org/2001/XMLSchema#
- prefix ex:, namespace URI: http://www.example.org/ (or http://www.example.com/)

Vocabulary reuse

- Extremely easy to re-use other vocabularies in our RDF graph... just define a prefix to point to the proper name space
- When using a predicate, always check if its semantics is already satisfied by some property defined in well-known vocabularies
 - □ Never re-define, with a different URIref, some already existing predicate
- The same applies for names, but with somewhat less importance.

Hands-on: let's explore some useful vocabularies...

- Dublin Core
 - □ Specification: http://dublincore.org/documents/dces/
 - □ Namespace: xmlns:dc="http://purl.org/dc/elements/1.1/"
- FOAF
 - Specification: http://xmlns.com/foaf/spec/
 - □ Namespace: xmlns:foaf="http://xmlns.com/foaf/0.1/"

Hands-on: let's explore some useful vocabularies...

- Recent Dublin Core enhancement: DCMI Metadata Terms
 - Specification: http://dublincore.org/documents/dcmi-terms/
 - □ Namespace: xmlns:dcterms="http://purl.org/dc/terms/"
- RSS 1.0
 - Information: http://en.wikipedia.org/wiki/RSS_(file_format)

Blank nodes

- RDF just supports triples, i.e., binary relationships
- Higher-order relationships must be broken down into many binary pieces
- Breaking down means creating additional nodes
- Such additional nodes will never be referenced from outside the current sub-graph → the don't need a name!
- A subject or object may be left "blank"

Example


```
exstaff:85740 exterms:address exaddressid:85740 .
exaddressid:85740 exterms:city "Bedford" .
exaddressid:85740 exterms:state "Massachusetts" .
exaddressid:85740 exterms:postalCode "01730" .
```

Example – with blank node


```
exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street "1501 Grant Avenue" .
_:johnaddress exterms:city "Bedford" .
_:johnaddress exterms:state "Massachusetts" .
_:johnaddress exterms:postalCode "01730" .
```

Outline

- RDF Design objectives
- RDF General structure
- RDF Vocabularies
- Serialization: XML
- Semantic features
- RDF Schema

Details on the XML serialization

- The XML document has a root node <rdf:RDF>
- Specifying the subject:
 - <rdf:Description rdf:about="SubjectURIref">
- Specifying properties, in the body of the rdf:Description tag
 - <ex:propertyName>ObjectLiteral</ex:propertyName>
 - <ex:otherProperty rdf:resource="ObjectURIref" />
- Several triples sharing the same subject may be collected in the same rdf:Description body

Examples

Examples

10. </rdf:RDF>

```
1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3.
               xmlns:exterms="http://www.example.org/terms/">
     <rdf:Description rdf:about="http://www.example.org/index.html">
4.
5.
         <exterms:creation-date>August 16, 1999</exterms:creation-date>
     </rdf:Description>
7. </rdf:RDF>
1.
    <?xml version="1.0"?>
2.
    <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3.
                xmlns:dc="http://purl.org/dc/elements/1.1/"
                xmlns:exterms="http://www.example.org/terms/">
4.
5.
      <rdf:Description rdf:about="http://www.example.org/index.html">
           <exterms:creation-date>August 16, 1999</exterms:creation-date>
           <dc:language>en</dc:language>
7.
           <dc:creator rdf:resource="http://www.example.org/staffid/85740"/>
      </rdf:Description>
9.
```

Blank nodes in XML: rdf:nodeID


```
5.
       <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
6.
         <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
         <exterms:editor rdf:nodeID="abc"/>
7.
       </rdf:Description>
8.
9.
       <rdf:Description rdf:nodeID="abc">
10.
           <exterms:fullName>Dave Beckett</exterms:fullName>
11.
           <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>
       </rdf:Description>
12.
```

Typed literals in XML

```
ex:index.html exterms:creation-date "1999-08-16"^^xsd:date.
```

Outline

- RDF Design objectives
- RDF General structure
- RDF Vocabularies
- Serialization: XML
- Semantic features
- RDF Schema

RDF Data structures

- Containers (unbounded)
 - □ rdf:Bag (unordered)
 - □ rdf:Seq (ordered)
 - □ rdf:Alt (one-of)
 - Semantically equivalent, the different beween Bag/Seq/Alt is only in its "intended usage"
 - Does not limit the member elements to the ones declared
- Collections (bounded)
 - □rdf:List
 - Only the mentioned elements are part of the collection

Reification

- It may be sometimes useful to assert a statement about another statement.
 - □ For example, I want to say who added a fact (a triple) to my set of statements
- In this case, instead of writing the triple, we describe the triple by
 - ☐ **Giving a name** to the statement (rdf:Statement)
 - □ Giving the elements of the triple with rdf:subject, rdf:predicate, rdf:object

Example

```
exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .
```

reification

```
exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .
```

... and now the statement has a URIref: this.rdf#triple12345

Example (cont.)

```
exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .
```

```
exproducts:triple12345 dc:creator exstaff:85740.
```

We expressed the dc:creator of the previous statement!

Entailment

- An RDF expression A is said to entail another RDF expression B if every possible arrangement of things in the world that makes A true also makes B true. On this basis, if the truth of A is presumed or demonstrated then the truth of B can be inferred.
- The mechanism for defining formal semantics for RDF
- The ultimate mechanism for creating reasoning engines in the semantic web
- Never asserts anything about "the things in the world", only about the propagation of truth in RDF statements/assertions

More on this in the RDF Semantics chapter!

Outline

- RDF Design objectives
- RDF General structure
- RDF Vocabularies
- Serialization: XML
- Semantic features
- RDF Schema

RDF Schema

- Special RDF vocabulary for describing the properties and the content of... RDF vocabularies
- Think of a definition (schema) of the nodes and predicates used in an RDF document.
 - □ However, this definition is expressed in RDF, too, by using the RDFS vocabulary
- With RDFS we may restrict the usage of RDF nodes and predicates, by introducing coherency and a sort of data types
- RDF Schema provides a type system for RDF

RDFS nature

- RDFS does **not** specify a vocabulary of *descriptive* properties such as "author"
- RDFS specifies mechanisms that may be used to name and describe <u>properties</u> and the <u>classes</u> of resource they describe
- Similar to the type systems of object-oriented programming languages, but:
 - OO languages define a class in terms of the properties its instances may have
 - □ RDFS describes properties in terms of the classes of resource to which they apply (domain & range)

Example

OO language

- ☐ define a class eg:Book
- with an attribute called eg:author
- □ of type eg:Person

RDFS

- □ define the eg:author property
- to have a domain of eg:Document
- □ and a range of eg:Person

Why?

- □ Easy for others to subsequently define additional properties with a domain of eg:Document or a range of eg:Person
- □ This can be done without the need to re-define the original description of these classes
- □ It allows anyone to extend the description of existing resources, one of the architectural principles of the Web

Defining Classes in RDFS

- rdf:type
 - □ Defines the 'type' of the subject node
 - ☐ The object of 'type' must be a class
- rdfs:Class
 - □ The set of all possible classes
 - □ A class is any resource having an rdf:type property whose value is the resource rdfs:Class

```
ex:MotorVehicle rdf:type rdfs:Class.
exthings:companyCar rdf:type ex:MotorVehicle.
```

Defining class hierarchies

- rdfs:subClassOf
 - Defines a narrower class
 - □ Any instance of class ex: Van is also an instance of class ex: MotorVehicle
 - ☐ A transitive predicate

```
ex:MotorVehicle rdf:type rdfs:Class.
exthings:companyCar rdf:type ex:MotorVehicle.
```

```
ex:Van rdf:type rdfs:Class.
ex:Truck rdf:type rdfs:Class.
ex:Van rdfs:subClassOf ex:MotorVehicle.
```

Class hierarchies

Defining properties in RDFS

- rdf:Property
 - Any URIref used as a predicate has an rdf:type of rdf:Property
- rdfs:domain, rdfs:range
 - Define the domain and the range of the property
 - □ Domain and range are Classes
- rdfs:subPropertyOf
 - Defines hierarchies of properties

Example

```
<rdf:Property rdf:ID="registeredTo">
    <rdfs:domain rdf:resource="#MotorVehicle"/>
    <rdfs:range rdf:resource="#Person"/>
    </rdf:Property>

<rdf:Property rdf:ID="rearSeatLegRoom">
        <rdfs:domain rdf:resource="#PassengerVehicle"/>
        <rdfs:range rdf:resource="&xsd;integer"/>
        </rdf:Property>

<rdfs:Class rdf:ID="Person"/>
        </rdfs:Datatype rdf:about="&xsd;integer"/>
```

RDF/RDFS Classes

Class name	comment	
rdfs:Resource	The class resource, everything.	
rdfs: Literal	The class of literal values, e.g. textual strings and integers.	
rdf: XMLLiteral	The class of XML literals values.	
rdfs:Class	The class of classes.	
rdf:Property	The class of RDF properties.	
rdfs: Datatype	The class of RDF datatypes.	
rdf:Statement	The class of RDF statements.	
rdf:Bag	The class of unordered containers.	
rdf:Seq	The class of ordered containers.	
rdf:Alt	The class of containers of alternatives.	
rdfs:Container	The class of RDF containers.	
rdfs: Container Membership Property	The class of container membership properties, rdf:_1, rdf:_2,, all of which are sub-properties of 'member'.	
rdf:List	The class of RDF Lists.	

RDF/RDFS Properties

Property name	comment	domain	range
rdf:type	The subject is an instance of a class.	rdfs:Resource	rdfs:Class
rdfs:subClassOf	The subject is a subclass of a class.	rdfs:Class	rdfs:Class
rdfs:subPropertyOf	The subject is a subproperty of a property.	rdf:Property	rdf:Property
rdfs:domain	A domain of the subject property.	rdf:Property	rdfs:Class
rdfs:range	A range of the subject property.	rdf:Property	rdfs:Class
rdfs:label	A human-readable name for the subject.	rdfs:Resource	rdfs:Literal
rdfs:comment	A description of the subject resource.	rdfs:Resource	rdfs:Literal
rdfs:member	A member of the subject resource.	rdfs:Resource	rdfs:Resource
rdf:first	The first item in the subject RDF list.	rdf:List	rdfs:Resource
rdf:rest	The rest of the subject RDF list after the first item.	rdf:List	rdf:List
rdfs:seeAlso	Further information about the subject resource.	rdfs:Resource	rdfs:Resource
rdfs:isDefinedBy	The definition of the subject resource.	rdfs:Resource	rdfs:Resource
rdf:value	Idiomatic property used for structured values (see the RDF Primer for <u>an example</u> of its usage).	rdfs:Resource	rdfs:Resource
rdf:subject	The subject of the subject RDF statement.	rdf:Statement	rdfs:Resource
rdf:predicate	The predicate of the subject RDF statement.	rdf:Statement	rdfs:Resource
rdf:object	The object of the subject RDF statement.	rdf:Statement	rdfs:Resource

References

- RDF Primer W3C Recommendation 10 February 2004
 - □ http://www.w3.org/TR/rdf-primer/
- Resource Description Framework (RDF): Concepts and Abstract Syntax – W3C Recommendation 10 February 2004
 - □ http://www.w3.org/TR/rdf-concepts/
- RDF Vocabulary Description Language 1.0: RDF
 Schema W3C Recommendation 10 February 2004
 - □ http://www.w3.org/TR/rdf-schema/

License

- This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.
- To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.