CSP FAST TRACK

ARTURO

ABSTRACT. In this note

1. Introduction

Let R be a set of relation symbols. Let A be a relational structure over R. Let X be a countable set of variables. By the **constraint satisfaction problem** $\mathrm{CSP}(A)^1$ we mean the following decision problem: given a finite set Σ of atomic formulas over R, decide whether there is an assignment $(-)^A: X \to A$ such that $A \models \Sigma$; i.e. for all $r \in R_n$ and for all $x, y, x_1, \ldots, x_n \in X$

(1)
$$r(x_1, \dots, x_n) \in \Sigma \implies (x_1^{\mathcal{A}}, \dots, x_n^{\mathcal{A}}) \in r^{\mathcal{A}}$$

$$(2) x \equiv y \in \Sigma \implies x^{\mathcal{A}} = y^{\mathcal{A}}$$

Clearly, it is enough to find an assignment only for those variables that appear in Σ .

Remark 1.1. Usually we deal with indexed relational structures, that is we fix a set of relation symbols R and we consider a set A with a set P of relations on A indexed by the elements of R. Sometimes is useful to deal with non-indexed relational structures (A, P). In this case P will serve as the index set as well. The same applies to algebraic structures (i.e. algebras) and function symbols.

Definition 1.2. Let $\rho \in A^k$, and $\varphi : A^n \to A$. We say that φ **preserves** ρ if given a matrix

$$\begin{bmatrix} a_1^1 & \cdots & a_n^1 \\ \vdots & \ddots & \vdots \\ a_1^k & \cdots & a_n^k \end{bmatrix}$$

with
$$(a_1^1,\ldots,a_1^k)\in\rho,\ldots,(a_1^n,\ldots,a_n^k)\in\rho,$$

$$(\varphi(a_1^1,\ldots,a_n^1),\ldots,\varphi(a_1^k,\ldots,a_n^k))\in\rho$$

Definition 1.3. If Γ is a set of relations on A and Φ is a set of operations on A we denote by

- (1) $\operatorname{Inv}(\Phi)$ the set of relations on A that are preserved by all the elements of Φ ;
- (2) $Pol(\Gamma)$ the set of operations on A that preserve all the elements of Γ .

Moreover, if **A** is an algebra and \mathcal{A} a relational structure on the same set A:

¹More often denoted by CSP(P).

- (1) Inv(**A**) is the set of relations that are preserved by all the $f^{\mathbf{A}}$;
- (2) Pol(A) is the set of operations that preserve all the r^A .

Let **A** be an algebra. Let $\mathcal{A} := (A, \operatorname{Inv}(\mathbf{A}))$. By $\operatorname{CSP}(\mathbf{A})$ we mean the decision problem $\operatorname{CSP}(\mathcal{A})$.

Definition 1.4. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $Clo(\mathbf{A})$ the smallest set containing

$$\{f^{\mathbf{A}}: f \in F\}$$
 and $\{\pi_i^n: A^n \to A, 1 \le i \le n, n \in \omega\}$

and closed under composition. The elements of $Clo(\mathbf{A})$ are called **term** operations. We say that two algebras \mathbf{A} and \mathbf{B} on the same carrier are **term equivalent** if $Clo(\mathbf{A}) = Clo(\mathbf{B})$.

Recall that a variety is a class of algebras closed under homomorphic images, subalgebras and products. If V is a variety, we define $\mathrm{Clo}(\mathsf{V})$ to be $\mathrm{Clo}(\mathbf{F}_\mathsf{V}(\omega))$, where $\mathbf{F}_\mathsf{V}(\omega)$ is the V-free algebra generated by a countable number of generators. When V is Set, the variety of sets, $\mathrm{Clo}(\mathsf{Set})$ is the clone of projections $\{\pi_i^n: 1 \leq i \leq n, n \in \omega\}$, that we denote by \mathbf{N} .

Goal: prove

Theorem 1.5. Let **A** be a finite idempotent algebra. Then the following are equivalent:

- (1) CSP(**A**) is polynomial-time decidable;
- (2) $Clo(\mathbf{A})$ contains a weak near-unanimity operation;
- (3) for every $\mathbf{B} \in HS(\mathbf{A})$, $Clo(\mathbf{B}) \neq \mathbf{N}$.

Otherwise, $CSP(\mathbf{A})$ is NP-complete.

Observe that

2. Kinds of Operations

Definition 2.1. An operation $\varphi: A^n \to A$ is called

(1) **essentially unary** if there is an index i and a non-constant function ψ : $A \to A$ such that

$$\varphi(a_1,\ldots,a_n)=\psi(a_i)$$

for all $a_1, \ldots, a_n \in A$.

- (2) **idempotent** if $\varphi(a,\ldots,a)=a$ for all $a\in A$.
- (3) a **near unanimity** operation if for all $a, b \in A$

$$\varphi(b, a, \dots, a) = \varphi(a, b, \dots, a) = \dots = \varphi(a, \dots, a, b) = a$$

Example 2.2. A ternary near unanimity operation is called a **majority** operation. For instance the ternary function defined as

$$\delta(a, b, c) = \begin{cases} b & \text{if } b = c \\ a & \text{otherwise} \end{cases}$$

is a majority operation called dual discriminator.

3. Relational Clones

Definition 3.1. Let R be a set of relation symbols and A be a relational structure over R. We denote by Clo(A) the smallest set containing

$$\{r^{\mathcal{A}}: r \in R\}$$
 and $\{\Delta^{(n)}: n \in \omega\}$

and closed under

(1) **permutation**: if $\rho \in Clo(A)$, then also

$$\{(a_{\sigma(1)},\ldots,a_{\sigma(n)}): \sigma \in S_n, (a_1,\ldots,a_n) \in \rho\} \in \operatorname{Clo} A$$

(2) **extension**: if $\rho \in \text{Clo}(\mathcal{A})$, then also

$$\{(a_1,\ldots,a_n,a_{n+1}):(a_1,\ldots,a_n)\in\rho,a_{n+1}\in A\}\in\mathrm{Clo}\,\mathcal{A}$$

(3) **truncation**: if $\rho \in Clo(A)$, then also

$$\{(a_1, \dots, a_{n-1}) : (a_1, \dots, a_{n-1}, a_n) \in \rho, \text{ for some } a_n \in A\} \in \text{Clo } A$$

(4) intersection.

Remark 3.2. Observe that $\operatorname{Clo}(A)$ is given by all the relations ρ of A definable by a first-order primitive positive formula (that is, involving only conjunctions and existential quantifications). Recall that $\rho \subseteq A^n$ is definable if there is a formula $\varphi(x_1,\ldots,x_n)$ such that

$$\mathcal{A} \models \varphi(a_1, \dots, a_n) \iff (a_1, \dots, a_n) \in \rho$$

Theorem 3.3 ([2]). For any pair of relational structures $A = (A, \Gamma)$ and B = (A, H) such that H is finite and $H \subseteq Clo(A)$, CSP(B) is polynomial-time reducible to CSP(A).

Proof. Let Σ be a set of atomic formulas over H. Let $\eta(x_1, \ldots, x_n) \in \Sigma$. Then there is $\varphi(x_1, \ldots, x_n)$ of the form

$$\exists y_1, \dots, y_m \left(\gamma_1(z_1^1, \dots, z_{n_1}^1) \wedge \dots \wedge \gamma_k(z_1^k, \dots, z_{n_k}^k) \right)$$

(where $\gamma_1,\ldots,\gamma_k\in\Gamma$ and $z^i_j\in\{x_1,\ldots,x_n,y_1,\ldots,y_m\}$) such that for $a_1,\ldots,a_n\in A$

(3)
$$\mathcal{B} \models \eta(a_1, \dots, a_n) \iff \mathcal{A} \models \varphi(a_1, \dots, a_n)$$

We can assume (up to renaming of variables) that y_1, \ldots, y_m do not appear in any formula of Σ .

Now, for each $\eta(x_1,\ldots,x_n)\in\Sigma$ perform the following steps:

• add
$$\{\gamma_1(z_1^1, \dots, z_{n_1}^1), \dots, \gamma_k(z_1^k, \dots, z_{n_k}^k)\}$$
 to Σ ;

• remove $\eta(x_1,\ldots,x_n)$ from Σ .

At the the end we obtain a set of equations T over G. This is a polynomial-time reduction. By (3) it is clear that we can find an assignment $X \to A$ such that $\mathcal{B} \models \Sigma$ iff we can find an assignment such that $\mathcal{A} \models T$.

Remark 3.4. We observe that in the above result it is not necessary that A is a finite set.

Corollary 3.5. Let A be a relational structure and B = (A, Clo(A)). Then

- (1) CSP(A) is polynomial-time decidable iff CSP(B) is.
- (2) CSP(A) is NP-complete iff CSP(B) is.

4. Surjective and Idempotent Algebras

Definition 4.1. An algebra **A** is **surjective** if all the element of $Clo(\mathbf{A})$ are surjective.

Remark 4.2. Let **A** be a finite algebra over F. Every element of $Clo(\mathbf{A})$ is surjective iff every element of $Clo_1(\mathbf{A})$ is. In this case $Clo_1(\mathbf{A})$ is a group. It is enough to show that for every $f \in F$, there is $\varphi \in Clo_1(\mathbf{A})$ such that $f^{\mathbf{A}}\varphi = 1_{\mathbf{A}}$. Let m := |A|. Then $(f^{\mathbf{A}})^{m!} = 1_{\mathbf{A}}$. Let n_f be the least n such that $(f^{\mathbf{A}})^{n_f} = 1_{\mathbf{A}}$. Let $\varphi := (f^{\mathbf{A}})^{n_f-1}$.

Let A be a finite algebra and let B be a subset of A. Let

$$Clo(\mathbf{A})|B := \{ \varphi \in Clo(\mathbf{A}) : \varphi | B \in O_{\mathbf{B}} \}$$

We denote by $\mathbf{A}|B$ the algebra $(B, \operatorname{Clo}(\mathbf{A})|B)$.

Lemma 4.3 ([2]). Let A = (A, P) be a relational structure. Let $\varphi \in \operatorname{Pol}_1(A)$. For $\rho \in P_n$ let

$$\varphi(\rho) := \{ (\varphi(a_1), \dots, \varphi(a_n)) : (a_1, \dots, a_n) \in \rho \}$$

Let $\mathcal{B} := (A, \varphi(P))$ where $\varphi(P) := \{\varphi(\rho) : \rho \in P\}$. Then

- (1) CSP(A) is polynomial-time decidable iff CSP(B) is;
- (2) CSP(A) is NP-complete iff CSP(B) is.

Proof. We show that CSP(A) is polynomial-time equivalent to CSP(B). Let Σ be a finite set of atomic formulas over P. Replace every occurrence of $\rho(x_1, \ldots, x_n)$ with $\varphi(\rho)(x_1, \ldots, x_n)$, obtaining a set of formulas T over $\varphi(P)$. Given any assignment $(-)^B: X \to A$ such that $B \models T$, define $(x)^A := (x)^B$; then $A \models \Sigma$. Indeed, given $\rho(x_1, \ldots, x_n) \in \Sigma$, since $\varphi \in Pol_1(A)$:

$$\mathfrak{B} \models \varphi(\rho)(x_1, \dots, x_n) \implies (x_1^{\mathfrak{B}}, \dots, x_n^{\mathfrak{B}}) \in \varphi(\rho)
\implies (x_1^{\mathfrak{B}}, \dots, x_n^{\mathfrak{B}}) \in \rho
\implies (x_1^{\mathfrak{A}}, \dots, x_n^{\mathfrak{A}}) \in \rho
\implies \mathcal{A} \models \rho(x_1, \dots, x_n)$$

Conversely, given any assignment $(-)^A: X \to A$ such that $A \models \Sigma$, defining $(x)^B := \varphi(x^A)$ is enough to have $B \models T$. Indeed, given $\varphi(\rho)(x_1, \ldots, x_n) \in T$, by definition of $\varphi(P)$:

$$\mathcal{A} \models \rho(x_1, \dots, x_n) \implies (x_1^{\mathcal{A}}, \dots, x_n^{\mathcal{A}}) \in \rho
\implies (\varphi(x_1^{\mathcal{A}}), \dots, \varphi(x_n^{\mathcal{A}}) \in \varphi(\rho)
\implies (x_1^{\mathcal{B}}, \dots, x_n^{\mathcal{B}}) \in \varphi(\rho)
\implies \mathcal{B} \models \varphi(\rho)(x_1, \dots, x_n) \qquad \square$$

Theorem 4.4. Let **A** be a finite algebra. Then there is $B \subseteq A$ such that $\mathbf{A}|B$ is surjective and

- (1) $CSP(\mathbf{A})$ is polynomial-time decidable iff $CSP(\mathbf{A}|B)$ is;
- (2) $CSP(\mathbf{A})$ is NP-complete iff $CSP(\mathbf{A}|B)$.

Proof. Assume that **A** is not surjective. Then by Remark 4.2 there is $\psi \in \operatorname{Clo}_1(\mathbf{A})$ not surjective. Let $\varphi \in \operatorname{Clo}_1(\mathbf{A})$ such that φ is not surjective and $\varphi[A]$ has minimal cardinality. Define $B := \varphi[A]$. We show that $\mathbf{A}|B$ is surjective. Let $\psi \in \operatorname{Clo}_1(\mathbf{A}|B) = \operatorname{Clo}_1(\mathbf{A})|B$; if, towards a contradiction, $\psi[B] \subset B$, then $\psi\varphi[A] \subset \varphi[A] \subset A$ contradicting the minimality. The last part of the statement follows immediately from Lemma 4.3.

Definition 4.5. Let **A** be an algebra. Let id(A) be the set of idempotent operations on A. We define $Clo_{id}(\mathbf{A}) := Clo(\mathbf{A}) \cap id(A)$. We say that **A** is **idempotent** of all the elements of $Clo(\mathbf{A})$ are.

Remark 4.6. Let **A** be an algebra. Observe that an operation $\varphi \in \text{Clo}(\mathbf{A})$ is idempotent iff it preserves the relations in $\Delta^{(1)} = \{\{a\} : a \in A\}$. Hence $\text{Inv}(\text{Clo}_{\text{id}}(\mathbf{A})) = \text{Clo}(\mathcal{A})$ where $\mathcal{A} = (A, \text{Inv}(\mathbf{A}) \cup \Delta^{(1)})$.

Lemma 4.7. Let $A = \{a_1, \ldots, a_k\}$ be a finite set. Let **A** be an algebra over F. Then the relation

(4)
$$\sigma := \{ (\psi(a_1), \dots, \psi(a_k)) : \psi \in \operatorname{Clo}_1(\mathbf{A}) \}$$

belongs to $Inv(\mathbf{A})$.

Proof. We show that for every $f \in F_n$ and for every matrix M

$$\begin{bmatrix} a_1^1 & \cdots & a_n^1 \\ \vdots & \ddots & \vdots \\ a_1^k & \cdots & a_n^k \end{bmatrix}$$

such that $(a_1^1, \ldots, a_1^k) \in \sigma, \ldots, (a_1^n, \ldots, a_n^k) \in \sigma$ we have

$$(f^{\mathbf{A}}(a_1^1,\ldots,a_n^1),\ldots,f^{\mathbf{A}}(a_1^k,\ldots,a_n^k)) \in \sigma$$

By hypothesis we can write M as

$$\begin{bmatrix} \psi_1(a_1) & \cdots & \psi_n(a_1) \\ \vdots & \ddots & \vdots \\ \psi_1(a_k) & \cdots & \psi_n(a_k) \end{bmatrix}$$

but then

$$(f^{\mathbf{A}}(a_1^1, \dots, a_n^1), \dots, f^{\mathbf{A}}(a_1^k, \dots, a_n^k))$$

$$= (f^{\mathbf{A}}(\psi_1(a_1), \dots, \psi_n(a_1)), \dots, f^{\mathbf{A}}(\psi_1(a_k), \dots, \psi_n(a_k)))$$

$$= (f^{\mathbf{A}}[\psi_1, \dots, \psi_n](a_1), \dots, f^{\mathbf{A}}[\psi_1, \dots, \psi_n](a_k))$$

and we conclude since $f^{\mathbf{A}}[\psi_1, \dots, \psi_n] \in \mathrm{Clo}_1(\mathbf{A})$.

Theorem 4.8. Let $\mathbf{A} = A$ be a finite surjective algebra. Let $\mathbf{B} := (A, \operatorname{Clo}_{\operatorname{id}}(\mathbf{A}))$. Then

- (1) $CSP(\mathbf{A})$ is polynomial-time decidable iff $CSP(\mathbf{B})$ is.
- (2) $CSP(\mathbf{A})$ is NP-complete iff $CSP(\mathbf{B})$ is.

Proof. Let $A = \{a_1, \ldots, a_k\}$ and let $\Gamma := \Delta^{(1)}$. Let $\mathcal{A} := (A, \operatorname{Inv}(\mathbf{A}))$ and $\mathcal{B} := (A, \operatorname{Inv}(\mathbf{A}) \cup \Gamma)$.

By definition and by Remark 4.6 $CSP(\mathbf{B})$ is polynomial-time equivalent to $CSP(\mathbf{A})$ iff $CSP(\mathcal{B})$ is polynomial-time equivalent to $CSP(\mathcal{A})$.

That $\mathrm{CSP}(\mathcal{A})$ is polynomial-time reducible to $\mathrm{CSP}(\mathcal{B})$ is obvious. Let Σ be a finite set of atomic formulas over $\mathrm{Inv}(\mathbf{A}) \cup \Gamma$ and let $\{x_1, \ldots, x_k\}$ be variables that do not appear in Σ . By Remark 4.2, since \mathbf{A} is surjective, $\mathrm{Clo}_1(\mathbf{A})$ forms a group. Moreover, the relation σ of Lemma 4.7 belongs to $\mathrm{Inv}(\mathbf{A})$. Now, perform the following steps:

- replace every formula $\gamma_i(x)$ with $x \equiv x_i$;
- add the formula $\sigma(x_1,\ldots,x_k)$.

At the the end we obtain a set of equations T over $\text{Inv}(\mathbf{A})$. This is a polynomial-time reduction. We finally show that we can find an assignment such that $\mathcal{A} \models T$ iff we can find an assignment such that $\mathcal{B} \models \Sigma$. Let $(-)^{\mathcal{B}} : X \to A$ be an assignment such that $\mathcal{B} \models \Sigma$. Consider the assignment

$$x^{\mathcal{A}} = \begin{cases} x^{\mathcal{B}} & \text{if } x \neq x_i \\ a_i & \text{if } x = x_i \end{cases}$$

Then $(-)^{\mathcal{A}}$ is such that $\mathcal{A} \models T$. Conversely, assume that there is an assignment $(-)^{\mathcal{A}}$ such that $\mathcal{A} \models T$. By definition of σ , there is $\psi \in \text{Clo}_1(\mathbf{A})$ such that $x_i^{\mathcal{A}} = \psi(a_i)$ for all i. Consider $(-)^{\prime \mathcal{A}} := \psi^{-1} \circ (-)^{\mathcal{A}}$. Define $(x)^{\mathcal{B}} := (x)^{\prime \mathcal{A}}$. Let

 $\rho(y_1,\ldots,y_n),\gamma_i(x)\in\Sigma$. Every relation in Inv(**A**) is invariant under ψ^{-1} , hence

$$\mathcal{A} \models \rho(y_1, \dots, y_n) \implies (y_1^{\mathcal{A}}, \dots, y_n^{\mathcal{A}}) \in \rho \qquad \mathcal{A} \models x \equiv x_i \implies x^{\mathcal{A}} = x_i^{\mathcal{A}} \\
\implies (\psi^{-1}(y_1^{\mathcal{A}}), \dots, \psi^{-1}(y_n^{\mathcal{A}})) \in \rho \qquad \implies x^{\mathcal{A}} = \psi(a_i) \\
\implies (y_1^{\mathcal{B}}, \dots, y_n^{\mathcal{B}}) \in \rho \qquad \implies \psi^{-1}(x^{\mathcal{A}}) = a_i \\
\implies \mathcal{B} \models \rho(y_1, \dots, y_n) \qquad \implies x^{\mathcal{B}} = a_i$$

Thus $\mathfrak{B} \models \Sigma$.

Remark 4.9. By the above result, given a finite algebra \mathbf{A} , to the purpose of the study of $CSP(\mathbf{A})$, we can assume without loss of generality that \mathbf{A} is idempotent.

5. Subalgebras and Images

Theorem 5.1. Let A be a finite algebra.

- (1) if $CSP(\mathbf{A})$ is polynomial-time decidable, so is $CSP(\mathbf{B})$ for every $\mathbf{B} \leq \mathbf{A}$;
- (2) if there is $\mathbf{B} \leq \mathbf{A}$ such that $CSP(\mathbf{B})$ is NP-complete, so is $CSP(\mathbf{A})$.

Proof. Let $\mathcal{A} = (A, \operatorname{Inv}(\mathbf{A}))$ and $\mathcal{B} = (A, \operatorname{Inv}(\mathbf{B}))$. By definition $\operatorname{CSP}(\mathbf{B})$ is polynomial-time reducible to $\operatorname{CSP}(\mathcal{A})$ iff $\operatorname{CSP}(\mathcal{B})$ is polynomial-time reducible to $\operatorname{CSP}(\mathcal{A})$. But that $\operatorname{CSP}(\mathcal{B})$ is polynomial-time reducible to $\operatorname{CSP}(\mathcal{A})$ is obvious since $\operatorname{Inv}(\mathbf{B}) \subseteq \operatorname{Inv}(\mathbf{A})$.

Theorem 5.2. Let **A**, **B** be two finite algebras of the same type.

- (1) if CSP(**A**) is polynomial-time decidable, so is CSP(**B**) for every surjective homomorphism $\alpha : \mathbf{A} \to \mathbf{B}$;
- (2) if there is a surjective homomorphism $\alpha : \mathbf{A} \to \mathbf{B}$ such that $CSP(\mathbf{B})$ is NP-complete, so is $CSP(\mathbf{A})$.

Proof. Let $\mathcal{B} = (B, \operatorname{Inv}(\mathbf{B}))$. We show that there is $\Gamma \subseteq \operatorname{Inv}(\mathbf{B})$ such that, definining $\mathcal{A} = (A, \Gamma)$, $\operatorname{CSP}(\mathcal{B})$ is polynomial-time reducible to $\operatorname{CSP}(\mathcal{A})$. For every $\rho \in \operatorname{Inv}(\mathbf{B})_n$ let

$$\alpha^{-1}(\rho) := \{ (a_1, \dots, a_n) \in A^n : (\alpha(a_1), \dots, \alpha(a_n)) \in \rho \}$$

Clearly, $\alpha^{-1}(\rho) \in \text{Inv}(\mathbf{A})_n$ and therefore, letting $\Gamma := \{\alpha^{-1}(\rho) : \rho \in \Gamma\}$, $\Gamma \subseteq \text{Inv}(\mathbf{A})$. Let Σ be a set of atomic formulas over $\text{Inv}(\mathbf{B})$. Replace every formula $\rho(x_1, \ldots, x_n)$ with $\alpha^{-1}(\rho)(x_1, \ldots, x_n)$. We obtain a set of equations T over Γ by a polynomial-time reduction. Let β be a section of α .

Referring to the assignments in the picture, each defined in terms of the other so that the diagram commute, it is clear that $\mathcal{A} \models T$ iff $\mathcal{B} \models \Sigma$.

Lemma 5.3 ([2]). Let A be a relational structure. If Pol(A) contains essentially unary operations only, CSP(A) is NP-complete.

Corollary 5.4. Let **A** be a finite algebra. If there is $\mathbf{B} \in HS(\mathbf{A})$ such that $Clo(\mathbf{B}) = \mathbf{N}$, then $CSP(\mathbf{A})$ is NP-complete.

Proof. If **B** is such that $Clo(\mathbf{B}) = \mathbf{N}$, then $CSP(\mathbf{B})$ is NP-complete by Lemma 5.3. We conclude using the second clusses of Theorems 5.1 and 5.2.

6. Omitting Types and Complexity

Refer to the Appendix.

Theorem 6.1. Let **A** be a finite idempotent algebra. If $CSP(\mathbf{A})$ is decidable in polynomial-time, then $1 \notin typ\{\mathbf{A}\}$.

APPENDIX A. CLASSIFICATION OF FINITE MINIMAL ALGEBRAS

Definition A.1. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $Pol(\mathbf{A})$ the smallest set containing

- (1) $\{f^{\mathbf{A}}: f \in F\};$
- (2) $\{\pi_i^n : A^n \to A, 1 \le i \le n, n \in \omega\};$
- (3) the constant 0-ary operations

and closed under composition. The elements of $Pol(\mathbf{A})$ are called **polynomial** operations. We say that two algebras \mathbf{A} and \mathbf{B} on the same carrier are **polynomial** equivalent if $Pol(\mathbf{A}) = Pol(\mathbf{B})$.

Example A.2. If
$$\varphi \in \text{Clo}_{m+n}(\mathbf{A})$$
 and $(a_1, \ldots, a_m) \in A^m$, then $\psi : A^n \to A \quad (b_1, \ldots, b_n) \mapsto \varphi(a_1, \ldots, a_m, b_1, \ldots, b_n)$

is a polynomial operation.

Definition A.3 (provisional). A nontrivial finite algebra \mathbf{A} is **minimal** iff every noncostant element of $\operatorname{Pol}_1(\mathbf{A})$ is bijective.

The goal is to classify, up to polynomial equivalence, all the finite minimal algebras.

Example A.4. The following are examples of minimal algebras.

- (1) any algebra with carrier 2;
- (2) a nontrivial finite vector space **A** over a finite field **k**: every $\pi \in \operatorname{Pol}_1(\mathbf{A})$ is of the form $\pi(v) = av + b$ for some $a \in k$, $b \in A$;
- (3) a group of permutations acting on a finite set 2 .

²Let **G** be a group acting on a set A. Each $g \in G$ induces an operation $\varphi_g : A \to A$ given by $\varphi_g(a) = g \cdot a$. Let $\Phi_{\mathbf{G}} := \{ \varphi_g : g \in G \}$. A **G**-set can be seen as an algebra $(A, \Phi_{\mathbf{G}})$.

We shall prove that, up to polynomial equivalence, there are no other finite minimal algebras.

Lemma A.5. Let **A** be a minimal algebra. If every element of $Pol(\mathbf{A})$ is essentially unary, then **A** is polynomial equivalent to $(A, \Phi_{\mathbf{G}})$ where **G** is a finite group acting on A.

Proof. Since **A** is minimal, $\operatorname{Pol}_1(\mathbf{A}) \cap \operatorname{Sym}(A)$ is a subgroup of $\operatorname{Sym}(A)$. Let $\mathbf{G} := \operatorname{Pol}_1(\mathbf{A}) \cap \operatorname{Sym}(A)$. If $\psi \in \operatorname{Pol}(\mathbf{A})$, either ψ is constant or ψ is essentially unary, hence $(A, \Phi_{\mathbf{G}})$ is polynomially equivalent to **A**.

Theorem A.6 ([4]). Let **A** be a minimal algebra with |A| > 2. If Pol(**A**) contains an operation which is not essentially unary, then **A** is polynomially equivalent to a **k**-vector space for a finite field **k**.

Theorem A.7. Every algebra **A** with carrier 2 is polynomially equivalent to one of the following:

- (1) $\mathbf{E}_0 = (2, \emptyset);$
- (2) $\mathbf{E}_1 = (2, \neg);$
- (3) $\mathbf{E}_3 = (2, \land, \lor, \neg);$
- (4) $\mathbf{E}_4 = (2, \wedge, \vee);$
- (5) $\mathbf{E}_5 = (2, \vee);$
- (6) $\mathbf{E}_6 = (2, \wedge).$

Each of them is not polynomially equivalent to the other³.

Remark A.8. Up to isomorphism, $\mathbf{E}_5 (\simeq \mathbf{E}_6)$ is the only semilattice with two elements, while \mathbf{E}_3 and \mathbf{E}_4 are the only Boolean algebra and lattice, respectively, with two elements.

Definition A.9. Let **A** be a minimal algebra. We say that **A** is of

- (1) **type 1** (or **unary**) if **A** is polynomially equivalent to $(A, \Phi_{\mathbf{G}})$ for some $\mathbf{G} \leq \operatorname{Sym}(A)$;
- (2) **type 2** (or **affine**) if **A** is polynomially equivalent to a vector space over a finite field **k**;
- (3) **type 3** (or **Boolean**) if **A** is polynomially equivalent to \mathbf{E}_3 ;
- (4) type 4 (or lattice) if A is polynomially equivalent to \mathbf{E}_4 ;
- (5) type 5 (or semilattice) if A is polynomially equivalent to \mathbf{E}_5 .

³A classical theorem by Post states that the set of clones of operations on 2 is countable infinite. By Theorem A.7 among these there are exactly seven distinct clones containing the constant operations. However it has been proven that the set of clones on 3 containing the constant operations is uncountable.

APPENDIX B. OMITTING TYPES

Definition B.1. Let V be a variety. An algebra $A \in V$ is called

- (1) **free** if there is an isomorphism $\mathbf{A} \simeq \mathbf{F}_{\mathsf{V}}(\kappa)$ for some cardinal κ ;
- (2) **finitely generated** if there is a surjective homomorphism $\mathbf{F}_{\mathsf{V}}(n) \to \mathbf{A}$ for some $n \in \omega$.

Definition B.2. A variety V is called

- (1) **locally finite** if all its finitely generated algebras are finite;
- (2) **finitely presented** if V has a finite set of function symbols and $V = Alg(\Sigma)$ for a finite set of equations Σ ;
- (3) finitely generated if $V = HSP(\mathbf{A}_1, \dots, \mathbf{A}_n)$ for $\mathbf{A}_1, \dots, \mathbf{A}_n$ finite similar algebras.

Lemma B.3. Let V be a variety. If V is finitely generated then it is locally finite.

Proof. Let $V = HSP(\mathbf{A}_1, \dots, \mathbf{A}_n)$ with \mathbf{A}_i finite. Let $\mathbf{A} \in V$ be finitely generated. Then there is a surjective homomorphism $\alpha : \mathbf{A}' \to \mathbf{A}$ for some

$$\mathbf{A}' \leq \mathbf{A}_1^{\kappa_1} \times \cdots \times \mathbf{A}_n^{\kappa_n}$$

We prove that \mathbf{A}' is finite. Without loss of generality we can assume that \mathbf{A}' is finitely generated: if not we can replace \mathbf{A}' with $\mathbf{A}'/\ker(\alpha)$. Since \mathbf{A}' is finitely generated, there is a finite number of homomorphisms $\mathbf{A}' \to \mathbf{A}_i$ for every i. Composing the embedding

$$\mathbf{A}' \hookrightarrow \mathbf{A}_1^{\kappa_1} \times \cdots \times \mathbf{A}_n^{\kappa_n}$$

with the projections, we see that \mathbf{A}' embeds into $\mathbf{A}_1^{k_1} \times \cdots \times \mathbf{A}_n^{k_n}$ for some finite k_1, \ldots, k_n , hence it is finite.

Definition B.4. Let V and W be two varieties. We say that V is **interpretable** into W $(V \le W)$ if there is a clone homomorphism $Clo(V) \to Clo(W)$.

Theorem B.5. Let V be a locally finite variety. The following are equivalent:

- (1) $\mathbf{1} \notin \operatorname{typ}\{V\};$
- (2) there is an idempotent variety W such that $W \leq V$ and $W \nleq Set$.

Corollary B.6. Let **A** be a finite idempotent algebra. There is $\mathbf{B} \in HS(\mathbf{A})$ such that $Clo(\mathbf{B}) = \mathbf{N}$ iff $\mathbf{1} \in typ\{HS(\mathbf{A})\}.$

Proof. If $\mathbf{1} \in \operatorname{typ}\{HS(\mathbf{A})\}$, then $\mathbf{1} \in \operatorname{typ}\{HSP(\mathbf{A})\}$. Since \mathbf{A} is finite, then, by Lemma B.3 $HSP(\mathbf{A})$ is locally finite, and therefore, by Theorem B.5, for every idempotent variety W, either $\mathbf{W} \nleq HSP(\mathbf{A})$ or $\mathbf{W} \leq \mathsf{Set}$. In particular, since \mathbf{A} is idempotent, $HSP(\mathbf{A}) \leq \mathsf{Set}$. This means that there is a clone homomorphism $\operatorname{Clo}(\mathbf{A}) \to \mathbf{N}$. Equivalently, every term operation of \mathbf{A} is a projection. Hence, $\operatorname{Clo}(\mathbf{A}) = \mathbf{N}$.

Conversely, let $\mathbf{B} \in HS(\mathbf{A})$ such that $Clo(\mathbf{B}) = \mathbf{N}$; this means that \mathbf{B} is term equivalent to a set. Hence \mathbf{B} is polynomial equivalent to a set on which the trivial group acts. Then $\mathbf{1} \in typ\{\mathbf{B}\}$, and therefore $\mathbf{1} \in typ\{HS(\mathbf{A})\}$.

Theorem B.7 ([3]). Let **A** be a finite idempotent algebra. Then $Clo(\mathbf{A})$ contains a weak near-unanimity operation iff $1 \notin typ\{HS(\mathbf{A})\}$.

References

- [1] Bulatov, A. A., Jeavons, P., Krokhin, A. A. (2005). Classifying the complexity of constraints using finite algebras. SIAM Journal of Computation 34(3), 720–742.
- [2] Jeavons, P. (1998). On the algebraic structure of combinatorial problems, *Theoretical Computer Science* 200, 185–204.
- [3] Maróti, M., McKenzie, R. (2008). Existence theorems for weakly symmetric operations. Algebra Universalis 59, 463-489.
- [4] Pálfy, P. P. (1984). Unary polynomials in algebras I. Algebra Universalis 18, 262-273.
- [5] Szendrei, Á. (1990). Simple surjective algebras having no proper subalgebras. *Journal of the Australian Mathematical Society*, 48(3), 434-454.