Конспект лекций по матанализу

Горбунов Леонид при участии и редакторстве @keba4ok на основе лекций Любарского Ю. И.

13 сентября 2021г.

Содержание

Teop	ия меры
	Алгебраические структуры подмножеств
	Вводим меру
	Простые функции
	Элементарный интеграл
	Включаем бесконечность
	Произведение мер
	Счётная аддитивность (она же σ -аддитивность)
	Счётно-аддитивные структуры
	Внешняя мера
	Теорема Лебега-Каратеодори
	Борелевские множества и мера Лебега

Теория меры

Алгебраические структуры подмножеств

Пусть нам дано множество $\mathcal X$ произвольной природы и система его подмножеств $\mathfrak A$.

Определение 1. \mathfrak{A} - *полукольцо множеств*, если для любых $A, B \in \mathfrak{A}$ их пересечение $A \cap B$ тоже лежит в \mathfrak{A} , а их разность $A \setminus B$ представляется в виде конечного объединения попарно дизъюнктных множеств из \mathfrak{A} .

Примечание 1. Легко понять, что любое полукольцо содержит пустое множество.

Определение 2. \mathfrak{A} - *кольцо множеств*, если для любых $A, B \in \mathfrak{A}$ их пересечение $A \cap B$, объединение $A \cup B$ и разность $A \setminus B$ лежат в \mathfrak{A}

Примечание 2. Легко понять, что тогда и $A\triangle B$ лежит в \mathfrak{A} . Тогда если на элементах кольца множеств определить операции сложения $+ := \triangle$ и умножения $\times := \cap$, то оно превратится в алгебраическое кольцо.

Определение 3. $\mathfrak A$ - *алгебра множеств*, если оно кольцо, и для любого $A \in \mathfrak A$ множество $X \backslash A$ тоже лежит в $\mathfrak A$

Утверждение 1. Пусть $\mathfrak{A} \subseteq \mathcal{P}(X)$ и $\mathfrak{B} \subseteq \mathcal{P}(Y)$ - полукольца. Тогда $\mathfrak{A} \times \mathfrak{B} \subseteq \mathcal{P}(X \times Y)$ - тоже полукольцо.

Утверждение 2. Пусть множества $A, B_1, ... B_n$ принадлежат какому-то полукольцу. Тогда $A \setminus (B_1 \cup ... \cup B_n)$ представляется в виде объединения конечного числа элементов этого полукольца.

Доказательство. $A \setminus (B_1 \cup ... \cup B_n) = (A \setminus B_1) \cap ... \cap (A \setminus B_n) = (\bigsqcup_{i=1}^{k_1} C_{1,i}) \cap ... \cap (\bigsqcup_{i=1}^{k_n} C_{n,i}) = \bigsqcup_{i_1,...i_n} (C_{1,i_1} \cap ... \cap C_{n,i_n})$. В последнем выражении все множества попарно дизъюнктны, так как если бы, например, $(C_{1,i_1} \cap ... \cap C_{n,i_n}) \cap C_{1,j_1} \cap ... \cap C_{n,j_n} \ni x$, то для каждого k от 1 до $n \ x \in C_{k,i_k} \cap C_{k,j_k}$, что возможно только при $i_k = j_k$, но для всех k это равенство быть верным не может.

Пример(ы) 1. $P(\mathbb{R}) = \{[a,b)|a,b,\in\mathbb{R}\cup\{\pm\infty\}\}$ - полукольцо ячеек $P(\mathbb{R}^n) = \{[a_1,b_1)\times...\times[a_n,b_n)|a_i,b_i,\in\mathbb{R}\cup\{\pm\infty\}\}$ - тоже полукольцо ячеек, только многомерных

Вводим меру

Пусть $\mathfrak X$ - множество произвольной природы, $\mathfrak A\subseteq \mathcal P(\mathfrak X)$.

Определение 4. Функция $\mu: \mathfrak{A} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ называется *мерой*, если для любых попарно дизъюнктных множеств $A_1, \dots A_k \in \mathfrak{A}$ и таких, что $\bigsqcup_{i=1}^k A_i \in \mathfrak{A}$, верно равенство $\mu(\bigsqcup_{i=1}^k A_i) = \sum_{i=1}^k \mu(A_i)$

Примечание 3. Данное свойство называется аддитивностью

Пример(ы) 2.

- $\mathfrak X$ дискретное пространство, и для любого $x \in \mathfrak X$ $\mu(x)=1.$ Тогда $\mu(A)=\sum_{x\in A}1$
- \mathfrak{X} дискретное пространство, и для любого $x \in \mathfrak{X}$ $\mu(x) = p_x$, причём $\sum_{x \in \mathfrak{X}} p_x = 1$. Тогда мы получаем в точности вероятностное пространство.

- $\mathfrak{X}=\mathbb{R}, \mathfrak{A}$ полукольцо конечных ячеек. Тогда $\mu([a,b))=b-a$ мера.
- То же, что и в предыдущем примере, только теперь $\mu([a,b)) = f(b) f(a)$, где f монотонно возрастающая функция.

Утверждение 3. Мера, определённая на полукольце, монотонна: если $A, B \in \mathfrak{A}$, и $B \subseteq A$, то $\mu(B) \leq \mu(A)$.

Доказательство.
$$\mu(A) = \mu(B) + \mu(A \backslash B) = \mu(B) + \mu(\bigsqcup_{i=1}^n C_i) = \mu(B) + \sum_{i=1}^n \mu(C_i) \ge \mu(B)$$

Простые функции

Определение 5. Пусть \mathfrak{A} - полукольцо, и $A \in \mathfrak{A}$. Определим функцию-индикатор (или характеристическую функцию):

$$\chi_A(x) = \begin{cases} 1, \text{ если } x \in A, \\ 0, \text{ если } x \notin A \end{cases}$$

Определение 6. Простая функция - это функция вида $f(x) = \sum_{i=1}^n a_i \chi_{A_i}(x)$, где $A_i \in \mathfrak{A}$ и $a_i \in \mathbb{R}$

Примечание 4. Сумма и произведение простых функций - простые функции.

Элементарный интеграл

Пусть мы имеем $\mathfrak A$ - полукольцо, μ - меру и f - простую функцию (всё пока что конечно). Можем тогда ввести следующее понятие:

Определение 7. Элементарным интегралом называется

$$\int f(x)dx = \sum a_i \mu(A_i)$$

Утверждение 4. Определение корректно.

Примечание 5. Я не понял, что тут рассказывает Юрий Ильич, поэтому доказательство найдено в других источниках. Суть просто в попарном подразбиении и перегуппировке.

Доказательство. Пусть $f = \sum \alpha_i \cdot \chi(a_i) = \sum \beta_j \cdot \chi(b_j)$, рассмотрим тогда $c_{ij} = a_i \cap b_j$.

$$\sum \mu(a_j) \cdot \alpha_j = \sum \mu(c_{ij}) \cdot \alpha_i = \sum \mu(c_{ij}) \cdot \beta_j = \sum \mu(b_j)\beta_j$$

Утверждение 5 (Техническое замечение).

$$\int \chi_A = \mu(A).$$

Утверждение 6. Рассмотрим свойства интеграла:

• Линейность. Если у нас есть две простые функции: f и g, а также два числа: $\alpha, \beta \in \mathbb{R}$, тогда

$$\int \alpha f + \beta g = \alpha \int f + \beta \int g.$$

• Монотонность. Пусть f и g - простые функции, а также $f \leq g$. Тогда

$$\int f \le \int g.$$

Примечание 6. Для доказательства практически всего нужно просто рассмотреть дизъюнктное подразбиение данных функций.

Включаем бесконечность

Пусть у нас, по прежнему, имеется кольцо, и простая функция f. Выделим тогда у неё положительную и отрицательную часть (f^+ и f^-). Такие, что положительная часть во всех положительных значениях остаётся таковой, а при отрицательных - обнуляется. Почти аналогично с отрицательной, только мы рассмотриваем модуль того, что останется. Таким образом,

$$f = f^+ - f^-.$$

Определим тогда $I_+(f) = \int f_+$, и аналогично I_- . Мы хотим определить интеграл от функции, как $I_+(f) - I_-(f)$. Но нам мешает то, что обе эти функции могут быть бесконечными. Так что в случае, когда оба интеграла равны бесконечности, у нас ничего не получится, и этот случай мы попросу запрещаем. И рассмотриваем мы теперь только функции, который могут быть бесконечны максимум в одну сторону.

Примечание 7. Монотонность и линейность останутся при данном определении (последнее, конечно, опять таки при конечности хотя бы одного из интегралов).

Произведение мер

Пусть \mathfrak{A} , \mathfrak{B} - полукольца с мерами μ и ν соответственно. Определим функцию $\lambda:\mathfrak{A}\times\mathfrak{B}:\mathbb{R}_{>0}\cup\{+\infty\}$ по правилу $\lambda(A\times B)=\mu(A)\nu(B)$

Утверждение 7. λ - мера на полукольце $\mathfrak{A} \times \mathfrak{B}$, т.е. для любых попарно дизъюнктных $C_1, \ldots C_n, C_i = A_i \times B_i$ и таких, что $\bigsqcup_{i=1}^n C_i = C = A \times B \in \mathfrak{A} \times \mathfrak{B}$, верно равенство $\lambda(\bigsqcup_{i=1}^n C_i) = \sum_{i=1}^n \lambda(C_i)$

Доказательство. По определению мер $\lambda(\bigsqcup_{i=1}^n C_i) = \mu(A)\nu(B), \sum_{i=1}^n \lambda(C_i) = \sum_{i=1}^n \mu(A_i)\nu(B_i),$ поэтому мы будем доказывать равенство $\mu(A)\nu(B) = \sum_{i=1}^n \mu(A_i)\nu(B_i).$ Так как все C_i попарно дизьюнктны, верно равенство $\chi_C(x,y)\sum_{i=1}^n \chi_{C_i}(x,y).$ Зафиксируем x, тогда функцияниндикатор $\chi_{C_i}(x,y)$ на $\mathfrak{A} \times \mathfrak{B}$ превращается в функцию индикатор $\chi_{A_i}(x)\chi_{B_i}(y)$ на \mathfrak{B} . Проинтегрируем равенство по y, получим: $\chi_A(x)\nu(B) = \sum_{i=1}^n \chi_{A_i}\nu(B_i).$ Интегрируя теперь по x, получаем $\mu(A)\nu(B) = \sum_{i=1}^n \mu(A_i)\nu(B_i),$ что и требовалось.

Счётная аддитивность (она же σ -аддитивность)

Определение 8. Пусть даны $\mathcal{D} \subseteq \mathcal{P}(X)$ - набор подмножеств множества X, и функция $\mu: \mathcal{D} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$. Эта функция называется *счётно-аддитивной* (или σ -аддитивной), если для любого не более чем счётного набора попарно дизъюнктных множеств $\{B_i\}$ таких, что их объединение $B = \coprod B_i$ лежит в \mathcal{D} , верно равенство $\mu(B) = \sum \mu(B_i)$

Пример(ы) 3. • $\mathcal{D} = \mathcal{P} X$, и для любого $B \in \mathcal{D}\mu(B) = |B|$ - считающая функция

• Вероятностное пространство

- $X = \mathbb{R}, \mathcal{D} = P(\mathbb{R}), \mu([a,b)) = b a$
- Модификация предыдущего примера: $\mu([a,b)) = f(b) f(a)$, где f монотонно возрастающая непрерывная функция
- $X = \mathbb{R}$, $\mathcal{D} = \{ \langle a, b \rangle | a, b \in \mathbb{R} \cup \{\pm \infty\} \}$, f просто монотонно возрастающая функция. Тогда мера $\mu(\langle a, b \rangle) = f(b) f(a)$ не будет счётно-аддитивной. Но если мы определим меру так:

$$-\mu([a,b)) = \lim_{x \to b_{-}} f(x) - \lim_{y \to a_{-}} f(y)$$

$$-\mu([a,b]) = \lim_{x \to b_{+}} f(x) - \lim_{y \to a_{-}} f(y)$$

$$-\mu((a,b]) = \lim_{x \to b_{+}} f(x) - \lim_{y \to a_{+}} f(y)$$

$$-\mu((a,b)) = \lim_{x \to b_{-}} f(x) - \lim_{y \to a_{+}} f(y)$$

то она уже будем счётно-аддитивной.

Утверждение 8. Не существует "универсальной меры т.е. функции $\mu: \mathcal{P}(\mathbb{R}) \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$, обладающей следующими свойствами:

- $\mu(\emptyset) = 0$
- \bullet μ счётноаддитивна
- $\mu([0,1]) = 1$
- Для любых $A \subseteq \mathbb{R}$ и $x \in \mathbb{R}$ верно равенство $\mu(A+x) = \mu(A)$

Доказательство. Предположим противное: такая функция существует. Определим на \mathbb{R} бинарное отношение $a \sim b \iff a-b \in \mathbb{Q}$. Легко видеть, что это отношение эквивалентности. Воспользуемся аксиомой выбора и выберем по одному представителю из каждого класса так, чтобы они все лежали на отрезке [0,1]. Образуем из них множество A. С одной стороны, $\mu(A) = \mu([0,1]) - \mu([0,1] \setminus A) \geq 1 < \infty$. Рассмотрим множества $A_q = \{A+q\}$ для всех $q \in [0,1] \cap \mathbb{Q}$. Они попарно не пересекаются, их мера равна мере A, а их объединение лежит в отрезке [-1,2]. Тогда $[0,1] \cap \mathbb{Q} \mid \cdot \mu(A) = \sum_{q \in [0,1] \cap \mathbb{Q}} \mu(A_q) = \mu(\bigsqcup_{q \in [0,1] \cap \mathbb{Q}} A_q) \leq \mu([-1,2]) < \infty$, откуда $\mu(A) = 0$. Но $\bigsqcup_{\lambda \in \mathbb{Q}} A_\lambda = \mathbb{R}$ $\implies \infty = \mu(\mathbb{R}) = \sum_{\lambda \in \mathbb{Q}} \mu(A_\lambda) = \sum_{\lambda \in \mathbb{Q}} 0 = 0$, противоречие.

Определение 9. Мера μ , определённая на полукольце (кольце, алгебре и т.д.) $\mathfrak{A} \subseteq \mathcal{P}(X)$, называется регулярной, если для любого $A \in \mathfrak{A}$:

- $\mu(A) = \inf_{G \in \mathfrak{A}, A \subseteq G, G \text{ otkphitoe}} \mu(G)$
- $\mu(A) = \sup_{K \in \mathfrak{A}, K \subseteq A, K \text{ KOMFLAKT}} \mu(K)$

Теорема 1. Регулярная мера μ , определённая на кольце, счётноаддитивна.

Доказательство. Пусть $\{A_i\}$ - попарно дизъюнктные элементы кольца, и $A = \bigsqcup A_i \in \mathfrak{A}$. Хотим доказать, что $\mu(A) = \sum \mu(A_i)$.

В одну сторону это практически очевидно: для любого натурального n $A_1 \cup ... \cup A_n \subseteq A$ $\Longrightarrow \sum_{i=1}^n \mu(A_i) = \mu(A_1 \cup ... \cup A_n) \le \mu(A)$. Переходя к пределу по n, получаем неравенство в одну сторону.

Теперь докажем, что для любого $\epsilon > 0$ верно неравенство $\sum \mu(A_i) \ge \mu(A) - 2\epsilon$, откуда и будет следовать неравенство во вторую сторону. Для этого выберем компакт $K \subseteq A$ такой, что $\mu(K) \ge \mu(A) - \epsilon$, а для каждого A_i - такое G_i , что $\mu(G_i) \le \mu(A_i) + \frac{\epsilon}{2^i}$. Так как $\bigsqcup A_i = A \supset K$, то и $\bigcup G_i \supset K$, а тогда можно выбрать конечное подпокрытие G_{i_1} , ... G_{i_s} . В итоге $\mu(K) \le \sum_{j=1}^s \mu(G_{i_j}) \le \sum_{j=1}^s \mu(A_i) + \frac{\epsilon}{2^{i_j}} < \sum_{j=1}^\infty \mu(A_i) + \epsilon \implies \sum \mu(A_i) \ge \mu(K) - \epsilon \ge \mu(A) - 2\epsilon$, что и требовалось.

Счётно-аддитивные структуры

Определение 10. Непустое $\mathfrak{A} \subseteq \mathcal{P}(X)$ называется σ -алгеброй, если для любого не более чем счётного набора множеств $\{A_i\}$ их объединение и пересечение и $X \setminus A_i$ также лежат в \mathfrak{A}

Примечание 8. $\emptyset = A \cap (X \setminus A), X = A \cup (X \setminus A), A \setminus B = A \cap (X \setminus B)$ также лежат в \mathfrak{A} .

Примечание 9. Если $\{A_i\}_{i\in I}$ - произвольный набор σ -алгебр над каким-то множеством, то $\bigcap_{i\in I} A_i$ - тоже σ -алгебра.

Определение 11. Пусть $\mathcal{D} \subseteq \mathcal{P}(X)$. σ -алгебра, порождённая \mathcal{D} - это наименьшая σ -алгебра, содержащая \mathcal{D} . мы будем обозначать её $\overline{\mathcal{D}}$

Утверждение 9. Для любого $\mathcal{D} \subseteq \mathcal{P}(X)$ порождённая sigma-алгебра существует и единственна.

Доказательство. Хотя бы одна σ -алгебра, содержащая \mathcal{D} , существует: это просто $\mathcal{P}(X)$. Но тогда если $\{A_i\}_{i\in I}$ - все такие σ -алгебры, то $\bigcap_{i\in I}A_i$ - наименьшая.

Утверждение 10. Любое открытое и замкнутое множество на прямой содержится в $\overline{P(\mathbb{R})}$

Доказательство. Заметим, что интервал (a,b) представляется в виде счётного объединения ячеек $\bigcup_{n\in\mathbb{N}}[a+\frac{1}{n},b)$, а любое открытое подмножество прямой является объединением не более чем счётного объединения попарно непересекающихся открытых интервалов и лучей. Если же какое-то A замкнуто, то $\mathbb{R}\setminus A$ открыто и представляется в виде $\bigcup P_i$, $P_i \in P(\mathbb{R})$. Тогда $A = X\setminus (\bigcup P_i) = \bigcap (X\setminus P_i)$ тоже представимо в виде не более, чем счётного объединения элементов из $P(\mathbb{R})$, а потому лежит в $\overline{P(\mathbb{R})}$.

Утверждение 11. Пусть $\mathfrak{A} \subseteq \mathcal{P}(X)$ - алгебра, и известно, что для любых $\{E_i\}_{i=1}^{\infty} \in \mathfrak{A}$, $\bigcap_{i=1}^{\infty} E_i$ также принадлежит \mathfrak{A} . Тогда A - σ -алгебра.

Доказательство. Надо проверить, что если $\{F_i\}_{i=1}^{\infty} \in \mathfrak{A}$, то $\bigcup_{i=1}^{\infty} F_i$ также принадлежит \mathfrak{A} . Но $\bigcup_{i=1}^{\infty} F_i = X \setminus (\bigcap (X \setminus F_i))$, т.е. лежит в \mathfrak{A} .

Примечание 10. Можно доказать и в обратную сторону (т.е. из счётного объединения вывести счётное пересечение), причём дополнительно можно наложить условие попарной дизъюнктности рассматриваемых множеств - доказательство будет аналогичным (только во втором случае придётся ввести новую последовательность множеств $\{G_i\}$, определённую по индукции $G_1 = E_1, G_k = E_k \setminus (E_1 \cup ... \cup E_{k-1})$)

Внешняя мера

Определение 12. Пусть $\mathfrak{A} \subseteq \mathcal{P}(X)$ - полукольцо с (конечно-аддитивной) мерой μ . Определим функцию $\mu^* : \mathcal{P}(X) \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ по правилу $\mu^*(A) = \inf(\sum \mu(A_i) | \{A_i\} \in \mathfrak{A}, \bigcup A_i \supset A)$ (т.е. инфимум по всем покрытиям множества A элементами полукольца) и назовём её внешней мерой.

Утверждение 12.

- 1. $\mu^*(A) \le \mu(A)$
- 2. Монотонность: если $A \subseteq B$, то $\mu^*(A) \le \mu^*(B)$
- 3. Счётная полуаддитивность: Если $\{A_i\} \in \mathfrak{A}$, и $\bigcup A_i \in \mathfrak{A}$ то $\mu^*(\bigcup A_i) \leq \sum \mu^*(A_i)$

4. Если μ - счётно-аддитивна, то $\mu_{\mathfrak{A}}^* = \mu$

Доказательство.

- $1. \ A$ это одно из покрытий самого себя.
- $2. \ B$ это одно из покрытий множества A.
- 3. Обозначим $A = \bigcup A_i$. Если для какого-то i $\mu^*(A_i) = \infty$, то неравенство очевидно, поэтому далее считаем, что все $\mu^*(A_i) < \infty$. Зафиксируем произвольное $\epsilon > 0$. Для каждого A_n существует покрытие $\{B_{n_k}\}_{k\geq 1}$ элементами полукольца, для которого $\mu^*(A_i) > \sum_{k\geq 1} \mu(B_{n_k}) \frac{\epsilon}{2^n}$. Тогда $\bigcup_{n,k} B_{n_k}$ покрытие A, и $\mu^*(A) \leq \sum_{n,k} \mu(B_{n_k}) < \sum_{k\geq 1} \mu(A_i) + \epsilon$. Значит, $\mu^*(A) \leq \sum_{n,k} \mu(A_i)$, что и требовалось.
- 4. Введём вспомогательную функицю $\overline{\mu}$, которая определяется так же, как и μ^* , только теперь мы на каждое рассматриваемое покрытие дополнительно наложили ограничение попарной дизъюнктности составляющих его множеств. Докажем для начала, что $\overline{\mu} = \mu *$. То, что $\overline{\mu}(A) \ge \mu^*(A)$, очевидно - во втором случае инфимум берётся по большему множеству. Зафиксируем теперь $\epsilon > 0$ и будем доказывать, что $\overline{\mu}(A) \leq \mu^*(A) + \epsilon$. Для этого рассмотрим покрытие A такими множествами $\{A_i\} \in \mathfrak{A}, \text{ что } \sum \mu(A_i) \leq \mu^*(A) + \epsilon. \text{ Определим последовательность множеств } \{B_i\}$ по правилу $B_1:=A_1$ и $B_k=A_k\backslash (A_1\cup...A_{k-1})$ при k>1. Все B_i , во-первых, попарно дизъюнктны, а во-вторых, представляются в виде конечного объединения попарно дизъюнктных элементов полукольца (см. утверждение из раздела "алгебраические структуры подмножеств"). Для определённости, пусть $B_i = \bigsqcup_i B_{i,j}$. Тогда $\{C_{i,j}\}$ покрытие множества А попарно непересекающимися элементами полукольца, откуда мы заключаем, то $\overline{\mu}(A) \leq \sum_{i,j} \mu(C_{i,j}) = \sum \mu(A_i) \leq \mu^*(A) + \epsilon$. В последнем равенстве мы воспользовались счётной аддитивностью меры μ и тем, что $\bigsqcup_{i,j} C_{i,j} = \bigcup A_i \supset A$ Вернёмся к исходному утверждению. Пусть $A \in \mathfrak{A}$. Так как A - само себе дизъюнктное покрытие, то $\overline{\mu}(A) \leq \mu(A)$. С другой стороны, для любого $\epsilon > 0$ существует покрытие A попарно дизъюнктными элементами полукольца $\{A_i\} \in \mathfrak{A}$, для которого $\sum \mu(A_i) \leq \overline{\mu}(A) + \epsilon$. Собирая два последних предложения вместе и пользуясбь счётной аддитивностью μ , получаем: $\mu(A) = \sum \mu(A \cap A_i) \leq \sum \mu(A_i) \leq \overline{\mu}(A) + \epsilon$. Так как это выполнено для любого $\epsilon > 0$, то $\mu(A) \leq \overline{\mu}(A) = \mu^*(A)$. Но всегда верно обратное неравенство $\mu(A) \ge \mu^*(A)$, откуда мы и получаем требуемое равенство мер.

Теорема Лебега-Каратеодори

Определение 13. Пусть X - множество произвольной природы. Монотонную и счётнополуаддитивную функцию $\gamma: \mathcal{P}(X) \to \mathbb{R}_{\geq 0} \cup \{\infty\}$, такую, что $\gamma(\emptyset) = 0$, мы назовём *пред*мерой на множестве X.

Определение 14. Множество $E \subseteq X$ называется γ -измеримым, если для любого $A \subseteq X$ верно равенство $\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E)$ или, что равносильно, $\gamma(A) = \gamma(A \cap E) + \gamma(A \cap E^c)$

Примечание 11. Внешняя мера - это предмера

Теорема 2. Теорема Лебега-Каратеодори

Пусть γ - предмера на множестве X, и $\Sigma \subseteq \mathcal{P}(X)$ - набор всех γ - измеримых подмножеств. Тогда:

1. Σ - σ -алгебра

- 2. $\gamma_{1\Sigma}$ счётно-аддитивная мера на Σ .
- 3. Пусть $\mathfrak A$ полукольцо на X, и μ (конечно) аддитивная мера на нём. Если мы определим $\gamma := \mu^*$, то $\Sigma \supset \overline{\mathfrak A}$.

Доказательство.

• Сначала докажем, что Σ - это (обычная) алгебра. $\gamma(A) = \gamma(A) + \gamma(\emptyset) = \gamma(A \backslash \emptyset) + \gamma(A \cap \emptyset) \implies \emptyset \in \Sigma$. Аналогично, $X \in \Sigma$. Если $E \in \Sigma$, то $E^c \in \Sigma$ - следует из симметричного определения измеримой функции. Так как $A \cup B = X \backslash ((X \backslash A) \cap (X \backslash B))$, то достаточно проверить только, что если E_1 , $E_2 \in \Sigma$, то $E_1 \cap E_2 \in \Sigma$. Хотим: $\gamma(A) = \gamma(A \cap (E_1 \cap E_2)) + \gamma(A \backslash (E_1 \cap E_2))$. Воспользуемся теперь определением γ -измеримого множества и подставим туда различные пары множеств:

$$\begin{cases} \gamma(A) = \gamma(A \cap E_1) + \gamma(A \backslash E_1), & \text{- подставили пару } (A, E_1) \\ \gamma(A \cap E_1) = \gamma(A \cap E_1 \cap E_2) + \gamma((A \cap E_1) \backslash E_2) & \text{- подставили пару } (A \cap E_1, E_2) \\ \gamma(A \backslash (E_1 \cap E_2)) = \gamma(A \backslash E_1) + \gamma((A \cap E_1) \backslash E_2) & \text{- подставили пару } (A \backslash (E_1 \cap E_2), E_1) \end{cases}$$

Выражая $\gamma(A \cap E_1)$ из первого уравнения во второе, получаем равенство $\gamma(A) = \gamma(A \cap E_1 \cap E_2) + \gamma(A \setminus E_1) + \gamma((A \cap E_1) \setminus E_2)$, но правая часть по третьему равенству равна в точности $\gamma(A \cap E_1 \cap E_2) + \gamma(A \setminus (E_1 \cap E_2))$. Мы доказали, что множество $E_1 \cap E_2$ тоже γ -измеримо.

- Теперь покажем, что $\gamma_{\uparrow \Sigma}$ аддитивна. Пусть $E_1, E_2 \in \Sigma$ - дизъюнктные множества. Тогда $\gamma(E_1 \cup E_2) = \gamma((E_1 \cup E_2) \setminus E_2) + \gamma((E_1 \cup E_2) \cap E_2) = \gamma(E_1) \cap \gamma(E_2)$, что и требовалось.
- Следующий шаг доказать, что Σ это σ -алгебра. Мы помним, что достаточно доказывать утверждение про объединение попарно дизъюнктных множеств: если $\{E_i\} \in \Sigma$ попарно дизъюнктны, то $E = \bigsqcup E_i \in \Sigma$, т.е. что для любого $A \subseteq X$ верно равенство $\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E)$. Как и раньше, нам достаточно вместо равенства доказать неравенство в обе стороны. Неравенство $LHS \leq RHS$ верно в силу полуаддитивности γ . Будем доказывать неравенство в обратную сторону. Сразу отметим, что если $\gamma(A) = \infty$, то оно верно, поэтому далее мы считаем, что $\gamma(A) < \infty$. Для любого натурального n: $\gamma(A) = \gamma(A \cap \bigcup_{i=1}^n E_i) + \gamma(A \setminus \bigcup_{i=1}^n E_i) \geq \gamma(A \cap \bigcup_{i=1}^n E_i) + \gamma(A \setminus E)$. Докажем, что для любого натурального n верно соотношение $\gamma(A \cap \bigcup_{i=1}^n E_i) = \sum_{i=1}^n \gamma(A \cap E_i)$. Переход практически очевиден, поэтому сосредоточим наше внимание на базе: $\gamma(A \cap (E_1 \cup E_2)) = \gamma(A \cap E_1) + \gamma(A \cap E_2)$. Но это ни что иное, как определение измеримости для пары $(A \cap (E_1 \cup E_2), E_1)$.

Комбинируя результаты двух последних абзацев, получаем неравенство $\gamma(A) \geq \sum_{i=1}^n \gamma(A \cap E_i) + \gamma(A \setminus E)$. Так как $\gamma(A) < \infty$, мы можем перейти к пределу по n и получить неравенство $\gamma(A) \geq \sum_{i=1}^{\infty} \gamma(A \cap E_i) + \gamma(A \setminus E) \geq \gamma(A \cap E) + \gamma(A \setminus E)$ (в последнем переходе мы воспользовались счётной полуаддитивностью γ).

• $\gamma_{|\Sigma}$ - счётно-аддитивная функция. Пусть есть счётный набор $\{E_i\} \subseteq \Sigma$ попарно дизъюнктных множеств. Мы уже доказали, что $E = \bigsqcup E_i \in \Sigma$. Хотим доказать, что $\sum_{i=1}^{\infty} = \gamma(E)$. Неравенство $LHS \ge RHS$ выполняется в силу полуаддитивности, поэтому мы будем доказывать неравенство $LHS \le RHS$. Для любого натурального n верно соотношение $\gamma(E) = \gamma(E \cap (E_1 \cup ... \cup E_n)) + \gamma(E \setminus (E_1 \cup ... \cup E_n))$

 $... \cup E_n)) \ge \gamma(E \cap (E_1 \cup ... \cup E_n)) = \sum_{i=1}^n \gamma(E_i)$. переходя к пределу по n, получаем требуемое неравенство.

• Достаточно показать, что $\mathfrak{A} \subseteq \Sigma$. Пусть $E \in \mathfrak{A}$. Надо доказать, что для любого $A \subseteq X$ $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \backslash E)$. Опять-таки, в силу полуаддитивности μ^* достаточно доказать только неравенство $\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \backslash E)$ и, как и в пункте 3, нетривиальным будет только случай $\mu^*(A) < \infty$. Для любого $\epsilon > 0$ докажем, что $\mu^*(A) + \epsilon \geq \mu^*(A \cap E) + \mu^*(A \backslash E)$, из этого будет следовать требуемое. Можно выбрать $\{C_i\}_{i\geq 1}$ - такое покрытие A попарно дизъюнктными элементами полукольца, что $\sum \mu(C_j) \leq \mu^*(A) + \epsilon$. Тогда $\{C_i \cap E\}_{i\geq 1} \subseteq \mathfrak{A}$ - покрытие $A \cap E$, откуда $\mu^*(A \cap E) \leq \sum_{i\geq 1} \mu(C_i \cap E)$. Также $C_i \backslash E = \bigcup_{j=1}^{n_i} D_{i,j}$ - конечное объединение попарно дизъюнктных элементов полукольца, а тогда $\{D_{i,j}\}$ - покрытие $A \backslash E \Longrightarrow \mu^*(A \backslash E) \leq \sum_{i,j} \mu(D_{i,j}) = \sum_{i\geq 1} \mu(C_i \backslash E)$. Складывая два последних неравенства, получаем, что $\mu^*(A \cap E) + \mu^*(A \backslash E) \leq \sum_{i\geq 1} (\mu(C_i \cap E) + \mu(C_i \backslash E)) = \sum_{i\geq 1} \mu(C_i) \leq \mu^*(A) + \epsilon$.

Борелевские множества и мера Лебега

Определение 15. Пусть $P(\mathbb{R}^n)$ - полукольцо ячеек с естественной мерой μ (которая, как мы помним, счётно-аддитивна). Множества, измеримые относительно внешней меры μ^* , образуют σ -алгебру (будем обозначать её Σ) и называются измеримыми по Лебегу, а μ^* от них обозначается буквой λ и называется мерой Лебега.

Определение 16. Рассмотрим $\mathfrak{B} = \overline{P(\mathbb{R}^n)}$ - σ -алгебра, натянутая на полукольцо ячеек $P(\mathbb{R}^n)$. Она состоит из всевозможных счётных объединений и пересечений элементов $P(\mathbb{R}^n)$ и называется Борелевской σ -алгеброй. Эта алгебра содержит, например, все открытые множества (так как любое открытое множество в \mathbb{R}^n можно представить в виде дизъюнктного объединения ячеек).

Примечание 12. Любое измеримое по Борелю множество также измеримо и по Лебегу (в силу п.3 теоремы Лебега-Каратеодори), но обратное неверно.

Примечание 13. Мощность Борелевской алгебры - континуум, так как все её элементы получаются из изначального континуального набора $P(\mathbb{R}^n)$ применением счётного числа пересечений и объединений.

Утверждение 13. Пусть γ - предмера на X. Если $E\subseteq X$, и $\gamma(E)=0$, то E - γ -измеримо. Как следствие, любое подмножество γ -измеримого и имеющего предмеру ноль множества также измеримо.

Доказательство. Пусть $A \subseteq X$ - произвольное подмножество. Пользуясь монотонностью и полуаддитивностью предмеры, напишем цепочку неравенств: $\gamma(A \setminus E) \le \gamma(A) \le \gamma(A \cap E) + \gamma(A \setminus E) \le \gamma(E) + \gamma(A \setminus E) = \gamma(A \setminus E)$. Значит, все неравенства обращаются в равенство, и $\gamma(A) = \gamma(A \cap E) + \gamma(A \setminus E)$.

- **Пример(ы) 4.** 1. Отрезок в \mathbb{R}^n , где $n \geq 2$, измерим (так как замкнут) и имеет меру Лебега, равную нулю, так как его можно зажать в прямоугольники сколь угодно малого объёма. По утверждению выше всего его подмножества, коих $2^{\text{КОНТИНУУМ}}$ штук, также измеримы. Значит, в \mathbb{R}^n множество измеримых по Лебегу функций имеет мощность $2^{\text{КОНТИНУУМ}}$ (больше не может, так как $|\mathbb{R}^n| = |\mathbb{R}|$).
 - 2. На плоскости надо действовать хитрее. То же рассуждение пройдёт, если мы придумаем какое-нибудь континуальное множество, имеющее меру ноль. Утверждается, что нам подойдёт Канторово множество.

Утверждение 14. Канторово множество имеет мощность континуум, измеримо по Борелю (а, значит, и по Лебегу) и имеет меру Лебега, равную нулю.

Доказательство. Первое утверждение следует из того, что число из отрезка [0, 1] принадлежит Канторову множеству, если и только если оно записывается в троичной записи с помощью цифр 0 и 2 (по модулю обработки предельных случаев вида 0,22222...).

Второе утверждение верно, так как мы получили Канторово множество путём выкидывания из отрезка [0,1] счётного числа открытых интервалов.

Посчитаем меру дополнения к Канторову множеству. Мы имеем один отрезок длины $\frac{1}{3}$, два отрезка длины $\frac{1}{9}$, ... 2^{k-1} отрезков длины $\frac{n}{3^k}$. Сумма их длин (мер) равна единице (несложно просуммировать ряд), а тогда мера Канторова множества равна $\lambda([0,1]) - \sum_{k=1}^{\infty} \frac{2^{k-1}}{3^k} = 1 - 1 = 0$

Определение 17. Мера на полукольце $\mathfrak{A} \subseteq \mathcal{P}(X)$ называется σ -конечной, если исходное множество X представляется в виде счётного объединения $\bigcup A_n$, где $A_i \in \mathfrak{A}$, и $\mu(A_i) < \infty$.

Примечание 14. Мера Лебега является σ -конечной.

Измеримые по Борелю множества устроены просто, однако измеримых по Лебегу множеств, как мы увидели, значительно больше, и про их структуру мы пока ещё ничего не знаем. Но это ситуация поправимая, ведь существует

Утверждение 15. Белов называл его гордым словосочетанием *«теорема о структуре измеримых множеств»*

Пусть $A \in \Sigma$ - (измеримое по Лебегу) множество. Тогда оно представимо в виде разности $B \setminus E$, где $B \in \mathfrak{B}$, а $\lambda(E) = 0$

Доказательство. Для начала рассмотрим случай $\lambda(A) < \infty$. Для произвольного $\epsilon > 0$ рассмотрим покрытие A попарно дизъюнктными элементами полукольца ячеек $\{c_j\}$ такое, что $\lambda(A) = \mu^*(A) + \epsilon \ge \sum \mu(C_j)$ (здесь мы пользуемся конечностью $\lambda(A)$). Если $C^\epsilon = \bigcup C_j$, то $\mu(C^\epsilon) = \sum \mu(C_j) \le \lambda(A) + \epsilon$. $D = \bigcap C^\epsilon \in \mathfrak{B}$ (хоть написано объединение по всем $\epsilon > 0$, достаточно рассмотреть счётную подпоследовательность, стремящуюся к нулю). $\mu(D) = \lim_{\epsilon \to 0} \mu(C^\epsilon) = \lambda(A)$. Также $A \subseteq D$. Тогда $\lambda(A \setminus A) = \mu^*(D \setminus A) = 0$ (в этом месте мы воспользовались измеримостью A - в произвольном случае мы не могли бы использовать аддитивность mu^*). Положим теперь B = D, $E = A \setminus D$ и получим требуемое. Чтобы свести случай $\lambda(A) = \infty$ к предыдущему, достаточно рассмотреть по отдельности множества $A \cap A_i$ (они также измеримы и имеют конечную меру Лебега в силу σ -конечности последней), объединить соответствующие им B_i и E_i и воспользоваться тем, что объединение счётного числа множеств меры ноль также имеет меру ноль (по счётной аддитивности λ).

Что на самом деле произошло? Мы придумали счётно-аддитивную функцию λ на Борелевских множествах, а потом продлили её на Σ . Но единственно ли это продолжение? Ответ положительный.

Утверждение 16. Пусть $P(\mathbb{R}^n)$ - полукольцо ячеек, Σ - измеримые по Лебегу подмножества, λ - мера Лебега, и Δ ($\mathfrak{B}\subseteq\Delta\subseteq\Sigma$) - какая-то другая σ -алгебра со своей мерой ν такая, что $\nu_{|\mathfrak{B}}=\lambda_{|\mathfrak{B}}$. Тогда $\nu_{|\Delta}=\lambda_{|\Delta}$

Доказательство. Во-первых, $\nu(E) = 0 \iff \lambda(E) = 0$, так как множество нулевой меры получается аппроксимацией Борелевскими множествами нулевой меры.

Во-вторых, если
$$A \in \Delta$$
, то можно найти $E \in \Delta$ такое, что $\mu(E) = \nu(E) = 0$, и $A \sqcup E \in \mathfrak{B}$. Но тогда $\mu(A) = \mu(A \sqcup E) - \mu(E) = \nu(A \sqcup E) - \nu(E) = \nu(A)$.

Утверждение 17.

- Мера Лебега инвариантна относительно сдвига. А именно, если $E \in \Sigma$, и $r \in \mathbb{R}^n$, то $\lambda(E+r) = \lambda(E)$
- Пусть μ какая-то счётно-аддитивная мера на $\mathfrak B$, инвариантная относительно сдвига. Тогда $\mu=c\lambda$ для некоторой константы c.

Доказательство.

Для полуинтервалов это очевидно, а если $\{X_i\}$ - покрытие E, то $\{X_i+r\}$ - покрытие E+r.

• Для простоты ограничимся одномерным случаем, хотя в случае произвольной размерности доказательство будет таким же. Пусть $c = \mu([0,1))$. Тогда $\mu(a,b) = c(b-a)$. Действительно, если $b-a = \frac{p}{q} \in \mathbb{Q}$, то $\mu(a,b) = \mu(0,\frac{p}{q}) = p \cdot \mu(0,\frac{1}{q}) = \frac{c}{q}$. А если $b-a \notin \mathbb{Q}$, то можно приблизить рациональными. Значит, на полуинтервалах меры λ и $c \cdot \mu$ совпадают, а, значит, они совпадают везде, так как мера продолжается единственным образом.

Предметный указатель

```
\gamma-измеримое множество, 8
\sigma-аддитивная функция, 5
\sigma-алгебра, 7
\sigma-конечная мера, 11
Алгебра множеств, 3
Борелевская \sigma-алгебра, 10
Внешняя мера, 7
Интеграл
   элементарный, 4
Кольцо множеств, 3
Mepa, 3
Мера Лебега, 10
Множества, измеримые по Лебегу, 10
Полукольцо множеств, 3
Полукольцо ячеек, 3
Порождённая \sigma-алгебра, 7
Предмера, 8
Произведение мер, 5
Простая функция, 4
Регулярная мера, 6
Счётная полуаддитивность, 7
Счётно-аддитивная функция, 5
Теорема Лебега-Каратеодори, 8
Теорема о структуре измеримых множеств,
Функция-индикатор, 4
Характеристическая функция, 4
```