OS important topics

Module 1:

Objectives, Functions and Evolution of Operating System, Operating system structures: Layered, Monolithic and Microkernel, System Calls

Module 2:

Process: Concept of a Process, Process States, Process Description, Process Control Block, Threads: Definition and Types, Problem on Scheduling types.

Module 3:

Concurrency: Race Condition, Principles of Concurrency, Interprocess Communication, Interprocess Communication, Process Synchronization, Mutual Exclusion: Requirements, Hardware Support (TSL), Mutual Exclusion: Operating System Support (Semaphores), Classical synchronization problems: Producer and Consumer problem. Readers Writers Problem

Sample Questions for reference:

- 1) What is Operating system? Explain various functions and objectives?
- 2) Differentiate between monolithic, layered and microkernel structure of OS.
- 3) Write a short note on system calls.
- 4) Explain different types of OS.
- 5) What are system calls? Explain any five system calls.
- 6) Draw and explain five state process model.
- 7) What is Process Control Block (PCB)? Analyze its role with respect to context switch.
- 8) What do you mean by process? Draw and explain process state diagram.
- 9) What are system calls? Explain five major categories of system calls.
- 10) What is context switch? Why it is said that context switch is pure overhead
- 11) Differentiate between process and threads.
- 12) Threads are lightweight entity. Justify.
- 13) Compare short term, medium term and long-term scheduler along with diagram
- 14) Describe microkernel operating system structure
- 15) What is thread? Describe any four advantages of multithreading model.
- 16) Differentiate Multitasking & Multiprogramming?
- 17) Explain various operating system services?

- 18) Explain Scheduling Queues?
- 19) Discuss various scheduling criteria
- 20) Explain schedulers and its types?
- 21) Differentiate various types of schedulers?
- 22) Describe the operating System as a resource Manager.

23)

Consider the following set of processes, with the length of CPU burst given in miliseconds.

Process	Burst time	Priority
\mathbf{P}_{1}	10	3
P_2	1	. 1
P_3	2	3
P_4	1 3	4
P,	5	2

The processes are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 all at time 0. Draw Gnatt charts for the following scheduling algorithms FCFS, SJF nonpreemptive priority) and RR (quantum = 1) and also calculate turn around time, average waiting time.

24)

Consider the following set of processes, assuming all are arriving at time 0.

process	Burst time	Priority
P1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
P2	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
P3	600 8 C C C C C	
P4	2000 45 5 0 5 2V V	50 550 6 6 0 x 5 5 5
P5	VV 8 550 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F 6 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Calculate average waiting time and turn-around time for FCFS, SJF (Non-Pre-emptive), Priority and RR (Quantum=2).

25)

Calculate AWT, ATAT, Response Time and Throughput of the following processes using Shortest job first (Non Preemptive).

Process	Arrival Time (ms)	Burst Time (ms)
P1 00	1200000	298
P2	2 8 8 8 8 8 8	5
P3	3 2 2 2 2	1
P4	450000000	2
P5	22468468	8

- 26) What are Semaphores? Differentiate between Counting and Binary Semaphores.
- 27) Explain synchronization problem in detail. How counting semaphore can be used to solve readers writes problem.
- 28) Explain counting semaphore with example
- 29) Write a short note on Producer consumer problem using semaphore
- 30) Difference between pre-emptive and Non Pre-emptive Scheduling.
- 31) Differentiate between preemptive and non-preemptive scheduling techniques. Classify all scheduling techniques as preemptive and non-preemptive with justification.
- 32) Explain direct and indirect communications of message passing systems.
- 33) Explain in brief race condition?
- 34) Define the term critical section? What are the requirement for critical section problem?
- 35) Explain critical section problem with any one of different solutions.
- 36) What are semaphores? Explain two primitive semaphore operations. What are its advantages? How do they implement mutual exclusion?
- 37) Explain solution to producer-consumer problem using semaphores.
- 38) Explain the readers/writers problem? Give a solution for the same.
- 39) Describe the Bounded buffer problem and give a solution for the same using semaphores.
- 40) What is mutual exclusion? Explain its significance.