មាននិងខ្មា

ជាទូទៅអ្នកសិក្សាជាពិសេសសិស្សានុសិស្សគ្រប់មជ្ឈដ្ឋាន ភាគច្រើនមានផ្នត់គំនិតគិតថាមុខវិជ្ជា **គរសិតទិន្យា** ជាមុខវិជ្ជាមួយដែលមានភាពស្មុគស្មាញ និងពិបាកក្នុងការចាប់យកចំណេះដឹង។ ជាក់ស្តែងមុខវិជ្ជានេះ ជាមុខវិជ្ជាវិទ្យាសាស្ត្រមួយដែលមានឥទ្ធិពលជាងគេ ដូចនេះវាពិតណាស់ថា ពិបាកក្នុងការៀន តែផ្ទុយទៅវិញបើសិនជាអ្នកសិក្សាបានចំណាយពេលនៅជាមួយគណិតវិទ្យាក្នុង ការគិតលើខ្លឹមសារ និងអនុវត្តលើលំហាត់ឱ្យបានគ្រប់គ្រាន់ វានឹងមានភាពងាយស្រួលសម្រាប់អ្នក ទៅលើអ្វីដែលអ្នកបានសិក្សា។ ដើម្បីជាជំនួយក្នុងការស្វ័យសិក្សា អ្នកសិក្សាគប្បីមានឯកសាគ្រប់គ្រាន់ ប៉ុន្តែខ្ញុំយល់ឃើញថាឯកសារគណិតវិទ្យាជាភាសាជាតិមានចំនួនតិចតួចដែលជាការពិបាកសម្រាប់ ការសិក្សា ជាហេតុដែលធ្វើឱ្យសៀវភៅមួយក្បាលនេះត្រូវបានបង្កើតឡើង។

សៀវភៅ **គោនិទ** នេះគឺត្រូវបានរៀបចំឡើងដោយផ្សាភ្ជាប់ជាមួយមេរៀនយ៉ាងក្បោះក្បាយក្នុង នោះរួមមាន មេរៀនក្នុងកម្រិតវិទ្យាល័យជាមួយសាកលវិទ្យាល័យ និយមន័យ រូបមន្ត ការសម្រាយ រូបមន្ត ខ្លឹមសារមេរៀនថ្មីៗ ការសិក្សាលើទីតាំងធៀប , បន្ទាត់ប៉ះ , បន្ទាត់ណរម៉ាល់ , លក្ខណៈអុបទិច ជាដើម។ ម្យ៉ាងវិញ ក្នុងសៀវភៅនេះ សម្បូរទៅដោយលំហាត់ជាច្រើន រួមមានទាំងកម្រិតវិទ្យាល័យ លំហាត់ប្រកួតប្រជែងនានា លំហាត់ដែលទាក់ទងនឹងជីវភាពរស់នៅជាដើម។ លើសពីនេះ ផ្នែកខាងក្រោយ នៃសៀវភៅនេះ មាននូវការបង្ហាញពីដំណើរការនៃការសង់ រង្វង់ ប៉ារ៉ាបូល អេលីប និងអ៊ីពែបូល និង មានភាសាអង់គ្លេសក្នុងន័យគណិតវិទ្យាសម្រាប់ស្រាវជ្រាវ និងស្វែងរកឯកសារបន្ថែម។

ក្នុងនាមជាអ្នករៀបរៀង និងនិពន្ធ ខ្ញុំបាទនឹងរងចាំនូវការរិះគន់គ្រប់មជ្ឈដ្ឋានអ្នកសិក្សាជានិច្ច ដើម្បីកែលម្អឱ្យកាន់តែល្អប្រសើរបន្ថែមទៀត។ ខ្ញុំជឿជាក់ថាសៀវភៅនេះនៅតែមានកំហុសកើតមានឡើង ត្រង់ចំណុចណាមួយ ហេតុនេះខ្ញុំសូមអភ័យទោសទុកជាមុនរាល់កំហុស ទាំងអស់ដែលកើតមានឡើង។ ប្រសិនបើមិត្តអ្នកអាន កេឃើញនូវកំហុសក្នុងសៀវភៅនេះ សូមទំនាក់ទំនងមកកាន់ខ្ញុំបាទតាមរយៈ

Faceook Account: Phan Kimsia

Gmail: phankimsie03@gmail.com

ភ្នំពេញ, ថ្ងៃទី ១៥ ខែ កក្កដា ឆ្នាំ ២០២១

Sien.

នាន់ នួនទៀ

សំឈូមព៖មេស់អូតរៀមរៀខនៅភាន់មឡដ្ឋានអូតសិត្សា

ការស្រាវជ្រាវឯកសារបន្ថែម ពិតជាមានសារៈសំខាន់ណាស់សម្រាប់ការអភិវឌ្ឍសមត្ថភាពខ្លួន
ក្នុង ផ្នែកណាៗទាំងអស់។ ហេតុនេះហើយខ្ញុំបាទសូមលើកទឹកចិត្តដល់ប្អូនសិស្សានុសិស្ស និស្សិត
និងលោកគ្រូអ្នកគ្រូទាំងអស់ខិតខំប្រឹងប្រែងស្រាវជ្រាវបន្ថែម ព្រមទាំងបង្កើតឯកសារល្អៗសម្រាប់ប្រទេសជាតិ
យើង។ ដូចទស្សនៈមួយបានសម្ដែងថា ទូកទៅកំពង់នៅ ដែលមានន័យថា មនុស្សស្លាប់តែស្នាដៃ
ដែលមនុស្សខំសាងគឺមានជីវិតជារៀងរហូត។

ការប្រឹងប្រែងចងក្រងឯកសារជាភាសាជាតិ ជាបុព្វហេតុមួយយ៉ាងសំខាន់ដែលធ្វើឱ្យមនុស្សជំនាន់ ក្រោយមានភាពសម្បូរបែបក្នុងការសិក្សា ហើយពួកគេនឹងអាចស្រាវជ្រាវចំណេះដឹងទៅមុខទៀតបាន ធ្ងាយ។ សំណៅឯកសារដែលពួកគេបានបន្សល់ទុកទៀតសោតនឹង បន្តជះឥទ្ធិពលបែបនេះជាបន្តបន្ទាប់ រហូតទៅដល់ចំណុចអភិវឌ្ឍអស្សារួមួយ។

ននួលសិន្ទិលក់ខ្លាច់មុខដោយ Math Team Kh

Facebook Page: Math Team Kh

សៀចតៅនេះមាននៅ Math Team Kh តែមួយគត់ ។ រាល់អារលួចចម្ងួច ន៏ចង្ក្រូចធន្ទលខុសគ្រូចចំពោះមុខច្បាច់ ។

ឌលៈ:គន្ទអា៖ គ្រូគពិនិត្យ

Designed Cover by: ទុំន នាស៊ី

រៀបរៀបដោយ៖ ជាន់ គីមសៀ

ខាត់នា

- 1	ෂෙවුන
9	គោនិច
9.9	សេចក្តីផ្តើមនៃកោនិច
໑.២	គុណសម្បត្តិនៃកោនិច
O	ෑඉව 8
២.១	សេចក្តីផ្តើមនៃរង្វង់
២.២	សមីការវង្វង់
២.២.១	ទម្រង់ស្តង់ជានៃសមិការរង្វង់
២.២.២	សមិការទូទៅនៃរង្វង់
២.៣	ទម្រង់ខុសគ្នានៃសមិការវង្វង់
២.៤	ទីតាំងធ្យេបែរវាំងចំណុច/បន្ទាត់នឹងរង្វង់ ១៤
២.៤.១	ទីតាំងឆ្យេបរវាងចំណុចនឹងរង្វង់ ១៤
២.៤.២	ទីតាំងធ្យេប់រវាងបន្ទាត់នឹងរង្វង់ ១៣
២.៩	សមិការចន្ទាត់ប៉ះនឹងរង្វង់
២.ដ.១	សមិការបន្ទាត់ប៉ះនឹងរង្វង់ដែលផ្ចិតស្ថិតនៅគល់តម្រុយ
២.ដ.២	សមិការបន្ទាត់ប៉ះនឹងរង្វង់ដែលផ្ចិតមិនស្ថិតនៅគល់តម្រុយ ១០
២.៦	ចម្ងាយពីផ្ចិតទៅចំណុចដែលបន្ទាត់ប៉ះរង្វង់
២.៧	ការអនុវត្តន៍លើរង្វង់ ២០
២.៨	លំហាត់ និងដំណោះស្រាយនៃរង្វង់ ២០
៣	ជារាទ្ ស ៥ព
៣.១	សេចក្តីផ្តើមនៃប៉ារ៉ាបូល
៣.២	និយមន័យប៉ារ៉ាបូល និងផ្នែកសំខាន់ៗនៃប៉ារ៉ាបូល
៣.២.១	និឃមន័យប៉្យារ៉ាបូល
m.७.७	និយមន័យផ្នែកសំខាន់ៗនៃប្រ៉ារ៉ាបួល

៣.៣	សមិការស្តង់ដានៃហ៉្យ៉ាហ្គល
m.m.១	សមីការស្តង់ដានៃប៉្យារ៉ាចូលដែលមានកំពូលជាគល់អ័ក្សកូអរដោនេ
m.m.U	សមិការស្តង់ដាំនៃហ្វ៉ារ៉ាបូលដែលមានកំពូលមិនស្ថិតត្រង់គល់តម្រុយ ៦២
៣.៤	សមិការទូទៅនៃញ៉ារ៉ាបូល៦៥
៣.៥	ទិ៍តាំងនៃចំណុចនិងបន្ទាត់ធ្មេប្រនឹងប៉្យារ៉ាចូល
៣.៥.១	ទីតាំងនៃចំណុចធ្យេប់នឹងប្លាំរ៉ាបូល
៣.៥.២	ទីតាំងនៃបន្ទាត់ធ្យេបនឹងហ្វ៉ារ៉ាបូល
៣.៦	សមិការបន្ទាត់ប៉ះនឹងប៉្យារ៉ាបូល
៣.៧	សមិការបន្ទាត់ធារម៉ាល់នឹងប៉ារ៉ាបូល
៣.៨	ការអនុវត្តន៍លើប៉្នារ៉ាចូល
m . ฮ์	សក្ខណៈអុបទិចនៃញ៉ាំរ៉ាំចូល
៣.១០	លិហាត់ និងដំណោះស្រាយនៃញ៉ារ៉ាចូល
ب	
<u>د</u>	នេះ និ និ និ
៤.១	សេចក្តីផ្តើមនៃអេលីប ១៣៧
d. U	និយមន័យអេលីប និងផ្នែកសំខាន់ៗនៃអេលីប ១៣៧
d.U d.U.9	និយមន័យអេលីប និងផ្នែកសំខាន់ៗនៃអេលីប១៣៧ និយមន័យអេលីប១៣៧
	•
៤.២.១	និយមន័យអេលីប ១៣៧
d.U.9	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨
d.U.9 d.U.U d.M	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដាំនៃអេលីប ១៤០
á.U.U á.U.U á.M á.m.o	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដាំនៃអេលីប ១៤០ សមិការស្តង់ដាំនៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤០
6.0.0 6.0.0 6.m 6.m.0	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដានៃអេលីប ១៤០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលចិនស្ថិតត្រង់គល់តម្រុយ ១៤៤
6.0.0 6.0.0 6.0 6.0 6.0 6.0 6.0 6.6	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤៤ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលមិនស្ថិតត្រង់គល់តម្រុយ ១៤៩
6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.6	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដានៃអេលីប ១៣៩ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលមិនស្ថិតត្រង់គល់តម្រុយ ១៤៩ សមិការចូទៅនៃអេលីប ១៤៩ សមិការចូទៅនៃអេលីប ១៤៩ ទីតាំងផ្យេប់នៃចំណុចនឹងអេលីប ១៤០
6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.6 6.6 6.	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដានៃអេលីប ១៨០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលមិនស្ថិតត្រង់គល់តម្រុយ ១៤៩ សមិការចូទៅនៃអេលីប ១៤៩ ទីតាំងផ្យេប់នៃចំណុចនឹងអេលីប ១៤០ ទីតាំងផ្យេប់នៃចំណុចនឹងអេលីប ១៤០
6.0.0 6.00 6.00 6.00 6.00 6.00 6.6 6.6 6	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដានៃអេលីប ១៨០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលមិនស្ថិតត្រង់គល់តម្រុយ ១៤៩ សមិការចូទៅនៃអេលីប ១៤៩ ទីតាំងផ្យេប់នៃចំណុចនឹងអេលីប ១៤០ ទីតាំងផ្យេប់នៃចំណុចនឹងអេលីប ១៤០ សមិការបន្ទាត់ប៉ះនឹងអេលីប ១៤៤
6.0.0 6.00 6.00 6.00 6.00 6.00 6.6 6.6 6	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលមិនស្ថិតត្រង់គល់តម្រុយ ១៤៤ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលមិនស្ថិតត្រង់គល់តម្រុយ ១៤៩ សមិការទូទៅនៃអេលីប ១៤៩ ទីតាំងផ្យេប់នៃចំពរាចនឹងអេលីប ១៤០ ទីតាំងផ្យេប់នៃចំពរាចនឹងអេលីប ១៤០ សមិការបន្ទាត់់ទំនងអេលីប ១៤០ សមិការបន្ទាត់ទំនងអេលីប ១៤៤ សមិការបន្ទាត់ទំនងអេលីប ១៤៧ សុំចូសង់ទ្រីស៊ីតេ ១៦១
6.0.0 6.00 6.00 6.00 6.00 6.00 6.00 6.0	និយមន័យអេលីប ១៣៧ ផ្នែកសំខាន់ៗនៃអេលីប ១៣៨ សមិការស្តង់ដានៃអេលីប ១៨០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលជាស្ថិតត្រង់គល់តម្រុយ ១៤០ សមិការស្តង់ដានៃអេលីបដែលមានកំពូលមិនស្ថិតត្រង់គល់តម្រុយ ១៤៩ សមិការចូទៅនៃអេលីប ១៤៩ ទីតាំងផ្យេប់នៃចំណុចនឹងអេលីប ១៤០ ទីតាំងផ្យេប់នៃចំណុចនឹងអេលីប ១៤០ សមិការបន្ទាត់ប៉ះនឹងអេលីប ១៤៤

២៤.ឯ	លំហាត់នឹងដំណោះស្រាយ
ଝ	អ៊ីពែទ្ ស
៥.១	សេចក្តីផ្តើមនៃអ៊ីពែបូល
ช.๒	និយមន័យ និងផ្នែកសំខាន់ៗនៃអ៊ីពែបូល
៥.២.១	និយមន័យអ៊ីព្រំបូល ២១៩
៥.២.២	ផ្នែកសំខាន់ៗនៃអ៊ីពែបូល ២១៦
៥.៣	សមិការស្តង់ដានៃអ៊ីពែបូល
៥.៣.១	សមីការស្តង់ដាំនៃអ៊ីពែចូលដែលមានផ្ចិតស្ថិតត្រង់គល់តម្រុយ ២១៧
៥.៣.២	សមិការស្តង់ដានៃអ៊ីពែចូលដែលមានផ្ចិតមិនស្ថិតត្រង់គល់តម្រុយ ២២៦
2.2	សមិការទូទៅនៃអ៊ីពែបូល២៣០
યે. ઢો	ទិ៍តាំងធ្យេប់នៃចំណុចនិងអ៊ីពែបូល
ช์.ฆ	ទីតាំងធ្យេប់នៃបន្ទាត់នឹងអ៊ីពែបូល២៣៤
นี้.ฟ	សមិការបន្ទាត់ប៉ះនឹងអ៊ីពែបូល ២៣៦
ដ់.ដំ	សមិការណរម៉ាល់កែងនឹងអ៊ីពែចូល២៣៩
કે.ક્રે	អ៊ិចសង់ទ្រីស៊ីតេ ២៤២
៥.១០	លក្ខណៈចំណាំងផ្លាត់នៃអ៊ីពែបូល
ន់ .១១	ការអនុវត្តន៍លើអ៊ីពែបូល
៥.១២	លំហាត់ នឹងដំណោះស្រាឃ
-11	ទំណេះដ៏១មខ្ថែមលើគោសិច
៥.១៣	សំពរាង់រូបធរណីមាត្រ
៥.១៣.១	សំពាង់នៃរង្វង់ ២៩៩
៥.១៣.២	សំណង់នៃហ្វ៉ារ៉ាចូល ២៩៩
៥.១៣.៣	សំណង់នៃអេលីប ២៩៨
ដ.១៣.៤ 	សំពាង់នៃអ៊ីពែបូល
ឯ៤.រំ	តាសាតរើរាតវិទ្យាខ្មែរ-អង់គ្លេសមួយចំនួន

អោតិច

១.១ សេចគ្គីផ្គើមនៃគោនិច

ផ្នែករាងសាជីត្រូវបានគេរកឃើញក្នុងកំឡុងសម័យក្រិកបុរាណដែលមានរយៈពេលពី 600 ទៅ 300 ឆ្នាំមុនគ.ស។ ការចាប់ផ្ដើមរិះរកស្រាវជ្រាវពីសាជីនៅក្នុងសម័យរជ្ជកាលអេឡិចសាន់ឌ័រ ដែលត្រូវបាន គេទទួលស្គាល់អំពីការស្រាវជ្រាវរបស់លោក Apollonius (262-190 B.C)។ ការសិក្សាភាសា ក្រិកបុរាណមានការពិបាកយ៉ាងខ្លាំងជាមួយនឹងលក្ខណៈធរណីមាត្រនៃសាជី។ ហ្វេតមកដល់ដើមសតវត្ស ទី 17 ភាពងាយស្រួលនៃសាជីបានលេចឡើងយ៉ាងច្បាស់។ តាមការសិក្សាស្រាវជ្រាវរបស់អ្នកប្រាជ្ញ កន្លងមក គេបានរកឃើញពីលក្ខណៈនៃកោណ។ ផ្នែកនៃរាងសាជីគឺជាខ្សែកោងដែលទទួលបាន ដោយការប្រសព្វគ្នារវាងប្លង់និងកោណនៅផ្នែកខាងស្តាំ។ ប្លង់កាត់កែងនឹងកោណបង្កើតបានជា រង្វង់ ។ ប្លង់កាត់ស្របទៅនឹងចំហៀងនៃកោណបង្កើតបានជា ប្លាំរ៉ាចូល។ ប្លង់កាត់អ័ក្សកោណបង្កើតបាន ម៉ុស្រួចបង្កើតបាន អេលីប។ ចុងក្រោយគឺ ប្លង់កាត់ស្របនឹងអ័ក្សកោណបង្កើតបានជា អ៊ីពែចូល ដែល ចែកជាពីរផ្នែកដូចរូប។

ប្លង់ប្រសព្វកោលាបង្កើតបានខ្សែកោងចំនួនបួន

_____iෲଛିଞL_____

១.២ គុណសម្បត្តិនៃគោនិច

ដើម្បីឆ្លើយតបទៅនឹងកម្មវិធីសិក្សាថ្នាក់វិទ្យាល័យ យើងនឹងសិក្សាពីប្លង់មួយកាត់កោណពីរមិនត្រង់
កំពូលដែលរួមមាន រង្វង់ ប៉ារ៉ាបូល អេលីប និងអ៊ីពែបូល។ ប៉ារ៉ាបូល និងអ៊ីពែបូលត្រូវបានអ្នកប្រាជ្ញក្រិក
ម្នាក់ឱ្យឈ្មោះ ដែលលោកមានឈ្មោះថា Apollonius។ ប៉ារ៉ាបូលជារូបរាងមួយដែលគេប្រើនៅក្នុង
កែវពង្រីកដែលមានអានុភាពខ្លាំង និងជាឧបករណ៍សម្រាប់ចាប់យកថាមពលពន្លឺព្រះអាទិត្យ។ ចំណែក
ឯអ៊ីពែបូលត្រូវបានគេប្រើក្នុងដំណើរការកំណត់សម្គាល់នូវទីតាំងមួយដោយមានការបង្រួមគល់ដៅ
នេះជាអ្វីដែលធ្វើឱ្យប្រព័ន្ធ GPS អាចធ្វើទៅបាន។ រីឯអេលីប ត្រូវបានគេយកទៅសិក្សាលើគន្លងនៃ
ភពផែនដីដោយដឹងពីល្បឿននៃអង្គជាតុធ្វើចម្លងលើគន្លងជាអេលីប។

$$Ego = \frac{1}{Knowledge}.$$

-Albert Einstein

២.១ សេចគ្គីផ្គើមនៃរខ្ទខ់

ពាក្យថា រង្វង់ គឺបានមកពីពាក្យក្រិក Kirkos ដែលមានន័យថា វង្វង់មួយបានមកពីមូលដ្ឋាន Ker ដែលមានន័យថា ប្រែឬបត់។ វង្វង់គួរូវបានគេស្គាល់តាំងពីមុនពេលចាប់ផ្ដើមនៃប្រវត្តិសាស្ត្រដែល បានកត់ត្រាទុក។ ក្នុងធម្មជាតិ រង្វង់គ្រូវបានគេសង្កេតឃើញដូចជា ព្រះច័ន្ទ ព្រះអាទិត្យ និងដើមរុក្ខជាតិខ្លីមួយដែលបក់តាមខ្យល់នៅ លើដីខ្សាច់ដែលមានទម្រង់ជារង្វង់។ក្នុងគណិតវិទ្យា ការសិក្សារង្វង់ បានជួយដល់ការអភិវឌ្ឍនូវផ្នែកធរណីមាត្រ តារាសាស្ត្រ និងការ គណនា។ មកដល់ពេលនេះក្នុងកំឡុងអារ្យធម៌ទំនើបមានសមត្ថភាព ក្នុងការ បង្កើតអ្វីៗ ដែលមានរាងជារង្វង់បានដែលជាដើមចងនៃ ការកំណត់ពីរូបរាងរបស់វា។

និយមន័យ ១

ចំណុចប្រសព្វ រវាង កោណ និង ប្លង់ ដែលកាត់ កោណ បង្កើតបានជារង្វង់ដែលស្ថិតក្នុងកោណនោះ។ បញ្ជាក់ ប្លង់ ត្រូវ កាត់ កែង នឹង អ័ក្ស អរ ដោនេ និង ស្រប នឹង អ័ក្សអាប់ស៊ីស។ ដូចនេះ រង្វង់ គឺជា រូបរាង នៃ ការ ប្រសព្វគ្នារវាងកោណ និងប្លង់ដែលកែងនិងស្របអ័ក្ស មេ។

និយមន័យ ២

រង្វង់គឺជាសំណុំនៃចំនុចទាំងអស់ក្នុងប្លង់ដែលមានភាពស្មើគ្នាពី ចំនុចថេរមួយនៅក្នុងប្លង់។ ចំនុចថេរត្រូវបានគេហៅថា ចំនុចកណ្ដាលនៃរង្វង់ ឬ ផ្ចិតនៃវង្វង់ O ហើយចម្ងាយពីចំនុចកណ្ដាល នោះទៅនឹងចំនុចនៅលើរង្វង់ហៅថា តាំនៃវង្ងង់ OP ។

២.២ សនីភាអខ្ងខ់

ត្រារា នារីត្រស់ស្តីទុស្ស ៤ ហ៊ុ

ឆ្អឹងរទិទុស្សឹងងៃទុស្សង្តា

ដោយសាររង្វង់មួយត្រូវបានកំណត់ជាសំណុំចំនុចស្មើគ្នាពី ចំនុចកណ្តាលនៃរង្វង់ ដូច្នេះយើងអាចប្រើរូបមន្ត ចម្ងាយ រវាងពីរចំណុចដើម្បីកំណត់សមីការនៃរង្វង់។ យើងចាប់ផ្តើម សិក្សាដំបូងជាមួយនឹងរង្វង់ដែលមានចំណុចកណ្តាលរបស់ វានៅត្រង់គល់តម្រុយ O(0,0) កាត់ចំនុច P(x,y) មួយ ហើយមានកាំ r=OP ។ សម្រាចចញ្ហាក់៖ សមីការរង្វង់ដែលមានផ្ចិតត្រង់គល់តម្រុយ

$$OP = \sqrt{(x_P - x_O)^2 + (y_P - y_O)^2} \quad \{$$
្វបមន្តចម្ងាយរវាងពីរចំណុច $\}$ $r = \sqrt{(x - 0)^2 + (y - 0)^2} \quad \{$ ដោយ $x_O = 0, y_O = 0\}$ $r^2 = x^2 + y^2 \quad \{$ លើកអង្គទាំងពីរជាការេ $\}$

ឬ $x^2+y^2=r^2$ ម្យ៉ាងវិញយើងអាចពិនិត្យលើត្រីកោណកែង OPQ កែងត្រង់ Q តាមទ្រឹស្តីបទពីតាគ័រ $OP^2=OQ^2+PQ^2$

$$\iff$$
 $r^2 = x^2 + y^2$

] តាមទ្រឹស្តីបទពីតាគ័រ៖ អ៊ីប៉ូតេនុសការរស្មើផលបូកការេនៃជ្រុងជាប់មុំកែងទាំងពីរ។

______នៃភាសិខL_____

ជាទូទៅ ២.២.១ សមីការរង្វង់ដែលមានផ្ចិតត្រង់គល់តម្រុយដែលមានផ្ចិត (0,0) និងកាំ r>0 គឺ៖ $x^2+y^2=r^2$ ។

វិធាន ១

ដើម្បីគូសរង្វង់ដែលមានផ្ចិតត្រង់គល់តម្រុយឱ្យបានត្រឹមត្រូវតាមសមីការ យើងត្រូវ៖

- កំណត់ទីតាំងនិងតាងត្រង់គល់តម្រុយដូចទៅនឹងផ្ចិតរង្វង់
- ullet កំណត់ទីតាំងនិងតាងចំណុចកាត់អ័ក្សអាប់ស៊ីសគឺ (r,0) និង (-r,0)
- ullet កំណត់ទីតាំងនិងតាងចំណុចកាត់អ័ក្សអរដោនេគឺ (0,r) និង (0,-r)
- គូសរង្វង់កាត់តាមចំណុចទាំងនោះ ។

ខ្នុនាហរណ៍ ១

$$x^2 + y^2 = -2$$

$$x^2 - y^2 = 9$$

នំណោះស្រាយ៖ គូសង្វេង់តាមសមីការង្វេង់ដូចខាងក្រោម៖

$$2 + y^2 = 8$$

$$x^2+y^2=\left(2\sqrt{2}\right)^2, \quad \{$$
សរសេរចំនួនពិតជាចំនួនមួយលើកជាការេ $\}$ កំណត់បាន ផ្ចិតរង្វង់ $I(0,0)$ និងកាំ $r=2\sqrt{2}$

$$x^2 - y^2 = 9$$

តាមសមីការវង្វង់មាននរាង $x^2+y^2=r^2$ នោះសមីការ $x^2-y^2=9$ មិនមែនជាសមីការវង្វង់ទេ ព្រោះសមីការនេះមានវត្តមានសញ្ញា ដកនៅពីមុខមេគុណ y^2 តែជាសមីការអ៊ីពែបូលដែលនឹងត្រូវសិក្សាចំណុចបន្ទាប់។ ដូចនេះ សមីការ $x^2-y^2=9$ មិនអាចកំណត់នៃការគូសង្វង់បានទេ។

$$x^2 + y^2 = -2$$

ក្នុងសមីការរង្វង់ $x^2+y^2=r^2$ ដែលត្រូវបានកំណត់ r>0 ព្រោះកាំគឺជាប្រវែង យើងអាចសន្និដ្ឋានបានថាសមីការ $x^2+y^2=-2$ មិនមែនជាសមីការរង្វង់ព្រោះ -2<0 ដូចនេះ សមីការ $x^2+y^2=-2$ មិនអាចកំណត់នៃការគូសង្វង់បានទេ។

$$-v^2 - x^2 = -25$$

$$x^2 + y^2 = 25$$
, {សម្រួលសញ្ញាដកនៃអង្គទាំងពីរ}

$$x^2 + y^2 = 5^2$$

កំណត់បាន ផ្ចិតរង្វង់ I(0,0) និងកាំ r=5

ន្ទឹងខេិត្នម្យង នៃ ទុង ទុង ទេ ខេត្ត

យើង អាច ប្រើ រូបមន្ត ចម្ងាយ រវាង ពីរ ចំណុច ដើម្បី កំណត់ សមីការ រង្វង់ ដែលមាន កាំ r និង ផ្ចិត I(h,k) ដែលមិន ឋិតនៅត្រង់គល់តម្រុយ។ យើងចាប់ផ្ដើមស្រាយសមីការរង្វង់ ដោយសិក្សាលើរង្វង់ដែលមានផ្ចិត I(h,k) ហើយកាត់ចំនុច P(x,y) ដែលមានកាំ r=IP ។

J៖ភានិ**ច**L_____

សម្រាយចញ្ហាក់៖ សមីការរង្វង់ដែលមានផ្ចិតមិនស្ថិតត្រង់គល់តម្រុយ

$$IP = \sqrt{(x_P-x_I)^2+(y_P-y_I)^2}, \quad \{$$
រូបមន្តចម្ងាយរវាងពីរចំណុច} $r = \sqrt{(x-h)^2+(y-k)^2}, \quad \{$ លើកអង្គទាំងពីរជាការេ $\}$ $r^2 = (x-h)^2+(y-k)^2$

$$y (x-h)^{2} + (y-k)^{2} = r^{2}$$

ជាំទូទៅ ២.២.២ សមីការរង្វង់ដែលមានផ្ចិតមិនស្ថិតត្រង់គល់តម្រុយដែលមានផ្ចិត I(h,k) និងកាំ r>0 គឺមានរាង៖ $(x-h)^2+(y-k)^2=r^2$ ដែលហៅថាសមិការស្តង់ដាំនៃរង្វង់។

ចំណាំ ២.២.៣ យើងអាចប្រើសមីការរង្វង់នេះដើម្បីបង្ហាញសមីការរង្វង់ដែលមានផ្ចិតត្រង់គល់ តម្រុយ (h=0;k=0) គេបាន៖ $(x-h)^2+(y-k)^2=r^2$ $(x-0)^2+(y-0)^2=r^2$

$$x^2 + y^2 = r^2$$

វិធាន ២

ដើម្បីសង់រង្វង់ដែលមានផ្ចិតមិនស្ថិតត្រង់គល់តម្រុយ យើងត្រូវ៖

- កំណត់និងតាងផ្ចិត I(h,k)និងកាំនៃរង្វង់
- កំណត់ចុងចំណុចនៃកាំដែលគូសចេញពីផ្ចិត
- គូសង្វេង់ដោយកាត់តាមចុងចំណុចនោះ។

ಕ್ಲೋಡ್ ಜ್ಯಾಚ್ಚಾಣಕ್ಷಣ ಜಿ.ಜಿ.ಜಿ

សមីការស្តង់ដានៃរង្វង់ដែលមានកាំ r និងផ្ចិត (h,k) គឺ៖

$$(x-h)^2 + (y-k)^2 = r^2 \iff x^2 - 2hx + h^2 + y^2 - ky + y^2 = r^2$$
 $\iff x^2 + y^2 - 2hx - 2ky + h^2 + k^2 - r^2 = 0$ តាង $A = -2h$, $B = -2k$ និង $C = h^2 + k^2 - r^2$

គេបាន $x^2 + y^2 + Ax + By + C = 0$ ហៅថា សមិតារទូទៅនៃសមិតារ ។

____រ៵៳ឆ៝៝៝៵**៲**

ជាំទូទៅ ២.២.៤ សមីការទូទៅនៃរង្វង់់គឺ $x^2+y^2+Ax+By+C=0$ ដែលមានផ្ចិត (h,k) និងកាំ $r=\sqrt{h^2+k^2-C}$,C ជាចំនួនពិត។

វិធាន ៣

វិបាននៃការកំណត់កាំនិងផ្ចិតដែលឱ្យដោយសមីការទូទៅនៃរង្វង់៖

- $oldsymbol{0}$ ធ្វើយ៉ាងណាឱ្យមេគុណ x^2 និង y^2 ស្មើ 1 និងនៅអង្គទីពីរស្មើ 0
- oxtlet្យ យើងនឹងកំណត់បានផ្ចិតមានកូអរដោនេ (h,k) ដែល $h=-rac{1}{2}A$ និង $k=-rac{1}{2}B$
- $rac{m{m}}{}$ កាំនៃវង្វង់ $r=\sqrt{h^2+k^2-C}$ ។

ចំណាំ ២.២.៤ យើងក៏អាចកំណត់កូអរដោនេធ្វិត និងកាំតាមរយៈការបម្លែងសមីការទូទៅទៅជា សមីការស្តង់ដានៃរង្វង់ដែលមានរាង $(x-h)^2+(y-k)^2=r^2$ កំណត់បាន ផ្ចិត (h,k) និង កាំ r។

- នៅពេលដែលរង្វង់ប៉ះអ័ក្សអាប់ស៊ីស នោះសមីការរង្វង់មានរាង $(x-h)^2 + (y-k)^2 = k^2$
- នៅពេលដែលរង្វង់ប៉ះអ័ក្សអរដោនេ នោះសមីការរង្វង់មានរាង $(x-h)^2+(y-k)^2=h^2$
- នៅពេលដែលរង្វង់ប៉ះអ័ក្សទាំងពីរ នោះសមីការរង្វង់មានរាង $(x-h)^2 + (y-k)^2 = k^2$ $(x-h)^2 + (y-k)^2 = h^2$

JនោសិឌL

Ⅳ នៅពេលដែលរង្វង់កាត់គល់តម្រុយ និងផ្ចិត ស្ថិតនៅលើអ័ក្សអាប់ស៊ីស នោះសមីការរងង់មានរាង

$$r = h$$

$$O$$

$$I(h, 0)$$

$$(x-h)^2 + y^2 = h^2$$

 $y \quad x^2 + y^2 - 2hx = 0$

 នៅពេលដែលរង្មង់កាត់គល់តម្រួយ និងផ្ចិត ស្ថិតនៅលើអ័ក្សអាប់ស៊ីស នោះសមីការរង្វង់មានរាង $x^2 + (y - k)^2 = k^2$

$$\begin{array}{c|c}
I(0,k) & r = k \\
\hline
O & x
\end{array}$$

$$v x^2 + v^2 - 2kv = 0$$

🚺 នៅពេលដែលរង្វង់កាត់គល់តម្រុយនិងកាត់ពីរចំណុច a និង b ដែល b ស្ថិតនៅលើអ័ក្សអរដោនេ និង aស្ថិតនៅលើអ័ក្សអាប់ស៊ីស នោះសមីការរង្វង់មានរាង $x^2 + y^2 - ax - by = 0$ ដែលមាន ផ្ចិត $I\left(\frac{a}{2},\frac{b}{2}\right)$ \mathfrak{I}

 $oldsymbol{ ext{VII}}$ $oldsymbol{ ext{vg}}$ ក្រានិង $B(x_2,y_2)$ ជាចុងចំណុចសងខាងនៃអង្គត់ផ្ចិត ABនិងតាង P(x,y) ជាចំណុចមួយនៅរង្គង់ មេគុណប្រាប់ទិសនៃ $AP = \frac{y - y_1}{x - y_2}$ មេគុណប្រាប់ទិសនៃ $BP = \frac{y - y_2}{r}$ ដោយសារតែ $\angle APB = 90^{\circ}$ យើងបាន មេគុណប្រាប់ទិស AP imes BP = -1

$$\implies \left(\frac{y-y_1}{x-x_1}\right) \times \left(\frac{y-y_2}{x-x_2}\right) = -1$$

$$\implies (x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0$$

ដូចនេះ សមីការរង្វង់មានរាង $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$ ។

් යික්වෑනිපෑනවජිකුප/පළාත්මීවෑලුල්

ជាំទូទៅ ២.៤.១ ទីតាំងធៀបរវាងចំណុច $P(x_0,y_0)$ និងរង្វង់ដែលមានផ្ចិត I(h,k) និងកាំ r គឺ៖

- 🏶 បើ IP = r នោះចំណុច P នៅលើរង្គង់
- 🍖 បើ IP>r នោះចំណុច P នៅខាងក្រៅរង្វង់
- 😻 បើ IP < r នោះចំណុច P នៅខាងក្នុងរង្វង់។

ក្នុងការបង្ហាញថាចំណុចមួយស្ថិតនៅលើ, ក្រៅ, ឬក្នុងរង្វង់ យើងត្រូវកេចម្ងាយពីចំណុចនោះទៅនឹង ផ្ចិតនៃរង្វង់ ហើយប្រៀបធៀបជាមួយប្រវែងកាំនៃរង្វង់។ តែយ៉ាងណាមិញ យើងនឹងសិក្សាលើករណី មួយផ្សេងទៀតដែលមិនចាំបាច់រកប្រវែងពីចំណុចមួយទៅផ្ចិតទេ ពោលគ្រាន់តែយកកូអរដោនេនៃចំណុច នោះទៅជំនួសក្នុងសមីការរង្វង់ យើងនឹងដឹងពីទីតាំងនៃចំណុចយ៉ាងប្រាកដ។

ullet ចំពោះ $\mathit{IP} = r$ នោះចំណុច P នៅលើវង្គង់

$$\iff IP^2 = r^2$$

$$\iff (x_0 - h)^2 + (y_0 - k)^2 = r^2$$

$$\iff$$
 $(x_0 - h)^2 + (y_0 - k)^2 - r^2 = 0$

$$y \quad x_0^2 + y_0^2 - 2hx_0 - 2ky_0 + h^2 + k^2 - r^2 = 0$$

តាង
$$f(x_0, y_0) = (x_0 - h)^2 + (y_0 - k)^2 - r^2 = 0$$

$$y \quad f(x_0, y_0) = x_0^2 + y_0^2 - 2hx_0 - 2ky_0 + h^2 + k^2 - r^2 = 0$$

- ullet ចំពោះ IP>r នោះចំណុច P នៅក្រៅរង្វង់
- ចំពោះ IP < r នោះចំណុច P នៅក្នុងរង្វង់ សម្រាយពីរករណីខាងលើដូចសម្រាយក្នុងករណីទីមួយ គ្រាន់តែផ្លាស់ប្តូរសញ្ញាវិសមភាព។

