

Investigation of Hierarchical Temporal Memory Spatial Pooler's Noise Robustness and Specificity

Sang Nguyen phuocsangnguyen 97@gmail.com

Duy Nguyen ngthanhduy7@gmail.com

Fachbereich 2 Informatik und Ingenieurwissenschaften

Wissen durch Praxis stärkt

Seite 1

Sang Nguyen| 1185021

Duy Nguyen | 106778

Contents

- Introduction
- Methods
- Results and Discussion
- Conclusion

Duy Nguyen | 1067783

Introduction

Seite 3 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Methods – making training data

 $f(x) = 10 \cdot \cos(0.01\pi \cdot x) \cdot \cos(0.05\pi \cdot x)$

Noise-free input data curve

Figure 1. The 200 samples from the original input data set

Datum 22.03.2020

Seite 4 Sang Nguyen | 1185021 Duy Nguyen | 1067783

Methods – making training data

			U	•						
	Α	В	C	D	E	F	G	Н	1	J
1	0	10								
2	1	9.9								
3	2	9.5								
4	3	8.9								
5	4	8 7								
6	5	7								
7	6	5.8								
8	7	4.4								
9	8	3								
10	9	1.5								
11	10	0								
12	11	-1.5								
13	12	-2.9								
14	13	-4.2								
15	14	-5.3								
16	15	-6.3								
17	16	-7.1								
18	17	-7.7								
19	18	-8								
20	19	-8.2								
21	20	-8.1								
22	21	-7.8								
23	22	-7.3								
24	22									
	+ +	sinusoi	dal	(+)						

(Source: https://blogs.sas.com/content/iml/2019/07/22/extreme-value-normal-data.html#prettyPhoto)

Seite 6 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

NORM.INV(RAND(), m, s)

Seite 7 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

0 1 2 3 4 5 6 7 8 9	B 10 9.9 9.5 8.9 8 7 5.8 4.4 3 1.5 0 -1.5	C 10.25059 9.644184 10.09109 9.75371 8.421129 7.540633 6.060184 3.776054 5.711293 1.836882 -1.50151	D	E	F	G	H
1 2 3 4 5 6 7 8	9.9 9.5 8.9 8 7 5.8 4.4 3 1.5	9.644184 10.09109 9.75371 8.421129 7.540633 6.060184 3.776054 5.711293 1.836882 -1.50151					
2 3 4 5 6 7 8 9	9.5 8.9 8 7 5.8 4.4 3 1.5	10.09109 9.75371 8.421129 7.540633 6.060184 3.776054 5.711293 1.836882 -1.50151					
3 4 5 6 7 8 9	8.9 8 7 5.8 4.4 3 1.5	9.75371 8.421129 7.540633 6.060184 3.776054 5.711293 1.836882 -1.50151					
4 5 6 7 8 9	8 7 5.8 4.4 3 1.5	8.421129 7.540633 6.060184 3.776054 5.711293 1.836882 -1.50151					
5 6 7 8 9	7 5.8 4.4 3 1.5	7.540633 6.060184 3.776054 5.711293 1.836882 -1.50151					
6 7 8 9	5.8 4.4 3 1.5	6.060184 3.776054 5.711293 1.836882 -1.50151					
7 8 9	4.4 3 1.5	3.776054 5.711293 1.836882 -1.50151					
8 9	3 1.5 0	5.711293 1.836882 -1.50151					
9	1.5 0	1.836882 -1.50151					
	0	-1.50151					
10							
	-1.5	0.70024					
11	210	-0.70024					
12	-2.9	-4.55239					
13	-4.2	-5.40321					
14	-5.3	-5.66433					
15	-6.3	-6.51344					
16	-7.1	-6.25993					
17	-7.7	-7.47766					
18	-8	-5.5223					
19	-8.2	-8.79862					
20	-8.1	-7.8666					
21	-7.8	-6.93527					
	-7.3	-7.12223					
22	sinusoi	dal	+				
	20	20 -8.1 21 -7.8 22 -7.3	20 -8.1 -7.8666 21 -7.8 -6.93527 22 -7.3 -7.12223				

B1	•	· · · ×	~	<i>f</i> _x 10	.3	
	A	В	С	D	E	F
1	0	10.3				
2	1	9.6				
3	2	10.1				
4	3	9.8				
5	4	8.4				
6	5	7.5				
7	6	6.1				
8	7	3.8				
9	8	5.7				
10	9	1.8				
11	10	-1.5				
12	11	-0.7				
13	12	-4.6				
14	13	-5.4				
15	14	-5.7				
16	15	-6.5				
17	16	-6.3				
18	17	-7.5				
19	18	-5.5				
20	19	-8.8				
21	20	-7.9				
22	21	-6.9				
23	22	-7.1				
4) }	Noisy_N-	0-1_sinu	soidal	+	
READY						

Duy Nguyen | 1067783

Noise level: The ratio between standard deviation s and input resolution

Seite 10 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Figure 2. Comparison between original and noisy input data sets

Seite 11 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Methods – Scalar Encoder's settings

Table 1. Scalar Encoder's Settings

Parameter	Value
W	65
N	465
MinVal	-20.0
MaxVal	20.0
Periodic	false
ClipInput	true
Offset	108

=> Resolution 0.1

Seite 12 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Methods – Spatial Pooler's settings

Table 2. Spatial Pooler's Settings

Parameter	Value
inputDimensions	465
comlumnsDimension	2048
potential Radius	-1
potentialPct	1
globalInhibition	true
numActiveColumnsPerInhArea	0.02*2048 (2%)
stimulusThreshold	0.5
synPermInactiveDec	0.008
synPermActiveInc	0.01
synPermConnected	0.1
dutyCyclePeriod	100
maxBoost	10

Seite 13 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Methods – Comparing function

Comparison function

```
public static double GetHammingDistance(int[] originArray,
int[] comparingArray, bool countNoneZerosOnly = false)
```


Seite 14 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Methods - summarization

Seite 15 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Result and Discussion - Robustness

Figure 3. "Hamming distance" between original and noisy (noise-level-2) Spatial Pooler output data sets

Sang Nguyen | 1185021 Duy Nguyen | 1067783 Seite 16 Datum 22.03.2020

Result and Discussion - Robustness

Figure 4. Average similarity between original and different levels of noisy input data

Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020 Seite 17

Result and Discussion

381	380	18	
382	381	18.1	
383	382	18.2	
384	383	18.3	
385	384	18.4	
386	385	18.5	
387	386	18.6	
388	387	18.7	
389	388	18.8	
390	389	18.9	
391	390	19	
392	391	19.1	
393	392	19.2	
394	393	19.3	
395	394	19.4	
396	395	19.5	
397	396	19.6	
398	397	19.7	
399	398	19.8	
400	399	19.9	
401	400	20	

- 1. 2 data sets: Training set and testing set.
- Training set: Integer numbers only, ranging from -20 to 20 with step of 1.
- 3. Testing set (noisy set): Decimal numbers, same range as above with step of 0.1.
- 4. SP learns only about training set then will have to predict testing set (decimal numbers).
- 5. Calculate average hamming distance for every numbers from every 0.1 step to the original integer to see how different the patterns are.

Duy Nguyen | 1067783

Result and Discussion

Figure 6. Average "Hamming distance" between each 0.1 decim the integer number

Seite 19 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 2

Conclusion

Noise robustness: robust against relatively low levels of noise

Specificity: Moderate ability to differentiate two consecutively incremental input values

Seite 20 Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Reference

- [1] J. Hawkins and S. Blakeslee, *On intelligence*. New York: Times Books/Henry Holt, 2008.
- [2] J. Hawkins and C. Maver, "Introduction Chapter," in *Biological and Machine Intelligence*, Release 0.4., Numenta, 2016.
- [3] J. Hawkins and C. Maver, "HTM Overview Chapter," in *Biological and Machine Intelligence*, Release 0.4., Numenta, 2016.
- [4] S. Purdy, "Encoding Data for HTM Systems," in *Biological and Machine Intelligence*, Release 0.4., Numenta, 2016.
- [5] S. Ahmad, M. Taylor, and Y. Cui, "Spatial Pooling Algorithm Details," in Biological and Machine Intelligence, Release 0.4., Numenta, 2016.
- [6] A. Lavin, S. Ahmad, and J. Hawkins, "Sparse Distributed Representations," in *Biological and Machine* Intelligence, Release 0.4., Numenta, 2016.
- [7] S. Ahmad and M. Lewis, "Temporal Memory Algorithm Details," in *Biological and Machine Intelligence*, Release 0.4., Numenta, 2016.
- [8] D. Dobric, "Influence of input sparsity to Hierarchical Temporal Memory Spatial Pooler noise robustness," 2019.
- [9] D. Dobric, "NeoCortexApi," 2019. [Online]. Available: https://github.com/ddobric/neocortexapi/

Sang Nguyen | 1185021 Duy Nguyen | 1067783 Datum 22.03.2020

Thank you for your time