

Due: Tuesday 13th of April 2021 CCE: Pattern Recognition

Sheet #1

Data Matrix

- 1. Given the Data Matrix on the right answer the following questions.
 - a. What is number of dimensions?
 - b. What are the types of the attributes?
 - c. What is the distance between x1 and x3?
 - d. What is the length of x2?
 - e. What is the cos(angle) between x2 and x4?
 - f. Do we need attribute scaling?
 - g. Compute the attribute scaled data matrix after scaling each attribute linearly between 0 and 1.
 - h. Repeat parts c, d, e on the scaled data matrix in part (g)
- 2. Given the Data Matrix on the right submit your python code and its output that will do the following.
 - a. Compute the norm of each instance. (5x1).
 - b. Compute the Cosine similarity matrix (5x5) matrix.
 - c. Compute the Euclidean Distance matrix of the instances (5x5)

_					
ID	a1	a2	а3	a4	
1	10	60	10	90	
2	20	50	40	70	
3	30	50	30	40	
4	20	50	20	60	
5	10	60	30	10	

DATA MATRIX **D**

Principal Component Analysis

- 3. Given Data matrix above. Consider a1, a2 and a4 only.
 - a. Write down the new data matrix $\mathbf{D3}$ (5x3).
 - b. Plot the data using 3d scatter plots.
 - c. Compute the mean vector (3x1).
 - d. Compute centered data matrix \mathbf{Z} by subtracting mean vector from the Data Matrix. (5x3).
 - e. Compute Covariance matrix **COV** (3x3).
 - f. Use python solvers to find eigenvalues (Diagonal 3x3 matrix) and eigenvectors (3x3) matrix. **Take care of the eigenvalues order**.
 - g. Verify $U^T \wedge U = COV$.

- h. Compute the explained variance by the eigenvector corresponding to the largest eigenvalue. Do you think one eigenvector is good enough?
- i. Compute the projection matrix **P** to go to 2-dimensions. Consider the top two eigenvectors of matrix **U** according to eigenvalues. (3x2)
- j. Project the instances into a 2-Dimension space. $\mathbf{x}_{\upsilon} = \mathbf{P}^{\mathsf{T}} \mathbf{x}$
- k. Plot the resulting Data matrix **D2** using scatter plots.
- 4. We have 4 data points. The following is their data matrix, on which we want to apply the PCA.

X1	X2
6	-4
-3	5
-2	6
7	-3

- a. Compute the mean and the covariance of the given data matrix.
- b. Knowing that the unit eigenvectors of the covariance matrix are $(1/\sqrt{2}, 1/\sqrt{2})$ with eigenvalue = 2 and $(-1/\sqrt{2}, 1/\sqrt{2})$ with eigenvalue = 162, find the first principal component of the PCA.
- 5. Given the data below, answer the following questions:
 - a. Compute 3x3 Covariance matrix of the 5 tuples dataset we have.
 - b. If the trace of the covariance matrix is the sum of the eigenvalues of the matrix.
 - i. Compute the three eigenvalues of the covariance matrix if

$$\frac{\lambda_a}{\lambda_b} = 0.505$$
 and $\frac{\lambda_b}{\lambda_c} = 0.647$, where $\lambda_a < \lambda_b < \lambda_c$

ii. Determine the explained variance using only λ_b , λ_c

	X1	X2	Х3
x1	0.5	4.5	2.5
x2	2.2	1.5	0.1
х3	3.9	3.5	1.1
x4	2.1	1.9	4.9
x5	0.5	3.2	1.2

Hints

- numpy.linalg.eigh(A) A is a matrix. Computes eigenvectors and eigenvalues of symmetric matrix A
- numpy.dot(A,B) A, B are matrices/vectors. Computes dot product
- numpy.mean(A, axis=0) A is matrix, axis =0 will average over the columns
- numpy.diag(A) converts vector A into a diagonal matrix.
- numpy.vstack((A,B)) expand matrices A,B into one wider matrix → number of rows of A and B must match.
- numpy.transpose(A) will compute the transpose of a matrix/vector A.

Notes

- Make sure you did everything on your own.
- Marks are put on trial and effort not on correct answer, so cheating will be severely penalized.
- Deliver the solution in PDF format on the email:

patternssp2021@gmail.com with subject [Sheet1][ID]