

Data Science in Medicine

Lecture 6: The Relational Model

Dr Areti Manataki

Usher Institute
The University of Edinburgh

Introduction to databases

- Database: a well-organised collection of data that are related in a meaningful way, describing a domain of interest
 - Examples: university, library, biomedical

Introduction to databases

 Relational databases: focus on things in the domain of interest and the relations between them

Employee

nin	name		em	ail
SK728468L	Kate Taylor	k.ta	ylor@exa	ample.com
SJ547632B	John Smith	j.sm	ith@exa	mple.com
JG623526A	Peter Ross	p.rc	ss@exar	nple.com
AB213672C	Paul Martin	p.m	artin@ex	kample.com
,	Works_In			1
[Works_In	did	since]
[_		since 2003	
	nin	did		

Department

did	dname	budget
51	Information Technology	80,000
56	Human Resources	50,000
60	Accounting	40,000

Introduction to databases

- Database management system: software that helps maintain and utilise large collections of data in an efficient manner
 - Examples: Ms Access, Ms SQL Server, Oracle DBMS, MySQL and many more
- Advantages include:
 - Data independence
 - Efficient data access
 - Data integrity
 - Concurrent access and recovery from crashes

Introduction to the relational model

- Relational database: a collection of relations
- A relation consists of:
 - Relation schema: describes the format of a table, consisting of:
 - Relation's name
 - Name of each field (column)
 - Domain of each field
 - Relation instance: the content of a table
 - A set of tuples (records)

Introduction to the relational model

- Arity (also called degree): number of fields
- Cardinality: number of rows

Introduction to the relational model

 Database: a set of tables with rows and columns, and links between them

Student

		email	age
s0785212	Andrew	andrew@maths	19
s1253477	Jenny	jenny@inf	23
s1456381	Rhona	rhona@inf	18
s1489673	Stuart	stuart@law	34
s1473612	Alan	alan@law	20
	s1253477 s1456381 s1489673	s1253477 Jenny s1456381 Rhona s1489673 Stuart	s1253477 Jenny jenny@inf s1456381 Rhona rhona@inf s1489673 Stuart stuart@law

Takes

mn	cid
s0785212	lalg
s1253477	dbs
s1253477	inf1
s1489673	sls

Course

cid	title	credits
dbs	Database Systems	20
inf1	Informatics 1	10
sls	Scottish Legal System	10
lalg	Linear Algebra	10

Creating relations with DDL

- Structured Query Language (SQL): standard language for creating, manipulating and querying data in relational database management systems
- Data Definition Language (DDL): subset of SQL that allows us to create, delete and modify tables
- CREATE TABLE declaration: define a new relation (called 'table' in SQL) with a particular schema

Creating relations with DDL

```
CREATE TABLE Student (
    mn CHAR(8),
    name CHAR(20),
    email CHAR(25),
    age INTEGER )
```

Student

mn	name	email	age
s0785212	Andrew	andrew@maths	19
s1253477	Jenny	jenny@inf	23
s1456381	Rhona	rhona@inf	18
s1489673	Stuart	stuart@law	34
s1473612	Alan	alan@law	20

 Domain constraint: for each row in this table, the values in each column must be drawn from the appropriate domain

Creating relations with DDL

General form:

- Integrity constraints:
 - Key constraints
 - Foreign key constraints

Primary key constraints in DDL

```
CREATE TABLE Student (
    mn CHAR(8),
    name CHAR(20),
    email CHAR(25),
    age INTEGER,
    PRIMARY KEY (mn)
)
```

Student

mn	name	email	age
s0785212	Andrew	andrew@maths	19
s1253477	Jenny	jenny@inf	23
s1456381	Rhona	rhona@inf	18
s1489673	Stuart	stuart@law	34
s1473612	Alan	alan@law	20

- The primary key uniquely identifies a tuple.
- No two rows in the Student table have the same mn.

 Foreign key constraints specify links between tables.

Student

	mn	name	email	age
	s0785212	Andrew	andrew@maths	19
H	s1253477	Jenny	jenny@inf	23
	s1456381	Rhona	rhona@inf	18
	s1489673	Stuart	stuart@law	34
ı	s1473612	Alan	alan@law	20

Takes

mn	cid
s0785212	lalg
s1253477	dbs
s1253477	inf1
s1489673	sls

Course

cid	title	credits
dbs	Database Systems	20
inf1	Informatics 1	10
sls	Scottish Legal System	10
lalg	Linear Algebra	10

Foreign key constraints specify links between tables.

```
CREATE TABLE Takes (
    mn CHAR(8),
    cid CHAR(20),
    mark INTEGER,
    PRIMARY KEY (mn, cid),
    FOREIGN KEY (mn) REFERENCES Student,
    FOREIGN KEY (cid) REFERENCES Course
)
```

 This specifies that mn will always take a value that appears in the Student table.

Foreign key constraints specify links between tables.

```
CREATE TABLE Takes (
    mn CHAR(8),
    cid CHAR(20),
    mark INTEGER,
    PRIMARY KEY (mn, cid),
    FOREIGN KEY (mn) REFERENCES Student,
    FOREIGN KEY (cid) REFERENCES Course
)
```

 This specifies that cid will always take a value that appears in the Course table.

```
CREATE TABLE Takes (
    mn CHAR(8),
    cid CHAR(20),
    mark INTEGER,
    PRIMARY KEY (mn, cid),
    FOREIGN KEY (mn) REFERENCES Student,
    FOREIGN KEY (cid) REFERENCES Course
)
```

- The foreign key in a referencing relation must match the primary key of the reference relation.
- Same number of columns and same domains.

- What should happen if a row in Student is deleted?
 - 1st approach: All rows in Takes that refer to it should be deleted.

- What should happen if a row in Student is deleted?
 - 2nd approach: For each row in Takes that refers to it, set its mn value to some pre-specified default value.

- What should happen if a row in Student is deleted?
 - 3rd approach: For each row in Takes that refers to it, set its mn value to null.

Conclusions

- The fundamental idea of the relational model is a relation.
- DDL allows us to specify:
 - the schema of our relations
 - primary and foreign keys