NATURAL LANGUAGE PROCESSING (NLP) WITH MACHINE LEARNING – MASTER NOTES

11 WHAT IS NLP?

M DEFINITION

Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) and Machine Learning (ML) that enables computers to understand, interpret, analyze, and generate human language. It bridges human communication and computer understanding.

@ GOALS OF NLP

- ✓ Convert unstructured text \u2192 structured numeric data
- ✓ Enable ML models for classification, prediction, clustering
- ✓ Capture context, semantics, and syntax

APPLICATIONS

- Text Classification \u2192 Spam detection, sentiment analysis
- Machine Translation \u2192 English \u2192 French
- Summarization \u2192 Auto-summarize articles
- 🔖 Chatbots & Assistants \u2192 Siri, Alexa, Google Assistant
- Question Answering \u2192 Search engines, customer support

KEY TERMS

Term	Definition	Example
Corpus	Collection of text	100 movie reviews = corpus
[Document	Single piece of text	Sentence, paragraph, or article

"I love pizza" + "I love pasta" \u2192 {I, love, pizza, pasta}

TEXT PREPROCESSING

✓ DEFINITION

Preprocessing = Cleaning and standardizing text for ML models.

STEPS

- 1 Lowercasing: "I Love NLP" \u2192 "i love nlp"
- Tokenization: "i love nlp" \u2192 ["i", "love", "nlp"]
- Stopword Removal: Remove common words \u2192 ["love", "nlp"]
- 4 Stemming & Lemmatization:
- Stemming: "running" \u2192 "run"
- Lemmatization: "better" \u2192 "good"
- 5 Vectorization: Convert text \u2192 numbers (see below)

FEATURE EXTRACTION / VECTORIZATION TECHNIQUES

- 1 ONE-HOT ENCODING (OHE)
- Definition

Converts text or categorical data into a binary vector. Each unique word gets 1 in its index and 0 elsewhere.

* Example

Vocabulary = {I, love, NLP}

"love NLP" \u2192 [0, 1, 1]

✔ Pros: Simple, easy

- **≭** Cons: Sparse, no semantics
- 2 BAG OF WORDS (BOW)
- Definition

Represents text as a vector of word counts. Each position = frequency of a word in the document.

***** Example

Vocabulary = {I, love, NLP, fun}

"I love NLP NLP" \u2192 [1, 1, 2, 0]

- ✔ Pros: Simple, fast
- **≭** Cons: Ignores word order, context, semantics

3 TF-IDF (TERM FREQUENCY \U2013 INVERSE DOCUMENT FREQUENCY)

Definition

Weighs words by importance: frequent in document but rare in corpus.

 $TF{-}IDF(t,d) = TF(t,d) imes \log\{DF(t)\}$

TF(t,d): Term frequency in document

DF(t): Number of documents containing term

N: Total documents

- ✔ Pros: Highlights key words
- **★** Cons: Sparse for large vocab

4 WORD EMBEDDINGS

Definition

Dense vector representations capturing semantic meaning. Words with similar meanings are close in vector space.

Examples: Word2Vec, GloVe, FastText, BERT embeddings

***** Example

"king" \u2013 "man" + "woman" \u2245 "queen"

✓ Pros: Captures meaning, context

≭ Cons: Requires large corpus

5 N-GRAMS

Definition

Contiguous sequence of n words \u2192 partial context.

Unigram: "I", "love", "NLP"

Bigram: "I love", "love NLP"

Trigram: "I love NLP"

✓ Pros: Adds semantic meaning

≭ Cons: High dimensionality, OOV problem

5 PYTHON EXAMPLES

BAG OF WORDS

```
from sklearn.feature_extraction.text import CountVectorizer
docs = ["I love NLP", "NLP is fun"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(docs).toarray()
print(vectorizer.get_feature_names_out())
print(X)
```

✓ TF-IDF

```
from sklearn.feature_extraction.text import TfidfVectorizer
docs = ["I love NLP", "NLP is fun"]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(docs).toarray()
```

```
print(vectorizer.get_feature_names_out())
print(X)
```

✓ WORD2VEC

```
from gensim.models import Word2Vec
sentences = [["I", "love", "NLP"], ["NLP", "is", "fun"]]
model = Word2Vec(sentences, vector_size=5, window=2, min_count=1)
print(model.wv['NLP'])
```

TEXT CLASSIFICATION WITH ML

```
✓ Algorithms: Na\u00efve Bayes, Logistic Regression, SVM, Random Forest
✓ Metrics: Accuracy, Precision, Recall, F1-score
\u25c0 Example (TF-IDF + Na\u00efve Bayes):
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

docs = ["I love NLP", "NLP is fun", "I hate spam"]
labels = [1, 1, 0]

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(docs)

model = MultinomialNB()
model.fit(X, labels)
```

print(model.predict(vectorizer.transform(["I love spam"])))

TOPIC MODELING (UNSUPERVISED)

✓ Algorithms: LDA, NMF

• Example:

```
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer

docs = ["I love NLP", "NLP is fun", "I hate spam"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(docs)

lda = LatentDirichletAllocation(n_components=2, random_state=0)
lda.fit(X)
print(lda.components_)
```

SEQUENCE MODELS (RNN, LSTM)

✓ RNN: Maintains hidden state

✓ LSTM: Handles long-term dependencies

✓ Use Cases: Next-word prediction, sentiment analysis, chatbots

QUICK COMPARISON TABLE

Technique	Туре	✓ Pros	X Cons	Use Cases
One-Hot Encoding	Feature Extraction	Simple	Sparse, no semantics	Small datasets
⊚ BoW	Feature Extraction	Simple, fast	Ignores context, sparse	Text classification

TF-IDF	Feature Extraction	Highlights important words	Sparse for large vocab	Document retrieval
	Feature Extraction	Captures semantic meaning & context	Requires large corpus	Similarity, chatbots
N-grams	Feature Extraction	Adds some context	High dimension, OOV	Text classification
LDA	Unsupervised	Finds hidden topics	Needs preprocessing	Topic modeling
in ML Classifiers	Supervised	Predicts labels	Needs labeled data	Spam detection, sentiment
⋶ RNN/LSTM	Sequence Modeling	Handles sequential dependencies	Computationally expensive	Text generation, chatbots