Fashion Image Classification Using Convolutional Neural Networks (CNNs)

Raagini Tyagi, Yuming Huang, Ece Yildiz, Shitao Zhao

Introduction

- Implemented and evaluated CNN-based models (ResNet18, EfficientNetB0) for fashion image classification.
- Performed multi-class classification to categorize fashion items into broad categories (such as Apparel, Footwear, Accessories, etc.) with high accuracy, improving the overall product categorization process.

Motivation

- The fashion industry relies on efficient product categorization for inventory management and e-commerce.
- E-commerce platforms need accurate and efficient product categorization for better search, filtering, and personalized recommendations.
- Manual classification is time-consuming/inefficient, error-prone, and inconsistent.
- Automating classification using deep learning increases accuracy, reduces human error and operational costs, and improves search functionality and user experience.

Machine Learning Models Used

Convolutional Neural Networks (CNNs):

Used to extract visual features and patterns from fashion product images.

• ResNet18:

 Uses residual learning to train deep networks efficiently without vanishing gradients.

EfficientNetB0 :

 Uses compound scaling to balance network depth, width, and resolution for optimal performance

Dataset

- Fashion Product Images Dataset:
 - https://www.kaggle.com/datasets/paramaggarwal/fashion-product-images-dataset
- Fashion Product Images Dataset (Small):
 - o https://www.kaggle.com/datasets/paramaggarwal/fashion-product-images-small
- 44,000 products with multiple category labels, descriptions and images

Data Explorer 572.13 MB images

styles.csv

Dataset (Continued)

- ✓ ☐ fashion-dataset
 ✓ ☐ images
 ☐ 10000.jpg
 ☐ 10001.jpg
 ☐ 10002.jpg
 ☐ 10003.jpg
 -] 10003.jpg] 10004.jpg
 - 10005.jpg
- fashion-dataset images styles {i} 10000.json 10001.json 10002.json 10003.json 10004.json {i} 10005.json

styles.csv (4.33 MB)

- id,gender,masterCategory,subCategory,articleType,baseColour,season,year,usage,productDisplayName
- 2 10005, Men, Apparel, Topwear, Tshirts, Blue, Fall, 2011, Sports, Nike Men As Ss Trainin Blue T-Shirts

Resnet

- Easy to train even when deep.
- Good baseline performance on image classification tasks.
- Robust and widely adopted.

- Solves the **vanishing gradient** problem.
- Uses **skip connections** to let gradients flow across layers.

EfficientNet

- State-of-the-art performance with less computation.
- Adapts well to different hardware and application needs.
- Works great for fine-grained tasks like fashion classification.

Accuracy and Metrics (Resnet) Smaller Dataset

- The data set was highly skewed
- F1 -Score is used: 77.66%
- Accuracy for Small Dataset:

```
■ Test Accuracy: 0.9649, F1 (macro): 0.7766
```

Accuracy and Metrics (Efficient Net)

- Similar results with Resnet
- Slightly lower around 77.63%

```
Test Accuracy: 0.9655, F1 (macro): 0.7763
```

Accuracy and Metrics (Resnet) Larger Dataset

- The data set was highly skewed
- F1 -Score is used: 79%
- Accuracy for Large Dataset:

■ Test Accuracy: 0.9626, F1 (macro): 0.7973

Accuracy and Metrics (Efficient Net)

• F1 Score: 82%

```
    Test Accuracy: 0.9682, F1 (macro): 0.8164
```

Thank You!