

- What is the distinction between between architecting and engineering?
- Engineering deals almost entirely with measurables using analytic tools derived from mathematics and the hard sciences; that is, engineering is a <u>deductive</u> process.

 Architecting deals largely with unmeasurables using nonquantitative tools and guidelines based on practical lessons learned; that is, architecting is an <u>inductive</u> process

Table P.1 Characteristics of the Roles on the Architecting and Engineering Continuum

		Architecting and	
Characteristic	Architecting	Engineering	Engineering
Situation/goals	Ill-structured	Constrained	Understood
	Satisfaction	Compliance	Optimization
Methods	Heuristics	\leftarrow	Equations
	Synthesis	\longleftrightarrow	Analysis
	Art and science	Art and science	Science and art
Interfaces	Focus on "mis-fits"	Critical	Completeness
System integrity maintained through	"Single mind"	Clear objectives	Disciplined methodology and process
Management issues	Working for client	Working with Client	Working for builder
	Conceptualization and certification	Whole waterfall	Meeting project requirements
	Confidentiality	Conflict of interest	Profit versus cost

Four Architecting Methodologies

Normative (solution based)

Examples: building codes and communications standards or protocol standards

Rational (method based)

Examples: systems analysis and engineering

Participative (stakeholder based)

Examples: concurrent engineering and brainstorming

Heuristic (lessons learned)

Examples: Simplify. Simplify. Simplify. and SCOPE!

Selected Artifacts Created during the Architecture Process

- Define a <u>consistent logical architecture</u>—capture the logical sequencing and interaction of system functions or logical elements.
- <u>Partition system requirements</u> and allocate them to system elements and subsystems with associated performance requirements—evaluate off-the-shelf solutions that already exist.
- Evaluate alternative design solutions using trade studies.
- <u>Identify interfaces and interactions</u> between system elements (including human elements of the system) and with external and enabling systems.
- Define the <u>system integration strategy</u> and plan (to include human system integration).
- Document and maintain the architectural design and relevant decisions made to reach agreement on the baseline design.
- Establish and maintain the traceability between requirements and system elements.
- Define verification and validation criteria for the system elements.

Simplified architecture/definition

Entity Component System consists of three primary items:

Components

 A component simply holds a piece of data and does not contain any game logic. Your typical component will have fields for primitive values and data objects.

Entities

An entity is a collection of components.

Systems

 A system is typically an implementation that iteratively operates on a group of entities that share a specific set of components.

Abstraction

Figure 8.3 Abstracting Entities into levels of Abstraction

System Element Architecture

Figure 8.13 System Element Architecture (SEA) Construct

System level abstraction

Figure 8.4 System Levels of Abstraction and Semantics Frame of Reference

System/Entity Architecture

SOI's Operating Environment (OE) Architecture

Levels of abstraction

Figure 8.7 System Analytical Decomposition into Levels of Abstraction versus Physical

functional analysis and decomposition - list of tools and diagrams

- IDEF0 diagram
- Functional flow block diagram (FFBD)
- N^2 diagrams diagram represents the logical data flow for a system or system segment.
- Timeline analysis
- Tree diagrams
- SysML (such as activity diagrams, sequence diagrams)

Example of functional specifications

- Business Rules
- Transaction corrections, adjustments and cancellations
- Administrative functions
- Authentication
- Authorization levels
- Audit Tracking
- External Interfaces
- Certification Requirements
- Reporting Requirements
- Historical Data
- Legal or Regulatory Requirements

non-functional requirements are

- Performance for example Response Time, Throughput, Utilization, Static Volumetric
- Scalability
- Capacity
- Availability
- Reliability
- Recoverability
- Maintainability
- Serviceability
- Security
- Regulatory
- Manageability
- Environmental
- Data Integrity
- Usability
- Interoperability

IDEF is an abbreviation of ICOM DEFinition

N^2 diagram

Tree diagrams

TREE-BASED ARCHITECTURE

Activity Diagram shows a workflow - a starting point, actions, decisions, splits and joins to show concurrent activities, and ending points – used for **process (workflow) modeling**

A Sequence Diagram shows interactions between actors and objects and between two objects - **dynamic modeling purpose**

context diagram

Figure 8.1 Context Diagram for an Aircraft Mission System

Source: Systems Engineering by Wasson

Examples – systems & product level

Intelligent Transport

Physical Architecture

UKM Architecture

End User/Application Ticket Enquiry, Reservation, Freights/Goods Booking and Subsystem booking, etc movement Information Comm. Central Management Control Subsystem User Navigation e-Business Intelligent Resource ICSS Facility System Management System IMERS ITCOMS Accounting and Rail Budget Train Operation Train Control & Rail Road Transaction Compilation & Management Monitoring Transportation Emergency Rescue and Safety Control System ంర Comm. Passenger e-Business Info. Service Auto ticketing Goods ICSS Railway Station System ticketing & verification operation Facility system IMERS ITCOMS Subsystem Signal Testing Interlocking Freight Transportation and and Control Control Management System Railway Station Inspection System Comm. Onboard e-Business System ICSS Train Onboard Facility Subsystem IMERS ITCOMS Health Communication Coach information service Control & management and operation system Decision System System Info. System Onboard Inspection and Maintenance System MComm. Trackside Circuit Receive Signal Control ITCOMS Rail Track Side Facility Subsystem System & Send Module Accident inspection & Emergency Recovery Disastrous prevention Protection System IMERS Intelligent Track & Supervision Infrastructure Inspection System System

Kumar N., Kumari N. (2012) Conceptual
Architectural Design of Indian Railway
Intelligent Transportation Systems. In: Vinel
A., Mehmood R., Berbineau M., Garcia C.R.,
Huang CM., Chilamkurti N. (eds)
Communication Technologies for Vehicles.
Nets4Cars/Nets4Trains 2012. Lecture Notes in
Computer Science, vol 7266. Springer, Berlin,
Heidelberg

Fig. 2. Railway Intelligent Transportation Systems Architecture

Railway signal control architecture

An Architecture for In-Vehicle Infotainment Systems

Source: Intel team article in Dr Dobbs

Runtime
Game
Engine
architecture

