

```
import pandas as pd
import numpy as np
import random
import pylab as pl
import time
import datetime
from sklearn.feature_selection import RFECV
# for plotting
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from scipy.stats import chi2_contingency
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.seasonal import seasonal_decompose
from lightgbm import LGBMRegressor
from xqboost import XGBRegressor
import shap
# scikit learning packages
from lightqbm import LGBMRegressor, early_stopping
from xqboost import XGBClassifier
from sklearn.model_selection import TimeSeriesSplit
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.feature_selection import RFE, SelectFromModel
from sklearn.neighbors import KNeighborsClassifier
from sklearn.dummy import DummyRegressor
from sklearn.base import clone, BaseEstimator, TransformerMixin
from sklearn.model_selection import (
   train_test_split,
    cross_val_score,
    cross_val_predict,
    KFold,
    StratifiedKFold,
    GridSearchCV,
    RandomizedSearchCV
)
from sklearn.ensemble import (
    RandomForestClassifier,
    RandomForestRegressor,
    GradientBoostingRegressor,
    GradientBoostingClassifier,
    AdaBoostClassifier,
    ExtraTreesClassifier,
    VotingClassifier,
    VotingRegressor
)
```

```
from sklearn.metrics import (
   confusion_matrix,
   accuracy_score,
   mean_absolute_error,
   mean_squared_error,
   r2_score,
   make_scorer,
   classification_report,
   roc_curve,
   auc
)
from sklearn.preprocessing import (
   LabelEncoder,
   MinMaxScaler,
   StandardScaler,
   OneHotEncoder,
   PolynomialFeatures,
   scale
)
from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB
from sklearn.decomposition import PCA, FactorAnalysis
from sklearn.linear_model import (
   LinearRegression,
   Ridge,
   LogisticRegressionCV,
   LogisticRegression
)
from sklearn.svm import SVC
from sklearn import svm, metrics, tree
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.multiclass import OneVsRestClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
from sklearn.utils import resample, shuffle
from collections import Counter
from pandas.api.types import is_numeric_dtype
import holidays
import warnings
from scipy.stats.mstats import mquantiles
from scipy.stats import skew
from scipy.stats import randint, uniform
import lightgbm as lgb
import logging
warnings.filterwarnings("ignore")
cmap = sns.color_palette('Blues_r')
logging.getLogger("lightgbm").setLevel(logging.CRITICAL)
```

```
starting_time = time.perf_counter()
print('')
print('starting time: ', datetime.datetime.now().strftime("%H:%M:%S"))
print('')
### Read the file
df_raw = pd.read_excel(r"ML_Absenteism_MU_Grouped_Combined.xlsx")
#########
ending_time = time.perf_counter()
total_in_sec = ending_time-starting_time
print("Data time in sec")
print(total_in_sec)
print("Data uploaded")
starting time: 15:46:00
Data time in sec
98.2715146
Data uploaded
```

```
starting_time = time.perf_counter()
print('')
print('starting time: ', datetime.datetime.now().strftime("%H:%M:%S"))
print('')
df = df_raw.copy()
df = df[df['Is_Actual']=='Actual']
# -----
# Drop Duplicates
# -----
df = df.drop_duplicates(subset=['MU_Name','Date'], keep='first')
df['Country'] = df['Country'].str.replace('Unknown','Greece')
df = df.sort_values(by=['Date','MU_Name']).reset_index(drop=True)
df['AssignedDep'] = df['AssignedDep'].astype(int).astype(str)
Country_dic = {'External':'Greece',
            'Czech Republic':'CZ',
```

```
'Suriname':'ZA',
               'South Africa':'ZA',
               'United Kingdom':'GB'}
df['Country'] = df['Country'].replace(Country_dic)
# Generate the dictionary by passing each unique country name to holidays.country_holidays
country_to_code = {}
for country in df['Country'].unique():
    try:
        iso_code = holidays.country_holidays(country=country).country
        country_to_code[country] = iso_code
    except Exception as e:
        print(f"Error for country: {country} - {e}")
# Function to check if a date is a holiday
def is_holiday(row):
    country_code = country_to_code.get(row['Country'])
    if country_code:
        try:
            country_holidays = holidays.country_holidays(country=country_code,
years=row['Date'].year)
            return 1 if row['Date'] in country_holidays else 0
        except Exception as e:
            print(f"Error checking holiday for {row['Country']} on {row['Date']}: {e}")
    return 0
# Apply the function to create the Is_Holiday column
df['Is_Holiday'] = df.apply(is_holiday, axis=1)
### Create extra Date columns
# Step 7: Convert 'Date' to datetime and set index
df['Date'] = pd.to_datetime(df['Date'])
df['Season'] = (df['Date'].dt.month % 12 + 3) // 3
df = df.set_index('Date')
# Step 8: Overwrite columns based on index
df['Year'] = df.index.year
df['Month'] = df.index.month
df['DayofMonth'] = df.index.day
df['DayofWeek'] = df.index.dayofweek # Monday=0, Sunday=6
df['WeekofYear'] = df.index.isocalendar().week
df['Month_sin'] = np.sin(2 * np.pi * df['Month'] / 12)
df['Month_cos'] = np.cos(2 * np.pi * df['Month'] / 12)
df['DayofWeek_sin'] = np.sin(2 * np.pi * df['DayofWeek'] / 7)
df['DayofWeek_cos'] = np.cos(2 * np.pi * df['DayofWeek'] / 7)
df['DayofMonth_sin'] = np.sin(2 * np.pi * df['DayofMonth'] / 31)
```

```
df['DayofMonth_cos'] = np.cos(2 * np.pi * df['DayofMonth'] / 31)
# Step 1: Encoding MU_Name with cat.codes and appending '_Cat'
df['MU_Name_Cat'] = df['MU_Name'].astype('category').cat.codes
df_mus = df[['MU_Name_Cat','MU_Name']].drop_duplicates(keep='first').reset_index(drop=True)
# Step 2: One-hot encoding with pd.get_dummies and renaming columns with '_Cat'
df_dummies = pd.get_dummies(df['MU_Name_Cat'], prefix='MU_Name')
# Step 3: Concatenating the encoded columns back to the original dataframe
df = pd.concat([df, df_dummies], axis=1)
df['Country_Cat'] = df['Country'].astype('category').cat.codes
df_Country =
df[['Country_Cat','Country']].drop_duplicates(keep='first').reset_index(drop=True)
# Step 2: One-hot encoding with pd.get_dummies and renaming columns with '_Cat'
df_dummies = pd.get_dummies(df['Country_Cat'], prefix='Country')
# Step 3: Concatenating the encoded columns back to the original dataframe
df = pd.concat([df, df_dummies], axis=1)
# Step 4: Drop the original categorical column if needed
df.drop(columns=['MU_Name','Country','AssignedDep','Is_Actual'], inplace=True)
#######
##########
ending_time = time.perf_counter()
total_in_sec = ending_time-starting_time
print("\n Data time in sec")
print(total_in_sec)
print("Data Cleaning Completed")
starting time: 16:06:40
 Data time in sec
9.81653099999994
Data Cleaning Completed
```

```
passthrough_cols =['Year',
 'Month',
 'WeekofYear',
 'DayofMonth',
 'DayofWeek',
 'Season',
 'Is_Strike',
 'Is_Holiday']
## Target Columns
target_col = ['Total_Lost']
### passthrough_cols
encoded_cols = df.columns[(df.columns.str.contains('MU_Name'))
                         |(df.columns.str.contains('Country'))].tolist()
passthrough_cols = passthrough_cols + encoded_cols
numeric_cols = df.columns.difference(target_col + passthrough_cols).tolist()
feature_cols = passthrough_cols+ numeric_cols
feature_cols_all = feature_cols+target_col
df = df[feature_cols_all]
df.dropna(axis=0, how='any', inplace=True)
# Display the result
print("Passthrough Columns:", len(passthrough_cols))
print("Numeric Columns:", len(numeric_cols))
print("Feature Columns:", len(feature_cols))
print("All Feature Columns (with target):", len(feature_cols_all))
# Find the max date where Is_Actual is 'Actual'
max_actual_date = df.index.max()
print(f'Sample Data Starting from {df.index.min()} until {max_actual_date}')
Passthrough Columns: 81
Numeric Columns: 164
Feature Columns: 245
All Feature Columns (with target): 246
Sample Data Starting from 2023-01-15 00:00:00 until 2025-02-06 00:00:00
```

```
def get_skewed_columns(data, numeric_columns, threshold=1.0):
    """
    Identify numeric columns with skewness above the specified threshold.
    Parameters:
    data (DataFrame): The DataFrame containing numeric columns.
    numeric_columns (list): List of numeric column names to check.
    threshold (float): Skewness threshold to determine highly skewed columns.
```

```
Returns:
    list: Columns and their skewness values sorted by skewness strength.
    skewed_cols = []
    for col in numeric_columns:
        skewness = skew(data[col].dropna()) # Drop missing values to avoid errors
        if abs(skewness) > threshold:
            skewed_cols.append((col, skewness)) # Append column and its skewness
    # Sort the skewed columns by absolute skewness strength in descending order
    skewed_cols = sorted(skewed_cols, key=lambda x: abs(x[1]), reverse=True)
#
     # Print the skewness values of the sorted columns
#
     for col, skewness in skewed_cols:
          print(f'Skewness of {col}: {skewness:.2f}')
    # Return only the column names
    return [col for col, _ in skewed_cols]
# Example usage with threshold of 1.0 (highly skewed data)
columns_to_log_transform = get_skewed_columns(df, numeric_cols, threshold=1.0)
```

```
print(
    f"\nNumber of Columns selected for log transformation: {len(columns_to_log_transform)} "
    f"({(len(columns_to_log_transform) / len(numeric_cols)) * 100:.2f}%)")

Number of Columns selected for log transformation: 150 (91.46%)
```

Columns Recommended for Log Transformation:

```
def log_transform(data, to_log):
    X = data.copy()
    for item in to_log:
        # Ensure all values are positive to avoid log-related errors
        X[item] = np.where(X[item] > 0, np.log1p(X[item]), 0)

# Replace potential infinities with NaNs and drop them
        X[item].replace([np.inf, -np.inf], np.nan, inplace=True)
        X[item].fillna(0, inplace=True) # Replace NaNs with 0 (or another strategy)

return X
```

```
##
# Apply the log transform safely
df_log = log_transform(df, columns_to_log_transform)
```

Initial Train ,Valid ,Test Split with EDA

```
# Calculate the boundaries
df = df_log.sort_index() # ensure it's time-sorted if needed
dftrain = df.copy()
start_date = df.index.min()
end_date = df.index.max()
# Total duration in days
total_days = (end_date - start_date).days
# Calculate the boundaries
train_end_date = start_date + pd.Timedelta(days=int(0.7 * total_days))
valid_end_date = train_end_date + pd.Timedelta(days=int(0.15 * total_days))
# Split the dataset
train_df = df[df.index <= train_end_date]</pre>
valid_df = df[(df.index > train_end_date) & (df.index <= valid_end_date)]</pre>
test_df = df[df.index > valid_end_date]
####
print(f'Number of Pass through Columns {len(passthrough_cols)}')
print(f'Number of numerical {len(numeric_cols)}')
print(f'Number of target_col {len(target_col)}')
print(f'Number of feature_cols_all {len(feature_cols_all)}')
# Split train and test
train = train_df.copy()
valid = valid_df.copy()
test = test_df.copy()
####
print(f'\nNumber of rows in train {len(train)}')
print(f'Number of rows in test {len(test)}')
print(f'Number of rows in valid {len(valid)}')
# # Train-test split
# Step 3: Train-test split based on the index to avoid data leakage
X_train, X_valid, X_test = train[feature_cols], valid[feature_cols], test[feature_cols]
y_train, y_valid, y_test = train[target_col].values.ravel(),
valid[target_col].values.ravel(), test[target_col].values.ravel()
```

```
print('Performance of Base Random Forest Model')
print(f'\nNumber of rows in X_train {len(X_train)}')
print(f'Number of rows in X_test {len(X_test)}')
print(f'Number of rows in X_valid {len(X_valid)}')
print(f'Number of rows in y_train {len(y_train)}')
print(f'Number of rows in y_valid {len(y_valid)}')
print(f'Number of rows in y_test {len(y_test)}')
Number of Pass through Columns 81
Number of numerical 164
Number of target_col 1
Number of feature_cols_all 246
Number of rows in train 25631
Number of rows in test 6312
Number of rows in valid 6341
Performance of Base Random Forest Model
Number of rows in X_train 25631
Number of rows in X_test 6312
Number of rows in X_valid 6341
Number of rows in y_train 25631
Number of rows in y_valid 6341
```

```
X_train_e_l_n_m = X_train[feature_cols].copy()
X_valid_e_l_n_m = X_valid[feature_cols].copy()
X_test_e_l_n_m = X_test[feature_cols].copy()
```


📊 Final Combined Testing Approach

In this section, we will perform the final model evaluation by combining the results from Department 1 and Department 2 into a single dataset. This approach is designed to leverage insights gained from previous analyses while optimizing model performance at the Management Unit (MU_Name) level.

Key Insights from Previous Tests:

1. Modeling Level:

The models are built at the **Management Unit Level (MU_Name)** due to the dynamic scheduling of employees.

• Why not Employee-Level?

Employees may shift between units weekly, but the **operational hours at the MU level remain stable**, making it the most consistent feature for prediction.

2. Feature Importance:

The **Rolling and Lagged Measures** have consistently shown to improve model performance. These features capture temporal patterns, making the model more robust to scheduling variations.

3. Impact of MU_Name Features:

• Linear & Ridge Regression:

These models heavily rely on **One-Hot Encoded MU_Name** features. This reliance limits their flexibility and increases the cost of retraining.

Additionally, these models are **not suitable** for implementing advanced ML techniques like:

- Incremental Learning
- Reinforcement Learning
- Decision: Linear and Ridge Regression models will be eliminated from further analysis.
- Tree-Based Models:

Random Forest & XGBoost:

Proven to perform well **without heavy dependence on MU_Name features**, making them ideal candidates for the final combined testing.

LightGBM:

While it performed well in some tests, **Project 2 results** showed that LightGBM heavily relies on MU_Name features, limiting its generalizability.

Decision: LightGBM will be excluded from the final combined analysis.

Final Model Selection for Combined Testing:

A Random Forest:

- Consistent performance without over-reliance on specific units.
- Strong in handling non-linear relationships and feature interactions.

- Excellent handling of complex data structures.
- Robust to missing values and outliers.
- Efficient for large datasets with faster training times compared to traditional boosting algorithms.

o Objective of the Final Run:

- Combine Department 1 and Department 2 datasets.
- Evaluate model performance based on previous insights.
- Ensure scalability and adaptability of models in dynamic operational environments.
- Optimize for advanced techniques like **Incremental Learning** and **Reinforcement Learning** in future implementations.

Enhanced Insights for Combined Testing:

Based on previous tests, it has been observed that the **test results of Department 2 outperform** those of Department 1. This outcome is **highly expected** since **Department 2 has more data points for training**, leading to better model generalization.

• Hyperparameters:

To leverage this advantage, we will **use Department 2's best hyperparameters** for the combined testing process.

• Generalization Strategy:

To ensure the model remains **generalized**, we will **combine the best features** selected from both departments. This approach will help us:

- Test if Department 2's hyperparameters can perform well on both departments' selected features.
- Compare performance between models trained with Department 2's selected features and the combined features from both departments.

By doing so, we aim to evaluate the **robustness of our hyperparameters** and determine if they generalize effectively across different data distributions.

```
### # Reconstructed results dictionary
results_Department1 = {'best_params': {'RandomForest': {'bootstrap': True,
   'max_depth': 20,
   'max_features': 'sqrt',
   'min_samples_leaf': 3,
   'min_samples_split': 8,
   'n_estimators': 70},
  'XGBoost': {'colsample_bytree': 0.8405276455303266,
   'gamma': 0.11786627843341337,
   'learning_rate': 0.03923605631515355,
   'max_depth': 3,
   'n_estimators': 260,
   'reg_alpha': 0.06277920589060278,
   'reg_lambda': 1.0979737446029723,
   'subsample': 0.9391147505488028},
  'LGBM': {'colsample_bytree': 0.9756980779549947,
   'learning_rate': 0.09493843135449842,
   'max_depth': 3,
   'n_estimators': 126,
   'num_leaves': 68,
```

```
'req_alpha': 0.0812423172741997,
 'reg_lambda': 1.7293083312776982,
 'subsample': 0.9240950808491224}},
'best_features': {'RandomForest': ['AVG_Scheduled_Hours',
 'Rolling_Last_14_Days_AVG_TotalLost_Hours',
 'Rolling_Last_14_Days_TotalLost_HC',
 'Rolling_Last_14_Days_Total_Lost_Hours',
 'Rolling_Last_7_Days_AVG_Absence_Hours',
 'Rolling_Last_7_Days_AVG_TotalLost_Hours',
 'Rolling_Last_7_Days_Absence_HC',
 'Rolling_Last_7_Days_Absence_Hours',
 'Rolling_Last_7_Days_Early_Hours',
 'Rolling_Last_7_Days_TotalLost_HC',
 'Rolling_Last_7_Days_Total_Lost_Hours',
 'Scheduled_HC%',
 'Scheduled_Hours',
 'Scheduled_Open%',
 'laq14_AVG_Worked_Hours',
 'lag14_Scheduled_HC%',
 'lag7_AVG_Days_Since_Last_Early',
 'lag7_AVG_Worked_Hours',
 'lag7_Scheduled_Open%'],
 'XGBoost': ['AVG_Scheduled_Hours',
 'DayofWeek_sin',
 'Rolling_Last_14_Days_Total_Lost_Hours',
 'Rolling_Last_7_Days_AVG_Absence_Hours',
 'Rolling_Last_7_Days_TotalLost_HC',
 'Rolling_Last_7_Days_Total_Lost_Hours',
 'Scheduled_HC%',
 'Scheduled_Open%',
 'Strike_Participant%',
 'lag14_AVG_Scheduled_Hours',
 'lag14_AVG_Training_Hours',
 'laq14_Scheduled_HC%',
 'lag7_AVG_Scheduled_Hours',
 'lag7_AVG_Worked_Hours',
 'lag7_Scheduled_HC%'],
'LGBM': ['Rolling_Last_7_Days_Scheduled_HC',
 'Rolling_Last_7_Days_Total_Lost_Hours',
 'laq14_Scheduled_HC']},
'meta_features': ['lag14_AVG_Training_Hours',
'Rolling_Last_7_Days_AVG_Absence_Hours',
'Strike_Participant%',
'lag7_Scheduled_Open%',
'lag7_Scheduled_HC%',
'Rolling_Last_14_Days_Total_Lost_Hours',
'Rolling_Last_7_Days_Absence_HC',
'lag7_AVG_Scheduled_Hours',
'lag14_AVG_Worked_Hours',
'Rolling_Last_7_Days_TotalLost_HC',
'AVG_Scheduled_Hours',
'Rolling_Last_7_Days_Early_Hours',
```

```
'Rolling_Last_14_Days_TotalLost_HC',
  'Scheduled_Hours',
  'lag7_AVG_Worked_Hours',
  'Scheduled_HC%',
  'Rolling_Last_7_Days_Total_Lost_Hours',
  'Rolling_Last_7_Days_Scheduled_HC',
  'laq14_Scheduled_HC',
  'lag14_AVG_Scheduled_Hours',
  'Rolling_Last_7_Days_AVG_TotalLost_Hours',
  'lag14_Scheduled_HC%',
  'DayofWeek_sin',
  'Rolling_Last_7_Days_Absence_Hours',
  'lag7_AVG_Days_Since_Last_Early',
  'Rolling_Last_14_Days_AVG_TotalLost_Hours',
  'Scheduled_Open%'],
    'results': pd.DataFrame({
        'Model': ['RandomForest', 'XGBoost', 'LGBM'],
        'R2': [0.539967, 0.537604, 0.388664],
        'MSE': [13.497322, 13.566646, 17.936555],
        'MAE': [1.871065, 1.865540, 2.092890],
        'RMSE': [3.673870, 3.683293, 4.235157]
   })
}
# ### Reconstructed results dictionary
results_Department2 = {'best_params': {'RandomForest': {'bootstrap': False,
   'max_depth': 10,
   'max_features': 'sqrt',
   'min_samples_leaf': 2,
   'min_samples_split': 6,
   'n_estimators': 389},
  'XGBoost': {'colsample_bytree': 0.932421702227803,
   'gamma': 0.03403772139867769,
   'learning_rate': 0.07341430696756238,
   'max_depth': 3,
   'n_estimators': 172,
   'reg_alpha': 0.05676394903293628,
   'reg_lambda': 1.2320650421424062,
   'subsample': 0.8705325397324127},
  'LGBM': {'colsample_bytree': 0.8149656394761536,
   'learning_rate': 0.026365368550660073,
   'max_depth': 3,
   'n_estimators': 275,
   'num_leaves': 66,
   'reg_alpha': 0.027605270529576453,
   'req_lambda': 1.8779932996416313,
   'subsample': 0.8808978462503827}},
 'best_features': {'RandomForest': ['Is_Strike',
   'AVG_Scheduled_Hours',
   'Rolling_Last_14_Days_Absence_HC',
   'Rolling_Last_14_Days_Absence_Hours',
```

```
'Rolling_Last_14_Days_TotalLost_HC',
'Rolling_Last_14_Days_Total_Lost_Hours',
'Rolling_Last_7_Days_AVG_Absence_Hours',
'Rolling_Last_7_Days_AVG_TotalLost_Hours',
'Rolling_Last_7_Days_Absence_HC',
'Rolling_Last_7_Days_Absence_Hours',
'Rolling_Last_7_Days_Sick_Hours',
'Rolling_Last_7_Days_TotalLost_HC',
'Rolling_Last_7_Days_Total_Lost_Hours',
'Scheduled_HC',
'Scheduled_HC%',
'Scheduled_Hours',
'Scheduled_Open',
'Scheduled_Open%',
'Strike_Participant%',
'lag7_Scheduled_HC',
'lag7_Scheduled_Hours',
'lag7_Scheduled_Open',
'lag7_Scheduled_Open%',
'lag7_TotalLost_HC',
'lag7_Total_Lost_Hours'],
'XGBoost': ['Rolling_Last_7_Days_Absence_Hours',
'Rolling_Last_7_Days_TotalLost_HC',
'Rolling_Last_7_Days_Total_Lost_Hours',
'Scheduled_HC%',
'Scheduled_Open%',
'Strike_Participant%'],
'LGBM': ['DayofWeek',
'Season',
'Is_Strike',
'Is_Holiday',
'MU_Name_Cat',
'MU_Name_0',
'MU_Name_1',
'MU_Name_2',
'MU_Name_3',
'MU_Name_4',
'MU_Name_5',
'MU_Name_6',
'MU_Name_7',
'MU_Name_8',
'MU_Name_9',
'MU_Name_10',
'MU_Name_11',
'MU_Name_12',
'MU_Name_13',
'MU_Name_14',
'MU_Name_15',
'MU_Name_16',
'MU_Name_17',
'MU_Name_18',
'MU_Name_19',
```

```
'MU_Name_20',
'MU_Name_21',
'MU_Name_22',
'MU_Name_23',
'MU_Name_24',
'MU_Name_25',
'MU_Name_26',
'MU_Name_27',
'MU_Name_28',
'MU_Name_29',
'MU_Name_30',
'MU_Name_31',
'MU_Name_33',
'MU_Name_38',
'MU_Name_47',
'AVG_Scheduled_Hours',
'DayofMonth_cos',
'DayofWeek_sin',
'HC',
'Rolling_Last_14_Days_Absence_HC',
'Rolling_Last_14_Days_Late_HC',
'Rolling_Last_14_Days_Sick_Hours',
'Rolling_Last_14_Days_TotalLost_HC',
'Rolling_Last_14_Days_Total_Lost_Hours',
'Rolling_Last_14_Days_Training_Hours',
'Rolling_Last_14_Days_Worked_Hours',
'Rolling_Last_7_Days_AVG_Absence_Hours',
'Rolling_Last_7_Days_AVG_Early_Hours',
'Rolling_Last_7_Days_AVG_Late_Hours',
'Rolling_Last_7_Days_AVG_Scheduled_Hours',
'Rolling_Last_7_Days_AVG_Sick_Hours',
'Rolling_Last_7_Days_AVG_TotalLost_Hours',
'Rolling_Last_7_Days_AVG_Training_Hours',
'Rolling_Last_7_Days_AVG_Vacation_Hours',
'Rolling_Last_7_Days_AVG_Worked_Hours',
'Rolling_Last_7_Days_Absence_HC',
'Rolling_Last_7_Days_Absence_Hours',
'Rolling_Last_7_Days_Early_Hours',
'Rolling_Last_7_Days_Late_HC',
'Rolling_Last_7_Days_Sick_Hours',
'Rolling_Last_7_Days_TotalLost_HC',
'Rolling_Last_7_Days_Total_Lost_Hours',
'Rolling_Last_7_Days_Training_HC',
'Rolling_Last_7_Days_Training_Hours',
'Rolling_Last_7_Days_Vacation_HC',
'Rolling_Last_7_Days_Vacation_Hours',
'Rolling_Last_7_Days_Worked_HC',
'Rolling_Last_7_Days_Worked_Hours',
'Scheduled_HC',
'Scheduled_HC%',
'Scheduled_Hours',
'Scheduled_Open',
```

```
'Scheduled_Open%',
  'Strike_Participant%',
  'Waha%',
  'laq14_AVG_Absence%',
  'lag14_AVG_Days_Since_Last_Absence',
  'lag14_AVG_Days_Since_Last_Total_Lost',
  'lag14_AVG_Late%',
  'laq14_AVG_Late_Hours',
  'lag14_AVG_Scheduled_Hours',
  'lag14_AVG_Sick_Hours',
  'lag14_AVG_Vacation_Hours',
  'laq14_Early%',
  'lag14_Early_HC',
  'lag14_Early_Hours',
  'laq14_HC',
  'lag14_Max_Early_Hours',
  'lag14_Scheduled_HC',
  'lag14_Scheduled_Hours',
  'laq14_Scheduled_Open',
  'lag14_Sick_Hours',
  'lag14_TotalLost_HC',
  'laq14_Total_Lost%',
  'lag14_Total_Lost_Hours',
  'lag14_Training_HC',
  'lag14_Training_Hours',
  'lag14_Worked_HC',
  'lag7_AVG_Absence%',
  'lag7_AVG_Days_Since_Last_Absence',
 'lag7_AVG_Sick_Hours',
  'lag7_AVG_Training_Hours',
  'lag7_AVG_Vacation_Hours',
  'lag7_Absence%',
  'lag7_Absence_HC',
  'lag7_Absence_Hours',
  'lag7_Early%',
  'lag7_Early_HC',
  'lag7_Early_Hours',
  'lag7_HC',
  'lag7_Late%',
  'lag7_Max_Early_Hours',
  'lag7_Scheduled_HC%',
  'lag7_Scheduled_Open%',
  'lag7_Sick_Hours',
  'lag7_Vacation_Hours',
  'lag7_Waha%',
  'lag7_Worked_HC']},
'meta_features': ['Rolling_Last_7_Days_TotalLost_HC',
'lag7_AVG_Sick_Hours',
'MU_Name_7',
'HC',
'lag14_AVG_Late_Hours',
'lag7_AVG_Training_Hours',
```

```
'Rolling_Last_7_Days_AVG_Worked_Hours',
'lag14_HC',
'MU_Name_31',
'laq7_Waha%',
'MU_Name_27',
'Rolling_Last_7_Days_Early_Hours',
'Rolling_Last_14_Days_Sick_Hours',
'laq14_Training_HC',
'Rolling_Last_7_Days_AVG_TotalLost_Hours',
'MU_Name_16',
'lag7_Scheduled_HC',
'lag14_Early%',
'lag14_AVG_Vacation_Hours',
'lag14_Early_Hours',
'Rolling_Last_14_Days_Worked_Hours',
'lag14_Scheduled_Hours',
'MU_Name_19',
'MU_Name_33',
'lag14_AVG_Sick_Hours',
'Is_Strike',
'lag14_Total_Lost_Hours',
'Rolling_Last_7_Days_Vacation_Hours',
'MU_Name_12',
'MU_Name_8',
'MU_Name_22',
'lag7_Scheduled_Hours',
'MU_Name_38',
'lag14_Worked_HC',
'Scheduled_Open%',
'MU_Name_13',
'Is_Holiday',
'MU_Name_47',
'Rolling_Last_7_Days_Sick_Hours',
'Rolling_Last_7_Days_AVG_Sick_Hours',
'Rolling_Last_14_Days_Training_Hours',
'lag7_AVG_Vacation_Hours',
'lag14_AVG_Absence%',
'lag7_AVG_Absence%',
'lag14_Early_HC',
'Rolling_Last_7_Days_Late_HC',
'MU_Name_25',
'lag14_Total_Lost%',
'MU_Name_1',
'lag7_Early%',
'MU_Name_4',
'MU_Name_9',
'Scheduled_HC%',
'MU_Name_20',
'lag7_Sick_Hours',
'lag7_HC',
'lag14_Scheduled_Open',
'lag14_AVG_Days_Since_Last_Absence',
```

```
'MU_Name_15',
'MU_Name_28',
'Rolling_Last_7_Days_Absence_Hours',
'Rolling_Last_7_Days_Training_Hours',
'Rolling_Last_7_Days_AVG_Vacation_Hours',
'Rolling_Last_7_Days_Total_Lost_Hours',
'MU_Name_5',
'MU_Name_10',
'Scheduled_HC',
'Rolling_Last_7_Days_AVG_Early_Hours',
'lag7_Absence_HC',
'MU_Name_23',
'MU_Name_0',
'laq14_TotalLost_HC',
'Rolling_Last_14_Days_Absence_Hours',
'Rolling_Last_7_Days_AVG_Late_Hours',
'Rolling_Last_7_Days_AVG_Training_Hours',
'MU_Name_2',
'lag14_Training_Hours',
'Waha%',
'MU_Name_Cat',
'MU_Name_11',
'lag7_TotalLost_HC',
'lag14_Sick_Hours',
'lag7_Absence_Hours',
'Rolling_Last_7_Days_AVG_Absence_Hours',
'lag14_Scheduled_HC',
'lag7_AVG_Days_Since_Last_Absence',
'lag14_AVG_Days_Since_Last_Total_Lost',
'Rolling_Last_14_Days_TotalLost_HC',
'lag7_Early_HC',
'Rolling_Last_7_Days_AVG_Scheduled_Hours',
'Rolling_Last_14_Days_Absence_HC',
'Scheduled_Hours',
'Rolling_Last_14_Days_Late_HC',
'MU_Name_21',
'MU_Name_6',
'Season',
'MU_Name_26',
'DayofMonth_cos',
'MU_Name_30',
'lag7_Worked_HC',
'Rolling_Last_7_Days_Worked_HC',
'Rolling_Last_7_Days_Vacation_HC',
'lag7_Absence%',
'Rolling_Last_7_Days_Absence_HC',
'lag7_Scheduled_Open',
'MU_Name_17',
'MU_Name_29',
'MU_Name_18',
'MU_Name_24',
'lag7_Late%',
```

```
'AVG_Scheduled_Hours',
  'Rolling_Last_7_Days_Training_HC',
  'lag7_Max_Early_Hours',
  'DayofWeek',
  'lag7_Total_Lost_Hours',
  'Rolling_Last_14_Days_Total_Lost_Hours',
  'lag14_AVG_Late%',
  'lag14_AVG_Scheduled_Hours',
  'DayofWeek_sin',
  'Rolling_Last_7_Days_Worked_Hours',
  'lag7_Early_Hours',
  'MU_Name_3',
  'MU_Name_14',
  'lag7_Vacation_Hours',
  'laq14_Max_Early_Hours',
  'Scheduled_Open',
  'Strike_Participant%',
  'lag7_Scheduled_HC%',
  'lag7_Scheduled_Open%'],
    'results': pd.DataFrame({
        'Model': ['RandomForest', 'XGBoost', 'LGBM'],
        'R2': [0.715814, 0.571958, 0.680911],
        'MSE': [11.192249, 16.857798, 12.566868],
        'MAE': [1.525234, 1.621362, 1.636616],
        'RMSE': [3.345482, 4.105825, 3.544978]
   })
}
```

```
# Filter models to only include RandomForest and XGBoost
selected_models = ['RandomForest', 'XGBoost']
# Filter Department 1 results and related keys
results_Department1['results'] = results_Department1['results'][
    results_Department1['results']['Model'].isin(selected_models)
]
results_Department1['best_params'] = {
    model: params for model, params in results_Department1['best_params'].items() if model
in selected_models
}
results_Department1['best_features'] = {
    model: features for model, features in results_Department1['best_features'].items() if
model in selected_models
}
# Update meta_features for Department 1 with combined best features
meta_features_Department1 = list(set(
    feature for features in results_Department1['best_features'].values() for feature in
features
))
results_Department1['meta_features'] = meta_features_Department1
```

```
# Filter Department 2 results and related keys
results_Department2['results'] = results_Department2['results'][
    results_Department2['results']['Model'].isin(selected_models)
1
results_Department2['best_params'] = {
    model: params for model, params in results_Department2['best_params'].items() if model
in selected models
}
results_Department2['best_features'] = {
    model: features for model, features in results_Department2['best_features'].items() if
model in selected models
}
# Update meta_features for Department 2 with combined best features
meta_features_Department2 = list(set(
    feature for features in results_Department2['best_features'].values() for feature in
features
))
results_Department2['meta_features'] = meta_features_Department2
# Combine Best Features from both departments
combined_best_features = {}
for model in selected_models:
    features_dept1 = results_Department1['best_features'].get(model, [])
    features_dept2 = results_Department2['best_features'].get(model, [])
    combined_best_features[model] = list(set(features_dept1 + features_dept2))
# Use Department 2's best hyperparameters
combined_best_params = results_Department2['best_params']
# Update meta_features by combining all unique features from both departments
combined_meta_features = list(set())
    feature for features in combined_best_features.values() for feature in features
))
# Create Combined Results Dictionary
results = {
    'best_params': combined_best_params,
    'best_features': combined_best_features,
    'meta_features': combined_meta_features
}
# Assign Department 2 results as results2 for further use
results2 = results_Department2
```

```
# Extract outputs for Combined Test Results
best_features_models = results['best_features']
meta_features_all_models = results['meta_features']
final_hyperparameters_all_models = results['best_params']
```

```
# Extract outputs for only Department2's Test Results
best_features_models2 = results2['best_features']
meta_features_all_models2 = results2['meta_features']
final_hyperparameters_all_models2 = results2['best_params']
```

```
# Start timer
start_time = time.perf_counter()
print('\nStarting time:', datetime.datetime.now().strftime("%H:%M:%S"), '\n')
# Combine Train & Validation Sets
X_final_train = pd.concat([X_train_e_l_n_m, X_valid_e_l_n_m], axis=0)
y_final_train = pd.concat([pd.Series(y_train), pd.Series(y_valid)], axis=0)
# Initialize dictionary to store final trial results and predictions
final_trial_results = {}
final_predictions = {} # To store predictions
# Function to train, predict, and evaluate models
def train_and_evaluate(model, model_name, X_train, y_train, X_test, y_test):
    start_time_model = time.time()
   model.fit(X_train, y_train)
   preds = model.predict(X_test)
   r2 = r2_score(y_test, preds)
   mse = mean_squared_error(y_test, preds)
   mae = mean_absolute_error(y_test, preds)
   rmse = np.sqrt(mse)
   # Store evaluation results
   final_trial_results[model_name] = {'R2': r2, 'MSE': mse, 'MAE': mae, 'RMSE': rmse}
   # Store predictions
   final_predictions[model_name] = preds
   print(f" ✓ {model_name} - R<sup>2</sup>: {r2:.4f}, MSE: {mse:.4f}, MAE: {mae:.4f}, RMSE:
{rmse:.4f}")
   print(f" () {model_name} training completed in {time.time() - start_time_model:.2f}
seconds\n")
# ---- Training for Combined Features ----
print("\n### Training with Combined Features ###")
# Random Forest
rf_final = RandomForestRegressor(**final_hyperparameters_all_models['RandomForest'],
random_state=42)
X_rf_selected = X_final_train[results_Department1['best_features']['RandomForest']]
train_and_evaluate(rf_final, 'RandomForest (Combined Features)', X_rf_selected,
y_final_train
                   , X_test_e_l_n_m[results_Department1['best_features']['RandomForest']],
y_test)
```

```
# XGBoost
xgb_final = XGBRegressor(**final_hyperparameters_all_models['XGBoost'], random_state=42)
X_xqb_selected = X_final_train[results_Department1['best_features']['XGBoost']]
train_and_evaluate(xgb_final, 'XGBoost (Combined Features)', X_xgb_selected, y_final_train
                   , X_test_e_l_n_m[results_Department1['best_features']['XGBoost']],
y_test)
# Voting Regressor (uses meta_features)
voting_final = VotingRegressor(estimators=[
    ('rf', rf_final),
    ('xgb', xgb_final)
])
train_and_evaluate(voting_final, 'Voting (Combined Features)',
X_final_train[meta_features_all_models], y_final_train
                   , X_test_e_l_n_m[meta_features_all_models], y_test)
# ---- Training for Department 2 Features ----
print("\n### Training with Department 2 Features ###")
# Random Forest
rf_final_2 = RandomForestRegressor(**final_hyperparameters_all_models2['RandomForest'],
random_state=42)
X_rf_selected_2 = X_final_train[results_Department2['best_features']['RandomForest']]
train_and_evaluate(rf_final_2, 'RandomForest (Department 2 Features)', X_rf_selected_2,
y_final_train
                   , X_test_e_l_n_m[results_Department2['best_features']['RandomForest']],
y_test)
# XGBoost
xqb_final_2 = XGBRegressor(**final_hyperparameters_all_models2['XGBoost'], random_state=42)
X_xgb_selected_2 = X_final_train[results_Department2['best_features']['XGBoost']]
train_and_evaluate(xgb_final_2, 'XGBoost (Department 2 Features)', X_xgb_selected_2,
y_final_train
                   , X_test_e_l_n_m[results_Department2['best_features']['XGBoost']],
y_test)
# Voting Regressor (uses meta_features)
voting_final_2 = VotingRegressor(estimators=[
    ('rf', rf_final_2),
    ('xgb', xgb_final_2)
])
train_and_evaluate(voting_final_2,'Voting (Department 2 Features)',
X_final_train[meta_features_all_models2], y_final_train
                   , X_test_e_l_n_m[meta_features_all_models2], y_test)
# ---- Display Final Results ----
final_trial_df = pd.DataFrame(final_trial_results).T
print("\n | Final Model Performance Comparison:")
display(final_trial_df)
```

```
# End timing
end_time = time.perf_counter()
duration = end_time - start_time
print(f"\n ô Total execution time: {duration:.2f} seconds")
```

Starting time: 16:09:56

Training with Combined Features

- ✓ RandomForest (Combined Features) R²: 0.5859, MSE: 15.4467, MAE: 1.6384, RMSE: 3.9302
- RandomForest (Combined Features) training completed in 15.81 seconds
- ☑ XGBoost (Combined Features) R²: 0.6110, MSE: 14.5137, MAE: 1.6578, RMSE: 3.8097
- XGBoost (Combined Features) training completed in 0.20 seconds
- ☑ Voting (Combined Features) R²: 0.6874, MSE: 11.6607, MAE: 1.5981, RMSE: 3.4148
- Ŏ Voting (Combined Features) training completed in 22.89 seconds

	R2	MSE	MAE	RMSE
RandomForest (Combined Features)	0.585950	15.446669	1.638353	3.930225
XGBoost (Combined Features)	0.610958	14.513688	1.657810	3.809683
Voting (Combined Features)	0.687434	11.660670	1.598122	3.414772
RandomForest (Department 2 Features)	0.682195	11.856098	1.585161	3.443268
XGBoost (Department 2 Features)	0.635062	13.614449	1.662139	3.689776
Voting (Department 2 Features)	0.680744	11.910227	1.606624	3.451120

📊 Final Model Performance Analysis

Comprehensive Model Performance Analysis

1 Combined Features Performance:

Model	R2	MSE	MAE	RMSE	Training Time (s)
RandomForest	0.5859	15.4467	1.6384	3.9302	15.81
XGBoost	0.6110	14.5137	1.6578	3.8097	0.20
Voting Regressor	0.6874	11.6607	1.5981	3.4148	22.89

Insights:

• Best Performer:

The Voting Regressor (R2 = 0.6874) outperformed both RandomForest and XGBoost, with a noticeable improvement in both R2 and RMSE.

• RandomForest vs. XGBoost:

XGBoost slightly outperformed RandomForest in terms of R2 and RMSE, showcasing its ability to handle combined feature sets effectively.

- Training Time:
 - XGBoost is extremely fast (0.20 seconds) compared to RandomForest (15.81 seconds).
 - Voting Regressor's training time is higher (22.89 seconds) due to combining both models.
- MAE Observations:

The Voting Regressor shows the lowest MAE, indicating improved consistency in predictions.

2 Department 2 Features Performance:

Model	R2	MSE	MAE	RMSE	Training Time (s)
RandomForest	0.6822	11.8561	1.5852	3.4433	15.22
XGBoost	0.6351	13.6144	1.6621	3.6898	0.25
Voting Regressor	0.6807	11.9102	1.6066	3.4511	16.35

Insights:

• Best Performer:

The **Voting Regressor (R2 = 0.6807)** outperforms XGBoost and performs almost equally to RandomForest in **R2**, while providing better stability.

• RandomForest vs. XGBoost:

RandomForest clearly outperforms XGBoost in Department 2, consistent with previous patterns.

• Training Time:

XGBoost remains faster (0.25 seconds), while RandomForest takes longer (15.22 seconds) due to its complexity.

The Voting Regressor's training time (16.35 seconds) remains efficient.

• MAE Observations:

The Voting Regressor has a slightly higher **MAE** than RandomForest but outperforms XGBoost, indicating better generalization.

📊 🔞 Combined Features vs. Department 2 Features:

Model	R2 (Combined)	R2 (Dept 2)	Δ R2	RMSE (Combined)	RMSE (Dept 2)	Δ RMSE
RandomForest	0.5859	0.6822	+9.63%	3.9302	3.4433	-0.49
XGBoost	0.6110	0.6351	+2.41%	3.8097	3.6898	-0.12
Voting Regressor	0.6874	0.6807	-0.67%	3.4148	3.4511	+0.04

Key Comparisons:

1. R2 Performance:

- Department 2 Features yield better performance for RandomForest, while Voting Regressor performs slightly better with Combined Features.
- XGBoost performs slightly better with Department 2 Features compared to Combined Features.

2. RMSE Performance:

 RandomForest (Dept 2) achieved the lowest RMSE (3.4433) overall, indicating strong generalization.

3. Training Time Consideration:

Department 2 models generally have similar training times compared to Combined Features,
 with slight variations depending on model complexity.

Key Takeaways:

- **Best Model: Voting Regressor (Combined Features)** with the **highest R2 (0.6874)** and **lowest RMSE** (3.4148).
- RandomForest consistently benefits from focused feature sets (Department 2 Features).
- XGBoost performs well in both settings but shows slight improvements with Department 2 Features.
- Voting Regressor provides balanced performance across both feature sets.

- 🔀 Final Model Recommendation: Voting Regressor (Combined Features)
- Why This Model?
 - Highest Predictive Power: Best balance between R2 (0.6874) and RMSE (3.4148).
 - Strategic Alignment: Optimized for diverse operational environments with combined features.
 - Future-Proof Design: Efficient with adaptable features, suitable for evolving data.
- 🚀 This model strikes the best balance between performance, efficiency, and scalability!

final_trial_df[final_trial_df.index=='Voting (Combined Features)'] RMSE MAE Voting (Combined Features) 0.687434 11.66067 1.598122 3.414772

🚀 SHAP Analysis: Unveiling Model Interpretability

What is SHAP?

SHAP (SHapley Additive exPlanations) is a powerful method to interpret machine learning models. It helps explain how each feature contributes to a model's prediction. SHAP is based on Shapley values from game theory, originally used to fairly distribute payouts among players in a game.

- Players = Features (e.g., Scheduled_Hours , Absence_HC)
- Payout = Model Prediction (e.g., predicted absenteeism)

Why Are We Doing SHAP Analysis?

While we've identified the Voting Regressor (Combined Features) as the best-performing model based on metrics like R2 and RMSE, these metrics alone don't explain why the model performs well. SHAP bridges that gap by providing:

- Feature Importance:
 - Which features matter the most?
 - SHAP ranks features based on their impact on predictions.
- Impact Direction:
 - Does a feature increase or decrease absenteeism predictions?
 - SHAP shows if higher values of a feature lead to higher or lower absenteeism.
- Local vs. Global Interpretability:
 - Globally: Understand overall model behavior across all predictions.
 - Locally: Explain individual predictions to see why a specific forecast was made.

Model Transparency:
 Ensures the model isn't a "black box," which is crucial for trust, compliance, and decision-making.

What Will We Achieve?

• Visual Insights:

SHAP will generate summary plots showing how features influence absenteeism predictions.

Decision Support:

By understanding **which operational factors** (like scheduling or absence history) drive absenteeism, we can make **data-driven management decisions**.

Model Validation:

Verify if the model is focusing on the right features or if there's any bias we need to address.

🚀 In a Nutshell:

SHAP helps us move beyond "What is the model's accuracy?" to "Why is the model making these predictions?"

It's about adding transparency and trust to our high-performing model.

```
# Final model for SHAP analysis
final_model = voting_final # Voting Regressor (Combined Features)
# Ensure consistent feature selection using meta features
X_selected = X_test_e_l_n_m[meta_features_all_models]
# SHAP Explainer for each base model in the Voting Regressor
rf_model = final_model.estimators_[0] # RandomForest
xgb_model = final_model.estimators_[1] # XGBoost
# SHAP Explainer for RandomForest
explainer_rf = shap.TreeExplainer(rf_model)
shap_values_rf = explainer_rf.shap_values(X_selected)
# SHAP Explainer for XGBoost
explainer_xgb = shap.TreeExplainer(xgb_model)
shap_values_xgb = explainer_xgb.shap_values(X_selected)
# Combine SHAP values by averaging (since Voting Regressor averages predictions)
shap_values_combined = (shap_values_rf + shap_values_xgb) / 2
# Summary Plot - Feature Importance (Bar Plot)
plt.figure(figsize=(10, 6))
shap.summary_plot(shap_values_combined, X_selected, plot_type="bar")
# Summary Plot - Detailed View (Beeswarm Plot)
plt.fiqure(fiqsize=(12, 8))
```


- SHAP Analysis Insights for Voting (Combined Features)
- 1 Feature Importance Insights (Bar Plot)
- 📊 Top Influential Feature:
 - Rolling_Last_7_Days_Total_Lost_Hours has the highest impact on the model's predictions.
 - This indicates that the cumulative lost hours in the past week play a critical role in forecasting absenteeism.
- Other Key Features:
 - Rolling_Last_7_Days_Absence_Hours, Rolling_Last_7_Days_TotalLost_HC, and Rolling_Last_7_Days_Absence_HC also significantly influence the model.

 These features reflect the recent absence patterns and headcount dynamics, which are logical drivers for absenteeism predictions.

Scheduling Metrics:

• Features like Scheduled_Open%, Scheduled_HC%, and AVG_Scheduled_Hours show moderate importance, highlighting how workforce planning affects absenteeism rates.

SHAP Summary Plot (Detailed Impact Analysis)

- Positive vs. Negative Impact:
 - Red dots represent high feature values, and blue dots represent low feature values.
 - For example:
 - Higher [Rolling_Last_7_Days_Total_Lost_Hours] (dots on the right) increase absenteeism predictions.
 - Lower values (dots on the left) decrease absenteeism forecasts.

Interesting Observations:

- Strike_Participant% shows some extreme SHAP values, indicating that strike-related absences can drastically affect predictions when the percentage is high.
- Features like Scheduled_Open and lag7_Scheduled_Open% have lower but noticeable impacts, emphasizing how scheduling fluctuations over time influence absenteeism.

🖋 Key Takeaways

Recent Absence Trends Matter Most:

Absence-related features from the **last 7 days** dominate the model, reinforcing the **importance of recent absenteeism patterns** in predictive modeling.

- Operational Factors Are Crucial:
 - **Scheduling metrics** like Scheduled_HC% and Scheduled_Open% affect predictions, underlining the interplay between workforce management and absenteeism.
- Potential Action Points:
 - Monitoring recent absence patterns more closely can improve workforce planning.
 - Proactive scheduling adjustments might help mitigate absenteeism risks.

Final Thought:

SHAP helps us not just understand *which* features matter, but also *how* they influence predictions—driving more informed, data-backed decisions. \mathscr{Q}

```
pred_rf = final_predictions['RandomForest (Combined Features)']
pred_xgb = final_predictions['XGBoost (Combined Features)']
```

```
pred_voting = final_predictions['Voting (Combined Features)']
```

```
# ---- Combined Real vs Predicted for All Models ----
plt.figure(figsize=(12, 8))
plt.scatter(y_test, pred_rf, alpha=0.6, label="RandomForest", color="blue")
plt.scatter(y_test, pred_xqb, alpha=0.6, label="XGBoost", color="green")
plt.scatter(y_test, pred_voting, alpha=0.6, label="Voting", color="purple")
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2,
label="Perfect Fit")
plt.title("Real vs Predicted: All Models")
plt.xlabel("Real Values")
plt.ylabel("Predicted Values")
plt.legend()
plt.show()
# ---- Line Plot for Real vs Predicted (Subset for Visualization) ----
# Use a subset of data for better line visualization
subset_index = slice(0, 100) # Adjust this range as needed
plt.figure(figsize=(12, 6))
plt.plot(range(len(y_test[subset_index])), y_test[subset_index], label="Real",
color="black", linewidth=2)
plt.plot(range(len(y_test[subset_index])), pred_rf[subset_index], label="RandomForest",
color="blue", linestyle="--")
plt.plot(range(len(y_test[subset_index])), pred_xgb[subset_index], label="XGBoost",
color="green", linestyle="--")
plt.plot(range(len(y_test[subset_index])), pred_voting[subset_index], label="Voting",
color="purple", linestyle="--")
plt.title("Real vs Predicted (Subset): Line Plot Comparison")
plt.xlabel("Index")
plt.ylabel("Values")
plt.legend()
plt.show()
# Use a subset of data for better line visualization
plt.figure(figsize=(12, 6))
plt.plot(range(len(y_test[subset_index])), y_test[subset_index], label="Real",
color="black", linewidth=2)
plt.plot(range(len(y_test[subset_index])), pred_voting[subset_index], label="Voting",
color="purple", linestyle="--")
plt.title("Real vs Predicted (Subset): Line Plot Comparison")
plt.xlabel("Index")
plt.ylabel("Values")
plt.legend()
plt.show()
```



```
# Plot settings
sns.set(style="whitegrid", context="notebook", font_scale=1.1)
plt.rcParams["figure.dpi"] = 100 # High resolution
# ---- Shared Parameters ----
AXIS LABEL FONTSIZE = 12
TITLE_FONTSIZE = 14
PERFECT_FIT_COLOR = "#FF4C4C"
SCATTER\_ALPHA = 0.7
SCATTER_EDGECOLOR = "w" # White edges for better visibility
# ---- Individual Model Plots ----
def plot_model_comparison(y_true, y_pred, model_name, color):
    plt.fiqure(fiqsize=(10, 6))
    plt.scatter(y_true, y_pred, alpha=SCATTER_ALPHA, label=f"{model_name} Predicted",
                color=color, edgecolor=SCATTER_EDGECOLOR, s=80)
    plt.plot([y_true.min(), y_true.max()], [y_true.min(), y_true.max()],
             linestyle='--', lw=2, color=PERFECT_FIT_COLOR, label="Perfect Fit")
    # Axis limits with buffer
    axis_min = min(y_true.min(), y_pred.min()) - 0.5
    axis_max = max(y_true_max(), y_pred_max()) + 0.5
    plt.xlim(axis_min, axis_max)
    plt.ylim(axis_min, axis_max)
    plt.title(f"{model_name}: Actual vs Predicted Total_Lost", fontsize=TITLE_FONTSIZE,
pad=15)
    plt.xlabel("Actual Total_Lost", fontsize=AXIS_LABEL_FONTSIZE)
    plt.ylabel("Predicted Total_Lost", fontsize=AXIS_LABEL_FONTSIZE)
    plt.legend(loc='upper left', frameon=True, facecolor='white')
```

```
plt.tight_layout()
    plt.show()
# Generate individual plots
plot_model_comparison(y_test, pred_rf, "RandomForest", "#1F77B4") # Blue
plot_model_comparison(y_test, pred_xgb, "XGBoost", "#2CAO2C")
                                                                  # Green
plot_model_comparison(y_test, pred_voting, "Voting", "#9467BD")
                                                                  # Purple
# ---- Combined Model Comparison ----
plt.figure(figsize=(12, 8))
# RandomForest
plt.scatter(y_test, pred_rf, alpha=SCATTER_ALPHA, label="RandomForest",
           color="#1F77B4", edgecolor=SCATTER_EDGECOLOR, s=80)
# XGBoost
plt.scatter(y_test, pred_xgb, alpha=SCATTER_ALPHA, label="XGBoost",
           color="#2CA02C", marker="s", edgecolor=SCATTER_EDGECOLOR, s=80)
# LightGBM
plt.scatter(y_test, pred_voting, alpha=SCATTER_ALPHA, label="Voting",
           color="#9467BD", marker="^", edgecolor=SCATTER_EDGECOLOR, s=80)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()],
         linestyle='--', lw=2, color=PERFECT_FIT_COLOR, label="Perfect Fit")
plt.title("Model Comparison: Actual vs Predicted Total_Lost", fontsize=TITLE_FONTSIZE,
pad=15)
plt.xlabel("Actual Total_Lost", fontsize=AXIS_LABEL_FONTSIZE)
plt.ylabel("Predicted Total_Lost", fontsize=AXIS_LABEL_FONTSIZE)
plt.xlim(y_test.min() - 0.5, y_test.max() + 0.5)
plt.ylim(y_test.min() - 0.5, y_test.max() + 0.5)
plt.legend(loc='upper left', frameon=True, facecolor='white', borderpad=1)
plt.tight_layout()
plt.show()
# ---- Time Series Subset Comparison ----
subset_index = slice(-100, None) # First 100 samples
plt.figure(figsize=(12, 6))
# Actual Values
plt.plot(y_test[subset_index], label="Actual", color="black", lw=2, zorder=3)
# Model Predictions
plt.plot(pred_rf[subset_index], label="RandomForest", color="#1F77B4", linestyle="--")
plt.plot(pred_xgb[subset_index], label="XGBoost", color="#2CA02C", linestyle="--")
plt.plot(pred_voting[subset_index], label="Voting", color="#9467BD", linestyle="--")
plt.title("Time Series Subset: Actual vs Predicted Total_Lost", fontsize=TITLE_FONTSIZE,
pad=15)
plt.xlabel("Time Step", fontsize=AXIS_LABEL_FONTSIZE)
plt.ylabel("Total_Lost", fontsize=AXIS_LABEL_FONTSIZE)
plt.legend(loc='upper right', frameon=True, facecolor='white')
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
```

```
# ---- Time Series Subset Comparison ----
subset_index = slice(-100, None) # First 100 samples

plt.figure(figsize=(12, 6))
# Actual Values
plt.plot(y_test[subset_index], label="Actual", color="black", lw=2, zorder=3)
# Model Predictions
plt.plot(pred_voting[subset_index], label="Voting", color="#9467BD", linestyle="--")

plt.title("Time Series Subset: Actual vs Predicted Total_Lost", fontsize=TITLE_FONTSIZE, pad=15)
plt.xlabel("Time Step", fontsize=AXIS_LABEL_FONTSIZE)
plt.ylabel("Total_Lost", fontsize=AXIS_LABEL_FONTSIZE)
plt.legend(loc='upper right', frameon=True, facecolor='white')
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```

plt.show()

📊 Predicting Absenteeism from Total_Lost

The core objective of this section is to evaluate the model's performance not just in predicting Total_Lost, but also in its ability to predict Absenteeism, which is the true business metric of interest.

Absenteeism Formula

Absenteeism = (Total_Lost) ÷ (Scheduled Hours)

Where:

- Total_Lost = The total hours lost due to absenteeism.
- Scheduled Hours = The total hours an employee was scheduled to work.

Key Objectives:

- Assess both actual and predicted absenteeism rates.
- Compare model performance using key metrics:
 - R2 (R-squared): Measures the proportion of variance explained by the model.
 - MSE (Mean Squared Error): Quantifies the average squared difference between actual and predicted absenteeism.
 - MAE (Mean Absolute Error): Shows the average magnitude of errors in predictions.
 - RMSE (Root Mean Squared Error): Provides error magnitude in the same unit as absenteeism for better interpretability.

6 Why This Matters:

While **Total_Lost** predictions are essential for operational analysis, the **true business impact** lies in predicting absenteeism rates, which directly affect productivity and workforce management decisions.

This dual evaluation ensures the model is not only technically sound but also business-relevant.

```
# ---- Function to Calculate Absenteeism ----
def calculate_absenteeism(total_lost, scheduled):
    with np.errstate(divide='ignore', invalid='ignore'):
        absenteeism = np.where(scheduled != 0, total_lost / scheduled, 0)
    return absenteeism
# ---- Function to Evaluate Absenteeism Predictions ----
def evaluate_absenteeism(y_true, y_pred, scheduled):
    actual_absenteeism = calculate_absenteeism(y_true, scheduled)
    predicted_absenteeism = calculate_absenteeism(y_pred, scheduled)
    r2 = r2_score(actual_absenteeism, predicted_absenteeism)
    mse = mean_squared_error(actual_absenteeism, predicted_absenteeism)
    mae = mean_absolute_error(actual_absenteeism, predicted_absenteeism)
    rmse = np.sqrt(mse)
    return actual_absenteeism, predicted_absenteeism, {'R2': r2, 'MSE': mse, 'MAE': mae,
'RMSE': rmse}
# ---- Absenteeism Evaluation ----
# DataFrame to store absenteeism metrics
absenteeism_metrics_df = pd.DataFrame()
# X_test_e_l_n_m has a 'Scheduled_Hours' column
scheduled = X_test_e_l_n_m['Scheduled_Hours'].values
# Evaluate Absenteeism for Each Model
for model_name, preds_final in {
    "RandomForest": pred_rf,
    "XGBoost": pred_xqb,
    "Voting": pred_voting
}.items():
    actual_abs, predicted_abs, metrics = evaluate_absenteeism(y_test, preds_final,
scheduled)
    print(f"{model_name} Absenteeism Metrics: {metrics}")
    # Save metrics to DataFrame
    metrics['Model'] = model_name
    absenteeism_metrics_df = pd.<mark>concat</mark>([absenteeism_metrics_df, pd.<mark>DataFrame</mark>([metrics])],
ignore_index=True)
# Display absenteeism metrics
print("\nAbsenteeism Metrics for All Models:")
print(absenteeism_metrics_df)
absenteeism metrics df
```

```
RandomForest Absenteeism Metrics: {'R2': 0.5472424579110233, 'MSE': 0.5668730523948539,
'MAE': 0.349333496404509, 'RMSE': 0.75290972393432}
XGBoost Absenteeism Metrics: {'R2': 0.5678247488541563, 'MSE': 0.5411030872201603, 'MAE':
0.355050833736584, 'RMSE': 0.735597095712157}
Voting Absenteeism Metrics: {'R2': 0.6251028118461679, 'MSE': 0.4693883450344511, 'MAE':
0.34199200836424815, 'RMSE': 0.685119219577477}
Absenteeism Metrics for All Models:
         R2
                  MSE
                             MAE
                                      RMSE
                                                    Model
   0.547242   0.566873   0.349333   0.752910   RandomForest
  0.567825 0.541103 0.355051 0.735597
                                                  XGBoost
  0.625103 0.469388 0.341992 0.685119
                                                   Voting
        R2
               MSE
                        MAE
                               RMSE
                                          Model
0 0.547242 0.566873 0.349333 0.752910 RandomForest
1 0.567825 0.541103 0.355051 0.735597 XGBoost
2 0.625103 0.469388 0.341992 0.685119 Voting
```

Hyperparameter Tuning: Current Approach and Next Steps

Current Approach:

Up until now, all of the selected **best features** and **hyperparameters** were obtained using **Randomized Grid Search**. This approach was chosen due to:

- High computational demands of large datasets.
- High dimensionality, making exhaustive search impractical.

While **Randomized Grid Search** offers a quick and efficient way to identify promising hyperparameters, it is **not the optimal method** for final model tuning. Instead, it should be used as a **guiding tool** to define the **hyperparameter ranges** for a more exhaustive **Grid Search**.

Why Not Grid Search Yet?

- Resource Intensive: A full Grid Search requires significant computational resources, often exceeding the capabilities of standard local CPU/GPU setups.
- Time-Consuming: Especially with high-dimensional data, Grid Search can take an exponentially longer time compared to Randomized Search.

6 The Correct Approach:

- 1. Step 1: Use Randomized Grid Search to identify promising hyperparameter ranges (already done ✓).
- 2. Step 2: Perform a refined Grid Search within these ranges to find the optimal hyperparameters.
- 3. Step 3: Validate the final model performance with the new hyperparameters.

📊 Impact of Hyperparameter Tuning So Far:

- R2 Improvement:
 - Before Modeling: R2 was around 32%.
 - After Initial Modeling: R2 improved to ~50% for Department 1 and ~70% for Department 2.
- Error Reduction:
 - Adjusting hyperparameters using Randomized Grid Search reduced error margins by ~5% to ~10%.

Potential Gains with Grid Search:

With access to better computational resources, applying a well-defined Grid Search can:

- Further boost model performance across all departments.
- Optimize error margins even beyond current improvements.
- Enhance the model's generalization ability for future unseen data.

Next Steps:

- 1. Set up a Grid Search with narrower, refined ranges based on Randomized Search outcomes.
- Utilize distributed computing resources (e.g., cloud-based solutions like AWS, Google Cloud) for faster processing.
- 3. Compare performance improvements post Grid Search to quantify the impact.
- **Key Takeaway:** A well-executed Grid Search, supported by the right computational resources, can significantly **enhance model accuracy and robustness** beyond current achievements.