	Programmation linéaire				
Ecole Supérieure Privée d'Ingénierie et de Technologies	Semestre: 1 Session: Principale	2 Rattrapage			
Module : Programmation linéaire					
Enseignant(s): F. Mtar, I. Bouchaalla, I. Boukhis, K. Fersi, K. Jabeur, M. Gharbi, M. Kchaou					
Classe(s): 4éme					
Documents autorisés : OUI	NON	Nombre de pages=2			
Date: 17 Janvier 2022 H	leure: 11H	Durée : 1 h 30 min			

Exercice(6 points)

Un agriculteur veut cultiver 4 sortes de légumes : des carottes, des courgettes, des tomates et des concombres. Pour ce faire, il dispose d'un terrain de superficie égale à 12 000 m^2 . Afin d'assurer une bonne récolte, l'agriculteur utilise deux (2) sortes d'engrais (A et B) et un (1) antiparasite. Le tableau ci-dessous indique : (i) la quantité (en litre) d'engrais/antiparasite utilisée par m^2 alloué à chaque type de légumes, (ii) les stocks (en litre) d'engrais/antiparasite disponibles et (iii) le rendement (kg/ m^2) d'un m^2 alloué à chaque type de légumes.

	Engrais A	Engrais B	Antiparasite	Rendement
	(Litre/ m^2)	(Litre $/m^2$)	(Litre/ m^2)	(kg/m^2)
Carottes	0.75	1.25	0.5	4
Courgettes	1.5	1.70	1	6
Tomates	2.25	1.75	1.2	9
Concombres	1.8	1.4	1	5
Stocks disponibles	250 litres	210 litres	180 litres	

Pour des raisons liées à la demande du marché, l'agriculteur souhaite que la quantité de carottes produites (en kg) ne dépasse pas 30% du poids total des légumes récoltés. De plus, pour des raisons qu'on ignore, l'agriculteur a exprimé les deux souhaits suivants :

- Au moins deux types de légumes seront cultivés ;
- Si les carottes seront cultivées, alors il faut impérativement cultiver les courgettes et les concombres.

Formuler, <u>sans le résoudre</u>, le programme linéaire qui aidera l'agriculteur à maximiser le poids des légumes récoltés.

Problème(14points)

On considère le programme linéaire (P) suivant :

$$\operatorname{Max} Z = 6x_1 + 2x_2$$

Sous contraintes
$$\begin{cases} 2x_1 + x_2 \le 10 \\ x_1 - x_2 \le 2 \\ 4x_1 + x_2 \le 20 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

- 1. (3points) Résoudre graphiquement le problème (P).
- 2. (1.5point) Déterminer le problème, (D), dual au problème (P).
- 3. (2points) Déterminer la solution optimale de (D) en utilisant le théorème des écarts complémentaires.
- 4. (3points) Résoudre (P) en utilisant la méthode de simplexe.
- 5. (1.5point)Préciser pour chaque tableau de simplexe de (P), la solution de base réalisable (point extrême) ainsi que la valeur de la fonction-objectif, qui lui sont associées.
- 6. (1.5point) Déterminer les contraintes de (P) qui seront saturées à l'optimalité.
- 7. (1.5point) Si on remplace le second membre de la première contrainte de (P), par 11, déduire que sera la valeur de Z à l'optimalité ?