Table 5.1-1 Experimental values of diffusion coefficients in gases at one atmosphere

Gas pair	Temperature (K)	Diffusion coefficient (cm ² /sec)
Air-benzene	298.2	0.096
Air-CH ₄	282.0	0.196
Air–C ₂ H ₅ OH	273.0	0.102
Air-CO ₂	282.0	0.148
Air-H ₂	282.0	0.710
Air–H ₂ O	289.1	0.282
2	298.2	0.260
	312.6	0.277
	333.2	0.305
Air–He	282.0	0.658
Air– <i>n</i> -hexane	294.0	0.080
Air-toluene	299.1	0.086
Air–aniline	299.1	0.074
Air–2-propanol	299.1	0.099
CH ₄ –He	298.0	0.675
CH ₄ -H ₂	298.0	0.726
CH_4-H_2O	307.7	0.720
$CO-N_2$	295.8	0.212
-		
¹² CO– ¹⁴ CO	373.0	0.323
CO-H ₂	295.6	0.743
CO-He	295.6	0.702
CO_2 – H_2	298.2	0.646
CO_2-N_2	298.2	0.165
CO_2 – O_2	296.0	0.156
CO ₂ –He	298.4	0.597
CO ₂ –CO	315.4	0.185
CO_2 – H_2O	307.4	0.202
CO_2 – SO_2	263.0	0.064
$^{12}\text{CO}_2 - ^{14}\text{CO}_2$	312.8	0.125
CO ₂ –propane	298.1	0.087
H_2-N_2	297.2	0.779
$H_2 - O_2$	316.0	0.891
H ₂ –He	317.0	1.706
H_2 –Ar	317.0	0.902
H ₂ -Xe	341.2	0.751
H_2^2 $-SO_2$	285.5	0.525
H_2-H_2O	307.1	0.915
H_2-NH_3	298.0	0.783
H ₂ -ethane	298.0	0.537
H ₂ — <i>n</i> -hexane	288.7	0.290
H ₂ -cyclohexane	288.6	0.319
H ₂ -benzene	311.3	0.404
N ₂ -O ₂	316.0	0.230
11/2 0/2	293.2	0.230
N ₂ –He	317.0	0.794
N_2 - Ar	316.0	0.794
	298.0	0.210
N ₂ -NH ₃		
N_2 - H_2 O	298.2 263.0	0.293
N ₂ -SO ₂	263.0	0.104
N ₂ -ethane	298.0	0.148 (Continued)
		TCOMININEA 1

(Continued)

Table 5.1-1 (Continued)

Gas pair	Temperature (K)	Diffusion coefficient (cm ² /sec)
N_2 - <i>n</i> -butane	298.0	0.096
N ₂ -isobutane	298.0	0.090
N_2 - <i>n</i> -hexane	288.6	0.076
N_2 - <i>n</i> -octane	303.1	0.073
N_2^{-2} ,2,4-	303.3	0.071
trimethylpentane		
N ₂ -benzene	311.3	0.102
O ₂ –He (He trace)	298.2	0.737
$(\tilde{O}_2$ -trace)	298.2	0.718
O ₂ –He	317.0	0.822
O_2 - H_2O	308.1	0.282
O ₂ –CCl ₄	296.0	0.075
O ₂ -benzene	311.3	0.101
O ₂ — <i>n</i> -hexane	288.6	0.075
O_2 -n-octane	303.1	0.071
O_2^- 2,2,4-	303.0	0.071
trimethylpentane		
He–Ar	298.0	0.742
He–H ₂ O	298.2	0.908
He-NH ₃	297.1	0.842
Ar–Ne	303.0	0.327
Ar–Kr	303.0	0.140
Ar–Xe	329.9	0.137
Ne-Kr	273.0	0.223
Ethylene–H ₂ O	307.8	0.204

Source: Data from Hirschfelder et al. (1954), Marrero and Mason (1972), and Poling et al. (2001).

equals unity, the diffusion process has proceeded significantly. In other words, where z^2 equals 4Dt, the diffusion has penetrated a distance z in the time t.

In gases, this penetration distance is much larger than in other phases. For example, the diffusion coefficient of water vapor diffusing in air is about 0.3 cm²/sec. In 1 second, the diffusion will penetrate 0.5 cm; in 1 minute, 4 cm; and in 1 hour, 30 cm.

5.1.1 Gaseous Diffusion Coefficients From the Chapman–Enskog Theory

The most common method for theoretical estimation of gaseous diffusion is that developed independently by Chapman and by Enskog (Chapman and Cowling, 1970). This theory, accurate to an average of about eight percent, leads to the equation

$$D = \frac{1.86 \cdot 10^{-3} T^{3/2} (1/\tilde{M}_1 + 1/\tilde{M}_2)^{1/2}}{p\sigma_{12}^2 \Omega}$$
 (5.1-1)

in which D is the diffusion coefficient measured in cm²/sec, T is the absolute temperature in Kelvin, p is the pressure in atmospheres, and the \tilde{M}_i are the molecular weights.

Table 5.1-2 Lennard–Jones potential parameters found from viscosities

Substance		$\sigma(\mathring{\mathrm{A}})$	$\varepsilon_{12}/k_{\mathrm{B}}(\mathrm{K})$
Ar	Argon	3.542	93.3
He	Helium	2.551	10.2
Kr	Krypton	3.655	178.9
Ne	Neon	2.820	32.8
Xe	Xenon	4.047	231.0
Air	Air	3.711	78.6
Br_2	Bromine	4.296	507.9
CČl ₄	Carbon tetrachloride	5.947	322.7
CHCl ₃	Chloroform	5.389	340.2
CH_2Cl_2	Methylene chloride	4.898	356.3
CH ₃ Cl	Methyl chloride	4.182	350.0
CH ₃ OH	Methanol	3.626	481.8
CH ₄	Methane	3.758	148.6
CO	Carbon monoxide	3.690	91.7
CO_2	Carbon dioxide	3.941	195.2
CS_2	Carbon disulfide	4.483	467.0
C_2H_2	Acetylene	4.033	231.8
C_2H_2 C_2H_4	Ethylene	4.163	224.7
C_2H_4 C_2H_6	Ethylene	4.443	215.7
C_2H_5Cl	Ethane Ethyl chloride	4.898	300.0
C_2H_5OH	Ethyremoride	4.530	362.6
		4.307	395.0
CH CHCH	Methyl ether	4.678	298.9
CH ₂ CHCH ₃	Propylene		
C_3H_8	Propane	5.118	237.1
n-C ₃ H ₇ OH	<i>n</i> -Propyl alcohol	4.549	576.7
CH ₃ COCH ₃	Acetone	4.600	560.2
n-C ₄ H ₁₀	n-Butane	4.687	531.4
iso- C_4H_{10}	Isobutane	5.278	330.1
n-C ₅ H ₁₂	<i>n</i> -Pentane	5.784	341.1
C_6H_6	Benzene	5.349	412.3
C_6H_{12}	Cyclohexane	6.182	297.1
$n-C_6H_{14}$	n-Hexane	5.949	399.3
Cl_2	Chlorine	4.217	316.0
HBr	Hydrogen bromide	3.353	449.0
HCN	Hydrogen cyanide	3.630	569.1
HC1	Hydrogen chloride	3.339	344.7
HF	Hydrogen fluoride	3.148	330.0
HI	Hydrogen iodide	4.211	288.7
H_2	Hydrogen	2.827	59.7
H_2O	Water	2.641	809.1
H_2S	Hydrogen sulfide	3.623	301.1
Hg	Mercury	2.969	750.0
NH_3	Ammonia	2.900	558.3
NO	Nitric oxide	3.492	116.7
N_2	Nitrogen	3.798	71.4
N_2O	Nitrous oxide	3.828	232.4
O_2^2	Oxygen	3.467	106.7
$\tilde{SO_2}$	Sulfur dioxide	4.112	335.4

Note: Data from Hirschfelder et al. (1954).

Table 5.1-3. The collision integral Ω

k_BT/s	Ω	k_BT/ε	Ω	k_BT/ε	Ω
0.30	2.662	1.65	1.153	4.0	0.8836
0.35	2,476	1.70	1.140	4.1	0.8788
0.40	2,318	1.75	1.128	4.2	0.8740
0.45	2.184	1.80	1.116	4.3	0.8694
0.50	2.066	1.85	1.105	4.4	0.8652
0.55	1.966	1.90	1.094	4.5	0.8610
0.60	1.877	1.95	1.084	4.6	0.8568
0.65	1.798	2.00	1.075	4.7	0.8530
0.70	1.729	2.1	1.057	4.8	0.8492
0.75	1.667	2.2	1.041	4.9	0.8456
0.80	1.612	2.3	1.026	5.0	0.8422
0.85	1.562	2.4	1.012	6	0.8124
0.90	1.517	2.5	0.9996	7	0.7896
0.95	1.476	2.6	0.9878	8	0.7712
1.00	1.439	2.7	0.9770	9	0.7556
1.05	1.406	2.8	0.9672	10	0.7424
1,10	1.375	2,9	0.9576	20	0.6640
1.15	1.346	3.0	0.9490	30	0.6232
1.20	1.320	3.1	0.9406	40	0.5960
1.25	1.296	3.2	0.9328	50	0.5756
1.30	1.273	3.3	0.9256	60	0.5596
1.35	1.253	3.4	0.9186	70	0.5464
1.40	1.233	3.5	0.9120	80	0.5352
1.45	1.215	3.6	0.9058	90	0.5256
1.50	1.198	3.7	0.8998	100	0.5130
1.55	1.182	3.8	0.8942	200	0.4644
1.60	1.167	3.9	0.8888	300	0.4360

Source: Data from Hirschfelder et al. (1954).

Table 24.3 Atomic Diffusion Volumes for use in Estimating $D_{\rm AB}$ by Method of Fuller, Schettler, and Giddings

С	16.5	Cl			19.5
H	198	S			17.0
Ö	5.48	Aromatic ring			20.2
N	5.69	Heterocyclic ring		222	20.2
	Diffusion	Volumes for	Simple Mole		55.422 62
Н,	Diffusion	Volumes for	Simple Mole	cules, v H ₂ O	12.7
H ₂					114.8
H ₂ D ₂ He	7.07	Аг	16.1	H₃O	114.8 69.7
D ₂ He	7.07 6.70	Ar Kr	16.1 22.8	H ₂ O CCIF ₂	12.7 114.8 69.7 37.7
D_2	7.07 6.70 2.88	Ar Kr CO	16.1 22.8 18.9	H ₂ O CCIF ₂ SF ₆	114.8 69.7

Solute	$D(\cdot 10^{-5} \text{ cm}^2/\text{sec})$
Acetic acid	1.21
Acetone	1.16
Ammonia	1.64
Argon	2.00
Benzene	1.02
Benzoic acid	1.00
Bromine	1.18
Carbon dioxide	1.92
Carbon monoxide	2.03
Chlorine	1.25
Ethane	1.20
Ethanol	0.84
Ethylene	1.87
Glycine	1.06
Helium	6.28
Hemoglobin	0.069
Hydrogen	4.50
Hydrogen sulfide	1.41
Methane	1.49
Methanol	0.84
<i>n</i> -Butanol	0.77
Nitrogen	1.88
Oxygen	2.10
Ovalbumin	0.078
Propane	0.97
Sucrose	$(0.5228 - 0.265c_1)^a$
Urea	$(1.380 - 0.0782c_1 + 0.00464c_1^2)^a$
Urease	0.035
Valine	0.83

Table 5.2-1 Diffusion coefficients at infinite dilution in water at 25 °C

Note: a Known to very high accuracy, and so often used for calibration; c_1 is in moles per liter. *Source:* Data from Cussler (1976) and Poling *et al.* (2001).

only about twenty percent (Poling et al., 2001). Nonetheless, this equation remains the standard against which alternative correlations are judged.

The Stokes-Einstein equation is

$$D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi\mu R_0} \tag{5.2-1}$$

where f is the friction coefficient of the solute, $k_{\rm B}$ is Boltzmann's constant, μ is the solvent viscosity, and R_0 is the solute radius. The temperature variation suggested by this equation is apparently correct, but it is much smaller than effects of solvent viscosity and solute radius. A discussion of these larger effects follows.

The diffusion coefficient varies inversely with viscosity when the ratio of solute to solvent radius exceeds five. This behavior is reassuring because the Stokes–Einstein equation is derived by assuming a rigid solute sphere diffusing in a continuum of solvent. Thus, for a large solute in a small solvent, Eq. 5.2-1 seems correct.

Table 5.2-2 Diffusion coefficients at infinite dilution nonaqueous liquids

Solvent	Solute ^a	$D(\cdot 10^{-5} \text{ cm}^2/\text{sec})$
Chloroform	Acetone	2.35
	Benzene	2.89
	Ethyl alcohol (15°C)	2.20
	Ethyl ether	2.14
	Ethyl acetate	2.02
Benzene	Acetic acid	2.09
	Benzoic acid	1.38
	Cyclohexane	2.09
	Ethyl alcohol (15°C)	2.25
	<i>n</i> -Heptane	2.10
	Oxygen (29.6 °C)	2.89
	Toluene	1.85
Acetone	Acetic acid	3.31
	Benzoic acid	2.62
	Nitrobenzene (20 °C)	2.94
	Water	4.56
<i>n</i> -Heptane	Carbon tetrachloride	3.70
	Dodecane	2.73
	<i>n</i> -Hexane	4.21
	Propane	4.87
	Toluene	4.21
Ethanol	Benzene	1.81
	Iodine	1.32
	Oxygen (29.6 °C)	2.64
	Water	1.24
	Carbon tetrachloride	1.50
<i>n</i> -Butanol	Benzene	0.99
	<i>p</i> -Dichlorobenzene	0.82
	Propane	1.57
	Water	0.56
<i>n</i> -Heptane	Benzene	3.40

Note: ^aTemperature 25 °C except as indicated.

Source: Data from Poling et al. (2001).

When the solute radius is less than five times that of the solvent, Eq. 5.2-1 breaks down (Chen *et al.*, 1981). This failure becomes worse as the solute size becomes smaller and smaller. Errors are especially large in high-viscosity solvents; the diffusion seems to vary with a smaller power of viscosity often around (–0.7). In extremely high-viscosity materials, diffusion becomes independent of viscosity: the diffusion of sugar in jello is very nearly equal to the diffusion of sugar in water.

The reason for this altered viscosity dependence is that viscosity often depends on much longer range interactions than diffusion. For example, in jello, the polymeric collagen forms hydrogen bonds that form a three-dimensional elastic network, which of course has very high viscosity. However, sugar and salts diffusing through this network are much smaller than the distances between these hydrogen bonds, so these solutes behave just as if they are diffusing through water. As evidence of this, the concentration dependence of the diffusion coefficient of potassium chloride diffusing in water—polyethylene glycol mixtures is exactly the same as that in water. Diffusion reflects short-range interactions.

Table 24.4 Molecular Volumes at Normal Boiling Point for Some Commonly Encountered Compounds

Compound	Molecular volume, cm ³ /g mole	Compound	Molecular volume, in cm³/g mole
Hydrogen, H ₂	14.3	Nitric oxide, NO	23.6
Oxygen, O ₂	25.6	Nitrous oxide, N ₂ O	36.4
Nitrogen, N ₂	31.2	Ammonia, NH ₃	25.8
Air	29.9	Water, H ₂ O	18.9
Carbon monoxide, CO	30.7	Hydrogen sulfide, H ₂ S	32.9
Carbon dioxide, CO ₂	34.0	Bromine, Br ₂	53.2
Carbonyl sulfide, COS	51.5	Chlorine, Cl ₂	48.4
Sulfur dioxide, SO ₂	44.8	Iodine, I ₂	71.5