

				Sub	ject	Co	de: I	KAS	5101	
Roll No:										

Printed Page: 1 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 PHYSICS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief. $2 \times 10 = 20$

-•	recempt an questions in brief.		
Qno.	Question	Marks	CO
a.	What is inertial and non-inertial frame of references?	2	1
b.	Show that the massless particle can exist only if they move with the speed of light and their energy E and momentum p must have the relation E= pc.	2	1
c.	Write Maxwell's equations in non-conducting medium.	2	2
d.	Define skin depth.	2	2
e.	Distinguish electromagnetic waves and matter waves?	2	3
f.	What is de-Broglie hypothesis?	2	3
g.	What are coherent sources?	2	4
h.	State Rayleigh's criterion of resolution.	2	4
i.	Explain the propagation mechanism of optical fiber.	2	5
j.	What are the main components of laser?	2	5

SECTION B

2. Attempt any three of the following:

₽•	recempt any three of the following.		
Qno.	Question	Marks	СО
a.	What is length contraction? Derive the necessary expression for it. Show that $x^2+y^2+z^2-c^2t^2$ is invariant. under Lorentz transformation.	10	1
b.	Show that the radiation pressure exerted by an electromagnetic wave is equal to the energy density. For a medium, conductivity $\sigma = 58 \times 10^6$ seimen/m, $\in_{\Gamma} = 1$. Find out the conduction and displacement current densities if the magnitude of electric field intensity is given by $E = 150 \sin(10^{10} t)$ Volt/m.	10	2
c.	Define wave function with its physical significance. Derive Schrodinger's time independent wave equation.	10	3
d.	Prove that reflection and transmission are complimentary in thin film interference.	10	4
e.	Develop the expressions for acceptance angle and numerical aperture of an optical fiber. A step index fiber has core refractive index 1.466, cladding refractive index 1.46. If the operating wavelength of the rays is 0.85 μ m, calculate the cut – off parameter and the number of modes, which the fibre will support. The diameter of the core = 50 μ m.	10	5

SECTION C

3. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	By using Lorentz transformation equations, derive time dilation. Show that time dilation is a real effect.	10	1
b.	Derive Einstein's mass-energy relation Calculate the amount of work to be done to increase the speed of an electron from 0.6C to 0.8C. Given that the rest mass energy of electron= 0.5 MeV.	10	1

				Sub	ject	Coo	de: I	KAS	101
Roll No:									

Printed Page: 2 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 PHYSICS

4. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Derive the Poynting or work-energy theorem for the flow of energy in an	10	2
b.	electromagnetic field. Also give the physical interpretation. With the help of Maxwell's equations for free space, derive electromagnetic	10	2
	wave equation in free space and prove that electromagnetic waves are transverse in nature.		

5. Attempt any *one* part of the following:

	g.		
Qno.	Question	Marks	CO
a.	Solve Schrodinger's wave equation for a particle in one dimensional infinite potential box. Compute the energy difference between the ground state & the first excited state for an electron in a one-dimensional rigid box of length 100 A°.	10	3
b.	Define Compton effect and apply it to find an expression for the Compton shift $(\Delta \lambda)$.	10	3

6. Attempt any *one* part of the following:

	The first first state of grant		
Qno.	Question	Marks	CO
a.	Explain and describe the formation of Newton's rings in reflected light. Solve	10	4
	it for reflected light to prove that the diameters of dark rings are proportional to		XV
	the square roots of natural numbers. Light of wavelength 6000 A ⁰ falls	, '	•
	normally on a thin wedge-shaped film of refractive index 1.4 forming fringes	(C)	
	that are 2.0 mm apart. Find the angle of wedge in seconds.	Y) T	
b.	Discuss single slit Fraunhofer's diffraction and make use to show that the	*10	4
	relative intensities of successive maximum are nearly 1: 1/22 : 1/62 : 1/121:		

7. Attempt any *one* part of the following:

-	r		
Qno.	Question	Marks	CO
a.	With the help of diagram, classify and describe various types of optical fibers	10	5
	based on modes and core refractive index.		
b.	With the help of diagram describe the process of spontaneous and stimulated	10	5
	emission of radiation. Also obtain an expression for Einstein's coefficients of		
	spontaneous and stimulated emission of radiation. Analyze the value of		
	population of two states in He-Ne laser that produces light of wavelength 6000		
	Å at 27°C.		

Subject Code: KAS101T
Roll No:

Printed Page: 1 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Note: Attempt all the sections. If require any missing data, then choose suitably.

Section A

1. Attempt all questions in brief:2 x 10 = 20

Q.N.	Question	Marks	СО
a.	Differentiate between inertial and non- inertial frames.	2	1
b.	Show that the rest mass of a photon is zero.	2	1
c.	Write the similarities and dissimilarities between conduction and	2	2
	displacement current.		
d.	Define the Poynting vector and write its unit.	2	2
e.	State the Wien's displacement law.	2	3
f.	Distinguish between modified and unmodified x-rays.	2	3
g.	The light rays from two independent bulbs do not show interference.	2	4
	Give the reason.		
h.	State the Rayleigh criteria of resolution.	2	4
i.	What is an optical fibre? How does a light signal propagate through	2	50
	it?		6.
j.	Write the essential requirements for the laser action.	2 /)5

Section B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Q.N.	Question	Marks	СО
a.	Show that $E^2=p^2c^2+m_0^2c^4$	10	1
b.	Find the skin depth δ atafrequencyof3.0x $10^6 Hz$ in aluminium where σ = 38.0 x $10^6 S/m$ and μ_T = 1.	10	2
c.	An electron is bound in one dimensional potential box which has width 2.5×10^{-10} m. Assuming the height of the box to be infinite, calculate the lowest permitted energy values of the electron.	10	3
d.	White light is incident on a soap film at an angle Sin ⁻¹ (4/5) and the reflected light is observed with a spectroscope. It is found that two consecutive dark bands correspond to wavelengths 6.1x10 ⁻⁵ cm and 6.0x10 ⁻⁵ cm. If the refractive index of the film is 4/3, calculate the thickness.	10	4
e.	A communication system uses a 10 km fiber having a loss of 2.5dB/km. Compute the output power if the input power is 500μW.	10	5

				Sul	oject	Co	de: l	KAS	S101T
Roll No:									

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Section C

3. Attempt ant one of the following:

1 x 10 = 10

Printed Page: 2 of 2

Q.N.	Question	Marks	СО
a.	State the postulates of special theory of relativity and derive the	10	1
	Lorentz transformation equations. When Lorentz transformation		
	equations get reduced to Galilean transformation equations?		
b.	State and prove the velocity addition theorem. Show that the	10	1
	theorem is consistent with the Einstein's second postulate.		

4. Attempt any one of the following:

1 x 10 = 10

Q.N.	Question	Marks	СО
a.	Establish the e-m waves' equations in free space and solve them to show that they travel with the speed of light in free space and are	10	2
	transverse in nature.		
b.	State and prove the Poynting theorem. Show that E/H = 377 Ohm.	10	2

5. Attempt any one of the following:

1 x 10 =10

Q.N.	Question	Marks	co o
a.	What is the Planck's theory of black body radiations? Obtain an	10	3
	expression for the average energy of the oscillators and derive the		, 'V
	Planck's radiation law.		, ,
b.	Write the Schrodinger's wave equation for a particle in one-	10	3
	dimensional box and solve it to obtain the eigen values and eigen		
	functions.		

6. Attempt any one of the following:

 $1 \times 10 = 10$

0			
Q.N.	Question	Marks	СО
a.	What do you mean by a wedge-shaped film? Discuss the interference due to it and obtain the expression for the fringe width.	10	4
b.	Discuss the formation of Newton's rings. Show that the diameters of the bright rings are proportional to the square root of odd natural numbers.	10	4

7. Attempt any one of the following:

1 x 10 = 10

Q.N.	Question	Marks	СО
a.	What do you mean by acceptance angle and numerical aperture?	10	5
	Derive the expressions for acceptance angle and numerical aperture.		
b.	What do you understand by the stimulated emission? Discuss the He-	10	5
	Ne laser by giving its construction and working. How He-Ne laser is		
	superior to the Ruby laser?		

Physical Constants:

Rest mass of electron m_o = 9.1 x 10^{-31} kg, Speed of light $c = 3 \times 10^8$ m/s Planck 's Constant $h = 6.63 \times 10^{-34}$ J-s, Charge on electron $e = 1.6 \times 10^{-19}$ Coulomb