Stat 61 In-Class Worksheet

Original group members:

Oct 21, 2020

Suppose we observe $X_1,, X_n$ IID data points from a $N(\mu, 0.4^2)$ distribution where $n = 16$ and we wish to test $H_0: \mu = 37$.
1. For a simple alternative, H_1 : $\mu = 36.8$ with $\alpha = 0.025$, what is the rejection region A_{α} ? What is the power of this test?
2. How does the rejection region change if we increase n to $n = 64$ but keep everything else the same?
3. How would the power change if we decreased α but kept everything else the same?
4. How would A_{α} change if we instead tested against H_1 : $\mu = 36$?

The Neyman-Pearson lemma implies that, for testing $H_0: \mu = \mu_0$ vs $H_1: \mu = \mu_1$ with $\mu_1 < \mu_0$, the test that rejects for $\bar{X} < c_\alpha$ is most powerful of all tests with comparable α .

- 5. Is the test in (1) above uniformly most powerful for any pair of hypotheses? If so which ones and why?
- 6. For the test in (1) above, suppose you observe data where $\bar{x}_{obs} = 36.85$. What is the p-value for this one-sided test? (I.e. what is the smallest α level that would lead to rejecting H_0 ?)

7. For testing H_0 : $\mu = \mu_0$ vs H_1 : $\mu < \mu_0$ at an $\alpha = 0.025$ level, if we observe $\bar{x}_{obs} = 36.85$ (n = 16), what are the range of μ_0 values that would NOT be rejected? (I.e. find a one-sided confidence interval for μ .)