## **Tagsets**

- What is a tagset?
- Standards and tagging
- Tags for parts of speech:
  - Nouns, verbs, adverbs, adjectives, articles, etc
  - Subtagging
    - nouns can be singular or plural
    - verbs have tenses
  - Different tagsets have different focuses

# Tags are cryptic

```
>>> text = nltk.word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
('completely', 'RB'), ('different', 'JJ')]
```

- Brown and Treebank established some cryptic tags; everyone tends to use Treebank's
  - CC = coordinating conjunction
  - -RB = adverb
  - IN = preposition
  - -NN = noun
  - JJ = adjective

# NLTK can help

- We don't even remember what all the tags mean sometimes
- but nltk.help.upenn\_tagset(tag) does!

## Homographs

```
>>> text = nltk.word_tokenize("They
refuse to permit us to obtain the refuse
permit")
>>> nltk.pos_tag(text)
[('They', 'PRP'), ('refuse', 'VBP'),
('to', 'TO'), ('permit', 'VB'), ('us',
'PRP'), ('to', 'TO'), ('obtain', 'VB'),
('the', 'DT'), ('refuse', 'NN'),
('permit', 'NN')]
```

## Tags in NLTK

```
>>> tagged_token = nltk.tag.str2tuple('fly/NN')
>>> tagged_token
('fly', 'NN')
>>> tagged_token[0]
'fly'
>>> tagged_token[1]
'NN'
```

- Tags are tuples
- Tags can be converted by NLTK between tagsets

# Making tuples from a corpus

```
>>> sent = '''
... The/AT grand/JJ jury/NN commented/VBD on/IN a/AT
number/NN of/IN
... other/AP topics/NNS ,/, AMONG/IN them/PPO the/AT
Atlanta/NP and/CC
... Fulton/NP-tl County/NN-tl purchasing/VBG departments/
NNS which/WDT it/PPS
... said/VBD ``/`` ARE/BER well/QL operated/VBN and/CC
follow/VB generally/RB
... accepted/VBN practices/NNS which/WDT inure/VB to/IN
the/AT best/JJT
... interest/NN of/IN both/ABX governments/NNS ''/'' ./.
>>> [nltk.tag.str2tuple(t) for t in sent.split()]
[('The', 'AT'), ('grand', 'JJ'), ('jury', 'NN'),
('commented', 'VBD'),
('on', 'IN'), ('a', 'AT'), ('number', 'NN'), ... ('.', '.')
```

## Many Tag Sets

- Different corpora have different conventions for tagging.
- There are ISO standards for tagging...
- There were many boring meetings
- NLTK made a simplified, unified tagset
- ... which no one uses.

# Simplified Tagset of NLTK

| Tag | Meaning            | Examples                             |
|-----|--------------------|--------------------------------------|
| ADJ | adjective          | new, good, high, special, big, local |
| ADV | adverb             | really, already, still, early, now   |
| CNJ | conjunction        | and, or, but, if, while, although    |
| DET | determiner         | the, a, some, most, every, no        |
| EX  | existential        | there, there's                       |
| FW  | foreign word       | dolce, ersatz, esprit, quo, maitre   |
| MOD | modal verb         | will, can, would, may, must, should  |
| N   | noun               | year, home, costs, time, education   |
| NP  | proper noun        | Alison, Africa, April, Washington    |
| NUM | number             | twenty-four, fourth, 1991, 14:24     |
| PRO | pronoun            | he, their, her, its, my, I, us       |
| P   | preposition        | on, of, at, with, by, into, under    |
| TO  | the word to        | to                                   |
| UH  | interjection       | ah, bang, ha, whee, hmpf, oops       |
| v   | verb               | is, has, get, do, make, see, run     |
| VD  | past tense         | said, took, told, made, asked        |
| VG  | present participle | making, going, playing, working      |
| VN  | past participle    | given, taken, begun, sung            |
| WH  | wh determiner      | who, which, when, what, where, how   |

# Tagging in Other Languages

```
>>> nltk.corpus.sinica_treebank.tagged_words()
[('\xe4\xb8\x80', 'Neu'), ('\xe5\x8f\x8b\xe6\x83\x85', 'Nad'), ...]
>>> nltk.corpus.indian.tagged_words()
[('\xe0\xa6\xae\xe0\xa6\xb9\xe0\xa6\xbf\xe0\xa6\xb7\xe0\xa6\xb0', 'NN'),
('\xe0\xa6\xb8\xe0\xa6\xa8\xe0\xa7\x8d\xe0\xa6\xa4\xe0\xa6\xbe\xe0\xa6\xa8', 'NN'),
...]
>>> nltk.corpus.mac_morpho.tagged_words()
[('Jersei', 'N'), ('atinge', 'V'), ('m\xe9dia', 'N'), ...]
>>> nltk.corpus.conl12002.tagged_words()
[('Sao', 'NC'), ('Paulo', 'VMI'), ('(', 'Fpa'), ...]
>>> nltk.corpus.cess_cat.tagged_words()
[('El', 'da0ms0'), ('Tribunal_Suprem', 'np00000'), ...]
```

Bangla: क्रॅंड्राइत क्रीं ति/'NN' আকার/'NN' वालांत/'NNP' वा/'CC' ভারত রে/'NNP' ?/None न्य/'JJ' ?/None এ চল রে/'NN' প্রচল তি/'JJ' ক্র্ড্েরে/'NN' ঘর/'NN' নয়/'VM' क्रिं/'SYM'
Hindi: पा किस्तान/'NNP' की/'PREP' पूर्व /'JJ' प्रधानम त्री/'NN' बेनजीर/'NNPC' भुट्टो/'NNP'
पर/'PREP' लगे/'VFM' भ्रष्टाचार/'NN' के/'PREP' आरोपों/'NN' के/'PREP' खिलाफ/'PREP' भुट्टो/'NNP'
द्वारा/'PREP' दायर/'NVB' की/'VFM' गई/'VAUX' या चिका/'NN' की/'PREP' स्नवाई/'NN'
म ंगलवार/'NN' को/'PREP' वकीलों/'NN' की/'PREP' हड़ताल/'NN' के/'PREP' कारण/'PREP'
स्थ गित/'JVB' कर/'VFM' दी/'VAUX' गई/'VAUX' ।/'PUNC'
Marathi: ग्रामीण/'JJ' जिल्हा ध्यक्ष/'NN' बाळास हिंब/'NNPC' भोसले/'NNP' यांच्या/'PRP' ?/None
ध्यक्षतेखाली/'NN' पक्षाची/'NN' आज/'NN' बै?/None क/'NN' झाली/'VM' ./'SYM'
Telugu: ఖూబాచుల/'NN' నుంచి/'PREP' నచ్చన/'VJJ' ప్ఞుల/'NN' ను/'PREP' సాక్ష్య యా/'NN'



#### Exercise 1 (simple, 10min)

- Take any book nltk.books or nltk.gutenberg, and part of speech tag it.
  - Start from .raw() text
  - Segment into sentences, then into words.
  - POS-tag the words
- ✓ Plot a frequency distribution of the POS-tags
- ✔ Plot a frequency distribution of all the nouns in the document



#### **Named Entity Recognition**

✓ See next slides, by Stephan Lesch

#### For full slides see:

http://courses.ischool.berkeley.edu/i290-2/f04/lectures/ner2.ppt

#### **Example:**

```
sentence = "Coca-Cola spokesman Mike Tyson said they
will buy Microsoft today."
```

→ Coca-Cola: ORG, Mike Tyson: PERSON, Microsoft: ORG



# The who, where, when & how much in a sentence

The task: identify atomic elements of information in text

- person names
- company/organization names
- locations
- dates&times
- percentages
- monetary amounts

## example from MUC-7

Delimit the named entities in a text and tag them with NE categores:

```
<ENAMEX TYPE="LOCATION">Italy</ENAMEX>'s business world was rocked by
the announcement <TIMEX TYPE="DATE">last Thursday</TIMEX> that Mr.
<ENAMEX TYPE="PERSON">Verdi</ENAMEX> would leave his job as vice-president
of <ENAMEX TYPE="ORGANIZATION">Music Masters of Milan, Inc</ENAMEX>
to become operations director of
<ENAMEX TYPE="ORGANIZATION">Arthur Andersen</ENAMEX>.
```

- •"Milan" is part of organization name
- •,,Arthur Andersen" is a company
- •,,Italy" is sentence-initial => capitalization useless

#### difficulties

- too numerous to include in dictionaries
- changing constantly
- appear in many variant forms
- subsequent occurrences might be abbreviated
- ⇒ list search/matching doesn't perform well

Whether a phrase is a proper name, and what name class it has, depends on

- Internal structure: "Mr. Brandon"
- Context:
   "The new <u>company</u>, SafeTek, will make air bags."

## **Applications**

- Information Extraction
- Summary generation
- Machine Translation
- document organization/classification
- automatic indexing of books
- increase accuracy of Internet search results (location Clinton/South Carolina vs. President Clinton)

## The hand-crafted approach

uses hand-written context-sensitive reduction rules:

- 1) title capitalized word => title person\_name compare "Mr. Jones" vs. "Mr. Ten-Percent" => no rule without exceptions
- 2) person\_name, "the" adj\* "CEO of" organization "Fred Smith, the young dynamic CEO of BlubbCo"
- => ability to grasp non-local patterns plus help from databases of known named entities

## Word features

#### • Easily determinable token properties:

| <u>Feature</u>         | <u>Example</u> | <u>Intuition</u>             |
|------------------------|----------------|------------------------------|
| fourDigitNum           | 1990           | four digit year              |
| containsDigitAndAlpha  | A123-456       | product code                 |
| containsCommaAndPeriod | 1.00           | monetary amount, percentage  |
| otherNum               | 34567          | other number                 |
| allCaps                | BBN            | Organisation                 |
| capPeriod              | M.             | Person name initial          |
| firstWord first wor    | d of sentence  | ignore capitalization        |
| initCap                | Sally          | capitalized word             |
| lowerCase              | can            | uncapitalized word           |
| other                  | ,              | punctuation, all other words |

## Histories, bin. features & futures

- History h<sub>t</sub>: information derivable from the corpus relative to a token t:
  - text window around token  $w_i$ , e.g.  $w_{i-2}$ ,..., $w_{i+2}$
  - word features of these tokens
  - POS, other complex features
- Binary features: yes/no-questions on history used by models to determine probabilities of
- Futures: name classes



#### **Next step: Co-reference Resolution**

- **"Joe** walks with his girlfriend. She likes tea."
- Co-ref resolution important to understand longer texts.
- Step 1: find mentions
- Step 2: cluster connected mentions (which refer to a real-world "thing")
- "Mike walks with his girlfriend. She likes tea."





#### Co-reference Resolution – **Step 1**:

#### **Extract Mentions**

- Mentions refer to something concrete in the world
- Mentions are (for example)
  - Named Entities
  - **Pronouns:** He, she, they, his, herself, etc.
  - Common noun mentions: the tree, her son, man, the park, the naughty child, ...
  - Embedded mentions: her son
  - Other nested mentions: the CFO of IBM





### Co-reference Resolution - Step 2: Create Mention Chains / Clustering

- Create mention chains
  - → connect mentions which refer to the some real world thing
- Special case: split antecedent.
  "Mike and Ann go to Moscow. They take a plane."
- Often not clear how to annotate text, if things point to something in the real world.
- "Co-referent" if pointing to the some real-world entity





#### **Coreference Resolution:**

#### **Applications**

- Text understanding
  - Eg. understanding a discourse structure, eg in our book series: In conversations often back-and-forth with pronouns, etc.
- Machine translation: eg. some languages have no gender in pronouns
- ✓ Information / Relation Extraction, question answering, ...
  - "Mike and Ann go to Moscow. They take a plane."
  - Q: Who flew to Moscow?
  - A: They.





# **Coref Demo: Neural Coref** (intergrated in Spacy)

- https://huggingface.co/coref/
  - Let's try it out
- Demo contains info on how it works and how to train a model (if you are curious)
- Source code is at:
  - https://github.com/huggingface/neuralcoref





#### **Systems 1: Neural Coref**

- https://github.com/huggingface/neuralcoref
  - Integrated with spaCy (v2)
  - Easy to use and good accuracy
- Installation:
  - Download spaCy model (for coref, see github)
  - pip install MODEL\_URL
- Usage:
  - nlp = spacy.load('en\_coref\_md') # we discuss spacy later
- Misc:
  - Visualisation code: https://github.com/huggingface/neuralcoref-viz





#### **Standford CoreNLP**

- Overview: https://nlp.stanford.edu/projects/coref.shtml
- Software: https://stanfordnlp.github.io/CoreNLP/coref.html
- Java-based
- See website for details
- Can also be loaded from within NLTK





#### Introduction to spaCy

- ✓ URL: https://spacy.io/
- Features (they claim):
  - Fast
  - Easy-to-use
  - Mature, gets things done
  - Also for industrial usage
  - Easy to integrate with deep learning
- Python-based



#### spaCy Installation

- **W** Basics:
  - bash\$ pip install -U spacy
  - spacy download en
- Or with a virtual env (see spacy website)
- **♥** First steps:

```
import spacy
nlp = spacy.load('en') # load model

# analyse a document with the model
doc = nlp(u'This is a sentence.')
```



#### spaCy: First Steps

```
text = open('war_and_peace.txt').read()
doc = nlp(text)
# Find named entities, phrases and concepts
for entity in doc.ents:
    print(entity.text, entity.label_)
# Determine semantic similarities
doc1 = nlp(u'the fries were gross')
doc2 = nlp(u'worst fries ever')
doc1.similarity(doc2)
```

# Hook in your own deep learning models - or Coref
nlp.add\_pipe(load\_my\_model(), before='parser')





#### spaCy: visual display

from spacy import displacy

doc\_ent = nlp(u'When Sebastian Thrun started working on self-driving cars at Google ' u'in 2007, few people outside of the company took him seriously.')

displacy.serve(doc\_ent, style='ent')

Examples at: https://explosion.ai/demos/



#### **SpaCy: more functions**

```
doc = nlp(u"Apple and banana are similar. Pasta and hippo
aren't.")
apple = doc[0]
banana = doc[2]
pasta = doc[6]
hippo = doc[8]
assert apple.similarity(banana) > pasta.similarity(httppo)
assert apple.has vector, banana.has vector,
pasta.has vector, hippo.has vector
                                                   ITM Ore than a
```



### Thank you!

Questions?