Im Folgenden sei M stets eine Matrix $\in M_{n,n}(K)$ und V ein K-VR.

1 invertierbar

- $\operatorname{rg}(M) = n$
- $\det M \neq 0$
- $M \in \mathrm{GL}_n(K)$
- $\det M = 1 \implies M \in \mathrm{SL}_n(K)$

2 diagonalisierbar

- \bullet Es gibt eine Basis von V aus Eigenvektoren von M.
- $\exists S \in \mathrm{GL}_n(K) : S^{-1}MS$ hat Diagonalgestalt
- notwendig: $\chi_{\text{char}}(M)$ zerfällt in Linearfaktoren \Leftrightarrow trigonalisierbar
- hinreichend: $\chi_{\text{char}}(M)$ zerfällt in paarweise verschiedene Linearfaktoren

•
$$\sum_{\lambda \text{ EW von } M} \mu_{\text{geo}} = n$$

3 symmetrisch

- Spezialfall von hermitesch in \mathbb{R}
- symmetrisch $\Leftrightarrow M = M^t$ (antisymmetrisch $\Leftrightarrow M = -M^t$)
- $\exists S \in GL_n(K)$ mit S^tMS hat Diagonalgestalt
- $K = \mathbb{C}: \exists S \in \mathrm{GL}_n(K) \text{ mit } S^t M S = \mathrm{diag}(\underbrace{1, \dots, 1}_{r}, 0, \dots, 0)$

•
$$K = \mathbb{R}: \exists S \in \operatorname{GL}_n(K) \text{ mit } S^tMS = \operatorname{diag}(\underbrace{1, \dots, 1}_{r_+}, \underbrace{-1, \dots, -1}_{r_-}, 0, \dots, 0)$$

4 positiv definit

- Die dazugehörige Bilinearform ist positiv definit.
- \exists obere Dreiecksmatrix $T \in GL_n(K)$ mit $G = T^tT$
- $\exists T \in \mathrm{GL}_n(K) \text{ mit } G = T^t T$
- $\exists T \in GL_n(K)$ mit $(T^{-1})^tG(T^{-1}) = E_n$, dabei ist T die Transformationsmatrix von der Standardbasis zu einer Orthogonalbasis bezüglich der von M induzierten Bilinearform.
- Die k-ten Hauptminoren sind positiv.

5 orthogonal

- $\bullet\,$ Spezialfall von unitär in $\mathbb R$
- $M^tM = E_n$
- Die assoziierte lineare Abbildung ist eine Isometrie
- $M \in O(n)$
- $\det M = 1 \implies M \in SO(n)$

6 adjungiert

- Ist M^* die Adjungierte von M, so gilt für die assoziierten linearen Abbildungen f und f^* : $h(x, f(y)) = h(f^*(x), y)$, wobei
 - $-K = \mathbb{R}$: V euklidisch (h positiv definit und symmetrisch), h bilinear, $M^* = M^t \implies h(x, f(y)) = x^t M y = (M^t x)^t y = h(f^*(x), y)$
 - $-K=\mathbb{C}$: V unitär (h positiv definit und hermitesch), h sesquilinear, $M^*=\overline{M}^t \implies h(x,f(y))=x^t\overline{My}=(\overline{M}^tx)^ty=h(f^*(M),y)$
- offensichtlich ist (in Bezug auf die Matrix) $K = \mathbb{R}$ ein Spezialfall von $K = \mathbb{C}$, da $\overline{M} = M$ für $K = \mathbb{R}$.

7 hermitesch (selbstadjungiert)

- $M = M^*$
- für $K = \mathbb{R}$ äquivalent zu symmetrisch
- hermitesche Sesquilinearform: $h(v,w) = \overline{h(w,v)} \implies$ Fundamentalmatrix ist hermitesch.
- ullet \Longrightarrow normal

8 unitär

- $MM^* = E_n$
- $\bullet\,$ für $K=\mathbb{R}$ äquivalent zu orthogonal
- $h(Mx, My) = x^t M^t \overline{M} y = \overline{x^t M^* M \overline{y}} = x^t y = h(x, y)$
- \Longrightarrow normal

9 normal

• $MM^* = M^*M$