Week 5 Unit 1: Evaluation Phase – Overview

CRISP-DM – Phase 5: Evaluation

Phase 5.1: Evaluate Results

Task

- Assess the degree to which the model meets the business objectives.
- Test the model(s) on test applications if time and budget constraints permit.
- Output Assessment of Data Mining Results with respect to business success criteria
- Output Approved Model

Phase 5.2: Review Process

Task

- Conduct a more thorough review of the data mining engagement to determine if there is any important factor or task that has somehow been overlooked.
- Identify any quality assurance issues.

Output – Review of Process

 Summarize the process review and highlight activities that have been missed and/or should be repeated.

Phase 5.3: Determine Next Steps

Task

Assess how to proceed with the project.

Output – List of Possible Actions

 List the potential further actions along with the reasons for and against each option.

Output – Decision

Describe the decision on how to proceed.

Thank you

Contact information:

open@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

Week 5 Unit 2: Model Performance Metrics

Introduction

From Rexer Analytics 3rd Annual Data Miner Survey by Karl Rexer, PhD, Heather N. Allen, PhD and Paul Gearan

Success criteria for classification models

- The following performance metrics are often used to assess classification model success:
 - Confusion matrices summarize Type I and Type II errors
 - Lift, gains, ROC, and area under the curve (AUC)
 - SAP has developed predictive power (KI) and prediction confidence (KR) metrics

Confusion matrix

		Predict	Total	
		1	0	
A storal Class	1	TP	FN	Р
Actual Class	0	FP	TN	N

Confusion matrix: costs and benefits

			Predicted	
		Yes	No	
Actual	Yes	+ Benefit Value	– Benefit Value	Actual Total Positive
Act	o N	Cost	N/A	Actual Total Negative
		Total Predicted Positive	Total Predicted Negative	

Lift and gains charts

Gains (detected) chart – Random model

Gains (detected) chart – Perfect model

Gains (detected) chart – Our model

Lift chart

ROC curve

SAP metrics – Predictive power (KI) and prediction confidence (KR)

Predictive Power (Ki)_{Validation} \approx C/(A+B+C) Predictive Power (Ki)_{Estimation} \approx (B+C)/(A+B+C)

Success criteria for regression models

Summary

- The choice of performance metric should be the one that most closely matches the business objectives defined at the beginning of the project during the Business Understanding phase.
- The metric used for model selection is of critical importance, because the model selected based on one metric may not be a good model for a different metric.

Thank you

Contact information:

open@sap.com

Appendix

Additional Material

- Confusion Matrix
 - Commonly used metrics
- Gains and Lift Chart Examples
 - Decision tree
 - Logistic regression
- ROC Curve
 - Sensitivity and specificity
- Success Criteria for Regression Models
 - Notation
 - Mean absolute error (L1)
 - Mean square error (L2)
 - Maximum error (Linf)
 - Coefficient of determination (R2)

Confusion matrix – Commonly used metrics

True Positive Rate, Hit Rate, Recall, Sensitivity	TP/P	The proportion of positive instances that are correctly classified as positive
False Positive Rate, False Alarm Rate	FP/N	The proportion of negative instances that are erroneously classified as positive
False Negative Rate	FN/P	The proportion of positive instances that are erroneously classified as negative = 1 - True Positive Rate
True Negative Rate	TN/N	The proporion of negative instances that are correctly classified as negative

Precision, Positive Predicted Value	TP/(TP + FP)	Proportion of instances classified as positive that are really positive	
F1 Score, Harmonic Mean	(2 x Precision x Recall) / (Precision + Recall)	A measure combining Precision and Recal	
Accuracy, Predictive Accuracy	(TP + TN) / (P + N)	The proportion of instances that are correctly classified	
Error Rate	(FP + FN) / (P + N)	The proporion of instances that are incorrectly classified	

Gains chart and lift chart - Classification tree example

Scenario	Outlook nperat	ure	Humidity	Windy	Class	Predicted
1	Sunny	75	70	Yes	Play	Play
2	Sunny	80	90	Yes	No	No
3	Sunny	85	85	No	No	No
4	Sunny	72	95	No	No	No
5	Sunny	69	70	No	Play	Play
6	Overcast	72	90	Yes	Play	Play
7	Overcast	83	78	No	Play	Play
8	Overcast	64	65	Yes	Play	Play
9	Overcast	81	75	No	Play	Play
10	Rain	71	80	Yes	No	No
11	Rain	65	70	Yes	No	No
12	Rain	75	80	No	Play	Play
13	Rain	68	80	No	Play	Play
14	Rain	70	96	No	Play	Play

Tree	Class	Play	No	Total	Cumulative	Cumulative	Cumulative	Cumulative	Base		
Node	% of Bin				Class	Total	% Total	% Class	Line		
							0.00	0.00	0		Lift
1	100.00	4	0	4	4	4	28.57	44.44	28.57	28.57	1.556
4	100.00	3	0	3	7	7	50.00	77.78	50.00	50.00	1.556
6	100.00	2	0	2	9	9	64.29	100.00	64.29	64.29	1.556
7	0.00	0	3	3	9	12	85.71	100.00	85.71	85.71	1.167
3	0.00	0	2	2	9	14	100.00	100.00	100.00	100.00	1.000
Total		9	5	14							

Gains chart and lift chart – Logistic regression example

Record	Fitted	Fitted	Actual	Cumulative			
ID		Sorted		Actual	Gain	Baseline	Lift
					0.00	0	
0	0.8423	1.0000	1	1	7.69	3.125	2.46
1	0.4048	0.9995	1	2	15.38	6.25	2.46
2	0.9702	0.9983	1	3	23.08	9.375	2.46
3	0.0417	0.9964	1	4	30.77	12.5	2.46
4	0.0694	0.9924	1	5	38.46	15.625	2.46
5	0.0050	0.9702	1	6	46.15	18.75	2.46
6	0.2480	0.9700	1	7	53.85	21.875	2.46
7	0.0093	0.9437	1	8	61.54	25	2.46
8	0.0410	0.9434	1	9	69.23	28.125	2.46
9	0.0112	0.9211	0	9	69.23	31.25	2.22
10	0.0112	0.8960	1	10	76.92	34.375	2.24
11	0.0005	0.8423	1	11	84.62	37.5	2.26
12	0.0085	0.5857	1	12	92.31	40.625	2.27
13	0.0057	0.4048	1	13	100.00	43.75	2.29
14	0.0000	0.2480	0	13	100.00	46.875	2.13
15	0.0000	0.0694	0	13	100.00	50	2.00
16	0.0000	0.0417	0	13	100.00	53.125	1.88
17	0.9700	0.0410	0	13	100.00	56.25	1.78
18	0.9995	0.0359	0	13	100.00	59.375	1.68
19	0.9983	0.0304	0	13	100.00	62.5	1.60
20	0.9211	0.0155	0	13	100.00	65.625	1.52
21	0.0155	0.0112	0	13	100.00	68.75	1.45
22	0.0304	0.0112	0	13	100.00	71.875	1.39
23	0.0359	0.0093	0	13	100.00	75	1.33
24	0.0028	0.0085	0	13	100.00	78.125	1.28
25	0.9964	0.0057	0	13	100.00	81.25	1.23
26	0.9924	0.0050	0	13	100.00	84.375	1.19
27	1.0000	0.0028	0	13	100.00	87.5	1.14
28	0.9434	0.0005	0	13	100.00	90.625	1.10
29	0.9437	0.0000	0	13	100.00	93.75	1.07
30	0.8960	0.0000	0	13	100.00	96.875	1.03
31	0.5857	0.0000	0	13	100.00	100	1.00

ROC curve, sensitivity, and specificity

Score Max

30%

Score Min

Churners are depicted in red

Non-churners are black

		Customers in the Top 30%	Customers not in the Top 30%	Total
	Churner	5	6	11
Actual	Non- Churne r	4	16	20
Total		9	22	31

Sensitivity (30%) =
$$\frac{Number\ of\ churners\ in\ top\ 30\%}{Total\ number\ of\ churners} = \frac{5}{11} = 45\% = Detected\ (30\%)$$

Specificity (30%) =
$$\frac{\text{Number of non - churners not in top 30\%}}{\text{Total number of non - churners}} = \frac{16}{20} = 80\%$$

ROC curve, sensitivity, and specificity

Score Max Score Min

2 Extreme cases:

TOP 0%			Customers not in the Top 0%	Total
	Churner	0	11	11
Actual	Not Churner	0	20	20
Total		0	31	31

TOP 100%		Customers in the Top 100%	Customers not in the Top 100%	Total
	Churner	11	0	11
Actual	Not Churner	20	0	20
Total		31	0	31

Sensitivity(0%) = 0 1-Specificity(0%) = 0 Sensitivity(100%) = 1 1-Specificity(0%) = 1

Success criteria for regression models

If we use the following notation:

- Target (response value): γi
- Predictor (predictor response value): $\hat{\gamma}_i$
- Residual: $r_t = y_t \hat{\gamma}_1$
- Error: $u_i = |\gamma_i \widehat{\gamma}_1| = |r_i|$
- Weight of the tested observation: w_i

$$W = \sum_{i=1}^{n} w_i$$

Total weight of the population:

$$\bar{\gamma} = \frac{1}{W} \sum_{i=1}^{N} w_i \gamma_i$$

Target average:

$$\bar{\gamma} = \frac{1}{W} \sum_{i=1}^{N} w_i \hat{\gamma}_i$$

Predictor average:

Success criteria for regression models – Mean absolute error (L1)

- Definition: mean of the absolute values of the differences between predictions and actual results (city block distance or Manhattan distance)
- Formula:

$$L1 = \frac{1}{W} \sum_{i=1}^{N} w_i u_i$$

Success criteria for regression models – Mean square error (L2)

- Definition: square root of the mean of the quadratic errors (Euclidian distance or root mean squared error RMSE)
- Formula:

$$MSE = \frac{SSE_w}{W} = \frac{1}{W} \sum_{i=1}^{N} w_i u_{i2}$$

Success criteria for regression models – Maximum error (Linf)

- Definition: maximum absolute difference between predicted and actual values (upper bound) (Chebyshev distance)
- Formula:

$$L\infty = \max_{i} u_{i}$$

Success criteria for regression models – Coefficient of determination (R2)

- Definition: ratio between the variability (sum of squares) of the prediction and the variability (sum of squares) of the data.
- Formula:

$$SSR = \sum_{i=1}^{N} W_i (\hat{\gamma}_u - \overline{\gamma})^2$$

$$SST = \sum_{i=1}^{N} w_i (\gamma_i - \overline{\gamma})^2$$

$$R2 = \frac{SSR}{SST}$$

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

Week 5 Unit 3: Model Testing

Model Testing

Introduction – Gains charts, lift charts, and decile tables

To test the strength of classification models, many data scientists use lift charts and decile tables, which measure the performance of the model against random guessing, or what the results would be if you didn't use any model.

percentage	Random	Wizard	Validation	Estimation
0%	0.00	0.00	0.00	0.00
5%	0.05	0.21	0.20	0.20
10%	0.10	0.42	0.36	0.36
15%	0.15	0.63	0.49	0.50
20%	0.20	0.84	0.60	0.61
25%	0.25	1.00	0.70	0.70
30%	0.30	1.00	0.77	0.77
35%	0.35	1.00	0.84	0.84
40%	0.40	1.00	0.89	0.89
45%	0.45	1.00	0.93	0.93
50%	0.50	1.00	0.95	0.95
55%	0.55	1.00	0.97	0.97
60%	0.60	1.00	0.98	0.98
65%	0.65	1.00	0.99	0.99
70%	0.70	1.00	1.00	0.99
75%	0.75	1.00	1.00	1.00
80%	0.80	1.00	1.00	1.00
85%	0.85	1.00	1.00	1.00
90%	0.90	1.00	1.00	1.00
95%	0.95	1.00	1.00	1.00
100%	1.00	1.00	1.00	1.00

Direct mailing example

- Last year, a company sent out a mail campaign, without using a predictive model, to 10,000 customers.
- It cost the company \$1 for each item mailed.
- The response rate was 20% (there were 2,000 positive responses).

Total Customers Contacted	Positive Responses	Cost (\$)
10000	2000	10000

Direct mailing example

Decile	Total Customers Contacted	Positive Responses per decile	Cumulative Positive Responses	Cost (\$) to contact
1	1000	600	600	1000
2	2000	400	1000	2000
3	3000	300	1300	3000
4	4000	280	1580	4000
5	5000	120	1700	5000
6	6000	100	1800	6000
7	7000	80	1880	7000
8	8000	60	1940	8000
9	9000	40	1980	9000
10	10000	20	2000	10000

Direct mailing example – Cumulative gains chart

% Customers Contacted

Direct mailing example – Cumulative gains chart

Top 40% of customers with the highest model scores

Decile	Total Customers Contacted	Positive Responses per decile	Cumulative Positive Responses	Cost (\$) to contact
1	1000	600	600	1000
2	2000	400	1000	2000
3	3000	300	1300	3000
4	4000	280	1580	4000
5	5000	120	1700	5000
6	6000	100	1800	6000
7	7000	80	1880	7000
8	8000	60	1940	8000
9	9000	40	1980	9000
10	10000	20	2000	10000

Decile Table

Direct mailing example – Lift chart

Thank you

Contact information:

open@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.

Week 5 Unit 4: Improving Model Performance

Add more data

more data = more accurate models

Improve data quality – Missing values and outliers

Missing and outlier values in training data can reduce accuracy

Feature engineering

Creating new features can improve accuracy

Feature selection

Find the explanatory variables that best explain the target

Using multiple algorithms

Multiple algorithms might increase accuracy

Algorithm tuning

Find the optimum value for each parameter to improve accuracy

Ensemble methods

Ensemble methods can improve accuracy and robustness

Cross-validation

Cross-validation assesses how the model will generalize

Thank you

Contact information:

open@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP SE or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP SE (or an SAP affiliate company) in Germany and other countries. Please see http://global12.sap.com/corporate-en/legal/copyright/index.epx for additional trademark information and notices.

Some software products marketed by SAP SE and its distributors contain proprietary software components of other software vendors.

National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for informational purposes only, without representation or warranty of any kind, and SAP SE or its affiliated companies shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP SE or SAP affiliate company products and services are those that are set forth in the express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warranty.

In particular, SAP SE or its affiliated companies have no obligation to pursue any course of business outlined in this document or any related presentation, or to develop or release any functionality mentioned therein. This document, or any related presentation, and SAP SE's or its affiliated companies' strategy and possible future developments, products, and/or platform directions and functionality are all subject to change and may be changed by SAP SE or its affiliated companies at any time for any reason without notice. The information in this document is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. All forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from expectations. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of their dates, and they should not be relied upon in making purchasing decisions.