Number System and Data Representation

Byte	8 bits
Nibble	4 bits
Words	Multiple(1,2,4 bytes etc.)

- N bits represent up to 2^N values
- $[log_2M]$ bits for M values

Conversion

Whole Number	Fraction Number	
2 43 2 21 rem 1 ← LSB 2 10 rem 1 2 5 rem 0 2 2 rem 1 2 1 rem 0 0 rem 1 ← MSB	Carry Carry	

Generally, Decimal to base-R

- Whole numbers: repeated division-by-R
- Fractions: repeated multiplication-by-R

ASCII: American Standard Code for Information Interchange

- 7 bits, plus 1 parity bit (odd or even parity)
- Integers (0 to 127) and characters are interchangeable

01000110	As an 'int', it is 70
01000110	As a 'char', it is 'F'

int num = 65;
char ch = 'F';
printf("num (in %%d) = %d\n", num); // 65
printf("num (in %%c) = %c\n", num); // A
printf("ch (in %%c) = %c\n", ch); // F
printf("ch (in %%d) = %d\n", ch); // 70

Unsigned numbers: only non-negative values

Signed numbers: include all values (positive and negative)

Negative Numbers

(1) Sign-and-Magnitude: The sign is represented by a 'sign bit', 0 for + and 1 for -

sign	Magnitude
Largest value:	01111111 = +127 ₁₀

Smallest value: $10000000 = -127_{10}$ Zeros: $00000000 = +0_{10}$ $11111111 = -0_{10}$

Range (for 8 bits): -127_{10} to $+127_{10}$ Range (for *n* bits): $-(2^{n-1}-1)$ to $2^{n-1}-1$

Negate: just invert the sign bit.

Disadvantage:

- One of the bit patterns is wasted.
- Addition doesn't work the way we want it to.
- **(2) 1s Complement:** Given a number x which can be expressed as an n-bit binary number, its <u>negated value</u> can be obtained in 1s-complement representation using:

$$-x = 2^n - x - 1$$

Largest value: $011111111 = +127_{10}$ Smallest value: $100000000 = -127_{10}$ Zeros: $000000000 = +0_{10}$ $111111111 = -0_{10}$

Range (for 8 bits): -127_{10} to $+127_{10}$ Range (for *n* bits): $-(2^{n-1}-1)$ to $2^{n-1}-1$

Negate: invert all the bits.

MSB: -2ⁿ⁻¹
Addition:

- 1. Perform binary addition on the two numbers.
- 2. If there is a carry out of the MSB, add 1 to the result.
- 3. Check for overflow. Overflow occurs if result is opposite sign of A and B.

[Whether the result have the same sign with A and B]

(3) 2s Complement: Given a number *x* which can be expressed as an *n*-bit binary number, its <u>negated value</u> can be obtained in 2s-complement representation using:

$$-x = 2^n - x = 1$$
s complement + 1

Largest value: $011111111 = +127_{10}$ Smallest value: $100000000 = -128_{10}$ Zero: $0000000000 = +0_{10}$ Range (for 8 bits): -128_{10} to $+127_{10}$ Range (for *n* bits): -2^{n-1} to $2^{n-1} - 1$

Negate: invert all the bits, then add 1

MSB: -2ⁿ⁻¹

Sign Extension: copy the MSB (most significant bit) of the n-bit number m-n times to the **left** of the n-bit number to create the m-bit number.

[T] sign extension is value-preserving.

Addition:

- 1. Perform binary addition on the two numbers.
- 2. Ignore the carry out of the MSB.
- Check for overflow. Overflow occurs if the 'carry in' and 'carry out' of the MSB are different, or if result is opposite sign of A and B.

[If the result of addition/subtraction goes beyond this range, an overflow occurs.]

(4) (r-1)'s Complement:

$$(r-1)$$
's complement of $N = r^n - r^{-m} - N$

where

- n is the number of integer digits
- m the number of fractional digits. (If there are no fractional digits, then m = 0 and the formula becomes rⁿ 1 N as given in class.)

Excess Representation: It allows the range of values to be distributed <u>evenly</u> between the positive and negative values, by a simple translation (addition/subtraction).

Range: for N-bit excess-X

- Find the maximum binary number of N bits (111...11), which and convert to decimal, A.
- Minimum Number is 0-X = -X
- Then maximum positive number is A-X
- Therefore, N-bits system ranging from -X to A-X, represent range from 0 to A

[E] Convert excess-128 to decimal (10010110)

- Step 1: Begin with the binary number 10010110.
- Step 2: Convert it to decimal: 10010110=150.
- Step 3: Subtract the bias (128) from the decimal representation: 150-128=22.
- The original decimal number before applying excess-128 encoding was 22₁₀.

[E] Convert decimal number 25 to 8-bit excess-128 form.

- Step 1: Start with the decimal number 25.
- Step 2: Add the bias (128) to the number: 25+128=153.
- Step 3: Convert 153 to binary: 153=10011001.
- The excess-128 binary representation of 25 10011001Excess-128.

IEEE 754 Floating-Point Rep

The base (radix) is assumed to be 2.

Two formats (We will focus on the single-precision format): Single-precision (32 bits): 1-bit sign, 8-bit exponent with bias 127 (excess-127), 23-bit mantissa

sign	exponent	mantissa
1	8	23

- Mantissa is normalised with an implicit leading bit 1

=> Can **NOT** represent 0

Double-precision (64 bits): 1-bit sign, 11-bit exponent with bias 1023 (excess-1023), and 52-bit mantissa

Appendix

1. [T] sign extension is value-preserving.

Let X be the n-bit signed integer and Y be the m-bit signed integer which is the sign-extended version of X.

If the MSB of X is zero, this is straightforward, since padding more 0's to the left adds nothing to the final value. If the MSB of X is one, then it is trickier to prove. In the original n-bit representation, the MSB has a weight of -2^{n-1} giving us $X=-2^{n-1}+b_{n-2}\cdot 2^{n-2}+b_{n-3}\cdot 2^{n-3}+\cdots+b_0.$

$$X = -2^{n-1} + b_{n-2} \cdot 2^{n-2} + b_{n-3} \cdot 2^{n-3} + \dots + b_0$$

Let
$$Z = b_{n-2} \cdot 2^{n-2} + b_{n-3} \cdot 2^{n-3} + \dots + b_0$$
, then $X = -2^{n-1} + Z$.

In the new *m*-bit representation *Y* where m > n, the MSB of *Y* has a weight of -2^{m-1} , and since we copy the MSB (i.e. the leftmost bit) of X a total of m-n times, we get $Y = -2^{m-1} + 2^{m-2} + 2^{m-3} + \dots + 2^n + 2^{n-1} + Z.$

For Y = X, it suffices to show that $-2^{m-1} + 2^{m-2} + 2^{m-3} + \cdots + 2^n + 2^{n-1} = -2^{n-1}$.

For Y = X, it suffices to show that $-2^{m-1} + 2^{m-2} + 2^{m-3} + \cdots + 2^n + 2^{n-1} = -2^{n-1}$.

Recall that the sum of a Geometric Progression with $\it N$ terms, initial value $\it a$ and ratio $\it r$ is given $\frac{-1)}{\cdot}$. We will use this formula to calculate $2^{m-2}+2^{m-3}+\cdots+2_{m+2^{n-1}}$, which has N = (m-2) - (n-1) + 1 = m - n; $a = 2^{n-1}$ and r = 2.

$$\begin{aligned}
&-2^{m-1} + (2^{m-2} + 2^{m-3} + \dots + 2^n + 2^{n-1}) \\
&= -2^{m-1} + \frac{r-1}{r-1} \\
&= -2^{m-1} + 2^{n-1}(2^{m-n} - 1) \\
&= -2^{m-1} + 2^{m-1} - 2^{n-1}
\end{aligned}$$

Therefore, Y = X.

2. Nice Values

ASCII values

$\mathbf{A}\mathbf{b}\mathbf{C}$	TT 4	arues	•
$\underline{\text{Char}}$	$\underline{\mathrm{Dec}}$	$\underline{\text{Hex}}$	$\underline{\mathrm{Bin}}$
'0'	48	0x30	0 b 0 0 1 1 0 0 0 0
$^{\prime}$ A $^{\prime}$	65	0x41	0 b 0 1 0 0 0 0 0 1
$^{\prime}\mathrm{a}^{\prime}$	97	0x61	0b01100001

Nice numbers:

$2^{15} - 1 =$	32767
$2^{16} - 1 =$	65535
$2^{31} - 1 =$	2147483647
$2^{32} - 1 =$	4294967295

3. Power of 2 Table

Ехр	Val	Ехр	Val	Ехр	Val	Ехр	Val
2 ⁰	1	28	256	2 ¹⁶	65,536	224	16,777,216
2 ¹	2	29	512	2 ¹⁷	131,072	2 ²⁵	33,554,432
2 ²	4	2 ¹⁰	1,024	2 ¹⁸	262,144	2 ²⁶	67,108,864
2 ³	8	2 ¹¹	2,048	2 ¹⁹	524,288	2 ²⁷	134,217,728
24	16	2 ¹²	4,096	2 ²⁰	1,048,576	2 ²⁸	268,435,456
2 ⁵	32	2 ¹³	8,192	221	2,097,152	2 ²⁹	536,870,912
26	64	2 ¹⁴	16,384	2 ²²	4,194,304	2 ³⁰	1,073,741,824
27	128	2 ¹⁵	32,768	2 ²³	8,388,608	231	2,147,483,648

Exp	Val	Exp	Val
2^{-1}	0.5	2-9	0.001953125
2^{-2}	0.25	2-10	0.0009765625
2^{-3}	0.125	2-11	0.00048828125
2-4	0.0625	2-12	0.000244140625
2^{-5}	0.03125	2-13	0.0001220703125
2^{-6}	0.015625	2-14	0.00006103515625
2^{-7}	0.0078125	2-15	0.000030517578125
2-8	0.00390625	2-16	0.0000152587890625

Radix Complement

Number of Digits	n
Radix	b
(b-1)s complement	-x = b ⁿ -x-1
(b)s complement	-x = p _u -x

Example: Consider the number $(43)_{10}$. We can express this in 5-trit⁴ number as (01121)₃. The negations are:

(b-1)s Complement: 21101

$$-43 = 3^{5} - 43 - 1 = 199$$

$$(199)_{10} = (21101)_3$$

(b)s Complement: 21102

$$-43 = 3^5 - 43 = 200$$

$$(200)_{10} = (21102)_3$$