Astronomía para poetas (2014)

Universidad Industrial de Santander

• Unidad: 03

• Clase: 05

Fecha: 20141216M

Contenido: Evolución Estelar: repaso y taller

Web: http://halley.uis.edu.co/astronomia

• Archivo: 20141216M-HA-evolucion-estelar-repaso.odp

En el episodio anterior...

En el episodio anterior... zona habitable... galáctica

20/01/15 Astronomía (Asorey) 3/31

Sin embargo, en el cielo...

Mintaka (δ -Ori)

Cómo determinar la relación

unidad de área:
$$F \equiv \frac{\Delta E}{A(\Delta t)} = \frac{L}{A}$$

• El área de una estera es

• Entonser =
$$\frac{L}{4\pi r^2}$$

Magnitud aparente

- Magnitud aparente (m)
 - Brillo (b) de un cuerpo "visto" desde La Tierra
 - Hiparco de Nicea (190AC-120AC) ← Ptolomeo:
 Clasificó las estrellas en seis magnitudes:
 Magnitud 1: Top 20, Magnitud 6: Apenas visibles
 - Norman Pogson (1829-1891):
 - $\frac{b_{1}}{b_{6}} = 100$ dos veces y media más brillante $b_{i} \simeq 2.5 b_{i-1}$ que una estrella de magnitud $b_{i} \simeq 2.5 b_{i-1}$

• ¿Cómo
$$\frac{b_j}{b_j}$$
 relacionan entre $(\hat{m}_i - m_j) = -2.5 \log_{10} \left(\frac{b_i}{b_j}\right)$

Astronomía (Asorey)

Magnitud absoluta

- Magnitud absoluta M, es la magnitud aparente que tendría una estrella si su distancia fuera de 10pc
 - Relación con la magnitud aparente m y la distancia d: (medida en parsecs):

$$M = m - 5 \left(\log_{10}(d) - 1 \right)$$

- P.ej.: Si **d=10 pc**, **M =** m-5 [1-1] = m-5(0) = **m**
- Magnitudes absolutas y aparentes:
 - Sol: m=-26.73, M=4.75
 - Mintaka (δ Ori): m=2.4, M=-4.84
 - Sirio (aCMa): m=-1.45, M=1.44

Betelgeuse

Saiph

Alnitak

Alnilam

Mintaka

Nebulosa de Orion

Bellatrix

Rigel

Un cuerpo negro es...

 Un cuerpo negro es un sistema físico ideal que absorbe toda la radiación incidente sin importar su longitud de onda: es un absorbente perfecto de radiación electromagnética

¿Qué ruido hace un fotón al caer?

- Ley de Wien
 - Posición de $\lambda_{\text{\tiny max}}$

$$\lambda_{max} = \frac{b}{T}$$

$$b = 2.9 \, mm \, K$$

 Ley de Stefan-Boltzmann

$$L \equiv \frac{\Delta E}{\Delta t} = \sigma A T^4$$

$$\sigma = 5.67 \times 10^{-8} W m^{-2} K^{-4}$$

¡Podemos clasificarlas!

A B C... por temperatura superficial

O B A F G K M RNS

- Oh Be A Fine Girl and Kiss Me Right Now Sweet
- Oh Besame Amor, Fasinadora Gitana, Kilómetros Median Rompiendo Nuestros Sueños

Cada clase se divide en 10 subclases, numeradas de 0 a 9

Clasificación espectral

Oh Besame Amor, Fasinadora Gitana, Kilómetros Median Rompiendo Nuestros Sueños

¿Qué define todo?

- Relaciones entre parámetros:
 - Luminosidad (L)
 - Masa (M)
 - Temperatura (T)
 - Radio (R)

$$\lambda_{\text{max}} = \frac{2.9 \,\text{mm}}{T}$$

$$L = \frac{\Delta E}{\Delta t} = 4 \pi \,\sigma \,R^2 \,T^4$$

$$\sigma = 5.67 \times 10^{-8} \,\text{W m}^{-2} \,\text{K}^{-4}$$

- ¿Cuál es el más importante en condiciones normales?
 - Cantidad de materia → Masa
 - Está fijada por condiciones externas → Nacimiento

En el episodio anterior... filtros

Para las estrellas → magnitudes

Repaso

- Índice B-V
 - m_B=magnitud en el canal B
 - \bullet m_v=magnitud en el canal V

$$(B-V) = m_{B}-m_{V}$$

(Recordar que m es logarítmica)

$$R_{\rm B} = 1026 R_{\rm Sol}$$

Betelgeuse es una supergigante roja

$$L=4\pi d^2F$$

$$\left(\frac{\mathsf{L}_{\mathsf{Estrella}}}{\mathsf{L}_{\mathsf{Sol}}}\right) = \left(\frac{\mathsf{M}_{\mathsf{Estrella}}}{\mathsf{M}_{\mathsf{Sol}}}\right)^{4}$$

Es cómodo medir las cosas en términos solares

• Masa Solar:

$$M_{Sol} = 1.989 \times 10^{30} \, kg \simeq 1000 \, M_{Júpiter} \simeq 333000 \, M_{Tierra}$$

• Radio Solar: $R_{Sol} = 6.96 \times 10^8 \, \text{m} = 696000 \, \text{km}$

Luminosidad Solar:

$$L_{Sol} = 3.83 \times 10^{26} \text{ W}$$

• Alto:

1 segundo de energía liberada en el Sol equivale a 800000 años de consumo humano (2013)

¿Y si fuera un planeta?

$$T_{\oplus} = \sqrt[4]{\frac{L_{\odot}}{16\pi\sigma d^{2}}}$$

$$T_{\oplus} = \sqrt{\frac{R_{\odot}}{2d}} T_{\odot}$$

$$d = \frac{1}{2} \left(\frac{T_{\odot}}{T_{\oplus}}\right)^{2} R_{\odot}$$

20/01/15

Dijimos que la masa define todo

В

0

Surface temperature ranges for different stellar classes^[134]

Class	Temperature	Sample star
0	33,000 K or more	Zeta Ophiuchi
В	10,500–30,000 K	Rigel
Α	7,500–10,000 K	Altair
F	6,000-7,200 K	Procyon A
G	5,500–6,000 K	Sun
K	4,000–5,250 K	Epsilon Indi
М	2,600–3,850 K	Proxima Centauri

(Asorey)

Pre-Secuencia se frena

- Continúa radiando
- Tc $\sim 10^7 \text{ K} \rightarrow \text{Fusion!}$

Jets from Young Stars

HST · WFPC2

PRC95-24a · ST Sci OPO · June 6, 1995 C. Burrows (ST Sci), J. Hester (AZ State U.), J. Morse (ST Sci), NASA

Vejez

Conversión H → He, sólo en en una corona alrededor del

centro

No alcanza la energía → Contracción

- Aumenta T_c → Mayor producción de E
- Si $T_c = 10^8$ K, He \rightarrow C ("Flash de Helio")
- $R_{sol} \rightarrow 220 \text{ veces!!!}$
- Pero 220 (7 x 10⁵) km ~ 1.5 x 10⁸ km
- Núcleo cebolla: $H \rightarrow He \rightarrow C \rightarrow O \rightarrow Si \rightarrow Fe$

Tres caminos Tres

- La masa estelar en este punto (la masa final) determina el destino final
 - $M_f < 1.44 M_s \rightarrow Enana blanca$
 - 1.44 M_s < M_f < 3 M_s \rightarrow Estrella de neutrones
 - $M_f > 3 M_s \rightarrow Agujero negro$

Enana blanca

NGC2440 + HD62166 (en Pupis)

- No hay más producción de energía
- La gravedad domina
- El colapso comienza pero se detiene → Pauli!
- $R^R_{Tierra} \leftarrow Calcular p y v_e$
- La estrella se enfría por radiación al espacion
 - → Enana negra

Si la masa es mayor...

- El proceso en el núcleo continúa gracias a la compresión
- He \rightarrow C/O, C \rightarrow Ne, Ne \rightarrow O,O \rightarrow Si, Si \rightarrow Fe
- Pero Fe es el más estable: no gano energía uniendo Fe
- Sin fusión, desaparece la presión por radiación

Supernovas

NGC 2770 Supernova factory

- Dos tipos de SN: I y II
- Estás son las tipo II
- En el núcleo:

$$p^+ + e^- \rightarrow n + v_e$$

- Estrella de neutrones
- $M \sim 2 M_{sol}$, $R \sim 20 km$
- ¡Calcular ρ y $v_e!$
- Pulsars (LGM)
- M grandes → Agujeros Negros

Supernova 1987A

Gargantúa (Interstellar)

