南京大学 电子科学与工程学院 全日制统招本科生 《数字信号处理》期末考试试卷答案 闭卷

任课教师姓名: 李 晨 庄建军

考试日期:_		2017. 6. 28		考试时长:2_小时			_分钟	
考生年纪	及	_考生专业	考	生学号	考生	姓名		_
题号	_		三	四	五.	六	总分	
得分								
(0	0 11) H 7F	14 47						
一. (20 分) 单项选择 以下选择每题 2 分, 共计 20 分							身分	
)
A. T[x([n] = g(n) + x(n)	n) B. $T[x(n)]$	= 2nx(n) C.	$T[x(n)] = \sin($	$\frac{\pi n}{9}$) $x(n)$ D.	$T\left[x(n)\right] =$	x(n-3)	3)
		充是因果系统					(C	
Α.	$y(n)=3x (n^2)$	B. $y(n) = s$	sin(n)x (n+4)	C. $y(n)=$	ex (n-3)	D. y(n)=x (-	- n+1)	
3. DFT	是利用 W_N^{nk}	的固有特性	来实现 FFT	快速运算的	勺,以下哪一	一个不属于其	其固有特	:性。
							(B)
A. 共	轭对称性	В. 🗧	奇偶性	C.	可约性	D. 周期1	生	
4. 设一	阶差分方程	是为y(n) = x	(n) + ay(n)	-1), a为	实数,请问	差分方程代	表一个	稳定
的	低通滤波器	时, a 的取	值				(A)
A.	0 <a<1< td=""><td>В1</td><td><a<0< td=""><td>C. a</td><td><-1</td><td>D. a></td><td>1</td><td></td></a<0<></td></a<1<>	В1	<a<0< td=""><td>C. a</td><td><-1</td><td>D. a></td><td>1</td><td></td></a<0<>	C. a	<-1	D. a>	1	
5. 因为	频率混叠效	效应,冲激。	向应不变法	不适合哪两	类滤波器的	勺设计	(C)
		B. 高通和					氐通和带	通
		号序列的离						
							((C)
A. 实	数、偶对和	尔 B. 纯虚	逐数、偶对和	弥 C. 纯实	、数、奇对	称 D. 纯虚	数、奇	对称
7. 若序	列 x(n)的长	度为28,则	用基2的FI	FT算法计算	享 X(k)的复	数加法次数	汝为 (В)
A. 8	30	B. 1	60	C. 192	2	D. 256		
3. 哪种	结构的 IIR	数字滤波器	导可以单独计	周系统零极	点		(C
Α	直接I型	В.	典范型	C.	级联型	D	并联型	

阶数至少为 A.5 B.6

C. 7

D. 8

10. 下列有关 IIR 数字滤波器说法错误的是

(C)

- A. 冲激响应无限长
- B. 可用模拟滤波器设计
- C. 无法做到线性相位
- D. 可借助计算机设计
- 二. (20分)填空(每空1分)

本题得分

- 1. 序列 $x(n) = 5\sin\left(\frac{5\pi}{14}n \frac{3\pi}{8}\right) + 2 + 2\cos\left(\frac{11\pi}{5}n \frac{\pi}{2}\right)$ 的 周 期 为 140_。
- 2. πδ(n+m)的 Z 变换是__ π z^m__。
- 3. 单位响应为 h(n)的 LTI 系统,输入 x(n)时,输出 y(n);输入为 2x(n+3)-3δ(n-5),输出 为_2y(n+3)-3h(n-5)_。
- 4. 用 8kHz 的抽样率对模拟语音信号抽样,为进行频谱分析,计算了 256 点的 DFT。则频域抽样点之间的频率间隔 Δf 为 31.25Hz ,数字角频率间隔 $\Delta \omega$ 为 0.0245 avg 和模拟角频率间隔 $\Delta \Omega$ 为 avg avg
- 5. 对 N 点 x(n)有 X(k) = DFT[x(n)],则 IDFT $[ImX(k)] = -\frac{1}{2i}[x(n) x^*((N-n))_N]R_N(n)$ __。
- 6. 时域 5 点的有限长序列 x(n) 有 $X(e^{j\omega})$,对 $X(e^{j\omega})$ 一个周期内进行 6 点均匀抽样,

则时域中对应的新序列 y(n)和原序列 x(n)的关系是: $\sum_{n=-\infty}^{+\infty} x(n+6r)$ __。

- 9. DFT 与 DFS 有密切关系,因为有限长序列可以看成周期序列的<u>主值序列</u>,而周期序列可以看成有限长序列的<u>周期拓展</u>。
- 10. 某序列 DFT 的表达式是 $X(k) = \sum_{n=0}^{4} x(n)W_6^{kn}$, 由此可看出,该序列的时域长度是_5_,

变换后数字频域上相邻两个频率样点之间隔是_____3_____

- 11. 双线性变换法作为模拟滤波器逼近数字滤波器的常用方法,其优点是<u>没有频谱混</u>。 <u>看</u>,缺点是<u>无法保证线性相位</u>,因此对于分段常数的滤波器,对其临界频率点需要事先进行<u>预畸</u>处理。
- 12. 用窗口法设计出一个FIR低通滤波器后,发现它过渡带太宽,这样情况下宜采取的修改措施是_增加窗口的宽度___和_更换窗函数___。
- 三. (20分)简单计算或证明(每题5分)

1. 已知某离散时间系统的差分方程为

本题得分

y(n)-3y(n-1)+2y(n-2)=x(n)+2x(n-1), 求系统函数 H(z) 和系统频率响应 $H(e^{j\omega})$ 。

解: 系统函数为
$$H(z) = \frac{1+2z^{-1}}{1-3z^{-1}+2z^{-2}} = \frac{z^2+2z}{z^2-3z+2}$$
 (3分)

系统频率响应
$$H(e^{j\omega}) = H(z)|_{z=e^{j\omega}} = \frac{e^{2j\omega} + 2e^{j\omega}}{e^{2j\omega} - 3e^{j\omega} + 2}$$
 (2分)

2. 已知
$$X(z) = \frac{z^2}{z^2 - z - 2}, |z| > 2$$
, 求 $x(n)$ 。

解: 由题部分分式展开

$$\frac{X(z)}{z} = \frac{z}{(z+1)(z+2)} = \frac{A}{z+1} + \frac{B}{z-2}$$

求系数得 A=1/3 , B=2/3

所以
$$X(z) = \frac{1}{3} \frac{z}{z+1} + \frac{2}{3} \frac{z}{z-2}$$
 (3分)

收敛域 |z|>2,

则
$$x(n) = \left[\frac{1}{3}(-1)^n + \frac{2}{3}2^n\right]u(n)$$
 (2分)

3. 已知序列 $x(n)=a^n u(n)$, 0 < a < 1,对 x(n)的 Z 变换 X(z)在单位圆上等间隔采样 N 点,采样序列为 $X(k)=X(z)|_{z=W_N^{-k}}$, k=0, 1, …, N-1 ,求有限长序列 IDFT [X(k)]。

解:
$$\mathrm{IDFT}[X(k)]_N = \widetilde{x}(n)R_N(n) = [\sum_{l=-\infty}^{\infty} x(n+lN)]R_N(n)$$

$$= \left[\sum_{l=-\infty}^{\infty} a^{n+lN} u(n+lN)\right] R_N(n) \tag{3 \(\frac{h}{2}\)}$$

由于 $0 \le n \le N-1$, 所以

$$u(n+lN) = \begin{cases} 1 & n+lN \ge 0 \, \mathbb{R} | l \ge 0 \\ 0 & l < 0 \end{cases}$$

因此
$$IDFT[X(k)]_N = a^n \left[\sum_{l=0}^{\infty} a^{lN} \right] R_N(n) = \frac{a^n}{1 - a^N} R_N(n)$$
 (2分)

4. 若 X(k)=DFT [x(n)], 证明 DFT [X(n)] = Nx(N-k)。

证明: 因
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$$

所以
$$DFT[X(n)] = \sum_{n=0}^{N-1} X(n)W_N^{kn} = \sum_{n=0}^{N-1} [\sum_{m=0}^{N-1} x(m)W_N^{mn}]W_N^{kn} = \sum_{m=0}^{N-1} x(m)\sum_{n=0}^{N-1} W_N^{n(m+k)}$$
 (3 分)

$$\mathbb{X} \qquad \sum_{n=0}^{N-1} W_N^{n(m+k)} = \begin{cases} N & m = N-k \\ 0 & m \neq N-k, 0 \leq m \leq N-1 \end{cases}$$

有
$$DFT[X(n)] = Nx(N-k)$$
 $k = 0,1,...,N-1$ (2分)

四. (12分)

本题得分

- (1) 画出按频率抽取(输入自然序,输出倒位序) N=4 点基 2FFT 的信号流图。(4分)
- (2) 利用流图计算 4 点序列 x(n) = (2,1+i,3,-i) (n = 0,1,2,3) 的 DFT 。(4分)
- (3) 试写出利用 FFT 计算 IFFT 的步骤。(4分)

解: (1) 略, 见书 P158

(2)
$$X(k) = (6,1-j,4,-3+j), k = 0,1,2,3$$

- (3) 1) 对 X(k) 取共轭,得 $X^*(k)$;
- 2) 对 X*(k) 做 N 点 FFT;
 - 3) 对 2) 中结果取共轭并除以 N。
- 五. (12 分) 设序列 $x(n)=\{1, 3, 2, 1; n=0, 1, 2, 3\}$, 另一序列 本题得分 $h(n)=\{1, 2, 1, 2, 3; n=0, 1, 2, 3, 4\}$,
- (1) 求两序列的线性卷积 y_L(n)。 (4分)
- (2) 求两序列的 7 点循环卷积 yc(n)。 (4 分)
- (3) 推导循环卷积与线性卷积的关系,并说明什么条件下循环卷积可以代替线性卷积。(4分)

(2)
$$y_C(n) = \{4, 5, 9, 10, 13, 14, 8; n=0,1,2,4,5,6\}$$
 (4分)

(3)
$$y_C(n) = \sum_{m=0}^{L-1} x(m)h((n-m))_L R_L(n) = \left[\sum_{m=0}^{L-1} x(m) \sum_{r=-\infty}^{\infty} h(n+rL-m)\right] R_L(n)$$

$$= \left[\sum_{r=-\infty}^{\infty} \sum_{m=0}^{L-1} x(m)h(n+rL-m)\right] R_L(n) = \left[\sum_{r=-\infty}^{\infty} y_L(n+rL)\right] R_L(n)$$

L 点圆周卷积 $y_{\rm C}(n)$ 是线性卷积 $y_{\rm L}(n)$ 以 L 为周期的周期延拓序列的主值序列。(3 分) 因此圆周卷积代替线性卷积的条件是:

$$c \ge L_1 + L_2 - 1$$
 (1分)

六. (16分)设FIR 滤波器的系统函数为

本题得分

$$H(z) = \frac{1}{10} (1 + 0.8z^{-1} + 1.1z^{-2} + 0.8z^{-3} + z^{-4}) \circ$$

- (1) 求出该滤波器的单位取样响应h(n)。(4分)
- (2) 试判断该滤波器是否具有线性相位特点。(4分)
- (3) 求出其幅度函数和相位函数。(4分)
- (4) 如果具有线性相位特点,试画出其线性相位型结构,否则画出其卷积型结构图。(4分)

解: (1) :
$$H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}$$

∴
$$h(n) = 0.1\delta(n) + 0.08\delta(n-1) + 0.11\delta(n-2) + 0.08\delta(n-3) + 0.1\delta(n-4)$$
 (4 分)
= $\{0.1 \quad 0.08 \quad 0.11 \quad 0.08 \quad 0.1\}$ $0 \le n \le 4$

$$(2)$$
 :: $h(n) = h(N-1-n)$, :: 该滤波器具有线性相位特点 (4分)

(3) :
$$H(e^{j\omega}) = H(z)|_{z=e^{j\omega}} = \frac{1}{10} (1 + 0.8e^{-j\omega} + 1.1e^{-j2\omega} + 0.8e^{-j3\omega} + e^{-j4\omega})$$

$$=e^{-j2\omega}(0.2\times\frac{e^{j2\omega}+e^{-j2\omega}}{2}+0.16\times\frac{e^{j\omega}+e^{-j\omega}}{2}+0.11)$$

$$= e^{-j2\omega} (0.2\cos 2\omega + 0.16\cos \omega + 0.11) = H(\omega)e^{j\theta(\omega)}$$

幅频响应为 $H(\omega) = 0.2\cos 2\omega + 0.16\cos \omega + 0.11$

2分

相频响应为 $\theta(\omega) = -2\omega$

2分

4. 其线性相位型结构如右图所示。 4分

