IN THE CLAIMS

Please amend the claims as follows:

2	1. (Original) A method of modifying frequency of electromagnetic radiation input into a
3	nonlinear medium comprising:
4 5	a) forming a moving grating in said nonlinear medium by introducing at opposite
6	ends of said nonlinear medium a first set of electromagnetic radiation having
7	varying frequencies;
8	b) inputting electromagnetic radiation into said nonlinear medium at a first
9	frequency; and
10	c) extracting electromagnetic radiation at a second frequency from said nonlinear
11	medium;
12	said moving grating in said nonlinear medium allowing for
13	electromagnetic radiation to be modified into said second frequency.
1	2. (Original) The method of claim 1, wherein said electromagnetic radiation is light.
1	3. (Currently Amended) The method of claim 1, wherein said varying frequencies are chosen
2	so that said first frequency coincides with a bandgap frequency region of the moving grating
3	in said nonlinear material medium.
1	4. (Currently Amended) The method of claim 1, wherein said input electromagnetic
2	radiation comprises an exponentially decaying spatial dependence into said nonlinear region
3	medium.

1	5. (Original) The method of claim 1, wherein said input electromagnetic radiation is
2	reflected from the moving grating and propagates away at said second frequency.
1	6. (Original) The method as per claim 1, wherein said input electromagnetic radiation falls
2	within one of the bandgaps of the moving grating.
1	7. (Original The method of claim 1, wherein said extracted electromagnetic radiation is
2	phase matched with said inputted electromagnetic radiation for electromagnetic radiation of
3	bandwidths below the bandgap size of said moving grating.
1	8. (Original) A method of converting frequency of electromagnetic radiation input into a
2	nonlinear medium comprising:
3	a. forming a moving grating in said nonlinear medium by introducing at opposite
4	ends of said nonlinear medium a first set of electromagnetic radiation having
5	varying frequencies;
6	b. inputting electromagnetic radiation into said nonlinear medium at a first
7	frequency; and
8	c. extracting electromagnetic radiation at a second frequency from said nonlinear
9	medium;
10	said moving grating in said nonlinear medium allowing for electromagnetic
11	radiation to be converted into said second frequency.
1	9. (Original) The method of claim 8, wherein said electromagnetic radiation is light.

- 1 10.(Currently Amended) The method of claim 8, wherein said varying frequencies are
- 2 chosen so that said first frequency coincides with a bandgap frequency region of the moving
- 3 grating in said nonlinear material medium.
- 1 11. (Currently Amended) The method of claim 8, wherein said input electromagnetic
- 2 radiation comprises an exponentially decaying spatial dependence into said nonlinear region
- 3 medium.
- 1 12. (Original) The method of claim 8, wherein said input electromagnetic radiation is
- 2 reflected from the moving grating and propagates away at said second frequency.
- 1 13. (Currently Amended) The method as per claim $\frac{1}{8}$, wherein said input electromagnetic
- 2 radiation falls within one of the bandgaps of the moving grating.
- 1 14. (Currently Amended) The method of claim 4 8, wherein said extracted electromagnetic
- 2 radiation is phase matched with said inputted electromagnetic radiation for electromagnetic
- 3 radiation of bandwidths below the bandgap size of said moving grating.
- 1 15. (Currently Amended) A device for converting frequency of electromagnetic radiation
- 2 comprising a nonlinear medium that forms a moving grating in said nonlinear medium by
- 3 introducing at opposite ends of said nonlinear medium a first set of electromagnetic radiation
- 4 having varying frequencies, electromagnetic radiation is inputted into said nonlinear medium at a
- 5 first frequency and extracted at a second frequency from said nonlinear medium, said moving
- 6 grating in said nonlinear medium allowing for electromagnetic radiation to be converted into said
- 7 second frequency.

1

16. (Original) The device of claim 15, wherein said electromagnetic radiation is light.

- 1 17. (Currently Amended) The device of claim 15, wherein said varying frequencies are
- 2 chosen so that said first frequency coincides with a bandgap frequency region of the moving
- 3 grating in said nonlinear material medium.

. 1 1

- 1 18. (Currently Amended) The device of claim 15, wherein said input electromagnetic
- 2 radiation comprises an exponentially decaying spatial dependence into said nonlinear region
- 3 medium.
- 1 19. (Original) The device of claim 15, wherein said input electromagnetic radiation is
- 2 reflected from the moving grating and propagates away at said second frequency.
- 1 20. (Original) The device of claim 15, wherein said input electromagnetic radiation falls
- within one of the bandgaps of the moving grating.
- 1 21. (Original) The device of claim 15, wherein said extracted electromagnetic radiation is
- 2 phase matched with said inputted electromagnetic radiation for electromagnetic radiation of
- 3 bandwidths below the bandgap size of said moving grating.