CS 228 : Logic in Computer Science

Krishna, S

Completeness

$$\varphi_1, \ldots, \varphi_n \models \psi \Rightarrow \varphi_1, \ldots, \varphi_n \vdash \psi$$

Whenever $\varphi_1, \ldots, \varphi_n$ semantically entail ψ , then ψ can be proved from $\varphi_1, \ldots, \varphi_n$. The proof rules are complete

Completeness: 3 steps

- ▶ Given $\varphi_1, \ldots, \varphi_n \models \psi$
- ▶ Step 1: Show that $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$
- ▶ Step 2: Show that $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$
- ▶ Step 3: Show that $\varphi_1, \ldots, \varphi_n \vdash \psi$

Completeness: Step 1

- Assume $\varphi_1, \ldots, \varphi_n \models \psi$. Whenever all of $\varphi_1, \ldots, \varphi_n$ evaluate to true, so does ψ .
- ▶ If $\not\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$, then ψ evaluates to false when all of $\varphi_1, \dots, \varphi_n$ evaluate to true, a contradiction.
- ▶ Hence, $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots)).$

Completeness: Step 2

- ▶ Given $\models \psi$, show that $\vdash \psi$
- Assume p_1, \ldots, p_n are the propositional variables in ψ . We know that all the 2^n assignments of values to p_1, \ldots, p_n make ψ true.
- Using this insight, we have to give a proof of ψ .

Completeness: Step 2

Truth Table to Proof

Let φ be a formula with variables p_1, \ldots, p_n . Let \mathcal{T} be the truth table of φ , and let I be a line number in \mathcal{T} . Let \hat{p}_i represent p_i if p_i is assigned true in line I, and let it denote $\neg p_i$ if p_i is assigned false in line I. Then

- 1. $\hat{p}_1, \dots, \hat{p}_n \vdash \varphi$ if φ evaluates to true in line I
- 2. $\hat{p}_1, \dots, \hat{p}_n \vdash \neg \varphi$ if φ evaluates to false in line I

▶ Structural Induction on φ .

- ▶ Structural Induction on φ .
- ▶ Base : If $\varphi = p$, a proposition, then we have $p \vdash p$ and $\neg p \vdash \neg p$.

- Structural Induction on φ .
- ▶ Base : If $\varphi = p$, a proposition, then we have $p \vdash p$ and $\neg p \vdash \neg p$.
- Assume for formulae of size $\leq k 1$ (size=height of the parse tree). What is a parse tree?

- ▶ Structural Induction on φ .
- ▶ Base : If $\varphi = p$, a proposition, then we have $p \vdash p$ and $\neg p \vdash \neg p$.
- Assume for formulae of size $\leq k 1$ (size=height of the parse tree). What is a parse tree?
- ▶ Case Negation : $\varphi = \neg \varphi_1$

- Structural Induction on φ.
- ▶ Base : If $\varphi = p$, a proposition, then we have $p \vdash p$ and $\neg p \vdash \neg p$.
- Assume for formulae of size $\leq k 1$ (size=height of the parse tree). What is a parse tree?
- ▶ Case Negation : $\varphi = \neg \varphi_1$
 - Assume φ evaluates to true in line I of \mathcal{T} . Then φ_1 evaluates to false in line I. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi_1$.

- Structural Induction on φ .
- ▶ Base : If $\varphi = p$, a proposition, then we have $p \vdash p$ and $\neg p \vdash \neg p$.
- Assume for formulae of size $\leq k-1$ (size=height of the parse tree). What is a parse tree?
- ▶ Case Negation : $\varphi = \neg \varphi_1$
 - Assume φ evaluates to true in line I of \mathcal{T} . Then φ_1 evaluates to false in line I. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \varphi_1$.
 - Assume φ evaluates to false in line I of \mathcal{T} . Then φ_1 evaluates to true in line I. By inductive hypothesis, $\hat{p}_1, \ldots, \hat{p}_n \vdash \varphi_1$. Use the $\neg \neg i$ rule to obtain a proof of $\hat{p}_1, \ldots, \hat{p}_n \vdash \neg \neg \varphi_1$.

▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - If φ evaluates to false in line l, then φ_1 evaluates to true and φ_2 to false. Let $\{q_1, \ldots, q_k\}$ be the variables of φ_1 and let $\{r_1, \ldots, r_j\}$ be the variables in φ_2 . $\{q_1, \ldots, q_k\} \cup \{r_1, \ldots, r_i\} = \{p_1, \ldots, p_n\}$.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - ▶ If φ evaluates to false in line I, then φ_1 evaluates to true and φ_2 to false. Let $\{q_1, \ldots, q_k\}$ be the variables of φ_1 and let $\{r_1, \ldots, r_j\}$ be the variables in φ_2 . $\{q_1, \ldots, q_k\} \cup \{r_1, \ldots, r_j\} = \{p_1, \ldots, p_n\}$.
 - ▶ By inductive hypothesis, $\hat{q}_1, \ldots, \hat{q}_k \models \varphi_1$ and $\hat{r}_1, \ldots, \hat{r}_j \models \neg \varphi_2$. Then, $\hat{p}_1, \ldots, \hat{p}_n \models \varphi_1 \land \neg \varphi_2$.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - If φ evaluates to false in line *I*, then φ₁ evaluates to true and φ₂ to false. Let {q₁,..., q_k} be the variables of φ₁ and let {r₁,..., r_j} be the variables in φ₂. {q₁,..., q_k} ∪ {r₁,..., r_j} = {p₁,..., p_n}.
 - By inductive hypothesis, $\hat{q}_1, \dots, \hat{q}_k \models \varphi_1$ and $\hat{r}_1, \dots, \hat{r}_j \models \neg \varphi_2$. Then, $\hat{p}_1, \dots, \hat{p}_n \models \varphi_1 \land \neg \varphi_2$.
 - ▶ Prove that $\varphi_1 \land \neg \varphi_2 \vdash \neg (\varphi_1 \rightarrow \varphi_2)$.

▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - ▶ If φ evaluates to true in line I, then there are 3 possibilities. If both φ_1, φ_2 evaluate to true, then we have $\hat{p_1}, \dots, \hat{p_n} \models \varphi_1 \wedge \varphi_2$. Proving $\varphi_1 \wedge \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - ▶ If φ evaluates to true in line I, then there are 3 possibilities. If both φ_1, φ_2 evaluate to true, then we have $\hat{p_1}, \dots, \hat{p_n} \models \varphi_1 \wedge \varphi_2$. Proving $\varphi_1 \wedge \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.
 - If both φ_1, φ_2 evaluate to false, then we have $\hat{p_1}, \dots, \hat{p_n} \models \neg \varphi_1 \wedge \neg \varphi_2$. Proving $\neg \varphi_1 \wedge \neg \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.

- ▶ Case \rightarrow : $\varphi = \varphi_1 \rightarrow \varphi_2$.
 - ▶ If φ evaluates to true in line l, then there are 3 possibilities. If both φ_1, φ_2 evaluate to true, then we have $\hat{\rho}_1, \ldots, \hat{\rho}_n \models \varphi_1 \land \varphi_2$. Proving $\varphi_1 \land \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.
 - If both φ_1, φ_2 evaluate to false, then we have $\hat{p}_1, \dots, \hat{p}_n \models \neg \varphi_1 \land \neg \varphi_2$. Proving $\neg \varphi_1 \land \neg \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.
 - Last, if φ_1 evaluates to false and φ_2 evaluates to true, then we have $\hat{p}_1, \dots, \hat{p}_n \models \neg \varphi_1 \land \varphi_2$. Proving $\neg \varphi_1 \land \varphi_2 \vdash \varphi_1 \rightarrow \varphi_2$, we are done.

▶ Prove the cases ∧, ∨.

On An Example

We know $\models (p \land q) \rightarrow p$. Using this fact, show that $\vdash (p \land q) \rightarrow p$.

- \triangleright $p, q \vdash (p \land q) \rightarrow p$
- $ightharpoonup
 eg p, q \vdash (p \land q) \rightarrow p$
- $\triangleright p, \neg q \vdash (p \land q) \rightarrow p$
- $ightharpoonup \neg p, \neg q \vdash (p \land q) \rightarrow p$

Now, combine the 4 proofs above to give a single proof for $\vdash (p \land q) \rightarrow p$.

▶ Step 2: From $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$, use LEM on all the propositional variables of $\varphi_1, \dots, \varphi_n, \psi$ to obtain $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$.

- ▶ Step 2: From $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$, use LEM on all the propositional variables of $\varphi_1, \dots, \varphi_n, \psi$ to obtain $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$.
- ▶ Step 3: Take the proof $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$. This proof has n nested boxes, the ith box opening with the assumption φ_i . The last box closes with the last line ψ . Hence, the line immediately after the last box is $\varphi_n \to \psi$.

- ▶ Step 2: From $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$, use LEM on all the propositional variables of $\varphi_1, \dots, \varphi_n, \psi$ to obtain $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$.
- ▶ Step 3: Take the proof $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$. This proof has n nested boxes, the ith box opening with the assumption φ_i . The last box closes with the last line ψ . Hence, the line immediately after the last box is $\varphi_n \to \psi$.
- ▶ In a similar way, the (n-1)th box has as its last line $\varphi_n \to \psi$, and hence, the line immediately after this box is $\varphi_{n-1} \to (\varphi_n \to \psi)$ and so on.

- ▶ Step 2: From $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$, use LEM on all the propositional variables of $\varphi_1, \dots, \varphi_n, \psi$ to obtain $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\dots (\varphi_n \rightarrow \psi) \dots))$.
- ▶ Step 3: Take the proof $\vdash \varphi_1 \to (\varphi_2 \to (\dots (\varphi_n \to \psi) \dots))$. This proof has n nested boxes, the ith box opening with the assumption φ_i . The last box closes with the last line ψ . Hence, the line immediately after the last box is $\varphi_n \to \psi$.
- ▶ In a similar way, the (n-1)th box has as its last line $\varphi_n \to \psi$, and hence, the line immediately after this box is $\varphi_{n-1} \to (\varphi_n \to \psi)$ and so on.
- Add premises $\varphi_1, \dots, \varphi_n$ on the top. Use MP on the premises, and the lines after boxes 1 to n in order to obtain ψ .

Summary

Propositional Logic is sound and complete.

▶ A literal is a propositional variable p or its negation $\neg p$. These are referred to as positive and negative literals respectively.

- ▶ A literal is a propositional variable p or its negation $\neg p$. These are referred to as positive and negative literals respectively.
- ▶ A formula F is in CNF if it is a conjunction of a disjunction of literals.

$$F = \bigwedge_{i=1}^{n} \bigvee_{j=1}^{m} L_{i,j}$$

each $L_{i,i}$ is a literal.

- ▶ A literal is a propositional variable p or its negation $\neg p$. These are referred to as positive and negative literals respectively.
- A formula F is in CNF if it is a conjunction of a disjunction of literals.

$$F = \bigwedge_{i=1}^{n} \bigvee_{j=1}^{m} L_{i,j}$$

each $L_{i,i}$ is a literal.

 A formula F is in DNF if it is a disjunction of a conjunction of literals.

$$F = \bigvee_{i=1}^{n} \bigwedge_{i=1}^{m} L_{i,j}$$

each $L_{i,j}$ is a literal.

In the following, equivalent stands for semantically equivalent

Let F be a formula in CNF and let G be a formula in DNF. Then $\neg F$ is equivalent to a formula in DNF and $\neg G$ is equivalent to a formula in CNF.

In the following, equivalent stands for semantically equivalent

Let F be a formula in CNF and let G be a formula in DNF. Then $\neg F$ is equivalent to a formula in DNF and $\neg G$ is equivalent to a formula in CNF.

Every formula F is equivalent to some formula F_1 in CNF and some formula F_2 in DNF.

CNF Algorithm

Given a formula F, $(x \to [\neg(y \lor z) \land \neg(y \to x)])$

▶ Replace all subformulae of the form $F \to G$ with $\neg F \lor G$, and all subformulae of the form $F \leftrightarrow G$ with $(\neg F \lor G) \land (\neg G \lor F)$. When there are no more occurrences of \rightarrow , \leftrightarrow , proceed to the next step.

CNF Algorithm

Given a formula F, $(x \rightarrow [\neg (y \lor z) \land \neg (y \rightarrow x)])$

- ▶ Replace all subformulae of the form $F \to G$ with $\neg F \lor G$, and all subformulae of the form $F \leftrightarrow G$ with $(\neg F \lor G) \land (\neg G \lor F)$. When there are no more occurrences of \rightarrow , \leftrightarrow , proceed to the next step.
- ▶ Get rid of all double negations : Replace all subformulae
 - $\neg \neg G$ with G,
 - ▶ \neg ($G \land H$) with $\neg G \lor \neg H$
 - $\neg (G \lor H)$ with $\neg G \land \neg H$

When there are no more such subformulae, proceed to the next step.

CNF Algorithm

Given a formula F, $(x \to [\neg(y \lor z) \land \neg(y \to x)])$

- ▶ Replace all subformulae of the form $F \to G$ with $\neg F \lor G$, and all subformulae of the form $F \leftrightarrow G$ with $(\neg F \lor G) \land (\neg G \lor F)$. When there are no more occurrences of \rightarrow , \leftrightarrow , proceed to the next step.
- Get rid of all double negations : Replace all subformulae
 - $\neg \neg G$ with G,
 - ▶ \neg ($G \land H$) with $\neg G \lor \neg H$
 - ▶ $\neg (G \lor H)$ with $\neg G \land \neg H$

When there are no more such subformulae, proceed to the next step.

▶ Distribute ∨ wherever possible.

The resultant formula F_1 is in CNF and is provably equivalent to F. $[(\neg x \lor \neg y) \land (\neg x \lor \neg z)] \land [(\neg x \lor y) \land (\neg x \lor \neg x)]$

The Hardness of SAT

- Given a formula φ how to check if φ is satisfiable?
- ▶ Given a formula φ how to check if φ is unsatisfiable?
- ► SAT is NP-complete

Polynomial Time Formula Classes

- ► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.
- ► Programming languages Prolog and Datalog are based on Horn clauses in first order logic

- ► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.
- Programming languages Prolog and Datalog are based on Horn clauses in first order logic
- ▶ A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.

- ► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.
- Programming languages Prolog and Datalog are based on Horn clauses in first order logic
- ▶ A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.
- ▶ $p \land (\neg p \lor \neg q \lor r) \land (\neg a \lor \neg b)$ is Horn, but $a \lor b$ is not Horn.

- ► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.
- Programming languages Prolog and Datalog are based on Horn clauses in first order logic
- ► A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.
- ▶ $p \land (\neg p \lor \neg q \lor r) \land (\neg a \lor \neg b)$ is Horn, but $a \lor b$ is not Horn.
- ▶ A basic Horn formula is one which has no ∧. Every Horn formula is a conjunction of basic Horn formulae.

► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.

- Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.
- ▶ Basic Horn with no positive literals are written as $p \land q \land \cdots \land r \rightarrow \bot$.

- Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.
- ▶ Basic Horn with no positive literals are written as $p \land q \land \cdots \land r \rightarrow \bot$.
- ▶ Thus, a Horn formula is written as a conjunction of implications.