$11n_{137} (K11n_{137})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{15} - u^{14} + 6u^{13} + 4u^{12} - 15u^{11} - 3u^{10} + 19u^9 - 7u^8 - 10u^7 + 12u^6 - 2u^5 - 3u^4 + 4u^3 - 2u^2 + b + 1, \\ u^{15} + u^{14} - 5u^{13} - 4u^{12} + 9u^{11} + 4u^{10} - 6u^9 + 2u^8 - u^7 - 4u^6 + 4u^5 - 4u^3 + 2a + u - 1, \\ u^{16} + 3u^{15} + \dots - 3u - 2 \rangle \\ I_2^u &= \langle -4u^8a + 6u^8 + \dots - 3a + 4, \\ &- 2u^8a + 8u^6a + 2u^7 + 2u^5a + u^6 - 9u^4a - 7u^5 - 6u^3a - 5u^4 + u^2a + 6u^3 + a^2 + 4au + 7u^2 - a + 2u - 2, \\ u^9 - u^8 - 4u^7 + 3u^6 + 5u^5 - u^4 - 2u^3 - 2u^2 + u - 1 \rangle \\ I_3^u &= \langle u^5 - 2u^3 + b + u, \ u^5 - 3u^3 - u^2 + a + 2u + 1, \ u^6 - 3u^4 + 2u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{15} - u^{14} + \dots + b + 1, \ u^{15} + u^{14} + \dots + 2a - 1, \ u^{16} + 3u^{15} + \dots - 3u - 2 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{15} - \frac{1}{2}u^{14} + \dots - \frac{1}{2}u + \frac{1}{2} \\ u^{15} + u^{14} + \dots + 2u^{2} - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{3}{2}u^{15} - \frac{3}{2}u^{14} + \dots - \frac{1}{2}u + \frac{3}{2} \\ u^{15} + u^{14} + \dots + 2u^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{15} + \frac{1}{2}u^{14} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -u^{15} - u^{14} + \dots + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{2}u^{15} + \frac{5}{2}u^{14} + \dots - \frac{5}{2}u - \frac{3}{2} \\ -u^{15} - 2u^{14} + \dots - 2u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{2}u^{15} + \frac{5}{2}u^{14} + \dots - \frac{5}{2}u - \frac{3}{2} \\ -u^{15} - 2u^{14} + \dots - 2u^{2} + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$4u^{15} + 6u^{14} - 20u^{13} - 22u^{12} + 42u^{11} + 12u^{10} - 44u^9 + 42u^8 + 4u^7 - 54u^6 + 40u^5 - 6u^4 - 28u^3 + 20u^2 - 12u + 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$u^{16} + 2u^{14} + \dots + 2u - 1$
c_2	$u^{16} + 4u^{15} + \dots - 14u^2 + 1$
<i>C</i> 5	$u^{16} + 9u^{15} + \dots + 31u + 22$
c_6, c_9, c_{10}	$u^{16} - 3u^{15} + \dots + 3u - 2$
c_{11}	$u^{16} - 3u^{15} + \dots - 41u - 8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$y^{16} + 4y^{15} + \dots - 14y^2 + 1$
c_2	$y^{16} + 24y^{15} + \dots - 28y + 1$
<i>C</i> ₅	$y^{16} - 3y^{15} + \dots - 3557y + 484$
c_6, c_9, c_{10}	$y^{16} - 15y^{15} + \dots - 21y + 4$
c_{11}	$y^{16} + 9y^{15} + \dots - 6561y + 64$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.608375 + 0.583971I		
a = 0.147239 - 0.217444I	3.36394 - 4.13872I	7.73528 + 1.97260I
b = -0.826528 + 0.979522I		
u = 0.608375 - 0.583971I		
a = 0.147239 + 0.217444I	3.36394 + 4.13872I	7.73528 - 1.97260I
b = -0.826528 - 0.979522I		
u = 0.395219 + 0.742683I		
a = -1.25592 + 1.19798I	2.59863 + 8.63192I	5.90792 - 7.27043I
b = 0.797243 + 1.086110I		
u = 0.395219 - 0.742683I		
a = -1.25592 - 1.19798I	2.59863 - 8.63192I	5.90792 + 7.27043I
b = 0.797243 - 1.086110I		
u = 1.216880 + 0.292072I		
a = 0.840694 - 0.714472I	0.99780 + 5.12268I	7.85223 - 7.82309I
b = -0.494247 - 0.784033I		
u = 1.216880 - 0.292072I		
a = 0.840694 + 0.714472I	0.99780 - 5.12268I	7.85223 + 7.82309I
b = -0.494247 + 0.784033I		
u = 0.012792 + 0.713635I		
a = 0.244689 - 1.197750I	-2.70658 - 1.45405I	3.73411 + 4.71917I
b = 0.379775 - 0.677130I		
u = 0.012792 - 0.713635I		
a = 0.244689 + 1.197750I	-2.70658 + 1.45405I	3.73411 - 4.71917I
b = 0.379775 + 0.677130I		
u = -1.271500 + 0.260922I		
a = -0.319754 - 0.233539I	1.24387 - 2.05073I	9.21244 - 1.11358I
b = -0.232716 - 0.644221I		
u = -1.271500 - 0.260922I		
a = -0.319754 + 0.233539I	1.24387 + 2.05073I	9.21244 + 1.11358I
b = -0.232716 + 0.644221I		_

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.43214		
a = -1.38066	6.54271	14.4520
b = 0.888414		
u = -1.47068 + 0.28044I		
a = 2.09438 + 0.18309I	8.6109 - 12.3641I	9.35094 + 7.14528I
b = -0.82217 + 1.15830I		
u = -1.47068 - 0.28044I		
a = 2.09438 - 0.18309I	8.6109 + 12.3641I	9.35094 - 7.14528I
b = -0.82217 - 1.15830I		
u = -1.50706 + 0.17257I		
a = -1.11020 - 1.03847I	10.25570 + 1.47993I	11.45831 - 1.74331I
b = 0.966111 + 0.941274I		
u = -1.50706 - 0.17257I		
a = -1.11020 + 1.03847I	10.25570 - 1.47993I	11.45831 + 1.74331I
b = 0.966111 - 0.941274I		
u = -0.400197		
a = 0.598381	0.656537	15.0460
b = -0.423356		

$$II. \\ I_2^u = \langle -4u^8a + 6u^8 + \dots - 3a + 4, \ -2u^8a + 2u^7 + \dots - a - 2, \ u^9 - u^8 + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 4u^{8}a - 6u^{8} + \dots + 3a - 4 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -4u^{8}a + 6u^{8} + \dots - 2a + 4 \\ 4u^{8}a - 6u^{8} + \dots + 3a - 4 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -3u^{8}a + 6u^{8} + \dots - 2a + 5 \\ 5u^{8}a - 8u^{8} + \dots + 4a - 6 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} + 2u^{3} - u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 6u^{8}a - 9u^{8} + \dots + 4a - 7 \\ -2u^{8}a + 3u^{8} + \dots - 2a + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 6u^{8}a - 9u^{8} + \dots + 4a - 7 \\ -2u^{8}a + 3u^{8} + \dots - 2a + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 6u^{8}a - 9u^{8} + \dots + 4a - 7 \\ -2u^{8}a + 3u^{8} + \dots - 2a + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^6 + 12u^4 + 4u^3 8u^2 8u + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$u^{18} - u^{17} + \dots - 8u + 5$
c_2	$u^{18} + 7u^{17} + \dots + 136u + 25$
<i>C</i> ₅	$(u^9 - 3u^8 + 2u^7 + 5u^6 - u^5 - 13u^4 + 10u^3 + 2u^2 + u - 3)^2$
c_6, c_9, c_{10}	$(u^9 + u^8 - 4u^7 - 3u^6 + 5u^5 + u^4 - 2u^3 + 2u^2 + u + 1)^2$
c_{11}	$(u^9 - u^8 + 6u^7 - 5u^6 + 11u^5 - 7u^4 + 6u^3 - 2u^2 + u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$y^{18} + 7y^{17} + \dots + 136y + 25$
c_2	$y^{18} + 7y^{17} + \dots + 5004y + 625$
c_5	$(y^9 - 5y^8 + 32y^7 - 87y^6 + 185y^5 - 223y^4 + 180y^3 - 62y^2 + 13y - 9)^2$
c_6, c_9, c_{10}	$(y^9 - 9y^8 + 32y^7 - 55y^6 + 45y^5 - 19y^4 + 16y^3 - 10y^2 - 3y - 1)^2$
c_{11}	$(y^9 + 11y^8 + 48y^7 + 105y^6 + 121y^5 + 73y^4 + 20y^3 - 6y^2 - 3y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.482242 + 0.666986I		
a = 1.119660 + 0.834506I	3.77376 - 2.21388I	8.24115 + 3.04598I
b = -0.881705 + 0.851729I		
u = -0.482242 + 0.666986I		
a = -0.009091 - 0.470353I	3.77376 - 2.21388I	8.24115 + 3.04598I
b = 0.937576 + 0.708026I		
u = -0.482242 - 0.666986I		
a = 1.119660 - 0.834506I	3.77376 + 2.21388I	8.24115 - 3.04598I
b = -0.881705 - 0.851729I		
u = -0.482242 - 0.666986I		
a = -0.009091 + 0.470353I	3.77376 + 2.21388I	8.24115 - 3.04598I
b = 0.937576 - 0.708026I		
u = 1.28056		
a = 1.66854 + 0.09359I	-0.453072	5.66670
b = -0.295309 + 1.123220I		
u = 1.28056		
a = 1.66854 - 0.09359I	-0.453072	5.66670
b = -0.295309 - 1.123220I		
u = -1.380230 + 0.162431I		
a = -0.931046 + 0.163673I	1.87293 - 3.41073I	9.88238 + 4.39642I
b = 0.076831 - 1.264200I		
u = -1.380230 + 0.162431I		
a = 1.54746 - 0.88517I	1.87293 - 3.41073I	9.88238 + 4.39642I
b = -0.505863 + 0.476260I		
u = -1.380230 - 0.162431I		
a = -0.931046 - 0.163673I	1.87293 + 3.41073I	9.88238 - 4.39642I
b = 0.076831 + 1.264200I		
u = -1.380230 - 0.162431I		
a = 1.54746 + 0.88517I	1.87293 + 3.41073I	9.88238 - 4.39642I
b = -0.505863 - 0.476260I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.230908 + 0.456719I		
a = -1.90677 - 0.85951I	-3.25448 + 1.10969I	4.55374 - 6.23947I
b = 0.257033 + 0.703723I		
u = 0.230908 + 0.456719I		
a = 0.96790 - 1.89385I	-3.25448 + 1.10969I	4.55374 - 6.23947I
b = 0.033137 - 1.191070I		
u = 0.230908 - 0.456719I		
a = -1.90677 + 0.85951I	-3.25448 - 1.10969I	4.55374 + 6.23947I
b = 0.257033 - 0.703723I		
u = 0.230908 - 0.456719I		
a = 0.96790 + 1.89385I	-3.25448 - 1.10969I	4.55374 + 6.23947I
b = 0.033137 + 1.191070I		
u = 1.49128 + 0.23430I		
a = 1.01299 - 1.10233I	10.17130 + 5.50049I	11.48937 - 2.97298I
b = -1.067290 + 0.668745I		
u = 1.49128 + 0.23430I		
a = -1.96964 - 0.01296I	10.17130 + 5.50049I	11.48937 - 2.97298I
b = 0.945590 + 0.965095I		
u = 1.49128 - 0.23430I		
a = 1.01299 + 1.10233I	10.17130 - 5.50049I	11.48937 + 2.97298I
b = -1.067290 - 0.668745I		
u = 1.49128 - 0.23430I		
a = -1.96964 + 0.01296I	10.17130 - 5.50049I	11.48937 + 2.97298I
b = 0.945590 - 0.965095I		

III. $I_3^u = \langle u^5 - 2u^3 + b + u, \ u^5 - 3u^3 - u^2 + a + 2u + 1, \ u^6 - 3u^4 + 2u^2 + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} + 3u^{3} + u^{2} - 2u - 1 \\ -u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u^{2} - u - 1 \\ -u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} + u^{3} + 2u^{2} - u \\ -u^{5} + u^{4} + 2u^{3} - 2u^{2} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{4} - u^{3} + 2u^{2} + 2u \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{4} - u^{3} + 2u^{2} + 2u \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{4} - u^{3} + 2u^{2} + 2u \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^4 + 8u^2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$(u^2+1)^3$
c_2	$(u+1)^6$
<i>C</i> 5	$u^6 + u^4 + 2u^2 + 1$
c_6, c_9, c_{10}	$u^6 - 3u^4 + 2u^2 + 1$
c_{11}	$(u^3 - u^2 + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$(y+1)^6$
c_2	$(y-1)^6$
<i>C</i> ₅	$(y^3 + y^2 + 2y + 1)^2$
c_6, c_9, c_{10}	$(y^3 - 3y^2 + 2y + 1)^2$
c_{11}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.307140 + 0.215080I		
a = 1.40722 + 0.43972I	-0.26574 + 2.82812I	3.50976 - 2.97945I
b = -1.000000I		
u = 1.307140 - 0.215080I		
a = 1.40722 - 0.43972I	-0.26574 - 2.82812I	3.50976 + 2.97945I
b = 1.000000I		
u = -1.307140 + 0.215080I		
a = -0.082503 - 0.684841I	-0.26574 - 2.82812I	3.50976 + 2.97945I
b = -1.000000I		
u = -1.307140 - 0.215080I		
a = -0.082503 + 0.684841I	-0.26574 + 2.82812I	3.50976 - 2.97945I
b = 1.000000I		
u = 0.569840I		
a = -1.32472 - 1.75488I	-4.40332	-3.01950
b = -1.000000I		
u = -0.569840I		
a = -1.32472 + 1.75488I	-4.40332	-3.01950
b = 1.000000I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$((u^2+1)^3)(u^{16}+2u^{14}+\cdots+2u-1)(u^{18}-u^{17}+\cdots-8u+5)$
c_2	$((u+1)^6)(u^{16} + 4u^{15} + \dots - 14u^2 + 1)(u^{18} + 7u^{17} + \dots + 136u + 25)$
c_5	$(u^{6} + u^{4} + 2u^{2} + 1)$ $\cdot (u^{9} - 3u^{8} + 2u^{7} + 5u^{6} - u^{5} - 13u^{4} + 10u^{3} + 2u^{2} + u - 3)^{2}$ $\cdot (u^{16} + 9u^{15} + \dots + 31u + 22)$
c_6, c_9, c_{10}	$(u^{6} - 3u^{4} + 2u^{2} + 1)$ $\cdot (u^{9} + u^{8} - 4u^{7} - 3u^{6} + 5u^{5} + u^{4} - 2u^{3} + 2u^{2} + u + 1)^{2}$ $\cdot (u^{16} - 3u^{15} + \dots + 3u - 2)$
c_{11}	$((u^3 - u^2 + 1)^2)(u^9 - u^8 + \dots + u - 1)^2$ $\cdot (u^{16} - 3u^{15} + \dots - 41u - 8)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_7, c_8	$((y+1)^6)(y^{16} + 4y^{15} + \dots - 14y^2 + 1)(y^{18} + 7y^{17} + \dots + 136y + 25)$
c_2	$((y-1)^6)(y^{16} + 24y^{15} + \dots - 28y + 1)(y^{18} + 7y^{17} + \dots + 5004y + 625)$
<i>C</i> 5	$(y^{3} + y^{2} + 2y + 1)^{2}$ $\cdot (y^{9} - 5y^{8} + 32y^{7} - 87y^{6} + 185y^{5} - 223y^{4} + 180y^{3} - 62y^{2} + 13y - 9)^{2}$ $\cdot (y^{16} - 3y^{15} + \dots - 3557y + 484)$
c_6, c_9, c_{10}	$(y^3 - 3y^2 + 2y + 1)^2$ $\cdot (y^9 - 9y^8 + 32y^7 - 55y^6 + 45y^5 - 19y^4 + 16y^3 - 10y^2 - 3y - 1)^2$ $\cdot (y^{16} - 15y^{15} + \dots - 21y + 4)$
c_{11}	$(y^{3} - y^{2} + 2y - 1)^{2}$ $\cdot (y^{9} + 11y^{8} + 48y^{7} + 105y^{6} + 121y^{5} + 73y^{4} + 20y^{3} - 6y^{2} - 3y - 1)^{2}$ $\cdot (y^{16} + 9y^{15} + \dots - 6561y + 64)$