Cálculo diferencial e integral I Ejercicios de práctica sobre límites de funciones

Indicaciones: A continuación presentamos una serie de ejercicios cuya finalidad es que practiquen/refuercen los temas vistos recientemente.

1. Encuentre, si existen, los siguientes límites:

$$a) \lim_{x \to 4} (x - \lfloor x \rfloor)$$

$$c) \lim_{h \to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h}$$

b)
$$\lim_{x\to 0} \frac{x \operatorname{sen}(3x)}{\operatorname{sen}(5x)}$$

$$d)$$
 $\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$

2. Encuentre

$$\lim_{x \to 1} \frac{\sqrt{x^2 + x + 7} - \sqrt{2x^2 + 10x - 3}}{\sqrt{x^2 + 1} - \sqrt{3x^2 - 1}}.$$

3. Encuentre el siguiente límite y demuestre que lo es, mediante la definición

$$\lim_{x \to 0} \frac{x^5}{2 - sen^2 x}.$$

- 4. Sean $l \in \mathbb{R}$, $f : A \to \mathbb{R}$ una función y $c \in \mathbb{R}$ tal que existe $(a,b) \subseteq \mathbb{R}$ con $c \in (a,b)$ y $(a,b) \setminus \{c\} \subseteq A$. Se tiene que $\lim_{x \to c} f(x) = 0$, si y sólo si $\lim_{x \to c} |f|(x) = 0$.
- 5. Demuestre que si $\lim_{x\to c} f(x) = l$, entonces $\lim_{x\to c} |f(x)| = |l|$. ¿Se vale el regreso? Argumente su respuesta.
- 6. Demuestre que si $\lim_{x\to c} f(x) = l$ y $\lim_{x\to c} g(x) = m$, entonces $\lim_{x\to c} \max(f,g)(x) = \max(l,m)$ y $\lim_{x\to c} \min(f,g)(x) = \min(l,m)$.
- 7. Muestre que si $\lim_{x\to 0} g(x) = 0$ y f(x) es una función acotada entonces $\lim_{x\to 0} f(x)g(x) = 0$.
- 8. Sea $f: A \to \mathbb{R}$ una función tal que existe $(a,b) \subseteq \mathbb{R}$ con $0 \in (a,b)$ y $(a,b) \setminus \{0\} \subseteq A$. Supongamos que $\lim_{x\to 0} \frac{f(x)}{x} = l$ y consideremos $k \neq 0$, entonces

$$\lim_{x \to 0} \frac{f(kx)}{x} = kl.$$

9. Analice qué otros posibles comportamientos puede obtener al estudiar una función dada.

1

- a) Escriba las definiciones de los siguientes símbolos: $\lim_{x\to c} f(x) = -\infty$, $\lim_{x\to c^+} f(x) = -\infty$ y $\lim_{x\to c^-} f(x) = -\infty$.
- b) Enuncie y demuestre un teorema análogo al Teorema de equivalencia con límites laterales para límites iguales a menos infinito.

- c) ¿Qué significa $\lim_{x\to\infty} f(x)=\infty$?, ¿y $\lim_{x\to-\infty} f(x)=-\infty$?, ¿qué otras combinaciones son posibles al trabajar con límites? Escríbalas junto con su respectiva definición.
- 10. a) Enuncie y demuestre los teoremas de álgebra de límites y del sándwich para límites laterales.
 - b) Enuncie y demuestre los teoremas de álgebra de límites y del sándwich para límites al infinito.
- 11. Encuentre, si existen, los siguientes límites:

$$a) \lim_{x \to \infty} \left(1 - \cos\left(\frac{1}{x}\right) \right)$$

$$c) \lim_{x \to 0} \frac{1}{x}$$

$$b) \lim_{x \to \infty} x \left(1 - \cos\left(\frac{1}{x}\right)\right)$$

$$c) \lim_{x \to 0} \frac{1}{x}$$

$$d) \lim_{x \to 0} \frac{1}{|x|}$$