Exercices in reachability style GASICS'2010 workshop

Nathanaël Fijalkow ^{1,2} & Florian Horn ¹

LIAFA

CNRS & Université Denis Diderot - Paris 7, France florian.horn@liafa.jussieu.fr

ÉNS Cachan École Normale Supérieure de Cachan, France nathanael.fijalkow@gmail.com

November 19th, 2010

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

Players

Two players: Eve and Adam.

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
 - Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

Generalized reachability objectives

- Reachability objectives: given $F \subseteq Q$, reach at least one vertex in F;
- Generalized reachability objectives: given $F_1, F_2, \dots, F_p \subseteq Q$, reach at least one vertex in each F_i .

Generalized reachability games

Example

Generalized reachability games

Example

Example

Example

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- 2 Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

Reduction from QBF to generalized reachability games

 ϕ quantified boolean formula in conjunctive normal form:

$$\phi = \forall x \,\exists y \,\forall z \, (x \vee \neg y) \wedge (\neg y \vee z)$$

adenon from QDI to generalized reachability games

 ϕ quantified boolean formula in conjunctive normal form:

$$\phi = \forall x \,\exists y \,\forall z \,(x \vee \neg y) \wedge (\neg y \vee z)$$

Eve wins if and only if ϕ is true.

Complexity

Theorem (Complexity of generalized reachability games)

- Solving two players generalized reachability games is PSPACE-complete;
- Solving one player (Eve) generalized reachability games is NP-complete.

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

Müller games and weak Müller games

- Müller objectives: given $\mathcal{F} \subseteq 2^{\mathcal{Q}}$, the set of vertices visited infinitely often is in \mathcal{F} ;
- weak Müller objectives: given $\mathcal{F} \subseteq 2^{\mathcal{Q}}$, the set of visited vertices is in \mathcal{F} .

Müller games and weak Müller games

- Müller objectives: given $\mathcal{F} \subseteq 2^{\mathcal{Q}}$, the set of vertices visited infinitely often is in \mathcal{F} ;
- weak Müller objectives: given $\mathcal{F} \subseteq 2^Q$, the set of visited vertices is in \mathcal{F} .

Theorem (Complexity of Müller games)

Solving Müller games, as well as weak Müller games, is PSPACE-complete.

Müller games and weak Müller games

- Müller objectives: given $\mathcal{F} \subseteq 2^{\mathcal{Q}}$, the set of vertices visited infinitely often is in \mathcal{F} ;
- weak Müller objectives: given $\mathcal{F} \subseteq 2^Q$, the set of visited vertices is in \mathcal{F} .

Theorem (Complexity of Müller games)

Solving Müller games, as well as weak Müller games, is PSPACE-complete.

How to weaken weak Müller games to get lower complexity?

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- 2 Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

Downward-closed objectives

- A condition $\mathcal{F} \subseteq 2^Q$ is downward-closed if $Y \in \mathcal{F}, X \subseteq Y \Rightarrow X \in \mathcal{F};$
- weak Müller downward-closed objectives are generalized (existential) reachability objectives;
- weak Müller upward-closed objectives are generalized universal reachability objectives.

Cutting on formulas

Cutting on formulas

(existential) reachability

Weakening

Cutting on formulas

(existential) reachability

universal reachability

generalized (existential) reachability

generalized (existential) reachability

generalized universal reachability

generalized universal reachability

Outline

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

Solving

 $(\land_i \text{Reach}(v_i))$

Solving

 $\bigwedge_i \operatorname{Reach}(v_i)$

Theorem (Complexity of universal reachability games)

Solving universal generalized reachability games is in P. Furthermore, Eve requires at most k memory states, and Adam at most 2.

Sketch of a proof

We consider two cases:

• If there exists a permutation f over $\{1, \ldots, k\}$ such that for all $1 \le i \le k-1$, we have $v_{f(i)} \in \text{Attr}(v_{f(i+1)})$.

Sketch of a proof

We consider two cases:

• If there exists a permutation f over $\{1, \ldots, k\}$ such that for all $1 \le i \le k-1$, we have $v_{f(i)} \in Attr(v_{f(i+1)})$. Then Eve wins from $\cap_i Attr(v_i)$.

Sketch of a proof

We consider two cases:

- If there exists a permutation f over $\{1, \ldots, k\}$ such that for all $1 \le i \le k-1$, we have $v_{f(i)} \in Attr(v_{f(i+1)})$. Then Eve wins from $\cap_i Attr(v_i)$.
- Otherwise, there exists v_i and v_j such that $v_i \notin Attr(v_j)$ and $v_j \notin Attr(v_i)$.

Sketch of a proof

We consider two cases:

- If there exists a permutation f over $\{1, \ldots, k\}$ such that for all $1 \le i \le k-1$, we have $v_{f(i)} \in Attr(v_{f(i+1)})$. Then Eve wins from $\cap_i Attr(v_i)$.
- Otherwise, there exists v_i and v_j such that $v_i \notin Attr(v_j)$ and $v_j \notin Attr(v_i)$.

A winning strategy for Adam is: "if v_i or v_j has been reached, then avoid the other".

Completing the picture

Outline

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

Generalized universal games

$$(\bigvee_i \wedge_j \operatorname{Reach}(v_{i,j}))$$

Generalized universal games

$$(\bigvee_i \wedge_j \operatorname{Reach}(v_{i,j}))$$

Theorem (Complexity of generalized universal reachability games)

Solving generalized universal games is PSPACE-complete.

The proof is the same, using QBF in disjunctive normal form.

but...

If we look carefully at our reduction, it does not imply that solving generalized reachability games where reachability sets have size 2 is PSPACE-hard.

but...

If we look carefully at our reduction, it does not imply that solving generalized reachability games where reachability sets have size 2 is PSPACE-hard.

$$\phi = \forall x \,\exists y \,\forall z \, (x \vee \neg y) \wedge (\neg y \vee z)$$

Generalized universal reachability games

Theorem (Complexity of restricted generalized universal reachability games)

Solving generalized universal games where reachability sets have size 2 is PSPACE-complete.

Generalized universal reachability games

Theorem (Complexity of restricted generalized universal reachability games)

Solving generalized universal games where reachability sets have size 2 is PSPACE-complete.

However, the problem is still open for generalized (existential) reachability games,

Generalized universal reachability games

Theorem (Complexity of restricted generalized universal reachability games)

Solving generalized universal games where reachability sets have size 2 is PSPACE-complete.

However, the problem is still open for generalized (existential) reachability games, as well as for the dual version: generalized universal reachability games where there are two reachability sets.

Completing the picture

Outline

- 1 Generalized reachability games
 - Games
 - Reachability games
 - Generalized reachability games
 - The surprizing complexity
- Weakening weak Müller games
 - Weak Müller games
 - Weakening
 - Universal reachability games
 - A possible complexity gap
 - Memory requirements

Exponential lower bound for Eve, reachability sets of size 2

Florian's piece of art; exponential lower bound for Eve

Conclusion and further work

- Many restrictions over weak Müller games are still PSPACE-complete;
- Open case: generalized reachability games where reachability sets have size 2.

Memory requirements

The end.

Thank for your attention!

