Howr 8: Continuity, differentiability
Read along: Spivak 11-19

open s.t. $F^{-1}(U) = V \cap A$ " $F^{-1}(U)$ is open in A".

 $\frac{\text{Proof:}}{\text{Proof:}} \text{ (in the case where } A = \mathbb{R}^n)$ $\Rightarrow \text{Assume } U \subset \mathbb{R}^m \text{ is open, } WTS = F^{-1}(V) \text{ is open.}$ $\text{Pick as } F^{-1}(V) \text{ , then } f(a) \in V \text{ so pick } E > 0 \text{ s.t. } B_E(F(a)) \subset U.$ By continuity, find S > 0 s.t. the condition of continuity is satisfied. $\text{(st. } F(B_S^0(a)) \subset B_E(F(a)) \subset V.) \text{ So } a \in B_S(a) \subseteq F^{-1}(V). \text{ So } F^{-1}(V) \text{ open.}$

* Balls are always open

 \Leftarrow Given $a \in \mathbb{R}^n$ and $\epsilon \neq 0$, consider $\beta \in (F(a))$, it is open. So $a \in F^{-1}(\beta \in (F(a)))$ is open so there exists a 8>0 9.4. $\beta \in (F(a))$

QED

Example 1/Thm R" + R" 9 RP

f, g cont => g.f continuous

Given Uc IRP open, WTS (gof) (U) open.

 $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(open) = open$

DED

Example 2/Thm: If $F: \mathbb{R}^n \to \mathbb{R}^m$ is cont. and $C \in \mathbb{R}^n$ is compact, then F(C) is also compact.

"A cont image of a compact is compact".

We know compact in $\mathbb{R}^n \Leftrightarrow closed$ and bounded.

Corollary: A cont. function on a compact set C is bounded. Proof: F(C) by ax 2 is compact, so it is bounded. So f is bounded.

Proof of ex. 2: (sketch)

Given an open cover $\{V_k\}$ of F(c), $\{F^{-1}(V_k)\}$ is an open cover of C, hence it has a finite subcover, which in itself corresponds to a finite subcover for F(c)

Compactness in terms of closed sets, check

From $(U \circ pen \Rightarrow F'(U) \circ pen)$ $(D \circ closed) \Rightarrow F'(D) \circ closed)$

From
$$F^{-1}(D^c)$$
 is closed)

D'is open $\Rightarrow F^{-1}(D^c)$ is open

 $\Rightarrow F^{-1}(D^c)$ is open

 $\Rightarrow F^{-1}(D^c)$ dosed

Differentiability

$$\lim_{x \to x_0} \frac{\int_{(x)-ax-b}^{(x)-ax-b}}{|x-x_0|} = 0$$

$$\lim_{x \to x_0} \frac{\int_{(x-x_0)}^{(x)-ax-b}}{|x-x_0|} = 0$$