Гимназија "Бора Станковић" Ниш, Србија

МАТУРСКИ РАД

Предмет: Математика

Тема: Логаритам *једначине и неједначине*

Ученик: Лука Нешић, IV/6 Професор: Ненад Тотић

Садржај

1	Uvo	Uvod						
	1.1	Definicija logaritma	3					
	1.2	Tok i grafik funkcije	3					
	1.3	Antilogaritam	3					
2	Log	Logaritamske jednakosti						
	2.1	Logaritam stepena osnove	4					
	2.2	Logaritam proizvoda	4					
	2.3	Logaritam količnika	4					
	2.4	Logaritam stepena broja	5					
	2.5	Promena osnove logaritma	5					
3	Najčešće logaritamske osnove							
	3.1	Osnova 10	6					
	3.2	Osnova 2	6					
	3.3	Osnova e	7					
4	Brojna vrednost logaritma 8							
	4.1	Formula	8					
	4.2	Verižni razlomak	8					
	4.3	Logaritamske tablice	9					
	4.4	Logaritmar	9					
5	Raz	Razno 10						
	5.1	Kompleksni logaritam	10					
	5.2	Kvaternioni	11					
	5.3	Izvod	12					
	5.4	Integral	12					
	5.5	Limes	12					
	5.6	Benfordov zakon	12					
6	Zadaci i rešenja							
	6.1	Jednačine	13					
		6.1.1 FIT	13					
		6.1.2 Jednačina 2	13					
		6.1.3 Jjjj (yafe)	14					
		6.1.4 Četiri četvorke	14					
		6.1.5 Sveska 7	15					
		6.1.6 Beskonačni koren	15					
		6.1.7 Нет 3	16					
		6.1.8 Изумирање	16					
		6.1.9 Питагора	17					
	6.2	Nejednačine	18					
		·	18					
		6.2.2 Sveska 9	18					
		6.2.3 Sveska 10	19					

		6.2.4	Net 1	19
		6.2.5	Net 2	20
		6.2.6	Net 6	21
		6.2.7	Granice	22
	6.3	Kratki	i primeri	23
		6.3.1	Zemljotres	23
		6.3.2	Decimalne cifre	23
		6.3.3	Poluraspad joda	23
		6.3.4	Geometrijski niz	23
		6.3.5	Izvod	24
		6.3.6	i na i	24
		6.3.7	$\ln(-z)$	24
		6.3.8	Prvo, pa 1	
	6.4	Ručni	rad	25
		6.4.1	Analogni stepen	25
		6.4.2	Analogni kvadratni koren	25
		6.4.3	ln 3	26
7	Одр	едрни	ице	27
	7.1	Литер	ратура	27
	7.2		вер	
	7.3		ови	
8	Инд	цекс		29

1 Uvod

Ovaj rad se bavi *logaritamskom funkcijom*, jednom od najvažnijih funkcija u matematici. Zbog svoje važnosti, zajedno sa eksponencijalnom, trigonometrijskim i njima inverznim funkcijama, spada u grupu *elementarnih* funkcija. Opisane su njene osobine i dati su primeri njene upotrebe, kao i zadaci sa rešenjima (ukupno 27).

Sama reč logaritam potiče od grčkih reči $\lambda \acute{o} \gamma o \varsigma$ (logos) i $\alpha \rho \iota \theta \mu \acute{o} \varsigma$ (aritmos), sa značenjem "odgovarajući broj".

1.1 Definicija logaritma

Funkcija

$$y = \log_b x \tag{1}$$

je rešenje po y jednačine

$$x = b^y$$

gde je b osnova (baza) logaritma, a x argument. (Izgovara se "y je jednako logaritam od x za osnovu b" ili kraće "y je logaritam b od x".)

1.2 Tok i grafik funkcije

Funkcija je u skupu realnih brojeva \mathbb{R} definisana za x>0 i $b>0 \land b\neq 1$. Funkcija je monotona: za b>1 funkcija je rastuća, dok za b<1 funkcija je opadajuća. Zbog toga važi bijekcija: $\log_b u = \log_b v \Leftrightarrow u=v$. Funkcija ima jednu nulu, uvek za x=1. Kada $x\to 0$, onda $y\to -\infty$ za b>1, odnosno, $y\to +\infty$ za b<1.

Слика 1: Grafik logaritamske funkcije $y = \log_b x$.

1.3 Antilogaritam

Inverzna funkcija logaritmu je obično stepenovanje osnove logaritma argumentom i zove se antilogaritam

$$\operatorname{antilog}_b x = \log_b^{-1} x = b^x \ . \tag{2}$$

Iz same definicije važi

$$\log_b(\operatorname{antilog}_b x) = \operatorname{antilog}_b(\log_b x) = x$$
 (3)

2 Logaritamske jednakosti

Za logaritamsku funkciju važe razne jednakosti koje se koriste za uprošćivanje i prilagodavanje izraza prilikom rešavanja problema i zadataka.

2.1 Logaritam stepena osnove

Po samoj definiciji logaritma, ako je $x = b^a$, onda je

$$\log_b b^a = a (4)$$

Ako stavimo da je $1 = b^0$, odnosno, $b = b^1$, dobijamo da je

$$\log_b 1 = 0 \qquad i \qquad \log_b b = 1 \tag{5}$$

Takode je bitna jednakost

$$b^{\log_b x} = x \tag{6}$$

koja proizilazi iz same definicije logaritma i antilogaritma.

2.2 Logaritam proizvoda

Ako je

$$u = \log_b x \wedge v = \log_b y \iff x = b^u \wedge y = b^v$$

onda je, zbog jednakosti (4)

$$x \cdot y = b^u b^v = b^{u+v} \quad \Rightarrow \quad \log_b(x \cdot y) = \log_b b^{u+v} = u + v.$$

Odavde je

$$\log_b(x \cdot y) = \log_b x + \log_b y \ . \tag{7}$$

Iz ove jednakosti se može izvesti formula za logaritam faktorujela broja. Ako je

$$n! = \prod_{k=1}^{n} k \quad \Rightarrow \quad \log(n!) = \sum_{k=1}^{n} \log k.$$

(Zanimljivo je da je $\log(1 \cdot 2 \cdot 3) = \log 1 + \log 2 + \log 3 = \log(1 + 2 + 3)$.)

2.3 Logaritam količnika

Slično logaritmu proizvoda, ako je

$$u = \log_b x \wedge v = \log_b y \iff x = b^u \wedge y = b^v$$

onda je, zbog jednakosti (4)

$$x/y = b^u b^{-v} = b^{u-v} \implies \log_b(x/y) = \log_b b^{u-v} = u - v.$$

Odavde je

$$\log_b(x/y) = \log_b x - \log_b y \ . \tag{8}$$

Iz ove jednakosti sledi

$$\log_b(1/x) = -\log_b x \tag{9}$$

2.4 Logaritam stepena broja

Ako je

$$y = x^n = \underbrace{x \cdot x \cdot \cdots x}_{n \text{ puta}},$$

onda, iz jednakosti za logaritam proizvoda (7), sledi da je

$$\log_b y = \log_b(\underbrace{x \cdot x \cdot \cdot \cdot x}_{n \text{ puta}}) = \underbrace{\log_b x + \log_b x + \dots + \log_b x}_{n \text{ puta}} = n \log_b x,$$

odakle je

$$\log_b x^n = n \log_b x \tag{10}$$

Iz ove jednakosti sledi jednakost

$$\log_b \sqrt[n]{x} = \frac{1}{n} \log_b x \tag{11}$$

kao i jednakost

$$x^y = b^{y \log_b x} \tag{12}$$

2.5 Promena osnove logaritma

Ako je

$$y = \log_a x \iff x = a^y,$$

onda je

$$\log_b x = \log_b a^y = y \log_b a = \log_a x \cdot \log_b a.$$

Odavde je

$$\log_a x = \frac{\log_b x}{\log_b a} \ . \tag{13}$$

Iz ove jednakosti, ako stavimo da je x = b, se dobija i jednakost

$$\log_a b \cdot \log_b a = 1 \tag{14}$$

Iz jednakosti (4) i (13), ako stavimo da je $a = b^n$, sledi jednakost

$$\log_{b^n} x = \frac{1}{n} \log_b x \tag{15}$$

Odavde, ako stavimo da je n = -1, sledi

$$\log_{1/b} x = -\log_b x \tag{16}$$

a uzevši u obzir i jednakost (9) dobija se

$$\log_{1/b} x = \log_b(1/x) \quad . \tag{17}$$

Treba biti oprezan kod korišćenja svih ovih jednakosti, naročito kod stepenovanja, i uvek treba proveriti opseg u kome se računa. Na primer, iz jednakosti (10), sledi $\log x^2 = 2\log x$, što je ispravno za x > 0, međutim, $\log x^2 = 2\log |x|$ za bilo koje $x \neq 0$.

3 Najčešće logaritamske osnove

3.1 Osnova 10

U iniženjerstvu se najčešće koristi logaritam sa osnovom 10, zove se dekadni ili zajednički logaritam, i piše se

$$y = \log_{10} x$$

ili, skraćeno,

$$y = \lg x$$
.

Ponekad se može videti i samo

$$y = \log x$$

bez navodenja osnove, ali treba obratiti pažnju na kontekst. Ako je neki inženjerski tekst u pitanju, najverovatnije se misli na osnovu 10.

Dekadni logaritam je pogodan i kada se koristi, takozvani *naučni* ili *inženjerski* zapis broja. Na primer, *Plankova konstanta* (Max Planck) iznosi

$$h = 6.62607015 \times 10^{-34} \,\mathrm{J/Hz}$$

koja ima dekadni logatiram

$$\log_{10} h = \log_{10}(6,62607015) - 34.$$

U fizici se za merenje nivoa signala ili zvuka koristi jedinica bel (B), ali je češće u praktičnoj upotrebi 10 puta manja jedinica decibel (dB), odnosno, 1B = 10 dB. Nivo signala L, koji zavisi od odnosa izmerene snage P i refrentne snage P_0 , izražen u decibelima iznosi

$$L = 10 \log_{10} \left(\frac{P}{P_0} \right) \, \mathrm{dB}.$$

Kako se u akustici uzima da je referentna snaga $P_0=10^{-12}\,\mathrm{W},$ moglo bi se pisati da je nivo zvuka u decibelima

$$L = 10\log_{10}(P) - 120.$$

Normalan govor je oko $50\,\mathrm{dB}$, zvuk motora mlaznog aviona pri poletanju je $150\,\mathrm{dB}$, a smrtonosan je zvuk od $240\,\mathrm{dB}$ i više. Zvučni top Genasys LRAD ima nivo zvuka od oko $160\,\mathrm{dB}$, što znači da je 10^{11} puta moćniji od govora.

Slična formula se koristi i za odredivanje jačine zemljotresa, ili pH vrednosti.

3.2 Osnova 2

U informatici se često koristi logaritam sa osnovom 2, koji se zove *binarni* logaritam, i piše se

$$y = \log_2 x$$

ili, skraćeno,

$$y = lb x$$
.

Koristi se u kombinatorici, kao i u određivanju $količine\ informacija$, odnosno, potrebnog broja bitova memorije za smeštanje nekog podatka. Ako se zna da će u memoriju biti upisivani celi brojevi od 0 do n, onda je potrebno rezevisati

$$bits = \lfloor \log_2(n) \rfloor + 1 \tag{18}$$

bitova memorije, gde $\lfloor x \rfloor$ predstavlja najveći ceo broj koji je manji ili jednak x (izgovara se "najveće celo od x"). Na primer, ako će u određenoj memoriji najveći broj biti milion, onda je za to potrebno rezevisati

$$bits = \lfloor \log_2(1\,000\,000) \rfloor + 1 = \lfloor 19,9315685693 \rfloor + 1 = 19 + 1 = 20$$

bitova memorije. Najveći broj koji može stati u ovih rezervisanih 20 bitova memorije je binarni broj koji ima 20 jedinica i iznosi

Kako su i realni brojevi u memoriji predstavljeni kao uređeni parovi binarnih brojeva u obliku x = (mantisa, eksponent), sa značenjem

$$x = mantisa \times 2^{eksponent}$$
.

binarni logaritam bi bio izračunat kao

$$\log_2(x) = \log_2(mantisa) + eksponent,$$

ako je mantisa > 0, inače je nedefinisan.

Binarni logaritam se koristi i u atomskoj fizici. Vreme poluraspada th je vreme potrebno da se raspadne polovina jezgara atoma neke materije. Ako imamo početan broj jezgara N_0 i broj jezgara N_t nakon vremena t, njihov odnos se može predstaviti formulom

$$\frac{N_0}{N_t} = 2^{t/\tanh} \quad \Rightarrow \quad \frac{t}{\tanh} = \log_2\left(\frac{N_0}{N_t}\right). \tag{19}$$

Ova formula se koristi i za odredivanje starosti stena ili fosila.

3.3 Osnova e

Ovu logaritamsku osnovu je otkrio Jakob Bernuli (Jacob Bernulli) kada je proučavao složenu kamatu i dokazao da kontinualna složena kamata teži konstanti

$$\mathbf{e} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n,$$

ali je tek Ojler (Leonhard Euler) odredio njenu tačnu vrednosti i dao joj ime. Logaritam za ovu osnovu se zove *prirodni* logaritam (*logarithmus naturalis*) i piše se

$$\ln x = \log_{\mathbf{e}} x$$
.

Antilogaritam je eksponencijalna funkcija $\mathbf{e}^x = \exp(x)$, koja je poznata po tome što je to jedina funkcija čiji je prvi izvod jednak samoj funkciji: $\exp'(x) = \exp(x)$. Brojna vrednost se može izračunati formulom

$$\mathbf{e}^x = \exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ . \tag{20}$$

Ako stavimo da je x=1, brojna vrednost osnove prirodnog logaritma ${\bf e}$ se može odrediti

$$\mathbf{e} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$$

$$= 2,7182818284590452353602874713526624977572\dots$$
(21)

sa željenom tačnošću.

Brojna vrednost logaritma 4

4.1 **Formula**

Brojna vrednost prirodnog logaritma može biti izračunata pomoću formule

$$\ln x = \sum_{n=0}^{\infty} \frac{2}{2n+1} \left(\frac{x-1}{x+1}\right)^{2n+1} \tag{22}$$

do željene tačnosti. Postupak kojim se računa $y = \ln x$ sa tačnošću ε izgleda ovako:

$$r \leftarrow (x-1)/(x+1); \quad k \leftarrow 1; \quad p \leftarrow 2r; \quad q \leftarrow r^2; \quad a \leftarrow p; \quad y \leftarrow a;$$
ponavljati dok je $|a| > \varepsilon$:
$$k \leftarrow k+2; \quad p \leftarrow p \cdot q; \quad a \leftarrow p/k; \quad y \leftarrow y+a;$$

$$(23)$$

Ovim postupkom se može izračunati vrednost

$$\ln 2 = \frac{2}{1 \cdot 3^1} + \frac{2}{3 \cdot 3^3} + \frac{2}{5 \cdot 3^5} + \frac{2}{7 \cdot 3^7} + \frac{2}{9 \cdot 3^9} + \cdots$$

$$= 0.6931471805599453094172321214581765680755 \dots$$
(24)

kao i vrednost

$$\ln 10 = \frac{2}{1 \cdot 9^1} + \frac{2}{3 \cdot 9^3} + \frac{2}{5 \cdot 9^5} + \frac{2}{7 \cdot 9^7} + \frac{2}{9 \cdot 9^9} + \dots + 3 \ln 2$$

$$= 2.3025850929\,9404568401\,7991454684\,3642076011\dots$$
(25)

(Videti zadatak 6.4.3 na strani 26.) Pomoću njih se mogu izračunati brojne vrednosti binarnog $\log_2 x = \ln x/\ln 2,$ odnosno, dekadnog $\log_{10} x = \ln x/\ln 10$ logaritma.

4.2Verižni razlomak

Brojna vrednost prirodnog logaritma može se izračunati i pomoću verižnog razlomka

Firednog logaritma moze se izracunati i pomocu veriznog razlomka
$$\ln(1+x) = \frac{x}{1+\frac{1^2x}{2-1x+\frac{2^2x}{3-2x+\frac{3^2x}{4-3x+\cdots}}}}$$

$$= \frac{x}{1+\prod_{n=1}^{\infty} \frac{n^2x}{n+1-nx}}.$$
(26)

Poput simbola koji se koriste za sumu 'Σ' ili proizvod 'Π', Gaus (Johann Carl Friedrich Gauß) je smislio, verovatno, najpogodniji način za predstavljanje verižnih (lančanih) razlomaka, gde simbol 'K' potiče od nemačke reči za prekinuti lanac (Kettenbruch). Izraz iza ovog simbola pokazuje kako izgleda opšti član verižnog razlomka.

Ako pomoću ove formule izračunamo prvih 11 konvergenata ln 2 kao $-\ln(1+x)$, gde je x = -1/2, dobićemo

$$\ln 2 \approx \frac{1}{2}, \frac{5}{8}, \frac{2}{3}, \frac{131}{192}, \frac{661}{960}, \frac{1327}{1920}, \frac{1163}{1680}, \frac{148969}{215040}, \frac{447047}{645120}, \frac{44711}{64512}, \frac{983705}{1419264}, \dots$$

gde je poslednji razlomak tačan na 5 decimala.

4.3 Logaritamske tablice

Prve tablice logaritama je 1614. godine izračunao škotski matematičar Neper (John Napier of Merchiston), koje su praktično sadržale logaritam za osnaovu 1/e, sa skaliranim argumentom i rezultatom, iako sam Neper nije znao za konstantu e. Savremenim zapisom bi logaritam iz Neperovih tablica bio definisan kao

NapLog(x) =
$$10^7 \log_{1/e}(x/10^7) = -10^7 \ln(x/10^7)$$
.

Nekoliko godina kasnije, 1617. i 1624, engleski matematičar Brigs (Henry Briggs) je izračunao tablice dekadnih logaritama sa 14 cifara tačnosti, koje se uz dopune i ispravke koriste i danas pod imenom *Brigsove tablice*.

4.4 Logaritmar

Pre pojave digitrona, za približno odredivanje brojne vrednosti logaritma, koristila se je analogna mehanička sprava sa nekoliko lenjira zvana *logaritmar*.

Слика 2: Šiber.

Lenjiri imaju podeoke sa decimalom i logaritamskom, a često i sa sinusnom i nekom drugom skalom. Jedan od lenjira je bio klizni, te otuda popularno ime *šiber* (od nemačkog *Rechenschieber*). Koristi se jednostavno, pomeranjem klizača i čitanjem vrednosti sa odgovarajuće skale. (Videti zadatke 6.4.1 i 6.4.2.)

Postojale su i kružne varijante, pa i džepne, gde je džepni sat sa logaritmarom i kompasom bio "iPhone" XIX i prve polovine XX veka.

Слика 3: Džepni logaritmar.

Tablice i logaritmari se i danas koriste u vojsci, kao rezerva u slučaju otkazivanja elektronike. Prvi kompjuter ENIAC (Electronic Numerical Integrator And Computer) je napravljen 1946. godine sa jednom namenom: da izračuna tablice za vojsku.

5 Razno

5.1 Kompleksni logaritam

Ako u kompleksnoj ravni imamo kompleksan broj $z \in \mathbb{C}$,

 \mathbf{C} лика 4: Broj z u kompleksnoj ravni.

on može biti predstavljen kao

$$z = x + iy$$
 pravougle koordinate,
= $\rho(\cos \theta + i \sin \theta)$ polarne koordinate.

Iz Ojlerove formule¹

$$\mathbf{e}^{i\theta} = \cos\theta + i\sin\theta \quad , \tag{27}$$

sledi da je $z = \rho e^{i\theta}$, odakle, iz jednakosti (7) i (4) se dobija

$$\ln z = \ln \rho + i\theta \tag{28}$$

Pošto je $\rho=|z|=\sqrt{x^2+y^2}\geq 0$, sledi da prirodni logaritam kompleksnog broja z nije definisan samo za z=0, kada je $\ln z=\widetilde{\infty}$. Kako je $y/x=\tan\theta$, prirodni logaritam kompleksnog broja, predstavljenog pravouglim koordinatama, iz formule (28), može se izračunati

$$\ln(x+iy) = \frac{1}{2}\ln(x^2+y^2) + i\arctan\left(\frac{y}{x}\right), \qquad (29)$$

kao i

$$\exp(x+iy) = \mathbf{e}^x \left(\cos y + i\sin y\right). \tag{30}$$

I za kompleksne brojeve važi jednakost promene osnove (13), tako da za dva kompleksna broja z i w, gde je $z \neq 0$, $w \neq 0$ i $w \neq 1$, sledi $\log_w z = \ln z / \ln w$, gde se $\ln z$ i $\ln w$ računaju pomoću formule (28), odnosno, (29). Na primer,

$$\log_{2+i}(3+4i) = 2, \qquad \log_i \mathbf{e} = \frac{2}{i\pi}, \qquad \log_2(-4) = 2 + \frac{i\pi}{\ln 2}.$$

Iz Ojlerove formule se, takođe, može dobiti najlepša formula u istoriji matematike, u kojoj je upotrebljeno 5 najvažnijih matematičkih konstatnti $(0, 1, \pi, \mathbf{e}, i)$

$$\mathbf{e}^{i\pi} + 1 = 0 \quad , \tag{31}$$

gde, ako prebacimo 1 na desnu stranu i logaritmujemo, dobijamo zanimljivu jednakost

$$\frac{\ln(-1)}{\sqrt{-1}} = \pi.$$

Ojlerova formula se lako dokazuje pomoću formule (20) i sličnih formula za sin x i cos x, koje se dobijaju iz Meklorenovog reda (Cailean MacLabhruinn): $f(x) = \sum_{n=0}^{\infty} f^{(n)}(0) (x^n/n!)$, gde $f^{(n)}$ predstavlja n-ti izvod funkcije f.

5.2 Kvaternioni

Poput skupa kompleksnih brojeva \mathbb{C} , koji predstavlja objekte u 2D prostoru, skup *kvaterniona* \mathbb{H} , predstavlja objekte u 3D prostoru. Prvi ih je opisao 1843. godine irski matematičar Hamilton (William Rowan Hamilton), te njemu u čast i oznaka skupa \mathbb{H} .

U informatici su neizbežni deo svega što se dešava u 3D: navigacija aviona, podmornica, raketa, satelita, nebeska i kvantna mehanika, robotika, igre, grafika, . . .

Kvaternion $q \in \mathbb{H}$ može biti predstavljen kao zbir

$$q = s + v \tag{32}$$

koji se sastoji od skalarnog dela $s \in \mathbb{R}$ i vektorskog dela $v \in \mathbb{R}^3$, gde je

$$v = xi + yj + zk \tag{33}$$

3D vektor sa koordinatama (x,y,z), a gde su i,j i k jedinični vektori po x,y i z osi, za koje važi

$$i^2 = j^2 = k^2 = ijk = -1, \quad ij = k, \quad jk = i, \quad ki = j.$$
 (34)

U skupu kvaterniona $\mathbb H$ za operaciju množenja, uopšteno, ne važi zakon komutacije: $ji=-ij=-k,\ kj=-jk=-i,\ ik=-ki=-j.$ Ovo je logično kad se setimo da i kod $Rubikove\ kocke$ najčešće nije svejedno kojim redosledom okrećemo stranice. Važi asocijativnost: $(p\cdot q)\cdot r=p\cdot (q\cdot r).$

Da bi q=s+v bio pravi kvaternion, mora biti $v\neq 0$, inače je q običan realan broj, kada se primenjuju operacije i funkcije iz skupa $\mathbb R$. Ako odredimo apsolutnu vrednost kvaterniona

$$\lambda = |v| = \sqrt{x^2 + y^2 + z^2}, \qquad \rho = |q| = \sqrt{s^2 + \lambda^2}$$

koja se zove norma, odredimo jedinični vektor (unit) vektorskog dela kvaterniona

$$u = \frac{v}{\lambda},$$

koji se zove versor i gde je po definiciji $^2 |u| = 1$ i $u^2 = -1$, kao i ugao orijentacije

$$\varphi = \arccos\left(\frac{s}{\rho}\right),$$

možemo dobiti polarni zapis kvaterniona

$$q = \rho \left(\cos \varphi + u \sin \varphi\right) = \rho e^{u\varphi}. \tag{35}$$

Iz svega ovoga se može dobiti

$$\frac{\ln(q) = \ln \rho + u\varphi}{\vdots} \tag{36}$$

i

$$\exp(q) = \mathbf{e}^s \left(\cos \lambda + u \sin \lambda\right) \ . \tag{37}$$

Ostale operacije i funkcije nisu tema ovog rada, ali sabiranje i oduzimanje je uobičajeno, kod množenja treba obratiti pažnju na formulu (34) i komutativnost, a recipročna vrednost je $q^{-1} = \bar{q}/\rho^2$, gde je $\bar{q} = s - v$, konjugovana vrednost. Trigonometrijske i
hiperbolične funkcije se mogu izraziti pomoću eksponencijalne, a njihove inverzne pomoću
logaritamske funkcije.

 $^{^2}$ U skupu \mathbb{H} , $\sqrt{-1}$ ima beskonačno rešenja: svaki kvaternion koji se nalazi na jediničnoj sferi je rešenje $(s = 0 \land x^2 + y^2 + z^2 = 1)$, odnosno, svaki versor.

5.3 Izvod

Ako je

$$y = \ln x \quad \Rightarrow \quad y' = \frac{1}{x},$$

odakle se, pomoću jednakosti (13) i jednakosti za izvod složene funkcije, može dobiti

$$y = \log_b(f(x)) \quad \Rightarrow \quad y' = \frac{f'(x)}{f(x)\ln b}$$
 (38)

Površina figure ispod funkcije y=1/x do x-ose, u opsegu od 1 do x iznosi $\ln x$. Matematički zapisano: $\int_1^x dx/x = \ln x$.

Слика 5: Geometrijsko značenje $\ln x$.

(Na slici je $x = \mathbf{e}$, tako da je površina osenčane figure jednaka 1.)

5.4 Integral

Neodredeni integral prirodnog logaritma je

$$\int \ln x \, dx = x \ln x - x + \text{constant.} \tag{39}$$

5.5 Limes

Ojler je dokazao da je

$$\ln x = \lim_{n \to \infty} n(\sqrt[n]{x} - 1). \tag{40}$$

5.6 Benfordov zakon

Verovatnoća da početne cifre neke matematičke ili fizičke konstante (kao i dužine reke, visine planine, broja stanovnika, rastojanja, stanja na računu, ...), budu ℓ za brojnu osnovu b, prati takozvani Benfordov zakon (Frank Benford), i iznosi

$$P(b,\ell) = \log_b \left(1 + \frac{1}{\ell} \right). \tag{41}$$

6 Zadaci i rešenja

6.1 Jednačine

6.1.1 FIT

⊳ Задатак: Nadi rešenje jednačne

$$\log_2(x-2) + \log_4(x-2) + \log_{16}(x-2) = 7.$$

(Zadatak sa mog prijemnog ispita na FIT "Metropolitan".)

▶ Решење: Vidimo da su osnove logaritama stepeni broja 2, pa iz jednakosti za logaritam stepena osnove (15) sledi

$$\log_2(x-2) + \log_{2^2}(x-2) + \log_{2^4}(x-2) =$$

$$\log_2(x-2) + \frac{1}{2}\log_2(x-2) + \frac{1}{4}\log_2(x-2) =$$

$$\frac{7}{4}\log_2(x-2) = 7,$$

odnosno, posle skraćivanja,

$$\log_2(x-2) = 4.$$

Odavde je

$$x - 2 = 2^4 = 16 \quad \Rightarrow \quad x = \boxed{18}.$$

6.1.2 Jednačina 2

⊳ Задатак: Reši jednačinu

$$2\log(x) - \log(6 - x) = 0.$$

▶ Решење: Da bi logaritam u jednačini bio definisan mora biti

$$x > 0 \land 6 - x > 0 \Rightarrow 0 < x < 6.$$

Zbog jednakosti (10) možemo pisati

$$\log(x^2) = \log(6 - x)$$

odakle sledi

$$x^2 = 6 - x$$
$$x^2 + x - 6 = 0.$$

Rešavanjem³ kvadratne jednačine

$$x_{1,2} = \frac{-1 \pm \sqrt{1^2 + 4 \cdot 1 \cdot 6}}{2 \cdot 1}$$
$$= \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2},$$

dobijamu rešenja $x_1=2$ i $x_2=-3$, odakle je jedinstveno rešenje

$$x = \boxed{2}$$
.

³U nastavku rada, postupak rešavanja linearne i kvadratne jednačine će biti izostavljen.

6.1.3 Jjjj (yafe)

⊳ Задатак: Reši jednačinu

$$\ln(x) = \ln(15 - x) - \ln(x + 1).$$

► Решење: Jednačina je definisana za

$$x > 0 \land 15 - x > 0 \land x + 1 > 0 \implies 0 < x < 15.$$

Ako zapišemo jednačinu kao

$$\ln(x) + \ln(x+1) = \ln(15 - x)$$

iz jednakosti za logaritam proizvoda (7), možemo pisati

$$\ln(x(x+1)) = \ln(15 - x)$$
$$\ln(x^2 + x) = \ln(15 - x)$$
$$x^2 + x = 15 - x$$
$$x^2 + 2x - 15 = 0$$

Rešavanjem kvadratne jednačine dobijamo 2 rešenja, $x_1 = 3$ i $x_2 = -5$, ali zbog uslova, ostaje jedinstveno

$$x = \boxed{3}$$
.

6.1.4 Četiri četvorke

 \triangleright Задатак: Dokazati da svaki prirodan broj $n \in \mathbb{N}$, može biti predstavljen sa 4 broja 4, pomoću logaritamske funkcije i kvadratnog korena

$$n = \log_{\sqrt{4}/4} \left(\log_4 \underbrace{\sqrt{\sqrt{\cdots \sqrt{4}}}}_{n \text{ korena}} \right).$$

▶ Решење: Како је

$$\frac{\sqrt{4}}{4} = \frac{1}{2} \qquad i \qquad \underbrace{\sqrt{\sqrt{\cdots \sqrt{4}}}}_{n \text{ leaves}} = \mathbf{4}^{(1/2)^n},$$

izraz može biti uprošćen

$$\log_{\sqrt{4}/4} \left(\log_{4} \underbrace{\sqrt{\sqrt{\cdots \sqrt{4}}}}_{n \text{ korena}} \right) = \log_{1/2} \left(\log_{4} 4^{(1/2)^{n}} \right),$$

gde iz jednakosti za logaritam stepena osnove (4), sledi

$$= \log_{1/2}(1/2)^n$$
$$= \boxed{n}.$$

★ Додатак: Davno je u jednom časopisu postavljen sličan zadatak: da se sa što manje istih brojeva, koristeći bilo koju matematičku funkciju, predstavi svaki prirodan broj n. Rešio ga je nobelovac Pol Dirak (Paul Dirac) sa 3 broja 2, čije originalno rešenje izgleda

$$-\log_2 \log_2 \sqrt{\cdots n \cdots \sqrt{2}} = -\log_2 \log_2 2^{2^{-n}} = -\log_2 2^{-n} = n.$$

6.1.5 Sveska 7

 \triangleright Задатак: Nadi x ako je

$$x^{\log x} = 1000x^2.$$

▶ Решење: Ako logaritmujemo obe strane dobijamo

$$\log x^{\log x} = \log(1000x^2)$$
$$\log x \log x = \log 1000 + \log x^2$$
$$\log^2 x = 3 + 2\log x,$$

gde, posle smene $t = \log x$, dobijamo kvadratnu jednačinu

$$t^2 - 2t - 3 = 0$$

čija su rešenja $t_1 = 3$ i $t_2 = -1$, odakle su

$$x_1 = 10^3 = \boxed{1000}$$
 i $x_2 = 10^{-1} = \boxed{\frac{1}{10}}$.

6.1.6 Beskonačni koren

⊳ Задатак: Odredi vrednost

 $x = \ln \left(\mathbf{e} \sqrt[2]{\mathbf{e} \sqrt[3]{\mathbf{e} \sqrt[4]{\mathbf{e} \sqrt[5]{\cdots}}}} \right).$

▶ Решење: Kako je ln e = 1 i koristeći jednakost za logaritam proizvoda (7) i jednakost za logaritam korena (11), možemo pisati

$$x = 1 + \frac{1}{2} \ln \left(\mathbf{e} \sqrt[4]{\mathbf{e} \sqrt[4]{\mathbf{e} \sqrt[4]{\cdots}}} \right)$$

$$= 1 + \frac{1}{2} \left(1 + \frac{1}{3} \ln \left(\mathbf{e} \sqrt[4]{\mathbf{e} \sqrt[4]{\cdots}} \right) \right)$$

$$= 1 + \frac{1}{2} \left(1 + \frac{1}{3} \left(1 + \frac{1}{4} \ln \left(\mathbf{e} \sqrt[5]{\cdots} \right) \right) \right)$$

$$= 1 + \frac{1}{2} \left(1 + \frac{1}{3} \left(1 + \frac{1}{4} \ln \left(\mathbf{e} \sqrt[5]{\cdots} \right) \right) \right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{5} + \cdots$$

$$= \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$$

Ako pogledamo formulu (21) na strani 7, možemo videti da je ovaj zbir jednak

$$x = \boxed{\mathbf{e} - 1},$$

jer iz sume za izračunavanje e nedostaje nulti član 1/0! = 1.

6.1.7 Her 3

⊳ Задатак: Одреди *п*³ ако је

$$\log_{5n} 30\sqrt{5} = \log_{4n} 48.$$

▶ Решење: Пребацимо логаритме у основу 6, јер је 6 изд за 30 и 48 из израза

$$\frac{\log_6 30\sqrt{5}}{\log_6 5n} = \frac{\log_6 48}{\log_6 4n}$$

$$\frac{\log_6 6 + \log_6 5 + \frac{1}{2}\log_6 5}{\log_6 5 + \log_6 n} = \frac{\log_6 6 + \log_6 8}{\log_6 4 + \log_6 n}$$

$$\frac{1 + \frac{3}{2}\log_6 5}{\log_6 5 + \log_6 n} = \frac{1 + 3\log_6 2}{2\log_6 2 + \log_6 n}$$

Када извршимо смену $n=6^t$, односно, $t=\log_6 n$ и $u=\log_6 2$ и $v=\log_6 5$, добијамо

Одавде је

$$n^3 = 6^{3t} = \boxed{36}.$$

6.1.8 Изумирање

 \triangleright Задатак: Нађи n ако је

$$\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \log_5 6 \cdots \log_n (n+1) = 10.$$

▶ Решење: Ако пребацимо све логаритме у основу 2, добијамо

$$\log_2 3 \cdot \frac{\log_2 4}{\log_2 3} \cdot \frac{\log_2 5}{\log_2 4} \cdot \frac{\log_2 6}{\log_2 5} \cdots \frac{\log_2 (n+1)}{\log_2 n} = 10.$$

Видимо да ће, након масовног скраћивања, изумрети сви изрази осим

$$\log_2(n+1) = 10,$$

одакле је,

$$n+1=2^{10}=1024 \implies n=\boxed{1023}$$
.

6.1.9 Питагора

 \triangleright Задатак: Одреди x са слике.

Слика 6: Правоугли троугао $\triangle ABC$.

(Задатак са Tik-Toka.)

▶ Решење: Нађимо најпре решење општег случаја

$$a = \ln(px), \quad b = \ln(qx), \quad c = \ln(rx).$$

Због лакшег писања, извршимо смену

$$t = \ln x$$
, $u = \ln p$, $v = \ln q$, $w = \ln r$,

одакле је

$$a = t + u$$
, $b = t + v$, $c = t + w$.

Из Питагорине теореме $a^2 + b^2 = c^2$, следи да је

$$(t+u)^{2} + (t+v)^{2} = (t+w)^{2}$$
$$t^{2} + 2tu + u^{2} + t^{2} + 2tv + v^{2} = t^{2} + 2tw + w^{2}$$

где, након сређивања, добијамо квадратну једначину

$$t^{2} + 2(u + v - w)t + (u^{2} + v^{2} - w^{2}) = 0,$$

чија су решења

$$t_{1,2} = w - u - v \pm \sqrt{2(w - u)(w - v)},$$

али нас занима само позитивно. Када вратимо смену добијамо

$$\ln x = \ln \left(\frac{r}{pq}\right) + \sqrt{2\ln \left(\frac{r}{p}\right)\ln \left(\frac{r}{q}\right)},$$

где је, после антилогаритмовања

$$x = \frac{r}{pq} \cdot \mathbf{e}^{\sqrt{2\ln(r/p)\ln(r/q)}}.$$

Због логаритама испод корена видимо да мора бити p,q,r>0 или p,q,r<0, и |p|,|q|<|r|, где ће x имати исти знак као p,q и r.

Када заменимо вредности са слике, p = 1, q = 2 и r = 3, добијамо да је

$$x = \left[\frac{3}{2} e^{\sqrt{2\ln(3)\ln(3/2)}} \right] \approx 3,85488,$$

а странице троугла су приближно

$$a \approx 1,34934, \quad b \approx 2,04249, \quad c \approx 2,44795.$$

(Ha слици је 1 = '———'.)

6.2 Nejednačine

6.2.1 Sveska 11

⊳ Задатак: Reši nejednačinu

$$\log_3^2 x - 5\log_3 x + 6 \le 0.$$

ightharpoonup Решење: Kada izvršimo smenu $t = \log_3 x$, možemo pisati da je

$$t^2 - 5t + 6 < 0$$

Kako su rešenja kvadratne jednačine $t_1 = 2$ i $t_2 = 3$, nejednačina je zadovoljena kada je $t \in [2,3]$. Pošto je $x = 3^t$, sledi da je nejednačina zadovoljena za $x \in [3^2, 3^3]$, odnosno,

Слика 7: $y = \log_3^2 x - 5 \log_3 x + 6$.

* Додатак: Funkcija ima minimum za t=5/2, odnosno, u tački $(9\sqrt{3},-1/4)$.

6.2.2 Sveska 9

⊳ Задатак: Odredi u kojim granicama je zadovoljen uslov

$$\log_3(x^2 - 4) < \log_3 5.$$

▶ Решење: Ako se oslobodimo logaritma

$$x^2 - 4 < 5$$
$$x^2 < 9.$$

dobićemo da je -3 < x < 3. Međutim, da bi logaritam bio definisan mora biti

$$x^2 - 4 > 0$$
$$x^2 > 4$$

odnosno, x < -2 ili x > 2. Odavde je

$$x \in [(-3, -2) \cup (2, 3)].$$

Слика 8: $y = \log_3(x^2 - 4)$; $\log_3 5$.

10

6.2.3 Sveska 10

⊳ Задатак: Reši nejednačinu

$$\log_5 x \ge \frac{1}{2} \log_5(3x - 2).$$

▶ Решење: Da bi logaritam bio definisan, vidimo da mora biti

$$3x - 2 > 0 \quad \Rightarrow \quad x > \frac{2}{3}.$$

Ako nejednačinu pomožimo sa 2, dobijamo

$$2\log_5 x \ge \log_5(3x - 2)$$
$$\log_5 x^2 \ge \log_5(3x - 2)$$
$$x^2 \ge 3x - 2$$
$$x^2 - 3x + 2 \ge 0.$$

Kvadratna jednačina ima rešenja $x_1=1$ i $x_2=2,\;\mathrm{pa}$ je rešenje nejednačine

$$x \in \left\lceil \left(\frac{2}{3}, 1\right] \cup [2, \infty) \right\rceil.$$

Слика 9: $y = \log_5 x$; $\frac{1}{2} \log_5 (3x - 2)$.

6.2.4 Net 1

⊳ Задатак: Reši

$$\log_{3x+5}(9x^2 + 8x + 8) > 2.$$

▶ Решење: Ako antilogaritmujemo obe strane dobijamo

$$9x^{2} + 8x + 8 > (3x + 5)^{2}$$
$$9x^{2} + 8x + 8 > 9x^{2} + 30x + 25$$
$$8x + 8 > 30x + 25.$$

gde je nakon sredivanja

$$x < -\frac{17}{22}$$

Sledeći uslov je da osnova bude veća od 1, to jest

$$3x + 5 > 1$$
$$x > -\frac{4}{3},$$

odakle sledi rešenje

$$x \in \boxed{\left(-\frac{4}{3}, -\frac{17}{22}\right)}.$$

Слика 10: $y = \log_{3x+5}(9x^2 + 8x + 8)$; 2.

6.2.5 Net 2

⊳ Задатак: Nadi vrednosti koje zadovoljavaju nejednačinu

$$\log_7(x+5) > \log_5(x+5).$$

▶ Решење: Prebacimo izraz u zajednički logaritam

$$\frac{\log(x+5)}{\log 7} > \frac{\log(x+5)}{\log 5}$$
$$\log 5 \log(x+5) > \log 7 \log(x+5).$$

Kako je $\log 5 < \log 7$ i pozitivni su, da bi uslov važio, mora biti

$$\log(x+5) < 0,$$

odakle je

$$x + 5 < 1$$
$$x < -4,$$

a da bi logaritam bio definisan mora da važi i

$$x + 5 > 0$$
$$x > -5,$$

odakle je rešenje

$$x \in \boxed{(-5, -4)}$$

14

Слика 11: $y = \log_7(x+5)$; $\log_5(x+5)$.

6.2.6 Net 6

⊳ Задатак: Koje vrednosti zadovoljavaju uslov

$$\log_2(x+1) > \log_4 x^2?$$

► Решење: Ako levu stranu zapišemo kao

$$2 \cdot \frac{1}{2} \log_2(x+1) = \log_{2^2}(x+1)^2$$

što sledi iz jednakosti (15) i (10), dobićemo

$$\begin{aligned} \log_4(x+1)^2 &> \log_4 x^2 \\ &(x+1)^2 > x^2 \\ x^2 + 2x + 1 > x^2 \\ &2x + 1 > 0 \\ &x > -\frac{1}{2}. \end{aligned}$$

Kako mora da važi x > -1 i $x \neq 0$, dobijamo konačno rešenje

$$x \in \left[\left(-\frac{1}{2}, 0 \right) \cup (0, \infty) \right].$$

Слика 12: $y = \log_2(x+1) - \log_4 x^2$.

 \star Додатак: Kao što je na strani 5 napomenuto, da smo $\log_4 x^2$ jednostavno predstavili kao $\log_{2^2} x^2 = \log_2 x$, dobili bismo netačno rešenje. Ispravno bi bilo $\log_4 x^2 = \log_2 |x|$, kada bismo posebno gledali 2 slučaja: za x > 0 i za x < 0.

6.2.7 Granice

⊳ Задатак: Dokaži da važi nejednakost

$$1 - \frac{1}{x} \le \ln x \le x - 1 \tag{42}$$

kojom se definišu donja i gornja granica prirodnog logaritma.

▶ Решење: Pogledajmo prvo desni deo nejednakosti. Ako definišemo funkciju

$$y = \ln x - (x - 1),$$

potrebno je da dokažemo da je $y \le 0$ za svako x > 0. Intuitivno je jasno da tvrdenje važi, jer $\ln x$ mnogo sporije raste od x - 1, i formalni dokaz će nam se zasnivati na tome.

Prvi izvod funkcije je

$$y' = \frac{1}{x} - 1,$$

koji ima jedinstvenu nulu y'=0 za x=1, gde je i y=0. Kako je drugi izvod

$$y'' = -\frac{1}{r^2} < 0,$$

uvek negativan, to znači da funkcija y nema prevojnih tačaka i da tačka (1,0) predstavlja maksimum funkcije y, odakle je $y \le 0$, odnosno,

$$\boxed{\ln x \le x - 1}.$$

Ako u ovu nejednakost umesto x stavimo 1/x, možemo pisati

$$\ln(1/x) \le \frac{1}{x} - 1$$
$$-\ln x \le \frac{1}{x} - 1,$$

gde, kada izrazi zamene strane i znak, dobijamo

$$\boxed{1 - \frac{1}{x} \le \ln x},$$

što predstavlja levi deo nejednakosti iz zadatka.

 \star Додатак: Sve tri funkcije iz nejednakosti se dodiruju u tački (1,0), što znači da u toj tački sve tri imaju istu tangentu, odnosno, isti prvi izvod y'(1) = 1; inače bi se sekle i nejednakost ne bi važila.

Слика 13: y = 1 - 1/x; $\ln x$; x - 1.

6.3 Kratki primeri

6.3.1 Zemljotres

 \rhd Задатак: Magnituda zemljotres
aM poRihterovoj skali u epicentru zavisi logaritamski od intenziteta zemljotres
a<math display="inline">I

17

$$M = \log_{10} I.$$

U avgustu 2009, japansko ostrvo Honšu je pogodio zemljotres magnitude $M_1 = 6.1$ po Rihteru, a u martu 2011, razarajući zemljotres koji je bio oko 800 puta jači od prvog. Koliko stepeni po Rihteru je imao drugi? (Koristi logaritamske tablice ili logaritams.)

▶ Решење: $M_2 = M_1 + \log_{10} 800 \approx 6.1 + 2.9 = \boxed{9.0}$ stepeni Rihtera.

6.3.2 Decimalne cifre

- ightharpoonup Задатак: Koliko decimalnih cifara d ima 128-bitna promenljiva? ($\log_{10} 2 \approx 0.30103$)
- ▶ Решење: $d = \lfloor \log_{10} 2^{128} \rfloor + 1 = \lfloor 128 \log_{10} 2 \rfloor + 1 = \lfloor 38,53184 \rfloor + 1 = 38 + 1 = \boxed{39}$.

6.3.3 Poluraspad joda

- **> Задатак:** Ako imamo 63 g izotopa joda ¹³¹I, a znamo da smo pre 11 dana imali 163 g, koje je vreme poluraspada ovog izotopa? (Koristi prirodni logaritam.)
- ▶ Решење: Iz formule (19) na strani 7, sledi da se vreme poluraspada može izračunati

$$\tanh = \frac{t}{\log_2(m_0/m_t)} = \frac{t \ln 2}{\ln(m_0/m_t)} = \frac{11 \ln 2}{\ln(163/63)} \approx \boxed{8,02 \, \text{dana}}.$$

6.3.4 Geometrijski niz

ightharpoonup Задатак: Za $0 \le x < 1$, uprostiti izraz

$$y = \log(1 + x + x^2 + x^3 + x^4 + \cdots).$$

► Решење: Kako je zbir beskonačnog geometrijskog niza⁴

$$s = 1 + x + x^2 + x^3 + x^4 + \dots = \frac{1}{1 - x},$$

može se pisati

$$y = \log\left(\frac{1}{1-x}\right),\,$$

gde iz jednakosti za recipročnu vrednost (9), sledi

$$= \boxed{-\log(1-x)}.$$

Dokaz: $s = 1 + x \cdot (1 + x + x^2 + x^3 + x^4 + \cdots) = 1 + x \cdot s$, odakle je $s - x \cdot s = 1$, sledi da je s = 1/(1-x).

6.3.5 Izvod

 \triangleright Задатак: Odredi izvod funkcije $f(\alpha) = \ln \operatorname{sinc} \alpha$, gde je $\operatorname{sinc} \alpha = \frac{\sin \alpha}{\alpha}$.

21

► Решење: Pomoću jednakosti (8) razložimo funkciju na

$$f(\alpha) = \ln \sin \alpha - \ln \alpha,$$

a kako je izvod $\sin\alpha$ jednak $\cos\alpha$ i iz jednakosti (38) za izvod logaritma funkcije, sledi da je

$$f'(\alpha) = \frac{\cos \alpha}{\sin \alpha} - \frac{1}{\alpha} = \boxed{\cot \alpha - \frac{1}{\alpha}}.$$

6.3.6 i na i

 \triangleright Задатак: Odredi vrednost i^i gde je $i = \sqrt{-1}$, imaginarna jedinica.

22

▶ Решење: Kako u kompleksnoj ravni i ima polarne koordinate $\rho = 1$ i $\theta = \pi/2$, ako ga predstavimo Ojlerovom formulom kao $i = e^{i\pi/2}$ i iz jednakosti (12) i (4), sledi da je

$$i^{i} = \mathbf{e}^{i \ln i} = \mathbf{e}^{i \ln \mathbf{e}^{i\pi/2}} = \mathbf{e}^{i^{2} \pi/2} = \boxed{\mathbf{e}^{-\pi/2}} \approx 0.20788$$

realan broj.

6.3.7 $\ln(-z)$

 \triangleright Задатак: U skupu kompleksnih brojeva \mathbb{C} , ako znamo vrednost $\ln z$, koliko je $\ln(-z)$?

2

▶ Решење: Kako je u kompleksnoj ravni -z jednako z zarotirano oko koordinatnog početka za ugao od $180^{\circ} = \pi$, dobijamo

$$\ln(-z) = \left[\ln z + i\pi \right].$$

Ako proverimo, iz Ojlerove jednakostu (31), dobijamo

$$\mathbf{e}^{\ln(-z)} = \mathbf{e}^{\ln z + i\pi} = \mathbf{e}^{\ln z} \cdot \mathbf{e}^{i\pi} = z \cdot (-1) = -z.$$

 \star Додатак: Hmmm ..., trik sa rotacijom nije baš potpuno tačan: dobili bismo -z i za ugao $-\pi$, pa bi bilo $\ln(-z) = \ln z - i\pi$, što je takođe tačno; u stvari, tačno je za bilo koji ugao $\pi + 2k\pi$ gde je $k \in \mathbb{Z}$ ceo broj. Odavde bi sledilo da je

$$\ln(-z) = \ln z + i(\pi + 2k\pi), \ k \in \mathbb{Z}.$$

I sama formula (28), $\ln z = \ln \rho + i\theta$, predstavlja samo glavnu granu kompleksnog logaritma, koji je nekakva vrsta 4D spirale. Potpuna formula bi bila

$$\ln z = \ln \rho + i(\theta + 2k\pi), \ k \in \mathbb{Z}$$
 (43)

6.3.8 Prvo, pa 1

> Задатак: Koliki procenat cena *od igle do lokomotive* počinje cifrom 1?

24

- ▶ Решење: Iz formule (41) sa strane 12, sledi da je $P(10,1) = \log_{10} 2 \approx \boxed{30\%}$.
- **★** Додатак: U filmu *Računovoda* (*The Accoutant*), glavni lik (Ben Afflec) otkriva da su finansijski izveštaji prepravljani, jer uvida da iznosi ne prate ovo pravilo.

6.4 Ručni rad

6.4.1 Analogni stepen

ightharpoonupЗадатак: Odredi logaritmarom približnu vrednost $z=2,3^{1,7}$.

25

▶ Решење: Pomoću jednakosti (12) predstavimo

$$z = 2.3^{1.7} = 10^{1.7 \cdot \log(2.3)}$$
.

Prvo određujemo vrednost $\log(2,3)$ tako što za x=2,3 čitamo ispod vrednost $\log x$. Nalazimo da je $\log(2,3) \approx 0.362$ (vidi nit obeleženu sa ' \updownarrow ').

Nakon toga, tu vrednost na klizaču poravnavamo sa x=1. Kako na klizaču ne postoji 0,362, postavićemo na 3,62, s tim što ćemo rezultat podeliti sa 10. Sada, za x=1,7 čitamo vrednost na klizaču ispod (\uparrow)

i nalazimo da je oko 6,15, što znači da je 1,7 · $\log(2,3)\approx0,615$. Potom, za y=0,615 čitamo vrednost 10^y i nalazimo da je oko 4,12 što je i rešenje

$$z = 2,3^{1,7} \approx \boxed{4,12},$$

a tačna vrednost je z = 4,120380...

6.4.2 Analogni kvadratni koren

 \triangleright Задатак: Objasni način za odredivanje vrednosti \sqrt{x} logaritmarom.

26

▶ Решење: Uz malo vežbe, kvadratni koren možemo direktno čitati sa logaritmara ako *u glavi* izvršimo deljenje sa 2 i, po potrebi, sabiranje sa 0,5 što je vrlo jednostavno jer se radi o brojevima izmedu 0 i 1 sa najviše 3 decimale. Kako je

$$\sqrt{x} = 10^{\frac{1}{2}\log x},$$

potrebno je pročitati vrednost $\log x$, a onda, za dvostruko manju vrednost od nje, pročitati vrednost 10^y . Na primer, za izračunavanje $\sqrt{5,3}$, čitamo da je $\log(5,3) \approx 0.724$ (\downarrow), potom, za y = 0.724/2 = 0.362 (\uparrow), čitamo vrednost 10^y i dobijamo $\sqrt{5,3} \approx 2.3$ ($2.3^2 = 5.29$).

Za $\sqrt{53}$ treba u y dodati još 0,5 tako da je y=0,362+0,5=0,862 (\uparrow), odakle je $\sqrt{53}\approx7,28$ ($7,28^2=52,9984$). Naravno, $\sqrt{530}$ se računa kao $10\sqrt{5,3}$, ili $\sqrt{0,53}=\frac{1}{10}\sqrt{53}$.

27

⊳ Задатак: U čast Nepera i Brigsa, pomoću postupka (23) sa strane 8, izračunaj *peške* približnu vrednost ln 3 u 5 koraka. Za uporedivanje, tačna vrednost je

$$\ln 3 = 1,0986122886681096913952452369225257046475...$$

Решење: Za x=3 biće r=(x-1)/(x+1)=1/2. U nultom koraku postavljamo početne vrednosti:

Korak
$$\theta$$
. $k = 1$, $p = 2r = 1$, $q = r^2 = 1/4$, $a = p = 1$, $y = a = 1$.

Slede koraci iteracije — povećamo k za 2, pomnožimo p sa q, član sume a postaje p/k, koga dodajemo u rezultat y:

Korak 1. k = 3, p = 1/4, a = 1/12, y = 13/12;

Korak 2. k = 5, p = 1/16, a = 1/80, y = 263/240;

Korak 3. k = 7, p = 1/64, a = 1/448, y = 7379/6720;

Korak 4. k = 9, p = 1/256, a = 1/2304, y = 88583/80640;

Korak 5. k = 11, p = 1/1024, a = 1/11264, y = 3897967/3548160.

Rezultat je

$$\ln 3 \approx \frac{3897967}{3548160} = \boxed{1.098588...}$$

što nije loše za samo 5 koraka, jer je apsolutna greška oko 2.4×10^{-5} . Ali, može bolje ...

 \star Додатак: Ako već imamo precizno izračunatu vrednost $\ln 2$, onda je bolje računati $\ln 3$ kao $\ln(3/4) + 2 \ln 2$, jer će u postupku, umesto r = 1/2, biti r = (3/4-1)/(3/4+1) = -1/7, odnosno, umesto q = 1/4, biće q = 1/49, što dovodi do mnogo bržeg izračunavanja. U istom broju koraka bismo dobili

$$\ln\frac{3}{4} \approx -\frac{2}{7}, -\frac{296}{1029}, -\frac{72526}{252105}, -\frac{24876448}{86472015}, -\frac{522405418}{1815912315}, -\frac{281576520392}{978776737785},$$

gde poslednji razlomak ima grešku od oko 1,6 \times 10⁻¹², što je više od dvostruko tačnih cifara. Kada mu (sa strane 8) dodamo 2 ln 2, dobićemo

$$\ln 3 \approx 2 \ln 2 - \frac{281576520392}{978776737785} = \underbrace{1,09861228866972615081}_{\text{12 tačnih cifara}} \cdot \cdot \cdot \cdot$$

Uopšteno, postupak je najbrži ako računamo $\ln x = \ln(x/2^n) + n \ln 2$, gde biramo n takvo da $x/2^n$ bude što bilže 1, odnosno, da q bude najmanje moguće (vidi program).

Слика 14: ZX Spectrum BASIC program.

7 Одредрнице

7.1 Литература

- [1] Larousse: "Математика", Општа енциклопедија (1967)
- [2] Небојша Икодиновић, Слађана Димитријевић, Сузана Алексић: "Уџбеник са збирком задатака за 2. разред гимназије", Математика 2 (2019)
- [3] Вене Боглославов: "Збирка решених задатака из математике 2", (2008–2011)
- [4] Марјан М. Матејић, Лидија В. Стефановић, Бранислав М. Ранђеловић, Игор Ж. Миловановић: "Комплети задатака за пријемни испит", *Математика* (2011)
- [5] Раде Николић: "Задаци за пријемни испит из математике на Факултет информационих технологија", (2020)
- [6] Milton Abramowitz, Irene Stegun: "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables", Applied Mathematics (1964)
- [7] Градимир В. Миловановић, Ђорђе Р. Ђорђевић: "Програмирање нумеричких метода", (1981)
- [8] Donald E. Knuth: "Seminumerical Algorithms", The Art of Computer Programming (1968–)
- [9] Драгољуб Васић, Вене Богославов, Глиша Нешковић: "Логаритамске таблице", (2008)
- [10] Henry Briggs: "Arithmetica logarithmica", (1624)
- [11] Donald E. Knuth: "The TeXbook", Computers and Typesetting (1996)
- [12] John D. Hobby: "User's manual", METAPOST (2024)

7.2 Софтвер

- [1] Mathematica Wolfram Research
- [2] Visual Studio Code (Integrated Development Environment) Microsoft
- [3] **ZX BASIC** (programming language) Sinclair Research Ltd.
- [4] Pascal (programming language) Niklaus Wirth
- [5]=GO (programming language) Google
- [6] **Python** (programming language) Python Software Foundation
- [7] METAPOST (PostScript programming language)— John D. Hobby
- [8] T_EX (typesetting system) Donald E. Knuth
- [9] LATEX (TeX macros) Leslie Lamport
- [10] AMS-TeX (TeX macros) American Mathematical Society

7.3 Линкови

- [1] GitHub Лука С. Нешић Матурски рад https://github.com/Nasumica/LukaMaturski-cyr/
- [2] WIKIPEDIA Logarithm https://en.wikipedia.org/wiki/Logarithm
- [3] Wolfram MathWorld Logarithm https://mathworld.wolfram.com/Logarithm.html
- [4] Wolfram MathWorld Antiogarithm https://mathworld.wolfram.com/Antilogarithm.html
- [5] Wolfram Language & System Documentation Center Logarithm https://reference.wolfram.com/language/ref/Log.html
- [6] WolframAlpha Computational Intelligence https://www.wolframalpha.com/
- [7] A reconstruction of the tables of Briggs' Arithmetica logarithmica (1624) https://inria.hal.science/inria-00543939/PDF/briggs1624doc.pdf
- [8] WIKIPEDIA Benford's law https://en.wikipedia.org/wiki/Benford's_law
- [9] IMDb The Accountant (2016) https://www.imdb.com/title/tt2140479/
- [10] WIKIPEDIA Quaternion https://en.wikipedia.org/wiki/Quaternion
- [11] Wolfram Language & System Documentation Center Quaternions Package https://reference.wolfram.com/language/Quaternions/tutorial/Quaternions.html
- [12] YouTube Log Tables Numberphile https://www.youtube.com/watch?v=VRzH4xB0GdM
- [13] YouTube The iPhone of Slide Rules Numberphile https://www.youtube.com/watch?v=xRpR1rmPbJE
- [14] YouTube The Four 4s Numberphile https://www.youtube.com/watch?v=Noo41N-vSvw
- [15] YouTube Fantastic Quaternions Numberphile https://www.youtube.com/watch?v=3BR8tK-LuB0
- [16] GitHub Србислав Д. Нешић Numerical recipes in Pascal https://github.com/Nasumica/Wirth/

8 Индекс

Ово је индекс кључних речи и најбитнијих појмова из овог рада. Поред сваког појма, искошеним цифрама су исписани бројеви страна на којима се тај појам налази. Наравно, нису приказане све стране, већ само где се налази дефиниција тог појма или где је битна његова употреба. За верзију документа у електронском облику, као и за све остале одреднице, ради hyperlink до наведене стране.

```
2D, 11
                                                          integral, 12
3D, 11
                                                          iPhone, 9
                                                          izvod, 7, 12, 22, 24
2, 6, 14
4, 14
                                                          j, 11
                                                          jedinični vektor, 11
10, 6
                                                          jednakosti, 4
algoritam, 8, 26
                                                          k, 11
antilogaritam, 3
                                                          količnik, 4
apsolutna vrednost |x|, 5, 10, 11
                                                          kompjuter, 9, 26
argument, 3
asocijativnost, 11
                                                           kompleksan broj, 10, 24
                                                           kompleksna beskonačnost (\tilde{\infty}), 10
BASIC, 26
                                                          komutativnost, 11
baza, 3
                                                           konjugovana vrednost (\bar{z}), 11
Benfordov zakon, 12
                                                          konvergent, 8
Bernuli, 7
                                                           koren (\sqrt{x}), 14, 15, 25
beskonačnost (\infty), 3
                                                          kvadratna jednačina, 13–15, 17–19
binarni logaritam, 6
                                                          kvaternion, 11
Brigs, 9
                                                          limes, 7, 12
brojna vrednost, 7, 8, 26
                                                          ln, 7, 8, 10, 11, 26
decibel, 6
                                                          ln 10, 8
definicija, 3
                                                          ln 2, 8, 26
dekadni logaritam, 6
                                                          ln 3, 26
digitron, 9
                                                          \log_{10}, 6, 23, 24
                                                          \log_2, 6, 14, 16, 23
Dirak, 14
                                                          logaritam, 3
e, 7, 15, 24
                                                          logaritmar, 9, 25
eksponencijalna funkcija, 7
                                                          logaritmovanje, 10, 15
eksponent, 7
ENIAC, 9
                                                           magnituda, 23
epsilon (\varepsilon), 8, 26
                                                          maksimum, 22
exp, 7, 10, 11
                                                          mantisa, 7
                                                          Mathematica, 27
faktorijel (n!), 4, 7, 15
                                                          maturski rad, 🔞
Fibonači, 12
                                                           Mekloren, 10
Fibonačijev niz, 12
                                                          Meklorenov red, 7, 10
floor |x|, 7, 23
                                                          minimum, 18
formula, 7, 8
                                                          Neper, 9
fusnota, 10, 11, 13, 23
                                                           Njucom, 12
Gaus, 8
                                                          norma, 11
geometrijski niz, 23
                                                           Ojler, 7, 12
grafik, 3, 12
                                                           Ojlerova formula, 10
Hamilton, 11
                                                           osnova, 3
i, 10, 11, 24
                                                          pi (\pi), 10, 24
```

Plank, 6 polarni zapis, 10, 11 poluraspad (th), 7, 23 pozor, 5, 11 prirodni logaritam, 7 program, 26 proizvod, 4

recipročna vrednost, 4, 11 Rubikova kocka, 11

skalar, 11 stepen, 5, 25 stepen osnove, 4 šiber, 9 što je trebalo dokazati (\Box) , 14, 22, 23

 $\begin{array}{l} {\rm tablice,}~9 \\ {\rm T_EX,}~27 \\ {\rm Tik\text{-}Tok,}~17 \end{array}$

unit, 11

vektor, 11

verižni ralomak, 8 verovatnoća, 12 versor, 11

x-osa, 11, 12

y-osa, 11YouTube, 28

z-osa, 11 zbir, 11 ZX Spectrum, 26

Питагора, Питагорина теорема, антилогаритам, апсолутна вредност |x|, правоугли троугао,

троугао (\triangle), 17

