Security of Keyed Sponge Constructions Using a Modular Proof Approach

Elena Andreeva, Joan Daemen, Bart Mennink, Gilles Van Assche
KU Leuven, STMicroelectronics

Fast Software Encryption March 10, 2015

Sponges

- Hashing
- Keyed applications

Keyed Sponges

Stream cipher encryption

- Squeezing $k = \operatorname{\mathsf{Sponge}}(K||\operatorname{nonce})$
- Block-wise $k_i = \mathsf{Sponge}(K||\mathsf{nonce}||i)$

Authentication

 $lacktriangleq \operatorname{MAC} = \operatorname{Sponge}(K||M)$

Authenticated encryption

■ Duplexing the sponge

Outer-Keyed Sponge [BertoniDPV11]

$$\mathsf{OKS}^f_K(M) = \mathsf{Sponge}^f({\color{blue}K}||M)$$
(${\color{blue}K}$ of length a multiple of r)

Inner-Keyed Sponge [Chang DHKN12]

$$\mathsf{IKS}^f_{m{K}}(M)$$
 $(m{K} ext{ of length } c)$

Inner-Keyed Sponge [Chang DHKN12]

$$\mathsf{IKS}^f_{m{K}}(M)$$
 $(m{K} ext{ of length } c)$

Inner-Keyed Sponge [ChangDHKN12]

$$\mathsf{IKS}^f_{\pmb{K}}(M) = \mathsf{Sponge}^{E^f_{\pmb{K}}}(M)$$

$$({}^{\pmb{K}} \text{ of length } c)$$

Security Model

- M: online data complexity (blocks)
 - lacksquare Calls to KS_K or \mathcal{RO}
- N: offline time complexity
 - Calls to f

Existing Distinguishing Bound [BertoniDPV11]

$$\mathbf{Adv_{OKS}} \leq \frac{M^2}{2^{c+1}} + \frac{2MN}{2^c} + \frac{N}{2^k}$$

Existing Distinguishing Bound [BertoniDPV11]

Bad news

- Flaw in Lemma 1 of [BertoniDPV11]
- Easily fixable, but adds additional term

Existing Distinguishing Bound [BertoniDPV11]

Bad news

- Flaw in Lemma 1 of [BertoniDPV11]
- Easily fixable, but adds additional term

Good news

■ Different proof approach leads to better results

Modular Proof Approach

Proofs based on reduction to underlying primitives

OKS or IKS

Modular Proof Approach

Proofs based on reduction to underlying primitives

OKS or IKS

- Easier proofs
- Better bounds
- More general due to use of multiplicity

 $\mu_{\mathrm{fw}}: \max_{Z_0} \ \# \ \mathrm{evaluations} \ f(Z_0||?) = (?||?)$

 $\mu_{\mathrm{bw}}: \max_{Z_1}$ # evaluations $f(?||?)=(Z_1||?)$

- Application to state recovery
 - lacktriangle Maximize probability of f-evaluation hitting state

- Application to state recovery
 - Maximize probability of f-evaluation hitting state

- $M/2^r \le \mu_{\text{fw}}, \mu_{\text{bw}} \le M$
 - \blacksquare General case: close to M
 - Constrained case (unique nonce): close to $M/2^r$

$$\mathbf{Adv}_{\mathsf{IKS}} = \Delta(\mathsf{IKS}^{f}_{\mathbf{K}}, f; \mathcal{RO}, f)$$

$$\begin{split} \mathbf{Adv}_{\mathsf{IKS}} &= \Delta(\mathsf{IKS}^f_{\pmb{K}}, f; \mathcal{RO}, f) \\ &= \Delta(\mathsf{Sponge}^{E^f_{\pmb{K}}}, f; \mathcal{RO}, f) \end{split}$$

$$\begin{split} \mathbf{Adv_{IKS}} &= \Delta(\mathsf{IKS}_{\pmb{K}}^f, f; \mathcal{RO}, f) \\ &= \Delta(\mathsf{Sponge}^{E_{\pmb{K}}^f}, f; \mathcal{RO}, f) \\ &\leq \Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) + \Delta(E_{\pmb{K}}^f, f; \pi, f) \end{split}$$

$$\mathbf{Adv}_{\mathsf{IKS}} \leq \Delta(\mathsf{Sponge}^{\pi}, f; \mathcal{RO}, f) + \Delta(E_{\mathbf{K}}^{f}, f; \pi, f)$$

$$\mathbf{Adv_{IKS}} \leq \Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) + \Delta(E_{\pmb{K}}^f, f; \pi, f)$$

$$\Delta(\mathsf{Sponge}^{\pi}, f; \mathcal{RO}, f)$$

- \blacksquare Independent of f
- Indifferentiability bound of sponge

$$\mathbf{Adv}_{\mathsf{IKS}} \leq \Delta(\mathsf{Sponge}^{\pi}, f; \mathcal{RO}, f) + \Delta(E_{\pmb{K}}^f, f; \pi, f)$$

$$\Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) \leq \frac{M^2}{2^c}$$

- \blacksquare Independent of f
- Indifferentiability bound of sponge

$$\mathbf{Adv_{IKS}} \leq \Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) + \Delta(E_{\pmb{K}}^f, f; \pi, f)$$

$$\Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) \leq \frac{M^2}{2^c}$$

- \blacksquare Independent of f
- Indifferentiability bound of sponge

$$\Delta(E_{K}^{f}, f; \pi, f)$$

- lue PRP-security of Even-Mansour with c-bit key
- Proof more general due to multiplicity

$$\mathbf{Adv}_{\mathsf{IKS}} \leq \Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) + \Delta(E_{\underline{K}}^f, f; \pi, f)$$

$$\Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) \leq \frac{M^2}{2^c}$$

- Independent of f
- Indifferentiability bound of sponge

$$\Delta(E_K^f, f; \pi, f) \le \frac{(\mu_{\text{fw}} + \mu_{\text{bw}})N}{2^c}$$

- lue PRP-security of Even-Mansour with c-bit key
- Proof more general due to multiplicity

$$\mathbf{Adv}_{\mathsf{OKS}} = \Delta(\mathsf{OKS}_{\mathbf{K}}^f, f; \mathcal{RO}, f)$$

$$\mathbf{Adv}_{\mathsf{OKS}} = \Delta(\mathsf{OKS}^f_{\textcolor{red}{K}}, f; \mathcal{RO}, f)$$

$$\mathbf{Adv}_{\mathsf{OKS}} = \Delta(\mathsf{OKS}_{\mathbf{K}}^f, f; \mathcal{RO}, f)$$

$$\begin{split} \mathbf{Adv}_{\text{OKS}} &= \Delta(\text{OKS}_{K}^{f}, f; \mathcal{RO}, f) \\ &= \Delta(\text{Sponge}^{E_{L=\text{KD}^{f}(K)}^{f}}, f; \mathcal{RO}, f) \end{split}$$

$$\begin{split} \mathbf{Adv}_{\mathsf{OKS}} &= \Delta(\mathsf{OKS}^f_{\pmb{K}}, f; \mathcal{RO}, f) \\ &= \Delta(\mathsf{Sponge}^{E^f_{\pmb{L} = \mathsf{KD}^f(\pmb{K})}}, f; \mathcal{RO}, f) \\ &\leq \Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) + \Delta(E^f_{\pmb{L} = \mathsf{KD}^f(\pmb{K})}, f; \pi, f) \end{split}$$

$$\mathbf{Adv}_{\mathsf{OKS}} \leq \Delta(\mathsf{Sponge}^{\pi}, f; \mathcal{RO}, f) + \Delta(E^f_{\mathbf{L} = \mathsf{KD}^f(\mathbf{K})}, f; \pi, f)$$

$$\mathbf{Adv}_{\mathsf{OKS}} \leq \Delta(\mathsf{Sponge}^{\pi}, f; \mathcal{RO}, f) + \Delta(E^f_{\mathbf{L} = \mathsf{KD}^f(\mathbf{K})}, f; \pi, f)$$

$$\Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) \leq \frac{M^2}{2^c}$$

■ Indifferentiability bound of sponge

$$\mathbf{Adv}_{\mathsf{OKS}} \leq \Delta(\mathsf{Sponge}^{\pi}, f; \mathcal{RO}, f) + \Delta(E^f_{\boldsymbol{L} = \mathsf{KD}^f(\boldsymbol{K})}, f; \pi, f)$$

$$\Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) \leq \frac{M^2}{2^c}$$

Indifferentiability bound of sponge

$$\Delta(E_{\textcolor{red}{L} = \mathsf{KD}^f(\textcolor{red}{K})}^f, f; \pi, f)$$

- PRP-security of Even-Mansour with c-bit subkey
- Analysis more technical

$$\mathbf{Adv}_{\mathsf{OKS}} \leq \Delta(\mathsf{Sponge}^{\pi}, f; \mathcal{RO}, f) + \Delta(E^f_{\boldsymbol{L} = \mathsf{KD}^f(\boldsymbol{K})}, f; \pi, f)$$

$$\Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) \leq \frac{M^2}{2^c}$$

Indifferentiability bound of sponge

$$\Delta(E_{L=\mathsf{KD}^f(K)}^f,f;\pi,f) \leq \frac{2(\mu_{\mathrm{fw}} + \mu_{\mathrm{bw}})N}{2^c}$$

- PRP-security of Even-Mansour with c-bit subkey
- Analysis more technical
 - If all calls to f in $KD^f(K)$ unique (term 1)

$$\mathbf{Adv}_{\mathsf{OKS}} \leq \Delta(\mathsf{Sponge}^{\pi}, f; \mathcal{RO}, f) + \Delta(E^f_{\boldsymbol{L} = \mathsf{KD}^f(\boldsymbol{K})}, f; \pi, f)$$

$$\Delta(\mathsf{Sponge}^\pi, f; \mathcal{RO}, f) \leq \frac{M^2}{2^c}$$

Indifferentiability bound of sponge

$$\Delta(E_{L = \mathsf{KD}^f(K)}^f, f; \pi, f) \leq \frac{2(\mu_{\mathrm{fw}} + \mu_{\mathrm{bw}})N}{2^c} + \frac{N}{2^k} + \frac{2(k/r)N}{2^{r+c}}$$

- PRP-security of Even-Mansour with c-bit subkey
- Analysis more technical
 - If all calls to f in $KD^f(K)$ unique (term 1)
 - Probability an f-call in $KD^f(K)$ collides (rest)

Interpretation

■ Dominating term:

$$\mathbf{Adv}(M, \mu_{\text{fw}}, \mu_{\text{bw}}, N) \le \frac{M^2}{2^c} + \frac{2(\mu_{\text{fw}} + \mu_{\text{bw}})N}{2^c} + \frac{N}{2^k}$$

■ Dominating term:

$$\mathbf{Adv}(M, \mu_{\text{fw}}, \mu_{\text{bw}}, N) \le \frac{M^2}{2^c} + \frac{2(\mu_{\text{fw}} + \mu_{\text{bw}})N}{2^c} + \frac{N}{2^k}$$

Limited data complexity
$$\begin{cases} M \leq 2^{\alpha} \\ \mu_{\rm fw} + \mu_{\rm bw} \leq 2^{\beta} \end{cases}$$

■ Dominating term:

$$\mathbf{Adv}(M, \mu_{\text{fw}}, \mu_{\text{bw}}, N) \le \frac{M^2}{2^c} + \frac{2(\mu_{\text{fw}} + \mu_{\text{bw}})N}{2^c} + \frac{N}{2^k}$$

Limited data complexity
$$\begin{cases} M \leq 2^{\alpha} \\ \mu_{\rm fw} + \mu_{\rm bw} \leq 2^{\beta} \end{cases}$$

$$\Downarrow$$

Time complexity is $\min\{2^{c-\beta-1}, 2^k\}$

$$\frac{2(\mu_{\rm fw} + \mu_{\rm bw})N}{2^c} \leq \frac{2(\mu_{\rm fw}^* + \mu_{\rm bw}^*)N}{2^c} + \Pr\left(\mu_{\rm fw} > \mu_{\rm fw}^*\right) + \Pr\left(\mu_{\rm bw} > \mu_{\rm bw}^*\right)$$

$$\frac{2(\mu_{\rm fw} + \mu_{\rm bw})N}{2^c} \leq \frac{2(\mu_{\rm fw}^* + \mu_{\rm bw}^*)N}{2^c} + \Pr\left(\mu_{\rm fw} > \mu_{\rm fw}^*\right) + \Pr\left(\mu_{\rm bw} > \mu_{\rm bw}^*\right)$$

General case

- lacksquare μ_{fw} may be up to M (adversary has full control)
- \blacksquare μ_{bw} at most $\mathrm{const} \cdot \mathrm{max}\{1, M/2^r\}$
 - except with small probability

$$\frac{2(\mu_{\rm fw} + \mu_{\rm bw})N}{2^c} \leq \frac{2(\mu_{\rm fw}^* + \mu_{\rm bw}^*)N}{2^c} + \Pr\left(\mu_{\rm fw} > \mu_{\rm fw}^*\right) + \Pr\left(\mu_{\rm bw} > \mu_{\rm bw}^*\right)$$

General case

- lacksquare μ_{fw} may be up to M (adversary has full control)
- \blacksquare μ_{bw} at most $\mathrm{const} \cdot \mathrm{max}\{1, M/2^r\}$
 - except with small probability
- Time complexity $\approx \min\{2^{c-\alpha-1}, 2^k\}$ if $M \leq 2^{\alpha}$

$$\frac{2(\mu_{\rm fw} + \mu_{\rm bw})N}{2^c} \le \frac{2(\mu_{\rm fw}^* + \mu_{\rm bw}^*)N}{2^c} + \Pr\left(\mu_{\rm fw} > \mu_{\rm fw}^*\right) + \Pr\left(\mu_{\rm bw} > \mu_{\rm bw}^*\right)$$

General case

- lacksquare μ_{fw} may be up to M (adversary has full control)
- \blacksquare μ_{bw} at most $\mathrm{const} \cdot \mathrm{max}\{1, M/2^r\}$
 - except with small probability
- Time complexity $\approx \min\{2^{c-\alpha-1}, 2^k\}$ if $M \leq 2^{\alpha}$

Constrained case

- $\mu_{\text{fw}}, \mu_{\text{bw}}$ both at most $\text{const} \cdot \max\{1, M/2^r\}$
 - except with small probability

$$\frac{2(\mu_{\rm fw} + \mu_{\rm bw})N}{2^c} \leq \frac{2(\mu_{\rm fw}^* + \mu_{\rm bw}^*)N}{2^c} + \Pr\left(\mu_{\rm fw} > \mu_{\rm fw}^*\right) + \Pr\left(\mu_{\rm bw} > \mu_{\rm bw}^*\right)$$

General case

- lacksquare μ_{fw} may be up to M (adversary has full control)
- \blacksquare μ_{bw} at most $\mathrm{const} \cdot \mathrm{max}\{1, M/2^r\}$
 - except with small probability
- Time complexity $\approx \min\{2^{c-\alpha-1}, 2^k\}$ if $M \leq 2^{\alpha}$

Constrained case

- \bullet $\mu_{\mathrm{fw}}, \mu_{\mathrm{bw}}$ both at most $\mathrm{const} \cdot \max\{1, M/2^r\}$
 - except with small probability
- Time complexity $\approx \min\{2^{c-2}, 2^{r+c-\alpha-2}, 2^k\}$ if $M \leq 2^{\alpha}$

Interpretation (Ignoring 2^k Term)

rate	capacity	data complexity	case	time complexity
r	c	$\leq 2^{\alpha}$	general	$2^{c-\alpha-1}$
			constrained	$\min\{2^{c-2}, 2^{r+c-\alpha-2}\}$
40	160	$\leq 2^{79}$	general	2^{80}
			constrained	2^{119}
548	252	$\leq 2^{123}$	general	2^{128}
			constrained	2^{250}

Multi-Target Security

- lacksquare System with n independent keys
- Damage if any instance is broken

Multi-Target Security

- lacksquare System with n independent keys
- Damage if any instance is broken

- $M = \sum_h M_h$: online **data** complexity (blocks)
- N: offline time complexity

■ Technicalities for multi-target (subkey) Even-Mansour

- Technicalities for multi-target (subkey) Even-Mansour
- Cross-sponge inner collisions

$$\sum_{h} \frac{M_h^2}{2^c} + \sum_{h \neq h'} \frac{2M_h M_{h'}}{2^c} = \frac{M^2}{2^c}$$

- Technicalities for multi-target (subkey) Even-Mansour
- Cross-sponge inner collisions

$$\sum_{h} \frac{M_h^2}{2^c} + \sum_{h \neq h'} \frac{2M_h M_{h'}}{2^c} = \frac{M^2}{2^c}$$

 \blacksquare Interpretation of multiplicity: over all n online accesses

$$\frac{(\mu_{\rm fw} + \mu_{\rm bw})N}{2^c}$$

- Technicalities for multi-target (subkey) Even-Mansour
- Cross-sponge inner collisions

$$\sum_{h} \frac{M_h^2}{2^c} + \sum_{h \neq h'} \frac{2M_h M_{h'}}{2^c} = \frac{M^2}{2^c}$$

 \blacksquare Interpretation of multiplicity: over all n online accesses

$$\frac{(\mu_{\rm fw} + \mu_{\rm bw})N}{2^c}$$

Exhaustive key search speed-up

$$\frac{N}{2^k} \longrightarrow \frac{nN}{2^k}$$

Conclusion

Thanks for your attention!

Questions?