Mini-projet 1 – Équation de Newton (15 minutes)

Considérons l'équation du mouvement d'une balle de masse m attachée au ressort d'un dynamomètre (constante de rappel du ressort k). La balle est soumise à la force gravitationnelle et à la force de résistance de l'air qui est dirigée dans le sens opposé à la vitesse de la balle :

$$m \cdot \frac{\partial^2 y(t)}{\partial t^2} = F$$
; $F = -k \cdot y(t) - m \cdot g - \alpha \cdot \frac{\partial y(t)}{\partial t}$. (1)

Les conditions initiales sont la position et la vitesse de la balle à l'instant t = 0:

$$y(t)|_{t=0} = y_0$$
; $\frac{\partial y(t)}{\partial t}|_{t=0} = v_0$. (2)

1. Travail préparatoire à la maison

Sur un maillage uniforme $t = i \cdot dt, i \ge 0$ programmez une méthode explicite en $O(dt^2)$ pour calculer la trajectoire de la balle:

$$m\frac{y_{i+1} - 2y_i + y_{i-1}}{dt^2} + \alpha \frac{y_{i+1} - y_{i-1}}{2dt} + k \cdot y_i + m \cdot g + O(dt^2) = 0. (3)$$

L'utilisation de la méthode explicite (3) nécessite la connaissance de la position de la balle sur les deux premiers nœuds du maillage (y_0, y_1) . Tandis que la valeur de y_0 est connue, la valeur de y_1 peut être approximée comme suit :

$$y_{1} = y_{0} + v_{0} \cdot dt + \frac{dt^{2}}{2m}F_{0} + O\left(dt^{3}\right) = y_{0}\left(1 - \frac{k}{2m}dt^{2}\right) + v_{0} \cdot dt\left(1 - \frac{\alpha}{2m}dt\right) - \frac{g}{2}dt^{2} + O\left(dt^{3}\right), (4)$$

ce qui permet l'utilisation de la méthode (3) à partir de i=1.

2. Mini-projet en classe (20 points)

Déterminez à l'aide de la méthode explicite (3), (4) la trajectoire de la balle pour les conditions initiales et la valeur de α qui seront annoncées en classe. Dans votre code, utilisez k = 20 N/m, m = 50 g et g = 9.8 N/kg.

- i) (4 points) **Déterminez** l'algorithme explicite d'itérations consécutives correspondant à l'équation (3).
- ii) (4 points) **Démontrez** comment le membre de droite de l'équation (4) s'obtient à partir du membre du centre.
- iii) (8 points) **Déterminez** la valeur la plus précise du déplacement maximal de la balle par rapport à sa position initiale $d_{\max} = \max_{t \ge 0} (|y(t) y_0|)$. Exprimez votre réponse en [cm] et présentez seulement les chiffres significatifs pour la valeur de d_{\max} dont l'erreur est minimale. Pour estimer l'erreur dans le calcul de d_{\max} , effectuez deux simulations avec des pas dt et dt/2, puis évaluer l'erreur $Err(dt) \approx \left|\max_{t \ge 0} \left(|y(t,dt) y_0|\right) \max_{t \ge 0} \left(|y(t,dt/2) y_0|\right)\right|$. Utilisez les valeurs suivantes pour le pas de temps : $dt = \left[10^{-4.75}, 10^{-4.5}, 10^{-4.25}, ..., 10^{-3.25}, 10^{-3}\right] \cdot T/\pi$ $(T = 2\pi\sqrt{m/k}$ est une période d'oscillation). **Tracez** l'erreur en fonction du pas de discrétisation en utilisant $t \in [0, 0.6 \cdot T]$ et **déterminez** la valeur de l'erreur minimale.
- iv) (4 points) **Tracez** la trajectoire de la balle en fonction du temps. **Déterminez** le nombre d'oscillations N_{osc} que la balle effectue avant de s'arrêter à sa position d'équilibre $y_{eq} = -\frac{mg}{k} = -2,45$ cm. Pour répondre à cette question, **tracez** $(y(t) y_{eq})$ en fonction du temps et comptez le nombre de maximums (considérez seulement les valeurs positives) dont l'amplitude est supérieure à $\max_{t \ge 0} (y(t) y_{eq})/10$. Utilisez $dt = 10^{-3} \cdot T/\pi$ et considérez l'intervalle de temps $t \in [0,10 \cdot T]$.

Validez votre code en utilisant : $y_0 = -1.0$ cm, $v_0 = -1.5$ cm/s, $\alpha = 0.12$ N·s/m, $N_{osc} = 6$. L'erreur est minimale si $dt = 10^{-4} \frac{T}{\pi}$. Dans ce cas, $d_{max} = 2.652099064(5)$ cm et $Err \approx 7.7 \times 10^{-10}$ cm.