RaaS - Resilience as a Service

Forecasting Innovation Conference

24 May 2022

Maciej Fila – SSEN

Dan Jerwood – E.ON UK

SSEN Distribution

Innovation & Collaboration

projects and initia

Distributed ReStart

Energy restoration for tomorrow

Value of Lost Load

Microre silience

- Open Networks

RESOP –

Regional Energy System Optimisation Planning

Scottish & Southern Electricity Networks
- EV readiness

Heat strategy

RaaS Technical Solution

Trial Site - Drynoch, Isle of Skye

RaaS Technical Solution

Business Case Appraisal

RaaS product design

- level of granularity in requirements definition
- enhanced forecasting

DNO

- Valuation of RaaS Willingness to Pay
 - CIs/CMLs
 - Voll
 - other factors?

RaaS Service Provider

- Stacking revenues with other markets & flexibility services
- Valuation of RaaS Willingness to Accept

Required State of Charge Winter Day

Summer Day

RaaS Duration with 3 MWh

Made Daration with 5 mills

Fault @ 0:30

RaaS Duration 8 h

Fault @ 16:30

RaaS Duration 2.5 h

Available Headroom for BESS Export

Winter Day

Probability for RaaS requirement

Resilience as a Service

Risk of fault due to:

- Strong wind
- Lighting

Network constrains

Local/Distribution/Transmission

Resources availability:

- Staff
- Diesel generators location/availability
- Distributed Energy Resources
- Load

Battery Market growth expected to be 10-20 x Current Level

- At present there is around 1.5GW of installed Battery Energy Storage System (BESS) capacity on the UK system.
- National Grid estimate that 15GW of Storage will be required to achieve Net Zero by 2035.
- Going forward, a total requirement of ~30GW is forecast for a fully renewable future proof reliable energy systems in the UK.
- National Grid need to incentivise investment into storage if we hope to achieve our challenging Net Zero targets.

Criticality of Batteries for Security of Supply, as more Renewables come Online

Basics Rules of Optimisation of Batteries in Commercial Services

- (Monetary) value is created by Batteries by following the profile required by the *Buyer of the Flexibility* (TSO, DSO, electricity supplier...)
- The amount of MW's made available which can flex is critical
 - Higher MW Availability = Higher payment
 - Meet minimum participation levels for some services
- Contracts pay for the delivery of the required profile over the duration of the contract
 - Failure to deliver can lead to financial penalties
- Revenue Stacking across multiple products (indicated opposite) is essential for optimal returns
- Forecastable revenue streams aid in construction business case for initial investment in battery assets

The Role of Forecasting in Commercial Optimisation

Technical Forecasting (DSO/TSO/Asset Owner)

- Asset availability profile over the day
- Likely forecast accuracy should include historic data and asset technical reliability
- Product characteristics e.g. deliver only whole MWs

Market(s) Price Forecasting (Commercial Optimiser)

- Near term (day-ahead or within day) price forecast of ALL markets the asset can participate in
- Market/ tender participation timelines
- Volumes required by each market
 - Fluctuation in Dynamic Containment volume forecast* by
 National Grid has marked impact on accepted prices
- Delivery cost forecast (varies over the day)
- Overlay of potential penalties for non-delivery
 - Is withdrawing from a previously agreed contract commercial viable? Reputational risk?
- Appetite to risk and target returns will also factor

^{*} Can be 10-12% out at D-4

Basic 2-Step Price Optimisation Approach

Technical and Price forecasts and delivery cost used to lock in strategy on D-1

Day Ahead Wholesale (auction 10:50 results 11:10)

Dynamic Containment (auction 14:30, results 15:00)

Blocks awarded forego potential onday value

Day D-1

Target: to deliver flexibility in all time periods where market value outweighs delivery costs (ideally 24 hours/ day)

Optimisation Engine Inputs

Market Structure

thank you

Questions & comments welcome - RaaS@costain.com https://ssen-innovation.co.uk/raas

