

Original author: goropikari Extended by: tlesaul2

December 1, 2021

Copylight Notice:

©(1)(\$(0)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License by the original author. As such, the second author does the same.

Repository

As of November, 2021, the original source LATEX code, located at https://github.com/goropikari/SolutionForQuantumComputationAndQuantumInformation has not been updated since April 2020. The extended source LATEX code is located at

https://github.com/tlesaul2/SolutionQCQINielsenChuang. It may be updated more actively.

For readers

This is an unofficial solution manual for "Quantum Computation and Quantum Information: 10th Anniversary Edition" (ISBN-13: 978-1107002173) by Michael A. Nielsen and Isaac L. Chuang.

From the original author:

I have studied quantum information theory as a hobby. And I'm not a researcher. So there is no guarantee that these solutions are correct. Especially because I'm not good at mathematics, proofs are often wrong. Don't trust me. Verify yourself!

If you find some mistake or have some comments, please feel free to open an issue or a PR.

goropikari

From the second author:

I'm a mathematician relatively new to quantum information theory as of the adoption of this repo, so hope to supplement the original author's work by checking and formalizing the mathematics, overly at times, while I use the task to learn the field. The original author's sentiments about self-verification are echoed.

tlesaul2

Contents

Errata list

- p.101. eq (2.150) $\rho = \sum_{m} p(m) \rho_{m}$ should be $\rho' = \sum_{m} p(m) \rho_{m}$.
- p.408. eq (9.49) $\sum_{i} p_i D(\rho_i, \sigma_i) + D(p_i, q_i)$ should be $\sum_{i} p_i D(\rho_i, \sigma_i) + 2D(p_i, q_i)$.

eqn (9.48) =
$$\sum_{i} p_{i} \operatorname{Tr}(P(\rho_{i} - \sigma_{i})) + \sum_{i} (p_{i} - q_{i}) \operatorname{Tr}(P\sigma_{i})$$

$$\leq \sum_{i} p_{i} \operatorname{Tr}(P(\rho_{i} - \sigma_{i})) + \sum_{i} |p_{i} - q_{i}| \operatorname{Tr}(P\sigma_{i}) \quad (\because p_{i} - q_{i} \leq |p_{i} - q_{i}|)$$

$$\leq \sum_{i} p_{i} \operatorname{Tr}(P(\rho_{i} - \sigma_{i})) + \sum_{i} |p_{i} - q_{i}| \quad (\because \operatorname{Tr}(P\sigma_{i}) \leq 1)$$

$$= \sum_{i} p_{i} \operatorname{Tr}(P(\rho_{i} - \sigma_{i})) + 2 \frac{\sum_{i} |p_{i} - q_{i}|}{2}$$

$$= \sum_{i} p_{i} \operatorname{Tr}(P(\rho_{i} - \sigma_{i})) + 2D(p_{i}, q_{i})$$

- p.409. Exercise 9.12. If $\rho = \sigma$, then $D(\rho, \sigma) = 0$. Furthermore trace distance is non-negative. Therefore $0 \leq D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \leq 0 \Rightarrow D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) = 0$. So I think the map \mathcal{E} is not strictly contractive. If $p \neq 1$ and $\rho \neq \sigma$, then $D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) < D(\rho, \sigma)$ is satisfied.
- p.411. Exercise 9.16. eqn(9.73) $\operatorname{Tr}(A^{\dagger}B) = \langle m|A \otimes B|m \rangle$ should be $\operatorname{Tr}(A^{\mathbf{T}}B) = \langle m|A \otimes B|m \rangle$. Simple counter example is the case that $A = \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix}$. $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, In this case,

Thus $\operatorname{Tr}(A^{\dagger}B) \neq \langle m|A \otimes B|m \rangle$.

By using following relation, we can prove.

$$(I \otimes A) |m\rangle = (A^T \otimes I) |m\rangle$$

 $\operatorname{Tr}(A) = \langle m | I \otimes A | m \rangle$

$$\operatorname{Tr}(A^T B) = \operatorname{Tr}(BA^T) = \langle m | I \otimes BA^T | m \rangle$$
$$= \langle m | (I \otimes B)(I \otimes A^T) | m \rangle$$
$$= \langle m | (I \otimes B)(A \otimes I) | m \rangle$$
$$= \langle m | A \otimes B | m \rangle.$$

• p.515. eqn (11.67) $S(\rho'||\rho)$ should be $S(\rho||\rho')$.

Chapter 1

Fundamental Concepts

1.1) Probabilistic Classical Deutsch-Jozsa Algorithm: Suppose that the problem is not to distinguish between the constant and balanced functions with certainty, but rather, with some probability of error $\epsilon < 1/2$. What is the performance of the best classical algorithm for this problem?

Soln: To a mathematician, this problem is (slightly) under-specified. Missing is the probability that the function f in question is balanced, vice constant. We assume that both are equally likely, a priori. The results when all balanced or constant functions are chosen from randomly are significantly different, and likely less interesting. We describe an algorithm and analyze the error rate, but make no effort to show that it is the best algorithm, nor that this is the most effective analysis. Let C be the event that f is constant, and B be the event that it is balanced. By hypothesis $P(C) = P(B) = \frac{1}{2}$, a priori. Evaluating f provides information which can be used to update these prior probabilities. Classically evaluating the function once, say at x_0 , provides no useful information, since comparison of values is at the heart of this problem. Evaluating f twice, say at x_0 and x_1 , can unambiguously determine if f is balanced when their values disagree. So, let's assume they agree. We use Bayesian inference to iteratively update the probability that f is constant, given k successive measurements that agree. In a convenient abuse of notation, let $P(E \mid k) = P(E \mid f(x_0) = \cdots = f(x_{k-1}))$, $P(k \mid E) = P(f(x_0) = \cdots = f(x_{k-1}) \mid E)$, and $P(k) = P(f(x_0) = \cdots = f(x_{k-1}))$, for E = B, C, and $k \in \mathbb{N}$. We have $P(C \mid 0) = P(C \mid 1) = P(B \mid 0) = P(B \mid 1)$. Note also that $P(k \mid C) = 1$, since if f is constant, all evaluations (including the k in question) will agree. By Baye's theorem, and the Law of Total Probability:

$$\begin{split} P(C \mid k) &= \frac{P(k \mid C) \cdot P(C \mid k-1)}{P(k)} \\ &= \frac{P(k \mid C) \cdot P(C \mid k-1)}{P(C \mid k-1) \cdot P(k \mid C) + P(B \mid k-1) \cdot P(k \mid B)} \end{split}$$

The formula above can be used to iteratively update P(C,k), and hence P(B,k) = 1 - P(C,k), but first we must discuss $P(k \mid B)$. It is important to note that, when this quantity is used to update $P(C \mid k)$, it is already known with certainty that $f(x_0) = \cdots = f(x_{k-2})$, i.e. P(k-1) = 1. $P(k \mid B)$ is the probability that, given this information, evaluating f one more time, at x_{k-1} , yields another value in agreement with $f(x_0), \cdots, f(x_{k-2})$. We evaluate this by separating the two possible outcomes of evaluation and counting the number of balanced functions satisfying the hypotheses that would produce them. If $f(x_{k-1}) = f(x_0)$, then x_{k-1} is the k-th value on which f agrees. There are $\binom{n-k}{n/2-k}$ balanced functions which would produce this result, corresponding to the selections of n/2 - k more of the remaining n - k values on which f can agree. If $f(x_{k-1}) \neq f(x_0)$, then f must still agree on n/2 - k + 1 of the remaining n - k values. There are $\binom{n-k}{n/2-k+1}$ balanced functions that would produce this result. So:

$$P(k,B) = \frac{\binom{n-k}{n/2-k}}{\binom{n-k}{n/2-k} + \binom{n-k}{n/2-k+1}} = \frac{\binom{n-k}{n/2-k}}{\binom{n-k+1}{n/2-k+1}} = \frac{n/2-k+1}{n-k+1} = \frac{n-2k+2}{2n-2k+2}$$

We are finally in a position to calculate $P(C \mid k)$. Unfortunately, for fixed n, the machinery above does not produce formulas of bounded complexity as k grows. Each formula will be a rational function with equal degree in numerator and denomator, but those degrees seem to be $\lfloor k/2 \rfloor$. The coefficients of the leading terms show some structure that can be used for asymptotic analysis. We illustrate the calculation of $P(C \mid 2)$, $P(C \mid 3)$, and $P(C \mid 4)$ for illustration, discuss the results and some experimental confirmation.

$$P(C \mid 2) = \frac{P(2 \mid C) \cdot P(C \mid 1)}{P(C \mid 1) \cdot P(2 \mid C) + P(B \mid 1) \cdot P(2 \mid B)}$$

$$= \frac{1 \cdot \frac{1}{2}}{\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{n-2}{2n-2}}$$

$$= \frac{1}{1 + \frac{n-2}{2n-2}}$$

$$= \frac{2n-2}{3n-4}$$

$$P(C \mid 3) = \frac{P(3 \mid C) \cdot P(C \mid 2)}{P(C \mid 2) \cdot P(3 \mid C) + P(B \mid 2) \cdot P(3 \mid B)}$$

$$= \frac{1 \cdot \frac{2n-2}{3n-4}}{\frac{2n-2}{3n-4} + \left(1 - \frac{2n-2}{3n-4}\right) \cdot \frac{n-4}{2n-4}}$$

$$= \frac{4n-4}{5n-8}$$

$$P(C \mid 4) = \frac{P(4 \mid C) \cdot P(C \mid 3)}{P(C \mid 3) \cdot P(4 \mid C) + P(B \mid 3) \cdot P(4 \mid B)}$$

$$= \frac{1 \cdot \frac{4n-4}{5n-8}}{\frac{4n-4}{5n-8} + \left(1 - \frac{4n-4}{5n-8}\right) \cdot \frac{n-6}{2n-6}}$$

$$= \frac{8n^2 - 32n + 24}{9n^2 - 42n + 48}$$

$$P(C \mid 5) = \frac{16n^2 - 64n + 48}{17n^2 - 78n + 96}$$

$$P(C \mid 6) = \frac{32n^3 - 288n^2 + 736n - 480}{33n^3 - 312n^2 + 924n - 960}$$

$$P(C \mid 7) = \frac{64n^3 - 576n^2 + 1472n - 960}{65n^3 - 606n^2 + 1768n - 1920}$$
:

There are clearly patterns, the most striking of which yields $P(C \mid k) \xrightarrow[n \to \infty]{2^{k-1}} \frac{2^{k-1}}{2^{k-1}+1}$, that is, given k evaluations in agreement, the probability that f is constant is $\sim 1 - \frac{1}{2^{k-1}+1}$. In the quantum context, where n is likely to be exponential in the number of qubits, this asymptotic value would be approached rapidly. To confirm this analysis, a python script is included in the repo which experimentally calculates empirical values of $P(C \mid k)$ for specified values of n and k. It also calculates the theoretical values, recursing over k, for comparison. See p0 traps/Python/Problem1.1.py.

To answer the problem most directly, i.e., "what is the performance of the best classical algorithm for this problem?", let n be fixed and $0 < \epsilon < \frac{1}{2}$ be specified. The "performance" of classically evaluating the function in order to declare the function constant with error less than ϵ is equivalent to determining the number of evaluations in agreement after which the probability that f is constant is

Chapter 2

Introduction to quantum mechanics

2.1) Show that (1,-1), (1,2), and (2,1) are linearly dependent.

Soln: It is enough to express (0,0) as a linear combination of the specified vectors.

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

2.2) Suppose V is a vector space with basis vectors $|0\rangle$ and $|1\rangle$, and A is a linear operator from V to V such that $A|0\rangle = |1\rangle$ and $A|1\rangle = |0\rangle$. Give a matrix representation for A, with respect to the input basis $|0\rangle$, $|1\rangle$, and the output basis $|0\rangle$, $|1\rangle$. Find input and output bases which give rise to a different matrix representation of A.

Soln: With specified operations, it is enough to solve for the entries of a 2x2 matrix which coverts the input vectors expressed as linear combinations of one basis, say $(|a_1\rangle, |a_2\rangle)$, into vectors expressed as linear combinations of another basis, say $(|b_1\rangle, |b_2\rangle)$.

$$A = \begin{array}{c} |b_1\rangle & |b_2\rangle \\ |a_1\rangle & \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \end{array}$$

With
$$(|a_1\rangle, |a_2\rangle) = (|0\rangle, |1\rangle)$$
 and $(|b_1\rangle, |b_2\rangle) = (|0\rangle, |1\rangle)$, we have

$$A \left| 0 \right\rangle := \left| 1 \right\rangle = 0 \left| 0 \right\rangle + 1 \left| 1 \right\rangle = A_{11} \left| b_1 \right\rangle + A_{21} \left| b_2 \right\rangle = A_{11} \left| 0 \right\rangle + A_{21} \left| 1 \right\rangle \Rightarrow A_{11} = 0, \ A_{21} = 1$$

$$A |1\rangle := |0\rangle = 1 |0\rangle + 0 |1\rangle = A_{12} |b_1\rangle + A_{22} |b_2\rangle = A_{12} |0\rangle + A_{22} |1\rangle \Rightarrow A_{12} = 1, \ A_{22} = 0$$

$$\therefore A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

If the output basis was $(|b_1\rangle, |b_2\rangle) = (|1\rangle, |0\rangle)$ instead, then A = I. More formally:

$$A|0\rangle := |1\rangle = 1|1\rangle + 0|0\rangle = A_{11}|b_1\rangle + A_{21}|b_2\rangle = A_{11}|1\rangle + A_{21}|0\rangle \Rightarrow A_{11} = 1, A_{21} = 0$$

$$A|1\rangle := |0\rangle = 0|1\rangle + 1|0\rangle = A_{12}|b_1\rangle + A_{22}|b_2\rangle = A_{12}|1\rangle + A_{22}|0\rangle \Rightarrow A_{12} = 0, \ A_{22} = 1$$

$$\therefore A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

With a more interesting orthonormal output basis $(\ket{b_1},\ket{b_2})=(\ket{+},\ket{-})$:

$$A |0\rangle := |1\rangle = \frac{\sqrt{2}}{2} |+\rangle - \frac{\sqrt{2}}{2} |-\rangle = A_{11} |b_{1}\rangle + A_{21} |b_{2}\rangle = A_{11} |+\rangle + A_{21} |-\rangle \Rightarrow A_{11} = \frac{\sqrt{2}}{2}, \ A_{2} = -\frac{\sqrt{2}}{2} |+\rangle + \frac{\sqrt{2}}{2} |+\rangle + \frac{\sqrt{2}}{2} |-\rangle = A_{12} |b_{1}\rangle + A_{22} |b_{2}\rangle = A_{12} |+\rangle + A_{22} |-\rangle \Rightarrow A_{12} = \frac{\sqrt{2}}{2}, \ A_{22} = \frac{\sqrt{2}}{2} |+\rangle + \frac{\sqrt{2}}{2} |-\rangle = A_{12} |b_{1}\rangle + A_{22} |b_{2}\rangle = A_{12} |+\rangle + A_{22} |-\rangle \Rightarrow A_{12} = \frac{\sqrt{2}}{2}, \ A_{22} = \frac{\sqrt{2}}{2} |-\rangle = A_{12} |-\rangle = A_{12$$

Note: This is similar, but not equal to \mathbf{H} . Had A been the identity transformation when expressed with the same input and output bases, then the result would have been exactly \mathbf{H} .

2.3) Suppose A is a linear operator from vector space V to vector space W, and B is a linear operator from vector space W to vector space X. Let $|v_i\rangle$, $|w_j\rangle$, and $|x_k\rangle$ be bases for the vector spaces V, W, and X, respectively. Show that the matrix representation for the linear transformation BA is the matrix product of the matrix representations for B and A with respect to the appropriate bases.

Soln: Fix i. We'll show that $(B \circ A)_{ki} = (B \cdot A)_{ki}$.

$$(B \circ A) |v_{i}\rangle = \sum_{k} (B \circ A)_{ki} |x_{k}\rangle = B\left(\sum_{j} A_{ji} |w_{j}\rangle\right)$$

$$= \sum_{j} A_{ji} B |w_{j}\rangle$$

$$= \sum_{j,k} A_{ji} B_{kj} |x_{k}\rangle$$

$$= \sum_{k} \left(\sum_{j} B_{kj} A_{ji}\right) |x_{k}\rangle$$

$$= \sum_{k} ((B \cdot A)_{ki}) |x_{k}\rangle$$

$$(Eqn 2.12, composition)$$

$$(Eqn 2.1$$

2.4) Show that the identity operator on a vector space V has a matrix representation which is one along the diagonal and zero everywhere else, if the matrix representation is taken with respect to the same input and output bases. This matrix is known as the *identity matrix*

Soln: Let I be the matrix in question.

$$I |v_j\rangle := |v_j\rangle = \sum_i I_{ij} |v_i\rangle, \ \forall j.$$

$$\Rightarrow I_{ij} = \delta_{ij} := \begin{cases} 1 & i = j \\ 0 & o/w \end{cases}$$

2.5) Verify that (\cdot, \cdot) just defined is an inner product on \mathbb{C}^n Soln: Defined inner product on \mathbb{C}^n is

$$((y_1, \dots, y_n), (z_1, \dots, z_n)) = \sum_i y_i^* z_i.$$

Equation (2.13.1), linearity in second argument:

$$\begin{pmatrix} (y_1, \cdots, y_n), \sum_i \lambda_i(z_{i1}, \cdots, z_{in}) \end{pmatrix} = \begin{pmatrix} (y_1, \cdots, y_n), \left(\sum_i \lambda_i z_{i1}, \cdots, \sum_i \lambda_i z_{in}\right) \end{pmatrix}$$
 (definition)
$$= \sum_j y_j^* \left(\sum_i \lambda_i z_{ij}\right)$$
 (definition)
$$= \sum_j \left(\sum_i y_j^* \lambda_i z_{ij}\right)$$
 (linearity of multiplication)
$$= \sum_j \left(\sum_i \lambda_i y_j^* z_{ij}\right)$$
 (associativity/commutativity)
$$= \sum_i \left(\sum_j \lambda_i y_j^* z_{ij}\right)$$
 (finiteness)
$$= \sum_i \lambda_i \left(\sum_j y_j^* z_{ij}\right)$$
 (linearity)
$$= \sum_i \lambda_i \left((y_1, \cdots, y_n), (z_{i1}, \cdots, z_{in})\right)$$
 (definition)

Equation (2.13.2), conjugate symmetry:

$$((y_1, \dots, y_n), (z_1, \dots, z_n))^* = \left(\sum_i y_i^* z_i\right)^*$$
 (definition)
$$= \left(\sum_i y_i z_i^*\right)$$
 (conjugate symmetry in \mathbb{C}^1)
$$= \left(\sum_i z_i^* y_i\right)$$
 (commutativity in \mathbb{C}^1)
$$= ((z_1, \dots, z_n), (y_1, \dots, y_n))$$
 (definition)

Equation (2.13.3), positive definiteness:

$$((y_1, \dots, y_n), (y_1, \dots, y_n)) = \sum_i y_i^* y_i$$
 (definition)
$$= \sum_i |y_i|^2$$
 (definition)
$$\geq 0$$
 (positive definiteness of $|\cdot|^2$ over \mathbb{C}^1)

Now:

$$((y_1, \dots, y_n), (y_1, \dots, y_n)) = \sum_{i} |y_i|^2 \stackrel{?}{=} 0$$
 (hypothesis)

$$\iff |y_i|^2 = 0 \ \forall i$$
 (positivity of $|\cdot|^2$)

$$\iff y_i = 0 \ \forall i$$
 (positive definiteness of $|\cdot|^2$ over \mathbb{C}^1)

$$\iff (y_1, \dots, y_n) = \mathbf{0}$$
 (definition)

© 2018 goropikari, © 2021 tlesaul2 - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

2.6)

$$\left(\sum_{i} \lambda_{i} |w_{i}\rangle, |v\rangle\right) = \left(|v\rangle, \sum_{i} \lambda_{i} |w_{i}\rangle\right)^{*}$$

$$= \left[\sum_{i} \lambda_{i} (|v\rangle, |w_{i}\rangle)\right]^{*} (\because \text{ linearlity in the 2nd arg.})$$

$$= \sum_{i} \lambda_{i}^{*} (|v\rangle, |w_{i}\rangle)^{*}$$

$$= \sum_{i} \lambda_{i}^{*} (|w_{i}\rangle, |v\rangle)$$

2.7)

$$\langle w|v\rangle = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 - 1 = 0$$

$$\frac{|w\rangle}{\||w\rangle\|} = \frac{|w\rangle}{\sqrt{\langle w|w\rangle}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{|v\rangle}{\||v\rangle\|} = \frac{|v\rangle}{\sqrt{\langle v|v\rangle}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

2.8) If k = 1,

$$\begin{split} |v_2\rangle &= \frac{|w_2\rangle - \langle v_1|w_2\rangle \, |v_1\rangle}{\||w_2\rangle - \langle v_1|w_2\rangle \, |v_1\rangle\|} \\ \langle v_1|v_2\rangle &= \langle v_1| \left(\frac{|w_2\rangle - \langle v_1|w_2\rangle \, |v_1\rangle}{\||w_2\rangle - \langle v_1|w_2\rangle \, |v_1\rangle\|}\right) \\ &= \frac{\langle v_1|w_2\rangle - \langle v_1|w_2\rangle \, \langle v_1|v_1\rangle}{\||w_2\rangle - \langle v_1|w_2\rangle \, |v_1\rangle\|} \\ &= 0. \end{split}$$

Suppose $\{v_1, \dots v_n\}$ $(n \le d-1)$ is a orthonormal basis. Then

$$\langle v_j | v_{n+1} \rangle = \langle v_j | \left(\frac{|w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle \|} \right) \quad (j \leq n)$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle \langle v_j | v_i \rangle}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle \|}$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle \|}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle \|}$$

$$= \frac{\langle v_j | w_{n+1}\rangle - \langle v_j | w_{n+1}\rangle}{\||w_{n+1}\rangle - \sum_{i=1}^n \langle v_i | w_{n+1}\rangle | v_i \rangle \|}$$

$$= 0.$$

Thus Gram-Schmidt procedure produces an orthonormal basis.

2.9)

$$\begin{split} \sigma_0 &= I = |0\rangle \langle 0| + |1\rangle \langle 1| \\ \sigma_1 &= X = |0\rangle \langle 1| + |1\rangle \langle 0| \\ \sigma_2 &= Y = -i |0\rangle \langle 1| + i |1\rangle \langle 0| \\ \sigma_3 &= Z = |0\rangle \langle 0| - |1\rangle \langle 1| \end{split}$$

2.10)

$$\begin{split} \left| v_{j} \right\rangle \left\langle v_{k} \right| &= I_{V} \left| v_{j} \right\rangle \left\langle v_{k} \right| I_{V} \\ &= \left(\sum_{p} \left| v_{p} \right\rangle \left\langle v_{p} \right| \right) \left| v_{j} \right\rangle \left\langle v_{k} \right| \left(\sum_{q} \left| v_{q} \right\rangle \left\langle v_{q} \right| \right) \\ &= \sum_{p,q} \left| v_{p} \right\rangle \left\langle v_{p} \middle| v_{j} \right\rangle \left\langle v_{k} \middle| v_{q} \right\rangle \left\langle v_{q} \middle| \\ &= \sum_{p,q} \delta_{pj} \delta_{kq} \left| v_{p} \right\rangle \left\langle v_{q} \middle| \right. \end{split}$$

Thus

$$(|v_j\rangle \langle v_k|)_{pq} = \delta_{pj}\delta_{kq}$$

2.11)

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \det(X - \lambda I) = \det\left(\begin{bmatrix} -\lambda & 1 \\ 1 & -\lambda \end{bmatrix} \right) = 0 \Rightarrow \lambda = \pm 1$$

If $\lambda = -1$,

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thus

$$|\lambda = -1\rangle = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

If $\lambda = 1$

$$|\lambda = 1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

$$X = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \text{ w.r.t. } \{ |\lambda = -1\rangle \,, \ |\lambda = 1\rangle \}$$

2.12)

$$\det \left(\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} - \lambda I \right) = (1 - \lambda)^2 = 0 \Rightarrow \lambda = 1$$

Therefore the eigenvector associated with eigenvalue $\lambda = 1$ is

$$|\lambda = 1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Because $|\lambda = 1\rangle \langle \lambda = 1| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$,

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \neq c |\lambda = 1\rangle \langle \lambda = 1| = \begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix}$$

2.13)

Suppose $|\psi\rangle$, $|\phi\rangle$ are arbitrary vectors in V.

$$(|\psi\rangle, (|w\rangle\langle v|) |\phi\rangle)^* = ((|w\rangle\langle v|)^{\dagger} |\psi\rangle, |\phi\rangle)^*$$
$$= (|\phi\rangle, (|w\rangle\langle v|)^{\dagger} |\psi\rangle)$$
$$= \langle\phi| (|w\rangle\langle v|)^{\dagger} |\psi\rangle.$$

On the other hand,

$$(|\psi\rangle, (|w\rangle\langle v|) |\phi\rangle)^* = (\langle \psi|w\rangle\langle v|\phi\rangle)^*$$

= $\langle \phi|v\rangle\langle w|\psi\rangle$.

Thus

$$\langle \phi | (|w\rangle \langle v|)^{\dagger} |\psi\rangle = \langle \phi | v \rangle \langle w | \psi \rangle$$
 for arbitrary vectors $|\psi\rangle$, $|\phi\rangle$

$$\therefore (|w\rangle \langle v|)^{\dagger} = |v\rangle \langle w|$$

2.14)

$$((a_i A_i)^{\dagger} | \phi \rangle, | \psi \rangle) = (| \phi \rangle, a_i A_i | \psi \rangle)$$

$$= a_i (| \phi \rangle, A_i | \psi \rangle)$$

$$= a_i (A_i^{\dagger} | \phi \rangle, | \psi \rangle)$$

$$= (a_i^* A_i^{\dagger} | \phi \rangle, | \psi \rangle)$$

$$\therefore (a_i A_i)^{\dagger} = a_i^* A_i^{\dagger}$$

2.15)

$$((A^{\dagger})^{\dagger} | \psi \rangle, | \phi \rangle) = (| \psi \rangle, A^{\dagger} | \phi \rangle)$$

$$= (A^{\dagger} | \phi \rangle, | \psi \rangle)^{*}$$

$$= (| \phi \rangle, A | \psi \rangle)^{*}$$

$$= (A | \psi \rangle, | \phi \rangle)$$

$$\therefore (A^{\dagger})^{\dagger} = A$$

2.16)

$$P = \sum_{i} |i\rangle \langle i|.$$

$$P^{2} = \left(\sum_{i} |i\rangle \langle i|\right) \left(\sum_{j} |j\rangle \langle j|\right)$$

$$= \sum_{i,j} |i\rangle \langle i|j\rangle \langle j|$$

$$= \sum_{i,j} |i\rangle \langle j| \delta_{ij}$$

$$= \sum_{i} |i\rangle \langle i|$$

$$= P$$

2.17)

Proof. (\Rightarrow) Suppose A is Hermitian. Then $A = A^{\dagger}$. Let $|\lambda\rangle$ be eigenvectors of A with eigenvalues λ , that is,

$$A \mid \rangle = \lambda \mid \lambda \rangle$$
.

Therefore

$$\langle \lambda | A | \lambda \rangle = \lambda \langle \lambda | \lambda \rangle = \lambda.$$

On the other hand,

$$\lambda^* = \langle \lambda | A | \lambda \rangle^* = \langle \lambda | A^{\dagger} | \lambda \rangle = \langle \lambda | A | \lambda \rangle = \lambda \langle \lambda | \lambda \rangle = \lambda.$$

Hence eigenvalues of Hermitian matrix are real.

 (\Leftarrow) Suppose eigenvalues of A are real. From spectral theorem, normal matrix A can be written by

$$A = \sum_{i} \lambda_{i} |\lambda_{i}\rangle\langle\lambda_{i}| \tag{2.1}$$

where λ_i are real eigenvalues with eigenvectors $|\lambda_i\rangle$. By taking adjoint, we get

$$A^{\dagger} = \sum_{i} \lambda_{i}^{*} |\lambda_{i}\rangle\langle\lambda_{i}|$$

$$= \sum_{i} \lambda_{i} |\lambda_{i}\rangle\langle\lambda_{i}| \quad (\because \lambda_{i} \text{ are real})$$

$$= A$$

Thus A is Hermitian.

2.18)

©2018 goropikari, ©2021 tlesaul2 - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Suppose $|v\rangle$ is a eigenvector with corresponding eigenvalue λ .

$$U |v\rangle = \lambda |v\rangle.$$

$$1 = \langle v|v\rangle$$

$$= \langle v|I|v\rangle$$

$$= \langle v|U^{\dagger}U|v\rangle$$

$$= \lambda \lambda^* \langle v|v\rangle$$

$$= ||\lambda||^2$$

$$\therefore \lambda = e^{i\theta}$$

2.19)

$$X^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

2.20)

$$\begin{split} U &\equiv \sum_{i} \left| w_{i} \right\rangle \left\langle v_{i} \right| \\ A_{ij}' &= \left\langle v_{i} \middle| A \middle| v_{j} \right\rangle \\ &= \left\langle v_{i} \middle| U U^{\dagger} A U U^{\dagger} \middle| v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} \middle| w_{p} \right\rangle \left\langle v_{p} \middle| v_{q} \right\rangle \left\langle w_{q} \middle| A \middle| w_{r} \right\rangle \left\langle v_{r} \middle| v_{s} \right\rangle \left\langle w_{s} \middle| v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} \middle| w_{p} \right\rangle \delta_{pq} A_{qr}^{"} \delta_{rs} \left\langle w_{s} \middle| v_{j} \right\rangle \\ &= \sum_{p,r} \left\langle v_{i} \middle| w_{p} \right\rangle \left\langle w_{r} \middle| v_{j} \right\rangle A_{pr}^{"} \end{split}$$

2.21)

Suppose M be Hermitian. Then $M = M^{\dagger}$.

$$M = IMI$$

$$= (P+Q)M(P+Q)$$

$$= PMP + QMP + PMQ + QMQ$$

Now $PMP = \lambda P$, QMP = 0, $PMQ = PM^{\dagger}Q = (QMP)^* = 0$. Thus M = PMP + QMQ. Next prove QMQ is normal.

$$\begin{split} QMQ(QMQ)^\dagger &= QMQQM^\dagger Q \\ &= QM^\dagger QQMQ \quad (M=M^\dagger) \\ &= (QM^\dagger Q)QMQ \end{split}$$

Therefore QMQ is normal. By induction, QMQ is diagonal ... (following is same as Box 2.2)

2.22)

Suppose A is a Hermitian operator and $|v_i\rangle$ are eigenvectors of A with eigenvalues λ_i . Then

$$\langle v_i | A | v_i \rangle = \lambda_i \langle v_i | v_i \rangle$$
.

On the other hand,

$$\langle v_i | A | v_j \rangle = \langle v_i | A^{\dagger} | v_j \rangle = \langle v_j | A | v_i \rangle^* = \lambda_i^* \langle v_j | v_i \rangle^* = \lambda_i^* \langle v_i | v_j \rangle = \lambda_i \langle v_i | v_j \rangle$$

Thus

$$(\lambda_i - \lambda_j) \langle v_i | v_j \rangle = 0.$$

If $\lambda_i \neq \lambda_j$, then $\langle v_i | v_j \rangle = 0$.

2.23)

Suppose P is projector and $|\lambda\rangle$ are eigenvectors of P with eigenvalues λ . Then $P^2=P$.

$$P |\lambda\rangle = \lambda |\lambda\rangle$$
 and $P |\lambda\rangle = P^2 |\lambda\rangle = \lambda P |\lambda\rangle = \lambda^2 |\lambda\rangle$.

Therefore

$$\lambda = \lambda^{2}$$
$$\lambda(\lambda - 1) = 0$$
$$\lambda = 0 \text{ or } 1.$$

2.24)

Def of positive $\langle v|A|v\rangle \geq 0$ for all $|v\rangle$.

Suppose A is a positive operator. A can be decomposed as follows.

$$\begin{split} A &= \frac{A + A^\dagger}{2} + i \frac{A - A^\dagger}{2i} \\ &= B + i C \quad \text{where } B = \frac{A + A^\dagger}{2}, \quad C = \frac{A - A^\dagger}{2i}. \end{split}$$

Now operators B and C are Hermitian.

$$\begin{split} \langle v|A|v\rangle &= \langle v|B+iC|v\rangle \\ &= \langle v|B|v\rangle + i\, \langle v|C|v\rangle \\ &= \alpha + i\beta \ \text{ where } \alpha = \langle v|B|v\rangle \,, \ \beta = \langle v|C|v\rangle \,. \end{split}$$

Since B and C are Hermitian, α , $\beta \in \mathbb{R}$. From def of positive operator, β should be vanished because $\langle v|A|v\rangle$ is real. Hence $\beta = \langle v|C|v\rangle = 0$ for all $|v\rangle$, i.e. C = 0.

Therefore $A = A^{\dagger}$.

©2018 goropikari, ©2021 tlesaul2 - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Reference: MIT 8.05 Lecture note by Prof. Barton Zwiebach.

https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture-notes/MIT8_05F13_Chap_03.pdf

Proposition. 2.0.1. Let T be a linear operator in a complex vector space V. If (u, Tv) = 0 for all $u, v \in V$, then T = 0.

Proof. Suppose u = Tv. Then (Tv, Tv) = 0 for all v implies that Tv = 0 for all v. Therefore T = 0.

Theorem. 2.0.1. *If* (v, Av) = 0 *for all* $v \in V$, *then* A = 0.

Proof. First, we show that (u, Tv) = 0 if (v, Av) = 0. Then apply proposition ?? Suppose $u, v \in V$. Then (u, Tv) is decomposed as

$$(u,Tv) = \frac{1}{4} \left[(u+v,T(u+v)) - (u-v,T(u-v)) + \frac{1}{i} (u+iv,T(u+iv)) - \frac{1}{i} (u-iv,T(u-iv)) \right].$$

If (v, Tv) = 0 for all $v \in V$, the right hand side of above eqn vanishes. Thus (u, Tv) = 0 for all $u, v \in V$. Then T = 0.

2.25)

$$\langle \psi | A^{\dagger} A | \psi \rangle = \| A | \psi \rangle \|^2 \ge 0 \text{ for all } | \psi \rangle.$$

Thus $A^{\dagger}A$ is positive.

2.26)

$$|\psi\rangle^{\otimes 2} = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
$$= \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$
$$= \frac{1}{2}\begin{bmatrix}1\\1\\1\\1\end{bmatrix}$$

2.27)

$$X \otimes Z = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

$$I \otimes X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$X \otimes I = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

In general, tensor product is not commutable.

2.28)

$$(A \otimes B)^* = \begin{bmatrix} A_{11}B & \cdots & A_{1n}B \\ \vdots & \ddots & \vdots \\ A_{m1}B & \cdots & A_{mn}B \end{bmatrix}^*$$

$$= \begin{bmatrix} A_{11}^*B^* & \cdots & A_{1n}^*B^* \\ \vdots & \ddots & \vdots \\ A_{m1}^*B^* & \cdots & A_{mn}^*B^* \end{bmatrix}$$

$$= A^* \otimes B^*.$$

$$(A \otimes B)^{T} = \begin{bmatrix} A_{11}B & \cdots & A_{1n}B \\ \vdots & \ddots & \vdots \\ A_{m1}B & \cdots & A_{mn}B \end{bmatrix}^{T}$$

$$= \begin{bmatrix} A_{11}B^{T} & \cdots & A_{m1}B^{T} \\ \vdots & \ddots & \vdots \\ A_{1n}B^{T} & \cdots & A_{mn}B^{T} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B^{T} & \cdots & A_{1m}B^{T} \\ \vdots & \ddots & \vdots \\ A_{n1}B^{T} & \cdots & A_{nm}B^{T} \end{bmatrix}$$

$$= A^{T} \otimes B^{T}.$$

$$(A \otimes B)^{\dagger} = ((A \otimes B)^*)^T$$
$$= (A^* \otimes B^*)^T$$
$$= (A^*)^T \otimes (B^*)^T$$
$$= A^{\dagger} \otimes B^{\dagger}.$$

2.29) Suppose U_1 and U_2 are unitary operators. Then

$$(U_1 \otimes U_2)(U_1 \otimes U_2)^{\dagger} = U_1 U_1^{\dagger} \otimes U_2 U_2^{\dagger}$$

= $I \otimes I$.

Similarly,

$$(U_1 \otimes U_2)^{\dagger} (U_1 \otimes U_2) = I \otimes I.$$

2.30) Suppose A and B are Hermitian operators. Then

$$(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger} = A \otimes B. \tag{2.2}$$

Thus $A \otimes B$ is Hermitian.

2.31)

Suppose A and B are positive operators. Then

$$\langle \psi | \otimes \langle \phi | (A \otimes B) | \psi \rangle \otimes | \phi \rangle = \langle \psi | A | \psi \rangle \langle \phi | B | \phi \rangle.$$

Since A and B are positive operators, $\langle \psi | A | \psi \rangle \geq 0$ and $\langle \phi | B | \phi \rangle \geq 0$ for all $| \psi \rangle$, $| \phi \rangle$. Then $\langle \psi | A | \psi \rangle \langle \phi | B | \phi \rangle \geq 0$. Thus $A \otimes B$ is positive if A and B are positive.

2.32)

Suppose P_1 and P_2 are projectors. Then

$$(P_1 \otimes P_2)^2 = P_1^2 \otimes P_2^2$$
$$= P_1 \otimes P_2.$$

Thus $P_1 \otimes P_2$ is also projector.

2.33)

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \tag{2.3}$$

2.34)

Suppose $A = \begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$.

$$det(A - \lambda I) = (4 - \lambda)^2 - 3^2$$
$$= \lambda^2 - 8\lambda + 7$$
$$= (\lambda - 1)(\lambda - 7)$$

Eigenvalues of A are $\lambda = 1$, 7. Corresponding eigenvectors are $|\lambda = 1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $|\lambda = 7\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Thus

$$A = |\lambda = 1\rangle\langle\lambda = 1| + 7 |\lambda = 7\rangle\langle\lambda = 7|$$
.

$$\begin{split} \sqrt{A} &= |\lambda = 1\rangle\langle\lambda = 1| + \sqrt{7} \,|\lambda = 7\rangle\langle\lambda = 7| \\ &= \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{\sqrt{7}}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1 + \sqrt{7} & -1 + \sqrt{7} \\ -1 + \sqrt{7} & 1 + \sqrt{7} \end{bmatrix} \end{split}$$

$$\begin{split} \log(A) &= \log(1) \, |\lambda = 1\rangle \langle \lambda = 1| + \log(7) \, |\lambda = 7\rangle \langle \lambda = 7| \\ &= \frac{\log(7)}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{split}$$

2.35)

$$\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^{3} v_i \sigma_i$$

$$= v_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + v_3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix}$$

$$\det(\vec{v} \cdot \vec{\sigma} - \lambda I) = (v_3 - \lambda)(-v_3 - \lambda) - (v_1 - iv_2)(v_1 + iv_2)$$
$$= \lambda^2 - (v_1^2 + v_2^2 + v_3^2)$$
$$= \lambda^2 - 1 \quad (\because |\vec{v}| = 1)$$

Eigenvalues are $\lambda = \pm 1$. Let $|\lambda_{\pm 1}\rangle$ be eigenvectors with eigenvalues ± 1 . Since $\vec{v} \cdot \vec{\sigma}$ is Hermitian, $\vec{v} \cdot \vec{\sigma}$ is diagonalizable. Then

$$\vec{v} \cdot \vec{\sigma} = |\lambda_1\rangle\langle\lambda_1| - |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

Thus

$$\exp(i\theta\vec{v}\cdot\vec{\sigma}) = e^{i\theta} |\lambda_1\rangle\langle\lambda_1| + e^{-i\theta} |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

$$= (\cos\theta + i\sin\theta) |\lambda_1\rangle\langle\lambda_1| + (\cos\theta - i\sin\theta) |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

$$= \cos\theta(|\lambda_1\rangle\langle\lambda_1| + |\lambda_{-1}\rangle\langle\lambda_{-1}|) + i\sin\theta(|\lambda_1\rangle\langle\lambda_1| - |\lambda_{-1}\rangle\langle\lambda_{-1}|)$$

$$= \cos(\theta)I + i\sin(\theta)\vec{v}\cdot\vec{\sigma}.$$

 \therefore Since $\vec{v} \cdot \vec{\sigma}$ is Hermitian, $|\lambda_1\rangle$ and $|\lambda_{-1}\rangle$ are orthogonal. Thus

$$|\lambda_1\rangle\langle\lambda_1|+|\lambda_{-1}\rangle\langle\lambda_{-1}|=I.$$

2.36)

$$\operatorname{Tr}(\sigma_1) = \operatorname{Tr}\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right) = 0$$

$$\operatorname{Tr}(\sigma_2) = \operatorname{Tr}\left(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\right) = 0$$

$$\operatorname{Tr}(\sigma_3) = \operatorname{Tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 - 1 = 0$$

2.37)

$$\operatorname{Tr}(AB) = \sum_{i} \langle i|AB|i\rangle$$

$$= \sum_{i} \langle i|AIB|i\rangle$$

$$= \sum_{i,j} \langle i|A|j\rangle \langle j|B|i\rangle$$

$$= \sum_{i,j} \langle j|B|i\rangle \langle i|A|j\rangle$$

$$= \sum_{j} \langle j|BA|j\rangle$$

$$= \operatorname{Tr}(BA)$$

2.38)

$$\operatorname{Tr}(A+B) = \sum_{i} \langle i|A+B|i\rangle$$

$$= \sum_{i} (\langle i|A|i\rangle + \langle i|B|i\rangle)$$

$$= \sum_{i} \langle i|A|i\rangle + \sum_{i} \langle i|B|i\rangle$$

$$= \operatorname{Tr}(A) + \operatorname{Tr}(B).$$

$$\operatorname{Tr}(zA) = \sum_{i} \langle i|zA|i\rangle$$
$$= \sum_{i} z \langle i|A|i\rangle$$
$$= z \sum_{i} \langle i|A|i\rangle$$
$$= z \operatorname{Tr}(A).$$

2.39)

(1) $(A, B) \equiv \operatorname{Tr}(A^{\dagger}B)$.

(i)

$$\begin{pmatrix}
A, \sum_{i} \lambda_{i} B_{i}
\end{pmatrix} = \operatorname{Tr} \left[A^{\dagger} \left(\sum_{i} \lambda_{i} B_{i} \right) \right]
= \operatorname{Tr} (A^{\dagger} \lambda_{1} B_{1}) + \dots + \operatorname{Tr} (A^{\dagger} \lambda_{n} B_{n}) \quad (\because \text{ Execise 2.38})
= \lambda_{1} \operatorname{Tr} (A^{\dagger} B_{1}) + \dots + \lambda_{n} \operatorname{Tr} (A^{\dagger} B_{n})
= \sum_{i} \lambda_{i} \operatorname{Tr} (A^{\dagger} B_{i})$$

(ii)

$$(A, B)^* = \left(\operatorname{Tr}(A^{\dagger}B)\right)^*$$

$$= \left(\sum_{i,j} \langle i|A^{\dagger}|j\rangle \langle j|B|i\rangle\right)^*$$

$$= \sum_{i,j} \langle i|A^{\dagger}|j\rangle^* \langle j|B|i\rangle^*$$

$$= \sum_{i,j} \langle j|B|i\rangle^* \langle i|A^{\dagger}|j\rangle^*$$

$$= \sum_{i,j} \langle i|B^{\dagger}|j\rangle \langle j|A|i\rangle$$

$$= \sum_{i} \langle i|B^{\dagger}A|i\rangle$$

$$= \operatorname{Tr}(B^{\dagger}A)$$

$$= (B, A).$$

(iii)

$$(A, A) = \operatorname{Tr}(A^{\dagger}A)$$

= $\sum_{i} \langle i|A^{\dagger}A|i\rangle$

Since $A^{\dagger}A$ is positive, $\langle i|A^{\dagger}A|i\rangle \geq 0$ for all $|i\rangle$.

Let a_i be i-th column of A. If $\langle i|A^{\dagger}A|i\rangle=0$, then

$$\langle i|A^{\dagger}A|i\rangle = a_i^{\dagger}a_i = ||a_i||^2 = 0 \text{ iff } a_i = \mathbf{0}.$$

Therefore (A, A) = 0 iff $A = \mathbf{0}$.

- (2)
- (3)

2.40)

$$\begin{split} [X,Y] &= XY - YX \\ &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} - \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} - \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} \\ &= \begin{bmatrix} 2i & 0 \\ 0 & -2i \end{bmatrix} \\ &= 2iZ \end{split}$$

$$[Y, Z] = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 2i \\ 2i & 0 \end{bmatrix}$$

$$= 2iX$$

$$\begin{split} [Z,X] &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\ &= 2i \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \\ &= 2iY \end{split}$$

2.41)

$$\begin{aligned} \{\sigma_1, \sigma_2\} &= \sigma_1 \sigma_2 + \sigma_2 \sigma_1 \\ &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} + \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} \\ &= 0 \end{aligned}$$

$$\{\sigma_2, \sigma_3\} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \\
= 0$$

$$\{\sigma_3, \sigma_1\} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{split} \sigma_0^2 &= I^2 = I \\ \sigma_1^2 &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^2 = I \\ \sigma_2^2 &= \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}^2 = I \\ \sigma_3^2 &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^2 = I \end{split}$$

2.42)

$$\frac{[A,B]+\{A,B\}}{2}=\frac{AB-BA+AB+BA}{2}=AB$$

2.43)

From eq (2.75) and eq (2.76), $\{\sigma_j, \sigma_k\} = 2\delta_{jk}I$. From eq (2.77),

$$\sigma_{j}\sigma_{k} = \frac{[\sigma_{j}, \sigma_{k}] + \{\sigma_{j}, \sigma_{k}\}}{2}$$

$$= \frac{2i\sum_{l=1}^{3} \epsilon_{jkl}\sigma_{l} + 2\delta_{jk}I}{2}$$

$$= \delta_{jk}I + i\sum_{l=1}^{3} \epsilon_{jkl}\sigma_{l}$$

2.44)

By assumption, [A, B] = 0 and $\{A, B\} = 0$, then AB = 0. Since A is invertible, multiply by A^{-1} from left, then

$$A^{-1}AB = 0$$
$$IB = 0$$
$$B = 0.$$

2.45)

$$[A, B]^{\dagger} = (AB - BA)^{\dagger}$$
$$= B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger}$$
$$= [B^{\dagger}, A^{\dagger}]$$

2.46)

$$[A, B] = AB - BA$$
$$= -(BA - AB)$$
$$= -[B, A]$$

2.47)

$$(i [A, B])^{\dagger} = -i [A, B]^{\dagger}$$

$$= -i [B^{\dagger}, A^{\dagger}]$$

$$= -i [B, A]$$

$$= i [A, B]$$

2.48)

(Positive)

Since P is positive, it is diagonalizable. Then $P = \sum_i \lambda_i |i\rangle\langle i|, (\lambda_i \geq 0)$.

$$J=\sqrt{P^{\dagger}P}=\sqrt{PP}=\sqrt{P^2}=\sum_i\sqrt{\lambda_i^2}\,|i\rangle\langle i|=\sum_i\lambda_i\,|i\rangle\langle i|=P.$$

Therefore polar decomposition of P is P = UP for all P. Thus U = I, then P = P.

(Unitary)

Suppose unitary U is decomposed by U = WJ where W is unitary and J is positive, $J = \sqrt{U^{\dagger}U}$.

$$J = \sqrt{U^{\dagger}U} = \sqrt{I} = I$$

Since unitary operators are invertible, $W = UJ^{-1} = UI^{-1} = UI = U$. Thus polar decomposition of U is U = U.

(Hermitian)

Suppose H = UJ.

$$J = \sqrt{H^\dagger H} = \sqrt{HH} = \sqrt{H^2}.$$

Thus $H = U\sqrt{H^2}$.

In general, $H \neq \sqrt{H^2}$.

From spectral decomposition, $H = \sum_{i} \lambda_i |i\rangle\langle i|, \ \lambda_i \in \mathbb{R}$.

$$\sqrt{H^2} = \sqrt{\sum_i \lambda_i^2 |i\rangle\langle i|} = \sum_i \sqrt{\lambda_i^2} |i\rangle\langle i| = \sum_i |\lambda_i| \, |i\rangle\langle i| \neq H$$

2.49)

Normal matrix is diagonalizable, $A = \sum_{i} \lambda_{i} |i\rangle\langle i|$.

$$\begin{split} J &= \sqrt{A^{\dagger}A} = \sum_{i} |\lambda_{i}| \, |i\rangle\langle i| \, . \\ U &= \sum_{i} |e_{i}\rangle\langle i| \\ A &= UJ = \sum_{i} |\lambda_{i}| \, |e_{i}\rangle\langle i| \, . \end{split}$$

2.50)

Define
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
. $A^{\dagger}A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$.

Characteristic equation of $A^{\dagger}A$ is $\det(A^{\dagger}A - \lambda I) = \lambda^2 - 3\lambda + 1 = 0$. Eigenvalues of $A^{\dagger}A$ are $\lambda_{\pm} = \frac{3 \pm \sqrt{5}}{2}$ and associated eigenvectors are $|\lambda_{\pm}\rangle = \frac{1}{\sqrt{10 \mp 2\sqrt{5}}} \begin{bmatrix} 2 \\ -1 \pm \sqrt{5} \end{bmatrix}$.

$$A^{\dagger}A = \lambda_{+} |\lambda_{+}\rangle\langle\lambda_{+}| + \lambda_{-} |\lambda_{-}\rangle\langle\lambda_{-}|.$$

$$\begin{split} J &= \sqrt{A^{\dagger}A} = \sqrt{\lambda_{+}} \, |\lambda_{+}\rangle \langle \lambda_{+}| + \sqrt{\lambda_{-}} \, |\lambda_{-}\rangle \langle \lambda_{-}| \\ &= \sqrt{\frac{3+\sqrt{5}}{2}} \cdot \frac{5-\sqrt{5}}{40} \begin{bmatrix} 4 & 2\sqrt{5}-2 \\ 2\sqrt{5}-2 & 6-2\sqrt{5} \end{bmatrix} + \sqrt{\frac{3-\sqrt{5}}{2}} \cdot \frac{5+\sqrt{5}}{40} \begin{bmatrix} 4 & -2\sqrt{5}-2 \\ -2\sqrt{5}-2 & 6+2\sqrt{5} \end{bmatrix} \\ \\ J^{-1} &= \frac{1}{\sqrt{\lambda_{+}}} \, |\lambda_{+}\rangle \langle \lambda_{+}| + \frac{1}{\sqrt{\lambda_{-}}} \, |\lambda_{-}\rangle \langle \lambda_{-}| \, . \end{split}$$

$$U = AJ^{-1}$$

I'm tired.

2.51)

$$H^\dagger H = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\right)^\dagger \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = I.$$

2.52)

$$H^{\dagger} = \left(rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}
ight)^{\dagger} = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} = H.$$

Thus

$$H^2 = I$$
.

2.53)

$$\det(H - \lambda I) = \left(\frac{1}{\sqrt{2}} - \lambda\right) \left(-\frac{1}{\sqrt{2}} - \lambda\right) - \frac{1}{2}$$
$$= \lambda^2 - \frac{1}{2} - \frac{1}{2}$$
$$= \lambda^2 - 1$$

Eigenvalues are $\lambda_{\pm} = \pm 1$ and associated eigenvectors are $|\lambda_{\pm}\rangle = \frac{1}{\sqrt{4 \mp 2\sqrt{2}}} \begin{bmatrix} 1\\ -1 \pm \sqrt{2} \end{bmatrix}$.

2.54)

Since [A, B] = 0, A and B are simultaneously diagonalize, $A = \sum_i a_i |i\rangle\langle i|$, $B = \sum_i b_i |i\rangle\langle i|$.

$$\exp(A) \exp(B) = \left(\sum_{i} \exp(a_{i}) |i\rangle\langle i|\right) \left(\sum_{i} \exp(b_{i}) |i\rangle\langle i|\right)$$

$$= \sum_{i,j} \exp(a_{i} + b_{j}) |i\rangle\langle i|j\rangle\langle j|$$

$$= \sum_{i,j} \exp(a_{i} + b_{j}) |i\rangle\langle j| \delta_{i,j}$$

$$= \sum_{i} \exp(a_{i} + b_{i}) |i\rangle\langle i|$$

$$= \exp(A + B)$$

2.55)

$$H = \sum_E E \, |E\rangle\!\langle E|$$

$$U(t_2 - t_1)U^{\dagger}(t_2 - t_1) = \exp\left(-\frac{iH(t_2 - t_1)}{\hbar}\right) \exp\left(\frac{iH(t_2 - t_1)}{\hbar}\right)$$

$$= \sum_{E,E'} \left(\exp\left(-\frac{iE(t_2 - t_1)}{\hbar}\right) |E\rangle\langle E|\right) \left(\exp\left(-\frac{iE'(t_2 - t_1)}{\hbar}\right) |E'\rangle\langle E'|\right)$$

$$= \sum_{E,E'} \left(\exp\left(-\frac{i(E - E')(t_2 - t_1)}{\hbar}\right) |E\rangle\langle E'| \delta_{E,E'}\right)$$

$$= \sum_{E} \exp(0) |E\rangle\langle E|$$

$$= \sum_{E} |E\rangle\langle E|$$

$$= I$$

Similarly, $U^{\dagger}(t_2 - t_1)U(t_2 - t_1) = I$.

$$2.56$$
)

$$U = \sum_{i} \lambda_{i} |\lambda_{i}\rangle\langle\lambda_{i}| \quad (|\lambda_{i}| = 1).$$

$$\log(U) = \sum_{j} \log(\lambda_{j}) |\lambda_{j}\rangle\langle\lambda_{j}| = \sum_{j} i\theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}| \text{ where } \theta_{j} = \arg(\lambda_{j})$$

$$K = -i\log(U) = \sum_{j} \theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}|.$$

$$K^{\dagger} = (-i \log U)^{\dagger} = \left(\sum_{j} \theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}|\right)^{\dagger} = \sum_{j} \theta_{j}^{*} |\lambda_{j}\rangle\langle\lambda_{j}| = \sum_{j} \theta_{j} |\lambda_{j}\rangle\langle\lambda_{j}| = K$$

2.57)

$$\begin{split} |\phi\rangle &\equiv \frac{L_l |\psi\rangle}{\sqrt{\langle\psi|L_l^{\dagger}L_l|\psi\rangle}} \\ \langle\phi|M_m^{\dagger}M_m|\phi\rangle &= \frac{\langle\psi|L_l^{\dagger}M_m^{\dagger}M_mL_l|\psi\rangle}{\langle\psi|L_l^{\dagger}L_l|\psi\rangle} \\ \frac{M_m |\phi\rangle}{\sqrt{\langle\phi|M_m^{\dagger}M_m|\phi\rangle}} &= \frac{M_mL_l |\psi\rangle}{\sqrt{\langle\psi|L_l^{\dagger}L_l|\psi\rangle}} \cdot \frac{\sqrt{\langle\psi|L_l^{\dagger}L_l|\psi\rangle}}{\sqrt{\langle\psi|L_l^{\dagger}M_m^{\dagger}M_mL_l|\psi\rangle}} = \frac{M_mL_l |\psi\rangle}{\sqrt{\langle\psi|L_l^{\dagger}M_m^{\dagger}M_mL_l|\psi\rangle}} = \frac{N_{lm} |\psi\rangle}{\sqrt{\langle\psi|N_{lm}^{\dagger}N_{lm}|\psi\rangle}} \end{split}$$

2.58)

$$\begin{split} \langle M \rangle &= \langle \psi | M | \psi \rangle = \langle \psi | m | \psi \rangle = m \ \langle \psi | \psi \rangle = m \\ \langle M^2 \rangle &= \langle \psi | M^2 | \psi \rangle = \langle \psi | m^2 | \psi \rangle = m^2 \ \langle \psi | \psi \rangle = m^2 \end{split}$$
 deviation = $\langle M^2 \rangle - \langle M \rangle^2 = m^2 - m^2 = 0.$

2.59)

$$\begin{split} \langle X \rangle &= \langle 0|X|0 \rangle = \langle 0|1 \rangle = 0 \\ \langle X^2 \rangle &= \langle 0|X^2|0 \rangle = \langle 0|X|1 \rangle = \langle 0|0 \rangle = 1 \\ \text{standard deviation} &= \sqrt{\langle X^2 \rangle - \langle X \rangle^2} = 1 \end{split}$$

2.60)

$$\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^{3} v_i \sigma_i$$

$$= v_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + v_3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} v_3 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 \end{bmatrix}$$

$$\det(\vec{v} \cdot \vec{\sigma} - \lambda I) = (v_3 - \lambda)(-v_3 - \lambda) - (v_1 - iv_2)(v_1 + iv_2)$$
$$= \lambda^2 - (v_1^2 + v_2^2 + v_3^2)$$
$$= \lambda^2 - 1 \quad (\because |\vec{v}| = 1)$$

Eigenvalues are $\lambda = \pm 1$.

(i) if
$$\lambda = 1$$

$$\vec{v} \cdot \vec{\sigma} - \lambda I = \vec{v} \cdot \vec{\sigma} - I$$

$$= \begin{bmatrix} v_3 - 1 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 - 1 \end{bmatrix}$$

Normalized eigenvector is $|\lambda_1\rangle = \sqrt{\frac{1+v_3}{2}} \begin{bmatrix} 1\\ \frac{1-v_3}{v_1-iv_2} \end{bmatrix}$.

$$\begin{aligned} |\lambda_1\rangle\langle\lambda_1| &= \frac{1+v_3}{2} \begin{bmatrix} 1\\ \frac{1-v_3}{v_1-iv_2} \end{bmatrix} \begin{bmatrix} 1 & \frac{1-v_3}{v_1+iv_2} \end{bmatrix} \\ &= \frac{1+v_3}{2} \begin{bmatrix} 1 & \frac{v_1-iv_2}{1+v_3}\\ \frac{v_1+iv_2}{1+v_3} & \frac{1-v_3}{1+v_3} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1+v_3 & v_1-iv_2\\ v_1+iv_2 & 1-v_3 \end{bmatrix} \\ &= \frac{1}{2} \left(I + \begin{bmatrix} v_3 & v_1-iv_2\\ v_1+iv_2 & -v_3 \end{bmatrix} \right) \\ &= \frac{1}{2} (I+\vec{v}\cdot\vec{\sigma}) \end{aligned}$$

(ii) If $\lambda = -1$.

$$\begin{split} \vec{v} \cdot \vec{\sigma} - \lambda I &= \vec{v} \cdot \vec{\sigma} + I \\ &= \begin{bmatrix} v_3 + 1 & v_1 - iv_2 \\ v_1 + iv_2 & -v_3 + 1 \end{bmatrix} \end{split}$$

Normalized eigenvalue is $|\lambda_{-1}\rangle = \sqrt{\frac{1-v_3}{2}} \begin{bmatrix} 1 \\ -\frac{1+v_3}{v_1-iv_2} \end{bmatrix}$.

$$|\lambda_{-1}\rangle\langle\lambda_{-1}| = \frac{1-v_3}{2} \begin{bmatrix} 1\\ -\frac{1+v_3}{v_1-iv_2} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1+v_3}{v_1+iv_2} \end{bmatrix}$$

$$= \frac{1-v_3}{2} \begin{bmatrix} 1 & -\frac{v_1-iv_2}{1-v_3}\\ -\frac{v_1+iv_2}{1-v_3} & \frac{1+v_3}{1-v_3} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1-v_3 & -(v_1-iv_2)\\ -(v_1+iv_2) & 1+v_3 \end{bmatrix}$$

$$= \frac{1}{2} \left(I - \begin{bmatrix} v_3 & v_1-iv_2\\ (v_1+iv_2 & -v_3) \end{bmatrix} \right)$$

$$= \frac{1}{2} (I - \vec{v} \cdot \vec{\sigma}).$$

While I review my proof, I notice that my proof has a defect. The case $(v_1, v_2, v_3) = (0, 0, 1)$, second component of eigenstate, $\frac{1-v_3}{v_1-iv_2}$, diverges. So I implicitly assume $v_1-iv_2 \neq 0$. Hence my proof is incomplete.

Since the exercise doesn't require explicit form of projector, we should prove the problem more abstractly. In order to prove, we use the following properties of $\vec{v} \cdot \vec{\sigma}$

- $\vec{v} \cdot \vec{\sigma}$ is Hermitian
- $(\vec{v} \cdot \vec{\sigma})^2 = I$ where \vec{v} is a real unit vector.

We can easily check above conditions.

$$(\vec{v} \cdot \vec{\sigma})^{\dagger} = (v_1 \sigma_1 + v_2 \sigma_2 + v_3 \sigma_3)^{\dagger}$$

$$= v_1 \sigma_1^{\dagger} + v_2 \sigma_2^{\dagger} + v_3 \sigma_3^{\dagger}$$

$$= v_1 \sigma_1 + v_2 \sigma_2 + v_3 \sigma_3 \quad (\because \text{Pauli matrices are Hermitian.})$$

$$= \vec{v} \cdot \vec{\sigma}$$

$$(\vec{v} \cdot \vec{\sigma})^2 = \sum_{j,k=1}^3 (v_j \sigma_j)(v_k \sigma_k)$$

$$= \sum_{j,k=1}^3 v_j v_k \sigma_j \sigma_k$$

$$= \sum_{j,k=1}^3 v_j v_k \left(\delta_{jk} I + i \sum_{l=1}^3 \epsilon_{jkl} \sigma_l \right) \quad (\because \text{eqn}(2.78) \text{ page} 78)$$

$$= \sum_{j,k=1}^3 v_j v_k \delta_{jk} I + i \sum_{j,k,l=1}^3 \epsilon_{jkl} v_j v_k \sigma_l$$

$$= \sum_{j=1}^3 v_j^2 I$$

$$= I \quad \left(\because \sum_j v_j^2 = 1 \right)$$

Proof. Suppose $|\lambda\rangle$ is an eigenstate of $\vec{v}\cdot\vec{\sigma}$ with eigenvalue λ . Then

$$\vec{v} \cdot \vec{\sigma} |\lambda\rangle = \lambda |\lambda\rangle$$
$$(\vec{v} \cdot \vec{\sigma})^2 |\lambda\rangle = \lambda^2 |\lambda\rangle$$

On the other hand $(\vec{v} \cdot \vec{\sigma})^2 = I$,

$$(\vec{v} \cdot \vec{\sigma})^2 |\lambda\rangle = I |\lambda\rangle = |\lambda\rangle$$
$$\therefore \lambda^2 |\lambda\rangle = |\lambda\rangle.$$

Thus $\lambda^2 = 1 \Rightarrow \lambda = \pm 1$. Therefore $\vec{v} \cdot \vec{\sigma}$ has eigenvalues ± 1 .

Let $|\lambda_1\rangle$ and $|\lambda_{-1}\rangle$ are eigenvectors with eigenvalues 1 and -1, respectively. I will prove that $P_{\pm} = |\lambda_{\pm 1}\rangle\langle\lambda_{\pm 1}|$.

In order to prove above equation, all we have to do is prove following condition. (see Theorem ??)

$$\langle \psi | (P_{\pm} - |\lambda_{\pm 1}) \langle \lambda_{\pm 1} |) | \psi \rangle = 0 \text{ for all } | \psi \rangle \in \mathbb{C}^2.$$
 (2.4)

Since $\vec{v} \cdot \vec{\sigma}$ is Hermitian, $|\lambda_1\rangle$ and $|\lambda_{-1}\rangle$ are orthonormal vector (: Exercise 2.22). Let $|\psi\rangle \in \mathbb{C}^2$ be an arbitrary state. $|\psi\rangle$ can be written as

$$|\psi\rangle = \alpha |\lambda_1\rangle + \beta |\lambda_{\pm 1}\rangle \quad (|\alpha|^2 + |\beta|^2 = 1, \alpha, \beta \in \mathbb{C}).$$

©2018 goropikari, ©2021 tlesaul2 - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

$$\begin{split} \langle \psi | (P_{\pm} - |\lambda_{\pm}) \langle \lambda_{\pm} |) | \psi \rangle &= \langle \psi | P_{\pm} | \psi \rangle - \langle \psi | \lambda_{\pm} \rangle \, \langle \lambda_{\pm} | \psi \rangle \, . \\ \langle \psi | P_{\pm} | \psi \rangle &= \langle \psi | \frac{1}{2} (I \pm \vec{v} \cdot \vec{\sigma}) | \psi \rangle \\ &= \frac{1}{2} \pm \frac{1}{2} \, \langle \psi | \vec{v} \cdot \vec{\sigma}) | \psi \rangle \\ &= \frac{1}{2} \pm \frac{1}{2} (|\alpha|^2 - |\beta|^2) \\ &= \frac{1}{2} \pm \frac{1}{2} (2|\alpha|^2 - 1) \quad (\because |\alpha|^2 + |\beta|^2 = 1) \\ \langle \psi | \lambda_1 \rangle \, \langle \lambda_1 | \psi \rangle &= |\alpha|^2 \\ \langle \psi | \lambda_{-1} \rangle \, \langle \lambda_{-1} | \psi \rangle &= |\beta|^2 = 1 - |\alpha|^2 \end{split}$$

Therefore $\langle \psi | (P_{\pm} - |\lambda_{\pm 1}) \langle \lambda_{\pm 1} |) | \psi \rangle = 0$ for all $| \psi \rangle \in \mathbb{C}^2$. Thus $P_{\pm} = |\lambda_{\pm 1}\rangle \langle \lambda_{\pm 1}|$.

2.61)

$$\langle \lambda_1 | 0 \rangle \langle 0 | \lambda_1 \rangle = \langle 0 | \lambda_1 \rangle \langle \lambda_1 | 0 \rangle$$
$$= \langle 0 | \frac{1}{2} (I + \vec{v} \cdot \vec{\sigma}) | 0 \rangle$$
$$= \frac{1}{2} (1 + v_3)$$

Post-measurement state is

$$\frac{|\lambda_1\rangle \langle \lambda_1|0\rangle}{\sqrt{\langle 0|\lambda_1\rangle \langle \lambda_1|0\rangle}} = \frac{1}{\sqrt{\frac{1}{2}(1+v_3)}} \cdot \frac{1}{2} \begin{bmatrix} 1+v_3\\v_1+iv_2 \end{bmatrix}$$
$$= \sqrt{\frac{1}{2}(1+v_3)} \begin{bmatrix} 1\\\frac{v_1+iv_2}{1+v_3} \end{bmatrix}$$
$$= \sqrt{\frac{1+v_3}{2}} \begin{bmatrix} 1\\\frac{1-v_3}{v_1-iv_2} \end{bmatrix}$$
$$= |\lambda_1\rangle.$$

2.62)

Suppose M_m is a measurement operator. From the assumption, $E_m = M_m^{\dagger} M_m = M_m$. Then

$$\langle \psi | E_m | \psi \rangle = \langle \psi | M_m | \psi \rangle \ge 0.$$

for all $|\psi\rangle$.

Since M_m is positive operator, M_m is Hermitian. Therefore,

$$E_m = M_m^{\dagger} M_m = M_m M_m = M_m^2 = M_m.$$

Thus the measurement is a projective measurement.

2.63)

$$\begin{split} M_m^\dagger M_m &= \sqrt{E_m} U_m^\dagger U_m \sqrt{E_m} \\ &= \sqrt{E_m} I \sqrt{E_m} \\ &= E_m. \end{split}$$

Since E_m is POVM, for arbitrary unitary $U, M_m^{\dagger} M_m$ is POVM.

2.64) Read following paper:

- Lu-Ming Duan, Guang-Can Guo. Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett.,80:4999-5002, 1998. arXiv:quant-ph/9804064 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.4999 https://arxiv.org/abs/quant-ph/9804064
- Stephen M. Barnett, Sarah Croke, Quantum state discrimination, arXiv:0810.1970 [quant-ph] https://arxiv.org/abs/0810.1970 https://www.osapublishing.org/DirectPDFAccess/67EF4200-CBD2-8E68-1979E37886263936_176580/aop-1-2-238.pdf

2.65)

$$|+\rangle \equiv \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \quad |-\rangle \equiv \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

2.66)

$$X_1 Z_2 \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}} \right) = \frac{|10\rangle - |01\rangle}{\sqrt{2}}$$

$$\langle X_1 Z_2 \rangle = \left(\frac{\langle 00| + \langle 11|}{\sqrt{2}} \right) X_1 Z_2 \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}} \right) = \frac{\langle 00| + \langle 11|}{\sqrt{2}} \cdot \frac{|10\rangle - |01\rangle}{\sqrt{2}} = 0$$

2.67)

Suppose W^{\perp} is the orthogonal complement of W. Then $V = W \oplus W^{\perp}$. Let $|w_i\rangle, |w'_j\rangle, |u'_j\rangle$ be orthonormal bases for W, W^{\perp} , $(\text{image}(U))^{\perp}$, respectively.

Define $U': V \to V$ as $U' = \sum_i |u_i\rangle\langle w_i| + \sum_j |u_j'\rangle\langle w_j'|$, where $|u_i\rangle = U |w_i\rangle$. Now

$$(U')^{\dagger}U' = \left(\sum_{i=1}^{\dim W} |w_i\rangle\langle u_i| + \sum_{j=1}^{\dim W^{\perp}} |w_j'\rangle\langle u_j'|\right) \left(\sum_i |u_i\rangle\langle w_i| + \sum_j |u_j'\rangle\langle w_j'|\right)$$
$$= \sum_i |w_i\rangle\langle w_i| + \sum_j |w_j'\rangle\langle w_j'| = I$$

and

$$U'(U')^{\dagger} = \left(\sum_{i} |u_{i}\rangle\langle w_{i}| + \sum_{j} |u'_{j}\rangle\langle w'_{j}|\right) \left(\sum_{i} |w_{i}\rangle\langle u_{i}| + \sum_{j} |w'_{j}\rangle\langle u'_{j}|\right)$$
$$= \sum_{i} |u_{i}\rangle\langle u_{i}| + \sum_{j} |u'_{j}\rangle\langle u'_{j}| = I.$$

Thus U' is an unitary operator. Moreover, for all $|w\rangle \in W$,

$$U'|w\rangle = \left(\sum_{i} |u_{i}\rangle\langle w_{i}| + \sum_{j} |u'_{j}\rangle\langle w'_{j}|\right)|w\rangle$$

$$= \sum_{i} |u_{i}\rangle\langle w_{i}|w\rangle + \sum_{j} |u'_{j}\rangle\langle w'_{j}|w\rangle$$

$$= \sum_{i} |u_{i}\rangle\langle w_{i}|w\rangle \quad (::|w'_{j}\rangle \perp |w\rangle)$$

$$= \sum_{i} U|w_{i}\rangle\langle w_{i}|w\rangle$$

$$= U|w\rangle.$$

Therefore U' is an extension of U.

$$|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

 $|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}.$ Suppose $|a\rangle = a_0 |0\rangle + a_1 |1\rangle$ and $|b\rangle = b_0 |0\rangle + b_1 |1\rangle.$

$$|a\rangle |b\rangle = a_0b_0 |00\rangle + a_0b_1 |01\rangle + a_1b_0 |10\rangle + a_1b_1 |11\rangle.$$

If $|\psi\rangle = |a\rangle |b\rangle$, then $a_0b_0 = 1$, $a_0b_1 = 0$, $a_1b_0 = 0$, $a_1b_1 = 1$ since $\{|ij\rangle\}$ is an orthonormal basis. If $a_0b_1 = 0$, then $a_0 = 0$ or $b_1 = 0$.

When $a_0 = 0$, this is contradiction to $a_0b_0 = 1$. When $b_1 = 0$, this is contradiction to $a_1b_1 = 1$. Thus $|\psi\rangle \neq |a\rangle |b\rangle$.

2.69) Define Bell states as follows.

$$|\psi_{1}\rangle \equiv \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

$$|\psi_{2}\rangle \equiv \frac{|00\rangle - |11\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}$$

$$|\psi_{3}\rangle \equiv \frac{|01\rangle + |10\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$

$$|\psi_{4}\rangle \equiv \frac{|01\rangle - |10\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix}$$

First, we prove $\{|\psi_i\rangle\}$ is a linearly independent basis.

$$a_{1} |\psi_{1}\rangle + a_{2} |\psi_{2}\rangle + a_{3} |\psi_{3}\rangle + a_{4} |\psi_{4}\rangle = 0$$

$$\therefore \frac{1}{\sqrt{2}} \begin{bmatrix} a_{1} + a_{2} \\ a_{3} + a_{4} \\ a_{3} - a_{4} \\ a_{1} - a_{2} \end{bmatrix} = 0$$

$$\therefore \begin{cases} a_1 + a_2 = 0 \\ a_3 + a_4 = 0 \\ a_3 - a_4 = 0 \\ a_1 - a_2 = 0 \end{cases}$$

$$\therefore a_1 = a_2 = a_3 = a_4 = 0$$

Thus $\{|\psi_i\rangle\}$ is a linearly independent basis.

Moreover $||\psi_i\rangle|| = 1$ and $\langle \psi_i | \psi_j \rangle = \delta_{ij}$ for i, j = 1, 2, 3, 4. Therefore $\{|\psi_i\rangle\}$ forms an orthonormal basis.

2.70)

For any Bell states we get $\langle \psi_i | E \otimes I | \psi_i \rangle = \frac{1}{2} (\langle 0 | E | 0 \rangle + \langle 1 | E | 1 \rangle).$

Suppose Eve measures the qubit Alice sent by measurement operators M_m . The probability that Eve gets result m is $p_i(m) = \langle \psi_i | M_m^{\dagger} M_m \otimes I | \psi_i \rangle$. Since $M_m^{\dagger} M_m$ is positive, $p_i(m)$ are same values for all $|\psi_i\rangle$. Thus Eve can't distinguish Bell states.

2.71)

From spectral decomposition,

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i} = 1.$$

$$\rho^{2} = \sum_{i,j} p_{i}p_{j} |i\rangle\langle i|j\rangle\langle j|$$

$$= \sum_{i,j} p_{i}p_{j} |i\rangle\langle j| \delta_{ij}$$

$$= \sum_{i} p_{i}^{2} |i\rangle\langle i|$$

$$\operatorname{Tr}(\rho^2) = \operatorname{Tr}\left(\sum_i p_i^2 |i\rangle\langle i|\right) = \sum_i p_i^2 \operatorname{Tr}(|i\rangle\langle i|) = \sum_i p_i^2 \langle i|i\rangle = \sum_i p_i^2 \leq \sum_i p_i = 1 \quad (\because p_i^2 \leq p_i)$$

Suppose $\text{Tr}(\rho^2) = 1$. Then $\sum_i p_i^2 = 1$. Since $p_i^2 < p_i$ for $0 < p_i < 1$, only single p_i should be 1 and otherwise have to vanish. Therefore $\rho = |\psi_i\rangle\langle\psi_i|$. It is a pure state.

Conversely if ρ is pure, then $\rho = |\psi\rangle\langle\psi|$.

$$\mathrm{Tr}(\rho^2) = \mathrm{Tr}(|\psi\rangle \left<\psi|\psi\rangle \left<\psi|\right) = \mathrm{Tr}(|\psi\rangle \left<\psi|\right) = \left<\psi|\psi\rangle = 1.$$

2.72)

(1) Since density matrix is Hermitian, matrix representation is $\rho = \begin{bmatrix} a & b \\ b^* & d \end{bmatrix}$, $a, d \in \mathbb{R}$ and $b \in \mathbb{C}$ w.r.t. standard basis. Because ρ is density matrix, $\text{Tr}(\rho) = a + d = 1$.

Define $a = (1 + r_3)/2$, $d = (1 - r_3)/2$ and $b = (r_1 - ir_2)/2$, $(r_i \in \mathbb{R})$. In this case,

$$\rho = \begin{bmatrix} a & b \\ b^* & d \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 + r_3 & r_1 - ir_2 \\ r_1 + ir_2 & 1 - r_3 \end{bmatrix} = \frac{1}{2} (I + \vec{r} \cdot \vec{\sigma}).$$

Thus for arbitrary density matrix ρ can be written as $\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$.

Next, we derive the condition that ρ is positive.

If ρ is positive, all eigenvalues of ρ should be non-negative.

$$\begin{split} \det(\rho - \lambda I) &= (a - \lambda)(b - \lambda) - |b|^2 = \lambda^2 - (a + d)\lambda + ad - |b^2| = 0 \\ \lambda &= \frac{(a + d) \pm \sqrt{(a + d)^2 - 4(ad - |b|^2)}}{2} \\ &= \frac{1 \pm \sqrt{1 - 4\left(\frac{1 - r_3^2}{4} - \frac{r_1^2 + r_2^2}{4}\right)}}{2} \\ &= \frac{1 \pm \sqrt{1 - (1 - r_1^2 - r_2^2 - r_3^2)}}{2} \\ &= \frac{1 \pm \sqrt{|\vec{r}|^2}}{2} \\ &= \frac{1 \pm |\vec{r}|}{2} \end{split}$$

Since ρ is positive, $\frac{1-|\vec{r}|}{2} \ge 0 \rightarrow |\vec{r}| \le 1$.

Therefore an arbitrary density matrix for a mixed state qubit is written as $\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$.

(2) $\rho = I/2 \rightarrow \vec{r} = 0. \text{ Thus } \rho = I/2 \text{ corresponds to the origin of Bloch sphere.}$

(3)

$$\begin{split} \rho^2 &= \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma}) \; \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma}) \\ &= \frac{1}{4} \left[I + 2\vec{r} \cdot \vec{\sigma} + \sum_{j,k} r_j r_k \left(\delta_{jk} I + i \sum_{l=1}^3 \epsilon_{jkl} \sigma_l \right) \right] \\ &= \frac{1}{4} \left(I + 2\vec{r} \cdot \vec{\sigma} + |\vec{r}|^2 I \right) \\ \operatorname{Tr}(\rho^2) &= \frac{1}{4} (2 + 2|\vec{r}|^2) \end{split}$$

If ρ is pure, then $Tr(\rho^2) = 1$.

$$1 = \text{Tr}(\rho^2) = \frac{1}{4}(2 + 2|\vec{r}|^2)$$
$$\therefore |\vec{r}| = 1.$$

Conversely, if $|\vec{r}|=1$, then $\text{Tr}(\rho^2)=\frac{1}{4}(2+2|\vec{r}|^2)=1$. Therefore ρ is pure.

2.73)

Theorem 2.6)

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| = \sum_{i} |\tilde{\psi}_{i}\rangle\langle\tilde{\psi}_{i}| = \sum_{j} |\tilde{\varphi}_{j}\rangle\langle\tilde{\varphi}_{j}| = \sum_{j} q_{j} |\varphi_{j}\rangle\langle\varphi_{j}| \quad \Leftrightarrow \quad |\tilde{\psi}_{i}\rangle = \sum_{j} u_{ij} |\tilde{\varphi}_{j}\rangle\langle\tilde{\varphi}_{j}|$$

where u is unitary.

The-transformation in theorem 2.6, $|\tilde{\psi}_i\rangle = \sum_j u_{ij} |\tilde{\varphi}_j\rangle$, corresponds to

$$\left[|\tilde{\psi}_1\rangle \cdots |\tilde{\psi}_k\rangle \right] = \left[|\tilde{\varphi}_1\rangle \cdots |\tilde{\varphi}_k\rangle \right] U^T$$

where $k = \operatorname{rank}(\rho)$.

$$\sum_{i} |\tilde{\psi}_{i}\rangle\langle\tilde{\psi}_{i}| = \left[|\tilde{\psi}_{1}\rangle\cdots|\tilde{\psi}_{k}\rangle\right] \begin{bmatrix} \langle\tilde{\psi}_{1}|\\ \vdots\\ \langle\tilde{\psi}_{k}| \end{bmatrix}$$
(2.6)

$$= \left[\left| \tilde{\varphi}_1 \right\rangle \cdots \left| \tilde{\varphi}_k \right\rangle \right] U^T U^* \begin{bmatrix} \left\langle \tilde{\varphi}_1 \right| \\ \vdots \\ \left\langle \tilde{\varphi}_k \right| \end{bmatrix}$$
 (2.7)

$$= \left[|\tilde{\varphi}_1\rangle \cdots |\tilde{\varphi}_k\rangle \right] \begin{bmatrix} \langle \tilde{\varphi}_1 | \\ \vdots \\ \langle \tilde{\varphi}_k | \end{bmatrix}$$
(2.8)

$$= \sum_{j} |\tilde{\varphi}_{j}\rangle\langle\tilde{\varphi}_{j}|. \tag{2.9}$$

From spectral theorem, density matrix ρ is decomposed as $\rho = \sum_{k=1}^d \lambda_k |k\rangle\langle k|$ where $d = \dim \mathcal{H}$. Without loss of generality, we can assume $p_k > 0$ for $k = 1 \cdots, l$ where $l = \operatorname{rank}(\rho)$ and $p_k = 0$ for $k = l + 1, \cdots, d$. Thus $\rho = \sum_{k=1}^l p_k |k\rangle\langle k| = \sum_{k=1}^l |\tilde{k}\rangle\langle \tilde{k}|$, where $|\tilde{k}\rangle = \sqrt{\lambda_k} |k\rangle$.

Suppose $|\psi_i\rangle$ is a state in support ρ . Then

$$|\psi_i\rangle = \sum_{k=1}^l c_{ik} |k\rangle, \quad \sum_k |c_{ik}|^2 = 1.$$

Define
$$p_i = \frac{1}{\sum_k \frac{|c_{ik}|^2}{\lambda_k}}$$
 and $u_{ik} = \frac{\sqrt{p_i}c_{ik}}{\sqrt{\lambda_k}}$.

Now

$$\sum_{k} |u_{ik}|^2 = \sum_{k} \frac{p_i |c_{ik}|^2}{\lambda_k} = p_i \sum_{k} \frac{|c_{ik}|^2}{\lambda_k} = 1.$$

Next prepare an unitary operator ¹ such that *i*th row of U is $[u_{i1} \cdots u_{ik} \cdots u_{il}]$. Then we can define another ensemble such that

$$\left[|\tilde{\psi}_1\rangle \cdots |\tilde{\psi}_l\rangle \cdots |\tilde{\psi}_l\rangle \right] = \left[|\tilde{k}_1\rangle \cdots |\tilde{k}_l\rangle \right] U^T$$

unitary
$$U = \begin{bmatrix} \boldsymbol{u}_1 \\ \vdots \\ \boldsymbol{u}_i \\ \vdots \\ \boldsymbol{u}_l \end{bmatrix}$$
.

¹By Gram-Schmidt procedure construct an orthonormal basis $\{u_j\}$ (row vector) with $u_i = [u_{i1} \cdots u_{ik} \cdots u_{il}]$. Then define

where $|\tilde{\psi}_i\rangle = \sqrt{p_i} |\psi_i\rangle$. From theorem 2.6,

$$\rho = \sum_{k} |\tilde{k}\rangle\langle\tilde{k}| = \sum_{k} |\tilde{\psi}_{k}\rangle\langle\tilde{\psi}_{k}|.$$

Therefore we can obtain a minimal ensemble for ρ that contains $|\psi_i\rangle$. Moreover since $\rho^{-1} = \sum_k \frac{1}{\lambda_k} |k\rangle\langle k|$,

$$\langle \psi_i | \rho^{-1} | \psi_i \rangle = \sum_k \frac{1}{\lambda_k} \langle \psi_i | k \rangle \langle k | \psi_i \rangle = \sum_k \frac{|c_{ik}|^2}{\lambda_k} = \frac{1}{p_i}.$$

Hence, $\frac{1}{\langle \psi_i | \rho^{-1} | \psi_i \rangle} = p_i$.

2.74)

$$\rho_{AB} = |a\rangle\langle a|_A \otimes |b\rangle\langle b|_B$$

$$\rho_A = \operatorname{Tr}_B \rho_{AB} = |a\rangle\langle a| \operatorname{Tr}(|b\rangle\langle b|) = |a\rangle\langle a|$$

$$\operatorname{Tr}(\rho_A^2) = 1$$

Thus ρ_A is pure.

2.75) Define
$$|\Phi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle)$$
 and $|\Psi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)$.
$$|\Phi_{\pm}\rangle\langle\Phi_{\pm}|_{AB} = \frac{1}{2}(|00\rangle\langle00| \pm |00\rangle\langle11| \pm |11\rangle\langle00| + |11\rangle\langle11|)$$

$$\operatorname{Tr}_{B}(|\Phi_{\pm}\rangle\langle\Phi_{\pm}|_{AB}) = \frac{1}{2}(|0\rangle\langle0| + |1\rangle\langle1|) = \frac{I}{2}$$

$$|\Psi_{\pm}\rangle\langle\Psi_{\pm}| = \frac{1}{2}(|01\rangle\langle01| \pm |01\rangle\langle10| \pm |10\rangle\langle01| + |10\rangle\langle10|)$$

$$\operatorname{Tr}_{B}(|\Psi_{\pm}\rangle\langle\Psi_{\pm}|) = \frac{1}{2}(|0\rangle\langle0| + |1\rangle\langle1|) = \frac{I}{2}$$

2.76)

Unsolved. I think the polar decomposition can only apply to square matrix A, not arbitrary linear operators. Suppose A is $m \times n$ matrix. Then size of $A^{\dagger}A$ is $n \times n$. Thus the size of U should be $m \times n$. Maybe U is isometry, but I think it is not unitary.

I misunderstand linear operator.

Quoted from "Advanced Liner Algebra" by Steven Roman, ISBN 0387247661.

A linear transformation $\tau: V \to V$ is called a **linear operator** on V^2 .

Thus coordinate matrices of linear operator are square matrices. And Nielsen and Chaung say at Theorem 2.3, "Let A be a linear operator on a vector space V." Therefore A is a linear transformation such that $A:V\to V$.

2.77)

$$\begin{split} |\psi\rangle &= |0\rangle |\Phi_{+}\rangle \\ &= |0\rangle \left[\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \right] \\ &= (\alpha |\phi_{0}\rangle + \beta |\phi_{1}\rangle) \left[\frac{1}{\sqrt{2}} (|\phi_{0}\phi_{0}\rangle + |\phi_{1}\phi_{1}\rangle) \right] \end{split}$$

 $^{^{2}}$ According to Roman, some authors use the term linear operator for any linear transformation from V to W.

where $|\phi_i\rangle$ are arbitrary orthonormal states and $\alpha, \beta \in \mathbb{C}$. We cannot vanish cross term. Therefore $|\psi\rangle$ cannot be written as $|\psi\rangle = \sum_i \lambda_i |i\rangle_A |i\rangle_B |i\rangle_C$.

2.78)

Proof. Former part.

If $|\psi\rangle$ is product, then there exist a state $|\phi_A\rangle$ for system A, and a state $|\phi_B\rangle$ for system B such that $|\psi\rangle = |\phi_A\rangle |\phi_B\rangle$.

Obviously, this Schmidt number is 1.

Conversely, if Schmidt number is 1, the state is written as $|\psi\rangle = |\phi_A\rangle |\phi_B\rangle$. Hence this is a product state.

Proof. Later part.

- (\Rightarrow) Proved by exercise 2.74.
- (\Leftarrow) Let a pure state be $|\psi\rangle = \sum_i \lambda_i |i_A\rangle |i_B\rangle$. Then $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|) = \sum_i \lambda_i^2 |i\rangle\langle i|$. If ρ_A is a pure state, then $\lambda_j = 1$ and otherwise 0 for some j. It follows that $|\psi_j\rangle = |j_A\rangle |j_B\rangle$. Thus $|\psi\rangle$ is a product state.

2.79)

Procedure of Schmidt decomposition.

Goal: $|\psi\rangle = \sum_{i} \sqrt{\lambda_i} |i_A\rangle |i_B\rangle$

- Diagonalize reduced density matrix $\rho_A = \sum_i \lambda_i |i_A\rangle\langle i_A|$.
- Derive $|i_B\rangle$, $|i_B\rangle = \frac{(I \otimes \langle i_A|) |\psi\rangle}{\sqrt{\lambda_i}}$
- Construct $|\psi\rangle$.

(i)

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 This is already decomposed.

(ii)
$$\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2} = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = |\psi\rangle |\psi\rangle \text{ where } |\psi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

(iii)

$$|\psi\rangle_{AB} = \frac{1}{\sqrt{3}}(|00\rangle + |01\rangle + |10\rangle)$$
$$\rho_{AB} = |\psi\rangle\langle\psi|_{AB}$$

$$\rho_A = \text{Tr}_B(\rho_{AB}) = \frac{1}{3} (2|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| + |1\rangle\langle 1|)$$
$$\det(\rho_A - \lambda I) = \left(\frac{2}{3} - \lambda\right) \left(\frac{1}{3} - \lambda\right) - \frac{1}{9} = 0$$
$$\lambda^2 - \lambda + \frac{1}{9} = 0$$
$$\lambda = \frac{1 \pm \sqrt{5}/3}{2} = \frac{3 \pm \sqrt{5}}{6}$$

Eigenvector with eigenvalue
$$\lambda_0 \equiv \frac{3+\sqrt{5}}{6}$$
 is $|\lambda_0\rangle \equiv \frac{1}{\sqrt{\frac{5+\sqrt{5}}{2}}} \begin{bmatrix} \frac{1+\sqrt{5}}{2} \\ 1 \end{bmatrix}$.

Eigenvector with eigenvalue
$$\lambda_1 \equiv \frac{3 - \sqrt{5}}{6}$$
 is $|\lambda_1\rangle \equiv \frac{1}{\sqrt{\frac{5 - \sqrt{5}}{2}}} \begin{bmatrix} \frac{1 - \sqrt{5}}{2} \\ 1 \end{bmatrix}$.

$$\rho_A = \lambda_0 |\lambda_0\rangle\langle\lambda_0| + \lambda_1 |\lambda_1\rangle\langle\lambda_1|.$$

$$|a_0\rangle \equiv \frac{(I \otimes \langle \lambda_0|) |\psi\rangle}{\sqrt{\lambda_0}}$$
$$|a_1\rangle \equiv \frac{(I \otimes \langle \lambda_1|) |\psi\rangle}{\sqrt{\lambda_1}}$$

Then

$$|\psi\rangle = \sum_{i=0}^{1} \sqrt{\lambda_i} |a_i\rangle |\lambda_i\rangle.$$

(It's too tiresome to calculate $|a_i\rangle$)

2.80)

Let $|\psi\rangle = \sum_{i} \lambda_{i} |\psi_{i}\rangle_{A} |\psi_{i}\rangle_{B}$ and $|\varphi\rangle = \sum_{i} \lambda_{i} |\varphi_{i}\rangle_{A} |\varphi_{i}\rangle_{B}$. Define $U = \sum_{i} |\psi_{j}\rangle\langle\varphi_{j}|_{A}$ and $V = \sum_{j} |\psi_{j}\rangle\langle\varphi_{j}|_{B}$. Then

$$(U \otimes V) |\varphi\rangle = \sum_{i} \lambda_{i} U |\varphi_{i}\rangle_{A} V |\varphi_{i}\rangle_{B}$$
$$= \sum_{i} \lambda_{i} |\psi_{i}\rangle_{A} |\psi_{i}\rangle_{B}$$
$$= |\psi\rangle.$$

2.81)

Let the Schmidt decomposition of $|AR_1\rangle$ be $|AR_1\rangle = \sum_i \sqrt{p_i} |\psi_i^A\rangle |\psi_i^R\rangle$ and let $|AR_2\rangle = \sum_i \sqrt{q_i} |\phi_i^A\rangle |\phi_i^R\rangle$. Suppose ρ^A has orthonormal decomposition $\rho^A = \sum_i p_i |i\rangle\langle i|$. Since $|AR_1\rangle$ and $|AR_2\rangle$ are purifications of the ρ^A , we have

$$\operatorname{Tr}_{R}(|AR_{1}\rangle\langle AR_{1}|) = \operatorname{Tr}_{R}(|AR_{2}\rangle\langle AR_{2}|) = \rho^{A}$$
$$\therefore \sum_{i} p_{i} |\psi_{i}^{A}\rangle\langle \psi_{i}^{A}| = \sum_{i} q_{i} |\phi_{i}^{A}\rangle\langle \phi_{i}^{A}| = \sum_{i} \lambda_{i} |i\rangle\langle i|.$$

The $|i\rangle$, $|\psi_i^A\rangle$, and $|\psi_i^A\rangle$ are orthonormal bases and they are eigenvectors of ρ^A . Hence without loss of generality, we can consider

$$\lambda_i = p_i = q_i \text{ and } |i\rangle = |\psi_i^A\rangle = |\phi_i^A\rangle.$$

Then

$$|AR_1\rangle = \sum_{i} \lambda_i |i\rangle |\psi_i^R\rangle$$
$$|AR_2\rangle = \sum_{i} \lambda_i |i\rangle |\phi_i^R\rangle$$

Since $|AR_1\rangle$ and $|AR_2\rangle$ have same Schmidt numbers, there are two unitary operators U and V such that $|AR_1\rangle = (U \otimes V) |AR_2\rangle$ from exercise 2.80.

Suppose U = I and $V = \sum_i |\psi_i^R\rangle\langle\phi_i^R|$. Then

$$\left(I \otimes \sum_{j} |\psi_{j}^{R}\rangle \langle \phi_{j}^{R}| \right) |AR_{2}\rangle = \sum_{i} \lambda_{i} |i\rangle \left(\sum_{j} |\psi_{j}^{R}\rangle \langle \phi_{j}^{R}| \phi_{i}^{R}\rangle \right)$$

$$= \sum_{i} \lambda_{i} |i\rangle |\psi_{i}^{R}\rangle$$

$$= |AR_{1}\rangle.$$

Therefore there exists a unitary transformation U_R acting on system R such that $|AR_1\rangle = (I \otimes U_R) |AR_2\rangle$.

2.82)

(1)

Let $|\psi\rangle = \sum_{i} \sqrt{p_i} |\psi_i\rangle |i\rangle$.

$$\operatorname{Tr}_{R}(|\psi\rangle\langle\psi|) = \sum_{i,j} \sqrt{p_{i}} \sqrt{p_{j}} |\psi_{i}\rangle\langle\psi_{j}| \operatorname{Tr}_{R}(|i\rangle\langle j|)$$

$$= \sum_{i,j} \sqrt{p_{i}} \sqrt{p_{j}} |\psi_{i}\rangle\langle\psi_{j}| \delta_{ij}$$

$$= \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}| = \rho.$$

Thus $|\psi\rangle$ is a purification of ρ .

(2)

Define the projector P by $P = I \otimes |i\rangle\langle i|$. The probability we get the result i is

$$\operatorname{Tr}\left[P|\psi\rangle\langle\psi|\right] = \langle\psi|P|\psi\rangle = \langle\psi|(I\otimes|i\rangle\langle i|)|\psi\rangle = p_i\,\langle\psi_i|\psi_i\rangle = p_i.$$

The post-measurement state is

$$\frac{P \left| \psi \right\rangle}{\sqrt{p_i}} = \frac{\left(I \otimes \left| i \right\rangle \left\langle i \right| \right) \left| \psi \right\rangle}{\sqrt{p_i}} = \frac{\sqrt{p_i} \left| \psi_i \right\rangle \left| i \right\rangle}{\sqrt{p_i}} = \left| \psi_i \right\rangle \left| i \right\rangle.$$

If we only focus on the state on system A,

$$\operatorname{Tr}_R(|\psi_i\rangle|i\rangle) = |\psi_i\rangle$$
.

(3)

 $(\{|\psi_i\rangle\})$ is not necessary an orthonormal basis.)

Suppose $|AR\rangle$ is a purification of ρ and its Schmidt decomposition is $|AR\rangle = \sum_i \sqrt{\lambda_i} |\phi_i^A\rangle |\phi_i^R\rangle$. From assumption

$$\operatorname{Tr}_{R}(|AR\rangle\langle AR|) = \sum_{i} \lambda_{i} |\phi_{i}^{A}\rangle\langle \phi_{i}^{A}| = \sum_{i} p_{i} |\psi_{i}\rangle\langle \psi_{i}|.$$

By theorem 2.6, there exits an unitary matrix u_{ij} such that $\sqrt{\lambda_i} |\phi_i^A\rangle = \sum_j u_{ij} \sqrt{p_j} |\psi_j\rangle$. Then

$$|AR\rangle = \sum_{i} \left(\sum_{j} u_{ij} \sqrt{p_{j}} |\psi_{j}\rangle \right) |\phi_{i}^{R}\rangle$$

$$= \sum_{j} \sqrt{p_{j}} |\psi_{j}\rangle \otimes \left(\sum_{i} u_{ij} |\phi_{i}^{R}\rangle \right)$$

$$= \sum_{j} \sqrt{p_{j}} |\psi_{j}\rangle |j\rangle$$

$$= \sum_{i} \sqrt{p_{i}} |\psi_{i}\rangle |i\rangle$$

where $|i\rangle = \sum_{k} u_{ki} |\phi_{k}^{R}\rangle$. About $|i\rangle$,

$$\langle k|l\rangle = \sum_{m,n} u_{mk}^* u_{nl} \langle \phi_m^R | \phi_n^R \rangle$$

$$= \sum_{m,n} u_{mk}^* u_{nl} \delta_{mn}$$

$$= \sum_{m} u_{mk}^* u_{ml}$$

$$= \delta_{kl}, \quad (\because u_{ij} \text{ is unitary.})$$

which implies $|j\rangle$ is an orthonormal basis for system R.

Therefore if we measure system R w.r.t $|j\rangle$, we obtain j with probability p_j and post-measurement state for A is $|\psi_j\rangle$ from (2). Thus for any purification $|AR\rangle$, there exists an orthonormal basis $|i\rangle$ which satisfies the assertion.

Problem 2.1)

From Exercise 2.35, $\vec{n} \cdot \vec{\sigma}$ is decomposed as

$$\vec{n} \cdot \vec{\sigma} = |\lambda_1\rangle\langle\lambda_1| - |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

where $|\lambda_{\pm 1}\rangle$ are eigenvector of $\vec{n} \cdot \vec{\sigma}$ with eigenvalues ± 1 . Thus

$$f(\theta \vec{n} \cdot \vec{\sigma}) = f(\theta) |\lambda_1\rangle\langle\lambda_1| + f(-\theta) |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

$$= \left(\frac{f(\theta) + f(-\theta)}{2} + \frac{f(\theta) - f(-\theta)}{2}\right) |\lambda_1\rangle\langle\lambda_1| + \left(\frac{f(\theta) + f(-\theta)}{2} - \frac{f(\theta) - f(-\theta)}{2}\right) |\lambda_{-1}\rangle\langle\lambda_{-1}|$$

$$= \frac{f(\theta) + f(-\theta)}{2} (|\lambda_1\rangle\langle\lambda_1| + |\lambda_{-1}\rangle\langle\lambda_{-1}|) + \frac{f(\theta) - f(-\theta)}{2} (|\lambda_1\rangle\langle\lambda_1| - |\lambda_{-1}\rangle\langle\lambda_{-1}|)$$

$$= \frac{f(\theta) + f(-\theta)}{2} I + \frac{f(\theta) - f(-\theta)}{2} \vec{n} \cdot \vec{\sigma}$$

Problem 2.2) Unsolved

Problem 2.3) Unsolved

Chapter 8

Quantum noise and quantum operations

- **8.1)** Density operator of initial state is written by $|\psi\rangle\langle\psi|$ and final state is written by $U|\psi\rangle\langle\psi|U^{\dagger}$. Thus time development of $\rho = |\psi\rangle\langle\psi|$ can be written by $\mathcal{E}(\rho) = U\rho U^{\dagger}$.
- **8.2)** From eqn (2.147) (on page 100),

$$\rho_m = \frac{M_m \rho M_m^{\dagger}}{\operatorname{Tr}(M_m^{\dagger} M_m \rho)} = \frac{M_m \rho M_m^{\dagger}}{\operatorname{Tr}(M_m \rho M_m^{\dagger})} = \frac{\mathcal{E}_m(\rho)}{\operatorname{Tr} \mathcal{E}_m(\rho)}.$$

And from eqn (2.143) (on page 99), $p(m) = \text{Tr}(M_m^{\dagger} M_m \rho) = \text{Tr}(M_m \rho M_m^{\dagger}) = \text{Tr} \mathcal{E}_m(\rho)$.

- 8.3)
- 8.4)
- 8.5)
- 8.6)
- 8.7)
- 8.8) 8.9)
- 8.10)
- 8.11)
- 8.12)
- 8.13)
- 8.14)
- 8.15)
- 8.16)
- 8.17)
- 8.18)
- 8.19)
- 8.20)
- 8.21)
- 8.22)
- 8.23)
- 8.24)
- 8.25) 8.26)
- 8.27)
- 8.28)
- 8.29)

- 8.30)
- 8.31)
- 8.32)
- 8.33)
- 8.34)
- 8.35)

Chapter 9

Distance measures for quantum information

9.1)

$$D((1,0), (1/2, 1/2)) = \frac{1}{2} (|1 - 1/2| + |0 - 1/2|)$$
$$= \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right)$$
$$= \frac{1}{2}$$

$$D((1/2, 1/3, 1/6), (3/4, 1/8, 1/8)) = \frac{1}{2}(|1/2 - 3/4| + |1/3 - 1/8| + |1/6 - 1/8|)$$
$$= \frac{1}{2}(1/4 + 5/24 + 1/24)$$
$$= \frac{1}{4}$$

9.2)

$$D((p, 1-p), (q, 1-q)) = \frac{1}{2}(|p-q| + |(1-p) - (1-q)|)$$
$$= \frac{1}{2}(|p-q| + |-p+q|)$$
$$= |p-q|$$

9.3)

$$F((1,0),(1/2,1/2)) = \sqrt{1 \cdot 1/2} + \sqrt{0 \cdot 1/2} = \frac{1}{\sqrt{2}}$$

$$F\left((1/2, 1/3, 1/6), (3/4, 1/8, 1/8)\right) = \sqrt{1/2 \cdot 3/4} + \sqrt{1/3 \cdot 1/8} + \sqrt{1/6 \cdot 1/8}$$
$$= \frac{4\sqrt{6} + \sqrt{3}}{12}$$

9.4)

Define $r_x = p_x - q_x$. Let *U* be the whole index set.

$$\max_{S} |p(S) - q(S)| = \max_{S} \left| \sum_{x \in S} p_x - \sum_{x \in S} q_x \right|$$
$$= \max_{S} \left| \sum_{x \in S} (p_x - q_x) \right|$$
$$= \max_{S} \left| \sum_{x \in S} r_x \right|$$

Since $\sum_{x \in S} r_x$ is written as

$$\sum_{x \in S} r_x = \sum_{\substack{x \in S \\ r_x \ge 0}} r_x + \sum_{\substack{x \in S \\ r_x < 0}} r_x, \tag{9.1}$$

$$\begin{split} \left| \sum_{x \in S} r_x \right| \text{ is maximized when } S &= \{x \in U | r_x \geq 0\} \text{ or } S = \{x \in U | r_x < 0\}. \\ \text{Define } S_+ &= \{x \in U | r_x \geq 0\} \text{ and } S_- &= \{x \in U | r_x < 0\}. \\ \text{Now the sum of all } r_x \text{ is } 0, \end{split}$$

$$\sum_{x \in U} r_x = \sum_{x \in S_+} r_x + \sum_{x \in S_-} r_x = 0$$
$$\therefore \sum_{x \in S_+} r_x = -\sum_{x \in S_-} r_x.$$

Thus

$$\max_{S} \left| \sum_{x \in S} r_x \right| = \sum_{x \in S_+} r_x = -\sum_{x \in S_-} r_x. \tag{9.2}$$

On the other hand,

$$D(p_x, q_x) = \frac{1}{2} \sum_{x \in U} |p_x - q_x|$$

$$= \frac{1}{2} \sum_{x \in U} |r_x|$$

$$= \frac{1}{2} \sum_{x \in S_+} |r_x| + \frac{1}{2} \sum_{x \in S_-} |r_x|$$

$$= \frac{1}{2} \sum_{x \in S_+} r_x - \frac{1}{2} \sum_{x \in S_-} r_x$$

$$= \frac{1}{2} \sum_{x \in S_+} r_x + \frac{1}{2} \sum_{x \in S_+} r_x \quad (\because \text{eqn}(??))$$

$$= \sum_{x \in S_+} r_x$$

$$= \max_{S} \left| \sum_{x \in S} r_x \right|.$$

Therefore $D(p_x, q_x) = \max_S \left| \sum_{x \in S} p_x - \sum_{x \in S} q_x \right| = \max_S |p(S) - q(S)|$.

9.5) From eqn (??) and (??), maximizing $\left|\sum_{x\in S} r_x\right|$ is equivalent to maximizing $\sum_{x\in S} r_x$.

Hence

$$D(p_x, q_x) = \max_{S} (p(S) - q(S)) = \max_{S} \left(\sum_{x \in S} p_x - \sum_{x \in S} q_x \right).$$

9.6)

Define $\rho = \frac{3}{4} |0\rangle\langle 0| + \frac{1}{4} |1\rangle\langle 1|, \ \sigma = \frac{2}{3} |1\rangle\langle 1| + \frac{1}{3} |1\rangle\langle 1|.$

$$D(\rho, \sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma|$$

$$= D((3/4, 1/4), (2/3, 1/3))$$

$$= \frac{1}{2} \left(\left| \frac{3}{4} - \frac{2}{3} \right| + \left| \frac{1}{4} - \frac{1}{3} \right| \right)$$

$$= \frac{1}{2} \left(\frac{1}{12} + \frac{1}{12} \right)$$

$$= \frac{1}{12}$$

Define $\rho = \frac{3}{4} |0\rangle\langle 0| + \frac{1}{4} |1\rangle\langle 1|$, $\sigma = \frac{2}{3} |+\rangle\langle +| + \frac{1}{3} |-\rangle\langle -|$.

$$|+\rangle\langle +| = \frac{1}{2}(|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| + |1\rangle\langle 1|)$$
$$|-\rangle\langle -| = \frac{1}{2}(|0\rangle\langle 0| - |0\rangle\langle 1| - |1\rangle\langle 0| + |1\rangle\langle 1|)$$

$$\begin{split} \rho - \sigma &= \left(\frac{3}{4} - \frac{1}{2}\right)|0\rangle\langle 0| - \frac{1}{6}(|0\rangle\langle 1| + |1\rangle\langle 0|) + \left(\frac{1}{4} - \frac{1}{2}\right)|1\rangle\langle 1| \\ &= \frac{1}{4}|0\rangle\langle 0| - \frac{1}{6}(|0\rangle\langle 1| + |1\rangle\langle 0|) - \frac{1}{4}|1\rangle\langle 1| \end{split}$$

$$\begin{split} (\rho - \sigma)^{\dagger}(\rho - \sigma) &= \frac{1}{4^2} \, |0\rangle\langle 0| - \frac{1}{4 \cdot 6} \, |0\rangle\langle 1| + \frac{1}{6^2} \, |0\rangle\langle 0| + \frac{1}{6 \cdot 4} \, |0\rangle\langle 1| - \frac{1}{4 \cdot 6} \, |1\rangle\langle 0| + \frac{1}{6^2} \, |1\rangle\langle 1| + \frac{1}{4 \cdot 6} \, |1\rangle\langle 0| + \frac{1}{4^2} \, |1\rangle\langle 1| \\ &= \left(\frac{1}{4^2} + \frac{1}{6^2}\right) (|0\rangle\langle 0| + |1\rangle\langle 1|) \end{split}$$

$$D(\rho, \sigma) = \frac{1}{2} \operatorname{Tr} |\rho - \sigma|$$
$$= \sqrt{\frac{1}{4^2} + \frac{1}{6^2}}$$

9.7)

Since $\rho - \sigma$ is Hermitian, we can apply spectral decomposition. Then $\rho - \sigma$ is written as

$$\rho - \sigma = \sum_{i=1}^{k} \lambda_i |i\rangle\langle i| + \sum_{i=k+1}^{n} \lambda_i |i\rangle\langle i|$$

where λ_i are positive eigenvalues for $i=1,\cdots,k$ and negative eigenvalues for $i=k+1,\cdots,n$.

Define $Q = \sum_{i=1}^k \lambda_i |i\rangle\langle i|$ and $S = -\sum_{i=k+1}^n \lambda_i |i\rangle\langle i|$. Then P and S are positive operator. Therefore $\rho - \sigma = P - S$.

Proof of $|\rho - \sigma| = Q + S$.

$$\begin{split} |\rho - \sigma| &= |Q - S| \\ &= \sqrt{(Q - S)^{\dagger}(Q - S)} \\ &= \sqrt{(Q - S)^2} \\ &= \sqrt{Q^2 - QS - SQ + S^2} \\ &= \sqrt{Q^2 + S^2} \\ &= \sqrt{\sum_i \lambda_i^2 |i\rangle\langle i|} \\ &= \sum_i |\lambda_i| \, |i\rangle\langle i| \\ &= Q + S \end{split}$$

9.8)

Suppose $\sigma = \sigma_i$. Then $\sigma = \sum_i p_i \sigma_i$.

$$D\left(\sum_{i} p_{i} \rho_{i}, \sigma\right) = D\left(\sum_{i} p_{i} \rho_{i}, \sum_{i} p_{i} \sigma_{i}\right)$$

$$(9.3)$$

$$\leq \sum_{i} p_i D(\rho_i, \sigma_i) \quad (\because \text{eqn}(9.50))$$
 (9.4)

$$= \sum_{i} p_i D(\rho_i, \sigma). \quad (\because \text{ assumption}). \tag{9.5}$$

9.9)

9.10)

9.11)

9.12)

Suppose $\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$ and $\sigma = \frac{1}{2}(I + \vec{s} \cdot \vec{\sigma})$ where \vec{v} and \vec{s} are real vectors s.t. $|\vec{v}|, |\vec{s}| \leq 1$.

$$\mathcal{E}(\rho) = p\frac{I}{2} + (1-p)\rho, \quad \mathcal{E}(\sigma) = p\frac{I}{2} + (1-p)\sigma.$$

$$D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) = \frac{1}{2} \operatorname{Tr} |\mathcal{E}(\rho) - \mathcal{E}(\sigma)|$$

$$= \frac{1}{2} \operatorname{Tr} |(1 - p)(\rho - \sigma)|$$

$$= \frac{1}{2} (1 - p) \operatorname{Tr} |\rho - \sigma|$$

$$= (1 - p)D(\rho, \sigma)$$

$$= (1 - p)\frac{|\vec{r} - \vec{s}|}{2}$$

Is this strictly contractive?

9.13)

Bit flip channel $E_0 = \sqrt{pI}$, $E_1 = \sqrt{1-p}\sigma_x$.

$$\mathcal{E}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$$

= $p\rho + (1-p)\sigma_x \rho \sigma_x$.

Since $\sigma_x \sigma_x \sigma_x = \sigma_x$, $\sigma_x \sigma_y \sigma_x = -\sigma_y$ and $\sigma_x \sigma_z \sigma_x = -\sigma_z$, then $\sigma_x(\vec{r} \cdot \vec{\sigma}) = r_1 \sigma_x - r_2 \sigma_y - r_3 \sigma_3$. Thus

$$\begin{split} D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) &= \frac{1}{2} \operatorname{Tr} |\mathcal{E}(\rho) - \mathcal{E}(\sigma)| \\ &= \frac{1}{2} \operatorname{Tr} |p(\rho - \sigma) + (1 - p)(\sigma_x \rho \sigma_x - \sigma_x \sigma \sigma_x)| \\ &\leq \frac{1}{2} p \operatorname{Tr} |\rho - \sigma| + \frac{1}{2} (1 - p) \operatorname{Tr} |\sigma_x (\rho - \sigma) \sigma_x| \\ &= p D(\rho, \sigma) + (1 - p) D(\sigma_x \rho \sigma_x, \sigma_x \sigma \sigma_x) \\ &= D(\rho, \sigma) \quad (\because \operatorname{eqn}(9.21)). \end{split}$$

Suppose $\rho_0 = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$ is a fixed point. Then

$$\rho_0 = \mathcal{E}(\rho_0) = p\rho_0 + (1-p)\sigma_x\rho_0\sigma_x$$

$$\therefore (1-p)\rho_0 - (1-p)\sigma_x\rho_0\sigma_x = 0$$

$$\therefore (1-p)(\rho - \sigma_x\rho_0\sigma_x) = 0$$

$$\therefore \rho_0 = \sigma_x\rho_0\sigma_x$$

$$\therefore \frac{1}{2}(I + r_1\sigma_x + r_2\sigma_y + r_3\sigma_z)\frac{1}{2}(I + r_1\sigma_x - r_2\sigma_y - r_3\sigma_z)$$

Since $\{I, \sigma_x, \sigma_y, \sigma_z\}$ are linearly independent, $r_2 = -r_2$ and $r_3 = -r_3$. Thus $r_2 = r_3 = 0$. Therefore the set of fixed points for the bit flip channel is $\{\rho \mid \rho = \frac{1}{2}(I + r\sigma_x), |r| \leq 1, r \in \mathbb{R}\}$

9.14)

$$F(U\rho U^{\dagger}, U\sigma U^{\dagger}) = \operatorname{Tr} \sqrt{(U\rho U^{\dagger})^{1/2}\sigma(U\rho U^{\dagger})}$$

$$= \operatorname{Tr} \sqrt{U\rho^{1/2}\sigma\rho^{1/2}U^{\dagger}}$$

$$= \operatorname{Tr}(U\sqrt{\rho^{1/2}\sigma\rho^{1/2}}U^{\dagger})$$

$$= \operatorname{Tr}(\sqrt{\rho^{1/2}\sigma\rho^{1/2}}U^{\dagger}U)$$

$$= \operatorname{Tr}\sqrt{\rho^{1/2}\sigma\rho^{1/2}}$$

$$= F(\rho, \sigma)$$

I think the fact $\sqrt{UAU^{\dagger}} = U\sqrt{A}U^{\dagger}$ is not restricted for positive operator. Suppose A is a normal matrix. From spectral theorem, it is decomposed as

$$A = \sum_{i} a_i |i\rangle\langle i|.$$

Let f be a function. Then

$$f(UAU^{\dagger}) = f(\sum_{i} a_{i}U |i\rangle\langle i| U^{\dagger})$$

$$= \sum_{i} f(a_{i})U |i\rangle\langle i| U^{\dagger}$$

$$= U(\sum_{i} f(a_{i})U |i\rangle\langle i| U^{\dagger})U^{\dagger}$$

$$= Uf(A)U^{\dagger}$$

9.15) $|\psi\rangle = (U_R \otimes \sqrt{\rho} U_Q) |m\rangle$ is any fixed purification of ρ , and $|\phi\rangle = (V_R \otimes \sqrt{\sigma} V_Q) |m\rangle$ is purification of σ . Suppose $\sqrt{\rho}\sqrt{\sigma} = |\sqrt{\rho}\sqrt{\sigma}|V$ is the polar decomposition of $\sqrt{\rho}\sqrt{\sigma}$. Then

$$|\langle \psi | \phi \rangle| = \left| \langle m | \left(U_R^{\dagger} V_R \otimes U_Q^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_Q \right) | m \rangle \right|$$

$$= \left| \text{Tr} \left((U_R^{\dagger} V_R)^T U_Q^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_Q \right) \right|$$

$$= \left| \text{Tr} \left(V_R^T U_R^* U_Q^{\dagger} \sqrt{\rho} \sqrt{\sigma} V_Q \right) \right|$$

$$= \left| \text{Tr} \left(V_Q V_R^T U_R^* U_Q^{\dagger} \sqrt{\rho} \sqrt{\sigma} \right) \right|$$

$$= \left| \text{Tr} \left(V_Q V_R^T U_R^* U_Q^{\dagger} | \sqrt{\rho} \sqrt{\sigma} | V \right) \right|$$

$$= \left| \text{Tr} \left(V V_Q V_R^T U_R^* U_Q^{\dagger} | \sqrt{\rho} \sqrt{\sigma} | V \right) \right|$$

$$\leq \text{Tr} \left| \sqrt{\rho} \sqrt{\sigma} \right|$$

$$= F(\rho, \sigma)$$

Choosing $V_Q = V^{\dagger}$, $V_R^T = (U_Q^* U_R^{\dagger})^{\dagger}$ we see that equality is attained.

9.16) I think eq (9.73) has a typo. $\operatorname{Tr}(A^{\dagger}B) = \langle m|A \otimes B|m \rangle$ should be $\operatorname{Tr}(A^{\mathbf{T}}B) = \langle m|A \otimes B|m \rangle$. See errata list.

In order to show that this exercise, I will prove following two properties,

$$\operatorname{Tr}(A) = \langle m | (I \otimes A) | m \rangle, \quad (I \otimes A) | m \rangle = (A^T \otimes I) | m \rangle$$

where A is a linear operator and $|m\rangle$ is unnormalized maximally entangled state, $|m\rangle = \sum_{i} |ii\rangle$.

$$\langle m|I \otimes A|m \rangle = \sum_{ij} \langle ii|(I \otimes A)|jj \rangle$$

$$= \sum_{ij} \langle i|I|j \rangle \langle i|A|j \rangle$$

$$= \sum_{ij} \delta_{ij} \langle i|A|j \rangle$$

$$= \sum_{i} \langle i|A|i \rangle$$

$$= \text{Tr}(A)$$

Suppose $A = \sum_{ij} a_{ij} |i\rangle\langle j|$.

$$(I \otimes A) |m\rangle = \left(I \otimes \sum_{ij} a_{ij} |i\rangle\langle j| \right) \sum_{k} |kk\rangle$$

$$= \sum_{ijk} a_{ij} |k\rangle \otimes |i\rangle \langle j|k\rangle$$

$$= \sum_{ijk} a_{ij} |k\rangle \otimes |i\rangle \delta_{jk}$$

$$= \sum_{ij} a_{ij} |j\rangle \otimes |i\rangle$$

$$= \sum_{ij} a_{ji} |i\rangle \otimes |j\rangle$$

$$(A^{T} \otimes I) |m\rangle = \left(\sum_{ij} a_{ji} |i\rangle\langle j| \otimes I\right) \sum_{k} |kk\rangle$$

$$= \sum_{ij} a_{ji} |i\rangle\langle j|k\rangle \otimes |k\rangle$$

$$= \sum_{ij} a_{ji} |i\rangle\langle j|k\rangle \otimes |k\rangle$$

$$= \sum_{ij} a_{ji} |ij\rangle$$

$$= (I \otimes A) |m\rangle$$

Thus

$$\operatorname{Tr}(A^T B) = \operatorname{Tr}(BA^T) = \langle m | I \otimes BA^T | m \rangle$$

$$= \langle m | (I \otimes B)(I \otimes A^T) | m \rangle$$

$$= \langle m | (I \otimes B)(A \otimes I) | m \rangle$$

$$= \langle m | A \otimes B | m \rangle.$$

9.17) If $\rho = \sigma$, then $F(\rho, \sigma) = 1$. Thus $A(\rho, \sigma) = \arccos F(\rho, \sigma) = \arccos 1 = 0$. If $A(\rho, \sigma) = 0$, then $\arccos F(\rho, \sigma) = 0 \Rightarrow \cos(\arccos F(\rho, \sigma)) = \cos(0) \Rightarrow F(\rho, \sigma) = 1$ (: text p.411, the fifth line from bottom).

9.18) For $0 \le x \le y \le 1$, $\arccos(x) \ge \arccos(y)$. From $F(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \ge F(\rho, \sigma)$ and $0 \le F(\mathcal{E}(\rho), \mathcal{E}(\sigma))$, $F(\rho, \sigma) \le 1$,

$$\arccos F(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \ge \arccos F(\rho, \sigma)$$
$$\therefore A(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \ge A(\rho, \sigma)$$

9.19) From eq (9.92)

$$F\left(\sum_{i} p_{i} \rho_{i}, \sum_{i} p_{i} \sigma_{i}\right) \geq \sum_{i} \sqrt{p_{i} p_{i}} F(\rho_{i}, \sigma_{i})$$
$$= \sum_{i} p_{i} F(\rho_{i}, \sigma_{i}).$$

9.20) Suppose $\sigma_i = \sigma$. Then

$$F\left(\sum_{i} p_{i}\rho_{i}, \sigma\right) = F\left(\sum_{i} p_{i}\rho_{i}, \sum_{i} p_{i}\sigma\right)$$

$$= F\left(\sum_{i} p_{i}\rho_{i}, \sum_{i} p_{i}\sigma_{i}\right)$$

$$\geq \sum_{i} p_{i}F(\rho_{i}, \sigma_{i}) \quad (\because \text{Exercise 9.19})$$

$$= \sum_{i} p_{i}F(\rho_{i}, \sigma)$$

9.21)

$$1 - F(|\psi\rangle, \sigma)^2 = 1 - \langle \psi | \sigma | \psi \rangle \quad (\because eq(9.60))$$

$$D(|\psi\rangle, \sigma) = \max_{P} \operatorname{Tr}(P(\rho - \sigma)) \text{ (where } P \text{ is projector.)}$$

$$\geq \operatorname{Tr}(|\psi\rangle\langle\psi|(\rho - \sigma))$$

$$= \langle\psi|(|\psi\rangle\langle\psi| - \sigma)|\psi\rangle$$

$$= 1 - \langle\psi|\sigma|\psi\rangle$$

$$= 1 - F(|\psi\rangle, \sigma)^{2}.$$

9.22) (ref: QCQI Exercise Solutions (Chapter 9) - めもめも http://enakai00.hatenablog.com/entry/2018/04/12/134722) For all ρ, following inequality is satisfied,

$$d(VU\rho U^{\dagger}V^{\dagger}, \mathcal{F} \circ \mathcal{E}(\rho)) \leq d(VU\rho U^{\dagger}V^{\dagger}, \mathcal{F}(U\rho U^{\dagger})) + d(\mathcal{F}(U\rho U^{\dagger}), \mathcal{F} \circ \mathcal{E}(\rho))$$

$$\leq d(VU\rho U^{\dagger}V^{\dagger}) + d(U\rho U^{\dagger}, \mathcal{E}(\rho))$$

$$\leq E(V, \mathcal{F}) + E(U, \mathcal{E}).$$

First inequality is triangular inequality, second is contractivity of the metric¹ and third is from definition of E.

Trace distance and angle are satisfied with contractive (eq (9.35), eq (9.91)), but I don't assure that arbitrary metric satisfied with contractive.

Above inequality is hold for all ρ . Thus $E(VU, \mathcal{F} \circ \mathcal{E}) \leq E(V, \mathcal{F}) + E(U, \mathcal{E})$.

9.23) (\Leftarrow) If $\mathcal{E}(\rho_j) = \rho_j$ for all j such that $p_j > 0$, then

$$\bar{F} = \sum_{j} p_j F(\rho_j, \mathcal{E}(\rho_j))^2 = \sum_{j} p_j F(\rho_j, \rho_j)^2 = \sum_{j} p_j 1^2 = \sum_{j} p_j = 1.$$

 (\Rightarrow) Suppose $\mathcal{E}(\rho_j) \neq \rho_j$. Then $F(\rho_j, \mathcal{E}(\rho_j)) < 1$ (: text p.411, the fifth line from bottom). Thus

$$\bar{F} = \sum_{j} p_j F(\rho_j, \mathcal{E}(\rho_j))^2 < \sum_{j} p_j = 1.$$

Therefore if $\bar{F} = 1$, then $\mathcal{E}(\rho_j) = \rho_j$.

Problem 1)

Problem 2)

Problem 3) Theorem 5.3 of "Theory of Quantum Error Correction for General Noise", Emanuel Knill, Raymond Laflamme, and Lorenza Viola, Phys. Rev. Lett. 84, 2525 – Published 13 March 2000. arXiv:quant-ph/9604034 https://arxiv.org/abs/quant-ph/9604034

Chapter 11

Entropy and information

11.1) Fair coin:

$$H(1/2, 1/2) = \left(-\frac{1}{2}\log\frac{1}{2}\right) \times 2 = 1$$
 (11.1)

Fair die:

$$H(p) = \left(-\frac{1}{6}\log\frac{1}{6}\right) \times 6 = \log 6.$$
 (11.2)

The entropy decreases if the coin or die is unfair.

11.2)

From assumption I(pq) = I(p) + I(q).

$$\frac{\partial I(pq)}{\partial p} = \frac{\partial I(p)}{\partial p} + 0 = \frac{\partial I(p)}{\partial p} \tag{11.3}$$

$$\frac{\partial I(pq)}{\partial q} = 0 + \frac{\partial I(q)}{\partial q} = \frac{\partial I(q)}{\partial q} \tag{11.4}$$

$$\frac{\partial I(pq)}{\partial p} = \frac{\partial I(pq)}{\partial (pq)} \frac{\partial (pq)}{\partial p} = q \frac{\partial I(pq)}{\partial (pq)} \Rightarrow \frac{\partial I(pq)}{\partial (pq)} = \frac{1}{q} \frac{\partial I(p)}{\partial p}$$
(11.5)

$$\frac{\partial I(pq)}{\partial q} = \frac{\partial I(pq)}{\partial (pq)} \frac{\partial (pq)}{\partial q} = p \frac{\partial I(pq)}{\partial (pq)} \Rightarrow \frac{\partial I(pq)}{\partial (pq)} = \frac{1}{p} \frac{\partial I(q)}{\partial q}$$
(11.6)

Thus

$$\frac{1}{q}\frac{\partial I(p)}{\partial p} = \frac{1}{p}\frac{\partial I(q)}{\partial q} \tag{11.7}$$

$$\therefore p \frac{dI(p)}{dp} = q \frac{dI(q)}{dq} \quad \text{for all } p, q \in [0, 1].$$
 (11.8)

(11.9)

Then p(dI(p)/dp) is constant.

If p(dI(p)/dp) = k, $k \in \mathbb{R}$. Then $I(p) = k \ln p = k' \log p$ where $k' = k/\log e$.

11.3)
$$H_{\text{bin}}(p) = -p \log p - (1-p) \log(1-p).$$

$$\frac{dH_{\text{bin}}(p)}{dp} = \frac{1}{\ln 2} \left(-\log p - 1 + \log(1-p) + 1 \right) \tag{11.10}$$

$$= \frac{1}{\ln 2} \ln \frac{1-p}{p} = 0 \tag{11.11}$$

$$\Rightarrow \frac{1-p}{p} = 1\tag{11.12}$$

$$\Rightarrow p = 1/2. \tag{11.13}$$

11.4)

11.5)

$$H(p(x,y)||p(x)p(y)) = \sum_{x,y} p(x,y) \log \frac{p(x)p(y)}{p(x,y)}$$
(11.14)

$$= -H(p(x,y)) - \sum_{x,y} p(x,y) \log [p(x)p(y)]$$
 (11.15)

$$= -H(p(x,y)) - \sum_{x,y} p(x,y) \left[\log p(x) + \log p(y) \right]$$
 (11.16)

$$= -H(p(x,y)) - \sum_{x,y} p(x,y) \log p(x) - \sum_{x,y} p(x,y) \log p(y)$$
 (11.17)

$$= -H(p(x,y)) - \sum_{x} p(x) \log p(x) - \sum_{y} p(y) \log p(y)$$
 (11.18)

$$= -H(p(x,y)) + H(p(x)) + H(p(y))$$
(11.19)

$$= -H(X,Y) + H(X) + H(Y). (11.20)$$

From the non-negativity of the relative entropy,

$$H(X) + H(Y) - H(X,Y) \ge 0$$
 (11.21)

$$\therefore H(X) + H(Y) \ge H(X, Y). \tag{11.22}$$

11.6)

$$H(Y) + H(X, Y, Z) - H(X, Y) - H(Y, Z) = \sum_{x,y,z} p(x, y, z) \log(p(x, y)p(y, z)/p(y)p(x, y, z))$$
(11.23)

$$\geq \frac{1}{\ln 2} \sum_{x,y,z} p(x,y,z) \left[1 - p(x,y)p(y,z) / p(y)p(x,y,z) \right] \quad (11.24)$$

$$=\frac{1-1}{\ln 2}=0\tag{11.25}$$

The equality occurs if and only if p(x,y)p(y,z)/p(y)p(x,y,z)=1, which means a Markov chain condition of $Z \to Y \to X$; p(x|y)=p(x|y,z)

- 11.7)
- 11.8)
- 11.9)
- 11.10)
- 11.11)
- 11.12)

11.13)

11.14)

11.15)

11.16)

11.17)

11.18)

11.19)

11.20)

11.21)

11.22)

11.23)

11.24)

11.25)

11.26)

Problem 11.1)

Problem 11.2)

Problem 11.3)

Problem 11.4)

Problem 11.5)

12.31) Eve makes her qubits entangled with $|\beta_{00}\rangle$, and gets ρ^E .

$$|ABE\rangle = U |\beta_{00}^{\otimes n}\rangle |0\rangle_E \tag{11.26}$$

$$\rho^{E} = tr_{AB}(|ABE\rangle \langle ABE|) \tag{11.27}$$

Note that Eve's mutual information with Alice and Bob measurements does not depend on whether Eve measures ρ^E before Alice and Bob's measurement or after. So we can assume that Eve measures ρ^E after Alice and Bob's measurement. Alice and Bob measure their Bell state, getting binary string \vec{k} as an outcome. Let ρ_k^E and p_k are the corresponding Eve's states and probabilities. Note,

$$\rho_E = \sum_k p_k \rho_k^E. \tag{11.28}$$

Let K is a variable of \vec{k} and e is an outcom of a measurement of ρ^E , and E is its variable. From Holevo bound,

$$H(K:E) \le S(\rho^E) - \sum_k p_k \rho_k^E \le S(\rho^E) = S(\rho).$$
 (11.29)