CS 33

Data Representation (Part 3)

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers

- bits to right of "binary point" represent fractional powers of 2
- represents rational number: $\sum_{k=1}^{\infty} b_k imes 2^k$

Representable Numbers

- Limitation #1
 - can exactly represent only numbers of the form n/2^k
 - » other rational numbers have repeating bit representations

```
value representation
3 1/3 0.0101010101[01]...2
1/5 0.001100110011[0011]...2
1/10 0.0001100110011[0011]...2
```

Limitation #2

- just one setting of decimal point within the w bits
 - » limited range of numbers (very small values? very large?)

IEEE Floating Point

- IEEE Standard 754
 - established in 1985 as uniform standard for floating point arithmetic
 - » before that, many idiosyncratic formats
 - supported by all major CPUs
- Driven by numerical concerns
 - nice standards for rounding, overflow, underflow
 - hard to make fast in hardware
 - » numerical analysts predominated over hardware designers in defining standard

Floating-Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- sign bit s determines whether number is negative or positive
- significand M normally a fractional value in range [1.0,2.0)
- exponent *E* weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes *E* (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	64-bits

"Normalized" Values

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - exp: unsigned value exp
 - bias = 2^{k-1} 1, where k is number of exponent bits
 - » single precision: 127 (Exp: 1...254, E: -126...127)
 - » double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - minimum when frac=000...0 (M = 1.0)
 - maximum when frac=111...1 ($M = 2.0 \epsilon$)
 - get extra leading bit for "free"

Normalized Encoding Example

```
• Value: float F = 15213.0;

- 15213<sub>10</sub> = 11101101101101<sub>2</sub>

= 1.1101101101101<sub>2</sub> x 2<sup>13</sup>
```

Significand

```
M = 1.101101101_2
frac = 1101101101101000000000_2
```

Exponent

```
E = 13
bias = 127
exp = 140 = 10001100<sub>2</sub>
```

Result:

0 10001100 1101101101101000000000000 s exp frac

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0:

```
M = 0.xxx...x_2
```

- xxx...x: bits of frac
- Cases
 - $\exp = 000...0$, frac = 000...0
 - » represents zero value
 - » note distinct values: +0 and -0 (why?)
 - $-\exp = 000...0$, frac $\neq 000...0$
 - » numbers closest to 0.0
 - » equispaced

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - represents value ∞ (infinity)
 - operation that overflows
 - both positive and negative
 - e.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - not-a-number (NaN)
 - represents case when no numeric value can be determined
 - e.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

Visualization: Floating-Point Encodings

Tiny Floating-Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers	•••				
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	•••				
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

Distribution of Values

- 6-bit IEEE-like format
 - -e = 3 exponent bits
 - f = 2 fraction bits
 - bias is $2^{3-1}-1=3$

S	exp	frac	
1	3-bits	2-bits	

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- -e = 3 exponent bits
- f = 2 fraction bits
- bias is 3

S	exp	frac
1	3-bits	2-bits

Quiz 1

- 6-bit IEEE-like format
 - -e = 3 exponent bits
 - f = 2 fraction bits
 - bias is 3

S	exp	frac	
1	3-bits	2-bits	

What number is represented by 0 011 10?

- a) 12
- b) 1.5
- c) .5
- d) none of the above

Floating-Point Operations: Basic Idea

•
$$x +_f y = Round(x + y)$$

•
$$x \times_f y = Round(x \times y)$$

Basic idea

- first compute exact result
- make it fit into desired precision
 - » possibly overflow if exponent too large
 - » possibly round to fit into frac

Rounding

Rounding modes (illustrated with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
towards zero	\$1	\$1	\$1	\$2	- \$1
round down (−∞)	\$1	\$1	\$1	\$2	-\$2
round up (+∞)	\$2	\$2	\$2	\$3	- \$1
nearest integer	\$1	\$2	?	?	?
nearest even (default)	\$1	\$2	\$2	\$2	-\$2

Creating a Floating Point Number

Steps

- s exp frac
- normalize to have leading 1
- 1 4-bits

3-bits

- round to fit within fraction
- postnormalize to deal with effects of rounding

Case study

convert 8-bit unsigned numbers to tiny floating-point format example numbers

128	10000000
13	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

S	exp	frac
1	4-bits	3-bits

Requirement

- set binary point so that numbers of form 1.xxxxx
- adjust all to have leading one
 - » decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
13	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round-up conditions

- round = 1, sticky = 1 \Rightarrow > 0.5

- guard = 1, round = 1, sticky = $0 \Rightarrow$ round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
13	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- rounding may have caused overflow
- handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result	
128	1.000	7		128	
13	1.101	3		13	
17	1.000	4		16	
19	1.010	4		20	
138	1.001	7		134	
63	10.000	5	1.000*26	64	

Floating-Point Multiplication

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact result: (-1)^s M 2^E
 - sign s: s1 ^ s2
 - significand M: M1 x M2
 - exponent E: E1 + E2

Fixing

- if $M \ge 2$, shift M right, increment E
- if E out of range, overflow (or underflow)
- round M to fit frac precision
- Implementation
 - biggest chore is multiplying significands

Floating-Point Addition

• $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$ -assume E1 > E2

- Exact result: (-1)^s M 2^E
 - -sign s, significand M:
 - » result of signed align & add
 - -exponent E: E1

Fixing

- -if M ≥ 2, shift M right, increment E
- -if M < 1, shift M left k positions, decrement E by k
- -overflow if *E* out of range
- -round *M* to fit **frac** precision

Floating Point in C

- C guarantees two levels
 - -float single precision
 - -double double precision
- Conversions/casting
 - -casting between int, float, and double changes bit representation
 - double/float → int
 - » truncates fractional part
 - » like rounding toward zero
 - » not defined when out of range or NaN: generally sets to TMin
 - $-int \rightarrow double$
 - » exact conversion, as long as int has ≤ 53-bit word size
 - int → float
 - » will round according to rounding mode

Quiz 2

Suppose f, declared to be a float, is assigned the largest possible floating-point positive value (other than $+\infty$). What is the value of g = f+1.0?

- a) f
- **b**) +∞
- c) NAN
- d) 0

Float is not Rational ...

- Floating addition
 - commutative: a + f b = b + f a
 - » yes!
 - associative: a + f(b + fc) = (a + fb) + fc
 - » no!
 - 2 + f(1e20 + f(1e20)) = 2
 - (2 + f 1e20) + f -1e20 = 0

Float is not Rational ...

Multiplication

- commutative: a *f b = b *f a
 - » yes!
- associative: $a *^{f} (b *^{f} c) = (a *^{f} b) *^{f} c$
 - » no!
 - 1e20 *f (1e20 *f 1e-20) = 1e20
 - $(1e20 * f 1e20) * f 1e-20 = +\infty$

Float is not Rational ...

- More ...
 - multiplication distributes over addition:

- » (1e20 *f 1e20) +f (1e20 *f -1e20) = NaN
- loss of significance:

- » not necessarily!
 - consider y = 1e20