```
In [1]:
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         import warnings
         warnings.filterwarnings('ignore')
         df = pd.read_csv("C:/Users/pankt/OneDrive/Documents/Projects/Data_Analytics/Datasets/N
In [2]:
         df.head()
In [3]:
Out[3]:
            CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
                                19
                                                   15
                                                                        39
         0
                     1
                         Male
         1
                     2
                                                                        81
                         Male
                                21
                                                   15
         2
                                                   16
                                                                         6
                     3
                       Female
                                20
         3
                                                   16
                       Female
                                23
                                                                        77
         4
                       Female
                                31
                                                   17
                                                                        40
```

Univariate Analysis

[4]:	df.describe()					
4]:	CustomerID		Age	Annual Income (k\$)	Spending Score (1-100)	
	count	200.000000	200.000000	200.000000	200.000000	
	mean	100.500000	38.850000	60.560000	50.200000	
	std	57.879185	13.969007	26.264721	25.823522	
	min	1.000000	18.000000	15.000000	1.000000	
	25%	50.750000	28.750000	41.500000	34.750000	
	50%	100.500000	36.000000	61.500000	50.000000	
	75%	150.250000	49.000000	78.000000	73.000000	
	max	200.000000	70.000000	137.000000	99.000000	
5]:	<pre>sns.distplot(df['Annual Income (k\$)'])</pre>					
[5]:	<pre><axessubplot:xlabel='annual (k\$)',="" income="" ylabel="Density"></axessubplot:xlabel='annual></pre>					

To plot multiple columns

Ploting the variables by gender


```
In [14]: df['Gender'].value_counts(normalize=True)
Out[14]: Female  0.56
Male  0.44
Name: Gender, dtype: float64
In []:
```

Bivariate Analysis

```
In [15]: sns.scatterplot(data=df, x='Annual Income (k$)', y = 'Spending Score (1-100)')
Out[15]: <AxesSubplot:xlabel='Annual Income (k$)', ylabel='Spending Score (1-100)'>
```



```
In [21]: # df=df.drop('CustomerID', axis=1)
sns.pairplot(df, hue='Gender')
```

Out[21]: <seaborn.axisgrid.PairGrid at 0x253d5d70d60>

Out[23]: Age Annual Income (k\$) Spending Score (1-100)

Gender

Female	38.098214	59.250000	51.526786
Male	39.806818	62.227273	48.511364

In [24]: df.corr()

Out[24]: Age Annual Income (k\$) Spending Score (1-100)

Age	1.000000	-0.012398	-0.327227
Annual Income (k\$)	-0.012398	1.000000	0.009903
Spending Score (1-100)	-0.327227	0.009903	1.000000

In [30]: sns.heatmap(df.corr(),annot=True, cmap='BuPu')

Out[30]: <AxesSubplot:>

Clustering - Univariate, Bivariate, Multivariate

```
clustering1 = KMeans(n_clusters=3)
In [52]:
   clustering1.fit(df[['Annual Income (k$)']])
In [53]:
   KMeans(n clusters=3)
Out[53]:
In [54]:
   clustering1.labels
  Out[54]:
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
     2, 2])
```

```
df['Income Cluster'] = clustering1.labels_
In [55]:
          df.head()
Out[55]:
             Gender Age Annual Income (k$) Spending Score (1-100) Income Cluster
                                                                             1
          0
               Male
                      19
                                        15
                                                             39
          1
               Male
                      21
                                        15
                                                             81
                      20
                                        16
                                                              6
          2 Female
                                                                             1
            Female
                                        16
                                                             77
          3
                      23
            Female
                      31
                                        17
                                                             40
                                                                             1
          df['Income Cluster'].value_counts()
In [56]:
               90
Out[56]:
               74
               36
          Name: Income Cluster, dtype: int64
          clustering1.inertia_
In [57]:
          23517.330930930937
Out[57]:
          inertia_scores=[]
In [58]:
          for i in range(1,11):
              kmeans = KMeans(n clusters=i)
              kmeans.fit(df[['Annual Income (k$)']])
              inertia scores.append(kmeans.inertia )
In [59]:
          inertia_scores
          [137277.28,
Out[59]:
           48660.88888888889,
           23528.152173913044,
           13278.112713472485,
           8481.496190476191,
           5050.904761904762,
           3949.2756132756135,
           2822.4996947496948,
           2304.6105580693816,
           1767.6406204906207]
          plt.plot(range(1,11), inertia_scores)
In [60]:
          [<matplotlib.lines.Line2D at 0x253d85bda60>]
Out[60]:
```



```
In [61]:
          df.columns
          Index(['Gender', 'Age', 'Annual Income (k$)', 'Spending Score (1-100)',
Out[61]:
                  'Income Cluster'],
                dtype='object')
          df.groupby('Income Cluster')['Age', 'Annual Income (k$)', 'Spending Score (1-100)'].me
In [62]:
Out[62]:
                             Age Annual Income (k$) Spending Score (1-100)
          Income Cluster
                      0 38.722222
                                           67.088889
                                                                 50.000000
                      1 39.500000
                                           33.486486
                                                                 50.229730
                      2 37.833333
                                           99.888889
                                                                 50.638889
```

Bivariate Clustering

```
In [68]: clustering2 = KMeans(n_clusters=5)

In [69]: clustering2.fit(df[['Annual Income (k$)', 'Spending Score (1-100)']])
    clustering2.labels_
    df['Spending and Income Cluster'] = clustering2.labels_
    df.head()
```

Out[69]:		Gender	Age	Annual Income (k\$)	Spending Score (1- 100)	Income Cluster	Spending and Income Cluster
	0	Male	19	15	39	1	4
	1	Male	21	15	81	1	2
	2	Female	20	16	6	1	4
	3	Female	23	16	77	1	2
	4	Female	31	17	40	1	4

```
in [70]: inertia_scores2=[]
for i in range(1,11):
    kmeans2 = KMeans(n_clusters=i)
    kmeans2.fit(df[['Annual Income (k$)', 'Spending Score (1-100)']])
    inertia_scores2.append(kmeans2.inertia_)
```

```
In [71]: plt.plot(range(1,11), inertia_scores2)
```

Out[71]: [<matplotlib.lines.Line2D at 0x253d86458e0>]


```
In [77]: centers= pd.DataFrame(clustering2.cluster_centers_)
    centers.columns = ['x', 'y']

In [78]: plt.figure(figsize=(10,8))
    plt.scatter(x= centers['x'], y= centers['y'], s=100, c='black', marker= '*')
    sns.scatterplot(data=df, x='Annual Income (k$)', y='Spending Score (1-100)', hue='Sper

Out[78]: <AxesSubplot:xlabel='Annual Income (k$)', ylabel='Spending Score (1-100)'>
```


In [80]:	<pre>pd.crosstab(df['Spending and Income Cluster'], df['Gender'], normalize='index')</pre>	
----------	--	--

Out[80]: Gender Female Male

Spending and Income Cluster

- 0 0.592593 0.407407
 1 0.538462 0.461538
 2 0.590909 0.409091
 3 0.457143 0.542857
 4 0.608696 0.391304

Out[81]:

Age Annual Income (k\$) Spending Score (1-100)

Spending and Income Cluster

0	42.716049	55.296296	49.518519
1	32.692308	86.538462	82.128205
2	25.272727	25.727273	79.363636
3	41.114286	88.200000	17.114286
4	45.217391	26.304348	20.913043