Chapter 12: Mass-Storage Systems

Operating System Concepts - 9th Edition

Chapter 12: Mass-Storage Systems

- Overview of Mass Storage Structure
- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management Swap-Space Management
- RAID Structure

Objectives

- To describe the physical structure of secondary storage devices and its effects on the uses of the devices
- To explain the performance characteristics of mass-storage devices
- To evaluate disk scheduling algorithms
- To discuss operating-system services provided for mass storage, including RAID

Overview of Mass Storage Structure

- Magnetic disks provide bulk of secondary storage of modern computers
 - Drives rotate at 60 to 250 times per second
 - Transfer rate is rate at which data flow between drive and computer
 - Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational
 - Head crash results from disk head making contact with the disk surface
 - That's had
- Disks can be removable
- Drive attached to computer via I/O bus
 - Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI, SAS, Firewire
 - Host controller in computer uses bus to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism - spindle arm assembly platter

Magnetic Disks

- Platters range from .85" to 14" (historically)
- Commonly 3.5", 2.5", and 1.8" Range from 30GB to 3TB per drive
- Performance
 - Transfer Rate theoretical 6 Gb/sec
 - Effective Transfer Rate real 1Gb/sec
 - Seek time from 3ms to 12ms 9ms common for desktop
 - Average seek time measured or calculated based on 1/3 of
 - Latency based on spindle speed
 - 1/(RPM * 60) Average latency = 1/2 latency

Spindle [rpm]	Average latency [ms]
4200	7.14
5400	5.56
7200	4.17
10000	3
15000	2

(From Wikipedia)

Magnetic Disk Performance

- Access Latency = Average access time = average seek time + average latency
 - For fastest disk 3ms + 2ms = 5ms
 - For slow disk 9ms + 5.56ms = 14.56ms
- Average I/O time = average access time + (amount to transfer / transfer rate) + controller overhead
- For example to transfer a 4KB block on a 7200 RPM disk with a 5ms average seek time, 1Gb/sec transfer rate with a .1ms controller overhead =
 - 5ms + 4.17ms + 4KB / 1Gb/sec + 0.1ms =
 - 9.27ms + 4 / 131072 sec =
 - 9.27ms + .12ms = 9.39ms

Solid-State Disks

- Nonvolatile memory used like a hard drive
- Many technology variations
- Can be more reliable than HDDs
- More expensive per MB
- Maybe have shorter life span
- Less capacity
- Busses can be too slow -> connect directly to PCI for example
- No moving parts, so no seek time or rotational latency

Magnetic Tape

- Was early secondary-storage medium
- Evolved from open spools to cartridges ■ Relatively permanent and holds large quantities of data
- Access time slow
- Random access ~1000 times slower than disk
- Mainly used for backup, storage of infrequently-used data, transfer medium between systems
- Kept in spool and wound or rewound past read-write head
- Once data under head, transfer rates comparable to disk
- 140MB/sec and greater
- 200GB to 1.5TB typical storage
- Common technologies are LTO-{3,4,5} and T10000

Disk Structure

- Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer
- Low-level formatting creates logical blocks on physical media
- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially Sector 0 is the first sector of the first track on the outermost cylinder

 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost
 - Logical to physical address should be easy
 - Except for bad sectors
 - Non-constant # of sectors per track via constant angular velocity

Disk Attachment

- Host-attached storage accessed through I/O ports talking to I/O busses
- SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator requests operation and SCSI targets perform
 - Each target can have up to 8 logical units (disks attached to device controller)
- FC is high-speed serial architecture
 - Can be switched fabric with 24-bit address space the basis of storage area networks (SANs) in which many hosts attach to many storage units
- I/O directed to bus ID, device ID, logical unit (LUN)

Storage Array

- Can just attach disks, or arrays of disks
- Storage Array has controller(s), provides features to attached host(s)
 - Ports to connect hosts to array
 - Memory, controlling software (sometimes NVRAM, etc)
 - A few to thousands of disks
 - RAID, hot spares, hot swap (discussed later)
 - Shared storage -> more efficiency
 - Features found in some file systems
 - > Snaphots, clones, thin provisioning, replication, deduplication, etc

Storage Area Network

- Common in large storage environments
- Multiple hosts attached to multiple storage arrays flexible

Storage Area Network (Cont.)

- SAN is one or more storage arrays
 - Connected to one or more Fibre Channel switches
- Hosts also attach to the switches
- Storage made available via LUN Masking from specific arrays to specific servers
- Easy to add or remove storage, add new host and allocate it storage Over low-latency Fibre Channel fabric
- Why have separate storage networks and communications networks?
 - Consider iSCSI, FCOE

Network-Attached Storage

- Network-attached storage (NAS) is storage made available over a network rather than over a local connection (such as a bus)
 - Remotely attaching to file systems
- NFS and CIFS are common protocols
- Implemented via remote procedure calls (RPCs) between host and storage over typically TCP or UDP on IP network
- iSCSI protocol uses IP network to carry the SCSI protocol Remotely attaching to devices (blocks)

Disk Scheduling

- The operating system is responsible for using hardware efficiently for the disk drives, this means having a fast access time and disk bandwidth
- Seek time a seek distance
- Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer

Disk Scheduling (Cont.)

- There are many sources of disk I/O request
- System processes
- Users processes
- I/O request includes input or output mode, disk address, memory address, number of sectors to transfer
- OS maintains queue of requests, per disk or device
- Idle disk can immediately work on I/O request, busy disk means work must queue
- Optimization algorithms only make sense when a queue exists
- Note that drive controllers have small buffers and can manage a queue of I/O requests (of varying "depth")
- Several algorithms exist to schedule the servicing of disk I/O requests
- The analysis is true for one or many platters
- We illustrate scheduling algorithms with a request queue (0-199)

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

SSTF

- Shortest Seek Time First selects the request with the minimum seek time from the current head position
- SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests
- Illustration shows total head movement of 236 cylinders

Disk Management

- - Each sector can hold header information, plus data, plus error correction code (ECC)
 - Usually 512 bytes of data but can be selectable
- To use a disk to hold files, the operating system still needs to record its own data structures on the disk · Partition the disk into one or more groups of cylinders, each treated as a logical disk
 - Logical formatting or "making a file system"
 - To increase efficiency most file systems group blocks into clusters
 - Disk I/O done in blocks File I/O done in clusters
- Raw disk access for apps that want to do their own block management, keep OS out of the way (databases for
- Boot block initializes system
 - The bootstrap is stored in ROM
 - Bootstrap loader program stored in boot blocks of boot partition
- Methods such as sector sparing used to handle bad blocks

RAID (Cont.)

- Disk striping uses a group of disks as one storage unit
- RAID schemes improve performance and improve the reliability of the storage system by storing redundant
 - Mirroring or shadowing (RAID 1) keeps duplicate of each disk
 - Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high performance and high reliability
- RAID within a storage array can still fail if the array fails, so automatic replication of the data between arrays is common
- Frequently, a small number of hot-spare disks are left unallocated, automatically replacing a failed disk and having data rebuilt onto them

RAID Levels

8888

888888

99999

8888

Other Features

- Regardless of where RAID implemented, other useful features can be added
- Snapshot is a view of file system before a set of changes take place (i.e. at a point in time)
 - More in Ch 11
- Replication is automatic duplication of writes between separate sites
 - For redundancy and disaster recovery Can be synchronous or asynchronous
- Hot spare disk is unused, automatically used by RAID production if a disk fails to replace the failed disk and rebuild the RAID set if possible
 - Decreases mean time to repair

Extensions

- RAID alone does not prevent or detect data corruption or other errors, just disk failures
- Solaris ZFS adds checksums of all data and metadata, where checksum is a technique used ti verify the integrity of data
- Checksums are not kept with the block (data or metadata), rather stored with the pointer to that block, to
 detect if the block is corrupted or not
- Can detect and correct data and metadata corruption
- ZFS also removes volumes, partititions
 - Disks allocated in pools
 - Filesystems with a pool share that pool, use and release space like "malloc" and "free" memory allocate / release calls

