CME308: Stochastic Methods in Engineering

Erich Trieschman

2022 Spring quarter

1 Probability

1.1 Calculus cheat sheet

 $\begin{array}{l} \textbf{Logs: } log_b(M*N) = log_bM + log_bN & \bullet log_b(\frac{M}{N}) = log_bM - log_bN & \bullet log_b(M^k) = klog_bM & \bullet e^ne^m = e^{n+m} \\ \textbf{Derivatives: } (x^n)' = nx^{n-1} & \bullet (e^x)' = e^x & \bullet (e^{u(x)})' = u'(x)e^x & \bullet (log_e(x))' = (lnx)' = \frac{1}{x} & \bullet (f(g(x)))' = f'(g(x))g'(x) \\ \end{array}$ Integrals: $\int_a^b f(x)dx = \int_{g(a)}^{g(b)} f(g(u))g'(u)du \text{ where } g(u) = x \bullet \int_a^b u(x)v'(x)dx = u(b)v(b) - u(a)v(a) - \int_a^b u'(x)v(x)dx$ Infinite series and sums: $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!} \bullet (1 + \frac{a}{n})^n \longrightarrow e^a$ $ln(1+x) = 1 - x + \frac{x^2}{2} - \frac{x^3}{3} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n} \bullet \frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} a^x \text{ for } |x| < 1$

1.2 Expectation

Conditional expectation: $p_{X|Y}(x|y) = \frac{p_{x,y}(x,y)}{p_y(y)}$ Bayes theorem: $P(E_i \mid B) = \frac{P(B|E_i)P(E_i)}{\sum_{j=1}^{\infty} P(B|E_j)P(E_j)} = \frac{P(B|E_i)P(E_i)}{P(B)}$, where E_1, E_2, \ldots form a partition of the sample space. Expectation: $E(X) = \sum_x xP(X=x)$, also written $E(X) = \sum_{x \in S} X(s)p(s)$, where p(s) is the probability that element $s \in S$

• $E(g(X)) = \sum_i g(x_i)p_X(x_i)$ • E(aX+b) = aE(X) + b • E(X+Y) = E(X) + E(Y)

Variance: $Var(X) = E((X - E(X)))^2) = \sigma^2$

• $Var(X) = E(X^2) - \mu^2$ • $Var(aX + b) = a^2 Var(X)$ • Var(X + Y) = Var(X) + Var(Y) for X, Y independent •

Covariance: Cov(X,Y) = E((X - E(X)(Y - E(Y))) = E(XY) - E(X)E(Y)

 $\bullet \ Cov(X,X) = Var(X) \quad \bullet \ Cov(aX,bY) = abCov(X,Y) \quad \bullet \ Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z) \quad \bullet \ Var(X+Y) = Cov(X,X) \quad \bullet \ Var(X+Y) = Cov(X+Y) \quad$ Var(X) + Var(Y) + 2Cov(X, Y)

Law of iterated expectation: $E(E(Y\mid X))=E(Y)$ Proof: $E(Y\mid X)=\sum_y y\frac{f_{X,Y}(X,y)}{f_X(X)}, \ E(E(Y\mid X))=\sum_x \sum_y \left(y\frac{f_{X,Y}(x,y)}{f_X(x)}\right)f_X(x)=\sum_x \sum_y yf_{X,Y}(x,y)=\sum_y yf_Y(y)=E(Y)$ Law of total probability: $P(E)=\sum_{i=-\infty}^{\infty} P(E\mid X=x)P(X)$ and $P(E)=\int_{-\infty}^{\infty} P(E\mid X=x)f(x)dx$ Variance decomposition formula: $Var(Y)=E(Var(Y\mid X))+Var(E(Y\mid X))$

Cauchy-Schwartz inequality: $E(UV)^2 \le E(U^2)E(V^2)$, with equality if P(cU=U)=1 for some constant, c

Transformations of random variables: For X with density f_X and Y = g(X) $F_Y(y) = P(g(X) \le y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y)) \bullet f_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) |\frac{d}{dy} g^{-1}(y)|$

1.3 Inequalities

Jensen inequality: $E(g(x)) \ge g(E(x))$ for g(x) convex

Markov inequality: For $X \ge 0$, $P(X \ge t) \le \frac{E(X)}{t} \ \forall t > 0$. Proof:

$$\text{Let } Y = \begin{cases} 1 & X \geq t \\ 0 & \text{otherwise} \end{cases}, \text{ Then } tY \leq X \text{ since } \begin{cases} X \geq t & t*1 \leq X \\ X < t & t*0 < X \end{cases}$$

$$tY \leq X \Longrightarrow E(tY) \leq E(X) \Longrightarrow tP(X \geq t) \leq E(X)) \Longrightarrow P(X \geq t) \leq \frac{E(X)}{t}$$

Chebyshev inequality: $P(|X - E(X)| \ge t) \le \frac{Var(X)}{t^2} \ \forall t > 0$. Proof:

$$P(|X - E(X)| \ge t) = P((X - E(X))^2 \ge t^2) \le \frac{E((X - E(X))^2)}{t^2} = \frac{Var(X)}{t^2}$$
, by Markov inequality

Exponential inequality: $P(X > a) \le e^{-\theta a} E(e^{\theta X})$ for all $\theta > 0$. **Proof:**

$$P(X > a) = P(\theta X > \theta a)$$
 for $\theta > 0 \Longrightarrow P(e^{\theta X} > e^{\theta a}) \le e^{-\theta a} E(e^{\theta X})$, by Markov inequality

(Corrolary) Upper bound on large deviations: $P(S_n < na) \le e^{-nI(x)}$. Proof:

$$\begin{split} P(S_n > a) &\leq e^{-\theta a} E(e^{\theta S_n}), \text{ by exponential inequality for } S_n = \sum_i X_i(iid) \\ &= e^{-\theta a} \prod_i E(e^{\theta X_i}) = e^{-\theta a} E(e^{\theta X_1})^n, \text{ by iid} \\ &= e^{-\theta a + n\psi(\theta)}, \text{ where } \psi(\theta) = \log E e^{\theta X_1}, \text{ the log of the MGF} \\ P(S_n > na) &= e^{-n(\theta(x)a - n\psi(\theta(x))}, \text{ minimizing RHS w.r.t } \theta \\ &= e^{-nI(x)} \text{ where } I(x) = \theta(x)a - n\psi(\theta(x)) \end{split}$$

1.4 Stationarity

In some cases, X_i may not be i.i.d, but there may still exist a statistical equilibrium:

•
$$\{X_1,\ldots,X_n\}\stackrel{d}{=}\{X_{m+1},\ldots,X_{m+n}\}$$
 • $EX_1=EX_n$ • $Cov(X_1,X_n)=Cov(X_{m+1},X_{m+n})$, called $c(n)$ where n is lag

We can prove $c(n) \stackrel{p}{\longrightarrow} 0$ using Chebychev and solving for $Var\overline{X}_n$ as a function of c(n), leading to the bound (which goes to 0):

$$P(|\overline{X}_n - EX_1| > \epsilon) \le \frac{2}{n} \sum_{i} c(i)$$

1.5 Generative functions

1.5.1 Characteristic functions

- The characteristic function of X is $\phi_X(t) = E \exp(itX)$
- Common characteristic functions: $N(\mu, \sigma^2) : \exp(it\mu \frac{1}{2}\sigma^2t^2) \bullet Exp(\lambda) : (1 it\lambda^{-1})^{-1} \bullet Poisson(\lambda) : \exp\lambda(e^{it} 1)$
- Properties: $E[X^k] = i^{-k}E[X^k]$ $\phi_{a_1X_1 + \dots + a_nX_n}(t) = \phi_{X_1}(a_1t)\dots\phi_{X_n}(A_nt)$ for X_i indep.
- The moment-generating function of X is $M_X(t) = E \exp(tX)$

1.6 Weak law of large numbers

For X_1, X_2, \ldots, X_n i.i.d. with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$, $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then for any $\epsilon > 0$

$$P(|\overline{X}_n - \mu| > \epsilon) \le \frac{Var(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \text{ as } n \to \infty, \text{ by Chebyshev inequality, } X_1 + \dots + X_n = S_n \approx ES_n, \text{ the "meta result"}$$

1.7 Central limit theorem

$$\sqrt{n}\frac{(\overline{X}_n - \mu)}{\sigma} \longrightarrow N(0, 1) \iff \sqrt{n}(\overline{X}_n - \mu) \longrightarrow N(0, \sigma^2) = \sigma N(0, 1), \quad X_i + \dots + X_n = S_n \approx N(ES_n, VarS_n), \text{ the "meta result"}$$

$$\lim_{n \to \infty} P(\frac{S_n}{\sigma \sqrt{n}} \le x) = \Phi(x), \text{ for } S_n = \sum_{i=1}^n X_i, \quad X_1, X_2, \dots, X_n \text{ i.i.d. with } E(X_i) = 0 \text{ (WLOG)}, \quad Var(X_i) = \sigma^2$$

Proof sketch: Start with $M_{S_n}(t)$, plug in $t/(\sigma\sqrt(n))$, and use Taylor expansion to show convergence to the MGF of a normal random variable, $e^{\frac{t^2}{2}}$ Monte Carlo: \bullet Sample $Y \in \mathbb{R}^d$ \bullet Compute X = g(Y) \bullet Repeat n times \bullet form \overline{X}_n and use CLT for asymptotic behavior

1.7.1 Delta method

If g is a differentiable function at μ , $\sqrt{n}(g(\bar{X}_n) - g(\mu)) \xrightarrow{d} N(0, g'(\mu)^2 \sigma^2) = g'(\mu) \sigma N(0, 1)$ **Proof sketch:** Start with Taylor expansion $g(\bar{X}_n) \approx g(\mu) + g'(\mu)(\bar{X}_n - \mu)$ and rearrange to get $\sqrt{n}(g(\bar{X}_n) - g(\mu)) \approx g'(\mu)\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, g'(\mu)^2 \sigma(2))$. **Note:** if we find that $g'(\mu) = 0$, then repeat this process with the second derivative, $g''(\mu)$.

1.7.2 Convergence in probability

Convergence in probability: $X_n \stackrel{p}{\longrightarrow} X$ when $P(|X_n - X| > \epsilon) \longrightarrow 0$ as $n \longrightarrow \infty$

Continuous mapping theorem: if $X_n \stackrel{p}{\longrightarrow} X$ and g a continuous function then $g(X_n) \stackrel{p}{\longrightarrow} g(X)$

Consistent estimator: $T_n = T_n(X_1, \dots, X_n)$ converges in probability to $g(\theta)$, a function of the model parameter

Bounded convergence theorem: $Z_n \xrightarrow{p} Z_{\infty}, |Z_n| \le c < \infty \Longrightarrow EZ_n \xrightarrow{p} EZ_{\infty}$

Proof starts with $|E(Z_n - Z_\infty)|$ and uses i) triangle inequality, ii) indicator functions for the case when difference is $> \epsilon, < \epsilon$

Dominated convergence theorem: $Z_n \xrightarrow{p} Z_{\infty}, E\beta < \infty, |Z_n(\omega)| \le \beta(\omega) \forall \omega \Longrightarrow EZ_n \xrightarrow{p} EZ_{\infty}$

Fatous Lemma: for $Z_n > 0$, $E \lim_{n \to \infty} Z_n \le \lim_{n \to \infty} E Z_n$

1.7.3 Convergence in distribution (a.k.a. weak convergence)

Convergence in distribution: $X_n \xrightarrow{d} X$ when $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ at all continuity points in F_X

Equalities: $X_n \xrightarrow{d} X \iff Eh(Z_n) \xrightarrow{p} Eh(Z_\infty) \forall h$, bounded/continuous $\iff \phi_{Z_n}(t) \xrightarrow{p} \phi_{Z_\infty}(t) \forall t$

Confidence intervals: $P(Z_{\alpha \div 2} \le Z \le Z_{1-\alpha \div 2}) = P(\frac{\hat{\sigma}}{\sqrt{n}} Z_{\alpha \div 2} \le \bar{X}_n - \mu \le \frac{\hat{\sigma}}{\sqrt{n}} Z_{1-\alpha \div 2}) = P(\mu \in \left[\bar{X}_n \pm \frac{\hat{\sigma}}{\sqrt{n}} Z_{1-\alpha \div 2}\right]) = 1 - \alpha$

Slutsky's lemma $A_nX_n + B_n \stackrel{d}{\to} aX + b$ if $\{X_n\}$ sequence, $X_n \stackrel{d}{\to} X$, $\{A_n\}$ sequence, $A_n \stackrel{d}{\to} A$, $\{B_n\}$ sequence, $B_n \stackrel{b}{\to} b$

1.7.4 Almost sure convergence

 $P(\omega : \lim_{n \to \infty} X_n(\omega) \xrightarrow{p} X_\infty(\omega)) = 1$ where ω is element in set of all sequences \bullet $P(\lim \sup_{n \to \infty} \{|X_n - X_\infty|\} > \epsilon) = 0$

1.8 Theory of large deviations

Variance reduction: $EX = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x f(x) h(x) / h(x) = E[Zf(x)/h(x)]$ where h(z) is pdf of Z. f(x)/h(x) known as the likelihood ratio.

Importance sampling: Choose h(x) to minimize variance. Minimal H(dx) turns out to be the conditional probability of the event happening on event happening: $H^*(dx) = \mathbb{I}\{A\}(x)F(dx)/F(A)$

1.8.1 Ergotic theorem

1.8.2 Cramer-Rao Bound

1.9 Censoring data

1.10 Estimating equations

2 Statistics

2.1 Method of moments estimator

- $E(X^k) = g(\theta)$ Calculate moment with MGF, lower moments typically lead to estimators with lower asymptotic variance
- $q^{-1}(E(X^k)) = \theta$ Invert this expression to create an expression for the parameter(s) in terms of the moment
- $\hat{\theta} = g^{-1}(\frac{1}{n}\sum X_i^k)$ Insert the sample moment into this expression, thus obtaining estimates of the parameters in terms of data
- $\sqrt{n}(g^{-1}(\frac{1}{n}\sum X_i^k) \theta) \stackrel{d}{\longrightarrow} N(0, f'(E(X_i^k))^2 Var(X_i^k)^2)$ Use the delta method
- If multiple parameters characterize the distribution, use multiple moments and a system of equations

2.2 Maximum likelihood estimator

- $L(\theta) = \prod_{i=1}^{n} f(X_i, \theta)$ Construct the likelihood function
- $log(L(\theta)) = l(\theta) = \sum_{i=1}^{n} log(f(X_i, \theta))$ Take the log of the likelihood
- Find critical points of this function
- Find critical points of this function (e.g., $0 = \sum_{i=1}^{n} \frac{d}{d\theta} log(f(X_i, \hat{\theta}))$) and determine that one is a maximum

Approach to constructing MLE when indicators, $\mathbb{I}\{U\}$, are present: Logs of indicators and derivatives of indicators are very difficult to work with \bullet Simplify likelihood function (splitting indicators when possible) \bullet Make an argument for why the function is increasing or decreasing \bullet Determine the value at the bounds of the function

- 3 Examples
- 3.1 Newsvendor problem