9/14/21, 11:49 AM Week 4 Quiz | Coursera

Congratulations! You passed!

Grade received 100% **To pass** 80% or higher

Week 4 Quiz

Latest Submission Grade 100%

1.	Using Image Generator, how do you label images?	1 / 1 point
	TensorFlow figures it out from the contents	
	You have to manually do it	
	O It's based on the file name	
	It's based on the directory the image is contained in	
	⊘ Correct	
2.	What method on the Image Generator is used to normalize the image?	1 / 1 point
	O Rescale_image	
	normalize	
	rescale	
	onormalize_image	
3.	How did we specify the training size for the images?	1 / 1 point
	The target_size parameter on the validation generator	
	The training_size parameter on the training generator	
	The target_size parameter on the training generator The target_size parameter on the training generator	
	The training_size parameter on the validation generator	
4.	When we specify the input_shape to be (300, 300, 3), what does that mean?	1 / 1 point
	There will be 300 horses and 300 humans, loaded in batches of 3	
	Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers	
	There will be 300 images, each size 300, loaded in batches of 3	
	Every Image will be 300x300 pixels, with 3 bytes to define color	
5.	If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?	1 / 1 point
	No risk, that's a great result	
	You're overfitting on your validation data	
	You're overfitting on your training data	
	You're underfitting on your validation data	
	✓ Correct	

9/14/21, 11:49 AM

Week 4 Quiz | Coursera

6.	Convolutional Neural Networks are better for classifying images like horses and humans because:	1/1 point
	In these images, the features may be in different parts of the frame	
	There's a wide variety of horses	
	There's a wide variety of humans	
	All of the above	
	⊘ Correct	
7.	After reducing the size of the images, the training results were different. Why?	1 / 1 point
	We removed some convolutions to handle the smaller images	
	There was less information in the images	
	The training was faster	
	There was more condensed information in the images	

⊘ Correct