Relational data and linear regression

Viggo Andreasen, Roskilde Universitet

September 9, 2025

BEFORE we start please

- Go to Moodle and find the section for today
- Upload the following files:
 - Overheads.pdf
 - snake.csv
 - RegressionForSnakes.ipynb
 Moodle may show the file in a strange format press Ctr-S to save a copy (on some systems you have to remove a .JSON from the end of the file name, when saving)
- Start Python (so that it is ready check to see that the files are where Python can find them! and the return to this page)

Relational data

Data where we have more than one measurement for each **observational** unit (each object that has been studied).

Focus on a special situation that occurs very often: For each unit of study we have measured two continuous variables.

Length X (cm)	Weight $Y(g)$
60	136
69	198
66	194
64	140
54	93
67	172
59	116
65	174
63	145

Example: Length and Weight of 9 female adult snakes (species adder/viper, DK: hugorm. $Vipera\ berus$). Observational unit is a snake.

BK1- Fitting 2/9

Scatter plot

- Unit of study (observation) k=1..n in our case n=9
- x_k length of snake k
- y_k weight of snake k

Distance from the line y = ax + b to the data points

- For point kResidual $_k = y_k (ax_k + b)$
- Total distance

$$s(a,b) = \sqrt{\frac{1}{n-2} \sum_{k=1}^{n} (\operatorname{Residual}_{k})^{2}}$$

$$= \sqrt{\frac{1}{n-2} \sum_{k=1}^{n} (y_{k} - (ax_{k} + b))^{2}}$$

Best fitting line

• Set
$$\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 and $\bar{y} = \frac{1}{n} \sum_{k=1}^{n} y_k$

- Compute $a_1 = \sum (x_k \bar{x})(y_k \bar{y})$ and $a_2 = \sum (x_k \bar{x})^2$
- $a=a_1/a_2$ and $b=\bar{y}-a\bar{x}$
- Don't memorize the formula!
 In Python
 b,a=polyfit(x,y,1)
 gives a and b

The hard way:

- $\frac{1}{n-1}a_2$ is the $variance\ of\ x$. In Python x.var()
- $\frac{1}{n-1}a_1$ is covariance of x and y. x.cov(y)
- a = x.cov(y)/x.var()

Compute and draw line

- We that we know a and b we can compute the line as $y_{\mbox{line}} = ax + b$
- The residuals are the difference between observed value and predicted value:

 $\operatorname{Resid}_k = y_k - (ax_k + b)$ at the point (x_k, y_k)

Assumptions

- The uncertainty/variation is associated with the measurement of y_k (not with x_k).
- We minimize the variation in data (in the y_k) that we cannot explain by our model (our line).
- The remaining variation gives the $standard\ deviation$ around the line

$$s(a,b) = \sqrt{\frac{1}{n-2} \sum_{k=1}^{n} (y_k - (ax_k + b))^2}$$

- All y_k are subject to the same amount of variation. In particular the variation does not depend on x_k in a systematic way. This assumption can (and should) be checked. See next overhead.
- Even if the regression line fits very well, one cannot conclude that there is a *causal relationship*.

Analysis of residuals

BK1- Fitting 8/9

Causality

Antal fødsler og antal ynglende storkepar i Danmark.

BK1- Fitting 9/9