Introduction to Statistical Learning with R

March 22, 2018

Course Outline

- What is Statistical Learning
- Supervised and unsupervised learning
- Regression analysis
- Data classification
 - Support Vector Machine
 - Logistic Regression
- Decision trees
 - Binary
 - Fuzzy logic
 - Neural networks
- Cluster analysis
- Reinforced learning
- Informational Entropy

In Previous Training Sessions ...

We already touched:

- Exploratory Data Analysis
- Regression
- Clusters

These tools / methods belong to statistical learning

What is Statistical Learning

- Statistical learning refers to a vast set of tools for understanding data
- These tools can be classified as supervised or unsupervised
- Supervised statistical learning involves building a statistical model for predicting, or estimating an output based on one or more inputs
 - The simplest supervised learning method is a linear regression model which can be used for estimating new input examples
- With unsupervised statistical learning, there are inputs but no supervising output; we learn relationships and structure from such data
 - The most common unsupervised learning method is cluster analysis, which is used for exploratory data analysis to find hidden patterns or grouping in data

Supervised Vs. Unsupervised Learning

Supervised Learning

Unsupervised Learning

Training data is labelled Categorize new data based on the training data

No training data Find clusters and look for other dimensions to infer their nature

Why Do Statistical Learning

- Prediction
 - Predict how the system works (black box approach)
- Inference
 - > Learn the relations among variables to
 - Understand causality
 - Optimize the system

History of Statistical Learning

- Before 1970 mostly linear methods (not enough computing power)
 - ➤ 1795 1805: Least Squares by Gauss
 - 1936: Linear Discriminant by Fisher for qualitative data
 - 1940s: Logistic regression
 - 1970s: Generalized linear model (Non-normal error distribution)
- 1980s: first non-linear methods
- 2000s: practical machine learning and Al applications

Statistical Learning, Machine Learning, and Al

Supervised Learning

- Analyze training data with known outcomes
- Create Train Test the Model / Algorithm
- Example
 - Predict income based on education
 - Y = f(X) + e (error)
- For qualitative data => classification (label)
- For quantitative data => regression (predict)

Regression Analysis

Review of the example in Intro to Statistics Part 2

Underfit and Overfit Models

High bias (underfit)

"Just right"

High variance (overfit)

- Underfit not accurate enough
- Overfit not general enough
- Eye test for overfit too many inflexion points
- Objective test for overfit high variance

Smoothing Regression

- Essentially smoothing is a filter (simplest is a low pass like running average)
- Typically used when:
 - Fitting a line where noisy data values interfere with your ability to see a line of best fit
 - Linear regression where least squares fitting doesn't create a line of good fit or is too labor-intensive to use
 - Data exploration and analysis in the social sciences, particularly in elections and voting behavior
- Benefits of Non-Parametric Smoothing
 - Provides a flexible approach to representing data
 - Ease of use
 - Computations are relatively easy
- Disadvantages of Non-Parametric Smoothing
 - Can't be used to obtain a simple equation for a set of data

R Script for Scatter Plot, Linear Regression, and Smoothing

```
## linear regression
# iris data
View(iris)
head(iris, 5)
plot(iris)
plot(iris[1:4])
# linear regression (model)
fit1 = Im(Petal.Length~Petal.Width, data=iris)
summary(fit1)
plot(Petal.Length~Petal.Width, iris)
abline(fit1,col="red")
plot(fit1)
# iris subset setosa
Setosa = subset(iris, Species == "setosa")
plot(Setosa [1:4])
plot(density(Setosa$Petal.Length))
plot(density(Setosa$Sepal.Length))
# non-parametric local regression - filter
scatter.smooth(Petal.Length~Sepal.Length, data = Setosa)
```


Understanding Im() Results

Non-Linear Regression

- Analyst specifies a function with a set of parameters to fit to the data
- The most basic way to estimate such parameters in R is to use a non-linear least squares function
- nls(formula, data, start, ...)
 - formula is a nonlinear model formula including variables and parameters.
 - data is a data frame used to evaluate the variables in the formula.
 - start is a named list or named numeric vector of starting estimates

Non-Linear Regression Example

- Data known to be difficult for linear regression
- Michaelis-Menten formula

```
## non-linear least square regression # simulate data set.seed(20180309)  
x <-seq(0,50,1)  
y <-((runif(1,10,20)*x)/(runif(1,0,10)+x))+rnorm(51,0,1)  
#for simple models nls find good starting values for the parameters even if it throw a warning m <-nls(<math>y \sim a*x/(b+x))  
#get some estimation of goodness of fit  
cor(y,predict(m)) 
plot(x,y) 
lines(x,predict(m),lty=2,col="red",lwd=3)  
z = lm(<math>y \sim x)  
abline(z, col = 'blue')
```


Im() and nls() for Michaelis-Menten Data

Linear Regression with ggplot2

- Analyst specifies a function with a set of parameters to fit to the data
- The most basic way to estimate such parameters in R is to use a non-linear least squares approach (nls)
- nls(formula, data, start, ...)
 - formula is a nonlinear model formula including variables and parameters.
 - data is a data frame used to evaluate the variables in the formula.
 - start is a named list or named numeric vector of starting estimates

R Script for Regression with ggplot2

```
library(ggplot2)
df = mtcars
# create multiple linear model
Im fit <- Im(mpg \sim cyl + hp, data=df)
summary(Im fit)
# save predictions of the model in the new data frame
# together with variable you want to plot against
predicted df <- data.frame(mpg pred = predict(Im fit, df), hp=df$hp)</pre>
# predicted line of multiple linear regression
ggplot(data = df, aes(x = mpg, y = hp)) +
 geom point(color='blue') +
 geom line(color='red',data = predicted df, aes(x=mpg pred, y=hp))
# predicted line comparing only chosen variables
ggplot(data = df, aes(x = mpg, y = hp)) +
 geom point(color='blue') +
 geom smooth(method = "lm", col = 'red', se = FALSE)
```


Multiple Linear Regression Vs. Linear Regression

Multiple Linear Regression

Linear Regression

Question:

Which one better shows the trend?

Classification with Support Vector Machine (SVM)

- Find a line, curve, plane, surface that separates labelled training data
- Apply to new data to label it

Quiz: What Is a Vector in SVM?

In R

 A vector is a sequence of data elements of the same basic type.

In math:

 A vector is an object that has both a magnitude and a direction: a directed line segment, whose length is the magnitude of the vector and with an arrow indicating the direction.

Question:

What kind of vector is in SVM?

R Script for SVM Example

```
## svm example with iris
library("e1071")
head(iris,5)
attach(iris)
x <- subset(iris, select=-Species)
v <- Species
svm model <- svm(Species ~ .. data=iris)
summary(svm model)
# you can do this alternatively
svm model1 <- svm(x,y)
summary(svm model1)
# run prediction (and measure execution time)
pred <- predict(svm model1,x)</pre>
system.time(pred <- predict(sym_model1,x))
# see the confusion matrix
table(pred,y)
# tune svm parameters cost and gamma
svm_tune <- tune(svm, train.x=x, train.y=y,
          kernel="radial", ranges=list(cost=10^(-1:2), gamma=c(.5,1,2)))
print(svm tune)
# try tuned svm model
svm model after tune <- svm(Species ~ ., data=iris, kernel="radial", cost=1, gamma=0.5)
summary(svm model after tune)
# run prediction with the new model
pred <- predict(svm model after tune,x)</pre>
system.time(predict(sym model after tune,x))
# run confusion matrix for the new model
table(pred,y)
# continue perfecting...
```


Logistic Regression with Binary Decision Tree

Logistic Regression

- Regression model for categorical variable
 - Example: binary classification, e.g. Yes/No
- Compare probabilities for Yes and No odds ratio
- Use log-odds function (or sigmoid to place the value between "0" and "1")
- Compare result to a threshold

Quiz: Do You Remember Probability

Patient:

Doctor, I just learned that the surgery you are recommending has 10% survival rate!

Doctor:

Do not worry, Sir! The ninth patient I have operated on has just died.

Question 1:

Is it safe now to do the surgery?

Question 2:

How coin toss is different from taking out (and not putting back) dark and milk chocolate cookie from a jar?

- Ten times coin toss does probability of head go up if you have nine tails in a row?
- Nine dark cookies and a milk one in a jar what is a probability of getting the milk cookie after you pulled out and ate nine dark ones?

Other Types of Decision Engines

- What if you cannot cleanly split your data with a yes/no question?
- What if the answer is maybe?
- For these cases we need human-like reasoning
 - Fuzzy logic
 - Neutral networks
- Both turn "maybe" into a probability of Yes or No ("level of truth")

Fuzzy Logic Vs. Neural Network

Both allow to "weigh" your "maybe" based on how much it leans toward yes (or no)If

e.g.: IF a > b AND b > c, THEN d

 Fuzzy logic has an inference engine controlled by a set of rules

- Neural network logic is distributed over hidden layer(s) nodes/perceptrons
- Emulates the human neurons

Neural Network Example

- Algorithm which can guess if a college is private or public based on admission and graduation data
- Dataset College from ISLR package
 - All numeric-value columns
 - Except for one categorical column: Private Yes/No
- Steps
 - Pre-process the data:
 - Normalize
 - Convert Yes/No to 1/0
 - Split the data into two sets:
 - Training
 - Test
 - Apply neural network package "neuralnet"
 - Train the algorithm
 - Assess results (confusion matrix)

R Script for Data Classification Example with Neural Network

```
## create neural network example
library(ISLR)
print(head(College,2))
# Create Vector of Column Max and Min
Values
maxs <- apply(College[,2:18], 2, max)
mins <- apply(College[,2:18], 2, min)
# Use scale() and convert the resulting matrix
to a data frame
scaled.data <-
as.data.frame(scale(College[,2:18],center =
mins, scale = maxs - mins))
# Check out results
print(head(scaled.data,2))
# split the data into training and test datasets
# Convert Private column from Yes/No to 1/0
Private = as.numeric(College$Private)-1
data = cbind(Private, scaled.data)
library(caTools)
set.seed(101)
# Create Split (any column is fine)
split = sample.split(data$Private, SplitRatio =
0.70)
# Split based off of split Boolean Vector
```

train = subset(data, split == TRUE) test = subset(data, split == FALSE)

```
feats <- names(scaled.data)
# Concatenate strings
f <- paste(feats,collapse=' + ')
f <- paste('Private ~'.f)
# Convert to formula
f <- as.formula(f)
# install package neuralnet
library(neuralnet)
nn <- neuralnet(f,train,hidden=c(10,10,10),linear.output=FALSE)
# Compute Predictions off Test Set
predicted.nn.values <- compute(nn,test[2:18])</pre>
# Check out net result
print(head(predicted.nn.values$net.result))
predicted.nn.values$net.result <-
sapply(predicted.nn.values$net.result,round,digits=0)
table(test$Private,predicted.nn.values$net.result)
plot(nn)
```

create a formula to insert into the machine learning model

simple script to create the expanded formula and save us some typing

Neural Network to Categorize College as Private or Public

Cluster Analysis

Grouping of similar objects in multivariate data set Example: grouping by distance from center

R Script for k-means

(Review "From Intermediate R Training Part 2")

```
library(ggplot2)
ggplot(iris, aes(Petal.Length, Petal.Width, color = Species)) + geom_point()
set.seed(20)
irisCluster <- kmeans(iris[, 3:4], 3, nstart = 20)
irisCluster
table(irisCluster$cluster, iris$Species)
irisCluster$cluster <- as.factor(irisCluster$cluster)
ggplot(iris, aes(Petal.Length, Petal.Width, color = irisCluster$cluster)) + geom_point()
Or:
ggplot(iris, aes(y = Petal.Length, x = seq(1, length(iris$Sepal.Length)), color = irisCluster$cluster)) + geom_point()
irisCluster1 = kmeans(iris[,3], 3, nstart = 20)
irisCluster1
table(irisCluster1$cluster, iris$Species)
```


Distance-based Clusters

Centroid Clusters (distance to center)

Spatial Clustering Example w/ fields Package

library(fields)

lon = c(31.621785, 31.631785, 31.641773, 31.651785, 31.617269, 31.655785, 31.593895, 31.603284)lat = c(30.901118, 30.921118, 31.245008, 31.265008, 31.163886, 31.183886, 30.27058, 30.262378)threshold.in.km <- 40 coors <- data.frame(lon,lat)

#distance matrix

dist.in.km.matrix <- rdist.earth(coors,miles = F,R=6371)

#clustering

fit <- hclust(as.dist(dist.in.km.matrix), method = "single")
clusters <- cutree(fit,h = threshold.in.km)</pre>

plot(lon, lat, col = clusters, pch = 19)

Density-based Clusters

Distance to adjacent data points


```
# rscript
```

install.packages("fpc")

```
install.packages("dbscan")
install.packages("factoextra")
install.packages("modeltools")
# Load the data
data("multishapes", package = "factoextra")
df <- multishapes[, 1:2]
# Compute DBSCAN using fpc package
library("fpc")
set.seed(123)
db <- fpc::dbscan(df, eps = 0.15, MinPts = 5)
# Plot DBSCAN results
library("factoextra")
fviz cluster(db, data = df, stand = FALSE,
        ellipse = FALSE, show.clust.cent = FALSE,
        geom = "point",palette = "jco", ggtheme =
theme classic())
```


Hierarchical Clustering: Dendrogram

- Dendrogram is a visual representation of compound-correlation data
- The vertical axis Height refers to a distance measure between compounds or compound clusters
- The height of the node can be thought of as the distance value between the right and left sub-branch clusters

Clustering Tendency

- Clustering algorithms, including partitioning methods (K-means, PAM, CLARA and FANNY) and hierarchical clustering, are used to split the dataset into groups or clusters of similar objects
- Before applying any clustering method on the dataset, a natural question is:

Does the dataset contain any inherent clusters?

- A big issue is that clustering methods will return clusters even if the data does not contain any clusters
- if you blindly apply a clustering analysis on a dataset, it will divide the data into clusters because that is what it supposed to do
- Therefore, before choosing a clustering approach, an analyst has to decide whether the dataset contains meaningful clusters (i.e. nonrandom structures) or not, and, if yes, then how many clusters are there
- This process is defined as the assessing of clustering tendency or the feasibility of the clustering analysis

http://www.sthda.com/english/wiki/print.php?id=238

Clustering Tendency with ggplot2

- geom_density parameter a smoothed version of histogram
- Creates density isolines
- Example uses "faithful" dataset in R built in

r script
Clustering tendency with ggplot
data("faithful")
df <- faithful

library("ggplot2")
ggplot(df, aes(x=eruptions,
y=waiting)) +
geom_point() + # Scatter plot
geom_density_2d() # Add 2d density
estimation

Clustering Tendency with Heatmap and Dendrogram

Word Clusters by Semantic Similarity, Relatedness, and Distance

- Similarity (likeness, synonymy)
 - ➤ Bank trust
- Relatedness
 - Car wheel
 - Pencil paper
- Distance: inverse of Similarity or Relatedness
- Distance can be computed using topology tree

- Once we have semantic distances, we can create semantic clusters
- R packages NLTK, wordnet

Reinforced Learning

- Extension of supervised learning
- Based on Markov Decision Process
- An outcome value for an action (input value) is not explicitly provided (therefore, an error is not computed)
- Instead, the system ("environment") "rewards" "agent's" actions towards a desirable outcome and "punishes" actions taking an away from a goal

Information Content of a Variable

- Regression allow to explore relationships among variable
- What about info contained in a variable?
- We can assess a variable
 - Histogram
 - ➤ Factor variable (e.g. list all values a variable can take)
 https://stats.idre.ucla.edu/r/modules/factor-variables/
- Question: is there a way to measure amount of information in a variable?

Amount of Information

- We can count number of bytes, but this would be rather size than amount of information
- Informational Entropy offers a way to measure the amount of info contained in a variable
- Entropy depends on probability of a variable to take certain value
- For a discrete variable, entropy is a function of frequency with which the variable is taking certain values
- The more values the variable can take, the high is the entropy of the variable

Informational Entropy

- Came into statistics from information science
- Is a measure of unpredictability (uncertainty) of a variable

$$\operatorname{H}(X) = -\sum_{i=1}^n \operatorname{P}(x_i) \log_b \operatorname{P}(x_i)$$

- \triangleright P(x_i) probability of a value of a discrete variable
- E.g.: (Frequency of value)/(Number of values)
- Entropy has a range from 0 to 1
- If the data is completely homogeneous (all samples are same), the entropy is zero
- If the data is totally random, the entropy is 1

Entropy of a Coin Toss

(Binary Function)

Claude Shannon definition of entropy:

 $H(X) = -Q(Y) \log_2 Q(X) - P(X) \log_2 P(X)$

Think of a coin toss as a variable with two outcomes: heads Q(X) or tails P(X)

Log₂ – defines entropy units - bits (can also be in Ln - *nats* and Lg -*bans*)

Probability 0 or 1: Entropy = 0, homogeneous data ("data purity")

Probability 0.5: Entropy = 1, equally divided data

Why Shannon Used Logarithmic Function in Entropy?

- Why is log() often used in theory of probability?
 - Short answer: because it works
 - Why does log work well with probabilities?
- Conditional probability (probability of A if B already happen)
 - \rightarrow P(A|B) = P(A) * P(B)
 - ightharpoonup P(A|B|C) = P(A) * P(B) * P(C)
- (Computing permutations also require multiplication)
- Basic property of logarithms
 - ightharpoonup Log(P(A) * P(B)) = Log(P(A)) + Log(P(B))
- Addition is much easier to work with than multiplication

Information Gain

 The information gain is based on the decrease in entropy after a dataset is split on an attribute

Information Gain = Entropy(parent) - Entropy(children)

 Find an attribute that returns the highest information gain for an attribute you are interested in

Split on attribute A, so you get max gain on attribute

В

Entropy Consideration for Binary Decision Tree

- Split on attribute "Does it move?"
- Analyze gain on attribute "Should it move?"

Information Gain ExampleUsing Frequencies of Attribute Values

	Object Name	Does it Move (DIM)	Should it Move (SIM)	
Subset ABC DIM?=Y	A	Υ	N	1 out of 3
	В	Y	out f 7	2 out
	С	Υ	Y	of 3
Subset DEFG DIM?=N	D	N	Υ	
	E		out Y f 7	3 out of 4
	F	N	Y	
	G	N	N	1 out of 4

- Entropy of the full set ABCDEF on DIM attribute =
 - $-(3/7)\log_2(3/7) (4/7)\log_2(4/7) = 0.5 + 0.5 = 0.99$
- Entropy of the child set ABC =

$$= -(2/3)\log_2(2/3) - (1/3)\log_2(1/3) = 0.39 + 0.53 = 0.92$$

Entropy of the child set DEFG =

$$= -(3/4)\log_2(3/4) - (1/4)\log_2(1/4) = 0.31 + 0.5 = 0.81$$

- Information gain =
 - = Entropy(ABCDEF) (3/7) * Entropy(ABC) (4/7) * Entropy(DEFG) = 0.25

Decision Tree Information Gain ID3 Algorithm (Iterative Dichotomiser 3)

Data mining algorithm invented by J.Ross Quinlan in 1975

- Compute entropy of the total data set
- Split the dataset on different attributes
- Compute entropy for each branch
- Define the attribute giving the biggest information gain (decrease of entropy)
- Use this attribute for decision node

Orthogonality in Statistics

- Term comes from vector math: orthogonal means lies in perpendicular plane
 - > Projection of A on B is 0
- Made into statistics through linear algebra
 - ➤ For matrices: [X]^T * [X] = I
 - > For vectors: A.B = 0
- Meaning for statistical variables in data frame: uncorrelated - not truly orhtogonal
- Advantages of datasets with truly independent ("orthogonal") variables
 - > Easy to analyze
 - > Better support for decision trees
 - ➤ Can be converted into matrix and allow vector math (linear algebra)

Quiz: Orthogonality of Dimensions

- In math dimensions are orthogonal: length, width, height
- Analytical tools use "generalized" definition of dimension, dimension is an attribute, a column name in a table
- Show pairs of truly orthogonal dimensions on the graph
- •What math functions can be performed on these pairs?

Setosa = subset(iris, Species == "setosa") plot(Setosa [1:4])

References

General

- http://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf
- https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-exper t-videos/
- https://web.stanford.edu/~hastie/Papers/ESLII.pdf
- https://medium.com/machine-learning-for-humans/why-machine-learning-matters-6164faf1 df12

Linear Regression

http://r-statistics.co/Linear-Regression.html

SVM

- http://math.stanford.edu/~yuany/course/2015.fall/SVM_in_R.pdf
- https://rischanlab.github.io/SVM.html

Neural networks

https://www.kdnuggets.com/2016/08/begineers-guide-neural-networks-r.html

Entropy

- https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain
- https://www.miniwebtool.com/log-base-2-calculator/

Cluster Analysis

 http://www.sthda.com/english/articles/30-advanced-clustering/105-dbscan-density-based/ lustering-essentials/

DATA TO DECISIONS

Q & A

