invariant under (T(t)) , then D(A) $\cap C_C(X)$ is invariant as well. It is dense because the elements of the form $\int_0^r T(s) f \, ds$, $f \in C_C(X)$, r > 0 , belong to $C_C(X)$ and to D(A). Hence D(A) $\cap C_C(X)$ is a core (by A-I,Cor.1.34).

П

Prop.4.11 can be used to prove that flows corresponding to certain ordinary differential equations on \mathbb{R}^n generate strongly continuous semigroups on $L^p(\mathbb{R}^n)$ (where \mathbb{R}^n is equipped with the Lebesgue measure). One has to impose conditions on the corresponding vector field. Note that for continuous flows condition (4.12) is automatically satisfied because for a compact $K \subset X$ the set $\phi_t^{-1}(K) = \phi_{-t}(K)$ is compact as the continuous image of a compact set.

Example 4.12. Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 -vector field and assume that the derivative DF is uniformly bounded on \mathbb{R}^n . Then the ordinary differential equation y' = F(y) possesses a global flow $\phi: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ which is C^1 . Moreover, we have

All these properties were proven in Ex.3.15 of B-II.

We will show that ϕ satisfies condition (ii) of Prop.4.11(a). Hence it induces a strongly continuous (semi-)group of lattice homomorphisms on $L(\mathbb{R}^n)$ (1 \leq p $< \infty$) via T(t) f = f $\circ \phi_+$.

This is done using the change of variables formula as follows: Let U be an open subset of \mathbb{R}^n , then $\phi_t^{-1}(U) = \phi_{-t}(U) =: U(-t)$. If λ denotes the Lebesgue measure then

$$\text{(4.14)} \begin{array}{l} \lambda \left(\phi_{t}^{-1} \left(U \right) \right) = \int_{U \left(-t \right)} \ 1 \ dx = \int_{U} \ 1 \circ \phi_{-t} (x) \cdot \left| \det \ D \phi_{-t} (x) \ \right| \ dx = \\ \int_{U} \left| \det \ D \phi_{-t} (x) \ \right| \ dx \leq \int_{U} \left| e^{nM \left| t \right|} \right| \ dx = \left| e^{nM \left| t \right|} \cdot \lambda \left(U \right) \ . \end{array}$$

Here we used (4.13) and the fact that the determinant of an n×n-matrix B satisfies $|\det B| \le \|B\|^n$.

In general, existence of a global flow does not ensure that one can associate a semigroup of bounded linear operators on $L^p(\mathbb{R}^n)$, even if the vector field is C^∞ . For example the differential equation $y'=\sin(y^2)$ does not induce a semigroup on $L^p(\mathbb{R})$.

There is another important class of differential equations which do induce semigroups of lattice homomorphisms on L^p-spaces: Hamiltonian differential equations. In fact, Liouville's Theorem states that the