1	- We simulated additional types of relationships	1	+ Simulations of additional types of relationships
	(Figure @fig:datasets_rel, second row), including		(Figure @fig:datasets_rel, second row), including
	some previously described from gene expression		some previously described from gene expression
	data [@doi:10.1126/science.1205438;		data [@doi:10.1126/science.1205438;
	@doi:10.3389/fgene.2019.01410;		@doi:10.3389/fgene.2019.01410;
	@doi:10.1091/mbc.9.12.3273].		@doi:10.1091/mbc.9.12.3273], showed that for
			random/independent variables, all coefficients
			correctly agreed with a value close to zero.
2	- For the random/independent pair of variables, all	2	+ The non-coexistence pattern, captured by all
	coefficients correctly agree with a value close to		coefficients, represented a case where one gene
	zero.		(\$x\$) is expressed while the other one (\$y\$) is
			inhibited, highlighting a potentially strong
			biological relationship (such as a microRNA
			negatively regulating another gene).
3	- The non-coexistence pattern, captured by all	3	+ Pearson and Spearman did not capture the nonlinear
	coefficients, represents a case where one gene		patterns between variables \$x\$ and \$y\$ in the
	(\$x\$) might be expressed while the other one (\$y\$)		quadratic and two-lines examples, while CCC
	is inhibited, highlighting a potentially strong		increased the complexity of the model by using
	biological relationship (such as a microRNA		different degrees of complexity to capture the
	negatively regulating another gene).		relationships.
4	- For the other two examples (quadratic and two-	4	+ For the quadratic pattern, CCC used four clusters
	lines), Pearson and Spearman do not capture the		for \$x\$ and achieved the maximum ARI.
	nonlinear pattern between variables \$x\$ and \$y\$.		
5	- These patterns also show how CCC uses different	5	+ In the two-lines example, CCC used eight clusters
	degrees of complexity to capture the		for \$x\$ and six for \$y\$, resulting in \$c=0.31\$,
	relationships.		while Pearson and Spearman gave \$p=-0.12\$ and
			\$s=0.05\$, respectively.
6	- For the quadratic pattern, for example, CCC		
	separates \$x\$ into more clusters (four in this		
	case) to reach the maximum ARI.		
7	- The two-lines example shows two embedded linear		
	relationships with different slopes, which neither		
	Pearson nor Spearman detect (\$p=-0.12\$ and		
	\$s=0.05\$, respectively).		
8	- Here, CCC increases the complexity of the model by		
	using eight clusters for \$x\$ and six for \$y\$,		
	resulting in \$c=0.31\$.		