Probabilités 3A TD 4

Exercice 1: (sur la loi uniforme)

Soit X une variable aléatoire de loi uniforme sur [-2,2]. On pose $Y=X^2$.

- 1) Quelle est la loi de Y?
- 2) Calculer $\mathbb{E}(Y)$.

Exercice 2: (lien entre la loi exponentielle et la loi géométrique)

Soit X une variable aléatoire de loi exponentielle de paramètre $\lambda > 0$. On pose Y = [X] (partie entière de X) et Z = X - Y.

- 1) Quelle est la loi de Y? Calculer $\mathbb{E}(Y)$.
- 2) Quelle est la loi de Z? Calculer $\mathbb{E}(Z)$.

Exercice 3: (lois de Poisson et exponentielle)

On considère une ligne de bus partant de Nancy, arrivant à Metz, et passant à Polytech Nancy où je me trouve. On suppose que le nombre de bus passant à Polytech Nancy entre deux temps t_1 et t_2 ($t_1 < t_2$, le temps étant exprimé en minutes) est une variable aléatoire $X(t_1, t_2)$ suivant une loi de Poisson de paramètre $(t_2 - t_1)\lambda$ où $\lambda > 0$. On a observé qu'il passe en moyenne deux bus par heure. J'arrive à l'arrêt de bus. On note Y le temps que je vais attendre avant l'arrivée du prochain bus.

- 1) Déterminer λ .
- 2) Quelle est la loi de Y?
- 3) Démontrer que pour tout $(t,h) \in (\mathbb{R}_+)^2$,

$$\mathbb{P}(Y > t + h \mid Y > t) = \mathbb{P}(Y > h).$$

Comment interpréter ce résultat?

Exercice 4:

Soient $\lambda > 0$ et (X, Y) un vecteur aléatoire de densité donnée par

$$f_{(X,Y)}(x,y) = \lambda \exp\left(-x^2 + xy - \frac{y^2}{2}\right)$$
 $\forall (x,y) \in \mathbb{R}^2.$

- 1) Écrire $-x^2 + xy \frac{y^2}{2}$ sous la forme $-ax^2 b(y-x)^2$ où a et b sont à déterminer.
- 2) Calculer l'intégrale $\iint_{\mathbb{R}^2} \exp\left(-x^2 + xy \frac{y^2}{2}\right) dx dy$.
- 3) Déterminer λ tel que $f_{(X,Y)}$ soit bien une densité de probabilité.
- 4) Déterminer les densités marginales f_X et f_Y (respectivement densités de X et Y).
- 5) X et Y sont-elles indépendantes?

Exercice 5: (lois exponentielles)

Soient X et Y deux variables aléatoires indépendantes de lois exponentielles de paramètres $\lambda > 0$ et $\mu > 0$ respectivement. On pose S = X + Y. Déterminer la loi et l'espérance de S.

Exercice 6:

Soit X une variable aléatoire suivant une loi gamma $\gamma(\alpha)$ de paramètre $\alpha > 0$. Calculer la fonction caractéristique de X et en déduire $\mathbb{E}(X)$ et $\mathrm{Var}(X)$.