

- Linguagem: Python
 - Vantagens: Expressividade, concisa, biblioteca padrão bastante completa
 - Desvantagens: Performance
- Bibliotecas Extras: Matplotlib
 - Opcional
 - Apenas para visualização da linha poligonal
 - pip install matplotlib
- Tentei gerar um executável com as bibliotecas pyinstaller e py2exe, mas em ambas o matplotlib não conseguiu ser linkado de modo a mostrar imagens

Funções genéricas para medir o tempo do código

```
def run sort algorithm(L, name):
    print(f'===== Running algorithm {name} ======')
    # Check the algorithm's correctness
    check correctness(L)
    example_10 = time_function_rand_input(l, 10, 1000, Lambda s: random.randint(0, s*10))
    example_ordered = time_function_ordered_input(l, 10, 1000, lambda s: s*2)
    example_100 = time_function_rand_input(l, 100, 1000, Lambda s: random.randint(0, s*10))
    example_1000 = time_function_rand_input(l, 1000, 1000, Lambda s: random.randint(0,
s*10))
    return {
        "example 10": example 10,
        "example_ordered": example_ordered,
        "example 100": example 100,
        "example_1000": example_1000,
```

```
def time_function_rand_input(fn, size, repeats,
    genfn):
        sum = 0
        for i in range(0, repeats):
            random_list = [genfn(size*10) for y in
        range(size)]
        start_time = time.time()
            fn(random_list)
            elapsed = time.time() - start_time
        sum += elapsed
        return sum/repeats
```

```
def time_function_ordered_input(fn, size, repeats,
    genfn):
    sum = 0
    for i in range(0, repeats):
        start_num = random.randint(0, size*10)
        ordered_list = [genfn(y) for y in
    range(start_num, start_num+size)]
        start_time = time.time()
        fn(ordered_list)
        elapsed = time.time() - start_time
        sum += elapsed
    return sum/repeats
```

```
def main():
    # Run standalone sorting algorithms
    selection times = run sort algorithm(lambda l: selection sort(l), "Selection Sort")
    insertion times = run sort algorithm(lambda l: insertion sort(l), "Insertion Sort")
    merge times = run sort algorithm(Lambda L: merge sort(L), "Merge Sort")
    quick times = run sort algorithm(lambda \ l: quick sort(l, 0, len(l)-1), "Quick Sort")
    # Make a comparative table
    print table with times(selection times, insertion times, merge times, quick times)
    print('\n')
    # Run polygonal line algorithms
    polygonal selection times = run polygonal line reduction(Lambda \ L: selection Sort(L), "Selection Sort(L)")
    polygonal insertion times = run polygonal line reduction(lambda l: insertion sort(l), "Insertion Sort")
    polygonal merge times = run polygonal line reduction(lambda \ l: merge sort(l), "Merge Sort")
    polygonal quick times = run polygonal line reduction(lambda \ l: quick sort(l, 0, len(l)-1), "Quick Sort")
    print table with times(polygonal selection times, polygonal insertion times, polygonal merge times, polygonal quick times)
    # Show ordenations on graphs
    show polygonal line reduction(lambda l: selection sort(l), 10, "Selection sort")
    show polygonal line reduction(lambda l: insertion sort(l), 10, "Insertion Sort")
    show polygonal line reduction(lambda l: merge sort(l), 10, "Merge Sort")
    show polygonal line reduction(Lambda \ l: quick sort(l, 0, len(l)-1), 10, "Quick Sort")
```

Selection sort

```
Selection sort algorithm. Receives a vector and orders it in-place
def selection_sort(v):
    n = len(v)
   # At each loop iteration, the invariant is that the
    # sublist from 0..i-1 is sorted and i..n is unsorted.
    for i in range(0, n):
      # Find the smallest item in the unsorted sublist
       smallest = i
       for j in range(i+1, n):
           if v[j] < v[smallest]:
               smallest = j
       # Swap the smallest element with the first one in the unsorted sublist
        if smallest != i:
            aux = v[i]
           v[i] = v[smallest]
           v[smallest] = aux
        # Grow the sorted sublist
```

Quick Sort

```
Quick sort algorithm
"""

def quick_sort(v, lo, hi):
    n = hi - lo + 1
    if n > 1:
        q = partition(v, lo, hi)
        quick_sort(v, lo, q-1)
        quick_sort(v, q+1, hi)
```

```
Chooses the pivot element as the last element and partitions the input
vector into smaller and bigger elements
def partition(v, lo, hi):
    pivot = v[hi]
   i = lo
    # At each loop iteration, the invariant is that the elements from
   # 0..i-1 are smaller than the pivot
   for j in range(lo,hi+1):
        # If we find another element that's smaller than the pivot, place
       # into the i-th position and grow i to keep the invariant
       if v[j] < pivot:
            aux = v[i]
           v[i] = v[j]

v[j] = aux
            i += 1
    # Place the pivot into the correct position
    aux = v[i]
    v[i] = v[hi]
    v[hi] = aux
    # Return the pivot index
    return i
```

Merge Sort

```
Merge sort algorithm. Receives a
vector and returns an ordered
version of it
11 11 11
def merge_sort(v):
   n = len(v)
   if n > 1:
        mid = floor(n/2)
        11 = merge_sort(v[0:mid])
        12 = merge_sort(v[mid:n])
        return merge(11, 12)
    return v
```

```
def merge(L1,L2):
    # The merged list
    m = []
   i1 = 0
    n1 = len(l1)
    i2 = 0
    n2 = len(L2)
    # While there are still elements to copy from on both lists,
    # copy the smallest element
    while i1 < n1 and i2 < n2:
       if l1[i1] <= l2[i2]:
           m.append(L1[i1])
           i1 += 1
            m.append(L2[i2])
            i2 += 1
    # If only the elements of 11 remain, copy them all to the merged
    # list. Else, copy the elements of 12.
    if i1 < n1:
       m.extend(L1[i1:n1])
    elif i2 < n2:</pre>
       m.extend(L2[i2:n2])
    return m
```

Comparação

vg of 1000 runs	Selection Sort	Insertion Sort	Merge Sort	Quick Sort
l0 random entries	0.000022	0.000024	0.000053	0.000034
10 ordered entries	0.000012	0.000016	0.000057	0.000069
100 random entries	0.000684	0.001525	0.000795	0.000548
1000 random entries	0.077338	0.152426	0.008895	0.005912

Linha Poligonal

Para resolver o problema da linha poligonal através da redução, podemos transformá-lo em um problema de **ordenação**. Após ordenar os vértices de entrada em seus respectivos eixos em uma ordem definida (ex: x, y, z), a linha poligonal será formada pela sequência ordenada de vértices. Como existem algoritmos de ordenação cuja ordem é Θ(nlogn), e a redução envolve apenas dispor os vértices de entrada em um vetor, esta é de ordem Θ(n), ou seja, linear.

Avg of 100 runs	Selection Sort	Insertion Sort	Merge Sort	Quick Sort
10 random entries	0.000098	0.000027	0.000103	0.000035
10 ordered entries	0.000010	0.000000	0.000067	0.000026
100 random entries	0.000873	0.001660	0.000782	0.000549
1000 random entries	0.128753	0.162386	0.009568	0.006277

Questão 06 (Exemplos de linhas poligonais com 10 vértices)

Questão 06 (Exemplos de linhas poligonais com 10 vértices)

