LAPORAN

Tugas Besar 2: Hollow Objects IF3260 Grafika Komputer

DISUSUN OLEH

13520113	Brianaldo Phandiarta
13520114	Kevin Roni
13520137	Muhammad Gilang Ramadhan
13520141	Yoseph Alexander Siregar

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG 2022

DAFTAR ISI

DAFTAR ISI	1
BAB I: DESKRIPSI	2
BAB II: HASIL IMPLEMENTASI	3
Model	3
Load and Save	5
General View Control	7
Animation	18
Component Control & Tree (spesifikasi lanjutan)	18
BAB III: MANUAL FUNGSIONALITAS PROGRAM	20
Model	20
Load and Save	20
General View Control	21
Animation	22
Component Control & Tree	22

BAB I: DESKRIPSI

Pada tugas besar 3 mata kuliah IF3260 Grafika Komputer, dilakukan eksplorasi terkait dengan penggunaan WebGL pada *articulated objects* yang dibuat sendiri secara manual menggunakan konsep tree terkait dengan hubungan *child* dan *parent*. Adapun WebGL yang digunakan untuk membuat interaksi pada *hollow object* tersebut ialah WebGL murni, tanpa *library/framework* tambahan. Umumnya dalam proyek WebGL, terdapat *library* yang berisi fungsi utilitas yang umumnya sudah disiapkan oleh WebGL itu sendiri. Namun, pada tugas besar kali ini, penulis membuat fungsi-fungsi tersebut sendiri.

Adapun fungsi-fungsi tersebut mengimplementasikan fungsionalitas dalam melakukan berbagai macam interaksi dengan *articulated objects* melalui transformasi objek dan komponen, proyeksi objek, mengubah konfigurasi *view* kamera terhadap objek, sampai dengan eksplorasi terkait dengan *Shading* dan *Texture* yang ada pada *Computer Graphics*.

Aplikasi yang dibuat harus bisa digunakan untuk menggambar empat *articulated object* yaitu orang, kucing, sapi, dan random dengan fungsi utilitas, yaitu *general view controls* (mengubah proyeksi dan transformasi *articulated object*), *animation*, kontrol komponen. Untuk fitur bonus yang dikerjakan adalah membuat *component tree* yang dapat dilihat pada canvas.

BAB II: HASIL IMPLEMENTASI

Model

Pada tugas besar kali ini, terdapat beberapa model yang telah diimplementasikan. Berikut merupakan beberapa implementasi yang telah kami buat.

- orang

- Kucing

- Sapi

- random

Load and Save

Pengguna dapat bekerja dengan baik, berikut hasil file yang sudah disimpan

Setelah dilakukan save dan di load (dilihat nama file berbeda) Bberikut hasil file yang sudah disave

General View Control

Dapat dilakukan interaksi untuk view model keseluruhan

- 1. Jenis Proyeksi
 - perspective

- ortographic

- oblique

2. Transformasi

3. Radius dan Rotasi Kamera Radius Kamera

Rotasi Kamera

4. Reset Default

5. Enable Shading

- Without Shading

- With Shading

6. Tekstur Permukaan Model Bump

-reflective

-custom

Animation

Setiap model juga mempunyai sesuai dengan animasi yang di load. Karena keterbatasan kami tidak dapat menampilkan hasil implementasinya. Dilakukan dengan membuat transformasi diskrit pada masing-masing objek

Component Control & Tree (spesifikasi lanjutan)

Dalam berinteraksi dengan objek, dapat dilakukan component control dengan memilih pada tree yang sudah disediakan

Menggerakan komponen tangan kanan (maka anaknya juga bergerak)

BAB III: MANUAL FUNGSIONALITAS PROGRAM

Berikut adalah cara penggunaan fungsionalitas yang ada pada program.

Model

Pengguna dapat melakukan load dari model yang sudah disediakan dari penulis pada folder test

Load and Save

Pengguna dapat melakukan load and save dengan mengklik tombol berikut

General View Control

Dapat dilakukan interaksi dengan cara berikut

1. Jenis Proyeksi

2. Transformasi

Perlu diketahui bahwa transformasi akan terjadi pada setiap anak pada komponen yang sedang dipilih, untuk melakukan edit secara keseluruhan maka dapat memilih parent paling atas

3. Radius dan Rotasi Kamera

4. Reset Default

5. Enable Shading

6. Tekstur Permukaan Model

Animation

Pengguna dapat melakukan animasi dengan upload file animasi pada objek

Component Control & Tree

Pengguna dapat melakukan kontrol pada komponen dengan menekan tombol pada component tree yang sudah disediakan dan melakukan transformasi pada komponen tersebut (otomatis teraplikasikan)