Spojitost a derivace funkcí

Spojitost funkcí

1. Dodefinujte funkci v bodě 0 tak, aby byla spojitá:

$$f(x) = \frac{1 - \cos x}{x^2}, \quad x \in \mathbb{R} \setminus \{0\}$$

2. Zjistěte, kde jsou nespojité funkce

a)
$$f(x) = e^{-\frac{1}{x}}$$

b)
$$f(x) = \operatorname{sgn} \cos \frac{1}{x}$$
.

3. Vyšetřete spojitost složených funkcí f(g(x)) a g(f(x)), je-li

$$f(x) = \operatorname{sgn} x$$
 $g(x) = x(1 - x^2)$.

4. Zjistěte, zda jsou spojité funkce

a)
$$f(x) = \begin{cases} \frac{\sin x}{|x|} & x \neq 0 \\ 1 & x = 0 \end{cases}$$
b)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

- 5. Dokažte, že jsou-li f(x) a g(x) spojité v x_0 , pak jsou spojité v x_0 i funkce a) $\min\{f(x),g(x)\}$ b) $\max\{f(x),g(x)\}$.
- 6. Uveďte příklad funkce nespojité v každém $x \in \mathbb{R}$, jejíž druhá mocnina je spojitá na \mathbb{R} .

Derivace funkcí

7. Existuje derivace funkce f(x) = x|x| v bodě 0?

8. Pro jaké α reálné má funkce

$$f(x) = \begin{cases} |x|^{\alpha} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

derivaci v bodě 0. Kdy je tato derivace v bodě 0 spojitá?

9. Dokažte, že funkce

$$f(x) = \begin{cases} x^2 & x \text{ je racionální} \\ 0 & x \text{ je iracionální.} \end{cases}$$

má derivaci pouze v nule.

- 10. Ukažte, že derivace sudé funkce (pokud existuje) je funkce lichá.
- 11. Nechť

$$f(x) = \begin{cases} x^2 & x \le 1\\ ax + b & x > 1. \end{cases}$$

Určete a, b tak, aby f(x) měla v bodě 1 derivaci.

12. Určete rovnici tečny a normály ke grafu funkce $f(x) = x^3 + 2x^2 - 4x - 3$ v bodě [-2,?] grafu.

Elementární funkce

Dokažte, že

- 13. $\operatorname{arctg} x + \operatorname{arccotg} x = \frac{\pi}{2}, x \in \mathbb{R}$
- 14. $\arcsin x + \arccos x = \frac{\pi}{2}, x \in [-1, 1]$
- 15. $\operatorname{argsinh} x = \ln(x + \sqrt{x^2 + 1}), x \in \mathbb{R}$
- 16. $\operatorname{argcosh} x = \ln(x + \sqrt{x^2 1}), |x| \ge 1$
- 17. $\operatorname{argtgh} x = \frac{1}{2} \ln \frac{1+x}{1-x}, x \in (-1,1)$
- 18. $\operatorname{argcotgh} x = \frac{1}{2} \ln \frac{x+1}{x-1}, |x| > 1$

Derivace elementárních funkcí

19. Dokažte vztahy pro derivace cyklometrických, hyperbolických a hyperbolometrických funkcí.

Vypočtěte derivace následujících funkcí v libovolném bodě x, kde derivace existuje:

20.
$$f(x) = \frac{2x}{1 - x^2}$$

21.
$$f(x) = \sqrt[3]{\frac{1+x^3}{1-x^3}}$$

22.
$$f(x) = \frac{\sin^2 x}{\sin x^2}$$

23.
$$f(x) = \sin \sin x$$

24.
$$f(x) = 2^{\log \frac{1}{x}}$$

25.
$$f(x) = x^{a^a} + a^{x^a} + a^{a^x}$$

26.
$$f(x) = (\sin x)^{\cos x} + (\cos x)^{\sin x}$$

27.
$$f(x) = \arctan \frac{1+x}{1-x}$$

28.
$$f(x) = x\arcsin^2 x + 2\sqrt{1 - x^2}\arcsin x - 2x$$

29.
$$f(x) = \ln(e^x + \sqrt{1 + e^{2x}})$$
.

Derivace vyšších řádů. Parciální derivace

- 30. Ověřte, že funkce $u(x) = \frac{1}{|x|}$, kde $|x|^2 = x_1^2 + x_2^2 + x_3^2$, splňuje v $\mathbb{R}^3 \setminus 0$ Laplaceovu rovnici $\Delta u = \sum_{i=1}^3 \frac{\partial^2 u}{\partial x_i^2} = 0$.
- 31. Ověřte, že funkce $v(t,x)=\frac{1}{t^{\frac{3}{2}}}\mathrm{e}^{-\frac{|x|^2}{4t}}$, kde $|x|^2=x_1^2+x_2^2+x_3^2$, splňuje v $(0,\infty)\times\{\mathbb{R}^3\setminus 0\}$ rovnici vedení tepla $\frac{\partial v}{\partial t}-\Delta v=0$, kde $\Delta v=\sum_{i=1}^3\frac{\partial^2 v}{\partial x_i^2}$.
- 32. Spočtěte $f^{(10)}(x)$ je-li $f(x) = \sqrt{x}$.
- 33. Spočtěte $f^{(50)}(x)$ je-li $f(x) = x^2 \sin 2x$.