Analiza III R

Wykładowca: dr hab. Paweł Kasprzak

Skryba: Szymon Cedrowski

Spis treści

	Ćwiczenia 7	4
1	Analiza zespolona	6
	Ćwiczenia 8	7
	Ćwiczenia 9	10
	Ćwiczenia 10	12

Wykład 7: Ćwiczenia 7

05 lis 2020

Zadanie 5/S3 pomocnicze $d_{\omega}^{k}=0$ na O, który jest ściągalny to istnieje $\eta^{k-1}:d\eta=\omega$. Wykazać, że jeśli $\omega\in\Omega^{1}(\mathbb{R}^{2}\setminus\{0\})$ jest zamknięta oraz $\int_{S^{1}}\omega=0$ to ω jest zupełna.

Chcemy wskazać funkcję $f \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$: d $f = \omega$. Trzeba ją skonstruować, inaczej nie da rady. Nasz obszar nie jest ściągalny, więc lemat Poincare też nie pomoże. Przykładowo, wyrzucenie całej półosi z układu współrzędnych daje już retrakcję.

Niech $O_+ = \mathbb{R}^2 \setminus \mathbb{R}_{\geq 0} e_2$ oraz $O_- = \mathbb{R}^2 \setminus \mathbb{R}_{\leq 0} e_2$. Każdy z tych zbiorów jest ściągalny, zatem ω ma potencjał na każdym z tych obszarów (oczywiście nie musi być to ten sam potencjał). Z Lematu Poincare, istnieją f_{\pm} takie, że:

$$df_{+} = \omega \big|_{O_{+}}$$

$$df_{-} = \omega \big|_{O_{-}}$$

$$d(f_{+} - f_{-}) = (d\omega - d\omega) \big|_{O_{+} \cap O_{-}} = 0$$

gdzie $O_+ \cap O_- = \mathbb{R}^2 \setminus \mathbb{R}_{e_2}$. Istnieją stałe c_+ i c_- takie, że

$$f_{+} - f_{-} = \begin{cases} c_{+} & x > 0 \\ c_{-} & x < 0 \end{cases}$$

Pytanie brzmi czy $c_+ = c_-$? Jeśli tak, to $f_+ = f_- + c$. Czyli $f \in C^{\infty}(\mathbb{R}^2 \setminus \{0\})$ określona wzorem f_- na O_- oraz $f_+ - c$ na O_+ spełnia d $f = \omega$. Użyjmy warunku z całką po okręgu.

$$0 = \int_{S^1} \omega = \int_{g\text{\'ora}} \omega + \int_{d\text{\'ol}} \omega$$
$$= \int_{g\text{\'ora}} df_- + \int_{d\text{\'ol}} df_+$$

Całka z pochodnej to różnica wartości na brzegu, zatem

$$= f_{-}(-1,0) - f_{-}(1,0) + f_{+}(1,0) - f_{+}(-1,0) = 0$$

Stąd,

$$f_{+}(1,0) - f_{-}(1,0) = f_{+}(-1,0) - f_{-}(-1,0)$$

Stąd wynika, że $c_+ = c_-$ i to kończy nasz dowód.

Lemat do zadania 5 (dla chętnych do domu).

Wykazać, że jeśli $\theta \in \Omega^1(\mathbb{R}^3 \setminus \mathbb{R}_{e_z})$ jest zamknięta oraz $\int_{\substack{x^2+y^2=1\\z=0}} \theta = 0$, to θ jest zupełna.

Zadanie 5/S3 Mamy $\omega \in \Omega^2(\mathbb{R}^3 \setminus \{0\})$, d $\omega = 0$, $\int_{S^2} \omega = 0$. Pokazać, że ω jest zupełna.

Wskazówka,

$$O_{+} = \mathbb{R}^{3} \setminus \mathbb{R}_{\geq 0} e_{z}$$

$$O_{-} = \mathbb{R}^{3} \setminus \mathbb{R}_{\leq 0} e_{z}$$

mają retrakcję. Należy skorzystać z lematu Poincare i znaleźć potencjały na O_+ i O_- . Niech $\theta_\pm \in \Omega^1(O_\pm)$: $\mathrm{d}\theta_\pm = \omega \, \big|_{O_+}$. Zauważmy, że

$$d(\theta_+ - \theta_-) \Big|_{O_+ \cap O_-} = 0$$

gdzie $O_+ \cap O_- = \mathbb{R}^3 \setminus \mathbb{R}_{e_z}$. Czy $\int_{S^1} \theta_+ - \theta_- = 0$?

$$0 = \int_{S^2} \omega = \int_{S_+^2} \omega + \int_{S_-^2} \omega$$
$$= \int_{S_+^2} d\theta_- + \int_{S_-^2} d\theta_+$$

Ze Stokesa,

$$= \int_{(S^{1},+)} \theta_{-} + \int_{(S^{1},-)} \theta_{+}$$
$$= \int_{(S^{1},+)} (\theta_{-} - \theta_{+})$$

Istnieje $f \in C^{\infty}(\mathbb{R}^3 \setminus \mathbb{R}_{e_z})$: $\theta_+ - \theta_- = \mathrm{d}f$. Czy istnieją funkcje $f_+ \in C^{\infty}(O_+)$ i $f_- \in C^{\infty}(O_-)$ takie, że $f = f_+ - f_-$ na $O_+ \cap O_-$. Jeśli tak, to $(\theta_+ - \theta_-) = \mathrm{d}f = \mathrm{d}f_+ - \mathrm{d}f_-$. Stąd istniałaby $\eta \in \Omega^1(\mathbb{R}^3 \setminus \{0\})$ dana wzorem:

$$\eta \big|_{O_+} = \theta_+ - \mathrm{d}f_+$$

$$\eta \big|_{O_-} = \theta_- - \mathrm{d}f_-$$

oraz

$$d\eta = \omega$$

Dlaczego takie f_+ i f_- istnieją? Dobre pytanie! Może kiedyś dokończymy ten dowód :)

Rozdział 1

Analiza zespolona

Zadanie 1a/S4 Znaleźć funkcję holomorficzną taką, że $Re(f(z)) = e^x \cos y$, f(0) = 1.

Warunki Cauchy'ego-Riemanna dla f(z) = u(z) + iv(z):

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Wynik mógłby pojawić się przez rozwiązywanie tego układu równań. Ale można też zgadnąć: $f(z)=e^z$. Ale rozwiążmy to analitycznie.

$$u(x,y) = e^x \cos y$$

$$\frac{\partial u}{\partial x} = e^x \cos y = \frac{\partial v}{\partial y}$$

$$v = \int e^x \cos y \, dy = e^x \sin y + C(x)$$

$$\frac{\partial v}{\partial x} = e^x \sin y + C'(x) = -\frac{\partial u}{\partial y} = e^x \sin y$$

$$C'(x) = 0$$

$$f(0) = 1 \implies C = 0$$

Stad,

$$f(x,y) = e^x \cos y + ie^x \sin y = e^x e^{iy} = e^z$$

Zadanie 1c/S4 Im(f(z)) = 3x + 2xy, f(-i) = 2.

$$f_1(z) = 3iz$$
, $\text{Im}(f_1(z)) = 3x$
 $f_2(z) = z^2$, $\text{Im}(f_2(z)) = 2xy$
 $f = f_1 + f_2 + C = 3iz + z^2 + C$
 $f(-i) = 3i(-i) + i^2 + C = 2$
 $C = 0$

Zadanie 1b/S4 $\operatorname{Re}(f(z)) = \sin x/(\cos x + \cosh y), f(0) = 0.$

Atakujemy R.C.R.

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = \frac{\sin x \sinh y}{(\cos x + \cosh y)^2}$$

$$v = \int \frac{\sin x \sinh y}{(\cos x + \cosh y)^2} dx = \frac{\sinh y}{\cos x + \cosh y} + C(y)$$

$$\frac{\partial u}{\partial x} = \frac{\cos x}{\cos x + \cosh y} + \frac{\sin^2 x}{(\cos x + \cosh y)^2}$$

$$= \frac{1 + \cos x \cosh y}{(\cos x + \cosh y)^2} = \frac{\partial v}{\partial y}$$

$$\frac{\partial v}{\partial y} = \frac{\cosh y}{\cos x + \cosh y} + \frac{\sinh y}{(\cos x + \cosh y)^2}$$

$$= \frac{\cosh^2 y - \sinh^2 y + \cos x \cosh y}{(\cos x + \cosh y)^2} + C'(y)$$

$$C = \cosh.$$

$$f(z) = \frac{\sin x}{\cos x + \cosh y} + i \frac{\sinh y}{\cos x + \cosh y} + C$$

$$= \frac{\sin x + i \sinh y}{\cos x + \cosh y} + C = \frac{\sin x + \sin(iy)}{\cos x + \cosh y} + C$$

$$= \frac{2\sin \frac{x + iy}{2}\cos \frac{x - iy}{2}}{\cos x + \cosh y} = \tan \frac{z}{2}$$

Wykład 8: Ćwiczenia 8

C=0,

09 lis 2020

Zadanie 2/S4 Znaleźć homografię odwzorowującą $\Omega_1=K(0,2)\setminus \overline{K}(1,1)$ na $\Omega_2=\{\omega\in\mathbb{C}\colon 0<\mathrm{Re}(\omega)<1\}.$

Wstęp teoretyczny Odwzorowanie afiniczne $\alpha z + \beta$ jest wyznaczone przez wartości w dwóch punktach płaszczyzny zespolonej. Jak podamy 2 punkty, to istnieje dokładnie jedno tego typu odwzorowanie, które te dwa punkty w inne dwa punkty przerzuca.

$$\exists ! \alpha z + \beta : \alpha z_1 + \beta = w_1, \ \alpha z_2 + \beta = w_2$$

Definicja 1 (Sfera Riemanna).

$$\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

Homografię $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$ możemy zapiać jako:

$$h(z) = \begin{cases} \frac{az+b}{cz+d} & z \neq -\frac{d}{c} \cup \{\infty\} \\ \infty & z = -\frac{d}{c} \\ \frac{a}{c} & z = +\infty \end{cases}$$

Wówczas h jest afiniczne. Niech $z_1, z_2, z_3 \in \overline{\mathbb{C}}, z_i \neq z_j, i \neq j$.

$$h(z) = \frac{z - z_1}{z - z_2} \frac{z_3 - z_2}{z_3 - z_1}$$

Wówczas $h(z_1) = 0$, $h(z_2) = \infty$, $h(z_3) = 1$. Od tej pory zakładamy, że homografia nie jest odwzorowaniem stałym, tj. $ad - bc \neq 0$. Homografie składamy zgodnie z regułą mnożenia macierzy. W szczególności homografie tworzą grupę przekształceń.

Twierdzenie 1. Jeśli $z_1, z_2, z_3 \in \overline{\mathbb{C}}, w_1, w_2, w_3 \in \overline{\mathbb{C}},$ to istnieje dokładnie jedna homografia $h: h(z_i) = w_i$.

 $Dow \acute{o}d$. Niech $\left[h_1(z_1),h_1(z_2),h_1(z_3)\right]=[0,\infty,1]$. Wówczas $\left[h_2^{-1}(w_1),h_2^{-1}(w_2),h_2^{-1}(w_3)\right]=[0,\infty,1]$. W związku z tym, $h_2\circ h_1$ jest okej. Co z jednoznacznością?

Przypuśćmy, że h, \tilde{h} są okej. Jeśli $z_3 = w_3 = \infty$, to h, \tilde{h} jest afiniczne, a zatem $h = \tilde{h}$. Niech g, \tilde{g} to będą homografie takie, że $(0, 1, \infty) \stackrel{g}{\mapsto} (z_1, z_2, z_3)$ oraz $(w_1, w_2, w_3) \stackrel{\tilde{g}}{\mapsto} (0, 1, \infty)$. Zauważmy, że $\tilde{g}hg$ oraz $\tilde{g}hg$ są identycznościowe. Zatem,

$$h = \tilde{h} = \tilde{g}^{-1} \circ g$$

Teraz trzeba popatrzyć na to w świetle naszego zadania. Istnieje dokładnie jedna homografia, która:

$$h(2) = +\infty, \quad h(0) = 1, \quad h(-2) = 0$$

 $h(z) = -\frac{z+2}{z-2}$

Można łatwo sprawdzić (czy raczej się upewnić), że wszystkie punkty przenoszą się odpowiednio. Skorzystaliśmy jedynie z faktu, że te obszary są topologicznie sensowne, zatem brzegi przechodzą na brzegi, wnętrza na wnętrza. Przy homomorfizmie, odwzorowanie obszaru spójnego jest spójne. Skorzystaliśmy też z tego, że homografie przerzucają okręgi uogólnione na okręgi uogólnione.

Uwaga! Odwzorowanie homograficzne, które przerzuca dane 3 punkty na dane 3 punkty jest jedno, ale całe obszary na inne obszary; może być wiele – wystarczy wybrać z tych obszarów jakieś inne punkty.

Rysunek 1.1: Homografia przerzucająca rozważane obszary.

Zadanie 3/S4 $f(z) = u(z) + iv(z) \rightarrow f(\rho, \phi) = R(\rho, \phi)e^{i\Phi(\rho, \phi)}$. Wyprowadzić warunki C-R dla R, Φ .

Ustalmy ρ_0 , ϕ_0 . $z_0 = \rho_0 e^{i\phi_0}$ oraz $z_{\Delta\rho} = (\rho_0 + \Delta\rho)e^{i\phi_0}$, $z_{\Delta\phi} = \rho_0 e^{i(\phi_0 + \Delta\phi)}$. Jak z dowolnych dwóch kierunków zbiegając do z_0 dostaniemy to samo, to mamy funkcję holomorficzną.

$$\lim_{\Delta \rho \to 0} \frac{f(z_{\Delta \rho}) - f(z_0)}{z_{\Delta \rho} - z_0} = \lim_{\Delta \phi \to 0} \frac{f(z_{\Delta \phi}) - f(z_0)}{z_{\Delta \phi} - z_0}$$

$$\lim_{\Delta \rho \to 0} \frac{f(z_{\Delta \rho}) - f(z_0)}{z_{\Delta \rho} - z_0} = \frac{R(\rho_0 + \Delta \rho, \phi_0) \exp(i\Phi(\rho_0 + \Delta \rho, \phi_0)) - R(\rho_0, \phi_0) \exp(i\Phi(\rho_0, \phi_0))}{\Delta \rho e^{i\phi_0}}$$

$$= e^{-i\phi_0} \left[\frac{\partial R}{\partial \rho} e^{i\Phi(\rho_0, \phi_0)} + Re^{i\Phi} i \frac{\partial \Phi}{\partial \rho} \right]$$

Tak samo druga granica,

$$\lim_{\Delta\phi\to 0} \frac{f(z_{\Delta\phi}) - f(z_0)}{z_{\Delta\phi} - z_0} = \underset{\text{wyrazenie}}{\text{analogiczne}}$$

$$= \frac{1}{i\rho_0 e^{i\phi_0}} \lim_{\Delta\phi\to 0} \frac{1}{\Delta\phi} \Big[R(\rho_0, \phi_0 + \Delta\phi) \exp \big(i\Phi(\rho_0, \phi_0 + \Delta\phi) \big) \Big]$$

$$-R(\rho_0, \phi_0) \exp \big(i\Phi(\rho_0, \phi_0) \big) \Big]$$

$$= \frac{1}{i\rho_0} e^{i\phi_0} \left(\frac{\partial R}{\partial \phi} e^{i\Phi} + Re^{i\Phi} i \frac{\partial \Phi}{\partial \phi} \right)$$

Stad otrzymujemy równania C-R:

$$\frac{1}{i\rho_0} \left(\frac{\partial R}{\partial \phi} + Ri \frac{\partial \Phi}{\partial \phi} \right) = \frac{\partial R}{\partial \rho} + iR \frac{\partial \Phi}{\partial \rho}$$

Porównujemy części rzeczywiste i urojone, dostając piękne równania C-R we współrzędnych "biegunowo-biegunowych":

$$\begin{split} \frac{R}{\rho}\frac{\partial\Phi}{\partial\phi} &= \frac{\partial R}{\partial\rho} \\ -\frac{1}{\rho}\frac{\partial R}{\partial\phi} &= R\frac{\partial\Phi}{\partial\rho} \end{split}$$

Zadanie 5a/S4 Obliczyć całkę $\oint_{C(0,1)} \frac{e^z}{z} \, \mathrm{d}z$ korzystając ze wzoru Cauchy'ego.

Niech $D = K(0,1), f(z) = e^z$. Wówczas,

$$2\pi i = 2\pi i f(0) = \oint_{C(0,1)} \frac{e^z}{z} \, \mathrm{d}z$$

Wykład 9: Ćwiczenia 9

16 lis 2020

Zadanie 4/S4 $f(z) = \frac{1}{z(z+1)}$. Obliczyć $\int_{C_1} f(z) dz$ i $\int_{C_2} f(z) dz$, jeśli C_1 to odcinek łączący $z_0 = 2$ i $z_1 = 2i$; $C_2 : \phi \mapsto 2e^{i\phi}$, $\phi \in [\pi/2, 2\pi]$.

To zadanie nikomu się nie podoba, nikt go niestety nie lubi. Nawet odpowiedź jest głupia, więc tylko zagaimy co należy zrobić.

Rysunek 1.2

Osobliwości f są w $z_1 = 0$ oraz $z_2 = -1$.

$$\frac{1}{z(z+1)} = \frac{1}{z} - \frac{1}{z+1}$$

$$\int_{C_1} f(z) dz = \int_0^1 \left[\frac{1}{2 + t(2i-2)} - \frac{1}{3 + t(2i-2)} \right] (2i-2) dt$$

Użyjemy logarytmu, w ustalonej gałęzi: $\log z = \log |z| + i \arg z$, gdzie $\arg z \in (-\pi, \pi)$.

$$= \log[2 + t(2i - 2)] \Big|_{0}^{1} - \log[3 + t(2i - 2)] \Big|_{0}^{1}$$

$$= \log(2i) - \log(2) - \log(1 + 2i) + \log(3)$$

$$= \log\sqrt{5} + i\arg\left(\frac{1}{\sqrt{5}} + \frac{2}{\sqrt{5}i}\right)$$

No i teraz spróbujmy drugą całkę obliczyć.

$$\int_{C_2} f(z) dz = \int_{\pi/2}^{2\pi} 2e^{i\phi} i d\phi \left(\frac{1}{2e^{i\phi}} - \frac{1}{2e^{i\phi} + 1} \right)$$
$$= i\frac{3}{2}\pi - \int_{\pi/2}^{2\pi} \frac{2e^{i\phi} i d\phi}{2e^{i\phi} + 1}$$

To można sprowadzić do całki z funkcji wymiernej (bo jest to wymierna funkcja od funkcji trygonometrycznych). Znajdźmy jakiś związek między tymi całkami.

$$\int_{C_1} f(z) dz + \int_{C_2} f(z) dz = \oint_{C_1 \cup C_2} \frac{1}{z} dz - \oint_{C_1 \cup C_2} \frac{1}{z+1} dz$$

Na mocy wzoru Cauchy'ego,

$$=2\pi i(1-1)=0$$

Można też od razu z całkowania przez residua. Tak czy inaczej,

$$\int_{C_2} f(z) \, \mathrm{d}z = -\int_{C_1} f(z) \, \mathrm{d}z$$

Zadanie 6/S4 Wykazać, że forma $\omega = \frac{\mathrm{d}z}{z-a}$ określona na $\mathbb{C} \setminus \{a\}$ jest zamknięta ale nie zupełna. Zbadać zamkniętość i zupełność form $\mathrm{Re}(\omega)$ i $\mathrm{Im}(\omega)$.

Zauważmy, że wystarczy rozważyć a=0, a potem przesuwać tę całą zabawę.

$$d\left(\frac{1}{z}dz\right) = \frac{\partial}{\partial z}\left(\frac{1}{z}\right)dz \wedge dz + \frac{\partial}{\partial \overline{z}}\left(\frac{1}{z}\right)d\overline{z} \wedge dz = 0$$

Stąd forma ω jest zamknięta. Ponadto, ze wzoru Cauchy'ego

$$\int_{C(0,1)} \omega = 2\pi i \neq 0$$

Forma zamknięta, której całka po okręgu (brzegu) nie daje 0, nie jest zupełna. To rezultat z twierdzenia Stokesa w banalnej formie.

$$\frac{\mathrm{d}z}{z} = \frac{\mathrm{d}x + i\,\mathrm{d}y}{x + iy} = \frac{\mathrm{d}x + i\,\mathrm{d}y}{x^2 + y^2}(x - iy)$$

$$= \underbrace{\frac{x\,\mathrm{d}x + y\,\mathrm{d}y}{x^2 + y^2}}_{\mathrm{Re}(\omega)} + \underbrace{i\frac{x\,\mathrm{d}y - y\,\mathrm{d}x}{x^2 + y^2}}_{\mathrm{Im}(\omega)}$$

$$= \mathrm{d}\left[\frac{1}{2}\log(x^2 + y^2)\right] + i\,\mathrm{d}\phi$$

Stąd widzimy, że $\text{Re}(\omega)$ i $\text{Im}(\omega)$ są zamknięte, natomiast $\text{Re}(\omega)$ jest zupełna, a $\text{Im}(\omega)$ nie.

Zadanie 5/S4 Korzystając ze wzoru Cauchy'ego obliczyć (a) $\oint_{C(0,1)} \frac{e^z}{z} dz$, (b) $\oint_{C(0,2)} \frac{dz}{z^2+1}$,

(c)
$$\oint_{C(0,2)} \frac{\mathrm{d}z}{z(z^2-1)}$$
.

(a)

$$\oint_{C(0,1)} \frac{e^z}{z} \, \mathrm{d}z = 2\pi i e^0 = 2\pi i$$

(b)

$$\oint_{C(0,2)} \frac{\mathrm{d}z}{z^2 + 1} = \oint_{C(0,2)} \left(\frac{1}{z - i} - \frac{1}{z + i} \right) \frac{1}{2i} \, \mathrm{d}z$$

Teraz w obu całkach mamy tylko pojedyncze bieguny, zatem używamy Cauchy'ego. f(z) jest stałe i takie samo w obu przypadkach, zatem całki się znoszą.

$$= 0$$

(c)

$$\oint_{C(0,2)} \frac{1}{z} \frac{1}{z^2 - 1} dz = \oint \left(-\frac{1}{z} + \frac{1}{2(z+1)} + \frac{1}{2(z-1)} \right)$$
$$= 2\pi i \left(-1 + \frac{1}{2} + \frac{1}{2} \right) = 0$$

Zadanie 1/S5 Znaleźć punkty osobliwe dla podanych funkcji i określić ich rodzaj. (a) $f(z) = \frac{\cos z}{z^2 - (\pi/2)^2}$, (b) $f(z) = \frac{z}{e^z - 1}$.

(a) Punktami podejrzanymi są $z_1 = \pi/2$ oraz $z_2 = -\pi/2$. Jeśli daje się przedłużyć funkcję do funkcji holomorficznej w punkcie podejrzanym, to jest to osobliwość pozorna. Należy policzyć granicę.

$$\lim_{z \to \pm \pi/2} \frac{\cos z}{z^2 - (\pi/2)^2} \stackrel{H}{=} \lim_{z \to \pm \pi/2} \frac{-\sin z}{2z}$$
$$= \frac{-(\pm 1)}{2 + \pi/2} = -\frac{1}{\pi}$$

Są to więc osobliwości pozorne.

(b) Punkt podejrzany to taki, że $e^z - 1 = 0$, czyli $z \in \{2k\pi i : k \in \mathbb{Z}\}$. Dla k = 0, $f(z) \xrightarrow{z \to 0} 1$, zatem tam jest osobliwość pozorna. Dla $k \neq 0$,

$$\lim_{z \to 2k\pi i} \frac{z - 2k\pi i}{e^z - 1} \cdot z = 2k\pi i$$

Jest to więc biegun rzędu 1. Innymi słowy, wyłuskaliśmy tę najmniejszą potęgę $z-2k\pi i$, która nam daje skończoną granicę.

Wykład 10: Ćwiczenia 10

19 lis 2020

Zadanie 2/S5 Znaleźć bieguny i ich rzędy i obliczyć residua. (a) $f(z) = \frac{z^n e^{1/z}}{z+1}$, (b) $f(z) = \frac{e^{\frac{1}{z-1}}}{e^z - 1}$, (c) $f(z) = \frac{1}{z^5 - z^7}$.

Definicja 2 (Residuum w nieskończoności).

$$\operatorname{Res}_{\infty} f = -\operatorname{Res}_{0} \left(f \left(\frac{1}{z} \right) \frac{1}{z^{2}} \right)$$

Wniosek 1. Niech z_0 będzie biegunem rzędu k.

Res_{z₀}
$$f = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{d^{k-1}}{dz^{k-1}} (z - z_0)^k f(z)$$

(a)

$$f(z) = \sum_{n = -\infty}^{\infty} a_n z^n$$

Dla $z_0 = 0$,

$$\operatorname{Res}_{z_0} f(z) = a_{-1} = \frac{1}{2\pi i} \oint f(z) \, \mathrm{d}z$$

Rozwińmy funkcję w $z_0=0$. Jest to osobliwość istotna dla $n\in\mathbb{Z}.$

$$f(z) = z^{n} \frac{1}{1+z} e^{\frac{1}{z}} = z^{n} \sum_{l=0}^{\infty} z^{l} (-1)^{l} \cdot \sum_{k=0}^{\infty} \frac{1}{z^{k} k!}$$

$$f(z) = \sum_{k,=0}^{\infty} \frac{(-1)^{l}}{k!} z^{l+n-k}$$

$$a_{-1} = \sum_{k,l=0}^{\infty} \frac{(-1)^{l}}{k!}, \quad l+n-k = -1$$

Teraz trzeba rozważyć przypadki. $l=k-n-1,\ l\geq 0,\ k\geq n+1.$ W domu co, jeśli $n\geq 0, n<0.$

$$a_{-1} = \sum_{k \ge n+1}^{\infty} \frac{(-1)^{k-n-1}}{k!} = (-1)^{n-1} \left[e^{-1} - \sum_{k=0}^{n} \frac{(-1)^k}{k!} \right]$$

Przypadek z = -1. $z^n e^{1/z}$ regularny w z = -1.

$$\operatorname{Res}_{-1} \frac{z^n e^{\frac{1}{z}}}{z+1} = (-1)^n e^{1/-1} = (-1)^n e^{-1}$$

Jeszcze residuum w nieskończoności.

$$f\left(\frac{1}{z}\right) = \frac{\frac{1}{z^n}e^z}{\frac{1}{z}+1} = \frac{e^z z^{-n+1}}{1+z}$$

$$\operatorname{Res}_{\infty} f = \operatorname{Res}_0 \frac{-e^z z^{-n+1}}{(1+z)z^2} = \operatorname{Res}_0 \frac{-e^z}{z^{n+1}(1+z)}$$

Dla $-n-1 \ge 0$ jest to pozorna osobliwość. A poza tym przypadkiem, to mamy biegun rzędu n+1.

$$\frac{e^z}{(1+z)}\frac{1}{z^{n+1}} = \sum_{\substack{k=0\\l=0}}^{\infty} \frac{z^k}{k!} (-1)^l z^l z^{-n-1}$$

k+l-n-1=-1,skąd k+l=n.

$$\sum_{\substack{k+l=n\\k,l>0}}^{\infty} \frac{(-1)^l}{k!}$$

To ostatnie można sobie obliczyć jakoś.

(c)

$$\frac{1}{z^5 - z^7} = \frac{1}{z^5(1 - z^2)}$$

Osobliwości mamy w 0, +1, -1 i być może w ∞ . W 0 jest biegun rzędu 5, w +1, -1 rzędu 1.

$$\operatorname{Res}_{1} f = \lim_{z \to 1} \frac{1}{z^{5}(1 - z^{2})}(z - 1) = -\frac{1}{2}$$

$$\operatorname{Res}_{-1} f = \lim_{z \to -1} \frac{1}{z^{5}(1 - z)(1 + z)}(z + 1) = -\frac{1}{2}$$

$$\operatorname{Res}_{0} f = \frac{1}{4!} \lim_{z \to 0} \frac{d^{4}}{dz^{4}} z^{5} \frac{1}{z^{5}(1 - z^{2})} = \frac{1}{4!} \lim_{z \to 0} \frac{d^{4}}{dz^{4}} \frac{1}{1 - z^{2}}$$

$$\frac{1}{1 - z^{2}} = 1 + z^{2} + z^{4} + \cdots$$

Ta procedura odczytuje 4 współczynnik w szeregu Taylora w zerze, zatem

$$\operatorname{Res}_0 f = 1$$

Zadanie 4/S5 Wyrazić w postaci całek konturowych współczynnik a_n szeregu Laurent funkcji $\cot(z)$ w pierścieniu $\pi < |z| < 2\pi$. Obliczyć a_1 .

$$\cot(z) = \sum_{-\infty}^{\infty} a_n z^n$$

Niech $\gamma = C(0, 3/2\pi)$.

$$a_{-1} = \frac{1}{2\pi i} \oint_{\gamma} \cot(z) dz$$
$$\oint_{\gamma} z^{n} dz = \begin{cases} 0 & n \neq -1\\ 2\pi i & n = -1 \end{cases}$$

Można więc prosto całkować cały szereg wyraz po wyrazie (szereg niemal jednostajnie zbieżny).

$$a_1 = \frac{1}{2\pi i} \oint_{\gamma} \frac{\cot(z)}{z^2} dz = \frac{1}{2\pi i} \oint_{\gamma} \frac{\cos z}{z^2 \sin z} dz$$

Możemy zastosować rachunek residuów. 0 jest biegunem rzędu 3, $\pi, -\pi$ rzędu 1.

$$\operatorname{Res}_{\pi} f = \lim_{z \to \pi} \frac{\cos z}{z^2 \sin z} (z - \pi) = \frac{1}{\pi^2}$$

$$\operatorname{Res}_{-\pi} f = \lim_{z \to \pi} \frac{\cos z}{z^2 \sin z} (z + \pi) = \frac{1}{\pi^2}$$

$$\operatorname{Res}_{0} f = \frac{1}{2!} \lim_{z \to 0} \frac{d^2}{dz^2} \left(\frac{\cos z}{z^2 \sin z} z^3 \right) = \frac{1}{2!} \lim_{z \to 0} \frac{d}{dz} \left(-\frac{1}{\sin^2 z} z + \cot z \right)$$

$$= \frac{1}{2!} \lim_{z \to 0} \left(-\frac{1}{\sin^2 z} - \frac{1}{\sin^2 z} + 2z \frac{\cos z}{\sin^3 z} \right)$$

$$= \frac{1}{2} \lim_{z \to 0} \frac{-2 \sin^2 z + 2z \sin z \cos z}{\sin^4 z} \xrightarrow{\text{Taylor}} -\frac{1}{3}$$

Teraz mamy współczynnik,

$$a_1 = \sum \text{Res}_i = \frac{1}{\pi^2} \cdot 2 - \frac{1}{3}$$

Zadanie 5/S4 Całkujemy funkcje wymierne. Wykazać, że $\int_{-\infty}^{+\infty} \frac{x^2+3}{(x^2+1)(x^2+4)} \, \mathrm{d}x = \frac{5}{6}\pi.$

Rozważamy funkcję zespoloną:

$$f(z) = \frac{z^2 + 3}{(z^2 + 1)(z^2 + 4)}$$

Bierzemy obszar, który zawiera osobliwości, czyli taki półokrąg górny.

$$\oint_{C} f(z) dz = \int_{-R}^{R} f(x) dx + \int_{0}^{\pi} f(Re^{i\phi}) Re^{i\phi} i d\phi$$

Wkład radialny. Już to bezpośrednie szacowanie całki pomijamy.

$$\int_0^{\pi} \frac{R^2 e^{2i\phi} + 3}{(R^2 e^{2i\phi} + 1)(R^2 e^{2i\phi} + 4)} \cdot Re^{i\phi} i \, d\phi = \int_0^{\pi} \frac{\mathcal{O}(R^3)}{\mathcal{O}(R^4)} \to 0$$

Stąd,

$$2\pi i (\operatorname{Res}_{i} f + \operatorname{Res}_{2i} f) = \int_{-\infty}^{+\infty} \frac{x^{2} + 3}{(x^{2} + 1)(x^{2} + 4)} dx$$

$$\operatorname{Res}_{i} f = \lim_{z \to i} \frac{z^{2} + 3}{(z + i)(z^{2} + 4)} = \frac{1}{3i}$$

$$\operatorname{Res}_{2i} f = \lim_{z \to 2i} \frac{z^{2} + 3}{(z^{2} + 1)(z + 2i)} = \frac{1}{12i}$$

$$\int_{-\infty}^{+\infty} f(x) dx = 2\pi i \left(\frac{1}{3i} + \frac{1}{12i}\right) = \frac{5}{6}\pi$$