Topologies and Embedding

Instructor
Dr B Krishna Priya

Topologies and Embedding

- Processes as being arranged in a one-dimensional topology and uses a linear ordering to number the processes.
- In parallel programs:
- processes are naturally arranged in higherdimensional topologies (e.g., two- or threedimensional)
- computation and the set of interacting processes are naturally identified by their coordinates in that topology.

- In a parallel program in which the processes are arranged in a two-dimensional topology, process (i , j) may need to send message to (or receive message from) process (k , l).
- An MPI process with rank rank corresponds to process (row, col) in the grid such that row = rank/4 and col = rank%4

Figure 6.5. Different ways to map a set of processes to a twodimensional grid. (a) and (b) show a row- and column-wise mapping of these processes, (c) shows a mapping that follows a space-filling curve (dotted line), and (d) shows a mapping in which neighboring processes are directly connected in a hypercube.

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

(a) Row-major mapping

(b) Column–major mapping

(c) Space-filling curve mapping

0	1	3	2
4	5	7	6
12	13	15	14
8	9	11	10

(d) Hypercube mapping Activate Windows

- MPI provides a set of routines that allows the programmer to arrange the processes in different topologies without having to explicitly specify how these processes are mapped onto the processors.
- It is up to the MPI library to find the most appropriate mapping that reduces the cost of sending and receiving messages.

Creating and Using Cartesian Topologies

 Graphs of processes can be used to specify any desired topology. However, most commonly used topologies in messagepassing programs are one-, two-, or higherdimensional grids, that are also referred to as Cartesian topologies

- MPI's function for describing Cartesian topologies is called MPI_Cart_create.
- Its calling sequence is as follows.

```
int MPI_Cart_create(MPI_Comm comm_old, int ndims,
int *dims, int *periods, int reorder, MPI_Comm
*comm_cart)
```

- This function takes the group of processes that belong to the communicator comm_old and creates a virtual process topology.
- The topology information is attached to a new communicator comm_cart that is created by MPI_Cart_create.

- The shape and properties of the topology are specified by the arguments ndims, dims, and periods.
- ndims: specifies the number of dimensions of the topology.
- dims: specify the size along each dimension of the topology.
- periods:specify whether or not the topology has wraparound connections.
- periods[i] is true (non-zero in C), then the topology has wraparound connections along dimension i, otherwise it does not.

- reorder:if the processes in the new group (i.e., communicator) are to be reordered or not.
- If reorder is false, then the rank of each process in the new group is identical to its rank in the old group.
- Total number of processes specified in the dims array is smaller than the number of processes in the communicator specified by comm_old, then some processes will not be part of the Cartesian topology. For this set of processes, the value of comm_cart will be set to MPI_COMM_NULL (an MPI defined constant).
- If it is greater, it will leads to error.

Process naming

- MPI provides two functions, MPI_Cart_rank and MPI_Cart_coord, for performing coordinate-to-rank and rank-to-coordinate translations, respectively.
- The calling sequences of these routines are the following:
- int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)
- int MPI_Cart_coord(MPI_Comm comm_cart, int rank, int maxdims, int *coords)
- The MPI_Cart_rank takes the coordinates of the process as argument in the coords array and returns its rank in rank.

- The MPI_Cart_coords takes the rank of the process rank and returns its Cartesian coordinates in the array coords, of length maxdims.
- Note:maxdims should be at least as large as the number of dimensions in the Cartesian topology specified by the communicator comm_cart.

- The communication performed among processes in a Cartesian topology is that of shifting data along a dimension of the topology.
- int MPI_Cart_shift(MPI_Comm comm_cart, int dir, int s_step, int *rank_source, int *rank_dest)
- dir: direction of the shift
- s_step: size of the shift step
- The computed ranks are returned in rank_source and rank_dest.