Project Planning Phase Project Planning Logic

Team ID	LTVIP2025TMID38181
Project Name	Enchanted Wings :Marvels Of butterfly Species
Maximum Marks	4 Marks

PLANNING LOGIC (DOCUMENT)

Purpose:

Outlines the core logic and rationale behind project decisions such as dataset structure, model selection, and validation techniques.

Use in Project Context:

• Scenario 1 (Biodiversity Monitoring):

- Justifies the selection of mobile-compatible models like MobileNetV2 for real-time classification in the field.
- Provides logic for splitting the dataset to ensure balanced class representation and field-relevant accuracy.

• Scenario 2 (Ecological Research):

- Details reasoning for long-term monitoring strategies using time-series classification logic or timestamped image logs.
- o Includes contingency handling in model logic (e.g., low-light or blur image preprocessing).

• Scenario 3 (Citizen Science and Education):

- Explains how model confidence thresholds are set to avoid misguiding inexperienced users.
- Covers logic for feedback mechanisms (e.g., user can suggest corrections to improve accuracy over time).

Step	Description	Tool/Method Used	Justification (Logic)
Data Collection	Dataset of 6499 images from Kaggle	Kaggle API	Automated and reproducible collection; ensures data standardization
Pre- processing	Resize, normalize, clean	Manual + NumPy	Ensures input consistency for CNNs
Data Augmentation	Simulate real- world variability	Keras ImageData Generator	Increases model generalizability— important for field classification
Data Splitting	Stratified train- test-validation	sklearn/manual	Prevents data leakage; ensures fair evaluation
Model Building	Define CNN structure	TensorFlow/Keras	Flexibility to test multiple architectures
Transfer Learning	Use VGG16 base	Keras.applications.VGG16	Reduces training time; ideal for limited dataset
Training & Testing	Use Adam optimizer + metrics	Adam / SGD, metrics	Ensures fast convergence and model robustness