A Self-Teaching Guide to BASIG

Richard O. Kratzer =

J. Weston Walch, Publisher

EX - BACTERIA DOUBLE EVERY 30 MINS. STARTING WI BACTERIUM
HOW MANY IN 24 HOURS? 47 DOWBLINGS

PRINT 2147 RETURN aus: 1.40737488E+14

SC. NOTATION E+14=1014

(ous.: 140,737,488,355,328) × 10'4

TO SET COMPUTER UPTO DO CONTRAR BREAK.

Guide to BASIG =

Richard O. Kratzer =

J. Weston Walch, Publisher

Copyright 1985 J. Weston Walch, Publisher P.O. Box 658 • Portland, Maine 04104-0658

Printed in the United States of America

CONTENTS

Acknowledgment V To the Teacher Vii

PRINT Statements		1
	Lesson 1	2
Statements with	5	
	Lesson 2	6
	Lesson 3	9
IF/THEN, LET	11	
	Lesson 4	12
	Lesson 5	14
	Lesson 6	16
	Lesson 7	18
	Lesson 8	20
	Lesson 9	22
	Lesson 10	24
INT() and RN	D(1) Statements	27
	Lesson 11	28
	Lesson 12	30
	Lesson 13	32
	Lesson 14	34
	Lesson 15	38
	Lesson 16	40
FOR/NEXT and	STEP Statements	43
	Lesson 17	44
	Lesson 18	47
	Lesson 19	50
	Lesson 20	53
	Lesson 21	56
	Answers	61

		-
		_
		_
		_
		-
		-
		-
		-

ACKNOWLEDGMENT

My grateful thanks to Julie Bell, whose estimable assistance contributed significantly to the value of this book.

Systems Dish

TO THE TEACHER

A Self-Teaching Guide to BASIC presents a hands-on, guided-discovery approach for beginners to learn BASIC. The lessons teach skills sequentially—that is, later lessons develop the concepts and techniques introduced in previous lessons—so, in most cases, students should perform them in order. Since the commands and statements presented in each lesson or group of lessons is clearly indicated, you may also assign lessons out of order to students having difficulty with a particular topic. You will achieve the best results if you try the lessons yourself before you assign them. This will prepare you to anticipate problems as well as suggest directions for experimentation.

Computers provide a rare opportunity to encourage learning through discovery. Allow students to explore the capabilities of their computers; they cannot harm them by pressing the keys. Feel free to let students do the lessons independently. Answer their questions with questions of your own. This encourages discovery.

You should become as familiar as you can with the operation of your computer. Read the manual that accompanies it to be sure you know the functions of special keys. For example, you must hit the RETURN/ENTER key after you type each statement into the computer. Another key, usually the break key, will break a loop if a program gets caught in one. A quick glance through this text will provide you with an idea as to which keys you will most need to be familiar with.

The command to clear the screen allows students to see output on a screen that has been cleared of previously entered data. For Apple computers, the command is HOME; for the TRS-80 and IBM computers, CLS; for Commodore 64, PRINT '' ?'; for PET, PRINT '' ?'. The first line of each program should have the clear command. Since this varies among computers, it is indicated by "[clear screen]" for each line number 5 in the lessons. Because this command is so often used, you might write the appropriate version for your computer on the blackboard or post it somewhere prominently for your students to refer to.

If you use A Self-Teaching Guide to BASIC as a text, have students predict the output of each problem before they work it out on the computer. Ample space has been left to the right of each problem for student answers. LIST means to write out the program in numbered steps. RUN means to write the output that the program would produce. The answer key suggests a solution for each problem, but it is only a guide. Students will discover other solutions that are also correct. Should you wish that your students not see the answers, the answer key may easily be removed by taking off the spiral binding, taking out the answers, and reattaching the binding.

All the lessons follow the same pattern, so a closer look at Lessons 1 and 2 will give you a good idea of standard procedures to follow and typical problems for which you should be prepared.

Show students how to turn on the computer. Demonstrate each step. If the computer has a disk drive, show students how to control it.

Walk around and watch for typing errors. For example, students often forget to type PRINT or the ' 'symbols. They also frequently substitute 0 for \emptyset and I for 1. Mention that line numbers can be any value as long as they increase in value.

Students should "play computer"—that is, trace a program—before they try it on a computer. This may be assigned as homework, and it is especially useful if there are not enough computers for every student. Let's play computer with the program in Lesson 1:

5 [clear screen] tells the computer to clear the screen. 10 PRINT 'STEVE' tells the computer to print STEVE. The computer prints anything between quotes. tells the computer to print WAS just below STEVE. 20 PRINT ''WAS'' tells the computer to print HERE just below WAS. 30 PRINT ''HERE'' tells the computer that this is the end of the program. 40 END RUN is a command that is not numbered. It tells the computer to perform the lines of the program in order. In this case, the program will produce this output: STEVE WAS HERE

In problem 4, many students make the mistake of erasing 35 PRINT ''YESTERDAY'' by typing 35 PRINT ''''. Students may also ask if they can use odd line numbers to insert blanks in the output. Tell them to try and see. (In the answer key, all PRINT statements used for spacing contain quotes. When your students discover that 1000 PRINT also prints a blank space, it is perfectly permissible for them to incorporate it into their subsequent answers. The same applies to ? used instead of PRINT. At some point, you may wish to hint, especially to your slower students, that these shortcuts are possible.)

Problems 7 and 8 are valuable because they allow students to experiment with their own programs on the computer. Be sure students complete Lesson 1 before going to Lesson 2.

LESSON 2

Be sure that students don't forget to type semicolons where needed.

Problem 6 is an example of how different solutions may be equally correct. Students may use $1 \emptyset$ PRINT ''REAL''; or $1 \emptyset$ PRINT ''REAL MATH'' and delete line $2 \emptyset$. Both solutions are correct.

The computer's output for problem 10 may confuse students if they forget to type the NEW command at the beginning of the program. Otherwise, lines 25 and 4ϕ from the program in problem 9 still operate. The students learned this command in Lesson 1, and they should use it throughout the lessons whenever they type a completely new program into the computer. This is an example of how the lessons build on each other to teach computer skills.

Problems 12 through 16—like problem 6—can be solved in different ways. Once again, student answers may be completely different, yet equally correct.

A Self-Teaching Guide to BASIC will stimulate your students to discover individual approaches to problems. Students will be excited and encouraged by learning their own capabilities as they learn the computer's.

went put productions with 233
System 205
Sys

PRINT Statements

The PRINT command tells the computer to display characters enclosed in quotes exactly as typed. The computer will ignore extra spaces typed in a statement unless the spaces are enclosed within quotes. For example:

12 PRINT ''STEVE''

If the first quote is missing, a syntax error will result. If the last quote is missing, it will usually not affect the output, but both quotes should always be included.

Contract Writeral

LESSON 1

Write the output the computer will give for each LIST and RUN command.

Type in the program:

5 [clear screen] 1¢ PRINT 'STEVE'' 2¢ PRINT 'WAS'' 3¢ PRINT 'HERE'' 4¢ END

RUN

Type in the following statements:

- 1. l print ''Mom''
 RUN
- 2. 35 PRINT ''YESTERDAY''
 RUN
- 3. 15 PRINT ", Puts sposes RUN Lettreen lines.
- 4. Put spaces between the other lines.

Type in the following statements:

5. 2Ø

LIST

6. 5

RUN

7. NEW

LIST

RUN

8. Write your own message program.

LIST

RUN

9. Put spaces between the lines.

must we System.

Statements with Semicolons (;)

Semicolons are used to print things on the same line with no spaces. For example:

```
Type and,
10 PRINT ''BACK''
20 PRINT ''HAND''
3Ø END
```

will print:

BACK HAND

Using

1 PRINT ''BACK''; 20 PRINT ''HAND''

will print:

BACKHAND

Write the output the computer will give for each LIST and RUN command.

Type in the program:

```
NEW
5 [clear screen]
1 print 'REAL'
2 print 'MATH'
3 print 'IS'
4 print 'GREAT'
5 END
RUN
```

Type in the following statements:

```
    1. 1 print 'REAL';
RUN
    2. 1 print 'R EAL';
RUN
    3. 1 print 'RE AL';
RUN
    4. 1 print 'REAL';
RUN
```

Change the program to produce the following outputs:

```
5. REAL MATH
IS
GREAT
LIST
```

6. REAL MATH

IS

GREAT

LIST

7. REAL MATH

IS

GREAT

LIST

8. REAL MATH

IS

GREAT

LIST

9. REAL MATH

IS GREAT

LIST

10. Type in the program:

5 [clear screen]

1 PRINT ' '*',

20 PRINT ' '*',

3Ø PRINT ''*',

55 END

RUN

```
11. Type the statement:
```

Change the program to produce the following outputs:

- 12. ** * LIST
- 13. *** LIST
- 14. * ** LIST
- 15. ** * LIST
- 16. * * * LIST

Write the output the computer will give for each LIST and RUN command.

Type in the program:

```
5 [clear screen]
10 PRINT 'HELLO''
20 PRINT 'TEACHER''
30 PRINT 'MATH''
40 PRINT 'IS''
50 PRINT 'GREAT''
60 END
```

RUN

1. Make the output read:

```
HELLO
TEACHER
MATH
IS
GREAT
LIST
```

Type in the following statements:

```
2. 3¢ PRINT''NEBRASKA'',
RUN
```

```
3. 1Ø PRINT '' HELLO'';
LIST
```

4. Make a space between HELLO and TEACHER.

LIST RUN

5. Make a space between the lines:

HELLO TEACHER

NEBRASKA

IS

GREAT

LIST

6. Type in the program:

```
5 [clear screen]
10 PRINT ''*''
20 PRINT ''**''
```

4Ø END

RUN

Make the following designs:

7. *

* *

* * *

LIST

8. *

* >

* * *

LIST

9. *

* * * *

*

LIST

10. Make your own design.

IF/THEN, LET, and **GOTO Statements**

IF/THEN

The IF/THEN command allows one to transfer to a different line under a specific condition.

> $1\emptyset$ IF C = 7 THEN $7\emptyset$ will transfer to line number 70 when C = 7. Otherwise, the computer will drop to the next command.

LET

The LET command instructs the computer to place the value in the right side in the variable on the left side.

 $1\emptyset$ LET C = 1 will place a 1 in the location C.

GOTO

The GOTO statement instructs the computer to transfer to a specific line.

50 GOTO 20

instructs the computer to go to line number 20.

Write the output the computer will give for each LIST and RUN command.

Type in the program:

5 [clear screen]
10 LET C = 1
20 PRINT ''I LOVE MATH''
30 IF C = 7 THEN 70
40 LET C = C + 1
50 GOTO 20
70 END

RUN

1. Make the program print I LOVE MATH 5 times.

LIST

2. Make the program print I LOVE MATH 12 times.

LIST

3. Make the program print across instead of down the screen.

LIST

4. Make it print I LOVE MATH 100 times.

LIST

5. Make it print I LOVE MATH 1000 times.

LIST

6. Make the program print I LOVE MATH down the screen 15 times.

7. Make the program print the output in the middle of the screen.

LIST

8. Put spaces between the lines.

LIST

9. Type in this program:

```
5 [clear screen]

1\phi LET C = 1

2\phi PRINT C

3\phi IF C = 1\phi THEN 7\phi

4\phi LET C = C + 1

5\phi GOTO 2\phi

7\phi END

RUN
```

10. Make the program count to 15.

LIST

11. Make the program print the numbers across the screen.

LIST

12. Type this statement:

```
25 PRINT '' '';
```

13. Make the program count to 1000 across the screen.

Write the output the computer will give for each LIST and RUN command.

Type in the program:

5 [clear screen] $1 \emptyset$ LET C = 1 $2 \emptyset$ PRINT C $3 \emptyset$ IF C = 4 THEN $6 \emptyset$ $4 \emptyset$ LET C = C + 1 $5 \emptyset$ GOTO $2 \emptyset$ $6 \emptyset$ END

RUN

Make the program count:

- 1. 1
 - 2
 - 3
 - 4
 - 5
 - 7

LIST

- 2. 1
 - 2
 - 3
 - 4
 - 5

LIST

3. Put spaces between the numbers:

- 1
- 2
- 3
- 4
- 5

PRINT across the screen:

4. 12345

LIST

5. 1234567

LIST

6. 1 2 3 4 5 6 7

LIST

7. Make the program count to 15.

LIST

8. Make the program count to 30.

LIST

9. Make the program count down the screen to 30:

1

2

3

٠

.

3Ø

Write the output the computer will give for each LIST and RUN command.

Type in the program:

5 [clear screen]

 $1\emptyset$ LET $C = \emptyset$

20 PRINT C

 $3\emptyset$ IF C = 7 THEN $6\emptyset$

 $4\emptyset$ LET C = C + 1

5Ø GOTO 2Ø

6Ø END

RUN

1. Make the program start the count at 5.

LIST

2. Make the count start at 2.

LIST

3. Make it start at 6.

LIST

4. Make it start at 3.

LIST

5. Type the statement:

 $4\emptyset$ LET C = C + 2

RUN

6.	Make the count start at 1 and end at 9.
	LIST
7.	Make the count start at 2 and end at 14.
	LIST
8.	Make it start at 3 and count by 3.
	LIST
0	Make Statest at 2 and accord by 5
9.	Make it start at 3 and count by 5. LIST
10.	Make it start at 3 and count by 7. LIST
11.	Make it count to 259 by 7.
	LIST
12.	Make it count to 756 by 7.

Write the output the computer will give for each LIST and RUN command.

Type in the program (use your own name where ''YOUR NAME'' is written):

```
5 [clear screen]

1 \% LET C = 4

2 \% PRINT ''YOUR NAME''

3 \% IF C = 7 THEN 6 \%

4 \% LET C = C + 1

5 \% GOTO 2 \%

6 \% END

RUN
```

1. Make the program print your name 5 times.

LIST

2. Make it print your name 10 times.

LIST

3. Make it print your name 10 times across the screen.

4.	Make it	print	your	name	100	times	across	the	screen.

LIST

5. Make the output print down the screen.

LIST

6. Make spaces between the lines.

LIST

7. Type the statement:

20 PRINT C

RUN

Write the output the computer will give for each LIST and RUN command.

Type in the program:

RUN

Change the program to produce the following outputs:

1. 2

3

4

5

6

7

LIST

2. 4

5

6

7

LIST

3. 4

5

6

7

8

9

LIST

- 5. 1Ø 11 12 LIST
- 6. Make the output of problem 5 print across the page.

 LIST

Change the program to produce the following outputs:

- 7. 2 4 6 8 10 12 LIST
- 8. 3 6 9 12 LIST
- 9. 4 8 12 LIST
- 10. 21 42 63 84 LIST

Write the output the computer will give for each LIST and RUN command.

Type in the program:

5 [clear screen] $1 \emptyset$ LET C = 1 $2 \emptyset$ PRINT C $3 \emptyset$ IF C = 6 THEN $6 \emptyset$ $4 \emptyset$ LET C = C + 1 $5 \emptyset$ GOTO $2 \emptyset$ $6 \emptyset$ END

RUN

Change the program to produce the following outputs:

1. 2 4 6 8 LIST

2. 3 5 7 9 11 LIST

3. 5 8 11 14 17 LIST

4. 11 17 23 29 35 LIST

5. 1 2 3 4 5 6 7 8 LIST

6. 8 7 6 5 4 3 2 1 LIST

7. 3 4 5 6 7 8 LIST 8. 8 7 6 5 4 3 LIST

9. 2 4 6 8 1 ϕ

10. 12 1Ø 8 6 4 2 LIST

11. 11 9 7 5 3 LIST

12. 35 29 23 17 11 LIST

13. Make the program print your name 7 times.

LIST

14. Put spaces between the lines.

LIST

15. Make the program number the lines:

1 STEVE 2 STEVE 3 STEVE LIST

16. Make the program place a period after the number:

1. STEVE

2. STEVE

3. STEVE

Write the output the computer will give for each LIST and RUN command.

Type in the program:

5 [clear screen] $1 \emptyset$ LET C = 1 $2 \emptyset$ PRINT C $3 \emptyset$ LET C = C + 1 $4 \emptyset$ IF C < 6 THEN $2 \emptyset$ $9 \emptyset$ END RUN

Change the program to produce the following outputs:

- 1. 1 2 3 4 5 6 7 8 LIST
- 2. 4 5 6 7 LIST
- 3. 2 4 6 8 LIST
- 4. 3 5 7 9 LIST
- 5. Have the program count by 5 from 6 to 46.

6. Have the program count by 8 from 7 to 79.

LIST

Type in the program:

5 [clear screen]
15 LET C = 1
25 PRINT C
35 IF C > 6 THEN 70
45 LET C = C + 1
55 GOTO 25
70 END
RUN

Change the program to produce the following outputs:

7. 2 4 6 8 10 12 LIST

8. 3 5 7 9 11 LIST

9. Have the program count by 5 from 6 to 46.

LIST

10. Have the program count by 8 from 7 to 79.

INT() and RND(1) Statements

INT()

The INT function selects the integer segment of a number by dropping everything to the right of the decimal point.

X = INT(2.72) would give X = 2. X = INT(13.24) would give X = 13.

RND(1)

The RND function randomly generates a number between 0 and 1. (Note: For Radio Shack computers, all RND (1) statements should be changed to RND (\emptyset) .)

Write the output the computer will give for each LIST and RUN command. (Note: For Radio Shack computers change the RND(1) statements to RND(\emptyset).)

Type	in	the	program	
-)			P. 0	•

5 [clear screen]
10 LET C = 0
20 LET X = INT(10 * RND(1))
30 PRINT X
40 LET C = C + 1
50 IF C < 11 THEN 20
70 END

2ND

3RD

4TH

RUN the programs in each of the following problems 4 times and record the smallest and largest numbers generated each time.

1ST

1.	smallest				
	largest				
Make	the program for nu	mbers 0 to 8.			
2.	smallest	-		-	
	largest				
	LIST				
Make	the program for nui	mbers 0 to 7.			
3.	smallest				
	largest				
	LIST				
Type t	he statement:				
	20 LET X = INT(1	Ø * RND(1)) +	- 1		
4.	smallest				
	largest				
	RUN				

		1ST	2ND	3RD	4TH		
Make	Make the program for numbers 1 to 9.						
5.	smallest						
	largest						
	LIST						
Make	it for 1 to 8.						
6.	smallest						
0.	smallest						
	largest						
	LIST						
Make	the output 0 to 5.						
7.	smallest						
	largest						
	LIST						
Make	the output 1 to 6.						
8.	smallest						
	largest						
	LIST						
Make	the output for 20 nu	umbers 1 to 3.					
9.	smallest						
	largest						
	LIST						
Make	Make the output 0 to 2.						
10.	smallest						
	largest						
	LIST						

Write the output the computer will give for each LIST and RUN command. (Note: For Radio Shack computers change the RND(1) statements to RND(ϕ).)

Type in the program:

```
5 [clear screen]
8 \text{ LET C} = \emptyset
10 LET X = 5
2\emptyset LET Y = INT(5 * RND(1)) + 1
25 PRINT ''WHAT IS THE PRODUCT?''
30 PRINT '' ''; X
4Ø PRINT ''X''Y
5\emptyset LET S = X * Y
6Ø INPUT G
7\emptyset IF S = G THEN 11\emptyset
80 PRINT ''WRONG''
100 GOTO 25
110 PRINT ''GOOD WORK''
120 LET C = C + 1
13\emptyset IF C = 4 THEN 14\emptyset
135 GOTO 20
14Ø END
```

Change the program to produce the following outputs:

1. VERY NICE WORK

LIST

2. WRONG, TRY AGAIN PLEASE.

LIST

3. Make the multiplicand 4.

LIST

4. Make the multiplicand 7.

LIST

5. Make the multiplicand 3.

LIST

6. Make the multipliers 0 to 4.

7. Make the multipliers 0 to 6.

LIST

8. Make the multipliers 1 to 6.

LIST

9. Write the program to have 3 problems.

LIST

10. Write the program to have 5 problems.

LIST

11. Make it have 10 problems.

LIST

12. Type in these statements:

6 PRINT ''WHAT IS YOUR NAME?''
7 INPUT A\$
25 PRINT ''WHAT IS THE PRODUCT''; A\$
RUN

13. Change the program to add and to print:

(your name), VERY NICE WORK

14. Have the program print:

WRONG, (your name), TRY AGAIN PLEASE LIST

15. Make it have 4 problems.

LIST

16. Make the upper addend vary from 0 to 4.

LIST

17. Make the lower addend vary from 1 to 6.

Write the output the computer will give for each LIST and RUN command. (Note: For Radio Shack computers change the RND(1) statements to RND(\emptyset).)

Type	in	the	pro	gram	
-------------	----	-----	-----	------	--

5 [clear screen]
10 LET C = 0
15 LET C = C + 1
20 LET X = INT(10 * RND(1))
30 PRINT X
40 LET C = C + 1
50 IF C < 11 THEN 20
60 END

RUN the programs in each of the following problems 4 times and record the smallest and largest numbers generated each time.

		1ST	2ND	3RD	4TH	
1.	smallest					
	largest					
	RUN					
Outpu	it the numbers 0 to	8.				
2.	smallest					
	largest					
	LIST					
Outpu	it the numbers 1 to	9.				
3.	smallest					
	largest					
	LIST					
Output the numbers 2 to 10.						
4.	smallest					
	largest					
	LIST					

		1ST	2ND	3RD	4TH
Outp	ut the numbers 3 to	11.			
5.	smallest				
	largest				
	LIST				
Make	the numbers 0 to 5	•			
6.	smallest				
	largest				
	LIST				
Make	the numbers 1 to 6	•			
7.	smallest				
	largest				
	LIST				
Make	the numbers 10 to	15.			
8.	smallest		-		
	largest				
	LIST				
Make	the numbers 12 to	17.			
9.	smallest				
	largest				
	LIST				
Outp	ut the numbers 10 t	o 17.			
10.	smallest				
	largest				
	LIST				

Write the output the computer will give for each LIST and RUN command.

Type in the following program:

```
5 [clear screen]
10 LET X = 1
20 LET T = 1
30 PRINT TAB(T);
40 PRINT ' * * ' ';
50 IF X = 6 THEN 80
60 LET X = X + 1
70 GOTO 40
80 PRINT ' GOOD WORK',
90 END
RUN
```

1. Type in these statements:

```
50 IF X = 6 THEN 75
75 PRINT '''',
RUN
```

2. Change the output to:

```
*****
GOOD WORK
LIST
```

Type in the following statements:

```
3. 2\emptyset LET T = 1\emptyset
```

4.
$$2\emptyset$$
 LET T = $2\emptyset$

5.
$$2\emptyset$$
 LET T = $3\emptyset$

Change the program to produce the following outputs:

6. *****
GOOD WORK

7. ****

GOOD WORK

LIST

LIST

8. ****

GOOD WORK

LIST

9. ******

GOOD WORK

LIST

10. Type in these statements:

4¢ PRINT''*', 7¢ GOTO 3¢

RUN

Change the program to produce the following outputs:

11.

*

*

GOOD WORK

12.

*
*
*
*

GOOD WORK

LIST

13. Type in these statements:

20 LET T = 1 55 LET T = T + 1

RUN

Change the program to produce the following outputs:

14.

*
*
*

GOOD WORK

LIST

15.

*
*
*
*
*
*
GOOD WORK

LIST

16.

**

**

**

**

GOOD WORK

_ _ _

**

**

**

**

**

**

**

GOOD WORK

LIST

18. *

*

*

*

*

*

GOOD WORK

LIST

19. *

*

*

GOOD WORK

LIST

20. **

**

**

**

**

GOOD WORK

Write the output the computer will give for each LIST and RUN command.

1. Write a program to print:

AWESOME

AWESOME

AWESOME

AWESOME

AWESOME

LIST

2. Make the program print in the middle of the screen.

LIST

3. Make the program print in the far right of the screen.

LIST

4. Make the program print in the far left of the screen.

LIST

Change the program to produce the following outputs:

5. AWESOME AWESOME AWESOME AWESOME LIST

6. AWESOME AWESOME AWESOME

LIST

7. Make the program print down the screen.

LIST

Change the program to produce the following outputs:

8. AWESOME

AWESOME

AWESOME

AWESOME

9. AWESOME

AWESOME

AWESOME

AWESOME

LIST

10. AWESOME AWESOME

AWESOME AWESOME

AWESOME AWESOME

AWESOME AWESOME

LIST

11. AWESOME

AWESOME

AWESOME

AWESOME

LIST

12. AWESOME

AWESOME

AWESOME

AWESOME

LIST

13. AWESOME

AWESOME

AWESOME

AWESOME

LIST

14. Make the program print in the far right of the screen.

LIST

Change the program to produce the following outputs:

15. AWESOME

AWESOME

AWESOME

AWESOME

LIST

16. AWESOME

AWESOME

AWESOME

AWESOME

Write the output the computer will give for each LIST and RUN command.

Type in the following program:

```
5 [clear screen]
10 PRINT ''WHICH KEYBOARD CHARACTER WOULD YOU LIKE TO USE'';
20 INPUT A$
30 LET X = 1
40 LET T = 1
50 PRINT TAB(T);
60 PRINT A$;
70 IF X = 6 THEN 100
80 LET X = X + 1
90 GOTO 60
100 PRINT ''GOOD WORK''
110 END
RUN
```

1. Type in these statements:

```
7Ø IF X = 6 THEN 95
95 PRINT'''',
RUN
```

Make the following patterns:

```
2. ++++++

GOOD WORK

LIST
```

3. ++++++++++
GOOD WORK
LIST

4. \$\$\$\$\$\$ GOOD WORK

LIST

```
6. $+ $+ $+ $+ $+
  GOOD WORK
  LIST
7. *
   GOOD WORK
   LIST
8.
   GOOD WORK
   LIST
9.
   GOOD WORK
   LIST
10.
      MATH
       MATH
        MATH
         MATH
         MATH
           MATH
   GOOD WORK
```

```
42
```

12. 1. 2. 3. 4. 5. 6. TERRIFIC LIST

13. 1.+
2.+
3.+
4.+
5.+
6.+
TERRIFIC
LIST

14. 2. 3. 4. 5. 6. TERRIFIC LIST

FOR/NEXT and STEP Statements

FOR/NEXT

The FOR/NEXT statement is a built-in counter.

1\$\phi\$ FOR N = 1 TO 4
2\$\phi\$ PRINT ''NICE''
3\$\phi\$ NEXT N

This program would print NICE 4 times. The NEXT is like a GOTO statement. The NEXT sends the program back to the FOR statement, which keeps track of the count. The statement counts by 1 each time unless directed otherwise. The count starts with the first number and ends with the second value.

STEP

FOR N = 1 TO 5 STEP 2
.
.
.
.
NEXT N

counts 1, 3, 5. The STEP indicates what amount to count by. If the STEP is left out, the computer automatically counts by 1.

Write the output the computer will give for each LIST and RUN command.

```
Type in the program:
```

```
5 [clear screen]
1¢ PRINT ''WHICH KEYBOARD CHARACTER WOULD YOU LIKE TO USE''
2¢ INPUT A$
3¢ FOR N = 1 TO 6 STEP 1
4¢ PRINT A$;
5¢ NEXT N
6¢ END
```

Output the following patterns:

```
1. +++++
```

2. **

3. ++++++++ LIST

4. ++++++++++++
LIST

5. How many \$ symbols fit on one line of the screen? \$\$\$\$\$\$\$\$\$\$\$\$\$\$. . .

6. Make this pattern:

*
*
*
*
*

LIST

7. Enter this statement:

```
25 [clear screen]
```

8.	Make the program count to the bottom of the screen.
	LIST
9.	How many * symbols can go down the screen?
	LIST

10. Enter this statement:

```
4¢ PRINT N
RUN
```

Make the following patterns:

- 11. 1*
 2*
 3*
 4*
 5*
 6*
 LIST
- 12. 1.* 2.* 3.* 4.* 5.* 6.* LIST

13. Type this statement:

```
3\emptyset FOR N = 3 TO 6 STEP 1 RUN
```

14. Make the program count from 7 to 13.

LIST

15. Type the following statements:

```
7 LET T = 5
28 PRINT TAB(T);
RUN
```

```
16. 32 PRINT TAB(T);
      RUN
  17. 28
      RUN
 18. 7 \text{ LET T} = 10
      RUN
  19. 35 T = T + 1
      RUN
Make the following patterns:
  20.
                 7$
                  8$
                   9$
                    10$
                     11$
                      12$
                       13$
      LIST
  21.
                 7FROG
                  8FROG
                    9FROG
                     10FROG .
                       11FROG
                         12FROG
                           13FROG
     LIST
  22.
                2
                3
                4
      TERRIFIC
      LIST
```

Write the output the computer will give for each LIST and RUN command.

Type in the program:

```
5 [clear screen]
1¢ PRINT ''TYPE A NUMBER'';
2¢ INPUT A
3¢ FOR N = 1 TO 4 STEP 1
4¢ PRINT A
5¢ NEXT N
6¢ END
```

1. Make this pattern.

2. Make it print in the middle of the screen using a TAB statement.

LIST

3. Print this pattern:

77777 LIST

4. Type this command:

```
25 [clear screen]
```

5. Type this statement:

```
4 PRINT N;
```

6. Make this pattern:

1 2 3 4 5 6 7 8 9

LIST

7. Make it print at the left side of the screen.

LIST

8. Type this statement:

40 PRINT N

RUN

9. Print the output in the middle of the screen.

LIST

10. Type this statement:

45 PRINT T = T + 1 RUN

11. Print this pattern:

LIST

Type these statements:

12. $3\phi \text{ FOR N} = 3 \text{ TO 7 STEP 2}$ RUN

13. $3\emptyset$ FOR N = 1 TO 9 STEP 2

Output these patterns:

14. 13579

RUN

15. 25811

RUN

16. 2 5 8 11

RUN

17. 9 14 19 24 29

RUN

18. Make the output start at 8 and count by 3 to 26.

LIST

19. Make the output start at 5 and count by 4 to 45.

LIST

20. Make the output start at 7 and count by 8 to 79.

Write the output the computer will give for each LIST and RUN command.

Type in the program:

```
5 [clear screen]
10 FOR N = 1 TO 5
20 PRINT '''
30 NEXT N
40 PRINT ''TIME''
50 END
RUN
```

1. Type this statement:

```
1 \emptyset FOR N = 1 TO 1 \emptyset
```

2. Make TIME print in the lower left corner of the screen.

```
LIST
```

3. Type these statements:

```
7 LET T = 1
35 PRINT TAB(T);
RUN
```

4. Type this statement:

```
7 LET T = 15
RUN
```

5.	Make TIME print in the lower right of the screen.
	LIST
6.	Make TIME print as far right as possible.
	LIST
7.	Make the output in the middle of the screen and to the right.
	LIST
8.	Make the output in the middle of the screen and to the left.

9. Make the output in the center of the screen.

LIST

LIST

10. Type this statement:

 $1\emptyset$ FOR N = 1 TO $1\emptyset\emptyset$

RUN — How long does it take? Time it.

11. Make it take 5 seconds.

12. Make it take 10 seconds.

LIST

Type the following statements and tell how long the programs take to RUN.

```
13. 20 PRINT ''your name''
RUN
```

```
14. 25 PRINT ''a different name''
RUN
```

```
15. 27 PRINT ''another name''
RUN
```

```
16. 25 PRINT ' 'another name' ';
    RUN
```

```
17. 27 PRINT ''your name'';
RUN
```

```
18. 2¢ 25 27 RUN
```

Write the output the computer will give for each LIST and RUN command.

Type in the program:

```
5 [clear screen]
1¢ PRINT 'WHICH KEYBOARD CHARACTER DO YOU WANT TO USE';
2¢ INPUT A$
4¢ FOR N = 1 TO 4
5¢ PRINT
6¢ NEXT N
7¢ FOR J = 1 TO 5 STEP 2
8¢ PRINT A$; J
9¢ NEXT J
1¢¢ END
```

Make the following patterns:

*1. *1 *3 *5 *7 *9

- 2. 1 3 5 7 9 LIST
- 3. 1* 3* 5* LIST
- 4. 1**
 3**
 5**

5. Type these statements:

```
25 LET T = 10
72 PRINT TAB(T);
RUN
```

6. Have the numbers printed in column 20 at the bottom of the screen.

LIST

7. Print this pattern in the center of the screen:

3.

7.

11.

15.

LIST

8. Type this statement:

Make these outputs:

11. Type these statements:

Make these patterns:

Write the output the computer will give for each LIST and RUN command.

Type in the program:

```
5 [clear screen]
1¢ PRINT 'TYPE SOMETHING''
2¢ INPUT A$
3¢ LET T = 5
4¢ FOR N = 1 TO 4
5¢ PRINT
6¢ NEXT N
7¢ FOR J = 1 TO 9 STEP 2
8¢ PRINT TAB(T); T
9¢ LET T = T + 1
1¢¢ NEXT J
11¢ END
```

RUN

Enter the following statements:

- 1. $9\emptyset$ LET T = T + 2

 RUN
- 2. 8Ø PRINT TAB(T); A\$
 RUN
- 3. 8Ø PRINT TAB(T); J
 RUN
- 4. 25 LET C = 9
 80 PRINT TAB(T); J; C
 RUN
- 5. 8Ø PRINT TAB(T); J; A\$
 85 LET C = C + 1
 RUN

Output the following patterns:

Enter the following statements:

- 11. 25 LET C = 1 75 LET S = C * T 80 PRINT C,T,S 85 LET C = C + 1 RUN
- 12. $9\emptyset$ LET T = T RUN

Change the program to produce the following outputs:

- 13. 1 3 3 3 8 8 8 5 15 4 6 24 LIST
- 14.
 2
 3
 6

 3
 4
 12

 4
 5
 2\$\phi\$

 5
 6
 3\$\phi\$
- 15. 3 3 9 4 4 16 5 5 25

6

36

LIST

6

LIST

59

17.	3	8	24
	5	6	3Ø
	7	4	28
	9	2	18
	11	Ø	Ø

LIST

LIST

LIST

LIST

ANSWERS

LESSON 1

STEVE WAS HERE

- 1. MOM
 WAS
 HERE
- 2. MOM
 WAS
 HERE
 YESTERDAY
- **3.** MOM

WAS HERE YESTERDAY

- 4. 5 [clear screen]
 10 PRINT ''MOM''
 15 PRINT '' ''
 20 PRINT ''WAS''
 25 PRINT '' ''
 30 PRINT ''HERE''
 32 PRINT ''
 35 PRINT ''YESTERDAY''
 40 END
- 5. 5 [clear screen]
 10 PRINT ''MOM''
 15 PRINT '''
 25 PRINT '''
 30 PRINT ''HERE''
 32 PRINT ''
 35 PRINT ''YESTERDAY''
 40 END

- 6. The program in problem 5 runs without clearing the screen.
- The program has been deleted from memory. LIST and RUN do not produce output at this time since a program does not exist in memory.
- 8 and 9. Student programs will vary, but they should be based on the programs above.

LESSON 2

REAL MATH IS GREAT

- 1. REAL MATH
 IS
 GREAT
- 2. R EAL MATH
 IS
 GREAT
- 3. RE AL MATH IS GREAT
- 4. REA L MATH IS GREAT

LESSON 2 (Continued)		10.	*	
5.	5 [clear screen] 1 PRINT ''REAL'';		*	
	20 PRINT ' 'MATH' '	11.	**	
	3Ø PRINT''IS''	11.	*	
	4¢ PRINT ''GREAT''			
	5Ø END	12.	5 [0] 00 0	aanaan l
	SV END	12.	5 [clear 10 PRINT	
Some students will write the program as:			20 PRINT	
			3Ø PRINT	
	5 [clear screen]		4Ø END	
	<pre>1Ø ''PRINT''REAL MATH''</pre>		TO END	
	3ØPRINT''IS''	13	5[clear	sareenl
	4 PRINT ''GREAT''	15.	1 PRINT	
	5Ø END		20 PRINT	
			3Ø PRINT	
6.	5 [clear screen]		4Ø END	
	1 PRINT ''REAL'';		TO END	
	20 PRINT ''MATH''	14.	5[clear	soreenl
	3Ø PRINT'' IS''	17.	1 PRINT	
	4¢ PRINT''GREAT''		20 PRINT	
	5Ø END		30 PRINT	
			4Ø END	
7.	5 [clear screen]		TO BILD	
	1 PRINT ''REAL'';	15	5[clear	screenl
	20 PRINT ''MATH''	13.	10 PRINT	
	3ØPRINT'' IS''		20 PRINT	
	40 PRINT '' GREAT''		3Ø PRINT	
	5Ø END		4Ø END	
			- /	
8.	5 [clear screen]	16.	5[clear	screen]
	1¢ PRINT ''REAL '';		10 PRINT	· · * ' ' ·
	2¢ PRINT ''MATH''		20 PRINT	· · * ' ' ·
	25 PRINT ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		3Ø PRINT	· · * * *
	3Ø PRINT '' IS''		4Ø END	
	35 PRINT '' '' 40 PRINT '' GREAT''			
	5∅ END	LESSO	ON 3	
9.	5[clear screen]			HELLO
	1 PRINT ''REAL '';			TEACHER
	20 PRINT ''MATH''			MATH
	25 PRINT'' ''			IS
	3Ø PRINT''IS'';			GREAT
	AC DRINE (CREAT!)			GILDAI

4 PRINT ''GREAT''

5Ø END

LESSON 3 (Continued)

- 1. 5 [clear screen]
 10 PRINT '' HELLO''
 20 PRINT ''TEACHER''
 30 PRINT '' MATH''
 40 PRINT '' IS''
 50 PRINT '' GREAT''
 60 END
- 2. HELLO
 TEACHER
 NEBRASKA
 IS
 GREAT
- 3. 5 [clear screen]

 1¢ PRINT ' HELLO'';

 2¢ PRINT 'TEACHER''

 3¢ PRINT 'NEBRASKA''

 4¢ PRINT ' IS''

 5¢ PRINT ' GREAT''

 6¢ END
- 4. 5 [clear screen]
 10 PRINT ' HELLO '';
 20 PRINT 'TEACHER'
 30 PRINT 'NEBRASKA'
 40 PRINT ' IS'
 50 PRINT ' GREAT'
 60 END

HELLO TEACHER
NEBRASKA
IS
GREAT

5. 5 [clear screen]
 10 PRINT ' HELLO '';
 20 PRINT ' TEACHER',
 25 PRINT ' NEBRASKA',
 35 PRINT ' NEBRASKA',
 40 PRINT ' IS',
 45 PRINT ' GREAT',
 60 END

```
6. * **
```

- 7. 5 [clear screen]
 10 PRINT ''*'
 20 PRINT ''* *''
 30 PRINT ''* * *''
 40 END
- 8. 5 [clear screen] 10 PRINT '' *'' 20 PRINT '' * *'' 30 PRINT ''* * *'' 40 END
- **10.** Student programs will vary, but they should be based on the programs above.

LESSON 4

I LOVE MATH

- 1. 5 [clear screen]
 10 LET C = 1
 20 PRINT ''I LOVE MATH''
 30 IF C = 5 THEN 70
 40 LET C = C + 1
 50 GOTO 20
 70 END
- 2. $3\emptyset$ IF C = 12 THEN $7\emptyset$

LESSON 4 (Continued)

- 3. 20 PRINT ''I LOVE MATH '';
- 4. $3\emptyset$ IF $C = 1\emptyset\emptyset$ THEN $7\emptyset$
- 5. $3\emptyset$ IF $C = 1\emptyset\emptyset\emptyset$ THEN $7\emptyset$
- 6. 20 PRINT ''I LOVE MATH'' $3\emptyset$ IF C = 15 THEN $7\emptyset$
- 7. 20 PRINT ' I LOVE MATH'' 9. 20 PRINT C
- 8. 25 PRINT ' ' ',
- 9. 1 3 4 5 6 7 8 9 1Ø
- 10. 30 IF C = 15 THEN 70
- 11. 20 PRINT C;
- **12.** 1 2 3 . . . 13 14 15
- 13. 30 IF C = 1000 THEN 70

LESSON 5

- 1 2 3
- 1. 30 IF C = 7 THEN 60
- 2. 30 IF C = 5 THEN 60
- 3. 25 PRINT

- 4. 20 PRINT C; 25
- 5. 30 IF C = 7 THEN 60
- 6. 20 PRINT C; '';
- 7. 30 IF C = 15 THEN 60
- **8.** 30 IF C = 30 THEN 60

LESSON 6

- 1 3 5 6
- 1. 10 LET C = 5
- 2. 10 LET C = 2
- 3. 100 LET C = 6
- 4. 10 LET C = 3
- **5.** 3 5 7
- 6. 100 LETC = 1 $3\emptyset$ IF C = 9 THEN $6\emptyset$
- 7. 100 LET C = 2 $3\emptyset$ IF C = 14 THEN $6\emptyset$
- 8. 10 LET C = 3 $4\emptyset$ LET C = C + 3
- 9. $4\emptyset \text{ LET C} = C + 5$

LESSON 6 (Continued)

- 10. $4\emptyset \text{ LET C} = C + 7$
- 11. $3\emptyset$ IF C = 259 THEN $6\emptyset$
- 12. $3\emptyset$ IF C = 756 THEN $6\emptyset$

LESSON 7

name

name

name

name

- 1. $3\emptyset$ IF C = 8 THEN $6\emptyset$
- **2.** $3\emptyset$ IF C = 13 THEN $6\emptyset$
- 3. 20 PRINT ''YOUR NAME'';
- **4.** $3\emptyset$ IF C = $1\emptyset3$ THEN $6\emptyset$
- 5. 20 PRINT ''YOUR NAME''
- 6. 25 PRINT '' ',
- 7. 4

5

6

.

.

101

102

103

LESSON 8

1 2

3

4 5

6 7

- 1. 10 LET C = 2
- 2. 10 LET C = 4
- **3.** $3\emptyset$ IF C = 9 THEN $6\emptyset$
- **4.** $1\emptyset \text{ LET C} = 6$ $3\emptyset \text{ IF C} = 12 \text{ THEN } 6\emptyset$
- 5. 10 LET C = 10
- 6. 20 PRINT C;
- 7. 1Ø LET C = 2 2Ø PRINT C; '''; 4Ø LET C = C + 2
- 8. $1 \emptyset \text{ LET C} = 3$ $4 \emptyset \text{ LET C} = C + 3$
- 9. $1\emptyset$ LET C = 4 $4\emptyset$ LET C = C + 4
- 10. 100 LET C = 21 300 IF C = 84 THEN 600400 LET C = C + 21

LESSON 9

1 2

3

4

5

6

- 1. 100 LET C = 2
 - 20 PRINT C; '' ';
 - $3\emptyset$ IF C = 8 THEN $6\emptyset$
 - $4\emptyset$ LET C = C + 2

LESSON 9 (Continued)

- 2. 100 LET C = 300 S300 IF C = 11 THEN 600 S
- 3. 1ϕ LET C = 5 3ϕ IF C = 17 THEN 6ϕ 4ϕ LET C = C + 3
- 4. 100 LET C = 11 300 IF C = 35 THEN 600400 LET C = C + 6
- 5. $1\emptyset$ LET C = 1 $3\emptyset$ IF C = 8 THEN $6\emptyset$ $4\emptyset$ LET C = C + 1
- 6. $1 \emptyset$ LET C = 8 $3 \emptyset$ IF C = 1 THEN $6 \emptyset$ $4 \emptyset$ LET C = C - 1
- 7. 10 LET C = 3 30 IF C = 8 THEN 60 40 LET C = C + 1
- 8. $1 \emptyset$ LET C = 8 $3 \emptyset$ IF C = 3 THEN $6 \emptyset$ $4 \emptyset$ LET C = C - 1
- 9. $1\emptyset$ LET C = 2 $3\emptyset$ IF C = $1\emptyset$ THEN $6\emptyset$ $4\emptyset$ LET C = C + 2
- 10. 100 LET C = 120 300 IF C = 200 THEN 600400 LET C = 000 - 200
- 11. 100 LET C = 11300 IF C = 300 THEN 6000
- 12. 100 LET C = 35 300 IF C = 11 THEN 600400 LET C = 000 - 600

- 14. 25 PRINT ''
- 15. 20 PRINT C; '' STEVE'', 30 IF C = 3 THEN 60
- 16. 20 PRINT C; ''. STEVE''

LESSON 10

- 1. $2\emptyset$ PRINT C; '' ''; $4\emptyset$ IF C < 9 THEN $2\emptyset$
- 2. 10 LET C = 440 IF C < 8 THEN 20
- 3. $1\emptyset$ LET C = 2 $3\emptyset$ LET C = C + 2 $4\emptyset$ IF C < 9 THEN $2\emptyset$
- 4. 100 LET C = 3400 IF C < 100 THEN 200
- 5. $1 \emptyset$ LET C = 6 $3 \emptyset$ LET C = C + 5 $4 \emptyset$ IF C < 47 THEN $2 \emptyset$
- 6. 100 LET C = 7 300 LET C = C + 8 $400 \text{ IF C} < 800 \text{ THEN } 200 \text{$

(Don't forget NEW)

LESSON 10 (Continued)

- 7. 15 LET C = 2 25 PRINT C; '''; 35 IF C > 12 THEN 7Ø 45 LET C = C + 2
- 8. 15 LET C = 3 35 IF C > 11 THEN 7ϕ
- 9. 15 LET C = 6 35 IF C > 46 THEN 7ϕ 45 LET C = C + 5
- 10. 15 LET C = 7 35 IF C > 79 THEN 7 ϕ 45 LET C = C + 8

LESSON 11

Note: All values given as smallest and largest in these answers are the smallest and largest *possible* values, not necessarily the smallest and largest values printed.

Note: For Radio Shack computers, all RND(1) statements should be changed to RND(ϕ).

- 1. smallest 1 largest 9
- 2. 2Ø LET X = INT(9 * RND(1))
 smallest 0
 largest 8
- 3. 2Ø LET X = INT(8 * RND(1))
 smallest 0
 largest 7
- 4. smallest 1 largest 10
- 5. 2Ø LET X = INT(9 * RND(1)) + 1
 smallest 1
 largest 9

- 6. 2Ø LET X = INT(8 * RND(1)) + 1
 smallest 1
 largest 8
- 7. 20 LET X = INT(6 * RND(1)) + 1
 smallest 0
 largest 5
- 8. 2Ø LET X = INT(6 * RND(1)) + 1
 smallest 1
 largest 6
- 2φ LET X = INT(3 * RND(1)) + 1 5φ IF C < 21 THEN 2φ
 smallest 1 largest 3
- 10. 2Ø LET X = INT(3 * RND(1))
 smallest 0
 largest 2

LESSON 12

Note: For Radio Shack computers, RND(1) statements should be changed to RND(ϕ).

- 1. llø PRINT ''VERY NICE WORK''
- 2. 8¢ PRINT ''WRONG, TRY AGAIN PLEASE''
- 3. 10 LET X = 4
- 4. 10 LET X = 7
- 5. 10 LET X = 3
- 6. 20 LET Y = INT(5 * RND(1))
- 7. 20 LET Y = INT(7 * RND(1))
- 8. $2\emptyset$ LET Y = INT(6 * RND(1)) + 1

LESSON 12 (Continued)

- 9. 130 IF C = 3 THEN 140
- 10. 130 IF C = 5 THEN 140
- 11. 130 IF C = 10 THEN 140
- 12. The program runs as it did before, but it now asks you for your name and then uses your name each time it asks you WHAT IS THE PRODUCT?
- 14. 8 PRINT 'WRONG, '; A\$;
 '', TRY AGAIN PLEASE'
- **15.** 130 IF C = 4 THEN 140
- 16. 10 LET X = INT(5 * RND(1))
- 17. $2\emptyset \text{ LET Y} = \text{INT}(6 * \text{RND}(1)) + 1$

LESSON 13

Note: For Radio Shack computers, RND(1) statements should be changed to RND(ϕ). All values given as smallest and largest in these answers are the smallest and largest possible values, not necessarily the smallest and largest values printed.

- 1. smallest 0 largest 1
- 2. 20 LET X = INT(9 * RND(1))
- 3. 20 LET X = INT(9 * RND(1)) + 1
- 4. $2\emptyset \text{ LET } X = INT(9 * RND(1)) + 2$
- 5. $2\emptyset \text{ LET } X = INT(9 * RND(1)) + 3$
- 6. 20 LET X = INT(6 * RND(1))

- 7. $2\emptyset \text{ LET } X = INT(6 * RND(1)) + 1$
- 8. $2\emptyset \text{ LET } X = INT(6 * RND(1)) + 1\emptyset$
- 9. $2\emptyset \text{ LET } X = INT(6 * RND(1)) + 12$
- 10. $2\emptyset \text{ LET } X = INT(8 * RND(1)) + 1\emptyset$

LESSON 14

- 1. ******GOOD WORK

 GOOD WORK
- 3. *****

GOOD WORK

2. 77 PRINT ' '

- 4. Same as problem 3 with ***** at column 20.
- 5. ***** GOOD WORK
- 6. $2\emptyset$ LET T = 9
- 7. 50 IF X = 5 THEN 75
- 8. 20 LET T = 1 50 IF X = 4 THEN 75
- 9. 50 IF X = 7 THEN 75
- 10. *
 - *
 - *
 - *
 - *

GOOD WORK

- 11. 2Ø LET T = 5 5Ø IF X = 6 THEN 75
- 12. $2\emptyset \text{ LET T} = 9$

LESSON 14 (Continued)

GOOD WORK

- 14. 20 LET T = 9
- **15.** 55
- 16. 20 LET T = 5 40 PRINT ' '**', 55 LET T = T + 1
- 17. 20 LET T = 9
- **18.** 4¢ PRINT ''*'' 55
- 19. 55 LET T = T 1
- 20. 4Ø PRINT ''**',

LESSON 15

- 1. 5 [clear screen]

 10 LET X = 1

 20 LET T = 1

 30 PRINT TAB(T);

 40 PRINT 'AWESOME''

 50 IF X = 5 THEN 80

 60 LET X = X + 1

 70 GOTO 40

 80 END
- 2. $2\emptyset \text{ LET T} = 1\emptyset$
- 3. $2\emptyset$ LET T = $2\emptyset$
- 4. 20 LET T = 1
- 5. 40 PRINT ''AWESOME '';

- **6.** $5\emptyset$ IF X = 4 THEN $8\emptyset$
- 7. 40 PRINT ''AWESOME''
- 8. 65 LET T = T + 170 GOTO 30
- 9. 65 LET T = T + 2
- 10. 4 PRINT 'AWESOME AWESOME''
 65 LET T = T + 3
- **11.** 4¢ PRINT ''AWESOME'' 65
- 12. $2\emptyset \text{ LET T} = 15$ 65 LET T = T - 1
- 13. 65 LET T = T 2
- **14.** $2\emptyset$ LET T = $2\emptyset$
- 15. $2\emptyset \text{ LET T} = 18$ 65 LET T = T + 1
- 16. 25 PRINT TAB(T); 'AWESOME'
 50 IF X = 3 THEN 80

LESSON 16

The program prints six of the character that you enter, followed immediately by GOOD WORK.

- 1. The program runs as before but prints GOOD WORK on the line below the characters.
- 2. 96 PRINT '' ',
- 3. 70 IF X = 12 THEN 95
- 4. $4\emptyset$ LET T = 9 $7\emptyset$ IF X = 6 THEN 95
- 5. 65 PRINT '' ';

LESSON 16 (Continued)

- 6. When asked for a character, type \$+.
- 7. 40 LET T = 1 60 PRINT A\$ 65 90 GOTO 50
- 8. 40 LET T = 5
- 9. 40 LET T = 9
- 10. $4\emptyset \text{ LET T} = 5$ 85 LET T = T + 1
- 11. $4\emptyset \text{ LET T} = 15$ 85 LET T = T - 1
- 12. 4¢ LET T = 7 6¢ PRINT X; A\$ 85 1¢¢ PRINT''TERRIFIC''
- 13. 40 LET T = 12 85 LET T = T - 1
- 14. $4\emptyset$ LET T = 17 85 LET T = T - 2

LESSON 17

- 1. Type a + at the prompt.
- 2. $3\emptyset$ FOR N = 1 TO 2 STEP 1
- 3. 30 FOR N = 1 TO 10 STEP 1
- 4. $3\emptyset$ FOR N = 1 TO 15 STEP 1
- 5. 4Ø
- 6. $3\emptyset$ FOR N = 1 TO 6 STEP 1 4 \emptyset PRINT A\$
- 7. Screen clears after character is entered.

- 8. $3\emptyset$ FOR N = 1 TO 24 STEP 1
- 9. 24
- 10. 1 2 3

. . 23 24

- 11. $3\phi \text{ FOR N} = 1 \text{ TO 6 STEP 1}$ $4\phi \text{ PRINT N}; \text{ A}$$
- 12. Type . * when prompted.
- 13. 3 4 5 6
- **14.** $3\phi \text{ FOR N} = 7 \text{ TO } 13 \text{ STEP } 1$
- 15. The very first character printed is in column 5.
- 16. All lines printed begin at column 5.
- 17. Removing line 28 has no effect now since line 32 has been added.
- 18. All lines printed begin at column 10.
- 19. The first line is printed at column 10. Each one thereafter is moved 1 column to the right of the previous one.
- 20. Enter \$ at the prompt.
- 21. Enter FROG at the prompt.
- 22. 3\$\psi\$ FOR N = 2 TO 5
 35
 55 PRINT ''TERRIFIC''

LESSON 18

- 1. $3\emptyset$ FOR N = 1 TO 5 STEP 1
- 2. 7 LET T = 15
 35 PRINT TAB(T);
- 3. 35 40 PRINT A;
- 4. This clears the screen after you input the number.
- 5. 12345
- 6. $3\emptyset$ FOR N = 1 TO 9 STEP 1 37 PRINT '' ';
- 7. 7 LET T = 1
- 9. 7 LET T = 15
- 10. 1 2 3 4 5 6 7
- 11. $3\emptyset$ FOR N = 3 TO 7 STEP 1
- 12. 3 5 7

- 13. 1 3 5 7
- 14. 40 PRINT N;
- 15. $3\emptyset$ FOR N = 2 TO 11 STEP 3
- 16. 4Ø PRINT N; '' ';
- 17. $3\emptyset$ FOR N = 9 TO 29 STEP 5
- **18.** $3\emptyset$ FOR N = 8 TO 26 STEP 3
- 19. $3\emptyset$ FOR N = 5 TO 45 STEP 4
- **20.** $3\emptyset$ FOR N = 7 TO 79 STEP 8

LESSON 19

(5 blank lines)

- 1. This time 10 blank lines are printed before TIME.
- 2. 10 FOR N = 1 TO 20
- 3. The added lines do not affect the output.
- 4. TIME is printed in column 15 after the 20 blank lines.
- 5. 7 LET T = 29
- 6. 7 LET T = 35
- 7. 7 LET T = 21
- 8. 7 LET T = 14
- 9. 7 LET T = 17

LESSON 19 (Continued)

- 10. 3 seconds (approximately)
- **11.** $1\emptyset$ FOR N = 1 TO 25 \emptyset
- **12.** 1 % FOR N = 1 to 5 % %
- 13-17. Answers will vary according to type of computer, version of BASIC, etc.
- 18. 1 second (approximately)

LESSON 20

- 1. 70 FOR J = 1 TO 9 STEP 2
- 2. 80 PRINT J
- 3. $7 \emptyset$ FOR J = 1 TO 5 STEP 2 8 \emptyset PRINT J; A\$
- 4. Enter ** when prompted.
- 5. Output lines are printed starting at column 10.
- 6. 25 LET T = 2040 FOR N = 1 TO 20
- 7. $4\emptyset$ FOR N = 1 TO 8 $7\emptyset$ FOR J = 3 TO 15 STEP 4
- 3.7.11.15.
- 9. 7ϕ FOR J = 2 TO 17 STEP 5 82 LET T = T + 2
- 10. 7ϕ FOR J = 3 TO 15 STEP 2 82 LET T = T - 1
- 11. 1¢ 11 12 13

- 12. $7 \emptyset$ FOR J = 4 TO $1 \emptyset$ STEP 2 $8 \emptyset$ PRINT J; A\$ 82
- 13. $7\emptyset$ FOR J = $1\emptyset$ TO 6 STEP 1 82 LET T = T - 1

LESSON 21

- 5 6 7 8
- 5
 7
 9
 11
 13
- 3. 1 3 5 7
- 4. 19 39 59 79 99
- 5. 1* 3* 5* 7* 9*

LESSON 21 (Continued)

- 6. $7 \emptyset$ FOR J = 5 TO 11 STEP 2 8 \emptyset PRINT TAB(T); J 9 \emptyset T = T + 2
- 7. $8\emptyset \text{ PRINT TAB}(T)$; J; A\$ $9\emptyset T = T + 3$
- 8. 25 LET C = 1 7Ø FOR J = 5 TO 13 STEP 2 8Ø PRINT TAB(T) J; A\$; C 9Ø T = T + 2
- 9. 25 LET C = 3 70 FOR J = 5 TO 11 STEP 2 80 PRINT TAB(T) J; C 90 T = T + 1
- 10. 25 LET C = 5 70 FOR J = 5 TO 9 STEP 2 85 LET C = C - 1 90 LET T = T - 1
- 11. 1 5 5 2 4 8 3 3 9 4 2 8
- 12. 1 5 5 2 5 1 0 3 5 15 4 5 2 0

- 13. $3\emptyset \text{ LET T} = 3$ $9\emptyset \text{ LET T} = \text{T} + 1$
- 14. 25 LET C = 2
- 15. 25 LET C = 3
- 16. 25 LET C = 1 3\$\psi\$ LET T = 6 9\$\psi\$ LET T = T - 1
- 17. 25 LET C = 3 3Ø LET T = 8 85 LET C = C + 2 9Ø LET T = T - 2
- 18. 25 LET C = 1 $3\emptyset$ LET T = 6 $8\emptyset$ PRINT S $9\emptyset$ LET T = T - 1
- 19. 25 LET C = 4 3Ø LET T = 9 8Ø PRINT C; T 85 LET C = C + 1
- 20. 8Ø PRINT S
- 21. 25 LET C = 3 $3\emptyset$ LET T = 5 $9\emptyset$ LET T = T + 2

