

10/594064

IAP01 Rec'd PCT/PTO 25 SEP 2006

SEQUENCE LISTING

<110> Bryan, Janine T.
Brownlow, Michelle K.
Schultz, Loren D.
Janse, Kathrin U.

<120> OPTIMIZED EXPRESSION OF HPV 52 L1 IN
YEAST

<130> 21571P

<150> PCT/US2005/009199
<151> 2005-03-18

<150> 60/555926
<151> 2004-03-24

<160> 7

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1512
<212> DNA
<213> Artificial Sequence

<220>
<223> HPV52L1R

<400> 1
atgtccgtct ggagaccatc cgaagctact gtctacttgc caccagttcc agtctctaag 60
gttgtctcta ccgacgaata cgtctccaga acctccatct actactacgc tggttcctct 120
agattgttga ctgtcggtca cccatacttc tcttatcaaga acaccccttc cggttaacgg 180
aagaaggctt tggttccaaa ggtctctgggt ttgcaataca gagtcttcag aatcaagttg 240
ccagacccaa acaagttcgg tttcccagac actagttct acaacccaga aactcaaaga 300

ttggctctggg cttgtactgg tttggaaatc gtagagggc aaccattggg tgtcggatc 360
 tctggtcacc cattgttcaa caagttcgac gacactgaaa cctctaaca gtacgctggt 420
 aagccaggta tcgataaacag agaatgttg tctatggact acaagcaa ac tcaattgtgt 480
 atcttgggtt gtaagccacc aatcggtgaa cactggggta agggtactcc atgtaacaac 540
 aactctggta acccaggtga ctgtccacca ttgcaattga tcaactccgt catccaagac 600
 ggtgacatgg tcgacactgg tttcggttgt atggacttca acaccttgc agcttctaag 660
 tccgacgtcc caatcgacat ctgttcctct gtctgttaatg acccagacta cttgcaaatg 720
 gcttctgaac catacggtga ctcccttggc ttcttcttga gaagagaaca aatgttcgtc 780
 agacacttct tcaacagagc tggcacccatg ggtgacccag ttccaggtga cttgtacatc 840
 caagggttcca actctggtaa cactgctact gtccaaatcct ctgcttctt cccaaactcca 900
 tctggttcca tggcacccatc cgaatccaa ttgttcaaca agccataactg gttgcaaaga 960
 gctcaaggc acaacaacgg tatctgttg ggtaaccat tggtcgac cgtcgac 1020
 actactagat ctactaacat gacccatgtgt gctgaagtca agaaggaatc cacctacaag 1080
 aacgaaaact tcaaggaata cttgagacac ggtgaagaat tcgacttgc attcatcttc 1140
 caattgtgttga agatcacccat gaccgctgac gtcatgactt acatccacaa gatggacgct 1200
 actatcttgg aagactggca attcggttg actccaccat catccgcttc cttggaagac 1260
 acttacagat tcgtcacttc cactgctatc acctgtcaaa agaacactcc accaaagggt 1320
 aaggaagacc cattgaagga ctacatgttc tggaaagtgc acttgaagga aaagttctt 1380
 gctgacttgg accaattccc attgggtaga aagttcttgc tgcaagctgg tttgcaagct 1440
 agaccaaagt tgaagagacc agctagctt gctccaagaa cttccaccaa gaagaagaag 1500
 gtcaagagat aa 1512

<210> 2

<211> 503

<212> PRT

<213> Human papillomavirus type 52

<400> 2

Met	Ser	Val	Trp	Arg	Pro	Ser	Glu	Ala	Thr	Val	Tyr	Leu	Pro	Pro	Val
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

1		5				10				15					
---	--	---	--	--	--	----	--	--	--	----	--	--	--	--	--

Pro	Gly	Ser	Lys	Val	Val	Ser	Thr	Asp	Glu	Tyr	Val	Ser	Arg	Thr	Ser
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

		20			25					30					
--	--	----	--	--	----	--	--	--	--	----	--	--	--	--	--

Ile	Tyr	Tyr	Tyr	Ala	Gly	Ser	Ser	Arg	Leu	Leu	Thr	Val	Gly	His	Pro
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

		35			40					45					
--	--	----	--	--	----	--	--	--	--	----	--	--	--	--	--

Tyr	Phe	Ser	Ile	Lys	Asn	Thr	Ser	Ser	Gly	Asn	Gly	Lys	Lys	Val	Leu
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

		50			55				60						
--	--	----	--	--	----	--	--	--	----	--	--	--	--	--	--

Val	Pro	Lys	Val	Ser	Gly	Leu	Gln	Tyr	Arg	Val	Phe	Arg	Ile	Lys	Leu
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

65	70	75	80												
Pro	Asp	Pro	Asn	Lys	Phe	Gly	Phe	Pro	Asp	Thr	Ser	Phe	Tyr	Asn	Pro
		85							90						95
Glu	Thr	Gln	Arg	Leu	Val	Trp	Ala	Cys	Thr	Gly	Leu	Glu	Ile	Gly	Arg
		100							105						110
Gly	Gln	Pro	Leu	Gly	Val	Gly	Ile	Ser	Gly	His	Pro	Leu	Leu	Asn	Lys
		115							120						125
Phe	Asp	Asp	Thr	Glu	Thr	Ser	Asn	Lys	Tyr	Ala	Gly	Lys	Pro	Gly	Ile
		130							135						140
Asp	Asn	Arg	Glu	Cys	Leu	Ser	Met	Asp	Tyr	Lys	Gln	Thr	Gln	Leu	Cys
		145			150					155					160
Ile	Leu	Gly	Cys	Lys	Pro	Pro	Ile	Gly	Glu	His	Trp	Gly	Lys	Gly	Thr
		165							170						175
Pro	Cys	Asn	Asn	Asn	Ser	Gly	Asn	Pro	Gly	Asp	Cys	Pro	Pro	Leu	Gln
		180						185							190
Leu	Ile	Asn	Ser	Val	Ile	Gln	Asp	Gly	Asp	Met	Val	Asp	Thr	Gly	Phe
		195					200					205			
Gly	Cys	Met	Asp	Phe	Asn	Thr	Leu	Gln	Ala	Ser	Lys	Ser	Asp	Val	Pro
		210			215					220					
Ile	Asp	Ile	Cys	Ser	Ser	Val	Cys	Lys	Tyr	Pro	Asp	Tyr	Leu	Gln	Met
		225			230				235				240		
Ala	Ser	Glu	Pro	Tyr	Gly	Asp	Ser	Leu	Phe	Phe	Phe	Leu	Arg	Arg	Glu
		245					250					255			
Gln	Met	Phe	Val	Arg	His	Phe	Phe	Asn	Arg	Ala	Gly	Thr	Leu	Gly	Asp
		260					265				270				
Pro	Val	Pro	Gly	Asp	Leu	Tyr	Ile	Gln	Gly	Ser	Asn	Ser	Gly	Asn	Thr
		275			280					285					
Ala	Thr	Val	Gln	Ser	Ser	Ala	Phe	Phe	Pro	Thr	Pro	Ser	Gly	Ser	Met
		290			295					300					
Val	Thr	Ser	Glu	Ser	Gln	Leu	Phe	Asn	Lys	Pro	Tyr	Trp	Leu	Gln	Arg
		305			310				315				320		
Ala	Gln	Gly	His	Asn	Asn	Gly	Ile	Cys	Trp	Gly	Asn	Gln	Leu	Phe	Val
		325					330					335			
Thr	Val	Val	Asp	Thr	Thr	Arg	Ser	Thr	Asn	Met	Thr	Leu	Cys	Ala	Glu
		340			345					350					
Val	Lys	Lys	Glu	Ser	Thr	Tyr	Lys	Asn	Glu	Asn	Phe	Lys	Glu	Tyr	Leu
		355			360					365					

Arg His Gly Glu Glu Phe Asp Leu Gln Phe Ile Phe Gln Leu Cys Lys
370 375 380
Ile Thr Leu Thr Ala Asp Val Met Thr Tyr Ile His Lys Met Asp Ala
385 390 395 400
Thr Ile Leu Glu Asp Trp Gln Phe Gly Leu Thr Pro Pro Pro Ser Ala
405 410 415
Ser Leu Glu Asp Thr Tyr Arg Phe Val Thr Ser Thr Ala Ile Thr Cys
420 425 430
Gln Lys Asn Thr Pro Pro Lys Gly Lys Glu Asp Pro Leu Lys Asp Tyr
435 440 445
Met Phe Trp Glu Val Asp Leu Lys Glu Lys Phe Ser Ala Asp Leu Asp
450 455 460
Gln Phe Pro Leu Gly Arg Lys Phe Leu Leu Gln Ala Gly Leu Gln Ala
465 470 475 480
Arg Pro Lys Leu Lys Arg Pro Ala Ser Ser Ala Pro Arg Thr Ser Thr
485 490 495
Lys Lys Lys Lys Val Lys Arg
500

<210> 3

<211> 1512

<212> DNA

<213> Human Papillomavirus Type 52

<400> 3

atgtccgtgt ggcggcctag tgaggccact gtgtacacctgc ctcctgtacc tgtctctaag 60
gttgtaagca ctgatgagta tgtgtctcgc acaagcatct attattatgc aggtagttct 120
cgattactaa cagtaggaca tccctatttt tctattaaaa acaccagtag tggtaatgg 180
aaaaaaagttt tagttcccaa ggtgtctggc ctgcaataca gggtatttag aattaaattg 240
ccggacccta ataaatttgg ttttccagat acatctttt ataaccaga aacccaaagg 300
ttgggtgtggg cctgtacagg cttggaaatt ggttagggac agcctttagg tgtgggtatt 360
agtgggcattc ctttattaaa caagttttagt gatactgaaa ccagtaacaa atatgctgg 420
aacacctggta tagataatag ggaatgttta tctatggatt ataagcagac tcagttatgc 480
attttaggat gcaaacctcc tataggtgaa cattggggta aggaaacccc ttgttaataat 540
aattcaggaa atcctgggaa ttgtcctccc ctacagctca ttaacagtgt aatacaggat 600
qqqqacatqq taqataacaqq atttqqtqc atqqattttt ataccttqca aqctaqtaaa 660

agtgatgtgc ccattgatat atgttagcagt gtatgtaagt atccagatta tttgcaaatg 720
 gctagcgagc catatggtga cagtttggc tttttctta gacgtgagca aatgtttgtt 780
 agacacttt ttaataggc cggtaccta ggtgaccctg tgccaggtga tttatata 840
 caagggtcta actctggcaa tactgccact gtacaaagca gtgcttttt tcctactcct 900
 agtggttcta tggtAACCTC agaatcccaa ttatTTAATA aaccgtactg gttacaacgt 960
 gcgcaggGCC acaataatgg catatgttgg ggcaatcagt tgTTTGTcAC agttgtggat 1020
 accactcgta gcactaacat gactttatgt gctgaggtta aaaaggaaag cacatataaa 1080
 aatgaaaatt ttaaggaata cttcgtcat ggcgaggaat ttgatttaca atttattttt 1140
 caattgtgca aaattacatt aacagctgat gttatgacat acattcataa gatggatGCC 1200
 actatTTAG aggactggca atttggcTTT acccccaccac cgtctgcATC tttggaggac 1260
 acatacagat ttgtcacttc tactgctata acttgtcaaa aaaacacGCC acctaaagga 1320
 aagGAAGATC CTTAAAGGA CTATATGTT TGGGAGGTGG ATTAAAAGA AAAGTTTCT 1380
 gcagatttag atcagTTTCC TTTAGGTAGG aagTTTTGT tacaggcagg gctacaggct 1440
 aggCCCAAC taaaacGCC TGcatcatcg GCCCCACGTA CCTCCACAAA gaagaaaaag 1500
 gttaaaaggt aa 1512

<210> 4
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 4

atgtccgtgt ggccggcctag t 21

<210> 5
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PCR Primer

<400> 5

gagatctcaa ttacacaaag tg 22

<210> 6
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 6
gagatctcac aaaacaaaaat gtccgtgtgg c 31

<210> 7
<211> 1512
<212> DNA
<213> Artificial Sequence

<220>
<223> 52L1R antisense

<400> 7
tacaggcaga cctctggtag gcttcgatga cagatgaacg gtggtaagg tcagagattc 60
caacagagat ggctgcttat gcagaggtct tggaggtaga tgatgatgcg accaaggaga 120
tctaacaact gacagccagt gggtatgaag agatagttct tgtggaggag gccattgcc 180
ttcttcaga accaaggattt ccagagacca aacgttatgt ctcagaagtc ttagttcaac 240
ggctctgggtt tttcaagcc aaagggtctg tgatcaaaga ttggggctt ttgagttct 300
aaccagaccc gaacatgacc aaaccttag ccatctccag ttggtaaccc acagccatag 360
agaccagtgg gtaacaactt gttcaagctg ctgtgacttt ggagattgtt catgcacca 420
ttcggtccat agctattgtc tcttacaaac agatacctga ttgggtttt agttaacaca 480
tagaacccaa cattcggtgg ttagccactt gtgaccctt tcccatgagg tacattgtt 540
ttgagaccat tgggtccact gacaggttgtt aacgttaact agttgaggca gtaggttctg 600
ccactgtacc agctgtgacc aaagccaaca tacctgaagt tgtggAACGT tcgaagattc 660
aggctgcagg gttagctgta gacaaggaga cagacattca tgggtctgat gaacgtttac 720
cgaagacttg gtatgccact gaggaacaag aagaagaact cttctttgtt ttacaagcag 780
tctgtgaaga agttgtctcg accatggaac ccactgggtc aaggtccact gaacatgtag 840
gttccaagggt tgagaccatt gtgacgatga caggttagga gacgaaagaa gggttgaggt 900
agaccaaggt accagtggag gcttagggtt aacaagttgt tcggatgac caacgtttct 960

cgagttccag tgggttgc atagacaacc ccattggta acaaggcagt gcagcagctg 1020
tgatgtcta gatgattgta ctggaacaca cgacttcagt tcttccttag gtggatgttc 1080
ttgccttga agttccttat gaactctgtg ccacttctta agctgaacgt taagtagaaag 1140
gttaaacacat tcttagtggaa ctggcgactg cagtaactgaa tgttaggtgtt ctacactgcga 1200
tgatagaacc ttctgaccgt taagccaaac tgaggtggtg gtaggcgaag gaaccttctg 1260
tgaatgtcta agcagtgaag gtgacgatag tggacagttt tcttgtgagg tggttccca 1320
ttccttctgg gtaacttcct gatgtacaag acccttcagc tgaacttcct tttcaagaga 1380
cgactgaacc tggtaaggg taacccatct ttcaagaaca acgttcgacc aaacgttcga 1440
tctggttca acttctctgg tcgatcgaga cgaggttctt gaaggtggtt cttcttc 1500
cagttctcta tt 1512