// Aquí no anexare un documento de Excel//

Sometiendo una sal a la llama de un mechero de Bunsen puede detectarse la presencia de **Cesio**, esto, debido a la emisión de su color característico cuya **onda electromagnética tiene una energía de 4.318x10-19 [J].** ¿De qué color es la llama de Cesio (argumenta con un valor "medible")?

Datos

C [m*s-1]	2.99792x10 ⁸
h [J*s]	6.62607x10 ⁻³⁴
E _f [J]	4.318x10 ⁻¹⁹
λ [m]	4.60035x10 ⁻⁷

Sabes que para poder conocer el color de llama es necesario encontrar la longitud de onda del fotón y posteriormente ubicarla en

Con ayuda de $E_F=rac{h\cdot c}{\lambda}\;$ podemos despejar longitud de onda

$$\lambda = \frac{h \cdot c}{E_F} = \frac{(6.62607 \times 10^{-34})(2.99792 \times 10^8)}{4.318 \times 10^{-19}} = 4.60035 \times 10^{-7}$$

Solamente sustituimos los valores dados y encontraremos λ

C [m*s-1]	299790000
h [J*s]	6.62607E-34
Ef [J]	4.318E-19
λ [m]	4.60035E-07

λ [m]	4.60035E-07
-------	-------------

Pero eso no es todo....

Necesitamos hacer un factor de conversión de [m] a [nm] para poder ubicar que color

$$4.60035x10^{-7} [m] \left(\frac{1\ 000\ 000\ 000\ [nm]}{1[m]}\right) = 460.0376974 [nm]$$

c [m*s-1]	2.99792E+08
h [J*s]	6.62607E-34
Ef [J]	4.318E-19
λ[m]	4.60038E-07
[nm]	1E+09
λ[nm]	4.600377E+02

λ [m]	4.60E-07
λ [nm]	4.60E+02

Ya que tenemos la longitud de onda en nanómetros podemos pasar a nuestro grafico

Por lo visto en grafica el color de llama de Cesio seria Azul ya que se encuentra en el intervalo 450 [nm] --> 500 [nm], ya que su valor es de 460.03... [nm]