Pràctiques d'Àlgebra

Solució de les activitats de la Pràctica 6

Activitat 1. Donats els vectors $\vec{u} = (3, 5, -1, 0)$ i $\vec{v} = (1/2, 1/4, 1/3, -3)$, calcula

- a) $\vec{u} \cdot \vec{v}$, $\|\vec{u}\|$ i $\|\vec{v}\|$
- b) La distància entre \vec{u} i \vec{v}
- c) Un vector unitari amb la mateixa direcció que $ec{u}$
 - a) Introduïm en columnes els vectors

```
-->u=[3;5;-1;0]; v=[1/2;1/4;1/3;-3];
  -->pescalar=u'*v
   pescalar =
      2.4166667
  -->modulu=norm(u)
  modulu =
      5.9160798
  -->modulv=norm(v)
   modulv =
      3.0697901
b)
  -->distancia=norm(u-v)
   distancia =
      6.2920806
c)
  -->unitari=(1/norm(u))*u
   unitari =
      0.5070926
      0.8451543
    - 0.1690309
```

Activitat 2. Siguen els vectors $\vec{b} = (1, 2, 3)$ i $\vec{c} = (1, 0, 2)$.

- a) Determina el valor de m per a que el vector $\vec{y}=(m,-1,2)$ siga ortogonal a \vec{b} i a $\vec{c}.$
- b) Calcula H^{\perp} sent $H=<\vec{b},\vec{c}>$.
- c) Comprova que el vector \vec{y} obtés a l'apartat (a) pertany a H^{\perp} .
- a) El vector \vec{y} ha de complir que $\vec{b}\cdot\vec{y}=0$ i que $\vec{c}\cdot\vec{y}=0$. És a dir, m-2+6=0 i m+0+4=0. Per tant, m=-4. Amb Scilab podem fer:

Com el conjunt de tots els vectors ortogonals a b i c està generat pel vector k, qualsevol vector ortogonal s'obté multiplicant k per un escalar. I hem dividit per -k(2) perquè done -1 en aquesta coordenada: la tercera és 2, com es vol, i la primera és -4.

b) Segons el Teorema 1 del butlletí, $H^{\perp}=<\vec{k}>$. Anem a calcular el nucli de A^t amb la instrucció kernel de Scilab.

```
-->b=[1;2;3]; c=[1;0;2];

-->A=[b c]

A =

1. 1.

2. 0.

3. 2.

-->ortoH=kernel(A')

ortoH =

0.8728716

0.2182179

- 0.4364358
```

Per tant, $H^{\perp} = \langle (0.8728716, 0.2182179, -0.4364358 \rangle$.

c) Atès que m ha estat triat perquè \vec{y} siga ortogonal als dos generadors de H, \vec{y} estarà en H^{\perp} , per definició de complement ortogonal. Altra forma de veure que $\vec{y}=(-4,-1,2)$ pertany a H^{\perp} és comprovant que \vec{y} és combinació lineal de la base de H^{\perp} . Vegem-ho:

```
-->y=[-4;-1;2];

-->C=[ortoH y]

C =

0.8728716 - 4.

0.2182179 - 1.

- 0.4364358 2.

-->rank(C)

ans =

1.
```

Atès que el rang de la matriu C és 1, es dedueix que la segona columna (\vec{y}) és combinació lineal de la primera (base de H^{\perp}).

Activitat 3. Siguen
$$\vec{r} = (1, -2, 4, -1)$$
 i $W = <\vec{r}>$

(a) Calcula la projecció ortogonal del vector $\vec{x} = (3, 0, -3, 5)$ sobre W.

- (b) Calcula una base de W^{\perp} .
- (c) Comprova que el vector obtés en (a) és ortogonal als vectors de la base de W^{\perp} .
 - a) Atès que W és un subespai de \mathbb{R}^4 de dimensió 1, aplicarem la fórmula de la projecció sobre una recta

$$ProjW(\vec{x}) = (\vec{q}^t \vec{x}) \vec{q}$$

sent \vec{q} un vector unitari que genera a W, és a dir,

$$\vec{q} = \frac{1}{|\vec{r}|}\vec{r}$$

Fem els càlculs amb Scilab:

-->A=r

b) Si anomenem A a la matriu que té com única columna al vector generador de W, aleshores $W^{\perp}=(col(A))^{\perp}=Nul(A^t)$. Ho calculem amb Scilab:

```
1.
  - 2.
    4.
  - 1.
-->ortoW=kernel(A')
ortoW =
    0.2132007 - 0.8528029
                               0.4264014
  - 0.0749333
                 0.2997331
                               0.8501335
    0.1498665
                 0.4005339
                               0.2997331
    0.9625334
                 0.1498665
                            - 0.0749333
```

Així, una base de W^{\perp} és el conjunt $\{\vec{c}_1,\vec{c}_2,\vec{c}_3\}$, sent \vec{c}_1,\vec{c}_2 i \vec{c}_3 les columnes de la matriu ortoW.

c) Per a provar que $Proj_W(\vec{x})$ és ortogonal als vectors \vec{c}_1, \vec{c}_2 i \vec{c}_3 efectuem el producte de la traslladada de la matriu ortoW pel vector $Proj_W(\vec{x})$ i comprovem que és una matriu nul·la.

```
-->ortoW'*ProjWx
ans =
    1.0D-15 *
    - 0.3330669
    0.8049117
    - 0.4024558

-->clean(ans)
ans =
    0.
    0.
    0.
```

Activitat 4. Siga $W = \langle \vec{u}_1, \vec{u}_2 \rangle$, sent $\vec{u}_1 = (-1, 2, 4)$ i $\vec{u}_2 = (4, -5, 1)$

- (a) Escriu la projecció ortogonal del vector $\vec{x} = (2, 2, 3)$ sobre W, $Proj_W(\vec{x})$, com a combinació lineal dels vectors \vec{u}_1 i \vec{u}_2 .
- (b) Calcula $Proj_W(\vec{x})$ mitjançant la matriu de projecció P_W . Comprova que s'obté el mateix resultat que a l'apartat (a).
- (c) Calcula $Proj_W(\vec{z})$ i $Proj_W(\vec{t})$, sent $\vec{z}=(-6,9,7)$ i $\vec{t}=(-22/3,-17/3,1)$. Quina conclusió pots deduir dels resultats obtinguts?
 - a) Sabem que

$$Proj_W(\vec{x}) = y_1 \vec{u}_1 + y_2 \vec{u}_2$$

sent $\vec{y} = (y_1, y_2)$ la solució del sistema de equacions

$$M^t M \vec{y} = M^t \vec{x}$$

on M és la matriu del conjunt de vectors $\{\vec{u}_1, \vec{u}_2\}$, és a dir, M és la matriu que té com a columnes a aqueixos dos vectors. Resoldrem amb Scilab tal sistema d'equacions utilitzant la comanda rref:

```
-->u1=[-1;2;4];u2=[4;-5;1];
-->M=[u1 u2]
 M =
  - 1.
          4.
        - 5.
    2.
    4.
           1.
-->x=[2;2;3]
 x =
    2.
    2.
R=rref([M'*M M'*x])
 R =
    1.
           0.
                 0.7647059
                 0.2058824
    0.
           1.
```

```
-->y1=R(1,3)

y1 =

0.7647059

-->y2=R(2,3)

y2 =

0.2058824
```

Així,

```
Proj_W(\vec{x}) = 0.7647059\vec{u}_1 + 0.2058824\vec{u}_2.
```

b) Atés que el conjunt $\{\vec{u}_1, \vec{u}_2\}$ és linealment independent, la matriu M^tM té rang 2 i per consegüent és invertible. Així, podem construir la matriu projecció $P_W = M(M^tM)^{-1}M^t$.

```
-->PW=M*inv(M'*M)*M'

PW = 0.3810742 - 0.4782609 0.0843990
- 0.4782609 0.6304348 0.0652174
0.0843990 0.0652174 0.9884910
```

Ara calculem la projecció de \vec{x} mitjançant la fórmula

$$Proj_W(\vec{x}) = P_W \vec{x}$$

```
-->ProjWx=PW*x
ProjWx =
0.0588235
0.5
3.2647059
```

Per veure si hem obtés el mateix resultat que a l'apartat a), efectuem el càlcul de la expressió obtinguda

$$Proj_W(\vec{x}) = y_1 \vec{u}_1 + y_2 \vec{u}_2$$
:

```
-->ProjWxa=y1*u1+ y2*u2
ProjWxa =
0.0588235
0.5
3.2647059
```

que, efectivament, és el mateix.

c) Introduïm els vectors \vec{z} i \vec{t} i calculem les seues projeccions mitjançant la matriu de projecció.

```
-->z=[-6;9;7] ; t=[-22/3;-17/3;1];

-->ProjWz=PW*z

ProjWz =

- 6.

9.

7.
```

```
-->ProjWt=PW*t
ProjWt =
    1.0D-15 *
    - 0.0277556
    - 0.7216450
    - 0.2220446

-->clean(ProjWt)
ans =
    0.
    0.
    0.
```

Així, $Proj_W(\vec{z}) = \vec{z}$ i $Proj_W(\vec{t}) = \vec{0}$. Açò ens indica que $\vec{z} \in W$ i que \vec{t} és ortogonal a W, és a dir, $\vec{t} \in W^{\perp}$.

Activitat 5. Siga W un subespai vectorial de \mathbb{R}^n . Demostra que qualsevol matriu de projecció P_W és simètrica i idempotent $(P_W^2 = P_W)$.

Si P_W és una matriu projecció, llavors $P_W=M(M^tM)^{-1}M^t$, sent M la matriu d'una base de W. Atés que

$$\begin{split} P_W^t &= (M(M^tM)^{-1}M^t)^t = (M^t)^t ((M^tM)^{-1})^t M^t = \\ &= M((M^tM)^t)^{-1}M^t = M(M^t(M^t)^t)^{-1}M^t = M(M^tM)^{-1}M^t = P_W \end{split}$$

concloem que la matriu P_W és simètrica.

D'altra banda,

$$\begin{split} P_W^2 &= (M(M^tM)^{-1}M^t)(M(M^tM)^{-1}M^t) = M((M^tM)^{-1}M^tM)(M^tM)^{-1}M^t = \\ &= MI(M^tM)^{-1}M^t = M(M^tM)^{-1}M^t = P_W \end{split}$$

Per tant, P_W és idempotent.

Exemple: podem comprovar les dues propietats amb la matriu projecció de l'activitat anterior:

```
-->PW
PW =
  0.3810742 - 0.4782609
                        0.0843990
 0.0652174
   0.0843990 0.0652174
                        0.9884910
-->PW^2
ans =
   0.3810742 - 0.4782609
                        0.0843990
 0.0652174
   0.0843990 0.0652174
                        0.9884910
-->PW'
ans =
  0.3810742 - 0.4782609
                        0.0843990
 - 0.4782609
             0.6304348
                        0.0652174
   0.0843990
             0.0652174
                        0.9884910
```