

1200V, 40A, V_{CE(on)}= 2.5V Typical

Ultra Fast NPT - IGBT®

The Ultra Fast NPT - IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Ultra Fast NPT-IGBT® offers superior ruggedness and ultrafast switching speed.

Features

- Low Saturation Voltage
- Low Tail Current
- RoHS Compliant

- Short Circuit Withstand Rated
- High Frequency Switching to 50KHz
- Ultra Low Leakage Current

Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is recommended for applications such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

MAXIMUM RATINGS

All Ratings:	1 _C =	25°C unless	otherwise s	pecified.	

Symbol	Parameter	Ratings	Unit
V _{ces}	Collector Emitter Voltage	1200	V
V_{GE}	Gate-Emitter Voltage	±30	V
I _{C1}	Continuous Collector Current @ T _c = 25°C	88	
I _{C2}	Continuous Collector Current @ T _C = 100°C	40	Α
I _{CM}	Pulsed Collector Current ①	160	
SCWT	Short Circuit Withstand Time: V _{CE} = 600V, V _{GE} = 15V, T _C =125°C	10	μs
P _D	Total Power Dissipation @ T _c = 25°C	500	W
T_{J},T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C
T_{L}	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	C

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
V _{(BR)CES}	Collector-Emitter Breakdown Voltage (V _{GE} = 0V, I _C = 1.0mA)	1200			
V _{GE(TH)}	Gate Threshold Voltage $(V_{CE} = V_{GE}, I_{C} = 2.0 \text{mA}, T_{j} = 25 ^{\circ}\text{C})$	3	4.5	6.0	l I
.,	Collector-Emitter On Voltage (V_{GE} = 15V, I_{C} = 40A, T_{j} = 25°C)		2.5	3.2	Volts
V _{CE(ON)}	Collector-Emitter On Voltage ($V_{GE} = 15V$, $I_{C} = 40A$, $T_{j} = 125^{\circ}C$)		3.5		
	Collector-Emitter On Voltage ($V_{GE} = 15V$, $I_{C} = 88A$, $T_{j} = 25^{\circ}C$)		3.2		
I _{CES}	Collector Cut-off Current (V _{CE} = 1200V, V _{GE} = 0V, T _j = 25°C) ②		10	1000	μΑ
023	Collector Cut-off Current (V _{CE} = 1200V, V _{GE} = 0V, T _j = 125°C) ②		100		
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)			±250	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{ies}	Input Capacitance	Capacitance		3980		
C _{oes}	Output Capacitance	$V_{GE} = 0V, V_{CE} = 25V$		320		pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz		80		
V_{GEP}	Gate to Emitter Plateau Voltage	Cata Charga		7		V
Q ³	Total Gate Charge	Gate Charge		210		
Q _{ge}	Gate-Emitter Charge	V _{GE} = 15V		25		0
Q _{gc}	Gate- Collector Charge	V_{CE} = 600V I_{C} = 40A		90		nC
t _{d(on)}	Turn-On Delay Time	Inductive Switching (25°C)		22		
t _r	Current Rise Time	V _{cc} = 600V		25		
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15V		163		ns
t _f	Current Fall Time	I _C = 40A		40		
E _{on2} ⑤	Turn-On Switching Energy	$R_{\rm g} = 4.3 \ \Omega^{(4)}$		1375	3000	1
E _{off}	Turn-Off Switching Energy	T _J = +25°C		906	1650	μJ
t _{d(on}	Turn-On Delay Time	Inductive Switching (125°C)		22		
t,	Current Rise Time	V _{cc} = 600V		25		ns
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15V		185		
t _f	Current Fall Time	I _C = 40A		47		
E _{on2}	Turn-On Switching Energy	$R_{\rm g} = 4.3 \ \Omega^{(4)}$		1916	3500	1
E _{off}	Turn-Off Switching Energy	T _J = +125°C		1186	2500	μJ

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	Min	Тур	Max	Unit
R _{eJC}	Junction to Case Thermal Resistance			.25	°C/W
$R_{\theta JA}$	Junction to Ambient Thermal Resistance			40	
W _T Package Weight	Packago Wojaht		.22	.22	oz
	Fackage Weight		6.2		g
Torque	Mounting Targue (TO 247 Deckage) 4 40 or M2 corous			10 6.2	in-lbf
	Mounting Torque (TO-247 Package), 4-40 or M3 screw				N·m

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- 2 Pulse test: Pulse Width < 380 µs, duty cycle < 2%.
- 3 See Mil-Std-750 Method 3471.
- 4 R_g is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
- 5 E_{on2} is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode.

 6 E $_{\rm off}$ is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein.

FIGURE 8, Gate charge

FIGURE 16, Minimum Switching Safe Operating Area

FIGURE 15, Energy Losses vs Junction Temperature

RECTANGULAR PULSE DURATION (SECONDS)
Figure 17, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

TO-247 Package Outline

e3 SAC: 100% Sn Plating

D³PAK Package Outline

e3 SAC: 100% Sn Plating

