Memory Key Characteristics

Introduction to Memory

 Charles Babbage started Difference engine in1821 but failed its test in 1833, Why?

Due to unavailability of Memory

- What is Memory?
- A single separate storage structure that holds information in the form of bits called as Memory
- The binary information may be instructions and data
- Stored program concept was introduced with the advent of vacuum tubes by John Von Neumann 1940

Memory Capacity

Number of bytes that can be stored

Term	Normal Usage	Usage as Power of 2
K (Kilo)	10^3	$2^{10} = 1,024$
M (Mega)	10 ⁶	$2^{20} = 1,048,576$
G (Giga)	10 ⁹	$2^{30} = 1,073,741,824$
T (Tera)	10 ¹²	$2^{40} = 1,099,511,627,776$

Key Characteristics

- Location
 - CPU
 - Internal (main)
 - External (secondary)
- Capacity
 - Word size
 - Number of words
- Unit of transfer
 - Word
 - Block

- Access methods
 - Sequential access
 - Direct access
 - Random access
 - Associative access
- Performance
 - Access time
 - Cycle time
 - Transfer rate

Key Characteristics contd.,

- Physical Type
 - Semiconductor
 - Magnetic surface
 - Optical
- Physical Characteristics
 - Volatile / Non-Volatile
 - Erasable / Non-erasable
- Organization

Location

- Three locations of memories
 - CPU
 - Registers used by CPU as its local memory
 - Internal memory
 - Main memory
 - Cache memory
 - External memory
 - Peripheral devices disk, tape accessible to CPU via I/O controllers

Capacity

- Internal memory capacity is expressed in terms of bytes or words.
- External memory capacity is expressed in terms of blocks (depends on words in memory)
- Total memory = number of words × word length
- Number of words = 2^{address bus width}
- Word length = Data bus width

Unit of transfer

 Internal memory – number of data lines into and out of the main memory module

 External memory – blocks – longer units than a word

Access Methods

Four types

- Sequential Access
 - Accesses the memory in predetermined sequence
 - Shared read/write head is used, and this must be moved its current location to the desired location, passing and rejecting each intermediate record.
 - So, the time to access an arbitrary record is highly variable
 - Slower than random access memory
 - Ex: Magnetic Tapes, data in memory array

Access Methods contd.,

From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Inc.

Direct access

- Also referred as semi random access memory
- Access time is variable
- The track is accessed randomly but access within each track is serial
- Access is accomplished by general access to reach a general vicinity plus sequential searching, counting, waiting to reach the final location.
- Ex: Magnetic Disk

Access methods contd.,

Random Access

- Each addressable location in memory has unique, physically wired – in addressing mechanism
- Time to access a location is independent of the sequences of prior access and is constant
- Main memory systems are a random access
- Storage locations can be accessed in any order
- Semi conductor memories

Access Methods contd.,

- Associate Access
 - Word is retrieved based on portion of its contents rather than its address
 - This enables one to make a comparison of desired bit locations within a word for specific match
 - Has own addressing mechanism
 - Retrieval time is constant
 - Access time is independent of location or prior access patterns
 - Cache memories

Performance

Access time

- The time required to read / write the data from / into desired record
- Depends on the amount of data to be read / write
- If the amount data is uniform for all records then the access time is same for all records.
- Time from the instant that an address is presented to the memory to the instant that data have been stored or made available for use.

Memory Cycle time

- Access time + time required before a second access can commence
- For Random access method ,this memory cycle time is same for all records
- The sequential access and direct access ,the memory cycle time is different

Performance contd.,

- Transfer rate / Throughput
 - Rate at which the data can be transferred into or out of a memory unit
 - Random access memory
 - 1/cycle time
 - Non-Random access memory
 - $T_n = T_a + (N/R)$, where
 - T_n average time to read or write N bits
 - T_a average access time
 - N Number of bits
 - R Transfer rate,in bits per second (BPS)

Physical type

Semiconductor

Semiconductor memory uses semiconductor-based integrated circuits to store information.

Magnetic surface

Magnetic storage uses different patterns of magnetization on a magnetically coated surface to store information.

Example:

Magnetic disk, Floppy disk, Hard disk drive

Optical

The typical optical disc, stores information in deformities on the surface of a circular disc

Physical characteristics

- Volatile memory
 - Information decays naturally or lost when electrical power is switched off
- Non-volatile memory
 - Once recorded is retained until deliberately changed
 - No electrical power is needed to retain information
 - Magnetic surface memories
- Semiconductor memories may be either volatile or non-volatile
 - A type of non-volatile semiconductor memory known as flash memory
 - A type of volatile semiconductor memory is random access memory
- Non-erasable memory
 - Cannot be altered, except by destroying the storage unit (ROM)
 - A practical non-erasable memory must also be non-volatile
 - Ex: CD-R, Flash Memories
- Erasable memory
 - Erase the stored information by writing new information
 - Ex: Magnetic storage is erasable

Organization

- Physical arrangement of bits to form words
- 2 types
 - 1 dimensional
 - 2 dimensional

Memory Organization

- Basic element = memory cell
- Properties of Memory cell:
 - They exhibit two stable states, which can be used to represent binary 1 and 0.
 - They are capable of being written into (atleast once) to set the state.
 - They are capable of being read to sense the state.

1 – dimensional organization

2 – dimensional organization

Byte Storage Methods

- Big-Endian
 - Assigns MSB to least address and LSB to highest address
 - Ex: 0 × DEADBEEF

Memory Location	Value
Base Address + 0	DE
Base Address + 1	AD
Base Address + 2	BE
Base Address + 3	EF

Byte Storage Methods contd.,

Little Endian

- Assigns MSB to highest address and LSB to least address
- Ex: 0 × DEADBEEF

Memory Location	Value
Base Address + 0	EF
Base Address + 1	BE
Base Address + 2	AD
Base Address + 3	DE

Byte Storage Methods contd.,

- Little Endian
 - Intel × 86 family
 - Digital equipment corporation architectures (PDP 11, VAX, Alpha)
- Big Endian
 - Sun SPARC
 - IBM 360 / 370
 - Motorola 68000
 - Motorola 88000
- Bi-Endian
 - Power PC
 - MIPS
 - Intel's 64 IA 64

Example

• **Example**: Show the contents of memory at word address 24 if that word holds the number given by 122E 5F01H in both the big-endian and the little-endian schemes?

Big Endian

Little Endian

		Ŭ		
	MSB		>	LSB
	24	25	26	27
Word 24	12	2E	5F	01

	MSB		>	LSB
	27	26	25	24
Word 24	12	2E	5F	01

References

 William Stallings "Computer Organization and architecture" Prentice Hall, 7th edition, 2006