Vorlesung Analysis II

June 27, 2025

Teil 3: Gewöhnliche Differentialgleichungen

an 18: Lineare DGL 1. Ordnung

Stichworte: Variation der Konstanten, zugeh. homogene DGL, partikuläre Lsg.

Literatur: [Hoffmann], kapitel 7.3.

- **18.1.** Einleitung: Bereits die einfache DGL $y' = \alpha y$ beschreibt exponentielles Verhalten (Wachstum für $\alpha > 0$, zerfall für $\alpha < 0$), in vielen Anwendungen ein Standardkonzept. Wir behandeln die DGL y' = f(x)y + g(x) als Verallgemeinerung dieser Form.
- 18.2. Motivation: Die Lineare DGL 1.Ordnung wird untersucht.
- **18.3.** Vereinbarung: Betr. die DGL y' = f(x)y + g(x) wo $f, g: j \to \mathbb{R}$ stetig, $j \subseteq \mathbb{R}$ ein IV. Die r.s. ist linear in y.
- **18.4.** Bem.: Für $a \in j$ wird durch $y_0(x) := \exp(\int_a^x f(t)dt)$, $x \in j$, eine Lsg. y_0 der zugehörigen homogenen (linearen) DGL auf j erklärt, die $y_0(x) \neq 0$, $y_0(a) = 1$ erfüllt. f' = f(x)y
- **18.5.** Satz: Für $a \in j$ und $b \in \mathbb{R}$ ist die (eindeutig bestimmte) Lsg. y von (*) auf j mit y(a)=b gegeben durch

 $y(x) = y_0(x) \cdot (\int_a^x g(t)y_0(t)^{-1}dt + b)$.

•Sämtliche Lösungen von (*) erhält man durch <u>Variation von a und b</u> (d.h. a=a(x), b=b(x)) und <u>Einschränkung auf Teilintervalle</u>.

Beweis: • Sei y eine Lsg. von * in einem IV j_0 mit $a \in j_0 \subseteq j$ und $y(a)b \in \mathbb{R}$. Wir schreiben y in der Form $y(x) = c(x)y_0(x)$, $x \in j_0$, "Variation der Konstanten"

mit $c: j_0 \to \mathbb{R}, x$ (stetig)diff'bar (die Glg. kann als Def. für c gelesen werden).

Nehmen wir diese Form $y = cy_0$ an, dann gilt damit

$$\frac{f c y_0}{\Rightarrow c'(t) = g(t) y_0(t)^{-1}}, \qquad c' y_0 + c y_0 = c' y_0 + \underline{c f y_0}$$

somit notwendig $y(x) = y_0(x) \cdot (\int_a^x g(t)y_0(t)^{-1}dt + b)$, d.h. (+).

• Andererseits wird durch (+) eine Lsg. von (+) mit y(a)=b erklärt.

e18.6. Folgerung: (a) Für die zugeh. homogene DGL $\textcircled{*}_h$ sind alle Lsg. auf j gegeben durch $y(x) = by_0(x), x \in j, b \in \mathbb{R}$.

- (b) Für eine Lsg. y der homogenen DGL $\textcircled{*}_h$ gilt: $y \neq 0 \Rightarrow \forall x \in j : y(x) \neq 0$.
- (c) Jede bel. Lsg. von (*) auf j entsteht aus einer speziellen ("partikulären")Lsg. durch Addition eine Lsg. der homogenen DGL (*)_h.

Bew.: (a): direkt ablesbar aus + mit $g(t):=0, t \in j$.

- (b): aus (a), da $y_0 \neq 0$ für $x \in j$.
- (c): aus der Linearität der Ableitung folgt:

Sind y,z Lsgn. von (*), so gilt (y-z)' = y'-z' = f(y)-f(y) = f(y-z).

Also ist y-z Lsg. von $\textcircled{*}_h$, und y=z+(y-z) die gewünschte Darstellung.

2