Relatività

Marco Militello

Indice

1	Richiami meccanica classica ed elettromagnetismo				
	1.1	Trasformazioni galileiane	4		
2 No	Not	tazioni e formalismo (indici-vettori-operatori differenziali)			
	2.1	Operatori differenziali	(
	2.2	Spazio euclideo 3D	8		
	2.3	Spazi di Riemann	Ç		
	2.4	Spazio di Minkowski	Ç		

Capitolo 1

Richiami meccanica classica ed elettromagnetismo

La meccanica di Newton si basa su 3 principi:

- 1. In assenza di moto \Rightarrow quiete o moto rettilineo uniforme
- 2. $\frac{d}{dt}\vec{p} = F \operatorname{con} \vec{p} = m\vec{v}$
- 3. Principio di azione e reazione

Se in un sistema S ho un moto rettilineo uniforme descritto da $\vec{x}(t) = \vec{x}_0 + \vec{u}t$ ed applico una trasformazione del tipo

$$\vec{x}' = \vec{x} + \vec{w}t^2$$

allora nel sistema S' avrò un moto accelerato descritto da $\vec{x}' = \vec{x}_0 + \vec{u}t + \vec{w}t^2$

SISTEMI DI RIFERMENTO INERZIALI (SDRI): sistemi in cui una particella di "test" (particella con massa e dimensioni trascurabili rispetto a quello a che sta intorno; non c'è perturbazione della misura) non soggetta a forza permane in stato di quiete o moto rettilineo uniforme

Dato S che è SDRI e S' tale che

$$\vec{x}' = \vec{x} - \vec{u}t$$

dove \vec{v} è la velocità relativa tra S e S', allora anche S' è SDRI

Se faccio rotazione (che non dipenda dal tempo) allora permane il moto rettilineo

PRINICIPIO DI RELATIVITÁ: le leggi fisiche devono avere la stessa forma (es. F=ma deve diventare F'=ma') in tutti i SDRI; questo principio si basa su osservazioni empiriche. Enunciato in questo modo vale sia in meccanica classica, sia in relatività \rightarrow cambia solo la trasformazione che uso

COVARIANZA LEGGI FISICHE: significa invarianza in forma

Sistema di rifermento \rightarrow terna di assi cartesiasi e orologio (in fisica classica sono tutti sincronizzati) SDRI \rightarrow empiricamente sarà sistema inerziale in una certa regione di spazio, in un certo intervallo di tempo ed entro accuratezza delle misure che faccio

1.1 Trasformazioni galileiane

Costruite a partire da principio relatività con ipotesi del tempo unitario (t=t') Voglio trovare trasformazioni per passare da SDRI a SDRI del tipo

$$\begin{cases} t' = t'(t, x, y, z) \\ x' = x'(t, x, y, z) \\ y' = y'(t, x, y, z) \\ z' = z'(t, x, y, z) \end{cases}$$

Nel sistema S descrivo con $\vec{x}_p(t) = \vec{x}_0 + \vec{u}t$: nello spazio è una retta \Rightarrow in S' deve rimanere una retta, quindi deve essere una trasformazione lineare

$$\begin{cases} x' = a_{11}x + a_{12}y + a_{13}z + a_{14}t \\ x' = a_{21}x + a_{22}y + a_{23}z + a_{24}t \\ x' = a_{31}x + a_{32}y + a_{33}z + a_{34}t \\ x' = a_{41}x + a_{42}y + a_{43}z + a_{44}t \end{cases}$$

 $a_{ij}(\vec{v})$ dipende da \vec{v} , ma non può dipendere da x,y,z,t altrimenti non sabbero trasformazioni lineari

- asse \hat{x} coincide con $\hat{x}' \to y=z=0 \Rightarrow y'=z'=0$. Quindi: $a_{21}=a_{24}=a_{31}=a_{34}=0$
- piano xy deve coincidere con piano x'y' $\rightarrow z = 0 \Rightarrow z' = 0$ Quindi: $a_{32} = 0$
- piano xz deve coincidere con piano x'z' $\rightarrow y = 0 \Rightarrow y' = 0$ Quindi: $a_{23} = 0$
- Se ruoto asse x di $180^{\circ} \Rightarrow$ y va in -y e z in -z. Allora

$$x' = a_{11}x + a_{12}(-y) + a_{13}(-z) + a_{14}t$$

ma coordinata su x non deve cambiare su x'. Quindi $a_{12}=a_{13}=0$

- per simmetria cilindrica niente di particolare lungo asse y e z. Quindi $a_{22}=a_{33}$; di conseguenza anche $a_{43}=a_{42}$
- t non può dipendere da y e z perchè niente di speciale lungo y e z. Quindi $a_{42} = 0$

Ottengo:

$$\begin{cases} x' = a_{11}x + a_{14}t \\ y' = a_{22}y \\ z' = a_{22}z \\ t' = a_{41}x + a_{44}t \end{cases}$$

Trasformazioni devono dipendere al massimo da direzione moto \rightarrow ISOTROPIA DELLO SPAZIO Riscrivendo:

$$\begin{cases} x' = Ax + Bt \\ y' = Cy \\ z' = Cz \\ t' = \dots \end{cases}$$

Moto in O'
$$\rightarrow$$
 se
$$\begin{cases} x' = 0 \\ y' = 0 \\ z' = 0 \end{cases} \Rightarrow \begin{cases} 0 = Ax + Bt \Rightarrow x = -\frac{B}{A}t \\ x = vt \end{cases}$$

Allora x' = Ax + Bt diventa x' = A(x - vt) [perchè Bt = -Avt] Usando ipotesi aggiuntiva del tempo assoluto ottengo:

$$\begin{cases} x' = A(v)(x - vt) \\ y' = C(v)y \\ z' = C(v)z \\ t' = t \end{cases}$$

- se $v=0 \Rightarrow A(v=0) = C(v=0) = 1$
- per simmetria cilindrica $\Rightarrow C(v) = C(-v)$

• $S \to S$ deve coincidere a $S \to S'$ se mando v in -v: $S \to S'$ stessa forma trasformazione, ma con velocità -v

$$\begin{cases} x = \frac{1}{A(v)}(x' + vt) \\ y = \frac{1}{C(v)}y' \\ z = \frac{1}{C(v)}z' \\ t = t' \end{cases}$$

$$\begin{cases} x = A(-v)(x' + vt) \\ y = C(-v)y' \\ z = C(-v)z' \\ t = t' \end{cases}$$

Allora ottengo:

$$\frac{1}{A(v)} = A(-v) \qquad \frac{1}{C(v)} = C(-v) \qquad v = A(-v)v$$

Quindi: A(v) = 1 e C(v) = 1

Per un moto lungo asse x le trasformazioni di Galilei sono:

$$\begin{cases} x' = x - vt \\ y' = y \\ z' = z \\ t' = t \end{cases}$$

In generale le trasformazioni di Galilei sono:

$$\begin{cases} \vec{x}' = \vec{x} - \vec{v}t \\ t' = t \end{cases}$$

GRUPPO DI GALILEI: insieme trasformazioni di cui trasformazioni di Galilei fanno parte

- traslazione rigida $\rightarrow \vec{x}' = \vec{x} + \vec{x}_0 \ t' = t + t_0$
- traslazione asse (no nel tempo) $\rightarrow \vec{x}' = R\vec{x}$ con R matrice di rotazione tale che $RR^T = R^TR = \mathbb{K}$

Capitolo 2

Notazioni e formalismo (indici-vettori-operatori differenziali)

1. Convenzione di Einstein \rightarrow indici ripetuti = indici sommati

$$\vec{v} = \sum_{i=1}^{3} v_i \vec{e_i} = v_i \vec{e_i}$$

2. Per vettori 4-dimensionali $\rightarrow (ct, x, y, z) = x^{\mu} \text{ con } \mu = 0, 1, 2, 3$

3.
$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

4. Simbolo di levi-civita (in 3D)

$$\epsilon_{ijk} = \begin{cases} \epsilon_{123} = 1 & \text{per ogni permutazione pari di 1,2,3} \\ \epsilon_{213} = -1 & \text{per ogni permutazione dispari di 1,2,3} \\ \epsilon_{ii2} = 0 & \text{completamente asimmetrico} \end{cases}$$

$$\epsilon_{ijk} = -\epsilon_{jik}$$

Matrici

A,B matrici

$$(AB)_{ij} = A_{1k}B_{kj}$$

Per una matrice A 3×3

$$\det A = \epsilon_{ijk} a_{1i} a_{2j} a_{3k}$$

•
$$\epsilon_{ijk}\epsilon_{ilm} = \delta_{il}\delta_{km} - \delta_{jm}\delta_{kl}$$

$$\bullet \ \vec{a} \cdot \vec{b} = a_i b_i = \delta_{ij} a_i b_j$$

•
$$\vec{a} \times \vec{b} = \epsilon_{ijk} a_j b_k \vec{e_i}$$

 $(\vec{a} \times \vec{b})_i = \epsilon_{ijk} a_j b_k$

Contrazione di indici simmetrici/antisimmetrici

 $\begin{cases} \text{A: antisimmetrico su i e j} \to A_{ij} = -A_{ji} \\ \text{S: simmetrico su i e j} \to S_{ij} = S_{ji} \end{cases}$

Contrarre gli indici i e j significa sommare su i e j

$$\sum_{i,j=1}^{3} A_{ij} S_{ij} = \sum_{\text{rename } i,j=1}^{3} A_{ji} S_{ij} = \sum_{i,j=1}^{3} -A_{ij} S_{ij} = 0$$

2.1 Operatori differenziali

• Gradiente

$$\vec{\nabla}\phi = (\delta_i\phi)\vec{e_i} \qquad \delta_i\phi = \frac{\delta\phi}{\delta x_i}$$

• Divergenza

$$\vec{\nabla} \cdot \vec{V} = \delta_i V_i$$

• Rotore

$$(\vec{\nabla} \times \vec{V}) = \epsilon_{ijk} \delta_j V_k$$

• Laplaciano

$$\vec{\nabla} \cdot (\vec{\nabla}\phi) = \delta_x^2 \phi + \delta_y^2 \phi + \delta_z^2 \phi$$

• D'Alambertiano

$$\Box \phi = \frac{1}{c^2} \frac{\delta^2}{\delta t^2} \phi - \nabla^2 \phi$$

Proprietà:

• $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$

•
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \cdot \vec{b} - (\vec{a} \cdot \vec{b}) \cdot \vec{c}$$

• $\operatorname{div}(\operatorname{rot}(\vec{V})) = 0$

• $\operatorname{rot}(\operatorname{grad}(\phi)) = 0$

• $\operatorname{rot}(\operatorname{rot}(\vec{V})) = \operatorname{grad}(\operatorname{div}(\vec{V})) - \nabla^2 \vec{V}$

$$[\vec{\nabla} \times (\vec{\nabla} \times \vec{\nabla})]_i = \delta_i(\vec{\nabla} \vec{V}) - \nabla^2 V_i$$

Equazioni di Maxwell

$$\begin{cases} \vec{\nabla} \cdot \vec{E} = 4\pi\rho \\ \vec{B} \cdot \vec{B} = 0 \\ \vec{\nabla} \times \vec{E} + \delta_t \vec{B} = 0 \\ \vec{\nabla} \times \vec{B} - \delta_t \vec{E} = 4\pi \vec{J} \end{cases} \rightarrow \begin{cases} \delta_i E_i = 4\pi\rho & \text{M1: 1 equazione} \\ \delta_i B_i = 0 & \text{M2: 1 equazione} \\ \epsilon_{ijk} \delta_j E_k + \delta_t B_i = 0 & \text{M3: 3 equazioni} \\ \epsilon_{ijk} \delta_j B_k - \delta_t E_i = 4\pi J_i & \text{M4: 3 equazioni} \end{cases}$$

Da M4 \rightarrow applico divergenza

$$\delta_i(\epsilon_{ijk}\delta_j B_k - \delta_t E_i) = \delta_i 4\pi J_i$$
$$0 - \delta_t \delta_i E_i = 4\pi \delta_i J_i$$
$$-4\pi \delta_t \rho = 4\pi (\vec{\nabla} \cdot \vec{J})$$

Ottengo EQUAZIONE CONTINUITÁ

$$\frac{\delta}{\delta t}\rho + \vec{\nabla} \cdot \vec{J} = 0$$

Da M2 \rightarrow poichè div $(rot(\vec{A})) = 0$ posso ridefinire \vec{B} come

$$\vec{B} = \vec{\nabla} \times \vec{A} \Rightarrow B_i = \epsilon_{ijk} \delta_i A_k$$

Da M3 \rightarrow poichè

$$rot(\vec{E} + \delta_t \vec{A}) = 0$$
$$rot(grad(\phi)) = 0$$

posso ridefinire \vec{E} come

$$\vec{E} + \delta_t \vec{A} = -\vec{\nabla}\phi \Rightarrow \vec{E} = -\vec{\nabla}\phi - \frac{\delta}{\delta t}\vec{A}$$

Allora le equazioni di Maxwell

$$\begin{cases} \delta_i E_i = 4\pi \rho \\ \epsilon_{ijk} \delta_j B_k - \delta_t E_i = 4\pi J_i \end{cases}$$

diventano

$$\begin{cases} 4\pi\rho = \delta_i E_i = -\nabla^2 \phi - \delta_t (\delta_i A_i) \\ 4\pi J_i = \epsilon_{ijk} \delta_j (\epsilon_{ijk} \delta_j A_k) - \delta_t (-\delta_i \phi - \delta_t A_i) = \delta_i \delta_j A_j - \nabla^2 A_i + \delta_t^2 A_i + \delta_i \delta_t \phi \end{cases}$$

sommando $+\delta_t^2 \phi - \delta_t^2 \phi$ alla prima equazione si ottiene:

$$\begin{cases} 4\pi\rho = -\nabla^2\phi + \delta_t^2\phi - \delta_t(\delta_t\phi + \vec{\nabla}\cdot\vec{A}) \\ 4\pi J_i = \nabla^2 A_i + \delta_t^2 A_i + \delta_i(\delta_t\phi + \vec{\nabla}\cdot\vec{A}) \end{cases}$$

Utilizzando operatore d'almenrtino

$$\Box = \frac{\delta^2}{\delta t^2} - \nabla^2$$

posso riscrivere le equazioni di Maxwell come

$$\begin{cases} \Box \phi - \delta_t (\delta_t \phi + \vec{\nabla} \cdot \vec{A}) = 4\pi \rho \\ \Box A_i - \delta_i (\delta_t \phi + \vec{\nabla} \cdot \vec{A}) = 4\pi J_i \end{cases}$$

Trasformazioni di Gauge

Considero $\psi(t, \vec{x})$ arbitraria

$$\begin{cases} \vec{A} \mapsto \vec{A}' = \vec{A} + \vec{\nabla}\psi \\ \phi \mapsto \phi' = \phi - \delta_t \psi \end{cases}$$

Usando queste trasformazioni i campi \vec{E}, \vec{B} sono invarianti \Rightarrow invarianza di Gauge Posso scegliere ψ per semplificare le scelte iniziali di $\phi, \vec{A} \rightarrow$ scelte di Gauge

- Lorenz: $\delta_t \phi + \vec{\nabla} \cdot \vec{A} = 0$
- Coulomb: $\vec{\nabla} \cdot \vec{A} = 0$
- Temporale: $\phi = 0$
- Radiazione: $\vec{\nabla} \cdot \vec{A} = 0 \ \phi = 0$ (in assenza di sorgenti)

Applicando scelta di Lorenz ottengo

$$\begin{cases} \boxdot \phi = 4\pi\rho\\ \boxdot \vec{A} = 4\pi\vec{J} \end{cases}$$

2.2 Spazio euclideo 3D

Distanza infinitesima

$$d\vec{x} = (dx, dy, dx) = (dx_1, dx_2, dx_3)$$

Distanza euclidea

$$\underbrace{|d\vec{x}|^2}_{\text{metrica}} = d\vec{x} \cdot d\vec{x} = dx^2 + dy^2 + dz^2 = \delta_{ij}x_ix_j \to \text{tensore metrico}$$

Rotazioni

Trasformazioni lineai che lasciano invariante $|d\vec{x}|^2$

$$\begin{cases} x\mapsto x' & x_i'=R_{ij}x_j\to \text{ R non dipende da }\vec{x}\\ d\vec{x}\mapsto d\vec{x}_i=R_{ij}dx_j \end{cases}$$

Impongo che $d\vec{x}'^2 = d\vec{x}^2$

$$|d\vec{x}'|^2 = d\vec{x}' \cdot d\vec{x}' = R_{ij} dx_j R_{ik} x_k = R_{ij} R_{ik} dx_j dx_k = (R^T)_{ij} R_{ik} dx_j dx_k = (R^T R)_{jk} dx_j dx_k = \delta_{jk} dx_j dx_k$$

Allora

$$R^T R = \mathbb{I}_{3 \times 3} \qquad R \in O(3)$$

Quindi se $R \in O(3)$ allora $|d\vec{x}'|^2$ è invariante ROTAZIONI PROPRIE $\to R \in SO(3)$

$$R^T R = R R^T = \mathbb{I}$$
 det $R = +1$

• Passivo

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Attivo

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Vettori

 \vec{A} è un vettore (A_x, A_y, A_z) se sotto trasformazioni trasforma come vettore

$$A_i \mapsto A_i' = R_{ij}A_j$$

Campo vettoriale

 $\vec{A}(x)$ è un campo vettoriale tale che

$$A_i(x) \mapsto A'_i(\vec{x}') = R_{ij}A_i(\vec{x}) \qquad \vec{x}' = R\vec{x}$$

Tensore di rango m

$$T_{i_1,\ldots,i_n} \underset{\text{rotazione}}{\longleftrightarrow} R_{i_1j_1} R_{i_2j_2} \cdots R_{i_nj_n} T_{j_1,\ldots,j_n}$$

Un tensore di rango
n contiene 3^n elementi. Un vettore è un caso particolare di tensore: un vettore è un tensore di rango 1

Campo tensoriale

$$T_{i_1,\ldots,i_n}(\vec{x})$$

Scalare

Uno scalare è una quantità invariante sotto rotazione

- $\vec{A} \cdot \vec{B} = A_i B_i$ è uno scalare \rightarrow rappresenta l'angolo tra i due vettori
- $|\vec{A}| = \vec{A} \cdot \vec{A}$ è uno scalare
- Il prodotto tra due tensori con tutti gli indici contratti è uno scalare

Campo scalare

$$\phi(\vec{x}) \qquad \phi'(\vec{x}) = \phi(\vec{x})$$

Un esempio è la temperatura

2.3 Spazi di Riemann

Uno spazio di Riemann è uno spazio N-dimensionale dotato di metrica che esprime la distanza infinitesima tra due punti nello spazio stesso

$$ds^2 = g_{ab}dx^a dx^b \qquad a, b = 1, \dots, N$$

con ds^2 metrica e g_{ab} tensore metrico, che i generale può dipendere dal punto x

- g è invertibile $(\det g \neq 0)$
- g è simmetrico $(g_{ab} = g_{ba})$
- g non per forza diagonale
- $\bullet \ ds^2$ è invariante, non dipende dal sistema di coordinate
- 1. Se g_{ab} non dipende da $x \Rightarrow$ spazio piatto
- 2. Se ho uno spazio piatto \Rightarrow esiste sistema di coordinare in cui g_{ab} è costante su tutto lo spazio
- 3. Segnatura: denota il numero di autovalori positivi e negativi della matrice g_{ab}
- 4. n = numero autovalori positivi e N = dimensione dello spazio

$$\begin{cases} n=N \Rightarrow \text{Varietà riemanniana} \rightarrow \text{metrica euclidea} \\ n=1 \\ n=N-1 \end{cases} \Rightarrow \text{Varietà pseudo riemanniana} \rightarrow \text{metrica pseudo euclidea}$$

La metrica pseudo euclidea comprende anche lo spazio di Minkowski

2.4 Spazio di Minkowski

Coordinate controvarianti

$$x^{\mu} = (ct, x, y, z) = (x^{0}, x^{1}, x^{2}, x^{3}) = (x^{0}, x^{i})$$

 $x = x^{\mu} \hat{e}_{\mu}$

9

Struttura riemanniana

$$M=\mathbb{R}^{1,3} o$$
 Spazio di Riemann
$$ds^2=g_{\mu\nu}dx^\mu dx^
\qquad g_{\mu\nu}={
m diag}(+1,-1,-1,-1)$$

 ds^2 non dipende da sistema di coordinate, mentre $g_{\mu\nu}$ (tensore metrico) non dipende da x. M è uno spazio piatto perchè il tensore metrico non dipende da x

Coordinate covarianti