

Sun-Yuan Hsieh 謝孫源 教授 成功大學資訊工程學系

Introduction

Similar to dynamic programming.
 Use for optimization problems.

Idea:

When we have a choice to make, make the one that looks best right now. Make a *locally optimal choice* in hope of getting a *globally optimal solution*

Activity selection

- ▶ *n* activities require *exclusive* use of a common resource. For example, scheduling the use of a classroom. Set of actives $S = \{a_1, ..., a_n\}$.
- ▶ a_i needs resource during period [s_i , f_i), which is a half-open interval, where s_i = start time and f_i = finish time.
- ► *Goal:* Select the largest possible set of nonoverlapping (mutually compatible) activities

Example : *S* sorted by finish time:

i	1	2	3	4	5	6	7	8	9
S_i	1	2	4	1	5	8	9	11	13
$\frac{i}{s_i}$	3	5	7	8	9	10	11	14	16

Maximum-size mutually compatible set:[a_1 , a_3 , a_6 , a_8].

Not unique: also $[a_2, a_5, a_7, a_9]$.

Optimal substructure of activity selection

- $\triangleright S_{ij} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$
 - = activities that start after a_i finishes and finish before a_i starts.

- ightharpoonup Activities in S_{ij} are compatible with
 - All activities that finish by f_i , and
 - All activities that start no earlier than s_j .

To represent the entire problem, add fictitious activities:

- $a_0 = [-\infty, 0)$
- $a_{n+1} = [\infty, \infty + 1]$

- ▶ We don't care about $-\infty$ in a_0 or " $\infty+1$ " in a_n+1 .
 - Then $S = S_{0,n+1}$
 - Range for S_{ij} is $0 \le i, j \le n+1$.
- ▶ Assume that activities are sorted by monotonically increasing finish time :

$$f_0 \le f_1 \le f_2 \le ... \le f_n < f_{n+1}$$

Then $i \geq j \Rightarrow S_{ij} = \emptyset$.

• If there exist $a_k \in S_{ii}$:

$$f_i \leq s_k < f_k \leq s_j < f_j \Rightarrow f_i < f_j$$
.

• But $i \ge j \Rightarrow f_i \ge f_j$, Contradiction.

So only need to worry about S_{ij} with $0 \le i \le j \le n+1$.

All other S_{ij} are \emptyset .

Suppose that a solution to S_{ij} includes a_k . Have 2 subproblems:

- S_{ik} (start after a_i finishes, finish before a_k starts)
- S_{kj} (start after a_k finishes, finish before a_j starts)

- Let A_{ij} = optimal solution to S_{ij} .
 - So $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$, assuming:
 - S_{ij} is nonempty, and
 - We know a_k

Recursive solution to activity selection

c[i,j] = size of maximum-size subset of mutually compatibles in S_{ij} .

- ► $i \ge j \Rightarrow$ ▷ If $S_{ij} = \emptyset \Rightarrow c[i, j] = 0$.
- $i < j \Rightarrow$

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{\substack{i < k < j \\ a_k \in S_{ij}}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

Theorem

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time :

$$f_m = \min \{ f_k : a_k \in S_{ij} \}$$
. Then

- 1. a_m is used in some maximum-size subset of mutually compatible avtivities of S_{ij} .
- 2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as only nonempty subproblem.

Proof

1. Let A_{ij} be a maximum-size subset of mutually compatible activities in S_{ij} , Order activities in A_{ij} in monotonically increasing order of finish time.

Let a_k be the first activity in A_{ij} .

If $a_k = a_m$, done (a_m is used in a maximum-size subest).

Otherwise, construct $A'_{ij} = A_{ij} - \{a_k\} \cup \{a_m\}$ (replace a_k by a_m).

Theorem

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time :

$$f_m = \min \{ f_k : a_k \in S_{ij} \}$$
. Then

- 1. a_m is used in some maximum-size subset of mutually compatible avtivities of S_{ij} .
- 2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as only nonempty subproblem.

Proof

2. Suppose there is some $a_k \in S_{im}$. Then $f_i \le s_k < f_k \le s_m < f_m \Rightarrow f_k < f_m$. Then $a_k \in S_{ij}$ and it has an earlier finish time than f_m , which contradicts our choice of a_m .

Therefore, there is no $a_k \in S_{im} \Rightarrow S_{im} = \emptyset$.

after theorem

► Claim

Activities in A'_{ij} are disjoint.

Proof

Activities in A_{ij} are disjoint, a_k is the first activity in A_{ij} to finish, $f_m \le f_k$ (so a_m doesn't overlap anything else in A'_{ij}). \bullet (claim)

before theorem

Since $|A'_{ij}| = |A_{ij}|$ and A_{ij} is a maximum-size subset, so is A'_{ij} .

◆(theorem)

This is great:

# of subproblems in optimal solution	2
# of choices to consider	j - i - 1

- ► How we can solve top down:
- ightharpoonup To solve a problem S_{ij}
 - \triangleright Choose $a_m \in S_{ij}$ with earliest finish time: *the greedy choice*
 - \triangleright Then solve S_{mi}
- What are the subproblems?
 - \triangleright Original problem is $S_{0, n+1}$
 - \triangleright Suppose our first choice is a_{m1}
 - \triangleright Then next subproblem is $S_{m1, n+1}$
 - \triangleright Suppose next choice is a_{m2}
 - \triangleright Nextsuproblem is $S_{m2,n+1}$
 - ▶ And so on

Easy recursive algorithm:

Assumes activities already sorted by monotonically increasing finish time. (If not, then sort in $O(n \lg n)$ time)

Return an optimal solution for $S_{i,n+1}$:

▶ REC-ACTIVITY-SELECTOR(s, f, i, n) $m \leftarrow i+1$ while $m \le n$ and $s_m < f_i$ b Find first activity in $S_{i,n+1}$ do $m \leftarrow m+1$ if $m \le n$ then return $\{a_m\} \cup \text{REC-ACTIVITY-SELECTOR}(s, f, m, n)$ else

return 0

- ▶ *Initial call:* REC-ACTIVITY-SELECTOR(s, f, 0, n)
- ► *Time*: $\Theta(n)$ each activity examined exactly once.

Can make this iterative. It's already almost tail recursive.

ightharpoonup GREEDY-ACTIVITY-SELECTOR(s , f , n)

$$A \leftarrow \{a_1\}$$

$$i \leftarrow 1$$

for $m \leftarrow 2$ to n

do if
$$s_m \geq f_i$$

then
$$A \leftarrow A \cup \{a_m\}$$

$$i \leftarrow m$$

 $ightharpoonup a_i$ is most recent addition to A

return A

Time: $\Theta(n)$.

- Greedy Strategy (typical streamline steps):
 - 1. Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
 - 2. Prove that there's always an optimal solution that make the greedy choice, so that the greedy choice is always safe.
 - 3. Show that greedy choice and optimal solution to subprblem \Rightarrow optimal solution to the problem.
- No general way to tell if a greedy algorithm is optimal, but two key ingredients are
 - 1. greedy-choice property and
 - 2. optimal substructure.

Greedy-choice property

A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

Dynamic programming

- Make a choice at each step.
- Choice depends on knowing optimal solutions to subproblems. Solve subproblems *first*.
- ▷ Solve *bottom-up*.

Greedy

- Make a choice at each step.
- ▶ Make the choice *before* solving the subproblems
- ▷ Solve *top-down*.

Optimal substructure

Just show that optimal solution to subproblem and greedy choice \Rightarrow optimal solution to problem.

Greedy vs. dynamic programming

The knapsack problem is a good example of the difference.

► 0-1 knapsack problem

- \triangleright *n* items.
- \triangleright Item *i* is worth \$*v*_i, weighs w_i pounds.
- \triangleright Find a most valuable subset of items with total weight $\le W$.

Fractional knapsack problem

- Like the 0-1 knapsack problem, but can take fraction of an item.
- ▶ Both have optimal substructure.
- ▶ But the fractional knapsack problem has the greedy-choice property, and 0-1 knapsack problem does not.
- \triangleright To solve the fractional problem, rank items by value/weight: v_i/w_i .

Let
$$v_i/w_i \ge v_{i+1}/w_{i+1}$$
 for all i .

ightharpoonup FRACTIONAL-KNAPSACK(v , w , W)

 $load \leftarrow 0$ $i \leftarrow 1$ **while** load < W and $i \le n$ **do if** $w_i \leq W$ -load **then** take all of item *i* **else** take (*W*-load)/ w_i of item i add what was taken to *load* $i \leftarrow i+1$

Time: $O(n \lg n)$ to sort, O(n) thereafter.

Greedy don't work for 0-1 knapsack problem

$$W = 50$$

- Greedy solution :
 - ▶ Take items 1 and 2.
 - value = 160, weight = 30.

Have 20 pounds of capacity left over.

- Optimal solution :
 - ▶ Take items 2 and 3.
 - value = 220, weight = 50.
 - ▶ No leftover capacity.

i	1	2	3
v_i	60	100	120
w_i	10	20	30
v_i/w_i	6	5	4