CS 302 QUIZ 3

8 October, 2019

ANSWERS

- (a) (3 pts) See the relevant slide set
- **(b)** (7 pts) **L** is **not** a regular language which we show below using the pumping lemma.

Assume L to be regular language and let n be given as in pumping lemma. Choose $w = a^n b^{n-1} \in L$. Then $|w| = 2n-1 \ge n$ and by the pumping lemma $w = a^n b^{n-1} = xyz$ where $|xy| \le n$ and |y| > 0 and therefore $x = a^m$; $y = a^k$ and $z = a^{n-k-m}b^{n-1}$ with k > 0 and $m+k \le n$. According to the pumping lemma we must have $x y^j z \in L$ for all $j \ge 0$ and in particular for j=0, $x z \in L$ must hold. But $x z = a^m a^{n-k-m}b^{n-1} = a^{n-k}b^{n-1} \not\in L$ since k > 0 and $n-k \le n-1$ violating the definition of L.

Therefore our assumption is contradicted and L is not a regular language.