

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Pato Branco Disciplina de Fundamentos de Programação Professora: Mariza Miola Dosciatti Curso de Engenharia de Computação

Lista 1 - Estruturas Homogêneas

Vetores e funções

Exercícios para entregar

Observação:

- ✓ Para gerar números aleatórios utilizar a função rand() que está na biblioteca math.h e necessário incluir time.h para usar time(NULL). Inicialmente declarar srand(time(NULL)); para que seja gerado um início (semente) aleatória para a função rand(); depois utilizar rand(), que pode ser rand() / dividido por alguma constante ou variável ou rand() % resto de alguma constante ou variável para obter números em uma determinada faixa.
- 1) Ler a altura de 5 pessoas, armazenar em um vetor. Validar para que seja informado um valor positivo para a altura. Identificar e mostrar a maior altura e o índice do vetor que essa altura corresponde. Calcular a média das alturas acima de 1,50 e mostrar essa média. Validar para que não seja realizada uma divisão por zero no cálculo da média.

Exemplo:

```
Informe a altura da pessoa 1: 1.5
Informe a altura da pessoa 2: 1.6
Informe a altura da pessoa 3: 1.7
Informe a altura da pessoa 4: 1.75
Informe a altura da pessoa 5: 1.4
```

Maior altura eh 1.75 e esta na posicao 3 do vetor.

Media das alturas maiores que um metro e meio: 1.68

Deseja repetir o programa (S ou N)?

2) Gerar um vetor com 50 elementos (valores aleatórios), com valor até 100. Armazenar em um vetor os números pares e em outro os números ímpares. Mostrar os três vetores. Dica: Declarar os três vetores com tamanho 50, na pior hipótese todos os números gerados seriam pares ou ímpares.

Uma solução mais otimizada: primeiro percorrer o vetor e contar quantos valores há de cada tipo e em seguida declarar os vetores com o tamanho exato, obtido da contagem.

Exemplo:

=== VE 98 79 51 89 30	TOR === 56 64 25 70 19	44 83 53 89 62	73 63 77 55 67	3 1 0 71 98	63 21 52 79 42	100 72 30 40 8	87 24 96 10 32	87 9 93 64 57	41 75 32 80 27
=== PAI 98 96 42	RES === 56 32 8	44 70 32	100 40	64 10	72 64	24 80	0 30	52 62	30 98
=== IM 73 21 55	PARES ==: 3 9 71	= 63 75 79	87 51 19	87 25 67	41 53 57	79 77 27	83 93	63 89	1 89

Deseja repetir o programa (S ou N)?

- 3) Deseja-se publicar o número de acertos de cada aluno em uma prova. A prova consta de 10 questões, cada uma com cinco alternativas identificadas por A, B, C, D e E. Para isso são dados:
- O cartão gabarito;
- O número de alunos da turma;
- O cartão de respostas para cada aluno, contendo o seu número e suas respostas.

Exemplo:

Deseja repetir o programa (S ou N)?

4) Gerar um vetor aleatório com 10 elementos entre 0 e 50. Verificar se cada um dos elementos armazenados no vetor é primo. Utilizar, obrigatoriamente, uma função para verificar se o número é primo. Essa função retorna 0 para indicar que o número é primo e 1 para indicar que não é primo. Tratar esse retorno na função chamadora. Mostrar da seguinte forma:

Exemplo:

==== V		3 0	32	35	18	45	43	20
INDICE 0 1 2 3 4 5 6 7 8 9	NUME 3 26 13 0 32 35 18 45 43 20	RO PRIM Sim Nao Sim Nao Nao Nao Nao Sim	10					

Deseja repetir o programa (S ou N)?

```
5) O que faz o algoritmo a seguir:
declare vetA[30], vetB[30], i, j como inteiro
repetir i = 0, até i < 30, passo 1
         leia vetA[i]
fim-repetir
repetir i = 0, até i < 30, passo 1
         escreva vetA[i]
fim-repetir
j=0;
repetir i = 0, até i < 30, passo 1
         se ( vetA[i] % 2 == 0 ) then
                  vetB[j] \leftarrow vetA[i]
                  j \leftarrow j + 1
         fim-se
fim-repetir
repetir i = 0, até i < j, passo 1
         escreva vetB[j]
```

Implemente uma solução na linguagem C para esse algoritmo.

Exemplo:

fim-repetir

Deseja repetir o programa (\$ ou N)?

valores entre 10 e 100 no vetor A.

6) Gerar um vetor A com 100 elementos entre 10 e 400, inclusive, mostrar o vetor gerado. Em seguida percorrer o vetor A e contar quantos elementos estão entre 10 e 100, quantos estão entre 101 e 200, quantos estão entre 201 e 300 e quantos estão entre 301 e 400. A quantidade será armazenada no vetor B com tamanho 4, para cada uma das respectivas quantidades. Por exemplo, vetorB[0] conterá a quantidade de

Observação: É indispensável que os valores sejam contados à medida que o vetor A é percorrido.

Exemplo:

Deseja repetir o programa (S ou N)?