Exploratory figures for CNHS

Kelvin Gorospe and Jessica Gephart

6/3/2020

Notes for Mike:

- Where is the market availability data that we had in the last iteration?
- [name of product]_roster is the availability data
- What is the meaning of NA in the multiselect variable columns?
- "." and ".a" in STATA both mean missing. Refer to Mike's May 27 email for example (and to check for consistency with R)
- Why does VRS have household info and anemia info?
- Why are these output as different files (vrs, market, etc. each broken into multiple separate files)
- It is easiest to have the fewest number possible
- Are they going to translate the HIES iKiribati responses?
- Variable labels are cut off (how do we get the full answers back?) see: var_labels
- How to standardize units when none is given (e.g., question == Travel time outside boundary in outsideRoster dataset includes "12", "3", "30 minutes", "1 hour", etc)
- Is a response of "zero" the same as blank response?

Suggested path forward:

- 1. Write out tidy versions of each data set and share csv
- 2. Write functions to visualize each question type:
 - Multi- and single-select, produce bar chart
 - Integer, produce bar chart
 - Continuous, produce histogram and (TBD: box and whisker)
 - Free response, compile unique answers with unique IDs for translation, question, island, possibly role
- 3. Loop through data and produce pdf of all plots
- 4. TBD: Start to creat summaries by village/island

Fisheries data

Multi-response questions

main catches

Fisheries continued...

$Single\ response\ questions$

birth year

HM involvement in fishing

hours spent in fishing or hunting (7days)

amounts spent for bait (7 days) (zeroes removed; n = 1268)

amounts spent for fishing gear (7 days) (zeroes removed; n = 1261)

amounts spent for ice (7 days) (zeroes removed; n = 1270)

amounts spent for labour/help (7 days) (zeroes removed; n = 1289)

amounts spent for other (7 days) (zeroes removed; n = 1231)

amounts spent for spearguns (1 year) (zeroes removed; n = 1278)

amounts spent on fishing rods(1 year) (zeroes removed; n = 1284)

amounts spent on fishing wheels(1 year) (zeroes removed; n = 1291)

amounts spent on wetsuits(1 year) (zeroes removed; n = 1291)

age in months

VRS Data

$Multi-response\ questions$

Entity within the village boundary

Entity outside the village boundary

Transport regularly available

List of fishing assets

Items consumed by village

Items sold by village

Reason for decline in sea condition

Traditional rules for fishing

Important traditional rule to access fish

Important traditional rule to maintain fish stock

Traditional rules not followed

Local community rules for fishing

Important local community rule to access fish

Important local community rule to maintain fish stock

Local community rules not followed

Government rules for fishing

Important govt rule to access fish

Important govt rule to maintain fish stock

Penalties for not adhering to rules

Conflicts between villages

Event occurring the last 10 years

Area of Government managing sea area

Person managing the sea area

Type of catches shared

Better reason of livelihood status

Factors contribute to poor

Service provided by health worker

Government rules not followed

Reason for improved sea condition

Threats to sea condition

Worse reason of livelihood status

\overline{VRS} continued...

$Single\ response\ questions$

VRS Island

Inherit land

Inherit land from who

Purchase land

Sell land

How leader is chosen

Organised meetings in village

Age restriction meeting

Age restriction to meeting

Gender restriction meeting

Residential restriction meeting

Boat transportation

Looking for work

Number of people harvest from sea

Number of women harvesting from sea (zeroes removed; n = 40)

Number of seafood

Level of fish stock

Level of shark stock

Consumption of ocean foods

Physical condition of sea

Local restriction on fish catch

Most important rule to maintain fish stock

Most important rule for access to fish

Authority influencing fishing activities

Awareness about CBFM

Last visit about CBFM

Implement CBFM

New village rule

Aquaculture in the village

Considering aquaculture in the village

Catches shared

Disposal through sewerage channel

Method of disposing waste water

Method of disposing garbage

Fee for garbage collection

Livelihood of people

Salt water inundation

Extent of damage due to inundation

Rate of inundation

Effect of sea level

Relocate due to sea level

Erosion effect

People moving in and out of village

Village sponsored health program

Health worker visiting village

Number of visits by health worker

Village relocation

Random number in the range 0..1 associated with interview

Number of times vessels come

Restriction of boat travel

Place of looking for work

Purchase land from who

Sell land to who

Catches due to FAD

Year sewerage channel was introduced

Cost to connect to sewerage system

Event Roster Data: List of events

```
## # A tibble: 4 x 1
## event_roster__id
## <chr>
## 1 Coral bleaching event
## 2 Cyclone
## 3 Harmful algal bloom
## 4 Tsunami
```

Event: Coral bleaching

Time of occurrence of event

Effect of event on fish catch

Event: Cyclone

Time of occurrence of event

Effect of event on fish catch

Effect of event on non-finfish catch

Event: Harmful algal bloom

Time of occurrence of event

Effect of event on fish catch

Effect of event on non-finfish catch

Event: Tsunami

Time of occurrence of event

Effect of event on fish catch

Effect of event on non-finfish catch

Fish Roster Data: List of fish assets

A tibble: 17 x 1 ## fish_asset_roster__id <chr> ## ## 1 Fibreglass boats 2 Outboard Motors 3 Fishing Nets (gillnet) ## 4 Spearguns ## 5 Fishing Lines ## 6 Active Fish Traps 7 Underwater flashlights 8 Wood canoes ## 9 Eskies/portable coolers ## 10 SCUBA diving equipment ## 11 Freezers (electric or propane) ## 12 Ice machines ## 13 Fishing Nets (purse) ## 14 Drag Nets ## 15 Harpoons/Spears ## 16 Other Fishing Equipment (note) ## 17 FAD (Fish Aggregating Device)

Asset: Fibreglass boats

Number of fishing assets 10 years ago (zeroes removed; n = 79)

 $\#\#\ Asset:\ Outboard\ Motors$

Number of fishing assets 10 years ago (zeroes removed; n = 35)

$Asset: \ Fishing \ Nets \ (gillnet)$

Number of fishing assets

Number of fishing assets 10 years ago (zeroes removed; n = 9)

$Asset:\ Spearguns$

Number of fishing assets

Number of fishing assets 10 years ago (zeroes removed; n = 20)

Asset: Fishing Lines

Number of fishing assets

Number of fishing assets 10 years ago

 $Asset:\ Active\ Fish\ Traps$

Number of fishing assets 10 years ago (zeroes removed; n = 7)

 $Asset:\ Underwater\ flashlights$

Number of fishing assets 10 years ago (zeroes removed; n = 27)

Asset: Wood canoes

Number of fishing assets 10 years ago (zeroes removed; n = 7)

 $Asset:\ Eskies/portable\ coolers$

Number of fishing assets 10 years ago (zeroes removed; n = 36)

Asset: SCUBA diving equipment

Number of fishing assets 10 years ago (zeroes removed; n = 26)

$Asset:\ Freezers\ (electric\ or\ propane)$

Number of fishing assets

Number of fishing assets 10 years ago (zeroes removed; n = 21)

Asset: Ice machines

Number of fishing assets

Number of fishing assets 10 years ago (zeroes removed; n = 9)

Asset: Fishing Nets (purse)

Number of fishing assets 10 years ago (zeroes removed; n = 8)

 $Asset:\ Drag\ Nets$

Number of fishing assets 10 years ago (zeroes removed; n = 7)

Asset: Harpoons/Spears

Number of fishing assets

Number of fishing assets 10 years ago (zeroes removed; n = 10)

Asset: FAD (Fish Aggregating Device)

Number of fishing assets

Number of fishing assets 10 years ago (zeroes removed; n = 1)

Asset: Other Fishing Equipment (note)

Number of fishing assets (zeroes removed; n = 1)

Number of fishing assets 10 years ago

Outside Roster Data: List of outside assets

```
## # A tibble: 11 x 1
## outside_roster__id
## <chr>
## 1 Clinic/Hospital
## 2 Bank
## 3 Nearest Market
## 4 Nearest Post Office
## 5 Nearest Credit Facility
## 6 Nearest Police Station
## 7 Nearest Court House
## 8 Airport
## 9 Nearest Trade Store/Supermarket
## 10 Nearest fish landing site
## 11 Nearest Church
```

 $Asset: \ Clinic/Hospital$

Distance outside boundary

Transport cost outside boundary (zeroes removed; n = 15)

Asset: Bank

Distance outside boundary

Asset: Nearest Market

Distance outside boundary

Asset: Nearest Post Office

Distance outside boundary

Transport cost outside boundary (zeroes removed; n = 22)

Asset: Nearest Credit Facility

Distance outside boundary

Asset: Nearest Police Station

Distance outside boundary

Transport cost outside boundary (zeroes removed; n = 23)

Asset: Nearest Court House

Distance outside boundary

Transport cost outside boundary (zeroes removed; n = 22)

Asset: Airport

Distance outside boundary

$Asset:\ Nearest\ Trade\ Store/Supermarket$

Distance outside boundary

Asset: Nearest fish landing site

Distance outside boundary

Asset: Nearest Church

Distance outside boundary

Share Roster Data: List of events

```
## # A tibble: 3 x 1
## share_roster__id
## <chr>
## 1 Finfish
## 2 Other non-finfish seafood (shellfish, sea worm, etc.)
## 3 Non-fish foods
```

Asset: Finfish

Who receives from the sharing of catches

Who provides the sharing of catches

Relationship between givers and receivers

Asset: Other non-finfish seafood (shellfish, sea worm, etc.)

Who receives from the sharing of catches

Who provides the sharing of catches

Relationship between givers and receivers

Asset: Non-fish foods

Who receives from the sharing of catches

Who provides the sharing of catches

Relationship between givers and receivers

VRS Roster Data: List of events

```
## # A tibble: 2 x 1
## vrs_roster__id
## <chr>
## 1 1
## 2 2
```

VRS Roster: 1

Sex of VRS respondent

Age of VRS respondent

Position of the respondent

Number of years in the position

Years living in the village

VRS Roster: 2

Note: only contains one individual with the following characteristics

```
## # A tibble: 5 x 6
##
     interview_key interview_id vrs_roster_id respondent_names response question
                                                 <chr>>
##
     <chr>>
                                                                   <chr>>
                                                                            <chr>
## 1 25-11-36-51
                    b8777fe7e091~ 2
                                                 Kaiea Tibwere
                                                                   Male
                                                                            Sex of ~
## 2 25-11-36-51
                    b8777fe7e091~ 2
                                                 Kaiea Tibwere
                                                                   59
                                                                            Age of ~
                    b8777fe7e091~ 2
## 3 25-11-36-51
                                                 Kaiea Tibwere
                                                                   Elected~ Positio~
## 4 25-11-36-51
                    b8777fe7e091~ 2
                                                 Kaiea Tibwere
                                                                   4
                                                                            Number ~
## 5 25-11-36-51
                    b8777fe7e091~ 2
                                                 Kaiea Tibwere
                                                                            Years 1~
                                                                   34
## # A tibble: 11 x 1
##
      within_roster__id
##
      <chr>
##
   1 Nearest Church
##
    2 Nearest Trade Store/Supermarket
   3 Airport
##
   4 Clinic/Hospital
  5 Nearest fish landing site
##
    6 Nearest Credit Facility
##
  7 Nearest Market
## 8 Nearest Post Office
## 9 Nearest Police Station
```

10 Nearest Court House

11 Bank

Asset: Nearest Church

Transport cost within boundary (zeroes removed; n = 10)

 $Asset:\ Nearest\ Trade\ Store/Supermarket$

Transport cost within boundary (zeroes removed; n = 7)

Asset: Airport

Transport cost within boundary (zeroes removed; n = 8)

 $Asset: \ Clinic/Hospital$

Transport cost within boundary (zeroes removed; n = 15)

Asset: Nearest fish landing site

Transport cost within boundary (zeroes removed; n = 10)

Asset: Nearest Credit Facility

Transport cost within boundary

Asset: Nearest Market

Transport cost within boundary

Asset: Nearest Post Office

Transport cost within boundary (zeroes removed; n = 6)

Asset: Nearest Court House

Transport cost within boundary (zeroes removed; n = 7)

Asset: Bank

Transport cost within boundary

