Optimal Decision Rule

When the two classes

- Are Gaussian
- Have the same covariance matrix

the optimal MAP rule is a linear classifier

We call it a linear classifier because the feature vector values are linearly combined as a weighted sum and compared to a threshold.

If we know the class densities and the prior probabilities, the solution is known

Geometric Interpretation of the Linear Classifier

Note that if we know the prior probabilities and the class densities exactly, we know $\mathbf{m}_1, \mathbf{m}_0, \Sigma, \pi_0, \pi_1$, so that the weights and the threshold are known.

Geometry of the Linear Classifier

Define a function
$$g$$
 as $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_p$, where \mathbf{w} is a $(p \times 1)$ weight vector and w_p is the bias.
In terms of g , the decision rule is to choose $l = 0$ if $g(\mathbf{x}) < 0$.
This decision rule is linear because $g(\mathbf{x})$ is a linear combination of the components of $\mathbf{x} : g(\mathbf{x}) = w_0 x_0 + w_1 x_1 + \dots + w_{p-1} x_{p-1} + w_p$.
When $p = 2$, $g(\mathbf{x})$ is a line.
When $p = 3$, $g(\mathbf{x})$ is a plane.

When p > 3, $g(\mathbf{x})$ is a hyperplane.

Distance of a Point to the Decision Boundary

Distance of a Point to the Decision Boundary

The decision boundary is $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_p = 0$.

Let \mathbf{x} be an arbitrary point in the feature space and let δ be the distance of \mathbf{x} from the decision boundary. What is δ ?

Let \mathbf{x}_{\perp} be the point on the decision boundary that is closest to \mathbf{x} ,

so that $\mathbf{x} = \mathbf{x}_{\perp} + \delta \frac{\mathbf{w}}{\|\mathbf{w}\|}$. Perform the inner product of \mathbf{w} with both sides

of the equation and add the bias term to both inner products. We have

$$\mathbf{w}^{T}\mathbf{x} + w_{p} = \mathbf{w}^{T}\mathbf{x}_{\perp} + w_{p} + \delta \frac{\mathbf{w}^{T}\mathbf{w}}{\|\mathbf{w}\|}, \text{ so that } \delta = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}.$$

$$g(\mathbf{x})$$

$$g(\mathbf{x}_{\perp}) = 0 \text{ because by definition } \mathbf{x}_{\perp} \text{ sits on the decision boundary}$$

Distance of a Point to the Decision Boundary

The decision boundary is $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_p = 0$.

Let x be an arbitrary point in the feature space.

The distance of x from the decision boundary is $\delta(\mathbf{x}) = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}$.

What is the distance of the decision boundary from the origin?

Let x = 0, the origin. Then

$$\delta(\mathbf{0}) = \frac{g(\mathbf{0})}{\|\mathbf{w}\|} = \frac{\mathbf{w}^T \mathbf{0} + w_p}{\|\mathbf{w}\|} = \frac{w_p}{\|\mathbf{w}\|}.$$

Decision Regions of a Linear Classifier

Negative side of the decision boundary All points on this side are labeled as l = 0 Positive side of the decision boundary All points on this side are labeled as l = 1

Suppose K = 2.

Let the class densities be Gaussian that differ only in their means \mathbf{m}_1 and \mathbf{m}_0 ; let the covariance matrix be Σ .

Let
$$\mathbf{w} = \mathbf{\Sigma}^{-T} (\mathbf{m}_1 - \mathbf{m}_0)$$
 and $w_p = -(\mathbf{m}_1 - \mathbf{m}_0)^T \mathbf{\Sigma}^{-1} \frac{(\mathbf{m}_1 + \mathbf{m}_0)}{2} + \log \frac{\pi_0}{\pi_1}$.

Define $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_p$. The hyperplane $g(\mathbf{x}) = 0$ is the decision boundary.

The optimal decision rule is to choose l = 0 if $g(\mathbf{x}) < 0$ and l = 1 if $g(\mathbf{x}) > 0$.

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_{p}$$

Controls the orientation of the decision boundary

Controls the placement of the decision boundary (*ie* how far is it away from the origin)

Classification when the priors are the same

Choose l = k to minimize

$$\frac{1}{2}(\mathbf{x}-\mathbf{m}_k)^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mathbf{m}_k) - \log \pi_k.$$

When all classes have the same prior probability, then the decision is choose l = k to minimize

$$\frac{1}{2}(\mathbf{x} - \mathbf{m}_k)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{m}_k), \text{ or, equivalently, } (\mathbf{x} - \mathbf{m}_k)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{m}_k).$$

Let $d_M^2(\mathbf{x}, \mathbf{m}_k) = (\mathbf{x} - \mathbf{m}_k)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{m}_k)$; the term $d_M(\mathbf{x}, \mathbf{m}_k)$ is called the Mahalanobis distance between \mathbf{x} and \mathbf{m}_k .

Classification when the priors are the same

Choose l = k to minimize

$$(\mathbf{x} - \mathbf{m}_k)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{m}_k),$$

the squared Mahalanobis distance between \mathbf{x} and \mathbf{m}_k .

Mahalanobis Distance

The Mahalanobis distance $d_M(\mathbf{x}, \mathbf{y})$ between \mathbf{x} and \mathbf{y} is given by

$$d_M^2(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{y}).$$

When the components are pairwise uncorrelated so that

$$\Sigma = \begin{bmatrix} \sigma_0^2 \\ & \ddots \\ & \sigma_{p-1}^2 \end{bmatrix}$$
, the Mahalanobis distance is

$$d_M^2(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T \begin{bmatrix} \frac{1}{\sigma_0^2} \\ & \ddots \\ & \frac{1}{\sigma_{p-1}^2} \end{bmatrix} (\mathbf{x} - \mathbf{y}) = \sum_{i=0}^{p-1} \frac{(x_i - y_i)^2}{\sigma_i^2}.$$

Mahalanobis Distance

The Mahalanobis distance $d_M(\mathbf{x}, \mathbf{y})$ between \mathbf{x} and \mathbf{y} is given by $d_M^2(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{y})$.

When the components are pairwise uncorrelated and each has unit variance, so that $\Sigma = I$,

the Mahalanobis distance is the same as the Euclidean distance

$$d_M^2(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T \mathbf{I}^{-1}(\mathbf{x} - \mathbf{y}) = (\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y}) = \sum_{i=0}^{p-1} (x_i - y_i)^2.$$

Covariance Matrix

Let the covariance matrix be $\Sigma = E[(\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^T]$. The *ij*th element is defined as $\sigma_{ij} = E[(x_i - m_i)(x_j - m_j)]$ Since $\sigma_{ij} = \sigma_{ji}$, the covariance matrix Σ is symmetric.

Covariance Matrix of a Gaussian Density

The density of a Gaussian vector with mean \mathbf{m} and covariance matrix Σ is

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{p/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{m})}.$$

The surface of constant density on which $p(\mathbf{x})$ is $e^{-1/2}$ of $p(\mathbf{m})$

The covariance matrix Σ has eigenvectors \mathbf{u}_0 and \mathbf{u}_1 and corresponding eigenvalues λ_0 and λ_1 .

Covariance Matrices

Examples

 Class densities are Gaussian that differ only in their means

Two classes
Class means:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{\Sigma}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Decision boundary: $2x_0 + 3x_1 = 6.5$

$$2x_0 + 3x_1 = 6.5$$

$$\Sigma = \begin{bmatrix} 0.82 & 0.20 \\ 0.20 & 0.79 \end{bmatrix}$$

$$\Sigma^{-1} = \begin{bmatrix} 1.30 & -0.32 \\ -0.32 & 1.35 \end{bmatrix}$$

$$1.63x_0 + 3.40x_1 = 6.73$$

$$\Sigma = \begin{bmatrix} 0.68 & 0.34 \\ 0.34 & 0.64 \end{bmatrix}$$

$$\Sigma^{-1} = \begin{bmatrix} 2.03 & -1.10 \\ -1.10 & 2.17 \end{bmatrix}$$

$$0.76x_0 + 4.31x_1 = 7.23$$

$$\Sigma = \begin{bmatrix} 0.58 & 0.44 \\ 0.44 & 0.54 \end{bmatrix}$$

$$\Sigma^{-1} = \begin{bmatrix} 4.66 & -3.84 \\ -3.84 & 5.02 \end{bmatrix}$$

$$-2.19x_0 + 7.37x_1 = 8.86$$

$$\Sigma = \begin{bmatrix} 0.52 & 0.50 \\ 0.50 & 0.50 \end{bmatrix}$$

$$= \begin{bmatrix} 34.78 & -34.44 \end{bmatrix}$$

$$\Sigma^{-1} = \begin{bmatrix} 34.78 & -34.44 \\ -34.44 & 36.11 \end{bmatrix}$$

$$-33.78x_0 + 39.44x_1 = 25.39$$

- Optimal when the two classes are Gaussian and differ only in their means
- The decision boundary is linear