H8: linear differential operators		
8.1 differential operators and adjoints		
8.1.1 linear differential equations and boundary conditions		
linear differential equation	General lindiff eq takes the form: $(\hat{L}u)(x) = f(x), a < x < b.$ with ^L a linear differential operator of order p ie: $(\hat{L}u)(x) = a_p(x) \frac{\mathrm{d}^p u}{\mathrm{d} x^p}(x) + a_{p-1}(x) \frac{\mathrm{d}^{p-1} u}{\mathrm{d} x^{p-1}}(x) + \ldots + a_1(x) \frac{\mathrm{d} u}{\mathrm{d} x}(x) + a_0(x)u(x).$	
boundary conditions	This lindiff eq has boundary conditions of the form: $B_i[u] = \gamma_i, i = 1, \dots, m$	
	where $\{B_i, i = 1,, m\}$ is a set of linear functionals of the particular type	
	$B_i[u] = \sum_{j=1}^p \alpha_{i,j} \frac{\mathrm{d}^{j-1} u}{\mathrm{d} x^{j-1}}(a) + \sum_{j=1}^p \alpha_{i,j+p} \frac{\mathrm{d}^{j-1} u}{\mathrm{d} x^{j-1}}(b).$	
	We require that these boundary conditions are linearly dependent > this amounts to requiring that the matrix B has rank m:	
	$B = \begin{bmatrix} \alpha_{1,1} & \dots & \alpha_{1,2p} \\ \vdots & & \vdots \\ \alpha_{m,1} & \dots & \alpha_{m,2p} \end{bmatrix}$	
8.1.2 superposition, existence and	uniqueness	
superposition principle	If we have solutions: $\hat{L}u_1 = f_1$ with $B_i[u_1] = \gamma_{1,i}, \forall i = 1, \dots, m$ $\hat{L}u_2 = f_2$ with $B_i[u_2] = \gamma_{2,i} \forall i = 1, \dots, m$ then $u = a^1u_1 + a^2u_2$ is a solution of the problem $\hat{L}u = a^1f_1 + a^2f_2$ with $B_i[u] = a^1\gamma_{1,i} + a^2\gamma_{2,i}, \forall i = 1, \dots, m$	
lindiff eq compared to Ax = v	compare lindiff eq to general finite-dimensional inhomogeneous linear problem AX = v > both f and the coefficients γ _i play the role of v > in order to have a solution its required v ∈im(A) > this solution is unique if A u = 0 has u = 0 as unique solution	
decomposition of lindiff eq	1: Homogeneous problem: $(\hat{L}u_0)(x) = 0, \forall a < x < b \qquad \text{with } B_i[u_0] = 0, \forall i = 1, \dots, m.$ 2: inhomogeneous diff eq with homogeneous boundary cond.: $(\hat{L}u_f)(x) = f(x), \forall a < x < b \qquad \text{with } B_i[u_f] = 0, \forall i = 1, \dots, m.$ 3: homogeneous diff eq with inhomogeneous boundary cond.: $(\hat{L}u_\gamma)(x) = 0, \forall a < x < b \qquad \text{with } B_i[u_\gamma] = \gamma_i, \forall i = 1, \dots, m.$ if we can find u_0 , u_f , u_y then $u = u_0 + u_f + u_y$ is a solution to the original problem	
solution space of homogeneous problem	= ker(^L)	
domain of ^L: D _{^L}	ker(^L) is the solution space > define the domain $D_{\wedge L}$ to also include the homogeneous boundary condition $\mathcal{D}_{\hat{L}} = \{u \in L^2([a,b]) u^{(p)} \text{ exists and } u^{(p)} \in L^2([a,b]) \text{ and } B_i[u] = 0, \forall i = 1,\dots,m\}$	
	if ker(^L) = 0, then the lindiff operator ^L with homog. boundary conditions is injective > original problem admits to at most one solution	
prop: inproduct in Hilbert space	For \hat{A} a densely defined operator on a Hilbert space H For all $v\in\mathcal{R}_{\hat{A}}$ and all $w\in\ker(\hat{A}^{\dagger})$	
	> it holds that $\langle w,v \rangle = 0.$	
th: Fredholm alternative 8.2	For a certain class of operators on a Hilbert space H > a solution to the linear problem Âu = v exists if and only if v⊥ker(†)	
index of Fredholm operator Â	For bounded operators on infinite-dimensional Hilbert spaces that satisfy (8.2) > this is the difference dimensionality of the kernel of \hat{A} and \hat{A}^{\dagger}	

8.1.3 Adjoint problem	
def: formal adjoint of ^L	$\hat{L}^{\dagger} = \sum_{j=0}^{p} (-1)^{j} \hat{D}^{j} \overline{a_{j}}(\hat{X}) \implies (\hat{L}^{\dagger} v)(x) = \sum_{j=0}^{p} (-1)^{j} \frac{\mathrm{d}^{j}}{\mathrm{d} x^{j}} (\overline{a_{j}(x)} v(x)).$
	If $\hat{L}u = \hat{L}^{\dagger}u$, the differential operator is said to be formally self-adjoint .
prop: Lagrange identity	For functions u,v∈L²([a,b]) with square integrable pth derivitives > they satisfy:
	$\overline{v(x)}(\hat{L}u)(x) - \overline{(\hat{L}^{\dagger}v)(x)}u(x) = \frac{\mathrm{d}}{\mathrm{d}x}J(u(x),v(x))$
	where we have introduced the bilinear concomitant (it actually is sesquilinear)
	$J(u(x), v(x)) = \sum_{j=0}^{p} \sum_{k=0}^{j-1} (-1)^k \left(\frac{d^k}{dx^k} [a_j(x) \overline{v(x)}] \right) \left(\frac{d^{j-1-k}}{dx^{j-1-k}} u(x) \right).$
> prop: Green identity	For functions $u,v \in L^2([a,b])$ with square integrable pth derivitives $>$ they satisfy:
	$\langle v, \hat{L}u \rangle - \langle \hat{L}^{\dagger}v, u \rangle = J(u(x), v(x)) _a^b = J(u(x), v(x)) _{x=b} - J(u(x), v(x)) _{x=a}.$
boundary conditions for ${\cal D}_{\hat{L}^\dagger}$	consider functions $u \in D_{\wedge L}$, the domain of $\wedge L$ includes homog. boundary conditions $>$ the domain $D_{\wedge L \uparrow}$ should be constructed such that:
	$\left\langle v,\hat{L}u\right angle -\left\langle \hat{L}^{\dagger}v,u ight angle$ =0 for all $\ u\in\mathcal{D}_{\hat{L}}$ and $v\in\mathcal{D}_{\hat{L}^{\dagger}}$
	ie: left-hand side of Green identity should be zero > v will need to satisfy a minimal set of boundary conditions, such that right-hand=0 > define the following vectors of length 2p: $x = \begin{bmatrix} u(a) & u'(a) & \dots & u^{(p-1)}(a) & u(b) & u'(b) & \dots & u^{(p-1)}(b) \end{bmatrix}^T$ $y = \begin{bmatrix} v(a) & v'(a) & \dots & v^{(p-1)}(a) & v(b) & v'(b) & \dots & v^{(p-1)}(b) \end{bmatrix}^T$ with respect to which we can write $J(u(x), v(x)) _a^b = y^H P x$
	for some 2px2p matrix P
	recall the boundary conditions satisfied by u correspond to $\mathbf{B}\mathbf{x} = 0$ > impose boundary conditions on \mathbf{v} such that $\mathbf{y}^{H}PK = (PK)^{H}\mathbf{y} = 0^{H}$ > these are homogeneous boundary conditions that take the form $\tilde{B}_i[v] = 0$ for $i = 1, 2, \ldots$, > or thus: $\tilde{\mathbf{B}}\mathbf{y} = o$. with $\tilde{\mathbf{B}} = (PK)^{H}$
	>> we find 2p-m boundary conditions of the form:
	$ ilde{\mathcal{B}}_i[v] = \sum_{j=1}^p ilde{lpha}_{i,j} v^{(j)}(a) + \sum_{j=1}^p ilde{lpha}_{i,j+p} v^{(j)}(b).$
	with $\tilde{\alpha}_{i,j}$ corresponding to the matrix entries of \tilde{B} .
8.1.4 self-adjoint operators and we	eighted inner product
operators in L ² _w ([a,b])	If we define a certain weight function w(x)>0 > then certain differential operators become self-adjoint, when expressed with respect to the proper inner product
	>> we thus want to generalise the adjoint construction from the previous subsection to the case where we use weighted inner products
self-adjoint operators in finite dimensional Hilbert space	In finite dimensional Hilbert space self-adjoint operator \hat{A} has real eigenvalues > represented by $A=A^H$ if an orthonormal basis was chosen else: $A^{\dagger}=A$ with $A^{\dagger}=g^{-1}A^Hg$ for some function g if a non-orthonormal basis was chosen
self-adjoint operator in L²w([a,b])	compare $\langle v,\hat{D}u\rangle_w=\langle\hat{D}^\dagger v,u\rangle_w$ > ignore the boundary terms for now; use partial integration to obtain: $(\hat{D}^\dagger v)(x)=-\frac{1}{w(x)}\frac{\mathrm{d}}{\mathrm{d}x}\left[w(x)v(x)\right].$

we now have:
$w(x)\overline{v(x)}(\hat{L}u)(x) - w(x)\overline{(\hat{L}^{\dagger}v)(x)}u(x) = \frac{\mathrm{d}}{\mathrm{d}x}J(u(x),v(x))$
where the bilinear concomitant is now given by
$J(u(x), v(x)) = \sum_{j=0}^{p} \sum_{k=0}^{j-1} (-1)^k \left(\frac{\mathrm{d}^k}{\mathrm{d}x^k} [w(x) a_j(x) \overline{v(x)}] \right) \left(\frac{\mathrm{d}^{j-1-k}}{\mathrm{d}x^{j-1-k}} u(x) \right)$
Study the case:
$(\hat{L}u)(x) = a_2(x)\frac{d^2u}{dx^2}(x) + a_1(x)\frac{du}{dx}(x) + a_0(x)u(x).$
with a_0 , a_1 and a_2 real-valued functions. We find the following result:
A real second order diff. operator is formally self-adjoint on $L^2_w([a,b])$ if and only if it takes the form of a Sturm-Liouville operator:
$(\hat{L}u)(x) = -\frac{1}{w(x)}\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}}{\mathrm{d}x}u(x)\right) + \frac{q(x)}{w(x)}u(x).$
> we can freely choose the weight function w(x)
For a real second order diff. operator L with $a_2(x)!=0$ for all $x \in [a,b]$
> there exists a w(x)>0 so that ^L is a formally self-adjoint operator on L²w([a,b]):
$w(x) = \frac{k}{a_2(x)} \exp\left(\int_c^x \frac{a_1(y)}{a_2(y)} \mathrm{d}y\right)$
with some constant k and some point $c \in [a, b]$
The bilinear concomitant of the Sturm-Liouville operator is given by:
$J(u(x), v(x)) = -p(x) \left[\overline{v(x)} u'(x) - \overline{v'(x)} u(x) \right]$
and thus $ [J(u(x), v(x))]_a^b = \mathbf{y}^{H} P \mathbf{x} = \begin{bmatrix} v(a) \\ v'(a) \\ v(b) \\ v'(b) \end{bmatrix}^{H} \begin{bmatrix} 0 & +p(a) & 0 & 0 \\ -p(a) & 0 & 0 & 0 \\ 0 & 0 & 0 & -p(b) \\ 0 & 0 & +p(b) & 0 \end{bmatrix} \begin{bmatrix} u(a) \\ u'(a) \\ u(b) \\ u'(b) \end{bmatrix} $ $ = p(b) \det \left(\begin{bmatrix} u(b) & \overline{v(b)} \\ u'(b) & \overline{v'(b)} \end{bmatrix} \right) - p(a) \det \left(\begin{bmatrix} u(a) & \overline{v(a)} \\ u'(a) & \overline{v'(a)} \end{bmatrix} \right). $
since a S-L operator is always real, we focus on real functions of $u(x)$ and $v(x)$ > omit the complex conjugation
= S-L operator for which p(a)!=0 and p(b)!=0
For regular S-L operators: > we know that m boundary conditions will result in 2p-m adjoint boundary conditions > to obtain a self-adjoint operator, we need to impose p=2 boundary conditions: $Bx = \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} & \alpha_{1,4} \\ \alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} & \alpha_{2,4} \end{bmatrix} \begin{bmatrix} u(a) \\ u'(a) \\ u(b) \\ u'(b) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
choose the real parameters $\alpha_{i,j}$ such that $[J(u,v)]_a^b=0$ imposes the same boundary conditions
A regular S-L operator is self adjoint when imposing separated boundary conditions: $\begin{bmatrix} u(a) \end{bmatrix}$
$B\boldsymbol{x} = \begin{bmatrix} \alpha_1 & \alpha_2 & 0 & 0 \\ 0 & 0 & \beta_1 & \beta_2 \end{bmatrix} \begin{bmatrix} u'(a) \\ u(b) \\ u'(b) \end{bmatrix} = 0 \Longleftrightarrow \begin{cases} \alpha_1 u(a) + \alpha_2 u'(a) = 0 \\ \beta_1 u(b) + \beta_2 u'(b) = 0 \end{cases}$
A regular S-L operator with p(a)=p(b) is self adjoint when imposing periodic boundary conditions: $ [u(a)] $
$Bx = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} u(a) \\ u'(a) \\ u(b) \\ u'(b) \end{bmatrix} = 0 \iff \begin{cases} u(a) = u(b) \\ u'(a) = u'(b) \end{cases}$

initial	value	nroh	lem

$$(\hat{L}u)(t) = \sum_{i=0}^{p} a_j(t) \frac{d^j u}{dt^j}(t) = f(t), \quad a < t < b, \quad \text{with } u^{(i)}(a) = \gamma_i, \quad i = 0, \dots, p-1.$$

now a_i(t) and f(t) aren't constant, but functions of t

> assume: $a_p(t)!=0$ for $t \in [a,b]$ and $a_i(t)$ are continuous in [a,b] for i=0,...,p

use superposition to construct the solution of u as the sum of two contributions u_f and u_v > - inhomogeneous solution uf solves inhomogeneous differential equation starting from inhomogeneous initial value condition

- homogeneous solution u_v solves homogeneous differential equation starting from homogeneous initial value condition

8.2.1 homogeneous solution

homogeneous solution

it isn't relevant that the initial conditions are imposed on the boundary point x=a > generalise the problem for an arbitrary point c∈[a,b]

$$\sum_{j=0}^{p} a_{j}(t) \frac{\mathrm{d}^{j} u}{\mathrm{d} t^{j}}(t) = 0, \quad a < t < b, \qquad \text{with } u^{(i)}(c) = \gamma_{i}, \quad i = 0, \dots, p-1.$$

rewrite this as a first-order vector-valued differential equation:

$$\frac{\mathrm{d}z}{\mathrm{d}t}(t) = \mathsf{A}(t)z(t), \quad a < t < b, \qquad \text{with } z(c) = \zeta.$$

where the *p*-dimensional vector z(t) and ζ are given by

$$z(t) = \begin{bmatrix} u(t) \\ \dot{u}(t) \\ \vdots \\ u^{(p-1)}(t) \end{bmatrix}, \qquad \qquad \zeta = \begin{bmatrix} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{p-1} \end{bmatrix}$$

and A(t) takes the form of a companion matrix

$$\mathsf{A}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ -\frac{a_0(t)}{a_v(t)} & -\frac{a_1(t)}{a_v(t)} & -\frac{a_2(t)}{a_v(t)} & -\frac{a_3(t)}{a_v(t)} & \dots & -\frac{a_{p-1}(t)}{a_v(t)} \end{bmatrix}$$

Now for any continuous first-order vector-valued diff.eq. with continuous $A(t) \in \mathbb{C}^{pxp}$

we can integrate the diff.eq to find:

$$\boldsymbol{z}(t) = \int_{c}^{t} \mathsf{A}(\tau) \boldsymbol{z}(\tau) \, \mathrm{d}\tau + \boldsymbol{\zeta} = (\hat{\mathsf{K}}\boldsymbol{z})(t) + \boldsymbol{\zeta} \quad \Longrightarrow \quad ([\hat{1} - \hat{\mathsf{K}}]\boldsymbol{z})(t) = \boldsymbol{\zeta}$$
 here ^K is an integral operator acting on the vector-valued function \boldsymbol{z} : [a,b] $\rightarrow \mathbb{F}^{\mathsf{p}}$

> the kernel of ^K is itself matrix-valued

> we can write:

$$(\hat{\mathsf{K}}z)(t) = \int_{c}^{t} \mathsf{A}(\tau)z(\tau)\,\mathrm{d}\tau = \int_{a}^{b} \mathsf{K}(t,\tau)z(\tau)\,\mathrm{d}\tau$$

with the kernel given by

$$\mathsf{K}(t,\tau) = \begin{cases} \mathsf{A}(\tau)H(t-\tau)H(\tau-c), & t \ge c \\ \mathsf{A}(\tau)H(\tau-t)H(c-\tau), & t < c \end{cases}$$

or thus simply $K(t, \tau) = A(\tau)H(t - \tau)$ when c = t

prop: solution to hom. first-order vector valued initial value problem

The solution to the homogeneous first-order vector valued initial value problem is:

$$z(t) = \sum_{n=0}^{+\infty} (\hat{\mathsf{K}}^n \zeta)(t) = \sum_{n=0}^{+\infty} \int_c^t \mathrm{d}t_1 \int_c^{t_1} \mathrm{d}t_2 \cdots \int_c^{t_{n-1}} \mathrm{d}t_n \, \mathsf{A}(t_1) \mathsf{A}(t_2) \cdots \mathsf{A}(t_n) \zeta \tag{8.46}$$

where, in order to apply the integral operator \hat{K} and powers thereof to the vector ζ , we need to interpret it as the constant vector-valued function $t \mapsto \zeta$ for $t \in [a, b]$.

time-ordering procedure	consider the case where n=2 and t>c, we find the solution can be written as:	
	$\int_{c}^{t} dt_{1} \int_{c}^{t_{1}} dt_{2} A(t_{1}) A(t_{2}) = \int_{c}^{t} dt_{2} \int_{t_{2}}^{t} dt_{1} A(t_{1}) A(t_{2}) = \int_{c}^{t} dt_{1} \int_{t_{1}}^{t} dt_{2} A(t_{2}) A(t_{1}).$	
	In the last expression, we have merely interchanged the name $t_1 \leftrightarrow t_2$ of the two dumm integration variables. From this, we find that we can write	ny
	$\int_c^t \mathrm{d}t_1 \int_c^{t_1} \mathrm{d}t_2 A(t_1) A(t_2) = \frac{1}{2} \int_c^t \mathrm{d}t_2 \int_c^t \mathrm{d}t_1 \mathcal{T}\left[A(t_1) A(t_2)\right]$	
	if we introduce the convention	
	$\mathcal{T}[A(t_1)A(t_2)] = \begin{cases} A(t_1)A(t_2), & t_1 > t_2 \\ A(t_2)A(t_1), & t_2 > t_1 \end{cases} $ (8.5)	2)
time-ordered exponential	we can now do this for any n and for any t:	
	$z(t) = \sum_{n=0}^{+\infty} \int_c^t \mathrm{d}t_1 \int_c^{t_1} \mathrm{d}t_2 \cdots \int_c^{t_{n-1}} \mathrm{d}t_n A(t_1) A(t_2) \cdots A(t_n) \boldsymbol{\zeta}$	
	$=\sum_{n=0}^{+\infty}\frac{1}{n!}\int_{c}^{t}dt_{1}\int_{c}^{t}dt_{2}\cdots\int_{c}^{t}dt_{n}\mathcal{T}\left[A(t_{1})A(t_{2})\cdotsA(t_{n})\right]\boldsymbol{\zeta}$	
	$=\mathcal{T}\exp\left(\int_{c}^{t}A(au)d au ight)\zeta.$	
8.2.2 fundamental solution and th	e Wronskian	
prop: linear dependence of S(t)	For $\{z_i: [a,b] \to \mathbb{F}^p; i=1,,r\}$ a set of solutions of the hom. first order diff.eq $\dot{z}(t) = A$ without boundary conditions For set of vectors $S(t) = \{z_1(t),,z_r(t)\}$ obtained by evaluating the solutions at time t	, , , ,
	> the set if vectors S(t ₀) at a particular time t ₀ is linearly dependent if and only if	
and a contract of a clubbane	S(t) is linearly dependent for any other time t	
prop: amount of solutions	The hom. first-order vector-valued diff.eq. $\dot{z}(t) = A(t)z(t)$ rithout boundary condi where $z(t) \in \mathbb{F}^p$	tions
	> admits exactly p linearly independent solutions, with respect to which any solutions be ex	on can panded
def: fundamental matrix solution	A matrix function $Z:[a,b] \rightarrow \mathbb{F}^{pxp}$ that satisfies	
	$\frac{\mathrm{d}}{\mathrm{d}t}Z(t) = A(t)Z(t) \tag{8}$	
	and $det(Z(c)) \neq 0$ for some $c \in [a,b]$ is known as a fundamental matrix (solution) .	
th: Liouville theorem	Any matrix function satisfying $\dot{Z}(t) = A(t)Z(t)$ satisfies	
	$\det (Z(t)) = \det (Z(c)) \exp \left[\int_{c}^{t} \operatorname{tr} (A(\tau)) d\tau \right]$	
prop: relation of diff.eq	Any two fundamental solution matrices Z(t) and $\tilde{Z}(t)$ of the diff.eq $\dot{z}(t) = A(t)z(t)$ are related by a constant matrix via: $\tilde{Z}(t) = Z(t)C$	
def: principal fundamental matrix	= fundamental matrix Z_{t0} satisfying the initial condition $Z_{t_0}(t_0) = I$. > if we denote $Z_{t_0}(t) = Z(t,t_0)$ its defining equations are given by:	
	$\frac{\mathrm{d}}{\mathrm{d}t}Z(t,t_0) = A(t)Z(t,t_0)$	
	and $Z(t_0, t_0) = I$ for any t_0 .	
prop: properties of z _{t0}	The principal fundamental matrix Z satisfies the following properties: 1. The solution of $\dot{z}(t) = A(t)z(t)$ satisfying the initial condition $z(t_0) = \zeta$ is given by	
	$z(t) = Z(t,t_0)\zeta. \tag{8}$	
	2. For any other fundamental matrix \tilde{Z} , it holds that $Z(t,t_0)=\tilde{Z}(t)\tilde{Z}(t_0)^{-1}$.	
	3. The principal fundamental matrix satisfies the stationarity property	
	$Z(t_2, t_1)Z(t_1, t_0) = Z(t_2, t_0)$ (8	
	and thus in particular $Z(t_0, t_1) = Z(t_1, t_0)^{-1}$.	
	4. $\det(Z(t,t_0)) = \exp\left[\int_{t_0}^t \operatorname{tr}(A(\tau)) \mathrm{d}\tau\right]$	

using the notation of the time-ordered exponential, we obtain:
$Z(t,t_0) = \mathcal{T} \exp\left(\int_{t_0}^t A(\tau) d\tau\right). \tag{8.64}$
and Liouville's theorem
$\det \left[\mathcal{T} \exp \left(\int_{t_0}^t A(\tau) \mathrm{d}\tau \right) \right] = \exp \left[\int_{t_0}^t tr \left(A(\tau) \right) \mathrm{d}\tau \right]$
provides a convenient generalisation of the result that $det(exp(A)) = exp(tr(A))$ for a constant matrix A. The stationarity property furthermore motivates the following limit construction
$Z(t,t_0) = \mathcal{T} \exp\left(\int_{t_0}^t A(\tau) d\tau\right) = \lim_{\epsilon \to 0} e^{\epsilon A(t-\epsilon)} e^{\epsilon A(t-2\epsilon)} \cdots e^{\epsilon A(t_0+\epsilon)} e^{\epsilon A(t_0)}. $ (8.65)

ie: the initial value problem that was our original motivation:

$$(\hat{L}u)(t) = \sum_{j=0}^{p} a_j(t) \frac{d^j u}{dt^j}(t) = f(t), \quad a < t < b, \quad \text{with } u^{(i)}(a) = \gamma_i, \quad i = 0, \dots, p-1.$$

def: Wronskian W(t)	given a set of p functions $\{u_i: [a,b] \rightarrow \mathbb{F}; i=1,,p\}$, then:
	$W(t) = \det \begin{pmatrix} \begin{bmatrix} u_1(t) & u_2(t) & \dots & u_p(t) \\ \dot{u}_1(t) & \dot{u}_2(t) & \dots & \dot{u}_p(t) \\ \vdots & \vdots & & \vdots \\ u_1^{(p-1)}(t) & u_2^{(p-1)}(t) & \dots & u_p^{(p-1)}(t) \end{bmatrix} \end{pmatrix}$
properties of W(t)	1: if the functions {u _i ;i=1,,p} are linearly dependent, then W(t)=0 > if W(t)!=0 the functions are linearly independent > however, for lin.indep. functions there can be isolated points for which W(t) = 0 2: if the functions correspond to a set of solutions of the hom. diff.eq of order p > then W(t) corresponds to the determinant of the fundamental matrix Z(t) > W(t) = det(Z(t))
prop: Abel's formula	if {u;;i=1,,p} corresponds to a set of solutions of $\sum_{j=0}^p a_j(t)u^{(j)}(t)=0$ > then the Wronskian satisfies: $W(t)=W(t_0)\mathrm{e}^{-\int_{t_0}^t \frac{a_{p-1}(\tau)}{a_p(\tau)}}\mathrm{d}\tau.$
prop: solution of second order diff.eq	let u be a solution of $a_2(t)\ddot{u}(t)+a_1(t)\dot{u}(t)+a_0(t)u(t)=0.$ > a lin. indep. solution v(t) is given by: $v(t)=u(t)\int_{t_0}^t \frac{1}{p(\tau)u(\tau)^2}\mathrm{d}\tau.$
	where $p(t)$ is defined (up to a constant factor) by $\frac{d}{dt} \log p(t) = \frac{1}{p(t)} \frac{d}{dt} p(t) = \frac{a_1(t)}{a_2(t)}$.

8.2.3 Floquet's theorem

consider the first order homogeneous diff.eq where A(t) is a periodic function with T, ie: A(t+T) = A(t)

$$\frac{\mathrm{d}z}{\mathrm{d}t}(t) = \mathsf{A}(t)z(t)$$

th: Floquet's theorem	For a homogeneous first order diff.eq with A(t/T) = A(t) > every fundamental matrix can be expressed as: $Z(t) = Q(t)e^{Bt}$
situation when B diagonalisable	where $Q(t) = Q(t+T)$ is a periodic and B is constant. If B is diagonalisable, we can construct a lin. indep. set of solutions > these correspond to the eigenvectors of B at time t_0 > such solutions are parametrised as:
	$z(t) = oldsymbol{q}(t) \mathrm{e}^{\lambda(t-t_0)}$ with $oldsymbol{q}(t)$ a periodic function with period T

8.2.4 inhomogeneous solution	
we now focus on the full inhomoge	neous problem:
$rac{\mathrm{d} z}{\mathrm{d} t}(t) = A(t) z(t) + b(t), a < t < b \qquad ext{with } z(t_0) = \zeta.$	
prop: solution	The inhomogeneous initial value problem admits a unique solution given by:
	$z(t) = Z(t,t_0)\zeta + \int_{t_0}^t Z(t,\tau)b(\tau) d\tau.$
	8.3 boundary value problems
8.3.1 boundary conditions	
Diff. eq. with boundary cond.	In previous section we discussed initial value problems > special case of boundary conditions
	Define $Z(x)$ the matrix of all solutions $u_j(x)$ and their first p-1 derivatives:
	$Z(x) = \left[u_j^{(i)}(x)\right]_{i=0,\dots,p-1; j=1,\dots,p}$
	$[x,y]_{i=0,\dots,p-1;j=1,\dots,p}$ > Z(x) is invertible, thus full rank
solutions of diff.eq with boundary conditions	we need p boundary conditions $B_i[u]=\gamma_i$ to obtain a unique solution u_γ > for each of the solutions $u_j(x)$ j=1,,p define the vector:
	$x_j = \begin{bmatrix} u_j(a) & u'_j(a) & \dots & u_j^{(p-1)}(a) & u_j(b) & u'_j(b) & \dots & u_j^{(p-1)}(b) \end{bmatrix}^T$
	which we can also collect as the columns of a $(2p \times p)$ matrix
	$X = \begin{bmatrix} Z(a) \\ Z(b) \end{bmatrix}.$
	define M_{ij} associated to the value of the boundary cond. for the basis of solutions: $M_{ij} = B_i[u_j] = (Bx_j)_i = (BX)_{ij}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, p$, which is a mxp matrix M=BX > imposing the boundary cond. on a solution $u(x)$ then leads to the eq.:
	$B_i[u] = \sum_{j=1}^p M_{ij}c_j = \gamma_i, i = 1, \ldots, m \qquad \Leftrightarrow \qquad M c = \gamma.$
	$Mc = \gamma$ contains info about: - whether a solution for the expansion coefficients c_j exists that solves the boundary conditions
	- whether that solution is unique
one-dimensional boundary value problem	boundary conditions: $B_1[u] = \alpha_1 u(a) + \alpha_2 u'(a) = \gamma_1, \qquad B_2[u] = \beta_1 u(b) + \beta_2 u'(b) = \gamma_2$ for which: $ \bullet \text{ Dirichlet boundary conditions: } B_1[u] = u(a) \text{ and } B_2[u] = u(b), $
	• Neumann boundary conditions: $B_1[u] = u'(a)$ and $B_2[u] = u'(b)$,
	• Robin boundary conditions ⁷ : $B_1[u] = u(a) - \ell u'(a)$ and $B_2[u] = u(b) + \ell u'(b)$ for some constant ℓ .
8.3.2 Green's function	
Green's function: concept	for the inhomogeneous diff.eq $(\hat{L}u_f)(x) = f(x)$ with boundary conditions $B_i[u_f] = 0$ for $i = 1,, p$. > we want to find a solution $u_f(x)$
	Revisit the initial value problem > solution found using general mapping to a vector-valued first order diff.eq > work out this general solution for the particular case of scalar-valued pth order diff.eq where right hand side $\mathbf{b}(\mathbf{t})$ takes specific form and solution is first entry of $\mathbf{z}(\mathbf{t})$ > translating $\mathbf{t} \rightarrow \mathbf{x}$, we find: $u_f(x) = \int_a^x u_p(x,\xi) \frac{f(\xi)}{a_p(\xi)} \mathrm{d}\tau = \int_a^b H(x-\xi) u_p(x,\xi) \frac{f(\xi)}{a_p(\xi)} \mathrm{d}\tau$
	where $H(x)$ is the Heaviside step function and $u_p(x,\xi)$ is the solution of the homogenous differential equation satisfying the initial conditions
	$u_p(x,\xi) _{x=\xi} = u'_p(x,\xi) _{x=\xi} = \dots = u_p^{(p-2)}(x,\xi) _{x=\xi} = 0, \qquad u_p^{(p-1)}(x,\xi) _{x=\xi} = 1.$

th: Green's function	For boundary value problem $(\hat{L}u)(x) = f(x)$ on the interval $[a,b]$ For boundary conditions $B_i[u] = \gamma_i$ i=1,,p such that solution u_{γ} exists and unique for all γ_i For all $\xi \in [a,b]$
	> Green's function $g_{\xi}(x)$ exists, so that the solution u_f can be written as:
	$u_f(x) = \int_a^b g_{\xi}(x) f(\xi) \mathrm{d}\xi$
	where $g_{\xi}(x)$ is completely specified by the conditions that for all $\xi \in (a,b)$
	• $B_i[g_{\xi}] = 0$ for $i = 1,, p$;
	• $(\hat{L}g_{\xi})(x) = 0$ for $x \in (a,\xi)$ and $x \in (\xi,b)$;
	• $g_{\xi}(x)$ and its derivatives $g_{\xi}^{(j)}(x)$ for $j \leq p-2$ are continuous at $x=\xi$;
	• $g_{\xi}^{(p-1)}(x)$ is discontinuous at $x=\xi$ and satisfies the 'jump condition'
	$g_{\xi}^{(p-1)}(\xi^+) - g_{\xi}^{(p-1)}(\xi^-) = \frac{1}{a_p(\xi)}.$
Green's operator	if the homogeneous boundary conditions are included in domain D _{^L} > then solution u _f is completely specified by ^Lu _f = f
	> we can write Green's function in terms of operators:
	$u_f = \hat{G}f \iff u_f(x) = \int_a^b g(x, y) f(y) dy$
	we can identify: $\hat{G}=\hat{L}^{-1}.$
solution of 2nd order diff.eq with separated boundary conditions	We can construct a $u_1(x)$ that satisfies the left boundary condition: $B_1[u_1] = \alpha_1 u_1(a) + \alpha_2 u_1'(a) = 0,$ by choosing $u_1(a) = \alpha_2$ and $u_1'(a) = -\alpha_1$ as initial conditions
	construct $u_2(x)$ for B_2 : $B_2[u_2] = \beta_1 u_2(b) + \beta_2 u_2'(b) = 0$ > $u_2(x) = \beta_2$ and $u'_2 = -\beta_1$
	These two solutions must be linearly independent $>$ we assumed there are no functions $u_0!=0$ $>$ we thus have the Wroskian:
	$W(x) = u_1(x)u_2'(x) - u_1'(x)u_2(x) \neq 0$ for all $x \in [a,b]$ we can set:
	$g(x,\xi) = H(\xi - x)c(\xi)u_1(x) + H(x - \xi)d(\xi)u_2(x)$
	which automatically satisfies the boundary conditions. Imposing continuity and jump conditions, i.e.
	$d(\xi)u_2(\xi) - c(\xi)u_1(\xi) = 0,$ $d(\xi)u_2'(\xi) - c(\xi)u_1'(\xi) = \frac{1}{a_2(\xi)},$
	we find that the solution can be written as
	$g(x,\xi) = \begin{cases} \frac{u_1(x)u_2(\xi)}{a_2(\xi)W(\xi)}, & a < x < \xi \\ \frac{u_1(\xi)u_2(x)}{a_2(\xi)W(\xi)}, & \xi < x < b \end{cases} = \frac{u_1(\min(x,\xi))u_2(\max(x,\xi))}{a_2(\xi)W(\xi)}. \tag{8.123}$
8.3.3 adjoint Green's function	
adjoint Green's function	we've established u ₀ =0 of homogeneous diff.eq. with homogeneous bound. cond
	$\hat{L}u = f$ admits a solution $u = \hat{G}f$ for arbitrary functions f > this implies that $\mathcal{R}_{\hat{L}} = \mathcal{D}_{\hat{G}}$, the range of the diff. operator ^L is dense in L²([a,b]) > ^L† must have a trivial kernel and be invertible:
	$(\hat{L}^{\dagger})^{-1} = \hat{G}^{\dagger}$, where \hat{G}^{\dagger} also an integral operator with kernel $g^{\dagger}(x,y) = \overline{g(y,x)}$.
	>> holds for any boundary conditions

	8.4 Sturm-Liouville eigenvalue problems
operator eigenvalue problems	Consider the eigenvalue problem for a diff. operator: finding the solutions of
	for particular $\lambda \in \mathbb{C}$ $(\hat{L}u)(x) = \lambda u(x), \qquad B_i[u] = 0, i = 1,, m$
	> the eigenvectors u(x) are called eigenfunctions
	^L-λl is also a pth-order diff. operator
	> it has exactly p linearly independent solutions, if there are no boundary conditions ie: there are at most p linearly independent solutions, if there are boundary cond.
8.4.1 regular Sturm-Liouville pro	L in the state of
def: regular Strum-Liouville	
problem	$(\hat{L}u)(x) = -\frac{1}{w(x)}\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}u}{\mathrm{d}x}(x)\right) + \frac{q(x)}{w(x)}u(x) = \lambda u(x)$
	or equivalently
	$-\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}u}{\mathrm{d}x}(x)\right) + q(x)u(x) = \lambda w(x)u(x).$
	with the conditions:
	• The problem is studied on a compact interval $I = [a, b]$
	• The functions $w(x)$, $p(x)$, $p'(x)$ and $q(x)$ are real and continuous, with in particular $w(x) > 0$ and $p(x) > 0$ for all $x \in [a, b]$
	• We use separated boundary conditions $B_1[u] = \alpha_1 u(a) + \alpha_2 u'(a) = 0$ and $B_2[u] = \beta_1 u(b) + \beta_2 u'(b) = 0$.
	>> because of the conditions, ^L is self-adjoint
th: properties of regular S-L	For the regular S-L eigenvalue problem, the following properties hold:
problem	1. The (point) spectrum of \hat{L} corresponds to an infinite sequence of real numbers $\lambda_0 < \lambda_1 < \lambda_2 < \ldots < \lambda_n < \ldots$, with some finite lower bound $-\infty < M < \lambda_0$ and $\lim_{n\to\infty} \lambda_n = +\infty$
	2. For every eigenvalue λ_n , there is exactly one (linearly independent) eigenvector $u_n(x)$.
	3. Eigenvectors corresponding to different eigenvalues are orthogonal with respect to the weighted inner product of $L_w^2([a,b])$.
	4. The eigenvectors $\{u_n, n \in \mathbb{N}\}$ form a complete orthonormal basis.
th: convergence of u(x)	For functions $u \in D_{\cap L}$, ie: u is continuous, differentiable and satisfies boundary cond.
	> then the convergence of $u(x) = \sum_{n=0}^{+\infty} \langle u_n, u \rangle_w u_n(x)$ is uniform.
spectral decomposition of ^L	the diff. operator ^L admits a spectral decomposition of the form:
	$f(\hat{L}) = \sum_{n=0}^{+\infty} f(\lambda_n) \hat{P}_n$
	or thus
	$(f(\hat{L})u)(x) = \sum_{n=0}^{+\infty} f(\lambda_n)u_n(x) \int_a^b w(y)u_n(y)u(y) dy$
	which is an integral operator with kernel $l_f(x,y) = \sum_{n=0}^{+\infty} f(\lambda_n) u_n(x) w(y) u_n(y)$
th: oscillation	the eigenfunction u _n of the regular S-L eigenvalue problem has exactly n roots in [a,b]

8.4.2 Rayleigh-Ritz method	
th: variation principle	For a regular S-L operator For a general function u∈D _{^L} (thus in particular satisfying the boundary cond.) > it holds that the Rayleigh quotient:
	$\mathcal{R}[u] = \frac{\langle u, \hat{L}u \rangle_w}{\langle u, u \rangle_w}$
	satisfies $\mathcal{R}[u] \geq \lambda_0$, with the inequality becoming an equality if $u \sim u_0$.
Rayleigh-Ritz method	the previous is used to find approximations of the lowest eigenvalue and its eigenvector > for example: restrict f to some finite-dimensional subspace V, spanned by $\{e_k; k=1,,m\}$ ie: $u = \sum_{k=1}^m c^k e_k.$
	best approximation to u_0 is the vector u that minimises $ u-u_0 $ > corresponds to orthogonal projection of u_0 onto V > typically we don't know V > alternative: Rayleigh quotient
	We know $R[u] \ge \lambda_0$, try to minimise the value of $R[u]$ for $u \in V$ > the resulting $\lambda^* = R[u^*]$ is an approximation of λ^* > corresponding minimiser u^* is an approximation to u_0^*
	We can now express R[u] as:
	$\mathcal{R}[u] = rac{c^i A_{ij} c^j}{c^i B_{ij} c^j}$
	with
	$A_{ij} = \langle e_i, \hat{L}e_j \rangle$, $B_{ij} = \langle e_i, e_j \rangle$.
	since everything is real, we find $A_{ij} = A_{ji}$ and $B_{ij} = B_{ji}$ ie: A and B are real > minimising R[u] with respect to the coeff. c^{i} leads to the condition:
	$A_{ij}c^j - \mathcal{R}[f]B_{ij}c^j = 0 \implies Ac = \lambda^*Bc.$
	which is a generalised eigenvalue problem > eigenvalue λ^* corresponds to the approximation of true eigenvalue λ_0 > eigenvector approximates eigenvector f^*
	Lastly if {e _k ;k=1,,m} is an orthogonal set, then B=I > reduces to regular eigenvalue problem > A corresponds to restriction of ^L to V
quality of Rayleigh-Ritz method	An estimate for the quality of the approximation is obtained by assessing: $\ \hat{L}u^* - \hat{\lambda}^*u^*\ .$