CausalBench: Causal Learning Research Streamlined Understanding Causality

Causality

Ahmet Kapkiç Pratanu Mandal Abhinav Gorantla Dr. Kasim S. Candan

CausalBench

tutorial.causalbench.org

Benchmarking

What is Causality?

Causality is the relationship between an action, event, or state (the cause) and a resulting event or state (the effect).

It seeks to answer the question: "Why?"

For example:

- Is rainfall the cause of river flooding?
- What's the effect of a drug on a patient's health
- How temperature affects crop yields?

Hook: What does causality produce?

Causality: Correlation is not Causation

https://tylervigen.com/spurious/correlation/5920_per-capita-consumption-of-margarine_correlates-with_the-divorce-rate-in-maine

Ice cream causes drowning?

Drowning Deaths and Ice Cream Consumption by Month in Spain (2018)

Statista (2020)

Ice cream causes drowning?

- A common cause: summer
- Summer is a confounding factor.
- Observational data can lead to wrong conclusions.
- But how can we learn causality from data?

Causality: How can we learn causality

*Post hoc ergo propter hoc

Intervention on potential cause

Observing without potential cause

Causality: the Simpson Paradox

*Same data, different understanding

Scenario 1: "Strong"/"Weak" as Precondition

- If Strong and Weak reflect baseline susceptibility.
- Use grouped data to examine heterogeneous effects across susceptibility levels.

Scenario 2: "Strong"/"Weak" as Post-Treatment Outcomes

- If Strong and Weak reflect response to the vaccine, they occur after treatment.
- Use aggregated data to estimate the overall causal effect.

	Full Population N = 52		
	Success	Failure	Success Rate
Treatment	20	20	50%
Control	6	6	50%
	Weak, N = 20		
Treatment	8	5	38%
Control	4	3	43%
	Strong, N = 32		
Treatment	12	15	56%
Control	2	3	60%

Table: Treatment is the vaccine, Success means not getting the disease. "Strong" and "Weak" refer to patient health conditions.

Causality: Causal Models

- L. DAG
- 2. Potential Outcome
- 3. SCM or functional causal models (FCM)

Hook: How to explain a cause-effect knowledge to a computer?

Representation: Causal Knowledge - Models

How do we represent causal knowledge?

- Directional Acyclic Graphs (DAGs)
 - Variates in the Causal Model are represented as nodes in the DAG.
 - Causal Effects are represented by a directed edge from the node that causes the effect to the node that is affected by the cause.
- Structural Causal Matrices (SCM)[1]
 - Causal Model is represented as a set of equations.
 - A variate in a causal model is represented as a function of its parents and external, unobserved noise.
 - The causal model represented as a DAG on this slide can be represented as an SCM in the following manner:
 - \blacksquare B = 2*A + Ub
 - C = 1*A + Uc
 - Where, Ub and Uc are external unobserved noise on variates B and C.

^[1] Pearl, J. (2009). Causality. Cambridge university press.

Representation: Causal Knowledge - Models

How do we represent a DAG or an SCM in a way a computer can understand?

- Adjacency matrices is one of the common ways a DAG and (linear) SCMs can be encoded.
- The DAG used as an example here can be represented as an adjacency matrix in the following manner:

$$\begin{bmatrix} 0 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Representation: Causal Knowledge - Models

- Structural Causal Matrices (SCM)[1]
 - Causal Model is represented as a set of equations.
 - A variate in a causal model is represented as a function of its parents and external, unobserved noise.
 - The causal model represented as a DAG on this slide can be represented as an SCM in the following manner:
 - B = 2*A + Ub
 - C = 1*A + Uc
 - Where, Ub and Uc are external unobserved noise on variates B and C.

What Is Temporal Causal Discovery?

- Extracting cause-effect links from time-ordered data
- Causes must precede their effects

Core Idea:

Learn a directed graph of lagged edges where past values of X help predicting current Y

$$X_{t-T} \longrightarrow Y_t$$

Key Difference from Static Causality:

Captures time delays and feedback loops

Not just instantaneous associations

Three Types of Temporal Causal Graphs

(a) Full time causal graph

- Complete graph of dynamic system
- Usually difficult to discover due to the single observation for each series at each time point

Three Types of Temporal Causal Graphs

(b) Window causal graph

- Assumes time-homogenous causal structure
- The size of window causal graph represents the maximum lag in the full-time causal graph

Three Types of Temporal Causal Graphs

(c) Summary causal graph

- Each individual time-series variable is merged into a single node to create the summary causal graph.
- Represents the causal relations among the time series without displaying any time lags.

Models: Granger Causality (VAR)

- Assumption of linear time-series dynamics
- A time series X Granger-causes Y if past values of X provide unique, significant information about future values of Y
- Learns predictive causality, not necessarily true mechanistic causation.

Hyperparameters

- Maximum lag order: Defines how many past steps will be considered
- Significance level: Threshold to decide causal vs. non-causal

Models: PCMCI*

- Constraint-Based method
- Combines linear or nonlinear conditional independence tests to discover the window causal graph
- Initializes by constructing a partially connected graph, where all pair of nodes (x_i^{t-k}, x_j^t) are directed as $x_i^{t-k} \rightarrow x_i^t$ if k > 0
- Removes all unnecessary edges based on conditional independence

Hyperparameters

Models: Dynamic Bayesian Networks

- Score-Based method
- Probabilistically scores multiple models and output the most probable one

End Deck 1

Questions?

CausalBench: Causal Learning Research Streamlined Understanding CausalBench

Causality

Ahmet Kapkiç Pratanu Mandal Abhinav Gorantla Dr. Kasim S. Candan

CausalBench

tutorial.causalbench.org

Benchmarking

Introduction: CausalBench

- CausalBench is a benchmarking platform for Causal Learning research.
- The goals of **CausalBench** are:
 - Facilitating collaboration between researchers in sharing their datasets, models and metrics.
 - Enabling reproducibility of experiments.
- CausalBench allows researchers to share and publish their experimental setups and results.

Introduction: CausalBench

- Transparent experiment results. All public experiment results are published to Zenodo.
- Causal Analysis in CausalBench Analyzes experiment results to determine the causal relationship between experiment parameters and results.
- Causal Recommendation in CausalBench Causal Analysis results are used to recommend new experiment settings.

Components of CausalBench

docs.causalbench.org

- CausalBench contains three components:
 - Python Package
 - The Web Server: Backend + Frontend
- The python package handles the process of benchmarking.
- The web backend receives the results from the python package and publishes it to zenodo.
- The web frontend provides users with a GUI to browse benchmark runs, datasets, models, metrics and contexts already published to <u>causalbench.org</u>.

Importance of Proper Benchmarking

- It is important to properly document the experiment and hardware setup when presenting results in a technical/research document.
- Documenting the software and hardware setup makes it easier for the readers of the technical/research document to interpret the results.
- Proper documentation of experimental setup also ensures reproducibility of experiments.

Importance of Profiling

- CausalBench automates this process of documenting the hardware and software configuration.
- Such precise benchmarking is crucial also because it is difficult to compare results from different researchers without knowing the complete context in which the experiment was performed.
- Profiling experiments gives additional insights to the researcher on how their algorithm impacts hardware usage (like memory and disk).

CausalBench: Modules

CausalBench: Modules (Dataset)

Config file:

- Metadata name, description, and URL
- Names and metadata of data files
- Specifies structure
 - Number of rows
 - Columns number, name, data type, description
 - Index time, space, etc.

Data file:

- Tabular data
- Data formats
 - Spatio-temporal Data
 - Spatio-temporal Graph

CausalBench: Modules (Dataset) - Data Formats

Spatio-temporal Data:

Tabular format

CausalBench: Modules (Dataset) - Data Formats

Spatio-temporal Graph:

Tabular format

CausalBench: Modules (Model)

Config file:

- Metadata name, description, and URL
- Name and metadata of python file
- Task Causal Discovery, Causal Inference, etc.
- Hyperparameters data type, description, and default value

Python file:

- Function to take accept inputs and provide outputs
 - Comply with function signature specified by task

CausalBench: Modules (Metric)

Config file:

- Metadata name, description, and URL
- Name and metadata of python file
- Task Causal Discovery, Causal Inference, etc.
- Hyperparameters data type, description, and default value

Python file:

- Function to take accept inputs and provide outputs
 - Comply with function signature specified by task

Same structure as model

CausalBench: Modules (Benchmark Context)

Config file:

- Metadata name, description, and URL
- Task Causal Discovery, Causal Inference, etc.
- Datasets
 - Dataset IDs and versions
 - Data files to task mapping
- Models
 - Model IDs and versions
 - Model hyperparameters (if not using default values)
- Metrics
 - Model IDs and versions
 - Metric hyperparameters (if not using default values)

CausalBench: Modules (Benchmark Run)

Config file:

- Reference to Benchmark Context
 - Benchmark Context ID and version
- Hardware Information Operating System, CPU, GPU, Memory, Disk
- Scenarios
 - Consists of 1 dataset, 1 model, and multiple metrics
 - Dataset
 - ID and version
 - Model and Metrics
 - IDs and versions
 - Output
 - Profiling information –
 Execution time,
 CPU used, GPU used, etc.

CausalBench Benchmarking Flow

CausalBench Package Setup

- Pre Requisites: Python (>= 3.10) and pip.
- Install CausalBench python package using "pip install causalbench-asu".
- To use the CausalBench package, you need a CausalBench account.
- On first use, CausalBench package will prompt user to input their credentials.

```
WARNING:root:Failed to initialize 'pynvml' library: NVML Shared Library Not Found WARNING:root:Failed to import 'pyadl' library: name 'struct_AdapterInfo' is not defined Credentials required Email: user@gmail.com Password:
```

CausalBench: Causal Learning Research Streamlined Hands-On Benchmarking

Causality

Ahmet Kapkiç Pratanu Mandal Abhinav Gorantla Dr. Kasim S. Candan

CausalBench

tutorial.causalbench.org

Benchmarking

CausalBench Hands-On: Browsing Repositories

- 1. Repository selector
- 2. Search Function
- 3. Filter/Sort
- 4. Detail overview
- 5. On-demand details
- 6. Download/Cite

CausalBench Hands-On: Dataset Detail Page

- 1. Dataset Name
- 2. Dataset ID
- 3. Dataset Version
- 4. Dataset Visibility

CausalBench Hands-On: Building a Context

```
dataset1: Dataset = Dataset(module_id=1, version=1)
```

CausalBench Hands-On: Browsing Benchmarks

- 1. Search function
- 2. Filter/Sort
- 3. Result overview
- 4. On-demand details
- Changing result view
- 6. Download/Cite

Thank you!

Any questions?

CausalBench

(Product)

KDD Tutorial

(Usage)

Docs/Github

(Contribution)

Further questions? Feedbacks? Want to use CausalBench? support@causalbench.org / akapkic@asu.edu