\mathfrak{A}_n est simple

Leçons: 103, 104, 105, 108

Théorème 1

Le groupe \mathfrak{A}_n est simple.

Démonstration. Étape 1 : cas n = 5.

Dans \mathfrak{A}_5 , les types d'éléments suivants forment des classes de conjugaison distinctes :

- l'identité;
- les 3-cycles : il y en a $\frac{5 \times 4 \times 3}{3} = 20$. En effet, \mathfrak{A}_5 est 3-transitif : si (abc) et (a'b'c') sont deux 3-cycles, il existe $\sigma \in \mathfrak{A}_5$ tel que $\sigma(a) = a', \sigma(b) = b'$ et $\sigma(c) = c'$ donc $\sigma(abc)\sigma^{-1} = (a'b'c')$;
- les doubles transpositions : une double transposition de \mathfrak{A}_5 est déterminée par le choix de l'élément x laissé fixe (5 possibilités) et par celui de la double transposition restreinte à $[1,5] \setminus \{x\}$ (3 possibilités), donc il y en a 15. Elles sont deux à deux conjuguées car si $\tau = (ab)(cd)(e)$ et $\tau' = (a'b')(c'd')(e')$, il existe par 3-transitivité $\sigma \in \mathfrak{A}_5$ envoyant (c,d,e) sur (c',d',e'). Par conséquent, elle envoyant également l'ensemble $\{a,b\}$ sur $\{a',b'\}$ et $\sigma\tau\sigma^{-1}=\tau'$.

Pour des raisons d'ordre, les classes sont bien distinctes. Par ailleurs, il y a $\frac{5 \times 4 \times 3 \times 2}{5}$ = 24 5-cycles dans \mathfrak{A}_5 , et cela achève le catalogue de ses éléments.

Soit H un sous-groupe distingué non trivial de \mathfrak{A}_5 . Par le théorème de Lagrange, |H| divise 60. De plus, si H contient un 3-cycle (resp. une double transposition), il les contient tous. Il en va de même pour les 5-cycles car si H contient un élément d'ordre 5, il contient le 5-Sylow engendré par cet élément, donc comme les 5-Sylow sont deux à deux conjugués (théorème de Sylow), il contient tous les 5-Sylow donc tous les éléments d'ordre 5.

Étant donné que ni 24+15+1=40, ni 24+20+1=45, ni 15+20+1=36 ne divisent 60, il est impossible que H ne contienne que deux catégories d'éléments (et pour les mêmes raisons, il est exclu qu'il en contienne une seule). Donc il les contient tous : $H=\mathfrak{A}_5$.

Étape 2 : cas général, en se ramenant à l'étape 1.

Soit n > 5, E = [1, n], H un sous-groupe distingué non trivial de \mathfrak{A}_n . Soit $\sigma \in H$ distinct de l'identité. On peut donc fixer $a \in E$ tel que $b = \sigma(a) \neq a$. Soit $c \notin \{a, b, \sigma(b)\}$ et $\tau = (acb)$. On a $\tau^{-1} = (abc)$.

Introduisons le commutateur $\rho = \tau \sigma \tau^{-1} \sigma^{-1} = (\tau \sigma \tau^{-1}) \sigma^{-1} \in H$. On a

$$\rho = (acb)(\sigma(a)\sigma(b)\sigma(c)) = (acb)(b\sigma(b)\sigma(c))$$

donc ρ laisse fixes au moins n-5 éléments : quitte à ajouter des éléments à l'ensemble $F = \{a, b, c, \sigma(b), \sigma(c)\}$, on peut supposer que c'est exactement le cas.

Soit
$$\varphi: \mathfrak{A}(F) \longrightarrow \mathfrak{A}(E)$$
 où $\overline{u}_{|F} = u$ et $\overline{u}_{|E \setminus F} = \mathrm{id}_{E \setminus F}$. On note $H_0 = \varphi^{-1}(F)$, c'est un $u \longmapsto \overline{u}$

sous-groupe distingué non trivial de \mathfrak{A}_5 car $\rho_{|F} \in H_0$, donc selon l'étape 1, $H_0 = \mathfrak{A}_5$.

En particulier, si u est un cycle d'ordre 3 de $\mathfrak{A}(F)$, alors $u \in H_0$ donc $\overline{u} \in H$ donc comme les 3-cycles sont deux à deux conjugués dans \mathfrak{A}_n (voir étape 1), H contient tous les 3-cycles donc $H = \mathfrak{A}_n$ car les 3-cycles engendrent \mathfrak{A}_n .

- **Remarque.** S'il reste un peu de temps, on peut expliquer pourquoi les 3-cycles engendrent \mathfrak{A}_n (décomposer en produit pair de transpositions de la forme (1i) et regrouper deux à deux).
 - \mathfrak{A}_4 n'est pas simple car $\langle (12), (34) \rangle$ est un sous-groupe distingué d'ordre 4.

Référence: Daniel PERRIN (1996). Cours d'algèbre. Ellipses, pp. 28-30.