1

NCERT-Analog-11.15-6

EE22BTECH11004 - Allu lohith

- 1) A bat emits ultrasonic sound of frequency 1000kHz in air. If the sound meets a water surface, what is the wavelength of
 - (t)he reflected sound
 - (b) the transmitted sound?

Speed of sound in air is $340ms^{-1}$ and in water is $1486ms^{-1}$.

Soln: As we know that the frequency of sound does not change with medium, So the frequency in water is equal to in air.

As,

wavelength
$$(\lambda)$$
 · frequency (f) = speed (v) (1)

Parameter	Description	Value	Formulae
v	Frequency of	1000 <i>KHz</i>	
	sound		
v_a	Speed of sound	$340ms^{-1}$	
	in air		
v_w	Speed of sound	$1486ms^{-1}$	
	in water		
λ_a	Wavelength of		v_a/f
	sound in air		
λ_w	Wavelength of		v_w/f
	sound in water		

TABLE 1
Parameters

So,

$$\lambda_w = v_w / f \tag{2}$$

$$\lambda_w = 1486/1000KHz$$
 (3)

$$\lambda_w = 1.486mm \tag{4}$$

And similarly,

$$\lambda_a = v_a / f \tag{5}$$

$$\lambda_a = 340/1000KHz \tag{6}$$

$$\lambda_a = 0.34mm \tag{7}$$

The general equation of a sound wave is

$$y(t) = A\sin(\omega t - kx) \tag{8}$$

Parameter	Description	Formula	value
λ_a	Wave length	v_a/f	0.34mm
	of the reflected		
	sound		
λ_w	Wave length	v_w/f	1.486mm
	of the reflected		
	sound		

TABLE 1
Results

where

$$\omega = 2\pi f \tag{9}$$

$$A = Amplitude$$
 (10)

$$k = \frac{\lambda}{2\pi} \tag{11}$$

So angular frequency = $2\pi f$

$$\omega = 2\pi f \tag{12}$$

$$\omega = 2 \cdot 3.14 \cdot 10^6 \tag{13}$$

$$\omega = 6.28 \cdot 10^6 \tag{14}$$

When y(t) incident sound wave hits the water, it undergoes transmission into the medium while concurrently experiencing reflection at the air-water interface, leading to a combination of transmitted and reflected waves.

The value of wave number in air $(K_a) = \frac{\lambda_a}{2\pi}$

$$K_a = \left(\frac{0.34 \times 10^{-3}}{2 \times 3.14}\right) \tag{15}$$

$$K_a = 54 \times 10^{-6} \, m^{-1} \tag{16}$$

The value of wave number in water $(K_w) = \frac{\lambda_w}{2\pi}$

$$K_w = \left(\frac{1.486 \times 10^{-3}}{2 \times 3.14}\right) \tag{17}$$

$$K_w = 236 \times 10^{-6} \, m^{-1} \tag{18}$$

Equation of sound wave in air is

$$y(t) = A\sin(6.28 \times 10^6 t - 54 \times 10^{-6} x) \quad (19)$$

Equation of sound wave in water is

$$y(t) = A\sin(6.28^6t - 236 \times 10^{-6}x)$$
 (20)