(a) Part A

Let $a_1 = a \mod n$, $b_1 = b \mod n$, then $a = k_1 \cdot n + a_1$ and $b = k_2 \cdot n + b_1$, where k_1 and k_2 are integer.

Let $C = (a + b) \mod n$, then there is an integer k_3 , st. $(a + b) = k_3 \cdot n + C$

LHS = $a_1 + b_1 = (a - k_1 \cdot n) + (b - k_2 \cdot n) = (a + b) - (k_1 + k_2) \cdot n$

 $RHS = (a+b) - k_3 \cdot n.$

Since k_1, k_2, k_3 is arbitrary integers, so we can select $k_1 + k_2 = k_3$, then LHS = RHS.

(b) Part B

Let $a_1 = a \mod n$, $b_1 = b \mod n$, then $a = k_1 \cdot n + a_1$ and $b = k_2 \cdot n + b_1$, where k_1 and k_2 are integer.

Let $C = (a \cdot b) \mod n$, then there is an integer k_3 , st. $(a \cdot b) = k_3 \cdot n + C$

LHS = $a_1 \cdot b_1 = (a - k_1 \cdot n) \cdot (b - k_2 \cdot n) = a \cdot b - (b \cdot k_1 + a \cdot k_2 - k_1 \cdot k_2 \cdot n) \cdot n$

 $RHS = (a \cdot b) - k_3 \cdot n$

Because k_1, k_2, k_3 are arbitrary integer, we can select $k_3 = (b \cdot k_1 + a \cdot k_2 - k_1 \cdot k_2 \cdot n)$, then LHS = RHS.

(c) Part C

Let P(Y) be the probability Bob eat yellow, and P(O) be the one Bob eat other. We have

$$0.2 \cdot P(Y) + 0.8 \cdot P(O) = 0.85$$

with constrains: $0 \le P(Y) \le 1$ and $0 \le P(O) \le 1$ So, $P(Y) = 4.25 - 4 \cdot P(O)$. Setting P(O) = 1, P(Y) = 0.25, Setting P(O) = 0, P(Y) = 4.25, but with upper bond of 1. Therefore,

$$0.25 \le P(Y) \le 1$$

(a) Part A

Define scheme (M, K, Gen, Enc, Dec):

 $M = \{0,1\}^n$, $K = \{0,1\}^n$ and cipher-text $C = \{0,1\}^n$, with m_i denotes i-th character of M, k_i denotes i-th character of K, and c_i denotes i-th character of C.

For each character, we have $c_{10\cdot i} = m_i \oplus k_i$, followed by $c_{(10\cdot i)+j} = j \oplus k_i$ for j from 1 to 9

This is perfect-secure encryption scheme because any message pair (m_1, m_2) with $K \leftarrow Gen$ with either message goes to given cipher-text is same. (XOR is perfect-secure with one-time pad, and this key space is 10 times the message space even through 90 percentage is useless.

(b) Part B

By definition, perfect secrecy with tuple (M, K, Gen, Enc, Dec), there is

$$Pr[k \leftarrow Gen : Enck(m_1) = c] = Pr[k \leftarrow Gen : Enck(m_2) = c].$$

Which means encrypted message cannot leak any information of original message, however, it reveals.

proof: A schema is perfect secrecy if and only if it is Shannon secrecy, which indicates $Pr[m=m'|Enc_k(m)=c]=Pr[m=m']$. However, by revealing 10% of information, some message m_i has $Pr[m=m_i]=2^{-0.9 \cdot n}$, while other message m_j has $Pr[m=m_j]=0$, which contradict the assumption, therefore, it is not Shannon secrecy, and thus not perfect secrecy.

(a) Part A

A $schema_1$ (M, K, Gen, Enc, Dec), with one-time pad key K to encrypt two messages m_1, m_2 , with $e_1 = Enc(K, m_1), e_2 = Enc(K, m_2)$, and a $scheme_2$ (M', K', Gen, Enc, Dec) with given distribution D over M' and K', and assume we have attacker A can break scheme2.

For e_1 and e_2 , since $e_1 = m_1 \oplus k$ and $e_2 = m_1 \oplus k$. we can do operation according to Enc (like XOR) to eliminate key K, $e_1 \oplus e_2 = m_1 \oplus m_2$. Now, our new message is m_1 and new key is m_2 with encrypted message is $e_1 \oplus e_2$, with both m_1 and m_2 comes from distribution D. We then put this encrypted message into the black-box ($scheme_2$).

I will show the diagram in the next page.

(b) Part B

A $schema_1$ (M, K, Gen, Enc, Dec), with one-time pad key K to encrypt two messages m_1, m_2 , with $e_1 = Enc(K, m_1), e_2 = Enc(K, m_2)$, and a $scheme_2$ (M', K', Gen, Enc, Dec) with given distribution D over M' and K', and assume we have attacker A can break scheme1.

 $e_1 = m_1 \oplus K$. First, randomly select message m' from distribution D and μ from uniform distribution. Then we construct cipher-text

$$c'_1 = c_1 \oplus \mu = m_1 \oplus K \oplus \mu$$
$$c'_2 = m'_1 \oplus c_1 \oplus \mu = m'_1 \oplus m_1 \oplus K \oplus \mu$$

Because μ is uniformly random selected, then $K \oplus \mu$ is in uniformly random distribution, and m'_1 is selected from distribution D, and thus $m'_1 \oplus m_1$ is in distribution D. We can re-write cipher-text c_1 and c_2 in the format $c_1 = m_1 \oplus K'$ and $c_2 = m'_1 \oplus K'$, where m_1 and m'_1 are selected from distribution D, and key K' is in uniformly random distribution. Then feed cipher-text c_1 and c_2 in to the black-box (attacker A)

- (a) Part A See HW1-gwriter-part1-gwriter.py
- (b) Part B Solution shows in part2 directory