

Ver mis op

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

7CR

Rocio

pony

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Geometría III

Segundo Curso del Grado en Matemáticas, Universidad de Granada Convocatoria Ordinaria

9 de febrero de 2017

Ejercicio 1.- Construye explícitamente una aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(1,0,2) = (0,0,2), f(1,1,1) = (1,1,0), f(1,2,0) = (2,2,-2) y f(0,0,0) = (1,1,-2).

Ejercicio 2.- En el espacio euclídeo usual \mathbb{R}^3 , se considera el plano Π que pasa por los puntos $p_0=(1,2,1)$, $p_1=(1,-1,1)$ y $p_2=(2,3,0)$. Sea f la simetría de \mathbb{R}^3 respecto de Π compuesta con la traslación de vector v=(-1,2,1). Calcula la imagen por f de la recta

$$R = (1, 1, -2) + L\{(0, 1, 1)\}.$$

Ejercicio 3.- Enuncia y demuestra el Teorema de la Recta de Euler.

Ejercicio 4.- En el espacio afín \mathbb{R}^3 , se considera el cilindro parabólico $Q_1 = \{(x,y,z) \in \mathbb{R}^3 : x^2 - 2z = 0\}$ y el cilindro elíptico $Q_2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 - 2z = 0\}$. Demuestra que no existe ninguna aplicación afín biyectiva $g: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $g(Q_1) = Q_2$.

Ejercicio 5.- Sean V y W dos espacios vectoriales finitamente generados. Se consideran los correspondientes espacios proyectivos $\mathcal{P}(V)$ y $\mathcal{P}(W)$. Demuestra que existe una aplicación proyectiva biyectiva $g: \mathcal{P}(V) \to \mathcal{P}(W)$ si, y sólo si, $\dim \mathcal{P}(V) = \dim \mathcal{P}(W)$.

Duración: 3 horas y media.

Los estudiantes que se presenten a toda la asignatura realizarán los ejercicios 1, 2, 4 y 5. Los estudiantes que se presenten solamente a la segunda parte realizarán los ejercicios 3, 4, y 5. Todos los ejercicios puntuan igual.

