Exploratory Analysis of NOAA Weather Data

Benj, Grace and Mark

Outline

Introduction

Dataset

Data Cleaning

Variance

NA Replacement

Clustering

Conclusion

Dataset

Dataset

Daily temperature (°C) and amount of precipitation (mm)

88 weather stations across the Philippines

January 1, 1960 to June 21, 2015

20261 rows and 89 columns

Longitude and latitude of the stations

Dataset

National Oceanic and Atmospheric Administration's (NOAA) Integrated Surface Data (ISD)

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/

1901 to 2016

293 Countries

Data Cleaning

Data Cleaning

88 weather stations across the Philippines but reduced to 85 stations

- Baler + Baler Radar
- Basco + Basco Radar
- Davao + Davao Airport

Missing Values

There's a lot of missing (NA) values in the dataset probably caused by

- Station is not yet established
- Station experienced difficulties in reading data
- Etc

The following plots are:

- # of NAs over a period of time
- Distribution of NAs among the stations

A lot of missing data between 1966 to 1974

Stations with the most number of NAs

We limit the timeframe between 1990 to 2015

Data with missing values

Data with missing values with replaced with mean

Data with missing values with replaced with predictive mean matching

Visualizations

Temperature

January

February

March

April

May

June

July

August

September

October

November

December

Precipitation

Average Monthly Precipitation (mm)

January

Average Monthly Precipitation (mm)

February

Average Monthly Precipitation (mm)

March

Average Monthly Precipitation (mm)

April

Average Monthly Precipitation (mm)

May

Average Monthly Precipitation (mm)

June

Average Monthly Precipitation (mm)

July

Average Monthly Precipitation (mm)

August

Average Monthly Precipitation (mm)

September

Average Monthly Precipitation (mm)

October

Average Monthly Precipitation (mm)

November

Average Monthly Precipitation (mm)

December

Temperature Time Series

MANILA Temperature

MALAYBALAY Temperature

MALAYBALAY Temperature

BAGUIO Temperature

Change of temperature over the years

Precipitation Time Series

Temperature Correlation

Precipitation Correlation

Variogram

We want to find out if there's:

- Spatial continuity
- 2. Lag

Variogram

- variance vs distance
- variogram function from gstat
- 6000 samples

Variogram + fit.variogram

Fit.variogram

Fits the existing variogram to a model (e.g. gaussian, exponential)

Temperature (semi)variogram

Temperature (semi)variogram

Temperature (semi)variogram

Convergence error: gaussian, spherical and exponential models

Periodic model

Initial guess: no pattern or trend

- → Range indicates at which distance the variogram reaches the sill value (or where it levels off)
- \rightarrow Range = 0.00

Precipitation

Temperature Full Dataset

No convergence on available models

Cluster Analysis

Hierarchical Clustering

"Closeness" of the stations

Distance matrix (dist) + hierarchical clustering (hclust) + split to subtrees (cutree)

Temperature, Precipitation and Temperature + Precipitation

Temperature

Some observations...

- Baguio is furthest (Summer Capital)
- Cooler by 8 °C (19 °C)

Temperature

Some observations...

- WHY, Malaybalay?? (it rhymes)
 - 2nd to Baguio at 24 °C

"pleasant due to its altitude and the usual extreme heat of the tropical region is lacking"*

*http://www.bukidnon.gov.ph/home/index.php/about-bukidnon/general-info/climate

Temperature

cutree

3, 9, 15

Temperature with no NAs

Replaced the NAs with the mean

cutree

3, 9, 15

Precipitation

Precipitation with no NAs

Precipitation

Rain or no rain

Binary distance matrix

Rain (precipitation > 0) or no rain (precipitation = 0)

method="binary" in the dist function

Precipita

Cluster Dendrogram

Precipitation

3, 9, 15

Converted the precipitation to binary

Hclust + dist (complete distance measure) + cutree

3, 7, 12

15, 19, 22

Some observations...

- Eastern coast is "further" from the western coast
 - Bicol region and Quezon province
 - Samar and Leyte

Thank you