Parcours Datascientist: projet 8

AdaNet Méthode ensembliste appliquée aux réseaux DNN, CNN, RNN

François BANGUI

Adanet: theoritical frame

- Ensemble methods applied to N.N.
- Build an ensemble N.N from sub-networks
- Each sub-network is a weak learner

- Empirical Risk Minimization Principle
- Structural Risk Minimization Principle
- Complexity of family of classifiers

Deep Boosting (2014) extension

Vapnik-Chervonenkis / Dimension VC (1999)

Koltchinskii: Rademacher (2001)

Adanet: modeling complexity

- What is complexity?
 - Complex problem : number of informations to « describe » it
 - Complex model

 → Number of elements in model capturing information
 - For a N.N elements are:
 - Number of layers
 - · Number of units in each layer
 - · But also:
 - Number of type of layers in model
 -

- What are complexity issues?
 - Complex problem ⇒ Complex model
 - Low empirical error → Trained Dataset
 - Low generalization performance → Test Dataset

Adanet: building a « consistant » model

Adanet: Risk Minimization Principles

Empirical Risk Minimization Principle:

- Decrease empirical error when building model
- Decreasing such risk ⇒ Expectation of good Generalization, whatever ?

When can it be expected:

ERM decrease ⇒ Learning guarantee?

Consistancy of ERM:

- $\Re(f) \leq \widehat{\Re}(f,S) + C(F)$
- F: family of estimators, with: $f \in F$
- C: measures complexity of F

 $\Re(f)$: Generalization Error $\Re(f,S)$: Empirical Risk $f \in F$: learned function S: trained dataset

Structural Risk Minimization Principale

AdaNet: structural adaptative learning

Structural:

- h_i: jth Layer of network f
- w_i: mixture weights: matrix, vector or scalar

Cost function: adaptative learning

$$f(w,h) = \sum_{j}^{N} w_{j} h_{j} \underline{\hspace{1cm}}$$

•
$$f(w,h) = \sum_{j}^{N} w_{j}h_{j}$$

$$\Re(f) \leq \Re(f,S) + C(F)$$

$$\Re(f) \leq F_{t}(w,x_{i}) = \frac{1}{m} \sum_{i=1}^{m} \Phi(1-y_{i}.f_{t}(x_{i},w_{i})) + \sum_{j=1}^{N} \Gamma_{j} ||W_{j}||_{1}$$

*W*_i: mixture weights

 Γ_i : Rademacher complexity of f_i

Descent algorithm: block coordonates descent (boosting algorithms)

AdaNet: Algorithm weak learners (1)

AdaNet : Algorithm weak learners

AdaNet: Algorithm weak learners

AdaNet implementation

Images complexity: classification issues

- Backgrounds
- Topics confusion
- · High variance : colors, profiles, sizes...
- Multiple subjects per image

Dataset: 3 breeds

3 breeds

Train dataset: 400 images for 3 breeds Test dataset: 40 images for 3 breeds

Reference: VGG-16 pre-trained

Adanet : DNN performances

Adanet: complexity impact (DNN)

Dense_layers

DNN network

Dense layers: 12

Steps: 300

ADANET iterations: 10 EVALAccuracy: 34 %

Baseline: CNN

Adanet: CNN conv. layers

CNN: Adanet structure

NN structure : convolutional layers Rademacher regularization

RNN: Colored images serialization

RNN Baseline: Simple RNN cell

NN type	:	 RNN
Units in dense layer	:	 10
Number of layers	:	 1
Dropout rate	:	 0.0
Seed value	:	 42
Nb of classes (logit)):	 3
Weights initializer	:	 truncated_normal
Batch normalization	:	 True
Cell type	:	 RNN
Hidden units	:	 128
Stacked cells	:	 1
Time steps	:	 224

Time (sec) 86.21402406692505

RNN_EVAL_ACCURACY: 0.699999988079071

LOSS: 0.903887152671814

RNN Baseline: LSTM / 2 layers

	 . 10
•	
	 . 42
Nb of classes (logit)	
	 •
truncated_normal	_
Batch normalization	 . True
0.33	0.0=
Time steps	 . 224

Time (sec) 565.1023576259613

RNN_EVAL_ACCURACY: 0.6499999761581421

LOSS: 0.8784809112548828

RNN Baseline: GRU 2 layers

Units in dense layer Number of layers Dropout rate Seed value Nb of classes (logit) Weights initializer	:	
Cell type Hidden units Stacked cells	:	

Time (sec) 1384.7687520980835

RNN_EVAL_ACCURACY: 0.800000011920929

LOSS: 0.7223628759384155

MNIST dataset

```
00000000000000
3 3 3 3 3 3 3 3 3 3 3 3 3 3
      44444
 55555555555555
 66666666666
77777777777777
  8 8 8 8 8 8 8 8 8 8 8 8 8
9999999999999
```

Train dataset : 55 000 inputs Test dataset : 10 000 inputs

Classes: 10

Baseline: GRU & MNIST

	:	
	:	
Number of layers		2
	:	
Seed value	:	42
Nb of classes (logit)	:	10
Weights initializer	:	truncated_normal
Batch normalization	:	True
Learn mixture weights		True
Cell type	:	SGRU
Hidden units	:	128
Stacked cells	:	2
Time steps	:	28

Time (sec) 167 RNN_EVAL_ACCURACY: 0.94 LOSS: 0.21498049795627594

ADANET: GRU & MNIST

ADANET: architecture

NN type Features shape Adanet boosting iter. Adanet iter per boost Dropout rate Seed value Nb of classes (logit) Adanet regularization Weights initializer Batch normalization Learn mixture weights		RNN (28, 28) 40 7 0.0 42 10 1e-05 truncated_normal True True
	:	
	:	
Stacked cells	:	2
Time steps	:	28

Layers: 5 stacked GRU cells

Classes: 10

Conclusions

- Formulation allows flexible 'feed-forward' architectures
- Formulation allows increase number of units in layers as well
- Adapts complexes NN models to complex problems
- No prior selection of model complexity (number of layers, depth of tree,...)
- Apply to any kind of ensemble models (provide layers or logits)
- Candidates fine tuning :
 - Dropout inside candidates subnetworks
- CNN
 - Strategy over convolutional layers : C = (I-F+2P)/S +1
 - Strategy for increasing dense layers
- RNN
 - Strategy to be tuned
 - Requires more resources
- GAN networks
 - To be investigated