Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа <u>р3113</u>	К работе допущен	Студент ватан хатиб	Работа
выполнена			

Преподаватель: Максимов Владислав Алексеевич

Рабочий протокол и отчет по лабораторной работе №

Исследование распределения случайной величины	

1. Цель работы.

Цель работы это получить м информация из случайной величины

2. Задачи, решаемые при выполнении работы.

Сделать математический маятник

Измерить 50 раз

Анализирует результаты и заносить их в таблицы с помощью формулы Построить гистограмму с помощью таблицы которые заносил

3. Объект исследования.

Объект исследования это Распределение результатов измерения определённого промежутка времени пяти колебаний математического маятника.

4. Метод экспериментального исследования.

бросить гайку которые связаны с математикий маятник Остановить таймер

Многократное прямое измерение времени пяти колебаний математического маятника.

Заполнить результаты и анализирует их

5. Рабочие формулы и исходные данные.

cs Scanned with CamScanner

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер на смартфоне		T(max)= 8.1 секунд	0.001 c
2				
3				
4				

1. Схема установки (перечень схем, которые составляют Приложение 1).

1. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

1. Pes	зультаты	прямых изм	ерении и их о
	T(i)	T(i) - T(n)	(T(i)-T(n))^2
1	7.93	0.46	0.2116
2	7.5	0.03	0.0009
3	7.15	-0.32	0.1024
4	7.8	0.33	0.1089
5	7.31	-0.16	0.0256
6	8.11	0.64	0.4096
7	7.12	-0.35	0.1225
8	7.45	-0.02	0.0004
9	7.25	-0.22	0.0484
10	7.46	-0.01	0.0001
11	7.14	-0.33	0.1089
12	7.55	0.08	0.0064
13	7.2	-0.47	0.2209
14	8.1	0.63	0.3969
15	7.3	-0.17	0.0289
16	7.45	-0.02	0.0004
17	7.3	-0.17	0.0289
18	7.8	0.33	0.1089
19	7.8	0.33	0.1089
20	7.31	-0.16	0.0256
21	7.35	-0.12	0.0144
22	7.8	0.33	0.1089
23	8.12	0.65	0.4225
24	7.7	0.23	0.0529
25	7.39	-0.08	0.0064
26	7.6	0.13	0.0169
27	7.2	-0.27	0.0729
28	7.25	-0.22	0.0484
29	7.35	-0.12	0.0144
30	7	-0.47	0.2209
31	7.49	0.02	0.0004
32	7.6	0.13	0.0169
33	7.4	-0.07	0.0049
34	7.5	0.03	0.0009
35	7.61	0.14	0.0196
36	7.42	-0.05	0.0025
37	7.96	0.49	0.2401
38	8	0.53	0.2809
39	7.8	0.33	0.1089
40	7.21	-0.26	0.0676
41	7.42	-0.05	0.0025
42	7.25	-0.22	0.0484
43	7.14 7.34	-0.33	0.1089 0.0169
		-0.13	
45	7.42	-0.05 -0.47	0.0025 0.2209
46	/	-0.47	0.2209

4	47	7.36	-0.11	0.0121
4	48	7.25	-0.22	0.0484
4	49	7.16	-0.31	0.0961
	50	7.7	0.23	0.0529
			T(i)-	(T(i)-T(n))^2 =
		T(n)=7.47	T(n)=0.12	4.39

Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2: Данные для построения гистограммы

Границы интервалов, <i>с</i>	ΔN	$\frac{\Delta N}{N\Delta t}$, c^{-1}	t, c	ρ, c-1
7 5 7	7	0,63	711	0,65
7,225t £ < 7,44	14	1,27	7,33	1,2
7.446t £ < 7.66	16	1,45	7,55	1,28
7.66 \left \bullet \bu	7	0.63	7,77	0.8
7.88 \L +< 8.1	6	0.54	7,99	0.3

3. Расчет погрешностей измерений (для прямых и косвенных измерений).

	Интервал, с		ΔN	ΔN	P
	ОТ	до		N	
$\langle t \rangle_N \pm \sigma_N$	7,17	7,77	34	0,68	0.683
$\langle t \rangle_N \pm 2\sigma_N$	6.87	8,07	48	0.96	0,954
$\langle t \rangle_N \pm 3\sigma_N$			50	1	0.997

4. Графики (перечень графиков, которые составляют Приложение 2).

5. Окончательные результаты.

Как думаете, почему теоретическое значение t= 5.93 с не попало в найденный доверительный интервал? Вы не могли ошибиться с количеством периодов или длиной подвеса?

 $35\ c$ это была длиной подвеса первый рас ,я остановил его чтобы отвечать на вопрос о T

Я должен был остановит тоже длинной подвеса на второй рас и это 39.5 с, а когда я сделал экскремент я не знал сколка градусы для математически я должен использовать поэтому сделал 90 градус и получил этот результат Новый Т с помочь Точная формула периода это:

 $T = 2 \int_{\frac{\pi}{2}} \left(1 + \frac{\pi}{4} \sin^{2} \left(\frac{\pi}{2} \right) + 2 \cdot 3 \cdot 14 \int_{\frac{\pi}{2}} \frac{3\pi}{4} \cdot \left(1 + \frac{\pi}{4} \sin^{2} \frac{3\pi}{2} \right) \right)$ $T = 1 \cdot 14 \cdot 18$ $L = 5 \cdot T = 7 \cdot 09 \cdot C$

При какой длине подвеса период Т=7.47/5=1.494 с?

Можно ли на основе анализа рисунка утверждать, что распределение результатов близко к распределению Гаусса?

Можно на основе анализа рисунка (после исправлено) утверждать, что распределение результатов близко к распределению Гаусса

6. Выводы и анализ результатов работы.

Анализ результаты это что гайку остановить после (2.11 до 3.9 минут) в 32% разы эксперимент он остановился от (2.8 до 3 минут)

Выводы что мы можем найти результаты, из случайных величин и анализировать их и понимать как они работают с помощью Гаусс и его формул

7. Дополнительные задания.

- 1. Являются ли, по вашему мнению, случайными следующие физические величины: плотность алмаза при $20 \circ C$ напряжение сети сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением число молекул в 1см3 при нормальных условиях? Приведите другие примеры случайных и неслучайных физических величин.
- 2. Изучая распределение ЭДС партии электрических батареек, студент использовал цифровой вольтметр. После нескольких измерений получились такие результаты (в вольтах): 1,50; 1,49; 1,50; 1,49. Имеет ли смысл продолжать измерения? Что бы вы изменили в методике этого эксперимента?
- 3. При обработке результатов измерений емкости партии конденсаторов получено: $\langle C \rangle$ = 1,1 мкФ, σ = 0,1 мкФ. Если взять коробку со 100 конденсаторами из этой партии, то сколько срединих можно ожидать конденсаторов с емкостью меньше 1 мкФ? больше 1,3 мкФ?

- 8. Выполнение дополнительных заданий.
- 1.1 плотность алмаза при $20 \circ C$ не случайный
- 1.2 напряжение сети -случайный
- 1.3 сопротивление резистора, взятого наугад из партии с одним и тем же номинальным сопротивлением -случайный
- 1.4 число молекул в 1см3 при нормальных условиях -не случайный

другие примеры случайных:

Бросание игральных костей

Подбрасывание монеты

другие примеры неслучайных физических:

Гравитация

Скорость света

2. Нет , он должен попробовать другой вольтметр , и проверить результаты

$$P_{3a} - P_{2a} = P - 0.997 - 0.959 = 0.043$$
 $C(0.8, 1.4) ((0.9, 1.3)) ((0.8, 0.09)) 0.043 - 100 = 4.3$
 $C(1.3, 1.4) 0.043 + 0.043 - 100 = 4.3$
 $C(1.3, 1.4) 0.043 + 0.043 - 100 = 4.3$
 $C(0.9, 1)$

9. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание: 1. Пункты 1-13 Протокола-отчета обязательны для заполнения.

- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. Для построения графиков используют только миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.