Math 441: Num. Linear algebra and optimization.

Topics covered may include:

1) Introductory Issues

- a) Absolute and Relative error and precision issues
- b) Nested multiplication Horner's Method
- c) Taylor Series Review
- d) Truncated series error estimates

2) Computer Arithmetic

- a) Decimal and binary floating point representations
- b) IEEE single precisions
- c) Machine epsilon
- d) Floating point operations and loss of significance

3) Roots of Nonlinear Equations

- a) one dimension
 - i Bisection method
 - ii Newton's Method
 - iii Secant Method
- b) higher dimension
 - i Newton's Method
 - ii Secant Method

4) Solution of Linear systems

- a) Matrix Review
 - i matrix, vector notations
 - ii inner products
 - iii linear systems
 - iv matrix inverses
 - v solvability of systems
 - vi condition, illconditioned, residual
- b) Gaussian Elimination

- c) Special Systems
 - i tridiagonal systems
 - ii upper/lower triangular
 - iii banded systems

5) Linear systems: Alternate Solution techniques

- a) LU factorization
- b) Cholesky factorization
- c) Matrix norms, condition number
- d) Iterative techniques: Jacobi, Gauss-Seidel, SOR
- e) Conjugate Gradient Method
- f) Eigenvalue Theory
- g) Singular Value Decomposition
- h) Power Method

6) Data Smoothing and Approximation

- a) Least Squares Linear
- b) Least Squares Nonlinear
- c) Least Squares Orthogonal Basis Functions
- d) SVD and the Pseudo Inverse

7) Minimization of Functions

- a) One dimension (optional)
 - i Fibonacci Algorithm
 - ii Golden Search Algorithm
 - iii Quadratic Interpolation
- b) Multivariate Case
 - i Steepest Decent
 - ii Quasi-Newton