## 15.10

**Useful Information.** • The **Jacobian** for a tranformation T given by x = x(u, v) and y = y(u, v)

is

$$\frac{(x,y)}{(x,y)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \cdot \frac{\partial y}{\partial u}$$

•

$$\iint_R f(x,y) \ dA = \iint_S f(x(u,v),y(u,v)) \left| \frac{(u,v)}{(u,v)} \right| \ du \ dv$$

1. Let S be the square  $\{(u,v) : 0 \le u \le 1, 0 \le v \le 1\}$  and let T be the transformation

$$x = v, \ y = u(1 + v^2)$$

(a) Let  $L_1, L_2, L_3$ , and  $L_4$  denote the left, bottom, right, and top sides of S respectively.  $L_1$  is the line u = 0 and  $0 \le v \le 1$ . So on  $L_1$ , x = v and y = 0 with

$$L_1: y = 0, \text{ with } 0 < x < 1$$

Express the image of  $L_2$ ,  $L_3$ , and  $L_4$  similarly.

**Solution:** Along  $L2 \ v = 0$  and  $0 \le u \le 1$ , which gives

$$x = 0, \quad 0 \le y \le 1$$

Similiarly

$$L3: \quad y = 1 + x^2 \quad 0 \le x \le 1$$

$$L4: \quad x = 1 \quad 0 \le y \le 2$$

(b) Sketch the image of S under the transformation given.

Solution:





2. Repeat the above instructions for S the triangular region of the uv-plane with vertices (0,0), (1,1), and (0,1) with the transformation

$$x = u^2, y = v.$$

**Solution:** The lines bounding S are

 $L1: \quad u=0 \quad \Longrightarrow \quad x=0, \ 0 \leq y \leq 1$ 

 $L2: \quad v = 1 \quad \Longrightarrow \quad y = 1, \quad 0 \le x \le 1$   $L3: \quad v = u \quad \Longrightarrow \quad x = y^2, \quad 0 \le y \le 1$ 



3. Let R be the parallelogram with vertices (0,0),(4,3),(2,4),(-2,1). Let S be the square  $[0,1]\times[0,1]$ . Find a transformation that maps S onto R.

Suggestion: Experiment and try stuff. What points in S are sent to the corners of R?

Solution:

$$x = 4u - 2v, \quad y = 3u + v$$

4. Evaluate the integral

$$\iint_{R} e^{(x+y)/(x-y)} dA$$

where R is the trapezoidal region with vertices (1,0),(2,0),(0,-2),(0,-1).

(a) Since this is not easy as written, we want to do a change of variables. Based on the given function, we will try

$$u = x + y$$
,  $v = x - y$ .

Then we want to use the transformation T given by  $x = \frac{1}{2}(u+v)$  and y = ?

**Solution:** Solve for y by using the above and u - v = (x + y) - (x - y) = 2y to get

$$y = \frac{1}{2}(u - v).$$

(b) Setting u = x + y and v = x - y, what is the image of the trapezoidal region given?

**Solution:** 

| (x, y)  | (u,v)  |
|---------|--------|
| (1,0)   | (1,1)  |
| (2,0)   | (2, 2) |
| (0, -2) | (-2,2) |
| (0, -1) | (-1,1) |

With



(c) Evaluate the integral.

Solution:

$$\iint_{R} e^{(x+y)/(x-y)} dA = \iint_{S} e^{u/v} \frac{\partial(x,y)}{\partial(u,v)} dA$$

$$= \iint_{S} e^{u/v} \left( \left( \frac{1}{2} \right) \left( \frac{1}{2} \right) - \left( \frac{1}{2} \right) \left( -\frac{1}{2} \right) \right) dA$$

$$= \frac{1}{2} \int_{1}^{2} \int_{-v}^{v} e^{u/v} du dv$$

$$= \frac{1}{2} \int_{1}^{2} \left( v(e^{v/v} - e^{-v/v}) \right) dv$$

$$= \frac{e - e^{-1}}{2} \int_{1}^{2} v dv$$

$$= \frac{3}{4} \left( e - e^{-1} \right).$$

5. Evaluate  $\iint_R xy \ dA$  where R is the region in the first quadrant bounded by

$$y = x$$
,  $y = 3x$ ,  $xy = 1$ ,  $xy = 3$ .

using the transformation x = u/v, y = v.

(a) Complete the following, determining the image of each line or curve:

•

$$y = x \quad \mapsto \quad v^2 = u \quad \text{or} \quad v = \pm \sqrt{u}$$

•

$$y = 3x \quad \mapsto$$

Solution:

$$v = 3u/v \quad \Rightarrow \quad \frac{1}{3}v^2 = u \text{ or } v = \pm\sqrt{3u}$$

•

$$xy = 1 \quad \mapsto \quad u = 1$$

•

$$xy = 3 \quad \mapsto$$

**Solution:** 

$$\frac{u}{v} \cdot v = 3 \quad \Rightarrow \quad u = 3$$

(b) Rewrite the original double integral using the given transformation

$$\int_{a}^{b} \int_{c}^{d} f(u, v) \ dv \ du$$

What are the values of a, b, c, d and f(u, v)?

## Solution:

After the transformation we are integrating over the region bounded by the lines above, as seen below:

| 0010111 |     |     |     |     |
|---------|-----|-----|-----|-----|
|         | v   |     | u = | = 3 |
|         | u = | = 1 |     |     |
|         |     |     |     |     |
|         |     |     | `   |     |
|         | ,   |     |     | u'  |

Since

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \cdot \frac{\partial y}{\partial u} = \left(\frac{1}{v}\right)(1) - (0) = \frac{1}{v},$$

the integral is

$$\iint_{R} xy \ dA = \iint_{S} \left(\frac{u}{v}\right)(v) \left(\frac{\partial(x,y)}{\partial(u,v)}\right) \ dA$$
$$= \int_{1}^{3} \int_{\sqrt{u}}^{\sqrt{3u}} \frac{u}{v} \ dv \ du$$

(c) Evaluate the integral.

Solution: From above,

$$\int_{1}^{3} \int_{\sqrt{u}}^{\sqrt{3u}} \frac{u}{v} \, dv \, du = \int_{1}^{3} u \left( \ln(v) \Big|_{\sqrt{u}}^{\sqrt{3u}} \right) \, du$$

$$= \int_{1}^{3} u \left( \ln(\sqrt{3u}) - \ln(\sqrt{u}) \right) \, du$$

$$= \int_{1}^{3} u \left( \frac{1}{2} \ln(3) + \frac{1}{2} \ln(u) - \frac{1}{2} \ln(u) \right) \, du$$

$$= \frac{\ln(3)}{2} \left( \int_{1}^{3} u \, du \right)$$

$$= \frac{\ln(3)}{2} \left( \frac{9}{2} - \frac{1}{2} \right)$$

$$= 2 \ln(3).$$