BACKGROUND

MIDDLE SCHOOL STUDENTS

57.8% REPORTED INSUFFICIENT SLEEP

12% REPORTING SLEEPING FEWER THAN 6 HOURS A NIGHT

HIGH SCHOOL STUDENTS

72,7% REPORTED INSUFFICIENT SLEEP

20% REPORTING SLEEPING FEWER THAN 6 HOURS A NIGHT

DETECTING SLEEP BEHAVIOURS IN CLASS USING OPENCY PROGRAMMING

RESEARCH REPORT

ALETA JOSEPHINE LUKMAN/XII.1 - 02 FELISHA ANGELINE/XII.5 - 09

PROBLEM STATEMENT

- Students sleeping in class
- Disturbing teachers
- Concerning behavior
- Affecting their academics

Research Questions

- 1. Can the programme detect students sleeping in class?
- 2. Is the programme effective enough to detect students sleeping in class?

Purpose of Research

To create a program that will be able to help detect students that are asleep in class

BENEFIT OF RESERRCH

- To detect students sleeping in class
- Easier sleep detecting in class
- More attention towards students sleeping in class

BASIC THEORY

- Free software library that provides tools for computer vision and machine learning tasks
- Wide range of functions for image and video processing, such as detecting faces and objects

Python Programming Language

- Open-source programming language known for its simplicity and readability.
- Used for a variety of tasks, such as web development, data analysis, and scripting.
- Easy to use and integrate with other software

Machine Learning

Machine learning is a field of artificial intelligence where computers are trained to learn from data and make predictions or decisions without being explicitly programmed for specific tasks.

BASIC THEORY

Confusion Matrix

$$Accuracy = \frac{TP + TN}{Total}$$
 $Recall = \frac{TP}{TP + FN}$
 $Precision = \frac{TP}{TP + FP}$
 $F1 - Score = \frac{2 \times precision \times recall}{precision + recall}$

RESEARCH METHODOLOGY

01

Time:

September - November

02

<u>Place:</u>

Santa Laurensia Alam Sutera

MATERIALS

PROCEDURE

1

Create a program to capture images (dataset) from a webcam Set the output directory according to the desired category (create subdirectories for "asleep" and "awake")

3

Define the desired count of images to capture for each category

4

Execute the program to capture and save the images based on user input.

5

Create a new program to capture images from the webcam for prediction

6

Preprocess the captured image to match the input requirements of our model

PROCEDURE

7

Use the pre-trained model to predict the label of the captured image

8

Compare the predicted label with the actual labels in the dataset

9

Collect predicted and true labels for evaluation

10

Use a confusion matrix to assess the model's performance

11

Visualize the confusion matrix to understand the classification results

100 Sample Data

	Precision	Recall	F1-Score	Accuracy
Asleep	32.6%	100%	49.2%	34%
Awake	100%	2.9%	5.7%	
No Match	-	e e	X 	

300 Sample Data

	Precision	Recall	F1-Score	Accuracy
Asleep	55%	87.5%	67.8%	60%
Awake	75%	34.6%	47.4%	
No Match	1) 0	::	

500 Sample Data

	Precision	Recall	F1-Score	Accuracy
Asleep	40%	92.3%	55.8%	62%
Awake	95%	51.4%	66.7%	
No Match	J 		D. Prince	

CONCLUSION

the program can detect sleep and comparing data from 100, 300, and 500 samples:

- A higher number of samples increases the accuracy of detecting sleep behaviours.
- Model's overall accuracy increases from 34% with 100 samples to 62% with 500 samples.

ror_mod.mirror_object ror mod.us FUTURE WORK $e_x = False$ se_y = False se_z = True 1.Use a laptop/device with a higher RAM the end -add ct=1 e.objects.acti + str(modifie 2. Expand the training for the machine elect = 0 ct.selected ob s[one.name].se select exaction 4. Compress image files to optimize NCOLO2 SSE

capacity, which is at least 16GB

3. Increase the number of samples

learning

processing time

THANK YOU

PROBES PRESENTATION