METHOD 1 (Basic Approach) - Matching Marketing Claims to Clinical Evidence using TF-IDF and Cosine Similarity

Rahul Manikandan

April 12, 2025

1. Objective

The goal of this project is to develop a fact-checking pipeline that matches a list of marketing claims with supporting evidence from clinical documents. The task involves analyzing documents related to the flu vaccine Flublok and identifying relevant textual excerpts that support each claim.

2. Methodology

2.1 TF-IDF and Cosine Similarity

The project uses the **TF-IDF** (**Term Frequency-Inverse Document Frequency**) vectorization technique combined with **cosine similarity** to compute the relevance of clinical document text with respect to each marketing claim.

- TF-IDF transforms text into numerical feature vectors based on word importance.
- Cosine similarity measures the angle between two vectors, giving a score between 0 and 1 (higher means more similar).

2.2 Pipeline Overview

The solution consists of the following steps:

- 1. Load marketing claims from a JSON file.
- 2. Load and extract text from clinical PDFs.
- 3. Clean the text (removing headers, URLs, newlines).
- 4. Build TF-IDF vectors from the clinical texts.

- 5. For each claim, compute cosine similarity against all clinical documents.
- 6. Select the top-K matches for each claim and export results in JSON format.

3. Source Code Structure

3.1 preprocess.py

Responsible for:

- Loading the marketing claims JSON.
- Listing and reading clinical PDF files.
- Extracting text from PDFs using PyMuPDF.
- Cleaning the extracted text using regex and whitespace normalization.

3.2 matcher.py

Handles the core logic of matching:

- Converts cleaned texts to TF-IDF vectors using scikit-learn.
- Calculates cosine similarity between each claim and all clinical texts.
- Returns the top-K most relevant document snippets per claim.

3.3 utils.py

Provides utility functions such as:

- Logger setup for consistent console output.
- JSON result writing function.

4. Project Structure

```
solstice-fact-check/
data/
   Clinical Files/  # Clinical PDFs
   Flublok_Claims.json  # Marketing claims
src/
   preprocess.py
   matcher.py
   utils.py
   __init__.py
```

```
results/
basic_results.json
notebooks/
main1.ipynb
requirements.txt
README.md
```

5. Requirements

To run this project, install dependencies with:

```
pip install -r requirements.txt
```

Main libraries used:

- PyMuPDF for PDF parsing.
- scikit-learn for TF-IDF and cosine similarity.
- pandas, numpy (optional for future extensions).

6. Results and Observations

The output is a JSON object where each marketing claim is matched with 3 clinical document snippets. Each snippet includes the document name, a short text excerpt, and a similarity score.

Why Scores Are Not High

TF-IDF only captures surface-level word frequency and does not understand semantics or paraphrasing. Clinical documents often use technical terminology or structure content across multiple pages, making it difficult for TF-IDF to detect strong overlaps with short, plain-language marketing claims.

- Scores mostly range between **0.1** to **0.3**.
- This is expected behavior and provides a good baseline for comparison.
- Future improvements can include semantic embeddings (e.g., SBERT, OpenAI embeddings).

Figure 1: Sample output showing top-3 matched clinical documents for selected marketing claims.

7. Sample Output Preview

8. Conclusion

This project successfully implements a basic NLP pipeline to match marketing claims with supporting clinical evidence. Despite limitations of TF-IDF in semantic understanding, the results demonstrate reasonable recall and provide a foundation for more advanced models in future work.