NYC311 Complaints Analysis

Group 2

Agenda

Data Profile

Conceptual Architecture

Demo

Project Milestones & Timeline

Team Responsibilities

Challenges

Lessons Learned

Next Steps

Project Overview

311 Requests
NYC Covid19
NYC Median Income

Combines data sources into DW that is easy to maintain

Tableau dashboard Python

Data Profile (1): NYC311 Dataset

Dataset Summary

Source of Information	https://portal.311.nyc.gov
Number of Records	1.3M (Original 25M)
Frequency of updates	Daily
Data type and structure	Text, Integers, Float, Date, Time API, CSV
Number of columns	16
Granularity	Each 311 complaint

Frequency of Complaints

Data Profile (2): NYC COVID-19 2019

Dataset Summary

Source of Information	https://github.com/nychealth/coronavirus-data
Number of Records	6764
Frequency of updates	Daily
Data type and structure	Text, Float API, CSV
Number of columns	3
Granularity	Caserate grouping by ZIP Code

Data Profile (3): NYC Median Income

Dataset Summary

Source of Information	https://data.cccnewyork.org
Number of Records	181
Frequency of updates	Yearly
Data type and structure	Integers CSV
Number of columns	3
Granularity	Income by ZIP code

Average Income Per Household

Schema Selection

The first thing to notice about the dimensional schema is its simplicity and symmetry. The simplicity of a dimensional model also has performance benefits. Dimensional models are gracefully extensible to accommodate

1
Millions of Records
Aggregation
Not Only for Us

--- Kimball The Data Warehouse Toolkit by Ralph Kimball, Margy Ross

dim_ct dim_date ct key INT date key INT complaint_type VARCHAR(100) date str VARCHAR(45) date_year INT date month INT date day INT dim_city date quarter INT city key INT city_name VARCHAR(50) date_week INT dim_median_income 🔻 median_income_key INT → median_income BIGINT dim_resolution resolution_key INT resolution_descriptor VARCHAR(1000) __ fact_311 agency_key INT dim_zcode borough key INT dim channel fact_covid19_zipcode_caserate zcode key INT cd key INT channel key INT zipcode_key INT zip_code INT channel_key INT channel_type VARCHAR(100) week_ending_date_key INT city_key INT caserate DOUBLE ct key INT resolution_key INT zipcode_key INT dim_agency create_date_key INT agency_key INT create_date_hour INT dim borough agency init VARCHAR(5) resolution_date_key INT borough key INT fact_covid19_borough_caserate agency_name VARCHAR(200) resolution_date_hour INT borough_name VARCHAR(50) borough_key INT latitude DOUBLE week ending date keyINT ○ longitude DOUBLE caserate DOUBLE median_income_key INT unique_id INT dim_cd cd key INT complaint_descriptor VARCHAR(200)

ER Diagram

Assumptions

1

The variables we are integrating to our warehouse affected the 311 complaint rate

2

Stakeholders would want daily updates 4

Easy to work asynchronously

No problem with doing class while also learning how to do the project 'on the run'

3

Two Choices:

- 1. Combine API to csv & create a new file.
- 2. Apply star schema to 311 data
 For practicing and data updating purpose, the second choice was decided.

6

Data amount not overwhelming

Team Leads

Milestones

Timeline

Conceptual Architecture

DEMO

Yuehao: Architecture

Alan: Tableau

Marlee: Statistics &

hypothesis testing

Challenges

Blank Slate Asynchronous Team Big Data

Lessons Learned

ENSURE CLARITY OF PROJECT PURPOSE, ROLE EXPECTATIONS, AND DELIVERABLES AS EARLY AS POSSIBLE DIAGRAMS BEFORE IMPLEMENTATION IS GOOD, BUT NOT AS GOOD AS STARTING SMALL THEN TESTING

THERE IS A REAL
TRADEOFF TO BUILDING
AN ARCHITECTURE FOR
READING VS WRITING

RESEARCH COSTS AND SET A BUDGET

Next Steps

Incorporate new datasets to measure new variables [race, twitter sentiments etc]

Build a more robust architecture

Leverage Glue and other AWS products to create a more robust architecture in instead of custom scripts. ETL and transferring is done with scripts now, instead of aws tools. All hail Amazon

Expand the dataset to NY state

Thank you!

Any Questions?