ECE2050 Homework 2

Due: Feb. 27, 2025

- C 15 points) Q1 Provide your answers to the following short questions.
 - 1. Determine the even parity bit for the BCD number 00010100;
 - 2. Convert binary 101101 to Gray code;
 - 3. A ternary numeral system (also called base 3 or trinary) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). Ternary most often refers to a system in which the three digits are all non-negative numbers; specifically 0, 1, and 2. Convert the ternary number 10 to decimal.

Solution

(17 points)

Q2 Apply CRC to the data bits 10110001 using the generator code 1010 to produce the transmitted CRC code.

Solutions

Append 000 to 10110001				
10110001000				
1010				
1000				
1010				
1010				
1010 : 1				
0000				
1010				
1010				
1010				
<u> </u>				

remainder (cheeksum): 000 ---- (10 points)

(17 points)

Q3 The waveforms below are applied to points A and B of a 2-input XOR gate followed by an inverter. Draw the output waveform.

Solution.

C 1 points for 1 correct bits

The Truth tables A B Outsports

O 0 1

O 1

O 1

(17 points)

Q4 Is it possible to assign logic levels so that a device with the transfer characteristics shown in below would serve as an inverter? If so, what are the input and output low and high levels (V_{IL}, V_{OL}, V_{IH} , and V_{OH}) and noise margins (NM_L and NM_H)? If not, explain why not.

Solution!

No, the reason: --- - Clipoints)
$$V_{DH} = 3.5 V$$
. $V_{DL} = |V|$

$$VMH = VOH - VIH = 3.5V - 3.5V = 0 - (2)$$

From 1) and 12%, We can know the circuit does not have any resistance to noise, which is unreasonable.

Thus, it is not possible to assign logic levels, --- (5 points)

CIf your conswer is yes points will be awarded a coording to your reasons but no more than I points

C 17 points

Q5 Write down the truth table of the three-input Exclusive-NOR (XNOR) Gate. A, B and C are inputs and Y is output.

Solution!

A	В	C	Y
0	0	0	Ì
0	0	1	U
0	1	0	b
0	1	1	
1	0	0	D
$\overline{1}$	0	1	1.
1	1	0	
1	1	1	b

C 2 poînts for 1 corrected bot)

The bit number of | is even \Rightarrow output is 1 The bit number of | is odd \Rightarrow output is 0

C17 points)

Q6 The noise margin (NM) is the amount of noise that could be added to a worst-case output such that the signal can still be interpreted as a valid input. As can be seen below, the low and high noise margins are, respectively,

ो

$$NM_L = V_{IL} - V_{OL}$$
$$NM_H = V_{OH} - V_{IH}$$

An ideal inverter would have an abrupt switching threshold at $V_{DD}/2$, as shown below. For $V(A) < V_{DD}/2$, $V(Y) = V_{DD}$. For $V(A) > V_{DD}/2$, V(Y) = 0. In such a case, $V_{IH} = V_{IL} = V_{DD}/2$. $V_{OH} = V_{DD}$ and $V_{OL} = 0$. Thus, $NM_H = NM_L = V_{DD}/2$. A real inverter changes more gradually between the extremes, as shown below $(V_{IL} < V_{DD}/2, V_{IH} > V_{DD}/2)$. Please show

$$NM_H, NM_L < V_{DD}/2$$

