Supplementary Materials

Adam M. Wilson, Walter Jetz May 16, 2014

Contents

A Background

Name Description

GEWEX/ICCP Compiled from 12 satellite products for comparison study

HIRS Cloud frequency from NOAA/HIRS/2

AVHRR PATMOS-x Cloud product derived from NOAA's Advanced Very High Resolution Radiometer (A

B Methods

B.1 Removal of Orbital Artifacts

The MODIS orbit results in incomplete daily coverage in the mid-latitudes, resulting in unequal observation frequency in nearly longitudinal banding between approximately -30° and 30° latitude. We used the Variational Stationary Noise Remover (VSNR,available at http://www.math.univ-toulouse.fr/~weiss/Codes/VSNR/VNSR_VariationalStationaryNoiseRemover.html) to remove these artifacts. The VSNR was well suited to this situation because it allows specification of the shape and scale of the 'noise'. We explored various filter dimensions and visually evaluated the output to minimize artifacts (See Figure ??). We used a gabor filter with y=200, x=5, and $\theta=15$ for Terra and $\theta=-15$ for Aqua.

B.2 Calculation of Seasonal Metrics

Figure SM1: Comparison of January cloud frequency over the Southwestern Sahara from A) corrected Terra and B) uncorrected Terra, C) Uncorrected Aqua, and D) Corrected Aqua. Note the banding in the uncorrected data resulting from variable observation frequency due to orbital artefacts of the MODIS Satellite.

Let m index months ($m \in 1:12$) and y index years ($y \in 2000:2014$). The timeseries of monthly cloud frequencies $CF_{m,y}$ (proportion of days with cloud flag equal to 1) was calculated separately from the daily MOD09GA and MYD09GA. These were then summarized to the 'climatological' cloud frequency mean and standard deviation: $\mu_m = \text{mean}(CF_{m,y})$ and $\sigma_m = \text{SD}(CF_{m,y})$. The inter-annual variability was then calculated as $\text{mean}(\sigma_m)$ and intra-annual variability (seasonality) as $\text{SD}(\mu_m)$.

C Validation

C.1 Station Observations

The monthly CF were validated using a global observational dataset of synoptic weather reports collected at 5388 stations over 1971-2009 (Eastman and Warren 2012). We extracted the mean "total cloud" amount for each month, which represents the mean proportion of the sky that was covered by all types of cloud during the observations in that month. Comparison of these observations to satellite data must take into account that the sampling radius of these observations (the visible sky) depends on cloud height, cloud thickness, the curvature of the earth, and other factors, but is typically much larger than a single 1km MODIS pixel. We followed Dybbroe, Karlsson, and Thoss (2005) and took the mean monthly MODCF for a circle with 16km radius around each station location. Additionally, this converts the temporal MODCF to mean cloud amount within the sample radius to make it comparable to the station observations.

C.1.1 Monthly Validation

The monthly MODCF (including data from 2000-2013) were compared to station observations using linear models over the full station record (1970-2009) and the MODIS era (2000-2009) to assess accuracy and relevance of the 14-year satellite-derived data for estimating long-term monthly climatologies. For the full record comparison, the station dataset was filtered to include only stations with at least 20 observations per month for at least 20 years, which retained 4679 stations. Several countries (notably the USA, Canada, and New Zealand) converted from human cloud observations to automated laser ceilometers over the past decade leading to a decline in the number of observations over 1997-2009 (Eastman and Warren 2012). For the MODIS era comparison, we included only stations with at least 20 observations per month for the full 10-year period (2000-2009), so the number of stations available was reduced to 1558.

C.1.2 Seasonal Validation

In addition to monthly validation we also performed the same validation on the seasonal (DFJ,MAM,JJA,SON) mean values for MODCF and the station observations.

Figure SM2: Mean monthly cloud amount over 1970-2009 from 5388 global stations versus mean 2000-2009 MOD09 cloud frequency by month. Coefficient of determination is shown in each panel. Colors represent the number of monthly station observations within each grid cell of the scatterplot.

Figure SM3: Histogram and spatial distribution of residuals from linear model between station and satellite cloud amount at station locations. Negative (positive) values indicate locations where MODCF was less than (greater than) expected given the global relationship between MODCF and station observations.

C.2 Temporal Stability

To assess the accuracy of the MODCF product in estimating multi-decadal cloud frequencies, we used linear models between the 2000-2014 satellite climatologies and station observations divided into two periods including the full station record (1970-2009) and the MODIS-era subset (2000-2009).

Error: unused argument (caption.placement = "top")

C.3 Latitudinal Effects

The MODCF tends to overestimate CF at higher latitudes in winter months, and underestimate it in summer months.

C.4 Land-Use Land-Cover Effects

Figure SM4: Boxplots of MODCF-Station anomolies by season and 20-degree latitudinal bin. Boxplot width is proportional to the number of available validation data. Boxplot notches indicate approximate confidence intervals around the mean value in each group.

Figure SM5: Boxplot showing residuals (MOD09-Station) by land cover type.

Land Use - Land Cover	DJF	MAM	JJA	SON
Barren or sparsely vegetated	9.9 (440)	10.7 (294)	10.2 (576)	9.9 (441)
Cropland/Natural vegetation mosaic	11.2(1264)	8.8 (847)	$9.1\ (1701)$	$9.2\ (1298)$
Croplands	7.6(2633)	5.4(1817)	8.3(3582)	6.8(2659)
Deciduous Broadleaf forest	8.5(60)	6.8(43)	6.3(81)	6.3(61)
Deciduous Needleleaf forest	20 (166)	14.4 (108)	9.8(221)	$10.4\ (169)$
Evergreen Broadleaf forest	10.2(306)	9.5(208)	9.9(412)	10.1(306)
Evergreen Needleleaf forest	9.8 (158)	5.6(111)	7 (216)	4 (167)
Grasslands	$12.1\ (1582)$	8.7(1074)	9.8(2113)	8.9(1633)
Mixed forest	10.3 (1312)	6.6 (873)	7.4(1769)	6.4(1362)
Open shrublands	10.6 (898)	9.5(624)	13.2(1262)	8.1 (950)
Permanent wetlands	7.8(32)	6.1(22)	12.4(44)	4.3(31)
Savannas	$11.1\ (255)$	8.3(172)	7.6(348)	$10.1\ (259)$
Snow and ice	20.6(18)	$13.3\ (17)$	27(21)	14.3(24)
Urban and built-up	8.2(420)	7.5(282)	9.6(570)	7.9(428)
Water	8.4(2896)	8.2(2006)	11.5 (4032)	8.1 (3042)
Woody savannas	9.2(724)	7.7(496)	11.1 (992)	7.1 (750)

D Biome Summaries

Table SM1: Biome and realm codes used in Table ??.

code	realm	biome
$AT_{-}1$	Afrotropics	Tropical & Subtropical Moist Broadleaf Forests
${ m AT_2}$	Afrotropics	Tropical & Subtropical Dry Broadleaf Forests
$\mathrm{AT}_{-}7$	Afrotropics	Tropical & Subtropical Grasslands, Savannas & Shrublands
AT8	Afrotropics	Temperate Grasslands, Savannas & Shrublands
$AT_{-}9$	Afrotropics	Flooded Grasslands & Savannas
$AT_{-}10$	Afrotropics	Montane Grasslands & Shrublands
$AT_{-}12$	Afrotropics	Mediterranean Forests, Woodlands & Scrub
$AT_{-}13$	Afrotropics	Deserts & Xeric Shrublands
$AT_{-}14$	Afrotropics	Mangroves
$AT_{-}98$	Afrotropics	Lake
$AN_{-}11$	Antarctic	Tundra
$AA_{-}1$	Australasia	Tropical & Subtropical Moist Broadleaf Forests
$AA_{-}2$	Australasia	Tropical & Subtropical Dry Broadleaf Forests
AA_{-4}	Australasia	Temperate Broadleaf & Mixed Forests
$AA_{-}7$	Australasia	Tropical & Subtropical Grasslands, Savannas & Shrublands
AA8	Australasia	Temperate Grasslands, Savannas & Shrublands
$AA_{-}10$	Australasia	Montane Grasslands & Shrublands
$AA_{-}11$	Australasia	Tundra
$AA_{-}12$	Australasia	Mediterranean Forests, Woodlands & Scrub
$AA_{-}13$	Australasia	Deserts & Xeric Shrublands
$AA_{-}14$	Australasia	Mangroves
IM_{-1}	IndoMalay	Tropical & Subtropical Moist Broadleaf Forests
IM_{-2}	IndoMalay	Tropical & Subtropical Dry Broadleaf Forests
IM_{-3}	IndoMalay	Tropical & Subtropical Coniferous Forests
IM_{-4}	IndoMalay	Temperate Broadleaf & Mixed Forests
$IM_{-}5$	IndoMalay	Temperate Conifer Forests
IM_{-7}	IndoMalay	Tropical & Subtropical Grasslands, Savannas & Shrublands
$IM_{-}9$	IndoMalay	Flooded Grasslands & Savannas
$IM_{-}10$	IndoMalay	Montane Grasslands & Shrublands
$IM_{-}13$	IndoMalay	Deserts & Xeric Shrublands
$IM_{-}14$	IndoMalay	Mangroves
$NA_{-}2$	Nearctic	Tropical & Subtropical Dry Broadleaf Forests
$NA_{-}3$	Nearctic	Tropical & Subtropical Coniferous Forests
NA_{-4}	Nearctic	Temperate Broadleaf & Mixed Forests
$NA_{-}5$	Nearctic	Temperate Conifer Forests
$NA_{-}6$	Nearctic	Boreal Forests/Taiga
$NA_{-}7$	Nearctic	Tropical & Subtropical Grasslands, Savannas & Shrublands
NA_{-8}	Nearctic	Temperate Grasslands, Savannas & Shrublands
$NA_{-}11$	Nearctic	Tundra
$NA_{-}12$	Nearctic	Mediterranean Forests, Woodlands & Scrub
$NA_{-}13$	Nearctic	Deserts & Xeric Shrublands

NA_98	Nearctic	Lake
$NA_{-}99$	Nearctic	Rock & Ice
$NT_{-}1$	Neotropics	Tropical & Subtropical Moist Broadleaf Forests
$NT_{-}2$	Neotropics	Tropical & Subtropical Dry Broadleaf Forests
$NT_{-}3$	Neotropics	Tropical & Subtropical Coniferous Forests
$NT_{-}4$	Neotropics	Temperate Broadleaf & Mixed Forests
NT _7	Neotropics	Tropical & Subtropical Grasslands, Savannas & Shrublands
NT8	Neotropics	Temperate Grasslands, Savannas & Shrublands
$NT_{-}9$	Neotropics	Flooded Grasslands & Savannas
$NT_{-}10$	Neotropics	Montane Grasslands & Shrublands
$NT_{-}12$	Neotropics	Mediterranean Forests, Woodlands & Scrub
$NT_{-}13$	Neotropics	Deserts & Xeric Shrublands
$NT_{-}14$	Neotropics	Mangroves
$NT_{-}98$	Neotropics	Lake
$NT_{-}99$	Neotropics	Rock & Ice
OC_{-1}	Oceania	Tropical & Subtropical Moist Broadleaf Forests
${ m OC}_{ extsf{-}2}$	Oceania	Tropical & Subtropical Dry Broadleaf Forests
OC_{-7}	Oceania	Tropical & Subtropical Grasslands, Savannas & Shrublands
PA_{-1}	Palearctic	Tropical & Subtropical Moist Broadleaf Forests
PA_4	Palearctic	Temperate Broadleaf & Mixed Forests
$PA_{-}5$	Palearctic	Temperate Conifer Forests
$PA_{-}6$	Palearctic	Boreal Forests/Taiga
PA8	Palearctic	Temperate Grasslands, Savannas & Shrublands
$PA_{-}9$	Palearctic	Flooded Grasslands & Savannas
$PA_{-}10$	TO 1	Montane Grasslands & Shrublands
	Palearctic	Montane Grassiands & Sinublands
PA_11	Palearctic Palearctic	Tundra
PA_11 PA_12		

Table SM2: Mean (SD) monthly cloud frequency summarized by biome and geographic realm. See Table $\ref{Table SM2}$ for Code descriptions.

Code	January	February	March	April	May	June	July	August	September	October	November	December
AA_1	86.1 (7.3)	84.7 (7.6)	83.7 (8)	79.9 (9.8)	78 (10.4)	77.4 (11.3)	80.2 (11.5)	77.8 (13.5)	77.1 (14.6)	74.6 (13.3)	79.7 (10.6)	82.5 (9.3)
$AA_{-}10$	$66.3\ (17.9)$	66.3(17.1)	65.4(17.2)	65.3(16.4)	69.9(13.2)	71.8(14.2)	73.4(14.7)	73.5(13.2)	74.6 (13.3)	72.9(13.5)	71.5 (14.6)	72.8 (13.9)
$AA_{-}11$	83.1 (6.2)	83.4(5.9)	84.4 (5.8)	84.1 (6.4)	81.5 (5.3)	82.5(6)	81.8 (5.8)	82.4(4.9)	84.6 (6.3)	81.9(6.5)	85.3(7.1)	83.4(6.5)
$AA_{-}12$	27.2(5.7)	35.4(6.2)	34.3(7.6)	41.9(9)	$49.1\ (10.4)$	53.2(7.5)	53.8(9)	49.7(11.3)	45.4(12.3)	$39.1\ (11.3)$	39(7.8)	33.2(7)
$AA_{-}13$	35.2(10.4)	39.2(7.3)	34.9(7.8)	28.8(7.4)	27.7(7)	27.8(9.8)	$22.1\ (10.9)$	15.2(9.4)	16.7(6.3)	23.5(4.8)	32.9(6.1)	37.4(8.6)
$AA_{-}14$	80 (6.2)	79.5(5.4)	78.3(5.8)	73.6(5.9)	73.9(7.7)	76.8(7.8)	79.6 (8.8)	77.5(10.8)	75.6(9.7)	69 (8.8)	73 (7)	76.9(6.7)
AA_2	87.7 (7.4)	84.4 (8.5)	78.8 (8.8)	66.3(13.2)	63.3(14)	56.9 (15.9)	54.5(17.4)	45.7(18.9)	43.8 (18.3)	53 (16.8)	67.3(14.2)	86 (8.9)
AA_{-4}	51.5 (12.2)	57.5 (10.2)	55.8 (11)	56.3 (11.2)	55.4(12.7)	60.1 (8.2)	58.2 (11.8)	56.2(14.3)	54.7 (15.6)	56.6(12.7)	59.4 (9.4)	58.7 (11.9)
$AA_{-}7$	69.8 (11.3)	$65.4\ (10.4)$	58.6 (11.6)	40.6(12.1)	34.3(12.5)	25.7(15.1)	19.5(15.4)	16.6 (13.4)	21.6(10.7)	32.2(10.4)	48.8 (11.4)	61.1 (11.2)
AA8	40.2(10.3)	46 (7.4)	38.4 (8.6)	33.9(9)	36.3(10.2)	45.1(9.2)	38.7(13.8)	33.6(14.8)	31.3(13.7)	34.6 (11.2)	45.9(6.8)	44.2(9.4)
$AN_{-}11$	34.4 (17.4)	41.6(19.4)	$53.1\ (18.7)$	70.4(20.2)	72.5(17.5)	89 (9.4)	77 (11.4)	75.3(13.5)	$68.2\ (16.4)$	55.2(18.3)	41.8(17.9)	32.8(17.8)
$AT_{-}1$	60.9 (18.7)	68.2(16.9)	71.9 (15.1)	73.8 (14.5)	69.9 (15.1)	70.1 (16.9)	71.9 (17.7)	75.1 (18.7)	72.6 (18.5)	70.6 (16.8)	66.7(16.3)	60.6 (18.6)
$AT_{-}10$	53.7 (20.6)	51.6 (18.6)	53.8 (14.7)	53.1 (14.4)	43.3 (19)	40.8 (25.3)	41 (29.5)	43.7 (27.8)	44.8 (23.4)	53 (15.8)	52.6 (18)	52.1 (20.9)
$AT_{-}12$	28.3(13.4)	28.4(13)	30.3 (10.1)	38.9(7.6)	44.3(5.5)	42.6(5.3)	39 (6)	42.8(6.9)	40.3(8.3)	41.3(10.3)	34.7(10.8)	33.9(12.9)
AT_13	$35.1\ (17.8)$	34.3(17.8)	31.8 (15.4)	29.7(12.5)	$22.1\ (13.4)$	20 (14.9)	20.6(17.9)	21.4(17.6)	18.9 (12.4)	23.6(12.4)	27.4(15)	$29.1\ (16.1)$
$AT_{-}14$	52.4 (17.9)	55.7 (21.6)	59.1 (22.5)	60 (23.8)	61.8(23.6)	68.7 (25.2)	71.3(26.5)	71.5(29)	67.6 (28.6)	63.1(24.5)	56.5 (20.1)	51.6 (15.5)
AT_{-2}	76.7 (8.7)	69.9 (10.5)	56.5 (12.3)	36.8 (10.6)	23.8 (8.7)	17.5 (10.6)	18.2 (11.7)	20.9 (13.8)	26.1 (11.7)	40.9 (14.6)	58.1 (13.9)	70.9 (11.2)
AT _7	44.2 (27.7)	45.7 (25.7)	50.7 (22.3)	52.5 (20)	46.4 (21.2)	44.4 (24.7)	47.5 (27.2)	51.5 (27.9)	48.4 (23)	49.5 (20.2)	45.8 (25.4)	43.4 (28.8)
AT8	20.1(9.1)	13.9(8.5)	16.7(8.6)	24.9(9)	15.3(10.8)	19.6(10.1)	31.1 (9)	29.7(10.1)	17.5(11.8)	10.2(10.9)	15.6(11.2)	18.7 (11.3)
$AT_{-}9$	48.2(23.8)	48.8 (18.2)	50.7(13.2)	50.9(16.4)	46.3(23.3)	44.4 (25.4)	44.5(27.6)	44.9(29.1)	40.8(21.9)	46.5(13.5)	48.6(19.7)	47.1(26.4)
$AT_{-}98$	53.5 (19.1)	56.7 (14.5)	57.5 (10.5)	52.4 (13.7)	42.9(15.2)	32.5 (13.6)	29 (15.4)	35.9 (18.6)	43 (17.3)	52 (17.4)	55.5 (18.4)	53.7 (18.3)
IM_{-1}	56.1 (28.2)	54.2 (29.5)	56.8 (26.4)	62.3(21.7)	70.2 (16.8)	80.8 (10.3)	84 (10.5)	82 (11)	77.6 (10.6)	65.3 (19.2)	56.9 (25.2)	55.1 (27.9)
$IM_{-}10$	92.1 (3.9)	88.8 (5.7)	86.2 (7.6)	84.3 (9.5)	86.3 (7.7)	83.4 (7.4)	86.8 (5.7)	85.4 (6.5)	88.8 (5.8)	90.6 (4.9)	91.1 (5.4)	92.5 (4.3)
$IM_{-}13$	23.4(12.1)	22.6(12.4)	21(9.4)	25.5(10.9)	26.6(14.7)	55.5(21.1)	78.2(15.7)	77.7(15.2)	52.8(22.5)	25(25.4)	23(17.8)	20.2(13.4)
$IM_{-}14$	48.9 (30.4)	43.4 (29.3)	47.2(25.2)	55.3 (20.1)	70.8 (16)	79.4 (11.6)	83.7 (10.4)	82.2 (12.5)	80.1 (11.7)	67.8(17.9)	58.2 (26.4)	55.6 (30)
IM_{-2}	26.4 (16.2)	24.8(16.3)	30.8 (20.2)	40.3 (23)	50.9 (23.5)	78.1 (9.8)	90.3 (5.8)	90.2 (5.1)	76.6 (9.8)	49.8 (22.6)	37.7(21.9)	30 (22)
IM_{-3}	38.9 (16.4)	45.8 (16.5)	43.1 (18.2)	45.1 (20.6)	46.6 (24.6)	60.9 (22.6)	78.4 (18.5)	79.9 (15.3)	61.9 (22.9)	35.3 (27)	29 (22.5)	33.1 (19.9)
IM_4	46.3 (14.6)	57.4 (15.9)	61.2 (19)	67.8 (20.9)	68.2(22.5)	76.6 (21.8)	83.2 (17.5)	81.3 (15.4)	69 (20.6)	49.3 (23.6)	37.7 (17.5)	39.8 (15.2)
$IM_{-}5$	45.2 (15.2)	56 (16.6)	58.8 (21.3)	62.6 (23.2)	61.9 (28.4)	68.9 (28.4)	77.7 (24.3)	78.8 (21.6)	66.5(27.6)	46.7 (28.5)	36.7 (20.3)	38 (16.9)
IM_{-7}	36.2 (9.6)	24.6 (4)	20.8(5.4)	$24.6\ (10.1)$	35.3 (12.9)	$65.6\ (11.3)$	84 (4.6)	77.3 (5.4)	$60.6\ (7.8)^{'}$	28.6 (10.8)	$13.1 \ (4.3)$	19.1(5.1)
$IM_{-}9$	18.2 (9)	12.2(6.1)	10.7(4.7)	15.3 (6.3)	19.2 (11.9)	58.1 (7.2)	86.6 (4.7)	84.4 (6)	50.5 (9.1)	10.2(5.6)	17.3 (8.9)	$17.4\ (10.8)$
$NA_{-}11$	65.2 (19.6)	59.9 (19.1)	$62.2\ (15.7)$	56.7 (14.1)	48.7 (11.4)	42.9 (13)	44 (11.9)	59.3 (10.1)	68 (6.4)	70.9 (10.9)	70.8 (15.7)	66.4 (20.2)

$NA_{-}12$	54.6 (13.6)	55.1 (12.9)	52.1 (11)	51.1 (11.9)	43.6 (12)	28.8 (12.7)	18.2 (11.3)	21.3 (11.4)	34.8 (12.4)	45.7 (10.7)	51.1 (11.7)	54.1 (12.4)
$NA_{-}13$	33 (18.1)	31.8 (16.2)	31.6 (14.9)	32.8(12.8)	26.9 (13.2)	21.4(15.7)	20.1(17)	18.1 (14.2)	16 (12.2)	18.8 (11.7)	25.9 (15.7)	31.2(17.7)
$NA_{-}2$	63.8 (21.6)	61 (23.7)	$65.2\ (15.9)$	$71.1\ (10.5)$	76.2 (6.8)	84.2 (4.9)	84 (6)	78.5 (7.1)	76.7(6.1)	76.7 (8.2)	$63.5\ (14.4)$	64.6 (18.7)
NA_{-3}	65 (17.7)	64.8 (15.2)	62.6 (10.9)	$62.7\ (7.9)$	62.2(9.9)	$60.7\ (14)$	59.8 (16.6)	58.3 (16)	59.2 (14.8)	62.6 (15)	67.6 (16.7)	66.2 (17)
NA_4	55.4 (20.9)	57.1 (18.6)	59.3 (16.3)	66.6 (12.3)	68.1 (12.2)	64.9 (15.9)	64.2 (17.7)	60.9 (17.7)	58.7 (16.6)	59.8 (14.5)	59.2 (16.8)	56.9 (19.6)
$NA_{-}5$	57.5 (18.1)	48.9 (17)	53 (15.2)	55.8 (12.8)	58.2 (10.2)	53.5 (9.7)	52.2 (8.7)	62.9 (6.1)	68.9 (6)	71.7 (10.8)	65.5 (15.1)	63.6 (17.9)
NA_6	56.4 (19)	52 (16.2)	52.4 (12.5)	54.6 (8.2)	50.8 (8.5)	49.4 (12.3)	48.8 (14.5)	43.9 (14.3)	43.3 (14.2)	50.2 (14)	59.9 (16.5)	59.2 (16.6)
NA_7	30.9 (9)	32.2 (9.6)	34.9 (9.2)	47.5 (15.5)	46.3 (19.1)	40 (24.1)	43 (28.3)	39.2 (25.7)	34.2 (19.9)	36.3 (14.3)	38.7 (11.2)	35 (8.4)
NA_8	45.6 (14.8)	54.9 (14.7)	56.9 (14.5)	60.7 (14.2)	61.2 (15.5)	60.8 (19)	62.3 (19.9)	59.4 (19.4)	52.7 (19.4)	44.2 (18.4)	39.1 (17.4)	39.8 (17.3)
NA_98	29.3 (2.7)	30.1 (2.2)	22.4 (2.5)	20.5 (2.7)	11.2 (2.5)	14.9 (3.8)	45.3 (8.4)	42.3 (12.5)	35.5 (9.4)	21.1 (2.5)	21.1 (2.4)	28.7 (2.1)
NA_99	38.5 (6.3)	33.2 (5.4)	30.7 (7)	29.2 (8.9)	31.6 (12.9)	48.1 (14.3)	69.6 (10.7)	63 (11.9)	60.3 (13.3)	37.3 (10.8)	28.5 (7.5)	33.2 (5.7)
NT_1	66.9 (10.6)	66.7 (8)	62.8 (6.1)	60 (6)	64.3 (5)	62.1 (6.3)	60.3 (7.2)	57.9 (6.4)	55.6 (5)	62.1 (9.5)	65.3 (12.1)	70.7 (10.4)
NT_10	39.8 (12.4)	41.6 (11.7)	38.2 (14.2)	36.1 (15.4)	34 (15.8)	29.3 (13.9)	37.9 (16)	35.2 (14.3)	33.5 (15.3)	30.6 (10.9)	34.8 (12.7)	42.1 (12.7)
NT_12	70.3 (12.5)	66.9 (9.8)	62.2 (7.7)	59.4 (6.4)	52 (11.5)	41.5 (13.8)	37.3 (11.2)	36 (13.2)	42.2 (13.8)	56.8 (12)	66.5 (10.7)	69.6 (13.9)
NT_13	7.3 (15.8)	15.1 (21.1)	40.2 (16.7)	62 (33.1)	28.5 (23.8)	21.8 (18.1)	24.4 (16.6)	54.1 (21.8)	49.7 (17.3)	33.1 (16.1)	13.8 (17.9)	6 (12.6)
NT_14	77.4 (10.2)	78.8 (11.3)	77.7 (11)	74.4 (11.3)	70.4 (11.9)	62.1 (15.7)	57.8 (18.2)	55.9 (18.4)	62.9 (13.7)	73.1 (9.9)	75.4 (10)	76.7 (9.8)
NT ₋₂	62.7 (12.3)	63.7 (9.6)	67.5 (13.6)	65.5 (14.2)	65.6 (13.6)	61.8 (15.7)	53.2 (18.9)	52.8 (16.8)	53.2 (14.9)	58 (14.4)	63.5 (14.9)	64.5 (10.9)
NT_3	59.3 (12.3)	52.8 (13.1)	50.3 (13.4)	54.2 (11.4)	58 (11.2)	57.4 (12.7)	60 (10.1)	63.4 (8.2)	65.4 (6.8)	70.7 (7.6)	70.2 (11.5)	65.9 (11.1)
NT_{-4}	57.9 (2.9)	61.9 (4.3)	55.2 (4.8)	54.4 (6.3)	53.5 (7.5)	54.6 (9.8)	64.2 (8.7)	58.7 (9.1)	57 (6.7)	45.8 (5.8)	48.3 (5.2)	59.6 (3.6)
NT_{-7}	54.2 (10.5)	53.3 (6.5)	55.3 (8.4)	53.7 (8.7)	55.9 (9.8)	50.3 (11.7)	40.8 (10.1)	41.9 (9.5)	41.9 (8.4)	49.6 (10.1)	53.2 (11.6)	57.3 (9.8)
NT_8	64.7 (14.7)	57.8 (16)	53.7 (17.7)	51.6 (18.3)	44.5 (17.7)	40.3 (16.1)	45 (15.7)	55.6 (14)	62.5 (14.3)	65.9 (12.5)	68.7 (14.6)	69.1 (13.9)
NT_9	42.6 (6.9)	48.8 (5.9)	40.7 (8)	35.5 (8)	23.4 (7.1)	15 (7.3)	12.8 (10.1)	10.8 (8.8)	12.7 (5.8)	23 (4.7)	35.3 (6)	45.5 (6.3)
NT_98	58.2 (21.4)	56.3 (23.8)	55.4 (23)	53.9 (22.5)	54.4 (21.6)	55 (20.4)	54 (20)	52.1 (20.4)	56.3 (17)	60.6 (16.9)	57.2 (21)	56.3 (21.4)
NT_99	48.5 (16.1)	41.7 (16.6)	43.1 (16.1)	48.6 (19.4)	62.5 (18.8)	75.9 (12.2)	77.6 (11)	76.3 (11.5)	78 (11)	68.9 (13.9)	53.5 (18.2)	45.6 (18)
OC_1	62.4 (25.8)	59.4 (23.1)	64.6 (21.9)	67.7 (18.6)	72.7 (11.6)	78.5 (9.3)	75.2 (10.9)	76.4 (10.8)	75.4 (13.3)	75.9 (14.4)	71.7 (18.5)	68.1 (22.1)
OC_{-2}	67.8 (14.4)	68.7 (11.8)	65.7 (12.8)	61.1 (13.1)	55 (12.8)	47.4 (16.5)	39.9 (17.1)	36.7 (16.5)	46.6 (12.5)	62.9 (13.2)	65.8 (15.4)	68.1 (13.7)
OC_7	38.9 (12.4)	42.5 (11.7)	42 (10)	43.4 (9.8)	54 (6.6)	57.8 (8.5)	54.3 (9.9)	54.7 (10.5)	52.1 (10.6)	50 (10.1)	46.5 (11.3)	43.7 (13)
PA_1	64.4 (15)	63.4 (10.8)	55.7 (10)	49.4 (7.7)	49.8 (7.5)	46 (13.4)	40.5 (13.6)	37.9 (14.7)	46.2 (9.6)	60.7 (10.7)	60.5 (13.1)	63.4 (13.4)
PA_10	96.3 (6.2)	93.8 (8)	94.5 (6.2)	93.9 (6.6)	93.5 (7.5)	93.7 (6.5)	92.6 (8.4)	93.3 (7.5)	93.8 (6.4)	95.6 (5.5)	96 (5.7)	96.9 (5.2)
PA_11	73.5 (13.9)	73.8 (12.8)	73.8 (12.3)	72 (13.5)	69.4 (14)	68.4 (15)	66.7 (16)	67.7 (17.1)	68.8 (17.2)	72.2 (14.9)	76.1 (14.5)	73.8 (13.8)
PA_11	65.1 (17.3)	68.4 (15)	71.5 (12.3)	68.5 (13.1)	63.8 (13.9)	61.5 (15.9)	59.5 (16)	62.4 (17.5)	66.2 (16.8)	68.9 (12.9)	70.1 (14.5)	66.3 (15.5)
PA_13	` /	` /		,	, ,	, ,	` /	,	,	, ,	47.7 (11.5)	\ /
	33.3 (9.1)	42.2 (10.9)	51 (10.4)	48.6 (13.5)	42.6 (13.2)	39.3 (17.4)	39.9 (16.4)	39.5 (17.1)	45.3 (18.7)	49.5 (14)	(/	40 (9)
PA_4	56 (24.5)	54 (25.3)	45.4 (28.3)	38.7 (25.5)	36.2 (23.3)	34.9 (26.8)	34.3 (25.6)	33.2 (26)	36.3 (26.3)	40.2 (27.3)	41.8 (26.5)	49.4 (27.6)
PA_5	9.5 (7.8)	10.9 (7.7)	12.6 (11)	20.3 (12.5)	34 (16.8)	40 (20)	35.3 (19.6)	34.4 (19.2)	27.2 (17.6)	24.5 (18.1)	17.4 (14.4)	12.6 (11.9)
PA_6	61 (20.6)	64.1 (22.1)	61.2 (22.5)	58.4 (23.5)	54 (24.5)	49 (23.8)	44.4 (23)	39.7 (22.8)	37 (20.9)	44.7 (20)	51.4 (20.9)	57.4 (20.7)
PA8	53.9 (19.2)	52(21.1)	51.8 (20.3)	54.5 (19.3)	59.1 (18.4)	$62.4\ (16.3)$	$60.2\ (14.7)$	$57.2\ (15.8)$	57.2 (16.9)	$57.2\ (17.7)$	54.6 (17.8)	$53.4\ (17.4)$

PA_9 58.8 (10.2) 51.5 (10.3) 42.4 (10.4) 25.5 (6.1) 19.6 (3.6) 12.7 (2.2) 15.2 (2.3) 16.1 (2.1) 17.7 (4.3) 35.9 (6.3) 42.7 (9) 57.7 (11.5)