

Let's Second-Guess Ourselvers

However, let's not discount the prediction-focused approach yet

In fact, it's easy to see that:

$$\mathbb{E}[\operatorname{regret}(y, \hat{y})] \xrightarrow{\mathbb{E}[L(y, \hat{y})] \to 0} 0$$

Intuitively:

- The more accurate we can be, the lower the regret
- Eventually, perfect predictions will result in 0 regret

Let's Second-Guess Ourselvers

However, let's not discount the prediction-focused approach yet

In fact, it's easy to see that:

$$\mathbb{E}[\operatorname{regret}(y, \hat{y})] \xrightarrow{\mathbb{E}[L(y, \hat{y})] \to 0} 0$$

Intuitively:

- The more accurate we can be, the lower the regret
- Eventually, perfect predictions will result in 0 regret

But then... What if we make our model bigger?

- We could get good predictions and good regret
- ...And training would be much faster

Our Baseline

Let's check again the results for our PFL linear regressor

```
In [39]: pfl = util.build_ml_model(input_size=1, output_size=nitems, hidden=[], name='pfl_det', output
 history = util.train ml model(pfl, data tr.index.values, data tr.values, epochs=1000, loss=
 r tr = util.compute regret(prb, pfl, data tr.index.values, data tr.values)
 r ts = util.compute regret(prb, pfl, data ts.index.values, data ts.values)
util.plot histogram(r tr, figsize=figsize, label='training', data2=r ts, label2='test', pri
                                                                                             training
  0.35
  0.30
  0.25
  0.20
  0.15
  0.10
  0.05
  0.00
                                                                   0.15
        0.00
                           0.05
                                               0.10
                                                                                      0.20
 Mean: 0.052 (training), 0.052 (test)
```


Let's try to use a non-linear model

```
In [40]: pfl_acc = util.build_ml_model(input_size=1, output_size=nitems, hidden=[8], name='pfl_det_ac
history = util.train ml model(pfl acc, data tr.index.values, data tr.values, epochs=1000, la
util.plot_training_history(history, figsize=figsize_narrow, print_scores=False, print_time=
util.print ml metrics(pfl acc, data tr.index.values, data tr.values, label='training')
util.print ml metrics(pfl acc, data ts.index.values, data ts.values, label='test')
 0.25
 0.20
 0.15
 0.10
 0.05
 0.00
                        200
                                                                          800
                                                                                          1000
                                         400
                                                         600
                                                epochs
Training time: 12.5487 sec
R2: 0.98, MAE: 0.03, RMSE: 0.04 (training)
R2: 0.98, MAE: 0.03, RMSE: 0.04 (test)
```

More accurate, it is!

...And the improvement in terms of regret is remarkable

Let's what DFL could do with the same model coplexity

```
In [44]: spo_nonlinear = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden history = util.train_dfl_model(spo_nonlinear, data_tr.index.values, data_tr.values, epochs=1 util.plot_training_history(history, figsize=figsize_narrow, print_scores=False, print_time=1 util.print_ml_metrics(spo_nonlinear, data_tr.index.values, data_tr.values, label='training' util.print_ml_metrics(spo_nonlinear, data_ts.index.values, data_ts.values, label='test')
```


Training time: 52.3219 sec

R2: -0.29, MAE: 0.23, RMSE: 0.28 (training)

R2: -0.29, MAE: 0.23, RMSE: 0.28 (test)

The gap between the approach is basically closed

```
In [45]: r_ts_spo_nonlinear = util.compute_regret(prb, spo_nonlinear, data_ts.index.values, data_ts.v
 fig = util.plot_histogram(r_ts_spo_nonlinear, figsize=figsize, label='spo -- hidden layer',
 fig.savefig('pfl_dfl_shallow.pdf')
                                                                                                spo -- hidden layer
  0.8
                                                                                                pfl -- hidden layer
  0.6
  0.4
  0.2
  0.0
                       0.005
                                                    0.015
                                                                                  0.025
        0.000
                                      0.010
                                                                   0.020
                                                                                                 0.030
 Mean: 0.002 (spo -- hidden layer), 0.004 (pfl -- hidden layer)
```


Evening the Field

Can't we do anything about it?

- DFL predictions will always be off (more or less)
- ...But there are ways to make the approach faster

For example:

- You can use a relaxation, e.g. the <u>LP relaxation of a MILP</u>
- You can limit recomputation by <u>caching past solutions</u>
- You can warm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail

Warm Starting and Solution Caching

Warm starting simple consists in using the PFL weights to initialize θ

Since accuracy is correlated with regret, this might accelerate convergence

Warm Starting and Solution Caching

Warm starting simple consists in using the PFL weights to initialize heta

Since accuracy is correlated with regret, this might accelerate convergence

Solution caching is applicable if the feasible space is fixed

I.e. to problems in the form:

$$z^*(y) = \operatorname{argmin}_z \{ f(z) \mid z \in F \}$$

- lacktriangledown During training, we maintain a solution cache S
- Initially, we populate S with the true optimal solutions $z^*(y_i)$ for all examples
- Before computing $z^*(\hat{y})$ for the current prediction we flip a coin
- With probability p, we run the computation (and store any new solution in S)
- With probability 1-p, we solve instead $\hat{z}^*(\hat{y}) = \operatorname{argmin}_z\{f(z) \mid z \in S\}$

Speeding Up DFL

Let's use DFL with linear regression, a warm start, and a solution cache

The training time is still large, but much lower than our earlier DFL attempt

Speeding Up DFL

And the regret is even better than before!

- We are matching the more complex PFL model with a simple linear regressor
- ...And the training time is much better than before

Reflecting on What we Have

Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

- As the models become more complex we have diminishing returns
- ...But for some applications every little bit counts

Second, it may allow using simpler ML models

- Simple models are faster to evaluate
- ...But more importantly they are easier to explain
- E.g. we can easily perform feature importance analysis

Reflecting on What we Have

Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

- As the models become more complex we have diminishing returns
- ...But for some applications every little bit counts

Second, it may allow using simpler ML models

- Simple models are faster to evaluate
- ...But more importantly they are easier to explain
- E.g. we can easily perform feature importance analysis

Can we exploit this fact to maximize our advantage?

