

Министерство образования и науки, молодежи и спорта Украины Севастопольский национальный технический университет

Методические указания и контрольные задания для самостоятельной работы по дисциплине «Высшая математика» студентов инженерных и экономических специальностей

Севастополь 2011

УДК 51

Дифференциальное исчисление функций нескольких переменных. Методические указания для самостоятельной работы по дисциплине «Высшая математика» студентов инженерных и экономических специальностей / Сост. Н.Г. Плаксина. — Севастополь: Изд-во СевНТУ, 2011. — 48 с.

Целью настоящих методических указаний является помощь студенту при изучении темы: «Дифференциальное исчисление функций нескольких переменных» курса высшей математики. В них приведены варианты 30 индивидуальных заданий и подробное решение варианта-образца.

Методические указания предназначены для студентов дневной и заочной форм обучения инженерных и экономических специальностей.

Допущено учебно-методическим центром и научнометодическим Советом СевНТУ в качестве методических указаний.

Рецензенты: Амелькович В.Г., канд. физ.-мат. наук, доцент кафедры высшей математики СевНТУ;

Ледяев С.Ф., канд. техн. наук, доцент кафедры высшей математики СевНТУ.

СОДЕРЖАНИЕ

1.	Содержание варианта-образца	.4
2.	Решение варианта-образца	.5
3.	Варианты индивидуальных заданий	.24
Би	блиографический список	
исі	пользованной литературы	47

Для выполнения предложенных заданий необходимо освоить соответствующие теоретические вопросы дифференциального исчисления функций многих переменных ([1], гл. 8, $\S 8.1 - 8.19$ или [2], гл. 8, $\S 1-19$)

СОДЕРЖАНИЕ ВАРИАНТА-ОБРАЗЦА

1. Найти и изобразить на чертеже область определения функций:

a)
$$z = \sqrt{\ln \frac{x^2}{y-1}};$$
 6) $z = \frac{\sqrt{4x - y^2}}{\log_2(2 - x^2 - 2y^2)}$

- 2. Найти полное приращение Δz и полный дифференциал dz функции $z=x^2+y^2-2xy+2x-3y+4$ в точке $M_0(2;-1)$ при $\Delta x=0.02$ и $\Delta y=0.01$. Вычислить абсолютную погрешность, которая получается при замене полного приращения функции ее полным дифференциалом.
- 3. Показать, что данная функция $z=e^{-\cos(x+2y)}$ удовлетворяет данному уравнению $4\frac{\partial^2 z}{\partial x^2}=\frac{\partial^2 z}{\partial y^2}$.
 - 4. Найти производную сложной функции:

a)
$$z = \arctan \frac{x^2 + y}{2} + \ln(x + y^2)$$
,

где
$$x = u^2 v^3$$
, $y = u^3 - v^2$, $\frac{\partial z}{\partial u} - ?$ $\frac{\partial z}{\partial v} - ?$

б)
$$z = \sin^2 \frac{1}{y} \sqrt{\operatorname{tg} 2^x}$$
, где $y = e^{-\sqrt{x}}$, $\frac{\partial z}{\partial x} - ? \frac{dz}{dx} - ?$

- 5. При каких значениях постоянной $a(a \neq 0)$ функция $z=2a^2x^3y-2xy^3$ удовлетворяет уравнению Лапласа $\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial y^2}=0\,?$
 - 6. Найти экстремум функции $z = x^4 + y^4 2x^2 + 4xy 2y^2$.

- 7. Найти условный экстремум функции $z = x^2 + y^2$, если xy = 4, методом множителей Лагранжа.
- 8. Найти наименьшее и наибольшее значения функции $z = x^2 - xy + y^2 - 4x$ в замкнутой области D, ограниченной линиями x = 0, y = 0.2x + 3y - 12 = 0.
- 9. Составить уравнения касательной плоскости и нормали к поверхности $\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{1} = 1$ в точке $M_0(\sqrt{2}; \frac{3\sqrt{2}}{2}; 0)$.
- 10. Найти производную функции $z = \ln^2(x^2 + 2xy)$ в точке $M_0(1;2)$ в направлении:
- а) указанного вектора $\bar{a} = 2\bar{i} 3\bar{j}$; б) ее градиента.
- 11. Методом наименьших квадратов найти эмпирическую формулу по экспериментальным данным о значениях х и у, приведенным в таблице

х	0	1	1,5	2,1	3
У	2,9	6,3	7,9	10,0	13,2

На одном чертеже построить экспериментальные точки и аппроксимирующей функции. Вычислить среднюю квадратичную погрешность.

РЕШЕНИЕ ВАРИАНТА-ОБРАЗЦА

Найти и изобразить на чертеже область определения функций:

a)
$$z = \sqrt{\ln \frac{x^2}{y-1}};$$

b) $z = \frac{\sqrt{4x - y^2}}{\log_2(2 - x^2 - 2y^2)}$
a) $z = \sqrt{\ln \frac{x^2}{y-1}}.$

Решение

Область определения данной функции определяется из условий:

Этим условиям удовлетворяет множество точек плоскости xOy, лежащих вне параболы $y=x^2+1$, включая точки самой параболы, кроме вершины, и выше прямой y=1, кроме точек этой прямой.

6)
$$z = \frac{\sqrt{4x - y^2}}{\log_2(2 - x^2 - 2y^2)}$$

Решение

Область существования этой функции определена следующими условиями:

$$\begin{cases} 4x - y^2 \ge 0 \\ 2 - x^2 - 2y^2 > 0 \\ \log_2(2 - x^2 - 2y^2) \ne 0 \end{cases} \Leftrightarrow \begin{cases} y^2 \le 4x \\ x^2 + 2y^2 < 2 \\ 2 - x^2 - 2y^2 \ne 1 \end{cases} \Leftrightarrow \begin{cases} \frac{y^2 \le 4x}{x^2 + \frac{y^2}{2}} < 1 \Leftrightarrow \frac{y^2 \le 4x}{x^2 + \frac{y^2}{2}} < 1 \Leftrightarrow \frac{y^2 \le 4x}{x^2 + \frac{y^2}{2}} < 1 \Leftrightarrow \frac{y^2 \le 4x}{x^2 + \frac{y^2}{2}} < 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} y^2 \le 4x \\ \frac{x^2}{2} + \frac{y^2}{1} < 1, \\ \frac{x^2}{1} + \frac{y^2}{\frac{1}{2}} \ne 1 \end{cases}$$

которым удовлетворяет множество точек плоскости xOy, лежащих между параболой $y^2=4x$ и эллипсом $\frac{x^2}{2}+\frac{y^2}{1}=1$, включая точки параболы и исключая точки этого эллипса, а x^2-y^2-1

2. Найти полное приращение Δz и полный дифференциал dz функции $z=x^2+y^2-2xy+2x-3y+4$ в точке $M_0(2;-1)$ при $\Delta x=0,02$ и $\Delta y=0,01$. Вычислить абсолютную погрешность, которая получается при замене полного приращения функции ее полным дифференциалом.

Решение

По определению полное приращение функции $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$.

Для данной функции
$$\Delta z = (x + \Delta x)^2 + (y + \Delta y)^2 - 2(x + \Delta x)$$
 $(y + \Delta y) + 2(x + \Delta x) - 3(y + \Delta y) + 4 - (x^2 + y^2 - 2xy + 2x - 3y + 4) = x^2 + 2x\Delta x + \Delta x^2 + y^2 + 2y\Delta y + \Delta y^2 - 2xy - 2x\Delta y - 2y\Delta x - 2\Delta x\Delta y + 2x + 2\Delta x - 3y - 3\Delta y + 4 - x^2 - y^2 + 2xy - 2x + 3y - 4 = 2x\Delta x + \Delta x^2 + 2y\Delta y + \Delta y^2 - 2x\Delta y - 2y\Delta x - 2\Delta x\Delta y + 2\Delta x - 3\Delta y = (2x - 2y + 2)\Delta x + (2y - 2x - 3)\Delta y + (\Delta x^2 + \Delta y^2 - 2\Delta y\Delta x).$ Согласно определению $dz = (2x - 2y + 2)\Delta x + (2y - 2x - 3)\Delta y$. Обратим внимание на то, что полный дифференциал dz – главная часть полного приращения Δz , линейная относительно Δx и Δy . Так как $\Delta x = dx$, $\Delta y = dy$, то $dz = (2x - 2y + 2)dx + (2y - 2x - 3)dy$.

Поэтому $\Delta z = dz + (\Delta x^2 + \Delta y^2 - 2\Delta x \Delta y)$, очевидно, что $\Delta z \neq dz$ при $\Delta x \neq \Delta y$. dz отличается от Δz на величину $(\Delta x^2 + \Delta y^2 - 2\Delta x \Delta y) = (\Delta x - \Delta y)^2$, которая при $\Delta x \neq \Delta y$ является бесконечно малой более высокого порядка, чем Δx и Δy . Поэтому в приближенных вычислениях можно заменять Δz на dz. Величина $|\Delta z - dz|$ является абсолютной погрешностью, которая получается при замене полного приращения функции ее полным дифференциалом.

$$|\Delta z - dz| = |\Delta x^2 + \Delta y^2 - 2\Delta x \Delta y| = (\Delta x - \Delta y)^2$$
 при $\Delta x \neq \Delta y$.

Вычислим Δz , dz и абсолютную погрешность $|\Delta z - dz|$ в точке $M_0(2;-1)$ при заданных $\Delta x = 0.02$ и $\Delta y = 0.01$.

$$\Delta z = (2 \cdot 2 - 2 \cdot (-1) + 2) \cdot 0.02 + (2 \cdot (-1) - 2 \cdot 2 - 3) \cdot 0.01 + (0.02^{2} + 0.01^{2} - 2 \cdot 0.02 \cdot 0.01) = 8 \cdot 0.02 - 9 \cdot 0.01 + 0.0004 + 0.0001 - 0.0004 = 0.0701;$$

$$dz = 8 \cdot 0.02 - 9 \cdot 0.01 = 0.07.$$

$$|\Delta z - dz| = 0.0701 - 0.07 = 0.0001.$$

Обратим внимание на то, что вычисление Δz — более громоздкая задача, чем вычисление dz. Поэтому понятно, почему на практике при малых приращениях независимых переменных Δx и Δy значение Δz с достаточной точностью заменяют значением dz.

Otbet: $\Delta z = 0.0701$, dz = 0.07, $|\Delta z - dz| = 0.0001$.

3. Показать, что данная функция $z = e^{-\cos(x+2y)}$ удовлетворяет данному уравнению $4\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$.

Решение

$$z = e^{-\cos(x+2y)}.$$

$$4\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}.$$

Убедимся в том, что функция z является решением данного уравнения, т.е. обращает ее в тождество. Для этого вычислим

$$\frac{\partial^2 z}{\partial x^2} = z_{xx}'' \quad \mathbf{и} \quad \frac{\partial^2 z}{\partial y^2} = z_{yy}''.$$

Используя правило нахождения частных производных функции z = f(x, y):

$$z'_{x} = e^{-\cos(x+2y)} \cdot (-\cos(x+2y))'_{x} = e^{-\cos(x+2y)} \cdot \sin(x+2y) \cdot 1;$$

$$z''_{xx} = (e^{-\cos(x+2y)})'_{x} \cdot \sin(x+2y) + e^{-\cos(x+2y)} \cdot (\sin(x+2y))'_{x} =$$

$$= e^{-\cos(x+2y)} \cdot \sin(x+2y) \sin(x+2y) + e^{-\cos(x+2y)} \cdot \cos(x+2y) =$$

$$= e^{-\cos(x+2y)} \cdot (\sin^{2}(x+2y) + \cos(x+2y));$$

$$z'_{y} = e^{-\cos(x+2y)} \cdot (-\cos(x+2y))'_{y} = e^{-\cos(x+2y)} \cdot \sin(x+2y) \cdot 2;$$

$$z''_{yy} = (e^{-\cos(x+2y)})'_{y} \sin(x+2y) \cdot 2 + e^{-\cos(x+2y)} \cdot \cos(x+2y) \cdot 4 =$$

$$=4e^{-\cos(x+2y)}\cdot(\sin^2(x+2y)+\cos(x+2y)).$$

Обратим внимание на то, что при вычислении $z'_x(z'_y)$ y = const(x = const).

Подставим выражения z''_{xx} и z''_{yy} в данное уравнение:

$$4e^{-\cos(x+2y)} \cdot (\sin^2(x+2y) + \cos(x+2y)) =$$

$$= 4e^{-\cos(x+2y)} \cdot (\sin^2(x+2y) + \cos(x+2y)).$$

Значит, данная функция удовлетворяет данному уравнению.

4. Найти производную сложной функции:

a)
$$z = \arctan \frac{x^2 + y}{2} + \ln(x + y^2)$$
,
где $x = u^2 v^3$, $y = u^3 - v^2$, $\frac{\partial z}{\partial u} - ? \frac{\partial z}{\partial v} - ?$

Решение

Функция z = f(x, y) является функцией двух переменных x и y , которые в свою очередь зависят от u и v . Поэтому

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u};$$
$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial y} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}.$$

(Формулы аналогичны формуле производной сложной функции одной переменной).

$$\frac{\partial z}{\partial u} = \left(\frac{1}{1 + \left(\frac{x^2 + y}{2}\right)^2} \cdot x + \frac{1}{x + y^2}\right) \cdot 2uv^3 + \left(\frac{1}{1 + \left(\frac{x^2 + y}{2}\right)^2} \cdot \frac{1}{2} + \frac{2y}{x + y^2}\right) \cdot 3u^2;$$

$$\frac{\partial z}{\partial v} = \left(\frac{1}{1 + \left(\frac{x^2 + y}{2}\right)^2} \cdot x + \frac{1}{x + y^2}\right) \cdot 3u^2 v^2 + \left(\frac{1}{1 + \left(\frac{x^2 + y}{2}\right)^2} \cdot \frac{1}{2} + \frac{2y}{x + y^2}\right) \cdot (-2v).$$
б) $z = \sin^2 \frac{1}{v} \sqrt{\operatorname{tg} 2^x}$, где $y = e^{-\sqrt{x}}$, $\frac{\partial z}{\partial x} - ? \frac{dz}{dx} - ?$

Решение

Функция z = f(x, y) зависит от двух переменных x и y, а у в свою очередь зависит от x. Поэтому можно найти частную производную $\frac{\partial z}{\partial x}$, полагая y = const, и полную производную $\frac{dz}{dx}$ по формуле $\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$. $\frac{\partial z}{\partial x} = \sin^2 \frac{1}{v} (\sqrt{tg2^x})'_x = \sin^2 \frac{1}{v} \cdot \frac{1}{2\sqrt{tg2^x}} \cdot (tg2^x)' =$ $=\sin^2\frac{1}{v}\cdot\frac{1}{2\sqrt{\log^2 x}}\cdot\frac{1}{\cos^2 2^x}\cdot 2^x\cdot \ln 2;$ $\frac{dz}{dx} = \sin^2 \frac{1}{v} \cdot \frac{1}{2\sqrt{\tan^2 x}} \cdot \frac{1}{\cos^2 2^x} \cdot 2^x \cdot \ln 2 +$ $+\sqrt{\operatorname{tg2}^{x}} \cdot 2\sin\frac{1}{v}\cos\frac{1}{v}\left(-\frac{1}{v^{2}}\right) \cdot e^{-\sqrt{x}} \cdot \left(-\frac{1}{2\sqrt{x}}\right) =$ $= \frac{\sin^2 \binom{x}{y} 2^{x-1} \ln 2}{\cos^2 2^x \sqrt{\lg 2^x}} + \frac{\sqrt{\lg 2^x} \sin \frac{2}{y}}{2\sqrt{x} v^2 e^{\sqrt{x}}}.$

5. При каких значениях постоянной $a(a \neq 0)$ функция $z=2a^2x^3y-2xy^3$ удовлетворяет уравнению Лапласа $\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial y^2}=0\,?$

Репление

$$z = 2a^2x^3y - 2xy^3$$

Вычислим z''_{xx} и z''_{yy} и подставим их в уравнение Лапласа:

$$z'_{x} = 6a^{2}x^{2}y - 2y^{2}, z'_{xx} = 12a^{2}xy,$$

$$z'_{y} = 2a^{2}x^{3} - 6xy^{2}, z''_{yy} = -12xy,$$

$$\frac{\partial^{2}z}{\partial x^{2}} + \frac{\partial^{2}z}{\partial y^{2}} = 0; 12a^{2}xy - 12xy = 0,$$

$$a^{2} - 1 = 0, a = \pm 1.$$

Otbet: $a = \pm 1$.

6. Найти экстремум функции $z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Решение.

$$z = x^4 + y^4 - 2x^2 + 4xy - 2y^2.$$

Данную функцию будем исследовать на экстремум по следующему правилу:

- 1) найдем область определения функции z;
- 2) найдем z'_x и z'_y ; рассмотрим случаи, когда z'_x и z'_y равны 0 или не существуют;
- 3) для каждой точки M_0 вычисляем

$$\begin{vmatrix} A & B \\ B & C \end{vmatrix} = AC - B^{2}.$$

$$A = z''_{xx}(M_{0}), \quad C = z''_{yy}(M_{0}), \quad B = z''_{xy}(M_{0}).$$

Если $AC-B^2>0$, то в критической точке M_0 есть экстремум, а именно максимум, если A и C<0, и минимум, если A и C>0.

Если $AC - B^2 < 0$, то в критической точке нет экстремумов.

Если $AC - B^2 = 0$, то никакого заключения о характере критической точки сделать нельзя и требуется дополнительное исследование.

4) вычислим значение z в каждой точке экстремума.

Для данной функции вся координатная плоскость является областью определения.

Найдем
$$z'_x$$
 и z'_y : $z'_x = 4x^3 - 4x + 4y$, $z'_y = 4y^3 + 4x - 4y$.

Так как функция z дифференцируема всюду на xOy, то образуем систему:

$$\begin{cases} z_x' = 0 \\ z_y' = 0 \end{cases}$$
 (случай, когда z_x' и z_y' не существуют,

отсутствует);

$$\begin{cases} 4x^3 - 4x + 4y = 0 \\ 4y^3 + 4x - 4y = 0 \end{cases}$$

После сложения уравнений имеем $4x^3 + 4y^3 = 0$ или x = -y .

Подставим значение х в первое уравнение системы:

$$-4y^3 + 4y + 4y = 0$$
, $y(2-y^2) = 0$, $y_1 = 0$, $y_{2,3} = \pm \sqrt{2}$.

Тогда
$$x_1 = 0$$
, $x_{2,3} = \pm \sqrt{2}$.

Итак, получим три критические точки:

$$P_1(0;0), P_2(\sqrt{2};-\sqrt{2}), P_3(-\sqrt{2};\sqrt{2}).$$

Вычислим производные второго порядка:

$$z''_{xx} = 12x^2 - 4$$
, $z''_{xy} = 4$, $z''_{yy} = 12y^2 - 4$.

Посчитаем $\begin{vmatrix} A & B \\ B & C \end{vmatrix}$ для каждой критической точки:

a)
$$P_1(0;0)$$
: $A = z''_{xx}(0;0) = -4$; $C = z''_{yy}(0;0) = -4$; $B = 4$.

$$\begin{vmatrix} A & B \\ B & C \end{vmatrix} = \begin{vmatrix} -4 & 4 \\ 4 & -4 \end{vmatrix} = 16 - 16 = 0$$
 — никакого заключения о точке

 $P_1(0;0)$ по этому правилу сделать нельзя и требуется дополнительное исследование.

6)
$$P_2(\sqrt{2}; -\sqrt{2})$$
: $A = z''_{xx}(\sqrt{2}; -\sqrt{2}) = 12 \cdot 2 - 4 = 20; B = 4;$

$$C = z''_{yy}(\sqrt{2}; -\sqrt{2}) = 12 \cdot 2 - 4 = 20; \begin{vmatrix} A & B \\ B & C \end{vmatrix} = \begin{vmatrix} 20 & 4 \\ 4 & 20 \end{vmatrix} > 0$$
 — в точке

 P_2 есть экстремум, а именно минимум, так как A и C > 0.

B)
$$P_3(-\sqrt{2};\sqrt{2})$$
: $A = z''_{xx}(-\sqrt{2};\sqrt{2}) = 20$; $B = 4$;

$$C = z''_{yy}(-\sqrt{2};\sqrt{2}) = 20; \ \begin{vmatrix} A & B \\ B & C \end{vmatrix} = \begin{vmatrix} 20 & 4 \\ 4 & 20 \end{vmatrix} > 0$$
 — в точке P_3 есть

экстремум, а именно минимум, так как A и C > 0.

В заключение вычислим $z_{\min}=z(P_2)=z(P_3)=4+4-4+4\cdot(-2)-2\cdot2=-8.$

Otbet: $z_{\min} = -8$.

7. Найти условный экстремум функции $z = x^2 + y^2$, если xy = 4, методом множителей Лагранжа.

Решение

Данную функцию исследуем на условный экстремум методом множителей Лагранжа, согласно которому:

- 1) образуем функцию Лагранжа $z^*(x,y) = f(x,y) + \lambda \varphi(x,y)$, где $\varphi(x,y) = 0$ уравнение связи между независимыми переменными x и y;
- 2) составим необходимые условия экстремума

$$\begin{cases} z *'_{x} = 0 \\ z *'_{y} = 0 \\ \varphi(x, y) = 0 \end{cases}.$$

В результате решения этой системы получаются критические точки.

3) Составим выражение для d^2z по формуле:

$$d^{2}z = z *_{xx} '' dx^{2} + 2z *_{xy} '' dxdy + z *_{yy} '' dy^{2}.$$

Определим знак d^2z^* в каждой критической точке M_0 .

Если $d^2z^*(M_0)>0$, то критическая точка M_0 является точкой условного минимума; если $d^2z^*(M_0)<0$, то

критическая точка M_0 является точкой условного максимума; если $d^2z^*(M_0)=0$, то требуется дополнительное исследование этой критической точки.

4) Вычислим значение *z* в точках условного экстремума.

В данной задаче
$$z=\underbrace{x^2+y^2}_{f(x,y)}$$
 и уравнение связи $\underbrace{xy-4}_{\varphi(x,y)}=0$.

Составим функцию Лагранжа:

$$z^*(x,y) = x^2 + y^2 + \lambda(xy - 4)$$
, где λ – множитель Лагранжа.

2. Составим систему необходимых условий условного экстремума:

$$\begin{cases} z *'_x = 2x + \lambda y = 0 \\ z *'_y = 2y + \lambda x = 0 \Leftrightarrow \begin{cases} \lambda = -\frac{2x}{y} \\ \lambda = -\frac{2y}{x} \Leftrightarrow \begin{cases} \frac{2x}{y} = \frac{2y}{x} \Leftrightarrow \begin{cases} x^2 = y^2 \\ xy = 4 \end{cases} \end{cases} \\ xy = 4 \end{cases}$$

или
$$\begin{cases} |x| = |y| \\ x^4 = 16 \end{cases}$$
.

Отсюда $x = \pm 2$, $y = \pm 2$.

Обратим внимание на то, что из первого и второго уравнения определяем λ , их значение приравниваем и сводим систему трех уравнений к системе двух уравнений.

В результате получим две критические точки $M_1(2;2)$ и $M_2(-2;-2)$.

3. Составим выражение d^2z^* :

$$z^{*''}_{xx} = 2; \ z^{*''}_{xy} = \lambda; \ z^{*''}_{yy} = 2;$$

$$d^{2}z^{*} = 2dx^{2} + 2\lambda dxdy + 2dy^{2} = 2(dx^{2} + dy^{2}) + 2\lambda dxdy.$$

Знак d^2z^* зависит от знака выражения $2\lambda dxdy$.

Зависимость между dx и dy можно найти, вычислив $d\varphi$: $d\varphi = d(xy-4) = (xy-4)'_x dx + (xy-4)'_y dy = y dx + x dy,$ y dx + x dy = 0, т.к. $\varphi(x,y) = 0$.

$$dx = -\frac{xdy}{y}, \ y \neq 0.$$

$$d^{2}z^{*} = 2(dx^{2} + dy^{2}) + 2\lambda(-\frac{x}{y})dy^{2}.$$

В точке
$$M_1(2;2)$$
 имеем: $\lambda = -\frac{2 \cdot 2}{2} = -2$.

$$d^{2}z*(M_{1}) = 2(dx^{2} + dy^{2}) - 4(-\frac{2}{2})dy^{2} = 2dx^{2} + 6dy^{2} > 0.$$

Значит, точка $M_1(2;2)$ является точкой условного минимума.

В точке
$$M_2(-2;-2)$$
 имеем: $\lambda = -\frac{2 \cdot (-2)}{-2} = -2$.

$$d^{2}z*(M_{2}) = 2(dx^{2} + dy^{2}) - 4(-\frac{2}{2})dy^{2} = 2dx^{2} + 6dy^{2} > 0.$$

Значит, точка $M_2(-2;-2)$ является точкой условного минимума.

В заключение вычислим $z_{wa.min} = z(M_1) = z(M_2) = 4 + 4 = 8$.

Построим график $z = x^2 + y^2$ и укажем точки условного минимума.

Otbet: $z_{vcr, min} = 8$.

8. Найти наименьшее и наибольшее значения функции $z = x^2 - xy + y^2 - 4x$ в замкнутой области D, ограниченной линиями: x = 0, y = 0, 2x + 3y - 12 = 0.

Решение

Наименьшее и наибольшее значения данной функции в заданной области D определим по правилу:

- 1) Найти критические точки, лежащие внутри области, и вычислить значения функции в этих точках (не вдаваясь в исследование, будет ли в них экстремум и какой).
- 2) Найти наибольшие и наименьшие значения функции на линиях, образующих границу области D.
- 3) Из всех найденных значений выбрать самое большое и самое малое (это соответственно будут $z_{nau\delta}$, и $z_{nau\infty}$).

1) Найдем z'_{x} и z'_{y} , и приравняем их нулю:

$$\begin{cases} z'_x = 2x - y - 4 = 0; \\ z'_y = -x + 2y = 0; \end{cases}$$

$$\begin{cases} x = 2y; \\ 2x - y = 4. \end{cases}$$

Получим критическую точку $M(\frac{8}{3};\frac{4}{3})$, принадлежащую области D.

$$z(M) = \left(\frac{8}{3}\right)^2 - \frac{8}{3} \cdot \frac{4}{3} + \left(\frac{4}{3}\right)^2 - 4 \cdot \frac{8}{3} = -\frac{16}{3}.$$

2) Теперь найдем наибольшие и наименьшие значения данной функции z = f(x, y) на линиях, образующих границу области D. Граница есть [OB] + [BA] + [OA].

$$[OB]: x = 0, z(0, y) = y^2, \text{ где } y \in [0,4].$$

Решим задачу о нахождении наибольшего и наименьшего значения функции z(0, y) на отрезке [0;4]:

$$z'_y(0;y) = (y^2)' = 2y, \quad z'_y(0;y) = 0 \Rightarrow y = 0, \quad z(0;0) = \underline{0}, \quad z(0,4) = \underline{16}.$$
 $[BA]: x = \frac{1}{2}(12-3y), \text{ где } y \in [0;4].$
 $z(x,y) = z(\frac{1}{2}(12-3y),y) = \frac{1}{4}(12-3y)^2 - \frac{1}{2}(12-3y) \cdot y + y^2 - 4 \cdot \frac{1}{2}(12-3y) = \frac{19}{4}y^2 - 18y + 12, \text{ где } y \in [0;4].$
 $z'_y = \frac{19}{2}y - 18 = 0, \quad y = \frac{36}{19}$ критическая точка, принадлежащая $[0;4].$

Находим
$$z\left(\frac{60}{19}; \frac{36}{19}\right) = -\frac{96}{19}, \quad z(6;0) = \underline{12}, \quad z(0;4) = \underline{16}.$$
 [*OA*]: $y = 0, \quad x \in [0;6];$

$$z(x,0) = x^2 - 4x$$
, где $x \in [0;6]$;

Решение.

$$z'_{x}(x,0) = 2x - 4 = 0$$
, $x = 2$ – критическая точка.

$$z(2,0) = 4 - 4 \cdot 2 = \underline{-4}, \quad z(0,0) = \underline{0}, \quad z(6,0) = \underline{12}.$$

Из всех подчеркнутых значений самое маленькое - $\left(-\frac{96}{19}\right)$, а самое большое -16.

Значит,
$$z_{наи\delta} = z(0,4) = z(B) = 16$$
 (на границе области), $z_{_{наим}} = -\frac{16}{3}$. (внутри области).

9. Составить уравнения касательной плоскости и нормали к поверхности $\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{1} = 1$ в точке $M_0\bigg(\sqrt{2}; \frac{3\sqrt{2}}{2}; 0\bigg)$.

Если поверхность задана уравнением F(x, y, z) = 0, а точка

$$M_0\!\!\left(\sqrt{2};\!rac{3\sqrt{2}}{2};\!0
ight)$$
 лежит на поверхности, то уравнение

касательной плоскости имеет вид:

$$F'_x(M_0)(x-x_0) + F'_y(M_0)(y-y_0) + F'_z(M_0)(z-z_0) = 0,$$

а нормаль к этой поверхности в той же точке определяется уравнениями:

$$\frac{x - x_0}{F_x'(M_0)} = \frac{y - y_0}{F_y'(M_0)} = \frac{z - z_0}{F_z'(M_0)}.$$

В данной задаче
$$F(x, y, z) = \frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{1} - 1$$
.

Вычислим F'_{x} , F'_{y} , F'_{z} , в точке M_{0} :

$$F'_x(M_0) = \frac{1}{2}x|_{M_0} = \frac{1}{2}\cdot\sqrt{2} = \frac{\sqrt{2}}{2};$$

$$F'_{y}(M_{0}) = \frac{2}{9}y|_{M_{0}} = \frac{2 \cdot 3\sqrt{2}}{9 \cdot 2} = \frac{\sqrt{2}}{3};$$

$$F_z'(M_0) = -2z\Big|_{M_0} = 0.$$

Составим уравнение касательной плоскости к заданной поверхности в заданной точке M_0 :

$$\frac{\sqrt{2}}{2}(x-\sqrt{2}) + \frac{\sqrt{2}}{3}\left(y - \frac{3\sqrt{2}}{2}\right) + 0(z-0) = 0,$$

$$\frac{\sqrt{2}}{2}x-1+\frac{\sqrt{2}}{3}y-1=0$$
, $3x+2y-6\sqrt{2}=0$ (касательная плоскость оказалась парадлельной оси Q_{7})

оказалась параллельной оси Oz).

Нормаль к данной поверхности в точке M_0 определяется

уравнениями:
$$\frac{x-\sqrt{2}}{\frac{\sqrt{2}}{2}} = \frac{y-\frac{3\sqrt{2}}{2}}{\frac{\sqrt{2}}{3}} = \frac{z}{0}$$
.

10. Найти производную функции $z = \ln^2(x^2 + 2xy)$ в точке $M_0(1;2)$ в направлении: а) указанного вектора $\bar{a} = 2\bar{i} - 3\bar{j}$; б) ее градиента.

Решение.

Производную функции z=f(x,y) в направлении \bar{l} можно вычислить по формуле: $\frac{\partial z}{\partial l}=z_x'\cos\alpha+z_y'\sin\alpha$, где — угол между направлением \bar{l} и осью Ox .

Для данной функции

$$z'_{x} = 2\ln(x^{2} + 2xy) \cdot \frac{1}{x^{2} + 2xy} \cdot (2x + 2y) = 4\frac{(x + y)\ln(x^{2} + 2xy)}{x(x + 2y)};$$

$$z'_{y} = 2\ln(x^{2} + 2xy) \cdot \frac{1}{x^{2} + 2xy} \cdot 2x = 4\frac{\ln(x^{2} + 2xy)}{x + 2y}.$$

Рассмотрим два случая:

а) пусть направление \bar{l} совпадает с вектором $\bar{a}=2\bar{i}-3\bar{j}$.

$$\begin{split} &\left|\overline{a}\right| = \sqrt{4+9} = \sqrt{13} \;,\; \cos\alpha = \frac{2}{\sqrt{13}} \;,\; \sin\alpha = -\frac{3}{\sqrt{13}} \;,\\ &z_x'(M_0) = 4\frac{\ln(1+4)}{1+4} \cdot (1+2) = \frac{12}{5}\ln 5 \;,\quad z_y'(M_0) = 4\frac{\ln 5}{5} = \frac{4}{5}\ln 5 \;,\\ &\left.\frac{\partial z}{\partial a}\right|_{M_0} = \frac{12}{5}\ln 5 \cdot \frac{2}{\sqrt{13}} - \frac{4}{5}\ln 5 \cdot \frac{3}{\sqrt{13}} = \frac{12\sqrt{13}}{65}\ln 5 \end{split} \tag{Это скорость изменения скалярного поля, заданного функцией z , в направлении вектора \overline{a} .$$

б) Теперь вычислим производную данной функции в точке M_0 в направлении градиента этой функции. Градиент — это вектор, направленный в сторону наискорейшего возрастания функции и по длине равный $\frac{\partial z}{\partial l}$. Поэтому $\frac{\partial z}{\partial l} = \left|\overline{grad\ z}\right|$.

$$\overline{gradz}\Big|_{M_0} = (z'_x(M_0), z'_y(M_0)) = (\frac{12}{5}\ln 5; \frac{4}{5}\ln 5),$$

$$\left. \frac{\partial z}{\partial l} \right|_{M_0} = \left| \overline{grad} \, \overline{z} \right|_{M_0} = \sqrt{\left(\frac{12}{5} \ln 5 \right)^2 + \left(\frac{4}{5} \ln 5 \right)^2} = \frac{4\sqrt{10}}{5} \ln 5,$$

если \bar{l} совпадает с направлением градиента функции $z = \ln^2(x^2 + 2xy)$.

Otbet:
$$\frac{\partial z}{\partial a}\Big|_{M_0} = \frac{12\sqrt{13}}{65}, \ \frac{\partial z}{\partial l}\Big|_{M_0} = \frac{4\sqrt{10}}{5}\ln 9.$$

11. Методом наименьших квадратов найти эмпирическую формулу по экспериментальным данным о значениях x и y, приведенным в таблице

х	0	1	1,5	2,1	3
У	2,9	6,3	7,9	10,0	13,2

На одном чертеже построить экспериментальные точки и график аппроксимирующей функции. Вычислить среднюю квадратичную погрешность.

Построим точки $(x_i, y_i)(i = \overline{1,5})$ на координатной плоскости

xOy. Они оказались расположенными примерно на одной прямой. Это означает, что между переменными x и y выполняется линейная зависимость и искомая функция (аппроксимирующая) отыскивается в виде $\varphi(x) = a_1 \cdot x + a_0$.

Чтобы прямая $\varphi(x) = a_1 \cdot x + a_0$ лежала по возможности ближе к каждой точке, необходимо, чтобы

$$\sum_{i=1}^{n} (\varphi(x_i) - y_i)^2 = \sum_{i=1}^{n} (a_i x_i + a_0 - y_i)^2 = F(a_1, a_0) \to \min.$$

В точке минимума выполняются необходимые условия экстремума:

$$\begin{cases} F'_{a_1} = 0, \\ F'_{a0} = 0. \end{cases}$$

Эта система в развернутом виде выглядит следующим образом:

$$\begin{cases} a_1 \sum_{i=1}^n x_i^2 + a_0 \sum_{i=1}^n x_i = \sum_{i=1}^n x_i \ y_i, \\ a_1 \sum_{i=1}^n x_i + a_0 \cdot n = \sum_{i=1}^n y_i \end{cases}$$
 и называется системой нормальных

уравнений для нахождения a_1 и a_0 . Для данной задачи все промежуточные вычисления сведем в таблицу:

i	X_i	y_i	x_i^2	$x_i y_i$
1	0	2,9	0	0,00
2	1	6,3	1	6,30
3	1,5	7,9	2,25	11,85
4	2,1	10,0	4,41	21,00
5	3	13,2	9,00	36,90
	$\sum = 7.6$	$\sum = 40,3$	$\sum = 16,66$	$\sum = 78,75$

Составим систему нормальных уравнений для нахождения a_1 и a_0 :

$$\begin{cases} 16,66a_1 + 7,6a_0 = 78,75, \\ 7,6a_1 + 5a_0 = 40,3. \end{cases}$$

Применим формулы Крамера:
$$a_0 = \frac{\Delta_{a_0}}{\Delta}$$
; $a_1 = \frac{\Delta_{a_1}}{\Delta}$.
$$\Delta = \begin{vmatrix} 16,66 & 7,6 \\ 7,6 & 5 \end{vmatrix} = 25,540; \Delta_{a_0} = \begin{vmatrix} 16,66 & 78,75 \\ 7,6 & 40,3 \end{vmatrix} = 72,898;$$

$$\Delta_{a_1} = \begin{vmatrix} 78,75 & 7,6 \\ 40,3 & 5 \end{vmatrix} = 87,470.$$

Отсюда $a_0 = 2,86$; $a_1 = 3,42$.

Таким образом, искомая функция имеет вид $\varphi(x) = 3,42x + 2,86$.

Качество эмпирической формулы, т.е. степень соответствия ее опытным данным оценивается средней квадратичной погрешностью:

$$\delta = \sqrt{\frac{\sum_{i=1}^n v_i^2}{n}},$$
 где $v_i = \varphi(x_i) - y_i = (a_i x_i + a_0) - y_i$.

Вычисления сведем в таблицу:

i	X_i	y_i	$\varphi(x_i)$	v_i	v^2_i
1	0	2,9	2,86	-0,04	0,0016
2	1,0	6,3	6,28	-0,02	0,0004
3	1,5	7,9	7,99	0,09	0,0081
4	2,1	10,0	10,04	0,04	0,0016
5	3,0	13,2	13,12	-0,08	0,0064

$$\sum_{i=1}^{5} v_i^2 = 0,0016 + 0,0004 + 0,0081 + 0,0016 + 0,0064 = 0,0181,$$

$$\sum_{i=1}^{5} \frac{v_i^2}{5} = 0,0036; \quad \delta = \sqrt{0,0036} = 0,06.$$

В заключение можно построить прямую $\varphi(x) = 3,42x + 2,86$ на одном чертеже с экспериментальными точками.

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

Структура задания

- 1. Найти и изобразить на чертеже область определения функции z = f(x, y) .
- 2. Найти полное приращение Δz и полный дифференциал dz функции z=f(x,y) в точке $M_0(x_0,y_0)$ при заданных Δx и Δy . Вычислить абсолютную погрешность, которая получается при замене полного приращения функции ее полным дифференциалом.
- 3. Показать, что заданная функция z = f(x, y) удовлетворяет данному уравнению.
 - 4. Найти производную сложной функции.
- 5. При каком значении постоянной $a(a \neq 0)$ функция z = f(x,y) удовлетворяет уравнению Лапласа $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$?
 - 6. Найти экстремум функции z = f(x, y).
- 7. Найти условный экстремум функции z = f(x, y) методом множителей Лагранжа.
- 8. Найти наименьшее и набольшее значения функции z = f(x, y) в заданной замкнутой области D.
- 9. Составить уравнения касательной плоскости и нормали к данной поверхности в указанной точке $M_{\,0}$
- 10. Найти производную функции z = f(x, y) точке M_0 в направлении: а) указанного вектора \bar{a} ; б) ее градиента.
- 11. Методом наименьших квадратов найти эмпирическую формулу по экспериментальным данным о значениях x и y, приведенным в таблице. На одном чертеже построить экспериментальные точки и график аппроксимирующей функции. Вычислить среднюю квадратичную погрешность.

ВАРИАНТ 1

1. a)
$$z = \sqrt{x - \sqrt{y}} + \frac{4}{\sqrt{x^2 + y^2 - 1}}$$
; 6) $z = \arcsin(x + y)$.

2.
$$z = 2x^2 + y^2 + 10x$$
, $M_0(1,2)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = ytg(x^2 - y^2)$$
; $\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}$.

4. a)
$$z = \ln(x^2 + y^2)$$
, где $x = \arcsin t$, $y = e^{-t^2} \cdot \frac{dz}{dt} - ?$

б)
$$z = x^2 e^y$$
, где $y = \sin^2 2x$. $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = x^3 + axy^2$$
.

6.
$$z = 2x^2 + 5y^2 + 3x + 2y - 1$$
.

7.
$$z = \frac{3}{x} + \frac{2}{y}$$
, если $\frac{1}{x^2} + \frac{1}{y^2} = 1$.

8.
$$z = 6xy - 9x^2 - 9y^2 + 4x + 4y$$
, $D: 0 \le x \le 1$; $0 \le y \le 2$.

9.
$$x^2 + 2z^2 - 4y^2 = 6$$
, $M_0(2;2;3)$.

10.
$$z = e^x + xy + y^2$$
, $M_0(0;1)$, $\bar{a} = 2\bar{i} - j$.

11.

	1,1				
У	1,2	2,4	4,9	5,4	6,5

1. a)
$$z = x + \arcsin y$$
; 6) $z = \sqrt{\ln(x+y)}$.

2.
$$z = x^2 - 3xy + y$$
, $M_0(-1;1)$, $\Delta x = 0.2$, $\Delta y = 0.1$.

3.
$$z = \ln(e^x + e^y)$$
; $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$.

4. a)
$$z = x^2 + xy + y^2$$
, где $x = \sin^2 t$, $y = \cos 2t$. $\frac{dz}{dt} - ?$

б)
$$z = x \sin^2 2y - y \cos^2 2x$$
, где $y = \sqrt[3]{x^4}$. $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = ax^2y - y^3$$
.

6.
$$z = x^2 + xy + y^2 + x - y + 1$$
.

7.
$$z = 2x^2 + y^2$$
, если $x + y = 1$.

8.
$$z = 3x^2 + 3y^2 - 2x - 2y + 2$$
, $D: x \ge 0$; $y \ge 0$; $x + y \le 1$.

9.
$$x^2 + z^2 + y^2 = 1$$
, $M_0 \left(\frac{1}{2}; \frac{1}{2}; \frac{1}{\sqrt{2}} \right)$.

10.
$$z = \sqrt{xy} + y^2 + x$$
, $M_0(1;4)$, $\overline{a} = \overline{M_0 N}$, где $N(2;1)$.

х	1,2	2,1	3,3	4,2	5,3
У	1,4	2,3	4,8	5,3	6,4

ВАРИАНТ 3

1. a)
$$z = \sqrt{y} + \sqrt{1 - x^2 - y^2}$$
; 6) $z = \ln x + \ln \sin y$.

2.
$$z = 8y - x^2 - y^2$$
, $M_0(-1,2)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = \frac{y}{(x^2 - y^2)^5}$$
; $y \cdot \frac{\partial z}{\partial x} + x \cdot \frac{\partial z}{\partial y} = \frac{xz}{y}$.

4. a)
$$z = \arctan(xy)$$
, где $x = \frac{1}{t}$, $y = t - \sqrt{t} \cdot \frac{dz}{dt} - ?$

б)
$$z = x^2 \ln y$$
, где $x = \frac{u}{1-v}$, $y = 3u - 3v$. $\frac{\partial z}{\partial u} - ?$ $\frac{\partial z}{\partial v} - ?$

5.
$$z = x^4 + y^4 + ax^2y^2$$
.

6.
$$z = 5x^2 - 3y^2 + 2x - 3y + 1$$
.

7.
$$z = xy$$
, если $x - 3y = 6$.

8.
$$z = 3x^2 + 3y^2 - x - y + 1$$
, $D: 1 \le x \le 6$; $y \ge 0$; $x - y \ge 1$.

9.
$$e^z - z + xy = 3$$
, $M_0(2;1;0)$.

10.
$$z = \ln(2x^2 + 3y^2)$$
, $M_0(1;1)$, $\bar{a} = 3\bar{i} + 3\bar{j}$.

11.

х	1,1	2,1	3,4	4,2	5,2
У	1,3	2,3	4,5	5,1	6,4

ВАРИАНТ 4

1. a)
$$z = \frac{1}{\sqrt{x-2}} + \frac{1}{\sqrt{y-1}}$$
; 6) $z = \sqrt{x \sin y}$.

2.
$$z = 3x^2 + y^2 + xy$$
, $M_0(1,-2)$, $\Delta x = 0,2$, $\Delta y = 0,1$.

3.
$$z = y \ln(x^2 - y^2)$$
; $\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}$.

4. a)
$$z = xe^y + ye^{-x}$$
, где $x = \frac{\sqrt{u}}{v}$, $y = \frac{u}{\sqrt{v}} \cdot \frac{\partial z}{\partial u} - ? \frac{\partial z}{\partial v} - ?$

б)
$$z = \operatorname{arctg} \frac{x}{y}$$
, где $y = \sqrt[3]{x^2 + 1}$. $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = y^3 + ax^2y$$
.

6.
$$z = x^3 + y^2 - 6xy - 39x + 18y + 20$$
.

7.
$$z = x^2 - y$$
, если $x - 2y = 4$.

8.
$$z = x^2 + 2xy - y^2 - 4x$$
, $D: y = x + 1$, $y = 0$, $x = 3$.

9.
$$z^2 + z - 2x + y^2 - 4 = 0$$
, $M_0(1,2,1)$.

10.
$$z = \sin x + y - 3$$
, $M_0 \left(\frac{\pi}{2}; 1 \right)$, $\bar{a} = 2\bar{i} + 3\bar{j}$.

11.

х	1,1	2,1	3,4	4,2	5,2
У	1,4	2,2	4,6	5,3	6,5

1. a)
$$z = \ln x + \frac{1}{\sqrt{y-x}}$$
; 6) $z = \sqrt{x-y+2} \cdot \ln(x+y)$.

2.
$$z = 2y^2 - 4x - x^2$$
, $M_0(-1;-2)$, $\Delta x = 0,2$, $\Delta y = 0,1$.

3.
$$z = \frac{x^2}{2y} + \frac{1}{2}x + \frac{1}{x} - \frac{1}{y}$$
; $x^2 \cdot \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = \frac{x^3}{y}$.

4. a)
$$z = x^y + y^x$$
, где $x = t^2 + 5$, $y = \sqrt{3t - 1} \cdot \frac{dz}{dt} - ?$

б)
$$z = \sin \frac{\sqrt{y}}{x} - \cos^2 \frac{x}{1-y}$$
, где $y = 2^{-x}$. $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = ayx^2 - a^2y^3$$
.

6.
$$z = (x-1)^2 + 2y^2$$
.

7.
$$z = x + 2y$$
, если $x^2 + y^2 = 5$.

8.
$$z = x^2 + xy - 2$$
, $D: y \ge 4x^2 - 4$, $y \le 0$.

9.
$$z^2 - 6x + y^2 + 1 = 0$$
, $M_0(1,2,1)$.

10.
$$z = e^{xy} + \arcsin y + \cos x + 2x + y$$
, $M_0(0,0)$, $\bar{a} = \bar{i} - \bar{j}$.

Ī	х	1,2	2,1	3,3	4,2	5,3
ĺ	у	1,3	2,4	4,7	5,4	6,5

ВАРИАНТ 6

1. a)
$$z = \sqrt{4 - x^2 - y^2} + \frac{1}{x + 1}$$
; 6) $z = \sqrt{(1 + y)(1 - x^2)}$.

2.
$$z = x^2 + y^2 + 2xy$$
, $M_0(2;-1)$, $\Delta x = 0,2$, $\Delta y = 0,1$.

3.
$$z = \frac{xy}{x+y}$$
; $x \cdot \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$.

4. a)
$$z = xy + y^2 - \frac{3}{x}$$
, где $x = \cos 5t$, $y = \operatorname{tg} 3t$. $\frac{dz}{dt} - ?$

б)
$$z = \sin^3 \sqrt{x - y} + \frac{1}{\sqrt{x - y}}, \qquad \text{где}$$

 $y = \arcsin e^{-x}$. $\frac{\partial z}{\partial x} - ? \frac{dz}{dx} - ?$

5.
$$z = axv^2 - a^2x^3$$
.

6.
$$z = x^2 + y^2 - 6xy - 39x + 18y + 20$$
.

7.
$$z = 3x^2 + 2y^2$$
, если $x - 2y = 2$.

8.
$$z = 4(x - y) - x^2 - y^2$$
, $D: 2y \le 4 - x$, $x \ge 0$, $2y \ge x - 4$.

9.
$$x^2 + y^2 + z^2 - 2x + y = 2$$
, $M_0(1;1;-1)$.

10.
$$z = \arccos(xy)$$
, $M_0(\frac{1}{2}; -\frac{1}{3})$, $\bar{a} = 4\bar{i} - 3\bar{j}$.

х	1,2	2,1	3,3	4,2	5,3
У	1,4	2,5	3,9	5,2	6,4

ВАРИАНТ 7

1. a)
$$z = \sqrt{x^2 - 1} + \sqrt{1 - y^2}$$
; 6) $z = \ln\left(\frac{\ln(y - 1)}{x}\right)$.

2.
$$z = 4 - x^2 + y^2 + 2x - 4y$$
, $M_0(1,3)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = \cos^2(2x - 3y)$$
; $3 \cdot \frac{\partial z}{\partial x} + 2 \cdot \frac{\partial z}{\partial y} = 0$.

4. a)
$$z = y^2 \ln x$$
, где $x = \frac{u}{v}$, $y = u - v$. $\frac{\partial z}{\partial u} - ?$ $\frac{\partial z}{\partial v} - ?$

б)
$$z = \sin \sqrt{xy^3 - y^2}$$
, где $y = e^{-x} + x$. $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = 2axy^2 + 2a^2x^3$$
.

6.
$$z = x^2 - xy + y^2 - 3x - 2y + 1$$
.

7.
$$z = x + 2y$$
, если $x^2 + y^2 = 5$.

8.
$$z = 2x^3 + 4x^2 + y^2 - 2xy$$
, $D: y = x^2$, $y = 4$...

9.
$$x^2 - y^2 + z^2 = 4$$
, $M_0(1;1;2)$.

10.
$$z = \arcsin \frac{x^2}{y}$$
, $M_0(1;2)$, $\bar{a} = 2\bar{i} - \bar{j}$.

11.

	1,2				
У	1,3	2,5	3,8	5,3	6,6

1. a)
$$z = \sqrt{16 - x^2 - y^2} + \sqrt{\frac{x^2}{4} + \frac{y^2}{9} - 1}$$
; 6) $z = \arcsin \frac{y}{x}$.

2.
$$z = x^2 + 4y + 3y^2 - 12y$$
, $M_0(-1;-2)$, $\Delta x = 0,2$, $\Delta y = 0,1$.

3.
$$z = \sqrt{\operatorname{tg}(3x - 2y)}$$
; $3 \cdot \frac{\partial z}{\partial x} + 2 \cdot \frac{\partial z}{\partial y} = 0$.

4. a)
$$z = x^2 + xy^2$$
, где $x = e^{2t}$, $y = \sin t$. $\frac{dz}{dt} - ?$

б)
$$z = \sqrt{x^2 - y^2} + x^2 y$$
, где $x = \sqrt{u}v^2$, $y = \frac{u}{\sqrt{v}} \frac{\partial z}{\partial u} - ? \frac{\partial z}{\partial v} - ?$

5.
$$z = a^2 yx^2 + ay^3$$
.

6.
$$z = x^2 + 2y^2 - 2\ln x - 18\ln y$$
.

7.
$$z = xy$$
, если $2x + 3y = 12$.

8.
$$z = x^2 - y^2$$
, $D: x^2 + y^2 \le 1$...

9.
$$z = y + \ln \frac{x}{z}$$
, $M_0(1;1;1)$.

10.
$$z = e^{xy} + y^2 - x + x^2$$
, $M_0(0;1)$, $\overline{a} = \overline{M_0 N}$, где $N(1;2)$.

х	1,2	2,1	3,3	4,2	5,3
у	1,4	2,4	4,5	5,6	6,4

1. a)
$$z = \arcsin(x+y) + \arccos(1-x)$$
; 6) $z = \frac{\sqrt{x-\sqrt{y}}}{\sqrt{1-x^2-y^2}}$.

2.
$$z = x^2 + 9x - y^2 + 2xy$$
, $M_0(1;2)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = \frac{x}{2x - 3y}$$
; $x \cdot \frac{\partial z}{\partial x} + y \cdot \frac{\partial z}{\partial y} = 0$.

4. a)
$$z = e^{xy}(x - y)$$
, где $x = u^2 + v$, $y = uv^2$. $\frac{\partial z}{\partial u} - ? \frac{\partial z}{\partial v} - ?$

б)
$$z = \cos^2 \frac{x}{y} + x^y$$
, где $y = \sqrt{x} - x^2$. $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = a^2x^4 + a^2y^4 + ax^2y^2$$
.

6.
$$z = x^3 + 8y^3 - 6xy + 4$$
.

7.
$$z = \cos^2 x + \cos^2 y$$
, если $x + \frac{\pi}{4} = y$.

8.
$$z = xy(x + y + 1)$$
, $D: y = \frac{1}{x}$, $x = 1$, $y = 0$, $x = 2$.

9.
$$x^2 - 2y^2 + z^2 - 4x + 2z - 5 = 0$$
, $M_0(2;1;\sqrt{5})$.

10.
$$z = \ln xy + x^2 - y^2 - 2$$
, $M_0(1;1)$, $\bar{a} = 4\bar{i} - 3\bar{j}$.

х	1,1	2,3	3,4	4,1	5,4
У	1,8	2,6	3,9	5,1	6,2

ВАРИАНТ 10

1. a)
$$z = \arcsin \frac{x}{2} + \frac{\sqrt{9 - x^2 - y^2}}{x^2 + y^2 - 1}$$
;

6)
$$z = \sqrt{4 - x^2 - y^2} + \sqrt{x^2 + y^2 - 2x}$$
.

2.
$$z = x^2 + y^2 - 2xy$$
, $M_0(2;1)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = y \ln(x^2 - y^2);$$
 $y^2 \cdot \frac{\partial z}{\partial x} + xy \cdot \frac{\partial z}{\partial y} = xz.$

4. a)
$$z = \cos xy + x^2 - y$$
, где $x = 2t^2$, $y = 1 - 2t^2$. $\frac{dz}{dt} - ?$

б)
$$z = \frac{u - v}{u^2 + v^2}$$
, где $u = \frac{x}{\sqrt{y - 1}}$, $v = \frac{y^2}{\sqrt{x}}$. $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

5.
$$z = a^2x^4 + a^2y^4 - 2ax^2y^2$$
.

6.
$$z = x^3 - 3x^2 - y^2 + 6xy + 15x - 2y + 3$$
.

7.
$$z = 3x + 2y + 6$$
, если $x^2 + y^2 = 1$.

8.
$$z = x^2 - xy + y^2 - 4x$$
, $D: x = 0$, $y = 0.2x + 3y - 12 = 0$.

9.
$$x^3 + 2y^2 + z^3 - 3xyz - 1 = 0$$
, $M_0(1;1;1)$.

10.
$$z = x^2 - y^2$$
, $M_0(1;1)$, $\bar{a} = \bar{i} - 3\bar{j}$.

11.

х	1,1	2,3	3,4	4,1	5,4
У	1,7	2,7	3,7	4,9	5,9

ВАРИАНТ 11

1. a)
$$z = \sqrt{1 - x^2 + y} + \sqrt{1 - x^2 - y}$$
;

6)
$$z = \ln(4x - y^2 - 8)\ln(4 - x)$$
.

2.
$$z = x^2 + y^2 + x + 4 - xy$$
, M_0 (2;1), $\Delta x = 0.2$, $\Delta x = 0.1$.

3.
$$z = x \sin \frac{y}{x} - x^2 - y^2$$
; $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z - x^2 - y^2$.

4. a)
$$z = 2x^2 - xy^2 + y$$
, где $x = 2u - v$, $y = u + v$.

$$\frac{\partial z}{\partial u} - ? \quad \frac{\partial z}{\partial v} - ?$$

б)
$$z = \cos \frac{u}{v}$$
, где $u = \sqrt[3]{t}$, $v = \frac{1}{\sqrt{t}}$. $\frac{dz}{dt} - ?$

5.
$$z = 5ax^2y - y^3$$
.

6.
$$z = x^2 + xy + y^2 - 2x - y$$
.

7.
$$z = \frac{4}{x} + \frac{2}{y}$$
, если $\frac{1}{x^2} + \frac{1}{y^2} = 1$.

8.
$$z = x^2 + 3y^2 + x - y$$
, $D: x = 1$, $y = 1$ $x + y = 1$.

9.
$$z = \ln z - x - y + 4$$
, M_0 (1;2;1).

10.
$$z = x^3 + xy - y^2$$
, M_0 (2;-1), $\overline{a} = \overline{M_0 N}$, где N (1;1).

11.

х	1,2	2,3	3,4	4,1	5,4
У	1,6	2,7	4,1	5,2	6,1

1. a)
$$z = \frac{1}{\sqrt{x+y}} + \frac{1}{\sqrt{x-y}}$$
; 6). $z = \frac{\ln x}{\sqrt{4-x^2-y^2}}$.

2.
$$z = 4 - x^2 - y^2 + xy$$
, $M_0(1;1)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = \frac{y^2}{3x} + \arcsin(xy);$$
 $x^2 \cdot \frac{\partial z}{\partial x} - xy \cdot \frac{\partial z}{\partial y} + y^2 = 0.$

4. a)
$$z = \arctan(xy)$$
;, где $x = t^2 + 1$, $y = t^3 \cdot \frac{dz}{dt} - ?$

б)
$$z = \sin^2 \frac{u}{v}$$
, где $u = \sqrt{x}, v = \sqrt[3]{y}$ $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

5.
$$z = x^2y + xy^3 + ax^3 + ay^3$$
.

6.
$$z = x^3 + y^3 - 6xy$$
.

7.
$$z = xy$$
, если $2x - y = 4$.

8.
$$z = x^2 + 2xy - y^2 - 6x + 2y - 1$$
, $D: x = 3$; $y = 0$, $y = x + 2$.

9.
$$xz + z^2 - 2y^2 - 4y^2x - 2 = 0$$
, $M_0(1;2;1)$.

10.
$$z = xy - y^2$$
, $M_0(2;3)$, $\bar{a} = -2\bar{i} + j$.

х	1,2	2,3	3,4	4,2	5,3
У	1,8	2,7	3,9	4,9	5,8

1. a)
$$z = e^{\frac{1}{x-y}} + \sqrt{xy}$$
; 6). $z = \ln((x-1)(y+1))$

2.
$$z = x^2 + y^2 + 2xy - 2x$$
, $M_0(2,2)$, $\Delta x = 0,2$, $\Delta y = 0,1$.

3.
$$z = \sin^2(3x - 4y);$$
 $4 \cdot \frac{\partial z}{\partial x} + 3 \cdot \frac{\partial z}{\partial y} = 0.$

4. a)
$$z = \arcsin(4x^2 - t + y^3)$$
;, где $x = \sqrt{3t}$, $y = \frac{1}{t} \cdot \frac{\partial z}{\partial t} - \frac{dz}{dt} - \frac{dz}{dt}$

б)
$$z = \cos \sqrt{uv}$$
, где $u = e^{-x+y}$, $v = \frac{1}{x-y} \frac{\partial z}{\partial x} - ? \frac{\partial z}{\partial y} - ?$

5.
$$z = 3x^3 + 3y^3 - a(x^2y + xy^2)$$
.

6.
$$z = x^2 + 3y^2 - x + 18y - 4$$
.

7.
$$z = x^2 + y^2$$
, если $x + y = 2$.

8.
$$z = x^2 - 2xy - 4x + 8y$$
, $D: x \ge 0$; $y \ge 0$, $x \le 16$, $y \le 2$.

9.
$$3xyz - z^3 = 8$$
, $M_0(0;2;-2)$.

10.
$$z = \ln x + tg(x^2 + y^2)$$
, $M_0(1;1)$, $\bar{a} = -3\bar{i} + j$.

х	1,2	2,3	3,4	4,3	5,2
У	1,8	2,7	3,8	4,8	5,7

ВАРИАНТ 14

1. a)
$$z = \sqrt{x} + \arcsin y$$
; 6). $z = \frac{\sqrt{x^2 + y^2 - x}}{\sqrt{2x - x^2 - y^2}}$

2.
$$z = 2x^2 - y^2 + 2x - 3y + 5$$
, $M_0(1,-1)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = e^{xy}$$
; $x \cdot \frac{\partial z}{\partial x} + y \cdot \frac{\partial z}{\partial y} = 2xyz$.

4. a)
$$z = \ln(x^2 - y^2)$$
, где $x = u \sin v$, $y = u \cos v$, $\frac{\partial z}{\partial u} - ?\frac{\partial z}{\partial v} - ?$

б)
$$z = arctg \frac{x - y}{2}$$
, где $y = 2^{-x}$, $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = a^2(x^2y + xy^2) - 4x^3 - 4y^3$$
.

6.
$$z = xy - 3x^2 - 2y^2 + 10$$
.

7.
$$z = 2x - y + 3$$
, если $x^2 + y^2 = 1$.

8.
$$z = 3x^2 + 3y^2 - 2x - 2y + 2$$
, $D: x \ge 0$; $y \ge 0$, $x + y \le 1$.

9.
$$e^{-3z} - 6z + 3xy = 10$$
, $M_0(3;1;0)$.

10.
$$z = 5x + 10x^2y + y^5$$
, $M_0(1;2)$ $\overline{a} = M_0N$,где $N(5;1)$. 11.

х	1,2	2,3	3,5	4,2	5,3
У	1,8	2,9	3,9	4,8	5,6

1. a)
$$z = \sqrt{x - y + 2} \cdot \ln(x + y)$$
; 6). $z = \sqrt{x \sin y}$

2.
$$z = xy - x^2 + y^2 + 4$$
, $M_0(2;-1)$, $\Delta x = 0,1$, $\Delta y = 0,1$.

3.
$$z = e^{-3y-x} \sin(x+3y); \quad \frac{\partial z}{\partial x} - 3 \cdot \frac{\partial z}{\partial y} = 0$$
.

4. a)
$$z = \ln(x^2 + y^2)$$
, где $x = uv$, $y = \frac{u}{v}$, $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} - \frac{\partial z}{\partial v}$

б)
$$z = \cos\left(\sqrt{t} + \frac{x}{y}\right)$$
, где $x = tgt^2$, $y = tg^2t$, $\frac{\partial z}{\partial t} - ?$ $\frac{dz}{dt} - ?$

5.
$$z = 2a(x^4 + y^4) + x^2y^2$$
.

6.
$$z = 1 + 6x - x^2 - xy - y^2$$
.

7.
$$z = \frac{1}{x} + \frac{1}{y}$$
, если $x + y = 2$.

8.
$$z = x^2 + xy - 2$$
, $D: -y^2 \ge 4x - 4$; $y \le 0$.

9.
$$3xyz - z^3 = a^3$$
, $M_0(0; a; -a)$.

10.
$$z = \frac{x+y}{x^2+y^2}$$
, $M_0(1;2)$, $\bar{a} = \bar{i} + 2j$.

х	1,1	2,2	3,1	4,2	5,4
У	1,9	3,1	4,2	5,1	6,1

1. a)
$$z = \ln(\frac{x^2}{9} - \frac{y^2}{4} - 1) + \sqrt{x}$$
; 6). $z = \arcsin\frac{x+2}{y}$.

2.
$$z = x^2 + y^2 - 4xy$$
, $M_0(1;2)$, $\Delta x = 0,2$, $\Delta y = 0,1$.

3.
$$z = \operatorname{arctg} \frac{x}{y}$$
; $x \cdot \frac{\partial z}{\partial x} + y \cdot \frac{\partial z}{\partial y} = 0$.

4. a)
$$z = e^{x^2 + y^2}$$
, где $x = u + 3v$, $y = \frac{u}{2v}$, $\frac{\partial z}{\partial u} - ?\frac{\partial z}{\partial v} - ?$

б)
$$z = \sin^2(y - x)$$
, где $y = \cos x^2$, $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = a^2(x^3 + y^3) - x^2y - y^2x$$
.

6.
$$z = x^2 + 2xy + 4y^2 - x + 2y + 1$$
.

7.
$$z = \frac{3}{x} + \frac{2}{y}$$
, если $\frac{1}{x^2} + \frac{1}{y^2} = 1$.

8.
$$z = x^3 + y^3 - 3xy$$
, $D:0 \le x \le 2$; $0 \le x \le 3$.

9.
$$e^{-3x} - 6z + 3xy = 10$$
, $M_0(3;1;0)$.

10.
$$z = 5x + 10x^2y + y^5$$
, $M_0(1;2)$, $\overline{a} = M_0N$, где $N(5;1)$. 11.

х	1,2	2,1	3,2	4,3	5,2
У	1,9	3,1	4,2	5,1	6,1

ВАРИАНТ 17

1. a)
$$z = \arcsin(x - 2y) + \frac{1}{x - y}$$
; 6). $z = \frac{\ln(y + 1)}{\sqrt{x - y}}$.

2.
$$z = 4 - x^2 - y^2 - x - y$$
, $M_0(2;-1)$, $\Delta x = 0.1$, $\Delta y = 0.2$.

3.
$$z = tg^3(2x - 3y);$$
 $3 \cdot \frac{\partial z}{\partial x} + 2 \cdot \frac{\partial z}{\partial y} = 0.$

4. a)
$$z = e^x(y - x)$$
;, где $x = \sin^2 t$, $y = \cos t^2$, $\frac{dz}{dt} - ?$

б)
$$z = \frac{\sqrt{u-v}}{u}$$
, где $u = \frac{1}{x+y}$, $v = \sqrt[3]{x-y}$, $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

5.
$$z = a(x^3 + y^3) + x^2y + y^2x + 5$$
.

6.
$$z = 2x^2 + 5y^2 + 3x + 2y - 1$$
.

7.
$$z = xy$$
, если $x^2 + y^2 = 2$.

8.
$$z = x^2 + 2xy - y^2 - 4x$$
, $D: y = x + 1$; $y = 0, x = 3$.

9.
$$z^2 + 2xy - y^2 + 4z = 1$$
; $M_0(1;1;-4)$.

10.
$$z = \ln(x^2 + x + y^2 + xy)$$
, $M_0(0;1)$, $\bar{a} = 3\bar{i} - 4j$.

•	• /		,			•
11. <i>x</i>	1,3	2,4	3,2	4,4	5,4	
у	2,1	3,1	4,2	4,9	6,2	

1. a)
$$z = \frac{1}{x^2 + y^2 - 1} + \sqrt{x - y}$$
; 6). $z = \ln x + \ln \sin y$.

2.
$$z = x^2 + y^2 - 2xy$$
, $M_0(1,2)$, $\Delta x = 0,2$, $\Delta y = 0,1$.

3.
$$z = y^2 \sin(x^2 - y^2);$$
 $y^2 \cdot \frac{\partial z}{\partial x} + xy \cdot \frac{\partial z}{\partial y} = 2xz.$

4. a)
$$z = \frac{x+y}{2x-y}$$
, где $x = e^{t^2}t$, $y = -\frac{1}{\sqrt{t}}$, $\frac{dz}{dt} - ?$

б)
$$z = \frac{u - e^{-v}}{v + e^u}$$
, где $u = \frac{1}{x - y}$, $v = \sqrt{\frac{x + y}{2}}$, $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

5.
$$z = 5x^3 + 5y^3 - a^2xy(x + y)$$
.

6.
$$z = x^2 + xy + y^2 - 3x - 6y$$
.

7.
$$z = x^2 + 3y^2$$
, если $x + 2y = 6$.

8.
$$z = x^2 - 2xy - y^2 + 4x + 1$$
, $D: x + y = 1$; $x = -3$, $y = 0$.

9.
$$x^2 + 2y^2 + z^2 - 8xz + 4 = 0$$
; $M_0(1;1;1)$.

10.
$$z = \ln(x^2 + y^2)$$
, $M_0(1;1)$, $\bar{a} = 3\bar{i} - 4j$.

х	1,3	2,4	3,2	4,4	5,4
У	2,1	3,0	3,1	5,1	6,1

1. a)
$$z = \ln(x^2 - 3y) + \sqrt{x + 2}$$
; 6). $z = \sqrt{\sin x}$.

2.
$$z = 2x^2 + 3y^2 + xy + x - 2$$
, $M_0(2;-1)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = \operatorname{arctg} \frac{y}{x}$$
; $x \cdot \frac{\partial z}{\partial x} + y \cdot \frac{\partial z}{\partial y} = 0$.

4.a)
$$z = \cos(x + 2y) - \sin(2x - y)$$
,

где
$$x = u^2 - v$$
, $y = v^2 - u$, $\frac{\partial z}{\partial u} - ?$, $\frac{\partial z}{\partial v} - ?$

б)
$$z = \frac{1}{3x - 2y + t^2}$$
, где $y = \sqrt[3]{t}$, $x = tg^3 t$, $\frac{\partial z}{\partial t} - ?$ $\frac{dz}{dt} - ?$

5.
$$z = 2y^3 - 5a^2yx^2$$
.

6.
$$z = x^3 + y^3 + 9xy + 3$$
.

7.
$$z = x^2 + y^2$$
, если $2x + y = 2$.

8.
$$z = x^2 - xy + y^2 + 3x - 2y + 1$$
,

$$D: x = 0; y = 0, y = 0.2x + 3y = 12.$$

9.
$$2xz + z^2 - y^2 + x^2 - 3 = 0$$
; $M_0(1;1;1)$.

10.
$$z = xy^2 - x^2$$
, $M_0(2;1)$, $\bar{a} = 2\bar{i} - 3j$.

х	1,2	2,5	3,6	4,2	5,5
у	2,0	3,1	4,2	5,1	6,2

ВАРИАНТ 20

a)
$$z = \arccos \frac{x}{2} + \sqrt{4 - x^2 - y^2}$$
; 6). $z = \frac{1}{\sqrt{(1 - y^2)(x^2 - 1)}}$.

2.
$$z = x^2 + y^2 + x - 2y$$
, $M_0(1;1)$, $\Delta x = 0,2$, $\Delta y = 0,1$.

3.
$$z = \sqrt{x^2 - 3y^2}$$
; $3y \cdot \frac{\partial z}{\partial x} + x \cdot \frac{\partial z}{\partial y} = 0$.

4. a)
$$z = \cos(xy)$$
, где $x = \frac{u+v}{2}$, $y = \frac{u-v}{3}$, $\frac{\partial z}{\partial u} - ?$, $\frac{\partial z}{\partial v} - ?$

б)
$$z = tg^3 \frac{x}{y}$$
, где $x = \sqrt{\frac{x-1}{x+1}}$, $\frac{\partial z}{\partial x} - ?, \frac{dz}{dx} - ?$

5.
$$z = 3y^3 + 7ayx^2$$
.

6.
$$z = x^3 - 3xy - y^3 + 5$$
.

7.
$$z = xy$$
, если $x + 2y = 7$.

8.
$$z = \frac{1}{2}x^2 - xy$$
, $D: y = \frac{1}{2}x^2$, $y = 3$.

9.
$$x^2 - 3xz^2 + z - y^2 = -2$$
; $M_0(2;1;1)$.

10.
$$z = \ln(x + y^2)$$
, $M_0(0;1)$, $\overline{a} = 3\overline{i} + 2j$.

I	х	1,1	2,3	3,2	4,4	5,3
ĺ	У	2,1	3,2	4,9	5,1	6,3

ВАРИАНТ 21

a)
$$z = \ln(x - y) + e^{\frac{1}{x - 2}}$$
; 6). $z = \frac{\sqrt{9 - x^2 - y^2}}{\sqrt{x^2 + y^2 - 4}}$.

2.
$$z = x^2 + \frac{1}{2}y^2 + 2x + 3y - 12$$
, $M_0(-1-;1)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = xy + \arctan \frac{y}{x}$$
; $x \cdot \frac{\partial z}{\partial x} + y \cdot \frac{\partial z}{\partial y} = 0$.

4. a)
$$z = y \ln(x^2 - 2)$$
, где $x = e^{2t} + 1$, $y = 3e^t - 2$, $\frac{dz}{dt} - ?$

б)
$$z = \frac{x - y}{x^2 + y^2}$$
, где $x = \sin^2 v$, $y = \cos u^2$, $\frac{\partial z}{\partial u} - ?$, $\frac{\partial z}{\partial v} - ?$

5.
$$z = 3x^3 - a^2xy^2$$
.

6.
$$z = (x^2 - 2)^2 - 2y^2$$
.

7.
$$z = xy^2$$
, если $2y - 3x = 1$.

8.
$$z = x^2 - 2xy - y^2 + 4x + 8$$
, $D: x = 2$, $y = 4$, $x + y = 2$, $x = 0$

9.
$$z^3 - 3xyz = 8$$
; $M_0(2;0;2)$

10.
$$z = 2\sin 2x - y^2 + 4x$$
, $M_0(0;1)$, $\bar{a} = 5\bar{i} - 2j$

11.

1						
	\mathcal{X}	1,2	2,2	3,3	4,2	5,4
	У	2,2	3,1	4,4	5,2	6,1

1. a)
$$z = \frac{\sqrt{2x+3y-1}}{x-y} + \arccos(x+1)$$
; 6). $z = \ln y + \ln \sin x$

2.
$$z = 2x^2 + 3x - y^2 - xy$$
, $M_0(2,-2)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = \ln(x^2 - y^2); \quad \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{2}{x + y}.$$

4. a)
$$z = e^{xy}(2 - x - y)$$
,

где
$$x = \sin(u + v)$$
, $y = u^2 v$, $\frac{\partial z}{\partial u} - ? \frac{\partial z}{\partial v} - ?$

б)
$$z = tg\sqrt[3]{x}(x - arctg^2y)$$
, где $y = \frac{1}{\ln x}$, $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = 3y^3 + 6a^3yx^2$$
;

6.
$$z = 4xy - \frac{25}{x} - \frac{10}{y}$$
;

7.
$$z = x^2 + y^2$$
, если $x - y = 3$.

8.
$$z = x^2 - 2y^2 + 4xy - 6x$$
, $D: x = 0$; $y = 0$, $x + y = 2$.

9.
$$z^3 - 2xyz - 2y - 4 + x^3 + y^3 = 0$$
, $M_0(1;1;2)$

10.
$$z = \frac{x}{y} + xy$$
, $M_0(2;1)$, $\overline{a} = \overline{M_0 N}$,где $N(0;5)$

х	1,2	2,5	3,3	4,2	5,1
У	2,1	3,0	4,1	5,2	6,3

1. a)
$$z = \arcsin 2x + \sqrt{y^2 - x - 1}$$
; 6). $z = \ln(x - 1) + \ln(y^2 - 4)$

2.
$$z = x^2 + y^2 + 10xy$$
, $M_0(1;1)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = \frac{x^3 + y^3}{3} + \frac{x^2y + xy^2}{2}$$
; $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = (x + y)^2 + \frac{x^2 + y^2}{2}$.

4. a)
$$z = \sin(x^2 y) + 3\sin(x - y)$$
, где $x = e^{t^2} + 2$, $y = \frac{1}{t}$, $\frac{dz}{dt} - ?$

б)
$$z = \sqrt{x^2 - y^2}$$
, где $x = \arcsin \frac{v}{u}$, $y = \arcsin \frac{u}{v}$, $\frac{\partial z}{\partial u} - ?$ $\frac{\partial z}{\partial v} - ?$

5.
$$z = a^2 x^3 y + 2axy^3$$
.

6.
$$z = 2x^2 + 3xy + 2y^2 - 7\ln x - 7\ln y$$
.

7.
$$z = xy^2$$
, если $y - 2x = 3$.

8.
$$z = x^2 + xy$$
, $D:-1 \le x \le 1$; $0 \le y \le 3$.

9.
$$z = y \ln(x+z) - 1$$
, $M_0(2;3;-1)$.

10.
$$z = \ln(3x^2 + 4y^2)$$
, $M_0(1;3)$, $\overline{a} = 2\overline{i} - j$.

х	1,2	2,4	3,4	4,1	5,2
У	1,9	2,8	3,9	4,5	6,1

ВАРИАНТ 24

1. a)
$$z = \arccos(x+1) + \frac{1}{y-2}$$
; 6). $z = \frac{\sqrt{4-x^2-y^2}}{\sqrt{x^2+y^2-1}}$.

2.
$$z = 4 - y^2 + xy + x^2$$
, $M_0(2;1)$, $\Delta x = 0.2$, $\Delta y = 0.1$.

3.
$$z = \cos y + (y - x)\sin y$$
; $(x - y) \cdot \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y}$.

4. a)
$$z = \ln(x^2 + y^2 + 2y + 1)$$
, где $x = \sqrt{t+1}$, $y = t^2 \frac{dz}{dt} - ?$

б)
$$z = \operatorname{arctg}^3 \frac{y - x}{x + y}$$
, где $y = \sqrt{x^2 - 1}$, $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = ax^3y - 2xy^3$$
.

6.
$$z = y\sqrt{x} - y^2 - x + 6y$$
.

7.
$$z = x - 2y - 4$$
, если $x^2 + y^2 = 1$.

8.
$$z = x^3 + 8y^3 - 6xy + 1$$
, $D := y = 1$; $y = -1$; $x = 0$; $x = 2$.

9.
$$z-5x^2y+3xy^2z+13=0$$
, $M_0(2;1;1)$.

10.
$$z = \operatorname{arctg}(xy^2)$$
, $M_0(2;3)$, $\bar{a} = 4\bar{i} - 3j$.

х	1,2	2,4	3,3	4,5	5,3
У	2,1	3,2	3,9	4,9	6,1

ВАРИАНТ 25

1. a)
$$z = \ln x \ln y + \frac{1}{x+2}$$
; 6). $z = \arcsin \frac{x-2}{y}$.

2.
$$z = x^2 + y^2 + 2x - 4$$
, $M_0(1,3)$, $\Delta x = 0,1$ $\Delta y = 0,2$.

3.
$$z = \frac{x}{y}$$
; $x \cdot \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y}$.

4.a)
$$z = \cos(x^2 + y^2) - 5xy$$
, где $x = u - 5y$, $y = \frac{u}{v}$, $\frac{\partial z}{\partial u} - ?$, $\frac{\partial z}{\partial v} - ?$

б)
$$z = \sin(e^{-t}) + t \sin x$$
, где $t = \sqrt[3]{x} \cos x$, $\frac{\partial z}{\partial x} - ?$, $\frac{dz}{dx} - ?$

5.
$$z = 5x^4 - a^2x^2y^2 + 5y^4$$
.

6.
$$z = e^{x-4y}(x^2 + 2y^2)$$
.

7.
$$z = x^2 y$$
, если $x - 2y = -1$.

8.
$$z = x^2 + 2xy - y^2 + 4x$$
; $D: x \le 0$; $y \le 0$, $x + y + 2 \ge 0$.

9.
$$3xz + z^2 + y^2 - 5z = -3$$
; $M_0(-1;2;1)$.

10.
$$z = \ln(5x^2 + 3y^2)$$
, $M_0(1;1)$, $\overline{a} = \overline{M_0} \, \overline{N}$,где $N(4;3)$ 11.

х	1,1	2,4	3,3	4,6	5,2
У	2,2	3,1	4,2	5,3	6,4

1. a)
$$z = \ln(x\ln(y-x-1));$$
 6). $z = \sqrt{\frac{y-x-1}{\ln(x+4)}}$.

2.
$$z = x^2 + y^2 + y - xy$$
, $M_0(2;1)$, $\Delta x = 0.01$, $\Delta y = 0.02$.

3.
$$z = \frac{\sin(x - y)}{x}$$
 $\frac{\partial}{\partial x} \left(x^2 \frac{\partial z}{\partial x} \right) - x^2 \frac{\partial^2 z}{\partial y^2} = 0$.

4. a)
$$z = \sin^2\left(\frac{x}{\sqrt{y}}\right) + \log_2(x^3y - 5x)$$
, где $x = \frac{u}{3v}$, $y = u^2v$,

$$\frac{\partial z}{\partial u} - ?, \frac{\partial z}{\partial v} - ?$$

б)
$$z = \frac{1}{\sqrt[3]{x^2 + e^{-2y}}}$$
, где $x = ctg^3(\sqrt{t})$, $y = tg^2(\sqrt[3]{t})$, $\frac{dz}{dt} - ?$

5.
$$z = ay^2x - x^3$$
.

6.
$$z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

7.
$$z = x^2 + y^2$$
, если $3x + 2y = 6$.

8.
$$z = \sin x + \sin y + \sin(x + y)$$
, $D: 0 \le x \le \frac{\pi}{2}$; $0 \le y \le \frac{\pi}{2}$.

9.
$$z^2 - 2x^2z + 4y^3 = 3$$
; $M_0(1;1;1)$.

10. $z = xe^y$, $M_0(2;2)$, \overline{a} совпадает с направлением биссектрисы I координатного угла.

11.

Х	1,4	2,3	3,6	4,8	5,6
У	2,2	3,4	4,7	5,2	6,6

1. a)
$$z = \frac{\sqrt{4x - y^2}}{\log_2(2 - x^2 - 2y^2)}$$
; 6). $z = \sqrt{\ln x \cos y}$.

2.
$$z = 4 - y^2 + y + \frac{1}{2}x^2$$
, $M_0(1;-1)$, $\Delta x = 0.01$, $\Delta y = 0.02$.

3.
$$z = xe^x$$
; $x^2 \cdot \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \cdot \frac{\partial^2 z}{\partial y^2} = 0$.

4. a)
$$z = x^2 \cos(x^2 - y) + e^{\frac{x}{y}}$$
;, где $x = tgt^2$, $y = \sqrt{t^2 + 1}$, $\frac{dz}{dt} - ?$

б)
$$z = \sqrt[3]{\sin^2 y + y \arcsin x^2}$$
, где $y = \sqrt[5]{x^2}$, $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = 2yx^3 + 2xy^3a$$
.

6.
$$z = 1 - (x^2 + y^2)^{\frac{2}{3}}$$
.

7.
$$z = \cos^2 x + \cos^2 y$$
, если $y = x + \frac{\pi}{4}$.

8.
$$z = x^3 + y^3 - 3xy$$
, $D: 0 \le x \le 2$; $-1 \le y \le 2$.

9.
$$y^2z - x^2 + z^3 + 11 = 0$$
, $M_0(1;1;-2)$.

10.
$$z = e^{x^2 + y^2} (2x - y)$$
, $M_0(0;1)$, $\overline{a} = 4\overline{i} - 2j$

х	1,5	2,2	3,4	4,6	5,7
у	2,1	3,1	4,2	5,3	6,4

ВАРИАНТ 28

1. a)
$$z = \frac{1}{\sqrt{x+y-2}} + \frac{1}{\sqrt{x-y}}$$
; 6). $z = \frac{\ln(x-1)}{\sqrt{9-x^2-y^2}}$.

2.
$$z = 3 + x^2 - 2xy - 2y^2$$
, $M_0(1;1)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = \frac{y^2}{5x} + \arctan(xy);$$
 $y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} - \frac{y^2}{5x^2} = \frac{2y}{5x}.$

4. a)
$$z = \arcsin \frac{x}{y}$$
, где $x = t^2 + 1$, $y = t^3 - t$, $\frac{dz}{dt} - ?$

б)
$$z = \cos^2 \frac{u}{v}$$
, где $u = \sqrt[3]{x}$, $v = \sqrt{x - y}$, $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

5.
$$z = x^3y^2 + xy^2 + ax^3 + ay^3$$
.

6.
$$z = x^2 + y^2 + xy - 4x - 5y$$
.

7.
$$z = xy$$
, если $x + y = 1$.

8.
$$z = x^2 + xy - y^2 - 4x + 2y$$
, $D: x = 3$, $y = 0$, $y = x + 2$.

9.
$$x^2z + z^2 - 6y^2z + 4y^2 + 2x = 0$$
, $M_0(1;1;2)$.

10.
$$z = 4 - x^2 - y^2$$
, $M_0(2;3)$, $\bar{a} = -3\bar{i} + 2j$

х	1,3	2,2	3,4	4,2	5,4
У	1,8	2,4	3,6	4,8	5,7

ВАРИАНТ 29

1. a)
$$z = \frac{\ln(x-y)}{\sqrt{x^2 + y^2 - 4}}$$
; 6). $z = \sqrt{x} \frac{\sqrt{1-y}}{x^2 + y^2 - 9}$.

2.
$$z = x^3 + 2xy^2 - y^3$$
, $M_0(1;1)$, $\Delta x = 0,1$, $\Delta y = 0,1$.

3.
$$z = y \ln(x^2 - y^2);$$
 $y^2 \frac{\partial z}{\partial x} + xy \frac{\partial z}{\partial y} = xz.$

4. a)
$$z = e^{xy}(x+2y)$$
, где $x = u^2 + v$, $y = uv$, $\frac{\partial z}{\partial u} - ?\frac{\partial z}{\partial v} - ?$

б)
$$z = \sin^2(xy) + x^y$$
, где $y = x^2 + x$, $\frac{\partial z}{\partial x} - ?$ $\frac{dz}{dx} - ?$

5.
$$z = a^2x^4 + a^2y^4 + ax^2y^2$$
.

6.
$$z = xy - x^2y - xy^2$$
.

7.
$$z = 3x + 2y + 1$$
, если $x^2 + y^2 = 1$.

8.
$$z = xy$$
, если $x - 2y = 4$.

9.
$$e^z - z + x^2 y = 3$$
, $M_0(1,2,0)$.

10.
$$z = (x - y)^2$$
, $M_0(0;3)$, $\bar{a} = 2\bar{i} + j$

11.

х	1,2	2,1	3,0	4,2	5,1
У	1,4	2,3	3,6	4,5	5,3

1. a)
$$z = \sqrt{x} + \sqrt{1 - x^2 + y^2}$$
; 6). $z = \ln y + \ln \sin x$.

2.
$$z = x^2 + 2xy + y^3$$
, $M_0(1;1)$, $\Delta x = 0,1$, $\Delta y = 0,2$.

3.
$$z = y \ln(x^2 - y^2);$$
 $\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{z}{y^2}.$

4. a)
$$z = x^2 - y^2$$
, где $x = \sin 2t$, $y = \sin^2 t$, $\frac{dz}{dt} - ?$

б)
$$z = e^{x - \sqrt{y}}$$
, где $x = \frac{u}{v}$, $y = u^2 v$, $\frac{\partial z}{\partial u} - ?$ $\frac{\partial z}{\partial v} - ?$

5.
$$z = 4x^4 + 4y^4 + ax^2y^2$$
.

6.
$$z = 2xy - 4x + 2y$$
.

7.
$$z = xy$$
, если $x + y = 2$.

8.
$$z = x^2 - 2xy - 4x + 8y$$
, если $D: x \ge 0; y \ge 0, x \le 10, y \le 3$.

9.
$$z = \ln z - 2x + y + 1$$
, $M_0(1;2;1)$.

10.
$$z = y^2 + xy - 3x$$
, $M_0(1,2)$, $\overline{a} = -2\overline{i} + j$

х	-2	0	1	2	4
У	0.5	1	1.5	2	3

Библиографический список использованной литературы

- 1. Пискунов Н.С. Дифференциальное и интегральное исчисления / Н.С. Пискунов.- М.: Наука, 1985 т.1-4. 29 с.
- 2. Бугров Я.С. Дифференциальное и интегральное исчисления / Я.С. Бугров, С.М. Никольский. М.: Наука,1988 431 с.
- 3. Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа / Под. ред. А.В. Ефимова, Б.Б. Демидовича.- М.: Наука, 1981.- т.1-4. 62 с.
- 4. Данко П.Е. Высшая математика в упражнениях и задачах: учебное пособие для студентов втузов / П.Е. Данко, А.Г. Попов. М.: Высш. школа, 1986 ч.1 303 с.
- 5.Руководство к решению задач по высшей математике / Под ред. Е.И. Гурского. Минск: Вышейна школа, 1989 ч.1 348 с.
- 6. Высшая математика для экономистов: учебное пособие для вузов / Н.Ш. Кремер, И.М. Тришин и др.; Под ред. Н.Ш. Кремера. М.: Банки и биржи, ЮНИТИ, 1997. 439 с.
- 7. Красс М.С. Математика для экономистов / М.С. Красс, Б.П. Чупрынов. СПб.: Питер, 2007. 464 с.

Заказ №	OT	2011 г. ′	Тираж	экз.
		Изп-во СерНТУ		