

Overview of Global Substance Registration System (GSRS) and Identification of Medicinal Products (IDMP)

- Organizing Information
- IDMP Standard
- What is a substance
- GlnAS/GSRS
- Status of Development
- Adverse Event Data

Organizing Information

- FDA has the most important/valuable repository of human biological and product data but limited integration.
 - Submission process
 - Paper
 - PDF's
 - Organizational
 - Different Centers
 - Different Contractors
 - Business Process
- The amount of information is increasing
 - Rapid Screening Methods
 - Enzyme and Receptor Profiling
 - Cyp , Transporter and Receptor
 - Genomics
 - Epigenomics
 - Electronic Health Records
 - Many CMC changes

Organizing Information

- Identification of Medicinal Products (IDMP)
 - ISO project; 5 standards
- Approach of the IDMP to organizing information
 - Goal is to get data organized prior to submission
 - Fielded data is better than non-fielded Data
 - Controlled vocabulary is better that non-controlled vocabulary
 - Codes are better than names in electronic systems particularly relevant to substances
 - Substance terminology on definitions (truth) not hierarchy
 - All substances in medicinal products should be be defined and assigned a unique ID

Goals of IDMP Project

- Develop a common data structure and terminology for the description of medicinal products
 - Facilitate data exchange
 - Pharmacovigilance
 - Quality of pharmaceutics/detect/prevent counterfeiting
 - Predict/prevent drug-drug food-drug interactions
 - Incorporation of diverse data into databases
 - Prevent drug shortages
 - Promote Drug Development
 - Consistent review
 - Enter once use many (substances, organizations)
 - Assist in mining of EHRs (Effectiveness. Safety, Better Dosing)

Global Health Benefits of IDMP

Improve Pharmacovigilance

 Globally detect safety signals from medicinal products referenced in adverse events

Support Mitigation of Drug Shortages

Allows the identification of pharmaceutically equivalent products across regions

Promote Greater Understanding and Sharing

 Supports the exchange of post-market medicinal product information between companies and regulators

IDN/ID Overvious

http://www.ema.europa.eu/docs/en_GB/document_library/Other/2016/11/WC500217406.pdf

FDA's Approach to ISO IDMP Standards

FDA's Approach to ISO IDMP Standards

What is a Substance: ISO 11238

- ARISTOTLE (Metaphysics)...the generally recognizable substances... are the sensible substances, and sensible substances all have matter..., and in another sense the formula or form..., and thirdly the complex of matter and form, which alone is generated and destroyed, and is, without qualification, capable of separate existence
- A unit of matter that can be quantitatively measured
- Five types of substances
 - Chemicals, Proteins, Nucleic Acids, Polymers, and Structurally Diverse Material
 - Mixtures
- Substance are not defined based on use
- The same substance can me manufactured or isolated using different methods

Substances (ISO IDMP)

- Five groups of elements are used to describe single substances.
 - Monodisperse
 - Chemicals
 - Defined primarily by molecular structure (connectivity and stereochemistry)
 - Proteins
 - Amino Sequence, type of glycosylation, modifications
 - Nucleic Acids
 - Sequence, type of sugar and linkage, modifications

Substances (ISO IDMP)

Polydisperse

- Polymers (Synthetic or biopolymers)
 - Structural repeating units, type, geometry, type of copolymer (block or random), ratio of monomers, modifications, molecular weight or properties related to molecular weight, biological source for many biopolymers
- Structurally Diverse Substances (viruses, cells, tissues, complex materials)
 - Taxonomic, anatomical, fractionation, physical properties, modifications

Why Register Substances

Need to tie substances to regulatory submissions

- Enhance review and drug development
 - Active substance and inactive substances under review
 - Biomarkers can be defined and tracked
 - Use substances and related substance information to structure submissions
 - Quality
 - Manufacturing
 - In-vitro data
 - Clinical Information
 - » Clinical trial registration
 - » ICSR
 - Starting materials
 - Processing materials
 - Impurities

Need to tie substances to other substances

- Relationships between substances
 - Active Moiety
 - Salt/Solvate-> Parent relationships
 - Metabolites
 - Impurities
 - Drug target
 - Metabolic Enzymes (substrate, inhibitor, inducer)
 - Transporters (substrate, inhibitor, inducer)
 - Off target enzymes and receptors

Why Register Substances?

Need to tie substances to products

- Quality perspective
 - Change in substance can lead to a change in product
 - Find all products that could contain a "bad" ingredient (heparin, diethylene glycol)
 - Consistent specifications
- Safety perspective
 - Track adverse events based on substances
 - Tie substances to targets and pathways
- Drug Utilization
 - Predict and prevent shortages
 - Global marketplace need a global systems

Need to tie substances to manufacturer

- Quality
 - Who makes it
 - Where they make it
 - How they make it
 - Coordinate Inspections and testing

Tie Substances to other Information

Need to tie substances to other information

- Quality
 - Characterization
 - Specifications
 - Stability
- Physical Properties
 - Molecular weight
 - Solubility
 - pKa or pKb
 - Partition coefficients
 - Polymorph (crystal, amorphous)
- Toxicology and Animal Pharmacology
 - Genotoxicity
 - Cellular Cytoxicity
 - Summary Animal Toxicology
- Acute, Subchronic and Chronic
 - NOAEL, tissue distribution
 - Environmental Fate
 - Lab on a Chip results

- Clinical Pharmacology (LADMER)
 - Dissolution Data
 - Pharmacokinetics (Cmax, Tmax, Halflife, Vd, etc.)
 - Metabolism
 - Excretion
 - Pharmacodynamics
- Health and Disease
 - Indications (treatment, prevention, causative)
 - Adverse Events
 - Drug-Drug Interactions
 - Drug-Food Interactions
 - Health Outcomes
 - omics

How it's used at FDA

- FDA has adapted GSRS to integrate with existing internal databases and systems.
 - Adverse events
 - Products
 - Applications (INDs, NDAs)
 - Clinical Trials
- Industry uses the data from GSRS to find the UNII codes for their substances, which are submitted to the FDA.
 - In the future, they will be able to create a JSON message defining their substance to the FDA

Need for Specified Substance

- Organize additional information on ingredients (SSG1).
 - Need to describe multiple substance ingredients (Simethicone, Colorants, Flavors)
 - Need to describe extracts (allergenic and herbal extracts, tinctures)
 - Need to distinguish materials that differ by physical form or critical properties (Polymorphs, Flowability, Compressibility)
 - Just starting to implement this at FDA

Need for Specified Substance

- Need to tie material to a manufacturer and a process (SSG2 and SSG4)
- Need to tie material to a specific grade (SSG3)
- Need to obtain specification information (SSG4)
- Need to obtain information about processing materials (SSG4)
- Need to establish and monitor the supply chain (SSG2)
- Manufacturing and specifications were separated out in ISO version 2

Specified Substance

What is the GSRS?

Global Substance Registration System

- Global marketplace for ingredients requires a global system to monitor the global supply chain
- A Global Repository of Regulatory Information and Data on Ingredients (Shortages, substandard and counterfeit ingredients, coordinate inspections)
- Standard is complex, difficult and expensive to implement
- Data abstraction and curation is very expensive
- Global database means better data, less redundancy, more data, less mapping

GSRS is a Software Application

- ☐ Freely distributable (NCATS version, substance only)
- Predominantly open source
- ☐ Data accessed and entered through an API
- ☐ Backend Java, Oracle
- Works with Oracle, PostgreSQL, MySQL has built-in H2 database
- ☐ Has native JSON message can be adapted to HL7-FHIR
- ☐ UI development Angular 1.0, Scala, Play framework
- ☐ Extensive use of Lucene Indexes
- ☐ Implemented Substance, Specified Substance Group 1, 2, 3 and part of Specified Substance Group 4
- Excel tools for batch updating and queries

GSRS Software

- Works in all modern browsers: IE, Chrome, and Firefox
- System will be distributed with a large set of curated public domain data and updated periodically
 - Over 100,000 substances
 - Over 800,000 names, 800,000 codes (CAS numbers, WHO-ATC, etc)
 - Links to many outside resource (Chemid, Pubchem, Drug Bank, Orphan Drug etc)
 - Structure and sequence based searching
 - Faceted and advanced field-based searching
 - Data downloadable in a variety of formats JSON, Text, Excel

Where we are going?

Welcome: CALLAHANL Roles: [Query, DataEntry, SuperDataEntry, Updater, SuperUpdate, Approver, Admin]

ZIDOVUDINE

4B9XT59T7S

Overview

Product, Application,

- > Clinical Trial,
 Adverse
 Event
- Structure
- Names
- 38
- Classification
- Identifiers

version 2.3.1 RC1

Comparing Adverse Events in G-SRS

- FDA product dictionary allows coding of all suspect products to be coded to and active moiety
- Counts of adverse events with a given PT term are mapped from product to active moiety
- Linking GSRS to FAERS system will allow structure based analysis
- Use PRR as a metric of association

What is PRR?

PRR = Proportional Reporting Ratio

is The degree of disproportionate reporting of an AE for a product of interest compared to this same event for all other products

	Event Y	All other events	
Product X	a	b	a + b
All other products	С	d	c + d
	a + c	b + d	Total

PRR = [a/(a+b)] / [c/(c+d)] \longrightarrow If PRR >> 1 then Event Y is "disproportionately reported for Product X

Issues with PRR:

- 1. It does not adjust for small counts
- 2. Every report represents a suspicion of an AE related to a product

Lactic Acidosis vs. Hemolytic Anemia Outliers

GLYBURIDE vs. GLIPIZIDE Outliers

PT-Terms of the Top 5% PRR -- Sulfonylurea Drugs

	GLICLAZIDE	PT
	(N=2827)	cour
1	HYPOGLYCAEMIA	548
2	LACTIC ACIDOSIS	152
3	METABOLIC ACIDOSIS	119
	DIABETES MELLITUS INADEQUATE	
4	CONTROL	117
5	HYPERKALAEMIA	95
6	HYPOGLYCAEMIC COMA	63
7	PANCREATIC CARCINOMA	41
8	PEMPHIGOID	38
9	HYPERLACTACIDAEMIA	33
10	ACIDOSIS	31
	DIABETIC METABOLIC	
	DECOMPENSATION	31
	BRADYPHRENIA	23
13	HEPATITIS CHOLESTATIC	16
	GASTROINTESTINAL MOTILITY	
	DISORDER	15
15	VOMITING PROJECTILE	15
	CARDIOACTIVE DRUG LEVEL	
	INCREASED	14
	DISTRIBUTIVE SHOCK	14
	HAEMOGLOBIN INCREASED	14
-	HAND DEFORMITY	14
	JOINT NOISE	14
	scoliosis	14
	BRONCHIECTASIS	13
	POISONING DELIBERATE	13
	PULSE ABNORMAL	13
-	HEPATITIS FULMINANT	12
26	LICHEN PLANUS	12
	NORMOCHROMIC NORMOCYTIC	
	ANAEMIA	12
	IDIOPATHIC PULMONARY FIBROSIS	11
	URINARY TRACT DISCOMFORT	10
	BRADYKINESIA	8
	DIABETIC HYPEROSMOLAR COMA	8
	SLEEP TERROR	8
	FOETAL DISORDER	7
	JEALOUS DELUSION	7
	RIGHT VENTRICULAR DYSFUNCTION	7
	ACUTE LUNG INJURY	6
-	IMPULSE-CONTROL DISORDER	6
	INHIBITORY DRUG INTERACTION	6
	ANAEMIA VITAMIN B12 DEFICIENCY	5
	BODY MASS INDEX DECREASED	5
	CALCIPHYLAXIS	5
	DIABETIC KETOSIS	5
	DIABETIC ULCER	5
	HALO VISION	5
	HYPOGLYCAEMIA NEONATAL	5
	ORBITAL OEDEMA	5
47	SLOW RESPONSE TO STIMULI	5

	GLYBURIDE	DT
	(N=11205)	COUNT
1	HYPOGLYCAEMIA	2671
2	LACTIC ACIDOSIS	244
3	DIABETES MELLITUS INADEQUATE CONTROL	168
4	HYPOGLYCAEMIC COMA	114
5	DRUG TOLERANCE INCREASED	70
6	HYPOGLYCAEMIC UNCONSCIOUSNESS	29
7	SHOCK HYPOGLYCAEMIC	25
8	HYPOGLYCAEMIC ENCEPHALOPATHY	18
9	MUCOSAL EROSION	17
10	CONGENITAL MUSCULOSKELETAL ANOMALY	13
11	OTITIS EXTERNA	13
12	QUADRIPARESIS	13
13	MACROSOMIA	12
14	METABOLIC ALKALOSIS	12
15	SCROTAL OEDEMA	12
16	NEPHROCALCINOSIS	11
17	GRANULOMATOUS LIVER DISEASE	9
18	PULMONARY HYPOPLASIA	9
19	DRUG CLEARANCE DECREASED	8
20	SPINE MALFORMATION	8
21	MICROALBUMINURIA	7
22	BLOOD GLUCOSE	6
23	BLOOD ZINC DECREASED	6
24	TYMPANIC MEMBRANE DISORDER	6
25	HYPERINSULINAEMIA	5
26	INSULIN C-PEPTIDE INCREASED	5
27	PLATELET COUNT NORMAL	5
28	RIB HYPOPLASIA	5
29	TRANSVERSE PRESENTATION	5

	GLIPIZIDE (N=9980)	PT COUNT
1	HYPOGLYCAEMIA	1358
2	HYPERGLYCAEMIA	705
3	BLOOD GLUCOSE DECREASED	452
	DIABETES MELLITUS INADEQUATE CONTROL	287
	GLYCOSYLATED HAEMOGLOBIN INCREASED	195
6	BLOOD GLUCOSE FLUCTUATION	144
7	MEDICATION RESIDUE PRESENT	110
8	HYPOGLYCAEMIC COMA	38
9	GLUCOSE TOLERANCE DECREASED	13
10	ACCIDENTAL POISONING	8
11	BLOOD GLUCOSE	7
12	MEDICAL DEVICE SITE INFECTION	6
13	MICROALBUMINURIA	6
14	STOOL ANALYSIS ABNORMAL	6

	CHLORPROPAMIDE (N=1904)	PT COUNT
1	HYPOGLYCAEMIA INAPPROPRIATE ANTIDIURETIC HORMONE	222
2	SECRETION	31
3	JAUNDICE CHOLESTATIC	31
4	CORONARY ARTERY BYPASS	21
5	CATARACT OPERATION	11
6	LEG AMPUTATION	10
7	TOE AMPUTATION	9
8	VENOUS OCCLUSION	9
9	DIABETIC COMPLICATION	8
10	DIABETIC COMA	7
11	ANGIOPLASTY	6

	TOLAZAMIDE (N=1223)	PT COUNT
1	HYPERGLYCAEMIA	137
2	HYPOGLYCAEMIA	116
3	AMBLYOPIA	70
4	JAUNDICE CHOLESTATIC	15
	INAPPROPRIATE ANTIDIURETIC HORMONE	
5	SECRETION	14
6	GANGRENE	11
7	KETOACIDOSIS	11
8	PATHOLOGICAL FRACTURE	10
9	GASTROINTESTINAL CARCINOMA	8

Working Collaboratively

GInAS Meeting

- To get the software and data from NCATS
 - https://tripod.nih.gov/ginas
- Fifth Meeting November 16, 2018
- At USP 12601 Twinbrook Parkway
 - Rockville Maryland 20852
- Free and Open to Public
- To Get on the GInAS Notification List
 - Contact Danny Katzel at
 - Daniel.Katzel@nih.gov

Acknowledgements

FDA Team

Yulia Borodina, Larry Callahan, Ramez Ghazzaoui, Elaine Johanson, Samir Lababidi, Mitch Miller, Archana Newatia, Sarah Steman, Frank Switzer, Annette Vernon, Alex Welsch

Foreign Regulatory Participants

Thomas Balzer (BFarM)
Herman Diederik, Marcel Hoefnagel,
Bert Kroes, Ciska Matai (MEB)
Takeshi Misu, Izumi Oba (PMDA)
Vik Srivastava, Mary Rapheal (Health
Canada)

Philipp Weyerman (Swiss Medic)

Kew Gardens

Bob Alkins, Elizabeth Dauncey **USP**

Fouad Atouf, Andrzej Wilk

WHO-UMC

Malin Jakobsson; Malin Flavid

NCATS Team

Dammika Amugoda, Trung Nguyen, Tyler Peryea, Tim Sheils; Dan Katzel; Noel Southall

IDMP Members

Paolo Alcini, Sabine Brosch, Tim Buxton, Ilaria Del Seppia, Panagiotis Telonis (EMA) Ta-Jen Chen, Randy Levin, Vada Perkins, Mary Ann Slack (FDA) Christian Hay (GS1) Pam Cafiero, Surenda Gokhale, William Gregory, Barry Hammond, Manabu Inoue; Kostas Kidos, Andrew Marr, Wolfgang Spiegl (Industry) Paul Houston (EMA/CDISC)

EDQM

Claude Coune, Chris Jarvis (EDQM)

Excipient Industry

Dave Schonecker, Katherine Ulman

