Time Series Analysis ARMA Models

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Causal and Invertible Processes

About This Lesson

ARMA Model: Notation

We will often write (4) in the more compact form

$$\phi(B)X_t = \theta(B)Z_t,$$

where

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p$$

and

$$\theta(z) = 1 - \theta_1 z - \dots - \theta_q z^q$$

The polynomials are called the *autoregressive* and *moving average polynomials*, respectively.

ARMA Model: Stationarity

Not all formulations $\phi(B)X_t = \theta(B)Z_t$ model a stationary time series:

A stationary solution to the ARMA equation exists and is unique if and only if: $\phi(z) \neq 0$ for all $z \in \mathbb{C}$ such that |z| = 1

(Stationarity condition: ARMA stationary exists and is unique if and only if no zeroes of $\phi(z)$ lie on the unit circle.)

Causal ARMA Process

An ARMA process $\{X_t\}$ is a *causal function* of Z_t if there exist constants $\{\psi_j\}$ such that $\sum_{j=0}^{\infty} |\psi_j| < \infty$ and

$$X_t = \sum_{j=0} \psi_j Z_{t-j}$$
 for all $t \in \mathbb{Z}$.

Suppose $\{X_t\}$ is an ARMA process for which $\phi(\cdot)$ and $\theta(\cdot)$ have no common zeroes. Then $\{X_t\}$ is causal if and only if $\phi(z) \neq 0$ for all $z \in \mathbb{C}$ such that $|z| \leq 1$.

The coefficients of the causal function are given by

$$\psi(z) = \sum_{j=0}^{\infty} \psi_j z^j = \frac{\theta(z)}{\phi(z)}, \qquad |z| \le 1.$$

Causal Process: Example

The AR(1) process: We have $X_t(1 - \phi B) = Z_t$

Thus $\phi(z) = 1 - \phi z$. This has only one zero at $z = 1/\phi$. A unique stationary solution to exists if and only if $|1/\phi| \neq 1$, or $|\phi| \neq 1$.

 $\{X_t\}$ is causal if and only if $|1/\phi| > 1$, or $|\phi| < 1$.

AR(1) Causal Process

```
## Causal AR(1) processes (|phi|=0.1<1)
a1 = 0.1
ar1 = filter(w2,filter=a1,method='recursive')
ar1.1 = ar1[1251:1500]
a1 = -0.1
ar1 = filter(w2,filter=a1,method='recursive')
ar1.2 = ar1[1251:1500]
## Causal AR(1) processes reaching non-causality/stationarity (|phi|=0.9)
a1 = 0.9
ar1 = filter(w2,filter=a1,method='recursive')
ar1.3 = ar1[1251:1500]
a1 = -0.9
ar1 = filter(w2,filter=a1,method='recursive')
ar1.4=ar1[1251:1500]
                                                                             Georgia
```

AR(1) Causal Process

Invertible Process

An ARMA process $\{X_t\}$ is *invertible* if there exist constants $\{\pi_j\}$ such that $\sum_{j=0}^{\infty} |\pi_j| < \infty$ and

$$Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j}$$
 for all $t \in \mathbb{Z}$.

Suppose $\{X_t\}$ is an ARMA process for which $\phi(\cdot)$ and $\theta(\cdot)$ have no common zeroes. Then $\{X_t\}$ is invertible if and only if $\theta(z) \neq 0$ for all $z \in \mathbb{C}$ such that $|z| \leq 1$.

The coefficients for an invertible process are given by

$$\pi(z) = \sum_{j=0}^{\infty} \pi_j z^j = \frac{\phi(z)}{\theta(z)}, \qquad |z| \le 1.$$

ARMA Model: Properties

Given an ARMA process $\phi(B)X_t = \theta(B)Z_t$ for which $\phi(z) \neq 0 \ \forall |z| = 1$, it is possible to find $\tilde{\phi}(\cdot)$, $\tilde{\theta}(\cdot)$ and a white noise process $\{\tilde{Z}_t\}$ such that $\tilde{\phi}(B)X_t = \tilde{\theta}(B)\tilde{Z}_t$

and $\{X_t\}$ is a causal function of $\{\tilde{Z}_t\}$.

If, in addition, $\theta(z) \neq 0 \ \forall \ |z| \leq 1$, then $\tilde{\theta}(\cdot)$ can be chosen so that $\{X_t\}$ is an invertible function of $\{\tilde{Z}_t\}$.

Summary

