Circuitos Lógicos

Módulo#5

Circuitos Sequenciais

Projetar um circuito que implemente o segredo eletrônico para este cofre

Por exemplo, que o segredo seja 5379, fixo. Vamos descrever seu funcionamento, passo-a-passo ...

Circuito Sequencial: blocos funcionais

Circuito Sequencial: blocos funcionais

Elemento de memória : flip-flop genérico

Flip-flop RS com NANDs

*Produz Q = Q = 1

Circuitos Sequenciais Síncronos ou FMS

Circuitos Sequenciais Síncronos ou FMS

Flip-flop tipo D

Aplicações do FFP-D

Aplicações do FFP-D TTL 74171 Quad D-type FF with Clear

	171	
12 13 ₀	CLK CLR	Q3 0-3 Q3 10 Q2 0-
11 5 4	D3 D2	Q1 03 Q1 3
14	D0	Q0 1

Aplicações do FFP-D

11 18 17 14 13 8 7	377 CLK EN D7 D6 D5 D4 D3 D2	Q7 Q6 Q5 Q4 Q3	19 16 15 12 9 6
13 8	U-7		12 9
7	D2	Q2	6
3	D1 D0	Q1 Q0	2
			Γ

EN enabled low and lo-to-hi clock transition to load new data into register

74374 Octal D-type FFs with output enable

OE asserted low presents FF state to output pins; otherwise high impedence

Flip-flop JK

Flip-flop JK

Ponto	Operação
а	Comutação sincronizada na borda de descida de CLK
b:	Q é assincronamente colocada em 1 quando PRE = 0
c	Comutação sincrona
d	Comutação sincrona
е	Q é assincronamente colocada em 0 quando CLR = 0
f	CLR se sobrepõe à borda de descida de CLK
9	Comutação sincrona

Função TOGGLE: principal aplicação

Contador módulo 16

Contador módulo # potência de 2 Todas as entradas J e k estão em nivel 1. Pulsos de entradas A B CLK A CLK

Desafio : projetar um relógio digital.

Sugestão para o clock padrão

Desafio: projetar um relógio digital.

Contador assincrono 74LS293

Contador assíncrono 74LS293

Contador módulo 60

Contador assíncrono: limitações ...

Formas de onda de um contador de três bits ilustrando os efeitos dos atrasos de propagação dos FFs para diferentes freqüências de pulsos de entrada.

Contador assíncrono : limitações ... solução

Contador assíncrono: limitações ... exemplo-solução

Comagemi	0	-	0	п.
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1 1	1	0
0 1 2 3 4 5 6 7	0	1	1	1
	1 1 1 1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	0 1 0 1 0 1 0 1 0 1
12	1	1	0	0
13	1	1	0	1
14	1 1	1 1 1	1	0
15	1	1	1	1
0	0	0	0	0
		•		
		etc.		Ŀ

Analisar o circuito

Contagem (CBA) 000 001 010 011 100 101 100 011 010 001 000

Contador 74ALS193

X = Não importa (don't care); † = Transição positiva

Aplicações com flip-flops

Após sinal de Reset, são aplicados sucessivos pulsos de clock. Qual será a resposta desse circuito, tendo como saída o estado do mesmo?

CI 74194

^{\$1} \$0 **194** 이 거 이미라의 시 LSI 12 13 14 15 DOBA RSI 11 CLK CLR

Serial Inputs: LSI, RSI Parallel Inputs: D, C, B, A Parallel Outputs: QD, QC, QB, QA Clear Signal

Positive Edge Triggered Devices

S1,S0 determine the shift function S1 = 1, S0 = 1: Load on rising clk edge synchronous load S1 = 1, S0 = 0: shift left on rising clk edge LSI replaces element D
S1 = 0, S0 = 1: shift right on rising clk
edge ;RSI replaces element A
S1 = 0, S0 = 0: hold state

Aplicações com flip-flops : shift register

Conversão paralela - serial - paralela

Leitura indicada

Maini, A.K. "Digital Electronics - Principles and Integrated Circuits"

a) Sec. 8.3 - 8.11, pgs. 284 - 311

b) Sec. 9.1 - 9.13, pgs. 317 - 360

Flip-Flops and Related Devices

LEARNING OBJECTIVES

After completing this chapter, you will learn the following:

- Operational basics of bistable, monostable, and astable multivibrators.

 Digital and linear integrated circuits for implementing multivibrator functions.

 Operational basics of R-S, J-K, toggle, and D flip-flops.

 Applications of flip-flops.

 Applications relevant data on commonly used flip-flops and related devices.

Counters and Registers

LEARNING OBJECTIVES

After completing this chapter, you will learn the following:

- After completing this chapter, you will learn the following:

 Difference between asynchronous (or ripple) and synchronous counters.

 Design methodology for asynchronous and synchronous counters.

 Designing counters with arabiter modulus.

 Designing counters with arabitrary sequences.

 BCD, decade counters, UP, DOWN, and UP/DOWN counters.

