

J.-S. Roger Jang (張智星)
MIR Lab, CSIE Dept.
National Taiwan University
jang@mirlab.org, http://mirlab.org/jang

2023/9/20

複利的故事

○故事

- 國王和棋盤
- 一莫耳的新台幣有多少?
- 為什麼領18%是老賊?
- ○信用卡循環利率
 - George & Mary現金卡廣告(救急免利卡)
 - 2006年,台灣有70萬人淪為卡奴,平均欠款數100萬新台幣... (wiki)
 - 2010年:最新信用卡循環利率 最低2.74%最高20% (link)
 - 如果你有卡債100萬、18%計息
 - 。月付2萬,約4年可還清→錯!需要八年!
 - ○月付1萬,約8年可還清→錯!一輩子也還不完!

複利基本公式

Basic formula

$$f = p(1+r)^n$$
 $p = \text{present value (principal)}$
 $f = \text{final value}$
 $r = \text{interest rate per time period}$
 $n = \text{no. of time periods}$

Example

- Initial investment: 1000
- Annual interest: 3%
- No. of periods: 20 years

$$f = 1000 * (1 + 3/100)^{20}$$

= 1806.11

This is NOT the formula used by banks!

定期複利(Periodic Compounding)

• 公式

$$f = p\left(1 + \frac{r}{n}\right)^{tn}$$
, r: 年利率,n: 每年期數

- 範例
 - 本金1000,利率3%,計算20年後的本利和
 - 年複利

$$f = 1000 * (1 + 3\%)^{20} = 1806.11$$

。月複利

$$f = 1000 * \left(1 + \frac{3\%}{12}\right)^{20*12} = 1820.75$$

• 日複利

$$f = 1000 * \left(1 + \frac{3\%}{365}\right)^{20*365} = 1822.07$$

○ 提醒:

- 我們一般所講的利率指的是年利率 (r),但是
 - ○銀行計算房貸是以月利率(r/12)為主
 - ○信用卡循環利率計算是以日利率 (r/365)為主

連續複利(Continuous Compounding)

• 公式

$$f = p * \lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^{tn} = p * \left(\lim_{n/r \to \infty} \left(1 + \frac{1}{n/r} \right)^{n/r} \right)^{rt} = pe^{rt}$$

• 範例

see next page.

Euler's number,

$$f = 1000 * e^{20*3\%} = 1822.12$$

Euler's Number

Definition

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

$$= 2.718281828...$$

o Proof by binomial theorem (二項式定理)

$$(x+y)^n = \sum_{k=0}^n C_k^n x^{n-k} y^k = \sum_{k=0}^n \frac{n!}{(n-k)! \, k!} x^{n-k} y^k$$

$$= x^n + n x^{n-1} y + \frac{n(n-1)}{2} x^{n-2} y^2 + \frac{n(n-1)(n-2)}{6} x^{n-3} y^3 + \dots + y^n$$

Comparison

• Effect of compounding at various frequencies, with an initial investment of 1000 and 20% annual interest. (wiki)

Rule of 70

- Goal
 - To estimate the number of years it would take for an investment to double
- Also known as
 - Rule of 72
 - Rule of 69
- Reference
 - Wiki

Formula

- T*r=70
 - T=no. of year to double an investment
 - o r=annual interest rate (%)
- Example:
 - r=1% → T=70
 - r=3% → T=23.3
 - r=18% **→** T=3.9
 - r=20% → T=3.5

Proof of Rule of 70

3 Ways of compounding to derive the rule

Yearly compounding:
$$f/p = 2 = (1+r)^T \Rightarrow T_1 = \frac{\ln(2)}{\ln(1+r)} \approx \frac{\ln(2)}{r} = \frac{0.6931}{r} \approx \frac{0.7}{r}$$

Monthly compounding: $f/p = 2 = \left(1 + \frac{r}{12}\right)^{12T} \Rightarrow T_2 = \frac{\ln(2)/12}{\ln(1+r/12)} \approx \frac{\ln(2)/12}{r/12} = \frac{0.6931}{r} \approx \frac{0.7}{r}$
Continuous compounding: $f/p = 2 = e^{rT} \Rightarrow T_3 = \frac{\ln(2)}{r} = \frac{0.6931}{r} \approx \frac{0.7}{r}$

Examples

$$r = 3\% \Rightarrow \begin{cases} T_1 = 23.45 \approx 70/3 = 23.33 \\ T_2 = 23.13 \approx 70/3 = 23.33 \\ T_3 = 23.10 \approx 70/3 = 23.33 \end{cases}$$

Prove that $\lim_{r\to 0} \frac{\ln(1+r)}{r} = 1$.

Quiz!

貨幣時間價值

- 貨幣時間價值 (Time value of money)
 - 若投資得當,金錢的價值通常會隨著時間的推移而增加。(The value of money usually increases over time if invested properly.)
- - 在時間軸上秀出收入及支出,並以期末(或期初)總值來判斷投資是否划算

房貸計算

- 問題定義
 - 銀行貸款100萬,20年還清,利率固定為3%,請問每個月還款金額?
- 銀行傳統
 - 利率 → 年利率
 - 複利計算方式 → 以「月」為單位來計算複利
- 銀行政策
 - 因為有不動產擔保品(房子),所以利率特別低
 - 若屋主無法按時繳款,銀行可以收回房子並拍賣
 - 信用貸款則屬於無擔保品的貸款,風險較高,所以利率也高
 - 若貸款方無法按時繳款,銀行可以扣此人的薪水

房貸攤還的方式

- 兩種房貸攤還的方式
 - 本息平均攤還
 - 本金平均攤還
- 相關資訊
 - 房貸試算器
 - 買房前,這些貸款名詞要知道!
 - 房貸怎麼還最有利?等額本金VS等額本息選哪個好?

等額本息與等額本金還款比較表(以貸款1萬元1年月利率為3.45%為例)

貸款年限	等額本息			等額本金		
	還款本金	利息	本息合計	還款本金	利息	本息合計
1	817.64	34.50	852.14	833.33	34.50	867.83
2	820.46	31.68	852.14	833.33	31.63	864.96
3	823.29	28.85	852.14	833.33	28.75	862.08
4	826.13	26.01	852.14	833.33	25.88	859.21
5	828.98	23.16	852.14	833.33	23.00	856.33
6	831.84	20.30	852.14	833.33	20.13	853.46
7	834.71	17.43	852.14	833.33	17.25	850.58
8	837.59	14.55	852.14	833.33	14.38	847.71
9	840.48	11.66	852.14	833.33	11.50	844.83
10	843.38	8.76	852.14	833.33	8.63	841.96
11	846.29	5.85	852.14	833.33	5.75	839.08
12	849.21	2.93	852.14	833.37	2.88	836.25
合計	10000.00	225.68	10225.68	10000.00	224.28	10224.28

本息平均攤還:如何計算月付額

• 現金流量圖

Formula

$$\begin{cases} f_1 = p(1+r/12)^{12*20} \\ f_2 = x + x(1+r/12) + x(1+r/12)^2 + \dots + x(1+r/12)^{239} = x \frac{(1+r/12)^{240} - 1}{r} \\ f_1 = f_2 \Rightarrow x = \frac{pr(1+r/12)^{240}}{(1+r/12)^{240} - 1} \end{cases}$$

Rule of 200 (Roger's Formula)

Loan/payment vs. r

$$L\left(1 + \frac{r}{12}\right)^{12*20} = P\frac{(1+r/12)^{240} - 1}{r/12}$$

$$\Rightarrow \frac{L}{P} = \frac{(1+r/12)^{240} - 1}{(r/12)(1+r/12)^{240}} = \frac{1 - (1+r/12)^{-240}}{r/12}$$

Rule of 200

- 假設20年房貸,利率2%
 - → 每月應付款 = 房貸總額/200
- 延伸:若是30年房貸
 - → 每月應付款 = 房貸總額/270

References

References

• Wiki: Time value of money

• Wiki: Compound interest

Appendix

本息平均攤還:計算月付額的方法之二

• 現金流量圖

Formula

Let b_i be the total unpaid amount at period i. Then $b_0 = p$ $b_1 = p(1+r) - x$ $b_2 = (p(1+r) - x)(1+r) - x$...

 $\Rightarrow b_i = b_{i-1}(1+r) - x$, with $b_0 = p$.

Quiz

- (a) Find the close—form solution of b_i .
- (b) Set $b_n = 0$ to find the value of x.

hint:
$$b_i - x/r = (1+r)(b_{i-1} - x/r)$$

本息平均攤還:計算月付額的方法之三

• 現金流量圖

• 本金及利息每期分攤

Let $x=p_i+q_i$, where p_i is the principal and q_i is the interest returned. Then $q_1=pr, p_1=x-q_1$ $q_2=(p-p_1)r, p_2=x-q_2$ $q_3=(p-p_1-p_2)r, p_3=x-q_3$... $\Rightarrow q_i=\left(p-\sum_{k=1}^{i-1}p_k\right)r, p_i=x-q_i$

- Quiz
- (a) Find the recurrent formula of q_i .
- (b) Find the close—form expression of q_i .

本金平均攤還法:計算月付額的方法之一

○現金流量圖

$$a_{1} = p/n + pr$$

$$a_{2} = p/n + (p - p/n)r$$

$$a_{3} = p/n + (p - 2p/n)r$$
...
$$a_{i} = p/n + p\left(1 - \frac{i-1}{n}\right)r$$

Quiz:
$$\begin{cases} f_1 = p(1+r)^n \\ f_2 = \sum_{i=1}^n a_i (1+r)^{n-i} \Rightarrow \text{How to prove } f_1 = f_2 ? \end{cases}$$
 Hints:
$$S_0 = \sum_{i=1}^n (1+r)^{-i} = (1-(1+r)^{-n})/r$$

$$S_1 = \sum_{i=1}^n i(1+r)^{-i} = (1+r)S_0/r - n(1+r)^{-n}/r$$

本金平均攤還法:計算月付額的方法之二

○現金流量圖


```
Let a_i=p_i+q_i be the periodic payment, where p_i and q_i are principal and interest components, respectively. Then: p_1=p_2=\cdots=p_n=p/n q_1=pr q_2=(p-p/n)r q_3=(p-2p/n)r \dots q_i=(p-(i-1)p/n)r
```


Useful Functions

- Two MATLAB functions (utility toolbox) with self demo
 - loan.m

為期20年

• Monthly payment \rightarrow x=loan(p, 3/100, 20)

- saving.m
 - Present value \rightarrow p=saving(x, 3/100, 20, 'initial');
 - Final value \rightarrow f=saving(x, 3/100, 20, 'final');

Rule of 270

- ○社會新鮮人的困惑
 - 若月收入3萬,房貸約佔1/3(1萬),為期30年 → 台北市哪裡去找270萬的房子?
- 方法是人想出來的!
 - 從已無貸款的房子來進行增貸
 - 請和父母保持好關係,早晚問安、不時共餐