MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register

The MPAMF MBW IDR characteristics are:

Purpose

Indicates which MPAM bandwidth partitioning features are present on this MSC.

MPAMF_MBW_IDR_s indicates bandwidth partitioning features accessed from the Secure MPAM feature page. MPAMF_MBW_IDR_ns indicates bandwidth partitioning features accessed from the Non-secure MPAM feature page. MPAMF_MBW_IDR_rt indicates bandwidth partitioning features accessed from the Root MPAM feature page. MPAMF_MBW_IDR_rl indicates bandwidth partitioning features accessed from the Realm MPAM feature page.

When <u>MPAMF_IDR</u>.HAS_RIS is 1, some fields in this register give information for the resource instance selected by <u>MPAMCFG_PART_SEL</u>.RIS. The description of every field that is affected by <u>MPAMCFG_PART_SEL</u>.RIS has that information within the field description.

Configuration

This register is present only when FEAT_MPAM is implemented and MPAMF_IDR.HAS_MBW_PART == 1. Otherwise, direct accesses to MPAMF_MBW_IDR are res0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF MBW IDR is a 32-bit register.

Field descriptions

Bits [31:29]

Reserved, res0.

BWPBM WD, bits [28:16]

Bandwidth portion bitmap width.

The number of bandwidth portion bits in the MPAMCFG MBW PBM<n> register array.

If MPAMF_MBW_IDR.HAS_PBM is 1, this field must contain a value from 1 to 4096, inclusive. Values greater than 32 require a group of 32-bit registers to access the BWPBM, up to 128 if BWPBM_WD is the largest value.

If MPAMF_MBW_IDR.HAS_PBM is 0, this field must be ignored by software.

If RIS is implemented, this field indicates the width of the memory bandwidth portion bitmap partitioning control for the resource instance selected by <u>MPAMCFG_PART_SEL</u>.RIS.

Bit [15]

Reserved, res0.

WINDWR, bit [14]

Indicates the bandwidth accounting period register is writable.

WINDWR	Meaning
0b0	The bandwidth accounting
	period is readable from
	MPAMCFG MBW WINWD
	which might be fixed or vary
	due to clock rate
	reconfiguration of the memory
	channel or memory controller.
0b1	The bandwidth accounting
	width is readable and writable
	per partition in
	MPAMCFG_MBW_WINWD.

HAS PROP, bit [13]

Indicates that this MSC implements proportional stride bandwidth partitioning and the <u>MPAMCFG_MBW_PROP</u> register can be accessed.

HAS_PROP	Meaning
----------	---------

0d0	There is no memory
	bandwidth proportional
	stride control and the
	MPAMCFG MBW PROP
	register is res0.
0b1	The proportional stride
	memory bandwidth
	partitioning scheme is
	supported and the
	MPAMCFG MBW PROP
	register can be accessed.

If RIS is implemented, this field indicates the presence of the memory bandwidth proportional stride partitioning control for the resource instance selected by MPAMCFG PART SEL.RIS.

HAS PBM, bit [12]

Indicates that bandwidth portion partitioning is implemented and the <u>MPAMCFG MBW PBM</u><n> register array can be accessed.

HAS_PBM	Meaning
0b0	There is no memory
	bandwidth portion control and
	the
	<u>MPAMCFG_MBW_PBM<n></n></u> is
	res0.
0b1	The memory bandwidth
	portion allocation scheme
	exists and the
	MPAMCFG_MBW_PBM <n></n>
	register can be accessed.

If RIS is implemented, this field indicates the presence of the memory bandwidth portion partitioning control for the resource instance selected by <u>MPAMCFG PART SEL</u>.RIS.

HAS MAX, bit [11]

Indicates that this MSC implements maximum bandwidth partitioning and the <u>MPAMCFG_MBW_MAX</u> register can be accessed.

HAS_MAX	Meaning
0b0	There is no maximum
	memory bandwidth control
	and the
	MPAMCFG MBW MAX
	register is res0.

0b1	The maximum memory bandwidth allocation	
	scheme is supported and the MPAMCFG MBW MAX	
	register can be accessed.	

If RIS is implemented, this field indicates the presence of the maximum bandwidth partitioning control for the resource instance selected by <u>MPAMCFG_PART_SEL</u>.RIS.

HAS_MIN, bit [10]

Indicates that this MSC implements minimum bandwidth partitioning and the <u>MPAMCFG_MBW_MIN</u> register can be accessed.

HAS_MIN	Meaning
0b0	There is no minimum
	memory bandwidth control
	and the
	MPAMCFG MBW MIN
	register is res0.
0b1	The minimum memory
	bandwidth allocation
	scheme is supported and the
	MPAMCFG MBW MIN
	register can be accessed.

If RIS is implemented, this field indicates the presence of the minimum bandwidth partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Bits [9:6]

Reserved, res0.

BWA WD, bits [5:0]

Number of implemented bits in the bandwidth allocation fields: MIN, MAX, and STRIDE. See <u>MPAMCFG_MBW_MIN</u>, <u>MPAMCFG_MBW_MAX</u>, and <u>MPAMCFG_MBW_PROP</u>.

In any of these bandwidth allocation fields exist, this field must have a value from 1 to 16, inclusive. Otherwise, it is permitted to be 0.

If RIS is implemented, this field indicates the number of implemented bits in the bandwidth allocation control fields for the resource instance selected by <u>MPAMCFG_PART_SEL</u>.RIS.

Accessing MPAMF_MBW_IDR

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF MBW IDR is read-only.

MPAMF_MBW_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_MBW_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and Realm MPAM feature pages unless the register contents are different for the different versions:

- MPAMF_MBW_IDR_s is permitted to have either the same or different contents to MPAMF_MBW_IDR_ns, MPAMF_MBW_IDR_rt, or MPAMF_MBW_IDR_rl.
- MPAMF_MBW_IDR_ns is permitted to have either the same or different contents to MPAMF_MBW_IDR_rt or MPAMF_MBW_IDR_rl.
- MPAMF_MBW_IDR_rt is permitted to have either the same or different contents to MPAMF_MBW_IDR_rl.

There must be separate registers in the Secure (MPAMF_MBW_IDR_s), Non-secure (MPAMF_MBW_IDR_ns), Root (MPAMF_MBW_IDR_rt), and Realm (MPAMF_MBW_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MBW_IDR shows the configuration of memory bandwidth partitioning for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have values that track the implemented properties of the resource instance. Fields that do not mention RIS are constant across all resource instances.

MPAMF_MBW_IDR can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_s	0x0040	MPAMF_MBW_IDR_s

Accesses on this interface are **RO**.

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_ns	0x0040	MPAMF_MBW_IDR_ns

Accesses on this interface are **RO**.

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_rt	0x0040	MPAMF_MBW_IDR_rt

When FEAT RME is implemented, accesses on this interface are RO.

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_rl	0x0040	MPAMF_MBW_IDR_rl

When FEAT RME is implemented, accesses on this interface are RO.

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.