VIGA ELEMENTOS FINITOS

MEDIDAS

Conseguimos ter as medidas de flecha da vida de estudo através dos relógios comparador

ANALISE DE ENGASTE

- O USO DE UM RELÓGIO COMPARADOR É COMUM NESSE PROCESSO. ESSE INSTRUMENTO DE MEDIÇÃO PERMITE UMA LEITURA PRECISA DE PEQUENAS VARIAÇÕES DIMENSIONAIS. AO APLICAR O RELÓGIO COMPARADOR NA MEDIDA DE ENGASTE, É POSSÍVEL IDENTIFICAR DESVIOS MÍNIMOS, ASSEGURANDO QUE AS TOLERÂNCIAS ESPECIFICADAS SEJAM ATENDIDAS.
- MAS NO NOSSO CASO, TEVE UMA VARIAÇÃO DE PRATICAMENTE ZERO

ANSYS

A SIMULAÇÃO ANSYS DE VIGAS É,UMA TÉCNICA DE AN **ESTRUTURAL QUE** UTILIZA O SOFTW PARA MODELA VIGAS SQB DIFERENTES CONDIÇOES DE CARGA.

ANSYS

RESULTADO ANSYS

OS DADOS REVELARAM DISTRIBUIÇÃO **DE TENSÕES AO** LONGO DA VIGA, **IDENTIFICANDO PONTOS** CRÍTICOS DE **CARGA E** DEFORMAÇÃO.

EXCEL

Md	ódulo de elasticidade calculado	
	1,33251E+11	

Deslocamento usando E calculado 0,000920754

Deslocamento(m)	Peso (N)
0,0001	0,397305
0,00025	0,94176
0,00054	2,033613
0,000725	2,653605
0,00092	3,153915

Dados da viga				
L [m]	0,32			
b [m]	0,0254			
h [m]	0,0051			
I [m^4]	2,81E-10			

Peso crítico				
Pcrit [N]	63,15			
Mcrit [kg]	6,437309			

MATLAB PARA 10 SEÇÕES

```
Deslocamentos nos gdl livres (em metros)
d liv =
  -0.0000
  -0.0008
 -0.0001
  -0.0016
  -0.0001
 -0.0022
  -0.0002
 -0.0028
  -0.0003
  -0.0032
  -0.0004
  -0.0036
  -0.0005
  -0.0039
  -0.0007
  -0.0042
  -0.0008
  -0.0043
  -0.0009
   -0.0043
```

```
Reacoes de apoio (em kN)

f_imp =

0.0032

0.0010
```

MATLAB PARA 20 SEÇÕES

```
Deslocamentos nos gdl livres (em metros)
                                     -0.0005
d liv =
                                     -0.0038
  -0.0000
                                     -0.0005
  -0.0004
                                     -0.0039
  -0.0000
  -0.0008
                                     -0.0006
  -0.0000
  -0.0012
                                     -0.0041
  -0.0001
                                     -0.0007
  -0.0016
  -0.0001
                                     -0.0042
  -0.0019
  -0.0001
                                     -0.0007
  -0.0022
  -0.0001
                                     -0.0042
  -0.0025
                                     -0.0008
  -0.0002
  -0.0028
                                     -0.0043
  -0.0002
  -0.0030
                                     -0.0009
  -0.0003
                                     -0.0043
  -0.0032
  -0.0003
                                     -0.0009
  -0.0035
  -0.0004
                                     -0.0043
  -0.0036
```

```
Reacoes de apoio (em kN)

f_imp =

0.0032

0.0010
```

MATLAB PARA 30 SEÇÕES

```
Deslocamentos nos gdl livres (em metros)
                                             -0.0002
                                             -0.0029
d liv =
                                             -0.0003
                                             -0.0031
   -0.0000
                                             -0.0003
   -0.0003
                                             -0.0032
   -0.0000
                                             -0.0003
   -0.0006
                                            -0.0034
   -0.0000
                                            -0.0004
                                            -0.0035
   -0.0008
   -0.0000
                                            -0.0004
   -0.0011
                                             -0.0036
   -0.0000
                                             -0.0004
   -0.0013
                                             -0.0037
   -0.0001
                                             -0.0005
                                            -0.0038
   -0.0016
   -0.0001
                                             -0.0005
   -0.0018
                                             -0.0039
                                            -0.0006
   -0.0001
   -0.0020
                                             -0.0040
                                            -0.0006
   -0.0001
                                             -0.0041
   -0.0022
                                             -0.0007
   -0.0001
                                             -0.0042
   -0.0024
                                            -0.0007
   -0.0002
                                             -0.0042
   -0.0026
                                             -0.0007
   -0.0002
                                             -0.0043
   -0.0028
```

```
-0.0008
-0.0008
-0.0008
-0.0043
-0.0009
-0.0009
-0.0043
```

```
Reacoes de apoio (em kN)

f_imp =

0.0032

0.0010
```

ANÁLISE DE DESLOCAMENTO

	Deslocamento	
Ansys	0,000921 m	
Experimental	0,00092 m	
Erro	0,11%	

ANÁLISE DE CARGA MÁXIMA

ANALISE DE TENSÃO

Número de elementos	Tensão (Pa)	Erro (%)
10	0,87x10^7	_
20	0,893x10^7	2,58
30	0,9x10^7	0,78

ANALISE DE TENSÃO

PARTICIPANTES

Felipe Carvalho - 2100541

Lucas Servilha - 2052830

Marlon dos Santos - 2052830

Rafael Batista - 2101939

Vinicius Baba - 1999249