Engineering Mechanics

Module 3.1 – Centroid of Wires, Laminas and Solids

Presented by: Abhishek P. S. Bhadauria

Sr.	Table on Centroid of Lamina Plane Figure	Area	ī	y
I. Rectan		bd •x	<u>b</u> 2	<u>d</u> 2
	ngle Triangle	$-\frac{1}{2}bh$	<u>b</u> 3	<u>k</u>
Any Tria	egle y h	1/2 b h		<u>h</u>
S)mmete Iriangie	Axis of symm	1	0	<u>h</u> 3
Unsymmet Triungle	rical y	$\frac{1}{2}(a+b)h$ $= \frac{1}{2}Bh$	$\frac{2a+b}{3} = \frac{a+B}{3}$	<u>h</u> 3

Plane Figure	Ares	Ŧ	ÿ
Tircle $ y = \frac{d}{2} $ $ r = \frac{d}{2} $ $ r = \frac{d}{2} $ $ r = \frac{d}{2} $	nr^2 or $\frac{\pi d^2}{4}$	r or <u>d</u> 2	r or <u>d</u>
Semi-circle y Axis of symmetry	$\frac{\pi r^2}{2}$	0	$\frac{4r}{3\pi}$
Semi-circle y Axis of symmetry y y x	$\frac{\pi r^2}{4}$	<u>4 г</u> Зл	<u>4r</u> 3π
Sector O Axis of symmetry	r ² u. a measured in radians	<u>2r sin α</u> 3α	0
Straight Horizontal Line	Length !	1/2	0

Lines/ Wires! Rods! Arcs	Length	x	Ī
Straight Inclined Line	ı	$\frac{\frac{a}{2}}{2} \cos \theta$	<u>b</u> 2
Circular Are	2πr	, ,	,
Semi-circular Arc y Axis of symmetry	πг	0	2r #
4. Semi-circle y Axis of symmetry O T	<u>πr</u> 2	$\frac{2\tau}{\pi}$	2r π
Sector of an Arc G Axis of symmetry	2ra a measured in radians	$\frac{r \sin \alpha}{\alpha}$	0

Solid Bodies	Volume	ī	ī
Cylinder 7	nr^3h	0	<u>h</u> 2
Right Circular	$\frac{1}{3}\pi r^2 h$	0	<u> </u>
Sphere y G y G x	$\frac{4}{3}\pi r^3$,	,
Hemi-sphere	$\frac{2\pi r^3}{3}$	0	3r 8

CENTROID OF COMPOSITE AREA / RODS (LINES OR WIRES)

An area/rod made up of number of regular plane areas/rods are known as composite area/rods. To locate the centroid of a composite area/rod, we adopt the following procedures:

 Study the given figure properly and select suitable coordinate axes if axes are not specified.

At the time of choosing the axis, check the symmetry of the figure.

- (a) If composite figure is symmetrical about x-axis, we find without calculation.
- (b) If composite figure is symmetrical about y-axis we find without calculation.
- (e) If composite figure is symmetrical about x-axis and y-axis, then centroid lies on intersection of these two axis.
- (2) Divide the composite figure into different parts having known areas in case of laminas and known lengths in case of rods.
- (3) Mark the centriods G₁, G₂, G₃, on the individual areas/rods and find their coordinates from the reference axes.
- (4) Prepare the table containing areas or lengths, distance of individual centroid from reference axis etc.
- (5) To find out the coordinates of centroid, we use the following :
- (a) For Areas

$$\overline{x} = \frac{A_1 x_1 + A_2 x_2 + A_3 x_3 + \dots}{A_1 + A_2 + A_3 + \dots} = \frac{\sum A_i x_i}{\sum A_i} \qquad \overline{y} = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3 + \dots}{A_1 + A_2 + A_3 + \dots} = \frac{\sum A_i y_i}{\sum A_i}$$

Here $A_1, A_2,...$ = Areas of individual components.

 $x_1, x_2,...$ = Distance of individual centroid from y-axis.

 $y_1, y_2,...$ = Distance of individual centriod from x-axis.

(b) For Lines

$$\overline{x} = \frac{l_1 x_1 + l_2 x_2 + l_3 x_3 + \dots}{l_1 + l_2 + l_3 + \dots} = \frac{\sum l_i x_i}{\sum l_i}$$

$$\tilde{z} = \frac{l_1 z_1 + l_2 z_2 + l_3 z_3 + \dots}{l_1 + l_2 + l_3 + \dots} = \frac{\sum l_i z_i}{\sum l_i}$$

$$\overline{y} = \frac{l_1 y_1 + l_2 y_2 + l_3 y_3 + \dots}{l_1 + l_2 + l_3 + \dots} = \frac{\sum l_i y_i}{\sum l_i}$$

Here $l_1, l_2,$ = Length of individual rods.

(c) For Solid Bodies [with Constant Density]

$$\bar{x} = \frac{V_1 x_1 + V_2 x_2 + V_3 x_3 + \dots}{V_1 + V_2 + V_3 + \dots} = \frac{\sum V_i x_i}{\sum V_i} \qquad \bar{y} = \frac{V_1 y_1 + V_2 y_2 + V_3 y_3 + \dots}{V_1 + V_2 + V_3 + \dots} = \frac{\sum V_i y_i}{\sum V_i}$$

$$\bar{x} = \frac{V_1 z_1 + V_2 z_2 + V_3 z_3 + \dots}{V_1 + V_2 + V_3 + \dots} = \frac{\sum V_i z_i}{\sum V_i}$$
Here V_1, V_2, \dots = Volume of individual body.

A uniform wire is bent into a shape shown. Calculate position of C.G. of the wire.

PART	LENGTH	Co-ordi	nates	$L_i.X_i$	L _i .Y _i
	L _i , mm	X _i (mm)	Y _i (mm)	mm²	mm ²
AB St. horizontal	100	- 50	150	- 5000	15000
BC Semi circular arc	$\pi \times 75 = 235.62$	- 147.74	75	- 34812	17671
CD St. horizontal	100	- 50	0	- 5000	0
DE St. inclined	100	35.35	35.35	3535	3535
	$\sum L_i = 535.62$			$\sum L_i X_i = -41277$	$\sum_{i} L_{i} \cdot Y_{i} = 36206$

Using
$$\overline{X} = \frac{\sum L_i X_i}{\sum L_i} = \frac{-41277}{535.62} = -77.06 \text{ mm}$$
 and $\overline{Y} = \frac{\sum L_i Y_i}{\sum L_i} = \frac{36206}{535.62} = 67.59 \text{ mm}$

$$(\overline{X}, \overline{Y}) = (-77.06, 67.59) \text{ mm}$$

A thin homogeneous wire of uniform cross-section is bent into shape OABCO as shown. Find its centroid.

PART	LENGTH	Co-ordin	ates (cm)	L _i .X _i	$L_i.Y_i$
	L _i , cm	X_{i}	Yi	cm ²	cm ²
OA St. vertical	10.39	0	5.196	0	53.98
AB St. horizontal	6	3	10.39	18	62.34
BC Circular arc	$2 r \alpha = 2 \times 12 \left[30 \times \frac{\pi}{180} \right]$	9.92	5.73	124.6	71.96
	= 12.56	-			
CO St. horizontal	12	6	О	72	О
	$\Sigma L_i = 40.95$			$\sum_{i} L_{i} X_{i} = 214.6$	$\sum_{i} L_{i}.Y_{i} = 188.28$

Using
$$\overline{X} = \frac{\sum L_i X_i}{\sum L_i} = \frac{214.6}{40.95} = 5.24 \text{ cm}$$
 and $\overline{Y} = \frac{\sum L_i Y_i}{\sum L_i} = \frac{188.28}{40.95} = 4.59 \text{ cm}$

 \therefore the co-ordinates of centroid of the bent up wire are, $(\overline{X}, \overline{Y}) = (5.24, 4.59)$ cm ...**Ans.**

Locate the centroid for the wire. Neglect the thickness of the material and slight bends at the corners.

Due to symmetry, we only have to find \overline{y} and so I am only going to consider the right $\frac{1}{2}$ of the wire. I will break it up into the 4 pieces.

Problem: Find the centroid of the bent wire as shown in figure.

Post	Length	Co-ord	inates	Lx	L y
Part	L cm	x cm	y cm	cm ²	cm ²
1. AB	8	7	9	56	72
2. BC	$\pi \times 7 = 22$	18	13.456	396	296
3. CD	8	28.464	7	227.7	.56
	Σ L =			$\Sigma Lx =$	ΣLy= 424
	38			679.7	424

Using
$$\overline{X} = \frac{\sum L x}{\sum L} = \frac{679.7}{38} = 17.886 \text{ cm}$$
 and $\overline{Y} = \frac{\sum L y}{\sum L} = \frac{424}{38} = 11.158 \text{ cm}$

$$\vec{X}$$
, $\vec{Y} = (17.886, 11.158)$ cm **Ans**.

Problem: A bent up wire ABCDE is as shown in figure. Locate its centre of gravity.

Part	Length	Co-ore	dinates	Lx	Ly
7 44.0	L cm	x cm	y cm	cm ²	cm ²
1. AB	3	- 5.5	6	- 16.5	18
2. BC	6	- 4	3	- 24	18
3. CD	$\pi \times 4 = 12.566$	0	- 2.546	0	- 32
4. DE	5	6.165	1.25	30.825	6.25
	Σ L = 26.566			$\Sigma L x = -9.675$	ΣLy= 10.25

Using
$$\overline{X} = \frac{\sum L x}{\sum L} = \frac{-9.675}{26.566} = -0.364 \text{ cm}$$
 and $\overline{Y} = \frac{\sum L y}{\sum L} = \frac{10.25}{26.566} = 0.3858 \text{ cm}$

$$\therefore$$
 \overline{X} , $\overline{Y} = (-0.364, 0.3858)$ cm Ans.

Problem: Find the centroid of the bent wire ABCDEFOA as shown in figure.

	Length	Co-or	dinates	Lx	Lу
Part	L m	x m	уm	m²	m²
1. OA	6	0	3	0	18
2. AB	3	1.5	6	4.5	18
3. BC	4	3	4	12	16
4. CD	$\pi \times 1 = 3.14$	4	1.363	12.56	4.28
5. DE	2	6	2	12	4
6. EF	2	7	1	14	2
7. OF	7	3.,5	0	24.5	0
	Σ L =			$\Sigma L x =$	Σ L y =
	27.14			79.56	62.28

Using
$$\overline{X} = \frac{\sum L x}{\sum L} = \frac{79.56}{27.14} = 2.931 \text{ m}$$
 and $\overline{Y} = \frac{\sum L y}{\sum L} = \frac{62.28}{27.14} = 2.295 \text{ m}$

$$\vec{x}$$
, $\vec{Y} = (2.931, 2.295) \text{ m} \dots \text{Ans.}$

Problem: Find the centroid of shaded area as shown.

Part	Area (A _i) cm ²	X _i CM	y _i cm	A _i x _i cm ³	A _i y _i cm ³
1. Square	100	5	5	500	500
2. Rt. Triangle	- 9	1	2	- 9	- 18
3. Quarter-circle	- 12.57	1.697	8.302	- 21.32	- 104.33
4. Semi-circle	- 39.27	7.878	5	- 309.37	- 196.35
	$\Sigma A_i =$			$\Sigma A_i x_i =$	$\Sigma A_i y_i =$
	39.16			160.31	181.32

$$\overline{X} = \frac{\sum A_i x_i}{\sum A_i} = \frac{160.31}{39.16} = 4.09 \text{ cm}$$
 and $\overline{Y} = \frac{\sum A_i y_i}{\sum A_i} = \frac{181.32}{39.16} = 4.63 \text{ cm}$

$$\vec{X}$$
, $\vec{Y} = (4.09, 4.63)$ cm **Ans.**

A semi-circular section is removed from the plane area as shown. Find centroid of the remaining shaded area.

here
$$\alpha = \frac{240}{2} = 120^{\circ} = 2.094 \text{ radians}$$

$$\frac{2}{3} \times \frac{r \sin \alpha}{\alpha} \quad \therefore \quad \frac{2}{3} \times \frac{100 \sin 120}{2.094} = 27.56 \text{ mm}$$

$$\text{Area} = A_1 = r^2 \pi = (100)^2 \times 2.094 = 20944 \text{ mm}^2$$

A.O.S., which is the y-axis, we have $\overline{X} = 0$

Semicircle

PART	AREA A _i , mm ²	Y _i mm	$A_i Y_i mm^3$
1. SECTOR	20944	27.56	577217
2. TRIANGLE	$\frac{1}{2} \times 173.2 \times 50 = 4330$	- 33.33	- 144319
3. SEMI-CIRCLE	$-\frac{1}{2}\pi(75)^2 = -8835.7$	31.83	- 281241
	$\Sigma A_i = 16438.3$		$\sum A_i.Y_i = 151657$

Using
$$\overline{Y} = \frac{\sum A_i Y_i}{\sum A_i} = \frac{151657}{16438.3} = 9.22 \text{ mm}$$
 $\therefore (\overline{X}, \overline{Y}) = (0, 9.22) \text{ mm} \dots Ans.$

For the plane area shown, determine the first moments with respect to the *x* and *y* axes and the location of the centroid. (All dimensions are in cm)

ID	Area	X _i
A ₁	2	0.5
A ₂	3	2.5
A_3	1.5	2
A ₄	-0.7854	0.42441

ID	Area	Xi	x _i *Area	y _i	y _i *Area
A ₁	2	0.5	1	1	2
A_2	3	2.5	7.5	0.5	1.5
A_3	1.5	2	3	1.333333	2
A ₄	-0.7854	0.42441	-0.33333	0.42441	-0.33333
	5.714602		11.16667		5.166667
	X _{bar}	1.9541	y _{bar}	0.904117	

For the plane area shown, determine the first moments with respect to the *x* and *y* axes and the location of the centroid. (All dimensions are in cm)

SOLUTION:

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle.
- Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.

Component	A, mm²	\bar{x} , mm	ӯ, mm	$\overline{x}A$, mm ³	<i>ȳA</i> , mm³
Rectangle Triangle Semicircle Circle	$(120)(80) = 9.6 \times 10^{3}$ $\frac{1}{2}(120)(60) = 3.6 \times 10^{3}$ $\frac{1}{2}\pi(60)^{2} = 5.655 \times 10^{3}$ $-\pi(40)^{2} = -5.027 \times 10^{3}$	60 40 60 60	40 -20 105.46 80	$+576 \times 10^{3}$ $+144 \times 10^{3}$ $+339.3 \times 10^{3}$ -301.6×10^{3}	$+384 \times 10^{3}$ -72×10^{3} $+596.4 \times 10^{3}$ -402.2×10^{3}
	$\Sigma A = 13.828 \times 10^3$			$\Sigma \overline{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

$$\overline{X} = \frac{\sum \overline{x}A}{\sum A} = \frac{+757.7 \times 10^{3} \text{ mm}^{3}}{13.828 \times 10^{3} \text{ mm}^{2}} \qquad \overline{Y} = \frac{\sum \overline{y}A}{\sum A} = \frac{+506.2 \times 10^{3} \text{ mm}^{3}}{13.828 \times 10^{3} \text{ mm}^{2}}$$

$$\overline{X} = 54.8 \text{ mm}$$

$$\overline{Y} = 36.6 \text{ mm}$$

$$\overline{Y} = \frac{\sum \overline{y}A}{\sum A} = \frac{+506.2 \times 10^3 \text{ mm}^3}{13.828 \times 10^3 \text{ mm}^2}$$

$$\overline{\overline{Y}} = 36.6 \text{ mm}$$

Problem for Practice:

Determine the centroid of given plane laminas

Solution: Divide the shaded areas into 4 parts and mark the centriod of the respective area. Prepare the table as follows.

Component	Area A _i (mm²)	₹ _{Gi} (mm)	₹ _{GI} (mm)	$A_I \overline{x}_{GI} (mm^3)$	$A_I \overline{y}_{GI} (mm^3)$
(1) Rectangle OABD	90 × 50 = 4500	$\frac{90}{2} = 45$	$\frac{50}{2} = 25$	202500	112500
(2) Semicircle ABA	$\frac{\pi}{2} \times 25^2$ = 981.747	$90 + \frac{4 \times 25}{3\pi}$ = 100.61	25	98773.566	24543.675
(3) Triangle OHF	$\frac{1}{2} \times 30 \times 45$ = 675	$\frac{1}{3} \times 30 = 10$	$-\frac{1}{3} \times 45 = -15$	6750	-10125
(4) Quarter Circle DCE	$-\frac{\pi \times 30^2}{4} = -706.858$	$\frac{4 \times 30}{3\pi}$ = 12.733	$50 - \frac{4 \times 30}{3\pi} = 37.267$	-9000.423	-26342.477

$$\Sigma A_i = 5449.889 \text{ mm}^2$$
, $\Sigma A_i \bar{x}_{Gi} = 299039 \text{ mm}^3$, $\Sigma A_i \bar{y}_{Gi} = 100576.198 \text{ mm}^3$

$$\bar{x} = \frac{\sum A_i \bar{x}_{Gi}}{\sum A_i} = \frac{299039}{5449.889} = 54.868 \text{ mm}, \quad \bar{y} = \frac{\sum A_i \bar{y}_{Gi}}{\sum A_i} = \frac{100576.198}{5449.889} = 18.455 \text{ mm}$$

Centroid G[x, y] = [54.868, 18.455] mm ... Ans.

Solution: Divide the shaded area into 4 parts and mark the centroid of the respective area. Prepare the table as follows.

Component	Area A; (cm2)	$\overline{x}_{Gi}(cm)$	$\overline{y}_{Gi}(em)$	$A_i \overline{x}_{Gi} (\mathrm{cm}^3)$	A ₁ FGi (em³)
(1) Rectangle OABC	5 × 5 = 25	$\frac{5}{2} = 2.5$	$-\frac{5}{2} = -2.5$	62.5	-62.5
(2) Rectangle ADEG	6 × 3 = 18	$5 + \frac{5}{2} = 2.5$	$\frac{3}{2} = 1.5$	144	27
(3) Triangle GEF	$\frac{1}{2} \times 6 \times 5 = 15$	$5 + \frac{2}{3} \times 6$ $= 9$	$3 + \frac{1}{3} \times (8 - 3)$ = 4.667	135	70.005
(4) Semicircle	$\frac{-\pi \times 25^2}{2}$ $= -6.283$	5+1+2=8	$\frac{4 \times 2}{3\pi}$ = 0.849	-50.264	-5.334

$$\Sigma A_i = 51.717 \text{ cm}^2$$
, $\Sigma A_i \bar{x}_{Gi} = 291.236 \text{ cm}^3$, $\Sigma A_i \bar{y}_{Gi} = 29.171 \text{ cm}^3$

$$\overline{x} = \frac{\sum A_i \overline{x}_{Gi}}{\sum A_i} = \frac{291.236}{51.717} = 5.631 \text{ cm}, \qquad \overline{y} = \frac{\sum A_i \overline{y}_{Gi}}{\sum A_i} = \frac{29.171}{51.717} = 0.564 \text{ cm}$$

Centroid $G[\bar{x}, \bar{y}] = [5.631, 0.564]$ cm ... Ans.

Find centroid of shaded plane area.

Part	Area	Co-ordinates		Αx	Аy
	A mm²	x mm	y mm	mm ³	mm ³
1. Rectangle	$20 \times 35 = 700$	10	17.5	7000	12250
2. Qt. circle	$-(\pi \times 20^2)/4 = -314.16$	8.488	8.488	- 2666.6	- 2666.6
3. Rt. Triangle	$-\left(\frac{1}{2} \times 10 \times 15\right) = -75$	3.33	30	- 249.8	- 2250
4. Rt. Triangle	$-(\frac{1}{2} \times 10 \times 10) = -50$	16.67	31.67	- 833.5	- 1583.5
	Σ A = 260.84			$\Sigma A x = 3250$	Σ A y = 5750

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{3250}{260.84} = 12.46 \text{ mm}$$
 and $\overline{Y} = \frac{\sum A y}{\sum A} = \frac{5750}{260.84} = 22.04 \text{ mm}$

Problem: Find the centroid of shaded portion as shown.

Doet		Area	Co-01	dinates	Ax	Ay
	Part	A cm ²	x cm	y cm	cm ³	cm ³
1.	Semicircle	$(\pi \times 8^2)/2 = 100.53$	0	- 3.395	0	- 341.3
2.	Rt. Triangle	$(\frac{1}{2} \times 8 \times 13.856)$ = 55.42	5.33	4.619	295.4	256
3.	Semicircle	$-(\pi \times 3^2)/2 = -14.137$	- 5	- 1.273	70.68	18
		ΣA = 141.81			Σ A x = 366	$\Sigma A y = -67.33$

Using
$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{366}{141.81} = 2.581 \text{ cm}$$
 and $\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{-67.33}{141.81} = -0.474 \text{ cm}$

$$\vec{X}$$
, $\vec{Y} = (2.581, -0.474)$ cm Ans.

Problem on Composite solid [cylinder & cone].

A solid cone having base diameter 6cm & height 6cm is kept co-axially on a solid Cylinder having 6cm diameter and 10 cm high. Find C.G. of the Combination.

Centroids by Integration: to locate the centroid of figures bounded by curves.

$$\overline{X} = \frac{\int x_{el}.dA}{\int dA}$$
 , $\overline{Y} = \frac{\int y_{el}.dA}{\int dA}$

Determine the centroid of the plane area as shown in figure.

Solution:

Total area =
$$\int dA = \int ydx$$

$$= \int_{0}^{400} 200 \cos \left(\frac{\pi x}{800}\right) dx$$

$$= 200 \left(\frac{\sin \left(\frac{\pi x}{800} \right)}{\frac{\pi}{800}} \right)^{400} = \frac{160000}{\pi} \sin \left(\frac{\pi}{2} - \sin 0 \right)$$

$$= \frac{160000}{\pi} = 50930 \text{ mm}^2$$

If (xel, yel) are the co-ordinates of the centroid of the element, then

$$x_{el} = x$$
 and $y_{el} = y/2$

Now,
$$\int x_{el} \cdot dA = \int_{0}^{400} x \cdot y dx - \sin ce x_{el} = x \text{ and } dA = y dx$$

$$= \int_{0}^{400} x \cdot 200 \cos \left(\frac{\pi x}{800}\right) dx$$

$$= 200 \left[x \cdot \frac{\sin \left(\frac{\pi x}{800}\right)}{\frac{\pi}{800}} - \int 1 \cdot \sin \frac{\left(\frac{\pi x}{800}\right) dx}{\pi/800} \right]_{0}^{400}$$

$$= 200 \left[\frac{800}{\pi} \cdot x \cdot \sin \left(\frac{\pi x}{800}\right) - \frac{800}{\pi} \cdot \left(\frac{-\cos \left(\frac{\pi x}{800}\right) dx}{\pi/800}\right) \right]_{0}^{400}$$

$$= 200 \left[\left(\frac{800}{\pi} \cdot 400 \sin \left(\frac{\pi}{2}\right) + \frac{800^{2}}{\pi^{2}} \cdot \cos \left(\frac{\pi}{2}\right)\right) - \left(0 + \frac{800^{2}}{\pi^{2}} \cos 0\right) \right]$$

$$= 200 \left[101859 - 64845.5 \right]$$

 $= 7402721 \text{ mm}^3$

Also,
$$\int y_{el} \cdot dA = \int_{0}^{400} \frac{y}{2} \cdot y dx$$

$$= \frac{1}{2} \int_{0}^{400} \left(200 \cos \left(\frac{\pi x}{800} \right) \right)^{2} dx = 20000 \int_{0}^{400} \frac{1 + \cos \left(\frac{\pi x}{400} \right)}{2} dx$$

$$= 10000 \left\{ x + \frac{\sin \left(\frac{\pi x}{400} \right)}{\pi/400} \right\}_{0}^{400}$$

$$= 10000 \left\{ \left(400 + \frac{400}{\pi} (\sin \pi) \right) - 0 \right\} = 4 \times 10^{6} \text{ mm}^{3}$$
Using
$$\overline{X} = \frac{\int x_{el} \cdot dA}{\int dA} = \frac{7402721}{50930} = 145.35 \text{ mm}$$

$$\overline{Y} = \frac{\int y_{el} \cdot dA}{\int dA} = \frac{4 \times 10^{6}}{50930} = 78.54 \text{ mm}$$

 \therefore Centroid of the plane area has co-ordinates $(\overline{X}, \overline{Y}) = (145.35, 78.54)$ mm......Ans.

Show that the centroid of an arc of radius 'r' is located at $\frac{r \cdot \sin \alpha}{r}$ from the centre along axis of symmetry.

Solution: Consider a circular arc which subtends an angle 2α . Let the A.O.S. be x-axis. Let us take an element of length dL situated at an angle θ from the x-axis. Let the element subtend an angle $d\theta$ at the centre.

$$\therefore$$
 dL = rd θ

Total length
$$L = \int dL = \int_{-\alpha}^{\alpha} r d\theta = r [\theta]_{-\alpha}^{\alpha}$$

or $\int dL = 2r\alpha$ -----(1)

The centroid of the element is on the element itself

$$\therefore x_{el} = r \cos \theta$$

$$\therefore \int x_{el} dL = \int_{-\alpha}^{\alpha} r \cos \theta d\theta = r^2 \left[\sin \theta \right]_{-\alpha}^{\alpha} = 2 r^2 \sin \alpha \qquad (2)$$

Using
$$\overline{X} = \frac{\int x_{el} . dL}{\int dL} = \frac{2 \, r^2 \sin \alpha}{2 \, r. \, \alpha}$$
 or $\overline{X} = \frac{r \sin \alpha}{\alpha}$ ---- Proved.

$$d\theta = rd\theta$$

$$A.O.S.$$

$$x_{el} = r \cos\theta$$

$$\overline{X} = \frac{r \sin \alpha}{\alpha}$$
 ---- Proved

