MAT02035 - Modelos para dados correlacionados

Modelos lineares de efeitos mistos

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2023

Introdução

Nas aulas anteriores introduzimos modelos para dados longitudinais em que mudanças na resposta média, e as suas relações com covariáveis, podem ser expressas como

$$\mathsf{E}(Y_i|X_i)=X_i\beta.$$

- Nosso objetivo principal tem sido a inferência sobre os **parâmetros populacionais** de regressão β .
- Ainda, discutimos como a especificação deste modelo de regressão para dados longitudinais podem ser completada através de suposições adicionais a respeito da **estrutura** de Cov $(Y_i|X_i) = \text{Cov}(e_i) = \Sigma_i$.
- Nesta aula nós vamos considerar uma abordagem alternativa, mas proximamente relacionada, para analisar dados longitudinais utilizando modelos lineares de efeitos mistos.

Ideia básica

Algum subconjunto dos parâmetros (coeficientes) de regressão varia aleatoriamente de um indivíduo para outro, respondendo assim por fontes de heterogeneidade natural na população.

Característica distintiva

A resposta média é modelada como uma combinação de **características da população** β (**efeitos fixos**), que se supõe serem compartilhadas por todos os indivíduos, e **efeitos indivíduo-específicos** (**efeitos aleatórios**) que são exclusivos para um indivíduo em particular.

 O termo misto é usado neste contexto para denotar que o modelo contém efeitos fixos e aleatórios.

Apesar de ser uma combinação de efeitos populacionais e individuais, o modelo linear de efeitos mistos nos conduz a um modelo para a resposta média marginal (média sobre a distribuição dos efeitos aleatórios) que pode ser expresso na forma familiar

$$\mathsf{E}(Y_i|X_i) = X_i\beta.$$

- No entanto, a introdução de efeitos aleatórios **induz uma covariância entre as respostas** e $Cov(Y_i|X_i) = \Sigma_i$ possui uma estrutura de efeitos aleatórios distinta.
 - Os modelos lineares de efeitos mistos distinguem explicitamente as fontes de variação entre indivíduos e intra-indivíduo.
- Além disso, a estrutura de covariância de efeitos aleatórios induzida pode frequentemente ser descrita com relativamente poucos parâmetros, independentemente do número e do momento das ocasiões de medicão.

Comentários

- Permitem a análise de fontes de variação entre indivíduos e intra-indivíduo nas respostas longitudinais.
- Também é possível prever como as trajetórias de resposta individuais mudam ao longo do tempo.
 - Ex: trajetórias de crescimentos individuais.
- Flexibilidade em acomodar qualquer grau de desbalanceamento nos dados longitudinais, juntamente com sua capacidade de explicar a covariância entre as medidas repetidas de maneira relativamente parcimoniosa.

Exemplo: o modelo de intercepto aleatório

Exemplo: o modelo de intercepto aleatório

Neste modelo, presume-se que cada indivíduo tenha um nível de resposta subjacente que persiste ao longo do tempo

$$Y_{ij} = X'_{ij}\beta + b_i + \epsilon_{ij}, \tag{1}$$

em que b_i é o **efeito individual aleatório** e ϵ_{ij} é o erro amostral (ou de medição).

▶ b_i e ϵ_{ij} são ambos assumidos serem **aleatórios**, **independentes um do outro**, com **média zero**, e **com variâncias**, $Var(b_i) = \sigma_b^2$ e $Var(\epsilon_{ij}) = \sigma^2$, **respectivamente**.

 Observe que este modelo descreve a trajetória média da resposta ao longo do tempo para qualquer indivíduo (média condicional)

$$\mathsf{E}\left(Y_{ij}|b_i\right) = X'_{ij}\beta + b_i.$$

 E também descreve o perfil médio de resposta na população (média marginal)

$$\mathsf{E}(Y_{ij}) = X'_{ii}\beta$$
,

em que a média é com respeito a todos os indivíduos da população.

Atenção na notação!

- Solution Os erros de medição ou amostragem em (1) são indicados por ϵ_{ij} (epsilon) e não e_{ij} .
 - Essa alteração na notação é intencional e reflete diferenças nas interpretações de ε_{ii} e e_{ii}.
- Nas aulas anteriores, o erro e_{ij} representa o desvio de Y_{ij} para a resposta média na população, X'_{ii}β.
- Nesta aula, o erro intra-indivíduo ϵ_{ij} representa o desvio de Y_{ij} para a resposta média específica do indivíduo, $X'_{ii}\beta + b_i$.
 - Ou seja, ε_{ij} representa o desvio da resposta para a média condicional do modelo especificado em (1).
 - ▶ Os erros aleatórios, e_{ij} , foram **decompostos** em dois **componentes aleatórios**, $e_{ij} = b_i + \epsilon_{ij}$, um componente **entre indivíduos** e um componente **intra-indivíduo**.

Interpretação dos parâmetros no modelo (1)

- Solution Os parâmetros de regressão β descrevem padrões de mudança na resposta média ao longo do tempo (e suas relações com covariáveis) na população de interesse;
- O b_i descreve como a tendência ao longo do tempo para i-ésimo indivíduo desvia da média da população.
 - O b_i representa um desvio individual do intercepto da média da população, depois que os efeitos das covariáveis foram contabilizados
 - Quando combinado com os efeitos fixos, b_i descreve a trajetória média da resposta ao longo do tempo para qualquer indivíduo.

Essa interpretação é aparente se expressarmos o modelo dado por (1) como

$$Y_{ij} = X'_{ij}\beta + b_i + \epsilon_{ij} = \beta_1 X_{ij1} + \beta_2 X_{ij2} + \dots + \beta_p X_{ijp} + b_i + \epsilon_{ij} = \beta_1 + \beta_2 X_{ij2} + \dots + \beta_p X_{ijp} + b_i + \epsilon_{ij} = (\beta_1 + b_i) + \beta_2 X_{ij2} + \dots + \beta_p X_{ijp} + \epsilon_{ij},$$

em que $X_{ij1}=1$ para todo i e j, e β_1 é um termo de intercepto fixo no modelo.

Como a média do efeito aleatório b_i é assumida como zero, b_i representa o desvio do intercepto do *i*-ésimo indivíduo $(\beta_1 + b_i)$ para o intercepto da população, β_1 .

- O indivíduo A responde "mais alto" que a média da população e, portanto, possui um b_i positivo.
- O indivíduo B responde "mais baixo" que a média da população e tem um b_i negativo.

 A inclusão dos erros de medição, ε_{ij}, permite a resposta em qualquer ocasião variar aleatoriamente acima e abaixo das trajetórias indivíduo-específicas.

Quando calculada a média dos efeitos específicos do indivíduo, a média marginal de Y_{ii} é dada por

$$\mathsf{E}(Y_{ij}) = \mu_{ij} = X'_{ij}\beta.$$

- A variância marginal entre Y_{ij} é definida em termos de desvios de Y_{ij} para a média marginal μ_{ij}.
 - Por exemplo, na última figura, esses desvios são positivos em todas as ocasiões de medição para o indivíduo A e negativos em todas as ocasiões de medição para o indivíduo B, indicando uma forte correlação positiva (marginalmente) entre as respostas ao longo do tempo.

 Para o modelo com interceptos aleatórios, a variância marginal de cada resposta é dada por

$$\begin{aligned} \operatorname{Var}(Y_{ij}) &= \operatorname{Var}(X'_{ij}\beta + b_i + \epsilon_{ij}) \\ &= \operatorname{Var}(b_i + \epsilon_{ij}) \text{ (pois } X'_{ij}\beta \text{ \'e fixo)} \\ &= \operatorname{Var}(b_i) + \operatorname{Var}(\epsilon_{ij}) \text{ (pois } b_i \text{ e } \epsilon_{ij} \text{ s\~ao indep.)} \\ &= \sigma_b^2 + \sigma^2. \end{aligned}$$

 Similarmente, a covariância marginal entre qualquer par de respostas Y_{ij} e Y_{ik} é dada por

$$Cov(Y_{ij}, Y_{ik}) = Cov(X'_{ij}\beta + b_i + \epsilon_{ij}, X'_{ik}\beta + b_i + \epsilon_{ik})$$

$$= Cov(b_i + \epsilon_{ij}, b_i + \epsilon_{ik})$$

$$= Cov(b_i, b_i) + Cov(b_i, \epsilon_{ik}) + Cov(\epsilon_{ij}, b_i) + Cov(\epsilon_{ij}, \epsilon_{ik})$$

$$= Var(b_i) + 0 + 0 + 0$$

$$= \sigma_b^2.$$

Assim, a matriz de covariância marginal das medidas repetidas tem o seguinte padrão de **simetria composta**:

$$\mathsf{Cov}(Y_i) = \begin{pmatrix} \sigma_b^2 + \sigma^2 & \sigma_b^2 & \sigma_b^2 & \cdots & \sigma_b^2 \\ \sigma_b^2 & \sigma_b^2 + \sigma^2 & \sigma_b^2 & \cdots & \sigma_b^2 \\ \sigma_b^2 & \sigma_b^2 & \sigma_b^2 + \sigma^2 & \cdots & \sigma_b^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_b^2 & \sigma_b^2 & \sigma_b^2 & \cdots & \sigma_b^2 + \sigma^2 \end{pmatrix}.$$

► Este é o único modelo de covariância que aparece tanto na abordagem de modelos de padrão de covariância¹ e na "abordagem de efeitos aleatórios".

¹Consulte a última aula!

Dado que a covariância entre qualquer par de medidas repetidas é σ_b^2 , a correlação é

$$Corr(Y_{ij}, Y_{ik}) = \frac{\sigma_b^2}{\sigma_b^2 + \sigma^2}.$$

- Essa expressão simples para a correlação enfatiza um aspecto importante dos modelos de efeitos mistos: a introdução de um efeito individual aleatório, b_i, pode ser visto como induzir correlação entre as medidas repetidas.
- ▶ Embora o modelo de interceptos aleatórios seja o exemplo mais simples de um modelo linear de efeitos mistos, e a estrutura de covariância resultante geralmente não é apropriada para dados longitudinais, as ideias básicas podem ser generalizadas para fornecer um modelo muito versátil para a análise de dados longitudinais.

A classe dos modelos lineares de efeitos mistos

A classe dos modelos lineares de efeitos mistos

O modelo de intercepto e inclinação aleatórios

 Considere um modelo com intercepto e inclinação que variam aleatoriamente entre indivíduos,

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij}, \ j = 1, \dots, n_i,$$

em que t_{ij} indica o tempo da j-ésima resposta do i-ésimo indivíduo.

O modelo de intercepto e inclinação aleatórios

- Nos exemplos anteriores, introduzimos interceptos e inclinações aleatórias.
- No entanto, o modelo linear de efeitos mistos pode ser generalizado (i) para incorporar coeficientes de regressão adicionais variando aleatoriamente e (ii) para permitir que as médias dos efeitos aleatórios dependam de covariáveis.
- Assumindo que N indivíduos com n_i medidas repetidas cada um, com variável resposta Y_{ij} mensurada em t_{i1}, \ldots, t_{in_i} .

 Usando a notação vetorial, o modelo linear de efeitos mistos pode ser expresso como

$$Y_i = X_i \beta + Z_i b_i + \epsilon_i, \tag{2}$$

- \triangleright β é um vetor ($p \times 1$) de **efeitos fixos**;
- **b**_i é um vetor $(q \times 1)$ de **efeitos aleatórios**;
- \triangleright X_i é uma matriz de covariáveis $(n_i \times p)$;
- $ightharpoonup Z_i$ é uma matriz de covariáveis $(n_i \times q)$, em que $q \leq p$.

Aqui Z_i é uma matriz de delineamento que liga o vetor de efeitos aleatórios b_i a Y_i .

- Em particular, para muitos modelos em análise longitudinal as colunas de Z_i serão **um subconjunto** de X_i .
- Em geral, qualquer componente de β pode variar aleatoriamente simplesmente incluindo a covariável correspondente de X_i em Z_i .

Ainda, supõe-se que os efeitos aleatórios, b_i, tenham uma distribuição normal multivariada com média zero e matriz de covariância denotada por G,

$$b_i \sim N(0, G)$$
.

- Observação: em princípio, qualquer distribuição multivariada para b_i pode ser assumida; na prática, assume-se que b_i tenha distribuição normal multivariada.
- Se, no modelo (2), o vetor de efeitos aleatórios, b_i, tem média zero, os efeitos aleatórios tem interpretação em termos de como o subconjunto de parâmetros de regressão para o *i*-ésimo indivíduo desviam dos respectivos parâmetros da média populacional.

Médias condicionais e marginais

A média condicional ou indivíduo-específica de Y_i , dado b_i , é

$$\mathsf{E}(Y_i|b_i) = X_i\beta + Z_ib_i$$

e a **média marginal** de Y_i é

$$E(Y_i) = \mu_i$$

$$= E[E(Y_i|b_i)]$$

$$= E(X_i\beta + Z_ib_i)$$

$$= X_i\beta + Z_iE(b_i)$$

$$= X_i\beta \text{ (pois } E(b_i) = 0).$$

Por fim, supõe-se que o vetor $(n_i \times 1)$ de erros intra-individuais, ϵ_i , tenha uma distribuição normal multivariada com média zero e matriz de covariância denotada por R_i ,

$$\epsilon_i \sim N(0, R_i)$$
.

- **Nota:** geralmente, assume-se que $R_i = \sigma^2 I_{n_i}$, em que I_{n_i} é uma matriz identidade $(n_i \times n_i)$.
- Ou seja, ε_{ij} e ε_{ik} são não-correlacionados, com variância constante, e os ε_{ij}'s podem ser interpretados como erros de medição ou amostrais.
- Observação: em princípio, um modelo de padrão de covariância (como aqueles vistos na aula anterior) pode ser adotado para R_i.
 - Na prática, isto traz problemas de interpretação dos ε_{ij}'s e de identificação do modelo.

Para clarificar a notação matricial introduzida até agora, considere o seguinte modelo linear de efeitos mistos com interceptos e inclinações aleatórias:

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij}, \ j = 1, \dots, n_i.$$

Usando a notação de matrizes e vetores, o modelo pode ser reexpresso como

$$Y_i = X_i \beta + Z_i b_i + \epsilon_i$$

em que

$$X_i = Z_i = \begin{pmatrix} 1 & t_{i1} \\ 1 & t_{i2} \\ \vdots & \vdots \\ 1 & t_{in_i} \end{pmatrix}.$$

Agui q = p = 2.

- Este modelo postula que os indivíduos variam não apenas no nível de resposta da linha de base (quando $t_{i1} = 0$), mas também em termos de alterações na resposta ao longo do tempo.
- Os efeitos das covariáveis (por exemplo, devido a tratamentos, exposições) podem ser incorporados permitindo que a média de interceptos e inclinações dependa das covariáveis.
- Por exemplo, considere o estudo de dois grupos comparando um tratamento e um grupo controle:

$$Y_{ij} = \beta_1 + \beta_2 t_{ij} + \beta_3 grupo_i + \beta_4 t_{ij} \times grupo_i + b_{1i} + b_{2i} t_{ij} + \epsilon_{ij},$$

em que $grupo_i = 1$ se o *i*-ésimo indivíduo é atribuído ao grupo de tratamento e $grupo_i = 0$ caso contrário.

 Neste modelo a matriz de delineamento X_i tem a seguinte forma para o grupo controle

$$X_i = \begin{pmatrix} 1 & t_{i1} & 0 & 0 \\ 1 & t_{i2} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & t_{in_i} & 0 & 0 \end{pmatrix},$$

e para o grupo de tratamento a matriz de delineamento é dada por

$$X_i = \left(\begin{array}{cccc} 1 & t_{i1} & 1 & t_{i1} \\ 1 & t_{i2} & 1 & t_{i2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & t_{in_i} & 1 & t_{in_i} \end{array}\right).$$

Note que a matriz de delineamento Z_i tem a mesma forma para ambos os grupos tratamento e controle,

$$Z_i = \left(egin{array}{ccc} 1 & t_{i1} \ 1 & t_{i2} \ dots & dots \ 1 & t_{in_i} \end{array}
ight).$$

Covariância induzida pela introdução de efeitos aleatórios

- ► Seja $Var(b_{1i}) = g_{11}$, $Var(b_{2i}) = g_{22}$, $Cov(b_{1i}, b_{2i}) = g_{12}$.
 - Estes são os três únicos elementos da matriz (2×2) de covariância $G = \text{Cov}(b_i)$.
- ► Se também assumirmos que $R_i = \text{Cov}(\epsilon_i) = \sigma^2 I_{n_i}$, então

$$\begin{aligned} \mathsf{Var} \left(Y_{ij} \right) &= \mathsf{Var} \left(b_{1i} + b_{2i} t_{ij} + \epsilon_{ij} \right) \\ &= \mathsf{Var} \left(b_{1i} \right) + 2 t_{ij} \mathsf{Cov} \left(b_{1i}, b_{2i} \right) + t_{ij}^2 \mathsf{Var} \left(b_{2i} \right) + \mathsf{Var} \left(\epsilon_{ij} \right) \\ &= g_{11} + 2 t_{ij} g_{12} + t_{ij}^2 g_{22} + \sigma^2. \end{aligned}$$

▶ Da mesma forma, pode ser demonstrado² que

$$Cov(Y_{ii}, Y_{ik}) = g_{11} + (t_{ii} + t_{ik})g_{12} + t_{ii}t_{ik}g_{22}.$$

²Exercício: demonstre este último resultado.

Covariância induzida pela introdução de efeitos aleatórios

- Neste modelo, as variâncias e correlações (covariância) são expressas como uma função explícita do tempo, t_{ii}.
- Em particular, com a inclusão de interceptos e inclinações aleatórios, a variância pode crescer ou decrescer ao longo do tempo como uma uma função quadrática dos tempos de mensuração.
- Por exemplo, a expressão quadrática para $Var(Y_{ij})$ dada acima implica que
 - ▶ a variância é crescente ao longo do tempo (para $t_{ij} \ge 0$) quando $Cov(b_{1i}, b_{2i}) \ge 0$,
 - ▶ mas pode decrescer ao longo do tempo quando $Cov(b_{1i}, b_{2i}) < 0$.
- Similarmente a magnitude da covariância (e correlação) entre um par de respostas, Y_{ij} e Y_{ik}, depende do tempo de separação entre estas (t_{ij} e t_{ik}).

Estrutura de covariância de efeitos aleatórios

▶ No modelo linear de efeitos mistos.

$$Y_i = X_i \beta + Z_i b_i + \epsilon_i$$

 $R_i = \text{Cov}(\epsilon_i)$ descreve a covariância entre as observações longitudinais ao focar no perfil de resposta média condicional de um indivíduo **específico**.

 Ou seja, é a covariância dos desvios do i-ésimo indivíduo com respeito ao seu perfil de resposta média,

$$\mathsf{E}\left(Y_{i}|b_{i}\right)=X_{i}\beta+Z_{i}b_{i}.$$

- É usualmente assumido que R_i é uma matriz diagonal, $\sigma^2 I_{n_i}$, em que I_{n_i} denota uma matriz identidade $n_i \times n_i$.
- ► Esta suposição é comumente referida como a "suposição de independência condicional".
- Ou seja, dado os efeitos aleatórios b_i , os erros de medição são distribuídos independentemente com uma variância comum σ^2 .

Como comentamos anteriormente, no modelo linear de efeitos mistos podemos distinguir a média condicional de Y_i , dado b_i ,

$$\mathsf{E}\left(Y_{i}|b_{i}\right)=X_{i}\beta+Z_{i}b_{i},$$

da **média marginal** de Y_i ,

$$\mathsf{E}(Y_i) = X_i \beta.$$

- De forma similar podemos distinguir entre as covariância condicional e marginal.
- A covariância condicional de Y_i , dado b_i , é

$$Cov(Y_i|b_i) = Cov(\epsilon_i) = R_i,$$

enquanto a covariância marginal de Y_i é

$$Cov(Y_i) = Cov(Z_ib_i) + Cov(\epsilon_i)$$

= $Z_iCov(b_i)Z'_i + Cov(\epsilon_i)$
= $Z_iGZ'_i + R_i$.

- Mesmo quando $R_i = \text{Cov}(\epsilon_i) = \sigma^2 I_{n_i}$ (uma matriz diagonal com todas as correlações duas-a-duas iguais a zero), a matriz $\text{Cov}(Y_i)$ possui elementos fora da diagonal diferentes de zero, deste modo levando em consideração a correlação entre as observações repetidas no mesmo indivíduo em um estudo longitudinal.
- ► Isto é, a introdução de efeitos aleatórios, b_i, induz correlação entre os componentes de Y_i.

Comentários

- O modelo linear de efeitos mistos permite a análise explícita das fontes de variação nas respostas:
 - entre indivíduos (G);
 - \triangleright e intra-indivíduo (R_i) .
- A covariância marginal de Y_i é uma função do tempo de medição.
- A estrutura de covariância induzida por efeitos aleatórios $[Cov(Y_i) = Z_i G Z_i' + \sigma^2 I_{n_i}]$ pode ser contrastada com os modelos de padrão de covariância apresentados na aula anterior.
 - ► Modelos de padrão de covariância não distinguem as diferentes fontes de variabilidade, enquanto que modelos lineares de efeitos mistos distinguem as fontes de variabilidade entre indivíduos e intra-indivíduo.

Comentários (continuação)

- Para os modelos lineares com respostas contínuas, as duas abordagens (padrão de covariância e efeitos mistos) produzem o mesmo modelo para a média marginal de Y_i [E(Y_i) = X_iβ], e diferem somente em termos do modelo assumido para a covariância.
- A estrutura de covariância de efeitos aleatórios não requer delineamento balanceado.
- Ainda, o número de parâmetros de covariância é o mesmo independente do número e as ocasiões de medições.
- ► Finalmente, ao contrário de muitos dos modelos de padrão de covariância que fazem suposições fortes sobre a homogeneidade da variância ao longo do tempo, a estrutura de covariância de efeitos aleatórios permite que a variância e a covariância aumentem ou diminuam em função dos tempos de medição.

Estimação via máxima verossimilhança

Estimação via máxima verossimilhança

Estimação via máxima verossimilhança

Note, que pelas propriedades da distribuição normal, temos que

$$Y_i \sim N(X_i\beta, Z_iGZ_i' + \sigma^2I_{n_i}).$$

- Logo, podemos escrever a função de verossimilhança com base no modelo normal multivariado.
- Como esperado, o estimador de máxima verossimilhança de β é o estimador de **mínimos quadrados generalizados** (MQG) e depende da covariância marginal entre as medidas repetidas $[Cov(Y_i) = Z_i G Z_i' + \sigma^2 I_{n_i}]$

$$\hat{\beta} = \left\{ \sum_{i=1}^{N} (X_i'[\mathsf{Cov}(Y_i)]^{-1} X_i) \right\}^{-1} \sum_{i=1}^{N} (X_i'[\mathsf{Cov}(Y_i)]^{-1} y_i).$$

Estimação via máxima verossimilhança

- Em geral, não há expressão simples para o estimador de máxima verossimilhança dos componentes de covariância [$G \in \sigma^2$ (ou R_i)] e requer **técnicas iterativas**.
- Porque a estimativa de covariância de máxima verossimilhança é enviesada em amostras pequenas, usa-se a estimação de máxima verossimilhança restrita (REML);
 - e a resultante estimativa REML de β é dada por $\hat{\beta}$ substituindo Cov (Y_i) pela sua estimativa REML.

Avisos

- Próxima aula: Modelos lineares de efeitos mistos (formulação em dois estágios).
- ▶ Para casa: ler o Capítulo 8 do livro "Applied Longitudinal Analysis".
 - Caso ainda não tenha lido, leia também os Caps. 1, 2, 3, 4, 5, 6 e 7.

Bons estudos!

