Introduction to Differential Equations — Fall Semester 2018 **Example of final exam**

Date: January 14th, 2020

Note: unless otherwise noted you are always expected to depict/make clear how you found the solution. Total points: 44.

Task A: Well-posedness of IVP (12 points)
Consider the IVP
$\begin{cases} y'(t) = t y^2, \\ y(0) = 1. \end{cases}$
(y(0) = 1,
1. State the local existence and uniqueness theorem
2. Verify the hypothesis of theorem on the above IVP
3. Solve the IVP by separation of variables
Hint: write the problem in the form $\frac{dy}{dt} = t y^2$, then integrate using the initial condition.
4. Is the solution globally defined? If not, find the maximal interval
Task B: Contraction Theorem (8 points)
Consider the function
$\psi(x)=1-ax,$
for $x \in \mathbb{R}$ and $a \in \mathbb{R}$. Consider also the metric space $\mathcal{M} = (X, d)$, with $d(x, y) = y - x $, which is complete
1. Is ψ continuous?
2. Is ψ continuously differentiable? Compute ψ'
3. Find the fixed-point of ψ . What if $a=1?$
4. Find the Lipchitz constant of ψ
5. Find a condition on a such that the fixed-point iteration $x^{n+1} = \psi(x^n)$ is convergent [/2]
Task C: Absolute stability (10 points)
Consider the following 2-stage Runge-Kutta scheme:
$k_1 = f(t^n, u^n),$
$k_2 = f(t^n + \alpha h, u^n + \alpha h k_1),$
$u^{n+1} = u^n + h\left((1 - \frac{1}{2\alpha})k_1 + \frac{1}{2\alpha}k_2\right).$

2. Apply the scheme to the problem $y'(t) = \lambda y(t) \dots \left[- 4 \right]$

Task D: System of ODEs (14 points)

Consider the second-order ODE (Van der Pol oscillator):

$$x'' - \mu(1 - x^2)x' + x = 0.$$

1.	Convert the ODE to a first-order system of ODEs.	[/	4
2.	Write down the backward Euler approximation of the system of ODEs	[/	4
3.	Write down the fixed-point iteration's method applied to the nonlinear problem	[/	′ 3
1	Write down the Newton's method applied to the poplinear problem	Г	/ 2