PH 103: Electricity and Magnetism

Tutorial Sheet 8: Magnetic Materials

1. Find the torque exerted on a square loop of side b due to a circular loop of radius a, at a distance r ($r \gg a, b$) as shown in the figure. The planes of the loop and the square are perpendicular to each other. [Ans. $\tau = -\frac{\mu_0}{4} \frac{(Iab)^2}{r^3} \hat{i}$]

- 2. A spherical shell of radius R and charge density σ is rotating with a constant angular velocity $\vec{\omega} = \omega_0 \hat{k}$ about an axis though its centre. Find
 - (a) the magnetic dipole moment
 - (b) the field at the centre of the sphere and
 - (c) the force of attraction between the northern and southern hemispheres of the shell.

[Ans. (i).
$$\vec{m} = \frac{4\pi}{3}\sigma\omega_0 R^4 \hat{k}$$
, (ii). $\vec{B} = \frac{2}{3}\mu_0\sigma\omega_0 R\hat{k}$, (iii). $\vec{F} = -\frac{\mu_0}{4}\pi\sigma^2\omega_0^2 R^4\hat{k}$]

- 3. A thin cylindrical glass rod of radius R, length L and surface charge density σ is set to rotate about its axis at an angular velocity ω . Find the magnetic field at a distance $r \gg R$ from the centre of the rod. [Ans. $B = \mu_0 \omega \sigma R^3 L / \left\{ 4 \left(\frac{L^2}{4} + R^2 \right)^{3/2} \right\}$]
- 4. Find the magnetic field B at a point (r, θ) produced a magnetic dipole \vec{m} kept at the origin along the \hat{k} direction and show that it can be written in the coordinate independent form

$$\vec{B}(r,\theta) = \frac{\mu_0}{4\pi r^3} \left\{ 3 \left(\vec{m} \cdot \hat{r} \right) \hat{r} - \vec{m} \right\}$$

- 5. A cylindrical magnet of length 2L and radius R has a uniform magnetization $\vec{M} = M_0 \hat{k}$.
 - (a) Find the volume current density $\vec{J_b}$ and the surface current density $\vec{K_b}$. [Ans. $J_b=0$, $\vec{K_b}=M_0\hat{\phi}$]
 - (b) Find the magnetic field at a point P(0,0,z) where |z| > L. The origin of the coordinate system is fixed at the centre of the cylinder.

[Ans.
$$\vec{B} = \frac{\mu_0 K_b}{2} \left(\cos \theta_2 - \cos \theta_1\right) \hat{k}$$
, $\cos \theta_1 = \frac{z - L}{[R^2 + (z - L)^2]^{1/2}}$, $\cos \theta_2 = \frac{z + 2L}{[R^2 + (z + 2L)^2]^{1/2}}$]

- 6. An infinitely long cylinder of radius R, carries a frozen in magnetization $\dot{M} = cr\dot{k}$, where r is the distance from the axis of the cylinder and c is a constant. Find the bound currents.
- 7. A sphere of radius R has its centre at the origin of the coordinates and carries magnetization $\vec{M} = M_0 \hat{k}$. Calculate $\vec{J_b}$ and $\vec{K_b}$ in Cartesian and spherical co-ordinate systems. [Ans. $J_b = 0$, $\vec{K_b} = M_0 \sin \theta \hat{\phi}$]

1

8. A region is occupied by an infinite slab of permeable material of constant relative permeability $\mu_r (= \mu/\mu_0) = 2.5$. Within the slab, the magnetic field (in Wb/m²) is given by

$$\vec{B} = 10y\,\hat{i} - 5x\,\hat{j}$$

Determine $\vec{J_f}, \ \vec{J_b}, \ \vec{M}$ and $\vec{K_b}$.

[Ans.
$$\vec{J}_f = -\frac{6}{\mu_0}\hat{k}$$
, $\vec{J}_b = -\frac{9}{\mu_0}\hat{k}$, $\vec{M} = \frac{3}{5\mu_0}\left(10y\,\hat{i} - 5x\,\hat{j}\right)$, $\vec{K}_b(z=0) = \frac{3}{5\mu_0}\left(10y\,\hat{j} - +5x\,\hat{i}\right)$, $\vec{K}_b(z=2) = -\frac{3}{5\mu_0}\left(10y\,\hat{i} - +5x\,\hat{j}\right)$]