

Applied Deep Learning Deep Reinforcement Learning

Mark Schutera

Karlsruhe Institute of Technology | ZF Friedrichshafen AG | Hochschule Ravensburg-Weingarten

Course overview

- 1. Deep Learning Foundations
- 3. Transfer Learning and Object Detection
- 5. Segmentation Networks
- 8. Deep Reinforcement Learning
- 10. Generative Adversarial Networks
- 12. Recurrent Neural Networks

Course overview

One page on introduction, methods, dataset

Deadline 3. Lecture

Ten minutes on achievements, problems, next steps

Due 7. Lecture

Final presentation

Screencast (Slides and Audio)
Due 13. Lecture (20.01.2020)

Final documentation

Documentation and code on github Deadline 13. Lecture (20.01.2020)

Course features

Sli.do

Every question matters.

Get the app.

Ask questions (with slide number) or vote on other students' questions during the lecture.

And give direct feedback.

#TOBEDETERMINED

Questions will be covered immediately or in the next lecture in more depth.

Github

Find slides, tutorials, flashcards and references on Github.

https://github.com/schutera/ DeepLearningLecture Schutera

You found typos, additional material such as links, algorithms, papers, literature or want to contribute to the slides and lecture notes..

..Feel free to contribute, e-mail me.

Course features

Sli.do

Every question matters.

Get the app.

Ask questions (with slide number) or vote on other students' questions during the lecture.

#TOBEDETERMINED

Questions will be covered directly or in the next lecture in more depth.

Github

Typos, additional material such as links, algorithms, paper, literature, lecture notes..

.. Feel free to contribute.

Grade Bonus .3

Prepare flashcards based on Ian Goodfellow's Deep Learning Book

- Commit to flashcard set by emailing me, first come first serve
- Must be comprehensive

This lecture in one slide

Introduction to reinforcement learning

About reinforcement learning Reinforcement learning a problem statement Reinforcement learning framework

Reinforcement Learning with neural networks

Reinforcement learning (RL) is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward.

Learn to make good sequences of decisions

What makes reinforcement learning different from other machine learning paradigms

- Feedback / supervision directly comes from the environment
- Model interacts with the environment or at least ist own state in the environment

Dense highway traffic

- **80** mph max. Speed
- **7** Lanes
- **20** Vehicles
- 1 11 Trainable Vehicles

Deep Reinforcement Competition

DeepTraffic

<u>Main Page - Leaderboard - About DeepTraffic</u>

Americans spend 8 billion hours stuck in traffic every year.

https://selfdrivingcars.mit.edu/deeptraffic/

Deep Reinforcement Learning Decision Making

Environment

Either real-world or simulation of some sort

- Action
- State
- Reward

Deep Reinforcement Learning Decision Making

- Environment
- Action a

Agent's actions affect the subsequent data it receives

- State
- Reward

Deep Reinforcement Learning Decision Making

- Environment
- Action
- State s

Feedback is delayed, not instantaneous

Reward

Deep Reinforcement Learning Decision Making

- Environment
- Action
- State
- Reward r

There is no supervisor, only a reward signal

Deep Reinforcement Learning

Time really matters (sequential signal stream)

- Environment
- Action
- State
- Reward

Maze Example

Conventional Reinforcement Learning

Environment

Maze, Start and End Position

- Action
- State
- Reward

Maze Example

Conventional Reinforcement Learning

- Environment
- ActionMove left, right, up, down
- State
- Reward

Maze Example

Conventional Reinforcement Learning

- Environment
- Action
- State

Position in one of the maze cells

Reward

Maze Example

Conventional Reinforcement Learning

- Environment
- Action
- State
- Reward
- -1 for valid move, +1 for transition into the end position

Maze Example

Conventional Reinforcement Learning

- Environment
- Action
- State
- Reward
- -1 for valid move, +1 for transition into the end position

What happens for a reward of 0 for a valid move?

This lecture in one slide

Introduction to reinforcement learning

Reinforcement Learning with neural networks

Q-Learning

Fixed target network

Experience replay

Reward clipping

Frame skipping

Reward function

Self-Play

Deep dive Deep-Q-Learning

Datasets and benchmarking and current success stories Reinforcement Learning and why it does not work yet

Q-Learning

Value-based algorithm

Lookup table of values with one entry for every state-action pair

Deep Q-Learning

Representation Learning

Lookup table of values with one entry for every state-action pair

Q(s,a)

High dimensional state-action spaces, make a mere Q-value function inapplicable

In this case a parametrized value function (neural network) is needed

$$Q(s, a; \theta_i)$$

Deep Q-Learning

Representation Learning

Idea follows a trial-and-error strategy, exploring the states and iteratively updating the state-action values

All actions ought to be **repeatedly sampled** in **all states** to ensure sufficient exploration.

Q(s,a)

Deep Q-Learning

Representation Learning

Idea follows a trial-and-error strategy, exploring the states and iteratively updating the state-action values

Q(s,a)

How does our final / optimal policy look like?

Given a state calculate the expected maximal reward of an action, following our policy.

$$Q^*(s,a) = \max_{\pi} \mathbb{E} \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, \ a_t = a, \ \pi \right]$$

Deep Q-Learning

Loss function

$$L_{i}(\theta_{i}) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_{i}^{-}) - Q(s, a; \theta_{i})\right)^{2}\right]$$

Our network is trained the same way we are used to – by backpropagating a loss and adjusting our weights.

Deep Q-Learning

Loss function

$$L_i(\theta_i) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i)\right)^2\right]$$

Our network is trained the same way we are used to – by backpropagating a loss and adjusting our weights.

The central idea here is not to find the best action, but to learn an accurate estimation of the Q-value function.

Deep Q-Learning

Loss function

$$L_i(\theta_i) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i)\right)^2\right]$$

Our network is trained the same way we are used to – by backpropagating a loss and adjusting our weights.

The central idea here is not to find the best action, but to learn an accurate estimation of the Q-value function.

The loss is thus the difference between the true **reward** from the environment And the **estimated reward** of our model

Deep Q-Learning

Fixed Target Network

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

 θ_i^-

The parameters for the target network are only updated every C iterations

Deep Q-Learning

Fixed Target Network

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

The parameters for the target network are only updated every C iterations

This reduces the risk of oscillations or divergence and increases stability of the training process

Deep Q-Learning

Experience Replay

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

State action pairs together with the expected reward and resulting state transition are stored for N time steps.

Deep Q-Learning

Experience Replay

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

State action pairs together with the expected reward and resulting state transition are stored for N time steps.

During training we then draw from the experience replay memory

Deep Q-Learning

Experience Replay

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

State action pairs together with the expected reward and resulting state transition are stored for N time steps.

During training we then draw from the experience replay memory

Actions are drawn randomly with probability Epsilon ϵ

 ϵ -greedy policy

And trained within a mini-batch.

Deep Q-Learning

∈-greedy policy

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Exploration

 $\epsilon = 1$

Meaning actions are completely randomly selected resulting in maximum exploration within our action-state space

Exploitation

Deep Q-Learning

€-greedy policy

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Exploration

Exploitation

 $\epsilon = 0$

Meaning no random actions what so ever.

Actions are selected with respect to the maximum expected reward

Deep Q-Learning ε-greedy policy

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Exploration Exploitation

During training which ϵ -value would you want to use?

Deep Q-Learning

∈-greedy policy

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Exploration Exploitation

During training which ϵ -value would you want to use?

 $\epsilon = 1$ for **full exploration first** (think baby)

This at some point might be inefficient since you do not profit from already learned action-state pairs.

Decrease ϵ **over time** (think grown-up)

Deep Q-Learning ε-greedy policy

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Exploration Exploitation

During inference which ϵ -value would you want to use?

Deep Q-Learning ε-greedy policy

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Exploration Exploitation

During inference which ϵ -value would you want to use?

 $\epsilon=0$ for **full exploitation** (think adult who has his routines and does not really reflect what she is doing) This at some point might get you stuck in a deadlock Thus **allow for some randomness** in your choice of action $\epsilon=0.05$ (think adult who tries to drink water instead of soda)

Deep Q-Learning

Reward Clipping

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Keep the range of values of a reward within 1 and -1

Deep Q-Learning

Reward Clipping

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Keep the range of values of a reward within 1 and -1

This scaling allows for robust weight updates, keeping the **error derivates** small

And also allows for using the **same learning** over multiple different environments

Deep Q-Learning

Frame Skipping

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

As Reinforcement Learning has a **sequential nature**, it is to be assumed that **adjacent frames are similar** and contribute similar information gain.

Deep Q-Learning

Frame Skipping

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

As Reinforcement Learning has a sequential nature, it is to be assumed that adjacent frames are similar and contribute similar information gain.

Idea is to **reduce sample rate** or in other words to skip frames during training to increase information gain and thus training and **sample and compute efficiency**

Deep Q-LearningReward Function Definition

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Definition of the reward function is the means to influence what's learned.

This might often not end up as expected

Deep Q-Learning

Reward Function Definition

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Shaped rewards

Increasing rewards in states that are closer to the end goal.

Easier to learn, but also prone to induce bias.

Sparse rewards Reward shaping

Deep Q-Learning

Reward Function Definition

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Shaped rewards

Sparse rewards

Reward at the goal state.

Hard to learn and the lack of positive reinforcement might even make it too difficult.

Rewards shaping

Deep Q-Learning

Reward Function Definition

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

Shaped rewards Sparse rewards

Reward shaping

Design an objective function that diverts from the actual objective.

This can help in settings with sparse rewards.

Deep Q-Learning

Reward Function Definition

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

What kind of reward function is this?

How could you minimize the introduced bias?

How could you transform it into a differently shaped reward?

Deep Reinforcement Learning with Neural Networks

Deep Q-Learning

Self-Play

Idea is that agent plays itself and thus improves on the learning objective. There are variations to this strategy

Both sides learn simultaneously Left side learns Right side learns

https://gym.openai.com/envs/Pong-v0/

References

- [1] [Bergstra and Bengio, 2012] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. *Journal of Machine Learning Research*, 13(Feb):281–305, 2012.
- [2] [Fridman et al., 2018] Lex Fridman, Benedikt Jenik, and Jack Terwilliger. Deeptraffic: Driving fast through dense traffic with deep reinforcement learning. CoRR, abs/1801.02805, 2018.
- [3] [Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.
- [4] [Silver *et al.*, 2017] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. *arXiv preprint arXiv:1712.01815*, 2017.

- [5] [Tuyls and Weiss, 2012] Karl Tuyls and Gerhard Weiss. Multiagent learning: Basics, challenges, and prospects. *Association for the Advancement of Artificial Intelligence*, 2012.
- [6] [Olivas et al., 2009] Emilio Soria Olivas, Jose David Martin Guerrero, Marcelino Martinez Sober, Jose Rafael Magdalena Benedito, and Antonio Jose Serrano Lopez. Handbook Of Research On Machine Learning Applications and Trends: Algorithms, Methods and Techniques 2 Volumes. Information Science Reference Imprint of: IGI Publishing, Hershey, PA, 2009.

OpenAI Gym – Classic Control Problems

Several classic control problems that long have been used to evaluate reinforcement learning algorithms

Description

Toolkit for developing and comparing reinforcement learning algorithms

Environments

CartPole

Pendulum

MountainCar

http://gym.openai.com/

OpenAI Gym – Atari Games

Several classic control problems that long have been used to evaluate reinforcement learning algorithms

Description

Large state spaces, and or large action spaces. Long planning horizons. Different variants of the same game allows for transfer learning or generalization evaluations

Maximize score in the game Breakout, with RAM as input

http://gym.openai.com/

Environments

SpaceInvaders

Pong

Breakout

OpenAI Gym – Continuous Control Systems

Continuous control problems in locomotion tasks

Description

Large state spaces, and or large action spaces. Long planning horizons. Different variants of the same game allows for transfer learning or generalization evaluations

http://gym.openai.com/

Environments

Ant

Half Cheetah

Hopper

Humanoid

walk.

Starcraft Gym – PySC2

It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research.

Description

Mini-Map games and Full-Map Leaderboards with extensive evaluation tooling

http://starcraftgym.com/

AlphaStar Versus Serral

https://www.youtube.com/watch?v=DMXvkbAtHNY

Best practice

Benchmarking metrics and experimental guidelines

Number of trials

Results might vary significantly by just changing the random seed. Thus we need to statistically ground our experiments

Hyperparameter Tuning
Benchmark Environments and Metrics

Best practice

Benchmarking metrics and experimental guidelines

Number of trials

Hyperparameter Tuning

Ensuring a fair comparison between learning algorithms. For example by ablation analysis (removing a certain hyperparameter, such as no dropout)

Benchmark Environments and Metrics

Best practice

Benchmarking metrics and experimental guidelines

Number of trials Hyperparameter Tuning

Benchmark Environments and Metrics

Ideally a large mixture of environments should be covered. Same holds for metrics, do not only report on the optimal metrics, report on all.

Success over time

Backgamon agent based on Reinforcement Learning (<i>Tesauro et al.</i>)	1995
Superhuman performance in Atari games (Mnih et al.)	2013
Mastering the game of Go (Silver et al.)	2016
Mastering the game of StarCraft II (Deep Mind)	2019

Field of Application

Robotics, Autonomous Driving, etc.

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

TD-gammon

Backgammon playing agent entirely based on reinforcement learning and self-play.

Based on value-function, similar to Q-learning. Approximation of the value-function based on multi-layer perceptron with one hidden layer.

Temporal Difference Learning and TD-Gammon

By Gerald Tesauro

Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation learning procedure. Figure reproduced from [9].

https://cling.csd.uwo.ca/cs346a/extra/tdgammon.pdf

Deep Q-Network

Deep Q-Network with experience replay, fixed target network, mini-batch training, and convolution architecture.

Exploration and exploitation set by epsilon variable.

Ability to master Atari 2600 computer games using pixel input.

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

DeepMind Technologies

{vlad, koray, david, alex.graves, ioannis, daan, martin.riedmiller} @ deepmind.com

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Table 1: The upper table compares average total reward for various learning methods by running an ϵ -greedy policy with $\epsilon=0.05$ for a fixed number of steps. The lower table reports results of the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that always get the same score while DQN used an ϵ -greedy policy with $\epsilon=0.05$.

https://arxiv.org/pdf/1312.5602.pdf

Deep Q-Network

One system that is abel to learn several games without any tweaking from game to game.

Reward clipping
High-dimensional state spaces and high
dimensional action spaces

LETTER

doi:10.1038/nature14236

Human-level control through deep reinforcement learning

Volodymyr Mnih¹⁺, Koray Kavukcuoglu¹⁺, David Silver¹⁺, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioanniis Antonoglou¹, Helen King¹, Dharshan Kumrarn¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Internal

Rainbow

Extensions to the Deep Q-Network (ablation study)

Double Q-Learning Prioritized Replay **Dueling Networks** Multi-step learning Distributional Reinforcement Learning Noisy Nets

Rainbow: Combining Improvements in Deep Reinforcement Learning

colored) to DQN (grey) and six published baselines. Note that we match DON's best performance after 7M frames,

https://arxiv.org/pdf/1710.02298.pdf

Alpha Star

Combination of Deep Reinforcement Learning with an LSTM module, pointer network

And a novel multi-agent, population-based learning algorithm.

Each agent experiences 200 years of real-time StarCraft play

StarCraft II: A New Challenge for Reinforcement Learning

Oriol Vinyals Timo Ewalds Sergey Bartunov Petko Georgiev
Alexander Sasha Vezhnevets Michelle Yeo Alireza Makhzani Heinrich Küttler
John Agapiou Julian Schrittwieser John Quan Stephen Gaffney Stig Petersen
Karen Simonyan Tom Schaul Hado van Hasselt David Silver Timothy Lillicrap

DeepMind

Kevin Calderone Paul Keet Anthony Brunasso David Lawrence Anders Ekermo Jacob Repp Rodney Tsing Blizzard

A VISUALISATION OF THE ALPHASTAR AGENT DURING GAME TWO OF THE MATCH AGAINST MANA THIS SHOWS THE GAME FROM THE AGENT'S POINT OF VIEW: THE RAW OBSERVATION INPUT TO THE NEURAL NETWORK, THE WEURAL NETWORK'S INTERNAL ACTIVATIONS, SOME OF THE CONSIDERED ACTIONS THE AGENT CAN TAKE SUCH AS WHERE TO CLICK AND WHAT TO BUILD, AND THE PREDICTED OUTCOME: MANA'S VIEW OF THE GAME IS ALSO SHOWN, ALTHOUGH THIS IS NOT ACCESSIBLE TO THE AGENT.

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Deep Reinforcement Learning – Why it does not work yet

Deep Reinforcement Learning is nice but ...

... real-world applications are still missing for the most part

... it learns to model environments that are unknown, that is usually not a requirement in domain specific problems

Technical Mechanics and Control Theory

http://gym.openai.com/

Deep Reinforcement Learning – Why it does not work yet

Deep Reinforcement Learning is nice but ...

... real-world applications are still missing for the most part

... it learns to model environments that are unknown, that is usually not a requirement in domain specific problems

Technical Mechanics and Control Theory

ATLAS Boston Dynamics

Deep Reinforcement Learning - Take it from here

Paper

Deploying Rainbow to benchmark on current Traffic Light Control policies. Applied to real-world intersections in Friedrichshafen.

Tutorial

Distributed traffic light control at uncoupled intersections with real-world topology by deep reinforcement learning

Mark Schutera

Institute for Automation and Applied Informatics
Karlsruhe Institute of Technology
Research and Development
ZF Friedrichshafen AG
mark.schutera@kit.edu

Niklas Goby

Chair for Information Systems Research
University of Freiburg
IT Innovation Chapter Data Science
ZF Friedrichshafen AG
niklas.goby@is.uni-freiburg.de

Stefan Smolarek

IT Innovation Chapter Data Science ZF Friedrichshafen AG stefan.smolarek@zf.com

Markus Reischl

Institute for Automation and Applied Informatics
Karlsruhe Institute of Technology
markus.reischl@kit.edu

Figure 1: Overview of the Friedrichshafen roadnetwork with streetnames and the locations of the considered junctions in the center. In the top row the junctions are displayed as being present in SUMO. On the bottom row the google maps visualizations of the intersections themselves are shown.

https://arxiv.org/pdf/1811.11233.pdf

67

Deep Reinforcement Learning - Take it from here

Paper

Analysis and comparison of transfer learning with multiagent learning in highway traffic.

Extended analysis of congestion and vehicle behavior.

Tutorial

Transfer Learning versus Multi-agent Learning regarding Distributed Decision-Making in Highway Traffic

Mark Schutera^{1,4}, Niklas Goby^{2,3}, Dirk Neumann², Markus Reischl¹

¹ Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology

² Chair for Information Systems Research, University of Freiburg

³ IT Innovation Chapter Data Science, ZF Friedrichshafen AG

⁴ Research and Development, ZF Friedrichshafen AG

Figure 1: Two screenshots from the micro-traffic simulation. The highlighted cells depict the catchment areas of the safety system, which automatically slows down the car to prevent collisions. The vehicles with the logo represent trainable agents, while those without a logo are not trainable and exhibit random behavior. The left figure shows the training process of a core network ANN_{core} , whereas on the right figure illustrates the pretrained core network being deployed among multiple agents.

https://arxiv.org/pdf/1810.08515.pdf

Deep Reinforcement Learning - Take it from here

Paper

Tutorial

Thanks for your time Questions?

Contact! mark.schutera@kit.edu

