

P-Channel Enhancement Mode Field Effect Transistor

DFN3.3X3.3

Product Summary

• V_{DS} -20V • I_D -30A

• R_{DS(ON)}(at V_{GS}= -4.5V) <19mohm • R_{DS(ON)}(at V_{GS}= -2.5V) <22mohm

• R_{DS(ON)}(at V_{GS}= -1.8V) <30mohm

General Description

- Trench Power MV MOSFET technology
- High density cell design for Low R_{DS(ON)}
- High Speed switching

Applications

- Battery protection
- Load switch
- Power management

■ Absolute Maximum Ratings (T_A=25 °C unless otherwise noted)

Parameter		Symbol	Maximum	Unit	
Drain-source Voltage		V _{DS}	-20	V	
Gate-source Voltage		V_{GS}	±10	V	
Drain Current ^B	T _A =25℃ @ Steady State		-30	Α	
	T _A =100℃ @ Steady State	l _D	-19		
Drain Current ^B	T _A =25°C @ Steady State		-10	A	
	T _A =70°C @ Steady State	I _D	-8	A	
Pulsed Drain Current ^A		I _{DM}	-55	Α	
Single Pulse Avalanche Energy ^B		E _{AS}	31	mJ	
Total Dawer Dissination B	T _A =25°C @ Steady State	D	32	W	
Total Power Dissipation ^B	T _A =100℃ @ Steady State	P_{D}	12.8		
Total Power Dissipation ^B	T _A =25℃ @ Steady State	P _D	3	W	
	T _A =70°C @ Steady State	ן י	1.9		
Thermal Resistance Junction-to-Ambient @ Steady State ^B		$R_{ heta JC}$	3.9	℃/W	
Thermal Resistance Junction-to-Case @ Steady State ^c		$R_{ hetaJA}$	42	°C/W	
Junction and Storage Temperature Range		T_J, T_STG	- 55∼+150	${\mathbb C}$	

■ Ordering Information (Example)

PREFERED P/N	PACKING CODE	Marking	MINIMUM PACKAGE(pcs)	INNER BOX QUANTITY(pcs)	OUTER CARTON QUANTITY(pcs)	DELIVERY MODE
YJQ30P02A	F1	Q30P02	5000	10000	100000	13" reel

YJQD30P02A

■ Electrical Characteristics (T_J=25 °C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units	
Static Parameter							
Drain-Source Breakdown Voltage	BV _{DSS} V_{GS} = 0V, I _D =-250 μ A		-20			V	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-20V, V_{GS} =0V, T_{C} =25 $^{\circ}$ C			-1	μΑ	
Gate-Body Leakage Current	I _{GSS}	V_{GS} = $\pm 10V$, V_{DS} = $0V$			±100	nA	
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D =-250 μ A	-0.4	-0.62	-1.0	V	
		V _{GS} = -4.5V, I _D =-15A		11	19	mΩ	
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} = -2.5V, I _D =-8A		14	22		
		V _{GS} = -1.8V, I _D =-6.0A		20	30		
Diode Forward Voltage	V _{SD}	I _S =-30A,V _{GS} =0V		-0.8	-1.2	V	
Maximum Body-Diode Continuous Current	I _S				-30	А	
Dynamic Parameters							
Input Capacitance	C _{iss}			2992		pF	
Output Capacitance	C _{oss}	$V_{DS}\text{=-}10V, V_{GS}\text{=}0V, f\text{=}1MHZ$		330			
Reverse Transfer Capacitance	C _{rss}			272			
Switching Parameters							
Total Gate Charge	Q_g			72.8		nC	
Gate Source Charge	Q_{gs}	V _{GS} =-10V,V _{DS} =-15V,I _D =-9.1A		6.6			
Gate Drain Charge	Q_{gd}			10.1			
Reverse Recovery Charge	Q _{rr}			34			
Reverse Recovery Time	t _{rr}	I _F =-6A, di/dt=100A/us		67			
Turn-on Delay Time	t _{D(on)}			7			
Turn-on Rise Time	t _r	V_{GS} =-10V, V_{DS} =-15V, I_D =-6A,		33		ns	
Turn-off Delay Time	t _{D(off)}	R_{GEN} =2.5 Ω		130			
Turn-off Fall Time	t _f			132			

A. Pulse Test: Pulse Width \leq 300us, Duty cycle \leq 2%.

B. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design, while $R_{\theta JA}$ is determined by the board design. The maximum rating presented here is based on mounting on a 1 in 2 pad of 2oz copper.

■ Typical Performance Characteristics

Figure 1. Output Characteristics

Figure 3. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Junction Temperature

Figure 6. Gate Charge

Figure 7. Safe Operation Area

Figure 8. Maximum Continuous Drain Current vs Ambient Temperature

Figure 9. Normalized Maximum Transient Thermal Impedance

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Gate Charge Test Circuit & Waveform

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

YJQD30P02A

■DFN3.3X3.3 Package information

SYMBOL	MILLIMETER				
	MIN	NOM	MAX		
D	3.15	3,25	3.35		
E	3.15	3.25	3.35		
Α	0.70	0.80	0.90		
A1	0.20 BSC				
A2			0.10		
D1	0.90	1.00	1.10		
E1	1.75	1.85	1.95		
L1	0.325	0.425	0,525		
L2	0.325 BSC				
b	0.20	0.30	0.40		
е	0.65 BSC				

Suggested Solder Pad Layout Top View

^{2.}General tolerance:±0.10mm.

^{3.} The pad layout is for reference purposes only.

YJQD30P02A

Disclaimer

The information presented in this document is for reference only. Yangzhou Yangjie Electronic Technology Co., Ltd. reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Yangjie or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale.

This publication supersedes & replaces all information previously supplied. For additional information, please visit our website http:// www.21yangjie.com, or consult your nearest Yangjie's sales office for further assistance.