Candidate's Name:	•••••	, • • • • • • • • •
Signature:	Random No.	Personal No.
(Do not write your School/Centre Name or Number anywhere on this booklet)		

P525/1 CHEMISTRY Paper 1 2 3/4 hours

Uganda Advanced Certificate of Education PRE- TEST SIX 2024 CHEMISTRY Paper 1 2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer **all** questions in section **A** and **six** questions in section **B** All questions must be answered in the spaces provided

The Periodic Table, with relative atomic masses, is supplied.

 $Mathematical\ tables(3-figure\ tables)\ are\ adequate\ or\ non-programmable\ scientific$ $electronic\ calculators\ may\ be\ used$

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273 K

Standard pressure = 101325 N m^{-2}

						F	or Ex	amin	er's	Use (Only						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

Turn Over.

SECTION A-46 MARKS

Attempt all questions in this section.

1. (a) Complete the following equations.

i.
$$^{236}_{92}u \longrightarrow ^{92}_{36}Kr + \dots + ^{141}_{56}Ba$$
 (01 mark)

ii.
$$\frac{^{214}Bi}{_{83}Bi}$$
 ________ (01 mark)

(b)	The half-life of bismuth is 20	minutes.	Determine th	ne time	taken t	for
	Bismuth to decay by 75% .		(02½ marks	3)		

2. Beryllium, magnesium and calcium are some of the group(II) elements.

- (a) Write the general outer configuration of the elements. (01 mark)
- b) Each of these elements reacts with carbon to form carbides. Write the equation for the reaction which occurs when each carbide reacts with water.

 (03 marks)

2. (a) Write an equation for the reaction between hydroxide solution and (i) Fluorine	een hot concentrated Sodium (01½ marks)
	(01 ₂ marroy
(ii) Iodine	(01½ marks)
(b) Compare the reactivity of fluorine, chlorine	e and iodine with water (01 mark)
(c)Explain why Lead(IV) chloride exists while le	ead(IV) bromide does not. (02mks)

reaction.		
CH₃COOH + CH₃CH2OH	Conc.H ₂ SO ₄	
	Heat	
5. Write equations for the reaction hydroxide	of the following oxide	es with sodium
(a) Aluminium oxide.		(1 ½ marks)
(b) Beryllium oxide		(1 ½ marks)
(c) Lead (II) oxide		(1 ½ marks)
(c) Leua (II) Oxide		(1 2 IIIul N3)

4. Complete the equation below and write the suggested mechanism for the

6. (a) State what is meant by the term diagonal relationship?	(1mark)
(b) State three reasons why beryllium and aluminium resemble in the	heir chemical
properties.	(1 ½ marks)
(c) Mention three properties to show the diagonal relationshi	p between
· ·	narks)
7. Methane reacts with steam according to the following equation:	
$CH_{4(g)} + 2H_2O_{(l)} \longrightarrow CO_{2(g)} + 4H_{2(g)}$	$H_r = ?$
The enthalpy of formation of methane, water and carbon diox -242 and -394KJ/mol.	xide are ⁻ 76,

$\begin{array}{ccc} C_{(s)} \; + \; 2H_{2(\overline{g}\;)} \\ H_{2(g)} + \; \frac{1}{2}O_{2(g)} \\ C_{(s)} \; + \; O_{2} \; _{(\overline{g})} \end{array}$	$\begin{array}{c} \longrightarrow CH_{4(g)} \\ \longrightarrow H_2O_{(l)} \\ \longrightarrow CO_{2(g)} \end{array}$	⁻ 76KJ/mol ⁻ 242KJ/mol ⁻ 394KJ/mol
(a) Calculate the entha $CH_{4(g)} + 2H_2O_{(l)}$	alpy of reaction. CO _{2(g)}	(03 marks) $+ \ 4H_{2(g)}$
b) State whether the r your answer.	reaction above is feasible	, give a reason for (01 mark)
8. Sodium propanoate underg	drolysis of sodium propo	anoate (1mark)
(b) Write the expression for	the hydrolysis constant,	K _h (1mark)

9 (a). Define the order of reaction.	(01 mark)
	(=maine)
0.1M sodium propanoate?	(2marks)
25°C. What is the concentration of hydrogen ions in sol	lution at equilibrium for a
(c) The hydrolysis constant, K_h for sodium propaonate i	is $5.9 \times 10^{-10} \mathrm{moldm^{-3}}$ at

(b). The experimental results in the table were obtained for the reaction between nitrogen monoxide gas and oxygen gas.

$$2NO_{(g)} \ + \ O_{2(g)} \hspace{2cm} \hspace{2cm} \hspace{2cm} \hspace{2cm} 2NO_{2(g)}$$

Initial concentr	ations (mol/dm³)	Rate of reaction (mol/dm ³ /s)
NO	O_2	
0.03	0.03	2.7 X 10 ⁻⁵
0.03	0.06	5.5 X 10 ⁻⁵
0.06	0.03	10.8 X 10 ⁻⁵

i). Determine the order of reaction with respect to:	
Nitrogen monoxide.	(01 mark)
Oxygen.	(01 mark)
(ii).Write the rate equation for the reaction.	(0½ mark)
(c).Calculate the:	
(i). Overall order of reaction.	(0½ mark)
(ii).Rate constant for the reaction and state it's	s S.I units . (01 marl

SECTION B (54 MARKS)

Attempt Any six questions in this section.

10. (a) The vapour pressure – composition diagram for an ideal solution of liquids ${\bf A}$ and ${\bf B}$ is shown below.

('n)	Tdentify	y lines P, C	and R	and the	points S	and T	((02 ¹ / ₂	marks)
l	עי	TUCITI	y iiiies i , 🕻	g unu r	una me	points O	una i.	((0 - 2	mu no

P.....

Q.....

R......

5......

T......

liquids A and B .	omposition diagram for a mixture of (01½ marks)
(ii) State what would be obtained as the di	·
mixture containing 40% of A is fractionally	distilled. (02½ marks)
mixture containing 40% of A is fractionally	distilled. (02½ marks)

	solution containing 1.95g of benzene and	
	vapour pressure of pure benzene and me 'a respectively]	thylbenzene at 20°C are 10.0kPa and:
(ii) De	etermine the composition of the vapour	of the mixture above. (02½ marks)
11,	. Name one reagent that can be used to pairs of compounds. In each case state member of the pair is treated with the	e what would be observed if each
a)	But-2-yne and But-1-yne	
	Reagent.	(01 mark)
	Observations.	(02 marks)
b)	Bromobenzene and bromoethane	
	Reagent.	(01 mark)
Obse	rvations.	(02 marks)

CH₃COONa and	l COONa 		
	l COONa		
Reagent.		(01 ו	mark)
Observations.		(02 m	narks)
. (a) State three char	racteristics of a ch e	emical equilibrium.(1	½ marks)
(b) Dinitrogentetrao equation.			ording to the fo
$N_2O_{4(g)}$ (i) Write an express	2NO _{2(g)}		
			(0 ₂ mark)
(ii) Draw a labelled e	neray level digaram	for the reaction in ((h) (2marks)

(c) The reaction mixture in (b) was found to Calculate the equilibrium constant Kp at 60°C	
(a) Evalain the affect of increasing n	
(e) Explain the effect of increasing prequilibrium.	(2marks)

Complete the following the reaction.		d write the suggested me	
CH ₃ CH ₂ CH ₂ OH	Conc.H ₂ SO ₂ 180 ⁰ c	<u>4</u> >	(03½ marks)
b. Fum	ing H ₂ SO ₄ → 35 ° <i>C</i>		. (03 marks)
	HBr		(02½ marks)

14. The table shows the atomic radius and first ionization energy of some elements in period 3 of the periodic table.

Elements	Na	Mg	Al	Si	P	S	Cl
Atomic radius	0.186	0.160	0.143	0.117	0.110	0.104	0.099
1 ^{st.} I.E(KJ/mol)	496	738	577	787	1060	1000	1251

a. (i). State how **atomic radius** of the elements **varies across** the period. (01 mark)

(ii).Explain your answer in a (i).	(03 marks)
b. (i).Explain how atomic radius affects the ioniza	
(ii).Why the first ionization energy of aluminium	
magnesium.	(03 marks)

15. (a) Sketch a pH curve that can be obtained for when ethanoic a sodium hydroxide solution	cid was titrated with (01 mark)
	(0.4
(b) Explain the shape of the curve	(04 marks)
(c) Name one indicator that can be used in the titration in (a)	(01 mark)

with

			n ethanoate that should o produce a solution of	d be added to 1 litre of 0 pH 4.0
		acid is 1.8 × 10 ⁻	- ·	(03 marks)
16 (omnlete t	he following ea	uations and in each cas	e outline a suitable
m	nechanism	for the reaction	on.	e outline a surrable
(a)	CH ₃ CH ₂	$_{2}C \equiv CNa + CH_{3}$	$Br \xrightarrow{\text{Liq.NH}_3}$	(02 marks)
	••••••			
(b)	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+ CH ₃ COBr	$\xrightarrow{FeCl_3}$	(02 <u>1</u> marks)
•		J		, -

(c)	$ \begin{array}{c} CH_2CH_2Br \\ & \xrightarrow{NaOH(aq)} \\ heat \end{array} $	(02 marks)
	$CH_3CH_2OH + Conc. H_2SO_4 \xrightarrow{140 {}^{\circ}C}$	(02 <u>1</u> marks)
	Carbon, silicon, germanium, tin and lead are some of	
	periodic table. These elements exhibit inert pair of the pair of the pair of the pair of the pair effect (0:	

b) Briefly explain inert pair effect among group(IV) e.	lements using their diox (02 mark
scribe the reaction of silicon and lead with	
(i) air	(03marks)
(ii) hot concentrated sodium hydroxide solution	(03marks)

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1							er er efer									1.0 H	4.0 He 2
6.9 Li 3	9.0 Be 4											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
	24.3 Mg 12											27.0 Al 13		31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	La Carriera	47.9 Ti 22	50.9 V 23	52.0 Cr 24			58.9 Co 27	1	1		69.7 Ga 31	72.6 Ge 32	100	Minds Day	79.9 Br 35	83.8 Kr 36
85.5 Rb 37		88.9 Y 39	91.2 Zr 40		95.9 Mo 42		101 Ru 44	1	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	1	184 W 74	186 Re 75		1	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89	-		12	/ 137 / 100		(a) 4/5	346			2 W2					2 3 23 23 11 13
=		e in					147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
			227 Ac 89		231 Pa 91	238 U 92		244 Pu 94					Es	Fm	256 Md 101	No	