СЛАЙД 1

Здравствуйте уважаемые председатель и члены аттестационной комиссии. Тема моей выпускной кваллификационной работы — Решение задачи сегментации факела выбросов на основе данных тепло-видео системы наблюдения. На сегодняшний день серьезно встает вопрос загрязнения окружающей среды и сегментация факела выбросов поможет эфективней контролирова выбросы предприятий.

СЛАЙД 2

Целью данной работы является разработка алгоритма сегментации факела выбросов с использованием тепло-видео систем. Задачи представлены на слайде.

СЛАЙД 3

Мной были исследованы современные методы контроля вредных выбросов. Их классификация представленна на слайде. Было выявлено, что инструментальный метод является трудным в исполнении и дорогим, тогда как расчетный метод — недостаточно точным. Одним из решений этой проблемы является сегментация факела выбросов.

СЛАЙД 4

На данном слайде вы можете увидеть основные преемущества использования тепло-видео систем наблюденя с иллюстрациями.

СЛАЙД 5

Постановка задачи сегментации факела выбросов звучит следующи-мобразом: X – пространство пар изображений и соответствующих им матрц температур. Z – пространство масок соответствующей разменрности где каждый пиксель отражает вероятность принадлежности к факелу. Необходимо восстановить функцию (1).

СЛАЙД 6

Первым этапом является подготовка данных для сегментации. Она в

свою очередь тоже делится на подзадачи.

СЛАЙД 7

На даном слайде представлен пример снимков полученных с тепловизора.

СЛАЙД 8

На данном слайде вы можете увидеть схему алгоритма сохранения снимков, основным требованием к которой является синхроная запись оптических и тепловых снимков.

СЛАЙД 9

Следующим этапом является преобразование теплового снимка к матрице относительных температур, или к черно-белому изображению как показано на рисунке 5.

СЛАЙД 10

Более формально необходимо классифицировать цвета по 256 классам. Для этого было решено использовать модель классификации классического машинного обучения с учителем «k ближайших соседей», Использующую структуру данных «k-мерное дерево» позволяющую получить ближайшую точку.

СЛАЙД 11

На рисунке 7 вы можете увидеть схему алгоритма преобразования цветов.

СЛАЙД 12

Для анализа точности алгоритма была сформулированна следующая метрика точности, соответсвующая среднему евклидовому расстоянию между интенсивностью пикселей, которую вы можете увидеть на слайде.

СЛАЙД 13

Данная метрика точности была посчитана для изображений с разной степенью сжатия.

СЛАЙД 14

Полный алгоритм подготовки данных представлен на рисунке 9.

СЛАЙД 15

После подготовки данных мы приступаем к решению задачи сегментации. Данная задача делится на 2 подзадачи. Первой подзадачей является задача детекции трубы. Зачастую труба температура трубы выше чем температуры выбросов, как следствие алгоритмы сегментации основанные на температуре сегментируют также трубу. В зависимоти от отдаления от поворота камеры и времени суток вид трубы и ее положение может отличаться. Алгоритм делится

СЛАЙД 16

Алгоритм делится на три этапа: первый этап получение ключевых точек на изображении образце и на входном изображении. второй этап классификация ключевых точек по точкам на изображении образце. третий этап восстановление координат прямоугольника с трубой. Этапы 1 и 3 представленны на рисунке 10 в виде схем.

СЛАЙД 17

Ha рисунке 11 можно увидеть пример работы алгоритма детекции трубы.

СЛАЙД 18

Следующим этапом является непосредственно сегментация. Так как матрица температур является черно белым изображеним с низкой контрастностью и большим количеством шумов было решено использовать алгоритм сегментации водоразделом. Коротко данный алгоритм можно описать так градиент функции представляется в виде топологической поверхности, в локальных минимумах проделываются отверстия, и начинается затопление этой поверхности. В месте соединения воды появляется водораздел являющийся границей классов сегментации.

СЛАЙД 19

Схема алгоритма сегментации методом водораздела представлена на рисунке 13.

СЛАЙД 20

Для тестирования алгоритма была сформирована тестовая выборка и на рисунке 14 можно увидеть пример работы алгоритма сегментации.

СЛАЙД 21

Данная тестовая выборка была в ручную размечена и на рисунке 15 представлеенна визуализация разницы масок, размеченых вручную и масок полученных с помощью алгоритма.

СЛАЙД 22

Для оценки точности решено было использовать коэффициент Серенсена - Дайса, вычисляемый по формуле 3. Здесь ТР FР и FN — площади соответствующих сегментов. Метрика является компромиссом между полнотой (отношение ТР к общему количеству истинных объектов) и точностью (отношение ТР к общему количеству предсказанных объектов). Он позволяет оценивать как качество сегментации, так и ее объем.

СЛАЙД 23

Получившаяся средняя точность - 86,2%. На рисунке 16 представлен график точности от номера кадра.

СЛАЙД 24

В ходе работы был разработан алгоритм сегментации факела выбросов, исползующий данные тепло-видео систем наблюдения. Данная работа выполнена в рамках проекта «Экомонитор» кафедры «Прикладная математика и программирование».

Была разработана математическая модель алгоритмов подготовки данных, детекции трубы и сегментации факела выбросов методом водораздела. Данные алгоритмы были разработаны и реализованы. Было произведено тестирование разработаного программного модуля. Проведенный анализ точности работы алгоритма позволяет говорить о целесообразности применения данного метода.. Таким образом цель работы достигнута, а все поставленные задачи решены

СЛАЙД 25

Спасибо за внимание, готов ответить на ваши вопросы решены