

SECOND SEMESTER 2022-2023

Course Handout Part II

16-01-2023

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F424

Course Title : Applied Stochastic Process

Instructor-in-Charge : Nirman Ganguly

Scope and Objective of the Course: A stochastic process is a random process. The course will enable students to construct stochastic models and apply to real situations.

Textbook:

1. Stochastic Processes, 2nd edition, Sheldon M. Ross, Wiley and Sons.

Reference books

- 1. A First Course in Stochastic Processes, 2nd edition, Samuel Karlin and Howard E. Taylor, Academic Press.
- **2.** Probability, Random Variables and Stochastic Processes, 4th edition, Athanasios Papoulis and Unnikrishna Pillai, McGraw-Hill.
- 3. Stochastic Processes-Theory for Applications, Robert G. Gallager, Cambridge University Press, First South Asia Edition 2016.

Course Plan:

Lecture Learning No. objectives		Topics to be covered	Chapter in the Text Book	
1-7	To learn the characteristics of probability models and fundamental inequalities.	Probability, Random Variables, Conditional Expectation, Generating Functions, Limit Theorems	Sections 1.1 – 1.8	
8-14	To understand the definition and implications of Stochastic and specially Poisson	Essential examples: Random Walks,The Poisson process, Interarrival and Waiting Time Distributions, Compound Poisson Random Variables and Processes	Sections 2.1 - 2.5	

	processes.		
15-21	To understand Renewal Theory and Discrete Time Markov Chains.	Renewal Theory, Markov Chains, Chapman-Kolmogorov Equations, Classification of States, Gambler's Ruin Problem	Sections 3.1-3.3 Sections 4.1-4.4
22-28	To understand Continuous Time Markov Chains.	Continuous Time Markov Chains, Birth and Death Processes, Computing Transition Probabilities	Sections 5.1 – 5.5
29-35	To gain knowledge of Martingales	Martingales, Stopping Times, Azuma's Inequality for Martingales, Submartingales and Supermartingales	Sections 6.1-6.4
36-40	To comprehend Brownian motions	Brownian motions, Wiener Process, Variations on Brownian Motion	Sections 8.1-8.3

Evaluation Scheme:

Component	Duration	Weightag e (%)	Date & Time	Nature of Component
Mid-Sem	90 minutes	30	17/03 4.00 - 5.30PM	Closed Book
Project- I		10	To be announced through CMS.	Open Book
Project- II		10	To be announced through CMS.	Open Book
Quiz (2)	30 minutes for each quiz	5+5	To be announced through CMS.	Closed Book
Comprehensive	3 Hours	40	18/05 AN	Closed Book

Note:

- 1. Total marks with all the evaluation components taken together will be 100.
- 2. For the 1 credit practical class, related problems will be assigned which will form constituents of Project I and II.

Chamber Consultation Hour: To be announced in class. **Notices:** Students will be notified only through CMS.

Make-up Policy: Make-up for any component of evaluation will be given only in genuine cases of absence. [Prior permission is required]

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE