ICDCS 2019

Road Gradient Estimation Using Smartphones: Towards Accurate Estimation on Fuel Consumption and Air Pollution Emission on Roads

Liuwang Kang¹, Haiying Shen¹, Zhuozhao Li²

1. University of Virginia 2. University of Chicago

Road gradients exist in different types of roads

Rural roads

Urban roads

Highway roads

Driving on a road with road gradients causes a series of problems:

Accurate road gradient estimation becomes necessary

• Current web maps (e.g., Google Maps) only provide traffic congestion information for driving vehicles [ENGADGET'16]

- Current web maps (e.g., Google Maps) only provide traffic congestion information for driving vehicles [ENGADGET'16]
- Several methods [JPCMS'14, IET'15, MSSP'16, IMEKO'17] estimate road gradients based on vehicle states (e.g., vehicle mass, torque and driving speed)

- Current web maps (e.g., Google Maps) only provide traffic congestion information for driving vehicles [ENGADGET'16]
- Several methods [JPCMS'14, IET'15, MSSP'16, IMEKO'17] estimate road gradients based on vehicle states (e.g., vehicle mass, torque and driving speed)
 - Low road gradient estimation accuracy

- Current web maps (e.g., Google Maps) only provide traffic congestion information for driving vehicles [ENGADGET'16]
- Several methods [JPCMS'14, IET'15, MSSP'16, IMEKO'17] estimate road gradients based on vehicle states (e.g., vehicle mass, torque and driving speed)
 - Low road gradient estimation accuracy
- Other methods [HVTT'14, CEP'17, SLAAT'18] estimate road gradients by installing profile-graph machines on vehicles

- Current web maps (e.g., Google Maps) only provide traffic congestion information for driving vehicles [ENGADGET'16]
- Several methods [JPCMS'14, IET'15, MSSP'16, IMEKO'17] estimate road gradients based on vehicle states (e.g., vehicle mass, torque and driving speed)
 - Low road gradient estimation accuracy
- Other methods [HVTT'14, CEP'17, SLAAT'18] estimate road gradients by installing profile-graph machines on vehicles
 - ➤ High operation cost because of machine installation and maintenance

Challenges

Propose a road gradient estimation system to estimate road gradients based on measured vehicle states from a smartphone in a vehicle

Challenges

Propose a road gradient estimation system to estimate road gradients based on measured vehicle states from a smartphone in a vehicle

Challenge 1: How to obtain accurate vehicle states with a smartphone?

- Measurement noises
- Lane change actions

Challenges

Propose a road gradient estimation system to estimate road gradients based on measured vehicle states from a smartphone in a vehicle

Challenge 1: How to obtain accurate vehicle states with a smartphone?

- Measurement noises
- Lane change actions

Challenge 2: How to ensure road gradient estimation accuracy based on measured vehicle states?

• Longitudinal velocities measured with different sensors cause different road gradient estimation results

Road Gradient Estimation System

Challenge 1

How to obtain accurate vehicle states with a smartphone?

Challenge 1

How to obtain accurate vehicle states with a smartphone?

Data collection + Data adjustment

Data Collection

Build a smartphone coordinate alignment system to measure vehicle states

- Vehicle states include longitudinal velocity, vehicle acceleration, vehicle steering rate and vehicle position (latitude and longitude)
- Includes smartphone coordinate system and road coordinate system

Smartphone in the vehicle

Smartphone coordinate alignment system

Detect lane change actions based on steering rates for vehicle state adjustment

- Lane change feature extraction
- Lane change detection
- Longitudinal velocity adjustment

Lane change feature extraction

- Maximum absolute bump magnitude δ (larger than 0.1 rad/s)
- Time duration T of the bump (more than 1.3 seconds)

Lane change detection

Lane change detection

- Check all bumps in the steering rate profile
- Detect a lane change by comparing two neighboring bumps

Lane change detection

- Check all bumps in the steering rate profile
- Detect a lane change by comparing two neighboring bumps
 - ➤ Left lane change (positive + negative)
 - ➤ Right lane change (negative + positive)

Lane change detection

- Check all bumps in the steering rate profile
- Detect a lane change by comparing two neighboring bumps
 - ➤ Left lane change (positive + negative)
 - ➤ Right lane change (negative + positive)

Longitudinal velocity adjustment

• Adjust longitudinal velocity to eliminate effects of lane change actions

$$v_i^L = v_i \cos(\sum_{j=0}^i w_{steer}^j T)$$

Lane change detection

- Check all bumps in the steering rate profile
- Detect a lane change by comparing two neighboring bumps
 - ➤ Left lane change (positive + negative)
 - ➤ Right lane change (negative + positive)

Longitudinal velocity adjustment

• Adjust longitudinal velocity to eliminate effects of lane change actions

$$v_i^L = v_i \cos(\sum_{j=0}^i w_{steer}^j T)$$

Lane change detection

- Check all bumps in the steering rate profile
- Detect a lane change by comparing two neighboring bumps
 - ➤ Left lane change (positive + negative)
 - ➤ Right lane change (negative + positive)

Longitudinal velocity adjustment

• Adjust longitudinal velocity to eliminate effects of lane change actions

$$v_i^L = v_i \cos(\sum_{j=0}^i w_{steer}^j T)$$

Challenge 2

How to ensure road gradient estimation accuracy based on measured vehicle states?

Challenge 2

How to ensure road gradient estimation accuracy based on measured vehicle states?

Vehicle state space equation + Track fusion

Vehicle state space equation

• Derive the dynamics equation of road gradient θ based on driving equation [TITS'14]:

$$\dot{\theta} = \frac{\rho A_f C_d va}{mg cos \theta}$$

Vehicle state space equation

• Derive the dynamics equation of road gradient θ based on driving equation [TITS'14]

$$\dot{\theta} = \frac{\rho A_f C_d va}{mg cos \theta}$$

• Convert the equation in a discrete form

$$\begin{bmatrix} v(t+1) \\ \theta(t+1) \end{bmatrix} = \begin{bmatrix} v(t) + \hat{a}(t) \\ \theta(t) + \frac{\rho A_f C_d v(t) \hat{a}(t)}{mgcos\theta(t)} \end{bmatrix}$$

Vehicle state space equation

• Derive the dynamics equation of road gradient θ based on driving equation [TITS'14]

$$\dot{\theta} = \frac{\rho A_f C_d va}{mg cos \theta}$$

• Convert the equation in a discrete form

$$\begin{bmatrix} v(t+1) \\ \theta(t+1) \end{bmatrix} = \begin{bmatrix} v(t) + \hat{a}(t) \\ \theta(t) + \frac{\rho A_f C_d v(t) \hat{a}(t)}{mgcos\theta(t)} \end{bmatrix}$$

• Apply Extended Kalman Filter (EKF) to update v and θ

$$\begin{bmatrix} v(t+1) \\ \theta(t+1) \end{bmatrix} = \begin{bmatrix} v(t+1|t) \\ \theta(t+1|t) \end{bmatrix} + K(\hat{v}(t+1) - v(t+1|t))$$

Vehicle state space equation

• Derive the dynamics equation of road gradient θ based on driving equation [TITS'14]

$$\dot{\theta} = \frac{\rho A_f C_d va}{mg cos \theta}$$

• Convert the equation in a discrete form

$$\begin{bmatrix} v(t+1) \\ \theta(t+1) \end{bmatrix} = \begin{bmatrix} v(t) + \hat{a}(t) \\ \theta(t) + \frac{\rho A_f C_d v(t) \hat{a}(t)}{mgcos\theta(t)} \end{bmatrix}$$

• Apply Extended Kalman Filter (EKF) to update v and θ

$$\begin{bmatrix} v(t+1) \\ \theta(t+1) \end{bmatrix} = \begin{bmatrix} v(t+1|t) \\ \theta(t+1|t) \end{bmatrix} + K(\hat{v}(t+1) - v(t+1|t))$$

EKF

Track fusion based road gradient estimation

Track fusion based road gradient estimation

Fuse different road gradient estimation tracks to obtain final θ

$$\bar{\theta} = U \sum_{k=1}^{N} (P_k^{-1} \theta_k)$$

where P_k represents estimation error covariance matrix in EKF for the k^{th} track; U represents system covariance matrix of N tracks and equals to $(\sum_{k=1}^{N} P_k^{-1})^{-1}$

Experiment settings

• Implement our proposed system (OPS) by installing a Samsung Galaxy smartphone into Nissan Altima 2006 to collect experimental data

Comparison methods

- EKF based method (EKF) [JPCMS'14] uses EKF to estimate road gradients
- Artificial Neural Network based method (ANN) [JMST'17] estimates road gradients with vehicle states as inputs and road gradient as output

Small-scale road

Large-scale road network

Road gradient estimation results in a small-scale road (2.16 km)

- MREs of OPS, EKF and ANN are 11.9%, 20.3% and 31.6%
- Road gradient estimation accuracy of OPS increases as more tracks are used

Absolute road gradient estimation errors

CDFs of OPS with different track fusions

CDF: Cumulative Distribution Function

MRE: Mean Relative Error

Road gradient estimation results in a large-scale road network (164.8 km)

- MRE of OPS keeps around 12% and works well on different road types
- OPS has higher road gradient estimation accuracy than EKF and ANN

Road gradient estimation result in the road network

CDFs comparisons among different methods

Fuel consumption and air pollution emission estimations

• High fuel consumptions and vehicle air pollution emissions are always located at roads with large road gradients

38.05 38.04 38.03 38.02 38.01 -78.52 -78.5 -78.48 -78.46 Longitude (°)

Carbon dioxide emission estimation result

Summary

Propose a system to estimate road gradients based on measured vehicle states from a smartphone in the driving vehicle

- Design a lane change detection method
- Build a vehicle state space equation
- Conduct driving experiments to verify our system

Summary

Propose a system to estimate road gradients based on measured vehicle states from a smartphone in the driving vehicle

- Design a lane change detection method
- Build a vehicle state space equation
- Conduct driving experiments to verify our system

Future work

- Explore more accurate vehicle driving equations
- Consider other driving behaviors

Thank you!