

AMENDMENTS TO THE SPECIFICATION

Please replace the paragraph on page 1, lines 2-9 with the following amended paragraph:

This application is a continuation application of U.S. Serial No. 08/260,190 (filed June 15, 1994) which is a continuation-in-part of now pending U.S. Serial No. 08/177,093 (filed December 30, 1993) which issued on April 18, 2000 as U.S. Patent No. 6,051,226, which is in turn a continuation-in-part of U.S. Serial No. 07/964,589 (filed October 21, 1992) which issued on February 7, 1995 as U.S. Patent No. 5,387,676. This application declares priority under 35 USC § 120 from those U.S. applications, and also under 35 USC § 119 from the now pending Czechoslovakian patent application PV-709-92 (filed March 11, 1992).

Please replace the paragraph on page 8, lines 3-11 with the following amended paragraph:

This invention also concerns nucleic acids which encode MN proteins or polypeptides that are specifically bound by monoclonal antibodies designated M75 that are produced by the hybridoma VU-M75 deposited at the American Type Culture Collection (ATCC) ~~at 12301 Parklawn Drive in Rockville, Maryland 20852~~ 10801 University Blvd., Manassas, Virginia 20110-2209 (USA) under ATCC No. HB 11128, and/or by monoclonal antibodies designated MN12 produced by the hybridoma MN 12.2.2 deposited at the ATCC under ATCC No. HB 11647.

Please replace the paragraph on page 13, lines 3-14 with the following amended paragraph:

A hybridoma that produces a representative MN-specific antibody, the monoclonal antibody M75 (Mab M75), was deposited at the ~~under ATCC~~ ATCC under Number HB 11128 as indicated above. The M75 antibody was used to discover and identify the MN protein and can be used to identify readily MN antigen in Western blots, in radioimmunoassays and immunohistochemically, for example, in tissue samples that are fresh, frozen, or formalin-, alcohol-, acetone- or otherwise fixed and/or paraffin-embedded and deparaffinized. Another representative MN-specific antibody, Mab MN12, is secreted by the hybridoma MN 12.2.2, which was deposited at the ATCC under the designation HB 11647.

Please replace the paragraph on page 16, lines 3-10 with the following amended paragraph:

The immunoassays of this invention can be embodied in test kits which comprise MN proteins/polypeptides and/or MN-specific antibodies. Such test kits can be in solid phase formats, but are not limited thereto, and can also be in liquid phase format, and can be based on immunohistochemical assays, ~~ELISAS~~, ELISAs, particle assays, radiometric or fluorometric assays either unamplified or amplified, using, for example, avidin/biotin technology.

Please replace line 26 on page 17 with the following amended line:

IPTG - isopropyl-Beta isopropyl-beta-D-thiogalacto-pyranoside

Please replace the paragraph bridges pages 27 and 28 with the following amended paragraph:

~~Figure 15~~ Figure 15A-C shows a complete nucleotide sequence of a MN cDNA [SEQ. ID. NO.: 5]. Also shown is the deduced amino acid sequence [SEQ. ID. NO.: 6]. The polyadenylation signal (ATAAA) and the mRNA instability motif (ATTAA) are underlined are located at nucleotides (nts) 1507-1512 and at nts 1513-1518, respectively. The amino acid residues of the putative signal peptide as well as the membrane-spanning segment are italicized are located at amino acids (aa) 1-37 and at aa 415-433, respectively. The N-glycosylation site and the putative nuclear localization signal are denoted by squares and asterisks, respectively is located at aa 346. The S/TPXX elements are indicated with open circles are located at amino acids 7-10, 47-50, 71-74, 153-156, 162-165, 333-336, and 397-400.

Please replace the paragraph on page 54, lines 14-20 with the following amended paragraph:

Where the host used is an ~~eucaryote~~, eukaryote, transfection methods such as the use of a calcium phosphate-precipitate, electroporation, conventional mechanical procedures such as microinjection, insertion of a plasmid encapsulated in red blood cell ghosts or in liposomes, treatment of cells with

agents such as lysophosphatidyl-choline or use of virus vectors, or the like may be used.

Please replace the paragraph on page 54, lines 14-20 with the following amended paragraph:

The MN 20-19 protein was purified from the conditioned media by immunoaffinity chromatography. 6.5 mg of Mab M75 was coupled to 1 g of Tresyl activated Toyopearl™ [solid support in bead form; Tosoh, Japan (#14471)]. Approximately 150 ml of the conditioned media was run through the M75-Toyopearl column. The column was washed with PBS, and the MN 20-19 protein was eluted with 1.5 M MgCl₂. The eluted protein was then dialyzed against PBS.

Please replace the paragraph on page 86, lines 10-16 with the following amended paragraph:

MAb M75. Monoclonal antibody M75 (MAb M75) is produced by mouse lymphocytic hybridoma VU-M75, which was initially deposited in the Collection of Hybridomas at the Institute of Virology, Slovak Academy of Sciences (Bratislava, Czechoslovakia Slovakia) and was deposited under ATCC Designation HB 11128 on September 17, 1992 at the American Type Culture Collection (ATCC) in ~~Rockville, MD~~ Manassas, Virginia (USA).

Please replace the paragraph on page 89, lines 9-20 with the following amended paragraph:

Mab MN12. Monoclonal antibody MN12 (Mab MN12) is produced by the mouse lymphocytic hybridoma MN 12.2.2 which was deposited under ATCC Designation HB 11647 on June 9, 1994 at the American Type Culture Collection (ATCC) at ~~12301 Parklawn Drive, Rockville, MD 20852~~ 10801 University Blvd., Manassas, Virginia 20110-2209 (USA). Antibodies corresponding to Mab MN12 can also be made, analogously to the method outlined above for Mab MN9, by screening a series of antibodies prepared against an MN protein/polypeptide, against the peptide representing the epitope for Mab MN12. That peptide is Gly Lys Met Thr His Trp [SEQ. ID. NO.: 11]. The Novatope system could also be used to find antibodies specific for said epitope.

Please delete line 23 on page 91:

Antisense MN Nucleic Acid Sequences

Please replace the paragraph bridges pages 94 and 95 with the following amended paragraph:

MN proteins and/or polypeptides may be synthesized or prepared recombinantly or otherwise biologically, to comprise one or more amino acid sequences corresponding to one or more epitopes of the MN proteins either in monomeric or multimeric form. Those proteins and/or polypeptides may then be incorporated into vaccines capable of inducing protective immunity. Techniques for enhancing the antigenicity of such

polypeptides include incorporation into a multimeric structure, binding to a highly immunogenic protein carrier, for example, keyhole limpet hemocyanin (KLH), or diphtheria diphtheria toxoid, and administration in combination with adjuvants or any other enhancers of immune response.

Please replace the paragraph bridges pages 95 and 96 with the following amended paragraph:

An amino acid sequence corresponding to an epitope of an MN protein/polypeptide either in monomeric or multimeric form may also be obtained by chemical synthetic means or by purification from biological sources including genetically modified microorganisms or their culture media. [See Lerner, "Synthetic Vaccines", Sci. Am. 248(2): 66-74 (1983).] The protein/polypeptide may be combined in an amino acid sequence with other proteins/polypeptides including fragments of other proteins, as for example, when synthesized as a fusion protein, or linked to other antigenic or non-antigenic non-antigenic polypeptides of synthetic or biological origin. In some instances, it may be desirable to fuse a MN protein or polypeptide to an immunogenic and/or antigenic protein or polypeptide, for example, to stimulate efficacy of a MN-based vaccine.

Please replace the two paragraphs on page 98, lines 11-24 with the following amended paragraphs:

Human sera from cancer patients, from patients suffering with various non-tumor complaints and from healthy

women were obtained from the Clinics of Obstetrics and Gynaecology at the Postgraduate Medical School, Bratislava, Czechoslovakia Slovakia. Human sera serum KH was from a fifty year old mammary carcinoma patient, fourteen months after resection. That serum was one of two sera out of 401 serum samples that contained neutralizing antibodies to the VSV(MaTU) pseudotype as described in Zavada et al. (1972), supra. Serum L8 was from a patient with Paget's disease. Serum M7 was from a healthy donor.

Rabbit anti-MaTu serum was prepared by immunizing a rabbit three times at intervals of 30 days with ~~10-5~~ days with 1- 5×10^7 viable MaTu-infected HeLa cells.

Please replace the paragraph on page 107, lines 4-11 with the following amended paragraph:

A radimmunoassay radioimmunoassay was performed directly in confluent petri dish (5 cm) culture of cells, fixed with methanol essentially as described in Example 3, supra. The monolayers were fixed with methanol and treated with ^{125}I -labeled MAbs M67 (specific for exogenous MX antigen) or M75 (specific for endogenous MN antigen) at 6×10^4 cpm/dish. The bound radioactivity was measured; the results are shown in Figure 6.

Please replace the paragraph bridging pages 119 and 120 with the following amended paragraph:

It was found that cultivation of HeLa cells with the ODNs resulted in considerable inhibition of p54/58N synthesis.

The 19-mer ODN2 (Figure 3B) in 4 μ M final concentration was very effective; as determined by RIA, it caused 40% inhibition, whereas the 29-mer ODN1 (4 μ M) (Figure 3A) and a combination of the two ODNs (Figure 3C), each in 2 μ M final concentration, were less effective in RIA showing a 25-35% increase decrease of the MN-related proteins. At the same time, the amount of different HeLa cell protein determined by RIA using specific MAb H460 was in all cell variants approximately the same. Most importantly was that on immunoblot it could be seen that specific inhibition by the ODNs affected both of the p54/58N proteins. Thus, we concluded that the MN gene we cloned coded for both p54/58N proteins in HeLa cells.

Please replace TABLE 2 on page 131, lines 1-27 with the following amended TABLE 2:

TABLE 2

Immunoreactivity of M75 in Various Tissues

<u>TISSUE</u>	<u>TYPE</u>	<u>POS/NEG (#pos/#tested)</u>
liver, spleen, lung, kidney, adrenal gland, brain, prostate, pancreas, thyroid <u>ovary, thyroid,</u> <u>ovary, testis</u>	normal	NEG (all)
skin	normal	POS (in basal layer) (1/1)
stomach	normal	POS
small intestine	normal	POS
colon	normal	POS
breast	normal	NEG (0/10)
cervix	normal	NEG (0/2)
breast	benign	NEG (0/17)
colon	benign	POS (4/11)
cervix	benign	POS (10/18)
breast	malignant	POS (3/25)
colon	malignant	POS (9/15)
ovarian	malignant	POS (3/15)
lung	malignant	POS (12/30)
bladder	malignant	POS (1/3)
head & neck	malignant	POS (3/4)
kidney	malignant	POS (4/4)
stomach	malignant	NEG (0/4)
cervix	malignant	POS (62/68)

Please replace the paragraph bridging pages 141 and 142 with the following amended paragraph:

ATCC Deposits. The material listed below was deposited with the American Type Culture Collection (ATCC) at ~~12301 Parklawn Drive, Rockville, MD 20852~~ 10801 University Blvd., Manassas, Virginia 20110-2209 (USA). The deposits were made

under the provisions of the Budapest Treaty on the International Recognition of Deposited Microorganisms for the Purposes of Patent Procedure and Regulations thereunder (Budapest Treaty). Maintenance of a viable culture is assured for thirty years from the date of deposit. The organism will be made available by the ATCC under the terms of the Budapest Treaty, and subject to an agreement between the Applicants and the ATCC which assures unrestricted availability of the deposited hybridomas to the public upon the granting of patent from the instant application. Availability of the deposited strain is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any Government in accordance with its patent laws.

Page 143 After the Detailed Description, please insert the
SEQUENCE LISTING:

SEQUENCE LISTING

<110> Zavada, Jan
Pastorekova, Silvia
Pastorek, Jaromir

<120> MN Gene and Protein

<130> D-0021.2-2

<140>
<141>

<150> 08/260,190

<151> 1994-06-15

<150> 08/177,093

<151> 1993-12-30

<150> 07/964,589

<151> 1992-10-21

<150> PV-709-92

<151> 1992-03-11

<160> 26

<170> PatentIn Ver. 2.0

<210> 1

<211> 1399

<212> DNA

<213> HUMAN

<220>

<221> CDS

<222> (1)..(1266)

<400> 1

cag agg ttg ccc cg⁵ atg cag gag gat tcc ccc ttg gga gga ggc tct 48
Gln Arg Leu Pro Arg Met Gln Glu Asp Ser Pro Leu Gly Gly Gly Ser
1 10 15

tct ggg gaa gat gac cca ctg ggc gag gag gat ctg ccc agt gaa gag 96
Ser Gly Glu Asp Asp Pro Leu Gly Glu Glu Asp Leu Pro Ser Glu Glu
20 25 30

gat tca ccc aga gag gag gat cca ccc gga gag gag gat cta cct gga 144
Asp Ser Pro Arg Glu Glu Asp Pro Pro Gly Glu Glu Asp Leu Pro Gly
35 40 45

gag gag gat cta cct gga gag gag gat cta cct gaa gtt aag cct aaa 192
Glu Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro Glu Val Lys Pro Lys
50 55 60

tca	gaa	gaa	qag	ggc	tcc	ctg	aag	tta	gag	gat	cta	cct	act	gtt	gag		240
Ser	Glu	Glu	Glu	Gly	Ser	Leu	Lys	Leu	Glu	Asp	Leu	Pro	Thr	Val	Glu		
65					65	70			75						80		
gct	cct	gga	gat	cct	caa	gaa	ccc	cag	aat	aat	gcc	cac	agg	gac	aaa		288
Ala	Pro	Gly	Asp	Pro	Gln	Glu	Pro	Gln	Asn	Asn	Ala	His	Arg	Asp	Lys		
				85				90					95				
gaa	ggg	qat	qac	cag	agt	cat	tgg	cgc	tat	gga	ggc	qac	ccg	ccc	tgg		336
Glu	Gly	Asp	Asp	Gln	Ser	His	Trp	Arg	Tyr	Gly	Gly	Asp	Pro	Pro	Trp		
				100				105				110					
ccc	cgg	gtg	tcc	cca	gcc	tgc	gcg	ggc	cgc	ttc	cag	tcc	ccg	gtg	gat		384
Pro	Arg	Val	Ser	Pro	Ala	Cys	Ala	Gly	Arg	Phe	Gln	Ser	Pro	Val	Asp		
				115				120				125					
atc	cgc	ccc	cag	ctc	gcc	gcc	ttc	tgc	ccg	gcc	ctg	cgc	ccc	ctg	gaa		432
Ile	Arg	Pro	Gln	Leu	Ala	Ala	Phe	Cys	Pro	Ala	Leu	Arg	Pro	Leu	Glu		
				130				135				140					
ctc	ctg	ggc	ttc	cag	ctc	ccg	ccg	ctc	cca	gaa	ctg	cgc	ctg	cgc	aac		480
Leu	Leu	Gly	Phe	Gln	Leu	Pro	Pro	Leu	Pro	Glu	Leu	Arg	Leu	Arg	Asn		
					145	150				155					160		
aat	ggc	cac	agt	gtg	caa	ctg	acc	ctg	cct	cct	ggg	cta	gag	atg	gct		528
Asn	Gly	His	Ser	Val	Gln	Leu	Thr	Leu	Pro	Pro	Gly	Leu	Glu	Met	Ala		
					165				170					175			
ctg	ggt	ccc	ggg	cgg	gag	tac	cgg	gct	ctg	cag	ctg	cat	ctg	cac	tgg		576
Leu	Gly	Pro	Gly	Arg	Glu	Tyr	Arg	Ala	Leu	Gln	Leu	His	Leu	His	Trp		
				180				185					190				
ggg	gct	gca	ggt	cgt	ccg	ggc	tcg	gag	cac	act	gtg	gaa	ggc	cac	cgt		624
Gly	Ala	Ala	Gly	Arg	Pro	Gly	Ser	Glu	His	Thr	Val	205					
				195				200									
ttc	cct	gcc	gag	atc	cac	gtg	gtt	cac	ctc	agc	acc	gcc	ttt	gcc	aga		672
Phe	Pro	Ala	Glu	Ile	His	Val	Val	His	Leu	Ser	Thr	Ala	Phe	Ala	Arg		
				210				215				220					
gtt	gac	gag	gcc	ttg	ggg	cgc	ccg	gga	ggc	ctg	gcc	gtg	ttg	gcc	gcc		720
Val	Asp	Glu	Ala	Leu	Gly	Arg	Pro	Gly	Gly	Leu	Ala	Val	Leu	Ala	Ala		
					225	230				235					240		
ttt	ctg	gag	gag	ggc	ccg	gaa	gaa	aac	agt	gcc	tat	gag	cag	ttg	ctg		768
Phe	Leu	Glu	Glu	Gly	Pro	Glu	Glu	Asn	Ser	Ala	Tyr	Glu	Gln	Leu	Leu		
				245				250					255				
tct	cgc	ttg	gaa	gaa	atc	qct	gag	gaa	ggc	tca	gag	act	cag	gtc	cca		816
Ser	Arg	Leu	Glu	Glu	Ile	Ala	Glu	Glu	Gly	Ser	Glu	Thr	Gln	Val	Pro		
					260				265				270				
gga	ctg	gac	ata	tct	gca	ctc	ctg	ccc	tct	gac	ttc	agc	cgc	tac	ttc		864
Gly	Leu	Asp	Ile	Ser	Ala	Leu	Leu	Pro	Ser	Asp	Phe	Ser	Arg	Tyr	Phe		
				275				280				285					
caa	tat	gag	ggg	tct	ctg	act	aca	ccg	ccc	tgt	gcc	cag	ggt	gtc	atc		912
Gln	Tyr	Glu	Gly	Ser	Leu	Thr	Thr	Pro	Pro	Cys	Ala	Gln	Gly	Val	Ile		
				290				295				300					
tgg	act	gtg	ttt	aac	cag	aca	gtg	atg	ctg	agt	gct	aag	cag	ctc	cac		960
Trp	Thr	Val	Phe	Asn	Gln	Thr	Val	Met	Leu	Ser	Ala	Lys	Gln	Leu	His		
				305				310				315			320		
acc	ctc	tct	gac	acc	ctg	tgg	gga	cct	ggt	gac	tct	cgg	cta	cag	ctg		1008
Thr	Leu	Ser	Asp	Thr	Leu	Trp	Gly	Pro	Gly	Asp	Ser	Arg	Leu	Gln	Leu		
				325				330				335					

aac ttc cga gcg acg cag cct ttg aat ggg cga gtg att gag gcc tcc	1056
Asn Phe Arg Ala Thr Gln Pro Leu Asn Gly Arg Val Ile Glu Ala Ser	
340 345 350	
ttc cct gct gga gtg gac agc agt cct cggt gct gct gag cca gtc cag	1104
Phe Pro Ala Gly Val Asp Ser Ser Pro Arg Ala Ala Glu Pro Val Gln	
355 360 365	
ctg aat tcc tgc ctg gct ggt gac atc cta gcc ctg gtt ttt ggc	1152
Leu Asn Ser Cys Leu Ala Ala Gly Asp Ile Leu Ala Leu Val Phe Gly	
370 375 380	
ctc ctt ttt gct gtc acc agc gtc gcg ttc ctt gtg cag atg aga agg	1200
Leu Leu Phe Ala Val Thr Ser Val Ala Phe Leu Val Gln Met Arg Arg	
385 390 395	
cag cac aga agg gga acc aaa ggg ggt gtg agc tac cgc cca gca gag	1248
Gln His Arg Arg Gly Thr Lys Gly Val Ser Tyr Arg Pro Ala Glu	
405 410 415	
gta gcc gag act gga gcc tagaggctgg atcttgaga atgtgagaag	1296
Val Ala Glu Thr Gly Ala	
420	
ccagccagag gcatctgagg gggagccggt aactgtcctg tcctgctcat tatgccactt	1356
ccttttaact gccaagaaat ttttaaaat aaatatttat aat	1399

<210> 2

<211> 422

<212> PRT

<213> HUMAN

<400> 2

Gln Arg Leu Pro Arg Met Gln Glu Asp Ser Pro Leu Gly Gly Gly Ser	
1 5 10 15	
Ser Gly Glu Asp Asp Pro Leu Gly Glu Glu Asp Leu Pro Ser Glu Glu	
20 25 30	
Asp Ser Pro Arg Glu Glu Asp Pro Pro Gly Glu Glu Asp Leu Pro Gly	
35 40 45	
Glu Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro Glu Val Lys Pro Lys	
50 55 60	
Ser Glu Glu Glu Gly Ser Leu Lys Leu Glu Asp Leu Pro Thr Val Glu	
65 70 75 80	
Ala Pro Gly Asp Pro Gln Glu Pro Gln Asn Asn Ala His Arg Asp Lys	
85 90 95	
Glu Gly Asp Asp Gln Ser His Trp Arg Tyr Gly Gly Asp Pro Pro Trp	
100 105 110	
Pro Arg Val Ser Pro Ala Cys Ala Gly Arg Phe Gln Ser Pro Val Asp	
115 120 125	
Ile Arg Pro Gln Leu Ala Ala Phe Cys Pro Ala Leu Arg Pro Leu Glu	
130 135 140	

Leu Leu Gly Phe Gln Leu Pro Pro Leu Pro Glu Leu Arg Leu Arg Asn
 145 150 155 160
 Asn Gly His Ser Val Gln Leu Thr Leu Pro Pro Gly Leu Glu Met Ala
 165 170 175
 Leu Gly Pro Gly Arg Glu Tyr Arg Ala Leu Gln Leu His Leu His Trp
 180 185 190

 Gly Ala Ala Gly Arg Pro Gly Ser Glu His Thr Val Glu Gly His Arg
 195 200 205
 Phe Pro Ala Glu Ile His Val Val His Leu Ser Thr Ala Phe Ala Arg
 210 215 220
 Val Asp Glu Ala Leu Gly Arg Pro Gly Gly Leu Ala Val Leu Ala Ala
 225 230 235 240
 Phe Leu Glu Glu Gly Pro Glu Glu Asn Ser Ala Tyr Glu Gln Leu Leu
 245 250 255
 Ser Arg Leu Glu Glu Ile Ala Glu Gly Ser Glu Thr Gln Val Pro
 260 265 270
 Gly Leu Asp Ile Ser Ala Leu Leu Pro Ser Asp Phe Ser Arg Tyr Phe
 275 280 285
 Gln Tyr Glu Gly Ser Leu Thr Thr Pro Pro Cys Ala Gln Gly Val Ile
 290 295 300
 Trp Thr Val Phe Asn Gln Thr Val Met Leu Ser Ala Lys Gln Leu His
 305 310 315 320
 Thr Leu Ser Asp Thr Leu Trp Gly Pro Gly Asp Ser Arg Leu Gln Leu
 325 330 335
 Asn Phe Arg Ala Thr Gln Pro Leu Asn Gly Arg Val Ile Glu Ala Ser
 340 345 350
 Phe Pro Ala Gly Val Asp Ser Ser Pro Arg Ala Ala Glu Pro Val Gln
 355 360 365
 Leu Asn Ser Cys Leu Ala Ala Gly Asp Ile Leu Ala Leu Val Phe Gly
 370 375 380
 Leu Leu Phe Ala Val Thr Ser Val Ala Phe Leu Val Gln Met Arg Arg
 385 390 395 400
 Gln His Arg Arg Gly Thr Lys Gly Gly Val Ser Tyr Arg Pro Ala Glu
 405 410 415
 Val Ala Glu Thr Gly Ala
 420

<210> 3

<211> 29

<212> DNA

<213> HUMAN

<400> 3

cgcccagtgg gtcatcttcc ccagaagag

<210> 4
<211> 19
<212> DNA
<213> HUMAN

<400> 4
ggaatcctcc tgcattccgg

19

<210> 5
<211> 1522
<212> DNA
<213> HUMAN

<220>
<221> CDS
<222> (13) .. (1389)

<220>
<221> mat_peptide
<222> (124) .. (1389)

<400> 5
acagtcagcc gc atg gct ccc ctg tgc ccc agc ccc tgg ctc cct ctg ttg 51
Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu
-35 -30 -25

atc ccg gcc cct gct cca ggc ctc act qtg caa ctg ctg ctg tca ctg 99
Ile Pro Ala Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Ser Leu
-20 -15 -10

ctg ctt ctg atg cct gtc cat ccc cag agg ttg ccc cg^g atg cag gag 147
Leu Leu Leu Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu
-5 -1 1 5

gat tcc ccc ttg gga gga ggc tct tct ggg gaa gat gac cca ctg ggc 195
Asp Ser Pro Leu Gly Gly Ser Ser Gly Glu Asp Asp Pro Leu Gly
10 15 20

gag	gag	gat	ctg	ccc	agt	gaa	gag	gat	tca	ccc	aga	gag	gag	gat	cca	243
Glu	Glu	Asp	Leu	Pro	Ser	Glu	Glu	Asp	Ser	Pro	Arg	Glu	Glu	Asp	Pro	
25				30					35						40	
ccc	gga	gag	gag	gat	cta	cct	gga	gag	gag	gat	cta	cct	gga	gag	gag	291
Pro	Gly	Glu	Glu	Asp	Leu	Pro	Gly	Glu	Glu	Asp	Leu	Pro	Gly	Glu	Glu	
	45					50						55				
gat	cta	cct	gaa	gtt	aag	cct	aaa	tca	gaa	gaa	gag	ggc	tcc	ctg	aag	339
Asp	Leu	Pro	Glu	Val	Lys	Pro	Lys	Ser	Glu	Glu	Glu	Gly	Ser	Leu	Lys	
	60					65						70				
tta	gag	gat	cta	cct	act	gtt	gag	gct	cct	gga	gat	cct	caa	gaa	ccc	387
Leu	Glu	Asp	Leu	Pro	Thr	Val	Glu	Ala	Pro	Gly	Asp	Pro	Gln	Glu	Pro	
	75					80						85				
cag	aat	aat	gcc	cac	agg	gac	aaa	gaa	ggg	gat	gac	cag	agt	cat	tgg	435
Gln	Asn	Asn	Ala	His	Arg	Asp	Lys	Glu	Gly	Asp	Asp	Gln	Ser	His	Trp	
	90					95					100					
cgc	tat	gga	ggc	gac	ccg	ccc	tgg	ccc	cgg	gtg	tcc	cca	gcc	tgc	gcg	483
Arg	Tyr	Gly	Gly	Asp	Pro	Pro	Trp	Pro	Arg	Val	Ser	Pro	Ala	Cys	Ala	
	105				110					115					120	
ggc	cgc	ttc	cag	tcc	ccg	gtg	gat	atc	cgc	ccc	cag	ctc	gcc	gcc	ttc	531
Gly	Arg	Phe	Gln	Ser	Pro	Val	Asp	Ile	Arg	Pro	Gln	Leu	Ala	Ala	Phe	
				125					130					135		
tgc	ccg	gcc	ctg	cgc	ccc	ctg	gaa	ctc	ctg	ggc	ttc	cag	ctc	ccg	ccg	579
Cys	Pro	Ala	Leu	Arg	Pro	Leu	Glu	Leu	Leu	Gly	Phe	Gln	Leu	Pro	Pro	
				140				145						150		
ctc	cca	gaa	ctg	cgc	ctg	cgc	aac	aat	ggc	cac	agt	gtg	caa	ctg	acc	627
Leu	Pro	Glu	Leu	Arg	Leu	Arg	Asn	Asn	Gly	His	Ser	Val	Gln	Leu	Thr	
				155			160					165				
ctg	cct	cct	ggg	cta	gag	atg	gct	ctg	ggt	ccc	ggg	cgg	gag	tac	cgg	675
Leu	Pro	Pro	Gly	Leu	Glu	Met	Ala	Leu	Gly	Pro	Gly	Arg	Glu	Tyr	Arg	
				170		175					180					
gct	ctg	cag	ctg	cat	ctg	cac	tgg	ggg	gct	gca	ggt	cgt	ccg	ggc	tcg	723
Ala	Leu	Gln	Leu	His	Leu	His	Trp	Gly	Ala	Ala	Gly	Arg	Pro	Gly	Ser	
				185		190					195				200	
gag	cac	act	gtg	gaa	ggc	cac	cgt	ttc	cct	gcc	gag	atc	cac	gtg	gtt	771
Glu	His	Thr	Val	Glu	Gly	His	Arg	Phe	Pro	Ala	Glu	Ile	His	Val	Val	
				205				210						215		
cac	ctc	agc	acc	gcc	ttt	gcc	aga	gtt	qac	gag	gcc	ttg	ggg	cgc	ccg	819
His	Leu	Ser	Thr	Ala	Phe	Ala	Arg	Val	Asp	Glu	Ala	Leu	Gly	Arg	Pro	
				220				225						230		
gga	ggc	ctg	gcc	gtg	ttg	gcc	gcc	ttt	ctg	gag	gag	ggc	ccg	gaa	gaa	867
Gly	Gly	Leu	Ala	Val	Leu	Ala	Ala	Phe	Leu	Glu	Glu	Gly	Pro	Glu	Glu	
				235			240					245				
aac	agt	gcc	tat	gag	cag	ttg	ctg	tct	cgc	ttg	gaa	gaa	atc	qct	gag	915
Asn	Ser	Ala	Tyr	Glu	Gln	Leu	Leu	Ser	Arg	Leu	Glu	Glu	Ile	Ala	Glu	
				250		255					260					
gaa	ggc	tca	gag	act	cag	gtc	cca	gga	ctg	gac	ata	tct	gca	ctc	ctg	963
Glu	Gly	Ser	Glu	Thr	Gln	Val	Pro	Gly	Leu	Asp	Ile	Ser	Ala	Leu	Leu	
				265		270					275				280	
ccc	tct	gac	ttc	agc	cgc	tac	ttc	caa	tat	gag	ggg	tct	ctg	act	aca	1011
Pro	Ser	Asp	Phe	Ser	Arg	Tyr	Phe	Gln	Tyr	Glu	Gly	Ser	Leu	Thr	Thr	
				285				290						295		

ccg ccc tgt gcc cag ggt gtc atc tgg act gtg ttt aac cag aca gtg	Pro Pro Cys Ala Gln Gly Val Ile Trp Thr Val Phe Asn Gln Thr Val	1059
	300 305 310	
atg ctg agt gct aag cag ctc cac acc ctc tct gac acc ctg tgg gga	Met Leu Ser Ala Lys Gln Leu His Thr Leu Ser Asp Thr Leu Trp Gly	1107
	315 320 325	
cct ggt gac tct cg ^g cta cag ctg aac ttc cga gc ^g ac ^g cag cct ttg	Pro Gly Asp Ser Arg Leu Gln Leu Asn Phe Arg Ala Thr Gln Pro Leu	1155
	330 335 340	
aat ggg cga gtg att gag gcc tcc ttc cct gct gga gtg gac agc agt	Asn Gly Arg Val Ile Glu Ala Ser Phe Pro Ala Gly Val Asp Ser Ser	1203
	345 350 355 360	
cct cg ^g gct gct gag cca gtc cag ctg aat tcc tgc ctg gct gct ggt	Pro Arg Ala Ala Glu Pro Val Gln Leu Asn Ser Cys Leu Ala Ala Gly	1251
	365 370 375	
gac atc cta gcc ctg gtt ttt ggc ctc ctt ttt gct gtc acc agc gtc	Asp Ile Leu Ala Leu Val Phe Gly Leu Leu Phe Ala Val Thr Ser Val	1299
	380 385 390	
gc ^g ttc ctt gtg cag atg aga agg cag cac aga agg gga acc aaa ggg	Ala Phe Leu Val Gln Met Arg Arg Gln His Arg Arg Gly Thr Lys Gly	1347
	395 400 405	
ggt gtg agc tac cgc cca gca gag gta gcc gag act gga gcc	Gly Val Ser Tyr Arg Pro Ala Glu Val Ala Glu Thr Gly Ala	1389
	410 415 420	
tagaggctgg atcttgaga atgtgagaag ccagccagag gcatctgagg gggagccggt	1449	
aactgtcctg tcctgctcat tatgccactt ccttttaact gccaagaaaat tttttaaaat	1509	
aaatatttat aat	1522	

<210> 6

<211> 459

<212> PRT

<213> HUMAN

<400> 6

Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala		
-35	-30	-25

Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Ser Leu Leu Leu Leu		
-20	-15	-10

Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Asp Ser Pro			
-5	-1 1	5	10

Leu Gly Gly Ser Ser Gly Glu Asp Asp Pro Leu Gly Glu Glu Asp		
15	20	25

Leu	Pro	Ser	Glu	Glu	Asp	Ser	Pro	Arg	Glu	Glu	Asp	Pro	Pro	Gly	Glu
30							35					40			
Glu	Asp	Leu	Pro	Gly	Glu	Glu	Asp	Leu	Pro	Gly	Glu	Glu	Asp	Leu	Pro
45					50						55				
Glu	Val	Lys	Pro	Lys	Ser	Glu	Glu	Glu	Gly	Ser	Leu	Lys	Leu	Glu	Asp
60					65					70				75	
Leu	Pro	Thr	Val	Glu	Ala	Pro	Gly	Asp	Pro	Gln	Glu	Pro	Gln	Asn	Asn
								80	85					90	
Ala	His	Arg	Asp	Lys	Glu	Gly	Asp	Asp	Gln	Ser	His	Trp	Arg	Tyr	Gly
								95	100				105		
Gly	Asp	Pro	Pro	Trp	Pro	Arg	Val	Ser	Pro	Ala	Cys	Ala	Gly	Arg	Phe
							110	115					120		
Gln	Ser	Pro	Val	Asp	Ile	Arg	Pro	Gln	Leu	Ala	Ala	Phe	Cys	Pro	Ala
								125	130				135		
Leu	Arg	Pro	Leu	Glu	Leu	Leu	Gly	Phe	Gln	Leu	Pro	Pro	Leu	Pro	Glu
								140	145				150		155
Leu	Arg	Leu	Arg	Asn	Asn	Gly	His	Ser	Val	Gln	Leu	Thr	Leu	Pro	Pro
								160	165				170		
Gly	Leu	Glu	Met	Ala	Leu	Gly	Pro	Gly	Arg	Glu	Tyr	Arg	Ala	Leu	Gln
								175	180				185		
Leu	His	Leu	His	Trp	Gly	Ala	Ala	Gly	Arg	Pro	Gly	Ser	Glu	His	Thr
								190	195				200		
Val	Glu	Gly	His	Arg	Phe	Pro	Ala	Glu	Ile	His	Val	Val	His	Leu	Ser
								205	210				215		
Thr	Ala	Phe	Ala	Arg	Val	Asp	Glu	Ala	Leu	Gly	Arg	Pro	Gly	Gly	Leu
								220	225				230		235
Ala	Val	Leu	Ala	Ala	Phe	Leu	Glu	Glu	Gly	Pro	Glu	Glu	Asn	Ser	Ala
								240	245				250		
Tyr	Glu	Gln	Leu	Leu	Ser	Arg	Leu	Glu	Glu	Ile	Ala	Glu	Glu	Gly	Ser
								255	260				265		
Glu	Thr	Gln	Val	Pro	Gly	Leu	Asp	Ile	Ser	Ala	Leu	Leu	Pro	Ser	Asp
								270	275				280		
Phe	Ser	Arg	Tyr	Phe	Gln	Tyr	Glu	Gly	Ser	Leu	Thr	Thr	Pro	Pro	Cys
								285	290				295		

Ala Gln Gly Val Ile Trp Thr Val Phe Asn Gln Thr Val Met Leu Ser
300 305 310 315

Ala Lys Gln Leu His Thr Leu Ser Asp Thr Leu Trp Gly Pro Gly Asp
320 325 330

Ser Arg Leu Gln Leu Asn Phe Arg Ala Thr Gln Pro Leu Asn Gly Arg
335 340 345

Val Ile Glu Ala Ser Phe Pro Ala Gly Val Asp Ser Ser Pro Arg Ala
350 355 360

Ala Glu Pro Val Gln Leu Asn Ser Cys Leu Ala Ala Gly Asp Ile Leu
365 370 375

Ala Leu Val Phe Gly Leu Leu Phe Ala Val Thr Ser Val Ala Phe Leu
380 385 390 395

Val Gln Met Arg Arg Gln His Arg Arg Gly Thr Lys Gly Gly Val Ser
400 405 410

Tyr Arg Pro Ala Glu Val Ala Glu Thr Gly Ala
415 420

<210> 7

<211> 25

<212> DNA

<213> HUMAN

<400> 7

tggggttctt gaggatctcc aggag 25

<210> 8

<211> 26

<212> DNA

<213> HUMAN

<400> 8

ctctaacttc agggagccct cttctt 26

<210> 9
<211> 48
<212> DNA
<213> HUMAN

<220>
<221> primer_bind
<222> (1)..(48)

<400> 9
cuacuacuac uaggccacgc gtcgactagt acgggnnggg nngggnnng

48

<210> 10
<211> 6
<212> PRT
<213> HUMAN

<400> 10
Glu Glu Asp Leu Pro Ser
1 5

<210> 11
<211> 6
<212> PRT
<213> HUMAN

<400> 11
Gly Glu Asp Asp Pro Leu
1 5

<210> 12
<211> 21
<212> PRT
<213> HUMAN

<400> 12

Asn Asn Ala His Arg Asp Lys Glu Gly Asp Asp Gln Ser His Trp Arg
1 5 10 15
Tyr Gly Gly Asp Pro
20

<210> 13

<211> 16

<212> PRT

<213> HUMAN

<400> 13

His Pro Gln Arg Leu Pro Arg Met Gln Glu Asp Ser Pro Leu Gly Gly
1 5 10 15

<210> 14

<211> 24

<212> PRT

<213> HUMAN

<400> 14

Glu Glu Asp Ser Pro Arg Glu Glu Asp Pro Pro Gly Glu Glu Asp Leu
1 5 10 15
Pro Gly Glu Glu Asp Leu Pro Gly
20

<210> 15

<211> 13

<212> PRT

<213> HUMAN

<400> 15

Leu Glu Glu Gly Pro Glu Glu Asn Ser Ala Tyr Glu Gln
1 5 10

<210> 16

<211> 16

<212> PRT

<213> HUMAN

<400> 16
Met Arg Arg Gln His Arg Arg Gly Thr Lys Gly Gly Val Ser Tyr Arg
1 5 10 15

<210> 17
<211> 45
<212> DNA
<213> HUMAN

<400> 17
gtcgctagct ccatgggtca tatgcagagg ttgccccgga tgcag 45

<210> 18
<211> 43
<212> DNA
<213> HUMAN

<400> 18
gaagatctct tactcgagca ttctccaaga tccagcctct agg 43
<210> 19
<211> 10
<212> DNA
<213> HUMAN

<220>
<221> misc_feature
<222> (1)..(10)

<400> 19
yssccmnsss 10

<210> 20

<211> 10
<212> DNA
<213> HUMAN

<220>
<221> misc_feature
<222> (1)..(10)

<400> 20
kmggcckrry 10
<210> 21
<211> 10
<212> DNA
<213> HUMAN

<220>
<221> misc_feature
<222> (1)..(10)

<400> 21
rrrcwwgyyy 10
<210> 22
<211> 8
<212> PRT
<213> HUMAN

<400> 22
Leu Glu His His His His His His
1 5

<210> 23
<211> 5052
<212> DNA

<213> HUMAN

<220>

<221> misc_feature

<222> (1)..(5052)

<400> 23

ggatcctgtt gactcggtac cttacccca accctgtgct ctctgaaaca tgagctgtgt 60
ccactcaggg ttaaatggat taagggcggt gcaagatgtg ctttgtaaa cagatgcttg 120
aaggcagcat gctcgtaag agtcatcacc aatccctaatt ctcaagtaat cagggacaca 180
aacactgcgg aaggccgcag ggtcctctgc ctagaaaaac cagagacctt tgttcacttg 240
tttatctgac cttccctcca ctattgtcca tgaccctgcc aaatccccct ctgtgagaaa 300
cacccaagaa ttatcaataa aaaaataaaat taaaaaaaaa aatacaaaaaa aaaaaaaaaa 360
aaaaaaaaaa gacttacgaa tagttattga taaatgaata gctattggta aagccaagta 420
aatgatcata ttcaaaacca gacggccatc atcacagctc aagtctacact gatttgatct 480
ctttatcatt gtcattctt ggattcaacta gattagtcat catcctcaaa attctcccc 540
aagttctaatt tacgttccaa acatttagggtt gttacatgaa gcttgaacct actaccttct 600
ttgctttga gccatgagtt gtaggaatga tgagttaca ctttacatgc tggggattaa 660
tttaaacttt acctctaagt cagttggta gcctttggct tattttgtt gctaattttg 720
tagttaatgg atgcactgtg aatcttgcta tgatagttt cctccacact ttgccactag 780
ggtaggttag gtactcagtt ttcagtaatt gcttaccaa gaccctaagc cctatttctc 840
ttgtactggc ctttatctgt aatatggca tatttaatac aatataattt ttggagttt 900
tttgggtt tttttgtt tttttttagt acggagtctt gcatctgtca tgcccaggct 960
ggagtagcag tggtgccatc tcggctcact gcaagctcca cctcccgagt tcacgccatt 1020
ttcctgcctc agcctcccgat gtagctggta ctacaggcgc ccggccaccat gcccggctaa 1080
ttttttgtat ttttggtaga gacggggttt caccgttta gccagaatgg tctcgatctc 1140
ctgacttcgt gatccacccg cctcggccctc ccaaagttct gggattacag gtgtgagcca 1200
ccgcacccgg ccaattttt gagtcttttta aagtaaaaat atgtcttgta agctggtaac 1260
tatggtacat ttccctttat taatgtggtg ctgacggtca tataagggttct tttgagttt 1320
gcatgcataat gctactttt gcagtcctt cattacattt ttctctcttc atttgaagag 1380
catgttatat ctttagctt cacttggctt aaaagggtct ctcattagcc taacacagtg 1440
tcattgtgg taccacttgg atcataagtg gaaaaacagt caagaaattt cacagtaata 1500
cttgggttta agagggatga ttcaaggtaa tctgacacta agaaaactccc ctacctgagg 1560
tctgagattc ctctgacatt gctgtatata ggctttcct ttgacagcct gtgactgcgg 1620
actattttc ttaagcaaga tatgctaaag ttttggtagc cttttccag agagaggct 1680

catatctgca tcaagtgaga acatataatg tctgcattttc tccatatttc aggaatgttt 1740
gcttggttt tatgcttttata tagacagg gaaacttgtt cctcagtgac ccaaaagagg 1800
tggaaattgt tattggatat catcattggc ccacgcttc tgaccttggaa aacaattaag 1860
ggtcataat ctcaattctg tcagaattgg tacaagaaat agtcgtatg tttcttgaca 1920
ttccacttgg taggaataa gaatgtgaaa ctcttcagg ggtgtgtgc cctngtttt 1980
ttgcaatttc cttcttactg tgtaaaaaaa aagtatgatc ttgctctgag aggtgaggca 2040
ttcttaatca tgatcttaa agatcaataa tataatcctt tcaaggatta tgtctttatt 2100
ataataaaaga taatttgtct ttaacagaat caataatata atcccctaaa ggattatatc 2160
tttgctggc gcagtggc acacctgtaa tccccggact ttgggtggcc aagggtggaaag 2220
gatcaaattt gcctacttct atattatctt ctaaaggcaga attcatctt cttccctcaa 2280
tatgatgata ttgacagggt ttgccctcac tcactagatt gtgagctcct gctcagggca 2340
ggtagngttt tttgttttg tttttgtttt ttttttttga gacagggtct tgctctgtca 2400
cccaggccag agtgcaatgg tacagtctca gctcaactgca gcctcaacgc ctggctcaa 2460
accatcatcc catttcagcc tcctgagtag ctgggactac aggcacatgc cattacacct 2520
ggctaatttt tttgtatttc tagtagagac agggtttggc catgttgcggc gggctggct 2580
cgaactcctg gactcaagca atccacccac ctcagcctcc caaaatgagg gaccgtgtct 2640
tattcatttc catgtcccta gtccatagcc cagtgttgaa cctatggtag tactaaataa 2700
atattgttg aatgcaatag taaatagcat ttcaaggagc aagaactaga ttaacaaagg 2760
tggtaaaagg tttggagaaa aaaataatag tttaatttgg ctagagtatg agggagagta 2820
gtaggagaca agatggaaag gtctttggg caagggtttg aaggaagttg gaagtcagaa 2880
gtacacaatg tgatatcgat gcaggcagtg gggagccaat gaaggcttt gagcaggaga 2940
gtaatgtgtt gaaaaataaa tataggttaa acctatcaga gcccctctga cacatacact 3000
tgctttcat tcaagctcaa gtttgcctcc cacataccca ttacttaact caccctcggt 3060
ctcccttagc agcctggcct acctcttac ctgcttcctg gtggagtcag ggatgtatac 3120
atgagctgct ttccctctca gccagagaca tggggggccc cagctccct gcctttcccc 3180
ttctgtgcct ggagctgggaa agcaggccag ggttagctga ggctggctgg caagcagctg 3240
ggtggtgcca gggagagcct gcatagtgcc aggtggtgcc ttgggttcca agctagtc 3300
tggcccgat aacttctgc ctgtgcacac acctgcccct cactccaccc ccatccttagc 3360
tttggatgg gggagagggc acaggccag acaaaccgtt gagactttgg ctccatctt 3420
gcaaaaggc gctctgtgag tcagcctgct cccctccagg cttgctcctc ccccacccag 3480
ctctcggttc caatgcacgt acagcccgta cacaccgtgt gctggacac cccacagtca 3540
gcmcgtggct cccctgtgcc ccagccctg gctccctctg ttgatcccggtt cccctgctcc 3600
aggcctcaact gtgcaactgc tgctgtcaact gctgcttcgtt atgcctgtcc atccccagag 3660
gttgccccgg atgcaggagg attccccctt ggaggaggct cttctgggaa agatgaccca 3720

ctggcgagg aggatctgcc cagtgaagag gattcaccca gagaggagga tccacccgga 3780
gaggaggatc tacctggaga ggaggatcta cctggagagg aggatctacc tgaagttaat 3840
gcctaaatca gaagaagagg gctccctgaa gttagaggat ctacctactg ttgaggctcc 3900
tggagatcct caagaacccc agaataatgc ccacagggac aaagaagggg atgaccagag 3960
tcattggcgc tatggaggcg acccgctgg ccccggtgt ccccagcctg cgccggccgc 4020
ttccagtcctt cggatccat ccgcggccag ctcgcgcct tctgcccggc cctgcgcggcc 4080
ctggaaactcc tgggcttcca gctcccgccg ctcccagaac tgccctgca gacaatggcc 4140
acagtgtgca actgaccctg ctcctgggc tagagatggc tctgggtccc gggcgggagt 4200
accggctctg cagctgcatt tgcaactgggg ggctgcaggt cgtccggct cggagcacac 4260
tgtgaaaggc caccgttcc ctgcccagat ccacgtgggt cacctcagca ccgcctttgc 4320
cagagttgac gaggccttgg ggcccgggg aggctggcc gtgttggcgc cttctggag 4380
gagggccccgg aagaaaacag tgtcctatga gcagttgtg ttcgccttgg aagaaatcgc 4440
tgaggaaggc tcagagactc aggtcccagg actggacata tctgcactcc tgccctctga 4500
cttcagccgc tacttccaat atgaggggtc tctgactaca ccgcctgtg cccagggtgt 4560
catctggact gtgttaacc agacagtgtat gctgagtgct aagcagctcc acaccctctc 4620
tgacaccctg tgggacactg gtactctcg gctacagctg aacttccgag cgacgcagcc 4680
tttgaatggg cgagtgattg aggccctcctt ccctgctgg a gtcctcggc 4740
tgctgagcca gtccagctga attcctgcct ggctgctggt gacatccttag ccctggttt 4800
tggcctcctt tttgctgtca ccagcgtcgc gttccttgg cagatgagaa ggcagcacag 4860
aaggggaaacc aaagggggtg tgagcgtacc gcccagcaga ggtagccgag actggagcct 4920
agaggctgga tcttggagaa tgtgagaagc cagccagagg catctgaggg ggagccggt 4980
actgtcctgt cctgctcatt atgccacttc ctttaactg ccaagaaatt tttaaaata 5040
aatatttata at 5052

<210> 24

<211> 6

<212> PRT

<213> HUMAN

<400> 24

Arg Arg Ala Arg Lys Lys
1 5

<210> 25

<211> 4

<212> PRT

<213> HUMAN

<220>

<221> SITE

<222> (1) .. (4)

<400> 25

Ser Pro Xaa Xaa
1

<210> 26

<211> 4

<212> PRT

<213> HUMAN

<220>

<221> SITE

<222> (1) .. (4)

<400> 26

Thr Pro Xaa Xaa
1