Fonctions holomorphes

On admettra le résultat suivant (voir TD).

Pour toute application g de ${\bf R}$ dans ${\bf C}$, 2π -périodique, de classe ${\cal C}^1$, la série d'applications (série de Fourier

$$c_0(g) + \sum_{n=>1} c_n(g) \exp(in\cdot) + c_{-n}(g) \exp(-in\cdot),$$

 $où pour tout n \in \mathbf{Z}$

$$c_n(g) = \frac{1}{2\pi} \int_0^{2\pi} f(t) \exp(-int) dt,$$

 $converge\ normalement\ de\ somme\ g.$

Définitions premières propriétés

Soit f une application d'un ouvert U non vide de \mathbf{C} (vu comme un \mathbf{R} -espace vectoriel de dimension 2), à valeurs complexes. On dit que f est \mathbf{C} -dérivable en un point z_0 de U si, par définition, $\frac{f(z)-f(z_0)}{z-z_0}$ admet une limite lorsque z tend vers z_0 par valeurs distinctes. Si f est \mathbf{C} -dérivable en z_0 on note $f'(z_0) := \lim_{z \to z_0, z \neq z_0} \frac{f(z)-f(z_0)}{z-z_0}$ et l'on appelle cette quantité dérivée complexe de f en z_0 .

1. Montrer que f est ${\bf C}$ -dérivable en un point z_0 de U si et seulement si il existe un complexe c tel que

$$f(z) = f(z_0) + c(z - z_0) + o(|z - z_0|), (z \to z_0).$$

- 2. L'application f est dite holomorphe si, par définition, f est dérivable en tout point z de U et si son application dérivée complexe, f': $U \to \mathbf{C}$; $z \mapsto f'(z)$, est continue.
 - 3. Exemples

Parmis les applications de C dans C suivantes déterminer celles qui sont holomorphes :

$$z \mapsto 1$$
; $z \mapsto z$; $z \mapsto \Re(z)$; $z \mapsto \bar{z}$

- 4. Soit f_1 et f_2 des applications de U dans \mathbf{C} holomorphes et λ et μ des nombres complexes. Montrer que $\lambda f_1 + \mu f_2$, $f_1 \times f_2$ et si f_1 ne s'annule pas, $\frac{1}{f_1}$ sont holomorphes; préciser leur applications dérivées complexes.
- 5. Soit g une application d'un ouvert V non vide de \mathbf{C} à valeurs complexes holomorphe. On suppose que $f(U) \subset V$. Montrer que $g \circ f$ est holomorphe et préciser son application dérivée complexe.
 - 6. Montrer que toute application polynômiale de C dans C est holomorphe.

CARACTÉRISATION RÉELLE

On va voir que si f est holomorphe, alors, vue comme une application de \mathbf{R}^2 dans \mathbf{R}^2 , elle est de classe \mathcal{C}^1 , mais que la réciproque est fausse, et qu'il faut adjoindre au caractère \mathcal{C}^1 une condition supplémentaire pour obtenir l'holomorphie.

- 7. On désigne par U^* l'ensemble des éléments (x, y) de \mathbf{R}^2 tels que $x + iy \in U$. Montrer que U^* est un ouvert de \mathbf{R}^2 .
- 8. On désigne par f^* l'application de U^* dans \mathbf{C} , qui à (x,y) associe f(x+iy), on désigne par \tilde{f} l'application de U^* dans \mathbf{R}^2 qui à (x,y) associe $(\Re(f(x+iy),\Im(f(x+iy))),$ enfin on note P et Q les première et seconde composantes de \tilde{f} . Ainsi pour tout $(x,y) \in U^*$

$$f(x+iy) = f^*(x,y) = P(x,y) + iQ(x,y), \quad \tilde{f}(x,y) = (P(x,y), Q(x,y)).$$

Montrer que les 3 conditions suivantes sont équivalentes :

i f est holomorphe.

ii
$$f^*$$
 est de classe C^1 et $\frac{\partial f^*}{\partial y} = i \frac{\partial f^*}{\partial x}$.
iii \tilde{f} est de classe C^1 et $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$; $\frac{\partial Q}{\partial x} = -\frac{\partial P}{\partial y}$.

Dans le cas où f est holomorphe, exprimer pour (x, y) élément de U^* , f'(x+iy) en fonction des dérivées partielles, de f^* puis des dérivées partielles de P et de Q.

- 9. Montrer que la somme d'une série entière de rayon de convergence non nul, est une application holomorphe.
- 10. On dira qu'une application h d'un ouvert W de \mathbb{C} non vide, à valeurs dans une partie V de \mathbb{C} est holomorphe si l'application $W \to \mathbb{C}$; $z \mapsto h(z)$ est holomorphe.

On suppose que f est holomorphe et injective. On suppose que f' ne s'annule pas. Montrer que $d\tilde{f}$ est une similitude directe de \mathbf{R}^2 , muni de sa structure euclidienne canonique.

ANNULÉE (Montrer que f induit une bijection de U sur f(U), et que la bijection réciproque g est holomorphe.)

Analyticité des fonctions holomorphes

- 11. On suppose que f est analytique, c'est-à-dire développable en série entière au voisinage de tout point de U. Montrer que f est holomorphe.
- 12. On suppose que f est holomorphe. Soient z_0 un point de U de partie réelle x_0 de partie imaginaire y_0 et r un réel strictement positif tel que $B_O(Z_0, r) \subset U$. Soit enfin l'application

$$F: [0, r] \times \mathbf{R} \to \mathbf{C}; (\rho, \theta) \mapsto f^*(x_0 + \rho \cos \theta, y_0 + \rho \sin \theta) = f(z_0 + \rho e^{i\theta})$$

- a) Montrer que F est de classe C^1 et exprimer $\frac{\partial F}{\partial \rho}$ en fonction de $\frac{\partial F}{\partial \theta}$.
- b) Montrer que pour tout élément ρ de]0, r[, il existe une famille $(\alpha_n(\rho))_{n \in \mathbb{Z}}$ telle que :

$$f(z_0 + \rho e^{i\theta}) = \sum_{n=-\infty}^{+\infty} \alpha_n(\rho) e^{in\theta}.$$

- c) Montrer que pour tout $n \in \mathbf{Z}$, l'application $\alpha_n :]0, r[\to \mathbf{C}; \rho \mapsto \alpha_n(\rho)$ est dérivable et que pour tout $\rho \in]0, r[, \alpha'_n(\rho) = \frac{n}{r}\alpha_n(\rho)$.
- d) En déduire qu'il existe une famille $(a_n)_{n \in \mathbb{Z}}$, telle que pour tout complexe z tel que $0 < |z z_0| < r$,

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n.$$

On donnera l'expression des a_n , $n \in \mathbb{Z}$, au moyen d'une intégrale.

- e) Montrer que pour tout entier n < 0, $|a_n| = 0$. En déduire que f est analytique.
- 13. Montrer que toute application de U dans ${\bf C}$, holomorphe est indéfiniment dérivable au sens complexe.
 - 14. Montrer qu'une application de C dans C, holomorphe et majorée, est constante.
 - 15. Déduire de ce qui précède le théorème de d'Alembert-Gauß.

Intégrales sur un chemin

On ne suppose pas connue l'analycité des fonctions holomorphes.

U désigne un ouvert U de \mathbb{C} , on lui associe la partie de \mathbb{R}^2 , $U^* := \{(x,y) \in \mathbb{R}^2 | (x+it \in U) \}$. Premières définitions

On appelle chemin \mathcal{C}^1 par morceaux de U toute application γ d'un segment [a,b] à valeurs dans U continue et \mathcal{C}^1 par morceaux. Si de plus $\gamma(a) = \gamma(b)$ on dit que le chemin est un lacet. A un chemin \mathcal{C}^1 par morceaux de U, on associe l'arc géométrique orienté Γ^* de U^* , dont un représentant est $([a,b],(\Re(\gamma),\Im(\gamma)))$.

Soient f une application de U dans \mathbf{C} continue et γ un chemin \mathcal{C}^1 par morceaux de U, et (a_0, a_1, \ldots, a_n) une subdivision de [a, b] adaptée à γ . On appelle intégrale de f le long du chemin γ la quantité notée $\int_{\gamma} f(z) dz$ défine par :

$$\int_{\gamma} f(z) dz := \int_{a}^{b} \sum_{i=0}^{n-1} \int_{a_i}^{a_i+1} f(\gamma(t)\gamma'(t) dt.$$

Cette quantité est indépendante de la subdivision adaptée choisie, ce que l'on admettra dans la suite. On appelle la longueur de γ la longueur de Γ^* , c'est-à-dire :

$$\int_{a}^{b} \sum_{i=0}^{n-1} \int_{a_{i}}^{a_{i}+1} \|\overrightarrow{\Gamma}'(t)\| dt.$$

On définit de même pour un champ de vecteur $\overrightarrow{V}=(V_1,V_2)$, défini sur U^* , continue, l'intégrale (ou circulation) de \overrightarrow{V} le long du chemin Γ^* , quantité notée $\int_{\Gamma^*} \overrightarrow{V}$, par :

$$\int_{\Gamma^*} \vec{V} := \int_a^b \sum_{i=0}^{n-1} \int_{a_i}^{a_i+1} \left\langle \vec{V}(\Gamma^*(t)|\overrightarrow{\Gamma^{*'}}(t)) \right\rangle dt.$$

Cette quantité est également indépendante de la subdivision adaptée choisie.

1. Soit ϕ un \mathcal{C}^1 difféomorphisme croissant d'un segment [c,d] sur [a,b]. On pose $\delta := \gamma \circ \phi$. montrer que δ est un chemin \mathcal{C}^1 par morceaux de U et que

$$\int_{\gamma} f(z) dz = \int_{\delta} f(z) dz.$$

2. On reprend les notations de l'exercice précédent (question 8. Montrer qu'il existe deux champs de vecteurs \vec{V}_1 et \vec{V}_2 sur U^* telles que :

$$\int_{\gamma} f(z) dz = \int_{\Gamma^*} \vec{V}_1 + i \int_{\Gamma^*} \vec{V}_2.$$

On exprimera \vec{V}_1 et \vec{V}_2 en fonction de P et Q.

3. On suppose dans cette question que U est convexe et que f est holomorphe. Montrer que V_1 et V_2 dérivent d'un potentiel, voir annexe.

Que dire de $\int_{\gamma} f(z) dz$ si γ est un lacet. On note pour $i=1,2,\,\Phi_i$ un potentiel dont dérive $\overrightarrow{V}_i,\,(\vec{\nabla}\Phi_i=\vec{V}_i)$, et l'on pose :

$$F: U \to \mathbf{C}; z \mapsto \Phi_1(x, y) + i\Phi_2(x, y),$$

avec $x = \Re(z), y = \Im(z)$. Montrer que F est holomorphe et que F' = f. On dit que F est une primitive de f.

FORMULE DE GOURSAT

Soient γ_1 et γ_2 des chemins \mathcal{C}^1 par morceaux de U définies respectivement sur les segments $[a_1,b_1]$ et $[a_2,b_2]$. On définit un nouveau chemin \mathcal{C}^1 par morceaux de U noté $\gamma_1\cup\gamma_2$ par

$$\gamma_1 \cup \gamma_2 : [a_1, b_1 + (b_2 - a_2)] \to \mathbf{C}; \ t \mapsto \begin{cases} \gamma_1(t), & \text{pour } t \in [a_1, b_1], \\ \gamma_2(t + a_2 - b_1), & \text{pour } t \in [b_1, b_1 + (b_2 - a_2)]. \end{cases}$$

On dispose ainsi d'une opération sur les chemins \mathcal{C}^1 par morceaux de \mathbb{C} , qui est visiblement associative.

Enfin pour u et v points quelconque de \mathbb{C} , on note $\gamma_{u,v}$ le chemin $[0,1] \to \mathbb{C}$; $t \mapsto (1-t)u+tv$.

4. Soit (z_1, z_2, z_3) un triangle direct de C. On suppose que le triangle plein T de sommets z_1, z_2, z_3 est inclus dans U. On note γ_T le lacet $\gamma_{z_1, z_2} \cup \gamma_{z_2, z_3} \cup \gamma_{z_3, z_2}$

On suppose que f est holomorphe sur $U-\{z_0\}$, où z_0 est un point quelconque de U et continue sur U. On se propose démontrer que $\int_{\gamma_T} f(z) \mathrm{d}z = 0$: « l'intégral de f sur un triangle est nulle ≫

- a) Montrer que le résulta pour f constante et pour $f: z \mapsto z$.
- b) On suppose dans cette sous question que $z_0 \notin T$. On pose $T_0 = T$ et $T_0^1, \dots T_0^4$ les triangles semblables à T_0 de rapports respectifs $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}$ obtenus en prenant les milieux des segments qui forment la frontière de T.
- i) Montrer qu'il existe $j \in \{1,\dots,4\}$ tel que $\left|\int_{\gamma_{T^j_z}} f(z) \mathrm{d}z\right| \geq \frac{1}{4} \left|\int_{\gamma_T} f(z) \mathrm{d}z\right|$. On notera $T_0^j = T_1$
 - ii) Montrer plus généralement qu'il existe une suite $(T_k)_{k\in\mathbb{N}}$ de triangles telle que :
 - $--T_0=T,$
 - Pour tout $k \in \mathbf{N}$, $T_{k+1} \subset T_k$,
 - Pour tout $k \in \mathbf{N}$ la longueur de $\gamma_{T_{k+1}}$ est la moitié de celle de $\frac{1}{2}\gamma_{T_k}$,

 - $\left| \int_{\gamma_T} f(z) dz \right| \le 4^k \left| \int_{\gamma_{T_k}} f(z) dz \right|.$ iii) Montrer que $\bigcap_{k \in \mathbf{N}} T_k$ est un singleton $\{u\}$. Et en déduire le résultat.

Indication: On pourra retermarquer que : $\int_{\gamma_{T_k}} f(z) dz = \int_{\gamma_{T_k}} f(z) - f(u) - (z-u)f'(u) dz$.

- c) Montrer le résultat dans le cas général. On pourra commencer en décomposant T en triangles, à se ramener au cas où z_0 est un sommet de T.
- 5. On suppose toujours que f est holomorphe sur $U \{z_0\}$ et que U est un ouvert convexe. Déduire de la question 4, que f admet une primitive F sur U. On vient de généraliser 3, En déduire que l'intégrale de f sur tout lacet \mathcal{C}^1 par morceaux de U est nulle.

Indice d'un lacet par rapport à un point

 γ est un lacet \mathcal{C}^1 par morceaux de \mathbf{C} , défini sur [a,b], enfin z_0 est un point de \mathbf{C} qui n'est pas élément de $\gamma([a,b])$.

On pose $\operatorname{Ind}_{z_0} = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z-z_0}$.

- 6. En étudiant l'application $G: [a,b]; t \mapsto \exp\left(\int_0^t \frac{\gamma'(s)}{\gamma(s)-z_0} ds\right)$, montrer que $\operatorname{Ind}_{z_0}(\gamma)$ est un élément de **Z**.
- 7. On considère le cas particulier où $\gamma: [0,2\pi] \to \mathbb{C}; t \mapsto z_0 + r \exp(int)$ avec $n \in \mathbb{N}^*$ et $r \in \mathbf{R}_{+}^{*}$. Déterminer $\operatorname{Ind}_{z_0}(\gamma)$.

8. On admet que $\mathbf{C} - \gamma([a,b])$ admet deux composantes connexes par arcs dont une est non bornée. Montrer que $z \mapsto \operatorname{Ind}_z(\gamma)$ est constante sur les composantes connexes par arcs de $\mathbf{C} - \gamma([a,b])$ et nulle sur la composant connexes par arcs non bornée.

FORMULE DE LA MOYENNE

5. On suppose que U est un ouvert convexe. Soit z_0 un point de U et γ un lacet C^1 par morceaux de U, définie sur [a,b] et tel que $z_0 \notin \gamma([a,b]$.

En considérant l'application $g:U\to\mathbf{C};z\mapsto\begin{cases} \frac{f(z)-f(z_0)}{z-z_0}, & \text{pour }z\neq z_0,\\ f'(z_0)), & \text{pour }z=z_0, \end{cases}$ montrer que : $\operatorname{Ind}_{z_0}(\gamma)f(z_0)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-z_0}\mathrm{d}z$

6. Déduire de la question précédente qu'une fonction holomorphe sur un ouvert U est analytique. Plus précisément, pour tout point z_0 de U f est développable en série entière au voisinage de z_0 dans tout disque ouvert centré en z_0 et inclus dans U.

Annexe

Par \vec{V} on désigne une application de U^* supposé convexe et contenant (0,0), dans \mathbf{R}^2 de classe \mathcal{C}^1 ; V_1 désigne la première composante de \vec{V} , V_2 la seconde.

1. On suppose dans cette question que \vec{V} est le gradient d'une application \mathcal{U} de U^* dans \mathbf{R} a priori de classe \mathcal{C}^1 , $\vec{V} = \vec{\nabla} \mathcal{U}$. On dit que \vec{V} dérive du potentiel $-\mathcal{U}$ (ou parfois \mathcal{U}). Montrer que

$$\frac{\partial V_1}{\partial y} = \frac{\partial V_2}{\partial x} \tag{1}$$

2. Réciproquement supposons que la condition (1) soit satisfaite. On pose :

$$\mathcal{U}: U^* \to \mathbf{R}; (x,y) \mapsto \int_0^1 xV_1(tx,ty) + yV_2(tx,ty)dt.$$

Montrer que \mathcal{U} est de classe \mathcal{C}^1 et que $\vec{V} = \vec{\nabla} \mathcal{U}$.