Stat 260 Lecture Notes Set 16 - The Normal Approximation of the Binomial Distribution

Consider a binomial experiment with n trials where the probability of success is p.

Sometimes the pmf (pictured as a bar chart) of the binomial distribution has a bell-curve shape.

Example 1: Consider the binomial distribution with n = 15 and p = 0.60. This distribution is pictured below.

The pmf pictured here looks approximated bell-curved shape, so we can use the normal distribution to approximate our probability calculations.

Let's work through the calculation of $P(X \le 8)$.

$$P(X=0) + P(X=1) + P(X=2) + \cdots + P(X=3) + P(X=8)$$

Recall: In a binomial distribution we have $E(X) = \mu = np$, and $V(X) = \sigma^2 = np(1-p)$, and $\sigma = \sqrt{np(1-p)}$.

This tells us that if we want to standardize the random variable X in the normal distribution we would use

$$Z = \frac{X - \mu}{\sigma} = \frac{X - np}{\sqrt{np(1 - p)}}$$

There is one complicating factor though. The bars of the bar chart have width. So comparing the area of $P(X \le 8)$ in the binomial bars will be slightly different from the area of $P(X \le 8)$ in the normal distribution curve. Instead, we have to do a bit of a correction to our normal distribution. Notice that the X=8 bar actually ends at the value X=8.5. So when calculating the area in the normal distribution we should look at $P(X \le 8.5)$.

If we want $P(X \le x)$ in the binomial distribution we will use $P(X \le x) \approx P(X \le x + 0.5)$ in the normal distribution. This means that our standardization will instead become

$$Z = \frac{X - \mu}{\sigma} = \frac{X + 0.5 - np}{\sqrt{np(1 - p)}}$$

The value of the +0.5 is called the **continuity correction factor**.

Notice that we can calculate $P(X \ge x)$, P(X > x), P(X < x), and P(X = x) too by first changing the statement to involve $P(X \le x)$.

When can we use the normal approximation to the binomial distribution?

Rule: The normal distribution with $\mu = np$ and $\sigma = \sqrt{np(1-p)}$ is a good approximation to the binomial(n, p) when $np \ge 5$ and $n(1-p) \ge 5$.

Example 1: Look at the binomial distribution with n = 15 and p = 0.60. Use the normal approximation to the binomial distribution to calculate:

(a)
$$P(X \le 8)$$

(b)
$$P(X = 8)$$

(c)
$$P(X \ge 5)$$

Compare each approximation to the exact value you would find with the binomial distribution.

$$\mu = 0p$$
= 15(0.b)
$$= 9$$
 $\sigma = \sqrt{np(1-p)}$

$$= \sqrt{15(0.b)(0.u)}$$

$$= \sqrt{3.b}$$

a)
$$P(X \le 8)$$
 $Z = \frac{X - \mu}{d}$
 $\approx P(X \le 8.5)$ $= \frac{8.5 - 9}{\sqrt{3.6}}$
 $= -0.26$

b)
$$P(x=8) = P(x \le 8) - P(x \le 7)$$

 $\approx P(x \le 8.5) - P(x \le 7.5)$

$$Z = \frac{X - \mu}{\sigma}$$

$$= \frac{8.6 - 9}{\sqrt{3.6}}$$

$$= -0.26$$

$$Z = \frac{X - \mu}{\sigma}$$

$$= \frac{7.6 - 9}{\sqrt{3.6}}$$

$$= -0.79$$

c)
$$P(x \ge 5) = 1 - P(x \le 4)$$

$$\approx 1 - P(x \le 4.5)$$

$$Z = \frac{X - \mu}{\sigma}$$

$$= \frac{4.5 - 9}{\sqrt{3.6}}$$

$$= -3.33$$

Table	Table A.3 Areas under the Normal Curve						0 z				
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121	
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483	
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859	
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247	
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641	

\overline{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.006
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.008
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.011
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.014
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.018

Stat 260 Lecture Notes

Set 17 - The Gamma Distribution and Exponential Distribution

The gamma distribution is used to model right-skewed continuous data.

The r.v. X is gamma distributed, if it has pdf

$$f(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$$

for x > 0 where α and β are parameters, and $\Gamma(\alpha)$ is the **gamma function**. (Note: Sometimes the distribution is described in terms of k and θ instead of α and β . In this setup $k = \alpha$ and $\theta = \frac{1}{\beta}$.)

If X is gamma distributed we write $X \sim \text{gamma}(\alpha, \beta)$.

The gamma function $\Gamma(\alpha)$ is defined as

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \ dx$$

Rules:

- If $X \sim \text{gamma}(\alpha, \beta)$, then $E(X) = \alpha\beta$ and $V(X) = \alpha\beta^2$.
- $\Gamma(\alpha) = (\alpha 1) \cdot \Gamma(\alpha 1)$
- $\Gamma(1) = 1$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- $\Gamma(n) = (n-1)!$ for positive integers n

Example 1: Say that the time it takes to write a stat midterm is gamma distributed with $\alpha = 2$ and $\beta = 20$. What is the probability that a random student writing the midterm will finish in under 47 minutes?

1

The r.v. X follows the **exponential distribution** with parameter λ ($\lambda > 0$) if the pdf is

$$f(x) = \lambda e^{-\lambda x}$$

and here $x \geq 0$.

We can find E(X) by calculating $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \ dx = \int_{0}^{\infty} x \lambda e^{-\lambda x} \ dx \neq \frac{1}{\lambda}$.

We can find V(X) by calculating $V(X) = E(X^2) - [E(X)]^2$ = $\int_0^\infty x^2 \lambda e^{-\lambda x} dx - \left(\frac{1}{\lambda}\right)^2 \neq \frac{1}{\lambda^2}$.

(This is found by doing integration by parts twice.)

So for the exponential distribution we have

$$E(X) = \mu = \frac{1}{\lambda}$$
 and $V(X) = \sigma^2 = \frac{1}{\lambda^2}$

We can find the cdf F(x) for the exponential distribution by:

$$F(y) = \int_{0}^{\infty} f(y) \, dy$$

$$= \int_{0}^{\infty} \lambda e^{-\lambda y} \, dy$$

$$= -e^{-\lambda y} \Big|_{0}^{\infty}$$

$$= -e^{-\lambda x} + 1$$

Note: The exponential distribution is a special case of the gamma distribution where $\alpha = 1$ and $\beta = \frac{1}{\lambda}$.

Example 2: Suppose the length of a customer service call in a call center (measured in minutes) is an exponential random variable with parameter $\lambda = \frac{1}{10}$. Suppose a worker just answered a call. What is the probability this call will last more than 10 minutes?

$$P(X>10) = 1 - P(X \le 10) \qquad f(10) = \frac{1}{10} e^{-\frac{1}{10}(10)}$$

$$= 1 - 0.3679 \qquad = 0.3679$$

What is the probability this call will last between 10 and 20 minutes?

$$P(10 \le X \le 20) = P(X \le 20) - P(X \le 10)$$

= $e^{-1} - e^{-2}$
= 0.2325

A summary of three types of similar sounding random variables:

- A binomial random variable X counts the number of successes in a fixed number of trials n.
- \bullet A Poisson random variable X counts the number of successes in an interval of time/length/space/etc.
- An exponential random variable X counts the **amount of time between** successes in the Poisson process.

The exponential distribution is related to the Poisson distribution.

Rule: If X is a Poisson random variable with parameter λt (where λ is the average number of events in one unit of time, and t is the number of units of time in the interval of interest), then the distribution of time between occurrences of two events is exponential with parameter λ .

In other words: The λ that we use in the Poisson distribution setup for one unit of time is equal to the λ we use in the exponential distribution setup.

Example 3: Suppose the number of students that email Michelle each day is a Poisson random variable where on average she receives 3 emails per day. If Michelle just received an email, what is the probability that she will wait more than 1 day until the next email?

Recall:

- For a Poisson random variable X, $E(X) = \mu = \lambda$ and $V(X) = \sigma^2 = \lambda$.
- For an exponential random variable X, $E(X) = \mu = \frac{1}{\lambda}$ and $V(X) = \sigma^2 = \frac{1}{\lambda^2}$.

The exponential distribution has the **memoryless property**, that $P(X \ge a+b \mid X \ge a) = P(X \ge b)$. That is, if we know that an amount of time a has already passed and we want to see the probability that the next success takes a total amount of time at least a+b, this is the same as saying after time a has passed, call that marker as time 0 then count the probability of at least a time of b from there.

We can see this by the calculation:

Note: The memoryless property is not the same thing as saying the events " $X \ge a + b$ " and " $X \ge b$ " are independent. If the events were independent we would have $P(X \ge a + b \mid X \ge a) = P(X \ge a + b)$.