Lecture 28: MOSFET as an Amplifier. Small-Signal Equivalent Circuit Models.

As with the BJT, we can use MOSFETs as AC small-signal amplifiers. An example is the so-called conceptual MOSFET amplifier shown in Fig. 4.34:

This is only a "conceptual" amplifier for two primary reasons:

- 1. The bias with V_{GS} is impractical. (Will consider others later.)
- 2. In ICs, resistors take up too much room. (Would use another triode-region biased MOSFET in lieu of R_D .)

To operate as a small-signal amplifier, we bias the MOSFET in the saturation region. For the analysis of the DC operating point, we set $v_{gs} = 0$ so that from (4.22) with $\lambda = 0$

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2$$
 (4.20),(1)

From the circuit

$$V_{DS} = V_{DD} - I_D R_D (4.55),(2)$$

For operation in the saturation region

$$v_{GD} \le V_t \implies v_{GS} - v_{DS} \le V_t$$

$$v_{DS} \ge v_{GS} - V_t \tag{4.18},(3)$$

or

where the total drain-to-source voltage is

$$v_{DS} = \underbrace{V_{DS}}_{\text{bias}} + \underbrace{v_{ds}}_{\text{AC}}$$

Similar to what we saw with BJT amplifiers, we need make sure that (3) is satisfied for the entire signal swing of v_{ds} .

With an AC signal applied at the gate

$$v_{GS} = V_{GS} + v_{gs} (4.56),(4)$$

Substituting (4) into (4.20)

$$i_{D} = \frac{1}{2} k_{n}' \frac{W}{L} \left(V_{GS} + v_{gs} - V_{t} \right)^{2} = \frac{1}{2} k_{n}' \frac{W}{L} \left[\left(V_{GS} - V_{t} \right) + v_{gs} \right]^{2}$$
 (5)

$$= \frac{1}{2} k_n' \frac{W}{L} (V_{GS} - V_t)^2 + \frac{2}{2} k_n' \frac{W}{L} (V_{GS} - V_t) v_{gs} + \frac{1}{2} k_n' \frac{W}{L} v_{gs}^2$$
(4.57),(6)
= I_D (DC) (time varying)

The last term in (6) is nonlinear in v_{gs} , which is undesirable for a linear amplifier. Consequently, for linear operation we will require that the last term be "small":

$$\frac{1}{2}k_{n}'\frac{W}{L}v_{gs}^{2} << k_{n}'\frac{W}{L}(V_{GS} - V_{t})v_{gs}
v_{gs} << 2(V_{GS} - V_{t})$$
(4.58),(7)

or

If this small-signal condition (7) is satisfied, then from (4.57) the total drain current is approximately the linear summation

$$i_D \approx I_D + i_d$$
 (4.60),(8)

where

$$i_d = k_n' \frac{W}{L} (V_{GS} - V_t) v_{gs}. \tag{9}$$

From this expression (9) we see that the AC drain current i_d is related to v_{gs} by the so-called transistor transconductance, g_m :

$$g_m \equiv \frac{i_d}{v_{gs}} = k_n' \frac{W}{L} (V_{GS} - V_t) [S]$$
 (4.61),(10)

which is sometimes expressed in terms of the overdrive voltage $V_{OV} \equiv V_{GS} - V_t$

$$g_m = k_n' \frac{W}{L} V_{OV}$$
 [S] (4.62),(11)

Because of the V_{GS} term in (10) and (11), this g_m depends on the bias, which is just like a BJT.

Physically, this transconductance g_m equals the slope of the i_D - v_{GS} characteristic curve at the Q point:

$$g_m \equiv \frac{\partial i_D}{\partial v_{GS}} \bigg|_{v_{GS} = V_{GS}}$$
 (4.63),(12)

(Fig. 4.35)

Lastly, it can be easily show that for this conceptual amplifier in Fig. 4.34,

$$\frac{v_d}{v_{gs}} = -g_m R_D \tag{4.65}, (13)$$

Consequently, $A_{\nu} \propto g_{m}$, which is the same result we found for a similar BJT conceptual amplifier [see (5.103)].

MOSFET Small-Signal Equivalent Models

For circuit analysis, it is convenient to use equivalent small-signal models for MOSFETs – as it was with BJTs.

In the saturation mode, the MOSFET acts as a voltage controlled current source. The control voltage is v_{gs} and the output current is i_D , which gives rise to this small-signal π model:

(Fig. 4.37b)

Things to note from this small-signal model include:

- 1. $i_g = 0$ and $v_{gs} \neq 0 \implies$ infinite input impedance.
- 2. r_o models the finite output resistance. Practically speaking, it will range from $\approx 10 \text{ k}\Omega \rightarrow 1 \text{ M}\Omega$. Note that it depends on the bias current I_D .
- 3. From (10) we found

$$g_m = k_n' \frac{W}{L} (V_{GS} - V_t) \tag{14}$$

Alternatively, it can be shown that

$$g_m = \frac{I_D}{V_{eff}} = \frac{I_D}{(V_{GS} - V_t)/2}$$
 (4.71),(15)

which is similar to $g_m = I_C/V_T$ for BJTs.

One big difference from BJTs is $V_T \approx 25$ mV while $V_{eff} = 0.1$ V or greater. Hence, for the same bias current g_m is much larger for BJTs than for MOSFETs.

(Fig. 4.40a)

Notice the direct connection between the gate and both the dependent current source and $1/g_m$. While this model is correct, we've **added the explicit boundary condition that** $i_g = 0$ to this small-signal model.

It isn't necessary to do this because the currents in the two vertical branches are both equal to $g_m v_{gs}$, which means $i_g = 0$. But adding this condition $i_g = 0$ to the small-signal model in Fig. 4.40a makes this explicit in the circuit calculations. (The T model usually shows this direct connection while the π model usually doesn't.)

MOSFETs have many advantages over BJTs including:

- 1. High input resistance
- 2. Small physical size
- 3. Low power dissipation

4. Relative ease of fabrication.

One can combine advantages of both technologies (BJT and MOSFET) into what are called BiCMOS amplifiers:

Such a combination provides a very large input resistance from the MOSFET and a large output impedance from the BJT.