Mineração de Dados

Classificação

Sumário

- Processo de Classificação
- Vizinhos mais Próximos
- Método dos Mínimos Quadrados
- Regressão Logística
- Naïve Bayes
- 6 Árvores de Decisão
 - Indução de Árvores de Decisão

Processo de Classificação

Construção do Modelo

Utilização do Modelo

Vizinhos mais Próximos

- ► Similar ao *k*NN para regressão
- Neste caso, a classe é inferida por meio de uma votação entre os vizinhos mais próximos
- Pode-se usar ponderação
 - Inverso da distância, por exemplo

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

If

kNN: Classificação com k=5

Método dos Mínimos Quadrados

- O mesmo método pode ser usado para classificação
- O modelo gera uma superfície de separação

A hyperplane in R2 is a line

A hyperplane in R3 is a plane

A hyperplane in Rn is an n-1 dimensional subspace

Método dos Mínimos Quadrados: Python

- Arquivo dos dados de entrada: class_1_tr_X.dat
- Arquivo dos valores esperados: class_1_tr_Y.dat

·	
x1,x2	У
4.15252672368477,2.30191850430311	-1
1.37166852444448,1.67089522310923	-1
1.62651299618563,0.320022670251675	-1
1.90556026445907,-1.65342465419423	-1
2.11557633795811,-0.795657656851138	-1
•••	
1.42725086615869,2.51795284362126	1
5.80426651901857,1.41610146547005	1
5.2727032012369,-0.544831984744078	1
3.30064702289753.2.65651491151454	1

If Jf

Método dos Mínimos Quadrados: Python

Acrescentando os pontos que seguem nos arquivos de dados

x1,x2			
2.5,49			
2.6,48			
2.4,47			
2.8,48.5			
2.4,47.5			

$$g(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{c}^\mathsf{T}\mathbf{x}}}$$

- ▶ $g(\mathbf{x})$ pode ser interpretada como a probabilidade de x estar associado a um valor esperado 1 (P(Y=1|X))
- Função logística inversa: $\ln\left(\frac{g(\mathbf{x})}{1-g(\mathbf{x})}\right) = \mathbf{c}^\mathsf{T}\mathbf{x}$

Para ajustar o modelo logístico, usa-se a verossimilhança dada por

$$L(\mathbf{c}) = \prod_{i=1}^{n} g(\mathbf{x}_i)^{y_i} (1 - g(\mathbf{x}_i))^{1 - y_i}; \quad y_i \in \{0, 1\}$$

 Para facilitar o cálculo de derivadas parciais, normalmente adota-se o ln desta função

$$l(\mathbf{c}) = \sum_{i=1}^{n} y_i \ln(g(\mathbf{x}_i)) + (1 - y_i) \ln(1 - g(\mathbf{x}_i))$$

- lacktriangle A função custo (a ser minimizada) passa a ser $J({f c})=-l({f c})$
- O problema de otimização envolve montar um sistema de equações
- ightharpoonup O sistema é formado pelas derivadas parciais de $l(\mathbf{c})$
- O cálculo dos coeficientes do modelo pode ser feito via Gradiente Descendente (Estocástico)

Método dos Gradientes

$$\mathbf{c} = \mathbf{c} + \eta \Delta J$$

▶ Onde

$$a_{j} = \mathbf{c}^{\mathsf{T}} \mathbf{x}_{j}$$

$$J(\mathbf{c}) = -l(\mathbf{c})$$

$$\frac{\partial J}{\partial c_{i}} = \sum_{j=0}^{N} \frac{\partial J}{\partial g(\mathbf{x}_{j})} \frac{\partial g(\mathbf{x}_{j})}{\partial a_{j}} \frac{\partial a_{j}}{\partial c_{i}}$$

$$\frac{\partial J}{\partial g(\mathbf{x}_{j})} = -y_{j} \frac{1}{g(\mathbf{x}_{j})} - (1 - y_{j}) \frac{1}{1 - g(\mathbf{x}_{j})}$$

$$\frac{\partial g(\mathbf{x}_{j})}{\partial a_{j}} = g(\mathbf{x}_{j})(1 - g(\mathbf{x}_{j}))$$

$$\frac{\partial a_{j}}{\partial c_{i}} = x_{ji}$$

Regressão Logística: Python

- Arquivo dos dados de entrada: class_1_tr_X.dat
- Arquivo dos valores esperados: class_1_tr_Y.dat

·	
x1,x2	У
4.15252672368477,2.30191850430311	0
1.37166852444448,1.67089522310923	0
1.62651299618563,0.320022670251675	0
1.90556026445907,-1.65342465419423	0
2.11557633795811,-0.795657656851138	0
•••	
1.42725086615869,2.51795284362126	1
5.80426651901857,1.41610146547005	1
5.2727032012369,-0.544831984744078	1
3.30064702289753.2.65651491151454	1

Regressão Logística: Python

Regressão Logística: com dados discrepantes

Regressão Logística: com dados discrepantes

Regressão Logística: Interpretação do Modelo

Considerando o caso unidimensional, a razão de chance (OR) ao tomar dois valores distintos x_i e x_{i+1} é

$$OR = \frac{g(x_{i+1})}{g(x_i)} = \frac{e^{c_0 + c_1 x_{i+1}}}{e^{c_0 + c_1 x_i}} = e^{c_1(x_{i+1} - x_i)}$$

- Fazendo $x_{i+1} x_i = 1$, então $OR = e^{c_1}$
- ► Pode-se interpretar que

$$OR > 1 \Rightarrow g(x_{i+1}) > g(x_i)$$

e que

$$OR < 1 \Rightarrow g(x_{i+1}) < g(x_i)$$

 Quanto maior o valor do coeficiente (em módulo), maior a importância do atributo para o modelo

ufjf

Regressão Logística: Interpretação do Modelo

- Adaptado do exemplo apresentado em http://www.estatisticacomr.uff.br/?p=598
- ightharpoonup n=30 instâncias
- Variável dependente: autoavaliação de saúde (0=não boa, 1=boa)
- idade variando de 20 a 95 anos
- ▶ renda familiar per capita (1=Mais de 3 s.m, 0= Até 3 s.m=base)

Naïve Bayes

Naïve Bayes

- Classificador estatístico
 - realiza predições probabilísticas
- Fundamento
 - Baseado no Teorema de Bayes
- Desempenho
 - Um classificador Naïve Bayes tem desempenho comparável com árvores de decisão e redes neuronais
- Incremental
 - Cada exemplo de treinamento pode afetar incrementalmente a probabilidade da hipótese ser correta

Naïve Bayes: Teorema de Bayes

▶ Seja D os dados de treinamento, dada uma tupla X, e a probabilidade à posteriori P(H|X) da hipótese H, então o teorema de Bayes é dado por

$$P(H|X) = \frac{P(X|H)P(H)}{P(X)}$$

Observa-se que

$$P(H|X)P(X) = P(H \cap X) = P(X \cap H) = P(X|H)P(H)$$

► Informalmente, pode-se dizer que

$$\dot{a} posteriori = \frac{\text{verossimilhança} \times \dot{a} priori}{\text{evidência}}$$

▶ Dificuldade prática: requer o conhecimento inicial de muitas probabilidades, o que pode resultar em um alto custo computacional

Naïve Bayes: Teorema de Bayes

- ▶ Teorema de Bayes: $P(H|X) = \frac{P(X|H)P(H)}{P(X)}$
 - ▶ X é uma amostra (evidência): classe desconhecida
 - H é a hipótese de que X pertence à classe C
 - A classificação envolve a determinação de P(H|X): a probabilidade de que a hipótese é atendida dada a amostra X
 - ightharpoonup P(H) é a probabilidade à priori
 - ightharpoonup P(H) indica, por exemplo, a probabilidade de X comprar um computador independente da idade, renda, etc
 - ightharpoonup P(X) é a probabilidade da observação da amostra
 - ightharpoonup P(X|H) é a verossimilhança: probabilidade de observar X dado que a hipótese ocorra
 - Por exemplo, dado que X irá comprar um computador, P(X|H) indica a probabilidade de X ter idade entre 31 e 40, possuir uma renda média, etc
- Indica-se que X pertence à classe C_i se e somente se a probabilidade $P(C_i|X)$ é a mais alta entre todas as probabilidades $P(C_k|X)$, para todas as k classes

Naïve Bayes

- Seja D o conjunto de instâncias de treinamento contendo os valores esperados de suas classes
- lacktriangle Cada instância é representada por um vetor X de dimensão n
- lacktriangle Supondo que existam m classes, ou seja, C_1,\ldots,C_m
- A classificação é feita determinando a máximo probabilidade à posteriori, ou seja, identificando C_i que gera o máximo valor de $P(C_i|X)$
- Isso pode ser derivado do Teorema de Bayes
- ▶ Observa-se que P(X) é constante para todas as classes, logo apenas $P(X|C_i)P(C_i)$ precisa ser maximizado

Classificador Naïve Bayes

Assume-se que os dados são condicionalmente independentes

$$P(X|C_i) = \prod_{k=1}^{n} P(x_k|C_i)$$

- Precisa-se apenas "contar" as ocorrências das classes
- Se A_k é categórico, $P(x_k|C_i)$ é o número de tuplas em C_i que tem o valor x_k para o atributo A_k dividido por $|C_{i,D}|$
 - $ightharpoonup |C_{i,D}|$ é o número de tuplas de C_i em D
- Se A_k é contínuo, $P(x_k|C_i)$ é normalmente computado baseado numa distribuição Gaussiana com média μ e desvio padrão σ

$$g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$P(x_k|C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Exemplo

Class:

C1:buys_computer = 'yes' C2:buys_computer = 'no'

Data to be classified: X = (age <=30, Income = medium, Student = yes Credit_rating = Fair)

age	income	student	<mark>redit rating</mark>	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Exemplo

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- Compute P(X | C_i) for each class

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys computer = "no") = 2/5 = 0.4

P(student = "yes" | buys computer = "yes) = 6/9 = 0.667

P(student - yes | buys_computer - yes) - 0/7 - 0.007

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

 $P(X|C_i)$: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044$

 $P(X | buys_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

 $P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys computer = yes")

Problema

- Naïve Bayes requer que todas as probabilidades condicionais sejam diferentes de zero
 - ightharpoonup Caso contrário, $P(X|C_i)=0$
- Por exemplo, haveria um problema se num banco de dados com 1000 tuplas a informação de "income" tiver
 - ► 0 low
 - 990 medium
 - ▶ 10 high
- Para contornar essa situação, pode-se adotar a correção de Laplace
 - Soma-se 1 em cada caso

- Estrutura em forma de árvore
- Cada nó interno corresponde a um teste envolvendo atributos
 - Normalmente, um atributo é considerado por nó
- Os nós folhas representam classes ou distribuições de classes
- Os caminhos da raiz até as folhas correspondem às regras de classificação
- Vantagens
 - Concisa
 - Fácil de visualizar
 - Interpretável
 - Trata tipos diferentes e multidimensionais de dados
 - Fornece modelos com boa acurácia

Exemplo: compram computador

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- ▶ Uma vez construída a árvore, ela pode ser usada como classificador
 - Testar os valores dos atributos da nova instância nos nós da árvore até atingir um nó folha

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	, no

Algoritmo Básico

- ► Algoritmo básico para a indução de árvores de decisão
 - Algoritmo guloso
 - A árvore é criada recursivamente de cima para baixo (top-down) por divisão e conquista
 - Inicialmente todos os dados de treinamento estão na raiz
 - Neste algoritmo básico, todos os dados são considerados categóricos
 valores contínuos devem ser discretizados
 - As instâncias são particionadas recursivamente com base num dos atributos
 - ► A seleção do atributo é feita por uma heurística ou medida estatística ► por exemplo, ganho de informação
- Critérios de Parada
 - Todos os dados num certo nó pertencem a uma única classe
 - Não há mais atributos para particionar os dados
 - Não há mais instâncias num ramo da árvore

Partição dos Dados

Jfjf

Seleção de Atributo

- É necessário definir uma medida para ser usada no critério de separação dos dados
- Idealmente, deseja-se particionar os dados de modo que os subconjuntos sejam puros
 - todas as instâncias pertencem à mesma classe
- Em alguns casos, pode ser necessário definir também o ponto de separação
 - valor do atributo contínuo
 - estrutura da árvore fica limitada ao caso binário
- Três alternativas populares
 - ► Ganho de informação: ID3
 - ► Razão de ganho: C4.5
 - ► Índice Gini: CART

Entropia: Breve Introdução

- ▶ Teoria da Informação
- Mede a incerteza relacionada a uma variável aleatória
- lacktriangle Para uma variável aleatória discreta Y e m valores $\{y_1,\ldots,y_m\}$

$$H(Y) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
, onde $p_i = P(Y = y_i)$

- Interpretação
 - ► Valores grandes: alta incerteza
 - ► Valores pequenos: baixa incerteza
- Para m=2:

- Diversas medidas podem ser adotadas para selecionar atributos
- Muitas vezes os atributos com maior ganho de informação são selecionados
 - ▶ Medida adotada no ID3 e C4.5

- ▶ Seja p_i a probabilidade de uma tupla arbitrária de D pertencer à classe C_i , ou seja, $p_i = \frac{|C_{i,D}|}{|D|}$
- \blacktriangleright Estimativa da quantidade de informação necessária para classificar uma tupla em D

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

- Quanto maior a impuridade dos dados, mais informação é necessária para a classificação
- ► Info(D) também é chamado de entropia

If Jf

- lacktriangle Deseja-se agora separar as instâncias em D levando-se em consideração algum atributo A que possui v valores distintos
- Neste ponto, os tipos dos dados são considerados
 definições para as partições
- As partições devem ser as mais puras possíveis
- idealmente puras
- Quanta informação ainda é necessária para ter uma classificação exata (após a separação dos dados em relação a A)?

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} Info(D_j)$$

- $lackbox{O}$ termo $rac{|D_j|}{|D|}$ opera como uma ponderação
- Menor quantidade de informação ainda necessária para particionar os dados ⇒ maior a pureza do subconjunto

If Jf

Ganho de Informação

Sendo

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
$$Info_A(D) = \sum_{i=1}^{v} \frac{|D_j|}{|D|} Info(D_j)$$

ightharpoonup O ganho de informação ao ramificar os dados utilizando o atributo A é então definido como

$$Gain(A) = Info(D) - Info_A(D)$$

- ightharpoonup Gain(A) indica o quanto se ganha ao particionar os dados usando o atributo A
- O atributo que maximiza o ganho de informação é escolhido para gerar o nó e seus valores representam as arestas para os nós do próximo nível

Jfjf

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$$

age	pi	ni	l(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$+ \frac{5}{14}I(3,2) = 0.694$$

means "age <=30" has 5 out of
$$\frac{5}{14}I(\frac{2}{3})$$
 means "age <=30" has 5 out of $\frac{5}{14}I(\frac{2}{3})$ samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

middle_aged senio)1

income	student	credit_rating	class
high	no	fair	no
high	no	excellent	no
medium	no	fair	no
low	yes	fair	yes
medium	yes	excellent	yes

income	student	credit_rating	class
medium low low medium medium	no yes yes yes no	fair fair excellent fair excellent	yes yes no yes no

income	student	credit_rating	class
high low medium	no yes no	fair excellent excellent	yes yes yes
high	yes	fair	yes

C4.5: Ganho de Informação em Atributos Contínuos

- ► Seja A um atributo com valores contínuos
 - lacktriangle Deve-se definir pontos de separação dos dados considerando A
 - Ordena-se os dados em relação a A
 - ▶ Identifica-se as instâncias adjacentes com mesma classificação
 - O ponto de separação entre os grupos pode ser o ponto médio entre os valores que limitam os grupos

Temperature	40	48	60	72	80	90
PlayTennis	No	No	Yes	Yes	Yes	No
		,	.		,	

- Separações
 - ▶ D1 é o conjunto de tuplas de D em que $A \leq$ ponto de separação, e D2 são aquelas em que A > ponto de separação
 - ► No exemplo, há 2 atributos lógicos
 - ► Temperature_{>54} e Temperature_{>85}
 - o melhor será aquele com maior ganho de informação

C4.5: Razão de Ganho

- ▶ O ganho de informação (adotado diretamente no IDE3) gera um viés para atributos com uma grande quantidade de valores
 - Por exemplo, ID geraria uma quebra em MUITOS conjuntos puros $(Info_{ID}(D)=0)$
- O C4.5 utiliza uma normalização do ganho de informação

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo_A(D)}$$

onde

$$SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \log_2 \left(\frac{|D_j|}{|D|}\right)$$

- lacktriangle Esse valor representa o potencial da informação gerada ao separar os dados de treinamento D em v partições
 - Possíveis valores do atributo A

If Jf

C4.5: Razão de Ganho

- $lackbox{O }SplitInfo_A(D)$ representa a entropia do atributo A sobre o conjunto D
- Pode levar à escolha de um atributo apenas por $SplitInfo_A(D)$ ser pequeno
- A razão torna-se instável à medida que $SplitInfo_A(D)$ se aproxima de zero
- ightharpoonup Solução: o método é aplicado aos casos em que Gain(A) assume valores acima da média
- ▶ O atributo com maior GainRatio(A) é selecionado

C4.5: Razão de Ganho

Exemplo:

$$\textit{SplitInfo}_{income}(D) \ = \ -\frac{4}{14} \times \log_2\!\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2\!\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2\!\left(\frac{4}{14}\right) = 1.557$$

resulta em GainRatio(income) = 0.029/1.557 = 0.019

RID	age	income	student	$credit_rating$	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent 🖡	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

fjf

Gini Index

ightharpoonup Dado um conjunto de dados D que contém exemplos de m classes, então o Índice Gini pode ser definido como

$$gini(D) = 1 - \sum_{j=1}^{m} p_j^2$$

onde p_j é a frequência relativa da classe j em D

- lacktriangle O Índice Gini mede a impuridade de D
- lacktriangle Ao dividir o conjunto D usando A em dois conjuntos D_1 e D_2 , então

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

A redução em impuridade:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

lackbox O atributo e conjuntos com menor valor de $gini_A(D)$ (maior redução de impuridade) é escolhido como ponto de separação

Computando o Índice Gini

Por exemplo, D tem 9 instâncias com buys-computer = ''yes'' e 5 com ''no''

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

ightharpoonup Supondo que o atributo income particione D em 10 instâncias em D_1 e 4 em D_2 da seguinte forma

$$gini_{income \in \{low, medium\}}(D) = \frac{10}{14}gini(D_1) + \frac{4}{14}gini(D_2) = 0.443$$

Além disso,

$$gini_{income \in \{low, high\}}(D) = 0.458$$

 $gini_{income \in \{medium, high\}}(D) = 0.450$

lacktriangle Assim, os dados devem ser divididos em $\{low, medium\}$ e $\{high\}$

Comparação

- Em geral, as três medidas obtém bons resultados
 - Ganho de informação
 - viés na direção de atributos com muitos valores
 - Razão de ganho
 - tende a preferir separações desbalanceadas, na qual uma partição é muito menor do que outras
 - Índice Gini
 - viés na direção de atributos com muitos valores
 - dificuldade em situações onde há muitas classes
 - tende a equilibrar o tamanho das partições

Poda da Árvore

- Uma árvore induzida pode superajustar os dados
 - Muitos ramos podem refletir anomalias nos ruídos e outliers
 - Acurácia ruim em novos dados

Poda da Árvore

- Duas alternativas para evitar superajuste dos dados
- Pré-poda
 - Limita a construção da árvore antes: não divide um nó com base num limiar de qualidade
 - Difícil de escolher um parâmetro adequado
- Pós-poda
 - Remove ramificações de árvores completamente geradas
 - Pode ser feito usando os dados de treinamento (relação entre o número de folhas e erro da árvore)
 - Pode-se usar um conjunto de dados diferente dos dados de treinamento para indicar a qualidade da poda

Jfjf.

Árvores de Decisão: Características

- Permite atributos contínuos
 - Define novas discretizações dinamicamente com base nos valores dos atributos contínuos e nas classes
- Tratamento de dados faltantes
 - Novo valor
 - Atribuir o valor mais comum
 - Atribuir uma probabilidade para os possíveis valores

Árvores de Decisão – Repetição

Jfjf

Árvores de Decisão - Replicação

- ▶ A classe DecisionTreeClassifier implementa algoritmos para geração de Árvores de Decisão
- A escolha dos atributos pode ser feita via índice Gini (padrão) ou entropia
- Existem diversos parâmetros para gerar a árvore com restrições de poda: profundidade máxima, menor quantidade de instância para gerar separação de dados, etc
- Há gerador de gráfico dos modelos

