NANTICOKE WATER CHEMISTRY

1977

The Honourable Harry C. Parrott, D.D.S., Minister

Graham W. S. Scott, Deputy Minister Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

NANTICOKE WATER CHEMISTRY

1977

Prepared by
J. Polak, Ph.D.
Lakes Systems Unit
Water Modelling Section
Water Resources Branch
Ministry of the Environment
December, 1978

SUMMARY

The water quality monitoring, which was started at Nanticoke in 1969, was continued in 1977. Measured parameters did not differ much from those reported for the previous years. The area was still spatially homogeneous and showed temporal variations. Tests of long-term trends (1969-1977) were expanded and included comparison with several offshore stations in Lake Erie. Nearshore and offshore concentrations for turbidity, chloride and ammonia decreased slightly while the sum of nitrates and nitrites increased. Several declines in the nearshore values of secchi disc depths, chlorophyll a, conductivity, dissolved P and Kjeldahl N were determined. Nearshore concentrations of total N and total P did not change significantly, but offshore concentrations of total P declined and total N increased. Generally the changes are small and their absolute values tend to decrease with increasing length of the record.

INTRODUCTION

The continuity of the sampling program is an important feature of the Nanticoke project. With nine years of an uninterrupted sampling, changes can be detected and the long-term trends can be analyzed with more confidence. The large data base also ensures that any future changes in the area which can be attributed to the direct or indirect influence of the nearshore industrialization will be detected.

SURVEY OPERATION

The same 10 sampling stations as used in previous years were sampled eight times in 1977. The sampling station locations are shown in Figure 1. Water samples at stations 112, 501, 648, 810, 994, 1016 and 1041 were collected at 1 m below surface and 1 m off the bottom. Stations 518, 1040 and 1042 were sampled at mid-depth. As before, most of the analyses for the 20 water quality parameters monitored were done in the Ministry of Environment's Laboratory in Toronto. Temperature and dissolved oxygen were measured in situ.

ANALYSIS OF DATA

The individual results of the surveys are listed in Appendix I, Tables 1-20. The data for the individual sampling dates and individual stations are listed, together with the means and standard deviations for the stations and for the dates. The overall mean values are summarized in Tables 1 and 2. Most of the standard deviations for the station means are larger than the standard deviations for the date means, suggesting that there is more variation between the individual sampling dates than there is between stations on a given date. This statement can be rigorously tested by an analysis of variance. The results of a two way analysis of variance are shown in Table 3. The between date differences are significant for the majority of parameters. The only noted exceptions are for the bottom samples of total P,

filtered reactive P, total Kjeldahl N and phenol concentrations. The lack of temporal differences for the bottom samples can be attributed to the relative insulation of the bottom waters. Phenol data (Appendix 1, Table 20) are not typical as the most common value given (0.1 ug/L) is actually the instrument detection limit. The significance of the between-date differences confirms what had been found in the previous years; that is, that the water chemistry parameters change significantly throughout the season.

The between station differences as given in Table 3 show are generally not significant with the single exception of secchi disc depth. In this case, the deeper stations (112, 501, 648) show larger secchi disc depths than inshore stations. Overall, the previous years findings were confirmed and the area is spatially homogeneous.

It had been noted in the previous years that some of the water quality parameters measured in the area were changing. These changes are very small but could be significant in the long run. As the main objective of the Nanticoke project is to determine the influence of the industrialization of the area on the complete ecosystem, this point is important. Other significant questions are whether or not the changes are harmful or beneficial, (as for example, decrease of conductivity shown in previous year's reports) and what are their causes. To study the effect and of changes in Lake Erie chemistry in general on the nearshore waters, changes in the water quality parameters in the main body of Lake Erie were analyzed as well.

Data obtained by the Canada Centre for Inland Waters (CCIW) on annual cruises of Lake Erie were provided for the Lake Erie area adjacent to the Nanticoke project station locations. The area was limited by latitudes 42° 40' 00" and 42° 55' 00" N and longitudes 79° 55' 00" to 80° 15' 00" W. Data for each parameter collected in this area on each date were averaged to get the value for the date. This new data set was then used to perform

a trend analysis similar to that carried out for the Nanticoke area. The details of the program used in the trend analysis were given in the 1976 Nanticoke Water Chemistry report.

Results of the trend analysis of local and offshore data are shown in Table 4 and Figure 2. The results for the regular Nanticoke data stations (Figure 1) are marked as local; the CCIW data are marked as offshore. The differences between the two areas are most evident from Figure 2. In this figure the full circles denote the average change in percent of the average value for 1969-1977 per year for local stations, with full lines denoting their 95% confidence limits. Similarly the open circles and broken lines are average changes and limits of the offshore stations.

During these nine years the dissolved oxygen changed very little in both areas and considering the limits no significant changes have happened. The average dissolved oxygen level is at 98.4 percent saturation which means that there is no dissolved oxygen problem anywhere in the area. During the same time period, the secchi disc depth decreased significantly in the nearshore zone by an average of about 5.7% per year. On the other hand, the secchi disc depth of the offshore waters did not change significantly. It is interesting to note that at the same time the average turbidity of the nearshore waters declined. Of course, the variation of measured turbidities is rather high.

The change in the measured phytoplankton crop at the nearshore locations (Figure 2) is not significantly different from zero. There is a wide discrepancy between chlorophyll <u>a</u> data at the nearshore and offshore areas. The nearshore area concentrations averaged 2.43 ug/L while the offshore was higher at 3.64 ug/L. Local chlorophyll <u>a</u> data indicate decreasing trend while the offshore values have been varying widely, with changes in a range frokm about -9.7 to + 17% per year. Some of these differences can be attributed to the fact that offshore chlorophyll <u>a</u> data are limited to the years 1969 to 1976 with no data available for 1974.

Annual changes in conductivity were similar in the nearshore and offshore stations with an average decline for both areas of 1.0% per year. No significance can be attached to the decline of the offshore conductivity because of the large variation in the offshore values (see Figure 2). Interestingly, the offshore values averaged 314.1 uS/cm while the nearshore data averaged 311.6 uS/cm. Whether this difference is real or is just a result of different standards and calibration practices is not known. Also interesting is that the nearshore decline from 1969 to 1976, as reported in the 1976 Nanticoke Water Chemistry report was, 1.2% per year, which is higher than the 1.06% per year reported for the nearshore data in this report. It can be seen that the longer data record changed the calculated trend to some degree. Average conductivity values for the nearshore stations are given below for each year from 1969 to 1977.

Year	1969	1970	1971	1972	1973	1974	1975	1976	1977
A	225 6	222 0	211 0	322 6	313 0	308.2	299.0	300.9	301.7
Average Conductivity	325.0	322.0	311.9	322.0	313.0	500.2	2,,,.0	500.5	30
uS/cm									

It appears that the decrease in conductivity from 1969 to 1975 has slowed in recent years and that actually there is a small increase in conductivity from 1975 to 1977. Further data should clarify this trend.

It is also interesting to note that the chloride concentrations have decreased in both the nearshore and offshore zones. Their decrease, which averaged about 3.6% per year, is larger than the change in conductivity, suggesting that the long term decline in conductivity can be attributed at least partially to the decline in chloride concentrations.

Yearly change in the total phosphorus in the nearshore zone does not differ significantly from zero (Figure 2, Table 4). In contrast to this, the total P concentrations in the offshore zone declined by 14.8 percent per year on the average. This can be at least partially explained by unusually high offshore values of total P determined in 1970 and 1971 cruises with only limited numbers of samples collected at that time. Also, perhaps due to these few samples, the offshore levels averaged 0.024 mg P/L while the nearshore data averaged only 0.017 mg P/L. Somewhat different results were found for concentrations of dissolved (filtered reactive) phosphorus in the nearshore zone, which declined over the years by 8.4 percent per year. The offshore trend of dissolved P cannot be determined as only data for 1970 and 1971 are available.

Somewhat different changes were found for nitrogen. The change in total nitrogen (total filtered N) of the nearshore zone is not significantly different from zero. At the same time, the concentrations of total N increased in the offshore zone. However, the analysis for the offshore area is not very reliable because the number of samples is limited, and there are no data available for 1969, 1974, 1976 and 1977. Total Kjeldahl N, determined only in the nearshore area, has declined. There has been a considerable increase of nearly 11 percent per year in the concentrations of nitrate and nitrite in both near and offshore zones. Increases in NO₃ plus NO₂ were compensated by a decrease in the concentration of ammonia in both zones at the same time.

Overall, some changes in the water chemistry in the area have been detected and quantified but still more work is required to increase the confidence of these findings and to find the reasons for these changes.

CONCLUSIONS

The 1977 data are generally similar to data collected in 1976. Significant long term trends have been detected for nearshore and offshore turbidity, chloride, the sum of nitrate and nitrite, and ammonia. Significant changes were also found for nearshore secchi disc depths, chlorophyll a, conductivity, dissolved P, total N and Kjeldahl N. Offshore total P and total N have also changed significantly. So far decreases in the measured values are more common than increases. The exceptions are the increases in total N and sum of nitrate and nitrite.

TABLE 1 Summary of Results, Mean Value per Station, 1977, Nanticoke Water Chemistry

Stn.No		Temp °C	BOD ₅	Cond µS/cm	Turb FTU	pH SU	Cl- mg/L	SO ₄	Susp Solid mg/L	Diss Solid mg/L	Total Alk mg/L	Secc disc m	D.O. satur- ation	Total Fe mg/L	Total P mg/L	Filt Reac P mg/L	Total Kjeld N mg N/L	Filt NO ₂ + NO ₃ mg N/L	Filt NH ₃ mg N/L	Chloro <u>a</u> µg/L	Phenols
		14.8 12.2	0.3	304 305	1.0	8.25 8.12	20.9	24.8 24.8	2.4	197 198	96 96	3.6	103 90	0.08	0.012	100000000000000000000000000000000000000	200 A	0.104 0.122	0.009 0.018	1.2	1.0
#0(20)10 g		14.6 11.9	0.4	303 303	1.1 1.8	8.19 8.11	20.8	25.1 25.6	2.9	197 197	96 96	3.5	105 93	0.08		0.003	0.245 0.253	0.096 0.117	0.010	1.3	1.2
518	s	13.6	0.5	305	6.9	8.24	20.6	25.3	5.9	198	96	1.8	115	0.34	0.018	0.004	0.239	0.123	0.013	2.0	1.0
1000 000		14.9 13.5	0.6	303 303	1.4 1.4	8.26 8.22	20.8	24.9 24.8	2.2	196 196	95 96	3.4 -	116 108	0.14 0.11		0.003	0.251 0.249	0.096 0.102	0.008	1.5 -	1.3 1.0
100 1100	-	12.6 10.8	0.5 0.4	305 304	5.2 4.5	8.20 8.16	20.6	25.5 24.6	5.8 5.5	198 197	96 96	1.8	121 110	0.36 0.28		0.004 0.006		0.118 0.116	0.015 0.014	2.0	1.2
		14.0 12.0	0.4	304 305	1.9	8.09 8.13	20.7	24.8 25.2	3.8 3.9	197 197	96 96	2.6	109 99	0.14 0.13		0.003 0.004		0.101 0.109	0.011 0.015	1.5	2.0 1.5
1016	s b	15.3 12.7	0.5	305 304	2.4 4.0	8.29 8.24	20.8	25.0 24.7	2.7 4.5	197 197	96 96	2.5	112 96	0.19 0.22		0.003		0.101 0.117	0.010 0.018	1.6	1.8
1040	3	14.2	0.4	305	5.8	8.23	20.7	25.3	6.0	198	97	1.9	102	0.40	0.022	0.007	0.298	0.123	0.014	2.1	1.0
1041		13.5 11.2	0.4	304 306	3.1 6.5	8.27 8.15	20.9 20.7	24.9 25.0	4.9 8.5	197 198	96 97	2.0	111 97	0.16 0.37	0.018 0.020		0.272 0.291	0.105 0.121	0.011 0.019	2.2	1.5 1.2
1042	3	12.4	0.6	305	4.5	8.27	20.8	25.3	5.5	198	98	1.7	111	0.23	0.024	0.005	0.279	0.113	0.014	2.0	1.2

s surface samples b bottom samples

TABLE 2 Summary of Results, Area Mean Value per Date, 1977, Nanticoke Water Chemistry

Date	Temp °C	BOD ₅	Cond µS/cm	Turb FTU	pH SU	Cl- mg/L	SO ₄	Susp Solid mg/L	Diss Solid mg/L	Total Alk mg/L	Secc disc m	D.O. satur- ation	Total Fe mg/L	Total P mg/L	Filt Reac P mg/L	Total Kjeld N mg N/L	Filt NO ₂ + NO ₃ mg N/L	Filt NH ₃ mg N/L	Chloro <u>a</u> µg/L	Phenols
Apr 20	s 8.0 b 6.8	0.9	315 314	B11124 C-1914	8.26 8.24	20.9	26.3 26.0	2.1	205 204	99 99	2.7	97 87	0.05	0.014 0.016	0.003 0.003		0.155 0.168	0.005 0.007	2.5	1.1
May 24	s 13.9 b 6.6	0.4	311 310	1.3	8.33 8.12	20.9 20.9	23.9 23.6	1.8 1.6	202 202	97 96	4.4	118 104	0.04 0.04	0.005 0.010	0.003	0.207 0.251	0.123 0.147	0.005 0.009	1.2	1.0
June 14	s 13.7 b 10.8	-	310 309	-	-	20.9 21.0	Ē	-	Ī	-	3.0	-	-	0.008	0.001		0.108	0.007	1.3	ū
July 6	s 16.5 b 13.6	-	305 306	2.3	8.09 7.97	20.5 20.5	24.4 24.1	3.2 3.0	198 199	95 95	1.9	=	0.11	0.014 0.028	0.004 0.005		0.096 0.104	0.008 0.020	2.0	1.1
July 26	s 18.8 b 17.3	÷	306 307	2.1	-	20.5 20.6	:	2	-	-	1.5	-	-	0.017	0.003 0.003	0.337 0.409	0.087 0.101	0.021	1.4	-
Aug 15	s 21.7 b 21.6		295 296	2.4 2.7	8.29 8.25	21.5 21.5	25.1 25.2	3.6 4.0	192 193	94 94	2.9	-	0.12 0.11	0.018 0.017	0.005		0.055 0.059	0.012 0.015	1.3	1.1
Sept 29	s 17.0 b 17.1		291 292		8.12		24.6 24.6	6.9 7.6	190 190	95 94	1.7	-	0.58 0.51	0.033 0.029			0.112 0.099	0.015 0.014	1.0	2.2 1.9
Nov 22	s 9.5 b 8.5		30 1 300	3.2	8.24 8.26		25.9 25.6	7.4 8.0	196 195	98 97	1.5	-	0.36 0.36	0.021 0.020	0.003		0.124	0.020 0.021	3.3	1.4

surface samples bottom samples

TABLE 3

Two-way Analysis of Variance, Nanticoke 1977

		Bet	ween	Dat	es Difference	Bet	tweer	St	ations Difference
					Significance	,			
Parameter	Depth	Fij	i	j	at a 5% level	Fij	i	j	Significance
Water Temperature	s	192.2	7	9	SD	0.62	9	7	NSD
	b	219.1	7	6	SD	3.14	6	7	NSD
BOD5	s	19.99	7	9	SD	1.38	9	7	NSD
	b	11.51	7	6	SD	1.37	6	7	NSD
Conductivity	s	137.6	7	9	SD	1.77	9	7	NSD
	b	126.9	7	6	SD	3.31	6	7	NSD
Chloride	s	25.0	7	9	SD	0.65	9	7	NSD
	b	35.5	7	6	SD	1.43	6	7	NSD ·
Sulphate	s	57.6	7	9	SD	1.96	9	7	NSD
	b	49.9	7	6	SD	2.30	6	7	NSD
Turbidity	s	6.56	7	9	SD	2.07	9 6	7	NSD
	b	4.35	7	6	SD	1.81	О	7	NSD
Secchi Disc Depth		19.6	7	9	SD	10.0	9	7	SD
Suspended solids	s	9.53	7	9	SD	2.45	9	7	NSD
	b	4.41	7	6	SD	2.26	6	7	NSD
Chlorophyll <u>a</u>	s	7.56	7	9	SD	1.05	9	7	NSD
Dissolved Oxygen	S	79.4	7	9	SD	1.50	9	7	NSD
	b	31.2	7	6		1.25	6	7	NSD
Total P	s	12.8	7	9	SD	2.61	9	7	NSD
	b	2.12	7	6	NSD	0.90	6	7	NSD
Filtered Reactive	s	5.45	7	9	SD	1.66	9	7	NSD
P	b	2.07	7	6	NSD	0.82	6	7	NSD

		Bet	ween	Dates	Difference	Between	Statio	ons Difference
Parameter	Depth	Fij	i	j	Significance at a 5% level	Fij	i j	Significance
Total Kjeldahl N	S b	19.5 2.84	7 7	9	SD NSD	1.73	9 7 6 7	NSD NSD
Filtered NO ₂ + NO ₃	S b	13.5 18.0	7 7	9	SD SD	1.36	9 7 6 7	NSD NSD
Filtered NH3	S b	20.6 7.74	7 7	9 6	SD SD	1.83	9 7 6 7	NSD NSD
рH	S b	9.56 8.85	7 7	9	SD SD	2.31	9 7 6 7	NSD NSD
Total alkalinity	S b	33.5 23.2	7	9	SD SD	1.09 0.17	9 7 6 7	NSD NSD
Total Fe	S b	8.00 5.27	7 7	9	SD SD	1.49 1.32	9 7 6 7	NSD NSD
Phenols	S b	3.12	7 7	9 6	NSD NSD	1.20	9 7 6 7	

SD - means significant difference NSD - means no significant difference

S - surface samples

b - bottom samples

TABLE 4

Long-Term Changes of the Physical-Chemical Parameters,
Nanticoke 1969-1977

			Averag	e Chang	e %/year							
Domomotous		ue 1969-1977		Local			Offshore	:	Signifi	cance	Tre	nd
Parameter	Local	Offshore	Mean	Min.	Max.	Mean	Min.	Max.	Local	Off	Local	Off
Conductivity µS/cm	311.6 ± 1.3	314.1d ± 0.99	-1.06	-0.9	-1.22	-0.99	-2.49	0.52	s	NS	D	-
Chloride mg/L	23.0 ± 0.3	22.1 ± 0.4	-3.21	-3.67	-2.75	-3.95	-3.01	-4.81	s	s	D	D
Total P mg/P/L	0.0171 ± 00010	0.0237 ± 0.0018	-1.40	-3.63	0.83	-14.8	-17.8	-11.8	NS	s	_	D
Dissolved P (soluble reactive P) mg P/L	0.0052 ± 0.0006	0.0188f ± 0.0004	-8.42	-12.68	-4.16	_	-	.=	S	-	D	-
Total N mg N/L	0.394 ± 0.015	0.2208 ± 0.005	0.48	-0.85	1.80	8.31	4.78	11.84	NS	s	_	I
Kjeldahl N mg N/L	0.294 ± 0.010		-2.35	-3.59	-1.10		s		D			
Ammonia mg N/L	0.0269 ± 0.0045	0.0217 ^b ± 0.0012	-18.6	-24.8	-12.3	-8.01	-11.2	-4.83	s	s	D	D
Nitrate + Nitrite mg N/L	0.0997 ± 0.0112	0.111° ± 0.005	10.74	7.12	14.37	11.73	9.28	14.2	s	s	I	I
Nitrate mg N/L	0.0851° ± 0.0126		13.83	7.52	20.15				S		I	
Nitrite mg N/L	0.0042° ± 0.0003		-2.02	-5.61	1.59				NS		_	
рН	8.23 ± 0.06	8.32 ^e ± 0.01	0.07	-0.18	0.33	-1.81	-6.27	2.65	NS	NS	_	-
Phytoplankton Crop ASU/mL	348.3 ± 37.7		-0.72	-4.24	2.81				NS		-	
Chlorophyll <u>a</u> µg/L	2.43 ± 0.24	3.64 ^d ± 0.73	-8.33	-4.19	-12.47	3.95	-9.73	17.6	s	NS	D	_

Table 4 continued

			Averag	e Change	e %/year	,						
	Average Va	lue 1969-1977		Local			Offshore		Signific	cance	Tre	nd
Parameter	Local	Offshore	Mean	Min.	Max.	Mean	Min.	Max.	Local	Off	Local	Off
Dissolved O ₂ % saturated mg/L	98.4 ± 2.0	10.48 ± 0.23	0.08	-1.31	1.48	0.24	-0.60	1.07	NS	NS	-	-
Turbidity FTU	3.67 ± 0.42	3.94° ± 0.94	-4.27	-8.00	-0.53	50.8	34.1	67.4	S	s	D	D
Secchi Disc Depth m	2.85 ± 0.22	3.31 ± 0.16	-5.67	-8.42	-2.91	0.53	-1.66	2.72	S	NS	D	-
Water Level at Port Dover m	174.33 ± 0.04		0.02	0.01	0.03				S	1		

a - Data limited to 1969-1973

S - Significant long-term change

NS - No significant long-term change

D - Long-term decrease

I - Long-term increase

b - Data limited to 1969-1974

c - Data limited to 1969-1975

d - Data limited to 1969-1976

e - Data limited to 1971-1975

f - Data limited to 1970-1971

g - Data limited to 1970-1975

FIGURE 2 NANTICOKE, LAKE ERIE, LONG TERM CHANGES, 1969-1977

APPENDIX I

- 15 -

APPENDIX I, TABLE 1 , NANTICOKE 1977 WATER TEMPERATURE DEG. C

STATION	DEPTH	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NOV 22 I	MEAN	ST.DEV.
112	1,0 11,0	5.0 5.0	15.8 5.8	14,1	17.0	19.5 16.2	21.3	17,0 17,2	9,0 I	14.8 12.2	5.41 5.84
501 511	1.0 I 12.0 I	5,0 5,5	15,2 5,5	12,9 8,0	16,7 11,9	19,5 16,2	21.2 21.9	17.1 17.5	9.0 I 8.5 I	14.6	5.41 6.08
518	3,0 1	9.0	12.0	13,0	16,5	19.0	***	17,0	8,5 1	13,6	4.07
648 648	1.0 7.0	6,0 6.0	15,2 7,9	14,0 11,2	17,0 15,5	19,5 19,5	21.3	17,1 17,5	9.0 I	14,9 13,5	5.16 5.81
810 810	1.0 8.0	8.5 7.5	12.9 7.8	15.3 12,2	****	****	****	17.2 17,0	9.0 I 9.5 I	12.6 10.8	3,82 3,94
994 994	1.0 7.0	9,5 9,5	15.2 7.2	13,8 13,0	16.0 12.9	****	21.2	***	8,5 8,2	14.0 12.0	4.64 5.07
1016 1016	1.0 9.0	9.5 7.0	14.5 6.0	13,5 11,0	17.0 13.0	19.0 17.3	23.0 22.0	17,1 17,1	8.5 8.0	15.3 12.7	4,82 5,73
1040	3.0 1	9.5	10.2	13,2	15,2	18,1	22.0	16,9	8,5	14,2	4,72
1041 1041	1.0 9.0	8.5 7.0	13,5 5,8	13,5 11,0	17.0 13.5	17.3 17.2	****	16,8 16,8	8.0 7.0	13.5 11.2	3.93 4.78
1042	2.0 1	10.0	15.0	13,5	****	***	***	16.0	7.0	12.4	3,89
MEAN	SURFACE! BOTTOM !	8,0 6,8	13,9 6,6	13.7 10.8	16,5 13,6	18.8 17.3	21.7 21.6	17.0 17.1	8,5 8,5	14.1 12.1	4.48 5.20
ST DEV	SURFACE!	1,95 1,50	1.79 1.03	0,69 1,75	0.65 1.33	0.84 1.35	0.72 0.47	0,19 0,24	0,62	13,3	4.87

APPENDIX I, TABLE 2 , NANTICOKE 1977

CONDUCTIVITY AT 25 DEG.C. US/CM

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SFP 29	40V 55	I MEAN	ST.DEV.
112 112	1.0 I	310. 315.	310. 310.	310. 310.	****** 304, 304,	305, 310.	295. 300.	295. 295.	300. 299.	1 304. 1 305.	6.39 6.93
501 501	1.0 1	310. 310.	312. 310.	305. 305.	303. 308.	305. 306.	295. 295.	295. 293.	300, 300.	1 305. 1 305,	6.27 6.63
518	3.0 1	320.	310.	310.	305,	307.	295.	290.	303.	1 305.	9.32
648 648	1.0 I 7.0 I	310. 310.	310. 310.	310. 310.	305. 305.	305. 305.	295. 295.	292. 293.	299. 299.	1 303, 1 503.	7,15 6,91
810 810	1.0	315. 315.	310. 310.	310. 310.	310. 305.	307. 307.	295. 295.	.885 .885	304, 302,	1 305. 1 304.	9.01 8.82
994 994	1.0 7.0	315. 315.	312. 310.	310. 310.	305. 307.	306. 305.	295. 295.	290. 295.	298. 299.	1 304,	8,77 7,45
1016 1016	1.0	320. 315.	310. 310.	310. 310.	305. 305.	307. 307.	295. 295.	290. 290.	300. 299.	1 305. 1 304.	9.47 8.49
1040	3.0	320.	310.	310.	305,	306.	295,	290.	304.	1 305,	9,27
1041	1.0	315. 315.	312. 312.	310. 310.	305. 307.	307. 308.	295. 300.	290. 290.	300. 302.	1 304. 1 306.	A.65 7.96
1042	2.0	315.	315.	310.	***	307.	295.	290.	303,	1 305,	9,64
MEAN	******** SURFACE BOTTOM	100 mar 20 mars 20	311. 310.	310. 309.	305. 306,	306. 307.	295. 296.	291. 292.	301. 300.	1 304, 1 504,	7.99 7.26
ST DEV	SURFACE BOTTOM	- T	1.66	1.58 1.89	1.92 1.46	0.92 1.7/	0.0 2.44	2,31 2,71	2.18 1,41	504. A***	7.67 ****

APPENDIX I, TABLE 3 , NANTICOKE 1977 DISSOLVED SOLIDS MG/L

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NOV 22	MEAN	ST.DEV.
112	1,0 11,0	202. 205.	202. 202.	****	198, 198,	****	192. 195,	192.	195.	197.	4.58 5.01
501 501	1,0 12,0	202.	202 .	****	198, 202,	***	192. 192.	192.	195. 195.	197.	4.58 5,53
518	3,0 1	208,	202,	***	198,	****	192,	189.	197,	198,	6,83
1 648 1 648	1,0 7,0	202 .	202. 202.	****	198. 198,	****	192. 192.	190. 190.	194. 194.	196. 196.	5,13 5,13
810 810	1,0 8,0	205. 205.	202 ,	****	202, 198,	****	192. 192.	187. 187.	198. 196.	198, 197,	6.89 6,56
994 994	1.0 7.0	205. 205.	202. 202.	****	198, 198,	****	192. 192.	189. 192.	194. 194.	197. 197.	6.12 5.46
1016 1016	1.0 9.0	208. 205.	505°	****	198, 198,	****	192. 192.	189. 189.	195. 194.	197. 197,	6,92 6,12
1040	3,0 1	208,	202.	***	198,	***	192,	189.	198,	198,	6,82
1041 1041	1,0 9,0	205. 205.	202, 202,	****	198, 198,	****	192, 195,	189. 189.	195. 196.	197, 198,	6,05 5,61
1042	2,0 1	205.	205.	***	****	***	192,	189.	197.	198,	7,34
	SURFACE! BOTTOM I	205. 204.	202. 202.	****	198. 199.	****	192. 193.	190.	196. 195.	197. 197,	5,70 5,25
	SURFACE! BOTTOM I	2.45 1.46	0,95 0,0	****	1.33 1.51	****	0.0 1.46	1,51 1,77	1.55 0.95	197.	5,49 ****

APPENDIX I, TABLE 4 , NANTICOKE 1977

CHLORIDE MG/L

I STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NOV 22	MEAN	ST.DEV. I
******** 511 112	1.0 I 11.0 I	21.0 21.0	21.0 21.0	21.0	20.5	20,5	21.5 21.5	20.5	21.0	20.9 20.9	0.35 I 0.32 I
501 501	1.0 [20.5 20.5	20.5 21.0	21.0 21.0	20.5 20.5	20.5 20.5	21.5 21.5	20,5 20,5	0,15 21,0	20.8 20.8	0.38
518	3.0	21.0	21.0	21.0	20.5	20,5	21,5	18,5	51,0	20.6	0.92
1 648 1 648	1.0 I 7.0 I	21.0	21.0 21.0	21.0 21.0	20.5 20.5	20.5 21.0	21,5 21,5	20.0 20.0	21,0 21,0	20.8 1 20.9	0.44
810	1.0 I 8.0 I	21.0 21.0	21.0 21.0	21.0 21.0	20.5 20.5	20.5 20.5	21.5 21.5	18.5 19.5	21.0 21.0	1 20.6 1 20.6	0.60
994	1.0 i 7.0 i	20.5 20.5	21.0 21.3	21.0 21.0	20.5 20.5	20.5 20.5	21.5 21.5	20.u 20.u	20,5 21,0	1 20.7	0.46
1016	1.0	21.0 21.0	21.0 21.0	20,5 21,0	20.5 20.5	20,5 20,5	21.5 21.5	20.5 0,05	21.0 21.0	8.05 1 20.8	0.37 0.46
1 1040	3.0 1	21.0	21.0	21.0	20.5	20.5	21,5	19,0	21.0	1 20.7	0,75
1041	1.0 9.0	21.0 21.0	21.5 20.5	21.0 21.0	20.5 20.5	20.5 20.5	21,5 21,5	20.0 19.5	21.0 21.0	1 20.9 1 20.7	0.52 0.59
1 1042	2.0	21.0	20.5	21.0	***	20.5	21.5	20.0	21,0	1 20,8	0.49
MEAN	SURFACE I	A 11 1	20.9 9.05	20.9 21.0	20.5	20.5	21.5 21.5	19.8 20.0	20,9 21,0	1 20.8 1 20.8	0,57 0,45
STOFV	SURFACE!	100	0.28	0.16 0.0	0.0	0.0 0.24	0.0 0.0	0.79 9.41	0.10 0.0	1 20.8	0,52

APPENDIX I, TABLE 5 , NANTICOKE 1977
SULPHATE MG/L

I STATION	M I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NOV 22 I	MEAN	ST.DEV.
112	1.0	26.0 26.0	24.0 23.5	****	24.0 24.5	****	25.0 25,5	24.5 24.0	25.5 I	24.8 24.8	0.82
501 501	1.0 I 12.0 I	26.0 26.0	24.0 24.0	****	24.5 24.5	****	25,5 25,5	24.5 24.5	26,0 l 25,5 l	25.1 25.0	0.86 i 0.77 i
518	3,0 1	26.5	24.0	***	24.5	****	25,5	25,0	26.0 1	25,3	0.94
1 648 1 648	1.0 I 7.0 I	26.0 26.0	24.0 23.5	***	24.5 24.0	****	25.0 25.0	24.5 24.5	25,5 I 25,5 I	24.9 24.8	0.74 0.94
1 810 1 810	1.0 I 8.0 I	26.0 25.5	24.0 23.5	****	26.0 23.5	****	25.5 25.0	25.0 24.5	20,5 I 25,5 I	25.5 24.6	0.89
994 1 994	1.0 I 7.0 I	27.0 27.0	24.0 23.5	****	24.0 24.0	****	24.5 25.5	24.0 25.5	25,5 I 25,5 I	24.8 25.2	1.21 1.25
1016 1016	1.0 I 9.0 I	27.0 25.5	24.0 23.5	****	24.0 24.0	****	25.0 25.0	24.5 24.5	25,5 I 25,5 I	25.0 24.7	1.14 0.82
1740	3,0 1	26,5	24.0	***	24,5	***	25,0	25,0	26.5 1	25.3	1.04
1 1041	1.0 i 9.0 i	26.0 26.0	24.0 24.0	****	24.0 24.0	****	25.0 25.0	24,5 25,0	26.0 I 26.0 I	24.9 25.0	0.92 0.89
1042	2.0	26.5	23.5	***	***	****	25,5	24.5	26,5 1	25.3	1,30
I MEAN	SURFACE!	26.3 26.0	23.9 23.6	****	24.4 24.1	****	25,2 25,2	24.6 24.0	25,9 I 25,6 I	25.1 20.9	0,94 0,90
ST DEV	SURFACE I	0.41 0.50	0.16	****	0,63 0,35	****	0.34 0.27	0.32 0.48	0,44 0.19	25.0	1 50.0

APPENDIX I, TABLE 6 , NANTICUKE 1977
TURBIDITY FTU

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NOV 55	I MEAN	11,1211
112	1.0	1.4	0.6 1.2	****	1.2	1.0	1.5 1.8	1.4 1,5	0,2	1.1	? ?
501 501	1.0 12.0	1.8 1.8	8.0 5.1	***	8,0	1.0 2.8	1,5 1,5	0,8 0,8	1.3	1.1 1.5	2.40 3.50
518	3.0 1	1.6	1.2	***	3.2	1.8	5. 8	24,0	13,0	۱ 6.5	4,50
648 648	1.0 7.0	1.4	0,7 1.2	****	1.5 1.6	1.2 1.0	1.5 1.6	1,2	2.5 2.4	1 1.4	0.55 0.48
810 810	1.0 8.0	1.4 1.6	1.0 1.2	****	3,4 1,6	2.0 1.6	2.8 4,2	22.0 18.0	3,9 3,3	1 5.2 1 4.5	7.47 6.05
994 994	1.0 7.0	2.1 1.9	1.2 1.4	****	1.8 2.5	1.4 2.0	1.2 1,5	2,8 5,5	2.8 3.4	1.5	0.70 1.45
1016 1016	1.0 1	1.6	5.1 5.1	****	2.0 1.6	5.8 2.4	5.4 5.4	4,2 16,0	1.9 2.9	1 2,4	1,13 5,31
1940	3.0 1	2.0	1.4	***	3,2	2,4	3,2	26,0	2,6	1 5,8	8,92
1041 1041	1.0	1,4 1,5	2.2 1.2	****	3,6 3,8	2.6 4.4	1.5 5,8	8,6 27,0	2,1 2,0	1 3,1 1 6.5	2.52 9.18
1045	2.0 1	1.8	2.3	***	****	3,5	4.8	13.0	1.6	1 4.5	4.35
MF A 3	SURFACE! BOTTOM I	1.6	1.3 1.2	****	2.3 2.0	2.1 2.2	2.4 2.7	10.4	3,2 2,3	3.3 1 3.2	4.91 4.73
ST DEV	SURFACE! BOTTOM	0.26 0.25	0.57 0.08	****	1.06 0.94	1.00 1.12	1.21 1.67	10.15 10.36	3,58 1,09	1 3.3 1 ****	4.85 ****

APPENDIX 1, TABLE 7 , NANTICOKE 1977
SECCHI DISC DEPTH M

STATION	DEPTH (APR 20	MAY 24	JUE 14	JUL 6	JUL 26	AUG 15	SEP 29	NOV 22	I MEAN	ST.DEV.
511	1.0	3.5	6.5 ****	3,1	2.6	2.5	4,8 ****	3,5 ***	5,5	******* ! 3,6 ! ****	1.45
511 511	1.0 12.0	2.2	***	4,0	****	3,0 ****	4,5 ****	4,0	2.1	1 3.5	1.04
518	3.0 1	2,5	4.0	3,0	1.0	1.0	1,3	0.5	0.9	1.8	1,24
648 548	1.0 I	3.8 ***	6.3 ***	4.0 ***	2,2 ****	2.U ****	4,7 ****	3.5 ***	1.1	1 3.4 1 ****	1.66
810 810	1.0 (8.0 (2,0	5.9 ****	3,0 ***	1.3	1.0 ****	1.8 ****	0.5 ***	0,8 ****	1 1.8	1.23
994 994	1.0 1	2.3	4.7 ****	5,0 ****	2.1 ****	1,5 ***	4.0 ****	U.S	5,1	1 2.6	1.22
1916 1916	1.0 I 9.0 I	2.5 ****	5.0 ****	2,5 ****	1,9	1,5 ****	**** 5*e	د. ۱ ***	***	1 2,5 1 ****	1,23
1040	3,0 1	2,5	3.3	2,5	1.5	1.0	1,7	0,5	5,5	1 1,9	0,97
1041	1.0 I	2.7 ****	3.4 ****	2,7 ***	1.2	1,0	2,3	0.7	***	1 2,0	1,03
1042	2.0	2.5	2,5	2.5	1,2	1.0	1,4	0.7	***	1 1.7	0.79
MEAN	SURFACE I BOTTOM I		4.4	3.0	1.9	l.5 ****	2,9	1,7	1.5	1 2,5	1.36 ****
ST DEV	SURFACE I	198	1.36	0.56 ****	0.96 ****	0.72 *****	1.41	1,50	0.70 ****	1 2.5 1 ****	1.36

APPENDIX I, TABLE 8 , NANTICOKE 1977
SUSPENDED SOLIDS MG/L

I STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SFP 29	NUA 55	I MEAN	ST.DEV.
1112	1.0	5.0 5.0	0,8	****	1,5 1,8	****	1.8 2.3	1.9	6,5 5,9	2.4	2.05 1.65
501	1.0 (2.0	1.5 1.4	****	0.8 3.3	****	7.1 2.0	0,6 1,1	5.4 8.9	2.9 3.1	2,66 2,93
518	3.0	3.0	1.6	***	4.4	***	5.0	13,0	8,7	1 5.9	4,20
1 648 1 648	1.0 7.0	1.0 2.0	0.6 2.5	****	1.7 2.2	**** ****	1.5 2,3	1.0	7.0 6.0	2.2	2.37
1 810 1 810	1.0 I 8.0 I	5.0 5.0	1.5 1.7	****	4.9 2.7	**** ****	3.4 6,4	13.0 12.0	10.0	5.8 5.5	4,71 4,15
994	1.0 I 7.0 I	3.0 3.0	1.7 1.5	***	2.1 3.5	**** ****	2.8 2.8	5,1 4,4	11,0 8.7	1 3.8 1 3.9	3,56 2,51
1016	1.0 I 9.0 I	2.n 2.n	1.1	***	2.7 2.4	****	2.5 3.5	4,3 8,3	3.6 9,2	1 2.7 1 4,5	1,14 3,40
1040	3.0 (2.0	1.6	***	5.2	****	5,2	13,0	8,9	1 6,0	4,34
1 1041	1.0	2.0 2.0	5.4 1.3	****	5.5 5.5	****	1.6 8.8	8.7 24.0	6,5 9,5	1 4.9	2.69 8.30
1042	2.0 (2.0	2.9	***	****	***	6,4	9,8	6,4	1 5.5	3,13
I MEAN	SURFACE I	2.1	1.8 1.6	****	3.2 3.0	****	3,6 4,0	6.9 7.0	7,4 8,0	1 4.2	3.36 4.26
I ST DEV	SURFACE! HOTTOH I	0.57 0.38	1.39 0.41	****	1.80 1.22	****	2.11 2,59	5.11 8.31	2,24 1,47	1 4.3 1 ***	3,74 ****

APPENDIX I, TABLE 9 , NANTICUKE 1977 CHLOROPHYLL A UG/L

I STATION	M	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NDV 25	I MEAN	ST. DEV. I
112	1.0	1.0	1.1	J,1 ***	0,7	1.0	1,1	0. Y	3,0	******* 1,2 ****	0.72
501 501	1,0 12,0	1.0	1.1 ***	1.4 ****	0.6 ****	****	1.6 ****	1.0	2,8	1,3	0.66
518	3.0	4.7	1.2	1.2	1,0	2.1	1,2	1.3	3,3	1 2.0	1,33
1 648 1 648	1.0 7.0	2.1	1.3 ***	1.4 ****	0.9	1.7 ****	1.1	0.0	3,3 ***	1.5	0.85
810 810	1.0 8.0	3.5 ***	1.4 ****	1.6 ****	1.3	1,4 ****	1.8	1,4	3,6 ***	1 2.0	1,04
i 994 i 994	1.0 7.0	2.1	1.3 ****	1.5 ****	0.8 ****	↓.3 ****	1.2 ****	0.4 ***	5,3 ***	1.5	0,88
1016	1.0 9.0	1.č	1.3 ****	1,2 ***	2,9	1.3 ****	1,4 ****	0.7	3.0 ***	1.6	0.84
1040	3.0	5.8	1.3	1,2	1,6	1,1	1,1	0.9	3,7	1.5	1.75
1041	1.0 9.0	1.3	1.3 ****	1.3 ****	5.7 ****	****	1,2	1,2 ****	3.1 ***	1 2.2	1,71
1042	2,0	2.0	0.7	1.4	4.9	1,3	1.1	1.5	3.4	1 2.0	1.41
I MEAN	SURFACE I		1.2 ***	1.3	2.0	1.4 ****	1,5 ***A	1.0	3,3	1.7	1.15
ST DEV	SURFACE I BOTTOM I		0.20	0.16 ****	1.85 ****	0.33 ****	0.24 ****	0,34 ****	0.31 ****	1.7	1.15

APPENDIX I, TABLE 10 , NANTICOKE 1977
DISSOLVED OXYGEN % SATURATION

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NOV 22	I MEAN	ST. DEV.
115	1.0	88.	118.	******** ****	****	****	****	***	****	1 103. 1 90.	21.21 14.14
501	1,0	92. 82.	117. 103.	****	****	****	****	***	***	l 105. l 95.	17.68 14.85
518	3,0	****	115,	***	***	****	***	***	***	115,	****
648	1.0 7.0	**** ***	116. 108.	****	****	****	****	***	****	1 110.	****
810 810	1.0	* * * * * · · · · · · · · · · · · · · ·	121. 110.	****	***	****	****	***	***	1 121. 1 110.	****
1 994	1.0	99. 192.	119. 106.	****	****	****	****	***	****	l 109. l 99.	14.14 9.90
1016	1.0 9.0	102.	121. 103.	****	****	****	**** ****	***	****	1 112. 1 96.	15.44 10.61
1 1040	3.0	1 89.	115.	***	****	****	****	***	****	1 102.	18,38
1 1041	1.0	102.	119. 100.	**** ****	***	****	**** ****	* * * *	****	111. 97.	12.02 4.24
1 1042	2.0	1 104.	118.	***	****	****	***	***	***	1 111.	9.90
I MEAN	SURFACE BOTTOM	Control of the Control	118. 104.	***** **** ****	****	****	****	***	****	1 109. 1 97.	11,69 9,95
ST DEV	SURFACE BOTTOM		2.18 3.86	***	****	****	**** ****	****	****	104. ***	12.37 ****

APPENDIX I, TABLE 11 , NANTICUKE 1977
BOD5 MG/L

L STATION	м 1		MAY 24	JUN 14		JUL 26	AUG 15	SFP 29	NOV 22	I ME.AN	ST.DEV.
115	1.0 1	0.6 1.5	8.0	****	****	****	5.0	0.4	0.2	0.3	0.10
501 501	1.0	0.6 0.4	0.4 0.6	****	****	****	5.0 2.0	0,4 0,5	0.2	0.4	0.17 0.18
518	3,0 1	1.4	0.2	***	***	****	0,2	0,0	0.5	0.5	0.52
648	1.0 I 7.0 I	1.4	0.8 0.0	**** ***	***	****	0.8 0.8	0.6	S.0	0.6 0.4	0.50 0.20
810 810	1.0 1	1.0	0.2 0.6	***	***	****	0.4 0.2	0.6	2.0	0.5	0.20
994	1.0 1	8,0 8,0	0.4 0.6	****	***	****	0.2 0,2	0.4 0.4	5.0 5.0	0.4	0.24 1 65.0
1016	1.0 1	0.8 0.6	0.4 0.2	****	****	****	5.0 5.0	0.5 0.4	0 , 0	0.5	0.22
1040	3.0 1	8,0	0.4	***	***	***	0,2	0.4	0,2	0.4	0.24
1041	1.0	8,0 8,0	0.4 0.4	**** ***	**** ***	****	0.2 0.2	0.6 0.4	0,2	1 0.4	0.26 0.24
1045	2.0 1	1.0	0.8	***	***	****	0.4	0.4	0.2	0.6	0.33
I MEAN	SURFACE! BOTTOM I	0.9 0.8	0.4 0.5	****	****	****	0.3 0.2	0.5 0.4	5,0 2,0	0,5 1 0,4	0.31 0.28
ST DEV	SURFACE I BOTTOM I	0.29 0.36	0.18 0.19	****	*****	****	0.19	0.10	0,13	1 0.4	0,29

APPENDIX I, TABLE 12 , NANTICOKE 1977 TOTAL P MG/L

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP <9	NDV 22	I MEAN	ST.DEV.
Sii	1.0	0.012	****** 0,003 0,013	0,006 0,010	0,011	0,011	0.009	0.020	0,021 0,015	0.012	0.0062
1 501 1 501	1.0	0.015	0.006	0,008	0.00B 0.089	0.013 0.011	0.017 0.017	0.015	0,013	1 0.012	0.0040 0.0286
518	3.0 1	0.013	0.002	0.009	0.014	0.014	0.018	0.054	0.025	1 0.018	0.0156
648	1.0 I 7.0 I	0.015 0.015	5.002 0.010	0.005	0.009	0.014	0.015 0.010	0.010	0.014 0.020	1 0.011	0.0055 1
1 810 1 810	1.0 1	0.013	0.001	0.009	0.017	0.017	0.024 0.023	0.042 0.042	0,015 0,019	1 0.018	0.0138 0.0107
1 994	1.0 1	0.014	0.006	0.007	0.012	0.014	0.012	0.021	0.020 0.015	1 0.013	0.0054 0.0053
1 1016	1.0	0.015	200,0 210.0	0.009	0.014 0.017	0.026	0.015 0.025	0.019 0,042	0.013	0.014	0.0063 0.0098
1 1940	3.0 1	0.014	0.013	0.011	0.022	0.016	0,024	د0.05	0,024	1 0.022	0.0135
1 1041	1.0 I 9.0 I	0,012	0.005 0.009	0.010	0.016 0.019	0.023	950.0 900.0	0.030	0,013	0.018	0.0105
1042	2.0 1	0.016	0.004	0,009	****	0.019	0,017	0.045	0.059	1 0.024	0.0201
I MEAN	*A****** SURFACE! BOTTOM	0.014	0.005	****** 800,0 0,012	******* *10.0 RS0.0	0.017 0.014	0.018	\$20.0 \$20.0	0.021	1 0,016	0,0113
I ST DEV	SURFACE I		0.0034	0.0018	0.0043	0.0047	0.0061 0.0061	0.0161 0.0181	0.0139 0.0121	1 0.017	

APPENDIX I, TABLE 13 , NANTICOKE 1977 FILTERED REACTIVE P MG/L

I STATION	DEPTH I APR 20	×∧Y 24	JHK 14	JUL 6	JUL 26	AUG 15	SEP 29	SS V04	I MEAN	ST.DEV. I
112	1.0 0.03 11.0 0.02	0,002 0,004	0.001 0.002	0.005 0.006	0.002 0.004	0.005 0.006	0.005	0,005 0,002	1 0,003	0.0016
501 501	1.0 0.003 12.0 0.002	0,006 0,004	0.002 0.003	0.003 0.004	0.003 0.003	0.007 0.006	0.001	0.002 0.024	1 0.003 1 0.006	0.0021 0.0075
518	3.0 1 0.002	0.002	0,001	0,064	0.002	0.001	0,017	0.004	1 0.004	0,0053
648 648	1.0 0.02	0,001 0,003	0.001	0.003 0.004	0.003 0.005	0.007 0,009	0,002 0,002	200,0 200,0	1 0.003 1 0.003	0.0019
810 810	1.0 0.003	0,002 0,003	0,001	0.004 0.005	0.003 0.003	0.003 0.015	0.016	0.002	1 0.004 1 0.006	0.0048 0.0056
1 331	1.0 0.002 7.0 0.002	0.005 0.005	0.001 0.u02	0.004 0.006	0.003	0.004 0.006	0.002	0.002 500.0	1 0.003	0.0014
1016	1.0 0.002 9.0 0.003	0,001	0.002 0.004	0,002 0,005	0.004 0.004	0.004 0.007	0.004 0.03/	0.002	1 0.003 1 0,008	0.0012 0.0117
1040	3,0 (),005	0,006	0,001	0.004	0.003	0.009	0.021	0.005	1 0,007	0.0062
1041	1.0 0.002 9.0 0.009	0,002	0,002 0,001	0.004	0.003 0.004	0.003 0,008	0,005 0,014	0.001	1 0.003 1 0.007	0.0016
1042	2,0 0,003	0.004	0.001	****	0.004	0,005	0.011	0,006	1 0.005	0.0031
I MEAN	SURFACEI 0.003 BOTTOM I 0.003	0.003	0,001	0.004 0.005	0.003	0.005 0.008	0.005	0,003 0,007	1 0.004 1 0.005	0.0034 0.0060
ST DEV	SURFACEIO.0009 BOTTOM IO.0026	0.0020	0.0005	0,0009	0.0007	0.0023	0.0074	0.0017 0.0086	1 0.004	0.0047

APPENDIX 1, TABLE 14 , NANTICOKE 1977 TOTAL KJELDAHL N MG N/L

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	3FP 29	VOV 55	I MEAN	ST.DEV. I
112	1,0 11,0	0.250 0.230	0,180 0,330	0,200 0,220	0,240 0,290	0.260 1.010	0.230 0.280	0.360 0.310	0.220 0.220	0.242	0.0542 0.2655
501 501	1.0 I 12.0 I	1.240 1.225	0,200 0,260	0,300 0,230	0.210 0.290	0.260 0.250	0,220 0,250	0.320 0.310	0,210 0,210	1 0,245 1 0,253	0.0447 0.0335
518	3.0 1	0.250	0,210	0,210	0.260	0.500	0.026	0.430	0,230	1 0.239	0.1121
648	1,0 I 7,0 I	0.245 0.240	0.210	0.200 0.210	0.230 0.260	0.320 0.330	0.230	0,360 0,290	0.210 0.230	1 0.251	0.0580 0.0426
810 810	1.0 8.0	0.290 0.270	0.240 0.230	0.210	0.280 0.290	0.350 0.300	0,240 0,250	0,420 0,380	0.22.0	1 0.281	0.0720 0.0528
994	1.0 I 7.0 I	0.250 0.260	0.210 0.260	0.180	0.230	0.280 9.300	0.230 0.230	0.360 0.350	0.230	1 0.246 1 0.275	0.0542
1016	1.0 I 9.0 I	0.260 0.255	0,180 0,230	0.260 0.360	0,260 085,0	0.540 0.510	0.210 0.250	0.330 0.340	0,220 0,240	1 0,282	0.1132 0.0485
1040	3,0 1	0.315	0.250	0,300	0.300	0.340	0.270	0.390	0.550	1 0,298	0.0530
1041	1.0 I 9.0 I	0.250 0.300	0.180 0.240	0.220	0.250 0.300	0.370 0.360	0.290	0,400 0,480	0.22.0	0.272	0.0767 0.0925
1042	2.0 1	0.260	0.210	0.180	****	0.350	0,250	0,440	0,260	1 0.219	0,0886
IMEAN	SURFACE! BOTTOM I	0.261 0.254	0.207 0.251	0,226 0,253	0.251 0.284	0.337 0.409	0.220 0.241	0,381 0,351	0,224 0,223	0.263	0.0745 0.1120
ST DEV	SURFACE! BOTTOM I		0.0241 0.0389	0.0450 0.0559	0.0276 0.0127	0.0812 0.2673	0.0721 0.0234	0.0415 0.0641	0.0143 0.0095	1 0.272	0.0920

APPENDIX I, TABLE 15 , NANTICOKE 1977 FILTERED NO2+NO3 MG N/L

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL. 26	AUG 15	SEP 29	NOV 22	I MEAN	ST.DEV.
115	1.0	0,195 0,190	0,110 0,155	0,120 0,145	0.095 0.095	0.070 9.110	0,050 0,090	0,070 0,070	0.120 0.120	1 0.104	0.0449
501 501	1,0 I 12,0 I	0,195 0,195	0.105 0.155	0,090 0,125	0.085 0.125	0.070 0.115	0.050 0.050	0,060 0,060	0,112 0,110	1 0.096 1 0.117	0.0453 0.0470
518	3.0 1	0,130	0,120	0,110	0,105	0.095	0.060	0.200	0.163	1 0,123	0.0428
648 648	1.0 7.0	0.180 0.185	0,110 0,135	0.110 0.115	0.085 0.090	0.075 0.080	0,050 0,050	0,045	0.110 0.120	1 0.096	0.0430 0.0473
810 810	1.0 I 8.0 I	0.140 0.150	0.125 0.140	0.115 0.115	0.100 0.095	0.090 0.090	0,050 0,050	0,185 0.155	0.140	0.118 0.116	0.0401 0.0357
1 994	1,0 I 7,0 I	0.140 0.135	0.140 0.130	0.095 0.115	0.105 0,110	0.090	0.060 0.060	0.070 0.100	0,110	0.101 0.109	1950.0 8550.0
1016	1.0 H 9.0 H	0.145 0.150	0.130 0.160	0.115 0.130	0.095 0.105	0.09u 0.105	0.050 9.050	0.070 0.125	0.110	0.101	0.0311
1040	3.0 1	0.140	0,140	0,115	0,095	0.095	0.050	0.210	0,140	1 0,123	0.0469
1041	1.0 1	0.140 0.170	0.120 0.155	0.115 0.119	0.100 0.105	0.100	0.055 0.060	0.090 0.145	0.120	0.105 0.121	0.0255
1 1342	2,0 1	1.145	0,130	0.100	****	0.100	0.075	0.120	0.120	0.113	0.0231
MEAN	SURFACE! BOTTOM I	0.155 0.168	0.123 0.147	0.108 0.122	0.096 0.104	0.087 0.101	0,055 0,059	0.112 0.094	0,124 0,117	0.108 0.115	0.0374 0.0366
ST DEV	SURFACE! BOTTOM !		0.0123 0.0119	0.0100 0.0122	0,0074 0,0118	0.0116 0.0125	0.0082 0.0146	0.0636 0.0443	0,0177 0,0076	0.111 ****	0.0571

APPENDIX I, TABLE 16 , NANTICOKE 1977 FILTERED NH3 MG N/L

I STATION	DEPTH I APR 20	MAY 24	JUN 14	JUL 6	JUL 56	AUG 15	SEP 29	7NV 22	I MEAN	ST. DEV.
112	***************** 400.001 500.001	0.004 0.014	0.006	0.008 0.018	0.014 9.048	0.012 0.018	0.012	0.016	0.018	0.0046
501 501	1.0 0.004	0.006 0.014	0.014	0.010	0.014 0.034	010.0 S10.0	0.000	0.016	0.010 0.017	0.0044
518	3.0 0,004	0.004	0.004	0,016	0.020	0.008	0.028	0.018	1 0,013	0.0091
648	1.0 1.002 7.0 1.002	0.004 0.008	0.004 0.004	0.004 0.006	0.012	0.012 0.012	0.00b	0.020	1 0.008 1 0.009	0.0061
810 810	1.0 0.012 8.0 7.004	0.006 0.006	0.006 0,004	0.014 0.014	0.022	0.016 0.018	0.024 0,024	0.018	0.015 0.014	0.0067 I
1 994 1 994	1.0 0.004 7.0 0.004	800.c 800.c	0.004 0.614	0.006	0.020 0.030	0.014 0.012	0.000	0.026 050.0	0.011	0.0081
1016	1.0 0.004 9.0 0.002	0.002 0.006	0.010 0,024	0.002 0.018	0.020 0.034	9.010 0.014	0,006	0.024 0.026	0.010 0.018	0.0081 0.0105
1046	3.0 0.004	0.004	0,008	0.012	0.026	0,012	0,026	0,018	1 0.014	0,0088
1041	1.0 0.004 9.0 0.028	0.008 0.008	0.006 0.006	0.004 0.028	0.030 0.030	0.008 0.018	0.010	0.022	0.011	0.0100
1042	2.0 0.004	0.006	0.004	****	0.032	0.016	0.015	0,020	1 0.014	0.0104
MEAN	SURFACEL 0.005 BOTTOM 0.007	0.005 0.009	0,607 0,011	0.008 0.020	0.021 0.029	0.012 0.015	0.015 0.014	0.020 0.021	1 0.011 1 0.016	0.0077
ST DEV	SURFACE 10.0027 BOTTOM 10.0095	0.0019 0.0036	0.0033 0.0074	0.0049 0.0086	0.0067 0.0119	0.0029 0.0030	0,9080 0,9074	0,0033 0,0030	0.013 ****	0.0089

APPENDIX I, TABLE 17 , NANTICOKE 1977

PH AT LAB

I STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	2S v0v	I MEAN	ST.SEV.
112	1.0 I 11,0 I	8.10 8,07	8.37 8.06	****	8.21 8.08	***	8.35 8.11	**** 8.10	8.23 8.32	8,25 6,12	0.111
501 501	1.0 I 12.0 I	8,10 8,10	8,32 8,09	***	8,08 7.86	****	8.29 8.28	8.15	8,22 8,22	8,19 8,11	0.102 I
518	3.0 1	8,34	8,32	***	8.05	***	8,27	8.15	8,33	1 8,24	0,116
648	1.0 I 7.0 I	8.14 8.15	8,31 8,18	**** ****	8.23 8.13	****	8.36 8.37	8.23 8.14	8,29 8,35	8,26 1 8,22	0.077
810 810	1.0 1	8,30 8,33	8.32 8.10	****	8.07 7.92	****	8.39 8.14	7.85 8.20	8.30 8.27	8,20 6,16	0.205 I 0.144 I
994	1.0 I 7.0 I	8.30 8.34	8.29 8.12	****	7.78 7.71	****	8.06 8.24	7.90 8.14	8.11 8.26	8.09 8.13	0.197 0.224
1016	1.0 9.0	8,41 8,35	8.40 8.20	***	8,20 8,14	****	8.33 8.35	8.25	8.15 8.18	1 8,24 1 8,24	0.109 0.099
1040	3.0 1	8,31	8.20	***	8.05	***	8.25	8,19	8,36	1 6,23	0.108
1041	1.0 i 9.0 i	8,36 8,31	8,50 8,10	**** ****	8.18 7.98	****	8.26 8.23	8.15 8.05	8.17 8.22	6,27 8,15	0.137 0.125
1 1042	2,0 1	8.23	8.30	***	****	***	8.36	8.21	8,27	1 8,27	0.061
I MEAN	SURFACE! BOTTOM !	8.26 8.24	8,33 8,12	****	8.09 7.97	****	8,29 8,25	8.12 8.13	8,24 8,26	8,23 8,16	0.130
ST DEV	SURFACE!	The state of the s	0.079 0.051	****	0.139 0.158	****	0.095 0.098	0.120 0.050	0,082 0,061	05.80 l	0,141

APPENDIX I, TABLE 18 , NANTICUKE 1977 TOTAL ALKALINITY MG/I

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NU 4 55	I MEAN	ST.DEV.
115	1.0	**** **** 970.	970. 960.	****	950. 950.	****	940.	950. 960.	970. 970.	967. 962.	28.75 7.54
501 501	1.0 1	980. 990.	980. 960.	****	950. 960.	****	940. 940.	970. 940.	970. 980.	1 965. 1 962.	16.44 20.42
518	3.0 1	* * * *	970.	****	950.	***	950.	940.	990,	967.	24.22
648 648	1.0 7.0	970. ****	970. 970.	****	950. 950.	****	940. 940.	950. 950.	970. 980.	958. 967.	13.30 25.82
810 810	1.0 8.0	***	960. 960.	****	960. 960.	****	940. 950.	940. 940.	990.	1 965. 1 967.	25.10 23.38
994	1.0 1	970. 990.	970. 960.	****	960. 960.	****	950. 940.	950. 950.	980. 970.	1 963. 1 962.	12.12 17.23
1016	1.0 I 9,0 I	* * * * * * * *	970. 970.	****	950. 950.	****	940. 940.	940. 940.	980. 980.	1 965. 1 965.	24.22 24.22
1046	3.0 1	* / 1 *	970.	****	950.	****	940.	970.	990,	970.	22,80
1041	1.0 1 9.0 1	**** ***	970. 980.	***	960. 970.	****	940. 950.	950. 940.	980. 980.	967. 970.	21.61 21.91
1042	2.0 1	***	970.	***	****	****	950.	970.	990.	1 980.	26.46
I MEAN	SURFACE! BOTTOM I	996. 994.	970. 966.	****	953. 957.	****	943. 946.	953. 946.	981. 979.	1 966. 1 965.	20.88 19,52
ST DEV	SURFACE I	17.76 12.73	4.71 7.87	****	5.00 7.56	**** ****	4.84 7.87	12.52 7.8/	8.76 6.92	1 966.	20.24 ****

APPENDIX I, TABLE 19 , NANTICOKE 1977 TOTAL IRON MG/L

I STATION	DEOT										
1 *****	*	1 APR 20 1	444444	JUN 14	JUL 6	JUL 26	AUG 15	SFP 29	NOV 55	MEAN	ST.DEV.
S11 S11	1.0	1 0.03 1 0.04	0.02 0.03	****	0.05	****	0.04	0.07	0.29	U,08 U,13	0.105
501 501	1.0 12.0	1 0.08 1 0.05	0.03 0.03	****	0.13 0.13	****	0.05 0.04	0.00 0.05	0.12	0.0R 0.10	0.039
518	3,0	0.05	0.03	****	0.15	****	0.13	1.35	0,31	0,34	V.506
648	1.0 7.0	0.04 0.04	0,05 0,09	****	0.05 0.07	****	0.05 0.04	0.06	0,56 0,35	0.14	0.208
1 810 1 810	1.0	0.03	0.04 0.04	****	0.16 0.08	**** ***	0.24 0.20	1.25 1.00	0,42 I	0,36 0,28	0.461 (0.370 (
1 994 1 994 1	1.0 7.0	0.04	0.04 0.04	****	0.18 0.10	****	0.05 0.05	0.12	0,40 1	0.14	0.140
1016	1.0 9.0	0.04	0.04 0.04	****	0.08 0.07	****	0.28 0.09	0.30 0.85	0,35 I	0,19	0,155 0,316
1040	3.0	0.08	0.05	****	0.14	****	0.10	1.40	0,65 (0,40	0.538
1 1041	1.0 9.0	0.05 0.07	0.09 0.04	****	0.08 0.16	****	0.05 15.0	0.48 1.30	0,25 I 0,36 I	0.16 0.57	0,169 I 0,473 I
1042	2.0	0.04	0.06	***	***	****	0.21	0,60	0,23	0.23	0.225 1
MEAN	SURFACE I	0.05	0.04 0.04	****	0.11	****	0.12	0.58 0.51	0,36 I 0,36 I	****** 0.21 0.19	0.304 I 0.274 I
ST DEV	SURFACE I BOTTOM I	· ·	0.020 0.021	****	0.047 0.037	****	0,091 0,092	0.554 0.520	0,159 0,081	0.20	0.291 I

APPENDIX I, TABLE 20 , NANTICOKE 1977 PHENOLS UG/L

STATION	DEPTH I	APR 20	MAY 24	JUN 14	JUL 6	JUL 26	AUG 15	SEP 29	NOV 22	MEAN	ST.DEV.
112	1.0 i 11.0 i	1.0	1.0	****	1.0	****	1.0	1.0	1.0	1.0	0.0 0.52
51 51	1.0 I 12.0 I	1.0 1.0	1.0 1.0	****	1.0 1.0	**** ****	1.0 2,0	1.0	2.0 1.0	1,2	0,41 0,41
518	3.0 1	1.0	1.0	***	1.0	****	1.0	1,0	1,0	1.0	0.0
1 648 1 648	1.0 7.0	1.0 1.0	1.0 1.0	***	1.0 1.0	****	1.0 1.0	2.0 1.0	2.0 1.0	1.3	0.52 0.0
810 810	1.0 8.0	1.0 1.0	1.0 1.0	****	1.0 2.0	**** ***	1.0 1.3	5, u	1.0	1.2	0.41 0.52
994 994	1.0 7.0	1.0	1.0 1.0	****	1.0 2.0	****	2.0	6,0 1.4	1.0 2.0	2.0	2.00
1016 1016	1.0 I 2.0 I	1.0	1.0	*** ***	1.0 1.0	****	1.0	5.0 4,0	2.0 1.0	1.8	04.1 25.1
1040	3,0 1	1.0	1.0	***	1.0	****	1,0	1,0	1,0	1 1.0	0.0
1041 1041	1.0 I 9.0 I	2.0 1.0	1.0 1.0	****	2.0	**** ****	1.0 1.0	5.0 5.0	1,0 1,0	1.5	0.55 0.41
1042	2.0 1	1.0	1.0	***	***	****	1.0	1.0	2.0	1.2	0.45
MEAN	SURFACE! BOTTOM I	1.1	1.0	***	1.1 1.3	****	1.1	2,2 1,9	1,4	1.3	0.88 0.60
ST DEV	SURFACE I	0.32 0.0	0.0 0.0	****	0.33 0.49	****	0,32 0,49	1.81	0.52 0.49	1,3	0.77

N 2