Universität zu Köln

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Praktikum B

B3.1 Statistik der Kernzerfälle

CATHERINE TRAN
CARLO KLEEFISCH
OLIVER FILLA

Inhaltsverzeichnis

1	Einleitung				
2	Theoretische Grundlagen				
	2.1	Radio	oaktiver Zerfall	. 5	
		2.1.1	Halbwertszeit	. 5	
		2.1.2	Zerfallswahrscheinlichkeit	. 5	
		2.1.3	Herleitung der Zerfallswahrscheinlichkeit	. 5	
	2.2	stik			
		2.2.1	Zufallsvariablen	. 6	
		2.2.2	Wahrscheinlichkeitsdichte	. 7	
		2.2.3	Wahrscheinlichkeitsverteilung	. 7	
	2.3	Wahrs	scheinlichkeitsverteilungen		
		2.3.1	Binomialverteilung		
		2.3.2	Poissonverteilung		
		2.3.3	Gaußverteilung		
	2.4	Interv	vallverteilung		
	2.5		itung		
	2.6		stische Tests		
		2.6.1	Hypothesentest		
		2.6.2	Fehlerarten		
		2.6.3	Der χ^2 -Anpassungstest		
			2.6.3.1 Pearsons χ^2 -Test		
		2.6.4	Die χ^2 -Verteilung		
	2.7		χ ichsidee		
		2.7.1	Das Geiger-Müller-Zählrohr		
		2.7.2	Totzeit		
		2.7.3	Einfluss der Totzeit		
		2.7.4	Zwei-Präparate-Methode		
3	Dui	rchfüh	rung	17	
	3.1	Versu	chsaufbau	. 17	
	3.2	Messu	ingen	. 17	
4	Λ 116	swertu	ng.	18	
-1	4.1		onverteilung		
	4.1		verteilung		
	4.2	Intervallverteilung			
	$\frac{4.3}{4.4}$				
	4.4	χ^{-1} e 4.4.1			
		4.4.1 $4.4.2$	Hypothese H_1		
			Hypothese H_2		
		4.4.3	Hypothese H_3		
		4.4.4	Halbwertszeit	. 19	

5	Fazit	20
6	Literaturverzeichnis	21

1 Einleitung

In diesem Versuch wird die statistische Methode des χ^2 –Anpassungstests mithilfe von radioaktiver Strahlung untersucht. Dazu wird $^{137}\mathrm{Cs}$ verwendet, dessen Stahlung mit einem Geiger–Müller–Zählrohr detektiert wird.

Basierend auf den Messergebnissen werden drei Hypothesen über die Präperatsstärke bewertet. Zudem soll die Totzeit des Detektores milhilfe der Zwei-Präperate-Methode bestimmt werden.

2 Theoretische Grundlagen

2.1 Radioaktiver Zerfall

Bei radioaktivem Zerfall wandelt sich ein Atomkern in einen anderen Atomkern um, indem Teilchen ausgestoßen werden.

Es wird zwischen (α) –, β –und γ –Zerfall unterschieden. Der Energiegewinn durch den Zerfall wird durch den Q–Wert beschrieben und kann durch die Weizsäcker Massenformel ermittelt werden.

2.1.1 Halbwertszeit

Die Halbwertszeit $T_{1/2}$ ist die Zeit, in der die Hälfte einer Anzahl von Kernen oder Elementarteilchen eines Stoffes zerfällt. Sie ist eine charakteristische Größe für radioaktive Zerfälle, die unabhängig von der aktuell vorhandenen Substanzmenge ist. [10]

2.1.2 Zerfallswahrscheinlichkeit

Die Zerfallswahrscheinlichkeit α ist eine isotopspezifische Konstante, die angibt wie schnell ein Kern des entsprechenden Isotops zerfällt. Sie steht in Relation mit der Halbwertrsbreite $T_{1/2}$. Dies wird im Folgenden Abschnitt 2.1.3 hergeleitet.

$$\alpha = \frac{\ln(2)}{T_{1/2}} \tag{2.1}$$

Das in diesem Versuch verwendete ¹³⁷Cs hat eine Halbwertszeit von $T_{1/2} \approx 30.08$ a [11], was etwa $9.49 \cdot 10^8$ s entspricht. Daraus kann die Zerfallswahrscheinlichkeit α nach (2.1) bestimmt werden.

$$\alpha_{\rm Cs} \approx 7.3 \cdot 10^{-10} \,\rm s^{-1}$$
 (2.2)

2.1.3 Herleitung der Zerfallswahrscheinlichkeit

Ein instabiler Kern mit einer Halbwertszeit $T_{1/2}$ zerfällt mit einer Wahrscheinlichkeit ω innerhalb einer Zeitspanne Δt . Falls diese Zeitspanne Δt klein gegen $T_{1/2}$ ist, lässt ω linear annähern. Die Gegenwahrscheinlichkeit $(1-\omega)$ beschreibt demnach den Fall, dass der Kern nicht zerfällt.

$$\omega = \alpha \Delta t \tag{2.3}$$

$$1 - \omega = 1 - \alpha \Delta t \tag{2.4}$$

Nun sollen größere Zeitspannen t betrachtet werden. Dazu wird t so in k gleich große Teilzeitspannen unterteilt, dass jede Teilzeitspanne t_i klein genug ist, um linear angenähert zu werden. Dann kann die Wahrscheinlichkeit $(1 - \omega_i)$ dafür ermittelt werden, dass in der Teilzeitspanne t_i kein Zerfall stattfindet (2.5).

Daraus kann die Wahrscheinlichkeit $(1-\omega)$ für den Erhalt des Kerns nach der Zeit termittelt werden (2.6).

$$1 - \omega_i = \left(1 - \alpha \frac{t}{k}\right) \tag{2.5}$$

$$1 - \omega = \left(1 - \alpha \frac{t}{k}\right)^k \tag{2.6}$$

Um ein exaktes Ergebnis zu erzielen, müssen die Teilzeitabschnitte infinitesimal klein sein. Damit wird k unendlich groß. Dadurch kann die Wahrscheinlichkeit $(1-\omega)$ für den Erhalt des Kerns durch eine Exponentialfunktion beschrieben werden.

Ensprechend kann die Wahrscheinlichkeit ω für einen Zerfall innerhalb der Zeitspanne t beschrieben werden.

$$1 - \omega = \lim_{k \to \infty} \left(1 - \alpha \frac{t}{k} \right)^k$$

$$= e^{-\alpha t}$$

$$\omega = 1 - e^{-\alpha t}$$
(2.7)
(2.8)

$$= e^{-\alpha t} \tag{2.8}$$

$$\omega = 1 - e^{-\alpha t} \tag{2.9}$$

Die Zerfallswahrscheinlichkeit α lässt sich nun aus der Halbwertszeit.

$$\omega(T_{1/2}) = \frac{1}{2}$$

$$\Rightarrow \alpha = \frac{\ln(2)}{T_{1/2}}$$

$$(2.10)$$

$$\Rightarrow \alpha = \frac{\ln(2)}{T_{1/2}} \tag{2.11}$$

2.2 Statistik

2.2.1 Zufallsvariablen

Eine Zufallsvariable ist eine Funktion X, die jedem Ereignis ω eines Zufallsexperiments eindeutig eine reelle Zahl zuordnet. Sie kann sowohl diskret als auch kontinuierlich sein.

$$X: \omega \to x(\omega) \in \mathbb{R} \tag{2.12}$$

Das Ereignis ω des Zufallsexperiments kann direkt eine Zahl sein, wie beispielsweise die Augenzahl eines Würfelswurfs. Alternativ kann Jedem Ereignis des Zufallsexperiments wird eine Zahl zugeordnet werden, beispielsweise können bei einem Münzwurf dem Ereignis Kopf der Wert 0 und dem Ereignis Zahl eine 1 zugeordnet werden.

2.2.2 Wahrscheinlichkeitsdichte

Eine Wahrscheinlichkeitsdichte (PDF¹) ist eine Funktion f(y), welche die Wahrscheinlichkeit \mathbb{P} angibt, dass eine Zufallsvariable X einen Wert innerhalb eines Intervalls [a,b]annimmt.

$$\int_{a}^{b} f(y)dy = \mathbb{P}(X(\omega) \in [a, b]) \tag{2.13}$$

Die Wahrscheinlichkeitsdichte kann auch Werte über 1 annehmen. Beispielsweise kann der Ort eines Punktteilchens durch eine δ -Funktion beschrieben werden. Im Fall von diskreten Zufallsvariablen kann auch die Wahrscheinlichkeitsdichte diskret sein.

2.2.3 Wahrscheinlichkeitsverteilung

Eine Wahrscheinlichkeitsverteilungsfunktion (CDF²) einer Zufallsvariable X ist dagegen eine Funktion F(y), die angibt mit welcher Wahrscheinlichkeit \mathbb{P} die Zufallsvariable X einen Wert kleiner gleich y annimmt. Sie ist die integrierte Wahrscheinlichkeitsdichte $f(\omega)$.

$$F(y) = \mathbb{P}(X(\omega) \le y) \tag{2.14}$$

$$F(y) = \int_{-\infty}^{y} f(\tilde{y})d\tilde{y} \tag{2.15}$$

2.3 Wahrscheinlichkeitsverteilungen

2.3.1 Binomialverteilung

Die Binomialverteilung ist eine wichtige diskrete Wahrscheinlichkeitsverteilung. Sie beschreibt ein Zufallsexperiment, das genau zwei sich gegenseitig ausschließende Ereignisse A und B haben kann. Die entsprechenden Wahrscheinlichkeiten \mathbb{P} können wie folgt definiert werden.

$$\mathbb{P}(A) = p \tag{2.16}$$

$$\mathbb{P}(B) = 1 - p \tag{2.17}$$

$$\mathbb{P}(B) = 1 - p \tag{2.17}$$

Dieses Experiment wird N-mal durchgeführt, wobei die einzelnen Ergebnisse jeder Wiederholung unabhängig von den Ergebnissen der vorherigen Wiederholungen sind. Die Zufallsvariable X gibt dann die Anzahl n an eingetretenen Ereignissen A an. Dabei spielt die Reihenfolge, in der die Ereignisse A eintreten, keine Rolle.

¹Probability Density Function

² Cumulative Distribution Function, kumulative Verteilungsfunktion

Die entsprechende Wahrscheinlichkeit P(N, n, p) gibt demnach die Wahrscheinlichkeit an, dass das Ereignis A genau n-mal eintritt. Weiterhin können der Erwartungswert μ und die Varianz σ^2 bestimmt werden.

$$P(N, n, p) = \binom{N}{n} p^n (1-p)^{N-n}$$
 (2.18)

$$m = Np$$

$$\sigma^2 = Np(1-p)$$

$$(2.19)$$

$$(2.20)$$

$$\sigma^2 = Np(1-p) \tag{2.20}$$

Der Binomialkoeffizient $\binom{N}{n}$ dient dabei dazu, alle möglichen Reihenfolgen zu berücksichtigen, in der das Ereignis A eintreten kann, wobei der restliche Term die Wahrscheinlichkeit angibt, dass das Ereignis A in einer bestimmten Reihenfolge n-mal eintritt.

2.3.2 Poissonverteilung

Die Poissonverteilung beschreibt Reihen von Zufallsvariablen, die unabhängig voneinander eintreten. Sie ist eine weitere diskrete Verteilung mit der Wahrscheinlichkeitsdichte $P(n,\lambda)$, Erwartungswert m und Varianz σ^2 .

$$P_{\lambda}(n) = \frac{\lambda^n}{n!} e^{-\lambda} \tag{2.21}$$

$$m = \lambda \tag{2.22}$$

$$\sigma^2 = \lambda \tag{2.23}$$

$$P_{\lambda}(n) = \frac{\lambda^{n}}{n!}e^{-\lambda}$$

$$m = \lambda$$

$$\sigma^{2} = \lambda$$

$$\Rightarrow \frac{\sigma}{m} = \frac{1}{\sqrt{m}}$$

$$(2.21)$$

$$(2.22)$$

$$(2.23)$$

Die Poissonverteilung $P_{\lambda}(n)$ folgt als Grenzfall aus der Binomialverteilung P(N, n, p)mit infinitesimal kleinen Schrittgrößen $(p \to 0)$ und unendlich vielen Schritten $(N \to 0)$. Dabei bildet $\lambda \equiv Np$ eine Konstante. Die Poissonverteilung ist als Näherung für die Binomialverteilung zu verwenden, falls folgende Bedingung erfüllt ist.

$$P(n,\lambda) = \lim_{\substack{N \to \infty \\ p \to 0}} P(N,n,p)$$
 (2.25)

$$Np \leq 10 \tag{2.26}$$

2.3.3 Gaußverteilung

Die Gaußverteilung ist eine kontinuierliche Verteilung. Ihre Wahrscheinlichkeitsdichte $P(x,\mu,\sigma)$ wird folgendermaßen mithilfe des Erwartungswerts μ und der Varianz σ^2 beschrieben. Die Normalverteilung ist eine Gaußverteilung mit $\mu = \sigma^2 = 1$.

$$P(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (2.27)

Der Grenzwert der Poissonverteilung für $\lambda \to \infty$ liefert die Gaußverteilung.

$$\lim_{\lambda \to \infty} \frac{\lambda^n e^{-\lambda}}{n!} = \frac{1}{\sqrt{2\pi\lambda}} e^{-\frac{(x-\lambda)^2}{2\lambda}}$$
 (2.28)

Weiterhin konvergiert die Binomialverteilung nach dem Satz von Moivre-Laplace für $N \to \infty$ mit der Bedingung 0 gegen die Normalverteilung. Eine Faustregelbesagt, dass die Normalverteilung schon eine gute Näherung für die Binomialverteilung liefert, sobald gilt die untenstehende Bedingung erfüllt ist.

$$\lim_{N \to \infty} \binom{N}{n} p^n (1-p)^{N-n} = \frac{1}{\sqrt{2\pi N p (1-p)}} e^{-\frac{(x-Np)^2}{2Np(1-p)}}$$

$$Np(1-p) \ge 9$$
(2.29)

$$Np(1-p) \ge 9 \tag{2.30}$$

2.4 Intervallverteilung

Die Intervallverteilung ist dann gefragt, wenn nicht die Anzahl an eingetroffenen Ereignissen A, sondern stattdessen die Zeit zwischen zwei oder mehr Ereignissen A interessant ist.

Für Kernzerfälle ist ihre Wahrscheinlichkeitsdichte P_n wie folgt gegeben. Sie ähnelt der Poissonverteilung, hat aber einen zusätzlichen Faktor a.

$$P_n = a \frac{(at)^n}{n!} e^{-at} (2.31)$$

Damit gibt die kumulative Verteilungsfunktion $\int_{t_0}^{t_1} P_n dt$ die Wahrscheinlichkeit an, dass in dem Zeitintervall $[t_0, t_1]$ zwei Ereignisse im Abstand t stattgefunden haben, sowie n weitere Ereignisse zwischen diesen beiden. Somit haben in der Zeit t exakt n+2Ereignisse stattgefunden.

Somit gibt die Verteilungsfunktion für n=0 die Wahrscheinlichkeit an, dass die Zeit t zwischen zwei aufeinanderfolgenden Zerfällen innerhalb des Intervalls $[t_0, t_1]$ liegt.

2.5 Herleitung

Nun soll die Wahrscheinlichkeitsdichte P_n der Intervallverteilung hergeleitet werden.

Hierzu wird die Wahrscheinlichkeit W bestimmt, dass die Zeit zwischen zwei Zerfällen, zwischen denen genau n andere Zerfälle stattfinden, den Wert Δt annimmt. W setzt sich aus dem Produkt zweier Einzelwahrscheinlichkeiten W_1 und W_2 zusammen.

 W_1 gibt die Wahrscheinlichkeit an, dass im Zeitintervall Δt genau n weitere Zerfälle stattfinden. Dies wird durch eine Poissonverteilung (2.21) beschrieben, deren Erwartungswert $\lambda = a\Delta t$ beträgt und durch die Zerfallswahrscheinlichkeit a beschrieben wird.

 W_2 hingegen gibt die Wahrscheinlichkeit an, dass nach der Zeit Δt in einer sehr kurzen Zeit dt ein Zerfall stattfindet. Aufgrund der kurzen Zeitspanne kann dies linear genähert werden, wie es bei der Herleitung der Zerfallswahrscheinlichkeit in Abschnitt 2.1.3 in Gleichung (2.3) gemacht wurde.

$$W_1 = \frac{(a\Delta t)^n}{n!} e^{-a\Delta t}$$
 (2.32)

$$W_2 = a \, \mathrm{d}t \tag{2.33}$$

$$W = W_1 \cdot W_2 \tag{2.34}$$

$$= \frac{(a\Delta t)^n}{n!} e^{-a\Delta t} \cdot a \, dt \tag{2.35}$$

Da die Wahrscheinlichkeit W das Integral der Wahrscheinlichkeitsdichte P_n darstellt, wird P_n durch differenzieren ermittelt.

$$P_{n} = \frac{\mathrm{d}W}{\mathrm{d}t}$$

$$= a \frac{(at)^{n}}{n!} e^{-at}$$
(2.36)

$$= a \frac{(at)^n}{n!} e^{-at} \tag{2.37}$$

2.6 Statistische Tests

2.6.1 Hypothesentest

Ein Hypothesentest oder Statistischer Test dient dazu, durch eine Hypothese mittels statistischer Messungen zu bewerten.

Dazu verwendet man eine $Nullhypothese^3$ H_0 und eine Gegenhypothese oder Alterna $tivhypothese H_1$, die sich unterscheiden. Ziel des Tests ist es, die Alternativhypothese H_1 zu belegen. Falls dies nicht gelingt, muss man die Nullhypothese H_0 als wahr annehmen. Diese wird nicht überprüft. [2]

Aufgrund der Zufälligkeit der Ereignisse kann es dabei zwei Arten von Fehlern geben. Ein α -Fehler beschreibt das irrtümliche Ablehnen von H_0 , während ein β -Fehler das fälschliche Annehmen von H_0 bezeichnet.

2.6.2 Fehlerarten

Ein Fehler erster Art oder α -Fehler beschreibt die fälschliche Ablehnung der Nullhypothese H_0 in einem Statistischen Test. Man nimmt z.B. an, dass ein Würfel gezinkt ist (H_1) , obwohl er in Wahrheit fair ist (H_0) . Hierbei ist die H_0 die Annahme eines fairen Würfels. Man spricht hier auch von einem falsch-positiven Ergebnis. [3]

Ein Fehler zweiter Art oder β -Fehler beschreibt umgekehrt die fälschliche Akzeptanz der Nullhypothese H_0 . Beispielsweise geht man davon aus, dass ein Würfel fair ist (H_0) ,

³Hypothesis to be nullified [5]

obwohl er tatsächlich unfair ist (H_1) . Man spricht hier auch von einem falsch-negativen Ergebnis. [3]

Die statistische Signifikanz beschreibt die erlaubte Wahrscheinlichkeit, einen α -Fehler zu begehen. [4] In einem Alternativtest dagegen beschreibt die Signifikanz die Wahrscheinlichkeit, einen α - oder einen β -Fehler zu machen. Bei einer Signifikanz Y sind α - und β -Fehler mit einer Wahrscheinlichkeit von je $\frac{Y}{2}$ erlaubt.

2.6.3 Der χ^2 -Anpassungstest

Der $\chi^2\!-\!$ Anpassungstest dient dazu, eine Verteilung von Zufallsvariablen Amit einer theoretischen Verteilung zu vergleichen. Man kann mithilfe des Tests bewerten, ob die Zufallsvariablen der Verteilung entsprechen können. Hierbei werden sowohl Fehler 1. Art als auch Fehler 2. Art berücksichtigt.

Die Grundidee dahinter ist, einen Erwartungswert $\langle A \rangle$ und seine Varianz σ_A^2 bewerten zu können. Das Maß für die Abweichung von der Hypothese wird für einen Freiheitsgrad durch χ^2 beschrieben,⁴ was durch die χ^2 -Verteilung beschrieben wird.

$$\chi^2 = \sum_i x_i^2 \tag{2.38}$$

Mithilfe der χ^2 -Verteilung kann eine Signifikanz Y festgelegt werden. Damit kann ein Intervall $[\chi^2_{\min}, \chi^2_{\max}]$ durch die Verteilungsfunktion F(x, f) ermittelt werden. Liegt das ermittelte χ^2 in diesem Interval, so kann H_1 als signifikant gültig angenommen werden.

$$F(\chi_{\min}^2, f) = 1 - \frac{Y}{2}$$
 (2.39)

$$F(\chi_{\text{max}}^2, f) = \frac{Y}{2} \tag{2.40}$$

Oft wird die Signifikanz von Y = 5% gefordert, wodurch das Gültigkeitsintervall durch folgende Gleichungen bestimmt wird.

$$F(\chi_{\min}^2, f) = 0.975 \tag{2.41}$$

$$F(\chi^2_{\min}, f) = 0.975$$
 (2.41)
 $F(\chi^2_{\max}, f) = 0.025$ (2.42)

Falls $\chi^2 < \chi^2_{\rm min}$ das Ergebnis des Tests ist, sind die Daten zu gut an die These angepasst. Dies kann beispielsweise durch Overfitting entstehen.

⁴Man könnte auch den Betrag $|x_i|$ anstatt des Quadrates x_i^2 wählen. Dies wird nicht gemacht, weil damit schwieriger zu rechnen ist.

2.6.3.1 Pearsons χ^2 -**Test** Eine Variante des χ^2 -Tests betrachtet nur ein Ende der Gauß–Verteilung. Hierbei wird die Signifikanz Y verwendet, um ein maximal gültiges $\chi^2_{\rm max}$ zu bestimmen, dabei wird auf einen minimalen Wert verzichtet. [9] Damit kann eine Hypothese nur dann abgelehnt werden, wenn χ^2 zu groß ist, ein zu kleines χ^2 ist dabei nicht betrachtet. Auch hier wird oft eine Signifikanz von $5\,\%$ verwendet.

$$F(\chi_{\text{max}}^2, f) = Y$$
 (2.43)
 $F(\chi_{\text{max}}^2, f) = 0.05$ (2.44)

$$F(\chi_{\text{max}}^2, f) = 0.05 \tag{2.44}$$

(2.45)

2.6.4 Die χ^2 -Verteilung

Sei A standardnormalverteilt⁵, dann ist die χ_1^2 -Verteilung eine quadrierte Normalverteilung mit einem Freiheitsgrad. Daher ist der Erwartungswert $\langle \chi_1^2 \rangle = 1$. Gibt es mehrere Freiheitsgrade f,so müssen f Erwartungswerte $\langle \chi_i^2 \rangle$ addiert werden, um den gesamten Erwartungswert zu ermitteln. Dies wird durch die Wahrscheinlichkeitsdichte (PDF⁶) f(x, f) beschrieben, wobei die Gammafunktion $\Gamma(x)$ benötigt wird.

$$f(x,2f) = \begin{cases} \frac{x^{f-1}}{2^f} \frac{\exp\left[-\frac{x}{2}\right]}{\Gamma(f)} & : x \ge 0\\ 0 & : x < 0 \end{cases}$$
 (2.46)

$$\Gamma(x) = \int_0^\infty t^{x-1} \cdot e^t dt$$
 (2.47)

Die Verteilungsfunktion (CDF⁸) F(x, f) ist dabei komplex und hat den Erwartungswert $\langle \chi_f^2 \rangle = f$ und die Varianz $\sigma_{\chi^2} = 2f$.

$$F(x,2f) = \int_0^x \frac{y^{f-1}}{2^f} \frac{\exp\left[-\frac{y}{2}\right]}{\Gamma(f)} dy$$
 (2.48)

$$\left\langle \chi_f^2 \right\rangle = \int_0^\infty x \cdot f(x, f) \, \mathrm{d}x$$
 = f (2.49)

$$\sigma_{\chi^2} = \int_0^\infty \left(x - \left\langle \chi_f^2 \right\rangle \right)^2 \cdot f(x, f) \, \mathrm{d}x \qquad = 2f \qquad (2.50)$$

2.7 Versuchsidee

In diesem Versuch wird ¹³⁷Cs als radioaktive Probe verwendet, das eine Halbwertszeit $t_{\frac{1}{2}} \approx 30 \,\mathrm{a} \,\mathrm{hat}.$

⁵Diese Annahme ist bei ausreichend vielen Messung durch das Gesetz der großen Zahl gerechtfertigt. ⁶ probability density function

⁷Achtung: Hier wird zur besseren Lesbarkeit f(x, 2f) angegeben, die Zahl der Freiheitsgrade wird in der Funktion halbiert.

⁸ cumulative distribution function

Damit soll die folgende Hypothese getestet, die Präparatstärke sei konstant und habe den Wert \bar{n} . Hierbei ist \bar{n} der Mittelwert von vielen Einzelmessungen n_i über eine kurze Zeit von $\Delta t = 20 \,\mathrm{s}$, der durch Gleichung (2.51) bestimmt wird. All diese N Messungen werden in einem Zeitraum von wenigen Stunden absolviert.

Da der Zeitraum der Messungen sehr kurz gegen die Halbwertszeit ist, kann man annehmen, dass die Stärke der Probe sich im Rahmen der Messungenauigkeit nicht verändert.

Damit können die Differenzen zum Mittelwert $(n_i - \bar{n})$ ermittelt werden. Nach dem zentralen Grenzwertsatz sind die relativen Differenzen standardnormalverteilt. Dadurch kann die Abweichung χ^2 wie folgt ermittelt werden.

$$\bar{n} = \sum_{i=1}^{N} \frac{n_i}{N} \tag{2.51}$$

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \bar{n})^2}{\bar{n}} \tag{2.52}$$

2.7.1 Das Geiger-Müller-Zählrohr

Ein Geiger-Müller-Zählrohr besteht aus einem edelgasgefüllten Zylinderkondensator mit einem dünnem Anodendraht in der Mitte. Das elektrische Potential ist somit ein zylindersymmetrisch, um die Anode herum ist es am stärksten. Dies ist in Abbildung 1 schematisch dargestellt.

Wenn ein Photon in den Zylinder eintritt und auf ein Gasteilchen trifft, wird die Energie des Photons übertragen und ein Elektron aus dem Atom gelöst. Durch das elektrische Potential wird das freie Elektron zur Anode hin beschleunigt und stößt auf dem Weg mit weiteren Gasteilchen. Dadurch sammeln sich immer mehr Elektronen um den Anodendraht.

Währenddessen regen sich die Gasteilchen durch Photonenemission ab und erzeugen die sogenannte Geiger-Entladung. Hierbei ionisieren die entstandene Photonen weitere Gasteilchen, somit entstehen weitere Elektronen. Da die Photonen überall innerhalb des Zählrohr sein können, findet die Entladung in dem gesamten Zählrohr statt.

Die Zeit, während der die relativ langsame Wolke aus ionisierten Gasteilchen nach außen zur Zylinderwand wandert, wird *Totzeit* genannt. In diesem Zeitraum existiert um den Anodendraht kein Potential. Daher es können dann keine Elektronen beschleunigt werden, obwohl weitere Strahlungsquanten ins Zählrohr hinein dringen können. In dieser Zeit kann keine Strahlungen gemessen werden.

Um eine Mehrfachentladung von Gasteilchen während der Totzeit an der Zylinderwand zu vermeiden wird ein starker Widerstand mit ca. $10^8\,\Omega$ zwischen Hochspannungsversorgung und Anode geschaltet. Dadurch ist die Hochspannung nach einer Entladung nicht ausreichend für eine weitere Entladung.

Abbildung 1: Aufbau eines typischen Geiger-Müller-Zählrohrs [12]

2.7.2 Totzeit

Ganz allgemein beschreibt Totzeit τ die Zeit, die nach der Registrierung eines Ereignisses durch einen Detektor verstreicht, bis der Detektor wieder messbereit ist. [14]

Wie schon beschrieben ist während der Totzeit τ keine Strahlungsmessung möglich. Dadurch weicht die gemessene Zählrate a' von der tatsächlichen Rate a ab. Um die tatsächliche Rate zu bestimmen, muss für jedes gemessene Teilchen die Anzahl der Detektionen in der Totzeit $a\tau$ addiert werden. Dies beschreibt die tatsächlich geschehenen Ereignisse, die während der Totzeit nicht gemessen werden können.

Analog kann der gemessene Mittelwert m' von in einem Zeitraum T gemessenen Ereignissen korrigiert werden, um den korrigierten Mittelwert m = aT zu erhalten.

$$a = a' \cdot (1 + a\tau) \tag{2.53}$$

$$a = a' \cdot (1 + a\tau)$$

$$\Leftrightarrow a = \frac{a'}{1 - a'\tau}$$

$$m = \frac{m'}{1 - a'\tau}$$

$$(2.53)$$

$$(2.54)$$

$$m = \frac{m'}{1 - a'\tau} \tag{2.55}$$

Das Verhältnis von Varianz σ^2 und Mittelwert m der gemessenen Verteilung entspricht der tatsächlichen Verteilung. Weisen die Messwerte eine Poissonverteilung auf, so kann man folgende Relationen ermitteln.

$$\frac{\sigma}{m} = \frac{\sigma'}{m'} \tag{2.56}$$

$$\frac{\sigma}{m} = \frac{\sigma'}{m'}$$

$$\Rightarrow \sigma'^2 = \frac{m'^2}{m}$$

$$= m' \cdot \frac{a'}{a}$$

$$(2.56)$$

$$(2.57)$$

$$= m' \cdot \frac{a'}{a} \tag{2.58}$$

$$= m' \cdot (1 - a'\tau) \tag{2.59}$$

Hierbei wurden die Verhältnisse $\frac{\sigma}{m}$ und $\frac{a'}{a}$ durch die Gleichungen (2.24) und (2.55) beschrieben.

2.7.3 Einfluss der Totzeit

Die Totzeit der Länge τ hat einen Einfluss auf die gemessenen Zählraten. Anstatt einer Zählrate von $\frac{n_i}{\Delta t}$ wird eine totzeitkorrigierte Anzahl k_i gemessen. Dadurch kann ein korrigierter Mittelwert M nach (2.51) bestimmt werden und man erhält eine korrigierte Abweichung $\chi^2_{\rm korr}$. Die korrigierte Rate wird nach Gleichung (2.54) bestimmt.

$$k_i = \frac{n_i}{1 - \frac{m}{\Delta t}\tau} \tag{2.60}$$

$$M = \sum_{i=1}^{N} \frac{k_i}{N}$$
 (2.61)

$$\chi_{\text{korr}}^2 = \sum_{i=1}^N \frac{(k_i - M)^2}{M}$$
 (2.62)

Durch Einsetzen der Gleichungen (2.60)-(2.61) sowie (2.52) kann man (2.62) vereinfachen und man erhält die folgende vereinfachte Relation. Hier sieht man, dass die korrigierte Abweichung $\chi^2_{\rm korr}$ kleiner als die nicht–korrigierte Abweichung χ^2 ist, was kontraintuitiv wahrgenommen werden kann.

$$\chi_{\text{korr}}^2 = \frac{1}{1 - \frac{m}{\Delta t}\tau} \cdot \chi^2 \tag{2.63}$$

2.7.4 Zwei-Präparate-Methode

Die Zwei-Präparate-Methode wird verwendet, um die Totzeit zu messen. Man misst die Zählrate von zwei verschiedenen Präparaten $z_{1/2}^{\prime}$ jeweils einzeln und dann von beiden zusammen z'_{12} . Zusätzlich wird die Untergrundzählrate z'_0 ohne Präparate gemessen.

Somit erhält man gemessene Werte z_i' und sowie wahre Werte z_i . Die wahren Zählraten z_i sind durch die Präparate und den Untergrund entstanden.

Nun seien $p_{1,2,12}$ die Zählraten, die sich durch die Verwendung von Präparaten ergeben. Daraus erhält man ein lösbares Gleichungssystem mit von je acht Gleichungen und Unbekannten. Die letzten Gleichungen ergeben sich durch die Totzeitkorrektur (2.54) der Zählraten.

$$p_{12} = p_1 + p_2 (2.64)$$

$$\forall i \in \{1, 2, 12\}: \qquad z_i = p_i + z_0 \tag{2.65}$$

$$\forall i \in \{1, 2, 12\}: \quad z_i = p_i + z_0$$

$$\forall i \in \{0, 1, 2, 12\}: \quad z_i = \frac{z_i'}{1 - z_i'\tau}$$

$$(2.65)$$

Die Lösung dieses Gleichungssystems ergibt die Totzeit.

$$\tau_{1,2} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

$$A = u'z'_{12}z'_2 - z'_1z'_12z'_2 + u'z'_{12}z'_1 - u'z'_1z'_2$$

$$B = -2z'_{12}u' + 2z'_1z'_2$$

$$C = z'_{12} - z'_1 + u' - z'_2$$
(2.67)

3 Durchführung

3.1 Versuchsaufbau

Der Aufbau beinhaltet zwei ¹³⁷Cs-Quellen und Zählrohr mit angeschlossener Elektronik. Die am Zählrohr angeschlossene Spannung lässt sich variieren, die Zählrohrelektronik erzeugt ein Rechtecksignal je detektiertem Ereignis. Dieses Signal wird an einen Zähler und an einen Computer übertragen. Auf dem Computer können die Ereignisse zeitaufgelöst gemessen werden.

Zur Bearbeitung der Daten sind am Computer drei Python-Programme vorinstalliert, mit denen die Messdaten verarbeitet werden können. Mit divide.py Ereignisse in Zeitintervallen fester Größe, z.B. jeweils 10 s, gezählt. Mittels binomial.py kann eine Binomialverteilung aus den Daten extrahiert werden, mit interval.py eine Intervallverteilung.

3.2 Messungen

Es wurden 3 lange und 12 kurze Messungen durchgeführt.

Bei den ersten beiden langen Messungen wurde nur Probe A verwendet, bei der dritten langen Messung die Probe A und B. Eine Einzelmessung von Probe A und die gemeinsame Messung wurden bei einer Spannung von $500\,\mathrm{V}$ durchgeführt, die zweite Einzelmessung bei $600\,\mathrm{V}$. Hierbei wurden die Ereignisse zeitaufgelöst gemessen.

Die 12 kurzen Messung dienten der Bestimmung der Totzeit mit der Zwei-Präparate-Methode. Hierzu wurden jeweils bei Spannungen von $500\,\mathrm{V}$, $550\,\mathrm{V}$ und $600\,\mathrm{V}$ die Ereignisse in jeweils 5 min gemessen. Dabei wurden die Proben A und B sowohl einzeln als auch gemeinsam verwendet. Die letzten drei kurzen Messungen erfolgten ohne Proben, um den Untergrund zu vermessen.

4 Auswertung

4.1 Poissonverteilung

4.2 Gaußverteilung

4.3 Intervallverteilung

4.4 χ^2 -Test

Es werden 51 zufällige Messergebnisse gewählt, aus denen χ^2 gewählt wird. Da der Mittelwert einen statistischen Freiheitsgrad bindet, bleiben 50 Freiheitsgrade übrig, um die Gültigkeitsintervalle zu bilden.

$$\chi_{\min}^2 = 32.357 \tag{4.1}$$

$$\chi_{\min}^2 = 32.357$$
 $\chi_{\max}^2 = 71.420$
(4.1)

4.4.1 Hypothese H_1

Nach (2.52):

$$\bar{x} = \bar{n} \tag{4.3}$$

$$\chi_1^2 = \sum_i \frac{(x_i - \bar{x})^2}{\bar{x}} \tag{4.4}$$

4.4.2 Hypothese H_2

$$\bar{x}' = 0.9 \cdot \bar{n} \tag{4.5}$$

$$\chi_2^2 = \sum_i \frac{(x_i - \bar{x}')^2}{\bar{x}'} \tag{4.6}$$

4.4.3 Hypothese H_3

Mit $i \in [0, N]$:

$$\langle x(i) \rangle = \bar{n} - i \tag{4.7}$$

$$\chi_3^2 = \sum_i \frac{(x_i - (n-i))^2}{(n-i)} \tag{4.8}$$

4.4.4 Halbwertszeit

$$N(t) = \bar{n} \cdot \exp[-\lambda t] \tag{4.9}$$

$$\bar{n} - 1 = \bar{n} \cdot \exp[-\lambda \Delta t]$$
 (4.10)

$$\Rightarrow \lambda = \frac{1}{\Delta t} \ln \left(\frac{\bar{n}}{\bar{n} - 1} \right) \tag{4.11}$$

$$N(t) = \bar{n} \cdot \exp[-\lambda t]$$

$$\bar{n} - 1 = \bar{n} \cdot \exp[-\lambda \Delta t]$$

$$\Rightarrow \lambda = \frac{1}{\Delta t} \ln\left(\frac{\bar{n}}{\bar{n} - 1}\right)$$

$$\Rightarrow T_{1/2} = \frac{\Delta t \ln(2)}{\ln\left(\frac{\bar{n}}{\bar{n} - 1}\right)}$$

$$(4.19)$$

$$(4.11)$$

5 Fazit

6 Literaturverzeichnis

- [1] Universität zu Köln, "B3.1: Statistik der Kernzerfälle", Januar 2021, Online verfügbar unter https://www.ikp.uni-koeln.de/fileadmin/data/praktikum/B3.1_statistik_de.pdf
- [2] Wikipedia, "Statistischer Test", https://de.wikipedia.org/wiki/Statistischer_Test, Abruf am 18.04.2024
- [3] Wikipedia, "Fehler 1. und 2. Art", https://de.wikipedia.org/wiki/Fehler_1 . und 2. Art, Abruf am 18.04.2024
- [4] Wikipedia, "Statistische Signifikanz", https://de.wikipedia.org/wiki/Statistische_Signifikanz, Abruf am 18.04.2024
- [5] G. Gigerenzer, "Mindless statistics", 2004, The Journal of Socio–Economics, p.587-606, DOI 0.1016/j.socec.2004.09.033
- [6] K. C. Kapur & M. Pecht, "Reliability Engineering": Appendix E, Wiley 2014, DOI 10.1002/9781118841716
- [7] E. Cramer & U. Kamps, "Grundlagen der Wahrscheinlichkeitsrechnung und Statistik", Springer 2020, DOI 10.1007/978-3-662-60552-3
- [8] J. Puhani, "Statistik", Springer 2020, DOI 10.1007/978-3-658-28955-3
- [9] Mary L. McHugh, "The Chi-square test of independence", Biochemia Medica, DOI $10.11613/\mathrm{BM}.2013.018$
- [10] Lexikon der Physik, "Halbwertszeit", https://www.spektrum.de/lexikon/physik/halbwertszeit/6327, Abruf am 07.06.2024
- [11] National Nuclear Data Center, "Chart of Nuclides", https://www.nndc.bnl.gov/nudat3, 137Cs, Abruf am 07.05.2024
- [12] Wikimedia, "File:Geiger Mueller Counter with Circuit-de.svg", https://commons.wikimedia.org/wiki/File:Geiger_Mueller_Counter_with_Circuit-de.svg, Abruf am 22.04.2024
- [13] Ulf Konrad, "Geiger-Müller-Zählrohr", https://www.ulfkonrad.de/physik/geiger-mueller-zaehlrohr, Abruf am 22.04.2024
- [14] Lexikon der Physik, "Totzeit", https://www.spektrum.de/lexikon/physik/totzeit/14643, Abruf am 22.04.2024