

DISPOSITIF POUR CORRIGER LES ERREURS D'INTERFERENCES

La présente invention concerne le domaine technique des capteurs magnétiques
5 sans contact adaptés pour repérer la position d'un mobile évoluant selon un axe de déplacement, de préférence linéaire.

L'objet de l'invention trouve une application particulièrement avantageuse mais non exclusivement dans le domaine des véhicules automobiles en vue d'équiper différents organes à déplacement en particulier linéaire dont la position doit être
10 connue et faisant partie, par exemple, d'une boîte de vitesses automatique, d'une suspension, d'un embrayage piloté, d'une direction assistée, d'un capteur de réglage d'assiette, etc.

Dans l'état de la technique, il existe de nombreux types de capteurs sans contact adaptés pour connaître la position linéaire d'un mobile se déplaçant en translation. Par exemple, le brevet US 4 810 965 décrit un capteur magnétique comportant un circuit magnétique fermé comportant une pièce polaire en forme de U pourvue, entre ses deux extrémités libres, d'un aimant créant une induction magnétique selon une direction perpendiculaire à la surface de la pièce polaire. Une cellule de mesure mobile est montée entre les branches de la pièce polaire pour mesurer la valeur de l'induction magnétique en relation de la surface de la pièce polaire. Une telle cellule mesure ainsi l'intensité de l'induction magnétique de fuite apparaissant entre les deux branches de la pièce polaire, l'intensité de cette induction magnétique de fuite variant à la surface de la pièce polaire selon l'axe de translation de la cellule de mesure. Un tel capteur comporte également des moyens de traitement
20 du signal de sortie délivré par la cellule de mesure afin de déterminer la position linéaire du mobile le long de l'axe de translation.

Dans certaines applications, par exemple pour un embrayage piloté, il apparaît le besoin de connaître la position linéaire de mobiles se déplaçant à proximité l'un de l'autre. La position linéaire de chaque mobile peut alors être déterminée à l'aide d'un
30 capteur magnétique de mesure tel que décrit ci-dessus.

La Déposante a eu le mérite de constater que la mesure effectuée par un capteur magnétique était perturbée par l'autre capteur magnétique. En d'autres termes, la Déposante a constaté des erreurs d'interférences pour une installation de

mesure comportant au moins deux capteurs magnétiques de mesure de la position de mobiles évoluant selon des trajectoires voisines de déplacement.

L'objet de l'invention vise donc à remédier aux erreurs d'interférences apparaissant pour une telle installation de mesure. A cet effet, l'objet de l'invention 5 vise à proposer un dispositif pour corriger les erreurs d'interférences pour une installation de mesure comportant :

- au moins deux capteurs magnétiques de mesure de la position de mobiles évoluant selon des trajectoires de déplacement voisines, chaque capteur magnétique de mesure délivrant un signal de mesure représentatif de la position du mobile dans 10 un circuit magnétique ouvert,
- et des moyens de traitement des signaux de mesure délivrés par les capteurs magnétiques de mesure.

Selon l'invention, les moyens de traitement comportent des moyens de correction des signaux magnétiques de mesure pour tenir compte des erreurs 15 d'interférences entre les capteurs magnétiques voisins en vue d'obtenir un signal de mesure corrigé pour chaque capteur magnétique de mesure.

Avantageusement, les moyens de correction corrigent le signal de mesure de chaque capteur magnétique de mesure en fonction de la valeur des signaux de mesure du capteur magnétique de mesure considéré et des autres capteurs magnétiques de 20 mesure.

Selon une caractéristique de l'invention, les moyens de traitement délivrent pour chaque capteur magnétique de mesure, un signal de mesure corrigé tel que :

$$\begin{aligned} S_{1c} &= \sum_{i=1}^n \left(\sum_{j=0}^i \alpha_{ij} S_1^j S_2^{i-j} \right) \\ S_{2c} &= \sum_{i=1}^n \left(\sum_{j=0}^i \alpha'_{ij} S_2^j S_1^{i-j} \right) \end{aligned}$$

25 avec : α, α' : coefficients de correction et n : ordre de la correction.

Selon une variante de réalisation, les moyens de traitement délivrent pour chaque capteur magnétique de mesure, un signal de mesure corrigé tel que pour un ordre de correction de $n = 3$, les α, i, j et α' , sont tels que :

$$\begin{aligned} \alpha_{10} &= a - c & , & \alpha_{11} = 1 + c \\ 30 \quad \alpha'_{10} &= a' - c' & , & \alpha'_{11} = 1 + c' \end{aligned}$$

$$\begin{aligned}\alpha_{20} = 0 &= \alpha'_{20}, & \alpha_{21} = \alpha'_{21} = 0, & \alpha_{22} = \alpha'_{22} = 0 \\ \alpha_{30} = -b &, & \alpha_{31} = 3b &, \alpha_{32} = -3b &, \alpha_{33} = b \\ \alpha'_{30} = -b' &, & \alpha'_{31} = 3b' &, \alpha'_{32} = -3b' &, \alpha'_{33} = b'\end{aligned}$$

avec a, b, c, a', b', c' : coefficients de correction

5 de sorte que :

$$\begin{aligned}S_{1c} &= (1 + c) S_1 + (a - c) S_2 + 3b S_1 S_2^2 - 3b S_1^2 S_2 + b S_1^3 - b S_2^3 \\ S_{2c} &= (1 + c') S_2 + (a' - c') S_1 + 3b' S_2 S_1^2 - 3b' S_2^2 S_1 + b' S_2^3 - b' S_1^3\end{aligned}$$

ou soit :

$$S_{1c} = S_1 + a S_2 + b (S_1 - S_2)^3 + c (S_1 - S_2)$$

10 et

$$S_{2c} = S_2 + a' S_1 + b' (S_2 - S_1)^3 + c' (S_2 - S_1)$$

Selon une autre variante de réalisation, les moyens de traitement délivrent pour chaque capteur magnétique de mesure, un signal de mesure corrigé tel que pour un ordre de correction n = 1, les valeurs de α , α' , i, j sont tels que $\alpha_{10} = a$, $\alpha_{11} = 1$ et
15 $\alpha'_{10} = a'$, $\alpha'_{11} = 1$ de sorte que :

$$S_{1c} = S_1 + a S_2, \text{ et } S_{2c} = S_2 + a' S_1$$

Avantageusement, chaque signal de mesure S_1 , S_2 est tel que

$$S_1 = \frac{S_a - S_b}{S_a + S_b}$$

$$S_2 = \frac{S_d - S_c}{S_d + S_c}$$

20 avec S_a , S_b , et S_c , S_d , un couple de signaux élémentaires de mesure délivrés par une paire de cellules de mesure montées dans le circuit magnétique ouvert.

Un autre objet de l'invention est de proposer une installation de mesure comportant :

- un premier capteur magnétique de mesure délivrant un premier signal de mesure de la position d'un premier mobile évoluant selon une trajectoire de déplacement, la valeur du premier signal de mesure dépendant de la position dudit mobile dans un circuit magnétique ouvert,
- au moins un deuxième capteur magnétique de mesure délivrant un deuxième signal magnétique de mesure de la position d'un deuxième mobile évoluant selon 30 une trajectoire de déplacement voisine de la trajectoire de déplacement du premier

mobile, la valeur du deuxième signal de mesure dépendant de la position dudit mobile dans un circuit magnétique ouvert,

- et un dispositif de correction conforme à l'invention.

Un autre objet de l'invention est de proposer un capteur magnétique sans contact adapté pour déterminer la position d'un mobile, en étant de conception simple, économique et pouvant fonctionner avec un large entrefer.

Ainsi, chaque capteur magnétique de mesure de l'installation conforme à l'invention, comporte des moyens de création d'un flux magnétique selon une direction perpendiculaire à la surface d'au moins une pièce polaire à partir de laquelle apparaît un flux magnétique de fuite dont l'intensité varie à la surface de la pièce polaire selon l'axe de déplacement, ces moyens de création d'un flux magnétique étant montés déplaçables par le mobile en délimitant au moins un entrefer avec une pièce polaire faisant partie du circuit magnétique ouvert, chaque capteur magnétique de mesure comportant au moins une cellule de mesure montée de manière fixe dans le circuit magnétique à proximité d'un point extrême de la trajectoire de déplacement de manière à mesurer le flux magnétique délivré par les moyens de création diminués d'un flux magnétique de fuite apparaissant à partir de la pièce polaire et variant selon la trajectoire de déplacement.

Par exemple, les moyens de création d'un flux magnétique des deux capteurs de mesure sont montés à proximité selon des trajectoires de déplacement parallèles.

Selon une variante préférée de réalisation, le capteur magnétique comporte une deuxième cellule de mesure montée de manière fixe dans le circuit magnétique à proximité de l'autre point extrême de déplacement de manière à mesurer le flux magnétique délivré par les moyens de création diminué du flux magnétique de fuite.

Avantageusement, les moyens de création du flux magnétique sont montés déplaçables en translation.

Avantageusement, les moyens de création du flux magnétique sont constitués par un élément de forme annulaire ou de disque, aimanté radialement ou axialement dont l'axe est parallèle à l'axe de translation.

Selon une autre forme de réalisation, les moyens de création du flux magnétique sont constitués par une série d'au moins quatre aimants dont les directions d'aimantation sont décalées deux à deux de 90°.

Selon une autre forme de réalisation, les moyens de création du flux magnétique sont réalisés par au moins un aimant dont la direction d'aimantation est parallèle à l'axe de translation.

5 Selon certaines applications, le circuit magnétique ouvert comporte une deuxième pièce polaire disposée en regard de la première pièce polaire en délimitant avec cette dernière un entrefer.

Selon cette variante de réalisation la deuxième pièce polaire est pourvue des moyens de création du flux magnétique.

10 Par exemple, cette deuxième pièce polaire est formée par un élément tubulaire équipé de l'élément annulaire aimanté radialement.

Avantageusement, l'une ou l'autre des pièces polaires possède(nt) un profil plan adapté pour améliorer la linéarité du signal de sortie délivré par les cellules de mesure.

15 Diverses autres caractéristiques ressortent de la description faite ci-dessous en référence aux dessins annexés qui montrent, à titre d'exemples non limitatifs, des formes de réalisation de l'objet de l'invention.

La Figure 1 est une vue schématique d'une installation de mesure mettant en œuvre un dispositif de correction conforme à l'invention.

Les Figures 2 et 3 sont des graphiques illustrant un aspect de l'invention.

20 La Figure 4 est une vue schématique montrant le principe d'un capteur mis en œuvre dans le cadre de l'invention.

La Figure 5 est une vue schématique en perspective montrant une variante préférée de réalisation du capteur utilisé.

25 Les Figures 6 et 7 sont des vues en perspective montrant diverses formes de réalisation des moyens de création d'un flux magnétique.

Les Figures 8 et 9 illustrent deux variantes de réalisation de profil de pièces polaires pouvant être mises en œuvre par un capteur dans le cadre de l'invention.

Les Figures 10 et 11 sont des vues en perspective de deux variantes de réalisation du capteur dans le cadre de l'invention.

30 Tel que cela apparaît plus précisément à la Fig. 1, l'objet de l'invention concerne un dispositif pour corriger les erreurs d'interférences pour une installation de mesure A comportant au moins deux capteurs magnétiques 1₁, 1₂ adaptés pour mesurer chacun la position d'un mobile respectivement 2₁, 2₂ évoluant selon des

trajectoires de déplacement voisines. Chaque capteur magnétique 1_1 , 1_2 comporte un circuit magnétique ouvert 3_1 , 3_2 et délivre un signal de mesure représentatif de la position du mobile 2_1 , 2_2 dans ledit circuit magnétique ouvert. Cette installation de mesure A comporte également des moyens de traitement M des signaux de mesure S_1 , S_2 délivrés respectivement par les capteurs magnétiques 1_1 , 1_2 .

Conformément à l'invention, les moyens de traitement M comportent des moyens de correction des signaux magnétiques de mesure S_1 , S_2 pour tenir compte des erreurs d'interférences entre les capteurs magnétiques voisins 1_1 , 1_2 en vue d'obtenir un signal de mesure corrigé S_{1c} , S_{2c} pour chaque capteur magnétique de mesure. En effet, il a été constaté que la mesure réalisée par un capteur est perturbée par la présence de l'autre capteur et réciproquement. L'objet de l'invention vise donc à corriger les signaux magnétiques de mesure S_1 , S_2 pour tenir compte de l'interférence entre les capteurs.

Selon une caractéristique avantageuse de réalisation, les moyens de correction corrigent le signal de mesure S_1 , S_2 de chaque capteur magnétique de mesure en fonction de la valeur des signaux de mesure du capteur magnétique de mesure considéré et des autres capteurs magnétiques de mesure. En effet, il a été constaté que l'intensité de la perturbation créée par un capteur dépend de la valeur prise par ledit capteur et de la valeur prise par l'autre capteur. Ainsi, par exemple dans le cas de la mesure de la position linéaire de deux mobiles voisins, la mesure réalisée par le capteur 1_1 est perturbée par la présence du mobile 2_2 auquel est associé le capteur 1_2 . Cette perturbation dépend de la position du mobile 2_2 . Par ailleurs, pour une position donnée du mobile 2_2 , la perturbation dépend également de la position du mobile 2_1 . Inversement, la mesure réalisée par le capteur 1_2 est perturbée par la présence du mobile 2_1 auquel est associé le capteur 1_1 . Cette perturbation dépend de la position donnée du mobile 2_1 . Par ailleurs, pour une position donnée du mobile 2_1 , la perturbation dépend également de la position du mobile 2_2 .

Pour une installation de mesure A, il est possible de déterminer l'erreur sur le signal de mesure S_1 en fonction du signal de mesure S_2 . Le graphique de la Fig. 2 représente cette erreur Δ sur le signal de mesure S_1 en fonction du signal de mesure S_2 . Il ressort de ce graphique que l'erreur ΔS_1 est globalement une fonction linéaire du signal de mesure S_2 . Il est ainsi possible, en connaissant les signaux de mesure S_1 , S_2 de définir un signal de mesure corrigé pour le capteur 1_1 tel que $S_{1c} = S_1 + a S_2$.

De même, il est possible de définir un signal de mesure corrigé pour le capteur S_2 tel que $S_{2c} = S_2 + a'S_1$, avec a , a' des coefficients de correction.

Il est à noter qu'un tel signal corrigé S_{1c} , S_{2c} reste entaché d'erreurs en raison de l'approximation linéaire de la correction apportée (correction d'ordre $n = 1$).

5 Le résidu d'erreur δ après cette correction d'ordre 1 est représenté à la Fig. 3, en fonction de la différence des signaux $S_1 - S_2$. Ce résidu d'erreur peut, par exemple, être approximé par un polynôme d'ordre 3 sur $(S_1 - S_2)$ dont les coefficients des exposants pairs sont nuls. Ainsi, il est possible, pour un ordre de correction d'ordre 3 ($n = 3$) de calculer un signal corrigé tel que :

10
$$S_{1c} = (1 + c) S_1 + (a - c) S_2 + 3bS_1 S_2^2 - 3bS_1^2 S_2 + bS_1^3 - bS_2^3$$

et

$$S_{2c} = (1 + c') S_2 + (a' - c') S_1 + 3b'S_2 S_1^2 - 3b'S_2^2 S_1 + b'S_2^3 - b'S_1^3$$

ou soit :

$$S_{1c} = S_1 + aS_2 + b(S_1 - S_2)^3 + c(S_1 - S_2)$$

15 et

$$S_{2c} = S_2 + a'S_1 + b'(S_1 - S_2)^3 + c'(S_2 - S_1)$$

avec b , c , b' , c' des coefficients de correction.

D'une manière générale, il peut être défini, pour chaque capteur de mesure, un signal de mesure corrigé tel que :

20
$$S_{1c} = \sum_{i=1}^n \left(\sum_{j=0}^i \alpha_{ij} S_1^j S_2^{i-j} \right)$$

$$S_{2c} = \sum_{i=1}^n \left(\sum_{j=0}^i \alpha'_{ij} S_2^j S_1^{i-j} \right)$$

avec : α , α' : coefficients de correction et n : ordre de la correction.

Pour un ordre de correction d'ordre 3 ($n = 3$), les α , i , j et α' sont tels que :

$\alpha_{10} = a - c$, $\alpha_{11} = 1 + c$

25 $\alpha'_{10} = a' - c'$, $\alpha'_{11} = 1 + c'$

$\alpha_{20} = 0 = \alpha'_{20}$, $\alpha_{21} = \alpha'_{21} = 0$, $\alpha_{22} = \alpha'_{22} = 0$

$\alpha_{30} = -b$, $\alpha_{31} = 3b$, $\alpha_{32} = -3b$, $\alpha_{33} = b$

$\alpha'_{30} = -b'$, $\alpha'_{31} = 3b'$, $\alpha'_{32} = -3b'$, $\alpha'_{33} = b'$

de sorte que :

30
$$S_{1c} = (1 + c) S_1 + (a - c) S_2 + 3bS_1 S_2^2 - 3bS_1^2 S_2 + bS_1^3 - bS_2^3$$

$$S_{2c} = (1 + c') S_2 + (a' - c') S_1 + 3b'S_2 S_1^2 - 3b'S_2^2 S_1 + b'S_2^3 - b'S_1^3$$

ou soit :

$$S_{1c} = S_1 + aS_2 + b(S_1 - S_2)^3 + c(S_1 - S_2)$$

et

5 $S_{2c} = S_2 + a'S_1 + b'(S_2 - S_1)^3 + c'(S_2 - S_1)$

Pour un ordre 1 de correction, les valeurs de α , i , j et α' sont tels que :

$$\alpha_{10} = a \quad \alpha_{11} = 1 \quad \alpha'_{10} = a' \quad \alpha'_{11} = 1$$

Il ressort de la description qui précède que les moyens de traitement des signaux permettent de corriger les erreurs d'interférences pour une installation de mesure A comportant deux capteurs magnétiques de mesure de la position de mobiles 2_1 , 2_2 se déplaçant à proximité. Bien entendu, l'objet de l'invention peut être appliqué pour une installation de mesure A comportant plus de deux capteurs magnétiques de mesure.

Chaque capteur magnétique 1_1 , 1_2 peut être réalisé de toute manière connue pour mesurer la position d'un mobile évoluant selon une trajectoire donnée. La Fig. 4 illustre un exemple préféré de réalisation d'un capteur magnétique 1_1 adapté pour déterminer la position d'un mobile 2_1 au sens général se déplaçant selon un axe de déplacement T_1 qui dans l'exemple illustré est un axe de translation. Le mobile 2_1 est constitué par tout type d'organes ayant dans l'exemple illustré une course linéaire faisant partie, de préférence, mais non exclusivement, d'un dispositif équipant un véhicule automobile. Dans la suite de la description, le mobile 2_1 est considéré comme ayant une course linéaire mais il est clair que l'objet de l'invention peut s'appliquer pour un mobile 2_1 ayant une course de déplacement différente par exemple circulaire. D'une manière générale, le mobile 2_1 évolue selon l'axe de déplacement T_1 entre deux points extrêmes notés P_1 et P_2 dans l'exemple illustré à la Fig. 4.

Le capteur 1_1 comprend un circuit magnétique fixe 3_1 comportant des moyens 4_1 de création d'un flux magnétique qui, dans l'exemple illustré, est dirigé selon une direction f_1 perpendiculaire à l'axe de translation T_1 . Le circuit magnétique 3_1 comporte également au moins une première pièce polaire 5_1 présentant une surface 6_1 s'étendant sensiblement perpendiculairement à la direction f_1 du flux magnétique et parallèlement à l'axe de translation T_1 .

Les moyens 4_1 de création du flux magnétique sont montés déplaçables par le mobile 2_1 en délimitant avec la première pièce polaire 5_1 un entrefer 8_1 . De préférence, les moyens de création du flux magnétique 4_1 sont constitués par un aimant faisant partie ou rapporté de toute manière appropriée sur le mobile 2_1 dont la position est à déterminer selon l'axe de déplacement T_1 . L'aimant 4_1 délivre ainsi un flux magnétique orienté perpendiculairement à la surface 6_1 de la première pièce polaire 5_1 . Il est à noter qu'il peut être obtenu un flux magnétique orienté perpendiculairement à la surface 6_1 de la première pièce polaire 5_1 avec un aimant dont la direction d'aimantation est parallèle à l'axe de translation.

Il est à considérer que la pièce polaire 5_1 présente une longueur au moins égale à la course à mesurer du mobile 2_1 déterminée entre les points extrêmes P_1 et P_2 . Par ailleurs, comme cela ressortira de la description qui suit, la première pièce polaire 5_1 est réalisée dans un matériau adapté pour limiter l'effet d'hystérésis et selon des dimensions appropriées pour ne pas atteindre sa valeur de saturation magnétique.

Le capteur 1_1 comporte au moins une première cellule de mesure 11_1 montée dans le circuit magnétique 3_1 et apte à mesurer la valeur du flux magnétique en relation de la première pièce polaire 5_1 . Une telle cellule de mesure 11_1 comme par exemple une cellule à effet hall est apte à mesurer, à une position déterminée fixe, les variations de la valeur du flux magnétique circulant dans le circuit magnétique. Dans l'exemple illustré à la Fig. 4, la cellule de mesure 11_1 est montée à proximité d'un point extrême de déplacement P_2 . Plus précisément la cellule de mesure 11_1 est montée en dehors de la course du mobile 2_1 et à proximité d'un point extrême de déplacement.

Il doit être compris que la cellule 11_1 mesure le flux magnétique délivré par l'aimant 4_1 diminué du flux magnétique de fuite dont certaines lignes de champ F ont été représentées à la Fig. 4. La cellule 11_1 mesure ainsi le flux magnétique résiduel à une extrémité de déplacement, ce flux magnétique résiduel étant égal au flux total de l'aimant 4_1 diminué du flux magnétique de fuite direct entre le circuit magnétique 3_1 et l'aimant 4_1 . Dans la mesure où le flux de fuite dépend de façon monotone de la position relative entre l'aimant 4_1 et la cellule 11_1 , le signal de sortie délivré par la cellule 11_1 donne une information de la position de l'aimant 4_1 , et par suite du mobile 2_1 selon l'axe de translation T_1 . Bien entendu, la mesure est possible si le circuit magnétique et en particulier la pièce polaire 5_1 n'est pas saturée. Le signal de

sortie délivré par la cellule de mesure 11_1 est transmis à des moyens de traitement du signal, tels que décrits ci-avant, permettant de déterminer la position linéaire du mobile 2_1 le long de l'axe de déplacement T_1 .

Selon une caractéristique préférée de réalisation, le capteur 1_1 comporte une 5 deuxième cellule de mesure 13_1 montée de manière fixe dans le circuit magnétique 3_1 à proximité de l'autre point extrême, à savoir P_1 dans l'exemple illustré à la Fig. 5. Comme expliqué ci-dessus, les cellules 11_1 et 13_1 sont placées en dehors de la course délimitée entre les points P_1 et P_2 . Cette deuxième cellule de mesure 13_1 est apte 10 également à mesurer le flux magnétique délivré par l'aimant 4_1 diminué du flux magnétique de fuite. Il est à noter que dans les exemples illustrés, les cellules de mesure 11_1 , 13_1 sont fixées sur la pièce polaire 5_1 . Bien entendu, les cellules de mesure 11_1 , 13_1 peuvent être placés à proximité des points extrêmes P_1 et P_2 sans être en contact direct avec la pièce polaire 5_1 .

La réalisation d'un capteur magnétique 1_1 comportant deux cellules de mesure 15 11_1 , 13_1 permet d'obtenir une structure différentielle de mesure en vue d'améliorer la linéarité du signal de sortie S_a , S_b des cellules de mesure.

Selon une caractéristique de réalisation, il peut être envisagé que les moyens de traitement calculent, pour déterminer la position du mobile 2_1 , la différence entre les signaux de sortie S_a , S_b délivrés par la première 11_1 et la deuxième 13_1 cellules de 20 mesure, divisée par la somme des signaux de sortie délivrés par la première 11_1 et la deuxième 13_1 cellules de mesure. Soit $S_1 = S_a - S_b / S_a + S_b$ avec S_a , S_b les signaux élémentaires de mesure délivrés par la paire de cellules de mesure 11_1 , 13_1 . Un tel traitement permet d'obtenir un signal de sortie qui est peu sensible aux dérives 25 des signaux délivrés par les cellules 11_1 , 13_1 dues par exemple à des variations d'entrefer ou de température.

Dans l'exemple illustré aux Fig. 4 et 5, les moyens de création d'un flux magnétique 4_1 sont réalisés par l'intermédiaire d'un aimant dont la direction d'aimantation est perpendiculaire à la surface 6_1 de la première pièce polaire 5_1 . Dans le cas où le mobile 2_1 subit également une rotation selon l'axe T_1 , il peut être 30 envisagé de réaliser, comme illustré à la Fig. 6, les moyens de création du flux magnétique 4_1 par l'intermédiaire d'un élément annulaire 14_1 ou en forme de disque aimanté radialement dont l'axe A_1 est parallèle à l'axe de déplacement T_1 . Dans l'exemple illustré à la Fig. 7, Les moyens 4_1 de création du flux magnétique sont

constitués par une série d'au moins quatre aimants **15₁** dont les directions d'aimantation sont décalées deux à deux de 90°.

Selon une caractéristique avantageuse illustrée plus précisément aux Fig. 8 et 9, la pièce polaire **5₁** peut posséder un profil plan adapté pour améliorer la linéarité du signal de sortie délivré par les cellules de mesure **11₁, 13₁**. Par exemple, la pièce polaire **5₁** peut présenter une surface symétrique constituée par deux troncs de cône montés tête bêche avec leurs plus grandes bases jointives (Fig. 8) ou avec leurs petites bases jointives (Fig. 9).

La Fig. 10 illustre une autre variante de réalisation du capteur mettant en œuvre une deuxième pièce polaire **18₁** identique ou non à la première pièce polaire **5₁** permettant de limiter les fuites magnétiques, c'est-à-dire permettant de canaliser le flux magnétique dans le circuit magnétique **3₁**. Dans l'exemple illustré à la Fig. 10, la deuxième pièce polaire **18₁** comporte une surface plane disposée en regard de la première pièce polaire **5₁** en délimitant avec cette dernière un entrefer **19₁** à l'une de son extrémité. L'autre extrémité de cette deuxième pièce polaire **18₁** est équipée de l'aimant **4₁** qui délimite également un entrefer réduit **8₁** avec la première pièce polaire **5₁**.

La Fig. 11 illustre une autre forme de réalisation de la deuxième pièce polaire **18₁** réalisée par un élément tubulaire sur lequel est monté l'élément annulaire aimanté radialement **14₁**, tel qu'illustré à la Fig. 6. Cette deuxième pièce polaire **18₁** délimite également un entrefer **19₁** avec la première pièce polaire **5₁**.

Dans la description qui précède, seul le capteur **1₁** a été décrit précisément. Bien entendu, le deuxième capteur **1₂** qui peut être réalisé de la même manière que le capteur **1₁** ne sera pas décrit plus en détail dans la mesure où il comporte les mêmes éléments constitutifs avec un indice 2 en lieu et place de l'indice 1. Le deuxième capteur **1₂** délivre ainsi deux signaux élémentaires de mesure **S_c, S_d**.

L'invention n'est pas limitée aux exemples décrits et représentés car diverses modifications peuvent y être apportées sans sortir de son cadre.

REVENDICATIONS

- 1 - Dispositif pour corriger les erreurs d'interférences pour une installation de mesure (A) comportant :
- au moins deux capteurs magnétiques (1_1 , 1_2) de mesure de la position de mobiles (2_1 , 2_2) évoluant selon des trajectoires de déplacement voisines, chaque capteur magnétique de mesure (S_1 , S_2) délivrant un signal de mesure représentatif de la position du mobile dans un circuit magnétique ouvert (3_1 , 3_2),
 - et des moyens de traitement (M) des signaux de mesure délivrés par les capteurs magnétiques de mesure,
- 5 10 caractérisé en ce que les moyens de traitement (M) comportent des moyens de correction des signaux magnétiques de mesure pour tenir compte des erreurs d'interférences entre les capteurs magnétiques voisins (1_1 , 1_2) en vue d'obtenir un signal de mesure corrigé (S_{1c} , S_{2c}) pour chaque capteur magnétique de mesure.
- 15 2 - Dispositif selon la revendication 1, caractérisé en ce que les moyens de correction corrigent le signal de mesure (S_1 , S_2) de chaque capteur magnétique (1_1 , 1_2) de mesure en fonction de la valeur des signaux de mesure du capteur magnétique de mesure considéré et des autres capteurs magnétiques de mesure.
- 20 3 - Dispositif selon la revendication 1 ou 2, caractérisé en ce que les moyens de traitement (M) délivrent pour chaque capteur magnétique de mesure, un signal de mesure corrigé tel que :
- $$S_{1c} = \sum_{i=1}^n \left(\sum_{j=0}^i \alpha_{ij} S_1^j S_2^{i-j} \right)$$
- $$S_{2c} = \sum_{i=1}^n \left(\sum_{j=0}^i \alpha'_{ij} S_2^j S_1^{i-j} \right)$$
- avec : α , α' : coefficients de correction
- 25 4 - Dispositif selon la revendication 3, caractérisé en ce que les moyens de traitement (M) délivrent pour chaque capteur magnétique de mesure (1_1 , 1_2), un signal de mesure corrigé tel que pour un ordre de correction de $n = 3$, les α , i , j et α' , sont tels que :
- 30 $\alpha_{10} = a-c$, $\alpha_{11} = 1+c$

$$\begin{aligned}
 \alpha'_{10} &= a' - c' , & \alpha'_{11} &= 1 + c' \\
 \alpha_{20} = 0 &= \alpha'_{20} , & \alpha_{21} = \alpha'_{21} &= 0 , & \alpha_{22} = \alpha'_{22} &= 0 \\
 \alpha_{30} &= - b , & \alpha_{31} &= 3b , & \alpha_{32} &= - 3b , & \alpha_{33} &= b \\
 \alpha'_{30} &= - b' , & \alpha'_{31} &= 3b' , & \alpha'_{32} &= - 3b' , & \alpha'_{33} &= b'
 \end{aligned}$$

5

avec a, b, c, a', b', c' : coefficients de correction
de sorte que :

$$\begin{aligned}
 S_{1c} &= (1 + c) S_1 + (a - c) S_2 + 3bS_1 S_2^2 - 3bS_1^2 S_2 + bS_1^3 - bS_2^3 \\
 S_{2c} &= (1 + c') S_2 + (a' - c') S_1 + 3b'S_2 S_1^2 - 3b'S_2^2 S_1 + b'S_2^3 - b'S_1^3
 \end{aligned}$$

ou soit :

10 $S_{1c} = S_1 + aS_2 + b(S_1 - S_2)^3 + c(S_1 - S_2)$

et

$$S_{2c} = S_2 + a'S_1 + b'(S_2 - S_1)^3 + c'(S_2 - S_1)$$

5 - Dispositif selon la revendication 3, caractérisé en ce que les moyens de traitement (M) délivrent pour chaque capteur magnétique de mesure ($1_1, 1_2$), un signal de mesure corrigé tel que pour un ordre de correction $n = 1$, les valeurs de α, α', i, j sont tels que $\alpha_{10} = a, \alpha_{11} = a'$ et $\alpha'_{10} = a', \alpha'_{11} = 1$ de sorte que :

$$S_{1c} = S_1 + aS_2, \text{ et } S_{2c} = S_2 + a'S_1$$

6 - Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que chaque signal de mesure S_1, S_2 est tel que

20
$$S_1 = \frac{S_a - S_b}{S_a + S_b}$$

$$S_2 = \frac{S_d - S_c}{S_d + S_c}$$

avec S_a, S_b, S_c, S_d , un couple de signaux élémentaires de mesure délivrés par une paire de cellules de mesure montées dans le circuit magnétique ouvert.

7 - Installation de mesure caractérisée en ce qu'elle comporte :

25 - un premier capteur magnétique de mesure (1_1) délivrant un premier signal de mesure (S_1) de la position d'un premier mobile (2_1) évoluant selon une trajectoire de déplacement (T_1), la valeur du premier signal de mesure (S_1) dépendant de la position dudit mobile dans un circuit magnétique ouvert (3_1),

30 - au moins un deuxième capteur magnétique de mesure (1_2) délivrant un deuxième signal magnétique de mesure (S_2) de la position d'un deuxième mobile (2_2) évoluant selon une trajectoire de déplacement (T_2) voisine de la trajectoire de

déplacement (T_1) du premier mobile, la valeur du deuxième signal de mesure (S_2) dépendant de la position dudit mobile dans un circuit magnétique ouvert (3_2),

- et un dispositif de correction conforme à l'une des revendications 1 à 6.

8 - Installation de mesure selon la revendication 7, caractérisée en ce que chaque capteur magnétique de mesure (1_1 , 1_2) comporte des moyens de création d'un flux magnétique (4_1 , 4_2) selon une direction perpendiculaire à la surface (5_1 , 5_2) d'au moins une pièce polaire à partir de laquelle apparaît un flux magnétique de fuite dont l'intensité varie à la surface de la pièce polaire selon l'axe de déplacement, ces moyens de création d'un flux magnétique (4_1 , 4_2) étant montés déplaçables par le mobile en délimitant au moins un entrefer (8_1 , 8_2) avec une pièce polaire faisant partie du circuit magnétique ouvert, chaque capteur magnétique de mesure comportant au moins une cellule de mesure (11_1 , 11_2) montée de manière fixe dans le circuit magnétique à proximité d'un point extrême de la trajectoire de déplacement de manière à mesurer le flux magnétique délivré par les moyens de création diminués d'un flux magnétique de fuite apparaissant à partir de la pièce polaire et variant selon la trajectoire de déplacement.

9 - Installation de mesure selon la revendication 7 ou 8, caractérisée en ce que les moyens de création d'un flux magnétique (4_1 , 4_2) des deux capteurs de mesure sont montés à proximité selon des trajectoires de déplacement parallèles.

10 - Installation de mesure selon la revendication 8, caractérisée en ce que chaque capteur magnétique de mesure (1_1 , 1_2) comporte une deuxième cellule de mesure (13_1 , 13_2) montée de manière fixe dans le circuit magnétique (3_1 , 3_2) à proximité de l'autre point extrême de déplacement de manière à mesurer le flux magnétique délivré par les moyens de création (4_1 , 4_2) diminué du flux magnétique de fuite.

11 - Installation de mesure selon la revendication 8, caractérisée en ce que les moyens de création d'un flux magnétique (4_1 , 4_2) sont montés déplaçables en translation.

12 - Installation de mesure selon la revendication 11, caractérisée en ce que les moyens de création d'un flux magnétique (4_1 , 4_2) sont constitués par un élément de forme annulaire ou de disque (14_1 , 14_2) aimanté radialement ou axialement dont l'axe est parallèle à l'axe de déplacement en translation.

13 - Installation de mesure selon la revendication 11, caractérisée en ce que les moyens de création d'un flux magnétique sont constitués par une série d'au moins

quatre aimants ($15_1, 15_2$) dont les directions d'aimantation sont décalées deux à deux de 90° .

14 - Installation de mesure selon l'une des revendications 11 à 13, caractérisée en ce que le circuit magnétique ouvert ($3_1, 3_2$) comporte une deuxième pièce polaire ($18_1, 18_2$) disposée en regard de la première pièce polaire ($5_1, 5_2$) en délimitant avec cette dernière un entrefer ($19_1, 19_2$).

15 - Installation de mesure selon la revendication 14, caractérisée en ce que la deuxième pièce polaire ($18_1, 18_2$) est pourvue des moyens de création du flux magnétique ($4_1, 4_2$).

10 16 - Installation de mesure selon la revendication 14, caractérisée en ce que la deuxième pièce polaire ($18_1, 18_2$) est formée par un élément tubulaire équipé de l'élément annulaire aimanté radialement ($14_1, 14_2$).

15 17 - Installation de mesure selon la revendication 13, caractérisée en ce que l'une ou l'autre des pièces polaires ($5_1, 18_1 - 5_2, 18_2$) possède(nt) un profil plan adapté pour améliorer la linéarité du signal de sortie délivré par les cellules de mesure ($11_1, 13_1 - 11_2, 13_2$).

FIG. 2

FIG. 3

2/3

3/3

FIG. 8

FIG. 9

FIG. 10

FIG. 11

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2004/002543

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01D3/02 G01D5/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 810 965 A (KOJIMA YUJI ET AL) 7 March 1989 (1989-03-07) cited in the application figures -----	1,6,7,17
A	WO 91/05222 A (ENDRESS HAUSER GMBH CO) 18 April 1991 (1991-04-18) abstract page 3, line 18 - line 27 -----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

28 February 2005

21/03/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

de Bakker, M

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR2004/002543

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 4810965	A	07-03-1989		JP 1839538 C		25-04-1994
				JP 5053202 B		09-08-1993
				JP 62168004 A		24-07-1987
				JP 1798962 C		12-11-1993
				JP 5008962 B		03-02-1993
				JP 62168001 A		24-07-1987
				JP 1791101 C		29-09-1993
				JP 4073721 B		24-11-1992
				JP 62168002 A		24-07-1987
				JP 1825682 C		28-02-1994
				JP 5035961 B		27-05-1993
				JP 62209301 A		14-09-1987
				JP 1828803 C		15-03-1994
				JP 5035962 B		27-05-1993
				JP 62215801 A		22-09-1987
				JP 1810392 C		27-12-1993
				JP 5021512 B		24-03-1993
				JP 62229079 A		07-10-1987
				JP 1729027 C		29-01-1993
				JP 4014735 B		13-03-1992
				JP 62063811 A		20-03-1987
				DE 3668692 D1		08-03-1990
				EP 0215454 A1		25-03-1987
				KR 9004780 B1		05-07-1990
WO 9105222	A	18-04-1991		DE 3932479 A1		11-04-1991
				DE 3940537 A1		13-06-1991
				CA 2042396 A1		11-03-1992
				DE 59004430 D1		10-03-1994
				DK 445267 T3		02-05-1994
				WO 9105222 A1		18-04-1991
				EP 0445267 A1		11-09-1991
				ES 2048503 T3		16-03-1994
				IE 903323 A1		10-04-1991
				JP 2820530 B2		05-11-1998
				JP 4502065 T		09-04-1992
				US 5257210 A		26-10-1993
				CA 2046269 A1		08-06-1991
				DE 59003256 D1		02-12-1993
				DK 457868 T3		27-12-1993
				WO 9109276 A1		27-06-1991
				EP 0457868 A1		27-11-1991
				ES 2045957 T3		16-01-1994
				IE 904150 A1		19-06-1991
				JP 7003340 B		18-01-1995
				JP 4500413 T		23-01-1992
				US 5210501 A		11-05-1993

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale N°

PCT/FR2004/002543

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 G01D3/02 G01D5/14

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 G01D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	US 4 810 965 A (KOJIMA YUJI ET AL) 7 mars 1989 (1989-03-07) cité dans la demande figures -----	1,6,7,17
A	WO 91/05222 A (ENDRESS HAUSER GMBH CO) 18 avril 1991 (1991-04-18) abrégé page 3, ligne 18 - ligne 27 -----	1

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

Date d'expédition du présent rapport de recherche internationale

28 février 2005

21/03/2005

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

de Bakker, M

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No

PCT/FR2004/002543

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US 4810965	A 07-03-1989	JP 1839538 C JP 5053202 B JP 62168004 A JP 1798962 C JP 5008962 B JP 62168001 A JP 1791101 C JP 4073721 B JP 62168002 A JP 1825682 C JP 5035961 B JP 62209301 A JP 1828803 C JP 5035962 B JP 62215801 A JP 1810392 C JP 5021512 B JP 62229079 A JP 1729027 C JP 4014735 B JP 62063811 A DE 3668692 D1 EP 0215454 A1 KR 9004780 B1	25-04-1994 09-08-1993 24-07-1987 12-11-1993 03-02-1993 24-07-1987 29-09-1993 24-11-1992 24-07-1987 28-02-1994 27-05-1993 14-09-1987 15-03-1994 27-05-1993 22-09-1987 27-12-1993 24-03-1993 07-10-1987 29-01-1993 13-03-1992 20-03-1987 08-03-1990 25-03-1987 05-07-1990
WO 9105222	A 18-04-1991	DE 3932479 A1 DE 3940537 A1 CA 2042396 A1 DE 59004430 D1 DK 445267 T3 WO 9105222 A1 EP 0445267 A1 ES 2048503 T3 IE 903323 A1 JP 2820530 B2 JP 4502065 T US 5257210 A CA 2046269 A1 DE 59003256 D1 DK 457868 T3 WO 9109276 A1 EP 0457868 A1 ES 2045957 T3 IE 904150 A1 JP 7003340 B JP 4500413 T US 5210501 A	11-04-1991 13-06-1991 11-03-1992 10-03-1994 02-05-1994 18-04-1991 11-09-1991 16-03-1994 10-04-1991 05-11-1998 09-04-1992 26-10-1993 08-06-1991 02-12-1993 27-12-1993 27-06-1991 27-11-1991 16-01-1994 19-06-1991 18-01-1995 23-01-1992 11-05-1993