Principal Component Analysis

NIRDOSH BHATNAGAR

Introduction

Principal component analysis (PCA) is an unsupervised learning technique to extract 'relevant' data from high-dimensional spaces.

Goal

Given a set \mathcal{X} of n data points each with $t \in \mathbb{P} \setminus \{1\}$ attributes, PCA finds a representation of the data points in a space of dimension $k \in \mathbb{P}$, where $k \leq t$.

List of Commonly Used Symbols

 E_{err} = the mean-squared error in the approximation of a data point

i = indexing variable, where $1 \le i \le n$

I =is an identity matrix of size t

j = indexing variable, where $1 \le j \le t$

k = number of largest eignevalues used in the approximation of a data point, $k \le t$

n = number of data points, where $n \geq 2$

 $t = \text{size of the data vector, where } t \in \mathbb{P}$

 $w_i = \text{column vector of size } t$

 $W = t \times n \text{ matrix}$

 $x_i = i$ th real-valued data vector of size t

 \overline{x} = average value of the data points

 $\mathcal{X} = \{x_i \mid 1 \leq i \leq n\}$ is the set of data points

 $\widetilde{\Sigma} = t \times t$ covariance matrix

 $\theta_i = \text{column vector of size } t$

 $\widehat{\theta}_i = \text{column vector of size } t$

 $\Theta = t \times n \text{ matrix}$

 $\lambda_i = j$ th eigenvalue of matrix $\widetilde{\Sigma}$

 $\Lambda = \text{diagonal matrix of size } t$

 τ_{thresh} = the threshold value used in the selection of k

 $\psi_i = \text{column vector of size } t$

 $\Psi = t \times t \text{ matrix}$

Model

- Let $\mathcal{X} = \{x_i \mid x_i \in \mathbb{R}^t, 1 \leq i \leq n\}$ be the set of $n \in \mathbb{P} \setminus \{1\}$ data points.
- The data point x_i is represented as a column vector of size t, where $1 \le i \le n$.
- Let the average value of the data points be

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Define a column vector

$$\theta_i = (x_i - \overline{x}), \text{ for } 1 \le i \le n$$

and a $t \times n$ matrix Θ as

$$\Theta = \begin{bmatrix} \theta_1 & \theta_2 & \cdots & \theta_n \end{bmatrix}$$

– The covariance matrix $\widetilde{\Sigma}$ of the data points is

$$\widetilde{\Sigma} = \frac{1}{(n-1)}\Theta\Theta^T = \frac{1}{(n-1)}\sum_{i=1}^n \theta_i \theta_i^T$$

- The $t \times t$ covariance matrix $\widetilde{\Sigma}$ is symmetric and positive semidefinite.
- Therefore $\widetilde{\Sigma} = \Psi \Lambda \Psi^T$, where Λ is a diagonal matrix with eigenvalues of the matrix $\widetilde{\Sigma}$ on its main diagonal.
- As the matrix $\widetilde{\Sigma}$ is symmetric and positive semidefinite, its eigenvalues are nonnegative.
- Let the eigenvalues of the matrix $\widetilde{\Sigma}$ be $\lambda_j \in \mathbb{R}_0^+, 1 \leq j \leq t$.
- The columns of the matrix Ψ are the mutually orthogonal eigenvectors of the covariance matrix $\widetilde{\Sigma}$.
- Assume that these eigenvectors are orthonormal. Therefore $\Psi\Psi^T=I,$ where I is an identity matrix of size t. Thus

$$\begin{split} \Lambda &= & \Psi^T \widetilde{\Sigma} \Psi \\ &= & \frac{1}{(n-1)} \Psi^T \Theta \Theta^T \Psi \\ &= & \frac{1}{(n-1)} W W^T \end{split}$$

where $W = \Psi^T \Theta$ is a $t \times n$ matrix. Therefore

$$\Theta = \Psi W$$

- Let

$$W = \begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix}; \quad w_i \in \mathbb{R}^t \quad 1 \le i \le n$$

$$w_i = \begin{bmatrix} w_{i1} & w_{i2} & \cdots & w_{it} \end{bmatrix}^T; \quad w_{ij} \in \mathbb{R} \quad 1 \le j \le t$$

$$\Psi = \begin{bmatrix} \psi_1 & \psi_2 & \cdots & \psi_t \end{bmatrix}; \quad \psi_j \in \mathbb{R}^t \quad 1 \le j \le t$$

Thus

$$\theta_i = \Psi w_i = \sum_{j=1}^t \psi_j w_{ij}, \quad 1 \le i \le n$$

The vector θ_i is approximated in PCA as

$$\widehat{\theta}_i = \sum_{j=1}^k \psi_{l_j} w_{il_j}, \quad \text{for } 1 \le i \le n$$

where $k \leq t$.

- Therefore, the mean-squared error E_{err} in the approximation of a data point is

$$E_{err} = \frac{1}{(n-1)} \sum_{i=1}^{n} \left\| \theta_i - \widehat{\theta}_i \right\|^2$$

where $\|\cdot\|$ is the Euclidean norm.

- It can be shown that the mean-squared error E_{err} is equal to $\sum_{j=k+1}^{t} \lambda_{l_j}$.
- As the eigenvalues are nonnegative, E_{err} is minimized by selecting the eigenvectors ψ_{l_j} , for $1 \leq j \leq k$, in the approximation $\widehat{\theta}_i$ which correspond to the largest k eigenvalues of the covariance matrix $\widehat{\Sigma}$.

These eigenvectors which correspond to the largest eigenvalues are called the *principal components* of the matrix Θ .

Further, the PCA projects data along directions in which the data varies most.

The magnitude of the eigenvalues quantify the variation of the data points along the directions of the eigenvectors.

- The value k is typically selected so that $\sum_{j=1}^{k} \lambda_{lj} / \sum_{j=1}^{t} \lambda_{j}$ is greater than a threshold τ_{thresh} , where $\tau_{thresh} \in (0,1]$.
- Finally, note that PCA is closely related to the singular value decomposition of the matrix $\widetilde{\Sigma}$.