

Using semantic labelling with natural numbers for proving termination automatically.

Adam Koprowski

29th June 2005

• Overview of TPA

- Overview of TPA
- General idea of semantic labelling with natural numbers.

- Overview of TPA
- General idea of semantic labelling with natural numbers.
- Why SLnat was considered not to be suitable for automatic termination provers.

- Overview of TPA
- General idea of semantic labelling with natural numbers.
- Why SLnat was considered not to be suitable for automatic termination provers.
- Implementing SLnat

- Overview of TPA
- General idea of semantic labelling with natural numbers.
- Why SLnat was considered not to be suitable for automatic termination provers.
- Implementing SLnat
 - SLnat and polynomial interpretations

- Overview of TPA
- General idea of semantic labelling with natural numbers.
- Why SLnat was considered not to be suitable for automatic termination provers.
- Implementing SLnat
 - SLnat and polynomial interpretations
 - SLnat and recursive path ordering (RPO)

- Overview of TPA
- General idea of semantic labelling with natural numbers.
- Why SLnat was considered not to be suitable for automatic termination provers.
- Implementing SLnat
 - SLnat and polynomial interpretations
 - SLnat and recursive path ordering (RPO)
- Example

- Overview of TPA
- General idea of semantic labelling with natural numbers.
- Why SLnat was considered not to be suitable for automatic termination provers.
- Implementing SLnat
 - SLnat and polynomial interpretations
 - SLnat and recursive path ordering (RPO)
- Example
- Conclusions

TPA is a tool for proving termination of TRSs fully automatically.

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

• TPA supports relative termination.

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

- TPA supports relative termination.
- TPA uses SLnat technique.

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

- TPA supports relative termination.
- TPA uses SLnat technique.
- TPA aims at certified termination proofs.

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

- TPA supports relative termination.
- TPA uses SLnat technique.
- TPA aims at certified termination proofs.

Some facts about TPA:

3/21

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

- TPA supports relative termination.
- TPA uses SLnat technique.
- TPA aims at certified termination proofs.

Some facts about TPA:

• Developed at TU/e by author since Nov 2004.

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

- TPA supports relative termination.
- TPA uses SLnat technique.
- TPA aims at certified termination proofs.

Some facts about TPA:

- Developed at TU/e by author since Nov 2004.
- 3rd place (out of 6 participants) in international termination competition (Nara 2005).

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

- TPA supports relative termination.
- TPA uses SLnat technique.
- TPA aims at certified termination proofs.

Some facts about TPA:

- Developed at TU/e by author since Nov 2004.
- 3rd place (out of 6 participants) in international termination competition (Nara 2005).
- Written in Ocaml (strong type checking, lazy evaluation).

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

- TPA supports relative termination.
- TPA uses SLnat technique.
- TPA aims at certified termination proofs.

Some facts about TPA:

- Developed at TU/e by author since Nov 2004.
- 3rd place (out of 6 participants) in international termination competition (Nara 2005).
- Written in Ocaml (strong type checking, lazy evaluation).
- 9000 lines of code at the moment (and growing!).

TPA is a tool for proving termination of TRSs fully automatically. Why making yet another such a tool?

- TPA supports relative termination.
- TPA uses SLnat technique.
- TPA aims at certified termination proofs.

Some facts about TPA:

- Developed at TU/e by author since Nov 2004.
- 3rd place (out of 6 participants) in international termination competition (Nara 2005).
- Written in Ocaml (strong type checking, lazy evaluation).
- 9000 lines of code at the moment (and growing!).

http://www.win.tue.nl/tpa

• Polynomial interpretations,

- Polynomial interpretations,
- Recursive path ordering (RPO),

- Polynomial interpretations,
- Recursive path ordering (RPO),
- Semantic labelling with booleans,

- Polynomial interpretations,
- Recursive path ordering (RPO),
- Semantic labelling with booleans,
- Semantic labelling with natural numbers (SLnat),

- Polynomial interpretations,
- Recursive path ordering (RPO),
- Semantic labelling with booleans,
- Semantic labelling with natural numbers (SLnat),
- Simple version of dependency pairs transformation (DP),

- Polynomial interpretations,
- Recursive path ordering (RPO),
- Semantic labelling with booleans,
- Semantic labelling with natural numbers (SLnat),
- Simple version of dependency pairs transformation (DP),
- Dummy elimination,

- Polynomial interpretations,
- Recursive path ordering (RPO),
- Semantic labelling with booleans,
- Semantic labelling with natural numbers (SLnat),
- Simple version of dependency pairs transformation (DP),
- Dummy elimination,
- ... more to come?

Goal: formalization of theoretical results concerning termination of term rewriting.

Goal: formalization of theoretical results concerning termination of term rewriting.

Ultimate goal: certification of proof candidates produced by tools for proving termination automatically.

Goal: formalization of theoretical results concerning termination of term rewriting.

Ultimate goal: certification of proof candidates produced by tools for proving termination automatically.

Content of CoLoR:

• Basic dependency pairs transformation and arguments filtering (Frédéric Blanqui)

Goal: formalization of theoretical results concerning termination of term rewriting.

Ultimate goal: certification of proof candidates produced by tools for proving termination automatically.

Content of CoLoR:

- Basic dependency pairs transformation and arguments filtering (Frédéric Blanqui)
- Polynomial interpretations (Sébastien Hinderer)

Goal: formalization of theoretical results concerning termination of term rewriting.

Ultimate goal: certification of proof candidates produced by tools for proving termination automatically.

Content of CoLoR:

- Basic dependency pairs transformation and arguments filtering (Frédéric Blanqui)
- Polynomial interpretations (Sébastien Hinderer)
- RPO (William Delobel and Solange Coupet-Grimal)

Goal: formalization of theoretical results concerning termination of term rewriting.

Ultimate goal: certification of proof candidates produced by tools for proving termination automatically.

Content of CoLoR:

- Basic dependency pairs transformation and arguments filtering (Frédéric Blanqui)
- Polynomial interpretations (Sébastien Hinderer)
- RPO (William Delobel and Solange Coupet-Grimal)
- HORPO (Adam Koprowski and Femke van Raamsdonk)

Goal: formalization of theoretical results concerning termination of term rewriting.

Ultimate goal: certification of proof candidates produced by tools for proving termination automatically.

Content of CoLoR:

- Basic dependency pairs transformation and arguments filtering (Frédéric Blanqui)
- Polynomial interpretations (Sébastien Hinderer)
- RPO (William Delobel and Solange Coupet-Grimal)
- HORPO (Adam Koprowski and Femke van Raamsdonk)

Contributions are very welcome!

http://color.loria.fr/

SLnat - general idea

Is the following system terminating?

SLnat - general idea (continued)

And how about this one?

Natural interpretation for function symbols:

```
egin{array}{llll} [0] &=& 0 & & & [\min(x,y)] &=& \min(x,y) \ [s(x)] &=& x+1 & & [\max(x,y)] &=& \max(x,y) \ [x-y] &=& x-y & & [\gcd(x,y)] &=& \gcd(x,y) \end{array}
```


Natural interpretation for function symbols:

```
[0] = 0 [\min(x,y)] = \min(x,y) [s(x)] = x+1 [\max(x,y)] = \max(x,y) [x-y] = x-y [\gcd(x,y)] = \gcd(x,y)
```


If we label only gcd symbol with $\pi_{\gcd}(x,y) = x + y$ then we get the following system:

If we label only gcd symbol with $\pi_{\gcd}(x,y) = x + y$ then we get the following system:

which can easily be proved to be terminating by RPO with the following precedence:

• How to find interpretations that give raise to a model?

- How to find interpretations that give raise to a model?
- Labelled system has an infinite signature and infinitely many rules.

- How to find interpretations that give raise to a model?
- Labelled system has an infinite signature and infinitely many rules.
- If we are to use min and max functions then we need to deal with side conditions.

- How to find interpretations that give raise to a model?
- Labelled system has an infinite signature and infinitely many rules.
- If we are to use min and max functions then we need to deal with side conditions.

TPA does the following transformation to reduce any TRS to a TRS containing only constants, unary and binary symbols.

$$f(x_1,\ldots,x_n) \equiv f'(x_1,f''(x_2,\ldots))$$

Proving termination using semantic labelling.

For every arity (constants, unary and binary symbols) there is a predefined set of basic functions to be tried as interpretations.

Proving termination using semantic labelling.

For every arity (constants, unary and binary symbols) there is a predefined set of basic functions to be tried as interpretations.

Combinations of those functions are tried in the search for a (quasi-) model. The search space is finite.

Proving termination using semantic labelling.

For every arity (constants, unary and binary symbols) there is a predefined set of basic functions to be tried as interpretations.

Combinations of those functions are tried in the search for a (quasi-) model. The search space is finite.

For every obtained (quasi-)model some techniques are applied to the labelled system in order to try to prove its termination.

TPA has a basic sets of polynomial interpretations for constants (I_c) , unary (I_u) and binary symbols (I_b) .

TPA has a basic sets of polynomial interpretations for constants (I_c) , unary (I_u) and binary symbols (I_b) .

```
\begin{array}{ccc} f(I(x),y) & \to & f(x,y) \\ f(x,y) & \to = & f(x,I(y)) \end{array}
```


TPA has a basic sets of polynomial interpretations for constants (I_c) , unary (I_u) and binary symbols (I_b) .

$$\begin{array}{ccc} f(I(x),y) & \to & f(x,y) \\ f(x,y) & \to = & f(x,I(y)) \end{array}$$

$$[f(x,y)] = 2$$
$$[I(x)] = x+1$$

TPA has a basic sets of polynomial interpretations for constants (I_c) , unary (I_u) and binary symbols (I_b) .

$$\begin{array}{ccc} f(I(x),y) & \to & f(x,y) \\ f(x,y) & \to = & f(x,I(y)) \end{array}$$

$$f_{i+1,j}(I(x),y) \rightarrow f_{i,j}(x,y)$$

 $f_{i,j}(x,y) \rightarrow f_{i,j+1}(x,I(y))$

$$[f(x,y)] = 2$$
$$[I(x)] = x+1$$

TPA has a basic sets of polynomial interpretations for constants (I_c) , unary (I_u) and binary symbols (I_b) .

$$\begin{array}{ccc} f(I(x),y) & \to & f(x,y) \\ f(x,y) & \to = & f(x,I(y)) \end{array}$$

$$\begin{array}{ccc}
f_{i+1,j}(I(x),y) & \to & f_{i,j}(x,y) \\
f_{i,j}(x,y) & \to = & f_{i,j+1}(x,I(y))
\end{array}$$

$$[f(x,y)] = 2$$
$$[I(x)] = x+1$$

$$[f_{i,j}(x,y)] = x+y+i$$
$$[I(x)] = x$$

Precedence is an well-founded ordering on function symbols.

Precedence is an well-founded ordering on function symbols.

• Orient rules of TRS collecting requirements on precedence.

Precedence is an well-founded ordering on function symbols.

- Orient rules of TRS collecting requirements on precedence.
- Check whether the requirements can be combined in order to form a precedence.

Precedence is an well-founded ordering on function symbols.

- Orient rules of TRS collecting requirements on precedence.
- Check whether the requirements can be combined in order to form a precedence.

Precedence is well-founded if the corresponding directed graph is acyclic.

```
(1) \quad 0+x \rightarrow x
(2) \quad s(x)+y \rightarrow s(x+y)
(3) \quad 0*x \rightarrow 0
(4) \quad s(x)*y \rightarrow y+(x*y)
```


Precedence is an well-founded ordering on function symbols.

- Orient rules of TRS collecting requirements on precedence.
- Check whether the requirements can be combined in order to form a precedence.

Precedence is well-founded if the corresponding directed graph is acyclic.

```
(1) \quad 0+x \rightarrow x
(2) \quad s(x)+y \rightarrow s(x+y)
(3) \quad 0*x \rightarrow 0
(4) \quad s(x)*y \rightarrow y+(x*y)
```


Precedence is an well-founded ordering on function symbols.

- Orient rules of TRS collecting requirements on precedence.
- Check whether the requirements can be combined in order to form a precedence.

Precedence is well-founded if the corresponding directed graph is acyclic.

compare : funS \times funS \rightarrow {<,=,>,?}

• In RPO we want to take advantage of having labels.

- In RPO we want to take advantage of having labels.
- Goal: capture infinite ordering in a finite description:

- In RPO we want to take advantage of having labels.
- Goal: capture infinite ordering in a finite description:
 - Expressiveness

- In RPO we want to take advantage of having labels.
- Goal: capture infinite ordering in a finite description:
 - Expressiveness
 - Easy handling (checking well-foundedness of an ordering)

- In RPO we want to take advantage of having labels.
- Goal: capture infinite ordering in a finite description:
 - Expressiveness
 - Easy handling (checking well-foundedness of an ordering)

```
compare : funS × funS → argsF × argsF × cmpRes × cmpRes × cmpRes cmpRes : \{<,>,?\} argsF : \{\leftarrow,\rightarrow,\leftrightarrow\}
```

```
if compare (f, g) = (\Gamma_f, \Gamma_g, \Delta_{<}, \Delta_{=}, \Delta_{>})

\operatorname{args}_{\leftarrow}(l, r) = l

\operatorname{args}_{\rightarrow}(l, r) = r

\operatorname{args}_{\leftrightarrow}(l, r) = l + r

< \qquad \qquad < \qquad \qquad \Delta_{<}

f_{i,j} \otimes g_{k,l} if \operatorname{args}_{\Gamma_f}(i, j) = \operatorname{args}_{\Gamma_g}(k, l) \wedge \Delta_{=} = \otimes

> \qquad \qquad \Delta_{>}
```


Criterion for well-foundedness of an ordering

Now a relation induced by compare function corresponds to a multigraph with labelled edges.

Criterion for well-foundedness of an ordering

Now a relation induced by compare function corresponds to a multigraph with labelled edges.

Edges:

 $f \xrightarrow{\text{cond}} g$ meaning f > g under given condition cond

Criterion for well-foundedness of an ordering

Now a relation induced by compare function corresponds to a multigraph with labelled edges.

Edges:

$$f \xrightarrow{\text{cond}} g$$
 meaning $f > g$ under given condition cond

Where condition is of the shape:

$$X \otimes Y$$

$$X, Y \in \{\leftarrow, \rightarrow, \leftrightarrow\}$$

$$\otimes \in \{<, =, >\}$$

RPO with SLnat - examples of precedence

Expected result	Precedence function	Edges in a multigraph
$f_{i,j} > g_{k,l}$ for all i, j, k, l	$\Omega(f,g)=(\leftrightarrow,\leftrightarrow,>,>,>)$	$f \stackrel{\leftrightarrow > \leftrightarrow}{\underset{\leftrightarrow < \leftrightarrow}{\longleftrightarrow}} g$

RPO with SLnat - examples of precedence

Expected result	Precedence function	Edges in a multigraph
$f_{i,j} > g_{k,l} ext{ for all } i,j,k,l$	$\Omega(f,g)=(\leftrightarrow,\leftrightarrow,>,>,>)$	$f \underset{\leftrightarrow < \leftrightarrow}{\overset{\leftrightarrow > \leftrightarrow}{\longleftrightarrow}} g$
$s_1 < s_2 < \dots$	$\Omega(s,s) = (\leftrightarrow, \leftrightarrow, <, =, >)$	$\stackrel{\leftrightarrow}{\sim} \stackrel{\leftrightarrow}{\varsigma}$

RPO with SLnat - examples of precedence

Expected result	Precedence function	Edges in a multigraph
$f_{i,j} > g_{k,l}$ for all i, j, k, l	$\Omega(f,g)=(\leftrightarrow,\leftrightarrow,>,>,>)$	$f \underset{\overset{\leftrightarrow > \leftrightarrow}{\longleftrightarrow}}{\overset{\leftrightarrow > \leftrightarrow}{\longleftrightarrow}} g$
$s_1 < s_2 < \dots$	$\Omega(s,s) = (\leftrightarrow, \leftrightarrow, <, =, >)$	$\overset{\leftrightarrow}{\sim}\overset{\leftrightarrow}{s}$
$s_1 < t_1 < s_2 < t_2 < \dots$	$\Omega(s,t) = (\leftrightarrow, \leftrightarrow, <, <, >)$	s $\stackrel{\leftrightarrow > \leftrightarrow}{\longleftrightarrow} t$

Criterion for well-foundedness of an ordering (cont.)

We call a cycle in a multigraph <u>safe</u>, if:

Criterion for well-foundedness of an ordering (cont.)

We call a cycle in a multigraph <u>safe</u>, if:

• for every condition $\circ \xrightarrow{X \otimes Y} \circ$, $\otimes \in \{>, =\}$,

Criterion for well-foundedness of an ordering (cont.)

We call a cycle in a multigraph <u>safe</u>, if:

- for every condition $\circ \xrightarrow{X \otimes Y} \circ$, $\otimes \in \{>,=\}$,
- at least for one condition $\circ \xrightarrow{X \otimes Y} \circ$, $\otimes = >$ and

Criterion for well-foundedness of an ordering (cont.)

We call a cycle in a multigraph <u>safe</u>, if:

- for every condition $\circ \xrightarrow{X \otimes Y} \circ$, $\otimes \in \{>, =\}$,
- at least for one condition $\circ \xrightarrow{X \otimes Y} \circ$, $\otimes = >$ and
- for every two consecutive edges $\circ \xrightarrow{W \otimes_1 X} \circ \xrightarrow{Y \otimes_2 Z} \circ$, X = Y.

Criterion for well-foundedness of an ordering (cont.)

We call a cycle in a multigraph <u>safe</u>, if:

- for every condition $\circ \xrightarrow{X \otimes Y} \circ$, $\otimes \in \{>,=\}$,
- at least for one condition $\circ \xrightarrow{X \otimes Y} \circ$, $\otimes = >$ and
- for every two consecutive edges $\circ \xrightarrow{W \otimes_1 X} \circ \xrightarrow{Y \otimes_2 Z} \circ$, X = Y.

 Those three conditions assure that some weight-function on indexes

decrease along the cycle.

$$\cdots \xrightarrow{X \ge Y} f \xrightarrow{Y \ge Z} \cdots X \ge Y = Y \ge Z$$

Conjecture:

Relation is well-founded, and hence can be extended to precedence, if every cycle in its multigraph is safe.

Motivating example

Consider the following TRS (SUBST) which describes the process of substitution in combinatory categorical logic.

```
(1) \quad \lambda(x) \circ y \quad \to \quad \lambda(x \circ (1 \cdot (y \circ \uparrow)))
(2) \quad (x \cdot y) \circ z \quad \to \quad (x \circ z) \cdot (y \circ z)
(3) \quad (x \circ y) \circ z \quad \to \quad x \circ (y \circ z)
(4) \quad \text{id} \circ x \quad \to \quad x
(5) \quad 1 \circ \text{id} \quad \to \quad 1
(6) \quad \uparrow \circ \text{id} \quad \to \quad \uparrow
(7) \quad 1 \circ (x \cdot y) \quad \to \quad x
(8) \quad \uparrow \circ (x \cdot y) \quad \to \quad y
```

• Termination of this system (implying termination of the process of explicit substitution in untyped λ -calculus) was the main result of two publications: Hardin and Lavills [1986], Curien et al. [1992].

Motivating example

Consider the following TRS (SUBST) which describes the process of substitution in combinatory categorical logic.

```
(1) \quad \lambda(x) \circ y \quad \to \quad \lambda(x \circ (1 \cdot (y \circ \uparrow)))
(2) \quad (x \cdot y) \circ z \quad \to \quad (x \circ z) \cdot (y \circ z)
(3) \quad (x \circ y) \circ z \quad \to \quad x \circ (y \circ z)
(4) \quad \text{id} \circ x \quad \to \quad x
(5) \quad 1 \circ \text{id} \quad \to \quad 1
(6) \quad \uparrow \circ \text{id} \quad \to \quad \uparrow
(7) \quad 1 \circ (x \cdot y) \quad \to \quad x
(8) \quad \uparrow \circ (x \cdot y) \quad \to \quad y
```

- Termination of this system (implying termination of the process of explicit substitution in untyped λ -calculus) was the main result of two publications: Hardin and Lavills [1986], Curien et al. [1992].
- Using technique of SLnat a very concise proof can be given.

Motivating example

Consider the following TRS (SUBST) which describes the process of substitution in combinatory categorical logic.

```
(1) \quad \lambda(x) \circ y \quad \to \quad \lambda(x \circ (1 \cdot (y \circ \uparrow)))
(2) \quad (x \cdot y) \circ z \quad \to \quad (x \circ z) \cdot (y \circ z)
(3) \quad (x \circ y) \circ z \quad \to \quad x \circ (y \circ z)
(4) \quad \text{id} \circ x \quad \to \quad x
(5) \quad 1 \circ \text{id} \quad \to \quad 1
(6) \quad \uparrow \circ \text{id} \quad \to \quad \uparrow
(7) \quad 1 \circ (x \cdot y) \quad \to \quad x
(8) \quad \uparrow \circ (x \cdot y) \quad \to \quad y
```

- Termination of this system (implying termination of the process of explicit substitution in untyped λ -calculus) was the main result of two publications: Hardin and Lavills [1986], Curien et al. [1992].
- Using technique of SLnat a very concise proof can be given.
- Now it can be given by TPA.

TPA v.1.0b

Result: TRS is terminating

Termination proof of SUBST as given by TPA

```
Default interpretations for symbols are not printed. For polynomial interpretations
and semantic labelling over N\setminus\{0,1\} defaults are 2 for constants, identity for unary
symbols and x+y-2 for binary symbols. For semantic labelling over \{0,1\} (booleans)
defaults are 0 for constants, identity for unary symbols and disjunction for binary
symbols.
[1] TRS as loaded from the input file:
(1) o(lambda(x), y) \rightarrow lambda(o(x, d(1, o(y, p))))
(2) o(d(x,y),z) \rightarrow d(o(x,z),o(y,z))
(3) \circ (\circ (x, y), z) \rightarrow \circ (x, \circ (y, z))
(4) lambda(x) \rightarrow x
(5) \circ (x, y) \rightarrow x
(6) o(x, y) \rightarrow y
(7) d(x, y) \rightarrow x
(8) d(x, y) \rightarrow y
[2] Label this TRS using following interpretation over N\setminus\{0,1\}:
[lambda(x)] = x + 1
[d(x,y)] = max(x, y)
rest default
```


Termination proof of SUBST as given by TPA (cont.)

```
This interpretation is a quasi-model and yields following TRS:
(D1) lambda\{i + 1\}(x) \rightarrow = lambda\{i\}(x)
(D2) o\{i + 1, j\} (x, y) \rightarrow = o\{i, j\} (x, y)
(D3) o\{i, j + 1\}(x, y) \rightarrow = o\{i, j\}(x, y)
(D4) d\{i + 1, j\}(x, y) \rightarrow = d\{i, j\}(x, y)
(D5) d\{i, j + 1\}(x, y) \rightarrow d\{i, j\}(x, y)
(1) o\{i + 1, j\} (lambda\{i\}(x), y) \rightarrow lambda\{j + i - 2\} (o\{i, j\}(x, d\{2, j\}(1, o\{j, 2\}(y, p))))
(2<) o(i,k)(d(i,j)(x,y),z) \rightarrow d(k+i-2,k+j-2)(o(i,k)(x,z),o(j,k)(y,z)) for i >= j
(2>) o\{j,k\}(d\{i,j\}(x,y),z) \rightarrow d\{k+i-2,k+j-2\}(o\{i,k\}(x,z),o\{j,k\}(y,z)) for j \ge i
(3) o\{j + i - 2, k\} (o\{i, j\} (x, y), z) \rightarrow o\{i, k + j - 2\} (x, o\{j, k\} (y, z))
(4) lambda{i}(x) \rightarrow x
(5) o\{i,j\}(x,y) \rightarrow x
(6) o\{i, j\}(x, y) \rightarrow y
(7<) d\{i,j\}(x,y) -> x \text{ for } i >= j
(7>) d{i, j}(x, y) -> x for j >= i
(8>) d\{i, j\}(x, y) \rightarrow y \text{ for } j >= i
(8<) d\{i,j\}(x,y) -> y \text{ for } i >= j
[3] All the rules of this TRS can be oriented with RPO with the following precedence:
Status: o: Lex-LR,
Precedence:
o\{i, j\} > o\{k, l\} for i+j > k+l
o\{i,j\} > lambda\{k\} for all i, j, k
o\{i, j\} > d\{k, l\} for all i, j, k, l
o\{i,j\} > 1 for all i, j
o\{i,j\} > p \text{ for all } i, j
lambda{i} > lambda{k} for i > k
d\{i, j\} > d\{k, l\} for i+j > k+l
```


• SLnat can be successfully used for proving termination automatically.

- SLnat can be successfully used for proving termination automatically.
- It is possible to achieve quite satisfactory results with a limited set of termination techniques and without using dependency pairs transformation (CiME vs TPA).

- SLnat can be successfully used for proving termination automatically.
- It is possible to achieve quite satisfactory results with a limited set of termination techniques and without using dependency pairs transformation (CiME vs TPA).

Thank you for your attention!

- SLnat can be successfully used for proving termination automatically.
- It is possible to achieve quite satisfactory results with a limited set of termination techniques and without using dependency pairs transformation (CiME vs TPA).

Thank you for your attention!

Questions?