2019~2020学年第二学期《线性代数》试卷(A)评分标准

一、填空题(每小题 4 分,共 20 分)

1、1; 2、4; 3、
$$\begin{pmatrix} 1 & 3 & 2 \\ 4 & 6 & 5 \\ 7 & 9 & 8 \end{pmatrix}$$
; 4、3; 5、 $x = k \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ (k 为任意常数).

二、选择题 (每小题 4 分, 共 20 分)

三、(10分) 已知行列式
$$D = \begin{vmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 1 \\ 2 & 4 & 3 & 2 \\ 0 & 0 & 2 & 1 \end{vmatrix}$$
, 求 $2A_{21} + A_{22} + 4A_{23} + 2A_{24}$, 其中 A_{2j} 为 D 中 $(2, j)$ 元素的代

数余子式(j=1,2,3,4).

解:
$$2A_{21} + A_{22} + 4A_{23} + 2A_{24} = \begin{vmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 4 & 2 \\ 2 & 4 & 3 & 2 \\ 0 & 0 & 2 & 1 \end{vmatrix}$$
5

$$\begin{vmatrix}
r_3 - 2r_1 \\
= \\
r_2 - 2r_4
\end{vmatrix}
\begin{vmatrix}
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & 2 & 1
\end{vmatrix}$$
.....4

四、(10分) 已知
$$AB = B + 2A$$
, 且 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 求矩阵 B .

解:
$$^{**}AB = B + 2A$$
,即 $(A - E)B = 2A$,

所以
$$B = 2(A - E)^{-1}A$$
2

五、(12 分) 设向量组: $\boldsymbol{\alpha}_1 = \begin{pmatrix} 1,3,1,0 \end{pmatrix}^T$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 2,0,2,-6 \end{pmatrix}^T$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 1,3,0,0 \end{pmatrix}^T$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} 0,3,0,3 \end{pmatrix}^T$, 求此向量组的秩及一个极大线性无关组,并将其余向量用该极大无关组线性表示。

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 0 & 3 & 3 \\ 1 & 2 & 0 & 0 \\ 0 & -6 & 0 & 3 \end{pmatrix}$$
3

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -6 & 0 & 3 \\ 0 & 0 & -1 & 0 \\ 0 & -6 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -6 & 0 & 3 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \dots \dots 3$$

$$a_1, a_2, a_3$$
为其一个最大无关组, …………

注意:最大无关组不唯一.■

六、(12 分) 设方程组
$$\begin{cases} x_1 + ax_2 + 2x_3 = 1 \\ x_1 + x_2 - ax_3 = 2 \\ 2x_1 + 2x_2 + 4x_3 = 2 \end{cases}$$
 (1) 求系数行列式 $|A|$; (2) a 取何值时,方程组有唯一解、

无解及无穷多解?

2019~2020学年第二学期《线性代数》试卷(A)评分标准

(2) 当 $|A| \neq 0$,即 $a \neq -2$ 且 $a \neq 1$ 时,此方程组有唯一解;

$$\stackrel{\text{\tiny \pm}}{=} a = -2 \text{ fr}, \quad \begin{pmatrix} 1 & -2 & 2 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 2 & 4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 2 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 6 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 2 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix},$$

当
$$a=1$$
 时,
$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 1 & -1 & 2 \\ 2 & 2 & 4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 2 & 1 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 故方程组有无穷多解. ■2

七、(12 分) 矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$ 可否相似对角化?若能相似对角化,则求可逆阵P,使得 $P^{-1}AP$ 为对

角阵.

【解】①求特征值:

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 2 & 2 - \lambda & 0 \\ 1 & 1 & 3 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)(2 - \lambda)(3 - \lambda),$$

故 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$.

.....3

②判定对角化:

由于有三个不同的特征值,故 A 可以相似对角化。

·····2

- ③对角化:
- 特征向量

对于
$$\lambda_1 = 1$$
 ,由 $A - E = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{pmatrix}$,可得对应的特征向量为 $p_1 = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix}$;

.....1

对于
$$\lambda_2=2$$
 ,由 $\mathbf{A}-2E=\begin{pmatrix} -1 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,可得对应的特征向量为 $p_2=\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$;

对于
$$\lambda_3 = 3$$
 ,由 $A - 3E = \begin{pmatrix} -2 & 0 & 0 \\ 2 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,可得对应的特征向量为 $p_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$;

.....1

八、(4分) 设 α 为 $n\times1$ 非零矩阵, $A = \alpha\alpha^T$, 证明: R(A) = 1.