

Sanjay Krishna: University of New Mexico

(a) The current gain of the transistor in Figure P5.33 is $\beta = 75$. Determine V_O for: (i) $V_{BB} = 0$, (ii) $V_{BB} = 1$ V, and (iii) $V_{BB} = 2$ V. (b) Verify the results of part (a) with a computer simulation.

Figure P5.33

- (a) Determine the *Q*-point values for the circuit in Figure P5.57. Assume $\beta = 50$.
- (b) Repeat part (a) if all resistor values are reduced by a factor of 3. (c) Sketch the load lines and plot the Q-point values for parts (a) and (b).

Figure P5.57

Problem 5.73

For the circuit in Figure P5.73, let $\beta = 100$. (a) Find V_{TH} and R_{TH} for the base circuit. (b) Determine I_{CQ} and V_{CEQ} .

Figure P5.73

For each transistor in the circuit in Figure P5.79, $\beta = 120$ and the B–E turn-on voltage is 0.7 V. Determine the quiescent base, collector, and emitter currents in Q_1 and Q_2 . Also determine V_{CEQ1} and V_{CEQ2} .

Figure P5.79

Problem 6.1

(a) Determine the small-signal parameters g_m , r_π , and r_o of a transistor with parameters $\beta=180$ and $V_A=150$ V for bias currents of (i) $I_{CQ}=0.5$ mA and (ii) $I_{CQ}=2$ mA. (b) Repeat part (a) for $\beta=80$ and $V_A=100$ V when biased at (i) $I_{CQ}=0.25$ mA and (ii) $I_{CQ}=80~\mu$ A.