Shadow Price

Objective Max Type and functional constraint ≤ type

Shadow price for resource i: the rate at which Z could be increased by (slightly) increasing the amount b_i of resource i. The increase in b_i must be sufficiently small that the current Basis (set of basic variables) remains optimal.

- \triangleright (In the case of a functional constraint in \ge or = form, its shadow price is again defined as the rate at which Z could be increased by (slightly) increasing the value of b_i , although the interpretation of b_i now would normally be something other than the amount of a resource being made available.)
- $b_i \rightarrow$ available amount of resource i $b_i \rightarrow b_i + \Delta b_i$ (Suppose b_i can be increased by a small amount)

> Graphical approach to find Shadow Price

Tech Edge Co. Problem:

Max $Z = 50x_1 + 40x_2$

S.t.
$$3x_1+5x_2 \le 150$$
 (Assembly time) (1)

$$x_2 \le 20$$
 (Special Display unit) (2)

$$8x_1+5x_2 \le 300$$
 (Warehouse Space) (3)

$$x_1, x_2 \ge 0$$

Shadow Price of Resource (1)

$$3x_1+5x_2 \le 150 \rightarrow (30,12), Z=1980$$

 $3x_1+5x_2 \le 151 \rightarrow (29.8,12.32), Z=1982.8$
 $\Delta Z=2.8=y_1^*$

Shadow Price of Resource (2)

$$x_2 \le 20 \rightarrow (30,12), Z=1980$$

 $x_2 \le 21 \rightarrow (30,12), Z=1980$
 $\Delta Z=0=y_2^*$

Shadow Price of Resource (3)

$$8x_1+5x_2 \le 300 \rightarrow (30,12), Z=1980$$

 $8x_1+5x_2 \le 301 \rightarrow (30.2,11.88), Z=1985.2$
 $\Delta Z=5.2=y_3^*$

Sensitivity Analysis: Graphical approach

- ➤ How changes in an LP's parameters affect the optimal solution? => sensitivity analysis
- > Consider violation of certainty assumptions about model parameters
- ➤ Purpose: to identify the sensitive parameters by studying the effect of changes in the parameters (profit coefficients, resource availability, and resource requirement) on the optimal solution.

i.e., if $y_i^* > 0 => b_i$ is sensitive resource

Tech Edge Co. Problem:

Max $Z = 50x_1 + 40x_2$

S.t.
$$3x_1+5x_2 \le 150$$
 (Assembly time) (1)

$$x_2 \le 20$$
 (Special Display unit) (2)

$$8x_1+5x_2 \le 300$$
 (Warehouse Space) (3

$$x_1, x_2 \ge 0$$

EFFECT OF CHANGE IN PROFIT COEFFICIENTS

For any c_j , the range of values for c_j over which the current optimal basis (solution) remains optimal, assuming no change in the other profit coefficients.

Allowable range for c_1 over which the current optimal basis remains optimal (keeping c_2 fixed)

Slope of constraint (3) \leq Slope of objective function line \leq Slope of constraint (1)

$$-8/5 \le -c_1/40 \le -3/5$$

=> $-c_1/40 \le -3/5$ => $c_1 \ge 24$ and $-8/5 \le -c_1/40$ => $c_1 \le 64$
=> $24 \le c_1 \le 64$

Allowable range for c_2 over which the current optimal basis remains optimal (keeping c_1 fixed)

Slope of constraint (3) \leq Slope of objective function line \leq Slope of constraint (1)

$$-8/5 \le -50/c_2 \le -3/5$$

$$=> 125/4 \le c_2 \le 250/3$$

The values of the decision variables remain unchanged but the objective function value changes because change in profit coefficient.

EFFECT OF CHANGE IN RHS i.e. resource availability

For any b_i , the range of values for b_i over which the current basis remains feasible (with adjusted values for the basic variables), assuming no change in the other right-hand sides. Also called the feasibility range in which shadow price remains valid.

Range for b_1

(The values of the decision variables and the objective function value change)

From (1'): $3x_1+5x_2 \le 3x75/2+5x0=112.5$

 $112.5 \le b_1 \le 175$

 $3x_1 + 5x_2 \le 3x25 + 5x20 = 175$

Range for b_2 :

(0,0)

From (2'): $x_2 \le 12$

From (2''): $x_2 < \infty$

 $12 \le b_2 < \infty$

Range for b_3 :

From (3'): $8x_1+5x_2 \le 8x50/3+5x20=233.33$

From (3''): $8x_1+5x_2 \le 8x50+5x0=400$

 $233.33 \le b_3 \le 400$

