

Introduction

- Terrorism as an obstacle for modern urban life, 2015 Paris attacks.
- New planned, and coordinated attacks hurt us much more. Clusters of networks.
- To counter this we need a modern approach, Palantir.
- Efficiency is key.
- What is our data about? Some figures about the original network.

Q Palantir

Problem Statement

- How do we define "vulnerability"?
 - Nodes whose removal will lead to the greatest fragmentation of the network
 - Nodes whose positions in the network are optimal for spreading misinformation quickly
- Two approaches:
 - Fragmentation
 - Information Flow
- Action items:
 - Arrest or assassinate the key individuals to destroy the network structure
 - Feed deliberate misinformation to a select few individuals to create distrust within the network

Data Processing and Cleaning

- Inverted graph
 - Easier to understand relationships
 - o 244 nodes
 - 30 disconnected components

- Largest component
 - Carries most of the information
 - o 129 nodes

Entire Terrorist Relationships Network

- Nodes size:
 - Eccentricity
- Edges color:
 - Family
 - Congregate
 - Colleague
 - Contact

Largest Component Network

- Nodes size:
 - Betweenness centrality
- Edges color:
 - Family
 - Congregate
 - Colleague
 - Contact

Greedy Optimization Algorithm

- Fragmentation (maximization problem)
 - Find the <u>optimal set</u> of key terrorists which *maximizes* the degree to which the network is **fragmented** upon its removal.
- Information flow (minimization problem)
 - Find the <u>optimal set</u> of key terrorists which *minimizes* **time to spread** information to all other terrorists in the network and the **number of nodes** it passes through.

Initialize set $S = \{\}$

Evaluate for each node: g = combination of three metrics

Populate $S = \{38\}$

Objective function:

$$f = max(g) - C*k$$

*k = size of S

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Remove node 38

Evaluate g

Find *argmax*(*g*): node 27

Populate $S = \{38, 27\}$

Objective function:

If $f \le 0$, then terminate

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Otherwise, remove node 27

Evaluate \boldsymbol{g}

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Find argmax(g): node 22 Populate $S = \{38, 27, 22\}$

f > 0, so continue

Remove node 22

f <= 0 in iteration 4:
Algorithm stops here</pre>

Key terrorists:

• $S = \{38, 27, 22\}$

*in order of decreasing importance

Comparison to Benchmarks

- Compare our solution to other benchmarks
 - Benchmark 1: top 3 individuals based on degree centrality
 - Benchmark 2: top 3 individuals based on betweenness centrality
 - Benchmark 3: top 3 individuals based on closeness centrality

Benchmark	F measure	Information Entropy	Components
Degree	0.279	0.516	4
Betweenness	0.497	0.701	3
Closeness	0.497	0.701	3
Our solution	0.692	1.355	7

Table 1. Comparison of our solution to other benchmarks

Which Relations are Affected?

Which Relations are Affected?

 All modes of "contact" are cut off between communities

Green = congregates

Pink = colleagues

GOALS:

Compare different sets of nodes as source of information based on:

- Distance
- Information diffusion

Distance:

Source nodes generated by optimization algorithm

- $S = \{27, 63, 87\}$ •
- Average distance: 2.46
- Max. Distance: 6

Distance:

Source nodes: highest betweenness centrality.

• $S = \{26, 38, 93\}$ •

• Average distance: 2.60

• Max. Distance: 5

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Distance:

High level of information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Information:

Source nodes generated by optimization algorithm

• $S = \{27, 63, 87\}$

- High level of information

Information:

Low level of information

Source nodes: highest betweenness centrality.

•
$$S = \{26, 38, 93\}$$

So... who should we capture?

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Mohamed El Bousklaoui

Limitations & Conclusion

- Limited data -- 129 terrorists
- Not all names are known
- Unweighted, undirected network
- The project focused more on developing an appropriate methodology.
- There is a possibility to adapt the methodology for weighted, directed network.
- Applications in various other contexts of social networks.

References

[1] Zhao, B., Sen, P. & Getoor, L. (2006). Entity and Relationship Labeling in Affiliation Networks

[2] Borgatti, S. (2006). Identifying sets of key players in a social network. Computational and Mathematical Organization Theory,12(1), pp.21-34