COVERING

Dữ liệu: standard input Kết quả: standard output

Thời gian chạy: 2 giây

Giới hạn bộ nhớ: 192 megabytes

Xét tập S gồm N số tự nhiên đầu tiên. Dễ dàng chứng minh tập S có 2^N tập con (tính cả tập rỗng). Mỗi tập con S' của S có thể được mã hóa bằng một dãy bit nhị phân B(S') gồm N bit, bit thứ i của B(S') bằng 1 khi và chỉ khi i thuộc S' và bit thứ i của B(S') bằng 0 khi và chỉ khi i không thuộc S'. Mỗi dãy bit nhị phân có thể được biểu diễn bằng một số nguyên không âm trong hệ thập phân.

Ví dụ, với
$$N$$
 bằng 5, ta có $S = \{0; 1; 2; 3; 4\}$. Giả sử $S' = \{0; 3; 4\}$. Khi đó $B(S') = 1.2^0 + 0.2^1 + 0.2^2 + 1.2^3 + 1.2^4 = 11001_2 = 25_{10}$.

Định nghĩa một bộ ba tập con (A; B; C) của S bao tập con D của S khi và chỉ khi D là tập con của hợp của ba tập hợp A, B và C. Nói cách khác, mỗi phần tử của D là một phần tử của tập A, B hoặc C.

Xét bốn hàm F,G,H và R. Mỗi hàm nhận một số nguyên không âm biểu diễn một tập con của S làm tham số duy nhất và trả về một số nguyên không âm. Bạn được cho giá trị của F(i),G(i) và H(i) với mọi số nguyên i thỏa mãn $0 \le i < 2^N$.

Giá trị của R(i) với i là một số nguyên không âm biểu diễn tập con X của S là tổng của các $F(a) \times G(b) \times H(c)$ với a, b và c lần lượt là các số nguyên âm biểu diễn tập A, B và C của tập S thỏa mãn (A; B; C) bao X.

Nhiệm vụ của bạn là tính số dư sau khi chia giá trị của $R(0) + R(1) + ... + R(2^N - 1)$ cho $10^9 + 7$.

Dữ liệu

Dòng đầu tiên chứa một số nguyên N.

Dòng thứ hai chứa 2^N số nguyên $F(0), F(1), ..., F(2^N - 1)$.

Dòng thứ ba chứa 2^N số nguyên $G(0), G(1), ..., G(2^N-1).$

Dòng thứ tư chứa 2^N số nguyên $H(0), H(1), ..., H(2^N-1).$

Kết quả

Một dòng duy nhất chứa một số nguyên là số dư sau khi chia giá trị của $R(0) + R(1) + ... + R(2^N - 1)$ cho $10^9 + 7$.

Giới hạn

- $1 \le N \le 20$.
- $0 \le F(i), G(i), H(i) \le 10^9 + 7.$

Free Contest 34

Ví dụ

Sample Input	Sample Output
2	7680
1 3 9 12	
0 5 1 2	
2 3 4 1	