Karla Glavurdić

Osvrt na predavanja - Boja i zvuk u video kompresiji

Kompresija je sažimanje signala. Pomoću perceptualnog kodiranja smanjivamo količinu podataka kojih šaljemo. Ono uzima u obzir karakteristike ljudskih organa za primanje signala (oči i uši). Kod transmisije tj. stremanja vodimo računa o količini podataka koje šaljemo kako bi primatelj mogao neometano pratiti signal bez velikih gubitaka. Jačina kompresije ovisi o video kodeku i željenoj rezoluciji slike odnosno zvuka.

Postoji reduciranje suvišnih (ponavljaju se u podatkovnom prijenosu) i nevažnih podataka (ljudsko oko ih ne primjećuje).

Videokamera daje izlazne signale u RGB sustavu. Oni se matematički pretvaraju u liminantne (odnosi se na svjetlinu - Y) i krominatne komponente (odnose se na ton - Cb). Konverzija se radi jednostavnim matematičkim kombinacijama.

$$Y = (0.3*R)+(0.59*G)+(0.11*B)$$

Cb = 0.56*(B-Y)

Cr= 0.71 * (R-Y)

PRIMJER 1.

Na prvoj slici vidimo usporedbu RGB kanala sa kanalima Cb i Cr, dakle kada rastavimo slike u boji na kanale RGB, dobijemo bijelu koja predstavlja maksimalnu količinu neke boje, a crna označava odsustvo neke komponente.

Kada preračunamo RGB sustav u Y, Cb Cr dobijemo drukčiji izvor kanala. Cb i Cr daje podatke o boji odnosno tonovima.

Kod omjera 4:4:4 je originalna rezolucija slike nakon preračunavanja iz RGB u Y,CbCr sustav. 4 se odnosi na veličinu uzorka, a to su obično 4 piksela. Drugi broj se odnosi na Chroma komponente i oni definiraju horizontalno i vertikalno uzrokovanje. Kada sliku razlomimo na Luma (svjetlina) i Chroma(boja) dobivamo jednu komponentu za informacije u boji, a drugu crno-bijelu. Zajedno kada se spoje dobiva se treća slika.

Kada govorimo o reduciranju podataka, uvijek je redukcija Chroma podataka, a luminacija ostaje uvijek ista. Kod omjera 4:2:2, reduciramo svaki drugi horizontalni piksel, što znači kad usporedimo s prvom slikom oduzeli smo svaki drugi piksel.

Da bismo još više reducirali podatke uzimamo omjer 4:2:0. Ovdje izbacujemo svaki drugi piksel po vertikalnoj osi.

ZVUK

Ultrazvuk su svi valovi iznad 20KHz koje mogu čuti neke životinje. Audio signal koji želimo transimirati digitalnim putem mora imati karakteristike koje poštuju raspone čujnosti ljudskog uha. U pužnici su stanice za visoke, srednje i niske frekvencije gdje auditorni živci prevode signal u impuls. Najveća osjetljivost uha se nalazi u rasponu od 3-4 KHz. Na niže i više frekvencije pada.

Analogni signal se snima različitim uređajima te se putem filtera limitira njegov raspon prije nego se digitalizira, to se zove simpliranje.

Preciznost uzorka se mjeri u bitovima po uzorku i važna je za kvalitetu zvuka. Ona određuje koliko razina amplitude može postići zvučni signal.

Bit rate je produkt preciznosti uzorka pomnožen sa brzinom uzrokovanja. Tada se dobiva bit po sekundi.