Définition des ϵ -prod

Definition

Un non terminal $X \in V_N$ est dit ϵ -productif si $X \Rightarrow^* \epsilon$.

L'ensemble des ϵ -productif est ϵ -Prod.

X est ϵ -productif si la grammaire contient la production :

- $\triangleright X \rightarrow \epsilon$;
- ou $X \to Y_1 Y_2 \dots Y_n$ telle que l'ensemble des non-terminaux $\{Y_1, Y_2, \dots, Y_n\} \subseteq V_N$ ne contient que des non-terminaux ϵ -productifs.

Algorithme de calcul similaire à celui qui calcule les productifs.

60/119

Calcul des Suivant - 4

Quand une production est de la forme $\ldots \to X\alpha$:

- pour calculer Suivant(X);
- ▶ Il faut pouvoir dire si $\alpha \in (V_N \cup V_T)^*$ est ϵ -productif ou pas.

Definition

 $\alpha \in (V_N \cup V_T)^*$ est ϵ -productif si $\alpha \Rightarrow^* \epsilon$. On définit la fonction :

Eps :
$$(V_N \cup V_T)^* \rightarrow \{vrai, faux\}$$

 $\alpha \mapsto \alpha \text{ est } \epsilon\text{-productif}$

On verra après comment calculer Eps.

Calcul des ϵ -productifs

On connaît déjà ϵ -*Prod*, ens. des non-terminaux ϵ -productifs.

Pour calculer $Eps(\alpha)$:

$$Eps(\alpha) =$$
 cas
 $\alpha = \epsilon : vrai$
 $\alpha = X_1 \dots X_n, n \ge$

$$lpha=X_1\ldots X_n, n\geq 1$$
 avec $\{X_1,\ldots,X_n\}\subseteq V_N$ et $\{X_1,\ldots,X_n\}\subseteq \epsilon ext{-Prod}: \mathit{vrai}$

autre : faux // α contient un terminal

fincas

85/119