PENGUJIAN VEKTOR NILAI TENGAH SATU POPULASI

1. Uji Hipotesis

$$H_{0}: \underline{\boldsymbol{\mu}} = \underline{\boldsymbol{\mu}}_{0} \\ H_{1}: \underline{\boldsymbol{\mu}} \neq \underline{\boldsymbol{\mu}}_{0} \qquad \mu_{0} = \begin{bmatrix} \mu_{10} \\ \mu_{20} \\ \vdots \\ \mu_{p0} \end{bmatrix}$$

• Statistik Uji T^2-Hotelling:

$$T^{2} = n \left(\overline{X} - \underline{\boldsymbol{\mu}}_{0} \right)' S^{-1} \left(\overline{X} - \underline{\boldsymbol{\mu}}_{0} \right)$$

• Dengan:

$$\bar{X}_{(px1)} = \frac{1}{n} \sum_{j=1}^{n} X_j$$
 $S_{(pxp)} = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{X})(X_j - \bar{X})$

• Tolak H₀ jika $T^2 > c^2 = \frac{(n-1)p}{(n-p)} F_{(p,n-p)}(\alpha)$

dengan n adalah banyaknya sampel dan p adalah banyaknya peubah

2. Selang Kepercayaan Ellips $(1 - \alpha)100\%$ bagi μ

$$n\left(\overline{X} - \underline{\mu}_0\right)' S^{-1}\left(\overline{X} - \underline{\mu}_0\right) \le c^2 = \frac{(n-1)p}{(n-p)} F_{(p,n-p)}(\alpha)$$

3. Selang Kepercayaan Simultan $(1 - \alpha)100\%$ bagi μ

$$\mu_i = x_i \pm \sqrt{\frac{(n-1)p}{(n-p)}} F_{(p,n-p)}(\alpha) \sqrt{\frac{S_{ii}}{n}}$$

4. Selang Kepercayaan Bonferroni $(1 - \alpha)100\%$ bagi μ

$$\mu_i: \bar{\mathbf{x}}_i \pm t_{(n-1)} \left(\frac{\alpha}{2p}\right) \sqrt{\frac{S_{ii}}{n}}$$

(LATIHAN)

1. Ada 20 wanita dianalisis tentang kadar gula, kadar garam dan kadar potassium dalam darah mereka. Hasil menunjukkan

$$\overline{x} = \begin{pmatrix} 4.64 \\ 45.40 \\ 9.96 \end{pmatrix} \text{dan S} = \begin{pmatrix} 2.88 & 10.01 & -1.81 \\ 10.01 & 199.79 & -5.64 \\ -1.81 & -5.64 & 3.63 \end{pmatrix}$$

Ujilah
$$H_0: \mu' = (4 \quad 50 \quad 10)$$
 lawan $H_1: \mu' \neq (4 \quad 50 \quad 10)$
Dengan $\alpha = 10 \%$ dimana $F_{3,17} (\alpha = 10 \%) = 2.44$

2. Diketahui data matriks dari sampel acak berukuran n=3 dari populasi normal bivariate

$$X = \begin{pmatrix} 6 & 9 \\ 10 & 6 \\ 8 & 3 \end{pmatrix}$$

Ujilah
$$H_0: \mu' = (9 5)$$

3. Berikut ini data dari sampel siswa di sebuah sekolah yang dilihat dari skor nilai matematika (X1) dan fisika (X2). kedua peubah diasumsinkan menyebar normal bivarate:

Siswa	Matematika	Fisika
1	72.8	69.9
2	46	68.9
3	59.2	58.4
4	66.7	78.2
5	84.2	63.9
6	50.4	54.6
7	49.6	66.5
8	77.9	71.6
9	63.9	77.2
10	55.1	56.8

Pertanyaan:

a. Hitung vektor rataan dan matriks kovariannya?

b. Ujilah pada taraf nyata 10% apakah vektor rataan populasi $\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} 55 \\ 60 \end{bmatrix}$

c. Buatlah selang kepercayaan simultan dan selang bonferroni 90%