获得的答案

• SAT or SATISFIABILTY problem probes whether there exists an interpretation of the fed-in input that satisfies (or returns TRUE) a given Boolean formula.

- P=NP implies the existence of a polynomial time algorithm to test the decidability of SAT. By decidable, we mean that a Turing Machine (TM) exists for our SAT problem that either outputs ACCEPT or REJECT.
- Consider the below described algorithm:

For a TM U:

U = "on input α , where α is a Boolean formula of variables $x_1, x_2, ..., x_n$ ".

- 1. Run \mathbf{U} on $\boldsymbol{\alpha}$. If our Boolean input $\boldsymbol{\alpha}$ is not satisfiable, reject. This means that no matter what interpretations we might try to achieve for input $\boldsymbol{\alpha}$, our TM would never return TRUE.
- 2. For *i* from 1 to n:
- 3. Replace all the $\mathbf{x_i}\mathbf{s}$ in $\boldsymbol{\alpha}$ with 1 and simulate our TM U on that. For example: say, for $\boldsymbol{\alpha} = \mathbf{0}_{x_1}\mathbf{1}_{x_2}\mathbf{1}_{x_3}\mathbf{0}_{x_4}\mathbf{1}_{x_5}\mathbf{1}_{x_6}$, we shall first replace $x_1(0)$ with 1 & then in the next iteration x_2 with 1, & so on.
- 4. If $\it U$ accepts, we perform a permanent overwrite for $\it x_i$ with 1, otherwise write $\it x_i$ as 0.

This algorithm is deterministically in P, since both the "for loop" & "replacement of α in for loop" have polynomial running times.

Since, polynomial*polynomial = polynomial devised algorithm is polynomial time.