

EXPERIMENT NO. 3 (a)

Date:

STANDARDISATION OF KMnO₄

AIM OF THE EXPERIMENT : To determine the strength of KMnO₄ solution by using standard sodium oxalate solution.

APPARATUS REQUIRED

1. Burette

2. Pipette

3. Conical flask

4. Burette Stand

5. Marble sheet / Asbestos Pad

6. Measuring cylinder

CHEMICALS REQUIRED

- 1. N/10 sodium oxalate $(Na_2C_2O_4)$
- 2. KMnO₄
- 3. H_2SO_4 (6N)

THEORY

When $KMnO_4$ is standardised against sodium oxalate in the presence of sulphuric acid, $KMnO_4$ oxidises oxalate ion into CO_2 while $KMnO_4$ gets reduced to $MnSO_4$. Mn^{+7} is reduced to Mn^{+2} at a temperature of 60° - 70° C. The end point is detected when permanent pink colour develops in the solution.

CHEMICAL EQUATION

$$2\mathsf{KMnO_4} + 3\mathsf{H_2SO_4} \to \mathsf{K_2SO_4} + 2\mathsf{MnSO_4} + 3\mathsf{H_2O} + 5[O] \\ [\mathsf{Na_2C_2O_4} + \mathsf{H_2SO_4} + [O] \to \mathsf{Na_2SO_4} + 2\mathsf{CO_2} + \mathsf{H_2O}] \times 5$$

$$2 \text{KMnO}_4 + 8 \text{H}_2 \text{SO}_4 + 5 \text{Na}_2 \text{C}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Na}_2 \text{SO}_4 + 8 \text{H}_2 \text{O} + 10 \text{CO}_2$$

IONIC EQUATION

[MnO₄⁻ + 8H⁺ + 5e⁻
$$\rightarrow$$
 Mn²⁺ + 4H₂O] x 2
[C₂O₄²⁻ \rightarrow 2CO₂ + 2e⁻] x 5

$$[2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O]$$

PROCEDURE:

- 1. Thoroughly wash the glassware with water.
- 2. Rinse the burette with supplied KMnO₄ solution and pipette with given sodium oxalate solution.
- 3. Fill the burette with the supplied KMnO₄ solution upto a convenient mark, Remove any air gap and note the initial burette reading.
- 4. Pipette out 10 ml of standard sodium oxalate solution into a conical flask and add approximately 10 ml of 6N H₂SO₄ to it.
- 5. Warm the solution upto 60°C to 70°C.
- 6. Carry out the titration by adding KMnO₄ solution from the burette till the colour changes from colourless to light pink. Note the final burette reading.
- 7. Repeat the process to get the concordant reading.

CALCULATION:

At the end point

$$N_1V_1 = N_2V_2$$

Where $N_1 = Normality of KMnO_4 solution$.

V₁ = Volume of KMnO₄ solution required for titration = V ml

 N_2 = Normality of sodium oxalate solution (N/10)

V₂ = Volume of sodium oxalate solution required for titration = 10 ml

So
$$N_1 = \frac{N_2 V_2}{V_1} = \frac{N}{10} x \frac{10}{V}$$

Strength of KMnO₄ =
$$N_1 \times Eq. \text{ wt. of KMnO}_4$$

= $N_1 \times 31.6 = \dots g/I$

Questions for Discussion.

- 1. What is redox titration?
- 2. Which indicator is used in this experiment?
- 3. What do you mean by primary standard and secondary standard?
- 4. What do you mean by oxidation and reduction?
- 5. What do you mean by oxidising agent and reducing agent?
- 6. Why heating is necessary in the experiement?
- 7. What is the colour change of KMnO₄ in acidic, alkaline and neutral medium titration?
- 8. What is the equivalent weight of KMnO₄ in acidic, alkaline and neutral medium?
- 9. Why KMnO₄ is added slowly in the titration?
- 10. What is the equivalent weight of $Na_2C_2O_4$?

Rough Work

DEPARTMENT OF CHEMISTRY

Roll No. :
Branch :
Date :

AIM OF THE EXPERIMENT :

OBSERVATION TABLE

No.of	Vol. of Na ₂ C ₂ O ₄	Burette Reading (ml)		Difference	Remark
Obs.	solution (ml)	Initial	Final	V (ml)	
1.					
2.					
3.					
4.					

CALCULATION:

CONCLUSION:

EXPERIMENT NO. 3 (b)

Date:

ESTIMATION OF Fe2+

AIM OF THE EXPERIMENT : To determine the amount of Ferrous (Fe^{2+}) ions present in the Mohr's salt solution by using standard $KMnO_4$ solution

APPARATUS REQUIRED

- 1.Burette
- 2. Pipette
- 3. Beaker
- 4. Conical flask
- 5. Burette Stand 6. Marble sheet / Asbestos Pad 7. Measuring cylinder

CHEMICALS REQUIRED

- 1. Standard KMnO₄ solution
- 2. Mohr's salt solution
- 3. H_2SO_4 (6N)

PRINCIPLE

To estimate the amount of ferrous (Fe²⁺) ions in supplied Mohr's salt solution, it is titrated against a standard KMnO₄ solution. In the presence of H_2SO_4 , KMnO₄ oxidises ferrous ions to ferric ions, and it self get reduced to MnSO₄ i.e. Mn⁺⁷ reduced to Mn⁺². The end point is detected when a faint permanent pink colour is developed in the solution.

CHEMICAL EQUATION

$$2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$

 $[2FeSO_4 + H_2SO_4 + [O] \rightarrow Fe_2(SO_4)_3 + H_2O] \times 5$

$$2\mathsf{KMnO_4} + 8\mathsf{H_2SO_4} + 10 \; \mathsf{FeSO_4} \rightarrow \; \mathsf{K_2SO_4} + 2\mathsf{MnSO_4} + 5\mathsf{Fe_2(SO_4)_3} + 8\mathsf{H_2O_4} + 2\mathsf{MnSO_4} + 2\mathsf{$$

IONIC EQUATION

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O_4$$

[Fe²⁺ \rightarrow Fe³⁺ + e⁻] x 5

$${\rm MnO_4}^- + 5{\rm Fe^{2+}} + 8{\rm H^+} \rightarrow {\rm Mn^{2+}} + 5{\rm Fe^{3+}} + 4{\rm H_2O}$$

PROCEDURE:

- 1. Thoroughly wash the glassware with water.
- 2. Rinse the burette with supplied KMnO₄ solution and pipette with the given Mohr's salt solution.
- 3. Fill the burette with the supplied standard KMnO₄ solution upto a convenient mark, remove any air gap and note the initial burette reading.
- Pipette out 10 ml of Mohr's salt solution into a conical flask and add approximately 10ml of 6N H₂SO₄ to it by using a measuring cylinder.
- Carry out the titration by adding KMnO₄ from the burette till the colour changes to light pink.
 Note the final burette reading.
- 6. Repeat the process to get the concordant reading.

CALCULATION:

At the end point

$$N_1V_1 = N_2V_2$$

Where N_1 = Normality of standard KMnO₄ solution.

 V_1 = Volume of KMnO₄ solution required for titration.

 N_2 = Normality of Mohr's salt solution.

 V_2 = Volume of Mohr's salt solution required for titration.

$$S_0 N_2 = \frac{N_1 V_1}{V_2}$$

Strength of Fe⁺² ion in Mohr's salt solution

DEPARTMENT OF CHEMISTRY

Roll No. :
Branch :
Date :

AIM OF THE EXPERIMENT :

OBSERVATION TABLE:

No.of	Vol. of Mohr's salt	Burette Reading (ml)		Difference	Remark
Obs.	solution (ml)	Initial	Final	(ml)	
1.					
2.					
3.					
4.					

CALCULATION:

CONCLUSION:

Questions for Discussion.

- 1. Which is more stable between Fe²⁺ or Fe³⁺ and why?
- 2. What are internal, external and self indicators? Give one example of each.
- 3. Why KMnO₄ is not a primary standard?
- 4. Why H₂SO₄ is used for acidification of KMnO₄ solution and not HCl or HNO₃?
- 5. Why ferrous sulphate is not used in titration instead of Mohr's salt?
- 6. What is the formula of Mohr's salt?
- 7. Which meniscus is to be seen in the burette containing KMnO₄ solution and why?
- 8. Which indicator is used during standardization of KMnO₄ solution?
- 9. What acts as catalyst in this reaction?
- 10. Why KMnO₄ is coloured?

Rough Work