Berechnungen und Logik Hausaufgabenserie 9

Henri Heyden, Nike Pulow stu240825, stu239549

A1

Vor.: Sei β beliebige Belegung für die Formeln $\varphi, \psi \in F_{AL}$.

Beh.:
$$\neg(\varphi \lor \psi) \vDash \exists \neg \varphi \land \neg \psi$$

Bew.:

Fall 1.:
$$(\llbracket \varphi \rrbracket_{\beta}, \llbracket \psi \rrbracket_{\beta}) = (0, 0).$$

Es gilt:

$$[\![\neg(\varphi \lor \psi)]\!]_{\beta} = f_{\neg}([\![\varphi \lor \psi]\!]_{\beta}) = f_{\neg}(f_{\lor}([\![\varphi]\!]_{\beta}, [\![\psi]\!]_{\beta})) = f_{\neg}(f_{\lor}(0,0))$$

$$= f_{\neg}(0) = 1 = f_{\wedge}(1,1) = f_{\wedge}(f_{\neg}(0),f_{\neg}(0)) = f_{\wedge}(f_{\neg}([\![\varphi]\!]_{\beta}),f_{\neg}([\![\psi]\!]_{\beta}))$$

$$= f_{\wedge}(\llbracket \varphi \rrbracket_{\beta}, \llbracket \psi \rrbracket_{\beta}) = \llbracket \neg \varphi \wedge \neg \psi \rrbracket_{\beta}$$

Andere Fälle analog oder mittels Tabelle.

A2

Vor.: $n \in \mathbb{N}_0, \varphi_0, \dots \varphi_{n-1}$ Formeln.

Beh.: $\neg \bigwedge_{i=0}^{n-1} \varphi_i \vDash \forall \bigvee_{i=0}^{n-1} \neg \varphi_i$

Bew.: Wir zeigen mittels Induktion:

(IB): Es gilt:
$$\neg(\land(\top)) \vDash \exists \neg(\top) \vDash \exists \bot \vDash \exists \lor (\bot) \vDash \exists \lor (\neg(\top))^1$$

Anderer Fall analog.

(IS): Sei angenommen (IH) $\neg \bigwedge_{i=0}^{n-2} \varphi_i \vDash \forall \bigvee_{i=0}^{n-2} \neg \varphi_i$.

Zu zeigen ist dann: $\neg \bigwedge_{i=0}^{n-1} \varphi_i \vDash \exists \bigvee_{i=0}^{n-1} \neg \varphi_i$.

Es gilt:
$$\neg \bigwedge_{i=0}^{n-1} \varphi_i \vDash \exists \neg \left(\bigwedge_{i=0}^{n-2} \varphi_i \wedge \varphi_{n-1} \right) \qquad | \text{ (IB) bzw. Bearbeitung von A1}$$
$$\vDash \exists \neg \bigwedge_{i=0}^{n-2} \varphi_i \vee \neg \varphi_{n-1} \qquad | \text{ (IH), Ersetzungslemma}$$
$$\vDash \exists \bigvee_{i=0}^{n-2} \neg \varphi_i \vee \neg \varphi_{n-1} \vDash \exists \bigvee_{i=0}^{n-1} \neg \phi_i$$

Somit sind Induktionsbasis und Induktionsschritt gezeigt.

¹Hmm, ich wünschte, der Text wäre ein bisschen fetter...

$\mathbf{A4}$

Vor.: $\Phi \subseteq F_{AL}$ und $\varphi \in F_{AL}$. $\Phi \cup \{\neg \varphi\}$ unerfüllbar.

Beh.: $\Phi \models \varphi$

Bew.: Wenn Es gilt $\llbracket \Phi \cup \{\neg \varphi\} \rrbracket_{\beta} = 0$ wegen der Definition von Erfüllbarkeit.

Betrachte zwei Fälle:

(1)
$$[\![\Phi]\!]_{\beta} = 1.$$

Damit $\llbracket \Phi \cup \{ \neg \varphi \} \rrbracket_{\beta} = 0$ gelten kann, muss $\llbracket \neg \varphi \rrbracket_{\beta} = 0$ gelten, da $\Phi \cup \{ \neg \varphi \} \vDash \exists$ $(\neg \Phi) \land \neg \varphi$. Daraus folgt $\llbracket \varphi \rrbracket_{\beta} = 1$. Dann gilt $\Phi \vDash \varphi$, da $\llbracket \Phi \rrbracket_{\beta} = 1$, also $\beta \vDash \Phi$, und $\llbracket \varphi \rrbracket_{\beta} = 1$, also $\beta \vDash \varphi$.

(2)
$$[\![\Phi]\!]_{\beta} = 0$$

Für $\llbracket \Phi \cup \{ \neg \varphi \} \rrbracket_{\beta} = 0$ ist der Wert von φ egal. Es gilt $\llbracket \Phi \rrbracket_{\beta} = 0 \Rightarrow \Phi \vDash \varphi$.

A6

a)

$$(\neg X_0 \lor X_4) \land \neg (X_1 \land (X_3 \lor \neg X_2))$$
 Distributivität
$$(\neg X_0 \lor X_4) \land \neg ((X_1 \land X_3) \lor (X_1 \land \neg X_2))$$
 De Morgan

$$\vDash \exists \quad (\neg X_0 \lor X_4) \land \neg (X_1 \land X_3) \land \neg (X_1 \land \neg X_2)$$
 De Morgan

$$\vDash \exists \quad (\neg X_0 \lor X_4) \land (\neg X_1 \lor \neg X_3) \land (\neg X_1 \lor \neg \neg X_2)$$
 Doppelnegation

$$\models \exists \qquad (\neg X_0 \lor X_4) \land (\neg X_1 \lor \neg X_3) \land (\neg X_1 \lor X_2)$$

Wir erhalten $\varphi \wedge \bigvee = \{ \{ \neg X_0, X_4 \}, \{ \neg X_1, \neg X_3 \}, \{ \neg X_1, X_2 \} \}.$

b)

$$(\neg X_0 \lor X_4) \land \neg (X_1 \land (X_3 \lor \neg X_2)) \qquad \text{DeMorgan}$$

$$\vDash \exists \quad (\neg X_0 \lor X_4) \land \neg X_1 \lor \neg (X_3 \lor \neg X_2) \qquad \text{Kommutativität}$$

$$\vDash \exists \quad \neg X_1 \land (\neg X_0 \lor X_4) \lor \neg (X_3 \lor \neg X_2) \qquad \text{Distributivität}$$

$$\vDash \exists \quad (\neg X_1 \land \neg X_0) \lor (\neg X_1 \land X_4) \lor \neg (X_3 \lor \neg X_2) \qquad \text{De Morgan}$$

$$\vDash \exists \quad (\neg X_1 \land \neg X_0) \lor (\neg X_1 \land X_4) \lor (\neg X_3 \land \neg \neg X_2) \qquad \text{Doppelnegation}$$

$$\vDash \exists \quad (\neg X_1 \land \neg X_0) \lor (\neg X_1 \land X_4) \lor (\neg X_3 \land X_2)$$

Wir erhalten $\varphi \bigvee \bigwedge = \{ \{ \neg X_1, \neg X_0 \}, \{ \neg X_1, X_4 \}, \{ \neg X_3, X_2 \} \}.$

A7

Definiere
$$\varphi := \bigwedge \bigvee \{ \{X_2, X_1, X_5\}, \{\neg X_4, X_2, \neg X_3\}, \{\neg X_1\}, \{X_4, X_5, \neg X_2\}, \{\neg X_4, X_1\}, \{X_2, \neg X_5, \neg X_3\}, \{X_3, X_1\}, \{\neg X_5, \neg X_2\} \}$$

Wir zeigen $\varphi \vDash \bot$ mittels Resolutionsbeweis.

1.
$$\{\neg X_1\}$$
 Voraussetzung

2.
$$\{X_3, X_1\}$$
 Voraussetzung

3.
$$\{X_3\}$$
 Resolution mit X_1 aus 1 und 2

4. $\{X_2, \neg X_5, \neg X_3\}$

Voraussetzung

5. $\{X_2, \neg X_5\}$

Resolution mit X_3 aus 3 und 4

6. $\{\neg X_5, \neg X_2\}$

Voraussetzung

7. $\{\neg X_5\}$

Resolution mit X_2 aus 5 und 6

8. $\{X_2, X_1, X_5\}$

Voraussetzung

9. $\{X_2, X_1\}$

Resolution mit X_5 aus 7 und 8

10. $\{X_2\}$

Resolution mit X_1 aus 1 und 9

11. $\{X_4, X_5, \neg X_2\}$

Voraussetzung

12. $\{X_4, X_5\}$

Resolution mit X_2 aus 10 und 11

13. $\{X_4\}$

Resolution mit X_5 aus 7 und 12

14. $\{\neg X_4, X_1\}$

Voraussetzung

15. $\{X_1\}$

Resolution mit X_4 aus 13 und 14

16. {}

Resolution mit X_1 aus 1 und 15

Damit ist gezeigt, was zu zeigen war.