Silnia

Niech ${\bf k}$ oznacza iloczyn wszystkich liczb pierwszych od ${\bf 2}$ do ${\bf z}$. Zadanie polega na znalezieniu maksymalnego ${\bf p}$, takiego ze równanie:

 $n! \mod k^p \equiv 0$

jest prawdziwe.

Wyjaśnienie

np. dla **n**=10 i **z**=5

10!=3628800

iloczyn wszystkich liczb pierwszych od 2 do 5 wynosi

$$2 \cdot 3 \cdot 5 = 30$$

$$10! = 30^2 \cdot 4032$$

czyli

 $10! \bmod 30^2 \equiv 0$

gdzie p=2.

Wejście

W pierwszym wierszu jedna liczba t określająca liczbę zestawów danych (t < 10001).

Specyfikacja każdego z t wierszy:

każdy wiersz składa się z dwóch liczb całkowitych ${\bf n}$ i ${\bf z}$ takich, że $1<{\bf z}\le 10^7$, przy czym ${\bf z}$ jest zawsze liczbą pierwszą oraz $1\le {\bf n}\le 10^9$.

Wyjście

Dla każdego zestawu testowego szukane **p**.

Przykład

Wejście:

1

10 5

Wyjście:

2