## CaeaFlix project

Algorithme de recommandation de films

### Sommaire

- Qui somme-nous?

  CaeaFlix ... c'est quoi?

  L'objectif du projet

  Quels films?

  Constitution de la BDD

  Data viz

  Modèle

  Modèle final

- Démo
- Limites
- Recommandations
- **Next Steps**

# Qui sommes-nous?

#### Equipe

### Scrum master:

Arnaud Le Naourès

### **Product Owner:**

César Ozeer

### **Team Members:**

Antoine Rafflegeau

Esrin Erdem

# CaeaFlix ... C'est quoi?

## L'objectif du projet

### **Projet Caeaflix:**

Relancer les ventes d'un cinéma dans la Creuse

#### **Demande:**

Mettre en place un système de recommandations de films

### Quels films?

### Approche business:

S'appuyer sur une étude consommateurs afin de prendre les bonnes décisions

### Sélection films:

- Films(movies)
- diffusé en français ou en anglais (mais seulement pour ceux aux USA) ...
  - ... dans plus de 7 pays
    - note moyenne > Q1
- nombre de votes > Q1

La base de données finale contient près de 15 000 films.

#### ∞

# Constitution de la base de données

### Données de départ :

- title\_akas, title\_basics, title\_principals, title\_ratings, name\_basics
- ⇒ Fusion des tables

### Manque d'informations:

- recettes, budget, affiche du film, mots-clés, lien vers le site du film
- ⇒ recours à des API pour récolter ces informations

### Data cleaning:

- Regroupement avec une ligne par film et une colonne par catégorie (acteur, actrice, réalisateur)
- Suppression des "NaN"





### Data viz (2/2)





### Modèle

## Modèle: K-Nearest Neighbors (K-NN)

Variables ⇒ positionnent les films les uns par rapport aux autres

Recommandation => film le plus proche en tenant compte de toutes les variables

### Modèle final (1/2)

### Mise en place de 4 dataframes :

- Films "anciens" (avant 1999 compris)
- Films "récents" (après 1999)
- Anime (seulement les anime)
- Indiens (seulement les films de Bollywood)

### Création de variables :

| <u>Binaires</u>                                             | Scaled          |
|-------------------------------------------------------------|-----------------|
| Genre                                                       | Runtime minutes |
| Key words                                                   | Average rating  |
| Pays / ISO / nom de la<br>(des) société(s) de<br>production | Number of votes |
| Nom réalisateur /<br>acteurs / actrices                     | Start year      |
|                                                             | Diffusion       |

### Modèle final (2/2)

### 3 modèles :

- Modèle général (films les plus similaires) :
- X = Keywords + Nom des producteurs + Nom des pays des producteur + Nom des ISO des pays des producteurs + Nom réalisateur + Nb diffusion + Genres + Langue
- Modèle par réalisateur :
- X = Nom réalisateur + note moyenne
- Modèle par studio de production :
- X = Nom producteurs

### Démo

### Limites

### Limites

# Base de données trop lourde (30K+ colonnes):

⇒ Lenteurs dans l'exécution du code

# Volonté de donner un poids différents aux variables :

⇒ Le modèle KNN tel qu'on l'utilise ne le permet pas

# Recommandations

## Recommandations

Trouver d'autres modèles afin de ne pas avoir autant de colonnes et pouvoir donner plus d'importance à certaines variables

⇒ un modèle possible serait le Scipy scalar (hot encoding)

**Utiliser la méthode GridSearch / Randomized Search** 



## **Next Steps**

### **Next Steps**

## Pour apporter plus de services:

- Création d'un système de recommandation fondé sur la consommation des autres clients ⇒ User based
- Création d'un système qui récupère les recommandations faites aux utilisateurs et donne des indications sur les films à prochainement mettre à l'affiche
- Création d'un système de recommandation fondé sur les deux systèmes précédents ⇒ Hybrid based
- SMS des recommandations de films après avoir acheté une place pour une séance au cinéma.

## CaeaFlix project

Algorithme de recommandation de films