```
In [ ]:
         # 1. 对数据集进行处理,转换成适合进行关联规则挖掘的形式
         import pandas as pd
         path = './winemag-data_first150k.csv'
         data = pd. read csv(path)
         # 处理country空值,根据designation确定对应country
         designation2country = {
             "Askitikos": "Greece",
             "Shah": "US",
             "Piedra Feliz": "Chile",
         for i in range(len(data)):
             country = data.iloc[i,1]
             if pd. isnull(country):
                 designation = data.iloc[i, 3]
                 data.iloc[i,1] = designation2country[designation]
         # 将price和points进行离散化
         def points_discretization(value):
             return "points-" + str(int(value/5))
         data. loc[:,'points'] = data['points']. map(lambda x:points discretization(x))
         def price discretization(value):
             if value < 100:
                return "price-" + str(int(value/10))
             else:
                return "price-" + "10"
         data. loc[:,'price'] = data['price']. map(lambda x:price_discretization(x))
         # 仅保留country、points、price用于分析
         data = data.drop(['Unnamed: 0', 'description', 'province', 'region_1', \
                        'region_2','variety','winery','designation'], axis = 1)
         # 数据格式转换
         def deal(data):
             return data.to_list()
         data = data. apply(deal, axis=1). tolist()
         from mlxtend.preprocessing import TransactionEncoder
         te = TransactionEncoder()
         tf = te. fit transform(data)
         new data = pd. DataFrame(tf, columns=te. columns)
```

Out[]:	support		itemsets		
	9	0.526887	(points-17)		
	7	0.413423	(US)		
	12	0.303419	(price-1)		

	support	itemsets
10	0.299669	(points-18)
14	0.212986	(price-2)
37	0.201034	(points-17, price-1)
29	0.199788	(points-17, US)
4	0.155556	(Italy)
8	0.153694	(points-16)
3	0.139787	(France)
39	0.131604	(points-17, price-2)
30	0.128748	(points-18, US)
15	0.124554	(price-3)
13	0.118121	(price-10)
32	0.106460	(US, price-2)
31	0.101617	(US, price-1)
23	0.093964	(points-17, Italy)
16	0.082840	(price-4)
35	0.079454	(points-16, price-1)
33	0.076784	(price-3, US)
28	0.076048	(points-16, US)
19	0.066998	(points-17, France)
40	0.062327	(points-17, price-3)
50	0.060757	(points-17, price-2, US)
49	0.058424	(points-17, US, price-1)
20	0.054926	(points-18, France)
6	0.054780	(Spain)
42	0.051898	(points-18, price-10)
43	0.050957	(points-18, price-2)
44	0.049990	(points-18, price-3)
17	0.049990	(price-5)
24	0.049983	(points-18, Italy)
22	0.049930	(price-10, France)
34	0.049692	(price-4, US)
38	0.049102	(points-17, price-10)
45	0.043855	(points-18, price-4)
25	0.039422	(Italy, price-1)
2	0.038554	(Chile)
51	0.038064	(points-17, US, price-3)

	support	itemsets
0	0.037309	(Argentina)
26	0.036202	(price-10, Italy)
5	0.035261	(Portugal)
11	0.034188	(price-0)
48	0.033936	(points-16, US, price-1)
47	0.033426	(Italy, points-17, price-1)
41	0.033380	(points-17, price-4)
1	0.032843	(Australia)
18	0.031339	(price-6)
21	0.030842	(price-1, France)
27	0.030504	(points-17, Spain)
46	0.030405	(points-18, price-5)
36	0.030193	(points-16, price-2)

```
('price-1',) \Rightarrow ('points-17',) (support = 0.201034, confidence = 0.662561)
('US',) \Rightarrow ('points-17',) (suupport = 0.199788, confidence = 0.483253)
('price-2',) \Rightarrow ('points-17',) (suupport = 0.131604, confidence = 0.617900)
('points-18',) \Rightarrow ('US',) (suupport = 0.128748, confidence = 0.429636)
('price-2',) \Rightarrow ('US',) (support = 0.106460, confidence = 0.499844)
('Italy',) \Rightarrow ('points-17',) (suupport = 0.093964, confidence = 0.604055)
('points-16',) \Rightarrow ('price-1',) (suupport = 0.079454, confidence = 0.516963)
('price-3',) \Rightarrow ('US',) (suupport = 0.076784, confidence = 0.616469)
('points-16',) \Rightarrow ('US',) (suupport = 0.076048, confidence = 0.494805)
('France',) \Rightarrow ('points-17',) (suupport = 0.066998, confidence = 0.479287)
('price-3',) \Rightarrow ('points-17',) (suupport = 0.062327, confidence = 0.500399)
('points-17', 'price-2') ⇒ ('US',) (support = 0.060757, confidence = 0.461662)
('US', 'price-2') \Rightarrow ('points-17',) (support = 0.060757, confidence = 0.570700)
('US', 'price-1') \Rightarrow ('points-17',) (suupport = 0.058424, confidence = 0.574949)
('price-10',) \Rightarrow ('points-18',) (suupport = 0.051898, confidence = 0.439365)
('price-3',) \Rightarrow ('points-18',) (suupport = 0.049990, confidence = 0.401351)
('price-10',) \Rightarrow ('France',) (suupport = 0.049930, confidence = 0.422706)
('price-4',) \Rightarrow ('US',)  (suupport = 0.049692, confidence = 0.599856)
('price-10',) \Rightarrow ('points-17',) (suupport = 0.049102, confidence = 0.415694)
('price-4',) \Rightarrow ('points-18',) (suupport = 0.043855, confidence = 0.529393)
('points-17', 'price-3') \Rightarrow ('US',) (suupport = 0.038064, confidence = 0.610715)
```

```
('US', 'price-3') \Rightarrow ('points-17',) (suupport = 0.038064, confidence = 0.495729)
        ('points-16', 'US') \Rightarrow ('price-1',) (suupport = 0.033936, confidence = 0.446245)
        ('points-16', 'price-1') \Rightarrow ('US',) (suupport = 0.033936, confidence = 0.427118)
        ('Italy', 'price-1') \Rightarrow ('points-17',) (suupport = 0.033426, confidence = 0.847899)
        ('price-4',) \Rightarrow ('points-17',) (suupport = 0.033380, confidence = 0.402943)
        ('Spain',) \Rightarrow ('points-17',) (suupport = 0.030504, confidence = 0.556846)
        ('price-5',) \Rightarrow ('points-18',) (support = 0.030405, confidence = 0.608217)
In [ ]:
         # 4. 对规则进行评价,可使用Lift、卡方和其它教材中提及的指标,至少2种
         # 这里使用提升度Lift和全置信度allconf
         def allconf(x):
             return x. support/max(x['antecedent support'], x['consequent support'])
         allconf list = []
         for index, row in rules. iterrows():
             allconf_list.append(allconf(row))
         rules['allconf'] = allconf_list
         rules.drop(['antecedent support', 'consequent support'], axis=1, inplace=False)
         final_rules = rules.iloc[:]
         from sklearn.preprocessing import LabelEncoder
         for index, row in final_rules.iterrows():
             #print(row)
             if row['allconf'] < 0.1:
                                          # 过滤allconf小于0.1的规则
                 final_rules. drop(index=index, inplace=True)
         final_rules = final_rules.sort_values(by=['lift'], ascending=False)[:16] # 按照lift#
         final rules
```

0 1 5 3					_				
Out[]:		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	allconf
	16	(price-10)	(France)	0.118121	0.139787	0.049930	0.422706	3.023936	0.357190
	27	(price-5)	(points-18)	0.049990	0.299669	0.030405	0.608217	2.029632	0.101461
	19	(price-4)	(points-18)	0.082840	0.299669	0.043855	0.529393	1.766594	0.146344
	6	(points-16)	(price-1)	0.153694	0.303419	0.079454	0.516963	1.703795	0.261863
	7	(price-3)	(US)	0.124554	0.413423	0.076784	0.616469	1.491132	0.185727
	22	(points-16, US)	(price-1)	0.076048	0.303419	0.033936	0.446245	1.470723	0.111846
	14	(price-10)	(points-18)	0.118121	0.299669	0.051898	0.439365	1.466169	0.173185
	17	(price-4)	(US)	0.082840	0.413423	0.049692	0.599856	1.450948	0.120196
	15	(price-3)	(points-18)	0.124554	0.299669	0.049990	0.401351	1.339316	0.166818
	0	(price-1)	(points-17)	0.303419	0.526887	0.201034	0.662561	1.257503	0.381550
	4	(price-2)	(US)	0.212986	0.413423	0.106460	0.499844	1.209038	0.257508
	8	(points-16)	(US)	0.153694	0.413423	0.076048	0.494805	1.196849	0.183948
	2	(price-2)	(points-17)	0.212986	0.526887	0.131604	0.617900	1.172737	0.249777
	5	(Italy)	(points-17)	0.155556	0.526887	0.093964	0.604055	1.146461	0.178338
	11	(points-17, price-2)	(US)	0.131604	0.413423	0.060757	0.461662	1.116682	0.146960
	13	(US, price-1)	(points-17)	0.101617	0.526887	0.058424	0.574949	1.091220	0.110886

```
# -----
idx = 0
for _, row in final_rules. iterrows():
   idx += 1
   t1 = tuple(row['antecedents'])
   t2 = tuple(row['consequents'])
   print("%d : %s ⇒ %s (support = %f, confidence = %f)"%(idx, t1, t2, row['support'], r
```

```
1 : ('price-10',) \Rightarrow ('France',) (support = 0.049930, confidence = 0.422706)
2 : ('price-5',) \Rightarrow ('points-18',) (support = 0.030405, confidence = 0.608217)
3: ('price-4',) \Rightarrow ('points-18',) (support = 0.043855, confidence = 0.529393)
4 : ('points-16',) \Rightarrow ('price-1',) (support = 0.079454, confidence = 0.516963)
5 : ('price-3',) \Rightarrow ('US',) (support = 0.076784, confidence = 0.616469)
6 : ('points-16', 'US') \Rightarrow ('price-1',) (support = 0.033936, confidence = 0.446245)
7 : ('price-10',) \Rightarrow ('points-18',) (support = 0.051898, confidence = 0.439365)
8 : ('price-4',) \Rightarrow ('US',) (support = 0.049692, confidence = 0.599856)
9 : ('price-3',) \Rightarrow ('points-18',) (support = 0.049990, confidence = 0.401351)
10 : ('price-1',) \Rightarrow ('points-17',) (support = 0.201034, confidence = 0.662561)
11 : ('price-2',) \Rightarrow ('US',) (support = 0.106460, confidence = 0.499844)
12 : ('points-16',) \Rightarrow ('US',) (support = 0.076048, confidence = 0.494805)
13 : ('price-2',) \Rightarrow ('points-17',) (support = 0.131604, confidence = 0.617900)
14 : ('Italy',) \Rightarrow ('points-17',) (support = 0.093964, confidence = 0.604055)
15 : ('points-17', 'price-2') \Rightarrow ('US',) (support = 0.060757, confidence = 0.461662)
16 : ('US', 'price-1') \Rightarrow ('points-17',) (support = 0.058424, confidence = 0.574949)
```

根据规则挖掘结果,可以发现以下信息:

- 法国的葡萄酒价格较高 (由1可得)
- 葡萄酒价格和评分成正相关(由2,3,4,7,9,10,13可得)
- 美国的葡萄酒价格分布较为广泛 (由5, 6, 8, 12, 15, 16可得)

```
In []: # 5. 可视化展示
# ------
import matplotlib.pyplot as plt

# 支持度与置信度关联关系展示
plt.xlabel('support')
plt.ylabel('confidence')
for i in range(rules.shape[0]):
    plt.scatter(rules.support[i],rules.confidence[i],c='r')
```

```
0.8 - 0.7 - 0.6 - 0.5 - 0.6 - 0.5 - 0.100 0.125 0.150 0.175 0.200 support
```

```
In []: # 支持度与lift关联关系展示 plt. xlabel('support') plt. ylabel('lift')
```

```
for i in range(rules.shape[0]):
    plt.scatter(rules.support[i],rules.lift[i],c='r')
```

