

センサ種類:8チャンネルI2CHub(マルチプレクサ)

型番: Grove - 8 Channel I2C Multiplexer/I2C Hub

(TCA9548A)

ストーリー: WioNodeに8チャンネルI2CHubを介して、 複数の同種のI2Cセンサを接続する

0. 概要

なぜI2CHub(マルチプレクサ)が必要か

なぜI2CHub(マルチプレクサ)が必要か

- ・通常のGrove I2CHub(下図) は、各線を単に並列に接続しているだけです。I2Cセンサそのものの機能で、異なるチャンネル番号をもつI2Cセンサを複数接続できるものです。
- → チャンネル番号を変更できない同種の12Cセンサを複数接続したい場合、この種の12CHubは使えません。

なぜI2CHub(マルチプレクサ)が必要か

・TCA9548A 12Cマルチプレクサチップ搭載、最大8つの同じアドレス12Cデバイスを同じGrove 12Cシステムに接続できます。時分割多重化技術(time-division multiplexing technology)を採用しているため、同じコントローラーが同じアドレスを持つ8つの12Cデバイスを制御できます。

出典: Seeedstudio

12Cマルチプレクサチップ

。Arduinoのプログラムの変更

ライブラリの読み込みとコードの変更箇所

プログラム

以下では、例として <u>GROVE - VL53L0X搭載 Time of Flight測距センサ</u> をWioNodeに 8Channnel I2C Hub を介して 2個接続するプログラムを扱います。

・**ライブラリ**: 以下2つのライブラリをそれぞれ、ダウンロードし、「zip形式のライブラリをインストール」してください。

- Grove 8 Channel I2C Hub Library (zip)
- Grove-Ranging-sensor-VL53L0X (GitHub)

-サンプルプログラム: <u>MultiChannel_VL53L0X.ino</u>

修正箇所:以下の該当箇所を利用環境に応じて修正する。

- ・WiFi の SSID、パスワード
- ・Azure IoTHub で発行されたデバイスの接続文字列

プログラムの解説 1/3

以下、要所をピックアップします。必ずしも、サンプルプログラム通りではありません。

```
//マルチチャンネルI2CHubの宣言
#include "TCA9548A.h"
#include <Wire.h>
TCA9548A<TwoWire> TCA;
#define WIRE Wire
#define MUX ADDRESS
TCA9548 DEFAULT ADDRESS
//複数のセンサーの宣言
//(VL53L0X TOF距離センサーの場合)
//VL53L0X TOF距離センサー
                    センサー個数分の配列にする
#define SERIAL Serial
#include "Seeed_vl53l0x.h"
const int Cnt VL53L0X=2;
Seeed_vl53l0x VL53L0X[Cnt_VL53L0X];
int i;
int RangeMilliMeter[Cnt_VL53L0X];
```

ファイル冒頭の宣言部

プログラムの解説 2/3

```
//マルチチャンネル I2CHub初期化
#include "TCA9548A.h"
TCA.begin(WIRE);
TCA.openChannel(TCA_CHANNEL_0);
TCA.openChannel(TCA CHANNEL 1);
//チャンネル数分 TOFセンサー初期化
VL53L0X_Error Status = VL53L0X_ERROR_NONE;
for(i=0; i<Cnt_VL53L0X; i++){
                       チャンネルの切り換え
 switchChannel(i);
```

void setup() 内

//データ読み込み チャンネル数分繰り返し for(i=0; i<Cnt_VL53L0X; i++){ switchChannel(i);

void loop() 内

プログラムの解説 3/3

```
// Azureへ送るデータの用意、送信
DataElement a = DataElement();
a.setValue("Sensor", "TOF");
a.setValue("EspValue", RangeMilliMeter[0]);
a.setValue("EspValue2",RangeMilliMeter[1]);
a.setValue("duration", (int)durationtime);
Azure.push(&a);
```

```
//チャンネル切り換え
void switchChannel(int channel) {
  WIRE.beginTransmission(MUX_ADDRESS);
  WIRE.write(1 << channel);
  WIRE.endTransmission();
}
```

void loop()内

この例①では、EspValue2を追加して、送信しているが、他に以下のような手法も考えられる、

- ②チャンネル番号の項目を追加して、チャンネル数分、このブロックを実行する方法 a.setValue("channnel", i);
- ③sensorの項にチャンネル番号も含め、チャンネル数分、このブロックを実行する方法。 a.setValue("Sensor", "TOF1");

プログラムファイル下の方

Stream Analyticsのクエリ変更

StreamAnalyticsクエリの変更

```
SELECT
```

Dev as device,

DATEADD(hour, 9, EventEnqueuedUtcTime) as time,

EventEnqueuedUtcTime as utctime,

params. sensor as sensor,

params. espvalue as value,

params. espvalue2 as value2,

params. duration as duration,

INT0

outputpowerbi

FROM

inputiothub

この例①では、必要数 espvalueを追加する。 チャンネル番号を追加する方法②なら、 params.channel as channel,

3. PowerBIでのレポートの作成

レポートの変更

