STATS 310B Notes

Kenneth Tay

Conditional expectation (Lec 1-2)

- (Lec 1) $L^2(\Omega, \mathcal{F}, P)$ is complete.
- (Lec 1) For $X \in L^2(\Omega, \mathcal{F}, P)$, the **conditional expectation** of X given \mathcal{G} is the \mathcal{G} -measurable random variable in L^2 such that $\mathbb{E}XZ = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]Z]$ for all $Z \in L^2(\Omega, \mathcal{G}, P)$. Conditional expectation is unique, and is the orthogonal projection of X onto $L^2(\Omega, \mathcal{G}, P)$.
- (Lec 2) For $X \in L^1(\Omega, \mathcal{F}, P)$, the **conditional expectation** of X given \mathcal{G} is the unique \mathcal{G} -measurable random variable in L^1 such that for all $A \in \mathcal{G}$, $\mathbb{E}[X; A] = \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]; A]$, where $\mathbb{E}[X; A] = \mathbb{E}[X1_A]$.
- (Lec 2) If \mathcal{H} independent of $\sigma(X,\mathcal{G})$, then $\mathbb{E}[X \mid \sigma(\mathcal{H},\mathcal{G})] = \mathbb{E}[X \mid \mathcal{G}]$.
- (Lec 2) Conditional Jensen's inequality: If $\phi : \mathbb{R} \to \mathbb{R}$ convex, and $\phi(X)$ and X both integrable, then $\mathbb{E}[\phi(X) \mid \mathcal{G}] \ge \phi(\mathbb{E}[X \mid \mathcal{G}])$ a.s.
- For $p \in [1, \infty]$ and any sub- σ -algebra \mathcal{G} , $\|\mathbb{E}[X \mid \mathcal{G}]\|_p \leq \|X\|_p$.
- (Dembo Prop 4.2.33) For any $X \in L^1(\Omega, \mathcal{F}, P)$, the collection $\{\mathbb{E}[X \mid \mathcal{H}], \mathcal{H} \subseteq \mathcal{F} \text{ is a } \sigma\text{-algebra}\}$ is U.I.

Martingales (Lec 3-11)

- Examples of martingales:
 - (Lec 3) Let $Y_1, Y_2, ...$ be independent (integrable) random variables with $\mathbb{E}Y_i = \mu_i$, and let $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$. Then $S_n = \sum_{i=1}^n (Y_i \mu_i)$ is a martingale.
 - (Lec 3) Same setting as above, assume further that $\operatorname{Var}(Y_i) = \sigma_i^2 < \infty$. Then $Z_n = S_n^2 \sum_{i=1}^n \sigma_i^2$ is a martingale.
 - (Lec 3) Let Y_1, Y_2, \ldots be independent non-negative random variables with $\mathbb{E}Y_i = 1$ for all i. Then $Z_n = \prod_{i=1}^n Y_i$ is a martingale.
 - (Lec 3) If X_1, X_2, \ldots i.i.d. and $M(\theta) = \mathbb{E}[e^{\theta X_i}] < \infty$ for some θ , then $Z_n = \frac{e^{\theta \sum_{i=1}^n X_i}}{M(\theta)^n}$ is a martingale. (θ is usually chosen such that $M(\theta) = 1$ and $\theta \neq 0$.)
- Uncorrelated differences: For any martingale $\{X_n\}$, $X_i X_{i-1}$ and $X_j X_{j-1}$ are uncorrelated for $i \neq j$, i.e. $\mathbb{E}[(X_i X_{i-1})(X_j X_{j-1})] = 0$.

- (HW3) If $\{X_n\}$ is a martingale with $\sup_n \mathbb{E}|X_n| < \infty$, we can write it as the difference of two non-negative martingales.
- (Lec 3) Stopping time: A random variable $T : \Omega \mapsto \{1, 2, ...\} \cup \{\infty\}$ is a stopping time adapted to $\{\mathcal{F}_n\}$ if $\{T = n\} \in \mathcal{F}_n$ for all n.
- (Lec 3) If T is a stopping time, then $\{T \le n\} \in \mathcal{F}_n$ and $\{T \ge n\} \in \mathcal{F}_{n-1}$. For any integer $n, T \land n$ is also a stopping time.
- (Lec 3) **Stopped** σ -algebra: \mathcal{F}_T is the set of all $A \in \mathcal{F}$ such that for all $n \in \mathbb{N}$, $A \cap \{T = n\} \in \mathcal{F}_n$. (You can think of \mathcal{F}_T as "all events that are dependent only on information up to the stopping time". It is **not** the same as the σ -algebra generated by T.)
- (Lec 3) Stopped random variable: Z_T is defined as $Z_T(\omega) := Z_{T(\omega)}(\omega)$, that is, $Z_T = \sum_{n=1}^{\infty} Z_n 1_{\{T=n\}}$. (Note: Z_T is always \mathcal{F}_T -measurable.)
- (Lec 4) The convex transformation of a martingale is a submartingale. The convex **and** non-decreasing transformation of a submartingale is a submartingale.
- (Lec 5) Uniform integrability: A sequence of random variables $\{X_n\}$ is uniformly integrable if (i) each X_n is integrable, and (ii) $\lim_{a\to\infty} \sup_n \mathbb{E}(|X_n|;|X_n|\geq a)=0$. A single integrable X is U.I.
- (Lec 6) $\{X_n\}$ is U.I. iff for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$A \in \mathcal{F}$$
 with $P(A) < \delta \implies \mathbb{E}(|X_n|; A) < \varepsilon$ for all n .

- (Dembo Prop 4.2.33) For any $X \in L^1(\Omega, \mathcal{F}, P)$, the collection $\{\mathbb{E}[X \mid \mathcal{H}], \mathcal{H} \subseteq \mathcal{F} \text{ is a } \sigma\text{-algebra}\}$ is U.I.
- (Dembo Prop 5.4.4) Suppose $\{Y_n\}$ integrable and τ a stopping time for filtration $\{\mathcal{F}_n\}$. Then $\{Y_{n \wedge \tau}\}$ is U.I. if any one of the following hold:
 - 1. $\mathbb{E}\tau < \infty$ and a.s. $\mathbb{E}[|Y_n Y_{n-1}|| \mathcal{F}_{n-1}] \le c$ for some finite, non-random c.
 - 2. $\{Y_n I_{\tau > n}\}$ is U.I. and $Y_{\tau} I_{\tau < \infty}$ is integrable.
 - 3. (Y_n, \mathcal{F}_n) is a U.I. submartingale (or supermartingale).
- If a collection $\{X_{\alpha}\}$ is dominated by an integrable random variable, then it is U.I.
- (Lec 5) If $\{X_n\}$ U.I., then $\sup_{n} \mathbb{E}|X_n| < \infty$.
- (Lec 6) If $\{X_n\}$ is U.I. and $X_n \stackrel{P}{\to} X$, then $X_n \stackrel{L^1}{\to} X$.
- (Dembo Dfn 5.3.13) For integrable X, the sequence $X_n = \mathbb{E}[X \mid \mathcal{F}_n]$ is called the **Doob martingale** of X w.r.t. $\{\mathcal{F}_n\}$.
- (Dembo Cor 5.3.14) A martingale $\{X_n\}$ is U.I. iff $X_n = \mathbb{E}[X_\infty \mid \mathcal{F}_n]$ is a Doob's martingale, or equivalently iff $X_n \to X_\infty$ in L^1 .
- (Durrett Thm 5.7.1) If X_n is a U.I. submartingale, then for any stopping time N, $X_{n \wedge N}$ is a U.I. submartingale as well.
- (Lec 6) **Definition of absolutely continuous:** Let P and Q be two probability measures on measurable space (Ω, \mathcal{F}) . We say that Q is absolutely continuous w.r.t. P, and write Q << P, if $P(A) = 0 \implies Q(A) = 0$.

- (Lec 6) Assume that Q << P. Then for all $\varepsilon > 0$, there exists $\delta > 0$ such that $P(A) < \delta \Rightarrow Q(A) < \varepsilon$.
- (Lec 6) Radon-Nikodym Theorem: Let (Ω, \mathcal{F}) be a measurable space and suppose that \mathcal{F} is countably generated. Let P and Q be two probability measures on this space such that Q << P.

Then, there exists a non-negative random variable L on this space such that for all $A \in \mathcal{F}$, $Q(A) = \int_A dQ = \int_A LdP$. We write $L := \frac{dQ}{dP}$.

• (Lec 7) **Dynamic Programming:** Let $\{X_n\}_{1 \leq n \leq N}$ be an \mathcal{F}_n -measurable sequence of integrable random variables. We want to maximize $\mathbb{E}X_T$ over all stopping times T.

Define adapted $\{V_n\}$ by $V_N = X_N$, and $V_n = \max\{X_n, \mathbb{E}[V_{n+1} \mid \mathcal{F}_n]\}$, and let $\tau = \inf\{X_k = V_k\}$. Then τ is the solution. (Note that $\{V_n\}$ is a supermartingale.)

• (Lec 9) **Lévy's form of the Borel-Cantelli Lemma:** Let $\{\mathcal{F}_n\}_{n\geq 1}$ be a filtration and events $A_n \in \mathcal{F}_n$ for all n. Then

$$\sum_{n=1}^{\infty} 1_{A_n} = \infty \text{ if and only if (a.s.)} \quad \sum_{n=1}^{\infty} P(A_n \mid \mathcal{F}_{n-1}) = \infty.$$

- (Lec 9) **Almost supermartingales:** Let Z_n be a sequence of \mathcal{F}_n -measurable, non-negative, integrable random variables. Z_n is an **almost supermartingale** if there are 2 other non-negative, integrable, adapted sequences ξ_n and ζ_n such that $\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n] \leq Z_n + \xi_n \zeta_n$ a.s. for all n.
- (Lec 9) If Z_n is an almost supermartingale, then $Y_n = Z_n \sum_{k=1}^{n-1} (\xi_k \zeta_k)$ is a supermartingale.
- (Lec 9) **Stochastic gradient descent:** Assume that we have a measurable function y = M(x) with the following conditions:
 - M(x) is positive if $x > \theta$, M(x) negative if $x < \theta$,
 - $-|M(x)| \le m$ for all x,
 - For all $\varepsilon > 0$, $\inf_{\varepsilon < x < 1/\varepsilon} M(x + \theta) > 0$ and $\sup_{-1/\varepsilon < x < -\varepsilon} M(x + \theta) < 0$.
 - Given x, we can't generate M(x) exactly, but we can generate a random variable Y with mean M(x) and variance $\leq \sigma^2$.

Consider the following procedure:

- 1. Choose a sequence of predetermined non-negative real numbers $\{a_n\}$ and some arbitrary X_1 .
- 2. (Loop) Given X_n , generate Y_n with mean $M(X_n)$ and variance $\leq \sigma^2$. Set $X_{n+1} = X_n a_n Y_n$.

If
$$\sum a_n = \infty$$
 and $\sum a_n^2 < \infty$, then $\lim_{n \to \infty} X_n = \theta$ a.s.

- (Lec 10) A martingale Z_n is square-integrable if $\mathbb{E}Z_n^2 < \infty$ for all n.
- (Lec 10) A sequence $\{Y_n\}$ is a **predictable process** if Y_n is \mathcal{F}_{n-1} -measurable for all n.
- (Lec 10) Let Z_n be a square-integrable martingale. Define $\sigma_n^2 = \mathbb{E}[(Z_n Z_{n-1})^2 \mid \mathcal{F}_{n-1}]$. It can be checked that $Z_n^2 \sum_{i=1}^n \sigma_i^2$ is a martingale.

$$\left\{\sum_{i=1}^{n}(Z_{i}-Z_{i-1})^{2}\right\} \text{ is called the quadratic variation of } \{Z_{n}\}.$$

 $\{A_n\} := \left\{\sum_{i=1}^n \sigma_i^2\right\}$ is called the **predictable quadratic variation** of $\{Z_n\}$. (Also called **square variation**, sometimes denoted $\langle Z \rangle_n$. Note that $\mathbb{E}[\langle Z \rangle_n] = \text{Var}(Z_n - Z_0)$.)

- (Lec 11) **Doob decomposition:** For a submartingale $\{Y_n\}$, let $A_n = \sum_{j=1}^n \mathbb{E}[Y_j Y_{j-1} \mid \mathcal{F}_{j-1}]$. A_n is a non-negative, increasing predictable process and $Y_n A_n$ is a martingale. $Y_n = (Y_n A_n) + A_n$ is the **Doob decomposition** of Y_n . (Every submartingale can be decomposed into the sum of a martingale and a non-negative increasing predictable process.)
- (Dembo Thm 5.2.6) **Doob's Inequality:** For any submartingale $\{X_n\}$ and x > 0, let $\tau_x = \min\{k \ge 0 : X_k \ge x\}$. Then for any finite $n \ge 0$,

$$\mathbb{P}\left(\max_{0 \le k \le n} X_k \ge x\right) \le \frac{1}{x} \mathbb{E}\left[X_n 1_{\{\tau_x \le n\}}\right] \le \frac{1}{x} \mathbb{E}[(X_n)_+].$$

• (Dembo Cor 5.2.13) **Doob's** L^p **inequality:** If X_n is a submartingale then for any n and p > 1, $\mathbb{E}\left[\left(\max_{k \le n} X_k\right)_+^p\right] \le q^p \mathbb{E}[(X_n)_+^p]$, where q = p/(p-1).

If X_n is in fact a martingale, then we also have $\mathbb{E}\left[\left(\max_{k\leq n}|X_k|\right)^p\right]\leq q^p\mathbb{E}[|X_n|^p].$

- (Dembo Dfn 5.1.27) Martingale transform: Let $\{V_n\}$ be a predictable sequence and let $\{X_n\}$ be a sub or supermartingale. The martingale transform of $\{V_n\}$ w.r.t. $\{X_n\}$ is $Y_0 = 0$, $Y_n = \sum_{k=1}^n V_k(X_k X_{k-1})$.
- (Dembo Thm 5.1.28) In the setting above,
 - 1. If Y_n integrable and X_n a martingale, then Y_n is also a martingale.
 - 2. If Y_n integrable, $V_n \ge 0$ and X_n a submartingale (or supermartingale), then Y_n is also a submartingale (or supermartingale).
 - 3. To have Y_n integrable, it suffices to have $|V_n| \le c_n$ for non-random finite constants c_n , or to have $V_n \in L^q$ and $X_n \in L^p$ for all n and some p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

Optional sampling theorems

- (Lec 3) Wald's Lemma for bounded stopping times: Let $\{\mathcal{F}_n\}$ be a filtration, $\{Z_n\}$ a martingale adapted to this filtration, T a stopping time w.r.t. this filtration. Suppose that there exists some $N \in \mathbb{N}$ such that $T \leq N$ a.s. Then $\mathbb{E}Z_T = \mathbb{E}Z_1$.
- (Durrett Thm 4.1.5) Wald's equation: Let $X_1, X_2, ...$ be i.i.d. with $\mathbb{E}|X_i| < \infty$. If N is an integrable stopping time, then $\mathbb{E}S_N = \mathbb{E}X_1 \cdot \mathbb{E}N$.
- (Durrett Thm 4.1.6) Wald's second equation: Let $X_1, X_2,...$ be i.i.d. with mean 0 and $\mathbb{E}X_n^2 = \sigma^2 < \infty$. If T is an integrable stopping time, then $\mathbb{E}S_T^2 = \sigma^2 \mathbb{E}T$.
- Optional Sampling Theorem: Let $\{X_n\}$ be a supermartingale, and let $\sigma \leq \tau$ be two stopping times.
 - 1. Assume there is a constant T s.t. $\tau \leq T$. Then $X_{\sigma} \geq \mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}]$, and in particular, $\mathbb{E}[X_{\sigma}] \geq \mathbb{E}[X_{\tau}]$. If X is a martingale, then equality holds.

- 2. If X is non-negative and $\tau < \infty$ a.s., then $\mathbb{E}[X_{\tau}] \leq \mathbb{E}[X_0] < \infty$, $\mathbb{E}[X_{\sigma}] \leq \mathbb{E}[X_0] < \infty$, and $X_{\sigma} \geq \mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}]$.
- 3. If X is only adapted and integrable, then X is a martingale iff $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$ for any bounded stopping time τ .
- Martingale subsequences: If τ_n is a monotonically increasing sequence of bounded stopping times and X is a martingale, then $\{X_{\tau_n}\}$ is a martingale w.r.t. $\{\mathcal{F}_{\tau_n}\}$.
- (Lec 8) **Stopped processes:** If Z_n is a martingale and τ is any stopping time, then $Z_{\tau \wedge n}$ is a martingale as well. (Same applies for submartingales and supermartingales.)
- Let $\{X_n\}$ be a U.I. martingale (sub-martingale resp.) and $\sigma \leq \tau$ be finite stopping times. Then $\mathbb{E}[|X_{\tau}|] < \infty$ and $X_{\sigma} = \mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}]$ $(X_{\sigma} \geq \mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}] \text{ resp.})$.
- Optional sampling in infinite time: Let τ be a stopping time and X a martingale. Then X_{τ} is integrable and $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$ if one of the following conditions hold:
 - 1. τ is bounded.
 - 2. $\{X_{n\wedge\tau}\}$ is dominated by an integrable random variable Z, i.e. $|X_{n\wedge\tau}|\leq Z$ a.s.
 - 3. $\mathbb{E}[\tau] < \infty$ and there exists $K \ge 0$ such that $\sup_n |X_n X_{n-1}| \le K$.

Convergence of martingales

- (Lec 5) (Sub)martingale Convergence Theorem: Let $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ be a submartingale. Suppose $\sup_{n} \mathbb{E} Z_n^+ < \infty$. Then there is a random variable Z taking values in $[-\infty, \infty)$ such that $Z_n \to Z$ a.s.
- (Lec 6) If $\{Z_n, \mathcal{F}_n\}$ is a U.I. martingale (or sub/super-martingale), then there is a random variable Z which is finite a.s. and $Z_n \to Z$ a.s. and in L^1 .
- (Lec 6) **Lévy's Upward Convergence Theorem:** Let $\{\mathcal{F}_n\}$ be a filtration and $\mathcal{F}_{\infty} = \sigma\left(\bigcup_{n=1}^{\infty} \mathcal{F}_n\right)$. Let Y be an integrable random variable. Then $\mathbb{E}(Y \mid \mathcal{F}_n) \to \mathbb{E}(Y \mid \mathcal{F}_{\infty})$ a.s. and in L^1 .
- (Lec 8) If Z_n is a supermartingale with $\mathbb{E}|Z_1| < \infty$ that is uniformly bounded below by a constant, then $\lim Z_n$ exists and is finite a.s. (Same for submartingale bounded above by a constant.)
- (Lec 9) Convergence for martingales with bounded increments: Let Z_n be a martingale with bounded increments, i.e. there is a constant c such that for all n, $|Z_n Z_{n-1}| \le c$ a.s. With probability 1, either $\lim Z_n$ exists and is finite, or $\lim \sup Z_n = \infty$ and $\lim \inf Z_n = -\infty$.
- (HW4) If M_n is a martingale with bounded increments, then $\frac{M_n}{n} \stackrel{a.s.}{\to} 0$. (See Dembo Ex 5.3.41 for generalization.)
- (HW4) If $\{Z_n\}$ is a supermartingale with bounded increments, then $\limsup_{n\to\infty} \frac{Z_n}{n} \leq 0$ a.s.
- (Lec 9) Convergence for almost supermartingales: On the set $\left\{\sum_{n=1}^{\infty} \xi_n < \infty\right\}$, $\lim Z_n$ exists and is finite and $\sum \zeta_n < \infty$ a.s.
- (Lec 10) Martingale SLLN: Let

- $\{S_n, \mathcal{F}_n\}_{n>1}$ be a martingale with mean 0,
- $-X_n = S_n S_{n-1}$ (where $S_0 = 0$), with the assumption that $\mathbb{E}[X_n^2] < \infty$ for all n,
- $\sigma_n^2 = \mathbb{E}[X_n^2 \mid \mathcal{F}_{n-1}],$
- $-c_n$ an \mathcal{F}_{n-1} -measurable random variable, with the assumption that $c_n > 0$ and increasing.

Then, on the set
$$\left\{\sum_{n=1}^{\infty} \frac{\sigma_n^2}{c_n^2} < \infty \text{ and } \lim_{n \to \infty} c_n = \infty\right\}, \frac{S_n}{c_n} \to 0 \text{ a.s.}$$

- (Lec 10) Let $X_n \in \{0,1\}$ for all n, X_n \mathcal{F}_n -measurable. Let $S_n = \sum_{i=1}^n X_i$, and $p_n = P(X_n = 1 \mid \mathcal{F}_{n-1})$. Then on the set $\left\{\sum_{i=1}^{\infty} p_i = \infty\right\}$, $\lim_{n \to \infty} \frac{S_n}{\sum_{i=1}^n p_i} = 1$.
- (Lec 10) Convergence of square-integrable martingales: If $\{Z_n\}$ is a square-integrable martingale and $\sup_n \mathbb{E} Z_n^2 < \infty$, then there exists Z such that $Z_n \to Z$ a.s. and in L^2 .
- (Lec 10) For a square-integrable martingale $\{Z_n\}$, $\lim Z_n$ exists and is finite a.s. on the set $\left\{\sum_{n=1}^{\infty} \sigma_n^2 < \infty\right\}$.

Ergodic theory (Lec 11-13)

- (Lec 11) Let (Ω, \mathcal{F}, P) be a probability space. A measurable map $\varphi : \Omega \mapsto \Omega$ is called a **measure-preserving transform** if $P(\varphi^{-1}(A)) = P(A)$ for all $A \in \mathcal{F}$.
- (Lec 12) If φ is measure-preserving, $\int YdP = \int Y \circ \varphi dP$ for all Y.
- (Lec 11) Examples of measure-preserving transforms:
 - $-(\Omega, \mathcal{F}, P) = ([0, 1), \text{Borel}, \text{Leb}), \ \theta \in \Omega, \ \text{and let} \ \varphi(x) = x + \theta \ (\mod 1).$ This is ergodic iff θ is irrational.
 - Probability space as above, $\varphi(x) = 2x \pmod{1}$.
 - Bernoulli shift: $\Omega = \{0,1\}^{\mathbb{N}}$ (where $\mathbb{N} = \{0,1,\dots\}$), \mathcal{F} the product σ -algebra (i.e. the smallest σ -algebra under which all coordinate maps are measurable), P be the law of an infinite i.i.d. Bernoulli(1/2) sequence, $\varphi((\omega_0,\omega_1,\dots)) := (\omega_1,\omega_2,\dots)$. This is ergodic.
- (Lec 11) Let φ be measure-preserving on (Ω, \mathcal{F}, P) . Let $\mathcal{I} = \{A \in \mathcal{F} : \varphi^{-1}(A) = A\}$. Then \mathcal{I} is a σ -algebra, and is called the **invariant** σ -algebra of φ .
- (HW5) For $A \in \mathcal{I}$, $1_A \circ \varphi = 1_A$, and for \mathcal{I} -measurable $Y, Y \circ \varphi = Y$ a.s.
- (Lec 11) A measure-preserving transform φ is called **ergodic** if for all $A \in \mathcal{I}$, P(A) = 0 or 1.
- (Lec 12) Maximal Ergodic Theorem: Let (Ω, \mathcal{F}, P) be a probability space, φ a measure-preserving transform with invariant σ -algebra \mathcal{I} , and X a random variable in L^1 .

Let
$$X_j(\omega) := X(\varphi^j(\omega)), S_k = X_0 + X_1 + \dots + X_k$$
, and $M_k = \max\{0, S_0, S_1, \dots, S_k\}$.
Then $\mathbb{E}[X; M_k > 0] \ge 0$.

- (Lec 12) **Birkhoff's Ergodic Theorem:** Let (Ω, \mathcal{F}, P) be a probability space, φ a measure-preserving transform with invariant σ -algebra \mathcal{I} , and X a random variable in L^1 . Then $\frac{1}{n}\sum_{m=0}^{n-1}X(\varphi^m(\omega))\to \mathbb{E}[X\mid\mathcal{I}]$ a.s. and in L^1 .
 - In particular, if φ is ergodic, then $\frac{1}{n} \sum_{m=0}^{n-1} X(\varphi^m(\omega)) \to \mathbb{E}X$ a.s. and in L^1 ("space average is equal to time average").
- (Lec 13) Let $\Omega = [0,1), \ \varphi(x) = x + \theta \pmod{1}$, where θ is irrational. Take any subinterval [a,b) of [0,1). Then, for any $x \in [0,1), \frac{1}{n} \sum_{m=0}^{n-1} 1\{\varphi^m(x) \in [a,b)\} \to b-a$.
- (Lec 13) von Neumann's Ergodic Theorem: Same as Birkhoff's, except $X \in L^2$ and the convergence is in L^2 .

Markov chains (Lec 14-18)

Set-up: (Ω, \mathcal{F}, P) a probability space, $\{\mathcal{F}_n\}$ a filtration, $\{X_n\}$ an adapted sequence of random variables taking values in (S, \mathcal{S}) .

- (Lec 14) Transition probabilities: $p_n(x,y) = P(X_{n+1} = y \mid X_n = x)$.
- (Lec 14) Chapman-Kolmogorov equations: Let $P_n = \left(p_k(x,y)\right)_{x,y\in S}$, and $P^{(n)} = P_0P_1\dots P_{n-1}$. Then $P(X_n = y \mid X_0 = x) = P^{(n)}(x,y)$.
- (Lec 14) **Time-homogeneous:** The transition probabilities are the same at each time step. In this case, the transition probability matrix is P with entries $P_{ij} = P(X_{n+1} = j \mid X_n = i)$.
 - If p_0 is the initial distribution of X_0 (row vector), then the distribution of X_n is p_0P^n .
 - $P^n f$ is the conditional expectation of $f(X_{i+n})$ given X_i . Thus, given an initial distribution p_0 , we have $\mathbb{E}[f(X_n)] = p_0 P^n f$.
- (Lec 14) Markov property: Given a function $f: S \times S \times ... \to \mathbb{R}$ which is measurable w.r.t. the product σ -algebra, let $g(x) = \mathbb{E}[f(X_0, X_1, X_2, ...) \mid X_0 = x] =: \mathbb{E}_x[f(X_0, X_1, X_2, ...)]$. Then, for any $n, \mathbb{E}[f(X_n, X_{n+1}, X_{n+2}, ...) \mid X_n = x] = g(x)$.
- (Lec 14) **Strong Markov property:** Let T is a stopping time w.r.t. $\{\mathcal{F}_n\}_{n\geq 0}$. Then, on the set $\{T<\infty\}$, $\mathbb{E}[f(X_T,X_{T+1},\dots)\mid \mathcal{F}_T]=g(X_T)$.
- (Lec 14) Every discrete-time Markov chain has the Markov property and strong Markov property.

From here on, assume that the Markov chain is time-homogeneous and takes values on a countable state space S.

- (Lec 15) **Hitting time:** For $x \in S$, the first hitting time of x is $T_x := \inf\{n \ge 1 : X_n = x\}$. (Note: Time 0 doesn't count.)
- (Lec 15) Let $\rho_{xy} := P(T_y < \infty \mid X_0 = x)$. In particular, ρ_{xx} is the probability of ever returning to x given that the chain starts at x. A state x is **recurrent** if $\rho_{xx} = 1$, and is **transient** otherwise.

• (Lec 15) Notation: Let $N(x) = \sum_{n=1}^{\infty} 1_{\{X_n = x\}}$, i.e. the number of visits to x (except time 0).

Let
$$p_{xy}^{(n)} := P(X_n = y \mid X_0 = x).$$

- (Lec 15) **Theorem for recurrence:** The following are equivalent:
 - (a) x is recurrent (i.e. $\rho_{xx} = 1$).
 - (b) $\mathbb{E}_x N(x) = \infty$, where \mathbb{E}_x means $\mathbb{E}[\cdot \mid X_0 = x]$.
 - (c) $P_x(N(x) = \infty) = 1$.
 - (d) $\sum_{n=1}^{\infty} p_{xx}^{(n)} = \infty.$
- (Lec 16) A state y is **accessible** from a state x if $p_{xy}^{(n)} > 0$ for some $n \ge 0$. If so, we write $x \to y$. Two states x and y are **communicating** if $x \to y$ and $y \to x$. We write $x \leftrightarrow y$.
- (Lec 16) The Markov chain is said to be **irreducible** if the number of equivalence classes is 1.
- (Lec 16) Recurrence (and therefore, transience) is a class property.
- (Lec 16) If the state space S is finite, then there exists at least one recurrent state. Hence, if the Markov chain is irreducible and state space is finite, then all states are recurrent.
- (Lec 16) The **period** of a state x is the greatest common divisor of all $n \ge 1$ such that $p_{xx}^{(n)} > 0$. It is denoted by d(x). A state is said to be **aperiodic** if its period is 1. States that communicate have the same period.
- (Lec 16) For any recurrent state x, let $\mu_{xx} :=$ expected time of first return to x starting from x. A recurrent state x is called **positive recurrent** if $\mu_{xx} < \infty$. If $\mu_{xx} = \infty$, it is called **null recurrent**.
- (Lec 17) If x is a recurrent state, then $\lim_{n\to\infty}\frac{1}{n}\sum_{m=1}^n p_{xx}^{(m)}=\frac{1}{\mu_{xx}}$.
- (Lec 17) If x and y communicate and are recurrent, then $\lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^{n} p_{yx}^{(m)} = \frac{1}{\mu_{xx}}$.
- (Lec 18) Positive recurrence and null recurrence are also class properties.
- (Lec 18) A Markov chain with finite state space cannot have a null recurrent state.
- (Lec 18) If S' is a positive recurrent equivalence class and $|S'| < \infty$, then $\sum_{y \in S'} \frac{1}{\mu_{yy}} = 1$.

In particular, if S is finite and the chain is irreducible (i.e. |S| = |S'|), then $\sum_{x \in S} \frac{1}{\mu_{xx}} = 1$.

- (Lec 18) Stationary distribution: A probability measure π on S is called a stationary distribution/invariant measure for the chain if, for all $y \in S$, $\sum \pi_x p_{xy} = \pi_y$.
- (Lec 18) If S is finite and the chain is irreducible, then $\pi_x = \frac{1}{\mu_{xx}}$ is the unique stationary distribution.

- (Lec 18) If S is finite and the chain is irreducible and aperiodic, then $\pi_x = \frac{1}{\mu_{xx}}$ is the unique stationary distribution. Moreover, $\lim_{n\to\infty} p_{xy}^{(n)} = \frac{1}{\mu_{yy}}$.
- \bullet (305C) If S is finite, then there exists at least one stationary distribution. (This is a corollary of Perron-Frobenius Theorem v2.)
- (305C) If S finite, irreducible, aperiodic and has stationary distribution π , then for all starting points ω_0 , $\lim_{n\to\infty} \mathbb{P}_{\omega_0}(X_n=\omega)=\pi(\omega)$ for all ω . Also,

$$\mathbb{P}_{\omega_0} \left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n f(X_i) = \sum_{\omega} \pi(\omega) f(\omega) \right) = 1.$$

Renewal theory (Lec 17)

Set-up: X_1, X_2, \ldots i.i.d. non-negative random variables with $P(X_1 = 0) < 1$. $\mu := \mathbb{E}X_1$ (possibly infinite), $S_n = \sum_{i=1}^n X_i$ with $S_0 = 0$.

- (Lec 17) For real number $t \ge 0$, let $N(t) := \sup\{n : S_n \le t\}$. Then $\{N(t) : t \ge 0\}$ is called a **renewal process**. (We can think of this process as replacing lightbulbs, X_i is the lifetime of the i^{th} lightbulb, and when it dies, we replace it with a new lightbulb. S_n can be thought of as the time till the n^{th} lightbulb goes off.)
- (Lec 17) Renewal function: $m(t) := \mathbb{E}[N(t)]$. For all $t, m(t) < \infty$.
- (Lec 17) Elementary renewal theorem: $\lim_{t\to\infty}\frac{m(t)}{t}=\frac{1}{\mu}$.

First-Passage Percolation (Lec 19)

Set-up: We have the lattice \mathbb{Z}^d .

- On each edge e, we have a non-negative random variable X_e , called the weight of the edge. Assume that the X_e are i.i.d.
- The weight of a path is equal to the sum of edge weights along the path.
- The first-passage time from x to y, denoted T_{xy} , is the minimum of the weights of all paths from x to y.
- Let $T_n = T_{0,ne_1}$, where $e_1 = (1,0,\ldots,0)$.
- Assume that there exist 0 < a < b such that $\mathbb{P}(a \le X_e \le b) = 1$. Then $\text{Var } T_n \le Cn$, where C depends only on a, b and d. (We can take $C = b^3/a$.)
- Assume that $\mathbb{E}X_e < \infty$. Then $\mu = \lim_{n \to \infty} \frac{\mathbb{E}T_n}{n}$ exists. Moreover, if $P(X_e = 0) = 0$, then $\mu > 0$.

Concentration inequalities (Lec 19-20)

• (Lec 19) **Efron-Stein Inequality:** Let X_1, \ldots, X_n be independent random variables. Let X'_1, \ldots, X'_n be another set of independent random variables, independent of X_1, \ldots, X_n , such that X'_i has the same distribution as X_i for all i. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that $\mathbb{E}[W^2] < \infty$, where $W = f(X_1, \ldots, X_n)$. Then,

$$Var W \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[(\Delta_{i} f)^{2} \right] = \sum_{i=1}^{n} \mathbb{E} \left[(f(X_{1}, \dots, X_{n}) - f(X_{1}, \dots, X'_{i}, \dots, X_{n}))^{2} \right].$$

• (Lec 20) **Azuma-Hoeffding Inequality:** Let $\{M_k\}_{0 \le k \le n}$ be a martingale adapted to some filtration. Let $X_k = M_k - M_{k-1}$. Suppose that $|X_k| \le c_k$ a.s. for each k, where c_1, \ldots, c_n are constants. Then for all t > 0,

$$P(M_n - M_0 \ge t) \le \exp\left(-\frac{t^2}{2\sum c_k^2}\right), \qquad P(M_n - M_0 \le -t) \le \exp\left(-\frac{t^2}{2\sum c_k^2}\right).$$

• (Lec 20) **Bounded Difference Inequality:** Let X_1, \ldots, X_n be independent random variables. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that there exist c_1, \ldots, c_n with the property that for all $x_1, \ldots, x_n, x'_1, \ldots, x'_n, |f(x_1, \ldots, x_n) - f(x_1, \ldots, x'_i, \ldots, x_n)| \le c_i$. Let $W = f(X_1, \ldots, X_n)$. Then for all t > 0,

$$P(W - \mathbb{E}W \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right), \qquad P(W - \mathbb{E}W \le -t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

Other Stuff

General random walks

Let X_1, X_2, \ldots be iid, and $S_n = X_1 + \cdots + X_n$. $\{S_n\}$ is a random walk.

- (Durrett Thm 4.1.2) For a random walk on \mathbb{R} , there are only 4 possibilities, one of which has probability 1: (i) $S_n = 0$ for all n, (ii) $S_n \to \infty$, (iii) $S_n \to -\infty$, and (iv) $\liminf S_n = -\infty$ and $\limsup S_n = \infty$.
- If $\mathbb{E}X_i > 0$, then $S_n \stackrel{a.s.}{\to} \infty$. If $\mathbb{E}X_i < 0$, then $S_n \stackrel{a.s.}{\to} -\infty$. If $\mathbb{E}X_i = 0$ and $P(X_i = 0) < 1$, then $\limsup S_n = \infty$ with probability 1 and $\liminf S_n = -\infty$ with probability 1.
- (HW5) Let $M_n = \max_{0 \le k \le n} S_k$. If X_i 's have finite mean, then $\mathbb{E}M_n = \sum_{k=1}^n \frac{\mathbb{E}[S_k^+]}{k}$.
- (Durrett Thm 6.3.5) **Reflection principle:** Assume that the X_i 's have a distribution symmetric about 0. Then if a > 0, we have $P\left(\sup_{m \le n} S_m > a\right) \le 2P(S_n > a)$. (Still holds if >s replaced with \ge s.)

Simple symmetric random walks on \mathbb{Z}^d

• (310B Lec 15) For simple symmetric walk on \mathbb{Z}^d , 0 (or any other state) is recurrent if d = 1, 2, and transient if $d \geq 3$.

Simple symmetric random walk on \mathbb{Z}

 $X_i = 1$ or -1, each with probability 1/2.

- (310B Lec 3) $\{S_n^2 n\}$ is a martingale.
- (310B HW2) $\{S_n^4 6nS_n^2 + 3n^2 + 2n\}$ is a martingale.
- (310B Lec 3 & 4) Let $T = \inf\{k : S_k = a \text{ or } b\}$, where a < 0 < b are 2 integers. Then T is finite a.s., $\mathbb{E}T = ab$, and $P(S_T = a) = \frac{b}{b-a}$.
- (310B Lec 16) Let $T = \inf\{n \ge 1 : S_n = 0\}$. Then $\mathbb{E}T = \infty$, i.e. 0 is null recurrent.
- (Durrett Thm 3.1.2) If $2k/\sqrt{2n} \to x$, then $P(S_{2n} = 2k) \sim (\pi n)^{-1/2} e^{-x^2/2}$.
- (Durrett Thm 3.1.3) **De Moivre-Laplace Theorem:** If a < b, then as $m \to \infty$, $P\left(a \le \frac{S_m}{\sqrt{m}} \le b\right) \to \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.
- (Durrett Thm 4.1.7) Let X_i be i.i.d. with mean 0 variance 1, and let $T_c = \inf\{n \geq 1 : |S_n| > c\sqrt{n}\}$. Then $\mathbb{E}T_c$ is finite for c < 1, and infinite for $c \geq 1$.

Biased random walk on \mathbb{Z}

Here, S_n increments by 1 with probability p, and decrements by 1 with probability q = 1 - p. Let $\varphi(x) = (q/p)^x$.

- (310B Lec 4) $\varphi(S_n) = \left(\frac{q}{p}\right)^{S_n}$ is a martingale.
- (Durrett Thm 5.7.7 proof) $\{S_n (p-q)n\}$ is a martingale.
- (310B Lec 4) Let $T = \inf\{k : S_k = a \text{ or } b\}$, where a < 0 < b are 2 integers. Then T is finite a.s. and $P(S_T = a) = \frac{1 (q/p)^b}{(q/p)^a (q/p)^b}.$
- (Durrett Thm 5.7.7) Let $T_x = \inf\{n : S_n = x\}$. Assume p > 1/2.
 - If a < 0, then $P\left(\min_{n} S_n \le a\right) = P(T_a < \infty) = (q/p)^{-a}$.
 - If b > 0, then $P(T_b < \infty) = 1$ and $\mathbb{E}T_n = \frac{b}{2p-1}$.

Other

• (Dembo Lem 5.2.7) **Lenglart's bound:** Let (Z_n, \mathcal{F}_n) be a non-negative submartingale with $Z_0 = 0$. Let $V_n = \max_{0 \le k \le n} Z_k$ and let A_n be the \mathcal{F}_n -predictable sequence in Doob's decomposition of Z_n . Then, for any \mathcal{F}_n -stopping time τ and all x, y > 0,

$$\mathbb{P}(V_{\tau} \ge x, A_{\tau} \le y) \le \frac{\mathbb{E}[A_{\tau} \land y]}{x}.$$

Fruther, in this case $\mathbb{E}[V^p_{\tau}] \leq \left[1 + \frac{1}{1-p}\right] \cdot \mathbb{E}[A^p_{\tau}]$ for any $p \in (0,1)$.