[G-20 MATHS] LPP ERROR FREE CSE PYQs

All these questions are discussed /solved in Topicwise G-20 Modules

2020

1. 1e

UPSC maintenance section has purchased sufficient number of curtain cloth pieces to meet the curtain requirement of its building. The length of each piece is 17 feet. The requirement according to curtain length is as follows:

Curtain	length	(in feet)	Num	ber req	uired
	9			700	
2.2	7			400	
		100		300	1

The width of all curtains is same as that of available pieces. Form a linear programming problem in standard form that decides the number of pieces cut in different ways so that the total trim loss is minimum. Also give a basic feasible solution to it.

2. 3b

Solve the linear programming problem using simplex method:

Minimize
$$z = -6x_1 - 2x_2 - 5x_3$$

subject to
$$2x_1 - 3x_2 + x_3 \le 14$$

$$-4x_1 + 4x_2 + 10x_3 \le 46$$

$$2x_1 + 2x_2 - 4x_3 \le 37$$

$$x_1 \ge 2, x_2 \ge 1, x_3 \ge 3$$

.15

3. 4c

Find the initial basic feasible solution of the following transportation problem by Vogel's approximation method and use it to find the optimal solution and the transportation cost of the problem.

4. 1e

Use graphical method to solve the linear programming problem. Maximize $Z = 3x_1 + 2x_2$ subject to $x_1 - x_2 \ge 1$,

 $x_1 - x_2 \ge 1,$ $x_1 + x_3 \ge 3$ $x_1, x_2, x_3 \ge 0$

and

10

5.3b

Solve the linear programming problem using Simplex method.

Minimize $Z = x_1 + 2x_2 - 3x_3 - 2x_4$ subject to

$$x_1 + 2x_2 - 3x_3 + x_4 = 4$$

$$x_1 + 2x_2 + x_3 + 2x_4 = 4$$
and $x_1, x_2, x_3, x_4 \ge 0$

15

6.4d

Consider the following LPP,

Maximize $Z = 2x_1 + 4x_2 + 4x_3 - 3x_4$ subject to

 $x_1 + x_2 + x_3 = 4$ $x_1 + 4x_2 + x_4 = 8$ and $x_1, x_2, x_3, x_4 \ge 0$

Use the dual problem to verify that the basic solution (x_1, x_2) is not optimal. 10

7. 1e

An agricultural firm has 180 tons of nitrogen fertilizer, 250 tons of phosphate and 220 tons of potash. It will be able to sell a mixture of these substances in their respective ratio 3:3:4 at a profit of Rs. 1500 per ton and a mixture in the ratio 2:4:2 at a profit of Rs. 1200 per ton. Pose a linear programming problem to show how many tons of these two mixtures should be prepared to obtain the maximum profit.

8. 2b

Solve the following linear programming problem by Big M-method and show that the problem has finite optimal solutions. Also find the value of the objective function:

$$Minimize z = 3x_1 + 5x_2$$

subject to
$$x_1 + 2x_2 \ge 8$$

 $3x_1 + 2x_2 \ge 12$
 $5x_1 + 6x_2 \le 60$,
 $x_1, x_2 \ge 0$.

20

9.3c

How many basic solutions are there in the following linearly independent set of equations? Find all of them.

$$2x_1 - x_2 + 3x_3 + x_4 = 6$$

$$4x_1 - 2x_2 - x_3 + 2x_4 = 10.$$

10.4c

मशीन Machine

		\mathbf{M}_1	M_2	M_3	M_4	M_5
	O_1	24	29	18	32	19
प्रचालक	O_2	17	26	34	22	21
Operator	O_3	27	16	28	17	25
	O ₄	22	18	28	30	24
8	O_5	28	16	31	24	27
					_	-

In a factory there are five operators O_1 , O_2 , O_3 , O_4 , O_5 and five machines M_1 , M_2 , M_3 , M_4 , M_5 . The operating costs are given when the O_i operator operates the M_j machine (i, j = 1, 2, ..., 5). But there is a restriction that O_3 cannot be allowed to operate the third machine M_3 and O_2 cannot be allowed to operate the fifth machine M_5 . The cost matrix is given above. Find the optimal assignment and the optimal assignment cost also.

11. 1e

Using graphical method, find the maximum value of

$$2x + y$$
subject to
$$4x + 3y \le 12$$

$$4x + y \le 8$$

$$4x - y \le 8$$

$$x, y \ge 0$$

10

12.3c

Solve the following linear programming problem by simplex method: Maximize

$$z = 3x_1 + 5x_2 + 4x_3$$
 subject to
$$2x_1 + 3x_2 \le 8$$

$$2x_2 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$

$$x_1, x_2, x_3 \ge 0.$$

20

13.4b

Find the initial basic feasible solution of the following transportation problem using Vogel's approximation method and find the cost.

15

Destinations

14. 1e

Find the maximum value of 5x+2y with constraints $x+2y\geq 1,\ 2x+y\leq 1,\ x\geq 0\ \text{ and }y\geq 0$ by graphical method.

15. 2c

Maximize $z=2x_1+3x_2+6x_3$ subject to $2x_1+x_2+x_3\leq 5$ $3x_2+2x_3\leq 6$ $x_1\geq 0,\,x_2\geq 0,\,x_3\geq 0.$ Is the optimal solution unique ? Justify your answer.

16. 1e

Solve the following assignment problem to maximize the sales:

10

20

Territories (क्षेत्र) I II III IV V A 3 4 5 6 7 B 4 15 13 7 6 Salesmen (विक्रेता) C 6 13 12 5 11 D 7 12 15 8 5 E 8 13 10 6 9

17.3c

Consider the following linear programming problem :

Maximize
$$Z = x_1 + 2x_2 - 3x_3 + 4x_4$$

subject to
$$x_1 + x_2 + 2x_3 + 3x_4 = 12$$

$$x_2 + 2x_3 + x_4 = 8$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Using the definition, find its all basic solutions. Which of these are degenerate basic feasible solutions and which are non-degenerate basic feasible solutions?

Without solving the problem, show that it has an optimal solution. Which of the basic feasible solution(s) is/are optimal?

18.4c

Solve the following linear programming problem by the simplex method. Write its dual. Also, write the optimal solution of the dual from the optimal table of the given problem:

Maximize
$$Z = 2x_1 - 4x_2 + 5x_3$$

subject to
$$x_1 + 4x_2 - 2x_3 \le 2$$

$$-x_1 + 2x_2 + 3x_3 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

19. 1e

Solve graphically:

Maximize
$$Z = 6x_1 + 5x_2$$

subject to

$$2x_1 + x_2 \le 16$$

$$x_1 + x_2 \le 11$$

$$x_1 + 2x_2 \ge 6$$

$$5x_1 + 6x_2 \le 90$$

$$x_1, x_2 \ge 0$$

10

20. 2c

Find the initial basic feasible solution to the following transportation problem by Vogel's approximation method. Also, find its optimal solution and the minimum transportation cost :

			Dest	inations		
1		D_1	D_2	D_3	D_4	Supply
,	Q_1	6	4	1	5	14
Origins	02	8	9	2	7	16
	o_3	4	3	6	2	5
De	emand	6	10	15	4	•

20

21.4c

Find all optimal solutions of the following linear programming problem by the simplex method:

Maximize
$$Z = 30x_1 + 24x_2$$

subject to

$$5x_1 + 4x_2 \le 200$$

$$x_1 \le 32$$

$$x_2 \le 40$$

$$x_1, x_2 \ge 0$$

20

22. 1e

$$\begin{tabular}{lll} Maximize & $z=2x_1+3x_2-5x_3$ \\ subject to & $x_1+x_2+x_3=7$ \\ and & $2x_1-5x_2+x_3\geq 10, \ x_i\geq 0.$ \\ \end{tabular}$$

23. 4a

-			Mac	hines	
		M_1	M_2	M_3	M_4
	J_1	3	12	5	14
bs	J_2	7	9	8	12
JUS	J_3	5	11	10	12
	J_4	6	14	4	11

24. 4c

Minimize
$$z = 5x_1 - 4x_2 + 6x_3 - 8x_4$$
 subject to the constraints
$$x_1 + 2x_2 - 2x_3 + 4x_4 \le 40$$

$$2x_1 - x_2 + x_3 + 2x_4 \le 8$$

$$4x_1 - 2x_2 + x_3 - x_4 \le 10$$

$$x_i \ge 0$$
 20

25. 1d

For each hour per day that Ashok studies mathematics, it yields him 10 marks and for each hour that he studies physics, it yields him 5 marks. He can study at most 14 hours a day and he must get at least 40 marks in each. Determine graphically how many hours a day he should study mathematics and physics each, in order to maximize his marks?

26. 4c

By the method of Vogel, determine an initial basic feasible solution for the following transportation problem:

Products P_1 , P_2 , P_3 and P_4 have to be sent to destinations D_1 , D_2 and D_3 . The cost of sending product P_i to destinations D_j is C_{ij} , where the matrix

$$\begin{bmatrix} C_{ij} \end{bmatrix} = \begin{bmatrix} 10 & 0 & 15 & 5 \\ 7 & 3 & 6 & 15 \\ 0 & 11 & 9 & 13 \end{bmatrix}.$$

The total requirements of destinations D_1 , D_2 and D_3 are given by 45, 45, 95 respectively and the availability of the products P_1 , P_2 , P_3 and P_4 are respectively 25, 35, 55 and 70.

20

27. 1d

Solve by Simplex method, the following LP Problem:

Maximize,
$$Z = 5x_1 + 3x_2$$

Constraints, $3x_1 + 5x_2 \le 15$
 $5x_1 + 2x_2 \le 10$
 $x_1, x_2 \ge 0$ 12

28. 4c

Write down the dual of the following LP problem and hence solve it by graphical method:

Minimize,
$$Z = 6x_1 + 4x_2$$

Constraints, $2x_1 + x_2 \ge 1$
 $3x_1 + 4x_2 \ge 1.5$
 $x_1, x_2 \ge 0$ 20

29. 1f

Construct the dual of the primal problem:

Maximize $z = 2x_1 + x_2 + x_3$, subject to the constraints $x_1 + x_2 + x_3 \ge 6$, $3x_1 - 2x_2 + 3x_3 = 3$, $-4x_1 + 3x_2 - 6x_3 = 1$, and $x_1, x_2, x_3 \ge 0$.

30.4c

Determine an optimal transportation programme so that the transportation cost of 340 tons of a certain type of material from three factories F_1 , F_2 , F_3 to five warehouses W_1 , W_2 , W_3 , W_4 , W_5 is minimized. The five warehouses must receive 40 tons, 50 tons, 70 tons, 90 tons and 90 tons respectively. The availability of the material at F_1 , F_2 , F_3 is 100 tons, 120 tons, 120 tons respectively. The transportation costs per ton from factories to warehouses are given in the table below:

	W_1	W_2	W_3	W_4	W ₅
F_1	4	1	2	6 `	9
F_2	6	4	3	5	7
F_3	5 ·	2	6 ·	4	8

Use Vogel's approximation method to obtain the initial basic feasible solution. 30

31. 1f

(f) A paint factory produces both interior and exterior paint from two raw materials M₁ and M₂. The basic data is as follows:

	Tons of raw mate	erial per ton of	Maximum
	Exterior	Interior	Daily
	paint	paint	availability
Raw Material M ₁	6	4	24
Raw Material M ₂	1	2	6
Profit per ton .			
(Rs. 1,000)	5	4	

A market survey indicates that the daily demand for interior paint cannot exceed that of exterior paint by more than 1 ton. The maximum daily demand of interior paint is 2 tons. The factory wants to determine the optimum product mix of interior and exterior paint that maximizes daily profits. Formulate the LP problem for this situation.

32.4b

Maximize:
$$Z = 3x_1 + 5x_2 + 4x_3$$

subject to:
 $2x_1 + 3x_2 \le 8$,

$$2x_1 + 3x_2 \le 8$$
,
 $3x_1 + 2x_2 + 4x_3 \le 15$,
 $2x_2 + 5x_3 \le 10$,
 $x_1 \ge 0$.

33. 1f

Find the dual of the following linear programming problem:

Max. $Z = 2x_1 - x_2 + x_3$ such that $x_1 + x_2 - 3x_3 \le 8$ $4x_1 - x_2 + x_3 = 2$ $2x_1 + 3x_2 - x_3 \ge 5$ $x_1, x_2, x_3 \ge 0$ 12

34. 4c

			Des	stina	ition	S		
		D_1	D_2	D_3	D_4	D_5	D ₆	Availability
	F ₁	2	1	3	3	2	5	50
Factories	F ₂	3	2	2	4	3	4	40
	F ₃	3	5	4	2	4	1	60
	F ₄	4	2	2	1	2	2	30
De	mand	30	50	20	40	30	10	110

G-20 MATHS

NOTES: