

Stability of BiVO3 perovskite: theoretical and experimental investigation

Journal:	Journal of the American Ceramic Society
Manuscript ID:	JACERS-31935
Manuscript Type:	Article
Date Submitted by the Author:	22-Aug-2012
Complete List of Authors:	Dragomir, Mirela; University of Nova Gorica, Materials Research Laboratory Praveen, Chandramathy; University of Nova Gorica, Materials Research Laboratory Valant, Matjaz; University of Nova Gorica, Materials Research Laboratory; Center of Excellence for Biosensors, Instrumentation and Process Control,
Keywords:	perovskites, reduction, X-ray methods

Stability of BiVO₃ perovskite: theoretical and experimental investigation

Mirela Dragomir*a, Chandramathy Surendran Praveen a and MatjazValanta,

^aMaterials Research Laboratory, University of Nova Gorica, SI-5270, Ajdovščina, Slovenia.

^bCenter of Excellence for Biosensors, Instrumentation and Process Control, SI-5250, Solkan,

Slovenia

The structural and dynamical stability of the BiVO₃ perovskite has been investigated by abinitio calculations and experimental studies. Our calculated ground-state structure for BiVO₃ has Pnma symmetry with ferromagnetic spin ordering. The computational modelling suggests that the compound is dynamically stable at its ground state. The experimental study showed that the synthesis at elevated temperatures cannot be performed due to strong orbital interaction of the ${\rm Bi}^{3+}$ and ${\rm V}^{3+}$ atoms with oxygen that facilitates the electron transfer from V to Bi and destabilize the structure. The process yields metallic Bi and oxidized Bi-vanadate phases. Therefore, the conditions for the synthesis of BiVO₃ are limited to low temperatures, for which the activation energy for the reduction-oxidation process is not exceed.

I. Introduction

Over the last decades, bismuth-based compounds have been extensively studied because of their extraordinary properties originating from the electronic and/or steric influences of the $6s^2$ lone pair of Bi³⁺. Another important reason for such interest in these materials is the relatively low toxicity

^{*}Author to whom correspondence should be addressed: e-mail: mirela.dragomir@ung.si

compared to other related compounds containing heavy metals with similar electronic structure (e.g. Hg, Cd, Sn, Tl or Pb). This makes Bi(III) compounds promising candidates for a variety of applications where substitution of e.g. Pb is required in order to satisfy environmental requirements. The broad spectrum of applications of Bi compounds ranges from pigments, cosmetic products, biocompatible additives in medicine, superconductors, sensors, ion conducting solid electrolytes, luminescent materials, catalysts, to thermoelectric or ferroelectric materials. In the last years, the interest in the Bi-compounds, especially perovskites, have further escalated due to their potential as lead-free piezoelectrics (BiAlO₃, BiScO₃, BiFeO₃, BiCoO₃, BiGaO₃ and modified versions of these compounds), In photocatalysts (BiFeO₃, Ga-doped BiFeO₃), In and multiferroics (BiFeO₃, BiMnO₃, BiCoO₃, BiCrO₃). In As a consequence, these compounds have been thoroughly investigated and significant amount of knowledge has been accumulated. Also for other Bi-perovskites, interesting properties have been discovered such as negative thermal expansion and giant magneto-optical Kerr effect in BiNiO₃. In Bi

In addition to the mentioned compounds, there is a group of simple Bi-perovskites that has not been synthesized yet. There is no information available in the literature about the existence of BiVO₃, BiTiO₃ or BiCuO₃.²³ It would be wrong to assume that the lack of the literature reports on these compounds indicates that they are not stable. For instance, BiAlO₃ has not been synthesized for long time but only after an ab-initio computational study predicted its thermodynamic stability and promising piezoelectric properties, enough experimental efforts have been invested to synthesize it.^{6,24}

The present study focuses on BiVO₃ perovskite, for which promising photocatalytic and/or multiferroic properties can be expected by analogy to similar BiFeO₃ and BiMnO₃ systems. The special role of Bi³⁺ in the photocatalysis comes from its Bi $6s^2$ lone electron pair that hybridizes with the O 2p orbitals, which results in an increase in the valence band level.²⁵ This is why the Bi-

based oxide semiconductors exhibit untypically low band gaps (e.g. the band gaps of $Bi_2Ti_2O_7$, ²⁶ $BiFeO_3^{11}$ or $BiVO_4^{27}$ were found to be 2.8, 2.5, and 2.4 eV, respectively). In $BiVO_3$, both Bi and V are in 3+ oxidation state, so the partially filled d orbitals of V^{3+} are available to induce the ferromagnetism, while the Bi 6s-O 2p hybridization could be responsible for distortion of the Bi coordination environment resulting in the ferroelectricity. The coupling of the ferroelectricity with the ferromagnetism would further give rise to multiferroic properties, which are of high fundamental importance for material scientists as well as of high applied value for modern technologies.

Empirical approaches that are used to estimate stability of perovskites predict that BiVO₃ should be stable. The Goldschmidt tolerance factor (t)²⁸ for BiVO₃ is 0.892 (for ionic radii reported by Shannon²⁹), the limiting t values for the stable perovskites being approximately 0.82–0.96.³⁰ For the stability of the perovskites, the octahedral factor (r_B/r_O) is as important as the tolerance factor. For BiVO₃ this value was found to be 0.457, which fits again within the stability range that is between 0.414–0.732.³¹. Although these numbers predict a stable BiVO₃ perovskite structure, no successful synthesis of BiVO₃ has yet been reported. Only one unsuccessful attempt has been published so far. In the 1970's N. Ramadass et al.³² fired a stoichiometric mixture of Bi₂O₃ and V₂O₃ in sealed evacuated silica tube. The product was not the BiVO₃ perovskite but described as having a cubic defect pyrochlore structure with a composition of Bi₂V₂O_{7-y}. Unfortunately, the report on the structural analysis of this pyrochlore is very deficient and does not allow us to judge on the correctness of the conclusions.

Because of the high technological interest of this material, we used theoretical and experimental approaches to answer the question whether the BiVO₃ perovskite is thermodynamically unstable or it just has not been synthesized yet due to experimental difficulties. To understand this we have undertaken investigation of the structural and dynamic stability of BiVO₃ perovskite by the

computational modeling. After the stability has theoretically been confirmed we turned our attention on the synthesis. We have performed an extensive experimental work to understand the chemical processes and interactions that cause difficulties with the synthesis of the BiVO₃. We present these processes in order to enable the synthetic chemists to build on this knowledge and eventually preform a successfully synthesis of this compound.

II. Experimental

The computational model that we have used in the present quantum mechanical calculations is based on periodic boundary conditions at the Density Functional Theory (DFT) level of approximations using the ab-intio quantum mechanical package CRYSTAL09 (CR09). 33,34 In CR09, the Gaussian-type functions (GTF) localized at atoms are used as the basis set for an expansion of the crystalline orbitals. All electron basis set has been used for the lighter oxygen and vanadium atoms (O: 8-411(1d); V: 8-6-411(31d)), 35 while Hay and Wadt large-core (HAYWLC) pseudo-potentials were applied for the heavier bismuth atom. 36 Spin polarized unrestricted DFT calculations are performed using the B1WC functional. Exchange and correlation have been treated in the B1WC functional using the exchange functional Becke and the correlation functional WC with a 16% Fock exchange. Coulomb and exchange series evaluation was performed by a set of "cutoff" tolerances (ITOLn, n=1 to 5); see references^{33,34} for more details. In the present study we have used high values for the ITOLn values (8, 8, 8, 8, 14) which reduces the numerical inaccuracies to a minimum. Reciprocal sampling has been performed by sampling the first Brillouin zone at a regular array (Pack-Monkhorst grid) of 6× 6 ×6 k-points (80 k-points in the irreducible part of the Brillouin zone) and a much denser grid of 312 k-points (10×10×10) for the evaluation of one electron properties. Convergence in the total energy has been set to 10⁻¹⁰ Hartrees. Atomic positions and the cell coordinates predicted by the SpuDS³⁷ were used as a

starting point and a complete geometry optimization has been performed by minimizing the forces using the BFGS algorithm as available in CR09. Vibrational frequencies at the Γ -point are calculated within the harmonic approximation. The dynamical matrix was computed by numerical evaluation of the first derivatives of the analytical atomic gradients. For a detailed description of the method and its recent applications we refer to a series of papers. $^{38.39}$

Solid-state reactions between Bi_2O_3 and V_2O_3 were conducted in N_2 at atmospheric pressure (AP), and at low pressures (LP) of 10^{-6} bar. The starting reagents, Bi_2O_3 (Alfa Aesar, 99.975%) and V_2O_3 (Alfa Aesar, 97%) in 1:1 ratio were homogenized dry, in an agate mortar. For the AP experiments, the mixture was pressed into pellets (for a better contact between the precursors) and then heat treated at temperatures ranging from 400 to 900°C in a sealed tube furnace under N_2 (99.999%) atmosphere. In the case of LP experiments, the powders were inserted into quartz ampoules and vacuum sealed at a pressure of $\sim 10^{-6}$ bar. Reference samples consisting of Bi_2O_3 and V_2O_3 respectively, were heat treated separately at the same conditions as the stoichiometric mixtures. The phase characterization was carried out by x-ray powder diffraction using a PANalytical X-ray diffractometer with Cu K_{α} radiation ($\lambda = 0.154$ nm), a step size of 0.017° and collection time of 25.8s per step. The diffraction patterns were recorded in the range $2\theta = 15-80^{\circ}$. The quantitative analysis of the phases was done using the PANalytical X'Pert HighScore Plus software.

III. Results and discussion

(1) Computational studies of structure stability

Since we lack geometric information to pursue the DFT simulations, we have used the SPUDS,³⁷ a crystallographic structure prediction and diagnostic software, for the generation of the lattice

parameters and atomic coordinates. The program calculates the optimal configuration of a given perovskite composition in ten Glazer tilt systems by distorting the structure in order to minimize the global instability index (GII) while maintaining the rigid octahedra. The structure with the minimum GII is considered to be stable, however, SPUD is only a semi-empirical software that needs verification of the results. The optimum magnitude of the octahedron tilting is calculated using the bond valence model as suggested by Brown⁴⁰ and is related to the minimum difference between the calculated bond valence and the formal charge. For a detailed description of the method we refer to Lufaso et al.³⁷

Our analysis showed that $R \ \overline{3} \ c$ and Pnma are the two BiVO₃ structures with the minimum GII of 0.0048 and 0.00879, respectively. Perovskite systems with the tolerance factor in the range of 0.8-0.9 mostly adopt an orthorhombic structure ⁴¹ at low temperature, which indicates on Pnma to be more probable choice than the rhombohedral $R \ \overline{3} \ c$. In addition, we performed a series of self-consistent field calculations on $R \ \overline{3} \ c$ and found difficulties in converging the calculations, which is reliable evidence that the $R \ \overline{3} \ c$ structure was wrongly predicted by SPUDS. We continued our studies on the next GII minimum, based on the orthorhombic Pnma structure, for which the convergence of the calculations was not a problem. The Pnma structure can be thought of as being formed by repeated tilting of the VO₆ octahedral units in a zig-zag manner (GdFeO₃ type distortion⁴²) as shown in Fig. 1. The tilting can be assigned as two anti-phase tilts of equal magnitude with respect to the [100] and [001] pseudo-cubic axes and an in-phase tilt with respect to the [010] pseudo-cubic axis (i.e., a 'b⁺a').

The tilting results in a decrease in symmetry as well as in an increase in the size of the unit cell from one to four formula units. The total energy of the aristotype cubic and the hettotype orthorhombic structures after relaxing the geometry are presented in Table I.

As seen from the table, the ferromagnetic orthorhombic structure is 1.275 eV/f.u lower in energy compared to the cubic structure. Thus, structurally the orthorhombic phase is far more stable than the cubic. In addition, the B1WC functional predicts the electronic nature of the cubic structure as conducting while that of the orthorhombic structure as semiconducting. This further corroborates that the cubic structure is less likely to be the ground state of BiVO₃ crystal. Similar instabilities for the cubic structures are noticed for the other perovskites from the same family. For example, Ravindran et al.⁴³ has shown on the instability of the cubic phase of BiFeO₃ because of its higher energy (1.1 eV/f.u) compared to the R3c phase.

The Pnma structure has a point group symmetry of D_{2h} (space group number 62 in the standard setting), with four formula units per unit cell. Therefore, there are four transition metal atoms in the unit cell and this allows assigning different anti-ferromagnetic structures in addition to the ferromagnetic structure. In our case, we have assigned all the possible three anti-ferromagnetic orderings, namely A-type (A-AFM), G-type (G-AFM) and C-type (C-AFM). The total energies of all three relaxed anti-ferromagnetic structures are also reported in Table 1. As it can be seen from the table, the energy difference between the ferromagnetic and the anti-ferromagnetic structures is very small. These nearly degenerate energies indicate on a high level of competition among the FM and the AFM states. However, the FM state still remains as slightly more stable than any other magnetic structure. Thus, we argue that the Pnma structure of BiVO₃ with ferromagnetic spin ordering is stable at low temperature. Further, in order to check the dynamic stability of BiVO₃ at its ground state, we have performed a phonon calculation at the center of the Brillouin zone. We calculated all the 60 modes, as suggested by the group theoretical analysis, and observed that all the modes are active. Among them, 24 are IR active and the remaining 36 are Raman active. We did not observe any soft modes, which suggest that BiVO₃ is dynamically stable. Although the calculated Born charge at the Bi site is close to +5 (well above the formal charge of +3), no offcenter driven instabilities are present. This might be because the system stabilizes with a very high rotation of the octahedra.

(2) Experimental analysis of phase interactions

Although our theoretical work suggests on the stability of BiVO₃ in its ground state, the efforts of the researcher²³ and our own efforts to synthesize the BiVO₃ perovskite by the solid-state reaction from Bi₂O₃ and V₂O₃ have failed and yielded multiphase samples. In this part of the study we have searched for the reason why BiVO₃ has not been synthesized yet and what processing conditions the researchers should target for a successful synthesis.

Our results indicate that the phase composition of nominal BiVO₃ after heat treatment depends on the heat treatment conditions and involves phases such as metallic Bi, V₂O₅, BiVO₄, Bi₄V₂O_{10.5} and Bi_{1.62}V₈O₁₆. The phases with vanadium in different oxidation states are formed, even if a special care has been taken to perform the synthesis in oxygen-free atmosphere. The same phases resulted when we prepared a bismuth(III) vanadium(III) precursor by a wet-chemical synthesis method and crystallize the product in inert (N₂) atmosphere at temperatures ranging from 400 to 900°C. This shows that the observed phases are formed as a result of a thermodynamic equilibrium at applied conditions while their formation is not subjected to the selected method of the synthesis. It is evident that the synthesis of BiVO₃ cannot be accomplished by a direct reaction of oxides under conventional conditions, although the computational modeling suggests BiVO₃ to be dynamically stable. Deeper understanding of the processes that dominate the interaction of Bi³⁺ and V³⁺-based species is required to predict the conditions of the synthesis. Since no Bi₂O₃-V₂O₃ phase diagrams or any information regarding their interactions are available in the literature, our further research has been directed into the studies of these interactions in order to identify the processes that avert the formation of BiVO₃. Firstly, two reference samples, Bi₂O₃ and V₂O₃, were separately heat

treated in N_2 at atmospheric pressure and in quartz ampoules in vacuum (10⁻⁶ bar). The XRD analysis after the thermal treatment showed in both cases the same results: partial amorphisation associated with partial oxidation of the V_2O_3 to VO_2 phase (see Fig. 2).

The partial oxidation of the V_2O_3 phase could be caused by the residual oxygen in the atmosphere and/or by the oxygen species adsorbed on the surface of the V_2O_3 oxide. In the case of Bi_2O_3 no phase changes has been noticed after the heat treatment. Further experiments were performed on the equimolar mixtures of V_2O_3 and Bi_2O_3 which were heat treated at different temperatures from 300° C to 900° C. The experiments were again performed in N_2 and vacuum; however, no significant influence of the atmosphere has been detected. At 300° C, no interaction between the two oxides was observed. The product consisted of some VO_2 in accordance to the reference experiment. At 400° C, the first interaction between both phases was observed. The new phases that have formed are Bi^0 and $BiVO_4$ (see Fig. 3).

At the same conditions of the thermal treatment, the reference Bi_2O_3 sample was not reduced to metal Bi, but in the presence of V_2O_3 , metal Bi appeared as a reaction product. In addition, the reaction yielded $BiVO_4$ phase with vanadium in 5+ valence state. This indicates that the direct reaction between Bi_2O_3 and V_2O_3 does not occur. The reaction is sequential, initially induced by an electron transfer from V^{3+} on Bi^{3+} , i.e. solid-state redox reaction that yields Bi^0 and V^{5+} .

$$2/3Bi_2O_3 + V_2O_3 \rightarrow 4/3Bi^0 + V_2O_5$$
 (i)

At these conditions, V₂O₅ reacts further with unreduced Bi₂O₃ to form the BiVO₄ phase.

$$V_2O_5 + Bi_2O_3 \rightarrow 2BiVO_4 \tag{ii}$$

 Bi_2O_3 oxidizes V_2O_3 , but competitively also reacts with newly formed V_2O_5 . As a consequence, the redox reaction stops before all V-oxides are consumed. Unfortunately, low electron density and consequent low x-ray scattering factors for V-oxides compared to Bi compounds make the XRD analysis of small concentrations of the V-oxides difficult. So, in these cases we have not been able to reliably detect and identify the remaining V-oxide phases. At temperatures above 500° C, other bismuth vanadates appear (see Fig. 4): predominantly $Bi_{1.62}V_8O_{16}$ and polymorphs of $Bi_4V_2O_{10.5}$, where V is again in the oxidation state lower than 5+.

As we know that the direct reaction between Bi_2O_3 , VO_2 and V_2O_3 is not possible, the only reaction path that can result in the binary Bi-vanadates with V^{3+} or V^{4+} , must go through the reduction of V^{5+} in $BiVO_4$ at elevated temperature and low oxygen partial pressures.

$$T > 600^{\circ}C$$

$$5.62 \text{ BiVO}_4 + 4.38 \text{ VO}_x \longrightarrow \text{Bi}_4\text{V}_2\text{O}_{10.5} + \text{Bi}_{1.62}\text{V}_8\text{O}_{16}$$
 (iii)

The coefficients in the eq. 3 are approximate as the V-oxides were not identified. The experiments show that the reduction-oxidation reaction occurs between Bi^{3+} and V^{3+} already at very low temperature between 300°C and 400°C. This solid-state redox reaction is a consequence of the tendency to form covalent bonding between the Bi^{3+} , V^{3+} cations with O, because, in order to stabilize the $BiVO_3$ structure, a strong orbital interaction between Bi^{3+} and VO_6 octahedra is, however, necessary (Bi-O distance of ~2.2 Å calculated by the ab-initio modeling). But in the present case, we observed that the activation energy for oxidizing the V^{3+} is much lower compared to the stabilization energy of the Bi^{3+} state. This facilitates a charge transfer between V^{3+} and Bi^{3+} at fairly low temperatures. The situation is different in the hollandite-type $Bi_{1.62}V_8O_{16}$ phase (where

Bi is in 3+ and V in 3+ and 4+ oxidation states) wherein the electron transfer between Bi^{3+} and V^{3+} does not take place even at high temperatures (of $800^{\circ}\mathrm{C}$). This indicates higher activation energy for the reduction of Bi^{3+} to the metallic state, probably because in the hollandite-type structure the Bi cations occupy much larger channels (here the Bi-O distance is ~2.5 Å) and therefore they interact only weakly and without covalent bonding with the VO₆ octahedra.

The theoretical and experimental studies of the BiVO₃ perovskite showed apparently contradictory results. While the computation modeling suggests the stability of BiVO₃ in its ground state, the stability could not be confirmed by a successful synthesis. The study of the chemical processes during the reaction between the nominal oxides revealed a competitive electronic process that at elevated temperatures prevails. With the combined theoretical and experimental study we showed that the formation of BiVO₃ requires a strong orbital coupling between Bi³⁺ and V³⁺. At such electronic state and at the selected processing temperatures, the activation energy for the electron transfer from V to Bi is exceeded. The solid-state redox reaction occurs and instead of BiVO₃, metallic Bi and oxidized V phases are formed. However, this result does not necessarily disprove the stability of BiVO₃ or the possibility of its formation at lower temperatures, for which the activation energy for the redox reaction is not exceeded. Consequently, low temperature synthesis methods, such as hydro(solvo)thermal or even ammonothermal, would be more likely to yield BiVO₃.

IV. Conclusions

The results of our computational study show that BiVO₃ could adopt an orthorhombic (Pnma) structure which was found to be with 1.275 eV/f.u. more stable than the cubic one. Even if there is a high level of competition among the ferromagnetic and the antiferromagnetic states, we found

that the ferromagnetic state still remains as slightly more stable than any another magnetic structure at low temperature. We also analyzed the dynamic stability of BiVO₃ at its ground state through a zone centre phonon calculation. No soft modes showing off-centre driven instabilities are observed in the IR spectra, most probably, due to the structure stabilization by a higher degree of octahedra rotation rather than off-centering the Bi-cation. This enables us to conclude that the material is dynamically stable at low temperature and can be synthesized if right processing conditions are applied. Our experimental work, directed in the search for the right processing conditions, revealed the reduction-oxidation reaction between Bi^{3+} and V^{3+} as the process that averts the formation of BiVO₃. The strong orbital interaction of the Bi³⁺ and V³⁺ atoms with oxygen in BiVO₃ facilitates the electron transfer from V to Bi and destabilization of the structure. The interaction yield metallic Bi and V₂O₅ instead of BiVO₃. Despite the fact that this process prevents the formation of BiVO₃ at elevated temperatures it does not necessarily mean that BiVO₃ is not stable and cannot be synthesized at some more appropriate conditions. We suggest that successful synthesis of BiVO₃ might be accomplished by low-temperature synthesis methods were the activation energy for the reduction-oxidation process would not be exceeded.

Acknowledgements

The work has been supported by the Slovenian Research Agency research program P2-0337. The authors would like to thank HPC-EUROPA2 for providing access to the supercomputing facilities at the Barcelona Supercomputing Centre, Arctur d.o.o. for free access to their HPC facilities and to Prof. Dr. Gašper Tavčar and to Ph.D. student Aleš Štefančič from the Jožef Stefan Institute (Slovenia) for the support at the experimental work.

References

- 1. G. G. Briand and N. Burford, 'Bismuth compounds and preparations with biological or medicinal relevance,' *Chem. Rev.*, 99 [9] 2601-57 (1999).
- 2. T. Takahashi and H. Iwahara, 'Oxide ion conductors based on bismuth sesquioxide,' *Mater. Res. Bull.*, 13 [12] 1447-53 (1978).
- I. Zeljkovic, E. J. Main, T. L. Williams, M. C. Boyer, K. Chatterjee, W. D. Wise, Y. Yin, M. Zech, A. Pivonka, T. Kondo, T. Takeuchi, H. Ikuta, J. Wen, Z. Xu, G. D. Gu, E. W. Hudson, and J. Hoffman, 'Scanning tunnelling microscopy imaging of symmetry-breaking structural distortion in the bismuth-based cuprate superconductors,' *Nat. Mater.*, 11 [7] 585-89 (2012).
- 4. L. F. Mattheiss, E. M. Gyorgy, and D. W. Johnson Jr., 'Superconductivity above 20 K in the Ba-K-Bi-0 system', *Phys. Rev. B.*, 37 [7] 3745-46 (1988).
- M. Mehring, 'From molecules to bismuth oxide/based materials: Potential homo- and heterometalic precursors and model compounds', *Coord. Chem. Rev.*, 251 [7-8] 974-1006 (2007).
- P. Baettig, C. F. Schelle, R. Le Sar, U. V. Waghmare, and N. A. Spaldin, 'Theoretical Prediction of New High-Performance Lead-Free Piezoelectrics', *Chem. Mater.*, 17 [6] 1376-80 (2005).
- 7. J.Zylberberg, A. A. Belik, E. Takayama-Muromachiand, and Z. Ye, 'Bismuth Aluminate: A New High-T_C Lead-Free Piezo-/Ferroelectric,' *Chem. Mater.*, 19 [26] 6385-90 (2007).
- 8. T. Zou, X. Wang, H. Wang, C. Zhong, L. Li, and I-Wei Chen, 'Bulk dense fine-grain 1–xBiScO₃–xPbTiO₃ ceramics with high piezoelectric coefficient,' *Appl. Phys. Lett.*, 93 [19] 192913 3pp (2008).

- 9. K. Oka, M. Azuma, W.T. Chen, A.A. Belik, E. Takayama-Muromachi, M. Mizumaki, N. Ishimatsu, N. Hiraoka, M. Tsujimo, M.G. Tucker, J. P. Attfield, and Y. Shimakawa, 'Pressure-induced spin-state transition in BiCoO₃,' *J. Am. Chem Soc.*, 134 [27] 9438-43 (2010).
- 10. K. Ujimoto, T. Yoshimura, A. Ashida, and N. Fujimura, 'Direct piezoelectric properties of (100) and (111) BiFeO₃ epitaxial thin films,' *Appl. Phys.Lett.*, 100 [10] 102901 3pp (2012).
- 11. Y. Zhang, A. M. Schultz, P. A. Salvador and G. S. Rohrer, Y. Zhang, A. M. Schultz, P. A. Salvador, and G. S. Rohrer, 'Spatially selective visible light photocatalytic activity of TiO₂/BiFeO₃ heterostructures,' *J. Mater. Chem.*, 21 [12] 4168-74 (2011).
- 12. S. Li, Y.-H. Lin, B.-P. Zhang, Y. Wang, and C.-W. Nan, 'Controlled Fabrication of BiFeO₃
 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors;' *J. Phys. Chem. C* 114 [7] 2903-08 (2010).
- 13. R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen, 'Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO₃Nanoparticles,' *J. Phys. Chem. C* 114 [49] 21390-96 (2010).
- 14. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, 'Epitaxial BiFeO₃Multiferroic Thin Film Heterostructures,' *Science*, 299 [5613] 1719-22 (2003).
- 15. G. Catalan and J.F. Scott, 'Physics and applications of bismuth ferrite,' *Adv. Mater.*, 21 [24] 2463-85 (2009).

16. Z. H. Chi, C. J. Xiao, S. M. Feng, F. Y. Li, C. Q. Jin, X. H. Wang, R. Z. Chen, and L. T. Li, 'Manifestation of ferroelectromagnetism in BiMnO₃,' *J. Appl. Phys.*, 98 [10] 103519 5pp (2005).

- 17. N. A. Hill and K. R. Rabe, 'First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite,' *Phys. Rev. B* 59 [13] 8759–69 (1999).
- 18. R. Ramesh and N. A. Spaldin, 'Multiferroics: progress and prospects in thin films,' *Nat. Mater.*, 6 [1] 21-29 (2007).
- 19. A. A. Belik, S.Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, and E. Takayama-Muromachi, 'Neutron Powder Diffraction Study on the Crystal and Magnetic Structures of BiCoO₃,' *Chem. Mater.*, 18 [3] 798–803 (2006).
- 20. N. A. Hill, 'First Principles Search for Multiferroism in BiCrO₃,' *J. Phys. Chem. B*, 106 [13] 3383–88 (2002).
- 21. M. Azuma, W. Chen, H. Seki, M. Czapski, S. Olga, K. Oka, M. Mizumaki, T. Watanuki, N. Ishimatsu, N. Kawamura, S. Ishiwata, M. G. Tucker, Y.Shimakawa, and J. P.Attfield, 'Colossal negative thermal expansion in BiNiO₃ induced by intermetallic charge transfer,' *Nat. Commun.*, 2 [347] 1–5 (2011).
- 22. M. Q. Cai, X. Tan, G. W. Yang, L. Q. Wen, L. L. Wang, W. Y. Hu, and Y. G. Wang, 'Giant Magneto-Optical Kerr Effects in Ferromagnetic Perovskite BiNiO₃ with Half-Metallic State,' *J. Phys. Chem. C*, 112 [42] 16638–642 (2008).
- 23. A. A. Belik, 'Polar and non polar phases of BiMO₃: A review,' *J. Solid State Chem.*, (2012) doi:10.1016/j.jssc.2012.01.025. (in press)

- 24. A. A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, and E. Takayama-Muromachi, 'High-Pressure Synthesis, Crystal Structures, and Properties of Perovskite-like BiAlO₃ and Pyroxene-like BiGaO₃,' *Chem. Mater.*, 18 [1] 133–39 (2006).
- 25. D. J. Payne, M. Robinson, R. G. Egdell, A. Walsh, J. McNulty, K.E. Smith, and L. F. J. Piper, 'Nature of the Bismuth Lone-Pair in BiVO₄,' *Appl. Phys. Lett.*, 98 [21] 212110 3pp (2011).
- 26. S. Murugesan, M. N. Huda, Y. Yan, M. M. Al-Jassim, and V. Subramanian, 'Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis,' *J. Phys. Chem. C*, 114 [23] 10598–605 (2010).
- 27. A. Kudo, K. Omori, and H. Kato, 'A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO₄ Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties,' *J. Am. Chem. Soc.*, 121 [49] 11459–467 (1999).
- 28. V. M. Goldschmidt, 'Die Gesetze der Krystallochemie' ('The laws of Cristallochemistry'), *Die Naturwissenschaften*, 14 [21] 477–85 (1928).
- 29. R. D. Shannon, 'Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chaleogenides,' *Acta Crystallogr.*, *Sect. A: Cryst. Phys.*, *Diffr.*, *Theor. Gen. Crystallogr.*, 32 [5] 751–67 (1976).
- 30. L. M. Feng, L. Q. Jiang, M. Zhu, H. B. Liu, X. Zhou, and C. H. Li, 'Formability of ABO₃ cubic perovskites,' *J. Phys. Chem. Solids*, 69 [4] 967–74 (2008).
- 31. Z. L. Wang and Z. C. Kang, 'Perovskites and Related Systems'; pp. 93–149 in 'Functional and Smart Materials: Structural Evolution and Structure Analysis. Kang Plenum Publishing, New York, 1998.

32. N. Ramadass, T. Palanisamy, J. Gopalakrishnan, G. Aravamudan, and M. V. C. Sastri, 'Some ABO₃ oxides with defect pyrochlore structure,' *Solid State Commun. Solid State Commun.*, 17 [4] 545-47 (1975).

- 33. R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D'Arco, and M. Llunell, in *CRYSTAL09 User's Manual*. University of Torino, Torino, 2010.
- 34. R. Dovesi, R. Orlando, B. Civalleri, R. Roetti, V. R. Saunders, and C. M. Zicovich-Wilson, 'CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,' *Z. Kristallogr*, 220 [5-6] 571-73 (2004).
- 35. Available at: www.crystal.unito.it/basis sets/ptable.html.
- 36. M. Goffinet, P. Hermet, D. Bilc, and P. Ghosez, 'Hybrid functional study of prototypical multiferroic bismuth ferrite,' *Phys. Rev. B*, 79 [1] 014403 9pp (2009).
- 37. M. W. Lufaso and P.M. Woodward, 'Prediction of the crystal structures of perovskites using the software program SPuDS,' *Acta Crystallogr., Sect. B: Struct. Sci.* 57 [6] 725–38 (2001).
- 38. C. M. Zicovich-Wilson, F. Pascale, C. Roetti, V. R. Saunders, R. Orlando, R. Dovesi, 'Calculation of the vibrational frequencies of a alpha-quartz,' *Comput. Chem.*, 25 [15] 1873-81 (2004).
- 39. L. Valenzano, Y. Noel, R. Orlando, C. M. Zicovich-Wilson, M. Ferrero, and R. Dovesi, 'Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite,' *Teor. Chem. Acc.*, 117 [5-6] 991-1000 (2007).
- 40. I. D. Brown, 'The Bond Valence Model'; pp 26-39 in *The chemical bond in inorganic chemistry: the bond valence model.* Oxford University Press, New York, 2006.

- 41. H. L. Yakel Jr., 'On the Structure of some Compounds of Perovskite Type,' *Acta Crystallogr.* 8 [7] 394-98 (1955).
- 42. L. Vasylechko L., A. Matkovskii, D. Savytskii, A. Suchocki, and F. Wallrafen, 'Crystal structure of GdFeO-type rare earth gallates and aluminates,' *J. Alloys Compd.* 291 [1-2] 57-65 (1999).
- 43. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellaåg, and O. Eriksson, 'Theoretical investigation of magnetoelectric behavior in BiFeO₃,' *Phys. Rev. B*, 74 [22] 224412 18pp (2006).

Figure captions

- **Fig. 1.** Pnma structure (left) is shown as a distorted derivative of the cubic structure (right). For a clear indication of the nature of the distortion, the undistorted cubic part is notated as a blue square. Coloring of the atoms is as follows: Bi (dark magenta), V (dark orange), O (dark brown).
- Fig. 2. X-ray diffraction patterns of V₂O₃ before and after thermal treatment at 400°C.
- **Fig. 3.** X-ray diffraction patterns of the Bi₂O₃:V₂O₃ (1:1) samples before (raw) and after the thermal treatment at 300 and 400°C (magnification of the region where the reflections of the new phases appear.
- **Fig. 4.** X-ray diffraction patterns of the Bi₂O₃:V₂O₃ (1:1) samples heated at 800 and 900°C respectively.

Tables

Table I. Total energy per formula unit (f.u) of the cubic $(Pm\overline{3}m)$ and the orthorhombic (Pnma) BiVO₃. The energy of the ferromagnetic Pnma structure is taken as the reference energy. The total energy corresponding to different antiferromagnetic settings of Pnma (A-AFM, C-AFM, and G-AFM) is also provided

Structure	$Pm\overline{3}m$ FM	Pnma (FM)	Pnma (A – AFM)	Pnma (G – AFM)	Pnma (C – AFM)
Total Energy (eV/f.u.)	-31955.67891	-31956.95370	-31956.92895	-31956.90702	-31956.92593
$\Delta E = (E - E_{Pnma}^{FM})(\text{eV})$	1.275	0.0	0.02475	0.0466	0.027

Fig. 1. Pnma structure (left) is shown as a distorted derivative of the cubic structure (right). For a clear indication of the nature of the distortion, the undistorted cubic part is notated as a blue square. Coloring of the atoms is as follows: Bi (dark magenta), V (dark orange), O (dark brown).

595x342mm (90 x 90 DPI)

Fig. 2. X-ray diffraction patterns of V2O3 before and after thermal treatment at 400oC. 15x10mm (600 x 600 DPI)

Fig. 3. X-ray diffraction patterns of the Bi2O3:V2O3 (1:1) samples before (raw) and after the thermal treatment at 300 and 400oC (magnification of the region where the reflections of the new phases appear. $15 \times 10 \text{mm}$ (600 x 600 DPI)

Fig. 4. X-ray diffraction patterns of the Bi2O3:V2O3 (1:1) samples heated at 800 and 900oC respectively. $15 \times 10 \text{mm}$ (600 x 600 DPI)

