# Automated Program Learning MOSES

Nil Geisweiller

Novamente LLC

Xiamen University
AGI Summer School 2009



- Introduction
- 2 Representation-Building
- Optimization
- Deme management
- Demo...
- **6** Conclusion



## Outline

- Introduction
- Representation-Building
- Optimization
- Deme management
- Demo...
- 6 Conclusion



## What is MOSES?

MOSES (Meta-Optimizing Semantic Evolutionary Search)

Evolutionary program learning, PhD Moshe Looks.





Search programs that maximize the fitness function

## What is MOSES?

MOSES (Meta-Optimizing Semantic Evolutionary Search)

Evolutionary program learning, PhD Moshe Looks.





- Search programs that maximize the fitness function
- Take advantage of program semantics and program space topology

## What is MOSES?

MOSES (Meta-Optimizing Semantic Evolutionary Search)

Evolutionary program learning, PhD Moshe Looks.





- Search programs that maximize the fitness function
- Take advantage of program semantics and program space topology
- Attempt to discover fitness landscape regularities to speed up the search



- Reduction in normal form
  - minimize over-representation
  - improve syntactic vs semantic distance correlation
  - simplify or even improve structure

- Reduction in normal form
  - minimize over-representation
  - improve syntactic vs semantic distance correlation
  - simplify or even improve structure
- Population building, representation-building defines the deme's neighborhood

- Reduction in normal form
  - minimize over-representation
  - improve syntactic vs semantic distance correlation
  - · simplify or even improve structure
- Population building, representation-building defines the deme's neighborhood
- Optimization, find the best candidates in the deme's neighborhood. Learn how to differentiate good vs bad programs and bias the search accordingly
  - hBOA
  - Building-Block Hill Climbing (under development)

#### How it works?

- Reduction in normal form
  - minimize over-representation
  - improve syntactic vs semantic distance correlation
  - · simplify or even improve structure
- Population building, representation-building defines the deme's neighborhood
- Optimization, find the best candidates in the deme's neighborhood. Learn how to differentiate good vs bad programs and bias the search accordingly
  - hBOA
  - Building-Block Hill Climbing (under development)
- Deme management
  - Set of demes, meta-population
  - Diversity, preserving interesting demes

**Automated Program Learning** 

## Outline

- Introduction
- Representation-Building
- Optimization
- Deme management
- Demo...
- 6 Conclusion



## Representation-building: Build a deme's population



## Building string of knobs

#### Population of a Deme

Centered around an exemplar, each neighbor is a variation of that exemplar according to the representation-building, a string of knobs.













# Building string of knobs



# Building string of knobs

Domain specific rules to create knobs, example in the Boolean domain with and (x not (y)):

Under every junctor, ∀ v not already sibling, add [∅, v, not(v)]



# Building string of knobs

- Under every junctor, ∀ v not already sibling, add [∅, v, not(v)]
- Any junctor can be flipped



# Building string of knobs

- Under every junctor, ∀ v not already sibling, add [∅, v, not(v)]
- Any junctor can be flipped
- Under every junctor add oposite junctor + children



# Building string of knobs

- Under every junctor, ∀ v not already sibling, add [∅, v, not(v)]
- Any junctor can be flipped
- Under every junctor add oposite junctor + children
- Insert an oposite junctor above the root + children



# Building string of knobs

- Under every junctor, ∀ v not already sibling, add [∅, v, not(v)]
- 2 Any junctor can be flipped
- Under every junctor add oposite junctor + children
- Insert an oposite junctor above the root + children
- And a few more...



## Building string of knobs



Figure: Built knobs for  $and(x_1 not(x_4))$ , extracted from Moshe's PhD.

## Optimization problem takes place on the knob string



#### For example:

| knob setting                                                  | combo (reduced)   | distance |
|---------------------------------------------------------------|-------------------|----------|
| (and, $\emptyset$ , $\emptyset$ , $\emptyset$ , $\emptyset$ ) | and(x not(y))     | 0        |
| (or, $\emptyset$ , $\emptyset$ , $\emptyset$ )                | or(x not(y))      | 1        |
| (and, $\emptyset$ , $\emptyset$ , not(x), $\emptyset$ )       | or(not(x) not(y)) | 1        |
| (or, $\emptyset$ , $\emptyset$ , not(x), $\emptyset$ )        | true              | 2        |

## Outline

- Introduction
- 2 Representation-Building
- Optimization
- 4 Deme management
- Demo...
- 6 Conclusion



## Optimization: Find the best candidates inside a deme



# MOSES' Optimization algorithms

 hBOA, multivariate model-building (not yet ported to the OpenCog version, univariate model-building instead)

# MOSES' Optimization algorithms

- hBOA, multivariate model-building (not yet ported to the OpenCog version, univariate model-building instead)
- 4 Hill-Climbing

# MOSES' Optimization algorithms

- hBOA, multivariate model-building (not yet ported to the OpenCog version, univariate model-building instead)
- 4 Hill-Climbing
- Building-Block Hill-Climbing (being ported to the OpenCog version)

| Candidate | score |
|-----------|-------|
| 00001010  | 0.2   |
| 00011010  | 0.6   |
| 01000100  | 0.01  |
| 00110110  | 0.5   |
| 10010010  | 0.6   |
|           | .     |
| :         | :     |



# Hierarchical Bayesian Optimization Algorithm (hBOA)

| Candidate | score |
|-----------|-------|
| 00001010  | 0.2   |
| 00011010  | 0.6   |
| 01000100  | 0.01  |
| 00110110  | 0.5   |
| 10010010  | 0.6   |
|           |       |
| :         | :     |



Split the population in good vs bad candidates

| Candidate | score |
|-----------|-------|
| 00001010  | 0.2   |
| 00011010  | 0.6   |
| 01000100  | 0.01  |
| 00110110  | 0.5   |
| 10010010  | 0.6   |
| -         |       |
| :         | :     |



- Split the population in good vs bad candidates
- Learn a classifier, but not too strict or incorrect

| Candidate | score |
|-----------|-------|
| 00001010  | 0.2   |
| 00011010  | 0.6   |
| 01000100  | 0.01  |
| 00110110  | 0.5   |
| 10010010  | 0.6   |
|           |       |
| :         | :     |



- Split the population in good vs bad candidates
- Learn a classifier, but not too strict or incorrect
- Probabilistic classifier, distribution of good candidates

| Candidate | score |
|-----------|-------|
| 00001010  | 0.2   |
| 00011010  | 0.6   |
| 01000100  | 0.01  |
| 00110110  | 0.5   |
| 10010010  | 0.6   |
| :         | :     |
|           |       |



- Split the population in good vs bad candidates
- Learn a classifier, but not too strict or incorrect
- Probabilistic classifier, distribution of good candidates
- Sample new candidates according to the distribution



| Candidate | score |
|-----------|-------|
| 10011010  | 0.5   |
| 00111011  | 0.6   |
| 11111001  | 0.7   |
| 00111010  | 0.4   |
| 10000001  | 0.1   |
| <u>.</u>  |       |
|           | : ]   |



- Split the population in good vs bad candidates
- Learn a classifier, but not too strict or incorrect
- Probabilistic classifier, distribution of good candidates
- Sample new candidates according to the distribution
- Repeat on the new population



## Distribution of Good Candidates: Bayesian Network

| Candidate (X <sub>i</sub> )<br>i : 12345678 | score |
|---------------------------------------------|-------|
| 00001010                                    | 0.2   |
| 00011010                                    | 0.6   |
| 01000100                                    | 0.01  |
| 00110110                                    | 0.5   |
| 10010010                                    | 0.6   |
| :                                           | :     |



# Decomposing the problem into sub-problems





# Conditional Probability with **Decision Tree**

| Marginal     | Prob |
|--------------|------|
| $P(X_1=1)$   | 0.3  |
| $P(X_2 = 1)$ | 0.05 |
| $P(X_4 = 1)$ | 0.9  |
| $P(X_7 = 1)$ | 0.88 |

| Conditional      | Prob                  |     |                |
|------------------|-----------------------|-----|----------------|
| $P(X_8 X_7)$     | <i>X</i> <sub>8</sub> |     |                |
|                  | 0.7                   | À   | ζ <sub>7</sub> |
|                  |                       | 0.1 | 0.2            |
| $P(X_5 X_1)$     |                       |     |                |
| $P(X_6 X_1,X_5)$ |                       |     |                |
| ( 0   1 / 0 /    |                       |     |                |

## In OpenCog for the moment only univariate

#### Univariate

Only marginal probabilities

| Marginal     | Prob |  |
|--------------|------|--|
| $P(X_1 = 1)$ | 0.3  |  |
| $P(X_2 = 1)$ | 0.05 |  |
| $P(X_3 = 1)$ | 0.2  |  |
| $P(X_4 = 1)$ | 0.5  |  |
| $P(X_5 = 1)$ | 0.4  |  |
| $P(X_6 = 1)$ | 0.7  |  |
| $P(X_7=1)$   | 0.88 |  |
| $P(X_8 = 1)$ | 0.1  |  |

## Hill-Climbing, Building-Block Hill-Climbing

#### Hill-Climbing

The problem with hill climbing is that it gets stuck on "local-maxima"



## Hill-Climbing, Building-Block Hill-Climbing

Hill-Climbing

The problem with hill climbing is that it gets stuck on "local-maxima"



 Building-Block Hill-Climbing ⇒ Redefine neighborhood to take short-cuts.

## **Outline**

- Introduction
- Representation-Building
- Optimization
- Deme management
- Demo..
- 6 Conclusion



## Select Candidates for Future Demes











# Preserving Diversity, candidates that behave differently and non-dominated





Neither one dominates the other









- Neither one dominates the other
- But "Moshe Lewis" dominates then both.

## Behavioral score

#### Behavioral score

#### Partial order

if c1 < c2 then c1 is dominated by c2</li>

### Behavioral score

#### Behavioral score

#### Partial order

- if c1 < c2 then c1 is dominated by c2</li>
- if c1 > c2 then c1 dominates c2

## Behavioral score

#### Behavioral score

#### Partial order

- if c1 < c2 then c1 is dominated by c2</li>
- if c1 > c2 then c1 dominates c2
- otherwise, neither one dominates the other

## Behavioral score

#### Behavioral score

#### Partial order

- if c1 < c2 then c1 is dominated by c2</li>
- if c1 > c2 then c1 dominates c2
- otherwise, neither one dominates the other

## Behavioral score

#### Behavioral score

#### Partial order

- if c1 < c2 then c1 is dominated by c2</li>
- if c1 > c2 then c1 dominates c2
- otherwise, neither one dominates the other

For instance: vector of floats  $(f_1, \ldots, f_n)$  where each  $f_i$  measure how well a candidate is doing for that particular feature. If for all features i, c1 is doing better than c2, then c1 dominates c2

#### Deme selection

Keep non-dominated exemplars as potential deme.

#### Deme selection

Keep non-dominated exemplars as potential deme.



#### Deme selection

Keep non-dominated exemplars as potential deme.



#### Deme selection

Keep non-dominated exemplars as potential deme.



#### Deme selection

Keep non-dominated exemplars as potential deme.



#### Deme selection

Keep non-dominated exemplars as potential deme.



k(x) is dominates by g(x) and will not be included in the meta-population



## Some benchmark

| Technique                     | Computational Effort |          |           |              |
|-------------------------------|----------------------|----------|-----------|--------------|
|                               | 3-parity             | 4-parity | 5-parity  | 6-parity     |
| Univariate MOSES              | 6,151                | 73,977   | 2,402,523 | 342,280,092  |
| Evolutionary programming [15] | 28,500               | 181,500  | 2,100,000 | no solutions |
| Genetic programming [49]      | 96,000               | 384,000  | 6,528,000 | no solutions |
| MOSES                         | 5,112                | 72,384   | 1,581,212 | 100,490,013  |

Figure: Computational effort to find solution of n-parity 99% of the time (extracted from Moshe's PhD thesis)

$$\textit{n-parity}(b_1,\ldots,b_n) = \textit{even}\left(\sum_{i=1}^n \textit{int}(b_i)\right)$$

## Outline

- Introduction
- 2 Representation-Building
- Optimization
- Deme management
- Demo...
- 6 Conclusion



## **Outline**

- Introduction
- Representation-Building
- Optimization
- Deme management
- Demo...
- 6 Conclusion



## Conclusion

MOSES outperforms Genetic Algorithms because:

minimize over-representation (Reduction in normal form)

## Conclusion

MOSES outperforms Genetic Algorithms because:

- minimize over-representation (Reduction in normal form)
- build expressive deme population by taking into account operator semantics (representation-building)

## Conclusion

MOSES outperforms Genetic Algorithms because:

- minimize over-representation (Reduction in normal form)
- build expressive deme population by taking into account operator semantics (representation-building)
- Maintain diversity in the meta-population (dememanagment)

## Conclusion

MOSES outperforms Genetic Algorithms because:

- minimize over-representation (Reduction in normal form)
- build expressive deme population by taking into account operator semantics (representation-building)
- Maintain diversity in the meta-population (deme managment)
- Attempt to find regularities in one deme's population to speed up optimization (model-building)

- Only handles Boolean, continuous, numerico-boolean and (partially) action-perception expressions
  - ⇒ more programmatic construct

- Only handles Boolean, continuous, numerico-boolean and (partially) action-perception expressions
  - ⇒ more programmatic construct
- Representation-building is hard-coded per operator set
  - ⇒ Generalized for operator properties (especially useful if combined with PLEASURE)

- Only handles Boolean, continuous, numerico-boolean and (partially) action-perception expressions
  - ⇒ more programmatic construct
- Representation-building is hard-coded per operator set
  - ⇒ Generalized for operator properties (especially useful if combined with PLEASURE)
- Model-building is slow
  - ⇒ improve model-building (better Bayesian learning, transfer learning across populations), or use other optimization method

- Only handles Boolean, continuous, numerico-boolean and (partially) action-perception expressions
  - ⇒ more programmatic construct
- Representation-building is hard-coded per operator set
  - ⇒ Generalized for operator properties (especially useful if combined with PLEASURE)
- Model-building is slow
  - ⇒ improve model-building (better Bayesian learning, transfer learning across populations), or use other optimization method
- No transfer learning across problem instances
  - ⇒ Integrative AGI, Attention Allocation, PLN, etc.