FRANCISCO CASTILLO APM 505 PROJECT

Contents

- Initialization of the code
- Obtain analytical solution
- Run the different iteration methods
- Store the difference with the analytical solution
- Present the results in a table
- Function for the Gauss-Jacobi iteration method
- Function for the Gauss-Seidel iteration method
- Function for the SOR iteration method

Initialization of the code

```
clear all % Clear workspace
close all % Close all figures
clc % Clear command window
% Create four column vectors for storing the number of iterations for each method.
nGJ=zeros(5:1);
nGS=zeros(5:1);
nSOR=zeros(5:1);
normGJ=zeros(5:1);
normGS=zeros(5:1);
normGS=zeros(5:1);
% Assign values of N and tol for each one of the four cases given in the assignment.
for i=1:5
```

```
switch i
    case 1
        N=8;
        tol=1e-3;
    case 2
        N=16;
        tol=1e-4;
    case 3
        N=32:
        tol=1e-5;
    case 4
        N=64:
        tol=1e-6;
    case 5
        N=128;
        tol=1e-7;
end
```

Obtain analytical solution

```
x=linspace(0,1,N+1);
[Y,X]=meshgrid(x,x);
U=exp(pi*X).*cos(pi*Y);
```

Run the different iteration methods

```
[uGJ,nGJ(i)]=GaussJacobi(N,tol);
[uGS,nGS(i)]=GaussSeidel(N,tol);
[uSOR,nSOR(i)]=SOR(N,tol);
```

Store the difference with the analytical solution

```
normGJ(i)=norm(uGJ-U);
normGS(i)=norm(uGS-U);
normSOR(i)=norm(uSOR-U);
```

end

Present the results in a table

```
T=table;

T.N = [8;16;32;64;128];

T.tol = ['le-3';'le-4';'le-5';'le-6';'le-7'];
```

```
T.nGJ= nGJ';
T.nGS= nGS';
T.nSOR= nSOR';
T.NormGJ=normGJ';
T.NormGS=normGS';
T.NormSOR=normSOR'
```

T = 5×8 table

N	tol	nGJ	nGS	nS0R	NormGJ	NormGS	NormSOR
8	1e-3	43	47	19	0.14493	0.14887	0.14825
16	1e-4	208	211	43	0.074341	0.07623	0.076049
32	1e-5	972	941	99	0.037543	0.038294	0.038253
64	1e-6	4430	4145	217	0.018868	0.019164	0.019155
128	1e-7	19865	18103	515	0.0094655	0.0095833	0.0095812

Function for the Gauss-Jacobi iteration method

```
type GaussJacobi.m
```

```
function [u,n]=GaussJacobi(N,tol)
% This function uses the Gauss-Jacobi iteration method to come with the solution of the problem for given values of N and tol
h=1/N:
              % Define the step
x=h*(0:N)';
               % Create vector x
y=h*(0:N)';
              % Create vector v
% Create and initialize the solution to zero since is the mean value of the boundary conditions
u=zeros(N+1,N+1):
% Boundary conditions
for j=1:N+1
   u(1,j)=cos(pi*y(j));
    u(end,j)=exp(pi)*cos(pi*y(j));
   u(j,1)=exp(pi*x(j));
   u(j,end)=-exp(pi*x(j));
end
uprev=rand(N+1,N+1);
% Initialize the counter of iterations n
n=0;
\ensuremath{\mathtt{\%}} While loop to keep iterating until the tolerance is met
while norm(uprev-u)>tol
    % Increase the value of n
   n=n+1:
   % Save the previous solution
   uprev=u;
    for i=2:N
       for i=2:N
           % Update the value of the matrix u with the values of the previous iteration
           u(i,j)=(uprev(i+1,j)+uprev(i-1,j)+uprev(i,j+1)+uprev(i,j-1))/4;
       end
    end
end
end
```

Function for the Gauss-Seidel iteration method

```
type GaussSeidel.m
```

```
function [u,n]=GaussSeidel(N,tol)
% This function uses the Gauss-Seidel iteration method to come with the solution of the problem for given values of N and tol
h=1/N;
             % Define the step
x=h*(0:N)';
              % Create vector x
             % Create vector yuprev=rand(N+1,N+1);
y=h*(0:N)';
% Create and initialize the solution to zero since is the mean value of the boundary conditions
u=zeros(N+1,N+1);
% Boundary conditions
for j=1:N+1
   u(1,j)=cos(pi*y(j));
   u(end,j)=exp(pi)*cos(pi*y(j));
   u(j,1)=exp(pi*x(j));
   u(j,end)=-exp(pi*x(j));
uprev=rand(N+1,N+1);
```

```
% Initialize the counter of iterations n
n=0;
% While loop to keep iterating until the tolerance is met
while norm(uprev-u)>tol
    % Increase the value of n
    n=n+1;
    % Save the previous solution
    uprev=u;
    for i=2:N
        for j=2:N
            % Update the value of the matrix u with the values of the previous iteration and the updated values available
            u(i,j)=(u(i+1,j)+u(i-1,j)+u(i,j-1))/4;
        end
    end
end
```

Function for the SOR iteration method

```
type SOR.m
```

```
function [u,n]=SOR(N,tol)
% This function uses the SOR iteration method to come with the solution of the problem for given values of N and tol
h=1/N;
                  % Define the step
x=h*(0:N)';
                  % Create vector x
y=h*(0:N)';
                  % Create vector yuprev=rand(N+1,N+1);
% Obtain the value of omega
xi=1-2*(sin(pi/(2*(N+1))))^2;
w=2/(1+sqrt(1-xi^2));
% Create and initialize the solution to zero since is the mean value of the boundary conditions
u=zeros(N+1,N+1);
% Boundary conditions
for j=1:N+1
    u(1,j)=cos(pi*y(j));
    u(end,j)=exp(pi)*cos(pi*y(j));
    u(j,1)=exp(pi*x(j));
    u(j,end)=-exp(pi*x(j));
end
% Create the random matrix uprev to enter the while loop
uprev=rand(N+1,N+1);
% Initialize the counter of iterations n
n=0:
% While loop to keep iterating until the tolerance is met
while norm(uprev-u)>tol
    % Increase the value of n
    n=n+1:
    % Save the previous solution
    uprev=u:
    for i=2:N
         for j=2:N
             ^{\circ} Update the value of the matrix u using omega and with the values of the previous iteration and the updated values
 available
             u(\mathtt{i},\mathtt{j}) = w^*(u(\mathtt{i}+1,\mathtt{j}) + u(\mathtt{i}-1,\mathtt{j}) + u(\mathtt{i},\mathtt{j}+1) + u(\mathtt{i},\mathtt{j}-1))/4 + (1-w)^*u(\mathtt{i},\mathtt{j});
         end
    end
end
```

Published with MATLAB® R2017a