ZAJĘCIA SPECJALISTYCZNE

JavaScript

Autor dokumentu: Wojciech Galiński poniedziałek, 22 września 2014 r. | 312[01]/T,SP/MENiS/2004.06.14

ŹRÓDŁA WIEDZY: http://pl.wikipedia.org/, http://www.dynamicdrive.com/, http://www.dynamicdrive.com/, http://www.w3schools.com.

Zagadnienia obowiązkowe

- 1. **Obiekt "Math"** posiada następujące składowe:
 - → stałe matematyczne:

Stała JavaScript	Wartość przybliżona w dół	Stała matematyczna	Stała JavaScript	Wartość przybliżona w dół	Stała matematyczna
Math.E	2,718281	Stała Eulera (E)	Math.LOG10E	0,434294	Logarytm o podstawie 10 z E
Math.LN2	0,693147	Logarytm naturalny z 2	Math.PI	3,141519	Liczba π (Pi)
Math.LN10	2,302585	Logarytm naturalny z 10	Math.SQRT1_2	0,707106	Pierwiastek kwadratowy z ½
Math.LOG2E	1,442695	Logarytm o podstawie 2 z 10	Math.SQRT2	1,414213	Pierwiastek kwadratowy z 2

PRZYKŁAD: r_ziemia = 6371; document.write(2 * Math.PI * r_ziemia);

- → metody (statyczne):
 - ✓ Math.abs(liczba) zwraca wartość bezwzględną (moduł) argumentu "liczba".
 - Math.sin(radiany), Math.cos(radiany), Math.tan(radiany) funkcje trygonometryczne (argumentem tych funkcji jest kąt podany w radianach, np. document.write(Math.sin(30) + ' ' + Math.sin(30*Math.PI/180));
 - Math.acos(wartosc), Math.asin(wartosc), Math.atan(wartosc), Math.atan2(wartosc), Math.acot(wartosc) zwraca wartość kąta (w radianach) dla którego odpowiednia funkcja trygonometryczna zwraca taką wartość (funkcje odwrotne do funkcji trygonometrycznych), np.
 - document.write(Math.asin(0.5) +' '+ Math.asin(0.5)*180/Math.PI);
 - Math.ceil(wartosc), Math.floor(wartosc), Math.round(wartosc) funkcje przybliżające liczbę "wartosc" odpowiednio: w górę / w dół oraz według reguł matematycznych do liczby całkowitej, np.

```
document.write(Math.ceil(2.5) + ' ' + Math.floor(2.5) + '|');
document.write(Math.ceil(-2.5) + ' ' + Math.floor(-2.5) + '|');
document.write(Math.round(2.5) + ' ' + Math.round(-2.5));
```

Math.exp(wartosc), Math.log(wartosc) – pierwsza z funkcji podnosi stałą Eulera (Math.E) do potęgi "wartosc", a druga zwraca logarytm o podstawie stałej Eulera z liczby "wartosc", np.

- \checkmark Math.min(x, y), Math.max(x, y) zwraca mniejszą / większą liczbę z liczb: "x" i "y", np. document.write(Math.min(3,2) + ' ' + Math.max(2,3));
- ✓ Math.pow(x, y), Math.sqrt(wartosc) pierwsza z funkcji podnosi "x" do potęgi

```
"y", a druga zwraca pierwiastek kwadratowy z liczby "wartosc", np.
document.write(Math.pow(2,4) + ' ' + Math.sqrt(81));
```

Math.random() – zwraca liczbę losową z zakresu [0, 1) (przedział tylko lewostronnie domknięty), np.

```
var a=5, b=10; alert(Math.floor(Math.random() * (b-a+1)) + a);
```

- 2. **Obiekt "Number"** posiada następujące składowe:
 - → właściwości:

Stała JavaScript	Wartość	Opis	
Number.MAX_VALUE	1.79769E+308 (zależna od przeglądarki)	Największa wartość liczbowa reprezentowana w danej wersji JS	
Number.MIN_VALUE	5.0E-324 (zależna od przeglądarki)	Najmniejsza wartość liczbowa reprezentowana w danej wersji JS	
Number.NaN	NaN	Wartość, informująca: "to nie jest liczba".	
Number.NEGATIVE_INFINITY	-Infinity	Ujemna nieskończoność (wartość mniejsza od -MAX_VALUE)	
Number.POSITIVE_INFINITY	Infinity	Dodatnia nieskończoność (wartość większa od MAX_VALUE)	

PRZYKŁAD: document.write(MIN_VALUE + ' ' + MAX_VALUE);

- → metody:
 - ✓ toExponential(precyzja) konwertuje liczbę do tekstu w postaci wykładniczej, np. var x = 123.456789; document.write(x.toExponential());
 - ✓ toFixed(precyzja) konwertuje liczbę do postaci tekstu z określoną liczbą miejsc po przecinku albo przed przecinkiem, np.

var x = 123.456789; document.write(x.toFixed(4));

- toPrecision(precyzja) konwertuje liczbę do tekstu z określoną liczbą cyfr, np.
 var x = 123.456789; document.write(x.toPrecision(4));
- toString(podstawa), toLocaleString(podstawa) konwertuje liczbe do postaci
 tekstowej (można wybrać podstawę liczbową, np. liczby heksadecymalne), np.
 var x = 31; document.write(x.toString(16));

Zadania

Do każdego z poniższych zadań zdefiniuj funkcję, która będzie zwracać rozwiązanie. Kiedy tylko jest to możliwe, używaj powyższych funkcji, a także pętli. Dane wejściowe oraz wyniki mają być wczytywane / wyświetlane poza funkcją.

- 1. Wczytaj z klawiatury promień koła i oblicz jego obwód oraz pole.
- 2. W trójkącie prostokątnym jego przyprostokątne są równe. Oblicz, jaką wartość ma cosinus kąta pomiędzy przyprostokątną, a przeciwprostokątną.
- 3. Sprawdź, dla jakiego kata sinus tego kata wynosi 0,866025404.
- 4. Wylosuj 30 2-cyfrowych całkowitych liczb parzystych. Ponumeruj te liczby.
- 5. Użyj odpowiedników matematycznych funkcji "exp" i "In" do wyliczenia a^b, gdzie: a, b liczby wczytane z klawiatury.
- 6. Użyj odpowiednika matematycznej funkcji "ln" do wyliczenia log_ab , gdzie: a, b liczby wczytane z klawiatury.
- 7. Wylosuj 3 liczby z zakresu [-10, 10] (precyzja losowanych liczb: 2 miejsca po przecinku). Znajdź wśród nich tę liczbę, która nie jest ani najmniejsza, ani największa (pamiętaj, że może takiej liczby w ogóle nie być).
- 8. Wczytaj do zmiennej liczbę całkowitą "n". Wylicz wartość funkcji " $f(n) = \left| \frac{n+1}{n^2+1} \right|$ " w punkcie "n".
- 9. Wyświetl na ekranie potęgi liczby 2 dla liczb całkowitych z zakresu [0,20].
- 10. Wczytaj z klawiatury liczbę i wyświetl ją w postaci walutowej, np. 5.5 ma spowodować wyświetlenie tekstu: "5,50 zł (5 zł 50 gr)".