

TOGETHER WE CAN ACHIEVE MORE

COURSE NAME: MATH – 3 LECTURE -7(7.1 & 7.3)

SEMESTER: FALL 2021-2022

SOLVED BY

Md. Shariful Aman

Singular point,
$$f(z) = \frac{1}{(z+1)(z-3)}$$
for singular point, $(z+1)(z-3)=0$

$$\Rightarrow z+1=0 \quad |z-3=0$$

$$\Rightarrow z=-1 \quad |z-3=0$$

$$\Rightarrow z=-1 \quad |z-3=0$$
Singular point, $2z=0 \Rightarrow z=0$
Singular point, $2z=0 \Rightarrow z=0$
Singular point, $2z=0 \Rightarrow z=0$

$$\lim_{|x| \to 0} |z-4|$$
Singular point, $2z=0 \Rightarrow z=0$

$$\lim_{|x| \to 0} |z-4|$$

$$\lim_{|x| \to 0} |z-4|$$
Singular point, $2z=0 \Rightarrow z=0$

$$\lim_{|x| \to 0} |z-4|$$

$$\lim_{|x| \to 0} |z-4|$$
Singular point, $2z=0 \Rightarrow z=0$

$$\lim_{|x| \to 0} |z-4|$$
Singular point, $2z=0 \Rightarrow z=0$

b)
i)
$$f(z) = \frac{z^2+1}{z^2+z}$$

$$= \frac{z^2+1}{z(z+1)}$$
Fingular point; $z=0$, $z=-1$

Residue at $z=0$:

Residue at $z=0$:

$$\begin{cases} x=0 \\ y=0 \end{cases} = \lim_{z\to 0} (z-0) \left(\frac{z^2+1}{z^2+z} \right)$$

$$= \lim_{z\to 0} \frac{z(z+1)}{z(z+1)} = 1$$

Res $(z=1) = \lim_{z\to -1} (z+1) \frac{z^2+1}{z^2+z}$

$$= \lim_{z\to -1} \frac{(z+1)(z^2+1)}{(z+1)^2} = \frac{z^2+1}{(z+1)^2} = \frac{z^2+1} = \frac{z^2+1}{(z+1)^2} = \frac{z^2+1}{(z+1)^2} = \frac{z^2+1}{(z+1)^2$$

Singular point,
$$z^3 + i = 0$$
 $z^3 + i = 0$ $z^3 + i = 0$ Residue at $(z=i)$.

Singular point,
$$z=4$$
.

Residue at, $(z=4)$

Residue at, $(z=4)$
 $\frac{1}{2 + 4}$
 $\frac{1}{2 + 4}$

b)
$$\int_{C} \frac{e^{-z}}{(z-1)^{2}}$$
, e^{-z} consists of $|z| = 4$ in $|z| = 4$.

 $|z| = 4$.

Re
$$(z=1) = \lim_{z \to 1} (z+1) \frac{1}{(z+1)(z-1)}$$

$$= \frac{1}{-2-1} = \frac{1}{2}$$
Applying (RT,
$$\int_{z=1}^{2} \frac{dz}{z^2-1} dz = 2\pi i \left[\operatorname{Res}(z=1) + \operatorname{Res}(z=-1) \right]$$

$$= 2\pi i \left[\frac{1}{2} - \frac{1}{2} \right] = 2\pi i \times 0 = 0.$$

$$= 2\pi i \left[\frac{1}{2} - \frac{1}{2} \right] = 2\pi i \times 0 = 0.$$
Ans:

$$\int_{c} \frac{2z-1}{z^2-1} dz = 2\pi i \left[\operatorname{Res}(z=1) + \operatorname{Res}(z=-1) \right]$$

$$= \int_{c} \frac{2z-1}{z^2-1} dz = 2\pi i \times 0 = 0.$$
Res $(z=0) = \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$
Res $(z=0) = \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

$$= \lim_{z \to 0} (z-0) = 2\pi i \times 0 = 0.$$

Applying (RT,

$$\begin{cases}
\frac{2z-1}{z^2-z} dz = 2\pi i (1+4) = 4\pi i
\end{cases}$$
Ans,

$$4. a) \begin{cases}
\frac{dz}{z^2+4}, c \text{ is the contour.}
\end{cases}$$

$$i) |z+2i| = 1$$
For Singularity,
$$z^2+4=0$$

$$z=2i \text{ inside the cincle, } z^2+4=0$$

$$z=2i \text{ inside the cincle, } z^2-4i$$

$$=\lim_{z\to 2i} \frac{1}{(z+2i)}$$

$$=\lim_{z\to 2i} \frac{1}{(z+2i)}$$
Applying (RT,

$$\begin{cases}
\frac{dz}{z^2+4} = 2\pi i \left[\frac{1}{4\pi} - \frac{1}{4i}\right] = 0
\end{cases}$$
Ans

Sample Exercise set: 7.3 Lawrents Theorem: f(z) = a0 + a1 (z-20) + a2(z-20) + ··· + b1/(2-20) + b2 + b3 + (2-20)3+ 1. $f(z) = \frac{3z}{(z-1)(z-z)}$ that means a einele center (0,0) 0) 12/41. which radius is less than I if 12/<1, then it must be 12/<2 (0,0). 12/<1 1/2/ 15/ 121人1 1 1 2 人2 50, 12 人1 So, 12 人1. So, $\frac{37}{(7-1)(7-2)} = \frac{A}{7-1} + \frac{B}{2-7}$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{A}{7-1} + \frac{B}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$ $= \frac{3 \cdot 1}{(7-1)(7-2)} = \frac{3 \cdot 1}{7-1} = 3$

$$\Rightarrow \frac{3}{2} \left[1 + \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right)^{2} + \cdots \right] + 3 \left[1 + \left(\frac{2}{2} \right) + \left(\frac{2}{2} \right)^{2} + \cdots \right]$$

$$\Rightarrow \frac{3}{2 - 1} + \frac{6}{2 - 2}$$

$$\Rightarrow \frac{3}{2 - 1} + \frac{6}{2 - 2}$$

$$\Rightarrow -3 \left(1 - 2 \right) + 3 \left(1 - \frac{2}{2} \right)^{2} + \left(\frac{3}{2} \right)^{2} + \left(\frac{3$$

5. i)
$$f(z) = \frac{z}{(z-1)(3-z)} = \frac{A}{z-1} + \frac{B}{3-z}$$

$$|z| < A | |z| < A$$

$$\Rightarrow \frac{1}{2^{2}} \left(1 - \frac{1}{2}\right)^{-1} + \frac{1}{2} \left(1 - \frac{2}{3}\right)^{-1}$$

$$\Rightarrow \frac{1}{2^{2}} \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} + \cdots\right) + \frac{1}{2} \left(1 + \frac{2}{3} + \left(\frac{2}{3}\right)^{2} + \cdots\right)$$

$$\underline{Ams:}$$

AIUB COURSE SOLUTION-ACS

GROUP: https://www.facebook.com/groups/860221227407452

PAGE: https://www.facebook.com/acsaiub

https://www.youtube.com/channel/UCC3KjA8kstFtM-2CxVr-jcg

AIUB Course Solution - ACS @acsaiub

AIUB Course Solution - ACS

AIUB Course Solution

- Career Support
- Senior's Opinion
- Faculty Information
- To-let for AIUBians
- Blood Donation
- Club Information

- Book PDFs
- Problems & Solutions
- Assignment Solutions
- Experiment Solutions
- Hand notes
- Video Tutorial