Многофункциональный модуль поиска заболеваний

- Индивидуальный программный проект
- студент: Ромашкина Арина Дмитриевна, Выполнил БПМИ 223
- Научный руководитель: Боревский Андрей Олегович, Научный сотрудник Факультета Компьютерных Наук

Постановка задачи

ЦЕЛЬ: создать телеграмм-бота, возвращающего предполагаемое заключение, а также картинки визуализации работы модели

Создание модели с помощью pytorch для задачи классификации Изучить и реализовать метод интерпретации LRP

Изучить и применить фреймворк Optuna для построения модели

Изучить метод интерпретации Grad-CAM

Изучить и применить дистилляцию знаний

Создание телеграммбота HSE University

Телеграмм-бот

@DiseaseIdentificationModuleBot

Папка с картинками для тестирования бота

https://disk.yandex.ru/d/vTghYEzRhZRliQ

Датасет Опухолей

- BRAIN TUMORS с сайта Kaggle классификация опухолей
- 2870 тренировочных и 394 тестовых изображений
- 4 класса:
 - менингиома
 - плиома
 - опухоль гипофиза
 - нет опухоли

глиома

опухоль гипофиза

нет опухоли

Датасет Деменции

- OASIS с сайта Kaggle классификация стадии деменции
- 85987 изображений, 347 пациентов
- 4 класса:
 - Очень легкая стадия
 - Легкая стадия
 - Умеренная стадия
 - Нет деменции

		1	
	4	31	
	a de la comp		

Очень легкая стадия

Легкая стадия

Число Пациентов

Нет деменции Очень легкая

Легкая

Умеренная

Умеренная стадия

Обучающая

244

46

17

Тестовая

22

Нет деменции

Аугментация данных

Основые особенности данных:

- Снимки МРТ проводят с некоторой периодичностью
- Разные снимки пациента не могут попасть одновременно в тестову и тренировочную выборки
- снимки сделаны в разных проекциях, представлены разные срезы головного мозга
- Локализация опухоли/изменений определяет класс, и зависит относительно центра/расположения в нужной доле – нельзя использовать Flip, Crop и тд

Аугментация данных

аугментация

Resize(224, 224)

Normalize(
mean=[0.485,
0.456, 0.406],
std=[0.229, 0.224,
0.225])

Optuna

OPTUNA

- фреймворк, который оптимизирует гиперпараметры моделей.

- подбор наиболее эффективных комбинаций осуществляется с помощью алгоритма Tree-structured Parzen Estimator (TPE)
- метрикой является целевая функция измерения качества модели, на каждой итерации осуществляется подбор на основе результатов предыдущих экспериментов
- есть набор алгоритмов для прореживания экспериментов, которые позволяют отсекать варианты, которые провальные с большой вероятностью

BatchNorm

ReLU

MaxPool2d

Таблица 3.3: Модели ConvNet1(слева) и ConvNet2(справа).

№	Layer	Shape	Out channels
0	input	224x224	3
1	conv1	111x111	16
2	conv2	54x54	36
3	conv3	26x26	45
4	conv4	12x12	54

$N_{\overline{0}}$	Layer	Shape	Out channels
0	input	224x224	3
1	conv1	111x111	22
2	conv2	54x54	34
3	conv3	26x26	48

Дистилляция знаний - это способ обучения нейросетей, направленный на передачу знаний от модели-учителя к

Мы извлекаем дополнительную информацию из предсказания учителя для обучения ученика.

Во время обучения модели-ученика хотим добавлять дополнительное значение к функции потерь кросс-энтропии, на основе возвращаемых значений сети-учителя.

loss = soft target loss weight * soft targets loss + ce loss weight * label loss

- **soft target loss weight** вес, присвоенный дополнительной цели, которую мы собираемся включить.
- *T* температура, контролирует плавность выходных распределений. Чем больше значение T, тем более плавными становятся распределения, и тем больший прирост получают меньшие вероятности.

• soft targets loss =
$$\frac{\sum targets \cdot prob}{classes} T^2$$

- classes число классов классификаци
- targets, prob возвращемые значения сети-учителя, к которым применены функции soft max и log soft max соответсвенно.

- **ce loss weight** вес, присвоенный кросс-энтропии
- *label loss* обычные потери кроссэнтропии, используемые при обучении студента

Метод из статьи: Geoffrey Hinton, Oriol Vinyals и Jeff Dean. Distilling the Knowledge in a Neural Network

В роли модели учителя выступит **EfficientNet-b0**, состоящая из 6,251,904 параметров.

Используем её предобученную на ImageNet, и дообучим на наших данных.

Модель	Accuracy OASIS	Accuracy Tumors
ConvNet(без учителя)	70.61%	68.53%
EfficientNet-b0	71.88%	72.08%
ConvNet(с учителем)	71.81%	73.10%

LRP

LRP (Layer-wise Relevance Propagation) — это функция интерпретации, который используется для определения важности каждого пикселя во входном изображении для прогнозирования выходного класса

LRP

- forward pass проход вперед $\forall_k: z_k = \epsilon + \sum_j a_j \cdot w_{jk}$, можно вызвать метод forward предварительно применив правило lrp к весам
- \bullet element-wise division поэлементное деление $\forall_k: s_k = R_k/z_k$
- backward pass обратный проход $\forall_j: c_j = \sum_k w_{jk} \cdot s_k$ можно применить backword и работаем с тензорами pytorch, можем вызвать метод grad
- \bullet element-wise product поэлементное умножение $\forall_j: R_j = a_j c_j$

LRP by Captum

LRP by Captum

LRP by me

GRAD-CAM

Grad-CAM - Gradient-weighted Class Activation Mapping

вычисляет градиенты модели относительно входного изображения, а затем использует для взвешивания активаций последнего свёрточного слоя.

- Подсчет градиента $\frac{\partial Y^c}{\partial A^k_{ij}}$ где Y^c выходные данные для класса C до применения Softmax, и берем производную по картам признаков
- Подсчет весов усреднением градиентов $w_k^c = \frac{1}{Z} \sum_i \sum_j \frac{\partial Y^c}{\partial A_{ij}^k}$, где Z константа равная числу пикселей в карте активации
- Подсчет Grad-CAM Heatmap Relu примененная к линейной комбинации весов и карты признаков $Relu(\sum_k w_k^c * A^k)$

GRAD-CAM

GRAD-CAM

Телеграмм-бот

@DiseaseIdentificationModuleBot

Папка с картинками для тестирования бота

https://disk.yandex.ru/d/vTghYEzRhZRliQ

Заключение

Создана модель, работающая с точность >70%

на обоих датасетах

Освоен фреймворк Optuna

Применена технология дистилляции знаний

Изучены и протестированы методы интерпретации, видим что на моем датасете Grad-Cam показывает более наглядную картину чем LRP

Создан телеграмм-бот @DiseaseIdentificationModuleBot

