1. Siano E_3 , E_4 , E_7 gli insiemi dei multipli rispettivamente di 3, 4 e 7, minori o uguali a 100 e sia $U = E_3 \cup E_4 \cup E_7$. Sia inoltre

$$\mathfrak{J} = \{X \subseteq U: |X \cap E_3| \le 1, |X \cap E_4| \le 1, |X \cap E_7| \le 1 \text{ e } \forall a \in X, a \in E_i \Rightarrow a \notin E_i, \text{ con } i, j \in \{3, 4, 7\} \text{ e } i \ne j\}$$

la famiglia di tutti i sottoinsiemi X di U che contengono al più un multiplo di 3, al più un multiplo di 4 e al più un multiplo di 7, con in più la condizione che ogni elemento appartiene esclusivamente ad un insieme tra E_3 , E_4 , E_7 . Dire se la coppia (U,\mathfrak{F}) :

- [A] è un matroide
- [B] non è subclusiva
- [C] è subclusiva ma non gode della proprietà di scambio
- **2.** Il vettore (2/3, 1/2, 1/3) è combinazione
 - [A] conica
 - [B] convessa
 - [C] affine

dei vettori (2, 1, 0), (-1, 0, 1) e (3, -2, 1/2).

- 3. Data la coppia di problemi di programmazione lineare (primale/duale):
 - P) $\max \mathbf{cx}$ D) $\min \mathbf{yb}$ $\mathbf{Ax} = \mathbf{b} \qquad \mathbf{y} \in S \subseteq \mathbb{R}^m$ $\mathbf{x} \ge 0 \qquad \mathbf{x} \in \mathbb{R}^n$

dove \mathbf{A} è una matrice con m righe ed n colonne, scrivere in forma compatta il sistema di disequazioni che definisce il poliedro \mathbf{S} . Dire quale delle seguenti affermazioni è vera:

- [A] $\mathbf{cx} \ge \mathbf{yb}$ per ogni coppia di soluzioni ammissibili \mathbf{x} , \mathbf{y}
- [B] $\mathbf{c}\mathbf{x} < \mathbf{v}\mathbf{b}$ per ogni coppia di soluzioni ammissibili $\mathbf{x}, \mathbf{y}; S = \{\mathbf{y} \in \mathbb{R}^m : \mathbf{y}\mathbf{A} \ge \mathbf{c} \}$
- [C] $\mathbf{cx} > \mathbf{yb}$ per qualche coppia di soluzioni ammissibili \mathbf{x} , \mathbf{y}
- **4**. Applicando il metodo di Fourier-Motzkin, risolvere il seguente problema di Programmazione Lineare, esibendo il valore della soluzione ottima (e delle variabili) qualora esista, ovvero classificando il problema come inammissibile o illimitato.

$$\max x_1 - 2x_2 + x_3$$

$$x_1 - x_3 \ge 1$$

$$x_1 + 2x_2 \le -1$$

$$x_2 + 3x_3 \le 2$$

$$x_i \ge 0, i = 1, 2, 3$$

\boldsymbol{z}	x_1	x_2	x_3	<u><</u>	_	Z	x_1	x_2	x_3	<u><</u>	Z	x_1	x_2	x_3	<u><</u>	Z	x_1	x_2	x_3	<u><</u>
1	-1	2	-1	0		1	0	2	-1	0	1	0	4	0	-2	1	0	0	0	-2
0	-1	0	1	-1		0	0	2	1	-2	0	0	2	0	-2	0	0	0	0	-2
0	1	2	0	-1		0	0	1	3	2	3	0	7	0	2	3	0	0	0	2
0	0	1	3	2		0	0	2	0	-1	0	0	1	0	2	0	0	0	0	2
0	-1	0	0	0		0	0	-1	0	0	0	0	2	0	-1	0	0	0	0	-1
0	0	-1	0	0		0	0	0	-1	0	0	0	-1	0	0					
0	0	0	-1	0																

Dall'ultima tabella è immediato verificare che il sistema iniziale (e quindi il problema) è inammissibile.

5. Il proiezionista

Con opportune proiezioni ottenute con il metodo di Fourier-Motzkin, si determino le disequazioni che individuano l'involucro convesso dell'insieme $S = \{(1, 1), (2, 2), (1, 3), (5, 1)\}.$

$$conv(S) = \{ \mathbf{x} \in \mathbb{R}^2 : (x_1, x_2) = \lambda_1(1, 1) + \lambda_2(2, 2) + \lambda_3(1, 3) + \lambda_4(5, 1), \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1, \lambda_k \ge 0 \}$$

Si tratta pertanto di proiettare il sistema

$$x_1 = \lambda_1 + 2\lambda_2 + \lambda_3 + 5\lambda_4$$

$$x_2 = \lambda_1 + 2\lambda_2 + 3\lambda_3 + \lambda_4$$

$$1 = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4$$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 > 0$$

nello spazio delle variabili x_1 , x_2 . Il problema può semplificarsi ricavando ad esempio λ_4 come $1 - \lambda_1 - \lambda_2 - \lambda_3$ e sostituendo. In questo modo si ottiene $x_1 + 4\lambda_1 + 3\lambda_2 + 4\lambda_3 = 5$

$$x_{2} - \lambda_{2} - 2\lambda_{3} = 1$$

$$\lambda_{1} + \lambda_{2} + \lambda_{3} \leq 1$$

$$\lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$$

Applichiamo ora il metodo di Fourier-Motzkin eliminando in successione le variabili λ_1 , λ_3 , λ_2 (per motivi di spazio le colonne nulle non sono riportate nelle tabelle):

X	$x_1 \qquad x_2$	l_1	λ_2	λ_3	<u><</u>	x_1	x_2	λ_2	13	<u><</u>	x_1	x_2	12	<u><</u>		x_1	x_2	<u><</u>	
1	1 0	4	3	4	5	1	0	3	4	5	1	2	1	7		1	2	7	ı
-1	1 0	_4	-3	-4	-5					-1		0					0		l
() 1	0	-1	-2	1	0	1	-1	-2	1	0	-1	1	-1		0	-1	-1	l
(-1	0	1	2	-1	0	-1	1	2	-1	-1	0	1	-1		-1	0	-1	
(0 0	1	1	1	1	0	0	-1	0	0	0	0	-1	0					
(0 0	-1	0	0	0	0	0	0	-1	0					_				
(0 0	0	-1	0	0														
(0 0	0	0	-1	0														

Si può quindi concludere che il politopo è individuato dalle disequazioni

$$\begin{array}{rcl}
 x_1 + 2x_2 & \leq 7 \\
 x_1 & \leq 5 \\
 x_1 & \geq 1 \\
 & x_2 & \geq 1
 \end{array}$$

6. Il diametro

Si definisce diametro di un insieme S di \mathbb{R}^n la massima distanza $d(\mathbf{x}, \mathbf{y})$ che intercorre fra due punti \mathbf{x}, \mathbf{y} di S. Supponiamo che tale distanza sia definita come la somma dei moduli delle differenze tra le coordinate omologhe di \mathbf{x} e \mathbf{y} :

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \dots + |x_n - y_n|$$

Sia $P(\mathbf{A}, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$ un politopo di \mathbb{R}^n . Supponendo di sapere che esso è contenuto in una sfera di raggio R, si formuli come programmazione lineare mista (cioè con variabili sia reali che intere) il problema di determinarne il diametro.

Suggerimento: per ogni coppia di componenti x_k , y_k si introducano una variabile binaria u_k e una reale d_k e si costruiscano due vincoli che leghino tra loro le quattro variabili.

Per ipotesi, R è sufficientemente grande da garantire che, all'ottimo,

$$d_k = \max\{x_k - y_k, y_k - x_k\}$$

In pratica, se $u_k = 1$ il primo vincolo della graffa è sempre soddisfatto e all'ottimo, dovendo massimizzare, si sceglierà $d_k = y_k - x_k$; se viceversa $u_k = 0$ sarà il secondo vincolo a essere sempre soddisfatto, e in questo caso si sceglierà $d_k = x_k - y_k$. Il primo caso converrà se $y_k \ge x_k$, il secondo se $x_k \ge y_k$.