Windows 하에서의 빅데이터통계분석

숙명여대 여인권 inkwon@sookmyung.ac.kr

♦ Data 수집 및 이관

- ♡ Flume: 다양한 로그 데이터 수집 및 모니터링
- ※ Kafka: 실시간으로 스트림을 처리하는 분산 데이터 스트리밍 플랫폼

♦ Data 저장

- ⊗ Hbase: HDFS 상에 만들어진 비관계형 오픈소스 DB
- Ø Cassandra: NoSQL 오픈소스 DB
- ♡ Hive: HDFS에 적재된 파일을 SQL 형식(HiveQL)으로 처리한 DW

♦ Data 처리

- ⊗ MapReduce: 병렬 프로그래밍으로 클러스터 내에서 분산 처리
- ♡ Yarn: 하둡 내 작업 스케쥴링, 클러스터 리소스 관리를 위한 프레임워크
- ⊗ Spark: In-memory 기반 병렬 분산 처리하는 통합 컴퓨팅 엔진
- ⊗ Pig: Hadoop에 기반하여 병렬로 데이터를 처리하는 엔진(Retired ?)
- Ø Mahout: 하둡 내에서 분산처리가 가능하고 확장성을 가진 ML 라이브러리

♦ Scheduling

- Ø Oozie: 하둡의 Job을 관리하기 위한 서버 기반 워크플로우 스케쥴링 시스템

🗎 프로그램 설치

◇ 빅데이터 통계분석의 최적 환경

- Ø Unix-like OS(Linux, Mac OS) + scala
 - 이 대부분의 통계학 전공자에게는 창문 밖 세상
- ❷ 이번 시간에는 Windows 하에서 Python으로 ...

📋 프로그램 설치

☆ 프로그램 설치 시 주의할 점

- ♡ 빅데이터 분석 도구 간 의존성(dependency) 확인
- ♡ 버전 간 호환이 안되면 설치 및 작동이 안되거나 오류가 발생
 - o Python: 최신버전 3.11.x, Anaconda는 3.10.x 기반
 - Cassandra 3.x : batch 파일 제공, python 2.7 Cassandra 4.x : batch 파일 미제공, python 3.8, scala 1.12 ⇒ docker로 설치
 - 설치된 spark 버전과 python의 pyspark 버전이 다르면 오류발생

🗎 프로그램 설치

프로그램	최신버전(6/27)	의존성
Python	3.11.4	Anaconda: python 3.10
Scala	3.3.0	
Hadoop	3.3.6	Winutil 3.2.2 & 3.3.1
Spark	3.4.1	Hadoop 3.2 & 3.3+scala 2.12 & 2.13
Kafka	3.5.0	Scala 2.12 & 2.13 3.3.+(Zookeeper vs Kraft)
Cassandra	4.1.2	Stable 4.0.10(docker) Python 3.7 & 3.8, scala 2.11 & 2.12 Spark 1.0~3.3(4.0:3.2, 4.x: 3.3)
HBase	2.5.5 3.0.0-α-4	Hadoop 3.2.3+ & 3.3.2+ 2.4.x: Hadoop 3.1.1+
Hive	3.1.3 4.0.0-alpha-2	Hadoop 3.x & Cygwin(Linux) 4.0.0-alpha-2: Hadoop 3.3.1

🗎 프로그램 설치

♦ Java 설치

- ⊗ Windows용 JDK 다운로드 후 설치
 - Java SE Development Kit 8 Downloads Oracle
 - C:₩java 폴더 생성 후 C:₩Program Files₩Java₩jdkX.X.X_X 복사
- ⊗ 시스템 환경 변수 편집
 - Linux에서 .bashrc 파일 수정과 동일한 작업
 - 환경변수의 사용자변수 ⇒ 변수: JAVA_HOME, 값: C:₩java
 - 환경변수의 시스템변수 ⇒ Path : C:₩java₩bin, C:₩java₩jre₩bin
- ♥ 버전 확인
 - CMD> javac -version

- ♠ Hadoop 다운로드, 압축해제, 환경설정
 - ☑ Hadoop 3.3.1.tar.gz 압축 풀고 C:\
 ₩hadoop-3.3.1에 저장
 - ⊗ 시스템 환경 변수 편집
 - 사용자변수 ⇒ 변수: HADOOP_HOME, 값: C:\hadoop-3.3.1
 - 사용자변수 ⇒ 변수: HADOOP_USER_NAME, 값: C:\Users***
 - 시스템변수 ⇒ Path : C:\hadoop-3.3.1\bin
- ♠ namenode와 datanode를 생성할 위치 지정
 - ⊗ d:\hadoopDisk\data 폴더 생성
- ◇ Windows용 실행 및 설정 파일 복사
 - ⊗ Hadoopwin-3.3.1의 bin 폴더 내 파일을 c:\Hadoop-3.3.1\bin에 복사

☆ 설정파일 수정

- ♡ c:\Hadoop-3.3.1\Hetc\Hadoop으로 이동
- ⊗ hadoop-env.cmd, core-site.xml, hdfs-site.xml, mapred-site.xml, yarn-site.xml 수정
 - o core-site.xml: HDFS와 맵리듀스에서 공통적으로 사용되는 IO 설정 같은 하둡 코어 환경정보 설정
 - o hdfs-site.xml: 파일복제 옵션, 저장위치 지정
 - o mapred-site.xml: 맵리듀스 설정 관리
 - o yarn-site.xml: yarn(맵리듀스기반 하둡의 문제(리소스 할당문제나 Spark 등의 새로운 플랫폼 출현)를 해결하기 위한 하둡의 서브 프로젝트) 설정 관리

- **♦ Hadoop format**
 - ⊗ CMD에서 실행
 - > hdfs namenode -format
 - od:\HadoopDisk\data에 namenode 생성
 - % HADOOP_HOME%₩sbin 폴더로 이동
 - ♡ namenode와 datanode 시작(관리자 권한 CMD)
 - > start-dfs.cmd
 - > jps
 - o d:\hadoopDisk\data에 datanode 생성
 - o localhost:9870 접속

♦ MapReduce 실행

- ❷ ResourceManager와 NodeManager 시작(관리자 권한 CMD)
 - > start-yarn.cmd
 - > jps
 - o localhost:8088, localhost:8042 접속

♦ 일괄 실행 및 종료

- > start-all.cmd
- > stop-all.cmd
- ⊗ start-all.cmd 권장하지 않음

自 하둡 주요 명령어

☆ 주요 명령어

- ♡ (관리자 권한) CMD 실행
 - 이 파일 삭제는 반드시 관리자 권한
- Ø Usage: hadoop fs [GENERIC_OPTIONS] [COMMAND_OPTIONS]
 - hadoop fs -mkdir -p {paths}
 - hadoop fs -put {localsrc} ... {dst}
 - hadoop fs -ls -R {args}
 - hadoop fs -get -crc {src} {localdst} .
 - o hadoop fs -rm -f -R URI ..
 - hadoop fs -cp URI ...

MapReduce 예제

♦ Word Count

- ⊗ "worddata.txt"를 /Input에 put하고 계산 결과를 /Output에 출력
- ਂ (관리자 권한) CMD 실행
 - > hadoop fs -mkdir /Input
 - > hadoop fs -put worddata.txt /Input
 - > cd %HADOOP_HOME%₩share₩hadoop₩mapreduce
 - > hadoop jar hadoop-mapreduce-examples-3.3.1.jar wordcount /Input/worddata.txt /Output
 - > hadoop fs -cat /Output/*
 - 폴더에 여러 파일이 있는 경우 폴더만 쓰면 모든 파일을 분석함
 - o localhost:9870 Tutilities Browse the filesystem

🗎 프로그램 설치: Spark

♦ Spark 다운로드, 압축해제, 환경설정

- ♡ Hadoop에 맞는 Spark 선택(3.4.0) 후 압축해제 C:\spark-3.4.0에 저장
- ⊗ 시스템 환경 변수 편집
 - 사용자변수 ⇒ 변수: SPARK_HOME, 값: C:\spark-3.4.0
 - 시스템변수 ⇒ Path : C:\spark-3.4.0\bin; C:\Program Files\R\R-X.X.X\bin
- Spark 실행 : CMD에서

 - ⊘ localhost:4040 확인
- ◇ Python 패키지 : pip install pyarrow pyspark==3.4.0

🗎 Pyspark vs Pandas 자료 읽기 쓰기

- ◇ 읽기: pandas.read_xxx, spark.read.xxx, spark.read.format('xxx').load
- ☆ 쓰기: pandas: df.to_xxx, spark: df.write.xxx, df.write.format('xxx').save

xxx pandas		as	pyspark		ххх	pandas		pyspark	
	읽기	쓰기	읽기	쓰기		읽기	쓰기	읽기	쓰기
avro			0	0	CSV	0	0	0	0
excel	0	0			feather	0	0		
fwf	0	Χ			hdf	0	0		
html	0				json	0	0	0	0
ocr	0	0	0	0	parquet	0	0	0	0
pickle	0	0			sql	0	0	0	0
table	0	Χ	Ο		xml	0	0	0	0

📋 프로그램 설치: Kafka

☆ Kafka 다운로드, 압축해제, 환경설정

- ⊗ 시스템 환경 변수 편집
 - 사용자변수 ⇒ 변수: KAFKA_HOME, 값: C:₩kafka-3.4.1
 - 시스템변수 ⇒ Path: C:\#kafka-3.4.1\#bin\#windows

♦ Kafka 환경 실행

- ⊗ 3.3버전부터 Kraft 사용 가능
- ⊗ ZooKeeper와 Kraft 중 하나만 사용

♦ Python 패키지: pip install kafka-python

Ø Kafka: ~2.4, python: ~3.8, coverage: 86%

🗎 프로그램 설치: Kafka

♦ ZooKeeper를 이용한 Kafka 환경

- > cd %KAFKA_HOME%
- > bin₩windows₩zookeeper-server-start.bat config₩zookeeper.properties
- > cd %KAFKA_HOME%
- > bin₩windows₩kafka-server-start.bat config₩server.properties

♦ Topic 생성

- > cd %KAFKA_HOME%
- > bin\windows\kafka-topics.bat --create --topic testevent --bootstrap-server localhost:9092

自 프로그램 설치: Kafka

◆ Topic에 event 쓰기

- > cd %KAFKA_HOME%
- > bin\windows\kafka-console-producer.bat --topic testevent --bootstrap-server localhost:9092
- > This is

♦ Event 읽기

- > cd %KAFKA_HOME%
- > bin\windows\kafka-console-consumer.bat --topic testevent --from-beginning --bootstrap-server localhost:9092

🗎 프로그램 설치: Kafka

◇ 기존 시스템의 자료 연결

- ❷ Plugin.path에 연결시키는 파일 추가
 - > cd %KAFKA_HOME%
 - > echo "plugin.path=libs₩connect-file-3.4.1.jar"
- ਂ 예제 데이터파일 만들기
 - > echo windows-kafka > test.txt
 - > echo test exmples >> test.txt

🗎 프로그램 설치: Kafka

♦ Standalone 모드에서 connectors 실행

- > cd %KAFKA HOME%
- > bin₩windows₩connect-standalone.bat config₩connectstandalone.properties config₩connect-file-source.properties config₩connect-file-sink.properties
- > cd %KAFKA_HOME%
- > bin₩windows₩kafka-console-consumer.bat --bootstrap-server localhost:9092 --topic connect-test --from-beginning
- ⊘ 데이터 파일 확인 및 추가
 - > more test.sink.txt
 - > echo add data > test.txt

🗎 프로그램 설치: HIVE

♠ Hive 다운로드, 압축해제, 환경설정

- ⊗ Hive 3.1.2 압축해제 C:\hive-3.1.2에 저장
- ⊗ Apache Derby 압축해제 C:\derby-10.14.2에 저장: Apache DB project
- ⊗ 시스템 환경 변수 편집: 사용자변수
 - 변수: HIVE_HOME, 값: C:\hive-3.1.2
 - 변수: DERBY_HOME, 값: C:\derby-10.14.2
 - 변수: HIVE_LIB, 값: %HIVE_HOME%₩lib
 - 변수: HIVE_BIN_PATH, 값: %HIVE_HOME%\bin
 - 변수: HADOOP_USER_CLASSPATH_FIRST, 값: true ⇒ 시스템변수
- ⊗ 시스템 환경 변수 편집: 시스템변수
 - Path: C:\hive-3.1.2\hippibin; C:\hippiderby-10.14.2\hippibin

🗎 프로그램 설치: HIVE

- ☑ Derby lib 폴더의 파일을 Hive lib에 복사
- ❷ Hive lib 폴더의 guava-19.0.jar를 guava-27.0-jre.jar(제공)로 대체
- Ø Hive conf 폴더에 hive-site.xml(제공) 저장
- Ø Hive bin 폴더에 hive-cmd파일들(제공) 저장

♦ Cygwin 설치

自 프로그램 설치: HIVE

- 관리자 권한으로 Hadoop 실행: %HADOOP_HOME%₩sbin
 - > start-dfs
 - > start-yarn
- ♦ Derby 실행
 - > startNetworkServer -h 0.0.0.0
- ♦ Hive 실행
 - ♡ C:₩와 D:₩(데이터드라이브, NTFS)에 cygdrive 폴더 생성
 - ♥ 관리자 권한 CDM(symbolic links 생성)
 - > mklink /J D:₩cygdrive₩d₩ D:₩
 - > mklink /J C:₩cygdrive₩c₩ C:₩

🗎 프로그램 설치: HIVE

♦ Cygwin 실행 후 vi .bashrc

```
export HADOOP_HOME='/cygdrive/c/hadoop-env/hadoop-3.3.1'
export PATH=$PATH:$HADOOP_HOME/bin
export HIVE_HOME='/cygdrive/c/hadoop-env/apache-hive-3.1.2'
export PATH=$PATH:$HIVE_HOME/bin
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*.jar
```

- ♦ Hive scripts₩metastore₩upgrade₩derby₩hive-schema-3.1.0.derby.sql 수정
 - ☑ 'NUCLEUS_ASCII' & 'NUCLEUS_MATCHES' function 주석처리

🗎 프로그램 설치: HIVE

♦ Cygwin에서

- \$ schematool -dbType derby -initSchema
- \$ hive --service hiveserver2 start
- Ø Hive-schema-3.1.0.-derby.sql 수정하지 않으면 Metastore 초기화에서 오류 발생
- ♥ 관리자 권한으로 새로운 Cygwin 실행

\$ hive