

Grundlagen der Programmierung

Vom Problem zum Algorithmus:

Modelle ♦ Graphen ♦ Brute Force

Algorithmisches Denken: Vom Problem zur Lösung

Universitate

- 1. Identifizieren des Problems
- 2. Formulieren des Problems
- 3. Entwurf des Algorithmus
- 4. Implementierung des Algorithmus
- 5. Anwendung des Algorithmus

→ Problemlösung

Vom Problem zum Algorithmus

Beispiele

größter gemeinsamer Teiler (ggT): Welche Zahl ist ggT von zwei natürlichen Zahlen?

- größtes Listenelement: Welches ist die größte Zahl in einer Liste ganzer Zahlen?
- Freundschaftsproblem:
 Wie oft kommt es vor, dass sich Freundschaften als transitive Beziehung erweisen?

Beispiel: größtes Listenelement

1. Spezifikation des Algorithmus:

Name: größtes Listenelement

Eingabe: Liste *L* ganzer Zahlen

Ausgabe: größte Zahl in der Liste

2. Liste als Folge von Elementen (Zahlen), die durch die Nummer ihrer Position (Index) aufgefunden werden: L[1], L[2], L[3], ...

→ indizierte Liste

3. Formulieren der algorithmischen Idee z.B. in **Pseudocode**

Beispiel: Freundschaftsproblem

- Wie oft kommt es vor, dass sich Freundschaften als transitive Beziehungen erweisen?
- Repräsentation der Beziehungen als Graph:
 - Knoten ("Punkte") für Individuen
 - Kanten (Verbindungen) für Beziehungen
- **Definition.** Ein **ungerichteter Graph** ist ein Paar G = (V, E), wobei V eine endliche Menge von Knoten und E eine Menge von *ungeordneten* Paaren (Zweiermengen) von Knoten ist.

Freunschaftsproblem (1)

- Zwei Knoten u und v heißen **adjazent** gdw. es eine Kante gibt, die u und v verbindet: $\{u,v\} \in E$.
- Erster Versuch

Name: Freundschaftsproblem

Eingabe: ungerichteter Graph G = (V, E)

Ausgabe: Anzahl transitiver Adjazenzbeziehungen

```
x \leftarrow 0
für alle i in V

| für alle j adjazent mit i
| für alle k \neq i adjazent mit j
| falls k adjazent mit i
| x \leftarrow x + 1

gib x aus
```


Zählen wir nicht dieselben Beziehungen mehrfach?

 $(\{u,v\} = \{v,u\})$

Repräsentation von Graphen

1. Adjazenzlisten-Repräsentation Für jeden Knoten *u* eine Liste adj[*u*] der zu *u* adjazenten Knoten

Universitate Polistani

Repräsentation von Graphen

- 1. Adjazenzlisten-Repräsentation Für jeden Knoten *u* eine Liste adj[*u*] der zu *u* adjazenten Knoten
- 2. Adjazenzmatrix-Repräsentation Matrix A_G (Rechteckschema) von $n \times n$ Zahlen, wobei n die Anzahl der Knoten ist (n = |V|),

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \quad \text{mit} \quad a_{ij} = \begin{cases} 0 & \text{falls } \{u_i, u_j\} \notin E \\ \\ 1 & \text{falls } \{u_i, u_j\} \in E \end{cases}$$

(darstellbar als Liste von n Listen der Länge n)

Repräsentation von Graphen

(darstellbar als Liste von n Listen der Länge n)

Freundschaftsproblem (2)

Name: Freundschaftsproblem

Eingabe: Adjazenzmatrix A eines ungerichteten Graphen G = (V, E)

Ausgabe: Anzahl transitiver Adjazenzbeziehungen

Universitate Paradam

Modelle beim Algorithmenentwurf

- Modelle repräsentieren einen Realitätsausschnitt.
 - soziale Netzwerke
- Beschränkung auf relevante Aspekte der Realität
 - Freundschaftsbeziehungen
- Abstraktion
 - Individuen als Knoten, Beziehungen als Kanten
- Modelle dienen immer einem Zweck.
 - Untersuchung des Freundschaftsproblems

Abstraktion

- Abbildung, meist viele-zu-eins (Klassenbildung)
- Beispiele:
 - Mengen von Zahlen i mit $a \le i \le b$ auf Intervall [a,b]
 - Geschwindigkeiten (Vektoren) auf ihren Betrag (in m/s)
 - Individuum auf Knoten eines Graphen
- entspricht Begriffsbildung (z.B. "Tier")
- Bild (Klasse/Begriff) wird im Modell stellvertretend für die Originale verwendet

Oniversital, Portage

Modelle beim Algorithmenentwurf

- Abstraktion erlaubt oft vielfache Verwendung.
 - Freundschaften transitiv?
 - andere Transitivitätsprobleme
 - Kleine-Welt-Problem
 - Routenplanung (z.B. kürzeste Flugverbindungen oder Internet-Routing, ...)
- Reichen in allen Fällen ungerichtete Graphen?

Routenplanung und gerichtete Graphen

■ **Definition.** Ein **gerichteter Graph** ist ein Paar G = (V, E), wobei V eine endliche Menge von Knoten und E eine Menge von geordneten Knotenpaaren ist: $E \subseteq V \times V$.

Graph G = (V,E): Grundbegriffe (1)

- Adjazenzlisten und -matrix entsprechend anpassen!
 - v in adj[u] gdw. $(u,v) \in E$
 - $a_{ij} = 1$ gdw. $(u_i, u_j) \in E$
- Für einen Knoten *u* ist
 - $d(u) = |\{\{u,v\} \in E : v \in V\}|$ sein **Grad** (ungerichtet),
 - $d^+(u) = |\{(u,v) \in E : v \in V\}|$ sein Ausgangsgrad,
 - $d^{-}(u) = |\{(v,u) \in E : v \in V\}|$ sein **Eingangsgrad**.
- Kante (u,v) (bzw. $\{u,v\}$) heißt **Schlinge** gdw. u=v.
- G = (V,E) heißt schlingenfrei, falls keine Kante eine Schlinge ist.

Graph G = (V,E): Grundbegriffe (1)

- Adjazenzlisten und -matrix entsprechend anpassen!
 - v in adj[u] gdw. $(u,v) \in E$
 - $a_{ij} = 1$ gdw. $(u_i, u_j) \in E$

Graph G = (V,E): Grundbegriffe (2)

- Seien u und v Knoten. Ein **Pfad** von u nach v ist eine Folge $v_0, v_1, ..., v_k$ von Knoten, wobei $v_0 = u$, $v_k = v$ und für alle $0 \le i < k$ gilt, dass $(v_i, v_{i+1}) \in E$ (bzw. $\{v_i, v_{i+1}\} \in E$).
- Die Zahl k heißt Länge des Pfades.
- Der Pfad ist ein **Zyklus**, falls $v_0 = v_k$ gilt.
- Ein Zyklus ist ein Kreis, falls außer v₀ = v_k kein Knoten in der Folge mehrfach auftritt, also falls v_i ≠ v_j für alle i ≠ j mit 1 ≤ i ≤ k-1 und 0 ≤ j ≤ k.

Graph G = (V,E): Grundbegriffe (3)

- Der Graph G heißt (stark) zusammenhängend, falls für jedes Paar von Knoten (u,v) ein Pfad von u nach v existiert.
- Ist G gerichtet, dann heißt G schwach zusammenhängend, falls der ungerichtete Graph $G' = (V, \{\{u,v\} : (u,v) \in E\})$ zusammenhängend ist .

- Seien u und v Knoten. Der Abstand D(u,v) von u nach v ist die Länge des kürzesten Pfades von u nach v. Falls kein Pfad existiert, ist der Abstand ∞.
 - → Kleine-Welt-Problem

Kleine-Welt-Problem

Eingabe: Freudschaftsbeziehungen in einem sozialen Netzwerk, repräsentiert als ungerichteter, schlingenfreier Graph G = (V, E)

Offenbart G das Kleine-Welt-Phänomen?

- → Welche Abstände von Knotenpaaren treten wie häufig auf?
- → Algorithmus zur Berechnung des Abstands zweier Knoten ?!

Abstand von Knoten

- 1. Existiert Pfad der Länge 1 (also eine Kante)? ... Sonst:
- 2. Existiert ein Pfad der Länge 2? ... Sonst:

•

→ Brute Force Algorithmus (probiert systematisch alle Möglichkeiten durch)

Terminiert? (Was, wenn G nicht zusammenhängend ist?)

Theorem (Maximaler Abstand): Für alle Knoten u, v gilt: Wenn ein Pfad von u nach v existiert, dann gilt $D(u,v) \le |V| - 1$.

Universitate Post of the Control of

Abstand von Knoten

Name: Abstand von Knoten (Brute Force)

Eingabe: ungerichteter, schlingenfreier Graph G = (V, E),

 $u, v \in V, u \neq v$

Ausgabe: D(u,v)

für k ← 1 **bis** |V| - 1 **falls** Pfad der Länge k von u nach v existiert **gib** k **aus STOP**

→ benötigen Algorithmus, der für zwei Knoten u und v und eine positive ganze Zahl k feststellt, ob ein Pfad der Länge k von u nach v existiert

Algorithmische Idee (Brute Force)

- 1. Idee für k = 1: $\{u,v\} \in E$?
- 2. Idee für *k* = 2:

3. Idee für beliebiges k:

Probieren aller <u>Teilmengen</u> von V der Größe k − 1

und aller <u>Anordnungen</u> von deren Elementen

Abstand: Brute Force Algorithmus

```
k \leftarrow 1
solange k < |V|
           u_0 \leftarrow u
           u_k \leftarrow v
           für jede Teilmenge V' \subseteq V mit k-1 Elementen
                      für jede Permutation u_1, u_2, ..., u_{k-1} ihrer Elemente
                                  istPfad \leftarrow 1
                                  für j \leftarrow 0 bis k-1
                                             falls \{u_i, u_{i+1}\} \notin E
                                                        istPfad \leftarrow 0
                                  falls istPfad = 1
                                             gib k aus
                                             STOP
           k \leftarrow k + 1
gib \infty aus
```


Brute Force Algorithmen

- oft erste Idee,
 direkt an Definition des Modells orientiert
- systematisches Durchprobieren aller Möglichkeiten
- einfach zu beschreiben
- aber oft sehr ineffizient (später in diesem Kurs!)

Kleine-Welt-Problem

Eingabe: Freudschaftsbeziehungen in einem sozialen Netzwerk, repräsentiert als ungerichteter, schlingenfreier Graph G = (V, E)

Offenbart G das Kleine-Welt-Phänomen?

- → Welche Abstände von Knotenpaaren treten wie häufig auf?
- → Algorithmus zur Berechnung des Abstands zweier Knoten ✓

Kleine-Welt-Problem

Name: Abstandsverteilung

Eingabe: ungerichteter, schlingenfreier Graph G = (V, E)

Ausgabe: Liste mit Häufigkeiten von Knotenabständen in G

```
für D \leftarrow 1 bis |V|

|H[D] \leftarrow 0

für i \leftarrow 1 bis |V| - 1

|G[D] \leftarrow i + 1 bis |V|

|G[D] \leftarrow Abstand der Knoten <math>u_i und u_j

|G[D] \leftarrow H[V] \leftarrow H[V] + 1

|G[D] \leftarrow H[D] + 1

gib H aus
```