Cálculo Proposicional

Proposição: afirmação que pode ser verdadeira ou falsa.

Ex.:

"Hoje é segunda-feira." (V)

"Amanhã será quinta-feira." (F)

"Hoje à noite vai chover." (?; ainda não sabemos)

Nem todas as frases são proposições.

Ex.:

"Bom dia."

"Como te chamas?"

"Ótimo!"

Proposições compostas

"Amanhã vai chover e (amanhã) vai estar frio."

"Se amanhã estiver frio, (então) vou trazer um casaco."

Conetivos:

```
negação (não) \sim conjunção (e) \wedge disjunção (ou) \vee implicação (se...então...) \rightarrow equivalência (se e só se) \leftrightarrow
```

[Nota: em muitos livros, a negação é representada por \neg ; noutros, a implicação é representada por \Rightarrow e a equivalência por \Leftrightarrow .]

Se *p* representar a afirmação atómica "*n* é ímpar" e *q* representar a afirmação atómica "*n* é primo",

~p representará "n é par" $p \land q$ representará "n é ímpar e primo" $p \lor q$ representará "n é ímpar ou primo" $p \to q$ representará "se n é ímpar então é primo" $p \leftrightarrow q$ representará "n é ímpar se e só se é primo"

Valores lógicos:

verdadeiro (V) e falso (F)

[em muitos livros, 1 em vez de V e 0 em vez de F]

	~p		l .	$p \wedge q$	р	q	p∨q
V	F	٧	٧	V			V
F	V	V	F	F			V
				F			V
		F	F	F	F	F	F

р	q	$p \rightarrow q$	р	1	$p \leftrightarrow q$	
٧	٧	V	V	٧	V	
V	F	F V V			F	
F	V	V		V	F	
F	F	V	F	F	V	

Fórmulas proposicionais

- 1. $p, p_0, p_1, p_2, \dots, q, q_0, q_1, \dots, r, r_0, r_1, \dots$ (chamadas *variáveis proposicionais*) são fórmulas proposicionais
- 2. se φ for uma fórmula proposicional, $(\sim \varphi)$ também será
- 3. se φ e ψ forem fórmulas proposicionais,
 - 3.1 $(\varphi \wedge \psi)$,
 - 3.2 $(\varphi \lor \psi)$,
 - 3.3 $(\varphi \rightarrow \psi)$ e
 - 3.4 $(\varphi \leftrightarrow \psi)$

também serão fórmulas proposicionais

Ex.:

p e q são fórmulas proposicionais (1), logo $(\sim q)$ também é (2), $(p \lor q)$ também é (3.2) e $((\sim q) \to (p \lor q))$ também é uma fórmula proposicional (3.3)

Para simplificar, é habitual omitir os parênteses:

- à volta das negações
- exteriores

Assim, escreveremos $\sim q \to (p \lor q)$ em vez de $((\sim q) \to (p \lor q))$.

[Mas se aplicarmos a regra 2 a $\sim q \to (p \lor q)$ ficaremos com $\sim (\sim q \to (p \lor q))$.]

Tabelas de verdade

Quando é que $\sim q \rightarrow (p \lor q)$ é verdadeira?

p	q	~q	$p \lor q$	$\sim q \to (p \lor q)$
٧	٧	F	٧	V
٧	F	V	V	V
F	V	F	V	V
F	F	V	F	F

O número de linhas na tabela de verdade de uma fórmula é 2^n , onde n é o número de variáveis proposicionais que ocorrem nessa fórmula

Tautologia: fórmula proposicional que é sempre verdadeira, quaisquer que sejam os valores lógicos das variáveis proposicionais.

Contradição: fórmula proposicional que é sempre falsa, quaisquer que sejam os valores lógicos das variáveis proposicionais.

p	q	p∨q	$p \rightarrow (p \lor q)$
٧	٧	V	V
V	F	V	V
F	V	V	V
F	F	F	V

 $p o (p \lor q)$ é uma tautologia

Substituição: se φ e ψ forem duas fórmulas e t uma variável proposicional, $\varphi[\psi/t]$ (" φ com ψ em vez de t") é a fórmula que resulta de substituir em φ todas as ocorrências de t por ψ .

Se
$$\varphi = \sim q \rightarrow (p \lor q)$$
 e $\psi = p \land r$, então $\varphi[\psi/q] = \sim (p \land r) \rightarrow (p \lor (p \land r))$.

Se φ for uma tautologia, então $\varphi[\psi/t]$ também será tautologia e se φ for uma contradição, então $\varphi[\psi/t]$ também será contradição.

Como $p \to (p \lor q)$ é uma tautologia, qualquer fórmula da forma $\varphi \to (\varphi \lor \psi)$ é uma tautologia (por exemplo, $(p \to r) \to ((p \to r) \lor \sim q)$ é uma tautologia).

Dadas duas fórmulas φ, ψ , se $\varphi \leftrightarrow \psi$ for uma tautologia, dizemos que φ e ψ são semanticamente equivalentes e escrevemos $\varphi \Leftrightarrow \psi$.

Algumas equivalências semânticas

associatividade:

$$(\varphi \lor \psi) \lor \sigma \Leftrightarrow \varphi \lor (\psi \lor \sigma)$$
 e $(\varphi \land \psi) \land \sigma \Leftrightarrow \varphi \land (\psi \land \sigma)$

comutatividade:

$$\varphi \lor \psi \Leftrightarrow \psi \lor \varphi$$
 e $\varphi \land \psi \Leftrightarrow \psi \land \varphi$

leis de De Morgan:

$$\sim (\varphi \lor \psi) \Leftrightarrow \sim \varphi \land \sim \psi$$
 e $\sim (\varphi \land \psi) \Leftrightarrow \sim \varphi \lor \sim \psi$

dupla negação:

$$\sim (\sim \varphi) \Leftrightarrow \varphi$$

Analogamente, dadas duas fórmulas φ, ψ , se $\varphi \to \psi$ for uma tautologia escreveremos $\varphi \Rightarrow \psi$

Assim, já vimos que $p \Rightarrow (p \lor q)$.

Nota:

 $p \rightarrow (p \lor q)$ é uma fórmula proposicional, que representa múltiplas proposições (dependentes das proposições que fizermos representar por $p \in q$);

 $p\Rightarrow (p\vee q)$ é uma proposição, que diz que sempre que p representar uma proposição verdadeira $p\vee q$ também representa uma proposição verdadeira.

Alguns métodos de prova

Seja
$$f(n) = n^2 - n + 41$$

$$f(1) = 41 \text{ é primo}$$

$$f(2) = 43$$
 é primo

$$f(3) = 47$$
 é primo

$$f(4) = 53$$
 é primo

. . .

$$f(40) = 1601 \text{ é primo}$$

O que se pode concluir?

Nada!

$$(f(41) = 41^2 - 41 + 41 = 41^2 \text{ \'e obviamente composto.})$$

A matemática não é uma ciência experimental.

Para uma proposição ser aceite como verdadeira (**teorema**) tem de ser **provada** logicamente.

Em geral, os enunciados dos teoremas podem ser interpretados como implicações.

P. ex.:

"Num triângulo retângulo, o quadrado da hipotenusa é igual à soma dos quadrados dos catetos."

Se a,b,c forem os comprimentos dos lados de um triângulo retângulo e α for o lado maior, então $\alpha^2 = b^2 + c^2$.

Às condições ("lado esquerdo" da implicação) chamamos **hipóteses**, ou **premissas**; ao que concluímos ("lado direito") chamamos **tese**, ou **conclusão**.

Prova direta de uma implicação

Para provar $P \Rightarrow Q$ (isto é, que $P \rightarrow Q$ é sempre verdade), podemos

- 1. supor que *P* é verdade;
- 2. usando *P*, tentar provar *Q*.

Prop.: Se x e y são números reais positivos tais que x < y, então $x^2 < y^2$.

Dem.: Suponhamos que x e y são números reais positivos e x < y. [Nota 1: Isto não é, em geral, nem verdadeiro nem falso – depende dos valores de x e y; mas **supomos** que é verdadeiro.

Nota 2: Queremos, agora, provar que $x^2 < y^2$.]

De x < y, multiplicando em ambos os lados pelo número positivo x, concluímos que $x^2 < xy$.

П

Analogamente, multiplicando por y, vem que $xy < y^2$. Logo, $x^2 < xy < y^2$.

Prova por contraposição

Para provar $P \Rightarrow Q$, podemos também

- 1. supor que $\sim Q$ é verdade;
- 2. usando $\sim Q$, tentar provar $\sim P$.

(Este método usa o facto de que $P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$.)

Prop.: Seja n um número inteiro. Se n^2 é ímpar, então n é ímpar.

Dem.: Suponhamos que n é par.

Então n = 2k, para algum inteiro k.

Assim, $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$ é par.

Por contraposição, se n^2 for impar, n terá de ser impar.

Redução ao absurdo

Para provar $P \Rightarrow Q$, podemos ainda

- 1. supor que *P* é verdade;
- 2. supor que $\sim Q$ é verdade;
- 3. usando P e $\sim Q$, tentar chegar a uma contradição, ou absurdo.

(Este método usa o facto de que $P \rightarrow Q \Leftrightarrow \sim (P \land \sim Q)$.)

Prop.: Existe uma infinidade de números primos.

Dem.: Suponhamos, por absurdo, que existe apenas um número finito, n, de números primos.

Sejam p_1, p_2, \ldots, p_n esses números primos.

Seja $x = p_1 \times p_2 \times ... \times p_n + 1$.

Ora, x não é divisível por p_1 (o resto da divisão é 1), nem por p_2 ,...nem por p_n ;

logo x tem de ser divisível por algum primo que não está na lista $p_1, p_2, ..., p_n$, o que contraria a suposição de que existem apenas n números primos.

Predicados e quantificadores

Predicado: afirmação sobre um ou mais objetos (podem ser números, pessoas,...), que se torna verdadeira ou falsa quando esses objetos são concretizados

Ex.:

P(x): "x é primo", onde a variável x representa números inteiros.

P(5) é verdadeira; P(6) é falsa

M(x,y): "x é múltiplo de y", onde as variáveis x,y representam números inteiros.

M(12,3) é verdadeira; M(3,12) é falsa

 $M(3,2) \lor M(4,2)$ é uma proposição verdadeira

Quantificador universal (∀)

Como escrever que

"todo o número inteiro é múltiplo de 1",

e que

"nem todo o número inteiro é primo"?

R.:

$$\forall_x M(x,1)$$

e

$$\sim \forall_x P(x)$$

 \forall_x pode ler-se "para todo o x", ou "todo o x é tal que", ou "qualquer que seja o x"

 $\forall_x Q(x)$ é verdadeira se Q(t) for verdadeira para todo o valor t do "universo de quantificação" (conjunto onde se assume que x toma os seus valores)

Quantificador existencial (3)

Como escrever que

"algum número inteiro é múltiplo de 5",

e que

"existe um número primo que é par"?

R.:

 $\exists_x M(x,5)$

e

$$\exists_x (P(x) \land M(x,2))$$

 \exists_x pode ler-se "existe um x tal que", ou "para algum x", ou "algum x é tal que"

 $\exists_x Q(x)$ é verdadeira se Q(t) for verdadeira para algum valor t do universo de quantificação

Outros exemplos (onde o universo de quantificação é o dos números inteiros):

$$\forall_n \left(\sim M(n,2) \leftrightarrow \sim M(n^2,2) \right)$$

"para todo o n, n^2 é împar se e só se n é împar" proposição verdadeira (exerc. 20.)

$$\forall_n (M(n,2) \lor P(n))$$

"todo o número inteiro é par ou primo" proposição falsa (por exemplo, $M(9,2) \lor P(9)$ é falsa)

$$\exists_n n = 2n$$

"existe um número inteiro que é igual ao seu dobro" proposição verdadeira $(0 = 2 \times 0)$

$$\exists_n n^2 = -1$$

"-1 é o quadrado de algum número inteiro" proposição falsa (o quadrado de qualquer número inteiro é positivo ou zero)

Negação de quantificações

$$\sim \forall_x Q(x) \Leftrightarrow \exists_x \sim Q(x)$$

$$\sim \exists_x Q(x) \Leftrightarrow \forall_x \sim Q(x)$$

Ex.:

Dizer que "nem todo o número inteiro é primo" é equivalente a dizer que "existe um número inteiro que não é primo"; e dizer que "não existe nenhum número divisível por zero" é equivalente a dizer que "qualquer que seja o número x, x não é divisível por zero".

Combinação de quantificadores

"x é múltiplo de y" (que representámos atrás por M(x,y)) significa

$$\exists_k x = y \times k$$

Assim, a afirmação "todo o número inteiro é múltiplo de 1" pode ser escrita como

$$\forall_x \exists_k x = 1 \times k$$

e, continuando a representar "x é primo" por P(x), "existe um número primo que é par" pode ser escrita como

$$\exists_x (P(x) \land \exists_k x = 2 \times k)$$

Provas

Para provar que $\forall_x Q(x)$ é verdade, podemos

- tomar um elemento genérico t do universo de quantificação; e
- 2. provar que Q(t) é verdade.

Para provar que $\exists_x Q(x)$ é verdade, basta escolher um elemento específico t_0 para o qual $Q(t_0)$ seja verdade, e verificar que assim é. Este t_0 será um **exemplo**.

Para provar que $\forall_x Q(x)$ é falsa, basta escolher um elemento específico t_0 para o qual $Q(t_0)$ seja falsa, e verificá-lo. A um tal t_0 chamamos um **contra-exemplo**.

Para provar que $\exists_x Q(x)$ é falsa, podemos

- tomar um elemento genérico t do universo de quantificação; e
- 2. provar que Q(t) é falsa.