$Pattern\ matching + recursión$

Taller de Álgebra I

Segundo cuatrimestre 2019

Pattern matching

El pattern matching es un mecanismo que nos permite asociar una definición de una función solo a ciertos valores de sus parámetros: aquellos que se correspondan con cierto patrón.

Pattern matching

El pattern matching es un mecanismo que nos permite asociar una definición de una función solo a ciertos valores de sus parámetros: aquellos que se correspondan con cierto patrón.

Si quisiéramos definir la función negLogica (negación lógica), podríamos hacerlo así:

Pattern matching

El pattern matching es un mecanismo que nos permite asociar una definición de una función solo a ciertos valores de sus parámetros: aquellos que se correspondan con cierto patrón.

Si quisiéramos definir la función negLogica (negación lógica), podríamos hacerlo así:

Acá, x es un **patrón**: es el menos restrictivo posible, ya que se corresponde con cualquier valor de tipo Bool.

Pattern matching

El pattern matching es un mecanismo que nos permite asociar una definición de una función solo a ciertos valores de sus parámetros: aquellos que se correspondan con cierto patrón.

Si quisiéramos definir la función negLogica (negación lógica), podríamos hacerlo así:

Acá, x es un **patrón**: es el menos restrictivo posible, ya que se corresponde con cualquier valor de tipo Bool.

El tipo Bool admite otros dos patrones más restrictivos: True y False. Usando estos patrones, podemos redefinir negLogica de esta forma:

```
negLogica :: Bool -> Bool
negLogica True = False
negLogica False = True
```

Pattern matching: explicación gráfica

La siguiente función toma un polígono y nos dice cuántos lados tiene:

La función que nos dice la cantidad de lados

${\tt cantidadLados}$	=	3	
cantidadLados	=	4	
cantidadLados	=	5	
${\tt cantidadLados}$	=	6	
${\tt cantidadLados}$	=	7	
${\tt cantidadLados}$	=	8	
cantidadLados	=	9	
cantidadLados	=	10	
:			

En el tipo Integer, todos los números son patrones válidos. Por ejemplo, podemos reescribir la función factorial :: Integer -> Integer

usando pattern matching:

En el tipo Integer, todos los números son patrones válidos. Por ejemplo, podemos reescribir la función factorial :: Integer -> Integer

```
factorial n \mid n == 0 = 1
 \mid \text{ otherwise } = n * \text{ factorial } (n - 1)
```

usando pattern matching:

```
factorial 0 = 1 factorial (n - 1)
```

En el tipo Integer, todos los números son patrones válidos. Por ejemplo, podemos reescribir la función factorial :: Integer -> Integer

usando pattern matching:

```
factorial 0 = 1 factorial (n - 1)
```

Para **reducir** cualquier expresión que contenga factorial, Haskell compara, en orden de arriba hacia abajo, cada patrón con los valores de los argumentos, y utiliza el primero que sirva.

Si el patrón tiene variables libres, se ligan a los valores de los parámetros.

En el tipo Integer, todos los números son patrones válidos. Por ejemplo, podemos reescribir la función factorial :: Integer -> Integer

usando pattern matching:

```
factorial 0 = 1 factorial (n - 1)
```

Para **reducir** cualquier expresión que contenga factorial, Haskell compara, en orden de arriba hacia abajo, cada patrón con los valores de los argumentos, y utiliza el primero que sirva.

Si el patrón tiene variables libres, se ligan a los valores de los parámetros.

Todos los tipos de datos admiten el patrón _, que se corresponde con cualquier valor, pero no liga ninguna variable. Lo usamos cuando no nos importa el valor de algún parámetro. Por ejemplo:

```
esLaRespuestaATodo :: Integer -> Bool
esLaRespuestaATodo 42 = True
esLaRespuestaATodo _ = False
```

Pattern matching en tuplas

El pattern matching también nos permite escribir de forma más clara definiciones que involucren **tuplas**.

Podemos usar patrones para descomponer la estructura de una tupla en los elementos que la forman y ligar cada uno de ellos a una variable distinta.

Pattern matching en tuplas

El pattern matching también nos permite escribir de forma más clara definiciones que involucren **tuplas**.

Podemos usar patrones para descomponer la estructura de una tupla en los elementos que la forman y ligar cada uno de ellos a una variable distinta.

Por ejemplo, la siguiente definición:

```
sumaVectorial :: (Float, Float) -> (Float, Float) -> (Float, Float)
sumaVectorial t1 t2 = (fst t1 + fst t2, snd t1 + snd t2)
```

puede reescribirse como:

Pattern matching en tuplas

El pattern matching también nos permite escribir de forma más clara definiciones que involucren **tuplas**.

Podemos usar patrones para descomponer la estructura de una tupla en los elementos que la forman y ligar cada uno de ellos a una variable distinta.

Por ejemplo, la siguiente definición:

```
sumaVectorial :: (Float, Float) -> (Float, Float) -> (Float, Float)
sumaVectorial t1 t2 = (fst t1 + fst t2, snd t1 + snd t2)
```

puede reescribirse como:

En este caso, el patrón (x1, y1) se corresponde con la primera tupla, y las variables x1 e y1 se ligan con cada una de las componentes de la tupla. Algo análogo pasa con la segunda tupla y el patrón (x2, y2).

Ejercicios

I ¿Son correctas las siguientes definiciones? ¿Por qué?

```
factorial :: Integer -> Integer
factorial 0 = 1
factorial (n + 1) = (n + 1) * factorial n

iguales :: Integer -> Integer -> Bool
iguales x x = True
iguales x y = False
```

- Escribir las definiciones de las siguientes funciones, utilizando pattern matching. Tratar de evaluar la mínima cantidad de parámetros necesaria.
 - a yLogico :: Bool -> Bool -> Bool, la conjunción lógica.
 - **ⓑ** oLogico :: Bool → Bool → Bool, la disyunción lógica.
 - [c] implica :: Bool -> Bool, la implicación lógica.
 - c sumaGaussiana :: Integer -> Integer, que toma un entero no negativo y devuelve la suma de todos los enteros positivos menores o iguales que él.
 - @ algunoEsCero :: (Integer, Integer, Integer) -> Bool, que devuelve True sii alguna de las componentes de la tupla es 0.
 - [f] productoInterno :: (Float, Float) -> (Float, Float) -> Float, que dados dos vectores $v_1=(x_1,y_1),\ v_2=(x_2,y_2)\in\mathbb{R}^2$, calcula su producto interno $\langle v_1,v_2\rangle=x_1x_2+y_1y_2$.

Más ejercicios sobre recursión

Ejercicios

- Escribir una función que determine la suma de dígitos de un número positivo. Para esta función pueden utilizar div y mod.
- 2 Implementar una función que determine si todos los dígitos de un número son iguales.
- ☑ Implementar una función que, dado un número natural n, determine si puede escribirse como suma de dos números primos: esSumaDeDosPrimos :: Integer → Bool
- Conjetura de Christian Goldbach, 1742: todo número par mayor que 2 puede escribirse como suma de dos números primos. Escribir una función que pruebe la conjetura hasta un cierto punto. goldbach :: Integer -> Bool (hasta al menos 4.10¹⁸ debería ser cierto)
- [5] (Difícil) Conjetura de Lothar Collatz, 1937: sea la siguiente definición:

$$a_{n+1} = egin{cases} rac{a_n}{2} & ext{si } a_n ext{ es par} \ 3a_n + 1 & ext{si } a_n ext{ es impar} \end{cases}$$

empezando a_1 con cualquier número siempre se llega a 1. Por ejemplo, si $a_1=13$, obtenemos la siguiente secuencia: $13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1$ (10 términos). Resolver usando Haskell: ¿qué número menor a 10.000 para a_1 produce la secuencia de números más larga hasta llegar a 1?