

Линейное программирование

МЕТОДЫ ВЫПУКЛОЙ ОПТИМИЗАЦИИ

НЕДЕЛЯ 6

Даня Меркулов Пётр Остроухов

Линейное программирование и симплекс-метод

Семинар

Оптимизация для всех! ЦУ

Линейное программирование

Линейное программирование. Общие формы

Для некоторых векторов $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ и матрицы $A \in \mathbb{R}^{m \times n}$

• Базовая форма задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x \tag{LP.Basic}$$
 s.t. $Ax < b$

Рисунок 1. Иллюстрация задачи линейного программирования.

Линейное программирование. Общие формы

Для некоторых векторов $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ и матрицы $A \in \mathbb{R}^{m \times n}$

• Базовая форма задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$

(LP.Basic)

$$\text{s.t. } Ax \leq b$$

• Стандартная форма задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$

(LP.Standard)

$$s.t. \ Ax = b$$

$$x_i \geq 0, \ i=1,\dots,n$$

Рисунок 1. Иллюстрация задачи линейного программирования.

Симплекс-метод

Рисунок 2. Основные понятия симплекс-метода.

Рисунок 3. Изменение базиса симплекс-метода.

- і Основные понятия симплекс-метода
- Базис B является подмножеством n (целых) чисел между 1 и m, таких что rank $A_B=n$. Обратите внимание, что мы можем связать подматрицу A_B и соответствующую правую часть b_B с базисом B. Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса: $x_B=A_B^{-1}b_B$.

 $\mathcal{B} = \{3,4\}$ — Исходивій базис a_2 a_3 a_4 a_4 a_4 a_5 a_5 a_5 a_6 a_6 a_7 a_8 a_8

Рисунок 2. Основные понятия симплекс-метода.

Рисунок 3. Изменение базиса симплекс-метода.

і Основные понятия симплекс-метода

- Базис B является подмножеством n (целых) чисел между 1 и m, таких что $\mathrm{rank}A_B=n$. Обратите внимание, что мы можем связать подматрицу A_B и соответствующую правую часть b_B с базисом B. Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса: $x_B=A_B^{-1}b_B$.
- Если $Ax_B \leq b$, то базис B является **допустимым**.

 $\mathcal{B} = \{3,4\}$ — Исходивій базис a_2 a_3 a_4 a_4 a_4 a_5 a_5 a_6 a_6 a_6 a_7 a_8 a_8 a

Рисунок 2. Основные понятия симплекс-метода.

Рисунок 3. Изменение базиса симплекс-метода.

і Основные понятия симплекс-метода

- Базис B является подмножеством n (целых) чисел между 1 и m, таких что rank $A_B=n$. Обратите внимание, что мы можем связать подматрицу A_B и соответствующую правую часть b_B с базисом B. Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса: $x_B=A_B^{-1}b_B$.
- Если $Ax_B \le b$, то базис B является **допустимым**.
- Базис B является **оптимальным**, если x_B является оптимумом LP . Basic.

 $\mathcal{B} = \{3,4\}$ — Исходивій базис x_2 a_1 a_2 a_3 a_4 a_4 a_4 a_5 a_5

Рисунок 4. Основные понятия симплекс-метода.

Рисунок 5. Изменение базиса симплекс-метода.

і Интуиция симплекс-метода

• Алгоритм симплекс-метода последовательно перемещается по рёбрам многогранника, в каждой вершине выбирая ребро, которое обеспечивает наибольшее уменьшение величины $c^{\top}x$

 $\mathcal{B} = \{3,4\}$ — Исходивій базис a_2 a_3 a_4 a_4 a_4 a_5 a_5 a_6 a_7 a_8 a_8 a

Рисунок 4. Основные понятия симплекс-метода.

Рисунок 5. Изменение базиса симплекс-метода.

і Интуиция симплекс-метода

- Алгоритм симплекс-метода последовательно перемещается по рёбрам многогранника, в каждой вершине выбирая ребро, которое обеспечивает наибольшее уменьшение величины $c^{\top}x$
- Процесс либо завершается в некоторой вершине, либо уходит по неограниченному ребру, что означает неограниченность задачи снизу ($-\infty$ оптимум)

 $\mathcal{B} = \{3,4\}$ — Исходивій базис a_2 a_3 a_4 a_4 a_4 a_5 a_5 a_6 a_6 a_7 a_8 a_8 a

Рисунок 6. Основные понятия симплекс-метода.

Рисунок 7. Изменение базиса симплекс-метода.

Существование решения стандартной задачи линейного программирования

1. Если стандартная задача линейного программирования имеет непустое допустимое множество, то существует по крайней мере одна допустимая точка базиса

 $\mathcal{B} = \{3,4\}$ – Исходный базис a_2 — a_3 — a_4 — a_4 — a_5 — a_5

Рисунок 6. Основные понятия симплекс-метода.

Рисунок 7. Изменение базиса симплекс-метода.

Существование решения стандартной задачи линейного программирования

- 1. Если стандартная задача линейного программирования имеет непустое допустимое множество, то существует по крайней мере одна допустимая точка базиса
- 2. Если стандартная задача линейного программирования имеет решения, то по крайней мере одно из таких решений является оптимальной точкой базиса.

 $\mathcal{B} = \{3,4\}$ — Исходный базис a_2 — a_3 — a_4 — a_4 — a_5 — a_5

Рисунок 6. Основные понятия симплекс-метода.

Рисунок 7. Изменение базиса симплекс-метода.

Существование решения стандартной задачи линейного программирования

- 1. Если стандартная задача линейного программирования имеет непустое допустимое множество, то существует по крайней мере одна допустимая точка базиса
- 2. Если стандартная задача линейного программирования имеет решения, то по крайней мере одно из таких решений является оптимальной точкой базиса.
- 3. Если стандартная задача линейного программирования является допустимой и ограниченной, то она имеет оптимальное решение.

Рисунок 8. Основные понятия симплекс-метода.

Рисунок 9. Изменение базиса симплекс-метода.

Теорема об оптимуме в вершине

Пусть λ_B будут координатами нашего вектора c в базисе B:

$$\lambda_B^\top A_B = c^\top \leftrightarrow \lambda_B^\top = c^\top A_B^{-1}$$

Если все компоненты λ_B неотрицательны и B является допустимым, то B является оптимальным.

Примеры задач линейного программирования

Предположим, вы думаете о том, чтобы начать бизнес по производству Продукта X.

Давайте найдем максимальную недельную прибыль для вашего бизнеса в 🗬 Production Plan Problem.

Максимальный поток и минимальный разрез

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

 Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
- Пример: Может ли узел 1 (источник) общаться с узлом 6 (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
- Пример: Может ли узел 1 (источник) общаться с узлом 6 (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
- Пример: Может ли узел 1 (источник) общаться с узлом 6 (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Матрица пропускных способностей:

$$C = \begin{bmatrix} 0 & 6 & 0 & 0 & 6 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
- Пример: Может ли узел 1 (источник) общаться с узлом 6 (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Матрица пропускных способностей:

$$C = \begin{bmatrix} 0 & 6 & 0 & 0 & 6 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Матрица потоков: X[i,j] представляет собой поток от узла i к узлу j.

Узлы представляют собой маршрутизаторы, рёбра представляют собой каналы связи; каждому узлу соответствует пропускная способность — узел 1 может общаться с узлом 2 до 6 Мбит/с, узел 2 может общаться с узлом 4 до 2 Мбит/с и т.д.

Вопрос:

- Сеть узлов и рёбер представляет собой каналы связи, каждый с указанной пропускной способностью.
- Пример: Может ли узел 1 (источник) общаться с узлом 6 (сток) на 6 Мбит/с? 12 Мбит/с? Какова максимальная скорость?

Матрица пропускных способностей:

$$C = \begin{bmatrix} 0 & 6 & 0 & 0 & 6 & 0 \\ 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Матрица потоков: X[i,j] представляет собой поток от узла i к узлу j. **Ограничения:**

$$0 \leq X \qquad X \leq C$$
 Сохранение потока: $\sum_{j=2}^N X(i,j) = \sum_{k=1}^{N-1} X(k,i), \; i=2,\dots,N-1$

Данная настройка, когда все, что производится источником, будет идти в сток. Поток сети просто сумма всего, что выходит из источника:

$$\sum_{i=2}^{N} X(1,i)$$
 (Поток)

Данная настройка, когда все, что производится источником, будет идти в сток. Поток сети просто сумма всего, что выходит из источника:

$$\sum_{i=2}^{N} X(1,i)$$
 (Поток

максимизировать $\langle X, S \rangle$

при ограничениях
$$-X \leq 0$$

$$X \le C$$

$$\langle X, L_n \rangle = 0, \ n = 2, \dots, N-1,$$

(Задача о максимальном потоке)

 L_n состоит из одного столбца (n) единиц (кроме последней строки) минус одна строка (также n) единиц (кроме первого столбца).

$$S = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & -1 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Пример задачи о минимальном разрезе

Разрез сети разделяет вершины на два множества: одно содержит источник (мы называем это множество \mathcal{S}), и одно содержит сток. Пропускная способность разреза — это общая величина рёбер, выходящих из \mathcal{S} — мы разделяем множества, «отрезая поток» по этим рёбрам.

Рёбра в разрезе: $2 \to 3, 4 \to 6$, и $5 \to 6$. Пропускная способность этого разреза: 2+3+2=7.

🧵 Теорема о максимальном потоке и минимальном разрезе.

Максимальное значение потока s-t равно минимальной пропускной способности всех s-t разрезов.

Посмотрите на различные практические приложения задач линейного программирования и симплекс-метода в Related Collab Notebook.