Анализ

Галкина

05.09.2022

Содержание

1	Связь признака Даламбера и Коши	4
2	Оценка погрешности приближения какой-то величины с помощью положительного ряда	4
3	Знакопеременные ряды 3.1 Преобразование Абеля	4 5

Коэффициенты: Контр*0,4 Коллок*0,3 Экз*0,3

Теорема 1 (признак Даламбера в предельной форме)

Пусть дан знакоположительный ряд. Тогда

- 1. $\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = q < 1$, mo pad cxodumcs.
- 2. $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = r > 1$, то ряд расходится.

Доказательство. Пусть верхний предел равен q<1. Возьмем $\varepsilon=\frac{1-q}{2}$. Тогда $\exists n_0 \in \mathbb{N} \, \forall n > n_0 : \frac{a_{n+1}}{a_n} \leqslant q + \varepsilon.$ По теореме Больцано-Вейерштрасса. Тогда по признаку Даламебра в оценочной форме ряд сходится.

Далее, пусть существует нижний предел. Тогда ряд сходится по признаку Даламберав оценочной форме, или от противного: через отрицание необходимого признака.

Замечание. Если предел равен 1, то r = q = 1

Замечание. В отличие от признака Коши, в п.2 нельзя заменить нижний предел на верхний.

Замечание. Если все-таки получилась единица, то ряд может как сходиться, так и расходиться.

Теорема 2 (признак Коши в оценочной форме)

Пусть дан знакоположительный ряд. Пусть $\sqrt[n]{a_n} \leqslant q < 1$. Тогда ряд сходится. Пусть $\sqrt[n]{a_n} \geqslant 1$. Тогда ряд расходится.

Доказательство. Сравним с геометрической прогрессией: $a_n \leqslant q^n \implies$ из сходимости прогрессии следует сходимость ряда. \square

Теорема 3 (признак Коши в предельной форме) $\Pi y cmb \ \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q.$

- 1. $q < 1 \implies pяд cxodumcs$.
- $2. q > 1 \implies pяд pacxodumcs$.

Доказательство. Аналогично признаку Даламбера. Избавимся от верхнего предела, взяв предел подпоследовательности. Значит, тогда все числа попадают в эпсилонокрестность числа q. Но тогда не выполнено необходимое условие. \square

Пример. $\sum_{n=1}^{\infty} \left(\frac{2+(-1)^n}{5+(-1)^{n+1}}\right)^n$. Кошируя это ряд, взяв наибольшую подпоследовательность, получим предел $\frac{3}{4}$, значит, ряд сходится. Можно ещё просто втупую посчитать две подпоследовательности.

Пример. $\sum_{n=1}^{\infty} \left(\frac{1+\cos n}{2+\cos n}\right)^{2n-\ln n}$. Оценим это рядом $b_n = \left(\frac{1+n}{2+n}\right)^{2n-\ln n}$. В итоге получится, что ряд сходится.

Теорема 4 (признак Раабе в оценочной форме)

Пусть дан знакоположительный ряд с общим членом $a_n > 0$. Тогда:

- 1. Если $\frac{a_{n+1}}{a_n} \geqslant_1 \frac{1}{n}$, ряд расходится. 2. Если $\exists \alpha > 0 : \frac{a_{n+1}}{a_n} \leqslant 1 \frac{\alpha}{n}$ тогда ряд сходится.

Доказательство. 1. $\frac{a_{n+1}}{a_n} \geqslant \frac{n-1}{n}$, $b_n = \frac{1}{n-1}$. $\frac{a_{n+1}}{a_n} \geqslant \frac{b_{n+1}}{b_n}$, если ряд b_n расходится, то ряд расходится по третьему признаку сравнения.

2. Пусть $\beta \in (1, \alpha)$, тогда $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^{\beta}}$ сходится. Далее, $\frac{b_{n+1}}{b_n} = (\frac{n}{n+1})^{\beta} = (1-\frac{1}{n})^{-\beta} = 1-\frac{\beta}{n}+O*(\frac{1}{n^2})$. Затем, $-\frac{\beta}{n}>-\frac{\alpha}{n} \Longrightarrow 1-\frac{\beta}{n}>1-\frac{\alpha}{n}$. Так как $O(\frac{1}{n^2})$ - бесконечно малая более высокого порядка, чем $\frac{\alpha}{n}$ и $\frac{\beta}{n}$, то $\exists n_0 \in \mathbb{N} \ \forall n>n_0: 1-\frac{\alpha}{n}<1-\frac{\beta}{n}+O(\frac{1}{n^2})$. Правая часть равна $\frac{b_{n+1}}{b_n}$. По условию, $\frac{a_{n+1}}{a_n}\leqslant 1-\frac{\alpha}{n}$. Из этих двух условий по свойству транзитивности неравенств получаем оценку $\frac{a_{n+1}}{a_n}<\frac{b_{n+1}}{b_n}$, откуда следует сходимость ряда. \square ряда. 🗆

Теорема 5 (Признак Раабе в предельной форме)

Пусть $\lim_{n\to\infty} n(1-\frac{a_{n+1}}{a_n})=R$. Тогда: 1. R<1 - ряд расходится

- 2. R > 1 ряд сходится.

Доказательство.

Теорема 6 (признак Куммера)

Даны две последовательности a_n и c_n . Тогда:

- 1. $Ecnu \exists \alpha > 0 \exists n_0 \in \mathbb{N} \ \forall n > n_0 : C_n C_{n+1} \cdot \frac{a_{n+1}}{a_n} \geqslant \alpha psd \ cxodumcs.$
- 2. Если ряд $\sum_{n=1}^{\infty} \frac{1}{C_n}$ расходится и $C_n C_{n+1} \frac{a_{n+1}}{a_n} \leqslant 0$, то ряд расходится.

Доказательство. Пж убейте меня бля я больше не могу

Следствие 1. Признак Даламбера при $C_n \equiv 1$

Следствие 2. Признак Раабе. Возьмем $C_n = n-1$. Имеем 1. $n-1-n\cdot\frac{a_{n+1}}{a_n}\geqslant \alpha \implies 1-\frac{1}{n}-\frac{a_{n+1}}{a_n}\geqslant \frac{\alpha}{n} \implies \frac{a_{n+1}}{a_n}\leqslant 1-\frac{1+\alpha}{n}$. Подставляя в пункт

Теорема 7 (признак Бертрана/следствие из признака Куммера) 1.
$$C_n = (n-2)\ln(n-1)$$
. $\frac{a_{n+1}}{a_n} \geqslant_1 -\frac{1}{n} - \frac{1}{n\ln n}$ - ряд сходится 2.

Доказательство.

Теорема 8 (признак Гаусса)

Пусть дан положительный ряд. Пусть его можно представить в виде

$$\frac{a_{n+1}}{a_n} = D - \frac{r}{n} + \frac{\theta_n}{n^{1+\alpha}}$$

Тогда:

- 1. $Ecnu\ D > 1$ ряд pacxodumcs
- 2. Ecлu D < 1 ряд cxodumcs
- 3. Если $D=1, R\leqslant 1$ ряд расходится
- 4. Если D = 1, R > 1 ряд сходится.

Доказательство. □

Теорема 9 (интегральный признак)

Пусть ряд знакопостоянен. Ряд $\sum\limits_{n=1}^{\infty}a_n$ и интеграл $\int\limits_{1}^{\infty}f(x)dx$ сходятся и расходятся одновременно, причем $f(n)=a_n$, функция определена, непрерывна, неотрицательна и невозрастающая на $[1,\infty)$. Оценка погрешности:

Доказательство. $\forall x \geqslant 1 \; \exists k \in \mathbb{N} : k \leqslant x \leqslant k+1$. По условию невозрастания имеем $f(k) \geqslant f(x) > f(k+1)$. $a_{k+1} < f(x) \leqslant a_k, \, a_{k+1} \; \Box \; \mathbf{\Pi} \mathbf{p} \mathbf{u} \mathbf{m} \mathbf{e} \mathbf{p}$. Исследуем $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Взятием интеграла получаем условия сходимости:

$$\Big\{$$
сходится при $p>1$ расходится при $p\leqslant 1$

1 Связь признака Даламбера и Коши

Если $\frac{a_n}{a_{n-1}} \leqslant q$ для всех п начиная с 1, то $a_n = a_1 q^n$, откуда следует признак Коши.

$$\sqrt[n]{a_n} \leqslant \sqrt[n]{a_1} \cdot q$$

Значит, Коши покрывает больше случаев.

2 Оценка погрешности приближения какой-то величины с помощью положительного ряда

$$\int_{n+1}^{\infty} f(x)dx < R_n \leqslant \int_{n}^{\infty} f(x)dx$$

Из доказательства интегрального признака

$$a_{k+1} < \int_{k}^{k+1} f(x)dx \le a_{k}$$

$$\int_{k}^{k+1} f(x)dx \le a_{k} \int_{k-1}^{k} f(x)dx$$

$$R_{n} = sum_{k=n+1}^{\infty} a_{k}$$

Итак,

$$\int_{n+1}^{\infty} \leqslant R_n < \int_{x}^{\infty} f(x) dx$$

Пример. Вычислим с точностью до 0,001 ряд $\sum_{n=1}^{\infty} \frac{1}{n^4}$. Ответ: $1,082\pm0,001$ (точный ответ $\frac{\pi^4}{90}$)

3 Знакопеременные ряды

Пусть теперь ряд знакопеременный.

Определение 1 Ряд сходится абсолютно, если сходится ряд из модулей. Ряд сходится условно, если абсолютно расходится, но сам сходится.

Теорема 10 Если ряд сходится абсолютно, то ряд сходится.

Доказательство. Следует напрямую из критерия Коши и свойства модуля: $||a_1| + ... |a_n|| \geqslant |a_1 + ... + a_n|$. \square

Теорема 11 (признак Лейбница для знакочередующихся рядов)

Пусть ряд имеет вид $\sum_{n=1}^{\infty} (-1)^n v_n$, где $v_n > 0$ и монотонно убывает. Тогда ряд сходится. Более того, имеет место оценка погрешности $|R_n| \leqslant v_n$

Доказательство. 1. Посчитаем частичную сумму для 2k:

$$S_{2k} = v_1 - v_2 + \dots - v_{2k}$$

$$S_{2k+2} = S_{2k} + v_{2k+1} - v_{2k+2}$$

$$S_{2k+2} - S_{2k} = v_{2k+1} - v_{2k+2}$$

$$S_{2k} = v_1 - (v_2 - v_3) - (v_4 - v_5) - \dots - (v_{2k-2} - v_{2k-1}) - v_{2k}$$

Значит, эта последовательность возрастает и ограничена сверху, значит, у неё есть конечный предел: $S_{2k} \leqslant u_1$

$$\lim_{k \to \infty} S_{2k+1} = \lim_{k \to \infty} (S_{2k} + v_{2k+1}) = S$$

Следовательно,

$$\exists \lim_{n \to \infty} S_n = S$$

Последовательность частичных сумм для нечетных чисел также убывает, доказательство аналогичное.

2. Докажем оценку погрешности. $|R_{2k}| = S - S_{2k} < S_{2k+1} - S_{2k}$. Итак,

$$|R_{2k}| \leqslant v_{2k+1}$$

$$R_{2k+1} = S_{2k+1} - S < S_{2k+1} - S_{2k+2}$$

$$|R_{2k+1}| \leqslant v_{2k+2}$$

3.1 Преобразование Абеля

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n, \ B_i = \sum_{k=1}^{i} b_k$$

Доказательство. $b_k = B_k - B_{k-1}, \ k \in \{2, ..., n\}$ ВСТАВКА

Теорема 12 (неравенство Абеля)

Пусть последовательность монотонно возрастает или убывает. И пусть $\exists M \forall k \in \{1...n\} |B_k| \leqslant M$. Тогда модуль конечной суммы $\leqslant M(|a_1|+2|a_n|)$

Доказательство. Юра, допиши пж

Теорема 13 (признак Дирихле)

Доказательство. \square