Chenkai Weng

+1-224-307-3331 | ckweng87@gmail.com | ckweng.github.io

RESEARCH INTERESTS

Applied cryptography with a focus on secure multi-party computation and zero-knowledge proofs. The design, analysis, and implementation of MPC (e.g., garbled circuits, oblivious transfer, homomorphic encryption, and secret sharing-based protocols) and ZKP protocols (VOLE-based ZK and non-interactive ZK). The building of secure systems by applying cryptography-based privacy-enhancing techniques to various fields, including the database, networking, formal verification, machine learning, health care, and decentralized systems.

EDUCATION

Northwestern University PhD in Computer Science; Advisor: Xiao Wang	Evanston, IL Sept. 2019 – Present
Xidian University BSc in Information Security	Xi'an, China Sept. 2015 – June 2019
Research & Experience	
AI Research Summer Associate	New York, NY
	7 2022 C / 2022

New York, NY
$Jun.\ 2023-Sept.\ 2023$
Remote
$Oct.\ 2022$ – $May.\ 2023$
New York, NY
$Jun.\ 2022-Sept.\ 2022$
Remote
$May.\ 2021-Jul.\ 2021$
Beijing, China
$July\ 2018-Jan.\ 2019$

Grants & Awards & Fellowships

- 1. Co-lead the development of an NSF grant (CNS Core: Medium: Privacy-Preserving and Censorship-Resistant Domain Name System)
- 2. JPMorgan PhD Fellowship 2023.
- 3. Northwestern Terminal Year Fellowship 2023-24.
- 4. Runner-up for Best Paper Awards, ACM Conference on Computer and Communications Security (CCS) 2021.
- 5. NUCS PhD Student Research Award, 2020-21.

PUBLICATIONS

* alphabetical order

1. ZKSQL: Verifiable and Efficient Query Evaluation with Zero-Knowledge Proofs

Xiling Li, Chenkai Weng, Yongxin Xu, Xiao Wang, Jennie Rogers Very Large Data Bases (VLDB), 2023

2. SUPERPACK: Dishonest Majority MPC with Constant Online Communication*

Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan Song, Chenkai Weng Annual International Conference on the Theory and Applications of Cryptology and Information Security (Eurocrypt), 2023

3. AntMan: Interactive Zero-Knowledge Proofs with Sublinear Communication

Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang ACM Conference on Computer and Communications Security (CCS), 2022

4. More Efficient Secure Matrix Multiplication for Unbalanced Recommender Systems

Zhicong Huang, Cheng Hong, Wen-jie Lu, Chenkai Weng, Hunter Qu IEEE Transactions on Dependable and Secure Computing (TDSC)

5. Constant-Overhead Zero-Knowledge for RAM Programs*

Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, Chenkai Weng ACM Conference on Computer and Communications Security (CCS), 2021

6. Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning

Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, Xiao Wang USENIX Security Symposium, 2021

7. Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field

Kang Yang, Pratik Sarkar, Chenkai Weng, Xiao Wang ACM Conference on Computer and Communications Security (CCS), 2021

8. Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

Chenkai Weng, Kang Yang, Jonathan Katz, Xiao Wang IEEE Symposium on Security and Privacy (Oakland), 2021

9. Developing High Performance Secure Multi-Party Computation Protocols in Healthcare: A Case Study of Patient Risk Stratification

Xiao Dong, David Randolph, Chenkai Weng, Abel Kho, Jennie Rogers, Xiao Wang AMIA Informatics Summit, 2021

10. Ferret: Fast Extension for coRRElated oT with small communication

Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, Xiao Wang ACM Conference on Computer and Communications Security (CCS), 2020

11. Better Concrete Security for Half-Gates Garbling (in the Multi-Instance Setting)*

Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, Yu Yu International Cryptology Conference (CRYPTO), 2020

Preprints

1. Precio: Private Aggregate Measurement via Oblivious Shuffling

F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, Melissa Chase

2. Privacy-Preserving Regular Expression Matching using Nondeterministic Finite Automata

Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Ruzica Piskac, Mariana Raykova

3. PDNS: A Fully Privacy-Preserving DNS

Yunming Xiao, Chenkai Weng, Ruijie Yu, Peizhi Liu, Matteo Varvello, Aleksandar Kuzmanovic

TEACHING EXPERIENCE

Co-lecturer

Evanston, IL

Northwestern University

Jan. 2023 - Mar. 2023

• Advanced topics in cryptography: OT-extension, BGW, MPC-in-the-head, PSI protocols.

Teaching Assistant

Evanston, IL

Northwestern University

Sept. 2020 - Dec. 2020

• Introduction to Cryptography

INVITED TALKS

- 1. May. 2023 "SUPERPACK: Dishonest Majority MPC with Constant Online Communication", at NYU Crypto reading group.
- Apr. 2023 "Efficient and Scalable Zero-Knowledge Proofs based on Vector Oblivious Linear Evaluation", at JPMorgan AlgoCRYPT Seminar.

- 3. Sept. 2022 "Efficient Interactive Zero Knowledge Proof Based on VOLE", at Yale University CS talk.
- 4. Mar. 2021 "Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs", Security and privacy seminar at Duke University.

SERVICE

Program committee member: AsiaCCS 2024.

External reviewer: CRYPTO 2021-23, ITC 2022, Asiacrypt 2022-23, IEEE S&P (Oakland) 2023, PKC 2023.

Journal reviewer: IEEE TDSC, IEEE TIFS, IEEE TCBB, ACM TOPS, IACR JoC.

Software

EMP library: EMP-TOOL (Circuits for floating-point arithmetic, various fundamental cryptographic primitives), EMP-OT (Oblivious transfer based on VOLE), EMP-ZK (Interactive zero-knowledge proofs based on VOLE, including the circuit, polynomial and RAM).

SUPERPACK: An actively-secure dishonest-majority MPC protocol based on packed Shamir secret sharing.