Andreas Hald Søndergaard Mandøe AU-id: AU715910

Aflevering 8b

Aarhus Universitet

Studienummer: 202205776

Opgave U26

a) Find real- og imaginærdel af følgende komplekse tal:

$$\frac{3+2i}{5-7i} \quad \text{og} \quad \frac{2-2i}{3+5i}.$$

Gør rede for dine udregninger.

b) Find argument et for de komplekse tal -1+i og -2-2i.

Gør rede for dine udregninger.

Opgave a, første tal)

For beregning af komplekse tal repræsenteret ved brøker, er det fordelagtigt at multiplicere både tæller og nævner med de konjugerede værdier til nævneren:

Aarhus Universitet

Studienummer: 202205776

$$\frac{3+2i}{5-7i}$$

Konjugerede værdier for nævneren:

$$(5 + 7i)$$

Jeg ganger i tæller og nævner. Jeg benytter også at $i^2 = -1$

$$\frac{(3+2i)\cdot(5+7i)}{(5-7i)\cdot(5+7i)} = \frac{15+21i+10i+14i^2}{(5-7i)\cdot(5+7i)} = \frac{1+31i}{25+35i-35i+49}$$

Jeg forkorter udtrykket

$$\frac{1+31i}{25+35i-35i+49} = \frac{31\cdot i+1}{74}$$

Real- og imaginærværdierne adskilles:

$$\frac{31 \cdot i + 1}{74} = \frac{1}{74} + \frac{31i}{74}$$

Realdelen bestemmes til $\frac{1}{74}$ og imaginærdelen bestemmes til $\frac{31i}{74}$

Andreas Hald Søndergaard Mandøe AU-id: AU715910

Opgave a, andet tal)

$$\frac{2-2i}{3+5i}$$

Aarhus Universitet

Studienummer: 202205776

Jeg bestemmer den konjugerede værdi for nævneren:

$$3 - 5i$$

Jeg multiplicerer konjugerede værdi med både tæller og nævner:

$$(3+5i) \cdot (3-5i) = 9-15i+15i-25i^2 = 9+25 = 34$$

Medfører at:

$$\frac{2-2i}{3+5i} = \frac{(2-2i)\cdot(3-5i)}{(3+5i)\cdot(3-5i)} = \frac{6-10i-6i+10i^2}{9-15i+15i-25i^2} = \frac{6-10-16i}{9+25} = \frac{-4-16i}{34} = \frac{-2-8i}{17}$$

Jeg adskiller real- og imaginærdel:

$$-\frac{2}{17} - \frac{8i}{17}$$

Realdelen bestemmes til $\frac{-2}{17}$ og imaginærdelen bestemmes til $\frac{-8i}{17}$

Aarhus Universitet Studienummer: 202205776

Opgave b)

Jeg ønsker at finde argumentet for

$$z_1 = -1 + i$$
 og $z_2 = -2 - 2i$

Jeg skitserer disse komplekse tal i det komplekse plan:

Argumentet for et komplekst tal z = a + bi er givet ved vinklen θ målt fra x-aksen op til linjen fra (0,0) til (a,b). Jeg bestemmer argumentet ved anvendelse af trigonometri.

 z_1 og z_2 ligger i hhv. 2. og 3. kvadrant. Derved skal jeg hhv. Lægge og trække π radianer, altså 180°, fra/til vinklen for at bestemme det rigtige argument:

$$\theta_{z_1} = \tan^{-1}\left(\frac{1}{-1}\right) + 180^{\circ} = 135^{\circ}$$

$$\theta_{z_2} = \tan^{-1}\left(\frac{-2}{-2}\right) - 180^{\circ} = -135^{\circ}$$

De to argumenter kan ses ovenfor.