COMS30017 Computational Neuroscience Week 5 / Video 3 / Pattern separation

Dr. Laurence Aitchison laurence.aitchison@bristol.ac.uk

Intended Learning Outcomes

- Overview of computational models of hippocampus
- Computational model of pattern separation in hippocampus

Computations of the hippocampus

Original drawing by Ramon y Cajal (circa 1900)

https://en.wikipedia.org/wiki/Hippocampus#/media/File:CajalHippocampus_(modified).png

- A leading theory (O'Reilly and McClelland, 1994) is that distinct episodic memories are stored as attractors in CA3.
- During encoding of a new memory, we want to create a new attractor. This allocation is done at random, via a pattern separation mechanism implemented by the dentate gyrus (DG).
- The DG acts as a kind of teacher, activating some random set of neurons in CA3. Encoding then involves Hebbian plasticity both in the EC→CA3 synapses, and in the recurrent CA3→CA3 synapses.
- During memory recall the external cue signal is routed via EC, completed by CA3, then read out by CA1 (synaptic plasticity is not involved in recall).
- Note that this implies content-addressable memory (can recall an item based on partial information of the item itself, rather than by knowing a location in memory as in human-made computers).

Hippocampal Activity Levels

What is the pattern overlap at the output layer as a function of the overlap in the input layer?

$$P(H_a \mid k_i, F) = \frac{\text{\# of config with overlap } H_a}{\text{\# of config}} = \frac{\binom{N_i}{k_i} \binom{k_i}{H_a} \binom{N_i - k_i}{F - H_a}}{\binom{N_i}{k_i} \binom{N_i}{F}} = \frac{\binom{k_i}{H_a} \binom{N_i - k_i}{F - H_a}}{\binom{N_i}{F}}$$

 N_i is total number neurons in input layer.

Pattern A activates k_i of these neurons.

A single neuron in the output layer receives inputs from a subset F of the N_i neurons. H_a is the number of "hits" or active neurons seen by the second layer neuron.

Fig. 4. Representation of the effect of increasing input overlap on the probability distribution $P(H_{b|a})$, which is derived from the tail of the distribution $P(H_a)$. As input overlap increases, the distributions get narrower and the mean shifts upward toward the threshold. These changes interact with the concave shape of the distribution to produce a level of output overlap that is lower than the input overlap, resulting in pattern separation. Actual distributions shown are based on the hypergeometric model described in the text.

Activity Levels and Pattern Separation

A sparse, random feedforward network generically does pattern separation.

Strengthening activated feedforward synapses can lead to pattern completion.

This can be enhanced by recurrent attractor dynamics in CA3.

End