Entropy Equations
· These results can be used to measure
We will give an example of how the changes in entropy as a function of T, P or T, V can be expressed in terms of C_p, C_V, κ_T , and β_p
of T, V can be expressed in terms of C_p, C_V, κ_T , and β_p
$dS = \begin{pmatrix} \partial S \\ \partial T \end{pmatrix}_{P} dT + \begin{pmatrix} \partial S \\ \partial P \end{pmatrix}_{T} dP$
Second TdS egn.
dS = Cp dT - Bp V dp Second TdS eqn. The second TdS eqn. First involves T, V
Usually measure per volume s= S/V cp = Cp/V
Then keeping V fixed
ds = CpdT - Bpdp
The Second TdS
· Many more can be derived. The first involves T, V
In particular consider S(T, V)
dS = 1281 at +1281 av
$dS = (\partial S) dT + (\partial S) - dV$
= CydT + (25) dV
= CV dT + (DS) dV Now use the maxwell relation from F(T,V)
$= \frac{C_V}{T} + \left(\frac{\partial p}{\partial T}\right)_V + \left(\frac{\partial S}{\partial T}\right)_V = \left(\frac{\partial S}{\partial T}\right)_V = \left(\frac{\partial S}{\partial T}\right)_V$
T COLLY
1C = C, 1T , B 11/
dS = CV dT + Bp dV
NT.

The Heat Capacity Equations

Actually out of $C_p,\,C_V,\,\kappa_T,\,$ and β_p only three are independent

From the first and second TdS eqn:

CydT + TBp dV = CpdT - TBpdp

Keeping the pressure fixed dp = 0 and dividing by dT we have

 $C_V + T_{R_p} \left(\frac{\partial V}{\partial T} \right)_p = C_p$

Then (aV) = VBp or the result

 $C_{V} + T \frac{\beta^{2}}{\beta^{2}} V = C_{\rho}$

the importance is that Cv
can be hard to measure
directly. It can be inferred
from Cp. Cv is hard since it
takes a lot of force to prevent
ice from expanding when freezing
Specific heat per volume

Usually we measure the specific heat per volume

Cy+TBP=CP

We have not assumed an ideal gas here. For an ideal gas you will find TBP/KT = NKB and So

you will recover the ideal gas result. Cy + NKB = Cp

2) Consider an adiabatic process

 $dS = 0 = C_{p} dT - \beta_{p} V dp \in 2nd TdS$ T $dS = 0 = C_{V} dT + \beta_{p} dV \in 1st TdS$ T

Rearranging we have

This is dp/dV at fixed S

Cp = - V dp or (2p) = 1

Cv KT dV (2V)s (2p)s

Now

 $R_s = -V(\partial V)$ is the adiabatic compressibility

So we find a simple way to convert the isothermal compressibility Ky to the adiabatic one

Cp = Ks

The Heat capacity equations are very useful
1 Measuring Cy is very difficult directly in
liquids since it take a great deal of pressure
Measuring CV is very difficult directly in liquids since it take a great deal of pressure (megatons) to prevent liquids from expanding.
Cp can be measured directly, by inserting
a small resistor into the sample.
(2) The speed of sound involves the the adiabatic compressibility
Sound $C_S = 1$ $Q = density$ speed $Q = 1$
Sound speed IPKs
Also in use is the Bulk modulus: V (2p) = B = 1
$(OV)_{S}$