GPTIPS pareto front report

26-Apr-2019 17:20:04

Config file: Y8_config.m

Number of models on front: 6

Total models: 100

This report shows the expressional complexity/performance characteristics (on training data) of symbolic models on the pareto front.

Numerical precision is reduced for display purposes.

Click on column headers to sort models by expressional complexity and goodness of fit (R²).

Model ID	Goodness of fit (R ²)	Model complexity	Model
1	0.953	172	$\begin{array}{l} 0.992\ x_1 - 2.29\ x_2 - 0.0222\ x_3 + 0.046\ x_4 - 0.00419\ x_1\ (x_1 + x_4) + 9.53e + 4\ x_4\ (x_2 + x_3) + 4.62e + 4\ (x_2 - 1.0\ x_4)\ (x_2 + 2.0\ x_3 + x_4) - 0.0692\ x_1\ x_2 + 9.95e + 5\ x_1\ x_3 + 0.00467\ x_1\ (x_4 + x_2^2) + 5.41e + 5\ x_2^3\ (x_1 + x_4) + 0.00785\ x_2^3 - 9.95e + 5\ x_1\ x_2\ x_4 - 0.118 \end{array}$
7	0.971	188	$\begin{array}{l} 0.171 \ x_4 - 13.1 \ x_2 - 0.0238 \ x_3 - 0.351 \ x_1 + 0.00106 \ x_4 \ (x_2 + x_3) + 5.22 \\ e-4 \ (x_2 - 1.0 \ x_4) \ (x_2 + 2.0 \ x_3 + x_4) + 0.0702 \ x_1 \ x_2 - 2.75 \\ e-4 \ x_1 \ x_3 - 0.00367 \ x_1 \ (x_4 + x_2^2) - 1.36 \\ e-4 \ x_2^3 \ (x_1 + x_4) + 0.0781 \ x_2^3 + 3.9 \\ e-4 \ x_1 \ (x_3 + 3.0 \ x_4) + 2.75 \\ e-4 \ x_1 \ x_2 \ x_4 + 91.1 \end{array}$
14	0.97	180	$\begin{array}{l} 0.221 \ x_4 - 11.6 \ x_2 - 0.0238 \ x_3 - 0.357 \ x_1 + 0.00106 \ x_4 \ (x_2 + x_3) + 5.19 \\ e-4 \ (x_2 - 1.0 \ x_4) \ (x_2 + 2.0 \ x_3 + x_4) + 0.084 \ x_1 \ x_2 - 3.51 \\ e-4 \ x_1 \ x_3 - 0.00439 \ x_1 \ (x_4 + x_2^2) - 0.0021 \ x_2^2 \ (x_1 + x_4) + 0.0728 \ x_2^3 + 4.65 \\ e-4 \ x_1 \ (x_3 + 3.0 \ x_4) + 3.51 \\ e-4 \ x_1 \ x_2 \ x_4 + 83.0 \end{array}$
23	0.947	110	$3.56e-5 x_4 (x_2 + x_3) - 6.39 x_2 - 0.0153 x_3 - 0.0514 x_4 - 0.181 x_1 + 0.00603 x_1 x_2 + 2.6e-6 x_1 x_3 + 0.0388 x_2^3 + 9.56e-5 x_1 (x_3 + 3.0 x_4) - 2.6e-6 x_1 x_2 x_4 + 66.7$
60	0.971	182	$\begin{array}{c} 0.171 \ x_4 - 13.1 \ x_2 - 0.0238 \ x_3 - 0.351 \ x_1 + 0.00106 \ x_4 \ (x_2 + x_3) + 5.22 \text{e-4} \ (x_2 - 1.0 \ x_4) \ (x_2 + 2.0 \ x_3 + x_4) + 0.0702 \ x_1 \ x_2 - 2.75 \text{e-4} \ x_1 \ x_3 - 0.00367 \ x_1 \ (x_4 + x_2^2) - 1.36 \text{e-4} \ x_2^3 \ (x_1 + x_4) + 0.0781 \ x_2^3 + 3.9 \text{e-4} \ x_1 \ (x_3 + 3.0 \ x_4) + 2.75 \text{e-4} \ x_1 \ x_2 \ x_4 + 91.1 \end{array}$
64	0.963	174	$\begin{array}{l} 0.0328 \; x_4 - 7.02 \; x_2 - 0.0253 \; x_3 - 0.2 \; x_1 + 0.00104 \; x_4 \; (x_2 + x_3) \\ + 5.03 \\ -4 \; (x_2 - 1.0 \; x_4) \; (x_2 + 2.0 \; x_3 + x_4) + 0.00627 \; x_1 \; x_2 + \\ 3.11 \\ -5 \; x_1 \; x_3 + 2.08 \\ -5 \; x_2^3 \; (x_1 + x_4) + 0.0343 \; x_2^3 + 9.08 \\ -5 \\ x_1 \; (x_3 + 3.0 \; x_4) - 3.11 \\ -5 \; x_1 \; x_2 \; x_4 + 71.7 \end{array}$

GPTIPS - the symbolic data mining platform for MATLAB

© Dominic Searson 2009-2015