

INVESTOR IN PEOPLE

PN - JP2000028696 A 20000128

PD - 2000-01-28

PR - JP19980214892 19980714

OPD - 1998-07-14

TI - DILUTION REFRIGERATOR FOR NUCLEAR MAGNETIC RESONANCE SPECTROMETER

IN - UMENO TAKAHIRO;KAMIOKA YASUHARU

PA - TAIYO TOYO SANSO CO LTD

IC ~ G01R33/31; F25B9/12

@ WPI / DERWENT

 Resonance circuit of dilution refrigerating machine used for nuclear magnetic resonance analyzer, includes variable capacitor whose movable electrode shaft is guided outside through hanger tube

PR - JP19980214892 19980714

PN - JP3338381B2 B2 20021028 DW200278 G01R33/31 011pp

- JP2000028696 A 20000128 DW200017 G01R33/31 011pp

PA - (TAIQ) TAIYO SANSO CO LTD

IC - F25B9/12 ;G01R33/31 ;G01R33/32

- JP2000028696 NOVELTY - A resonance circuit comprises a coil (17 AB) which is arranged at the interior of a specimen chamber \$8), whereas variable capacitor (19) is arranged at interior of plunger (24). The operation shaft of the movable electrode of capacitor is guided outside through the hanger tube (22) inserted within inner cylinder (18). DETAILED DESCRIPTION - A vertical hollow hanger tube (22) is inserted into an inner cylindrical container (18) from upper portion. The lower portion of the inner container is cooled by liquid helium from its exterior. A plunger 24) is fixed at the lower end of the hanger tube and heat conduction block (26) is fixed around the periphery of the tube. A predetermined gap is maintained in-between the plunger and heat conduction block. A 3 He path (27) vertically penetrates the heat conduction block and 3 He supply pipe (28) is guided from upper part and connected to a condenser (30) built in the heat conduction block. A heat exchanger (36) is provided between plunger and interior of inner container. The exit side of the condenser is connected to the heat exchanger, whose end is guided to specimen chamber 68). The outlet for discharging 3 He is joined at the upper portion of the heat conduction block.

- USE - For nuclear magnetic resonance (NMR) analyzers.

Patent

non

DVANTAGE - NMR analysis is performed reliably, since capacitor and specimen are maintained at super low temperature. Improves NMR analysis sensitivity, since strong magnetic field is applied to specimen, easily. DESCRIPTION OF DRAWING(S) - The figure shows cross-sectional view of dilution refrigerating machine. (7) Coil; (18) Inner cylindrical container; (19) Variable capacitor; (22) Hanger tube; (24) Plunger; (26) Heat conduction path; (27) 3 He path; (28) 3 He supply pipe; (30) Condenser; (36) Heat exchanger; (38) Specimen chamber.

- (Dwg.1/5)

OPD - 1998-07-14

AN - 2000-185896 [17]

@ PAJ / JPO

PN - JP2000028696 A 20000128

PD - 2000-01-28

AP - JP19980214892 19980714

IN - KAMIOKA YASUHARUUMENO TAKAHIRO

PA - TAIYO TOYO SANSO CO LTD

 DILUTION REFRIGERATOR FOR NUCLEAR MAGNETIC RESONANCE SPECTROMETER

- AB PROBLEM TO BE SOLVED: To obtain a dilution refrigerator, in which a sample used for nuclear magnetic resonance(NMR) analysis is cooled and held, in which a resonance circuit is built, which uses a variable capacitor so as to be capable of tuning the resonance circuit which restrains heat from leaking in from the outside and whose outside diameter is reduced as a whole.
 - SOLUTION: A hollow support tube22 is inserted vertically into the center inside an inside container which is cooled by liquid He. The support tube 22 is passed through a heat conductive block 25, a fractionating chamber 40 and a heat exchanger 36 so as to be connected to a plunger 24. A mixing chamber 38 on the lower side of the plunger 24 is used also as a sample chamber and concurrently holds a resonance circuit coil and a sample. The variable capacitor of the resonance circuit is installed at the inside of the plunger 24 directly on the low-temperature mixing chamber 38, which is used also as the sample chamber.
 - G01R33/31 ;F25B9/12

none

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-28696 (P2000-28696A)

(43)公開日 平成12年1月28日(2000.1.28)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

G01R 33/31

F 2 5 B 9/12

G01N 24/02 F25B 9/12 510F

審査請求 未請求 請求項の数5 FD (全 11 頁)

(21)出願番号

特顧平10-214892

(22)出廣日

平成10年7月14日(1998.7.14)

(71)出顧人 000208167

大陽東洋酸素株式会社

大阪府大阪市西区靭本町2丁目4番11号

(72)発明者 上岡 泰晴

大阪府大阪市西区砌本町2丁目4番11号

大陽東洋酸素株式会社内

(72)発明者 梅野 高裕

大阪府大阪市西区砌本町2丁目4番11号

大陽東洋酸素株式会社内

(74)代理人 100083275

弁理士 豊田 武久

(54) [発明の名称] 核磁気共鳴分析装置用希釈冷凍機

(57)【要約】

【課題】 NMR分析に供される試料を冷却保持しかつ 共振回路を組込んだ希釈冷凍機として、共振回路のチュ ーニングが行なえるように可変コンデンサを用い、かつ 外部からの熱侵入を抑制し、しかも全体の外径を小さく し得るようにする。

【解決手段】 液体Heによって冷却される内側容器内の中央に中空な支持管を垂直に挿入し、この支持管を熱伝導ブロック、分留室、熱交換器を貫通してプランジャに連結されるようにし、プランジャの下側の混合室を試料室と兼ねて、共振回路のコイルと試料を保持するようにし、かつ共振回路の可変コンデンサを低温の混合室兼試料室直上のプランジャ内部に設けるようにした。

【特許請求の範囲】

【請求項1】 核磁気共鳴分析に供される試料を冷却保 持しかつ試料に印加する高周波信号の共振回路を組込ん だ核磁気共鳴分析装置用希釈冷凍機において:外側から 液体へリウムによって冷却される有底筒状の内側容器内・ に上方から垂直に中空な支持管が挿入され、かつ前記内 側容器内における支持管の下端にプランジャが固定され るとともに、内側容器内におけるプランジャから上方へ 所定間隔を置いた位置において支持管の外周上に熱伝導 ブロックが固定されて、内側容器内における熱伝導ブロ ックよりも下方の空間が、前記プランジャの上側の分留 室とプランジャの下側の混合室兼試料室とに区分され、 かつ前記熱伝導ブロックにはこれを上下に貫通する 3H e通路が形成され、さらに内側容器内には上方から 3H e供給管が導かれており、その³He供給管は前記熱伝 導ブロックに組込まれた凝縮器に接続され、また前記分 留室内に熱交換器が設けられるとともにプランジャと内 側容器内面との間に熱交換器が設けられていて、前記凝 縮器の出口側は分留室内の熱交換器、プランジャ位置の 熱交換器にその順に接続され、かつプランジャ位置の熱 交換器の下端は前記混合室兼試料室に導かれていて、そ の先端には混合室内に ³Heを吐出する吐出口が形成さ れており、しかも前記熱伝導ブロックの上方には、3H eガスを排出するための ³He排出口が形成されてお り、さらに前記共振回路がコイルルおよび可変コンデン サによって構成されており、そのコイルが前記混合室兼 試料室内に配設されるとともに、可変コンデンサが前記 プランジャ内部に配設されており、その可変コンデンサ の操作軸が前記支持管内を貫通して上方外部へ導かれて いることを特徴とする、核磁気共鳴分析装置用希釈冷凍

【請求項2】 前記共振回路を外部へ電気的に接続する ための同軸ケーブルが前記支持管内を貫通していること を特徴とする、請求項1に記載の核磁気共鳴分析装置用 希釈冷凍機。

【請求項3】 前記可変コンデンサが、一対の固定電極間に可動電極を配設した直列コンデンサ構成とされ、かつその可動電極に前記操作軸が取付けられていることを特徴とする、請求項1に記載の核磁気共鳴分析装置用希釈冷凍機。

【請求項4】 前記内側容器内に、その上方から内側容器と同心状に密閉管が挿入され、その密閉管の管壁下部が前記熱伝導ブロックの外周縁部分に気密に一体的に結合されており、かつその密閉管の上部に前記 ³ H e 排出口が形成されていることを特徴とする、請求項1に記載の核磁気共鳴分析装置用希釈冷凍機。

【請求項5】 前記熱伝導ブロックを上下に貫通する前記 ³ H e 通路の下端に、この通路を分留室内へ下方へ延長させる延長パイプが設けられており、かつこの延長パイプの下端には、分留室内において下端が開放されかつ

周壁部が下方へ向って拡大する回収カバーが設けられて いることを特徴とする、請求項1に記載の核磁気共鳴分 析装置用希釈冷凍機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、核磁気共鳴分析 装置において、試料を冷却保持するとともに、試料に印 加する高周波信号の共振回路を組込んだ希釈冷凍機に関 するものである。

[0002]

【従来の技術】近年、核磁気共鳴(以下NMRと記す)分析が各種試料の分析に使用されるようになっている。 NMR分析は、ナイトシフトと称される量やケミカルシフトと称される量により物質の表面の電子状態を観察して分析するものであり、試料を磁場中に置くとともに試料に対して共振回路のコイルによって磁気共鳴周波数付近の高周波信号(交流電場)を与えて各シフト量の測定を行なうのであるが、各シフト量は磁場の強さに比例して大きくなる。一方磁場を強くすれば、磁気共鳴周波数も高くなるから、試料に加える交流電場の周波数も高くなるから、試料に加える交流電場の周波数も高くなるから、試料に加える交流電場の周波数も高くなる必要がある。この点について次に簡単に説明する。【0003】磁気共鳴周波数 f は物質によって固有の値ではあるが、磁場Hの大きさによって変化し、その磁気共鳴周波数 f と磁場Hとの関係は、次の(1)式によって与えられる。

 $f = \gamma / 2\pi \cdot H \qquad \cdots (1)$

rは物質によって定まる定数であって、プロトン(H)では $r/2\pi=42$ MHz/T、銅(Cu)ではr/2 $\pi=10$ MHz/Tである。したがって磁場が強いほど磁気共鳴周波数が高くなる。例えば0.25 T(テスラ)の磁場中においては、プロトン(H)ではf=10 MHz、銅(Cu)ではf=2.5 MHzであるが、1.0 Tの磁場中においてはプロトン(H)ではf=4 2 MHz、銅(Cu)ではf=10 MHzとなる。【0004】一方前述の各シフトは、核のスピンが周りの電子のスピンや軌道によって式(1)からずれることによって生じる量であり、式(1)からのずれ量をkとして(1)式を書き改めれば、次の(2)式で表わされる。

 $f = (1+k) \cdot \gamma / 2\pi \cdot H$ … (2) このkの値は $0.001\sim0.01$ 程度の微小な値であり、したがって各シフトを高感度で検出するためには、磁場を強くして磁気共鳴周波数を高くする必要があり、そのため試料に印加する交流電場の高周波信号も高くする必要があるのである。

【0005】ところで試料に印加する交流電場は、コンデンサとコイルからなる共振回路のコイルを試料直近に配置することによって試料に与えられる。共振回路の周波数Fは、 $F=1/(LC)^{1/2}$ で与えられるから、その周波数を高くするためには、コンデンサの容量Cとコ

للد تشميد

イルのインダクタンスしを小さくする必要がある。

【0006】一方強磁場を発生する電磁石としては超電 導マグネットを用いることが有利であり、高分解能NM R分析装置では実際に超電導マグネットを用いることが 行なわれている。また高分解能NMR分析装置では、熱 振動などによる熱的・磁気的なノイズによる影響を排除 して高感度を得るため、試料を1~10⁻³ K程度の超低 温に保持することが望まれており、そこで液体へリウム (³He, ⁴He)を用いて1~10⁻³ K程度の超低温 を得ることができる希釈冷凍機を、試料の冷却保持のた めに適用することが考えられている。

【0007】希釈冷凍機は、³Heの液相と⁴Heの液相との混合液が0.8K以下で2相分離して、低温で³Heを6.4%含む希薄相と、³Heを100%含む濃厚相とが共存すること、そして濃厚相の³Heを希薄相へ溶け込ませ(希釈させる)れば、外部から熱を吸収し、その結果1~10⁻³Kの超低温を得ることができるという現象を利用したものである。この希釈冷凍機の原理については、例えば「日本物理学会誌」第37巻第5号(1982)の第409頁~第418頁(³He-⁴He希釈冷凍機の原理と設計上の問題点I)、「日本物理学会誌」第37巻第7号(1982)の第595頁~第600頁(³He-⁴He希釈冷凍機の原理と設計上の問題点II)などにおいて説明されているが、その原理的な構成を図4に示す。

【0008】図4において、真空ポンプ1は3Heを強 制循環させるためのものであり、この真空ポンプ1から 送り出された300K程度の温度の気体³Heは、液体 4Heを減圧して1.3K程度に保った1Kポット2に **熱的に接触する凝縮器(コンデンサ)3において液化** し、さらにインピーダンス4を介して分留器5内の熱交 換器6に送られる。この分留器5は、後述するように3 Heと ⁴Heとの飽和蒸気圧の差を利用して ⁴He-³ Heの混合液中から³Heを選択的に排出させるための ものであるが、凝縮器3から送られて来た³Heはこの 分留器 5 に熱接触する熱交換器 6 において熱交換され て、0.5~0.7K程度まで冷却される。さらにその 3Heは、インピーダンス7を経て熱交換器8において 100mK程度まで冷却され、混合器9に送り込まれ る。混合器9では、前述のような100% 3Heの濃厚 相と、3Heが4Heに溶け込んだ4He-6.4%3 Heの希薄相とに2相分離しており、密度差により下層 が希薄相(⁴He-6. 4% ³He)、上層が濃厚相(3He相)となる。そして濃厚相に送り込まれた 3He が希薄相に溶け込む際に、既に述べたように熱吸収が生 じ、10mKのオーダーの超低温に冷却される。すなわ ちこの混合器9が冷凍機としてのコールドヘッドとなる から、この部分に冷却対象物としての試料を保持してお けば、そのサンプルを10mKのオーダーに冷却するこ とができる。

【0009】混合器9の希薄相における 3He 濃度は 6.4%を保ち、一方前記分留器5内の 4He-3He 混合液中からは 4Heと 3Heとの飽和蒸気圧の熱によって 3Heのみがガス化して排出されて行くから、分留器5内の 3He 濃度は0.5~0.7Kで1%程度となり、そのため混合器9の希薄相と分留器5の混合液とで 3Heの濃度差が生じ、そのため両者間の濃度勾配によって混合器9内の希薄相中から 3Heが分留器5側へ引込まれ、それに伴なって混合器9においては100% 3Heの濃厚相から希薄相への 3Heの溶け込みが連続的に生じることになる。そして混合器9から 3Heが分留器5へ引込まれる間においてその 3Heは熱交換器8を 通過し、前述の往路側の 3Heを冷却する。

【0010】分留器5においては、既に述べたように飽和蒸気圧の差によって「Heー3He混合液中から3Heのみが蒸発し、前述の真空ポンプ1によって排気される。真空ポンプ1に吸引された3Heは、前述のように再び凝縮器3へ送られる。

【0011】以上のようにして、希釈冷凍機では、10mKオーダーの超低温を得ることができるから、高分解能NMR分析装置における試料の冷却保持に最適であると考えられる。

[0012]

【発明が解決しようとする課題】ところで前述のような 希釈冷凍機を用いて高分解能NMR分析装置の試料を冷 却する場合、試料には前述のように共振回路のコイルに よって磁気共鳴周波数付近の周波数の高周波信号(交流 電場)を与えなければならず、そこで一般には共振回路 のコイルを混合器の直近の位置に配置して、コイルによ り試料を取囲む構成とするのが通常である。一方、既に 述べたように共振回路において共振周波数を高くするた めにはコンデンサの容量Cおよびコイルのインダクタン スレを小さくする必要があるが、コンデンサをコイルか ら離れた位置に配置した場合、コンデンサとコイルとを 電気的に結ぶ同軸ケーブル等の接続線の浮遊容量(一般 には20pF程度存在する)が無視できなくなり、その ため高くてもせいぜい20~30MHz程度までの共振 周波数しか得られなくなる。したがって高分解能NMR 分析装置用の希釈冷凍機として、高い感度を得るべく共 振回路の共振周波数を高くするためには、コンデンサを もコイルの近くの位置、すなわち混合器直近の位置に配 設することが望まれる。

【0013】また高分解能NMR分析装置における共振 回路としては、共振周波数のチューニングを行なうため に、コンデンサとして可変コンデンサを使用することが 望まれる。

【0014】しかしながら、従来の一般的な希釈冷凍機を用いた場合、共振回路のコンデンに可変コンデンサを用い、かつその可変コンデンサを混合器の直近に配置することは、実際上は極めて困難であった。

【0015】すなわち、従来の希釈冷凍機において可変コンデンサを混合装置直近に配置してNMR分析装置に用いる場合、具体的には図5に示すような構成が考えられている。この図5のNMR分析装置用希釈冷凍機について次に説明する。

【0016】外側真空断熱層10によって取囲まれた有底円筒状の外側容器12内には冷媒としての液体へリウム14が注入されており、この外側容器12内の液体へリウム14が注入されており、この外側容器18が浸漬されている。さらにその内側容器18内には、図4について説明したと同様に、上方から1Kボット2、分留器5、熱交換器8、混合器9が配設されており、また凝縮器3が1Kボット2内に、分留器5内に熱交換器6がそれぞれ配設されている。これらの1Kボット2および凝縮器3から混合器9までの構成は、原理的には既に図4について説明したものと同様であるから、その詳細は省略する。内側容器18内における1Kボット2、分留器5、熱交換器8、混合器9の周囲の空間は断熱のための真空層11とされている。

【0017】さらに図5において、内側容器18内にお ける1 Kポット2、混合器9の側方の真空層11中に は、同軸ケーブル挿入管13および可変コンデンサ操作 軸15が上方から垂直に挿入されている。そして混合器 9の下方直近の位置に共振回路のコイル17が、また混 合器9の側方直近の位置には共振回路の可変コンデンサ 19が配設され、その可変コンデンサ19が前記操作軸 15によって操作されるようになっており、またコイル 17および可変コンデンサ19から伸びる同軸ケーブル 21が前記同軸ケーブル挿入管13を介して外部のコネ クタ21Aへ導かれている。なお可変コンデンサ操作軸 15は、図示の例では外部上端のツマミ部15Aを操作 して上下動させることによって可変コンデンサ19の容 量を調整し得るように構成されている。なおまた、同軸・ ケーブル挿入管13および可変コンデンサ操作軸15、 可変コンデンサ19とそれぞれ対応する位置の1Kポッ ト2、分留器5、熱交換器8、混合器9との間は、銅等 の熱伝導率が高い材料からなる熱アンカ23A,23 B, 23C, 23Dによって結合されている。

【0018】以上のような図5に示すNMR分析装置用 希釈冷凍機においては、次のような問題がある。

【0019】先ず第1に、同軸ケーブル挿入管13、可変コンデンサ操作軸15、可変コンデンサ19が、1Kボット2、分留器5、熱交換器8、混合器9の並ぶ列(上下方向の列)に対し側方に配設されるため、希釈冷凍機の外径(外側容器12の外径)が大きくならざるを得ず、そのため試料Sに磁場を印加するための超電導マグネットMの内径も大きくせざるを得ない問題がある。すなわち、超電導マグネットMは外側容器12の下部を取囲むように配設され、その径が小さいほど強い磁場を試料に印加することができるが、外側容器12の外径が

大きくなれば、それに伴って超電導マグネットMの内径を大きくせざるを得なくなり、その結果試料Sに印加する磁場を強くすることが困難となるとともに、超電導マグネットMのコストも高くらざるを得ない。そして上述のように試料に印加する磁場を強くすることができないことは、既に述べた如くNMR分析装置としてその感度が低くなってしまうことを意味する。

【0020】また第2に、同軸ケーブル挿入管13(同軸ケーブル21)、可変コンデンサ操作軸15を1Kボット2、分留器5、熱交換器8、混合器9の外側の真空層11中に挿入されているため、これらの同軸ケーブル挿入管13(同軸ケーブル21)、可変コンデンサ操作軸15を介しての外部からの熱侵入が大きくなるという問題がある。ここで、同軸ケーブル挿入管13や可変コンデンサ操作軸15は熱アンカ23A~23Dによって1Kボット2などの冷熱で冷却するように構成してはいるが、それでも外部からの熱侵入を充分に阻止することは極めて困難であり、そのため試料Sの部分を充分に超低温に冷却保持することが困難とならざるを得なかったのである。

【0021】したがって従来は、一般的な希釈冷凍機において共振回路のコンデンサを可変コンデンサとしかつその可変コンデンサを混合器直近の位置に配設することは、実際上は困難とされていた。そこで一般には、可変コンデンサを用いずに容量固定のコンデンサ(固定コンデンサを混合器直近に配置することが行なわれているが、このように固定コンデンサを用いれば、共振回路のチューニングが不可能であるという根本的な問題があるほか、室温時の容量が判明していても超低温時には容量が変化してその値が不明となってしまうという問題がある。

【0022】この発明は以上の事情を背景としてなされたもので、共振回路のコンデンサとして可変定量コンデンサを用いながらも、装置外径を小さくしかつ外部から試料位置への熱侵入を少なくしたNMR分析装置用希釈冷凍機を提供することを目的とするものである。

[0023]

【課題を解決するための手段】前述のような課題を解決するため、請求項1の発明においては、核磁気共鳴分析に供される試料を冷却保持しかつ試料に印加する高周波信号の共振回路を組込んだ核磁気共鳴分析装置用希釈冷凍機において、外側から液体へリウムによって冷却される有底筒状の内側容器内に上方から垂直に中空な支持管が挿入され、かつ前記内側容器内における支持管の下端にプランジャが固定されるとともに、内側容器内におけるプランジャから上方へ所定間隔を置いた位置において支持管の外周上に熱伝導ブロックが固定されて、内側容器内における熱伝導ブロックよりも下方の空間が、前記プランジャの上側の分留室とプランジャの下側の混合室兼試料室とに区分され、かつ前記熱伝導ブロックにはこ

- B. A. S.

れを上下に貫通する 3 H e 通路が形成され、さらに内側 容器内には上方から³He供給管が導かれており、その ³He供給管は前記熱伝導プロックに組込まれた凝縮器 に接続され、また前記分留室内に熱交換器が設けられる とともにプランジャと内側容器内面との間に熱交換器が 設けられていて、前記凝縮器の出口側は分留室内の熱交 換器、プランジャ位置の熱交換器にその順に接続され、 かつプランジャ位置の熱交換器の下端は前記混合室兼試 料室に導かれていて、その先端には混合室内に 3Heを 吐出する吐出口が形成されており、しかも前記熱伝導ブ ロックの上方には、3Heガスを排出するための3He 排出口が形成されており、さらに前記共振回路がコイル ルおよび可変コンデンサによって構成されており、その コイルが前記混合室兼試料室内に配設されるとともに、 可変コンデンサが前記プランジャ内部に配設されてお り、その可変コンデンサの操作軸が前記支持管内を貫通 して上方外部へ導かれている構成とした。

【0024】このような請求項1の発明のNMR分析装 置用希釈冷凍機においては、超低温を生じる混合室が共 振回路のコイルを備えかつ試料室を兼ねた構成とされ、 また可変コンデンサが混合室兼試料室直上のブランジャ 内に設けられており、かつそのプランジャを支持するよ うに内側容器の中央に上方から挿入された中空な支持管 内に可変コンデンサ操作軸が挿入されているため、図5 の希釈冷凍機の場合と比較して格段に外径を小さくする ことができる。また中空支持管は凝縮器(1Kポッ ト)、分留室、熱交換器を貫通しているため、この中空 支持管はこれらの要素によって充分に冷却されるから、 中空支持管およびそれに挿入されている可変コンデンサ 操作軸を介しての外部からの熱侵入を充分に阻止するこ とができる。

【0025】また請求項2の発明は、請求項1に記載の 核磁気共鳴分析装置用希釈冷凍機において、前記共振回 路を外部へ電気的に接続するための同軸ケーブルが前記 支持管内を貫通していることを特徴とするものである。 【0026】このような請求項2の発明のNMR分析装 置用希釈冷凍機によれば、共振回路を外部へ電気的に接 続するための同軸ケーブルも支持管内に挿入されている ため、同軸ケーブルを介しての外部からの熱侵入をも確 実に阻止することができる。

【0027】さらに請求項3の発明は、請求項1に記載 の核磁気共鳴分析装置用希釈冷凍機において、前記可変 コンデンサが、一対の固定電極間に可動電極を配設した 直列コンデンサ構成とされ、かつその可動電極に前記操 作軸が取付けられていることを特徴とするものである。 【0028】このような請求項3の発明のNMR分析装 置用希釈冷凍機においては、操作軸を上下動するだけで

簡単かつ容易に共振回路のチューニングを行なうことが できる。

【0029】そしてまた請求項4の発明は、請求項1に

記載の核磁気共鳴分析装置用希釈冷凍機において、前記 内側容器内に、その上方から内側容器と同心状に密閉管 が挿入され、その密閉管の管壁下部が前記熱伝導ブロッ クの外周縁部分に気密に一体的に結合されており、かつ その密閉管の上部に前記 3 He排出口が形成されている ことを特徴とするものである。

【0030】また請求項5の発明は、請求項1に記載の 核磁気共鳴分析装置用希釈冷凍機において、前記熱伝導 ブロックを上下に貫通する前記 ³He通路の下端に、こ の通路を分留室内へ下方へ延長させる延長パイプが設け られており、かつこの延長パイプの下端には、分留室内 において下端が開放されかつ周壁部が下方へ向って拡大 する回収カバーが設けられていることを特徴とするもの である。

【0031】これらの請求項4、請求項5の発明の作用 については、後述する第2実施例の作用として改めて説 明する。

[0032]

【発明の実施の形態】

[0033]

【実施例】図1にこの発明の第1の実施例のNMR分析 装置用希釈冷凍機の全体構成を示す。

【0034】図1において、外側真空断熱層10によっ て取囲まれた有底円筒状の外側容器12内には冷媒とし ての液体ヘリウム14が注入されており、またこの外側 容器12の側壁上部には液体ヘリウム減圧口16が設け られている。外側容器12内の液体へリウム14中に は、有底円筒状の内側容器18が浸漬されている。この 内側容器18の下部(液体ヘリウム14中に浸漬されて いる部分)の壁部には真空断熱層20が設けられてお り、また内側容器18の上端近くには、³He排出口2 9が形成されている。

【0035】さらに内側容器18内の中央位置には、上 方から中空な支持管22が垂直に挿入されており、この 支持管22の下端には、プランジャ24が固定されてい る。このプランジャ24はその外径が内側容器18の内 径よりも若干小さくなるような円柱体状に作られたもの であって、下端側には、その周縁部から下方へ円筒状に 延出される下端周壁部24Aが形成されている。 また内 側容器18内の下部には液体ヘリウム(後述する液相4 7.49)が注入されており、この液体ヘリウム中に、 前記支持管22によって吊下された状態で前記プランジ ャ24が浸漬されている。また支持管22の中間の位置 (プランジャ24よりも上方でかつ液面23Aよりも下 方の位置)には、その支持管22が中央位置を上下に貫 通するように銅等の良熱伝導材料からなる熱伝導プロッ ク26が固定されている。すなわち支持管22の外周上 に熱伝導ブロック26が固定されていることになる。さ らに熱伝導ブロック26の偏心位置には、これを上下に 貫通する 3 H e 通路 2 7 が形成されている。そして前述

all little on the factor of

のようなプランジャ24と熱伝導ブロック26の配置によって、内側容器18内における熱伝導ブロック26よりも下側の部分はプランジャ24の下側(下端周壁部24Aによって取囲まれる部分)の混合室兼試料室38と、プランジャ24の上側でかつ熱伝導ブロック26の下側の分留室40とに区分されることになる。なおここで、プランジャ24の外周面と内側容器18の内周面との間には隙間42が存在しており、この隙間42によって混合室38と分留室40とが連通して、分留室40内に液面47Aが位置している。なおまた、熱伝導ブロック26は、図示しない銅製バネ部材などを介して内側容器18の内面に熱的に接触している。

【0036】そしてまた内側容器18内には、上方から 3He供給管28が挿入されている。この3He供給管 28は、内側容器18内を下方へ導かれて、前述の熱伝 導ブロック26に一体的に組込まれたコイル管状の凝縮 器(コンデンサ)30に接続され、さらにこの凝縮器3 0の下方出側は配管32を介して同じくコイル管状の分 留室熱交換器34に接続されている。なお分留室熱交換 器34は、前記分留室40における液体へリウム(液相 47)中に浸漬されている。また分留室熱交換器34の 下方出側は、プランジャ24と内側容器18の内壁面と の間の隙間42に配設された熱交換器36に接続され、 さらにこの熱交換器36の下端は、前述の混合室38に 導かれて、この混合室38内に3Heを吐出する吐出口 44が設けられている。なお前述の 3He排出口29と 3He供給管28との間には、内側容器18の外部にお いて真空ポンプ46が介在されている。

【0037】さらに前記プランジャ24の内部には、可変コンデンサ19が配設されている。この可変コンデンサ19は、一対の固定電極19A,19C間に可動電極19Bを配置してなるものであり、図2に拡大して示すように例えば中央の可動電極19Bを垂直な丸棒状に作るとともに、その左右両側に水平断面が円弧状をなす固定電極19A,19Cを垂直方向に沿って配設した構成とされている。このような可変コンデンサ19においては、一方の固定電極19Aと中央の可動電極19Bと他方の固定電極19Cとの間のキャパシタンスとを直列に接続した直列コンデンサ構成となっており、中央の可動電極19Bを後述する可変コンデンサ操作軸15の上下動によって上下方向に位置調整することにより、容量を変えることができる。

【0038】前記可変コンデンサ19の可動電極19Bは、前述の中空支持管22内を貫通するように外部上方から挿入された可変コンデンサ操作軸15の下端に取付けられている。そして可変コンデンサ操作軸15の上方外部突出端には、その操作軸15を上下方向へ移動調整するための操作部15Bが設けられている。この操作部15Bは、例えば図示しないツマミを回転させてスクリ

ュー機構により操作軸15を上下動させる構成とすれば 良い。

【0039】さらに図1において、プランジャ24の下側、すなわち混合室兼試料室38内には、コイル17が配設されている。このコイル17は、前述の可変コンデンサ19と組合されて、試料Sに高周波電場を与えるための共振回路を構成するものであって、プランジャ24の下面から突出する端子27A~27Dのうち、端子27A、27Dに接続されている。なお前記可変コンデンサ19の固定電極19A、19Cは端子27A、27Bに接続され、また端子27Bは端子27Cに直結されている。そして端子27C、27Dには、プランジャ24の内部側から同軸ケーブル21が接続されており、この同軸ケーブル21は、プランジャ24内から前述の支持管22内を通って、その支持管22の上方外部から分岐する分岐部22Aに設けられたコネクタ21Aに接続されている。

【0040】以上の第1の実施例のNMR分析装置用希 釈冷凍機において、外側容器12の内面と内側容器18 の外面との間の空間には前述のように液体ヘリウム(通 常の⁴ He)が注入され、かつ液体へリウム減圧口16 からその空間内が減圧されて、1 K程度の低温に保持さ れる。したがってこの部分が図4、図5における1 Kポ ット2に相当し、熱伝導ブロック26を1~1.3Kに 冷却するに寄与する。一方内側容器18の分留室40内 は、液面47Aが分留室40内の中間に位置するように 4He-10% 3Heからなる液相47が満たされ、一 方混合室38は、100% ³Heの濃厚相と ⁴He-6.4%³Heの希薄相からなる液相49で満たされ る。このような状態で³Heが真空ポンプ46によって 3He供給管28を経て凝縮器30に導かれ、熱伝導ブ ロック26によって 3Heが1.3K程度に冷却されて 液化する。液化された 3 Heは、分留室熱交換器 3 4 お よび熱交換器36を経てさらに冷却され、吐出口44か ら混合室兼試料室38内に吐出される。この混合室兼試 料室38においては、既に図4、図5における混合器9 について述べたように、吐出された3Heが上側の10 0% ³Heの濃厚相に溶け込み、濃厚相の ³Heの一部 が下側の 4 He-6. 4% 3 Heの希薄相に溶け込む。 このとき、熱吸収が生じて10mKのオーダーの超低温 が得られる。

【0041】一方混合室兼試料室38は分留室40と連通しているから、混合室兼試料室38内の希薄相中の3Heは分留室40に至るが、この分留室40は1K以下の低温となっているため、3Heと4Heの大幅な飽和蒸気圧の差によって3Heのみが蒸発し、この気相の3Heは熱伝導ブロック26の3He通路27を通って内側容器18の上方の空間から3He排出口29を経て真空ボンプ46によって排気される。これに伴なって、分留室40内の液体へリウム中の3He濃度は1%程度に

低くなるから、分留室40の³He濃度(約1%)と混合室兼試料室38の希薄相中の³He濃度(6.3%)との濃度勾配により、混合室兼試料室38内の希薄相から³He原子が分離室40へ導かれる。またこれによって混合室兼試料室38内の希薄相中の³He濃度が低くなるに伴ない、³He100%の濃厚相から連続的に³Heが希薄相中へ溶け込むことになる。

【0042】このようにして連続的に³Heが循環され、かつ混合室兼試料室38における希薄相への³Heの溶け込みによりその混合室兼試料室38内の温度が連続的に10mKオーダーの超低温が維持され、試料Sも10mKオーダーの超低温に保持される。

【0043】そして外側容器12の外側から超電導マグネットMによって混合室兼試料室38内の試料Sに磁場を印加し、かつコイル17および可変コンデンサ19からなる共振回路によってコイル17に生じる高周波電場を試料Sに与えれば、既に述べたようにナイトシフトあるいはケミカルシフトの測定を行なって、磁気共鳴分析を行なうことができる。そして可変コンデンサ49の定量を調整し、試料Sに加える高周波の周波数を変化させることができる。

【0044】ここで、可変コンデンサ19はプランジャ24の内部、すなわち混合室兼試料室38内のコイル17の直近の位置に設けられているから、可変コンデンサ19とコイル17との間の導線は短くて済み、したがって共振回路としてはコンデンサとコイルとの間の導線における浮遊キャパシタンスの影響を受けることが少なく、高い周波数で共振させることができ、その結果既に述べたように各シフトを高感度で検出することができる。

【0045】さらに内部に可変コンデンサ19が配設されているプランジャ24は混合室兼試料室38の直上にあって極めて低い温度に維持されるから、その可変コンデンサ19自体も低温に維持され、そのため熱振動などの熱的な影響によるノイズを受けることも少ない。そしてまた可変コンデンサ19およびコイル17からなる共振回路と外部とを電気的に結ぶ同軸ケーブル21と、可変コンデンサ操作軸15は内側容器18内の中央位置を貫通する支持管22内に挿入されており、この支持管22は熱伝導ブロック26、分留室40を貫通して先端にプランジャ24が取付けられているから、支持管22自体もこれらの部材から充分に冷却され、したがって支持管22や操作軸15、同軸ケーブル21を介しての外部からの熱侵入を充分に阻止することができる。

【0046】そしてまた、可変コンデンサ操作軸15および同軸ケーブル21は内側容器18内の中央を貫通する支持管22内に挿入されているから、図5に示す従来の場合のように可変コンデンサ操作軸15および同軸ケーブル21を配設するために内側容器18の径が拡大す

ることがなく、したがって外側容器12の外径も小さく することができるから、超電導マグネットMの内径も小 さくすることができる。

【0047】なお図1に示される実施例のNMR分析装 置用希釈冷凍機においては、熱伝導ブロック26は既に 述べたように銅等の熱伝導材料からなるバネ部材を介し て内側容器18の内面に熱的に接触しているが、構造的 には内側容器18の内面との間の少なくとも一部には空 隙41が存在する。ところで液相の ⁴Heは、1~1. 3 K程度においてはHe I I と称される超流動性を示す 液相となっており、この超流動性によって分留室40内 の液相47中の ⁴Heは、液面23Aから内側容器18 の内壁面を伝って薄い膜となって上昇し、熱伝導ブロッ ク26の周囲の部分の前述の空隙41を通り、さらに熱 伝導ブロック26よりも上方へ薄い膜として上昇する。 ここで、分留室40内の液面47Aから内側容器18の 内面伝いに薄膜として超流動へリウム薄層が上昇するに 伴なって、次第にその温度は上昇し、超流動性を示さな くなる臨界温度(約2.17K)となる位置まで薄層が 達することになり、例えば図1における位置Aまで上昇 することになる。

【0048】このように超流動へリウムとして液体 ⁴H eが内側容器18の内面伝いに熱伝導ブロック26より も上方の位置まで上昇すれば、その付近ではある程度温 度が高くなっているため、 4 H e の飽和蒸気圧が分留室 40内よりも格段に高くなっており、そのためその内側 容器18内面の超流動 4He薄層から 4Heガスが蒸発 する。この 4Heガスは、分留室40の液面23Aから 蒸発した³Heに混合され、³He排出口29から真空 ポンプ46によって³Heとともに排気・回収されてし まうことになる。そしてこの場合、真空ポンプ46によ って回収されるガス中の³He濃度が低くなってしまう ことから、真空ポンプ46から再び3He供給管28を 介して送り込まれるガス中の³He濃度も下がってしま い、その結果希釈冷凍による冷却能力が低下し、充分な 超低温が得られなくなってしまうこともある。そこで図 1に示されるNMR分析装置用希釈冷凍機をさらに改良 し、超流動によって分留室内の液面から内側容器の内面 伝いに上昇した 4Heの薄層からの 4Heガスの蒸発に よる回収ガス中の³He濃度の低下を防止するように構 成することが望ましく、これが次の図3に示す第2の実 施例のNMR分析装置用希釈冷凍機であり、以下に図3 の第2の実施例を説明する。なお図3において、図1に 示される実施例と同一の要素については同一の符号を付 し、その説明は省略する。

【0049】図3において、内側容器18内の上部には、上方から中空管状の密閉管50が挿入されている。この密閉管50は、内側容器18よりもわずかに小径であって、その内側容器18および中空支持管22に対し同心状となってその支持管22を取囲んでいる。そして

密閉管50の下端部は、熱伝導ブロック26の外周縁部 分に一体的に結合されて、その密閉管50の下端部分と 熱伝導ブロック26との結合部分が気密となっている。 また密閉管50の上部には3He排気口29が形成され ており、この³He排気口29は図1の実施例と同様に 真空ポンプ46に導かれている。そして密閉管50の上 部はフランジ部50Aを介して内側容器18の上端のフ ランジ部18Aに着脱可能かつ気密に固定される。さら に密閉管50の上端は蓋体52によって開閉可能に閉じ られており、この蓋体52を支持管22および3He供 給管28が上下に貫通している。なおこの密閉管50は 内側容器18に対して挿抜可能とされており、したがっ て密閉管50は熱伝導ブロック26、支持管22、プラ ンジャ24、3He供給管28、凝縮器30、熱交換器 34,36と一体的に内側容器18内に挿入、離脱され ることになる。

【0050】さらに熱伝導ブロック26には、図1に示した実施例と同様に上下に貫通する³He通路27が形成されているが、この³He通路27の下端には、その通路を下方へ延長させて分留室40内へ突出する延長パイプ54が設けられている。そしてこの延長パイプ54の下端には傘状に下方へ向って周壁部が拡大する回収カバー56が設けられている。この回収カバー56は、その下方開口端(拡大端)が内側容器18の内径よりわずかに小さくなるように作られ、かつその下方開口端は分留室40内の液面下にわずかに浸漬されている。

【0051】以上のような第2の実施例において、図1の第1の実施例と同様に分留室40内の液面47Aからは3Heガスのみが蒸発し、この3Heガスは回収カバー56、延長パイプ54、3He通路27、密閉管50の内側空間をその順に通って、3He排出口29から真空ポンプ46によって吸引、排気される。

【0052】ここで、既に述べたように分留室40の液面47Aからは、液体 ⁴Heの超流動へリウムの薄層が内側容器18の内壁面を伝って上昇し、その超流動へリウム薄層は熱伝導ブロック26の上方の位置まで至り、かつ上部の比較的高温部分において蒸発気化して ⁴Heガスが生じるが、熱伝導ブロック26の上方空間は密閉管50によって取囲まれかつ密閉されているため、その ⁴Heガスが熱伝導ブロック26の上方空間の ³Heガスに直接混合されてしまうことが防止される。したがって ³He排出口29から真空ポンプ46によって吸引、排気されるガス中の ³He 濃度が低下することが防止される。

【0053】また、内側容器18の内面で蒸発した4Heガスは、その一部は降下して分留室40に至るが、分留室40内の液相47の液面47Aの大部分は回収カバー56によって覆われており、したがって液面47Aからの3Heの蒸発ガスにその4Heが混合されてしまうことがなく、ほとんど3Heガスのみが回収カバー56

内から延長パイプ54、3He通路27を経て上方へ吸引されることになる。

【0054】なお実施例では回収カバー56を設けているが、仮にこの回収カバー56を設けていなかった場合でも、既に述べたように密閉管50の存在によって回収ガス中の³Heガス濃度が低下することをかなりの程度防止することができる。

【0055】なおまた回収カバー56の形状は図3に示すような断面円弧状のものに限らず、三角錐状のもの、あるいは短円筒状のものなど、種々のものが考えられ、要は下端側が拡大していれば良い。またこの回収カバー56は、前述のようにその下方開口端が分留室40の液面下に若干浸漬されることが望ましいが、場合によっては浸漬させずに液面上に位置していても、ある程度の効果は得ることができる。

[0056]

【発明の効果】この発明のNMR分析装置用希釈冷凍機 によれば、共振回路のコンデンサとして可変コンデンサ を用いているため、共振回路のチューニングを行なうこ とができ、しかもその可変コンデンサそれ自体が、コイ ルの位置する混合室兼試料室直近の極低温部位に配設さ れていて、コイルとの間の接続導線が短くて済むから、 接続導線による浮遊キャパシタンスの影響を受けるおそ れが少なく、そのため共振回路の周波数を高くして高い 磁気共鳴周波数でNMR分析を行なうことができ、その 結果高い感度で分析を行なうことができる。さらに、可 変コンデンサ操作軸を挿入した中空の支持軸が、低温の 熱伝導ブロック、分留室、熱交換器の各低温部位を貫通 して混合室兼試料室直上の低温のプランジャに連結され ているため、操作軸や支持管を介しての外部からの熱侵 入も少なく、そのためコンデンサおよび試料を確実に超 低温に維持して、NMR分析を確実に行なうことができ る。また可変コンデンサ操作軸を挿入した支持管が、内 側容器の中央に配設されていて、その支持管が熱伝導ブ ロック、分留室、熱交換器の中央位置を通っているた め、希釈冷凍機全体の外径を小さくすることができ、そ の結果希釈冷凍機を取囲んで超電導マグネットを設ける 場合でも、その超電導マグネットの内径を小さくして、 強い磁場を容易に試料に印加することができ、このこと もNMR分析の感度向上に寄与する。また上述のように 全体の外径を小さくすることによって、コスト低減も図 ることができる。

【0057】また請求項2の発明のNMR分析装置用希 釈冷凍機によれば、コイルと可変コンデンサからなる共 振回路と外部とを電気的に結ぶための同軸ケーブルも内 側容器中央の支持管内に挿入されるため、同軸ケーブル を介しての外部からの熱侵入も最小限に抑えることがで きる。

【図面の簡単な説明】

【図1】この発明の第1の実施例のNMR分析装置用希

(9) 開2000-28696 (P2000-286J5

釈冷凍機の全体構成を示す模式図である。

【図2】図1に示される実施例における可変コンデンサ の部分の構成を具体的に示す斜視図である。

【図3】この発明の第2のNMR分析装置用希釈冷凍機の全体構成を示す模式図である。

【図4】希釈冷凍機の原理を説明するためのブロック図である。

【図5】従来の希釈冷凍機をNMR分析装置に適用した 場合の一例を示す模式図である。

【符号の説明】

- 15 可変コンデンサ操作軸
- 17 コイル
- 18 内側容器
- 19 可変コンデサ
- 19A, 19C 固定電極
- 19日 可動電極
- 21 同軸ケーブル
- 22 支持管

- 24 プランジャ
- 26 熱伝導プロック
- 27 ³He通路
- 28 3He供給管
- 29 3He排出口
- 30 凝縮器
- 34 分留室熱交換器
- 36 熱交換器
- 38 混合室兼試料室
- 40 分留室
- 44 吐出口
- 46 真空ポンプ
- 50 密閉管
- 54 延長パイプ
- 56 回収カバー
- S 試料
- M 超電導マグネット

(10) \$2000-28696 (P2000-286J5

【図4】

【図5】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.