# COMS W4701: Artificial Intelligence

Lecture 5a: RL Prediction

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

# Today

Reinforcement learning

Monte Carlo (MC) prediction

Temporal difference (TD) prediction

Comparing DP, MC, and TD

#### Learning from Experience

Dynamic programming requires knowledge of environment model
(transition and reward functions), but often inaccessible or intractable

- Reinforcement learning: Find optimal policies through experience
- Interact with environment, receive rewards, and formulate policies



#### Dimensions of RL

- Model-based methods learn an approximation of the underlying model
- Model-free methods directly learn policies or value functions
- Can be useful even when model is known but DP is intractable

- Prediction: Given a fixed policy  $\pi$ , learn  $V^{\pi}$
- Control: Learn an optimal policy  $\pi^*$ , state-action value function  $Q^*$
- Model-free methods for both prediction and control include Monte Carlo and temporal difference algorithms

#### Monte Carlo Methods

 Monte Carlo methods: Generate sampled experience and average them for different states and actions

• Recall the definition of value function for a fixed policy  $\pi$ :

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right]$$

 Idea: Approximate the expectation by taking averages of sample reward sequences over multiple episodes

#### State Value Estimation

- Idea: V(s) can be estimated by averaging utilities observed after visiting s
- Think of each sample as a path from a given node to a leaf node in search tree



#### First-Visit MC Prediction

- MC prediction: Estimate state values by averaging utilities over multiple episodes
- First-visit MC: A value is estimated after first visit to state within episode
- Initialize  $V^{\pi}(s) \leftarrow 0$ ,  $N(s) \leftarrow 0$  for each state  $s \in S$
- Loop:
  - **Generate** episode *E* following  $\pi$ :  $s_0$ ,  $a_0$ ,  $r_1$ ,  $s_1$ ,  $a_1$ ,  $r_2$ , ...,  $s_{T-1}$ ,  $a_{T-1}$ ,  $r_T$
  - For each state s:
    - $G \leftarrow \sum_{j=t+1}^{T} \gamma^{j-(t+1)} r_j$ , where  $s_t$  is first occurrence of s in E
    - $V^{\pi}(s) \leftarrow \frac{1}{N(s)+1} (N(s) \times V^{\pi}(s) + G)$
    - $N(s) \leftarrow N(s) + 1$

- States: A, B, C; actions: L, R; rewards received upon entering each state
- Policy:  $\pi(s) = L$  for all states s
- Suppose we use episodes with 5 transitions

| A | В | С |
|---|---|---|
|---|---|---|

■ Episode 1: (A, +3, A, -2, B, +1, C, -2, B, +3)

$$\gamma = 0.5$$

$$V^{\pi}(A) \leftarrow G(A) = 3 + \gamma(-2) + \gamma^{2}(1) + \gamma^{3}(-2) + \gamma^{4}(3) = 2.1875$$

$$V^{\pi}(B) \leftarrow G(B) = 1 + \gamma(-2) + \gamma^{2}(3) = 0.75$$

$$V^{\pi}(C) \leftarrow G(C) = -2 + \gamma(3) = -0.5$$

- States: A, B, C; actions: L, R; rewards received upon entering each state
- Policy:  $\pi(s) = L$  for all states s
- Suppose we use episodes with 5 transitions



■ Episode 2: 
$$(A, -2, B, +3, A, -2, B, +1, C, -2)$$

$$\gamma = 0.5$$

$$V^{\pi}(A) \leftarrow \frac{1}{2} (V^{\pi}(A) + G(A)) = \frac{1}{2} (2.1875 - 1) = 0.59375$$

$$V^{\pi}(B) \leftarrow \frac{1}{2} (V^{\pi}(B) + G(B)) = \frac{1}{2} (0.75 + 2) = 1.375$$

$$V^{\pi}(C) \leftarrow \frac{1}{2} (V^{\pi}(C) + G(C)) = \frac{1}{2} (-0.5 - 2) = -1.25$$

- States: A, B, C; actions: L, R; rewards received upon entering each state
- Policy:  $\pi(s) = L$  for all states s
- Suppose we use episodes with 5 transitions



■ Episode 3: 
$$(C, +1, C, -2, B, +3, A, -2, B, +3)$$

$$\gamma = 0.5$$

$$V^{\pi}(A) \leftarrow \frac{1}{3} (2V^{\pi}(A) + G(A)) = \frac{1}{3} (2(0.59375) - 0.5) = 0.229$$

$$V^{\pi}(B) \leftarrow \frac{1}{3} (2V^{\pi}(B) + G(B)) = \frac{1}{3} (2(1.375) + 2.75) = 1.833$$

$$V^{\pi}(C) \leftarrow \frac{1}{3} (2V^{\pi}(C) + G(C)) = \frac{1}{3} (2(-1.25) + 0.6875) = -0.604$$

#### Finer Points

• Different states will have different visited frequencies, but all states will be visited infinitely often in the limit—values will converge to true  $V^\pi$ 

- Estimates of different state values are independent (in contrast to DP)
- Accuracy of  $V^{\pi}(s)$  does *not* depend on accuracy of  $V^{\pi}(s')$
- Result: Computational complexity of estimating specific state values is independent of state space size!
- Can choose to focus on certain states and ignore others

### Temporal-Difference Learning

- MC requires episodic structure—what about infinite horizon problems?
- State values in MC are estimated entirely independently of each other
- Maybe we can borrow the idea of the Bellman update from dynamic programming
- One-step TD (TD(0)): We can replace the *target* term with the sum of immediate reward with discounted successor state value
- We can update  $V^{\pi}(s)$  immediately before the episode ends

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \Big( r_{t+1} + \gamma V^{\pi}(s') - V^{\pi}(s) \Big)$$
 Target

### TD(0) for Prediction

• Given: Policy  $\pi$ , learning rate  $\alpha$  between 0 and 1

- Initialize  $V^{\pi}(s) \leftarrow 0$
- Loop:
  - Initialize starting state s if needed
  - **Generate** sequence  $(s, \pi(s), r, s')$
  - $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (r + \gamma V^{\pi}(s') V^{\pi}(s))$
  - $\blacksquare s \leftarrow s'$



• All values initialized to 0;  $\gamma = 0.8$ ,  $\alpha = 0.5$ 



• Policy to evaluate:  $\pi(s) = L$  for all states

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

• Observed state and reward sequence: (A, +3, A)

$$\begin{pmatrix} V^{\pi}(A) \\ V^{\pi}(B) \\ V^{\pi}(C) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad V^{\pi}(A) \leftarrow V^{\pi}(A) + \alpha (r + \gamma V^{\pi}(A) - V^{\pi}(A)) \\ V^{\pi}(A) \leftarrow 0 + 0.5(3 + 0.8(0) - 0) = 1.5$$

• All values initialized to 0;  $\gamma = 0.8$ ,  $\alpha = 0.5$ 



• Policy to evaluate:  $\pi(s) = L$  for all states

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

• Observed state and reward sequence: (A, -2, B)

$$\begin{pmatrix} V^{\pi}(A) \\ V^{\pi}(B) \\ V^{\pi}(C) \end{pmatrix} = \begin{pmatrix} 1.5 \\ 0 \\ 0 \end{pmatrix} \qquad V^{\pi}(A) \leftarrow V^{\pi}(A) + \alpha \left( r + \gamma V^{\pi}(B) - V^{\pi}(A) \right) \\ V^{\pi}(A) \leftarrow 1.5 + 0.5(-2 + 0.8(0) - 1.5) = -0.25$$

• All values initialized to 0;  $\gamma = 0.8$ ,  $\alpha = 0.5$ 



• Policy to evaluate:  $\pi(s) = L$  for all states

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

• Observed state and reward sequence: (B, +1, C)

$$\begin{pmatrix} V^{\pi}(A) \\ V^{\pi}(B) \\ V^{\pi}(C) \end{pmatrix} = \begin{pmatrix} -0.25 \\ 0 \\ 0 \end{pmatrix} \qquad V^{\pi}(B) \leftarrow V^{\pi}(B) + \alpha \left( r + \gamma V^{\pi}(C) - V^{\pi}(B) \right) \\ V^{\pi}(B) \leftarrow 0 + 0.5(1 + 0.8(0) - 0) = 0.5$$

• All values initialized to 0;  $\gamma = 0.8$ ,  $\alpha = 0.5$ 



• Policy to evaluate:  $\pi(s) = L$  for all states

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

• Observed state and reward sequence: (C, -2, B)

$$\begin{pmatrix} V^{\pi}(A) \\ V^{\pi}(B) \\ V^{\pi}(C) \end{pmatrix} = \begin{pmatrix} -0.25 \\ 0.5 \\ 0 \end{pmatrix} \qquad V^{\pi}(C) \leftarrow V^{\pi}(C) + \alpha (r + \gamma V^{\pi}(B) - V^{\pi}(C)) \\ V^{\pi}(C) \leftarrow 0 + 0.5(-2 + 0.8(0.5) - 0) = -0.8$$

#### **Finer Points**

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta_t$$

- TD methods perform updates immediately with no episodic structure (MC)
- Useful if problems have long episodes or are continuing tasks
- If  $\alpha$  is constant,  $V^{\pi}$  will continue jumping around with each new target
- May be desirable if problem is nonstationary
- We can also shrink  $\alpha$  over time if we want  $V^{\pi}$  to converge

## Optimality of TD(0)

- Suppose we use a *sequence* of  $\alpha_n$  step size values over time
- Stochastic approximation theory assures us that TD(0) if  $\alpha_n$  meets the following conditions:

$$\sum_{n=1}^{\infty} \alpha_n = \infty \qquad \sum_{n=1}^{\infty} \alpha_n^2 < \infty$$

- First condition ensures that initial steps are large enough to overcome initial conditions or random fluctuations
- Second condition ensures that updates do eventually shrink to 0
- These conditions are satisfied by the sample averaging method  $\alpha_n = \frac{1}{n}$

### MDP Method Comparison



#### Summary

- Reinforcement learning is used to estimate values/policies from data
- Instead of using underlying models, agent observes state-action-rewards

Prediction problem: Evaluate a given policy

Monte Carlo methods estimate by averaging samples of episodic returns

Temporal difference methods bootstrap by using estimates to inform other estimates