Angewandte Mathematik Lösung Linearer Gleichungssysteme

Univ.-Prof. Dr. Matthias Harders
Dr. Marcel Ritter
Sommersemester 2022

Einführungsfilme

@igs

Angewandte Mathematik für die Informatik – SS2022

Einführungsfilme

Angewandte Mathematik für die Informatik – SS2022

Ke

Inhalt

- Einführung
- Matrixalgebra
- Direkte Verfahren
- Iterationsverfahren
- Liniensuchverfahren
- Konvergenz

université.

Angewandte Mathematik für die Informatik – SS2022

Radiosity (Computergrafik)

 Methode zur computerbasierten Berechnung der exakten Lichtverteilung bei diffusen Reflektionen

Radiosity-Gleichung

Licht x_i (eigentlich Strahlungsleistung) einer Fläche i

$$x_i = b_i + r_i \sum_{j=1}^n x_j F_{ij}$$
 $1 \le i \le n$

mit Variablen/Parametern:

- Mögliche Eigenstrahlung b_i (für eine Lichtquelle)
- Formfaktor F_{ij} (gemäß Szenengeometrie; z.B. Verdeckungen, Distanz, Orientierung) für Flächen i,j (insbesondere $F_{ii}=0$)
- Reflexionskonstante r_i (diffuses Albedo) $0 \le r_i \le 1$
- Vorherige Aufteilung der Szene in n Flächen, und Vorberechnung der Formfaktoren F_{ii}

Angewandte Mathematik für die Informatik – SS2022

(nur zur Veranschaulichung)

$$x_1 = b_1 + r_1 F_{12} x_2 + r_1 F_{13} x_3$$

$$x_2 = b_2 + r_2 F_{21} x_1 + r_2 F_{23} x_3$$

$$x_3 = b_3 + r_3 F_{31} x_1 + r_3 F_{32} x_2$$

@igs

Angewandte Mathematik für die Informatik – SS2022

Gleichungssystem – Beispiel

(nur zur Veranschaulichung)

$$\begin{bmatrix} 1 & -r_1 F_{12} & -r_1 F_{13} \\ -r_2 F_{21} & 1 & -r_2 F_{23} \\ -r_3 F_{31} & -r_3 F_{32} & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Angewandte Mathematik für die Informatik – SS2022

Allgemeines Gleichungssystem

Lösung zur Bestimmung der Unbekannten x_i

$$\begin{bmatrix} 1 & -r_1F_{12} & \cdots & -r_1F_{1n} \\ -r_2F_{21} & 1 & \cdots & -r_2F_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -r_nF_{n1} & -r_nF_{n2} & \cdots & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

- Lineares Gleichungssystem Ax = b
- Nach Lösung hinsichtlich x, können Bilder der Szene gemäß der bestimmten Strahlungsleistung erzeugt werden (für beliebige Kamerapositionen)

@igs

Angewandte Mathematik für die Informatik – SS2022

Geometrie

• Gesucht: Schnittpunkt von Geraden in 2D, z.B.

$$f(x)$$
: $y = 0.5x + 1$ $g(x)$: $y = -0.25x + 2.5$

Lösung z.B. über lineares Gleichungssystem

Geometrie

• Gesucht: Schnittpunkt von drei Ebenen in 3D, z.B.

$$p_1: x + y + z - 4 = 0$$
 $p_2: x - y + z - 2 = 0$ $p_3: 2x + y - 2z - 1 = 0$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 1 \\ 1.5 \end{bmatrix}$$

Angewandte Mathematik für die Informatik – SS2022

10

Option Lösungsverfahren

- Lösung z.B. mit Cramerscher Regel (VL Lineare Algebra)
- Annahme: Matrix A quadratisch und invertierbar

$$x_i = \frac{\det(\mathbf{A}[i])}{\det(\mathbf{A})}$$

wobei Matrix $\mathbf{A}[i]$ gegeben ist durch Ersetzen der i-ten Spalte \mathbf{a}_i der Matrix \mathbf{A} mit Vektor \mathbf{b}

Beispiel:

$$x_{1} = \begin{vmatrix} 4 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -2 \end{vmatrix} = 12/8 = 1.5$$

Angewandte Mathematik für die Informatik – SS202

Herleitung

• Für ein lineares Gleichungssystem Ax = b gilt:

$$\mathbf{A} \cdot \mathbf{X}[1] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ x_2 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ x_n & 0 & \cdots & 1 \end{bmatrix} =$$

$$\begin{bmatrix} a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_n & 0 & \cdots & 1 \end{bmatrix}$$

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n & a_{12} & \cdots & a_{1n} \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} b_1 & a_{12} & \cdots & a_{1n} \\ b_2 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \mathbf{A}[1]$$

$$\begin{bmatrix} \mathbf{a}_{11}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$\mathbf{a}_{11}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
Angewandte Mathematik für die Informatik – SS2022

Herleitung

Weiters gilt:

$$\det\left(\mathbf{X}[1]\right) = \begin{vmatrix} x_1 & 0 & \cdots & 0 \\ x_2 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ x_n & 0 & \cdots & 1 \end{vmatrix} = \begin{vmatrix} x_1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix} + \begin{vmatrix} 0 & 0 & \cdots & 0 \\ x_2 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ x_n & 0 & \cdots & 1 \end{vmatrix} = x_1$$

somit

$$\det(\mathbf{A}) \cdot x_1 = \det(\mathbf{A}[1]) \qquad \Rightarrow x_1 = \frac{\det(\mathbf{A}[1])}{\det(\mathbf{A})}$$

(Berechnung für andere x_i analog)

Lineare Gleichungssysteme (LGS)

 System von Gleichungen mit ausschließlich Linearkombinationen der unbekannten Werte x_i

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

mit n Unbekannten x_i in m Gleichungen, bekannten (hier reellen) Koeffizienten a_{ij} , sowie Werten der rechten Seite b_i (siehe auch VL Lineare Algebra)

Angewandte Mathematik für die Informatik – \$\$2022

14

Lineare Gleichungssysteme (LGS)

- LGS ist homogen, wenn alle $b_i = 0$ (in diesem Fall existiert die triviale Lösung $x_i = 0$), sonst inhomogen
- Generell werden die Gleichungen in Matrix-/Vektorschreibweise zusammengefasst zu: $\mathbf{A}\mathbf{x} = \mathbf{b}$, mit der Koeffizientenmatrix \mathbf{A} bestehend aus Elementen a_{ii}
- Gemäß Konvention bezeichnet i Zeilen, j Spalten
- Es kann überbestimmte: m > n, unterbestimme: m < n, sowie quadratische: m = n Systeme geben
- Passende Verfahren können gemäß Eigenschaften der Matrix A ausgewählt werden

Angewandte Mathematik für die Informatik – SS2022

Arten von Matrizen

- Für eine reelle, quadratische $n \times n$ Matrix **A**
 - Inverse Matrix \mathbf{A}^{-1} : $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$ (Identitätsmatrix \mathbf{I})
 - Orthogonalmatrix: $\mathbf{A} \cdot \mathbf{A}^T = \mathbf{A}^T \cdot \mathbf{A} = \mathbf{I}$ (somit $\mathbf{A}^{-1} = \mathbf{A}^T$)
 - Symmetrische Matrix: $\mathbf{A} = \mathbf{A}^T$ (elementweise $a_{ii} = a_{ii}$)
 - Schiefsymmetrische Matrix: $\mathbf{A} = -\mathbf{A}^T$ (elementweise $a_{ii} = -a_{ii}$)
 - − Diagonalmatrix: a_{ij} = 0, für $i \neq j$
 - Tridiagonalmatrix: $a_{ij} = 0$, für |i j| < 1
 - Obere (Untere) Dreiecksmatrix: $a_{ij} = 0$, falls i > j (i < j)
 - Normierte Dreiecksmatrix, zusätzlich: $a_{ii} = 1$
 - Positive Matrix: $a_{ii} > 0$, für alle i, j
 - Dünnbesetzte Matrix: viele $a_{ii} = 0$ (z.B. Anzahl O(n))

Angewandte Mathematik für die Informatik – SS2022

Determinanten

• Determinante einer reellen, quadratischen $n \times n$ Matrix A, z.B. gemäß Laplace'schem Entwicklungssatz

$$\det(\mathbf{A}) = |\mathbf{A}| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \cdot \det(\mathbf{A}_{ij}) \qquad \det(a) = a$$

mit \mathbf{A}_{ij} gegeben durch Streichung von Zeile i, Spalte j

Regel von Sarrus speziell für 3×3 Matrizen:

Angewandte Mathematik für die Informatik – SS2022

Determinanten – Eigenschaften

- Für Determinanten von reellen, quadratischen $n \times n$ Matrizen **A** und **B** gilt:
 - $\det(\mathbf{A} \cdot \mathbf{B}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$
 - $\det(c\mathbf{A}) = c^n \det(\mathbf{A})$
 - $\det(\mathbf{A}) = \det(\mathbf{A}^T)$
 - Dreiecksmatrix A: $\det(\mathbf{A}) = \prod_{i=1}^{n} a_{ii}$
 - $\det(\mathbf{I}) = 1$
 - Linear abhängige Spalten/Zeilen: $det(\mathbf{A}) = 0$ (Matrix nicht invertierbar)
 - Invertierbare Matrix: $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$

Angewandte Mathematik für die Informatik - SS2022

18

Determinanten – Operationen

- Für Determinanten von reellen, quadratischen $n \times n$ Matrizen **A** und **B** gilt, falls sich **B** aus **A** ergibt durch:
 - Tausch zweier Zeilen/Spalten in A: det(A) = -det(B)
 - Addition eines Vielfachen einer Zeile/Spalte zu einer anderen in A: det(A) = det(B)
 - Multiplikation einer Zeile/Spalte in **A** mit Konstante c: $det(\mathbf{A}) = c \cdot det(\mathbf{B})$
- Falls Matrizen A, B, C bis auf eine Reihe/Spalte identisch sind, und C die Summe der Reihen/Spalten aus A, B aufweist, dann gilt: det(C) = det(A) + det(B)

Eigenwerte, Eigenvektoren

- Für eine reelle, quadratische $n \times n$ Matrix \mathbf{A} ist ein Vektor $\mathbf{v}_i \neq \mathbf{0}$ ein Eigenvektor von \mathbf{A} , wenn mit einem zugehörigen Eigenwert $\lambda_i \in \mathbb{R}$ gilt: $\mathbf{A} \cdot \mathbf{v}_i = \lambda_i \mathbf{v}_i$ (d.h. nur Skalierung; die Richtung wird beibehalten)
- Insbesondere gilt dann: $(\mathbf{A} \lambda_i \mathbf{I}) \cdot \mathbf{v}_i = \mathbf{0}$
- Da $\mathbf{v}_i \neq \mathbf{0}$ angenommen wird, existiert für dieses LGS eine Lösung wenn $\det(\mathbf{A} \lambda \mathbf{I}) = p_{\mathbf{A}}(\lambda) = 0$
- Die Eigenwerte λ_i sind die Nullstellen des charakteristischen Polynoms $p_{\mathbf{A}}(\lambda)$
- Matrix A hat h\u00f6chstens n verschiedene Eigenwerte

Angewandte Mathematik für die Informatik – SS2022

20

Rechenbeispiel

- Gesucht: Eigenwerte/-vektoren einer $\mathbf{A} = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$
- Ermittlung der Eigenwerte als Nullstellen des charakteristischen Polynoms

$$p_{\mathbf{A}}(\lambda) = \begin{vmatrix} 2-\lambda & -3 & 1\\ 1 & -2-\lambda & 1\\ 1 & -3 & 2-\lambda \end{vmatrix} = (2-\lambda)^{2}(-2-\lambda)-3-3-1$$

$$= (4-4\lambda+\lambda^{2})(-2-\lambda)-6+2+\lambda+6-3\lambda+6-3\lambda$$

$$= -\lambda(\lambda-1)^{2} = 0 \qquad \Rightarrow \lambda_{1} = 0, \lambda_{2,3} = 1$$

Angewandte Mathematik für die Informatik – SS2022

Rechenbeispiel

• Bestimmung der Eigenvektoren über Einsetzen der Eigenwerte, z.B. $\lambda_2 = 1$

$$\begin{bmatrix} 2-1 & -3 & 1 \\ 1 & -2-1 & 1 \\ 1 & -3 & 2-1 \end{bmatrix} \begin{bmatrix} v_{2,x} \\ v_{2,y} \\ v_{2,z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} v_{2,x} \\ v_{2,y} \\ v_{2,z} \end{bmatrix} = c \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} \quad c \neq 0$$

Überprüfen durch Einsetzen, z.B.

$$\mathbf{A}\mathbf{v}_2 = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = 1 \cdot \mathbf{v}_2$$

Angewandte Mathematik für die Informatik – SS2022

universit innsbrud

Matrizen - Eigenschaften

- Eine $n \times n$ Matrix **A** ist positiv-definit (bzw. -semidefinit), falls $\forall \mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}$, gilt $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ (bzw. $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$)
- Eine symmetrische $n \times n$ Matrix ist positiv-definit (bzw. -semidefinit), wenn alle Eigenwerte $\lambda_i > 0$ (bzw. $\lambda_i \ge 0$)
- Eine $n \times n$ Matrix **A** ist (strikt) diagonal dominant, falls für alle Zeilen i = 1, ..., n gilt:

$$\sum_{j=1, j\neq i}^{n} \left| a_{ij} \right| < \left| a_{ii} \right|$$

■ Eine symmetrische, diagonaldominante Matrix **A** mit Diagonalwerten $a_{ii} \ge 0$, $1 \le i \le n$ ist positiv-semidefinit

Angewandte Mathematik für die Informatik – SS2022

Direkte Lösungsverfahren

- Ziel: Lösung des linearen Gleichungssystems $\mathbf{A}\mathbf{x} = \mathbf{b}$, mit $\mathbf{A} \in \mathbb{R}^{n \times n}$, nach dem unbekannten Vektor $\mathbf{x} \in \mathbb{R}^n$
- In einem direkten Verfahren wird der Lösungsvektor in einer voraussagbaren Anzahl von vorgegebenen Rechenschritten bestimmt
- Beispiel: Gauß-Verfahren (siehe VL Lineare Algebra)
- Generelles Vorgehen: Umformung des Gleichungssystems durch elementare Schritte (z.B. Addition von Zeilen, Permutation), unter Beibehaltung der Lösung
- Gauß-Verfahren benötigt $2n^3/3 + O(n^2)$ Operationen

Angewandte Mathematik für die Informatik – SS2022

24

Elementare Umformungen

- Eine Permutationsmatrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ weist je Zeile und Spalte nur einen Eintrag 1 auf, alle anderen sind 0
- Eine Elementarmatrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ ergibt sich aus der Einheitsmatrix \mathbf{I} durch Änderung nur eines Wertes oder durch Vertauschen zweier Zeilen/Spalten dieser
- Durch Linksmultiplikation wird elementar umgeformt
- Beispiel: Tausch (Permutation) zweier Zeilen (2 & 3)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -3 & 2 \\ 1 & -2 & 1 \end{bmatrix}$$

Angewandte Mathematik für die Informatik – SS202

Elementare Umformungen

■ Beispiel: Addition des −2-fachen von Zeile 2 zu 1

$$\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$

Beispiel: Skalierung einer Zeile (hier Zeile 3 mit 2)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 2 & -6 & 4 \end{bmatrix}$$

Spaltenumformungen durch Rechtsmultiplikationen

Angewandte Mathematik für die Informatik – SS2022

26

LU-Zerlegung

■ Zerlegung einer invertierbaren Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ in eine untere und obere Dreiecksmatrix \mathbf{L} und \mathbf{U} :

A = LU (eindeutig falls z.B. alle $u_{ii} = 1$, d.h. U normiert)

• Beispiel in $\mathbb{R}^{3\times3}$ (ohne Normierung)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

• Danach Lösung von Ax = b über Vor- bzw. Rückwärtseinsetzen, via Ly = b und danach Ux = y, da

$$Ly = LUx = Ax = b$$

@igs

Angewandte Mathematik für die Informatik – SS2022

LU-Zerlegung

- Berechnung der LU-Zerlegung analog zum Gauß-Verfahren mittels elementarer Umformungen
- Zentrales Element: Nullsetzen aller Einträge unter der Diagonalen über Linksmultiplikation mit Matrix $\mathbf{L}_{(0)}[j]$

$$\mathbf{L}_{(0)} ig[j] = egin{bmatrix} 1 & 0 & \cdots & & 0 \ 0 & \ddots & & & & \ & & 1 & & dots \ dots & & l_{j+1,j} & & & \ & & dots & \ddots & 0 \ 0 & & l_{n,j} & 0 & 1 \ \end{pmatrix}$$

(Frobeniusmatrix)

$$l_{i,j} = -\frac{a_{ij}}{a_{jj}}$$

$$\mathbf{L}_{(0)}\mathbf{A} = \mathbf{A}_{(1)}$$

LU-Zerlegung

• Beispiel in $\mathbb{R}^{3\times3}$ (Nullsetzen der Einträge der 1. Spalte unter der Diagonalen)

$$\begin{bmatrix} 1 & 0 & 0 \\ -a_{21}/a_{11} & 1 & 0 \\ -a_{31}/a_{11} & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ (-a_{21}/a_{11})a_{11} + a_{21} & . & . \\ (-a_{31}/a_{11})a_{11} + a_{31} & . & . \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & . & . \\ 0 & . & . \end{bmatrix} = \mathbf{A}_{(1)}$$

lacktriangle Weiterführen für neue Spalte j der neuen Matrix ${f A}_{(1)}$ mit entsprechend angepasster Matrix $\mathbf{L}_{(1)}[j]$

LU-Zerlegung

■ Nach *n*−1 Schritten sind alle Einträge unter der Diagonalen in $A_{(n-1)}$ gleich Null, und wir haben

$$\mathbf{A} = \mathbf{L}_{(0)}^{-1} \mathbf{L}_{(0)} \mathbf{A} = \mathbf{L}_{(0)}^{-1} \mathbf{A}_{(1)} = \mathbf{L}_{(0)}^{-1} \mathbf{L}_{(1)}^{-1} \mathbf{L}_{(1)} \mathbf{A}_{(1)} = \mathbf{L}_{(0)}^{-1} \mathbf{L}_{(1)}^{-1} \mathbf{A}_{(2)}$$
$$= \mathbf{L}_{(0)}^{-1} \mathbf{L}_{(1)}^{-1} \dots \mathbf{L}_{(n-1)}^{-1} \cdot \mathbf{A}_{(n-1)} = \mathbf{L} \cdot \mathbf{U}$$

- Da die Bildung von $\mathbf{L}_{(k)}[j]$ erfordert, dass der Diagonaleintrag $a_{jj}^{(k)}$ nicht Null ist, müssen die Zeilen der Matrix $\mathbf{A}_{(k)}$ ggbfs. permutiert werden
- LU-Zerlegung benötigt auch $2n^3/3 + O(n^2)$ Operationen
- Verfahren kann u.a. auch dazu verwendet werden, um z.B. A^{-1} oder det(A) zu bestimmen

Angewandte Mathematik für die Informatik – SS2022

Cholesky-Zerlegung

- Spezialfall: Zerlegung einer symmetrischen positivdefiniten Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, mittels Dreiecksmatrix \mathbf{L} $\mathbf{A} = \mathbf{L}\mathbf{L}^T$
- Beispiel in $\mathbb{R}^{3\times3}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$
$$= \begin{bmatrix} l_{11}^2 & l_{21}l_{11} & l_{31}l_{11} \\ l_{21}l_{11} & l_{21}^2 + l_{22}^2 & l_{31}l_{21} + l_{32}l_{22} \\ l_{31}l_{11} & l_{31}l_{21} + l_{32}l_{22} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$$

Cholesky-Zerlegung

• Fortsetzung des Beispiels; wir erhalten hier für L

$$\mathbf{L} = \begin{bmatrix} \pm \sqrt{a_{11}} & 0 & 0 \\ a_{21}/l_{11} & \pm \sqrt{a_{22} - l_{21}^2} & 0 \\ a_{31}/l_{11} & (a_{32} - l_{31}l_{21})/l_{22} & \pm \sqrt{a_{22} - l_{31}^2 - l_{32}^2} \end{bmatrix}$$

• Somit allgemein (mit $n^3/3 + O(n^2)$ Operationen):

$$l_{jj} = \pm \sqrt{a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2} \qquad \quad l_{ij} = \frac{1}{l_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk} \right) \qquad \text{für} \quad i > j$$

• Berechnung spaltenweise, beginnend mit j = 1

Angewandte Mathematik für die Informatik – \$\$2022

in

Iterationsverfahren

- Ziel: Lösung des linearen Gleichungssystems $\mathbf{A}\mathbf{x} = \mathbf{b}$, mit $\mathbf{A} \in \mathbb{R}^{n \times n}$, nach dem unbekanntem Vektor $\mathbf{x} \in \mathbb{R}^n$
- In einem Iterationsverfahren wird der Lösungsvektor durch die wiederholte Anwendung einer Vorschrift sukzessive angenähert

$$\mathbf{x}^{(k+1)} = f\left(\mathbf{x}^{(k)}\right) \qquad k \ge 0$$

- Die Iteration beginnt mit einem Startvektor $\mathbf{x}^{(0)}$ und ergibt eine Folge von Näherungen $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ...
- In vielen Verfahren ist die Operation f durch eine Iterationsmatrix \mathbf{C} gegeben, so dass $\mathbf{x}^{(k+1)} = \mathbf{C} \cdot \mathbf{x}^{(k)}$

Angewandte Mathematik für die Informatik – SS2022

Abbruchkriterien

- Eine Iteration wird abgebrochen, wenn ein $\mathbf{x}^{(k)}$ nahe genug an \mathbf{x} ist, gemäß eines gewählten Kriteriums
- Der absolute Fehler in einem Schritt: $e^{(k)} = x x^{(k)}$
- Da aber x nicht bekannt ist, könnte statt dessen z.B. das Residuum untersucht werden:

$$\mathbf{r}^{(k)} = \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}$$
 (z.B. Testen ob $\|\mathbf{r}^{(k)}\| < \varepsilon$)

- Insbesondere gilt auch: $Ae^{(k)} = r^{(k)}$
- Für die exakte Lösung \mathbf{x} ist $\mathbf{r}^{(k)} = \mathbf{0}$, bzw. $\|\mathbf{r}^{(k)}\| = \mathbf{0}$
- Alternative: Testen ob z.B. $\|\mathbf{x}^{(k)} \mathbf{x}^{(k-1)}\| < \varepsilon$
- Aber: Tests evtl. positiv, auch wenn $\mathbf{x}^{(k)}$ nicht nahe \mathbf{x}

@igs

Angewandte Mathematik für die Informatik – SS2022

2/

Allgemeine Splitting-Verfahren

- In mehreren Verfahren wird die Matrix A unterteilt in A = M N, wobei M leicht invertierbar sein sollte
- Ein Iterationsverfahren ist dann gegeben als:

$$\mathbf{x}^{(k+1)} = \mathbf{M}^{-1} \left(\mathbf{N} \cdot \mathbf{x}^{(k)} + \mathbf{b} \right) \qquad k \ge 0$$

• Häufige Startaufteilung ist A = L + D + U

$$\mathbf{L} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ a_{21} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} & 0 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \quad \mathbf{U} = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & a_{n-1n} \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Angewandte Mathematik für die Informatik – SS202

Jacobi-Verfahren

Ausgangspunkt: lineares Gleichungssystem

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \mathbf{b}$$

• Betrachtung separater Zeile i, Separieren von x_i

$$\sum_{j=1}^{n} a_{ij} x_j = b_i$$

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^{n} a_{ij} x_j \right)$$

$$a_{ii} \neq 0$$

Angewandte Mathematik für die Informatik – SS2022

Jacobi-Verfahren

Iterationsvorschrift für einzelne Unbekannte

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) \qquad i = 1, \dots, n$$

mit gewählten Startwerten $x_i^{(0)}$

Matrixschreibweise

$$\mathbf{x}^{(k+1)} = \mathbf{D}^{-1} \left(\mathbf{b} - \left(\mathbf{A} - \mathbf{D} \right) \mathbf{x}^{(k)} \right) = \mathbf{D}^{-1} \left(\mathbf{b} - \left(\mathbf{L} + \mathbf{U} \right) \mathbf{x}^{(k)} \right)$$

- Konvergenz garantiert für strikt diagonaldominante Matrizen A
- Parallelisierbar, erfordert aber separate Speicherung der alten und neuen Werte $\mathbf{x}^{(k)}$ und $\mathbf{x}^{(k+1)}$

@igs

Angewandte Mathematik für die Informatik – SS2022

Gauß-Seidel-Verfahren

• Überlegung: bei sequentiellem, zeilenweisem Vorgehen, sind in Zeile i die Werte x_j , j=1,...,i-1 schon berechnet und können direkt verwendet werden

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right) \qquad i = 1, \dots, n$$

Matrixschreibweise (inkl. Umformung)

$$\mathbf{x}^{(k+1)} = \mathbf{D}^{-1} \left(\mathbf{b} - \mathbf{L} \mathbf{x}^{(k+1)} - \mathbf{U} \mathbf{x}^{(k)} \right)$$
$$\mathbf{D} \mathbf{x}^{(k+1)} + \mathbf{L} \mathbf{x}^{(k+1)} = \mathbf{b} - \mathbf{U} \mathbf{x}^{(k)}$$

$$\mathbf{x}^{(k+1)} = \left(\mathbf{D} + \mathbf{L}\right)^{-1} \left(\mathbf{b} - \mathbf{U}\mathbf{x}^{(k)}\right)$$

Angewandte Mathematik für die Informatik - SS2022

38

Gauß-Seidel-Verfahren

- Aufgrund der sequentiellen Ausführung nicht direkt parallelisierbar
- Speicherung alter und neuer Werte im gleichen Vektor
- Ein Schritt des Jacobi- bzw. Gauß-Seidel-Verfahrens erfordert $O(n^2)$ Operationen, bis zur Konvergenz sind aber mehrere Schritte notwendig
- In vielen Fällen konvergiert das Gauß-Seidel-Verfahren schneller als das Jacobi-Verfahren
- Konvergenz wiederum garantiert für strikt diagonaldominante Matrizen A

Angewandte Mathematik für die Informatik – SS2022

SOR-Verfahren

 Successive Over-Relaxation variiert das Gauß-Seidel-Verfahren über eine gewichtete Kombination der letzten Näherung und eines Gauß-Seidel-Schrittes

$$x_i^{(k+1)} = (1-\omega)x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) \quad i = 1, \dots, n$$

mit einem Parameter $0 < \omega < 2$

Matrixschreibweise (inkl. Umformung)

$$\mathbf{x}^{(k+1)} = (1 - \omega)\mathbf{x}^{(k)} + \omega\mathbf{D}^{-1}(\mathbf{b} - \mathbf{L}\mathbf{x}^{(k+1)} - \mathbf{U}\mathbf{x}^{(k)})$$

$$\mathbf{x}^{(k+1)} = (\mathbf{D} + \omega\mathbf{L})^{-1}(\omega\mathbf{b} - (\omega\mathbf{U} + (\omega - 1)\mathbf{D})\mathbf{x}^{(k)})$$

Angewandte Mathematik für die Informatik - SS2022

SOR-Verfahren

- Falls $\bf A$ symmetrisch und positiv-definit, ist die Konvergenz für $0<\omega<2$ garantiert
- Die Konvergenz hängt von Parameter ω ab ($\omega=1$ ergibt Gauß-Seidel-Verfahren); in der Regel bessere Konvergenz als Jacobi- und Gauß-Seidel-Verfahren
- Für bestimmte Probleme existiert ein optimaler Relaxationsparameter, für Systemmatrix $\mathbf{M} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$, sowie deren Spektralradius ρ (siehe unten)

$$\omega_{opt} = 1 + \frac{\rho(\mathbf{M})^2}{\left(1 + \sqrt{1 - \rho(\mathbf{M})^2}\right)^2}$$

@igs

Angewandte Mathematik für die Informatik – SS2022

Weitere Anmerkungen

- Auswahl Verfahren gemäß Koeffizientenmatrix, sowie auch Problemgröße (direkt bei kleineren n) und -art
- Rechenfehler problematisch für direkte Verfahren
- Falls **A** fix, **b** wechselnd, eignen sich direkte Verfahren
- Heutzutage oft Verwendung von Multigrid-Verfahren
- Zur Lösung großer Gleichungssysteme bietet sich die Verwendung von Präkonditionierern an
- In der Praxis Nutzung vorhandener Pakete, z.B. BLAS, LAPACK (programmiert in FORTRAN, mit C-Bindungen)

Angewandte Mathematik für die Informatik – \$\$2022

42

Problemformulierung

- Falls $n \times n$ Matrix **A** positiv-definit, symmetrisch und dünn besetzt ist (d.h. viele Nulleinträge), bietet sich die Verwendung spezieller Verfahren an
- Kernidee: Bestimmung von x über Lösung eines äquivalenten Minimierungsproblems
- Ziel: Minimierung des Funktionals

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{b}$$

 Hierzu häufig verwendet: Verfahren der konjugierten Gradienten (CG-Verfahren)

Angewandte Mathematik für die Informatik – SS2022

Problemformulierung

Gradient des Funktionals (mit symmetrischem A)

$$\nabla f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{T}(\mathbf{A}^{T} + \mathbf{A}) - \mathbf{b} = \mathbf{A}\mathbf{x} - \mathbf{b}$$

Insbesondere gilt auch:

$$\nabla^2 f(\mathbf{x}) = \mathbf{A}$$

■ Für ein **x***, das *f* minimiert gilt:

$$\nabla f(\mathbf{x}^*) = \mathbf{0} = \mathbf{A}\mathbf{x}^* - \mathbf{b}$$
 $\Rightarrow \mathbf{A}\mathbf{x}^* = \mathbf{b}$

somit ist \mathbf{x}^* eine Lösung des linearen Gleichungssystems

Angewandte Mathematik für die Informatik – SS2022

11

Gradient – 2D Beispiel

• Funktional f in $\mathbb{R}^{2\times 2}$

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x} - \mathbf{b} \mathbf{x} = \frac{1}{2} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}^{T} \begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} - \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}^{T} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$
$$= \frac{1}{2} \left(a_{11} x_{1}^{2} + 2a_{21} x_{1} x_{2} + a_{22} x_{2}^{2} \right) - b_{1} x_{1} - b_{2} x_{2}$$

Gradient

$$\nabla f(\mathbf{x}) = \begin{bmatrix} a_{11}x_1 + a_{21}x_2 - b_1 \\ a_{21}x_1 + a_{22}x_2 - b_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \mathbf{A}\mathbf{x} - \mathbf{b}$$

@igs

ngewandte Mathematik für die Informatik – SS2022

Liniensuchverfahren

 Im Liniensuchverfahren werden sukzessiv Suchschritte zur Lösung vorgenommen:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)} \qquad k \ge 0$$

mit Startwert $\mathbf{x}^{(0)}$, Suchrichtung(en) $\mathbf{p}^{(k)}$, sowie Schrittweit(en) $\alpha^{(k)} > 0$

- Jeder Schritt sollte sich der exakten Lösung nähern $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$
- Eine Variante dieser Verfahren sind die Gradientenverfahren, in welchen die Suchrichtung(en) über den Gradienten des Funktionals bestimmt wird

Angewandte Mathematik für die Informatik – SS2022

Verfahren des Steilsten Abstiegs

Im einfachsten Fall erfolgt der Suchschritt in Richtung des negativen Gradienten

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)} = \mathbf{x}^{(k)} - \alpha^{(k)} \nabla f\left(\mathbf{x}^{(k)}\right)$$

• Für den negativen Gradienten erhalten wir hier:

$$-\nabla f\left(\mathbf{x}^{(k)}\right) = \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)} = \mathbf{r}^{(k)}$$
 (Residuum)

- Noch zu bestimmen: Schrittweite $\alpha^{(k)}$ in Suchrichtung
- Idee: $\alpha^{(k)}$ so wählen, dass das Funktional $f(\mathbf{x}^{(k+1)})$ im nächsten Schritt minimal wird

Bestimmung der Schrittweite

■ Das Funktional $f(\mathbf{x}^{(k+1)})$ soll abhängig vom Wert $\alpha^{(k)}$ minimiert werden, somit

$$\frac{d}{d\alpha^{(k)}} f\left(\mathbf{x}^{(k+1)}\right) = \frac{d}{d\alpha^{(k)}} f\left(\mathbf{x}^{(k)} + \alpha^{(k)}\mathbf{p}^{(k)}\right) = 0$$

Nach Anwendung der multivariaten Kettenregel

$$\nabla f(\mathbf{x}^{(k+1)})^T \frac{d}{d\alpha^{(k)}} \mathbf{x}^{(k+1)} = 0$$

$$-(\mathbf{r}^{(k+1)})^T \frac{d}{d\alpha^{(k)}} (\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) = 0 \qquad \text{mit } \mathbf{p}^{(k)} = \mathbf{r}^{(k)}$$

$$(\mathbf{r}^{(k+1)})^T \mathbf{r}^{(k)} = 0$$

Angewandte Mathematik für die Informatik - SS2022

48

Bestimmung der Schrittweite

Weitere Umformungen

$$(\mathbf{r}^{(k+1)})^T \mathbf{r}^{(k)} = 0$$
 mit $\mathbf{r}^{(k+1)} = \mathbf{b} - \mathbf{A} \mathbf{x}^{(k+1)}$

$$(\mathbf{b} - \mathbf{A} \mathbf{x}^{(k+1)})^T \mathbf{r}^{(k)} = 0$$
 mit $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{r}^{(k)}$

$$(\mathbf{b} - \mathbf{A} \mathbf{x}^{(k)} - \mathbf{A} \alpha^{(k)} \mathbf{r}^{(k)})^T \mathbf{r}^{(k)} = 0$$
 mit $\mathbf{r}^{(k)} = \mathbf{b} - \mathbf{A} \mathbf{x}^{(k)}$

$$(\mathbf{r}^{(k)})^T \mathbf{r}^{(k)} - \alpha^{(k)} (\mathbf{A} \mathbf{r}^{(k)})^T \mathbf{r}^{(k)} = 0$$

$$\alpha^{(k)} = \frac{(\mathbf{r}^{(k)})^T \mathbf{r}^{(k)}}{(\mathbf{A} \mathbf{r}^{(k)})^T \mathbf{r}^{(k)}} = \frac{(\mathbf{r}^{(k)})^T \mathbf{r}^{(k)}}{(\mathbf{r}^{(k)})^T \mathbf{A}^T \mathbf{r}^{(k)}}$$

Angewandte Mathematik für die Informatik – SS2022

Verfahren des Steilsten Abstiegs

Iterationsverfahren (mit Startwert x⁽⁰⁾)

1)
$$\mathbf{r}^{(k)} = \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}$$

2)
$$\alpha^{(k)} = \frac{\left(\mathbf{r}^{(k)}\right)^T \mathbf{r}^{(k)}}{\left(\mathbf{r}^{(k)}\right)^T \mathbf{A} \mathbf{r}^{(k)}}$$

3)
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{r}^{(k)}$$

 Konvergenz eher langsam für schlecht konditionierte Matrizen A, (d.h. wenn betragsmäßig das Verhältnis von größtem zu kleinstem Eigenwert groß)

Angewandte Mathematik für die Informatik - SS2022

0

Visualisierung

• Beispiel Gradientensuche in $\mathbb{R}^{2\times 2}$

Angewandte Mathematik für die Informatik – SS2022

Verfahren der Konjugierten Gradienten

- Initialisierung: $\mathbf{r}^{(0)} = \mathbf{b} \mathbf{A}\mathbf{x}^{(0)}, \ \mathbf{p}^{(0)} = \mathbf{r}^{(0)}$
- Iterationsverfahren

1)
$$\alpha^{(k)} = (\mathbf{r}^{(k)})^T \mathbf{r}^{(k)} / (\mathbf{p}^{(k)})^T \mathbf{A} \mathbf{p}^{(k)}$$

2)
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}$$

3)
$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha^{(k)} \mathbf{A} \mathbf{p}^{(k)}$$

4)
$$\beta^{(k+1)} = (\mathbf{r}^{(k+1)})^T \mathbf{r}^{(k+1)} / (\mathbf{r}^{(k)})^T \mathbf{r}^{(k)}$$

5)
$$\mathbf{p}^{(k+1)} = \mathbf{r}^{(k+1)} + \boldsymbol{\beta}^{(k+1)} \mathbf{p}^{(k)}$$

• Lösung nach maximal n Schritten für $n \times n$ Matrix

Angewandte Mathematik für die Informatik - SS2022

Matrixnormen

Eine Matrixnorm ist eine Abbildung auf dem Vektorraum der (reellen) $n \times m$ Matrizen

$$\|\cdot\|:\mathbb{R}^{n\times m}\to\mathbb{R}_0^+, \mathbf{A}\to\|\mathbf{A}\|$$

Eigenschaften (für $n \times m$ Matrizen **A**,**B**, Skalare c):

$$\|\mathbf{A}\| = 0 \Longrightarrow \mathbf{A} = \mathbf{0}^{n \times m}$$

$$\|c \cdot \mathbf{A}\| = c \cdot \|\mathbf{A}\|$$

$$\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$$

 $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$ (Dreiecksungleichung)

Häufig wird auch Submultiplikativität gefordert

$$\|\mathbf{A} \cdot \mathbf{B}\| \le \|\mathbf{A}\| \cdot \|\mathbf{B}\|$$

$$\mathbf{A} \in \mathbb{R}^{n \times m}, \mathbf{B} \in \mathbb{R}^{m \times k}$$

Matrixnormen

- Verschiedene Matrixnormen finden Anwendung, u.a.
- Frobenius norm $\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2}$
- Spaltensummennorm $\|\mathbf{A}\|_{\mathbf{I}} = \max_{j=1,...,m} \sum_{i=1}^{n} |a_{ij}|$
- Zeilensummennorm $\|\mathbf{A}\|_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{m} |a_{ij}|$
- Spektralnorm $\|\mathbf{A}\|_2 = \sqrt{\lambda_{\max}(\mathbf{A}^T\mathbf{A})}$ (wobei λ_{\max} der betragsmäßig größte Eigenwert ist)

Angewandte Mathematik für die Informatik – SS2022

54

Konditionszahl

Die Konditionszahl einer reellen invertierbaren
 n×n Matrix A ist (für eine spezifische Matrixnorm):

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

• Für symmetrische Matrizen A ergibt sich, mit der Spektralnorm, $\kappa(A)$ als Verhältnis des betragsmäßig größten zum betragsmäßig kleinsten Eigenwert

$$\kappa(\mathbf{A}) = |\lambda_{\text{max}}(\mathbf{A})/\lambda_{\text{min}}(\mathbf{A})|$$

• Die Konditionszahl gibt z.B. Aufschluss darüber wie stark sich ${\bf x}$ ändert, wenn eine Störung $\Delta {\bf b}$ der rechten Seite ${\bf b}$ vorliegt

Angewandte Mathematik für die Informatik – SS2022

Spektralradius und Konvergenz

• Der Spektralradius einer reellen $n \times n$ Matrix **A** ist der Betrag des betragsmäßig größten Eigenwerts

$$\rho(\mathbf{A}) = \max_{i=1}^{n} |\lambda_i|$$

- Je näher $\rho(\mathbf{A})$ bei 0, umso schneller die Konvergenz
- Konvergenz ist gegeben bei folgenden Verfahren:
 - Jacobi-Verfahren, wenn $\rho(\mathbf{I} \mathbf{D}^{-1}\mathbf{A}) < 1$
 - Gauß-Seidel-Verfahren, wenn $\rho(\mathbf{I} (\mathbf{D} + \mathbf{L})^{-1} \mathbf{A}) < 1$
 - SOR-Verfahren, wenn $\rho \Big(\mathbf{I} \omega \Big((\mathbf{D} + \omega \mathbf{L}) \Big)^{-1} \mathbf{A} \Big) < 1$

Angewandte Mathematik für die Informatik - SS2022

56

Einige Hilfreiche Weblinks

- Basic Linear Algebra Subprograms (BLAS) Bibliothek mit grundlegenden Operationen der linearen Algebra http://www.netlib.org/blas/
- Linear Algebra PACKage (LAPACK) Bibliothek mit Implementierungen numerischer linearer Algebra http://www.netlib.org/lapack/
- Blitz++ (wissenschaftliches Rechnen in C++)
 https://github.com/blitzpp/blitz

Angewandte Mathematik für die Informatik – SS2022

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
Osterferien		
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	la de la companya de

Angewandte Mathematik für die Informatik – SS2022