Course	211/4 D 101T	Course	Calardan and I I in a malar about	Course	D	Basic	L	T	P	C
Code	21MAB101T	Name	Calculus and Linear Algebra	Category	В	Sciences	3	1	0	4

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses Nil				
Course Offering	Mathematics		Data Book /	Nii				
Department	Maniemanes		Codes/Standards	Nil				
	·	·	·	·	·			

Departi	шеш		oues/Sta	luar	18										
Course Learning Rationale (CLR) The purpose of learning this course is to:		Learning	Program Outcomes (PO)												
CLR-1:			1	2	3	4	5	6	7	8	9	10	11	12	
CLR-2:	LR-2: Utilize Taylor series, Maxima minima, composite function and Jacobian in solving various Engineering problems						ų			ility					
CLR-3:	-3: Apply the concept of Differential Equations in problems of Science and Engineering			lge		ınt	earc			Sustainability		Work		гсе	
CLR-4:	Utilize the concepts of Science and Engin	cepts of radius of curvature, evolute, envelope in problems Engineering		Knowledge	is	Development	n, Re	Usage	re	Susta		Team W		Finance	Learning
CLR-5:	Apply Sequences and	pply Sequences and Series concepts in Science and Engineering		Kn	lys	vel	igi	S	ltu	४		Te	on	& ,	ırn
CLR-6:		athematical techniques for the different solutions and Engineering applications	Blooms Level (1-6)		Problem Analysis		Analysis, Design, Research	Tool	& Culture	Environment		ઝ	Communication	Project Mgt.	ng Lea
			ns	nee	len	u:	zis.	ııı	ty	uo.	s	idu	nn	ct	Long
Course	Outcomes (CO):	At the end of this course, learners will be able to:	Bloor	Engineering	Prob	Design &	Analy	Modern	Society	Envir	Ethics	Individual	Сот	Proje	Life I
CO-1:	Apply the concepts of Matrices to find Eigenvalues and Eigen Vectors problem-solving in Science and Engineering		4	3	3	-	-	-	-	-	-	-	-	_	_
CO-2:	Apply Maxima and Minima, Jacobian, and Taylor series to solve problems in Science and Engineering		4	3	3	-	-	-	-	-	-	-	-	-	-
CO-3:	Solve the different types of Differential Equations in Science and Engineering applications		4	3	3	-	-	-	-	-	-	-	-	-	-
CO-4:	Identify Radius, Centre, envelope, and Circle of curvature and apply them i Science and Engineering		4	3	3	-	-	-	-	-	-				
CO-5:	Identify convergence and divergence of series using different tests in Engineering applications		4	3	3	-	-	-	-	-	-				
CO-6:	Identify, Analyze and Apply mathematical techniques to arrive at solutions Science and Engineering		4	3	3	-	-	-	-	-	-	-	-	-	-

Unit-1: Matrices

Characteristic equation- Eigen values of a real matrix- Eigen vectors of a real matrix- Properties of Eigen values Cayley – Hamilton theorem-Finding A inverse using Cayley – Hamilton theorem - Finding higher powers of A - orthogonal reduction of a symmetric matrix to diagonal form -orthogonal reduction of a symmetric matrix to diagonal form-Hands on tutorial session using computer processes-Reduction of Quadratic form to canonical- Quadratic form to canonical form by orthogonal transformations- Orthogonal matrices-Reduction of quadratic form to canonical form.

Unit-2: Functions of several variables

Function of two variables – Partial derivatives- Total differential concepts - Taylor's expansion with two variables up to second order terms- Maxima and Minima- Constrained Maxima and Minima by Lagrangian Multiplier method - Jacobians of two Variables- Properties of Jacobians and Problems.

Unit-3: Ordinary differential equations

Linear equations of second order with constant coefficients when PI=0 or exponential - Linear equations of second order with constant coefficients when PI=sinax or cos ax- Linear equations of second order with constant coefficients when PI=exponential with polynomial-Linear equations of second order with constant coefficients when PI=polynomial with sinhax or coshax- Linear equations of second order variable coefficients- Homogeneous equation of Euler type- Homogeneous equation of Legendre's Type- Equations reducible to homogeneous form- Variation of parameters- Simultaneous first order with constant co-efficient.

Unit-4: Differential Calculus and Beta Gamma functions

Radius of Curvature – Cartesian coordinates-Radius of Curvature – Polar coordinates-Circle of curvature- Circle of curvature- Centre of curvature- Evolute of a parabola- Evolute of an ellipse- Envelope of standard curves. Beta Gamma Functions-Beta Gamma Functions and

Their Properties-Sequences – Definition and Examples- Series – Types of Convergence - Series of Five terms – Test of Convergence-Comparison test – Integral test

Unit-5: Sequence and series

Series of Five terms – Test of Convergence- Comparison test – Integral test- D'Alemberts Ratio test- Raabe's root test.- Covergent of Exponential Series- Cauchy's Root test- Log test- Alternating Series: Leibnitz test- Series of positive and Negative terms.- Absolute Convergence- Conditional Convergence

Learning Resources

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010
- 5. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008

Student learning shall be assessed with a weightage of 60% for internal assessment and 40% for end semester examination.

		Con	ntinuous Learnin - By the Co	By The CoE					
	Bloom's Level of Thinking	Formativ CLA-1 Aver (50%)	ve age of unit test		g Learning 2 (10%)	Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	-	20%	-	20%	-		
Level 2	Understand	20%	-	20%	-	20%	-		
Level 3	Apply	30%	-	30%	-	30%	-		
Level 4	Analyze	30%	-	30%	-	30%	-		
Level 5	Evaluate	-	-	-	-	-	-		
Level 6	Create	-	-	-	-	-	-		
	Total	100 %		100 %		100 %			

Course Designers							
a) Experts from Industry	b) Experts from Higher Technical Institutions	c) Internal Experts					
Mr.V.Maheshwaran CTS Technologies maheshwaranv@yahoo.com	Prof. Y.V.S.S. Sanyasiraju, IIT Madras sryedida@iitm.ac.in	Dr.A.Govindarajan hod.maths.ktr@srmist.edu.in					
	Prof. K.C. Sivakumar, IIT Madars kcskumar@iitm.ac.in	Dr.N.Balaji balajin@srmist.edu.in					