Hockey Bets

BUS 462 D100 Group Lambda

Introduction

Goals and Methodology

Data Description

Scraping and Transforming the Data

Key Variables

Definition and Use of variables

Analysis

Models and Results

Conclusion

Findings and Next Steps

TABLE OF CONTENTS

Introduction

Key Question: Can we use the historical game statistics from the NHL to predict a win or loss?

Ultimate Goal: Create a betting model based on NHL data that is profitable in the long run.

Secondary Goal: Create a reusable method for transforming and analyzing data across multiple sports.

Analysis Method: LOGIT Regression

Findings Preview: You should bet if the probability of winning is 0.3 or greater

Data Description

Source: Flashscore.com

Scraped Data

Format: CSV

Data Collection:

NHL season data from 2010 to 2021

A	В	C	D	Е	F	G	н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	Х	Y	Z	AA	AB
3067	2019-	11 NHL	Florida I	Buffalo:	2	5	Konec	2.12	4	2.93	https://w	45	26	4.44% (19.23%	21	43	80.77%	95.56%	2	4	4	8	1	0	0	0
3068	2019-	11 NHL	Detroit F	Carolina	0	2	Konec	3.57	4.04	1.88	https://w	19	36	0% (0/1	5.56% (34	19	97.14%	100% (1	2	1	4	2	0	0	0	1
3069	2019-	11 NHL	Arizona	Edmont	3	4	Po náje:	2.29	3.88	2.71	https://w	30	37	10% (3/	8.11% (34	27	91.89%	90% (27	1	2	2	4	1	1	0	0
3070	2019-	11 NHL	Columb	Ottawa	1	0	Konec	1.97	4.06	3.27	https://w	19	25	5.26% (0% (0/2	25	18	100% (94.74%	2	3	4	6	0	0	0	0
3071	2019-	11 NHL	New Yo	Minnesc	3	2	Po prod	2.68	3.92	2.3	https://w	31	28	9.68% (7.14% (26	28	92.86%	90.32%	2	4	4	8	1	0	0	0
3072	2019-	11 NHL	Tampa E	Buffalo :	5	2	Konec	1.7	4.35	4.14	https://w	29	30	17.24%	6.67% (28	24	93.33%	82.76%	4	4	8	8	1	0	2	0
3073	2019-	11 NHL	Pittsburg	Calgary	3	2	Po prod	1.9	4.02	3.46	https://w	38	34	7.89% (5.88% (32	35	94.12%	92.11%	2	3	4	6	1	1	0	0
3074	2019-	11 NHL	Philadel	Vancous	2	1	Konec	2.17	3.95	2.87	https://w	34	17	5.88% (5.88% (16	32	94.12%	94.12%	2	- 1	4	2	0	0	0	0
3075	2019-1	11 NHL	Nashvill	St. Loui:	3	2	Po náje:	2.05	3.99	3.1	https://w	39	25	5.13% (8% (2/2	23	37	92% (2	94.87%	4	4	11	11	0	0	0	0
3076	2019-	11 NHL	Dallas S	Vegas C	4	2	Konec	2.13	3.93	2.97	https://w	28	28	14.29%	7.14% (26	24	92.86%	85.71%	5	4	10	8	2	0	0	0
3077	2019-1	11 NHL	Anahein	New Yo	3	0	Konec	2.74	3.85	2.29	https://w	23	26	13.04%	0% (0/2	26	20	100% (86.96%	3	3	9	9	0	0	0	0
3078	2019-	11 NHL	Los Ang	San Jos	3	4	Po prod	2.58	3.89	2.38	https://w	36	25	8.33% (16% (4/	21	33	84% (2	91.67%	2	5	4	10	0	0	0	0
3079	2019-	11 NHL	New Jer	Minnesc	2	3	Konec	2.14	3.96	2.92	https://w	34	29	5.88% (10.34%	26	32	89.66%	94.12%	4	2	8	4	1	1	0	0
3080	2019-	11 NHL	Montrea	Boston I	1	8	Konec	2.57	3.9	2.39	https://w	37	24	2.7% (1.	33.33%	16	36	66.67%	97.3% (3	3	6	6	0	2	0	(
3081	2019-	11 NHL	Chicago	Dallas S	3	0	Konec	2.51	3.88	2.45	https://w	38	32	7.89% (0% (0/3	32	35	100% (94.59%	2	1	4	2	1	0	0	(
3082	2019-	11 NHL	Washing	Florida I	4	3	Konec	1.91	4.15	3.39	https://w	20	40	20% (4/	7.5% (3.	37	16	92.5% (80% (16	4	3	8	6	0	0	0	- 1
3083	2019-	11 NHL	Ottawa	Boston I	1	2	Konec	3.15	3.92	2.05	https://w	34	21	2.94% (9.52% (19	33	90.48%	97.06%	2	2	4	4	0	0	0	-
3084	2019-	11 NHL	Pittsburg	Vancous	8	6	Konec	1.99	4.03	3.23	https://w	40	22	20% (8/	27.27%	16	32	72.73%	82.05%	3	5	6	10	2	1	0	- 1
3085	2019-	11 NHL	New Yo	Carolina	3	2	Konec	3.12	4	2.04	https://w	25	43	12% (3/	4.65% (41	22	95.35%	88% (22	5	5	10	10	- 1	1	0	(
3086	2019-1	11 NHL	Buffalo :	Calgary	2	3	Po prod	2.69	3.86	2.32	https://w	36	29	5.56% (10.34%	26	34	89.66%	94.44%	2	2	4	4	0	0	1	(
3087	2019-	11 NHL	Columb	Philadel	2	3	Konec	2.43	3.87	2.54	https://w	30	22	6.67% (13.64%	19	28	86.36%	93.33%	6	1	20	2	0	1	0	(
3088	2019-	11 NHL	Detroit F	Toronto	0	6	Konec	4.29	4.21	1.71	https://w	25	54	0% (0/2	11.11%	48	25	88.89%	100% (2	1	0	2	0	0	1	0	(
3089	2019-	11 NHL	Tampa E	St. Loui:	3	4	Konec	2.05	3.99	3.1	https://w	35	33	8.57% (12.12%	29	32	87.88%	91.43%	2	4	4	8	1	1	0	1
3090	2019-	11 NHL	Nashvill	Vegas C	3	4	Po prod	2.12	3.99	2.94	https://w	34	30	8.82% (13.33%	26	31	86,67%	91.18%	2	2	4	4	0	0	0	(
3091	2019-	11 NHL	Arizona	Anahein	4	3	Po náje:	2.13	3.9		https://w	28	34	10.71%	8.82% (31	25	91.18%	89.29%	4	3	8	6	1	0	0	(
3092	2019-	11 NHL	Colorad	Edmont	4	1	Konec	2.21	3.97	2.79	https://w	50	20	8% (4/5	5% (1/2	19	46	95% (19	92% (46	4	9	8	29	0	0	0	(
3093	2019-	11 NHL	San Jos	Winnipe	1	5	Konec	2.23	3.96		https://w	33	26	3.03% (19.23%	21	32	84% (2	96.97%	5	9	18	34	0	1	0	(
3094	2019-	11 NHL	Los And	New Yo	4	1	Konec	2.99	3.88		https://w	30			4% (1/2	24			89.66%	4	5	8	10	- 1	0	0	(
3095	2019-	11 NHL	Montrea	New Jer	4	6	Konec	1.99	4.06	3.21	https://w	48	35	8.33% (17.14%	29	44	85.29%	91.67%	3	2	6	4	0	0	0	(
3096	2019-	11 NHL	Boston	New Yo	3	2	Po prod	1.77	4.25		https://w	27	28	11,11%	7.14% (26	24	92.86%	88.89%	6	2	17	7	0	0	0	-
3097	2019-	11 NHL	Buffalo :	Toronto	6	4	Konec	3.06	3.98		https://w	36	29	16.67%	13.79%	25	30	86.21%	85.71%	5	3	10	6	0	0	0	-
		11 NHL	Minneso		7		Konec	1.85	4.3		https://w	35			5.71% (33			80% (28	2	4	4	8	- 1	0	0	-
		11 NHL	Chicago		2		Konec	2.32	3.94		https://w	36			21.74%	18			94.44%	5	3	13	9	0	1	0	-
		11 NHL	San Jos		4		Konec	1.95	4.07		https://w	22			2.94% (33			81.82%	1	3	2	6	0	0	0	-
		11 NHL	Anahein		0		Konec	2.28	3.9		https://w	24			15% (3/	17			100% (2	8	4	35	11	0	1	0	
		11 NHL	Philadel		6		Konec	1.59	4.52		https://w	35			3.03% (32			82.86%	4	3	6	6	1	0	0	
		11 NHL	Washing		4		Po prod	2.32	3.97		https://w	35			10% (3/	27			88.57%	5	3	10	6	2	1	0	(
		11 NHL		Arizona	2		Po náje:	2.04	4		https://w	38			2.78% (35			97.37%	2	5	4	10	1	0	0	(

Data Description: Transformation

1 match is being represented as 2 rows → from the home team POV and the away team POV

Transforming all data to average over last n games for every team.

Created dummy variables for each team as a home team and as an away team

Draws are being interpreted as Lose because we are looking only at the bet_outcome (Win=1 or lose=0)

0.228773 Arizona Coyotes	Boston Bruins	1	6	4.13	8/12/2017 1:00 L
0.543007 Boston Bruins	Arizona Coyotes	6	1	1.74	8/12/2017 1:00 W

In the next step, we created a dataframe with averaged values from the last 5 games.

Key Variables

Variable	Description	Unit	
shots_on_goals	Shots on goal for team	Number of shots on goal	
goalie_saves	Saves by goalie	Number of saves	
penalties	Penalties for team	Number of penalties	
PIM	Penalty minutes for team	Number of penalty minutes	
PP_goals	Powerplay goals for team	Number of powerplay goals	
SH_goals	Shorthanded goals for team	Number of shorthanded goals	
bodychecks	Body checks for team	Number of bodychecks	
faceoffs_won	Faceoffs won for team	Number of faceoffs won	

Key Variables continued...

Variable	Description	Unit	
faceoffs_%	Faceoff win percentage for team	Percentage	
empty_net_goals	Empty net goals for team	Number of empty net goals	
blocked_shots	Shots blocked for the team	Number of blocked shots	
win_prob	Win probability for the team	Probability	
team_goals	Goals for the team	Number of goals	
opponent_goals	Goals for the away team	Number of goals	
bet	Win multiplier	Number	
bet_outcome	Win or lose for the bet	Win=1 or lose =0	

Analysis: Model 1

Logit Model using the last 5 games

DV: Bet Outcome

IV: All the variables we have, except

("giveaways", "takeaways", "shots_off_goal")

Confusion Matrix (test_set):

	Predicted Loss	Predicted Win
Actual Loss	3184	251
Actual Win	1812	271

Test accuracy = 0.630

Optimization terminated	d successfully.							
Current function value: 0.646304								
Iterations 5								
Results: Logit								
======================================	 Logit		0.030					
Dependent Variable:	Bet outcome	AIC:	28683.1535					
Date:	2022-04-04 22:24	BIC:	29299.3090					
No. Observations:	22071	Log-Likelihood:	-14265.					
Df Model:	76	LL-Null:	-14703.					
Df Residuals:	21994	LLR p-value:	2.3539e-136					
Converged:	1.0000	Scale:	1.0000					
No. Iterations:	5.0000							
	Coef. Std							
shots_on_goal		.0040 1.1439 0.2527						
goalie_saves		.0040 -2.3448 0.0190						
penalties		.0258 0.5998 0.5487						
PIM		.0075 -0.0465 0.9629						
PP_goals		.0405 -0.5486 0.5833						
SH_goals		.1032 -0.8110 0.4174						
bodychecks		.0028 -0.1080 0.9140						
faceoffs_won		.0071 1.3252 0.1851						
faceoffs_%		.0050 -1.2633 0.2065						
<pre>empty_net_goals blocked shots</pre>		.0880 1.0971 0.2726 .0022 2.6327 0.0085						

Analysis Method

If we bet on Tampa Bay, where our Model 1 predicted a win probability of **0.5**, then we would have won on our test set **41 times** our betting amount we set. Which means, that the return on this rule is roughly **14%**.

7 U	index	team	prob	won	profit \downarrow
≣					abla
85	85	Tampa Bay Lightning	0.5	346.06	41.06
84	84	Tampa Bay Lightning	0.4	670.6	29.6
300	300	Vegas Golden Knights	0	328.68	20.68
301	301	Vegas Golden Knights	0.1	328.68	20.68
302	302	Vegas Golden Knights	0.2	328.68	20.68
95	95	Winnipeg Jets	0.5	71.95	18.95
272	272	Anaheim Ducks	0.2	715.46	18.46
304	304	Vegas Golden Knights	0.4	281.98	16.98
273	273	Anaheim Ducks	0.3	650.2	15.2
215	215	Colorado Avalanche	0.5	89.75	13.75
34	34	Minnesota Wild	0.4	345.62	12.62
303	303	Vegas Golden Knights	0.3	317.04	12.04
150	150	Columbus Blue Jackets	0	732.06	11.06
151	151	Columbus Blue Jackets	0.1	732.06	11.06
271	271	Anaheim Ducks	0.1	724.25	10.25

Analysis: Model 2

Logit Model without dummy variables ("team", "opponent")

Confusion Matrix (test_set):

	Predicted Loss	Predicted Win
Actual Loss	3271	164
Actual Win	1875	208

Test accuracy = 0.630

Analysis Method

If we bet on Tampa Bay, where our Model 2 predicted a win probability of winning **0.4**, then we would have won on our test set **26.71 times** our betting amount we set. Which means, that the return on this rule is roughly **4.6%**.

index	team	prob	won	profit \downarrow
∇				
84	Tampa Bay Lightning	0.4	590.71	26.71
272	Anaheim Ducks	0.2	711.43	23.43
300	Vegas Golden Knights	0	328.68	20.68
301	Vegas Golden Knights	0.1	328.68	20.68
302	Vegas Golden Knights	0.2	328.68	20.68
150	Columbus Blue Jackets	0	732.06	11.06
151	Columbus Blue Jackets	0.1	732.06	11.06
83	Tampa Bay Lightning	0.3	774.57	10.57
304	Vegas Golden Knights	0.4	249.56	10.56
271	Anaheim Ducks	0.1	724.25	10.25
274	Anaheim Ducks	0.4	364.64	9.64
270	Anaheim Ducks	0	724.25	9.25
95	Winnipeg Jets	0.5	35.49	8.49
215	Colorado Avalanche	0.5	77.21	8.21
255	New York Rangers	0.5	49.84	7.84

Analysis: Model 3

Logit Model ONLY using "bet", "win_prob"

Confusion Matrix (test_set):

	Predicted Loss	Predicted Win
Actual Loss	3298	137
Actual Win	1906	177

Test accuracy = 0.630

Analysis Method

If we bet on Anaheim Ducks, where our Model 3 predicted a win probability of **0.2**, then we would have won on our test set **24.46 times** our betting amount we set. Which means, that the return on this rule is roughly **3.5%**.

index	team	prob	won	profit \downarrow
Y				
272	Anaheim Ducks	0.2	715.46	24.46
300	Vegas Golden Knights	0	328.68	20.68
301	Vegas Golden Knights	0.1	328.68	20.68
302	Vegas Golden Knights	0.2	328.68	20.68
84	Tampa Bay Lightning	0.4	598.75	19.75
83	Tampa Bay Lightning	0.3	777.69	11.69
215	Colorado Avalanche	0.5	69.54	11.54
154	Columbus Blue Jackets	0.4	271.4	11.4
304	Vegas Golden Knights	0.4	242.15	11.15
150	Columbus Blue Jackets	0	732.06	11.06
151	Columbus Blue Jackets	0.1	732.06	11.06
271	Anaheim Ducks	0.1	724.25	10.25
303	Vegas Golden Knights	0.3	299.74	9.74
270	Anaheim Ducks	0	724.25	9.25
135	Pittsburgh Penguins	0.5	140.49	7.49

Comparison of Models

	Model 1	Model 2	Model 3
Pseudo R-squared	0.030	0.027	0.025
AIC	28683.154	28646.769	28660.104
Test accuracy	0.63	0.63	0.63

Interpreting Coefficients

For every 1 shots_on_goal, log odds of bet outcome increases by 0.0057

For every 1 penalties, log odds of bet outcome increases by 0.0298

For every 1 empty net goal, log odds of bet outcome increases by 0.1045

Intuitively makes sense. The more shots on goal probably means you are in control of the game

Not as intuitive. Could be indicative of aggressive play resulting in positive outcome with symptom of penalties.

Intuitively makes sense. Empty net goal means opposing goalie was pulled.

Key Findings

There are possible patterns in historical data of NHL, where we can be profitable in long-run. (Tampa Bay)

We will need more sophisticated modelling methods to make better use of this data.

Average of stats over last 5 games may not best represent a team's momentum, further analysis is needed.

Next Steps

1. Acquire more data.

 Individual players and their statistics are probably more significant than the team's average as a whole.

2. Create rules to better contextualize the data.

 Specific data is more significant in some situations than others.

3. Use ML to create these rules.

- There are probably too many situations to manually model.
- Regression is maybe too simple for the complex model like this.

Thank You

Appendix

Box Plots

