Towards Intuitionistic Polymodal Provability Logic

Mojtaba Mojtahedi, Fedor Pakhomov

Ghent University

September 2, 2024

Classical Provability Logic

- Language: $\wedge, \vee, \rightarrow, \perp, \square$.
- $(\Box A)^*$ interpreted as " A^* is provable in PA".
- Solovay: $GL = \{A : \forall * (PA \vdash A^*)\}.$
- All sound extensions of PA have the same provability logic.
- GL :=
 - Axioms of Classical Logic.
 - $\mathsf{K} := \Box(A \to B) \to (\Box A \to \Box B).$
 - Lob := $\Box(\Box A \to A) \to \Box A$.

Intuitionistic Provability Logic

- $(\Box A)^*$ interpreted as " A^* is provable in HA".
- M. : $iGLH = \{A : \forall * (HA \vdash A^*)\}.$
- iGL :=
 - Axioms of Intuitionistic Logic.
 - $\mathsf{K} := \Box(A \to B) \to (\Box A \to \Box B).$
 - Lob := $\Box(\Box A \to A) \to \Box A$.
- iGLH := iGL plus

$$\mathsf{H} := \{ \Box A \to \Box B : A \mid \sim B \}$$

- \sim is a selection of admissible rules of iGL.
- Example: $(\neg A \to (B \lor C)) \mid \sim ((\neg A \to B) \lor (\neg A \to C))$
- Example: $\neg \neg \Box A \mid \sim \Box A$.

Attention.

Not all sound extensions of HA share the same PL.

PA is an obvious counterexample.

Extension by true Π_n -sentences

- $\Pi_0 := \Sigma_0 := \Delta_0$.
- $\bullet \ \Sigma_{n+1} := \exists \Pi_n := \{\exists x \, A : A \in \Pi_n\}.$
- $\Pi_{n+1} := \forall \Sigma_n := \{ \forall x A : A \in \Sigma_n \}.$
- $\bar{\Pi}_0 := \bar{\Sigma}_0 := \Delta_0$.
- $\bullet \ \bar{\Sigma}_{n+1} := \exists \bar{\Pi}_n := \{\exists x \, A : A \in \bar{\Pi}_n\}.$
- $\bar{\Pi}_{n+1} := \forall (\bar{\Pi}_n \to \bar{\Sigma}_n) := \{ \forall x (A \to B) : A \in \bar{\Pi}_n \& B \in \bar{\Sigma}_n \}.$

Definition.

- Let $\mathsf{HA}^n := \mathsf{HA}$ plus all true Π_n -sentences.
- Let $PA^n := PA$ plus all true Π_n -sentences.

Theorem (F. Pakhomov & M.)

- HAⁿ has Disjunction Property: HAⁿ $\vdash A \lor B$ implies either HAⁿ $\vdash A$ or HAⁿ $\vdash B$.
- **2** HA^n has Numerical Existence Property: $\mathsf{HA}^n \vdash \exists x \ A(x)$ implies $\exists k \in \omega$ such that $\mathsf{HA}^n \vdash A(k)$.
- **3** HAⁿ is $\bar{\Sigma}_{n+1}^s$ -complete, i.e. for every true $\bar{\Sigma}_{n+1}$ -sentence A we have HAⁿ $\vdash A$.
- **4** HAⁿ is Bool($\bar{\Pi}_n$)-decidable.
- $\bullet \mathsf{PA}^n \vdash A \text{ iff } \mathsf{HA}^n \vdash A^{\neg}.$
- \bullet PAⁿ is $\bar{\Pi}_{n+2}$ -conservative extension of HAⁿ.

Provability logic of HA^n

Theorem (F. Pakhomov & M.)

 HA^n has the same provability logic of HA .

Proof idea. We first show that the Σ_{n+1} -PL of HA^n is same as Σ_1 -PL of HA , say iGLH_σ . Then by the following result we are done:

$$\mathsf{iGLH} \not\vdash A \ \Rightarrow \ \exists \theta \ \mathsf{iGLH}_\sigma \not\vdash \theta(A) \ \Rightarrow \ \exists \sigma \ \mathsf{HA}^n \not\vdash \sigma \theta(A)$$

Theorem (M. 2022)

iGLH is the closure of iGLH $_{\sigma}$ under substitutions.

$$\mathsf{iGLH} \vdash A \quad \mathit{iff} \quad \forall \theta \; (\mathsf{iGLH}_{\sigma} \vdash \theta(A))$$

Let $(\Box A)^*$ interpreted as " A^* is provable in T".

$$\mathsf{PL}(T,S) := \{A : \forall * \ S \vdash A^*\}$$

Observation.

$$\mathsf{PL}(\mathsf{PA}^n,\mathsf{PA}) = \mathsf{PL}(\mathsf{PA}^n,\mathsf{PA}^n) = \mathsf{GL}.$$

Let $(\Box A)^*$ interpreted as " A^* is provable in T".

$$\mathsf{PL}(T,S) := \{ A : \forall * \ S \vdash A^* \}$$

Observation.

 $PL(PA^n, PA) = PL(PA^n, PA^n) = GL.$

Attension.

We only could prove $iGL \subseteq PL(HA^n, HA) \subseteq iGLH$.

Question.

What is $PL(HA^n, HA)$?

HA^{n+} : an extension of HA^{n}

Define HA^{n+} as HA^n plus

$$\mathsf{PEM}(\bar{\Pi}_n) := \{ A \vee \neg A : A \in \bar{\Pi}_n \}.$$

- $[n]_i$ as HA^n -provability predicate.
- $[n]_{i}^{+}$ as HA^{n+} -provability predicate.
- $[n]_{c}$ as PA^{n} -provability predicate.

Observation.

Extensionally, HA^n and HA^{n+} are equal.

HA^{n+} : an extension of HA^{n}

Define HA^{n+} as HA^n plus

$$\mathsf{PEM}(\bar{\Pi}_n) := \{ A \vee \neg A : A \in \bar{\Pi}_n \}.$$

- $[n]_i$ as HA^n -provability predicate.
- $[n]_{i}^{+}$ as HA^{n+} -provability predicate.
- $[n]_c$ as PAⁿ-provability predicate.

Observation.

Extensionally, HA^n and HA^{n+} are equal.

Although this fact is PA and HA^n -verifiable, HA is not able to verify that for n>0.

HA^{n+} -provability logic

Theorem (F. Pakhomov & M.)

 $PL(HA^{n+}, HA) = iGLH.$

HA^{n+} -provability logic

Theorem (F. Pakhomov & M.)

 $PL(HA^{n+}, HA) = iGLH.$

This theorem, encourage us to have a big step and consider the Intuitionistic Polymodal Provability Logic.

Classical Polymodal Provability Logic GLP

Language:

 $\vee, \wedge, \rightarrow, \top$ and [n] for $n \in \mathbb{N}$.

Polymodal PL:

Let $([n]A)^*$ interpreted as PA^n -provability of A^* .

$$\mathsf{PPL}(\mathsf{PA}) := \{A : \forall * \mathsf{PA} \vdash A^*\}$$

Theorem (G. Japaridze)

PPL(PA) = GLP.

Axioms of GLP

- All axioms of Classical Logic
- $[n](A \to B) \to ([n]A \to [B]).$
- $[n]([n]A \to A) \to [n]A$.
- $\bullet \ [n]A \to [n+1]A.$
- $\bullet \ \neg [n]A \to [n+1] \neg [n]A.$
- $\bullet \ (A,A\to B)/B.$
- A/[0]A.

Intuitionistic Polymodal Provability Logic: first steps

Intuitionistic Polymodal PL:

Let $([n]A)^*$ interpreted as HA^{n+} -provability of A^* .

$$\mathsf{PPL}(\mathsf{HA}) := \{A : \forall * \; \mathsf{HA} \vdash A^*\}$$

First candidate for PPL(HA)

$$\mathsf{iGLP} + \{[n]A \to [n]B : \mathsf{AR}_n(\mathsf{iGLP}, \mathsf{Boxed}_n) \vdash A \rhd B\}$$

iGLP

- All axioms of Intuitionistic Logic.
- $[n](A \to B) \to ([n]A \to [B]).$
- $[n]([n]A \to A) \to [n]A$.
- $[n]([i]A \vee \neg [i]A)$ for every i < n.
- $\bullet \ [n]A \to [n+1]A.$
- $A \to [n+1]A$ for every $A = [m]B \to \bigvee_i [n_i]B_i$ and $m \le n$ and $n_i < n$.
- \bullet $(A, A \rightarrow B)/B$.
- A/[0]A.

$\mathsf{AR}_n(\mathsf{T},\Delta)$

 $A \times : A \triangleright B$, for every $T \vdash A \rightarrow B$.

Le_n: $A \triangleright [n]A$ for every $A \in \mathcal{L}_{\mathsf{T}}$.

 $V(\Delta): B \to C \rhd \bigvee_{i=1}^{n+m} B \xrightarrow{\Delta} E_i$, in which $B = \bigwedge_{i=1}^n (E_i \to F_i)$ and $C = \bigvee_{i=n+1}^{n+m} E_i$, and $A \xrightarrow{\Delta} B$ is a notation which is defined as follows:

$$A \xrightarrow{\Delta} B := \begin{cases} B & : B \in \Delta \\ A \to B & : \text{otherwise} \end{cases}$$

$$\Delta := \operatorname{Boxed}_n := \{[i]A : i \le n\} \cup \{\bot\}$$

 $T := \mathsf{iGLP}$

Thanks For Your Attention