Module 1: Introduction to Networking

1. What is a computer network?

 A computer network is a group of interconnected devices that communicate with each other to share resources like data, applications, and hardware (e.g., printers).

2. What are the types of network topologies?

 Common types include Bus, Star, Ring, Mesh, and Hybrid topologies, each with its own layout and communication methods.

3. Explain the difference between connection-oriented and connectionless services.

 Connection-oriented services (e.g., TCP) establish a dedicated connection before data transfer, while connectionless services (e.g., UDP) send data without establishing a connection.

4. What are network protocols?

 Network protocols are rules that define how data is formatted, transmitted, and received across networks (e.g., HTTP, FTP, TCP/IP).

5. What is the OSI model?

 The OSI model is a 7-layer conceptual framework for understanding and standardizing network communication functions, from physical transmission to application usage.

6. List the seven layers of the OSI model.

 Physical, Data Link, Network, Transport, Session, Presentation, and Application layers.

7. Explain the difference between the OSI and TCP/IP models.

 The **OSI model** has seven layers, while the **TCP/IP model** has four (Link, Internet, Transport, and Application). TCP/IP is more practical and used in real-world internet communication.

8. What is a protocol hierarchy?

 Protocol hierarchy is the layering of protocols to manage data flow; each layer performs specific tasks to ensure data is transmitted and received efficiently.

9. Define network topology.

 Network topology is the physical or logical layout of a network that shows the arrangement of nodes and the connecting lines between them.

10. What are interconnection devices in networking?

 Interconnection devices like routers, switches, hubs, and bridges connect network components and manage data traffic.

1. What is the electromagnetic spectrum?

 The electromagnetic spectrum is the range of all types of electromagnetic radiation, which includes radio, microwave, infrared, visible light, and others, used in communication.

2. Name three types of guided transmission media.

o Twisted pair cables, coaxial cables, and fiber optic cables.

3. What is a twisted pair cable?

 A twisted pair cable has pairs of wires twisted together to reduce interference and is commonly used in telephone and Ethernet networks.

4. What is fiber optic cable?

 Fiber optic cable uses light to transmit data over long distances with high speed and minimal loss, suitable for internet and high-capacity networks.

5. Explain the difference between guided and unguided media.

 Guided media (e.g., cables) directs signals along a specific path, while unguided media (e.g., radio waves) transmits signals through the air or space.

6. What is attenuation?

 Attenuation is the loss of signal strength as it travels through a medium, affecting data transmission quality.

7. How does a coaxial cable work?

 Coaxial cables transmit data as electrical signals within a central conductor, shielded by layers to prevent interference.

8. What is bandwidth?

 Bandwidth is the range of frequencies a transmission medium can carry, determining data transmission capacity.

9. What are the advantages of fiber optic cables over copper cables?

 Fiber optics offer higher speed, longer transmission distances, and better resistance to electromagnetic interference.

10. What is multiplexing?

 Multiplexing is a method of combining multiple signals for transmission over a single medium to maximize efficiency.

Module 3: Data Link Layer

1. What is the data link layer?

 The data link layer manages error detection and correction, frame synchronization, and flow control for data transferred across the network.

2. What is framing?

 Framing is the process of dividing data into frames, each with headers and trailers, to manage error detection and control.

3. Explain error detection and correction.

 Error detection identifies transmission errors using techniques like parity checks and checksums, while error correction fixes errors using algorithms like Hamming Code.

4. What is flow control?

 Flow control regulates the data rate between sender and receiver to prevent overwhelming the receiver with too much data.

5. Describe the Stop-and-Wait protocol.

 Stop-and-Wait is a simple flow control protocol where the sender transmits a frame and waits for an acknowledgment before sending the next frame.

6. What is the Sliding Window protocol?

 Sliding Window protocol allows multiple frames to be sent before receiving an acknowledgment, improving data flow efficiency.

7. What is CSMA/CD?

 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is a protocol for managing data collisions in networks, commonly used in Ethernet.

8. What is ALOHA protocol?

 ALOHA is a simple access protocol where devices send data whenever they want, risking collisions but useful in low-traffic networks.

9. What is the purpose of the MAC (Medium Access Control) sublayer?

 MAC controls how devices access the transmission medium to ensure fair usage and prevent collisions.

10. Explain CRC (Cyclic Redundancy Check).

 CRC is an error-detecting code that uses polynomial division to detect changes in transmitted data.

Module 4: Network Layer

1. What is the network layer?

 The network layer manages data routing, addressing, and forwarding between devices across different networks.

2. Explain IP addressing.

 IP addressing assigns unique identifiers (IP addresses) to devices, allowing them to communicate on a network.

3. What is subnetting?

 Subnetting divides a large network into smaller sub-networks, improving management and security.

4. Explain the purpose of IPv4 and IPv6.

IPv4 and IPv6 are internet protocols with different address lengths (IPv4 has 32-bit,
IPv6 has 128-bit) used to identify devices on networks.

5. What is a routing algorithm?

A routing algorithm finds the best path for data to travel from source to destination;
examples include **Dijkstra's** and **Distance Vector** algorithms.

6. What is NAT (Network Address Translation)?

 NAT maps private IP addresses to a single public IP address, allowing multiple devices to access the internet.

7. Explain ARP and RARP.

 ARP translates IP addresses to MAC addresses, while RARP translates MAC addresses to IP addresses.

8. What is ICMP used for?

 ICMP is used for error reporting and network diagnostics (e.g., using the ping command).

9. What is congestion control?

 Congestion control manages network traffic to prevent data bottlenecks, ensuring efficient data transfer.

10. What are QoS parameters?

 Quality of Service (QoS) parameters like bandwidth and latency help prioritize network traffic to meet application needs.

Module 5: Transport Layer

1. What is the transport layer?

 The transport layer handles end-to-end communication, managing data flow control, segmentation, and reliability.

2. What is the difference between TCP and UDP?

 TCP is connection-oriented with error correction and flow control, while UDP is connectionless and faster but less reliable.

3. What are transport layer service primitives?

 Service primitives are basic operations like send, receive, and connect used by transport layer protocols.

4. What is a socket?

 A socket is an endpoint for communication, created by binding an IP address and port for applications to send/receive data.

5. Explain the TCP three-way handshake.

 The TCP three-way handshake (SYN, SYN-ACK, ACK) establishes a reliable connection between two devices.

6. What is flow control in TCP?

 TCP flow control prevents data overload by adjusting the sending rate based on the receiver's capacity.

7. What is TCP congestion control?

 TCP congestion control mechanisms like Slow Start and Congestion Avoidance adjust data transmission to prevent network congestion.

8. What are TCP timers?

 TCP timers (e.g., retransmission timer) manage connection timeouts and retransmissions if acknowledgments are delayed.

9. What is a TCP segment?

 A TCP segment is a packet with TCP header and data, used in communication between TCP layers.

10. Explain Berkeley Sockets.

 Berkeley Sockets is a library for socket programming that enables network communication in applications.

Module 6: Application Layer

1. What is the application layer?

• The application layer is the topmost layer, providing interfaces for user applications to access network services.

2. What is DNS and its function?

 DNS (Domain Name System) translates human-readable domain names into IP addresses.

3. Explain the purpose of HTTP.

 HTTP (Hypertext Transfer Protocol) is used for transferring web pages and other resources over the internet.

4. What is SMTP?

o SMTP (Simple Mail Transfer Protocol) is used for sending and routing emails.

5. What is FTP used for?

o FTP (File Transfer Protocol) is used to transfer files between computers on a network.

6. Explain the concept of DHCP.

 DHCP (Dynamic Host Configuration Protocol) automatically assigns IP addresses to devices on a network.

7. What is Telnet?

 Telnet is a protocol for remote login, allowing users to access another computer over a network.

8. What is a resource record in DNS?

 A DNS resource record stores information like IP addresses, mail servers, and aliases for a domain.

9. What is the difference between HTTP and HTTPS?

 HTTPS (HTTP Secure) encrypts data using SSL/TLS, providing secure communication compared to HTTP.

10. What is a name server?

 A name server stores DNS records and provides domain name resolution, translating domains to IPs.