ECE 385 Lab 5 Report Outline

Introd	uction
	Summarize the basic functionality of the multiplier circuit
Pre-la	b question
	Rework the multiplication example on page 5.2 of the lab manual, as in compute
	00000111 * 11000101 in a table similar to the example
Writte	n description and diagrams of multiplier circuit
	Summary of operation
	☐ Explain in words how operands are loaded, how the multiplier computes its
	result, how the result is stored, etc.
	Top Level Block Diagram
	☐ This can be generated from the RTL viewer. <i>Please only include the top</i>
	level diagram and not the RTL view of every module.
	Written Description of .sv Modules
	☐ List all modules used in a format shown in the appendix of this document
	State Diagram for Control Unit
	☐ This can be done in a program like Visio, but if the Quartus state diagram
	generator is used, you must label the states and transitions or you will lose
	points!
	ated pre-lab simulation waveforms
	Must show 4 operations where operands have signs (+*+), (+*-), (-*+) and (-*-)
	Waveform must have notes that clearly show the operands as well as the result,
	etc.
	ers to two post-lab questions ¹
	Fill in the table shown in 5.6 with your design's statistics
	Write down several ideas on how the maximum frequency of your design could be
	increased or the gate count could be decreased
	Discuss functionality of your design. If parts of your design didn't work, discuss
	what could be done to fix it
	Was there anything ambiguous, incorrect, or unnecessarily difficult in the lab
	manual or given materials which can be improved for next semester? You can also
	specify what we did right so it doesn't get changed.
	Pre-lai Writte Annot Answe

¹Although the manual numbers it as 1, the two questions asked are distinct

APPENDIX

Module descriptions are an important part of the reports in ECE 385, and since this is the first significant FPGA lab, a brief example of how to write a module description is shown below.

Here is example code of a 16 bit register with asynchronous reset and synchronous load.

```
module reg16
(input [15:0] Din,
input Clk, Load, Reset,
output logic [15:0] Dout);

always_ff @(posedge Clk or posedge Reset)
begin
if(Reset)
Dout <= 16'h0000;
else if(Load)
Dout <= Din; //lf load=1, perform parallel load on clock edge
end
endmodule
```

And here is how a section of the report would describe it:

Module: reg16.sv

Inputs: [15:0] Din, Clk, Load, Reset

Outputs: [15:0] Dout

Description: This is a positive-edge triggered 16-bit register with asynchronous reset and

synchronous load.

Simple modules can be described with just a sentence, but more complicated ones may need a few more.