CSC2001F 2020 Assignment 2

Instructions

The goal of this assignment is to compare the AVL Tree with a Binary Search Tree, both implemented in Java, using a real-world application to read in and provide access to Cape Town's load shedding data.

Use the requirements as specified in Assignment 1, but this time compare a BST to an AVL tree. Naturally, the names of applications and files will be different and your results from the experiment should be different.

Parts 1-5

(See Assignment 1)

Report

Write a report (of up to 6 pages) that includes the following:

- What your OO design is: what classes you created and how they interact.
- What the goal of the experiment is and how you executed the experiment.
- What test values you used in the trial runs (Part 2 and Part 4) and what the operations counts were in each case. Only show the first 10 and last 10 lines for the trial run where you invoke *printAllAreas* ().
- What your final results are (use one or more graphs), showing best, average and worst cases for both applications. Discuss what the results mean.
- A statement of what you included in your application(s) that constitutes creativity how you went beyond the basic requirements of the assignment.
- Summary statistics from your use of git to demonstrate usage. Print out the first 10 lines and last 10 lines from "git log", with line numbers added. You can use a Unix command such as:

```
git log | (ln=0; while read l; do echo ln\: ln=s((ln+1)); done) | (head - 10; echo ...; tail -10)
```

Dev requirements

As a software developer, you are required to make appropriate use of the following tools:

- git, for source code management
- javadoc, for documentation generation
- make, for automation of compilation and documentation generation

Submission requirements

Submit a .tar.gz compressed archive containing:

- Makefile
- src/
 - all source code

- bin/
 - all class files
- doc/
 - o javadoc output
- report.pdf

Your report must be in PDF format. Do not submit the git repository.

Marking Guidelines

Your assignment will be marked by tutors, using the following marking guide.

Artefac	tAspect	Mark
Report Appropriate design of OOP and data structures10		
Report	Experiment description	10
	Trial test values and outputs (Part 2)	10
	Trial test values and outputs (Part 4)	10
	Results - tables and/or graphs	10
	Discussion of results	10
	Creativity	10
	Git usage log	5
Code	Looks reasonable and no obvious inefficiencie	s10
Dev	Documentation - javadoc, junit (edited 21 Apri	l)10
	Makefile - make, docs, and clean targets	5