Influence Maximization Problem (IMP)

GRAPHS

Micro-blog post stream

Co-occurring Entities

Evolving Entity Graph

Dense subgraph / Story

Graphs

id	heroes
1	Iceman, Storm, Wolverine
2	Aurora, Cyclops, Magneto, Storm
3	Beast, Cyclops, Iceman, Magneto
4	Cyclops, Iceman, Storm, Wolverine
5	Beast, Iceman, Magneto, Storm

	ABCIMSW
1	0001011
2	1011100
3	0111100
4	0011011
5	0101110

Driving to my favorite bar

More details

Social Network and Spread of Influence

- Social networks (traditional or digital) is THE medium for the spread of INFLUENCE among its members
 - Opinions, ideas, information, innovation...

- "Word-of-mouth" has been around since the Babylonians or the Greeks (Homer)
- Then came digital "Word-of-mouth" Gmail,
 Tupperware popularization, Facebook, Twitter)

The problem

Given

- a limited budget B for initial advertising (e.g. give away free samples of product)
- influence between individuals (this can be probabilistic or deterministic)

Goal

 Create a large cascade of influence (e.g. more people know of the product)

Question

- Which set of individuals should B target at?
- Application besides product marketing
 - spread an innovation
 - stories in blogs

How we go about it

- Form models of influence in networks.
- Obtain data about particular network (to estimate inter-personal influence).
- Devise algorithm to maximize spread of influence.

Models of influence

- There are two main approaches
 - Linear Threshold
 - Independent Cascade
- First mathematical models in the 70s
 - Schelling 70/78, Granovetter 78
 - [Rogers 95, Valente 95, Wasserman 94
- A social network is represented:
 - as a directed graph with each person as a node
 - Nodes can be active or inactive
 - Active nodes may trigger neighbor nodes
 - [Active nodes never deactivate]

Linear Threshold

- A node v has random threshold $\vartheta_{v} \sim U[0,1]$
- A node v is influenced by each neighbor w according to a weight b_{vw} such that

$$\sum_{w \text{ neighbor of } v} b_{v,w} \le 1$$

• A node v becomes active when at least (weighted) ϑ_v fraction of its neighbors are active

$$\sum_{w \text{ active neighbor of } v} b_{v,w} \ge \theta_v$$

Example

Independent Cascade

- An active node v has only one chance to activate inactive neighbors (currently inactive)
- The activation attempt succeeds with probability P_{vw}

Independent Cascade

- We again start with an initial set of active nodes A₀
- Process is in discrete steps
- When node v first becomes active in step t, it is given a single chance to activate each currently inactive neighbor w
 - With a probability Pvw —a parameter of the system independently of the history thus far.
 - (If w has multiple newly activated neighbors, their attempts are sequenced in an arbitrary order.)
- If v succeeds, then w will become active in step t+1; but whether or not v succeeds, it cannot make any further attempts to activate w in subsequent rounds.
- The process runs until no more activations are possible.

Example

Stop!

Independent Cascade

REMEMBER WE FLIP A COIN

Influence Maximization Problem

- Define the influence of node set S (this is a set of individuals): f(S)
 - Expected number of active nodes at the end given an initial set of active nodes S

Problem:

- Given an initial number of active nodes k, find a knode set S to maximize f(S)
- Optimization problem with f(S) as the objective function

Properties of f(S)

- Non-negative (dah)
- Monotone $f(S+v) \ge f(S)$

- Submodular:
 - Let N be a finite set
 - A set function f: 2^N

$$\forall S \subset T \subset N, \forall v \in N \setminus T,$$

 $f(S+v) - f(S) \ge f(T+v) - f(T)$

Bad news

- For a submodular function f, if f only takes non-negative value, and is monotone, finding a k-element set S for which f(S) is maximized is an NP-hard optimization problem[GFN77, NWF78].
- It is NP-hard to determine the optimum for influence maximization for both independent cascade model and linear threshold model.

Good news

- We can use Greedy Algorithm or Stochastic Methods!
- Greedy:
 - Start with an empty set S
 - For k iterations:

Add node v to S that maximizes f(S + v) - f(S).

- How good (bad) it is?
 - Theorem: The greedy algorithm is a (1 1/e) approximation.
 - The resulting set S activates at least (1-1/e) > 63% of the number of nodes that any size-k set S could activate.

Evaluating f(S)

- How to evaluate f(S)?
- Still an open question of how to compute efficiently
- But: very good estimates by simulation
 - repeating the diffusion process often enough
 - Achieve $(1 \pm \varepsilon)$ -approximation to f(S).
 - WHAT IS ε ?

Data

- A review graph obtained from Yelp data set challenge
- We have the whole US (>6,000 businesses)
- Resulting graph: >350,000 nodes, 4,000,000 distinct edges

Experiment Settings

- Independent Cascade Model:
 - Edge from ν to ω has probability (Beta (α,β)) of activating ω .
 - We learn α, β using existing reviews
 - $-\beta$ total number of reviews a reviewer w has written
 - α is he total number of reviews reviewer w has written after reviewer v has written (within time τ)

```
Mean: \alpha/(\alpha+\beta)
Variance: (\alpha\beta)/[(\alpha+\beta)^2(\alpha+\beta+1)]
```

 Simulate the process N times for each targeted set, reedge outcomes pseudo-randomly from [0, 1] every time

Use simulating annealing to solve the problem

Experimental setting

- τ : Time lag (1 month)
- Graphs will be given to you
 - Big
 - Small (toy; North Carolina)
- Script that generates the graph is available but you will not need it

Graph

- Graph is in Json format (like a dictionary).
- You will use NetworkX to load it => dictionary

Probabilistic Model

• Flip a coin and if value is

Goals for today

Networks Graphs etc
Independent Cascade Model
Influence Maximization
Probabilistic Models

- Form teams
- Ensure everyone had anaconda installed and NetworkX
- Installing Vagrant etc