

VolTE MOS 专题分析报告

目录

一、VoLTE 语音 MOS 现状说明	. 2
1、MOS 指标定义及优化方法	. 2
(1)VoLTE 语音 MOS 指标定义	. 2
(2) VoLTE 语音 MOS 采样机制	. 2
(3) MOS 差的问题点定位	. 2
(4) MOS 优化分析方法	. 2
2、MOS 指标现状	. 2
3、MOS 主要问题	. 4
(1) 成都 38 个网格主要问题	. 4
(2)、华为地市主要问题	. 4
二、如何提升 VoLTE 语音 MOS 值	. 6
1、MOS 值的影响因素	. 6
2、MOS 问题点的解决手段	. 6
(1)测试规范和设备处理手段	. 6
(2) 核心网/传输处理手段	.7
(3) 无线优化处理手段	. 7
三、VoLTE 语音 MOS 值问题案例	. 8
(1) 基站问题:	. 8
(2)测试规范/测试设备:	.9
(3) 无线问题:	. 9
(4) 核心网/传输:	12
(5) 其他:	13

一、VoLTE 语音 MOS 现状说明

1、MOS 指标定义及优化方法

(1) VoLTE 语音 MOS 指标定义

MOS 均值 = MOS 值求和/MOS 总采样点

MOS 大于 3 采样点占比 = MOS 大于 3 采样点/MOS 总采样点

(2) VolTE 语音 MOS 采样机制

VoLTE 语音 MOS 采样机制如下:

- (1) 主叫起呼, 进行录音(8s左右);
- (2) 被叫放音, 主叫收音, 被叫记录第1个MOS采样点(8s);
- (3) 主叫放音,被叫收音,主叫记录第1个MOS采样点(8s);
- (4)被叫放音, 主叫收音, 被叫记录第 2 个 MOS 采样点(8s, 与第 1 个采样点间隔 16s);
- (5) 主叫放音,被叫收音,主叫记录第2个MOS采样点(8s,与第1个采样点间隔16s);
- (6)被叫放音, 主叫收音, 被叫记录第 3 个 MOS 采样点 (8s), 如此类推……

(3) MOS 差的问题点定位

测试 log 单次通话连续两个采样点 MOS 值小于 3 的问题点定义为 MOS 差的问题点。

注意事项: 需剔除通话结束的最后一个采样点与下次通话第一个采样点的 MOS 值都小于 3 的问题点。

(4) MOS 优化分析方法

由 MOS 采样点机制可以看出,MOS 采样点收集的是采样时间点前 8 秒的语音质量,所以在分析的时候,需着重分析 MOS 采样时间前 8 秒 UE 本端的下行(包括:无线环境、语音编码、抖动、丢包、频繁切换、RRC 重建、异频测量频次等),以及对端的上行(包括:频繁切换、RRC 重建、异频测量频次等)。

2、MOS 指标现状

目前华为区域有10个地市和成都,其中甘孜暂无测试任务也无测试指标;

目前华为区域有 10 个地市和成都,其中甘孜暂无测试任务也无测试指标,4 月份只有成都完成一轮省公司巡检,其他地市均以3 月份测试结果为准;

从 3 月份测试情况看, 华为区域 9 个地市的 VOLTE 话音质量 MOS>3 占比均大于话音质量集团目标 85%;

4月份语音质量项目目标为 VOLTE 话音质量 MOS>3 占比为 94%, 3月份测试情况看,南充、达州、宜宾及泸州达到 4月份语音质量项目目标,其中成都 4月份省公司巡检第 1轮份语音质量 MOS>3 占比为 94.78%,基本达到目标;

话音质量 6 月份项目目标为 VOLTE 话音质量 MOS>3 占比大于 96%, 从 3 月份测试情况看, 只有泸州和南充达的 VOLTE 话音质量 MOS>3 占比大于 96%;

其中成都话音质量 6 月份项目目标暂定为 VOLTE 话音质量 MOS>3 占比为 96%,需要对标杭州南京指标,及时调整跟进,从 4 月份测试情况看,成都的 VOLTE 话音质量 MOS>3 占比为 94.73%,距离 6 月份项目目标还有较大差距;

地市	测试设备类型	测试时间	测试公里	平均SINR	VoLTE呼叫请求次数	MOS值	MOS (mos>3.0比例)	RTP丢包率	4月份项目目标	6月份项目目标
攀枝花		3月23日	59.18				89.69%		94%	96%
眉山	诺优ATU	3月6日	74.095	20.42	58	3.86	92.55%	0.69%	94%	96%
内江	鼎利Pioneer	3月14日	103.34	18.4	36	4.02	92.35%	1.24%	94%	96%
乐山	诺优ATU	3月8日	53.9	18.37	47	3.68	91.96%	0.40%	94%	96%
南充	鼎利Pioneer	3月12日	100.4	22.71	64	3.99	98.50%	0.39%	94%	96%
达州		3月16日	111				95.51%		94%	96%
宜宾	鼎利Pioneer	3月15日	131.19	20.33	102	4.03	94.74%		94%	96%
泸州	鼎利Pioneer	3月13日	240.63	21.43	125	3.93	96.36%	0.59%	94%	96%
凉山	诺优ATU	3月16日	143.89	16.91	75	3.74	89.83%	1.10%	94%	96%
成都	大唐ATU/鼎利Pioneer	2016/4/6-2016/4/10	3431.69	17.36	2043	3.90	94.78%	0.67%	94%	96%

3、MOS 主要问题

(1) 成都 38 个网格主要问题

截止 4 月 19 日成都 38 个网格 ATU 测试分析了两轮数据,MOS 问题共计 351 个,其中初步分析测试 设备导致的 MOS 问题 96 个占比 27%,需要测试设备厂家配合解决问题;重叠覆盖导致的 MOS 问题 76 个占比 22%,后期需要成都分公司 RF 调整解决,引起 MOS 问题的详细分类如下:

(2)、华为其它地市主要问题

对 3 月份的 7 个华为区域地市州(达州、凉山、泸州、内江、乐山、南充、攀枝花)测试进行分析, MOS 问题点共计 63 个,其中初步分析为测试设备引起的 MOS 低问题有 31 个占比 49%,后期需要规范测试和需要测试设备厂家配合解决问题,引起 MOS 问题的详细分类如下:

(3)、不同测试设备性能差异分析

三月份有 14 个地市州进行了一轮 VoLTE 测试,其中遂宁数据有异常,剩余 13 个地市中使用诺优 ATU 设备的有 4 个地市(雅安、眉山、乐山、凉山,其中眉山、乐山、凉山的 LTE 设备为华为),使用鼎利 Pioneer 设备的有 9 个地市,详细测试指标如下:

地市	网格	测试设备类型	测试时间	测试公里	覆盖率	平均SINR	VoLTE呼叫 请求次数	VoLTE呼叫 失败次数	掉话次数	MOS值	MOS (mos>3.0 比例).
雅安	汇总	诺优ATU	3月15日	48.33	99.86%	21.28	35	0	0	3.71	87.83%
眉山	汇总	诺优ATU	3月6日	74.10	99.73%	20.42	58	2	0	3.86	92.55%
广元	汇总	鼎利Pioneer	3月10日	114.00	99.54%	19.40	78	0	0	3.92	96.15%
内江	汇总	鼎利Pioneer	3月14日	103.34	98.59%	18.40	36	0	0	4.02	92.35%
巴中	汇总	鼎利Pioneer	3月2日	47.79	98.75%	13.71	45	0	0	4.00	91.35%
乐山	汇总	诺优ATU	3月8日	53.90	99.45%	18.37	47	0	0	3.68	91.96%
南充	汇总	鼎利Pioneer	3月12日	100.40	99.93%	22.71	64	0	0	3.99	98.50%
宜宾	汇总	鼎利Pioneer	3月15日	131.19	99.35%	20.33	102	0	4	4.03	94.74%
自贡	汇总	鼎利Pioneer	3月15日	112.80	99.74%	18.96	77	75	0	3.89	96.33%
绵阳	汇总	鼎利Pioneer	3月15日	170.89	98.54%	20.11	89	0	2	3.95	90.85%
泸州	汇总	鼎利Pioneer	3月13日	240.63	99.05	21.43	125	0	1	3.93	96.36%
徳阳	汇总	鼎利Pioneer	3月17日	149.50	98.87%	18.75	50	0	0	4.04	94.84%
遂宁	汇总	鼎利Pioneer	3月15日		98.90%	19.435	123	1	1	3.08	8176.00%
凉山	汇总	诺优ATU	3月16日	143.89	9926.00%	16.91	75	1	0	3.74	89.83%

针对不同 ATU 设备,通过对比发现鼎利 Pioneer 所测试的 9 个地市的 MOS 平均值为 3.97,MOS>3.0 的比例平均值为 94.61%,诺优 ATU 所测试的 4 个地市的 MOS 平均值为 3.75,MOS>3.0 的比例平均值为 90.54%,详细数据如下:

ATU 设备	MOS 值(平均值项)	MOS (mos>3.0 比例) (平均值)	
鼎利 Pioneer	3. 97	94. 61%	
诺优 ATU	3. 75	90. 54%	
差距	0. 22	4. 07%	

由此初步怀疑为鼎利 Pioneer 所测试的 MOS 值优于诺优 ATU,建议眉山、乐山、凉山分公司更换为鼎利设备进行对比验证。

二、如何提升 VoLTE 语音 MOS 值

1、MOS 值的影响因素

MOS 值的影响因素为:测试操作、MOS 评估算法、终端/音频线、语料选取、协商编码、RTP 丢包、时延/抖动。

造成以上 MOS 的影响因素的原因为:测试规范和设备因素(包括:测试规范、设备差异)、核心网/传输(影响协商编码,包括:网络参数、终端能力、覆盖/干扰、回落 2G)、无线优化(包括:覆盖/干扰、传输/边际网、频繁切换、高负荷/故障、参数配置、X2 状态和重建)。

2、MOS 问题点的解决手段

(1) 测试规范和设备处理手段

测试规范:测试时需按测试规范进行;

测试设备工作异常:对工作异常的设备进行检查、复测,若频繁出现异常,则寄回厂家返修;测试设备性能差异:

对不同的测试设备进行性能比较,若某测试设备性能较差,优先考虑升级解决;若无法通过升级解决,则建议更换为性能更好的设备。

(2) 核心网/传输处理手段

需提交给核心网/传输专业处理。

(3) 无线优化处理手段

无线优化主要分为覆盖类、干扰类、切换类, 优化处理手段如下:

1) 覆盖类处理手段如下:

2) 干扰类处理手段如下:

3) 切换类处理手段如下:

三、VoLTE 语音 MOS 值问题案例

结合影响因素和前期 VoLTE 拉网测试时遇到的 MOS 问题,共总结出四类问题点类型:无线问题、基站异常、测试规范和设备、核心网/传输。以下为日常工作中收集的各大类型案例:

(1) 基站问题:

是指问题路段中心经纬度 150 米以内的基站及主瓣 65 度范围的小区,若存在基站负荷过大、影响业务的告警、断站等问题,必将影响 MOS 值。处理方法:在测试前确保基站正常工作。

案例 1: 基站故障导致 MOS 值低

问题描述: 车辆由南向北行驶至清风路与两河大道交叉路口,UE 占用金牛清淳一街-SCDHLS3HM3JN-D2 的信号,无线环境 RSRP 为-116.81dbm, SINR 为-2.5, MOS 值 1.14, 经测试数据分析,发现 UE 未能收到距离清风路与两河大道交叉路口 50 米的华力汽车公司车队-SCDHLD3HM2GX 站点信号,经查询告警得知,发现该站点网元断链,因而导致该路段出现弱覆盖现象,最终导致 MOS 值差。

处理建议:建议处理华力汽车公司车队-SCDHLD3HM2GX站点故障。

案例 2: 基站负荷过大, 导致 MOS 值低

问题描述: 无线环境较好(RSRP 为-95dBm 左右, SINR 为 10 左右), 无频繁切换; 但 MOS 打点前 8s 主被叫占用电子科大-SCDHLSOHM1CH-D5, 抖动和丢包均比较异常(RTP Jitter 为 992ms, RTP Loss Rate 为 3.99%), 后台查询电子科大-SCDHLSOHM1CH-D5 问题发生时间点 15 分钟粒度的上行 PRB 峰值利用率为 65.145%, 上行 PRB 平均利用率为 45.949%, 初步判断为基站负荷过大导致调度不及时,从而影响了 MOS 值。

处理建议:解决电子科大-SCDHLSOHM1CH-D5 负荷过大的问题。

(2) 测试规范/测试设备:

包括 MOS 设备调试造成的 MOS 设备性能低、MOS 差、音频线松动、终端异常等。

处理方法: 在测试前确保 MOS 设备正常工作、事先调试好 MOS 值、音频线插紧、检查终端等。

案例 1: 调试 MOS 导致 MOS 值低

问题描述:周围站点状态正常,无线环境良好;本次问题发生在1月25日下午第一个正式log的第1次至第3次呼叫,连续21个MOS值均低于1.5(覆盖较好,无干扰和故障),车辆一直停留在北京华联双桥店门口,第4次起呼MOS值恢复正常,初步判断为当天下午刚开始测试时MOS设备有问题导致。

处理建议: 建议按测试规范进行测试,测试前确保 MOS 设备正常工作。

案例 2: 无线环境良好, MOS 采样点前 8s 信令丢失

问题描述: 周围站点状态正常,无线环境良好; 主叫 9:29: 35 发起 INVITE 请求, 9:32:28 出现低 MOS, 分析主叫前 8s 测试数据,此时占用春良宾馆-SCDHLD3HM3JJ-F3,此时 RSRP=-87. 25dbm, SINR=17, 9:32:20 至 9:32:28 主叫无信令交换,查看 9:32:20 无 RTP 丢包异常,RTP 抖动正常,分析被叫LOG,无信令。初步判断为终端问题导致 MOS 差。

处理建议: 建议按测试规范进行测试,测试前确保 UE 终端正常工作。

(3) 无线问题:

主要包括弱覆盖(RSRP<-100dBm, SINR<0)、质差(RSRP>-100dBm, SINR<0)、频繁切换等。

引起弱覆盖的原因包括:周边缺站(需新规划)、已规划站点但未建设、周边基站故障、室分泄露、 邻区漏配、切换参数不当。

质差包括弱覆盖质差和强覆盖质差,前者优先处理弱覆盖,后者通常是由 MOD3 干扰、GPS 失步引起的干扰、外部干扰等干扰引起的。

频繁切换通常是由于网络结构不合理、天馈接反、切换参数设置不当造成的。

案例 1: 周边缺站(需新规划), 弱覆盖导致 MOS 值低

问题描述:测试车辆在川建路由西向东行驶,主被叫占用灵润路 8 号-SCDHLD3HM3JN-F1、凤凰石油加油站-SCDHLS2HM1JN-D3 通话 (RSRP-94~-115、SINR-9~15) 邻区无更好接续小区,该路段为弱覆盖 (连续覆盖路段约 180 米 RSRP<-105),无线环境差导致低 MOS(时间为 14:58:30 至 14:58:41、14:59:11 至 14:59:45)。该路段凤凰石油加油站-SCDHLS2HM1JN 与汇泽路-SCDHLS3HM3JN 站间

距为600米左右,站间距过大不能够保证有效覆盖;周边无规划站点。

处理建议:建议在川建路新建站点(经度104.06242,纬度30.73527)

案例 2: 已规划站点未建设, 弱覆盖导致 MOS 值低

问题描述: 主叫 UE 在成双大道占用桐希亨-SCDHLS1HM1WH-D3 时 MOS 低,在 16:09:49 的 MOS 统计为 2.076, 16 秒后在 16:10:04 的 MOS 统计为 1.401, UE 所在路段周边小区的 RSRP 均在-105dbm 左右,属于 覆盖不足,核实在覆盖较差路段已有规划 L3HZ156054 簇桥老农管站,但未开通站点。

处理建议:建议尽快开通站点 L3HZ156054 簇桥老农管站。

案例 3: 周边站点故障, 弱覆盖导致 MOS 值低

问题描述:在一环路北一段路段被叫占用汇龙湾广场-SCDHLS3HM3JN-F2 小区 (RSRP=-109dBm SINR=-10),通过查询发现离问题路段最近的友纳克酒店-SCDHLS0HM1JN站点断站;

处理建议: 尽快恢复友纳克酒店-SCDHLSOHM1 JN 站点故障。

案例 4: 室分泄露, 弱覆盖导致 MOS 值低

问题描述:问题点前从"香伯伦酒店-SCDHLSOHM1JJ-D1"(RSRP为-101dBm,SINR为9)切换至室分小区 "长城锦苑-SCDHLS4WM3JJ-F1"(RSRP为-90dBm),之后由于无法切换出至室外宏站,弱覆盖导致 MOS 值偏低。

处理建议:处理室分小区"长城锦苑-SCDHLS4WM3JJ-F1"的室分外泄问题。

案例 5: 邻区漏配, 弱覆盖导致 MOS 值低

问题描述:周围站点状态正常;UE沿八里桥路至南向北后右过程中,由于2016/1/25测试时查看八里桥路灯杆 F-SCDHLD4HM3CH-F1到路段覆盖站点凤仪东路东端没有添加邻区关系,被叫UE占用八里桥路灯杆 F-SCDHLD4HM3CH-F1(RSRP=-103dBm SINR=-10),无法发生切换到合适的小区,被叫电平质量较差且出现呼叫重建导致MOS质差

处理建议:添加八里桥路灯杆 F-SCDHLD4HM3CH-F1 到凤仪东路东端站点所有小区的邻区关系。

案例 6: 切换参数不当, 弱覆盖导致 MOS 值低

问题描述:周围站点状态正常;辆沿新航路从西南向东北行驶,UE占用汇都工业园 F-SCDHLS3HM2GX-F1的

信号 RSRP 为-96dbm 左右, SINR10. 4 左右, MOS 值为 1. 52. 随着车辆继续行驶且信号不断减弱, 而顺康电子-SCDHLS1HM1GX-F1 的电平到达了-83dbm 左右都未能与汇都工业园 F-SCDHLS3HM2GX-F1 发生切换, 因此因汇都工业园 F-SCDHLS3HM2GX-F1 与顺康电子-SCDHLS1HM1GX-D 切换不及时引起 MOS 值差;

处理建议:建议将汇都工业园 F-SCDHLS3HM2GX-F1 到顺康电子-SCDHLS1HM1GX-F1 的小区偏移量 CI0 由 0 调整到 6dB,加快两者之间的切换。

案例 7: 切换参数设置不当,频繁切换导致 MOS 值低

问题描述:周围站点状态正常;测试车辆行驶至静渝路,由北向南行驶,主叫占用沙河农牧市场-SCDHLD3HM3JJ-F2 小区,切换至异频小区千禧汽修厂-SCDHLS1HM1JJ-D2 小区,测试车辆继续向南行驶 RSRP 电平衰减至-95dBm,回切至异频沙河农牧市场-SCDHLD3HM3JJ-F2 小区,频繁异频切换导致低 MOS.

处理建议:测试时沙河农牧市场-SCDHLD3HM3JJ-F2 在 RSRP=-88dBm 触发异频切换 A4 事件,建议将基于 A4 的 A2 门限调整为-100dBm。

案例 8: 网络结构不合理,频繁切换导致 MOS 值低

问题描述:周围站点状态正常;UE在"人和商务楼-SCDHLS1HM1QY-D5"和"煤建公司-VCDHLS1HM1QY-D3"两个同频小区之间频繁切换,有异常丢包;问题路段为两个小区的中间位置。

处理建议:对"人和商务楼-SCDHLS1HM1QY-D5"和"煤建公司-VCDHLS1HM1QY-D3"进行 RF 优化,缓解两者间的频繁切换。

案例 9: 越区形成 MOD3 干扰, SINR 差导致 MOS 值低

问题描述: 周围站点状态正常; 服务小区为"东郊分局-VCDHLS0HM1JJ-D1"(频点为 37900, PCI=262, RSRP 为-76.75dBm), 邻区存在 MOD3 干扰小区"创意仓库-SCDHLS1HM1JJ-D1"(频点为 37900, PCI=97, RSRP 为-83.38dBm), 导致 MOS 值偏低。

处理建议: "创意仓库-SCDHLS1HM1JJ-D1" 离问题路段较远(有越区的情况),建议下压问题小区"创意 仓库-SCDHLS1HM1JJ-D1"的下倾角,控制其在问题路段的覆盖。

案例 10: 近距离小区间 MOD3 干扰, SINR 差导致 MOS 值低

问题描述: 周围站点状态正常;测试车辆行驶至静安路,由北向南行驶,主叫占用如家静安店
-SCDHLD3HM3JJ-F2 (PCI=106 RSRP=-87dBm SINR=-0.3)小区,与近距离小区 校园春天
-SCDHLD3HM3JJ-F2 (PCI=361 RSRP=-86dBm)小区之间存在模 3 干扰,SINR 为-10dB 左右,导致
低 MOS。

处理建议:建议将如家静安店-SCDHLD3HM3JJ-F2 和校园春天-SCDHLD3HM3JJ-F2 进行 PCI 优化,解决 MOD3 问题。

案例 11: 天馈接反形成 MOD3 干扰, SINR 差导致 MOS 值低

问题描述: 该处被叫占用高新南凯德世纪名邸-SCDHLS3HM2GX-D1 小区信号,RSRP=-93dBm SINR=-12dB,PCI=270,邻区内有天府一街西段-SCDHLS1HM1GX-D2 小区信号,RSRP=-81dBm,PCI=165,没有切换到该小区,查询后台网管发现高新南凯德世纪名邸-SCDHLS3HM2GX-D1 和天府一街西段-SCDHLS1HM1GX-D2 小区的邻区关系都正常,事件中一直出现 A3 事件,且信令中一直上报测量报告,但是存在 MOD3 干扰严重导致 SINR 很差,导致 MOS 值差。查看工参信息和覆盖情况,发现天府一街西段-SCDHLS1HM1GX-D2 小区覆盖情况不合理,怀疑是扇区接反。

处理建议:核查天府一街西段-SCDHLS1HM1GX 是否存在小区接反情况;如果没有接反,就调整高新南凯德世纪名邸-SCDHLS3HM2GX-D1 和天府一街西段-SCDHLS1HM1GX-D2 的 PCI 解决 MOD3 干扰问题。

案例 12: 主叫 RRC 重建并发生 TAU, 导致被叫 MOS 值低

问题描述:被叫 MOS 较差,但无线环境良好,无频繁切换、RRC 重建,抖动和丢包正常;但主叫先占用东 升宾馆-VCDHLS0HM1CH-D2,异常切换至小区克拉玛依酒店-SCDHLS2HM3JJ-D1(距离切换点 800 米,与车辆行驶方向为背向),随着车辆逐渐远离,且克拉玛依酒店-SCDHLS2HM3JJ-D1 未添加 附近小区:成都集邮公司-SCDHLD3HM3CH-F1 为邻区关系,导致主叫 RSRP、SINR 快速恶化 (RSRP=-122.88dBm, SINR=-14.5dB),从而发生 RRC 重建,并于重建后发生了 TAU,使主被叫 间的语音质量变差,严重影响了 MOS 值。

处理建议:下压小区:克拉玛依酒店-SCDHLS2HM3JJ-D1的下倾角,减弱该小区在问题路段的覆盖。

(4) 核心网/传输:

主要为核心网、传输异常引起 MOS 值差,此类问题暂时缺少有效手段解决。后期将引进 SEQ 平台,届时可以在核心网上查看网络侧信令,协助分析。

案例 1: 注册信令未完成, CSFB 至 2G 导致 MOS 值低

问题描述:周边基站状态正常;该处三分钟内所有 MOS 采样点都在 3.0 以下,MS1 和 MS2 占用美视国际学校-SCDHLS2HM1GX-D3 小区信号,RSRP=-82dBm SINR=7dB,信号质量良好,不存在频繁切换的现象,MS2 一直没收到寻呼消息,16s 之后 MS2 发起重注册请求,还没有收到系统对重注册的请求消息,MS2 走 CSFB 流程,查看 MS2 通话期间语音编码方式采用 AMR12.2K,终端采用窄带编码方式 MOS 值低,最优值基本在 3 左右,导致 MOS 值较差。

处理建议: 需核心网协助排查。

案例 2: 媒体承载丢失, CSFB 至 2G 导致 MOS 值低

问题描述:周边基站状态正常;该处 MS1 占用高新南区桂溪东路 123 号 A 区二-SCDHLS2WM1GX-F1 小区信号,RSRP=-87dBm SINR=8dB,主叫发送 INVITE 消息后,收到系统下发的媒体承载丢失消息,然后 MS1 直接转 CSFB 流程,查看 MS1 通话期间语音编码方式采用 AMR12.2K,终端采用窄带编码方式 MOS 值低,最优值基本在 3 左右,严重影响 MOS 值。

处理建议: 需核心网协助排查。

案例 3: 抖动、丢包异常,导致 MOS 值低

问题描述: 主叫 UE 在西三环路二段(武青东二路口)占用同盛招待所-SCDHLS1HM1WH-D1 时,空口质量良好(RSRP=-72.63,SINR=25.7)MOS 低,在 14:06:11 的 MOS 统计为 2.87,16 秒后再 14:06:28 的 MOS 统计为 2.076,RTP-JITTER=352(抖动时延高),RTP-LOSS-RATE=1.68(丢包率高)。

处理建议: 需传输专业协助排查。

(5) 其他:

除此之外,还有一类特殊问题,那就是: UE 采用 AMR WB 语音编码,RSRP、SINR、抖动、丢包都正常,但 MOS 差。此类问题暂时尚无有效手段解决,暂时只能归类到终端问题。

案例 1: 无线环境良好,但 MOS 值低

问题描述: UE 采用 AMR WB 语音编码,无线环境良好(RSRP 为-85dBm 左右、SINR 在 10.5~12.3dB 之间), 无频繁切换,抖动、丢包正常;周边站点工作正常,无告警。初步判断为为 ATU 设备问题,如: 连接 UE 的音频线松动等。

处理建议:初步判断为 ATU 设备问题,待复测解决。

微信扫描以下二维码,免费加入【5G 俱乐部】,还赠送整套:5G 前沿、NB-loT、4G+(Vol.TE)资料。

