IN THE SPECIFICATION:

Please replace the paragraph beginning at page 7, line 6, as follows:

The benefits of employing sequential deposition are manifold, including flux-independence of layer formation that provides uniformity of deposition independent of the size of a substrate. For example, the measured difference of the layer uniformity and thickness measured between of 200 mm substrate and a 32 300 mm substrate deposited in the same chamber is negligible. This is due to the self-limiting characteristics of chemisorption. Further, the chemisorption characteristics contribute to near-perfect step coverage over complex topography.

Please replace the paragraph beginning at page 8, line 3, as follows:

Although the invention has been described in terms of specific embodiments, one skilled in the art will recognize that various changes to the reaction conditions, i.e., temperature, pressure, film thickness and the like can be substituted, and are meant to be included herein and Further, the sequence of gases being deposited. For example, sequential deposition process may have utilize a different initial sequence. For example, the The initial sequence may include exposing the substrate to the reducing gas before the metal-containing gas is introduced into the processing chamber. In addition, other stacked layers may be deposited, in addition to the refractory-metal layers described above and for purposes other than formation of a barrier layer. Tungsten and other deposition techniques may be employed in lieu of CVD. For example, physical vapor deposition (PVD) techniques, or a combination of both CVD and PVD techniques, may be employed. Therefore, the scope of the invention should not be based upon the foregoing description. Rather, the scope of the invention should be determined based upon the claims recited herein, including the full scope of equivalents thereof.