Real Analysis

Hansong Huang

ECUST

At ECUST

2019.03

积分收敛定理

Levi引理 Fatou定理 Lebesgue控制收敛定理

Levi引理

3.3.1 Levi引理 如果 $f_n \ge 0$, $f_n \in M(X)$, 且 f_n 单 调递增趋于f, 那么 $\int f_n \to \int f$.

3.3.1 Levi引理 如果 $f_n \ge 0, f_n \in M(X), 且 f_n$ 单调递增趋于f, 那么 $\int f_n \to \int f$.

$$\int_X \sum_n f_n = \sum_n \int_X f_n.$$

例: 如果 $f_n \in M(X)$, f_n 单调递增趋于f. 且 $f_n \geq f_0$, $f_0 \in L^1$, 那么 $\int f_n \to \int f$. 例: 如果 $f_n \in M(X)$, f_n 单调递增趋于f. 且 $f_n \geq f_0$, $f_0 \in L^1$, 那么 $\int f_n \to \int f$. 事实: $h \geq 0$, $g \in L^1$, 则 $h + g \in L^1$,且 $\int (h + g) = \int h + \int g$.

例2. 求
$$I = \int_0^\infty \frac{x}{e^x - 1} dx$$
.

$$\frac{x}{e^x - 1} = x \frac{e^{-x}}{1 - e^{-x}} = \dots = \sum_{n=1}^{\infty} x e^{-nx}.$$

由Levi引理,

$$I = \dots = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

演

算:
$$(L) \int_0^\infty x e^{-nx} dx = (R) \int_0^\infty x e^{-nx} dx = \frac{1}{n^2}$$
.

例3 P102. $a_n > 0$. $\sum_n a_n < \infty$.

$$\{r_n: n \ge 1\} = \mathbb{Q} \cap [0,1]$$

例3 P102. $a_n > 0$. $\sum_n a_n < \infty$.

$$\{r_n : n \ge 1\} = \mathbb{Q} \cap [0, 1]$$

$$f(x) = \sum_{n} a_n \frac{1}{\sqrt{|x - r_n|}}, \ 0 < x < 1.$$

证明:f(x) 几乎处处有限.

例3 P102.
$$a_n > 0$$
. $\sum_n a_n < \infty$.

$$\{r_n: n \ge 1\} = \mathbb{Q} \cap [0,1]$$

$$f(x) = \sum_{n} a_n \frac{1}{\sqrt{|x - r_n|}}, \ 0 < x < 1.$$

证明:f(x) 几乎处处有限.

提示: $f \ge 0$, 证明 $\int f < \infty$.

$$\int_0^1 f(x) = \int_0^1 \left(\sum_n a_n \frac{1}{\sqrt{|x - r_n|}}\right) = \sum_n \int_0^1 a_n \frac{1}{\sqrt{|x - r_n|}}$$

记住: 若 $f_n \ge 0$ 可测,要判定 $\sum f_n$ 几乎处处收敛(或证明 $f_n(x) \to 0$, a.e.)只要判定 $\sum \int_{\mathbf{X}} f_n < +\infty$.

Levi引理的证明

3.3.1 Levi引理 如果 $f_n \ge 0, f_n \in M(X), 且 f_n$ 单调递增趋于f, 那么 $\lim \int f_n = \int f$.

≤显然.

$$f_n \leq f$$

$$\int f_n \le \int f.$$

$$\lim \int f_n \le \int f.$$

Levi引理的证明

3.3.1 Levi引理 如果 $f_n \ge 0$, $f_n \in M(X)$, 且 f_n 单调递增趋于f, 那么 $\lim_{n \to \infty} \int f_n = \int f_n$

Step 1. 断言: 对0 < r < 1, $\varphi \le f \perp \varphi \in S^+(X)$ (简单函数),

$$\int r\varphi \le \lim \int f_n.$$

Step 2. 利用 $\int f = \sup \int \varphi$.推出 \geq .

Fatou定理

Fatou定理 若对 $n=1,2,\cdots,f_n\geq 0$ 可测,则 $\int_X \liminf f_n \leq \liminf \int_X f_n.$

Fatou定理 若对 $n = 1, 2, \dots, f_n \ge 0$ 可测, 则

$$\int_X \liminf f_n \le \liminf \int_X f_n.$$

分析

$$\lim\inf f_n = \lim_n \inf_{\underline{k \ge n}} f_k \equiv \lim_n F_n$$

 F_n 单调递增. 由Levi引理,

$$\int \liminf f_n = \lim \int F_n.$$

$$\inf_{k \ge n} f_k = F_n$$

由Levi引理,

$$\int \liminf f_n = \lim \int F_n.$$

$$\int F_n \le \int f_{n+j}, \ j = 1, 2, \cdots$$

$$\inf_{k>n} f_k = F_n$$

由Levi引理,

$$\int \liminf f_n = \lim \int F_n.$$

$$\int F_n \le \int f_{n+j}, \ j = 1, 2, \cdots$$

$$\int F_n \le \liminf_j \int f_{n+j} = \liminf_k \int f_k$$

Homework. f_n 是ℕ上的非负函数,则

$$\sum_{1}^{\infty} \liminf f_n(k) = \liminf \sum_{1}^{\infty} f_n(k).$$

控制收敛定理 f_n 可测,设 $f_n \to f$ a.e.或 $\{f_n\}$ 依测 g_μ 收敛于f,如果存在 $g \in L^1$,使得

$$|f_n| \le g, n = 1, 2, \cdots,$$

则 $f \in L^1$,

$$\int_{X} |f_n - f| \to 0.$$

控制收敛定理 f_n 可测,设 $f_n \to f$ a.e.或 $\{f_n\}$ 依测度 μ 收敛于f,如果存在 $g \in L^1$,使得

$$|f_n| \le g, n = 1, 2, \cdots,$$

则 $f \in L^1$,

$$\int_X |f_n - f| \to 0.$$

Homework: 书上证明.

有界收敛定理 f_n 可测,且一致有界. 设 $f_n \to f$ a.e.或 $\{f_n\}$ 依测度 μ 收敛于f, 如果 $\mu X < \infty$ 则 $f \in L^1$,

$$\int_X |f_n - f| \to 0.$$

另外一种证明. 一致收敛.

控制收敛定理 1. 给出估计,找到控制函数g

- 2. 确认 $g \in L^1$
- 3. 由控制收敛定理,得极限=

例: 定理3.3.6

Thank you!