Multiple Linear Regression (MLR) Tutorial

For this tutorial, we will learn how to fit multiple linear regression (MLR) in R. You will realize that fitting MLR is very similar to fitting SLR.

We will look at data regarding black cherry trees. The data, cherry, come from the openintro package. Researchers want to understand the relationship between the volume (in cubic feet) of these trees and their diameter (in inches, at 54 inches above ground) and height (in feet). Data come from 31 trees in the Allegheny National Forest, Pennsylvania.

library(openintro)
Data<-openintro::cherry</pre>

1. Scatterplot matrix

A scatterplot matrix is useful to create scatterplots involving more than two quantitative variables. We will use the ggpairs() function from the GGally package:

library(GGally)
##scatterplot matrix
GGally::ggpairs(Data)

A few pieces of information are presented in the output. Notice the output is displayed in a matrix format.

- The off-diagonal entries of the output give us the scatterplot and correlation between the corresponding pair of quantitative variables.
 - For example, look at the scatterplot in row 3, column 1 of the output. The corresponding label for the column is diam and the label for the row is volume. This informs us this is a scatterplot for volume on the vertical axis and diam on the horizontal axis. We see a strong positive linear association between these two variables.
 - The correlation between volume and diam is displayed in row 1, column 3. Again, notice the label for the column and row. This correlation is 0.967, which is high.
 - For practice, locate the scatterplot of volume and height and its corresponding correlation. Also locate the scatterplot of diam and height and its corresponding correlation.
- The diagonal entries display the density plot of the corresponding variable. For example, the third diagonal entry displays the density plot for volume. We can see that the distribution is somewhat right skewed as most trees have a volume between 10 and 40 cubic feet.

2. Fit MLR using lm()

To fit multiple linear regression (MLR)

```
##Fit MLR model, using + in between predictors
result<-lm(volume~diam+height, data=Data)</pre>
```

where we list the predictors after ~ with a + operator in between the predictors. Another way would be result<-lm(volume~., data=Data)

The . after \sim informs the lm() function to use every column other than volume in the data frame as predictors.

Just like with simple linear regression (SLR) we can get relevant information using summary():

```
summary(result)
```

```
##
## Call:
## lm(formula = volume ~ diam + height, data = Data)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
  -6.4065 -2.6493 -0.2876 2.2003 8.4847
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -57.9877
                            8.6382
                                    -6.713 2.75e-07 ***
## diam
                 4.7082
                            0.2643
                                    17.816
                                            < 2e-16 ***
                 0.3393
                                     2.607
                                              0.0145 *
## height
                            0.1302
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 3.882 on 28 degrees of freedom
## Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
                  255 on 2 and 28 DF, p-value: < 2.2e-16
```

- The estimated regression equation is $\hat{y} = -57.988 + 4.708 diam + 0.339 height.$
 - The estimated coefficient for diam is interpreted as: the predicted volume of a cherry tree increases by 4.708 cubic feet per inch increase in diameter, while holding height constant.

- The estimated coefficient for height is interpreted as: the predicted volume of a cherry tree increases by 0.339 cubic feet per foot increase in height, while holding diameter constant.
- The R^2 is 0.948. About 94.8% of the variance in volume of cherry trees can be explained by their diameter and height.
- The residual standard error is 3.882. This estimates σ , the standard deviation of the error term.

3. Inference with MLR

Just like SLR, each coefficient is tested against a null hypothesis that $\beta_j = 0$ with a two-sided alternative. The test is significant for both coefficients, so we cannot drop either predictor from the model.

The ANOVA F statistic is 255, with a small p-value. So data supports the claim that our model is useful.

The confidence intervals for the coefficients can be found using confint():

The confidence interval for the mean response and the prediction interval for a new observation given a specific value of the predictors can also be found using predict(). For example, when the diameter is 10 inches and height is 80 feet:

You might realize by now we are using the same functions as we did in SLR.

Note: Obviously, all these calculations are performed and interpreted assuming the regression assumptions are met. Regression assumptions are checked in the same way as in SLR. On your own, as practice, assess the regression assumptions.