

「电计 2203 班 | 周常规知识整理共享

を **37** 日期: 2024-10-18 学科:编译原理

已知文法 G[S]:

$$S \to MH \mid a$$

$$H \to LSo \mid \varepsilon$$

$$K \to dML \mid \varepsilon$$

$$L \to eHf$$

$$M \to K \mid bLM$$

- 1. 求每一非终结符的 FIRST 集和 FOLLOW 集。
- 2. 填写该文法的 LL(1) 分析表。
- 3. 该文法是否为 LL(1) 文法?请解释你的回答。

对于 FIRST、FOLLOW、NULLABLE 集, 定义表示如下:

1. First 集:

$$FIRST(A) = \{ a \mid A \stackrel{*}{\Longrightarrow} aB \}$$

其中, $a \in V_{\mathbb{T}}$ (终结符), $B \in V^*$ (任意符号串), \Longrightarrow 表示「经由任意次推导」。

2. Follow 集:

$$Follow(A) = \{ a \mid S \stackrel{*}{\Longrightarrow} \cdots Aa \cdots \}$$

其中 S 为开始符号, $a \in V_T$ (终结符)。

3. Nullable 集:假设 X 为非终结符。 $X \in \text{Nullable}$,当且仅当 $X \to \varepsilon$ 或者 $X \to \beta_1 \beta_2 \cdots \beta_n$ (其中每个 β_i 均属于 Nullable)。

FIRST(A) 就是非终结符 A 经任意次推导后,可能得到的开头终结符的集合。FOLLOW(A) 就是开始符 S 经任意次推导后,A 可能紧接着的终结符的集合。

1 求 Nullable 集、First 集

容易看出这里面有可能推出空单词 ε 的非终结符,需要先把可推空单词的 非终结符之集合: Nullable 集 求出来。

第一遍迭代容易看出, $H,K\in \text{Nullable}$ 。第二遍迭代,因为 $K\in \text{Nullable}$,所以由规则 5, $M\in \text{Nullable}$ 。第三遍迭代,因为 $M,H\in \text{Nullable}$,所以由规则 1, $S\in \text{Nullable}$ 。因此:

$$NULLABLE = \{S, H, K, M\}$$
 (1)

接下来是 FIRST 集 , 算法如下:

```
Algorithm 1: FIRST 集的计算
```

```
1 初始化: 对所有非终结符 N, First(N) ← Ø /* 「←」表示赋值 */
2 while some sets changed do
      for production p: N \to \beta_1 \beta_2 \cdots \beta_n do
3
          for \beta_i \leftarrow \beta_1 to \beta_n do /* 顺序遍历产生式的每个符号
4
             if \beta_i = a then
5
                 FIRST(N) \leftarrow FIRST(N) \cup \{a\}
6
                 break
             if \beta_i = M then
8
                 FIRST(N) \leftarrow FIRST(N) \cup FIRST(M)
9
                 if M \notin NULLABLE then
10
                     break
11
```

由 NULLABLE 集信息,得到:

- $First(S) = First(M) \cup First(H) \cup \{a\}$
- First(H) = First(L)
- $First(K) = \{d\}$
- First(L) = {e}
- $FIRST(M) = FIRST(K) \cup \{b\}$

多轮迭代后得到各个非终结符的 First 集如下 (第 4 轮结果与第 3 轮完全一致,终止):

非终结符	S	Н	K	L	M
First 集・第 1 轮	$\{a\}$	Ø	$\{d\}$	$\{e\}$	$\{b,d\}$
First 集・第2轮	$\{a,b,d\}$	$\{e\}$	$\{d\}$	$\{e\}$	$\{b,d\}$
First 集・第3轮	$\{a,b,d,e\}$	$\{e\}$	$\{d\}$	$\{e\}$	$\{b,d\}$
First 集・第4轮	$\{a,b,d,e\}$	$\{e\}$	$\{d\}$	$\{e\}$	$\{b,d\}$

表 1: FIRST 集结果

2 求 Follow 集

求 Follow 集 的算法如下:

```
Algorithm 2: FOLLOW 集的计算
```

```
1 初始化:对所有非终结符 N, FOLLOW(N) \leftarrow \emptyset
2 while some sets changed do
       for production p: N \to \beta_1 \beta_2 \cdots \beta_n do
3
           temp \leftarrow \text{Follow}(N)
4
           for \beta_i \leftarrow \beta_n to \beta_1 do /* 逆序遍历产生式的每个符号
5
               if \beta_i = a then
6
                 temp \leftarrow \{a\}
7
               if \beta_i = M then
                    Follow(M) \leftarrow Follow(M) \cup temp
                   if M \notin NULLABLE then
10
                        temp \leftarrow First(M)
11
                    else
12
                        temp \leftarrow \text{First}(M) \cup temp
13
```

算法执行流程:初始时,每个非终结符的 $FOLLOW = \emptyset$ 。在整个算法中,每个非终结符的 FOLLOW 将会越来越充实,不会重置;而 temp 可能会重置。

以下表 2、表 3 是计算 FOLLOW 集的详细过程。计算到第 3 轮时,已经没有任何 FOLLOW 集发生变化。阅读表格时,请依次从上往下阅读,注意盯住每一个符号,不要看串行了。

产生式	β_i	更新 Follow	更新 temp 为
$S \to MH$	-	-	$Follow(S) = \emptyset$
	H	$Follow(H) \leftarrow Follow(H) \cup \emptyset = \emptyset$	$temp \cup First(H) = \{e\}$
	M	$Follow(M) \leftarrow Follow(M) \cup \{e\} = \{e\}$	$temp \cup First(M) = \{b, d, e\}$
$S \rightarrow a$	a	-	$\{a\}$
H o LSo	-	-	$Follow(H) = \emptyset$
	o	-	{o}
	S	$Follow(S) \leftarrow Follow(S) \cup \{o\} = \{o\}$	$temp \cup FIRST(S) = \{a, b, d, e, o\}$
	L	Follow(L) \leftarrow Follow(L) \cup {a, b, d, e, o} = {a, b, d, e, o}	$First(L) = \{e\}$
$H \to \varepsilon$			
$K \to dML$	-	-	$Follow(K) = \emptyset$
	L	$\text{Follow}(L) \leftarrow \text{Follow}(L) \cup \varnothing = \{a, b, d, e, o\}$	$First(L) = \{e\}$
	M	$Follow(M) \leftarrow Follow(M) \cup \{e\} = \{e\}$	$temp \cup First(M) = \{b, d, e\}$
	d	-	$\mid \{d\}$
$K \to \varepsilon$			
$L \rightarrow eHf$	-	-	$Follow(L) = \{a, b, d, e, o\}$
	f	-	{ <i>f</i> }
	H	$Follow(H) \leftarrow Follow(H) \cup \{f\} = \{f\}$	$temp \cup First(H) = \{e, f\}$
	e	-	$\{e\}$
$M \to K$	-	-	$Follow(M) = \{e\}$
	K	$Follow(K) \leftarrow Follow(K) \cup Follow(M) = \{e\}$	$temp \cup First(K) = \{d, e\}$
$M \rightarrow bLM$	-	-	$Follow(M) = \{e\}$
	M	$Follow(M) \leftarrow Follow(M) \cup \{e\} = \{e\}$	$temp \cup First(M) = \{b, d, e\}$
	L	$\operatorname{Follow}(L) \leftarrow \operatorname{Follow}(L) \cup \{b,d,e\} = \{a,b,d,e,o\}$	$First(L) = \{e\}$
	b	-	{b}

表 2: Follow 集的第 1 轮迭代

产生式	β_i	更新 Follow	更新 temp 为
$S \to MH$	-	-	$Follow(S) = \{o\}$
	H	$FOLLOW(H) \leftarrow FOLLOW(H) \cup \{o\} = \{f, o\}$	$temp \cup First(H) = \{e, o\}$
	M	$Follow(M) \leftarrow Follow(M) \cup \{e, o\} = \{e, o\}$	$temp \cup First(M) = \{b, d, e, o\}$
$S \rightarrow a$	a	-	$\{a\}$
H o LSo	-	-	$Follow(H) = \{f, o\}$
	o	-	{o}
	S	$Follow(S) \leftarrow Follow(S) \cup \{o\} = \{o\}$	$temp \cup First(S) = \{a, b, d, e, o\}$
	L	$\texttt{FOLLOW}(L) \leftarrow \texttt{FOLLOW}(L) \cup \{a, b, d, e, o\} = \{a, b, d, e, o\}$	$First(L) = \{e\}$
$H \to \varepsilon$			
$K \to dML$	-	-	$Follow(K) = \{e\}$
	L	$\text{Follow}(L) \leftarrow \text{Follow}(L) \cup \{e\} = \{a, b, d, e, o\}$	$First(L) = \{e\}$
	M	$Follow(M) \leftarrow Follow(M) \cup \{e\} = \{e, o\}$	$temp \cup First(M) = \{b, d, e\}$
	d	-	$\{d\}$
$K \to \varepsilon$			
$L \rightarrow eHf$	-	-	$Follow(L) = \{a, b, d, e, o\}$
	f	-	$\{f\}$
	H	$Follow(H) \leftarrow Follow(H) \cup \{f\} = \{f, o\}$	$temp \cup \mathrm{First}(H) = \{e, f\}$
	e	-	$\{e\}$
$M \to K$	-	-	$Follow(M) = \{e, o\}$
	K	$Follow(K) \leftarrow Follow(K) \cup Follow(M) = \{e, o\}$	$temp \cup \mathrm{First}(K) = \{d, e, o\}$
$M \to bLM$	-	-	$Follow(M) = \{e, o\}$
	M	$Follow(M) \leftarrow Follow(M) \cup \{e, o\} = \{e, o\}$	$temp \cup \text{First}(M) = \{b, d, e, o\}$
	L	$\texttt{Follow}(L) \leftarrow \texttt{Follow}(L) \cup \{b, d, e, o\} = \{a, b, d, e, o\}$	$First(L) = \{e\}$
	b	-	$\{b\}$

表 3: Follow 集的第 2 轮迭代(红色文字代表相比于第 1 轮的 Follow 集的变化)

最终, 计算得到的 FOLLOW 集表如下表 4 所示。能坚持到这里, 很不容易, 不妨给自己点个赞吧!

非终结符	S	Н	K	L	M
Follow 集・第 1 轮	$\{o\}$	$\{f\}$	$\{e\}$	$\{a,b,d,e,o\}$	$\{e\}$
Follow 集・第 2 轮	$\{o\}$	$\{f,o\}$	$\{e,o\}$	$\{a,b,d,e,o\}$	$\{e,o\}$
Follow 集・第3轮	$\{o\}$	$\{f,o\}$	$\{e,o\}$	$\{a,b,d,e,o\}$	$\{e,o\}$

表 4: FOLLOW 集结果

3 求 First_s 集, 下结论

FIRST_S 集 (有时也叫 SELECT 集),表示一条产生式可以推出来的第一个终结符的集合。

```
Algorithm 3: FIRST s 集的计算
   输入: 产生式 p: N \to \beta_1 \beta_2 \cdots \beta_n
   输出: FIRST S(p)
 1 for \beta_i \leftarrow \beta_1 to \beta_n do /* 顺序遍历产生式的每个符号
                                                                                */
       if \beta_i = a then
 2
           FIRST s(p) \leftarrow FIRST\_s(p) \cup \{a\}
 3
           return
 4
       if \beta_i = M then
 5
           FIRST_s(p) \leftarrow FIRST_s(p) \cup FIRST(M)
           if M \notin NULLABLE then
 7
              return
 8
 9 First_s(p) \leftarrow First_s(p) \cup Follow(N)
10 return
```

通过先前的 FIRST 和 FOLLOW 集 (集中列出于表 5), 可以得到每个产生式的 FIRST 8 集, 如表 6 所示。

于是,我们就可以填写 LL(1)分析表了,如表7所示。

	First	Follow
S	$\{a,b,d,e\}$	$\{o\}$
H	$\{e\}$	$\{f,o\}$
K	$\{d\}$	$\{e,o\}$
L	$\{e\}$	$\{a,b,d,e,o\}$
M	$\{b,d\}$	$\{e,o\}$

表 5: FIRST 和 FOLLOW 集结果

	产生式	展开式	结果
1	$First_s(S \to MH)$	$\operatorname{First}(M) \cup \operatorname{First}(H) \cup \operatorname{Follow}(S)$	$\{b,d,e,o\}$
2	$First_s(S \to a)$	-	$\{a\}$
3	$First_s(H \to LSo)$	$\operatorname{First}(L)$	$\{e\}$
4	$First_s(H \to \varepsilon)$	Follow(H)	$\{f,o\}$
5	$First_s(K \to dML)$	-	$\{d\}$
6	$First_s(K \to \varepsilon)$	Follow(K)	$\{e,o\}$
7	$First_s(L \to eHf)$	-	$\{e\}$
8	${\rm First_s}(M \to K)$	$\operatorname{First}(K) \cup \operatorname{Follow}(M)$	$\{d,e,o\}$
9	$First_s(M \to bLM)$	-	{b}

表 6: FIRST_S 集结果

	a	b	d	e	f	0
S	$\rightarrow a$	$\to MH$	$\to MH$	$\to MH$	-	$\rightarrow MH$
H	-	-	-	$\to LSo$	$\to \varepsilon$	$\rightarrow \varepsilon$
K	-	-	$\to dML$	$\rightarrow \varepsilon$	-	$\to \varepsilon$
L	-	-	-	$\to eHf$	-	-
M	-	$\to bLM$	$\to K$	$\to K$	-	$\to K$

表 7: LL(1) 分析表结果

最后判别是不是 LL(1) 文法。

一个上下文无关文法是 LL(1) 文法的充分必要条件是,对每个非终结符 A 的两条产生式 $A \rightarrow \alpha$ 、 $A \rightarrow \beta$ (其中 α , β 不同时 $\stackrel{*}{\Longrightarrow} \varepsilon$) ,均有

$$First_s(A \to \alpha) \cap First_s(A \to \beta) = \emptyset$$

反映在分析表上,就是看是否存在同一表项中至少有 2 个产生式(即构成冲突)。如果没有冲突,那就是 LL(1) 文法;如果有冲突,就要对文法进行等价变换,比如消除左递归和提取左公因子。

通过表 7 可知, 没有冲突, 所以是 LL(1) 文法。

【结论】1. 如表 5 所示; 2. 如表 7 所示; 3. 是 LL(1) 文法。

【点评】这是一道编译原理的大题,考察了 LL(1) 文法的分析方法,即依次求解 Nullable—First—Follow—First_s—LL(1) 分析表。本题过程繁多,持续时间也很长,需要同学们求解时保持清醒,尤其是算 Follow 集时更要打起十二分精神。由于给出了详细过程,本文档篇幅较长。

需要指出的是,本文档采用孙景昊式解法:对于每一个非终结符,默认其 FIRST 集不含 ε , FOLLOW 集不含 # , 可能与《编译原理》课本的结果有所不同。