Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 22/09/2016	Dr. Héctor Fernando Gómez García M.M Clément L. Cariou	Creación del programa para incorporarse en el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
1- Intersección de segmentos de líneas 2- Triangulación de polígonos 3- Búsquedas por rangos 4- Diagramas de Voronoi 5- Envolvente convexa	Principios de automatización y robótica Sistemas de información geográfica Gráficas por computadora 1- Intersección de segmentos de líneas 2- Triangulación de polígonos 3- Búsquedas por rangos 4- Diagramas de Voronoi
	5- Envolvente convexa

Nombre de la asignatura Departamento o Licenciatura

Geometría computacional Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
2 - 2	ID0205	6	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir diferentes técnicas que permiten resolver problemas computacionales que requieren de algoritmos geométricos para su resolución.

Objetivo procedimental

Usar técnicas geométricas y software especializado para la resolución de problemas computacionales que requieran de algoritmos geométricos.

Objetivo actitudinal

Fomentar el espíritu emprendedor y proactivo para el descubrimiento de aplicaciones novedosas de la geometría computacional

Unidades y temas

Unidad I. Intersección de segmentos de líneas

Revisar los principales algoritmos para la evaluación de la intersección de diferentes capas de datos

- 1) Lista de aristas doblemente conectadas
- 2) Cálculo de la intersección de dos subdivisiones
- 3) Operaciones booleanas

Unidad II. Triangulación de polígonos

Aplicar técnicas para la construcción de la triangulación de puntos en espacios bidimensionales y tridimensionales

- 1) Problema del guardián y triangulaciones
- 2) Partición de un polígono en piezas monótonas
- 3) Triangulación de un polígono monótono
- 4) Triangulación de Delaunay.

Unidad III. Búsquedas por rangos

Aplicar algoritmos de búsqueda por rangos respondiendo a consultas en bases de datos espaciales

- 1) Árboles k-dimensionales
- 2) Árboles de rango
- 3) Conjuntos de puntos generales

Unidad IV. Diagramas de Voronoi

Emplear diagramas de Voronoi para la segmentación de conjuntos de datos

- 1) Cálculo del diagrama de Voronoi
- 2) Punto más alejado en un diagrama de Voronoi

Unidad V. Envolvente convexa

Aplicar técnicas para la evaluación de la envolvente convexa de un conjunto de datos

- 1) Algoritmo incremental
- 2) Escaneo Graham
- 3) Divide y conquista
- 4) Envolvente convexa en 3d

Actividades que promueven el aprendizaje

Docente Estudiante

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos.

Realizar foros para la discusión de temas o problemas.

Realizar tareas asignadas

Participar en el trabajo individual y en equipo

Resolver casos prácticos

Discutir temas en el aula

Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales	20
Evidencias equipo	30
Evidencias grupales	20
Total	100

Fuentes de referencia básica

Bibliográficas

- 1. Bezdek, A., (2003), Discrete Geometry, United States: CRC Press.
- 2. Boissonnat, J. D., (2006), Effective Computational Geometry for Curves and Surfaces, United States: Springer.
- 3. De Berg, M., (2011), Computational Geometry: Algorithms and Applications, United States: Springer.
- 4. Devadoss, S. L., (2011), Discrete and Computational Geometry, United States: Princeton University Press.
- 5. Klette, R., (2004). Digital Geometry, United States: Morgan Kaufmann.

Web gráficas

.

Fuentes de referencia complementaria

Bibliográficas

- 1. Boissonnat, J.D., (1998), Algorithmic Geometry, United States: Princeton University Press.
- 2. Preparata, F. P., (1986), Computational Geometry: An Introduction, United States: Springer.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

De preferencia con licenciatura o posgrado en Computación. Opcionalmente Licenciatura o maestría en Matemáticas.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en robótica, sistemas de información geográfica o gráficas por computadora.