Lab 2 Data Definition and Data Manipulation

CSE 4308
DATABASE MANAGEMENT SYSTEMS LAB

1 Data Definition

1.1 Creating a Table

The general syntax for creating a table is as follows:

```
CREATE TABLE table_name
(
attribute1 datatype [ NULL | NOT NULL ],
attribute2 datatype [ NULL | NOT NULL ],
...
);
```

There exist different data types in Oracle. Some of them are as follows:

- char(n): value contains exactly *n* alpha-numeric characters
- varchar2(n): value contains at most *n* alpha-numeric characters
- number: any integer or real numbers
- date: DD-MON-YY format, like '20-JAN-22'

Assume that you want to create a table named 'TEST' with 3 attributes:

```
1. national_id: number type
```

2. name: varchar2 type

3. birth_date: date type

To create this table, you have to write the following query:

```
CREATE TABLE CITIZEN

(
    NATIONAL_ID NUMBER NOT NULL,
    NAME VARCHAR2(50) NOT NULL,
    BIRTH_DATE DATE
);
```

To create a table with constraints, the syntax is given below:

```
CREATE TABLE table_name (
attribute1 datatype [ NULL | NOT NULL ],
attribute2 datatype [ NULL | NOT NULL ],
...,
[CONSTRAINT constraint_name] PRIMARY KEY (primary_attribute1, ...),
[CONSTRAINT constraint_name] CHECK condition
);
```

Primary key is a special column that is able to uniquely identify each record. For example, if we want to create a table called CITIZEN, it might have the NATIONAL_ID as the primary key.

```
CREATE TABLE CITIZEN

(

NATIONAL_ID NUMBER NOT NULL,

NAME VARCHAR2(50) NOT NULL,

AGE INT,

COUNTRY VARCHAR2(20),

CONSTRAINT PK_COURSE PRIMARY KEY(NATIONAL_ID),

CONSTRAINT VALIDITY_CHECK CHECK (AGE > 17 AND COUNTRY= '

BANGLADESH')
);
```

1.2 Droping Tables

To delete the schema, we use:

```
DROP TABLE table_name;
```

It will also delete the information stored in the table.

To delete the table structure with constraints, we generally follow this command:

DROP TABLE table_name CASCADE CONSTRAINTS;

```
DROP TABLE CITIZEN CASCADE CONSTRAINTS;
```

1.3 Altering Tables

To add a new attribute to the table, we use:

```
ALTER TABLE table_name ADD attribute_name datatype;
```

We can even add multiple attributes at the same time:

```
ALTER TABLE table_name ADD (attribute1 datatype, ...);
```

```
ALTER TABLE CITIZEN ADD PHONE_NO VARCHAR2 (12);
```

To delete an attribute from a table, we use:

```
ALTER TABLE table_name DROP COLUMN attribute_name;
```

We can even delete multiple attributes at the same time:

```
ALTER TABLE table_name DROP COLUMN (attribute1, ...);
```

```
ALTER TABLE CITIZEN DROP COLUMN PHONE_NO;
```

To modify the data type of an attribute, we need to ensure that the column is empty. Then we can execute:

ALTER TABLE table_name MODIFY attribute_name new_datatype;

```
ALTER TABLE CITIZEN MODIFY AGE NUMBER(2, 1);
```

To rename an attribute, we use:

ALTER TABLE table_name RENAME COLUMN old_attribute_name TO new_attribute_name;

To rename a table, we use:

ALTER TABLE table_name RENAME TO new_table_name;

2 Data Manipulation

2.1 Inserting Records/Rows into a Table

The general format for inserting a new record is:

```
INSERT INTO TABLE_NAME VALUES (..., ..., ...);
```

We can type the following command to insert new records into our 'TEST' table using positional notation:

```
INSERT INTO CITIZEN VALUES (2015001, 'W', 19, 'Bangladesh');
```

We can insert new records into 'TEST' table following named notation:

```
INSERT INTO CITIZEN (NATIONAL_ID, NAME, AGE, COUNTRY) VALUES
  (2015002, 'X', 23, 'Bangladesh');
```

2.2 Retrieval of Information

The basic SQL syntax of a query is as follows:

```
SELECT ATTRIBUTE1, ATTRIBUTE2
FROM TABLE_NAME
WHERE <CONDITIONAL CLAUSE>;
```

For example, to see the 'national_id' of all citizens from the 'CITIZEN' table:

```
SELECT NATIONAL_ID FROM CITIZEN;
```

To find the information of a citizen following a condition:

```
SELECT NATIONAL_ID FROM CITIZEN WHERE ID = 2015001;
```

To find the information of a citizen following multiple conditions:

```
SELECT NATIONAL_ID FROM CITIZEN WHERE AGE > 21 AND COUNTRY = 'Bangladesh';
```

```
SELECT NATIONAL_ID FROM CITIZEN WHERE AGE > 21 OR NAME = 'W';
```

To find all records and their information:

```
SELECT * FROM CITIZEN;
```

3 Executing SQL Script in SQLPlus

You can create a file with .sql extension that contains your sql statements. Then you can execute it from the SQLPlus command line directly.

Suppose, you have written your SQL statements in a file 'a.sql' saved under 'd:\sample' directory. To execute that script, you have to type:

```
@d:\sample\a.sql
```

4 Lab Task

You have to write all SQL statements in an editor first and save them with .sql extention. Then execute the SQL script.

1. Create a user with username = <C_student_id> and password = cse4308 and grant necessary privileges to log in and execute DDL and DML statements. Then log in as that user.

- 2. Write SQL statement to create a table 'INSTRUCTOR' which has 4 attributes:
 - ID (assign it as Primary Key)
 - NAME
 - DEPT_NAME
 - SALARY (ensure that SALARY is greater than 20000)
- 3. Write SQL statements to insert the following records into 'INSTRUCTOR' table:

ID	NAME	DEPT_NAME	SALARY
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
00456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
03821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

- 4. Write SQL statements to perform the following queries:
 - (a) Display all records of 'INSTRUCTOR' table.
 - (b) Show instructor ID and name only.
 - (c) Find name and department of instructors who have salary more than 70000.
 - (d) Find name and department of instructors who have salary in between 80000 and 10000 (inclusive).
 - (e) Find ID and name of instructors of Comp. Sci. department.
 - (f) Find name and salary of instructors of Finance department.
 - (g) Find ID and name of instructors of Comp. Sci. department or instructors who are paid more than 75000.
 - (h) Find the names of the department.
- 5. Drop the 'INSTRUCTOR' table with all its constraints.