Linear Regression

Shusen Wang

Warm-up: Vector and Matrix

Vector and Matrix

Vector (
$$n$$
-dim)
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
Matrix ($n \times d$)

$$\mathbf{Matrix} \ (n \times d) \qquad \qquad \mathbf{A} \ = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1d} \\ a_{21} & a_{22} & \cdots & a_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nd} \end{bmatrix}$$

Row and columns
$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{:1} & \mathbf{a}_{:2} & \cdots & \mathbf{a}_{:d} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{1:} \\ \mathbf{a}_{2:} \\ \vdots \\ \mathbf{a}_{n:} \end{bmatrix}$$

Vector Norms

- The ℓ_p norm: $\|\mathbf{x}\|_p := (\sum_i |x_i|^p)^{1/p}$.
- The ℓ_2 norm: $\|\mathbf{x}\|_2 = \left(\sum_i x_i^2\right)^{1/2}$ (the Euclidean norm).
- The ℓ_1 norm $\|\mathbf{x}\|_1 = \sum_i |x_i|$.
- The ℓ_{∞} norm is defined by $\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$.

Vector Norms

- The ℓ_2 -distance (Euclidean distance): $||\mathbf{a} \mathbf{b}||_2$ (green line)
- The ℓ_1 -distance (Manhattan distance): $||\mathbf{a} \mathbf{b}||_1$ (red, blue, yellow lines)

Transpose and Rank

Square matrix: a matrix with the same number of rows and columns.

Symmetric: a square matrix **A** is symmetric if $\mathbf{A}^T = \mathbf{A}$.

Rank: the number of linearly independent rows (or columns).

Full rank: a square matrix is full rank if the rank equals to #columns.

Eigenvalue Decomposition

- Let **A** be any $n \times n$ symmetric matrix.
- Eigenvalue decomposition: $\mathbf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^T$.
- Eigenvalues satisfy $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$.
- Eigenvectors satisfy $\mathbf{v}_i^T \mathbf{v}_i = 0$ for all $i \neq j$.
- A is full rank \longleftrightarrow all the eigenvalues are nonzero.

Warm-up: Optimization

Optimization: Basics

Optimization problem: $\min_{\mathbf{w}} f(\mathbf{w})$; s.t. $\mathbf{w} \in \mathcal{C}$.

- $\mathbf{w} = [w_1, \dots, w_d]$: optimization variables
- $f: \mathbb{R}^d \mapsto \mathbb{R}$: objective function
- \mathcal{C} (a subset of \mathbb{R}^d) : feasible set

Optimization: Basics

Optimization problem:

 $\min f(\mathbf{w})$; s.t. $\mathbf{w} \in \mathcal{C}$.

- $\mathbf{w} = [w_1, \cdots, w_d]$: optimization variables
- $f: \mathbb{R}^d \mapsto \mathbb{R}$: objective function
- \mathcal{C} (a subset of \mathbb{R}^d): feasible set

Optimization: Basics

Optimization problem: $\min_{\mathbf{w}} f(\mathbf{w})$; s.t. $\mathbf{w} \in \mathcal{C}$.

- $\mathbf{w} = [w_1, \dots, w_d]$: optimization variables
- $f: \mathbb{R}^d \mapsto \mathbb{R}$: objective function
- \mathcal{C} (a subset of \mathbb{R}^d) : feasible set
- $\mathbf{w}^* = \operatorname{argmin} f(\mathbf{w})$ is the optimal solution to the problem
 - $f(\mathbf{w}^*) \le f(\mathbf{w})$ for all the vectors \mathbf{w} in the set \mathcal{C} .

The Linear Regression Task

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

1-dim (d=1) example:

Solution:

$$y_i \approx 0.15 x_i + 5.0$$

The Linear Regression Task

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

Question (regard training): how to compute \mathbf{w} and \mathbf{b} ?

The Linear Regression Task

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

Method: least squares regression.

$$\min_{\mathbf{w},b} L(\mathbf{w},b), \quad \text{where } L(\mathbf{w},b) = \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{w} + b - y_{i})^{2}$$

$$\min_{\mathbf{w},b} L(\mathbf{w},b), \quad \text{where } L(\mathbf{w},b) = \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{w} + b - y_{i})^{2}$$

$$\min_{\mathbf{w},b} L(\mathbf{w},b), \quad \text{where } L(\mathbf{w},b) = \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{w} + b - y_{i})^{2}$$
Intercept

$$\min_{\mathbf{w},b} L(\mathbf{w},b), \quad \text{where } L(\mathbf{w},b) = \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{w} + b - y_{i})^{2}$$

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \sum_{i=1}^{n} (\bar{\mathbf{x}}_{i}^{T}\bar{\mathbf{w}} - y_{i})^{2}$$

- Define $\bar{\mathbf{x}}_i = [\mathbf{x}_i; 1] \in \mathbb{R}^{d+1}$
- Define $\overline{\mathbf{w}} = [\mathbf{w}, b] \in \mathbb{R}^{d+1}$
- \rightarrow $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} = \bar{\mathbf{x}}_i^T \bar{\mathbf{w}}$

• The optimization model:

Matrix form:

 $n \times 1$

 $n \times (d+1)$ $n \times 1$

• The optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \ \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Tasks

Methods

Algorithms

Linear Regression **Least Squares Regression**

LASSO

7

Least Absolute Deviations

• The optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \ \left| \left| \overline{\mathbf{X}} \ \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Tasks

Methods

Algorithms

Linear Regression **Least Squares Regression**

ASSO

Least Absolute Deviations

Analytical Solution

Gradient Descent (GD)

Conjugate Gradient (CG)

• Solve the optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \ \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Gradient:
$$\frac{\partial ||\mathbf{X} \mathbf{w} - \mathbf{y}||_{2}^{2}}{\partial \mathbf{w}} = 2(\overline{\mathbf{X}}^{T} \overline{\mathbf{X}} \overline{\mathbf{w}} - \overline{\mathbf{X}}^{T} \mathbf{y})$$

Algorithms

Analytical Solution

Gradient Descent (GD)

• Solve the optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \ \left| \left| \overline{\mathbf{X}} \ \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Gradient:
$$\frac{\partial ||\mathbf{X} \mathbf{w} - \mathbf{y}||_{2}^{2}}{\partial \mathbf{w}} = 2(\overline{\mathbf{X}}^{T} \overline{\mathbf{X}} \overline{\mathbf{w}} - \overline{\mathbf{X}}^{T} \mathbf{y}) = \mathbf{0}$$

Algorithms

Analytical Solution

1st-order optimal condition

Gradient Descent (GD)

• Solve the optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \ \left| \left| \overline{\mathbf{X}} \ \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Gradient:
$$\frac{\partial ||\mathbf{X} \mathbf{w} - \mathbf{y}||_{2}^{2}}{\partial \mathbf{w}} = 2(\overline{\mathbf{X}}^{T} \overline{\mathbf{X}} \overline{\mathbf{w}} - \overline{\mathbf{X}}^{T} \mathbf{y}) = \mathbf{0}$$

Normal equation: $\overline{\mathbf{X}}^T \overline{\mathbf{X}} \overline{\mathbf{w}} = \overline{\mathbf{X}}^T \mathbf{y}$

Assume $\overline{\mathbf{X}}^T\overline{\mathbf{X}}$ is full rank.

Analytical solution: $\overline{\mathbf{w}} = (\overline{\mathbf{X}}^T \overline{\mathbf{X}})^{-1} \overline{\mathbf{X}}^T \mathbf{y}$

Algorithms

Analytical Solution

Gradient Descent (GD)

• Solve the optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \ \left| \left| \overline{\mathbf{X}} \ \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Gradient:
$$\frac{\partial ||\mathbf{X} \mathbf{w} - \mathbf{y}||_{2}^{2}}{\partial \mathbf{w}} = 2(\overline{\mathbf{X}}^{T} \overline{\mathbf{X}} \overline{\mathbf{w}} - \overline{\mathbf{X}}^{T} \mathbf{y}) = \mathbf{0}$$

Gradient descent repeats:

- 1. Compute gradient: $\mathbf{g}_t = \overline{\mathbf{X}}^T \overline{\mathbf{X}} \ \overline{\mathbf{w}}_t \overline{\mathbf{X}}^T \mathbf{y}$
- 2. Update: $\overline{\mathbf{w}}_{t+1} = \overline{\mathbf{w}}_t \alpha_t \ \mathbf{g}_t$

Algorithms

Analytical Solution

Gradient Descent (GD)

• Solve the optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Convergence: after $O\left(\kappa\log\frac{1}{\epsilon}\right)$ iterations,

$$\left|\left|\overline{\mathbf{X}}\left(\overline{\mathbf{w}}_{t}-\overline{\mathbf{w}}^{\star}\right)\right|\right|_{2}\leq\epsilon\left|\left|\overline{\mathbf{X}}\left(\overline{\mathbf{w}}_{0}-\overline{\mathbf{w}}^{\star}\right)\right|\right|_{2}.$$

 $\kappa = \frac{\lambda_{\max}(\mathbf{X}^T\mathbf{X})}{\lambda_{\min}(\mathbf{X}^T\mathbf{X})}$ is the condition number.

Algorithms

Analytical Solution

Gradient Descent (GD)

• Solve the optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Convergence: after $O\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$ iterations,

$$\left|\left|\overline{\mathbf{X}}\left(\overline{\mathbf{w}}_{t}-\overline{\mathbf{w}}^{\star}\right)\right|\right|_{2}\leq\epsilon\left|\left|\overline{\mathbf{X}}\left(\overline{\mathbf{w}}_{0}-\overline{\mathbf{w}}^{\star}\right)\right|\right|_{2}.$$

$$\kappa = \frac{\lambda_{\max}(\mathbf{X}^T \mathbf{X})}{\lambda_{\min}(\mathbf{X}^T \mathbf{X})}$$
 is the condition number.

The pseudo-code of CG is available at the Wikipedia.

Algorithms

Analytical Solution

Gradient Descent (GD)

• Solve the optimization model:

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \ \left| \left| \overline{\mathbf{X}} \, \overline{\mathbf{w}} - \mathbf{y} \right| \right|_2^2$$

Tasks

Methods

Algorithms

Linear Regression **Least Squares Regression**

LASSO

Least Absolute Deviations

Analytical Solution

Gradient Descent (GD)

Linear Regression for Housing Price

Linear Regression for Housing Price

