Gedächtnisklausur SS 2023 ○ Infi 1

Die erste Aufgabe sind immer Thesenblöcke, an die kann ich mich aber nicht mehr erinnern.

Die Arbeitszeit beträgt 60 Minuten.

ugelassene **Hilfsmittel**: die Formelsammlung des Lehrstuhls ohne eigene Kommentare (angeheftet an die Klausur), Taschenrechner (nicht programmierbar).

Aufgabe	1	2	3	4	Total
Punkte	8	16	16	5	45
erreichte Punkte					

3

3

- 1. Ein Tagesgeldkonto zahlt Ihnen 3,5% Zinsen p.a. nachschüssig, inklusive Zinseszinsen.
 - (a) Sie haben heute 8000 EUR, welchen Betrag haben Sie nach 40 Jahren?
 - (b) Sie haben heute 0 EUR, aber nach 40 Jahren möchten Sie 30000 EUR auf Ihrem Konto haben. Wie hoch muss Ihre jährliche Einzahlung sein, damit Sie dieses Ziel erreichen?
 - (c) Sie haben heute 0 EUR, zahlen aber jeden Monat 25 EUR und bekommen 0,6% pro Monat vorschüssig, inklusive Zinseszinsen. Wie hoch ist Ihr Kontostand nach 40 Jahren? Welche effektive Verzinsung haben Sie pro Jahr?

Lösung:

- (a) $8000 \cdot (1+0,035)^{40} = 31674,08 \text{ EUR}$
- (b) Wir brauchen den Rentenendwertfaktor $REF = RBF \cdot q^n$ mit q = 1,035:

$$RBF = \frac{q^n - 1}{q^n \cdot (q - 1)} = \frac{1,035^{40} - 1}{1,035^{40} \cdot 0,035} = 21,3551$$

$$REF = 21,3551 \cdot 1,035^{40} = 84,55$$

Damit ist die jährliche Einzahlung $\frac{30000}{84,55}=354,82$

(c) Es gibt $12 \cdot 40 = 480$ Monate. Analog zu (b):

$$RBF = \frac{q^n - 1}{q^n \cdot (q - 1)} = \frac{1,006^{480} - 1}{1,006^{480} \cdot 0,006} \cdot 1,006 = 158,1734$$

$$REF = 158,1734 \cdot 1,006^{480} = 2793.5994$$

Der Kontostand ist dann $25 \cdot 2793.5994 = 69839.99$. Die effektive Verzinsung ist

$$r = 1,006^{12} - 1 = 0,07$$

|2|

6

1

3

Laufzeit	Preis		
1	97,54 EUR		
3	89,62 EUR		

- (a) Ermitteln Sie die Effektivverzinsung der beiden Anleihen.
- (b) Welchen Preis hat eine 3-jährige Anleihe mit einem Kuponzins von 4% und einem Nennwert von 1000 EUR? Nutzen Sie das Duplizierungsportfolio und ermitteln Sie den effektiven Zins einer zweijährigen Nullkupon-Anleihe mittels linearer Interpolation.
- (c) Wie heißt das finanzwirtschaftliche Prinzip, welches Sie in (b) benutzt haben?
- (d) Welchen Preis hat eine Kuponanleihe mit 4% Kupon, einer Effektivverzinsung von 3,61% p.a., einem Nennwert von 1000 EUR und einer Laufzeit von 1,5 Jahren, die ihren Kupon halbjährlich auszahlt?
- (e) Was ist der Unterschied zwischen Clean und Dirty Price? Und welchen sollte man benutzen, um Preisunterschiede zu untersuchen?

Lösung:

(a)
$$r_1 = \frac{100}{97,54} - 1 = 2,52\%$$

 $r_3 = \sqrt[3]{\frac{100}{89,62}} - 1 = 3,72\%$

(b) Lineare Interpolation für $r_2 = \frac{r_3 - r_1}{2} = \frac{2.52\% + 3.72\%}{2} = 3,12\%$. Der Preis einer solchen Anleihe ist dann $\frac{100}{1.0312^2} = 94,04$ EUR. Duplizierungsportfolio:

Laufzeit	Preis	CF_1	CF_2	CF_3	Stückzahl
1	97,54	40			0,4
2	94,04		40		0,4
3	89,62			1040	10,4
Kuponanleihe	1008,68	40	40	1040	1

- (c) Law of One Price / Gesetz des einheitlichen Preises
- (d) Der Effektivzins für ein halbes Jahr ist $r_{halb} = \sqrt{1,0361} 1 = 0,0179$. Der Preis ist dann

$$P_0 = \frac{20}{1,0179} + \frac{20}{1,0179^2} + \frac{1020}{1,0179^3}$$
$$= 1006,08$$

(e) Dirty Price enthält aufgelaufene Stückzinsen, welche vorhersagbarem Muster folgen, Clean Price enthält keine aufgelaufenen Stückzinsen wodurch unvorhergesehene Änderungen der Preise durch eine Änderung der Effektivverzinsung betrachtet werden

9

- 3. Ein Projekt kostet sie 150 Millionen EUR Anschaffungskosten. Dazu kommen 4 Millionen für Instandhaltung und 65 Millionen für Herstellungskosten in den ersten 2 Jahren. Ihr Umsatz wird durch dieses Projekt 100 Millionen im ersten Jahr betragen, allerdings sinkt der Umsatz in den nachfolgenden Jahren um 5%. Sie können das Projekt linear über 10 Jahre abschreiben, ihr Kalkulationszinssatz beträgt 7% und ihr Steuersatz 30%. Sie erwarten, dass ihre Free Cash Flows nach dem zweiten Jahr um 10% pro Jahr sinken. Zudem wissen Sie, dass ihre Forderungen aus Lieferungen und Leistungen im ersten Jahr 10% des Umsatzes und im zweiten Jahr 0% des Umsatzes betragen werden. Ihre Verbindlichkeiten werden 17% der Herstellungskosten im ersten Jahr und 0% der Herstellungskosten im zweiten Jahr betragen.
 - (a) Berechnen Sie die Free Cash Flows für die Jahre 1 und 2 und den Fortführungswert.
 - (b) Wie hoch ist der Kapitalwert des Projektes und sollte man das Projekt durchführen?
 - (c) Das Projekt könnte nach den 2 Jahren für 120 Millionen liquidiert werden, sollte man das Projekt nach 2 Jahren fortführen oder liquidieren?
 - (d) Angenommen, Sie könnten das Projekt in weniger als 10 Jahren abschreiben. Steigt oder sinkt dadurch der FCF? Begründen Sie, ohne den FCF explizit auszurechnen.

Lösung:

(a) Zuerst müssen die Änderungen im Nettoumlaufvermögen berechnet werden:

	t = 1	t=2
Forderungen	10	0
Δ Forderungen	10	-10
Verbindlichkeiten	11,05	0
Δ Verbindlichkeiten	11,05	-11,05
Δ NUV	-1,05	1,05

Die Abschreibung ist $\frac{150}{10} = 15$ und damit sind die FCF:

	t=1	t=2
Umsatz	100	95
- Kosten	65	65
- Instandhaltung	4	4
- Abschreibung	15	15
= EBIT	16	11
- Steuern	4,8	3,3
= NOPAT	11,2	7,7
+ Abschreibung	15	15
- Δ NUV	-1,05	1,05
= FCF	27,25	21,65

2

2

Der Fortführungswert am Ende von Jahr 2 ist

Fortführungswert =
$$\frac{FCF_3}{r-g} = \frac{21,65\cdot 0,9}{0,07-(-0,1)}$$
$$= 114,62$$

(b) Der Kapitalwert ist

$$KW = -150 + \frac{27,25}{1,07} + \frac{21,65 + 114,62}{1,07^2}$$
$$= -5.51$$

Der Kapitalwert ist unter 0, daher sollte das Projekt nicht durchgeführt werden.

- (c) Da Liquidationserlös < Fortführungswert, ist die Fortführung der Fertigungsanlage vorteilhafter
- (d) Eine Abschreibung über weniger als 10 Jahre führt zu einem höheren FCF, da Steuervorteil durch geringeres EBIT

- 4. Eine Aktie kostet heute 30 EUR und gibt einmal pro Jahr eine Dividende von 1,50. Der Zins betrage $r_E=8\%$.
- 5

- (a) Wie hoch ist die Dividendenrendite?
- (b) Wie hoch ist der Preis der Aktie nach dem Dividend-Discount-Modell, wenn wir von einem Dividendenwachstum von 2% ausgehen? Warum ist in manchen Fällen das Dividend-Discount-Modell nicht geeignet?
- (c) In der Aktienbewertung nutzt man häufig auch Multiplikatoren (Kurs-Buchwert-Verhältnis, etc.). Welchen Vorteil bieten diese?

Lösung:

(a)
$$r = \frac{1,50}{30} = 0,05$$

1

1

(b) Die Dividende wird im zweiten Jahr 1, $50 \cdot 1, 02 = 1, 53$ betragen. Dann sollte der Preis heute sein:

$$P_0 = \frac{1,50}{1,08} + \frac{\frac{1,53}{0,08 - 0,02}}{0,08}$$
$$= 25$$

Das Dividend-Discount-Modell berücksichtigt keine Aktienrückkäufe.

(c) Basieren auf tatsächlichen Marktpreisen (und nicht auf Prognosen)