

ELG 5255: Applied Machine Learning

Assignment:1

BY: Group 5

Anas Elbattra

Ahmed Badawy

Esraa Fayad

Part 1→ Support Vector Machines

We used a scatter plot to show the distribution of data before processing for the three classes.

```
def define_marker (x_tr,y_train , x_test,y_test):
    unique_values = np.unique(y_train)

for i, color in zip(range(@,len(unique_values)), colors):
    idx = np.where(y_train == i)
    plt.scatter(x_tr[idx, 0], x_tr[idx, 1], c=color, label='Class ' + str(i), edgecolors='black', marker='o')

for i, color in zip(range(@,len(unique_values)), colors):
    idx = np.where(y_test == i)
    plt.scatter(x_test[idx, 0], x_test[idx, 1], c=color, label='Class ' + str(i) + ' (Test)', edgecolors='black', marker='x')
```


a.

Applying the default SVM classifier

SVC () \rightarrow For <u>classification</u> problems.

```
Default_classifier = SVC()
Default_classifier.fit(X_Train, y_Train)

y_Pred_test = Default_classifier.predict(X_Test)
y_pred_train = Default_classifier.predict(X_Train)
```

• Confusion matrices for training and test datasets

```
def conf_matrix (x,y,title,show_report=False):
    cm = confusion_matrix(x, y)
    plt.figure(figsize=(6, 4))
    sns.heatmap(cm, annot=True, fmt='d', cmap=[ 'grey','black'], cbar=False)
    plt.title(f'Confusion Matrix - {title} Data')
    plt.xlabel('Predicted Class')
    plt.ylabel('True Class')
    plt.show()
    if not show_report:
        print("Accuracy: ", accuracy_score(x, y))

if show_report:
    report = classification_report(x, y)
    print("Classification Report:")
    print(report)
    plt.show()
```

• The conf_matrix () function calculates and displays a confusion matrix for predicted and true class labels, and prints the accuracy and classification report based on the show_report parameter.

• The **Output** of Confusion matrix for training and test sets.

- Decision surfaces / boundaries for multi-class classification by using blue, red, and orange colors to plot each class.
- Training data points should be marked different than test data points for visualization of decision surfaces.

```
colors = ['blue', 'red', 'orange']
```

- (plot_decision_boundary_All_data) Function -→ Takes in multiple models, training and testing data, a title, and an optional label. The function plots the decision boundary for the given models using the training data and overlays it on a scatter plot of the training and testing data.
- The xx and yy variables are created using np.meshgrid to create a grid of points that cover the range of the training data.
- The if statement checks if there is more than one model and if so, it stacks the predictions of each model and takes the argmax to determine the predicted class for each point on the grid. If there is only one model, it simply makes predictions for each point on the grid.
- The plt.contourf function is used to fill in the regions between the decision boundaries with different colors based on the predicted class.
- The plt.contour function is used to draw the decision boundaries themselves. The plt.xlabel and plt.ylabel functions set the labels for the x and y axes, respectively.

The output of decision boundary for all data — Default SVM

plot_decision_boundary_All_data([Default_classifier],X_Train,y_Train,X_Test,y_Test, 'SVM Default Decision Surface')

b. One-vs-Rest \rightarrow SVM

convert three classes to two classes

```
def binary_classification (Y_train):
    y_binary0 =np.where((Y_train == 1) | (Y_train == 2), 0, 1)
    y_binary1 =np.where((Y_train == 0) | (Y_train == 2), 0, 1)
    y_binary2 =np.where((Y_train == 0) | (Y_train == 1), 0, 1)
    return y_binary0,y_binary1,y_binary2
```

The function (binary_classification) creates three binary classification targets based on the original target variable values. The first binary target (y_binary0) is created by setting the values to 0 if the original target variable values are 1 or 2, and 1 otherwise. The second binary target (y_binary1) is created by setting the values to 0 if the original target variable values are 0 or 2, and 1 otherwise. The third binary target (y_binary2) is created by setting the values to 0 if the original target variable values are 0 or 1, and 1 otherwise.

To classify each class with the other two classes

```
def One_Vs_rest(X_Train,Y_tain,X_test,Y_test,class_num,model):
    yTrain_binary=binary_classification(Y_tain)[class_num]
    yTest_binary=binary_classification(Y_test)[class_num]

model=model.fit(X_Train, yTrain_binary)
    y_Train_pred = model.predict(X_Train)
    y_pred = model.predict(X_Test)
    conf_matrix(yTrain_binary, y_Train_pred,"Training")
    conf_matrix(yTest_binary, y_pred,"Testing")

return y_Train_pred,y_pred,model
```

One_Vs_rest function takes five parameters: X_Train, Y_tain, X_test, Y_test, class_num, and model. The function first calls the binary_classification function to create a binary target variable for the specified class_num. It then fits the model to the training data (X_Train and yTrain_binary) and makes predictions on both the training and testing data. The function also calls a conf_matrix function to generate confusion matrices for both the training and testing data. The conf_matrix function is not shown in this code snippet, so it is unclear what it does or how it works. Finally, the function returns the predicted values for the training and testing data, as well as the fitted model.

Confusion matrices for both training and test datasets----Zero with other

Output for SVM

 $plot_decision_boundary_All_data([model_\theta], X_Train, \ y_Train, X_Test, y_Test, "SVM \ Decision \ Surface \ class \ zero \ with \ other")$

Confusion matrices for both training and test datasets-----ONE with other

The output for SVM --- ONE with other

plot_decision_boundary_All_data([model_1],X_Train, y_Train,X_Test,y_Test,"SVM Decision Surface class one with other")

Confusion matrices for both training and test datasets-----Two with other

The output for SVM --- TWO with other

plot_decision_boundary_All_data([model_3],X_Train, y_Train,X_Test,y_Test,"SVM Decision Surface class two with other")

One-vs-Rest → Perceptron

Confusion matrices for both training and test datasets----Zero with other

The output for perceptron--- Zero with other

 $plot_decision_boundary_All_data([model_Per_0], X_Train, \ y_Train, X_Test, y_Test, "Perceptron Decision Surface class Zero with other")$

Confusion matrices for both training and test datasets-----ONE with other

The output for perceptron--- **ONE** with other

plot_decision_boundary_All_data([model_Per_1],X_Train, y_Train,X_Test,y_Test,"Perceptron Decision Surface class one with other")

Confusion matrices for both training and test datasets-----TWO with other

plot_decision_boundary_All_data([model_Per_3],X_Train, y_Train,X_Test,y_Test,"Perceptron Decision Surface class two with other")

c. Aggregation step (the one-vs-rest strategy for SVM).

```
Function concat

• To aggregate three list

def concat(11, 12, 13):
    combined_array = np.vstack((11, 12, 13))
    result = np.argmax(combined_array, axis=0)
    return result

Aggregate results from the one-vs-rest strategy for SVM

argmax_train=concat(train_0,train_1,train_2)
    argmax_test=concat(test_0,test_1,test_2)
```

plot_decision_boundary_All_data([model_0,model_1,model_3],X_Train, y_Train,X_Test,y_Test,'SVM Decision Surface After Aggregate')

Confusion matrix for aggregated SVM ---TRAINING SET

Confusion matrix for aggregated SVM ---TESTING SET

Aggregation step (the one-vs-rest strategy for perceptron).

```
Aggregate results from the one-vs-rest strategy for perceptron

argmax_train_prc=concat(train_Per_0,train_Per_1,train_Per_2)
argmax_test_prc=concat(test_Per_0,test_Per_1,test_Per_2)
```

plot_decision_boundary_All_data([model_Per_0,model_Per_1,model_Per_3],X_Train, y_Train,X_Test,y_Test,'Perceptron Decision Surface After Aggregate')

Confusion matrix for aggregated perceptron---TRAINING SET

Confusion matrix for aggregated perceptron---TESTING SET

d.

- The reason to why SVM performance in section (a) is different from the aggregated performance of SVM in section (c)?
 - ✓ Because we use in one Vs rest SVM With Kernal Linear to classify between each two classes but in a we use Default SVM that more complex than linear and give more Accuracy but when we use SVM (Linear) in One vs Rest with C=100 we get 100 % Accuracy.

Refine the default SVM by selecting the appropriate parameter


```
argmax_train=concat(train_0,train_1,train_2)
argmax_test=concat(test_0,test_1,test_2)
```

plot_decision_boundary_All_data([model_0,model_1,model_3],X_Train, y_Train,X_Test,y_Test,'SVM Decision Surface After Aggregate with C=100')

Part 2 → KNeighborsClassifier

Firstly, we named the columns with these names and we considered the buying_decision as our target column.

```
header=['buying_price','maint_cost','car_doors','car_seaters','boot_space','safety','buying_decision']
df.columns=header
df.head()

✓ 0.0s
```

The Output

	buying_price	maint_cost	car_doors	car_seaters	boot_space	safety	buying_decision
0	vhigh	vhigh	2	2	small	low	unacc
1	vhigh	vhigh	2	2	small	med	unacc
2	vhigh	vhigh	2	2	small	high	unacc
3	vhigh	vhigh	2	2	med	low	unacc
4	vhigh	vhigh	2	2	med	med	unacc

Requirements of the task

- a. We shuffled the dataset and split the dataset into a
 - 1) A training set with **1000** samples
 - 2) Validation set with **300** samples
 - 3) Testing set with 428 samples.

```
shuffled_df = df.sample(frac=1, random_state=42)

train_data, remaining_data = train_test_split(shuffled_df, train_size=1000, random_state=42)

valid_data, test_data = train_test_split(remaining_data, train_size=300, random_state=42)

    0.0s
```

b- Transforming the string values into numbers with LabelEncoder.

Make Label Encoding for testing, validation, and training.

```
encoding(train_data)
encoding(valid_data)
encoding(test_data)

✓ 0.0s
```

The Output of Training Data encoding

train_data ✓ 0.0s											
	buying_price	maint_cost	car_doors	car_seaters	boot_space	safety	buying_decision				
1299	1	3	0	0	1	1	2				
1302	1	3	0	0	0	1	2				
320	3	2	3	2	1	0	0				
595	0	0	2	0	2	2	2				
1499	1	0	3	1	1	0	3				
945	2	3	3	0	2	1	2				
4	3	3	0	0	1	2	2				
665	0	2	0	1	0	0	0				
488	0	3	2	0	2	0	2				
338	3	1	0	1	1	0	0				
1000 rows × 7 columns											

c- We used different numbers of training samples to show the impact of a number of training samples as required.

We used 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the training set for 10 separate KNN classifiers.

```
def mult KNN():
   validation scores=[]
   testing_scores=[]
   max_valid_score_index = -1
   max_test_score_index = -1
    for i in training_proportions:
       num_train_samples = int(i * len(train_data))
       target_Xtrain = train_data.iloc[:num_train_samples, :-1]
       target_Ytrain = train_data.iloc[:num_train_samples, -1]
       y_valid_pred,y_test_pred=knn(target_Xtrain,target_Ytrain,X_valid_data,X_test_data,k=2)
       validation_acc = accuracy_score(y_valid_data, y_valid_pred)
       validation_scores.append(validation_acc)
       if(validation_acc == max(validation_scores)):
           max_valid_score_index = training_proportions.index(i)
       testing_acc = accuracy_score(y_test_data, y_test_pred)
       testing scores.append(testing acc)
       if(testing acc == max(testing scores)):
           max_test_score_index = training_proportions.index(i)
    print("valid", max(validation_scores))
    print("test",max(testing (variable) max_test_score_index: int
    print("max_valid_index",
   print("max_test_index", max_test_score_index)
   plt.plot(training_proportions, validation_scores, label='Validation')
   plt.plot(training_proportions, testing_scores, label='Testing')
   plt.xlabel('Training Set Proportion')
   plt.ylabel('Accuracy Score')
   plt.title("Training set for 10 separate KNN classifiers and show their performance")
   plt.legend()
   plt.show()
mult KNN()
```

- Inside the loop, calculate the number of training samples based on the current proportion.
- Extract the target features (target_Xtrain) and target labels (target_Ytrain) from the train_data DataFrame up to the calculated number of samples.
- Calculate the accuracy scores for the validation set by comparing the predicted labels
 (y_valid_pred) with the true labels (y_valid_data) using the accuracy_score () function. Append
 the score to the validation_scores list.
- It shows 10 scores for each training sample in the graph.

d- Using 100% of training samples, try to find the best K value, and show the accuracy curve on the validation set when K varies from 1 to 10.

```
def Check_k():
   K_proportions = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
   validation_scores=[]
   testing_scores=[]
   for i in K_proportions:
       y\_valid\_pred, y\_test\_pred=knn(x\_train\_data, y\_train\_data, X\_valid\_data, X\_test\_data, k=i)
       validation_acc = accuracy_sco (variable) y_test_data: Any )
       validation_scores.append(vali
       testing_acc = accuracy_score(y_test_data, y_test_pred)
       testing scores.append(testing acc)
   plt.plot(K_proportions, validation_scores, label='Validation')
   plt.xlabel('K Set Proportion')
   plt.ylabel('Accuracy Score')
   plt.legend()
   plt.title("The accuracy curve on the validation set when K varies from 1 to 10")
   plt.show()
Check_k()
```

e- Conclusions from the experiments of questions (c) and (d).

We noticed that the optimal number of training data is 600 because achieve the highest accuracy

We noticed that the optimal k for validating the set is 5 because achieve the highest accuracy

