AGs: Técnicas de Mutación

Introducción

Mutación = operador asexual

- ► Considerada como operador secundario en los AGs canónicos (uso menos frecuente que la cruza)
- ► En la práctica: tasa de mutación recomendada entre 0.001 y 0.01 para la representación binaria

Sin embargo, algunas propuestas para uso de tasas de mutación dinámicas

- ► Altas al inicio de la búsqueda
- ► Decremento exponencial durante la búsqueda

Introducción

Otra propuesta

• $p_m = 1/L$ (donde L es la longitud de la cadena cromosómica) = límite inferior para un porcentaje óptimo de mutación

Aspecto teórico

Temas frecuentes de investigación y debate en la comunidad de computación evolutiva

Introducción

Mutación clásica para cadenas binarias: bit-flip

Para otras clases de representación, procesos menos triviales:

- Permutaciones
- Programación Genética
- Representación real

Permutaciones

Mutación para permutaciones

Mutación por inserción

- Se selecciona un valor en forma aleatoria y se le inserta en una posición arbitraria
- Ejemplo

Dado el individuo P = 9 4 2 1 5 7 6 10 3 8

Suponemos que elegimos la posición 7

decidimos mover ese valor a la posición 2

P'= 9 6 4 2 1 5 7 10 3 8

Mutación para permutaciones

Mutación por desplazamiento

- ► Generalización de la mutación por inserción
- ► En vez de mover un solo valor, se cambian de lugar varios a la vez

Ejemplo

Mutación para permutaciones

Mutación por intercambio recíproco (swap mutation)

Se seleccionan dos puntos al azar y se intercambian los valores de estas posiciones

Ejemplo

Dado el individuo P= 9 4 2 1 5 7 6 10 3 8

Suponemos que las posiciones seleccionadas son 2 y 8

Conseguimos P'=9 10 2 1 5 7 6 4 3 8

<u>Nota</u>: existe una versión en la que sólo se intercambian posiciones consecutivas

Cruza vs. Mutación

Poder exploratorio de la mutación (caso binario: bit-flip)

- ► Porcentaje de mutación = 0: no hay ninguna alteración
- ► Porcentaje de mutación = 1: la mutación crea siempre el complemento del individuo original
- ► Porcentaje de mutación = 0.5: alta probabilidad de alterar fuertemente el esquema de un individuo

En otras palabras

- ightharpoonup Poder de alteración de la mutación controlable gracias a P_m
- ► Capacidad de exploración puede hacerse equivalente a la de la cruza

Cruza vs. Mutación

Tipos de exploración efectuada por la mutación diferente a la de la cruza

- ▶Por ejemplo, dados: P1 = 10**** y P2 = 11****
 - La cruza produce sólo individuos del esquema 1***** (primer "1" en el esquema garantizado por ser común en ambos padres
 - La mutación no respeta necesariamente este valor
- ► La cruza "preserva" los alelos que son comunes en los 2 padres
 - Esta preservación limita el tipo de exploración que la cruza puede realizar
 - Limitación agudizada conforme la población pierde diversidad (el número de alelos comunes se incrementa)

Cruza vs. Mutación

Localización del óptimo global de un problema: mutación puede ser más útil que la cruza

Si lo que nos interesa es ganancia acumulada (el objetivo original del AG), la cruza es entonces preferible.