TD14: Solide en rotation autour d'un axe fixe

Exercice 1: Moments d'inertie

Les solides (1,2,3 et 4) représentés ci-contre ont tous la même masse qui est répartie dans les zones grisées de chacun. Classer ces 4 solides selon leur moment d'inertie (du plus faible au plus élevé).

Exercice 2 : CALCUL DE MOMENT D'INERTIE

On souhaite calculer le moment d'inertie J_{Δ} d'un solide en forme d'anneau infiniment fin de masse totale m et de rayon r par rapport à un axe Δ passant par son centre et perpendiculaire au plan de l'anneau.

- 1. Faire un schéma représentant le solide et l'axe Δ .
- 2. Rappeler la relation entre le moment cinétique L_{Δ} , le moment d'inertie J_{Δ} et la vitesse angulaire Ω du solide.
- 3. Montrer que tous les points M de masse dm du solide possèdent le même moment cinétique par rapport à Δ . Donner l'expression de ce moment cinétique.
- 4. Exprimer le moment cinétique totale du solide en fonction de m, Ω et r. En déduire l'expression du moment d'inertie de ce solide.

Exercice 3: Constance du moment

On considère une force \vec{F} appliquée au point P appartenant à la droite (D) ayant la même direction que \vec{F} . Montrer que le moment de \vec{F} par rapport à l'axe Δ ne dépend pas de la position de P sur la droite (D).

Exercice 4: Moments de forces

Dans chacun des cas représentés ci-dessous, exprimer le moment de la force \vec{F} par rapport à l'axe Δ en fonction de $F = ||\vec{F}||$ et de r.

Exercice 5: Fluctuation du couple d'une machine tournante

Un moteur entraîne une machine tournante modélisée par le moment d'inertie total J_{Δ} autour de l'axe de rotation des parties mobiles. On modélisera les actions exercées par l'extérieur sur la machine par un moment résistant linéaire de coefficient de frottement k, c'est-à-dire : $\mathcal{M}_{\Delta}^{\text{ext}} = -k\Omega$ où Ω est la vitesse angulaire de la machine. Par ailleurs, le couple moteur est la somme d'un terme constant \mathcal{M}_0 et d'un terme sinusoïdal d'amplitude \mathcal{M}_m et de pulsation ω modélisant les fluctuations de ce couple dans le temps : $\mathcal{M}_{\Delta}^{\text{moteur}} = \mathcal{M}_0 + \mathcal{M}_m \cos(\omega t)$.

- 1. Déterminer l'équation différentielle vérifiée par Ω et la mettre sous forme canonique.
- 2. Décrire sans la résoudre les solutions de cette équation, et montrer qu'on atteint un régime établi qu'on déterminera.
- 3. Montrer que ce système présente un comportement de filtre, dont on déterminera la nature.
- 4. En déduire comment on peut réduire les fluctuations de Ω , en supposant qu'il est impossible d'agir sur le moteur.

Exercice 6: Manège

Le manège représenté ci-contre est constitué d'une armature circulaire de masse négligeable qui tourne autour d'un axe Δ passant par le centre du cercle et orienté suivant \vec{e}_{Δ} . Sur l'armature sont fixées 8 nacelles pouvant accueillir des passagers et ayant une masse totale m. L'ensemble tourne à la vitesse angulaire ω autour de Δ .

- 1. En considérant que les nacelles sont ponctuelles, déterminer le moment cinétique d'une nacelle par rapport à l'axe Δ puis exprimer le moment cinétique de l'ensemble du manège en fonction de ω , r et m.
- 2. Déterminer le moment d'inertie J_{Δ} du manège par rapport à l'axe Δ .
- 3. À t=0 le manège initialement immobile est mis en mouvement par un moteur situé en son centre qui le soumet à un couple de forces Γ . La vitesse angulaire du manège passe de 0 à ω_f pendant le temps T, l'accélération angulaire est supposée constante. Exprimer le couple Γ en fonction de ω_f , J_{Δ} et T.
- 4. Donner l'énergie cinétique E_c de rotation du manège en fonction du temps entre 0 et T.
- 5. En déduire l'expression de la puissance minimale du moteur à utiliser dans ce manège.
- 6. Le manège a un rayon de 10 m et peut accueillir 8 personnes par nacelle. Il annonce également que les passagers subissent une accélération de 4g une minute après le démarrage. En déduire une estimation de la puissance du moteur qu'il utilise.

Exercice 7: TREUIL

Un treuil est composé d'un cylindre de moment d'inertie J_{Δ} par rapport à son axe de rotation et de rayon r. Une corde enroulée sur le treuil soutient un solide S de masse m. La masse de la corde ainsi que tous les frottements sont négligés.

1. Le cylindre du treuil est initialement bloqué, exprimer la tension de la corde.

À t=0 on relâche le cylindre qui tourne sans frottement autour de son axe. On repère la position de la masse par son altitude h(t) et la position du cylindre par l'angle $\theta(t)$ dont il a tourné.

- 2. Donner la relation entre h(t) et $\theta(t)$.
- 3. En appliquant le principe fondamental de la dynamique à la masse m, exprimer $\ddot{h}(t)$ en fonction de la norme T de la tension de la corde.
- 4. En appliquant le théorème du moment cinétique au cylindre, exprimer $\ddot{\theta}(t)$ en fonction de T.
- 5. À partir des deux équations précédentes, déterminer l'accélération angulaire $\alpha = \ddot{\theta}(t)$ du cylindre.
- 6. Exprimer l'accélération linéaire $a=\ddot{h}(t)$ du solide S. La comparer à celle qu'il aurait lors d'une chute libre.
- 7. A.N. : $J_{\Delta} = 0.2 \,\mathrm{kgm}^2$, $r = 10 \,\mathrm{cm}$ et $m = 10 \,\mathrm{kg}$. Calculer α et a.
- 8. Exprimer l'énergie cinétique de l'ensemble (cylindre + masse) en fonction de h.

Exercice 8 : PENDULE DE TORSION

On étudie un pendule de torsion constitué d'un solide S relié à un axe Δ par une liaison pivot. Le moment d'inertie de S par rapport à Δ est J_{Δ} . Le solide S est accroché à un ressort à spirale qui exerce un couple de rappel Γ proportionnel à son angle θ de rotation : $\Gamma = -C\theta$.

À t=0 le solide est lâché sans vitesse angulaire initiale à un angle de rotation θ_0 .

- 1. Déterminer l'équation différentielle satisfaite par l'angle θ de rotation du solide. Quel type d'équation différentielle obtient-on?
- 2. Résoudre l'équation différentielle en faisant intervenir la condition initiale.
- 3. Quelle avantage possède le pendule de torsion par rapport au pendule simple? Citer une application du pendule de torsion.

2021-2022