Olasılıksal Robotik

Dr. Öğr. Üyesi Erkan Uslu

Gaussian Olasılık Dağılımı Tahmini

Taylor açılımı yaklaşıklığı ile EKF

Gaussian Olasılık Dağılımı Tahmini

Unscented Kalman Filter

Gaussian Olasılık Dağılımı Tahmini

Unscented Kalman Filter

- Sigma noktaları hesaplanır
- Sigma noktalarının ağırlıkları hesaplanır
- Sigma noktalarına karşılık doğrusal olmayan fonksiyon çıktıları hesaplanır
- Çıktılardan Gaussian parametreler hesaplanır

Sigma Noktaları χ^[i]

$$\chi^{[0]} = \mu$$

$$\chi^{[i]} = \mu + \left(\sqrt{(n+\lambda)\Sigma}\right)_i, \quad i=1,\cdots,n$$
 Sütun vektör
$$\chi^{[i]} = \mu - \left(\sqrt{(n+\lambda)\Sigma}\right)_{i-n}, \quad i=n+1,\cdots,2n$$

$$\kappa \geq 0$$

$$\kappa \ge 0$$

$$\alpha \in (0,1]$$

Sigma noktaları ortalamadan ne kadar uzakta seçilecek

$$\lambda = \alpha^2 (n + \kappa) - n$$

Gaussian dağılım için 2

$$\gamma = \sqrt{n+\lambda}$$

 $\beta = 2$

Temel Lineer Cebir - Matris Kökü - VDV Ayrıştırma

$$\Sigma = SS \Rightarrow \sqrt{\Sigma} = S$$

$$\Sigma = VDV^{-1}$$

$$= V \begin{pmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{pmatrix} V^{-1}$$

$$= V \begin{pmatrix} \sqrt{d_{11}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{d_{nn}} \end{pmatrix} \begin{pmatrix} \sqrt{d_{11}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{d_{nn}} \end{pmatrix} V^{-1}$$

$$= VD^{\frac{1}{2}}D^{\frac{1}{2}}V^{-1}$$

Temel Lineer Cebir - Matris Kökü - VDV Ayrıştırma

$$\Sigma = SS \Rightarrow \sqrt{\Sigma} = S$$

$$\Sigma = VD^{\frac{1}{2}}D^{\frac{1}{2}}V^{-1}$$

$$= VD^{\frac{1}{2}}ID^{\frac{1}{2}}V^{-1}$$

$$= VD^{\frac{1}{2}}V^{-1}VD^{\frac{1}{2}}V^{-1}$$

$$S = V D^{\frac{1}{2}} V^{-1}$$

Temel Lineer Cebir - Matris Kökü -Cholesky

$$\Sigma = LL^T \Rightarrow \sqrt{\Sigma} = L$$

$$L = \begin{pmatrix} \ell_{11} & 0 & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} & 0 \\ \ell_{41} & \ell_{42} & \ell_{43} & \ell_{44} \end{pmatrix}, L: Aşağı üçgen matris$$

$$\ell_{j,j} = \sqrt{A_{j,j} - \sum_{k=1}^{j-1} (\ell_{j,k})^2}$$

$$\ell_{i,j} = \frac{A_{j,j} - \sum_{k=1}^{j-1} \ell_{i,k} \ell_{j,k}}{\ell_{j,j}}$$

Sigma Noktaları Ağırlıkları

$$\mu' = \sum_{i=0}^{2n} \omega_m^{[i]} g\left(\chi^{[i]}\right)$$

$$\Sigma' = \sum_{i=0}^{2n} \omega_c^{[i]} \left(g\left(\chi^{[i]}\right) - \mu'\right) \left(g\left(\chi^{[i]}\right) - \mu'\right)^T$$

Sigma Noktaları Ağırlıkları

$$\omega_m^{[0]} = \frac{\lambda}{n+\lambda}$$

$$\omega_c^{[0]} = \omega_m^{[0]} + (1-\alpha^2 + \beta)$$

$$\omega_c^{[i]} = \omega_m^{[i]} = \frac{1}{2(n+\lambda)}, i = 1, \dots, 2n$$

Unscented Kalman Filter

Algorithm Unscented_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

$$\mathcal{X}_{t-1} = (\mu_{t-1} \quad \mu_{t-1} + \gamma \sqrt{\Sigma_{t-1}} \quad \mu_{t-1} - \gamma \sqrt{\Sigma_{t-1}})$$

$$\bar{\mathcal{X}}_{t}^{*} = g(u_{t}, \mathcal{X}_{t-1})$$

$$\bar{\mu}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\mathcal{X}}_{t}^{*[i]}$$

$$\bar{\Sigma}_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{*[i]} - \bar{\mu}_{t}) (\bar{\mathcal{X}}_{t}^{*[i]} - \bar{\mu}_{t})^{T} + R_{t}$$

Unscented Kalman Filter

$$\bar{\mathcal{X}}_{t} = (\bar{\mu}_{t} \quad \bar{\mu}_{t} + \gamma \sqrt{\bar{\Sigma}_{t}} \quad \bar{\mu}_{t} - \gamma \sqrt{\bar{\Sigma}_{t}})$$

$$\bar{\mathcal{Z}}_{t} = h(\bar{\mathcal{X}}_{t})$$

$$\hat{z}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\mathcal{Z}}_{t}^{[i]}$$

$$S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T} + Q_{t}$$

$$\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T}$$

Unscented Kalman Filter

$$K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$$

$$\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$$

$$\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$$

$$return \ \mu_t, \Sigma_t$$

 Fiziki modeli aşağıdaki gibi olan sistem için ilk tahmin ve ölçüler verildiği gibidir. UKF ile durum değişkenin tahminini yürütünüz.

$$\overline{x}_t = \sin(x_{t-1})$$

$$z_t = e^{\overline{x}_t}$$

$$\mu_0 = 0$$
$$\sigma_0^2 = 5$$

J J				
z ölçümleri				
1	2	3	4	5
4.789	2.8091	2.1829	2.2936	2.2398
6	7	8	9	10
1.6728	1.6624	1.5213	1.9533	1.6369
11	12	13	14	15
1.8981	1.6847	1.74	1.8119	1.6433
16	17	18	19	20
1.44	1.2074	1.4568	1.5072	1.3967

EKF ile çözüm sonucu

UKF ile çözüm sonucu

Hata varyansı 0.036367

Sigma Noktaları Tespiti

$$\kappa = 0$$
 $\alpha = 1$
 $\Rightarrow \lambda = 0 \Rightarrow \gamma = 1$

$$\chi_0 = (\mu_0, \mu_0 - \sigma_0, \mu_0 + \sigma_0)$$
 $= (0, -2.2361, 2.2361)$

$$\overline{\chi}_1^* = (0, -0.78673, 0.78673)$$

$$\omega_m = (0, 0.5, 0.5)$$

$$\omega_c = (2, 0.5, 0.5)$$

$$\overline{\mu}_1 = 0$$

$$\overline{\Sigma}_1 = 0.61894 + R$$
R=0kabul edilmiştir

Sigma Noktaları Tespiti

$$S_1 = 0.96990 + Q$$
$$\overline{\Sigma}_1^{x,z} = 0.68480$$

$$K_1 = 0.70605$$

$$\mu_1 = 2.4452$$

$$\Sigma_1 = 0.13544$$

Sigma Noktaları Tespiti

$$\kappa = 0$$

$$\alpha = 1 \Rightarrow \lambda = 0 \Rightarrow \gamma = 1$$

$$\overline{\chi}_1 = (\overline{\mu}_1, \overline{\mu}_1 - \overline{\sigma}_1, \overline{\mu}_1 + \overline{\sigma}_1)$$

$$= (0, -0.78673, 0.78673)$$

$$\overline{Z}_1 = (1, 0.45533, 2.1962)$$

$$Q=0 \text{ kabul edilmiştir}$$

$$\overline{z}_1 = 1.3258$$
 $\omega_m = (0, 0.5, 0.5)$
 $S_1 = 0.96990 + Q$
 $\omega_c = (2, 0.5, 0.5)$
 $\overline{\Sigma}_1^{x,z} = 0.68480$

- Motion modeli:
- 2B düzlemde düz bir doğrultuda hareket edebilen robot durumu (x,y, θ) değerlerinden oluşmaktadır.
- Robot hareket komutu verildiğinde bakış doğrultusunda 2 birim ilerlemektedir.

- Sensör modeli:
- (0,0) noktasındaki reflektörü uzaklığı ölçebilir.

Başlangıç İnancı:

$$x_0 = \begin{pmatrix} 1\\1\\0.78540 \end{pmatrix}$$

$$\Sigma_0 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0.78540 \end{pmatrix}$$

Çok Hipotezli Kalman Filtresi Ailesi

$$bel(x_t) = \frac{1}{\sum_{\ell} \psi_{t,\ell}} \sum_{\ell} \psi_{t,\ell} N(x_t; \mu_{t,\ell}, \Sigma_{t,\ell})$$