

Single-cell phylogenetics current challenges and future directions

Jack Kuipers, ETH Zürich, 25 January 2018 with Katharina Jahn and Niko Beerenwinkel

Tumour heterogeneity

van Loo and Voet, COGD 2014

Marusyk, Almendro and Polyak, Nat Rev Gen 2012

Maley et al, Nat Gen 2006

Cell evolution

with phylogenetic tree

Mutation tree

Mutations also lie on a (rooted) tree

- · samples attached as leaves
- · inherit ancestral mutations

from phylogenetic tree

Observational errors

But we measure with errors

- · false positive rate α
 - $0 \rightarrow 1$
- false negative rate β

$$-1 \rightarrow 0$$

Expected mutation matrix

		s_1	s_2	<i>S</i> 3	s_4	S ₅	<i>s</i> ₆	<i>S</i> 7
E =	M_1	1	1	1	0	0	0	0
	M_2	0	0	0	0	1	1	1
	M_3	0	0	0	0	1	1	0

Observed data instead

Tree reconstruction?

· can we reconstruct the phylogeny?

Given a tree T with attachments σ , we know the likelihood of the data

$$P(D|T, \boldsymbol{\sigma}, \alpha, \beta) = \frac{\alpha^{\sum_{ij} I_0(E_{ij})I_1(D_{ij})} (1 - \alpha)^{\sum_{ij} I_0(E_{ij})I_0(D_{ij})}}{\beta^{\sum_{ij} I_1(E_{ij})I_0(D_{ij})} (1 - \beta)^{\sum_{ij} I_1(E_{ij})I_1(D_{ij})}}$$

- test all trees and attachments small n
- find maximum likelihood

Tree search

- · Can marginalise/maximise sample attachment σ efficiently O(mn)
- · Stochastic search through tree space

· Test for best tree which maximises $P(D|T, \alpha, \beta)$

Single cell data

Breast tumour Wang ... Navin, Nature 2014

- 47 cells columns
- 40 mutations rows

Error rates

$$\alpha = 1.24 \times 10^{-6}$$

$$\beta = 9.73\%$$

- mutation
- missing data

Tree inferred from single cell data

Data Wang ... Navin, Nature 2014 Inference Jahn, Kuipers and Beerenwinkel, Genome Biology 2016

Infinite sites assumption

Each mutation can only occur once

- Whole genome $\approx 3 \times 10^9$
- Whole exome $\approx 3 \times 10^7$

Is this infinity?

Birthday paradox:

- · with only 23 people
- probability of shared birthday $> \frac{1}{2}$

In general with Z 'days'

· require $\approx \sqrt{2Z}$ people

Even for slowest dividing cancer (osteosarcoma)

• 10⁷ lifetime mutations

Tomasetti and Vogelstein, Science 2015

Probability of a mutation occurring twice ≈ 1

Bayes factors

with Ben Raphael

Perform model comparison with Bayes factor

- $\cdot \hspace{0.1cm} \mathcal{M}_{\mathrm{I}}$ all trees with no recurrent mutations
- $\cdot \,\, \mathcal{M}_{\mathrm{F}}$ all trees with a single recurrence

 \cdot $B_{\rm FI} > 1$ favours violation of infinite sites assumption

Posterior ratio

$$\frac{P(\mathcal{M}_{F} \mid D)}{P(\mathcal{M}_{I} \mid D)} = B_{FI} \frac{P(\mathcal{M}_{F})}{P(\mathcal{M}_{I})}$$

Genome Research, 2017

Single cell sequencing data

Tested 3 whole exome and 9 panel sequencing datasets

- find evidence for violations in 11 out of 12
- · 4 examples of parallel mutations

McPherson, Roth ... Shah, Nature Genetics 2016

- · panel of 43 mutations
- · 588 cells
- Bayes Factor: 7.2×10^{14}

Summary

Mutation tree

· can be inferred from single cell data

Genome Biology 2016

Can extend to test infinite sites assumption

· doublet samples need to be modelled

Assumption violated

- · often by mutational loss
- occasionally by parallel mutations

Genome Research, 2017

Current and future challenges

· Modelling sequencing data

- · Copy number abberations
 - mutational loss
 - overlap
- Inferring evolutionary parameters

- Integrating bulk sequencing bioRxiv:234914
- Connecting to gene expression and drug response

- Faster inference
 - better MCMC moves
 - SMC samplers
 - ILP schemes