REAL ANALYSIS EIGHTH WEEK

Exercise 3.6.12-DROPPED

Suppose that *A* and *B* are nonempty subsets of a metric space *X*. The *distance* between *A* and *B* is defined by

$$d(A,B) = \inf\{d(a,b) \mid a \in A, b \in B\}$$

We say that d(A, B) is assumed if there exists $a_0 \in A$ and $b_0 \in B$ such that $d(A, B) = d(a_0, b_0)$. Determine whether or not the distance between A and B is necessarily assumed in (i) - (iii).

- 1. *A* is closed and *B* is closed.
 - Suppose $A = \{x, \frac{-1}{x} | , x < 0\}$ and $B = \{x, \frac{1}{x} | , x > 0\}$ in \mathbb{R}^2 . Then d(A, B) = 0 but, $\forall a \in A$ and $\forall b \in B$ distance is $\sqrt{(-x-x)^2 + (\frac{1}{x} \frac{1}{x})^2} > 0$, i.e. d(a, b) > 0. Thefore, distance is not neccessarily assumed when A and B are closed.
- 2. A is compact and B is closed. Considering the same example of above, but with A now being compact. This means that any sequence in A converges in A, so it achieves it's minimum and maximum values. However,B is still closed and there is a sequence in $(b_n) \in B$ such that $\lim_{n\to\infty} b_n = 0$, however $0 \notin B$ which is required in order to make $d(A,B) = d(a_0,b_0) = 0$ for some $a_0 \in A$ and $b_0 \in B$. So distance in this case is not necessrily assumed.
- 3. *A* is compact and *B* is compact.

There exists a sequence $(a_n) \in A$ and $(b_n) \in B$ such that

$$\lim_{n\to\infty}d(a_n,b_n)=d(A,B)$$

Being compact in a metric is equivelance to being sequentially compact, so *A* and *B* are sequentially compact. This means

$$\lim_{k\to\infty} d(a_{n_k}) = a \text{ with } a \in A$$

Additionally, note

$$\lim_{k\to\infty}d(a_{n_k},b_{n_k})=d(A,B)$$

Since *B* is sequentially compact,

$$\lim_{j\to\infty}b_{n_{k_j}}=b \text{ with } b\in B$$

Note once more,

$$\lim_{j\to\infty}d(a_{n_{k_j}},b_{n_{k_j}})=d(A,B)$$

As long as d is a continuous function, the above implies d(a,b) = d(A,B) with $a \in A$ and $b \in B$. Hence, distance can be assumed under these conditions.

4. What happens to the above cases if we assume *X* is complete? We proved in exercise 3.4.8 (hw 6) that a closed subset of a complete space is also complete. Therefore, all cauchy sequences in *X* converge in *X*. Hence, in the above cases distance can be assumed.

Exercise 3.6.25

- 1. In the usual metric, \mathbb{Q} is dense in \mathbb{R} . Consider that $\overline{\mathbb{Q}} = \mathbb{R} \setminus (\mathbb{R} \setminus \mathbb{Q})^o$. Since every open ball around a rational number contains an irrational; and any open ball around an irrational number contains a rational number, $(\mathbb{Q}^c)^o = \emptyset$. Hence $\overline{\mathbb{Q}} = \mathbb{R}$
- 2. The "dyadic numbers," that is, the set $D = \{\frac{a}{2^n} \in \mathbb{Q} \mid a, n \in \mathbb{Z}\}$, are dense in \mathbb{R} in the usual mertic. Consider $a < b \in \mathbb{R}$. By Archimedian property, $\exists n \in \mathbb{N}$ such that $0 < \frac{1}{n} < b a$ which implies $0 < \frac{1}{2^n} < \frac{1}{n} < b a$. Therefore, $1 < (2^n * b) (2^n * a)$, and note that, $(2^n * b) > 1$ and $(2^n * a) > 1$ so there exists an integer m such that $2^n * a < m < 2^n * b \Rightarrow a < \frac{m}{2^n} < b$ where $2^n \neq 0$, Hence between any two rational numbers there exists $a \in D$ and between any two dyadic numbers, there exists a real number. So similar to $\mathbb{Q} \subset \mathbb{R}$, $\overline{D} = \mathbb{R} \setminus (D^c)^n \mathbb{R} \setminus \emptyset = \mathbb{R}$

Exercise 3.6.26

- 1. Show that in any metric space X, X is dense in X. $\overline{X} = X \setminus (X^c)^o = X \setminus (X \setminus X)^o = X \setminus (\emptyset)^o = X$.
- Show that in any discrete metric space X, the only dense subset of X is X itself.
 Any proper subset S ⊂ X contains a single point {x}. Hence \$\overline{S} = S\$. Therefore, there does not exists S ⊂ X such that \$\overline{S} = X\$ unless S = X, as seen in item one of this exercise.
- 3. Show that if the only dense subset of a metric *X* is *X* itself, then *X* is discrete.

Suppose X is a metric space and the only dense subset of X is X. This means that no subset $X \setminus \{x\}$, $\forall x \in X$ is a dense subset of X. Since $\overline{X \setminus \{x\}} \neq X$, x is an isolated point in X. Since x was arbitrary, $\forall x \in X$ are isolated and X is a discrete metric space.

Exercise 3.6.30

Suppose *X* and *X'* are metric spaces with *X* separable. Let $f: X \to X'$ be continuous surjection. Show that *X'* is separable.

Proof. Pick any nonempty open set $U \subset X'$, want to show that $U \cap f(S) \neq \emptyset$, i.e. f(S) is dense in X'.

Since f is continuous, we have $f^{-1}(U)$ is open and not empty. Next, since X is separable we can find a countable set $S \subset X$ that is dense in X. Therefore $f^{-1}(U) \cap S \neq \emptyset$. Pick any $x \in f^{-1}(U) \cap S$, we get $f(x) \in f(S) \cap U$. Therefore f(S) is dense in X'. Additionally, since S is countable, and f is surjective then for any $g \in X'$ there exists an $g \in X$ such that g(x) = g, so g(x) is countable, since g(x) is countable. To conclude we have a subset of g(x) that is countable and dense in g(x) which means g(x) is separable.

Exercise 3.6.31

Find a metric d on \mathbb{R} such that (\mathbb{R}, d) is not separable.

The discrete metric. Suppose $X = (\mathbb{R}, d)$ where d is the discrete metric. Choose $A \subset \mathbb{R}$ such that $\overline{A} = \mathbb{R}$. However, since X is discrete, $\overline{A} = \mathbb{R}$ implies $A = \mathbb{R}$, but A is uncountable. As seen is exercise 3.6.26, in discrete space, the only dense subset of X is X. Therefore, there exists no countable subset of X that is dense in X. So X is not separable.

Exercise 3.7.6

1. Find a continuous function $f:\mathbb{R}\to\mathbb{R}$ that does not have a fixed point.

$$f(x) = x + 1.$$

2. Find a continuous function $f:(0,1)\to(0,1)$ that does not have a fixed point.

$$f(x) = x^{2}$$

3. Let $f:[0,1] \to [0,1]$ be continuous. Show that f has a fixed point. Since f is continuous, then it could have a fixed point f(0) = 0 or f(1) = 1. If it does not then f(0) > 0 and f(1) - 1 < 0. Consider the function g(x) = f(x) - x. Since f(x) is continuous, g(x) is continuous. Note that g(x) is positive at x = 0 and negative at x = 1. By the intermediate value theorem, there is some point x_0 such that $g(x_0) = 0$. Which is to say $f(x_0) - x_0 = 0$ hence x_0 is a fixed point.

Exercise Supplement 1

Consider a family of functions $f_n(x) : [0,1] \to \mathbb{R}$ that is uniformly bounded and uniformly Lipschitz, where uniformly Lipschitz means that there exists a constant L > 0 such that for all n and all pair x, y,

we have

$$|f_n(x) - f_n(y)| \le L|x - y|$$
.

Prove that this family is sequentially compact.

Proof. We are already given that f_n is uniformly bounded. We only need to show that f_n is equicontinuous and then apply Arzela-Ascoli. Let $\epsilon > 0$ and choose $\delta = \frac{\epsilon}{L}$. Then, $|x - y| < \frac{\epsilon}{L}$ but then since the family of functions is uniformly Lipschitz,

$$|f_n(x) - f_n(y)| \le L|x - y| < L\frac{\epsilon}{L} = \epsilon$$

For any n. Therefore, f is a equicontinuous and uniformly bounded meaning that it is sequentially compact.

Exercise Supplement 2

Consider a family of functions $f_n(x):[0,1]\to\mathbb{R}$ that is uniformly bounded and uniformly α -Hölder, where uniformly α -Hölder means that there exists a Constant C>0 and $0<\alpha<1$ such that for all n and pair x,y we have

$$|f_n(x) - f_n(y)| \le C|x - y|^{\alpha}$$
.

Prove that this family is sequentially compact.

Proof. We are given that $f_n(x): [0,1] \to \mathbb{R}$ is uniformly bounded, it remains to be shown that this family of functions is equicontinuous. Since f_n is uniformly α -Hölder there $\exists C > 0$ and $0 < \alpha < 1$ such that

$$|f_n(x) - f_n(y)| \le C|x - y|^{\alpha}$$

For $\forall n$ and $\forall x, y \in [0,1]$. Since $0 < \alpha < 1$, $|x - y|^{\alpha} \le |x - y|$. Choose $\delta = \frac{\epsilon}{C}$ which implies

$$|f_n(x) - f_n(y)| \le C|x - y|^{\alpha} \le C|x - y| < C\frac{\epsilon}{C} = \epsilon.$$

Hence, f_n is equicontinuous. Applying Arzela-Ascoli, this family of functions is sequentially compact.