OBJECTIFS 👌

- Connaître les règles de calcul sur les puissances entières relatives, sur les racines carrées.
- Savoir présenter les résultats fractionnaires sous forme irréductible.
- Effectuer des calculs numériques ou littéraux mettant en jeu des puissances, des racines carrées, des écritures fractionnaires.

Fractions

1. Mise au même dénominateur

EXERCICE 1

Calculer −3, 6 ÷ 1, 2 en utilisant la propriété ci-dessus.

√Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/calcul-numerique/#correction-i

EXERCICE 2

Mettre les fractions suivantes au même dénominateur.

3.
$$\frac{10}{2}$$
 et $\frac{4}{1}$:

5.
$$\frac{-1}{10}$$
 et $\frac{1}{9}$:

2.
$$\frac{5}{6}$$
 et $\frac{5}{3}$:

4.
$$\frac{7}{-8}$$
 et $\frac{9}{4}$:

1.
$$\frac{1}{2}$$
 et $\frac{5}{4}$:3. $\frac{10}{2}$ et $\frac{4}{1}$:5. $\frac{-1}{10}$ et $\frac{1}{9}$:2. $\frac{5}{6}$ et $\frac{5}{3}$:4. $\frac{7}{-8}$ et $\frac{9}{4}$:6. $\frac{11}{4x}$ et $\frac{4}{3y}$:

2. Simplification de fractions

EXERCICE 3

Simplifier les fractions suivantes.

1.
$$\frac{2x}{4x} = \dots$$

3.
$$-\frac{10x}{100} = \dots$$

5.
$$\frac{-33}{-22} = \dots$$

2.
$$\frac{-8}{4} = \dots$$

4.
$$\frac{45}{-20} = .$$

1.
$$\frac{2x}{4x} =$$
3. $-\frac{10x}{100} =$ 5. $\frac{-33}{-22} =$ 2. $\frac{-8}{4} =$ 4. $\frac{45}{-20} =$ 6. $-\frac{-108}{99} =$

3. Opérations sur les fractions

EXERCICE 4

Effectuer les calculs suivants.

1.
$$\frac{12}{5} + \frac{8}{5} = \dots$$

$$3. \ \frac{9}{-4} + \frac{-1}{4} = \dots$$

5.
$$\frac{3}{4} - \frac{-5}{2} = \dots$$

2.
$$\frac{4}{6} - \frac{2}{6} = \dots$$

4.
$$\frac{-1}{5} + \frac{1}{10} = \dots$$

1.
$$\frac{12}{5} + \frac{8}{5} =$$
3. $\frac{9}{-4} + \frac{-1}{4} =$ 5. $\frac{3}{4} - \frac{-5}{2} =$ 2. $\frac{4}{6} - \frac{2}{6} =$ 4. $\frac{-1}{5} + \frac{1}{10} =$ 6. $\frac{1}{x} + \frac{-3}{11} =$

EXERCICE 5

Effectuer les calculs suivants.

1.
$$\frac{5}{2} \times 4 = \dots$$

3.
$$\frac{-9}{-7} \times 8 = \dots$$

5.
$$\frac{-4}{-4} \times 121 = \dots$$

2.
$$-\frac{10}{3} \times \frac{1}{5} = \dots$$

4.
$$\frac{1}{5} \div \frac{-3}{2} = \dots$$

1.
$$\frac{5}{2} \times 4 = \dots$$
3. $\frac{-9}{-7} \times 8 = \dots$ 5. $\frac{-4}{-4} \times 121 = \dots$ 2. $-\frac{10}{3} \times \frac{1}{5} = \dots$ 4. $\frac{1}{5} \div \frac{-3}{2} = \dots$ 6. $\frac{123456789}{2} \times 2 = \dots$

Puissances

EXERCICE 6

Effectuer les calculs suivants et donner le résultat sous la forme d'un nombre ou d'une fraction.

1.
$$(-3)^2 = \dots$$

1.
$$(-3)^2 = \dots$$
 3. $5^{-2} = \dots$

2.
$$3^3 = \dots$$
 4. $2009^0 = \dots$

À DETENIO			
À RETENIR 👀			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

EXERCICE 7

Écrire les nombres sous la forme a^n où a est un nombre réel et n un nombre entier relatif.

- 1. $(-3)^4 \times (-3)^{-7} = \dots$
- 2. $\frac{5.2^5}{5.2^2} = \dots$
- 3. $\left(\frac{36}{6}\right)^{-3} = \dots$

Racines carrées

1. Définition

EXEMPLE •

Les racines carrées suivantes sont à connaître : ce sont les (premiers) carrés parfaits.

$$-\sqrt{0} = 0$$

$$-\sqrt{9} = 3$$

$$-\sqrt{36} = 6$$

$$-\sqrt{81} = 9$$

$$-\sqrt{1} = 1$$

$$-\sqrt{16} = 4$$

$$-\sqrt{49} = 7$$

$$-\sqrt{100} = 10$$

$$-\sqrt{4} = 2$$

$$-\sqrt{25} = 5$$

$$-\sqrt{64} = 8$$

$$-\sqrt{16} = 4 -\sqrt{49} = 7 -\sqrt{100} = 10$$

$$-\sqrt{25} = 5 -\sqrt{64} = 8 -\sqrt{121} = 11$$

2. Propriétés et simplifications

EXERCICE 8

Le but de cet exercice est de démontrer la première propriété. Soient *a*, *b* deux nombres réels positifs.

- **1.** Quel est le nombre qui, mis au carré, donne $a \times b$?
- **2.** Écrire $(\sqrt{a} \times \sqrt{b})^2$ comme une multiplication. Puis, en utilisant la troisième propriété, simplifier le résultat.....

◆Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/calcul-numerique/#correction-8

À RETENIR 👀	

EXEMPLE 9

$$\sqrt{12} = \sqrt{4 \times 3}$$
$$= \sqrt{4}\sqrt{3}$$
$$= 2\sqrt{3}$$

V	ΕĐ	\sim	CF	0	

Écrire les nombres suivants sous la forme $a\sqrt{b}$ avec b le plus petit possible.

- 1. $\sqrt{45} = \dots$
- 2. $\sqrt{18} = \dots$
- 3. $\sqrt{20} = \dots$
- **4.** $\sqrt{72} = \dots$
- **5.** $\sqrt{300} = \dots$

