Implementación de un filtro FIR en FPGA

•••

Alumno: Ing. Juan Manuel Guariste Circuitos Lógicos Programables Carrera de Especialización en Sistemas Embebidos - FIUBA Año 2025

Filtros digitales

- Procesa señales discretas (muestreadas y digitalizadas)
- Modificar características de la señal de entrada
- Realiza operaciones aritméticas sobre las muestras
- Alta flexibilidad: ajustes por software, sin cambios físicos.

Filtro FIR

$$y[n] = \sum_{k=0}^{N-1} h[k] \cdot x[n-k]$$

Arquitectura general del sistema

Fases del desarrollo

- Diseño y validación en ModelSim (Testbench)
- Simulación y verificación en Vivado (VIO + ILA)
- Implementación final en FPGA real

Validación de señales de entrada

- Generación de senoidales mediante NCO
- Frecuencia controlada por la variable *paso*
- Rango de salida: 30 KHz a 1,9 MHz

$$f_{
m out} = rac{{
m paso} imes f_{
m clk}}{2^{ADDR_W}}$$

NCO de baja frecuencia

NCO de alta frecuencia

Señal compuesta

Generador de habilitación

- Permite fijar la frecuencia de muestreo
- Actúa como divisor de frecuencia
- Habilita la captura de nuevas muestras cada N ciclos

$$f_{
m muestreo} = rac{f_{
m clk}}{N}$$

Señal de habilitación

Diseño del filtro FIR

- Tipo: pasabajos
- Orden: 32
- Frecuencia de corte: 300 KHz
- Frecuencia de muestreo de 12,5 MHz
- Método ventana de Hamming

Resultado del filtrado

Retardo del filtro

Implementación en FPGA

- Diseño cargado en FPGA real (acceso remoto)
- Parametrización dinámica mediante VIO
- Observación y captura de señales con ILA.
- Validación directa en hardware, sin instrumentación externa.

Esquemático del sistema

Simulación en Vivado

Configuración de la FPGA

Valores del VIO

Configuración de la FPGA

Formas de onda en el ILA

Conclusiones

- Se validó el diseño mediante simulación y en hardware
- El filtro FIR se comportó según lo esperado
- La implementación en FPGA fue exitosa, con parametrización y observación en tiempo real gracias al VIO y al ILA

Muchas gracias

¿Consultas?