

两篇视频理解LLM论文分享

Bowei Pu 2024.06.18

ONE FOR ALL: VIDEO CONVERSATION IS FEASIBLE WITHOUT VIDEO INSTRUCTION TUNING

Ruyang Liu* ¹ Chen Li ² YiXiao Ge ² Ying Shan ² Thomas H. Li ¹ Ge Li ⊠ ¹

{ruyang@stu,geli@ece,thomas@}.pku.edu.cn {palchenli,yixiaoge,yingsshan}@tencent.com

8 V100(32G) GPUs in a mere 3 hours

能多媒体内容计算实验室 Iligent Multimedia Content Computing Lab

¹School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University

²Applied Research Center (ARC), Tencent PCG

- □研究背景
- □相关工作
- □主要方法
- 口实验结果

Video-LLaMA为代表的视频理解LLM Video-LLaVA 删去各种Former,仅保留线性层 总体结构:解码器->连接器->LLM (posterior structure)

存在问题: 1.多帧输入对于GPU的需求更大 2.微调编码器消耗也很多

目标解决方案:用增量微调的方式微调CLIP编码器,实现图片转化到视频领域(BT-Adapter)

- □研究背景
- □相关工作
- □主要方法
- 口实验结果

joint-spatial-temporal modeling

[1]

[2]

[1]Unmasked Teacher: Towards Training-Efficient Video Foundation Models [2]CLIP-ViP: Adapting Pre-trained Image-Text Model to Video-Language Representation Alignment

separated Spatial-Temporal modeling

ST-Adapter: Parameter-Efficient Image-to-Video Transfer Learning

Figure 2. The overview of our proposed STAN architecture, including the global overview of our backbone (left), details of the internal structure of our spatial-temporal module (middle), and implementations of the cross-frame module (right).

- □研究背景
- □相关工作
- □主要方法
- 口实验结果

Figure 2: The overview of our model. The left side shows the model architecture and the data flow during pretraining. The right side depicts the pipeline of video conversation.

全局图

- 1.CLIP适配视频数据
- 2.step2加入LLM进行对话

本文的Backbone-Branch Interaction

Vi,j 表示第i帧的第j个token,右上角代表Block编号 若有N个分支层,在第K层添加分支,第0个Block的分支的新的CLS token利用 原CLS token初始化如下:

$$\hat{v}_{i,j}^{(0)} = v_{i,j}^{(k)} + P_i^t + P_j^s,$$

其他层是:

$$\hat{v}_{i,j}^{(l)} = \operatorname{Sigmoid}(\mathbf{W}_{b}) \cdot \hat{v}_{i,j}^{(l-1)} + (1 - \operatorname{Sigmoid}(\mathbf{W}_{b})) \cdot v_{i,j}^{(k+l-1)},$$

值得注意的是v和v相差k,换而言之v⁰和v^k是同一层的新[CLS]和原[CLS]

最后一层输出如下,添加一个线性层

$$v = W_{\text{v-proj}}(\text{LN}(\text{Sigmoid}(W_{\text{b}}) \cdot \hat{v}_{0,0}^{(-1)} + (1 - \text{Sigmoid}(W_{\text{b}})) \cdot \frac{1}{T} \sum_{i=1}^{T} v_{i,0}^{-1})),$$

Intelligent Multimedia Content Computing Lab

针对视频对话的时间建模方法

Model	parameter- efficient	multimodal- friendly	temporal- sensitive	Correctness of Information	Temporal Understanding
Baseline*	1			2.38	1.93
ST Pooling*	✓	√		2.40	1.98
Joint-ST			V	1.92	2.11
Separate-ST			1	2.10	2.13
Separate-ST*	√			2.29	2.01
BT-Adapter*	√	✓	✓	2.55	2.26

MASK方法预训练

在分支网络中遮掩70%以上的token,减少一半以上计算资源消耗1.对比损失

$$\mathcal{L}_{nce}(x,y) = -\frac{1}{B} \sum_{m=1}^{B} \log \frac{\exp(\tau x_m \cdot y_n)}{\sum_{n=1}^{B} \exp(\tau x_m \cdot y_n)}, \quad \mathcal{L}_{VTC} = \mathcal{L}_{nce}(v,t) + \mathcal{L}_{nce}(t,v),$$

2.NCE 损失 匹配对应的分支CLS和文本CLS

$$\hat{v} = \frac{1}{(1-\rho)NT} \sum_{i=1}^{T} \sum_{j=1}^{N} W_{\text{v.proj}} \cdot \hat{v}_{i,j}^{-1}, \quad \mathcal{L}_{MBCA} = \mathcal{L}_{nce}(\hat{v}, t) + \mathcal{L}_{nce}(t, \hat{v}), \quad (i, j) \notin M. \quad (\text{if } \hat{y} \in \mathbb{R})$$

- □研究背景
- □相关工作
- □主要方法
- □实验结果

Table 2: The zero-shot results of text-to-video retrieval on MSR-VTT, DiDemo, LSMDC, and ActivityNet. Source denotes the scale of pretraining data.

Method	Course	N	ISR-V	TT		DiDeM	lo		LSMD	C	A	ctivity	Net
Method	Source	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
Non-CLIP models													
Frozen (Bain et al., 2021)	5M	24.7	46.9	57.2	21.1	46.0	56.2	-	-	-	0.00	Α.	Α.
Clover (Huang et al., 2023)	5M	26.4	49.5	60.0	29.5	55.2	66.3	17.4	29.2	38.2	873	Z 1	177
OmniVL (Wang et al., 2022a)	14M	34.6	58.4	66.6	33.3	58.7	68.5	-	-	-	-	_	_
HiTeA (Ye et al., 2022)	5M	29.9	54.2	62.9	36.1	60.1	70.3	15.5	31.1	39.8	-	-	
Singularity (Lei et al., 2022)	17M	34.0	56.7	66.7	37.1	61.7	69.9	8	-	-	30.6	55.6	66.9
VideoCoCa (Yan et al., 2022)	100M	34.3	57.8	67.0	12	-	-	-	-	-	34.5	63.2	76.6
CLIP-L/14						The State of the	Contract No.	100 to 000 to 0000	2000 m			1180 AT 10 AT	
CLIP (Radford et al., 2021)	-	35.4	58.8	68.1	30.3	54.9	65.4	17.0	31.8	40.3	28.8	57.6	71.8
ImageBind (Girdhar et al., 2023)	-	36.8	61.8	70.0	-	-	-	-	-	-	-	-	-
InternVideo (Wang et al., 2022b)	12.8M	40.7	7.	-	31.5	-	-	17.6	-	-	30.7	7.	
TVTSv2 (Zeng et al., 2023)	8.5M	38.2	62.4	73.2	34.6	61.9	71.5	17.3	32.5	41.4	-	=	=
UMT-L (Li et al., 2023c)	5M	33.3	58.1	66.7	34.0	60.4	68.7	20.0	37.2	43.7	31.9	60.2	72.0
BT-Adapter	2M	40.9	64.7	73.5	35.6	61.9	72.6	19.5	35.9	45.0	37.0	66.7	78.9

Table 3: The results of video conversation on video-based generative performance benchmarking. FT and ZS mean with and without video instruction tuning respectively.

Evaluation Aspect	VideoLLaMA	LLaMA-Adapter	VideoChat	VideoChatGPT	Ours (ZS)	Ours (FT)
Temporal Understanding	1.82	1.98	1.94	1.98	2.13	2.34
Correctness of Information	1.96	2.03	2.23	2.40	2.16	2.68
Detail Orientation	2.18	2.32	2.50	2.52	2.46	2.69
Contextual Understanding	2.16	2.30	2.53	2.62	2.89	3.27
Consistency	1.79	2.15	2.24	2.37	2.20	2.46
Mean	1.98	2.16	2.29	2.38	2.46	2.69

可以集成到Video LLM上

Table 4: The results of video conversation zero-shot question-answering. FT and ZS mean with and without instruction tuning respectively.

Method	MSV	D-QA	MSRV	TT-QA	ActivityNet-QA	
Method	Acc	Score	Acc	Score	Acc	Score
VideoLLaMA	51.6	2.5	29.6	1.8	12.4	1.1
LLaMA-Adapter	54.9	3.1	43.8	2.7	34.2	2.7
VideoChat	56.3	2.8	45.0	2.5	26.5	2.2
VideoChatGPT	64.9	3.3	49.3	2.8	35.2	2.7
Ours (ZS)	67.0	3.6	51.2	2.9	46.1	3.2
Ours (FT)	67.5	3.7	57.0	3.2	45.7	3.2

Table 5: The results of zero-shot video conversation on different image-centric dialogue models.

Method	Temporal	Correctness
LLaVA-Vicuna	1.78	2.06
+BT-Adapter	2.13	2.16
MiniGPT4-Vicuna	1.88	2.48
+BT-Adapter	2.56	2.71
MiniGPT4-LLama2	1.56	1.44
+BT-Adapter	2.15	1.81

消融实验

Table 6: Ablation study on the structures of BT-Adapter. We report the results on zero-shot R@1 of MSRVTT and DiDemo retrieval and zero-shot video conversation.

Model	MSRVTT	DiDemo	Temporal
CLIP (baseline)	35.4	30.3	1.78
+4 layer separate-ST	35.7	31.0	1.81
+branch modeling	37.4	32.9	1.97
+backbone-branch interaction	38.5	33.9	2.06

Table 7: Ablation study on the training objectives. We report the zeroshot R@1 of retrieval.

MBTA	MBCA	MSRVTT	DiDemo
		38.5	33.9
1		39.3	34.3
	✓	40.1	34.9
\	✓	40.9	35.6

Bo He^{1,2*} Hengduo Li² Young Kyun Jang² Menglin Jia² Xuefei Cao² Ashish Shah² Abhinay Shriyastaya¹ Ser-Nam Lim³

¹University of Maryland, College Park ²Meta ³University of Central Florida

https://boheumd.github.io/MA-LMM/

- □研究背景
- □相关工作
- □主要方法
- 口实验结果

长视频理解的痛点:

- 1. 信息冗余
- 2. 资源受限

本文解决方法:

1. 建立内存,参与Q-former的解码,并直接输入到LLM中

- □研究背景
- □相关工作
- □主要方法
- □实验结果

查询和视觉内存机制实现不同前置信息下不同的关注内容感知

21

视觉内存机制

PE是时间信息的嵌入层,CLIP解码后添加时间信息

$$f_t = v_t + PE(t), f_t \in \mathbb{R}^{P \times C}.$$

拼接全部的内存特征

$$F_t = \mathsf{Concat}[f_1, f_2, .., f_t], I$$

Q-Former层中的第一层self-attn 与长期记忆融合,关注当前帧的不同信息

$$Q = z_t W_Q$$
, $K = F_t W_K$, $V = F_t W_V$.

we apply the cross-attention operation as:

$$O = Attn(Q, K, V) = Softmax\left(\frac{QK^T}{\sqrt{C}}\right)V.$$

查询内存机制,类似视觉内存

$$Q = z_t W_Q$$
, $K = Z_t W_K$, $V = Z_t W_V$.

内存压缩

相似度最高的两帧融合

$$s_t^i = \cos(f_t^i, f_{t+1}^i), t \in [1, M], i \in [1, P].$$

$$\hat{f}_k^i = (f_k^i + f_{k+1}^i)/2.$$

- □研究背景
- □相关工作
- □主要方法
- □实验结果

Table 3. Comparison with state-of-the-art methods on the video question answering task. Top-1 accuracy is reported.

Model	MSRVTT	MSVD	ActivityNet
JustAsk [74]	41.8	47.5	38.9
FrozenBiLM [75]	47.0	54.8	43.2
SINGULARITY [76]	43.5	-	44.1
VIOLETv2 [77]	44.5	54.7	y. y.
GiT [78]	43.2	56.8	-
mPLUG-2 [79]	48.0	58.1	_
UMT-L [80]	47.1	55.2	47.9
VideoCoCa [81]	46.3	56.9	56.1
Video-LLaMA [12]	46.5	58.3	45.5
Ours	48.5	60.6	49.8

Table 5. Action anticipation results on EpicKitchens-100.

Model	Accu	racy@1	op-5	Recall@Top-5			
	Verb	Noun	Act.	Verb	Noun	Act.	
Video-LLaMA	73.9	47.5	29.7	26.3	27.3	11.7	
Ours	74.5	50.7	32.7	25.9	29.9	12.2	

25

消融实验

Visual	Query	LVU	Breakfast	COIN
X	×	48.3	74.6	72.3
1	X	61.5	91.8	92.4
×	/	58.0	81.4	88.5
1	/	63.0	93.0	93.2

Method	#Frame	#Token	GPU	LVU	Breakfast	COIN
Concat	60	1920	49.2	62.6	90.4	93.0
Avg Pool	100	32	21.2	57.6	80.6	87.6
ToMe	100	200	22.2	61.5	91.3	91.5
FIFO	100	32	19.1	61.3	88.5	90.4
MBC	100	32	19.1	63.0	93.0	93.2

视觉内存提升最大

内存的压缩方法差异

内存长度差异

总结:

- 1.One for all 针对的是短视频,分支方法CLIP转化到视频领域,新CLStoken在不同帧 之间交互
- 2.MA-LMM 转化BLIP2的Q-former实现图片到视频的转化,使用内存机制来实现长视频理解

不足:

One for all: 1.一个cls token作为每帧的代理进行交互,数量可能过少

2.长视频适配程度待定

MA-LMM: 1.一种posterior structure,效果应该不如分支结构微调CLIP

2.缓存机制粗暴,细粒度信息丢失

3. 难以查询最前的信息

日尼夕冰州门台口异大型王