MATH3714 Linear Regression and Robustness

Jochen Voss

University of Leeds, Semester 1, 2025/26

Contents

Pı	reface	3				
1	Simple Linear Regression 1.1 Residual Sum of Squares	. 6				
Ι	Theory	9				
2	Least Squares Estimates	10				
_	2.1 Data and Models					
	2.2 The Normal Equations					
	2.3 Fitted Values	. 13				
	2.4 Example					
	2.5 Models Without Intercept	. 15				
In	nterlude: Linear Regression in R	17				
	Fitting a Model	. 17				
	Understanding the Model					
	Making Predictions	. 20				
3	Random Vectors and Covariance	21				
	3.1 Expectation	. 21				
	3.2 Covariance Matrix	. 21				
	3.3 The Multivariate Normal Distribution	. 23				
Pı	roblem Sheet 1	27				
4	Properties of the Least Squares Estimate	30				
	4.1 Mean and Covariance	. 30				
	4.2 Properties of the Hat Matrix					
	4.3 Cochran's theorem					
	4.4 Estimating the Error Variance	. 35				
5	Uncertainty for Individual Regression Coefficients					
	5.1 Measuring the Estimation Error	. 37				
	5.2 Confidence Intervals	. 38				
	5.3 Hypothesis Tests	. 39				
	5.4 R Experiments	. 39				
6	Estimating Coefficients Simultaneously	42				
	6.1 Linear Combinations of Coefficients	. 42				

	6.2 6.3	9	43 48
Int	terlu	de: Loading Data into R	50
		8	50
		· ·	51
		0 1	51
	Com	mon Problems	53
7	Exa	mples 5	54
	7.1	-	54
	7.2	•	56
	7.3	Testing a Single Coefficient	56
	7.4	Testing Multiple Coefficients	58
Pr	oble	m Sheet 2	60
8	The	Influence of Observations	32
	8.1	Deleting Observations	62
	8.2	Cook's Distance	65
II	${f Li}$	near Regression in Practice	89
_		G	•
9	9.1	,	70 70
	9.1		72
	9.3	·	74
10			76
			7g
		-	79 30
_			
Int	terlu	de: Understanding the lm() Output	32
11		6	34
			34
			34
	11.3	The Power Transform	38
Pr	oble	n Sheet 3	92
12			95
			95
		•	95
	12.3	Choosing Between Models	97
13			99
			96
	13.2	Search Algorithm	96
14	Fact	ors 10)7
	14.1	Indicator Variables)7
		Interactions	
	14 3	Example	19

15	Mul	ticollinearity 1	17
	15.1	Consequences of Multicollinearity	17
	15.2	$ Detecting \ Multicollinearity \ \dots \ \dots \ 1 $	18
	15.3	Mitigations	21
Pr	oble	m Sheet 4	22
16	Rid	ge Regression 12	23
			23
	16.2	Properties of the Estimate	24
	16.3	Standardisation	27
II	I R	obust Regression 12	29
17	Rob	ust Regression 13	30
		-	30
	17.2	Breakdown Points	33
18	M-E	stimators	36
	18.1		36
			38
	18.3	Objective Functions	39
19			45
		V	45
	19.2	Robust estimators	46
In			49
			49
			49
			49
	Sum	mary	50
Pr	oble	n Sheet 5	51
20			52
		F	52
		v	52
	20.3	Weight Comparisons	53
\mathbf{A}		0	55
			55
	A.2		55
	A.3	Eigenvalues	57
В			59
	B.1	1	59
	B.2	•	59
	B.3 B.4		59 59
	Б.4 В.5		60
			- 0

Preface

From previous modules we know how to fit a regression line through points $(x_1,y_1),\ldots,(x_n,y_n)\in\mathbb{R}^2.$ The underlying model here is described by the equa-

tion

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

for all $i \in \{1, 2, ..., n\}$, and the aim is to find values for the intercept α and the slope β such that the fitted line is as close as possible to the data points. This procedure, called simple linear regression, is illustrated in figure 1. The variables x_i are called **input**, "features", "predictors", or sometimes also "explanatory variables" or "independent variables". The variables y_i are called **output** or "response", or sometimes the "dependent variables". The values ε_i are called the **errors** or **noise terms**.

Figure 1: An illustration of linear regression. Each of the black circles in the plot stands for one paired sample (x_i, y_i) . The regression line $x \mapsto \alpha + \beta x$, with intercept α and slope β , aims to predict the value of y using the observed value x. For the marked sample (x_i, y_i) , the predicted y-value is \hat{y}_i .

Extending the situation of simple linear regression, here we will consider multiple linear regression, where the response y is allowed to depend on several input variables. The corresponding model is now

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$$

for all $i \in \{1, 2, ..., n\}$, where n is still the number of observations, and p is now the number of inputs we observe for each sample. The aim is now to find values for the intercept β_0 and the slopes $\beta_1, ..., \beta_p$ such that the fitted hyperplane is as close as possible to the data points. Note that for multiple linear regression, we still consider a single response for each sample, only the number of inputs has been increased.

We will discuss multiple linear regression in much detail; our discussion will answer questions like the following:

- 1. Given a new input x, how can we predict the corresponding output y?
- 2. By studying a fitted regression model, sometimes better understanding of the data can be achieved. For example, one could ask whether all of the p input variables carry information about the response y. We will use statistical hypothesis tests to answer such questions.
- 3. How well does the model fit the data?
- 4. How to deal with outliers in the data?

In the next section, we will begin by reviewing simple linear regression in detail, before moving on to the multiple regression case.

1 Simple Linear Regression

As a reminder, we consider simple linear regression in this section. My hope is that all of you have seen this material before at some stage, e.g. in school or in some first or second year modules.

In preparation for notation introduced in the next section, we rename the parameters α and β from the introduction to the new names β_0 for the intercept and β_1 for the slope.

1.1 Residual Sum of Squares

In simple linear regression, the aim is to find a regression line $y=\beta_0+\beta_1 x$, such that the line is "close" to given data points $(x_1,y_1),\ldots,(x_n,y_n)\in\mathbb{R}^2$ for $i\in\{1,2,\ldots,n\}$. The usual way to find β_0 and β_1 , and thus the regression line, is by minimising the **residual sum of squares**:

$$r(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2.$$
 (1)

For given β_0 and β_1 , the value $r(\beta_0,\beta_1)$ measures how close (in vertical direction) the given data points (x_i,y_i) are to the regression line $\beta_0+\beta_1x$. By minimising $r(\beta_0,\beta_1)$ we find the regression line which is "closest" to the data. The solution of this minimisation problem is usually expressed in terms of the sample variance \mathbf{s}_x and the sample covariance \mathbf{s}_{xy} .

Definition 1.1. The sample covariance of $x_1,\dots,x_n\in\mathbb{R}$ and $y_1,\dots,y_n\in\mathbb{R}$ is given by

$$\mathbf{s}_{xy} := \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y}),$$

where \bar{x} and \bar{y} are the sample means.

The **sample variance** of $x_1, \dots, x_n \in \mathbb{R}$ is given by

$$s_x^2 := s_{xx} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2,$$

where, again, \bar{x} is the sample mean of the x_i .

Lemma 1.1. Assume that $s_x^2 > 0$. Then the function $r(\beta_0, \beta_1)$ from (1) takes its minimum at the point (β_0, β_1) given by

$$\hat{\beta}_1 = \frac{\mathbf{s}_{xy}}{\mathbf{s}_x^2}, \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

where \bar{x}, \bar{y} are the sample means, s_{xy} is the sample covariance and s_x^2 is the sample variance.

Proof. We could find the minimum of r by differentiating and setting the derivatives to zero. Here we follow a different approach which uses a "trick" to simplify the algebra: Let $\tilde{x}_i = x_i - \bar{x}$ and $\tilde{y}_i = y_i - \bar{y}$ for all $i \in \{1, \dots, n\}$. Then we have

$$\sum_{i=1}^{n} \tilde{x}_i = \sum_{i=1}^{n} x_i - n\bar{x} = 0$$

and, similarly, $\sum_{i=1}^{n} \tilde{y}_i = 0$. Using the new coordinates \tilde{x}_i and \tilde{y}_i we find

$$\begin{split} r(\beta_0,\beta_1) &= \sum_{i=1}^n \bigl(y_i - \beta_0 - \beta_1 x_i\bigr)^2 \\ &= \sum_{i=1}^n \bigl(\tilde{y}_i + \bar{y} - \beta_0 - \beta_1 \tilde{x}_i - \beta_1 \bar{x}\bigr)^2 \\ &= \sum_{i=1}^n \Bigl(\bigl(\tilde{y}_i - \beta_1 \tilde{x}_i\bigr) + \bigl(\bar{y} - \beta_0 - \beta_1 \bar{x}\bigr)\Bigr)^2 \\ &= \sum_{i=1}^n \bigl(\tilde{y}_i - \beta_1 \tilde{x}_i\bigr)^2 + 2\bigl(\bar{y} - \beta_0 - \beta_1 \bar{x}\bigr)\sum_{i=1}^n \bigl(\tilde{y}_i - \beta_1 \tilde{x}_i\bigr) + n\bigl(\bar{y} - \beta_0 - \beta_1 \bar{x}\bigr)^2 \end{split}$$

Since $\sum_{i=1}^{n} \tilde{x}_i = \sum_{i=1}^{n} \tilde{y}_i = 0$, the second term on the right-hand side vanishes and we get

$$r(\beta_0, \beta_1) = \sum_{i=1}^{n} (\tilde{y}_i - \beta_1 \tilde{x}_i)^2 + n(\bar{y} - \beta_0 - \beta_1 \bar{x})^2.$$
 (2)

Both of these terms are positive and we can minimise the second term (without changing the first term) by setting $\beta_0 = \bar{y} - \beta_1 \bar{x}$.

To find the value of β_1 which minimises the first term on the right-hand side of (2) we now set the (one-dimensional) derivative w.r.t. β_1 equal to 0. We get the condition

$$\begin{split} 0 &\stackrel{!}{=} \frac{d}{d\beta_1} \sum_{i=1}^n \bigl(\tilde{y}_i - \beta_1 \tilde{x}_i \bigr)^2 \\ &= \sum_{i=1}^n 2 \bigl(\tilde{y}_i - \beta_1 \tilde{x}_i \bigr) \frac{d}{d\beta_1} \bigl(\tilde{y}_i - \beta_1 \tilde{x}_i \bigr) \\ &= -2 \sum_{i=1}^n \bigl(\tilde{y}_i - \beta_1 \tilde{x}_i \bigr) \tilde{x}_i \\ &= -2 \sum_{i=1}^n \tilde{x}_i \tilde{y}_i + 2 \beta_1 \sum_{i=1}^n \tilde{x}_i^2. \end{split}$$

The only solution to this equation is

$$\begin{split} \beta_1 &= \frac{\sum_{i=1}^n \tilde{x}_i \tilde{y}_i}{\sum_{i=1}^n \tilde{x}_i^2} \\ &= \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \\ &= \frac{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2} \\ &= \frac{\mathbf{s}_{xy}}{\mathbf{s}_x^2}. \end{split}$$

Since the second derivative is $2\sum_{i=1}^{n} \tilde{x}_{i}^{2} > 0$, this is indeed a minimum and the proof is complete.

1.2 Linear Regression as a Parameter Estimation Problem

In statistics, any analysis starts by making a statistical model of the data. This is done by writing random variables which have the same structure as the data, and which are chosen so that the data "looks like" a random sample from these random variables. To construct a model for the data used in a simple linear regression problem, we consider fixed x_1, \ldots, x_n and then define random variables Y_1, \ldots, Y_n as follows:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{3}$$

for all $i \in \{1, 2, ..., n\}$, where $\varepsilon_1, ..., \varepsilon_n$ are i.i.d. random variables with $\mathbb{E}(\varepsilon_i) = 0$ and $\mathrm{Var}(\varepsilon_i) = \sigma^2$.

- Here the x-values are fixed and known. The only random quantities in the model are ε_i and Y_i . (There are more complicated models which also allow for randomness of x, but we won't consider such models here.)
- The random variables ε_i are errors or noise terms. In a scatter plot, the errors correspond to the vertical distance between the samples and the true regression line. Often one assumes that $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ for all $i \in \{1, 2, ..., n\}$.
- line. Often one assumes that $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ for all $i \in \{1, 2, ..., n\}$.

 The values β_0 , β_1 and σ^2 are parameters of the model. To fit the model to data, we need to estimate these parameters.

This model is more complex than the models considered in some introductory statistics courses:

- The data consists now of pairs of numbers, instead of just single numbers.
- We have

$$\mathbb{E}(Y_i) = \mathbb{E}(\beta_0 + \beta_1 x_i + \varepsilon_i) = \beta_0 + \beta_1 x_i + \mathbb{E}(\varepsilon_i) = \beta_0 + \beta_1 x_i.$$

Thus, the expectation of Y_i depends on x_i and, at least for $\beta_1 \neq 0$, the random variables Y_i are not identically distributed.

In this setup, we can consider the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ from the previous subsection as statistical parameter estimates for the model parameters β_0 and β_1 .

In order to fit a linear model we also need to estimate the error variance σ^2 . We can't use the usual formula for estimating a variance, since the errors ε_i are not observed. Instead we consider the **residuals**

$$\hat{\varepsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i).$$

These are the vertical distances between the data points (x_i, y_i) and the fitted regression line. (In contrast, the errors ε_i are the vertical distances between the data points and the unknown, true regression line). Using the residuals, we can estimate σ^2 by

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\varepsilon}_i^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2. \tag{4}$$

To understand the form of this estimator, we have to remember that σ^2 is the variance of the ε_i . Thus, using the standard estimator for the variance, we could estimate σ^2 as

$$\sigma^2 \approx \frac{1}{n-1} \sum_{i=1}^n (\varepsilon_i - \bar{\varepsilon})^2 \approx \frac{1}{n-1} \sum_{i=1}^n (\hat{\varepsilon}_i - \bar{\hat{\varepsilon}})^2, \tag{5}$$

where $\bar{\varepsilon}$ and $\bar{\hat{\varepsilon}}$ are the averages of the ε_i and the $\hat{\varepsilon}_i$, respectively. We will later see that $\bar{\hat{\varepsilon}}=0$. The estimates of β_0 and β_1 are sensitive to fluctuations in the data, with the effect that the estimated regression line is, on average, slightly closer to the data points than the true regression line would be. This causes the sample variance of the $\hat{\varepsilon}_i$, on average, to be slightly smaller than the true error variance σ^2 and the thus the estimator (5) is slightly biased. A more detailed analysis reveals that an unbiased estimator can be obtained if one replaces the pre-factor 1/(n-1) in equation (5) with 1/(n-2). This leads to the estimator (4).

The main advantage gained by considering a statistical model is, that we now can consider how close the estimators $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\sigma}^2$ are to the true values. Results one can obtain include the following:

- The estimators $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\sigma}^2$ are unbiased: This means that when we plug in random data (x_i, Y_i) from the model (3), on average we get the correct answer: $\mathbb{E}(\hat{\beta}_0) = \beta_0$, $\mathbb{E}(\hat{\beta}_1) = \beta_1$, $\mathbb{E}(\hat{\sigma}^2) = \sigma^2$.
- One can ask about the average distance between the estimated parameters $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\sigma}^2$ and the (unknown) true values β_0 , β_1 and σ^2 . One measure for these distances is the root mean squared error of the estimators.
- One can consider confidence intervals for the parameters β_0 , β_1 and σ^2 .
- One can consider statistical hypothesis tests to answer yes/no questions about the parameters. For example, one might ask whether the data could have come from the model with $\beta_0 = 0$.
- One can consider whether the data is compatible with the model at all, irrespective of parameter values. If there is a non-linear relationship between x and y, the model (3) will no longer be appropriate.

We will consider most of these topics over the course of the module.

1.3 Matrix Notation

To conclude this section, we will rewrite the results using matrix notation. This approach simplifies our equations and will be extensively used for multiple linear regression in the rest of this module. The idea here is to arrange all quantities in the problem as matrices and vectors. We write

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \in \mathbb{R}^{n \times 2}, \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n, \qquad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} \in \mathbb{R}^n, \qquad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \in \mathbb{R}^2$$

Using this notation, we can rewrite the n equations $y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$ for $i \in \{1, \dots, n\}$ as one vector-valued equation in \mathbb{R}^n : we get

$$y = X\beta + \varepsilon,$$

and we want to "solve" this vector-valued equation for β . The sum of squares can now be written as

$$r(\beta) = \sum_{i=1}^n \varepsilon_i^2 = \varepsilon^\top \varepsilon = (y - X\beta)^\top (y - X\beta) = y^\top y - 2\beta^\top X^\top y + \beta^\top X^\top X\beta.$$

In the next section we will see that the minimum of r is attained for

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$$

and one can check that the components of this vector $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$ coincide with the estimates we obtained above.

Summary

- Simple linear regression is the case where there is only one input.
- A regression line is fitted by minimising the residual sum of squares.
- Linear regression is a statistical parameter estimation problem.
- The problem can be conveniently written in matrix/vector notation.

Part I

Theory

2 Least Squares Estimates

2.1 Data and Models

For multiple linear regression we assume that there are p inputs and one output. If we have a sample of n observations, we have np inputs and n outputs in total. Here we denote the ith observation of the jth input by x_{ij} and the corresponding output by y_i .

As an example, we consider the mtcars dataset built into R. This is a small dataset, which contains information about 32 automobiles (1973-74 models). The table lists fuel consumption mpg, gross horsepower hp, and 9 other aspects of these cars. Here we consider mpg to be the output, and the other listed aspects to be inputs. Type help(mtcars) in R to learn more about this dataset:

```
mtcars
#
                        mpg cyl disp hp drat
                                                   wt qsec vs am gear carb
# Mazda RX4
                       21.0
                              6 160.0 110 3.90 2.620 16.46
                                                              0
                                                                 1
                                                                       4
                                                                            4
# Mazda RX4 Wag
                              6 160.0 110 3.90 2.875 17.02
                                                              0
                                                                 1
                                                                       4
                                                                            4
                       21.0
# Datsun 710
                       22.8
                              4 108.0 93 3.85 2.320 18.61
                                                                            1
# Hornet 4 Drive
                       21.4
                              6 258.0 110 3.08 3.215 19.44
# Hornet Sportabout
                       18.7
                              8 360.0 175 3.15 3.440 17.02
                                                              0
                                                                 0
                                                                       3
                                                                            2
                              6 225.0 105 2.76 3.460 20.22
                                                                 0
                                                                       3
# Valiant
                       18.1
                                                              1
                                                                            1
# Duster 360
                       14.3
                              8 360.0 245 3.21 3.570 15.84
                                                              0
                                                                 0
                                                                       3
                                                                            4
# Merc 240D
                       24.4
                              4 146.7
                                        62 3.69 3.190 20.00
                                                              1
                                                                 0
                                                                       4
                                                                            2
# Merc 230
                              4 140.8
                                        95 3.92 3.150 22.90
                                                                 0
                                                                       4
                                                                            2
                       22.8
                                                              1
                                                                            4
# Merc 280
                       19.2
                              6 167.6 123 3.92 3.440 18.30
                                                              1
                                                                 0
                                                                       4
# Merc 280C
                       17.8
                              6 167.6 123 3.92 3.440 18.90
                                                                       4
# Merc 450SE
                       16.4
                              8 275.8 180 3.07 4.070 17.40
                                                                       3
# Merc 450SL
                       17.3
                              8 275.8 180 3.07 3.730 17.60
                                                              0
                                                                 0
                                                                       3
                                                                            3
                       15.2
                                                                 0
                                                                            3
# Merc 450SLC
                              8 275.8 180 3.07 3.780 18.00
                                                              0
                                                                       3
# Cadillac Fleetwood
                       10.4
                              8 472.0 205 2.93 5.250 17.98
                                                              0
                                                                 0
                                                                       3
                                                                            4
# Lincoln Continental 10.4
                              8 460.0 215 3.00 5.424 17.82
                                                              0
                                                                       3
                                                                            4
                              8 440.0 230 3.23 5.345 17.42
                                                              0
                                                                 0
# Chrysler Imperial
                       14.7
                                                                       3
                                                                            4
# Fiat 128
                                        66 4.08 2.200 19.47
                                                              1
                                                                 1
                                                                       4
                                                                            1
                       32.4
                                78.7
# Honda Civic
                       30.4
                                 75.7
                                        52 4.93 1.615 18.52
# Toyota Corolla
                       33.9
                              4 71.1
                                        65 4.22 1.835 19.90
                                                                       4
                                                                            1
# Toyota Corona
                       21.5
                              4 120.1
                                        97 3.70 2.465 20.01
                                                                 0
                                                                       3
                                                                            1
# Dodge Challenger
                       15.5
                              8 318.0 150 2.76 3.520 16.87
                                                              0
                                                                 0
                                                                       3
                                                                            2
# AMC Javelin
                       15.2
                              8 304.0 150 3.15 3.435 17.30
                                                              0
                                                                       3
                                                                            2
# Camaro Z28
                       13.3
                              8 350.0 245 3.73 3.840 15.41
                                                              0
                                                                 0
                                                                       3
                                                                            4
                              8 400.0 175 3.08 3.845 17.05
                                                                            2
# Pontiac Firebird
                                                              0
                                                                 0
                                                                       3
                       19.2
# Fiat X1-9
                       27.3
                              4 79.0
                                        66 4.08 1.935 18.90
                                                              1
                                                                 1
                                                                       4
                                                                            1
# Porsche 914-2
                                        91 4.43 2.140 16.70
                                                                            2
                       26.0
                              4 120.3
# Lotus Europa
                       30.4
                              4 95.1 113 3.77 1.513 16.90
                                                                       5
                                                                            2
                                                              1
# Ford Pantera L
                       15.8
                              8 351.0 264 4.22 3.170 14.50
                                                                 1
                                                                       5
                                                                            4
# Ferrari Dino
                       19.7
                              6 145.0 175 3.62 2.770 15.50
                                                              0
                                                                 1
                                                                       5
                                                                            6
                                                                       5
                                                                            8
# Maserati Bora
                       15.0
                              8 301.0 335 3.54 3.570 14.60
                                                              0
# Volvo 142E
                       21.4
                              4 121.0 109 4.11 2.780 18.60
```

For this dataset we have n=32 (number of cars), and p=10 (number of predictors, excluding mpg). The values y_1,\ldots,y_{32} are listed in the first column of the table, the values $x_{i,1}$ for $i\in\{1,\ldots,32\}$ are shown in the second column, and the values $x_{i,10}$ are shown in the last column.

It is easy to make scatter plots which show how a single input affects the output. For example, we can show how the engine power affects fuel consumption:

We can see that cars with stronger engines tend to use more fuel (*i.e.* a gallon of fuel lasts for fewer miles; the curve goes down), but leaving out the other inputs omits a lot of information. It is not easy to make a plot which takes all inputs into account. It is also not immediately obvious which of the variables are most important.

In linear regression, we assume that the output depends on the inputs in a linear way. We write this as

$$y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_n x_{i,n} + \varepsilon_i \tag{6}$$

where the errors ε_i are assumed to be "small". Here, i ranges over all n samples, so (6) represents n simultaneous equations. The parameters β_j can be interpreted as the expected change in the response y per unit change in x_j when all other inputs are held fixed.

This model describes a hyperplane in the (p+1)-dimensional space of the inputs x_j and the output y. The hyperplane is easily visualized when p=1 (as a line in \mathbb{R}^2), and visualisation can be attempted for p=2 (as a plane in \mathbb{R}^3) but is hard for p>2.

2.2 The Normal Equations

Similar to what we did in Section 1.3, we rewrite the model using matrix notation. We define the vectors

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n, \qquad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} \in \mathbb{R}^n, \qquad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} \in \mathbb{R}^{1+p}$$

as well as the matrix

$$X = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,p} \\ 1 & x_{2,1} & \cdots & x_{2,p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,p} \end{pmatrix} \in \mathbb{R}^{n \times (1+p)}.$$

The parameters β_i are called the **regression coefficients** and the matrix X is called the **design matrix**.

Using this notation, the model (6) can be written as

$$y = X\beta + \varepsilon, \tag{7}$$

where again $X\beta$ is a matrix-vector multiplication which "hides" the sums in equation (6), and (7) is an equation of vectors of size n, which combines the n individual equations from (6).

To simplify notation, we index the columns of X by 0, 1, ..., p (instead of the more conventional 1, ..., p+1), so that we can for example write

$$(X\beta)_i = \sum_{j=0}^p x_{i,j}\beta_j = \beta_0 + \sum_{j=1}^p x_{i,j}\beta_j.$$

As before, we find the regression coefficients by minimising the residual sum of squares:

$$\begin{split} r(\beta) &= \sum_{i=1}^n \varepsilon_i^2 \\ &= \sum_{i=1}^n \bigl(y_i - (\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})\bigr)^2. \end{split}$$

In practice, this notation turns out to be cumbersome, and we will use matrix notation in the following proof.

Lemma 2.1. Assume that the matrix $X^{\top}X \in \mathbb{R}^{(1+p)\times(1+p)}$ is invertible. Then the function $r(\beta)$ takes its minimum at the vector $\hat{\beta} \in \mathbb{R}^{p+1}$ given by

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} y.$$

Proof. Using the vector equation $\varepsilon = y - X\beta$, we can also write the residual sum of squares as

$$\begin{split} r(\beta) &= \sum_{i=1}^n \varepsilon_i^2 \\ &= \varepsilon^\top \varepsilon \\ &= (y - X\beta)^\top (y - X\beta) \\ &= y^\top y - y^\top X\beta - (X\beta)^\top y + (X\beta)^\top (X\beta). \end{split}$$

Using the linear algebra rules from Appendix A.2 we find that $y^{\top}X\beta = (X\beta)^{\top}y = \beta^{\top}X^{\top}y$ and $(X\beta)^{\top}(X\beta) = \beta^{\top}X^{\top}X\beta$. Thus we get

$$r(\beta) = u^{\top} u - 2\beta^{\top} X^{\top} u + \beta^{\top} X^{\top} X \beta.$$

Note that in this equation X is a matrix, y and β are vectors, and $r(\beta)$ is a number.

To find the minimum of this function, we set all partial derivatives $\frac{\partial}{\partial \beta_i} r(\beta)$ equal to 0. Going through the terms in the formula for $r(\beta)$ we find: (1) $y^\top y$ does not depend on β , so we have $\frac{\partial}{\partial \beta_i} y^\top y = 0$ for all i, (2) we have

$$\frac{\partial}{\partial \beta_i} \beta^\top X^\top y = \frac{\partial}{\partial \beta_i} \sum_{j=0}^p \beta_j (X^\top y)_j = (X^\top y)_i$$

and (3) finally

$$\frac{\partial}{\partial \beta_i} \beta^\top X^\top X \beta = \frac{\partial}{\partial \beta_i} \sum_{j,k=0}^p \beta_j (X^\top X)_{j,k} \beta_k = 2 \sum_{k=0}^p (X^\top X)_{i,k} \beta_k = 2 \big((X^\top X) \beta \big)_i.$$

(Some care is needed, when checking that the middle equality sign in the previous equation is correct.) Combining these derivatives, we find

$$\frac{\partial}{\partial \beta_i} r(\beta) = 0 - 2(X^\top y)_i + 2(X^\top X \beta)_i \tag{8}$$

for all $i \in \{0, 1, ..., p\}$. At a local minimum of r, all of these partial derivatives must be zero and using a vector equation we find that a necessary condition for a minimum is

$$X^{\top}X\beta = X^{\top}y. \tag{9}$$

Since we assumed that $X^{\top}X$ is invertible, there is exactly one vector β which solves (9). This vector is given by

 $\hat{\beta} := (X^{\top} X)^{-1} X^{\top} y.$

As for one-dimensional minimisation, there is a condition on the second derivatives which must be checked to see which local extrema are local minima. Here we are only going to sketch this argument: A sufficient condition for $\hat{\beta}$ to be a minimum is for the second derivative matrix (the Hessian matrix) to be positive definite (see appendix A.2.8). Using equation (8) we find

$$\frac{\partial^2}{\partial \beta_i \partial \beta_j} r(\beta) = 2(X^\top X)_{i,j}$$

And thus the Hessian matrix is $H = 2X^{T}X$. Using results from linear algebra, one can show that this matrix is indeed positive definite and thus $\hat{\beta}$ is the unique minimum of r.

Equation (9) gives a system of p+1 linear equations with p+1 unknowns. This system of linear equations, $X^{\top}X\beta = X^{\top}y$ is called the **normal equations**. If $X^{\top}X$ is invertible, as assumed in the lemma, this system of equations has $\hat{\beta}$ as its unique solution. Otherwise, there may be more than one β which leads to the same value $r(\beta)$ and the minimum will no longer be unique. This happens for example, if two of the inputs are identical to each other (or, more generally, one input is linearly dependent on one or more other inputs).

The condition that $X^{\top}X$ must be invertible in lemma 2.1 corresponds to the condition $s_x^2 > 0$ in lemma 1.1.

The value $\hat{\beta}$ found in the lemma is called the **least squares estimator** for β .

2.3 Fitted Values

Let us again consider our model

$$y = X\beta + \varepsilon$$
,

using the matrix notation introduced above. Here we can think of $X\beta$ as the **true** values, while ε are the errors. Using the least squares estimate $\hat{\beta}$ we can estimate the true values as

$$\hat{y} = X\hat{\beta}.\tag{10}$$

These estimates are called the **fitted values**. Using the definition of $\hat{\beta}$ we get

$$\hat{y} = X(X^\top X)^{-1} X^\top y =: Hy.$$

The matrix $H = X(X^{T}X)^{-1}X^{T}$ is commonly called the **hat matrix** (because it "puts the hat on y").

Finally, we can estimate the errors using the residuals

$$\hat{\varepsilon} = y - X\hat{\beta} = y - \hat{y} = y - Hy = (I - H)y,\tag{11}$$

where I is the $n \times n$ identity matrix.

2.4 Example

To conclude this section, we demonstrate how these methods can be used in R. For this we consider the mtcars example from the beginning of the section again. We will first see how to do the analysis "by hand", and later show how the same result can be obtained using R's built-in functions.

We first split mtcars into the response column y (the first column) and the design matrix X (a column of ones, followed by columns 2 to 11 of mtcars):

```
y <- mtcars[, 1]
X <- cbind(1, data.matrix(mtcars[, 2:11]))</pre>
```

Next we compute $X^{\top}X$ and solve the normal equations. Often it is faster, easier, and has smaller numerical errors to solve the normal equations rather than inverting the matrix $X^{\top}X$.

```
XtX \leftarrow t(X) \% X
beta.hat <- solve(XtX, t(X) %*% y)</pre>
beta.hat
               [,1]
#
       12.30337416
# cyl -0.11144048
# disp 0.01333524
       -0.02148212
# hp
 drat 0.78711097
 wt
       -3.71530393
 qsec 0.82104075
 ٧s
        0.31776281
        2.52022689
# gear 0.65541302
# carb -0.19941925
```

Without further checks it is hard to know whether the result is correct, or whether we made a mistake somewhere. One good sign is that we argued earlier that higher hp should lead to lower mpg, and indeed the corresponding coefficient -0.02148212 is negative.

Finally, compute the fitted values and generate a plot of fitted values against responses. If everything worked, we would expect the points in this plot to be close to the diagonal.

```
y.hat <- X %*% beta.hat
plot(y, y.hat, xlab = "responses", ylab = "fitted values")
abline(a = 0, b = 1) # plot the diagonal</pre>
```


For comparison we now re-do the analysis using built-in R commands. In the lm() command below, we use data=mtcars to tell R where the data is stored, and the formula $mpg \sim .$ states that we want to model mpg as a function of all other variable (this is the meaning of .).

```
m <- lm(mpg ~ ., data = mtcars) # fit a linear model
coef(m) # get the estimated coefficients
 (Intercept)
                       cyl
                                  disp
                                                            drat
                                                 hρ
#
 12.30337416
              -0.11144048
                            0.01333524
                                       -0.02148212
                                                     0.78711097
                                                                -3.71530393
#
                                                            carb
         qsec
                        vs
                                    am
                                               gear
                            2.52022689
                                         0.65541302 -0.19941925
   0.82104075
               0.31776281
```

Comparing these coefficients to the vector beta.hat from above shows that we got the same result using both methods. The fitted values can be computed using fitted.values(m). Here we just check that we get the same result as above:

```
max(abs(fitted.values(m) - y.hat))
# [1] 3.979039e-13
```

This result 3.410605e-13 stands for the number $3.410605 \cdot 10^{-13}$, which is extremely small. The difference between our results and R's result is caused by rounding errors.

2.5 Models Without Intercept

Sometimes, it is useful to fit a model without an intercept. This means that we assume that the output y is a linear function of the inputs x_1,\ldots,x_p but that the output is zero when all inputs are zero. We write this as

$$y_i = \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} + \varepsilon_i$$

for all $i \in \{1, \dots, n\}$.

When we write this model in matrix notation, we need to leave out the intercept column in the design matrix X. For this case we get

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n, \qquad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} \in \mathbb{R}^n, \qquad \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} \in \mathbb{R}^p$$

as well as the matrix

$$X = \begin{pmatrix} x_{1,1} & \cdots & x_{1,p} \\ x_{2,1} & \cdots & x_{2,p} \\ \vdots & & \vdots \\ x_{n,1} & \cdots & x_{n,p} \end{pmatrix} \in \mathbb{R}^{n \times p}.$$

The vectors y and ε are unchanged, but the vector β is now shorter and the matrix X is narrower.

Most of the results in this module carry over to this case, for example the least squares estimate for β is still given by

$$\hat{\beta} = (X^\top X)^{-1} X^\top y.$$

However, some results need to be adjusted and to be sure one has to carefully check the details of the derivations when results are needed for models without intercept.

Summary

- Multiple linear regression allows for more than one input, but still has only one output.
- The least squared estimate for the coefficients is found by minimising the residual sum of squares.
- The least squares estimate can be computed by solving the normal equations.
- The hat matrix transforms responses into fitted values.
- Residuals estimate the errors as $\hat{\varepsilon} = y \hat{y}$.
- Models can be fitted without an intercept term when appropriate.

Interlude: Linear Regression in R

Fitting a Model

The function lm() is used to fit a linear model in R. There are different ways to specify the form of the model and the data to be used for fitting the model.

• The most basic way to call lm() is the case where the explanatory variables and the response variable are stored as separate vectors. Assuming, for example, that the explanatory variables are x1, x2, x3 and that the response variable is y in R, we can tell R to fit the linear model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$ by using the following command:

```
lm(y \sim x1 + x2 + x3)
```

Note that R automatically added the intercept term β_0 to this model. If we want to fit a model without an intercept, *i.e.* the model $y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$, we have to add 0 + in front of the explanatory variables:

```
lm(y \sim 0 + x1 + x2 + x3)
```

The general form of a model specification is the response variable, followed by \sim , followed by a plus-separated list of explanatory variables. For this form of calling lm(), the variables y, x1, x2, and x3 in the examples above must be already defined before lm() is called. It may be a good idea to double-check that the variables have the correct values before trying to call lm().

• Both for the response and for explanatory variables we can specify arbitrary R expressions to compute the numeric values to be used. For example, to fit the model $\log(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$ (assuming that all y_i are positive) we can use the following command:

```
lm(log(y) \sim x1 + x2)
```

Some care is needed, because +, * and ^ have a special meaning inside the first argument of lm(); any time we want to compute a variable for lm() using these operations, we need to surround the corresponding expression with I(), to tell R that +, * or ^ should have their usual, arithmetic meaning. For example, to fit a model of the form $y \sim \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$, we can use the following R command:

```
lm(y \sim x + I(x^2))
```

Here, the use of I() tells R that x^2 is to be interpreted as the vector (x_1^2, \dots, x_n^2) . Similarly, we can fit a model of the form $y = \beta_0 + \beta_1(x_1 + x_2) + \varepsilon$:

```
lm(y \sim I(x1+x2))
```

Here, the use of I() tells R that x1+x2 indicates the vector $(x_{1,1}+x_{2,1},\ldots,x_{1,n}+x_{2,n})$ instead of two separate explanatory variables.

Details about how to specify models in calls to lm() can be found by using the command help(formula) in R.

• If the response and the explanatory variables are stored in the columns of a data frame, we can use the data=... argument to lm() to specify this data frame and then just use the column names to specify the regression model. For example, the stackloss dataset built into R consists of a data frame with columns Air.Flow, Water.Temp, Acid.Conc., stack.loss. To predict stackloss\$stack.loss from stackloss\$Air.Flow we can write

```
lm(stack.loss ~ Air.Flow, data=stackloss)
```

As a special case, a single dot "." can be used in place of the explanatory variables in the model to indicate that all columns except for the given response should be used. Thus, the following two commands are equivalent:

```
lm(stack.loss ~ ., data=stackloss)
lm(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., data=stackloss)
```

Understanding the Model

The output of the lm() function is an R object which can be used the extract information about the fitted model. A good way to work with this object is to store it in a variable and then use commands like the ones listed below to work with this variable. For example, the following R command fits a model for the stackloss dataset and stores it in the variable m:

```
m <- lm(stack.loss ~ ., data=stackloss)</pre>
```

Many operations are available to use with this object m:

• Printing m to the screen:

This shows the estimated values for the regression coefficient.

• The command summary() can be used to print additional information about the fitted model:

```
summary(m)
# Call:
# lm(formula = stack.loss ~ ., data = stackloss)
# Residuals:
     Min
              1Q Median
                              3Q
                                     Max
# -7.2377 -1.7117 -0.4551 2.3614 5.6978
# Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                         11.8960 -3.356 0.00375 **
# (Intercept) -39.9197
                                  5.307 5.8e-05 ***
# Air.Flow
               0.7156
                          0.1349
               1.2953
                          0.3680
                                  3.520 0.00263 **
# Water.Temp
# Acid.Conc.
              -0.1521
                          0.1563 -0.973 0.34405
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 3.243 on 17 degrees of freedom
# Multiple R-squared: 0.9136, Adjusted R-squared: 0.8983
# F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09
```

We will learn over the course of this module how to interpret all of this output.

• The coefficient vector β can be obtained using coef(m):

```
coef(m)
# (Intercept) Air.Flow Water.Temp Acid.Conc.
# -39.9196744 0.7156402 1.2952861 -0.1521225
```

• The fitted values \hat{y}_i can be obtained using the command fitted(m):

```
fitted(m)
                           3 4
        1
                 2
                                              5
                                                        6
38.765363 38.917485 32.444467 22.302226 19.711654 21.006940 21.389491 21.389491
                                                       14
        9
                10
                          11
                                    12
                                              13
                                                                 15
18.144379 12.732806 11.363703 10.220540 12.428561 12.050499
                                                           5.638582
                          19
                                    20
                                              21
       17
                18
 9.519951 8.455093
                   9.598257 13.587853 22.237713
```

• The estimated residuals $\hat{\varepsilon}_i = y_i - \hat{y}_i$ can be obtained using the command resid(m):

```
resid(m)
#
                            4.55553300
                                        5.69777417 -1.71165358 -3.00693970
  3.23463723 -1.91748529
            7
                        8
                                                10
                                                             11
 -2.38949071 -1.38949071 -3.14437890
                                        1.26719408
                                                     2.63629676
                                                                 2.77946036
#
                       14
                                                16
           13
                                    15
                                                             17
                                                                          18
 -1.42856088 -0.05049929
                            2.36141836
                                        0.90505080 -1.51995059 -0.45509295
           19
                                    21
# -0.59825656 1.41214728 -7.23771286
```

• The design matrix *X* can be found using model.matrix(m):

```
model.matrix(m)
#
      (Intercept) Air.Flow Water.Temp Acid.Conc.
# 1
                          80
                                      27
                                                   89
                1
# 2
                1
                          80
                                      27
                                                  88
                          75
                                      25
                                                   90
# 3
                1
# 4
                          62
                                      24
                                                   87
                1
                          62
                                      22
# 5
                1
                                                   87
# 6
                          62
                                      23
                                                   87
                                      24
# 7
                1
                          62
                                                   93
# 8
                          62
                                      24
                                                   93
                1
                                      23
                                                   87
# 9
                1
                          58
# 10
                1
                          58
                                      18
                                                   80
# 11
                1
                          58
                                      18
                                                   89
# 12
                1
                          58
                                      17
                                                   88
# 13
                          58
                                      18
                                                   82
# 14
                          58
                                      19
                                                   93
# 15
                1
                          50
                                      18
                                                   89
# 16
                1
                          50
                                      18
                                                  86
# 17
                1
                          50
                                      19
                                                   72
                          50
                                      19
                                                   79
# 18
                1
# 19
                1
                          50
                                      20
                                                   80
# 20
                                                  82
                1
                          56
                                      20
# 21
                          70
                                      20
                                                   91
# attr(,"assign")
# [1] 0 1 2 3
```

Instead of giving a fitted model m, we can also just give the data and formula as

in the call to lm(), e.g. model.matrix(y ~ x1 + x2 + x3).

Making Predictions

One of the main aims of fitting a linear model is to use the model to make predictions for new, not previously observed x-values, i.e. to compute $y_{\text{new}} = X_{\text{new}} \hat{\beta}$. The general form of the command for prediction is predict(m, newdata), where m is the model previously fitted using lm(), and newdata specifies the new x-values to predict responses for. The argument newdata should be a data.frame and for each variable in the original model there should be a column in newdata which has the name of the original variable and contains the new values. For example, if the model was fitted using

```
m \leftarrow lm(y \sim x + I(x^2))
```

and if the new samples are stored in x.new, then responses for the x-values in x.new can be predicted using the following command:

```
predict(m, data.frame(x=x.new))
```

As a second example, for the stackloss dataset, the following commands can be used to predict stack.loss for two new x-values:

```
m <- lm(stack.loss ~ ., data = stackloss)
newdata <- data.frame(Air.Flow=c(70, 73), Water.Temp=c(25,24), Acid.Conc.=c(78,90))
predict(m, newdata)
# 1 2
# 30.69174 29.71790</pre>
```

More information about predict() can be found by reading the output of help(predict.lm).

3 Random Vectors and Covariance

A random vector is a vector $Z=(Z_1,\ldots,Z_n)$ where each component Z_i is a random variable.

When we introduce a statistical model for multiple linear regression in the following section, we will assume that the errors are random variables. As in (7), the model can be written in vector form as

$$Y = X\beta + \varepsilon. \tag{12}$$

This vector-valued equation contains two random vectors, Y and ε .

3.1 Expectation

The expectation of a random vector is taken for each component separately. This is formalised in the following definition.

Definition 3.1. Let $Z=(Z_1,\dots,Z_n)\in\mathbb{R}^n$ be a random vector. Then the expectation of Z is the (non-random) vector

$$\mathbb{E}(Z) = \begin{pmatrix} \mathbb{E}(Z_1) \\ \vdots \\ \mathbb{E}(Z_n) \end{pmatrix} \in \mathbb{R}^n.$$

Example 3.1. The random vector ε in (12) has

$$\mathbb{E}(\varepsilon)_i = \mathbb{E}(\varepsilon_i) = 0$$

for all $i \in \{1, ..., n\}$ and thus $\mathbb{E}(\varepsilon) = 0 \in \mathbb{R}^n$, where 0 here denotes the zero-vector $(0, ..., 0) \in \mathbb{R}^n$.

Since the expectation of a random vector is defined in terms of the usual expectation, most rules we know for expectations still hold. For example, if Y and Z are two random vectors, we have $\mathbb{E}(Y+Z)=\mathbb{E}(Y)+\mathbb{E}(Z)$.

Example 3.2. The random vector Y in (12) has

$$\mathbb{E}(Y)_i = \mathbb{E}(Y_i) = \mathbb{E}\big((X\beta)_i + \varepsilon_i\big) = (X\beta)_i + \mathbb{E}(\varepsilon_i) = (X\beta)_i$$

for all $i \in \{1, \dots, n\}$ and thus $\mathbb{E}(Y) = X\beta \in \mathbb{R}^n$. We often will write the above derivation in vector form as

$$\mathbb{E}(Y) = \mathbb{E}(X\beta + \varepsilon) = X\beta + \mathbb{E}(\varepsilon) = X\beta.$$

Example 3.3. If $A \in \mathbb{R}^{m \times n}$ is a matrix and $Z \in \mathbb{R}^n$ is a random vector, then we find the expectation of $AZ \in \mathbb{R}^m$ as

$$\mathbb{E}(AZ)_i = \mathbb{E}((AZ)_i) = \mathbb{E}(\sum_{i=1}^n a_{ij}Z_j) = \sum_{j=1}^n \mathbb{E}(a_{ij}Z_j) = \sum_{j=1}^n a_{ij}\mathbb{E}(Z_j) = \sum_{j=1}^n a_{ij}\mathbb{E}(Z)_j$$

for all $i \in \{1, ..., m\}$ and thus we have $\mathbb{E}(AZ) = A\mathbb{E}(Z)$.

3.2 Covariance Matrix

The variance of random variables is replaced with the concept of a "covariance matrix" for random vectors.

Definition 3.2. Let $Z=(Z_1,\ldots,Z_n)\in\mathbb{R}^n$ be a random vector. Then the covariance matrix of Z is the matrix $\mathrm{Cov}(Z)\in\mathbb{R}^{n\times n}$ given by

$$Cov(Z)_{ij} = Cov(Z_i, Z_j),$$

for all $i,j\in\{1,\dots,n\},$ where $\mathrm{Cov}(Z_i,Z_j)$ denotes the usual covariance between random variables.

We collect some basic properties of covariance matrices here. Most of these arguments use concepts and rules from linear algebra, as summarised in section A in the appendix.

- Since $Cov(Z_i, Z_j) = Cov(Z_j, Z_i)$, covariance matrices are symmetric.
- The diagonal elements of Cov(Z) are

$$Cov(Z)_{ii} = Cov(Z_i, Z_i) = Var(Z_i).$$
(13)

- If the elements Z_i of Z are (statistically) independent, we have $Cov(Z_i, Z_j) = 0$ and thus $Cov(Z)_{ij} = 0$ for $i \neq j$. Hence, if Z is a vector of independent random variables, the covariance matrix of Z is diagonal.
- Let $\mu = \mathbb{E}(Z) \in \mathbb{R}^n$. If we interpret μ as a column vector, then $M = (Z \mu)(Z \mu)^{\top}$ is an $n \times n$ matrix and we have

$$M_{ij} = \left((Z - \mu)(Z - \mu)^\top \right)_{ij} = (Z - \mu)_i (Z - \mu)_j.$$

Taking expectations gives $\mathbb{E}(M_{ij}) = \mathbb{E}((Z-\mu)_i(Z-\mu)_j) = \text{Cov}(Z_i,Z_j)$ and thus we can write

$$Cov(Z) = \mathbb{E}((Z - \mu)(Z - \mu)^{\top}). \tag{14}$$

• Covariance matrices are positive semi-definite. To see this, let C = Cov(Z) and $u \in \mathbb{R}^n$ be a vector. We have to show that $u^{\top}Cu \geq 0$. Writing $\bar{Z} := Z - \mathbb{E}(Z)$ as an abbreviation, we get

$$\begin{split} u^\top C u &= u^\top \mathbb{E} \big(\bar{Z} \bar{Z}^\top \big) u \\ &= \mathbb{E} \big(u^\top \bar{Z} \bar{Z}^\top u \big) \\ &= \mathbb{E} \big((\bar{Z}^\top u)^\top \bar{Z}^\top u \big) \\ &= \mathbb{E} \big(\| \bar{Z}^\top u \|^2 \big), \end{split}$$

where $\|\bar{Z}^{\top}u\|$ denotes the Euclidean length of the vector $\bar{Z}^{\top}u$. Since $\|\bar{Z}^{\top}u\|^2 \geq 0$ we find $u^{\top}Cu \geq 0$. This shows that the covariance matrix C is positive semi-definite. (Note that, nevertheless, individual *elements* of the matrix C can be negative numbers.)

Example 3.4. The random vector ε in equation (12) has $\mathbb{E}(\varepsilon) = 0$. We have $\operatorname{Cov}(\varepsilon)_{ii} = \operatorname{Var}(\varepsilon_i) = \sigma^2$ for all $i \in \{1, ..., n\}$. Since we assumed the ε_i to be independent, the covariance matrix is diagonal and we find

$$Cov(\varepsilon) = \sigma^2 I$$
,

where I is the $n \times n$ identity matrix.

An important result about covariance matrices is given in the following lemma, which describes how the covariance matrix changes under affine transformations.

Lemma 3.1. Let $Z \in \mathbb{R}^n$ be a random vector, $A \in \mathbb{R}^{m \times n}$ a matrix and $b \in \mathbb{R}^m$ a vector. Then

$$Cov(AZ + b) = A Cov(Z)A^{\top}.$$

Proof. As in equation (14), we can write Cov(AZ + b) as

$$Cov(AZ + b) = \mathbb{E}((AZ + b - \mu)(AZ + b - \mu)^{\top}),$$

where $\mu = \mathbb{E}(AZ + b) = \mathbb{E}(AZ) + b$. Thus, $AZ + b - \mu = AZ - \mathbb{E}(AZ)$ and we find

$$\begin{aligned} \operatorname{Cov}(AZ + b) &= \mathbb{E}\big((AZ - \mathbb{E}(AZ))(AZ - \mathbb{E}(AZ))^{\top}\big) \\ &= \operatorname{Cov}(AZ). \end{aligned}$$

This shows that the covariance matrix ignores non-random shifts.

Furthermore, we have $AZ - \mathbb{E}(AZ) = AZ - A\mathbb{E}(Z) = A(Z - \mathbb{E}(Z))$. Using equation (14) again, we find

$$\begin{split} \operatorname{Cov}(AZ) &= \mathbb{E}\Big(\big(AZ - \mathbb{E}(AZ)\big)\big(AZ - \mathbb{E}(AZ)\big)^{\top}\Big) \\ &= \mathbb{E}\Big(A\big(Z - \mathbb{E}(Z)\big)\big(Z - \mathbb{E}(Z)\big)^{\top}A^{\top}\Big) \\ &= A\mathbb{E}\Big(\big(Z - \mathbb{E}(Z)\big)\big(Z - \mathbb{E}(Z)\big)^{\top}\Big)A^{\top} \\ &= A\operatorname{Cov}(Z)A^{\top}. \end{split}$$

This completes the proof.

3.3 The Multivariate Normal Distribution

With the concepts of expectation and covariance in hand, we can now turn to the distribution of random vectors. Since we assume that the random errors ε_i are normally distributed, we will need to understand how vectors of normally distributed random variables behave.

Definition 3.3. A random vector $Z \in \mathbb{R}^n$ follows a multivariate normal distribution, if $u^{\top}Z \in \mathbb{R}$ is normally distributed or constant for every vector $u \in \mathbb{R}^n$.

This definition takes its slightly surprising form to avoid some boundary cases which we will discuss in an example, below. To understand the definition, a good start is to consider the cases where u is one of the standard basis vectors, say $u_i = 1$ and $u_j = 0$ for all $j \neq i$. In this case we have

$$u^{\top}Z = \sum_{k=1}^{n} u_k Z_k = Z_i.$$

Thus, if Z follows a multivariate normal distribution, each of the components Z_i is normally distributed. Example 3.8, below, shows that the converse is not true.

One can show that a multivariate normal distribution is completely determined by the mean $\mu = \mathbb{E}(Z)$ and the covariance $\Sigma = \operatorname{Cov}(Z)$. The distribution of such a Z is denoted by $\mathcal{N}(\mu, \Sigma)$. Also, for every $\mu \in \mathbb{R}^n$ and every positive semi-definite matrix $\Sigma \in \mathbb{R}^{n \times n}$ there is a random vector Z which follows a multivariate normal distribution with this mean and covariance.

Example 3.5. Consider the vector ε from the model (12). This vector has components $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ and by assumption, the components ε_i are independent. For $u \in \mathbb{R}^n$ we have

$$u^{\top} \varepsilon = \sum_{i=1}^{n} u_i \varepsilon_i.$$

Using the fact that a sum of independent, one-dimensional, normally distributed random variables is also normally distributed, we see that $u^{\top} \varepsilon$ is normally distributed for every u. Thus, ε is a normally distributed random vector. We have already seen $\mathbb{E}(\varepsilon) = 0$ and $\text{Cov}(\varepsilon) = \sigma^2 I$, and thus $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$.

Without proof we state here some properties of the multivariate normal distribution:

- If $Z \sim \mathcal{N}(\mu, \Sigma)$ and $a \in \mathbb{R}^n$, then $Z + a \sim \mathcal{N}(\mu + a, \Sigma)$.
- If $Z \sim \mathcal{N}(\mu, \Sigma)$ and $A \in \mathbb{R}^{m \times n}$, then $AZ \sim \mathcal{N}(A\mu, A\Sigma A^{\top})$.
- If $Z_1 \sim \mathcal{N}(\mu_1, \Sigma_1)$ and $Z_2 \sim \mathcal{N}(\mu_2, \Sigma_2)$ are independent, then $Z_1 + Z_2 \sim \mathcal{N}(\mu_1 + \mu_2, \Sigma_1 + \Sigma_2)$.

Example 3.6. Let $Z=(Z_1,Z_2)$ where Z_1 and Z_2 are independently standard normal distributed. Let

$$A:=\begin{pmatrix}2&-1\\2&1\end{pmatrix}\qquad\text{and}\qquad b:=\begin{pmatrix}3\\4\end{pmatrix}.$$

Then $AZ + b \sim \mathcal{N}(b, \Sigma)$ where

$$\Sigma = A\operatorname{Cov}(Z)A^{\intercal} = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$$

We can use R to plot a sample of this two-dimensional normal distribution. (The grey cross indicates the mean.)

Example 3.7. The random vector Y in (12) satisfies $Y = X\beta + \varepsilon$ and since $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ we have $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$.

Example 3.8. Let $Y \sim \mathcal{N}(0,1)$ be a random variable. Define a random vector $Z = (Z_1, Z_2)$ as $Z_1 = Y$ and

$$Z_2 = \begin{cases} Y & \text{if } |Y| < 1, \text{ and} \\ -Y & \text{otherwise.} \end{cases}$$

Clearly Z_1 is standard normally distributed. Since $\mathcal{N}(0,1)$ is symmetric, both Y and -Y are standard normally distributed and it follows that Z_2 is also standard normally distributed. Nevertheless, the random vector Z does not follow a multivariate normal distribution. Instead of giving a proof of this fact, we illustrate this here using an R experiment. We start by verifying that Z_1 and Z_2 are normally distributed.

```
N <- 1000
Y <- rnorm(N)
Z1 <- Y
Z2 \leftarrow ifelse(abs(Y) < 1, Y, -Y)
par(mfrow=c(1,2))
hist(Z1, main=NULL, xlab=expression(Z[1]))
hist(Z2, main=NULL, xlab=expression(Z[2]))
                                                      200
      200
      150
                                                      150
Frequency
                                                Frequency
      100
                                                      100
      50
                                                      50
             -3
                          0
                                   2
                                       3
                      -1
                               1
                                                            -3
                                                                    -1
                                                                         0
                                                                             1
                                                                                  2
                                                                                      3
                         Z_1
                                                                          Z_2
```

The histograms make it plausible that the components are indeed normally distributed. Now we use a scatter plot to show the joint distribution of Z_1 and Z_2 :

```
plot(Z1, Z2, cex=0.5, asp=1,
    xlab=expression(Z[1]),
    ylab=expression(Z[2]))

compared to the state of the stat
```


This plot looks peculiar! Most people would not call this a normal distribution and the formal definition of a multivariate normal distribution is made to exclude cases like this.

Summary

- $\bullet\,$ The expectation of a random vector is computed component-wise.
- The covariance matrix of a random vector plays the role of the variance for scalar random variables.
- For linear transformations we have $\mathbb{E}(AZ)=A\mathbb{E}(Z)$ and $\mathrm{Cov}(AZ+b)=A\operatorname{Cov}(Z)A^{\top}.$
- A multivariate normal distribution is determined by its mean μ and covariance matrix Σ , and denoted by $\mathcal{N}(\mu, \Sigma)$.

Problem Sheet 1

This problem sheet covers material from Sections 1-3 of the course. You should attempt all these questions and write up your solutions in advance of the workshop in week 2. Your solutions are not assessed. Instead, the answers will be discussed in the workshop and will be made available online afterwards.

You may find it helpful to review the following key concepts:

- Simple linear regression model: $y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$
- Least squares estimation for regression coefficients
- Matrix notation for linear regression: $y = X\beta + \varepsilon$
- Properties of the design matrix X and the hat matrix $H = X(X^{\top}X)^{-1}X^{\top}$
- Expectation and covariance of random vectors
- Basic properties of the multivariate normal distribution
- 1. Consider a simple linear regression model fitted to a dataset with n pairs of observations $(x_1,y_1),\ldots,(x_n,y_n)$. Let $\hat{\beta}=(\hat{\beta}_0,\hat{\beta}_1)$ be the least squares estimate of the coefficients in the model.
 - a. Show that if we shift all y-values by a constant c (i.e., replace each y_i with $y_i + c$), the new least squares estimate for the slope $\hat{\beta}_1$ remains unchanged, while the new estimate for the intercept becomes $\hat{\beta}_0 + c$.

Solution: Let us denote the new y-values as $y'_i = y_i + c$. Then the new RSS is

$$\begin{split} \text{RSS}'(\beta_0,\beta_1) &= \sum_{i=1}^n (y_i' - (\beta_0 + \beta_1 x_i))^2 \\ &= \sum_{i=1}^n ((y_i + c) - (\beta_0 + \beta_1 x_i))^2 \\ &= \sum_{i=1}^n (y_i - (\beta_0 - c + \beta_1 x_i))^2. \end{split}$$

This is equivalent to the original RSS with β_0 replaced by $\beta_0 - c$. Therefore, the value of β_1 that minimises this will be the same as before, while the value of β_0 that minimises it will be $\hat{\beta}_0 + c$.

b. Now consider shifting all x-values by a constant d (i.e., replace each x_i with $x_i + d$). How does this affect the least squares estimates $\hat{\beta}_0$ and $\hat{\beta}_1$? Express the new estimates in terms of the original estimates and the constant d.

Solution: Let us denote the new x-values as $x'_i = x_i + d$. Then the new RSS is

$$\begin{aligned} \text{RSS}'(\beta_0, \beta_1) &= \sum_{i=1}^n (y_i - (\beta_0 + \beta_1(x_i + d)))^2 \\ &= \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 d + \beta_1 x_i))^2. \end{aligned}$$

This is equivalent to the original RSS with β_0 replaced by $\beta_0 + \beta_1 d$. Therefore, the new estimates will be

$$\begin{split} \hat{\beta}_1' &= \hat{\beta}_1, \\ \hat{\beta}_0' &= \hat{\beta}_0 - \hat{\beta}_1 d. \end{split}$$

The slope remains unchanged, but the intercept changes to maintain the same fitted line in the shifted coordinate system.

- **2.** Consider the simple linear regression model $y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$ for $i \in \{1, 2, ..., n\}$ and let X be the design matrix.
 - a. Show that $X^{\top}X = \begin{pmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

Solution: For simple linear regression, we have p=1 and the design matrix is

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}.$$

Thus we have

$$\begin{split} X^\top X &= \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \\ &= \begin{pmatrix} \sum_{i=1}^n 1 & \sum_{i=1}^n 1 \cdot x_i \\ \sum_{i=1}^n x_i \cdot 1 & \sum_{i=1}^n x_i^2 \end{pmatrix} \\ &= \begin{pmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{pmatrix}. \end{split}$$

b. Using the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

find $(X^{\top}X)^{-1}$.

Solution: Using the formula for the inverse of a 2×2 -matrix, we find

$$\begin{split} (X^\top X)^{-1} &= \begin{pmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{pmatrix}^{-1} \\ &= \frac{1}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} \begin{pmatrix} \sum_{i=1}^n x_i^2 & -\sum_{i=1}^n x_i \\ -\sum_{i=1}^n x_i & n \end{pmatrix}. \end{split}$$

c. Find $X^\top y$ and use this to derive an explicit formula for the least squares estimate $\hat{\beta} = (X^\top X)^{-1} X^\top y$.

Solution: Omitting the indices in the sums for brevity, we have

$$X^\top y = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \sum y_i \\ \sum x_i y_i \end{pmatrix}$$

and thus

$$\begin{split} \hat{\beta} &= (X^{\top}X)^{-1}X^{\top}y \\ &= \frac{1}{n\sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}} \begin{pmatrix} \sum x_{i}^{2} & -\sum x_{i} \\ -\sum x_{i} & n \end{pmatrix} \begin{pmatrix} \sum y_{i} \\ \sum x_{i}y_{i} \end{pmatrix} \\ &= \frac{1}{n\sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}} \begin{pmatrix} \sum x_{i}^{2}\sum y_{i} - \sum x_{i}\sum x_{i}y_{i} \\ -\sum x_{i}\sum y_{i} + n\sum x_{i}y_{i} \end{pmatrix} \\ &= \frac{1}{\frac{1}{n\sum i_{i-1}^{n}x_{i}^{2} - \left(\frac{1}{n\sum i_{i-1}^{n}x_{i}\right)^{2}} \begin{pmatrix} \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} \cdot \frac{1}{n}\sum_{i=1}^{n}y_{i} - \frac{1}{n}\sum_{i=1}^{n}x_{i} \cdot \frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i} \end{pmatrix} } \\ &= \frac{1}{\frac{1}{n\sum i_{i-1}^{n}x_{i}^{2} - \left(\frac{1}{n\sum i_{i-1}^{n}x_{i}\right)^{2}} \begin{pmatrix} \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} \cdot \frac{1}{n}\sum_{i=1}^{n}y_{i} - \frac{1}{n}\sum_{i=1}^{n}x_{i} \cdot \frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i} \end{pmatrix} } \\ &= \frac{1}{\frac{1}{n\sum i_{i-1}^{n}x_{i}^{2} - \left(\frac{1}{n\sum i_{i-1}^{n}x_{i}\right)^{2}} \begin{pmatrix} \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} \cdot \frac{1}{n}\sum_{i=1}^{n}y_{i} - \frac{1}{n}\sum_{i=1}^{n}x_{i} \cdot \frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i} \end{pmatrix} } \\ &= \frac{1}{\frac{1}{n\sum i_{i-1}^{n}x_{i}^{2} - \left(\frac{1}{n\sum i_{i-1}^{n}x_{i}\right)^{2}} \begin{pmatrix} \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} \cdot \frac{1}{n}\sum_{i=1}^{n}y_{i} - \frac{1}{n}\sum_{i=1}^{n}x_{i} \cdot \frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i} \end{pmatrix} } \\ &= \frac{1}{\frac{1}{n\sum i_{i-1}^{n}x_{i}^{2} - \left(\frac{1}{n\sum i_{i-1}^{n}x_{i}}\right)^{2}} \begin{pmatrix} \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} \cdot \frac{1}{n}\sum_{i=1}^{n}y_{i} - \frac{1}{n}\sum_{i=1}^{n}x_{i} \cdot \frac{1}{n}\sum_{i=1}^{n}x_{i}y_{i} \end{pmatrix} } \\ &= \frac{1}{\frac{1}{n\sum i_{i-1}^{n}x_{i}^{2} - \left(\frac{1}{n\sum i_{i-1}^{n}x_{i}}\right)^{2}} \begin{pmatrix} \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} \cdot \frac{1}{n}\sum_{i=1}^{n}y_{i} - \frac{1}{n}\sum_{i=1}^{n}x_{i} \cdot \frac{1}{n}\sum_{i=1}^{n}y_{i} - \frac{1}{n}\sum_{i=1}^{n}x_{i} \cdot \frac{1}{n}\sum_{i$$

This completes the answer.

Inspection of the final result shows that we have recovered the traditional formula for the coefficients in simple linear regression, only written in slightly unusual form. For example, the term $\frac{1}{n}\sum_{i=1}^n x_i^2 - \left(\frac{1}{n}\sum_{i=1}^n x_i\right)^2$ equals the sample variance of the x_i (up to a factor of n/(n-1)). The algebra in this answer could be slightly simplified by changing to new coordinates $\tilde{x}_i = x_i - \bar{x}$ and $\tilde{y}_i = y_i - \bar{y}$ before fitting the regression model.

3. Let X be the design matrix of a model including an intercept, and let $H = X(X^{\top}X)^{-1}X^{\top} \in \mathbb{R}^{n \times n}$ be the hat matrix. Finally, let $\mathbf{1} = (1, 1, \dots, 1) \in \mathbb{R}^n$. Show that $H\mathbf{1} = \mathbf{1}$.

Solution: We already know that $HX = X(X^{T}X)^{-1}X^{T}X = X$. Since the first column of X equals 1, the first column of the matrix equation HX = X is H1 = 1. This completes the proof.

4. For the stackloss dataset built into R, predict a value for stack.loss when the inputs are Air.Flow = 60, Water.Temp = 21 and Acid.Conc = 87.

Solution: We can fit the model using lm() as usual:

```
m <- lm(stack.loss ~ ., data = stackloss)
m

# Call:
# lm(formula = stack.loss ~ ., data = stackloss)
#
# Coefficients:
# (Intercept) Air.Flow Water.Temp Acid.Conc.
# -39.9197 0.7156 1.2953 -0.1521</pre>
```

To predict a new value, we use the **predict()** command. Note that Acid.Conc. is spelled with a trailing dot, which we need to include in the name when we supply the new input values here.

```
predict(m, data.frame(Air.Flow = 60, Water.Temp = 21, Acid.Conc. = 87))
#     1
# 16.98509
```

Thus, the predicted value for stack.loss is 16.98509.

5. Let $\varepsilon_1, \dots, \varepsilon_n \sim \mathcal{N}(\mu, \sigma^2)$ be independent. Then $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ is a random vector. Determine $\mathbb{E}(\varepsilon)$, $\operatorname{Cov}(\varepsilon)$ and $\mathbb{E}(\|\varepsilon\|^2)$.

Solution: We immediately find $\mathbb{E}(\varepsilon) = \mu \mathbf{1}$ where $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^n$. Since the ε_i are independent, we have $\text{Cov}(\varepsilon) = \sigma^2 I$. Finally we have

$$\mathbb{E}(\|\varepsilon\|^2) = \mathbb{E}(\sum_{i=1}^n \varepsilon_i^2)$$
$$= \sum_{i=1}^n \mathbb{E}(\varepsilon_i^2)$$
$$= n\mathbb{E}(\varepsilon_1^2).$$

Since $\mathbb{E}(\varepsilon_1^2) = \operatorname{Var}(\varepsilon_1) + \mathbb{E}(\varepsilon_1)^2 = \sigma^2 + \mu^2$ we get $\mathbb{E}(\|\varepsilon\|^2) = n(\sigma^2 + \mu^2)$.

4 Properties of the Least Squares Estimate

In the previous section we introduced random vectors and the multivariate normal distribution. We now use these tools to build a statistical model for multiple linear regression. As in the one-dimensional case, we assume that the errors are random. More precisely we have

$$Y = X\beta + \varepsilon. \tag{15}$$

where $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ is a random error. The individual errors $\varepsilon_1, \dots, \varepsilon_n$ are assumed to be i.i.d. random variables with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$.

Remarks:

- The parameters in this model are the regression coefficients $\beta = (\beta_0, \beta_1, \cdots, \beta_p) \in \mathbb{R}^{p+1}$ and the error variance σ^2 .
- Using the notation from the previous section, we have $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ and $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$.
- The model assumes that the x-values are fixed and known. The only random quantities in the model are ε_i and Y_i . This is a modelling assumption, there are more general models where the x-values are also random.

Having defined the model, our next task is to understand the properties of the least squares estimator $\hat{\beta}$ when applied to data from this model. We study these properties by treating the estimates as random variables.

4.1 Mean and Covariance

We begin by examining the bias of the estimator. To find $\operatorname{bias}(\hat{\beta}) = \mathbb{E}(\hat{\beta}) - \beta$ we need to determine the expectation of $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$, where Y is the random vector from the model (15).

Lemma 4.1. We have

1)
$$\hat{\beta} = \beta + (X^{\top}X)^{-1}X^{\top}\varepsilon$$
 and

2)
$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^\top X)^{-1}).$$

Proof. From lemma 2.1 we know

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} Y,$$

Using the definition of Y we can write this as

$$\begin{split} \hat{\beta} &= (X^\top X)^{-1} X^\top Y \\ &= (X^\top X)^{-1} X^\top (X\beta + \varepsilon) \\ &= (X^\top X)^{-1} X^\top X \beta + (X^\top X)^{-1} X^\top \varepsilon \\ &= \beta + (X^\top X)^{-1} X^\top \varepsilon. \end{split}$$

This proves the first claim.

Since ε follows a multivariate normal distribution, $\beta + (X^{\top}X)^{-1}X^{\top}\varepsilon$ is also normally distributed. Taking expectations we get

$$\begin{split} \mathbb{E}(\hat{\beta}) &= \mathbb{E}(\beta + (X^\top X)^{-1} X^\top \varepsilon) \\ &= \beta + (X^\top X)^{-1} X^\top \mathbb{E}(\varepsilon) \\ &= \beta, \end{split}$$

since $\mathbb{E}(\varepsilon) = 0$.

For the covariance we find

$$\begin{split} \operatorname{Cov}(\hat{\beta}) &= \operatorname{Cov}(\beta + (X^\top X)^{-1} X^\top \varepsilon) \\ &= \operatorname{Cov}((X^\top X)^{-1} X^\top \varepsilon) \\ &= (X^\top X)^{-1} X^\top \operatorname{Cov}(\varepsilon) \big((X^\top X)^{-1} X^\top \big)^\top \\ &= (X^\top X)^{-1} X^\top \operatorname{Cov}(\varepsilon) X (X^\top X)^{-1}. \end{split}$$

Since $Cov(\varepsilon) = \sigma^2 I$, this simplifies to

$$\begin{split} \operatorname{Cov}(\hat{\beta}) &= (X^\top X)^{-1} X^\top \sigma^2 I X (X^\top X)^{-1} \\ &= \sigma^2 (X^\top X)^{-1} X^\top X (X^\top X)^{-1} \\ &= \sigma^2 (X^\top X)^{-1}. \end{split}$$

This completes the proof.

The lemma implies that $\mathbb{E}(\hat{\beta}) = \beta$, i.e. the estimator $\hat{\beta}$ is unbiased. Note that for this statement we only used $\mathbb{E}(\varepsilon) = 0$ to compute the expectation of $\hat{\beta}$. Thus, the estimator will still be unbiased for correlated noise or for noise which is not normally distributed.

We have seen earlier in equation (13) that the diagonal elements of a covariance matrix give the variances of the elements of the random vector. Setting $C := (X^{T}X)^{-1}$ as a shorthand here, we find that the individual estimated coefficients $\hat{\beta}_i$ satisfy

$$\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2 C_{jj}) \tag{16}$$

for $j \in \{0, ..., p\}$.

Before we can use these results in practice, we need to address a problem: the error variance σ^2 is usually unknown. We will return to estimating σ^2 in section 4.4 below.

4.2 Properties of the Hat Matrix

Before we can estimate the error variance σ^2 , we need to establish some important properties of the hat matrix $H = X(X^{T}X)^{-1}X^{T}$. These properties will be essential tools for deriving the distribution of our variance estimator.

Lemma 4.2. The hat matrix H has the following properties:

- 1) $H^{\top} = H$
- 2) $(I H)^{\top} = I H$
- 2) (I II)' = I II3) $H^2 = H$ 4) $(I H)^2 = I H$ 5) HX = X6) (I H)X = 0

Proof. For property 1 we have

$$\begin{split} H^\top &= \left(X(X^\top X)^{-1} X^\top\right)^\top \\ &= (X^\top)^\top \big((X^\top X)^{-1}\big)^\top X^\top \\ &= X(X^\top X)^{-1} X^\top \\ &= H, \end{split}$$

where we used that the inverse of a symmetric matrix is symmetric.

Property 2 follows from property 1, since

$$(I-H)^\top = I^\top - H^\top = I - H.$$

For property 3 we have

$$\begin{split} H^2 &= \big(X(X^\top X)^{-1} X^\top\big) \big(X(X^\top X)^{-1} X^\top\big) \\ &= X \big((X^\top X)^{-1} X^\top X\big) (X^\top X)^{-1} X^\top \\ &= X (X^\top X)^{-1} X^\top \\ &= H. \end{split}$$

Property 4 follows from property 3, since

$$(I-H)^2 = I - 2H + H^2 = I - 2H + H = I - H.$$

For property 5 we have

$$HX = X(X^{T}X)^{-1}X^{T}X = XI = X.$$

Property 6 follows from property 5, since

$$(I-H)X = IX - HX = X - X = 0.$$

This completes the proof.

Remark. Properties 1 and 2 state that H and I-H are **symmetric**. Properties 3 and 4 state that H and I-H are **idempotent**.

We can now use the transformation properties of the multivariate normal distribution to find the distributions of the fitted values and residuals.

Lemma 4.3. Under the model (15), the fitted values and residuals satisfy

$$\hat{Y} \sim \mathcal{N}(X\beta, \sigma^2 H) \tag{17}$$

and

$$\hat{\varepsilon} \sim \mathcal{N}(0, \sigma^2(I - H)).$$
 (18)

Proof. Since $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$, we have $\hat{Y} = HY \sim \mathcal{N}(HX\beta, H\sigma^2 IH^{\top})$ by lemma 3.1. Using properties 3 and 5 of lemma 4.2, we find $\hat{Y} \sim \mathcal{N}(X\beta, \sigma^2 H)$. Similarly, $\hat{\varepsilon} = (I - H)Y \sim \mathcal{N}((I - H)X\beta, \sigma^2 (I - H))$, and using lemma 4.2 again, we obtain $\hat{\varepsilon} \sim \mathcal{N}(0, \sigma^2 (I - H))$.

The distributions of \hat{Y} and $\hat{\varepsilon}$ reveal a deeper geometric structure, described in the next lemma.

Lemma 4.4. For every vector $v \in \mathbb{R}^n$ we have

$$||v||^2 = ||Hv||^2 + ||(I - H)v||^2.$$
(19)

In particular, for the data vector y we have $||y||^2 = ||\hat{y}||^2 + ||\hat{\varepsilon}||^2$.

Proof. We can write v as

$$\begin{split} v &= (H+I-H)v \\ &= Hv + (I-H)v. \end{split}$$

The inner product between these two components is

$$\begin{split} (Hv)^\top (I-H)v &= v^\top H^\top (I-H)v \\ &= v^\top H (I-H)v \\ &= v^\top (H-H^2)v \\ &= v^\top (H-H)v \\ &= 0, \end{split}$$

so the two vectors are orthogonal. As a result we get

$$\begin{split} \|v\|^2 &= v^\top v \\ &= \big(Hv + (I-H)v\big)^\top \big(Hv + (I-H)v\big) \\ &= (Hv)^\top Hv + 2(Hv)^\top (I-H)v + \big((I-H)v\big)^\top (I-H)v \\ &= \|Hv\|^2 + \|(I-H)v\|^2 \end{split}$$

for any vector $v \in \mathbb{R}^n$. (This is Pythagoras' theorem in \mathbb{R}^n .) Since $\hat{y} = Hy$ and $\hat{\varepsilon} = (I - H)y$, we can apply this idea to the vector v = y to get $||y||^2 = ||\hat{y}||^2 + ||\hat{\varepsilon}||^2$. This completes the proof.

Some authors define:

- $\begin{array}{l} \bullet \quad \mathrm{SS_T} = \sum_{i=1}^n y_i^2 \text{ (where "T" stands for "total")} \\ \bullet \quad \mathrm{SS_R} = \sum_{i=1}^n \hat{y}_i^2 \text{ (where "R" stands for "regression")} \\ \bullet \quad \mathrm{SS_E} = \sum_{i=1}^n \hat{\varepsilon}_i^2 = \sum_{i=1}^n (y_i \hat{y}_i)^2 \text{ (where "E" stands for "error")} \\ \end{array}$

Using this notation, our equation $||y||^2 = ||\hat{y}||^2 + ||\hat{\varepsilon}||^2$ turns into

$$SS_T = SS_R + SS_E$$
.

Before proceeding to further properties of H, we note without proof that geometrically, H can be interpreted as the orthogonal projection onto the subspace of \mathbb{R}^n which is spanned by the columns of X. This subspace contains the possible output vectors of the linear system and the least squares procedure finds the point \hat{y} in this subspace which is closest to the observed data $y \in \mathbb{R}^n$.

A final algebraic property of the hat matrix concerns its trace.

Lemma 4.5. We have

$$tr(H) = p + 1. (20)$$

Proof. Using the property of the trace that tr(ABC) = tr(BCA) (see section A.2.5), we

$$\begin{split} \operatorname{tr}(H) &= \operatorname{tr} \left(X (X^\top X)^{-1} X^\top \right) \\ &= \operatorname{tr} \left((X^\top X)^{-1} X^\top X \right) \\ &= \operatorname{tr}(I) \\ &= p+1. \end{split}$$

This completes the proof.

Cochran's theorem

To prove that our variance estimator is unbiased, we need to understand the distribution of certain expressions involving the error vector. These expressions are of the form $\varepsilon^{\top} A \varepsilon$ for suitable matrices A. Such expressions are called **quadratic forms**.

Definition 4.1. For $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$, the expression $x^{\top}Ax$ is called a quadratic form.

We use a simplified version of Cochran's theorem as our main tool in this and the following section:

Theorem 4.1. The following statements are true:

1)
$$\frac{1}{\sigma^2} \varepsilon^{\top} H \varepsilon \sim \chi^2(p+1)$$

2)
$$\frac{1}{\sigma^2} \varepsilon^{\top} (I - H) \varepsilon \sim \chi^2 (n - p - 1)$$

3) $H\varepsilon$ and $(I-H)\varepsilon$ are independent.

Proof. We transform the error vector ε to a coordinate system where H becomes diagonal. In this new coordinate system, the quadratic forms $\varepsilon^{\top}H\varepsilon$ and $\varepsilon^{\top}(I-H)\varepsilon$ become sums of squares of independent standard normals, making their distributions easy to determine.

We start by diagonalising H. Since H is symmetric, we can diagonalise H (see A.2 in the appendix): there is an orthogonal matrix U such that $D := UHU^{\top}$ is diagonal, and the diagonal elements of D are the eigenvalues of H.

Next we determine the eigenvalues of H. Since H is idempotent, we have $H^2 = H$. This implies that every eigenvalue λ of H satisfies $\lambda^2 = \lambda$, and thus $\lambda \in \{0, 1\}$. Therefore, the diagonal elements of D can only be 0 or 1.

Since U is orthogonal, we have $U^{\top}U = I$ and thus

$$U^{\top}DU = U^{\top}UHU^{\top}U = H.$$

The same matrix U also diagonalises I - H, since

$$U(I-H)U^\top = UU^\top - UHU^\top = I - D.$$

Note that exactly one of the diagonal elements D_{ii} and $(I-D)_{ii}$ is 1 and the other is 0 for every i. This partitions the index set $\{1,\dots,n\}$ into two disjoint subsets: the set $\mathcal{I}_1=\{i:D_{ii}=1\}$ contains exactly p+1 elements (corresponding to $\mathrm{rank}(H)=p+1$), and the set $\mathcal{I}_0=\{i:D_{ii}=0\}$ contains the remaining n-p-1 elements. This partition is the key to understanding both the degrees of freedom in the χ^2 distributions and the independence of the two quadratic forms.

Since $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ we find that $\eta := U\varepsilon$ is normally distributed with mean U0 = 0 and covariance matrix $\sigma^2 U I U^{\top} = \sigma^2 U U^{\top} = \sigma^2 I$. Thus η has the same distribution as ε does: $\eta \sim \mathcal{N}(0, \sigma^2 I)$ and the components η_i are independent of each other. We have

$$H\varepsilon = U^{\top}DU\varepsilon = U^{\top}D\eta.$$

and

$$(I-H)\varepsilon = U^\top (I-D)U\varepsilon = U^\top (I-D)\eta.$$

To prove the independence statement, we examine how the components of η contribute to $D\eta$ and $(I-D)\eta$. Since D is diagonal, we have

$$(D\eta)_i = D_{ii}\eta_i = \begin{cases} \eta_i & \text{if } i \in \mathcal{I}_1 \\ 0 & \text{if } i \in \mathcal{I}_0. \end{cases}$$

Similarly,

$$\left((I-D)\eta\right)_i = (1-D_{ii})\eta_i = \begin{cases} 0 & \text{if } i \in \mathcal{I}_1 \\ \eta_i & \text{if } i \in \mathcal{I}_0. \end{cases}$$

This shows that each component η_i contributes to exactly one of the two vectors $D\eta$ and $(I-D)\eta$: it contributes to $D\eta$ if $i\in\mathcal{I}_1$, and to $(I-D)\eta$ if $i\in\mathcal{I}_0$. Since the sets \mathcal{I}_1 and \mathcal{I}_0 are disjoint, the vectors $D\eta$ and $(I-D)\eta$ depend on disjoint subsets of the independent random variables η_1,\ldots,η_n . Therefore, $D\eta$ and $(I-D)\eta$ are independent. Finally, since $H\varepsilon=U^\top D\eta$ and $(I-H)\varepsilon=U^\top (I-D)\eta$ are deterministic linear transformations of $D\eta$ and $(I-D)\eta$, it follows that $H\varepsilon$ and $(I-H)\varepsilon$ are also independent. This proves the third statement of the theorem.

For the first statement, we note that

$$\begin{split} \varepsilon^\top H \varepsilon &= \varepsilon^\top U^\top D U \varepsilon \\ &= \eta^\top D \eta \\ &= \sum_{\stackrel{i=1}{D_{ij}=1}}^n \eta_i^2. \end{split}$$

Since $(X^{\top}X) \in \mathbb{R}^{(p+1)\times(p+1)}$ is invertible, one can show that $\operatorname{rank}(H) = p+1$ and thus that there are p+1 terms contributing to the sum (we skip the proof of this statement here). Thus,

$$\frac{1}{\sigma^2} \varepsilon^\top H \varepsilon = \sum_{\stackrel{i=1}{D_{::}=1}}^{n} (\eta_i / \sigma)^2$$

is the sum of the squares of p+1 independent standard normals, and thus is $\chi^2(p+1)$ -distributed. This completes the proof of the first statement.

Finally, the second statement follows in much of the same way as the first one, except that H is replaced with I-H and the sum is over the n-p-1 indices i where $D_{ii}=0$. This completes the proof.

Since $\varepsilon^{\top}H\varepsilon = (H\varepsilon)^{\top}(H\varepsilon)$ is a function of $H\varepsilon$, and similarly for I-H, the independence in part 3 of the theorem extends to the quadratic forms in parts 1 and 2.

4.4 Estimating the Error Variance

Recall from equation (16) that the variance of each coefficient estimate is $\sigma^2 C_{jj}$. To use this result in practice—for constructing confidence intervals or performing hypothesis tests—we need to estimate the unknown parameter σ^2 . A natural approach is to examine the residuals $y_i - \hat{y}_i$, which estimate the unobserved errors ε_i .

Having established the necessary properties of the hat matrix and Cochran's theorem, we can now show that an unbiased estimator for σ^2 is given by

$$\hat{\sigma}^2 := \frac{1}{n - p - 1} \sum_{i=1}^n (y_i - \hat{y}_i)^2, \tag{21}$$

where \hat{y}_i are the fitted values from equation (10). As for the case of simple linear regression, in (4), the estimate does not have the prefactor 1/n, which one might expect, but the denominator is decreased by one for each component of the vector β . Using Cochran's theorem, we can now show that the estimator $\hat{\sigma}^2$ is unbiased.

Lemma 4.6. We have

$$\mathbb{E}(\hat{\sigma}^2) = \sigma^2.$$

Proof. We first note that

$$\begin{split} (n-p-1)\hat{\sigma}^2 &= (y-\hat{y})^\top (y-\hat{y}) \\ &= (y-Hy)^\top (y-Hy) \\ &= y^\top (I-H)^\top (I-H)y \\ &= y^\top (I-H)y. \end{split}$$

To determine the bias, we need to use $Y = X\beta + \varepsilon$ in place of the data. This gives

$$\begin{split} (n-p-1)\hat{\sigma}^2 &= Y^\top (I-H)Y \\ &= (X\beta + \varepsilon)^\top (I-H)(X\beta + \varepsilon) \\ &= \beta^\top X^\top (I-H)X\beta + 2\varepsilon^\top (I-H)X\beta + \varepsilon^\top (I-H)\varepsilon \\ &= \varepsilon^\top (I-H)\varepsilon, \end{split}$$

where we used lemma 4.2 to see that the first two terms in the sum equal zero.

Now we can apply Cochran's theorem. This shows that

$$\frac{1}{\sigma^2}(n-p-1)\hat{\sigma}^2 = \frac{1}{\sigma^2}\varepsilon^\top (I-H)\varepsilon \sim \chi^2(n-p-1). \tag{22}$$

Since the expectation of a $\chi^2(\nu)$ distribution equals ν (see appendix B.5.1), we find

$$\frac{1}{\sigma^2}(n-p-1)\mathbb{E}(\hat{\sigma}^2)=n-p-1$$

and thus

$$\mathbb{E}(\hat{\sigma}^2) = \sigma^2.$$

This completes the proof.

The lemma shows that $\hat{\sigma}^2$ is an unbiased estimator for σ^2 .

This concludes our study of the statistical properties of the least squares estimator. In the next section we will use these properties to construct confidence intervals and hypothesis tests for the regression coefficients.

Summary

- The least squares estimator for the regression coefficients is unbiased.
- The hat matrix is idempotent and symmetric.
- Cochran's theorem allows us to understand the distribution of some quadratic forms involving the hat matrix.
- $\hat{\sigma}^2$ is an unbiased estimator for σ^2 .

5 Uncertainty for Individual Regression Coefficients

In this section we will consider different ways to study the uncertainty in the estimates $\hat{\beta}_i$ for the regression coefficient β_i , individually. In the following sections we will then consider the problem of simultaneously estimating several or all coefficients.

5.1 Measuring the Estimation Error

We have seen that $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2 C)$, where $C := (X^\top X)^{-1}$. Restricting this to a single coefficient, we find

 $\hat{\beta}_i \sim \mathcal{N}(\beta_i, \sigma^2 C_{ii}),$

since the diagonal elements of the covariance matrix contain the variances of the elements of a random vector. In practice we will not know the value of σ^2 , so we have to estimate this from data, using the estimator

$$\hat{\sigma}^2 = \frac{1}{n - p - 1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

from equation (21). As a first application of Cochran's theorem we showed in equation (22) that

$$\frac{1}{\sigma^2}(n-p-1)\hat{\sigma}^2 \sim \chi^2(n-p-1).$$

Note that in the equations above, we index the rows and columns of C using $i, j \in \{0, 1, ..., p\}$, *i.e.* the first row and column are using the index 0 each. This is to match the convention for the components of $\beta = (\beta_0, \beta_1, ..., \beta_n)$.

Lemma 5.1. The random vector $\hat{\beta}$ and the random number $\hat{\sigma}^2$ are independent of each other.

Proof. We will show that $\hat{\beta}$ can be written as a function of $H\varepsilon$ and that $\hat{\sigma}^2$ can be written as a function of $(I-H)\varepsilon$. The result then follows from Cochran's theorem.

From lemma 4.1 we know that the least squares estimate $\hat{\beta}$ can be written as

$$\hat{\beta} = \beta + (X^\top X)^{-1} X^\top \varepsilon$$

and that $H = X(X^{\top}X)^{-1}X^{\top}$. Thus we can write $\hat{\beta}$ as

$$\begin{split} \hat{\beta} &= \beta + (X^\top X)^{-1} X^\top X \, (X^\top X)^{-1} X^\top \varepsilon \\ &= \beta + (X^\top X)^{-1} X^\top H \varepsilon, \end{split}$$

which is a function of $H\varepsilon$.

Similar to the argument at the end of the previous section, we can write $\hat{\sigma}^2$ as

$$\begin{split} (n-p-1)\hat{\sigma}^2 &= (Y-\hat{Y})^\top (Y-\hat{Y}) \\ &= (Y-HY)^\top (Y-HY) \\ &= Y^\top (I-H)^\top (I-H)Y \\ &= \|(I-H)Y\|^2. \end{split}$$

Since $Y = X\beta + \varepsilon$ and since we know (I - H)X = 0 from lemma 4.2, we find

$$\begin{split} \hat{\sigma}^2 &= \frac{1}{n-p-1} \| (I-H)(X\beta + \varepsilon) \|^2 \\ &= \frac{1}{n-p-1} \| (I-H)\varepsilon \|^2, \end{split}$$

which is a function of $(I - H)\varepsilon$.

From Cochran's theorem we know that $H\varepsilon$ and $(I-H)\varepsilon$ are independent and thus we can conclude that $\hat{\beta}$ and $\hat{\sigma}^2$ are also independent of each other. This completes the proof.

We now construct a quantity T which measures the distance between the estimated value $\hat{\beta}_i$ and the unknown true value β_i :

$$T := \frac{\hat{\beta}_i - \beta_i}{\sqrt{\hat{\sigma}^2 C_{ii}}}.$$
 (23)

While there are many ways to measure this distance, the T constructed here has two main advantages:

- The value of T can be computed from the given data, without any reference to unknown quantities (except for β_i).
- Below, we will be able to find the distribution of T. This will allow us to use T to construct confidence intervals and statistical tests.

Lemma 5.2. Assume that the data follows the model (15). Then $T \sim t(n-p-1)$, i.e. T follows a t-distribution with n-p-1 degrees of freedom (see appendix B.5.2).

Proof. We have

$$\begin{split} T &= \frac{(\hat{\beta}_i - \beta_i)/\sqrt{C_{ii}}}{\sqrt{\hat{\sigma}^2}} \\ &= \frac{(\hat{\beta}_i - \beta_i)/\sqrt{\sigma^2 C_{ii}}}{\sqrt{\hat{\sigma}^2/\sigma^2}} \\ &= \frac{(\hat{\beta}_i - \beta_i)/\sqrt{\sigma^2 C_{ii}}}{\sqrt{((n-p-1)\hat{\sigma}^2/\sigma^2)/(n-p-1)}} \\ &=: \frac{Z}{\sqrt{Y/(n-p-1)}}, \end{split}$$

where $Z=(\hat{\beta}_i-\beta_i)/\sqrt{\sigma^2C_{ii}}\sim \mathcal{N}(0,1)$ and $Y=(n-p-1)\hat{\sigma}^2/\sigma^2\sim \chi^2(n-p-1)$ are independent, by lemma 5.1. Thus, $T\sim t(n-p-1)$ as required.

The quantity $\sqrt{\sigma^2 C_{ii}}$ is sometimes called the **standard error** of the estimator $\hat{\beta}_i$, denoted by $\operatorname{se}(\hat{\beta}_i)$.

5.2 Confidence Intervals

Using the scaled distance T, it is easy to construct a confidence interval for $\hat{\beta}_i$: For $\alpha \in (0,1)$, say $\alpha = 5\%$, lemma 5.2 shows that

$$P\Big(T\in \left[-t_{n-p-1}(\alpha/2),+t_{n-p-1}(\alpha/2)\right]\Big)=1-\alpha,$$

where $t_{n-p-1}(\alpha/2)$ is the $(1-\alpha/2)$ -quantile of the t(n-p-1)-distribution. Rewriting this expression as a condition on $\hat{\beta}_i$ instead of on T gives a confidence interval for β_i .

Lemma 5.3. The interval

$$[U,V] := \left[\hat{\beta}_i - \sqrt{\hat{\sigma}^2 C_{ii}} t_{n-p-1}(\alpha/2), \hat{\beta}_i + \sqrt{\hat{\sigma}^2 C_{ii}} t_{n-p-1}(\alpha/2)\right]$$

is a $(1-\alpha)$ -confidence interval for β_i .

Proof. We have to show that $P(\beta_i \in [U, V]) \ge 1 - \alpha$. We have

$$\begin{split} \beta_i &\in [U,V] \\ &\iff \left| \hat{\beta}_i - \beta_i \right| \leq \sqrt{\hat{\sigma}^2 C_{ii}} t_{n-p-1}(\alpha/2) \\ &\iff \left| \frac{\hat{\beta}_i - \beta_i}{\sqrt{\hat{\sigma}^2 C_{ii}}} \right| \leq t_{n-p-1}(\alpha/2) \\ &\iff T \in \left[-t_{n-p-1}(\alpha/2), +t_{n-p-1}(\alpha/2) \right] \end{split}$$

and thus $P(\beta_i \in [U, V]) = 1 - \alpha$. This completes the proof.

5.3 Hypothesis Tests

Very similar to the argument for confidence intervals, we can derive a hypothesis test to test the hypothesis

$$H_0: \beta_i = b$$

against the alternative

$$H_1: \beta_i \neq b.$$

If we use b=0 in the test, we can test whether $\beta_i=0$. If $\beta_i=0$ is true, the corresponding input x_i has no influence on the output.

Here we redefine T as

$$T := \frac{\hat{\beta}_i - b}{\sqrt{\hat{\sigma}^2 C_{ii}}},\tag{24}$$

using b in place of the β_i above. When H_0 is true, this new definition of T is the same as (23).

Lemma 5.4. The test which rejects H_0 if and only if $|T| > t_{n-p-1}(\alpha/2)$ has significance level α .

Proof. We have to show that the probability of type I errors (*i.e.* of wrongly rejecting H_0 when it is true) is less than or equal to α . Assume that H_0 is true. Then we have $\beta_i = b$ and thus the T defined in this section coincides with the expression from equation (23). From lemma 5.2 we know that $T \sim t(n-p-1)$. Thus we have

$$\begin{split} P(\text{type I error}) &= P\big(|T| > t_{n-p-1}(\alpha/2)\big) \\ &= P\big(T < -t_{n-p-1}(\alpha/2)\big) + P\big(T > t_{n-p-1}(\alpha/2)\big) \\ &= 2P\big(T > t_{n-p-1}(\alpha/2)\big) \\ &= 2\frac{\alpha}{2} \\ &= \alpha \end{split}$$

This completes the proof.

As usual with statistical tests, one needs to be extremely careful when performing several tests on the same data. In particular, it would be unwise to test more than one component of β using this procedure for the same data. Instead, in the next section we will consider how to perform tests for several components of β simultaneously. Before we do this, we will perform some experiments with R.

5.4 R Experiments

5.4.1 Fitting the model

```
m <- lm(stack.loss ~ ., data = stackloss)</pre>
summary(m)
#
# Call:
# lm(formula = stack.loss ~ ., data = stackloss)
# Residuals:
             1Q Median
                           3Q
     Min
                                  Max
 -7.2377 -1.7117 -0.4551 2.3614 5.6978
# Coefficients:
            Estimate Std. Error t value Pr(>|t|)
# Air.Flow
              0.7156
                        0.1349 5.307 5.8e-05 ***
# Water.Temp
                        0.3680 3.520 0.00263 **
              1.2953
                        0.1563 -0.973 0.34405
# Acid.Conc.
             -0.1521
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 3.243 on 17 degrees of freedom
# Multiple R-squared: 0.9136, Adjusted R-squared: 0.8983
# F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09
```

5.4.2 Estimating the Variance of the Error

We can get the design matrix X and the covariance matrix C as follows:

```
X <- model.matrix(m)</pre>
C <- solve(t(X) %*% X)</pre>
round(C, 4)
              (Intercept) Air.Flow Water.Temp Acid.Conc.
# (Intercept)
                 13.4527 0.0273 -0.0620
                                                  -0.1594
# Air.Flow
                   0.0273
                            0.0017
                                       -0.0035
                                                  -0.0007
# Water.Temp
                  -0.0620 -0.0035
                                        0.0129
                                                   0.0000
# Acid.Conc.
                  -0.1594 -0.0007
                                        0.0000
                                                   0.0023
```

Next we need to estimate the variance σ^2 :

```
y <- stackloss$stack.loss
n <- nrow(stackloss)
p <- ncol(stackloss) - 1
hat.sigma2 <- sum((y - fitted(m))^2) / (n - p - 1)
hat.sigma2</pre>
# [1] 10.51941
```

The square root of this number, so the estimated standard deviation of the ε_i is shown as Residual standard error in the summary output above. We check that we get the same result:

```
sqrt(hat.sigma2)
# [1] 3.243364
```

This result is also listed as the Residual standard error near the bottom of the summary(m) output, above.

5.4.3 Estimating the Standard Errors

We can estimate the standard errors, *i.e.* the standard deviations stdev $(\hat{\beta})_i$ as $\sqrt{\hat{\sigma}^2 C_{ii}}$:

```
se <- sqrt(hat.sigma2 * diag(C))
se

# (Intercept) Air.Flow Water.Temp Acid.Conc.
# 11.8959969 0.1348582 0.3680243 0.1562940</pre>
```

These values are also listed in the Std. Error column of the summary(m) output.

5.4.4 Hypothesis tests

Let us now test the hypothesis H_0 : $\beta_i = 0$. The test statistic for this case is the following:

```
T <- coef(m) / se
T
# (Intercept) Air.Flow Water.Temp Acid.Conc.
# -3.3557234 5.3066130 3.5195672 -0.9733098
```

These values are also listed in the t value column of the summary(m) output.

Before we can perform the test, we need to choose α and to find the corresponding critical value:

```
alpha <- 0.05
t <- qt(1 - alpha/2 , n - p - 1)
t
# [1] 2.109816
```

Using the critical value t we can decide whether H_0 should be accepted or rejected. For example, looking at the intercept β_0 , we find $|T_0|=|-3.3557234|>2.109816=t_{n-p-1}(1-\alpha/2)$ and thus we can reject the hypothesis $H_0\colon\beta_0=0$. This means that the intercept is significantly different from 0.

5.4.5 Confidence Intervals

Using the quantile t we can also get confidence intervals. Here we only show the confidence interval for the intercept β_0 :

```
c(coef(m)[1] - se[1] * t, coef(m)[1] + se[1] * t)
# (Intercept) (Intercept)
# -65.01803 -14.82131
```

Confidence intervals for the remaining coefficients can be obtained similarly.

Summary

- We know how to scale the distance between individual parameter estimates and the truth.
- We have seen how to construct confidence intervals for β_i .
- We have seen how to construct statistical tests for β_i .
- We have understood some more of the summary output for the lm() function in R.

6 Estimating Coefficients Simultaneously

In section 5, we learnt how to construct confidence intervals and hypothesis tests for individual regression coefficients using the t-distribution. However, as noted there, it would be unwise to apply that procedure to test multiple coefficients on the same data. In this section we will study how to assess the uncertainty in two or more regression coefficients simultaneously. This is needed since the estimates for different coefficients will usually not be independent.

6.1 Linear Combinations of Coefficients

As a general setup which allows to describe which coefficients we are interested in, we consider the image $K\beta$, where $K \in \mathbb{R}^{k \times (p+1)}$ with $k \leq p+1$.

Example 6.1. If p = 3 and

$$K = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

then

$$K\beta = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}.$$

Thus, this choice of K would be appropriate if we are interested in β_1 and β_2 only.

The setup allows for more general questions than just selecting components of β . We can also derive statements about linear combination of the β_i , e.g. we will be able to derive confidence intervals for quantities like $\beta_1 - \beta_2$.

Since $\hat{\beta}$ is an estimator for β , we can use $K\hat{\beta}$ as an estimator for $K\beta$. From lemma 4.1 we know that $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X^\top X)^{-1})$ and thus we get

$$K\hat{\beta} \sim \mathcal{N}(K\beta, \sigma^2 K(X^\top X)^{-1} K^\top).$$

Given an invertible matrix Q, we define the shorthand notation

$$\|v\|_Q^2 := v^\top Q^{-1} v.$$

Using this notation for $Q = K(X^{\top}X)^{-1}K^{\top},$ we define

$$F := \frac{\|K\hat{\beta} - K\beta\|_{K(X^{\top}X)^{-1}K^{\top}}^{2}}{k\hat{\sigma}^{2}}$$
 (25)

as a measure for the distance between $K\hat{\beta}$ and $K\beta$. This quantity plays the role of T (or more precisely, T^2) from the previous section. We also need to introduce the F-distribution, which will take the place of the t-distribution from the previous section.

Definition 6.1. The *F*-distribution with ν_1 and ν_2 degrees of freedom is the distribution of

$$X = \frac{S_1/\nu_1}{S_2/\nu_2},$$

where S_1 and S_2 are independent random variables with chi-square distributions with ν_1 and ν_2 degrees of freedom, respectively.

With these preparations in place, we can state the main result.

Lemma 6.1. Assume that the data follows the model (15) and that $Q := K(X^{\top}X)^{-1}K^{\top}$ is invertible. Then $F \sim F_{k,n-p-1}$, i.e. F follows a F-distribution with k and n-p-1 degrees of freedom.

Proof. We have

$$\begin{split} & \left\| K \hat{\beta} - K \beta \right\|_Q^2 \\ &= \left\| K (\hat{\beta} - \beta) \right\|_Q^2 \\ &= \left\| K (X^\top X)^{-1} X^\top \varepsilon \right\|_Q^2 \\ &= \varepsilon^\top X (X^\top X)^{-1} K^\top Q^{-1} K (X^\top X)^{-1} X^\top \varepsilon \\ &=: \varepsilon^\top R \varepsilon \end{split}$$

It is tedious but easy to check that R is idempotent:

$$\begin{split} R^2 &= \Big(X(X^\top X)^{-1}K^\top Q^{-1}K(X^\top X)^{-1}X^\top\Big) \Big(X(X^\top X)^{-1}K^\top Q^{-1}K(X^\top X)^{-1}X^\top\Big) \\ &= X(X^\top X)^{-1}K^\top Q^{-1}K(X^\top X)^{-1} \Big(X^\top X(X^\top X)^{-1}\Big)K^\top Q^{-1}K(X^\top X)^{-1}X^\top\\ &= X(X^\top X)^{-1}K^\top \Big(Q^{-1}K(X^\top X)^{-1}K^\top\Big)Q^{-1}K(X^\top X)^{-1}X^\top\\ &= X(X^\top X)^{-1}K^\top Q^{-1}K(X^\top X)^{-1}X^\top\\ &= R. \end{split}$$

When we checked in the proof of Cochran's theorem that $\varepsilon^{\top}H\varepsilon$ was chi-squared distributed, the only property of H we used was that H is idempotent. (If you don't remember the details, it would be a good idea to re-read the proof before continuing.) Thus, the same argument gives that $\varepsilon^{\top}R\varepsilon/\sigma^2$ is chi-squared distributed, and as before the number of degrees of freedom of this chi-squared distribution equals the rank of R. Using the assumption that Q is invertible, one can show (we skip this part of the proof again) that the rank of Q equals $\min(k, p+1) = k$ and thus we find that

$$S_1 := \frac{1}{\sigma^2} \left\| K \hat{\beta} - K \beta \right\|_Q^2 \sim \chi^2(k).$$

Similarly, from the direct application of Cochran's theorem in equation (22), we know

$$S_2:=\frac{1}{\sigma^2}(n-p-1)\hat{\sigma}^2\sim \chi^2(n-p-1).$$

Since S_1 is a function of $\hat{\beta}$ and S_2 is a function of $\hat{\sigma}^2$, we can use lemma 5.1 to conclude that S_1 and S_2 are independent. Combining these results we find

$$\begin{split} F &= \frac{\left\| K \hat{\beta} - K \beta \right\|_{K(X^\top X)^{-1} K^\top}^2}{k \hat{\sigma}^2} \\ &= \frac{\frac{1}{\sigma^2} \left\| K \hat{\beta} - K \beta \right\|_{K(X^\top X)^{-1} K^\top}^2 / k}{\frac{1}{\sigma^2} (n - p - 1) \hat{\sigma}^2 / (n - p - 1)} \\ &= \frac{S_1 / k}{S_2 / (n - p - 1)} \\ &\sim F_{k, n - p - 1}. \end{split}$$

This completes the proof.

6.2 Confidence Regions

Using F as a distance between the unknown true $K\beta$ and the estimator $\hat{\beta}$, it is easy to find a region of \mathbb{R}^k which covers $K\beta$ with high probability. Since we now have an k-dimensional parameter vector, this region will no longer be an interval. Instead, we will get an k-dimensional ellipsoid.

6.2.1 Result

Define

$$E := \Big\{z \in \mathbb{R}^k \; \Big| \; \big\|z - K\hat{\beta}\big\|_{K(X^\top X)^{-1}K^\top} \leq \sqrt{k\hat{\sigma}^2 f_{k,n-p-1}(\alpha)} \Big\},$$

where $f_{k,n-p-1}(\alpha)$ is the $(1-\alpha)$ -quantile of the $F_{k,n-p-1}$ -distribution. This is a "ball" around $K\hat{\beta}$ in \mathbb{R}^k , where distance is measured using the norm $\|\cdot\|_{K(X^\top X)^{-1}K^\top}$ introduced above. The following lemma shows that $\sqrt{k\hat{\sigma}^2 f_{k,n-p-1}(\alpha)}$ is the correct choice of "radius" to make the ball cover the true value $K\beta$ with probability $1-\alpha$.

Lemma 6.2. We have

$$P(K\beta \in E) = 1 - \alpha,$$

i.e. the set E is a $(1-\alpha)$ -confidence region for $K\beta$.

Proof. We have

$$\begin{split} K\beta &\in E \\ \iff \left\| K\beta - K\hat{\beta} \right\|_{K(X^\top X)^{-1}K^\top} \leq \sqrt{k\hat{\sigma}^2 f_{k,n-p-1}(\alpha)} \\ &\iff \left\| K\hat{\beta} - K\beta \right\|_{K(X^\top X)^{-1}K^\top}^2 \leq k\hat{\sigma}^2 f_{k,n-p-1}(\alpha) \\ &\iff \frac{\left\| K\hat{\beta} - K\beta \right\|_{K(X^\top X)^{-1}K^\top}^2}{k\hat{\sigma}^2} \leq f_{k,n-p-1}(\alpha) \\ &\iff F \leq f_{k,n-p-1}(\alpha) \end{split}$$

Now the claim follows, since $f_{k,n-p-1}(\alpha)$ is the $(1-\alpha)$ -quantile of F.

6.2.2 Numerical Experiments

We start by fitting a linear model to the stackloss dataset as before:

```
m <- lm(stack.loss ~ ., data = stackloss)</pre>
summary(m)
# Call:
# lm(formula = stack.loss ~ ., data = stackloss)
# Residuals:
     Min
             1Q Median
                            3Q
                                  Max
 -7.2377 -1.7117 -0.4551 2.3614
                               5.6978
# Coefficients:
            Estimate Std. Error t value Pr(>|t|)
# Air.Flow
            0.7156
                        0.1349
                                5.307 5.8e-05 ***
# Water.Temp 1.2953
                        0.3680
                                3.520 0.00263 **
# Acid.Conc. -0.1521
                        0.1563 -0.973 0.34405
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 3.243 on 17 degrees of freedom
# Multiple R-squared: 0.9136, Adjusted R-squared: 0.8983
# F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09
```

Here I want to consider the two regressions coefficients β_1 (Air.Flow) and β_2 (Water.Temp). For this we need to construct a matrix K with two rows, where each row selects one of the two coefficients:

As we have seen in the previous section, for this K the covariance matrix for the ellipse is $Q = K(X^{\top}X)^{-1}K^{\top}$:

```
Q <- K %*% solve(t(X) %*% X) %*% t(K)
```

6.2.2.1 A Single Point To try out the method, we first consider the test point $m = K\beta = (1, 1)$ and we compute the F value for this point to see whether the point is inside or outside the ellipse:

```
a <- c(1, 1)
sigma.hat <- summary(m)$sigma
d <- a - K.beta.hat
F <- t(d) %*% solve(Q, d) / (k * sigma.hat^2)
F
# [,1]
# [1,] 2.834083</pre>
```

The F value, measuring the distance from the centre of the ellipse is 2.834 for this test point. This has to be compared to the critical value:

```
alpha <- 0.05
f.crit <- qf(1 - alpha, k, n - p - 1)
f.crit
# [1] 3.591531</pre>
```

Since the F value is less than the critical value, the point (1,1) is inside the ellipse. As the next step, we will plot a picture of the full ellipse.

6.2.2.2 Points on a Grid An easy way to show the ellipse is to repeat the above procedure for all points on a rectangular grid, and then colour the points depending on whether they are inside or outside the ellipse. We start by making a list of grid points.

```
x.min <- -1
x.max <- 3
y.min <- -0.5
y.max <- 3
L <- 200

xx <- seq(x.min, x.max, length.out = L)
yy <- seq(y.min, y.max, length.out = L)</pre>
Z <- as.matrix(expand.grid(x = xx - K.beta.hat[1],
```

```
y = yy - K.beta.hat[2],
KEEP.OUT.ATTRS = FALSE))
dim(Z)
# [1] 40000 2
```

The matrix Z now has two columns, containing the x and y coordinates respectively of the 200×200 points in our grid. Now we need to compute the F value for every grid point:

```
F <- rowSums(Z * t(solve(Q, t(Z)))) / (k * sigma.hat^2)
F <- matrix(F, byrow = TRUE, L, L)
dim(F)
# [1] 200 200</pre>
```

The resulting matrix contains the F value for every grid point. Finally, we can mark all the points where F exceeds the critical value in a plot:

The green ellipse in this plot is the 95% confidence ellipse for the vector (β_1, β_2) .

6.2.2.3 Coordinates of the Outline This sub-section is non-examinable (but hopefully interesting).

Using some more linear algebra, we can find a formula for the coordinates of the points on the ellipse which forms the boundary of the confidence region. For this, we use the Singular Value Decomposition of the matrix Q. This allows to write Q as

$$Q = UDV^\top$$

where U and V are orthogonal matrices and D is a diagonal matrix:

```
svd <- La.svd(Q)
svd</pre>
```

The R output shows the diagonal elements d_{ii} of D and the matrices U and V^{\top} . Since Q is symmetric, we have U = V and thus $Q = UDU^{\top}$ in this case, *i.e.* we have found a diagonalisation of Q.

Using the SVD we can simplify the norm used in the definition of the ellipse. We write $D^{-1/2}$ for the matrix which has $1/\sqrt{d_{ii}}$ on the diagonal. Then we have

$$\begin{split} Q\big(D^{-1/2}U^{\top}\big)^{\top} \big(D^{-1/2}U^{\top}\big) &= QUD^{-1/2}D^{-1/2}U^{\top} \\ &= UDU^{\top}UD^{-1}U^{\top} \\ &= UDD^{-1}U^{\top} \\ &= UU^{\top} \\ &= I. \end{split}$$

Thus, $(D^{-1/2}U^{\top})^{\top}(D^{-1/2}U^{\top})$ is the inverse of Q and we get

$$\begin{split} \left\|z - K\hat{\beta}\right\|_Q^2 &= (z - K\hat{\beta})^\top Q^{-1}(z - K\hat{\beta}) \\ &= (z - K\hat{\beta})^\top \big(D^{-1/2}U^\top\big)^\top \big(D^{-1/2}U^\top\big)(z - K\hat{\beta}) \\ &= \left\|D^{-1/2}U^\top(z - K\hat{\beta})\right\|^2, \end{split}$$

where the norm on the right-hand side is the usual Euclidean norm. Thus, the boundary of the ellipse consists of all points of the form $K\hat{\beta} + d$, where $e := D^{-1/2}U^{\top}d$ is a vector of length

$$\|e\| = \sqrt{k\hat{\sigma}^2 f_{k,n-p-1}(\alpha)}.$$

Finally, using polar coordinates, we find the points on the boundary to be

$$d = U D^{1/2} e = U D^{1/2} \sqrt{k \hat{\sigma}^2 f_{k,n-p-1}(\alpha)} \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \end{pmatrix}$$

with $\varphi \in [0, 2\pi]$. This allows to plot the boundary line in R.

To verify that everything is consistent, we have plotted the line on top of the image from the previous subsection. Since the black line perfectly surrounds the green area, both approaches are consistent.

6.3 Hypothesis Tests

We can easily derive a hypothesis test to test the hypothesis

$$H_0: K\beta = m$$

against the alternative

$$H_1: K\beta \neq m,$$

where $m \in \mathbb{R}^k$.

We redefine F as

$$F := \frac{\left\|K\hat{\beta} - m\right\|_{K(X^\top X)^{-1}K^\top}^2}{k\hat{\sigma}^2}$$

using m in place of the $K\beta$ above. Then the new definition of F is the same as (25) if H_0 is true.

Lemma 6.3. The test which rejects H_0 if and only if $|F| > f_{k,n-p-1}(\alpha)$ has significance level α .

Proof. Assume that H_0 is true. Then we have $K\beta=m$ and thus the F defined in this section coincides with the expression from equation (25). From lemma 6.1 we know that $F\sim F_{k,n-p-1}$. Thus we have

$$\begin{split} P(\text{type I error}) &= P\big(F > f_{k,n-p-1}(\alpha)\big) \\ &= 1 - P\big(F \le f_{k,n-p-1}(\alpha)\big) \\ &= 1 - (1-\alpha) \\ &= \alpha. \end{split}$$

This completes the proof.

Summary

- We have learned how to measure the distance between a subset of coefficients and the corresponding estimates.
- ullet We have introduced the F-distribution.
- We have learned how to compute confidence regions for subsets of the regression coefficients.
- We have learned how to perform hypothesis tests for subsets of the regression coefficients.

Interlude: Loading Data into R

Before we can analyse data using R, we have to "import" the data into R. How exactly this is done depends on how the data is stored, and more specifically on which file format is used. Here we consider two commonly used formats: comma-separated values (.csv) and Microsoft Excel files (.xls or .xlsx).

Importing CSV Files

The read.csv() command can be used to import .csv files into R: if we use the command

```
x <- read.csv("file.csv")
```

then the contents of the file file.csv will be stored in the variable x. Optional arguments to read.csv() can be used to specify whether or not the file includes column names, and allow to deal with variations of how the data may be stored in the file. Some of these are explained below.

The most important things to know about the function read.csv() are:

- The filename can either denote a file on the local computer, or a file available for download from the internet. If you want R to read the file directly from the internet, replace the file name with the web address (starting with http://or https://).
- If the input file is on the local computer, you may need to change R's current directory to the directory where the file is stored before calling read.csv(). In RStudio you can use the menu "Session > Set Working Directory > Choose Directory ..." to do this. If you are not sure what the filename for a given input file is, you can use the command file.choose() in place of the file name, to choose a file interactively.
- By default, R uses the first row of the .csv file to set the column names of the data frame and assumes that the actual data starts in row 2 of the .csv file. If the file does not contain column names, you can use the header=FALSE option with read.csv() to tell R that the column names are not included in the data:

```
x <- read.csv("file.csv", header=FALSE)
```

You can see whether this option is needed by opening the file in Excel and looking whether the first row contains headers or not. Alternatively you can inspect the column names and the contents of the first data row in R to see whether everything looks right after importing the data.

- R uses a special data type called Factor to represent categorical data. If the .csv file contains such data, the option stringsAsFactors=TRUE can be used to automatically convert text to factors. (This option used to be the default for R versions before 4.0.0.)
- Sometimes, the columns in a .csv file are separated not by a comma, but using a semicolon instead. In this case you need to use the option sep=";" when you import the data:

```
x <- read.csv("file.csv", sep=";")
```

Missing values should be represented by empty cells in the .csv file and are represented as special NA values in the data frame. If the .csv file uses a different encoding for missing values, the na.strings option can be used to tell read.csv() which cell values should be interpreted as missing values. For example, read.csv("file.csv", na.strings=c("", "-")) can be used for a file

where missing values are indicated by either empty cells or cells containing a hyphen.

Further details about the function read.csv() can be found using the command help(read.csv) in R.

Example 6.2. In the 2016 version of the MATH1712 module, I performed a small questionnaire in the first lecture. The following R command can be used to load the data from the questionnaire into R

```
x <- read.csv("https://teaching.seehuhn.de/rintro/Q2016.csv")
```

The variable x now contains the questionnaire results. Instead of directly downloading the data from the internet into R, you can alternatively first download the data using a web browser, and then import the data directly from your computer:

```
x <- read.csv("Q2016.csv")
```

Both approaches give the same result.

Importing Microsoft Excel Files

The easiest way to import Excel files into R is to first convert these files to .csv format. To do this:

- Open the file with the data in Excel.
- Open a new, empty file (choosing "Blank workbook" in Excel).
- Copy and paste the relevant cells into the empty file. It is important to just copy the required data and to leave out any explanatory text and and empty rows/columns. The data must form a tidy rectangle, with one sample per row and one variate per column. Optionally, you can put column headers into the first row.
- Save the new file in .csv format in a folder where you will find it again.
- Read the resulting .csv into R as explained above.

Alternatively, you can try the read_excel() function from the readxl package. (You may need to install this R package first.) You can learn how to use this function at https://readxl.tidyverse.org/ or using the command help(read_excel). Note that these functions return a "tibble" instead of a data frame, so some additional knowledge is required to use the result.

Checking the Imported Data

The following commands can be used to get a quick overview over the data:

- dim(x) gives the number of rows and columns of the data frame. Similarly, nrow(x) shows the number of rows and ncol(x) shows the number of columns in the data frame.
- str(x) shows the structure of any R object. This command is often an excellent way to understand the nature of any problems one may encounter while importing data into R.
- summary(x) prints, for each variate, the values of various summary statistics. For variates with numeric values, these are the minimum, first quartile, median, mean, third quartile, maximum, and the number of missing values. For attribute data this gives the counts for each observed value.
- head(x) shows the first few rows of the data.

Every time you import a dataset into R, you should use some of these commands to check that everything went well. In case you discover problems, you should either fix the data file (e.g. using Microsoft Excel) or by using the correct options for the $\mathtt{read.csv}()$ command.

Example 6.3. Continuing with the dataset from example above, we can try the following commands: We first check that the data has plausible dimensions:

```
dim(x)
# [1] 220 5
```

This tells us that the data has n = 220 rows and p = 5 columns, as expected. Next, we get some details about the five columns of the data frame:

```
# 'data.frame': 220 obs. of 5 variables:

# $ gender : chr "M" "M" "M" ...

# $ height : num 180 183 183 182 164 ...

# $ handedness : chr "R" "R" "R" ...

# $ travel.time: int 20 25 20 12 5 20 15 10 11 7 ...

# $ R.skills : chr "basic" "basic" "basic" ...
```

This shows, for each column, the name, the "data type" and the first few values. The "data type" is a good indicator to detect problems; it should read int for integer valued numeric data, num for all other numeric data, and Factor for attribute data. For attribute data, the range of observed values is also shown. For our dataset, we see that the fields \$gender, \$handedness and \$R.skills are represented as text data (type chr) instead of categorical data. To fix this, we re-import the data using the stringsAsFactors=TRUE option:

```
x <- read.csv("data/Q2016.csv", stringsAsFactors=TRUE)
str(x)

# 'data.frame': 220 obs. of 5 variables:
# $ gender : Factor w/ 2 levels "F","M": 2 2 2 2 1 1 1 1 1 2 ...
# $ height : num 180 183 183 182 164 ...
# $ handedness : Factor w/ 3 levels "L","R","both": 2 2 2 2 2 2 2 2 2 2 ...
# $ travel.time: int 20 25 20 12 5 20 15 10 11 7 ...
# $ R.skills : Factor w/ 4 levels "basic","good",..: 1 1 1 1 1 1 3 1 1 ...</pre>
```

Now the output is as expected, and the correct "levels" are shown for the categorical variables.

Finally, we can print summary statistics for all columns:

```
summary(x)
   gender
               height
                            handedness travel.time
                                                           R.skills
  F:102
                                               : 0.00
                            L
                                : 18
                                       Min.
                                                         basic :157
           Min.
                  :147.0
#
  M:118
           1st Qu.:167.0
                            R.
                                :201
                                       1st Qu.: 5.00
                                                         good: 4
#
           Median :175.0
                            both: 1
                                       Median : 15.00
                                                         medium: 28
                                                         none : 31
#
           Mean
                  :173.7
                                       Mean
                                              : 19.15
#
           3rd Qu.:180.3
                                       3rd Qu.: 25.00
           Max.
                   :195.6
                                       Max.
                                               :150.00
           NA's
                   :23
```

None of these commands showed any remaining problems, so we are now ready to use the data.

Common Problems

There are many things which can go wrong when importing data. Some commonly encountered problems are the following:

- If the data file contains no line with headers, but the header=FALSE option for read.csv() has been omitted, the first row of data will be used in place of the column names. This can, for example, be seen in the str() output. The solution to this problem is to correctly use the header=FALSE option.
- If the data in a .csv file is not separated by commas but by some other character like a semicolon, R will be unable to separate the columns. When this is the case, the imported data will appear to only have one column, where each entry shows as some garbled version of the data for the whole row. The solution to this problem is to use the sep=... option.
- If attribute values are encoded inconsistently, e.g. if a mix of m and M is used to encode the gender "male", this will be visible in the str() output. One solution to this problem is to fix the .csv file using Microsoft Excel, before trying to import it into R again.
- If a numeric column in the input file contains one or more entries which are neither numbers nor empty, R will interpret the whole column as attribute data. This problem can be detected in the str() output, when a numeric column is listed as having data type Factor. One solution to this problem is to use Microsoft Excel to remove or fix the offending entry.

7 Examples

To illustrate the results of the last two sections, we consider a series of examples.

7.1 Simple Confidence Interval

In this subsection we will illustrate how to compute a simple confidence interval for a single regression coefficient. We use a dataset about toxicity of chemicals towards aquatic life from the UCI Machine Learning Repository. The data is available at

• https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity

There are nine different variables. (The web page explains the interpretation of these variables.) We will fit a model which describes LC50 as a function of the remaining variables:

```
# data from https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity
qsar <- read.csv("data/qsar_aquatic_toxicity.csv", sep = ";", header = FALSE)</pre>
names(qsar) <- c(</pre>
   "TPSA"
    "SAacc",
   "H050",
   "MLOGP",
   "RDCHI",
   "GATS1p",
    "nN".
    "C040"
   "LC50"
m \leftarrow lm(LC50 \sim ., data = qsar)
summary(m)
#
# Call:
# lm(formula = LC50 ~ ., data = qsar)
# Residuals:
     Min
              1Q Median
                              3Q
                                    Max
 -4.4934 -0.7579 -0.1120 0.5829 4.9778
#
# Coefficients:
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 2.698887 0.244554 11.036 < 2e-16 ***
# TPSA
             -0.015081 0.002091 -7.211 1.90e-12 ***
# SAacc
              0.040619 0.059787
                                  0.679 0.497186
# H050
                                  7.048 5.60e-12 ***
# MLOGP
              0.446108 0.063296
              0.513928
# RDCHI
                        0.135565
                                   3.791 0.000167 ***
             -0.571313
                        0.153882 -3.713 0.000227 ***
# GATS1p
# nN
             -0.224751
                        0.048301 -4.653 4.12e-06 ***
# CO40
              0.003194
                        0.077972
                                  0.041 0.967340
# Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# Residual standard error: 1.203 on 537 degrees of freedom
# Multiple R-squared: 0.4861, Adjusted R-squared: 0.4785
# F-statistic: 63.5 on 8 and 537 DF, p-value: < 2.2e-16
```

Our aim is to find a 95% confidence interval for GATS1p.

7.1.1 From First Principles

To compute the confidence interval from first principles, we can use Lemma 5.3. The centre of the confidence interval is given by $\hat{\beta}_i$:

```
mid <- coef(m)[7]
mid
# GATS1p
# -0.5713131
```

To find the half-width of the interval, we need to first construct the covariance matrix C and the estimated error variance $\hat{\sigma}^2$. We will also need the corresponding quantile of the t-distribution.

```
X <- model.matrix(m)
y <- qsar$LC50
n <- nrow(X)
p <- ncol(X) - 1

Cii <- solve(t(X) %*% X)[7, 7]
cat("Cii =", Cii, "\n")

# Cii = 0.01637454

sigma.hat.squared <- sum((fitted(m) - y)^2) / (n - p - 1)
cat("hat.sigma.square =", sigma.hat.squared, "\n")

# hat.sigma.square = 1.446134

alpha <- 0.05
t <- qt(1 - alpha/2, n - p - 1)
cat("t =", t, "\n")

# t = 1.964391</pre>
```

With this information in place, we can easily find the confidence interval:

```
d <- sqrt(Cii * sigma.hat.squared) * t
cat("[", mid - d, ", ", mid + d, "]\n", sep = "")
# [-0.8735983, -0.2690279]</pre>
```

7.1.2 From the lm() Output

We can obtain the same result using only the quantile t and numbers shows in the summary(m) output. We focus on the row corresponding to GATS1p in the output shown above:

```
GATS1p -0.571313 0.153882 -3.713 0.000227 ***
```

The first number in this row is the centre of the confidence interval, the second number corresponds to $\sqrt{\hat{\sigma}^2 C_{ii}}$:

```
alpha <- 0.05
t <- qt(1 - alpha/2, n - p - 1)
cat("[", -0.571313 - 0.153882*t, ", ", -0.571313 + 0.153882*t, "]\n", sep = "")
# [-0.8735975, -0.2690285]</pre>
```

This is the same result as above.

7.2 Confidence Intervals for the Mean

So far we have only seen how to compute confidence intervals for the regression coefficients β_i . Using the same techniques we can also compute confidence intervals for the model mean corresponding to an input $(\tilde{x}_1, \dots, \tilde{x}_p)$. If we write

$$\tilde{x}=(1,\tilde{x}_1,\ldots,\tilde{x}_p),$$

then the model mean corresponding to this input is

$$\tilde{y} = \beta_0 + \tilde{x}_1 \beta_1 + \dots + \tilde{x}_p \beta_p = \tilde{x}^\top \beta,$$

To derive a confidence interval for this quantity, we follow the same steps as we did when we derived a confidence interval for $\hat{\beta}_i$.

Our estimator for this \tilde{y} is

$$\hat{y} = \tilde{x}^{\top} \hat{\beta} \sim \mathcal{N}(\tilde{x}^{\top} \beta, \sigma^2 \tilde{x}^{\top} (X^{\top} X)^{-1} \tilde{x}).$$

Thus,

$$\begin{split} \tilde{T} &:= \frac{\tilde{x}^{\top} \hat{\beta} - \tilde{x}^{\top} \beta}{\sqrt{\hat{\sigma}^2 \tilde{x}^{\top} (X^{\top} X)^{-1} \tilde{x}}} \\ &= \frac{\frac{1}{\sqrt{\sigma^2 \tilde{x}^{\top} (X^{\top} X)^{-1} \tilde{x}}} (\tilde{x}^{\top} \hat{\beta} - \tilde{x}^{\top} \beta)}{\sqrt{\frac{1}{\sigma^2} \hat{\sigma}^2}} \end{split}$$

is t(n-p-1)-distributed, since the numerator is $\mathcal{N}(0,1)$, the denominator is $\sqrt{\chi^2(n-p-1)/(n-p-1)}$ and $\hat{\beta}$ is independent of $\hat{\sigma}^2$. Let $t_{n-p-1}(\alpha/2)$ be the $(1-\alpha/2)$ -quantile of the t(n-p-1)-distribution. Then we can solve the inequality $|T| \leq t_{n-p-1}(\alpha/2)$ for $\tilde{x}^\top \beta$ to find the required confidence interval:

$$\Big[\tilde{x}^{\top}\hat{\beta} - \sqrt{\hat{\sigma}^2\tilde{x}^{\top}(X^{\top}X)^{-1}\tilde{x}}t_{n-p-1}(\alpha/2), \tilde{x}^{\top}\hat{\beta} + \sqrt{\hat{\sigma}^2\tilde{x}^{\top}(X^{\top}X)^{-1}\tilde{x}}t_{n-p-1}(\alpha/2)\Big].$$

We illustrate this using a numerical example. For the stackloss dataset with input values Air.Flow = 60, Water.Temp = 21 and Acid.Conc = 87, we can get the following results:

```
m <- lm(stack.loss ~ ., data = stackloss)
X <- model.matrix(m)
n <- nrow(X)
p <- ncol(X) - 1

tilde.x <- c(1, 60, 21, 87)
hat.beta <- coef(m)

c <- t(tilde.x) %*% solve(t(X) %*% X, tilde.x)
sigma.hat.squared <- sum((fitted(m) - stackloss$stack.loss)^2) / (n - p - 1)
t <- qt(0.975, n - p - 1)

mid <- t(tilde.x) %*% hat.beta
d <- sqrt(c * sigma.hat.squared) * t
cat("[", mid - d, ", ", mid + d, "]\n", sep = "")

# [15.46463, 18.50554]</pre>
```

7.3 Testing a Single Coefficient

Continuing with the dataset from the previous example, we can test whether the regression coefficient corresponding to the water temperature might equal zero. We will perform a test at 5%-level.

7.3.1 From First Principles

We can compute the test statistic manually, using the formula from equation (24) with b=0:

```
T <- hat.beta[3] / sqrt(sigma.hat.squared * solve(t(X) %*% X)[3, 3])
T

# Water.Temp
# 3.519567

t.crit <- qt(0.975, n - p - 1)
abs(T) > t.crit

# Water.Temp
# TRUE
```

Since the test statistic is larger than the critical value, we reject the hypothesis that $\beta_2=0.$

7.3.2 Using the lm() Output, I

We can also find the test statistic in the lm() output:

```
summary(m)
#
```

```
# Call:
# lm(formula = stack.loss ~ ., data = stackloss)
# Residuals:
#
             1Q Median
                           3Q
     Min
                                  Max
 -7.2377 -1.7117 -0.4551 2.3614
# Coefficients:
            Estimate Std. Error t value Pr(>|t|)
5.307
# Air.Flow
              0.7156
                        0.1349
                                      5.8e-05 ***
# Water.Temp
              1.2953
                        0.3680
                               3.520 0.00263 **
# Acid.Conc.
             -0.1521
                        0.1563 -0.973 0.34405
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 3.243 on 17 degrees of freedom
# Multiple R-squared: 0.9136, Adjusted R-squared: 0.8983
# F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09
```

The column t value shows the value of the test statistic T for the hypothesis that $\beta_i = 0$. For β_2 we find the value 3.520, which is a rounded version of the 3.519567 we found above.

Again, we can use the command qt(0.975, 17) to get the critical value, where we can find the degrees of freedom in the Residual standard error row near the bottom. Alternatively, we can use the so called "p-value" listed in the Pr(>|t|) column. This value is the smallest significance level at which H_0 is still rejected. Here we find 0.00263 and since we have $\alpha=0.05>0.00263$, we can see that H_0 is rejected.

If we wanted to test $\beta_2=1$ instead, we could use the value $\hat{\beta}_2=1.2953$ from the Estimate column and $\sqrt{\hat{\sigma}^2 C_{ii}}=0.3680$ from the Std. Error column, to get T=(1.2953-1)/0.3680 and then we would accept or reject the hypothesis $\beta_2=1$ by comparing the result to the critical value qt(0.975, 17).

7.3.3 Using the lm() Output, II

For the hypotheses $\beta_i=0$, we can also use the stars (or sometimes dots) shown in the right margin to perform the test. Since the Water.Temp row ends in **, we would reject $\beta_2=0$ even at the stricter $\alpha=0.01$ level, and thus we would also reject this hypothesis at $\alpha=0.05$ level.

7.4 Testing Multiple Coefficients

This section illustrates how a group of coefficients can be tested simultaneously. We consider a small, synthetic dataset:

```
# data from https://teaching.seehuhn.de/data/small/small.csv
small <- read.csv("data/small.csv")</pre>
m \leftarrow lm(y \sim ., data = small)
summary(m)
#
# Call:
# lm(formula = y ~ ., data = small)
#
# Residuals:
#
                 1Q
      Min
                      Median
                                   30
                                           Max
 -0.64664 -0.09369 -0.03420 0.07768
                                      0.63353
# Coefficients:
              Estimate Std. Error t value Pr(>|t|)
#
# (Intercept) 5.53329
                          0.12360 44.768 6.92e-12 ***
# x1
               0.18903
                          0.12059
                                   1.568
                                            0.1514
# x2
              -0.30731
                          0.18011 -1.706
                                             0.1221
                          0.05639 -2.196
# x3
              -0.12382
                                             0.0557
# x4
              -0.11731
                          0.12619 -0.930
                                             0.3768
# ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Signif. codes:
# Residual standard error: 0.3822 on 9 degrees of freedom
# Multiple R-squared: 0.6404, Adjusted R-squared:
# F-statistic: 4.007 on 4 and 9 DF, p-value: 0.03891
```

From the R output it is clear that the intercept is non-zero, but none of the remaining regression coefficients are significantly different from zero when testing at 5% level. This poses the question whether the inputs have any effect on the output at all. To answer this question, we test the hypothesis

$$H_0 \colon \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0,$$

omitting only β_0 in the hypothesis. We use the method from section 6.3 to perform this test.

7.4.1 From First Principles

The matrix K which selects the regression coefficients is

$$K = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 5}.$$

The test statistic is

$$F = \frac{\left\| K \hat{\beta} - 0 \right\|_{K(X^\top X)^{-1} K^\top}^2}{4 \hat{\sigma}^2},$$

where $K\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_4)$ and $K(X^\top X)^{-1}K^\top$ is obtained by removing the first row and column from $(X^\top X)^{-1}$:

```
b <- coef(m)[2:5]
X <- model.matrix(m)
C <- solve(t(X) %*% X)[2:5, 2:5]
F <- t(b) %*% solve(C, b) / (4 * summary(m)$sigma^2)
F
# [,1]
# [1,] 4.007393</pre>
```

From lemma 6.3 we know that under H_0 the test statistic is $F_{k,n-p-1}$ -distributed, and the critical value is the $1-\alpha$ quantile of this distribution:

```
n <- nrow(X) # 14
p <- ncol(X) - 1 # 4
k <- 4
f <- qf(0.95, k, n - p - 1)
f
# [1] 3.633089</pre>
```

Since the test statistic is larger than the critical value, we can reject H_0 and conclude at significance level 5% that not all regression coefficients can be zero.

7.4.2 Using the lm() output

The information required to perform this F test is contained in the last row of the summary (m) output:

```
F-statistic: 4.007 on 4 and 9 DF, p-value: 0.03891
```

Here we can see that the test statistic is 4.007 (a rounded version of the value we found above) and the degrees of freedom for the F-test are k=4 and n-p-1=9. The "p-value" listed is the smallest significance level at which the test still rejects H_0 . We see that H_0 is rejected at significance level 0.03891, and thus also at $\alpha=0.05$.

Summary

- We have illustrated the results of sections 5 and 6 with the help of examples.
- We have learned how to use the lm() output to compute confidence intervals and to perform hypothesis tests.

Problem Sheet 2

This problem sheet covers material from Sections 4-7 of the course. You should attempt all these questions and write up your solutions in advance of the workshop in week 4. Your solutions are not assessed. Instead, the answers will be discussed in the workshop and will be made available online afterwards.

5. Assume that $X \sim \mathcal{N}(0,1)$, $Y \sim \chi^2(2)$ and $Z \sim \chi^2(3)$ are independent. What are the distributions of the following random variables?

- X^2 ,
- $X^2 + Y + Z$,
- $\bullet \quad \frac{\sqrt{2}X}{\sqrt{Y}},$
- $\frac{2X^2}{Y}$, and
- 1.5 Y/Z.
- **6.** Let $\mathbf{1} = (1, 1, ..., 1) \in \mathbb{R}^n$ and let $X \sim \mathcal{N}(\mu, \sigma^2 I)$ be a normally-distributed random vector, where I is the $n \times n$ identity matrix. Define $A = \frac{1}{n} \mathbf{1} \mathbf{1}^\top \in \mathbb{R}^{n \times n}$.
 - Show that $(AX)_i = \bar{X}$ for all $i \in \{1, ..., n\}$, where $\bar{X} = \frac{1}{n} \sum_{j=1}^n X_j$.
 - Show that A is symmetric.
 - Show that A is idempotent.
 - Use results from lectures to conclude that the random variables AX and $X^{\top}(I-A)X$ are independent.
 - Using the previous parts of the question, show that \bar{X} and $\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$ are independent.
- 7. Consider the following R commands:

```
m <- lm(stack.loss ~ ., data=stackloss)</pre>
summary(m)
# Call:
# lm(formula = stack.loss ~ ., data = stackloss)
 Residuals:
     Min
              1Q Median
                              3Q
  -7.2377 -1.7117 -0.4551 2.3614
                                  5.6978
 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                 -3.356 0.00375 **
# (Intercept) -39.9197
                         11.8960
# Air.Flow
               0.7156
                          0.1349
                                   5.307
                                          5.8e-05 ***
               1.2953
                          0.3680
                                   3.520
                                          0.00263 **
# Water.Temp
# Acid.Conc.
               -0.1521
                          0.1563 -0.973 0.34405
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 3.243 on 17 degrees of freedom
# Multiple R-squared: 0.9136, Adjusted R-squared: 0.8983
# F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09
```

Either using this output, or using R to further inspect the built-in stackloss dataset, find a 99%-confidence interval for the parameter $\beta_{\texttt{Acid.Conc.}}$.

- 8. The file 20211020.csv from
 - $\bullet \ \ https://teaching.seehuhn.de/data/20211020.csv$

contains pairs of (x, y) values. Fit the following models to the data:

•
$$y = \beta_0 + \beta_1 x + \varepsilon$$

•
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$$

•
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon$$

For each model, create a "residual plot", i.e. a scatter plot which has the fitted values on the horizontal axis and the residuals on the vertical axis. Comment on the resulting plots.

8 The Influence of Observations

In this section we consider the influence which individual samples have on the estimate. Samples with a large influence may be outliers, and are worth checking for validity.

8.1 Deleting Observations

The most direct way to check for the influence of an observation is to compute the parameter estimate $\hat{\beta}$ both with and without the observation in question, and to see how much the two results differ.

Definition 8.1. For $I \subset \{1, ..., n\}$ we write $\hat{\beta}^{(I)}$ for the estimate where all observations $i \in I$ have been removed. As a shorthand we write $\hat{\beta}^{(i)}$ instead of $\hat{\beta}^{(\{i\})}$ for the case where only a single observation has been removed.

This approach is very different from what we used in the section about Estimating Coefficients Simultaneously. There, we selected a subset of regression coefficients, corresponding to columns in the design matrix X, whereas here we are considering a subset of the observations, corresponding to rows of X.

Using the formula for the least squares estimate, we know that

$$\hat{\beta}^{(I)} = (X_{(I)}^{\top} X_{(I)})^{-1} X_{(I)}^{\top} y_{(I)}, \tag{26}$$

where now $y^{(I)}$ is y with all y_i for $i \in I$ removed and $X_{(I)}$ is X with all rows $i \in I$ removed. (We write the "(I)" as a subscript, to make space for the transpose sign.) Our first aim is to find an explicit formula for the difference between $\hat{\beta}$ and $\hat{\beta}^{(I)}$.

We have

$$\begin{split} (X_{(I)}^\top y_{(I)})_k &= \sum_{j \notin I} X_{jk} y_j \\ &= \sum_{j=1}^n X_{jk} y_j - \sum_{j \in I} X_{jk} y_j \end{split}$$

for all $k \in \{0, ..., p\}$, and thus

$$X_{(I)}^{\top} y_{(I)} = X^{\top} y - X_I^{\top} y_I, \tag{27}$$

where X_I stands for the matrix which only contains the rows $i \in I$ of the matrix X, and $y_I = (y_i)_{i \in I}$. Before we substitute this result into equation (26), we first consider how we can write the inverse $(X_{(I)}^\top X_{(I)})^{-1}$ in terms of $(X^\top X)^{-1}$.

Lemma 8.1. Let $A \in \mathbb{R}^{(p+1)\times (p+1)}$ and let $U, V \in \mathbb{R}^{m\times (p+1)}$. Then

$$(A-U^\top V)^{-1} = A^{-1} + A^{-1}U^\top (I-VA^{-1}U^\top)^{-1}VA^{-1}.$$

Proof. This statement is proved by multiplying the equation with $A - U^{\top}V$. Expanding all brackets and using the relation $AA^{-1} = I$, we find

$$(A - U^{\top}V)(A^{-1} + A^{-1}U^{\top}(I - VA^{-1}U^{\top})^{-1}VA^{-1}) = \dots = I.$$

This shows that we have indeed found the inverse of $A - U^{\top}V$.

Using this result, we can now derive a formula for the change in $\hat{\beta}$ when some observations are omitted.

Lemma 8.2. We have

$$\hat{\beta}^{(I)} - \hat{\beta} = -(X^\top X)^{-1} X_I^\top (I - H_{II})^{-1} \hat{\varepsilon}_I,$$

where $H_{II} := X_I(X^\top X)^{-1} X_I^\top = (h_{ij})_{i,j \in I}$ is the matrix which contains the elements of the hat matrix H where both row and column are in I, and $\hat{\varepsilon}_I = (\hat{\varepsilon}_i)_{i \in I} = (y_i - \hat{y}_i)_{i \in I}$ is the vector of residuals at the omitted samples.

The vector $\hat{\varepsilon}_I$ consists of a subset of the original residuals, computed using the original \hat{y} and $\hat{\beta}$. It does not refer to the modified estimate $\hat{\beta}^{(I)}$ which was computed with some observations omitted. Similarly, H_{II} is a submatrix of the original hat matrix.

Proof. Similar to (27), we have

$$(X_{(I)}^{\top}X_{(I)})_{ik} = \sum_{j \notin I} X_{ji}X_{jk} = \sum_{j=1}^{n} X_{ji}X_{jk} - \sum_{j \in I} X_{ji}X_{jk}$$

and thus

$$X_{(I)}^{\intercal}X_{(I)} = X^{\intercal}X - X_I^{\intercal}X_I.$$

Now we can use the lemma with $U = V = X_I$ to get

$$\begin{split} (X_{(I)}^\top X_{(I)})^{-1} &= (X^\top X)^{-1} + (X^\top X)^{-1} X_I^\top (I - X_I (X^\top X)^{-1} X_I^\top)^{-1} X_I (X^\top X)^{-1} \\ &= (X^\top X)^{-1} + (X^\top X)^{-1} X_I^\top (I - H_{II})^{-1} X_I (X^\top X)^{-1}. \end{split}$$

Using equations (26) and (27) and lemma 8.1 we get

$$\begin{split} \hat{\beta}^{(I)} &= (X_{(I)}^{\top} X_{(I)})^{-1} X_{(I)}^{\top} y \\ &= (X_{(I)}^{\top} X_{(I)})^{-1} (X^{\top} y - X_{I}^{\top} y_{I}) \\ &= \left((X^{\top} X)^{-1} + (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} X_{I} (X^{\top} X)^{-1} \right) (X^{\top} y - X_{I}^{\top} y_{I}) \\ &= (X^{\top} X)^{-1} X^{\top} y \\ &\quad + (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} X_{I} \hat{\beta} \\ &\quad - (X^{\top} X)^{-1} X_{I}^{\top} y_{I} \\ &\quad - (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} X_{I} (X^{\top} X)^{-1} X_{I}^{\top} y_{I} \\ &= \hat{\beta} + (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} X_{I} \hat{\beta} \\ &\quad - (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} (I - H_{II}) y_{I} \\ &= \hat{\beta} + (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} X_{I} \hat{\beta} \\ &\quad - (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} y_{I} \\ &= \hat{\beta} - (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} (y_{I} - X_{I} \hat{\beta}) \\ &= \hat{\beta} - (X^{\top} X)^{-1} X_{I}^{\top} (I - H_{II})^{-1} \hat{\varepsilon}_{I}. \end{split}$$

This completes the proof.

We can also find the change in estimated error variance, when samples are omitted from the estimate. The estimated variance in the modified model is

$$\begin{split} \hat{\sigma}_{(I)}^2 &:= \frac{1}{n-m-p-1} \sum_{i \notin I} \Bigl(y_i - (X \hat{\beta}^{(I)})_i \Bigr)^2 \\ &= \frac{1}{n-m-p-1} \Bigl\| y_{(I)} - X_{(I)} \hat{\beta}^{(I)} \Bigr\|^2 \end{split}$$

where m = |I| so that n - m is the number of observations used in the estimate. We want to compare this quantity to the original estimate

$$\begin{split} \hat{\sigma}^2 &= \frac{1}{n-p-1} \sum_{i=1}^n \Bigl(y_i - (X \hat{\beta})_i \Bigr)^2 \\ &= \frac{1}{n-p-1} \Bigl\| y - X \hat{\beta} \Bigr\|^2. \end{split}$$

Here we used again the Euclidean norm as a shorthand for the sum of squares used in these estimates. The following lemma shows how the residual sum of squares decreases when the observations I are omitted from the estimate.

Lemma 8.3. We have

$$\|y_{(I)} - X_{(I)} \hat{\beta}^{(I)}\|^2 - \|y - \hat{y}\|^2 = -\hat{\varepsilon}_I^\top (I - H_{II})^{-1} \hat{\varepsilon}_I.$$

The proof of this lemma is similar to the proof of lemma 8.2, but we omit the tedious calculations here.

Example 8.1. To illustrate the results of this subsection, we give a numerical example. In the example we consider the **stackloss** dataset, and study what happens when the first two observations are omitted:

```
m1 <- lm(stack.loss ~ ., data = stackloss)
m2 <- lm(stack.loss ~ ., data = stackloss[-c(1,2),])
coef(m2) - coef(m1)

# (Intercept) Air.Flow Water.Temp Acid.Conc.
# 0.86331016 -0.03780761 -0.02706305 0.02124533</pre>
```

Using the result of lemma 8.2, we can get the difference between the two estimates without using the model m2:

```
X <- model.matrix(m1)
H <- X %*% solve(t(X) %*% X, t(X))
XI <- X[1:2,]
hII <- H[1:2, 1:2]
hat.epsI <- resid(m1)[1:2]

-as.vector(solve(t(X) %*% X) %*% t(XI) %*% solve(diag(2) - hII, hat.epsI))
# [1] 0.86331016 -0.03780761 -0.02706305 0.02124533</pre>
```

This is the same result as we obtained above. (I used as.vector() to convert the result from a 4×1 matrix into a vector.)

Similarly, we can compare the residual sum of squares: A direct comparison gives

```
sum(resid(m2)^2) - sum(resid(m1)^2)
# [1] -15.41758
```

Using the result of lemma 8.3, we get the same result without requiring m2:

```
-t(hat.epsI) %*% solve(diag(2) - hII, hat.epsI)
# [,1]
# [1,] -15.41758
```

Again, the results using both methods agree.

In the special case of m=1, where $I=\{i\}$ for some $i\in\{1,\ldots,n\}$, our results simplify to

$$\hat{\beta}^{(i)} - \hat{\beta} = -(X^{\top}X)^{-1}x_i \frac{\hat{\varepsilon}_i}{1 - h_{ii}}$$
(28)

and

 $x \leftarrow c(1, 2, 3, 10)$

$$\|y_{(i)} - x_i^{\intercal} \hat{\beta}^{(i)}\|^2 - \|y - \hat{y}\|^2 = -\frac{\hat{\varepsilon}_i^2}{1 - h_{ii}},$$

where $x_i \in \mathbb{R}^{p+1}$ is the *i*th row of X as a vector, $\hat{\varepsilon}_i$ is the usual *i*th residual, and h_{ii} is the *i*th diagonal element of the hat matrix. Using the correct prefactors the second result gives

$$(n-p-2)\hat{\sigma}_{(i)}^2 = (n-p-1)\hat{\sigma}^2 - \frac{\hat{\varepsilon}_i^2}{1-h_{ii}}.$$

We can find numerical values for these quantities using the function influence():

The output lists the diagonal elements h_{ii} of the hat matrix as hat, the vectors $\hat{\beta}^{(i)} - \hat{\beta}$ for each i as coefficients, the standard deviations $\hat{\sigma}_{(i)}$ for each i as sigma, and the residuals $\hat{\varepsilon}_i$ as sigma.

8.2 Cook's Distance

2

0.02 -0.32 0.34 -0.04

\$wt.res

1

In the section about Estimating Coefficients Simultaneously we learned how to measure distances of estimated parameter vectors: To compare $K\hat{\beta}$ to a vector $K\beta$ we used the norm

$$\left\|K\hat{\beta}-K\beta\right\|_{K(X^\top X)^{-1}K^\top}^2=(K\hat{\beta}-K\beta)^\top \big(K(X^\top X)^{-1}K^\top\big)^{-1}(K\hat{\beta}-K\beta).$$

If we consider the full parameter vector, we can use K = I to get

0.4682929 0.2591605 0.2482818 0.4082483

3

$$\left\|\hat{\beta} - \beta\right\|_{(X^\top X)^{-1}}^2 = (\hat{\beta} - \beta)^\top X^\top X (\hat{\beta} - \beta).$$

From lemma 6.1 we know that

$$F = \frac{\left\| \hat{\beta} - \beta \right\|_{(X^{\top}X)^{-1}}^{2}}{(p+1)\hat{\sigma}^{2}}$$

follows an $F_{p+1,n-p-1}$ -distribution. We can use this measure to quantify when the difference $\hat{\beta}^{(i)} - \hat{\beta}$ should be considered "large".

Definition 8.2. Cook's distance for observation i is defined as

$$D_i = \frac{(\hat{\beta}^{(i)} - \hat{\beta})^\top X^\top X (\hat{\beta}^{(i)} - \hat{\beta})}{(p+1)\hat{\sigma}^2}.$$

We will consider observation i to be **influential** if D_i is large. Since this "lives on the scale" of an $F_{p+1,n-p-1}$ -distribution, we should compare D_i to typical values of such a distribution. For example, we could consider the median. Here is a sample of median values for different n and p:

In practice, some authors suggest that an observation is "influential" if $D_i > 1$, instead of using an exact quantile of the F-distribution.

The following lemma provides two additional ways to compute Cook's distance.

Lemma 8.4. We have

8 30 5 0.9168687 # 9 100 5 0.8977754

$$\begin{split} D_i &= \frac{(\hat{y}^{(i)} - \hat{y})^\top (\hat{y}^{(i)} - \hat{y})}{(p+1)\hat{\sigma}^2} \\ &= \frac{\hat{\varepsilon}_i^2}{(p+1)\hat{\sigma}^2} \cdot \frac{h_{ii}}{(1-h_{ii})^2}. \end{split}$$

where $\hat{y}^{(i)} := X \hat{\beta}^{(i)}$ is the fitted value which is predicted for observation i when this observation is not used to fit the model, $\hat{\varepsilon}_i$ are the usual residuals, and h_{ii} are the diagonal elements of the hat matrix.

Proof. We have $\hat{y}^{(i)} - \hat{y} = X\hat{\beta}^{(i)} - X\hat{\beta}$ and thus $(\hat{y}^{(i)} - \hat{y})^{\top}(\hat{y}^{(i)} - \hat{y}) = (\hat{\beta}^{(i)} - \hat{\beta})^{\top}X^{\top}X(\hat{\beta}^{(i)} - \hat{\beta}).$

This proves the first equality. From equation (28) we know

$$\hat{\beta}^{(i)} - \hat{\beta} = -(X^{\top}X)^{-1}x_i \frac{\hat{\varepsilon}_i}{1 - h_{ii}}$$

and thus we find

$$\begin{split} (\hat{\beta}^{(i)} - \hat{\beta})^\top X^\top X (\hat{\beta}^{(i)} - \hat{\beta}) &= \frac{\hat{\varepsilon}_i^2}{(1 - h_{ii})^2} x_i^\top (X^\top X)^{-1} X^\top X (X^\top X)^{-1} x_i \\ &= \frac{\hat{\varepsilon}_i^2}{(1 - h_{ii})^2} x_i^\top (X^\top X)^{-1} x_i \\ &= \frac{\hat{\varepsilon}_i^2}{(1 - h_{ii})^2} h_{ii} \end{split}$$

Example 8.2. To illustrate how Cook's D is computed, we use a small dataset with simulated data. We include an x-space outlier:

```
set.seed(20211026)
x <- c(5, seq(0, 1, length.out = 6))
y <- 1 + 0.1 * x + 0.1 * rnorm(7)
plot(x, y)

m <- lm(y ~ x)
abline(m)

m2 <- lm(y[-1] ~ x[-1])
abline(m2, col = "red")</pre>
```


The black line in the plot is the regression line using all data, the red line is the regression line fitted using only the left-most six points and leaving out the "outlier" at x=5. The difference between the two lines makes it clear that the point at x=5 has a large effect on the estimated regression line. An easy way to compute the D-values is the second formula from lemma 8.4:

The results show as expected a very large value for the first observation, $D_1=6.456$, and small values for the remaining D_i . We can also find Cook's D-values in the output of the influence.measures() function:

```
influence.measures(m)
```

```
# Influence measures of
#
    lm(formula = y \sim x):
#
#
    dfb.1_
             dfb.x
                      dffit cov.r cook.d
                                             hat inf
# 1 -0.7475
            3.1083
                    3.3670 39.046 6.45641 0.967
#
 2 -0.2441 0.1415 -0.2441
                            1.791 0.03532 0.215
    0.0583 -0.0296
                    0.0585
                            1.920 0.00213 0.192
    0.2674 -0.1142
                    0.2720
                            1.596 0.04250 0.173
    0.9536 -0.3189
                    0.9959
                           0.348 0.26837 0.159
# 6 -0.2461 0.0560 -0.2681
                            1.512 0.04077 0.149
# 7 -0.5620 0.0577 -0.6512 0.687 0.16258 0.144
```

The table also shows the diagonal elements of the hat matrix, in the column hat, and some additional measures which we will not discuss here. A star in the last column, titled inf, marks influential observations. The star is placed if any of the measures shown in the table is significantly large.

Summary

- We can measure the influence of an observation by the amount the estimated parameters change when the observation is deleted.
- We learned how to determine the amount of change without having to fit n additional models.
- Cook's distance provides a numerical measure for the influence of each observation.

Part II
Linear Regression in Practice

9 Diagnostic Plots

(The following video refers to an older version of this section.)

When we developed the theory for linear models, we used the following assumptions:

- Linear relationship between inputs and outputs: $y \approx x^{\top} \beta$
- Independence of errors: the $\varepsilon_i=y_i-(X\beta)_i$ are independent of each other.
- Normally distributed errors: $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ for all i. In particular, the variance of the ε_i does not depend on i.

Sometimes, plotting the data can reveal when these assumptions are violated. Here we discuss different plot types which can be used for this purpose.

9.1 Residual Plots

A plot of $\hat{\varepsilon}_i$ against \hat{y}_i is often called a "residual plot". If the modelling assuptions are correct, the errors will be independent and normally distributed with mean zero and constant variance. The fitted residuals are estimates of the errors, so they should approximately satisfy these two properties.

If the variance of the residuals seems to increase with \hat{y} then a transformation may be necessary. The presence of a curvilinear relationship in this plot suggests a non-linear relationship between inputs and outputs.

Example 9.1. To demonstrate the use of residual plots, we first produce such a plot for simulated data, where we know that the modelling assumptions are satisfied.

modelling assumptions satisfied

We can see that the residuals are clustered around zero as expected.

Example 9.2. Next we consider a residual plot where the modelling assumptions are known to be violated. Here we generate data using a quadratic dependency (instead of linear) of the output on the input:

modelling assumptions violated

It is clear that the residuals are not centred around the horizontal zero line, but form a parabola instead.

The structure of the x-values can affect the visual appearance of this type of plot, even if the modelling assumptions are exactly satisfied. For example, if the x-values "thin out" towards the edges of the range, the "band" of residuals may appear narrower there, just because there are fewer chances for large residuals to occur near the edges.

The following example shows a residual plot for real data, where it is unknown whether or not the modelling assumptions are satisfied.

Example 9.3. A residual plot for the stackloss dataset can be produced as follows:

stackloss

We can see that the residuals are clustered around zero as expected. Since there are no obvious patterns, the plot does not indicate any problems with model fit.

9.2 Q-Q Plots

A Q-Q plot of the residuals can be used to assess whether the residuals are normally distributed. These plots plot quantiles of the data against quantiles of a normal distribution. If the residual are normally distributed, the points in a Q-Q plot will approximately lie on a straight line. The R command to produce Q-Q plots for the normal distribution is qqnorm().

Example 9.4. We first show an example with simulated data, where the modelling assumptions are known to be satisfied.

```
n <- 50
x <- seq(0, 10, length.out = n)
y <- 2 + 0.5 * x + rnorm(n)

m <- lm(y ~ x)
qqnorm(resid(m), main = "modelling assumptions satisfied")</pre>
```

modelling assumptions satisfied

As expected, the points lie approximately on a straight line.

Example 9.5. Next we consider an example where the errors are exponentially instead of normally distributed.

```
n \leftarrow 50

x \leftarrow seq(0, 10, length.out = n)

eps \leftarrow rexp(n) - 1 \text{ # we subtract 1, so that the errors still have mean zero}

y \leftarrow 2 + x + eps

m \leftarrow lm(y \sim x)

equorm(resid(m), main = "modelling assumptions violated")
```

modelling assumptions violated

Now the points of the Q-Q plot lie on a curved line, indicating that the residuals are not normally distributed.

Example 9.6. Next we consider an example where the errors are exponentially instead of normally distributed.

```
m <- lm(stack.loss ~ ., data = stackloss)
qqnorm(resid(m), main = "stackloss")</pre>
```

stackloss

The points in this Q-Q plot lie more or less on a straight line, so it seems a reasonable to assume that the errors were normally distributed.

9.3 Other Plot Types

Sometimes, different plot types are also used.

- 1. A scatter plot of the response y against each of the explanatory variables x_j for $j \in \{1, \dots, p\}$. Great care is needed when interpreting such plots: even if the full model is linear, the dependency of the output on individual inputs may appear non-linear. This can be caused by non-linear structures in the input data (which don't violate the modelling assumptions).
- 2. A scatter plot of $\hat{\varepsilon}$ against each of the explanatory variables x_j for $j \in \{1, \dots, p\}$. Again, care is needed when trying to interpret such plots.
- 3. A plot of x_j against x_k for $j \neq k$ can also be useful. For example, if two or more regressors are highly correlated, we say that multicollinearity is present. When this occurs, the least squares estimate $\hat{\beta}$ becomes numerically unstable. (We will learn more about this effect in chapter 15.)
- 4. Data are often collected in time order. Even if time is not an explanatory variable, a plot of y against time can be of interest. It can reveal serial correlation in the data. Similarly, plotting the residuals against time.

Example 9.7. We can plot stack.loss against Water.Temp for the stackloss dataset:

Clearly the stack loss increases with water temperature, but the relationship seems not to be linear. It may make sense to include the square of the water temperature as an additional input variable in the model.

Summary

- Diagnostic plots can help to discover problems with model fit.
- $\bullet\,$ The most important diagnostic plots are residual plots and Q-Q plots.

10 Measures for Model Fit

10.1 The Coefficient of Multiple Determination

In equation (19) we have seen that

$$||y||^2 = ||\hat{y}||^2 + ||\hat{\varepsilon}||^2.$$

The following lemma shows that a similar relation also holds after the sample means are subtracted.

Lemma 10.1. Assume that the fitted model includes an intercept. Then we have

$$\begin{split} \sum_{i=1}^n (y_i - \overline{y})^2 &= \sum_{i=1}^n (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^n \hat{\varepsilon}_i^2 \\ &= \sum_{i=1}^n (\hat{y}_i - \overline{\hat{y}})^2 + \sum_{i=1}^n (\hat{\varepsilon}_i - \overline{\hat{\varepsilon}})^2, \end{split}$$

where \overline{y} , $\overline{\hat{y}}$ and $\overline{\hat{\varepsilon}}$ are the sample means of the three vectors y, \hat{y} and $\hat{\varepsilon}$.

Proof. Define $\mathbf{1}=(1,\ldots,1)\in\mathbb{R}^p$. From exercise 2 on problem sheet 1 we know that $H\mathbf{1}=\mathbf{1}$ and since H is symmetric we also have $\mathbf{1}^\top H=\mathbf{1}^\top$. This gives

$$\mathbf{1}^{\top}(I-H) = \mathbf{1}^{\top} - \mathbf{1}^{\top}H = \mathbf{1}^{\top} - \mathbf{1}^{\top} = 0. \tag{29}$$

As we have already seen previously, we have

$$\begin{split} \hat{y}^\top \hat{\varepsilon} &= (Hy)^\top (I-H) y \\ &= y^\top H (I-H) y \\ &= 0 \end{split}$$

and using equation (29) we also get

$$\mathbf{1}^{\mathsf{T}}\hat{\varepsilon} = \mathbf{1}^{\mathsf{T}}(I - H)y = 0. \tag{30}$$

Thus, $(\hat{y} - \overline{y}\mathbf{1})^{\top}\hat{\varepsilon} = 0$ and using Pythagoras' theorem as in the section about Properties of the Hat Matrix, we find

$$\begin{split} \|y - \overline{y}\mathbf{1}\|^2 &= \|y - \hat{y} + \hat{y} - \overline{y}\mathbf{1}\|^2 \\ &= \|\hat{\varepsilon} + \hat{y} - \overline{y}\mathbf{1}\|^2 \\ &= \|\hat{\varepsilon}\|^2 + \|\hat{y} - \overline{y}\mathbf{1}\|^2. \end{split}$$

This proves the first equality.

Using equation (29) again, we find

$$\sum_{i=1}^n \hat{\varepsilon}_i = \mathbf{1}^\top \hat{\varepsilon} = \mathbf{1}^\top (y - \hat{y}) = \mathbf{1}^\top (I - H) y = 0$$

and thus $\overline{\hat{\varepsilon}} = 0$. Since $y = \hat{y} + (y - \hat{y}) = \hat{y} + \hat{\varepsilon}$ we also have

$$\overline{y} = \overline{\hat{y}} + \overline{\hat{\varepsilon}} = \overline{\hat{y}}.$$

This completes the proof.

We can express the terms in the statement of lemma 10.1 as sample variances. For example, we write

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$$

for the sample variance of y. Using this notation, the statement of the lemma can be written as

$$\mathbf{s}_{y}^{2} = \mathbf{s}_{\hat{y}}^{2} + \mathbf{s}_{\hat{\varepsilon}}^{2}.$$

Different from equation (19), the current relation is only true for models which include an intercept.

Some authors define

- $\begin{array}{l} \bullet \quad \mathrm{SS}_{\mathrm{tot}} = \sum_{i=1}^n (y_i \bar{y})^2 \text{ (where "tot" stands for "total")} \\ \bullet \quad \mathrm{SS}_{\mathrm{reg}} = \sum_{i=1}^n (\hat{y}_i \overline{\hat{y}})^2 \text{ (where "reg" stands for "regression")} \\ \bullet \quad \mathrm{SS}_{\mathrm{res}} = \sum_{i=1}^n (y_i \hat{y}_i)^2 \text{ (where "res" stands for "residual")} \\ \end{array}$

Using this notation, the statement of lemma 10.1 becomes

$$SS_{tot} = SS_{reg} + SS_{res}$$
.

Definition 10.1. The coefficient of multiple determination is defined as

$$R^{2} := 1 - \frac{\mathbf{s}_{\hat{\varepsilon}}^{2}}{\mathbf{s}_{y}^{2}} = 1 - \frac{\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}.$$

Using the result of lemma 10.1, for models which include an intercept we can also express R^2 as

$$R^2 = s_{\hat{y}}^2 / s_y^2.$$

Since both numerator and denominator are positive, if is clear the $R^2 \geq 0$. Similarly, from the definition it is clear that $R^2 \leq 1$, so that we always have $R^2 \in [0,1]$. A large value of R^2 indicates that the residuals are small compared to the sample variance of the y_i , and thus often indicates good model fit.

Example 10.1. We can easily compute the R^2 value for the stackloss dataset manu-

```
m <- lm(stack.loss ~ ., data = stackloss)</pre>
R.squared <- 1 - var(resid(m)) / var(stackloss$stack.loss)
R.squared
```

[1] 0.9135769

We can also find this value near the bottom of the output of summary(m), listed as Multiple R-squared:

```
summary(m)
```

```
# Call:
# lm(formula = stack.loss ~ ., data = stackloss)
# Residuals:
      Min
               1Q Median
                               3Q
  -7.2377 -1.7117 -0.4551 2.3614
# Coefficients:
              Estimate Std. Error t value Pr(>|t|)
```

```
# (Intercept) -39.9197
                          11.8960 -3.356
                                          0.00375 **
# Air.Flow
               0.7156
                          0.1349
                                   5.307
                                          5.8e-05 ***
# Water.Temp
               1.2953
                          0.3680
                                   3.520
                                          0.00263 **
# Acid.Conc.
               -0.1521
                          0.1563
                                  -0.973
                                          0.34405
# Signif. codes:
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 3.243 on 17 degrees of freedom
# Multiple R-squared: 0.9136, Adjusted R-squared: 0.8983
# F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09
```

One problem with the R^2 value is, that it always increases when another input variable is added to the model. Thus, the R^2 value cannot be used to compare model fit for models with different numbers of variables. An attempt to compensate for this effect is the adjusted R^2 value:

Definition 10.2. The adjusted R^2 value is given by

$$R_{\mathrm{adj}}^2 := 1 - \frac{\frac{1}{n-p-1} \mathbf{s}_{\hat{\varepsilon}}^2}{\frac{1}{n-1} \mathbf{s}_y^2} = 1 - \frac{n-1}{n-p-1} (1 - R^2).$$

The value R_{adj}^2 is always smaller than the R^2 value, and R_{adj}^2 can be (slightly) negative.

Example 10.2. The adjusted R^2 value for the stackloss dataset can be found as follows:

```
n <- nrow(stackloss)
p <- ncol(stackloss) - 1
R.squared.adj <- 1 - (n - 1) / (n - p - 1) * (1 - R.squared)
R.squared.adj
# [1] 0.8983258</pre>
```

We can also find this value near the bottom of the output of summary(m), listed as Adjusted R-squared.

Example 10.3. As suggested in example 9.7, we may want to include a new quadratic term in the stackloss dataset:

```
m2 <- lm(stack.loss ~ . + I(Water.Temp^2), data = stackloss)
summary(m2)</pre>
```

```
# lm(formula = stack.loss ~ . + I(Water.Temp^2), data = stackloss)
 Residuals:
#
     Min
              1Q Median
                              3Q
                                     Max
 -4.1217 -1.5205 -0.3091 0.9753 6.0554
# Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                 57.73727
                            46.08487
                                       1.253 0.22826
# Air.Flow
                  0.53683
                             0.14708
                                       3.650
                                             0.00216 **
                 -7.62030
# Water.Temp
                             4.10441
                                      -1.857
                                             0.08188
# Acid.Conc.
                 -0.09697
                             0.14371
                                      -0.675
                                             0.50946
# I(Water.Temp^2) 0.21224
                             0.09738
                                       2.179 0.04459 *
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
# Residual standard error: 2.936 on 16 degrees of freedom
# Multiple R-squared: 0.9334, Adjusted R-squared: 0.9167
# F-statistic: 56.02 on 4 and 16 DF, p-value: 3.293e-09
```

As expected, the R^2 value has increased here (from 0.9136 to 0.9334). Since the adjusted R^2 value has also increased (from 0.8983 to 0.9167), the extended model may be better than the original model.

10.2 Error Variance

The estimate for the error variance,

$$\hat{\sigma}^2 = \frac{1}{n-q} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

can be used, where q is the number of columns of the design matrix. (For the full model with an intercept we have q = p + 1.) "Good" models have small $\hat{\sigma}^2$. We have

$$\begin{split} R_{\mathrm{adj}}^2 &= 1 - \frac{\frac{1}{n-q} \mathbf{S}_{\hat{\varepsilon}}^2}{\frac{1}{n-1} \mathbf{S}_y^2} \\ &= 1 - \frac{\frac{n-1}{n-q} \mathbf{S}_{\hat{\varepsilon}}^2}{\mathbf{S}_y^2} \\ &= 1 - \frac{\frac{1}{n-q} \sum_{i=1}^n (y_i - \hat{y}_i)^2}{\mathbf{S}_y^2} \\ &= 1 - \frac{\hat{\sigma}^2}{\mathbf{S}_y^2}, \end{split}$$

where $\mathbf{s}_{\hat{\varepsilon}}^2$ and \mathbf{s}_y^2 are the sample variances as before. Thus, minimising $\hat{\sigma}^2$ is equivalent to maximising R_{adj}^2 .

10.3 Prediction Error Sum of Squares

The **Prediction Error Sum of Squares (PRESS)** compares each output y_i to the fitted value $\hat{y}_i^{(i)}$ for observation i, computed without using sample i:

PRESS :=
$$\sum_{i=1}^{n} (y_i - \hat{y}_i^{(i)})^2$$
.

In the comparison, $\hat{y}_i^{(i)}$ is used instead of \hat{y}_i so that in models with too many parameters, overfitting does not result in overoptimistic estimates. "Good" models have small PRESS. The following lemma helps to compute PRESS without having to fit n separate models.

Lemma 10.2. We have

PRESS =
$$\sum_{i=1}^{n} \left(\frac{\hat{\varepsilon}_i}{1 - h_{ii}} \right)^2,$$

where h_{ii} denotes the diagonal elements of the hat matrix H.

Proof. From equation (28) we know how the estimated regression coefficients change, when observation i is deleted from the model:

$$\hat{\beta}^{(i)} - \hat{\beta} = -(X^{\intercal}X)^{-1}x_i\frac{\hat{\varepsilon}_i}{1 - h_{ii}}.$$

Thus we have

$$\begin{split} \hat{y}_i^{(i)} - \hat{y}_i &= \left(X\hat{\beta}^{(i)} - X\hat{\beta}\right)_i \\ &= - \left(X(X^\top X)^{-1} x_i \frac{\hat{\varepsilon}_i}{1 - h_{ii}}\right)_i \\ &= - x_i^\top (X^\top X)^{-1} x_i \frac{\hat{\varepsilon}_i}{1 - h_{ii}} \\ &= - \frac{h_{ii}}{1 - h_{ii}} \hat{\varepsilon}_i. \end{split}$$

From this we get

$$\begin{split} y_i - \hat{y}_i^{(i)} &= y_i - \hat{y}_i + \hat{y}_i - \hat{y}_i^{(i)} \\ &= \hat{\varepsilon}_i + \frac{h_{ii}}{1 - h_{ii}} \hat{\varepsilon}_i \\ &= \frac{1}{1 - h_{ii}} \hat{\varepsilon}_i. \end{split}$$

Substituting this expression into the definition of PRESS completes the proof. \Box

10.4 Akaike's Information Criterion

Akaike's Information Criterion (AIC) is defined as

$$AIC = 2q - 2\log(\hat{L}),$$

where q is the number of parameters in the model, and \hat{L} is the maximum of the likelihood function when these q parameters are chosen optimally. "Good" models have small AIC.

Since we assume $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$, i.i.d. and we have $\varepsilon_i = y_i - x_i^\top \beta$, the likelihood function for our model is

$$\begin{split} L(\beta,\sigma^2;X,y) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\Bigl(-\frac{(y_i-(X\beta)_i)^2}{2\sigma^2}\Bigr) \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\Bigl(-\sum_{i=1}^n \frac{(y_i-(X\beta)_i)^2}{2\sigma^2}\Bigr). \end{split}$$

Taking logarithms we get

$$\begin{split} \log L(\beta,\sigma^2;X,y) &= -\frac{n}{2}\log(2\pi\sigma^2) - \sum_{i=1}^n \frac{(y_i - (X\beta)_i)^2}{2\sigma^2} \\ &= -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}r(\beta), \end{split}$$

where $r(\beta)$ is the residual sum of squares, as introduced in the section about Least Squares Estimates. To compute the AIC we need to maximise this expression. The values of β and σ^2 where the maximum is taken are called the **maximum likelihood** estimate (MLE) for β and σ^2 . From lemma 2.1 we know that for fixed σ^2 , L takes its maximum when β equals the least squares estimate $\hat{\beta}$. Taking derivatives we can then find the optimal value of σ^2 . The result is

$$\hat{\sigma}_{\mathrm{MLE}}^2 = \frac{1}{n} r(\hat{\beta}) = \frac{1}{n} \sum_{i=1}^n \bigl(y_i - (X \hat{\beta})_i \bigr)^2 = \frac{n-q}{n} \hat{\sigma}^2.$$

Thus we get

$$\begin{split} \text{AIC} &= 2q + n \log(2\pi \hat{\sigma}_{\text{MLE}}^2) + \frac{1}{\hat{\sigma}_{\text{MLE}}^2} r(\hat{\beta}) \\ &= 2q + n \log(2\pi r(\hat{\beta})/n) + n \\ &= 2q + n \log(\|\hat{\varepsilon}\|^2) + n + n \log(2\pi/n). \end{split}$$

Summary

- The R^2 value is a numerical measure of the goodness of fit of a model. If models with different numbers of variables are compared, $R^2_{\rm adj}$ should be used instead of \mathbb{R}^2 .
- Other measures for the quality of model fit include PRESS and AIC.

Interlude: Understanding the lm() Output

We have seen that the lm() function returns an object which contains a lot of information about the fitted model. We can inspect this information by using the summary() function. The aim of this section is to help you understand how the output of summary() relates to the mathematical expressions we have considered in the previous sections.

We will use the stackloss dataset as an example:

```
m <- lm(stack.loss ~ ., data = stackloss)
summary(m)
Call:
lm(formula = stack.loss ~ ., data = stackloss)
Residuals:
     Min
              1Q
                  Median
                               3Q
                                      Max
 -7.2377 -1.7117 -0.4551
                                   5.6978
                           2.3614
Coefficients:
             Estimate Std. Error
                                    value
             -39.9197
(Intercept)
                          11.8960
                                    -3.356
                                            0.00375
Air.Flow
                           0.1349
                                     5.307
                                            5.8e-05 **
               0.7156
Water.Temp
               1.2953
                           0.3680
                                     3.520
                                            0.00263
Acid.Conc.
               -0.1521
                           0.1563
                                     0.973
                                            0.34405
                 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Signif. codes:
Residual standard error: 3.243 on 17 degrees of freedom
Multiple R-squared:
                      0.9136,
                                  Adjusted R-squared: 0.8983 H
               59.9 on 3 and 17
```

Here I have marked different parts of the output using red shaded boxes and using the letters A to I. We discuss each of the marked sections in turn:

- The first section, part A, contains summary statistics for the fitted residuals $\hat{\varepsilon}_1, \dots, \hat{\varepsilon}_n$. The values shown are the minimum, first quartile, median, third quartile, and maximum of the residuals. This is the same information we can get using the command summary(resid(m)). The mean is omitted from A, since if always equals zero.
- Column **B** shows the estimated coefficient vector $\hat{\beta}$. This is computed using the formula from lemma 2.1.
- Column C shows the standard error of the estimated coefficients. The *i*th entry is the (estimated) standard deviation of $\hat{\beta}_i$, computed as $\sqrt{\hat{\sigma}^2 C_{ii}}$, where $C = (X^\top X)^{-1}$. This corresponds to the variance shown in equation (16), where the true variance is σ^2 replaced with the estimate $\hat{\sigma}^2$. These quantities are used to compute the t-test statistic in equation (24).
- Column **D** shows the t-test statistic for the coefficients. The values are computed using equation (24).
- Column \mathbf{E} replicates the information from column \mathbf{D} in different form, showing p-values instead of the test statistics.

- The field **F** shows the estimated standard deviation $\hat{\sigma}$. This is computed as the square root of $\hat{\sigma}^2$ from equation (21).
- Field **G** shows the value n-p-1. This is the number of degrees of freedom in lemma 5.2. The value is needed when performing hypothesis tests and computing confidence intervals for individual coefficients.
- Field **H** shows the R^2 value and adjusted R^2 value. These are computed using definitions 10.1 and 10.2.
- Field I shows the F-test statistic for testing the hypothesis $H_i\colon \beta_1=\dots=\beta_p=0$ (omitting the coeficient β_0 for the intercept). This value can be used to test the hypothesis that the inputs have no effect on the output. The F-test statistic is computed using equation (25), the degrees of freedom shown are k=p and n-p-1 from lemma 6.1.

11 Improving the Model Fit

The diagnostic plots introduced in section 9 can often reveal if the data do not fit the modelling assumptions. In cases where the assumptions are violated, sometimes a linear model can still be used if the data is transformed first.

11.1 Linearising the Mean

If the model mean is a non-linear function of the inputs, we can sometimes transform the variables to achieve a linear relationship. We list some examples of non-linear models which can be transformed to linear models:

nonlinear model	transformation	linear Model
$y pprox eta_0 x^{eta_1}$	$x' = \log(x),$ $y' = \log(y)$	$y' \approx \log(\beta_0) + \beta_1 x'$
$y \approx \beta_0 e^{\beta_1 x}$ $y \approx \beta_0 + \beta_1 \log x$	$y' = \log y$ $x' = \log x$	$y' \approx \log \beta_0 + \beta_1 x$ $y \approx \beta_0 + \beta_1 x'$
$y \approx \frac{x}{\beta_0 x - \beta_1}$	x' = 1/x, y' = 1/y	$y' \approx \beta_0 - \beta_1 x'$

In all such cases we also would need to check the residuals of the transformed models, to see whether linear regression can be used for the transformed model.

11.2 Stabilising the Variance

The assumption of constant variance is a basic requirement of regression analysis. A common reason for the violation of this assumption is for the response variable y to follow a distribution in which the variance depends on y or $\mathbb{E}(y)$ and thus on x.

Example 11.1. The error in our model

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon = x^\top \beta + \varepsilon$$

is sometimes called **additive error**, since it is added to the model mean $x^{\top}\beta$. Sometimes the error is instead given in percentages of the quantity of interest. In these cases we speak of **multiplicative error**. This can, for example, be modelled as

$$Y = (\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p) \exp(\varepsilon) = x^{\top} \beta \exp(\varepsilon).$$

For $\varepsilon = 0$ we have $\exp(0) = 1$ and thus $Y = x^{\top}\beta$. Similarly, for small ε we have $Y \approx x^{\top}\beta$, but the variance is now proportional to $(x^{\top}\beta)^2$ instead of being constant. Also, since the exponential is nonlinear we only have $\mathbb{E}(Y) \approx x^{\top}\beta$ instead of strict equality.

Some commonly-used variance stabilising transformations are:

variance	transformation
$\sigma^2 = \text{constant}$	no transformation
$\sigma^2 \propto y$	$y' = \sqrt{y}$
$\sigma^2 \propto y^2$	$y' = \log y$
$\sigma^2 \propto y^3$	$y' = \frac{1}{\sqrt{y}}$
$\sigma^2 \propto y^4$	$y' = \frac{1}{y}$
$\sigma^2 \propto y(1-y)$ where $y \in [0,1]$	$y' = \arcsin(\sqrt{y})$

Of course we do not have accurate knowledge of the relationship, but it can be diagnosed from the residual plots and transformations can be selected by experimenting with different choices. Any of these transformations will also affect the mean and we need to check the model fit for the transformed data, to see whether the transformed data can still reasonably be described by a linear model.

Example 11.2. The last transformation in the table above corresponds to the case of binomial sampling: If x = p and $Y \sim B(n,p)/n$ then we have $\mathbb{E}(Y) = np/n = x$ and a linear model may be appropriate. But we also have $\text{Var}(Y) = p(1-p)/n \propto \mathbb{E}(Y)(1-\mathbb{E}(Y))$, so the assumption of constant variance is violated.

We try to apply the transformation suggested in the table. The function arcsin is the inverse of the sine function. In R this function is available as asin(). To get some intuition about this transformation, we plot the function $y \mapsto \arcsin(\sqrt{y})$:

We can see that the transformation is approximately linear for most of the interval, but has a steeper slope near the edges. The effect of this is to increase the size of fluctations for small and large y-values. We now consider residual plots for the original and transformed data, for a simulated dataset:

```
n <- 500
x <- runif(n, 0, 1)
y <- rbinom(n, 100, x) / 100

par(mfrow = c(1, 2))

m1 <- lm(y ~ x)
plot(fitted(m1), resid(m1))

y.prime <- asin(sqrt(y))
m2 <- lm(y.prime ~ x)
plot(fitted(m2), resid(m2))</pre>
```


The plot shows that the variance has indeed improved, while linearity has suffered (an S-shaped curve is now visible). Neither model is perfect and whether the transformation is beneficial or not depends on the particular circumstances.

Example 11.3. An electric utility company is interested in developing a model relating the peak hour demand (y), measured in kW) to total energy usage during the month (x), in kWh. A scatter plot of the data is shown below:

```
{\it \# data \ at \ https://teaching.seehuhn.de/2022/MATH3714/electric.dat}
d <- read.table("data/electric.dat", header=FALSE)</pre>
plot(d$V1, d$V2,
      xlab="energy usage [kWh]", ylab="energy demand [kW]")
m1 \leftarrow lm(V2 \sim ., data = d)
abline(m1)
      5
                                                                                   0
energy demand [kW]
      9
      2
                                 000
                              0
                            0
                                     0
                500
                          1000
                                     1500
                                               2000
                                                          2500
                                                                     3000
                                                                                3500
                                      energy usage [kWh]
```

A linear relationship looks plausible, but we can see that the spread of points around the regression line widens as energy usage increases. this is more clearly visible in a residual plot:

```
plot(fitted(m1), resid(m1),
     xlab = "fitted values", ylab = "residuals")
                                                                               0
                                           0
                                                   0
                                                      0
residuals
                                          ത
                                                0
                                                    0
     4
           0
                      2
                                 4
                                             6
                                                        8
                                                                  10
                                                                             12
                                        fitted values
```

We try a transformation of the data to stabilise the variance. From the "wedge" shape on the left hand side of the plot, it is clear that the variance σ^2 increases as y increases. Thus we can try transformations like $y' = \log(y)$ or $y' = \sqrt{y}$. Taking the logarithm for illustration, we get

The spread of residuals now looks somewhat more reasonable.

11.3 The Power Transform

A family of transformations for the response variable y is given by the **power transform**. These transformations only apply to strictly positive data, *i.e.* y > 0, and are defined by

$$y^{(\lambda)} = \begin{cases} \frac{y^{\lambda} - 1}{\lambda g^{\lambda - 1}} & \text{if } \lambda \neq 0 \\ g \log y & \text{if } \lambda = 0 \end{cases}$$

where $g = (\prod_{i=1}^n y_i)^{1/n}$ is the geometric mean.

The geometric mean is a constant (it does not depend on i) and is not needed for the power transform, but it is usually included to make values for different λ more comparable. For $\lambda = 1$ the transform is y' = y - 1. This is a simple shift which has no effect on the fitted model, it just decreases the intercept by 1 and leaves the residuals unchanged. Thus, this case is that same as applying no transformation.

Using Taylor approximation on the numerator in the definition of $y^{(\lambda)}$ we get

$$y^{\lambda} = \exp \bigl(\log(y^{\lambda})\bigr) = \exp \bigl(\lambda \log(y)\bigr) \approx 1 + \lambda \log(y) + O\Bigl(\bigl(\lambda \log(y)\bigr)^2\Bigr),$$

where the $O(\cdots)$ stands for terms which are negligible as λ converges to 0. Thus the formula given for $\lambda \neq 0$ converges to the case for $\lambda = 0$ as λ converges to 0. This makes the transformation continuous as a function of λ .

A heuristic rule to find a range of λ for which the power transform is appropriate is based on how the the residual sum of squares changes with λ : Let

$$r(\lambda) = \sum_{i=1}^{n} (y_i^{(\lambda)} - \hat{y}_i^{(\lambda)})^2,$$

where $\hat{y}_i^{(\lambda)}$ denotes the fitted value for the model using the transformed data $y_i^{(\lambda)}$. It is easy to plot this function numerically. We want to choose λ close to where the function has its minimum. The heuristic rule is to consider all values of λ with

$$r(\lambda) \le r(\lambda_{\min}) \left(1 + \frac{t_{n-p-1}(\alpha/2)^2}{n-p-1}\right), \tag{31}$$

where λ_{\min} is the value of λ where the residual sum of squares has its minimum and $t_{n-p-1}(\alpha/2)$ is the $(1-\alpha/2)$ -quantile of the t(n-p-1)-distribution. One can show that this is an approximate $(1-\alpha)$ confidence interval for λ . If we want to interpret the model, it is usually better to select a "simple" λ , e.g. $\lambda=0.5$ rather than using the "optimal" value λ_{\min} .

Example 11.4. Continuing from example 11.3 above, we can try a power transform for the data. We start by plotting $r(\lambda)$ as a function of λ , together with the cutoff suggested by equation (31):

```
x <- d$V1
y <- d$V2
gm <- exp(mean(log(y))) # more stable way to compute geometric mean
lambda <- seq(0.1, 1, length.out = 101)
rss <- numeric(length(lambda))
for (i in seq_along(lambda)) {
    li <- lambda[i]
    y.prime <- (y^li - 1) / (li * gm^(li-1))
    mi <- lm(y.prime ~ x)
    rss[i] <- sum(resid(mi)^2)
}
plot(lambda, rss, type="l")

n <- nrow(d) # 53
p <- 1
cutoff <- min(rss) * (1 + qt(0.975, n - p - 1)^2 / (n - p - 1))
abline(h = cutoff)</pre>
```


This suggests the range of reasonable λ values to be

```
range(lambda[which(rss <= cutoff)])
# [1] 0.298 0.784</pre>
```

The value $\lambda=1$ (no transformation) is not contained in the interval, suggesting that a transformation may be helpful. Choosing a "simple" value inside the interval and close to the minimum, we try $\lambda=0.5$. This leads to the following transformation:

$$y' = 2\sqrt{g}(\sqrt{y} - 1).$$

Up to the shift and scaling, this just takes the square root of the data.

To see whether the variance of the residuals has improved, we consider a residual plot:

We see that the spread of the residuals has indeed improved, when compared to fitting the original data.

Summary

• We have seen different transformations which can be used to transform a nonlinear model into a linear one.

Problem Sheet 3

You should attempt all these questions and write up your solutions in advance of the workshop in week 6 where the answers will be discussed.

 ${\bf 9.}$ Consider the following dataset. Our aim is to predict y from the variables $x_1,\,x_2$ and $x_3.$

	$i x_{1,i}$	$x_{2,i}$	$x_{3,i}$	y_i
1	-2.17	-2.08	-2.16	4.
2	-1.35	-0.50	-0.74	5.
3	-1.22	-1.00	-1.78	4.
4	-1.04	-0.32	-0.40	5.
5	-0.87	-0.39	-0.67	5.
6	-0.41	0.07	-0.66	4.
7	0.07	0.74	0.37	5.
8	0.25	0.35	0.02	4.
9	0.87	1.28	0.52	4.
10	1.53	2.30	1.35	5.
11	2.46	2.55	1.77	4.
12	5.00	5.04	4.05	5.

These data are also available in machine-readable form at

• https://teaching.seehuhn.de/2022/MATH3714/P03Q09.csv

Using these data:

- a. Fit a linear model of the form $y_i = \beta_0 + x_{1,i}\beta_1 + x_{2,i}\beta_2 + x_{3,i}\beta_3 + \varepsilon_i$.
- b. Determine a 95% confidence interval for the coefficient β_2 .
- c. Perform a hypothesis test, at the 95%-level, for the hypothesis $H_0\colon\beta_2=0$ with alternative $H_1\colon\beta_2\neq0$.
- 10. Let $x_1,\ldots,x_n,y_1,\ldots,y_n\in\mathbb{R}$ be given. Assume that it is known that the y-values satisfy $y\approx 1-x+cx^2-dx^3$, where c and d are unknown constants.
 - a. Explain how linear regression can be used to estimate the parameters c and d from the given data.
 - b. What is the design matrix in this situation?
 - c. Why can linear regression be used, despite the presence of the non-linear terms x^2 and x^3 ?
- 11. In this question we consider four different datasets, given by inputs x_i and responses y_i for $i \in \{1, 2, 3, 4\}$.
 - a. Based on the following plots, discuss model fit of each model. Describe all relevant features of the plots. Describe any problems with the model fit you find.

```
par(mfrow=c(4,2))

m1 <- lm(y1 ~ x1)
plot(fitted(m1), resid(m1), xlab="fitted values", ylab="residuals")
qqnorm(resid(m1), main=NULL)

m2 <- lm(y2 ~ x2)
plot(fitted(m2), resid(m2), xlab="fitted values", ylab="residuals")
qqnorm(resid(m2), main=NULL)</pre>
```

```
m3 \leftarrow lm(y3 \sim x3)
      plot(fitted(m3), resid(m3), xlab="fitted values", ylab="residuals")
      qqnorm(resid(m3), main=NULL)
      m4 \leftarrow lm(y4 \sim x4)
      plot(fitted(m4), resid(m4), xlab="fitted values", ylab="residuals")
      qqnorm(resid(m4), main=NULL)
                                                            Sample Quantiles
                                                                 0.2
                                                                 -0.1
                  1.5
                               2.0
                                             2.5
                                                                     -3
                                                                            -2
                          fitted values
                                                                                  Theoretical Quantiles
                                                            Sample Quantiles
residuals
                                                                 0
                                                                                           0
                                                                                                          2
                    3
                                                                     -3
                                                                            -2
                          fitted values
                                                                                  Theoretical Quantiles
                                                            Sample Quantiles
                                                                                                         goo o
                                                                 10
residuals
     -20
         0
                  2
                                                   10
                                                                           -2
                                                                                           0
                                                                                                            2
                          fitted values
                                                                                  Theoretical Quantiles
     1.0
                                                            Sample Quantiles
residuals
     -1.0
                                                                 -1.0
            2.0
                 2.5
                       3.0
                             3.5
                                         4.5
                                               5.0
                                                     5.5
                                                                           -2
                                                                                           0
                                                                                                            2
                                   4.0
                          fitted values
                                                                                  Theoretical Quantiles
```

b. Which of the four models has the best fit?

12. Using singular value decomposition, we can write a design matrix X as $X = UDV^{\top}$, where $D \in \mathbb{R}^{(p+1)\times(p+1)}$ is a diagonal matrix and $U \in \mathbb{R}^{n\times(p+1)}$ and $V \in \mathbb{R}^{n\times(p+1)}$

 $\mathbb{R}^{(p+1)\times (p+1)}$ are matrices with orthonormal columns. Denote the diagonal elements of D by $\sigma_0(X),\dots,\sigma_p(X)\geq 0,$ and the columns of V by $v_0,\dots,v_p.$ Show that $\|Xv_k\|=\sigma_k(X).$ (We used this fact in example 15.3.)

12 Model Selection

12.1 Candidate Models

Here we assume that we are given data with input variables x_1, \dots, x_p . The standard model which we have discussed so far adds an intercept to these inputs, so that there are q = p + 1 model parameters in total. We can modify this model in various ways:

- When we discussed hypothesis tests, we allowed for the possibility that some inputs do not influence the output. A reasonable approach would be to fit a model with these inputs omitted. Since each input may either be included in or excluded from the model, independent of the others, and similarly the intercept may be included or not, there are 2^{p+1} possible models to consider.
- In the section about Improving the Model Fit we have seen that sometimes it is useful to transform input variables before using them in the model. This can either happen individually, e.g. $x_2' = \log x_2$, or collectively, e.g. $x^* = x_1 x_2$. The number of models we may obtain in this way is unlimited.

If we want to compare these candidate models in a systematic way, we need to use efficient methods for comparison, since often a large number of models needs to be considered.

12.2 Misspecified Models

The model is said to be **misspecified**, if the data we are using comes from a different model than the one we use to estimate the coefficients.

12.2.1 Missing Variables

Assume that the data comes from the model

$$Y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon,$$

(we can include the intercept as $x_1=1$ if needed), but we are only using the first q variables x_1,\ldots,x_q , where q< p, to estimate the coefficients. Then the least squares estimate of $\beta=(\beta_1,\ldots,\beta_q)$ is given by

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$$

where $X \in \mathbb{R}^{n \times q}$, and our estimate for the error variance σ^2 is

$$\hat{\sigma}^2 = \frac{1}{n-a} y^{\top} (I - H) y,$$

where $H = X(X^{\top}X)^{-1}X^{\top}$ is the hat matrix computed without using x_{q+1}, \dots, x_{p} .

If we write $\tilde{X} \in \mathbb{R}^{n \times (p-q)}$ for the matrix with columns x_{q+1}, \dots, x_p and $\tilde{\beta} = (\beta_{q+1}, \dots, \beta_p) \in \mathbb{R}^{p-q}$, then the full model can be written as

$$Y = X\beta + \tilde{X}\tilde{\beta} + \varepsilon$$

and we get

$$\begin{split} \hat{\beta} &= (X^\top X)^{-1} X^\top Y \\ &= (X^\top X)^{-1} X^\top (X\beta + \tilde{X}\tilde{\beta} + \varepsilon) \\ &= (X^\top X)^{-1} X^\top X\beta + (X^\top X)^{-1} X^\top \tilde{X}\tilde{\beta} + (X^\top X)^{-1} X^\top \varepsilon \\ &= \beta + (X^\top X)^{-1} X^\top \tilde{X}\tilde{\beta} + (X^\top X)^{-1} X^\top \varepsilon. \end{split}$$

Thus, we have

$$\mathbb{E}(\hat{\beta}) = \beta + (X^{\top}X)^{-1}X^{\top}\tilde{X}\tilde{\beta}$$

and

$$\operatorname{bias}(\hat{\beta}) = (X^{\top} X)^{-1} X^{\top} \tilde{X} \tilde{\beta}.$$

This shows that now the estimate is biased in general. There are two special cases when omitting variables does not introduce a bias: The first is when all of the omitted coefficients equal zero, *i.e.* when we have $\tilde{\beta} = 0$. The second case is when the omitted inputs are orthogonal to the included inputs, since then we have $X^{\top}\tilde{X} = 0$.

Using the formula for $\hat{\beta}$ we find

$$\begin{split} \operatorname{Cov}(\hat{\beta}) &= \operatorname{Cov}\Big(\beta + (X^\top X)^{-1} X^\top \tilde{X} \tilde{\beta} + (X^\top X)^{-1} X^\top \varepsilon\Big) \\ &= \operatorname{Cov}\Big((X^\top X)^{-1} X^\top \varepsilon\Big) \\ &= \sigma^2 (X^\top X)^{-1} X^\top I X (X^\top X)^{-1} \\ &= \sigma^2 (X^\top X)^{-1}. \end{split}$$

Thus, the variance of $\hat{\beta}$ is not affected by the omitted variables. Similar to our derivation in the section Estimating the Error Variance one can show that

$$\mathbb{E}(\hat{\sigma}^2) = \sigma^2 + \frac{\tilde{\beta}^\top \tilde{X}^\top (I - H) \tilde{X} \tilde{\beta}}{n - q}.$$

Thus, the estimate of the error variance is in general also biased.

This shows that our estimates can become biased if some of the inputs are missing from our model. As in the previous section, it may happen that the MSE of the parameter estimates in the reduced model is smaller than the MSE in the correct model; this is the case if the variance of the estimates decreases enough to compensate for the introduced bias.

12.2.2 Unnecessary Variables

If the data comes from a model with fewer inputs than the ones we are using, the model is not "misspecified" in the strict sense. It is just the case that some of the true β_j exactly equal zero. In this case, our previous results show that the least squares estimate is unbiased.

Including additional variables into a model still can cause problems: One can show that each unnecessary variable added increases the variance of the estimates $\hat{\beta}_j$. Instead of giving a proof of this fact, we illustrate the effect using a numerical example.

Example 12.1. Here we consider the stackloss dataset with an added column of noise. We have seen that

$$\mathrm{Var}(\hat{\beta}_j) = \sigma^2 \big(X^\top X \big)_{jj}^{-1}.$$

While we don't know the true value of σ^2 , we can determine the relative change in variance when adding a column, since this process does not change σ^2 and thus σ^2 will cancel when we determine the relative change in variance.

We first compute the diagonal elements of $(X^{\top}X)^{-1}$ for the original dataset:

```
X1 <- model.matrix(stack.loss ~ ., data = stackloss)
d1 <- diag(solve(t(X1) %*% X1))
d1

# (Intercept) Air.Flow Water.Temp Acid.Conc.
# 13.452726695 0.001728874 0.012875424 0.002322167</pre>
```

Now we add a column of noise and re-compute the values:

```
set.seed(20211115)
n <- nrow(X1)
X2 <- cbind(X1, rnorm(n))
d2 <- diag(solve(t(X2) %*% X2))
d2

# (Intercept) Air.Flow Water.Temp Acid.Conc.
# 14.397515774 0.001730570 0.015195467 0.002796487 0.064828744</pre>
```

Finally, we determine the change in variance in percent:

```
round(100 * (d2[-5] - d1) / d1, 3)
# (Intercept) Air.Flow Water.Temp Acid.Conc.
# 7.023 0.098 18.019 20.426
```

We see that the variances of the $\hat{\beta}_j$ increased by up to 20% when we added the unnecessary input.

The example illustrates that it is important to keep the model as small as possible.

12.3 Choosing Between Models

12.3.1 Criteria for Model Selection

When comparing different models, we need a criterion to decide which is "best". Several options exist:

- R^2 (coefficient of determination): Measures the proportion of variance explained by the model. However, R^2 always increases when variables are added, even if they are irrelevant. This makes it unsuitable for model selection.
- Adjusted R^2 (written R_{adj}^2): Adjusts R^2 to penalize model complexity. This is the criterion we will use throughout this section and the next.
- AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion): Alternative criteria that also penalize model complexity, discussed in section 10.

In the following subsections, we describe algorithms that use these criteria to select models efficiently.

12.3.2 Exhaustive Search

For a model with p input variables, there are 2^p different choices for which variables to include in the model (or 2^{p+1} , if we also have to decide whether to include the intercept). This value increases quickly with p: for p=10 we have 1024 models to consider, for p=20 there are 1048576 possible models, and for large p it becomes infeasible to simply try all possible models to find the best one.

If p is small enough, we can simply fit all 2^p models and choose the one with the best performance (e.g., highest R_{adj}^2). This guarantees finding the optimal model. However, for $p \geq 20$ this becomes computationally infeasible ($2^{20} > 1$ million models).

12.3.3 Stepwise Forward Selection

Here the idea is to start with a minimal model, and then add variables one by one, until no further (large enough) improvements can be achieved.

Start with only intercept term: $y = \beta_0 + \varepsilon$, then consider each of p models:

$$y = \beta_0 + \beta_j x_j + \varepsilon,$$

for
$$j \in \{1, \dots, p\}$$
.

Choose the model with the smallest residual sum of squares, provided that the "significance of the fitted model" achieves a specified threshold. The process continues by adding more variables, one at a time, until either

- All variables are in the model.
- The significance level can not be achieved by any variable not in the model.

The "significance of the model" can be examined by considering a t-test as in lemma 5.4.

12.3.4 Stepwise Backward Selection

Here the idea is to start with the full model, and to remove variables one by one until no good enough candidates for removal are left.

In each step we consider the test statistic $|T_i|$ for the tests

$$H_0: \beta_j = 0$$
 vs. $H_1: \beta_j \neq 0$

for $j \in \{1, \dots, p\}$, again as in lemma 5.4. The method selects x_j corresponding to the smallest $|T_j|$. If this is below a given threshold, then remove x_j and re-fit the model. Repeat until either:

- No variables are left in the model.
- The smallest $|T_i|$ is above the threshold.

12.3.5 Hybrid Methods

Either start with a full model or just intercept. At each stage consider:

- removing least significant variable already in the model,
- adding most significant variable not currently in the model,

with significance levels set to avoid a cyclical behaviour.

Summary

- Model selection requires choosing a criterion such as $R_{\rm adj}^2$, AIC, or BIC to compare models
- Stepwise methods (forward, backward, hybrid) provide computationally efficient heuristics for large p.
- These methods do not guarantee finding the optimal model.
- Exhaustive search can find the optimal model when p is small to moderate.

13 Exhaustive Model Search

13.1 Exhaustive Search

The stepwise methods from the previous section provide efficient heuristics, but they may not find the model with truly maximal R_{adj}^2 . When p is small to moderate, exhaustive search allows us to evaluate all possible models systematically. Here we present an efficient algorithm that can often find the optimal model without having to fit all 2^p models.

Efficient algorithms are available to find the best model out of the 2^p possible models for small to moderate p. Here we present a method which can often find the model with the largest $R_{\rm adj}^2$ without having to fit all 2^p models. We consider the least squares estimate throughout.

We can characterise each possible model by the set $J \subseteq \{1, \dots p\}$ of variables included in the model. The model includes variable x_j , if and only if $j \in J$. Here we assume that the intercept is always included, so that $J = \emptyset$ corresponds to the model $Y = \beta_0 + \varepsilon$.

The method described in this section is based on the following three observations:

• In order to maximise R_{adj}^2 , we can equivalently also find the J which minimises

$$\hat{\sigma}^2(J) := \frac{1}{n - |J| - 1} \sum_{i=1}^n (y_i - \hat{y}_i)^2,$$

where |J| is the number of variables in J and the \hat{y}_i are the fitted values for the model with inputs $j \in J$. We have seen that these criteria are equivalent in section 10.2.

• For $J \subseteq \{1, \dots p\}$, define

$$r(J) := \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

where \hat{y}_i are the fitted values for the model corresponding to J. This gives the residual sum of squares for each model. The we have

$$\begin{split} \min_{J} \hat{\sigma}^2(J) &= \min_{J} \frac{1}{n - |J| - 1} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \\ &= \min_{q \in \{0, 1, \dots, p\}} \min_{J, |J| = q} \frac{1}{n - q - 1} r(J) \\ &= \min_{q \in \{0, 1, \dots, p\}} \frac{1}{n - q - 1} \min_{J, |J| = q} r(J). \end{split}$$

This means that we can first minimise the residual sum of squares for each fixed number q of inputs, and then find the q which gives the best $\hat{\sigma}^2$ in a second step.

• Adding a variables never increases the residual sum of squares. Thus we have $r(J) \leq r(K)$ whenever $J \supseteq K$. We can use this result to exclude certain models without having to fit them.

13.2 Search Algorithm

To find the model with optimal adjusted R-squared value, we perform the following steps. The algorithm is based on the ideas explained in the previous section.

A. Let φ_j denote the residual sum of squares for the model containing all variables except x_j :

$$\varphi_j := r\big(\{1,\dots,p\} \smallsetminus \{j\}\big).$$

Suppose that the x_i are ordered so that

$$\varphi_1 \ge \varphi_2 \ge \cdots \ge \varphi_p$$
.

Any model J with $j \notin J$ has $r(J) \geq \varphi_i$.

- B. Compute $\min_{J,|J|=0} r(J) = r(\emptyset)$. This is the residual sum of squares of the model which consists only of the intercept.
- C. For each q := 1, ..., p 2:
 - 1. Let

$$r := r(\{1, \dots, q\}).$$

This is the only model with q inputs where the first excluded variable has index k=q+1. If $r \leq \varphi_{k-1} = \varphi_q$, we know from step A that $J=\{1,\ldots,q\}$ is the best model with q inputs, since any other model will exclude one of the x_j with $j \leq q$. In this case we have found

$$\min_{J,|J|=q} r(J) = r.$$

and we continue step B by trying the next value of q. If $r > \varphi_{k-1}$, no decision can be taken at this point and we continue with step 2.

2. For $j \in \{q + 1, ..., p\}$ let

$$r_i := r(\{1, \dots, q-1\} \cup \{j\}).$$

These are all models with q inputs where the first excluded variable has index k=q. If $\min(r,r_1,\ldots,r_q) \leq \varphi_{k-1}=\varphi_{q-1}$, then we know from step A that the J corresponing to the minimum is the best model with q inputs. In this case we continue step B by trying the next value of q. Otherwise we proceed to step 3.

- 3. Similarly to the previous step, we consider all models with q variables where the first excluded variable has index k=q-1. If the best RSS amonst these and the previously considered models is less than or equal to φ_{k-1} we are done and consider the next q. Otherwise we decrease k until we reach k=1. At this point we have considered all models with q variables and have found $\min_{J,|J|=q} r(J)$.
- D. Compute $\min_{J,|J|=p-1} r(J) = \min_{j \in \{1,\dots,p\}} \varphi_j$.
- E. Compute $\min_{J,|J|=p} r(J) = r(\{1,...,p\}).$
- F. Find the $q \in \{0, \dots, p\}$ for which $\min_{J, |J| = q} r(J)/(n-q-1)$ is smallest. Output the model which has minimal RSS for this q.

This algorithm finds the model with the maximal R_{adj}^2 . Often, large savings are achieved by the early exits in step C. Only in the worst case, when all of the comparisons with φ_j in step C fail, this algorithms needs to fit all 2^p models.

Example 13.1. To demonstrate the steps of the algorithm, we implement the method "by hand". We use the QSAR dataset, which we have already seen in section 7:

```
"MLOGP",
    "RDCHI",
    "GATS1p",
    "nN",
    "C040",
    "LC50"
)
names(qsar) <- fields</pre>
```

To make it easy to add/remove columns automatically, we first construct the design matrix, remove columns as needed, and then use the resulting matrix in the call to lm() (instead of specifying the terms to include by name).

```
X <- model.matrix(LC50 ~ ., data = qsar)</pre>
X \leftarrow X[, -1] # remove the intercept, since lm() will re-add it later
n \leftarrow nrow(X)
p <- ncol(X)
y <- qsar$LC50
m \leftarrow lm(y \sim X) \# full model
summary(m)
# Call:
# lm(formula = y \sim X)
# Residuals:
      Min
                1Q Median
                                  ЗQ
                                          Max
 -4.4934 -0.7579 -0.1120 0.5829 4.9778
# Coefficients:
                Estimate Std. Error t value Pr(>|t|)
```

```
# (Intercept) 2.698887 0.244554 11.036 < 2e-16 ***
# XTPSA
          # XSAacc
         -0.015081 0.002091 -7.211 1.90e-12 ***
          0.040619 0.059787
# XH050
                         0.679 0.497186
          # XMLOGP
          0.513928 0.135565
# XRDCHI
                          3.791 0.000167 ***
# XGATS1p
         # XnN
         # XC040
          0.003194 0.077972
                         0.041 0.967340
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 1.203 on 537 degrees of freedom
# Multiple R-squared: 0.4861, Adjusted R-squared: 0.4785
# F-statistic: 63.5 on 8 and 537 DF, p-value: < 2.2e-16
```

Comparing the output to what we have seen in section 7 shows that the new method of calling lm() gives the same results as before. Now we follow the steps of the algorithm.

 $\mathbf{A.}$ The values $\varphi_1,\ldots,\varphi_p$ can be computed as follows:

```
phi <- numeric(p) # pre-allocate an empty vector
for (j in 1:p) {
   idx <- (1:p)[-j] # all variables except x[j]</pre>
```

```
m <- lm(y ~ X[,idx])
    phi[j] <- sum(resid(m)^2)
}

# change the order of columns in X, so that the phi_j are decreasing
jj <- order(phi, decreasing = TRUE)
X <- X[, jj]
phi <- phi[jj]
plot(phi, xlab = "j", ylab = expression(varphi[j]))</pre>
```


The plot shows the residual sum of squares for the model with input x_j omitted, for j ranging from 1 to 8.

B. Next, we compute the residual sum of squares of the model which consists only of the intercept. This is the case q = 0.

```
all.q <- 0:p
best.rss <- numeric(p + 1) # For storing the best RSS for q = 0, ..., p,
best.model <- vector("list", p + 1) # and the corresponding models.

m <- lm(y ~ 1)
best.rss[0 + 1] <- sum(resid(m)^2)
best.model[[0 + 1]] <- integer(0) # a vector of length 0 (no columns)

count <- 1 # number of models fitted so far</pre>
```

C. Now we consider $q \in \{1, \dots, p-2\}$. The algorithm groups these cases by the position k of the first column omitted in the model, starting with k=q+1 and then decreasing k in each step. We use the function combn from the sets package to get all possible choices of q-k+1 columns out of $\{k+1, \dots, p\}$.

```
library(sets) # this defines "combn()"
for (q in 1:(p-2)) {
   best.rss[q + 1] <- Inf

# Consider all sets of q columns, ...
for (k in (q+1):1) {
    # ... where the first omitted column is k.</pre>
```

```
# We have to include 1, ..., k-1, and ...
        a \leftarrow seq_len(k-1)
        # ... for the remaining q - (k-1) inputs, we try all
        # possible combinations.
        bb <- combn((k+1):p, q - k + 1)
        for (l in seq_len(ncol(bb))) {
             b <- bb[, 1]
            included <- c(a, b)
            m <- lm(y ~ X[, included])</pre>
            count <- count + 1</pre>
            rss <- sum(resid(m)^2)
             if (rss < best.rss[q + 1]) {</pre>
                 best.rss[q + 1] <- rss</pre>
                 best.model[[q + 1]] <- included</pre>
            }
        }
        if (k > 1 && best.rss[q] <= phi[k-1]) {
             # If we reach this point, we know that we found the best
             \# arrangement and we can exit the loop over k early.
             \# This is what makes the algorithm efficient.
             break
        }
    }
}
```

D. We already fitted all models with p-1 inputs, when we computed phi. Since we sorted the models, the best of these models is last in the list. This covers the case q=p-1.

```
best.rss[(p - 1) + 1] <- min(phi)
omitted <- jj[length(jj)]
best.model[[(p - 1) + 1]] <- (1:p)[-omitted]
count <- count + length(phi)</pre>
```

E. Finally, for q = p we fit the full model:

```
m <- lm(y ~ X)
best.rss[p + 1] <- sum(resid(m)^2)
best.model[[p + 1]] <- 1:p
count <- count + 1</pre>
```

F. Now we can find the model with the best R_{adj}^2 :

We see that the model with q=6 variables has the the lowest $\hat{\sigma}^2$ and thus the highest $R_{\rm adj}^2$. The values for q=7 and q=8 are very close to optimal. The best model uses the following variables:

```
colnames(X)[best.model[[6 + 1]]]
# [1] "TPSA" "SAacc" "MLOGP" "nN" "RDCHI" "GATS1p"
```

We can fit the optimal model from the original data:

```
#
# Call:
# lm(formula = LC50 ~ TPSA + SAacc + MLOGP + nN + RDCHI + GATS1p,
#
      data = qsar)
#
#
 Residuals:
#
      Min
               1Q Median
                               30
                                      Max
#
 -4.4986 -0.7668 -0.1165 0.5529
                                   4.9758
# Coefficients:
               Estimate Std. Error t value Pr(>|t|)
# (Intercept)
               2.758246
                          0.228483
                                    12.072
                                            < 2e-16 ***
#
 TPSA
               0.026858
                          0.002608
                                    10.300
                                            < 2e-16 ***
# SAacc
              -0.014267
                          0.001660
                                    -8.596
                                           < 2e-16 ***
# MLOGP
               0.434578
                          0.060611
                                     7.170 2.49e-12 ***
              -0.218445
                          0.047101
                                    -4.638 4.43e-06 ***
# nN
# RDCHI
                                     3.858 0.000128 ***
               0.514758
                          0.133430
# GATS1p
              -0.602971
                          0.146920
                                    -4.104 4.69e-05 ***
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 1.201 on 539 degrees of freedom
# Multiple R-squared: 0.4857, Adjusted R-squared: 0.4799
\# F-statistic: 84.82 on 6 and 539 DF, p-value: < 2.2e-16
```

This shows that $R_{\rm adj}^2$ has indeed marginally improved, from 0.4785 to 0.4799

To conclude, we check that the complicated algorithm indeed saved some work:

```
total <- 2^p
cat(count,
    " models fitted (", round(100 * count / total, 1), "%)\n",
    sep = "")</pre>
```

```
# 88 models fitted (34.4%)
```

This shows that we only needed to fit 88 of the 256 models under consideration.

Example 13.2. We can perform the analysis from the previous example automatically, using the function regsubsets() from the leaps package:

```
library(leaps)
m <- regsubsets(LC50 ~ ., data = qsar,
                 method = "exhaustive")
summary(m)
# Subset selection object
# Call: regsubsets.formula(LC50 ~ ., data = qsar, method = "exhaustive")
# 8 Variables (and intercept)
#
         Forced in Forced out
# TPSA
             FALSE
                         FALSE
# SAacc
             FALSE
                         FALSE
# H050
             FALSE
                         FALSE
# MLOGP
             FALSE
                         FALSE
# RDCHI
             FALSE
                         FALSE
# GATS1p
             FALSE
                         FALSE
# nN
             FALSE
                         FALSE
# CO40
             FALSE
                         FALSE
# 1 subsets of each size up to 8
# Selection Algorithm: exhaustive
           TPSA SAacc H050 MLOGP RDCHI GATS1p nN
     (1)""
# 1
                11 11
                       11 11
                            "*"
         ) "*"
                       11 11
                             "*"
     (1
           "*"
                       11 11
                            "*"
     (1
         )
           "*"
                       11 11
                            "*"
     ( 1
         )
# 5
     ( 1
         )
                             "*"
                                         "*"
# 6
     (1)
                                   "*"
                 "*"
                            "*"
                                         11 4 11
# 7
     (1)"*"
     (1)
```

This shows the best model of each size. The only step left is to decide which q to use. This choice depends on the cost-complexity tradeoff. Here we consider $R_{\rm adj}^2$ again:

```
round(summary(m)$adjr2, 4)
# [1] 0.2855 0.3860 0.4441 0.4588 0.4666 0.4799 0.4795 0.4785
```

This gives the $R_{\rm adj}^2$ for the optimal model of each size again. At the end of the list we recognise the values 0.4799 and 0.4785 from our previous analysis.

Summary

- Exhaustive search finds the model with truly maximal R_{adj}^2 , unlike stepwise heuristics which may miss the optimal combination.
- An efficient algorithm can find the optimal model without fitting all 2^p models, by using algebraic properties of the residual sum of squares.

- The regsubsets() function from the leaps package implements this algorithm in R.
- \bullet For very large p, even exhaustive search becomes infeasible, and stepwise methods remain the practical choice.

14 Factors

In this section we will learn how to fit linear models when some or all of the inputs are categorical. Such inputs are sometimes called "factors". These can be binary (e.g. sex recorded as male/female) or ordered (e.g. quality recorded as poor/medium/good) or unordered (e.g. marital status recorded as single/married/divorced/widowed).

14.1 Indicator Variables

Our aim here is to include categorical input variables within the usual regression model

$$y = X\beta + \varepsilon$$
.

Assume that $x_j \in \{a_1, \dots, a_k\}$ is a factor which has k possible values. The possible values of the factor, a_1, \dots, a_k are also called the **levels** of the factor. The easiest way to include a factor in a regression model is via **indicator variables**. For this we represent x_j using k-1 columns in the design matrix, say $\tilde{x}_1, \dots, \tilde{x}_{k-1}$, where

$$\tilde{x}_{\ell i} = \begin{cases} 1 & \text{if } x_{ji} = a_{\ell} \text{ and} \\ 0 & \text{otherwise,} \end{cases}$$

for all $\ell \in \{1,\dots,k-1\}$ and $i \in \{1,\dots,n\}$. Using this convention, $x_{ji} = k$ is represented by setting $\tilde{x}_{1,i} = \dots = \tilde{x}_{k-1,i} = 0$. The value a_k which is not represented as a separate column is called the **reference level**. The regression coefficients corresponding to the columns $\tilde{x}_1,\dots,\tilde{x}_{k-1}$ can be interpreted as the effect of level a_ℓ , relative to the effect of level a_k . Since the indicator is constant 1 for all samples corresponding to a given factor, regression coefficients representing factors lead to changes of the intercept, rather than of slopes.

We are using only k-1 columns to represent a factor with k levels in order to avoid collinearity. If we would use k columns, defined as above, we would get

$$\sum_{\ell=1}^k \tilde{x}_{\ell i} = \mathbf{1},$$

and in a model with an intercept we would have exact collinearity of the corresponding columns in the design matrix X and thus the matrix $X^{T}X$ would not be invertible.

Example 14.1. Consider a dataset consisting of a numerical input variable and a binary factor for gender (female, male). Assume we are given data (1, male), (2, female), (3, female). Then we can encode this data using the following design matrix:

intercept	x_1	$1_{\{\text{female}\}}(x_2)$
1	1	0
1	2	1
1	3	1

In R there is a dedicated type factor for categorical variables. If factors appear in the input of linear regression problem, the function lm() will automatically create the indicator variables for us.

Example 14.2. Here we simulated data which could describe the effect of some medical treatment. In the simulated data we have two groups, one which has been "treated" and a control group. There is a "value" which decreases with age, and is lower for the group which has been treated (the intercept is 10 instead of 12).

```
age1 <- runif(25, 18, 40)
group1 <- data.frame(
    value=10 - 0.2 * age1 + rnorm(25, sd=0.5),
    age=age1,
    treated="yes")
age2 <- runif(25, 18, 80)
group2 <- data.frame(
    value=12 - 0.2 * age2 + rnorm(25, sd=0.5),
    age=age2,
    treated="no")
data <- rbind(group1, group2)

data$treated <- factor(data$treated, levels = c("no", "yes"))</pre>
```

The last line of the code tells R explicitly that the treated column represents a factor with levels "no" and "yes". Internally, this column will now be represented by numbers 1 (for "no") and 2 (for "yes"), but this numeric representation is mostly hidden from the user. Now we fit a regression model:

```
m <- lm(value ~ ., data = data)
summary(m)</pre>
```

```
#
# Call:
# lm(formula = value ~ ., data = data)
# Residuals:
      Min
                1Q
                     Median
                                  30
                                         Max
 -1.76041 -0.22188  0.04535  0.23802  1.29250
 Coefficients:
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 11.525306 0.282369
                                  40.82 < 2e-16 ***
             -0.189367
                         0.005557 -34.08 < 2e-16 ***
# treatedyes -1.845246
                       0.180890 -10.20 1.68e-13 ***
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.5452 on 47 degrees of freedom
# Multiple R-squared: 0.9635, Adjusted R-squared: 0.962
\# F-statistic: 620.5 on 2 and 47 DF, p-value: < 2.2e-16
```

We see that R used "no" as the reference factor, here. The regression coefficient treatedyes gives the relative change of the "yes", compared to "no". The true value is the difference of the means: 10-12=-2, and the estimated value -1.89 is reasonably close to this. The fitted values for this model are

$$\hat{y} = \begin{cases} \beta_0 + \beta_1 x_1 & \text{if not treated, and} \\ (\beta_0 + \beta_2) + \beta_1 x_1 & \text{if treated.} \end{cases}$$

To get a better idea of the model fit, we plot the data together with separate regression lines for "yes" (red) and "no" (black):

```
# regression line for the reference level `treatment == "no"`
abline(a = coef(m)[1], b = coef(m)[2])
# regression line for the level `treatment = "yes"`:
# here we need to add the coefficient for `treatedyes`
# to the intercept
abline(a = coef(m)[1] + coef(m)[3], b = coef(m)[2], col="red")
legend("bottomleft", c("no", "yes"),
       col = c("black", "red"), lwd = 2)
# also show a boxplot for comparison
boxplot(value ~ treated, data = data,
        border = c("black", "red"))
                                             ဖ
                                             ^{\circ}
                                             0
                 no
                                             7
                 yes
```

We can see that the two regression lines, corresponding to the two levels are parallel. They have the same slope but different intercepts.

no

yes

treated

The last command shows a boxplot of value for comparison. The boxplot does not allow to conclude that the treatment had an effect, whereas the linear model, which accounts for age, shows the effect of the treatment as a difference in intercepts. The *** in the treatedyes row of the summary(m) output shows that the difference in intercepts is statistically significant.

14.2 Interactions

20

40

age

60

In some situations, the strength of the dependency of the response y to an input x_1 might depend on another input, say x_2 . The simplest such situation would be, if the coefficient β_1 , corresponding on x_1 is itself proportional to x_2 , say $\beta_1 = \gamma x_2$. In this case we have $y = \cdots + \beta_1 x_1 = \cdots + \gamma x_1 x_2$. Traditionally, inputs added to a model which are the product of two or more of the original inputs are called **interactions**. As a general rule, an interaction is only included if the "main effects" are also included in the model, so in any variable selection procedure, we would not drop x_1 or x_2 if x_1x_2 is still in the model. An exception to this is when one can directly interpret the interaction term without the main effect.

In R, interactions (*i.e.* products of inputs) are represented by the symbol: and * can be used to include two variables together with their product. Note also, that if a variable

is known to be a factor, and it is included as an interaction term, then R will make sure to only remove the interaction term in a backward variable selection procedure whilst the main effects are also included.

Example 14.3. Consider the following toy dataset:

[1] 0 1 2

```
x1 <- c(2,2,2)
x2 <- 1:3
```

In lm() and related functions we can write x1:x2 as a shorthand for I(x1*x2). The column x1:x2 in the R output corresponds to the mathematical expression x_1x_2 .

We can write x1*x2 as a shorthand for the model with the three terms x1 + x2 + x1:x2:

Interactions also work for factors. In this case, products with all of the corresponding indicator variables are added to the model. while the base effect of factor variables is to have different intercepts for the different groups, using interactions with a factor allows to have different slopes for the different groups.

Example 14.4. The classical example of an interaction is to consider how the yield y of a crop is related to temperature x_1 and rainfall x_2 . All these variables are continuous, but we might categorize rainfall as "wet" and "dry". Then a simplistic view could be that, for high rainfall, the yield will be positively correlated with temperature, whereas for low rainfall the correlation may be slightly negative, because in hot weather, plants need more water, and if it is very hot and dry, the plants may even die.

We generate a toy dataset in R to represent such a situation:

```
T <- runif(25, 15, 35)
wet <- data.frame(
    yield=40 + 7*T + rnorm(25, sd = 10),
    temperature=T,
    rainfall="high")
T <- runif(25, 15, 35)
dry <- data.frame(
    yield=120 - 2*T + rnorm(25, sd = 10),
    temperature=T,
    rainfall="low")
crops <- rbind(wet, dry)
crops$rainfall <- factor(crops$rainfall, levels = c("low", "high"))</pre>
```

Now we fit a model, including temperature, rainfall and an interaction term:

```
m <- lm(yield ~ temperature*rainfall, data = crops)
summary(m)
# Call:
# lm(formula = yield ~ temperature * rainfall, data = crops)
# Residuals:
      Min
                1Q Median
                                 3Q
                                        Max
# -22.8996 -6.3555 0.0346
                             5.9355 25.0553
# Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                        114.2722 9.0929 12.567 < 2e-16 ***
# temperature
                         -1.8873
                                    0.3617 -5.219 4.21e-06 ***
                         -71.5892 13.0342 -5.492 1.66e-06 ***
# rainfallhigh
# temperature:rainfallhigh 8.7043 0.5299 16.428 < 2e-16 ***
# Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 10.42 on 46 degrees of freedom
# Multiple R-squared: 0.9814, Adjusted R-squared: 0.9802
# F-statistic: 810.2 on 3 and 46 DF, p-value: < 2.2e-16
```

The fitted values for this model are

$$\hat{y} = \begin{cases} \beta_0 + \beta_1 x_1 & \text{for low rainfall, and} \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) x_1 & \text{for high rainfall.} \end{cases}$$

Finally, we can generate a plot of the data together with the two regression lines.

As expected, the two lines have different intercepts and different slopes.

14.3 Example

Example 14.5. Researchers in Food Science studied how big people's mouths tend to be. It transpires that mouth volume is related to more easily measured quantities like height and weight. Here we have data which gives the mouth volume (in cubic centimetres), age, sex (female = 0, male = 1), height (in metres) and weight (in kilos) for 61 volunteers. The first few samples are as shown:

```
# data from https://teaching.seehuhn.de/2022/MATH3714/mouth-volume.txt
dd <- read.table("data/mouth-volume.txt", header = TRUE)
head(dd)</pre>
```

```
#
    Mouth_Volume Age Sex Height
                                     Weight
# 1
           56.659
                    29
                             1.730
                                     70.455
                          1
#
 2
           47.938
                    24
                          0
                             1.632
                                     60.000
#
 3
           60.995
                    45
                          0
                             1.727
                                    102.273
#
 4
           68.917
                    23
                          0
                             1.641
                                     78.636
#
 5
           60.956
                    27
                          0
                             1.600
                                     57.273
# 6
           76.204
                             1.746
                    23
                          1
                                     66.818
```

Normally it is important to check that categorical variables are correctly recognised as factors, when importing data into R. As an exception, the fact that sex is stored as an integer variable (instead of a factor) here does not matter, since the default factor coding would be identical to the coding in the present data.

Our aim is to fit a model which describes mouth volume in terms of the other variables. We start by fitting a basic model:

```
m1 <- lm(Mouth_Volume ~ ., data = dd)
summary(m1)

#
# Call:
# lm(formula = Mouth_Volume ~ ., data = dd)
#
# Residuals:
# Min 1Q Median 3Q Max</pre>
```

```
# -33.242 -10.721 -3.223 8.800 43.218
# Coefficients:
             Estimate Std. Error t value Pr(>|t|)
# (Intercept)
              0.9882
                        45.2736
                                   0.022
                                           0.9827
# Age
               0.3617
                          0.2607
                                   1.387
                                           0.1709
# Sex
               5.5030
                          5.9385
                                   0.927
                                           0.3581
              15.8980
                         29.1952
                                   0.545
                                           0.5882
# Height
# Weight
               0.2640
                          0.1400
                                 1.885
                                           0.0646 .
# Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# Residual standard error: 15.04 on 56 degrees of freedom
# Multiple R-squared: 0.2588, Adjusted R-squared: 0.2059
# F-statistic: 4.888 on 4 and 56 DF, p-value: 0.001882
```

Since no coefficient is significantly different from zero (at 5%-level), and since the R^2 value is not close to~1, model fit seems poor. To improve model fit, we try to include all pairwise interaction terms:

m2 <- lm(Mouth_Volume ~ .^2, data = dd)</pre>

Height: Weight -2.680e-01 1.755e+00 -0.153

Residual standard error: 15.22 on 50 degrees of freedom
Multiple R-squared: 0.3219, Adjusted R-squared: 0.1863
F-statistic: 2.374 on 10 and 50 DF, p-value: 0.0218

```
summary(m2)
# Call:
# lm(formula = Mouth_Volume ~ .^2, data = dd)
# Residuals:
#
     Min
              1Q Median
                              3Q
                                    Max
 -35.528 -8.168 -1.995
                           6.704 44.136
# Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                2.875e+02 2.337e+02 1.230
                                               0.225
# Age
               -8.370e+00 6.352e+00 -1.318
                                               0.194
# Sex
               -9.318e+01 1.325e+02 -0.703
                                               0.485
# Height
               -1.540e+02 1.505e+02 -1.023
                                               0.311
                5.889e-01 2.713e+00
# Weight
                                      0.217
                                               0.829
# Age:Sex
               -9.023e-01 1.035e+00 -0.872
                                               0.388
# Age:Height
               5.374e+00 4.062e+00
                                      1.323
                                               0.192
# Age:Weight
               -1.754e-03 2.027e-02 -0.087
                                               0.931
                5.989e+01 7.536e+01
# Sex:Height
                                     0.795
                                               0.431
# Sex:Weight
                3.110e-01 4.177e-01
                                     0.744
                                               0.460
```

None of the interaction terms look useful when used in combination. We try to select a subset of variables to get a better fit. We use the regsubsets() function from section 13 to find the optimal model:

0.879

```
library(leaps)
r3 <- regsubsets(Mouth_Volume ~ .^2, data = dd, nvmax = 10)
s <- summary(r3)
s</pre>
```

```
# Subset selection object
# Call: regsubsets.formula(Mouth_Volume ~ .^2, data = dd, nvmax = 10)
# 10 Variables (and intercept)
                 Forced in Forced out
# Age
                     FALSE
                                 FALSE
# Sex
                     FALSE
                                 FALSE
# Height
                     FALSE
                                 FALSE
# Weight
                     FALSE
                                 FALSE
# Age:Sex
                     FALSE
                                 FALSE
# Age:Height
                     FALSE
                                 FALSE
                     FALSE
# Age:Weight
                                 FALSE
# Sex:Height
                     FALSE
                                 FALSE
# Sex:Weight
                     FALSE
                                 FALSE
# Height:Weight
                     FALSE
                                 FALSE
# 1 subsets of each size up to 10
# Selection Algorithm: exhaustive
             Age Sex Height Weight Age:Sex Age:Height Age:Weight Sex:Height
                                             11 11
# 1
    (1)
             11 11 11 11 11
                             11 11
                                     11 11
                                                         11 11
# 2
    (1)
             11 11
                                     11 11
                                             11 11
                                                         "*"
                                                                     11 11
                                     11 11
                                                         "*"
                                                                     "*"
# 3
     (1)
                                                         "*"
                                                                     "*"
# 4
     (1)
                                                         11 11
                                                                     11 11
                                     "*"
                                             "*"
# 5
     (
       1
                                                         11 11
                             11 11
# 6
       1
                                     "*"
                                             "*"
# 7
     ( 1
                             11 11
                                     "*"
                                             "*"
                                                         11 11
             "*" "*" "*"
                                     "*"
                                             "*"
                                                                     "*"
# 8
    (1)
             "*" "*" "*"
                                                         11 11
                                     "*"
                                             "*"
                                                                     11 🕌 11
# 9
     (1)
             "*" "*" "*"
                             "*"
                                     "*"
                                             "*"
                                                         "*"
                                                                     "*"
# 10 (1)
             Sex:Weight Height:Weight
# 1
     (1)
                         "*"
             "*"
                         11 11
# 2
     (1)
                         11 11
# 3
     (1)
             11 11
# 4
     (1)
             "*"
# 5
    (1)
             "*"
# 6
    (1)
             "*"
             "*"
# 7
     (1)
             "*"
# 8
    (1)
                         "*"
             "*"
# 9
    (1)
# 10 (1) "*"
                         "*"
```

The table shows the optimal model for every number of variables, for p ranging from 1 to 10. To choose the number of variables we can use the adjusted R^2 -value:

```
s$which[which.max(s$adjr2),]
    (Intercept)
                                          Sex
                                                      Height
                                                                     Weight
                            Age
#
                                        FALSE
           TRUE
                          TRUE
                                                        TRUE
                                                                      FALSE
#
        Age:Sex
                    Age:Height
                                   Age:Weight
                                                  Sex:Height
                                                                 Sex:Weight
           TRUE
                          TRUE
                                        FALSE
                                                       FALSE
                                                                        TRUE
# Height:Weight
          FALSE
```

The optimal model consists of the five variables listed. For further examination, we fit the corresponding model using ${\tt lm}()$:

```
summary(m3)
#
# Call:
 lm(formula = Mouth_Volume ~ Age + Height + Age:Sex + Age:Height +
     Sex:Weight, data = dd)
#
# Residuals:
#
     Min
              1Q Median
                             3Q
                                    Max
 -36.590 -9.577 -1.545
#
                          7.728 42.779
# Coefficients:
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 265.6236 122.3362 2.171 0.0342 *
# Age
               -8.4905
                         4.0559 -2.093 0.0409 *
# Height
             -134.0835 72.8589 -1.840 0.0711 .
# Age:Sex
                         0.4944 -1.746 0.0864 .
              -0.8633
# Age:Height
               5.3644
                          2.4047
                                   2.231
                                           0.0298 *
               0.4059
                          0.1659
# Sex:Weight
                                   2.446
                                         0.0177 *
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 14.65 on 55 degrees of freedom
# Multiple R-squared: 0.3096, Adjusted R-squared: 0.2468
# F-statistic: 4.932 on 5 and 55 DF, p-value: 0.0008437
```

This looks much better: now most variables are significantly different from zero and the adjusted \mathbb{R}^2 value has (slightly) improved. Nevertheless, the structure of the model seems hard to explain and the model seems difficult to interpret. For comparison, we consider the second-best model, with p=2:

```
m4 <- lm(Mouth_Volume ~ Age:Weight + Sex:Weight, data = dd)
summary(m4)</pre>
```

```
# Call:
# lm(formula = Mouth_Volume ~ Age:Weight + Sex:Weight, data = dd)
 Residuals:
     Min
              1Q Median
                              3Q
                                     Max
#
 -34.161 -10.206 -3.738
                           9.087
                                 43.747
# Coefficients:
              Estimate Std. Error t value Pr(>|t|)
# (Intercept) 43.678187   4.788206   9.122 8.35e-13 ***
# Age:Weight 0.005554
                         0.002372
                                    2.342 0.0226 *
# Weight:Sex
              0.127360
                         0.048640
                                    2.618
                                           0.0113 *
# Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# Residual standard error: 14.72 on 58 degrees of freedom
# Multiple R-squared: 0.2651, Adjusted R-squared: 0.2398
# F-statistic: 10.46 on 2 and 58 DF, p-value: 0.000132
```

The adjusted R^2 -value of this model is only slightly reduced, and all regression coefficients are significantly different from zero.

$$\label{eq:mouth_volume} \text{mouth volume} = 43.68 + \begin{cases} 0.0056\,\text{age} \times \text{weight} & \text{for females} \\ (0.0056\,\text{age} + 0.1274)\,\text{weight} & \text{for males}. \end{cases}$$

This model is still not trivial to interpret, but it does show that mouth volume increases with weight and age, and that the dependency on weight is stronger for males.

Summary

- Indicator variables can be used to represent categorical inputs in linear regression models.
- The levels of a factor correspond to different intercepts for the regression line.
- If interaction terms are used, the levels also affect the slope.

15 Multicollinearity

Definition 15.1. In linear regression, **Multicollinearity** denotes the situation when the columns of the design matrix X are (approximately) linearly dependent.

The columns of X are linearly dependent, if and only if there is a $v \in \mathbb{R}^{p+1}$ such that Xv = 0. The columns are approximately linearly dependent, if there is a vector v such that $Xv \approx 0$.

15.1 Consequences of Multicollinearity

In the derivation of the least squares estimator $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$ we had to assume that the matrix $X^{\top}X$ is invertible. If the columns of X are linearly dependent, $X^{\top}X$ is no longer invertible and the least squares estimate is no longer uniquely defined.

Example 15.1. Consider the following data:

y	x_1	x_2
2	1	1
4	2	2
6	3	3

In this case, an exact match with no residuals can be achieved as $y=x_1+x_2$, *i.e.* for $\beta_1=\beta_2=1$. But this solution is not unique: we could just as well write $y=2x_1$ or $y=2x_2$. Any choice of β_1 and β_2 with $\beta_1+\beta_2=2$ will lead to zero residuals.

The problem in the example above occurs, since the two input columns in the data are identical. The same problem, in a less obvious way, would occur in datasets with more inputs when one column of X can be written as a linear combination of other columns. This is a problem of the given input data, not of the responsees or of the statistical model.

In the case where there is only approximate linear dependency between the columns of X, the inverse $(X^{\top}X)^{-1}$ exists and an estimate $\hat{\beta}$ can be computed, but there will be huge uncertainties in some of the stimated coefficients. We illustrate this effect using a numerical example.

Example 15.2. Here we simulate data which has similar characteristics to the toy example above: we have very similar two inputs, the sum of which nearly equals the output. We fit a model without the intercept, so that there are only two coefficients to estimate and plotting these is no problem.

```
set.seed(20211101)
n <- 10
y <- 2 * (1:n)
x1 <- rnorm(n, 1:n, 0.15)
x2 <- rnorm(n, 1:n, 0.15)
m <- lm(y ~ 0 + x1 + x2)</pre>
```

Similar to the approach in section 6, we can plot a confidence ellipse. (Don't worry about the details of the commands used to plot the ellipse.)

```
sigma.hat <- summary(m)$sigma
X <- model.matrix(m)
svd <- La.svd(t(X) %*% X)
alpha <- 0.05
f.crit <- qf(1 - alpha, ncol(X), nrow(X) - ncol(X))
phi <- seq(0, 2*pi, length.out = 201)</pre>
```


We can see that, as in the toy example above, the confidence region places (β_1, β_2) close to the line where $\beta_1 + \beta_2 = 2$ (the diagonal dashed line), but there is considerable uncertainty about where on this line the coefficients are located. The effect gets more pronounced when the amount of noise in the definition of x1 and x2 is reduced.

There are two, slightly different effects of multicollinearity:

- 1. In the case of exact multicollinearity, $X^{\top}X$ is not invertible. If the columns of X are approximately linearly dependent, then $(X^{\top}X)^{-1}$ does exist, but small changes of X lead to large changes of $(X^{\top}X)^{-1}$ and numerical computation of the inverse is strongly affected by rounding errors.
- 2. If the columns of X are approximately linearly dependent, the computed value of the estimator $\hat{\beta}$ is strongly affected by small changes to the system: the noise in the model strongly affects $\hat{\beta}$ (as demonstrated in example 15.2, above), leaving out a single observation may lead to large changes in $\hat{\beta}$ and computation of $\hat{\beta}$ is sensitive to rounding errors.

While multicollinearity can make the regression coefficients ambiguous, the outputs y are not affected. Predictions made using a model where multicollinearity is present are still reliable.

15.2 Detecting Multicollinearity

While collinearity of two columns of X is easy to spot, for example in a pair scatter plot of the inputs x_i , multicollinearity which involves more than two columns can be harder to notice. The condition number of X is a quantitative measure of how close X is to multicollinearity.

Definition 15.2. The **condition number** of X is defined to be

$$\kappa(X) = \frac{\sigma_{\max}(X)}{\sigma_{\min}(X)},$$

where $\sigma_{\max}(X) = \sqrt{\lambda_{\max}(X^{\top}X)}$ is the largest singular value of X, equal to the square root of the largest eigenvalue of $X^{\top}X$, and similarly $\sigma_{\min}(X) = \sqrt{\lambda_{\min}(X^{\top}X)}$ is the smallest singular value of X, equal to the square root of the smallest eigenvalue of $X^{\top}X$.

As a rule of thumb, if $\kappa(X) < 10$ there are no significant problems with multicollinearity, and if $\kappa(X) > 30$ the regression problem sufferes severe problems with multicollinearity. In the case where the columns of X are exactly linearly dependent, we have $\sigma_{\min}(X) = 0$ and $\kappa(X) = \infty$.

In R, the condition number can be computed using the function kappa(). The function can either be called as kappa(X, exact = TRUE), where X is the design matrix, or as kappa(m, exact = TRUE) where m is the object returned by lm(). If the optional argument exact = TRUE is omitted, only an approximate result is returned (using a faster algorithm).

Example 15.3. Consider the following toy dataset:

data

```
x.1
                   x.2
# 1
     7.37 4.182 0.078 0.008
     9.86 6.039 1.106 -0.009
# 3
   13.44 9.220 0.151 -0.158
                              0.965
    12.95 8.260 -0.018 1.133
# 4
    13.05 8.415 1.078
                       0.057
#
 6
    13.17 9.272 -0.019
                       0.062
                              0.974
#
     5.28 1.575 -0.160
                       1.031
 7
                              0.099
#8
     8.18 4.595 0.091
                       0.014 0.909
# 9
     5.13 2.779 -0.074 0.923 -0.004
# 10 6.80 2.248 -0.045 0.182 1.088
```

To inspect these data, we use a pair scatter plot of the input variables, leaving out the responses in column 1:

```
pairs(data[,-1])
```


While there are visbile patterns, there are no clear signs of a linear dependency between any two columns. To see whether there are problems with multicollinearity, we fit a linear model and determine the condition number.

```
m <- lm(y ~ ., data = data)
kappa(m, exact = TRUE)
# [1] 97.38214</pre>
```

Since the condition number is larger than 30, we can say that the data shows severe multicollinearity.

(The rest of the example is not examinable.)

To find out which variables are involved, we can use singular value decomposition. This allows to write X as $X = UDV^{\top}$, where $D \in \mathbb{R}^{(p+1)\times (p+1)}$ is a diagonal matrix and $U \in \mathbb{R}^{n\times (p+1)}$ and $V \in \mathbb{R}^{(p+1)\times (p+1)}$ are matrices with orthonormal columns.

```
X <- model.matrix(m)</pre>
s \leftarrow svd(X, nu = 0)
s
#
 $d
  [1] 20.3002516
                  2.0294781
                              1.8122508
                                         1.2526330
#
#
 $v
               [,1]
                          [,2]
                                       [,3]
                                                    [,4]
                                                                   [,5]
  [1,] -0.14024576 -0.5552821 -0.04218055 -0.62161197
                                                          0.5327403485
                                0.04131956
                                            0.12311216
  [2,] -0.98554152
                    0.1088264
                                                          0.0009051211
                                0.21603327 -0.75981456 -0.4597323397
  [3,] -0.04170949 0.4036310
# [4,] -0.03395454 -0.6495911
                                0.55665792
                                            0.11926737 -0.5027780067
# [5,] -0.07839927 -0.3081105 -0.79998442 -0.08306065 -0.5020431792
```

We used the optional argument $\mathtt{nu}=0$ to tell R that we won't need the matrix U. The diagonal elements $\sigma_0(X),\ldots,\sigma_p(X)\geq 0$, stored in $\mathfrak{s}d$, are the singular values of X in decreasing order. We can find the condition number using these values:

```
s$d[1] / s$d[length(s$d)]
```

```
# [1] 97.38214
```

This agrees with the value for $\kappa(X)$ we found above.

Finally, the columns v_1, \ldots, v_{p+1} of $\mathfrak{s}v$ are called the (right) singular vectors of X. We can use these vectors to identify which variables are involved in multicollinearity: It is easy to show that $\|Xv_k\| = \sigma_k(X)$, so every "small" $\sigma_k(X)$ corresponds to a vector v_k which describes an approximate linear dependency between the columns of X. Looking at $\sigma_4(X)$ (the 5th element of $\mathfrak{s}d$) we get

```
round(s$v[,5], 3)
```

Rounding the numbers some more and remembering that the first value corresponds to the intercept, we get that

$$-0.5 \cdot 1 + 0.5 \cdot x_2 + 0.5 \cdot x_3 + 0.5 \cdot x_4 \approx 0$$

or, equivalently

$$x_2+x_3+x_4\approx 1.$$

Looking back over the original numbers we see that this relation indeed holds.

15.3 Mitigations

There are various ways problems resulting from multicollinearity can be addressed:

- Sometimes columns are linearly dependent, because a redundant input is present. Removing one of the input variables in a group of linearly dependent inputs can solve this problem.
- The inputs can be transformed by choosing new variables as functions of the original inputs. For example, in example 15.2 one could try the input variables $\tilde{x}_1 = (x_1 + x_2)/2$ and $\tilde{x}_2 = (x_1 x_2)/2$. The confidence ellipse shown above indicates that it should be possible to get good estimates for the coefficient corresponding to \tilde{x}_1 .
- If n is small, the problem may be resolved by getting more data. In particular, for n , we always have strict multicollinearity, so in this case we definitely need more data.
- Alternative estimation approaches may be used. The basic idea is to sacrifice the requirement that $\hat{\beta}$ is unbiased, in exchange for a large variance reduction. In the next section we will discuss "ridge regression" as an example of this approach.

Summary

- Multicollinearity can lead to numerical problems and large variances in the estimated regression coefficients.
- The condition number of the design matrix can be used to detect multicollinearity.
- Singular value decomposition can used to better understand linear dependencies in the inputs.

Problem Sheet 4

You should attempt all these questions and write up your solutions in advance of the workshop in week 8 where the answers will be discussed.

- 13. Consider the dataset pressure, built into R, which describes the vapour pressure P of mercury as a function of temperature T.
 - a. For given T_0 , explain how a model of the form $P=\beta_0+T\beta_1+\max(0,T-T_0)\beta_2+\varepsilon$ can be fitted to the data.
 - b. Why might a model of this form make sense for the given data?
 - c. What is a good value of T_0 for this dataset?
- 14. Where possible, rewrite the following regression models in linear form.
 - a. $y = \beta_0 \beta_1^x$
 - b. $y = \beta_0 + \beta_1 \sin(x_1) + \beta_2 \exp(x_2)$
 - c. $y = \frac{x}{\beta_0 + \beta_1 x}$
- 15. Consider the dataset from
 - $\bullet \ \, https://teaching.seehuhn.de/2022/MATH3714/P04Q14.csv$

The dataset contains samples $(x_{i,1}, x_{i,2}, y_i)$. We want to find a model for y as a function of x_1 and x_2 .

- a. Fit a linear model to the data and produce a residual plot. Based on the plot, discuss how well the model fits the data.
- b. Apply a Power Transform to the model, as described in section 11.3 of the notes. Explain your choice of λ .
- 16. The Prediction Error Sum of Squares (PRESS) is defined as

PRESS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i^{(i)})^2$$
.

Using lemma 10.2, or otherwise, determine the PRESS value for the stackloss dataset built into R (using stack.loss as the response variable).

16 Ridge Regression

In cases where X shows approximate multicollinearity, the parameter estimates $\hat{\beta}$ have coefficients with large variance. In case of exact multicollinearity, $\hat{\beta}$ is no longer uniquely defined, and the minimum of the residual sum of squares is attained on an (unbounded) subspace of the parameter space. In both cases, a more stable estimate can be obtained by changing the estimation procedure to include an additional penalty term which discourages "large" values of $\hat{\beta}$. This is the idea of ridge regression. In this section we will see that the resulting estimates are biased, but sometimes have smaller mean squared error than the least squares estimator.

16.1 Definition the Estimator

Definition 16.1. In multiple linear regression, the **ridge regression** estimate for the parameter vector β is given by

$$\hat{\beta}^{(\lambda)} = \arg\min_{\beta} \left(\sum_{i=1}^{n} \left(y_i - (X\beta)_i \right)^2 + \lambda \|\beta\|^2 \right). \tag{32}$$

The parameter $\lambda \geq 0$ is called the **regularisation parameter**.

Here we write $\arg\min_{\beta}(\cdots)$ to denote the value of β which minimises the expression on the right-hand side, and $\|\beta\|$ denotes the Euclidean norm of the vector β , *i.e.*

$$\|\beta\|^2 = \sum_{j=0}^p \beta_j^2.$$

The term being minimised is

$$r^{(\lambda)}(\beta) = \sum_{i=1}^n \bigl(y_i - (X\beta)_i\bigr)^2 + \lambda \|\beta\|^2,$$

consisting of the residual sum of squares plus a penalty term. The regularisation parameter λ controls the relative weight of these two terms. For large λ , the main objective to minimise the norm $\|\beta\|$ and one can show that $\lim_{\lambda\to\infty}\hat{\beta}^{(\lambda)}=0$. For $\lambda\downarrow 0$ only the residual sum of squares is left and if $X^{\top}X$ is invertible we get $\hat{\beta}^{(0)}=\hat{\beta},\ i.e.$ here the ridge regression estimate coincides with the least squares estimate.

As in lemma 2.1 we can find an explicit formula for the ridge regression estimate. For this we write $r^{(\lambda)}$ as

$$r^{(\lambda)}(\beta) = (y - X\beta)^{\top}(y - X\beta) + \lambda \beta^{\top}\beta$$

and then take derivatives to find the minimum. The result is given by

$$\hat{\beta}^{(\lambda)} = (X^{\top}X + \lambda I)^{-1}X^{\top}y. \tag{33}$$

Example 16.1. To illustrate the method, we compute the ridge regression estimate for a badly conditioned toy dataset.

```
# fix the true parameters for our simulated data:
beta <- c(0, .5, .5)
sigma <- 0.01

set.seed(20211112)
x1 <- c(1.01, 2.00, 2.99, 4.02, 5.01, 5.99)
x2 <- c(0.98, 1.99, 3.00, 4.00, 4.99, 6.00)
# beta[1] in R corresponds to \beta_0, beta[2] = \beta_1, beta[3] = \beta_2
```

For comparison, we also compute the least squares estimate:

```
m <- lm(y ~ x1 + x2)
coef(m)

# (Intercept) x1 x2
# -0.02935851 1.03064453 -0.02749857
```

We see that despite the small value of λ there is a considerable difference between the estimated values $\hat{\beta}$ and $\hat{\beta}^{(\lambda)}$ in this example. Experimenting with different values of the seed also shows that the variance of $\hat{\beta}^{(\lambda)}$ is much smaller than the variance of $\hat{\beta}$. In the next section we will see a theoretical explanation for this fact.

For $\lambda > 0$ and $v \neq 0$ we have ||v|| > 0 and thus

$$\begin{split} \|(X^{\top}X + \lambda I)v\|^2 &= v^{\top}(X^{\top}X + \lambda I)^{\top}(X^{\top}X + \lambda I)v \\ &= v^{\top}X^{\top}XX^{\top}Xv + 2\lambda v^{\top}X^{\top}Xv + \lambda^2 v^{\top}v \\ &= \|XX^{\top}Xv\|^2 + 2\lambda \|Xv\|^2 + \lambda^2 \|v\|^2 \\ &\geq \lambda^2 \|v\|^2 \\ &> 0. \end{split}$$

This shows, by theorem A.1, that the matrix $X^{\top}X + \lambda I$ is invertible for every $\lambda > 0$. Thus the ridge regression estimate for $\lambda > 0$ is always uniquely defined, even in cases where the least squares estimate is *not* uniquely defined.

There are variants of the method where the penalty term $\|\beta\|^2$ is is replaced with a different penalty term. One example of this is Lasso (least absolute shrinkage and selection operator) regression, which uses $\|\beta\|_1 = \sum_{j=0}^p |\beta_j|$ as the penalty term.

Outside statistics, ridge regression is known as Tikhonov regularisation.

16.2 Properties of the Estimate

Using the statistical model

$$Y = X\beta + \varepsilon$$

as before, we have

$$\begin{split} \hat{\beta}^{(\lambda)} &= (X^\top X + \lambda I)^{-1} X^\top Y \\ &= (X^\top X + \lambda I)^{-1} X^\top (X\beta + \varepsilon) \\ &= (X^\top X + \lambda I)^{-1} (X^\top X + \lambda I)\beta \\ &- (X^\top X + \lambda I)^{-1} \lambda I\beta \\ &+ (X^\top X + \lambda I)^{-1} X^\top \varepsilon \end{split}$$

and simplifying the first term on the right-hand side we get

$$\hat{\beta}^{(\lambda)} = \beta - \lambda (X^{\top}X + \lambda I)^{-1}\beta + (X^{\top}X + \lambda I)^{-1}X^{\top}\varepsilon. \tag{34}$$

16.2.1 Bias

Using the formula for $\hat{\beta}^{(\lambda)}$ we get

$$\mathbb{E}(\hat{\beta}^{(\lambda)}) = \beta - \lambda (X^{\top}X + \lambda I)^{-1}\beta + 0$$

and thus

$$\operatorname{bias}(\hat{\beta}^{(\lambda)}) = -\lambda (X^{\top}X + \lambda I)^{-1}\beta.$$

Since this term in general is non-zero, we see that $\hat{\beta}^{(\lambda)}$ is a biased estimate. The amount of bias depends on the unknown, true coefficient vector β .

16.2.2 Variance

The covariance matrix of the vector $\hat{\beta}^{(\lambda)}$ is given by

$$\begin{split} \operatorname{Cov}(\hat{\beta}^{(\lambda)}) &= \operatorname{Cov}\Big(\beta - \lambda (X^\top X + \lambda I)^{-1}\beta + (X^\top X + \lambda I)^{-1}X^\top \varepsilon\Big) \\ &= \operatorname{Cov}\Big((X^\top X + \lambda I)^{-1}X^\top \varepsilon\Big) \\ &= (X^\top X + \lambda I)^{-1}X^\top \operatorname{Cov}(\varepsilon)X(X^\top X + \lambda I)^{-1} \\ &= \sigma^2(X^\top X + \lambda I)^{-1}X^\top X(X^\top X + \lambda I)^{-1} \\ &= \sigma^2(X^\top X + \lambda I)^{-1} - \lambda \sigma^2(X^\top X + \lambda I)^{-2}. \end{split}$$

While this is an explicit formula, the resulting covariance matrix depends on the unknown error variance σ^2 .

If $X^{\top}X$ is invertible, this covariance will convert to the covariance of the least squares estimator as $\lambda \downarrow 0$. From this we can find the variance of individual components as $\operatorname{Var}(\hat{\beta}_i^{(\lambda)}) = \operatorname{Cov}(\hat{\beta}_i^{(\lambda)})_{ij}$.

16.2.3 Mean Squared Error

The Mean Squared Error (MSE) of an estimator $\hat{\beta}_i$ for β_i is given by

$$\mathrm{MSE}(\hat{\beta}_j) = \mathbb{E}\Big(\big(\hat{\beta}_j - \beta_j\big)^2\Big).$$

It is an easy exercise to show that this can equivalently be written as

$$MSE(\hat{\beta}_j) = Var(\hat{\beta}_j) + bias(\hat{\beta}_j)^2$$
.

Using the formulas for the variance and bias from above, we can find an formula for $\text{MSE}(\hat{\beta}_j^{(\lambda)})$, but the result is hard to interpret. Instead of considering these analytical expressions, we illustrate the MSE using a numerical example.

Example 16.2. Continuing from example 16.1 above, we can determine the MSE for every value of λ . Here we use the fact that this is simulated data where we know the true values of β and σ^2 .

We start with the bias:

For the covariance matrix we get the following:

```
C1 <- solve(Q) # Compute the inverse Q^{-1} ...

C2 <- C1 %*% C1 # ... and also Q^{-2}, to get

sigma^2 * (C1 - lambda*C2) # the covariance matrix.

# (Intercept) x1 x2

# (Intercept) 7.291379e-05 -7.580602e-06 -9.226941e-06

# x1 -7.580602e-06 3.831264e-06 -1.540098e-06
```

Now we repeat these calculations in a loop, to plot the MSE as a function of λ :

x2

-9.226941e-06 -1.540098e-06 4.221464e-06

```
lambda <- 10^seq(-4, 0, length.out = 100) # range of lambda to try
j.plus.1 <- 1 + 1 # we plot the error of \beta_1
variance <- numeric(length(lambda))</pre>
bias <- numeric(length(lambda))</pre>
for (i in seq_along(lambda)) {
    lambda.i <- lambda[i]</pre>
    Q \leftarrow t(X) \% \% X + lambda.i * diag(ncol(X))
    C1 <- solve(Q)
    bias[i] <- (lambda.i * solve(Q, t(X) %*% X %*% beta))[j.plus.1]
    C2 <- C1 %*% C1
    C <- C1 - lambda.i*C2
    variance[i] <- sigma^2 * C[j.plus.1, j.plus.1]</pre>
MSE <- variance + bias^2
plot(lambda, MSE, type = "l", log = "x", ylim = c(0, 0.1))
lines(lambda, bias^2, col="#1b9e77", lw = 3)
lines(lambda, variance, col="#d95f02", lw = 3)
lines(lambda, MSE) # make sure MSE is not obscured by bias/variance
abline(v = lambda[which.min(MSE)]) # mark the minimum
legend("topleft",
       c("bias squared", "variance", "MSE"),
       col = c("#1b9e77", "#d95f02", "black"),
       lw = c(3, 3, 1))
```


The vertical line at $\lambda = 0.0183$ marks the optimal value of λ . We can see that for small λ the MSE is dominated by the variance, whereas for large λ the main contribution is from the bias.

16.3 Standardisation

While ridge regression can be applied directly to the original data, the penalty is only comparable between the components of β , if the components have similar magnitude. Also, we do not want a method which is depends on the units in which the x variables are measured. To address these issues, it is common practice to first standardise each of the x. In this way the penalty will apply equally to all of the coefficients, and the results can be transformed back to obtain \hat{y} on the original scale.

We standardise every column of the input separately: For the input variable x_j , where $j \in \{1, \dots, p\}$, we get

$$w_{ij} := \frac{x_{ij} - \overline{x_j}}{\mathbf{s}_{x_i}},$$

for all $i \in \{1, \dots, n\}$. where $\overline{x_j} = \frac{1}{n} \sum_{i=1}^n x_{ij}$ and

$$\mathbf{s}_{x_{j}}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \overline{x_{j}})^{2}$$

is the sample variance. We similarly standardise the outputs:

$$z_i := \frac{y_i - \overline{y}}{\mathbf{s}_y},$$

where \overline{y} and s_y are the mean and standard deviation of the y_i . If we denote the regression coefficients for the transformed data by γ , then the residual sum of squares for the transformed data is

$$r_{\rm tfm}(\gamma) = \sum_{i=1}^n \bigl(z_i - \gamma_0 - \gamma_1 w_{i1} - \dots - \gamma_p w_{ip}\bigr)^2.$$

The transformed inputs satisfy

$$\sum_{i=1}^{n} w_{ij} = 0$$

for all $j \in \{1, \dots, p\}$ and a similar relation holds for the output. Using these relations we find

$$\begin{split} r_{\rm tfm}(\gamma) &= \sum_{i=1}^n \Bigl(\bigl(z_i - \gamma_1 w_{i1} - \dots - \gamma_p w_{ip} \bigr)^2 \\ &- 2\gamma_0 \bigl(z_i - \gamma_1 w_{i1} - \dots - \gamma_p w_{ip} \bigr) + \gamma_0^2 \Bigr) \\ &= \sum_{i=1}^n \bigl(z_i - \gamma_1 w_{i1} - \dots - \gamma_p w_{ip} \bigr)^2 \\ &- 2\gamma_0 \sum_{i=1}^n \bigl(z_i - \gamma_1 w_{i1} - \dots - \gamma_p w_{ip} \bigr) + n \gamma_0^2 \\ &= \sum_{i=1}^n \bigl(z_i - \gamma_1 w_{i1} - \dots - \gamma_p w_{ip} \bigr)^2 \\ &- 2\gamma_0 \Bigl(\sum_{i=1}^n z_i - \gamma_1 \sum_{i=1}^n w_{i1} - \dots - \gamma_p \sum_{i=1}^n w_{ip} \Bigr) + n \gamma_0^2 \\ &= \sum_{i=1}^n \bigl(z_i - \gamma_1 w_{i1} - \dots - \gamma_p w_{ip} \bigr)^2 + n \gamma_0^2. \end{split}$$

Thus, the coefficient for the intercept can be minimised separately and the optimal value is always $\gamma_0 = 0$. For this reason we do not include the intercept in our model for the standardised data. The design matrix is thus

$$W = \begin{pmatrix} w_{1,1} & \cdots & w_{1,p} \\ w_{2,1} & \cdots & w_{2,p} \\ \vdots & \ddots & \vdots \\ w_{n,1} & \cdots & w_{n,p} \end{pmatrix} \in \mathbb{R}^{n \times p},$$

and the reduced coefficient vector is $\gamma \in \mathbb{R}^p$. The least squares estimator for the transformed data is then given by

 $\hat{\gamma} = (W^\top W)^{-1} W^\top z$

and the ridge regression estimate is given by

$$\hat{\gamma}^{(\lambda)} = (W^\top W + \lambda I)^{-1} W^\top z.$$

To transform back regression estimates obtained for the transformed data, we need to revert the standardisation: we have

$$x_{ij} = \mathbf{s}_{x_j} w_{ij} + \overline{x_j}$$

and

$$y_i = s_y z_i + \overline{y}.$$

To obtain fitted values for an input $(\tilde{x}_1,\dots,\tilde{x}_p)$ we have to first transform these inputs: $\tilde{w}_j=(\tilde{x}_j-\overline{x_j})/\mathbf{s}_{x_j}$. Note that the mean and standard deviation come from the data used to fit the model, and are not computed from the \tilde{x}_i . We then find the model mean for the transformed data:

$$\begin{split} \hat{z} &= \sum_{j=1}^p \hat{\gamma}_j \tilde{w}_j \\ &= \sum_{j=1}^p \hat{\gamma}_j \frac{\tilde{x}_j - \overline{x_j}}{\mathbf{s}_{x_j}} \\ &= -\sum_{k=1}^p \frac{1}{\mathbf{s}_{x_k}} \hat{\gamma}_k \overline{x_k} + \sum_{i=1}^p \frac{1}{\mathbf{s}_{x_i}} \hat{\gamma}_j \tilde{x}_j. \end{split}$$

Finally, transforming back the response we get

$$\begin{split} \hat{y} &= (\overline{y} - \sum_{k=1}^p \frac{\mathbf{s}_y}{\mathbf{s}_{x_k}} \hat{\gamma}_k \overline{x_k}) + \sum_{j=1}^p \frac{\mathbf{s}_y}{\mathbf{s}_{x_j}} \hat{\gamma}_j \tilde{x}_j \\ &= \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j \tilde{x}_j, \end{split}$$

where

$$\hat{\beta}_j = \frac{\mathbf{s}_y}{\mathbf{s}_{x_j}} \hat{\gamma}_j$$

for all $j \in \{1, \dots, p\}$ and

$$\hat{\beta}_0 = \overline{y} - \sum_{k=1}^p \frac{\mathbf{s}_y}{\mathbf{s}_{x_k}} \hat{\gamma}_k \overline{x_k} = \overline{y} - \sum_{k=1}^p \hat{\beta}_k \overline{x_k}.$$

This transformation can be used both for least squares regression and ridge regression estimates.

Summary

- Ridge regression is an alternative estimator for the regression coefficients.
- The method is useful when multicollinearity is present.
- Often it is advantageous to standardise the data before performing ridge regression.

Part III Robust Regression

17 Robust Regression

The overall aim of this part of the module is to find regression estimators which work well in the presence of outliers.

17.1 Outliers

As before, we consider the model

$$y_i = x_i^{\top} \beta + \varepsilon_i$$

and we try to estimate β from given data (x_i, y_i) for $i \in \{1, ..., n\}$.

An **outlier** is a sample (x_i, y_i) that differs significantly from the majority of observations. The deviation can be either in the x-direction, or the y-direction, or both. Outliers can either occur by chance, or can be caused by errors in the recording or processing of the data. In this subsection we will discuss different ways to detect outliers.

17.1.1 Leverage

Definition 17.1. The **leverage** of the input x_i is given by

$$h_{ii} = x_i^\top (X^\top X)^{-1} x_i,$$

where X is the design matrix.

Since x_i is the *i*th row of X, the leverage h_{ii} equals the *i*th diagonal element of the hat matrix $H = X(X^{T}X)^{-1}X$.

Lemma 17.1. The derivative of the fitted value \hat{y}_i with respect to the response y_i is given by

$$\frac{\partial}{\partial y_i}\hat{y}_i = h_{ii}$$

for all $i \in \{1, ..., n\}$.

Proof. We have

$$\hat{y}_i = (Hy)_i = \sum_{j=1}^n h_{ij} y_j.$$

Taking derivatives with respect to y_i completes the proof.

The leverage of x_i describes the *potential* for y_i to affect the fitted line or hyperplane. If h_{ii} is large, changing of y_i has a large effect on the fitted values. This is in contrast to the influence of a sample, which describes *actual* effect on the regression line: in the section about Cook's Distance, we considered a sample to be "influential", if the regression estimates with and without the sample in question were very different.

Since we have $\sum_{i=1}^n h_{ii} = \operatorname{tr}(H) = p+1$ (see equation (20)), the average value of the leverage over all samples is (p+1)/n. Using a more careful argument, one can show that $h_i \in [1/n, 1]$ for every $i \in \{1, \dots, n\}$.

Example 17.1. We use simulated data to illustrate the effect of outliers and the difference between leverage and influence.

```
set.seed(20211130)

n <- 12
x <- seq(0, 5, length.out = n+1)[-(n/2+1)]
y <- 1 + 0.4 * x + rnorm(n, sd = 0.3)
m <- lm(y ~ x)</pre>
```

```
# we try four different extra samples, one after another:
x.extra \leftarrow c(2.5, 9.5, 2.5, 9.5)
y.extra \leftarrow c(2.3, 5.4, -1, 0.5)
par(mfrow = c(2, 2), # We want a 2x2 grid of plots,
    mai = c(0.7, 0.7, 0.1, 0.1), # using smaller margins, and
    mgp = c(2.5, 1, 0)) # we move the labels closer to the axes.
for (i in 1:4) {
    plot(x, y, xlim = c(0, 10), ylim = c(-1, 5.5))
    abline(m)
    m2 \leftarrow lm(c(y, y.extra[i]) \sim c(x, x.extra[i]))
    abline(m2, col="red", lty="dashed")
    points(x.extra[i], y.extra[i], col = "red", pch = 16)
}
   2
                                             2
   4
                                             4
   က
                                             က
  \alpha
       0
             2
                         6
                               8
                                     10
                                                  0
                                                        2
                                                              4
                                                                    6
                                                                          8
                                                                               10
                   4
                      Χ
                                                                 Х
                                             2
  2
   4
                                             4
  က
                                             က
   N
                                             N
   ī
                                             ì
             2
                         6
       0
                   4
                               8
                                     10
                                                  0
                                                        2
                                                              4
                                                                    6
                                                                          8
                                                                               10
                      Х
```

The black circles in all four panels are the same, and the black, solid line is the regression line fitted to these points. The filled, red circle is different between the panels and the red, dashed line is the regression line fitted after this point has been added to the data. In the top-left panel there is no outlier. In the top-right panel, the red circle is an x-space outlier. The point has high leverage (since the red lines in the top-right and bottom-right panels are very different from each other), but low influence (since the red line is close to the black line). The bottom-left panel shows a y-space outlier. The red circle has low leverage (since the red line is similar to the top-left panel) and low influence (since the red line is close to the black line), but a large residual. Finally, the bottom-right panel shows an x-space outlier with high leverage and high influence.

17.1.2 Studentised Residuals

Sometimes, y-space outliers can be detected by having particularly large residuals. From equation (18) we know that

$$\hat{\varepsilon} \sim \mathcal{N}\big(0, \sigma^2(I-H)\big).$$

Considering the diagonal elements of the covariance matrix, we find $\operatorname{Var}(\hat{\varepsilon}_i) = \sigma^2(1-h_{ii})$, where h_{ii} is the *i*th diagonal element of the hat matrix H. This motivates the following definition.

Definition 17.2. The studentised residuals are given by

$$r_i := \frac{\hat{\varepsilon}_i}{\sqrt{\hat{\sigma}^2(1 - h_{ii})}}.$$

Lemma 17.2. We have $r_i \sim t(n-p-1)$.

Proof. We have

$$\begin{split} r_i &= \frac{\hat{\varepsilon}_i}{\sqrt{\hat{\sigma}^2(1-h_{ii})}} \\ &= \frac{\hat{\varepsilon}_i/\sqrt{\sigma^2(1-h_{ii})}}{\sqrt{\frac{(n-p-1)\hat{\sigma}^2}{\sigma^2}/(n-p-1)}}. \end{split}$$

The numerator is standard normally distributed. From equation (22) we know that $(n-p-1)\hat{\sigma}^2/\sigma^2 \sim \chi^2(n-p-1)$. Thus we find $r_i \sim t(n-p-1)$, by the definition of the t-distribution.

Samples where the studentised residuals are large, compared to quantiles of the t(n-p-1)-distribution, might be y-space outliers.

With the help of lemma 8.4 we can express Cook's distance as a function of studentised residuals and leverage. We get

$$\begin{split} D_i &= \frac{\hat{\varepsilon}_i^2}{(p+1)\hat{\sigma}^2} \cdot \frac{h_{ii}}{(1-h_{ii})^2} \\ &= r_i^2 \frac{h_{ii}}{(p+1)(1-h_{ii})}. \end{split}$$

If we denote samples with $D_i \ge 1$ as influential, we can express the condition for influential samples as

$$r_i^2 \ge (p+1)\frac{1-h_{ii}}{h_{ii}}.$$

Example 17.2. Continuing from the previous example, we can plot studentised residuals against leverage. As in section 8.1, we can use the function influence() to easily obtain the diagonal elements of the hat matrix.

```
par(mfrow = c(2, 2), # We want a 2x2 grid of plots,
    mai = c(0.7, 0.7, 0.1, 0.1), # using smaller margins, and
    mgp = c(2.5, 1, 0)) # we move the labels closer to the axes.

for (i in 1:4) {
    xx <- c(x, x.extra[i])
    yy <- c(y, y.extra[i])
    n <- length(xx)
    p <- 1

    m <- lm(yy ~ xx)

# get the leverage
    hii <- influence(m)$hat

# get the studentized residuals</pre>
```

```
sigma.hat <- summary(m)$sigma
     ri <- resid(m) / sigma.hat / sqrt(1 - hii)
     plot(hii, ri, xlim=c(1/n, 1), ylim=c(-4,3),
           xlab = "leverage", ylab = "studentised resid.")
     \# plot a 95% interval for the residuals
     abline(h = +qt(0.975, n - p - 1))
     abline(h = -qt(0.975, n - p - 1))
     # also plot the line where D_i = 1
     h \leftarrow seq(1/n, 1, length.out = 100)
     r.infl \leftarrow sqrt((p+1) * (1-h) / h)
     lines(h, r.infl, col="red")
     lines(h, -r.infl, col="red")
}
studentised resid.
                                                 studentised resid.
                                                          <sub>හි</sub>
ඉ
         တ္မစ္
              0
   0
         0
                                                    0
                                                           0000
            0
                                                     4
    4
            0.2
                           0.6
                                                                     0.4
                                                                            0.6
                    0.4
                                   8.0
                                          1.0
                                                              0.2
                                                                                    8.0
                                                                                           1.0
                       leverage
                                                                        leverage
                                                 studentised resid.
                                                    \alpha
studentised resid.
           00000
   0
                                                     0
                                                    7
   7
                                                                              0
                                                     4
            0.2
                                                              0.2
                    0.4
                           0.6
                                   8.0
                                          1.0
                                                                     0.4
                                                                            0.6
                                                                                    8.0
                                                                                           1.0
                       leverage
                                                                        leverage
```

If the model is correct, 95% of the samples should lie in the band formed by the two horizontal lines. In the bottom-left panel we can recognise a y-space outlier by the fact that it is outside the band. In the two right-hand panels we can recognise the x-space outlier by the fact that it has much larger leverage than the other samples. Finally, samples which are to the right of the curved, red line correspond the "influential" observations.

17.2 Breakdown Points

In the example we have seen that changing a single observation can have a large effect on the regression line found by least squares regression. Using the formula

$$\hat{\beta} = (X^\top X)^{-1} X^\top y,$$

it is easy to see that it is enough to change a single sample, letting $y_i \to \infty$, to get $\|\hat{\beta}\| \to \infty$.

Definition 17.3. The **finite sample breakdown point** of an estimator $\hat{\theta}$ is the smallest fraction of samples such that $\|\hat{\theta}\| \to \infty$ can be achieved by only changing this fraction of samples. Mathematically, this can be expressed as follows: Let $z = ((x_1, y_1), \dots, (x_n, y_n))$ and consider all z' such that the set $\{i \mid z_i \neq z_i'\}$ has at most m elements. Then the finite sample breakdown point is given by

$$\varepsilon_n(\hat{\theta}) := \frac{1}{n} \min \big\{ m \bigm| \sup_{z'} \|\hat{\theta}(z')\| = \infty \big\}.$$

The (asymptotic) **breakdown point** of $\hat{\theta}$ is given by

$$\varepsilon(\hat{\theta}) := \lim_{n \to \infty} \varepsilon_n(\hat{\theta}).$$

Clearly we have $\varepsilon_n(\hat{\theta}) \in [0,1]$ for all n and thus $\varepsilon(\hat{\theta}) \in [0,1]$. Robust estimators have $\varepsilon(\hat{\theta}) > 0$. Using the argument above, we see that $\varepsilon_n(\hat{\beta}) = 1/n \to 0$ as $n \to \infty$. Thus, the least squares estimate is not robust.

Example 17.3. For illustration we show a very simple version of a robust estimator for the regression line in simple linear regression. The estimate is called a **resistant line** or **Tukey line**. Assume we are given data (x_i, y_i) for $i \in \{1, ..., n\}$. We start by sorting the x_i in increasing order: $x_{(1)} \leq \cdots \leq x_{(n)}$. Then we define x_L , x_M and x_R as the median of the lower, middle and upper third of the $x_{(i)}$, and y_L , y_M and y_R as the median of the corresponding y values, respectively. Finally, set

$$\hat{\beta}_1 = \frac{y_{\rm R} - y_{\rm L}}{x_{\rm R} - x_{\rm L}}$$

as an estimate of the slope, and

$$\hat{\beta}_0 = \frac{y_{\rm L} + y_{\rm M} + y_{\rm R}}{3} - \hat{\beta}_1 \frac{x_{\rm L} + x_{\rm M} + x_{\rm R}}{3}$$

for the intercept.

We can easily implement this method in R. To demonstrate this, we use simulated data with artificial outliers:

```
set.seed(20211129)
n <- 24
x <- runif(n, 0, 10)
y <- -1 + x + rnorm(n)

outlier <- 1:5
y[outlier] <- y[outlier] + 15</pre>
```

We start by sorting the data in order of increasing x-values:

```
idx <- order(x)
x <- x[idx]
y <- y[idx]</pre>
```

Now we can compute the resistant line:

```
xL <- median(x[1:8])
xM <- median(x[9:16])
xR <- median(x[17:24])
yL <- median(y[1:8])
yM <- median(y[9:16])
yR <- median(y[17:24])
beta1 <- (yR - yL) / (xR - xL)
beta0 <- (yL + yM + yR) / 3 - beta1 * (xL + xM + xR) / 3</pre>
```

Finally, we plot the result.

The horizontal and vertical line segments in the plot give the medians used in the computation. The blue, sloped line is the resistant line. One can see that the line closely follows the bulk of the samples and that it is not affected by the five outliers.

A variant of this method is implemented by the R function line().

Summary

- Leverage can be used to detect x-space outliers.
- Studentised residuals can be used to detect y-space outliers.
- The breakdown point of an estimator is a measure for how robust the method is to outliers.

18 M-Estimators

In this section we introduce a class of estimators which can be robust to y-space outliers.

18.1 Definition

Definition 18.1. An **M-estimator** for the regression coefficients β is a method which computes the estimator $\hat{\beta}$ as

$$\hat{\beta} = \mathop{\arg\min}_{\beta} r(\varepsilon) = \mathop{\arg\min}_{\beta} r(y - X\beta),$$

where r is given by

$$r(\varepsilon) = \sum_{i=1}^n \rho(\varepsilon_i)$$

and $\rho \colon \mathbb{R} \to \mathbb{R}$ is a symmetric, continuous function with a unique minimum at 0. The function ρ is called the **objective function** of the M-estimator.

This is a generalisation of the least squares estimator, where the least squares estimator corresponds to the case $\rho(\varepsilon) = \varepsilon^2$.

For most functions ρ there is no closed-form expression for the estimate $\hat{\beta}$, but numerical minimisation can be used to find numerical values for $\hat{\beta}$. In R, the function optim() can be used for this purpose.

Example 18.1. The M-estimator with $\rho(u) = |u|$ is called the **least absolute values** (LAV) estimator. Since ρ grows slower than u^2 as $|u| \to \infty$, this estimator is more resistant to y-space outliers than least squares regression is. On the other hand, for x-space outliers which are sufficiently far away from the bulk of the data, the LAV line will pass exactly through the corresponding point (x_i, y_i) , so the LAV estimator is more susceptible to x-space outliers than least squares regression is, and the breakdown point is still 1/n.

```
set.seed(202111202)
n <- 12
x \leftarrow seq(0, 5, length.out = n+1)[-(n/2+1)]
y \leftarrow 1 + 0.4 * x + rnorm(n, sd = 0.3)
m \leftarrow lm(y \sim x)
# we try four different extra samples, one after another:
x.extra \leftarrow seq(2.5, 20, length.out = 4)
y.extra <- c(-1, -1, -1, -1)
lav <- function(par, x, y) {</pre>
  beta0 <- par[1]
  beta1 <- par[2]
  sum(abs(y - beta0 - beta1*x))
}
par(mfrow = c(2, 2), # We want a 2x2 grid of plots,
    mai = c(0.7, 0.7, 0.1, 0.1), # using smaller margins, and
    mgp = c(2.5, 1, 0)) # we move the labels closer to the axes.
for (i in 1:4) {
  plot(x, y, xlim = c(0, 21), ylim = c(-1, 5))
  abline(m)
 o \leftarrow optim(c(0, 0), lav, NULL, c(x, x.extra[i]), c(y, y.extra[i]))
```


Define $s(\beta) = r(y - X\beta)$. Then we have

$$\hat{\beta} = \arg\min_{\beta} s(\beta). \tag{35}$$

Some care is neede since the function s may have more than one local minimum, and even the global minimum may not be uniquely defined.

Lemma 18.1. Assume that ρ is convex. Then s is convex.

Proof. Here we use the property that a function $f: \mathbb{R}^{p+1} \to \mathbb{R}$ is convex, if and only if

$$f(\lambda \beta^{(1)} + (1 - \lambda)\beta^{(2)}) \le \lambda f(\beta^{(1)}) + (1 - \lambda)f(\beta^{(2)})$$

for all $\beta^{(1)}, \beta^{(2)} \in \mathbb{R}^{p+1}$ and all $\lambda \in [0,1]$. Since ρ is convex, we find

$$\begin{split} s \big(\lambda \beta^{(1)} + (1 - \lambda) \beta^{(2)} \big) \\ &= r \Big(y - X \big(\lambda \beta^{(1)} + (1 - \lambda) \beta^{(2)} \big) \Big) \\ &= r \Big(\lambda \big(y - X \beta^{(1)} \big) + (1 - \lambda) \big(y - X \beta^{(2)} \big) \Big) \\ &= \sum_{i=1}^n \rho \Big(\lambda \big(y - X \beta^{(1)} \big)_i + (1 - \lambda) \big(y - X \beta^{(2)} \big)_i \Big) \\ &\leq \sum_{i=1}^n \Big(\lambda \rho \big(y - X \beta^{(1)} \big)_i + (1 - \lambda) \rho \big(y - X \beta^{(2)} \big)_i \Big) \\ &= \lambda r \big(y - X \beta^{(1)} \big) + (1 - \lambda) r \big(y - X \beta^{(2)} \big) \\ &= \lambda s \big(\beta^{(1)} \big) + (1 - \lambda) s \big(\beta^{(2)} \big). \end{split}$$

Thus s is convex and the proof is complete.

This shows that the problem of finding $\hat{\beta}$ is better behaved when ρ is convex. For example, in this case, every local minimum of s is also a global minimum and the set of all minima is a convex set.

M-estimates in general are not scale-invariant, *i.e.* if y is measured in different units, the regression line changes. A scale-invariant, robust estimator is given by

$$\hat{\beta} = \mathop{\arg\min}_{\beta} r \Big(\frac{\varepsilon}{\hat{\sigma}} \Big) = \mathop{\arg\min}_{\beta} r \Big(\frac{y - X\beta}{\hat{\sigma}} \Big),$$

where $\hat{\sigma}$ is a robust estimator of the residual standard deviation, for example the **median** absolute deviation (MAD) given by

$$\hat{\sigma} = \text{median}[\hat{\varepsilon}_i - \text{median}(\hat{\varepsilon}_i)].$$

18.2 Iterative Methods

If ρ is differentiable, say $\rho' = \psi$, then gradient-based methods can be used to find the minimum in equation (35). The basis of this approach is the following lemma.

Lemma 18.2. If $\rho' = \psi$, then the M-estimate satisfies

$$\sum_{i=1}^{n} \psi((y - X\hat{\beta})_i) \begin{pmatrix} 1 \\ x_{i1} \\ \vdots \\ x_{ip} \end{pmatrix} = 0 \in \mathbb{R}^{p+1}. \tag{36}$$

Proof. Since $\hat{\beta}$ minimises the function r, we have

$$\begin{split} 0 &= \left. \frac{\partial}{\partial \beta_j} r(y - X\beta) \right|_{\beta = \hat{\beta}} \\ &= \left. \frac{\partial}{\partial \beta_j} \sum_{i=1}^n \rho((y - X\beta)_i) \right|_{\beta = \hat{\beta}} \\ &= \left. \sum_{i=1}^n \psi((y - X\beta)_i) \frac{\partial}{\partial \beta_j} (y - X\beta)_i \right|_{\beta = \hat{\beta}} \\ &= \left. \sum_{i=1}^n \psi((y - X\beta)_i) (-x_{ij}) \right|_{\beta = \hat{\beta}} \\ &= -\sum_{i=1}^n \psi((y - X\hat{\beta})_i) x_{ij}. \end{split}$$

where we use the convention $x_{i0} = 1$. This completes the proof.

With the result of the lemma, we have turned the problem of finding $\hat{\beta}$ into the problem of finding the roots of a non-linear function. To solve this problem, we can for example use one of the generic root finding algorithms, for example Newton's method.

In the context of M-estimates, a more specialised method is often used in the literature. For this method we define weights

$$w_i := \frac{\psi((y - X\hat{\beta})_i)}{(y - X\hat{\beta})_i} \tag{37}$$

and write W for the diagonal matrix which has w_1, \ldots, w_n on the diagonal. Using this notation, we can rewrite condition (36) as

$$X^{\top}W(y - X\hat{\beta}) = 0$$

and solving for $\hat{\beta}$ gives

$$\hat{\beta} = (X^{\top}WX)^{-1}X^{\top}Wy. \tag{38}$$

This equation looks very similar to our formula for the least squares estimate, the only change being the presence of the matrix W. One can check that the value $\hat{\beta}$ computed in this way also represents the solution of the weighted least-squares problem

$$\hat{\beta} = \mathop{\arg\min}_{\beta} \sum_{i=1}^n w_i \big(y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip} \big)^2.$$

While equation (38) looks like the solution of a linear problem at first glance, the weight matrix W depends on $\hat{\beta}$ and this equation still represents a non-linear equation for $\hat{\beta}$.

The **iteratively re-weighted least squares** method is an iterative method for solving equation (38). Starting from an initial guess $\hat{\beta}^{(0)}$ for $\hat{\beta}$, e.g. the least squares estimate or the zero vector, the method repeats the following steps for k = 0, 1, 2, ...:

- 1. Using equation (37), compute the weight matrix $W^{(k)}$ corresponding to $\hat{\beta}^{(k)}$.
- 2. Compute $\hat{\beta}^{(k+1)} = (X^{\top} W^{(k)} X)^{-1} X^{\top} W^{(k)} y$.

The algorithm finishes either after a fixed number of steps, or when the values of $\hat{\beta}^{(k)}$ don't change much between steps any more, or when the "residual" $X^{\top}W(y-X\hat{\beta})$ is "small enough".

18.3 Objective Functions

In this section we will discuss different choices of the objective function ρ , together with the derivative ψ and the weight function $w(\varepsilon) = \psi(\varepsilon)/\varepsilon$.

18.3.1 Least Squares Method

Here we can write

$$\rho(\varepsilon) = \varepsilon^2/2.$$

The factor 1/2, which we omitted before, does not change the estimate. We include the factor here to give ψ a simpler form and to make comparison to the following examples easier. The derivative of ρ is given by

$$\psi(\varepsilon) = \varepsilon$$

The following R code can be used to plot ψ and the weight function w:

```
eps <- seq(-3, 3, length.out = 201)
psi <- function(eps) eps
par(mfrow = c(1, 2),
    mai = c(0.7, 0.7, 0.1, 0.1),
    mgp = c(1.7, 0.5, 0))
plot(eps, psi(eps), type="l",
    xlab = expression(epsilon), ylab = expression(psi(epsilon)))
plot(eps, psi(eps) / eps, type="l", ylim = c(0, 1),
    xlab = expression(epsilon),
    ylab = expression(psi(epsilon)/epsilon))</pre>
```


The right-hand plot shows that weight of observations does not depend on their magnitude. This property is what makes the least squares estimate susceptible to outliers.

18.3.2 Least Absolute Values

Here we have

$$\rho(\varepsilon) = |\varepsilon|.$$

The derivative of this function is

$$\psi(\varepsilon) = \begin{cases} -1 & \text{if } \varepsilon < 0, \\ +1 & \text{if } \varepsilon > 0 \end{cases}$$
$$= \operatorname{sign}(\varepsilon)$$

and the weight function is

$$w(\varepsilon) = \frac{\mathrm{sign}(\varepsilon)}{\varepsilon} = \frac{1}{|\varepsilon|}.$$

```
t <- 1
psi <- function(eps) sign(eps)
par(mfrow = c(1, 2),
    mai = c(0.7, 0.7, 0.1, 0.1),
    mgp = c(1.7, 0.5, 0))
plot(eps, psi(eps), type="l",
        xlab = expression(epsilon), ylab = expression(psi(epsilon)))
plot(eps, psi(eps) / eps, type="l", ylim = c(0, 1),
        xlab = expression(epsilon),
        ylab = expression(psi(epsilon))/epsilon))</pre>
```


18.3.3 Huber's t-function

This method uses the following objective function:

$$\rho(\varepsilon) = \begin{cases} \frac{1}{2}\varepsilon^2 & \text{if } |\varepsilon| \le t \\ t|\varepsilon| - \frac{1}{2}t^2 & \text{if } |\varepsilon| > t \end{cases}$$

The parameter t>0 can be used to tune the method. The influence function ψ is given by

$$\psi(\varepsilon) = \begin{cases} \varepsilon & \text{if } |\varepsilon| \leq t \\ t \operatorname{sign}(\varepsilon) & \text{if } |\varepsilon| > t. \end{cases}$$

A plot of ψ and $\psi(\varepsilon)/\varepsilon$ shows that for this method the weight of observations where the residuals satisfy $|\varepsilon_i| \leq t$ is the same as for least squares, but larger residuals get lower weights, leading to a more robust estimator.

```
t <- 1
psi <- function(eps) ifelse(abs(eps) <= t, eps, t * sign(eps))
par(mfrow = c(1, 2),
    mai = c(0.7, 0.7, 0.1, 0.1),
    mgp = c(1.7, 0.5, 0))
plot(eps, psi(eps), type="l",
    xlab = expression(epsilon), ylab = expression(psi(epsilon)))
plot(eps, psi(eps) / eps, type="l", ylim = c(0, 1),
    xlab = expression(epsilon),
    ylab = expression(psi(epsilon)/epsilon))</pre>
```


18.3.4 Hampel's Method

Here we have tuning parameters 0 < a < b < c, and the objective function is

$$\rho(\varepsilon) = \begin{cases} \frac{1}{2}\varepsilon^2 & \text{if } |\varepsilon| \leq a \\ a|\varepsilon| - \frac{1}{2}a^2 & \text{if } a \leq |\varepsilon| < b \\ a\frac{(|\varepsilon| - c)^2}{2(b - c)} + \frac{1}{2}a(b + c - a) & \text{if } b \leq |\varepsilon| \leq c \\ \frac{a(b + c - a)}{2} & \text{otherwise,} \end{cases}$$

with derivative

$$\psi(\varepsilon) = \begin{cases} \varepsilon & \text{if } |\varepsilon| \le a, \\ a \operatorname{sign}(\varepsilon) & \text{if } a < |\varepsilon| \le b, \\ a \frac{\varepsilon - c \operatorname{sign}(\varepsilon)}{b - c} & \text{if } b < |\varepsilon| \le c, \\ 0 & \text{if } c < |\varepsilon|. \end{cases}$$

Since these formulas are tedious to understand, we consider plots of ψ and $\psi(\varepsilon)/\varepsilon$ again:

We see that small residuals, with $|\varepsilon_i| \leq a$ get the same weight as for least squares regression, and the weight for larger residuals is gradually reduced. Residuals with $|\varepsilon_i| > c$ have weight 0 and do not affect the location of the regression line at all.

We see that ψ is not increasing and therefore ρ is not convex. A consequence of this fact is that the function s may have several local minima and care must be used when choosing the starting point of iterative minimisation methods.

18.3.5 Tukey's Bisquare Method

Here we have only one tuning parameter, a > 0, and the objective function is

$$\rho(\varepsilon) = \begin{cases} \frac{a^2}{6} \Big(1 - \big(1 - (\varepsilon/a)^2\big)^3\Big) & \text{if } |\varepsilon| \leq a \\ \frac{a^2}{6} & \text{if } |\varepsilon| > a \end{cases}$$

with derivative

$$\psi(\varepsilon) = \begin{cases} \varepsilon \big(1 - (\varepsilon/a)^2\big)^2 & \text{if } |\varepsilon| \leq a \\ 0 & \text{if } |\varepsilon| > a. \end{cases}$$

The plots show that this is a simplified variant of Hampel's estimator:

Again, ρ is not convex and care is needed when computing the estimate $\hat{\beta}$.

Summary

- We introduced the M-estimator as a robust method for estimating regression coefficients
- We discussed the iteratively re-weighted least squares method for computing Maximates
- We discussed different choices for the objective function of an M-estimator.

19 Efficiency of Robust Estimators

In theoretical statistics, **efficiency** is a measure of quality of an estimator. A more efficient estimator achieves smaller estimation error for a given number of samples. Here we give an informal introduction to the topic of efficiency and discuss the efficiency of different methods for linear regression.

19.1 Efficiency

In the section about the Mean Squared Error we have seen that

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + bias(\hat{\theta})^2$$

can be used as a measure for the estimation error of an estimator $\hat{\theta}$, and if the estimator is unbiased, this expression simplifies to

$$MSE(\hat{\theta}) = Var(\hat{\theta}).$$

Thus, "good" estimators will have small variance. Instead of considering the full definition from theoretical statistics (which requires the concept of Fisher information), here we simply consider

$$\operatorname{efficiency}(\hat{\theta}) = \frac{1}{\operatorname{Var}(\hat{\theta})}$$

as a measure for the efficiency of an estimator. We will use this measure of efficiency to compare different estimators.

Example 19.1. Both the sample mean and the sample median can be used as estimators for the population mean. Here we show that the median has lower efficiency than the mean.

Suppose X_1,\dots,X_n are i.i.d. with CDF F(x), i.e. $P(X_i \leq x) = F(x)$. As before, let $X_{(1)} \leq \dots \leq X_{(n)}$ be the samples arranged in order of increasing value. Then the distribution of $X_{(k)}$ has CDF

$$P(X_{(k)} \leq x) = \sum_{i=k}^n {n \choose i} F(x)^i \big(1 - F(x)\big)^{n-i},$$

since $X_{(k)} \leq x$ requires at least k out of n samples to be less than or equal to x. If we differentiate this (using product rule and chain rule) we get the density of $X_{(k)}$:

$$\begin{split} f_{(k)}(x) &= \frac{d}{dx} P(X_{(k)} \leq x) \\ &= \cdots \\ &= f(x) \frac{n!}{(n-k)!(k-1)!} F(x)^{k-1} \big(1 - F(x)\big)^{n-k}. \end{split}$$

For simplicity we assume that n is odd, say n=2m+1. In this case the median is $X_{\text{median}}=X_{(m+1)}$. Thus, the density of the median is

$$\begin{split} f_{\mathrm{median}}(x) &= f_{(m+1)}(x) \\ &= f(x) \frac{n!}{(n-m-1)!m!} F(x)^m \big(1 - F(x)\big)^{n-m-1} \\ &= f(x) \frac{n!}{m!m!} F(x)^m \big(1 - F(x)\big)^m. \end{split}$$

This density can be used to understand the behaviour of the median.

Now assume that $X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, i.e. the density is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

and the CDF is

$$F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right),\,$$

where Φ is the CDF of the standard normal distribution. In this case we know that

$$\mathrm{Var}\big(\overline{X}\big) = \frac{\sigma^2}{n}.$$

For comparison, we can use the density of $X_{\rm median}$ to show (in a series of complicated steps) that

$$\operatorname{Var}(X_{\mathrm{median}}) \sim \frac{\pi}{2} \frac{\sigma^2}{n},$$

as $n \to \infty$. Thus, for large n, the relative efficiency of the median compared to the mean is

$$\begin{split} \frac{\text{efficiency}(X_{\text{median}})}{\text{efficiency}(\overline{X})} &= \frac{\text{Var}(\overline{X})}{\text{Var}(X_{\text{median}})} = \frac{\frac{\sigma^2}{n}}{\frac{\pi}{2}\frac{\sigma^2}{n}} \\ &= \frac{2}{\pi} = 0.637. \end{split}$$

Thus, the sample median is a less efficient estimator for the mean than the sample mean is

The situation in the example carries over to linear regression: more robust estimators tend to be less efficient, and there is a trade-off between robustness and efficiency. Without proof, here we list some examples of this principle:

- One can show that usually the variance of the least squares estimator decreases proportionally to 1/n, and thus the efficiency of the least squares estimator increases proportionally to n.
- The value t in Huber's method can be used to control the balance between robustness and efficiency. As $t\to\infty$, the method converges to least squares regression and becomes less robust, but at the same time efficiency increases. Huber suggests the value $t=1.345\sigma$ and showed that for this choice the method is 95% efficient for large n, compared to least squares regression.
- Similarly, the parameter a in Tukey's Bisquare Method controls the trade-off between robustness and efficiency, with smaller a leading to a more robust method. In the literature it is suggested that $a=4.685\sigma$ leads to 95% efficiency for large n, compared to least squares regression.
- The efficiency of the least absolute values estimator can be shown to be 64%.

19.2 Robust estimators

Since the M-estimator only addresses y-space outliers, the breakdown point of M-estimation is still 1/n. We now consider two estimators which have a higher breakdown point, but lower efficiency.

19.2.1 Least Median of Squares

Rather than minimise the sum of the residual sum of squares (or a weighted version of it), this estimator minimises the median of squared residuals. The estimate is given by

$$\hat{\beta}^{(\mathrm{LMS})} := \mathop{\arg\min}_{\beta} \mathop{\mathrm{median}}_{i \in \{1, \dots, n\}} \big(y_i - x_i^T \beta \big)^2,$$

where x_1, \ldots, x_n are the rows of the design matrix X. This is very robust with respect to outliers, both in x-direction and y-directions: Since the median is used instead of the sum, up to half of the squared residuals can increase to infinity while the estimate stays bounded. Thus the asymptotic breakdown point of the method is 1/2.

The least median of squares method has poor asymptotic efficiency $n^{2/3}$. In the limit, the relative efficiency compared to ordinary least squares is

$$\frac{\text{efficiency}(\hat{\beta}^{(\text{LMS})})}{\text{efficiency}(\hat{\beta}^{(\text{LSQ})})} \propto \frac{n^{2/3}}{n} \longrightarrow 0$$

as $n \to \infty$.

Example 19.2. The following code computes an LMS regression estimate. We introduce artifical outliers by shifting 30% of the data to the bottom right. These artificial outliers are represented by the red circles in the plot.

```
library("MASS") # for lqs()

set.seed(20211207)
n <- 50
x <- runif(n, 0, 10)
y <- x + rnorm(n)

# add 30% outliers
n.ol <- floor(0.3*n)
idx <- sample.int(n, n.ol)
x[idx] <- x[idx] + 15
y[idx] <- y[idx] - 10

m <- lqs(y~x, method="lms")
plot(x, y, col = ifelse(1:n %in% idx, "red", "black"))
abline(m)</pre>
```


19.2.2 Least Trimmed Squares

This takes as its objective function the sum of h smallest squared residuals and was proposed as a remedy to the low asymptotic efficiency of LMS. The least trimmed

squares estimator $\hat{\beta}^{(LTS)}$ is defined as

$$\hat{\beta}^{(\text{LTS})} := \mathop{\arg\min}_{\beta} \sum_{i=1}^k r_{[i]}^2(\beta),$$

where $r_{[i]}^2(\beta)$ represents the ith smallest value amongst $r_i(\beta)^2 = \left(y_i - x_i^T\beta\right)^2$.

The value k controls the trade-off between robustness and efficiency and the value must satisfy $n/2 < k \le n$. For a given k the method can tolerate n-k outliers. The bounday case k=n corresponds to the ordinary least squares method. The breakdown point of the method is (n-k+1)/n.

Computing the LTS estimate is a non-trivial problem, which involves fitting the least-squares estimate to a carefully chosen subset of the samples.

Example 19.3. The following code computes an LTS regression estimate. The data is the same as in the previous example.

```
m <- lqs(y~x, method = "lts", quantile = floor(n/2)+1)
plot(x, y, col = ifelse(1:n %in% idx, "red", "black"))
abline(m)</pre>
```


One can show that LTS has an efficiency of approximately 0.08 compared to ordinary least squares regression.

Summary

- In this section we have informally discussed the efficiency of different estimators.
- We have introduced the Least Median of Squares estimator.
- We have introduced the Least Trimmed Squares estimator.

Interlude: Robust Regression in R

This section explains how to use the robust regression methods discussed in sections 17, 18 and 19 in R.

M-Estimators

The rlm() function from the MASS package implements the iteratively reweighted least squares algorithm from section 18. The function takes a formula interface similar to lm(), and the psi argument specifies which ψ -function to use:

```
library(MASS)

rlm1 <- rlm(y ~ x, psi = psi.huber)  # Huber's method
rlm2 <- rlm(y ~ x, psi = psi.bisquare)  # Tukey's bisquare
rlm3 <- rlm(y ~ x, psi = psi.hampel)  # Hampel's method</pre>
```

The available psi functions correspond to the objective functions discussed in section 18:

- psi.huber implements Huber's t-function from section 18.3.3.
- psi.bisquare implements Tukey's bisquare method.
- psi.hampel implements Hampel's method.

Information can be extracted from the fitted model object:

- coef(rlm1) returns the estimated regression coefficients $\hat{\beta}$.
- rlm1\$resid returns the residuals.
- rlm1\$w returns the weights assigned to each observation.

The fitted line can be plotted using abline(rlm1).

LAV Estimation

The rq() function from the quantreg package computes the least absolute values (LAV) estimator from section 18.1:

```
library(quantreg)
rq1 <- rq(y ~ x)</pre>
```

The rq() function uses specialized algorithms (interior point methods) which are more efficient and have better convergence properties than the general-purpose optim() approach shown in section 18.1. For pedagogical purposes, section 18.1 shows the optim() implementation to illustrate what the LAV estimator actually minimises, but for practical work the rq() function should be used.

Coefficients can be extracted using coef(rq1) and residuals using resid(rq1). The fitted line can be plotted using abline(rq1).

High Breakdown Point Methods

The lqs() function from the MASS package implements both the least median of squares (LMS) and least trimmed squares (LTS) estimators from section 19:

```
library(MASS)

lms1 <- lqs(y ~ x, method = "lms")
lts1 <- lqs(y ~ x, method = "lts")</pre>
```

For the LTS estimator, the quantile argument can be used to specify the value of h (the number of observations to use in the objective function):

```
lts1 <- lqs(y ~ x, method = "lts", quantile = floor(n/2) + 1)
```

As discussed in section 19.2.2, the value of h controls the trade-off between robustness and efficiency. Smaller values of h give higher breakdown points but lower efficiency.

Coefficients can be extracted using coef(lms1) or coef(lts1), and the fitted lines can be plotted using abline(lms1) or abline(lts1).

Summary

The following table summarises the R functions for robust regression:

Method	Function	Package	Section
LAV	rq(y ~ x)	quantreg	18.1
Huber	<pre>rlm(y ~ x, psi = psi.huber)</pre>	MASS	18.3.3
Bisquare	<pre>rlm(y ~ x, psi = psi.bisquare)</pre>	MASS	18.3.5
Hampel	<pre>rlm(y ~ x, psi = psi.hampel)</pre>	MASS	18.3.4
LMS	lqs(y ~ x, method = "lms")	MASS	19.2.1
LTS	lqs(y ~ x, method = "lts")	MASS	19.2.2

All of these functions return model objects that work with coef(), resid(), and abline().

Problem Sheet 5

You should attempt all these questions and write up your solutions in advance of the workshop in week 11 where the answers will be discussed.

17. Consider the dataset at

• https://teaching.seehuhn.de/2022/MATH3714/P05Q17.csv

which contains samples from variables $x_1, x_2, y \in \mathbb{R}$ and $x_3 \in \{R, G, B\}$.

- a. Load the data into R.
- b. Fit a simple linear model to describe y as a function of x_1 , x_2 and x_3 , taking into account that x_3 is a categorical variable. Show that the behaviour of the residuals depends on the levels of x_3 .
- c. Find an improved model, which includes some of the interaction terms between x_3 and the other variables. For each level of x_3 , write the mathematical equation for the fitted model mean of your chosen model.

18. Consider the dataset at

• https://teaching.seehuhn.de/2022/MATH3714/P05Q18.csv

Identify the x-space outlier in this dataset.

- 19. The sample median is a robust estimator of the mean. Determine the breakdown point.
- 20. Determine the breakdown point for the resistant line from example 17.3.

20 Examples

In this section we compare the robust regression methods from sections 17, 18 and 19 by applying them to synthetic data. We will see how methods with different breakdown points behave in the presence of outliers, how the weights assigned by different Mestimators differ in practice, and how robust methods produce cleaner residual patterns than least squares regression.

20.1 Comparing Robust Methods

Example 20.1. We compare several robust estimators on a synthetic dataset with outliers. This example illustrates how methods with high breakdown points resist contamination, whilst methods with low breakdown points can be severely affected.

We start by generating data from a linear relationship with three outliers:

```
set.seed(20251006)

n <- 30
x <- runif(n, 0, 10)
y <- 2 + 0.5*x + rnorm(n, sd = 0.5)

# Add three contaminants:
outliers <- c(5, 15, 25)
x[outliers] <- c(9, 8.5, 9.5)
y[outliers] <- c(-2, -1.5, -2.5)</pre>
```

Now we fit several different regression methods to this data:

```
library(MASS) # for rlm() and lqs()
library(quantreg) # for rq()
```

Loading required package: SparseM

```
<-lim(y ~x)
lm1
                                                  # LSQ
      <- rq(y ~ x)
rq1
                                                  # LAV
rlm1
      <- rlm(y ~ x, psi = psi.huber)</pre>
                                                  # Huber
                                                  # Bisquare
     <- rlm(y ~ x, psi = psi.bisquare)</pre>
     <- rlm(y ~ x, psi = psi.hampel)
                                                  # Hampel
     \leftarrow lqs(y \sim x, method = "lms")
                                                  # LMS
     <- lqs(y ~ x, method = "lts")
lts1
                                                  # LTS
```

The left plot in figure 2 shows the fitted lines from all seven methods. As expected, only those methods with high breakdown point (LMS and LTS) have resisted the gross outliers. The least squares, LAV and M-estimator lines all pass between the bulk of the data and the outliers, demonstrating their susceptibility to contamination.

The right plot shows how the LTS estimator behaves for different values of the quantile parameter h (called quantile in R). For smaller values of h, the method uses only the observations with smallest residuals and has higher breakdown point. As h increases towards n=30, the method gradually converges to the least squares estimate.

We see that for small h the LTS line passes through the bulk of the data and ignores the outliers, whilst for larger h it is increasingly influenced by the outliers until it converges to the least squares line.

20.2 Residual Analysis

Example 20.2. Continuing with the same dataset, we now examine the residual patterns from different methods. When outliers influence the fitted line, the residuals from

Figure 2: On the left we compare several methods. As expected, only those with high breakdown point have resisted the gross outliers. On the right plot, we compare different values of the quantile parameter h for the LTS estimator.

the remaining observations often exhibit systematic patterns.

Figure 3 shows the residuals from three methods, excluding the three known outliers. The least squares residuals (left plot) show a clear curved pattern: residuals are positive for small and large x-values, and negative for intermediate values. This pattern indicates that the outliers have pulled the regression line away from the bulk of the data.

The LAV and Huber methods (centre and right plots) show much less pronounced patterns. The residuals are more evenly scattered around zero, indicating that these methods have been less influenced by the outliers. This demonstrates one advantage of robust methods: they not only provide better parameter estimates in the presence of outliers, but also produce more reliable residual plots for model diagnostics.

Figure 3: Residuals from non-outlier observations for three methods (left: LSQ; centre: LAV; right: Huber). The least squares residuals show a clear pattern due to the influence of the outliers.

20.3 Weight Comparisons

Example 20.3. We now examine the weights assigned by different M-estimators. Recall from section 18 that M-estimators assign weights to observations based on the magnitude of their residuals, with larger residuals receiving smaller weights.

Figure 4 shows the weights assigned by three different M-estimators: Huber, Bisquare and Hampel. The left plot shows the weights for all 30 observations. We can clearly see that observations 5, 15 and 25 (the outliers) receive very low weights from all three methods, confirming that these are correctly identified as outliers.

The centre and right plots compare the weights pairwise between methods. Most observations lie on or near the diagonal line, indicating that different methods assign similar weights to these observations. However, for the outliers (points far from the diagonal), the methods differ:

- The Bisquare and Hampel methods assign more extreme weights than the Huber method, with some observations receiving weights very close to zero.
- The Huber method assigns intermediate weights even to the outliers, which reflects the fact that the Huber ψ -function does not completely down-weight large residuals.

These differences reflect the different shapes of the weight functions $w(\varepsilon) = \psi(\varepsilon)/\varepsilon$ discussed in section 18. The Bisquare and Hampel methods are "redescending" Mestimators, meaning that sufficiently large residuals receive weight zero. The Huber method is not redescending, so all observations retain some influence.

Figure 4: Comparisons of weights assigned by different M-estimators. The left plot shows weights for all observations. The centre and right plots compare weights pairwise between methods, with outliers shown as red points.

Summary

- We have compared several robust regression methods on synthetic data with outliers
- Methods with high breakdown points (LMS, LTS) resist outliers, whilst methods with low breakdown points (least squares, LAV, M-estimators) can be severely affected.
- Robust methods produce cleaner residual patterns than least squares when outliers are present, making diagnostics more reliable.
- M-estimators assign weights to observations based on residual magnitude, with different methods (Huber, Bisquare, Hampel) assigning weights differently.
- Redescending M-estimators (Bisquare, Hampel) assign zero weight to sufficiently large residuals, whilst the Huber method retains some influence for all observations.
- The choice of robust method involves a trade-off between breakdown point and efficiency, as discussed in sections 17–19.

A Linear Algebra Reminders

A.1 Vectors

We write $v \in \mathbb{R}^d$ if $v = (v_1, \dots, v_d)$ for numbers $v_1, \dots, v_d \in \mathbb{R}$. We say that v is a d-dimensional vector, and \mathbb{R}^d is the d-dimensional Euclidean space. Vectors are often graphically represented as "column vectors":

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{pmatrix}.$$

If $u, v \in \mathbb{R}^d$ are two vectors, the **inner product** of u and v is given by

$$u^{\top}v = \sum_{i=1}^{d} u_i v_i. \tag{39}$$

Note that the two vectors must have the same length for the inner product to exist.

Using this notation, the **Euclidean length** of a vector v can be written as

$$\|v\| = \sqrt{\sum_{i=1}^d v_i^2} = \sqrt{v^\top v}.$$

Vectors v_1, \dots, v_n are said to be **orthogonal**, if $v_i^\top v_j = 0$ for all $i \neq j$. The vectors are said to be **orthonormal**, if they are orthogonal and satisfy $||v_i|| = 1$ for all i.

A.2 Matrices

We write $A \in \mathbb{R}^{m \times n}$ if

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ a_{2,1} & \dots & a_{2,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix},$$

where $a_{i,j}$, sometimes also written as a_{ij} are numbers for $i \in \{1, \dots, m\}$ and $j \in \{1, \dots, n\}$.

A.2.1 Transpose

If $A \in \mathbb{R}^{m \times n}$, then the **transpose** of A is the matrix $A^{\top} \in \mathbb{R}^{n \times m}$, with $(A^{\top})_{ij} = a_{ji}$ for all $i \in \{1, \dots, n\}$ and $j \in \{1, \dots, m\}$. Graphically, this can be written as

$$A^{\top} = \begin{pmatrix} a_{1,1} & a_{2,1} & \dots & a_{m,1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \dots & a_{m,n} \end{pmatrix},$$

Definition A.1. A matrix A is called **symmetric**, if $A^{\top} = A$.

A.2.2 Matrix-vector Product

If $A \in \mathbb{R}^{m \times n}$ and $v \in \mathbb{R}^n$, then $Av \in \mathbb{R}^m$ is the vector with

$$(Av)_i = \sum_{j=1}^n a_{ij} v_j$$

for all $i \in \{1, \dots, m\}$.

If we consider v to be a $(n \times 1)$ -matrix instead of a vector, Av can also be interpreted as a matrix-matrix product between an $m \times n$ and an $n \times 1$ matrix. Using this convention, v^{\top} is then interpreted as an $1 \times n$ matrix and if $u \in \mathbb{R}^m$ we have $u^{\top}A \in \mathbb{R}^{1 \times n} \cong \mathbb{R}^n$ with

$$(u^{\intercal}A)_j = \sum_{i=1}^m u_i a_{ij}$$

for all $j \in \{1, ..., n\}$. Going one step further, this notation also motivates the expression $u^{\mathsf{T}}v$ in equation (39).

A.2.3 Matrix-matrix Product

If $A \in \mathbb{R}^{\ell \times m}$ and $B \in \mathbb{R}^{m \times n}$, then $AB \in \mathbb{R}^{\ell \times n}$ is the matrix with

$$(AB)_{ik} = \sum_{j=1}^{m} a_{ij} b_{jk}$$

for all $i \in \{1, ..., \ell\}$ and $k \in \{1, ..., n\}$. This is called the **matrix product** of A and B. Note that A and B must have compatible shapes for the product to exist.

Properties:

- The matrix product is associative: if A, B and C are matrices with shapes such that AB and BC exist, then we have A(BC) = (AB)C. It does not matter in which order we perform the matrix products here.
- The matrix product is transitive: if A, B and C have the correct shapes, we have A(B+C)=AB+AC.
- The matrix product is *not* commutative: if AB exists, in general A and B don't have the correct shapes for BA to also exist, and even if BA exists, in general we have $AB \neq BA$.
- Taking the transpose swaps the order in a matrix product: we have

$$(AB)^{\top} = B^{\top} A^{\top} \tag{40}$$

A.2.4 Rank

Definition A.2. The **rank** of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of the image space of A:

$$rank(A) = \dim\{Av \mid v \in \mathbb{R}^n\}.$$

The rank can also be characterised as the largest number of linearly independent columns of A, or the largest number of linearly independent rows of A. Thus, for $A \in \mathbb{R}^{m \times n}$ we always have $\operatorname{rank}(A) \leq \min(m, n)$. The matrix A is said to have "full rank" if $\operatorname{rank}(A) = \min(m, n)$.

A.2.5 Trace

Definition A.3. The trace of a matrix $A \in \mathbb{R}^{n \times n}$ is given by

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_i i.$$

Properties:

- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- $\operatorname{tr}(A^{\top}) = \operatorname{tr}(A)$
- $\operatorname{tr}(ABC) = \operatorname{tr}(BCA) = \operatorname{tr}(CAB)$. The individual matrices A, B, C don't need to be square for this relation to hold, but the relation only holds for cyclic permutations as shown. In general $\operatorname{tr}(ABC) \neq \operatorname{tr}(ACB)$.

A.2.6 Matrix Inverse

If A is a square matrix and if there is a matrix B such that AB = I, then A is called **invertible** and the matrix B is called the **inverse** of A, denoted by $A^{-1} := B$. Some important properties of the inverse:

- The inverse, if it exists, is unique.
- Left-inverse and right-inverse for matrices are the same: $A^{-1}A = I$ holds if and only if $AA^{-1} = I$.
- If A is symmetric and invertible, then A^{-1} is also symmetric. This is true because $A(A^{-1})^{\top} = (A^{-1}A)^{\top} = I^{\top} = I$ and thus $(A^{-1})^{\top}$ is an inverse of A. Since the inverse is unique, $(A^{-1})^{\top} = A^{-1}$.

Theorem A.1. Let $A \in \mathbb{R}^{n \times n}$. Then the following statements are equivalent:

- a. A is invertible
- b. A has full rank, i.e. rank(A) = n.
- c. The equation Ax = 0 has x = 0 as its only solution.
- d. The equation Ax = b has exactly one solution x for every $b \in \mathbb{R}^n$.

A.2.7 Orthogonal Matrices

Definition A.4. A matrix U is called **orthogonal**, if $U^{\top}U = I = UU^{\top}$.

Some important properties of orthogonal matrices:

- If U is orthogonal, the inverse and the transpose are the same: $U^{\top} = U^{-1}$.
- We have $||Ux||^2 = x^\top U^\top Ux = x^\top x = ||x||^2$. Thus, multiplying a vector x by an orthogonal matrix U does not change its length.

A.2.8 Positive Definite Matrices

Definition A.5. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called **positive definite**, if

$$x^{\top}Ax > 0$$

for all $x \in \mathbb{R}^n$ with $x \neq 0$. The matrix is called **positive semi-definite**, if

$$x^{\top}Ax > 0$$

for all $x \in \mathbb{R}^n$.

A.2.9 Idempotent Matrices

Definition A.6. The matrix A is idempotent, if $A^2 = A$.

A.3 Eigenvalues

Definition A.7. Let $A \in \mathbb{R}^{n \times n}$ be a square matrix and $\lambda \in R$. The number λ is called an **eigenvalue** of A, if there exists a vector $v \neq 0$ such that $Ax = \lambda x$. Any such vector x is called an **eigenvector** of A with eigenvalue λ .

While there are very many results about eigenvectors and eigenvalues in Linear Algebra, here we will only use a small number of these results. We summarise what we need for this module:

• If A is idempotent and x is an eigenvector with eigenvalue λ , then we have $\lambda x = Ax = A^2x = \lambda Ax = \lambda^2x$. Thus we have $\lambda^2 = \lambda$. This shows that the only eigenvalues possible for idempotent matrices are 0 and 1.

Theorem A.2. Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then there is an orthogonal matrix U such that $D := UAU^{\top}$ is diagonal. The diagonal elements of D are the eigenvalues of A and the rows of U are corresponding eigenvectors.

B Probability Reminders

B.1 Independence

Definition B.1. Two random variables X and Y are (statistically) **independent**, if $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for all sets A and B.

We list some properties of independent random variables:

• If X and Y are independent, and if f and g are functions, then f(X) and g(Y) are also independent.

B.2 Expectation

The **expectation** or **mean** of a random variable X is denoted E(X). Some properties of expectations are:

• Linearity: For all constants a and b, and random variables X and Y we have

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y).$$

• For every constant c we have

$$\mathbb{E}(c) = c.$$

• For independent random variables X and Y we have

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

B.3 Variance

The variance of a random variable X, denoted $\mathrm{Var}(X)$, measures its spread around the mean. Important properties include:

• For constants a and b, and a random variable X we have

$$Var(aX + b) = a^2 Var(X).$$

• For every constant c we have

$$Var(c) = 0$$

• For independent random variables X and Y we have

$$Var(X + Y) = Var(X) + Var(Y).$$

• The variance can be computed as

$$\operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

B.4 Covariance

The covariance between two random variables X and Y, denoted Cov(X,Y), measures their linear relationship. Key properties are:

1. Symmetry:

$$Cov(X, Y) = Cov(Y, X)$$

2. For constants a, b, c and d, and random variables X and Y we have

$$Cov(aX + b, cY + d) = ac Cov(X, Y).$$

3. For independent random variables X and Y we have

$$Cov(X, Y) = 0.$$

4. The covariance can be computed as

$$\mathrm{Cov}(X,Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

5. We have Var(X) = Cov(X, X).

B.5 Well-Known Distributions

B.5.1 The Chi-Squared Distribution

Definition B.2. Let $X_1, \ldots, X_{\nu} \sim \mathcal{N}(0,1)$ be i.i.d. Then the distribution of $\sum_{i=1}^{\nu} X_i^2$ is called the χ^2 -distribution with ν degrees of freedom. The distribution is denoted by $\chi^2(\nu)$.

Some important properties of the χ^2 -distribution are:

- χ^2 -distributed random variables are always positive.
- If $Y \sim \chi^2(\nu)$, then $\mathbb{E}(Y) = \nu$ and $Var(Y) = 2\nu$.
- The R command pchisq($|x,\nu\rangle$) gives the value $\Phi_{\nu}(x)$ of the CDF of the $\chi^2(\nu)$ -distribution.
- The R command qchisq(α , ν) can be used to obtain the α -quantile of the $\chi^2(\nu)$ -distribution.
- More properties can be found on Wikipedia.

B.5.2 The t-distribution

Definition B.3. Let $Z \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(\nu)$ be independent. Then the distribution of

$$T = \frac{Z}{\sqrt{Y/\nu}} \tag{41}$$

is called the t-distribution with ν degrees of freedom. This distribution is denoted by $t(\nu)$.

Some important properties of the t-distribution are:

- The t-distribution is symmetric: if $T \sim t(\nu)$, then $-T \sim t(\nu)$
- If $T \sim t(\nu)$, then $\mathbb{E}(T) = 0$.
- The R command $\operatorname{pt}(|x,\nu)$ gives the value $\Phi_{\nu}(x)$ of the CDF of the $t(\nu)$ -distribution.
- The R command $qt(\alpha,\nu)$ can be used to obtain the α -quantile of the $t(\nu)$ -distribution.
- More properties can be found on Wikipedia.