Стандарт AES

Чому потрібен новий стандарт?

- 1997 рік Distributed NET, атака «грубою силою» на DES 96 днів;
- 1998 рік 41 день;
- 1999 рік 2 дні і 8 годин;
- 1999 рік 22 години.
- Застаріла архітектура;
- Модифікації (3DES) повільні.

Конкурс симетричних алгоритмів

- 2 січня 1997 року Національний інститут стандартів і технологій США (NIST) оголошує конкурс на новий стандарт симетричного шифрування.
- Претендентами було 15 алгоритмів, з яких після першого етапу залишилося 5:
 - MARS (IBM) модифікований ланцюг Фейстеля;
 - RC6 (Ron Rivest, RSA модифікований ланцюг Фейстеля);
 - Rijndael (V.Rijmen, J.Daemen SP-мережа);
 - Gernant (Ross Anderson Fli Riham Lars Knudsen

Конкурс симетричних алгоритмів

- Переможець алгоритм Rijndael, який отримав назву AES.
- 2001 оголошено переможця;
- 2002 рік випущено стандарт;
- FIPS 197 специфікація шифру та опис стандарту.

Основні параметри алгоритму

- Apxiтектура: Substitution-Permutation network (SP-мережа);
- Вхідний блок: 128/192/256 бітів (128 бітів AES); за цикл обробляється цілий блок;
- Довжина ключа: 128/192/256 бітів.
- К-сть раундів: 10/12/14 (залежить від довжин вхідного блоку та ключа):

$ m N_r$	$N_b = 4$ (128 бітів)	N _b = 6 (192 біти)	$N_b = 8$ (256 бітів)
$N_k = 4$ (128 бітів)	10	12	14
$N_k = 6$ (192 біти)	12	12	14
$N_k = 8$ (256 бітів)	14	14	14

Блок-схема алгоритму

Процедура ExpandKey

- Процедура *ExpandKey* розгортання ключа шифрування:
 - $^{\scriptscriptstyle \rm D}$ Необхідна кількість раундових ключів $N_b \times (N_r + 1)$, де $N_b -$ довжина блоку; $N_r -$ кількість раундів;
 - Використовують заміну кожного байта ключа за таблицями заміни (функція SubWord);
 - Циклічний зсув процедурою RotWord:

Процедура AddRoundKey

• AddRoundKey – додавання раундового ключа:

Перетворення SubBytes

• Перетворення SubBytes виконує заміну кожного байта блоку за допомогою таблиці замін:

		У															
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	£7	CC	34	a5	e5	f1	71	d8	31	15
	3	04	с7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
x	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	се	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

Наприклад, байт {fe} буде замінено на {bb}.

Перетворення invSubBytes

• Під час розшифрування використовують обернену таблицю:

		У															
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	c3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
1	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5d	65	b6	92
	5	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
l _x	7	đ0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
^	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	C	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9c	ef
	е	a0	e0	3b	4d	ae	2a	f5	b0	c8	eb	bb	3с	83	53	99	61
\Box	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

Наприклад, байт {bb} буде замінено на {fe}.

Перетворення ShiftRows

• Суть перетворення полягає в циклічному зсуві рядків стану. Перший рядок залишається незмінним, другий — зсувається вліво на один байт, а перший байт записується в кінець рядка. Третій зсувається на два байти, а четвертий — на три. Обернене перетворення — зсув вправо.

$s_{0,0}$	S _{0,1}	S _{0,2}	S _{0,3}		S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
<i>s</i> _{1,0}	S _{1,1}	<i>s</i> _{1,2}	S _{1,3}	———	<i>S</i> _{1,1}	s _{1,2}	S _{1,3}	S _{1,0}
s _{2,0}	<i>s</i> _{2,1}	s _{2,2}	s _{2,3}	———	s _{2,2}	s _{2,3}	S _{2,0}	s _{2,1}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}	—	S _{3,3}	S _{3,0}	S _{3,1}	S _{3,2}

Перетворення MixColumns

Це перетворення виконується як множення квадратної матриці четвертого порядку на кожен стовпчик стану:

Тут множення також відбувається за правилами $GF(2^8)$.

Переваги AES

- Найбільш досліджений з сучасних криптоалгоритмів;
- Забезпечує високу криптографічну стійкість, стандартизований ISO;
- Оптимізований для виконання на 32-бітових платформах;
- Наявність апаратних акселераторів (включені до інструкцій Core iX Haswell)

Недоліки AES

- Наявність теоретичних атак зі складністю, меншою за атаку «грубою силою»;
- Знайдено недоліки алгоритму розгортання ключа;
- Не оптимізований для 64-бітових платформ;
- Деяка моральна застарілість;
- Наявність сучасніших алгоритмів криптографічного перетворення, в т.ч. тих, які стали відомими на конкурсі SHA-3.
- Недовіра до апаратної підтримки алгоритму у

Порівняння алгоритмів

No	Категорії	DES	AES
1.	Архітектура	Мережа Фейстеля	SP-мережа
2.	Вхідний блок	64 біта	128 бітів (128/192/256)
3.	Довжина ключа	56+8 бітів	128/192/256
4.	Кількість раундів обробки	16	10/12/14
5.	Еквівалентність прямого/оберненого перетворень	Ключі подаються в оберненому порядку	Обернений порядок процедур, ключів, блоків заміни