

599 Menlo Drive. Suite 100 Rocklin, California 95765, USA Office: (916) 624-8333

Fax: (916) 624-8003

General: info@parallax.com Technical: support@parallax.com Web Site: www.parallax.com Educational: www.stampsinclass.com

Sensirion SHT11 Sensor Module (#28018) Precision Temperature and Humidity Measurement

Introduction

When it comes to precision temperature and humidity measurement, Sensirion (www.sensirion.com) has simplified the process their SHT1x sensor series. Through a two-wire serial interface, both temperature and humidity can be read with excellent response time and accuracy. Parallax has simplified the use of the SHT11 by mounting it in a user-friendly 8-pin DIP module. The module includes a data-line pull-up and series limiter making it possible to connect directly to the BASIC or Javelin Stamp.

Features

Temperature range: -40 °F (-40 °C) to +254.9 °F (+123.8 °C)

Temp. accuracy: +/- 0.5 °C @ 25 °C

Humidity range: 0 to 100% RH

Absolute RH accuracy: +/- 3.5% RH

Low power consumption (typically 30 µW)

Connections

The SHT11 is interfaced to the Stamp over two I/O pins. The 4.7 k Ω pull-down resistor on the clock is optional but may be required if your application experiences sensor lock-up.

BASIC Stamp Application

The following BASIC Stamp application will read the SHT11 sensor module and display sensor counts, converted temperature and calibrated humidity. When running, the program output will appear as shown below:


```
File..... SHT11_Demo.BS2
Purpose... Interface to Sensirion SHT11 temperature/humidity sensor
Author.... Parallax
E-mail.... support@parallax.com
Started...
Updated... 19 JUL 2003

{$STAMP BS2}
{$PBASIC 2.5}
```

```
' This program demonstrates the interface and conversion of SHT11/15 data
' to usable program values. This program uses advanced math features of
' PBASIC, specifically the ** operator.
' For detailed application information on the use and application of the
' ** operator, see Dr. Tracy Allen's web page at this link:
' -- http://www.emesystems.com/BS2math1.htm
' For SHT11/15 documentation and app notes, visit:
' -- http://www.sensirion.com
. ______
' Revision History
 ______
' -----
' I/O Definitions
ShtData
          PIN
                                 ' bi-directional data
Clock
          PIN
' Constants
' -----
          CON %00011
                                  ' read temperature
ShtTemp
ShtHumi
          CON
                %00101
                                 ' read humidity
                %00110
ShtStatW
          CON
                                  ' status register write
ShtStatR
          CON
                %00111
                                  ' status register read
ShtReset CON %11110
                                  ' soft reset
Ack
          CON
NoAck
          CON
                1
                 0
No
          CON
Yes
          CON
                                  ' degrees symbol for DEBUG
DegSym CON
                186
```

```
ioByte
            VAR Byte
                                            ' data from/to SHT11
ackBit
             VAR
                    Bit
                                            ' ack/nak from/to SHT11
                                            ' timeout delay timer
toDelay
             VAR
                    Byte
timeOut
             VAR
                    Bit
                                            ' timeout status
             VAR
                    Word
                                            ' temp counts from SHT11
soT
             VAR
                                            ' temp - Celcius
tC
                    Word
                                            ' temp - Fahrenheit
tF
             VAR
                    Word
            VAR
                                            ' humidity counts
soRH
                    Word
rhLin
             VAR
                    Word
                                            ' humidity; linearized
rhTrue
             VAR
                    Word
                                            ' humidity; compensated
status VAR Byte
                                            ' status byte
' EEPROM Data
' Initialization
Initialize:
 GOSUB SHT Connection Reset
                                            ' reset device connection
 PAUSE 250
                                            ' let DEBUG window open
 DEBUG CLS,
       "SHT11 Sensor Demo", CR,
       "----", CR
' Program Code
Main:
   GOSUB SHT Measure Temp
   DEBUG CRSRXY, 0, 3,
         "soT..... ", DEC soT, CR,
         "tC..... ", DEC (tC / 10), ".", DEC1 tC, DegSym, " ", CR,
         "tF..... ", DEC (tF / 10), ".", DEC1 tF, DegSym, " "
   GOSUB SHT Measure Humidity
   DEBUG CRSRXY, 0, 7,
         "soRH..... ", DEC soRH, CR,
```

```
"rhLin.... ", DEC (rhLin / 10), ".", DEC1 rhLin, "% ", CR,
         "rhTrue...", DEC (rhTrue / 10), ".", DEC1 rhTrue, "%"
  PAUSE 1000
 LOOP
 END
' Subroutines
' connection reset: 9 clock cyles with ShtData high, then start sequence
SHT Connection Reset:
 SHIFTOUT ShtData, Clock, LSBFirst, [$FFF\9]
' generates SHT11 "start" sequence
'ShtData | |
'Clock | | | |
SHT Start:
 INPUT ShtData
                                               ' let pull-up take high
 LOW Clock
 HIGH Clock
 LOW ShtData
 LOW Clock
 HIGH Clock
 INPUT ShtData
 LOW Clock
 RETURN
' measure temperature
' -- celcius = raw * 0.01 - 40
' -- fahrenheit = raw * 0.018 - 40
SHT Measure Temp:
                                               ' alert device
 GOSUB SHT Start
 ioByte = ShtTemp
                                               ' temperature command
 GOSUB SHT Write Byte
                                               ' send command
 GOSUB SHT Wait
                                               ' wait for measurement
 ackBit = Ack
                                               ' another read follows
 GOSUB SHT Read Byte
                                               ' get MSB
 soT.HighByte = ioByte
 ackBit = NoAck
                                               ' last read
GOSUB SHT_Read_Byte
                                               ' get LSB
```

```
soT.LowByte = ioByte
  ' Note: Conversion factors are multiplied by 10 to return the
  ' temperature values in tenths of degrees
  tC = soT ** $1999 - 400
                                                ' convert to tenths C
  tF = soT ** $2E14 - 400
                                                ' convert to tenths F
 RETURN
' measure humidity
SHT Measure Humidity:
 GOSUB SHT Start
                                                ' alert device
 ioByte = ShtHumi
                                                ' humidity command
 GOSUB SHT Write Byte
                                                ' send command
 GOSUB SHT Wait
                                                ' wait for measurement
                                                ' another read follows
  ackBit = Ack
                                                ' get MSB
 GOSUB SHT Read Byte
  soRH.HighByte = ioByte
  ackBit = NoAck
                                                ' last read
  GOSUB SHT Read Byte
                                                ' get LSB
  soRH.LowByte = ioByte
  ' linearize humidity
  ' rhLin = (soRH * 0.0405) - (soRH^2 * 0.0000028) - 4
  ' for the BASIC Stamp:
    rhLin = (soRH * 0.0405) - (soRH * 0.002 * soRH * 0.0014) - 4
  ' Conversion factors are multiplied by 10 to return tenths
  rhLin = (soRH ** $67AE) - (soRH ** $83 * soRH ** $5B) - 40
  ' temperature compensated humidity
    rhTrue = (tc - 25) * (soRH * 0.00008 + 0.01) + rhLin
  ' Conversion factors are multiplied by 10 to return tenths
  ' -- simplified
  rhTrue = (tC - 250) * (soRH ** $34) + rhLin
  RETURN
' sends "status"
SHT Write Status:
 GOSUB SHT Start
                                                ' alert device
ioByte = ShtStatW
                                                ' write to status reg cmd
```

```
' send command
 GOSUB SHT Write Byte
 ioByte = status
 GOSUB SHT Write Byte
 RETURN
' returns "status"
SHT Read Status:
 GOSUB SHT Start
                                            ' alert device
 ioByte = ShtStatW
                                            ' write to status reg cmd
 GOSUB SHT Read Byte
                                            ' send command
 ackBit = NoAck
                                            ' only one byte to read
 GOSUB SHT Read Byte
 RETURN
' sends "ioByte"
' returns "ackBit"
SHT Write Byte:
 SHIFTOUT ShtData, Clock, MSBFirst, [ioByte] ' send byte
 SHIFTIN ShtData, Clock, LSBPre, [ackBit\1] ' get ack bit
 RETURN
' returns "ioByte"
' sends "ackBit"
SHT Read Byte:
 SHIFTIN ShtData, Clock, MSBPre, [ioByte] ' get byte
 SHIFTOUT ShtData, Clock, LSBFirst, [ackBit\1] ' send ack bit
 INPUT ShtData
                                           ' release data line
 RETURN
' wait for device to finish measurement (pulls data line low)
' -- timeout after ~1/4 second
SHT Wait:
                                           ' data line is input
 INPUT ShtData
                                           ' assume no timeout
 timeOut = No
                                           ' wait ~1/4 second
 FOR toDelay = 1 TO 250
  IF (ShtData = 0) THEN EXIT
  PAUSE 1
 NEXT
 RETURN
```

In high humidity applications, the SHT11 heater can be switched on briefly to prevent condensation. Another use of the heater is to test the operation of the sensor: by reading before enabling the heater and immediately after the sensor can be verified by noting a higher temperature and lower humidity. The following subroutines can be used to switch the SHT11 heater on and off.