TRY 1

A. (5, 12, 13) B. (7, 24, 25) C. (9, 40, 41) D. (9, 60, 61)

1. Which of the following geometrical concepts is non-dimensional? A. Line B. Line segment C. Plane D. Point 2. Two complementary angles are in the ratio 2:3. Find the difference between the angles. A. 18^{0} B. 36° C. 54^{0} D. 63° 3. Which of the following dimensions will NOT represent the dimensions of a triangle? A. 5*cm*, 7*cm* and 14*cm* B. 7cm, 8cm and 13cm C. 8m, 5m and 12m D. 12*cm*, 9*cm* and 7*cm* 4. Which of the following properties of angles formed by a transversal on parallel lines is NOT true? A. Adjacent angles are equal. B. Alternate angles are equal. C. Correspondent angles are equal. D. Vertically opposite angles are equal. 5. A locus of points equidistant from a fixed point is a A. bisection of two sides or three sides of a triangle. B. bisector of an angle. C. circle with centre at a fixed point. D. perpendicular bisector of a given line. 6. Which of the following is not needed when you are measuring a line segment? A. A pair of compasses B. A pair of dividers C. Pencil D. Ruler 7. Which of the following is NOT a Pythagorean triplet?

8	3. The angle of depression from the top of a vertical cliff 220m in height to a ship is 28°. How far is the ship from the base of the cliff?
	A. 411m
	B. 412m
	C. 413m
	D. 414m
ç	2. The sum of the interior angles of a polygon is 1440. Find the number of sides of this
	polygon.
	A. 7
	B. 8
	C. 9 D. 10
1	0. How many non-overlapping triangles can be found in a 10-sided polygon?
,	A. 6
	B. 8
	C. 10
	D. 12
1	1. The bearing of a point Q from another point P is 040° . Find the bearing of P from Q .
	A. 040^{o}
	B. 130°
	C. 160°
	D. 220°
1	2. Which of the following vectors is parallel to the vector $\binom{-4}{3}$?
	A. $\binom{12}{9}$
	B. $\binom{8}{6}$
	· · · · · · · · · · · · · · · · · · ·
	C. $\binom{-8}{6}$
	D. $\binom{-8}{-6}$
1	3. Find the length of the vector $\binom{-8}{6}$
	A10
	B. 10
	C. $\sqrt{10}$
	D. $\sqrt{28}$
	A. 130
1	4. The parallel sides of a trapezium are 11cm and 8cm. If the distance between the parallel
	lines is 9cm, find the area of the trapezium.
	A. 28cm ²
	B. 85.5cm ²
	C. 792cm ²
	D. 396cm ²

15. The radius of a circle is 21cm. An arc subtends an angle of [81] ^oat the centre. Find
the length of the arc. ($Take \pi = 22/7$)
A. 27.9cm
B. 279cm
C. 29.7cm
D. 297cm
16. A cuboid has dimensions 10cm x 6cm x 5cm. Find the total surface area.
A. 280cm ²
B. 300cm ²
C. 360cm ²
D. 600cm ²
17. Find the total surface area of a rectangular tank of length 8cm, breadth 5cm and height
6cm. A. 118cm ²
B. 218cm ²
C. 236cm ²
D. 240cm ²
18. The circumference of a circle is 44cm. Find the area of the circle.
A. 154cm ²
B. 127cm ²
C. 77cm ²
D. 22cm ²
19. A number is chosen at random from the set {1, 2, 3, 4, 5, 6}. What is the probability that
it is odd?
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$
20. A box contains 7 blue, 5 red and 8 white identical balls. If ball is picked at random from
the box, what is the probability that it is white?
A. $\frac{3}{5}$
A. 5
B. $\frac{2}{5}$
C. $\frac{7}{20}$
D. $\frac{1}{4}$
Ţ
21. Find the odd one out.
A. Mean B. Median
C. Mode
D. Range
2. Amig

- 22. Scores in Mathematics test have a mean score of 49 and a standard deviation of 4. What is the variance of the scores?
 - A. 2
 - B. 4
 - C. 7
 - D. 16

The table below shows the distribution of marks obtained by twenty pupils in a test.

Marks	1	2	3	4	5	6	7
No. of students	1	3	5	6	2	1	2

Use the table to answer Questions 23 to 25.

- 23. What is the modal mark of the distribution?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- 24. Find the median mark.
 - A. 3
 - B. 4
 - C. 5
 - D. 6
- 25. Find the mean mark for the distribution.
 - A. 3.8
 - B. 2.9
 - C. 2.7
 - D. 1.9

SECTION B

Answer three (3) questions in this section.

- 1. (a) P, Q and R are three villages on a level ground. Q is 3km on a bearing 040^o from P, while R is 4km on the bearing 130^o from Q. calculate the distance and bearing of P from R. State \overrightarrow{PR} in distance bearing form.
 - (b) If $a = {2 \choose 3}$, $b = {4 \choose 5}$ and $r = a + \frac{1}{2}(a b)$, find
 - (i) r
 - (ii) |r|
- 2. (a) Using a ruler and a pair of compasses only, construct;
 - (i) $\triangle ABC$ such that |AB| = 8cm, $\angle ABC = 60^{\circ}$ and $\angle BAC = 75^{\circ}$.
 - (ii) the locus l_1 of points equidistant from B and C.
 - (iii) the locus l_2 of points equidistant from A and B.
 - (iv) locate O, the point of intersection of l_1 and l_2 inside the $\triangle ABC$ equidistant from A, B and C.
 - (v) construct the circle with centre O, which passes through A.
 - (b) Measure
 - (i) |*OA*|
 - (ii) angle ACB
 - (c) The five interior angles of an octagon are 130, 120, 110, 160 and 140. If the remaining angles are equal, find the size of each of the remaining angles.
- 3. (a) If $270 < \emptyset < 360$ and $\cos \emptyset$ 0.6, find $\sin \emptyset$ and $\tan \emptyset$ without using tables
 - (b) Two points A and C on opposite sides of a vertical pole are on the same level ground as the foot of the pole, B. the angles of elevation of the top of the pole D from A and C respectively are 30° and 48° respectively. If the distance between A and C is 50m, find /BD/ the height of the pole.

1 (a)

Triangle *PQR* is a right-angled triangle.

Applying Pythagoras' theorem

$$|PR|^2 = |PQ|^2 + |QR|^2$$

$$|PR|^2 = 3^2 + 4^2$$

$$|PR|^2 = 25$$

$$|PR| = \sqrt{25} = 5$$

 \therefore The distance of *P* from *R* is 5km

Also,
$$tan\theta = \frac{3}{4}$$

$$\theta = \tan^{-1}\left(\frac{3}{4}\right) = 36.8699 = 37^{\circ}$$

The bearing of P from R is $360^{\circ} - 37^{\circ} - 50^{\circ} = 273^{\circ}$ OR $270^{\circ} + 3^{\circ} = 273^{\circ}$

$$\therefore \overrightarrow{PR} = (5km, 273^{o})$$

1 (b) Given
$$a = {2 \choose 3}$$
, $b = {4 \choose 5}$ and $r = a + \frac{1}{2}(a - b)$,

(i)
$$r = a + \frac{1}{2}(a - b)$$

$$r = {2 \choose 3} + \frac{1}{2} \left[{2 \choose 3} - {4 \choose 5} \right]$$

$$r = {2 \choose 3} + \frac{1}{2} {-2 \choose -2}$$

$$r = {2 \choose 3} + {\frac{1}{2} \times -2 \choose \frac{1}{2} \times -2}$$

$$r = {2 \choose 3} + {-1 \choose -1}$$

$$r = {1 \choose 2}$$
(ii)
$$r = {1 \choose 2}$$

$$|r| = \sqrt{1^2 + 2^2}$$

$$|r| = \sqrt{1 + 4}$$

 $|r| = \sqrt{5}$ units

(b) (i)
$$|OA| = 5.6 cm$$

(ii) angle
$$ACB = 45^{\circ}$$

2 (c). An octagon has eight sides. Since the remaining three angles are equal, we will represent each with y

$$130 + 120 + 110 + 160 + 140 + y + y + y = 180(8 - 2)$$
$$660 + 3y = 1080$$
$$3y = 1080 - 660$$
$$3y = 420$$
$$y = 140$$

$$3 \text{ (a) } \cos\theta = 0.6 = \frac{3}{5}$$

This means that the adjacent is 3 and the hypotenuse is 5

Using Pythagoras Theorem;

$$x^{2} + 3^{2} = 5^{2}$$

$$x^{2} + 9 = 25$$

$$x^{2} = 25 - 9$$

$$x^{2} = 16$$

$$x = 4$$

Since θ is in the fourth quadrant,

$$sin\theta = -\frac{4}{5}$$
 and $tan\theta = -\frac{4}{3}$