2. Moto unidimensionale

Consideriamo una guida liscia nello spazio tridimensionale, individuata da una curva regolare non degenere $\gamma\colon I\to\mathbb{R}^3,\,I\subseteq\mathbb{R}$. Possiamo sempre assumere che la parametrizzazione della curva sia tale che $\|\gamma'(s)\|=1$ per ogni $s\in I$ e che I contenga s=0, di modo che $\gamma(0)$ sia un punto del sostegno della curva. Una curva così parametrizzata è dotata di una orientazione naturale in ogni suo punto $\gamma(s)$, fornita dal versore tangente $\mathbf{t}(s)\coloneqq\gamma'(s)\neq\mathbf{0}$. È analogamente possibile introdurre $\hat{\mathbf{n}}(s)\coloneqq\frac{1}{\kappa(s)}\gamma''(s)$, con $\kappa(s)\coloneqq\|\gamma''(s)\|$ curvatura, e $\hat{\mathbf{b}}(s)\coloneqq\hat{\mathbf{t}}(s)\wedge\hat{\mathbf{n}}(s)$. Si tratta cioè di una parametrizzazione completamente analoga a quella intrinseca già vista per le curve definite su intervalli $[a,b]\subset\mathbb{R}$, in cui però ammettiamo che il parametro s possa avere anche segno negativo, potendo essere l'"origine" del riferimento $\gamma(0)$ diverso da un estremo della curva. Anche in questo contesto si dice che s è l'ascissa curvilinea (con segno) della curva, in analogia con quanto visto con la parametrizzazione intrinseca già introdotta.

Sia dato un punto materiale (P,m) vincolato a muoversi su $\gamma\colon I\to\mathbb{R}^3,\ I\subseteq\mathbb{R}$, curva che assumiamo parametrizzata intrinsecamente e che rappresenta una guida liscia che vincola il suo moto. La traiettoria di P, sia essa $\mathbf{x}\colon\mathbb{R}\to\mathbb{R}^3$, sarà quindi specificata da una legge oraria, ovvero una funzione, che assumeremo di classe almeno \mathcal{C}^2 , che fornisce l'ascissa curvilinea del punto materiale lungo γ a dato istante, ovvero $s\colon\mathbb{R}\to I$, di modo che $\mathbf{x}=\gamma\circ s$. Si noti che non richiediamo che $\dot{s}\neq 0$ per ogni istante t in questo contesto (ovvero ammettiamo che il punto possa avere velocità nulla). Alla luce di questa parametrizzazione, è utile scomporre la forza agente sul punto materiale in ciascuna posizione di ascissa curvilinea s separando il contributo vincolare da quello attivo, ovvero $m\ddot{\mathbf{x}}=\mathbf{F}^{(a)}(t,\mathbf{x},\dot{\mathbf{x}})+\mathbf{F}^{(v)}(t,\mathbf{x})$, ed esprimere l'equazione nella base fornita dalla terna di Frenet della curva per sfruttare la natura intrinsecamente unidimensionale del moto. Sappiamo infatti che

$$\dot{\mathbf{x}} = \dot{s}\hat{\mathbf{t}}(s), \qquad \ddot{\mathbf{x}} = \ddot{s}\hat{\mathbf{t}}(s) + \dot{s}^2\kappa(s)\hat{\mathbf{n}}(s)$$

per cui nel punto di ascissa curvilinea s devono valere tre equazioni⁸

(1.3)
$$m\ddot{s} = \langle \mathbf{F}^{(a)}(t, s, \dot{s}), \hat{\mathbf{t}}(s) \rangle,$$

(1.4)
$$m\kappa(s)\dot{s}^2 = \langle \mathbf{F}^{(a)}(t,s,\dot{s}) + \mathbf{F}^{(v)}(t,s), \hat{\mathbf{n}}(s) \rangle,$$

(1.5)
$$0 = \langle \mathbf{F}^{(a)}(t, s, \dot{s}) + \mathbf{F}^{(v)}(t, s), \hat{\mathbf{b}}(s) \rangle.$$

Abbiamo qui usato il fatto che la guida è *liscia*, per cui $\mathbf{F}^{(v)}$ è ortogonale per ipotesi a $\hat{\mathbf{t}}$. L'obiettivo dell'indagine è tipicamente ottenere la legge oraria s(t) disponendo di opportune condizioni iniziali: per esempio, avendo scelto t=0 come tempo iniziale, sia $s(0)=s_0$ (posizione iniziale lungo la curva, corrispondente a $\mathbf{x}(0)=\boldsymbol{\gamma}(s(0))$) e $\dot{s}(0)=v_0$ (ovvero, velocità iniziale $\dot{\mathbf{x}}(0)=v_0\hat{\mathbf{t}}(s_0)$). Assumiamo anche di *conoscere* la curva $\boldsymbol{\gamma}$ e le sue proprietà geometriche, e la forma funzionale di $\mathbf{F}^{(a)}$. Chiamando

$$f(t, s, \dot{s}) \coloneqq \langle \mathbf{F}^{(\mathrm{a})}(t, s, \dot{s}), \hat{\mathbf{t}}(s) \rangle$$

la prima equazione assume la forma più semplice

$$m\ddot{s} = f(t, s, \dot{s}).$$

⁷Data una generica curva $\boldsymbol{\psi}: J \to \mathbb{R}$ regolare non degenere, possiamo infatti scegliere un punto $u_0 \in J$ come punto di "origine" e introdurre la parametrizzazione $s(u) = \int_{u_0}^{u} \|\boldsymbol{\psi}'(v)\| \, dv$ di modo che $\boldsymbol{\gamma} = \boldsymbol{\psi} \circ s^{-1}$ sia parametrizzata come richiesto con $s(u_0) = 0$ e $s'(u) > 0 \ \forall u \in J$.

⁸Nelle equazioni seguenti faremo un lieve abuso di notazione. La forza attiva è in generale una funzione del tipo $\mathbf{F}^{(a)}(t,\mathbf{x},\dot{\mathbf{x}})$ che quindi si può esprimere come $\mathbf{F}^{(a)}(t,\boldsymbol{\gamma}(s),\dot{s}\hat{\mathbf{t}}(s))$ esplicitando la dipendenza dalla legge oraria s. Scrivendo $\mathbf{F}^{(a)}(t,s,\dot{s})$ al posto di $\mathbf{F}^{(a)}(t,\boldsymbol{\gamma}(s),\dot{s}\hat{\mathbf{t}}(s))$ intendiamo mettere in evidenza la dipendenza da s e dalle sue derivate, essendo $\boldsymbol{\gamma}$ e $\hat{\mathbf{t}}$ supposte note. Ragionamento analogo si applica alla notazione adottata per $\mathbf{F}^{(v)}$.

Questa equazione può essere integrata più o meno facilmente a seconda della forma funzionale di f. Una classe particolarmente importante è quella dei sistemi autonomi, in cui f non dipende esplicitamente dal tempo. Tali sistemi sono particolarmente importanti dato che, nei problemi fisici, f solitamente non manifesta una dipendenza esplicita dal tempo per via dell'invarianza galileiana.

Se $f \equiv f(\dot{s})$, per esempio, si può scrivere l'equazione del primo ordine $\dot{v} = f(v)$ per la variabile $v = \dot{s}$. Questa equazione ammette un'unica soluzione se f è lipschitziana. Assumendo che in un intorno di v_0 si abbia $f(v) \neq 0$, in tale soluzione la soluzione soddisfa una equazione nella forma implicita

$$m\ddot{s} = f(\dot{s}) \Rightarrow G(v) \coloneqq m \int_{v_0}^{v} \frac{1}{f(u)} du = t.$$

Questo riduce il problema dell'integrazione delle equazioni del moto ad una equazione differenziale del primo ordine nella forma $G(\dot{s}) - t = 0$, la cui successiva integrazione permette, in linea di principio, di ottenere s tramite un'ulteriore quadratura.

Il caso $f \equiv f(s)$ invece merita una analisi più approfondita. Nel seguito, senza perdere in generalità, assumiamo, come sopra, come istante iniziale t = 0 e indichiamo con $s_0 := s(0)$ e $v_0 := \dot{s}(0)$ le condizioni iniziali del moto del nostro punto materiale su una guida liscia.

2.1. Forza posizionale $f \equiv f(s)$. Se la forza attiva è posizionale, ovvero $\mathbf{F}^{(a)} \equiv \mathbf{F}^{(a)}(\mathbf{x})$, allora $f \equiv f(s)$, di modo che il moto equivale a quello di un punto materiale soggetto ad una forza conservativa in una dimensione. Detta s la generica ascissa curvilinea toccata dal punto materiale durante il moto, è infatti possibile introdurre il potenziale

$$V(s) \coloneqq -\int_{s_0}^s f(x) \, \mathrm{d} \, x,$$

nell'ipotesi che f sia integrabile sull'intervallo considerato. L'utilità dell'aver introdotto V sta nel fatto che la quantità

$$E(s,\dot{s}) = \frac{1}{2}m\dot{s}^2 + V(s)$$

risulta conservata durante il moto, come si vede derivando rispetto al tempo, e dunque essa rimane uguale al valore $E = \frac{1}{2}mv_0^2 + V(s_0)$ dell'istante iniziale t = 0. Inoltre, il fatto che il contributo cinetico debba essere sempre positivo fa sì che il moto possa avvenire solo in regioni in cui

$$E - V(s) \ge 0$$
.

Assumiamo ora che $v_0 \neq 0$. Se E - V(s) > 0 in un intorno di s_0 . Per s in tale intorno, l'espressione dell'energia meccanica implica

$$1 = \sqrt{\frac{m}{2}} \frac{\operatorname{sign}(v_0)}{\sqrt{E - V(s)}} \frac{\mathrm{d}\,s}{\mathrm{d}\,t} \Rightarrow t(s) = \sqrt{\frac{m}{2}} \int\limits_{s_0}^s \frac{\operatorname{sign}(v_0)}{\sqrt{E - V(x)}} \,\mathrm{d}\,x \equiv \int\limits_{s_0}^s \frac{\operatorname{sign}(v_0)}{\sqrt{\Phi(x)}} \,\mathrm{d}\,x,$$

che è la soluzione implicita del problema. La funzione

$$\Phi(s) := 2 \frac{E - V(s)}{m}$$

contiene in particolare tutte le informazioni sulle traiettorie ammesse. Il moto può infatti verificarsi solo nelle regioni in cui $\Phi(s) > 0$, mentre gli (eventuali) zeri della funzione separano la curva γ in porzioni mutualmente inaccessibili.

Per meglio fissare le idee, supponiamo di avere, nella notazione precedente, $v_0 > 0$: se $\Phi(x) > 0$ per ogni $x \in [s_0, s]$, allora

$$t(s) = \int_{s_0}^{s} \frac{1}{\sqrt{\Phi(x)}} \, \mathrm{d} x$$

è una funzione con derivata strettamente positiva e quindi invertibile: essa quantifica il tempo (finito) necessario al punto materiale per raggiungere s a partire da s_0 .

Se esiste $\hat{s}>s_0$ tale che $\Phi(\hat{s})=0$ e $\Phi(x)>0$ per $x\in[s_0,\hat{s}),$ il tempo necessario per raggiungere tale punto a partire da s_0

$$t(\hat{s}) = \int_{s_0}^{\hat{s}} \frac{1}{\sqrt{\Phi(x)}} \, \mathrm{d}x$$

può essere finito o infinito. Assumendo in particolare che Φ sia analitica in \hat{s} , questo dipenderà dal fatto che \hat{s} sia uno zero semplice o multiplo di $\Phi(s)$, rispettivamente.

Se \hat{s} è uno zero multiplo di $\Phi(s)$, l'integrale diverge: questo fatto è coerente con il teorema di Cauchy sull'unicità delle soluzioni delle equazioni differenziali. Osservando infatti che le equazioni del moto si scrivono come $\dot{s}=\sqrt{\Phi(s)}$, nel caso in cui \hat{s} sia uno zero multiplo, la quantità $\sqrt{\Phi(s)}$ è lipschitziana in un intorno di \hat{s} , fatto che garantisce l'unicità della soluzione. D'altra parte, $s(t)=\hat{s}$ risolve l'equazione e pertanto è l'unica soluzione ammessa passante per \hat{s} : ogni traiettoria ottenuta con diversa condizione iniziale può solo avvicinarsi al punto \hat{s} senza mai toccarlo (diversamente, vi sarebbero due possibili soluzioni passanti per \hat{s}). Si noti inoltre che, coerentemente con questo fatto, la forza applicata al punto materiale in uno zero multiplo \hat{s} è nulla, $\Phi'(\hat{s})=\frac{2}{m}f(\hat{s})=0$, per cui in effetti un punto materiale in \hat{s} non accelera.

Discorso diverso vale per gli zeri semplici. Se \hat{s} è uno zero semplice, la formula precedente predice che esso verrà toccato in un tempo finito $t(\hat{s})$. Questo peraltro mostra che esistono almeno due soluzioni dell'equazione differenziale $\dot{s} = \sqrt{\Phi(s)}$ passanti per \hat{s} (ovvero, la soluzione dell'equazione con condizione iniziale $s(0) = s_0$ e quella con condizione iniziale $s(0) = \hat{s}$). La ragione, nuovamente, è che in questo caso $\sqrt{\Phi(s)}$ non è lipschitziana in un intorno di \hat{s} : pur fissando la condizione iniziale $s(0) = \hat{s}$ (automaticamente associata a $\dot{s}(0) = 0$) l'unicità non è garantita e sono ammesse più soluzioni. D'altra parte, se il punto materiale si trova in uno zero semplice di Φ con velocità nulla, l'evoluzione fisica del suo moto (ovvero quale delle possibili soluzioni si realizzerà) sarà determinata dal segno della forza $\Phi'(\hat{s}) = \frac{2}{m} f(\hat{s}) \neq 0$ che non permette alla velocità di rimanere nulla.

Anche se accessibili di per sé, gli zeri semplici di $\Phi(s)$ costituiscono comunque la frontiera di regioni di accessibilità sulla curva, come si vede dai seguenti risultati.

DEFINIZIONE 2.1. Gli zeri semplici di $\Phi(s)$ sono detti punti di inversione.

Teorema 2.1. Il moto tra due punti di inversione consecutivi \hat{s}_- ed $\hat{s}_+ > \hat{s}_-$ è periodico di periodo

$$\tau = \int_{\hat{s}_{-}}^{\hat{s}_{+}} \frac{2}{\sqrt{\Phi(x)}} \, \mathrm{d} \, x.$$

DIMOSTRAZIONE. Siano \hat{s}_{-} ed \hat{s}_{+} due zeri semplici consecutivi di $\Phi(s)$. Per ipotesi, nell'intervallo $[\hat{s}_{-},\hat{s}_{+}]$ possiamo scrivere $\Phi(s)=(s-\hat{s}_{-})(\hat{s}_{+}-s)\phi(s)$ con $\phi(s)>0$ per $s\in[\hat{s}_{-},\hat{s}_{+}]$. La velocità del punto materiale si annulla in \hat{s}_{\pm} mentre la forza ha in questi punti segno opposto:

$$f(\hat{s}_{+}) = \Phi'(\hat{s}_{+}) = -(\hat{s}_{+} - \hat{s}_{-})\phi(\hat{s}_{+}) < 0, \qquad f(\hat{s}_{-}) = \Phi'(\hat{s}_{-}) = (\hat{s}_{+} - \hat{s}_{-})\phi(\hat{s}_{-}) > 0,$$

il che fa sì che il moto si inverta in questi punti estremali. Partendo da $s_0 \in (\hat{s}_-, \hat{s}_+)$ con $v_0 > 0$ al tempo t = 0, il moto prosegue quindi fino a \hat{s}_+ dove la velocità si annulla e, per effetto di una forza negativa, il punto materiale subisce una accelerazione verso \hat{s}_- che lo fa ripassare da s_0 con velocità opposta in segno, fino ad arrivare in \hat{s}_- , dove nuovamente il moto si inverte e il punto torna infine in s_0 con stessa velocità v_0 dopo un tempo τ : da qui in poi il moto si riproduce identico essendosi verificate nuovamente, al tempo τ , le stesse condizioni cinematiche osservate al tempo t = 0. Il periodo quindi è

$$\tau = \int_{s_0}^{\hat{s}_+} \frac{1}{\sqrt{\Phi(x)}} \, \mathrm{d} \, x - \int_{\hat{s}_+}^{\hat{s}_-} \frac{1}{\sqrt{\Phi(x)}} \, \mathrm{d} \, x + \int_{\hat{s}_-}^{s_0} \frac{1}{\sqrt{\Phi(x)}} \, \mathrm{d} \, x = 2 \int_{\hat{s}_-}^{\hat{s}_+} \frac{1}{\sqrt{\Phi(x)}} \, \mathrm{d} \, x. \qquad \Box$$

Esercizio 1.1 — Un punto materiale di massa m si muove lungo una guida liscia fissa γ ed è soggetto ad un potenziale lungo la guida nella forma $V(s) = s^{2n}$. Supponendo che il punto inizi a muoversi per t = 0 da s(0) = 0 con energia meccanica E > 0, si dimostri che il periodo non dipende da E se e solo se n = 1: si calcoli l'espressione del periodo in questo caso speciale. $\lceil \tau = \sqrt{2m\pi} \rceil$

2.2. Piano delle fasi. Nella forma $m\ddot{s} = f(t, s, \dot{s})$, l'equazione del moto equivale ad una coppia di equazioni del primo ordine in uno spazio bidimensionale; ovvero, rinominando x la variabile s ed indicando con $y = \dot{s}$, possiamo scrivere

$$\dot{y} = \frac{1}{m}f(t, x, y), \qquad \dot{x} = y.$$

DEFINIZIONE 2.2. Il piano \mathbb{R}^2 in cui varia la coppia $\mathbf{z} := (x,y)$ prende il nome di *piano delle* fasi. Su di esso, è definito il campo vettoriale $\mathbf{f} : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ tale che $(t,\mathbf{z}) \mapsto \left(y,\frac{1}{m}f(t,x,y)\right)$, le cui curve integrali, ovvero le curve $\mathbf{z}(t)$ soluzioni dell'equazione $\dot{\mathbf{z}} = \mathbf{f}(t,\mathbf{z})$, sono dette curve di fase del sistema. L'operatore \mathbf{g}^t che associa ad un certo punto del piano delle fasi $\mathbf{z}_0 = (x_0,y_0)$ il punto $\mathbf{z}(t)$ ottenuto per mezzo dell'evoluzione indotta da \mathbf{f} è detto flusso di fase del sistema ed agisce come

$$g^t : \mathbf{z}_0 \mapsto \mathbf{z}(t) = g^t \mathbf{z}_0, \quad \mathbf{z}(0) = \mathbf{z}_0.$$

Un punto nel piano delle fasi $\mathbf{z}=(x,y)$ corrisponde quindi ad uno stato cinematico del punto materiale, ovvero alla sua posizione e alla sua velocità.

DEFINIZIONE 2.3. Un punto $(x_0, 0)$ si dice *di equilibrio* se il flusso di fase associato si riduce al punto stesso, ovvero $g^t(x_0, 0) = (x_0, 0) \ \forall t > 0$.

Se $f \equiv f(s)$ le equazioni del moto implicano, come abbiamo visto, la conservazione dell'energia $E(s,\dot{s}) \coloneqq \frac{1}{2}m\dot{s}^2 + V(s)$, dove come sopra -V'(s) = f(s), pertanto le curve di fase sono isoenergetiche, ovvero E(x,y) non cambia lungo una curva di fase: fissato $e \in \mathbb{R}$, l'insieme di livello

$$\mathcal{M}(e) \coloneqq \left\{ (x,y) \in \mathbb{R}^2 \colon E(x,y) \coloneqq \frac{1}{2} m y^2 + V(x) = e \right\}$$

contiene le curve di fase di energia e. L'insieme $\mathcal{M}(e)$ è in generale costituito da diverse componenti connesse, la cui regolarità è garantita se $\nabla E(x,y) = (V'(x), my) \neq \mathbf{0}$ in ogni loro punto.

Esercizio 1.2 — Dimostrare che la condizione $E(x,y) := \frac{1}{2}my^2 + V(x) = e$ individua una curva regolare in un intorno di $\mathbf{z}_0 = (x_0, y_0) \in \mathcal{M}(e)$ se $\nabla E(x_0, y_0) \neq \mathbf{0}$.

Soluzione. — Assumiamo per esempio che $\partial_x E(x_0, y_0) = V'(x_0) \neq 0$. Il teorema della funzione implicita garantisce che esiste un intorno I di x_0 in cui si può trovare una funzione f di modo che E(x, f(x)) = e in tale intorno. Similmente se $\partial_y E(x_0, y_0) = y_0 \neq 0$ esiste una funzione g in un intorno J di y_0 tale

che E(g(y), y) = e in tale intorno. Ciò significa che, a seconda delle circostanze, possiamo localmente parametrizzare $\mathcal{M}(e)$ come una curva $\boldsymbol{\gamma}(t) = (t, f(t))$ con $t \in I$ o $\boldsymbol{\gamma}(t) = (g(t), t)$, con $t \in J$. In entrambi i casi il vettore tangente non è mai nullo, avendo sempre una componente uguale ad 1.

La condizione di punto di equilibrio nel caso di forze posizionali equivale a richiedere che $V'(x_0)=0$, ovvero che x_0 sia un punto stazionario del potenziale: in virtù del teorema di Cauchy, infatti, la condizione iniziale $(x_0,0)$ non può che evolvere in se stessa se $V'(x_0)=0$. I punti di equilibrio quindi sono proprio i punti *critici*, ovvero i punti in cui $\nabla E(x,y)=0$ e la regolarità di $\mathcal{M}(e)$ viene meno.

2.2.1. Stabilità. Per classificare i punti critici, diamo la seguente definizione.

DEFINIZIONE 2.4. Un punto del piano delle fasi $\mathbf{z}_0 = (x_0, 0)$ si dice di equilibrio stabile secondo Lyapunov se $\forall \epsilon > 0 \; \exists \delta > 0$ per cui, denotato $\mathbf{z} = (x, y)$ si ha che

$$\|\mathbf{z} - \mathbf{z}_0\| < \delta \Rightarrow \|\mathbf{g}^t \mathbf{z} - \mathbf{z}_0\| \le \epsilon, \quad \forall t > 0.$$

Il punto si dice asintoticamente stabile se esiste $\delta>0$ tale per cui

$$\|\mathbf{z} - \mathbf{z}_0\| < \delta \Rightarrow \lim_{t \to +\infty} \mathbf{g}^t \mathbf{z} = \mathbf{z}_0.$$

L'insieme $\mathcal{B}(\mathbf{z}_0) := \{\mathbf{z} \in \mathbb{R}^2 \colon \lim_{t \to +\infty} \mathbf{g}^t \mathbf{z} = \mathbf{z}_0\}$ è detto bacino di attrazione di \mathbf{z}_0 . Un punto non stabile si dice infine instabile.

In altre parole, un punto è stabile secondo Lyapunov se, avviando il moto in prossimità di tale punto nel piano delle fasi, non ce ne si allontana mai.

Se la forza in gioco è posizionale allora vale la seguente

PROPOSIZIONE 2.2. Si assuma V funzione di classe almeno C^2 in un intorno di x_0 , punto di minimo relativo isolato di V; allora x_0 è un punto di equilibrio stabile secondo Lyapunov.

DIMOSTRAZIONE. Fissato un qualunque intorno I di $\mathbf{z}_0 := (x_0, 0)$, e osservando che $E(x_0, 0) = V(x_0)$ valore del potenziale nel punto di minimo relativo isolato, sia

$$J_{\delta}(\mathbf{z}_0) := \{(x, y) \in \mathbb{R}^2 : E(x, y) < V(x_0) + \delta\}.$$

Ovviamente $\mathbf{z}_0 \in J_\delta(\mathbf{z}_0)$. L'insieme $J_\delta(\mathbf{z}_0)$ ha come caratteristica il fatto che, per via della conservazione dell'energia meccanica, se $\mathbf{z} \in J_\delta(\mathbf{z}_0)$ allora $\mathbf{g}^t\mathbf{z} \in J_\delta(\mathbf{z}_0) \ \forall t > 0$. In questo insieme potremo isolare la componente connessa contente \mathbf{z}_0 , sia essa $\hat{J}_\delta(\mathbf{z}_0)$. Esso è limitata: nella direzione y, dovrà essere $y^2 < \frac{2}{m}(V(x_0) - V(x) + \delta) \le \frac{2}{m}\delta$; analogamente $V(x) < V(x_0) + \delta$ implica che per un $\mathbf{z} = (x,y) \in \hat{J}_\delta(\mathbf{z}_0)$ e δ sufficientemente piccolo, si ha $\frac{1}{2}V''(\xi)(x-x_0)^2 < \delta$ per un qualche $\xi \in (x_0,x)$ e con $V''(\xi) > 0$, ovvero $(x-x_0)^2 < \frac{2\delta}{V''(\xi)}$. È possibile quindi trovare δ tale che $\hat{J}_\delta(\mathbf{z}_0)$ è in I: essendo \hat{J}_δ invariante sotto \mathbf{g}^t per via della conservazione dell'energia — ovvero tutte le traiettorie che iniziano in essa non ne usciranno mai — la definizione di punto stabile secondo Lyapunov è soddisfatta.

Esempio 1.3 — Si noti che se un punto è di equilibrio stabile secondo Lyapunov non è necessariamente un punto di minimo relativo dell'energia potenziale: questo si vede facilmente ammettendo che V(x) sia non analitica in un qualche suo punto. Supponiamo, per esempio, di avere un punto materiale di massa unitaria in moto nel potenziale

$$V(x) = \begin{cases} x^2 \cos \frac{1}{x} & x \neq 0\\ 0 & x = 0. \end{cases}$$

L'energia potenziale considerata non ammette una espansione in serie in un intorno di $x_0 = 0$, e tale punto non è di minimo relativo per V(x), dato che per ogni $\delta > 0$ esiste un $x \neq 0$ con $|x| < \delta$ e tale che V(x) < 0. Tuttavia, x_0 è di equilibrio stabile secondo Lyapunov. Supponiamo infatti che il sistema

FIGURA 1. Potenziale nell'Esempio 1.3 e due intervalli ammessi per il moto per diversi valori di E.

abbia energia positiva, $\frac{1}{2}y^2 + V(x) = E > 0$. Possiamo individuare due punti di inversione $x_{\pm}(E)$, di modo che il moto avvenga sempre nell'intervallo $[x_{-}(E), x_{+}(E)]$ (vedasi Fig. 1) con $|x_{\pm}(E)| \to 0$ per $E \to 0^+$. Inoltre, in tale intervallo, V(x) > -E e quindi $E = \frac{1}{2}y^2 + V(x) > \frac{1}{2}y^2 - E \Rightarrow |y| < \sqrt{2E}$. La misura dell'intorno nel piano delle fasi in cui avviene il moto, $[x_{-}(E), x_{+}(E)] \times [-\sqrt{2E}, \sqrt{2E}]$, può quindi essere resa piccola a piacere. Un ragionamento analogo può essere fatto per E < 0, dove un intervallo arbitrariamente vicino all'origine può essere scelto di modo che il suo corrispondente intervallo nel piano delle fasi sia arbitrariamente piccolo per $E \to 0^-$. Di conseguenza, x = 0 è una posizione di equilibrio stabile secondo Lyapunov.

DEFINIZIONE 2.5. Nel caso di moto unidimensionale soggetto a forza posizionale, un insieme $\mathcal{M}(e)$ contenente un punto critico instabile si dice curva separatrice.

Una separatrice è per costruzione data dall'unione dei punti di equilibrio instabili e da curve connesse che esprimono traiettorie di moto che tendono asintoticamente ai detti punti di equilibrio instabile, senza mai raggiungerli. Un punto critico $(x_0,0)$ è infatti in corrispondenza con uno zero multiplo di $\Phi(x)$, essendo $\Phi(x_0)=0$ per via della condizione y=0, e dovendo essere $V'(x_0)=-\frac{m}{2}\Phi'(x_0)=0$.

Esempio 1.4 — Consideriamo il moto di un punto materiale di massa m=1 nella forma $\ddot{s}=-s$, corrispondente all'equazione fondamentale delle oscillazioni. Si tratta di una legge associata all'energia meccanica

$$E(s, \dot{s}) = \frac{1}{2}\dot{s}^2 + \frac{1}{2}s^2,$$

che si conserva essendo la forza posizionale e associabile al potenziale $V(s) = \frac{1}{2}s^2$. Gli insiemi di livello del problema sono semplici circonferenze nel piano delle fasi, dove è definito il vettore $\mathbf{f}(x,y) = (y,-x)$ nella notazione già introdotta, vedasi Fig. 2. Esiste un unico punto di equilibrio stabile, corrispondente a (x,y) = (0,0), senza alcuna separatrice.

Esempio 1.5 — A titolo esemplificativo, consideriamo un punto materiale di massa m=1 soggetto al potenziale $V(s)=s^2(s^2-1)$ in moto su una curva con $s\in\mathbb{R}$. In Fig. 3 è possibile osservare il piano delle fasi e alcune curve di fase per diversi valori dell'energia meccanica totale E.

FIGURA 2. Potenziale e piano delle fasi associato con rappresentazione del flusso di fase relativo all'esempio 1.4.

FIGURA 3. Potenziale nell'Esempio 1.5 e piano delle fasi associato con rappresentazione del flusso di fase. Sono indicati i punti critici e le separatrici (in rosso) per un punto materiale di massa m=1.

FIGURA 4. Potenziale nell'Esempio 1.6 e piano delle fasi associato con rappresentazione del flusso di fase. Sono indicati i punti critici e le separatrici (in rosso) per un punto materiale di massa m=1.

Esempio 1.6 — Consideriamo un punto materiale di massa m=1 soggetto al potenziale $V(s)=s(1-s^2)$. In Fig. 4 è possibile osservare il piano delle fasi e alcune curve di fase per diversi valori dell'energia meccanica totale E.

Esercizio 1.3 — Sia A(E) l'area di una curva di fase chiusa in un sistema conservativo corrispondente ad un valore E dell'energia meccanica. Si dimostri che il periodo τ del moto corrispondente è $\tau = A'(E)$.

2.3. Pendolo. Il pendolo semplice è un dispositivo meccanico che consiste di un punto materiale di massa m vincolato, tramite vincolo olonomo liscio e fisso, a muoversi su una circonferenza di raggio ℓ in un piano verticale. Il moto è soggetto alla forza di gravità di modo che, indicando con $\theta \in (-\pi, \pi]$ a meno di periodicità la deviazione dalla verticale del dispositivo, il potenziale a cui è soggetto il punto materiale è $V(\theta) = -mg\ell\cos\theta$, con g accelerazione di gravità, e l'energia meccanica, conservata, abbia l'espressione

$$E(\theta, \dot{\theta}) = \frac{1}{2}m\ell^2\dot{\theta}^2 - mg\ell\cos\theta$$

a meno di una costante additiva arbitraria. L'equazione del moto è così

$$m\ell\ddot{\theta} + mg\ell\sin\theta = 0 \Leftrightarrow \ddot{\theta} + \frac{g}{\ell}\sin\theta = 0.$$

Si noti che, invece di utilizzare $s=\ell\theta$, ascissa curvilinea lungo la circonferenza,
stiamo qui utilizzando direttamente come variabile fondamentale l'angolo θ : in questa parametrizzazione il moto corrisponde a quello di un punto materiale di massa unitaria che si muove sotto l'azione di un potenziale $\hat{V}(\theta)=\frac{1}{m\ell^2}V(\theta)=-\frac{g}{\ell}\cos\theta$. Si tratta di un sistema autonomo che sviluppa il suo moto su una curva, e può quindi essere analizzato con le tecniche discusse sopra. Indicando con

$$e \coloneqq \frac{E}{mq\ell}, \quad au^2 \coloneqq \frac{\ell}{q}$$

possiamo anzitutto scrivere, dall'equazione per l'energia

$$\dot{\theta}^2 = \frac{2}{\tau^2} (\cos \theta + e) \equiv \Phi(\theta),$$

che richiede $e \ge -1$ per aver senso. Al variare di e possono distinguersi diversi tipi di moto. È utile visualizzare queste traiettorie nel piano delle fasi $(x,y) = (\theta,\dot{\theta})$ da intendersi con condizioni periodiche in θ , che quindi in questo caso è $\mathbb{S}^1 \times \mathbb{R}$, ovvero un *cilindro* infinito.

Se e > 1, allora $\Phi(\theta)$ non ammette zeri e il moto consiste di *rotazioni* lungo l'intera circonferenza ammessa: in questo regime, le traiettorie nel piano delle fasi si avvolgono infatti attorno al cilindro.

Se invece |e| < 1, $\Phi(e)$ ammette degli zeri: in questo caso il moto è periodico e il moto consiste di oscillazioni. Le traiettorie non si avvolgono attorno al cilindro e (a differenza del caso e > 1) possono essere deformate con continuità in un punto, corrispondente all'unica soluzione di equilibrio stabile $(\theta, \dot{\theta}) = (0, 0)$, corrispondente ad un punto di minimo relativo isolato del potenziale.

Il caso e = 1 è marginale: l'equazione

$$\dot{\theta}^2 = \frac{2}{\tau^2} (\cos \theta + 1)$$

identifica la separatrice nel piano delle fasi che delimitano i due diversi regimi: essa passa infatti per l'unica soluzione di equilibrio instabile, $(\theta, \dot{\theta}) = (\pi, 0)$. Il caso e = -1 invece ammette come uniche possibili soluzioni le soluzioni di equilibrio stabile e instabile.

Esercizio 1.4 — Si integri l'equazione del moto lungo la separatrice, ovvero per e=1. Soluzione. — Dal fatto che $2\sin^2\frac{\theta}{2}=1-\cos\theta$, l'equazione del moto si può riscrivere

$$\dot{\theta}^2 = 4 \frac{1 - \sin^2 \frac{\theta}{2}}{\tau^2} \Leftrightarrow \left(\frac{\dot{u}}{1 - u^2}\right)^2 = \frac{1}{\tau^2},$$

FIGURA 5. Piano delle fasi del pendolo con $\tau = 1$. Sono visualizzate le traiettorie per diversi valori di e, inclusa la separatrice (e = 1, linea rossa) e i due punti critici stabile (nero) e instabile (rosso).

dove abbiamo introdotto $u=\sin\frac{\theta}{2}$ assumendo $u\neq 1$. L'equazione si integra direttamente su $u\in (-1,1)$: assumendo come istante di tempo iniziale t=0 e che in tale istante u(0)=0 (ovvero $\theta=0$) e $\dot{u}(0)>0$, avvemo

$$\frac{t}{ au} = \int\limits_0^u \frac{1}{1-x^2} \, \mathrm{d}\, x = \mathrm{atanh}\, u \Rightarrow u(t) = \mathrm{tanh}\left(\frac{t}{ au}\right).$$

Si noti che non abbiamo imposto il modulo della velocità iniziale: questo è dovuto al fatto che abbiamo risolto le equazioni ad energia fissa, per cui la velocità iniziale è automaticamente fissata in modulo, una volta dato u(0), dalla condizione e=1. Si noti inoltre che il valore u=1, corrispondente alla configurazione di equibrio instabile, viene raggiunto solo asintoticamente per $t \to +\infty$.

2.4. Piccole oscillazioni. Il caso del pendolo semplice mostra che anche i sistemi più elementari possono presentare complesse equazioni differenziali da risolvere. Lo studio di un sistema unidimensionale autonomo in prossimità di un punto $\mathbf{z}_0 = (x_0, 0)$ di equilibrio nel piano delle fasi può essere però effettuato in una certa generalità in approssimazione di *piccole oscillazioni*. Assumiamo che il potenziale a cui il sistema è soggetto sia analitico in un suo punto di equilibrio isolato x_0 e che $V''(x_0) \neq 0$. Introduciamo la variabile $\xi := x - x_0$, di modo che il sistema di equazioni da studiare possa scriversi come

$$\dot{\xi} = y, \qquad \dot{y} = -\frac{1}{m}V'(x_0 + \xi).$$

Essendo x_0 di equilibrio, espandendo in serie di potenze la seconda equazione si ha

$$\dot{y} = -\frac{1}{m}V''(x_0)\xi + o(\xi).$$

Trascurando gli ordini superiori al primo e introducendo

$$\omega^2 \coloneqq \frac{1}{m} |V''(x_0)|, \qquad \sigma \coloneqq \operatorname{sign}(V''(x_0)) \in \{-1, 1\}$$

l'equazione assume la formula molto semplice

$$\ddot{\xi} + \sigma\omega^2 \xi = 0,$$

che descrive un cosiddetto oscillatore armonico se il punto è di equilibrio stabile, ovvero $\sigma > 0$. Essa ha soluzioni

$$\xi(t) = \begin{cases} \xi(0)\cos(\omega t) + \frac{y(0)}{\omega}\sin(\omega t) & \text{se } V''(x_0) > 0\\ \xi(0)\cosh(\omega t) + \frac{y(0)}{\omega}\sinh(\omega t) & \text{se } V''(x_0) < 0. \end{cases}$$

In altre parole, le traiettorie corrispondenti nel piano delle fasi sono ellissi o iperboli a seconda che il punto sia di equilibrio stabile o instabile rispettivamente. Nel caso di oscillazioni attorno ad un punto di equilibrio stabile, ovvero tale per cui $V''(x_0) > 0$, la soluzione è periodica di periodo

$$\tau = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{V''(x_0)}}.$$

In un pendolo, ad esempio, essendo il punto di equilibrio stabile $\theta = 0$ e $\hat{V}''(0) = \frac{g}{\ell}$, si ritrova la cosiddetta legge dell'isocronia del pendolo

$$\tau = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{\ell}{g}},$$

indipendente dalla massa del punto materiale.

È importante osservare che l'analisi delle piccole oscillazioni è stata fatta nell'ipotesi di piccole deviazioni dalla posizione di equilibrio, ed è quindi una soluzione approssimata potenzialmente molto lontana dalla soluzione corretta quando ξ assume valori troppo grandi.

Esempio 1.7 (Moto armonico smorzato e forzato) — In molte applicazioni occorre considerare, nello studio di un moto armonico attorno ad un punto di equilibrio stabile, la presenza di una forza aggiuntiva che agisce sul punto materiale P di traiettoria \mathbf{x} tentando di frenarne il moto: tale forza esprime la resistenza del mezzo ed è tipicamente nella forma $\mathbf{F}_v = -\eta \dot{\mathbf{x}}$, con $\eta > 0$, di modo che la forza frenante è tanto più intensa quanto più grande è la velocità del corpo. In aggiunta alla forza di richiamo e alla forza dissipativa, è possibile anche includere la presenza di una certa forzante esterna $\mathbf{F}(t)$ nella direzione del moto. Assumeremo in particolare che, detto $\hat{\mathbf{t}}$ il versore tangente alla traiettoria di P, $\mathbf{F}(t) = F \cos(\omega_* t + \phi_0) \hat{\mathbf{t}}$, per una certa terna di valori reali $F, \omega_*, \phi_0 \in \mathbb{R}$.

Dati i nuovi contributi, l'equazione per ξ assume la forma

(1.6)
$$\ddot{\xi} + 2\beta \dot{\xi} + \omega^2 \xi = \frac{F}{m} \cos(\omega_* t + \phi_0),$$

dove si è tenuto conto del fatto che $\dot{\mathbf{x}}=\dot{s}\hat{\mathbf{t}}=\dot{\xi}\hat{\mathbf{t}}$, e si è ridefinito $\beta\coloneqq\frac{\eta}{2m}$. Data la natura periodica della forzante, possiamo convertire il problema in una equazione differenziale per la funzione complessa z, che soddisfa l'equazione

$$\ddot{z} + 2\beta \dot{z} + \omega^2 z = \frac{F}{m} e^{i(\omega_* t + \phi)}$$

di cui prenderemo la parte reale come soluzione. La procedura da applicare è standard: si cerca anzitutto una soluzione generica dell'equazione omogenea, nella forma $z_0(t) = e^{\lambda t}$. Sostituendo questa espressione nell'equazione differenziale, otteniamo

$$\lambda^2 + 2\beta\lambda + \omega^2 = 0 \Rightarrow \lambda_{\pm} = -\beta \pm \hat{\omega}, \quad \text{dove} \quad \hat{\omega} := \sqrt{\beta^2 - \omega^2}.$$

Si ha così che la soluzione dell'equazione omogenea ha la forma

$$z_0(t) = \begin{cases} \mathrm{e}^{-\beta t} \left(\alpha_+ \, \mathrm{e}^{\hat{\omega} t} + \alpha_- \, \mathrm{e}^{-\hat{\omega} t} \right) & \hat{\omega} \neq 0 \\ \mathrm{e}^{-\beta t} (\alpha_+ + \alpha_- t) & \hat{\omega} = 0. \end{cases}$$

Nella formula precedente compaiono le due costanti α_{\pm} , che andranno fissate imponendo le condizioni iniziali. Dobbiamo ora cercare una soluzione particolare z_p al problema. Un ansatz possibile è $z_p(t) = b \, \mathrm{e}^{i\omega_* t}$ per un qualche $b \in \mathbb{C}$. Inserendo questo ansatz nell'equazione si trova che in effetti essa è soddisfatta scegliendo

$$b = \frac{F}{m} \frac{\mathrm{e}^{i\phi_0}}{\omega^2 + 2i\beta\omega_* - \omega_*^2}.$$

FIGURA 6. Evoluzione di ξ in un generico moto armonico smorzato (senza forzante) con stesse condizioni iniziali ma diversi parametri β e $\hat{\omega}$.

La nostra soluzione generale è quindi

$$z(t) = \frac{F}{m} \frac{\mathrm{e}^{i(\omega_* t + \phi_0)}}{\omega^2 + 2i\beta\omega_* - \omega_*^2} + \begin{cases} \mathrm{e}^{-\beta t} \left(\alpha_+ \, \mathrm{e}^{\hat{\omega} t} + \alpha_- \, \mathrm{e}^{-\hat{\omega} t}\right) & \text{se } \hat{\omega} \neq 0 \\ \mathrm{e}^{-\beta t} (\alpha_+ + \alpha_- t) & \text{se } \hat{\omega} = 0, \end{cases}$$

Per semplificare i nostri calcoli e la nostra analisi, consideriamo anzitutto il caso F = 0, ovvero rimuoviamo la forzante e assumiamo ci sia solo dissipazione. Analizziamo i diversi casi separatamente, con generiche condizioni iniziali $\xi(0) =: \xi_0 = \dot{\xi}(0) =: v_0$ non entrambi nulli (diversamente, il punto rimane in quiete nel suo punto di equilibrio stabile), avendo assunto come istante iniziale t = 0.

 $\beta > \omega$: Supponiamo inizialmente $\hat{\omega} > 0$ reale. In questo caso, essendo $\hat{\omega} < \beta$, il moto è tale che $\xi(t) \to 0$ per $t \to +\infty$ monotonicamente, ovvero la posizione di equilibrio è asintoticamente stabile. Imponendo le condizioni iniziali, si trova che

$$\alpha_{+}+\alpha_{-}=\xi_{0}, \quad \alpha_{+}(\hat{\omega}-\beta)-\alpha_{-}(\hat{\omega}+\beta)=v_{0}\Rightarrow \xi(t)=e^{-\beta t}\Big(\xi_{0}\cosh\hat{\omega}t+\frac{v_{0}+\beta\xi_{0}}{\hat{\omega}}\sinh\hat{\omega}t\Big).$$

Il sistema passerà dalla posizione di equilibrio $\xi=0$ per tempi t>0 che soddisfano l'equazione

$$\hat{\omega}\xi_0 \cosh \hat{\omega}t + (v_0 + \beta\xi_0) \sinh \hat{\omega}t = 0$$

Se $v_0 \neq -\beta \xi_0$, questa equazione ammette un'unica soluzione

$$t=-\frac{1}{\hat{\omega}}\operatorname{arctanh}\frac{\hat{\omega}\xi_0}{v_0+\beta\xi_0}\quad\text{se e solo se}\quad -1<\frac{\xi_0}{v_0+\beta\xi_0}\leq 0.$$

In tutti gli altri casi, non esiste soluzione all'equazione e il sistema non passa mai dal punto di equilibrio.

 $\beta = \omega$: Se $\beta = \omega$, il moto è detto *criticamente smorzato* e la soluzione generale del problema, una volta imposte le condizioni iniziali, ha la forma

$$\xi(t) = e^{-\beta t} (\xi_0 + (v_0 + \beta \xi_0)t).$$

Se $\xi_0 > 0$ (rispettivamente, $\xi_0 < 0$) il sistema passa per il punto di equilibrio una sola volta se $v_0 < -\beta \xi_0$ (rispettivamente, $v_0 > -\beta \xi_0$), diversamente ciò non avviene mai.

 $\beta < \omega$: Se $\hat{\omega} = i\hat{\omega}_0 \equiv i\sqrt{\omega^2 - \beta^2}$ è immaginario puro non nullo, $\xi(t) \to 0$ per $t \to +\infty$, ma eseguendo un certo numero di oscillazioni. Imponendo le condizioni iniziali si ottiene

$$\xi(t) = e^{-\beta t} \left(\xi_0 \cos(\hat{\omega}_0 t) + \frac{v_0 + \beta \xi_0}{\hat{\omega}_0} \sin(\hat{\omega}_0 t) \right).$$

Il sistema passerà dalla posizione di equilibrio $\xi=0$ per tempi t che soddisfano l'equazione

$$\hat{\omega}_0 \xi_0 \cos(\hat{\omega}_0 t) + (v_0 + \beta \xi_0) \sin(\hat{\omega}_0 t) = 0.$$

Se $v_0=-\beta \xi_0 \neq 0,$ il sistema passerà dal punto di equilibrio per

$$t = \frac{\pi}{2\hat{\omega}_0} + \frac{n\pi}{\hat{\omega}_0}, \qquad n \in \mathbb{N}_0.$$

FIGURA 7. Esempio di battimenti.

Diversamente, il sistema passa dalla posizione di equilibrio negli infiniti istanti di tempo tali che

$$t = -\frac{1}{\hat{\omega}}\arctan\frac{\hat{\omega}_0\xi_0}{v_0 + \beta\xi_0} + \frac{n\pi}{\hat{\omega}_0} \qquad \text{dove} \quad \begin{cases} n \in \mathbb{N}_0 & \text{se } \frac{\xi_0}{v_0 + \beta\xi_0} \leq 0, \\ n \in \mathbb{N} & \text{altrimenti.} \end{cases}$$

Il caso dell'oscillatore armonico puro si recupera per $\beta = 0$: in tal caso $\hat{\omega}_0 = \omega$.

Nel caso in cui sia presente una forzante, il contributo della soluzione omogenea al variare del campo in cui vive $\hat{\omega}$ rimane *smorzato* finantoché $\beta \neq 0$ e diventa trascurabile rispetto al contributo forzante per $t \gg 0$, che invece non decade e rimane oscillante. Per $t \gg 0$ si trova perciò che la soluzione ha la forma

$$\xi(t) = \frac{F}{m} \frac{1}{\sqrt{(\omega^2 - \omega_*^2)^2 + 4\beta^2 \omega_*^2}} \cos \left(\omega_* t + \phi_0 + \arctan \frac{2\beta\omega_*}{\omega_*^2 - \omega^2}\right) + \text{termini esponenzialmente soppressi.}$$

Il termine forzante, dominante per $t\gg 0$, è indipendente dalle precise condizioni iniziali ma mantiene una dipendenza dalla frequenza propria ω del sistema. L'ampiezza del termine forzante è massima quando

$$\omega_* = \sqrt{\omega^2 - 2\beta^2}$$
 purché $\omega^2 > 2\beta^2$.

Questo valore è detto frequenza di risonanza.

Esempio 1.8 (Battimenti) — Il fenomeno dei battimenti si verifica quando il moto emerge da una sovrapposizione di due moti oscillatori con frequenze molto vicine, nella forma

$$\xi(t) = a_1 \cos(\omega_1 t + \phi_1) + a_2 \cos(\omega_2 t + \phi_2).$$

Se $a = a_1 = a_2$, possiamo applicare l'identità $\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$,

$$\xi(t) = 2a\cos\left(\frac{\omega_1 + \omega_2}{2}t + \frac{\phi_1 + \phi_2}{2}\right)\cos\left(\frac{\omega_1 - \omega_2}{2}t + \frac{\phi_1 - \phi_2}{2}\right)$$

e osservare che, se $\omega_1 \simeq \omega_2 \simeq \omega$, il primo termine produce una oscillazione di frequenza simile a quella delle due componenti originarie, mentre il secondo fattore manifesta una frequenza molto più bassa, e apparirà come un termine che "modula" il primo contributo su scale temporali più lunghe. Questa circostanza può avvenire quando, per esempio, non si ha contributo smorzante nell'esempio precedente: il contributo della soluzione omogenea è quindi oscillante come quello della soluzione particolare, ma con diverse frequenze che possono però essere molto vicine tra loro.