Max. Marks: 100	service and an experience of the service of the ser	3 hrs.	ne: 3	in
600	VE full questions, selecting nestions from each part.			
.2	PART - A			
Max. Marks: 1005	of a circuit	For the following graph determine, i) A walk from b to d that is not a trail ii) A b-d trail that is sort a path iii) A path from b to d iv) A closed walk from b to b that is not v) A circuit from b to b that is not a cy vi) A cycle from b to b.		1
in Marki		N) A Systemation .		
	d '8			
graph with example.	Fig.Q1(a) induced subgraph and comple	Define subgraph, spanning subgraph	b.	
(97 Market)		Prove that the undirected graph G = ()	0.	
(97 Marks)		and every vertex in G has even degree.	77)	
is nonplanar using (96 Marks)	t the following Petersen gra	Define planar graph and prove that Kuratowski's theorem		2
		Shilderhalde .	.0	
	Fig.Q2(a)	32	×.	in
imber ≥ 3, there are (87 Marks)		Prove that in a complete graph with (n-1)/2 edge - disjoint Hamiltonian cy		6
(97 Marks)		Find the chromatic polynomial for the		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	`T		

10CS42

Prove that in every tree T = (V, E) |V| = |E| + 1

(06 Marks) i) If $T_1 = (V_1, E_2)$ and $T_2 = (V_2, E_2)$ be two trees where $E_1 = 17$ and $|V_2| = 2|V_1|$, then find |V₁|₁|V₂| and |E₂|

ii) Let F = (V = E) is a forest with |V = 62 and |E = 51, how many trees determine Ps . iii) Let F₁ = (V₁, E₁) be a forest of 7 trees where |E₁| = 40 what is |V₁?

c. Construct an optimal prefix code for the symbols a, o, q, u, y, z that occur with frequencies 20, 28, 4, 17, 12, 7 respectively. (97 Marks)

a. Using the Kraskal's algorithm, find a minimal spanning tree of the following weighted eninhs. (66 Marks)

b. Using the Dirkstra's algorithm obtain the abortest path from vertex I to each of the other vernces in the following graph

c. Prove that in a bipartite graph G(V₁, V₂, E) if there is a positive integer M such that the degree of every vertex in $V_1 \ge M \ge$ the degree of every vertex in V_2 , then there exists a correlate matching from V₁ to V₂. (07 Marks)

PART-B

- i) How many arrangements all there for all letters in the word SOCIOLOGICAL?
- ii) In how many of these arrangements, A and G are adjacent? iii) In how many of these arrangements, all the vowels are adjacent?
- 106 Marks) b. Determine the co-efficient of
 - i) x^0y^3 in the expansion of $(2x 3y)^{12}$ ii) $x \cdot y \cdot z^2$ in the expansion of $(2x - y - z)^4$

iii) $x^2 \cdot y^2 \cdot z^3$ in the expansion of $(3x - 2y - 4z)^3$. 697 Marries

c. Determine the number of integer solutions for $x_1 + x_2 + x_3 + x_4 + x_5 < 40$, Where:

- i) xi≥0.1 sis5
 - ii) $x_i \ge -3$, $1 \le i \le 5$.

(07 Marks)

- a. Find the number of integers between 1 to 10,000 inclusive, which are divisible by none of 5,6 or 8.
 - 5, 6 or 8. (06 Marks)
 Determine in how many ways can the letters in the word ARRANGEMENT be arranged as that there are exactly two pairs of consecutive identical letters. (97 Months)
 - c. i) Find the rook polynomial for the shaded cheusboard

Fig. Of(cNi)

- ii) Let A = {1, 2, 3, 4} and B = {u v, w, x, y, z}. How many one to one functions f: A → B satisfy none of the following conditions:
 - $C_1:f(1)=u \text{ or } v$; $C_2:f(2)=w$; $C_3:f(3)=w \text{ or } x \subseteq C_4:f(4)=x$, $y \text{ or } x \in (07 \text{ Marks})$
- A. Find the coefficient of x^{13} in $\frac{(1+x)^4}{(1-x)^4}$

(06 Murks)

- b. A ship carries 48 flags, 12 each of the cotors red, white, blue and black. Twelve of these flags are placed on a vertical pole injofter to communicate a signal to other ships. Determine, how emany of these signals have alleged three white flags or no white flags at all. (of Machol.)
 - Find the formula to express: 0² 5(2+2²+---+n² as a function of n using summation on operator. (07 Marks)
- Solve the recurrence relations F_{n+2} = F_{n+1} = F_n where n ≥ 0 and F₀ = 0 and F₁ = 1. (06 Markon b. i) A bank pays 6½ Solvest compounded quarterly. If Laura invests \$ 100 then how many
 - months must she wait for her money to double?

 ii) The number joir bacteria in a culture is 1000 and this number increases 250% every 2 hours. One a recurrence relation to determine the number of bacteria present after one
 - hours. Ose a recurrence relation to determine the number of bacteria present after one day.
 Solve the recurrence relation: a_{ev2} 5a_{ev1} + 6a_e = 2, n ≥ 0, a_e = 3, a_e = 7 using neethed of
 - generating functions. (67 Marks)