EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (CHEMISTRY)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Magnitude of charge on electron	е	$1,6 \times 10^{-19} \mathrm{C}$
Mass of an electron	m_{e}	$9,1 \times 10^{-31} \text{ kg}$
Standard pressure	$p^{\scriptscriptstyle{\theta}}$	1,01 × 10 ⁵ Pa
Molar gas volume at STP	V_{m}	22,4 dm ³ ·mol ⁻¹
Standard temperature	$T^{\scriptscriptstyle{\theta}}$	273 K
Avogadro's constant	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday's constant	F	96 500 C⋅mol ⁻¹

TABLE 2 CHEMISTRY FORMULAE

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$			
$c = \frac{n}{V}$ OR $c = \frac{m}{MV}$	<u> </u>	$K_{w} = [H_{3}O^{+}] \cdot [OH^{-}] = 1 \times 10^{-14}$ at 25 °C (298 K)				
q = It		$E_{cell}^{ heta} = E_{cathode}^{ heta} - E_{anode}^{ heta}$				
q = nF	$E_{cell}^{ heta} = E_{oxidising\ agent}^{ heta} - E_{reducing\ agent}^{ heta}$					

IEB Copyright © 2020 PLEASE TURN OVER

TABLE 3 PERIODIC TABLE

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1					mic er (Z)	1	2,1	Elect negat									2 He
2	3 1,0 Li 7	4 1,5 Be 9					1 ative c mass	<u> </u>					5 2,0 B 10,8	6 2,5 C 12	7 3,0 N 14	8 3,5 O 16	9 4,0 F 19	10 Ne 20
3	11 0,9 Na 23	Mg 24,3											A ℓ	14 1,8 Si 28	P 31	16 2,5 S 32	Cℓ 35,5	Ar 40
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu	30 1,6 Zn 65,4	31 1,6 Ga 70	Ge	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb 85,5							44 2,2 Ru 101			63,5 47 1,9 Ag 108	· ·		72,6 50 1,8 Sn 119				
6	55 Cs 133	56 Ba 137,3	00	72 Hf 178,5	73 Ta	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt	79 Au 197	80 Hg 200,6	81 T2 204,4	82 Pb	83 Bi 209	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		11.0,0	1 101	101	1.00	100	102	1.00	107	1200,0		1201	1200	I	I	<u> </u>

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
						7	0		O .			10101		

TABLE 4 STANDARD ELECTRODE POTENTIALS

Half-	E°/volt		
Li ⁺ + e ⁻	=	Li	-3,05
K ⁺ + e ⁻	\rightleftharpoons	K	-2,93
Cs ⁺ + e ⁻	=	Cs	-2,92
Ba ²⁺ + 2e ⁻	=	Ва	-2,90
Sr ²⁺ + 2e ⁻	=	Sr	-2,89
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87
Na ⁺ + e ⁻	\rightleftharpoons	Na	-2,71
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg	-2,37
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αl	-1,66
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04
2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2(g)$	0,00
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+0,40
$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H2O	+0,45
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg	+0,79
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	$NO_2(g) + H_2O$	+0,80
$Ag^+ + e^-$	\rightleftharpoons	Ag	+0,80
	\rightleftharpoons	$NO(g) + 2H_2O$	+0,96
Br ₂ + 2e ⁻		2Br ⁻	+1,09
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+1,20
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+1,21
$O_2 + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1,33
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ¯	+1,36
Au ³⁺ + 3e ⁻	\rightleftharpoons	Au	+1,42
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+1,51
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1,77
$F_2(g) + 2e^-$	=	2F ⁻	+2,87

Increasing reducing ability

Increasing oxidising ability