Target Capture: Where next?

Sonal Singhal University of Michigan

In a non-zero-sum world, the dream would be one genome for every individual.

But, unless you are

Transcriptomes

Transcriptomes

- Transcriptomes
- Restriction digest based approaches

- Transcriptomes
- Restriction digest based approaches
- Target capture

The best solution?

Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products

Tomislav Maricic , Mark Whitten, Svante Pääbo

Published: November 16, 2010 • http://dx.doi.org/10.1371/journal.pone.0014004

Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products

Tomislav Maricic , Mark Whitten, Svante Pääbo

Published: November 16, 2010 • http://dx.doi.org/10.1371/journal.pone.0014004

MOLECULAR ECOLOGY RESOURCES

Explore this journal >

Special Issue: Sequence Capture

Exon capture phylogenomics: efficacy across scales of divergence

Jason G. Bragg ☑, Sally Potter, Ke Bi, Craig Moritz

Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products

Tomislav Maricic , Mark Whitten, Svante Pääbo

Published: November 16, 2010 • http://dx.doi.org/10.1371/journal.pone.0014004

MOLECULAR ECOLOGY RESOURCES

Explore this journal >

Special Issue: Sequence Capture

Exon capture phylogenomics: efficacy across scales of divergence

Jason G. Bragg ☑, Sally Potter, Ke Bi, Craig Moritz

Hybridization Capture Using RAD Probes (hyRAD), a New Tool for Performing Genomic Analyses on Collection Specimens

Published: March 21, 2016 • http://dx.doi.org/10.1371/journal.pone.0151651

Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products

Tomislav Maricic , Mark Whitten, Svante Pääbo

Published: November 16, 2010 • http://dx.doi.org/10.1371/journal.pone.0014004

MOLECULAR ECOLOGY RESOURCES

Explore this journal >

Special Issue: Sequence Capture

Exon capture phylogenomics: efficacy across scales of divergence

Jason G. Bragg ☑, Sally Potter, Ke Bi, Craig Moritz

Hybridization Capture Using RAD Probes (hyRAD), a New Tool for Performing Genomic Analyses on Collection Specimens

Published: March 21, 2016 • http://dx.doi.org/10.1371/journal.pone.0151651

Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales

Brant C. Faircloth^{1,*}, John E. McCormack², Nicholas G. Crawford³, Michael G. Harvey^{2,4}, Robb T. Brumfield^{2,4}, and Travis C. Glenn⁵

As a reviewer wisely pointed out, "everyone has their favorite probe set".

What happens if we cannot decide?

What happens if we cannot decide?

What happens if we cannot decide?

Early population genetics & phylogenetics necessarily targeted homologous markers across studies.

495K cytochrome b 424K cytochrome oxidase 356K 16S ribosomal RNA 164K 18S ribosomal RNA 110K NADH 4

Our failure to do so now hinders comparative phylogenetics.

Jetz et al 2012 (see also Fritz et al 2009, Pyron et al 2013, Zanne et al 2014)

And, it hinders comparative population genomics.

A simple way forward: create integrated probe sets.

anchored hybrid enrichment loci

+

ultraconserved elements

+

genes traditionally used in multiple-locus phylogenetics

+

fishing out the mitochondrial by-catch

=

~5400 markers that can be maximally integrated with most phylogenomic studies

The markers have different logics.

But the markers they generate are similar.

We filtered & refined the markers based on available squamate genomes.

We tested this approach with Brazilian squamates.

It works! (Quite well.)

It works! (Quite well.)

We generated a fairly complete data matrix.

Loci are long & have high coverage.

It is useful for population genetic applications, as well.

wikimedia.org

To be clear, most evolutionary genetic applications don't require thousands of markers.

More markers, more filtering.

More markers, more filtering.

More markers, more filtering (this figure is useless!).

So why not take an inclusive approach?

time

It took no extra time, and it increased the cost per sample 6%.

And, there are more cost-savings to be had.

This is extensible to other vertebrate systems.

2446 UCEs 71 AHEs 9 "traditional" genes We are now using it to build a well-dated phylogeny for Australian squamates.

Do Macrophylogenies Yield Stable Macroevolutionary Inferences? An Example from Squamate Reptiles

Pascal O. Title; Daniel L. Rabosky

Do Macrophylogenies Yield Stable Macroevolutionary Inferences? An Example from Squamate Reptiles

Pascal O. Title; Daniel L. Rabosky

No.

(Short answer.)

We are sampling about ~30% of Oz squamates.

Once we get the data, how do we analyze it?

Once we get the data, how do we analyze it?

Once we get the data, how do we analyze it?

Phasing & recombination

- Phasing & recombination
- Reference bias

- Phasing & recombination
- Reference bias
- Multi-species SNP data sets

- Phasing & recombination
- Reference bias
- Multi-species SNP data sets
- Allowing for incomplete lineage sorting

- Phasing & recombination
- Reference bias
- Multi-species SNP data sets
- Allowing for incomplete lineage sorting
- Subsampling data for full-likelihood programs

And a persistent challenge across all these methods ...

Plotting & visualizing data is non-trivial.

Short read alignments, coverage, SNP quality

- Short read alignments, coverage, SNP quality
- Diversity, differentiation, and linkage disequilibrium across the genome

- Short read alignments, coverage, SNP quality
- Diversity, differentiation, and linkage disequilibrium across the genome
- Multi-species alignments

- Short read alignments, coverage, SNP quality
- Diversity, differentiation, and linkage disequilibrium across the genome
- Multi-species alignments
- Variation in gene trees

How can we improve these methods to allow researchers more intuition over their own data?

Collaborators & Funding

Pascal Title

Daniel Rabosky

Maggie Grundler

