### **Understanding Customer Reviews**

- Using NLP with Logistic Regression

**Team Finch** 



## **Executive Summary**

 Objective - Explore and model customer reviews to find out which Amazon reviews are helpful

Methodology - EDA and Data Preprocessing
 Feature Engineering
 Logistic Regression

Outcome - Leaderboard AUC Score: 0.88905

 Conclusion - The timing and length of a review play a crucial role in determining its helpfulness.



### "reviewID": "15632", "overall": 5.0, "verified": true, "reviewTime": "09 13, 2009 "reviewerID": "A2SUAM1J3GN "asin": "0000013714", "reviewerName": "J. McDona "reviewText": "I bought th having a wonderful time play to read because we think the playing from. Great purchase "summary": "Heavenly Highw "unixReviewTime": 12528000 "label": 1 ← This is the

### **Data Overview**

- **Total Reviews**: 3,138,710
- Columns/Features: 11
- Time Span: January 1998 to December 2017
- # Unique Products: 65,205
- # Unique Reviewer ID: 1,084,151
- Missing Values: reviewer name (217) & summary (351)
- Average Review Length: 408.76 characters
- Longest Review Length: 32712 characters
- Shortest Review Length: 1 character

### **EDA – Word Cloud**



#### Word Cloud for Summary Texts



# **EDA**



# **EDA**







### **Data Prepressing (Non-Review Text & Summary)**



### Data Prepressing (Review Text & Summary)

Like a narrow-down tunnel, we try to concentrate on the most significant words in the paragraph, filtering out noise and highlighting core content.



Paragraph → sentence → words → simplify words



| Review Text                                                                                                                              | Summary   |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| So much better than plastic<br>mug typeskeeps coffee warm<br>and doesn't stain. We bought it<br>because Cook's Country rated<br>it tops. | Recommend |



So much better than plastic mug types--keeps coffee warm and doesn't stain. We bought it because Cook's Country rated it tops. Recommend



So much better than plastic mug types--keeps coffee warm and doesn't stain. We bought it because Cook's Country rated it tops.
Recommend



[{document, 0, 134, So much better than plastic mug types--keeps coffee warm and doesn't stain. We bought it because Cook's Country rated it tops. Recommend, {sentence -> 0}, []}]



[{document, 0, 134, So much better than plastic mug types--keeps coffee warm and doesn't stain. We bought it because Cook's Country rated it tops. Recommend, {sentence -> 0}, []}]



[{document, 0, 74, So much better than plastic mug types--keeps coffee warm and doesn't stain., {sentence -> 0}, []}, {document, 76, 134, We bought it because Cook's Country rated it tops. Recommend, {sentence -> 1}, []}]





[{document, 0, 74, So much better than plastic mug types--keeps coffee warm and doesn't stain., {sentence -> 0}, []}, {document, 76, 134, We bought it because Cook's Country rated it tops. Recommend, {sentence -> 1}, []}]



[so, much, better, than, plastic, mug, types--keeps, coffee, warm, and, doesn't, stain., we, bought, it, because, cook's, country, rated, it, tops.recommend]





[so, much, better, than, plastic, mug, types--keeps, coffee, warm, and, doesn't, stain., we, bought, it, because, cook's, country, rated, it, tops.recommend]

[so, much, better, than, plastic, mug, typeskeeps, coffee, warm, and, doesnt, stain, we, bought, it, because, cooks, country, rated, it, topsrecommend]

</>>



[so, much, better, than, plastic, mug, typeskeeps, coffee, warm, and, doesnt, stain, we, bought, it, because, cooks, country, rated, it, topsrecommend]



[so, much, well, than, plastic, mug, typeskeeps, coffee, warm, and, doesnt, stain, we, buy, it, because, cook, country, rate, it, topsrecommend]



[so, much, well, than, plastic, mug, typeskeeps, coffee, warm, and, doesnt, stain, we, buy, it, because, cook, country, rate, it, topsrecommend]



[much, well, plastic, mug, typeskeeps, coffee, warm, doesnt, stain, buy, cook, country, rate, topsrecommend]



### **Feature Engineering**

#### 1. Calculate Days Since reviewTime:

Adds new column named "days" to the DataFrame. The values in this column represent the **number of days** since the date given in the `reviewTime` column to the current date.

#### 2. Calculate Length of reviewText:

Adds a new column named "len" to the DataFrame df. The values in this new column represent the **length (number of characters)** of the `reviewText` column for each row.



# Calculating TF-IDF
review\_tf = CountVectorizer(inputCol="reviewTokenFeatures", outputCol="reviewRawFeatures", vocabSize=10000, minTF=1, minDF=50, maxDF=0.
40)
review\_idf = IDF(inputCol="reviewRawFeatures", outputCol="reviewIDF")



### **Model Training**

LogisticRegression(maxIter=500, regParam = 0.01,
elasticNetParam=0)

Test Pipeline for fast iteration:





### **Model Output**

Test AUC: 0.92307

• Kaggle AUC: 0.88905

Precision Score: 0.7767

Recall Score: 0.5569

• F1 Score: 0.6489

#### **Confusion Matrix:**



### **Improving Customer Review Analysis with LLM**

#### **Feature Engineering Insights:**

- **Date Difference**: Add a feature representing the number of days since the review was written.
- **Review Length**: Calculate and incorporate the length of the review text.
- Source Query to LLM: "What do people usually consider when reading a customer review?
   What features can determine a review's helpfulness?"

#### **Data Cleaning Strategy:**

 Implement procedures to identify and handle duplicates, missing values, and inconsistencies in the dataset.

 Source Query to LLM: "Given our dataset's columns, how would you recommend cleaning the data, particularly concerning duplicates?"

#### **Data Pre-processing for NLP:**

- Techniques for transforming textual data into a format suitable for logistic regression, including tokenization, vectorization and Lemmatization.
- **Scenario Presented to LLM:** "Assuming you're an NLP expert, how would you pre-process data for predicting a review's label using logistic regression?"

#### **Coding Simplification:**

Aim for modular, efficient, and readable code structures.



# **Model Comparison**

|                     | Baseline Model                                                                                                 | Best Model                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Model               | Logistic Regression                                                                                            | Logistic Regression                                                                                                     |
| Data Pre-processing | <ol> <li>Tokenized</li> <li>Stop words removal</li> <li>Vectorized 'review Text'<br/>(bag of words)</li> </ol> | <ol> <li>Tokenized</li> <li>Normalized</li> <li>Lemmatized (LLM)</li> <li>Stop words removal</li> <li>TF-IDF</li> </ol> |
| Feature Engineering | 1. Review Length                                                                                               | <ol> <li>Review Length</li> <li>Date Diff(LLM) (Number of days since the review was written)</li> </ol>                 |

### **Conclusions**

#### 1. Length and Content of Reviews Matter:

- Lengthier reviews tend to be more helpful. Additionally, reviews mentioning "Book" and "Game" are common.
- **Business Insight**: Amazon could incentivize users to write comprehensive reviews, especially for popular categories like books and games. This could be done through badges, recognition, or even discounts.

#### 2. Verified vs. Unverified Reviews:

- Unverified reviews are generally seen as more helpful.
- **Business Insight**: Amazon might want to investigate the quality and relevance of unverified reviews. It's possible that these reviews provide unique insights or perspectives not covered by verified purchasers.

#### 3. Review Ratings:

- Lower-rated reviews are more helpful.
- **Business Insight**: It's essential for Amazon to ensure a balanced display of positive and negative reviews. Negative reviews, when genuine, can help in building trust as they show transparency.

#### 4. Model's Performance and Application:

- The logistic regression model achieved a decent performance in predicting review helpfulness.
- **Business Insight**: Amazon can leverage such models to automatically highlight or prioritize reviews that are likely to be deemed helpful, enhancing the user shopping experience.

#### **5. Continuous Improvement**:

• The team presented further improvements through LLM on data cleaning, feature engineering, and preprocessing. Amazon should invest in continuous data science R&D to refine and improve models, ensuring they remain relevant and effective over time.

# Thank you