Codage de l'information

Examen de mai 2005

durée 1h30 - documents non autorisés

Exercice 1: Codage (1/2H)

Soit L le langage contenant les six mots binaires

$$L = \{00, 010, 0100, 110, 111, 1110\}$$

- ${f Q}$ 1 . L est-il un code?
- Q 2 . Existe-t-il un code préfixe contenant six mots binaires de même longueur?
- ${\bf Q}$ 3 . Convertissez l'entier N=912 en base 2. Le mot binaire obtenu peut—il se décomposer en mots de L ?

Exercice 2: Codage optimal (20MN)

Le tableau qui suit donne la répartition des 1024 premières "hexadécimales" du nombre π .

0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
62	70	63	71	61	65	71	56	82	70	65	62	58	50	59	59

Tab. 1 – Répartition des 1024 premières hexadécimales de π

- ${\bf Q}$ 1 . Proposez un codage binaire optimal pour les 1024 premières hexadécimales de $\pi.$
- $\bf Q~2$. Quelle est la taille (en octets) d'un fichier contenant les 1024 premières hexadécimales de π codées avec un codage binaire optimal?
- Q 3. Sans la calculer explicitement, donnez un encadrement de l'entropie des 1024 premières hexadécimales.

Exercice 3: Codes de Reed-Muller (40mn)

On étudie quelques caractéristiques des codes appelés codes de Reed-Muller d'ordre 1. Ces codes dépendent d'un paramètre entier $m \ge 1$, et sont notés $\mathcal{R}(m)$. Ils sont définis par récurrence sur m par

$$\mathcal{R}(1) = \{00, 01, 10, 11\}$$
 et pour $m \ge 1$ $\mathcal{R}(m+1) = \{\mathbf{u}\mathbf{u} \mid \mathbf{u} \in \mathcal{R}(m)\} \cup \{\mathbf{u}\overline{\mathbf{u}} \mid \mathbf{u} \in \mathcal{R}(m)\}$

les mots de $\mathcal{R}(m+1)$ sont donc les mots (\mathbf{u}) de $\mathcal{R}(m)$ concaténés à eux-mêmes $(\mathbf{u}\mathbf{u})$ ou à leur complémentaire $(\mathbf{u}\overline{\mathbf{u}})$, le complémentaire d'un mot étant le mot obtenu en inversant chaque bit du mot initial.

Par exemple, le code $\mathcal{R}(2)$ est

$$\mathcal{R}(2) = \{0000, 0101, 1010, 1111\} \cup \{0011, 0110, 1001, 1100\}$$

- \mathbf{Q} 1. Déterminez les capacités détectrices et correctrices d'erreurs de $\mathcal{R}(1)$ et $\mathcal{R}(2)$.
- \mathbf{Q} 2. Donnez la liste des mots de $\mathcal{R}(3)$. Quels sont les poids de ces mots?
- **Q 3**. Soit $C \subseteq \mathbb{F}_2^n$ un code de longueur n et de distance minimale d.
- Q 3.1. Quelle est la distance minimale du code C_1 de longueur 2n dont les mots sont les mots de C doublés?

$$C_1 = \{\mathbf{uu} \mid \mathbf{u} \in C\}$$

Q 3.2. Quelle est la distance minimale du code C_2 de longueur 2n dont les mots sont les mots ${\bf u}$ de C concaténés à leur complémentaire $\overline{\bf u}$?

$$C_2 = \{ \mathbf{u}\overline{\mathbf{u}} \mid \mathbf{u} \in C \}$$

- \mathbf{Q} 4. Déterminez en fonction de m les caractéristiques suivantes du code $\mathcal{R}(m)$
 - 1. la longueur de ses mots,
 - 2. le nombre de mots,
 - 3. le poids de ses mots,
 - 4. sa distance minimale,
 - 5. ses capacités détectrices et correctrices d'erreurs.