实验报告5

WA2214014 杨跃浙 人工智能 2 班

实验内容:

实验内容 1-面向对象程序设计

- 1、定义一个三维向量类,并定义相应的特殊方法实现两个该类对象之间的加、减运算(要求支持运算+、-),实现该类对象与标量的乘、除(要求支持运算*、/),以及向量长度的计算(要求使用属性实现)。
- 2、编写程序,实现自定义类,模拟队列结构。要求实现入队、出队以及修改队列 大小和判断队列是否为空,是否为满的功能,同时要求在入队时队列已满则等待指定时间、出队时如果队列已空则等待指定时间等辅助功能。

实验内容 2-文件操作

- 1、编写程序,保存为demo6.py,运行后生成文件demo6_new.py,其中的内容与demo6.py一致,但是在每行的行尾加上了行号。
- 2、编写程序,要求输入一个文件名,然后输出该文件的 MD5 值,如果文件不存在就进行相应的提示。
- 3、编写程序,实现磁盘垃圾文件清理功能。要求程序运行时,通过命令行参数 指 定要清理的文件夹,然后删除该文件夹及其子文件夹中所有扩展名为 tmp、 log、obj、txt 以及大小为 0 的文件。
- 4、假设一个学期内所有课程允许多次考试,学生可以随时参加考试,系统自动 将每次成绩添加到 Excel 文件

中(包含姓名、课程、成绩三列)。现期末开始统计所有学生每门课程的最高绩。 编写程序,模拟生成记录若干同学各课程多次成绩的Excel文件,统计所有学 生每门课程的最高成绩,并将结果写入新的Excel文件。 5、假设当前文件夹中有 Excel 文件"电影导演演员.xlsx",其中内容按照:电影名称、导演、演员三列分别 存放。要求统计所有演员中关系最好的 n 个演员及共同参演电影数量,其中 n 可以指定为大于或等于 2 的整数。这里关系好的定义为共同参演电影数量最多。编写程序,使用 python 扩展库 openpyxl 读取 Excel文件中的数据,返回一个字典。在字典中,使用演员名字作为键,使用包含该演员参演电影名称的集合作为"值"。读取数据时,跳过表头,对于每一行有效数据,获取每一行的电影名称和演员清单,对该电影的参演演员进行分割得到演员列表,列中的每个研究都参演过该行对应的电影。

6、编写程序,生成一些 Excel 文件并写入一些测试数据,然后批量修改这些文件的格式。要求:1、每列的表头变为黑体加粗;2、把偶数行所有列的文本设置为宋体、红色,并且使用从红色到蓝色的渐变色对背景进行填充;3、奇书行所有单元格的文本设置为浅蓝色、宋体。

7、准备多个具有相同表头结构的 Excel 文件,每个文件中第一列具有不同的单元格合并方式。编写程序,合并这些 Excel 文件,并进行适当的合并。

8、创建测试用的 Word 文档 test.docx,写入测试内容,并根据需要设置红色文本和加粗文本。编写程序查找并输出 Word 文档 test.docx 中红色文本和加粗文本。

实验原理:

1. 主要代码

实验内容 1-面向对象程序设计

```
def test1():
    import math

    class Vector:
        def __init__(self, x=0, y=0, z=0):
            self.x = x
            self.v = y
```

```
self.z = z
         def __add__(self, other):
             return Vector(self.x + other.x, self.y + other.y, self.z + other.z)
        def __sub__(self, other):
             return Vector(self.x - other.x, self.y - other.y, self.z - other.z)
         def mul (self, scalar):
             return Vector(self.x * scalar, self.y * scalar, self.z * scalar)
         def __truediv__(self, scalar):
             return Vector(self.x / scalar, self.y / scalar, self.z / scalar)
         def abs (self):
             return math.sqrt(self.x**2 + self.y**2 + self.z**2)
    v1 = Vector(1, 2, 3)
    v2 = Vector(4, 5, 6)
    v3 = v1 + v2
    print(v3.x, v3.y, v3.z) # 5 7 9
    v4 = Vector(1, 1, 1)
    v5 = v1 - v4
    print(v5.x, v5.y, v5.z) # 0 1 2
    v6 = v1 * 2
    print(v6.x, v6.y, v6.z) # 2 4 6
    v7 = v1 / 2
    print(v7.x, v7.y, v7.z) # 0.5 1.0 1.5
    length = abs(v1)
    print(length) # 3.7416573867739413
def test2():
    import time
    class Queue:
        def __init__(self, size=20):
             self._content = []
             self._size = size
             self.\_current = 0
        def setSize(self, size):
             if size < self._current:</pre>
                 for i in range(size, self._current)[::-1]:
                     del self._content[i]
                 self._current = size
             self._size = size
         def put(self, v, timeout=9):
             if self._current < self._size:</pre>
                 self._content.append(v)
                 self._current = self._current + 1
```

```
else:
            for i in range(timeout):
                 time.sleep(1)
                 if self. current < self. size:
                     self._content.append(v)
                     self._current = self._current + 1
                     break
            else:
                 return '队列已满,超时放弃'
    def get(self, timeout=9):
        if self._content:
            self._current = self._current - 1
            return self._content.pop(0)
        else:
            for i in range(timeout):
                 time.sleep(1)
            if self._content:
                 self._current = self._current - 1
                 return self._content.pop(0)
            else:
                 return '队列为空,超时放弃'
    def show(self):
        if self._content:
            print(self._content)
        else:
            print('The queue is empty')
    def empty(self):
        self._content = []
        self.\_current = 0
    def isEmpty(self):
        return not self._content
    def isFull(self):
        return self._current == self._size
q = Queue(5)
q.put(1)
q.put(2)
q.put(3)
q.show() # [1, 2, 3]
print(q.get())
q.show() # [2, 3]
print(q.isEmpty()) # False
print(q.isFull()) # False
q.put(4)
q.put(5)
q.put(6)
print(q.put(7)) # 队列已满, 超时放弃
```

```
q.show() # [2,3,4,5,6]
q.empty()
q.show() # The queue is empty

if __name__ =='__main__':
    test1()
    test2()
```

实验内容 2-文件操作

```
def test2():
    import hashlib
    import os
    def get_md5(file_path):
        if not os.path.exists(file_path):
             return "文件不存在"
        md5 = hashlib.md5()
        with open(file_path, 'rb') as f:
             for chunk in iter(lambda: f.read(4096), b""):
                 md5.update(chunk)
        return md5.hexdigest()
    file path = input("请输入文件名:")
    print(get_md5(file_path))
def test4():
    import random
    import string
    import pandas as pd
    from openpyxl import Workbook
    from openpyxl.utils.dataframe import dataframe_to_rows
    def generate_name():
        first_name = ".join(random.choices(string.ascii_uppercase, k=2))
        last_name = ".join(random.choices(string.ascii_lowercase, k=3))
        return f"{first_name} {last_name}"
    def generate score():
        return random.randint(0, 100)
    names=[]
    for i in range(10):
        names.append ( generate_name())
    data = []
    courses = ['语文', '数学', '英语','科学']
    for i in range(200):
        name=names[random.randint(0,9)]
        course=courses[random.randint(0,3)]
        score = generate_score()
```

```
|=[]
        I.append(name)
        I.append(course)
        1.append(score)
        data.append(I)
    df = pd.DataFrame(data, columns=['姓名', '课程', '成绩'])
    wb = Workbook()
    ws = wb.active
    for r in dataframe_to_rows(df, index=False, header=True):
        ws.append(r)
    wb.save('成绩表.xlsx')
    result = df.groupby(['课程', '姓名'])['成绩'].max().reset_index()
    result.columns = ['课程', '姓名', '最高成绩']
    wb result = Workbook()
    ws_result = wb_result.active
    for r in dataframe to rows(result, index=False, header=True):
        ws_result.append(r)
    for i in range(4):
        a = str(i*10+2)
        b = str(i*10+11)
        ws result.merge cells('A'+a+':A'+b)
    wb_result.save('最高成绩统计表.xlsx')
def test5():
    import openpyxl
    from collections import defaultdict
    def read_excel(file_name):
        workbook = openpyxl.load workbook(file name)
        sheet = workbook.active
        data = []
        for row in sheet.iter rows(min row=2, values only=True):
            movie_name, director, actors = row
            actors list = actors.split(',')
            data.append((movie_name, actors_list))
        return data
    def find_best_actors(data, n):
        actor_movies = defaultdict(set)
        for movie_name, actors_list in data:
            for actor in actors_list:
                 actor_movies[actor].add(movie_name)
        best_actors = sorted(actor_movies.items(), key=lambda x: len(x[1]), reverse=True)[:n]
        result = {actor: movies for actor, movies in best_actors}
        return result
    file name = "电影导演演员.xlsx"
    n=int(input("输入一个大于或等于 2 的整数 n:"))
    data = read_excel(file_name)
```

```
best actors = find best actors(data, n)
    for key,value in best_actors.items():
        print(f"{key}:{value}")
def test6():
    def generate():
        import pandas as pd
        import random
        import string
        file names = ['E:/Python/Project/Test/Test5/test6/test'+str(i) + '.xlsx' for i in range(10)]
        for file name in file names:
             data = \{'A': [random.randint(1, 100) for _ in range(10)],
                      'B': [random.choice(string.ascii_uppercase) for _ in range(10)],
                      'C': [random.uniform(1, 100) for _ in range(10)]}
             df = pd.DataFrame(data)
             df.to excel(file name, index=False,)
        print("已生成10个Excel文件并写入测试数据。")
    def manage(i):
        import openpyxl
        from openpyxl.styles import Font, PatternFill, GradientFill, Color, colors
        workbook = openpyxl.load workbook('E:/Python/Project/Test/Test5/test6/test'+str(i)+'.xlsx')
        for sheet in workbook.worksheets:
             for cell in sheet[1]:
                 cell.font = Font(bold=True, color=colors.BLACK)
             for row in sheet.iter_rows(min_row=2):
                 if row[0].row \% 2 == 0:
                      for cell in row:
                          cell.font = Font(name='宋体', color="FF0000")
                      fill = GradientFill(stop=("0000FF", "FF0000"))
                      for cell in row:
                          cell.fill = fill
                 else:
                      for cell in row:
                          cell.font = Font(name='宋体', color="ADD8E6")
                      #fill = PatternFill(patternType='solid', fgColor=Color('CCE5FF'))
                      #for cell in row:
                      \# ce/l.fi/l = fi/l
        workbook.save('E:/Python/Project/Test/Test5/test6/output'+str(i)+'.xlsx')
    generate()
    for i in range(10):
        manage(i)
def test8():
    import docx
    doc = docx.Document('test.docx')
    for para in doc.paragraphs:
```

```
for run in para.runs:
             if run.font.color.rgb == docx.shared.RGBColor(255, 0, 0):
                 print(f'Red text: {run.text}')
             if run.bold:
                 print(f'Bold text: {run.text}')
if name ==' main ':
    test2()
    test4()
    test5()
    test6()
    test8()
题 1: demo6.py
with open("demo6.py", "r") as f:
    lines = f.readlines()
with open("demo6_new.py", "w") as f:
    for index, line in enumerate(lines):
        f.write(line.strip('\n').ljust(100) + "#"+str(index + 1) + "\n")
题 3: delete_files.py
import os
import sys
def delete_files(directory):
    for foldername, subfolders, filenames in os.walk(directory):
        for filename in filenames:
             if filename.endswith('tmp') or filename.endswith('log') or filename.endswith('obj') or
filename.endswith('txt'):
                 file_path = os.path.join(foldername, filename)
                 try:
                      if os.path.getsize(file_path) == 0:
                          os.remove(file_path)
                          print(f'Deleted file: {file path}')
                 except OSError as e:
                      print(f'Error: {file_path} : {e.strerror}')
directory = sys.argv[1]
delete_files(directory)
题 3: delete_files.py
import os
import sys
def delete files(directory):
    for foldername, subfolders, filenames in os.walk(directory):
        for filename in filenames:
```

```
if filename.endswith('tmp') or filename.endswith('log') or filename.endswith('obj') or
filename.endswith('txt'):
                 file_path = os.path.join(foldername, filename)
                  try:
                      if os.path.getsize(file_path) == 0:
                          os.remove(file path)
                           print(f'Deleted file: {file_path}')
                 except OSError as e:
                      print(f'Error: {file path} : {e.strerror}')
directory = sys.argv[1]
delete files(directory)
题 7: work on excel.py
import openpyxl
import pandas as pd
import random
import os
header = ['ID', 'Group', 'Age', 'Gender', 'Address']
id values all = ['ID1', 'ID2', 'ID3', 'ID4', 'ID5', 'ID6', 'ID7']
def generate():
    save path = r''E:\Python\Project\Test\Test5\test7''
    for i in range(1, 11):
        workbook = openpyx1.Workbook()
         sheet = workbook.active
         for j, col in enumerate(header, start=1):
             sheet.cell(row=1, column=j).value = col
         num_rows_per_id=random.randint(1,10)
         data = []
         id values=random.sample(id values all,5)
         for id value in id values:
             for k in range(1, num_rows_per_id + 1):
                 group_value = random.randint(1, 10)
                 age_value = random.randint(0, 100)
                 gender_value = random.choice(['Male', 'Female'])
                 address_value = f'Address {k}'
                 data.append([id_value, group_value, age_value, gender_value, address_value])
             df = pd.DataFrame(data, columns=header)
             df = df.sort values(by=['|D'])
         for I, row in df.iterrows():
             sheet.cell(row=I + 2, column=1).value = row['ID']
             sheet.cell(row=1 + 2, column=2).value = row['Group']
             sheet.cell(row=1 + 2, column=3).value = row['Age']
             sheet.cell(row=1 + 2, column=4).value = row['Gender']
             sheet.cell(row=1 + 2, column=5).value = row['Address']
         for lis in range(0,5):
```

```
start_row = 2+lis*num_rows_per_id
             end_row = 1+(lis+1)*num_rows_per_id
             sheet.merge_cells(start_row=start_row, start_column=1, end_row=end_row, end_column=1)
        file name = f'file {i}.xlsx'
        file_path = f"{save_path}\\{file_name}"
        workbook.save(file_path)
def work():
    folder_path = r"E:\Python\Project\Test\Test5\test7"
    save\_path = r"E:\Python\Project\Test\Test5\test7"
    file_list = [file for file in os.listdir(folder_path) if file.endswith('.xlsx')]
    merged_data = pd.DataFrame()
    for file in file list:
        file_path = os.path.join(folder_path, file)
        df = pd.read_excel(file_path)
        value="
        for i in range(0,len(df['ID'])):
             if df['ID'][i] not in id_values_all:
                 df['ID'][i]=value
             else:
                 value=df['ID'][i]
        #print(df)
        merged data = pd.concat([merged data, df],ignore index=True)
    #print(merged data)
    merged_data = merged_data.sort_values(by=['ID'],ignore_index=True)
    start_row_1 = 2
    end_row_1=0
    #print(len(merged_data['ID']))
    workbook = openpyx1.Workbook()
    sheet = workbook.active
    for j, col in enumerate(header, start=1):
        sheet.cell(row=1, column=j).value = col
    for I, row in merged_data.iterrows():
        sheet.cell(row=1 + 2, column=1).value = row['ID']
        sheet.cell(row=1 + 2, column=2).value = row['Group']
        sheet.cell(row=1 + 2, column=3).value = row['Age']
        sheet.cell(row=1 + 2, column=4).value = row['Gender']
        sheet.cell(row=1 + 2, column=5).value = row['Address']
    for i in range(1, len(merged_data['ID'])):
        if not(merged_data['ID'][i]==merged_data['ID'][i-1]):
             end_row_1=i+1
             sheet.merge_cells(start_row=start_row_1, start_column=1, end_row=end_row_1,
end_column=1)
             start_row_1=i+2
    #print(start row 1)
    #print(i)
    sheet.merge_cells(start_row=start_row_1, start_column=1, end_row=i+2, end_column=1)
    file_name = 'merged_file.xlsx'
    file_path_1 = f"{save_path}\\{file_name}"
    workbook.save(file_path_1)
if name ==' main ':
    generate()
    work()
```

2. 运行结果

实验内容 1-面向对象程序设计

```
C:\Users\yangy\AppData\Local\Programs\Pyt
5 7 9
0 1 2
2 4 6
0.5 1.0 1.5
3.7416573867739413
[1, 2, 3]
1
[2, 3]
False
False
队列已满,超时放弃
[2, 3, 4, 5, 6]
The queue is empty
```

进程已结束,退出代码0

```
实验内容 2-文件操作

C:\Users\yangy\AppData\Local\Programs\Python\Python38\python.exe E:/Python/Project/Test/Test5/Test2.py
```

```
请输入文件名: demo6.pv
95c80472b68aab0478f51056b9d494e7
输入一个大干或等于2的整数n:4
爾八一「八」歌等 ] 左时整数1.4 "电影10", "电影10", "电影4", "电影4", "电影16", "电影16", "电影13", "电影6", "电影12", "电影15", "电影7") 演员5:{ "电影17", "电影20", "电影10", "电影19", "电影3", "电影4", "电影16", "电影13", "电影13", "电影12", "电影15", "电影15", "电影15", "电影17", "电影17", "电影20", "电影10", "电影5", "电影3", "电影4", "电影16", "电影14", "电影12", "电影15", "电影7"} 演员11:{ "电影17", "电影10", "电影19", "电影4", "电影4", "电影13", "电影16", "电影15", "电影15", "电影7"}
已生成10个Excel文件并写入测试数据。
Bold text: 姓名、课程、成绩三列)。现期末开始统计所有学生每门课程的最高成绩。编写程序,模拟生成记录若干
Red text: 大于或等于2的整数。这里关系好的定义为共同参演电影数量最多。编写程序,使用python扩展库openpyxl读
Bold text: 大于或等于2的整数。这里关系好的定义为共同参演电影数量最多。编写程序,使用python扩展库openpyxl读
Red text: 电影名称和演员清单,对该电影的参演演员进行
Bold text: 电影名称和演员清单,对该电影的参演演员进行
Red text:分割得到演员列表,列中的每个研究都参演过该行对应的电影。
Bold text: 分割得到演员列表,列中的每个研究都参演过该行对应的电影。
Red text: 5、编写程序, 生成
Bold text: 5、编写程序, 生成
Red text: 一些Excel文件并写入一些测试数据,然后批量修改这些文件的格式。要求: 1、每列的表头变为黑体
Red text: 加粗; 2、把偶
Red text: 文本设置为宋体、红色,并且使用从红色到蓝色的渐变色对背景进行填充; 3、奇书行所有单元格的文
```

进程已结束,退出代码0

题 1:

demo6 new.py 文件

题 3:

原文件夹:

调用 cmd 窗口(终端):

运行之后:

题 4:

成绩表.xlsx

4	А	В	С	D	E	F	G
1	姓名	课程	成绩				
2	KW fjb	英语	7				
3	ZR sik	语文	7				
4	SQ tob	语文	77				
5	DW nyy	英语	70				
6	ZR sik	科学	24				
7	AY dsc	科学	43				
8	ZR sik	英语	53				
9	QY fbm	科学	42				
10	ZD wuk	科学	99				
11	AY dsc	科学	52				
12	ZR sik	数学	31				
13	AY dsc	英语	10				
14	QY fbm	数学	65				
15	SQ tob	英语	56				
16	QR dws	科学	99				
17	QY fbm	科学	88				
18	ZD wuk	数学	19				
19	AY dsc	语文	37				
20	SQ tob	科学	10				
21	ZD wuk	科学	6				
22	DW nyy	数学	27				
23	QY fbm	科学	6				
24	DW nyy	科学	21				
25	AY dsc	英语	82				
26	ZD wuk	英语	36				
27	SQ tob	数学	46				
28	DW nyy	科学	78				
29	ZR sik	科学	16				
30	KW fjb	英语	77				

最高成绩统计表.xlsx

- 4	Α	В	C	D	E	F	G	Н	l l
1	课程	姓名	最高成绩						
2		AY dsc	53						
3		DS pwa	99						
4		DW nyy	74						
5		KW fjb	97						
6		NM twv	90						
7		QR dws	96						
8		QY fbm	96						
9		SQ tob	86						
10		ZD wuk	98						
11	数学	ZR sik	94						
12		AY dsc	83						
13		DS pwa	85						
14		DW nyy	82						
15		KW fjb	70						
16		NM twv	90						
17		QR dws	99						
18		QY fbm	98						
19		SQ tob	94						
20		ZD wuk	99						
21	科学	ZR sik	90						
22		AY dsc	82						
23		DS pwa	84						
24		DW nyy	95						
25		KW fjb	93						
26		NM twv	39						
27		QR dws	78						
28		QY fbm	81						
29		SQ tob	95						
30		ZD wuk	85						
31	英语	ZR sik	91						
32		AY dsc	100						
33		DS pwa	99						
34		DW nyy	86						
35		KW fjb	91						
01									

题 5:

电影导演演员.xlsx

4	Α	В	C
1	电影名称	导演	演员
2	电影1	导演1	演员9,演员5,演员12,演员4
3	电影2	导演2	演员4,演员3,演员5,演员6,演员13,演员12,演员7,演员15,演员8,演员1,演员9,演员2
4	电影3	导演3	演员11, 演员15, 演员6, 演员10, 演员8
5	电影4	导演4	演员11, 演员7, 演员14, 演员2, 演员4, 演员3
6	电影5	导演5	演员9,演员11,演员2,演员12,演员15,演员3,演员7,演员4
7	电影6	导演6	演员2,演员5,演员12,演员11,演员14,演员6,演员7,演员9,演员8
8	电影7	导演7	演员15, 演员8, 演员14, 演员11, 演员5, 演员4, 演员2, 演员10, 演员13
9	电影8	导演8	演员13, 演员3, 演员14, 演员7, 演员2, 演员15
10	电影9	导演9	演员11, 演员8. 演员6, 演员5, 演员10
11	电影10	导演10	演员12, 演员11, 演员10, 演员5, 演员7, 演员9, 演员3, 演员8, 演员15, 演员4, 演员6, 演员2, 演员13, 演员14, 演员1
12	电影11	导演11	演员3,演员8,演员1,演员12,演员14
13	电影12	导演12	演员4,演员6,演员1,演员15,演员12,演员13,演员9,演员2
14	电影13	导演13	演员12, 演员7, 演员8, 演员11, 演员1, 演员14, 演员5, 演员6, 演员2, 演员3, 演员9
15	电影14	导演14	演员10, 演员6, 演员9, 演员8, 演员15, 演员7, 演员2
16	电影15	导演15	演员2, 演员3, 演员1, 演员9, 演员15, 演员5, 演员13, 演员11, 演员7, 演员8, 演员10, 演员12, 演员6
17	电影16	导演16	演员11, 演员10, 演员6, 演员3, 演员12, 演员9, 演员4, 演员1, 演员2, 演员5, 演员13, 演员7, 演员15, 演员14
18	电影17	导演17	演员15, 演员13, 演员11, 演员6, 演员12, 演员14, 演员5
19	电影18	导演18	演员4. 演员5. 演员10. 演员2
20	电影19	导演19	演员4. 演员10. 演员9, 演员3, 演员11, 演员12. 演员14, 演员1, 演员13, 演员6, 演员2演员15
21	电影20	导演20	演员10, 演员7, 演员1, 演员2, 演员6, 演员13, 演员3, 演员5, 演员8, 演员15, 演员4
22			

题 6:

文件夹中有十个测试表格, 十个输出表格

□ ↑ 排序 ~	畫 查看 ▽ ・・・・		
5称	修改日期	类型	大小
output0.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output1.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output2.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output3.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output4.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output5.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output6.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output7.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output8.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
output9.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test0.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test1.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test2.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test3.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test4.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test5.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test6.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test7.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test8.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB
test9.xlsx	2023/12/22 19:30	XLSX 工作表	6 KB

test0.xlsx

4	Α	В	С	D
1	A	В	C	
2	83	F	72.6712	
3	78	M	73. 55975	
4	92	G	3. 432478	
5	24	В	93. 53794	
6	47	N	96. 16284	
7	45	0	23. 51307	
8	67	Z	33. 16849	
9	18	Н	44. 51824	
10	40	Е	12. 42338	
11	47	Е	20. 32656	
12				
13				
14				
15				
1.6				

test7.xlsx

4	Α	В	C
1	A	В	C
2	26	Q	16.81436
3	99	В	16.8077
4	52	Y	41. 31835
5	35	G	1.796949
6	89	Z	4. 27381
7	70	Y	35. 16405
8	4	В	59. 35486
9	46	P	82. 27115
10	21	R	89. 12671
11	82	D	74. 36426
12			
13			
14			
1.5			

test9.xlsx

output0.xlsx

4	Α	В		С	
1	A	В		С	
2	8	F		72.671	
3	78	M	- 1	73. 55975	
4		G		8. 43047	
5	24	В	- 1	93. 53794	
6				96. 1626	
7	45	0	- 1	23. 51307	
8				33, 1684	
9	18	Н		44. 51824	
10		Ē		12, 433	
11	47	Е		20. 32656	
12					
13					
14					

output7.xlsx

4	Α	В	С	D
1	A	В	C	
2		Q	16, 81434	
3	99	В	16.8077	
4			41,8183.	
5	35	G	1.796949	
6			4.2738	
7	70	Y	35. 16405	
8			59, 8543	
9	46	P	82, 27115	
10			1819 , 1121677	
11	82	D	74. 36426	
12				
13				
14				

output9.xlsx

4	Α	В	C
1	A	В	С
2	0	X	23.9793
3	30	0	7. 227935
4			52.200
5	42	Н	71. 48835
6	72		8.86810
7	29	0	52. 99977
8	0		79. 7031
9	49	A	60. 74835
10	0		98, 8401
11	44	C	29. 10981
12			
13			
14			

题 7:

文件夹中十个原始文件和一个输出文件

file_1.xlsx

4	Α	В	С	D	E	F
4		4	64	Male	Address	3
5		8	45	Male	Address	4
6		4	60	Female	Address	5
7		1	71	Male	Address	6
8		5		Male	Address	7
9		3		Female	Address	8
10	ID7	7		Male	Address	9
11		10		Male	Address	1
12		10		Male	Address	2
13		3		Female	Address	3
14		7		Female	Address	
15		4		Female	Address	
16		8		Female	-W	6
17		4		Male	Address	7
18		5		Male	Address	-
19	ID6	6		Male	Address	
20	100	6		Female		1
21		10		Female		2
22		2		Male	Address	· · · · · · · · · · · · · · · · · · ·
23		7		Female	Address	
24						
25		5		Female	Address	
26		4		Male	Address	
		1		Female		7
27	TDA	9		Female	Address	8
28	ID4	6		Female	Address	
29		5		Female	Address	1
30		7		Female	Address	2
31		7		Female	Address	
32		10		Male		4
33		4		Male		5
34		10		Female	Address	6
35		2		Female	Address	
36		9		Female		
37	ID2	1		Female	Address	
38		4		Male	Address	1
39		5		Female	Address	2
40		6		Female	Address	3
41		4		Male	Address	4
42		2	64	Female	Address	5
43		1	54	Male	Address	6
44		5	98	Male	Address	7
45		3	7	Male	Address	8
46	ID1	4	55	Female	Address	9
47						
48						
49						
50						
51						
52						
53						

file_8.xlsx

4	Α	В	С	D	E	F	(
1	ID	Group	Age	Gender	Address		
2		2	68	Male	Address	1	
3	ID1	6	95	Male	Address	2	
4		5	47	Female	Address	1	
5	ID7	2	70	Male	Address	2	
6		7	79	Female	Address	1	
7	ID6	10	58	Male	Address	2	
8		6	22	Male	Address	1	
9	ID3	10	17	Male	Address	2	
10		8	44	Female	Address	1	
11	ID4	6	40	Male	Address	2	
12							
13							
14							
15							

merged_file.xlsx

4	A	В	C	D	E
1	ID	Group	Age	Gender	Address
3		4		Female Male	Address 9 Address 5
4		8			
4 5		10		Female Male	Address 4 Address 3
5		5		Male	Address 2
7		5		Male	Address 1
3		4		Male	Address 1
>		3		Male	Address 1
0		5		Female	Address 2
1		4		Male	Address 4
2		2		Female	Address 5
3		1		Male	Address 6
4		5		Male	Address 7
5		3		Male	Address 8
6		6		Male	Address 2
7	1	6	35	Female	Address 3
8		7	74	Female	Address 2
9		2	68	Male	Address 1
0		4	29	Male	Address 4
1		10	65	Female	Address 8
2		2	7	Female	Address 6
3		8		Female	Address 3
4		2		Male	Address 7
5		7		Male	Address 8
6		5		Male	Address 5
7		8		Male	Address 4
8		7		Male	Address 3
9		7		Male	Address 2
0		9		Male	Address 1
1		7		Female	Address 9
2		9		Male	Address 10
3		4		Male	Address 5
4	TD1	6		Male	Address 6
6	ID1	5		Male	Address 7
7		5		Female Male	Address 6
8		10		Male	Address 1 Address 7
9		4	56	Male	Address 8
0		8		Female	Address 3
1		4		Female	Address 4
2		6		Female	Address 2
3		9		Female	Address 1
4		4		Male	Address 7
5		10		Female	Address 9
6		5		Female	Address 6
7		9		Male	Address 5
8		7		Male	Address 4
9		6		Female	Address 3
0		9		Female	Address 5
1		8	96	Female	Address 10
2		5	96	Female	Address 6
3		7		Male	Address 2
4		2		Male	Address 1
5		1		Male	Address 2
6		7		Female	Address 3
7		5		Male	Address 2
8		5	91	Female	Address 1
9		3		Female	Address 8
0		7		Female	Address 2
1		7		Female	Address 3
2		5		Female	Address 1
3		4		Male	Address 5
4		10		Female	Address 6
5		2		Female	Address 7
6		9		Female	Address 8
7		1		Female	Address 9
8		5		Female	Address 5
9		4		Male	Address 4
0	TD-	10		Male	Address 4
1	ID2	4		Male	Address 7
2		7		Female	Address 6
3		4		Female	Address 5
4		10		Male	Address 4
5		10		Female	Address 3
7		2	65	Female	Address 2
8			34	Female	Address 1
9		7		Male	Address 7
0		9	88	Female Mala	Address 1
		3		Male	Address 2
1		10		Female	Address 3
3		6		Male	Address 4
4		10	17	Male	Address 2
5		7		Male	Address 6
6		1		Male	Address 7
		6		Female	Address 8
7		7		Female	Address 7
8		6		Male	Address 1
9		2		Male	Address 2
0		5		Male	Address 1
-		9	77	Female	Address 5
1		6	-	Male	Address 8

题 8:

test.docx

- 3、假设一个学期内所有课程允许多次考试,学生可以随时参加考试,系统自动将每次成绩 添加到 Excel 文件 中(包含姓名、课程、成绩三列)。现期末开始统计所有学生每门课程 的最高成绩。编写程序,模拟生成记录若干同学各课程多次成绩的 Excel 文件,统计所有 学生每门课程的最高成绩,并将结果写入新的 Excel 文件。
 - 4、假设当前文件夹中有 Excel 文件"电影导演演员.xlsx",其中内容按照:电影名称、导演、演员三列分别 存放。要求统计所有演员中关系最好的 n 个演员及共同参演电影数量,其中 n 可以指定为大于或等于 2 的整数。这里关系好的定义为共同参演电影数量最多。编写程序,使用 python 扩展库 openpyxl 读取 Excel 文件中的数 据,返回一个字典。在字典中,使用演员名字作为键,使用包含该演员参演电影名称的集合作为"值"。读取数据时,跳过表头,对于每一行有效数据,获取每一行的电影名称和演员清单,对该电影的参演演员进行分割得到演员列表,列中的每个研究都参演过该行对应的电影。
 - 5、编写程序,生成一些 Excel 文件并写入一些测试数据,然后批量修改这些文件的格式。 要求: 1、每列的表头变为黑体加粗; 2、把偶数行所有列的文本设置为宋体、红色,并且使 用从红色到蓝色的渐变色对背景进行填充; 3、奇书行所有单元格的文本设置为浅蓝色、宋 体

小结与讨论:

实验内容 1-面向对象程序设计

题 1: 用一个三维向量列类型, add 表示+, sub 表示-, mul 表示*, truediv 表示/, abs 表示向量的长度,通过重构这五种计算实现三维向量的功能。

定义了一个名为 Vector 的类,表示三维向量。该类具有以下功能:

构造函数 $_init_:$ 初始化向量的 x、y、z 分量,默认为 0。

运算符重载:

- __add__: 实现向量的加法,将两个向量的对应分量相加。
- __sub__: 实现向量的减法,将两个向量的对应分量相减。
- __mul__: 实现向量的标量乘法,将向量的每个分量与标量相乘。
- __truediv__: 实现向量的标量除法,将向量的每个分量与标量相除。
- __abs__: 计算向量的模(长度),使用欧几里得范数计算。

示例代码:

创建两个向量 v1 和 v2, 分别为(1, 2, 3)和(4, 5, 6)。

使用+运算符将 v1 和 v2 相加,得到向量 v3,并打印其分量。

使用-运算符将 v1 和另一个向量(1, 1, 1)相减,得到向量 v5,并打印其分量。

使用*运算符将 v1 乘以 2, 得到向量 v6, 并打印其分量。

使用/运算符将 v1 除以 2, 得到向量 v7, 并打印其分量。

使用 abs 函数计算向量 v1 的长度, 并打印结果。

题 2: 代码定义了一个名为 Queue 的队列类,用于实现队列的基本操作。该类具有以下功能:

构造函数__init__: 初始化队列的内容、大小和当前元素个数。默认大小为 20。 setSize 方法: 设置队列的大小,如果新的大小小于当前元素个数,则删除多余的元素。

put 方法: 向队列中添加元素。如果队列未满,则直接添加; 否则,会等待一定时间,直到队列有空间为止。如果超时仍未有空间,则返回提示信息。

get 方法: 从队列中获取元素。如果队列非空,则返回队列的第一个元素并将其 从队列中删除; 否则, 会等待一定时间, 直到队列非空为止。如果超时仍未有元 素, 则返回提示信息。

show 方法: 打印当前队列的内容。

empty 方法: 清空队列。

isEmpty 方法: 判断队列是否为空。

isFull 方法: 判断队列是否已满。

在运行过程中, 无法实现在等待过程中继续读入并处理指令, 如果要实现在等待

过程中继续读入指令,可能需要多线程实现,比较复杂。

实验内容 2-文件操作

题 1 中用 with open 方法打开文件,在加行号时用了 ljust 方法实现右对齐,在行号前加上注释符'#',确保了程序仍可运行。

题 2 中定义了一个名为 get_md5 的函数,用于计算给定文件的 MD5 哈希值。

导入 hashlib 和 os 模块,分别用于计算哈希值和操作文件。定义 get_md5 函数,接受一个文件路径作为参数。首先判断给定的文件路径是否存在,如果不存在,则返回字符串"文件不存在"。创建一个 md5 对象,用于计算 MD5 哈希值。使用 open 函数打开文件,以二进制模式读取文件内容。使用 iter 函数和 lambda 表达式来迭代读取文件内容,每次读取 4096 字节(4KB)。对每次读取的内容调用 md5.update 方法,更新 MD5 哈希值。循环结束后,使用 md5.hexdigest 方法获取最终的 MD5 哈希值,并将其作为函数的返回值。在主程序中,通过 input 函数 获取用户输入的文件名,并将其赋值给 file_path 变量。调用 get_md5 函数,传入 file_path 作为参数,并打印返回的 MD5 哈希值。

题 3 中利用 sys 实现在终端输入的响应,注意是 sys.argv[1]

题 4 中先按要求随机生成一个有"姓名","课程","成绩",三个字段的成绩表,然后按照要求统计每个人每门课的最高成绩,并把相同的课程单元格合并起来。题 5 中先通过 read_excel 函数读取表格数据,之后通过调用 find_best_actors 函数用集合的方式找到 n 个符合要求的演员。

题 6 中先用程序实现批量产生写有随机数据的 Excel 表格,即 generate 函数,然后通过 manage 函数批量按要求处理这些表格,generate 产生的文件为 test0.xlsx-test9.xlsx,manage 文件产生的是 output0.xlsx-output9.xlsx

题 7 中通过调用 generate 函数批量化产生符合题目要求的表格,其中他们具有相同的表头,"ID", "Group", "Age", "Gender", "Address"这五个字段,其中ID 只有"ID1",

"ID2","ID3","ID4","ID5",这五个字段值,每张表格的 ID 列都有不同的合并。之后调用 work 函数,对生成的表格进行合并,在实验过程中发现 pandas 对于合并单元格的处理不满足预期,读取 ID 合并单元格的数据出现了 Nan(Not a number)的情况,所以就考虑先拆分单元格,再对表格进行合并处理,同时去除原本列索引,再进行排序和单元格的合并来实现想要达到的效果。

题 8 中调用 docx 外部库,按要求匹配 test.docx 文件中红色字和加粗的字,并分别显示出来。