•

CONTENTS

1	Wor	rking with Matrices and Vec-
	tors	3
	1.1	Notation for Scalars, Vectors, and
		Matrices
	1.2	Matrix and Vector Operations 3
	1.3	Determinant
	Orthogonal and Idempotent Ma-	
		trices
	1.5	Linear Combinations and Column
		Spaces
	1.6	Linear Independence 25
	1.7	Rank
	1.8	Inverse
	1.9	Trace
	1.10	Eigenvalues and Eigenvectors 39
	1.11	Quadratic Form 44
		1.11.1 Symmetric Matrices 47
		1.11.2 Positive Definiteness 48
	1.12	Spectral Decomposition 52
	1.13	Random Vectors: 56
ME	EME16	203 LINEAR MODELS

1.13.1	Mean vectors:			56
1.13.2	Covariance matrix:			57

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

1 Working with Matrices and Vectors

1.1 Notation for Scalars, Vectors, and Matrices

Lowercase letters \Rightarrow scalars: x; c; σ .

Boldface, lowercase letters \Rightarrow vectors: \mathbf{x} ; \mathbf{y} ; $\boldsymbol{\beta}$.

Boldface, uppercase letters \Rightarrow matrices: **A**; **X**; Σ .

1.2 Matrix and Vector Operations

Definition 1.

A column of real numbers is called a **vector**.

202205 Chapter 1 Working with Matrices and Vectors

Example 1.

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} \quad \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Since \mathbf{y} has n elements it is said to have **order** (or dimension) n.

A rectangular array of elements with m rows and k columns is called an $m \times k$ matrix.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mk} \end{bmatrix}$$

This matrix is said to be of **order** (or dimension) $m \times k$, where

- m is the **row** order (dimension)
- k is the **column** order (dimension)

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

7

Definition 3. Matrix addition

If **A** and **B** are both $m \times k$ matrices, then

$$\mathbf{C} = \mathbf{A} + \mathbf{B}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mk} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1k} \\ b_{21} & b_{22} & \cdots & b_{2k} \\ \vdots & \vdots & & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mk} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1k} + b_{1k} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2k} + b_{2k} \\ \vdots & & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mk} + b_{mk} \end{bmatrix}$$

Notation:

$$C_{m \times k} = \{c_{ij}\}$$
 where $c_{ij} = a_{ij} + b_{ij}$

Definition 4. Matrix subtraction

If ${\bf A}$ and ${\bf B}$ are $m\times k$ matrices, then ${\bf C}={\bf A}-{\bf B}$ is defined by

$$\mathbf{C} = \{c_{ij}\}$$
 where $c_{ij} = a_{ij} - b_{ij}$.

Example 2.

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -2 \\ 0 & 4 & 5 \end{bmatrix} \quad \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

R-code: A = matrix(c(1,3,-2,0,4,5), 2,3, byrow = T) A I = diag(rep(1,3)) I B = matrix(c(1,3,2,6), 2,2, byrow = T) B

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

Example 3.

$$\begin{bmatrix} 3 & 6 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 7 & -4 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 10 & 2 \\ -1 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$$

R-codes:

A = matrix(c(3,6,2,1), 2,2,byrow=T)

B = matrix(c(7,-4,-3,2), 2,2,byrow=T)

C = A + B

D = matrix(c(1,-1,1,1,1,0), 3,2,byrow=T)

E = matrix(c(1,-1,2,0,1,1), 3,2,byrow=T)

F = D-E

Definition 5. Scalar multiplication

Let a be a scalar and $\mathbf{B} = \{b_{ij}\}$ be an $m \times k$ matrix, then

$$a\mathbf{B} = \mathbf{B}a = \{a\,b_{ij}\}$$

Example 4.

$$2\begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 6 \\ 0 & 8 & -4 \end{bmatrix}$$

R-Code:

A = matrix(c(2,-1,3,0,4,2), 2,3,byrow=T)B = 2*A

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors 11

Definition 7. If a matrix has the same number of rows and columns it is called a **square** matrix.

$$\mathbf{A}_{k \times k} = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{bmatrix}$$

is said to have order (or dimension) k.

Definition 8. A square matrix $\mathbf{A} = \{a_{ij}\}$ is **symmetric** if $\mathbf{A} = \mathbf{A}^T$, that is, if $a_{ij} = a_{ji}$ for all (i, j).

Example 6.

$$\mathbf{A} = \begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 5 & 0 & -2 \\ 2 & 0 & 3 & -1 \\ 1 & -2 & -1 & 2 \end{bmatrix}$$

 ${\tt MEME16203\ LINEAR\ MODELS}$

Definition 6. Transpose

The transpose of the $m \times k$ matrix $\mathbf{A} = \{a_{ij}\}$ is the $k \times m$ matrix with elements $\{a_{ji}\}$. The transpose of \mathbf{A} is denoted by $\mathbf{A^T}$ (or $\mathbf{A'}$).

Example 5.

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 0 \\ -2 & 6 \end{bmatrix} \qquad \mathbf{A^T} = \begin{bmatrix} 1 & 3 & -2 \\ 4 & 0 & 6 \end{bmatrix}$$

R-code:

A = matrix(c(1,4,3,0,-2,6), 3,2,byrow=T) AT = t(A)

MEME16203 LINEAR MODELS

Definition O Innon modulat (crossnuc due

202205 Chapter 1 Working with Matrices and Vectors

Definition 9. Inner product (crossproduct) of two vectors of order n

$$\mathbf{a}^T \mathbf{y} = [a_1, a_2, \cdots a_n] \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
$$= [a_1 y_1 + a_2 y_2 + \cdots + a_n y_n \\ = \sum_{j=1}^n a_j y_j$$

Note that $\mathbf{a}^T \mathbf{y} = \mathbf{y}^T \mathbf{a}$

R-codes:

16

Definition 10. Euclidean distance (or length of a vector)

$$\|\mathbf{y}\| = (\mathbf{y}^T \mathbf{y})^{1/2} = \left(\sum_{j=1}^n y_j^2\right)^{1/2}$$

R-Code:
y = c(2,-2,1,5)
ynorm = sqrt(crossprod(y,y))
ynorm

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

Definition 12. Elementwise multiplication of two matrices

$$\mathbf{A} \# \mathbf{B} = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{km} \end{bmatrix} \# \begin{bmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & & \vdots \\ b_{k1} & \cdots & b_{km} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} b_{11} & \cdots & a_{1m} b_{1m} \\ \vdots & & \vdots \\ a_{k1} b_{k1} & \cdots & a_{km} b_{km} \end{bmatrix}$$

Example 8.

$$\begin{bmatrix} 3 & 1 \\ 2 & 4 \\ 0 & 6 \end{bmatrix} \# \begin{bmatrix} 1 & -5 \\ -3 & 4 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ -6 & 16 \\ 0 & 12 \end{bmatrix}$$

R-codes:

 $\begin{array}{lll} A &=& \mathtt{matrix}(\texttt{c}(3,1,2,4,0,6)\,,\ 3,2,\texttt{byrow=T}) \\ B &=& \mathtt{matrix}(\texttt{c}(1,-5,-3,4,-2,2)\,,\ 3,2,\texttt{byrow=T}) \end{array}$

C = A*B

Definition 11. Matrix multiplication

The product of an $n \times k$ matrix \mathbf{A} and a $k \times m$ matrix \mathbf{B} is the $n \times m$ matrix $\mathbf{C} = \{c_{ij}\}$ with elements

$$c_{ij} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{ik} b_{kj}$$

Example 7.

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & -2 \\ 1 & -1 & 4 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \quad \mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} 1 & -3 \\ 4 & 11 \end{bmatrix}$$

R-codes:

A = matrix(c(3,0,-2,1,-1,4), 2,3,byrow=T)

B = matrix(c(1,1,1,2,1,3), 3,2,byrow=T)

C = A%*%B

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

Definition 13. Kronecker product of two matrices

$$\mathbf{A}_{k\times m} \otimes \mathbf{B}_{n\times s} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1m}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2m}\mathbf{B} \\ \vdots & \vdots & & \vdots \\ a_{k1}\mathbf{B} & a_{k2}\mathbf{B} & \cdots & a_{km}\mathbf{B} \end{bmatrix}$$

Example 9.

$$\begin{bmatrix} 2 & 4 \\ 0 & -2 \\ 3 & -1 \end{bmatrix} \otimes \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 6 & 20 & 12 \\ 4 & 2 & 8 & 4 \\ 0 & 0 & -10 & -6 \\ 0 & 0 & -4 & -2 \\ 15 & 9 & -5 & -3 \\ 6 & 3 & -2 & -1 \end{bmatrix}$$

20

19

 $\mathbf{a} \otimes \mathbf{y} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \otimes \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_1 y_2 \\ a_2 y_1 \\ a_2 y_2 \\ a_3 y_1 \end{bmatrix}$ $\mathbf{Definition 14. The determinant of an } n \times n$ $\mathbf{A} \text{ is }$ $|\mathbf{A}| = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} |M_{ij}| \text{ for any row } i$

 $|\mathbf{A}| = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} |M_{ij}| \quad \text{for any row } i$ or

 $|\mathbf{A}| = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} |M_{ij}|$ for any column j

where M_{ij} is the "minor" for a_{ij} obtained by deleting the i^{th} row and j^{th} column from A.

Example 10.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
$$|\mathbf{A}| = a_{11}(-1)^{1+1}|a_{22}| + a_{12}(-1)^{1+2}|a_{21}|$$
then
$$\begin{vmatrix} 7 & 2 \\ 4 & 5 \end{vmatrix} =$$

MEME16203 LINEAR MODELS

R-codes:

A = matrix(c(2,4,0,-2,3,-1),ncol=2,byrow=T)

B = matrix(c(5,3,2,1),2,2,byrow=T)

C = kronecker(A,B)

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

Example 11.

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+ a_{13}(-1)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

then
$$\begin{vmatrix} 1 & 1 & 3 \\ 4 & 3 & 6 \\ 7 & 5 & 9 \end{vmatrix} =$$

R-codes

A = matrix(c(1,1,3,4,3,6,7,5c',9),3,3,byrow=T)

> detA = det(A)

> detA

Properties of determinants

 $\bullet |\mathbf{A^T}| = |\mathbf{A}|$

 $\bullet |\mathbf{A}| = \text{product of the eigenvalues of } \mathbf{A}$

202205 Chapter 1 Working with Matrices and Vectors

• |AB| = |A||B| when **A** and **B** are square matrices of the same order.

• $\begin{vmatrix} \mathbf{P} & 0 \\ \mathbf{X} & \mathbf{Q} \end{vmatrix} = |\mathbf{P}||\mathbf{Q}|$ when \mathbf{P} and \mathbf{Q} are square matrices of the same order and 0 is a matrix of zeros.

ullet $|\mathbf{A}\mathbf{B}| = |\mathbf{B}\mathbf{A}|$ when the matrix product is defined

• $|c\mathbf{A}| = c^k |\mathbf{A}|$ when c is a scalar and \mathbf{A} is a $k \times k$ matrix

24

the following results:

Example 14. Use the definition of orthogonal and idempotent matrices and properties of determinants to prove

(a) If \mathbf{A} is an orthogonal matrix, then $|\mathbf{A}|$ is either 1 or -1.

consider the determinant of an identity matrix.)
(b) If W is an idempotent matrix, then |W| is either 0 or

(Hint: use the definition of an orthogonal matrix and

1.4 Orthogonal and Idempotent Matrices

Definition 15. A square matrix **A** is said to be **orthogonal** if

$$\mathbf{A}\mathbf{A}^{\mathbf{T}} = \mathbf{A}^{\mathbf{T}}\mathbf{A} = I \quad \text{(then } \mathbf{A}^{-1} = \mathbf{A}^{\mathbf{T}}\text{)}$$

Definition 16. A square matrix P is **idempotent** if PP = P

Example 12. (Orthogonal Matrix)

$$\mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

In each case the columns of $\overline{\mathbf{A}}$ are coefficients for orthogonal contrasts.

Example 13. (Idempotent Matrix)

$$\mathbf{P} = \begin{bmatrix} \frac{5}{6} & \frac{2}{6} & -\frac{1}{6} \\ \frac{2}{6} & \frac{2}{6} & \frac{2}{6} \\ -\frac{1}{6} & \frac{2}{6} & \frac{5}{6} \end{bmatrix}$$

MEME16203 LINEAR MODELS

 ${\tt MEME16203\ LINEAR\ MODELS}$

202205 Chapter 1 Working with Matrices and Vectors

1.5 Linear Combinations and Column Spaces

 \mathbf{Ab} is a linear combination of the columns of an $m \times n$ of matrix \mathbf{A} .

$$\mathbf{A}\mathbf{b} = \begin{bmatrix} \mathbf{a_1}, \dots, \mathbf{a_n} \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = b_1 \mathbf{a_1} + \dots + b_n \mathbf{a_n}$$

The set of all possible linear combinations of the columns of A is called the column space of A and is written as

$$\mathcal{C}(\mathbf{A}) = \{ \mathbf{A}\mathbf{b} : \mathbf{b} \in \mathbf{R}^n \}$$

Note that $C(\mathbf{A}) \subseteq \mathbf{R}^m$.

202205 Chapter 1 Working with Matrices and Vectors

Example 15. Suppose X is an $n \times p$ matrix and B is a $p \times p$ non-singular matrix. Prove that $C(X) = C(XB^{-1})$.

28

1.6 Linear Independence

Definition 17. A set of *n*-dimensional vectors $\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_k$ are **linearly independent** if there is no set of scalars $a_1 \ a_2 \ \cdots \ a_k$ such that

$$\mathbf{0} = \sum_{j=1}^{k} a_j \mathbf{y}_j$$

and at least one a_i is non-zero.

Example 16. Show that

$$\mathbf{y}_1 = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \quad \mathbf{y}_2 = \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \quad \mathbf{y}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

are linearly independent.

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

1.7 Rank

Definition 18. The **row rank** of a matrix is the number of linearly independent rows, where each row is considered as a vector.

Definition 19. The **column rank** of a matrix is the number of linearly independent columns, with each column considered as a vector.

Example 18. Show that the row and column rank of

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

is 2.

R-codes: A = matrix(c(1,1, 1,2,5,-1,0,1,-1),3,3,byrow=T) rA = qr(A)\$rank

MEME16203 LINEAR MODELS

Example 17. Show that

$$\mathbf{y}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \mathbf{y}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{y}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

are not linearly independent.

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

Result 1. The row rank and the column rank of a matrix are equal.

Definition 20. The **rank** of a matrix is either the row rank or the column rank of the matrix.

Definition 21. A square matrix $\mathbf{A}_{k \times k}$ is **non-singular** if its rank is equal to the number of rows (or columns).

This is equivalent to the condition

$$\mathbf{A}_{k \times k} \mathbf{b}_{k \times 1} = \mathbf{0}_{k \times 1}$$
 only when $\mathbf{b} = \mathbf{0}$

A matrix that fails to be nonsingular is called **singular**.

Result 2. If $\mathbf{B}_{n\times n}$ is non-singular and $\mathbf{A}_{n\times m}$, then

$$rank(\mathbf{BA}) = rank(\mathbf{A}).$$

Result 3. If B and C are non-singular matrices and products with A are defined, then

$$rank(\mathbf{BA}) = rank(\mathbf{AC}) = rank(\mathbf{A}).$$

Result 4. $rank(\mathbf{A}^T \mathbf{A}) = rank(\mathbf{A}) = rank(\mathbf{A}^T)$.

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

Result 5.

(i) The inverse of $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

31

(ii) In general, the (i,j) element of \mathbf{A}^{-1} is

$$\frac{(-1)^{i+j} |\mathbf{A}_{ji}|}{|\mathbf{A}|}$$

where \mathbf{A}_{ji} is the matrix obtained by deleting the j-th row and i-th column of \mathbf{A} .

Result 6. For a $k \times k$ matrix **A**, the following are equivalent:

- (i) **A** is nonsingular
- (ii) $|\mathbf{A}| \neq 0$
- (iii) \mathbf{A}^{-1} exists

1.8 Inverse

Definition 22. The **identity matrix**, denoted by \mathbf{I} , is a $k \times k$ matrix of the form

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

Definition 23. The **inverse** of a square, non-singular matrix \mathbf{A} is the matrix, denoted by \mathbf{A}^{-1} , such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = I$$

R-codes:
I3 = diag(rep(1,3))
I3
W = matrix(c(1,2,3,4,5,6,7,8,10),3,3,byrow=T)
Winv = solve(W)

MEME16203 LINEAR MODELS

 $\underline{202205}$ - Chapter 1 Working with Matrices and Vectors

32

Result 7. For $k \times k$ nonsingular matrices **A** and **B**

(i)
$$(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$$

(ii)
$$(\mathbf{A} \mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$$

$$(iii) |\mathbf{A}^{-1}| = 1/|\mathbf{A}|$$

(iv) \mathbf{A}^{-1} is unique and nonsingular

$$(v) (\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

(vi) If \mathbf{A} is symmetric, than \mathbf{A}^{-1} is symmetric

Example 19.

Suppose X is an $n \times p$ matrix and B is a $p \times p$ non-singular matrix. Prove that $C(X) = C(XB^{-1})$.

MEME16203 LINEAR MODELS

35

Example 20.

Suppose $\mathbf{Z} = \mathbf{1}_{3\times 1}$, $\mathbf{G} = 9\mathbf{I}_{3\times 3}$, $\mathbf{R} = 25\mathbf{I}_{3\times 3}$. If $\mathbf{\Sigma} = \mathbf{Z}\mathbf{G}\mathbf{Z}^{T} + \mathbf{R}$, find $\mathbf{\Sigma}^{-1}$.

202205 Chapter 1 Working with Matrices and Vectors

Result 8. Inverse of a Diagonal Matrix

$$\begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{kk} \end{bmatrix}^{-1} = \begin{bmatrix} 1/a_{11} & & & \\ & 1/a_{22} & & \\ & & \ddots & \\ & & & 1/a_{kk} \end{bmatrix}$$

Result 9.

If **B** is a $k \times k$ non-singular matrix and $\mathbf{B} + \mathbf{c}\mathbf{c}^T$ is non-singular, then

$$(\mathbf{B} + \mathbf{c}\mathbf{c}^T)^{-1} = \mathbf{B}^{-1} - \frac{\mathbf{B}^{-1}\mathbf{c}\mathbf{c}^T\mathbf{B}^{-1}}{1 + \mathbf{c}^T\mathbf{B}^{-1}\mathbf{c}}$$

Result 10.

Let \mathbf{I}_n be an $n \times n$ identity matrix and let $\mathbf{J}_n = \mathbf{1}\mathbf{1}^T$ be an $n \times n$ matrix where each element is one, then

$$(a\mathbf{I}_n + b\mathbf{J}_n)^{-1} = \frac{1}{a}\left(\mathbf{I}_n - \frac{b}{a+nb}\mathbf{J}_n\right)$$

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

36

1.9 Trace

Definition 24. The **trace** of a $k \times k$ matrix $\mathbf{A} = \{a_{ij}\}$ is the sum of the diagonal elements:

$$tr(\mathbf{A}) = \sum_{j=1}^{k} a_{jj}$$

R-codes:

R-codes:

(a) Show that **A** is idempotent.

For $\mathbf{A} = \mathbf{I}_{n \times n} - \frac{1}{n} \mathbf{i} \mathbf{i}^{\mathbf{T}}$ where $\mathbf{i}^{\mathbf{T}} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}_{1 \times n}$.

(c) Interpret the result of $\mathbf{A}\mathbf{y}$ where \mathbf{y} is $n \times 1$.

Example 21.

(b) Find $tr(\mathbf{A})$.

3

Result 11. Let **A** and **B** denote $k \times k$ matrices and let c be a scalar. Then,

- (i) $tr(c\mathbf{A}) = ctr(\mathbf{A})$
- (ii) $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$
- (iii) $tr(\mathbf{AB}) = tr(\mathbf{BA})$
- (iv) $tr(\mathbf{B}^{-1}\mathbf{A}\mathbf{B}) = tr(\mathbf{A})$
- $(\mathbf{v}) \operatorname{tr}(\mathbf{A} \mathbf{A}^T) = \sum_{i=1}^k \sum_{j=1}^k a_{ij}^2$

MEME16203 LINEAR MODELS

MEME16203 LINEAR MODELS

40

202205 Chapter 1 Working with Matrices and Vectors

1.10 Eigenvalues and Eigenvectors

Definition 25. For a $k \times k$ matrix **A**, the scalars $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$ satisfying the polynomial equation

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

are called the eigenvalues (or characteristic roots) of ${\bf A}$.

Definition 26. Corresponding to any eigenvalue λ_i is an eigenvector (or characteristic vector) $\mathbf{u}_i \neq \mathbf{0}$ satisfying

$$\mathbf{A}\,\mathbf{u}_i = \lambda_i\,\mathbf{u}_i.$$

Comment: Eigenvectors are not unique

(i) If \mathbf{u}_i is an eigenvector for λ_i , then $c \mathbf{u}_i$ is also an eigenvector for any scalar $c \neq 0$.

(ii) We will adopt the following conventions (for

202205 Chapter 1 Working with Matrices and Vectors

real symmetric matrices)

 $\mathbf{u}_i^T \mathbf{u}_i = 1$ for all $i = 1, \dots, k$ $\mathbf{u}_i^T \mathbf{u}_j = 0$ for all $i \neq j$

- (iii) Even with (ii), eigenvectors are not unique
 - If \mathbf{u}_i is an eigenvector satisfying (ii), then $-\mathbf{u}_i$ is also an eigenvector satisfying (ii).
 - If $\lambda_i = \lambda_j$ then there are an infinite number of choices for \mathbf{u}_i and \mathbf{u}_j .

Example 22. Find the eigenvalue and eigenvector of

 $\mathbf{A} = \begin{bmatrix} 1.96 & 0.72 \\ 0.72 & 1.54 \end{bmatrix}$

using R.

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

Example 23.

Find the rank of the idempotent matrix $X(X^TX)^{-1}X^T$ where X is $n \times p$ and X^TX is nonsingular.

Result 12. For a $k \times k$ symmetric matrix **A** with elements that are real numbers

- (i) every eigenvalue of **A** is a real number
- (ii) $rank(\mathbf{A}) = number of non-zero eigenvalues$
- (iii) if **A** is non-negative definite, then $\lambda_i \geq 0$ for all $i = 1, 2, \dots, k$
- (iv) if **A** is positive definite then $\lambda_i > 0$ for all $i = 1, 2, \dots, k$

(v) trace(
$$\mathbf{A}$$
) = $\sum_{i=1}^{k} a_{ii} = \sum_{i=1}^{k} \lambda_i$

- $(vi) |\mathbf{A}| = \prod_{i=1}^k \lambda_i$
- (vii) if \mathbf{A} is idempotent $(\mathbf{A} \mathbf{A} = \mathbf{A})$, then the eigenvalues are either zero or one.

MEME16203 LINEAR MODELS

-

44

1.11 Quadratic Form

Definition 27.

Let **A** be a $k \times k$ matrix and let **y** be a vector of order k, then

Chapter 1 Working with Matrices and Vectors

$$\mathbf{y}^T \mathbf{A} \mathbf{y} = \sum_{i=1}^k \sum_{j=1}^k y_i y_j a_{ij}$$

is called a **quadratic form**.

Suppose $\mathbf{y}_{n\times 1}$ is a vector of n observations. Then $\mathbf{y}'\mathbf{y} = \sum_{i=1}^n y_i^2$ is the total sum of squares of the observations. Let \mathbf{P} be an orthogonal matrix

$$PP' = P'P = I$$

and partition **P** row wise into k sub-matrices \mathbf{P}_i , of order $n_i \times n$, for i = 1, 2, ..., k, with $\sum_{i=1}^k n_i = n$; i.e.

$$\mathbf{P}\begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 : \\ \mathbf{P}_k \end{bmatrix}$$
 and $\mathbf{P}' = \begin{bmatrix} \mathbf{P}_1' \ \mathbf{P}_2' \ \cdots \ \mathbf{P}_k' \end{bmatrix}$.

Then $\mathbf{y}'\mathbf{y} = \mathbf{y}'\mathbf{I}\mathbf{y} = \mathbf{y}'\mathbf{P}'\mathbf{P}\mathbf{y} = \sum_{i=1}^{k} \mathbf{y}'\mathbf{P}'_{i}\mathbf{P}_{i}\mathbf{y}$.

In this way $\mathbf{y}'\mathbf{y}$ is partition into k sums of squares

$$\mathbf{y}'\mathbf{P}_i'\mathbf{P}_i\mathbf{y}$$
 for $i = 1, \dots, k$

each of these sums of squares corresponds to the lines in an analysis of variance, having $\mathbf{y}'\mathbf{y}$ as the total sums of squares.

MEME16203 LINEAR MODELS

47

1.11.1 Symmetric Matrices

Any quadratic form $\mathbf{y}^T \mathbf{A} \mathbf{y}$ can be written as $\mathbf{y}^T \mathbf{A} \mathbf{y} = \mathbf{y}^T \mathbf{B} \mathbf{y}$ where $\mathbf{B} = \frac{1}{2} (\mathbf{A} + \mathbf{A}^T)$ is symmetric. Furthermore, any quadratic form can be written as $\mathbf{y}^T \mathbf{A} \mathbf{y}$ for an infinite number of matrices, but can only be written in one way as $\mathbf{y}^T \mathbf{B} \mathbf{y}$ for \mathbf{B} symmetric. For example,

Chapter 1 Working with Matrices and Vectors

$$4y_1^2 + 6y_1y_2 + 7y_1^2 = \begin{bmatrix} y_1 \ y_2 \end{bmatrix} \begin{bmatrix} 4 & 3+a \\ 3-a & 7 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

for any value of a, but only when a = 0 is the matrix involved symmetric. This means that for any particular quadratic form there is only one, unique matrix such that the quadratic form can be written as $\mathbf{y}^T \mathbf{A} \mathbf{y}$ with \mathbf{A} being symmetric. Due to the uniqueness of this symmetric matrix, the quadratic form that we are going to discuss is confined to the case of \mathbf{A} being symmetric.

Example 24.

Corresponding to a vector of 4 observations consider

$$\mathbf{P} = \begin{bmatrix} \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{-3}{\sqrt{12}} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \end{bmatrix}$$

Show that \mathbf{P} is orthogonal and find the two partition sums of squares.

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

48

46

1.11.2 Positive Definiteness

Definition 28.

A quadratic form $\mathbf{y}^T \mathbf{A} \mathbf{y}$ is said to be **positive** definite (p.d.)if

$$\mathbf{y}^T \mathbf{A} \mathbf{y} > 0$$
 for all \mathbf{y} except $\mathbf{y} = \mathbf{0}$.

The corresponding (symmetric) matrix is also described as positive definite.

Definition 29. A quadratic form $\mathbf{y}^T \mathbf{A} \mathbf{y}$ is said to be **positive semi-definite** (p.s.d) if

$$\mathbf{y}^T \mathbf{A} \mathbf{y} > 0$$
 for all $\mathbf{y} \neq \mathbf{0}$

with
$$\mathbf{y}^T \mathbf{A} \mathbf{y} = 0$$
 for at least one $\mathbf{y} \neq \mathbf{0}$.

The corresponding (symmetric) matrix \mathbf{A} is a p.s.d. matrix.

Example 25. Show that

$$\mathbf{A} = \begin{pmatrix} 3 & 5 & 1 \\ 5 & 13 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

is a positive definite matrix.

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors

Example 27. Let **B** be an $n \times p$ matrix. Show that

- (i) If $rank(\mathbf{B}) = p$, then $\mathbf{B}^T \mathbf{B}$ is positive definite
- (ii) If $rank(\mathbf{B}) < p$, then $\mathbf{B}^T \mathbf{B}$ is positive semidefinite.

Example 26.

Show that

$$\mathbf{B} = \begin{pmatrix} 13 & -2 & -3 \\ -2 & 10 & -6 \\ -3 & -6 & 5 \end{pmatrix}$$

is a positive semidefinite matrix.

MEME16203 LINEAR MODELS

52

1.12 Spectral Decomposition

Result 13. The spectral decomposition of a $k \times k$ symmetric matrix \mathbf{A} with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ and eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ (with $\mathbf{u}_i^T \mathbf{u}_i = 1$ and $\mathbf{u}_i^T \mathbf{u}_j = 0$) is

Chapter 1 Working with Matrices and Vectors

$$\mathbf{A} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_k \mathbf{u}_k \mathbf{u}_k^T$$

= $\mathbf{U} \mathbf{D} \mathbf{U}^T$

where

51

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & \lambda_k \end{bmatrix}$$

and

$$\mathbf{U} = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \cdots \mid \mathbf{u}_k]$$

is an orthogonal matrix.

MEME16203 LINEAR MODELS

Result 14. If **A** is a $k \times k$ symmetric nonsingular matrix with spectral decomposition

$$\mathbf{A} = \sum_{i=1}^{k} \lambda_i \mathbf{u}_i \mathbf{u}_i^T = \mathbf{U} \mathbf{D} \mathbf{U}^T$$

then

- (i) $\mathbf{A}^{-1} = \sum_{i=1}^{k} \lambda_i^{-1} \mathbf{u}_i \mathbf{u}_i^T = \mathbf{U} \mathbf{D}^{-1} \mathbf{U}^T$
- (ii) the square root matrix

$$\mathbf{A}^{1/2} = \sum_{i=1}^k \sqrt{\lambda_i} \, \mathbf{u}_i \, \mathbf{u}_i^T$$

has the properties:

- (a) $\mathbf{A}^{1/2} \mathbf{A}^{1/2} = \mathbf{A}$
- (b) $\mathbf{A}^{1/2} \mathbf{A}^{-1} \mathbf{A}^{1/2} = I$
- (c) $\mathbf{A}^{1/2}$ is symmetric

MEME16203 LINEAR MODELS

202205 Chapter 1 Working with Matrices and Vectors 55

Example 28.

Let **A** be a Positive definite matrix, show that there exists a nonsingular **H** such that $\mathbf{A} = \mathbf{H}^2$.

(iii) The inverse square root matrix

$$\mathbf{A}^{-1/2} = \sum_{i=1}^{k} \frac{1}{\sqrt{\lambda_i}} \mathbf{u}_i \mathbf{u}_i^T$$
$$= \mathbf{U} \mathbf{D}^{-1/2} \mathbf{U}^T$$

has the properties:

- (a) $\mathbf{A}^{-1/2} \mathbf{A}^{-1/2} = \mathbf{A}^{-1}$
- (b) $\mathbf{A}^{-1/2} \mathbf{A} \mathbf{A}^{-1/2} = I$
- (c) $\mathbf{A}^{-1/2}$ is symmetric

In parts (ii) and (iii), **A** should be positive definite to ensure that

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$$

MEME16203 LINEAR MODELS

56

1.13 Random Vectors:

Definition 30.

A random vector $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ is a vector whose elements are random variables.

Chapter 1 Working with Matrices and Vectors

1.13.1 Mean vectors:

$$E(\mathbf{y}) = \begin{bmatrix} E(y_1) \\ \vdots \\ E(y_n) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix} = \boldsymbol{\mu}$$

where

$$\mu_i = E(y_i) = \int_{-\infty}^{\infty} y f_i(y) dy$$

if y_i is a continuous random variable with density function $f_i(y)$

and

$$\mu_i = E(y_i) = \sum y p_i(y)$$

if y_i is a discrete random variable with probability function $p_i(y)$.

1.13.2 Covariance matrix:

$$\Sigma = Var(\mathbf{y}) = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \sigma_{n3} & \cdots & \sigma_n^2 \end{bmatrix}$$

with variances

$$Var(y_i) = \sigma_i^2 = E(y_i - \mu_i)^2$$

$$= \begin{bmatrix} \int_{-\infty}^{\infty} (y - \mu_i)^2 f_i(y) dy & \text{if } y \text{ is a continuous} \\ & \text{random variable} \\ \sum_{all \ y} (y - \mu_i)^2 p_i(y) & \text{if } y \text{ is a discrete} \\ & \text{random variable} \end{bmatrix}$$

MEME16203 LINEAR MODELS

59

60

202205 Chapter 1 Working with Matrices and Vectors

Let $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ be a random vector with

$$\mu = E(y)$$
 and $\Sigma = Var(y)$,

and let

$$\mathbf{A}_{p \times n} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{p1} & \cdots & a_{pn} \end{bmatrix}$$

be a matrix of non-random elements, and let

$$\mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \text{ and } \mathbf{d} = \begin{bmatrix} d_1 \\ \vdots \\ d_p \end{bmatrix}$$

be vectors of non-random elements, then

(i)
$$E(\mathbf{A}\mathbf{v} + \mathbf{d}) = \mathbf{A}\boldsymbol{\mu} + \mathbf{d}$$

(ii)
$$Var(\mathbf{A}\mathbf{y} + \mathbf{d}) = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T$$

(iii)
$$E(\mathbf{c}^T \mathbf{y}) = \mathbf{c}^T \boldsymbol{\mu}$$

(iv)
$$Var(\mathbf{c}^T\mathbf{y}) = \mathbf{c}^T \mathbf{\Sigma} \mathbf{c}$$

and covariances:

$$\sigma_{ij} = Cov(y_i, y_j) = E\left[(y_i - \mu_i)(y_j - \mu_j) \right]$$
where

$$\sigma_{ij} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (y - \mu_i)(v - \mu_j) f_{ij}(y, v) dy dv$$

if y_i and y_j are continuous random variables with joint density function $f_{ij}(y, v)$ and

$$\sigma_{ij} = \sum_{\substack{\text{all } \\ y}} \sum_{\substack{\text{all } \\ v}} (y - \mu_i)(v - \mu_j) P_{ij}(y, v)$$

if y_i and y_j are discrete random variables with joint probability function

$$p_{ij}(y,v) = Pr(y_i = y, V_j = v)$$

MEME16203 LINEAR MODELS

Example 29.

Let the 3×1 random vector **y** follows a multivariate normal distribution with men vector $\mu =$ $[7 \ 9 \ 5]^T$ and covariance matrix Σ where

Chapter 1 Working with Matrices and Vectors

$$\Sigma = \sigma^2 \begin{bmatrix} 1 & 0 & -1 \\ 0 & 4 & 0 \\ -1 & 0 & 3 \end{bmatrix}$$

Consider the vector \mathbf{w} when

$$\mathbf{w} = \begin{bmatrix} 3y_1 - y_2 + 2y_3 - 25\\ 2y_1 + y_2 - 4y_3 - 12 \end{bmatrix}$$

- (a) Find the mean vector of **w**.
- (b) Find the covariance matrix of **w**.

MEME16203 LINEAR MODELS