Lebesgue Measure

Rajit Rajpal

May 10, 2021

1 Introduction

There are many ways of looking at the size of a set. For example, the size of $A = \{1, 2, 3\}$ is |A| = 3. However, these 3 points on the real line have an infinitesimal size because a point doesn't embody any "space". In 1,2 or 3 dimensions, we know measures to be length, area and volume over the Euclidean space. But what about higher dimensions? This is where measure theory is introduced.

2 Motivation

- To formulate concepts of "sizes" for higher dimensions, and in arbitrary spaces for measures other than Lebesgue and to give a well-defined coherent structure.
- It gives us tools to generalize the Riemann-Darboux Theory. Such as Riemman-Integral to Lebesgue Integral

3 Building the Lebesgue Measure

First, we need to conceptualize an open rectangle. In \mathbb{R} , an open rectangle is the interval (a,b) s.t $a,b \in \mathbb{R}$. In \mathbb{R}^n , an open box would be $I = (a_1,b_1)\mathbf{x}...\mathbf{x}(a_n,b_n)$. The goal is to cover a set using open rectangles in such a way that the residuals are minimized.

More formally, let $A \subseteq \mathbb{R}^n$ and $I_k = (a_k, b_k)$. Let B be the box $|B_k| = \Pi_k |I_k|$. Then we define the Lebesgue Outer Measure, $m^*(A)$, to be:

$$m^*(A) = \inf \left\{ \sum_k |B_k| : A \subseteq \cup_k B_k \right\}$$

Intuitively, The greatest lower bound of the total area of countably many coverings using open rectangles. Similar to the concept of an open cover. Here's a visualization in \mathbb{R}^2

Figure 136 Rectangles that cover A

Figure 1: Approximation by Open Rectangles

The inner-measure is basically using the same concept but with closed rectangles to approximate the set from the inside.

$$\mu^*(A) = \sup \left\{ \sum_k |B_k| : \cup_k B_k \subseteq A \right\}$$

This is analogous to how Upper-Darboux and Lower-Darboux integrals are used to approximate the area under a function. When the Upper-Darboux Integral is equal to the Lower Darboux Integral, this shows that

a function is Riemman Integrable. In a similar fashion, when the Lebesgue Inner-Measure is equal to the Lebesgue-Outer Measure, the set is Lebesgue Measurable

4 Lebesgue Measurable

however, take a look at Figure 2.

Def: A set $A \subseteq \mathbb{R}^n$ is Lebesgue Measurable if for every $\epsilon > 0$, \exists an open set U s.t $A \subseteq U$ and $m^*(U \setminus A) < \epsilon$. A more analytic expression is Caratheodory Measurability which stems from the previous result which states that A is measurable iff $m^*(A) = m^*(A \cap U) + m^*(A^c \cap U)$. U here is not required to be measurable. Proof: Say we have $A \subseteq U$ s.t U is an open set. Set $\epsilon > 0$. $m^*(U) = m^*(A \cap U) + m^*(A^c \cap U) = m^*(A) + m^*(A^c \cap U) < m^*(A) + \epsilon \Rightarrow m^*(A^c \cap U) = m^*(U \setminus A) < \epsilon$ Hence, this is equivalent to the first definition. The backwards direction is ommitted. For better intuition,

Figure 2: Intuition Behind Caratheodory's Criterion

Let us say that our set U in the diagram is the arbitrary (and possibly non-measurable set) we are using in Caratheodory's criterion. It is jagged like a rock to account for non-measurability. Let A be the set we want to show is Lebesgue Measurable. So the boundary of A splits U in 2 parts, $A \cap U$ and $A^c \cap U$. Now, we apply a shrink wrap to it which is analogous to the outer measure. We can see that no extra area is added while wrapping these 2 parts since A has a straight boundary so $m^*(U) = m^*(A \cap U) + m^*(A^c \cap U)$. However, if A had a jagged boundary and was non-measurable, then the overall area would increase and $m^*(U) \leq m^*(A \cap U) + m^*(A^c \cap U)$ and Caratheodory's criterion would not hold showing that A is not Lebesgue Measurable.

5 Properties

Suppose $A, B \subseteq \mathbb{R}$ are measurable and $A \subseteq B$

- Measure of Empty Set: $m(\emptyset) = 0$
- Non-Negativity: $m(A) \ge 0$
- Excision: $m(B \setminus A) = m(B) m(A)$ Proof: Assume $m(A) < \infty$. W.T.S m(B) = m(B) m(A). $m(B) = m(B \cap A) + m(B \cap A^c) = m(A) + m(B A)$ Hence, $m(B) m(A) = m(A) + m(B \setminus A) m(A) = m(B \setminus A)$ as desired
- Monotonicity: $m(A) \le m(B)$
- Complementary Measurability: A is measurable A^c is measurable. Proof: A is measurable iff $m^*(E) = m^*(A \cap E) + m^*(A^c \cap E) = m^*(A^c \cap E) + m^*(A \cap E)$.
- Countable Subadditivity: $m(A_1 \cup ... \cup A_n) \leq \sum_{i=1}^n m(A_1) + ... + m(A_n)$ Assuming A_i is measurable. Equality holds when A_i 's are disjoint.
- Translation Invariance: m(A + x) = m(A) where x is an arbitrary appropriate constant. Intuitively, moving a set to the left or the right does not change its area.
- Countable Union of (Not necessarily disjoint) sets are measurable.

• Open and Closed sets are Measurable

Proof: The complement of a measurable set is measurable. The complement of open set is closed. So, we need only prove Lebesgue Measurability for open sets.

Let A be the open set in question. Using our first definition of measurability, we can set the open superset B as A itself s.t A = B. So, $m(B) = m(\emptyset) = 0 < \epsilon > 0$.

6 Examples

• \emptyset and R are Lebesgue Measurable.

Proof:
$$m^*(A \cap \emptyset) + m^*(A \cap \emptyset^c) = m^*(A \cap \emptyset) + m^*(A \cap R) = m^*(\emptyset) + m^*(A) = 0 + m^*(A) = m^*(A)$$
.

So, \emptyset is Lebesgue Measurable. But, $\emptyset^c = R$ and by Complementary Property of Lebesgue Measure, R is measurable as well.

- Numerical Example: $(2,8] \times [3,4] \times (0,1) = (8-2) \times (4-3) \times (1-0) = 6$
- Cantor Set: This has measure 0 because it iteratively removes a third of the set, say [0,1], and as we perform this to infinity, the measure tends to zero obviously.

7 Proof 1: Continuity of Measurable Sets

Lemma: Let $\{E_i\}_{i=1}^n$ be a finite collection of disjoint measurable sets. If $A \subseteq R$, then $m(\cup_i (A \cap E_i)) = m(A \cap (\cup_i E_i)) = \sum_i m(A \cap E_i)$.

Proof: Induction. Base case: $m(A \cap E_1) = \sum_{i=1}^{1} m(A \cap E_i)$. Inductive hypothesis: assume $m(\cup_i (A \cap E_i)) = m(A \cap (\cup_i E_i)) = \sum_i m(A \cap E_i)$ holds for n. Inductive step: since E_{n+1} is measurable, $m(A \cap (\cup_{i=1}^{n+1} E_i)) = m(A \cap (\cup_{i=1}^{n+1} E_i) \cap E_{n+1}) + m(A \cap (\cup_{i=1}^{n+1} E_i) \cap E_{n+1}^{C})$

- $= m(A \cap E_{n+1}) + m(A \cap (\cup_{i=1}^{n} E_i))$
- $= m(A \cap E_{n+1}) + \sum_{i=1}^{n} m(A \cap E_i)$
- $= \sum_{i=1}^{n+1} m(A \cap E_i).$

Theorem: The Union Continuity Property of the Lebesgue Measure Let $\{A_n\}_{n=1}^{\infty}$ be a collection of Lebesgue measurable sets such that $A_n \subseteq A_{n+1}$ for all $n \in N$. Then $m(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} m(A_n)$.

We break the theorem into two cases.

- Case 1: Suppose at least one of the sets in $\{A_n\}_{n=1}^{\infty}$ has infinite Lebesgue measure. Then $\exists n \in N$ such that $m(A_n) = \infty$. Then by countable subadditivity of the Lebesgue measure we have that:

$$m\left(\bigcup_{n=1}^{\infty} A_n\right) = \infty \tag{1}$$

Since $A_n \subseteq A_{n+1} \forall n \in \mathbb{N}$, we have that $A_n \subseteq A_{n+k} \forall k \ge 1$. Hence $\infty = m(A_n) \le m(A_{n+k}) \forall k \ge 1$, so:

$$\lim_{n \to \infty} m(A_n) = \lim_{k \to \infty} m(A_{n+k}) = \infty$$
 (2)

Combining continuity infinite measure union and *continuityliminfinity* gives us that $m(\bigcup_{n=1}^{\infty} A_n) = \lim_{n\to\infty} m(A_n)$.

- Case 2: Suppose none of the sets in $\{A_n\}_{n=1}^{\infty}$ have infinite Lebesgue measure. Then $m(A_n) < \infty \forall n \in \mathbb{N}$. We can rewrite the union $\bigcup_{n=1}^{\infty} A_n$ as follows: $\bigcup_{n=1}^{\infty} A_n = A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus A_2) \cup ...$ $= A_1 \cup (\bigcup_{n=2}^{\infty} (A_n \setminus A_{n-1}))$ Since $A_n \subseteq A_{n+1} \forall n \in \mathbb{N}$, we see that $\{A_1, A_n \setminus A_{n-1} : n \in \mathbb{N}, n \geq 2\}$ is a collection of mutually disjoint sets. We then take the Lebesgue measure of both sides of continuity non-infinite measure union and use the Excision Property to get: $m(\bigcup_{n=1}^{\infty} A_n) = m(A_1 \cup (\bigcup_{n=2}^{\infty} (A_n \setminus A_{n-1}))) = m(A_1) + \sum_{n=2}^{\infty} m(A_n \setminus A_{n-1}) = m(A_1) + \sum_{n=2}^{\infty} [m(A_n) - m(A_{n-1})] = m(A_1) + \lim_{n \to \infty} \sum_{k=2}^{n} [m(A_k) - m(A_{k-1})] = m(A_1) + \lim_{n \to \infty} [m(A_n) - m(A_1)] = \lim_{n \to \infty} m(A_n)$

Theorem: The Intersection Continuity Property of the Lebesgue Measure Let $\{B_n\}_{n=1}^{\infty}$ be a collection of Lebesgue measurable sets such that $B_n \supseteq B_{n+1} \forall n \in \mathbb{N}$. Furthermore, let $m(B_1) < \infty$. Then $m(\bigcap_{n=1}^{\infty} B_n) = \lim_{n \to \infty} m(B_n)$.

- Since $m(B_1) < \infty$ and $B_n \supseteq B_{n+1} \ \forall n \in \mathbb{N}$, we have that $m(B_n) < \infty \ \forall n \in \mathbb{N}$ so $m(\bigcap_{n=1}^{\infty} B_n) < \infty$. By the Excision Property, we have that:

$$m\left(B_1 \setminus \left(\bigcap_{n=1}^{\infty} B_n\right)\right) = m(B_1) - m\left(\bigcap_{n=1}^{\infty} B_n\right)$$
(3)

Notice that: $B_1 \setminus (\bigcap_{n=1}^{\infty} B_n) = \bigcup_{n=1}^{\infty} (B_1 \setminus B_n)$ Let $A_n = B_1 \setminus B_n$ for each $n \in \mathbb{N}$. Then $A_n \subseteq A_{n+1} \ \forall n \in \mathbb{N}$ since $B_n \supseteq B_{n+1} \ \forall n \in \mathbb{N}$.

Figure 3: Picturing A_n in terms of B_n . Each A_{n+1} covers A_n as well as $B_n \setminus B_{n+1}$.

Hence the measure of A_{n+1} is larger than or equal to the measure of A_n . Here we see A_2 on the left and A_3 on the right, both shaded yellow. Then by the Continuity of Unions for the Lebesgue Measure, we have that: $m (B_1 \setminus (\bigcap_{n=1}^{\infty} B_n)) = m(B_1) - \lim_{n \to \infty} m(B_n)$ Using the equality at cont intersect setminus complement and cont intersect excision with cont intersect as union excise gives us: $m(B_1) - m(\bigcap_{n=1}^{\infty} B_n) = m(B_1) - \lim_{n \to \infty} m(B_n) \Leftrightarrow m(\bigcap_{n=1}^{\infty} B_n) = \lim_{n \to \infty} m(B_n)$

The rest of the proof is similar to the proof for the Union Continuity Property

8 Proof 2: Inner-Regularity

Let $E \subset \mathbb{R}^n$ be Lebesgue Measurable. Then

$$m(E) = \sup_{K \subset E \text{ K compact}} m(K)$$

The point of this proof is to show that arbitrary sets in the Euclidean Space can be approximated by its compact subsets.

Figure 4: Inner-Regularity: The polygons inside are the compact sets we use to approximate the circle. As we take the limit, it becomes a circle and approximates the outer circle pretty well.

Case 1: Suppose E is bounded.

- (1) By the property $A \subseteq B \Rightarrow m(A) \leq m(B)$ we know m(E) is an upper bound for $\{m(K)|K \subset E, K \text{compact}\}\$ since all $K \subseteq E$. Thus $\sup\{m(K)|K \subset E, K \text{compact}\} \leq m(E)$
- (2) Let $B \subset \mathbb{R}^n$ be a compact set such that $E \subseteq B$. Using the def. of measurability from before, for every $\epsilon > 0$, there is an open set $F \supseteq B \setminus E$ such that:

$$m(F \setminus (B \setminus E)) \le \epsilon$$

Using Excision and the Property that Open sets are measurable.

$$m(F) - m(B \setminus E) \le \epsilon$$

$$\Rightarrow m(F) \le m(B \setminus E) + \epsilon$$

Figure 5: Visualization of Sets.

<u>Lemma:</u> Difference of a compact set and an open set is compact.

Proof: Let $O, K \subseteq \mathbb{R}^n$ s.t O is open, K is compact. W.T.S An open cover V of $K \setminus O$ admits finite subcover.

 $V \cup O$ is an open cover of K as arbitrary unions of open sets is open.

There is a finite subcover $W \subseteq V \cup O$ which covers K

Then, $W \setminus O \subseteq V$ is finite and covers $K \setminus O$

Thus, $K = B \setminus F$ is compact and $K \subseteq E$

Also, $B \subseteq K \cup F$ and $B = E \cup (B \setminus E)$

Hence, by Countable Subadditivity,

$$m(B) \le m(K) + m(F)$$

and

$$m(B) = m(E) + m(B \setminus E)$$

$$m(E) = m(B) - m(B \setminus E)$$

$$\leq m(B) - m(F) + \epsilon \leq m(K) + \epsilon$$

Thus, we have

$$\sup\{m(K)|K\subset E, K\text{compact}\} \le m(E)$$

and

$$m(E) \le \sup\{m(K)|K \subset E, K \text{compact}\}\$$

Case 2: Suppose E is not bounded, and $m(E) = \infty$.

Let $A_n = \{x \in \mathbb{R}^d | |x| \le n\}$ (closed ball)

Let $E_n = E \cap A_n$, the elements of E in the closed ball A_n . Note: this set is bounded.

As a result we have $E_1 \subseteq E_2 \subseteq ... \subseteq R^d, E = \bigcup_{n \in N} E_n$

Hence, we can define a monotone sequence $(E_n)_n$ and use the Union Continuity property in proof 2:

If
$$\bigcup_{n\in\mathbb{N}} E_n = E$$
, then $\lim_{n\to\infty} m(E_n) = m(\lim_{n\to\infty} E_n)$

<u>Note:</u> $m(E_n)$ is also monotonically increasing by property $A \subseteq B \Rightarrow m(A) \leq m(B)$

We know that

$$\bigcup_{n \in N} E_n = \lim_{n \to \infty} E_n = E$$

Hence,

$$m(\lim_{n\to\infty} E_n) = m(E) = \infty$$

Since E_n is bounded, using Case 1, we have that for every $n \in N, \epsilon > 0 \; \exists \; \text{compact} \; K_n \subseteq E_n \; \text{such that} \; m(E_n) - m(K_n) < \epsilon$.

$$m(E_n) < m(K_n) + 17$$

since $m(E_n)\infty$

$$lim_{n\to\infty}m(E_n) \le lim_{n\to\infty}m(K_n) + 17 = \infty$$

$$\sup\{m(K)|K\subset E, K\text{compact}\}=\infty=m(E)$$

Case 3: Suppose E is not bounded, but m(E) is finite.

Then for any $\epsilon > 0$, we can pick $n \in N$ such that

$$m(E) \le m(E_n) + \frac{\epsilon}{2}$$

and since E_n is bounded, applying Case 1 to get

$$m(E_n) \le m(K) + \frac{\epsilon}{2}$$

for some compact set $K \subseteq E_n \subseteq E$.

$$m(E) \le m(E_n) + \frac{\epsilon}{2} \le m(K) + \epsilon$$

since ϵ is arbitrary

$$m(E) = \sup_{K \subset E, K \text{ compact}} m(K)$$

9 Probability Measure

Measure theory is useful because the definitions can be adapted for probability theory. In Measure Theory, a Random Variable is a measurable function.

"Sample a point x uniformly at random in the unit square" is a textbook introduction to probability. The answer being, $P(x \in A) = area(A)/1$.

But Measure Theory is required to formalize area(A)

If
$$\mu(S) = 1$$
 for $\mu: S \to [0, \infty]$, μ is a probability measure. Also, $\mu(A^c) = 1 - \mu(A)$

10 Bibliography

https://terrytao.files.wordpress.com/2011/01/measure-book1.pdf

Real Mathematical Analysis, Charles Pugh

https://en.wikipedia.org/wiki/Lebesguemeasure

https://math.stackexchange.com/questions/2459450/prove-the-continuity-of-m-lebesgue-measure

https://math.stackexchange.com/questions/271848/inner-regularity-of-lebesgue-measurable-sets