

Dados e Aprendizagem Automática

Linear & Logistic Regression

- Linear Regression
- Logistic Regression
- Hands On

Supervised Learning

We will explore the **Supervised Learning** algorithms.

The **choice of the algorithm** to implement depends on **the type of data and the context** provided. If we have **labelled data** or we know in advance what the **output** should be, we choose the Supervised Learning paradigm.

The Problem and the Data

<u>Problem</u>: development of a Machine Learning model capable of **predicting house prices** for regions in the USA

Approach: Linear Regression approach

<u>Dataset</u>: table with information about houses in regions of the United States, including:

- Avg. Area Income: average income of the residents of the city where the house is located
- Avg. Area House Age: average age of the houses in the same city
- Avg. Area Number of Rooms: average number of rooms of the houses in the same city
- Avg. Area Number of Bedrooms: average number of bedrooms of the houses in the same city
- **Area Population**: population of the city where the house is located
- Price: price at which the house was sold
- Address: address of the house

```
USAhousing = pd.read csv('USA Housing.csv')
  USAhousing.head()
  Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms Avg. Area Number of Bedrooms Area Population
      79545.458574
                             5.682861
                                                      7.009188
                                                                                      4.09
0
      79248.642455
                             6.002900
                                                      6.730821
                                                                                      3.09
2
      61287.067179
                             5.865890
                                                      8.512727
                                                                                      5.13
                             7.188236
3
      63345.240046
                                                      5.586729
                                                                                      3.26
4
      59982.197226
                             5.040555
                                                      7.839388
                                                                                      4.23
  USAhousing.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 5000 entries, 0 to 4999
  Data columns (total 7 columns):
       Column
                                        Non-Null Count Dtype
       Avg. Area Income
                                        5000 non-null
                                                         float64
       Avg. Area House Age
                                                         float64
                                        5000 non-null
       Avg. Area Number of Rooms
                                                         float64
                                        5000 non-null
       Avg. Area Number of Bedrooms 5000 non-null
                                                        float64
       Area Population
                                                         float64
                                        5000 non-null
       Price
                                        5000 non-null
                                                         float64
       Address
                                        5000 non-null
                                                         object
  dtypes: float64(6), object(1)
  memory usage: 273.6+ KB
```

Price

40173.072174 1.505891e+06 188 Johnson Views Suite 079\nLake Kathleen, CA...

36882.159400 1.058988e+06 9127 Elizabeth Stravenue\nDanieltown, WI 06482...

23086.800503 1.059034e+06

34310.242831 1.260617e+06

26354.109472 6.309435e+05

Address

208 Michael Ferry Apt. 674\nLaurabury, NE 3701...

USS Barnett\nFPO AP 44820

USNS Raymond\nFPO AE 09386

```
USAhousing.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
                                 Non-Null Count Dtype
    Column
    Avg. Area Income
                                 5000 non-null float64
                             5000 non-null float64
1 Avg. Area House Age
 2 Avg. Area Number of Rooms
                                 5000 non-null float64
    Avg. Area Number of Bedrooms 5000 non-null float64
    Area Population
                                 5000 non-null float64
    Price
                                 5000 non-null float64
    Address
                                 5000 non-null object
dtypes: float64(6), object(1)
memory usage: 273.6+ KB
USAhousing.columns
Index(['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
       'Avg. Area Number of Bedrooms', 'Area Population', 'Price', 'Address'],
      dtype='object')
```

USAhousing.describe()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

Let's create some plots to check the data:

sns.pairplot(USAhousing, hue="Price")

sns.histplot(USAhousing['Price'])

sns.heatmap(USAhousing.corr(numeric_only=True))

Let's now begin to train our model.

The target is the **Price** so we will implement a Linear Regression model.

The feature **Address** will not be consider since is not relevant nor a numeric variable.

Let's check the distribution of each subset:


```
sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)
```

Creating and training the model:

```
from sklearn.linear_model import LinearRegression

lm = LinearRegression()
lm.fit(X_train,y_train)

v LinearRegression ()

LinearRegression()
```

Then, evaluating the model by checking its coefficients and interpreting them:

```
print(lm.intercept_)
-2640159.7968525267
```

```
coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
coeff_df
```

	Coefficient
Avg. Area Income	21.528276
Avg. Area House Age	164883.282027
Avg. Area Number of Rooms	122368.678027
Avg. Area Number of Bedrooms	2233.801864
Area Population	15.150420

Holding all the other features fixed:

- 1 unit increase in **Avg. Area Income** is associated with an increase of 21,53 \$
- 1 unit increase in *Avg. Area House Age* is associated with an increase of 164883,28 \$
- 1 unit increase in *Avg. Area Number of Rooms* is associated with an increase of *122368,68* \$
- 1 unit increase in Avg. Area Number of Bedrooms is associated with an increase of 2233,80 \$
- 1 unit increase in *Area Population* is associated with an increase of 15,15 \$

Let's analyze the predictions and plot it:

Regression Evaluation Metrics

The three most common evaluation metrics for regression problems are:

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)

Comparing them:

- **MAE** is the easiest to understand because it's the average error,
- MSE is more popular than MAE because MSE "punishes" large errors;
- **RMSE** is even more popular than MSE because RMSE is interpretable in *units of the target variable*

All of these are **loss functions** because we want to *minimize the error*.

```
from sklearn import metrics

print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))

MAE: 82288.22251914947
MSE: 10460958907.209057
RMSE: 102278.82922290935
```

The Problem and the Data

<u>Problem</u>: development of a Machine Learning model that predicts **which passengers survived** the Titanic shipwreck

Approach: Logistic Regression approach

<u>Dataset</u>: table with information regarding passengers' information, including:

- **survival**: if the passenger survived (0: No, 1: Yes)
- *pclass*: ticket class (1: 1st, 2: 2nd, 3: 3rd)
- **sex**: M: Male, F: Female
- **Age**: age in years
- sibsp: number of siblings per spouses aboard
- parch: number pf parents per children aboard
- *ticket*: ticket number
- fare: passenger fare
- *cabin:* cabin number
- embarked: port of embarkation (C: Cherbourg, Q: Queenstown, S: Southampton)

```
train = pd.read_csv('titanic_train.csv')
```

train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Let's check if there are missing data:

sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')

About 20% of the *Age* data is **missing**. The proportion of *Age* data missing is likely small enough for reasonable replacement with some form of imputation.

Looking at the *Cabin* column it looks like we are just **missing too much** of that data to do something useful with at a basic level. We will probably drop this later, or change it into another feature like "Cabin Known: 1 or 0"

Let's continue on by visualizing some more of the data:

We want to **fill in missing values** instead of dropping it. One way to do this is by filling the mean age of all passengers (**imputation**). However, we can be smarter about this and check the average age by passenger class:

We can see that wealthier passengers in the higher classes tend to be older which makes sense. We will use these average age values to impute based on *pclass*.

```
def impute_age(cols):
    Age = cols[0]
    Pclass = cols[1]
    if pd.isnull(Age):
        if Pclass == 1:
            return 37
        elif Pclass == 2:
            return 29
        else:
            return 24
    else:
        return Age
train['Age'] = train[['Age', 'Pclass']].apply(impute_age,axis=1)
```

```
sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')
                Pclass
                        Name
                                                     Parch
                                              SibSp
                                                             Ticket
                                                                            Cabin
                                                                     Fare
 Passengerld
```

Now let's drop the column *cabin* and the rows in *Embarked* that are NaN:

train.drop('Cabin',axis=1,inplace=True)

train.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S

train.dropna(inplace=True)

We will need to convert categorical features into dummy variables using pandas' library:

```
train.info()
<class 'pandas.core.frame.DataFrame'>
Index: 889 entries, 0 to 890
Data columns (total 11 columns):
    Column
                 Non-Null Count Dtype
    PassengerId 889 non-null
                                 int64
                 889 non-null
    Survived
                                 int64
    Pclass
                 889 non-null
                                 int64
              889 non-null
                                 object
     Name
                 889 non-null
                                 object
     Sex
                                 float64
                 889 non-null
    Age
                 889 non-null
                                 int64
    SibSp
            889 non-null
                                 int64
     Parch
                                 object
                 889 non-null
     Ticket
                                 float64
                 889 non-null
     Fare
    Embarked
                 889 non-null
                                 object
dtypes: float64(2), int64(5), object(4)
memory usage: 83.3+ KB
```

```
sex = pd.get_dummies(train['Sex'],drop_first=True)
embark = pd.get_dummies(train['Embarked'],drop_first=True)

train.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True)

train = pd.concat([train,sex,embark],axis=1)

train.head()
```

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	S
0	1	0	3	22.0	1	0	7.2500	True	False	True
1	2	1	1	38.0	1	0	71.2833	False	False	False
2	3	1	3	26.0	0	0	7.9250	False	False	True
3	4	1	1	35.0	1	0	53.1000	False	False	True
4	5	0	3	35.0	0	0	8.0500	True	False	True

Survived

```
29
         from sklearn.model_selection import train_test_split
         X = train.drop('Survived',axis=1)
         y = train['Survived']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=101)
sns.set_style('whitegrid')
                                                                                   sns.set_style('whitegrid')
sns.countplot(x='Survived', data = pd.DataFrame(y_train,columns=['Survived']) ) sns.countplot(x='Survived', data = pd.DataFrame(y_train,columns=['Survived']) )
  400
                                                                                      160
  350
                                                                                      140
  300
                                                                                      120
  250
                                                                                      100
200 and
                                                                                      80
  150
                                                                                       60
  100
                                                                                       40
   50
                                                                                       20
                                                                                       0
                    0
                                                                                                        0
```

Survived

```
sklearn.linear_model.LogisticRegression(penalty='12', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)
```

Logistic Regression' solvers:

- For small datasets liblinear is a good choice whereas sag and saga are faster for larger ones;
- For **multiclass** problems only *newton-cg*, *sag*, *saga* and *lbfgs* handle multinomial loss;
- liblinear is limited to one-versus-rest schemes.

Supported **penalties** by solver:

- *newton-cg* [L2, none]
- *lbfgs* [L2, none]
- *liblinear* /L1, L2/
- **sag** [L2, none]
- **saga** [elasticnet, l1, l2, none]

from sklearn.linear_model import LogisticRegression

```
Model 1: random_state = 2022, solver = 'newton-cg'
starttime = time.process_time()

logmodel1 = LogisticRegression(random_state=2022, solver='newton-cg')
print(logmodel1)
logmodel1.fit(X_train,y_train)

endtime = time.process_time()
print(f"Time spent: {endtime - starttime} seconds")

LogisticRegression(random state=2022, solver='newton-cg')
Time spent: 0.015625 seconds

predictions1 = logmodel1.predict(X_test)
```

```
Model 2: random_state = 2022, solver = 'lbfgs'
starttime = time.process_time()

logmodel2 = LogisticRegression(random_state=2022, solver='lbfgs', max_iter=800)
print(logmodel2)
logmodel2.fit(X_train,y_train)

endtime = time.process_time()
print(f"Time spent: {endtime - starttime} seconds")

LogisticRegression(max_iter=800, random_state=2022)
Time spent: 0.078125 seconds
```

Model 3: random_state = 2022, solver = 'liblinear' starttime = time.process_time() logmodel3 = LogisticRegression(random_state=2022, solver='liblinear') print(logmodel3) logmodel3.fit(X_train,y_train) endtime = time.process_time() print(f"Time spent: {endtime - starttime} seconds") LogisticRegression(random_state=2022, solver='liblinear') Time spent: 0.0 seconds predictions3 = logmodel3.predict(X test)

Let's evaluate the model using precision, recall, f1-score and confusion matrix:

```
from sklearn.metrics import classification_report, ConfusionMatrixDisplay
print("With 'newton-cg': \n", classification_report(y_test,predictions1))
print("With 'lbfgs': \n", classification_report(y_test,predictions2))
print("With 'liblinear': \n", classification_report(y_test,predictions3))
```

With	'newton-cg':
	precision

	precision	recall	f1-score	support
0	0.82	0.91	0.86	163
1	0.84	0.68	0.75	104
accuracy			0.82	267
macro avg	0.83	0.80	0.81	267
weighted avg	0.83	0.82	0.82	267

With 'lbfgs':

	precision	recall	f1-score	support
0	0.82	0.91	0.86	163
1	0.84	0.68	0.75	104
accuracy			0.82	267
macro avg	0.83	0.80	0.81	267
weighted avg	0.83	0.82	0.82	267

With 'liblinear':

	precision	recall	f1-score	support
0	0.81	0.93	0.86	163
1	0.85	0.65	0.74	104
accuracy			0.82	267
macro avg	0.83	0.79	0.80	267
weighted avg	0.82	0.82	0.81	267

```
ConfusionMatrixDisplay.from_predictions(y_test, predictions1)
ConfusionMatrixDisplay.from_predictions(y_test, predictions2)
ConfusionMatrixDisplay.from_predictions(y_test, predictions3)
plt.show()
```


Hands On