Алгоритмы. Домашнее задание №1

Горбунов Егор Алексеевич

17 сентября 2015 г.

Задание 1

(a) Имеем 2 функции $f, g : \mathbb{N} \to \mathbb{R}_{>0}$. Покажем, что

$$\exists_{N,C>0} \forall_{n\geq N} (f(n) \leq Cg(n)) \iff \exists_{C>0} \forall_n (f(n) \leq Cg(n))$$

(\Leftarrow) Достаточно положить тогда, что N=1 (т.к. $n\in\mathbb{N}$). (\Rightarrow) В предположении, что мы работаем с функциями f и g такими, что $\forall n\in\mathbb{N}$ ($f(n)<\infty,\ g(n)<\infty$). Тогда имеем, что $\exists_{N,C>0}\forall_{n\geq N}f(n)\leq Cg(n)$. Если $N\neq 1$, то есть номер n', на котором нарушается условие $f(n)\leq Cg(n)$, т.е. f(n')>Cg(n'). N — конечно, тогда мы можем перебрать все пары i,j и найти такие, что f(i) наибольшее, а g(j) наименьшее. Ясно тогда, что $\forall\ n< N\ (g(n)\frac{f(i)}{g(j)}\geq f(n))$, но тогда и подавно в силу положительности $g,f:g(n)\frac{f(i)}{g(j)}+Cg(n)\geq f(n)$, т.е.

$$f(n) \leq \left(\frac{f(i)}{g(j)} + C\right)g(n) \ \forall \ n \in \mathbb{N}$$

Для $n \ge N$ ничего это так же верно в силу того, что мы лишь добавили положительное слагаемое к правой части неравенства $f(n) \le Cg(n)$. Таким образом мы нашли новую константу $C' = \frac{f(i)}{g(j)} + C$, для которой уже справедливо утверждение без $\exists N$.

(b) Вопрос об эквивалентности следующих утверждений:

$$\forall_{C>0}\exists_{N}\forall_{n\geq N}(f(n)\leq Cg(n))\iff\forall_{C>0}\forall_{n}(f(n)\leq Cg(n))$$

Рассмотрим: g(n) = log(n), $f(n) = \frac{1}{n}$. Ясно, что f(n) = o(g(n)), но так же, например для C = 1 f(n) > g(n) при n = 1, а значит n должен быть по крайней мере ≥ 2 , чтобы $f(n) \leq g(n)$, таким образом из определения f = o(g) убрать условие о существовании N нельзя.

Задание 2

- (a) В силу того, что во внутренний цикл вход происходит лишь при условии, что used[i] == 0, где i переменная внешнего цикла, а если исполнение доходит до внутреннего цикла, то как минимум в used[i] будет присвоена 1 и вообще, на каждой итерации внутреннего цикла происходит изменение некоторой ячейки массива used с 0 на 1. Таким образом весь алгоритм сделает n присвоений, а значит суммарно будет сделано n итераций. Ответ: $\mathcal{O}(n)$
- **(b)** Числа длины n в десятичной системе счисления.
- (i) Сложение в столбик: будет сделано n операций поразрядного сложения, т.е. сложность $\mathcal{O}(n)$
- (ii) Умножение в столбик: n операций умножения для каждого из разрядов второго числа, после чего нужно будет сложить n чисел (столько, сколько у второго числа разрядов). Итого $\mathcal{O}(n^2)$
- (iii) Деление в столбик: $\mathcal{O}(n^2)$ Т.к. на каждом шаге мы находим число (от 1 до 10) и производим умножение на него того числа, на которое делим. Это происходит за $\mathcal{O}(n)$. Потом происходит вычитание 2-х чисел за $\mathcal{O}(n)$. И это повторяется $\mathcal{O}(n)$ раз.

A	В	0	0	Θ	ω	Ω
$\lg^k n$	n^{ϵ}	+	+			
n^k	c^n	+	+			
\sqrt{n}	$n^{sin(n)}$	+	+			
2^n	$2^{n/2}$				+	+
$n^{\lg m}$	$m^{\lg n}$	+		+		+
$\lg(n!)$	$\lg(n^n)$	+		+		+

Задание 3

Задание 5 Расширенный алгоритм Евклида.

Будем искать $d = gcd(a,b), \ a \ge b$ и такие x и y, что d = ax + by. Известно, что такие x и y существуют. Пускай мы умеем искать такие числа x и y для a и $(a \mod b)$:

$$gcd(a, a \bmod b) = bx' + (a \bmod b)y' = bx' + (a - \left\lfloor \frac{a}{b} \right\rfloor b)y' = ay' + b(x' - \left\lfloor \frac{a}{b} \right\rfloor y')$$

И т.к. известно, что $gcd(a, a \mod b) = gcd(a, b)$, то получаем:

$$gcd(a,b) = ay' + b(x' - \left| \frac{a}{b} \right| y')$$

Теперь мы можем построить рекурсивную процедуру вычисления разложения gcd(a,b):

Вход: a, b — числа, $a \ge b \ge 0$

Выход: (x, y, d) такие, что d = gcd(a, b) = ax + by

1: **procedure** SuperEuclid(a, b)

2: **if** b = 0 **then**

3: return (1, 0, a)

4: $(x, y, d) \leftarrow \text{SUPEREUCLID}(b, a \mod b)$

5: $return (y, x - \lfloor \frac{a}{b} \rfloor y, d)$

Задание 6

- 1. Если x = y, то $gcd(x,y) = x = y = \frac{x+y}{2}$
- 2. Если x и y чётные, то ясно, что их gcd кратен 2, т.к. иначе его можно было бы увеличить умножением на 2. Ясно, что $gcd(x,y) \ge 2gcd(x/2,y/2)$, т.к. если d|x/2,d|y/2, то всяко 2d делит x и y. Аналогично $gcd(x/2,y/2) \le gcd(x,y)/2$, ведь если d|x,d|y, то всяко d/2|x/2 и d/2|y/2. А следовательно должно выполняться равенство.

- 3. Если какой-то один элемент, например x, кратен 2, а y нет. Тогда ясно, что любой их общей делитель не кратен 2, а значит мы спокойно можем делить x на 2 и искать $\gcd(x/2,y)$
- 4. 2 последних условных оператора очевидны. Если d делит x и y, то конечно d делит и их разность, а если d делит разность, то конечно оно делит каждый элемент разности по отдельности.

Таким образом каждый рекурсивный вызов **gcd** верен, а значит алгоритм корректен. Заметим, что в каждом вызове функции хотя бы один из аргументов либо уменьшается вдвое, либо становится чётным (т.к. разность двух нечётных чисел — число чётное), а значит на следующей итерации всяко произойдёт деление вдвое одного из аргументов. Итого получаем, что хотя бы каждые 2 рекурсивных вызова происходит деление одного из аргументов пополам, а значит суммарно алгоритм отрабатывает за O(log(n)).