

Filter Design, C code generation and Deployment

Key Takeaways

- Design and test filter algorithms quickly in MATLAB
- Benefit from automatic C code generation out of the algorithms
- Integrate generated C code easily into external C projects form other IDEs
- □ Deploy the entire design as a standalone application using the MATLAB Runtime

Filter's Bodes Representation in MATLAB

Design and test of the algorithm

• frequency range
• type and order of filter
• cutoff frequency
• quality factor

% Pulsation's vectors
w = 2*pi*frequency;
w_0 = 2*pi*f_0;
% Transfer function
H = 1./(1+(1i/w 0)*w);
H = (1i/w_0)*w.*H;

From MATLAB to C

Code Generation

Matlab's user filter's Bodes visualization **Automatic C code** generation **Full portable ANSI C version** of the project

Application Deployment

App Designer to C#

MATLAB Application Deployment

Key Takeaways

- □ Design and test filter algorithms quickly in MATLAB
- □ Benefit from automatic C code generation out of the algorithms
- □ Integrate generated C code easily into external C projects form other IDEs
- □ Deploy the entire design as a standalone application using the MATLAB Runtime