13. Metalogic for QL

- 1. Metalogic for QL
- 1.1 Truth and Satisfaction in QL
- 1.2 Recap: Substitution Instances
- 1.3 QL rules recap
- 1.4 Soundness of System QND

More Righteousness?!

Soundness: the proof itself

▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.

- ▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.
- ▶ By proving that our derivation system is sound, we show that QND derivations are 'safe' (they preserve truth)

- ▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.
- ▶ By proving that our derivation system is sound, we show that QND derivations are 'safe' (they preserve truth)
 - Sound: If $\Gamma \vdash_{QND} \Theta$, then $\Gamma \vDash \Theta$

- ▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.
- ▶ By proving that our derivation system is sound, we show that QND derivations are 'safe' (they preserve truth)
 - **Sound**: If $\Gamma \vdash_{QND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)

- ▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.
- ▶ By proving that our derivation system is sound, we show that QND derivations are 'safe' (they preserve truth)
 - **Sound**: If $\Gamma \vdash_{QND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- By proving that QND is complete, we show that reasoning about arbitrary models is not needed to demonstrate validity: QND derivations suffice

- ▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.
- ▶ By proving that our derivation system is sound, we show that QND derivations are 'safe' (they preserve truth)
 - **Sound**: If $\Gamma \vdash_{QND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- By proving that QND is complete, we show that reasoning about arbitrary models is not needed to demonstrate validity: QND derivations suffice
 - Complete: If $\Gamma \models \Theta$, then $\Gamma \vdash_{QND} \Theta$

- ▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.
- ▶ By proving that our derivation system is sound, we show that QND derivations are 'safe' (they preserve truth)
 - **Sound**: If $\Gamma \vdash_{QND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- By proving that QND is complete, we show that reasoning about arbitrary models is not needed to demonstrate validity: QND derivations suffice
 - Complete: If $\Gamma \vDash \Theta$, then $\Gamma \vdash_{OND} \Theta$
 - (logical entailment is fully covered by our syntactic rules)

- ▶ Let Γ be any set of sentences of QL and Θ any sentence of QL.
- ▶ By proving that our derivation system is sound, we show that QND derivations are 'safe' (they preserve truth)
 - Sound: If $\Gamma \vdash_{OND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- By proving that QND is complete, we show that reasoning about arbitrary models is not needed to demonstrate validity: QND derivations suffice
 - Complete: If $\Gamma \vDash \Theta$, then $\Gamma \vdash_{OND} \Theta$
 - (logical entailment is fully covered by our syntactic rules)
 - (Means: we wrote down *enough* rules!)

a. Truth and Satisfaction in QL

13. Metalogic for QL

▶ Let \mathfrak{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)

- ▶ Let \mathcal{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)
 - recall that the atomic sentences of SL are 0th-place predicates

- ▶ Let \mathcal{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)
 - recall that the atomic sentences of SL are 0th-place predicates
- ▶ An \mathfrak{L} -model $\mathfrak{M} := (D, I)$ consists of

- ▶ Let \mathcal{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)
 - recall that the atomic sentences of SL are 0th-place predicates
- ▶ An \mathfrak{L} -model $\mathfrak{M} := (D, I)$ consists of
 - 1. A non-empty set D of objects, called the domain of $\mathfrak M$

- ▶ Let \mathcal{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)
 - recall that the atomic sentences of SL are 0th-place predicates
- ▶ An \mathfrak{L} -model $\mathfrak{M} := (D, I)$ consists of
 - 1. A non-empty set D of objects, called the domain of ${\mathfrak M}$
 - 2. A map I (the *interpretation* of \mathfrak{M}), which maps the vocabulary of \mathfrak{L} to objects and ordered pairs from D as follows:

- ▶ Let \mathcal{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)
 - recall that the atomic sentences of SL are 0th-place predicates
- ▶ An \mathfrak{L} -model $\mathfrak{M} := (D, I)$ consists of
 - 1. A non-empty set D of objects, called the domain of $\mathfrak M$
 - 2. A map I (the *interpretation* of \mathfrak{M}), which maps the vocabulary of \mathfrak{L} to objects and ordered pairs from D as follows:
 - For each constant $c \in \mathfrak{L}$, I(c) is an element of D, called the *referent* or denotation of c

- ▶ Let \mathcal{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)
 - recall that the atomic sentences of SL are 0th-place predicates
- ▶ An \mathfrak{L} -model $\mathfrak{M} := (D, I)$ consists of
 - 1. A non-empty set D of objects, called the domain of $\mathfrak M$
 - 2. A map I (the *interpretation* of \mathfrak{M}), which maps the vocabulary of \mathfrak{L} to objects and ordered pairs from D as follows:
 - For each constant $c \in \mathfrak{L}$, I(c) is an element of D, called the *referent* or denotation of c
 - For each k-place predicate P of \mathfrak{L} , I(P) is a set of ordered k-tuples of objects in D, called the extension of P

- ▶ Let \mathcal{L} be a first-order language, containing constants and k-place predicates (e.g. the language of QL)
 - recall that the atomic sentences of SL are 0th-place predicates
- ▶ An \mathfrak{L} -model $\mathfrak{M} := (D, I)$ consists of
 - 1. A non-empty set D of objects, called the domain of $\mathfrak M$
 - 2. A map I (the *interpretation* of \mathfrak{M}), which maps the vocabulary of \mathfrak{L} to objects and ordered pairs from D as follows:
 - For each constant $c \in \mathfrak{L}$, I(c) is an element of D, called the *referent* or denotation of c
 - For each k-place predicate P of \mathfrak{L} , I(P) is a set of ordered k-tuples of objects in D, called the extension of P
- Our text uses 'models' and 'interpretations' interchangeably, but the above disambiguation is convenient

▶ Consider a simple language \mathfrak{L} comprising a one-place predicate P, a two-place predicate R, and constants a and b.

- ► Consider a simple language \mathfrak{L} comprising a one-place predicate P, a two-place predicate R, and constants a and b.
- Fix an \mathfrak{L} -model $\mathfrak{M}:=(D,I)$, e.g. our D could be \mathbb{N} . I is what we would punch into Carnap on PS9

- ► Consider a simple language \mathfrak{L} comprising a one-place predicate P, a two-place predicate R, and constants a and b.
- Fix an \mathfrak{L} -model $\mathfrak{M} := (D, I)$, e.g. our D could be \mathbb{N} . I is what we would punch into Carnap on PS9
- ▶ Pa is true in \mathfrak{M} provided that the object I(a) has the property I(P), i.e. I(a) lies in the extension of P. Then we'll write $\mathfrak{M} \models Pa$

- ► Consider a simple language \mathfrak{L} comprising a one-place predicate P, a two-place predicate R, and constants a and b.
- Fix an \mathfrak{L} -model $\mathfrak{M} := (D, I)$, e.g. our D could be \mathbb{N} . I is what we would punch into Carnap on PS9
- ▶ Pa is true in \mathfrak{M} provided that the object I(a) has the property I(P), i.e. I(a) lies in the extension of P. Then we'll write $\mathfrak{M} \models Pa$
- ▶ Rab is true in \mathfrak{M} provided that the objects I(a) and I(b) stand in relation R. In this case, we'll write $\mathfrak{M} \models Rab$

 \blacktriangleright What to say about something with free variables, such as Px?

- \blacktriangleright What to say about something with free variables, such as Px?
- ► This is a wff of QL but not a sentence (it is neither true nor false in a model)

- \blacktriangleright What to say about something with free variables, such as Px?
- ► This is a wff of QL but not a sentence (it is neither true nor false in a model)
- ► Idea: for each object r in D, we know whether Px would be true if we replaced r for x, i.e. if x stood for r (b/c we know the extension of P, i.e. all the objects that are P)

- \blacktriangleright What to say about something with free variables, such as Px?
- ► This is a wff of QL but not a sentence (it is neither true nor false in a model)
- ► Idea: for each object r in D, we know whether Px would be true if we replaced r for x, i.e. if x stood for r (b/c we know the extension of P, i.e. all the objects that are P)
- ► Shorthand: if Pc is true in \mathfrak{M} , then I(c) satisfies Px in \mathfrak{M}

- \blacktriangleright What to say about something with free variables, such as Px?
- ► This is a wff of QL but not a sentence (it is neither true nor false in a model)
- ► Idea: for each object r in D, we know whether Px would be true if we replaced r for x, i.e. if x stood for r (b/c we know the extension of P, i.e. all the objects that are P)
- ► Shorthand: if Pc is true in \mathfrak{M} , then I(c) satisfies Px in \mathfrak{M}
- ► Longhand: define a variable assignment \mathbf{d}_I that maps variables to objects. Then \mathbf{d}_I satisfies Px provided that $\mathbf{d}_I(x)$ has property I(P). We can write $\mathfrak{M}_{\mathbf{d}_I} \models Px$

Satisfaction for Atomic Wffs

▶ **Atomic wffs**: Suppose Q is atomic. Then Q is of the form $\mathcal{P}t_1 \dots t_k$ where each t_i is a term, i.e. a constant or a variable.

Satisfaction for Atomic Wffs

- ▶ **Atomic wffs**: Suppose Q is atomic. Then Q is of the form $\mathcal{P}t_1 \dots t_k$ where each t_i is a term, i.e. a constant or a variable.
- ▶ I assigns constants to objects t_i^D ; d_I maps variables to objects t_i^D (the text calls these denotations under I or d_I "den $_{I,d_I}(t_i)$ ")

Satisfaction for Atomic Wffs

- ▶ **Atomic wffs**: Suppose Q is atomic. Then Q is of the form $\mathcal{P}t_1 \dots t_k$ where each t_i is a term, i.e. a constant or a variable.
- ▶ I assigns constants to objects t_i^D ; d_I maps variables to objects t_i^D (the text calls these denotations under I or d_I "den $_{I,d_I}(t_i)$ ")
- ▶ d_I satisfies \mathcal{Q} provided that the k-tuple of these objects $\langle t_1^D, \ldots, t_k^D \rangle$ lies in the extension of \mathcal{Q} , i.e. in $I(\mathcal{Q})$

For $r \in D$ we write $d_I[r/x]$ for the assignment that agrees with d_I except necessarily assigning r for x

- For $r \in D$ we write $d_I[r/x]$ for the assignment that agrees with d_I except necessarily assigning r for x
- ▶ Existentially Quantified: Suppose we have a wff of the form $(\exists x)\mathcal{Q}$. Then d_I satisfies $(\exists x)\mathcal{Q}$ provided there is SOME object $r \in D$ such that $d_I[r/x]$ satisfies \mathcal{Q}

- For $r \in D$ we write $d_I[r/x]$ for the assignment that agrees with d_I except necessarily assigning r for x
- ▶ Existentially Quantified: Suppose we have a wff of the form $(\exists x)\mathcal{Q}$. Then d_I satisfies $(\exists x)\mathcal{Q}$ provided there is SOME object $r \in D$ such that $d_I[r/x]$ satisfies \mathcal{Q}
 - Intuition: provided there's at least one thing you can plug in for x such that $\mathcal Q$ comes out true

- For $r \in D$ we write $d_I[r/x]$ for the assignment that agrees with d_I except necessarily assigning r for x
- ▶ Existentially Quantified: Suppose we have a wff of the form $(\exists x)Q$. Then d_I satisfies $(\exists x)Q$ provided there is SOME object $r \in D$ such that $d_I[r/x]$ satisfies Q
 - Intuition: provided there's at least one thing you can plug in for x such that $\mathcal Q$ comes out true
- ▶ Universally Quantified: Suppose we have a wff of the form $(\forall x)Q$. Then d_I satisfies $(\forall x)Q$ provided $d_I[r/x]$ satisfies Q for EACH object $r \in D$

- For $r \in D$ we write $d_I[r/x]$ for the assignment that agrees with d_I except necessarily assigning r for x
- ▶ Existentially Quantified: Suppose we have a wff of the form $(\exists x)\mathcal{Q}$. Then d_I satisfies $(\exists x)\mathcal{Q}$ provided there is SOME object $r \in D$ such that $d_I[r/x]$ satisfies \mathcal{Q}
 - Intuition: provided there's at least one thing you can plug in for x such that $\mathcal Q$ comes out true
- ▶ Universally Quantified: Suppose we have a wff of the form $(\forall x)Q$. Then d_I satisfies $(\forall x)Q$ provided $d_I[r/x]$ satisfies Q for EACH object $r \in D$
 - Intuition: no matter what you plug in for x, Q comes out true

► Focus on the sentences of QL, which have no free variables

- ► Focus on the sentences of QL, which have no free variables
- ▶ Lemma: given a model $\mathfrak{M} = (D, I)$ and a QL sentence \mathcal{P} , either all variable assignments d_I satisfy \mathcal{P} or none do.

- ► Focus on the sentences of QL, which have no free variables
- ▶ Lemma: given a model $\mathfrak{M} = (D, I)$ and a QL sentence \mathcal{P} , either all variable assignments d_I satisfy \mathcal{P} or none do.
- ► Hence, we can define truth in a QL-model as follows:

- ► Focus on the sentences of QL, which have no free variables
- ▶ Lemma: given a model $\mathfrak{M} = (D, I)$ and a QL sentence \mathcal{P} , either all variable assignments d_I satisfy \mathcal{P} or none do.
- ► Hence, we can define truth in a QL-model as follows:
- ▶ A sentence \mathcal{P} of QL is **true** on model \mathfrak{M} iff some variable assignment d_I satisfies \mathcal{P} in \mathfrak{M}

- ► Focus on the sentences of QL, which have no free variables
- ▶ Lemma: given a model $\mathfrak{M} = (D, I)$ and a QL sentence \mathcal{P} , either all variable assignments d_I satisfy \mathcal{P} or none do.
- ► Hence, we can define truth in a QL-model as follows:
- ▶ A sentence \mathcal{P} of QL is **true** on model \mathfrak{M} iff some variable assignment d_I satisfies \mathcal{P} in \mathfrak{M}
- ▶ A sentence \mathcal{P} of QL is **false** on model \mathfrak{M} otherwise, i.e. if no variable assignment d_I satisfies \mathcal{P} in \mathfrak{M}

 \blacktriangleright $(\exists x) Ax$ is true iff Ax is satisfied by at least one object in D

- \blacktriangleright $(\exists x) Ax$ is true iff Ax is satisfied by at least one object in D
 - r = I(c) satisfies Ax in \mathfrak{M} iff Ac is true in \mathfrak{M}

- \blacktriangleright $(\exists x) Ax$ is true iff Ax is satisfied by at least one object in D
 - r = I(c) satisfies Ax in \mathfrak{M} iff Ac is true in \mathfrak{M}
 - \bullet e.g. there is at least one object in the domain that is an ${\cal A}$

- \blacktriangleright $(\exists x) Ax$ is true iff Ax is satisfied by at least one object in D
 - r = I(c) satisfies Ax in \mathfrak{M} iff Ac is true in \mathfrak{M}
 - ullet e.g. there is at least one object in the domain that is an ${\mathcal A}$
 - Formally, there is a variable assignment d_I with at least one variant $d_I[r/x]$ s.t. $d_I[r/x]$ satisfies Ax

- \blacktriangleright ($\exists x$) Ax is true iff Ax is satisfied by at least one object in D
 - r = I(c) satisfies Ax in \mathfrak{M} iff Ac is true in \mathfrak{M}
 - ullet e.g. there is at least one object in the domain that is an ${\mathcal A}$
 - Formally, there is a variable assignment d_I with at least one variant $d_I[r/x]$ s.t. $d_I[r/x]$ satisfies Ax
- \blacktriangleright $(\forall x) Ax$ is true iff Ax is satisfied by every object in the domain

- \blacktriangleright ($\exists x$) Ax is true iff Ax is satisfied by at least one object in D
 - r = I(c) satisfies Ax in \mathfrak{M} iff Ac is true in \mathfrak{M}
 - ullet e.g. there is at least one object in the domain that is an ${\mathcal A}$
 - Formally, there is a variable assignment d_I with at least one variant $d_I[r/x]$ s.t. $d_I[r/x]$ satisfies Ax
- \blacktriangleright $(\forall x) Ax$ is true iff Ax is satisfied by every object in the domain
 - e.g. everything in D is an A

- \blacktriangleright ($\exists x$) Ax is true iff Ax is satisfied by at least one object in D
 - r = I(c) satisfies Ax in \mathfrak{M} iff Ac is true in \mathfrak{M}
 - ullet e.g. there is at least one object in the domain that is an ${\mathcal A}$
 - Formally, there is a variable assignment d_I with at least one variant $d_I[r/x]$ s.t. $d_I[r/x]$ satisfies Ax
- \blacktriangleright $(\forall x) Ax$ is true iff Ax is satisfied by every object in the domain
 - e.g. everything in D is an A
 - Formally, there is a variable assignment d_I such that for each $r \in D$, each variant $d_I[r/x]$ satisfies Ax

Examples of Shorthand

- \blacktriangleright ($\exists x$) (Ax & Bx) is true iff some object satisfies 'Ax & Bx'
 - o satisfies 'Ax & Bx' iff it satisfies both Ax and Bx
- \blacktriangleright $(\forall x) (Ax \supset Bx)$ is true iff **every** object satisfies ' $Ax \supset Bx$ '
 - o satisfies ' $Ax \supset Bx$ ' iff either
 - o does not satisfy Ax (vacuously true conditional)

or

• o does satisfy Bx

Semantic Notions in QL

▶ Given a premise-set Γ of QL-sentences and a conclusion sentence Q, we have the following semantic notions:

Semantic Notions in QL

- ► Given a premise-set Γ of QL-sentences and a conclusion sentence Q, we have the following semantic notions:
- ▶ Entailment: Γ QL-entails $\mathcal Q$ provided that there is no QL-model $\mathfrak M$ where Γ is true but $\mathcal Q$ is false. We write $\Gamma \vDash \mathcal Q$
 - we say that the argument from Γ to $\mathcal Q$ is $\mathbf{QL} ext{-}\mathbf{valid}$

Semantic Notions in QL

- ▶ Given a premise-set Γ of QL-sentences and a conclusion sentence Q, we have the following semantic notions:
- ► Entailment: Γ QL-entails $\mathcal Q$ provided that there is no QL-model $\mathfrak M$ where Γ is true but $\mathcal Q$ is false. We write $\Gamma \models \mathcal Q$ we say that the argument from Γ to $\mathcal Q$ is QL-valid
- ► Satisfiability: we say that a set of sentences Γ is jointly satisfiable (aka QL-consistent) provided that there exists at least one QL-model M where each sentence in Γ is true

b. Recap: Substitution Instances

13. Metalogic for QL

(Full) Substitution Instances

• " $\mathcal{Q}[c/\chi]$ " is the sentence you get from $(\forall \chi)\mathcal{Q}$ or $(\exists \chi)\mathcal{Q}$ by dropping the quantifier and putting c in place of **every** χ in \mathcal{Q}

► The other variables are untouched!

► Read "[c/x]" as saying "substitute c for every x", i.e. all the x's are replaced by c's!

Some Examples of Substitution Instances

- ▶ Instances of $(\forall y)$ Hy:
 - Ha, Hb, Hm₁₁
- ▶ Instances of $(\exists z)$ Haz:
 - Haa, Hab, Haj₃
- ▶ Instances of $(\exists z)(Hz \& Fzz)$:
 - Remember to replace EVERY occurance of z with the chosen constant:
 - (Ha & Faa), (Hc & Fcc)
 - The following are **NOT** substitution instances:
 - (Ha & Faz), (Hy & Faa), (Ha & Fab)

Partial Substitution Instances

- ▶ For Existential Introduction, we can use a partial substitution instance of the wff Q:
- " $\mathcal{Q}[\chi/c]$ " indicates that the variable χ replaces some but not necessarily all occurrences of the constant c in \mathcal{Q} .
- ightharpoonup You can decide which occurrences of c to replace and which to leave in place

Examples of Partial Substitution Instances!

• ' $\mathcal{Q}\lceil \chi/c \rceil$ ' indicates that the variable χ does not need to replace all occurrences of the constant c in \mathcal{Q}

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Rdd	E.	Existentio		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$:1 ∃I	m	Q	
4 $(\exists z)Rdz$:1 $\exists I$	3	$(\exists x) Rxd$:	:	
$5 (\exists v)(\exists z)Rvz : 4 \exists I - Note: sin$	4	$(\exists z)Rdz$		5	(∃χ)ΩΓ	
	5	$(\exists v)(\exists z)Rvz$		- No	- Note: since	
by our rec	,			by our recur		

Existential Introduction (∃I)

$$\begin{array}{c|ccc}
m & \mathcal{Q} \\
\vdots & \vdots \\
s & (\exists \chi) \mathcal{Q} \lceil \chi/c \rceil & : m \exists I
\end{array}$$

- Note: since $\mathcal Q$ is a sentence, and by our recursion clause for wff, χ cannot occur in $\mathcal Q$.

▶ Consider Q := Fxx. Then Q[c/x] = Fcc

- ▶ Consider Q := Fxx. Then Q[c/x] = Fcc
- ▶ "variant $d_I[I(c)/x] = d_I[r/x]$ satisfies Fxx" means that when we assign x to r = I(c), Fcc is true ($Fcc \in Extension(F)$)

- ▶ Consider Q := Fxx. Then Q[c/x] = Fcc
- ▶ "variant $d_I[I(c)/x] = d_I[r/x]$ satisfies Fxx" means that when we assign x to r = I(c), Fcc is true ($Fcc \in Extension(F)$)
- " d_I satisfies $\mathcal{Q}[c/x]$ " means roughly that whatever objects d_I assigns variables, the result lies in the Extension of \mathcal{Q}

- ▶ Consider Q := Fxx. Then Q[c/x] = Fcc
- ▶ "variant $d_I[I(c)/x] = d_I[r/x]$ satisfies Fxx" means that when we assign x to r = I(c), Fcc is true ($Fcc \in Extension(F)$)
- " d_I satisfies $\mathcal{Q}[c/x]$ " means roughly that whatever objects d_I assigns variables, the result lies in the Extension of \mathcal{Q}
- Note that since x doesn't appear in Fcc, d_I treats Fcc just like $d_I[I(c)/x]$ treats Fxx

- ▶ Consider Q := Fxx. Then Q[c/x] = Fcc
- ▶ "variant $d_I[I(c)/x] = d_I[r/x]$ satisfies Fxx" means that when we assign x to r = I(c), Fcc is true ($Fcc \in Extension(F)$)
- " d_I satisfies $\mathcal{Q}[c/x]$ " means roughly that whatever objects d_I assigns variables, the result lies in the Extension of \mathcal{Q}
- Note that since x doesn't appear in Fcc, d_I treats Fcc just like $d_I[I(c)/x]$ treats Fxx
- " d_I satisfies $\mathcal{Q}[c/x]$ " is equivalent to " $d_I[I(c)/x]$ satisfies \mathcal{Q} "

- ▶ Consider Q := Fxx. Then Q[c/x] = Fcc
- ▶ "variant $d_I[I(c)/x] = d_I[r/x]$ satisfies Fxx" means that when we assign x to r = I(c), Fcc is true ($Fcc \in Extension(F)$)
- " d_I satisfies $\mathcal{Q}[c/x]$ " means roughly that whatever objects d_I assigns variables, the result lies in the Extension of \mathcal{Q}
- Note that since x doesn't appear in Fcc, d_I treats Fcc just like $d_I[I(c)/x]$ treats Fxx
- " d_I satisfies $\mathcal{Q}[c/x]$ " is equivalent to " $d_I[I(c)/x]$ satisfies \mathcal{Q} "
- ▶ Substitution Lemma: let \mathcal{Q} be a wff of QL. The variable assignment d_I satisfies $\mathcal{Q}[c/\chi]$ if and only if $d_I[I(c)/\chi]$ satisfies \mathcal{Q}

13. Metalogic for QL

c. QL rules recap

Rules for the Universal Quantifier

Universal Elimination (∀E)

$$m \mid (\forall \chi) \mathcal{Q}$$
 $\vdots \quad \vdots$
 $s \mid \mathcal{Q}[c/\chi] \quad : m \; \forall \mathsf{E}$

- Note that you replace **EVERY** instance of χ with c
- Notation: $\mathcal{Q}[c/\chi]$
- read "c for χ "

Universal Introduction $(\forall I)$

$$egin{array}{c|cccc} m & \mathcal{Q} & & & & & & \\ \vdots & & \vdots & & & & & \\ \hline s & (orall \chi) \mathcal{Q}[\chi/c] & :m \, orall I \end{array}$$

Provided that both

- (i) c does not occur in any other undischarged assumptions that $\mathcal Q$ is in the scope of.
- (ii) χ does not occur already in Q.

Rules for the Existential Quantifier

Existential Introduction $(\exists I)$

$$m \mid \mathcal{Q}$$
 $\vdots \quad \vdots$
 $s \mid (\exists \chi) \mathcal{Q} \lceil \chi/c \rceil \quad : m \exists I$

- **Provided that** χ does not occur already in Q.
- As indicated by $\lceil \chi/c \rceil$, χ may replace just some occurrences of c

Existential Elimination (∃E)

Simplified: provided that c doesn't occur anywhere else outside the subproof

▶ We'll now see why the rules $\forall I$ and $\exists E$ require us to follow the stated, non-trivial restrictions

- ▶ We'll now see why the rules $\forall I$ and $\exists E$ require us to follow the stated, non-trivial restrictions
- Without these restrictions, earlier sentences in the derivation would not semantically entail later sentences

- ▶ We'll now see why the rules $\forall I$ and $\exists E$ require us to follow the stated, non-trivial restrictions
- Without these restrictions, earlier sentences in the derivation would not semantically entail later sentences
- ▶ For QND to be sound, we need $\Gamma \vdash_{OND} \mathcal{P}$ to be sufficient for $\Gamma \vDash \mathcal{P}$.

- ▶ We'll now see why the rules $\forall I$ and $\exists E$ require us to follow the stated, non-trivial restrictions
- ► Without these restrictions, earlier sentences in the derivation would not semantically entail later sentences
- ▶ For QND to be sound, we need $\Gamma \vdash_{OND} \mathcal{P}$ to be sufficient for $\Gamma \vDash \mathcal{P}$.
- ▶ As with SND, we will prove this by showing that the set of open assumptions Γ_k on line #k semantically entail the sentence \mathcal{P}_k on that line, for all lines k in any QND derivation

13. Metalogic for QL

d. Soundness of System QND

Semantic entailment for infinitely-many premises

▶ Let Γ be a possibly infinite set of QL-sentences; Θ a conclusion

Semantic entailment for infinitely-many premises

- ▶ Let Γ be a possibly infinite set of QL-sentences; Θ a conclusion
- ▶ An argument is **semantically invalid** if there is a model \mathfrak{M} that makes true each sentence in Γ but which makes Θ false

Semantic entailment for infinitely-many premises

- ▶ Let Γ be a possibly infinite set of QL-sentences; Θ a conclusion
- ▶ An argument is **semantically invalid** if there is a model \mathfrak{M} that makes true each sentence in Γ but which makes Θ false
- ▶ In this case we write $\Gamma \nvDash \Theta$

Semantic entailment for infinitely-many premises

- ▶ Let Γ be a possibly infinite set of QL-sentences; Θ a conclusion
- ▶ An argument is **semantically invalid** if there is a model \mathfrak{M} that makes true each sentence in Γ but which makes Θ false
- ▶ In this case we write $\Gamma \nvDash \Theta$
- ► If there is no such QL-model, then $\Gamma \vDash \Theta$, i.e. if whenever we have $\mathfrak{M} \vDash \Gamma$ we also have $\mathfrak{M} \vDash \Theta$

QND derivability for infinitely-many premises

- ightharpoonup Θ is QND-derivable from Γ provided there is an QND derivation:
 - 1.) whose starting premises Δ are a finite subset of Γ
 - 2.) in which Θ appears on its own in the final line
 - 3.) where Θ is directly next to the main scope line, i.e. only in the scope of the $\Delta-premises$
- ▶ In this case, we write $\Gamma \vdash_{QND} \Theta$ (also: $\Delta \vdash_{QND} \Theta$)
- ▶ If no such derivation exists, then we say that Θ is NOT QND-derivable from Γ , and we write $\Gamma \nvdash_{QND} \Theta$

► Subgoal: given any line in a QND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line

- ► Subgoal: given any line in a QND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line
- ▶ Let " P_k " be the wff on line k, i.e. the k-th wff in our derivation

- ► Subgoal: given any line in a QND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line
- ▶ Let " P_k " be the wff on line k, i.e. the k-th wff in our derivation
- Let " Γ_k " be the set of premises/assumptions accessible on line k, i.e. the set of open assumptions/premises in whose scope P_k lies

- ► Subgoal: given any line in a QND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line
- ▶ Let " P_k " be the wff on line k, i.e. the k-th wff in our derivation
- Let " Γ_k " be the set of premises/assumptions accessible on line k, i.e. the set of open assumptions/premises in whose scope P_k lies
- ▶ **Subgoal**: given a wff P_k on line k, show that $\Gamma_k \models P_k$

Soundness: Proof Strategy

- Recall that QND derivations are defined recursively: from a (possibly empty) set of premises, we have a finite number of rules to add a line
 - These ways include all our SND rules plus an intro and elimination rule for our quantifiers \forall and \exists
- ▶ Hence: do induction on the number of lines in an QND derivation
- ► Show that the base case has the property (line #1)
- ▶ Induction hypothesis: assume the property holds for all lines $\leq k$.
- ► Induction step: show the property holds for line #k+1 (by considering all possible ways line #k+1 could arise)

► Recall: a line i of a derivation is **righteous** just in case $\Gamma_i \models P_i$, i.e. just in case **the set of assumptions/premises accessible from** i semantically entail the wff on that line.

- ► Recall: a line i of a derivation is **righteous** just in case $\Gamma_i \models P_i$, i.e. just in case **the set of assumptions/premises accessible from** i semantically entail the wff on that line.
- ► Call a derivation *righteous* if every line in it is righteous

- ► Recall: a line i of a derivation is **righteous** just in case $\Gamma_i \models P_i$, i.e. just in case **the set of assumptions/premises accessible from** i semantically entail the wff on that line.
- ► Call a derivation *righteous* if every line in it is righteous
- Our goal is to prove that every derivation in QND is righteous!

- ► Recall: a line i of a derivation is **righteous** just in case $\Gamma_i \models P_i$, i.e. just in case **the set of assumptions/premises accessible from** i semantically entail the wff on that line.
- ► Call a derivation *righteous* if every line in it is righteous
- Our goal is to prove that every derivation in QND is righteous!
- ▶ We will extend our induction for SND to cover our four new rules!

ightharpoonup Let Γ be any set of QL sentences (possibly infinite)

- Let Γ be any set of QL sentences (possibly infinite)
- ▶ If $\Gamma \vdash_{QND} \mathcal{P}$, then by definition there is a derivation from finitely-many premises $\Delta \subseteq \Gamma$, such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{QND} \mathcal{P}$)

- Let Γ be any set of QL sentences (possibly infinite)
- ▶ If $\Gamma \vdash_{QND} \mathcal{P}$, then by definition there is a derivation from finitely-many premises $\Delta \subseteq \Gamma$, such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{QND} \mathcal{P}$)
- ▶ Then by righteousness, $\Delta \models \mathcal{P}$

- ► Let Γ be any set of QL sentences (possibly infinite)
- ▶ If $\Gamma \vdash_{QND} \mathcal{P}$, then by definition there is a derivation from finitely-many premises $\Delta \subseteq \Gamma$, such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{QND} \mathcal{P}$)
- ▶ Then by righteousness, $\Delta \models \mathcal{P}$
 - i.e. any model ${\mathfrak M}$ that makes Δ true must make ${\mathcal P}$ true

- Let Γ be any set of QL sentences (possibly infinite)
- ▶ If $\Gamma \vdash_{QND} \mathcal{P}$, then by definition there is a derivation from finitely-many premises $\Delta \subseteq \Gamma$, such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{QND} \mathcal{P}$)
- ▶ Then by righteousness, $\Delta \models \mathcal{P}$
 - i.e. any model ${\mathfrak M}$ that makes Δ true must make ${\mathcal P}$ true
- ▶ So there is no QL-model that makes all the sentences in Γ true while making \mathcal{P} false, so $\Gamma \models \mathcal{P}$ as well

- Let Γ be any set of QL sentences (possibly infinite)
- ▶ If $\Gamma \vdash_{QND} \mathcal{P}$, then by definition there is a derivation from finitely-many premises $\Delta \subseteq \Gamma$, such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{QND} \mathcal{P}$)
- ▶ Then by righteousness, $\Delta \models \mathcal{P}$
 - i.e. any model ${\mathfrak M}$ that makes Δ true must make ${\mathcal P}$ true
- ▶ So there is no QL-model that makes all the sentences in Γ true while making \mathcal{P} false, so $\Gamma \models \mathcal{P}$ as well
- ▶ So we will have shown **Soundness**: If $\Gamma \vdash_{OND} \mathcal{P}$, then $\Gamma \models \mathcal{P}$

Base Case

- ▶ Base case: for any QND derivation, show that $\Gamma_1 \vDash \mathcal{P}_1$.
- ▶ Proof: Γ_1 is the set of premises accessible at line #1, which comprises exactly the QL-sentence \mathcal{P}_1
- ► (recall that every premise of a derivation lies in its own scope)
- ▶ Clearly, $\mathcal{P}_1 \vDash \mathcal{P}_1$, so $\{\mathcal{P}_1\} \vDash \mathcal{P}_1$
- ► So line #1 is righteous (i.e. $\Gamma_1 \models \mathcal{P}_1$)

Stating the Induction Step

- ▶ Induction Hypothesis: Assume that every line i for $1 < i \le k$ is righteous (i.e. that $\Gamma_i \models \mathcal{P}_i$)
- ▶ Induction step: Consider line #k+1; show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- ▶ We have 16 cases to consider! We have essentially already considered 12 of these from our soundness proof for SND
- \blacktriangleright We have four new cases: our intro. and elimin. rules for \forall and \exists

► For each of these 12 cases, we simply replace "truth-value assignments" with "QL-models" (or interpretations), along with replacing truth-functional semantic notions with ones defined for quantifier logic

- ► For each of these 12 cases, we simply replace "truth-value assignments" with "QL-models" (or interpretations), along with replacing truth-functional semantic notions with ones defined for quantifier logic
- e.g. quantificational entailment, quantificational consistency/satisfiability

- ► For each of these 12 cases, we simply replace "truth-value assignments" with "QL-models" (or interpretations), along with replacing truth-functional semantic notions with ones defined for quantifier logic
- e.g. quantificational entailment, quantificational consistency/satisfiability
- ▶ e.g. " $\Gamma_{k+1} \models \mathcal{P}_{k+1}$ " now means "sentence \mathcal{P}_{k+1} is true in all models that make-true the premise set Γ_{k+1} ".

- ► For each of these 12 cases, we simply replace "truth-value assignments" with "QL-models" (or interpretations), along with replacing truth-functional semantic notions with ones defined for quantifier logic
- e.g. quantificational entailment, quantificational consistency/satisfiability
- ▶ e.g. " $\Gamma_{k+1} \models \mathcal{P}_{k+1}$ " now means "sentence \mathcal{P}_{k+1} is true in all models that make-true the premise set Γ_{k+1} ".
- ▶ Equivalently: $\Gamma_{k+1} \cup \{\sim \mathcal{P}_{k+1}\}$ is unsatisfiable in QL

► Case 13: \mathcal{P}_{k+1} is derived by Universal Elimination (: $\forall E$) Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$

- ► Case 13: \mathcal{P}_{k+1} is derived by Universal Elimination (: $\forall E$) Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $\mathcal{Q}[c/\chi]$ (read "c for χ ")

- ► Case 13: \mathcal{P}_{k+1} is derived by Universal Elimination (: $\forall E$) Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $\mathcal{Q}[c/\chi]$ (read "c for χ ")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash (\forall \chi) Q$

- ► Case 13: \mathcal{P}_{k+1} is derived by Universal Elimination (: $\forall E$) Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $\mathcal{Q}[c/\chi]$ (read "c for χ ")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash (\forall \chi)Q$
- ► Since every assumption that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$

- ► Case 13: \mathcal{P}_{k+1} is derived by Universal Elimination (: $\forall E$) Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $\mathcal{Q}[c/\chi]$ (read "c for χ ")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash (\forall \chi) Q$
- ► Since every assumption that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash (\forall \chi)Q$

- ► Case 13: \mathcal{P}_{k+1} is derived by Universal Elimination (: $\forall E$) Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $\mathcal{Q}[c/\chi]$ (read "c for χ ")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash (\forall \chi) Q$
- ► Since every assumption that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash (\forall \chi)Q$
- ► Lemma: a universally quantified sentence entails each of its substitution instances.
 - \Rightarrow any model that makes-true $(\forall \chi) \mathcal{Q}$ also makes-true $\mathcal{Q}[\mathit{c}/\chi]$

- ► Case 13: \mathcal{P}_{k+1} is derived by Universal Elimination (: $\forall E$) Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $\mathcal{Q}[c/\chi]$ (read "c for χ ")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash (\forall \chi) Q$
- ► Since every assumption that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash (\forall \chi)Q$
- ► Lemma: a universally quantified sentence entails each of its substitution instances.
 - \Rightarrow any model that makes-true $(\forall \chi)\mathcal{Q}$ also makes-true $\mathcal{Q}[c/\chi]$
- ▶ Hence, $\Gamma_{k+1} \vDash \mathcal{Q}[c/\chi]$

▶ Lemma: a universally quantified sentence entails each of its substitution instances: $(\forall \chi)Q \models Q[c/\chi]$ for each constant c

- ▶ Lemma: a universally quantified sentence entails each of its substitution instances: $(\forall \chi)Q \models Q[c/\chi]$ for each constant c
- ightharpoonup Consider an arbitrary model $\mathfrak M$ that makes true $(\forall \chi) \mathcal Q$

- ▶ Lemma: a universally quantified sentence entails each of its substitution instances: $(\forall \chi)Q \models Q[c/\chi]$ for each constant c
- lacktriangle Consider an arbitrary model ${\mathfrak M}$ that makes true $(\forall \chi) {\mathcal Q}$
- ► Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $(\forall \chi)Q$ in \mathfrak{M}

- ▶ Lemma: a universally quantified sentence entails each of its substitution instances: $(\forall \chi)Q \models Q[c/\chi]$ for each constant c
- ightharpoonup Consider an arbitrary model $\mathfrak M$ that makes true $(\forall \chi) \mathcal Q$
- ► Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $(\forall \chi)Q$ in \mathfrak{M}
- ▶ By the satisfaction-conditions for univ. quant. sentences, this means that for each $r \in D$, the variant $d_I[r/x]$ satisfies Q

- ▶ Lemma: a universally quantified sentence entails each of its substitution instances: $(\forall \chi)Q \models Q[c/\chi]$ for each constant c
- ightharpoonup Consider an arbitrary model $\mathfrak M$ that makes true $(\forall \chi) \mathcal Q$
- ► Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $(\forall \chi)Q$ in \mathfrak{M}
- ▶ By the satisfaction-conditions for univ. quant. sentences, this means that for each $r \in D$, the variant $d_I[r/x]$ satisfies Q
- ▶ So for each c, I must assign c an object $r \in D$ s.t. $d_I[I(c)/x]$ satisfies Q.

- ▶ Lemma: a universally quantified sentence entails each of its substitution instances: $(\forall \chi)Q \models Q[c/\chi]$ for each constant c
- lacktriangle Consider an arbitrary model ${\mathfrak M}$ that makes true $(\forall \chi) {\mathcal Q}$
- ► Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $(\forall \chi)Q$ in \mathfrak{M}
- ▶ By the satisfaction-conditions for univ. quant. sentences, this means that for each $r \in D$, the variant $d_I[r/x]$ satisfies Q
- ▶ So for each c, I must assign c an object $r \in D$ s.t. $d_I[I(c)/x]$ satisfies Q.
- lacktriangle Hence, variable assignment d_I satisfies $\mathcal{Q}[c/\chi]$ (Lemma 11.1.1)

- ▶ Lemma: a universally quantified sentence entails each of its substitution instances: $(\forall \chi)Q \models Q[c/\chi]$ for each constant c
- lacktriangle Consider an arbitrary model ${\mathfrak M}$ that makes true $(\forall \chi) {\mathcal Q}$
- ► Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $(\forall \chi)Q$ in \mathfrak{M}
- ▶ By the satisfaction-conditions for univ. quant. sentences, this means that for each $r \in D$, the variant $d_I[r/x]$ satisfies Q
- ▶ So for each c, I must assign c an object $r \in D$ s.t. $d_I[I(c)/x]$ satisfies Q.
- lacktriangle Hence, variable assignment d_I satisfies $\mathcal{Q}[c/\chi]$ (Lemma 11.1.1)
- (Intuition: no matter which r in D is assigned to c, $\mathcal{Q}[c/\chi]$ is true)

- ▶ Lemma: a universally quantified sentence entails each of its substitution instances: $(\forall \chi)Q \models Q[c/\chi]$ for each constant c
- lacktriangle Consider an arbitrary model ${\mathfrak M}$ that makes true $(\forall \chi) {\mathcal Q}$
- ► Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $(\forall \chi)Q$ in \mathfrak{M}
- ▶ By the satisfaction-conditions for univ. quant. sentences, this means that for each $r \in D$, the variant $d_I[r/x]$ satisfies Q
- ▶ So for each c, I must assign c an object $r \in D$ s.t. $d_I[I(c)/x]$ satisfies Q.
- lacktriangle Hence, variable assignment d_I satisfies $\mathcal{Q}[c/\chi]$ (Lemma 11.1.1)
- (Intuition: no matter which r in D is assigned to c, $\mathcal{Q}[c/\chi]$ is true)
- ▶ So, for each constant c, $\mathfrak{M} \models \mathcal{Q}[c/\chi]$, i.e. is true in the model

▶ Case 14: \mathcal{P}_{k+1} is derived by Existential Introduction (: $\exists I$)

- ▶ Case 14: \mathcal{P}_{k+1} is derived by Existential Introduction (: $\exists I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\exists \chi) \mathcal{Q}[\chi/c]$ (read " χ for some c")

- ► Case 14: \mathcal{P}_{k+1} is derived by Existential Introduction (: $\exists I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$ (read " χ for some c")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)

- ▶ Case 14: \mathcal{P}_{k+1} is derived by Existential Introduction (: $\exists I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$ (read " χ for some c")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)
- ► Since every assumption that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$

- ▶ Case 14: \mathcal{P}_{k+1} is derived by Existential Introduction (: $\exists I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$ (read " χ for some c")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)
- ► Since every assumption that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash Q$

- ▶ Case 14: \mathcal{P}_{k+1} is derived by Existential Introduction (: $\exists I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$ (read " χ for some c")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)
- ► Since every assumption that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash Q$
- ▶ Lemma: a sentence \mathcal{Q} entails any existentially quantified (possibly partial) substitution instance $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$.

- ▶ Case 14: \mathcal{P}_{k+1} is derived by Existential Introduction (: $\exists I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$ (read " χ for some c")
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)
- ► Since every assumption that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash Q$
- ▶ Lemma: a sentence \mathcal{Q} entails any existentially quantified (possibly partial) substitution instance $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$.
- ► Hence, $\Gamma_{k+1} \models (\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$

▶ Lemma: a sentence Q entails any existentially quantified (possibly partial) substitution instance $(\exists \chi)Q[\chi/c]$

- ► Lemma: a sentence Q entails any existentially quantified (possibly partial) substitution instance $(\exists \chi)Q[\chi/c]$
- $lackbox{\ }$ Consider an arbitrary model ${\mathfrak M}$ that makes true ${\mathcal Q}[{\mathfrak c}]$

- ▶ Lemma: a sentence Q entails any existentially quantified (possibly partial) substitution instance $(\exists \chi)Q[\chi/c]$
- $lackbox{\ }$ Consider an arbitrary model ${\mathfrak M}$ that makes true ${\mathcal Q}[{\mathfrak c}]$
- ▶ Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $\mathcal{Q}[c]$ in \mathfrak{M} . Let r be the object in D that c stands for.

- ► Lemma: a sentence \mathcal{Q} entails any existentially quantified (possibly partial) substitution instance $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$
- $lackbox{\ }$ Consider an arbitrary model ${\mathfrak M}$ that makes true ${\mathcal Q}[{\mathfrak c}]$
- ▶ Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $\mathcal{Q}[c]$ in \mathfrak{M} . Let r be the object in D that c stands for.
- ▶ Then $d_I[r/\chi]$ satisfies $\mathcal{Q}\lceil \chi/c \rceil$ (i.e. the open sentence we get by replacing some c's with χ is satisfied by object r)

- ▶ Lemma: a sentence Q entails any existentially quantified (possibly partial) substitution instance $(\exists \chi)Q[\chi/c]$
- lacktriangle Consider an arbitrary model ${\mathfrak M}$ that makes true ${\mathcal Q}[{\mathfrak c}]$
- ▶ Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $\mathcal{Q}[c]$ in \mathfrak{M} . Let r be the object in D that c stands for.
- ▶ Then $d_I[r/\chi]$ satisfies $\mathcal{Q}\lceil \chi/c \rceil$ (i.e. the open sentence we get by replacing some c's with χ is satisfied by object r)
- ▶ Recall: d_I satisfies $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$ provided there is some object $r \in D$ s.t. $d_I[r/\chi]$ satisfies $\mathcal{Q} \lceil \chi/c \rceil$

- ▶ Lemma: a sentence Q entails any existentially quantified (possibly partial) substitution instance $(\exists \chi)Q[\chi/c]$
- lacktriangle Consider an arbitrary model ${\mathfrak M}$ that makes true ${\mathcal Q}[{\mathfrak c}]$
- ▶ Then by defN of true-in-QL, there is some variable assignment d_I that satisfies $\mathcal{Q}[c]$ in \mathfrak{M} . Let r be the object in D that c stands for.
- ▶ Then $d_I[r/\chi]$ satisfies $\mathcal{Q}\lceil \chi/c \rceil$ (i.e. the open sentence we get by replacing some c's with χ is satisfied by object r)
- ► Recall: d_I satisfies $(\exists \chi) \mathcal{Q} \lceil \chi/c \rceil$ provided there is some object $r \in D$ s.t. $d_I[r/\chi]$ satisfies $\mathcal{Q} \lceil \chi/c \rceil$
- ► Hence, by the defN of true-in-QL, $(\exists \chi)Q[\chi/c]$ is true in \mathfrak{M}

▶ Case 16: \mathcal{P}_{k+1} is derived by Existential Elimination (: $\exists E$)

- ▶ Case 16: \mathcal{P}_{k+1} is derived by Existential Elimination (: $\exists E$)
- ▶ We require that c not occur in $(\exists \chi)Q$, \mathcal{P}_{k+1} , or Γ_{k+1}

- ▶ Case 16: \mathcal{P}_{k+1} is derived by Existential Elimination (: $\exists E$)
- ▶ We require that c not occur in $(\exists \chi)Q$, \mathcal{P}_{k+1} , or Γ_{k+1}
- ▶ By the IH, lines #h and #m are righteous, so $\Gamma_h \vDash (\exists \chi) \mathcal{Q}$ and $\Gamma_m \vDash \mathcal{P}_{k+1}$

- ▶ Case 16: \mathcal{P}_{k+1} is derived by Existential Elimination (: $\exists E$)
- ▶ We require that c not occur in $(\exists \chi)Q$, \mathcal{P}_{k+1} , or Γ_{k+1}
- ▶ By the IH, lines #h and #m are righteous, so $\Gamma_h \vDash (\exists \chi) \mathcal{Q}$ and $\Gamma_m \vDash \mathcal{P}_{k+1}$
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$. So $\Gamma_{k+1} \vDash (\exists \chi) \mathcal{Q}$

- ▶ Case 16: \mathcal{P}_{k+1} is derived by Existential Elimination (: $\exists E$)
- ▶ We require that c not occur in $(\exists \chi)Q$, \mathcal{P}_{k+1} , or Γ_{k+1}
- ▶ By the IH, lines #h and #m are righteous, so $\Gamma_h \vDash (\exists \chi) \mathcal{Q}$ and $\Gamma_m \vDash \mathcal{P}_{k+1}$
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$. So $\Gamma_{k+1} \vDash (\exists \chi) \mathcal{Q}$
- Note that every member of Γ_m is accessible at #k+1 except assumption $\mathcal{Q}[c/\chi]$ on line #j. So $\Gamma_m \subseteq \Gamma_{k+1} \cup \{\mathcal{Q}[c/\chi]\}$

- ▶ Case 16: \mathcal{P}_{k+1} is derived by Existential Elimination (: $\exists E$)
- ▶ We require that c not occur in $(\exists \chi)Q$, \mathcal{P}_{k+1} , or Γ_{k+1}
- ▶ By the IH, lines #h and #m are righteous, so $\Gamma_h \vDash (\exists \chi) \mathcal{Q}$ and $\Gamma_m \vDash \mathcal{P}_{k+1}$
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$. So $\Gamma_{k+1} \vDash (\exists \chi) \mathcal{Q}$
- Note that every member of Γ_m is accessible at #k+1 except assumption $\mathcal{Q}[c/\chi]$ on line #j. So $\Gamma_m \subseteq \Gamma_{k+1} \cup \{\mathcal{Q}[c/\chi]\}$
- ▶ So since $\Gamma_m \vDash \mathcal{P}_{k+1}$, we have $\Gamma_{k+1} \cup \{\mathcal{Q}[c/\chi]\} \vDash \mathcal{P}_{k+1}$

- ▶ Case 16: \mathcal{P}_{k+1} is derived by Existential Elimination (: $\exists E$)
- ▶ We require that c not occur in $(\exists \chi)Q$, \mathcal{P}_{k+1} , or Γ_{k+1}
- ▶ By the IH, lines #h and #m are righteous, so $\Gamma_h \vDash (\exists \chi) \mathcal{Q}$ and $\Gamma_m \vDash \mathcal{P}_{k+1}$
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$. So $\Gamma_{k+1} \vDash (\exists \chi) \mathcal{Q}$
- Note that every member of Γ_m is accessible at #k+1 except assumption $\mathcal{Q}[c/\chi]$ on line #j. So $\Gamma_m \subseteq \Gamma_{k+1} \cup \{\mathcal{Q}[c/\chi]\}$
- ▶ So since $\Gamma_m \vDash \mathcal{P}_{k+1}$, we have $\Gamma_{k+1} \cup \{\mathcal{Q}[c/\chi]\} \vDash \mathcal{P}_{k+1}$
- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$

- ▶ Case 16: \mathcal{P}_{k+1} is derived by Existential Elimination (: $\exists E$)
- ▶ We require that c not occur in $(\exists \chi)Q$, \mathcal{P}_{k+1} , or Γ_{k+1}
- ▶ By the IH, lines #h and #m are righteous, so $\Gamma_h \vDash (\exists \chi) \mathcal{Q}$ and $\Gamma_m \vDash \mathcal{P}_{k+1}$
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$. So $\Gamma_{k+1} \vDash (\exists \chi) \mathcal{Q}$
- Note that every member of Γ_m is accessible at #k+1 except assumption $\mathcal{Q}[c/\chi]$ on line #j. So $\Gamma_m \subseteq \Gamma_{k+1} \cup \{\mathcal{Q}[c/\chi]\}$
- ▶ So since $\Gamma_m \vDash \mathcal{P}_{k+1}$, we have $\Gamma_{k+1} \cup \{\mathcal{Q}[c/\chi]\} \vDash \mathcal{P}_{k+1}$
- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ► Hence, $\Gamma_{k+1} \models \mathcal{P}_{k+1}$, so line #k+1 is righteous!

► Locality Lemma: 'local agreement' on interpretation between models arises iff there is 'agreement' on entailment relations.

- ► Locality Lemma: 'local agreement' on interpretation between models arises iff there is 'agreement' on entailment relations.
- ▶ Set-up (for a given sentence \mathcal{P}): Consider two QL-models $\mathfrak{M}^1 := (D, I_1)$ and $\mathfrak{M}^2 := (D, I_2)$ with the same domain D, whose interpretation functions I_1 and I_2 give the same interpretations for any constants or predicates appearing in QL-sentence \mathcal{P}

- ► Locality Lemma: 'local agreement' on interpretation between models arises iff there is 'agreement' on entailment relations.
- ▶ Set-up (for a given sentence \mathcal{P}): Consider two QL-models $\mathfrak{M}^1:=(D,I_1)$ and $\mathfrak{M}^2:=(D,I_2)$ with the same domain D, whose interpretation functions I_1 and I_2 give the same interpretations for any constants or predicates appearing in QL-sentence \mathcal{P} (so any differences between \mathfrak{M}^1 and \mathfrak{M}^2 arise from how they interpret QL-symbols NOT appearing in \mathcal{P}).

- ► Locality Lemma: 'local agreement' on interpretation between models arises iff there is 'agreement' on entailment relations.
- ▶ Set-up (for a given sentence \mathcal{P}): Consider two QL-models $\mathfrak{M}^1 := (D, I_1)$ and $\mathfrak{M}^2 := (D, I_2)$ with the same domain D, whose interpretation functions I_1 and I_2 give the same interpretations for any constants or predicates appearing in QL-sentence \mathcal{P} (so any differences between \mathfrak{M}^1 and \mathfrak{M}^2 arise from how they interpret QL-symbols NOT appearing in \mathcal{P}).
- ► Then $\mathfrak{M}^1 \models \mathcal{P}$ if and only if $\mathfrak{M}^2 \models \mathcal{P}$

- ► Locality Lemma: 'local agreement' on interpretation between models arises iff there is 'agreement' on entailment relations.
- ▶ Set-up (for a given sentence \mathcal{P}): Consider two QL-models $\mathfrak{M}^1 := (D, I_1)$ and $\mathfrak{M}^2 := (D, I_2)$ with the same domain D, whose interpretation functions I_1 and I_2 give the same interpretations for any constants or predicates appearing in QL-sentence \mathcal{P} (so any differences between \mathfrak{M}^1 and \mathfrak{M}^2 arise from how they interpret QL-symbols NOT appearing in \mathcal{P}).
- ► Then $\mathfrak{M}^1 \models \mathcal{P}$ if and only if $\mathfrak{M}^2 \models \mathcal{P}$
- \blacktriangleright We will use this lemma for the cases of $\forall I$ and $\exists E$

▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$

- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ▶ NTS: In a model $\mathfrak{M} := (D, I)$ that makes all members of Γ true (i.e. $\mathfrak{M} \models \Gamma$), \mathcal{P} is true (i.e. show that $\mathfrak{M} \models \mathcal{P}$)

- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ▶ NTS: In a model $\mathfrak{M} := (D, I)$ that makes all members of Γ true (i.e. $\mathfrak{M} \models \Gamma$), \mathcal{P} is true (i.e. show that $\mathfrak{M} \models \mathcal{P}$)
- ► Since $\Gamma \vDash (\exists \chi) \mathcal{Q}$, there exists some object $r \in D$ that satisfies \mathcal{Q} (i.e. there exists a d_I s.t. $d_I[r/\chi]$ satisfies \mathcal{Q})

- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ▶ NTS: In a model $\mathfrak{M} := (D, I)$ that makes all members of Γ true (i.e. $\mathfrak{M} \models \Gamma$), \mathcal{P} is true (i.e. show that $\mathfrak{M} \models \mathcal{P}$)
- ► Since $\Gamma \vDash (\exists \chi) \mathcal{Q}$, there exists some object $r \in D$ that satisfies \mathcal{Q} (i.e. there exists a d_I s.t. $d_I[r/\chi]$ satisfies \mathcal{Q})
- ► Since c does not occur in $(\exists \chi) Q$, \mathcal{P} , or set Γ , we can define a new model \mathfrak{M}' that is just like \mathfrak{M} except that I'(c) = r.

- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ▶ NTS: In a model $\mathfrak{M} := (D, I)$ that makes all members of Γ true (i.e. $\mathfrak{M} \models \Gamma$), \mathcal{P} is true (i.e. show that $\mathfrak{M} \models \mathcal{P}$)
- ► Since $\Gamma \vDash (\exists \chi) \mathcal{Q}$, there exists some object $r \in D$ that satisfies \mathcal{Q} (i.e. there exists a d_I s.t. $d_I[r/\chi]$ satisfies \mathcal{Q})
- ► Since c does not occur in $(\exists \chi) Q$, \mathcal{P} , or set Γ , we can define a new model \mathfrak{M}' that is just like \mathfrak{M} except that I'(c) = r.
- ▶ Then since $d_I[r/\chi]$ satisfies \mathcal{Q} , we have $d_{I'}[r/\chi] = d_{I'}[I'(c)/\chi]$ satisfies \mathcal{Q} as well.

- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ▶ NTS: In a model $\mathfrak{M} := (D, I)$ that makes all members of Γ true (i.e. $\mathfrak{M} \models \Gamma$), \mathcal{P} is true (i.e. show that $\mathfrak{M} \models \mathcal{P}$)
- ► Since $\Gamma \vDash (\exists \chi) \mathcal{Q}$, there exists some object $r \in D$ that satisfies \mathcal{Q} (i.e. there exists a d_I s.t. $d_I[r/\chi]$ satisfies \mathcal{Q})
- ► Since c does not occur in $(\exists \chi) Q$, \mathcal{P} , or set Γ , we can define a new model \mathfrak{M}' that is just like \mathfrak{M} except that I'(c) = r.
- ▶ Then since $d_I[r/\chi]$ satisfies \mathcal{Q} , we have $d_{I'}[r/\chi] = d_{I'}[I'(c)/\chi]$ satisfies \mathcal{Q} as well.
- ▶ So by Lemma 11.1.1, $d_{I'}$ satisfies $\mathcal{Q}[c/\chi]$, so $\mathfrak{M}' \vDash \mathcal{Q}[c/\chi]$

- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ▶ NTS: In a model $\mathfrak{M} := (D, I)$ that makes all members of Γ true (i.e. $\mathfrak{M} \models \Gamma$), \mathcal{P} is true (i.e. show that $\mathfrak{M} \models \mathcal{P}$)
- ► Since $\Gamma \vDash (\exists \chi) \mathcal{Q}$, there exists some object $r \in D$ that satisfies \mathcal{Q} (i.e. there exists a d_I s.t. $d_I[r/\chi]$ satisfies \mathcal{Q})
- ► Since c does not occur in (∃χ)Q, \mathcal{P} , or set Γ , we can define a new model \mathfrak{M}' that is just like \mathfrak{M} except that I'(c) = r.
- ▶ Then since $d_I[r/\chi]$ satisfies Q, we have $d_{I'}[r/\chi] = d_{I'}[I'(c)/\chi]$ satisfies Q as well.
- ▶ So by Lemma 11.1.1, $d_{I'}$ satisfies $\mathcal{Q}[c/\chi]$, so $\mathfrak{M}' \vDash \mathcal{Q}[c/\chi]$
- ▶ By Locality, since $\mathfrak{M} \models \Gamma$, we have $\mathfrak{M}' \models \Gamma$ too

- ▶ Lemma: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ▶ NTS: In a model $\mathfrak{M} := (D, I)$ that makes all members of Γ true (i.e. $\mathfrak{M} \models \Gamma$), \mathcal{P} is true (i.e. show that $\mathfrak{M} \models \mathcal{P}$)
- ► Since $\Gamma \vDash (\exists \chi) \mathcal{Q}$, there exists some object $r \in D$ that satisfies \mathcal{Q} (i.e. there exists a d_I s.t. $d_I[r/\chi]$ satisfies \mathcal{Q})
- ► Since c does not occur in $(\exists \chi) Q$, \mathcal{P} , or set Γ , we can define a new model \mathfrak{M}' that is just like \mathfrak{M} except that I'(c) = r.
- ▶ Then since $d_I[r/\chi]$ satisfies Q, we have $d_{I'}[r/\chi] = d_{I'}[I'(c)/\chi]$ satisfies Q as well.
- ▶ So by Lemma 11.1.1, $d_{I'}$ satisfies $\mathcal{Q}[c/\chi]$, so $\mathfrak{M}' \vDash \mathcal{Q}[c/\chi]$
- ▶ By Locality, since $\mathfrak{M} \models \Gamma$, we have $\mathfrak{M}' \models \Gamma$ too
- ► So $\mathfrak{M}' \models \Gamma \cup \{\mathcal{Q}[c/\chi]\}$ which by assumption $\models \mathcal{P}$. So $\mathfrak{M}' \models \mathcal{P}$

- ▶ **Lemma**: if (i) constant c does not occur in $(\exists \chi)Q$, \mathcal{P} , or set Γ , (ii) $\Gamma \vDash (\exists \chi)Q$ and (iii) $\Gamma \cup \{Q[c/\chi]\} \vDash \mathcal{P}$, then $\Gamma \vDash \mathcal{P}$
- ▶ NTS: In a model $\mathfrak{M} := (D, I)$ that makes all members of Γ true (i.e. $\mathfrak{M} \models \Gamma$), \mathcal{P} is true (i.e. show that $\mathfrak{M} \models \mathcal{P}$)
 - ► Since $\Gamma \vDash (\exists \chi) \mathcal{Q}$, there exists some object $r \in D$ that satisfies \mathcal{Q} (i.e. there exists a d_I s.t. $d_I[r/\chi]$ satisfies \mathcal{Q})
 - ► Since c does not occur in $(\exists \chi) Q$, \mathcal{P} , or set Γ , we can define a new model \mathfrak{M}' that is just like \mathfrak{M} except that I'(c) = r.
 - ▶ Then since $d_I[r/\chi]$ satisfies \mathcal{Q} , we have $d_{I'}[r/\chi] = d_{I'}[I'(c)/\chi]$ satisfies \mathcal{Q} as well.
 - ▶ So by Lemma 11.1.1, $d_{I'}$ satisfies $\mathcal{Q}[c/\chi]$, so $\mathfrak{M}' \models \mathcal{Q}[c/\chi]$
 - ▶ By Locality, since $\mathfrak{M} \models \Gamma$, we have $\mathfrak{M}' \models \Gamma$ too
 - ► So $\mathfrak{M}' \models \Gamma \cup \{\mathcal{Q}[c/\chi]\}$ which by assumption $\models \mathcal{P}$. So $\mathfrak{M}' \models \mathcal{P}$
 - ► Hence, by Locality, $\mathfrak{M} \models \mathcal{P}$, so $\Gamma \models \mathcal{P}$

► Case 15: \mathcal{P}_{k+1} is derived by Universal Introduction (: $\forall I$)

- ► Case 15: \mathcal{P}_{k+1} is derived by Universal Introduction (: $\forall I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\forall \chi)\mathcal{Q}[\chi/c]$, with c not appearing in Γ_h

- ► Case 15: \mathcal{P}_{k+1} is derived by Universal Introduction (: $\forall I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\forall \chi)\mathcal{Q}[\chi/c]$, with c not appearing in Γ_h
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)

- ▶ Case 15: \mathcal{P}_{k+1} is derived by Universal Introduction (: $\forall I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\forall \chi)\mathcal{Q}[\chi/c]$, with c not appearing in Γ_h
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$

- ► Case 15: \mathcal{P}_{k+1} is derived by Universal Introduction (: $\forall I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\forall \chi)\mathcal{Q}[\chi/c]$, with c not appearing in Γ_h
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash Q$

- ► Case 15: \mathcal{P}_{k+1} is derived by Universal Introduction (: $\forall I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\forall \chi)\mathcal{Q}[\chi/c]$, with c not appearing in Γ_h
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash Q$
- **Lemma**: if *c* does not appear in any member of set Γ, then if Γ $\vDash \mathcal{Q}$, we have Γ $\vDash (\forall \chi) \mathcal{Q}[\chi/c]$

- ▶ Case 15: \mathcal{P}_{k+1} is derived by Universal Introduction (: $\forall I$)
- $ightharpoonup \mathcal{P}_{k+1}$ must have the form $(\forall \chi)\mathcal{Q}[\chi/c]$, with c not appearing in Γ_h
- ▶ By the IH, line #h is righteous, so $\Gamma_h \vDash Q$ (where c appears)
- ► Since every assumption/premise that is accessible at line #h is also accessible at line #k+1, we have $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ Hence, $\Gamma_{k+1} \vDash Q$
- **Lemma**: if *c* does not appear in any member of set Γ, then if Γ $\vDash \mathcal{Q}$, we have Γ $\vDash (\forall \chi) \mathcal{Q}[\chi/c]$
- ▶ Our rule $\forall I$ requires that c does not appear in Γ_{k+1} , so by the lemma, $\Gamma_{k+1} \models (\forall \chi) \mathcal{Q}[\chi/c]$

Lemma: if *c* does not appear in any member of set Γ, then if Γ $\models Q$, we have Γ $\models (\forall \chi)Q[\chi/c]$

- **Lemma**: if *c* does not appear in any member of set Γ, then if Γ $\vDash \mathcal{Q}$, we have Γ $\vDash (\forall \chi) \mathcal{Q}[\chi/c]$
- ► Consider an arbitrary model \mathfrak{M} that makes true all of the sentences in Γ . Then $\mathfrak{M} \models \mathcal{Q}$ (i.e. \mathcal{Q} is true in \mathfrak{M})

- **Lemma**: if *c* does not appear in any member of set Γ, then if Γ $\vDash \mathcal{Q}$, we have Γ $\vDash (\forall \chi) \mathcal{Q}[\chi/c]$
- ► Consider an arbitrary model \mathfrak{M} that makes true all of the sentences in Γ . Then $\mathfrak{M} \models \mathcal{Q}$ (i.e. \mathcal{Q} is true in \mathfrak{M})
- lacktriangle So there exists a variable assignment d_I that satisfies $\mathcal Q$ in $\mathfrak M$

- **Lemma**: if *c* does not appear in any member of set Γ, then if Γ $\vDash \mathcal{Q}$, we have Γ $\vDash (\forall \chi) \mathcal{Q}[\chi/c]$
- ► Consider an arbitrary model \mathfrak{M} that makes true all of the sentences in Γ . Then $\mathfrak{M} \models \mathcal{Q}$ (i.e. \mathcal{Q} is true in \mathfrak{M})
- lacktriangle So there exists a variable assignment d_I that satisfies $\mathcal Q$ in $\mathfrak M$
- ▶ Goal: show that there exists a variable assignment d_I' that satisfies $(\forall \chi) \mathcal{Q}[\chi/c]$

- **Lemma**: if *c* does not appear in any member of set Γ, then if Γ $\vDash \mathcal{Q}$, we have Γ $\vDash (\forall \chi) \mathcal{Q}[\chi/c]$
- ► Consider an arbitrary model \mathfrak{M} that makes true all of the sentences in Γ . Then $\mathfrak{M} \models \mathcal{Q}$ (i.e. \mathcal{Q} is true in \mathfrak{M})
- lacktriangle So there exists a variable assignment d_I that satisfies $\mathcal Q$ in $\mathfrak M$
- ▶ Goal: show that there exists a variable assignment d'_I that satisfies $(\forall \chi) \mathcal{Q}[\chi/c]$
 - i.e. a d_I' s.t. $d_I'[r/\chi]$ satisfies $\mathcal{Q}[\chi/c]$ for each object $r \in D$

- **Lemma**: if *c* does not appear in any member of set Γ, then if Γ $\vDash \mathcal{Q}$, we have Γ $\vDash (\forall \chi) \mathcal{Q}[\chi/c]$
- ► Consider an arbitrary model \mathfrak{M} that makes true all of the sentences in Γ . Then $\mathfrak{M} \models \mathcal{Q}$ (i.e. \mathcal{Q} is true in \mathfrak{M})
- lacktriangle So there exists a variable assignment d_I that satisfies $\mathcal Q$ in $\mathfrak M$
- ▶ Goal: show that there exists a variable assignment d'_I that satisfies $(\forall \chi) \mathcal{Q}[\chi/c]$
 - i.e. a d_I' s.t. $d_I'[r/\chi]$ satisfies $\mathcal{Q}[\chi/c]$ for each object $r \in D$
 - We will actually show that the given d_I does the trick!

Notice that for $(\forall \chi) \mathcal{Q}[\chi/c]$ to be a wff, χ must not already occur in sentence \mathcal{Q} , so \mathcal{Q} can't already have a χ -quantifier.

- Notice that for $(\forall \chi) \mathcal{Q}[\chi/c]$ to be a wff, χ must not already occur in sentence \mathcal{Q} , so \mathcal{Q} can't already have a χ -quantifier.
- ► So χ occurs freely in $\mathcal{Q}[\chi/c]$ as the **only** free variable (since $(\forall \chi)\mathcal{Q}[\chi/c]$ is, by assumption, a sentence)

- Notice that for $(\forall \chi) \mathcal{Q}[\chi/c]$ to be a wff, χ must not already occur in sentence \mathcal{Q} , so \mathcal{Q} can't already have a χ -quantifier.
- So χ occurs freely in $\mathcal{Q}[\chi/c]$ as the **only** free variable (since $(\forall \chi)\mathcal{Q}[\chi/c]$ is, by assumption, a sentence)
- ▶ Hence, a variable assignment d_I of free variables in $\mathcal{Q}[\chi/c]$ to objects in D amounts to a choice of object $r \in D$ to assign χ

- Notice that for $(\forall \chi) \mathcal{Q}[\chi/c]$ to be a wff, χ must not already occur in sentence \mathcal{Q} , so \mathcal{Q} can't already have a χ -quantifier.
- So χ occurs freely in $\mathcal{Q}[\chi/c]$ as the **only** free variable (since $(\forall \chi)\mathcal{Q}[\chi/c]$ is, by assumption, a sentence)
- ► Hence, a variable assignment d_I of free variables in $\mathcal{Q}[\chi/c]$ to objects in D amounts to a choice of object $r \in D$ to assign χ
- $lackbox{ So } d_I$ must make some choice r:=I(c) of object to assign χ

- Notice that for $(\forall \chi) \mathcal{Q}[\chi/c]$ to be a wff, χ must not already occur in sentence \mathcal{Q} , so \mathcal{Q} can't already have a χ -quantifier.
- So χ occurs freely in $\mathcal{Q}[\chi/c]$ as the **only** free variable (since $(\forall \chi)\mathcal{Q}[\chi/c]$ is, by assumption, a sentence)
- ► Hence, a variable assignment d_I of free variables in $\mathcal{Q}[\chi/c]$ to objects in D amounts to a choice of object $r \in D$ to assign χ
- lacksquare So d_I must make some choice r:=I(c) of object to assign χ
- ▶ Hence d_I simply equals $d_I[r/\chi]$.

- Notice that for $(\forall \chi) \mathcal{Q}[\chi/c]$ to be a wff, χ must not already occur in sentence \mathcal{Q} , so \mathcal{Q} can't already have a χ -quantifier.
- ► So χ occurs freely in $\mathcal{Q}[\chi/c]$ as the **only** free variable (since $(\forall \chi)\mathcal{Q}[\chi/c]$ is, by assumption, a sentence)
- ► Hence, a variable assignment d_I of free variables in $\mathcal{Q}[\chi/c]$ to objects in D amounts to a choice of object $r \in D$ to assign χ
- $lackbox{ So } d_I$ must make some choice r:=I(c) of object to assign χ
- ▶ Hence d_I simply equals $d_I[r/\chi]$.
- ▶ By 11.1.1, d_I satisfies $Q[\chi/c]$ iff $d_I[I(c)/\chi]$ satisfies Q

- Notice that for $(\forall \chi) \mathcal{Q}[\chi/c]$ to be a wff, χ must not already occur in sentence \mathcal{Q} , so \mathcal{Q} can't already have a χ -quantifier.
- So χ occurs freely in $\mathcal{Q}[\chi/c]$ as the **only** free variable (since $(\forall \chi)\mathcal{Q}[\chi/c]$ is, by assumption, a sentence)
- ► Hence, a variable assignment d_I of free variables in $\mathcal{Q}[\chi/c]$ to objects in D amounts to a choice of object $r \in D$ to assign χ
- lacksquare So d_I must make some choice r:=I(c) of object to assign χ
- ▶ Hence d_I simply equals $d_I[r/\chi]$.
- ▶ By 11.1.1, d_I satisfies $Q[\chi/c]$ iff $d_I[I(c)/\chi]$ satisfies Q
- ▶ So d_I and hence $d_I[r/\chi]$ satisfies $\mathcal{Q}[\chi/c]$

▶ For each $r \in D$, we define a new model \mathfrak{M}_r whose interpretation function I_r is just like I except that it assigns the constant c to r

- For each $r \in D$, we define a new model \mathfrak{M}_r whose interpretation function I_r is just like I except that it assigns the constant c to r
- Now, $\mathfrak{M} \models \Gamma$ and \mathfrak{M}_r differs by \mathfrak{M} only in how it interprets a symbol that does not occur in Γ .

- ► For each $r \in D$, we define a new model \mathfrak{M}_r whose interpretation function I_r is just like I except that it assigns the constant c to r
- Now, $\mathfrak{M} \models \Gamma$ and \mathfrak{M}_r differs by \mathfrak{M} only in how it interprets a symbol that does not occur in Γ .
- ▶ So by Locality, we have $\mathfrak{M}_r \models \Gamma$ and hence $\mathfrak{M}_r \models \mathcal{Q}$

- For each $r \in D$, we define a new model \mathfrak{M}_r whose interpretation function I_r is just like I except that it assigns the constant c to r
- Now, $\mathfrak{M} \models \Gamma$ and \mathfrak{M}_r differs by \mathfrak{M} only in how it interprets a symbol that does not occur in Γ .
- ▶ So by Locality, we have $\mathfrak{M}_r \models \Gamma$ and hence $\mathfrak{M}_r \models \mathcal{Q}$
- ▶ So for each object $r \in D$, we have a $d_{I_r}[r/\chi]$ that satisfies $\mathcal{Q}[\chi/c]$.

- ► For each $r \in D$, we define a new model \mathfrak{M}_r whose interpretation function I_r is just like I except that it assigns the constant c to r
- ▶ Now, $\mathfrak{M} \models \Gamma$ and \mathfrak{M}_r differs by \mathfrak{M} only in how it interprets a symbol that does not occur in Γ .
- ▶ So by Locality, we have $\mathfrak{M}_r \models \Gamma$ and hence $\mathfrak{M}_r \models \mathcal{Q}$
- ▶ So for each object $r \in D$, we have a $d_{I_r}[r/\chi]$ that satisfies $\mathcal{Q}[\chi/c]$.
- ▶ This is equivalent to saying that for each $r \in D$, $d_I[r/\chi]$ satisfies $\mathcal{Q}[\chi/c]$, since d_I and each d_{I_r} agree on what to assign every other variable besides possibly χ

- ▶ For each $r \in D$, we define a new model \mathfrak{M}_r whose interpretation function I_r is just like I except that it assigns the constant c to r
- ▶ Now, $\mathfrak{M} \models \Gamma$ and \mathfrak{M}_r differs by \mathfrak{M} only in how it interprets a symbol that does not occur in Γ .
- ▶ So by Locality, we have $\mathfrak{M}_r \models \Gamma$ and hence $\mathfrak{M}_r \models \mathcal{Q}$
- ▶ So for each object $r \in D$, we have a $d_{I_r}[r/\chi]$ that satisfies $\mathcal{Q}[\chi/c]$.
- ▶ This is equivalent to saying that for each $r \in D$, $d_I[r/\chi]$ satisfies $\mathcal{Q}[\chi/c]$, since d_I and each d_{I_r} agree on what to assign every other variable besides possibly χ
- ▶ And by defN, this means that d_I satisfies $(\forall \chi) \mathcal{Q}[\chi/c]$, and hence this sentence is true in \mathfrak{M}