AIFA: PLANNING

24/03/2025

Koustav Rudra

State Spaces Predicate Worlds

Blocks World

• Classical test bed for planning algorithms

Predicates describing initial state:

- On(C,A)
- On(A, Table)
- On(B, Table)
- Clear(B)
- Clear(C)

Predicates describing initial state:

- On(A,B)
- On(B,C)
- On(C, Table)

Actions:

Move(X,Y): Move X on top of Y

Precond: Clear(X), Clear(Y)

Effect: On(X,Y)

Move(X,Table): Move X to Table

Precond: Clear(X)
Effect: On(X,Table)

The planning task is to determine the actions for reaching the target state from the initial state

Choosing Actions

Move(X,Y): Move X on top of Y

Precond: Clear(X), Clear(Y)

Effect: On(X,Y)

Move(X,Table): Move X to Table

Precond: Clear(X)
Effect: On(X,Table)

- We can move C to the Table
 - This achieves none of the goal predicates
- We can move C to the top of B
 - This achieves none of the goal predicates
- We can move B to the top of C
 - This achieves On(B,C)

Partial Solutions

Move(X,Y): Move X on top of Y

Precond: Clear(X), Clear(Y)

Effect: On(X,Y)

Move(X,Table): Move X to Table

Precond: Clear(X)

Effect: On(X,Table)

- We use Move(B,C) to achieve the subgoal On(B,C)
- But if we apply this move at the beginning, we get:

• We do not want

Partial Solutions

Move(X,Y): Move X on top of Y

Precond: Clear(X), Clear(Y)

Effect: On(X,Y)

Move(X,Table): Move X to Table

Precond: Clear(X)

Effect: On(X,Table)

- Move(B,C) removes the Clear(C) predicate which is essential for Move(C, Table)
- Hence Move(C, Table) must precede Move(B,C)

• Can Move(B,C) and Move(A,B) be executed in any order?

Partial Solutions

Move(X,Y): Move X on top of Y

Precond: Clear(X), Clear(Y)

Effect: On(X,Y)

Move(X,Table): Move X to Table

Precond: Clear(X)

Effect: On(X,Table)

- Move(B,C) removes the Clear(C) predicate which is essential for Move(C, Table)
- Hence Move(C, Table) must precede Move(B,C)

How to achieve each sub-goals?

Which actions to choose?

How to serialize the actions so that precedence constraints get satisfied?

The only total order is:

- Move(C, Table)
- Move(B, C)
- Move(A, B)

Do we always need total ordering?

Some partial orders may stay

Actions

Op(ACTION: RightShoe, PRECOND::RightSockOn, EFFECT:: RightShoeOn)

Op(ACTION: RightSock, EFFECT: RightSockOn)

Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)

Op(ACTION: LeftSock, EFFECT: LeftSockOn) Which of these situations are allowed by these actions?

Some partial orders may stay

Actions

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) Op(ACTION: RightSock, EFFECT: RightSockOn) Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) Op(ACTION: LeftSock, EFFECT: LeftSockOn)

Planning: Automation

- Partial order planning
- GraphPlan
- SATPlan
- Stochastic Planning

Partial Order Planning

- Basic Idea: Make choices only that are relevant to solving the current part of the problem
- Least Commitment Choices:
 - Orderings: Leave actions unordered, unless they must be sequential
 - Bindings: Leave variables unbound, unless needed to unify with conditions being achieved
 - Actions: usually not subject to "least commitment"

Terminology

- Totally Ordered Plan
 - There exists sufficient orderings O such that all actions in A are ordered with respect to each other
- Fully Instantiated Plan
 - There exist sufficient constraints in B such that all variables are constrained to be equal to some constant
- Consistent Plan
 - There are no contradictions in O or B
- Complete Plan
 - Every precondition P of every action Ai in A is achieved:
 - There exists an effect of an action A_j that comes before A_i and unifies with P, and no action A_k that deletes P comes between A_i and A_i

STRIPS

- Stanford Research Institute Problem Solver
- Many planners today use specification languages that are variants of the one used in STRIPS
- Our running example:
 - Given:
 - Initial State: The agent is at home without tea, biscuits, book
 - Goal State: The agent is at home with tea, biscuits, book
 - A set of actions

State Representation

- States are represented by conjunctions of function-free ground literals
 - $At(Home) \land \sim Have(Tea) \land \sim Have(Biscuits) \land \sim Have(Book)$
- Goals are also described by conjunction of literals
 - $At(Home) \land Have(Tea) \land Have(Biscuits) \land Have(Book)$
- Goals can also contain variables
 - $At(x) \wedge Sells(x, Tea)$
 - The above goal is being at a shop that sells tea

Representing Actions

- Action description: serves as a name
- Precondition: a conjunction of positive literals
- Effect: a conjunction of literals (+ve or –ve)
- OP(
 - ACTION: Go(there)
 - PRECOND: $At(here) \land Path(here, there)$
 - EFFECT: $At(there) \land \sim At(here)$
 -)

Representing Plans

- A set of plan steps
 - Each step is one of the operators for the problem
- A set of step ordering constraints
 - Each ordering constraint is of the form $S_i \prec S_i$
 - indicating S_i must occur sometime before S_j
- A set of variable binding constraints of the form v=x
 - v is a variable in some step
 - x is either a constant or another variable
- A set of causal links written as $S \to c$: S' indicating S satisfies the precondition c for S'

Example

```
• Initial Plan
• Plan(
    • STEPS: {
        • S1: Op( ACTION: start),
        • S2: Op( ACTION: finish, PRECOND: RightShoeOn \( \LeftShoeOn \)
        • },
    • ORDERINGS: \{S_1 \prec S_2\},
    • BINDINGS: {},
    • LINKS: {}
```

POP Example: Get Tea, Biscuits, Book

Initial State:

```
Op( ACTION: Start,

EFFECT: At(Home) ∧ Sells(BS, Book)

∧ Sells(TS, Tea)

∧ Sells(TS, Biscuits))
```

Goal State:

```
Op( ACTION: Finish,
PRECOND: At(Home) ∧ Have(Tea)
∧ Have(Biscuits)
∧ Have(Book))
```

Actions:

```
Op( ACTION: Go(y),
PRECOND: At(x),
EFFECT: At(y) ∧ ¬At(x))
```

Op(ACTION: Buy(x), PRECOND: At(y) ∧ Sells(y, x), EFFECT: Have(x))

START

START

START

$At(Home) \land Sells(BS, Book) \land Sells(TS, Tea) \land Sells(TS, Biscuits)$

- Ordering
- Causal Constraints

Thank You