Decomposição da 3FN, BCNF e 4FN

Professor: Marcelo Finger

Primeiro Semestre de 2011

1 Definições Básicas

Definição da BCNF

Uma relação R com DFs F está na BCNF se toda DF

$$X \to A \in F^+$$

é tal que:

 \bullet X é superchave

Para estar na BCNF também é possivel que:

 \bullet A é atributo primario.

Definição de Decomposição sem perdas por junção

Seja R com DFs F decomposta em R_1 e R_2 . Esta decomposição é sem perdas (por junção) se

- a) $R = R_1 \cup R_2$; e
- b) Para toda instância r de R, tal que $r_1 = \Pi_{R_1}(r), r_2 = \Pi_{R_2}(r)$

$$r = r1 \bowtie r2$$
.

2 Resultados

Teorema: Seja R com DFs F decomposta em R_1, R_2 . Se $R_1 \to R$ ou $R_2 \to R$ então a decomposição é sem perdas(por junção).

Algoritmo de Decomposição na BCNF

Entrada: R esquema, F conjunto de DFs

Saída: $C = \{R_1, ..., R_k\}, R_i$ na BCNF

$$C := \{R\};$$

Enquanto houver $R_i \in C$ que viola a BCNF

Seja $X \to A \in F^+$ uma DF tal que X não é superchave e $X, A \subseteq R_i$ [Escolhida aleatoriamente];

Seja
$$R_i^1 = X$$
, $A \in R_i^2 = R_i - A$;
 $C := C - \{R_i\} \cup \{R_i^1, R_i^2\}$;

$$C := C - \{R_i\} \cup \{R_i^1, R_i^2\}$$

Se nenhuma R_i possui uma chave de R

$$C := C \cup \{K\}, \text{ onde } K \to R;$$

Obs: O algoritmo é sem perdas porem não garante preservação de DFs.

Explicações do Algoritmo

Defs de R_i^1 e R_i^2 , dado que $R_i = A_1, ..., A_n, A, B_1, ..., B_m$ e a DF que viola a BCNF em $R_i \in A_1, ..., A_n \to A$

$$R_i^1 = A_1, ..., A_n, A$$

$$R_i^2 = A_1, ..., A_n, B_1, ..., B_m$$

Decomposição de DFs

Seja R com DFs F decompostas em R_1 e R_2 . Seja F_i a DF associada a R_i , i = 1, 2.

$$F_i = \{X \to Y \in F^+ | X, Y \subseteq R_i\}$$

A decomposição $preserva\ DFs$ se

$$F^+ = (F1 \cup F2)^+$$

3 Exercícios

1. Vamos eliminar as redundancias.

$$H \to AZ(H)$$

 $HP \to R(P)$

$$HR \rightarrow (\stackrel{\circ}{R})\stackrel{\circ}{P}$$

$$C(E) \to Z(\text{inútil})$$

$$C \to E(H)$$

$$E \to H(Z)$$

Ficamos com essas DFs:

$$\begin{split} C &\to E \\ E &\to H \\ H &\to AZ \\ HP &\to R \\ HR &\to P \end{split}$$

Chave primária CPT ou CRT

2. Decomposição na de CEHAZRPT é $\{\underline{CE},\underline{EH},\underline{HAZ},\underline{HPR},\underline{CPT}\}$ está na 3FN.

Detalhando

$$\begin{split} C0 &= \{CEHAZRPT\} \\ C1 &= \{CE, CHAZRPT\} \\ C2 &= \{CE, HAZ, CHRPT\} \\ C3 &= \{CE, HAZ, HPR, CHPT\} \\ C4 &= \{CE, CH, HAZ, HPR, CPT\} \end{split}$$

4 Dependências Multivaloradas

(para toda) tupla t_1 e t_2 com $t_1[X]=t_2[X]$ existem tuplas t_3 e t_4 (não necessariamente distintas de t_1 e t_2) com

a)
$$t_3[X] = t_4[X] = t_1[X] = t_2[X]$$

b)
$$t_3[Y] = t_1[Y] e t_3[R - X - Y] = t_2[R - X - Y]$$

c)
$$t_4[Y] = t_2[Y] e t_4[R - X - Y] = t_1[R - X - Y]$$

Ex: ABC, A woheadrightarrow B

Definição da 4FN

Uma relação R com DMs F está no BCNF se toda DM $X \twoheadrightarrow Y \in F^+$ é tal que X é superchave.

Teorema: $R = R_1 \cup R_2$ com DMs F. Então

 $R_1 \twoheadrightarrow R \text{ ou } R_2 \twoheadrightarrow R$ se e somente se

A decomposição de R em R_1 e R_2 é sem perdas.