المملكة المغربية ROYAUME DU MAROC

Ministère de l'Enseignement Supérieur de la Recherche Scientifique de la Formation des Cadres

Présidence du Concours National Commun École Nationale Supérieure des Mines de Rabat

CONCOURS NATIONAL COMMUN

d'admission aux Établissements de Formation d'Ingénieurs et Établissements Assimilés

Session 2016

ÉPREUVE DE MATHÉMATIQUES I

Filière **PSI**

Durée 4 heures

Cette épreuve comporte 4 pages au format A4, en plus de cette page de garde L'usage de la calculatrice est interdit

L'énoncé de cette épreuve, particulière aux candidats de la filière PSI, comporte 4 pages.

L'usage de tout matériel électronique, y compris la calculatrice, est interdit.

Les candidats sont informés que la qualité de la rédaction et de la présentation, la clarté et la précision des raisonnements constitueront des éléments importants pour l'appréciation des copies. Il convient en particulier de rappeler avec précision les références des questions abordées.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Le sujet de cette épreuve est composé de deux problèmes indépendants entre eux.

Durée: 4 heures

Problème 1

Partie I

Convergence des séries par transformation d'Abel

On considère une suite de réels (a_n) , une suite de complexes (b_n) et on note pour tout entier naturel $n, S_n = \sum_{k=0}^n a_k b_k$ et $B_n = \sum_{k=0}^n b_k$.

- **1.** a) Pour tout entier $k \ge 1$, déterminer b_k en fonction de B_k et B_{k-1} .
 - **b)** Montrer que, pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=0}^{n-1} (a_k a_{k+1}) B_k + a_n B_n$, (on remarque que $B_0 = b_0$).
- 2. On suppose que la suite (B_n) est bornée et que la suite (a_n) est décroissante de limite nulle.
 - a) Démontrer que la série $\sum_{n\geq 0} (a_n a_{n+1})$ converge.
 - **b)** En déduire que la série $\sum_{n>0} a_n b_n$ converge.

Partie II

Applications aux convergences de quelques types de séries

- 1. Soit (a_n) une suite décroissante de limite nulle. Montrer que la série $\sum_{n\geq 0} (-1)^n a_n$ converge.
- **2.** Dans cette question, θ est un réel différent de $2k\pi$ $(k \in \mathbb{Z})$ et α un réel.
 - a) Calculer, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n e^{ik\theta}$.
 - **b)** Montrer que, pour tout $\alpha \leq 0$, la série $\sum_{n\geq 1} \frac{e^{in\theta}}{n^{\alpha}}$ est divergente.
 - c) Montrer que, pour tout $\alpha > 0$, les séries $\sum_{n \ge 1} \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum_{n \ge 1} \frac{\sin(n\theta)}{n^{\alpha}}$ sont convergentes.
 - d) Montrer que, pour tout $\alpha > 1$, les séries $\sum_{n \ge 1} \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum_{n \ge 1} \frac{\sin(n\theta)}{n^{\alpha}}$ sont absolument convergentes.
 - e) On suppose que $0 < \alpha \le 1$.
 - i) Vérifier que la série $\sum\limits_{n\geq 1}\frac{\cos(2n\theta)}{n^{\alpha}}$ est convergente.

- ii) Montrer que la série $\sum_{n\geq 1} \frac{\sin^2(n\theta)}{n^{\alpha}}$ est divergente.
- iii) En déduire que $\sum_{n\geq 1} \frac{\sin(n\theta)}{n^{\alpha}}$ n'est pas absolument convergente.
- 3. Soit (c_n) une suite de nombres complexes telles que la série $\sum_{n\geq 0} c_n$ est convergente. Montrer que, pour tout réel α positif, la série $\sum_{n\geq 1} \frac{c_n}{n^{\alpha}}$ est convergente.

Partie III

Une autre méthode pour montrer la convergence de quelques types de séries

Dans cette partie, nous considérons une fonction réelle f définie sur \mathbb{R}^+ , continue, positive et décroissante. Pour tout réel strictement positif s, on pose,

$$\varphi_f(s) = \int_0^{+\infty} e^{-st} f(t) dt$$

- 1. Montrer que la fonction φ_f est bien définie sur \mathbb{R}^{*+} , (on rappelle que \mathbb{R}^{*+} est l'ensemble des nombres réels strictement positifs).
- **2.** Soit g la fonction définie sur \mathbb{R}^+ , par $g(t) = \begin{cases} 1 t & \text{si } 0 \le t \le 1 \\ 0 & \text{sinon} \end{cases}$, déterminer φ_g .
- **3.** Montrer que, pour tout $k \in \mathbb{N}$, tout $s \in \mathbb{R}^{*+}$ et tout $t \in [k, k+1]$,

$$e^{-(k+1)s}f(k+1) \le \int_{k}^{k+1} e^{-st}f(t)dt \le e^{-ks}f(k)$$

4. Montrer que, pour tout $N \in \mathbb{N}$ et tout $s \in \mathbb{R}^{*+}$,

$$\int_{0}^{N} e^{-st} f(t)dt \le \sum_{k=0}^{N} e^{-ks} f(k) \le \int_{0}^{N} e^{-st} f(t)dt + f(0)$$

- **5.** En déduire que, pour tout $s \in \mathbb{R}^{*+}$, la série $\sum_{n>0} e^{-ns} f(n)$ converge.
- **6.** Montrer que, pour tout $n \in \mathbb{N}$ et tout $s \in \mathbb{R}^{*+}$, $\int_{n+1}^{+\infty} e^{-st} f(t) dt \leq \sum_{k=n+1}^{+\infty} e^{-ks} f(k) \leq \int_{n}^{+\infty} e^{-st} f(t) dt$.
- 7. a) Montrer que, pour tout $n \in \mathbb{N}$ et tout $(s, s') \in \mathbb{R}^{*+} \times \mathbb{R}^{*+}$

$$\int_{n+1}^{+\infty} \frac{e^{-st}}{1 + e^{ts'}} dt \le \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks'}} \le \int_{n}^{+\infty} \frac{e^{-st}}{1 + e^{ts'}} dt.$$

b) Montrer que, pour tout $n \in \mathbb{N}$ et tout $s \in \mathbb{R}^{*+}$,

$$\frac{1}{s} \left(e^{-(n+1)s} - \ln(1 + e^{-(n+1)s}) \right) \le \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1 + e^{ks}} \le \frac{1}{s} \left(e^{-ns} - \ln(1 + e^{-ns}) \right).$$

- c) Déterminer $\lim_{s \to +\infty} \sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1+e^{ks}}$.
- d) Déterminer un équivalent de $\sum_{k=n+1}^{+\infty} \frac{e^{-ks}}{1+e^{ks}}$, quand s tend vers 0+.
- 8. Soit f une fonction réelle définie sur \mathbb{R}^+ , continue, positive et croissante.
 - a) Montrer que, pour tout $s \in \mathbb{R}^*$, $\int_0^{+\infty} e^{-s^2 t} f(e^{-t}) dt$ converge.
 - **b)** Montrer que, pour tout $s \in \mathbb{R}^*$, $0 \le \sum_{k=0}^{+\infty} e^{-s^2 k} f(e^{-k}) \int_0^{+\infty} e^{-s^2 t} f(e^{-t}) dt \le f(1)$.

Problème 2

Soit (Ω, \mathcal{A}, P) un espace probabilisé, par la suite, les variables aléatoires considérées sont des variables aléatoires réelles discrètes ou à densité. Si X est une variable aléatoire sur (Ω, \mathcal{A}, P) , la fonction génératrice des moments de X, lorsqu'elle existe, est la fonction numérique de la variable réelle t, $M_X: t \mapsto E(e^{tX})$, où $E(e^{tX})$ désigne l'espérance de la variable aléatoire e^{tX} .

Partie I

Cas particulier : variables aléatoires discrètes finies

Soit X une variable aléatoire discrète prenant un nombre fini de valeurs x_1, \ldots, x_r avec les probabilités respectives p_1, \ldots, p_r , où $r \in \mathbb{N}^*$. Dans cette partie, on définit la fonction φ_X sur \mathbb{R}^* par,

$$\forall t \in \mathbb{R}^*, \ \varphi_X(t) = \frac{1}{t} \ln(M_X(t))$$

- 1. Déterminer M_Z , lorsque Z suit une loi de Bernoulli de paramètre $p, p \in [0, 1]$.
- **2.** Montrer que M_X est de classe \mathcal{C}^{∞} sur \mathbb{R} , et que pour tout entier naturel k, $M_X^{(k)}(0) = E(X^k)$.
- **3.** a) Montrer que φ_X est bien définie sur \mathbb{R}^* et prolongeable par continuité en 0. On pose $\varphi_X(0) = E(X)$ et on note encore φ_X la fonction ainsi prolongée.
 - b) Démontrer que φ_X est dérivable en 0 et calculer $\varphi_X'(0)$ en fonction de la variance V(X) de X.
 - c) i) Montrer que pour tout $u \le 0$, $e^u \le 1 + u + \frac{1}{2}u^2$.
 - ii) Montrer que si X ne prend que des valeurs négatives ou nulles, alors, pour tout $t \ge 0$, $\varphi_X(t) \le E(X) + \frac{t}{2}E(X^2)$.
 - d) i) Pour tout entier i tel que $1 \le i \le r$, on note f_i la fonction définie sur \mathbb{R} , par $t \mapsto e^{tx_i}$. Montrer que la famille (f_1, \ldots, f_n) est libre.
 - ii) En déduire que deux variables discrètes finies X et Y ont la même loi si, et seulement si, les fonctions φ_X et φ_Y sont égales.
 - e) Montrer que si X et Y sont des variables discrètes finies indépendantes, alors,

$$\varphi_{X+Y} = \varphi_X + \varphi_Y.$$

- f) En déduire M_X , lorsque X suit une loi binomiale de paramètre s et p, s est un entier naturel non nul et $0 \le p \le 1$.
- j) On dit qu'une variable aléatoire réelle X est symétrique si X et -X ont la même loi. Montrer que φ_X est impaire si, et seulement si, X est une variable aléatoire réelle symétrique.
- **4.** On considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires discrètes finies mutuellement indépendantes sur (Ω, \mathcal{A}, P) , qui suivent la même loi que X. On note m l'espérance de X et σ son écart-type que l'on suppose strictement positif.

On pose, pour tout entier naturel non nul, $S_n = X_1 + X_2 + \ldots + X_n$ et $S_n^* = \frac{S_n - E(S_n)}{\sqrt{V(S_n)}}$.

a) Montrer que, pour tout entier naturel non nul n et tout réel non nul t,

$$\varphi_{S_n^*}(t) = \frac{-m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma} \varphi_X \left(\frac{t}{\sigma\sqrt{n}}\right).$$

b) En déduire que $\lim_{n \to +\infty} \varphi_{S_n^*}(t) = \frac{t}{2}$.

Partie II

Cas des variables aléatoires discrètes réelles infinies

Soit X une variable aléatoire discrète réelle infinie, notons I_X l'ensemble des réels t pour lesquels M_X existe.

- 1. a) Montrer que, pour tous réels a, b, c tels que a < b < c et tout réel $x, e^{bx} \le e^{ax} + e^{cx}$.
 - **b)** En déduire que I_X est un intervalle contenant 0.
- 2. Soit Y une variable aléatoire discrète réelle qui suit une loi de Poisson de paramètre $\lambda > 0$. Déterminer la fonction génératrice des moments M_Y de Y.
- **3.** On suppose que la fonction M_X est définie sur un intervalle de la forme]-a,a[,(a>0). Notons $(x_n)_{n\in\mathbb{N}}$ une énumération des valeurs de X.

Posons, pour tout $n \in \mathbb{N}$ et tout $t \in]-a,a[, u_n(t) = P(X=x_n)e^{tx_n}$. Soit $\alpha > 0$ tel que $[-\alpha,\alpha] \subset]-a,a[$, et soit $\rho \in]\alpha,a[$.

- a) Montrer que, pour tout $k \in \mathbb{N}$, tout $t \in]-\alpha, \alpha[$ et tout $n \in \mathbb{N}$, $|u_n^{(k)}(t)| \leq P(X=x_n)(|x_n|)^k e^{\alpha|x_n|}, \text{ où } u_n^{(k)} \text{ désigne la dérivée } k^{\text{\`e}me} \text{ de la fonction } u_n.$
- **b)** Montrer que, pour tout $k \in \mathbb{N}$, il existe $M_k > 0$, pour tout $t \in]-\alpha, \alpha[$ et tout $n \in \mathbb{N}$,

$$|u_n^{(k)}(t)| \le M_k P(X = x_n) e^{\rho |x_n|}.$$

- c) En déduire que M_X est de classe \mathcal{C}^{∞} sur]-a,a[, et que pour tout $k\in\mathbb{N},\,E(X^k)=M_X^{(k)}(0).$
- 4. En déduire l'espérance et la variance d'une variable aléatoire Y qui suit une loi de Poisson de paramètre $\lambda>0$.

Partie III

Cas des variables aléatoires à densité

Si X est une variable aléatoire à densité, on note I_X l'intervalle de \mathbb{R} , qui contient 0, pour lequel M_X existe.

- 1. Soient X et Y deux variables aléatoires à densité indépendantes, qui admettent respectivement des fonctions génératrices des moments M_X et M_Y , montrer que $M_{X+Y} = M_X M_Y$.
- 2. Soit X une variable alétoire à densité possédant une fonction génératrice des moments M_X et une densité f. On suppose que cette fonction génératrice des moments soit définie sur $I_X =]a, b[$, $(a,b) \in \mathbb{R}^2$, a < 0 < b, et soit s un réel tel que, $0 < s < \min(-a,b)$.
 - a) Montrer que, pour tout $k \in \mathbb{N}^*$ et tout $t \in \mathbb{R}$, $|t^k| \leq \frac{k!}{s^k} e^{s|t|}$.
 - b) En déduire que, pour tout $k \in \mathbb{N}^*$, $E(|X|^k)$ est finie.
 - c) Montrer que, pour tout $t \in]-s, s[, M_X(t) = \sum_{k=0}^{+\infty} E(X^k) \frac{t^k}{k!}.$
 - **d)** En déduire que, pour tout $k \in \mathbb{N}$, $M_X^{(k)}(0) = E(X^k)$.

Fin de l'épreuve

Livres Écriture Papeterie Classement Traçage et calculatrices Dessin

Identifiez-vous Favoris

8 années de sujets corrigés posés aux concours Centrale/Supélec, Mines/Ponts et CCP corrigés - filière PSI

Catégorie: Magasin > Livres > Maths

Lire un extrait du livre

Consulter la table des matières

Présentation des auteurs

Ce livre contient les énoncés et corrigés adaptés aux nouveaux programmes de 48 problèmes posés aux concours Centrale/Supélec, Mines/Ponts et CCP dans la filière PSI de 2007 à 2014. Il permet à l'étudiant candidat à ce concours, et aussi à toute personne désireuse de vérifier ses connaissances au niveau d'un premier cycle universitaire, de s'entraîner.

Biographie des auteurs

Jean Franchini, Professeur agrégé de mathématiques en classes préparatoires scientifiques au lycée Chaptal (Paris)

Jean-Claude Jacquens, Professeur agrégé de mathématiques en classes préparatoires scientifiques au lycée Charlemagne (Paris)

Caractéristiques du produit

Auteurs: Franchini Jean, Jacquens Jean-Claude

Nombre de pages : 448 pages Éditeur : Ellipses Marketing Date de Parution : 23 juillet 2014

Collection : Épreuves corrigées des filières scientifiques

Vous aimerez peut-être aussi

8 ans de problèmes corrigés de mathématiques posés aux concours de Cen...

Cours de Mathématiques -Travaux dirigés -Exercices corrigés -

Mathématiques Polytechnique 2004-2007 - Tome 7

Mathématiques Centrale/Supélec 2006-2007 - Tome 10

Mathématiques Centrale/Supélec 2004-2005 - Tome 9