Lecture 18

Source Free RL Circuits

Source Free RL

Consider the series connection of a resistor and an inductor, as shown in Fig. 7.11. Our goal is to determine the circuit response, which we will assume to be the current i(t) through the inductor. We select the inductor current as the response in order to take advantage of the idea that the inductor current cannot change instantaneously. At t = 0, we assume that the inductor has an initial current I_0 , or

$$i(0) = I_0 (7.13)$$

with the corresponding energy stored in the inductor as

$$w(0) = \frac{1}{2}LI_0^2 \tag{7.14}$$

Applying KVL around the loop in Fig. 7.11,

$$v_L + v_R = 0 \tag{7.15}$$

But $v_L = L di/dt$ and $v_R = iR$. Thus,

$$L\frac{di}{dt} + Ri = 0$$

or

$$\frac{di}{dt} + \frac{R}{L}i = 0 ag{7.16}$$

Rearranging terms and integrating gives

$$\int_{l_0}^{i(t)} \frac{di}{i} = -\int_0^t \frac{R}{L} dt$$

$$\ln i \Big|_{I_0}^{i(t)} = -\frac{Rt}{L} \Big|_0^t \qquad \Rightarrow \qquad \ln i(t) - \ln I_0 = -\frac{Rt}{L} + 0$$

or

$$\ln \frac{i(t)}{I_0} = -\frac{Rt}{L}$$
 (7.17)

Taking the powers of e, we have

$$i(t) = I_0 e^{-Rt/L} (7.18)$$

This shows that the natural response of the RL circuit is an exponential decay of the initial current. The current response is shown in Fig. 7.12. It is evident from Eq. (7.18) that the time constant for the RL circuit is

$$\tau = \frac{L}{R} \tag{7.19}$$

with τ again having the unit of seconds. Thus, Eq. (7.18) may be written as

$$i(t) = I_0 e^{-t/\tau} (7.20)$$

Figure 7.12
The current response of the *RL* circuit.

In summary:

The Key to Working with a Source-Free RL Circuit Is to Find:

- 1. The initial current $i(0) = I_0$ through the inductor.
- 2. The time constant τ of the circuit.

With the two items, we obtain the response as the inductor current $i_L(t) = i(t) = i(0)e^{-t/\tau}$. Once we determine the inductor current i_L , other variables (inductor voltage v_L , resistor voltage v_R , and resistor current i_R) can be obtained. Note that in general, R in Eq. (7.19) is the Thevenin resistance at the terminals of the inductor.

Example 7.4

Figure 7.16

For Example 7.4.

The switch in the circuit of Fig. 7.16 has been closed for a long time. At t = 0, the switch is opened. Calculate i(t) for t > 0.

Solution:

When t < 0, the switch is closed, and the inductor acts as a short circuit to dc. The 16- Ω resistor is short-circuited; the resulting circuit is shown in Fig. 7.17(a). To get i_1 in Fig. 7.17(a), we combine the 4- Ω and 12- Ω resistors in parallel to get

$$\frac{4\times12}{4+12}=3\ \Omega$$

Hence,

$$i_1 = \frac{40}{2+3} = 8 \text{ A}$$

We obtain i(t) from i_1 in Fig. 7.17(a) using current division, by writing

$$i(t) = \frac{12}{12+4}i_1 = 6 \text{ A}, \qquad t < 0$$

Since the current through an inductor cannot change instantaneously,

$$i(0) = i(0^{-}) = 6 \text{ A}$$

When t > 0, the switch is open and the voltage source is disconnected. We now have the source-free RL circuit in Fig. 7.17(b). Combining the resistors, we have

$$R_{\rm eq} = (12 + 4) \parallel 16 = 8 \Omega$$

The time constant is

$$\tau = \frac{L}{R_{\rm eq}} = \frac{2}{8} = \frac{1}{4} \, \text{s}$$

Thus,

$$i(t) = i(0)e^{-t/\tau} = 6e^{-4t} A$$

Practice Problem 7.4

Figure 7.18

For Practice Prob. 7.4.

For the circuit in Fig. 7.18, find i(t) for t > 0.

Answer: $5e^{-2t}$ A, t > 0.

Example 7.5

In the circuit shown in Fig. 7.19, find i_o , v_o , and i for all time, assuming that the switch was open for a long time.

Solution:

It is better to first find the inductor current *i* and then obtain other quantities from it.

For t < 0, the switch is open. Since the inductor acts like a short circuit to dc, the 6- Ω resistor is short-circuited, so that we have the circuit shown in Fig. 7.20(a). Hence, $i_o = 0$, and

$$i(t) = \frac{10}{2+3} = 2 \text{ A}, t < 0$$

 $v_o(t) = 3i(t) = 6 \text{ V}, t < 0$

Thus, i(0) = 2.

For t > 0, the switch is closed, so that the voltage source is short-circuited. We now have a source-free RL circuit as shown in Fig. 7.20(b). At the inductor terminals,

$$R_{\rm Th} = 3 \| 6 = 2 \Omega$$

so that the time constant is

$$\tau = \frac{L}{R_{\rm Th}} = 1 \text{ s}$$

Hence,

$$i(t) = i(0)e^{-t/\tau} = 2e^{-t} A, t > 0$$

Since the inductor is in parallel with the 6- Ω and 3- Ω resistors,

$$v_o(t) = -v_L = -L\frac{di}{dt} = -2(-2e^{-t}) = 4e^{-t} V, \quad t > 0$$

and

$$i_o(t) = \frac{v_L}{6} = -\frac{2}{3}e^{-t}A, \quad t > 0$$

Thus, for all time,

$$i_{o}(t) = \begin{cases} 0 \text{ A}, & t < 0 \\ -\frac{2}{3}e^{-t} \text{ A}, & t > 0 \end{cases} \quad v_{o}(t) = \begin{cases} 6 \text{ V}, & t < 0 \\ 4e^{-t} \text{ V}, & t > 0 \end{cases}$$
$$i(t) = \begin{cases} 2 \text{ A}, & t < 0 \\ 2e^{-t} \text{ A}, & t \ge 0 \end{cases}$$

Thanks