UNISONIC TECHNOLOGIES CO., LTD

CD4069 cmos ic

INVERTER CIRCUITS

■ DESCRIPTION

The UTC **CD4069** consists of six inverter circuits and is manufactured using complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption, high noise immunity, and symmetric controlled rise and fall times.

All inputs are protected from damage due to static discharge by diode clamps to VDD and VSS.

■ FEATURES

- * Wide supply voltage range: 3.0V ~ 15V.
- * High noise immunity: $0.45 V_{DD}$ typ.
- * Low Power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS.

■ ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
CD4069L-D14-T	CD4069G-D14-T	DIP-14	Tube	
CD4069L-S14-R	CD4069G-S14-R	SOP-14	Tape Reel	

MARKING

www.unisonic.com.tw 1 of 7

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL RATINGS		UNIT	
DC Supply Voltage		V_{DD}	-0.5 ~ +18	V	
Input Voltage		V _{IN}	-0.5 ~ V _{DD} +0.5	V	
Storage Temperature Range		Ts	-65 ~ +150	°C	
Power Dissipation	DIP-14	0	700	mW	
	SOP-14	P _D	500		
Junction Temperature		TJ	125	°C	
Operating Temperature		T _{OPR}	-20 ~ +85	°C	
Storage Temperature		T _{STG}	-40 ~ +150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS (V_{SS}=0V)

PARAMETER	SYMBOL	RATINGS	UNIT
DC Supply Voltage	V_{DD}	3 ~ 15	V
Input Voltage	V_{IN}	0 ~ V _{DD}	V
Operating Temperature	T _A	-40 ~ 85	°C

■ DC ELECTRICAL CHARACTERISTICS (V_{SS}=0V, T_A=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNIT
Quiescent Device Current		V _{DD} =5V, V _{IN} =V _{DD} or V _{SS}				1.0	μΑ
	I_{DD}	V_{DD} =10V, V_{IN} = V_{DD} or V_{SS}				2.0	μA
		V _{DD} =15V, V _{IN} =V _{DD} or V _{SS}				4.0	μA
		I _O <1µA	V _{DD} =5V		0	0.05	V
Low Level Output Voltage	V_{OL}		V _{DD} =10V		0	0.05	V
			V _{DD} =15V		0	0.05	V
High Level Output Voltage		I ₀ <1µA	V _{DD} =5V	4.95			V
	V_{OH}		V _{DD} =10V	9.95			V
			V _{DD} =15V	14.95			V
			V_{DD} =5V, V_{O} =4.5V			1.0	V
Low Level Input Voltage	V _{IL}	$ I_O $ <1 μ A	V_{DD} =10V, V_{O} =9V			2.0	V
			V _{DD} =15V, V _O =13.5V			3.0	V
High Level Input Voltage	V _{IH}	I _O <1μΑ	V_{DD} =5V, V_{O} =0.5V	4.0			V
			V_{DD} =10V, V_{O} =1V	8.0			V
			V_{DD} =15V, V_{O} =1.5V	12.0			V
Low Level Output Current (Note 2)		V _{DD} =5V, Vo=0.4V		0.44	0.88		mA
	I _{OL}	V_{DD} =10V, V	/o=0.5V	1.1	2.25		mA
		V _{DD} =15V, Vo=1.5V		3.0	8.8		mA
High Level Output Current (Note 2)		V _{DD} =5V, Vc	=4.6V	-0.44	-0.88		mA
	I _{OH}	V _{DD} =10V, Vo=9.5V		-1.1	-2.25		mA
		V _{DD} =15V, Vo=13.5V		-3.0	-8.8		mA
Input Current	l	V _{DD} =15V, V _{IN} =0V			-10 ⁻⁵	-0.30	μΑ
Input Current	I _{IN}	V _{DD} =15V, V _{IN} =15V			10 ⁻⁵	0.30	μΑ

■ AC ELECTRICAL CHARACTERISTICS (Note 1)

 $(T_A=25^{\circ}C, C_L=50pF, R_L=200k\Omega, t_R \text{ and } t_F \le 20 \text{ ns, unless otherwise specified})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay Time from Input to Output	t _{PHL} Or t _{PLH}	V _{DD} =5V		50	90	ns
		V _{DD} =10V		30	60	ns
		V _{DD} =15V		25	50	ns
Transition Time	•	V _{DD} =5V		80	150	ns
		V _{DD} =10V		50	100	ns
		V _{DD} =15V		40	80	ns
Average Input Capacitance	C_{IN}	Any Gate		6	15	pF
Power Dissipation Capacitance	C_{PD}	Any Gate (Note 3)		12		pF

Notes: 1. AC Parameters are guaranteed by DC correlated testing.

- 2. I_{OH} and I_{OL} are tested one output at a time.
- 3. C_{PD} determines the no load AC power consumption of any CMOS device.

■ AC TEST CIRCUITS AND SWITCHING TIME WAVEFORMS

■ TYPICAL PERFORMANCE CHARACTERISTICS

Propagation Delay vs Ambient Temperature

Propagation Delay Time vs Load Capacitance

Power Dissipation vs Frequency

Propagation Delay vs Ambient Temperature

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

