CHƯƠNG II BÀI TOÁN ĐẾM

Lý thuyết tổ hợp là một phần quan trọng của toán học rời rạc chuyên nghiên cứu sự phân bố các phần tử vào các tập hợp. Thông thường các phần tử này là hữu hạn và việc phân bố chúng phải thoả mãn những điều kiện nhất định nào đó, tùy theo yêu cầu của bài toán cần nghiên cứu. Mỗi cách phân bố như vậy gọi là một cấu hình tổ hợp. Chủ đề này đã được nghiên cứu từ thế kỹ 17, khi những câu hỏi về tổ hợp được nêu ra trong những công trình nghiên cứu các trò chơi may rủi. Liệt kê, đếm các đối tượng có những tính chất nào đó là một phần quan trọng của lý thuyết tổ hợp. Chúng ta cần phải đếm các đối tượng để giải nhiều bài toán khác nhau. Hơn nữa các kỹ thuật đếm được dùng rất nhiều khi tính xác suất của các biến cố.

2.1. CƠ SỞ CỦA PHÉP ĐẾM.

2.1.1. Những nguyên lý đếm cơ bản:

1) Quy tắc cộng: Giả sử có k công việc T_1 , T_2 , ..., T_k . Các việc này có thể làm tương ứng bằng n_1 , n_2 , ..., n_k cách và giả sử không có hai việc nào có thể làm đồng thời. Khi đó số cách làm một trong k việc đó là $n_1+n_2+...+n_k$.

Thí dụ 1: 1) Một sinh viên có thể chọn bài thực hành máy tính từ một trong ba danh sách tương ứng có 23, 15 và 19 bài. Vì vậy, theo quy tắc cộng có 23 + 15 + 19 = 57 cách chọn bài thực hành.

2) Giá trị của biến m bằng bao nhiều sau khi đoạn chương trình sau được thực hiện?

```
\begin{split} m := 0 \\ \textbf{for} \ i_1 := 1 \ \textbf{to} \ n_1 \\ m := m+1 \\ \textbf{for} \ i_2 := 1 \ \textbf{to} \ n_2 \\ m := m+1 \\ \\ \textbf{for} \ i_k := 1 \ \textbf{to} \ n_k \\ m := m+1 \end{split}
```

Giá trị khởi tạo của m bằng 0. Khối lệnh này gồm k vòng lặp khác nhau. Sau mỗi bước lặp của từng vòng lặp giá trị của k được tăng lên một đơn vị. Gọi T_i là việc thi hành vòng lặp thứ i. Có thể làm T_i bằng n_i cách vì vòng lặp thứ i có n_i bước lặp. Do các vòng lặp không thể thực hiện đồng thời nên theo quy tắc cộng, giá trị cuối cùng của m bằng số cách thực hiện một trong số các nhiệm vụ T_i , tức là $m = n_1 + n_2 + ... + n_k$.

Quy tắc cộng có thể phát biểu dưới dạng của ngôn ngữ tập hợp như sau: Nếu A_1 , A_2 , ..., A_k là các tập hợp đôi một rời nhau, khi đó số phần tử của hợp các tập hợp này bằng tổng số các phần tử của các tập thành phần. Giả sử T_i là việc chọn một phần tử từ

tập A_i với i=1,2,...,k. Có $|A_i|$ cách làm T_i và không có hai việc nào có thể được làm cùng một lúc. Số cách chọn một phần tử của hợp các tập hợp này, một mặt bằng số phần tử của nó, mặt khác theo quy tắc cộng nó bằng $|A_1|+|A_2|+...+|A_k|$. Do đó ta có:

$$|A_1 \cup A_2 \cup ... \cup A_k| = |A_1| + |A_2| + ... + |A_k|.$$

2) Quy tắc nhân: Giả sử một nhiệm vụ nào đó được tách ra thành k việc T_1 , T_2 , ..., T_k . Nếu việc T_i có thể làm bằng n_i cách sau khi các việc T_1 , T_2 , ... T_{i-1} đã được làm, khi đó có $n_1.n_2...n_k$ cách thi hành nhiệm vụ đã cho.

Thí dụ 2: 1) Người ta có thể ghi nhãn cho những chiếc ghế trong một giảng đường bằng một chữ cái và một số nguyên dương không vượt quá 100. Bằng cách như vậy, nhiều nhất có bao nhiều chiếc ghế có thể được ghi nhãn khác nhau?

Thủ tục ghi nhãn cho một chiếc ghế gồm hai việc, gán một trong 26 chữ cái và sau đó gán một trong 100 số nguyên dương. Quy tắc nhân chỉ ra rằng có 26.100=2600 cách khác nhau để gán nhãn cho một chiếc ghế. Như vậy nhiều nhất ta có thể gán nhãn cho 2600 chiếc ghế.

2) Có bao nhiều xâu nhị phân có độ dài n.

Mỗi một trong n bit của xâu nhị phân có thể chọn bằng hai cách vì mỗi bit hoặc bằng 0 hoặc bằng 1. Bởi vậy theo quy tắc nhân có tổng cộng 2^n xâu nhị phân khác nhau có độ dài bằng n.

3) Có thể tạo được bao nhiều ánh xạ từ tập A có m phần tử vào tập B có n phần tử?

Theo định nghĩa, một ánh xạ xác định trên A có giá trị trên B là một phép tương ứng mỗi phần tử của A với một phần tử nào đó của B. Rõ ràng sau khi đã chọn được ảnh của i - 1 phần tử đầu, để chọn ảnh của phần tử thứ i của A ta có n cách. Vì vậy theo quy tắc nhân, ta có n.n...n=n^m ánh xạ xác định trên A nhận giá trị trên B.

4) Có bao nhiều đơn ánh xác định trên tập A có m phần tử và nhận giá trị trên tập B có n phần tử?

Nếu m > n thì với mọi ánh xạ, ít nhất có hai phần tử của A có cùng một ảnh, điều đó có nghĩa là không có đơn ánh từ A đến B. Bây giờ giả sử $m \le n$ và gọi các phần tử của A là $a_1,a_2,...,a_m$. Rõ ràng có n cách chọn ảnh cho phần tử a_1 . Vì ánh xạ là đơn ánh nên ảnh của phần tử a_2 phải khác ảnh của a_1 nên chỉ có n - 1 cách chọn ảnh cho phần tử a_2 . Nói chung, để chọn ảnh của a_k ta có n - k + 1 cách. Theo quy tắc nhân, ta có

$$n(n-1)(n-2)...(n-m+1) = \frac{n!}{(n-m)!}$$

đơn ánh từ tập A đến tập B.

5) Giá trị của biến k bằng bao nhiều sau khi chương trình sau được thực hiện?

$$\begin{split} \mathbf{m} &:= 0 \\ \textbf{for } \mathbf{i}_1 &:= 1 \textbf{ to } \mathbf{n}_1 \\ \textbf{for } \mathbf{i}_2 &:= 1 \textbf{ to } \mathbf{n}_2 \end{split}$$

$$\mathbf{for}\ \mathbf{i_k} \coloneqq 1\ \mathbf{to}\ \mathbf{n_k}$$

k := k+1

Giá trị khởi tạo của k bằng 0. Ta có k vòng lặp được lồng nhau. Gọi T_i là việc thi hành vòng lặp thứ i. Khi đó số lần đi qua vòng lặp bằng số cách làm các việc T_1 , T_2 , ..., T_k . Số cách thực hiện việc T_j là n_j (j=1, 2,..., k), vì vòng lặp thứ j được duyệt với mỗi giá trị nguyên i_j nằm giữa 1 và n_j . Theo quy tắc nhân vòng lặp lồng nhau này được duyệt qua $n_1.n_2...n_k$ lần. Vì vậy giá trị cuối cùng của k là $n_1.n_2...n_k$.

Nguyên lý nhân thường được phát biểu bằng ngôn ngữ tập hợp như sau. Nếu A_1 , A_2 ,..., A_k là các tập hữu hạn, khi đó số phần tử của tích Descartes của các tập này bằng tích của số các phần tử của mọi tập thành phần. Ta biết rằng việc chọn một phần tử của tích Descartes A_1 x A_2 x...x A_k được tiến hành bằng cách chọn lần lượt một phần tử của A_1 , một phần tử của A_2 , ..., một phần tử của A_k . Theo quy tắc nhân ta có:

$$|A_1 \times A_2 \times ... \times A_k| = |A_1|.|A_2|...|A_k|.$$

2.1.2. Nguyên lý bù trừ:

Khi hai công việc có thể được làm đồng thời, ta không thể dùng quy tắc cộng để tính số cách thực hiện nhiệm vụ gồm cả hai việc. Để tính đúng số cách thực hiện nhiệm vụ này ta cộng số cách làm mỗi một trong hai việc rồi trừ đi số cách làm đồng thời cả hai việc. Ta có thể phát biểu nguyên lý đếm này bằng ngôn ngữ tập hợp. Cho A_1 , A_2 là hai tập hữu hạn, khi đó

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

Từ đó với ba tập hợp hữu hạn A₁, A₂, A₃, ta có:

 $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_2 \cap A_3| - |A_3 \cap A_1| + |A_1 \cap A_2 \cap A_3|,$ và bằng quy nạp, với k tập hữu hạn $A_1, A_2, ..., A_k$ ta có:

$$\mid A_1 \cup A_2 \cup ... \cup A_k \rvert = N_1 - N_2 + N_3 - ... + (-1)^{k\text{--}1} N_k,$$

trong đó N_m $(1 \le m \le k)$ là tổng phần tử của tất cả các giao m tập lấy từ k tập đã cho, nghĩa là

$$N_{\mathbf{m}} = \sum_{1 \leq i_1 < i_2 < \dots < i_m \leq k} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_m}|$$

Bây giờ ta đồng nhất tập A_m ($1 \le m \le k$) với tính chất A_m cho trên tập vũ trụ hữu hạn U nào đó và đếm xem có bao nhiều phần tử của U sao cho không thỏa mãn bất kỳ một tính chất A_m nào. Gọi \overline{N} là số cần đếm, N là số phần tử của U. Ta có:

$$\overline{N} = N - |A_1 \cup A_2 \cup ... \cup A_k| = N - N_1 + N_2 - ... + (-1)^k N_k,$$

trong đó N_m là tổng các phần tử của U thỏa mãn m tính chất lấy từ k tính chất đã cho. Công thức này được gọi là **nguyên lý bù trừ**. Nó cho phép tính \overline{N} qua các N_m trong trường hợp các số này dễ tính toán hơn.

Thí dụ 3: Có n lá thư và n phong bì ghi sẵn địa chỉ. Bỏ ngẫu nhiên các lá thư vào các phong bì. Hỏi xác suất để xảy ra không một lá thư nào đúng địa chỉ.

Mỗi phong bì có n cách bỏ thư vào, nên có tất cả n! cách bỏ thư. Vấn đề còn lại là đếm số cách bỏ thư sao cho không lá thư nào đúng địa chỉ. Gọi U là tập hợp các cách bỏ thư và A_m là tính chất lá thư thứ m bỏ đúng địa chỉ. Khi đó theo công thức về nguyên lý bù trừ ta có:

$$\overline{N} = n! - N_1 + N_2 - \dots + (-1)^n N_n,$$

trong đó N_m ($1 \le m \le n$) là số tất cả các cách bỏ thư sao cho có m lá thư đúng địa chỉ. Nhận xét rằng, N_m là tổng theo mọi cách lấy m lá thư từ n lá, với mỗi cách lấy m lá thư, có (n-m)! cách bỏ để m lá thư này đúng địa chỉ, ta nhận được:

$$N_m = C_n^m (n - m)! = \frac{n!}{k!} \text{ và } \overline{N} = n! (1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!}),$$

trong đó $C_n^m = \frac{n!}{m!(n-m)!}$ là tổ hợp chập m của tập n phần tử (số cách chọn m đối

tượng trong n đối tượng được cho). Từ đó xác suất cần tìm là: $1 - \frac{1}{1!} + \frac{1}{2!} - ... + (-1)^n$

 $\frac{1}{n!}$. Một điều lý thú là xác suất này dần đến e^{-1} (nghĩa là còn $> \frac{1}{3}$) khi n khá lớn.

 $S \hat{o} \, \overline{N}$ trong bài toán này được gọi là số mất thứ tự và được ký hiệu là D_n . Dưới đây là một vài giá trị của D_n , cho ta thấy D_n tăng nhanh như thế nào so với n:

n	2	3	4	5	6	7	8	9	10	11
D _n	1	2	9	44	265	1854	14833	133496	1334961	14684570

2.2. NGUYÊN LÝ DIRICHLET.

2.2.1. Mở đầu:

Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì ít nhất trong một ngăn có nhiều hơn một con chim. Nguyên lý này dĩ nhiên là có thể áp dụng cho các đối tượng không phải là chim bồ câu và chuồng chim.

Mệnh đề (Nguyên lý): Nếu có k+1 (hoặc nhiều hơn) đồ vật được đặt vào trong k hộp thì tồn tại một hộp có ít nhất hai đồ vật.

Chứng minh: Giả sử không có hộp nào trong k hộp chứa nhiều hơn một đồ vật. Khi đó tổng số vật được chứa trong các hộp nhiều nhất là bằng k. Điều này trái giả thiết là có ít nhất k + 1 vật.

Nguyên lý này thường được gọi là nguyên lý Dirichlet, mang tên nhà toán học người Đức ở thế kỷ 19. Ông thường xuyên sử dụng nguyên lý này trong công việc của mình.

Thí dụ 4: 1) Trong bất kỳ một nhóm 367 người thế nào cũng có ít nhất hai người có ngày sinh nhật giống nhau bởi vì chỉ có tất cả 366 ngày sinh nhật khác nhau.

2) Trong kỳ thi học sinh giỏi, điểm bài thi được đánh giá bởi một số nguyên trong khoảng từ 0 đến 100. Hỏi rằng ít nhất có bao nhiều học sinh dự thi để cho chắc chắn tìm được hai học sinh có kết quả thi như nhau?

Theo nguyên lý Dirichlet, số học sinh cần tìm là 102, vì ta có 101 kết quả điểm thi khác nhau.

3) Trong số những người có mặt trên trái đất, phải tìm được hai người có hàm răng giống nhau. Nếu xem mỗi hàm răng gồm 32 cái như là một xâu nhị phân có chiều dài 32, trong đó răng còn ứng với bit 1 và răng mất ứng với bit 0, thì có tất cả $2^{32} = 4.294.967.296$ hàm răng khác nhau. Trong khi đó số người trên hành tinh này là vượt quá 5 tỉ, nên theo nguyên lý Dirichlet ta có điều cần tìm.

2.2.2. Nguyên lý Dirichlet tổng quát:

Mệnh đề: Nếu có N đồ vật được đặt vào trong k hộp thì sẽ tồn tại một hộp chứa ít nhất N/k [đồ vật.

(Ở đây,]x[là giá trị của hàm trần tại số thực x, đó là số nguyên nhỏ nhất có giá trị lớn hơn hoặc bằng x. Khái niệm này đối ngẫu với [x] – giá trị của hàm sàn hay hàm phần nguyên tại x – là số nguyên lớn nhất có giá trị nhỏ hơn hoặc bằng x.)

Chứng minh: Giả sử mọi hộp đều chứa ít hơn] N/k [vật. Khi đó tổng số đồ vật là

$$\leq k (] \frac{N}{k} [-1) < k \frac{N}{k} = N.$$

Điều này mâu thuẩn với giả thiết là có N đồ vật cần xếp.

Thí dụ 5: 1) Trong 100 người, có ít nhất 9 người sinh cùng một tháng.

Xếp những người sinh cùng tháng vào một nhóm. Có 12 tháng tất cả. Vậy theo nguyên lý Dirichlet, tồn tại một nhóm có ít nhất] 100/12 [= 9 người.

2) Có năm loại học bổng khác nhau. Hỏi rằng phải có ít nhất bao nhiều sinh viên để chắc chắn rằng có ít ra là 6 người cùng nhận học bổng như nhau.

Gọi N là số sinh viên, khi đó $\]$ N/5 [= 6 khi và chỉ khi $5 < N/5 \le 6$ hay $25 < N \le 30$. Vậy số N cần tìm là 26.

3) Số mã vùng cần thiết nhỏ nhất phải là bao nhiều để đảm bảo 25 triệu máy điện thoại trong nước có số điện thoại khác nhau, mỗi số có 9 chữ số (giả sử số điện thoại có dạng 0XX - 8XXXXX với X nhận các giá trị từ 0 đến 9).

Có $10^7 = 10.000.000$ số điện thoại khác nhau có dạng 0XX - 8XXXXX. Vì vậy theo nguyên lý Dirichlet tổng quát, trong số 25 triệu máy điện thoại ít nhất có] 25.000.000/10.000.000 [= 3 có cùng một số. Để đảm bảo mỗi máy có một số cần có ít nhất 3 mã vùng.

2.2.3. Một số ứng dụng của nguyên lý Dirichlet.

Trong nhiều ứng dụng thú vị của nguyên lý Dirichlet, khái niệm đồ vật và hộp cần phải được lựa chọn một cách khôn khéo. Trong phần nay có vài thí dụ như vậy.

Thí dụ 6: 1) Trong một phòng họp có n người, bao giờ cũng tìm được 2 người có số người quen trong số những người dự họp là như nhau.

Số người quen của mỗi người trong phòng họp nhận các giá trị từ 0 đến n-1. Rõ ràng trong phòng không thể đồng thời có người có số người quen là 0 (tức là không quen ai) và có người có số người quen là n-1 (tức là quen tất cả). Vì vậy theo số lượng người quen, ta chỉ có thể phân n người ra thành n-1 nhóm. Vậy theo nguyên lý Dirichlet tồn tai một nhóm có ít nhất 2 người, tức là luôn tìm được ít nhất 2 người có số người quen là như nhau.

2) Trong một tháng gồm 30 ngày, một đội bóng chuyền thi đấu mỗi ngày ít nhất 1 trận nhưng chơi không quá 45 trận. Chứng minh rằng tìm được một giai đoạn gồm một số ngày liên tục nào đó trong tháng sao cho trong giai đoạn đó đội chơi đúng 14 trận.

Gọi a_i là số trận mà đội đã chơi từ ngày đầu tháng đến hết ngày j. Khi đó

$$1 \leq a_1 < a_2 < ... < a_{30} < 45$$

$$15 \leq a_1 + 14 < a_2 + 14 < ... < a_{30} + 14 < 59.$$

Sáu mươi số nguyên a_1 , a_2 , ..., a_{30} , a_1+14 , a_2+14 , ..., $a_{30}+14$ nằm giữa 1 và 59. Do đó theo nguyên lý Dirichlet có ít nhất 2 trong 60 số này bằng nhau. Vì vậy tồn tại i và j sao cho ai = aj + 14 (j < i). Điều này có nghĩa là từ ngày j + 1 đến hết ngày i đội đã chơi đúng 14 trận.

3) Chứng tỏ rằng trong n + 1 số nguyên dương không vượt quá 2n, tồn tại ít nhất một số chia hết cho số khác.

Ta viết mỗi số nguyên a_1 , a_2 ,..., a_{n+1} dưới dạng $a_j = 2^{k_j} q_j$ trong đó k_j là số nguyên không âm còn q_j là số dương lẻ nhỏ hơn 2n. Vì chỉ có n số nguyên dương lẻ nhỏ hơn 2n nên theo nguyên lý Dirichlet tồn tại i và j sao cho $q_i = q_j = q$. Khi đó $a_i = 2^{k_i} q$ và $a_j = 2^{k_j} q$. Vì vậy, nếu $k_i \le k_j$ thì a_j chia hết cho a_i còn trong trường hợp ngược lại ta có a_i chia hết cho a_i .

Thí dụ cuối cùng trình bày cách áp dụng nguyên lý Dirichlet vào lý thuyết tổ hợp mà vẫn quen gọi là **lý thuyết Ramsey**, tên của nhà toán học người Anh. Nói chung, lý thuyết Ramsey giải quyết những bài toán phân chia các tập con của một tập các phần tử. **Thí dụ 7.** Giả sử trong một nhóm 6 người mỗi cặp hai hoặc là bạn hoặc là thù. Chứng tỏ rằng trong nhóm có ba người là bạn lẫn nhau hoặc có ba người là kẻ thù lẫn nhau.

Gọi A là một trong 6 người. Trong số 5 người của nhóm hoặc là có ít nhất ba người là bạn của A hoặc có ít nhất ba người là kẻ thù của A, điều này suy ra từ nguyên lý Dirichlet tổng quát, vì] 5/2 [= 3. Trong trường hợp đầu ta gọi B, C, D là bạn của A. nếu trong ba người này có hai người là bạn thì họ cùng với A lập thành một bộ ba người bạn lẫn nhau, ngược lại, tức là nếu trong ba người B, C, D không có ai là bạn ai cả thì chứng tỏ họ là bộ ba người thù lẫn nhau. Tương tự có thể chứng minh trong trường hợp có ít nhất ba người là kẻ thù của A.

2.3. CHỈNH HỢP VÀ TỔ HỢP SUY RỘNG.

2.3.1. Chỉnh hợp có lặp.

Một cách sắp xếp có thứ tự k phần tử có thể lặp lại của một tập n phần tử được gọi là một chỉnh hợp lặp chập k từ tập n phần tử. Nếu A là tập gồm n phần tử đó thì mỗi chỉnh hợp như thế là một phần tử của tập A^k . Ngoài ra, mỗi chỉnh hợp lặp chập k từ tập n phần tử là một hàm từ tập k phần tử vào tập n phần tử. Vì vậy số chỉnh hợp lặp chập k từ tập n phần tử là n^k .

2.3.2. Tổ hợp lặp.

Một tổ hợp lặp chập k của một tập hợp là một cách chọn không có thứ tự k phần tử có thể lặp lại của tập đã cho. Như vậy một tổ hợp lặp kiểu này là một dãy không kể thứ tự gồm k thành phần lấy từ tập n phần tử. Do đó có thể là k > n.

Mệnh đề 1: Số tổ hợp lặp chập k từ tập n phần tử bằng C_{n+k-1}^k .

Chứng minh. Mỗi tổ hợp lặp chập k từ tập n phần tử có thể biểu diễn bằng một dãy n-1 thanh đứng và k ngôi sao. Ta dùng n-1 thanh đứng để phân cách các ngăn. Ngăn thứ i chứa thêm một ngôi sao mỗi lần khi phần tử thứ i của tập xuất hiện trong tổ hợp. Chẳng hạn, tổ hợp lặp chập 6 của 4 phần tử được biểu thị bởi:

mô tả tổ hợp chứa đúng 2 phần tử thứ nhất, 1 phần tử thứ hai, không có phần tử thứ 3 và 3 phần tử thứ tư của tập hợp.

Mỗi dãy n-1 thanh và k ngôi sao ứng với một xâu nhị phân độ dài n+k-1 với k số 1. Do đó số các dãy n-1 thanh đứng và k ngôi sao chính là số tổ hợp chập k từ tập n+k-1 phần tử. Đó là điều cần chứng minh.

Thi dụ 8: 1) Có bao nhiều cách chọn 5 tờ giấy bạc từ một két đựng tiền gồm những tờ 1000đ, 2000đ, 5000đ, 10.000đ, 20.000đ, 50.000đ, 100.000đ. Giả sử thứ tự mà các tờ tiền được chọn là không quan trọng, các tờ tiền cùng loại là không phân biệt và mỗi loại có ít nhất 5 tờ.

Vì ta không kể tới thứ tự chọn tờ tiền và vì ta chọn đúng 5 lần, mỗi lần lấy một từ 1 trong 7 loại tiền nên mỗi cách chọn 5 tờ giấy bạc này chính là một tổ hợp lặp chập 5 từ 7 phần tử. Do đó số cần tìm là $C_{7+5-1}^5 = 462$.

2) Phương trình $x_1 + x_2 + x_3 = 15$ có bao nhiều nghiệm nguyên không âm?

Chúng ta nhận thấy mỗi nghiệm của phương trình ứng với một cách chọn 15 phần tử từ một tập có 3 loại, sao cho có x_1 phần tử loại 1, x_2 phần tử loại 2 và x_3 phần tử loại 3 được chọn. Vì vậy số nghiệm bằng số tổ hợp lặp chập 15 từ tập có 3 phần tử và bằng $C_{3+15-1}^{15}=136$.

2.3.3. Hoán vị của tập hợp có các phần tử giống nhau.

Trong bài toán đếm, một số phần tử có thể giống nhau. Khi đó cần phải cẩn thận, tránh đếm chúng hơn một lần. Ta xét thí dụ sau.

Thí dụ 9: Có thể nhận được bao nhiều xâu khác nhau bằng cách sắp xếp lại các chữ cái của từ SUCCESS?

Vì một số chữ cái của từ SUCCESS là như nhau nên câu trả lời không phải là số hoán vị của 7 chữ cái được. Từ này chứa 3 chữ S, 2 chữ C, 1 chữ U và 1 chữ E. Để xác định số xâu khác nhau có thể tạo ra được ta nhận thấy có C(7,3) cách chọn 3 chỗ cho 3 chữ S, còn lại 4 chỗ trống. Có C(4,2) cách chọn 2 chỗ cho 2 chữ C, còn lại 2 chỗ trống. Có thể đặt chữ U bằng C(2,1) cách và C(1,1) cách đặt chữ E vào xâu. Theo nguyên lý nhân, số các xâu khác nhau có thể tạo được là:

$$C_7^3$$
. C_4^2 . C_1^1 . $C_1^1 = \frac{7!4!2!1!}{3!4!2!2!1!1!1!0!} = \frac{7!}{3!2!1!1!} = 420.$

Mệnh đề 2: Số hoán vị của n phần tử trong đó có n_1 phần tử như nhau thuộc loại 1, n_2 phần tử như nhau thuộc loại 2, ..., và n_k phần tử như nhau thuộc loại k, bằng

$$\frac{n!}{n_1! . n_2! . . . n_k!}.$$

Chứng minh. Để xác định số hoán vị trước tiên chúng ta nhận thấy có $C_n^{n_1}$ cách giữ n_1 chỗ cho n_1 phần tử loại 1, còn lại $n - n_1$ chỗ trống. Sau đó có $C_{n-n_1}^{n_2}$ cách đặt n_2 phần tử loại 2 vào hoán vị, còn lại $n - n_1 - n_2$ chỗ trống. Tiếp tục đặt các phần tử loại 3, loại 4,..., loại k - 1 vào chỗ trống trong hoán vị. Cuối cùng có $C_{n-n_1-...-n_{k-1}}^{n_k}$ cách đặt n_k phần tử loại k vào hoán vị. Theo quy tắc nhân tất cả các hoán vị có thể là:

$$C_n^{n_1} \cdot C_{n-n_1}^{n_2} \cdot \dots \cdot C_{n-n_1-\dots-n_{k-1}}^{n_k} = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}.$$

2.3.4. Sự phân bố các đồ vật vào trong hộp.

Thí dụ 10: Có bao nhiều cách chia những xấp bài 5 quân cho mỗi một trong 4 người chơi từ một cỗ bài chuẩn 52 quân?

Người đầu tiên có thể nhận được 5 quân bài bằng C_{52}^5 cách. Người thứ hai có thể được chia 5 quân bài bằng C_{47}^5 cách, vì chỉ còn 47 quân bài. Người thứ ba có thể nhận được 5 quân bài bằng C_{42}^5 cách. Cuối cùng, người thứ tư nhận được 5 quân bài bằng C_{37}^5 cách. Vì vậy, theo nguyên lý nhân tổng cộng có

$$C_{52}^5.C_{47}^5.C_{42}^5.C_{37}^5 = \frac{52!}{5!5!5!5!32!}$$

cách chia cho 4 người mỗi người một xấp 5 quân bài.

Thí dụ trên là một bài toán điển hình về việc phân bố các đồ vật khác nhau vào các hộp khác nhau. Các đồ vật là 52 quân bài, còn 4 hộp là 4 người chơi và số còn lại để trên bàn. Số cách sắp xếp các đồ vật vào trong hộp được cho bởi mệnh đề sau

Mệnh đề 3: Số cách phân chia n đồ vật khác nhau vào trong k hộp khác nhau sao cho có n_i vật được đặt vào trong hộp thứ i, với i = 1, 2, ..., k bằng

$$\frac{n!}{n_1!.n_2!....n_k!.(n-n_1-...-n_k)!}.$$

2.4. SINH CÁC HOÁN VỊ VÀ TỔ HỢP.

2.4.1. Sinh các hoán vị:

Có nhiều thuật toán đã được phát triển để sinh ra n! hoán vị của tập $\{1,2,...,n\}$. Ta sẽ mô tả một trong các phương pháp đó, phương pháp liệt kê các hoán vị của tập $\{1,2,...,n\}$ theo thứ tự từ điển. Khi đó, hoán vị $a_1a_2...a_n$ được gọi là đi trước hoán vị $b_1b_2...b_n$ nếu tồn tại k $(1 \le k \le n)$, $a_1 = b_1$, $a_2 = b_2,...$, $a_{k-1} = b_{k-1}$ và $a_k < b_k$.

Thuật toán sinh các hoán vị của tập $\{1,2,...,n\}$ dựa trên thủ tục xây dựng hoán vị kế tiếp, theo thứ tự từ điển, từ hoán vị cho trước a_1 a_2 ... a_n . Đầu tiên nếu $a_{n-1} < a_n$ thì rõ ràng đổi chỗ a_{n-1} và a_n cho nhau thì sẽ nhận được hoán vị mới đi liền sau hoán vị đã cho. Nếu tồn tại các số nguyên a_j và a_{j+1} sao cho $a_j < a_{j+1}$ và $a_{j+1} > a_{j+2} > ... > a_n$, tức là tìm cặp số nguyên liền kề đầu tiên tính từ bên phải sang bên trái của hoán vị mà số đầu nhỏ hơn số sau. Sau đó, để nhận được hoán vị liền sau ta đặt vào vị trí thứ j số nguyên nhỏ nhất trong các số lớn hơn a_j của tập a_{j+1} , a_{j+2} , ..., a_n , rồi liệt kê theo thứ tự tăng dần của các số còn lại của a_j , a_{j+1} , a_{j+2} , ..., a_n vào các vị trí j+1, ..., n. Dễ thấy không có hoán vị nào đi sau hoán vị xuất phát và đi trước hoán vị vừa tạo ra.

Thí dụ 11: Tìm hoán vị liền sau theo thứ tự từ điển của hoán vị 4736521.

Cặp số nguyên đầu tiên tính từ phải qua trái có số trước nhỏ hơn số sau là $a_3 = 3$ và $a_4 = 6$. Số nhỏ nhất trong các số bên phải của số 3 mà lại lớn hơn 3 là số 5. Đặt số 5 vào vị trí thứ 3. Sau đó đặt các số 3, 6, 1, 2 theo thứ tự tăng dần vào bốn vị trí còn lại. Hoán vị liền sau hoán vị đã cho là 4751236.

```
procedure Hoán vị liền sau (a_1, a_2, ..., an) (hoán vị của \{1,2,...,n\} khác (n, n-1, ..., 2, 1)) j:=n-1 while a_j > a_{j+1} j:=j-1 \{j \ là chỉ số lớn nhất mà <math>a_j < a_{j+1}\} k:=n while a_j > a_k k:=k-1 \{a_k \ là số nguyên nhỏ nhất trong các số lớn hơn <math>a_j và bên phải a_j\} đổi chỗ (a_j, a_k) r:=n s:=j+1 while r>s đổi chỗ (a_r, a_s) r:=r-1; s:=s+1 \{\text{Diều này sẽ xếp phần đuôi của hoán vị ở sau vị trí thứ j theo thứ tự tăng dần.}
```

2.4.2. Sinh các tổ hợp:

Làm thế nào để tạo ra tất cả các tổ hợp các phần tử của một tập hữu hạn? Vì tổ hợp chính là một tập con, nên ta có thể dùng phép tương ứng 1-1 giữa các tập con của $\{a_1,a_2,...,a_n\}$ và xâu nhị phân độ dài n.

Ta thấy một xâu nhị phân độ dài n cũng là khai triển nhị phân của một số nguyên nằm giữa 0 và $2^n - 1$. Khi đó 2^n xâu nhị phân có thể liệt kê theo thứ tự tăng dần của số nguyên trong biểu diễn nhị phân của chúng. Chúng ta sẽ bắt đầu từ xâu nhị phân nhỏ nhất 00...00 (n số 0). Mỗi bước để tìm xâu liền sau ta tìm vị trí đầu tiên tính từ phải qua trái mà ở đó là số 0, sau đó thay tất cả số 1 ở bên phải số này bằng 0 và đặt số 1 vào chính vị trí này.

```
\label{eq:procedure} \begin{split} \textbf{procedure} & \ X \^{a}u \ nhi \ ph \^{a}n \ li \`{e}n \ sau \ (b_{n-1}b_{n-2}...b_1b_0) : \ x \^{a}u \ nhi \ ph \^{a}n \ kh \'{a}c \ (11...11) \\ & i := 0 \\ & \textbf{while} \ b_i = 1 \\ & \textbf{begin} \\ & i := i+1 \\ & \textbf{end} \\ & b_i := 1 \end{split}
```

Tiếp theo chúng ta sẽ trình bày thuật toán tạo các tổ hợp chập k từ n phần tử $\{1,2,...,n\}$. Mỗi tổ hợp chập k có thể biểu diễn bằng một xâu tăng. Khi đó có thể liệt kê các tổ hợp theo thứ tự từ điển. Có thể xây dựng tổ hợp liền sau tổ hợp $a_1a_2...a_k$ bằng cách sau. Trước hết, tìm phần tử đầu tiên a_i trong dãy đã cho kể từ phải qua trái sao cho $a_i \neq n - k + i$. Sau đó thay a_i bằng $a_i + 1$ và a_i bằng $a_i + j - i + 1$ với j = i + 1, i + 2, ..., k.

Thí dụ 12: Tìm tổ hợp chập 4 từ tập {1, 2, 3, 4, 5, 6} đi liền sau tổ hợp {1, 2, 5, 6}.

Ta thấy từ phải qua trái $a_2 = 2$ là số hạng đầu tiên của tổ hợp đã cho thỏa mãn điều kiện $a_i \neq 6 - 4 + i$. Để nhận được tổ hợp tiếp sau ta tăng a_i lên một đơn vị, tức $a_2 = 3$, sau đó đặt $a_3 = 3 + 1 = 4$ và $a_4 = 3 + 2 = 5$. Vậy tổ hợp liền sau tổ hợp đã cho là $\{1,3,4,5\}$. Thủ tục này được cho dưới dạng thuật toán như sau.

```
procedure Tổ hợp liền sau (\{a_1, a_2, ..., a_k\}: tập con thực sự của tập \{1, 2, ..., n\} không bằng \{n-k+1, ..., n\} với a_1 < a_2 < ... < a_k\}
i := k
while a_i = n-k+i
i := i-1
a_i := a_i+1
for j := i+1 to k
a_j := a_j+j-i
```

2.5. HỆ THỨC TRUY HỒI.

2.5.1. Khái niệm mở đầu và mô hình hóa bằng hệ thức truy hồi:

Đôi khi ta rất khó định nghĩa một đối tượng một cách tường minh. Nhưng có thể dễ dàng định nghĩa đối tượng này qua chính nó. Kỹ thuật này được gọi là đệ quy. Định nghĩa đệ quy của một dãy số định rõ giá trị của một hay nhiều hơn các số hạng đầu tiên và quy tắc xác định các số hạng tiếp theo từ các số hạng đi trước. Định nghĩa đệ quy có thể dùng để giải các bài toán đếm. Khi đó quy tắc tìm các số hạng từ các số hạng đi trước được gọi là các hệ thức truy hồi.

Định nghĩa 1: Hệ thức truy hồi (hay công thức truy hồi) đối với dãy số $\{a_n\}$ là công thức biểu diễn a_n qua một hay nhiều số hạng đi trước của dãy. Dãy số được gọi là lời giải hay nghiệm của hệ thức truy hồi nếu các số hạng của nó thỏa mãn hệ thức truy hồi này.

Thí dụ 13 (Lãi kép): 1) Giả sử một người gửi 10.000 đô la vào tài khoản của mình tại một ngân hàng với lãi suất kép 11% mỗi năm. Sau 30 năm anh ta có bao nhiều tiền trong tài khoản của mình?

Gọi P_n là tổng số tiền có trong tài khoản sau n năm. Vì số tiền có trong tài khoản sau n năm bằng số có sau n -1 năm cộng lãi suất của năm thứ n, nên ta thấy dãy $\{P_n\}$ thoả mãn hệ thức truy hồi sau:

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}$$

với điều kiện đầu P_0 = 10.000 đô la. Từ đó suy ra P_n = $(1,11)^n$.10.000. Thay n = 30 cho ta P_{30} = 228922,97 đô la.

2) Tìm hệ thức truy hồi và cho điều kiện đầu để tính số các xâu nhị phân độ dài n và không có hai số 0 liên tiếp. Có bao nhiều xâu nhị phân như thế có độ dài bằng 5?

Gọi a_n là số các xâu nhị phân độ dài n và không có hai số 0 liên tiếp. Để nhận được hệ thức truy hồi cho $\{a_n\}$, ta thấy rằng theo quy tắc cộng, số các xâu nhị phân độ dài n và không có hai số 0 liên tiếp bằng số các xâu nhị phân như thế kết thúc bằng số 1 cộng với số các xâu như thế kết thúc bằng số 0. Giả sử $n \ge 3$.

Các xâu nhị phân độ dài n, không có hai số 0 liên tiếp kết thúc bằng số 1 chính là xâu nhị phân như thế, độ dài n-1 và thêm số 1 vào cuối của chúng. Vậy chúng có tất cả là a_{n-1} . Các xâu nhị phân độ dài n, không có hai số 0 liên tiếp và kết thúc bằng số 0, cần phải có bit thứ n-1 bằng 1, nếu không thì chúng có hai số 0 ở hai bit cuối cùng. Trong trường hợp này chúng có tất cả là a_{n-2} . Cuối cùng ta có được:

$$a_n = a_{n-1} + a_{n-2}$$
 với $n \ge 3$.

Điều kiện đầu là $a_1 = 2$ và $a_2 = 3$. Khi đó $a_5 = a_4 + a_3 = a_3 + a_2 + a_3 = 2(a_2 + a_1) + a_2 = 13$. **2.5.2. Giải các hệ thức truy hồi.**

Định nghĩa 2: Một hệ thức truy hồi tuyến tính thuần nhất bậc k với hệ số hằng số là hệ thức truy hồi có dạng:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
,

trong đó c_1 , c_2 , ..., c_k là các số thực và $c_k \neq 0$.

Theo nguyên lý của quy nạp toán học thì dãy số thỏa mãn hệ thức truy hồi nêu trong định nghĩa được xác định duy nhất bằng hệ thức truy hồi này và k điều kiện đầu: $a_0 = C_0$, $a_1 = C_1$, ..., $a_{k-1} = C_{k-1}$.

Phương pháp cơ bản để giải hệ thức truy hồi tuyến tính thuần nhất là tìm nghiệm dưới dạng $a_n = r^n$, trong đó r là hằng số. Chú ý rằng $a_n = r^n$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$ nếu và chỉ nếu

$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k} \text{ hay } r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_{k-1} r - c_k = 0.$$

Phương trình này được gọi là phương trình đặc trưng của hệ thức truy hồi, nghiệm của nó gọi là nghiệm đặc trưng của hệ thức truy hồi.

Mệnh đề: Cho $c_1, c_2, ..., c_k$ là các số thực. Giả sử rằng phương trình đặc trưng

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0$$

có k nghiệm phân biệt r_1 , r_2 , ..., r_k . Khi đó dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n=c_1a_{n-1}+c_2a_{n-2}+...+c_ka_{n-k}$ nếu và chỉ nếu $a_n=\alpha_1r_1^n+\alpha_2r_2^n+...+\alpha_kr_k^n$, với $n=1,\,2,\,...$ trong đó $\alpha_1,\,\alpha_2,\,...,\,\alpha_k$ là các hằng số.

Thí dụ 14: 1) Tìm công thức hiển của các số Fibonacci.

Dãy các số Fibonacci thỏa mãn hệ thức $f_n=f_{n-1}+f_{n-2}$ và các điều kiện đầu $f_0=0$ và $f_1=1$. Các nghiệm đặc trưng là $r_1=\frac{1+\sqrt{5}}{2}$ và $r_2=\frac{1-\sqrt{5}}{2}$. Do đó các số Fibonacci được cho bởi công thức $f_n=\alpha_1(\frac{1+\sqrt{5}}{2})^n+\alpha_2(\frac{1-\sqrt{5}}{2})^n$. Các điều kiện ban đầu $f_0=0=\alpha_1+\alpha_2$ và $f_1=1=\alpha_1(\frac{1+\sqrt{5}}{2})+\alpha_2(\frac{1-\sqrt{5}}{2})$. Từ hai phương trình này cho ta $\alpha_1=\frac{1}{\sqrt{5}}$, $\alpha_2=-\frac{1}{\sqrt{5}}$. Do đó các số Fibonacci được cho bởi công thức hiển sau:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

2) Hãy tìm nghiệm của hệ thức truy hồi $a_n=6a_{n-1}$ - $11a_{n-2}+6a_{n-3}$ với điều kiện ban đầu $a_0=2,\,a_1=5$ và $a_2=15.$

Đa thức đặc trưng của hệ thức truy hồi này là r^3 - $6r^2$ + 11r - 6. Các nghiệm đặc trưng là r = 1, r = 2, r = 3. Do vậy nghiệm của hệ thức truy hồi có dạng

Các điều kiện ban đầu
$$\begin{aligned} a_n &= \alpha_1 1^n + \alpha_2 2^n + \alpha_3 3^n.\\ a_0 &= 2 = \alpha_1 + \alpha_2 + \alpha_3\\ a_1 &= 5 = \alpha_1 + \alpha_2 2 + \alpha_3 3\\ a_2 &= 15 = \alpha_1 + \alpha_2 4 + \alpha_3 9. \end{aligned}$$

Giải hệ các phương trình này ta nhận được α_1 = 1, α_2 = -1, α_3 = 2. Vì thế, nghiệm duy nhất của hệ thức truy hồi này và các điều kiện ban đầu đã cho là dãy $\{a_n\}$ với

$$a_n = 1 - 2^n + 2.3^n$$
.

2.6. QUAN HỆ CHIA ĐỂ TRỊ.

2.6.1. Mở đầu:

Nhiều thuật toán đệ quy chia bài toán với các thông tin vào đã cho thành một hay nhiều bài toán nhỏ hơn. Sự phân chia này được áp dụng liên tiếp cho tới khi có thể tìm được lời giải của bài toán nhỏ một cách dễ dàng. Chẳng hạn, ta tiến hành việc tìm kiếm nhị phân bằng cách rút gọn việc tìm kiếm một phần tử trong một danh sách tới việc tìm phần tử đó trong một danh sách có độ dài giảm đi một nửa. Ta rút gọn liên tiếp như vậy cho tới khi còn lại một phần tử. Một ví dụ khác là thủ tục nhân các số nguyên. Thủ tục này rút gọn bài toán nhân hai số nguyên tới ba phép nhân hai số nguyên với số bit giảm đi một nửa. Phép rút gọn này được dùng liên tiếp cho tới khi nhận được các số nguyên có một bit. Các thủ tục này gọi là các thuật toán chia để trị.

2.6.2. Hệ thức chia để trị:

truy hôi sau:

Giả sử rằng một thuật toán phân chia một bài toán cỡ n thành a bài toán nhỏ, trong đó mỗi bài toán nhỏ có cỡ $\frac{n}{b}$ (để đơn giản giả sử rằng n chia hết cho b; trong thực tế các bài toán nhỏ thường có cỡ $\left[\frac{n}{b}\right]$ hoặc $\left[\frac{n}{b}\right]$. Giả sử rằng tổng các phép toán thêm vào khi thực hiện phân chia bài toán cỡ n thành các bài toán có cỡ nhỏ hơn là g(n). Khi đó, nếu f(n) là số các phép toán cần thiết để giải bài toán đã cho thì f thỏa mãn hệ thức

$$f(n) = af(\frac{n}{h}) + g(n)$$

Hệ thức này có tên là hệ thức truy hồi chia để trị.

Thí dụ 15: 1) Thuật toán tìm kiếm nhị phân đưa bài toán tìm kiếm cỡ n về bài toán tìm kiếm phần tử này trong dãy tìm kiếm cỡ n/2, khi n chẵn. Khi thực hiện việc rút gọn cần hai phép so sánh. Vì thế, nếu f(n) là số phép so sánh cần phải làm khi tìm kiếm một phần tử trong danh sách tìm kiếm cỡ n ta có f(n) = f(n/2) + 2, nếu n là số chẵn.

2) Có các thuật toán hiệu quả hơn thuật toán thông thường để nhân hai số nguyên. Ở đây ta sẽ có một trong các thuật toán như vậy. Đó là thuật toán phân nhanh, có dùng kỹ thuật chia để trị. Trước tiên ta phân chia mỗi một trong hai số nguyên 2n bit thành hai khối mỗi khối n bit. Sau đó phép nhân hai số nguyên 2n bit ban đầu được thu về ba phép nhân các số nguyên n bit cộng với các phép dịch chuyển và các phép cộng.

Giả sử a và b là các số nguyên có các biểu diễn nhị phân độ dài 2n là

$$a = (a_{2n-1} \ a_{2n-2} \ ... \ a_1 \ a_0)_2 \ v \grave{a} \ b = (b_{2n-1} \ b_{2n-2} \ ... \ b_1 \ b_0)_2.$$
 Giả sử $a = 2^n A_1 + A_0$, $b = 2^n B_1 + B_0$, trong đó
$$A_1 = (a_{2n-1} \ a_{2n-2} \ ... \ a_{n+1} \ a_n)_2 \ , \ A_0 = (a_{n-1} \ ... \ a_1 \ a_0)_2$$

$$B_1 = (b_{2n-1} \ b_{2n-2} \ ... \ b_{n+1} \ b_n)_2 \ , \ B_0 = (b_{n-1} \ ... \ b_1 \ b_0)_2.$$

Thuật toán nhân nhanh các số nguyên dựa trên đẳng thức:

$$ab = (2^{2n} + 2^n)A_1B_1 + 2^n(A_1 - A_0)(B_0 - B_1) + (2^n + 1)A_0B_0.$$

Đẳng thức này chỉ ra rằng phép nhân hai số nguyên 2n bit có thể thực hiện bằng cách dùng ba phép nhân các số nguyên n bit và các phép cộng, trừ và phép dịch chuyển. Điều đó có nghĩa là nếu f(n) là tổng các phép toán nhị phân cần thiết để nhân hai số nguyên n bit thì

$$f(2n) = 3f(n) + Cn$$
.

Ba phép nhân các số nguyên n bit cần 3f(n) phép toán nhị phân. Mỗi một trong các phép cộng, trừ hay dịch chuyển dùng một hằng số nhân với n lần các phép toán nhị phân và Cn là tổng các phép toán nhị phân được dùng khi làm các phép toán này.

Mệnh đề 1: Giả sử f là một hàm tăng thoả mãn hệ thức truy hồi $f(n) = af(\frac{n}{b}) + c$ với mọi n chia hết cho b, $a \ge 1$, b là số nguyên lớn hơn 1, còn c là số thực dương. Khi đó

$$f(n) = \begin{cases} O(n^{\log_b a}), a > 1\\ O(\log n), a = 1 \end{cases}.$$

Mệnh đề 2: Giả sử f là hàm tăng thoả mãn hệ thức truy hồi $f(n) = af(\frac{n}{b}) + cn^d$ với mọi $n = b^k$, trong đó k là số nguyên dương, $a \ge 1$, b là số nguyên lớn hơn 1, còn c và d là các số thực dương. Khi đó

$$f(n) = \begin{cases} O(n^{\log_b a}), a > b^d \\ O(n^d \log n), a = b^d \\ O(n^d), a < b^d \end{cases}$$

Thí dụ 16: Hãy ước lượng số phép toán nhị phân cần dùng khi nhân hai số nguyên n bit bằng thuật toán nhân nhanh.

Thí dụ 15.2 đã chỉ ra rằng f(n) = 3f(n/2) + Cn, khi n chẵn. Vì thế, từ Mệnh đề 2 ta suy ra $f(n) = O(n^{\log_2 3})$. Chú ý là $\log_2 3 \approx 1,6$. Vì thuật toán nhân thông thường dùng $O(n^2)$ phép toán nhị phân, thuật toán nhân nhanh sẽ thực sự tốt hơn thuật toán nhân thông thường khi các số nguyên là đủ lớn.

BÀI TẬP CHƯƠNG II:

1. Trong tổng số 2504 sinh viên của một khoa công nghệ thông tin, có 1876 theo học môn ngôn ngữ lập trình Pascal, 999 học môn ngôn ngữ Fortran và 345 học ngôn ngữ C. Ngoài ra còn biết 876 sinh viên học cả Pascal và Fortran, 232 học cả Fortran và C, 290 học cả Pascal và C. Nếu 189 sinh viên học cả 3 môn Pascal, Fortran và C thì trong trường hợp đó có bao nhiều sinh viên không học môn nào trong 3 môn ngôn ngữ lập trình kể trên.

- **2.** Một cuộc họp gồm 12 người tham dự để bàn về 3 vấn đề. Có 8 người phát biểu về vấn đề I, 5 người phát biểu về vấn đề II và 7 người phát biểu về vấn đề III. Ngoài ra, có đúng 1 người không phát biểu vấn đề nào. Hỏi nhiều lắm là có bao nhiêu người phát biểu cả 3 vấn đề.
- **3.** Chỉ ra rằng có ít nhất 4 người trong số 25 triệu người có cùng tên họ viết tắt bằng 3 chữ cái sinh cùng ngày trong năm (không nhất thiết trong cùng một năm).
- **4.** Một tay đô vật tham gia thi đấu giành chức vô địch trong 75 giờ. Mỗi giờ anh ta có ít nhất một trận đấu, nhưng toàn bộ anh ta có không quá 125 trận. Chứng tỏ rằng có những giờ liên tiếp anh ta đã đấu đúng 24 trận.
- **5.** Cho n là số nguyên dương bất kỳ. Chứng minh rằng luôn lấy ra được từ n số đã cho một số số hạng thích hợp sao cho tổng của chúng chia hết cho n.
- **6.** Trong một cuộc lấy ý kiến về 7 vấn đề, người được hỏi ghi vào một phiếu trả lời sẵn bằng cách để nguyên hoặc phủ định các câu trả lời tương ứng với 7 vấn đề đã nêu.

Chứng minh rằng với 1153 người được hỏi luôn tìm được 10 người trả lời giống hệt nhau.

- **7.** Có 17 nhà bác học viết thư cho nhau trao đổi 3 vấn đề. Chứng minh rằng luôn tìm được 3 người cùng trao đổi một vấn đề.
- **8.** Trong kỳ thi kết thúc học phần toán học rời rạc có 10 câu hỏi. Có bao nhiều cách gán điểm cho các câu hỏi nếu tổng số điểm bằng 100 và mỗi câu ít nhất được 5 điểm.
- **9.** Phương trình $x_1 + x_2 + x_3 + x_4 + x_5 = 21$ có bao nhiều nghiệm nguyên không âm?
- **10.** Có bao nhiều xâu khác nhau có thể lập được từ các chữ cái trong từ *MISSISSIPI*, yêu cầu phải dùng tất cả các chữ?
- **11.** Một giáo sư cất bộ sưu tập gồm 40 số báo toán học vào 4 chiếc ngăn tủ, mỗi ngăn đựng 10 số. Có bao nhiều cách có thể cất các tờ báo vào các ngăn nếu:
 - 1) Mỗi ngăn được đánh số sao cho có thể phân biệt được;
 - 2) Các ngăn là giống hệt nhau?
- **12.** Tìm hệ thức truy hồi cho số mất thứ tự D_n .
- 13. Tìm hệ thức truy hồi cho số các xâu nhị phân chứa xâu 01.
- **14.** Tìm hệ thức truy hồi cho số cách đi lên n bậc thang nếu một người có thể bước một, hai hoặc ba bậc một lần.
- **15.** 1) Tìm hệ thức truy hồi mà R_n thoả mãn, trong đó R_n là số miền của mặt phẳng bị phân chia bởi n đường thẳng nếu không có hai đường nào song song và không có 3 đường nào cùng đi qua một điểm.
- **b**) Tính R_n bằng phương pháp lặp.
- **16.** Tìm nghiệm của hệ thức truy hồi $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$ với $a_0 = 7$, $a_1 = -4$, $a_2 = 8$.