Automatic solving of physics word problems

Ruslan Popov, Nadiia Karpenko

Oles Honchar Dnipro National University (Ukraine)

Scientific Basis of the Project

Object: automatic word problem-solving.

Subject: automatic solving of physics word problems.

Methods: developed a program and algorithms to analyze PWPs.

Link: https://inanyan.pythonanywhere.com/.

Technological stack:

- Python (implementation)
- spaCy (NLP)
- SymPy (math)
- Django (web-framework)
- MathJax (LATEX output)
- Bootstrap CSS (UI)

Web-application

Our Algorithm: A Step-by-Step Approach

NER: The Foundation of Our Solution

Entity Type	Examples
Units	meters, seconds, kilograms, kilometers per hour, Newtons
Quantities	10 meters, 30 seconds, 60 kilograms, 45 kilometers per hour, 100 Newtons
Terms	velocity, force, acceleration, work, energy, momentum
Question Words	what, determine, find, calculate, how much/many

. . .

Entity Conversion: Building a Problem Representation

Given values: $S = 400 \text{ cm}^2$, m = 12 kg.

Unknown values: p - ?.

Finding the Path to the Solution: Student's POV

Problem

What is the *pressure* exerted on a **400 square centimeter** support by a body whose *mass* is **12 kilograms**?

Student's thought process

- 1. I need to find p.
- 2. Found a formula: $p = \frac{F}{S}$.
- 3. *S* is given.
- 4. F is not a given value.
- 5. Found a formula: F = mg.
- 6. g is a constant.
- 7. *m* is a given value
- 8. Now, I can apply F = mg!
- 9. Now, I can apply $p = \frac{F}{S}$!
- 10. Done!

The program output

Givens:	Solution:
$S=400~cm^2$ $m=12~kg$	$F = rac{9.8m ext{N}}{ ext{kg}} = rac{9.8 \cdot 12.0 ext{kgN}}{ ext{kg}} = 117.6 \; N onumber \ p = rac{F}{S} = 117.6 ext{N} ig(400.0 ext{cm}^2ig)^{-1} = 0.294 \; rac{N}{cm^2}$
p-?	Answer: $0.294~\frac{N}{cm^2}$.

Conclusions and future research

Conclusions

End of the report

Thanks for attention!

Additional information

Source code:

- https://github.com/InAnYan/physics_solver.
- https://github.com/InAnYan/physics_solver_web.

Paper:

https://github.com/InAnYan/papers/blob/main/PhysicsSolver/Paper.pdf.

Email: popov_ro@ffeks.dnu.edu.ua.

Authors

Ruslan Popov, Nadiia Karpenko

Oles Honchar Dnipro National University (Ukraine)