

Energie- und Klimasysteme – Formelsammlung

Komfort

Operative/Empfundene Temperatur	$T_{\rm op} = (T_{\rm a} + T_{\rm r})/2$
Operative Temperatur	$[T_{\text{op}}] = {^{\circ}C}$
Raumlufttemperatur	$[T_{\rm a}] = {^{\circ}C}$
Mittlere Strahlungstemperatur	$[T_{\rm r}] = {^{\circ}C}$

Mittlere Strahlungstemperatur	$T_{\rm r} = \frac{\sum (A_i \cdot T_i)}{\sum A_i}$
Mittlere Strahlungstemperatur	$[T_{\rm r}] = {^{\circ}C}$
Fläche der abstrahlenden Oberfläche i	$[A_i] = ^{\circ}C$
Temperatur der Oberflache i	$[T_i] = {^{\circ}C}$

Grundlagen

Wärmestrom	$\Phi = Q/t$
Wärmestrom / Wärmeleistung	$[\Phi] = W$
Wärme	[Q] = J
Zeit	[t] = s

Wärmestrom durch Körper (Wärmeleitung)	$\boldsymbol{\Phi} = A \cdot \frac{\lambda}{d} \cdot (T_1 - T_2)$
Wärmestrom durch Körper	$[\Phi] = W$
Fläche, durch die die Wärme strömt	$[A] = m^2$
Wärmeleitfähigkeit	$[\lambda] = W/(m \cdot K)$
Distanz zwischen warmer und kalter Seite	[d] = m
Temperatur der warmen Seite	$[T_1] = K$
Temperatur der kalten Seite	$[T_2] = K$

Wärmestrom von Körper zu Fluid (Konvektion)	$\boldsymbol{\Phi} = \boldsymbol{A} \cdot \boldsymbol{h} \cdot (\boldsymbol{T}_1 - \boldsymbol{T}_2)$
Wärmestrom von Körperoberfläche zu Fluid	[Φ] = W
Kontaktfläche zwischen Körper und Fluid	$[A] = m^2$
Wärmeübergangskoeffizient	$[h] = W/(m^2K)$
Temperatur der Körperoberfläche	$[T_1] = K$
Temperatur des umgebenden Mediums	$[T_2] = K$

Strahlung von Körper in Umgebung	$\boldsymbol{\Phi} = \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{A} \cdot \boldsymbol{T}^4$
Wärmestrom von Körperoberfläche in Umgebung	$[\Phi] = W$
Emissionsgrad der Körperoberfläche	[ε] = -
Stefan-Boltzmann-Konstante	$[\sigma] = 5.67 \cdot 10^{-8} \text{ W/(m}^2\text{K}^4)$
Fläche des abstrahlenden Körpers	$[A] = m^2$
Temperatur des abstrahlenden Körpers	[T] = K

Wärme um Körper/Fluid zu heizen/kühlen	$Q = m \cdot c_{p} \cdot (T_{1} - T_{2})$
Wärme, dem Körper zugeführt	[Q] = J
Masse	[m] = kg
Spezifische Wärmekapazität des Körpers	$[c_{\rm p}] = J/(kg \cdot K)$
Temperatur des Körpers nach Zufügen der Wärme	$[T_1] = K$
Temperatur des Körpers vor Zufügen der Wärme	$[T_2] = K$

U-Wert	$U = rac{1}{rac{1}{h_{ m i}} + \sum \left(rac{d_i}{\lambda_i} ight) + rac{1}{h_{ m a}}}$
Wärmedurchgangskoeffizient	$[U] = W/(m^2K)$
Wärmeübergangszahl innen	$[h_i] = W/(m^2K)$
Schichtdicke des Materials i	$[d_i] = m$
Wärmeleitfähigkeit des Materials i	$[\lambda_i] = W/(m \cdot K)$
Wärmeübergangszahl aussen	$[h_a] = W/(m^2K)$

g-Wert (transparente Bauteile)	g = TS + QI
Energiedurchlassgrad	[g] = -
Transmission solarer Strahlung	[TS] = -
Sekundäre Wärmeabagabe nach innen durch Strahlung und Konvektioni	[QI] = -

Warmwasserbedarf

Warmwasserwärmebedarf	$Q_{W} = V \cdot \rho \cdot c_{p} \cdot (T_{1} - T_{2})$
Warmwasserwärmebedarf	$[Q_{\mathrm{W}}] = J$
Warmwasserbedarf	$[V] = m^3$ oder I
Dichte Wasser	$[\rho] = \text{kg/m}^3 \text{ oder kg/l}$
Spezifische Wärmekapazität Wasser	$[c_{\mathrm{p}}] = J/(kg \cdot K)$
Wassertemperatur nach Zufügen der Wärme	$[T_1]$ = K oder °C
Wassertemperatur vor Zufügen der Wärme	$[T_2]$ = K oder °C

Warmwasserbedarf	$V = V_{W} \cdot P \cdot t$
Warmwasserbedarf	$[V] = m^3$ oder I
Warmwasserbedarf pro Person und Tag	$[V_{\rm W}]$ = m ³ /d oder l/d
Anzahl Personen	[P] = -
Anzahl Tage	[t] = d

Heizwärme-/Kältebedarf

Heizwärmebedarf	$Q_{\rm H} = Q_{\rm T} + Q_{\rm V} - \eta_{\rm g} \cdot (Q_{\rm i} + Q_{\rm s})$
Heizwärmebedarf	$[Q_{\mathrm{H}}] = Wh$
Transmissionswärmeverluste	$[Q_{\mathrm{T}}]$ = Wh
Lüftungswärmeverluste	$[Q_{\mathrm{V}}]$ = Wh
Ausnutzungsgrad für Wärmegewinne	$[\eta_{ m g}]$ = -
Interne Wärmeeinträge	$[Q_{\rm i}]$ = Wh
Solare Wärmeeinträge	$[Q_{\rm s}]$ = Wh

Kältebedarf	$Q_{K} = Q_{i} + Q_{s} - \eta_{g} \cdot (Q_{T} + Q_{V})$
Kältebedarf	$[Q_{\rm K}]$ = Wh
Transmissionswärmeverluste	$[Q_{\mathrm{T}}] = Wh$
Lüftungswärmeverluste	$[Q_{ m V}]$ = Wh
Ausnutzungsgrad für Wärmeverluste	$[\eta_{ m g}]$ = -
Interne Wärmeeinträge	$[Q_i] = Wh$
Solare Wärmeeinträge	$[Q_s] = Wh$

Ausnutzungsgrad für Wärmegewinne/verluste	$\begin{split} &\text{Im Heizfall: } \eta_{\mathrm{g}} = \frac{(1-\gamma^{a})}{(1-\gamma^{a+1})} \\ &\text{Im K\"{u}hlfall: } \eta_{\mathrm{g}} = \frac{(1-\gamma^{-a})}{(1-\gamma^{-(a+1)})} \\ &a = 1 + \frac{\tau}{15}, \eta_{\mathrm{g}} = 1 \text{ wenn } \gamma < 0 \end{split}$
Ausnutzungsgrad für Wärmegewinne	$[\eta_{\mathrm{g}}] = -$
Wärmeeintrag/-verlust-Verhältnis	[γ] = -
Zeitkonstante des Gebäudes	[τ] = h

Wärmeeintrag/-verlust-Verhältnis	$\gamma = \frac{Q_{\rm i} + Q_{\rm s}}{Q_{\rm T} + Q_{\rm V}}$
Wärmeeintrag/-verlust-Verhältnis	[γ] = -
Transmissionswärmeverluste	$[Q_{\mathrm{T}}]$ = Wh
Lüftungswärmeverluste	$[Q_{ m V}]$ = Wh
Interne Wärmeeinträge	$[Q_i] = Wh$
Solare Wärmeeinträge	$[Q_{\rm s}]$ = Wh

Zeitkonstante	$\tau = \frac{C \cdot A}{H_{\rm T} + H_{\rm V}}$
Zeitkonstante des Gebäudes	$[\tau]$ = h
Wärmespeicherfähigkeit der inneren Schichten	$[C] = Wh/(m^2 K)$
Wärmespeichernde Flächen	$[A] = m^2$
Transmissions-Wärmetransferkoeffizient	$[H_{\mathrm{T}}] = \mathrm{W/K}$
Lüftungs- Wärmetransferkoeffizient	$[H_{\rm V}] = {\rm W/K}$

Transmissionswärmeverluste	$Q_{\mathrm{T}} = H_{\mathrm{T}} \cdot (T_{\mathrm{i}} - T_{\mathrm{e}}) \cdot t$
Transmissionswärmeverluste	$[Q_{\mathrm{T}}]$ = Wh
Transmissions-Wärmetransferkoeffizient	$[H_{\mathrm{T}}] = W/K$
Raumlufttemperatur	$[T_i]$ = K oder °C
Aussenlufttemperatur	$[T_{\rm e}]$ = K oder °C
Länge der Berechnungsperiode	[t] = h

Transmissions-Wärmetransferkoeffizient	$H_{\rm T} = A_{\rm op} \cdot U_{\rm op} + A_{\rm w} \cdot U_{\rm w}$
Transmissions-Wärmetransferkoeffizient	$[H_{\mathrm{T}}] = W/K$
Aussenwandfläche (opak)	$[A_{\mathrm{op}}] = m^2$
Aussenwandfläche (transparent) = Fenster	$[A_{\rm w}] = {\rm m}^2$
Wärmedurchgangskoeffizient Aussenwand (opak)	$[U_{\rm op}] = W/(m^2K)$
Wärmedurchgangskoeffizient Fenster	$[U_{w}] = W/(m^{2}K)$

Lüftungswärmeverluste	$Q_{V} = H_{V} \cdot (T_{i} - T_{e}) \cdot t$
Lüftungswärmeverluste	$[Q_{\rm V}]$ = Wh
Lüftungs- Wärmetransferkoeffizient	$[H_{\rm V}] = {\rm W/K}$
Raumlufttemperatur	$[T_i]$ = K oder °C
Aussenlufttemperatur	$[T_{\rm e}]$ = K oder °C
Länge der Berechnungsperiode	[t] = h

Lüftungs-Wärmetransferkoeffizient	$H_{\rm V} = \dot{V}_{\rm th} \cdot \rho \cdot c_{\rm p}$
Lüftungs- Wärmetransferkoeffizient	$[H_{\rm V}] = {\rm W/K}$
Thermisch wirksamer Aussenluft-Volumenstrom	$[\dot{V}_{\rm th}] = {\rm m}^3/{\rm s}$
Dichte Luft	$[\rho] = \text{kg/m}^3$
Spezifische Wärmekapazität Luft	$[c_n] = J/(kg \cdot K)$

Thermisch wirksamer Aussenluftvolumenstrom	$\dot{V}_{\rm th} = \dot{V}_{\rm e} \cdot (1 - \eta_{\rm rec}) + \dot{V}_{\rm inf}$
Thermisch wirksamer Aussenluft-Volumenstrom	$[\dot{V}_{\rm th}]$ = m ³ /h oder m ³ /s
Aussenluft-Volumenstrom durch Lüftung	$[\dot{V}_{\rm e}]$ = m ³ /h oder m ³ /s
Aussenluft-Volumenstrom durch Infiltration	$[\dot{V}_{\rm inf}]$ = m ³ /h oder m ³ /s
Nutzungsgrad der Wärmerückgewinnung	$[\eta_{ m rec}]$ = -

Interne Wärmeeinträge	$Q_{\rm i} = \boldsymbol{\Phi}_{\rm P} \cdot \boldsymbol{t}_{\rm P} + \boldsymbol{\Phi}_{\rm B} \cdot \boldsymbol{t}_{\rm B} + \boldsymbol{\Phi}_{\rm G} \cdot \boldsymbol{t}_{\rm G}$
Interne Wärmeeinträge	$[Q_i] = Wh$
Wärmeabgabe Personen	$[\Phi_{\mathrm{P}}] = W$
Wärmeabgabe Beleuchtung	$[\Phi_{\mathrm{B}}] = W$
Wärmeabgabe Geräte	$[\Phi_{\rm G}] = {\sf W}$
Vollaststunden Personen	$[t_{ m P}]$ = h
Vollaststunden Beleuchtung	$[t_{\mathrm{B}}] = h$
Vollaststunden Geräte	$[t_{\rm G}]$ = h

Solare Wärmeeinträge	$Q_{s} = G \cdot F_{F} \cdot A_{w} \cdot g \cdot f_{V}$
Solare Wärmeeinträge	$[Q_{\rm s}]$ = kWh
Globalstrahlung auf horizontale Fläche	$[G] = kWh/m^2$
Faktor für Ausrichtung der Einstrahlungsebene	$[F_F] = -$
Aussenwandfläche (transparent) = Glasfläche	$[A_{\rm w}] = {\rm m}^2$
Energiedurchlassgrad Verglasung (g-Wert)	[g] = -
Reduktionsfaktor durch externe Verschattung	[6] -
(Sonnenschutz, Überhang, Seitenblende)	$[f_{\mathrm{V}}] = -$

Luftbedarf

Aussenluftvolumenstrom	$\dot{V} = \dot{V}_{\rm P} \cdot \left(A \cdot \frac{1}{A_{\rm P}} \right)$
Aussenluftvolumenstrom	$[\dot{V}] = m^3/h$
Aussenluftvolumenstrom pro Person	$[\dot{V}_{\rm P}] = {\rm m}^3/{\rm h}$
Raumfläche	$[A] = m^2$
Personenfläche	$[A_{\rm P}] = {\sf m}^2$

Aussenluftvolumenstrom (minimal)	$\dot{V}_{\min} \ge \frac{G}{c_{\max} - c_{e}}$
Aussenluftvolumenstrom (minimal)	$[\dot{V}_{\min}] = m^3/h$
Verunreinigungsrate	[G] = olf, I/h, g/h
Max. akzeptabler Innenluftverunreinigungsgrad	$[c_{\text{max}}]$ = pol, ppm, g/m ³
Verunreinigungsgrad der Aussenluft	$[c_{\rm e}]$ = pol, ppm, g/m ³

Luftwechselrate	$n = \dot{V}/V$
Luftwechselrate	$[n] = h^{-1}$
Aussenluftvolumenstrom (minimal)	$[\dot{V}] = m^3/h$
Raumvolumen	$[V] = m^3$

Elektrizitätsbedarf

Elektrizitätsbedarf	$E = E_{\rm A} + E_{\rm B} + E_{\rm L} + E_{\rm M}$
Elektrizitätsbedarf	[E] = Wh
Elektrizitätsbedarf der Geräte	$[E_{\rm A}]$ = Wh
Elektrizitätsbedarf Beleuchtung	$[E_{\mathrm{B}}] = Wh$
Elektrizitätsbedarf Lüftung	$[E_{\rm L}]$ = Wh
Elektrizitätsbedarf Mobilität	$[E_{M}] = Wh$

Elektrizitätsbedarf	$E = P \cdot t$
Elektrizitätsbedarf	[E] = Wh
Leistung bei Volllast	[P] = W
Volllaststunden	[<i>t</i>] = h

Wärme-/Kälteversorgung

Wärme/Kälte durch Wärmepumpe	$Q_{\text{nutz}} = E \cdot COP = Q_{\text{Anergie}} + E$
Wärme/Kälte, nutzbar	$[Q_{ m nutz}]$ = kWh
Strom (Exergie)	[E] = kWh
Leistungsziffer	[COP] = -
Wärme/Kälte aus Anergiequelle	$[Q_{\text{Anergie}}] = \text{kWh}$

Leistungsziffer Wärmepumpe	$COP = \eta_{\mathrm{W}} \cdot \frac{T_1}{T_1 - T_2}$
Leistungsziffer Wärmepumpe	[COP] = -
Effizienz der Wärmepumpe	$[\eta_{\mathrm{W}}] = -$
Temperatur des warmen Reservoirs (z.Bsp. Warmwassertank)	$[T_1] = K$
Temperatur des kalten Reservoirs (z. Bsp. Aussenluft, Erdreich)	$[T_2] = K$

Leistungsziffer Kältemaschine	$COP = \eta_{\rm K} \cdot \frac{T_2}{T_1 - T_2}$
Leistungsziffer Kältemaschine	[COP] = -
Effizienz der Kältemaschine	$[\eta_{\mathrm{K}}] = -$
Temperatur des warmen Reservoirs (z.Bsp. Aussenluft)	$[T_1] = K$
Temperatur des kalten Reservoirs (z.Bsp. Innentemperatur)	$[T_2] = K$

Entzugswärme Erdsonde	$Q_{\mathrm{Anergie}} = P_{\mathrm{spez}} \cdot L \cdot t$
Entzugswärme der Erdsonde	$[Q_{\mathrm{Anergie}}] = kWh$
Spezifische Entzugsleistung	$[P_{\rm spez}] = kW/m$
Länge der Erdsonde	[L] = m
Betriebsstunden	[t] = h

Solarkollektoren	$Q_{\text{nutz}} = G \cdot F_{\text{F}} \cdot A \cdot \eta_{\text{SK}} \cdot R_{\text{V}}$
Warmwasserertrag aus Kollektoren	$[Q_{ m nutz}]$ = kWh
Globalstrahlung (abhängig vom Ort)	$[G] = kWh/m^2$
Faktor für Ausrichtung der Einstrahlungsebene	$[F_{\rm F}] = -$
Fläche der Kollektoren	$[A] = m^2$
Thermischer Wirkungsgrad des Kollektors	$[\eta_{SK}] = -$
Verteilungsverlustkoeffizient	$[R_V] = -$

Wärme durch Verbrennung	$Q_{\rm nutz} = \eta_{\rm V} \cdot H \cdot m$
Wärme	$[Q_{ m nutz}] = kWh$
Effizienz des Verbrennungssystems	$[\eta_{ m V}]$ = -
Heizwert	[H] = kWh/kg
Masse	[m] = kg

Luftversorgung

Volumenstrom durch Öffnung	$\dot{V} = c_{\rm d} \cdot A \cdot \sqrt{\frac{2}{\rho} \Delta p}$
Volumenstrom durch Öffnung	$[\dot{V}] = m^3/s$
Durchflusskoeffizient	$[c_{\mathrm{d}}] = -$
Querschnittsfläche der Öffnung	$[A] = m^2$
Dichte der Luft	$[\rho] = \text{kg/m}^3$
Druckdifferenz über Öffnung	$[\Delta p]$ = Pa

Auftriebsdruck	$\Delta p_{\rm A} = g \cdot (\rho_{\rm a} - \rho_{\rm i}) \cdot \Delta h_{\rm A}$
Druckdifferenz	$[\Delta p_{\rm A}]$ = Pa
Erdbeschleunigung	$[g] = m/s^2 = N/kg$
Dichte Aussenluft	$[\rho_{\rm a}] = {\rm kg/m^3}$
Dichte Innenluft	$[\rho_i] = \text{kg/m}^3$
Höhenunterschied Öffnungen	$[\Delta h_{\rm A}] = {\sf m}$

Winddruck	$\Delta p_{\mathrm{W}} = c_{p} \cdot \frac{ ho}{2} \cdot v_{\mathrm{W}}^{2}$
Winddruck	$[\Delta p_W]$ = Pa
Winddruckkoeffizient (abhängig von Windrichtung)	[c _P] = -
Dichte der Luft	$[\rho] = \text{kg/m}^3$
Windgeschwindigkeit	$[v_{\mathrm{W}}] = \mathrm{m/s}$

Luftdichte	$\rho = \frac{p}{R \cdot T}$
Luftdichte	$[\rho] = \text{kg/m}^3$
Luftdruck	[p] = Pa
Spezifische Gaskonstante	[R] = J/(kg K)
Lufttemperatur	[T] = K

Druckerhöhung durch Ventilator	$\Delta p = \frac{P \cdot \eta}{\dot{V}}$
Totaldruckerhöhung	$[\Delta p]$ = Pa
Antriebsleistung Ventilator	[P] = W
Wirkungsgrad Ventilator	[η] = -
Luftvolumenstrom	$[\dot{V}] = m^3/s$

Druckverlust in geraden Rohrleitungen	$\Delta p = \lambda \cdot \frac{L}{D} \cdot \rho \cdot \frac{u^2}{2}$
Druckverlust	$[\Delta p]$ = Pa
Rohrreibungszahl	[λ] = -
Länge Luftleitung	[L] = m
Leitungsdurchmesser	[D] = m
Dichte der Luft	$[\rho] = \text{kg/m}^3$
Strömungsgeschwindigkeit	[u] = m/s

Luftgeschwindigkeit Luftkanal	$u = \frac{\dot{V}}{A}$
Luftgeschwindigkeit	[u] = m/s
Volumenstrom	$[\dot{V}] = m^3/s$
Querschnittsfläche Luftkanal	$[A] = m^2$

Stromversorgung

Solarstromertrag PV-Anlage	$E = G \cdot F_{F} \cdot A \cdot \eta_{PV} \cdot PR$
Stromertrag	[E] = kWh
Globalstrahlung (abhängig vom Ort)	$[G] = kWh/m^2$
Faktor für Ausrichtung der Einstrahlungsebene	$[F_{\mathrm{F}}] = -$
Fläche der PV-Module	$[A] = m^2$
Wirkungsgrad des PV-Moduls	$[\eta_{ m PV}]$ = -
Systemwirkungsgrad / Performance Ratio	[PR] = -

Wirkungsgrad PV-Modul	$oldsymbol{\eta}_{ ext{PV}} = oldsymbol{\eta}_{ ext{cell}} \cdot oldsymbol{f}_{ ext{cover}} \cdot rac{A_{ ext{cell}}}{A_{ ext{modul}}}$
Wirkungsgrad PV-Modul	$[\eta_{\mathrm{PV}}]$ = -
Wirkungsgrad PV-Zelle	$[\eta_{\text{cell}}] = -$
Durchlassgrad der Zellabdeckung	$[f_{\text{cover}}] = -$
Gesamtfläche der Zellen pro Modul	$[A_{\text{cell}}] = m^2$
Fläche eines Moduls	$[A_{\text{modul}}] = m^2$

Energiespeicherung

Thermischer Speicher (sensible Wärme)	$Q_{TS} = V \cdot \rho \cdot c_{p} \cdot (T_{1} - T_{2})$
Thermische Speicherkapazität	$[Q_{\mathrm{TS}}] = J$
Speichervolumen	$[V] = m^3$
Dichte	$[\rho] = \text{kg/m}^3$
Spezifische Wärmekapazität	$[c_{\mathrm{p}}] = J/(\mathrm{kg}\cdotK)$
Temperatur nach Zufügen der Wärme	$[T_1]$ = K oder °C
Temperatur vor Zufügen der Wärme	$[T_2]$ = K oder °C

Elektrischer Speicher / Batterie	$E_{\rm S} = V \cdot \rho \cdot C$
Elektrische Speicherkapazität	$[E_{\rm S}]$ = kWh
Speichervolumen	$[V] = m^3$
Dichte des Speichers	$[\rho] = \text{kg/m}^3$
Spezifische Speicherkapazität	[C] = kWh/kg

Allgemeines

Umrechnungen	
Umrechnung Wh / J	1 Wh = 3'600 J
Umrechnung kWh / MJ	1 kWh = 3.6 MJ
Umrechnung J / kJ	1 kJ = 1000 J
Umrechnung Watt / Joule	1 W = 1 J/s
Umrechnung Jahr / Tage	1 a = 365 d
Umrechnung Jahr / Stunden	1 a = 8'760h
Umrechnung Stunden / Sekunden	1 h = 3600 s
Umrechnung K / °C	0 °C ≙ 273 K
Umrechnung Kubikmeter / Liter	$1 \text{ m}^3 = 1'000 \text{ l}$

Dichte	$ \rho = \frac{m}{V} $
Dichte	$[\rho]$ = kg/m ³ oder kg/l
Masse	[m] = kg
Volumen	$[V] = m^3$ oder I

Stoff-Eigenschaften	
Dichte Wasser	1000 kg/m ³
Dichte Luft	1.2 kg/m ³
Wärmekapazität Wasser	4.18 kJ/(kg·K)
Wärmekapazität Luft	1.005 kJ/(kg·K)
Wärmekapazität Eis	2.09 kJ/(kg·K)
Wärmekapazität Beton	0.88 kJ/(kg·K)
Wärmekapazität Stahl	0.50 kJ/(kg·K)
Heizwert Rapsöl	7 kWh/l
Heizwert Biogas	6 kWh/m ³
Heizwert Holz	5 kWh/kg
CO ₂ Konzentration Aussenluft	410 ppm

Konstanten	
Erdbeschleunigung	9.81 m/s ²
Stefan-Boltzmann-Konstante	5.67·10 ⁻⁸ W/(m ² ·K ⁴)
Raumwinkel Kugeloberfläche	4π sr

SI-Präfixe				
Symbol	Name	Wert		
Р	Peta	10 ¹⁵	1'000'000'000'000'000	
T	Tera	10 ¹²	1'000'000'000'000	
G	Giga	10 ⁹	1'000'000'000	
М	Mega	10 ⁶	1'000'000	
k	Kilo	10 ³	1'000	
h	Hekto	10 ²	100	
-		10 ⁰	1	
d	Dezi	10 ⁻¹	0.1	
С	Zenti	10 ⁻²	0.01	
m	Milli	10 ⁻³	0.001	
μ	Mikro	10 ⁻⁶	0.000'001	
n	Nano	10 ⁻⁹	0.000'000'001	