U5 L7 Modelling Data with Functions Handout

Part A - For each table, graph the data and draw a curve of best fit. Then define your variables and determine an algebraic model for each situation. If necessary, restrict the domain of your function so it makes sense for the situation.

1. The following table shows the population of a small town from 2000 – 2005. Determine an algebraic model for the population as a function of time.

			1st ratios
ĺ	Year	Population	120,103
	2000	2000 6	1.1
	2001	2200	lad.
	2002	2420 📈	1.1
	2003	2662	1.1
į	2004	2928.2	1.1
	2005	3221.02	1. (

2. The following table shows the length of time needed to drive a fixed distance at varying speeds.

Determine an algebraic model for time as a function of speed Time to look expanential

		Fi	rst F	Socho S
Speed (km/h)	Time (h)		100	differ
10	12.0		1	CY
15	8.0	10	ماما.	
20	6.0	10	.76	
25	4.8	36	83	
30	4.0	\ 0	75	
40	3.0	7.1	.8	
50	2.4	70	.06	25
80	1.5	ノ	- +	

This mean it's reciprocal! $f(x) = \frac{1}{x}$ $= \alpha = 120$

Thur looks

yea

3. The following table shows the lengths and periods for different pendulums. Determine an algebraic model for the period as a function of the length

		Check 1st
Length (m)	Period (s)	ratios
0.1	0.64	
0.2	0.90	
0.3	1.10	1 ,
0.4	1.27	1 4 12 -
0.5	1.49	To a desporation !
0.6	1.55	he est
0.7	1.70 5	1.03
0.8	1.76	l '
0.9	1.90	1.67
1.0	2.01	2.01

use a point to
solve for "a" in
a square roof function
$$y = a JX$$

Part B – Determine an algebraic model for each table of values. You may wish to graph the data first to help you.

·FJ		*	. 8 1 1			
1.	x	у	hus looks heck I'' diffs	exponential		
	-2	5 9 7 3	B = 1	2		
	-1	$\frac{5}{3}$		1	*	
(0	5 3	a =	3	$\gamma = 5(3)^{\alpha}$	
	1	15 5 3				
	2	45				
	3	135				
	4	405	28+			
			17 145	. 0		

2.

x	у
10	8
20	18
30	28
40	18
50	8
60	18
70	28
50	8

Sketchit

(al= 10
C = 18
period = 40
K=360
K=9

 $g(x) = -10 \sin 9x + 18$ at least 4 $g(x) = 10 \sin 9(x - 20)] + 18$ choices ! $g(x) = 10 \cos [9(x - 30)] + 18$

 $g(x) = -10 \cos[1(x-30)] + 18$

3.	x	у
	30.0	-10.0
	37.5	-12.0
	45.0	-10.0
	52.5	-8.0
	60.0	-10.0
	67.5	-12.0
	75.0	-10.0

$$|\alpha| = 2$$

 $c = -10$
period = 30
 $K = 360$

$$g(x) = -2 \sin(12x) - 10$$