COMPASS RH00 ANALYSIS

Nicholaus Trotta

March 20th, 2025

COMPASS DATA AND MC

- Year 2016, and period 09
- COMPASS is using two different Monte Carlo for their 2012 analysis:
 - \circ HepGEN For the exclusive $\rho 0$ reaction
 - o LEPTO –For the SIDIS Background

Small Q2 events

- 1. Low Q2 physics
 - A group at COMPASS who looks at the low Q2 physics
 - o quasi-real photoproduction
- 2. Bad reconstruction for small scattering angle
- 3. Acceptance with the scattered muon trigger
- 4. For DIS, the kinematic cut of Q2 > 0.8 GeV2 is typically used (Q2 >1 for this analysis)

Incoming muon track (μ):

- first measured before the target (Z_{tgt,min.}=-318.5 cm)
- track crosses the full target length
- momentum: $140 \,\mathrm{GeV/c} < p_{\mu} < 180 \,\mathrm{GeV/c}$
- momentum error: $\Delta p_{\mu} \leq 0.025 \cdot p_{\mu}$
- meantime: $-2 \text{ ns} < t_{\text{track}} < 2 \text{ ns}$
- hits in Beam Momentum Station (BMS): ≥ 3
- hits in Scintillation Fibre detectors (SCIFI): ≥ 2
- hits in Silicon strip detectors (SI): ≥ 3

Outgoing charged track (μ'):

- same charge as incoming muon
- rel. radiation length: $X/X_0 > 15$
- first measured before and last after SM1: $Z_{\text{first}} < 350 \,\text{cm}$ and $Z_{\text{last}} > 350 \,\text{cm}$
- track extrapolations are in the active hodoscope areas (PaHodoHelper::iMuPrim())

Vertex requirements:

- in target
 - $-318.5 \,\mathrm{cm} < Z_{\mathrm{vtx}} < -78.5 \,\mathrm{cm}$
 - $R_{\rm vtx} < 1.9 \, \rm cm$
 - $Y_{\rm vtx} < 1.2 \, \rm cm$
- exactly one outgoing charged track

• Hadrons

- Good fit quality of scattered hadron (π^+, π^- reconstruction, given by reduced χ^2 is required to be smaller than 10 ($\chi^2 < 10$). Track reconstruction quality $\chi^2 < 10$.
- Penetration length of hadron track should be smaller than 10 radiation lengths.
- Track starts before SM1, i.e. $Z_{first} < 350.0 \text{ cm}$.
- Fit is on the track of the pions
- Also required both hadrons to have opposite charge
- Proton was identified using Missing Mass (2012 pre-CAMERA)

DATA PARTICLE KINEMATICS NO EXCLUSIVE CUTS (Q2 > 0.8 GEV2)

KINEMATIC CUTS

- W > 5.0 GeV to remove the kinematic region where the cross section for the semi-inclusive reactions changes rapidly due to a resonances production.
- 0.1 < y < 0.9, lower cut suppresses events with a poorly reconstructed kinematics. The upper cut on y remove events with large radiative corrections.
- $1.0 < Q^2 < 10.0 \text{ (GeV/c)}^2$, lower cut on virtuality Q^2 ensures hard processes regime and the upper one suppresses background due to the hadron production in DIS which hereafter is referred to as "SIDIS background".
- $\nu > 16 \text{ GeV}$ 0.1 < y ---> 160*0.1 ----> 16 < nu
- squared transverse momentum of ρ^0 with respect to the virtual photon: $0.01 < p_T^2 < 0.5 \text{ (GeV/c)}^2$.
- $0.5 < M_{\pi^+\pi^-} < 1.1 \text{ GeV/c}^2$ invariant mass of two pions.
- $-2.5 < E_{miss} < 2.5 \text{ GeV}$. $E_{miss} = \frac{M_X^2 M_p^2}{2M_p}$, with M_p the proton mass and $M_X^2 = (p + q p_{\pi^+} p_{\pi^-})^2$ the missing mass squared, where p, q, p_{π^+} and p_{π^-} are the four-momenta of target nucleon, virtual photon, and each of the two pions, respectively.
- momentum of ρ^0 $P_{\rho^0} > 15$ GeV/c. To reduce the semi-inclusive background contribution.

DATA PARTICLE KINEMATICS WITH CUTS

DATA EXCLUSIVE KINEMATICS WITH CUTS

Cuts:y,Q2,nu,Pt2, Invariant Mass Missing Energy, Momentum of rho0

Cuts: W,y,Q2,nu, Invariant Mass Missing Energy, Momentum of rho0

Cuts: W,y,Q2,nu,Pt2, Invariant Mass Missing Energy, Momentum of rho0

ANGLES FOR SDME

W. Augustyniak, et al. ,Spin Density Matrix Elements for exclusive $\rho 0$ meson production using the 2012 COMPASS data,internal note, 2021.

DATA VS MONTE CARLO

Data

Cut not included:

 $0.5 < M\pi + \pi - < 1.1$

Cut not included: W > 5.0 GeV

32

SDME CODE

```
port numry as np
import numpy as np
in num function (the one we are minimizing)
         self.cosTheta = cosTheta
        self.phi = phi
self.Phi = Phi
         self.cosTheta sim = cosTheta sim
         self.phi sim = phi sim
                N_U = (1/2 * (1 * X|8) * 1/2 * (3 * X|8) * 1) * c1 * c1

- m.sgr(c2) * x[1] * sin?Heta * (n.cos(ph))

- x[2] * sin?Heta2 * (ns.cos(2 * ph))

N_U += (-self.eps[1] * (n.cos(2 * ph)) * (x[3] * sin?Heta2 + x[4] * c1 * c1

- m.sgr(c2) * x[5] * sin?!Heta * (n.cos(ph))
                N_u += (-self.eps[i] * rm.sin(2 * Ph) * (rm.sqrt(2) * x[7] * sin2Theta * rm.sin(ph)
                             + x[10] cT cT - rm.sqrt(2) x[11] * sin2Theta * rm.cos(ph) 
- x[12] sinTheta2 * rm.cos(2 * ph)))
                             + x[20] cT cT - rm.sqrt(2) * x[21] * sin2Theta * rm.cos(ph)
- x[22] * sinTheta2 * rm.cos(2 * ph)))
         for i in range(self.n_sim):
    cT = self.cosTheta_sim[i]
                - rm..sqrt(2) * x[1] * sinZTheta * rm.cos(ph) 
- x[2] * sinTheta2 * rm.cos(2 * ph)) 
N_U += (-self.eps_sim[i] * rm.cos(2 * Ph) * (x[3] * sinTheta2 + x[4] * cT * cT
                + x[8] * sinTheta2 * rm.sin(2 * ph)))
N_u += (rm.sqrt(2 * self.eps_sim[i] * (1 + self.eps_sim[1])) * rm.cos(Ph) * (x[9] * sinTheta2
                 N\_u += (rm.sqrt(2 *self.eps\_sim[1] * (1 + self.eps\_sim[1])) * rm.sin(Ph) * (rm.sqrt(2) * x[13] * sin2Theta * rm.sin(ph) \\ + x[14] * sin1heta2 * rm.sin(2 * ph))) 
                | + x[18] * sinTheta2 * rm.sin(2 * ph)))
N_p += (rm.sqrt(2 * self.eps_sim[i] * (1 + self.eps_sim[i])) * rm.sin(Ph) * (x[19] * sinTheta2
```

- The code for extracting the SDMEs using maximum likelihood method (MLM) has been written
 - o Extracts all 23 SDMEs
 - Based on the python code used for sig_LT'/sig_0 extraction
 - o Minuit2 minimizer used
 - "Minimize" as minimizer

SDME EXTRACTION

COMPASS 2012

SDME	
r_{00}^{04}	$0.4698 \pm 0.0035 \pm 0.0220$
r_{1-1}^{1}	$0.2457 \pm 0.0037 \pm 0.0064$
Im r_{1-1}^2	$-0.2459 \pm 0.0038 \pm 0.0049$
Re r_{10}^5	$0.1769 \pm 0.0015 \pm 0.0041$
Im r_{10}^6	$-0.1662 \pm 0.0014 \pm 0.0040$
$\operatorname{Im} r_{10}^{7}$	$0.0453 \pm 0.0096 \pm 0.0156$
Re r_{10}^{8}	$0.0362 \pm 0.0095 \pm 0.0121$
Re r_{10}^{04}	$0.0454 \pm 0.0021 \pm 0.0058$
Re r_{10}^{1}	$-0.0539 \pm 0.0029 \pm 0.0040$
Im r_{10}^2	$0.0532 \pm 0.0028 \pm 0.0043$
r_{00}^{5}	$0.1456 \pm 0.0033 \pm 0.0129$
r_{00}^{1}	$-0.0376 \pm 0.0062 \pm 0.0114$
Im r_{10}^{3}	$0.0067 \pm 0.0067 \pm 0.0045$
r_{00}^{8}	$0.0019 \pm 0.0194 \pm 0.0253$
r_{11}^{5}	$0.0027 \pm 0.0016 \pm 0.0025$
r_{1-1}^{5}	$0.0050 \pm 0.0020 \pm 0.0025$
Im r_{1-1}^6	$-0.0028 \pm 0.0020 \pm 0.0019$
Im r_{1-1}^7	$-0.0045 \pm 0.0134 \pm 0.0224$
r_{11}^{8}	$0.0203 \pm 0.0101 \pm 0.0305$
r_{1-1}^{8}	$-0.0300 \pm 0.0128 \pm 0.0091$
r_{1-1}^{04}	$-0.0120 \pm 0.0027 \pm 0.0032$
r_{11}^1	$-0.0162 \pm 0.0032 \pm 0.0037$
$\operatorname{Im} r_{1}^{3}$	$0.0163 \pm 0.0085 \pm 0.0043$

NEXT STEPS

- Create background subtraction MLM to extract SDMEs
 - o Look at Lepto for background simulation
- Fix up the errors with this MLM
- Ran for the entire run period 9

BACKUP SLIDES

KINEMATIC CUTS

- W > 5.0 GeV
- 0.1 < y < 0.9
- 1.0 < Q2 < 10.0
- 0.01 < pT2 < 0.5
 0.5 < Mπ+π- < 1.1
 P_{ρ0} > 15

Each plot is shown without the cut on the variable

DATA 1D PARTICLE KINEMATICS WITH CUTS

 $\pi + P$

π- P

