FINAL CAPSTONE PROJECT

BY ANSHUL MOURYA

1.Create a data dictionary for the table with the best of your understanding

Column Name	Data Type	Description
Order_id	Integer	Unique identifier for each order
Cuatomer_id	Integer	Identifier for the user who placed the order
Order_date	Varchar	Date when the order was placed
Order_status	Varchar	Status of the order (e.g., Cancelled, Delivered)
Payment_method	Varchar	Method used for payment (e.g., Debit Card, Credit Card)
Quantity	Integer	Quantity of products ordered
Order_rating	Integer	Rating given by the user for the order
Product_category	Varchar	Category of the ordered product (e.g., Clothing, Electronics)
Product_portfolio	Varchar	Portfolio of the ordered product (e.g., Gadgets, Women Fashion)
Product_id	Integer	Identifier for the ordered product
Gender	Varchar	Gender of the user (e.g., Female, Male)
Supplier_id	Integer	Identifier for the supplier of the product
Order_timestamp	Varchar	Date and time when the order was placed
Discount_percentage	Varchar	Percentage of discount applied to the order
Offer_name	Varchar	Name of the offer applied to the order
List_price	Integer	Original price of the product before any discount
Sale_price	Integer	Final price of the product after applying discounts
Delivery_date	Date	Expected delivery date of the order
GMV	Integer	is the total amount of sales a company makes over a specified period of time,

1.Write an SQL query to find the count of users in each order bucket based on their order history. The order buckets are categorized as 'No_orders' for customers with no delivered orders, '1_to_5_orders' for those with 1 to 5 delivered orders, '6_to_10_orders' for 6 to 10 delivered orders, and '>=10_orders' for customers with more than 10 delivered orders. The result should display the order bucket and the corresponding count of users.

```
with bucket as
        select customer id,
        case when count(distinct order id) filter (where order status name = 'delivered') = 0 then 'No orders'
        when count(distinct order id) filter (where order status name = 'delivered') <= 5 then '1 to 5 orders'
        when count(distinct order id) filter (where order status name = 'delivered') <=10 then '6 to 10 orders'
        else '>=10 orders' end as order bucket
        orders
from
group
       by 1
select
        order bucket,
         count(distinct customer id) as count of users
        bucket b
from
group
```

order_bucket	count_of_users
1_to_5_orders	942
6_to_10_orders	318

Fetch the below metrics for month on month comparison of: 1. Total Revenue, 2. Avg Order Value, 3. Total Orders, 4. Avg Processing Time

```
1 Select extract(month from Order_date :: date) as month,
2 sum(Sale_price) AS total_revenue,
3 round(avg(Sale price),2) as avg order value,
```

3		round(avg(Sale_price),2) as avg_order_value,
4		count(Order_id) as total_orders,
5		<pre>round(avg(delivery_date :: date-order_date :: date),2) as avg_processing_time</pre>
6	FROM	orders
7	GROUP	BY 1
Ŀ.		

a				
month	total_revenue	avg_order_value	total_orders	avg_processing_time
1	403562	236.00	1710	6.93
2	378364	237.22	1595	6.98

2(5). Top 10 highest selling products

```
with top10 as
select extract(month from order date :: date)as month, product id, sum(quantity) as total sold product
       orders
from
where order_status_name = 'delivered'
group by 1,2
ranking as
 select product id, month, total sold product,
         row number() over(partition by month order by total sold product desc) as rank
```

from r	top10 .product_id,a.month,a.total_sold_product anking a ank<=10 y 2		
product_i	id	month	total_sold_product
8360		1	10
8700		1	10
3874		1	10

2.(6)Bucket Distribution of different ratings and count of orders in it

```
1 select order_rating,
2 extract(month from order_date :: date) as month,
3 count(customer_id) as total_ratings
4 from orders
5 group by 1,2
6 order by 1,2
```

order_rating	month	total_ratings
1	1	346
1	2	329
1	3	333
1	4	353
1	5	319
1	6	311
2	1	363
2	2	304

2.(7) Sales by Product Category

```
select extract(month from order_date :: date) as month, product_category,sum(sale_price) as total_sales from orders group by 1,2 order by 1
```

month	product_category	total_sales
1	Electronics	67242
1	Home Goods	68300
1	Books	58988
1	Sports Gear	69194
1	Toys	66116
1	Apparel	73722
2	Apparel	63779
2	Electronics	59178

2(8). Sales and Orders by Gender

```
with male as(
select extract(month from order date :: date) as month,
       count(order id) as male order,
       sum(sale price) as total price
from orders
where Gender ilike 'male'
group by 1
female as(
  select extract( month from order date :: date) as month,
         count(order id) as female order,
         sum(sale price) as total price
  from
         orders
  where Gender ilike 'female'
   group by 1
select *
from female f
full outer join male m
   f.month = m.month
```

month	female_order	total_price	month	male_order	total_price
1	786	182133	1	924	221429
2	757	181697	2	838	196667

5. Calculate the return rate for each product category. The return rate is defined as the percentage of orders that have been returned out of the total delivered orders for each product category.

```
WITH DeliveredOrders as
                        select product category,
                                count(Customer id) AS total delivered
                        from
                               orders
                        where order status name ilike 'delivered'
                        group by 1
ReturnedOrders as (
                select
                         product category,
                         count(Customer id) AS total returned
                from
                        orders
                        order status name ilike 'return%'
                where
                        by 1
                group
select r.product category,
            round(r.total returned*100/d.total delivered,2) as return rate
       DeliveredOrders d, ReturnedOrders r
limit
```

product_category	return_rate
Apparel	30.00
Books	25.00

6.Write a SQL query to fetch only those customers who placed an order but cancelled the same orders more than once.

customer_id	cancelled_orders_count
1	3
4	2
15	3

7.Write a query to find what is the Average delivery time for orders placed on weekdays versus weekends

6.99

```
with week as( Select o.Order date,extract(dow from order date :: date)in (0,6)as days,o.delivery date
                     orders o
              from
              limit 7000
weekend as (
             select a.Order date, a.delivery date
              from
                      week a
              where
                      days=true
weekdays as( select e.Order date, e.delivery date
                from
                        week e
                        days=false
                where
select distinct round(avg(c.delivery date :: date-c.Order date::date),2)as avg delivery time weekend,
        round(avg(b.delivery date :: date-b.Order date ::date),2)as avg delivery time weekdays
        weekend c.weekdays b
from
  Results
          Execution time: 19085.61ms
    avg delivery time weekend
                                                                   avg delivery time weekdays
```

7.10

8. Write a query to Determine the percentage contribution of each supplier to the total quantity of products sold in different product categories

9.Write a query to Calculate the running total of orders delivered over time to identify trends in the order delivery volume.

order_date	order_id	sale_price	running_total
2022-01-01T00:00:00.000Z	696	413	413
2022-01-01T00:00:00.000Z	1147	468	881
2022-01-01T00:00:00.000Z	1671	321	1202
2022-01-01T00:00:00.000Z	1821	194	1396
2022-01-01T00:00:00.000Z	2045	181	1577
2022-01-01T00:00:00.000Z	2503	108	1685
2022-01-01T00:00:00.000Z	3147	224	1909
2022-01-01T00:00:00.000Z	3482	447	2356
2022-01-01T00:00:00.000Z	3716	378	2734
2022-01-01T00:00:00.000Z	3819	222	2956
2022-01-01T00-00-00 0007	3851	106	Activate Windo Go to Settings to act

10.(A)Evaluate the distribution of orders delivered based on gender to understand any gender-related trends

```
select count(order_id) as total_orders,gender
from orders
where order_status_name = 'delivered'
group by 2
```

total_orders	gender
2708	Female
3241	Male

10.(B)Day over Day trend of GMV

month	day	gmv
1	1	37135
1	2	40228
1	3	32333
1	4	26517