

Hidasi Balázs (hidasib@freemail.hu)

Konzulens: Gáspár-Papanek Csaba (gaspar@tmit.bme.hu)

2011. JÚNIUS 21, BUDAPEST

SHIFTTREE ALGORITMUS

- o Idősor-osztályozó algoritmus
- o Bináris döntési fa alap
- Dinamikusan előállított attribútumok
 - Hol nézzük? (időtengely)
 - Mit nézzünk? (számítások)

Előnyök

- Modell alapúság előnyei
- Értelmezhető
- Szakértői tudás nélkül is pontos
- Szakértői tudással pontosabbá tehető

Hátrányok

Modell alapúság hátrányai

Modell építés idejének csökkentése

- o Tanítás során attribútum választás
 - Célfüggvény minimalizálása
- Célfüggvény tulajdonságai
 - Adott rendezés mellett minimumok csak az egybefüggő intervallumok szélén lehetnek
 - Minimum előre meghatározható
 - o Nem léphetünk ki minimumnál, de...
 - Ha eléri, akkor csak 2-2 helyet kell vizsgálni a további rendezéseknél

- o Futási idő átlagosan 22,33%-kal csökkent
 - Pl.: FordB 3636 tanítóminta:
 - \circ 214,94s \rightarrow 173,52s (-19,27%)
 - Pl.: CBF 30 tanítóminta:
 - $0.0,246s \rightarrow 0.145s (-41.18\%)$
 - Pl.: Beef 30 tanítóminta
 - $0.0574s \rightarrow 0.517s (-9.9\%)$

Ν

FEJLESZTÉSEK A PONTOSSÁG NÖVELÉSÉRE

- Operátorkészlet jelentős kibővítése
- Heurisztika egyezően jó attribútum jelöltek közüli választásra

Legyen maximális a határsáv

Eltérő nagyságrendek miatt normalizálás •

- Nyesés
 - Több módszer kipróbálása
 - Romlott a pontosság
 - Más módszerekhez viszont szükség van rájuk

MODELLEK KOMBINÁLÁSA

- Több modell építése
 - Címkézésnél súlyozott szavazás
 - Hatékony, ha a modellek önmagukban pontosak és az egyes modellek eltérőek (más mintákat osztályoznak jól)

Boosting

- Súlyok a tanítómintákhoz
- Felépített modell kiértékelése a tanítómintákon
 - Modell súly
 - Rosszul osztályozott tanítóminták relatív súlyának növelése (nyesés!)
- Klasszikus AdaBoost követelmény: pontosság a tanítómintán minimum 50% (és kevesebb, mint 100%)
- SAMME: minimális pontosság követelmény csak 1/(osztályok száma)

o XV

- Egyszerű kombinálás, keresztvalidáción alapul
- Tanítóhalmaz véletlenszerű szétbontása, csak egy részén tanul, másik részén kiértékel
 - Pontosság → modell súlya

KOMBINÁLT MODELLEK EREDMÉNYEI

- o Boosting vagy XV?
 - Bizonyos esetekben a boosting leáll
 - "Tökéletes" modell a tanítóhalmazon
 - Főleg kis tanítóminták mellett
 - Ilyenkor az XV még segíthet

OSZTÁLYOZÁSI KONFIDENCIA

- Mennyire biztos a modellünk a kimenetben
 - Levél (csomópont) konfidencia
 - o Pl. többségi osztály aránya a levélben (nyesés!)
 - Útvonal konfidencia
 - Osztályozási útvonalon a konfidenciák (súlyozott) összegzése
 - Egyfajta nyesési eljárás
- On-line tanulás (újratanulás)
 - Teljes modellépítés helyett a modell kisméretű megváltoztatása
 - Útvonal konfidencia, mint dinamikus nyesés
 - Arányok változásával változik a nyesés

ÖSSZEFOGLALÁS

- Modell alapú idősor-osztályozó döntési fa alapon
- o Tanítás gyorsítása: -22% futási idő
- Pontosság növelése
 - Új operátorok
 - Attribútum választási heurisztika
 - Kombinált modellek
- On-line tanulás teljes modellépítés helyett
 - Útvonal konfidenciák használatával
- Fejlesztési lehetőségek
 - Streamben jelfelismerés (csúszóablakos megoldás)
 - Az elv alapján bármilyen félig-struktúrált/struktúrált adat osztályozására kiterjeszthető

