

Soal

 1 Jika $f,g \in \mathcal{R}[a,b]$ dan $f(x) \leq g(x)$ untuk setia
p $x \in [a,b],$ buktikan bahwa

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x.$$

 $\boxed{\mathbf{2}}$ Jika $f \in \mathcal{RS}[a,b]$ dan $|f(x)| \leq M$ untuk setiap $x \in [a,b]$, buktikan bahwa

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}g \right| \le M|g(a) - g(b)|.$$

- (a) Dimisalkan (X, d) dan (Y, D) masing-masing ruang metrik, himpunan $E \subset X$ daN $f : E \to Y$ untuk setiap $n \in \mathbb{N}$. Tuliskan definisi barisan fungsi $\langle f_n \rangle$ konvergen seragam ke fungsi f pada E.
 - (b) Amatilah apakah barisan $\langle f_n \rangle$ dan $\langle g_n \rangle$ dengan $f_n(x) = \frac{1}{n}$ dan $g_n(x) = \frac{1}{x}$ untuk n = 1, 2, ... konvergen seragam pada interval (0, 1).

Jika $f,g\in\mathcal{R}[a,b]$ dan $f(x)\leq g(x)$ untuk setiap $x\in[a,b]$, buktikan bahwa

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x.$$

Solusi:

Misalkan $\int_a^b f(x) \, \mathrm{d}x = A \, \mathrm{dan} \, \int_a^b g(x) \, \mathrm{d}x = B$. Akan dibuktikan bahwa $A \leq B$. Misalkan $P \in \mathcal{P}[a,b]$ dengan $P = \{x_0,x_1,\dots,x_n\}$ dan tinjau bahwa $A = \sup_P L(f,P)$ dan $B = \sup_P L(g,P)$. Karena $f(x) \leq g(x)$ untuk setiap $x \in [a,b]$, maka $m_i(f) \leq m_i(g)$. Ini berarti

$$L(f, P) = \sum_{i=1}^{n} m_i(f) \Delta x_i \le \sum_{i=1}^{n} m_i(g) \Delta x_i = L(g, P).$$

Karena ini berlaku untuk sebarang $P \in \mathcal{P}[a, b]$,

$$A = \sup_{P} L(f, P) \le \sup_{P} L(g, P) = B$$

seperti yang ingin dibuktikan.

Jika $f \in \mathcal{RS}[a,b]$ dan $|f(x)| \leq M$ untuk setiap $x \in [a,b],$ buktikan bahwa

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}g \right| \le M|g(a) - g(b)|.$$

Solusi:

Berdasarkan teorema rata-rata, terdapat $c \in [a,b]$ sedemikian sehingga $\int_a^b f \, dg = f(c)(g(b)-g(a))$. Ini berarti

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}g \right| = |f(c)(g(b) - g(a))| = |f(c)||g(b) - g(a)| \le M|g(b) - g(a)|$$

seperti yang ingin dibuktikan.

(b) Amatilah apakah barisan $\langle f_n \rangle$ dan $\langle g_n \rangle$ dengan $f_n(x) = \frac{1}{n}$ dan $g_n(x) = \frac{1}{x}$ untuk n = 1, 2, ... konvergen seragam pada interval (0, 1).

Solusi:

(a) Barisan $\langle f_n \rangle$ konvergen seragam pada E dengan $f_n \to f$, jika untuk setiap $\varepsilon > 0$ terdapat $N \in \mathbb{N}$ sehingga untuk setiap $n \geq N$ dan setiap $x \in E$ berlaku $D(f_n(x), f(x)) < \varepsilon$.

(b) Akan dibuktikan bahwa $\langle f_n(x) \rangle$ konvergen seragam. Ambil sebarang $\varepsilon > 0$, menurut Archimedes terdapat bilangan asli N yang memenuhi $\frac{2}{\varepsilon} < N$ atau setara dengan $\frac{2}{N} < \varepsilon$. Untuk setiap dua bilangan asli $m,n \geq N$ dan setiap $x \in (0,1)$, dengan ketaksamaan segitiga berlaku

$$|f_n(x) - f_m(x)| = \left|\frac{1}{n} - \frac{1}{m}\right| \le \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right| = \frac{1}{n} + \frac{1}{m} \le \frac{1}{N} + \frac{1}{N} = \frac{2}{N} < \varepsilon$$

yang berarti memenuhi kriteria Cauchy. Jadi, $\langle f_n \rangle$ konvergen seragam di (0,1). Akan dibuktikan $\langle g_n \rangle$ konvergen seragam. Untuk setiap bilangan asli m,n dan $x \in (0,1)$ berlaku

$$|f_m(x) - f_n(x)| = \left|\frac{1}{x} - \frac{1}{x}\right| = 0 < \varepsilon$$

yang berarti memenuhi kriteria Cauchy. Jadi, $\langle g_n \rangle$ konvergen seragam di (0,1).