Written Assignment 9

Lucas Bouck

04/29/16

1 Problem 1

Prove that if $|f(x) - f(y)| < \epsilon$ for all $x, y \in [a, b]$ then

$$\sup\{f(t) : t \in [a, b]\} - \inf\{f(t) : t \in [a, b]\} \le \epsilon$$

Proof:

Let f be a function defined on [a,b] and suppose $|f(x)-f(y)|<\epsilon$ for all $x,y\in[a,b]$. We must show that $\sup\{f(t):t\in[a,b]\}-\inf\{f(t):t\in[a,b]\}\le\epsilon$. Let $\epsilon>0$, and let $x,y\in[a,b]$. Then, $|f(x)-f(y)|<\epsilon$, which means $-\epsilon< f(x)-f(y)<\epsilon$. Then $f(y)-\epsilon< f(x)<\epsilon+f(y)$. Since $f(x)<\epsilon+f(y)$ for all $x\in[a,b]$, then $\epsilon+f(y)$ is an upper bound of f on [a,b]. Thus, $\sup\{f(t):t\in[a,b]\}\le\epsilon+f(y)$. Then, $\sup\{f(t):t\in[a,b]\}-\epsilon$ is a lower bound of f on [a,b] and $\sup\{f(t):t\in[a,b]\}-\epsilon$ is a lower bound of f on [a,b] and $\sup\{f(t):t\in[a,b]\}-\epsilon\le\inf\{f(t):t\in[a,b]\}$. Then finally, $\sup\{f(t):t\in[a,b]\}-\inf\{f(t):t\in[a,b]\}\le\epsilon$, which is what we want.

2 Problem 2a

Let f be Darboux integrable on [a, b], and let $c \in (a, b)$. Prove that f is Darboux integrable on [a, c] and on [c, b].

Proof:

Suppose f is integrable on [a,b] and let $c \in (a,b)$. We will first show that f is integrable on [a,c]. Let $\epsilon > 0$. Then there exists a partition $P = \{x_0,...,x_n\}$ of [a,b] such that $U(f,P) - L(f,P) < \epsilon$. Since $c \in (a,b)$, then without loss of generality, $c \in [x_{k-1},x_k]$ for some $k \in \{1,...,n\}$. Choose the partition $R = \{x_0,...,x_{k-1}\} \cup \{c\}$, which is a partition of [a,c]. We will denote the upper sum of f on [a,c] by U'(f,R) and the lower sum of f on [a,c] by L'(f,R). Then

$$U'(f,R) - L'(f,R) = \sum_{i=1}^{k-1} (M_i - m_i)(x_i - x_{i-1}) + (\sup\{f(x) : x \in [x_{k-1}, c]\} - \inf\{f(x) : x \in [x_{i-1}, c]\})(c - x_{k-1})$$

where $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$. Since $[x_{k-1}, c] \subseteq [x_{k-1}, x_k]$, then $c - x_{k-1} \le x_k - x_{k-1}$. Also, $\sup\{f(x) : x \in [x_{k-1}, c]\} \le \sup\{f(x) : x \in [x_{k-1}, x_k]\}$, and $\inf\{f(x) : x \in [x_{k-1}, c]\} \ge \inf\{f(x) : x \in [x_{k-1}, x_k]\}$, which means $\sup\{f(x) : x \in [x_{k-1}, c]\} - \inf\{f(x) : x \in [x_{k-1}, c]\} \le M_k - m_k$ Thus,

$$\sum_{i=1}^{k-1} (M_i - m_i)(x_i - x_{i-1}) + (\sup\{f(x) : x \in [x_{k-1}, c]\} - \inf\{f(x) : x \in [x_{k-1}, c]\})(c - x_{k-1})$$

$$\leq \sum_{i=1}^{k-1} (M_i - m_i)(x_i - x_{i-1}) + (M_k - m_k)(x_k - x_{k-1}) = \sum_{i=1}^k (M_i - m_i)(x_i - x_{i-1})$$

Also since $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$, $M_i - m_i \ge 0$ for all $i \in \{1, ..., n\}$. We also know that $x_i - x_{i-1} \ge 0$ for all $i \in \{1, ..., n\}$. Thus, $\sum_{i=k+1}^{n} (M_i - m_i)(x_i - x_{i-1}) \ge 0$, and

$$\sum_{i=1}^{k} (M_i - m_i)(x_i - x_{i-1}) \le \sum_{i=1}^{k} (M_i - m_i)(x_i - x_{i-1}) + \sum_{i=k+1}^{n} (M_i - m_i)(x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) = U(f, P) - L(f, P) < \epsilon$$

which means there exists a partition R such that $U'(f,R)-L'(f,R)<\epsilon$, and f is integrable on [a,c].

We must now show that f is integrable on [c,b]. Let $\epsilon'>0$. Then there exists a partition $P'=\{x_0,...,x_m\}$ of [a,b] such that $U(f,P')-L(f,P')<\epsilon$. Since $c\in(a,b)$, then without loss of generality, $c\in[x_{l-1},x_l]$ for some $l\in\{1,...,m\}$. Choose the partition $Q=\{x_l,...,x_m\}\cup\{c\}$, which is a partition of [c,b]. We will denote the upper sum of f on [c,b] by U''(f,Q) and the lower sum of f on [c,b] by L''(f,Q). Then

$$U''(f,Q) - L''(f,Q) = (\sup\{f(x) : x \in [c,x_l]\} - \inf\{f(x) : x \in [c,x_l]\})(x_l - c) + \sum_{i=1}^{m} (M_i - m_i)(x_i - x_{i-1})$$

where $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$. Since $[c, x_l] \subseteq [x_{l-1}, x_l]$, then $x_l - c \le x_l - x_{l-1}$. Also, $\sup\{f(x) : x \in [c, x_l]\} \le \sup\{f(x) : x \in [x_{l-1}, x_l]\}$, and $\inf\{f(x) : x \in [c, x_l]\} \ge \inf\{f(x) : x \in [x_{l-1}, x_l]\}$, which means $\sup\{f(x) : x \in [c, x_l]\} - \inf\{f(x) : x \in [c, x_l]\} \le M_l - m_l$ Thus,

$$(\sup\{f(x): x \in [c, x_l]\} - \inf\{f(x): x \in [c, x_l]\})(x_l - c) + \sum_{i=1}^{l-1} (M_i - m_i)(x_i - x_{i-1})$$

$$\leq (M_l - m_l)(x_l - x_{l-1}) + \sum_{i=l+1}^m (M_i - m_i)(x_i - x_{i-1}) = \sum_{i=l}^m (M_i - m_i)(x_i - x_{i-1})$$

Also since $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$, $M_i - m_i \ge 0$ for all $i \in \{1, ..., m\}$. We also know that $x_i - x_{i-1} \ge 0$ for all $i \in \{1, ..., m\}$. Thus, $\sum_{i=1}^{l-1} (M_i - m_i)(x_i - x_{i-1}) \ge 0$, and

$$\sum_{i=l}^{m} (M_i - m_i)(x_i - x_{i-1}) \le \sum_{i=1}^{l-1} (M_i - m_i)(x_i - x_{i-1}) + \sum_{i=l}^{m} (M_i - m_i)(x_i - x_{i-1})$$

$$= \sum_{i=1}^{m} (M_i - m_i)(x_i - x_{i-1}) = U(f, P') - L(f, P') < \epsilon'$$

which means there exists a partition Q such that $U''(f,Q) - L''(f,Q) < \epsilon'$, and f is integrable on [c,b].

3 Problem 2b

Prove that $\int_a^b f = \int_a^c f + \int_c^b f$

Proof:

Suppose f is integrable on [a,b] and let $c \in (a,b)$. We must show that $\int_a^b f = \int_a^c f + \int_c^b f$. We will first show that $\inf\{U(f,P)\} \ge \inf\{U'(f,R)\} + \inf\{U''(f,Q)\}$, where U'(f,R) is the upper sum of f over [a,c] with some partition R and U''(f,Q) is the upper sum of f over [c,b] with some partition Q. Suppose not. Then there exists a partition of [a,b] $P' = \{x_0, ..., x_n\}$ such that $U(f,P') < \inf\{U'(f,R)\} + \inf\{U''(f,Q)\}$. Since $c \in (a,b)$, then without loss of generality, $c \in [x_{k-1}, x_k]$ for some $k \in \{1, ..., n\}$. Then choose the partition $R' = \{x_0, ..., x_{k-1}\} \cup \{c\}$ and the partition $Q' = \{x_k, ..., x_n\} \cup \{c\}$, where R' and Q' are partitions of [a, c] and [c, b] respectively. Then,

$$U'(f,R') + U''(f,Q') = \sum_{i=1}^{k-1} M_i(x_i - x_{i-1}) + \sup\{f(x) : x \in [x_{k-1},c]\}(c - x_{k-1}) + \sup\{f(x) : x \in [c,x_k]\}(x_k - c) + \sum_{i=k+1}^n M_i(x_i - x_{i-1})$$

where $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$. Since $\sup\{f(x) : x \in [x_{k-1}, c]\} \le \sup\{f(x) : x \in [x_{k-1}, x_k]\} = M_k$ and $\sup\{f(x) : x \in [c, x_k]\} \le \sup\{f(x) : x \in [x_{k-1}, x_k]\} = M_k$,

$$\sup\{f(x): x \in [x_{k-1}, c]\}(c - x_{k-1}) + \sup\{f(x): x \in [c, x_k]\}(x_k - c) \le M_k(c - x_{k-1}) + M_k(x_k - c)$$

Since
$$M_k(c - x_{k-1}) + M_k(x_k - c) = M_k(x_k - x_{k-1})$$
, we have

$$\sum_{i=1}^{k-1} M_i(x_i - x_{i-1}) + \sup\{f(x) : x \in [x_{k-1}, c]\}(c - x_{k-1})$$

$$+\sup\{f(x): x \in [c, x_k]\}(x_k - c) + \sum_{i=k+1}^n M_i(x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{k-1} M_i(x_i - x_{i-1}) + M_k(x_k - x_{k-1}) + \sum_{i=k+1}^n M_i(x_i - x_{i-1}) = \sum_{i=1}^n M_i(x_i - x_{i-1})$$

Since $\sum_{i=1}^{n} M_i(x_i - x_{i-1}) = U(f, P)$, we have $U'(f, R') + U''(f, Q') \leq U(f, P)$, which contradicts our assumption that $\inf\{U(f, P)\} < \inf\{U'(f, R)\} + \inf\{U''(f, Q)\}$, so

$$\inf\{U(f,P)\} \ge \inf\{U'(f,R)\} + \inf\{U''(f,Q)\}$$

We must now show that $\sup\{L(f,P)\} \leq \sup\{L'(f,R)\} + \sup\{L''(f,Q)\}$, where L'(f,R) is the lower sum of f over [a,c] with some partition R and L''(f,Q) is the upper sum of f over [c,b] with some partition Q. Suppose not. Then there exists a partition of [a,b] $P'' = \{x_0, ..., x_z\}$ such that $L(f,P') > \sup\{L'(f,R)\} + \sup\{L''(f,Q)\}$. Since $c \in (a,b)$, then without loss of generality, $c \in [x_{l-1},x_l]$ for some $l \in \{1,...,z\}$. Then choose the partition $R'' = \{x_0, ..., x_{l-1}\} \cup \{c\}$ and the partition $Q'' = \{x_l, ..., x_z\} \cup \{c\}$, where R'' and Q'' are partitions of [a,c] and [c,b] respectively. Then,

$$L'(f, R'') + L''(f, Q'') = \sum_{i=1}^{l-1} m_i(x_i - x_{i-1}) + \inf\{f(x) : x \in [x_{l-1}, c]\}(c - x_{l-1})$$
$$+ \inf\{f(x) : x \in [c, x_l]\}(x_l - c) + \sum_{i=l+1}^{z} m_i(x_i - x_{i-1})$$

where $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$. Since $\inf\{f(x) : x \in [x_{l-1}, c]\} \ge \inf\{f(x) : x \in [x_{l-1}, x_l]\} = m_l$ and $\inf\{f(x) : x \in [c, x_l]\} \ge m_l$,

$$\inf\{f(x): x \in [x_{l-1}, c]\}(c - x_{l-1}) + \inf\{f(x): x \in [c, x_l]\}(x_l - c) \ge m_l(c - x_{l-1}) + m_l(x_l - c)$$

Since $m_l(c - x_{l-1}) + m_l(x_l - c) = m_l(x_l - x_{l-1})$, we have

$$\sum_{i=1}^{l-1} m_i(x_i - x_{i-1}) + \inf\{f(x) : x \in [x_{l-1}, c]\}(c - x_{l-1})$$

+
$$\inf\{f(x): x \in [c, x_l]\}(x_l - c) + \sum_{i=l+1}^{z} m_i(x_i - x_{i-1})$$

$$\geq \sum_{i=1}^{l-1} m_i(x_i - x_{i-1}) + m_l(x_l - x_{l-1}) + \sum_{i=l+1}^{z} m_i(x_i - x_{i-1}) = \sum_{i=1}^{z} m_i(x_i - x_{i-1})$$

Since $\sum_{i=1}^{z} m_i(x_i - x_{i-1}) = L(f, P')$, we have $L'(f, R'') + L''(f, Q'') \ge L(f, P')$, which contradicts our assumption that $\sup\{L(f, P)\} > \sup\{L'(f, R)\} + \sup\{L''(f, Q)\}$, so

$$\sup\{L(f, P)\} \le \sup\{L'(f, R)\} + \sup\{L''(f, Q)\}$$

Now that we have, $\inf\{U(f,P)\} \ge \inf\{U'(f,R)\} + \inf\{U''(f,Q)\}$ and $\sup\{L(f,P)\} \le \sup\{L'(f,R)\} + \sup\{L''(f,Q)\}$, we get the following by using the fact that f is integrable on [a,b], [a,c], and [c,b].

$$\sup\{L'(f,R)\} + \sup\{L''(f,Q)\} = \inf\{U'(f,R)\} + \inf\{U''(f,Q)\} \le \inf\{U(f,P)\} = \sup\{L(f,P)\}$$

So we now have $\sup\{L'(f,R)\} + \sup\{L''(f,Q)\} \le \sup\{L(f,P)\}$ and $\sup\{L(f,P)\} \le \sup\{L'(f,R)\} + \sup\{L''(f,Q)\}$, which means

$$\sup\{L(f,P)\} = \sup\{L'(f,R)\} + \sup\{L''(f,Q)\}$$

and

$$\int_a^b f = \int_a^c f + \int_c^b f$$

which is what we want.

4 Problem 3

Suppose that f and g are both Darboux integrable on [a,b] and that $f(x) \leq g(x)$ for all $x \in [a,b]$. Prove that $\int_a^b f \leq \int_a^b g$.

Proof:

Suppose that f and g are both Darboux integrable functions on [a,b] and that $f(x) \leq g(x)$ for all $x \in [a,b]$. We want to show that $\int_a^b f \leq \int_a^b g$. We will first show that for any closed interval $[c,d] \subseteq [a,b]$, $\sup\{f(x): x \in [c,d]\} \leq \sup\{g(x): x \in [c,d]\}$. Suppose not. then $\sup\{g(x): x \in [c,d]\}$ is not an upper bound of f on [c,d], which means there exists a $x' \in [c,d]$ such that $f(x') > \sup\{g(x): x \in [c,d]\}$. Then f(x') > g(x) for all $x \in [c,d]$, which contradicts our assumption that $f(x) \leq g(x)$ for all $x \in [a,b]$. Thus, for any closed interval $[c,d] \subseteq [a,b]$, $\sup\{f(x): x \in [c,d]\} \leq \sup\{g(x): x \in [c,d]\}$.

Let $P = \{x_0, ..., x_n\}$ be a partition of [a, b]. Then for all $i \in \{1, ..., n\}$, $\sup\{f(x) : x \in [x_{i-1}, x_i]\}(x_i - x_{i-1}) \le \sup\{g(x) : x \in [x_{i-1}, x_i]\}(x_i - x_{i-1})$. Then,

$$U(f,P) = \sum_{i=1}^{n} \sup\{f(x) : x \in [x_{i-1}, x_i]\}(x_i - x_{i-1}) \le \sum_{i=1}^{n} \sup\{g(x) : x \in [x_{i-1}, x_i]\}(x_i - x_{i-1}) = U(g, P)$$

Thus for all partitions P of [a,b], $U(f,P) \leq U(g,P)$. Since $\inf\{U(f,P)\} \leq U(f,P)$ for all partitions P, $\inf\{U(f,P)\}$ is also a lower bound of $\{U(g,P)\}$, so $\inf\{U(f,P)\}$

 $\inf\{U(g,P)\}$. Since both f and g are both Darboux integrable on [a,b],

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

which is what we want.