Single source shortest paths

- Given a directed graph G=<V, E> and a source node, s, find the shortest path to each node from the source, s
- · Dijkstra's algorithm

A greedy algorithm (Dijkstra's)

- S partial solution set, a set of nodes whose shortest paths have been found
 - We use $\delta(s, v)$ to denote the length of shortest path from s to v
- Special path for node except the source node s
 - A path from the source node s where all nodes except the endpoint must belong to S
- Greedy algorithm
 - At each step, add the node with the shortest special path to S

Dijkstra's algorithm

$$\begin{split} S: & \text{ partial solution set } \\ d[v]: & \text{ length of the shortest } \\ & \text{ special path for } v. \\ \pi[v]: & \text{ the previous node of } \\ & v & \text{ along its shortest } \\ & \text{ (special) path.} \end{split}$$

Example

Step	u	S	1	2	$\frac{d}{3}$	4	5	1	2	3^{π}	4	5
Init	-	Ø	0	∞	∞	∞	∞	-	-	-	1	-
1	1	{1}	0	50	30	100	10	-	1	1	1	1
2	5	{1, 5}	0	50	30	20	<u>10</u>	-	1	1	5	1
3	4	{1,5,4}	0	40	30	<u>20</u>	<u>10</u>	-	4	1	5	1
4	3	{1,5,4,3}	0	35	<u>30</u>	<u>20</u>	<u>10</u>	- 1	3	1	5	1
5	2	{1,5,4,3,2}	0	<u>35</u>	<u>30</u>	<u>20</u>	<u>10</u>	-	3	1	5	1

Example

Step	u	S	d				π					
Init	-	Ø	0	∞	∞	∞	∞	-	-	-	-	-
1	1	{1}	0	50	30	100	10	-	1	1	1	1
2	5	{1, 5}	0	50	30	20	<u>10</u>	-	1	1	5	1
3	4	{1,5,4}	0	40	30	<u>20</u>	<u>10</u>	-	4	1	5	1
4	3	{1,5,4,3}	<u>0</u>	35	<u>30</u>	<u>20</u>	<u>10</u>	-	3	1	5	1
5	2	{1,5,4,3,2}	<u>0</u>	<u>35</u>	<u>30</u>	<u>20</u>	<u>10</u>	-	3	1	5	1

Proof using loop invariant

- We prove the following loop invariant
 - At the start of each while loop iteration, for any node v in S, $d[v] = \delta(s, v)$

Proof.

Initialization: Initially $S = \emptyset$, trivially true.

Maintenance: Assume that at the start of a while loop iteration, for any node v in S, $d[v] = \delta(s, v)$. We like to show that $d[u] = \delta(s, u)$ when u is added. (next slide)

Termination: All nodes are added to S, so all the shortest paths are

Proof of the maintenance step

- Assume by contradiction that $d[u] \neq \delta(s, u)$. Let p be the shortest path
 - Because $s \in S$ and $u \in V-S$, let y be the first node along p such that $y \in V-S$ S, and x is y's predecessor along p
 - We show that
 - 1. $d[x] = \delta(s, x)$ by loop invariant assumption
 - 2. $d[y] = \delta(s, y)$ by the convergence property
 - 3. $d[y] \le d[u]$ by the path structure
 - 4. $d[u] \le d[y]$ by the algorithm
 - 5. $d[u] = d[y] = \delta(s, y) = \delta(s, u)$

Analysis of the heap implementation Dijkstra(G, w, s)

An implementation using adjacency <u>matrix</u> Dijkstra(Weight L[][]) // n = |V|/* initialization */ $Q = \{i \mid 1 \le i \le n\}; // S = \{1\}; 1 \text{ is the source }$ → for (i=1; i<=n; i++) { $\Theta(V)$ $d[i] = \infty;$ $\pi[i] = 1;$ } d[1] = 0; O(V) → for (each v) { if (d[u]+L[u,v] < d[v]) { d[v] = d[u]+L[u,v]; $\pi[v] = u;$ Θ(V) -If go through L[u, 1..n] Total: $\Theta(V^2)$