Антон Каразеев, 493

- 3. Теоретические задачи.
- 3.1 Знакомство с линейным классификатором
- 1. Как выглядит бинарный линейный классификатор?

Есть два класса объектов $A = \{-1, +1\}$. Отображение $f(x) : X \to A$ называется классификатором, отображающим объекты из множества X во множество классов A. Линейный классификатор выглядит следующим образом: $f(x) = sign(w^T x + w_0)$.

2. Что такое отступ алгоритма на объекте? Какие выводы можно сделать из знака отступа?

В общем виде отступ $M(x_i)=y_ig(x_i)$, где y_i - метка i-того класса. Так как множество классов $A=\{-1,\ +1\}$, то можно сделать вывод о том, что при правильном отнесении объекта к классу $M(x_i)$ положителен. В противном случае - отрицательный. Следовательно, неположительный отступ - ошибка классификатора.

3. Как классификаторы вида $a(x) = sign(< w, x > -w_0)$ сводят к классификаторам вида a(x) = sign(< w, x >)?

К вектору x добавляют еще одну координату со значением -1, а к вектору $w-w_0$.

4. Как выглядит запись функционала эмпирического риска через отступы? Какое значение он должен принимать для "наилучшего" алгоритма классификации?

$$Q(X) = \sum_{x \in X} I\{M(x) < 0\}$$

Для "наилучшего" алгоритма классификации он должен принимать значение 0.

5. Если в функционале эмпирического риска (риск с пороговой функцией потерь) всюду написаны строгие неравенства $(M_i < 0)$ можете ли вы сразу придумать параметр w для алгоритма классификации a(x) = sign(< w, x >), минимизирующий такой функционал?

Положить w = 0.

6. Запишите функционал аппроксимированного эмпирического риска, если выбрана функция потерь ${\cal L}(M).$