Manual de Modelos de Predicción

15 de agosto de 2024

1. Introducción

Este manual describe los cinco modelos de predicción implementados en esta aplicación: Holt-Winters aditivo, Holt-Winters multiplicativo, Prophet, SARI-MA, y GAM. Cada sección incluye la formulación matemática del modelo y la explicación de las variables y parámetros involucrados.

2. Holt-Winters Aditivo

2.1. Descripción

El modelo Holt-Winters aditivo es una técnica de suavizado exponencial que se usa para series temporales con tendencia y estacionalidad aditiva.

2.2. Formulación Matemática

$$L_{t} = \alpha (Y_{t} - S_{t-m}) + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_{t} = \gamma (Y_{t} - L_{t}) + (1 - \gamma)S_{t-m}$$

$$\hat{Y}_{t+h} = L_{t} + hT_{t} + S_{t-m+h}$$

2.3. Explicación de Variables y Parámetros

- Y_t : Valor observado en el tiempo t.
- \hat{Y}_{t+h} : Predicción para h pasos adelante.
- L_t : Nivel en el tiempo t.
- T_t : Tendencia en el tiempo t.
- lacksquare S_t : Componente estacional en el tiempo t.
- lacktriangleq m: Periodo de la estacionalidad.

- α : Parámetro de suavizado para el nivel, $0 < \alpha < 1$.
- β : Parámetro de suavizado para la tendencia, $0 < \beta < 1$.
- γ : Parámetro de suavizado para la estacionalidad, $0 < \gamma < 1$.

3. Holt-Winters Multiplicativo

3.1. Descripción

El modelo Holt-Winters multiplicativo es adecuado para series temporales con tendencia y estacionalidad multiplicativa.

3.2. Formulación Matemática

$$L_{t} = \alpha \left(\frac{Y_{t}}{S_{t-m}} \right) + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta(L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_{t} = \gamma \left(\frac{Y_{t}}{L_{t}} \right) + (1 - \gamma)S_{t-m}$$

$$\hat{Y}_{t+h} = (L_{t} + hT_{t})S_{t-m+h}$$

3.3. Explicación de Variables y Parámetros

- Y_t : Valor observado en el tiempo t.
- \hat{Y}_{t+h} : Predicción para h pasos adelante.
- L_t : Nivel en el tiempo t.
- T_t : Tendencia en el tiempo t.
- S_t : Componente estacional en el tiempo t.
- m: Periodo de la estacionalidad.
- α : Parámetro de suavizado para el nivel, $0 < \alpha < 1$.
- \bullet β : Parámetro de suavizado para la tendencia, $0<\beta<1.$
- γ : Parámetro de suavizado para la estacionalidad, $0 < \gamma < 1$.

4. Prophet

4.1. Descripción

Prophet es un modelo de descomposición aditiva que ajusta estacionalidad, tendencia y días festivos.

4.2. Formulación Matemática

$$y(t) = g(t) + s(t) + h(t) + \epsilon_t$$

$$g(t) = (k + a(t))t + (m + b(t))$$

$$s(t) = \sum_{j=1}^{N} S_j(t)$$

$$h(t) = \sum_{k=1}^{K} \delta_k 1_{[t \in D_k]}$$

4.3. Explicación de Variables y Parámetros

- y(t): Valor observado en el tiempo t.
- g(t): Componente de tendencia.
- s(t): Componente estacional.
- h(t): Efecto de los días festivos.
- ϵ_t : Error residual.
- ullet k: Pendiente de la tendencia.
- m: Intercepto de la tendencia.
- $S_i(t)$: Función estacional.
- a(t), b(t): Ajustes en la pendiente e intercepto para capturar cambios en la tendencia.
- δ_k : Efecto de los días festivos.
- D_k : Conjunto de días festivos.

5. SARIMA

5.1. Descripción

SARIMA (AutoRegressive Integrated Moving Average with Seasonal components) es un modelo que combina componentes autoregresivos, de media móvil, integración y estacionalidad.

5.2. Formulación Matemática

$$\Phi_p(B)\Phi_P(B^s)(1-B)^d(1-B^s)^DY_t = \theta_q(B)\Theta_Q(B^s)\epsilon_t$$

5.3. Explicación de Variables y Parámetros

- lacksquare Y_t : Valor observado en el tiempo t.
- ϵ_t : Error residual en el tiempo t.
- $\Phi_p(B)$: Operador autoregresivo de orden p.
- $\Phi_P(B^s)$: Operador autoregresivo estacional de orden P.
- $\theta_q(B)$: Operador de media móvil de orden q.
- $\Theta_Q(B^s)$: Operador de media móvil estacional de orden Q.
- B: Operador de retardo.
- \bullet s: Periodo de la estacionalidad.
- d: Orden de diferenciación no estacional.
- D: Orden de diferenciación estacional.

6. GAM (Generalized Additive Model)

6.1. Descripción

GAM es un modelo aditivo que permite que la relación entre las variables independientes y la variable dependiente sea modelada como una suma de funciones no lineales.

6.2. Formulación Matemática

$$g(\mathbb{E}[Y]) = \beta_0 + \sum_{i=1}^{p} f_i(X_i)$$

6.3. Explicación de Variables y Parámetros

- ullet Y: Variable dependiente.
- $\bullet \ g(\cdot)$: Función de enlace que transforma $\mathbb{E}[Y]$ en la escala de la variable de respuesta.
- β_0 : Intercepto del modelo.
- X_i : Variables independientes.
- $f_i(X_i)$: Funciones no lineales de las variables independientes.
- p: Número de variables independientes.