Durchführung: 03.07.2018

Abgabe: 10.07.2018

Praktikumsprotokoll V701

Reichweite α -Strahlung

 ${\bf Carolin~Harkort^1,} \\ {\bf Jacqueline~Schlingmann^2}$

 $^{^{1}} carolin.harkort@tu-dortmund.de\\$

 $^{^2} jacque line. schling mann@tu-dortmund. de\\$

1 Zielsetzung

In diesem Versuch wird die Reichweite von α -Strahlung und die Statistik des radioaktiven Zerfalls von Americium untersucht.

2 Theorie

Die Entstehung von α -Strahlung wird quantenmechanik betrachtet. Durch die gleichzeitig wirkenden Kernkräfte und Abstoßungskräfte der Protonen ensteht ein unendlich tiefer Potentialtopf. Durch die quantenmechanische Erklärung des Tunneleffekts können α -Teilchen aus dem Atomkern ermittiert werden.

Dringt α -Strahlung in Materie ein, kommt es durch Wechselwirkungen zur Energieabgabe. Zu den Wechselwirkungsprozessen gehören die Rutherford Streuung, also die elastischen Stöße der α -Teilchen mit der Materie, und Ionisations- und Absorptionsprozesse. In diesem Versuch werden besonders die Ionisations- und Absorptionsprozesse betrachtet, die Rutherford Streuung spielt hierbei nur eine untergeordnete Rolle.

Der Energieverlust ist abhängig von der Energie der α -Strahlung und der Dichte des Materials. Für kleine Geschwindigkeiten nimmt die Anzahl der Wechselwirkungen zu. Die Bethe-Bloch-Gleichung beschreibt die Energieabnahme der α -Teilchen pro Weglängeneinheit bei hinreichend großen Energien

$$-\frac{dE_{\alpha}}{dx} = \frac{z^2 e^4}{4\pi\epsilon_0 m_e} \frac{nZ}{\nu^2} ln\left(\frac{2m_e \nu^2}{I}\right),\tag{1}$$

abhängig von der Ladung z und der Geschwindigkeit v der α -Strahlung, Ordnungszahl Z, der Teilchendichte n und der Ionisierungsenergie I des Targetgases. Für α -Teilchen mit sehr kleinen Energien verliert sie aufgrund der stattfindenen Ladungsaustauschprozesse ihre Gültigkeit.

Die Reicheweite eines α -Teilchens wird durch das Integral

$$R = \int_0^{E_\alpha} \frac{dE_\alpha}{-dE_\alpha/dx} \tag{2}$$

bestimmt. Dies beschreibt die Entfernung bis zu vollständigen Abbremsung der α -Teilchen. Die mittlere Reichweite hingegen ist die Entfernung, die noch die Hälfte der vorhandenen α -Teilchen erreicht

$$R_m = 3, 1 \cdot E_\alpha^{\frac{3}{2}}.\tag{3}$$

Für die druckabhängige Reichweite von α -Teilchen in Gasen gilt der folgende Zusammenhang

$$x = x_0 \frac{p}{p_0}. (4)$$

Hierbei entspricht x_0 dem festen Abstand zwischen Detektor und α -Strahler und p_0 dem Atmospärendruck von 1013 mbar.

3 Aufbau

Der Versuchsaufbau ist in Abbildung 1 dargestellt.

Abbildung 1: Experimenteller Aufbau.[1]

Benötigt werden eine α -Strahlungsquelle, für diesen Versuch Americium und einen Halbleiter-Sperrschichtzähler als Detektor in einem Glaszylinder. Der Sperrschichtzähler erzeugt bei niedriegen Energien durch einfallende Ion Elektronen-Loch-Paare, die dann zu einem Stromimpuls im Halbleiter führen. Diese Impulse werden von einem Vorverstärker verstärkt und von einem Vielkanalanalysator analysiert. Im Computerprogramm Multichannel Analyzer werden die unterschiedlichen Pulshöhen in einem Histogramm dargestellt.

4 Durchführung

Zu Beginn des Versuchs wird der Glaszylinder evakuiert. Danach werden für die zwei Abstände $x=1,5\,\mathrm{cm}$ und $x=2\,\mathrm{cm}$ für eine Minute die gemessen Counts notiert. Die gleiche Messung wird bei Atmospährendruck durchgeführt.

Bei 0 mbar wird die Annahme gemacht, dass die detektierte α -Strahlung eine Energie von 4 MeV hat. Durch das Öffnen und Schließen der Belüftungsventils kann schrittweise der Druck um 50 mbar erhöht. Bis 1000 mbar wird jeweils für 2 Minuten die Messung durchgeführt. An Messwerten aufgenommen wird dabei Gesamtzählrate, sowie die Position des Maximums.

Zur Bestimmung der Statistik des radioaktiven Zerfalls werden im evakuierten Zylinder die Counts 100 Mal für 10 Sekunden gemessen.

5 Auswertung

5.1 Bestimmung der Reichweite von lpha-Strahlung

In Tabelle 1 und 2 sind die gemessenen Werte für einen Abstand vo 2 cm und 1,5 cm aufgetragen. Die Energien ergeben sich durch den gemessenen Channel. bei 0 bar wird dieser auf $4\,\mathrm{MeV}$ gesetzt. Die effektive Länge x wird mit Formel (4) bestimmt.

Tabelle 1: Messwerte für einen Abstand von $2\,\mathrm{cm}$

p/mbar	Channel	plses detected	Counts	Energie/MeV	x/cm
0	678	73686	310	4,00	0,00
50	661	74263	315	3,90	0,10
100	590	65991	355	3,48	0,20
150	574	63764	348	3,39	$0,\!30$
200	556	61555	367	$3,\!28$	$0,\!39$
250	531	59580	412	3,13	$0,\!49$
300	523	56438	401	3,09	$0,\!59$
350	559	65994	414	3,30	0,69
400	534	65102	433	$3,\!15$	0,79
450	523	61636	430	3,09	$0,\!89$
500	502	58166	444	2,96	0,99
550	447	29551	434	2,64	1,09
600	443	23408	424	2,61	1,18
650	441	39064	492	2,60	1,28
700	438	31817	515	$2,\!58$	1,38
750	438	22589	413	$2,\!58$	1,48
800	439	16150	374	$2,\!59$	1,58
850	435	6415	221	$2,\!57$	1,68
900	463	8408	267	2,73	1,78
950	434	1681	71	$2,\!56$	1,88
1000	435	440	25	2,57	1,97

Tabelle 2: Messwerte für einen Abstand von $1{,}5\,\mathrm{cm}$

p/mbar	Channel	plses detected	Counts	Energie/MeV	x/cm
50	635	94734	452	4,00	0,07
100	631	93282	447	3,97	$0,\!15$
150	611	92420	512	3,85	$0,\!22$
200	596	90285	533	3,75	$0,\!30$
250	577	88404	485	3,63	$0,\!37$
300	567	87319	519	$3,\!57$	$0,\!44$
350	552	84497	541	3,48	$0,\!52$
400	528	83263	541	3,33	$0,\!59$
450	519	80395	556	$3,\!27$	$0,\!67$
500	510	76957	580	3,21	0,74
550	495	73038	630	$3,\!12$	0,81
600	479	67618	612	3,02	0,89
650	456	61821	663	$2,\!87$	0,96
700	446	55155	655	2,81	1,04
750	440	46731	748	2,77	$1,\!11$
800	440	41832	703	2,77	1,18
850	440	29176	644	2,77	$1,\!26$
900	440	22214	572	2,77	1,33
950	439	17223	466	2,77	1,41
1000	438	11192	349	2,76	1,48

Abbildung 2: Energien der $\alpha\text{-Teil<chen}$ in Abhängigkeit des Drucks in einem Abstand von $2\,\mathrm{cm}$

Abbildung 3: Energien der $\alpha\text{-Teilchen}$ in Abhängigkeit des Drucks in einem Abstand von $1{,}5\,\mathrm{cm}$

Die lineare Regregression wurde jeweils mit

$$E(p) = a \cdot p + b$$

durchgeführt. Die daraus resultierenden Parameter lauten

$$\begin{aligned} a_2 &= (-0,0019 \pm 0,0002) \, \frac{\text{MeV}}{\text{mbar}} \\ b_2 &= (3,81 \pm 0,08) \, \text{MeV} \end{aligned} \qquad \begin{aligned} a_{1,5} &= (-0,00186 \pm 0,00004) \, \frac{\text{MeV}}{\text{mbar}} \\ b_{1,5} &= (4,12 \pm 0,02) \, \text{MeV} \end{aligned}$$

Zur Bestimmung der mittleren Reichweite wird die Zählrate gegen die effektive Länge aufgetragen. Dies ist in den Abbildungen 5 und 4 zu sehen.

Abbildung 4: Zählrate der $\alpha\text{-Teil<en}$ in Abhängigkeit der effektiven Länge in einem Abstand von $2\,\mathrm{cm}$

Abbildung 5: Zählrate der α -Teilchen in Abhängigkeit der effektiven Länge in einem Abstand von 1,5 cm

Die lineare Regression wurde mit

$$R(x) = a \cdot x + b$$

durchgeführt. Die ermittelten Parameter lauten

$$\begin{split} a_2 &= (-4, 4 \pm 0, 6) \cdot 10^2 \, \mathrm{s}^{-1} \mathrm{cm}^{-1} \\ b_2 &= (8, 4 \pm 0, 8) \cdot 10^2 \, \mathrm{s}^{-1} \\ \end{split} \qquad \begin{aligned} a_{1,5} &= (-854 \pm 33) \, \mathrm{s}^{-1} \mathrm{cm}^{-1} \\ b_{1,5} &= (1, 33 \pm 0, 04) \cdot 10^3 \, \mathrm{s}^{-1} \end{aligned}$$

Die zugehörigen Energien werden mit Hilfe der Formel (3) bestimmt. Sie lauten:

$$E_2 = 2,48\,{\rm MeV}$$

$$E_{1,5} = 2,34\,{\rm MeV}$$

Nun wird der Energieverlust $-\frac{dE}{dx}$ bestimmt in dem die Energie als Funktion der effektiven Länge aufgetragen wird. Dies ist in Abbildung 6 zu sehen.

Abbildung 6: Energieverlust

Die lineare Regression wurde mit

$$E(x) = ex + E_0$$

durchgeführt. Die Parameter betragen

$$E_0 = (2,67 \pm 0,03) \, \mathrm{MeV} \\ -\frac{dE}{dx} = e = (0,66 \pm 0,4) \, \frac{\mathrm{MeV}}{\mathrm{cm}}$$

5.2 Statistik des radioaktiven Zerfalls

Zunächst wird der Mittelwert aus den gemessenen Werten bestimmt. Dieser beträgt $\bar{N}=7481,72$ und wurde mit

$$\bar{N} = \frac{\sum(N)}{n}$$

bestimmt. Dabei ist n=103 Die Abweichung wird mit

$$\sigma = \sqrt{\frac{\sum (N - \bar{N})^2}{n - 1}}$$

bestimmt und beträgt $\sigma = 264, 45$.

In Abbildung 7 sind die gemessenen Werte aus Tabelle 3 sowie die Normal- un Poissonverteilung als Histogramm aufgetragen.

Abbildung 7: Histogramm der Messwerte mit der Poissonverteilung und der Normalverteilung

Tabelle 3: gemessene Counts pro $10\,\mathrm{s}$

Messung	Counts								
1	7569	26	7060	51	7500	76	7799	101	7528
2	7186	27	7260	52	7483	77	7838	102	7058
3	7807	28	7049	53	7378	78	7724	103	7188
4	7696	29	7838	54	7106	79	7547		
5	7771	30	7126	55	7566	80	7774		
6	7874	31	7050	56	7401	81	7293		
7	7750	32	6975	57	7575	82	7038		
8	7836	33	7453	58	7729	83	7658		
9	7649	34	7540	59	7536	84	7238		
10	7283	35	7478	60	7717	85	7185		
11	7786	36	7450	61	7583	86	7337		
12	7771	37	7335	62	7713	87	6921		
13	7568	38	7492	63	7434	88	6990		
14	7299	39	7492	64	7625	89	7110		
15	7960	40	7419	65	7743	90	7369		
16	7590	41	7506	66	7466	91	7039		
17	7213	42	7675	67	7927	92	7444		
18	7621	43	7549	68	7229	93	7402		
19	7106	44	7335	69	7272	94	7811		
20	7592	45	7872	70	7688	95	7449		
21	6925	46	7840	71	7743	96	7402		
22	7602	47	7239	72	7746	97	7811		
23	7042	48	7640	73	7768	98	7449		
24	7398	49	7597	74	7456	99	7177		
25	7447	50	7460	75	7624	100	7959		

6 Diskussion

In diesem Versuch treten unterschiedliche Fehlerquellen auf. Zum einen war die Einstellung des Abstandes nicht sehr genau möglich. Zum anderen war die Einstellung des Druckes etwas schwierig. Dies können Begründungen für die Abweichungen in Abbilung 2 sein. Dennoch sin die Abweichungen der mittleren Reichweiten und der Enegien eher gering. Die Reichweiten und Energien sind in Tabelle ?? aufgelistet.

Tabelle 4: Zusammenfassung der Ergebnisse

Abstand/cm	mittlere Reichweite/cm	Energien/MeV
1,5	1,10	2,34
2	1,21	2,48

Das erstellte Histogramm in Abbilung 7 weist Ähnlichkeiten zwischen den Messwerten und der Normalverteilung auf. Zu erwarten wäre ein Zusammenhang zu der Poissonverteilung, der allerdings nicht zu erkennen ist. Dies lässt sich darauf zurückführen, dass nicht oft genug und über einen ausreichend langen Zeitraum gemessen wurde.

Literatur

[1] TU Dortmund. Versuchsanleitung zu Versuch 408. URL: http://129.217.224.2/ HOMEPAGE/MEDPHYS/BACHELOR/AP/SKRIPT/Alpha.pdf (besucht am 10.07.2018).