Simple Binary Bootstrap Full Simulation (Clean)

Waveley

2022 - 02 - 14

Generating Data

First, let's generate some data.

```
set.seed(20220214)
pre_data <-
    defData(
     varname = "L1",
     formula = "0",
     variance = 1,
      dist = "normal"
pre_data <-
    defData(
     pre_data,
     varname = "L2",
     formula = "0",
     variance = 1,
      dist = "normal"
      )
pre_data <-
  defData(
    pre_data,
   varname = "L3",
   formula = "0",
   variance = 1,
    dist = "normal"
pre_data <-
  defData(
    pre_data,
   varname = "A",
   formula = "0.5*L1 + 0.27*L2 - 0.17*L3",
   dist = "binary",
    link = "logit"
pre_data <-
  defData(
    pre_data,
```

```
varname = "Y",
    formula = "0.5*A + 0.8*L2 -0.1*L3",
    dist = "binary",
    link = "logit")
# establish seed_vec for 1000 runs of noboot data
seed_vec <- runif(10000, min = 20220214, max = 202202140) %>% round(0) %>% unique()
# function to generate however many noboot datasets at whatever size
generate_noboot_data <- function(n, size = 5000, seeds = seed_vec, defData = pre_data) {</pre>
  df <- list()</pre>
  # adding progress bar for sanity
  pb <- progress_bar$new(format = "generating data... [:bar]", total = n)</pre>
  for (i in 1:n) {
    pb$tick()
    set.seed(seeds[i])
    df[[i]] <- genData(size, defData)</pre>
  }
  return(df)
df <- generate_noboot_data(100)</pre>
```

Propensity Score Modeling and NNM

Now, we will perform propensity score modeling and nearest neighbor matching.

Empirical Treatment Effect SE (and Mean)

Taken as standard deviation of estimated treatment effect (β_1) from rlength(df)' generated "noboot" datasets.

```
## # A tibble: 1 x 2
## mean simulated_se
## <dbl> <dbl>
## 1 0.501 0.0610
```

Simple Bootstrap

```
# ### function to iterate glm over a list, to be used in purr:map ###
# returns tibble of parameter estimates and standard errors.
outcome_model_list <- function(list) {</pre>
  tib_coef <- tibble()</pre>
  pb3$tick()
  for (i in 1:length(list)) {
    mod \leftarrow glm(Y \sim A + L2 + L3,
               data = list[[i]],
               weights = weights,
               family = "binomial") %>%
      summary()
    coefs <- mod$coefficients[2,1:2]</pre>
    tib_coef <- bind_rows(tib_coef, tibble(estimate = coefs[1], se = coefs[2]))</pre>
 }
    return(tib_coef)
}
# ### input matched dataframe, output however many bootstrapped samples you want ###
# first, set seed vector for reproducibility
seed_vec_2 <- runif(10000, min = 20220215, max = 202202150) %>% round(0) %>% unique()
# now, define function
simple_boot <- function(df, n, size = 500, seeds = seed_vec_2){</pre>
  boots <- list()</pre>
  pb2$tick()
  for (i in 1:n) {
  set.seed(seeds[i])
  boots[[i]] <-
    df %>%
    filter(subclass %in% sample(levels(subclass),
                                  replace = TRUE))
  }
  return(boots)
# adding progress bars for sanity
pb2 <- progress_bar$new(format = "bootstrapping... [:bar]", total = nrow(df_tib))</pre>
pb3 <- progress_bar$new(format = "performing glm... [:bar]", total = nrow(df_tib))</pre>
```

```
# creating booted tibbles, applying functions through purr:map.
boot tib <-
  df_tib %>%
  mutate(
    boots = map(.x = data, ~simple_boot(.x, n=10)),
    ) %>%
  mutate(coef = map(.x = boots, ~outcome_model_list(.x)))
# extracting qlm parameter estimates
boot_estimates <-
  boot_tib %>%
  mutate(seq = seq(1:nrow(boot_tib))) %>%
  select(coef, seq) %>% unnest(coef)
# calculating mean and standard deviation of estimates to estimate standard error
boot_out <-
  boot_estimates %>%
  group_by(seq) %>%
  summarize(simulated_se = sd(estimate),
            mean = mean(estimate))
# preparing the data to be plotted
boot_mean_se <-
  boot_out %>%
  summarize(fin_sim_se = mean(simulated_se)) %>%
  mutate(x = fin_sim_se, y = 1, label = "Boots")
boot_out %>% select(mean, simulated_se)
## # A tibble: 100 x 2
##
       mean simulated_se
##
      <dbl>
                   <dbl>
                  0.0843
## 1 0.453
## 2 0.541
                  0.119
## 3 0.641
                  0.116
## 4 0.439
                  0.0898
## 5 0.467
                  0.134
## 6 0.413
                  0.160
## 7 0.430
                  0.124
## 8 0.427
                  0.121
## 9 0.438
                  0.142
## 10 0.513
                  0.148
## # ... with 90 more rows
Maybe a Plot?
to_gg <- bind_rows(boot_mean_se, empirical_out)</pre>
to_gg \%>% ggplot(aes(x = x, y = y, col = label)) +
  geom_point() +
  xlim(0, 1) +
 ylim(0.5, 1.5) +
```

Comparison of Treatment Effect SE from Bootstrapped and Empirical Samples

Sample • Boots • NoBoots