STAD29: Statistics for the Life and Social Sciences

Lecture notes

Section 1

Principal components

Principal Components

- Have measurements on (possibly large) number of variables on some individuals.
- Question: can we describe data using fewer variables (because original variables correlated in some way)?
- Look for direction (linear combination of original variables) in which values *most spread out*. This is *first principal component*.
- Second principal component then direction uncorrelated with this in which values then most spread out. And so on.

Principal components

- See whether small number of principal components captures most of variation in data.
- Might try to interpret principal components.
- If 2 components good, can make plot of data.
- (Like discriminant analysis, but no groups.)
- "What are important ways that these data vary?"

Packages

You might not have installed the first of these. See over for instructions.

```
library(ggbiplot) # see over
library(tidyverse)
library(ggrepel)
```

Installing ggbiplot

- ggbiplot not on CRAN, so usual install.packages will not work. This is same procedure you used for smmr in C32:
- Install package devtools first (once):

```
install.packages("devtools")
```

• Then install ggbiplot (once):

```
library(devtools)
install_github("vqv/ggbiplot")
```

Small example: 2 test scores for 8 people xxx

```
my url <- "http://www.utsc.utoronto.ca/~butler/d29/test12.txt"
test12 <- read table2(my url)
test12
## # A tibble: 8 x 3
## first second id
##
    <dbl> <dbl> <chr>
    2
## 1
             9 A
## 2 16 40 B
## 3 8 17 C
    18 43 D
## 4
    10 25 E
## 5
    4 10 F
## 6
```

g <- ggplot(test12, aes(x = first, y = second, label = id)) + geom_point() + geom_text_repel()

10 27 G 12

30 H

7

8

The plot

Principal component analysis

Grab just the numeric columns:

```
test12 %>% select_if(is.numeric) -> test12_numbers
```

Strongly correlated, so data nearly 1-dimensional:

```
cor(test12_numbers)
```

```
## first second
## first 1.000000 0.989078
## second 0.989078 1.000000
```

Finding principal components

• Make a score summarizing this one dimension. Like this:

```
test12.pc <- princomp(test12_numbers, cor = T)
summary(test12.pc)</pre>
```

```
## Importance of components:

## Comp.1 Comp.2

## Standard deviation 1.410347 0.104508582

## Proportion of Variance 0.994539 0.005461022

## Cumulative Proportion 0.994539 1.000000000
```

Comments

- "Standard deviation" shows relative importance of components (as for LDs in discriminant analysis)
- Here, first one explains almost all (99.4%) of variability.
- That is, look only at first component and ignore second.
- cor=T standardizes all variables first. Usually wanted, because variables measured on different scales. (Only omit if variables measured on same scale and expect similar variability.)

Scree plot

ggscreeplot(test12.pc)

xxx Component loadings

test12.pc\$loadings

Cumulative Var

explain how each principal component depends on (standardized) original variables (test scores):

```
## ## Loadings:
## Comp.1 Comp.2
## first 0.707 0.707
## second 0.707 -0.707
##
## Comp.1 Comp.2
## SS loadings 1.0 1.0
## Proportion Var 0.5 0.5
```

0.5

First component basically sum of (standardized) test scores. That is, person tends to score similarly on two tests, and a composite score would summarize performance.

1.0

xxx Component scores

```
d <- data.frame(test12, test12.pc$scores)</pre>
d
```

```
##
    first second id
                         Comp.1
                                     Comp.2
                 A -2.071819003 -0.146981782
## 1
        2
    16
                    1.719862811 -0.055762223
## 2
             40
## 3
        8
              17 C -0.762289708 0.207589512
## 4
     18
             43 D 2.176267535 0.042533250
## 5
       10
             25 E -0.007460609 0.007460609
## 6
    4
              10 F -1.734784030 0.070683441
                    0.111909141 -0.111909141
     10
             27 G
## 7
       12
              30
                    0.568313864 -0.013613668
## 8
```

- Person A is a low scorer, high positive comp. 1 score.
- Person D is high scorer, high negative comp.1 score.
- Person E average scorer, near-zero comp.1 score.
- comp. 2 says basically nothing. STAD29: Statistics for the Life and Social Sc

Plot of scores

```
ggplot(d, aes(x = Comp.1, y = Comp.2, label = id)) +
geom_point() + geom_text_repel()
```


Comments

- Vertical scale exaggerates importance of comp.2.
- Fix up to get axes on same scale:

```
g <- ggplot(d, aes(x = Comp.1, y = Comp.2, label = id)) +
  geom_point() + geom_text_repel() +
  coord_fixed()</pre>
```

• Shows how exam scores really spread out along one dimension:

g

The biplot

- Plotting variables and individuals on one plot.
- Shows how components and original variables related.
- Shows how individuals score on each component, and therefore suggests how they score on each variable.
- Add labels option to identify individuals:

```
g <- ggbiplot(test12.pc, labels = test12$id)
```

The biplot

Comments

- Variables point almost same direction (left). Thus very negative value on comp.1 goes with high scores on both tests, and test scores highly correlated.
- Position of individuals on plot according to scores on principal components, implies values on original variables. Eg.:
- D very negative on comp.1, high scorer on both tests.
- A and F very positive on comp.1, poor scorers on both tests.
- C positive on comp.2, high score on first test relative to second.
- A negative on comp.2, high score on second test relative to first.

xxx Track running data

Track running records (1984) for distances 100m to marathon, arranged by country. Countries labelled by (mostly) Internet domain names (ISO 2-letter codes):

```
track <- read table(my url)</pre>
track %>% sample_n(8)
## # A tibble: 8 x 9
##
     m100
          m200
               m400
                     m800 m1500 m5000 m10000 marathon country
##
    dbl>
                                             <dbl> <chr>
     10.8 21.9
                     2.02
                          4.24
                               16.3
                                      34.7
                                              162. ws
## 1
               49
## 2
    10.3 20.7
               45.0 1.73 3.6
                               13.2
                                      27.4
                                              130. be
## 3
    10.4 20.6 45.6 1.76 3.58 13.4
                                      28.2
                                              134. cz
## 4 10.3 20.8 45.9 1.79 3.64 13.4
                                      27.7
                                              129. ip
## 5
    10.6 21.5 47.8 1.84 3.92 14.7
                                      30.8
                                              149. id
## 6
    10.4 20.8 46.8 1.81 3.7
                               14.0
                                      29.4
                                              138. ar
## 7
     10.3 20.1
               44.8 1.74 3.57
                               13.3
                                      27.7
                                              128. au
## 8
     10.2 20.6 45.6
                     1.77
                          3.61
                               13.3
                                      27.9
                                              131. se
```

my_url <- "http://www.utsc.utoronto.ca/~butler/d29/men_track_field.txt"

xxx Country names

Also read in a table to look country names up in later:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/isocodes.csv"
iso <- read_csv(my_url)
iso</pre>
```

```
## # A tibble: 251 \times 4
##
      Country
                       IS02
                             IS03
                                      M49
##
      <chr>>
                       <chr> <chr> <dbl>
    1 <NA>
                       <NA>
                             <NA>
##
                                       NA
    2 Afghanistan
##
                       af
                             afg
                                        4
    3 Aland Islands
##
                             ala
                                      248
                       aх
    4 Albania
##
                       al
                             alb
                                        8
    5 Algeria
                             dza
                                       12
##
                       dz.
##
    6 American Samoa as
                                       16
                             asm
    7 Andorra
##
                       ad
                             and
                                       20
    8 Angola
                                       24
##
                       ao
                             ago
    9 Anguilla
##
                       ai
                             aia
                                      660
   10 Antarctica
                             ata
                                       10
                       aq
   # ... with 241 more rows
```

Data and aims

- Times in seconds 100m-400m, in minutes for rest (800m up).
- This taken care of by standardization.
- 8 variables; can we summarize by fewer and gain some insight?
- In particular, if 2 components tell most of story, what do we see in a plot?

xxx Fit and examine principal components

```
track_num <- track %>% select_if(is.numeric)
track.pc <- princomp(track_num, cor = T)</pre>
summary(track.pc)
  Importance of components:
##
                             Comp.1 Comp.2
   Standard deviation
                      2.5733531 0.9368128
## Proportion of Variance 0.8277683 0.1097023
  Cumulative Proportion 0.8277683 0.9374706
##
                              Comp.3
                                         Comp.4
  Standard deviation
                          0.39915052 0.35220645
## Proportion of Variance 0.01991514 0.01550617
## Cumulative Proportion
                          0.95738570 0.97289187
##
                               Comp.5
                                            Comp.6
  Standard deviation
                          0.282630981 0.260701267
## Proportion of Variance 0.009985034 0.008495644
                          0.982876903 0.991372547
  Cumulative Proportion
##
                               Comp.7
                                            Comp.8
  Standard deviation
                          0.215451919 0.150333291
## Proportion of Variance 0.005802441 0.002825012
                       STAD29: Statistics for the Life and Social Sc.
```

Scree plot

ggscreeplot(track.pc)

How many components?

- As for discriminant analysis, look for "elbow" in scree plot.
- See one here at 3 components; everything 3 and beyond is "scree".
- So take 2 components.
- Note difference from discriminant analysis: want "large" rather than "small", so go 1 step left of elbow.
- Another criterion: any component with eigenvalue bigger than about 1 is worth including. 2nd one here has eigenvalue just less than 1.
- Refer back to summary: cumulative proportion of variance explained for 2 components is 93.7%, pleasantly high. 2 components tell almost whole story.

xxx How do components depend on original variables?

Loadings:

##

```
track.pc$loadings
```

Lecture notes

```
## Loadings:
##
            Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## m100
             0.318
                    0.567
                           0.332 0.128
                                          0.263
                                                 0.594
                                                        0.136
                                                                0.106
## m200
             0.337
                    0.462
                           0.361 - 0.259 - 0.154 - 0.656 - 0.113
## m400
             0.356 0.248 - 0.560
                                 0.652 -0.218 -0.157
## m800
             0.369
                          -0.532 - 0.480
                                          0.540
                                                       -0.238
             0.373 -0.140 -0.153 -0.405 -0.488 0.158 0.610
## m1500
                                                                0.139
## m5000
             0.364 -0.312 0.190
                                         -0.254 0.141 -0.591
                                                                0.547
## m10000
             0.367 -0.307 0.182
                                         -0.133
                                                 0.219 - 0.177 - 0.797
             0.342 - 0.439
                                  0.300
                                          0.498 - 0.315
                                                        0.399
##
  marathon
                           0.263
                                                                0.158
##
##
                  Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
                   1.000
                          1.000
                                  1.000 1.000
                                                1.000
                                                       1.000
                                                               1.000
   SS loadings
   Proportion Var
                   0.125
                          0.125
                                 0.125
                                         0.125
                                                0.125
                                                       0.125
                                                               0.125
  Cumulative Var
                   0.125
                          0.250
                                 0.375
                                         0.500
                                                0.625
                                                       0.750
                                                               0.875
.. ..
```

STAD29: Statistics for the Life and Social Sc.

xxx Comments

- comp.1 loads about equally (has equal weight) on times over all distances.
- comp.2 has large positive loading for short distances, large negative for long ones.
- comp.3: large negative for middle distance, large positive especially for short distances.
- Country overall good at running will have lower than average record times at all distances, so comp.1 small. Conversely, for countries bad at running, comp.1 very positive.
- Countries relatively better at sprinting (low times) will be negative on comp.2; countries relatively better at distance running positive on comp.2.

xxx Commands for plots

• Principal component scores (first two). Also need country names.

```
d <- data.frame(track.pc$scores,
    country = track$country
)
names(d)
## [1] "Comp.1" "Comp.2" "Comp.3" "Comp.4" "Comp.5" "Comp.</pre>
```

```
## [7] "Comp.7" "Comp.8" "country"

g1 <- ggplot(d, aes(x = Comp.1, y = Comp.2,
  label = country)) +</pre>
```

```
geom_point() + geom_text_repel() + coord_fixed()
```

Biplot:

```
g2 <- ggbiplot(track.pc, labels = track$country)</pre>
```

xxx Principal components plot

g1

xxx Comments on principal components plot

- Good running countries at left of plot: US, UK, Italy, Russia, East and West Germany.
- Bad running countries at right: Western Samoa, Cook Islands.
- Better sprinting countries at bottom: US, Italy, Russia, Brazil, Greece. do is Dominican Republic, where sprinting records relatively good, distance records very bad.
- Better distance-running countries at top: Portugal, Norway, Turkey, Ireland, New Zealand, Mexico. ke is Kenya.

xxx Biplot

g2

standardized PC1 (82.8% explained var.)

xxx Comments on biplot

- Had to do some pre-work to interpret PC plot. Biplot more self-contained.
- All variable arrows point right; countries on right have large (bad) record times overall, countries on left good overall.
- Imagine that variable arrows extend negatively as well. Bottom right = bad at distance running, top left = good at distance running.
- Top right = bad at sprinting, bottom left = good at sprinting.
- Doesn't require so much pre-interpretation of components.

xxx Best 8 running countries

Need to look up two-letter abbreviations in ISO table:

```
XXX
```

```
d %>%
arrange(Comp.1) %>%
left_join(iso, by = c("country" = "ISO2")) %>%
select(Comp.1, country, Country) %>%
slice(1:8)
```

```
Comp.1 country
                                          Country
## 1 -3.462175
                    us United States of America
## 2 -3.052104
                    uk
                                  United Kingdom
## 3 -2.752084
                     it.
                                            Italy
## 4 -2.651062
                              Russian Federation
                    rıı
## 5 -2.613964
                   dee
                                    East Germany
## 6 -2.576272
                   dew
                                     West Germany
## 7 -2.468919
                                        Australia
                     au
## 8 -2.191917
                    fr
                                           France
```

xxx Worst 8 running countries

```
d %>%
  arrange(desc(Comp.1)) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.1, country, Country) %>%
  slice(1:8)
```

```
Comp.1 country
                                 Country
##
     10.652914
                     ck
                            Cook Islands
      7.297865
                     WS
                                    Samoa
      4.297909
                                    Malta
                     mt
      3.945224
                     pg
                        Papua New Guinea
      3.150886
                               Singapore
                     sg
      2.787273
                                Thailand
                     th
      2.773125
                     id
                               Indonesia
## 8
      2.697066
                                     Guam
                     gu
```

xxx Better at distance running

```
d %>%
arrange(desc(Comp.2)) %>%
left_join(iso, by = c("country" = "ISO2")) %>%
select(Comp.2, country, Country) %>%
slice(1:10)
```

```
##
         Comp.2 country
                                             Country
      1.6860391
                      cr
                                          Costa Rica
      1.5791490
                                      Korea (North)
## 2
                      kp
      1.5226742
                      ck
                                       Cook Islands
      1.3957839
##
                      tr
                                              Turkey
      1.3167578
##
  5
                                            Portugal
                      pt
## 6
      1.2829272
                                                Guam
                      gu
      1.0663756
##
                                              Norway
                      no
      0.9547437
                      ir Iran, Islamic Republic of
##
  8
                                        New Zealand
##
   9
      0.9318729
                      nz.
  10 0.8495104
                                              Mexico
                      mx
```

xxx Better at sprinting

```
d %>%
arrange(Comp.2) %>%
left_join(iso, by = c("country" = "ISO2")) %>%
select(Comp.2, country, Country) %>%
slice(1:10)
```

```
##
          Comp.2 country
                                           Country
## 1
      -2.4715736
                       dο
                                Dominican Republic
      -1.9196130
                                              Samoa
##
                       WS
   3 -1.8055052
##
                                         Singapore
                       sg
      -1.7832229
                                           Bermuda
##
                       bm
   5 -1.7386063
##
                                          Malaysia
                      mγ
                                           Thailand
##
  6 -1.6851772
                      t.h
## 7 -1.1204235
                          United States of America
   8 -0.9989821
                                              Italv
##
                      it.
      -0.7639385
                                Russian Federation
##
   9
                      ru
   10 -0.6470634
                       br
                                             Brazil
```

Plot with country names

```
g <- d %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.1, Comp.2, Country) %>%
  ggplot(aes(x = Comp.1, y = Comp.2, label = Country)) +
  geom_point() + geom_text_repel(size = 1) +
  coord_fixed()
```

Warning: Column `country`/`ISO2` joining factor and charact
vector, coercing into character vector

The plot

g

xxx Principal components from correlation matrix

```
Create data file like this:
```

```
1 0.9705 -0.9600
0.9705 1 -0.9980
-0.9600 -0.9980 1
```

and read in like this:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/cov.txt"
mat <- read_table(my_url, col_names = F)
mat</pre>
```

```
## # A tibble: 3 x 3
## X1 X2 X3
## <dbl> <dbl> <dbl> ## 1 1 0.970 -0.96
## 2 0.970 1 -0.998
## 3 -0.96 -0.998 1
```

Pre-processing

A little pre-processing required:

- Turn into matrix (from data frame)
- Feed into princomp as covmat=

```
mat.pc <- mat %>%
  as.matrix() %>%
  princomp(covmat = .)
```

Scree plot: one component fine

ggscreeplot(mat.pc)

xxx Component loadings

Compare correlation matrix:

```
## # A tibble: 3 x 3

## X1 X2 X3

## <dbl> <dbl> <dbl> <dbl> ## 1 1 0.970 -0.96

## 2 0.970 1 -0.998
```

3 -0.96 -0.998 1

with component loadings

```
mat.pc$loadings
```

mat

##

Comments xxx for sign

- When X1 large, X2 also large, X3 small.
- Then comp.1 negative.
- When X1 small, X2 small, X3 large.
- Then comp.1 positive.

xxx No scores

- With correlation matrix rather than data, no component scores
- So no principal component plot
- and no biplot.