DSO34AT NOTES

Difference or relationship between two terms

Differentiate between logical and physical independence?

- Logical independence exists when you can change the internal model without affecting the conceptual model
- **physical independence** when you can change the *physical model* without affecting the *internal model*

Differentiate between a database and a table.

- Database is a structure that houses one or more tables
- **Table** a logical structure that represents an entity

Explain the difference between homogeneous and heterogeneous distributed database systems.

- Homogeneous DDBMSs integrate multiple instances of the same DBMS over a network
- heterogeneous DDBMSs integrate different types of DBMSs over a network

Differentiate between centralized and decentralized conceptual database design

- the centralized approach is best suited to relatively small and simple databases
- decentralized design requires that the design task be divided into multiple modules

Difference between partial completeness and total completeness

- Partial completeness means that not every supertype occurrence is a member of a subtype
- Total completeness means that every supertype occurrence must be a member of at least one subtype

Difference between remote request and remote transaction

- Remote request
- Remote transaction

What is the relationship between a database and an information system

Basically, a database is a fact (data) repository that serves an information system. If the database is
designed poorly, one can hardly expect that the data/information transformation will be successful, nor is it
reasonable to expect efficient and capable management of data and information

Explain or describe

Describe the use of SQL in relation to ROLAP -ROLAP extends the SQL so that it can differentiate between access requirements for data warehouse data and operational data.

Data cube -refers to three-dimensional range of values that are generally used to explain the time sequence of an image's data

star schema - separates business process data into facts which hold the measurable, quantitative data about a business and dimensions which are descriptive attributes related to fact data

business rules -Business rules are narrative descriptions of the business policies, procedures, or principles that are derived from a detailed description of operations.

Data modeling -ls the logical inter relationship and data flows involved between different data elements

Outline the importance of data modelling -The main function of data modeling is to help understand the complexity in the real world environment

Weak entity a weak entity is an entity that cannot be uniquely identified by its attributes alone

Virtualization is a technique that creates logical representations of computing resources that are independent of the underlying physical computing resources.

VMS/VSAM is an example of the file system data model

Constraints are normally expressed in the form of rules.

DATA dictrionary - contains at least all of the attribute names and characteristics for each table in the system.

Julian are date attributes that contain calendar dates stored in a special format

The process of creating an information system is known as systems development

Why are business rules important to a database designer? - They help define Entities, Attributes, Relationships, Constraints.

How do you translate business rules into data model components?

As a general rule, a noun in a business rule will translate into an entity in the model, and a verb (active or passive) associating nouns will translate into a relationship among the entities

List and explain

Describe the use of SQL in relation to ROLAP.

- Most decision support data requests require the use of multiple-pass SQL queries or multiple nested SQL statements.
- ROLAP extends SQL so that it can differentiate between access requirements for data warehouse data and operational data.
- A ROLAP system therefore can generate the SQL code required to access the star schema data.
- Query performance is also improved because the query optimizer is modified to identify the SQL code's intended query targets.

Charecteristics of a relational table

- Values are atomic.
- Column values are of the same kind.
- Each row is unique.
- The sequence of columns is insignificant.
- The sequence of rows is insignificant.

A fully distributed database management system must perform all of the functions of a centralized DBMS. What are these functions?

- Application or end user request can be received.
- Request can be certified, investigated, and decomposed.
- Request can be mapped from logical-to-physical data components.
- Request can be decomposed into multiple disk Input/Output operations.
- Validate conditions.
- Ensure database integrity.
- Search, locate, read, and validate the data.
- Present the data in the required format.

OLAP systems share three main characteristics. What are they? [3] characteristics

- Multi-dimensional views of data
- Support for complex calculations
- Time intelligence

Breifly discuss performance transparency

- Performance transparency allows the system to perform as if it were a centralized DBMS.
- Performance transparency also ensures that the system will find the most cost-effective path to access remote data.

What factors are important in a DBMS software selection?

- Cost
- DBMS features and tools
- Underlying model

- Portability.
- DBMS hardware requirements

What is a relationship, and what three types of relationships exist?

A relationship is an association among (two or more) entities

Three types of relationships exist:

- one-to-one (1:1),
- one-to-many (1:M),
- and many-to-many (M:N or M:M.)

Briefly outline the 8 characteristics of a relation table

- a table is perceived as a two-dimensional structure composed of rows and columns
- each table row represents a single entity
- each table column represents an attribute and each column has a distinct name
- each row or column intersection represents a single data value
- all values in a column has a specific range of values know as attribute domain
- the order of rows and columns is immaterial to the DBMS
- each table must have an attribute

Practical examples

An amateur database designer came up with the following table design.

```
course(crs_code, dept_code, crs_description, crs_credit)
class(class_code, crs_code, class_section, class_time, class_room, prof_num)
enroll(class_code, stu_num, enroll_grade)
student(stu_num, stu_lname, stu_fname, stu,dob, stu_class, dept_code, stu_phone, prof_num)
```

Analyse the above table designs, and identify all possible business rules as reflected by the designs.

- COURSE generates CLASS. One course can generate many classes. Each class is generated by one course. √√
- CLASS is referenced in ENROLL. One class can be referenced in enrollment many times. Each individual enrollment references one class. √√
- Each entry in the ENROLL entity references one student and the class for which that student has enrolled