

BACKGROUND AND MOTIVATION OF OUR STUDIES

- Has had a profound effect on the world
 - Several major countries enforced lockdowns and the global economy has taken a hit
- Wanted to see effects of response
 - How effective was policy implementation?
 - Were stricter rules responsible for a downturn in COVID-19 cases?
- Wanted to analyze effects of the pandemic
 - How did this pandemic effect people economically/mentally?
 - How did our lowered activity affect the world around us?
- Main data sets
 - Our world in data (OWID) COVID-19 dataset
 - Contains several COVID-19 statistics like deaths, new cases, total cases and many more
 - https://github.com/owid/covid-19-data/tree/master/public/data
 - Government Response Tracker dataset
 - Provides information regarding the "strictness" of a government's response to the pandemic
 - https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker#data
 - Coronanet Policy dataset
 - Provides information on major policies enacted by different governments during the pandemic
 - https://www.coronanet-project.org/index.html

COMPARING COVID IMPACT AND POLICIES ACROSS COUNTRIES

Covid Data

- Cases
- Tests
- Deaths
- Correlation

Case Load

Testing

Death Count

Policy

- Features
- Types
- Distance

Policy Distance

Bringing it together

EFFECTS OF POLICY TYPE AND NUMBER ON NEW CASES COVID-19

COVID-19 Policy Number by Country

- Data used in analysis:
 - Case data from the top 3 populated countries
 - Trend of daily new cases obtained from decomposition
 - Count of national policies enacted per week
 - 7 and 28-day average of the change in new cases as a metric
- Can also be done with differing types of policies

China

date_start	count	7-day case change	28-day change	trend
1/5/2020	2	-2.4	22.61428571	4.571429
1/12/2020	3	-2.142857143	91.96428571	0
1/19/2020	3	19.42857143	93.10714286	66.71429
1/26/2020	15	75.57142857	66.82142857	781.1429
2/2/2020	12	275	-0.642857143	2618
2/9/2020	0	2.428571429	-72	2914.857
2/16/2020	2	-85.71428571	-91.46428571	4219.143
2/23/2020	8	-194.2857143	-70.89285714	557.2857
3/1/2020	8	-10.42857143	-20.78571429	317.2857
3/8/2020	2	-75.42857143	-16.46428571	75.42857
3/15/2020	4	-3.428571429	0.071428571	25.42857
3/22/2020	4	6.142857143	2.535714286	77.85714
3/29/2020	4	6.857142857	-1.678571429	94.85714
4/5/2020	7	-9.285714286	-3.678571429	69.85714
4/12/2020	4	6.428571429	-1.642857143	81.14286
4/19/2020	7	-10.71428571	-2.785714286	73.14286
4/26/2020	3	-1.142857143	-0.428571429	10.85714
5/3/2020	0	-1.142857143	-0.25	4
5/10/2020	5	1.857142857	0.107142857	7.142857
5/17/2020	1	-1.285714286	-0.214285714	6.714286
5/24/2020	0	-0.428571429	1.928571429	5.428571
5/31/2020	4	0.285714286	0.928571429	8
6/7/2020	0	0.571428571	0.464285714	5.571429
6/14/2020	2	7.285714286	0.321428571	32
6/21/2020	1	-4.428571429	-0.892857143	33
6/28/2020	0	-1.571428571	1.821428571	18.85714
7/5/2020	0	0	5.75	18.85714
7/12/2020	0	2.428571429	5.5	44.14286
7/19/2020	0	6.428571429	2.035714286	77.85714
7/26/2020	1	14.14285714	-0.535714286	174.1429

['China']

India

date_start	count	7-day case change 28-day change		trend
2/2/2020	1	0	7.11E-15	0
2/9/2020	2	0	7.11E-15	0
2/16/2020	1	0	0.25	0
2/23/2020	2	0	1.5	0
3/1/2020	1	0	5.571428571	0.857
3/8/2020	7	1	4.428571429	
3/15/2020	14	5	4.071428571	23.71
3/22/2020	22	16.28571429	10.82142857	73.43
3/29/2020) 5	-4.571428571	6.571428571	120.3
4/5/2020	40	-0.428571429	10.25	172.9
4/12/2020	26	32	6.642857143	300.1
4/19/2020	8	-0.714285714	7.25	328
4/26/2020	10	10.14285714	7.285714286	339.4
5/3/2020	6	-14.85714286	19.75	365.7
5/10/2020) 2	34.42857143	9.464285714	382.6
5/17/2020	3	-0.571428571	16.42857143	535.3
5/24/2020	0	60	17.32142857	667
5/31/2020	0	-56	9.892857143	626.3
6/7/2020	1	62.28571429	29.57142857	789.6
6/14/2020	0	3	16.21428571	1046
6/21/2020	10	30.28571429	23.46428571	1071
6/28/2020	1	22.71428571	18.78571429	1213
7/5/2020		8.857142857	17.25	1406
7/12/2020		32	4.035714286	1764
7/19/2020		11.57142857	21.64285714	1614
7/26/2020) 2	16.57142857	21.17857143	1740
8/2/2020) 1	-44	7.928571429	1858
8/9/2020) 1	102.4285714	62.42857143	1960
	•			

['India']

USA

ua te_start	count	7-day case change	28-day change	trend
1/26/2020	1	0	2.27E-13	0.5714
2/2/2020	4	0.142857143	2.27E-13	0.8571
2/9/2020	0	-0.142857143	0.071428571	0.2857
2/16/2020	1	0	3.392857143	0.2857
2/23/2020	1	0	27.75	5.4286
3/1/2020	3	0.428571429	254.3928571	10.286
3/8/2020	3	13.14285714	713.4285714	128.57
3/15/2020	10	97.42857143	1220.607143	771.71
3/22/2020	13	906.5714286	986.2142857	6972
3/29/2020	8	1836.571429	921.3928571	19198
4/5/2020	14	2041.857143	1019.642857	29884
4/12/2020	12	-840.1428571	-178	30101
4/19/2020	3	647.2857143	-99.25	30789
4/26/2020	1	2229.571429	-301.25	26792
5/3/2020	3	-2748.714286	-974.75	27413
5/10/2020	0	-525.1428571	-213.9642857	23641
5/17/2020	1	-160.7142857	-121.0357143	22658
5/24/2020	1	-464.4285714	37.60714286	21806
5/31/2020	3	294.4285714	461.5	21516
6/7/2020	0	-153.4285714	685.3214286	21147
6/14/2020	0	473.8571429	821.3571429	22554
6/21/2020	0	1231.142857	1339.678571	29899
6/28/2020	1	1189.714286	1056.821429	41059
7/5/2020	0	390.7142857	821.8571429	51667
7/12/2020	0	2547.142857	470.9285714	62211
7/19/2020	0	99.71428571	-243.9285714	67212
7/26/2020	0	249.8571429	-559.4285714	64277
8/2/2020	1	-1013	-754.2857143	59870

['United States']

16

- Policy types did not seem to have a profound impact, as they were scattered throughout the pandemic
- Bulk policies seemed to have a better overall effect on the climb in new cases, but it depends on other factors
- Deeper analysis can be done by extending the investigation to when the policies ended/how long they lasted

QUALITY OF COUNTRY'S RESPONSES TO THE COVID-19 PANDEMIC

- Stringency index
 - Value between 0-100 measuring how strict of a response a country had based on closures, mandates, and other policies
 - Averaged throughout the time of the pandemic (January 1, 2020 current)
- Case growth
 - Average value of new cases per day per capita for each country
- Time until closure
 - Number of days since January 1, 2020 that country-imposed school closures and workplace closures

- Surprisingly, the stringency index and case growth had little meaningful relation.
- We see a slight positive correlation; however we assume the variables are independent for our analysis

Clustering Models

- Each model has 5 clusters
 - Very Poor Response
 - Poor Response
 - Neutral Response
 - Good Response
 - Excellent Response
- Agglomerative Clustering
- K-Means Clustering

Agglomerative Clustering

Response Category:

- 0 Good
- 1 Poor
- 2 Very Poor
- 3 Excellent
- 4 Neutral

EXPLORING THE EFFECTS OF MASK USE IN US COUNTIES

Mask Use - Overview

- Data contains self-reported mask use by US county
- Explore mask use correlation with cases and deaths by county
- Incorporate population and land area data to account for county differences
- Build clustering model to cluster similar counties based on mask use and population density

- 1. Mask use by US county
- 2. Cases/Deaths by US county over time
- 3. US County Population and Land Area Data

	county_fips_code	never	rarely	sometimes	frequently	always
0	1001	0.053	0.074	0.134	0.295	0.444
1	1003	0.083	0.059	0.098	0.323	0.436

	date	county	state_name	county_fips_code	confirmed_cases	deaths
0	2020-03-24	Autauga	Alabama	1001	1	0
1	2020-03-25	Autauga	Alabama	1001	4	0

	population	landarea	
county_fips_code			
1001	55514	594.44	
1003	190790	1589.78	

Mask Score

- Create a *Mask Score* for each county
 - Mask score = (-1 * never) + (-0.5 * rarely) + (0.5 * frequently) + (1 * always)
 - Make it standardized and normalized
 - This resulted in a skewed distribution
 - Remedy: mask score = mask score ^ 2
- Mask score values range from 0 to 1

Summarizing Cases/Deaths data

- For each county...
 - Daily change in cases/deaths (avg, max)
 - Weekly change in cases/deaths (avg, max)
 - Monthly change in cases/deaths (avg, max)
 - Total change in cases/deaths

 daily_change_cases_max
 daily_change_deaths_max
 daily_change_cases_mean
 daily_change_deaths_mean
 weekly_change_cases_max
 weekly_change_cases_max

 1001
 83.0
 2.0
 9.573460
 0.142180
 168.0

 1003
 357.0
 8.0
 29.149321
 0.312217
 862.0

Problem

- These measures do not factor in population or population density

Problem

 Raw cases/deaths measures do not account for population or population density of a particular county in relation to others

Solution

- Divide by raw population
- Divide by population density
- Scaled measure = (measure * county area) / (population ^ 2)
- Creates a relative measure that we can use to compare county cases/deaths growth measures

scaled_daily_change_cases_max scaled_daily_change_deaths_max scaled_daily_change_cases_mean scaled_daily_change_deaths_mean

county_fips_code

1001	0.160096	0.003858	0.018466	0.000274
1003	0.155917	0.003494	0.012731	0.000136

- We now have relative measures for cases/deaths growth for each county at different time scales (daily, weekly, monthly, total)
- We correlate these measures with maskwearing tendencies for each county

Correlations between cases/deaths and mask use

Geographical Plots

Clustering Counties

- Build a clustering model based on mask score and population density
 - Use normalized, log-scaled population density
- Algorithm: Spectral clustering

CO₂ EMISSION TRENDS— COMPARISON STUDY

Sources of our CO2 emissions by sectors

- 1) The International Energy Agency (IEA) 5% decline
- 2) Le Quer et al. Used confinement index 17 % less than 2019
- 3) Overall 8.8% CO2 decline was estimated in the first quarter 2020

http://www.onlyzerocarbon.org/sources_co2.html Le Quere et al. DOI: 10.1038/s41467-020-18922-7

Sector-wise emission trends with different countries

US India

The highest contribution comes from the ground transportation, but it varies with countries and the policies that affected both COVID spread and the lockdown

Sector-wise emission trends with different countries

Global averaged absolute emission change – by sector

Google mobility trends

Global averaged absolute emission change – CO2 emission

Global sector – Using Google subset

Global emissions – Using Google subset

Time series – Case study

Transform the dataset to stationary

SECOND-ORDER PSYCHOLOGICAL IMPACTS OF COVID-19

- Data contains anxiety/depression incidence amongst US citizens over the year
 2020
- Psychological effects, unemployment, bankruptcy, etc. are examples of secondorder implications of the COVID-19 pandemic
- Observe anxiety/depression trends over time among different subgroups of the US population
- Compare the trends of unemployment to the trends of anxiety/depression in the US

- CDC dataset outlining the indicators of an and depression amongst different subground of the US population
 - Age
 - Education
 - Gender
 - Ethnicity
 - State
- Federal Monthly Unemployment Rate dataset from 1948 to October 2020

) 		Phase	Indicator	Group	State	Subgroup	Time Period	Time Period Label	Value
	0	1	Symptoms of Depressive Disorder	By State	United States	United States	1	Apr 23 - May 5	23.5
	1	1	Symptoms of Depressive Disorder	By Age	United States	18 - 29 years	1	Apr 23 - May 5	32.7

	DATE	UNRATE
0	1948-01-01	3.4
1	1948-02-01	3.8

Depression/Anxiety by Age

Depression/Anxiety by Education

Depression/Anxiety by Gender

Depression/Anxiety by Race/Ethnicity

Depression/Anxiety - National

Comparing Unemployment Trends

CORRELATION BETWEEN COVID AND BANKRUPTCIES

Bankruptcies over the Year, by state

US Heat Map for Bankruptcy

Unemployment VS. COVID Cases

Analysis of Bankruptcy in Respect to Population, Density and Cost of Living

Analysis of Variance:

Model	Error

Variable	F-statistic	p-value	Sum of Squares	DF	Sum of Squares	DF
Sum of Density	17.36	2.265E-06	1.756	2	2.378	47
Sum of Total Bankrupt cies	16.43	3.878E-06	1.644	2	2.351	47
Sum of Index	8.074	0.0009676	0.523	2	1.522	47

Clustering with COVID Cases

Index:

Population:

Total Cases:

Total Bankruptcies: 204,541

138.5

39,937,500

1,008,377

Clusters: Cluster 3 State Name: New York 413

Density: Index: 133.7

Population: 19,440,500 Total Cases: 275,952

Total Bankruptcies: 90,892

Clusters: Cluster 1 State Name: Illinois Density: 228 95.8 Index:

Population: 12,659,700 Total Cases: 562,985 Total Bankruptcies: 136,586

Cluster 2

State Name: Kansas

Density: 36 Index: 87.9

Population: 2,910,360 115,507

Total Cases:

Total Bankruptcies: 17,367

Population: 29,472,300 Total Cases: 1,014,160

Total Bankruptcies: 111,675

Conclusions

- There is not just one cause for the growth of the pandemic
- The pandemic has had lasting effects on everyone

THANK YOU!

QUESTIONS?