MATH 417, HOMEWORK 14

CHARLES ANCEL

Exercise 6.3.1. Work out the formula for multiplication in the ring $\mathbb{R}[x]/I$ in terms of canonical forms, where $I=(x^2-1)$. Note that canonical forms look like: a+bx+I, $a,b\in\mathbb{R}$.

Introduction

In this exercise, we will derive the multiplication formula for the ring $\mathbb{R}[x]/(x^2-1)$ using the canonical forms of elements. The canonical forms are a+bx+I where $a,b\in\mathbb{R}$.

SOLUTION

Let f(x) = a + bx and g(x) = c + dx be elements in $\mathbb{R}[x]$. We need to determine the product $f(x)g(x) \mod (x^2 - 1)$.

Step 1: Compute the Product f(x)g(x)

$$f(x)q(x) = (a+bx)(c+dx) = ac + adx + bcx + bdx^{2}.$$

Step 2: Reduce x^2 Using the Relation $x^2 \equiv 1 \mod (x^2 - 1)$ Since $x^2 \equiv 1 \mod (x^2 - 1)$, we can replace x^2 with 1 in the expression:

$$bdx^2 \equiv bd \mod (x^2 - 1).$$

Step 3: Substitute and Combine Like Terms Substituting x^2 with 1, we get:

$$f(x)g(x) \equiv ac + adx + bcx + bd \mod (x^2 - 1).$$

Grouping like terms, we obtain:

$$f(x)g(x) \equiv (ac + bd) + (ad + bc)x \mod (x^2 - 1).$$

Canonical Form: Therefore, the multiplication formula in $\mathbb{R}[x]/(x^2-1)$ is:

$$(a+bx)(c+dx) \equiv (ac+bd) + (ad+bc)x.$$

CONCLUSION

In the ring $\mathbb{R}[x]/(x^2-1)$, the product of two canonical forms a+bx and c+dx is given by:

$$(a+bx)(c+dx) \equiv (ac+bd) + (ad+bc)x.$$

Exercise 6.3.2. Work out the formula for multiplication in the ring $\mathbb{R}[x]/I$ in terms of canonical forms, where $I = (x^3 - 1)$. Note that canonical forms look like: $a + bx + cx^2 + I$, $a, b, c \in \mathbb{R}$.

Introduction

In this exercise, we will derive the multiplication formula for the ring $\mathbb{R}[x]/(x^3-1)$ using the canonical forms of elements. The canonical forms are $a + bx + cx^2 + I$ where $a, b, c \in \mathbb{R}$.

SOLUTION

Let $f(x) = a + bx + cx^2$ and $g(x) = d + ex + fx^2$ be elements in $\mathbb{R}[x]$. We need to determine the product $f(x)g(x) \mod (x^3 - 1)$.

Step 1: Compute the Product f(x)g(x)

$$f(x)g(x) = (a + bx + cx^{2})(d + ex + fx^{2}).$$

Expanding this, we get:

$$f(x)g(x) = ad + aex + afx^{2} + bdx + bex^{2} + bfx^{3} + cdx^{2} + cex^{3} + cfx^{4}.$$

Step 2: Reduce Higher Powers of x Using the Relation $x^3 \equiv 1 \mod (x^3 - 1)$ Since $x^3 \equiv 1 \mod (x^3 - 1)$, we can replace higher powers of x:

$$bfx^{3} \equiv bf \mod (x^{3} - 1),$$

$$cex^{3} \equiv ce \mod (x^{3} - 1),$$

$$cfx^{4} = cfx \cdot x^{3} \equiv cfx \mod (x^{3} - 1).$$

Step 3: Substitute and Combine Like Terms Substituting the reduced terms, we get:

$$f(x)g(x) \equiv ad + bf + aex + afx^2 + bdx + bex^2 + cdx^2 + ce + cfx \mod (x^3 - 1).$$

Grouping like terms, we obtain:

$$f(x)g(x) \equiv (ad + bf + ce) + (ae + bd + cf)x + (af + be + cd)x^2 \mod (x^3 - 1).$$

Canonical Form: Therefore, the multiplication formula in $\mathbb{R}[x]/(x^3-1)$ is:

$$(a + bx + cx^{2})(d + ex + fx^{2}) \equiv (ad + bf + ce) + (ae + bd + cf)x + (af + be + cd)x^{2}.$$

CONCLUSION

In the ring $\mathbb{R}[x]/(x^3-1)$, the product of two canonical forms $a+bx+cx^2$ and $d+ex+fx^2$ is given by:

$$(a + bx + cx^2)(d + ex + fx^2) \equiv (ad + bf + ce) + (ae + bd + cf)x + (af + be + cd)x^2.$$

Exercise 6.3.10. Let R be any commutative ring. Show that there is an isomorphism $R[x]/(x) \simeq R$.

Introduction

We need to show that there is an isomorphism $R[x]/(x) \simeq R$ for any commutative ring R. We will use the First Isomorphism Theorem for rings.

SOLUTION

Consider the ring homomorphism $\phi: R[x] \to R$ defined by $\phi(f(x)) = f(0)$. This map evaluates the polynomial f(x) at x = 0.

Step 1: Homomorphism
$$\phi$$
 Let $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$. Then, $\phi(f(x)) = \phi(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n) = a_0$.

Clearly, ϕ is a ring homomorphism because:

$$\phi(f(x) + g(x)) = (f(x) + g(x))|_{x=0} = f(0) + g(0) = \phi(f(x)) + \phi(g(x)),$$

$$\phi(f(x)g(x)) = (f(x)g(x))|_{x=0} = f(0)g(0) = \phi(f(x))\phi(g(x)).$$

Step 2: Kernel of ϕ The kernel of ϕ is:

$$\ker(\phi) = \{ f(x) \in R[x] \mid f(0) = 0 \}.$$

This implies that $f(x) \in \ker(\phi)$ can be written as f(x) = xg(x) for some $g(x) \in R[x]$, which means $\ker(\phi) = (x)$.

Step 3: First Isomorphism Theorem By the First Isomorphism Theorem for rings, we have:

$$R[x]/(x) \simeq \operatorname{Im}(\phi).$$

Since $\phi(f(x)) = f(0) \in R$, the image of ϕ is R. Therefore,

$$R[x]/(x) \simeq R.$$

CONCLUSION

By applying the First Isomorphism Theorem for rings, we have shown that $R[x]/(x) \simeq R$ for any commutative ring R.

Exercise 4. Let R be any commutative ring, and let $c \in R$ be any element. Show that there is an isomorphism $R[x]/(x-c) \simeq R$.

Introduction

We need to show that there is an isomorphism $R[x]/(x-c) \simeq R$ for any commutative ring R and any element $c \in R$. We will use the First Isomorphism Theorem for rings.

SOLUTION

Consider the ring homomorphism $\phi: R[x] \to R$ defined by $\phi(f(x)) = f(c)$. This map evaluates the polynomial f(x) at x = c.

Step 1: Homomorphism
$$\phi$$
 Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$. Then,

$$\phi(f(x)) = \phi(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_0 + a_1c + a_2c^2 + \dots + a_nc^n = f(c).$$

Clearly, ϕ is a ring homomorphism because:

$$\phi(f(x) + g(x)) = (f(x) + g(x))|_{x=c} = f(c) + g(c) = \phi(f(x)) + \phi(g(x)),$$

$$\phi(f(x)g(x)) = (f(x)g(x))|_{x=c} = f(c)g(c) = \phi(f(x))\phi(g(x)).$$

Step 2: Kernel of ϕ The kernel of ϕ is:

$$\ker(\phi) = \{ f(x) \in R[x] \mid f(c) = 0 \}.$$

This implies that $f(x) \in \ker(\phi)$ can be written as f(x) = (x - c)g(x) for some $g(x) \in R[x]$, which means $\ker(\phi) = (x - c)$.

Step 3: First Isomorphism Theorem By the First Isomorphism Theorem for rings, we have:

$$R[x]/(x-c) \simeq \operatorname{Im}(\phi).$$

Since $\phi(f(x)) = f(c) \in R$, the image of ϕ is R. Therefore,

$$R[x]/(x-c) \simeq R.$$

CONCLUSION

By applying the First Isomorphism Theorem for rings, we have shown that $R[x]/(x-c) \simeq R$ for any commutative ring R and any element $c \in R$.

Exercise 6.4.9. Let R be a domain, $X = \{(a,b) \mid a,b \in R, b \neq 0\}$, and define a relation \sim on X by $(a,b) \sim (a',b')$ iff ab' = a'b. Show that this relation is an equivalence relation. (Hint: Your proof should make use at once of the fact that R is a domain.)

Recall that the group C(R) we defined for any commutative ring R with 1 (it is defined on PS 5, and appears on PS 9 and the optional PS).

Introduction

We need to show that the relation \sim on X defined by $(a,b) \sim (a',b')$ iff ab' = a'b is an equivalence relation. To do this, we will prove that \sim is reflexive, symmetric, and transitive.

SOLUTION

To show that \sim is an equivalence relation, we must prove that it is reflexive, symmetric, and transitive.

Step 1: Reflexivity We need to show that $(a,b) \sim (a,b)$ for all $(a,b) \in X$. This means proving ab = ab, which is trivially true. Therefore, \sim is reflexive.

Step 2: Symmetry We need to show that if $(a, b) \sim (a', b')$, then $(a', b') \sim (a, b)$. Suppose $(a, b) \sim (a', b')$. Then ab' = a'b. By commutativity of multiplication in R, we have a'b = ab', which shows $(a', b') \sim (a, b)$. Therefore, \sim is symmetric.

Step 3: Transitivity We need to show that if $(a,b) \sim (a',b')$ and $(a',b') \sim (a'',b'')$, then $(a,b) \sim (a'',b'')$. Suppose $(a,b) \sim (a',b')$ and $(a',b') \sim (a'',b'')$. This means ab' = a'b and a'b'' = a''b'. We need to show that ab'' = a''b.

Starting from ab' = a'b, we can multiply both sides by b'' to get:

$$ab'b'' = a'bb''$$
.

Using a'b'' = a''b' from the second equivalence, we substitute a'b'' with a''b' in the equation above:

$$a(b'b'') = a''b'b.$$

Since R is a domain, we can cancel b' (which is nonzero) from both sides:

$$ab'' = a''b$$
.

Therefore, $(a, b) \sim (a'', b'')$, proving that \sim is transitive.

Conclusion

We have shown that the relation \sim on X defined by $(a,b) \sim (a',b')$ iff ab' = a'b is reflexive, symmetric, and transitive. Therefore, \sim is an equivalence relation.

Exercise 7. Let K be a field such that 2 = 0. Show that every non-identity element of $(x, y) \in C(K)$ has order 2.

Introduction

We need to show that every non-identity element of $(x, y) \in C(K)$ has order 2, given that K is a field such that 2 = 0.

SOLUTION

Let $(x,y) \in C(K)$ be a non-identity element. This means $(x,y) \neq (1,0)$. The group operation in C(K) is defined as:

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2).$$

We need to show that $(x, y) \cdot (x, y) = (1, 0)$.

Step 1: Compute the Square of (x, y)

$$(x,y) \cdot (x,y) = (xx - yy, xy + yx).$$

Simplifying the expressions using 2 = 0 in K, we get:

$$(xx - yy, xy + yx) = (x^2 - y^2, 2xy).$$

Since 2 = 0, we have 2xy = 0. Therefore, the expression simplifies to:

$$(x^2 - y^2, 0).$$

Step 2: Non-identity Element Condition Since (x, y) is a non-identity element, we have $(x, y) \neq (1, 0)$. This implies $x \neq 1$ or $y \neq 0$.

Step 3: Solve for $(x,y) \cdot (x,y) = (1,0)$ We need to show that $(x^2 - y^2, 0) = (1,0)$: $x^2 - y^2 = 1$ and 0 = 0.

Therefore, the square of (x, y) is (1, 0), which is the identity element in C(K).

CONCLUSION

We have shown that every non-identity element of $(x, y) \in C(K)$ has order 2 if K is a field such that 2 = 0.

Exercise 8. Let K be a field which contains an element $i \in K$ such that $i^2 = -1$. Show that the function

$$\phi: C(K) \to K^{\times}, \qquad \phi(x,y) := x + iy$$

is a homomorphism of groups.

Introduction

We need to show that the function $\phi: C(K) \to K^{\times}$ defined by $\phi(x,y) = x + iy$ is a homomorphism of groups, given that K is a field containing an element $i \in K$ such that $i^2 = -1$.

SOLUTION

Let $(x_1, y_1), (x_2, y_2) \in C(K)$. The group operation in C(K) is defined as:

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2).$$

We need to show that $\phi((x_1, y_1) \cdot (x_2, y_2)) = \phi(x_1, y_1)\phi(x_2, y_2)$.

Step 1: Compute $\phi((x_1, y_1) \cdot (x_2, y_2))$

$$\phi((x_1, y_1) \cdot (x_2, y_2)) = \phi(x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2).$$

By the definition of ϕ , we have:

$$\phi(x_1x_2 - y_1y_2, x_1y_2 + y_1x_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2).$$

Step 2: Compute $\phi(x_1, y_1)\phi(x_2, y_2)$

$$\phi(x_1, y_1) = x_1 + iy_1$$
 and $\phi(x_2, y_2) = x_2 + iy_2$.

Therefore,

$$\phi(x_1, y_1)\phi(x_2, y_2) = (x_1 + iy_1)(x_2 + iy_2).$$

Expanding the product using $i^2 = -1$, we get:

$$(x_1 + iy_1)(x_2 + iy_2) = x_1x_2 + ix_1y_2 + iy_1x_2 + i^2y_1y_2 = x_1x_2 + ix_1y_2 + iy_1x_2 - y_1y_2.$$

Simplifying, we get:

$$x_1x_2 - y_1y_2 + i(x_1y_2 + y_1x_2).$$

Step 3: Verify the Homomorphism Property Comparing the results from Steps 1 and 2, we have:

$$\phi((x_1, y_1) \cdot (x_2, y_2)) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2) = \phi(x_1, y_1) \phi(x_2, y_2).$$

Therefore, ϕ is a homomorphism.

CONCLUSION

We have shown that the function $\phi:C(K)\to K^\times$ defined by $\phi(x,y)=x+iy$ is a homomorphism of groups.

Exercise 9. Let K as in the previous problem, and suppose also that $2 \neq 0$ in K. Show that the homomorphism ϕ is injective. Note: on the optional assignment, it is shown that if K is a finite field, then K^{\times} is cyclic. Thus for every finite field K as in (9), C(K) is a subgroup of a cyclic subgroup of a cyclic group and thus cyclic. This includes \mathbb{Z}_p when $p \equiv 1 \pmod{4}$. When $p \equiv -1 \pmod{4}$, we know that \mathbb{Z}_p is a subfield of $K = \mathbb{Z}_p[i]$, as shown in PS 13, so $C(\mathbb{Z}_p) \leq C(\mathbb{Z}_p[i])$ is also cyclic.

Introduction

We need to show that the homomorphism ϕ defined by $\phi(x,y) = x + iy$ is injective, given that K is a field containing an element $i \in K$ such that $i^2 = -1$ and $2 \neq 0$.

SOLUTION

To show that ϕ is injective, we need to prove that $\phi(x,y) = \phi(x',y')$ implies (x,y) = (x',y') for $(x,y),(x',y') \in C(K)$.

Step 1: Assume $\phi(x,y) = \phi(x',y')$ Suppose $\phi(x,y) = \phi(x',y')$. This means: x + iy = x' + iy'.

Step 2: Equate Real and Imaginary Parts Since i is an element in K with $i^2 = -1$, we can equate the real and imaginary parts:

$$x = x'$$
 and $iy = iy'$.

Given that $i \neq 0$ and K is a field (so there are no zero divisors), we can divide by i:

$$y = y'$$
.

Step 3: Conclusion Therefore, if $\phi(x,y) = \phi(x',y')$, then (x,y) = (x',y'). This shows that ϕ is injective.

Conclusion

We have shown that the homomorphism ϕ defined by $\phi(x,y)=x+iy$ is injective, given that K is a field containing an element $i \in K$ such that $i^2=-1$ and $2 \neq 0$.