ČESKÉ VYSOK UČENÍ TECHNIC V PRAZE		KATEDRA FYZIKY					
LABORATORNÍ CVIČENÍ Z FYZIKY							
Jméno Miros	slav Tržil			Datum měření 20.4.2017			
Stud. rok 2	016-2017	Ročník P i	rvní	Datum odevzdání 4.5.2017			
Stud. skupina 1	-105-1051	Lab. skupina	0	Klasifikace			
Číslo úlohy 1	Název úlohy	Ohy Určení modulu pružnosti ve smyku dynamickou metodou a stanovení momentu setrvačnosti					

1. Úkol měření

- Změřit modul pružnosti ve smyku ocelové struny.
- Určit moment setrvačnosti rotoru elektromotoru metodou torzních kmitů

2. Pomůcky

- Stopky
 - \circ Odhadovaná přesnost: $\Delta_t = \mp 0.04s$
- Mikrometr

○ Rozsah (0-25) mm ○ Přesnost: $\Delta_m = \mp 0.01mm$

- Válcové závaží
 - Hmotnost m = 5,13 Kg
 - o Průměr $d_v = (0.213 \mp 0.001)m$
- Rotor motoru
- Torzní kyvadlo
 - o Dálka struny I = (90 ∓ 2) cm
 - \circ Průměr struny $d_s = (1,19 \mp 0,16) mm$
 - Naměřené hodnoty

číslo měření	naměřená hodnota d _s [mm]		
1	1,15		
2	1,34		
3	1,17		
4	1,16		
5	1,20		
6	1,18		
7	1,19		
8	1,18		
9	1,16		
10	1,17		

Průměrná hodnota:

$$\bar{d}_s = \frac{\sum_1^N d_s}{N} = 1,19 \ mm$$

• Nejistota typu A:

$$u_{A(\bar{d})} = \sqrt{\frac{\sum_{i=1}^{N} (d_i - \bar{d})^2}{N(N-1)}} = 0,156 \ mm$$

• Nejistota typu B:

$$u_{B(\bar{d})} = \frac{\Delta_m}{\sqrt{12}} = 0,00289mm$$

• Kombinovaná nejistota:

$$u_c(\bar{d}) = \sqrt{u_A^2(\bar{d}) + u_B^2(\bar{d})} = 0.156 \ mm$$

3. Postup měření

- Nejprve jsme určili průměr struny.
- Na kyvadlo jsme zavěsili válcové závaží, poté jsme jej vychýlili o přibližně 75° a změřili periodu kmitání 10 kmitů.
- Vydělením této periody deseti jsme získali přibližný čas jedno kmitu. Tento odhad jsme zpřesňovali postupným zvyšováním počtu kmitů. Abychom nemuseli počítat všechny kmity, stačí vyčkat dolního odhadu času a zastavit stopky v okamžiku kdy skončí poslední kmit.
- Stejný postup jsme opakovali u rotoru.

4. Tabulka naměřených period pro válcové závaží

počet kmitů	spodní odhad [s]	naměřený čas [s]	horní odhad [s]	Průměrný čas 1 kmitu [s]	Nejistota [s]	Rozdíl limitů [s]
10		42,510		4,251	0,0040	
20	84,850	86,020	85,820	4,301	0,0020	0,970
100	429,928	430,820	434,100	4,308	0,0004	4,172

- Spodní odhad = (předešlý naměřený čas Δ_t) · počet kmitů
- Horní odhad = (předešlý naměřený čas + Δ_t) · počet kmitů
- Průměrný čas 1 kmitu = $\frac{naměřený čas}{počet kmitů}$
- Nejistota = $\frac{\Delta_t}{počet \ kmitů}$
- Rozdíl limitů = horní odhad spodní odhad

5. Modul pružnosti struny ve smyku

• Moment setrvačnosti válce

$$J_v = \frac{m \cdot d_v^2}{8} = 0.029 \, kg \cdot m^2$$

Nejistota mementu setrvačnosti

$$u_c(J_v) = \sqrt{\left(\frac{\partial m \cdot d_v^2}{8 \cdot \partial d_v}\right)^2} =$$

Modul pružnosti

$$G = \frac{32 \cdot \pi \cdot l \cdot J_v}{d_s^4 \cdot T_k^2} = 7,05 \cdot 10^{10} \, Kg \cdot m^{-1}s^{-2}$$

Nejistota

$$u_c(G) = \sqrt{\left(\frac{\partial G}{\partial l} \cdot u_c(l)\right)^2 + \left(\frac{\partial G}{\partial d_v} \cdot u_c(d_v)\right)^2 + \left(\frac{\partial G}{\partial d_s} \cdot u_c(d_s)\right)^2 + \left(\frac{\partial G}{\partial T_k} \cdot u_c(T_k)\right)^2} =$$

$$= \sqrt{(1,566 \cdot 10^9)^2 + (6,63 \cdot 10^8)^2 + (3,617 \cdot 10^9)^2 + (1,964 \cdot 10^7)^2} =$$

$$= 4,00 \cdot 10^9 \, Kg \cdot m^{-1} s^{-2}$$

6. Tabulka naměřených period kmitu pro válcové závaží

počet	spodní odhad	Naměřený čas	Horní odhad	Průměrný čas 1 kmitu	Nejistota	Rozdíl limitů
kmitů	[s]	[s]	[s]	[s]	[s]	[s]
10		10,27		1,0270	0,004	
30	30,77	30,55	32,01	1,0183	0,00133333	1,24
40	40,69	41,09	42,33	1,0273	0,001	1,64
80	82,14	81,56	85,38	1,0195	0,0005	3,24

7. Výpočet momentu setrvačnosti rotoru

$$J_r = \frac{G \cdot d_s^4 \cdot T_k^2}{32 \cdot \pi \cdot l} = 7,25 \cdot 10^{-3} \ kg \cdot m^2$$

Nejistota momentu setrvačnosti

$$\begin{split} u_c(J_r) &= \sqrt{\left(\frac{\partial J_r}{\partial l} \cdot u_c(l)\right)^2 + \left(\frac{\partial J_r}{\partial G} \cdot u_c(G)\right)^2 + \left(\frac{\partial J_r}{\partial d_s} \cdot u_c(d_s)\right)^2 + \left(\frac{\partial J_r}{\partial T_k} \cdot u_c(T_k)\right)^2} = \\ &= \sqrt{\left(\frac{G \cdot d_s^4 \cdot T_k^2}{32 \cdot \pi \cdot l^2} \cdot u_c(l)\right)^2 + \left(\frac{d_s^4 \cdot T_k^2}{32 \cdot \pi \cdot l} \cdot u_c(G)\right)^2 + \left(\frac{G \cdot d_s^3 \cdot T_k^2}{8 \cdot \pi \cdot l} \cdot u_c(d_s)\right)^2 + \left(\frac{G \cdot d_s^4 \cdot T_k}{16 \cdot \pi \cdot l} u_c(T_k)\right)^2} = \\ &= \sqrt{2,60 \cdot 10^{-8} + 1,69 \cdot 10^{-7} + 1,45 \cdot 10^{-5} + 7,25 \cdot 10^{-12}} = 3,83 \cdot 10^{-3} \, kg \cdot m^2 \end{split}$$

9. Výsledky

- Modul pružnosti struny ve smyku: $G=(70.5 \mp 4.0) \cdot 10^9 \, Kg \cdot m^{-1} s^{-2}$ Moment setrvačnosti rotoru: $J_r=(7.3 \mp 3.8) \cdot 10^{-3} \, kg \cdot m^2$

10. Závěr

Modul pružnosti mi vyšel $(70.5 \pm 4.0) \cdot GPa$ v tabulkách¹ je 79-89 GPa, což naznačuje, že materiál, ze kterého je vyrobena struna, je podobný oceli.

11. Literatura

http://herodes.feld.cvut.cz/mereni/downloads/navody/torze.pdf

¹ http://herodes.feld.cvut.cz/mereni/downloads/navody/torze.pdf