Exercise 13.1

- 1. Two sides of a triangle measure 10 cm and 15 cm. Which of the following measure is possible for the third side?
 - (a) 5 cm (b) 20 cm
 - (c) 25 cm (d) 30 cm

Ans. 20cm.

2. O is an interior point of the ABC. Show that

$$\overrightarrow{mOA} + \overrightarrow{mOB} + \overrightarrow{mOC} > \frac{1}{2}(\overrightarrow{mAB} + \overrightarrow{mBC} + \overrightarrow{mCA})$$

Given: O is the interior point of $\triangle ABC$

To Prove:

$$m\overline{OA} + m\overline{OB} + m\overline{OC} > \frac{1}{2} (m\overline{AB} + m\overline{BC} + m\overline{CA})$$

Construction:

Join O with A, B and C.

Proof:

Statements	Reasons
ΔΟΑΒ	
$\overline{\text{mOA}} + \overline{\text{mOB}} > \overline{\text{mAB}}$ (i)	Sum of two sides > third side
Similarly	
$\overline{\text{mOB}} + \overline{\text{mOC}} > \overline{\text{mBC}}$ (ii)	Sum of two sides > third side
and	
$m\overline{OC} + m\overline{OA} > m\overline{CA}$ (iii)	1
$2m\overline{OA} + 2m\overline{OB} + 2m\overline{OC} > m\overline{AB} + m\overline{BC} + m\overline{CA}$	Adding (i), (ii) and (iii)
$2(m\overline{OA} + m\overline{OB} + m\overline{OC}) > m\overline{AB} + m\overline{BC} + m\overline{CA}$	
$m\overline{OA} + m\overline{OB} + m\overline{OC} > \frac{1}{2} (m\overline{AB} + m\overline{BC} + m\overline{CA})$	

3. In the $\triangle ABC$, $m \angle B = 75^{\circ}$ and $m \angle C = 55^{\circ}$. Which of the sides of the triangle is longest and which is the shortest?

Ans: Given a AABC in which

$$m \angle B = 75^0$$

$$m \angle C = 55^{\circ}$$

As
$$m \angle A + m \angle B + m \angle C = 180^{\circ}$$

$$m \angle A + 75^0 + 55^0 = 180^0$$

$$m \angle A + 130^0 = 180^0$$

$$m \angle A = 180^{\circ}-130^{\circ}$$

$$m \angle A = 50^0$$

As we know in a triangle, the side opposite to greater angle is longer than the side opposite to smaller angle

So
$$m\overline{AC} > m\overline{BC}$$

Hence longest side is
$$\overline{AC}$$
 and shortest side is \overline{BC}

4. Prove that in a right-angled triangle,

the hypotenuse is longer than each of the other two sides.

Ans.

Given: ΔABC is a right angle triangle.

Hence AB is hypotenuse of ΔABC.

To prove:

mAB > mAC and mAB > mBCProof:

As $\triangle ABC$ is a right angle triangle. So $m\angle C = 90^{\circ}$ is the largest angle and the remaining angles $\angle A$ and $\angle B$ are acute. So $m\angle C > m\angle A$ and $m\angle C > m\angle B$

As the side opposite to the greater angle is longer than the side opposite to the smaller angle.

Hence mAB > mAC and mAB > mBC

5. In the triangular figure, AB>AC.
BD and CD are the bisectors of ∠B and ∠C respectively. Prove that BC>DC.

Given: $\overline{AB} > \overline{BC}$, \overline{BD} and are the bisectors of the angles B and C

To Prove:

To prove = $\overline{BD} > \overline{CD}$

Proof

	Statements	Reasons
∴ ¯	in $\triangle ABC$ $\angle ACB > \angle ABC$ $\frac{1}{2} \angle ACB > \frac{1}{2} \angle ABC$	$\therefore \overline{AB} > \overline{AC}$
	$\frac{\angle B CD > \angle DBC}{\overline{BD} > \overline{CD}}$	\overline{CD} , \overline{BD} are bisectors of $\angle C$, $\angle B$. The bigger sides is opposite the bigger angle

Theorem. From a point, outside a line, perpendicular is the shortest distance from the point to the line.

Given A line AB and a point C (not lying on \overrightarrow{AB}) and a point D on \overrightarrow{AB} such that

 $m\overline{CD}$ is the shortest distance from the point C to \overline{AB} .

Construction

Take a point E on \overrightarrow{AB} . Join C and E to form a $\triangle CDE$

Proof:

Statements		Reasons
In	ΔCDE	
	m∠CDB > m∠CED	(An exterior angle of a triangle is greater

		than non adjacent interior angle).
But	$m\angle CDB = m\angle CDE$	Supplement of right angle.
:.	m∠CDE > m∠CED	
or	m∠CED < m∠CDE	$a > b \Rightarrow b < a$
or	$\overline{\text{mCD}} < \overline{\text{mCE}}$	
But E is any point on AB		Side opposite to greater angle is greater.
Hence	m = m = m = m = m = m = m = m = m = m =	
to Af	3 .	

Note:

- (i) The distance between a line and a point not on it, is the length of the perpendicular line segment from the point to the line.
- (ii) The distance between a line and a point lying on it is zero