Problem 2: A random variable X has the following probability distribution.

X	-2	-1	0	1	2	3
P(x)	0.1	k	0.2	2k	0.3	3k

Find (i) k, (ii) P(X<2), (iii) $P(-1 \le X < 3 / X > 0)$, (iv) cdf of X and

(v) Mean of X

x	-2	-1	0	11-, \	2	3
h(n)	0.1	4,5	0-2	2/15	0.3	3/5=1/5

$$\frac{(ii) P(x \angle 2)}{= x^{2}} = P(x = -1) + P(x = -1) + P(x = 0) + P(x = 1)$$

$$= (0.1) + (415) + (0.2) + 2/15$$

$$P(x \angle 2) = 4/2$$

x	-2	-1	0	L	2	3
L/w)	0.1	1/	0.2	2/15	0.3	3/=1/
PIN		115	1	1 - 111		1/3

(P(A/3) - P(APB) P(B)

2 9	((X=-1, X=0)	X=1, X=2) 🙇	7).
-	ACX=1	X=5X=	3))	3 14
= =	5/	×	-	-
***	P(X=1	X = 3, X:	= 3)	(0)
			18	12
	P(X=1, X	12000 >	K. 7	4.6
5 -				
	7(x=1, x=1)	X=3)		
- 15	45.04 353	1.04 4 1	1.0	
=	P(X21) +	P(x=2)		
1	I - VIII - V	- 1.0 + 1	4	
3	PCX=0+71X	=2) +P(X=3)	

x	-2	-1	0	11-1	2	3
b(n)	0.1	4,5	0.2	2/15	0.3	3/5=1
1		113	1 .	11-57/4		

	= P(x=1) + P(x=2)	
	P(x=1) +7(x=2) +P(x=3)	
)	= 2/15 + 3/10	
3	2/15 + 3/10+1/5	
	7/5 / 7/6/ 73	
1-1=2	(43/(x70)) = 13	
	19	

×	-2	-1	0	11-1	2	3
L(x.)	0.1	1/1-	0-2	2/15	0.3	3/5=1/3
1		713	1	1 - 27/2		113

(iii) (df of x
Edf is dented by
$$F(x)$$
.

$$F(x) = 0, x = 2.$$

$$F(x) = \frac{1}{10}, -2 = x = 1.$$

$$F(x) = \frac{1}{10}, -2 = x = 1.$$

$$F(x) = \frac{1}{10}, -2 = x = 1.$$

$$= \frac{1}{10}, -1 = x = 2.$$

$$F(x) = \frac{1}{10} + \frac{1}{15} + \frac{1}{5} = \frac{1}{15} = \frac{1}{5}$$

$$= \frac{11}{30}, 0 \le x \le 1$$

$$= \frac{1}{10} + \frac{1}{15} + \frac{1}{15} = \frac{1}{15} =$$

x	-2	-1	0	11-1	2	3
(4)	0.1	V	0.2	2/15	0.3	3/=1/
(n)	0.1	-1/15	0-2	2/15	0.3	3/15

F(x) = 94x =3 3 5x = x >3-> Total perhability. = E(x) = 2 xp(x). = (-2)(f) + (-1)(f) + + (1)(45)+ (2)(3/10) + (3)(1/5 Dr. R. Jayagopal_Module 2

CDF in Continuous Case

$$F(x) = P(x \leq 0) = 0.$$

=) Because, if we want

the first F(1.5) or F(1.7)Then, $F(1.5) = F(1) + P(1 \le x \le 1.5)$ 111 $F(1.7) = F(1) + P(1 \le x \le 1.7)$

This why we have the variable

In in the record integral as an upper

limit. Became it is defined in the robbe

1 - × - 2.

Problem 3: If the density function of a continuous random variable X is given

$$\operatorname{by} f(x) = \begin{cases} ax, & 0 \le x \le 1\\ a, & 1 \le x \le 2\\ 3a - ax, & 2 \le x \le 3\\ 0, & elsewhere \end{cases}$$

(i) find the value of 'a', (ii) find cdf of X and (iii) If x_1 , x_2 and x_3 are 3 independent observations of X, what is the probability that exactly one of these 3 is greater than 1.5?

Solution:

W.K. 7 f(x) du =1 0

Now 05861

Gooding an X and Observing its value Now, we can choose Bernoulli's

$$p = P(x>1.5) = \int f(x) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{1}{2}) dx + \int (\frac{3}{2} - \frac{x}{2}) dx$$

$$= \int (\frac{3}{2} - \frac{x}{2}) dx$$

Now,

$$P(Exactly on Value > 1.5)$$
= $P(x=1)$
= $3c_1(p)'(q)^{3-1}$
= $3c_1(1/2)(1/2)^2$
= $3/87$.

Problem 4: A continuous random variable X that can assume any value between x = 2 and x = 5 has a density function given by f(x) = k(1 + x). Find P(X < 4).

Solution:

