Universidade Federal de Juiz de Fora

Trabalho de Instalações Elétricas: Memorial de Cálculo - Parte 3

Autores: Lucca Oliveira Facio Viccini

Mariana de Oliveira Resende

Juiz de Fora, Novembro de 2020

Sumário

1	Introdução	2
2	Normas Utilizadas	2
3	Definição de Quantidade e Potência de TUGs	2
4	Definição de Quantidade e Potência de TUEs	6
5	Previsão de Carga de Iluminação	7
6	Levantamento da Potência Total	8
7	Divisão de Circuitos	10
8	Dimensionamento de Condutores 8.1 Método da Ampacidade	12 13 23
9	Dimensionamento de Eletrodutos	28
10	Dimensionamento de Disjuntores Termomagnéticos 10.1 Proteção Contra Correntes de Sobrecarga	31 32 35
11	Dimensionamento da Chave Geral	46
12	Aterramento	47
13	Dimensionamento de Dispositivos Diferenciais Residuais	48
14	Dimensionamento de Dispositivos de Proteção Contra Surtos	49
15	Lista de Materiais	52
16	Considerações Adicionais 16.1 Circuitos de Iluminação	54 54 55

1 Introdução

O presente documento tem por objetivo descrever os cálculos feitos e as e decisões tomadas no projeto de instalações elétricas residenciais do imóvel situado à rua Fortunato Zanini - nº40, bairro Viña Del Mar, na cidade de Juiz de Fora, estado de Minas Gerais, de propriedade de Mariana de Oliveira Resende a ser atendida pela concessionária CEMIG na categoria trifásica C7 a 4 fios.

2 Normas Utilizadas

Para a elaboração deste documento foram utilizadas as seguintes normas técnicas:

- NBR 5410
- NBR 5444
- NBR 16752/2020
- ND 5.1 CEMIG
- IEC 60898
- IEC 60947-2

3 Definição de Quantidade e Potência de TUGs

Dispondo da planta baixa da residência, foi calculado o número mínimo de tomadas de uso geral de acordo com a norma NBR 5410/2004 levando em consideração as dimensões de cada área da residência.

O número total de TUGs foi definido com base no valor mínimo calculado e nas necessidades dos proprietários. O resultado pode ser observado na Tabela 1.

	Área	Perímetro	Número mínimo	Número total
	(\mathbf{m}^2)	(m)	$ m de\ TUGs$	m de~TUGs
Sala de Estar	10,92	13,4	3	3
Hall de Entrada	9,36	12,6	3	3
Sala de Jantar	7,84	11,2	4	4
Cozinha	6,2275	10	3	7
Área Externa	31,53	30,39	9	9
Lavanderia	5,6844	9,9528	3	4
Varanda	11,18	16,8	1	2
Corredor	3,3	8,2	1	1
Quarto 1	11,62	13,9	3	7
Quarto 2	14,0695	15,2426	4	6
Quarto 3	10,92	13,4	3	6
Escritório	6,89	10,5	3	4
Banheiro 1	3,975	8,3	1	2
Banheiro 2	2,9468	7,5652	1	2
Banheiro 3	3,975	8,3	1	2
Garagem	61,1878	37,7653	8	8
Total	-	-	51	70

Tabela 1: Número de TUGs

A partir do número total de TUGs, o seguinte passo foi estabelecer a potência mínima das tomadas. Para isso, foi novamente utilizada a norma NBR 5410/2004. O resultado pode ser observado na Tabela 2.

	Número total de TUGs	Potência Mínima (VA)
Sala de Estar	3	300
Hall de Entrada	3	300
Sala de Jantar	4	1900
Cozinha	7	2200
Área Externa	9	2400
Lavanderia	4	1900
Varanda	2	200
Corredor	1	100
Quarto 1	7	700
Quarto 2	6	600
Quarto 3	6	600
Escritório	4	400
Banheiro 1	2	1200
Banheiro 2	2	1200
Banheiro 3	2	1200
Garagem	8	800
Total	70	16000

Tabela 2: Potência das TUGs

Dessa forma, a partir do número total de 70 TUGs para a residência definiu-se uma potência total de $16000\mathrm{VA}$.

As tensões e correntes de cada TUG foram definidas de acordo com a norma de forma a atender às necessidades dos proprietários. Os valores podem ser observados na Tabela 3.

Total 7	ΓU	$\overline{\mathrm{Gs}}$
Sala de estar	3	3x127V/10A
Hall de entrada	3	3x127V/10A
Sala da jantar	4	1x127V/20A
Sala de jantar	4	3x127V/20A
Cozinha	7	1x220V/20A
Coziiiia	'	6x127V/20A
Área externa	9	1x220V/20A
Alea externa	9	8x127V/20A
Lavanderia	4	1x220V/20A
Lavanueria	4	3x127V/20A
Varanda	2	2x127V/20A
Corredor	1	1x127V/10A
Quarto 1	7	7x127V/20A
Quarto 2	6	6x127V/10A
Quarto 3	6	6x127V/10A
Escritório	4	4x127V/20A
Banheiro 1	2	2x127/20A
Banheiro 2	2	2x127/20A
Banheiro 3	2	2x127/20A
Caragom	8	1x220V/20A
Garagem	0	7x127V/20A

Tabela 3: Descrição TUGs

4 Definição de Quantidade e Potência de TUEs

Para as TUEs escolheu-se a potência de acordo com a potência requerida pelos aparelhos a serem ligados em cada tomada de uso específico. Os valores podem ser observados na Tabela 4.

	Número total de TUEs	Aparelho	Potência Requerida (W)
Sala de Estar	1	Ar condicionado	3480
Hall de Entrada	0	-	-
Sala de Jantar	0	-	-
Cozinha	0	-	-
Área Externa	1	Forno Combinado	18340
Lavanderia	0	-	-
Varanda	0	-	-
Corredor	0	-	-
Quarto 1	1	Ar condicionado	926
Quarto 2	1	Ar condicionado	926
Quarto 3	1	Ar condicionado	926
Escritório	0	-	-
Banheiro 1	1	Chuveiro	6500
Banheiro 2	1	Chuveiro	6500
Banheiro 3	1	Chuveiro	6500
Garagem	0	-	-
Total	8	-	44098

Tabela 4: Potência das TUEs

Assim, temos um total de 8 TUEs com uma potência total de 44098W.

5 Previsão de Carga de Iluminação

Para a definição da quantidade de pontos de luz e da potêcia de iluminação, utilizou-se a norma 5410/2004, levando em consideração as dimensões de cada área da residência.

A campainha será instalada junto a um circuito de iluminação, por esse motivo, a potência destinada a esse componente será incluida no cálculo da carga de iluminação. O resultado pode ser observado na Tabela 5.

	Área	Perímetro	Número total	Potência de Iluminação
	(\mathbf{m}^2)	(m)	Pontos de Luz	(VA)
Sala de Estar	10,92	13,4	1	160
Hall de Entrada	9,36	12,6	1	100
Sala de Jantar	7,84	11,2	1	100
Cozinha	6,2275	10	2	100
Área Externa	31,53	30,39	4	460
Lavanderia	5,6844	9,9528	1	100
Varanda	11,18	16,8	2	160
Corredor	3,3	8,2	1	100
Quarto 1	11,62	13,9	1	160
Quarto 2	14,0695	15,2426	3	220
Quarto 3	10,92	13,4	1	160
Escritório	6,89	10,5	1	100
Banheiro 1	3,975	8,3	1	100
Banheiro 2	2,9468	7,5652	1	100
Banheiro 3	3,975	8,3	1	100
Garagem	61,1878	37,7653	2	880
Campainha	-	-	1	30
Total	-	-	25	3130

Tabela 5: Pontos de Luz

Dessa forma, temos um total de 3130 VA de potência instalada destinada a iluminação.

6 Levantamento da Potência Total

Para classificar o tipo de instalação de acordo com as categorias da CEMIG, primeiramente calculou-se a potência ativa total prevista para a residência. O resultado pode ser observado na Tabela 6.

	Potência (VA)	Fator de Potência	Potência Ativa (W)	
Iluminação	3130	1	3130	
TUGs	16000	0.8	12800	
TUEs Ar condicionados	6802,2	0,92	6258	
TUE Forno Combinado	19934,8	0,92	18340	
TUEs Chuveiros	19500	1	19500	
Total	65367	-	60028	

Tabela 6: Potência Total

Em seguida, foi consultada a tabela da CEMIG de dimensionamento para unidades consumidoras urbanas ou rurais atendidas por redes de distribuição secundárias trifásicas $(127\mathrm{V}/220\mathrm{V})$ (Figuras 1 e 2).

Forne	Fornecimento												iero de	Prote	ão	Ramal de	Entra	da	Ater	ramento			Pos	ste (5)		Pontalete (5)
			Carga Instalada			Disjur term magné	0	Cobre Eletroduto		Condutor de proteção Mesmo Lado da Rede				do Oposto la Rede												
Tipo	Faixa			Fios	Fases			PVC - 70°C	PVC	Aço	Condutor	Eletrodo						Aço								
		de	até			NEMA	IEC	(3)		netro ninal	Cobre nu			Aço	Concreto	Aço	Concreto									
		kW		kW		A		mm ²	n	nm	mm ²	Quantidade	mm ²		Т	ipo	•	Tipo								
	Al	-	5,0			40	40	6					6			Ĺ										
Α	A2	5,1	6,5	2	1	50	50	10					10													
	A3	6,6	10,0	1		70	63	16	32	25	10	1	16	PA1	PC1	PA4	PC2	PT1								
	B1	-	10,0	,	_	40	40	10					10													
В	B2	10,1	15,0	3	2	60	63	16					16													

Figura 1: DIMENSIONAMENTO PARA UNIDADES CONSUMIDORAS URBANAS OU RURAIS ATENDIDAS POR REDES DE DISTRIBUIÇÃO SECUNDÁRIAS TRIFÁSICAS (127/220V)

Forne	Fornecimento Demanda		Número de Proteção		Ramal de Entrada		Aterramento			Poste (5)			Pontalete (5)					
		Provável				term	termo Cobre			oduto			Condutor de	Mesmo Lado da Rede		Lado Oposto da Rede		
Tipo	Faixa			Fios	Fases	magné	tico	PVC - 70°C	PVC	,	Condutor	Eletrodo	proteção					Aço
		de	até		NEMA	IEC	(3)		metro ninal	cobre nu			Aço	Concreto	Aço	Concreto	riço	
		kV	/A			A		mm ² mm		mm ²	Quantidade	mm ²	Tipo			Tipo		
	C1	-	15,0	0 40 40 10 32 25				10										
	C2	15,1	23,0			60	63	16	32	23				PA1		PA4		
	C3	23,1	27,0			70	80	25	40	40 32	40 22	2	2 16	PC1			PC2	PT1
C	C4	27,1	38,0	4	3	100	100	35	40		10			PA2		PA5		
	C5	38,1	47,0	4	3	120	125	50	50	40	10		25	PAZ		PAS		
	C6	47,1	57,0			150	150	70	60	50	1							
	C7	57,1	66,0			175	175	95	75	65		3	35	PA3	PC3	PA6	PC3	PT2
	C8	66,1	75,0			200	200	93	/3	63								

Figura 2: DIMENSIONAMENTO PARA UNIDADES CONSUMIDORAS URBANAS OU RURAIS ATENDIDAS POR REDES DE DISTRIBUIÇÃO SECUNDÁRIAS TRIFÁSICAS (127/220V) - LIGAÇÕES A 4 FIOS

Assim, a partir do valor calculado de potência ativa total de 60kW, é possível observar que instalação projetada não se encaixa nas faixas A e B, que permitem, respectivamente, cargas instaladas de 5,0KW a 10kW e 10kW a 15kW.

Convertendo todos os valores de potência em W para VA (Tabela 6), temos um total de 65,367kVA e podemos classificar a instalação na categoria trifásica C7 a 4 fios da CEMIG, que permite demandas de 57,1kVA a 66,0kVA.

7 Divisão de Circuitos

Para a divisão de circuitos, primeiramente estabeleceu-se quais seriam as tensões e correntes instaladas para cada TUG.

Nas áreas de serviço e banheiros, adotou-se 127V/20A para a maioria das tomadas e 220V/20A para algumas tomadas de acordo com as necessidades dos proprietários. Para os quartos e ambientes sociais, adotou-se 127V/10A para as tomadas. Para a varanda, o hall de entrada, o escritório e o único quarto que não possui banheiro, adotou-se 127/20A. Esses valores estão resumidos na Tabela 3.

Assim, temos um total de 16 TUGs 127V/10A, 13 TUGs 127/20A, 4 TUGs 220V/20A divididas em 9 circuitos.

Os pontos de iluminação foram projetados com 127V/10A e foram dividios em 3 circuitos levando em consideração a posição espacial e a função dos cômodos da residência.

Cada TUE recebeu seu próprio circuito, totalizando 8 circuitos destinados a TUEs.

Por fim, a campainha foi inserida juntamente ao circuito 1 (de iluminação).

Como a residência possui duas áreas internas separadas por uma área externa, optou-se pela instalação de um quadro terminal na lavanderia para distribuir as cargas das seguintes áreas: lavanderia, banheiro 2 e quarto 2, além de partes da garagem e da área externa. Os demais circuitos partem do quadro geral localizado na parede externa da cozinha.

Com isso temos um total de 21 circuitos distribuidos conforme a tabela a seguir:

			Circuitos		
No	Tipo	Tensão/ Corrente	Local	Potência (VA)	Potência total (VA)
			Quarto1	160	
			Quarto 3	160	
			Escritório	100	
		127V/10A	Banheiro 1	100	
1	Iluminação Social	(máx 1270VA)	Banheiro 3	100	1170

			Sala de Estar	160	1
			Corredor	100	
			Hall de Entrada	100	
			Varanda	160	
			Campainha	30	_
			Garagem	440	
2	Iluminação	127V/10A	Sala de Jantar	100	870
	de Serviço	(máx 1270VA)	Cozinha	100	
			Área Externa	230	
			Quarto 2	220	
		127V/10A	Banheiro 2	100	
3	Iluminação	(máx 1270VA)	Lavanderia	100	1090
			Área Externa	230	
			Garagem	440	
			Quarto 1	700	
4	TUGs	127V/20A	Varanda	200	1600
		(máx 2540VA)	Hall de Entrada	300	1
			Escritório	400	
			Quarto 3	600	
5	TUGs	127V/10A	Corredor	100	1000
		(máx 1270 VA)	Sala de Estar	300	
6	TUGs	127V/10A	Quarto 2	600	600
			Cozinha	1600	
7	TUGs	127V/20A	Sala de Jantar	700	2500
		(máx 2540VA)	Área Externa	200	
8	TUGs	220V/20A	Cozinha	600	600
9	TUGs	127V/20A	Sala de Jantar	1200	1800
		(máx 2540VA)	Área Externa	600	
			Área Externa	1000	
10	TUGs	127V/20A	Garagem	400	2100
		(máx 2540VA)	Lavanderia	700	1
			Garagem	300	
11	TUGs	127V/20A	Banheiro 2	1200	2100
		(máx 2540VA)	Lavanderia	600	
12	TUGs	127V/20A	Banheiro 1	1200	2400
		(máx 2540VA)	Banheiro 3	1200	
			Garagem	100	
13	TUGs	220V/20A	Lavanderia	600	1300
		(máx 4400VA)	Área Externa	600	
14	TUE	220V	Chuveiro 1	6500	6500
15	TUE	220V	Chuveiro 2	6500	6500
16	TUE	220V	Chuveiro 3	6500	6500
17	TUE	220V	Ar Condicionado 1	1006,52	1006,52
18	TUE	220V	Ar Condicionado 2	1006,52	1006,52
19	TUE	220V	Ar Condicionado 3	$1006,\!52$	1006,52
20	TUE	220V	Ar Condicionado 4	3782,61	3782,61
21	TUE	220V	Forno Combinado	19934,79	19934,79

Foi feita a divisão mais igualitária possível das cargas entre as fases como consta na Tabela 7.

	Fase A	Fase B	Fase C
Potencia Total (VA)	21939,78	21608,7	21818,48
Circuito 1	1170	-	-
Circuito 2	870	-	-
Circuito 3	1090	-	-
Circuito 4	1600	-	-
Circuito 5	-	-	1000
Circuito 6	600	-	-
Circuito 7	2500	-	-
Circuito 8	300	-	300
Circuito 9	1800	-	-
Circuito 10	2100	-	-
Circuito 11	2100	-	-
Circuito 12	2400	-	-
Circuito 13	650	-	650
Circuito 14	3250	3250	-
Circuito 15	-	3250	3250
Circuito 16	-	3250	3250
Circuito 17	503,26	-	503,26
Circuito 18	503,26	-	503,26
Circuito 19	503,26	-	503,26
Circuito 20	-	1891,305	1891,305
Circuito 21	-	9967,395	9967,395

Tabela 8: Divisão de Fases

8 Dimensionamento de Condutores

Para o dimensionamento dos condutores dos circuitos elétricos, primeiramente foram definidos material e isolação.

Por se tratar de uma instalação residencial em baixa tensão, optou-se por utilizar o cobre como material condutor. Para a isolação, escolheu-se o PVC (Policloreto de Vinila) por seu baixo custo, bom desempenho elétrico e boa resistência à propagação de incêndio.

Em seguida, as seções nominais dos condutores foram dimensionadas através do Método da Ampacidade e corrigidas através do Método da Queda de Tensão, com base na norma NBR 5410/2008.

8.1 Método da Ampacidade

Definidos o material e a isolação a serem utilizados nos circuitos da instalação, o seguinte passo foi classificar a maneira de instalar de acordo com as categorias da tabela 33 da norma NBR 5410/2008, que podem ser visualizadas nas Figuras 3 e 4.

Os condutores instalados nas paredes e teto foram classificados no método de instalação número 7 (condutores isolados em eletroduto de seção circular embutido em alvenaria) de referência B1. Os condutores instalados no solo foram classificados no método de instalação 61A (cabos unipolares em eletroduto de seção circular enterrados) de referência D.

Tabela 33 — Tipos de linhas elétricas				
Método de instalação número	Esquema ilustrativo	Descrição	Método de referência ¹⁾	
1	Face	Condutores isolados ou cabos un polares em eletroduto de seção circular embutido em parede termicamente isolante ²⁾	A1	
2	Face interna	Cabo multipolar em eletroduto de seção circular embutido em parede termicamente isolante ²⁾	A2	
3		Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do eletroduto	B1	
4		Cabo multipolar em eletroduto aparente de seção circular sobre parede ou espaçado desta menos de 0,3 vez o diâmetro do eletroduto	B2	
5	æ	Condutores isolados ou cabos unipolares em eletroduto aparente de seção não-circular sobre parede	B1	
6		Cabo multipolar em eletroduto aparente de seção não-circular sobre parede	B2	
7	C	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria	B1	
8	6	Cabo multipolar em eletroduto de seção circular embutido em alvenaria	B2	

Figura 3: Tipos de Linhas Elétricas

Tabela 33 (continuação)

Método de instalação número	Esquema ilustrativo	Descrição	Método de referência ¹⁾
52	6 3	Cabos unipolares ou cabo multipolar embutido(s) diretamente em alvenaria sem proteção mecânica adicional	С
53	8	Cabos unipolares ou cabo multipolar embutido(s) diretamente em alvenaria com proteção mecânica adicional	С
61		Cabo multipolar em eletroduto(de seção circular ou não) ou em canaleta não-ventilada enterrado(a)	D
61A		Cabos unipolares em eletroduto(de seção não-circular ou não) ou em canaleta não-ventilada enterrado(a) ⁸⁾	D

Figura 4: Tipos de Linhas Elétricas - Continuação

Em seguida, calculou-se a corrente nominal de cada circuito, como pode ser observado na Tabela 9 a seguir.

Circuito	Corrente Nominal (A)
1	9,212598425
2	6,850393701
3	8,582677165
4	20
5	10
6	10
7	20
8	20
9	20
10	20
11	20
12	20
13	20
14	29,54545455
15	29,54545455
16	29,54545455
17	4,575090909
18	4,575090909
19	4,575090909
20	17,19368182
21	90,61268182

Tabela 9: Corrente Nominal

A temperatura ambiente considerada foi de 30°C para cabos não enterrados e de 20°C para cabos enterrados. Dessa forma, o Fator de Correção de Temperatura (FCT) adotado foi 1, já que os valores de seções nominais da tabela 36 da norma NBR 5410 são dados para 30°C (ar) e 20°C (solo).

O Fator de Correção de Agrupamento (FCA) foi determinado para cada circuito de acordo com o número de circuitos por eletroduto, levando em consideração os maiores valores de agrupamento para cada um, como pode ser visto na Tabela 10.

Circuito	FCA
1	0,6
2	0,57
3	0,65
4	0,6
5	0,57
6	0,65
7	0,7
8	0,7
9	0,57
10	0,65
11	0,65
12	0,7
13	0,65
14	0,8
15	0,65
16	0,7
17	0,57
18	0,65
19	0,57
20	0,57
21	0,65

Tabela 10: Fator de Correção de Agrupamento

De posse do FCT e do FCA para cada circuito, foi possível corrigir os valores das correntes de cada um destes, conforme a Tabela 11 a seguir:

Circuito	Corrente Corrigida (A)
1	15,35433071
2	12,01823456
3	13,20411872
4	33,33333333
5	17,54385965
6	15,38461538
7	28,57142857
8	28,57142857
9	35,0877193
10	30,76923077
11	30,76923077
12	28,57142857
13	30,76923077
14	36,93181818
15	45,454545
16	42,20779221
17	8,026475279
18	7,038601399
19	8,026475279
20	30,16435407
21	139,4041259

Tabela 11: Corrente Corrigida

Finalmente, foi definida a seção nominal dos condutores de fase através da tabela 36 da norma NBR 5410, Figura 5 deste documento. Além disso, foi levado em consideração o valor mínimo de seção dos condutores apontados pela tabela 47 da norma, Figura 6. O resultado pode ser observado na Tabela 12.

Tabela 36 — Capacidades de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C e D

Condutores: cobre e alumínio

Isolação: PVC

Temperatura no condutor: 70°C

Temperaturas de referência do ambiente: 30°C (ar), 20°C (solo)

Seções				Méto	dos de ref	ferência i	ndicados	na tabela	a 33			
nominais	A	.1	Α	2	В	1	В	2	(D)
mm ²	Número de condutores carregados											
mm-	2	3	2	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13
						obre						
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
11	11	10	11	10	14	12	13	12	15	14	18	15
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67
25	80	73	75	68	101	89	90	80	112	96	104	86
35	99	89	92	83	125	110	111	99	138	119	125	10
50	119	108	110	99	151	134	133	118	168	144	148	12
70	151	136	139	125	192	171	168	149	213	184	183	15
95	182	164	167	150	232	207	201	179	258	223	216	17
120	210	188	192	172	269	239	232	206	299	259	246	20
150	240	216	219	196	309	275	265	236	344	299	278	23
185	273	245	248	223	353	314	300	268	392	341	312	25
240	321	286	291	261	415	370	351	313	461	403	361	29
300	367	328	334	298	477	426	401	358	530	464	408	33
400	438	390	398	355	571	510	477	425	634	557	478	39
500	502	447	456	406	656	587	545	486	729	642	540	44
630	578	514	526	467	758	678	626	559	843	743	614	50
800	669	593	609	540	881	788	723	645	978	865	700	57
1 000	767	679	698	618	1 012	906	827	738	1 125	996	792	65

Figura 5: Capacidade de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C e D)

Tabela 47 — Seção mínima dos condutores¹⁾

Tipo de linha		Utilização do circuito	Seção mínima do condutor mm² - material	
		Circuitos de iluminação	1,5 Cu 16 Al	
	Condutores e cab os isola dos	Circuitos de força ²⁾	2,5 Cu 16 Al	
Instalações fixas em geral		Circuitos de sinalização e circuitos de controle	0,5 Cu ³⁾	
	0-11	Circuitos de força	10Cu 16 Al	
	Condutores nus	Circuitos de sinalização e circuitos de controle	16 Al 0,5 Cu ³⁾ 10Cu 16 Al 4 Cu Como especificado na norma do equipamento	
Linhas flexíveis com cabos isolados		Para um equipamento específico		
		Para qualquer outra aplicação	0,75 Cu ⁴⁾	
		Circuitos a extrabaixa tensão para aplicações especiais	0,75 Cu	

Figura 6: Seção Mínima dos Condutores

Seções mínimas ditadas por razões mecânicas
 Os circuitos de tomadas de corrente são considerados circuitos de força.

³⁾ Em circuitos de sinafização e controle destinados a equipamentos eletrônicos é admitida uma seção mínima de 0,1 mm².

⁴⁾ Em cabos multipolares flexíveis contendo sete ou mais veias é admitida uma seção mínima de 0,1 mm².

Circuito	Seção Fase (mm²)
1	1,5
2	1,5
3	1,5
4	6
5	2,5
6	2,5
7	4
8	4
9	4
10	4
11	4
12	4
13	4
14	6
15	10
16	10
17	2,5
18	2,5
19	2,5
20	4
21	50

Tabela 12: Seção Nominal do Condutor de Fase

A partir da seção nominal dos condutores de fase, foram dimensionados os condutores de neutro e proteção, com base nas tabelas 48 e 58 da norma NBR 5410, Figuras 7 e 8. Os resultados são apresentados na Tabela 13.

Tabela 48 — Seção reduzida do condutor neutro1)

Seção dos condutores de fase mm²	Seção reduzida do condutor neutro mm²				
S ≤ 25	s				
35	25				
50	25				
70	35				
95	50				
120	70				
150	70				
185	95				
240	120				
300	150				
400	185				
1) As condições de utilização desta tabe	1) As condições de utilização desta tabela são dadas em 6.2.6.2.6.				

Figura 7: Seção Mínima do Condutor de Neutro

Tabela 58 — Seção mínima do condutor de proteção

Seção dos condutores de fase S mm²	Seção mínima do condutor de proteção correspondente mm²
S ≤ 16	S
16 < S ≤ 35	16
S > 35	S/2

Figura 8: Seção Mínima do Condutor de Proteção

Circuito		Seção Neutro (mm²)	Seção PE (mm²)
1	1,5	1,5	1,5
2	1,5	1,5	1,5
3	1,5	1,5	1,5
4	6	6	6
5	2,5	2,5	2,5
6	2,5	2,5	2,5
7	4	4	4
8	4	4	4
9	4	4	4
10	4	4	4
11	4	4	4
12	4	4	4
13	4	4	4
14	6	6	6
15	10	10	10
16	10	10	10
17	2,5	2,5	2,5
18	2,5	2,5	2,5
19	2,5	2,5	2,5
20	4	4	4
21	50	25	25

Tabela 13: Seções Nominais dos Condutores de Neutro e Proteção Equipotencial

Para o circuito que vai do quadro medidor ao quadro geral, foi feito o dimensionamento dos cabos de fase utilizando a maior potência por fase da Tabela 8, ou seja, 21939, 78 VA. Esse valor foi dividido pela tensão de fase de 127 V e, nessa corrente de 172, 75 A aplicou-se o Fator de Correção de Carregamento do Neutro de 0, 86, já que o abastecimento da residência é trifásico a 4 fios. Então, com valor obtido de 200, 87 A, é possível consultar a tabela das Figuras 5, 7 e 8 e obter valores de 120 mm^2 , 70 mm^2 e 60 mm^2 de seção nominal para os cabos de fase, neutro e proteção, respectivamente, deste circuito.

8.2 Método da Queda de Tensão

A fim de garantir maior confiabilidade ao dimensionamento dos condutores dos circuitos e uma instalação mais segura, utilizou-se do Método da Queda

de Tensão para verificar os valores das seções nominais dos condutores de fase.

Primeiramente, foi calculada a resistência de cada circuito a partir da seguinte equação:

$$R_c = \frac{\rho \cdot l \cdot N}{S} \tag{1}$$

Em que:

- $\rho_{20^{\circ}C}^{Cu} = 0,0172 \ \Omega \frac{mm^2}{m};$
- $\rho^{Cu}_{30^oC} = 0,01787424 \ \Omega^{\frac{mm^2}{m}};$
- *l* é o comprimento do condutor de fase de cada circuito medido do quadro geral/terminal até a carga;
- ullet N é o número de condutores carregados de cada circuito e
- S é a seção nominal do condutor de fase.

Os valores e resultados estão resumidos na Tabela 14 abaixo:

Circuito	l (m)	N	\mathbf{S} (mm^2)	$R_c (\Omega)$
1	45,7195	2	1,5	1,089601754
2	27,9314	2	1,5	0,6656700628
3	40,7538	2	1,5	0,9712576028
4	26,8089	2	6	0,1597295709
5	27,9183	2	2,5	0,3992147157
6	28,4204	2	2,5	0,4063944404
7	13,9395	2	4	0,1245789842
8	7,9653	2	4	0,07118684194
9	13,8049	2	4	0,1233760479
10	35,3224	2	4	0,3156805275
11	34,3805	2	4	0,3072626542
12	20,8539	2	4	0,1863738068
13	30,8471	2	4	0,2756842344
14	2,2521	2	6	0,01341819197
15	14,502	2	10	0,0518424457
16	8,3845	2	10	0,02997331306
17	26,1052	2	2,5	0,373288488
18	21,9694	2	2,5	0,3141490626
19	31,2383	2	2,5	0,4466886971
20	16,5167	2	4	0,1476117299
21	5,1622	2	50	0,003690816069

Tabela 14: Cálculo de R_c

De posse do valor de resistência, foi possível calcular a queda de tensão de cada circuito, bem como a porcentagem da queda de tensão através das seguintes equações:

$$V_c = R_c \cdot I_p \tag{2}$$

$$e(\%) = \frac{V_c}{V_n} = \frac{R_c \cdot I_p}{V_n} \tag{3}$$

Em que:

- V_c é a queda de tensão do circuito;
- I_p é a corrente nominal;
- \bullet e
(%) é a porcentagem da queda de tensão e
- $\bullet~V_n$ é a tensão para o trecho de interesse.

Para o circuito que vai do quadro medidor ao quadro geral, $V_n=127~V$ e obtemos $R_c=0,006488872~\Omega,~V_c=1,303464788~V$ e e(%)=1,026350227%. Assim, pode-se perceber que este circuito não atende ao requisito da norma de queda máxima de tensão de 1%. Fez-se então necessário um aumento na seção nominal do condutor de fase de 120 mm^2 para 150 mm^2 . Os novos valores obtidos são $R_c=0,0051910976~\Omega,~V_c=1,04277183~V$ e, finalmente, e(%)=0,8210801813%, atendendo ao critério de 1%.

A partir desse percentual de queda obtido, pode-se calcular V_n para os demais circuitos. Os valores e resultados estão resumidos na Tabela 15.

Circuito	$R_c (\Omega)$	I_p (A)	V_n (V)	V_c (V)	e(%)
1	1,089601754	9,212598425	125,9572282	10,03806341	7,96942228
2	0,6656700628	6,850393701	125,9572282	4,560102005	3,620357539
3	0,9712576028	8,582677165	125,9572282	8,335990449	6,618112013
4	0,1597295709	20	125,9572282	3,194591418	2,536250968
5	0,3992147157	10	125,9572282	3,992147157	3,169446656
6	0,4063944404	10	125,9572282	4,063944404	3,226447948
7	0,1245789842	20	125,9572282	2,491579685	1,978115683
8	0,07118684194	20	218,1936236	1,423736839	0,6525107449
9	0,1233760479	20	125,9572282	2,467520958	1,959014972
10	0,3156805275	20	125,9572282	6,31361055	5,012503563
11	0,3072626542	20	125,9572282	6,145253083	4,878841153
12	0,1863738068	20	125,9572282	3,727476135	2,959318961
13	0,2756842344	20	218,1936236	5,513684687	2,526968752
14	0,01341819197	29,54545455	218,1936236	0,3964465809	0,1816948517
15	0,0518424457	29,54545455	218,1936236	1,531708623	0,7019951351
16	0,02997331306	29,54545455	218,1936236	0,8855751585	0,4058666536
17	0,373288488	4,575090909	218,1936236	1,707828768	0,7827125009
18	0,3141490626	4,575090909	218,1936236	1,43726052	0,6587087637
19	0,4466886971	4,575090909	218,1936236	2,043641397	0,9366182951
20	0,1476117299	17,19368182	218,1936236	2,537989117	1,163182074
21	0,003690816069	90,61268182	218,1936236	0,3344347421	0,1532742967

Tabela 15: Cálculo de e(%)

A norma NBR 5410 estabelece que a máxima queda de tensão entre o quadro geral e as cargas elétricas é de 4%.

Analisando a Tabela 15, é possível notar que os circuitos listados abaixo não obecedem aos critérios de queda de tensão máxima estipulada.

- Circuito 1
- Circuito 3
- Circuito 10
- Circuito 11

Dessa forma, foi necessário aumentar a seção nominal dos condutores de fase desses circuitos e refazer a análise, obtendo assim, os valores representados na Tabela 16.

Circuito	\mathbf{S} (mm^2)	e(%)
1	2,5	4,781653368
3	2,5	3,970867208
10	6	3,341669042
11	6	3,252560769

Tabela 16: Recalculando Seções Nominais

Pode-se notar que os circuitos 3, 10 e 11 agora atendem ao critério de 4% requisitado pela norma. É necessário um novo aumento na seção nominal do circuito 1.

Aumentando para 4 mm^2 a seção do condutor de fase do circuito 1 e refazendo os cálculos, obtém-se um valor de e(%)=2,988533355.

Com os valores corrigidos das seções dos condutores de fase, pode-se redimensionar os condutores de neutro e proteção de cada circuito. A Tabela 17 apresenta todos os valores atualizados de seções dos condutores de fase, neutro e proteção de cada circuito da instalação.

Circuito	Seção Fase (mm²)	Seção Neutro (mm²)	Seção PE (mm²)
1	4	4	4
2	1,5	1,5	1,5
3	2,5	2,5	2,5
4	6	6	6
5	2,5	2,5	2,5
6	2,5	2,5	2,5
7	4	4	4
8	4	4	4
9	4	4	4
10	6	6	6
11	6	6	6
12	4	4	4
13	4	4	4
14	6	6	6
15	10	10	10
16	10	10	10
17	2,5	2,5	2,5
18	2,5	2,5	2,5
19	2,5	2,5	2,5
20	4	4	4
21	50	25	25

Tabela 17: Seções Nominais dos Condutores Atualizadas

Para o circuito do quadro medidor ao quadro geral, a seção nominal do condutor de fase obtida de $150 \ mm^2$ fornece uma seção nominal mínima de $70 \ mm^2$ para o condutor de neutro e de $75 \ mm^2$ para o condutor de proteção.

9 Dimensionamento de Eletrodutos

De posse dos valores finais das seções nominais dos condutores dos circuitos, foi possível dimensionar os eletrodutos da instalação.

Primeiramente, foi definido que os condutos da instalação fossem não metálicos, de PVC e flexíveis.

Em seguida, foi verificado se os circuitos projetados para ocupar o mesmo eletroduto atendem aos requisitos da norma NBR 5410, que podem ser con-

sultados na Figura 9.

6.2.10.2 Admite-se que os condutos fechados contenham condutores de mais de um circuito nos seguintes casos:

- a) quando as quatro condições seguintes forem simultaneamente atendidas:
 - os circuitos pertencerem à mesma instalação, isto é, se originarem do mesmo dispositivo geral de manobra e proteção;
 - as seções nominais dos condutores de fase estiverem contidas dentro de um intervalo de três valores normalizados sucessivos;
 - todos os condutores tiverem à mesma temperatura máxima para serviço contínuo; e
 - todos os condutores forem isolados para a mais alta tensão nominal presente; ou

Figura 9: Condições para a Alocação de Circuitos em um Mesmo Eletroduto

Como todos os circuitos pertencem à mesma instalação, todos os condutores empregam o mesmo metal e isolação (cobre e PVC), eles atendem ao primeiro e quarto requisitos da norma NBR 5410. Como a seção nominal máxima dos condutores da instalação é de $50\ mm^2$, observando a tabela 35 da norma (Figura 10), pode-se notar que o critério da temperatura máxima para serviço contínuo também é atendido.

Tabela 35 — Temperaturas características dos condutores					
Tipo de isolação	Temperatura máxima para serviço contínuo (condutor) °C	Temperatura limite de sobrecarga (condutor) °C	Temperatura limite de curto-circuito (condutor) °C		
Policloreto de vinila (PVC) até 300 mm ²	70	100	160		
Policloreto de vinila (PVC) maior que 300 mm ²	70	100	140		
Borracha etileno-propileno (EPR)	90	130	250		
Polietileno reticulado (XLPE)	90	130	250		

Figura 10: Temperaturas Características dos Condutores

Dessa forma, foi preciso avaliar apenas se as seções dos condutores de fase estavam contidas dentro de um intervalo de três valores normalizados sucessivos. Ao realizar tal análise, notou-se a necessidade de separar o circuito 21 dos demais e de criar um novo eletroduto exclusivo para ele, além disso, o circuito 2 e o circuito 15 precisaram ser alocados em novos eletrodutos

em alguns trechos da instalação. As correções foram acrescentadas à planta elétrica. Além disso, optou-se por criar mais um QD para o circuito 21, já que ele precisará de um disjuntor de caixa moldada. Assim, as seções nominais dos condutores dos circuitos do ramal aos quadros de distribuição foram recalculados e representados na Tabela 18.

Circuito	Corrente Corrigida (A)	Seção Fase (mm^2)	Seção Neutro (mm^2)	Seção PE (mm^2)
Ramal-QD1	136,3900385	70	35	35
Ramal-QD2	64,48690716	16	16	16
Ramal-QD3	90,61268182	25	25	16

Tabela 18: Seções Nominais dos Condutores dos QDs

Em seguida, calculou-se a taxa máxima de ocupação dos condutores para os eletrodutos mais carregados da instalação no teto, nas paredes, no chão, no eletroduto exclusivo do circuito 21 e no eletroduto enterrado que aloja parte do circuito 1 (o comando da campainha) de acordo com a norma NBR 5410 (Figura 11). Com esses valores, pode-se calcular a área interna dos eletrodutos e relacioná-la com o diâmetro nominal. Os resultados estão resumidos na Tabela 19.

Todas as alterações foram adicionadas à planta elétrica.

- a) a taxa de ocupação do eletroduto, dada pelo quociente entre a soma das áreas das seções transversais dos condutores previstos, calculadas com base no diâmetro externo, e a área útil da seção transversal do eletroduto, não deve ser superior a:
 - 53% no caso de um condutor:
 - 31% no caso de dois condutores;
 - 40% no caso de três ou mais condutores:

Figura 11: Taxa Máxima de Ocupação

Eletroduto Mais Carregado	Taxa de Ocupação Máxima	$f Area Ocupada \ pelos Condutores \ (mm^2)$	Área Interna do Eletroduto (mm^2)	$ \begin{array}{c} \textbf{Diâmetro Nominal} \\ \textbf{do Eletroduto} \\ (mm) \end{array} $
Parede	40%	106,6	266,5	25
Teto	40%	193,3	483,25	32
Chão	40%	275	687,5	40
Circuito 21	40%	146,6	366,5	32

Tabela 19: Dimensionamento dos Eletrodutos

O botão de comando e o buzzer da campainha foram alocados no circuito 1. Como esse circuto é o único que passa pelo eletroduto enterrado que liga interruptor ao buzzer, a área que os condutores ocupam é $27,6~mm^2$ e a área interna do eletroduto deve ser $89,03225806~mm^2$, sendo assim, seu diâmetro nominal será de 16~mm.

O passo final foi analisar se o projeto da instalação dos eletrodutos atende aos requisitos de segurança da norma (Figura 12).

b) os trechos contínuos de tubulação, sem interposição de caixas ou equipamentos, não devem exceder 15 m de comprimento para linhas intemas às edificações e 30 m para as linhas em áreas externas às edificações, se os trechos forem retilíneos. Se os trechos incluírem curvas, o limite de 15 m e o de 30 m devem ser reduzidos em 3 m para cada curva de 90°.

Figura 12: Requisitos Finais de Segurança

Todos os trechos de eletrodutos foram verificados e atendem ao critério de comprimento e número máximo de curvas de 90° imposto pela norma NBR 5410.

10 Dimensionamento de Disjuntores Termomagnéticos

Visando garantir a proteção do patrimônio contra queimas, com base na norma NBR 5410, foram dimensionados os disjuntores termomagnéticos (DTM) para a instação em questão.

Primeiramente, foram definidas as classes e o número de polos dos disjuntores de cada circuito. Para a proteção de circuitos que alimentam cargas predominantemente resistivas, como os circuitos de iluminação e de tomadas de uso geral, foram utilizados disjuntores da classe B. Para os circuitos que alimentam cargas de natureza indutiva e apresentam picos de corrente no momento de ligação, como TUEs de ar-condicionado, utilizou-se disjuntores da classe C. Estes dados estão resumidos na Tabela 20.

Circuito	Classe	Número de Polos
1	В	Monopolar
2	В	Monopolar
3	В	Monopolar
4	В	Monopolar
5	В	Monopolar
6	В	Monopolar
7	В	Monopolar
8	В	Bipolar
9	В	Monopolar
10	В	Monopolar
11	В	Monopolar
12	В	Monopolar
13	В	Bipolar
14	В	Bipolar
15	В	Bipolar
16	В	Bipolar
17	С	Bipolar
18	С	Bipolar
19	С	Bipolar
20	С	Bipolar
21	В	Bipolar

Tabela 20: Classificação dos DTMs

Dispondo da classe de cada disjuntor, os passos seguintes foram dimensionar as correntes de sobrecarga e de curto-ciruito.

10.1 Proteção Contra Correntes de Sobrecarga

De acordo com a norma NBR 5410, os seguintes requisitos devem ser atendidos para assegurar a proteção dos condutores contra sobrecargas:

- $I_B \leq I_n \leq I_z$ e
- $I_2 \le 1,45I_z$

Sendo:

- \bullet I_B a corrente de projeto do circuito;
- $\bullet \ I_z$ a capacidade de condução de corrente dos condutores;

- $\bullet \ I_n$ a corrente nominal do dispositivo de proteção e
- I_2 a corrente convencional de atuação.

De posse da corrente I_B calculada previamente (chamada de I_P na Tabela 15), o passo seguinte foi obter I_z através da Tabela 36 da norma NBR 5410 (Figura 5), levando em consideração os valores de seções nominais dos condutores. Assim, foram escolhidos os valores de I_n dos DTMs que satisfazem a condição $I_B \leq I_n \leq I_z$ de acordo com os valores comerciais estabelecidos pela norma IEC 60898 (6, 10, 13, 16, 20, 25, 32, 50, 63, 80, 100 e 125 Ampères).

Para os circuitos com disjuntores da classe B, optou-se pelos menores valores de I_n possíveis que obecedessem aos critérios da norma. Para os circuitos com disjuntores da classe C, foi previamente utilizado o mesmo critério, contudo, após o dimensionamento da corrente de ruptura dos DTMs, esses circuitos serão reanalisados para avaliar se a corrente de partida dos aparelhos dispara o disjuntor e, se necessário, os valores de I_n serão reajustados. Os valores escolhidos de I_n estão resumidos na Tabela 21.

Circuito	I_b (A)	I_z (A)	I_n (A)
1	9,212598425	32	13
2	6,850393701	17,5	10
3	8,582677165	24	10
4	20	41	25
5	10	24	13
6	10	24	13
7	20	32	25
8	20	32	25
9	20	32	25
10	20	41	25
11	20	32	25
12	20	32	25
13	20	32	25
14	29,54545455	41	32
15	29,54545455	57	32
16	29,54545455	57	32
17	4,575090909	24	10
18	4,575090909	24	10
19	4,575090909	24	10
20	17,19368182	32	32
21	90,61268182	101	100

Tabela 21: Dimensionamento da Corrente Nominal dos DTMs

Em seguida, foi calculada a corrente I_2 multiplicando a corrente I_n por 1,45. Na Tabela 22 foram representadas as correntes I_2 e 1,45 · I_z para avaliar se as correntes nominais escolhidas estão de acordo com o requisito $I_2 \leq 1,45I_z$ da norma NBR5410.

Circuito	I_2 (A)	$1,45 \cdot I_z$ (A)
1	18,85	46,4
2	14,5	25,375
3	14,5	34,8
4	36,25	59,45
5	18,85	34,8
6	18,85	34,8
7	36,25	46,4
8	36,25	46,4
9	36,25	46,4
10	36,25	59,45
11	36,25	46,4
12	36,25	46,4
13	36,25	46,4
14	46,4	59,45
15	46,4	82,65
16	46,4	82,65
17	14,5	34,8
18	14,5	34,8
19	14,5	34,8
20	46,4	46,4
21	145	146,45

Tabela 22: Dimensionamento da Corrente Nominal dos DTMs

Analisando as Tabelas 21 e 22, nota-se que o valor de corrente nominal I_n para todos os disjuntores está de acordo com os requisitos propostos pela norma.

10.2 Proteção Contra Correntes de Curto-Circuito

Para o dimensionamento da corrente de ruptura dos disjuntores termomagnéticos, foram utilizadas as curvas características de disparo dos DTMs para cada categoria. As curvas utilizadas foram fornecidas pela fabricante Steck e estão representadas nas Figuras 13 e 14.

Figura 13: Curva Característica de Disparo - Classe B

Figura 14: Curva Característica de Disparo - Classe C

As normas IEC 60898 e IEC 60947-2 determinam que a classe B possui um atraso mínimo de $3I_n$ de e um atraso máximo de $5I_n$ e que a classe C possui um atraso mínimo de $5I_n$ de e um atraso máximo de $10I_n$ para motores com baixa corrente de partida.

De posse dessas informações, pode-se obter o tempo limite de disparo dos DTMs consultando as curvas características de disparo. O valor obtido é

convertido em número de ciclos da rede. Os resultados são representados na Tabela 23 a seguir.

Cinquita	Tempo de Disparo	Número de Ciclos
Circuito	(s)	da Rede
1	0,035	2,1
2	0,035	2,1
3	0,035	2,1
4	0,035	2,1
5	0,035	2,1
6	0,035	2,1
7	0,035	2,1
8	0,035	2,1
9	0,035	2,1
10	0,035	2,1
11	0,035	2,1
12	0,035	2,1
13	0,035	2,1
14	0,035	2,1
15	0,035	2,1
16	0,035	2,1
17	0,02	1,2
18	0,02	1,2
19	0,02	1,2
20	0,02	1,2
21	0,035	2,1

Tabela 23: Tempo de Disparo dos DTMs

Os números de ciclos da rede foram arredondados de 2,1 para 2 e de 1,2 para 1.

De posse das seções nominais dos condutores de cada circuito, bem como do número de ciclos da rede de cada um, pode-se consultar o gráfico da Figura 15 para se obter as correntes de curto-circuito. Os resultados estão representados na Tabela 24.

Figura 15: Gráfico de Correntes de Curto-Circuito

Cinquita	Número de Ciclos	Seção Nominal	Corrente de Curto-
Circuito	da Rede	(mm^2)	Circuito (kA)
1	2	4	2,4
2	2	1,5	0,95
3	2	2,5	1,4
4	2	6	3,9
5	2	2,5	1,4
6	2	2,5	1,4
7	2	4	2,4
8	2	4	2,4
9	2	4	2,4
10	2	6	3,9
11	2	6	3,9
12	2	4	2,4
13	2	4	2,4
14	2	6	3,9
15	2	10	6,1
16	2	10	6,1
17	1	2,5	2,2
18	1	2,5	2,2
19	1	2,5	2,2
20	1	4	3,4
21	2	25	10,4

Tabela 24: Corrente de Curto-Circuito

Após a obtenção das correntes de curto-circuito através gráfico, deve-se escolher DTMs com correntes de ruptura acima da corrente de curto-circuito obtida. Consultando as tabelas do fornecedor (Figuras 16, 17, 18 e 19), os valores de correntes de ruptura para os DTMs foram definidos e representados na Tabela 25.

Laur	Corrente	Monopolar	Bipolar	Monopolar	Bipolar	Tripolar
Icn	Nominal	Curva B	Curva B	Curva C	Curva C	Curva C
3 kA	2	SDD61B02	SDD62B02	SDD61C02	SDD62C02	SDD63C02
3 kA	4	SDD61B04	SDD62B04	SDD61C04	SDD62C04	SDD63C04
3 kA	6	SDD61B06	SDD62B06	SDD61C06	SDD62C06	SDD63C06
3 kA	10	SDD61B10	SDD62B10	SDD61C10	SDD62C10	SDD63C10
3 kA	16	SDD61B16	SDD62B16	SDD61C16	SDD62C16	SDD63C16
3 kA	20	SDD61B20	SDD62B20	SDD61C20	SDD62C20	SDD63C20
3 kA	25	SDD61B25	SDD62B25	SDD61C25	SDD62C25	SDD63C25
3 kA	32	SDD61B32	SDD62B32	SDD61C32	SDD62C32	SDD63C32
3 kA	40	SDD61B40	SDD62B40	SDD61C40	SDD62C40	SDD63C40
3 kA	50	-	-	SDD61C50	SDD62C50	SDD63C50
3 kA	63	-	-	SDD61C63	SDD62C63	SDD63C63

Figura 16: Disjuntores de 3kA - Steck

lcn	Corrente	Monopolar	Bipolar	Monopolar	Bipolar	Tripolar
ICII	Nominal	Curva B	Curva B	Curva C	Curva C	Curva C
6 kA	2	SDZ61B02	SDZ62B02	SDZ61C02	SDZ62C02	SDZ63C02
6 kA	4	SDZ61B04	SDZ62B04	SDZ61C04	SDZ62C04	SDZ63C04
6 kA	6	SDZ61B06	SDZ62B06	SDZ61C06	SDZ62C06	SDZ63C06
6 kA	10	SDZ61B10	SDZ62B10	SDZ61C10	SDZ62C10	SDZ63C10
6 kA	16	SDZ61B16	SDZ62B16	SDZ61C16	SDZ62C16	SDZ63C16
6 kA	20	SDZ61B20	SDZ62B20	SDZ61C20	SDZ62C20	SDZ63C20
6 kA	25	SDZ61B25	SDZ62B25	SDZ61C25	SDZ62C25	SDZ63C25
6 kA	32	SDZ61B32	SDZ62B32	SDZ61C32	SDZ62C32	SDZ63C32
6 kA	40	SDZ61B40	SDZ62B40	SDZ61C40	SDZ62C40	SDZ63C40
4.5 kA	50	-	-	SDZ61C50	SDZ62C50	SDZ63C50
4.5 kA	63	-	-	SDZ61C63	SDZ62C63	SDZ63C63
4.5 kA	70	-	-	SD61C70	SD62C70	SD63C70

Figura 17: Disjuntores de $6\mathrm{kA}/4{,}5\mathrm{kA}$ - Steck

lon	Corrente	Monopolar	Bipolar	Tripolar
Icn	Nominal	Curva C	Curva C	Curva C
10 kA	6	SDA61C06	SDA62C06	SDA63C06
10 kA	10	SDA61C10	SDA62C10	SDA63C10
10 kA	16	SDA61C16	SDA62C16	SDA63C16
10 kA	20	SDA61C20	SDA62C20	SDA63C20
10 kA	25	SDA61C25	SDA62C25	SDA63C25
10 kA	32	SDA61C32	SDA62C32	SDA63C32
10 kA	40	SDA61C40	SDA62C40	SDA63C40
10 kA	50	SDA61C50	SDA62C50	SDA63C50
10 kA	63	SDA61C63	SDA62C63	SDA63C63

Figura 18: Disjuntores de $10\mathrm{kA}$ - Steck

Icn	Corrente Nominal	Monopolar Curva C	Bipolar Curva C	Tripolar Curva C
10 kA	80	SDD1C80	SDD2C80	SDD3C80
10 kA	100	SDD1C100	SDD2C100	SDD3C100
10 kA	125	SDD1C125	SDD2C125	SDD3C125

Figura 19: Disjuntores de 10k A Continuação - Steck

Circuito	Corrente de Curto-	
	Circuito (kA)	(kA)
1	2,4	3
2	0,95	3
3	1,4	3
4	3,9	6
5	1,4	3
6	1,4	3
7	2,4	3
8	2,4	3
9	2,4	3
10	3,9	6
11	3,9	6
12	2,4	3
13	2,4	3
14	3,9	6
15	6,1	10
16	6,1	10
17	2,2	3
18	2,2	3
19	2,2	3
20	3,4	6
21	10,4	-

Tabela 25: Corrente de Ruptura dos DTMs

A corrente de curto-circuito calculada para o circuito 21 foi de 10,4kA. Como o fabricante não dispõe de minidisjustores classe B com valores de corrente de ruptura acima de 10kA, fez-se necessário redimensionar as correntes de sobrecarga e de curto-circuito para esse circuito utilizando uma classe de disjuntores de caixa pré moldada.

Consultando o catálogo do fornecedor (Figura 20), obtém-se, dentre as opções, um DTM com corrente nominal de 100A, que atende aos requisitos citados anteriormente de:

- $I_B \leq I_n \leq I_z$ e
- $I_2 \le 1,45I_z$

com $I_2 = 145$ e $1,45I_z = 146,45A$.

Figura 20: Disjuntores de Caixa Moldada - Steck

Analisando a curva de disparo característico para essa classe de disjuntores (Figura 21), é possível observar o tempo de disparo magnético de 0,03ms, equivalente a, aproximadamente, 2 ciclos da rede.

Consultando novamente o gráfico de correntes de curto-circuito (Figura 15), obtém-se uma corrente de 10kA, e opta-se pelo modelo de código SDLS100, que oferece uma corrente de ruptura de 42kA para 220V de tensão, atendendo aos requisitos para proteger esse circuito.

Figura 21: Curva de Disparo do Disjuntos de Caixa Moldada

Fazendo a divisão dos valores encontrados de corrente de curto-circuito pela corrente nominal de cada circuito (I/I_n) , consultou-se novamente o gráfico da Figura 21 para obter o tempo de disparo dos disjuntores para a corrente de curto-circuito de seu respectivo circuito. Os resultados foram representados na Tabela 26.

Circuito	I/I_n	T_d para Corrente de CC (s)		
1	184,6153846	0,01		
2	95	0,015		
3	140	0,01		
4	156	0,01		
5	107,6923077	0,012		
6	107,6923077	0,012		
7	96	0,012		
8	96	0,012		
9	96	0,012		
10	156	0,01		
11	156	0,01		
12	96	0,012		
13	96	0,012		
14	121,875	0,01		
15	190,625	0,01		
16	190,625	0,01		
17	220	0,01		
18	220	0,01		
19	220	0,01		
20	106,25	0,015		
21	104	0,02		

Tabela 26: Tempo de Disparo para a Corrente de Curto-Circuito

Analisando os dados da Tabela 26, nota-se que o tempo de disparo dos DTMs dos circuitos de 1 a 20 são menores que um ciclo da rede e, para o circuito 21, é menor que 2 ciclos da rede, fornecendo assim, resultado satisfatório quanto à proteção contra correntes de curto-circuito à instalação.

Dividindo os valores de corrente de partida (fornecidos pelos fabricantes) dos circuitos com DTMs classe C pelo valor da corrente nominal, foi possível obter o tempo de disparo dos disjuntores de cada um desses circuitos através do gráfico da Figura 21. Os resultados estão representados na Tabela 27.

Circuito	$I_{partida} \ (\mathbf{A})$	$I_{partida}/I_n$	T_d para Corrente de Partida (s)
17	19	4,152922942	8
18	19	4,152922942	8
19	19	4,152922942	8
20	18,7	1,08760882	fora de escala

Tabela 27: Tempo de Disparo para a Corrente de Partida

Analisando a Tabela 27, como a corrente de partida dos aparelhos dura menos de 1s, pode-se concluir que ela não dispara os disjuntores.

11 Dimensionamento da Chave Geral

Dimensionados os disjuntores termomagnéticos dos circuitos, possibilita-se o dimensionamento da chave geral.

Por possuir praticamente um terço de toda a potência instalada na residência e requisitar um disjuntor de caixa moldada para sua proteção, optouse por separar o circuito 21 do quadro secundário e abrigá-lo em um terceiro quadro terminal exclusivo. Dessa forma, o DTM do circuito 21 agirá também como a chave geral de seu próprio quadro terminal.

Para os demais quadros, serão utilizados novos disjuntores como chavesgeral, responsáveis por administrar a proteção de todos os circuitos de seus respectivos quadros. A chave geral que comandará verdadeiramente todos os circuitos da residência será instalada no quadro do medidor.

As alterações citadas foram adicionadas à planta elétrica.

Somando todas as potências dos circuitos alimentados pelo primeiro quadro terminal, obtém-se a maior potência por fase de 14896, 52W, fornecendo uma corrente $I_B = 117, 2954331A$. O segundo quadro terminal alimenta uma potência total de 7043, 26W, com uma corrente $I_B = 55, 45874016A$. A maior corrente de ruptura dos disjuntores de ambos os quadros é 10kA.

Para a chave geral do medidor a corrente de projeto é $I_B = 172,7541732A$.

Dessa forma, os DTMs selecionados para atuarem como chave geral de cada quadro e do medidor estão resumidos na Tabela 28.

Chave Geral	$egin{array}{c} I_n \ ({f A}) \end{array}$	Corrente de Ruptura (kA)	Modelo - Steck
Quadro Terminal 1	125	10	SDD3C125
Quadro Terminal 2	63	10	SDA63C63
Quadro Terminal 3	100	42	SDLS100
Medidor	180	42	SDLS180

Tabela 28: Chave Geral

12 Aterramento

Para garantir a proteção da instalação contra correntes de fuga e permitir sua detecção através de Dispositivos Diferenciais Residuais, será realizada a equipotencialização através do aterramento exigido pela norma NBR 5410.

O aterramento do padrão de entrada será feito através de três eletrodos de condutor de cobre nu com $10mm^2$ de seção, por se tratar de uma instalação trifásica a 4 fios da categoria C7 da CEMIG, conforme determinado pela concessionária de energia na tabela da Figura 2. Nesta haste haverá a conexão do condutor de neutro, como reforço contra a tensão de deslocamento do neutro.

A infraestrutura de aterramento será constituída de cabo de seção circular de $50mm^2$, que será envolvido por uma camada de concreto de no mínimo 5cm de espessura a uma profundidade de no mínimo 0, 5m, conforme solicita a norma NRB 5410.

A derivação do eletrodo de aterramento para fora do concreto será constituida por barra de aço zincada com diâmetro mínimo de 10mm e protegida contra corrosão. O ponto de conexão do condutor de aterramento será constituído de por condutor de cobre ligado à barra de zinco de derivação por meio de solda exotérmica.

Como a instalação possui três quadros de distribuição e o medidor atuando como quadro geral, todos possuirão aterramento próprio. As massas terão seu aterramento realizado através do condutor de proteção equipotencial advindo do seu respectivo quadro de distribuição. Sendo assim, será utilizado o esquema TN-S para todos circuitos, tanto para os que partem do quadro medidor até os quadros terminais, como para os circuitos terminais, dessa forma viabiliza-se a utilização do DR no quadro do medidor protegendo toda a instalação contra correntes de fuga.

13 Dimensionamento de Dispositivos Diferenciais Residuais

Com o intuito de garantir a proteção das pessoas contra choques elétricos e do patrimônio contra correntes de fuga, será utilizado um Dispositivo Diferencial Residual (DR) conforme exige a norma NBR 5410.

Por se tratar de uma instalação elétrica residencial, o DR possuirá corrente diferencial residual de 30mA e 4 polos (3F+N) e será instalado no quadro do medidor (que configura o quadro geral da instalação), no modelo IDR, em cascata com o DTM chave-geral e a montante dos DTMs dos circuitos terminais.

Além disso, como a instalação é em baixa tensão, o IDR será do tipo AC com tensão nominal de 220V. A corrente nominal de funcionamento do IDR deve ser coordenada com a corrente nominal do DTM chave-geral sendo, portanto, $I_n=125A$.

O modelo escolhido foi o SDR4125003 da Steck.

Item #	Pólos	Sensibilidade	Corrente	Grau de Proteção
SDR4100003	4P	30mA	100A	IP 20
SDR4125003	4P	30mA	125A	IP 20
SDR46330E (480V)	4P	30mA	63A	IP 20

Figura 22: Dispositivos Diferenciais Residuais - Steck

14 Dimensionamento de Dispositivos de Proteção Contra Surtos

Os Dispositivos de proteção contra surtos (DPS), preconizados nas normas NBR 5410 e NBR 5419 e regulamentados na NBR IEC 61643-1 são os dispositivos para proteger a intalação elétrica em questão e seus equipamentos eletroeletrônicos contra surtos, sobretensões ou transientes diretos ou indiretos, independemente da origem, se por descargas atmosféricas ou por manobras da concessionária.

A Norma NBR 5410/2004, com base na IEC 61643, classifica os DPSs em três classes: Classe I, Classe II e Classe III. Nesta instalação serão utilizadas as Classes I e II em cascata. Os de Classe I, destinados à proteção contra sobretensões provocadas por descargas atmosféricas diretas sobre a edificação ou em suas proximidades, serão instalados no quadro principal, no ponto de ligação com a rede elétrica. Os de Classe II, destinados à proteção contra sobretensões de origem atmosféricas transmitidas pela linha externa de alimentação assim como sobretensões de manobra, deverão ser instalados em todos os quadros de distribuição da instalação, desviando as faltas para o eletrodo de aterramento por meio dos barramentos de equipotencialização.

Conforme a norma NBR 5410, foi escolhido o esquema de conexão 2 indicado na Figura 23.

Figura 23: Esquema de Conexão

Para o ponto de entrada, foram selecionados DPSs de Classe I. De acordo com o esquema de aterramento TN-S da instalação, o valor mínimo para tensão máxima de operação U_c deverá ser de 139, 7V conforme a tabela 49 da norma, representada na Figura 24.

DPS conectado entre			Es quema de aterramento					
Fase	Neutro	PE	PEN	тт	TN-C	TN-S	IT com neutro distribuído	IT sem neutro distribuído
Х	X			1,1 U _o		1,1 U _o	1,1 U _o	
Х		X		1,1 U _o		1,1 U _o	√3 U _o	U
Х			X		1,1 U _o			
	X	X		U _o		Uo	Uo	
U _o	é a tensão f a tensão e	ase-neu	tro.				ema de aterrame mínimos da tabe	

Figura 24: Valor Mínimo de Uc Exigível do DPS, em função do esquema de aterramento

Proposto o esquema de conexão 2, a corrente nominal I_n não deve ser inferior a 5kA e a corrente de impulso I_{imp} não deve ser inferior a 12, 5kA.

O nível de proteção (tensão residual) deve ser menor que 1,5kV, conforme a tabela 31 da norma NBR 5410 indicada na Figura 25.

Tensão nominal da instalação		Tensão de impulso suportável requerida kV						
V	[Categoria de	produto				
Sistemas Sistemas monofásicos com neutro		Produto a ser utilizado na entrada da instalação	Produto a ser utilizado em circuitos de distribuição e circuitos terminais	Equipamentos de utilização	Produtos especialme nte protegidos			
	noulo	Categoria de suportabilidade a impulsos						
		IV	III	II .	- 1			
120/208 127/220	115–230 120–240 127–254	4	2,5	1,5	0,8			
220/380, 230/400, 277/480	//-	6	4	2,5	1,5			
400/690		8	6	4	2,5			
NOTAS I O anexo E traz orie	ntação sobre esta tab	ela.	11 10					
Valores válidos esp	edificamente para sec	cionadores e interru	otores-seccionadores	são dados na tabela 5	60.			

Figura 25: Suportabilidade a impulso exigível dos componentes da instalação

Para os DPSs dos quadros de distribuição todas as características acima se aplicam, sendo a única diferença a classe, sendo esta Classe II.

Visando compreender todos os requisitos listados acima, o DPS de Classe I escolhido foi o 5SD7414-1 da marca Siemens apresentado na Figura 26. Os três DPS de Classe II serão do modelo 5SD7464-0 do mesmo fabricante, conforme a Figura 27.

DPS CLAS	DPS CLASSE I											
Código	Polos	Aplicação	U _n	U _e	U _p	Ι _{imp} (10 / 350 μs)	Ι _ո (8 / 20 μs)	I _{fi} (AC)	t _A	Proteção Back-up	Sist. aterram.	Sinal. remota
5SD7 412-1	2P	1F + N	240 V AC		≤ 1,5 kV ³⁾ ≤ 2,5 kV ⁴⁾ ≤ 1,5 kV ²⁾	25 kA ¹⁾ 100 kA ²⁾	25 kA ¹⁾ 100 kA ²⁾	50 kA / 264 V AC ¹⁾ 25 kA / 350 V AC ¹⁾ 100 A ²⁾		315 A gL/gG ⁶⁾ 125 A gL/gG ⁷⁾	TN-S / TT	Sim
5SD7 413-1	3P	3F		350 V AC	≤ 1,5 kV ³⁾	75 kA ¹⁾ (25 kA por fase)	75 kA ¹⁾ (25 kA por fase)	50 kA / 264 V AC ¹⁾ 25 kA / 350 V AC ¹⁾	≤ 100 ns		TN-C	
5SD7 414-1	4P	3F + N	240/415 V AC		\leq 1,5 kV $^{3)}$ \leq 2,5 kV $^{4)}$ \leq 1,5 kV $^{2)}$	75 kA ¹⁾ (25 kA por fase) 100 kA ²⁾	75 kA ¹⁾ (25 kA por fase) 100 kA ²⁾	50 kA / 264 V AC ¹⁾ 25 kA / 350 V AC ¹⁾ 100 A ²⁾			TN-S / TT	

Figura 26: DPS Classe I - Siemens

DPS CLASSE II												
Código	Polos	Aplicação	U _n	U _c	U _p	Ι _{imp} (10 / 350 μs)	Ι _ո (8 / 20 μs)	Ι _{max} (8 / 20 μs)	t _A	Proteção Back-up	Sist. aterram.	Sinal. remota
5SD7 481-0	1P	1N		260 V AC 2)	≤ 1,5 kV ²⁾	12 kA	20 kA 2)	40 kA ²⁾	≤ 100 ns ²⁾	-	TN / TT	Não
5SD7 461-0 5SD7 461-1	1P	1F	240 V AC	350 V AC ⁵⁾	≤ 1,5 kV ³⁾		20 kA 5)	40 kA 5)	≤ 25 ns ¹)	125 A gL/gG ⁶⁾	TN / TT	Não Sim
5SD7 481-1*	1P (2M)	1N	690 V AC	800 V AC ⁵⁾	$\leq 5 \text{ kV}^{3)}$ $\leq 5 \text{ kV}^{4)}$		15 kA 5)	30 kA 5)	≤ 100 ns 1)	100 A gL/gG ⁶⁾ 80 A gL/gG ⁷⁾	TN-C / IT	Sim
5SD7 463-0 5SD7 463-1	3P	3F		350 V AC 1)	≤ 1,5 kV ³⁾		20 kA ¹⁾ (por fase)	40 kA ¹⁾ (por fase)	≤ 25 ns 1)		TN-C	Não Sim
5SD7 464-0 5SD7 464-1	4P	3F + N	240/415 V AC	350 V AC ¹⁾ 260 V AC ²⁾	$\leq 1,6 \text{ kV}^{3}$ $\leq 1,9 \text{ kV}^{4}$ $\leq 1,5 \text{ kV}^{2}$	-	20 kA ¹⁾ (por fase) 20 kA ²⁾	40 kA ¹⁾ (por fase) 40 kA ²⁾	≤ 25 ns ¹) ≤ 100 ns ²)	125 A gL/gG ⁶⁾ 80 A gL/gG ⁷⁾	TN-S / TT	Não Sim
5SD7 473-1	3P	3F	500 V AC	580 V AC 1)	$\leq 2,5 \text{ kV}^{3}$ $\leq 2,5 \text{ kV}^{4}$		15 kA ¹⁾ (por fase)	30 kA ¹⁾ (por fase)	- 25 no 1)		IT	Sim
5SD7 483-5	3P	3F	554/960 V AC	760 V AC ⁵⁾	≤ 2,9 kV ³⁾		15 kA 5)	30 kA 5)	≤ 25 ns 1)	100 A gL/gG ⁶⁾ 80 A gL/gG ⁷⁾	TN-C / IT	Sim

Figura 27: DPS Classe II - Siemens

15 Lista de Materiais

Para o dimensionamento dos comprimentos de cabos e eletrodutos requeridos, foram utilizados os valores de 3m de pé direito, laje de 0,15m e contrapiso de 0,1m. Além disso, as alturas padrão para saída alta são de 0,6m do teto, de saídas médias 1,7m, de saídas baixas 2,7m do teto e de saída do quadro 1,6m do teto.

Todos os materiais necessário para as instalações do projeto elétrico encontramse listados nas Tabelas 29, 30, 31, 32, 33, 34, 35 e 36.

Lista de Materiais	Quantidade (m)					
Lista de Materiais	Fase	Neutro	Proteção			
$1,5mm^2$	87,79059657	87,79059657	-			
$2,5mm^2$	803,7428167	305,1693971	426,3636943			
$4mm^2$	744,8457596	296,4482958	301,6164606			
$6mm^2$	317,5012675	303,3442111	310,4227393			
$10mm^2$	143,8681547	-	71,93407736			
$16mm^2$	-	-	16,22520238			
$25mm^2$	56,6092	-	28,3046			
$35mm^2$	71,5719	23,8573	23,8573			
$70mm^2$	51,5934	17,1978	17,1978			

Tabela 29: Lista de Materiais - Cabos

Lista de Materiais	Quantidade (m)
$25mm^2$	127
$32mm^2$	194
$40mm^2$	78

Tabela 30: Lista de Materiais - Eletrodutos

Lista de Materiais	Quantidade
Caixa 4" x 2"	48
Caixa octogonal 4" x 4"	24
Caixa 4" x 4"	3

Tabela 31: Lista de Materiais - Caixas de Passagem

Lista de Materiais	Quantidade
Interruptor simples	19
Interruptor intermediário	1
Interruptor paralelo	6
Sensor de presença	2
Conjunto Campainha + Buzzer	1

Tabela 32: Lista de Materiais - Interruptores

Lista de Materiais	Quantidade
Tomada 127V/10A	19
Tomada 127V/20A	47
Tomada 220V/20A	4

Tabela 33: Lista de Materiais - Tomadas de Uso Geral

Lista de Materiis	Quantidade
Disjuntor Steck SDD61B16	3
Disjuntor Steck SDD61B10	2
Disjuntor Steck SDZ61B25	3
Disjuntor Steck SDD61B25	3
Disjuntor Steck SDD62B25	2
Disjuntor Steck SDZ62B32	2
Disjuntor Steck SDA62C32	2
Disjuntor Steck SDD62B10	3
Disjuntor Steck SDLS125	1

Tabela 34: Lista de Materiais - Disjuntores

Lista de Materiais	Quantidade
Disjuntor Steck SDD3C125	1
Disjuntor Steck SDA63C63	1
Disjuntor Steck SDLS125	1

Tabela 35: Lista de Materiais - Chave Geral

Lista de Materiais	Quantidade
Quadro de Distribuição	4
DR Steck SDR4125003	1
DPS Siemens 5SD7 414-1	1
DPS Siemens 5SD7 464-0	3

Tabela 36: Lista de Materiais - Quadros, DR e DPS

16 Considerações Adicionais

Este capítulo tem como finalidade esclarecer algumas decisões de projeto.

16.1 Circuitos de Iluminação

Nos circuitos de iluminação, optou-se por não levar a proteção equipotencial aos pontos de luz, de forma a economizar fiação, já que não será utilizada nenhuma luminária ou suporte de metal para as lâmpadas.

16.2 Representação do Terreno

Como a residência em questão está situada em um terreno extenso que possui outra residência com seu próprio ramal de entrada, optou-se por representar na planta baixa apenas a parte do terreno que contempla a residência do projeto de instalações elétricas.

O portão elétrico não foi considerado nos cálculos de potência já que ele é alimentado pelo ramal de entrada da outra residência localizada no mesmo terreno.