1 Limiti

1.1 Definizioni

1. sia $f(x) \in D \subset R$ e sia x_0 un punto di accumulazione di D. diremo che

$$(\lim_{x \to x_0} = L \Leftrightarrow \forall \varepsilon, \exists \delta > 0 : \forall x \in D \land 0 < |x - x_0| < \delta) \Rightarrow |f(x) - L| < \varepsilon$$

2. sia $f(x) \in D \subset \mathbf{R} \land x_0 \in f(x)$

se
$$\forall M \in \mathbf{R} \exists \delta > 0 : \forall x \subset D, 0 < |x - x_0| < \delta \Rightarrow f(x) > M$$
 allora $\lim_{x \to x_0} f(x) = \infty$

3. sia $f(x) \in D \subset \mathbf{R}$ non limitato superiormente

$$\lim_{x \to \infty} = L \Leftrightarrow \forall \varepsilon > 0 \exists \nu : \forall x \in D, x > \nu \Rightarrow |f(x) - L| < \varepsilon$$

- 4. sia $f(x) \in D \subset \mathbf{R}$ se $\lim_{x \to x_0} = \infty$ allora diremo che la funzione f(x) ha un'asintoto verticale in x_0
- 5. sia $f(x) \in (c, \pm \infty)$ Diremo che la retta di equazione y = ax + b é un asintoto di f se

$$\lim_{x \to +\infty} [f(x) - ax - b] = 0$$

1.2 Teoremi

1. siamo f(x) e g(x) due funzioni tali che

$$\lim_{x \to x_0} f(x) = L$$

$$\lim_{x \to x_0} g(x) = M$$
allora
$$\lim_{x \to x_0} [f(x) + g(x)] = L + M$$

$$\lim_{x \to x_0} f(x)g(x) = LM$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L}{M}$$

2. teorema della permanenza del segno

se
$$\lim_{x\to x_0} f(x) = L > 0 \Rightarrow \exists \delta > 0 : \forall x : 0 < |x-x_0| < \delta$$
 si ha $f(x) > \frac{M}{2} > 0$

3. teorema dei 2 carabinieri

$$\mathrm{siano} f(x), g(x) \in h(x) \in \mathbf{R} \land f(x) < g(x) < h(x) \land \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$$
 allora
$$\lim_{x \to x_0} g(x) = L$$

1.3 Limiti notevoli

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{\arccos(x)}{\sqrt{1 - x}} = \sqrt{2}$$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e \qquad \lim_{x \to 0} (1 - x)^{\frac{1}{x}} = \frac{1}{e}$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad \lim_{x \to 0} \frac{\ln(1 \pm x)}{x} = \pm 1$$

2 Successioni

2.1 Definizioni

- 1. una successione é una funzione $a_n: \mathbf{N} \to \mathbf{R}$
- 2. un insieme $K \subset \mathbf{R}$ si dice compatto se da ogni successione a valori in K si pu $\tilde{\mathbf{A}}$ š estrarre una sottosuccessione convergente a un punto di K
- 3. una successione ÃÍ definita monotona crescente se $\forall n \subset \mathbf{N} : a_{n+1} \geq a_n$ mentre monotone decrescente se $\forall n \subset \mathbf{N} : a_{n+1} \leq a_n$
- 4. Una successione si dice di Cauchy se $\forall \varepsilon > 0 \exists \nu : \forall n, m > \nu \quad |a_m a_n| < \varepsilon$

2.2 Teoremi

- 1. Da ogni successione limitata si pu $\tilde{\mathbf{A}}$ s estrarre una sottosuccessione convergente
- 2. una successione a_n monotona ha sempre limite, se a_n é crescente si ha $\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n$, mentre se a_n é decrescente $\lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n$,

- 3 Serie
- 3.1 Definizioni
- 3.2 Teoremi

4 Funzioni continue

4.1 Teoremi

1. siano f(x) una funzione continua in x_0 e g(y) una funzione continua in $y_0 = f(x_0)$, allora la funzione composta g(f(x)) é continua in x_0

$$x_0 \cup y_0 \subset \mathbf{R} : f(x) \in x_0 \land g(y) \in y_0 = f(x_0) \Rightarrow f(g(x)) \in x_0$$

2. se g(x) é una funzione continua, allora

$$g:A\to \mathbf{R}\Rightarrow \lim_{x\to x_0}g(f(x))=g(\lim_{x\to x_0}f(x))$$