



# TECH TALK:

# Architecture and Automation for Researchers

Friday, October 23, 2020 10:30 AM US EDT

**Rajib Ghosh**Global Senior Solutions Architect
Oracle for Research



# ORACLE for Research

## TECH TALK HOUSEKEEPING

- Today's webinar is being recorded. We will share the link to the recording with you via email after the
  event. The recording will also be made available to the Oracle for Research community.
- We invite your comments and questions, both about the tech topic being discussed and about the series more generally. Questions may be submitted using the Q&A box on your screen or you may ask questions directly using your microphone. When not asking a question, please mute your microphone.
- Questions may be asked during the presentation and we will also have a Q & A time at the end of the
  presentation when you can ask questions directly and engage in discussion.
- At Oracle for Research, we believe that research and innovation happen best when a diverse and thoughtful community is free to engage in respectful, compassionate, and open dialog. To that end, when asking a question or providing feedback, we ask that all participants be respectful, collaborative, and constructive.

# Agenda

### Recap and asks

- 1. Shape selection, storage and performance testing
- 2. Architectures and automation
- 3. Performance benchmarks & Data science (platform vs Image usage)

# Architectures for Researchers

- 1. Standard researcher architecture (Demo)
- 2. Cloud bursting architectures

#### **OCI** Automation

- 1. Instance scaling (demo)
- 2. Resource stacks and Terraform (demo)
- 3. Programmatic automation with OCI CLI and API

### Github and links

- 1. Technical How-Tos
- 2. Repositories and Images
- 3. Researcher collaboration

Q & A

Q&A

What works best? Any researcher wish list?





#### SHAPE TESTING HIERARCHY FOR GPU USAGE USE CASE



NOTE: This should be used as a guideline and may differ based on researcher data and computation scenario

Courtesy: Oracle architecture center

# OCI Standard cluster architecture for Researchers



# Cloud bursting architecture for Researchers



#### Key features

- 1. OCI access (SSH Tunnel to Bastion to GPU or VPN)
- 2. CPU/GPU bursting (OCI Scheduling) OCI Instance pooling + auto-scaling
- 3. CPU/GPU bursting (Campus Scheduler) OCI CLI + Stacks or OCI API
- 4. NAT Gateway Download software from public repositories
- 5. File storage Cost effective data sharing within or across AD

# Architecture use-cases

#### Standard Architecture

#### Recommended when

- 1. Quickly standup the application / cluster in Oracle cloud
- 2. Entire application would run in cloud
- 3. Database centric ML applications (Autonomous DB / Roracle)
- 4. Dynamic scaling of cluster nodes
- 5. Hybrid cluster with multiple shapes
- 6. Different workload types (Emb parallel / Tightly-coupled)
- 7. Simple SSH but secure access to computational VMs
- 8. All data contained in the cloud
- 9. Benchmarking against on-campus / clouds
- 10. Using Oracle cloud automation framework & scripts

#### Not recommended when

- 1. Computation in cloud but data is resident outside Oracle cloud
- 2. On-campus resources are sufficient for workloads
- 3. Non-research operational projects
- 4. Frequent transfer of code and data in/out from Oracle cloud

#### **Cloud bursting Architecture**

#### Recommended when

- 1. A percentage of the workload can be run on Oracle cloud
- 2. Infrequent cloud usage
- 3. On-premise workload scheduling
- 4. On-premise cluster is overloaded
- 5. Reduce workload by moving an application/data to OCI
- 6. Smaller computational data sets
- 7. Performance benchmarking against on-campus / other clouds
- 8. Scheduling automation is tested and working
- 9. Containerized applications & canary testing
- 10. Benchmarking against OCI shapes
- 11. Embarrassingly parallel HPC jobs

#### Not recommended when

- 1. Large data migration during bursting
- 2. Tightly-coupled apps (Cross node communication)



# Why standard architecture is important?

### **Being Standard**

- 1. Quick and easy to implement
- 2. Easier resource management
- 3. Single & common reference for all researchers

#### **Automation**

- 1. One-click standup and shutdown of instance through console (Stacks and Terraform)
- 2. Quick and easy configuration management
- 3. Programmatic automation (CLI / API) through a Free-tier VM

# Better resource utilization

- 1. Planned utilization of CPU/GPU/Storage resources
- 2. Effective cluster and computational planning
- 3. Better credit usage and service limit allocation

## Better benchmarking

- 1. Benchmarking against similar hardware & computational specifications
- 2. Leverage performance tips from Oracle
- 3. Testing same workload against higher end shapes

## Quicker support

- 1. Issues can ne resolved faster
- 2. Issues can be replicated/tested without access to researcher tenancies
- 3. Comparative benchmarks from the community can help tune your implementation

### Security

- 1. Private subnet insulates your computation VM and data
- 2. Access only through a jump box / secure gateway VM
- 3. NAT access provides direct internet access for code / patch downloads



# Automation Setup & management workflow



# Oracle for Research github — https://github.com/OracleForResearch

### **Technology How-Tos**

- 1. Short 2-page How-Tos (Categorized)
- 2. Important OCI links (Supplemental pages)
- 3. Aligned and dedicated to researcher needs

### Image Sandbox

- 1. AIML Sandbox & AFNI (Base reference images with CPU/GPU versions on OL7 and Ubuntu)
- 2. Actively worked on by Oracle for Research
- 3. OFR will develop more based on active researchers participation and feedback

### Researcher Collaboration

- 1. Contributions (benchmarks, test results, data)
- 2. OFR and OCI reviews
- 3. Researcher publications repository

## Images & Applications

- 1. One stop place for Oracle provided images
- 2. Oracle cloud Images for Research only
- 3. Researcher image contribution

- 1. Molecular dynamics
- 2. Open source and proprietary images
- 3. Agro & farm data images

## Technology Talks

- 1. Oracle for Research presentations
- 2. Relevant Tech presentations for researchers
- 3. Product updates

## Coming up..

Benchmarking and guidelines Choosing the right data science platform. Researcher images for sharing and publication What we need? – Your feedback / what makes sense?







# TECH TALK:

Architecture and Automation for Researchers

Questions, Answers & Discussion



# ORACLE for Research

## TECH TALK:

# Architecture and Automation for Researchers

**Questions? Comments? Feedback?** 

**Contact us!** 

**Website:** oracle.com/oracle-for-research/

Twitter: @OracleResearch

**Email:** OracleForResearchTech\_ww@oracle.com

Next Tech Talk: November 13, 2020, 10:30AM EDT

# Parking lot

For Reference



# Oracle for Research Tech Talk Oracle Cloud Topics

Foundational

Oracle cloud – Getting you started and running Cloud instances and cloud storage options Migrating data and running computations

Architecture

Reference architecture patterns for researchers New features updates and recommended practices Performance benchmarks and data

Tools and automation

Tool selection, version and guidance Image repositories, Terraform and interfaces

**HPC** and cluster

High performance computing, workload classification, parallelization Cluster setup, utilization and monitoring

Machine and Deep Learning

Model selection guidance

Researcher guidance

Functional and data guidance and curation support Industry models with research computing



| April 1 Mars . |                       |                       |                                                   |
|----------------|-----------------------|-----------------------|---------------------------------------------------|
| Instance Type  | Shape series          | Shape                 | Purpose                                           |
| Virtual        | Always Free           | VMStandardE2.1Micro   | Automation control, gateway, configurations       |
|                | Standard              | VMStandard1.1~1.16    | Low workload testing / Image builds / installs    |
|                | AMD (Gen 2)           | VMStandardE2.1~2.8    | Prototype workload testing                        |
|                | DenselO               | VMDenselO2.x (NVMe)   | Heavy IO workload testing                         |
|                | GPU (P100)            | VM.GPU2.1             | AI / ML or other GPU prototype testing            |
|                | GPU (V100)            | VM.GPU3.1~3.4         | Tensor core AI / DL workloads                     |
|                | Intel Skylake (Fixed) | VM.Standard2.1~2.24   | Workloads to save on credits                      |
|                | AMD Rome (Flex)       | VM.StandardE3.Flex    | Benchmarking / price-performance                  |
| Bare metal     | HPC                   | BM.HPC2.36 (NVMe)     | CPU+high throughput for HPC workloads             |
|                | AMD (Gen 3)           | BM.StandardE3.128     | High CPU/throughput workloads                     |
|                | Standard              | BM.Standard1.36/B1.44 | Low CPU/RAM utilization at lowest BM cost         |
|                | AMD (Gen 2)           | BM.StandardE2.52      | Best price-performance for BM workloads           |
|                | AMD (Gen 3)           | BM.StandardE2.64      | Best Gen3 price-performance for BM workloads      |
|                | DenselO               | BM.DenselO2.52 (NVMe) | Best price performance for IO intensive workloads |
|                | GPU (P100)            | BM.GPU2.2             | Benchmarking pascal based GPU workloads           |
|                | GPU (V100)            | BM.GPU3.8             | Best price performant for large GPU workloads     |
|                | GPU (A100)            | BM.GPU4.8             | Fastest GPU – large DL applications (pre-GA)      |

# Oracle cloud storages

| Storage type            | Features                                                                                                                                                                                                            | Recommended usage                                                                                                                                          |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On Campus storage       | Good for on-campus data processing requirements Data could be distributed (laptops) or centralized Quick data retrieval for on-campus computations                                                                  | Store data for on-campus computational purpose Store data if storage is available and it is already paid for                                               |
| Object storage archive  | Unlimited data storage in Oracle cloud Low cost (\$0.0026/GB/Month) by consumption Better if cost/GB is lower than on-campus storage                                                                                | Not so good for frequent large data retrievals Not readily available for computational purpose                                                             |
| Object storage standard | Unlimited data storage with faster access than OS archive Costs (0.0255/GB/Month) by consumption Good for frequently accessed data across cloud tenancies Secured and encrypted data at rest and in transit (https) | Store data backups for quick downloads in cloud / campus<br>Store large data volumes at relatively lower cost<br>Store data that is infrequently processed |
| Block volume            | Most common storage for compute/databases Mountable across multiple instances within an AD Cost (0.0255/GB/month) – based on total volume in GB Supports parallel filesystem & best price performance               | Leverage to store computational data for most loads<br>Extend storage / instance as needed<br>Fill up allocated capacity to save on costs                  |
| File system storage     | NFSv3 unlimited file system storage mountable across AD Higher cost (0.3/GB/month) on consumption Good for file sharing across tenancies and OS Performs linearly or better with higher data set size               | Not good for cross AD data transfer in computational cycle<br>Good for moving large volumes of data quickly across AD<br>Use sparingly                     |
| Local NVMe              | Highest IOPS and throughput & good for IO intensive loads Higher cost (built into compute) Non-persistent data Part of DenselO and HPC shapes                                                                       | Use for IO intensive parallel CPU workloads                                                                                                                |



# Useful links

#### **Getting Started**

Key concepts and terminology

Signing in to console, Sign-in options and changing your password

Setting up your tenancy

Tutorial – Launching your first Linux instance

Tutorial – Launching your first windows instance

Object storage and Pre-authenticated access

**Image import and export** 

File storage system concepts

OCI Hands on labs

New features and navigation updates

Oracle cloud Free tier and FAQ

Custom key generation with puttygen or ssh-keygen

Frequently asked Questions

Getting help and contacting support

#### Identity federation

Federated identity for single sign-on

Migrating from on-premise to Oracle identity service

#### Databases and moving data

Oracle Autonomous databases and Tools

MvSQL and NoSQL Services

Key concepts and terminology

Migrating databases to cloud

Loading data to autonomous with OCI Functions

Single-click move to autonomous

#### Data science and AI/ML

Oracle Data science platform and Tutorials

Genome analysis toolkit

Julia AI/HPC GPU Image

**NVIDIA** images and NVIDIA GPU image

Building a ML sandbox on Oracle cloud

Setting up an open-source ML and Al Environment

Machine learning autonomously

#### High performance computing (HPC)

Oracle HPC Cluster and Oracle HPC File system

**NVIDIA GPU Cloud machine image** 

Oracle Linux 7 Cluster Networking Image

Oracle marketplace slurm image (HPC + Slurm combo)

Oracle cloud slurm image

Github OCI-HPC

**Enabling HPC Cluster networking** 

Deploy High performance computing on Oracle cloud

Infrastructure

Deploy scalable and distributed file system using Lustre

Deploy BEEGFS parallel file system

**UoB** Cluster in the cloud

Cluster in the cloud - github

Molecular dynamics NAMD runbook and GROMACS runbooks

#### Usage, billing and credit control

Oracle cloud storage costs

Resource billing for stopped instances

Oracle cloud universal credit PaaS and laaS service descriptions

## **Oracle for Research Tech Talk Series Will Cover:**

## **Technology training**

Reference architectures
Best practices
Tools and automation
Cost control

### **Product announcements**

OFR technology updates
OCI product updates
Images and containers
Public data

## **Collaboration**

Q & A Live discussions
Tips and tricks library
Community forum
Meet Oracle experts

### **Researcher for researchers**

Technology Innovations
Researcher publications
Benchmarks
Lessons learned



# OCI Automation for Researechers

# Common Researcher Issues

- 1. Where to start?
- 2. What shapes, images and storages do I need?
- 3. How to manage my credit allocation effectively?
- 1. Any automation to terminate idle instances?
- 2. How do I scale or burst my workload?
- 3. Can I use my on-campus identity to login?

# OCI Architectures for Researchers

- 1. Standard researcher architecture Bastion Free Tier VM + Private subnet for compute
- 2. Shape and storage selection guidelines
- 3. Scaling and cloud bursting architectures

# Automation and usage control

Instance scaling (demo)
Resource stacks and Terraform (demo)
Tooling with OCI CLI

# Credit control mechanisms

Cost analysis and cost reports Setting budgets and alerts

### Github and links

Overview of the repositories
Collaboration with Oracle and Researchers

Q & A

Q & A What works best and researcher wish list?

