Contents

\mathbf{Chapte}	er 1	$\mathbf{E}\mathbf{x}$	er	c	is	e	1														2
1.1	point	a .																			2
1.2	point	b .																			3
1.3	point	a .																			4
	1.3.1																				
	1.3.2	ii	į																		5

Chapter 1

Exercise 1

1.1 point a

Suppose we have the given scheme Π and the CPA game

If P is a PRP family, Π is always CPA secure unless a $bad\ event$ happens.

Suppose m_0^* and m_1^* have already been sent multiple times to \mathcal{C}_{Π} and that \mathcal{A} collected, at most, *poly* couples containing $(m_0^* \text{ or } m_1^*, c')$. It could happen that, sent m_0^* and m_1^* as challenge messages, \mathcal{A} receives one of the previously received c'. In that case, \mathcal{A} knows which message has been encrypted, then he can easily win the game.

What is the probability \mathcal{A} can win in this way? When $c^* = P_k(r^* || m_b)$ where r^* was already chosen by \mathcal{C} in a previous request of m_b (where b can be 0 or 1), \mathcal{A} can win. Let's call r_b a random number chosen when m_b was sent to \mathcal{C} :

$$\begin{split} \mathcal{P}[wins] &= \mathcal{P}[r^* = r_b \wedge m_b \text{ is chosen for encryption }] = \\ &= \mathcal{P}[m_b] \mathcal{P}[r^* = r_b] = \\ &= \frac{1}{2} \frac{1}{2^{\frac{n}{2}}} \text{(for } m_b \text{ asked just once)} \\ &= \frac{1}{2} \frac{q}{2^{\frac{n}{2}}} \text{(for } m_b \text{ asked q times)} \end{split}$$

Since $b \leftarrow \$\{0,1\}$ and $\mathcal{P}[r^* = r_0 \land m_0$ is chosen for encryption] and $\mathcal{P}[r^* = r_1 \land m_1$ is chosen for encryption] are disjoint probabilities, the probabilities of the two events is the sum of single probabilities.

So, \mathcal{A} wins with probability at least $\frac{1}{2^{\frac{n}{2}}}$, at most $\frac{q}{2^{\frac{n}{2}}}$, which is still negligible since q can be, at most, poly.

1.2 point b

Exercise 2

1.3 point a

1.3.1 i

$$\mathcal{H}$$
 is CRHF $\Rightarrow \mathcal{H}$ is OWF

To show this property, let's make a reduction:

When does not A win?

Since CRHF game wants the final couple (x, x') with $x \neq x'$, if \mathcal{A}'^{OWF} returns x' = x the CRHF game doesn't work.

This \mathbf{BAD} event happens with

$$\mathcal{P}[x=x'] = Col(X,X') = \sum_{x} \mathcal{P}[X=x \wedge X'=x] = \sum_{x} \mathcal{P}[X=x] \mathcal{P}[X'=x] = \frac{1}{2^{2n}}$$

1.3.2 ii

If functions from \mathcal{H} family aren't compressing, the probability of \mathbf{BAD} event changes:

$$\mathcal{P}[x=x'] = Col(X,X') = \sum_{x} \mathcal{P}[X=x \land X'=x] = \sum_{x} \mathcal{P}[X=x] \mathcal{P}[X'=x] = \frac{1}{2^n}$$

Now, if our functions from \mathcal{H} were compressing (from 2n bits to n bits), the best CRHF function (the function with the minimum number of collisions) had $2^n + 1$ inputs generating a collision (in the same codomain's element).

In this case, the best possible CRHF function is bijective (since it could be a permutation over 2^n elements).

In general, for non-compressing functions we can show that

 \mathcal{H} is CRHF mapping n bits to n bits $\Rightarrow \mathcal{H}$ is OWF

with the same reduction of the above $\mathbf{point}\ \mathbf{i}$.