

2A/1A 充电, 2 A 放电高集成度移动电源 SoC

1 特性

• 同步开关充放电

- ◆ 2A 同步升压转换
- ♦ 升压效率最高达 95%
- ◆ 充电效率最高达 96%
- ◆ 内置电源路径管理,支持边充边放

• 充电

- ◆ 自适应充电电流调节, 匹配所有适配器
- ◆ 充电电压精度: ±0.5%;
- ◆ 2A (IP5108) or 1A (IP5108E)同步开关充电

• 电量显示

- ◆ 内置 14bit ADC 和电量计
- ◆ 支持 5 / 4/3 颗 LED 电量显示
- ◆ 电池电量曲线可设置,显示灯更均匀

功能丰富

- ◇ 内置照明灯驱动
- ◆ 自动检测手机插入和拔出

• 低功耗

- ◆ 智能识别负载,自动进待机
- ◆ 待机功耗小于 50 μA

BOM 极简

◆ 功率 MOS 内置, 1uH 单电感实现充放电

• 多重保护、高可靠性

- ◆ 输出过流、过压、短路保护
- ♦ 输入过压、过充、过放、过流放电保护
- ◆ 整机过温保护
- ♦ ESD 4KV,瞬间耐压 11V

深度定制

- ◆ IP5108 I2C 接口,可灵活低成本定制方案
- 封装 eSOP16L

2 应用

- 移动电源/充电宝
- 手机、平板电脑等便携式设备

3 简介

IP5108/IP5108E 是一款集成升压转换器、锂电池充电管理、电池电量指示的多功能电源管理 SoC,为移动电源提供完整的电源解决方案。

IP5108/IP5108E 的高集成度与丰富功能,使其在应用时仅需极少的外围器件,并有效减小整体方案的尺寸,降低 BOM 成本。

IP5108/IP5108E 只需一个电感实现降压与升压功能。DC-DC 转换器工作在 650KHz,可以支持低成本电感和电容。

IP5108/IP5108E 的同步升压系统提供最大 2A 输出电流,转换效率高至 95%。空载时,自动进入休眠状态,静态电流降至 50uA。

IP5108/IP5108E 采用开关充电技术,提供最大 2.1A/1.0A 电流,充电效率高至 96%。内置 IC 温度 和输入电压智能调节充电电流。

IP5108 内置 14bit ADC, 精确测量电池电压和电流,可通过 I2C 访问 ADC 数据。IP5108 内置电量计算法,可以准确获取电池电量信息。

IP5108 支持 3/4/5 颗 LED 电量显示和照明手 电筒功能。

IP5108/IP5108E 采用 eSOP16L 封装。

图 1 IP5108/IP5108E 简化应用原理图(4 LED 指示电量)

4 引脚定义

图 2 IP5108 引脚图

	室 4	15.210.0 刘冲国
引脚		描述
序号	名称	
1	CSIN	Current sense input
2	GND	GROUND
3、4	LX	DCDC switch node, connect inductor
5、6	VOUT	DCDC 5v OUTPUT pin
7	VIN	Charger 5V input pin
8	LIGHT	LED lighting driver
9	L1/SCL	Battery indicator pin1/I2C SCL
10	L2/SDA	Battery indicator pin2/I2C SDA
11	L3	Battery indicator pin3
12	VREG	Regulator output pin
13	L4	Battery indicator pin4
14	GND	GROUND
15	KEY	Key input pin
16	VBAT	Battery voltage sense pin
17	GND	EPAD,should be connected to GND

5 IP 系列移动电源 IC 型号选择表

	充放电 主要特点						封	封装		
IC 型号	放电	充电	LED 灯数	照明灯	按键	I2C	手机充电 电流识别	QC2.0 快充	封装 形式	封装 兼容
IP5101	1.0A	1.0A	1,2	ı	ı	ı	ı	_	eSOP8	
IP5205	1.2A	1.2A	3,4	→	√	√	ı	-	SOP16	
IP5206	2A(Max)	1.5A	3,4,5	√	√	1	1	_	eSOP16	
IP5108E	2.0A	1.0A	3,4,5	√	√	ı	ı	-	eSOP16	PIN2PIN
IP5108	2.0A	2.1A	3,4,5	√	7	~	1	_	eSOP16	
IP5207	1.2A	1.2A	3,4,5	→	7	İ	1	_	QFN24	
IP5109	2.4A	3.0A	3,4,5	√	√	√	-	_	QFN24	PIN2PIN
IP5209	2.4A	3.0A	3,4,5	√	√	√	√	_	QFN24	PINZPIN
IP5209S	3A(Max)	4.8A	3,4,5	√	√	√	_	√	QFN24	

6 极限参数

参数	符号	值	单位
端口输入电压范围	V _{IN}	-0.3 ~ 5.5	V
工作环境温度范围	T _A	0 ~ 70	ပ
结温范围	T _J	-40 ~ 150	ပ
存储温度范围	Tstg	-60 ~ 150	ပ္
热阻 (结温到环境)	θ_{JA}	50	°C/W
人体模型(HBM)	ESD	4	ΚV

^{*}高于绝对最大额定值部分所列数值的应力有可能对器件造成永久性的损害,在任何绝对最大额定值条件下暴露的时间过长都有可能影响器件的可靠性和使用寿命

7 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
输入电压	V _{IN}	4.5	5	5.5	٧
负载电流	1 /	0	2	2.1	А
工作环境温度	T _A	0		70	$^{\circ}\! \mathbb{C}$

^{*}超出这些工作条件,器件工作特性不能保证。

8 电气特性

除特别说明, TA=25℃, L=1uH

参数	符号	测试条件	最小 值	典型 值	最大 值	单位
充电系统						
输入电压	V _{IN}		4.5	5	5.5	V
输入工作电流	1	VIN=5V,fs=1.6MHz			2	mA
输入静态电流	I_{VIN}	VIN=5V, Device not switching		100		uA
充电目标电压	V_{TRGT}			4.2		V
充电电流	I _{CHRG}				3	Α
涓流充电电流	I _{TRKL}	VIN=5V,BAT=2.7V		100		mA
涓流截止电压	V_{TRKL}			3		V
再充电阈值	V_{RCH}			4.1		V

充电截止时间	T _{END}			12		Hour
输入欠压保护	V _{UVLO}	上升电压		4.5		V
欠压保护迟滞	V _{UVLO}			200		mV
升压系统		I				<u>I</u>
电池工作电压	V _{BAT}		3.0		4.4	V
开关工作电池输入		VBAT=3.7V, VOUT=5.1V, fs=650KHz		3		mA
电流	I _{BAT}	VIN=5V, Device not switching		100	10	uA
DC 输出电压	V _{OUT}	VBAT=3.7V		5.0		V
输出电压纹波	ΔV_{OUT}	VBAT=3.7V,VOUT=5.0V,fs=650KHz		50	7	mV
升压系统供电电流	I _{vout}			2		Α
负载过流检测时间	T _{UVD}	输出电压持续低于 4.4V		30		ms
负载短路检测时间	T _{OCD}	输出电流持续大于 3A	150		200	us
控制系统						
开关频率	fs			1.5		MHz
PMOS 导通电阻	_	\mathcal{A}		50		mΩ
NMOS 导通电阻	r _{DSON}			30		mΩ
VREG 输出电压	V _{REG}	VBAT=3.5V		3.1		V
电池输入待机电流	I _{STB}	VIN=0V, VBAT=3.7V		50		uA
LDO 输出电流	I _{LDO}			50		mA
LED 照明驱动电流	llight	7		25		mA
LED 显示驱动电流	_{L1}			4		mA
	I _{L3}					
负载自动检测时间	T_{loadD}	负载电流持续小于 45mA		32		S
短按键唤醒时间	T _{OnDebounce}			50		ms
打开 light 时间	T _{Keylight}			2		s
热关断温度	T _{OTP}	上升温度		125		$^{\circ}$ C
热关断温度迟滞	ΔT_{OTP}			40		$^{\circ}\mathbb{C}$

9 功能描述

升压

IP5108/IP5108E 集成一个输出 5V,负载能力 2A 的升压 DC-DC 转换器。开关频率 650KHz, 3.7V 输入,5V/1A 时效率为 94%。 内置软启动功能,防止在启动时的冲击电流过大引起故障,集成输出过流,短路,过压,过温等保护功能,确保系统稳定可靠的工作。

按键

按键连接方式如图 2 所示, 可识别长按键和短按键操作。

- 按键持续时间长于 30ms, 但小于 2s, 即为短按动作, 短按会打开电量显示灯和升压输出。
- 按键持续时间长于 2s, 即为长按动作, 长按会开启或者关闭照明 LED。
- 小于 30ms 的按键动作不会有任何响应。
- 在 1s 内连续两次短按键,会关闭升压输出、电量显示和照明 LED。

电量计和电量显示

IP5108/IP5108E 内置电量计功能,能准确的显示电池剩余电量。

IP5108/IP5108E 可灵活支持三颗、四颗、五颗电量显示灯方案, 通过内置智能识别算法,可自动识别外挂几颗电量显示灯。

图 4 四颗、五颗、三颗灯 LED PIN 连接方式

放电模式 4颗 LED 显示

700 C C C C C C C C C C C C C C C C C C				
电量 C (%)) L1	L2	L3	L4
C≥75%	亮	亮	亮	亮
50%≤C<75%	亮	亮	亮	灭
25%≤C<50%	亮	亮	灭	灭
3%≤C<25%	亮	灭	灭	灭
0% <c<3%< td=""><td>1.5Hz 闪烁</td><td>灭</td><td>灭</td><td>灭</td></c<3%<>	1.5Hz 闪烁	灭	灭	灭
C=0%	灭	灭	灭	灭

充电模式 4颗 LED 显示

电量 C (%)	L1	L2	L3	L4
充满	亮	亮	亮	亮
75%≤C	亮	亮	亮	1.5Hz 闪烁
50%≤C<75%	亮	亮	1.5Hz 闪烁	灭
25%≤C<50%	亮	1.5Hz 闪烁	灭	灭
C<25%	1.5Hz 闪烁	灭	灭	灭

三灯、五灯的显示方式和四灯类似,每颗灯对应的电池电量如下表

	D1	D2	D3	D4	D5
三颗灯	3%	66%	100%	无	无
四颗灯	25%	50%	75%	100%	无
五颗灯	20%	40%	60%	80%	100%

手机插入自动检测

IP5108/IP5108E 自动检测手机插入, 即刻从待机态唤醒,打开升压 5V 给手机充电,省去按键操作,支持无按键模具方案。如果不需要手机插入自动开机的功能,需要在订购的时候说明,并且在 VOUT 上加 1K 的下拉电阻到 GND。

充电

IP5108/IP5108E 拥有一个同步开关结构的恒流、恒压锂电池充电器。当电池电压小于3V时,采用100mA涓流充电;当电池电压大于3V,进入恒流充电;当电池电压大于4.2V,进入恒压充电。充电完成后,若电池电压低于4.1V后,重新开启电池充电。

IP5108 采用开关充电技术,开关频率 1.6MHz,最大充电电流 2.1A,充电效率最高到 96%,能缩短 3/4 的充电时间。IP5108E 充电电流为 1.0A。

自适应电源路径管理,优先给外部负载供电,支持边充边放。

IP5108/IP5108E 会自动调节充电电流大小,来适应不同负载能力的适配器,确保不拉挂适配器。

LIGHT 照明

IP5108/IP5108E 内置 MOS 管, LIGHT PIN 可直接驱动照明 LED,最大驱动电流 100mA。当长按 KEY 键超过 2s 时,可开启或者关闭 LED 照明。当不需要 LIGHT 功能时,将 LIGHT 接到 GND,IP5108/IP5108E 会自动检测到没有 LIGHT 照明功能。

VREG

VREG 是一个恒开的 3.1V LDO, 负载能力 50mA。

10 典型应用原理图

IP5108/IP5108E 只需要电感、电容、电阻, 即可实现完整功能的移动电源方案。

如果不需要手机插入自动开机功能·R9焊接1K,否则NC不需要手机插入开机功能·需要在订购IC时说明

图 7 4LED 电量显示典型应用原理图

如果不需要插入负载自动开机功能,R11需要焊接1K,否则NC。

图 8 IP5108 I2C 应用的典型应用原理图

11 BOM 表

序号	元件名称	型号&规格	单位	用量	位置	备注
1	IC	IP5108/IP5108E	PCS	1	U1	
2	贴片电阻	1206 0.01R 1%	PCS	1	R1	精度必须保证 1%, 封装必须是 1206 以上
5	贴片电阻	0603 20R 5%	PCS	1	R2	根据照明灯亮度, 可接其他电阻值
6	贴片电阻	0603 2R 5%	PCS	1	R3	
7	贴片电阻	0603 1K 5%	PCS	1	R4	
8	贴片电阻	0603 300K 5%	PCS	2	R6, R8	
9	贴片电阻	0603 43K 5%	PCS	1	R7	
10	贴片电阻	0603 160K 5%	PCS	1	R5	
11	贴片电容	0603 10UF 10%	PCS	5	CP1、CP2、CP3、 CP4、CP7	耐压值大于 16V,建议使
12	电解电容	0603 22UF 10%	PCS	2	CP5、CP6	用贴片陶瓷电容
13	贴片电容	0603 104 10 %	PCS	4	C1、C2、C3、C4	

14	贴片电容	0603 4.7nF 10%	PCS	1	C5	
15	贴片电容	0603 2.2uF 10%	PCS	1	C6	
16	贴片 LED	0603	PCS	4	D1、D2、D3、D4	
17	发光二极管	5mm	PCS	1	D5	
18	电感	CD54	PCS	1	L1	饱和 Isat、温升电流 Idc 大于 3.8A,DCR 小于 0.02,感值 1uH @1.5MHz
19	USB 母座	10mm 短体卷口	PCS	2	J3、J4	
20	迷你 USB	Micro USB 母座 5 脚全贴	PCS	1	J2	
21	按键开关	6.5mm*5.1mm	PCS	1	SW1	
22	AC 电子线	2*100mm 红 黑	PCS	2	B+ B-	

电感推荐型号

CD54

DARFON PIN	Inductance (uH)	Tolerance	DC Res		Heat Rating Current DC Amp.	Saturation Current DC Amps.	Measuring Condition
			Тур. Мах.		Idc(A)Max.	Isat(A)Max.	
CD54	1.0	±30%	10	13	3.20	4.00	

12 封装信息

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
А	-	-	1.75
A1	0.05	-	0.15
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39	-	0.48
b1	0.38	0.41	0.43
С	0.21	-	0.26
c1	0.19	0.20	0.21
D	9.70	9.90	10.10
E	5.80	6.00	6.20

E1	3.70	3.90	4.10
е	1.27BSC		
h	0.25	-	0.5
L	0.50	-	0.80
L1	1.05BSC		
D1		4.57	
E2		2.41	