Introduction to Algorithm Design

Lecture Notes 6

ROAD MAP

- Decrease And Conquer
 - Insertion Sort
 - Depth-First Search
 - Breadth-First Search
 - Topological Sorting
 - Algorithms For Generating Combinatorial Objects
 - Decrease By a Constant-Factor Algorithms
 - Variable-Size-Decrease Algorithms

Decrease By a Constant-Factor Algoritmaları

- Şimdiye kadar çeşitli örneklerini gördük.
 - Binary search
 - Karesini alma ile üs alma
- Decrease by a constant-factor fikri üzerine kurulmuş başka algoritmalar göreceğiz.
 - Fake-Coin Problemi, Josephus Problemi, Russian Multiplication
- Bu algoritmalar hızlı çalışır.
 - Genellikle logaritmik zamanda

Fake-Coin Problemi (Sahte-Para Problemi)

 Fake-coin probleminin çeşitli versiyonları bulunmaktadır.

• Tanım:

- Elimizde eşit kollu terazi ve n tane aynı şekilde görülen madeni para bulunmaktadır.
- Bir tanesinin daha hafif olduğunu varsayın.
 - Terazide hangi kümenin daha ağır çektiğini görebiliyoruz ama ağırlığının ne olduğunu (kaç gr olduğunu) bilemiyoruz.
 - Sahte olan parayı bulunuz.

Yaklaşım:

- N tane madeni parayı ikiye bölünüz her birinde n/2 tane madeni para olsun. Eğer n tek sayı ise 1 tane madeni parayı kenara ayırıyoruz. Diğer iki grupta (n-1)/2 tane madeni para bulunuyor.
- Eğer kümeler eşit çekilirse, sahte olan para kenara ayırdığımızdır. Değilse hafif gelen kümeden devam edebiliriz.
- Problem ikiye bölündükten sonra problem halif olan kümeden işlem yapmaya devam eder yani decrease and conquer'dir.

 W(n) en kötü durumda gerçekleştirilmesi gereken ölçüm sayısı olsun.

$$W(n) = W(n/2) + 1$$
 for $n > 1$, $W(1) = 0$

- Binary search'de yapılması gereken karşılaştırma sayısına neredeyse eşittir.
 - Tek fark initial condition(ilk koşul)'dır.

- Analiz :
 - Recurrence'ın çözümü

$$W(n) = \lfloor \log_2 n \rfloor$$

Daha verimli bir algoritma mümkün müdür?

• Tartışma:

- Madeni paraları üçe bölmek daha iyi bir çözüm verebilir. Her kümede neredeyse n/3 tane madeni para içermektedir.
- İki kümeyi eşit kollu terazide tarttıktan sonra, problem boyutunu üçe düşürebiliriz.
- Toplam tartma sayısının yaklaşık olarak 10g₃n
 'e indiğini görebiliriz.
 - Kaç katı olduğunu söyleyebilir misiniz?

Russian Peasant Multiplication

nm'i hesaplamak istiyoruz.

$$n$$
 çift ise $n \cdot m = \frac{n}{2} \cdot 2m$.

n tek ise

$$n \cdot m = \frac{n-1}{2} \cdot 2m + m.$$

n	m		n	m	
50	65		50	65	
25	130		25	130	130
12	260	(+130)	12	260	
6	520		6	520	
3	1040		3	1040	1040
1	2080	(+1040)	1	2080	2080
	2080	+(130 + 1040) = 3250			3250
		(a)		(b)	

FIGURE 4.11 Computing $50 \cdot 65$ by the Russian peasant method.

JOSEPHUS PROBLEMİ

FIGURE 4.12 Instances of the Josephus problem for (a) n = 6 and (b) n = 7. Subscript numbers indicate the pass on which the person in that position is eliminated. The solutions are J(6) = 5 and J(7) = 7, respectively.

JOSEPHUS PROBLEMİ

Kişi Sayısı Çift ise

$$J(2k) = 2J(k) - 1.$$

Kişi Sayısı Tek İse

$$J(2k + 1) = 2J(k) + 1.$$

ROAD MAP

Decrease And Conquer

- Insertion Sort
- Depth-First Search
- Breadth-First Search
- Topological Sorting
- Algorithms For Generating Combinatorial Objects
- Decrease By a Constant-Factor Algorithms
- Variable-Size-Decrease Algorithms

Variable-Size-Decrease Algoritmalar

<u>Tanım:</u>

- Boyutu düşürme deseni bir iterasyondan diğerine değişebilir.
- Örnekler
 - OBEB'i bulan Euclid'in algoritması
 - Selection problem
 - Ortanca elemani hesaplama (Computing median)

Selection Problemi

Problem Tanımı:

- n elemanlı bir listedeki k'ıncı en küçük elemanı bulma
 - Bu sayı k'ıncı order statistics olarak adlandırılır.
 - k=1 ya da k=n ise sırasıyla listenin en küçük ve en büyük elemanlarını buluruz.
 - Daha ilginç olan ise k=n/2 içindir
 - Bu değer ortanca (median) olarak adlandırılır.
 - İstatistikte en önemli değerlerden bir tanesidir.
 - Mergesort ile k'ıncı en küçük elemanı bulmanın zaman karmaşıklığı O(nlogn)'dir.

Selection Problem

• Yaklaşım:

k'ıncı en küçük elemanı bulmak için listeyi iki alt gruba ayırabiliriz.

- p'den küçük olanlar
- p'den büyük ya da p'ye eşit olanlar

$$\underbrace{a_{i_1} \dots a_{i_{s-1}}}_{\leq p} \quad \mathbf{p} \quad \underbrace{a_{i_{s+1}} \dots a_{i_n}}_{\geq p}$$

- Quicksort'un prensipi!
- Bu liste parçalamanın avantajı var mıdır?

ALGORITHM LomutoPartition(A[l..r])

```
//Partitions subarray by Lomuto's algorithm using first element as pivot //Input: A subarray A[l..r] of array A[0..n-1], defined by its left and right // indices l and r (l \le r) //Output: Partition of A[l..r] and the new position of the pivot p \leftarrow A[l] s \leftarrow l for i \leftarrow l+1 to r do

if A[i] < p
s \leftarrow s+1; swap(A[s], A[i])

return s
```


ALGORITHM Quickselect(A[l..r], k)

```
//Solves the selection problem by recursive partition-based algorithm //Input: Subarray A[l..r] of array A[0..n-1] of orderable elements and // integer k (1 \le k \le r - l + 1) //Output: The value of the kth smallest element in A[l..r] s \leftarrow LomutoPartition(A[l..r]) //or another partition algorithm if s = k - 1 return A[s] else if s > l + k - 1 Quickselect(A[l..s-1], k) else Quickselect(A[s+1..r], k-1-s)
```

Selection Problemi

- s listenin pivota göre ayrılma noktası olsun. (k. En küçük için)
- Aynı zamanda pivotun da pozisyonunu veriyor.
- If s=k-1
 - Pivot p selection probleminin çözümüdür
- If s>k-1
 - Parçalanmış array'in sol tarafında aramaya devam
- If s<k</pre>
 - Arrayin sağ kısmında (k-s-1)'inci en küçüğü aramaya devam.

Selection Problem Örnek

- Örnek:
 - Aşağıdaki listenin ortanca elemanını bulma:
 4, 1, 10, 9, 7, 12, 8, 2, 15

•
$$k = \lceil 9/2 \rceil = 5$$

- Listedeki 5'inci en küçük elemanı bulma
- Listedeki elemanların 0 dan 8'e indexlendiğini varsayıyoruz.
- İlk elemanı pivot olarak alıyoruz.

Selection Problemi Örnek

0	1	2	3	4	5	6	7	8
s	i							
4	1	10	8	7	12	9	2	15
	\boldsymbol{s}	i						
4	1	10	8	7	12	9	2	15
	S						i	
4	1	10	8	7	12	9	2	15
		S					i	
4	1	2	8	7	12	9	10	15
		\boldsymbol{s}						i
4	1	2	8	7	12	9	10	15
2	1	4	8	7	12	9	10	15

Selection Problemi Örnek

0	1	2	3	4	5	6	7	8
			S	i				
			8	7	12	9	10	15
				S	i			
			8	7	12	9	10	15
				S				i
			8	7	12	9	10	15
			7	8	12			15

Selection Problemi

Analiz:

- Quicksorttan daha maliyetli
- En iyi durumda ilk seferde bulur.

$$C(n) \in \Theta(n)$$

Ortalama durumda

•
$$C(n) = C(n/2) + (n+1)$$
 $C(n) \in \Theta(n)$

Selection Problemi

Analiz:

- En kötü durumda, sadece bir eleman ve geriye kalan elemanlar olarak parçalanabilir.
- Yani,

$$C(n) = C(n-1) + (n+1)$$
$$C(n) \in \Theta(n^2)$$

Selection Problem

Tartışma:

- Ortalama zaman karmaşıklığı lineerdir.
- Tüm durumlarda lineer çalışan başka bir algoritma da bulunmuştur.
 - Pratik uygulamalarda kullanmak için çok karmaşıktır.
- Paçalama tabanlı problem istenilenden fazlasını çözmektedir.
- Listedeki k'ıncı en küçük ve n-k'ıncı en büyük elemeni bulmaktadır.
 - Sadece k'ıncı en küçük elemanın değerini değil.