AD-A248 292

TECHNICAL REPORT BRL-TR-3321

BRL

MODIFIED POINT MASS TRAJECTORY SIMULATION FOR BASE-BURN PROJECTILES

R. F. LIESKE J. E. DANBERG

MARCH 1992

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

92 4 03 200

92-08678

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 200301

Davis Highway, Suite 1204, Arlington, VA 22202-			
1. AGENCY USE ONLY (Leave blank	2. REPORT DATE	4	ND DATES COVERED Sap 90-Dec 91
4. TITLE AND SUBTITLE		I men,	5. FUNDING NUMBERS
Modified Point Mass Trajecto	ry Simulation for Base-B	um Projectiles	PR: 1L162618AH80
6. AUTHOR(S)			1
R. F. Lieske and J. E. Danbe	rg		
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGEN	ICY NAME(S) AND ADDRESS	(ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
U.S. Army Ballistic Research ATTN: SLCBR-DD-T Aberdeen Proving Ground, M	·		BRL-TR-3321
11. SUPPLEMENTARY NOTES			<u> </u>
12a. DISTRIBUTION / AVAILABILITY ST	TATEMENT		12b. DISTRIBUTION CODE
Approved for public release; of	distribution is unlimited.		
13. ABSTRACT (Maximum 200 words)			
An addition to the Modified Pofor the exterior ballistic simula aerodynamic base-drag based of hot gas into the wake of the motor is modeled as a functio HAWK Doppler radar data col burn projectile have been use	ition of base-burn project d on the change in base e projectile. The mass fl n of the instantaneous p llected at Yuma Proving	iles. The addition mod pressure due to the ba ow rate of the remaining rojectile spin rate and a Ground, Arizona, for th	lels the change in se-burn motor's ejection ig fuel of the base-burn atmospheric air pressure. e 155mm, M1864 base-
14. SUBJECT TERMS			15. NUMBER OF PAGES
Base-Burn Projectile, Trajecto	ry Modeling, Doppler Rad	dar, Aerodynamic Drag	16. PRICE CODE
7. SECURITY CLASSIFICATION 18 OF REPORT	. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFI OF ABSTRACT	CATION 20. LIMITATION OF ABSTRAC
UNCLASSIFIED U	INCLASSIFIED	UNCLASSIFIED	SAR

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

			Page
	LIST OF FIGURES		. v
	LIST OF TABLES	· · · · · · · · · · · · · · · · · · ·	. vi
	ACKNOWLEDGMENTS	• • • • • • • • • • • • • • • • • • • •	. vii
1.	INTRODUCTION	••••••	. 1
2.	PHYSICS OF BASE-BURN PROJECTILES .		. 1
3.	DETERMINATION OF AERODYNAMIC DRADATA (Lieske 1989)		
4.	MODELING THE BASE-BURN PROJECTILE		
5.	MODELING THE BASE-BURN MOTOR MAS		
6. 6.1 6.2 6.3	ANALYSIS OF RESULTS		. 7 . 8
7.1 7.1.1 7.1.2 7.2 7.3 7.4 7.5	TRAJECTORY MODEL FOR ROCKET-ASSIS JECTILES Equations of Motion Thrust. Drag Reduction. Mass Flow Rate Center of Mass Axial Moment of Inertia Overturning Moment Coefficient Fitting Factors for Motor Performance		. 10 . 11 . 11 . 11 . 12 . 12 . 13
8.	CONCLUSIONS		. 14
9.	REFERENCES		. 29
	LIST OF SYMBOLS		. 31
	DISTRIBUTION LIST	Accession For	. 35
		NTIS GRAŁI LTIC TAB Unannounced Justification	

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES

Figur	<u>e</u>	Page
1	Change in Base Pressure for a Change in Injection Parameter vs. Mach Number for Low Injection Rates and Temperatures from Wind Tunnel and CFD Results (Danberg 1990)	
2	Change in Base Pressure vs. Injection Parameter for Various Mach Numbers Based on CFD Computations	
3	Change in Base Pressure for a Change in Injection Parameter vs. Mach Number for Low Injection Rates and Various Temperatures Based on CFD Computations (Danberg 1990)	. 16
4	Change in Base Pressure for a Change in Injection Parameter vs. Mach Number for Various Injection Parameters Based on CFD Computations	
5	Physical Characteristics of the 155mm, DPICM, M864 Projectile	. 17
6	155mm, DPICM, M864 Motor	. 18
7	155mm, DPICM, M864 Motor Propellant Grain	. 18
8	Aerodynamic Drag Force Coefficient for the 155mm, DPICM, M864 Projectile with an Inert Motor Propellant Grain (Lieske 1989)	19
9	Experimental Strand Burning Rate for M864 Motor Propellant (Miller and Holmes 1987)	19
10	Change in Base Pressure for a Change in Injection Parameter vs. Mach Number and Injection Parameter for the M864 Projectile	20
11	Reference Mass Flow Rate of the Fuel as a Function of the Pseudo-Time-of-Flight for the M864 Motor	20
12	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 5089 Fired with Propelling Charge M4A2, 7W, at a Quadrant Elevation of 500 Mils	21
13	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 1034 Fired with Propelling Charge M4A2, 7W, at a Quadrant Elevation of 750 Mils	21
14	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 1013 Fired with Propelling Charge M4A2, 7W, at a Quadrant Elevation of 1150 Mils	22
15	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 1044 Fired with Propelling Charge M119A2, 7R, at a Quadrant Elevation of 500 Mils	22

LIST OF FIGURES (Continued)

Figur	<u>e</u> -	Page
16	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 1050 Fired with Propelling Charge M119A2, 7R, at a Quadrant Elevation of 750 Mils	23
17	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 4202 Fired with Propelling Charge M119A2, 7R, at a Quadrant Elevation of 1150 Mils	23
18	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 4216 Fired with Propelling Charge M203E2, 8R, at a Quadrant Elevation of 499 Mils	24
19	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 4329 Fired with Propelling Charge M203E2, 8R, at a Quadrant Elevation of 748 Mils	24
20	Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round Number 4219 Fired with Propelling Charge M203E2, 8R, at a Quadrant Elevation of 1147 Mils	25
21	Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Pseudo-Time-of-Motor Burning	25
22	Difference Between Deduced and Modeled Mass Flow Rate ($\Delta \dot{m_f}$) vs. Mach Number	26
23	Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Injection Parameter	26
24	Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Projectile Spin Rate	27
25	Difference Between Deduced and Modeled Mass Flow Rate $(\Delta \dot{m_f})$ vs. Local Atmospheric Air Pressure	27
26	Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Time-of-Flight	28
<u>Table</u>	LIST OF TABLES	<u>Page</u>
1	Experimental Spin Fixture Time-to-Burnout for the M864 Motor (Kayser, Kuzan, and Vazquez 1987)	8
2	Fitting Factors for Rocket-Assisted and Base-Burn Motor Performance	13

ACKNOWLEDGMENTS

The authors would like to express their appreciation to Mr. Joseph A. Hurff for preparing the computer programs required to calculate the aerodynamic dr. g results and to Mr. Richard C. Eitemiller for assembling and reducing the 155mm, DPICM, M864 base-burn projectile experimental range firing data. The authors would also like to express their appreciation to COL Didrik Cappelen (Norway), Prof. E. Celens (Belgium), and Messrs. James W. Bradley and James A. Matts for their very helpful comments and suggestions during the preparation and review of this report.

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

The Modified Point Mass Trajectory Model (Lieske and Reiter 1966 and NATO Army Armaments Group STANAG 4355, 1988) is the primary method of trajectory simulation used in the preparation of Firing Tables. This model requires four types of input data: projectile mass properties, motor characteristics, aerodynamic coefficients, and the performance parameters determined from experimental range testing. This report presents a method of modeling the aerodynamic drag of base-burn projectiles with as much similarity as possible to the approach used for rocket-assisted projectiles. HAWK Doppler radar data for the 155mm, Dual Purpose Improved Conventional Munition (DPICM), M864 base-burn projectile have been analyzed and used to verify the modeling approach for a variety of test conditions. The word "deduced," as used in this report, means a computed value based on an analysis of the measured Doppler radar data; all symbols are defined in the List of Symbols.

2. PHYSICS OF BASE-BURN PROJECTILES

Theoretical discussions of the mechanism of base drag reduction for base-burn projectiles are presented in the works of Gunners, Andersson and Hellgren, Chapter 16 (1988) and Danberg (1990). In these works, it is assumed that mass injection into the near wake only affects the pressure distribution on the projectile base and thus only affects the base drag. Forebody pressure and viscous drag are unaffected. As a result, the drag coefficient of a base-burn projectile can be considered to be equal to the drag coefficient of the non-burning (inert) projectile, C_{D_0} , minus the difference in the base drag component, $\Delta C_{D_{0_{bb}}}$, between an inert and operating base-burn motor. The base drag component of a projectile, C_{D_b} , is directly related to the average projectile base pressure, P_b , as follows:

$$C_{D_b} = \frac{1 - \frac{P_b}{P}}{\frac{\gamma}{2} M^2 \frac{1}{d_b^2}} \tag{1}$$

where:

 d_b = base diameter of projectile in calibers

M = local flight Mach number

P = local atmospheric air pressure

 P_b = average projectile base pressure

 γ = ratio of specific heats

From this relationship, the theoretical difference in the base drag component for a projectile with an inert base-burn motor (average base pressure, P_{b_i}) and an operating base-burn motor (average base pressure, P_{b_b}) can be written as:

$$\Delta C_{D_{0_{bb}}} = \frac{\frac{P_{b_b}}{P} - \frac{P_{b_i}}{P}}{\frac{\gamma}{2} M^2 \frac{1}{d_b^2}}$$
 (2)

The overall drag coefficient of a base-burn projectile with an operating base-burn motor is then:

$$C_{D_{\mathbf{0}_{bb}}} = C_{D_{\mathbf{0}}} - \Delta C_{D_{\mathbf{0}_{bb}}} \tag{3}$$

In subsequent sections of this report, the difference in the average base pressure ratios $\left(\frac{P_{b_b}}{P} - \frac{P_{b_i}}{P}\right)$ will be designated ΔBP .

The nondimensional injection parameter I is defined as:

$$I = \frac{\dot{m_f}}{\rho \ v \ A_b} \tag{4}$$

where \dot{m}_I is the injected mass flow and $\rho \ v \ A_b$ is the free-stream mass flow through an area equal to the base of the projectile, A_b . Danberg (1990) has shown that ΔBP is linearly related to I over a range of low rates of air injection (I less than 0.005 at M less than 2.5 and at 300 K temperature) as observed in a number of wind tunnel experiments:

$$\Delta BP = I \left[\frac{\delta (P_{b_b} / P)}{\delta I} \right]_{I=0} \tag{5}$$

The slope $\left[\frac{\delta(P_{b_b}/P)}{\delta I}\right]_{I=0}$ in Equation 5 was found to depend only on the free-stream

Mach number for the wind tunnel data; see Figure 1 which is from Danberg (1990). Using computational fluid dynamics (CFD), Nietubicz and Sahu (1988) confirmed the low-temperature results (approximately 300 K) and extended them to more realistic temperatures consistent with burning of a solid propellant. They numerically solved the Navier-

Stokes equations for the flow around the M864 projectile, including its domed base, for a wide range of injection mass flows and gas temperatures. Figure 2 indicates the general form of the average base pressure change with increasing injection parameter for Mach numbers from 1.3 to 3.0. The data points are the computed CFD values corresponding to a stagnation temperature of the injected gas of 1500 K. Note that these curves can also be represented by a line through the origin with a slope that increases with Mach number for injection rates of less than 0.002. This slope has been computed for a range of Mach numbers and injected gas temperatures and is shown in Figure 3 along with the low-temperature data from Figure 1. The lines drawn through the data points are computed from an equation fitted to the CFD data. The equation is a cubic polynomial in Mach number with coefficients that are linear in the injected gas temperature, T_j . The data of Figure 3 are valid for injection rates of less than 0.002.

At higher injection rates, the base pressure difference is no longer linear with respect to I; Figure 2 illustrates this. However, ΔBP can be represented in terms of a new variable made up of the product of the injection rate and the slope.

In applying these results to flight test data, $\triangle BP$ is assumed to have the form:

$$\Delta BP = I\left(\frac{\delta BP}{\delta I}\right) \tag{6}$$

where for low injection rates and a fixed gas temperature, $\frac{\delta BP}{\delta I}$ approaches the limiting slopes shown in Figure 3. For a specific propellant, the limit is expected to be only a function of Mach number. For larger values of I, a decrease of $\frac{\delta BP}{\delta I}$ with I corresponds to a nonlinear curve of base pressure change. The CFD data can be used to provide an estimate of the decrease in $\frac{\delta BP}{\delta I}$ for fixed values of I, as shown in Figure 4.

3. DETERMINATION OF AERODYNAMIC DRAG FROM DOPPLER RADAR DATA (Lieske 1989)

Doppler radar is one of the most valuable tools in evaluating the aerodynamic drag of projectiles from full-scale flight tests. The basis of the data reduction is the relationship between the measured time rate of change of slant range and the projectile acceleration. The technique is developed in a ground-fixed, orthonormal, right-handed Cartesian coordinate system with unit vectors ($\vec{1}$, $\vec{2}$ and $\vec{3}$). The $\vec{1}$ axis is the intersection of the vertical plane of fire and the horizontal plane and points in the direction of fire. The $\vec{2}$ axis is parallel to the gravity vector, \vec{g} , and opposite in direction. The $\vec{3}$ axis completes the right-handed coordinate system.

The slant range rate of change as measured by Doppler radar is recorded on magnetic tape. The first step is to smooth the data and determine the time derivative. Least squares fits (second-degree polynomials in time) to the data are determined for 0.56 second intervals (fifteen point smoothing) along the trajectory. The slant range rate of change (\dot{r}) and time derivative of the slant range rate of change (\ddot{r}) are obtained from the quadratic fit at the midpoint of the fifteen-point interval.

An estimated trajectory for the base-burn projectile is generated separately using the projectile mass properties, launch data, atmospheric conditions, estimated aerodynamic coefficients, and estimated drag reduction while the base-burn motor is operating. The trajectory is adjusted, using factors on both the drag reduction during motor functioning and lift, to match the observed impact data. A trajectory velocity $(\vec{u_r})$ is calculated using the Doppler radar smoothed slant range rate of change $(\dot{r_t})$ and the estimated trajectory slant range rate of change $(\dot{r_t})$ and velocity $(\vec{u_t})$ as follows:

$$\vec{u_r} = (\dot{r}/\dot{r_t}) \, \vec{u_t} \tag{7}$$

where:

$$\dot{r_t} = u_t \cos(r_t, u_t) = (\vec{r_t} \cdot \vec{u_t})/r_t$$

A trajectory acceleration $(\vec{u_r})$ was calculated using the time derivative of the Doppler radar slant range rate of change (\ddot{r}) and the estimated trajectory time derivative of the slant range rate of change $(\ddot{r_t})$ and acceleration $(\dot{\vec{u_t}})$, utilizing the following two formulations:

$$\dot{\vec{u}_r} = (\dot{r}/\dot{r_t}) \, \dot{\vec{u}_t} + \left[(\dot{r_t} \, \ddot{r} - \dot{r} \, \ddot{r_t}) / \dot{r_t}^2 \right] \, \vec{u_t} \tag{8}$$

and

$$\dot{\vec{u_r}} = (\ddot{r} / \ddot{r_t}) \, \dot{\vec{u_t}} \tag{9}$$

where:

$$ec{r_t} = \{r_t [(\dot{ec{r_t}} \cdot ec{u_t}) + (ec{r_t} \cdot \dot{ec{u_t}})] - (ec{r_t} \cdot ec{u_t}) \dot{r_t}\} / r_t^2$$
 and $\dot{ec{r_t}} = ec{u_t}$

The mean of the results were similar for both of the $\vec{u_r}$ representations; however, the variation (spread) of the results were significantly improved using Equation 9 and it was used for determining the results presented.

Note: Subscript t refers to quantities determined from the estimated trajectory and those with subscript r are obtained using both the Doppler radar data and the estimated trajectory.

The mass of the projectile, atmospheric conditions, estimated trajectory data and the Doppler slant range rate of change and its time derivative provide the necessary inputs to determine the aerodynamic drag. The following inverse solution of the point-mass equations of motion is then used to compute the aerodynamic drag (C_{D_r}) .

$$C_{D_r} = -\left[\left(\vec{u_r} - \vec{w} \right) \bullet \left(\dot{\vec{u_r}} - \vec{g} - \vec{\Lambda} \right) \right] 8 \, m / \left(\pi \, \rho \, d^2 \, v^3 \right) \tag{10}$$

This equation can be used to experimentally determine the aerodynamic drag coefficient for a projectile with either an inert or a functioning base-burn motor. The ΔBP for a particular flight condition can then be determined from the difference in the drag coefficient for projectiles with inert and operating base-burn motors. Based on the known flight conditions of projectile spin and atmospheric air pressure, the flight mass flow rate can be related to the mass flow generated by the gas generator for a set of reference conditions. This relationship will be discussed in sections 5 and 6. A deduced mass flow rate can be calculated using an estimated change in nondimensional base pressure for a change in the injection parameter based on the expected motor-ejected gas temperature and compared with the computed flight mass flow rate. The results can than be analyzed to refine the estimated mass flow rate and the change in nondimensional base pressure for a change in the injection parameter due to the base-burn motor ejecting hot gas into the wake of the projectile.

4. MODELING THE BASE-BURN PROJECTILE DRAG

The trajectory of a base-burn projectile is simulated by expanding the drag term, \vec{D} , in the Modified Point Mass Trajectory Model to include the change in drag due to the injection of a hot gas flow into the projectile's wake.

$$\vec{D} = -\frac{\pi \rho d^2 i}{8 m} \left\{ C_{D_0} - f_{BB} \left[\frac{\Delta BP}{\left(\frac{\gamma}{2}\right) M^2 \left(\frac{1}{d_b^2}\right)} \right] + C_{D_{\alpha^2}} (Q\alpha_e)^2 \right\} v \vec{v}$$
 (11)

where $f_{BB}\left[rac{\Delta BP}{\left(rac{2}{2}
ight)M^2\left(rac{1}{d_b^2}
ight)}
ight]$ is used to represent the drag reduction due to the hot mass

flow (m_f) of the base-burn motor. The difference in drag due to the functioning of a base-burn motor is represented by a change in the projectile's base pressure (ΔBP) due to the nondimensional mass flow rate, I, as discussed in section 2, and the quantity:

$$\frac{\delta BP}{\delta I} = \mathcal{F}(M, I) \tag{12}$$

which can be deduced from the flight test data analysis. This assumes that the mass flow, which is a critical element, can adequately be modeled as a function of projectile spin and atmospheric air pressure as discussed in the next section. Finally, a factor f_{BB} is included for matching observed range firing data.

5. MODELING THE BASE-BURN MOTOR MASS FLOW RATE

The method used to determine the mass flow rate of the base-burn motor is an extension of the procedure used for rocket-assisted projectiles that is presented in NATO Army Armaments Group STANAG 4355.

The mass flow rate of the motor fuel, $\dot{m_f}$, as a function of pseudo-time-of-motor burning (t^*) is determined for a reference set of conditions of motor temperature, projectile spin rate, and atmospheric air pressure.

$$\dot{m}_f^* = \mathcal{F}(t^*) \tag{13}$$

A transformation from time-of-flight (t) to pseudo-time-of-motor burning t^* is used to determine the mass flow of the base-burn motor as a function of the currently predicted burn-out time, $t_{B(t+\Delta t)}$.

The effects of projectile spin rate and local atmospheric pressure conditions influence the mass flow through an estimated burnout time. The estimated burnout time, $t_{B(i+\Delta i)}$, assumes that the mass flow remains constant at the instantaneous conditions until the fuel is consumed. This burnout time is updated at each numerical integration time step and thus approaches the actual burnout time as the fuel is exhausted. The simulated burnout time is modeled by the following assumed formula:

$$t_{B_{(t+\Delta t)}} = \left[\left(t_{B_{(t)}} - t \right) \left(\frac{p_{(t+\Delta t)}}{p_{(t)}} \right)^{f_{BT_p}} \left(\frac{P_{(t+\Delta t)}}{P_{(t)}} \right)^{f_{BT_p}} \right] + t \qquad (14)$$

where:

 f_{BT_p} is a parameter used to represent the change in burning time of the motor due to projectile spin rate.

 f_{BT_P} is a parameter used to represent the change in burning time of the motor due to a change in local atmospheric pressure.

and

$$t_{(t+\Delta t)}^{\bullet} = t_{(t)}^{\bullet} + \Delta t^{\bullet} = t_{(t)}^{\bullet} + \Delta t \left(\frac{t_B^{\bullet} - t_{(t)}^{\bullet}}{t_{B_{(t+\Delta t)}} - t} \right)$$
 (15)

Finally the instantaneous mass flow rate of the fuel is:

$$\dot{m}_f = \left(\frac{t_B^{\bullet} - t_{(t)}^{\bullet}}{t_{B_{(t+\Delta t)}} - t}\right) \dot{m}_f^{\bullet} \tag{16}$$

6. ANALYSIS OF RESULTS

A sample of nine 155mm, DPICM, M864 projectiles fired at quadrant elevations of approximately 500, 750 and 1150 mils with propelling charges: M4A2, charge 7W; M119A2, charge 7R; and M203E2, charge 8R were analysed. These projectiles were fired at Yuma Proving Ground, AZ, during May 1987. Figure 5 shows the configuration of the M864 pro-

jectile design and presents its physical properties. Figures 6 and 7 show the M864 base-burn motor, igniter, and grain. Figure 8 presents the aerodynamic drag for the M864 with an inert base-burn motor that was determined from HAWK Doppler radar data, for projectiles fired with inert base-burn motors as reported by Lieske (1989).

6.1 Modeled Mass Flow Rate of the Fuel. The mass flow rate for the M864 projectile is modeled using: (1) an estimated mass flow rate of the motor as a function of pseudo-time-of-flight for the reference spin rate, time-of-motor ignition, and time-of-motor burnout of 260 rev/s, 0.5 s, and 23.5 s, respectively; (2) the projectile spin burning rate factor, -0.50, based on the experimentally measured time-to-burnout on a ground-mounted spin fixture (Kayser, Kuzan and Vazquez 1987), Table 1; (3) the experimentally determined strand pressure burning rate coefficient, converted to a burning time factor, -0.6655, as reported by Miller and Holmes (1987), Figure 9; and (4) the computed change in base pressure for a change in injection parameter vs. Mach number, Figure 4.

Table 1. Experimental Spin Fixture Time-to-Burnout for the M864 Motor (Kayser, Kuzan, and Vazquez 1987).

Run Number	Spin (rev/s)	Burn-Time (s)
2	0	40.0
3	99	31.9
4	142	29.0
5	176	27.4
6	199	26.0
7	226	23.9
8	253	22.8

6.2 Change in Base Pressure. The change in nondimensional base pressure, ΔBP , due to the functioning base-burn motor is computed from the difference in aerodynamic drag between a projectile with an inert and a functioning base-burn motor as follows:

$$\Delta BP = \left\{ C_{D_0} + \left[C_{D_{\alpha^2}} \left(Q \alpha_e \right)^2 \right] - C_{D_r} \right\} \left(\frac{\gamma}{2} \right) M^2 \left(\frac{1}{d_b^2} \right)$$
 (17)

- **6.3** Deduced Mass Flow Rate of the Fuel. The mass flow rate of the fuel, m_f , is deduced using:
 - a. the change in average base pressure due to the functioning motor;
 - b. the change in nondimensional base pressure for a change in the base-burn motor injection parameter;
 - c. the projectile base area;
 - d. the projectile velocity; and
 - e. the local atmospheric air pressure.

The firing propellant charge gases are supplemented by an igniter to ignite the solid propellant motor fuel; therefore, the igniter is considered part of the motor fuel.

$$\dot{m_f} = \frac{\rho \, v \, A_b \, \Delta BP}{\frac{\delta BP}{\delta I}} \tag{18}$$

The differences between the deduced mass flow rate based on the HAWK Doppler radar data and the modeled mass flow rate were determined for the M864 projectiles fired at quadrant elevations of approximately 500, 750, and 1150 mils with propelling charges: M4A2, charge 7W; M119A2, charge 7R; and M203E2, charge 8R. These differences were analyzed with respect to pseudo-time-of-flight, Mach number, injection parameter, local atmospheric pressure and time-of-flight. The analysis of the differences suggested a modification to the change in base pressure for a change in injection parameter, and the reference mass flow rate of the fuel. Therefore, an iterative procedure was used to simultaneously determine the change in base pressure for a change in injection parameter as a function of Mach number and injection parameter, and the reference mass flow rate of the fuel as a function of the pseudo-time-of-flight that would minimize the differences. The change in base pressure for a change in injection parameter as a function of Mach number and injection parameter, and the reference mass flow rate of the pseudo-time-of-flight that virtually minimized the differences are presented in Figures 10 and 11.

The results of this analysis indicated that the M864 base-burn motor requires a few seconds to ignite and reach full performance and has a reference motor burn-time of 24.0 seconds. The ignition delay, t_{DI} , of approximately 0.4 second has also been observed by Kuzan and Oskay (1988) during transonic range testing and the motor burn-time is within one second of the experimental ground-mounted time-to-burnout measurement by Kayser,

Kuzan and Vazquez (1987). The operating base-burn motor increases the maximum range of the M864 by approximately 18%. If the M864 motor igniter used to ignite the solid propellant motor fuel could be enlarged, it could also provide the mass flow of hot gases needed for drag reduction during the first few seconds and speed the ignition of the base-burn motor propellant. In that case, an increase in maximum range of approximately 20% could be achieved.

Figures 12 through 20 present the deduced and modeled mass flow rates vs. time of flight for projectiles fired with the three propelling charges at quadrant elevations of approximately 500, 750 and 1150 mils. The figures show an especially good correlation of the deduced with the modeled mass flow rate with time-of-flight for the propellant charge and quadrant elevation combinations with the various projectile spin rates and local atmospheric air pressures. One of the significant points to note is that the quality of agreement is about the same for all the conditions; this is despite the fact that the total burning time at the high quadrant elevations is more than twice that at the low quadrant elevations.

There is some irregularity in the results for the transonic velocity region (Mach numbers: .95 to 1.05). This is especially evident on Figure 12 for 15 to 20 seconds time-of-flight. The irregularity is probably due to the error in the transonic aerodynamic inputs and/or the Mach number determined from the HAWK Doppler radar data.

The difference between the deduced and modeled mass flow rate for the nine M864 base-burn test projectiles, shown in Figures 12 through 20, is presented in Figures 21 through 26 as functions of pseudo-time-of-motor burning, Mach number, injection parameter, local atmospheric air pressure, projectile spin rate and time-of-flight. The modeling process, using the experimentally determined inputs, provides a very good simulation of the exterior ballistic performance of the M864 based on the fact that the residuals show no systematic bias as a function of pseudo-time-of-motor burning, Mach number, injection parameter, local atmospheric air pressure, projectile spin rate and time-of-flight.

7. TRAJECTORY MODEL FOR ROCKET-ASSISTED AND BASE-BURN PROJECTILES

This section summarizes the equations that simulate the flight of rocket-assisted and base-burn projectiles. Both technologies are described, combining the common features of physical phenomena and providing a compact and flexible method for simulating these projectiles.

- 7.1 Equations of Motion. The equations of motion for rocket-assisted and base-burn projectiles are treated as a thrust and drag-reduction methodology, respectively. Thrust is defined as a force that produces an increase in total velocity (an acceleration) due to the functioning of a rocket motor; and drag-reduction is a reduction in drag (reduced deceleration) due to the functioning of a device such as base-burn motor, tracer, etc.
- 7.1.1 Thrust. The acceleration due to thrust, \vec{T} , of the rocket motor during burning $(t_{DI} \leq t \leq t_B)$ is added to the equation of motion of the center of mass of the projectile:

$$\vec{T} = \left[\frac{f_T \, \dot{m_f} \, I_{SP} + (P_r - P) \, A_e}{m} \right] \left(\frac{\vec{v} \cos \alpha_e}{v} + \vec{\alpha_e} \right) \tag{19}$$

During rocket motor burning the aerodynamic zero-yaw drag coefficient is $C_{D_{0_T}}$. The factor f_T is included for matching observed range firing data.

7.1.2 Drag Reduction. The base drag reduction due to a base-burn motor during burning $(t_{DI} \leq t \leq t_B)$ is added to the drag term (\vec{D}) of the projectile:

$$\vec{D} = -\frac{\pi \rho d^2 i}{8 m} \left\{ C_{D_0} - f_{BB} \left[\frac{\left(\frac{m_f}{\rho v A_b}\right) \left(\frac{\delta BP}{\delta I}\right)}{\left(\frac{\gamma}{2}\right) M^2 \left(\frac{1}{d_b^2}\right)} \right] + C_{D_{\alpha^2}} (Q\alpha_e)^2 \right\} v \vec{v} \qquad (20)$$

where $f_{BB} \left[\frac{\left(\frac{m_f}{\rho \, v \, A_b} \right) \left(\frac{\delta BP}{\delta I} \right)}{\left(\frac{\gamma}{2} \right) \, M^2 \left(\frac{1}{d_b^2} \right)} \right]$ is used to represent the drag reduction due to the mass flow

 (\dot{m}_f) of the base-burn motor. The factor f_{BB} is included for matching observed range firing data.

7.2 Mass Flow Rate. The mass flow is given by:

a. at
$$t = 0$$
:

$$m = m_0$$

$$\dot{m} = 0$$

b. for
$$t < t_{DI}$$
:

$$\dot{m} = -\frac{m_{DI}}{t_{DI}}$$

c. for $t_{DI} \leq t \leq t_B$:

$$\dot{m} = -\dot{m_f}$$

$$\dot{m_f} = \left(\frac{t_B^* - t_{(t)}^*}{t_{B_{(t+\Delta t)}} - t}\right) \ \dot{m_f}^*$$

where:

$$t_{(t+\Delta t)}^{\bullet} = \left(\frac{t_B^{\bullet} - t_{(t)}^{\bullet}}{t_{B_{(t+\Delta t)}} - t}\right) \Delta t + t_{(t)}^{\bullet}$$

where:

$$t_{B_{(t+\Delta t)}} = \left[\left(t_{B_{(t)}} - t \right) \left(\frac{p_{(t+\Delta t)}}{p_{(t)}} \right)^{f_{BT_p}} \left(\frac{P_{(t+\Delta t)}}{P_{(t)}} \right)^{f_{BT_p}} \right] + t$$

and at $t = t_{DI}$:

$$t_{(t)}^{\star} = t_{DI}^{\star}$$

 $t_{B_{(t)}}$ = Time-of-motor burnout for reference motor spin rate

 $p_{(t)}$ = Reference axial spin rate for motor mass flow (p_r)

 $P_{(t)} = \text{Standard atmospheric air pressure } (P_r)$

d. for $t > t_B$:

$$m = m_0 - m_{DI} - m_f$$

$$\dot{m} = 0$$

7.3 <u>Center of Mass</u>. The location of the center of mass of the projectile is given by:

$$X_{CG} = X_{CG_0} + \left[\frac{(X_{CG_0} - X_{CG_B})(m - m_0)}{m_0 - m_B} \right]$$
 (21)

7.4 Axial Moment of Inertia. The axial moment of inertia of the projectile is given by:

$$I_X = I_{X_0} + \left[\frac{(I_{X_0} - I_{X_B})(m - m_0)}{m_0 - m_B} \right]$$
 (22)

7.5 Overturning Moment Coefficient. The overturning moment coefficient of the projectile is given by:

$$C_{M_{\alpha}} = C_{M_{\alpha}}^{*} + \left[\frac{(X_{CG} - X_{CG_{0}})(C_{D_{0_{T}}} + C_{L_{\alpha}})}{d} \right]$$
 (23)

where: $C_{M_{\alpha}}^{\bullet}$ is determined for the initial projectile configuration.

7.6 Fitting Factors for Motor Performance. To compensate for the approximations in the rocket-assisted and base-burn motor performance terms, certain fitting factors contained in Table 2 are applied in order to create correspondence between the computed and the observed range testing results.

Table 2. Fitting Factors for Rocket-Assisted and Base-Burn Motor Performance.

	Fitting Function		
Fitting	Rocket-Assisted Projectiles	Base-Burn Projectiles	
Change in Radial Velocity During Motor Burning	∫т А₅	$f_T = 0$ $A_e = 0$	
Motor-burn Time	$f_{BT,*}$ $f_{BT_P} = 0$	f _{BT} ,	
Range	$f_{BB} = 0$	i = 1 f _{BB}	

^{*} Optional

8. CONCLUSIONS

A methodology is presented to model the change in aerodynamic base-drag, based on the change in base pressure due to a base-burn motor injecting hot gas into the wake of a projectile. The procedure models the mass flow rate of the remaining fuel of the base-burn motor as a function of the instantaneous projectile spin rate and atmospheric air pressure. The modeling approach has been used to successfully simulate a variety of trajectories for the 155mm, DPICM, M864 base-burn projectile, based on the experimentally determined time-to-burnout and strand pressure burning rate results, and the HAWK Doppler radar data for experimental range firings.

The results of this analysis indicate that the M864 base-burn motor requires a few seconds to ignite and reach full performance. The maximum range of the M864 could be increased by approximately two percent if the igniter used to ignite the solid propellant motor fuel could also provide the mass flow of hot gases needed for drag reduction during the first few seconds and speed the base-burn motor propellant ignition process. Therefore, it is recommended that future base-burn motor designs consider this possibility.

The experimental results certainly support the proposed addition to the Modified Point Mass Trajectory Model for Rocket-Assisted Projectiles for the exterior ballistic simulation of the M864 base-burn projectile.

Figure 1. Change in Base Pressure for a Change in Injection Parameter vs. Mach

Number for Low Injection Rates and Temperatures from Wind Tunnel
and CFD Results (Danberg 1990).

Figure 2. Change in Base Pressure vs. Injection Parameter for Various Mach Numbers Based on CFD Computations.

Figure 3. Change in Base Pressure for a Change in Injection Parameter vs. Mach

Number for Low Injection Rates and Various Temperatures Based on

CFD Computations (Danberg 1990).

Figure 4. Change in Base Pressure for a Change in Injection Parameter vs. Mach
Number for Various Injection Parameters Based on CFD Computations.

Projectile Sketch

Projectile Dimensions

Length of Projectile	calibers	5.79
Nose Length	calibers	3.42
Cylinder Length	calibers	1.86
Boattail Length	calibers	.50
Boattail Angle	degrees	3.00

Projectile Mass Properties

Mass	kgs (lbs)	46.95 103.5
Mass of Fuel	kgs (lbs)	1.21 2.67
Center of Gravity	cm from nose (inches from nose)	58.8 23.16
Moments of Inertia		
Axial	kg-m² (lb-ft²)	.158 3.75
Transverse	kg-m² (lb-ft²)	1.657 39.32

Figure 5. Physical Characteristics of the 155mm, DPICM, M864 Projectile.

Figure 6. 155mm, DPICM, M864 Motor.

ALL DIMENSIONS IN MM

Figure 7. 155nim, DPICM, M864 Motor Propellant Grain.

Figure 8. Aerodynamic Drag Force Coefficient for the 155mm, DPICM, M864
Projectile with an Inert Motor Propellant Grain (Lieske 1989).

Figure 9. Experimental Strand Burning Rate for M864 Motor Propellant (Miller and Holmes 1987).

Figure 10. Change in Base Pressure for a Change in Injection Parameter vs. Mach Number and Injection Parameter for the M864 Projectile.

Figure 11. Reference Mass Flow Rate of the Fuel as a Function of the Pseudo-Time-of-Flight for the M864 Motor.

Figure 12. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 5089 Fired with Propelling Charge M4A2, 7W, at a Quadrant

Elevation of 500 Mils.

Figure 13. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 1034 Fired with Propelling Charge M4A2, 7W, at a Quadrant

Elevation of 750 Mils.

Figure 14. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 1013 Fired with Propelling Charge M4A2, 7W, at a Quadrant

Elevation of 1150 Mils.

Figure 15. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 1044 Fired with Propelling Charge M119A2, 7R, at a Quadrant

Elevation of 500 Mils.

Figure 16. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 1050 Fired with Propelling Charge M119A2, 7R, at a Quadrant

Elevation of 750 Mils.

Figure 17. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 4202 Fired with Propelling Charge M119A2, 7R, at a Quadrant

Elevation of 1150 Mils.

Figure 18. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 4216 Fired with Propelling Charge M203E2, 8R, at a Quadrant

Elevation of 499 Mils.

Figure 19. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 4329 Fired with Propelling Charge M203E2, 8R, at a Quadrant

Elevation of 748 Mils.

Figure 20. Deduced and Modeled Mass Flow Rate vs. Time-of-Flight for Round

Number 4219 Fired with Propelling Charge M203E2, 8R, at a Quadrant

Elevation of 1147 Mils.

Figure 21. Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Pseudo-Time-of-Motor Burning.

Figure 22. Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Mach Number.

Figure 23. Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Injection Parameter.

Figure 24. Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Projectile Spin Rate.

Figure 25. Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Local Atmospheric Air Pressure.

Figure 26. Difference Between Deduced and Modeled Mass Flow Rate (Δm_f) vs. Time-of-Flight.

9. REFERENCES

- Danberg, J.E. "Analysis of the Flight Performance of the 155mm M864 Base Burn Projectile." BRL Report No. 3083, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1990. (AD A222624)
- Gunners, Nils-Erik, Kurt Andersson and Rune Hellgren, National Defense Research Institute (FOA) Tumba, Sweden, "Base-Bleed Systems for Gun Projectiles," Chapter 16, Volume 109, Dated 1988, Progress in Astronautics and Aeronautics, Gun Propulsion Technology, Published by the American Institute of Aeronautics and Astronautics, Inc., 370 L'Enfant Promenade, SW, Washington, DC 20024.
- Kayser, L.D., J.D. Kuzan and D.N. Vazquez. "Ground Testing for Base-Burn Projectile Systems." BRL Memorandum Report No. 3708, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, November 1988. (AD 201107)
- Kuzan, J.D. and V. Oskay. "Ignition Delay of the Solid Propellant in the M864 Base Burn Projectile." BRL Memorandum Report No. 3653, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, March 1988. (AD B121544)
- Lieske, R.F. "Determination of Aerodynamic Drag and Exterior Ballistic Trajectory Simulation for the 155mm, DPICM, M864 Base-Burn Projectile." BRL Memorandum Report No. 3768, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, June 1989. (AD 209510)
- Lieske, R.F. and M.L. Reiter. "Equations of Motion for a Modified Point Mass Trajectory." BRL Report No. 1314, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, March 1966. (AD 485869)
- Miller, M.S. and H.E. Holmes. "An Experimental Determination of Subatmospheric Burning Rates and Critical Diameters for AP/HTPB Propellant." Proceedings of the 1987 JANNAF Combustion Meeting, Monterrey, CA, October 1987.
- NATO Army Armaments Group, Standardization Agreement (STANAG) 4355 (Draft Edition 1), The Modified Point Mass Trajectory Model, February 1988.
- Nietubicz, C.J. and J. Sahu. "Navier-Stokes Computations of Base Bleed Projectiles," Paper No. II-2, First International Symposium on Special Topics in Chemical Propulsion: Base Bleed, Athens, Greece, November 1988.

INTENTIONALLY LEFT BLANK.

LIST OF SYMBOLS

Symbol	Definition	<u>Units</u>
A_b	Total area of the projectile base	m^2
A_{e}	Exit area of the motor jet	m^2
C_{D_0}	Zero-yaw drag force coefficient	
$C_{D_{0_{\mathbf{b}_{\mathbf{b}}}}}$	Drag force coefficient during base-burn motor operation	
$C_{D_{0_T}}$	Zero-yaw drag coefficient during rocket motor burning	_
$C_{D_{f b}}$	Base drag component	_
C_{D_r}	Radar determined drag force coefficient	_
$C_{D_{\alpha^2}} (Q\alpha_e)^2$	Yaw of repose drag term in the "Modified Point Mass Trajectory Model"	_
$C_{M_{\mathbf{Q}}}^{\bullet}$	Overturning moment coefficient for initially fuzed projectile	_
d	Reference diameter of projectile	m
d_b	Diameter of projectile base	caliber
f_T	Thrust factor	
f_{BB}	Base-burn factor, used as a parameter for matching experimental range firing data	_
$f_{BT_{\mathbf{p}}}$	Base-burn motor spin rate burning-time factor	-
f_{BT_P}	Base-burn motor atmospheric air pressure burning-time factor	*****
$ec{g}$	Acceleration due to gravity	m/s^2
i	Form factor	_
I	Base-burn motor fuel injection parameter	_
I_{SP}	Specific impulse of motor fuel	N- s/kg
I_X	Axial moment of inertia of the projectile	kg - m^2
I_{X_0}	Axial moment of inertia of the projectile, initially	kg - m^2
I_{X_B}	Axial moment of inertia of the projectile at motor burnout	kg - m^2
m	Fuzed projectile mass at time t	kg
m_0	Fuzed projectile mass, initially	kg

Symbol	Definition	Units
m_B	Fuzed projectile mass at motor burnout	kg
m_{DI}	Mass of ignition delay element	kg
m_f	Mass of motor fuel, including igniter	kg
$\dot{m_f}$	Mass flow rate of the motor fuel	kg/s
$\dot{m_f}^{ullet}$	Mass flow rate of the motor fuel as a function of pseudo- time-of-flight	kg/s
M	Local Mach number	
p	Axial spin rate of projectile	rad/s
p_r	Reference axial spin rate for motor mass flow	rad/s
P	Local atmospheric air pressure	pa
P_b	Average base pressure	pa
P_{b_b}	Average base pressure for projectile with an operating base- burn motor	pa
P_{b_i}	Average base pressure for projectile with an inert base-burn motor	pa
P_r	Standard atmospheric air pressure at sea level (101325 pa)	pa
r_t	Trajectory estimated, slant range magnitude	m
$ec{r_t}$	Trajectory estimated, slant range	m
\dot{r}	HAWK radar determined, rate of change of slant range with time	m/s
ř	Time derivative of the HAWK radar determined, slant range rate of change	m/s^2
$\dot{r_t}$	Trajectory estimated, rate of change of slant range with time	m/s
$\ddot{r_t}$	Trajectory estimated, time derivative of the slant range range rate of change	m/s^2
t	Time-of-flight	8
t^*	Pseudo-time-of-motor burning	s
t_B	Time-of-motor burnout	8
t_B^{ullet}	Reference pseudo-time-of-motor burnout	s

Symbol	<u>Definition</u>	Units
$t_{B_{(t+\Delta t)}}$	Local time-of-motor burnout; varies with time-of-flight due to the change in projectile spin rate and local atmospheric air pressure	3
t_{DI}	Time-of-motor ignition delay	8
t_{DI}^{\star}	Reference pseudo-time-of-motor ignition delay	s
$ec{T}$	Acceleration due to motor thrust	m/s^2
$ec{u_t}$	Trajectory estimated, velocity of the projectile with- respect-to the ground-fixed axes	m/s
$\dot{ec{u_t}}$	Trajectory estimated, acceleration of the projectile with- respect-to the ground-fixed axes	m/s^2
$ec{u_r}$	Velocity of the projectile with-respect-to the ground-fixed axis, determined from HAWK radar data and estimated trajectory	m/s
$\dot{ec{u_{ au}}}$	Acceleration of the projectile with-respect-to the ground fixed axes, determined from HAWK radar data and estimated trajectory	m/s^2
$oldsymbol{v}$	Speed of projectile with-respect-to air	m/s
$ec{v}$	Velocity of the projectile with-respect-to air	m/s
$ec{w}$	Velocity of the air with-respect-to the ground (wind velocity)	m/s
X_{CG}	Distance of center of mass of the projectile from nose	m
X_{CG_0}	Distance of center of mass of the projectile from nose, initially	m
X_{CG_B}	Distance of center of mass of the projectile from nose at motor burnout	m
ΔBP	Change in nondimensional base pressure due to the functioning of a base-burn motor	
$\Delta C_{D_{0_{bb}}}$	Difference between the zero-yaw drag force coefficient for a projectile with an inert and an operating base-burn motor	-
$\Delta \dot{m_f}$	Difference between deduced and modeled mass flow rate	kg/s
Δt	Numerical integration time step size	8
$\Delta t^{^{\bullet}}$	Numerical integration time step size for t	8

Symbol	<u>Definition</u>	<u>Units</u>
γ	Ratio of specific heats of air, 1.4	_
$\vec{\Lambda}$	Acceleration due to Coriolis effect	m/s^2
ρ	Local atmospheric air density (specific mass)	kg/m^3
$\frac{\delta BP}{\delta I}$	Change in non-dimensional base pressure for a change in the base-burn motor injection parameter	
${\cal F}$	Function of	

Copies	Organization	<u>Copies</u>	Organization
2	Administrator Defense Technical Info Center ATIN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander U.S. Army Missile Command ATIN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
1	Commander U.S. Army Materiel Command ATTN: AMCAM 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Commander U.S. Army Tank-Automotive Command ATTN: ASQNC-TAC-DIT (Technical Information Center) Warren, MI 48397-5000
1	Commander U.S. Army Laboratory Command ATTN: AMSLC-DL 2800 Powder Mill Road	1	Director U.S. Army TRADOC Analysis Command ATTN: ATRC-WSR White Sands Missile Range, NM 88002-5502
2	Adelphi, MD 20783-1145 Commander	1	Commandant U.S. Army Field Artillery School ATTN: ATSF-CSI
-	U.S. Army Armament Research, Development, and Engineering Center A'ITN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000	(Class. only) 1	Ft. Sill, OK 73503-5000 Commandant U.S. Army Infantry School
2	Commander U.S. Army Armament Research,		ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
	Development, and Engineering Center ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000	(Unclass. only) 1	Commandant U.S. Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
1	Director Benet Weapons Laboratory U.S. Army Armament Research, Development, and Engineering Center ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050	1	Air Force Armament Laboratory ATTN: WL/MNOI Eglin AFB, FL 32542-5000 Aberdeen Proving Ground
(Unclass. only) 1	Commander U.S. Army Armament, Munitions and Chemical Command ATTN: AMSMC-IMF-L Rock Island, IL 61299-5000	2	Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen Cdr, USATECOM
1	Director U.S. Army Aviation Research and Technology Activity		ATTN: AMSTE-TC Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A
	ATTN: SAVRT-R (Library) M/S 219-3 Arnes Research Center Moffett Field, CA 94035-1000	1	SMCCR-MU SMCCR-MSI Dir, VLAMO
	Montell Field, CA 74033-1000		ATTN: AMSLC-VL-D
			Dir, BRL ATTN: SLCBR-DD-T

No. of

No. of

1 Commander, TRADOC ATTN: ATAN-AP Fort Monroe, VA 23651-5143

1 Commander
TRADOC Analysis Command
ATTN: ATRC
Fort Leavenworth, KS 66027-5200

1 Commander
TRAC-WSMR
White Sands Missile Range, NM 88002-5502

2 Commandant
U.S. Army Field Artillery School
ATTN: ATSF-CCM
ATSF-G
Fort Sill, OK 73503-5000

1 Director
U.S. Army Test and Experimentation Command
Fire Support Test Directorate
Fort Sill, OK 73503-5000

1 Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT, Mr. G. C. Travers
Dugway, UT 84022

1 Headquarters
U.S. Marine Corps
ATTN: Code LMW/30
Washington, DC 20380

1 OPM Nuclear
ATTN: AMCPM-NUC
Picatinny Arsenal, NJ 07806-5000

3 Department of the Army
Office of the Product Manager
ATTN: SFAE-AR-SD, MR. D. Griggs
SFAE-AR-HIP-IP,
Mr. R. DeKleine
Mr. R. Kantenwein
Picatinny Arsenal, NJ 07806-5000

1 Commander
U.S. Army Miscile Command
ATTN: AMSMI-RD-SS-AT, Mr. B. Walker
Redstone Arsenal. AL 35898-5010

No. of Copies Organization

4 Commander
U.S. Army Armament Research,
Development, and Engineering Center
ATTN: SMCAR-FSA,
Mr. R. Botticelli
Mr. F. Brody

Mr. F. Brody Mr. P. DeMasi MCAR-FSS Mr

SMCAR-FSS, Mr. J. Brooks Picatinny Arsenal, NJ 07806-5000

8 U.S. Army Armament Research,
Development, and Engineering Center
ATTN: SMCAR-AET,
Mr. F. Scerbo
Mr. J. Bera

SMCAR-AET-A, Mr. R. Kline Mr. S. Kahn

Mr. F. Brown Mr. H. Hudgins Mr. J. Grau

SMCAR-AST, Dr. J. Rubin Picatinny Arsenal, NJ 07806-5000

 Commander
 U.S. Army Armament, Munitions, and Chemical Command
 ATTN: AMSMC-PDC, Mr. L. Randol Rock Island, IL 61299-5000

1 United States Military Academy Department of Mechanics ATTN: LTC A. L. Dull West Point, NY 10996

1 Commander
U.S. Naval Warfare Center
ATTN: Dr. F. Moore
Dahlgren, VA 22448

Commander
Naval Surface Warfare Center
ATTN: Code R44,
Dr. F. Priolo
Dr. A. Wardlaw
K24, B402-12, Dr. W. Yanta
White Oak Laboratory
Silver Spring, MD 20903-5000

- 1 U.S. Naval Weapons Center Aerothermochemistry Division ATIN: Dr. K. C. Schadow China Lake, Ca 93555
- 1 Air Force Armament Laboratory ATTN: AFATL/FXA, Mr. S. C. Korn Eglin AFB, FL 32542-5434
- 2 USAF Wright Aeronautical Laboratories
 ATIN: AFWAL/FIMG,
 Mr. N. E. Scaggs
 Dr. J. Shang
 WPAFB, OH 45433-6553
- Arnold Engineering Development Center Calspan Field Service
 ATTN: MS 600, Dr. J. Benek
 Tullahoma, TN 37389
- 4 Director
 National Aeronautics and Space Administration
 Langley Research Center
 ATTN: Tech Library

Mr. D. M. Bushnell Dr. M. J. Hemsch Dr. I. E. Beckwith

Langley Station Hampton, VA 23665

5 Director

National Aeronautics and Space Administration Ames Research Center

ATTN: MS-227-8, Mr. L. Schiff MS-258-1.

Mr. T. Holst Mr. D. Chaussee

Mr. M. Rai

MS-229-1, Mr. M. Rubesin

Moffett Field, CA 94035

2 Director

Sandia National Laboratories ATTN: Dr. W. L. Oberkampf Dr. F. Blottner

Division 1556 P.O. Box 5800

Albuquerque, NM 87185

No. of Copies Organization

- Director
 Sandia National Laboratories
 ATTN: Mr. A. Hodapp
 Division 1631
 Albuquerque, NM 87185
- Director
 Lawrence Livermore National Laboratory
 P.O. Box 808
 Livermore, CA 94550
- 1 Georgia Institute of Technology School of Aerospace Engineering ATTN: Dr. W. C. Strahle Atlanta, GA 30332
- 1 Florida State University
 Department of Mechanical Engineering
 ATTN: Dr. W. L. Chow
 Tallahassee, FL 32316-2175
- Massachusetts Institute of Technology ATTN: Tech Library
 Massachusetts Ave.
 Cambridge, MA 02139
- Pennsylvania State University
 Department of Aerospace Engineering
 ATTN: Dr. G. S. Dulikravich
 University Park, PA 16802
- Pennsylvania State University
 Department of Mechanical Engineering
 ATTN: Dr. K. Kuo
 University Park, PA 16802
- 1 The University of Arizona
 Aerospace Engineering Department
 ATTN: Prof. I. Wygnanski
 Tucson, AZ 85721
- University of California, Davis
 Department of Mechanical Engineering
 ATTN: Prof. H. A. Dwyer
 Prof. J. Steger
 Davis, CA 95616
- 1 University of Cincinnati
 Department of Aerospace Engineering
 ATTN: Prof. S. Rubin
 Mail Location 70
 Cincinnati, OH 45221

- University of Illinois at Urbana Champaign
 Dept. of Mechanical and Industrial Engineering
 Urbana, IL 61801
- 2 University of Delaware Department of Mechanical Engineering ATTN: Dr. J. Meakin, Chairman Dr. B. Sidel Newark, DE 19716
- 1 University of Maryland
 Department of Aerospace Engineering
 ATTN: Dr. J. D. Anderson, Jr.
 College Park, MD 20742
- University of Notre Dame Dept. of Aeronautical and Mechanical Engineering ATTN: Prof. T. J. Mueller Notre Dame, IN 46556
- University of Texas Department of Aerospace Engineering and Engineering Mechanics ATTN: Dr. D. S. Dolling Austin, TX 78712-1055
- Virginia Polytechnic Institute and
 State University
 Department of Aerospace and Ocean Engineering
 ATTN: Dr. C. H. Lewis
 Blacksburg, VA 24601
- Applied Technology Associates ATTN: Mr. R. J. Cavalleri P.O. Box 19434 Orlando, FL 32814
- 1 Arrow Tech Associates, Inc. ATTN: Mr. R. Whyte P.O. Box 4218 South Burlington, VT 05401-0042
- 3 David Taylor Research Center
 ATTN: Dr. P. S. Granville
 Dr. de los Santos
 Mr. S. Gottlieb
 Bethesda, MD 20084
- Ford Aerospace and Communications Corporation Aeronutronnics Division
 ATTN: Mr. C. White Mr. B. Blair

No. of Copies Organization

Ford Road

Newpoint Beach, CA 92658

Alliant Techsystems, Inc.
ATTN: Mr. W. E. Martwick
Mr. K. Sundeen
600 Second Street, North East
Hopkins, MN 55343

- Morton Thickol, Inc.
 Elkton Division
 ATTN: Mr. J. W. Powers
 Mr. B. Brooks
 P.O. Box 241
 Elkton, MD 21921-0241
- Scientific Research Associates
 ATTN: Dr. H. Gibeling
 Dr. R. Buggeln
 Nye Road, P.O. Box 1058
 Glastonbury, CT 06033
- 1 Talley Industries
 Talley Defense Systems
 ATTN: Mr. C. R. Huskey
 3500 N. Greenfield Road
 P.O. Box 849
 Mesa, AZ 85211

Aberdeen Proving Ground

- 2 Dir, USAMSAA ATTN: AMXSY-RA, Mr. R. Scungio AMXSY-GS, Mr. B. King
- 2 Cdr, USATECOM ATTN: AMSTE-TO-F AMSTE-TE-F, Mr. W. Vomocil
- PM-SMOKE, Bldg. 324 ATTN: AMCPM-SMK-M, Mr. J. Callahan
- 1 Dir, USAHEL ATTN: SLCHE-FT
- 1 Cdr, USACSTA ATTN: STECS-AS-H STECS-EN-B

No. of Copies	Organization	No. of Copies	Organization
1	Ecole Royale Militaire ATTN: Prof. E. Celens Avenue de la Renaissance 30, 1040 Bruxelles, BELGIUM	2	Technical Research and Development Institute Department of Ground Systems Development ATTN: LTG I. Nakatomi COL T. Matsuura
1	Proof and Experimental Test Establishment ATTN: Mr. L.W. Desfosses P.O. Box 2220	•	1-2-24, Ikejiri, Setagaya-Ku Tokyo 154 JAPAN
•	Nicolet, Quebec JOG 1EO CANADA	1	MOD ITALY ATTN: Ltc. D. Spada Terrarmimuni
1	Haerens Artilleriskole ATTN: Mr. F.H. Rhe Hansen Postboks 182		Via XX Settembre ITALY
3	DK-6800 Varde DENMARK	1	MOD RNLA, DMKL Test Department ATTN: Ltc. P.L.M. Snel
J	Establissment Technique de Bourges ATTN: Mr. D. Chargelegue Mr. Y. Runfola Ms. O. Donnaud		P.O. Box 90822 2509 LV The Hague NETHERLANDS
	BP 712 18015 Bourges Cedex FRANCE	1	FFI ATTN: Col. D. Cappelen P.O. Box 25 N-2007 Kjeller
1	BWB-WM II 6 ATTN: Mr. V. Buehner Konrad Adenauer Ufer 2-6	1	NORWAY DGAM
	54 Koblenz GERMANY		ATTN: Mr. J.L. Perez Minguez Poligono de Experiencias Paseo de Extremedura
1	WTD 91 D. BW-031 ATTN: Mr. D. Haak 4470 Meppen		28024 Madrid SPAIN
2	GERMANY Rheinmetall GmbH	2	National Defence Research Institute Department 2 (FOA 022)
	ATTN: Dr. H. Schilling Dr. L. Borngen Ulmen Strasse 125,		ATTN: Dr. K. Andersson Dr. N-E. Gunners
	D-4000 Dusseldorf 30, GERMANY		Fack, 104 50 Stockholm SWEDEN
1	TECHNION Aeronautical Engineering Department	2	Swedish Ordnance Guns and Ammunition Division ATTN: Dr. U. Melhus Dr. T. Wik
	ATTN: Dr. A. Sigal Haifa 32 000 ISRAEL		Karlskage S-69180 Bofors SWEDEN

- 1 K.K.K. GN.P.P.
 ATTN: MAJ A. Durusu
 Ankara
 TURKEY
- Defence Research Agency Military Division ATTN: Mr. D. H. Walker Mr. C. J. Hilderbrands Fort Halstead Sevenoaks, Kent, TN14 7BP UNITED KINGDOM

USER EVALUATION SHEET/CHANGE OF ADDRESS

. Does this report satisfy iterest for which the report	will be used.)				
. How, specifically, is the ource of ideas, etc.)	report being us	ed? (Informat	ion source, o	design data, p	rocedure,
Has the information in tollars saved, operating laborate.	this report led to costs avoided,	o any quantitat or efficiencie	ive savings a s achieved,	as far as man etc? If so	o, piease
. General Comments. V ndicate changes to organi	Vhat do you thi zation, technica	nk should be I content, form	changed to i	improve future	reports?
	·				
BRL Report Number	DI _TD_ 2221	Divisio	on Symbol		
Check here if desire to be					
Check here for address ch					
Current address:		-			
PARTMENT OF THE ARMY					410 80574
lor Army Ballistic Research Laboratory I: SLCBR-DD-T	ı				NO POSTA NECESSAI IF MAILE
leen Proving Ground, MD 21005-5	i066			٦	IN THE
OFFICIAL BUSINESS		ESS REPLY SS FERMIT No 0001		·	
	Postage	will be paid by add	ressee.		
	Director	istic Research		·	