

R³B Experiments with Final CALIFA Setup

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2094 – 390783311, BMBF 05P19W0FN1, 05P21W0FN1 and the FAIR Phase-0 program

Tobias Jenegger

PSI Seminar 07.06.2023

R³B @ FAIR

CALIFA Status & Final Configuration

Physics in R³B with CALIFA

TUM Members:

Roman Gernhäuser, Lukas Ponnath, Philipp Klenze, Stefan Eder, Tobias Jenegger

Physics Program @ R³B

Reactions with Radioactive Relativistic Beams

Formation of Elements – Nucleosynthesis abundances - r-Process - fission feeding

Collective Excitations

- → Pygm dipol resonances
- → EOS ISGDR ACTAF
- → Neutron Skin thickness

Collective Excitations

- → Giant Dipole Resonances / Pygmy Resonances
- → EOS
- → Neutron skin thickness

S-process
s-process
s-process
fission
feeding

Number of neutrons N

Fig. 1: Nuclear chart showing the nucleosynthesis processes occurring during stellar burning (yellow), the s-process (orange) and the r-process (violet) (credit: EMMI, GSI/Different Arts)

Physics Program @ R3B

Single Particle Properties inside atomic nucleus

- → Nuclear Structure far off stability
- → Short Range Correlated (SRC) nucleons

Experimental Setup Requirements:

FAIR accelerator facility

$$\max \left| \frac{N-Z}{A} \right|$$

R3B Setup

R³B @ FAIR

R³B as part of the Facility for Antiproton and Ion Research (FAIR) in Darmstadt:

Reactions with Radioactive Relativistic Beams

Haik Simon – FAIR & Super-FRS – EPS 20190930

FAIR Construction Site

R3B Setup*

Measurement of γ/targetlike particles

* S444 Experiment, 2020

FAIR CALIFA Detector @ R³B

CALorimeter for the In Flight detection of y-rays and light charged p**A**rticles

Highly segmented detector:

→ good angular reconstruction/ doppler correction

Broad calorimetric energy measurements:

→ From 100 keV y-rays up to high energetic charged particles

Flexible running mode:

self/external triggering mode

CALIFA Configuration (S522, 2022)

IPhos: 480 crystals

- completely filled
- readout with Dual Range Preamps

Barrel: 1024 crystals

- half filled
- readout with Single Range (300/30 MeV) Preamps

SingleRange Preamplifier

SIMULTANEOUS

high energetic paricle measurement & gamma spectroscopy

high gain range

Gamma
threshold:
100 keV

proton

300/30

experiment dependent decision has to be taken beforehand!

Meanwhile in R³B Preparation ROOM

- Noise debugging
- Cable/connectors checking
- SR vs DR checks

Testing Gain

Raising the gain allows to measure down to the 122 keV peak!

Higher gain leads to better resolution (but reducing the energy-range) Lower threshold values are possible → crucial for **add-back** algorithm!

Add-Back Algorithm in CALIFA

User defines shape and size of cluster:

Sort the hit list according to their energy

- 1. create cluster centered around first hit
- 2. loop over all hits in list
- → if hit inside cluster add it and remove it from the list
- 3. Do this procedure until list is empty

Depending on how low we can get with the threshold we can addup or not!

ODSL Collaboration - Optimize Add-Back Algorithm with Al

Use the power or Machine Learning:

- → recognize the physics cases
- → optimize the cluster shapes (event by event)
- → give probability for fully contained physics event

Filling CALIFA Endcap - CEPA

CALIFA Endcap Phoswich Array

- Most forward section: $7^{\circ} \le \theta \le 19^{\circ}$
- 96 CsI crystals

Improves geometric acceptance for high beam energies drastically

p2p-reaction, 400 AMeV

p2p-reaction, 1200 AMeV

Filling CEPA

Mesytec MPRB-48 Dual Range Preamps

They get mounted on iPhos tiles -

Connected to iPhos APDs (32 channels)

Connected to CEPA APDs (16 channels)

CALIFA DAQ Status (S522, 2022)

Electronic Rack

- 8 Crates (each with 18 x FEBEX + Addon)
- 2 PCs (with Knipex+TRIXOR)
- 2 TDK Lambda
- 4 Exploder
- 1 "Overlord" Exploder
- 2 Slow Control PCs

Cables

- 32 SCSI data cables (iPhos)
- 64+2 SR data cables (Barrel)
- 48 LV power cables

+LV-Extension

Second Rack on each side needed!

Dual Range Preamplifiers

Physics at R3B with CALIFA

Physics Program @ R3B

 Physics program on exotic nuclei in inverse kinematics:

- kinematically complete measurements
- Key physics program: Quasi-Free Scattering Reactions

Quasi-Free Scattering Reactions

- p⁺ or e⁻ probe is used for sudden knockout of a nuclear constituent
- Can be approximated as two body scattering of free particles

- Gives direct access to single particle properties inside nuclei
- Allows to study in detail the nuclear shell structure and its evolution far off stability

Prof. Th. Kröll, Experimental Nuclear Physics, Lecture 9

→ for the study of QFS a dedicated experimental setup is needed

FAIR Quasi Free Scattering Analysis with Experiment S444/467 (2020)

12C(p,2p)11B reaction:

- → ¹2C beam
- proton like target

- 2 protons
 - ¹¹B fragment (spectator)

SETUP:

Beam energy: 400 AMeV

Beamtype: 12C

Beamtime: 3 hours

Target: CH₂ (12.29 mm)

Fragment Particle Identification

$$B*\rho = \frac{\beta*\gamma*M}{q}$$

Identification of the two correlated Protons

Gamma Spectrum of ¹¹B

Event Selection Criteria:

- ¹¹B fragment identification
- Two hits (protons) with $E_{hit} > 30 \text{ MeV}$
- $\theta 1 + \theta 2 < 90^{\circ}$
- $\Delta \phi = 180^{\circ} + 40^{\circ}$

Reconstruction of Inner Momenta

Before Scattering:

After Scattering:

Before Scattering:

After Scattering:

240 = nucleon momentum inside 12C 220

(Four-)Momentum conservation relation:

$$p_{12C} + p_{tg} = p_1 + p_2 + p_{11B}$$

assuming QE scattering in mean field potential:

$$p_{12C} = p_i + p_{11B}$$

$$p_i \approx p_{missing} = p_1 + p_2 - p_{tg} (no ISI/FSI)$$

Correlations between Fragment

and Proton Pair

Proton Separation Energy of 12C

target

$$S_{p} = (\gamma - 1)m_{p} + \gamma(T_{1} + T_{2}) - \beta \gamma(|p_{1}|\cos(\theta_{1}) + |p_{2}|\cos(\theta_{2})) + T_{11B}^{cms}$$

 S_p = Energy needed to remove one proton from the nucleus

In direct kinematics it would be:

12C(p,2p)¹¹B/¹⁰B Cross Section Measurements

Selection Cuts:

- → strict event selection in front of target 200
- \rightarrow 2 hits in CALIFA with E_{1/2} > 30 MeV
- $\rightarrow \Delta \phi = 180 + -40^{\circ}$
- \rightarrow Boron as Fragment (Z = 5)

CALIFA only 35% filled in forward region → large correction factors

ons im mbarn	
CH ₂	Carbon
81.5 ± 4.0	20.5 ± 1.9
47.3 ± 3.3	11.1 ± 1.5
	CH_2 81.5 ± 4.0

What else can we analyse with the S444 Experiment?

Total Reaction cross section – Lukas Ponnath

Survival Probability:
$$P_{surv} = \frac{N_2}{N_1} = e^{-N_t \cdot \sigma_R}$$

Exclude reactions in Setup: I

$$\frac{N_2^i/N_1^i}{N_2^o/N_1^o} = e^{-N_t \cdot \sigma_R}$$
Target-Out

Using the Transmission Method:

$$\sigma_R = -\frac{1}{N_t} \ln \left(\frac{N_2^i / N_1^i}{N_2^o / N_1^o} \right)$$

Comparing the two Setups

Setup - Lukas

Fine tuned acceptance corrections needed

S444 (2020) Setup → with carbon target

High acceptance:

- → charge measured right after target by TWIM Music
- → no beam pipe (= no vacuum) restrictions

Convenient setup to compare with Lukas' results

5 5.5 6 6.5 Charge Value (uncalibrated)

Starting with Charge Changing Cross Section

4.5 5 5.5 6 6.5 Charge Value (uncalibrated)

3.5

What more?

12C-12C inelastic cross section

Doppler corrected spectrum: reaction in incoming ¹²C Laboratory system, spectrum: reaction in target ¹²C

Note: could instert here plot of gamma spectrum for eg. 400 amev, carbon target, doppler and not doppler corrected

Summary and Outlook

0 6 7

what does CALIFA detector stand for?

I'm sorry, but as of my knowledge cutoff in September 2021, I don't have any information about a detector called CALIFA. It's possible that it may be a relatively new development or a specialized detector within a specific field that I'm not aware of. If CALIFA refers to something other than a detector, please provide additional context, and I'll do my best to assist you.

Hopefully ChatGPT will know CALIFA soon!

Thank you!

CALIFA @ Technical University of Munich (TUM)

Roman Gernhäuser, Lukas Ponnath, Philipp Klenze, Stefan Eder, Tobias Jenegger

