

French-Portuguese Neural Machine Translation Based on Transformers

V. Lobanova¹

¹Fundamental Sciences Department, Bauman Moscow State Technical University, Moscow, Russia

lobanova vs@mail.ru

Huawei Natural Language Processing Course 19 January 2022 Moscow - Russia

The Task

- Neural machine translation (NMT) is a general approach in machine translation
- The aim of the project was to train a French-Portuguese
 NMT model
- The resource and target languages are related
- Data: a relatively small French-Portuguese parallel corpus (TED Talks)
- Architecture: the Transformer model [Vaswani et al., 2017]

How to Solve The Problem?

Building Vocabularies

We used French to Portuguese TED Talks dataset

Split	Examples
'test'	1,494
'train'	43,873
'validation'	1,131

French: mais cela trahit aussi la panique , la terreur , que la grossophobie peut évoquer . Portuguese: mas também faz notar o pânico , o terror literal , que o medo da gordura evoca .

- Examples are lower case
- There are spaces around the punctuation

from tensorflow_text.tools.wordpiece_vocab import bert_vocab_from_dataset as bert_vocab

Custom tokenizers

```
pt_tokenizer = text.BertTokenizer('pt_vocab.txt', **bert_tokenizer_params)
fr_tokenizer = text.BertTokenizer('fr_vocab.txt', **bert_tokenizer_params)

[103, 42, 3784, 59, 340, 3996, 377, 40, 1068, 94, 247, 178, 55, 1794, 247, 1124, 14, 178, 146, 1037, 5126, 14, 84, 178, 46, 1290, 700, 731, 1758, 5426, 1746, 194, 377, 44, 1608, 1124, 149, 16]

array([b'mais c ##ela t ##ra ##hi ##t a ##us ##s ##i la p ##an ##i ##que , la ter ##re ##ur , que la g ##ros ##so ##p ##ho ##bie pe ##u ##t e ##vo ##que ##r .',
```

- The tokenized text have to include [START] and [END] tokens
- We reserved space at the beginning of the vocabulary, so [START] and [END] have the same indexes for both languages

```
array([b'[START] mais cela trahit aussi la panique , la terreur , que la grossophobie peut evoquer . [END]',
```

• The tokenize method converts a batch of strings to a padded-batch of token IDs

Model setup

- We aimed to keep our model small and relatively fast
- Model hyperparameters were

Model training

We used the Adam optimizer with a custom learning rate

$$lrate = d_{model}^{-0.5} * \min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$$

Model validation

Input#1 (French): Masha marchait sur l'autoroute et aspirait le séchage.

Output#1 (Portuguese): O meu desejo estava a atravessar a auto - estrada e aspiratoria.

Reference#1 (Portuguese): A Masha estava a andar na auto-estrada e a sugar a secagem.

Input#2 (French): Dans la forêt , un arbre de Noël est né, dans la forêt , elle a grandi.

Output#2 (Portuguese): Na floresta , uma arvore de Natal, na floresta , cresceu na floresta , ela cresceu.

Reference#2 (Portuguese): Na floresta nasceu uma árvore de Natal, na floresta ela cresceu.

Input#3 (French): Qui est à blâmer et que faire?
Output#3 (Portuguese): Quem e aprovisionar e o que fazer?
Reference#3 (Portuguese): Quem é o culpado e o que fazer?

[] import nltk nltk.translate.bleu_score.corpus_bleu(references, predictions, weights=(0, 0, 0, 1.0))

Weights for 1-, 2-, 3-, and 4-grams, respectively	BLEU	BLEU + Smoothing function
(0.25, 0.25, 0.25, 0.25)	0.02	0.18
(1, 0, 0, 0)	0.19	0.46
(0, 1, 0, 0)	0.01	0.16
(0, 0, 1, 0)	0.00	0.12
(0, 0, 0, 1)	1.00	0.11

Smoothing method 4:

Shorter translations may have inflated precision values due to having smaller denominators; therefore, we give them proportionally smaller smoothed counts. Instead of scaling to $1/(2^k)$, Chen and Cherry suggests dividing by $1/\ln(\ln(T))$, where T is the length of the translation.

Smoothing method 5:

The matched counts for similar values of n should be similar. To a calculate the n-gram matched count, it averages the n-1, n and n+1 gram matched counts.