Definition 1. Let the M-transform be defined by

$$\mathcal{M}\phi(\xi) := \int_0^{+\infty} \cos(2\pi\sqrt{\xi u}) \frac{\phi(u)}{\sqrt{u}} du$$

Definition 2. For any function ϕ defined on \mathbb{R}^+ , let C the operator defined by

$$C\phi(t) = \phi(t^2), \quad t \in \mathbb{R}$$

For any function even function ϕ defined on \mathbb{R} , $C^{-1}\phi$ is a function defined on \mathbb{R}^+ by

$$C^{-1}\phi(u) = \phi(\sqrt{u})$$

Definition 3. We note $S\left(\sqrt{\mathbb{R}^+}\right)$ the space of ϕ such that $C\phi \in S(\mathbb{R})$. Let $S_p(\mathbb{R})$ the subspace of real even functions that belong to the Schwartz class.

Proposition 1. $CS\left(\sqrt{\mathbb{R}^+}\right) = S_p(\mathbb{R})$

Proposition 2. If $\phi \in \mathcal{S}\left(\sqrt{\mathbb{R}^+}\right)$, then

$$\sqrt{x}\phi \in \mathcal{S}\left(\sqrt{\mathbb{R}^+}\right)$$

For all polynomial P,

$$C^{-1}P(dx^2)C\phi \in \mathcal{S}\left(\sqrt{\mathbb{R}^+}\right)$$

Where dx is the differentiation operator.

Proposition 3. The operator $\mathcal{M}: \mathcal{S}\left(\sqrt{\mathbb{R}^+}\right) \longrightarrow \mathcal{S}\left(\sqrt{\mathbb{R}^+}\right)$ is an involution, and can be rewritten as

$$\mathcal{M} = C^{-1}\mathcal{F}C$$

where \mathcal{F} is the Fourier transform defined on $\mathcal{S}_p(\mathbb{R})$

$$\mathcal{F}u(\xi) = \int_{-\infty}^{+\infty} e^{-i2\pi x \xi} u(x) dx$$

or equivalently

$$\mathcal{F}u(\xi) = \int_0^{+\infty} 2\cos(2\pi\xi x)u(x)dx$$

 \mathcal{F} is self-adjoint on $S_p(\mathbb{R})$.

Definition 4. For ψ and ϕ in $S\left(\sqrt{\mathbb{R}^+}\right)$, we define the duality product

$$\langle \phi, \psi \rangle_{\omega} = \int_0^{+\infty} \frac{\phi(x)\psi(x)}{\sqrt{x}}$$

Proposition 4.

$$\langle \phi, \psi \rangle_{\omega} = \langle C\phi, C\psi \rangle$$

Proposition 5. For any ϕ , $\psi \in \mathcal{S}\left(\sqrt{\mathbb{R}^+}\right)$, one has

$$\langle \mathcal{M}\phi, \psi \rangle_{\omega} = \langle \phi, \mathcal{M}\psi \rangle_{\omega}$$

Definition 5. Let Δ_{ω} the operator defined on $\mathcal{S}\left(\sqrt{\mathbb{R}^{+}}\right)$ by

$$\Delta_{\omega}\phi(x) = 2\sqrt{x} \left(2\sqrt{x}\phi'(x)\right)'$$

If we call Δ the usual Laplace operator defined on $S_p(\mathbb{R})$, we have

Proposition 6.

$$\Delta_{\omega}\phi = C^{-1}\Delta C\phi$$

Corollary 1. Δ_{ω} maps $\mathcal{S}\left(\sqrt{\mathbb{R}^{+}}\right)$ on itself.

Corollary 2. $\langle \Delta_{\omega} \phi, \psi \rangle_{\omega} = \langle \phi, \Delta_{\omega} \psi \rangle_{\omega}$

Proposition 7. One has, for all $\xi \in \mathbb{R}^+$

$$\mathcal{M}(\Delta_{\omega}\phi) = -\xi \mathcal{M}\phi$$

Definition 6. For $s \in \mathbb{R}$, we define $\mathcal{M}^s(\mathbb{R})$ as

$$f \in \mathcal{M}^{s}(\mathbb{R}) \iff \int_{0}^{+\infty} \frac{\left(1+\xi\right)^{s}}{\sqrt{\xi}} \left|\mathcal{M}f\right|^{2}(\xi) < +\infty$$

Proposition 8.

$$f \in \mathcal{M}^s(\mathbb{R}^+) \iff Cf \in H^s(\mathbb{R})$$

and we have

$$||f||_{\mathcal{M}^s} = ||Cf||_{H^s}$$

Definition 7. For s=0, we note $L^2_{\omega}=\mathcal{M}^0(\mathbb{R}^+)$. It is a Hilbert space with the scalar product corresponding to $\langle\cdot,\cdot\rangle_{\omega}$ defined earlier.

Proof. To prove that L^2_{ω} is complete, it suffices to show that any Cauchy sequence f_n has a limit in L^2_{ω} . Obviously, $g_n := \frac{f_n}{x^{1/4}}$ is a Cauchy sequence in $L^2(\mathbb{R}^+)$, so it admits a limit $g_{\infty} \in L^2(\mathbb{R}^+)$. Then $f_{\infty} := x^{1/4}g_{\infty}$ belongs to L^2_{ω} and we have

$$||f_n - f_\infty||_{L^2_\omega} = ||g_n - g_\infty||_{L^2}$$

which ensures $f_n \to f_\infty$ in L^2_ω .

Proposition 9. $\mathcal{M}^s(\mathbb{R}^+)$ is a closed subspace of L^2_{ω} . It is also a Hilbert space for the scalar product defined by

$$\langle u, v \rangle_{\omega, s} := \int_0^{+\infty} \frac{(1+\xi)^s}{\sqrt{\xi}} \mathcal{M}u(\xi) \mathcal{M}v(\xi)$$

Proof. Let u_n a Cauchy sequence in $\mathcal{M}^s(\mathbb{R}^+)$. Then, by the same arguments as above,

$$v_n := \frac{(1+\xi)^{s/2} \mathcal{M} u_n(\xi)}{\xi^{1/4}}$$

has a limit v_{∞} in L^2 , and

$$u_{\infty} = \mathcal{M}\left(\frac{\xi^{1/4}}{(1+\xi)^{s/2}}v_{\infty}\right)$$

is the limit of u_n in $\mathcal{M}^s(\mathbb{R}^+)$.