《物理与人工智能》

10. 举例-生成对抗网络

授课教师: 马滟青

2025/10/13 (第五周)

鸣谢:基于slazebni幻灯片

Outline

- Generative modeling tasks
- Original GAN formulation
- Alternative GAN objectives

Generative modeling tasks

 Generation: learn to sample from the distribution represented by the training set

Generative modeling tasks

Generation conditioned on class label or text prompt

Generative modeling tasks

Generation conditioned on image (image-to-image translation)

Designing a network for generative tasks PEKINGUR

1. We need an architecture that can generate an image

Image-to-image translation

Designing a network for generative tasks Pekingun

1. We need an architecture that can generate an image

Designing a network for generative tasks PEKINGUN

- We need an architecture that can generate an image
- 2. We need to design the right loss function and training framework

Learning to sample

Training data $x \sim p_{\text{data}}$

Generated samples $x \sim p_{\text{model}}$

We want to learn p_{model} that matches p_{data}

Generative adversarial networks

- Train two networks with opposing objectives:
 - Generator: learns to generate samples
 - Discriminator: learns to distinguish between generated and real samples

Figure adapted from F. Fleuret

GAN: Schematic picture

- Update discriminator: push $D(x_{\text{data}})$ close to 1 and D(G(z)) close to 0
 - The generator is a "black box" to the discriminator

GAN: Schematic picture

- Update generator: increase D(G(z))
 - Requires back-propagating through the composed generatordiscriminator network (i.e., the discriminator cannot be a black box)
 - The generator is exposed to real data only via the output of the discriminator and its gradients

GAN: Schematic picture

Test time – the discriminator is discarded

Original GAN results

MNIST digits

Toronto Face Dataset

Nearest real image for sample to the left

Original GAN results

CIFAR-10 (FC networks)

CIFAR-10 (conv networks)

DCGAN

Early, influential convolutional architecture for generator

DCGAN

- Early, influential convolutional architecture for generator
- Discriminator architecture (empirically determined to give best training stability):
 - Don't use pooling, only strided convolutions
 - Use Leaky ReLU activations (sparse gradients cause problems for training)
 - Use only one FC layer before the softmax output
 - Use batch normalization after most layers (in the generator also)

Generated bedrooms after one epoch

Generated bedrooms after five epochs

More bedrooms

Interpolation between different points in the z space

Vector arithmetic in the z space

Vector arithmetic in the z space

Pose transformation by adding a "turn" vector

Problems with GAN training

- Stability
 - Parameters can oscillate or diverge, generator loss does not correlate with sample quality
 - Behavior very sensitive to hyperparameter selection

Problems with GAN training

- Mode collapse
 - Generator ends up modeling only a small subset of the training data

Source 27

Outline

- Generative modeling tasks
- Original GAN formulation
- Alternative GAN objectives

Wasserstein GAN (WGAN)

- Motivated by Wasserstein or Earth mover's distance, which is an alternative to JS divergence for comparing distributions
 - In practice, use linear activation instead of sigmoid in the discriminator and drop the logs from the objective:

$$\min_{G} \max_{D} \left[\mathbb{E}_{x \sim p_{\text{data}}} D(x) - \mathbb{E}_{z \sim p} D(G(z)) \right]$$

- Due to theoretical considerations, important to ensure smoothness of discriminator
- This paper's suggested method is clipping weights to fixed range [-c, c]

Wasserstein GAN (WGAN)

- Benefits (claimed)
 - Better gradients, more stable training
 - Objective function value is more meaningfully related to quality of generator output

Improved Wasserstein GAN (WGAN-GP)

- Weight clipping leads to problems with discriminator training
- Improved Wasserstein discriminator loss:

$$\mathbb{E}_{\tilde{x} \sim p_{\text{gen}}} D(\tilde{x}) - \mathbb{E}_{x \sim p_{\text{real}}} D(x)$$

$$+ \lambda \mathbb{E}_{\widehat{x} \sim p_{\widehat{x}}} [(\|\nabla_{\widehat{x}} D(\widehat{x})\|_2 - 1)^2]$$

Unit norm gradient penalty on points \hat{x} obtained by interpolating real and generated samples

Improved Wasserstein GAN: Results

Least Squares GAN (LSGAN)

- Use least squares cost for generator and discriminator
 - Equivalent to minimizing Pearson χ^2 divergence

$$L_D = \mathbb{E}_{x \sim p_{\text{data}}}(D(x) - 1)^2 + \mathbb{E}_{z \sim p}(D(G(z)))^2$$

Push discrim.
response on real
data close to 1

Push response on generated data close to 0

$$L_G = \mathbb{E}_{z \sim p} (D(G(z)) - 1)^2$$

Push response on generated data close to 1

Least Squares GAN (LSGAN)

- Benefits (claimed)
 - Higher-quality images

(a) Generated images (112 \times 112) by LSGANs.

(b) Generated images (112 \times 112) by DCGANs.

Least Squares GAN (LSGAN)

- Benefits (claimed)
 - Higher-quality images
 - More stable and resistant to mode collapse

GAN with hinge loss

• Discriminator: Drive discriminator score on real data above 1, on generated data below -1

$$L_D = -\mathbb{E}_{x \sim p_{\text{data}}} [\min(0, D(x) - 1)]$$
$$-\mathbb{E}_{z \sim p} [\min(0, -D(G(z)) - 1)]$$

Generator: maximize discriminator score on generated data

$$L_G = -\mathbb{E}_{z \sim p} D(G(z))$$

谢谢 北京大学 PEKING UNIVERSITY