PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-043831

(43)Date of publication of application: 17.02.1998

(51)Int.CI.

B21H 8/00 1/08 **B21B** B21B 39/14 B21H 8/02

(21)Application number: 08-220569

(71)Applicant: KYOEI SEIKO KK

(22)Date of filing:

02.08.1996

(72)Inventor: OTA KAZUYOSHI

(54) FORMATION OF NONSKID OF STEEL SHAPES FOR GROOVE LID BY STAMPING AND ITS **DEVICE**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a rugged nonskid having a height and shape effective for preventing slip in one end surface in the width direction of steel shapes for a groove lid. SOLUTION: The steel shapes 1 for the groove lid is rolled between calibers 2a of a pair of stamping rolls 2, and the ruggedness 2b formed in one side caliber bottom is stamped into one end surface 1' in the width direction. In this case, the center part in the width direction of steel shapes 1 is supported from both surfaces with a pair of supporting rolls 3 having a guide arranged between axes 2c of the stamping rolls 2. By this way, the buckling of the steel shapes 1 is prevented, and the desired height of rugged nonskid is formed.

LEGAL STATUS

[Date of request for examination]

28.04.1999

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3306577

[Date of registration]

17.05.2002

[Number of appeal against examiner's decision of

rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-43831

(43)公開日 平成10年(1998) 2月17日

(51) Int.Cl. ⁶	裁別記号 庁内整理番号	FI	技術表示箇所
B21H 8/00	11, H32-77E 1 (1)	B 2 1 H 8/00	A
B 2 1 B 1/08		B 2 1 B 1/08	S
39/14		39/14	E
B21H 8/02		B 2 1 H 8/02	_
E03F 5/06		E03F 5/06	Z
		審査請求 未請求 請求項の	数5 FD (全 5 頁)
(21)出願番号	特願平8-220569	(71)出願人 391016602 共英製鋼株式会社	
(22)出願日	平成8年(1996)8月2日 大阪市北区堂島浜一丁 (72)発明者 大田 和義		一丁目4番16号
			字小野田6289番18 共英
		(74)代理人 弁理士 生形 元	重 (外1名)
		•	

(54) 【発明の名称】 裨益用型鋼のすべり止め印圧成形方法および装置

(57)【要約】

【課題】 溝蓋用型鋼の幅方向一端面に、スリップ防止 に効果的な高さ及び形状を有する凹凸状すべり止めを設 ける

【解決手段】 溝蓋用型鋼1を一対の印圧成形ロール2,2の孔型2a,2a間で圧延して、その幅方向一端面1′に一方の孔型底に形成された凹凸2bを印圧する。その際、印圧成形ロール2,2の軸2c,2c間に配置したガイド付き一対の支持ロール3,3により、型鋼1の幅方向中央部を両面から支持する。これにより、型鋼1の座屈が防止され、所望高さの凹凸状すべり止めが形成される。

1

【特許請求の範囲】

【請求項1】 熱間圧延により断面 I 型または矩形の型鋼を一対の印圧成形ロールの孔型間で幅方向に圧延して、その幅方向一端面に一方の孔型底に形成された凹凸を印圧成形する際に、一対の印圧成形ロールの軸間中央部に配置したガイド付き一対の支持ロールで型鋼の幅方向中央部を両面から支持することにより、型鋼の座屈変形を防止し、型鋼の幅方向一端面に高い凹凸が印圧されるようにしたことを特徴とする溝蓋用型鋼のすべり止め印圧成形方法。

【請求項2】 請求項1の方法により、幅方向一端面に 長手方向へ連続する高さ1.0~3mmの凹凸を形成して なる断面形状 I 型の溝蓋用すべり止め型鋼。

【請求項3】 請求項1の方法により、幅方向一端面に 長手方向へ連続する高さ1.0~3mmの凹凸を形成して なる断面形状矩形の溝蓋用すべり止め型鋼。

【請求項4】 断面 I 型または矩形の型鋼を互いの孔型間で幅方向に熱間圧延して、型鋼の幅方向一端面に一方の孔型底に形成された凹凸を印圧成形する一対の印圧成形ロールと、該一対の印圧成形ロールの軸間中央部に、印圧される型鋼を挟んで平行に且つ該型鋼の幅方向にロール軸を概ね一致させて配置され、印圧成形ロールにて圧延される型鋼の幅方向中央部を両面から支持するガイド付き一対の支持ロールとよりなる溝蓋用型鋼のすべり止め印圧成形装置。

【請求項5】 一対の印圧成形ロールの周面には、該成形ロールの軸間中央部に配置されるガイド付き一対の支持ロールの軸受部との接触を避けるための凹溝が、孔型を挟む対称位置に周設されている請求項4に記載の溝蓋用型鋼のすべり止め印圧成形装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、熱間圧延により鋼製溝蓋のメインバーとして使用する断面 I 型または矩形の型鋼の幅方向一端面に凹凸状のすべり止めを形成する方法および装置に関する。

[0002]

【従来の技術】鋼製溝蓋のメインバーとして使用する型 鋼においては、スリップ防止のために、その踏面となる 幅方向一端面に、長手方向へ連続する凹凸状のすべり止 40 めを形成する場合がある。

【0003】一般に、とのような凹凸状のすべり止めは、図4に示すように、断面 I 型または矩形をなす型鋼 1を、一対の印圧成形ロール2,2の孔型2a,2a間で幅方向に圧延して、型鋼の幅方向一端面1′に、一方の孔型底に形成された凹凸形状2bを印圧することにより成形される。

【0004】しかし、上記の印圧成形においては、スリップ防止に有効な高さの凸部を形成することが困難であった。すなわち、通常の圧延力では図5に示すように、

型鋼1の一端面1′が前記一方の孔型2a底に形成された凹凸形状2bの凹部2b′に十分に充填されず、また圧延力を大きくすると、型鋼1が図6に示すような座屈変形を生じて、やはりその一端面1′が前記一方の孔型2a底に形成された凹部2b′に十分に充填されないという事態が生じるからである。

【0005】このため最近では、特公平3-44841 号公報に開示されているような方法が行われている。この方法は、すべり止め印圧成形を行う前段の幅出し圧延 10 工程において、予め図7(イ)に示すように、型鋼1の幅方向一端面1′の中央部に、長手方向へ連続する凸条1 a を突出形成し更に同図(ロ)に示すように、同凸条1 a の両側面を成形ロールで狭圧して、その高さを増大させた凸条1 a′を形成しておく。そして、続く印圧成形の工程において同図(ハ)に示すように、上記型鋼1を印圧成形ロール2,2の孔型2a,2a間で幅方向に圧延し、その凸条1 a′の端面1 a′に一方の孔型底に形成された凹凸形状2bを印圧するというものである。

20 【0006】すなわち、この方法によれば、凹凸状すべり止めの印圧成形は、溝蓋用型鋼の幅方向一端面1'中央部に突出される肉厚の小さい凸条1 a'の端面1 a'、に対して行われるため、印圧成形ロール2,2の圧延力を小さくしても一方の孔型底に形成された凹凸形状2 b の凹部に型鋼1の凸条1 a'が十分に充填して、その端面1 a'、に凹凸形状を形成することができるのである。

[0007]

【発明が解決しようとする課題】しかしながら、上記の 方法では、踏面となる凸条1 a ′ の端面1 a ′ ′ の幅 (厚さ)が極めて小さく、すべり止めに有効な形状を得ることができず、大きなすべり止め効果を得ることができなかった。

【0008】本発明は、このような問題を解決するためになされたものであり、前記凸条等を全く設けることなく、しかも座屈変形等を一切生じることなく型鋼の幅方向一端面に長手方向へ連続するスリップ防止に有効な所望高さの凹凸状すべり止めを寸法精度よく印圧成形することができる溝蓋用型鋼のすべり止め印圧成形方法および装置の提供を目的とする。

[0009]

【課題を解決するための手段】上記目的を達成する本発明の方法は、熱間圧延により断面 I 型または矩形の型鋼を一対の印圧成形ロールの孔型間で圧延して、その幅方向一端面に一方の孔型底に形成された凹凸を印圧成形する際に、前記一対の印圧成形ロールの軸間中央部に配置したガイド付き一対の支持ロールで型鋼の幅方向中央部を両面から支持する。これにより、印圧成形ロールの圧延力による型鋼の座屈変形を防止し、該型鋼の幅方向一50 端面に長手方向へ連続する所望高さの寸法精度の高い凹

10

凸状すべり止めが印圧されるようにしたものである。 【0010】また、上記方法の実施に使用する本発明の 装置は、断面 I 型または矩形の型鋼を互いの孔型間で幅 方向に熱間圧延して、型鋼の幅方向一端面に一方の孔型 底に形成された凹凸を印圧成形する一対の印圧成形ロールと、該一対の印圧成形ロールの軸間中央部に、印圧さ れる型鋼を挟んで平行に且つ該型鋼の幅方向にロール軸 を概ね一致させて配置され、印圧成形ロールにて圧延さ れる型鋼の幅方向中央部を両面から支持するガイド付き 一対の支持ロールとで構成されるものである。

【0011】 この装置において、一対の印圧成形ロールの周面には、該成形ロールの軸間中央部に配置されるガイド付き一対の支持ロールの軸受部との接触を避けるための凹溝を、孔型を挟む対称位置に周設しておく。 【0012】

【発明の実施の形態】図1~図2(イ), (ロ)は本発明により溝蓋用型鋼の幅方向一端面に凹凸状のすべり止めを印圧成形するところを示しており、1は型鋼、2,2は一対の印圧成形ロール、3,3はガイド付き一対の支持ロールである。

【0013】印圧成形前の型鋼1は断面 I 型をなしており、所定の幅L並びに、端部および中央部の肉厚を所定の厚さT, T′となした中間圧延素材である。

【0014】一対の印圧成形ロール2,2は、上記型鋼1を双方の孔型2a,2a間で幅L方向に圧延し、その圧延力で一方の孔型底に形成してある凹凸形状2bを型鋼の幅方向一端面1′に長手方向へ沿って連続的に印圧成形してゆくものであり、竪型ロールである。

【0015】上記一対の印圧成形ロールの軸2c,2c間中央部には、横型ロールである一対のガイド付き支持ロール3,3が、印圧成形ロール2,2にて圧延される型鋼1を挟んで平行に且つ該型鋼の幅L方向にロール軸3a,3aを概ね一致させて配設されている。このガイド付き一対の支持ロール3,3は、印圧成形時における型鋼の幅方向中央部を、上下両面から支持して印圧力により生じる型鋼1の座屈変形を防止すると同時に型鋼の幅L中央部の肉厚T,T′等の寸法精度をも確保するものである

【0016】本例に示すガイド付き支持ロール3.3 は、図3に示すように、型鋼を上下左右からガイドレー 40ル5で規制して、印圧成形ロール2の孔型間へと案内する誘導装置4を備える被圧延材保持用の上下一対の支持ロール3であって、支持ロールの間隙は印圧される型鋼の中央部の厚さに応じて調節できるようになっている。また、印圧成形した時の幅部の座屈防止に対応できる形状と強度を有するものである。

【0017】上記ガイド付き支持ロールの設置にともない、印圧成形ロール2,2の周面には、各支持ロール3,3の左右の軸受部3b,3bとの接触を避けるための凹溝2d,2dが、孔型2aを挟む対称位置に周設さ

れている。

[0018]

【実施例1】所定の幅出し圧延および厚さ出し圧延を行い、幅L5.3mm,端部厚さ(T)8mm,中間部厚さ(T')5mmに形成した断面 I 型の溝蓋用型鋼を供試材として、本発明法および図4に示した従来法により凹凸状すべり止めの印圧成形を実施した。

【0019】その結果、従来法においては、供試材の幅方向一端面に印圧されるすべり止め部の凸部の高さが1.0mmを越えると、座屈変形が生じて所望高さの凸部を形成することができなくなった。これに対して、本発明法では、供試材の幅方向一端面に印圧されるすべり止め部の凸部の高さが1.0mmを越え、さらに3.0mmを越えても座屈変形を全く生じることがなく、スリップ防止に効果的な高さ及び形状の凸部を型どおりに精度よく形成することができた。

[0020]

【実施例2】所定の幅出し圧延および厚さ出し圧延を行い、幅L53mm,端部厚さ(T)7mmに形成した断面矩形の溝蓋用型鋼を供試材として、本発明法および図4に示した従来法により凹凸状すべり止めの印圧成形を実施した。

【0021】その結果、従来法においては、供試材の幅方向一端面に印圧される凸部の高さが1.2mmを越えると、座屈変形が生じて所望高さの凸部を形成することができなくなった。これに対して、本発明法では、供試材の幅方向一端面に圧印される凸部の高さが1.2mmを越え、さらに3.0mmを越えても座屈変形を全く生じることがなく、スリップ防止に効果的な高さ及び形状の凸部を型どおりに精度よく形成することができた。

[0022]

【発明の効果】以上に説明したとおり、本発明によれば、凹凸状すべり止めの印圧成形時に生じる溝蓋用型鋼の座屈変形を効果的に防止することができる。したがって、大きな印圧力による成形が可能となり、この種の型鋼の幅方向一端面に、長手方向へ連続するスリップ防止に効果的な高さ及び形状を有する凹凸状すべり止めを精度よく形成することができる。

【図面の簡単な説明】

【図1】本発明法を説明する斜視図である。

【図2】本発明法を説明する図で、(イ)は側面図、

(ロ)は正面図である。

【図3】誘導装置を備えたガイド付き支持ロールの構造を説明する図で、(イ)は平面図、(ロ)下半分を断面で示す側面図である。

【図4】従来の一般的な方法による溝蓋用型鋼のすべり 止め印圧成形を説明する斜視図である。

【図5】従来の一般的な方法における問題点を説明する 縦断正面図である。

0 【図6】従来の一般的な方法における他の問題点を説明

5

する縦断正面図である。

【図7】溝蓋用型鋼に凸条を形成して行う従来の他のすべり止め印圧成形を説明する図で、(イ)は凸条の形成工程を示す縦断正面図、(ロ)は凸条の高さを増大させる狭圧工程を示す縦断正面図、(ハ)は凸条に対するすべり止めの圧印工程を示す正面図である。

*【符号の説明】

- 1 型鋼
- 2 印圧成形ロール
- 3 ガイド付き支持ロール
- 4 誘導装置
- 5 ガイドレール

【図1】

【図2】

【図7】

