

QUÍMICA NIVEL SUPERIOR PRUEBA 2

Miércoles 4 de mayo de 2005 (tarde)

2 horas 15 minutos

N	lúme	ro de	con	voca	toria	del a	lumn	0
0	0							

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste toda la sección A en los espacios provistos.
- Sección B: conteste dos preguntas de la sección B. Conteste a las preguntas en las hojas de respuestas. Escriba su número de convocatoria en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.
- Cuando termine el examen, indique en las casillas correspondientes de la portada de su examen los números de las preguntas que ha contestado y la cantidad de hojas que ha utilizado.

2205-6126 11 páginas

SECCIÓN A

Conteste todas las preguntas en los espacios provistos.

		K.
(a)	Escriba una ecuación para representar la combustión completa del fenol.	[.
(b)	La variación de entalpía estándar de formación para el dióxido de carbono, $CO_2(g)$, y el agua, $H_2O(l)$, son respectivamente $-394 \text{ kJ mol}^{-1} \text{ y } -286 \text{ kJ mol}^{-1}$.	
	Calcule la variación de entalpía estándar de formación del fenol, C ₆ H ₅ OH(s).	[
(c)	La variación de entropía estándar de formación, ΔS^{\ominus} , del fenol, $C_6H_5OH(s)$ a 298 K es	
	$-385\mathrm{JK^{-1}mol^{-1}}$. Calcule la variación de energía libre estándar de formación, ΔG^{\ominus} , del fenol a 298 K.	1
		l
		L
		[
	fenol a 298 K.	l
	fenol a 298 K.	[
	fenol a 298 K.	[

(Esta pregunta continúa en la siguiente página)

(Pregunta 1: continuación	(Pregunta	1:	continu	ación	ı
---------------------------	-----------	----	---------	-------	---

(d)	Determine si la reacción es espontánea a 298 K, e indique una razón.	[2]
(e)	Prediga el efecto, si lo hay, de un incremento de la temperatura sobre la espontaneidad de esta reacción.	[2]

2205-6126 Véase al dorso

2.	La c	ompo	sición porcentual en masa de un hidrocarburo es C = 85,6 % e H = 14,4 %.			
	(a)	Calcule la fórmula empírica del hidrocarburo.				
	(b)		muestra de $1,00\mathrm{g}$ del hidrocarburo a $273\mathrm{K}$ de temperatura y presión de $\times 10^5\mathrm{Pa}(1,00\mathrm{atm})$ ocupa un volumen de $0,399\mathrm{dm}^3$.			
		(i)	Calcule la masa molar del hidrocarburo.	[2]		
		(ii)	Deduzca la fórmula molecular del hidrocarburo.	[1]		
	(c)	Evn	lique por qué la combustión incompleta de los hidrocarburos es dañina para los seres			
	(c)		anos.	[2]		

).		uede detectar a varios metros de distancia en poco tiempo.	
	(a)	Use la teoría cinética molecular para explicar por qué sucede esto.	[2]
	(b)	Indique y explique cómo varía el tiempo necesario para detectar el gas cuando la temperatura aumenta.	[2]

Véase al dorso 2205-6126

4	•	•	• ,	٠,
4.	I a	S10	mente	reacción
••	டப	· 515	uiciic	reaccion

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

se describe como de primer orden respecto del $\rm\,N_2O_5$.

(a)	Escriba la expresión de velocidad para la reacción.	[1]
(b)	Explique qué significa el término <i>periodo de semirreacción</i> para esta reacción.	[1]
(c)	Indique cuál es la característica del periodo de semirreacción para una reacción de primer orden.	[1]
(d)	A determinada temperatura, la constante de velocidad de la reacción anterior es $5.2 \times 10^{-3} \text{s}^{-1}$. Calcule cuánto tiempo será necesario para que la concentración de N_2O_5 disminuya de 0.10mol dm^{-3} hasta 0.010mol dm^{-3}.	[3]

(a)		riba las fórmulas estructurales de los cuatro isómeros de fórmula molecular C ₄ H ₉ Cl. que el nombre de cada uno y clasifíquelos como primario, secundario o terciario.
(b)		a uno de los isómeros reacciona con solución acuosa de hidróxido de sodio. Indique qué e de compuesto se produce en esta reacción.
(c)	(i)	Identifique qué tipo de isómero (primario, secundario o terciario) reaccionará con la solución acuosa de hidróxido de sodio casi exclusivamente por un mecanismo $S_{\rm N}1$. Indique el significado de los símbolos en el término mecanismo $S_{\rm N}1$.
	(ii)	Usando la fórmula RCl para representar un cloroalcano, escriba una ecuación que represente la etapa determinante de la velocidad de esta reacción.

2205-6126 Véase al dorso

[4]

[3]

SECCIÓN B

Conteste **dos** preguntas. Conteste a las preguntas en las hojas de respuestas provistas. Escriba su número de convocatoria en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.

- 6. Se llevó a cabo un experimento para determinar la concentración de una solución acuosa de amoníaco titulándola con una solución de ácido sulfúrico de concentración 0,150 mol dm⁻³. Se determinó que 25,0 cm³ de la solución de amoníaco requerían 20,1 cm³ de la solución de ácido sulfúrico para su neutralización.
 - (a) Escriba la ecuación que representa la reacción y calcule la concentración, en mol dm⁻³, de la solución de amoníaco.
 - (b) En la tabla 17 del Cuadernillo de datos se enumeran algunos indicadores ácido-base. Indique y explique cuál de los siguientes indicadores se debería utilizar para este experimento: verde de bromocresol, rojo de fenol o fenolftaleína.
 - (c) Determine el pOH de una solución cuya concentración de amoníaco es $0,121 \,\text{mol dm}^{-3}$. (el p K_b del amoníaco es 9,25.)
 - (d) (i) Indique qué significa el término solución buffer o tampón, y describa en términos generales la composición de una solución buffer ácida. [3]
 - (ii) Calcule el pH de una mezcla de 50 cm³ de amoníaco de concentración 0,10 mol dm³ y 50 cm³ de solución de ácido clorhídrico de concentración 0,050 mol dm³. [4]
 - (e) Eligiendo los ejemplos adecuados entre los siguientes:

$$NH_3$$
, O^{2-} , Cu^{2+} , OH^- , NH_2^- , H_2O

explique, usando una ecuación diferente en cada caso, el significado de los siguientes términos.

- (i) ácido de Brønsted-Lowry [2]
- (ii) ácido de Lewis [2]
- (iii) par ácido-base conjugado (identifique ambos pares ácido-base) [3]

[3]

[6]

7. (a) Las letras W, X, Y y Z representan cuatro elementos consecutivos de la tabla periódica. El número de electrones en el mayor nivel energético ocupado es:

W: 3, X: 4, Y: 5, Z: 6

Escriba la fórmula de

- (i) un compuesto iónico formado a partir de W e Y, indicando las cargas. [2]
- (ii) un compuesto covalente que contenga **X** y **Z**. [1]
- (b) Resuma los principios de la teoría de la repulsión del par electrónico de valencia (TRPEV). [3]
- (c) Para los siguientes compuestos

PCl₃, PCl₅, POCl₃

- (i) Dibuje una estructura de Lewis para cada molécula en estado gaseoso. (Muestre todos los pares electrónicos no enlazantes)
- (ii) Indique la forma de cada molécula y prediga los ángulos de enlace. [6]
- (iii) Deduzca si cada molécula es o no polar. Justifique su respuesta. [3]
- (d) (i) Explique el significado del término hibridación.
 - (ii) Discuta los enlaces en la molécula CH₃CHCH₂ con respecto a
 - la formación de enlaces σ y π
 - la longitud y fuerza de los enlaces carbono-carbono
 - los tipos de hibridación que presentan los átomos de carbono.

2205-6126 Véase al dorso

8.	(a)	Para	los elementos del período 3 (del Na al Ar), indique y explique	
		(i)	la tendencia general de la energía de ionización	[2]
		(ii)	las excepciones respecto de la tendencia general.	[4]
	(b)		lique las siguientes características de los puntos de fusión de los elementos del período 3. érase a los enlaces y la estructura y use información de la tabla 6 del Cuadernillo de s.	
		(i)	La diferencia entre los valores del sodio y el magnesio	[3]
		(ii)	El elevado valor del silicio	[2]
		(iii)	La diferencia entre los valores del cloro y el argón	[2]
	(c)	Con	respecto a la estructura y los enlaces presentes en los compuestos NaCl y SiCl ₄	
		(i)	indique y explique las diferencias de conductividad en el estado líquido.	[3]
		(ii)	prediga qué valor de pH aproximado tendrá una solución preparada añadiendo cada componente separadamente al agua.	[4]
	(d)		de las características de los elementos del bloque d (transición), son que presentan dos de oxidación variables y forman compuestos coloreados.	
		(i)	Indique dos posibles estados de oxidación del hierro y explique este hecho en términos de distribuciones electrónicas.	[2]
		(ii)	Explique por qué muchos compuestos de los elementos del bloque d (transición) son coloreados	[3]

- 9. Algunos compuestos orgánicos pueden sufrir deshidratación.
 - (a) Indique qué se entiende por el término *deshidratación* y dé un ejemplo de un agente deshidratante.

[2]

(b) Dos de los isómeros de fórmula molecular C_3H_8O se pueden deshidratar para formar un compuesto de fórmula molecular C_3H_6 . Escriba las fórmulas estructurales y los nombres de estos tres compuestos.

[5]

(c) (i) Indique el número de picos y la relación de sus áreas en el espectro de 1H RMN del C_3H_6 y **uno** de los isómeros de fórmula C_3H_8O .

[4]

(ii) Use la tabla 18 del Cuadernillo de datos para identificar una fuerte absorción en el espectro infrarrojo del C₃H₈O que no se observa en el C₃H₆, y una fuerte absorción en el C₃H₆ que no se observa en el C₃H₈O. En cada caso, indique el rango de absorción y el enlace responsable de la misma.

[2]

(d) (i) El compuesto C₃H₆ reacciona con bromo. Escriba la ecuación que representa esta reacción y nombre el producto. Indique qué cambio visible acompaña esta reacción.

[3]

(ii) Escriba la fórmula estructural completa del producto que se forma en el apartado (d) (i), e identifique el átomo de carbono quiral usando un asterisco (*). Indique qué propiedad distintiva origina en una molécula un átomo de carbono quiral.

[2]

(e) Nombre qué tipo de reacción de polimerización sufre el C₃H₆ y dibuje la estructura de una sección de la cadena polimérica formada por tres moléculas monómeras.

[2]

(f) Uno de los isómeros de fórmula C₃H₈O se puede oxidar para formar dos productos orgánicos diferentes, dependiendo de las condiciones utilizadas. Identifique un agente oxidante apropiado. Escriba las estructuras de los dos productos y especifique las condiciones requeridas para la formación de cada uno.

[5]