Electrónica Digital 1

Lógica combinacional -tiempos de propagación

Ferney Alberto Beltrán Molina

Marzo 2020

Contacto

Nombre: Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

Email: fabeltranm@unal.edu.co

oficina: Centro de Investigación e Innovación

Contenido

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Tipos de circuitos digitales

Circuitos combinacionales

Las salidas del circuito en cada instante de tiempo dependen única de los valores de entrada. combina los valores de entrada en un intante de tiempo para calcular la salida

Circuitos secuenciales.

Las salidas del circuito secuencial dependen tanto de los valores actuales como de los anteriores de las entradas; en otras palabras, depende de la secuencia de entrada.

Tipos de circuitos digitales

Álgebra de Boole propiedades

- 1 Elemento inverso, $\overline{0} = 1$, $\overline{1} = 0$
- 2 Idempotencia, a+a=a, $a\cdot a=a$
- 3 Involución, $\stackrel{=}{a} = a$
- 4 Asociatividad, a+(b+c)=(a+b)+c, $a\cdot(b\cdot c)=(a\cdot b)\cdot c$
- 5 Absorción, a + a.b = a, $a \cdot (a + b) = a$
- 6 (sin nombre), $a + \overline{a}b = a + b$, $a \cdot (\overline{a} + b) = a.b$
- 7 de Morgan, $(\overline{a+b}) = \overline{a}.\overline{b}, \quad \overline{a.b} = \overline{a} + \overline{b}$
- 8 de Morgan generalizada, $(\overline{a_1 + a_2 + ... + a_n}) = \overline{a_1}.\overline{a_2}...\overline{a_n}$, $\overline{a_1.a_2...a_n} = \overline{a_1} + \overline{a_2} + ... + \overline{a_n}$

Álgebra de Boole propiedades

Funciones Booleanas - Resumiendo

► DescripciónFuncional ► TabladeVerdad ► función(s)Booleana(s) ► CircuitoDigital

$$\begin{split} s <= x_i + y_i + c_i; \\ \text{if } s = 0 \text{ then } z_i <= 0; c_o = 0; \\ \text{elsif } s = 1 \text{ then } z_i <= 1; c_o <= 0; \\ \text{elsif } s = 2 \text{ then } z_i <= 0; c_o <= 1; \\ \text{else } z_i <= 1; c_o <= 1; \\ \text{end if;} \end{split}$$

end if; end if; end if;

x_i	y_i	c_i	c_o	z_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$\begin{split} c_o &= y.\,c_i + x.\,c_i + x.\,y\\ z &= \bar{x}.\,\bar{y}.\,c_i + \bar{x}.\,y.\overline{c_i} + x.\,\bar{y}.\,\overline{c_i} + x.\,y.\,c_i \end{split}$$

respuesta - Ejemplo BCD2SSEG

•
$$a = x_1 + x_2 * x_0 + x_3 + \overline{x_2} * \overline{x_0}$$

$$b = \overline{x_2} + \overline{x_1} * \overline{x_0} + x_1 * x_0$$

$$c = \overline{x_1} + x_0 + x_2$$

$$ightharpoonup$$
 e = $\overline{x_2} * \overline{x_0} + \overline{x_0} * x_1$

$$f = \overline{x_0} * \overline{x_1} + \overline{x_1} * x_2 + x_2 * \overline{x_0} + x_3$$

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Comparador 1bit


```
if X > Y then G <= 1;
    elsif X < Y then L <= 1;
    else E <= 1;
    end if;
end if;</pre>
```

Comparador 1bit

Comparador 1bit

Comparador 1bit resultado de G_i

G_{i+1}	L_{i+1}	x_i	y_i	G_i	L_i
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	х	х	0	1
1	0	х	x	1	0
1	1	х	х	х	х

Comparador 1bit resultado de L_i

G_{i+1}	L_{i+1}	x_i	y_i	G_i	L_i
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	х	х	0	1
1	0	х	х	1	0
1	1	х	х	х	Х

Comparador 1bit puertas lógicas

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Gi	Li	Xi	Xo	Yi	Yo	Go	Lo
0	0	0	0	0	0	0	0
0	0	0	0	1	Х	0	1
0	0	0	0	х	1	0	1
0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0
0	0	0	1	1	х	0	1
0	0	1	0	0	х	1	0
0	0	1	0	1	0	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	х	1	0
0	0	1	1	х	0	1	0
0	0	1	1	1	1	0	0
0	1	х	х	х	х	0	1
1	0	х	х	х	х	1	0
1	1	v	v	v	v	v	v

Gi	Li	Xi	Xo	Yi	Yo	Go	Lo
0	0	0	0	0	0	0	0
0	0	0	0	1	х	0	1
0	0	0	0	х	1	0	1
0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0
0	0	0	1	1	х	0	1
0	0	1	0	0	х	1	0
0	0	1	0	1	0	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	х	1	0
0	0	1	1	х	0	1	0
0	0	1	1	1	1	0	0
0	1	х	х	х	Х	0	1
1	0	х	х	х	х	1	0
1	1	v	v	v	v	v	v

			Хо	0	0	0	0	1	1	1	1
	L		Υi	0	0	1	1	1	1	0	0
				0	1	1	0	0	1	1	0
Gi	Li	Χi									
0	0	0									
0	0 1										
0	1	1									
0	1	0									
1	1	0									
1											
1	1 0 1		Ī								
1	0	0									

	_		Хо	0	0	0	0	1	1	1	1
	G		Υi	0	0	1	1	1	1	0	0
				0	1	1	0	0	1	1	0
Gi	Gi Li Xi										
0	0	0									1
0	0	1		1	1			1		1	1
0	1	1									
0	1	0									
1	1	0		X	X	X	X	X	X	X	X
1	1	1		X	X	X	X	X	X	X	х
1	0	1		1	1	1	1	1	1	1	1
1	0	0		1	1	1	1	1	1	1	1

			Χo	0	0	0	0	1	1	1	1
	G		Yi	0	0	1	1	1	1	0	0
			Yο	0	1	1	0	0	1	1	0
Gi	Li	Χi									
0	0	0									1
0	0	1		1	1			1		1	1
0	1	1									
0	1	0									
1	1	0		X	х	х	х	х	X	X	X
1	1	1		X	X	х	Х	х	X	X	х
1	0	1		1	1	1	1	1	1	1	1
1	0	0		1	1	1	1	1	1	1	1

			Χo	0	0	0	0	1	1	1	1
	G		Υi	0	0	1	1	1	1	0	0
				0	1	1	0	0	1	1	0
Gi	Gi Li Xi										
0	0	0									1
0	0	1		1	1			1		1	1
0	1	1									
0	1	0									
1	1	0		х	Х	х	х	х	Х	х	x
1	1	1		X	X	X	х	Х	X	X	X
1	0	1		1	1	1	1	1	1	1	1
1	0	0		1	1	1	1	1	1	1	1

$$G_o =$$

_						_	_	_	_	_	_
			Χo	0	0	0	0	1	1	1	1
	L		Υi	0	0	1	1	1	1	0	0
			Υo	0	1	1	0	0	1	1	0
Gi	Li	Χi									
0	0	0	1		1	1	1	1	1		
0	0	1	1			1					Г
0	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	1	1	1
1	1	0	1	X	х	X	X	X	Х	х	х
1	1	1	1	Х	х	X	X	X	х	х	х
1	1 0 1										
1	0	0	l								

			Χo	0	0	0	0	1	1	1	1
	L		Yi	0	0	1	1	1	1	0	0
			Υo	0	1	1	0	0	1	1	0
Gi	Li	Χi									
0	0	0			1	1	1	1	1		
0	0	1				1					
0	1	1		1	1	1	1	1	1	1	1
0	1	0		1	1	1	1	1	1	1	1
1	1	0		X	X	х	X	X	X	X	X
1	1	1		Х	X	Х	X	X	X	X	Х
1	0	1									
1	0	0									

$$L_o =$$

Resultado

Comparativa de puertas

Número de puertas por cada implementación

Comparador de 1 bit

Comparador de 2 bit

comparativa de tiempos

Tiempo de propagación en cada implementación ?

Comparador de 1 bit

Comparador de 2 bit

Índice

Recordando

ejemplo comparador 1bit

Mapas de karnaugh

Tiempos de propagación

Tiempos de propagación

1. Toda puerta lógica tiene un tiempo de retraso en la salida respecto a la entrada

Tiempos de propagación

comparativa de tiempos

Tiempo de propagación en cada implementación ?

Comparador de 1 bit

Comparador de 2 bit

mapas K - Ejemplo BCD2SSEG

PREGUNTAS