CHAPTER FIVE

Curve Fitting

Objectives

Polynomial Fitting

Polynomial Fitting

• For any polynomial:

$$f(x) = c_1 + c_2 x + c_3 x^2 + \dots + c_{m+1} x^m$$

• Find Least square Parabola: $f(x) = Ax^2 + Bx + C$

$$E(A, B, C) = \sum_{k=1}^{N} (Ax_k^2 + Bx_k + C - y_k)^2$$

Polynomial Fitting

$$E(A, B, C) = \sum_{k=1}^{N} (Ax_k^2 + Bx_k + C - y_k)^2$$

$$\frac{\partial E}{\partial A} = 2\sum_{k=1}^{N} (Ax_k^2 + Bx_k + C - y_k)^1(x_k^2) = 0$$

$$\frac{\partial E}{\partial B} = 2\sum_{k=1}^{N} (Ax_k^2 + Bx_k + C - y_k)^1(x_k) = 0$$

$$\frac{\partial E}{\partial C} = 2\sum_{k=1}^{N} (Ax_k^2 + Bx_k + C - y_k)^1(1) = 0$$

$$(\sum x_k^4)A + (\sum x_k^3)B + (\sum x_k^2)C = \sum y_k x_k^2$$

$$(\sum x_k^3)A + (\sum x_k^2)B + (\sum x_k)C = \sum y_k x_k$$

$$(\sum x_k^2)A + (\sum x_k)B + NC = \sum y_k$$

Polynomial Fitting - Example

• Find the least-squares Parabola for the following four data points: (-3,3), (0,1), (2,1), (4,3)

Table 5.7 Obtaining the Coefficients for the Least-Squares Parabola of Example 5.6

x _k	Уk	x_k^2	x_k^3	x_k^4	$x_k y_k$	$x_k^2 y_k$
-3	3	9	-27	81	~9	27
0	1	0	.0	0	0) 0
2	1	4	8	16	} 2	4
4	3	16	64	256	12	48
3	8	29	45	353	5	79

[1]

Polynomial Fitting – Example (cont'd)

• From table:

•
$$\sum x_k = 3$$

$$\sum y_k = 8$$

•
$$\sum x_k^2 = 29$$

$$\sum x_k^3 = 45$$

•
$$\sum x_k^4 = 353$$

$$\sum y_k x_k = 5$$

$$\bullet \sum y_k x_k^2 = 79$$

•
$$A = \frac{585}{3278}$$

$$B = \frac{-631}{3278}$$

$$C = \frac{1394}{1639}$$

 $(\sum x_k^4)A + (\sum x_k^3)B + (\sum x_k^2)C = \sum y_k x_k^2$

 $(\sum x_k^3)A + (\sum x_k^2)B + (\sum x_k)C = \sum y_k x_k$

 $(\sum x_k^2)A + (\sum x_k)B + NC = \sum y_k$

•
$$y = 0.178462x^2 - 0.192495x + 0.850519$$

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

