Option Informatique

Emeric Tourniaire

 $20~{\rm septembre}~2016$

Table des matières

1	Introduction			
	1.1	Programme	2	
	1.2	Complexité	2	
		Domaines		
2	Structures de données 4			
	2.1	Tableau	4	
	2.2	Listes	4	
3	1110100			
	3.1	Définitions générales	5	
	3.2	Propriétés combinatoires	5	
	3.3	Nombres de Catalan [HP]	7	
		Parcours d'un arbre		

Chapitre 1

Introduction

1.1 Programme

- 1. Arbres 2. Graphes 3. Automates
- \cdot Machine de Babbag -> permet de faire des calculs de manière automatisée : premiers programmes.
- \cdot Ada Lovelace.
- · Alan Turing : calculabilité. Qu'est-ce qu'on peut calculer?
- Problème de l'arrêt. Modèle de la machine de Turing. // Church Travail sur le décryptage d'Enigma.

1.2 Complexité

- · Karp 1972
- · Nombre d'étapes faites par un ordinateur.
- \cdot Les problèmes polynomiaux restent polynomiaux.
- · Certains problèmes sont équivalents.
- P : résolubles polyniomalament. NP P = NP ? Conjecture actuelle = non (très important) · Notation de Landau O() ou $\Theta()$

1.3 Domaines

- · Algorithmes exacts
- Démonstration \cdot Algorithmes heuristiques
- pas très sérieux
 - · Optimisation linéaire
- Simplexe (exponentiel) / Ellipses (polynomial) La méthode du simplexe est employée (elle est polynomiale sauf pour des points isolés)

- \cdot Cryptographie
- Décrypter = récupérer le contenu sans la clé Chiffrer = chiffre un message avec la clé Déchiffrer = lit le message avec la clé · TLS / RSA...
 - \cdot Calcul numérique et info appliquée
- Données continues (analyse) Données discrètes (ADN)
 - \cdot Robotique
 - · Combinatoire : nombre fini de solutions et on doit trouver la meilleure.
- Jeux, optimisation

Chapitre 2

Structures de données

2.1 Tableau

Plage de mémoire continue dans laquelle on met des éléments. Accès instantané : tous les éléments prennent la même place.

2.2 Listes

Pointeur vers une adresse mémoire qui contient une valeur et un pointeur vers l'adresse suivante.

 $\bf Remarque:$ La récursivité c'est bien, mais c'est mieux quand on sait s'en servir...

Chapitre 3

Arbres

3.1 Définitions générales

Généralités On parle d'arbres binaires étiquetés. L'ensemble de ces arbres est noté A(N, F), où N est l'ensemble des valeurs possibles pour les nœuds et F est l'ensemble des valeurs possibles pour les feuilles.

```
 \begin{array}{lll} \textbf{D\'efinition} & \text{L'ensemble } A(N,F) \text{ est d\'efini par :} \\ & \cdot F \subset A(N,F) \\ & \cdot \text{Si } a,b \in A(N,F), n \in \mathbb{N}, \text{ alors } (n,a,b) \in A(N,F) \\ \\ \textbf{type ('n, 'f) arbre\_binaire} &= \\ & \mid \text{ Feuille of 'f} \\ & \mid \text{ Noeud of 'n * ('n, 'f) arbre\_binaire * ('n, 'f) arbre\_binaire ;;} \\ \textbf{D\'efinition Le squelette d'un arbre, c'est l'arbre sans les \'etiquettes.} \\ \textbf{type squelette\_binaire} &= \\ & \mid \text{ Rien } \\ & \mid \text{ Jointure of squelette\_binaire * squelette\_binaire ;;} \\ \end{array}
```

3.2 Propriétés combinatoires

Définition La taille d'un arbre (ou d'un squelette) est le nombre de ses noeuds internes.

Définition La hauteur d'un arbre est définie par induction. La hauteur d'une feuille est nulle. La hauteur d'un arbre est $1+max(hauteur_{filsgauche}, hauteur_{filsdroit})$.

Théorème Un arbre de taille n possède n+1 feuilles.

Démonstration

Par induction - Le résultat est vrai pour tout arbre de taille 0. - Soit $n \in \mathbb{N}$. Supposons le théorème vrai pour tout arbre de taille $\leqslant n$. - Soit A = (n,g,d) un arbre de taille n+1. - Le nombre de feuilles de A vaut :

```
- #f(A) = #f(g) + #f(d)
```

- Le nombre de noeuds de A vaut :

```
- \#n(A) = 1 + \#n(g) + \#n(d) - Donc \#n(g) \le n et \#n(d) \le n
```

- Par hypothèse d'induction,

- #f(g) = #n(g) + 1 - #f(d) = #n(d) + 1

- Donc #f(a) = #n(d) + #n(g) + 2 - Donc #f(a) = #n(a) + 1

Autre démonstration : - Soit A un arbre, on note n le nombre de nœuds et f le nombre de feuilles. - n + f - 1 est le nombre d'enfants dans l'arbre. - Or le nombre d'enfants est aussi 2n. - Donc n = f - 1.

Théorème Soit A un arbre de hauteur h et de taille n.

```
Alors 1 + |lg(n)| \le h \le n
```

Démonstration La hauteur est le plus long chemin de la racine à une feuille. Si l'arbre est de hauteur h, ce chemin comporte h+1 points, donc h noeuds, donc $n \ge h$.

Si l'arbre n'est pas complet, on le complète en A', également de hauteur h, complet.

```
On a alors 2^h - 1 noeuds.
Donc on avait n \le 2^h - 1
lg(n) < h
Donc \lfloor lg(n) \rfloor \le h - 1
```

Démonstration bis, par induction \cdot Si l'arbre contient 0 noeuds, le résultat est "vrai" (en prenant $lg(0) = -\infty$)

- \cdot Soit un arbre quelconque de hauteur h de taille n, avec g et d ses fils de hauteur hg hd, de taille ng nd.
- · Par hypothèse, on a :

$$-1 + |lg(ng)| \leq hg \leq ng - 1 + |lg(nd)| \leq hd \leq nd$$

· Alors:

-
$$n = 1 + ng + nd \ge 1 + hd + hg \ge 1 + max(hd, hg) \ge h$$

· On note $m = max(ng, nd)$

 \cdot On a:

-
$$h = 1 + max(hd, hg) \ge 2 + \lfloor lg(m) \rfloor \ge 1 + \lfloor lg(2m) \rfloor$$

- · De plus |lg(2m)| = |lg(2m+1)| (changement de valeur sur les puissances de 2)
- · Donc:

-
$$h \geqslant 1 + \lfloor lg(2m+1) \rfloor$$
 - $h \geqslant 1 + \lfloor lg(n) \rfloor$

Définition Un arbre est complet si toutes ses feuilles sont à hauteur h ou h -

Nombres de Catalan [HP] 3.3

Question: Combien y a-t-il de squelettes de taille n distincts?

 $\cdot n = 0 : 0$

 \cdot n = 1 : 1

 \cdot n = 2 : 2

 \cdot n = 3 : 5

Définition On note C(n) le nombre de squelettes de taille n.

Propriété
$$C_0 = 1$$
 $\forall n \geqslant 1, C_n = \sum_{k=0}^{n-1} C(k)C(n-1-k)$

Démonstration On peut partitionner les squelettes de taille n en fonction de k le nombre de noeuds à gauche de la racine.

Il y a alors n-1-k sommets à droite. Tout choix d'un arbre gauche et d'un arbre droit donne un arbre (total) distinct:

$$C_4 = C_0C_3 + C_1C_2 + C_2C_1 + C_3C_0$$

$$C_4 = 5 + 2 + 2 + 5 = 14$$

Ceci nous permet de calculer C(n).

Idée : passer par une série génératrice Soit $C(z)=\sum_{n=0}^{+\infty}C_nz^n,z\in\mathbb{C}$

Soit
$$C(z) = \sum_{n=0}^{+\infty} C_n z^n$$
, $z \in \mathbb{C}$

Si $C_n = o(\alpha^n)$, alors la série est bien définie pour $|z| < \frac{1}{\alpha}$ Alors:

$$C(z) = C_0 + z \sum_{n=1}^{+\infty} C_n z^{n-1}$$

$$C(z) = 1 + z \sum_{n=1}^{+\infty} \sum_{k=0}^{n-1} C_k C_{n-1-k} z^{n-1}$$

$$\cdot C(z) = 1 + z \times C_z^2$$

En effet :

En effet:
$$\cdot C(z)^2 = (\sum_{n=0}^{+\infty} C_n z^n) \times (\sum_{n=0}^{+\infty} C_n z^n)$$

$$\cdot C(z)^2 = \sum_{n=0}^{+\infty} \sum_{k=0}^{n} C_k z^k \times C_{n-k} z^{n-k}$$

$$\cdot C(z)^2 = \sum_{n=0}^{+\infty} \sum_{k=0}^{n} C_k C_{n-k} z^n$$

$$\cdot C(z)^2 = \sum_{n=1}^{+\infty} \sum_{k=0}^{n-1} C_k C_{n-1-k} z^{n-1}$$

On a alors :

$$\cdot C(z) = 1 + z \times C^2(z)$$

$$\mathrm{Donc}: \cdot C(z) = \frac{1 - \sqrt{1 - 4z}}{2z}$$

On peut ensuite redévelopper cette fonction pour retrouver : $\cdot \, C_n = \frac{\binom{2n}{n}}{n+1}$

$$\cdot C_n = \frac{\binom{2n}{n}}{n+1}$$

Ces nombres sont appelés nombres de Catalan.

Autre application : dénombrement des chaines bien parenthésées. ()((())()): bien parenthésées

On peut construire une bijection entre les chaines bien parenthésées et les arbres. Un fils gauche correspond à un encadrement, un fils droit à une concaténation.

3.4 Parcours d'un arbre

L'objectif de cette partie est d'analyser un arbre algorithmiquement. Il existe 3 parcours "en profondeur d'abord", et 1 parcours en largeur.

Largeur | SOSA | 1, a, 6, 4, b, c, d Préfixe | $(racine, p(fils_gauche), p(fils_droit))$ | 1, a, 6, 4, c, d, b Infixe | $(p(f_g), r, p(f_d))$ | a, 1, c, 4, d, 6, b Suffixe | $(p(f_g), p(f_d), r)$ | a, c, d, 4, b, 6, 1

Astuce! On fait le contour de l'arbre dans le sens trigo en regardant :

- \cdot vers la droite \rightarrow Parcours préfixe
- \cdot vers le haut \rightarrow parcours infixe
- \cdot vers la gauche \rightarrow parcours suffixe

Le parcours infixe n'est pas injectif.

Le parcours suffixe est injectif (si on a la distinction feuille/noeud).