```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
Data Preperation
```

```
# Loading the MNIST dataset from OpenML
mnist= fetch_openml('mnist_784',version=1, as_frame=True)
X,y = mnist['data'],mnist['target']
```

/usr/local/lib/python3.10/dist-packages/sklearn/datasets/_openml.py:968: FutureWarning: The default value of `parser` will change from `warn(

y.head()

→ 0 5

1 0

2 4

3 1

4 9

Name: class, dtype: category

Categories (10, object): ['0', '1', '2', '3', ..., '6', '7', '8', '9']

X.head(10)

₹	pix	cel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	pixel10	 pixel775	pixel776	pixel777	pixel778	pixel779
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
	9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0

10 rows × 784 columns

Converting target labels as integers:y = y.astype(int)

Splitting the data into train and test dataset:X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)

Standarize the features (pixel value):scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Data Visualization

```
# visualizing a few sample images:-
fig, axes= plt.subplots(nrows=2,ncols=5,figsize=(10,5))
for i, ax in enumerate(axes.flat):
    ax.imshow(X_train[i].reshape(28,28), cmap='gray')
    ax.set_title(f"Label: {y_train.iloc[i]}")
    ax.axis('off')
plt.show()
```


Model Selection and Training

Will be using Multi-Layer Perceptron(MLP) classifier as the model
model= MLPClassifier(hidden_layer_sizes=(128, 64), max_iter=1000, random_state=42)

Train the model on the training data::model.fit(X_train,y_train)

MLPClassifier
MLPClassifier(hidden_layer_sizes=(128, 64), max_iter=1000, random_state=42)

Model Evaluation

Predict on the test set:y_pred= model.predict(X_test)

Printing the classification report and confusion matrix:print("Classification Report:\n", classification_report(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

\equiv	Classification	Report:								
		precision		recall	f1	score	S	upport		
		0.00		0.00		0.00		4242		
	0	0.99		0.98		0.98		1343		
	1	0.98		0.99		0.99		1600		
	2	0.97		0.97		0.97		1380		
	3	0.97		0.97		0.97		1433		
	4	0.97		0.98		0.98		1295		
	5	0.97		0.97		0.97		1273		
	6	0.98		0.99		0.98		1396		
	7	0.97		0.98		0.98		1503		
	8	0.97		0.96		0.96		1357		
	9	0.97		0.96		0.97		1420		
	accuracy					0.98		14000		
	macro avg	0.98		0.98		0.98		14000		
	weighted avg	0.98		0.98		0.98		14000		
	Confusion Matr	iv.								
			_	2	0		_	2.7		
	[[1321 1	3 0	0	2	8	1	5	2]		
	[0 1590	2 1	1	1	0	5	0	0]		
	[2 8 13	41 4	5	2	3	7	6	2]		
	[2 1	10 1391	1	12	0	9	4	3]		

```
2
          3
               0 1268
                               2
     1
                          1
                                    4
                                         1
                                              13]
0
     0
                                         7
          2
              14
                    3 1235
                              10
                                    1
                                              1]
1
     1
          0
               0
                         3 1382
                                    0
                                         4
                                              0]
2
     2
         10
               1
                    5
                          1
                               0 1469
                                         2
                                              111
     7
4
          9
              13
                    3
                                    4 1296
                                              91
                               5
7
                   13
                                    9
                                         8 1367]]
```

```
# Visualizing the confusion matrix using a heatmap:
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True,fmt='d', cmap='Blues')
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')
plt.show()
```


Sample Test

```
# Getting a sample set from the test data:-
sample_index = np.random.randint(0, len(X_test))
sample_image = X_test[sample_index]
sample_label = y_test.iloc[sample_index]

# Predict the label for the sample image:
predicted_label = model.predict([sample_image])[0]

# Displaing the sample image and the predicted label:
plt.imshow(sample_image.reshape(28, 28), cmap='gray')
plt.title(f"Predicted Label: {predicted_label}, True Label:{sample_label}")
plt.axis('off')
plt.show()
```

Predicted Label: 8, True Label:8

Start coding or generate with AI.