Spring 2013: Algebra Graduate Exam

Peter Kagey

August 13, 2019

Problem 1. Let p > 2 be a prime. Describe, up to isomorphism, all groups of order $2p^2$.

Proof. Next, note that the number of Sylow p groups must divide the order of the group, and be congruent to 1 mod p. Therefore there must be exactly one Sylow p group, and since it is unique it is normal. Call the Sylow p-subgroup N and the Sylow 2-subgroup K. Thus $G \cong N \rtimes_{\varphi} K$ where $\varphi \colon K \to \operatorname{Aut}(N)$ is a homomorphism.

Note that all groups of order p^2 are abelian, so in particular $N \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$ or $N \cong \mathbb{Z}_{p^2}$.

Case 1. Assume $N \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$, so that $\operatorname{Aut}(N) \cong GL_2(p)$, the general linear group over the field of integers modulo p. Then there are four homomorphisms which give three distinct groups up to isomorphism: the identity, the map $(x,y) \mapsto (x^{-1},y)$, and the map $(x,y) \mapsto (x^{-1},y^{-1})$. (Note: I'm not sure what these are the only homomorphisms)

- (i) $G \cong \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_2$,
- (ii) $G \cong (\mathbb{Z}_p \oplus \mathbb{Z}_p) \times \mathbb{Z}_2$ with operation $((x_1, y_1), a) \cdot ((x_2, y_2), b) = \begin{cases} ((x_1 x_2, y_1 y_2), a + b) & a = 0 \\ ((x_1 x_2^{-1}, y_1 y_2), a + b) & a = 1 \end{cases}$, or
- (iii) $G \cong (\mathbb{Z}_p \oplus \mathbb{Z}_p) \times \mathbb{Z}_2$ with operation $((x_1, y_1), a) \cdot ((x_2, y_2), b) = \begin{cases} ((x_1 x_2, y_1 y_2), a + b) & a = 0 \\ ((x_1 x_2^{-1}, y_1 y_2^{-1}), a + b) & a = 1 \end{cases}$.

Case 2. Assume $N \cong \mathbb{Z}_{p^2}$ so that $\operatorname{Aut}(N)$ is of order $\phi(p^2) = p(p-1)$. Since p^2 is a power of a prime, $\operatorname{Aut}(N) \cong \mathbb{Z}_{p(p-1)}$. Since φ is a homomorphism, it must map $\overline{0} \mapsto \operatorname{id}$, and $\overline{1}$ to an automorphism of order 1 or 2. The only two such automorphisms are the identity and the map $1 \mapsto -1$.

- (iv) $G \cong \mathbb{Z}_{p^2} \oplus \mathbb{Z}_2$, or
- (v) $G \cong \mathbb{Z}_{p^2} \times \mathbb{Z}_2$ with operation $(x_1, a) \cdot (x_2, b) = \begin{cases} (x_1 x_2, a + b) & a = 0 \\ (x_1 x_2^{-1}, a + b) & a = 1 \end{cases}$.

This is the dihedral group of order $2p^2$.

Problem 2. Let R be a commutative Noetherian ring with 1. Show that every proper ideal of R is the product of finitely many (not necessarily distinct) prime ideals of R.

Hint. Consider the set of ideals that are not products of finitely many prime ideals. Also note that if R is not a prime ring Then IJ = (0) for some non-zero ideals I and J of R

Proof.

Problem 3. In the polynomial ring $R = \mathbb{C}[x, y, z]$ show that there is a positive integer m and polynomials $f, g, h \in R$ such that

$$\underbrace{(x^{16}y^{25}z^{81} - x^7z^{15} - yz^9 + x^5)^m}_{p(x,y,z)} = (x-y)^3f + (y-z)^5g + (x+y+z-3)^7h.$$

Proof. Firstly, let

$$I = ((x-y)^3, (y-z)^5, (x+y+z-3)^7).$$

It is sufficient to show that p(x, y, z) vanishes on Var(I); by Hilbert's Nullstellensatz, this implies that $p(x, y, z)^m \in I$ for some $m \in \mathbb{N}$.

By definition the variety of I is the points where all polynomials vanish:

$$Var(I) = \{(x, y, z) : (x - y)^3 = (y - z)^5 = (x + y + z - 3)^7 = 0\}$$

Ignoring multiplicity and looking the system of equations

$$x-y = 0$$
$$y-z = 0$$
$$x+y+z-3 = 0$$

yields x = y = z = 1.

Evaluating p(x, y, z) at (1, 1, 1) yields

$$p(1,1,1) = \underbrace{1^{16}1^{25}1^{81}}_{1} \underbrace{-1^{7}1^{15}}_{-1} \underbrace{-1 \cdot 1^{9}}_{1} \underbrace{+1^{5}}_{+1} = 0,$$

so p(x,y,z) vanishes on $\mathrm{Var}(I)$ and $p(x,y,z)^m \in I$ for some $m \in \mathbb{N}$ by Nullstellensatz.

Problem 4. Let $R \neq (0)$ be a finite ring such that for any element $x \in R$ there is $y \in R$ with xyx Show that R contains an identity element and that for $a, b \in R$ if $ab = 1$ then $ba = 1$.	x = x.
Proof.	

Problem 5. Let $f(x) = x^{15} - 2$, and let L be the splitting field of f(x) over \mathbb{Q} .

- (a) What is $[L:\mathbb{Q}]$?
- (b) Show there exists a subfield F of degree 8 that is Galois over \mathbb{Q} .
- (c) What is $Gal(F/\mathbb{Q})$
- (d) Show that there is a subgroup of $\operatorname{Gal}(L/\mathbb{Q})$ that is isomorphic to $\operatorname{Gal}(F/Q)$.

Proof.

Problem 6. Let F/\mathbb{Q} be a Galois extension of degree 60, and suppose F contains a primitive ninth root	ot of
unity. Show $Gal(F/\mathbb{Q})$ is solvable.	
Proof.	
- · · · · · · · · · · · · · · · · · · ·	_

Problem 7. Let n be a positive integer. Show that $f(x,y) = x^n + y^n + 1$ is irreducible in $\mathbb{C}[x,y]$.

Proof.