

统计机器学习实验

实验五: 构建聚类模型实现各

地区经济情况聚类分析

主讲教师: 严资林

实验教师: 匡慈维

目录

本学期实验总体安排

本学期实验课程共 10 个学时, 5 个实验项目, 总成绩为 20 分。

实验项目	_	=	Ξ	四	五
学时	2	2	2	2	2
实验内容	感知机模型	决策树模型	K近邻模型	支持向量机模型	聚类模型
分数	3	4	4	5	4
上课时间 (地点)	第11周 周四 (T2102)	第12周 周六 (T2102)	第14周 周四 (T2102)	第16周 周二 (T2102)	第17周 周四 (T2102)
检查方式	提交实验截图文档	提交实验报告、工程文件			

5-6节 3&4班; 7-8节 1&2班

线上腾讯会议: 848-8762-6539

实验任务

国家统计局采用分层、多阶段、与人口规模大小成比例的概率抽样方法,在全国31个省(区、市)的1800个县(市、区)随机抽选16万个居民家庭作为调查户,调查居民的可支配收入。

背景

居民可支配收入是指居民可用于最终消费支出和储蓄的总和,即居民可用于自由支配的收入。按照收入的来源,可支配收入包括工资性收入、经营净收入、财产净收入和转移净收入。

现有2016年31个地区的农村居民人均可支配收入情况数据,需要根据各地区的经济情况做聚类分析。

任务

使用Python自编程定义k-均值聚类和层次聚类模型,实现各地区经济情况的聚类分析。

数据说明

◆ 数据集

- ▶ 包含31条数据记录;
- ▶ 每条数据包含5个属性特征,分别为:

地区、工资性收入、经营净收入、财产净收入、 转移净收入

1	地区	丁容杜的 λ	经营净收入	财产净收入	转移净收入
2	北京	16637.5	2061.9	1350.1	2260
3	天津	12048. 1	5309. 4	893.7	1824. 4
4	河北	6263. 2	3970	257.5	1428. 6
5	山西	5204. 4	2729. 9	149	1999. 1
6	内蒙古	2448. 9	6215.7	452.6	2491.7
7	辽宁	5071. 2	5635.5	257. 6	1916. 4
8	吉林	2363. 1	7558. 9	231.8	1969. 1
9	黑龙江	2430.5	6425.9	572. 7	2402.6
10	上海	18947. 9	1387. 9	859.6	4325
11	江苏	8731.7	5283. 1	606	2984.8
12	浙江	14204.3	5621.9	661.8	2378. 1
13	安徽	4291.4	4596.1	186. 7	2646.2
14	福建	6785.2	5821.5	255.7	2136.9
15	江西	4954.7	4692.3	204. 4	2286.4
16	山东	5569.1	6266.6	358.7	1759.7
17	河南	4228	4643.2	168	2657.6
18	湖北	4023	5534	158. 6	3009.3
19	湖南	4946.2	4138.6	143. 1	2702.5
20	广东	7255.3	3883.6	365.8	3007.5
21	广西	2848. 1	4759.2	149. 2	2603
22	海南	4764.9	5315.7	139. 1	1623.1
23	重庆	3965.6	4150.1	295.8	3137.3
24	四川	3737.6	4525.2	268.5	2671.8
25	贵州	3211	3115.8	67. 1	1696.3
26	云南	2553.9	5043.7	152. 2	1270.1
27	西藏	2204. 9	5237. 9	148. 7	1502.3
28	陕西	3916	3057.9	159	2263.6
29	甘肃	2125	3261. 4	128. 4	1942
30	青海	2464.3	3197	325. 2	2677.8
31	宁夏	3906. 1	3937.5	291. 8	1716.3
32	新疆	2527. 1	5642	222. 8	1791.3

🖺 数据标准化

- > 数据标准化就是用来消除不同量级的影响
 - (1) min-max标准化 (归一化)
 - 新数据=(原数据-最小值)/(最大值-最小值)

- (2) z-score标准化 (规范化)
 - 新数据=(原数据-均值)/标准差
 - 推荐使用sklearn.preprocessing.StandardScaler()函数

點 K-均值聚类

◆ 基本步骤:

Step1:随机初始化**K个聚类中心**,即K个类中心向量;

Step2: 对每个样本,计算其与各个类中心向量的距离(这里指 欧式距离 $d_{ij} = \sqrt{\sum_{m=1}^{n} (x_{im} - x_{jm})^2}$),

并将该样本指派给距离最小的类;

Step3: 更新每个类的中心向量,更新的方法为取该类所有样本的特征向量均值;

Step4: 直到各个类的中心向量不再发生变化为止,作为退出条件。

≌ 层次聚类 (以聚合聚类为例)

◆ 基本步骤:

·Step1:每个样本自成一类;

•Step2: 计算N个样本两两之间的**距离**,并将其中距离最近的点聚成一个小类,得到N-1

个小类;

·Step3: 计算余下样本点和小类间的距离,并将当前距离最近的点或小类再聚成一个类;

•Step4: 重复上述过程,不断将所有样本和小类聚集成新的类,直到类的个数为k(人为

设置的)

≌ 评价指标——轮廓系数

- 聚类是没有标签,即不知道真实答案的预测算法,我们必须完全依赖评价**簇内的稠密程度** (**簇内差异小**)和**簇间的离散程度(簇外差异大)**来评估聚类的效果。其中**轮廓系数**是最常用的聚类算法的评价指标,它能够同时衡量:
- (1) 样本与其自身所在的簇中的其他样本的相似度,等于样本与同一簇中所有其他点之间的平均距离,这个距离记作a。
- (2) 样本与其他簇中的样本的相似度,等于样本与下一个最近的簇中的所有点之间的平均距离,这个距离记作b。
- (3) 单个样本的轮廓系数计算为:

$$S = \frac{b - a}{\max(a, b)}$$

部 评价指标——轮廓系数

在sklearn.metrics模块中有用来评价聚类结果的指标,如下表:

方法名	真实值	最佳值	Sklearn函数
轮廓系数评价法	不需要	畸变程度最大	sihouette_score

说明:由轮廓系数图可以看出,聚 类数目为2-3和3-4时,平均畸变程 度较大,所以k取2/3/4都可以。

≌ 评价指标——簇内误差平方和

对于一个簇来说,所有样本点到质心的距离之和越小,我们就认为这个簇中的样本越相似,簇内差异就越小。簇内误差平方和

$$SSE = \sum_{j=0}^{k} \sum_{i=1}^{n} (x_i - \mu_i)^2$$

其中 x 表示簇中的一个样本点, μ 表示簇中的质心(也即簇内样本的均值), n表示每个样本点中的特征数目,i表示组成点x的每个特征,k表示簇的个数。

说明:随着聚类数k的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么误差平方和SSE自然会逐渐变小。并且,当k小于真实聚类数时,由于k的增大会大幅增加每个簇的聚合程度,故SSE的下降幅度会很大,而当k到达真实聚类数时,再增加k所得到的聚合程度回报会迅速变小,所以SSE的下降幅度会骤减,然后随着k值的继续增大而趋于平缓。所以也称为手时法。

实验步骤

◆实验步骤(使用Python自编程)

1、准备数据

✓读取数据,将数据进行规范化处理

2、定义模型

✓根据算法定义,完成k-均值/层次聚类模型的编程

3、训练模型

✓训练模型,调整k值,根据评价指标找到合适的k值

4、评估模型

✓根据合适的k值,对数据做聚类,并评估模型

实验要求

- 1、数据集标准化处理;
- 2、使用python自编程完成k-均值和层次聚类的模型定义;
- 3、记录调参过程和结果,根据评价指标,选出最合适的K值;
- 4、使用轮廓系数评价法和簇内误差平方和指标来评价模型。
- 5、用图/表格形式展示出最后的分类结果,以及质心(k-means方法需要)

提交方式

实验报告提交至平台 http://grader.tery.top:8000/#/courses

注意:

- ▶1、用户名、密码默认均为学号(若之前有修改过密码的,请用新密码登陆);
- ▶2、请提交到相应的条目「2022春统计机器学习」课程 实验五;
- ▶3、提交截止时间:下周四晚24点前;
- ▶4、文件夹&压缩包命名要求: 学号 姓名 统计机器学习实验五
- ▶5、提交内容:实验报告(.pdf文件)+代码(.py文件),一起打包为zip格式压缩包。

统计机器学习实验

同学们, 请开始实验吧!