

IBM MQ for z/OS Overview and Terms

Lyn Elkins –

<u>elkinsc@us.ibm.com</u>

Mitch Johnson

<u>mitchj@us.ibm.com</u>

MQ Overview

- This should be a quick overview of terms, topologies and patterns we discuss in this session.
- Agenda:
 - General MQ Terms
 - Shared Queue Terms

- IBM MQ is *the* solution for business-critical messaging
- The world depends on reliable, secure messaging and 85% of the fortune 100 depend on IBM MQ*
- Your bank transfers complete without losing your money, with all of the worlds top 50 banks using IBM MQ*

IBM Messaging

http://www.relbanks.com/worlds-top-banks/assets

http://beta.fortune.com/fortune500/list

Simple

Precise

Secure

John Dar Miller and John Dar Miller

IBM MQ – Terms and Topologies

IBM MQ – Basic Terms

- Messages can be created from any source:
 - Data, Messages, Events, Files, Web service requests / responses
- Messages are moved asynchronously using Queues
- Queues are owned and managed by a Queue Manager
- Messages flow between queue managers across Channels

What is a Message? More detail

Message = Header + User Properties + User Data

Header

User Properties

User Data

A Series of Message Attributes
Understood and augmented by the Queue Manager

- Message Id
- Correlation Id
- Message persistence
- Routing information
- Reply routing information
- Message priority
- Message expiry
- Message codepage/encoding
- Message format
-etc.

- Any sequence of bytes
- Private to the sending and receiving programs
- Not meaningful to the Queue Manager
- User Properties are Arbitrary properties
 - For example, this is a "green" message
 - Message Types
 - -Persistent ... recoverable
 - -Non Persistent
 - Up to 100MB message length

© IBM Corporation 2020

Message persistence

- A key attribute of a message is its persistence. A message is either persistent or non-persistent. This attribute tells the Queue Manager how important the message is.
 - Persistent: persistent messages are logged to the MQ log files (DASD). The Queue Manager will ensure that the messages are recovered in the case of a system crash or network failure. These messages are delivered once and only once to the receiving applications.
 - Non-persistent: The messages are identified by the application as non-critical. The Queue Manager will make every effort to deliver these messages but since they are not necessarily written to disk they will be lost in the case of a system crash or network failure. Clearly with no disk IO involved these messages are much faster (and cheaper) than persistent ones.

What is a Queue? - More detail

- A queue s a container for messages
 - Various Queue Types
 - Local, Alias, Remote, Model
- Queue creation
 - Predefined
 - Dynamically defined
- Message Access
 - FIFO
 - Direct
 - Selected by Property (V7)
 - Priority
 - Destructive & non-destructive access
- Participates in Transactions

- Parallel access by applications
 - Managed by the queue manager

What is a Queue Manager on z/OS? More Detail

MQ Channels

What are Topic Strings and Topic Objects?

- Topic Object
 - Is a predefined MQ object with a 48-character name
 - Allows you to assign specific non default information for the pub/sub environr
 - Has a topic string as an attribute
 - Is an access control point
- Topic String
 - Is a character string
 - Can be made up of any characters
 - Is case sensitive
 - /fruit/apples
 - Is the 'subject matter' for Publications and Subscriptions

What is an MQ Client?

Server Model

Client Model

What is the Client implementation on z/OS?

Server Model

z/OS Client Model

What is a Queue Manager Cluster?

- A <u>cluster</u> is a group of queue managers set up in such a way that the queue managers can communicate directly with one another over a single network, without the need for multiple transmission queue, channel, and remote queue definitions.
- Each queue manager in the <u>cluster</u> has one or more cluster transmissions queue from which it can transmit messages to other queue managers in the cluster.
- Queue managers in a cluster can be at different versions of MQ (as long as that version does support clustering) and on different platforms.
- A cluster can evenly distribute workload across multiple target queues.
- A cluster is composed of:
 - Two full repository queue managers
 - Cluster sender and receiver channels
 - Partial repository queue managers
 - Cluster defined objects
 - Queues
 - Topics

How does a cluster normally work?

© IBM Corporation 2020

John Die Service mention and the service of the ser

Shared queue terms

- A unique feature to MQ on z/OS, shared queues were designed and built to provide continuous availability for MQ messages.
- In the following foils, the terms used to discuss shared queues are defined

Coupling Facility

- A coupling facility is special hardware and software that allow multiple systems to access the same data. It is unique to z/OS, and is required for a parallel sysplex environment.
- It, and the structures it holds, are typically represented by triangles.

List Structure

- A list structure is a data holding structure in the Coupling Facility used by MQ, IMS and DB2 to hold 'lists' of data. For MQ a single list structure can host up to 512 queues.
- Messages are held on the list structures

MQ Queue Sharing terms

- Queue Sharing Group
 - A QSG is a logical association of queue managers in a Sysplex. These queue managers are connected to coupling facility list structures and a DB2 Data sharing group. This allows them to share queues and their messages, to treat any queue defined on the CF as if it is local (can do both MQGETs and MQPUTs).
 - There can be up to 32 queue managers in a QSG.
- Shared queues
 - Queues defined on a Coupling Facility structure.
 - Available to every queue manager on the queue shared group as if it is a local queue.
- CFSTRUCT
 - A MQ object that defines the Coupling facility list structure to MQ.

Elements and Entries

- An entry is the anchor of an individual message in the list structure.
- The elements (aka segments) are the 256-byte chunks of the message in the list structure.

© IBM Corporation 2020

Private queues

- Private queues are queues defined to and managed by a specific queue manager. They use local bufferpools and pagesets for their physical message storage.
- Messages on private queues are only available for MQGETs to applications connected to the queue manager where they are defined.

Intra-Group Queuing

- IGQ uses the CF to pass messages between queue managers within the same Queue Sharing Group
 - No channels have to be defined between the queue managers
 - But traditional channels are often used for large messages
 - Can be more efficient than normal channels
 - Especially for small messages
 - Avoid multi-hopping in most configurations
 - Uses the SYSTEM.IGQ.TRANSMIT.QUEUE
 - Remote queue definitions are still necessary
 - Message size determines whether a message is sent via IGQ or a channel.
 Message size is controlled on SYSTEM.IGQ.TRANSMIT.QUEUE definition:
 - If the CFSTRUCT used is level 3, the max message size is 63K
 - MAXMSGL can also be adjusted down from the default

Intra-Group Queuing – What it looks like

and the same and t

Summary

- MQ general terms were defined for use in this session
- MQ Shared queue terms were defined for this session
- Any questions?