We used a **Random Forest Classifier**, a robust ensemble model that builds multiple decision trees and combines their outputs to improve accuracy and reduce overfitting. It is well-suited for structured data, handles nonlinear relationships effectively, and can identify key predictors even when some data is missing or imbalanced.

★ Top 5 Input Features (Based on Feature Importance):

- 1. **Missed_Payments** Directly reflects a customer's past payment behavior, a strong indicator of future delinquency.
- 2. **Credit_Score** Captures overall creditworthiness; lower scores are typically linked to higher delinquency risk.
- 3. **Income** Influences repayment capacity; lower or unstable income can raise the risk of missed payments.
- 4. **Credit_Utilization** High utilization suggests over-reliance on credit and potential financial strain.
- 5. **Loan_Balance** Higher outstanding balances may indicate debt stress and increase likelihood of default

Justifying model choice

Logistic Regression

Pros:

- **Simple & Interpretable**: Easy to explain to stakeholders and regulators—shows how each variable affects the odds of delinquency.
- **Fast to Train**: Computationally efficient, even with large datasets.
- Well-Suited for Linearly Separable Data: Works well when the relationship between features and the target is linear.
- **Handles Probabilities Naturally**: Directly outputs a probability of risk, useful in scoring systems.

Cons:

- **Limited to Linear Relationships**: Can't model complex patterns without feature engineering.
- Sensitive to Outliers: Extreme values can bias results unless treated properly.
- **Assumes Independence**: Assumes features are not strongly correlated, which may not hold in financial datasets.

Decision Trees

Pros:

- Captures Nonlinear Relationships: Automatically models complex interactions between variables.
- **Intuitive Flow**: Easy to visualize (e.g., "if income < ₹20,000 and 2 missed payments → high risk").
- Handles Missing Values Well: Some implementations can split data even with nulls.
- No Feature Scaling Needed: Works with raw data without normalization.

Cons:

- **Prone to Overfitting**: Single decision trees can fit noise unless pruned or regularized.
- Less Interpretable for Deep Trees: Can become complex and harder to explain at scale.
- Instability: Small changes in data can result in very different trees.

Summary:

- Use Logistic Regression when interpretability, regulatory compliance, and speed are top priorities.
- Use Decision Trees when your data is complex or non-linear and you want more flexible modeling.

Model Type	Performance	Explainability	Summary
Logistic Regression	* ★ (Good for simple patterns)	* * * * (Highly interpretable)	Best when transparency and regulatory compliance are key.
Decision Tree	inon-iinear data i		Good tradeoff for small to medium datasets, interpretable with moderate performance.
Random Forest	* * * * (Strong, robust model)	* * (Feature	High accuracy; harder to explain full decision path but more stable than a single tree.
XGBoost / Gradient Boosting	* * * * (State- of-the-art)	* (Complex to	Excellent accuracy; requires SHAP or LIME for interpretation.
Neural Networks (MLP)	* * * * (Good with large data)	A CRIDGE BOX	High capacity, but very hard to interpret for financial justification.

Here's how common **credit delinquency prediction models** align with operational needs such as **speed**, **scalability**, and **ease of monitoring** in a real-world banking or lending environment:

1. Logistic Regression

Speed: 4 Very fast for both training and prediction, even with large datasets.

Scalability:

✓ Scales well to millions of rows; low computational cost.

Ease of Monitoring: $\star \star \star \star \star \star$ Very easy—coefficients directly explain variable impact, making it ideal for ongoing compliance checks.

Fit: Great for real-time scoring and environments needing clear audit trails.

2. Decision Trees

Speed: **A** Fast training and prediction for small to medium datasets; may slow down with very large data.

Scalability:

✓ Handles moderate scaling well; deep trees can become heavy.

Ease of Monitoring: $\star \star \star$ Clear, visual rules; easy to explain decisions to auditors or risk officers.

Fit: Good for medium-scale batch scoring where transparency is still important.

3. Random Forest

Speed: ♣ Slower than single trees, especially for large ensembles.

Scalability:

✓ Parallelizable, so can handle large datasets on distributed systems.

Ease of Monitoring: $\star \star$ Only feature importance available natively; needs extra tools for deeper explanation.

Fit: Ideal for **large-scale batch scoring** where accuracy is more important than instant interpretability.

4. XGBoost / Gradient Boosting

Speed: \Box Slower to train but can be optimized for fast prediction with tuned parameters.

Scalability:

✓ Highly scalable with GPU or distributed computing support.

Ease of Monitoring: ★ Needs tools like **SHAP** or **LIME** for explainability; less transparent out-of-the-box.

Fit: Best for **high-volume risk scoring** where maximizing accuracy outweighs instant transparency.

5. Neural Networks (MLP)

Speed: □ Slowest to train; prediction speed depends on architecture.

Scalability: **⊘** Excellent with cloud/GPU infrastructure.

Ease of Monitoring: ★ Very low—black-box nature makes it challenging for regulated credit decisions.

Fit: Suitable for **non-regulated risk assessment** where extreme accuracy is required and interpretability is less critical.

Plan how to evaluate model performance

Metric	Description			
Accuracy	Overall percentage of correct predictions. May be misleading in imbalanced data.			
Precision	% of predicted high-risk customers who were actually high-risk. Important for reducing false alarms.			
Recall (Sensitivity)	% of actual high-risk customers the model correctly identified. Critical for catching risky cases.			
F1-Score	Harmonic mean of precision and recall—balances both.			
AUC-ROC	Measures how well the model distinguishes between good and bad customers. Higher is better.			
Confusion Matrix	Provides true/false positives and negatives—useful for visualizing model behavior.			

Performance Metrics

- What it measures: Proportion of total correct predictions.
- Use case: Basic model sanity check.
- **Interpretation**: Can be misleading with imbalanced classes; should not be relied on alone.

€ F1 Score

- What it measures: Harmonic mean of precision and recall.
- Use case: Balancing false positives and false negatives in delinquency detection.
- **Interpretation**: A high F1 score means the model correctly flags delinquent customers without over-penalizing safe ones.

✓ AUC-ROC (Area Under Curve - Receiver Operating Characteristic)

- What it measures: Ability to distinguish between delinquent and non-delinquent customers at various thresholds.
- Use case: Evaluate overall model discrimination power.
- **Interpretation**: Closer to 1.0 is best; >0.80 is generally strong.