Universitatea Politehnica din București 2005 Disciplina: Geometrie și Trigonometrie Varianta A

- 1. Să se afle câte soluții are ecuația $\sin x \sqrt{3}\cos x = 0$ în intervalul $[-\pi, 2\pi]$. (4 pct.)
 - a) patru; b) o infinitate; c) două; d) trei; e) una; f) nici una.

Soluţie. Se observă că $\cos x = 0 \Leftrightarrow x = (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$, care nu satisfac ecuaţia $\sin x - \sqrt{3}\cos x = 0$. Rezultă $\operatorname{tg} x = \sqrt{3}$ cu soluţiile $x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$. În intervalul $[-\pi, 2\pi]$ avem pentru $k \in \{-1, 0, 1\}$ respectiv soluţiile $\{-\frac{2\pi}{3}, \frac{\pi}{3}, \frac{4\pi}{3}\}$.

2. Un triunghi isoscel are două unghiuri de mărime $\frac{\pi}{8}$ și laturile egale de lungime 1. Atunci înălțimea corespunzătoare uneia dintre laturile egale are lungimea (4 pct.)

a)
$$\frac{1}{3}$$
; b) $\frac{\sqrt{3}}{2}$; c) $\frac{1}{2}$; d) $\frac{\sqrt{2}}{2}$; e) $\frac{\sqrt{2}}{3}$; f) $\frac{3}{\sqrt{2}}$.

Soluție. Unghiul de la vârful triunghiului isoscel are măsura $\frac{3\pi}{4}$. Suplementul său este unghiul exterior ce se opune înălțimii (catetă într-un triunghi dreptunghic de ipotenuză 1) are mărimea $\frac{\pi}{4}$, deci înălțimea corespunzătoare uneia dintre laturile egale este de lungime $1 \cdot \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.

- 3. Care este ordinea crescătoare a următoarelor numere: $a = \sin 2$, $b = \sin \frac{2\pi}{3}$, $c = \sin 8$? (4 pct.)
 - a) c < b < a; b) a < b < c; c) b < c < a; d) b < a < c; e) a < c < b; f) c < a < b.

Soluție. Avem $\sin 8 = \sin (8 - 2\pi)$ și $\frac{\pi}{2} < 8 - 2\pi < 2 < \frac{2\pi}{3} < \pi$. În cadranul 2 funcția sin este strict descrescătoare, deci $\sin 8 > \sin 2 > \sin \frac{2\pi}{3}$ și deci c > a > b.

- 4. Dreapta care trece prin punctele A(1,2) şi B(2,5) are ecuația (4 pct.)
 - a) x 3y = 1; b) 2x y = 0; c) x 2y = 0; d) 3x y = 1; e) x + 3y = 1; f) 3x + y = 1.

Soluție. Ecuația dreptei AB este $\frac{x-x_A}{x_B-x_A}=\frac{y-y_A}{y_B-y_A}$, deci $x-1=\frac{y-2}{3}\Leftrightarrow 3(x-1)=y-2$, prin urmare 3x-y=1.

- 5. Să se determine ecuația planului care trece prin punctul A(3, -2, -7) și este paralel cu planul 2x 3z + 5 = 0. (4 pct.)
 - a) 2x 3z 10 = 0; b) x 3z 27 = 0; c) 2x 3z 20 = 0; d) 2x z 27 = 0; e) 2x 3z 27 = 0;
 - f) 2x 3z 25 = 0.

Soluție. Ecuația unui plan paralel cu planul dat este $2x - 3z + \alpha = 0$, $\alpha \in \mathbb{R}$. Cum planul trece prin A(3, -2, -7), avem $6 + 21 + \alpha = 0$, deci $\alpha = -27$ și planul cerut are ecuația 2x - 3z - 27 = 0.

- 6. Un triunghi dreptunghic are ipotenuza de lungime 8 cm și un unghi de 30°. Calculați lungimea înălțimii corespunzătoare ipotenuzei. (4 pct.)
 - a) $4\sqrt{3}$; b) $\sqrt{3}$; c) $\frac{\sqrt{3}}{2}$; d) $2\sqrt{3}$; e) 2; f) 4.

Soluție. Fie $\triangle ABC$, dreptunghic in B, $BD \perp AC(D \in AC)$ și $m(\angle BAC) = 30^{\circ}$. Rezultă $BC = \frac{AC}{2} = \frac{8}{2} = 4$ și $BD = BC \sin 60^{\circ} = \frac{4\sqrt{3}}{2} = 2\sqrt{3}$.

- 7. Dacă $E=\cos\frac{\pi}{6}+\mathrm{i}\ \sin\frac{\pi}{6},$ să se determine valoarea $a=E^{12}.$ (4 pct.)
 - a) 1; b) 1 i; c) i; d) -1; e) -i; f) 0.

Soluţie. Pentru $E = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$, avem

$$a = E^{12} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)^{12} = \cos \frac{12\pi}{6} + i \sin \frac{12\pi}{6} = \cos 2\pi + i \sin 2\pi = 1 \Rightarrow a = 1.$$

- 8. Un paralelipiped dreptunghic are diagonala de lungime 4 și laturile bazei de lungimi respectiv 2 și 3. Atunci înălțimea paralelipipedului are lungimea (4 pct.)
 - a) $\sqrt{3}$; b) 4; c) 1; d) 2; e) $\sqrt{5}$; f) $\sqrt{2}$.

Soluție. File L, l, h si d respectiv lungimea, lătimea, înăltimea și diagonala paralelipipedului. Atunci $d^2 = L^2 + l^2 + h^2$, deci $4^2 = 3^2 + 2^2 + h^2$; obținem $h^2 = 16 - 4 - 9 = 3 \rightarrow h = \sqrt{3}$.

9. Dacă x este un unghi în $\left(0,\frac{\pi}{2}\right)$ și $\sin x = \frac{2}{3}$, să se determine tg x. (4 pct.)

a)
$$-\frac{1}{\sqrt{5}}$$
; b) $\frac{2}{\sqrt{5}}$; c) $\frac{1}{2}$; d) $\frac{1}{\sqrt{5}}$; e) $\sqrt{5}$; f) $\frac{\sqrt{5}}{2}$.

Soluţie. Dacă $\sin x = \frac{2}{3}$ şi $x \in (0, \frac{\pi}{2})$, rezultă $\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}$ şi deci $\operatorname{tg} x = \frac{\sin x}{\cos x} = \frac{2}{\sqrt{5}}$.

10. Aflați aria unui triunghi dreptunghic dacă ipotenuza are lungimea 25 cm iar perimetrul este de 60 cm. (4 pct.)

a) 50 cm^2 ; b) 125 cm^2 ; c) 150 cm^2 ; d) 325 cm^2 ; e) 100 cm^2 ; f) 225 cm^2 .

Soluţie. Fie a ipotenuza triunghiului, b,c catetele. Avem a=25, si p=a+b+c=60, unde am notat cu p perimetrul triunghiului. Atunci b+c=60-25=35, iar prin ridicare la pătrat rezultă $b^2+c^2+2bc=1225$. Conform teoremei lui Pitagora, avem $a^2=b^2+c^2$. Obținem 2bc=600, iar aria este $\frac{bc}{2}=\frac{600}{4}=150$.

11. Fie A(2,3), B(4,-1). Să se afle coordonatele punctului M pentru care $\overline{MA} + \overline{MB} = \overline{0}$. (4 pct.)

a) (2,2); b) (3,1); c) (1,2); d) (1,3); e) (1,1); f) (2,1).

Soluţie. Fie $M(\alpha, \beta)$, atunci $\overline{MA} = (2-\alpha)\overline{i} + (3-\beta)\overline{j}$ şi $\overline{MB} = (4-\alpha)\overline{i} + (-1-\beta)\overline{j}$. Cum $\overline{MA} + \overline{MB} = \overline{0}$, avem $6-2\alpha=0$ şi $2-2\beta=0$, adică $\alpha=\frac{6}{2}$ şi $\beta=\frac{2}{2}$, deci obţinem M(3,1), mijlocul segmentulul AB.

12. Pentru ce valoare $m \in \mathbb{R}$ vectorii $\vec{a} = m\vec{i} + 3\vec{j} + 4\vec{k}$ şi $\vec{b} = 4\vec{i} + m\vec{j} - 7\vec{k}$ sunt perpendiculari? (4 pct.)

a) m = 3; b) m = 5; c) m = -4; d) m = 4; e) m = 2; f) m = -3.

Soluție. Vectorii \vec{a}, \vec{b} sunt perpendiculari dacă $\vec{a} \cdot \vec{b} = 0$, adică 4m + 3m - 28 = 0. Rezultă 7m = 28, decim = 4

13. Diagonala unei fețe a unui cub de volum 8 este (6 pct.)

a) 2; b) $\sqrt{2}$; c) $\sqrt{3}$; d) 4; e) $2\sqrt{2}$; f) 1.

Soluție. Diagonala unei fețe este $d^2=2l^2$ unde l este latura cubului. Volumul cubului este deci $V=l^3=8$ deci l=2. Avem $d^2=2\cdot 4$ deci $d=2\sqrt{2}$.

14. Care dintre următoarele puncte aparțin elipsei raportate la axe cu semiaxele a=2 și b=3? (6 pct.)

a) $(\sqrt{2}, \sqrt{3})$; b) (-1, 1); c) $(\sqrt{2}, \frac{3}{\sqrt{2}})$; d) (1, 0); e) (1, 2); f) $(2\sqrt{2}, \frac{1}{\sqrt{2}})$.

Soluție. Ecuația elipsei de semiaxe a=2,b=3 este $\frac{x^2}{4}+\frac{y^2}{9}=1$. Punctul ce verifica aceasta ecuație este deci $(\sqrt{2},\frac{3}{\sqrt{2}})$.

15. Volumul unui con circular drept de generatoare 5 și rază 4 este: (6 pct.)

a) $\frac{80\pi}{3}$; b) 20π ; c) 16π ; d) $\frac{8\pi}{3}$; e) 32π ; f) 4π .

Soluție. Înălțimea conului este H iar volumul conului este $V=\frac{\pi R^2 H}{3}$. Aflam înălțimea; avem $H^2=G^2-R^2$ unde G este generatoarea și R este raza conului; obținem $H^2=25-16=9$, deci H=3 și $V=\frac{\pi\cdot 3\cdot 16}{3}=16\pi$.

- 16. Fie $z=(1+\mathrm{i})^2$. Să se calculeze $\arg z\ (0\leq \arg z<2\pi)$. (8 pct.)
 - a) $\frac{\pi}{4}$; b) $\frac{\pi}{2}$; c) $\frac{2\pi}{5}$; d) $\frac{\pi}{3}$; e) $\frac{3\pi}{4}$; f) $\frac{\pi}{6}$.

Soluție. Avem $z = (i+1)^2 = 2i = 2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$, deci arg $z = \frac{\pi}{2}$.

17. Care este raza cercului de ecuație $x^2 + y^2 - 2x - 2y = 0$? (8 pct.)

a) 3; b) 2; c) $\sqrt{2}$; d) 1; e) -1; f) $\sqrt{3}$.

Soluție. Restrangând pătratele, ecuația cercului se rescrie $(x-1)^2+(y-1)^2=(\sqrt{2})^2$, deci $R=\sqrt{2}$.

- 18. Să se calculeze volumul piramidei ale cărei fețe sunt planele de coordonate și planul de ecuație: 3x + 6y 2z 24 = 0. (8 pct.)
 - a) 64; b) 100; c) 8; d) 32; e) 36; f) $\frac{16}{3}$.

Soluție. Planul intersectează axele de coordonate în punctele $A(x_0,0,0), B(0,y_o,0)$ și $C(0,0,z_0)$. Din ecuația planului obținem $x_0=8,y_0=4$ si $z_0=-12$, deci volumul cerut este $\frac{1}{6}\mid x_0y_0z_0\mid=64$.