

Datum: _

Realisieren Sie die nachfolgenden Aufgaben mit Hilfe von for, while oder do-while.

Satz des Pythagoras

Der Satz des Pythagoras definiert die Beziehungen der Seitenlängen in einem rechtwinkligen Dreieck zu $a^2+b^2=c^2$. Die Formel für die Berechnung der Hypotenuse bei gegebenen Katheten ist demnach $c=Math.sqrt((a^2+b^2))$. Es ist eine bemerkenswerte Tatsache, dass die Hypotenusenlänge auchberechnet werden kann, ohne explizit die Wurzel zu ziehen.

Das folgende Verfahren wurde 1983 von C.Moler und D.Morrison beschrieben.

Zunächst berechnen Sie:

```
c = maximum(a,b);
q= minimum(a,b);
```

Dann führen Sie drei Iterationen der folgenden Anweisungen aus:

```
r = (q/c)^2;

s = r/(4.0+r);

c = c+(2.0*s*c);

q = s*q;
```

Bereits nach nur drei Iterationen findet sich eine sehr gute Annäherung der Hypothenuse c.

Schreiben Sie ein Programm, das dieses Verfahren implementiert.

(<u>Hinweis:</u> Für die Bestimmung des Maximums der Zahlen a und b können Sie die Anweisung Math.max(a,b) und für das Minimum die Anweisung Math.min(a,b) nutzen.)

Summe von Zahlen

Schreiben Sie ein Programm zur Berechnung der Summe der Zahlen von 1 bis n. Ermitteln Sie das Resultat durch Summierung innerhalb einer Schleife.

Tabelle Quadrat- und Kubikzahlen

Schreiben Sie ein Programm, das eine Tabelle von den Quadrat- und Kubikzahlen der Zahlen 1 bis n ausgibt.

n	n^2	n^3	(<u>Hinweis:</u> Nutzen Sie für die Berechnung der Quadrat- bzw.
1	1	1	,
2	4	8	Kubikzahlen die Anweisung Math.pow(Basis,Exponent). Basis $=$ Zahl -
_		_	z.B.: 1, 2 oder 3 - und Exponent = Potenz - z.B. 2 für Quadrat und 3
3	9	27	für Kubik.)

Für die einheitliche Ausgabe als Tabelle (Spalten) können Sie "\t" als Tabstopp nutzen.

Quadratwurzel - do-while-Schleife

Schreiben Sie ein Program, welches die Quadratwurzel einer natürlichen Zahl annähert. Benutzen Sie dazu die *Folge von Heron*:

$$X_{n+1} = 1/2 * (X_n + Zahl/X_n);$$

Das Programm soll abbrechen, wenn der Unterschied zum vorherigen Näherungswert kleiner als $0.000\ 000\ 000\ 000\ 001$ wird. Der Wert X_0 ist die Zahl selbst.

Teiler einer Zahl

Geben Sie zu einer einzugebenden Zahl alle Teiler dieser Zahl aus.

Realisieren Sie die Lösung sowohl mit einer for- als auch mit einer while-Schleife.