BREADTH-FIRST SEARCH (G, s)

```
for each vertex u \in V[G]-s
               do color[u] ← WHITE
2
3
                   distance[u] \leftarrow \infty
                   predecessor[u] \leftarrow NIL
4
5
    color[s] \leftarrow GRAY
    distance[s] \leftarrow 0
   predecessor[s] \leftarrow NIL
8 Q \leftarrow \emptyset
    ENQUEUE (Q, s)
10 while Q \neq \emptyset
               do u ← DEQUEUE (Q)
11
                   for each v \in Adj[u]
12
                          do if color [v] = WHITE
13
                                    then color [v] \leftarrow GRAY
14
15
                                           distance[v] \leftarrow distance[u] + 1
                                           predecessor[v] \leftarrow u
16
                                           ENQUEUE (Q, v)
17
                   color[u] ← BLACK
18
```

Source s = B

Source s = B

Breadth-first tree

$$Q = \{B_0\}$$

$$Q = \{B_0\}$$

expand B Breadth-first tree

$$Q = \{A_1, F_1\}$$

$$Q = \{A_1, F_1\}$$

expand A Breadth-first tree

$$Q = \{F_1, E_2\}$$

$$Q = \{E_2, C_2, G_2\}$$
 expand E Breadth-first tree

$$Q = \{C_2, G_2\}$$

Proofs of the properties of BFS

1. BFS finds the shortest path between two nodes

2. BFS is correct

3. BFS finds the BF tree

Proofs of the properties of BFS

1. <u>BFS finds the shortest path between two nodes</u>

2. BFS is correct

3. BFS finds the BF tree

 $\delta(s,v)=:$ minimum number of edges to reach v from s (the graph is not weighted)

 $\delta(s,v)=\infty$, if v cannot be reached from s

L1: For every edge (u,v): $\delta(s,v) \leq \delta(s,u) + 1$

Dem:

L1: For every edge (u,v): $\delta(s,v) \leq \delta(s,u) + 1$

Dem:

If \exists trajectory (s,u), to reach v from s, one would need at most one more edge: the edge (u,v) otherwise, $\delta(s,v)=\infty$, and the inequality also obtains

L2: After having completed the BFS algorithm,

 \forall v: distance[v] $\geq \delta(s,v)$

Dem (induction):

L2: After having completed the BFS algorithm,

 \forall v: distance[v] $\geq \delta(s,v)$

Dem (induction):

Base case: initially $d[s] = 0 = \delta(s,s)$ y $d[v] = \infty \ge \delta(s,v)$

hypothesis: d[u]≥ δ(s,u)

induction: v has been found from u (v is "white"), then:

$$d[v] = d[u]+1$$
 (line 15)

 $\geq \delta(s,u) + 1$ (hypothesis)

 $\geq \delta(s,v)$ (L1)

Once v is ENQUEUED, d[v] does not change.

L3: Q contains $(v_1, v_2...v_r)$. Then:

 $d[v_r] \le d[v_1]+1$, and $d[v_i] \le d[v_{i+1}]$, for i=1, 2,... r-1

Dem (induction on the number of operations in Q):

```
L3(1/2): Q contains (v_1, v_2...v_r). Then:
d[v_r] \le d[v_1] + 1, and d[v_i] \le d[v_{i+1}], for i=1, 2, ..., r-1
Dem (induction on the number of operations in Q):
Base case: it is true initially (s is the only node in Q)
Induction 1: (DEQUEUE v_1) \Rightarrow the fist vertex in Q is v_2
     d[v_1] \le d[v_2]
                              (hypothesis)
     d[v_r] \leq d[v_1]+1
           \leq d[v_2] + 1
```

The remaining inequalities for the other vertices do not change

L3: Q contains $(v_1, v_2...v_r)$. Then: $d[v_r] \le d[v_1]+1$, and $d[v_i] \le d[v_{i+1}]$, for i=1, 2,... r-1 **Dem (induction on the number of operations in Q):** *Base case:* it is true initially (s is the only node in Q) *Inducción 2:* (ENQUEUE v_{r+1})

```
L3 (2/2): Q contains (v_1, v_2...v_r). Then:
d[v_r] \le d[v_1] + 1, and d[v_i] \le d[v_{i+1}], for i=1, 2,... r-1
Dem (induction on the number of operations in Q):
Base case: it is true initially (s is the only node in Q)
Induction 2: (ENQUEUE v=v_{r+1}) \Rightarrow "u" has been eliminated from Q.
     We are exploring vertex v (adjacent to u). There is a new v_1.
     d[u] \leq d[v_1]
                                                    (hypothesis)
      d[v_{r+1}] = d[v] = d[u] + 1 \le d[v_1] + 1
                                                   (v is adjacent to u)
     d[v_r] \le d[u] + 1
                                                   (hypothesis)
```

Therefore: $d[v_r] \le d[u] + 1 = d[v] = d[v_{r+1}]$

The remaining inequalities for the other vertices do not change.

Proofs of the properties of BFS

1. BFS finds the shortest path between two nodes

2. BFS is correct

3. BFS finds the BF tree

Theorem: BFS on G, from s. Then

- During the execution, <u>BFS discovers all the vertices</u> that are reachable from s
- At the end of the algorithm, $d[v] = \delta(s,v)$ for all v
- For each v≠s, one of the shortest paths in G to go from s to v is one of the shortest paths to go from s to the predecessor[v] plus the edge (predecessor[v], v)

Proof (contradiction 1/3): At end of BFS on s, $\underline{d[v]} = \delta(s,v)$ for all v

- 1. Assume vertex v with lowest $\delta(s,v)$ such that $d[v] \neq \delta(s,v)$. $v \neq s$
- 2. $d[v] \ge \delta(s,v)$ (because of L2) $\Rightarrow d[v] > \delta(s,v)$
- 3. v is reachable from s (otherwise, $\delta(s,v) = \infty \ge d[v]$, which contradicts the previous inequality)
- 4. Let u be the vertex that immediately precedes v in one of the shortest paths : $\delta(s,v) = \delta(s,u) + 1$ (therefore $\delta(s,u) < \delta(s,v)$)
- 5. On the other hand: $d[u] = \delta(s,u)$, because of the way v is chosen

Therefore:

$$d[v] > \delta(s,v) = \delta(s,u)+1 = d[u]+1 \Rightarrow d[v] > d[u]+1$$
 (*)

Proof (contradiction 2/3):

Now, in the BFS algorithm, after DEQUEUE u from Q

- If v were "white" \Rightarrow d[v]=d[u]+1 (line 15) \Rightarrow contradiction *
- If v were "black" v would no longer be in Q, and d[v] ≤ d[u] ⇒
 contradiction *
- If v were "gray" ⇒ v is gray before DEQUEUE u from Q.
 It was painted gray after removing another vertex w, for which d[v]=d[w]+1

If w had been removed from Q before $u \Rightarrow$

 $d[w] \le d[u] \Rightarrow d[v] = d[w] + 1 \le d[u] + 1 \Rightarrow contradiction *$

Therefore $d[v] = \delta(s,v)$ for all v

Proof (contradiction 3/3):

One also concludes that:

- BFS discovers all vertices that are reachable from s.
 Otherwise, one would have some v for which
 ∞ = d[v] > δ(s,v), which contradicts the previous result.
- [d[v]=d[u]+1] because [predecessor[v]=u].
 Therefore, one of the shortest paths to go from s to v is the shortest path to go from s to predecessor[v] plus the edge (predecessor[v], v)

Proofs of the properties of BFS

1. BFS finds the shortest path between two nodes

2. BFS is correct

3. BFS finds the BF tree

Breadth-first tree

Def. Given G=(V,E) and s, we define $G_p=(V_p, E_p)$, the predecessor subgraph of G, where :

$$V_p = \{v \in V : p[v] \neq NIL\} \cup \{s\}$$

 $E_p = \{(p(v), v) : v \in V_p - \{s\}\}$

G_n is a **breadth-first tree** if:

- V_p = all vertices v that are reachable from s
- There is a single path from s to v in G_p, which is the shortest path from s to v in G.

Breadth-first tree

L: BFS builds a data structure with predecessor such that the corresponding predecessor subgraph $G_p = (V_p, E_p)$ is a breadth-first tree

Proof:

Breadth-first tree

L: BFS builds a data structure with predecessor such that the corresponding predecessor subgraph $G_p = (V_p, E_p)$ is a breadth-first tree

Proof:

- p[v]=u (line 16), iff (u,v) \in E and δ (s,v) $<\infty$ (that is, if v is reachable from s)
- \Rightarrow V_p contains all vertices that are reachable from s The tree G_p has a single path for each v \in V_p \Rightarrow All these paths are shortest paths (previous theorem)