

planetmath.org

Math for the people, by the people.

discrete category

Canonical name DiscreteCategory
Date of creation 2013-03-22 16:15:09
Last modified on 2013-03-22 16:15:09

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 18A05
Defines trivial category
Defines empty category
Defines empty functor

A category \mathcal{C} is said to be a *discrete category* if the only morphisms in \mathcal{C} are the identity morphisms associated with each of the objects in \mathcal{C} .

For example, every set can be regarded as a discrete category. The objects are just the elements of the set. Furthermore, hom(a, a) is identified with $\{a\}$, and $hom(a, b) = \emptyset$ if $a \neq b$.

Remarks.

- A discrete category with one object is called a *trivial category*. For every category \mathcal{C} , there is only one functor from \mathcal{C} to a trivial category. Hence, any trivial category is a terminal object in \mathbf{Cat} , the category of small categories.
- A discrete category with no objects is called the *empty category*. For every category \mathcal{C} , there is only one functor from the empty category to \mathcal{C} . This functor is called the *empty functor*, where both the object and morphism functions are the empty set \varnothing . Thus, the empty category is the initial object in \mathbf{Cat} .
- Given any category \mathcal{C} , the smallest subcategory consisting of all objects in \mathcal{C} is discrete, which is also the largest discrete subcategory in \mathcal{C} (largest in the sense that it contains all objects of \mathcal{C}). For every object $X \in \mathcal{C}$, we can associate the trivial category \mathcal{C}_X consisting of one object, X, and one morphism 1_X .