Esercizio 1. Consideriamo \mathbb{Z} , $n \in \mathbb{N}$, $n \geq 2$ ed il sottogruppo $n\mathbb{Z}$. Spiegare perché il gruppo quoziente $\mathbb{Z}/n\mathbb{Z}$ è ben definito ed isomorfo (di fatto, uguale) a \mathbb{Z}_n .

Si ricordi che nZ={n·alaeZ}, definia mo Z/nz come il gruppo auoziente per un sottogruppo normale, formato dalle classi laterali = {0Z,1Z,2Z...,(n-1)Z} la telazione che olefinisce cio' e apb = b-a e n Z. olefinisco un applicazione P: nz Zn Lale che 1(2Z)=[2], Cale applicazione e ben definitz P(22+b2)=P((3+b)2))=[3+b]=[2]+[b]=((22)+P(b2) e' quindifun omomorfismo. Inoltre, fe' suriettiva, perche V[2] & Zn,] 2Z | {(22)=[2], so poi che la carolinalita di Zn e' n, e noto che = 0 Z, 1 Z, 2 Z., (n-1) Z} ho precisamente n elementi, essenolo l'applicazione suriettiva su olue gruppi della stessa cardinalita, e anche biettiva, quinoli e un isomoffismo NON SONO SICURO VELLA CORRETTE 72A

Esercizio 2. Sia G il gruppo affine della retta affine numerica \mathbb{R} : per definizione $G = \{f_{a,c}, a \in \mathbb{R} \setminus \{0\}, c \in \mathbb{R}\}\ \text{con } f_{a,c}(x) = ax + c \text{ e prodotto in } G \text{ uguale alla}$ ax + ccomposizione di applicazioni. Dopo aver verificato che G è effettivamente un sottogruppo del gruppo di tutte le bigezioni di $\mathbb R$ e che non è commutativo, dimostrare che il sottoinsieme delle traslazioni $T = \{f_{1,c}, c \in \mathbb{R}\}$ è un sottogruppo normale e che G/T è isomorfo al gruppo $(\mathbb{R} \setminus \{0\}, \cdot)$. Suggerimento: definire un opportuno omomorfismo surgettivo $G \to \mathbb{R} \setminus \{0\}$ ed applicare il teorema fondamentale di omomorfismo fra gruppi..... Chiamiamo B il gruppo di tutte le bigezioni su B= {5, 5 biettiva}, e dimostro che G & B: V S'a.c. S"a.c & ho che Sa.c o (5") = 5-10 5" = *(12 Funzione inversa di 2x+c e' x-c) $= (2' \times + c') \circ (\frac{\times - c''}{a''}) = 2' (\frac{\times - c''}{a''}) + c' = \frac{2' \times - c'' a'}{2''} + c'$ $=\left(\begin{array}{ccc} \frac{\partial^{1} X}{\partial x^{n}} + \frac{C^{n} \partial^{1}}{\partial x^{n}} + C = \left(X \frac{\partial^{1}}{\partial x^{n}} - \frac{C^{n} \partial^{1}}{\partial x^{n}} \right) + C = X \left(\frac{\partial^{1}}{\partial x^{n}} - \frac{C^{n} \partial^{1}}{\partial x^{n}} \right) + C \in C$ quinoli G e' un sottogruppo, ma non e commutativo: $(2^{1}X + c^{1}) \circ (2^{1}X + c^{1}) = 2^{1}(2^{1}X + c^{1}) + c^{1} \neq 2^{1}(2^{1}X + c^{1}) + c^{1} = (2^{1}X + c^{1}) \circ (2^{1}X + c^{1}).$ Considero il sottogruppo T= { Si, c, CER} = { x+c, CER}, dimostro che e' un soltogruppo: (x+c') o (x+c') = (x+c') o (x-c') = (x-c')+c' = X+(c'-c') & T, inoltre noto che Te' commutativo: $(x+c')\circ(x+c'')=(x+c'')+c'=x+(c'+c'')=x+(c''+c')=(x+c')+c''=(x+c'')\circ(x+c')$ Se classi laterali sinistre gT={got, geG, teT} che sono tutte le funzioni del tipo: 9 = 2x+c => (2x+c) = (x+c), (2x+c) = (x+c) = (

le classi laterali olestre sono: 9=2x+c=p{(x+c')o(2x+c), (x+c")o(2x+c)...} noto che, V2x+ce Ge Vx+c' ∈ T => (x+c') o (2x+c) = (2x+c)+c' = 2x+c+c' e che $(2x+c)o(x+c')-2(x+c')+c=x+c'+\frac{c}{a}=>|e|c|assi||2terali|$ sono uguali, Te normale! Definisco adesso il gruppo oli Lutte le classi laterali 6/T={9T, CEB, 9EG} con 1) Operazio ne gT. hT = (90h) T = \(9 = 2x + c \) = \((2x + c)\)\(\pi \) \((2x + c') \) T. Definisco adesso un applicazione P.G-18/503 tale che P(2x+c) = 2. G - P R 303 Noto che, Kerf= \ 2x+c/f(2x+c) = 1\} = \ x+c\} = T Il gruppo T definito prima e il nucleo oli P! definisco la projezione canonica Ti.G. G/T tale che TI(ax+c) = (ax+c)T per il teorem a fondamentale di omomorfismo di gruppi, esiste un 156MORFISMO F: 67-4/12 18/8-3 quinoli G/T e' isomorro ad R\303.

Esercizio 3. Determinare il gruppo degli automorfismi del gruppo ciclico $(\mathbb{Z}_n,+)$. (Suggerimento: basta determinare gli omomorfismi di \mathbb{Z}_n in sé stesso che sono suriettivi; osserviamo anche che un omomorfismo di \mathbb{Z}_n is sé stesso è determinato dall'immagine di [1]....).Esercisio suollo in clone prenolo un qualsiasi automorfismo f, e so che f([1])=[1], quinoli un automoreismo P(n) = n·h dove h deve essere un unita, ossia oleve generare Zn, quindi gli automorfismi sono del tipo f(n)=n·a, ac W(Zn), consider l'applicazione Y: Aul(Zn) + W(Zn) tale che Y(n. 2) = [2]. noto che preserva l'op. Y(hz+nb)=[4+b]=Y(na)+Y(nb), e' un omomorfismo, inoltre, e' surjettivo, Y[a] & Zn, 3 na | P(na) = [a], inoltre | W(Zn) = S(n), dove & e' la Funzione di eulero, e Aul(Zn) ha la stessa cardinalita di N(Zn) i SOHO SOMOTE NON SONO SIC Esercizio 4. Sia (G,\cdot) un gruppo. Il Centro di G è l'insieme $Z(G) := \{ z \in G \mid z \cdot g = g \cdot z \ \forall g \in G \}$ Consideriamo l'applicazione $\Phi: G \to \operatorname{Aut}(G)$ che associa a $x \in G$ l'automorfismo γ_x . Abbiamo incontrato questa applicazione nell'Esercizio 8 del compito dell'8/11/23. • Verificare che $Z(G) = \text{Ker}\Phi$ • cosa deduciamo da questa informazione? • Cosa ci dice questo risultato sul sottogruppo ${\rm Im}\Phi$ degli automorfismi interni Z(G) e' il gruppo di tutti gli elementi di G che commutano. L'automorfismo y e' definito nel seguente modo: y (a) = x · a · x · Considero D: G → Aut(G) tale che D(x)= Yx, aolesso, definisco hucleo: Ker = } a ∈ G /x (a) = Identita > Delemento neutro di Aut(G) Oss. $\frac{1}{2}(a) = Identita' \Leftrightarrow \frac{1}{2}(a) = a \Leftrightarrow xax^2 = axx^2 \Leftrightarrow ax = xa \Leftrightarrow ae \neq ae$ ne deduco che, se G e' commutativo, Z(G)=G, quinoli, se Ge' commutativo, G= KerΦ, inoltre, Vx & G, Φ(x) = 4x = Funzione identita' >> ∀x,y ∈ G, \(\Pi(x) = \Pi(y) = \Pi \) mappa tutt: gli elementi oli G Funzione identita'. Im() = {Funzione | DENTITA'}, | Im() = 1, tale Funzione inoltre e' l'elemento neutro di Aut (G).

1. \$	Svol	gere	e l'	ipas eserc	cizio	2.1									am	pan	ella.																							
				se po				ister	na	$x \equiv x \equiv$				0.																									_	
4. (Calc	olar	e le	e ult	ime	due	e cif		•		3 m $_{\odot}$	od5																												
	2		3	X X Un	- 5	ァ ス	() ()	Mod		ファ 5																														
		,	ረ			C:-	, ,			٦,		۲.			٠٠.				٦				1	M	_ /	0	-/		Α		<u> </u>	N 10	a k	٠,					_	
	6	,		ווט		١١.) ŁC	'Mċ	2	Q	1	Li	P	_	Cil	nes	se.	, (359	5e	n o	0		NC 1	PL	9,	לל	=	1	-	'd I	n yr	e	,L E	2	(ı'n		+	
														5)	•																									
	R=	4	5	1	-	۲,	= ^E	j,		R,	=	9	.																		_								_	
	(i)		۶ ،	t		+	C	} •	9) 1	=	1	= [, ﴿	5(-7	-)	+ 9	(4)) =	1	=	Þ	t,	=	- 7	2 .	=Þ	ŷ	-	_	7 ·	• 7	² <u>-</u>		49 2		
	7:			a			<u></u>		_	^					.	7	,	٠,		/ <u>_</u>	7	١.			>	F	_	1.		7	~		,)	_	_	7	_	_
	L	ıj	`	<i>y</i> •	C	2		_5	, .	Y _z	- =	1	=l`		<u>.</u>	٠ ر	4) [*])(7) -	. 1			υ y		4			/ _	2 =	4		, :			_	+	_
	50) L	;	-	- 4	9	. 5	+	12	. ç) <i>=</i>	-	13	7 ((n	100	d .	45)=		43	(h	DO	1	45	5)													
															_																								\dashv	+
																																							+	
																																							_	
																																							_	
																																							_	
																																							\dashv	_
																																							\dashv	+
																																							_	1
																																						\square	\dashv	+
																																							\dashv	_
																																							7	
																																							\dashv	+
																																							\dashv	+
																																							1	
																																							\dashv	+
																																							+	+
																																								工
																																							\dashv	_
																																							+	+
																																							_	