Single Cell RNA Sequencing Analysis and Applications

Jacob M. Maronge

Department of Statistics
University of Wisconsin–Madison

https://jmmaronge.github.io/

financial

🔰 @jmmaronge

Why RNA sequencing?

Central dogma of molecular biology

$$\mathsf{DNA} \to \mathsf{mRNA} \to \mathsf{Proteins} \ (\to \mathsf{Traits})$$

- Hard to measure proteins
- Measure mRNA as an attempt to get at traits
- 2 ways to measure mRNA gene expression abundance: Bulk and Single Cell

RNA sequencing

Difference between bulk and single cell

From: http://web.stanford.edu/class/cs262/presentations/lecture12.pdf

Single cell RNA-seq

Data structure

► $n_{i,j,k}$ refers to the count of abundance of gene expression in gene i, cell j, and condition k.

Single cell RNA-seq

This semester

- Learned about and found a problem in a statistical analysis technique for single cell RNA sequencing (scDD)
- Learned about the problem of normalization in single cell RNA sequencing.
- Performed a literature review for the problem of identifying cell subpopulations.

Questions for Statistical Analysis

Differential Expression

 Scientific collaborator comes in - wants to know if there is a difference in gene expression for their favorite gene across conditions.

Analysis

Challenges for Single Cell Data

 Single cell data present more challenges (lots of zeros, multiple peaks, etc.)

Single Cell Differential Distribution (scDD)

From Korthauer et al. (2016)

scDD uses 2 stage approach to sort genes into categories: 1.) run permutation test to see if gene is different across conditions; 2.) use Dirichlet Process Mixture Model to sort into one of these 4 categories.

Potential Problem?

Classified as DM – is it really?

As a result, a min.size parameter was implemented into the scDD R package to put a threshold on the required number of obs. to be called a cluster.

Further analysis

Digging deeper

- What if we look at the same genes in groups of cells and try to classify subpopulations of these cells?
- ► Ex. pluripotent stem cells: These cells have the ability to turn into blood cells, lung tissue etc.
- Goal: Figure out which pluripotent cells are more likely to become blood, lung, etc.
- Turns out there's many methods implemented for solving similar problems.

Possible Further Direction?

ATAC-Seq

- ► Short for: Assay for Transposase-Accessible Chromatin with high throughput sequencing (Buenrostro et al. (2016)).
- Chromatin is found in cells: consists of DNA, protein, and RNA.
- ATAC-Seq looks at where chromatin is accessible to be transcribed.
- Related to epigenetics basic idea: actions affect which genes are expressed.

Thank you!

Special Thanks

Kendziorski Lab

- ► Rhonda Bacher
- ▶ Jeea Choi
- ► Prof. Christina Kendziorski
- Ziyue Wang

References

- Buenrostro J, Wu B, Chang H, Greenleaf W. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Current protocols in molecular biology / edited by Frederick M Ausubel . [et al]. 2015;109:21.29.1-21.29.9. doi:10.1002/0471142727.mb2129s109.
- ► Korthauer KD, Chu LF, Newton MA, Li Y, Thomson J, Stewart R, Kendziorski C. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biology. 2016 Oct 25;17(1):222.