Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Aplicada

 $M\'etodos~de~Otimizaç\~ao$ - 2022/2

Relatório Final de Projeto -Disposição Ótima de Antenas

Aluno: Luan Lima Freitas

Professor:
Bernardo Freitas Paulo da Costa

Conteúdo

1	Intr	rodução	2
2	Pormulação dos problemas de otimização		2
	2.1	Formulação inicial do problema de uma antena	2
	2.2	Formulação inicial do problema de N antenas	3
	2.3	Dados e formulação concreta dos problemas	4
3	Algoritmos e resultados		6
	3.1	Problema de uma antena com s linear	6
	3.2	Problema de uma antena com s exponencial	6
	3.3	Problema de N antenas	8
4	Ref	erências	10

1 Introdução

Este projeto consiste na otimização da disposição de uma ou mais antenas (por ex., de 5G) em uma cidade. Para isso, é levado em consideração que a intensidade do sinal das antenas em cada ponto p da cidade e, consequentemente, o grau de satisfação dos usuários em p são funções decrescentes da distância entre p e a posição da antena mais próxima. Além disso, tipicamente, a população da cidade está distribuída no espaço de forma heterogênea. A fim de trabalhar com um caso concreto, são utilizados dados demográficos da cidade do Rio de Janeiro. Assumindo que as antenas possuem capacidade ilimitada, o problema consiste em encontrar a disposição das antenas que maximize a quantidade total de sinal recebida pelos usuários (ou a satisfação total dos mesmos).

2 Formulação dos problemas de otimização

2.1 Formulação inicial do problema de uma antena

Podemos modelar os atributos espaciais da cidade de forma que cada ponto da cidade seja representado por um par ordenado $p=(p_1,p_2)\in\mathbb{R}^2$. Desta forma, a variável de decisão do problema de uma antena, a saber, a posição da antena, será dada por um par ordenado $x=(x_1,x_2)\in\mathbb{R}^2$. Temos então a restrição lógica

$$x \in C$$
,

onde C é o conjunto dos pontos da cidade. Um modelo natural para a distribuição espacial da população da cidade é uma função de densidade populacional $\gamma: C \to \mathbb{R}_+$. Enfim, dada uma função $s: \mathbb{R}_+ \to \mathbb{R}$ de intensidade do sinal (ou de satisfação dos usuários) a uma distância d de x e escrevendo a distância de x a p como d(x, p) temos a função objetivo

$$f(x) = \int_C s(d(x, p)) \gamma(p) dp, \qquad (1)$$

O problema de otimização pode então ser escrito como

$$\max_{x} f(x)$$
s.a $x \in C$. (P1)

A decisão mais difícil no que se refere à modelagem deste problema é a escolha da função de intensidade do sinal (ou satisfação dos usuários). Uma escolha instintiva e razoavelmente

realista para uma função de intensidade do sinal é uma função do tipo

$$s_1(d) = \exp(-cd),$$

com c > 0. Para uma tal s, porém, a função objetivo dada por (1) não será côncava, e portanto o problema (P1) não poderá ser abordado pelos métodos de otimização convexa estudados. Uma escolha alternativa é a função

$$s_2(d) = -d,$$

com c > 0. Tal s, por apresentar valores negativos, não pode ser interpretada como um modelo para a intensidade do sinal, a qual somente assumiria valores positivos. Todavia, em certo sentido, é possível interpretar s_2 como um modelo para a satisfação dos usuários, onde usuários mais próximos de x são usuários mais satisfeitos¹. Vendo por outro ângulo, podemos reescrever o problema (P1) como

$$\min_{x} \int_{C} d(x, p) \gamma(p) dp$$

s.a $x \in C$,

ou, em palavras, o problema de minimizar a distância de x à população da cidade. Por último, veja que

$$\log(s_1(d)) = c \, s_2(d),$$

logo s_2 pode ainda ser interpretada como o log da intensidade do sinal. Para tal s, a função objetivo dada por (1) será côncava, e portanto o problema (P1) será, para todos os efeitos, um problema de otimização convexo. Ao longo do projeto são exploradas ambas as famílias de funções ora descritas e comparados os pontos ótimos dos problemas a elas associados.

2.2 Formulação inicial do problema de N antenas

Preservando os termos introduzidos na seção anterior, a variável de decisão do problema de N antenas, a saber, a posição das N antenas, será dada por um vetor de pares ordenados $x = \left(x^{(1)}, \ldots, x^{(N)}\right) \in (\mathbb{R}^2)^N$. A restrição de pertencimento das antenas à área da cidade então se torna

$$x^{(n)} \in C, n = 1, \dots, N.$$

Note que $\operatorname{argmax}_x \int_C -d(x,p) \, \gamma(p) \, \mathrm{d}p = \operatorname{argmax}_x \int_C \left[a-b \, d(x,p)\right] \, \gamma(p) \, \mathrm{d}p$ (para b>0), i.e., é indiferente se a satisfação assume valores positivos e negativos ou apenas valores negativos e a razão na qual a insatisfação cresce com a distância.

À primeira vista, pode parecer lógico formular a nova função objetivo como

$$f_N(x) = \int_C \left[\sum_{n=1}^N s(d(x^{(n)}, p)) \right] \gamma(p) dp,$$

para a qual teríamos o problema de otimização

$$\max_{x} f_N(x)$$
s.a $x^{(n)} \in C, n = 1, \dots, N.$ (P2)

No entanto, é imediato verificar que se x^* é ponto ótimo do problema (P1), então (x^*, \ldots, x^*) é ponto ótimo do problema (P2), ou seja, o problema (P2) não apresenta nenhum desdobramento inédito em relação ao problema (P1). Assim, para produzir um problema verdadeiramente original, devemos incluir a hipótese de que cada indivíduo se utiliza apenas do sinal de maior intensidade dentre os sinais disponíveis, qual seja, o sinal da antena mais próxima da sua posição. Com esta hipótese, temos a função objetivo

$$\hat{f}_N(x) = \int_C s\left(\min_n d(x^{(n)}, p)\right) \gamma(p) dp \tag{2}$$

e o problema de otimização

$$\max_{x} \hat{f}_{N}(x)$$
s.a $x^{(n)} \in C, n = 1, \dots, N,$ (P3)

o qual não pode ser abordado pelos métodos de otimização convexa estudados, visto que a função objetivo dada por (2) não é côncava.

2.3 Dados e formulação concreta dos problemas

Como um caso concreto a ser trabalhado foi escolhido o município do Rio de Janeiro. Os dados relativos à distribuição espacial da população do município foram obtidos através do serviço de informações geográficas Landscan^[1] e o recorte pertinente foi realizado pelo grupo de trabalho ModSiming, composto pelo professor Ricardo Rosa e estudantes de graduação da UFRJ^[2]. Os dados obtidos consistem em uma matriz de dimensões 39×83 cujas entradas representam as populações totais de blocos de aproximadamente 0.8km^2 de área de posições geográficas dadas por um mapeamento elementar dos índices da matriz a uma projeção cartográfica subjacente (cf. **Figura 1**).

A estrutura dos dados sugere a aproximação do problema (P1) por

$$\max_{x} \sum_{p_{1}=0}^{82} \sum_{p_{2}=0}^{38} s[d(x, (p_{1}, p_{2}))] \gamma_{p_{2}, p_{1}}$$
s.a $0 \le x_{1} \le 82$

$$0 \le x_{2} \le 38$$
(P4)

onde $(\gamma_{i,j})$ são as entradas da matriz de dados. Seja

$$P = \{(p_1, p_2) \in \mathbb{N}^2; 0 \le p_1 \le 82, 0 \le p_2 \le 38, \gamma_{p_2, p_1} \ne 0\}$$

É fácil ver que é suficiente realizar o somatório da função objetivo do problema (P4) apenas sobre os índices $(p_1, p_2) \in P$. Além disso, é possível substituir as restrições de desigualdade por uma barreira logarítmica. Assim, a forma final do problema de uma antena será dada por

$$\max_{x} \sum_{(p_1, p_2) \in P} s[d(x, (p_1, p_2))] \gamma_{p_2, p_1} + L(x)$$
(P5)

onde

$$L(x) = \log(x_1) + \log(82 - x_1) + \log(x_2) + \log(38 - x_2)$$

Analogamente, o problema (P3) poderá ser aproximado por

$$\max_{x} \sum_{(p_1, p_2) \in P} s\left(\min_{n} d(x^{(n)}, (p_1, p_2))\right) \gamma_{p_2, p_1} + \mathcal{L}(x)$$
(P6)

onde

$$\mathcal{L}(x) = \sum_{n=1}^{N} L\left(x^{(n)}\right)$$

3 Algoritmos e resultados

3.1 Problema de uma antena com s linear

O problema de uma antena com s linear, por se tratar de um problema de otimização convexo (a menos de uma mudança de sinal), pôde ser resolvido de maneira imediata utilizando o CVXPY. Deve-se mencionar que foi resolvido o problema (P4), i.e., a formulação do problema com restrições. Abaixo podem-se visualizar a função objetivo e o ponto ótimo do problema (**Figuras 2 e 3**).

3.2 Problema de uma antena com s exponencial

Em contraste com o problema de uma antena com s linear, o problema de uma antena com s exponencial não é um problema de otimização convexo. Por este motivo, para resolvêlo, optou-se por implementar um algoritmo simples de subida do gradiente. Desta vez,

foi resolvido o problema (P5), i.e., o problema com barreira logarítmica. Abaixo podemse visualizar a função objetivo do problema, bem como os pontos percorridos durante a execução da subida do gradiente e o resultado final do algoritmo, a saber, um ponto ótimo local da função objetivo, para c=0.1 (Figuras 4 e 5). Podemos inferir visualmente que a função objetivo trabalhada possui apenas um ponto ótimo local, sendo o mesmo, portanto, um ponto ótimo global . Uma abordagem mais sistemática desta matéria será desenvolvida para o problema de N antenas. Ademais, foram comparados os pontos ótimos obtidos para diversos valores de c, e observou-se que o ponto ótimo do problema de uma antena com s exponencial converge para o ponto ótimo do problema de uma antena com s linear quando c tende a 0 (cf. Figura 6).

3.3 Problema de N antenas

O algoritmo de subida do gradiente implementado para resolver o problema de uma antena com s exponencial foi generalizado para resolver o problema de N antenas (P6) com s exponencial. Para N=2, temos a variável de decisão $x=\left(x^{(1)},x^{(2)}\right)$, um ponto inicial da subida do gradiente $x_0=\left(x_0^{(1)},x_0^{(2)}\right)$ e uma sequência de pontos percorridos pela subida do gradiente (x_n) . A subida do gradiente foi executada diversas vezes variando os valores de $x_0^{(1)}$ e $x_0^{(2)}$. Reproduzimos graficamente abaixo o resultado deste experimento, mantendo fixo o valor de $x_0^{(2)}$ para melhor visualização (**Figura 7**). Destacam-se deste exercício duas observações:

- (i) Para todos os valores de x_0 empregados, $x_n \to (a^*, b^*)$ ou $x_n \to (b^*, a^*)$, para certos valores constantes de a^* e b^* .
- (ii) $a^* \sim x^*$, onde x^* é o ponto ótimo do problema de uma antena com s exponencial. Em palavras, a posição ótima para uma de duas antenas é próxima à disposição ótima de uma antena.

Estas observações sugerem que a subida do gradiente é robusta relativamente a diferentes pontos iniciais e que o ponto ótimo do problema de N antenas é semelhante ao ponto ótimo do problema de N-1 antenas com o acréscimo de uma nova antena. Com isso, dada uma solução razoável $x^* = \left(x_*^{(1)}, \ldots, x_*^{(N-1)}\right)$ do problema de N-1 antenas, podemos encontrar uma solução razoável do problema de N antenas executando a subida do gradiente com $x_0 = \left(x_*^{(1)}, \ldots, x_*^{(N-1)}, x\right)$ para vários valores de x e escolhendo dentre os pontos ótimos locais assim obtidos aquele para o qual a função objetivo assumir o maior valor. Não há garantias, porém, que tal solução seja o ponto ótimo do problema. Utilizando este algoritmo, foram encontradas soluções para diversos valores de N (cf. **Figuras 8, 9 e 10**) e c (cf. **Figura 11**).

Disposição ótima de N antenas no Rio de Janeiro

Disposição ótima de 30 antenas no Rio de Janeiro

4 Referências

- $[1] \ https://landscan.ornl.gov$
- $[2] \ https://github.com/ModSiming/EpiSiming$