Feature Descriptors - Histogram of Oriented Gradients (HOG)

What is a Feature Descriptor?

- A feature descriptor is a representation of an image patch.
- Converts an image to a feature vector / array of length n.
- HoG feature descriptor, the distribution (histograms) of directions of gradients (oriented gradients) are used as features.

Reference

N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - pp. 886–893, 2005.

Step I: Preprocessing

Step 2 : Calculate the Gradient Images

 Sobel operator can be used to compute gradient magnitude and direction.

$$g = \sqrt{g_x^2 + g_y^2}$$
$$\theta = \arctan \frac{g_y}{g_x}$$

Left: Absolute value of x-gradient. Center: Absolute value of y-gradient.

Right: Magnitude of gradient.

The gradient of this patch contains 2 values (magnitude and direction) per pixel which adds up to
 8x8x2 = 128 numbers.

• 128 numbers are represented using a 9-bin histogram

• The histogram is a vector (or an array) of 9 bins (numbers) corresponding to angles 0, 20, 40, 60 ... 160.

8×8 cells of HOG. Image is scaled by 4x for display.

Center: The RGB patch and gradients represented using arrows. Right: The gradients in the same patch represented as numbers

• A bin is selected based on the direction, and the vote (the value that goes into the bin) is selected based on the magnitude.

• If the angle is greater than 160 degrees, it is between 160 and 180, it contributes proportionally to the 0 degree bin and the 160 degree bin.

Step 4: 16×16 Block Normalization

- Gradients of an image are sensitive to overall lighting.
- Descriptor has to be independent of lighting variations.
- For vector [128, 64, 32], the length of this vector is

$$\sqrt{128^2 + 64^2 + 32^2} = 146.64$$

- Dividing each element of this vector by 146.64 gives us a normalized vector [0.87, 0.43, 0.22].
- A 16×16 block has 4 histograms which can be concatenated to form
 a 36 x 1 element normalized vector

Step 5: Calculate the HOG feature vector

• To calculate the final feature vector for the entire image patch, the 36×I vectors are concatenated in to one giant vector.

• There are 7 horizontal and 15 vertical positions making a total of $7 \times 15 = 105$ positions.

• Each 16×16 block is represented by a 36×1 vector. So when we concatenate them all into one gaint vector we obtain a 36×105 = 3780 dimensional vector.

Visualizing Histogram of Oriented Gradients

The HOG descriptor of an image patch is usually visualized by plotting the 9×1 normalized histograms in the 8×8 cells.

Source: Learn OpenCV

OpenCV examples and tutorials (C++ / Python)

