Aufgabe 3 (Faltungscodes)

Gegeben ist ein Faltungscode, der durch die Zuordnung von Eingangssymbolfolge \vec{u} und Ausgangssymbolfolge \vec{x} gemäß folgender Tabelle beschrieben ist:

x_{n1}	x_{n2}	u_n	u_{n-1}	u_{n-2}
0	0	0	0	0
1	1	0	0	1
1	0	0	1	0
0	1	0	1	1
1	1	1	0	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	1

- a) Ermitteln Sie die Schaltfunktionen für x_{n1} und x_{n2} und zeichnen Sie das Blockschaltdiagramm sowie das Zustandsübergangsdiagramm des Coders.
- b) Handelt es sich um einen systematischen Code? Geben Sie die Coderate R und die Einflusslänge L des Codes an. Wieviele Ausgangsbits werden von einem Eingangsbit beeinflusst?
- c) Vervollständigen Sie das vorgegebene Trellis-Diagramm für den gegebenen Faltungscode bis zum Zeitpunkt t=6. Zum Zeitpunkt t=0 befinde sich der Coder im Zustand 00.

Die Decodierung einer empfangenen Symbolfolge soll nun nach dem *Maximum-Likelihood*-Prinzip unter der Annahme eines binären, symmetrischen Kanals erfolgen. Dabei entspricht jeder möglichen gesendeten Symbolfolge genau ein Pfad im Trellis-Diagramm.

- d) Welcher Pfad im Trellisdiagramm (und somit welche gesendete Symbolfolge) wird bei der Decodierung gewählt?
- e) Decodieren Sie die empfangene Symbolfolge $\vec{y}=(10\ 10\ 11\ 01\ 10\ 01).$ Der Coder habe sich zu Beginn der Codierung im Zustand "00" befunden.