

FYP 1-0 (a)

Name: Ching Kai Xin	Matric No.: A21EE0036	Program: SEEM	Semester/Session: 2425/1	
Contact No.: 019-7617780	CGPA: 3.93	Total Credits (current semester): 16	Academic Advisor Name: Prof. Ts. Dr. Mohd Fua'ad bin Rahmat	
Supervisor Name: Dr. Nurulaqilla binti Khamis	Field: Mechatronics	Proposed Topic: AI-Driven Detection of Road Potholes for Enhanced Infrastructure Safety		
Goal:	Obtain an AI model capable of detecting road potholes accurately in real-time from images or videos taken by a camera			
Objectives:	l. Collect images or videos showing different types and sizes of potholes			
	2. Label the collected images or videos to indicate the presence of potholes			
	3. Train a YOLO model to recognise pothole accurately by using the labelled data			
	4. Deploy the trained model on both camera and edge device to detect potholes in real-time			
		ne deployed model's provements if neede	leployed model's performance and rements if needed	
Scope:	Study on the complete process of object detection, from data collection to labelling, model training, deployment, and performance monitoring			
	2. Learn about the principles of object detection and explore different architectures, such as R-CNN, Fast R-CNN, and YOLO			
	3. Test various versions of YOLO to understand their performance and investigate the reasons for the difference			
	technique	4. Focus on model optimization or compression techniques to reduce model size and improve efficiency for deployment on edge devices		
	5. Explore the user interface to record the coordinates of road potholes upon detection			