P.Anurag 17MCME13

February 19, 2019

1 write down as a difference equation with nonlinearity; take a and c as 5 digit prime numbers and plot output for 1000 values.

Figure 1: Linear congrential generator

Sol:- The non-linear function in the above block diagram is modulo.

- First input is μ_k .
- When it passes through \mathbf{z}^{-1} , it becomes $\mu_{\mathbf{k}-1}$, which is then mulitiplied with 'a' becomes $\mathbf{a}\mu_{\mathbf{k}-1}$.
- And is then added with 'c' results in $a\mu_{k-1} + c$.
- Now the input to the modulo function is $\mathbf{a}\mu_{\mathbf{k-1}} + \mathbf{c}$. When it is passed through modulo function, the output is $(\mathbf{a}\mu_{\mathbf{k-1}} + \mathbf{c}) \mod \mathbf{n}$.
- Hence the difference equation is

$$\mu_{\mathbf{k}} = (\mathbf{a}\mu_{\mathbf{k}-\mathbf{1}} + \mathbf{c}) \bmod \mathbf{n}$$

where 'a' and 'c' are 5 digit prime numbers and

$$k \in [0, 1000]$$

Constraints on the values are:

- n > 0
- 10000 < a < n
- $\bullet \ 100000 < c < n$
- $0 < \mu_{k-1} < n$

Data points:

\mathbf{k}	$\mu_{\mathbf{k}}$
1	0
2	0
3	99997
4	79981
5	37828
6	99886
7	68509
8	24484
9	58666

Use uk as cosine wave with f=0.1, uk = $(\cos(2pifk))$ for 100 values get yk and plot uk and yk for the below difference equation

$$\mathbf{y}_{\mathbf{k}} = \mathbf{r}.\mathbf{y}_{\mathbf{k}-1} + \mathbf{r}.\mu_{\mathbf{k}-1} - \mu_{\mathbf{k}}$$

$\mathbf{u_k}$	$\mathbf{y}_{\mathbf{k}}$
1.0	0.09
0.809	-0.19
0.309	-0.702
-0.309	-1.219
-0.809	-1.516
-1.0	-1.456
-0.809	-1.038
-0.309	-0.403
0.309	0.223
••	••