Problem 1

(a): All possible functions:

F1 : {
$$(a,0)$$
, $(b,0)$, $(c,0)$ }

F2 : {
$$(a,0)$$
, $(b,0)$, $(c,1)$ } F6 : { $(a,1)$, $(b,0)$, $(c,1)$ }

F3: {
$$(a,0)$$
, $(b,1)$, $(c,0)$ } F7: { $(a,1)$, $(b,1)$, $(c,0)$ }

F4 : {
$$(a,0)$$
, $(b,1)$, $(c,1)$ }

(b) : Pow(X) = { A : A
$$\subseteq$$
 X } and |Pow(X)| = $2^{|X|}$

→ Pow({a, b, c}) =
$$2^{|\{a, b, c\}|} = 2^3 = 8$$

We can consider like this: "0" and "1" represent "exist" and "not exist", so if the element in $\{a, b, c\}$ all point to 0, they represent an empty set. Therefore, the subset of $\{a, b, c\}$ can represent the existence and non-existence of a, b, c. So the number of functions is equal to $|Pow(\{a, b, c\})|$.

- \rightarrow when |co-domain| = 2, Pow({a, b, c}) = the answer for (a).
- (c) : if card(A) = m and card(B) = n:
- i. Number of fuctions from A to B: n^m
- ii. For the symmetric relation, you can analyze half triangle in the relation matrix. Every elements in the matrix can exist and not exist. So the number of relations from A to B : $|Pow(m \times n)| = 2^{|m \times n|}$
- iii. For the symmetric relation, you can analyze half triangle in the

relation matrix, and it can be concluded that half triangle has (1+m)/2 elements, So the number of symmetric relations from A to B is $2^{(1+m)/2}$.

Problem 2

(a)
$$S_{2,-3} = \{ 2m - 3n : m, n \in Z \}$$

1 (where m = 2, n = 1); 3 (where m = 3, n = 1);

5 (where m = 4, n = 1); 7 (where m = 5, n = 1);

4 (where m = 5, n = 2);

(b)
$$S_{12,16} = \{ 12m + 16n : m, n \in Z \}$$

0 (where m = 0, n = 0); 12 (where m = 1, n = 0);

16 (where m = 0, n = 1); 28 (where m = 1, n = 1);

24 (where m = 2, n = 0);

(c) \because d = gcd(x, y) and x, y \in Z \therefore x = k1*d, for some k1 \in Z; Same reason for y = k2*d, for some k2 \in Z;

∴
$$S_{xy} = \{ (k1 * d) m + (k2 * d) n : m, n \in Z \}$$
, for some k1, k2 ∈ Z;
= $\{ (k1 * m + k2 * n) d : m, n \in Z \}$;

And then we can see that $(k1 * m + k2 * n) \in Z$ because of k1, k2, m and $n \in Z$;

Then, $\{n : n \in Z \text{ and } d \mid n\} = \{n : n = k*d \text{ and } k \in Z \text{ and } n \in Z\};$

$$:: \{(k1 * m + k2 * n)\} \subseteq Z$$

$$\therefore$$
 { (k1 * m+ k2 * n) d : m, n \in Z} \subseteq {n : n = k*d and k \in Z and n \in Z} and that is : S $_{xy}$ \subseteq {n : n \in Z and d|n}.

(d)
$$:$$
 {n:n \in Z and z | n};

$$\therefore$$
 {n : n \in Z and n = p*z, for some p \in Z };

 \because z is the smallest positive number in Sx,y, so z can be standed for (p1 * m + p2 * n) d, for some p1, p2, m and n, making z be the smallest positive number in Sx,y, that is let (p1 * m + p2 * n) be the smallest positive number since $d \ge 0$ and z > 0.

$$\therefore$$
 {n : n = p*(p1 * m+ p2 * n) d and m, n, p, k1, k2 \in Z}

 \because p1, p2 are specific two numbers to satisfy z to be the smallest positive number in Sx,y.

$$\therefore$$
 (p1 * m+ p2 * n) \in { (k1 * m+ k2 * n) : m, n, k1, k2 \in Z }

$$\therefore$$
 p * (p1 * m+ p2 * n) is a multiple of (p1 * m+ p2 * n)

$$\therefore$$
 { p * (p1 * m+ p2 * n) } \subseteq { (k1 * m+ k2 * n) } for some p \in Z

$$\therefore$$
 { p*(p1 * m+ p2 * n) d } ⊆ { (k1 * m+ k2 * n) d }

And that is $\{n : n \in Z \text{ and } z | n\} \subseteq Sx,y$

(e) \because z is the smallest positive number in Sx,y, so we can express z as z = (k1 * m + k2 * n) * d > 0

$$\therefore$$
 d = gcd(x, y) > 0

∴
$$(k1 * m + k2 * n) > 0$$
 and $(k1 * m + k2 * n) ∈ Z$

∴ z is the smallest positive number in Sx,y

:
$$(k1 * m + k2 * n) = 1 \text{ that is } z / d = 1$$

$$\therefore$$
 z = d

$$\therefore$$
 z \geqslant d

(f) According to the conclusion of (e):

$$\therefore$$
 z = d

$$\therefore$$
 z \leq d

Problem 3

(a)
$$(A * B) * (A * B)$$

$$= (A^{c} \cup B^{c}) * (A^{c} \cup B^{c})$$
 (definition)

=
$$(A^{c} \cup B^{c})^{c} \cup (A^{c} \cup B^{c})^{c}$$
 (definition)

$$= ((A^c)^c \cap (B^c)^c) \cup ((A^c)^c \cap (B^c)^c)$$
 (de Morgan's Laws)

$$= (A \cap B) \cup (A \cap B)$$
 (double complementation)

$$= A \cap (B \cup B)$$
 (distribution)

$$= A \cap B$$
 (idempotence)

(b)
$$A^c = A^c \cup A^c$$
 (idempotence)

$$= A * A$$

(definition)

(c)
$$\Phi = A^c \cap A$$

(Complementation)

$$= (A^{c} * A) * (A^{c} * A)$$

(by conclusion (a))

$$= ((A * A) * A) * ((A * A) * A)$$

(by conclusion (b))

(d)
$$A \setminus B = A \cap B^{c}$$

(by definition)

$$= A \cap (B * B)$$

(by conclusion (b))

$$= (A * (B * B)) * (A * (B * B))$$

(by conclusion (a))

Problem 4

(a)
$$w = a, v = ba;$$

 \because ba \neq az, for $z \in \Sigma^*$ and a \neq baz, for $z \in \Sigma^*$

(b) By definition of R ←(B):

 $R \leftarrow (\{aba\})$ is a set satisfying a condition that:

$$R \leftarrow (\{aba\}) = \{ w : aba = wz, z \in \Sigma^* \};$$

$$\rightarrow$$
 R \leftarrow ({aba}) = { λ , a, ab, aba }

(c) let z be λ :

Reflexivity: For all $w \in \Sigma^*$, $(w, w) \in R$ for all w (due to $w = w\lambda$).

Antisymmetry: For all w, $v \in \Sigma^*$, if $(w, v) \in R$ and $(v, w) \in R$:

That is: $v = w\lambda$ and $w = v\lambda \rightarrow v = w$

Transitivity: For all w, $v \in \Sigma^*$, if $(w, v) \in R$ and $(v, t) \in R$:

That is : $v = w\lambda$ and $t = v\lambda \rightarrow t = w\lambda\lambda = w$

So $(t, w) \in R$

Problem 5

Case x = 0:

If x = 0: $\therefore x|yz$ $\therefore yz = 0$

 \therefore gcd(x, y) = gcd(0, y) = 1 \therefore y = 1

 \therefore z = x = 0

 $\therefore x|z$

Case $x \neq 0$:

As we can see in problem 2, so d = gcd(x, y) can be represented in the form of (mx + ny) for some $m, n \in Z$.

So we can write $gcd(x , y) = 1 = (m_0x + n_0y)$ for some $m_0, n_0 \in Z$.

And $x|yz \rightarrow yz = kx$, for some $k \in Z$

Multiply both sides of this equation by z, and we can get :

 $z = m_0xz + n_0yz$, and we substitude yz by kx: $z = m_0xz + n_0kx$

 $\therefore z = (m_0 z + n_0 k) x \qquad \qquad \therefore m_0, z, n_0, k \in Z$

 \therefore (m₀z + n₀k) is an integer \therefore x|z