Relationen Sei $R \in AxA$ binäre Relation auf A

- Reflexiv \leftrightarrow xRx $\forall x \in A$
- symmetrisch \leftrightarrow xRy \rightarrow yRx
- Antisymmetrisch \leftrightarrow xRy $\land yRx \rightarrow x = y$
- Transitiv \leftrightarrow xRy \land yRz \rightarrow xRz
- totale Relation \leftrightarrow xRy \lor yRx $\forall x, y \in A$

R heißt:

- Äquivalenzrelation ↔ reflexiv, symmetrisch und transitiv
- Ordnung ↔ reflexiv, antisymmetrisch und transitiv
- \bullet Totalordnung \leftrightarrow Ordnung und total
- ullet Quasiordnung \leftrightarrow reflexiv und transitiv

Partition/Klasse Sei $C\wp(A)$. C heißt Partition/Klasse von A, falls gilt:

- $\bigcup C = A$ d.h. jedes $x \in A$ liegt in (min) einem $y \in C$
- $\emptyset \notin C$ d.h. jedes $y \in C$ enthält (min) ein Element von A
- $x \cap y = \emptyset$ f.a. $x \notin y$ aus C

Ordnungen Sei *leq* eine Ordnung auf X. Sei $A \subseteq X, b \in X$

- b minimal in $A \leftrightarrow b \in A$ und $(c \le b \to c = bf.a.c \in A)$
- b maximal in $A \leftrightarrow b \in A$ und $(b \le c \to b = cf.a.c \in A)$
- b kleinstes Element in A \leftrightarrow b \in A und (b < cf.a.c \in A)
- b größtes Element in $A \leftrightarrow b \in A$ und $(c < bf.a.c \in A)$
- b untere Schranke von A \leftrightarrow b \leq cf.a.c \in A
- b obere Schranke von A \leftrightarrow c \leq bf.a.c \in A
- b kleinste obere Schranke \leftrightarrow kleinstes Element von obere Schranke; Supremum $\lor A = b$
- b größte untere Schranke \leftrightarrow größte Element von untere Schranke; Infinum $\land A = b$

Induktion I Sei $p(n) \in \mathbb{N}$. Gelte p(0) und $p(n) \to p(n^+)$ f.a. $n \in \mathbb{N}$ dann ist p(n) wahr f.a. $n \in \mathbb{N}$.

Induktion II Sei $p(n) \in \mathbb{N}$, gelte $\{ \forall x < n : p(x) \} \to p(n)$ f.a. $n \in \mathbb{N}$. Damit ist p(n) wahr für alle $n \in \mathbb{N}$.

Funktionen

Eine Relation $f \subseteq AxB$ heißt Funktion $f: A \to B$ falls es zu jedem $x \in A$ genau ein $y \in B$ mit $(x, y) \in f$ gibt.

- injektiv \leftrightarrow jedes y aus B hat höchstens ein Urbild $f(x) = f(y) \rightarrow x = y$
- subjektiv \leftrightarrow jedes y aus B hat wenigstens ein Urbild f(x) = y
- bijektiv ↔ jedes y aus B hat genau ein Urbild; injektiv und surjektiv

ist $f:A\to B$ bijektiv, so ist f^{-1} eine Funktion B nach A und gleichmächtig.

Gruppen, Ringe, Körper

Eine Menge G mit einer Operation \circ auf G heißt Gruppe, falls gilt:

- $a \circ (b \circ c) = (a \circ b) \circ c$ freie Auswertungsfolge
- es gibt ein neutrales Element $e \in G$ mit $a \circ e = a$ und $e \circ a = a$ f.a. $a \in G$
- $\bullet \ \forall a \in G \exists b \in G : \{a \circ b = e\} \lor \{b \circ a = e\}; b = a^{-1}$

kommutativ/abelsch, falls neben obigen gilt:

• $a \circ b = b \circ a$ f.a. $a, b \in G$

Zwei Gruppen (G, \circ_G) und (H, \circ_H) heißen isomorph, falls es einen Isomorphismus $(G, \circ_G) \cong (H, \circ_H)$ von (G, \circ_G) nach (H, \circ_H) gibt.

Addition & Multiplikation $+: \mathbb{N}x\mathbb{N} \to \mathbb{N}$ wird definiert durch:

- m+0 := m (0 ist neutral)
- m+n sei schon definiert
- $m + n^+ := (m + n)^+$
- m * 0 := 0
- $m * n^+ = m * n + m$
- $[(a,b)]_{/\sim} + [(c,d)]_{/\sim} = [(a+c,b+d)]_{/\sim}$
- $[(a,b)]_{/\sim} * [(c,d)]_{/\sim} = [(ac+bd,ad+bc)]_{/\sim}$

Ein Ring R ist eine Menge mit zwei Operationen $+, * : \mathbb{R}x\mathbb{R} \to \mathbb{R}$ mit:

- a + (b + c) = (a + b) + c f.a. $a, b, c \in \mathbb{R}$
- Es gibt ein neutrales Element $O \in \mathbb{R}$ mit O + a = a + O = O
- zu jedem $a \in \mathbb{R}$ gibt es ein $-a \in \mathbb{R}$ mit a + (-a) = -a + a = 0
- a+b=b+a f.a. $a,b\in\mathbb{R}$
- a * (b * c) = (a * b) * c f.a. $a, b, c \in \mathbb{R}$
- a * (b + c) = a * b + a * c f.a. $a, b, c \in \mathbb{R}$
- heißt Ring mit 1, falls: es gibt ein $1 \in \mathbb{R}$ mit a*1=1*a=a
- $\bullet\,$ heißt kommutativ, falls: a*b=b*af.a. $a,b\in\mathbb{R}$
- heißt Körper, falls: zu jedem $a \in \mathbb{R}$ gibt es ein $a^{-1} \in \mathbb{R}$ mit $a*a^{-1}=1$
- Ist $\mathbb R$ ein Körper, so ist $\mathbb R*=\mathbb R/(0)$ mit * eine abelsche Gruppe.
- $\mathbb{Q}, \mathbb{C}, \mathbb{R}$ mit + und * ist ein Körper

Konstruktion von rationalen Zahlen Definiere Operationen +,* auf \mathbb{O} wie folgt:

- $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{b*d}$ (wohldefiniert)
- $\bullet \quad \frac{a}{b} * \frac{c}{d} = \frac{a*c}{b*d}$

Ring der formalen Potenzreihe Sei k ein Körper. Eine Folge $(a_0,...,a:n) \in K^{\mathbb{N}}$ mit Einträgen aus K heißt formale Potenzreihe K[[x]].

- $+: (a_0, a_1, ...) + (b_0, b_1, ...) = (a_0 + b_0, a_1 + b_1, ...)$
- *: $(a_0, a_1, ...) + (b_0, b_1, ...) = (c_0, c_1, ...)$ mit $c_K = \sum_{j=a}^k a_j * b_{k-j}$

Wahrscheinlichkeit

Ein Wahrscheinlichkeitsraum ist ein Paar (Ω, p) aus einer endlichen Menge Ω und einer Funktion $p: \Omega \to [0, 1] \in \mathbb{R}$ Es gilt für Ereignisse $A, B, A_1, ..., A_k$:

- $A \subseteq B \to p(A) \le p(B)$
- $p(A \cup B) \rightarrow p(A) + p(B) p(A \cap B)$
- disjunkt $(A_i \cap A_J = \emptyset \text{ für } i \neq j)$ so gilt $p(A_1 \cup ... \cup A_k) = p(A_1) + ... + p(A_k)$
- $p(\Omega/A) :=$ Gegenereignis von A = 1 p(A)
- $p(A_1, ..., A_k) \le p(A_1) + ... + p(A_k)$
- (stochastisch) unabhängig, falls $p(A \cap B) = p(A) * p(B)$

Bedingte Wahrscheinlichkeiten $A, B \subseteq \Omega$ für

 $\begin{aligned} p_B(A \cap B) &= \frac{p(A \cap B)}{p(B)} := p(A|B) \text{ Erwartungswert} \\ E(X) &= \sum_{\omega \in \Omega} X(\omega) p(\omega) \text{ Linearität von E:} \\ E(x+y) &= E(x) + E(y) \text{ und } E(\alpha x) = \alpha E(x) \text{ Varianz von X:} \\ Var(X) &= E((X^2) - E(X))^2) \text{ Covarianz:} \\ Cov(X,Y) &= E((X-E(X)) * (Y-E(Y))) \text{ Verschiebungssatz:} \\ Cov(X,Y) &= E(X * Y) - E(X) * E(Y) \text{ Bernoulliverteilt falls} \\ p(X=1) &= p \text{ und } p(X=0) = 1 - p \text{ Bernoulli} \\ P &= \binom{n}{k} * p^k * (1-p)^{n-k} \binom{N}{0} = (\emptyset), \binom{N}{n} = N, \binom{n}{0} = \binom{n}{n} = 1 \\ \binom{n}{0} &= 1, \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} = \frac{n!}{k!(n-k)!} \end{aligned}$

Hypergeometrische Verteilung Beispiel: Urne mit zwei Sorten Kugeln; N Gesamtzahl der Kugeln, M Gesamtzahl Kugeln Sorte 1, N-M Gesamtzahl Kugeln Sorte 2, $n \leq N$ Anzahl Elemente einer Stichprobe. X Anzahl der Kugeln Sorte 1 in einer zufälligen n-elementigen Stichprobe.

$$p(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} E(X) = \sum_{x=0}^{M} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} = n * \frac{M}{N}$$

$$Var(X) = E(X^2) - E(X)^2 = n * \frac{M}{N} (1 - \frac{M}{N}) \binom{N-n}{N-1}$$

Elementare Graphentheorie

G=(V,E) heißt Graph mit Eckenmenge V(G)=V und Kantenmenge $E(G)=E\subseteq x,y:x\neq y\in V$. Für $(a,b)\in V(G)$ heißt $d_G(a,b)=min(l:$ es gibt einen a,b-Weg der Länge l) Abstand von a nach b. G heißt zusammenhängend, wenn G höchstens eine Komponente besitzt.

- $d_G(x,y) = 0 \leftrightarrow x = y$
- $d_G(x,y) = d_G(y,x)$
- $d_G(x,z) \le d_G(x,y) + d_G(y,z)$)

Ein Graph ist ein Baum wenn "G ist minimal zusammenhängend und kreisfrei"

• G ist kreisfrei und zusammenhängend

- G kreisfrei und |E(G)| = |V(G)| 1
- G zusammenhängend und |E(G)| = |V(G)| 1

Breitensuchbaum von G falls $d_F(z,x) = d_G(z,x)$ f.a. $z \in V(G)$. Tiefensuchbaum von G falls für jede Kante zy gilt: z liegt auf dem y,x-Weg in T oder y liegt auf dem z,t-Weg in T.

Spannbäume minimaler Gewichte Sei G zuständiger Graph, $\omega: E(G) \to \mathbb{R}$; Setze $F = \emptyset$. Solange es eine Kante $e \in E(G)/F$ gibt so, dass $F \lor (e)$ kreisfrei ist, wähle e mit minimalem Gewicht $\omega(e)$, setzte $F = F \lor e$, iterieren. Das Verfahren endet mit einem Spannbaum T = G(F) minimalen Gewichts.

Das Traveling Salesman Problem Konstruiere eine Folge $x_0,...,x_m$ mit der Eigenschaft, dass jede Kante von T genau zweimal zum Übergang benutzt wird, d.h. zu $e \in E(T)$ existieren $i \neq j$ mit $e = x_i x_{i+1}$ und $e = x_j x_{j+1}$ und zu jedem k existieren $e \in E(T)$ mit $e = x_k x_{k+1}$. Das Gewicht dieser Folge sei $\sum \omega(x_i x_{i+1}) = 2\omega(T)$. Eliminiere Mehrfachnennungen in der Folge. Durch iteration erhält man einen aufspannenden Kreis mit $\omega(X) \leq 2\omega(T)$.

Färbung & bipartit Eine Funktion $f:V(G)\to C$ mit $|C|\le k$ heißt k-Färbung, falls $f(x)\ne f(y)$ für $xy\in E(G)$. Ein Graph heißt bipartit mit den Klassen A,B falls $(x\in A\land y\in B)\lor (x\in B\land y\in A)$. Mit Bipartitheit gilt G hat ein Matching von $A\leftrightarrow |N_G(X)|\le |X|$ für alle $X\subseteq A$.