J3 Nuclear Decay with Time

 $^{20}\!/_{22}$

Complete the questions in the table:

	Initial number of unstable nuclei	Initial Activ- ity /Bq	Half- life	Decay con- stant /s ⁻¹	Number of unstable nuclei left after 6 hours	Activ- ity after 6 hours /Bq
J3.1	(a)	3000	6.0 h	(b)	(c)	(d)
J3.2	2.0×10^{21}	(a)	3.0 h	(b)	(c)	(d)
J3.3	(a)	23000	(b)	1.28×10^{-4}	(c)	(d)
J3.4	(a)	700	(b)	(c)	(d)	200

- J3.5 Tritium has a half life of about 12 years. If you put 3.0 μ g of tritium into a luminous sign, how much will still be there 50 years later?
- J3.6 If a substance has a half life of 100 s, how long do you have to wait for 25% of the nuclei to decay?
- J3.7 A substance has a half life of 100 s, and starts with 10^{20} unstable nuclei.
 - a) Calculate the initial activity, and from this work out the time taken for all of the nuclei to decay if the activity did not decrease with time.
 - b) Calculate what fraction of the nuclei remain after the time calculated above.
- J3.8 Carbon-14 has a half life of about 5700 years. What fraction of the original amount of carbon-14 would you expect to find in the timbers of a boat built 8000 years ago?
- J3.9 Uranium-238 has a half life of 4.47×10^9 years and decays to thorium-234. The thorium decays (by a series of further nuclear processes which are relatively brief) to lead. Assuming that a rock was originally entirely uranium, and that at present, 1.5% of the nuclei are now lead, calculate the age of the rock.