作业1

姓名_____ 学号

提交日期

成绩

1. 关于电场强度定义式 $\vec{E} = \vec{F}/q_0$,下列说法中哪个是正确的?[]

- A. 场强 \vec{E} 的大小与试探电荷 q_0 的大小成反比;
- B. 对场中某点, 试探电荷受力 \vec{F} 与 q_0 的比值不因 q_0 而变;
- C. 试探电荷受力 \vec{F} 的方向就是场强 \vec{E} 的方向;
- D. 若场中某点不放试探电荷 q_0 ,则 $\vec{F}=0$,从而 $\vec{E}=0$ 。
- 2. 一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质子运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确? []

1-2 题图

简单说明理由:

3. 带电量均为+q的两个点电荷分别位于X轴上的+a和-a位置,

如图所示,则Y轴上各点电场强度的表示式为 \vec{E} =_____,场强最大值的位置在y = 。

4. 如图所示,在一无限长的均匀带电细棒 A 旁垂直放置一均匀带电的细棒 B.且二棒共面,若两棒的电荷线密度均为 λ ,细棒 B 长为 l,

左端到 A 棒距离也为 l,求: B 受到的电场力.

5. 以点电荷为中心,半径为R的球面上,场强的大小一定处处相等吗?为什么?

7. 如图所示,将一绝缘细棒弯成半径为R的半圆形,其上半段均匀带有电荷Q,下半段均匀带有电量-Q,求半圆中心处的电场强度。

8. 线电荷密度为 λ 的"无限长"均匀带电细线,弯成图示形状,若圆弧半径为R,试求O点的场强。

9. 金属最容易带上正电荷的方式是什么?这样带了正电荷的金属质量有所增大?减小?不变?

作业 2 成绩 班级 提交日期

- 1. 如图所示, 把点电荷 +q 从高斯面外 P 移到 R 处 (OP = OR) , O 为 S 上一点, 则[].
 - A. 穿过S 的电通量 ϕ 。发生改变,O处 \vec{E} 变;

图 2-1

- D. ϕ 。不变, \vec{E} 不变。
- 2. 半径为R 的均匀带电球面上,电荷面密度为 σ ,在球面上取小面元 ΔS ,则 ΔS 上的电 荷受到的电场力为[]。

C.
$$\frac{\sigma^2 \Delta S}{\varepsilon_0}$$
 D. $\frac{\sigma^2 \Delta S}{4\pi \varepsilon_0 R^2}$

3. 如图所示,一个带电量为q的点电荷位于立方体的A角上,则通过侧面abcd的电通量

等于[]。

- C. $\frac{q}{48\varepsilon_0}$ D. $\frac{q}{24\varepsilon_0}$

4. 一半径为R长为L的均匀带电圆柱,其单位长度带电量为 λ ,在带电圆柱的中垂面上有 一点P, 它到轴线距离为 $\mathbf{r}(r>R)$.

当r << L时,E =_______,当r >> L时,E =______。

5. 半径为R的带电球体,电荷体密度分布为 $\rho = Ar$,式中r为离球心的距离 $(r \le R)$, A为常数,则球体上的总电量Q=____。

6. 如图所示,一质量 $m=1.6\times10^{-6}kg$ 的小球,带电量 $q=2\times10^{-11}C$,悬于一丝线下端, 丝线与一块很大的带电平面成 30° 角。若带电平面上电荷分布均匀,q很小,不影响带电平 面上的电荷分布,求带电平面上的电荷面密度。

2-6 题图

7. 如图所示,大小两个同心球面,半径分别为 R_1 , R_2 $\left(R_2 > R_1\right)$,小球上带有电荷 $q\left(q > 0\right)$,大球上带有电荷 $Q\left(Q > 0\right)$ 。 试分别求出 $r < R_1$, $r > R_2$, $R_1 < r < R_2$ 时,离球心 Q 为 r 处的电场强度。

2-7 题图

8. 两个无限长同轴圆柱面,半径分别为 R_1 和 R_2 $(R_2>R_1)$,带有等值异号电荷,每单位长度的电量为 λ (即电荷线密度)。试分别求出 $r< R_1, r> R_2, R_1< r< R_2$ 时,离轴线为r处的电场强度。

作业3 成绩 班级 提交日期

- 1. 电场中某区域内电场线如图所示,将一点电荷从M移到N点则必有[]。
 - A. 电场力的功 $A_{MN} > 0$

- C. 电势 $U_M > U_N$
- D. 电势 $U_{M} < U_{N}$
- 2. 图中, $A \times B$ 是真空中的两块相互平行的无限大均匀带电平面,电荷面密度分别为+ σ 和 -2σ ,若将A板选作电势零点,则图中a点的电势是[

3-3 题图

- 3. 如图所示,两个同心球面。内球面半径为 R_1 ,均匀带电荷Q;外球面半径为 R_2 ,是一 个非常薄的导体壳,原先不带电,但与地相连接。设地为电势零点,求在两球面之间、距离 球心为r处的的P点的电场强度及电势为别为[
- A. $E = \frac{Q}{4\pi\varepsilon_0 r^2}$, $U = \frac{Q}{4\pi\varepsilon_0 r}$
- B. $E = \frac{Q}{4\pi\varepsilon_0 r^2}$, $U = \frac{Q}{4\pi\varepsilon_0} (\frac{1}{R_1} \frac{1}{r})$
- C. $E = \frac{Q}{4\pi\epsilon_0 r^2}$, $U = \frac{Q}{4\pi\epsilon_0} (\frac{1}{r} \frac{1}{R_2})$ D. E = 0, $U = \frac{Q}{4\pi\epsilon_0 R}$.
- 4. 一偶极矩为 $\bar{p} = q\bar{l}$ 的电偶极子放在场强为 \bar{E} 的均匀外电场中, \bar{p} 与 \bar{E} 的夹角为 α 。求 此电偶极子绕垂直于 (\bar{p},\bar{E}) 平面的轴沿 α 增加的方向转过 180° 的过程中,电场力做的功。

5. 均匀带电球面,半径为R,电荷面密度为 σ 。试求离球心为r处P点的电势。设(1) P点在球内;(2) P点在球面上;(3) P点在球面外。

- 6. 一圆盘,半径 $R = 8.0 \times 10^{-2} m$,均匀带电,面密度 $\sigma = 2.0 \times 10^{-5} C \cdot m^{-2}$
- (1) 求轴线上任一点的电势(该点与盘心的距离为x); (2) 由场强与电势梯度的关系,求该点电场强度。 (3) 计算 $x = 6.0 \times 10^{-2} m$ 的电势和场强。

7. 半径为R的圆弧ab,所对圆心角 α ,如图所示,圆弧均匀带正电,电荷线密度为 λ 。试求圆弧中心处的电场强度和电势。

3-7 题图

- 8. $\oint_{l} \vec{E} \cdot d\vec{l} = 0$ 表明静电场具有什么性质?
- 9. 电势为零的空间场强一定为零吗? 电场强度为零的空间电势一定为零吗?

作业4	姓名	学号	_
	班级	提交日期	_ 成绩
线穿过外球壳球壳上[] A. 不带电布B. 带正电C. 带负电布D. 外表面带	上的绝缘小孔与地连接。 访 劳 劳负电荷,内表面带等		4-1 题图
		一导体表面某处电荷面密度	为 σ ,该处表面附近的场强
大小为 E ,则	$E = \sigma/\varepsilon_0$ 。那么, E	'是[]。	
	面元上电荷产生的场 电荷在该处产生的场	B. 所有的导体。 D. 以上说法都	表面的电荷在该处产生的场 不对
点电荷移至距 A. 对球壳内	球心 <i>R</i> /2处,重新测量 外电场无影响	在球心处放一点电荷。测得 量电场。则电荷的移动对电场 B. 球壳内电场改变, 效变 D. 球壳内外电场均改	场的影响为[]。 球壳外电场不变
两球相距很远 A. <i>R</i> /r 5. 两个同心导),使两个导体带电, $^{\mathrm{B.}}$ $^{r}\!\!/_{\!R}$ 体球壳,内球壳带电 Q	体 $(r < R)$,用一根很长的给则两球表面电荷面密度的比 $C. R^2 / r^2$ D C ,外球壳原不带电,则现外外球壳外 C 点总场强	值 $\sigma_{ extstyle extstyle$
			

6. 将一个中性的导体放在静电场中,导体上感应出来的正负电荷的电量是否一定相等,这

时导体是否为等势体?若在电场中将此导体分为分别带正负电的两部分,两者的电势是否仍

相等?

7. 在一大块金属导体中挖去一半径为R的球形空腔,球心处有一点电荷q。空腔内一点A到球心的距离为 r_A ,腔外金属块内有一点B,到球心的距离为 r_B ,如图所示。求A,B两点的电场强度。

4-7 题图

8. 有两个无限大平行面带电导体板,如图所示。(1)证明:相向的两面上,电荷面密度总是大小相等而符号相反;(2)相背的两面上,电荷面密度总是大小相等而符号相同。(2)若 左导体板带电 $3C\cdot m^{-2}$,右导体板带电 $7C\cdot m^{-2}$,求四个表面上的电荷面密度。

4-8 题图

9. 孤立导体带电量Q,其表面附近的场强方向如何?当将另一带电体移近导体时,其表面附近的场强方向有什么变化?导体内部的场强有无变化?

作业5 成绩 班级 _________ 提交日期

1. 在一点电荷+q的周围,包围了一个有限大的均匀介质球,其相对介电常数为 ε_{ι} ,点电 荷位于球心处,则球内 A. 点与球外 B. 点的场强大小为[

D.
$$E_A = \frac{q}{4\pi\varepsilon_0\varepsilon_r r_A^2}$$
, $E_B \langle \frac{q}{4\pi\varepsilon_0\varepsilon_r r_B^2}$

2. 一平行板电容器中充满相对介电常数为 ε , 的各向同性均匀电介质。已知介质表面极化电 荷面密度为 $\pm \sigma'$,则极化电荷在电容器中产生的电场强度的大小为[

- B. $\frac{\sigma'}{2\varepsilon_0}$ C. $\frac{\sigma'}{\varepsilon_0\varepsilon}$ D. $\frac{\sigma'}{\varepsilon}$

3. 在一点电荷产生的静电场中,一块电介质如图放置,以点电荷q所在处为球心作一球形 闭合面,则对此球形闭合面[7.

- A. 高斯定理成立, 且可用它求出闭合面上各点的场强
- B. 高斯定理成立, 但不能用它求出闭合面上各点的场强
- C. 由于电介质不对称分布, 高斯定理不成立
- D. 即使电介质对称分布, 高斯定理也不成立

- 4. 半径为 R_1 和 R_2 的两个同轴金属圆筒,其间充满着相对介电常数为 ε_r 的均匀介质。设两 圆筒上单位长度带电量分别为 $+\lambda$ 和 $-\lambda$,则介质中的电位移矢量的大小D=电场强度的大小E =_____。
- 5. 一带电量 q、半径为 R 的金属球壳,壳内充满介电常数为 ε 的各向同性均匀电介质,壳 外是真空,则此球壳的电势U=。
- 6. 两个点电荷在真空中相距为 r, 时的相互作用力等于在某一"无限大"均匀电介质中相距 为 r_2 时的相互作用力,则该电介质的相对介电常数 $\varepsilon_r =$ ______

7. 两层相对介电常数分别为 ε_1 和 ε_2 的介质,充满圆柱形电容器之间,如图(截面图)。内外圆筒单位长度带电量分别为 λ 和 $-\lambda$,求: (1)两层介质中的场强和电位移矢量; (2)此电容器单位长度的电容。

5-7 题图

8. 在一平行板电容器的两极板上,带有等值异号电荷,两极间的距离为5.0mm,充以 $\varepsilon_r = 3$ 的介质,介质中的电场强度为 $1.0 \times 10^6 V \cdot m^{-1}$ 。求:(1)介质中的电位移矢量;(2)平板上的自由电荷面密度;(3)介质中的极化强度;(4)介质面上的极化电荷面密度;(5)平板上自由电荷所产生的电场强度,介质面上极化电荷所产生的电场强度。

9. 一导体球,带电量q,半径为R,球外有两种均匀电介质。第一种介质介电常数为 ε_{r1} 、厚度为d,第二种介质为空气 $\varepsilon_{r2}=1$ 充满其余整个空间。求球内、球外第一种介质中、第二种介质中的电场场强、电位移矢量和电势。

10. 半径为R的均匀带电金属球壳里充满了均匀、各向同性的电介质,球外是真空,此球壳的电势是否为 $\frac{Q}{4\pi\varepsilon R}$? 为什么?

作业 6	姓名	学号	
	班级	提交日期	成绩
它们的静电能 A. 球体的 B. 球体的 C. 球体的	定之间的关系 中电能等于球 中电能大于球 中电能小于面	是[]。 面的静电能 面的静电能	它们的半径和所带的电量都相等,则 电能小于球面外的静电能
2. C_1 和 C_2 两	j空气电容器	串联起来接上电源充电,然后将	B 电源断开,再把一电介质板插入 C_1
中,如图所示 $A. C_1$ 两端 $B. C_1$		。 $oldsymbol{\mathit{C}}_2$ 两端电势差增大	
B. <i>C</i> ₁ 两端	电势差减少,	C_2 两端电势差不变	$ \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
C. <i>C</i> ₁ 两端	电势差增大,	C_2 两端电势差减小	
D. <i>C</i> ₁ 两端	电势差增大,	C_2 两端电势差不变	6-2 题图
3. 一面积为 <i>S</i> 容为	,间距为 <i>d</i> 。	的平行板电容器,若在其中平	行插入厚度为 $d/2$ 的导体板,则电
4. 将半径为	10 <i>cm</i> 的金属	球接上电源充电到3000V,贝	川电场能量 $W=$ 。
		S 等于 C 的电容器,已知 A 带电的能量变化 $\Delta W = $	量为 Q , B 带电量为 $2Q$,现将 A 、。
上带电量为_	0	· ·	相连,电源电动势为 $arepsilon$,则每一极板 可极板距离拉至原来的两倍,则电容

7. 试计算两根带异号的平行导线单位长度的电容。假设导线的半径为a,相隔距离为d(d>>a),导线为无限长,电荷均匀分布。

8. 充满均匀电介质的平行板电容器,充电到板间电压U=1000V 时断开电源。若把电介质从两板间抽出,测得板间电压 $U_0=3000V$,求: (1) 电介质的相对介电系数 ε_r ; (2) 若有介质时的电容 $C_1=2.0\times 10^{-3}\mu F$,抽出介质后的电容 C_0 为多少? (3) 抽出电介质时外力所做的功。

9. 有一导体球与一同心导体球壳组成的带电系统,球的半径 $R_1=2.0cm$,球壳的内、外半径分别为 $R_2=4.0cm$, $R_3=5.0cm$, 其间充以空气介质,内球带电量 $Q=3.0\times10^{-8}C$ 时,求: (1) 带电系统所存储的静电能; (2) 用导线将球与球壳相连,系统的静电能为多少?

作业 7	姓名	学号	
	班级	提交日期	成绩

1. 如图所示,载流的圆形线圈(半径 a_1)与正方形线圈(边长 a_2)通有相同电流,若两个 线圈中心 O_1 , O_2 处的磁感应强度大小相同,则半径 O_1 与边长 O_2 之比为[]。

C. 1:1 D. $\sqrt{2}\pi:1$

7-1 题图

2. 如图所示, 四条平行的无限长直导线, 垂直通过边长为 a = 20cm 正方形顶点, 每条导 线中的电流都是I = 20A,这四条导线在正方形中心O点产生的磁感应强度为[

A.
$$B = 0.8 \times 10^{-4} T$$

B.
$$B = 1.6 \times 10^{-4} T$$

C.
$$B = 0$$

7-2 题图

3. 一根无限长直导线 abcde 弯成图 8-3 所示的形状,中部 bcd 是半径 为R、对圆心O张角为 120° 的圆弧,当通以电流I时,O处磁感应强 $-\frac{a}{2}$ 度的大小 $B = _____$,方向为 $_____$ 。

7-3 题图

4. 如图所示,两个同心半圆弧组成一闭合线圈,通有电流I,设线圈平面法

7-4 题图

5. 在电子仪器中,为了减小与电源相连的两条导线的磁场,通常总是把他们扭在一起,为 什么?

- 6. 在坐标原点有一电流元 $Id\stackrel{\rightarrow}{l}=3\times 10^{-3}\stackrel{\rightarrow}{\kappa}A\cdot m$ 。试求该电流元在下列各点处产生的磁感应强度 $d\stackrel{\rightarrow}{B}$?
- (1) (2,0,0); (2) (0,4,0); (3) (0,0,5); (4) (3,0,4); (5) (3,4,0)

7. 从经典观点来看,氢原子可看作是一个电子绕核高速旋转的体系,已知电子以速度 $2.2\times10^6m\cdot s^{-1}$ 在半径 $r=0.53\times10^{-10}m$ 的圆轨道上运动,求:电子在轨道中心产生的磁感应强度和电子的磁矩大小。

8. 在一半径 R=1.0cm 的无限长半圆柱形金属薄片中,自上而下地有电流 I=3.0A 通过,试求:圆柱轴线上任一点的磁感应强度。

作业 8	姓名	学号		
	刊工名及	提	成绩	

- 1. 如图所示, 在无限长载流导线附近作一球形闭合曲面 S 当面 S 向长直导线靠近的过程 中,穿过面S的磁通量 Φ 及面上任一点P的磁感应强度B大小的变化为[
 - A. Φ增大, B 不变
 - B. Φ不变, **B**增大
 - C. **Φ**增大, **B**增大
 - D. Φ 不变, B 不变

8-1 题图

- \overrightarrow{D} 2. 一电子以速度 \overrightarrow{V} 垂直地进入磁感应强度为 \overrightarrow{B} 的均匀磁场中,此电子在磁场中运动的轨迹 所围的面积内的磁通量将是[7.
 - A. 反比于B, 正比于 v^2

B. 反比于B,正比于 ν

C. 正比于B, 反比于 V^2

- D. 正比于B, 反比于 ν
- 螺线管轴线外的环路 L (螺线管穿过环路)作积分

8-3 题图

4. 如图所示,两平行长直导线相距0.4m,每条导线载有电流10A。则通过图中矩形面积

abcd 的磁通量 $\Phi_m =$ _____。

8-4 题图

5. 有一很长的载流导体直圆管,内半径为a,外半径为b,电流强度为I,电流沿轴线方向流动,并且均匀地分布在管壁的横截面上,如图所示。求空间各点的磁感应强度,并画出B-r曲线(r为场点到轴线的垂直距离)。

6. 矩型截面的螺线环,尺寸如图所示。(1)求环内磁感应强度的分布;(2)证明通过螺线 环截面(图中阴影区)的磁通量为 $\Phi=\frac{\mu_0NIh}{2\pi}\ln\frac{D_1}{D_2}$,其中N为螺线环线圈总匝数,I为 其中电流强度。

7. 在无电流的空间区域,如果磁感应线是平行直线,则磁场一定是均匀的,为什么?

作业 9 姓名 ____ 学号 _____ 成绩 班级 ______ 提交日期

1. 如图所示,半导体薄片为N型,则a、b两点的电势差 U_{ab} []。

- B. 等于零
- C. 大于零

9-1 题图

9-2 题图

- 2. 如图所示, 半圆形线圈半径为R, 通有电流I, 在磁场B的作用下 从图示位置转过 30^0 时,它所受磁力距的大小和方向分别为[7.
- A. $\frac{\pi R^2 IB}{4}$, 沿图面竖直向下 B. $\frac{\pi R^2 IB}{4}$, 沿图面竖直向上
- C. $\frac{\sqrt{3}\pi R^2 IB}{\Delta}$, 沿图面竖直向下 D. $\frac{\sqrt{3}\pi R^2 IB}{\Delta}$, 沿图面竖直向上
- 3. 在一无限长刚性载流直导线产生的磁场中,把同样的载流导线分别从a处移到c处、从b处移到c处(a、b、c位置如图所示)。在移动过程中导线之间保持平行,若两次移动磁 力做的功分别记为 A_{ac} 和 A_{bc} ,则[

- C. $A_{ac} > A_{bc}$ D. $A_{ac} < A_{bc}$

9-3 题图

4. 一长直导线载有10A的电流,在距它为a = 2cm处有一电子由于运动 受洛仑兹力 \overrightarrow{f} 的方向如图所示,且 $f=1.6\times 10^{-16}N$ 。设电子在它与GE组成的平面内运动,则电子的速率 $\nu = \underline{\hspace{1cm}}$,在图中画出 $\overset{
ightarrow}{\nu}$ 的方向。

9-4 题图

5. 在空间有同样的三根直导线,相互间的距离相等,各通以同强度同方向的电流,设除了 磁相互作用外,其他影响可忽略,则三条导线将_____ 运动。

6. .如图所示,宽 2cm、厚 0.1cm 的金属片,载有 20A 电流,处于磁感应强度为 2T 的均匀磁场中,测得霍尔电势差为 4.27 μ V.(1)霍尔电势差是指 a、b、c 中哪两点之间的电势差?指出霍尔电势差的高电势点;(2)计算片中电子的漂移速度;(3)求电子的浓度。

7. 一矩形线圈,边长为8cm和10cm,其中通10A电流,放在B=0.5T的均匀磁场中,线圈平面与磁场方向平行。求: (1)线圈所受力矩的大小和方向; (2)若此线圈受力矩作用转到线圈平面与磁场垂直的位置,力矩做功多少?

- 8. 能否利用磁场对带电粒子的作用来增大粒子的动能?
- 9. 若释放磁铁附近的小铁片,它会向磁铁运动,其动能从何而来?

作业 10	姓名	学号	
	班级	提交日期	成绩

- 1. 载流长直螺线管内充满相对磁导率为 μ_r 的均匀抗磁质,则螺线管内中部的磁感应强度 B 和磁场强度 H 的关系是 []。
- A. $B>\mu_0H$ B. $B=\mu_rH$ C. $B=\mu_0H$ D. $B<\mu_0H$

- 2. 在稳恒磁场中,关于磁场强度 \vec{H} 的下列几种说法中正确的是[]。
- A. \vec{H} 仅与传导电流有关。
- B. 若闭合曲线内没有包围传导电流,则曲线上各点的 $\overset{
 ightarrow}{H}$ 必为零。
- C. 若闭合曲线上各点 \vec{H} 均为零,则该曲线所包围传导电流的代数和为零。
- D. 以闭合曲线 L 为边界的任意曲面的 $\overset{\neg}{H}$ 通量相等。
- 3. 图中三条曲线分别为顺磁质、抗磁质和铁磁质的B-H曲线,则
- *Oa* 表示_____; *Ob* 表示 ;
- *Oc* 表示____。

- 4. 某铁磁质的磁滞回线如图所示,则图中
- *Ob* (或*Ob*) 表示 ;
- Oc (或Oc) 表示。

10-4 题图

5. 螺线环中心周长 l=10cm,环上线圈匝数 N=300,线圈中通有电流 I=100mA。求:(1)管内的磁场强度 H 和磁感应强度 B;(2)若管内充满相对磁导率 $\mu_r=4000$ 的磁介质,则管内的 H 和 B 是多少?(3)磁介质内由导线中电流产生的 B_0 和磁化电流产生的 B 各是多少?

10-5 题图

6. 一无限长圆柱形直导线,外包一层相对磁导率为 μ 的圆筒形磁介质,导线半径为 R_1 ,磁介质外半径为 R_2 ,导线内有电流I通过,如图。求: (1) 空间磁感应强度的分布,画出B-r曲线; (2)空间磁场强度,画出H-r曲线。

10-6 题图

7. 介质中安培环路定理为 $\oint_L \vec{H} \cdot d\vec{l} = \sum I_i$, $\sum I_i$ 为正向穿过闭合回路 L 的传导电流的代数和,这是否可以说: $\stackrel{\rightarrow}{H}$ 只与传导电流有关,与分子电流无关?

作业 11	姓名	学号	
	班级	提交日期	成绩

- 1. 在如图所示的装置中,当不太长的条形磁铁在闭合导线圈内作振动时(忽略空气阻力),则[]。
- A. 振幅不变
- B. 振幅先减小后增大
- C. 振幅会逐渐加大
- D. 振幅会逐渐减小

11-1 题图

2. 如图所示,在均匀磁场 \overrightarrow{B} 中,有一半径为R的导体圆盘,盘面与磁场方向垂直,当圆盘以匀角速度 ω 绕过盘心的与 \overrightarrow{B} 平行的轴转动时,盘心O与边缘上的A点间,其电势差 V_O $-V_A$ 等于[]。

11-2 题图

A.
$$\frac{1}{2}\omega R^2B$$
 B. $-\frac{1}{2}\omega R^2B$ C. $\frac{1}{4}\omega R^2B$ D. $-\frac{1}{4}\omega R^2B$

3. 如图所示,一长度为l的直导线ab 在均匀磁场 \vec{B} 中以恒定速度 \vec{v} 移动,直导线ab 中的动生电动势为

11-3 题图

4. 如图所示,长直导线通有电流 I = 5A,在其附近有一导线棒 ab, l = 20cm,离长直导线距离 d = 12cm 如图. 当它沿平行于直导线的方向以速度 $v = 10m \cdot s^{-1}$ 平移时,求: (1) 导线棒中的感应电动势多大? (2) 哪端的电势高? (导线棒与长直导线共面且垂直)

11-4 题图

5. 如图所示,长直导线中通有电流 I=6A ,另一矩形线圈与长直导线共面共 10 匝,宽 a=10cm ,长 L=20cm ,以 $v=2m\cdot s^{-1}$ 的速度向右运动,求: d=10cm 时线圈中的感应电动势。

11-5 题图

6. 如图所示,一长方形平面金属线框至于均匀磁场中,磁场方向与线框平面法线的夹角为 $\alpha=30^{0}$,磁感应强度B=0.5T,可滑动部分cd的长度为L=0.2m,以 $v=1m\cdot s^{-1}$ 的速度向右运动,求线框中的感应电动势。

11-6 题图

7. 将尺寸完全相同的铜环和木环适当放置,使通过两环中的磁通量的变化率相等。问: 在两环中是否产生相同的感应电场和感应电流?

作业 12	姓名	学号	
	班级	提交日期	成绩

1. 用导线围成的回路(两个以 0 点为圆心,半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过 0 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示。如磁场方向垂直图面向里,其大小随时间减小,则(A),(B),(C),(D),中正确表示涡旋电场方向及感应电流的流向的是[]。

2. 如图所示,均匀磁场限制在圆柱形空间。 $\frac{dB}{dt} \neq 0$ 。磁场中 A, B 两点用直导线 AB 连接,

或用弧导线AB连接,则[]。

- A. 直导线中电动势较大
- B. 只有直导线中有电动势
- C. 两导线中的电动势相等
- D. 弧导线中电动势较大

12-2 题图

3. 如图所示, 闭合线圈共 50 匝, 半径 r = 4cm, 线圈法线正向与磁感应强度之间的夹角 $\alpha = 60^{\circ}$, 磁感应强度 $B = (2t^2 + 8t + 5) \times 10^{-2} T$ 。求: t = 3s 时感应电动势的大小和方向。

12-3 题图

4. 如图所示,一均匀磁场被限制在 R=1m 的圆柱形空间内,磁场以 $\frac{dB}{dt}=50T.S^{-1}$ 的均匀速率增加,已知 $\theta=\frac{\pi}{3}$, oa=ob=0.4m ,求: 等腰梯形导线框中的感应电动势,并指出其方向。

 $\begin{array}{c}
\otimes B & b \\
R / O & a \\
\end{array}$

12-4 题图

5. 如图所示,在磁场 $B = -B_0 t$ 中,固定一宽度为 L 的 U 形介质导轨,有一长为 2L 的金属杆在导轨上以 v 的速度匀速向右运动,设 t = 0 时金属杆 cd 与导轨左边缘 ab 重合,求:t 时刻 (1) 回路中的感应电动势; (2) 杆中的动生电动势。

- 6. 一块金属在均匀磁场中平移或旋转,金属中会产生涡流吗?为什么?
- 7. 变压器的铁芯总是做成片状的,而且涂上绝缘漆互相隔开,为什么?

作业 13	姓名	学号	
		提交日期	
			· · · · · · · · · · · · · · · · · · ·
1. 关于长直螺	\mathbb{R} 线管的自感系数 L 的	值,下列说法中错误的是	[]。
A. 螺线管的半	\angle 径越大, L 越大	B. 充有铁磁质的 L 比	L 真空的 L 大
C. 通以的电流	$\bar{n}I$ 的值越大, L 越大	D. 单位长度的匝数起	成多, L越大.
2. 对于单匝线	浅圈取自感系数的定义	为 $L = \frac{\Phi}{I}$ 。当线圈的几何	形状,大小及周围磁介质分布
不变,且无铁	磁性物质时,若线圈中	中的电流强度变小,则线圈	\mathbb{R} 的自感系数 L []
A. 变大,但与	 电流不成反比关系	B. 不变	
C. 变大,与电	担流成反比关系	D. 变小	
3. 中子星表面	面的磁场估计为 $10^8 T$,则该处的磁能密度为	;_
按质能关系(E	$E = mc^2$),质量密度	为kg·m ⁻³	

4. 半径为2.0cm 的螺线管,长30.0m,上面均匀密绕 1200 匝线圈,线圈内为空气。(1) 求此螺线管的自感系数;(2)当螺线管中电流以 $3.0\times10^2\,A\cdot s^{-1}$ 的速率变化时,在线圈中产生的自感电动势多大?

5. 如图所示,面积为 S_1 的匝数为 N_1 的线圈 1,套在面积为 S_2 、长为l的匝数为 N_2 的螺线管 2 上 ,螺线管 2 中通有电流 I_2 求: (1) 线圈 1 中的磁通量; (2) 线圈与螺线管的互感。

6. 一同轴电缆由中心导体圆柱和外层导体圆筒组成,两者半径分别为 R_1 和 R_2 ,筒和圆柱之间充以电介质,电介质和金属的 μ_r 均可作取 1,求: 此电缆通过电流 I (由中心圆柱流出,由圆筒流回)时,单位长度内存储的磁能,并通过和自感磁能的公式比较求出单位长度电缆的自感系数。

7. 如果电路中通有强电流,当突然打开电闸断电时,就有一大火花跳过电闸,为什么?

8. 两个相距不太远的线圈,如何放置可使其互感最大?如何放置可使其互感为零?

作业 14	姓名	学号		
	班级	提交日期_		
			_	
1. 下述说法中	正确的是[]		
A. 位移电流的	热效应服从焦耳	一楞次定律 B.	位移电流由变化的	り磁场产生的
C. 位移电流的	磁效应不服从安:	培环路定理 D.	位移电流是由变体	化的电场产生的
2. 下列说法中	正确的是[1		
	所产生的磁场 ,			
	所产生的电场,			
	磁场,没有电流			
D. 变化着的电	场所产生的磁场	,不一定随时间到	变化	
3. 真空中一平	·面电磁波表达式	為 $E_y = E_z = 0$,	$E_x = E_0 \cos \omega$	$(t+\frac{y}{c})$, $\triangle t = t_0$ 时刻,
			(ζ)
$y = y_0$ 处的电	」场强度指向 x 轴	负向,则该时刻	处的磁场强度方向	应该是[]
A. X 轴负向;	B. Z轴负	向; C. X 轴正	E向; D. Z	轴正向;
4. 对于平面电	磁波, \vec{E} 和 \vec{H} 的	相位	,在空	可任一点 $ec{E}$ 和 $ec{H}$ 的量值
关系为		$ec{F}$ 和 $ec{H}$ 的偏振	方向彼此	,且均与波的
				, <u>1</u> 200–10011
传播力问	,从而可为	口电磁波是	o	
5. 由两块圆形	导体板组成的平	板电容器,圆板	半径为 <i>1cm</i> ,中间	为空气。当以 <i>5A</i> 的电流
充由时. 求.(1)由容器内部	的由场品度变化。	<u> dE</u> 率	δ 间的位移电流密度 J_d ;
\(\alpha\)	- \ . C. H.H.L.1.Hh	H4 : (1-7/4) TV /X /X (1)	dt	CLARA EXTO TORRERIZE d ,
(3) 极板间的	位移电流 I_{i} :(4) 在圆板边缘处	b的磁感应强度 B 。	

6. 如图所示,平板电容器之间加交变电场 $E=720\sin(10^5\pi t)\,V\cdot m^{-1}$ 。求距电容器中心连线 r=0.01m 处的 P 点,经过 $2\times10^{-5}s$,位移电流产生的磁场强度的大小。

7. 真空中沿z轴负向传播的平面电磁波,其磁场强度的表达式为 $\vec{H} = \bar{i}H_0\cos\left(t + \frac{z}{c}\right)[SI]$,求写出电场强度的表达式。

作业 15	姓名	_ 学号	
	班级	提交日期	成绩

- 1. 在地面参考系测得一星球离地球 5 光年,宇航员欲将此距离缩为 3 光年,他乘的飞船相对地球的速度应是「
- A. $\frac{1}{2}c$ B. $\frac{3}{5}c$ C. $\frac{4}{5}c$ D. $\frac{9}{10}c$
- 2. 火箭的固有长度为L,其相对地面以 ν_1 作匀速直线运动。若火箭上尾部一射击口向火箭首部靶子以 ν_2 速度发射一子弹,则在火箭上测得子弹从出射到击中靶的时间间隔为[]。
- A. $\frac{L}{v_1 + v_2}$; B. $\frac{L}{v_2}$;
- $\text{C.} \quad \frac{L}{v_2} \sqrt{1 \left(\frac{v_1}{c}\right)^2} \quad ; \qquad \qquad \text{D.} \quad \frac{L}{v_1 + v_2} \sqrt{1 \left(\frac{v_1}{c}\right)^2} \ ;$
- 3. 在 S 惯性系中 X 轴上相距 Δx 处有两只同步钟 A 和 B ,在相对 S 系沿 X 轴以 u 速运动的 惯性系 S' 中也有一只同样的钟 A' 。若 XX' 轴平行,当 AA' 相遇时,恰好两钟读数都为零,则当 A' 与 B 相遇时 S 系中 B 钟的读数为_______, S' 系中 A' 钟的读数为______。
- 4. 根据狭义相对论的原理,时间和空间的测量值都是______,它们与观测者的密切相关。
- 5. S 、 S' 系是坐标轴相互平行的两个惯性系, S' 系相对于 S 沿 X 轴正方向匀速运动。一刚性尺静止于 S 系中,且与 X 轴成 30^0 角,而在 S' 系中测得该尺与 X' 轴成 45^0 角,试求: S 、 S' 系的相对运动速度。

- 6. 如图所示,矩形匀质均匀带电薄板,静止时边长分别为a和b,质量为 m_0 ,带电量为 Q_0 。
- (1) 试计算在相对薄板沿一边长以v速运动的惯性系中测得板的质量面密度和电荷面密度;
- (2) 若运动沿对角线方向, 求质量、电荷的面密度。

7. 列车和隧道静止时长度相等,当列车以u 的高速通过隧道时,分别在地面和列车上测量,列车长度L与隧道长度L 的关系如何?若地面观测者发现当列车完全进入隧道时,隧道的进、出口处同时发生了雷击(当然未击中列车),按相对论理论,列车上的旅客会测得列车遭雷击了吗?为什么?

作业 16	姓名	学号	
	班级	提交日期	成绩

1. 实验室测得粒子的总能量是其静止能量的K倍,则其相对实验室的运动速度为[

A.
$$\frac{c}{K-1}$$

A.
$$\frac{c}{K-1}$$
 B. $\frac{c}{K}\sqrt{1-K^2}$ C. $\frac{c}{K}\sqrt{K^2-1}$ D. $\frac{c}{K}\sqrt{K+1}$

$$C. \quad \frac{c}{K} \sqrt{K^2 - 1}$$

D.
$$\frac{c}{K}\sqrt{K+1}$$

2. 把一静止质量为 m_0 的粒子,由静止加速到v=0.6c,所需作的功为[

A.
$$0.18m_0c^2$$

A.
$$0.18m_0c^2$$
 B. $0.36m_0c^2$ C. $1.25m_0c^2$ D. $0.25m_0c^2$

C.
$$1.25m_0c^2$$

D.
$$0.25m_0c^2$$

3. 观测者乙以 $\frac{3}{5}c$ 的速率相对观测者甲运动,若甲携带质量为1kg的物体,则

(1)	乙测得物体的质量为:	
(1)	厶 侧待彻冲的贝里 刀 :	

4. 电子静止质量 $m_0=9.11\times 10^{-31}kg$,当它以 $\nu=0.99c$ 的速度运动时,按相对论理论, 其总能量为_____,动能为_____;按经典理论,其动能为_____。

5. μ 子的静止质量是电子质量的 207 倍,在其自身参照系中平均寿命 $\bar{\tau}_0 = 2 \times 10^{-6} s$,若 在实验室参照系中得其平均寿命 $\bar{\tau}=7\times10^{-6}s$ 。试问:实验室测得其质量是电子静止质量 的多少倍?

6. α 粒子的动能等于其静止能量的一半, 求其运动速度。

- 7. 已知S'系相对S 系以u=0.8c 的速度沿 X 轴正向运动。一静止质量为 m_0 的粒子也沿 X 轴运动,在S 系中测得粒子速率v=0.6c。 求: (1) 相对S 系,粒子的动能 E_k ;
- (2) 相对 S' 系,粒子的速度 v'; (3) 在 S' 系中测,粒子的总能量 E'

- 8. 根据相对论的理论,实物粒子在介质中的运动速度是否有可能大于光在该介质中的传播速度。
- 9. 如果 $A \setminus B \not\in S'$ 惯性系中互为因果关系的两个事件 ($A \not\in B$ 的原因, 先于 B 发生), 问: 是否能找到一个惯性系, 在该系中测得 B 先于 A 发生, 出现时间顺序颠倒的现象?请证明。

作业 17 姓名______ 学号 _____ 班级 提交日期 **成绩**

- 2. 绝对黑体的特点是[]
- A. 不能反射但能发射所有的电磁辐射 B. 能吸收射任何电磁辐射,也能发射电磁辐射
- C. 能吸收任何电磁辐射, 却不能发射电磁辐射 D. 不能反射也不能发射任何电磁辐射

- 5. 在加热黑体过程中,其最大单色辐射本领的波长由 $0.8\mu m$ 变到 $0.4\mu m$,则其总辐射本 领增加多少倍?
- 6. 以一定频率的单色光照射在某金属上,测得其光电流的曲线如图中实线所示,然后在光强不变增大照射光的频率,测得光电流的曲线如图中虚线所示。则满足题意的图是[] 简单说明理由:

7.	光电效应的实验规律是	::
----	------------	----

(1) 饱和光电流与照射光的 成正

- (3) 要产生光电效应,对照射光的要求是____。
- 8. 写出光电效应的爱因斯坦公式 $hv = \frac{1}{2}mv_M^2 + A$ 中各项的物理意义:

(2)
$$\frac{1}{2}mv_{\rm M}^2$$

9. 从金属铝中逸出一个电子需要 4.2eV 的能量. 今有波长 $\lambda = 200nm$ 的紫外线照射铝表面. 求: (1) 光电子的最大初动能; (2) 遏止电压; (3) 铝的红限波长。

10. 波长为 300nm 的光照在某金属表面产生光电效应,已知光电子的能量范围从 0 到 $4.0 \times 10^{-19} J$ 求: (1) 遏制电压; (2) 红限频率。

(普朗克常数 $h = 6.63 \times 10^{-34} J.s$, 电子电量 $e = 1.60 \times 10^{-19} C$)

作业 18	姓名	学号	
	班级	_ 提交日期	成绩

- 1. 康普顿散射光的主要特点是()
- A. 波长比入射光的波长短, 且与散射物的性质无关
- B. 波长比入射光的波长长,且与散射物的性质无关
- C. 波长比入射光的波长短, 且与散射物的性质有关
- D. 波长比入射光的波长长, 且与散射物的性质有关
- 2. 已知康普顿散射实验所用的光的频率为 ν_0
- 问: (1) 康普顿散射光的频率 ν 比 ν_0 大还是小?
 - (2) 光子得到能量还是失去能量?
 - (3) 得到的能量来自哪里?或者失去的能量到哪里去了?

3. 在康普顿散射中,反冲电子的速度为0.6c,求电子获得的能量(用静止能量 m_e 表示)

4. 在康普顿散射中,若照射光光子能量与电子的静止能量相等,求:(1)散射光光子的最小能量;(2)反冲电子的最大动量。
5. 已知康普顿散射实验中照射光的波长为 0.003nm,测得反冲电子的速度为 0.6c,求: 相应散射光的方向和波长。
6. 光电效应和康普顿效应在对光子的粒子性认识方面有不同意义吗?
7. 为什么用可见光作为入射光一般观察不到康普顿散射现象?

作业 19	姓名	_ 学号	_
	班级	提交日期	成绩

1. 设氢原子的质量为m, 动能为 E_k , 其德布罗意波长为[].

- A. $\lambda = \frac{\sqrt{2mE_k}}{h}$ B. $\lambda = \frac{\sqrt{mE_k}}{h}$ C. $\lambda = \frac{h}{\sqrt{mE_k}}$ D. $\lambda = \frac{h}{\sqrt{2mE_k}}$
- 2. 欲使电子枪中电子的德布罗意波长为0.1nm,加速电压应为[].
- A. 150V B. 122.5V C. 1.5V D. 12.25V E. 24.4V
- 3. 如图所示,一束动量为p的电子,通过缝宽为a的狭缝。在距离为R处放置一荧光屏,

屏上衍射图样中央明条纹的宽度*d* 等于[

]. (单峰衍射方程: $a \sin \theta_k = k\lambda$)

- A. $\frac{2ha}{RP}$
- B. $\frac{2Rh}{aP}$
- C. $\frac{2a^2}{R}$
- D. $\frac{2ha}{P}$

19-3 题图

- 4. $\lambda_0 = \frac{h}{m_e c}$ 称为电子的康普顿波长(m_e 为电子的静止质量,h 为普朗克常数,c 为真空中的光速),当电子的动能等于它的静止能量时,它的德布罗意波长 $\lambda = ____ \lambda_0$
- 5. 如果粒子位置的不确定量 Δx 等于粒子的德布罗意波长,则粒子速度的不确定量一定 ______ (大于/等于/小于) 粒子的速度值。($\Delta x \cdot \Delta p \geq h$)

6. J	反应堆中的热中子动能约为 6. 12×10 ¹² eV,ì	计算这种热中子的德布	罗意波长。
7.	质量为 m_e 的电子,由静止起被电势差 U_{12}	=900V的电场加速,	试计算德布罗意波的
波长	长。($m_e = 9.11 \times 10^{-31} kg$, 普朗克常数 $h =$	$6.63\times10^{-34}J\cdot S)$	
			0
	氦氖激光器所发出的红光波长为 $\lambda = 632.8i$ 子沿 x 轴方向传播时,它的 x 坐标的不确定量		0^{-9} nm ,问:当这种
<i>)</i> L J	」 石 A 神 万 円 代 猫 門 , 	皇夕八 ;	
9. 🕏	若一个电子和一个质子具有同样的动能,哪	个粒子的德布罗意波长	比较大?

作业 20 成绩 班级 提交日期

1. 已知粒子在一维无限深方势阱中运动,其波函数为 $\psi(x) = \frac{1}{\sqrt{a}}\cos\frac{3\pi x}{2a}(-a \le x \le a)$,

则粒子在 $x = \frac{5a}{6}$ 处出现的概率密度为 [

- A. $\frac{1}{\sqrt{2a}}$ B. $\frac{1}{\sqrt{a}}$ C. $\frac{1}{2a}$ D. $\frac{1}{a}$
- 2. 粒子在一维无限深方势阱中心,如图所示为粒子处于某一 能态波函数 $\psi(x)$ 的曲线。粒子出现概率最大位置为

- A. $\frac{a}{6}, \frac{a}{2}, \frac{5a}{6}$ B. $0, \frac{a}{3}, \frac{2a}{3}, a$
- C. $\frac{a}{2}$ D. $\frac{a}{6}, \frac{5a}{6}$

20-2 题图

7.

- 3. 如果电子处于4f态,它的轨道角动量的大小为[
- A. $\sqrt{6}\hbar$ B. $2\sqrt{3}\hbar$ C. $\sqrt{2}\hbar$ D. $\sqrt{3}\hbar$ E. $4\sqrt{5}\hbar$
- 4. 设描述微观粒子运动的归一化波函数为 $\psi(\vec{r},t)$ 。

则 $\psi \cdot \psi^*$ 表示_____;

 $\psi(r,t)$ 必须满足的条件是______;

用数学语言表示波函数的归一化条件是什么

5. 氢原子处于主量子数 n=4 的状态, 其轨道角动量可能的取值分别 场方向的投影可能取值分别为

- 6. 设一维运动粒子的波函数为 $\psi(x)=egin{cases} Axe^{-ax}(x\geq 0) \\ 0(x<0) \end{cases}$ 其中a为大于零的常数。试确定归
- 一化波函数的A值。

7. 在宽度为a的一维无限深方势阱中运动的粒子定态波函数为

$$\psi(x) = \begin{cases} 0 & (x < 0, x > a) \\ \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a} & (0 \le x \le a) \end{cases}$$

- 求: (1) 主量子数 n=2 的粒子出现概率最大的位置;
- (2) 主量子数 n=1 的粒子出现在 $0 < x < \frac{a}{3}$ 范围内的概率。

8. 一个电子被束缚在宽度 $a = 10^{-10} m$ 的一维无限深方势阱中,分别计算 n = 1、3、100 的 能态电子的能量。

9. 对波函数归一化有什么意义?

作业 21 姓名_____ 学号 _____ 成绩 班级 提交日期 1. 处于第3激发态的氢原子跃迁回低能态时,可以发出的可见光谱线有[]条。 A. 3 B. 6 C. 1 D. 2 2. 欲使氢原子能发射巴耳末系中波长为656.28nm的谱线,最少要给基态氢原子提供 eV 能量。(里德伯常数 $R = 1.096776 \times 10^7 m^{-1}$) 3. 已知原子中下列电子的量子数,写出可能测到的波函数(即能量本征态) Ψ_{nlmm} ; $(1) \quad n=2 \; , \;\; l=1 \; , \;\; m_l=1 \; ; \underline{\hspace{1.5cm}} ;$ (2) n=3, l=1, $m_s=1/2$ ______; (3) n = 3, l = 2;_______; 4. 基态原子中的电子的排列遵循 原理和 原理和 原理。 5. 图为某种原子的能级图,已知系统中原子分别处于基态(E_1)和第一激发态(E_2)。入 射光频率 $v_1 = \frac{E_5 - E_4}{h}$, $v_2 = \frac{E_3 - E_1}{h}$ 。(1)问:哪个频率的光可能被吸收?(2)吸收 光子以后,系统有可能辐射哪些频率的光?

6.	氢原子光谱	普的巴耳末	系中波长最大	大的谱线用。	λ _ı 表示,其	其次波长用.	λ_2 表示,	请计算两者
的日	北值 $rac{\lambda_1}{\lambda_2}$							

- 7. 系统中的氢原子处于各种状态,入射光子具有下列能量:
- A. 2.16eV B. 2.55eV C. 1.51eV D. 1.89eV
- (1) 问哪几种能量的光子,分别可被处于什么状态的氢原子吸收?
- (2) 通过计算说明吸收光子后氢原子所处的能级。

- 8. 试计算能够占据一个 f 支壳层的最大电子数,并写出这些电子的 m_l 和 m_s 的值。
- 9. 光子服从泡利不相容原理吗?

作业 22		学号	成绩
2. 分别写出》	原子自发辐射和受激辐	射发光的特点。	
		光的哪个种优良的特性[性好 D. 抗电磁干扰能力强]
4. 什么叫"为	粒子数反转"? 实现料	立子数反转的必要条件是什么?	?
5. 请写出激	光器中光学谐振腔的作。	用。	
	相互作用产生受激辐射	时,辐射光和入射光具有完全	:相同的特性,这些特性是
7. 激光器按 ² 是	工作物质划分可以分成:	四类,他们	: -

8. 与绝缘体比较,半导体能带结果的特点是[] A. 最高能带是价带 B. 满带与空带间有较窄的禁带 C. 满带与空带相衔接 D. 满带与空带间有较宽的禁带 9. 图为导体、半导体、绝缘体在低温状态下的能带结构图, 其中属于半导体能带结构的 是[空带 价带 空帯 空带 禁带 禁带 禁 带 禁带 满带 满带 满带 满带 (A) (B) (C) (D) 22-9 题图 10. 要把本征半导体分别制成 n型、p型杂质半导体,请在能级图中合适的位置画出杂质材 料的价电子能级。 空带 空带 禁带 满带 n 型 P 型 22-10 题图

12. 为什么杂质半导体的导电性能比本征半导体好?