Asynchronous Data Transfer

Synchronous and Asynchronous Operations

Synchronous - All devices derive the timing information from common clock line Asynchronous - No common clock

Asynchronous Data Transfer

Asynchronous data transfer between two independent units requires that control signals be transmitted between the communicating units to indicate the time at which data is being transmitted

Two Asynchronous Data Transfer Methods

Strobe pulse

- A strobe pulse is supplied by one unit to indicate the other unit when the transfer has to occur

Handshaking

- A control signal is accompanied with each data being transmitted to indicate the presence of data
- The receiving unit responds with another control signal to acknowledge receipt of the data

Lecture 35

Strobe Control

- * Employs a single control line to time each transfer
- * The strobe may be activated by either the source or the destination unit

Source-Initiated Strobe for Data Transfer

Block Diagram

<u>Destination-Initiated Strobe</u> for Data Transfer

Block Diagram

Timing Diagram

Which of the following methods of data transfer belongs to Asynchronous data transfer?

- a) Strobe pulse
- b) Handshaking
- c) Both a and b
- d) None of the above

Lecture 35

Handshaking

Strobe Methods

Source-Initiated

The source unit that initiates the transfer has no way of knowing whether the destination unit has actually received data

Destination-Initiated

The destination unit that initiates the transfer no way of knowing whether the source has actually placed the data on the bus

To solve this problem, the *HANDSHAKE* method introduces a second control signal to provide a *Reply* to the unit that initiates the transfer

Source Initiated Transfer using

^{*} Handshaking provides a high degree of flexibility and reliability because the successful completion of a data transfer relies on active participation by both units

^{*} If one unit is faulty, data transfer will not be completed -> Can be detected by means of a *timeout* mechanism

Strobe pulse based data transfer method includes Acknowledgement. Is this statement true or false?

TRUE FALSE

Asynchronous Serial Transfer

Four Different Types of Transfer

Asynchronous serial transfer Synchronous serial transfer Asynchronous parallel transfer Synchronous parallel transfer

Asynchronous Serial Transfer

- Employs special bits which are inserted at both ends of the character code
- Each character consists of three parts; Start bit; Data bits; Stop bits.

A character can be detected by the receiver from the knowledge of 4 rules;

- When data are not being sent, the line is kept in the 1-state (idle state)
- The initiation of a character transmission is detected by a Start Bit, which is always a 0
- The character bits always follow the Start Bit
- After the last character, a *Stop Bit* is detected when the line returns to the 1-state for at least 1 bit time

The receiver knows in advance the transfer rate of the bits and the number of information bits to expect

Universal Asynchronous Receiver Transmitter

A typical asynchronous communication interface available as an IC

Transmitter Register

- Accepts a data byte(from CPU) through the data bus
- Transferred to a shift register for serial transmission

Receiver

- Receives serial information into another shift register
- Complete data byte is sent to the receiver register

Status Register Bits

- Used for I/O flags and for recording errors

Control Register Bits

- Define baud rate, no. of bits in each character, whether to generate and check parity, and no. of stop bits