Intitulé de la matière : Probabilités 1

Objectifs de l'enseignement

Introduire les notions de base sur les théorèmes limites

Connaissances préalables recommandées

Notions de probabilité, variables aléatoires, lois discrètes et lois continues.

Contenu de la matière

- Vecteurs aléatoires gaussiens
- Loi des grands nombres
- Convergence en loi
- Théorème central limite
- Fonctions caractéristiques
- Espérance conditionnelle
- Espaces filtrés discrets
- Temps d'arrêt discrets
- Martingales discrètes

Masters: Proba/Stat et Actuariat

I. Vecteurs aléatoires gaussiens

Soit (Ω, \mathcal{F}, P) un espace probabilisé.

I.1 Généralités

Définitions:

-On appelle vecteur aléatoire de dimension n toute variable aléatoire $X = (X_1, X_2, ..., X_n)^T$ défini sur (Ω, \mathcal{F}, P) à valeurs dans \mathbb{R}^n munit de sa tribu borélienne $\mathcal{B}_{\mathbb{R}^n}$.

-Les variables aléatoires (v.a.r. en abrégé) $X_1, X_2, ..., X_n$ s'appellent les variables aléatoires marginales de X.

-L'application $P_X:\mathcal{B}_{\mathbb{R}^n} \to [0,1]$ définie par:

$$P_X(A) = P(X^{-1}(A))$$

la loi s'appelle de probabilité de X.

Définition:

Un vecteur aléatoire $X = (X_1, X_2, ..., X_n)^T$ de dimension n est dit discret si l'ensemble des valeurs possibles D_X de X est un ensemble fini ou dénombrable. L'ensemble D_X s'appelle le support de X et la fonction (qu'on notera encore P_X) $P_X : \mathbb{R}^n \to \mathbb{R}$, définie par

$$P_X(x) = P(X = x)$$

s'appelle la fonction de masse (ou loi) de X.

Remarque:

 $1.P_X(x) = 0$ pour tout $x \notin D_X$.

2.
$$\{X = x_1\} \cap \{X = x_2\} = \Phi$$
 pour tout $x_1 \neq x_2$.

Propriétés de P_X :

$$1.P_{X}\left(x\right) \geq 0.$$

$$2. \sum_{x \in \mathbb{R}^{n}} P_{X}\left(x\right) = \sum_{x \in D_{X}} P_{X}\left(x\right) = 1.$$
En effet

$$\sum_{x \in D_X} P_X(x) = \sum_{x \in D_X} P(X = x) = P\left(\bigcup_{x \in D_X} \{X = x\}\right) = P(\Omega) = 1.$$

Notons que toute fonction vérifiant les propriétés 1. et 2. peut être considérée comme une fonction de masse d'un certain vecteur aléatoire discret X.

Remarques:

$$1.D_{X_{i}} = \pi_{i}(D_{X}), \text{ où } \pi_{i}(x_{1}, x_{2}, ..., x_{n}) = x_{i} \text{ est } i^{i\grave{e}me} \text{ projection sur } \mathbb{R}^{n}.$$

$$2.P_{X_{i}}(x_{i}) = \sum_{(x_{1}, x_{2}, ..., x_{i-1}, x_{i+1}, ..., x_{n}): (x_{1}, x_{2}, ..., x_{n}) \in D_{X}} P_{X}(x_{1}, x_{2}, ..., x_{n}), \text{ pour tout } x_{i} \in D_{X_{i}}.$$

Exemple:

Soit $X = (X_1, X_2)^T$ un couple aléatoire défini par le tableau suivant:

$ \begin{array}{c} x_2 \to \\ x_1 \downarrow \end{array} $	-1	0	2	5	$P_{X_1}\left(x_1\right)$
1	0	$\frac{1}{8}$	$\frac{1}{8}$	0	$\frac{1}{4}$
3	0	$\frac{1}{4}$	0	$\frac{1}{16}$	$\frac{5}{16}$
4	$\frac{3}{16}$	0	$\frac{1}{4}$	0	$\frac{7}{16}$
$P_{X_2}\left(x_2\right)$	$\frac{3}{16}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{16}$	/

Cela signifie que $D_X = \{(1,0), (1,2), (3,0), (3,5), (4,-1), (4,2)\},\$

$$P_X(x_1, x_2) = \begin{cases} \frac{1}{8} & \text{si } (x_1, x_2) \in \{(1, 0), (1, 2)\} \\ \frac{1}{4} & \text{si } (x_1, x_2) \in \{(3, 0), (4, 2)\} \\ \frac{1}{16} & \text{si } (x_1, x_2) \in \{(3, 5), (4, -1)\} \\ 0 & \text{ailleurs} \end{cases},$$

On en déduit que $D_{X_1}=\pi_1\left(D_X\right)=\left\{1,3,4\right\},\,D_{X_2}=\pi_2\left(D_X\right)=\left\{-1,0,2,5\right\}$

$$P_{X_1}\left(x_1\right) = \begin{cases} \frac{1}{4} & \text{si } x_1 = 1\\ \frac{5}{16} & \text{si } x_1 = 3\\ \frac{0}{16} & \text{si } x_1 = 4\\ 0 & \text{ailleurs} \end{cases} \text{ et } P_{X_2}\left(x_2\right) = \begin{cases} \frac{3}{16} & \text{si } x_2 = -1\\ \frac{3}{8} & \text{si } x_2 = 0\\ \frac{3}{8} & \text{si } x_2 = 2\\ \frac{1}{16} & \text{si } x_2 = 5\\ 0 & \text{ailleurs} \end{cases}$$

Définitions:

-Un vecteur aléatoire $X=(X_1,X_2,...,X_n)^T$ de dimension n est dit absolument continu s'il existe une fonction positive et intégrable $f:\mathbb{R}^n\to\mathbb{R}$ telle que

$$P_X(A) = \int_A f(x) dx$$
 pour tout $A \in \mathcal{B}_{\mathbb{R}^n}$

-L'insemble $D_X := \{x \in \mathbb{R}^n : f(x) \neq 0\}$ est appelé support de X et la fonction f est appelée densité de X.

Propriétés de f:

$$\begin{aligned} &1.f\left(x\right)\geq0\\ &2.\int\limits_{\mathbb{R}^{n}}f\left(x\right)dx=\int\limits_{D_{X}}f\left(x\right)dx=1. \end{aligned}$$

On notera que toute fonction vérifiant les deux propriétés peut être considéreée comme une densité d'un certain vecteur aléatoire absolument continu X.

I.2 Matrice des covariances

On munit \mathbb{R}^n du produit scalaire usuel

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i \text{ pour tous } x = (x_1, x_2, ..., x_n)^T, y = (y_1, y_2, ..., y_n)^T \in \mathbb{R}^n$$

et de la norme correspondante

$$||x|| = \langle x, y \rangle^{\frac{1}{2}}.$$

Définition:

-Un vecteur aléatoire $X = (X_1, X_2, ..., X_n)^T$ de dimension n est dit intégrable si la v.a. réelle ||X|| est intégrable.

-X est dit à carré intégrable si la v.a. réelle $||X||^2$ est intégrable.

On notera par $\mathcal{L}^1_{\mathbb{R}^n}(\Omega, \mathcal{F}, P)$ (resp. $\mathcal{L}^2_{\mathbb{R}^n}(\Omega, \mathcal{F}, P)$) l'espace vectoriel des vecteurs aléatoires intégrables (resp. à carré intégrable) de dimension n.

Remarques:

 $1.X \in \mathcal{L}^1_{\mathbb{R}^n}(\Omega, \mathcal{F}, P) \Rightarrow X_i \in \mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, P)$ pour tout i = 1, 2, ..., n.La réciproque est fausse en général.

En effet, si $X \in \mathcal{L}^{\Im}_{\mathbb{R}^n}(\Omega, \mathcal{F}, P)$, alors $\mathbb{E}(|X_i|) \leq \mathbb{E}(|X||) < \infty$, d'où $X_i \in$

$$2.X \in \mathcal{L}^2_{\mathbb{R}^n}(\Omega, \mathcal{F}, P) \iff X_i \in \mathcal{L}^2_{\mathbb{R}}(\Omega, \mathcal{F}, P) \text{ pour tout } i = 1, 2, ..., n$$

Lin check, is $X \in \mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, P)$. $2.X \in \mathcal{L}^2_{\mathbb{R}^n}(\Omega, \mathcal{F}, P) \iff X_i \in \mathcal{L}^2_{\mathbb{R}}(\Omega, \mathcal{F}, P) \text{ pour tout } i = 1, 2, ..., n.$ En effet, l'inégalité $|X_i|^2 \leq ||X||^2$ entraîne que $X \in \mathcal{L}^2_{\mathbb{R}^n}(\Omega, \mathcal{F}, P) \Rightarrow X_i \in \mathcal{L}^2_{\mathbb{R}}(\Omega, \mathcal{F}, P)$. L'implication dans l'autre sens provient du fait que si $X_i \in \mathcal{L}^2_{\mathbb{R}}(\Omega, \mathcal{F}, P)$. $\mathcal{L}^2_{\mathbb{R}}(\Omega, \mathcal{F}, P)$ alors $X_i^2 \in \mathcal{L}^1_{\mathbb{R}}(\Omega, \mathcal{F}, P)$, qui est une espace vectoriel, d'où $\mathbb{E}\left(\|X\|^2\right) =$ $\sum_{i=1}^{n} \mathbb{E}\left(\left|X_{i}\right|^{2}\right).$

Dans le cas où n = 1, la dispersion de X autour de la moyenne $\mathbb{E}(X)$ est mesurée par sa variance $\sigma^2(X)$. Dans le cas général, la connaissance de $\sigma^{2}(X_{i})$ est insuffisante car elle ne concerne que les dispersions suivant les axes de coordonnées. Nous aurons une bien meilleure évolution de la dispersion de X en considérant la dispersion de X sur une droite quelconque.

On suppose que le vecteur aléatoire X est à carré intégrable. Soit u = $(u_1,u_2,...,u_n)^T \in \mathbb{R}^n$. $\langle u,X\rangle = \sum_{i=1}^n u_i X_i$ est une v.a.r. à carré intégrable de variance

$$\sigma^{2}(\langle u, X \rangle) = \mathbb{E}\left(\langle u, X \rangle^{2}\right) - (\mathbb{E}\left(\langle u, X \rangle\right))^{2}$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} u_{i} X_{i} \sum_{j=1}^{n} u_{j} X_{j}\right) - \left(\sum_{i=1}^{n} u_{i} \mathbb{E}\left(X_{i}\right)\right) \left(\sum_{j=1}^{n} u_{j} \mathbb{E}\left(X_{j}\right)\right)$$

$$= \sum_{i,j=1}^{n} u_{i} u_{j} \mathbb{E}\left(X_{i} X_{j}\right) - \sum_{i,j=1}^{n} u_{i} u_{j} \mathbb{E}\left(X_{i}\right) \mathbb{E}\left(X_{j}\right)$$

$$= \sum_{i,j=1}^{n} u_{i} u_{j} cov\left(X_{i}, X_{j}\right)$$

L'application $u \to \sigma^2(\langle u, X \rangle)$ est une forme quadratique positive sur \mathbb{R}^n . Sa matrice relativement à base canonique de \mathbb{R}^n est notée $C(X) = C_{ij}$, où $C_{ij} := cov(X_i, X_j)$.

Définition:

La matrice C(X) est appelée la matrice des covariances de X.

Remarque:

On notera la relation matricielle $\sigma^{2}(\langle u, X \rangle) = u^{T}C(X)u$

Proposition:

On suppose que le vecteur aléatoire X est à carré intégrable, et que A est une matrice carré d'ordre n. Alors Y := AX est un vecteur aléatoire à carré intégrable, admettant pour matrice des covariance, la matrice

$$C\left(Y\right) =AC\left(X\right) A^{T}.$$

Démonstration:

Soit $A=(a_{ij})$. Pour tout i=1,2,...,n, $Y_i=\sum_{j=1}^n a_{ij}X_j$ est une v.a.r. à carré

intégrable. Il s'en suit que Y est un vecteur aléatoire de dimension n à carré intégrable. La relation $\langle u, Av \rangle = \langle A^T u, v \rangle$ nous permet d'écrire:

$$\sigma^{2}\left(\langle u, Y \rangle\right) = \sigma^{2}\left(\langle A^{T}u, X \rangle\right) = \left(A^{T}u\right)^{T}C\left(X\right)A^{T}u = u^{T}\left(AC\left(X\right)A^{T}\right)u,$$

d'où

$$C(Y) = AC(X)A^{T}.$$

I.3 Vecteurs aléatoires gaussiens Définition:

Un vecteur aléatoire $X = (X_1, X_2, ..., X_n)^T$ de dimension n est dit gaussien (ou normal) si toute combinaison linéaire de ses composantes $X_j, j = 1, 2, ..., n$ est une v.a.r. gaussienne, c'est à dire que pour tout $u \in \mathbb{R}^n$ la $v.a. \langle u, X \rangle$ est gaussienne (En particulier, toutes les marginales X_j sont gaussiennes).

Remarque:

Si $g: \mathbb{R}^n \to \mathbb{R}^m$ est une application linéaire et X est un vecteur gaussien de dimension n alors la composée $Y:=g\left(X\right)$ est un vecteur gaussien de dimension m.

En effet, si $g_k(x) = \sum_{j=1}^n g_{kj} x_j$, alors pour tout $u \in \mathbb{R}^m$, la v.a.

$$\langle u, Y \rangle = \sum_{k=1}^{m} u_k Y_k = \sum_{k=1}^{m} u_k \sum_{j=1}^{n} g_{kj} X_j = \sum_{j=1}^{n} \left(\sum_{k=1}^{m} u_k g_{kj} \right) X_j$$

est gaussienne comme étant une combinaison linéaire des marginales de $X\,\,$ qui est gaussien.

Notation:

Soit X est un vecteur gaussien de dimension n. On note par $\mathbb{E}(X)$ le vecteur $(\mathbb{E}(X_1), \mathbb{E}(X_2), ..., \mathbb{E}(X_n))$ et on écrit

$$X \rightsquigarrow \mathcal{N}_n(m,C)$$
,

où $m := \mathbb{E}(X)$ et C := C(X).

Remarques:

 $1.X \rightsquigarrow \mathcal{N}_n(m,C)$ et $b \in \mathbb{R}^n$, alors

$$X + b \rightsquigarrow \mathcal{N}_n (m + b, C)$$
.

En effet

$$\langle u, X + b \rangle = \sum_{i=1}^{n} u_i (X_i + b_i) = \sum_{i=1}^{n} u_i X_i + \sum_{i=1}^{n} u_i b_i,$$

est une v.a.r. gaussiene, d'où X+b est gaussien. De plus $\mathbb{E}\left(X+b\right)=\mathbb{E}\left(X\right)+b=m+b.$ On a auusi

$$\begin{array}{lll} cov\left(X_{i}+b_{i},X_{j}+b_{j}\right) & = & \mathbb{E}\left(\left(X_{i}+b_{i}\right)\left(X_{j}+b_{j}\right)\right)-\mathbb{E}\left(X_{i}+b_{i}\right)\mathbb{E}\left(X_{j}+b_{j}\right)\\ & = & \mathbb{E}\left(X_{i}X_{j}+b_{i}X_{j}+b_{j}X_{i}+b_{i}b_{j}\right)\\ & -\left(\mathbb{E}\left(X_{i}\right)\mathbb{E}\left(X_{j}\right)+b_{i}\mathbb{E}\left(X_{j}\right)+b_{j}\mathbb{E}\left(X_{i}\right)+b_{i}b_{j}\right)\\ & = & \mathbb{E}\left(X_{i}X_{j}\right)+b_{i}\mathbb{E}\left(X_{j}\right)+b_{j}\mathbb{E}\left(X_{i}\right)+b_{i}b_{j}\\ & -\mathbb{E}\left(X_{i}\right)\mathbb{E}\left(X_{j}\right)-b_{i}\mathbb{E}\left(X_{j}\right)-b_{j}\mathbb{E}\left(X_{i}\right)-b_{i}b_{j}\\ & = & \mathbb{E}\left(X_{i}X_{j}\right)-\mathbb{E}\left(X_{i}\right)\mathbb{E}\left(X_{j}\right)\\ & = & cov\left(X_{i},X_{j}\right), \end{array}$$

qui signifie que C(X + b) = C(X) = C, d'où

$$X + b \rightsquigarrow \mathcal{N}_n (m + b, C)$$
.

2.Si $X \rightsquigarrow \mathcal{N}_n(m, C)$, alors $X - m \rightsquigarrow \mathcal{N}_n(0, C)$.

3.Si $X \rightsquigarrow \mathcal{N}_n(m, C)$, A est une matrice carré d'ordre n et $b \in \mathbb{R}^n$, alors AX + b est également un vecteur aléatoire gaussien.

Lemme:

Soit \sum une matrice $n \times n$, symétrique et semi-définie positive. Alors, il existe une matrice carré A de dimension $n \times n$ telle que $\sum = A^TA$. On dit que A est une racine carré de \sum . De plus si \sum est inversible, alors il en est de même de A.

Démonstration:

Du fait que \sum est symétrique, o, déduit qu'elle est diagonalisable et donc qu'ils existent une matrice orthogonale O (i.e. telle que $^TO = O^{-1}$) et une matrice diagonale Λ avec $\Lambda_{ii} = \lambda_i$ la $i^{i \hat{e} m e}$ valeur propre de Σ telles que $\Sigma = T$ $O.\Lambda.O$. Puisque Σ est semi-définie positive on a qu les valeurs propres λ_i de Σ sont positives pour tout i = 1, 2, ..., n. Soit $\Lambda^{\frac{1}{2}}$ la matrice diagonale telle que $\left(\Lambda^{\frac{1}{2}}\right)_{ii} = \sqrt{\lambda_i}$, donc $\Lambda^{\frac{1}{2}}.\Lambda^{\frac{1}{2}} = \Lambda$ et si on pose A = T $O.\Lambda^{\frac{1}{2}}$ on aura

$$A.^TA = ^TO.\Lambda^{\frac{1}{2}}.^T\left(^TO.\Lambda^{\frac{1}{2}}\right) = ^TO.\Lambda^{\frac{1}{2}}.\Lambda^{\frac{1}{2}}.O = ^TO.\Lambda.O = \sum.$$

Si \sum est inversible, alors $\lambda_i > 0$ pour tout i = 1, 2, ..., n et donc $\Lambda^{\frac{1}{2}}$ est inversible et $\left(\Lambda^{\frac{1}{2}}\right)^{-1}$ est la matrice diagonale avec sur la diagonale $\frac{1}{\sqrt{\lambda_i}}$. Ainsi A est inversible comme étant le produit de deux matrices inversibles et on a:

$$A^{-1} = \left({}^{T}O.\Lambda^{\frac{1}{2}}\right)^{-1} = \left(\Lambda^{\frac{1}{2}}\right)^{-1}.O.$$

Remarque:

Si on considére un vecteur aléatoire $Z = ^T (Z_1, Z_2, ..., Z_n)$ de dimension n tel que les v.a.r. Z_i sont indépendantes et de loi $\mathcal{N} (0,1)$ pour tout i=1,2,...,n. Alors le vecteur $Z \leadsto \mathcal{N}_n (0,Id)$. Soit A une matrice telle que $A.^T A = \sum$ (une racine carré de \sum dannée par le lemme précédant). Alors le vecteur

$$X := m + AZ \rightsquigarrow \mathcal{N}_n(m, \sum)$$
.

D'une famille de v.a. gaussiennes indépedantes on peut donc construire n'importe quel vecteur gaussien. Si \sum est inversible, alors il en est de même de A et

$$Z = A^{-1} \left(X - m \right).$$

Théorème:

Le vecteur aléatoire $X \rightsquigarrow \mathcal{N}_n(m,C)$ admet une densité si est seulement si C est inversible (i.e. définie positive) et alors

$$f_X(x) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det C}} \exp\left(-\frac{1}{2}^T (x-m) C^{-1} (x-m)\right)$$
 (*)

Démonstration:

On montre seulement que si C est inversible alors X admet une densité donnée en équation (*). On considère le vecteur aléatoire $Z = ^T (Z_1, Z_2, ..., Z_n)$ tel que les v.a.r. Z_i soient indépendantes et $Z_i \rightsquigarrow \mathcal{N}(0,1)$ pour tout i=1,2,...,n. La densité de Z est alors donnée par:

$$f_{Z}(z) = f_{Z_{1}}(z_{1}) f_{Z_{2}}(z_{2}) ... f_{Z_{n}}(z_{n})$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2}(z_{1}^{2} + z_{2}^{2} + ... z_{n}^{2})\right)$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2}^{T} zz\right), z = (z_{1}, z_{2}, ..., z_{n}) \in \mathbb{R}^{n}.$$

Par la remarque précédente, on a que la v.a. X := m + AZ, où $C = A.^TA$, est bien un vecteur gaussien de moyenne m et de matrice des covariances C. Donc la densité de X est donnée par la formule de changement de variables à partir de la densité de Z. Si l'on pose $\Psi(z) = m + Az$ alors $z = \Psi^{-1}(x) = A^{-1}(x - m)$ et on a

$$f_{X}\left(x\right) = f_{Z}\left(\left(\Psi^{-1}\left(x\right)\right)\right) J\left(\Psi^{-1}\left(x\right)\right), \text{ où } J\left(\Psi^{-1}\left(x\right)\right) \text{ est le jacobien de } \Psi^{-1}$$

$$= \frac{1}{\left(2\pi\right)^{\frac{n}{2}}} \det\left(A^{-1}\right) \frac{1}{\left(2\pi\right)^{\frac{n}{2}}} \exp\left(-\frac{1}{2}^{T}\left(\Psi^{-1}\left(x\right)\right) \Psi^{-1}\left(x\right)\right),$$

or

$$T (\Psi^{-1}(x)) \Psi^{-1}(x) = T (A^{-1}(x-m)) A^{-1}(x-m) = T (x-m)^{T} (A^{-1}) A^{-1}(x-m)$$

$$= T (x-m) (TA)^{-1} A^{-1}(x-m)$$

$$= T (x-m) (A^{T}A)^{-1}(x-m)$$

$$= T (x-m) (C)^{-1}(x-m)$$

Comme $\det C = \det A \det^T A = (\det A)^2$ et $\det A^{-1} = \frac{1}{\det A}$, alors $\det A^{-1} = \frac{1}{\sqrt{\det C}}$, d'où le théorème.