5. Непрерывные случайные величины.

Пространством реализации непрерывной случайной величины является множество вещественных чисел: $X = \{-\infty < x < \infty\}$. Вероятностные характеристики случайной величины могут быть описаны с помощью функции распределения $F_x(x) = P(X < x)$, которая удовлетворяет условиям (4.5) предыдущего параграфа.

5.1. Абсолютно непрерывные случайные величины.

X - абсолютно непрерывная случайная величина, если ее функцию распределения можно представить в виде

$$F_{x}(x) = \int_{-\infty}^{x} f_{x}(x')dx'$$
 (5.1)

 $f_{x}(x)$ - плотность распределения случайной величины X. Плотность $f_{x}(x)$ удовлетворяет следующим условиям:

1.
$$f_x(x) = \frac{dF_x}{dx}$$

2.
$$f_x(x) \ge 0$$

3.
$$P(a \le x < b) = \int_{a}^{b} f_x(x) dx$$

4.
$$\int_{-\infty}^{\infty} f_x(x) dx = 1$$
 (условие нормировки)

5.
$$MX = \int_{-\infty}^{\infty} x \Box f_x(x) dx$$
, $M\varphi(x) = \int_{-\infty}^{\infty} \varphi(x) \Box f_x(x) dx$

Все свойства математического ожидания, дисперсии и ковариации, перечисленные в п.п. (4.12) и (4.13) предыдущего параграфа, остаются в силе и для непрерывного случая.

Двумерная функция распределения.

$$F_{XY}(x,y) = P(X < x, Y < y) = \int_{-\infty}^{x} dx' \int_{-\infty}^{y} f_{XY}(x',y') dy',$$
 (5.3)

 $f_{XY}(x,y) = \frac{\partial^2 F_{XY}(x,y)}{\partial x \Box \partial y}$ - двумерная плотность распределения вероятностей.

Свойства двумерной функции распределения определены в (4.10). Вероятность попадания случайной величины (X,Y) в область A может быть найдена по

формуле
$$P(XY \in A) = \iint_{x,y \in A} f_x(x) dx dy$$
 (5.4)

$$F_X(x) = F_{XY}(x,\infty), \quad f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y)dy$$

$$F_Y(y) = F_{XY}(\infty, y), \quad f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$$

X и Y – независимы, если при всех x и y выполняется $F_{XY}(x,y) = F_X(x) \Box F_Y(y)$ или $f_{XY}(x,y) = f_X(x) \Box f_Y(y)$.

Замена переменных

Пусть $f_X(x)$ - плотность распределения вероятностей случайной величины X. Возникает вопрос: как найти $f_Y(y)$, если $x = \psi(y)$ или $y = \varphi(x)$? а) $\psi(y)$ или $\varphi(x)$ - монотонные функции

$$f_Y(y) = f_X(x(y)) \left| \frac{dx(y)}{dy} \right|, \tag{5.5}$$

где x после вычислений следует выразить через y.

б) Зависимость x от y или y от x немонотонна

$$F_{Y}(y) = \dots + \int_{x_{i-1}(y)}^{x_{i}(y)} f_{X}(x) dx + \int_{x_{i}(y)}^{x_{i+1}(y)} f_{X}(x) dx + \dots,$$
 (5.6)

$$f_Y(y) = \frac{dF_Y(y)}{dy}$$

В (5.6) $x_k(y)$ являются решениями уравнения $y = \varphi(x_k)$ и интегрирование поводится по тем x, для которых $\varphi(x_k) \le y$.

Законы композиции.

Пусть $f_{XY}(x,y)$ - двумерная плотность распределения вероятностей для (X,Y) Часто возникает вопрос о нахождении законов распределения для суммы U=X+Y и частного V=X/Y .

$$f(u) = \int_{-\infty}^{\infty} f_{X,Y}(x, u - x) dx$$

$$f(v) = \int_{-\infty}^{\infty} |y| \Box f_{X,Y}(v \Box y, y) dy$$
(5.7)

5.2. Классические непрерывные распределения.

1. <u>Равномерное распределение</u> U(a,b).

$$\begin{array}{c|c}
\hline
 & f \\
\hline
 & b-a \\
\hline
 & a \\
\hline
 & h
\end{array}$$

$$X \square U(a,b)$$
, если $f(x) = \begin{cases} \frac{1}{b-a}, & \text{при } x \in (a,b) \\ 0, & \text{при } x \notin (a,b) \end{cases}$.

Характеристики этого распределения

$$MX = \frac{a+b}{2} = DX = \frac{(b-a)^2}{12}; \quad \beta = 0; \quad \gamma = \frac{9}{5}.$$

2. <u>Гамма – распределение</u> $\Gamma(\mu, a)$.

$$X \square \Gamma(\mu,a)$$
, если $f(x) = \frac{x^{\mu-1}}{\Gamma(\mu)} e^{-x/a}$, $(x>0)$; $\mu>0$, $a>0$. Здесь

$$\Gamma(\mu) = \int_{0}^{\infty} x^{\mu-1} e^{-x} dx$$
 - гамма – функция Эйлера, обладающая свойствами:

$$\Gamma(\mu+1) = \mu \Box \Gamma(\mu), \ \Gamma(1/2) = \sqrt{\pi}, \ \Gamma(1) = 1, \ \Gamma(n+1) = n!.$$

$$MX = \mu a$$
; $DX = \mu a^2$; $\partial_k MX^k = a^k \Gamma(\mu + k)/\Gamma(\mu)$.

Если
$$X_1, X_2, ..., X_m$$
 - независимы и $X_i \square \Gamma(\mu_i, a)$, то $X = \sum_{i=1}^m X_i \square \Gamma\left(\sum_{i=1}^m \mu_i, a\right)$.

3. <u>Показательное распределение</u> P(a,b).

$$X \square P(a,b)$$
, если $f(x) = \frac{1}{b}e^{-(x-a)/b}$, при $x > a$; $f(x) = 0$, при $x \le a$.

$$X \square P(0,b)$$
, если $f(x) = \frac{1}{b}e^{-x/b}$, при $x > 0$; $MX = b$, $DX = b^2$.

Если
$$X_1,X_2,...,X_m$$
 - независимы и $X_i \square P(0,b)$, то $X=\sum_{i=1}^m X_i \square \Gamma(b,m)$.

4. Распределение Лапласа L(b).

$$X \square L(b)$$
, если $f(x) = \frac{1}{2b} e^{-|x|/b}$ $(-\infty < x < \infty) = 0$. $MX = 0$, $DX = 2a^2$.

5. <u>Бета – распределение</u> $\beta(r,s)$.

$$X \square \beta(r,s)$$
, если $f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}$; $r > 0$, $s > 0$, $0 < x < 1$.

$$B(r,s) = \int_{0}^{\infty} x^{r-1} (1-x)^{s-1} dx = \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)}$$
 - бета – функция Эйлера.

$$MX = \frac{r}{r+s}$$
; $DX = \frac{rs}{(r+s)^2(r+s+1)}$.

6. <u>Нормальное распределение</u> $N(a,\sigma^2)$.

$$X \square N(a,\sigma^2)$$
, если $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-a)^2/2\sigma^2}$, $(-\infty < x < \infty)$.

$$MX = a$$
; $DX \quad \sigma^2 = \beta \quad 0 = \gamma \quad 0$.

$$P\left(x_1 \le x \le x_2\right)$$
 $\Phi_N\left(\frac{x_2-a}{\sigma}\right) - \Phi_N\left(\frac{x_1-a}{\sigma}\right)$, где $\Phi_N\left(x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$ —

функция распределения случайной величины, имеющей нормальное распределение N(0,1). $\Phi_N(-\infty) = 0$, $\Phi_N(\infty) = 1$, $\Phi_N(-x) = 1 - \Phi_N(x)$

7. Многомерное нормальное распределение $N_m(\vec{a}, D)$.

Случайный вектор $\overrightarrow{X}=(X_1,X_2,...,X_m)$ имеет m – мерное нормальное распределение $(\overrightarrow{X} \square N_m(\overrightarrow{a},D))$, если

$$f_{X_1,X_2,...X_m}(x_1,x_2,...x_m) = \frac{1}{(2\pi)^{m/2} \sqrt{\det D}} \left[e^{-\sum_{i,j=1}^{m} (D^{-1})_{ij}(x_i - a_i)(x_j - a_j)/2} \right]$$

$$MX_i = a_i$$
; $= cov(X_i X_j) - D_{ij}$; $DX_i - D_{ii} - \sigma_i^2$.

$$f_{X_i}(x_i) = \frac{1}{\sqrt{2\pi{\sigma_i}^2}}$$
 ре $e^{-(x_i-a_i)^2/2{\sigma_i}^2}$, т.е. каждая из случайных величин X_i имеет

нормальное распределение $N\!\left(a_i, {\sigma_i}^2\right)$.

Если
$$Y = \sum_{i=1}^m C_i X_i$$
 , то $Y \square N\Big(a,\sigma^2\Big)$, где $a = \sum_{i=1}^m C_i a_i$; $\sigma^2 = C \square D \square C^T$, где $D - C \square D$

ковариационная матрица, $C = (C_1, C_2, ..., C_m)$ - матрица — строка.

8. Двумерное нормальное распределение.

$$f_{X_{1},X_{2}}\left(x_{1},x_{2}\right) = \frac{1}{2\pi\sqrt{1-\rho^{2}}\log^{2}\left[\sigma_{1}\sigma_{2}\right]}\left[\left(\frac{x_{1}-a_{1}}{\sigma_{1}}\right)^{2} + \left(\frac{x_{2}-a_{2}}{\sigma_{2}}\right)^{2} - 2\rho\frac{x_{1}-a_{1}}{\sigma_{1}}\left[\frac{x_{2}-a_{2}}{\sigma_{2}}\right]\right]$$

$$MX_1 = a_1; MX_2 = a_2; DX_1 = \sigma_1^2; DX_2 = \sigma_2^2; \rho = \frac{\text{cov}(X_1 X_2)}{\sigma_1 \Box \sigma_2}.$$

Если $\rho=0$, то $f_{X_1,X_2}(x_1,x_2)=f_{X_1}(x_1)\Box f_{X_2}(x_2)$, т.е. из некоррелированности X_1,X_2 следует их независимость.

Если
$$Y = \alpha X_1 + \beta X_2 + c$$
 , то $Y \square N(a, \sigma^2)$, где

$$a = \alpha a_1 + \beta a_2 + c$$
, $\sigma^2 = \alpha^2 \sigma_1^2 + \beta^2 \sigma_1^2 + 2\alpha\beta\rho\sigma_1\sigma_2$

9. <u>XИ – квадрат распределение с n степенями свободы χ_n^2 </u>.

Пусть
$$x_1, x_2, ... x_n$$
 - независимы и $X_i \square N(0,1)$, тогда $U = \sum_{i=1}^n X_i^2 \square \chi_n^2$,

$$f(u) = \frac{U^{n/2-1}}{2^{n/2}\Gamma(n/2)}e^{-u/2}; \quad (u > 0)$$
. Заметим, что $U \square \Gamma\left(\frac{n}{2}, 2\right)$ (см. п.2).

Если n – мерный случайный вектор $\overrightarrow{X} \square N_n(\overrightarrow{a},D)$ (см. п.7), то

$$U = \sum_{i,j=1}^{m} (D^{-1})_{ij} (x_i - a_i) (x_j - a_j) \square \chi_n^2$$
, если $\det D > 0$.

Если
$$U_1 \square \chi_k^2$$
, $U_2 \square \chi_p^2$, то $U_1 + U_2 \square \chi_{k+p}^2$

10. Распределение Стьюдента с n степенями свободы $t^{(n)}$.

Пусть $Z \square N(0,1), \quad U \square \chi_n^2$ и $Z, \ U$ - независимы. Тогда $T = \frac{Z}{\sqrt{U/n}} \square t^{(n)}$.

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\sqrt{\pi \ln n}} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad \left(-\infty < t < \infty\right)$$

11. <u>Распределение Фишера</u> $F^{(m,n)}$

Пусть $U,\ V$ - независимы и $U \square \chi_m^2,\ V \square \chi_n^2$. Тогда $F = \frac{U/m}{V/n} \square F^{(m,n)}$.

$$f(F) = \left(\frac{m}{n}\right)^{\frac{m}{2}} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} F^{\frac{m-2}{2}} \left(1 + \frac{m}{n}F\right)^{-\frac{n+m}{2}}, \quad (F > 0)$$

12. <u>Логарифмическое нормальное распределение (логнормальное)</u> $LN(a,\sigma^2)$.

$$X \square LN(a,\sigma^2)$$
, если $\ln X \square N(a,\sigma^2)$, т.е.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{x} e^{-(\ln x - a)^2/2\sigma^2}, \quad (x > 0). \quad MX = e^{(a + \sigma^2/2)}; \quad DX = a^2(e^{\sigma^2} - 1).$$

Предельные теоремы.

1. Неравенство Чебышева:

$$P(|X - MX| \ge \varepsilon) \le \frac{DX}{\varepsilon^2}$$
, или (как следствие) $P(|X - MX| \le \varepsilon) \ge 1 - \frac{DX}{\varepsilon^2}$

2. Сходимость по вероятности:

Последовательность случайных величин $X_1, X_2, ... X_n$ сходится по вероятности к величине a, если для любого $\varepsilon > 0$: $\lim_{n \to \infty} P(|x-a| \ge \varepsilon) = 0$. Т.е. $X_n \xrightarrow{n.s.} a$.

3. Теорема Чебышева:

Пусть $X_1, X_2, ... X_n$ - независимы и имеют одинаковые распределения.

$$MX_i = a$$
, $DX_i = \sigma^2$. Введем $S_n = \sum_{i=1}^n X_i$. Тогда $\frac{S_n}{n} \xrightarrow{n.e.} a$.

Действительно: $M\frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n MX_i = a$, т.к. матожидание суммы С.В. всегда

равно сумме матожиданий и $MX_i = a$; так же $D\frac{S_n}{n} = \frac{1}{n^2}DS_n$ $\frac{1}{n^2}\sum_{i=1}^n DX_i$ $\frac{\sigma^2}{n}$,

т.к. дисперсия суммы независимых величин равна сумме дисперсий и

 $DX_i = \sigma^2$. Применяя неравенство Чебышева к случайной величине $\frac{S_n}{n}$,

получим
$$P\left(\left|\frac{S_n}{n}-a\right| \ge \varepsilon\right) \le \frac{D \, S_n/n}{\varepsilon^2} \quad \frac{\sigma^2}{n \Box \varepsilon^2} \longrightarrow 0$$
 при $n \to \infty$, что и требовалось.

4. Теорема Бернулли:

Пусть реализуется схема Бернулли независимых испытаний и

$$X_i = egin{cases} 1, \ \mbox{если реализуется событие } A \ 0, \ \mbox{если реализуется событие } \overline{A} \ . \end{cases}$$

 $P(x_i) = p^{x_i} (1-p)^{1-x_i}$ - распределение Бернулли для результатов i -го испытания. $MX_i = p$, $\not = DX_i$ p(1-p).

Тогда $S_n = \sum_{i=1}^n X_i$ - число наступления события A в n испытаниях. Поскольку

выполнены условия применимости теоремы Чебышева, имеем $\frac{S_n}{n} \xrightarrow{n.s.} p$, т.е.

$$P\left(\left|\frac{S_n}{n}-p\right|\geq \varepsilon\right)\leq \frac{p\left(1-p\right)}{\varepsilon^2}\leq \frac{1}{4\ln \varepsilon^2}\longrightarrow 0$$
 при $n\to\infty$. Это означает, что

вероятность отклонения величины $\frac{S_n}{n}$ от p на сколь угодно малую величину можно сделать сколь угодно малой, выбирая достаточно большое n. По этому теорема Бернулли позволяет экспериментально находить вероятность p реализации события A: $p \square \frac{S_n}{n}$ при больших n.

5. Центральная предельная теорема (Ц.П.Т.)

Пусть $X_1, X_2, ... X_n$ - независимы и $MX_i = a_i$, $DX_i = {\sigma_i}^2$. Введем $S_n = \sum_{i=1}^n X_i$,

тогда
$$MS_n = \sum_{i=1}^n a_i, \quad DS_n = \sum_{i=1}^n \sigma_i^2$$
.

Если выполнено условие Линдеберга: для любого $\varepsilon > 0$

$$\lim_{n\to\infty}\frac{1}{DS_n}\sum_{i=1}^n\left\{\int\limits_{\left|x_i-a_i\right|\geq\varepsilon\sqrt{DS_n}}\left(x_i-a_i\right)^2\cdot f_{X_i}\left(x_i\right)\cdot dx_i\right\}=0\ (в\ непрерывном случае),$$

$$\lim_{n\to\infty}\frac{1}{DS_n}\sum_{i=1}^n\left\{\sum_{x_i: (x_i-a_i)\geq \varepsilon\sqrt{DS_n}}(x_i-a_i)^2\,P_{X_i}\left(x_i\right)\right\}=0\ (\text{в дискретном случае}),$$

То справедлива теорема Ляпунова (Ц.П.Т.): при $n \to \infty$ случайная величина

$$X = \frac{S_n - MS_n}{\sqrt{DS_n}} \square N(0,1)$$
. Соответственно, $S_n \square N(MS_n, DS_n)$ при $n \to \infty$. Таким

образом, Ц.П.Т. утверждает, что сумма достаточно большого числа независимых случайных величин, произвольно распределенных, имеет нормальное распределение (при выполнении условия Линдеберга).

В частном, но часто встречаемом случае, $X_1, X_2, ... X_n$ независимы и одинаково распределены, т.е. $MX_i = a, \quad DX_i = \sigma^2$. В этом случае условие Линдеберга выполнено и, следовательно, справедлива теорема Ляпунова, $S_n \square N\big(MS_n, DS_n\big)$

6. Теорема Муавра – Лапласа.

Если X_i , (i=1,2,...n) имеют распределение Бернулли

 $P(x_i) = p^{x_i} (1-p)^{1-x_i}$, $(x_i = 0;1)$, то условия применимости Ц.П.Т. выполнены, т.к. $MX_i = p$, $DX_i = pq$ (где q = 1-p). При этом $S_n = k$ - число реализаций события A в n испытаниях. По этому $S_n = k \square N(np, npq)$, т.е. биномиальное распределение $P_n(k)$ при достаточно больших n аппроксимируется

нормальным распределением $P_n(k) \approx \frac{1}{\sqrt{2\pi npq}} e^{-(k-np)^2/2npq}$, т.е.

 $b(n,p)\square N(np,npq)$ и точность этой аппроксимации тем больше, чем больше величина \sqrt{npq} .

7. Распределение Пуассона $\Pi(\lambda)$, как предельный случай биномиального распределения b(n,p).

Пусть $k \Box b(n,p)$. Рассмотрим предельный случай, когда $p \to 0$; $n \to \infty$, но $np = \lambda$. Тогда $k \Box \Pi(\lambda)$, т.е. $P_n(k) \approx P(k) = e^{-\lambda} \lambda^k / k!$ и точность этой аппроксимации тем выше, чем меньше величина $2\lambda^2/n$.

- 8. Аппроксимация распределения Пуассона нормальным распределением. Пусть $k \square \Pi(\lambda)$. Если $\lambda \square 1$, то $k \square N(\lambda, \lambda)$, т.е. $\Pi(\lambda) \square N(\lambda, \lambda)$.
- 9. Аппроксимация распределений Стьюдента и XII квадрат нормальным распределением.

При
$$n \to \infty$$
 $t^{(n)} \square N(0,1); \quad \chi_n^2 \square N(n,2n).$

Задачи.

5.1 $f_x(x) = A \Box x^{3/2} \Box e^{-5x}$, (x > 0), Найти: А; MX; $f_Y(y)$, если y=5x; DY.

5.2. $f_X(x) = K \Box x^2$, (0 < x < 1), Найти: K; DX; $F_X(x)$, и построить ее график; $f_Y(y)$, если y = 1/x.

5.3. $f_{x}(x) = A\Box(1-x)$, (0 < x < 1), Найти: А; DX; $F_{X}(x)$, и построить ее график; $f_{Y}(y)$, если $x = \cos y$, $y \in \left(0; \frac{\pi}{2}\right)$.

5.4. $f_X(x) = \frac{A}{\sqrt{1-x^2}}$, (-1 < x < 1), Найти: А; MX; DX; $F_X(x)$, и построить ее

график; $f_Y(y)$, если $x = \sin y$ $\left(y \in \left(-\frac{\pi}{2}; \frac{\pi}{2} \right) \right)$.

5.5.
$$f_x(x) = C(1-x^2)$$
, $(|x|<1)$, Найти: C; DX ; $f_Y(y)$, если $x = \sin y$ $\left(-\frac{\pi}{2} < y < \frac{\pi}{2}\right)$; MY ; DY ..

5.6.
$$f_x(x) = C \sin^3 x$$
, $(0 < x < \pi)$, Найти: C; $f_Y(y)$, если $y = \cos x \left(-\frac{\pi}{2} < y < \frac{\pi}{2}\right)$; MY ; DY .

- 5.7. $f_x(x) = A \Box x$, (0 < x < 1), Найти: А; MX; DX; $F_X(x)$, и построить ее график; $f_Y(y)$, если $y = -\ln x$.
- 5.8. $f_X(x) = A \operatorname{ctg} x$, $\left(\frac{\pi}{4} < x < \frac{\pi}{2}\right)$, Найти: А; $f_Y(y)$, если $y = \ln \sin x$; MY; DY, и построить график $f_Y(y)$.
- 5.9. $f_x(x) = A\sin 5x$, $\left(0 < x < \frac{\pi}{10}\right)$, Найти: А; $f_Y(y)$, если $y = \cos 5x$; MY; DY.
- 5.10. $f_x(x) = A\cos x$, $\left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$, Найти: А; $f_Y(y)$, если $y = \sin x$; MY; DY.
- 5.11. $f_X(x) = A \Box e^{-3x}$, (x > 0), Найти: А; DX; $F_X(x)$, и построить ее график; $f_Y(y)$, если $x = -\ln y$; $P\left(\frac{1}{2} < y < 1\right)$.
- 5.12. $f_{x}(x) = A \square e^{4x}$, (x < 0), Найти: А; DX; $F_{X}(x)$, и построить ее график; $f_{Y}(y)$, если $x = \ln y$; $P\left(0 < y < \frac{1}{2}\right)$.
- 5.13. $f_x(x) = A \Box x^2 e^{-x^3/a}$, (x > 0), Найти: А; DX; $f_Y(y)$, если $x = \sqrt[3]{a \ln y}$; P(1 < y < 4).
- 5.14. $f_x(x) = A \Box e^{-|x|/a}$, $(-\infty < x < \infty)$, Найти: А; ∂_k ; μ_k ; β ; γ .
- 5.15. $F_x(x) = A \square x^2$, $(0 < x \le 1)$; $F_x(x) = 0$, $(x \le 0)$ и $F_x(x) = 1$, (x > 1), Найти:
- А; MX; DX; β ; γ ; $f_Y(y)$, если $x = e^{-y}$.
- 5.16. $F_x(x) = 0$, $(x \le 0)$ и $F_x(x) = A(1 e^{-x/a})$, (x > 0). Найти: А; MX; DX; ∂_k ; μ_k ; β ; γ ; P(0 < x < 2a).
- 5.17. $F_x(x) = 0$, $(x \le 0)$; $F_x(x) = Ax$, $(0 < x \le 1)$ и $F_x(x) = 1$, (x > 1), Найти: А; MX; DX; $F_Y(y)$, если $x = e^{-y}$; $P(0 \le y < 1)$.
- 5.18. $U \square \chi_n^2$. Найти: MU; DU.
- 5.19. $T \Box t^{(n)}$. Найти: MT; DT.

5.20. $F_{XY}(x,y) = (1 + e^{-2x-y} - e^{-2x} - e^{-y}), (x > 0, y > 0).$ Найти: cov(X,Y); $f_{XY}(x,y)$; cov(U,V), если U = X + Y, = V - X - Y.

5.21. На показанном распределении в отмеченной серым цветом области $F_{XY}(x,y) = 0$. Найти: \overline{X} $F_X(x)$; $F_Y(y)$; $F_{XY}(x,y)$;

$$f(x)$$
; $f(y)$; $f(x/y)$; $M(x/y)$; $cov(U,V)$, если $U = X + Y$, $= V - X - Y$.

$$F_{XY}(x,y): \begin{array}{c|c} y \\ \hline \frac{\pi}{2} & \frac{\sin x + \cos x}{\cos x + \cos y - \cos(x+y)} & \frac{1}{\sin y + \cos y} \\ \hline 0 & \frac{\pi}{2} & \frac{1}{\cos x + \cos y - \cos(x+y)} & \frac{1}{\cos x + \cos y} \\ \hline 0 & \frac{\pi}{2} & \frac{1}{\cos x + \cos y - \cos(x+y)} & \frac{1}{\cos x + \cos y} \\ \hline \end{array}$$

5.22. На показанном распределении в отмеченной серым цветом области $F_{XY}(x,y) = 0$. Найти: $f_{XY}(x,y)$;

f(x); f(y); $M \sin y$; $M \cos x$; $cov(\sin y, \cos x)$; f(x/y); M(x/y).

5.23. а) $T \Box t^{(10)}$. Найти: P(2,16 < T < 18,31); P(2,56 < T < 25,19).

5.23. б) $T \square t^{(16)}$. Найти: P(6,91 < T < 34,27); P(28,85 < T < 32).

5.24. а) $U \square \chi_{10}^2$. Найти: P(4,87 < U < 25,19); P(3,94 < U < 20,48).

5.24. б) $U \square \chi_{24}^2$. Найти: P(36,42 < U < 42,98); P(10,81 < U < 15,66).

5.25. Случайные величины X и Y имеют двумерное нормальное распределение. Известно: $X \square N(-2-1)$, $Y \square N(3,4)$, cov(X,Y) –1. Найти:

а) распределение случайной величины $Z_1 = X - Y$ и вероятность $P(Z_1 < -2)$

б) ковариационную матрицу случайных величин $Z_1 = X - Y, = Z_2$ X + Y

$$B) f\left(\frac{x}{y}\right), M\left(\frac{x}{y}\right)$$

5.26. Дневной объем продаж товаров типа 1, 2 и 3 образует трехмерный случайный вектор $(X_1; X_2; X_3)$, имеющий нормальное распределение

$$N_3ig(2,4,3;Dig)$$
 с ковариационной матрицей $egin{pmatrix} 2 & 1 & 1 \\ 1 & 9 & 2 \\ 1 & 2 & 1 \end{pmatrix}$. Стоимость каждого

товара одинакова и равна 2.

- а) Найти закон распределения для дневного дохода от продаж всех товаров.
- б) Найти вероятность того, что дневной доход находится в интервале (9,27). Найти вероятность того, что дневной доход превысит 20.
- 5.27. Время X обслуживания кассиром клиента имеет показательное распределение со средним значением 2 минуты, т.е. $X \square P(0,2)$. Найти вероятность того, что время обслуживания клиента лежит в интервале (0.5;1.5).
- 5.28. Время X бесперебойной работы станка имеет показательное распределение $X \square P(1,10)$ (числа даны в неделях). Найти вероятность того, что время работы превысит 12 недель.
- 5.29. Число звонков K, поступающих на телефонную станцию за некоторое время T имеет распределение Пуассона с средним значением 100, т.е.
- $K \square \Pi(100)$. Найти вероятность того, что число звонков а) меньше 90; б) больше 110; в) лежит в интервале (85,115).
- 5.30. Число звонков K, поступающих на телефонную станцию за время t имеет распределение $\Pi(10\Box t)$. Найти вероятность того, что время ожидания звонка больше 0.2.
- 5.31. Известно, что 70% населения поддерживают Президента. Проводится опрос 1000 человек. Найти вероятность того, что число поддерживающих Президента людей окажется в интервале (685,715).
- 5.32. При производстве микросхем брак составляет 0,1%. Найти вероятность того, что в партии из 1000 микросхем будет не менее 2-х бракованных.
- 5.33. При производстве микросхем брак составляет 0,1%. Найти вероятность того, что в партии из 100000 микросхем число бракованных будет меньше 90.
- 5.34. Случайные величины X и Y имеют нормальное распределение N(2,1) и N(3,2) соответственно. а) Найти распределение случайных величин Z = X + Y; #V = X Y; #V = 2 3X + 4Y; б) Найти P(Z > 6), P(W < 0); В пунктах а) и б) рассмотреть отдельно два случая: 1) X и Y независимы; 2) cov(X,Y) = -1.
- 5.35. У Вас 100 разных акций. Ожидается снижение стоимости любой из акции с вероятностью 0,1. Найти вероятность того, что число акций, стоимость которых будет снижена: a) <50; б) >50.
- 5.36. Опрошено 150 студентов. Вероятность встретить студента отличника равна 0,1. Найти вероятность того, что отличников среди опрошенных менее 20 и более 10.
- 5.37. Из 6 яблонь каждая плодоносит с вероятностью 0,8. Найти вероятность того, что а) плодоносит 4 яблони; б) плодоносят все яблони; в) не плодоносит ни одна яблоня; г) плодоносит хотя бы одна яблоня.

- 5.38. В одном испытании прибор выходит из строя с вероятностью 0,3. Найти вероятность того, что в 5-ти независимых испытаниях прибор выйдет из строя не менее 2-х раз.
- 5.39. Монету бросают 6 раз. Найти вероятность того, что герб выпадет а) менее 2-х раз; б) не менее 2-х раз.
- 5.40. Вероятность опоздания на работу равна 0,2. Найти вероятность того, что за 400 дней было а) ровно 80 опозданий; б) от 70 до 100 опозданий.
- 5.41. Вероятность поражения мишени стрелком равна 0,75 при каждом выстреле. Найти вероятность того, что при 100 выстрелах мишень будет поражена а) не менее 70 и не более 80 раз; б) не более 70 раз.
- 5.42. Стул может быть сломанным с вероятностью 0,01. Партия стульев пускается в продажу, если объем брака не превышает 2%. А) Найти вероятность пустить партию из 900 стульев в продажу. В) Найти число стульев в партии, если вероятность пустить парию в продажу =0,98.
- 5.43. Норвежские рыбаки ловят семгу, которая с вероятностью 0,9 (каждая) содержит икру. Магазин принимает к реализации парию рыбы, среди которой 80% с икрой. Какой должна быть партия рыбы, чтоб ее приняли в магазин с вероятностью а) 0,99; б) 0,95; в) 0,9?
- 5.44. В группе 49 студентов, каждый из которых может сдать зачет с вероятностью 4/5. Зачет проведен успешно, если число не сдавших не превышает 40%. А) Найти вероятность успешного проведения зачета.
- Б) Вычислить число студентов, при котором вероятность успешного проведения зачета была не менее 0,85.
- 5.45. Внутрь круга радиуса R случайным образом брошена точка. Случайная величина X расстояние от точки до центра круга. Найти F(x), f(x), M(x), D(x), $\sigma(x)$, m_e , m_d .
- 5.46. То же для шара радиуса R.
- 5.47. Внутрь треугольника с вершинами в точках (0;0), (0;4) и (4;0) случайным образом брошена точка. X координата точки по горизонтали. Найти F(x), f(x), M(x), D(x), $\sigma(x)$, m_e , m_d ..
- 5.48. Внутрь треугольника с вершинами в точках (0;0), (0;-2) и (-2;0) случайным образом брошена точка. X координата точки по горизонтали. Найти F(x), f(x), M(x), D(x).
- 5.49. Для произвольной случайной величины X выбрать наиболее вероятное событие (A,B или C): A) 3X-2 < 1; B) 2X+4 < 5; C) 3-2X > -1.
- 5.50. То же, что и в 5.49: A) $X^2 5X + 6 > 0$; B) $X^2 4X > -3$; C) $X^2 + 5 > 6X$.
- 5.51. То же, что и в 5.49: A) $5X > X^2 + 6$; B) $3 < 4X X^2$; C) $X^2 6X + 5 < 0$.
- 5.52. То же, что и в 5.49: А) 1 < 2X-3; В) 3X-2 > 1; С) 2X+4 > 5.
- 5.53. Время безотказной работы элемента распределен по экспоненциальному закону $f(x) = 0.01 \text{Le}^{-0.01t}$, $(t \ge 0)$, где t время (часы). Найти вероятность того, что элемент проработает безотказно 100 часов.

5.54. Независимые случайные величины Х,У заданы плотностями

$$f_1(x) = \frac{1}{3} \mathbb{L}e^{-x/3}$$
, $(x \ge 0)$, $f_2(y) = \frac{1}{5} \mathbb{L}e^{-y/5}$, $(y \ge 0)$. Найти композицию этих

случайных величин (т.е. плотность Z=X+Y).

5.55. Внутрь квадрата с вершинами в точках (1;1), (-1;1), (-1;-1) и (1;-1) плотность распределения двумерной случайной величины f(x,y) = C.

Определить зависимость и коррелированность величин X и Y.

- 5.56. Внутрь квадрата с вершинами в точках (1;0), (0;-1), (-1;0) и (0;1) плотность распределения двумерной случайной величины f(x,y) = C. Определить зависимость и коррелированность величин X и Y.
- 5.57. Система 2-х случайных величин распределена равномерно, т.е. в прямоугольнике, ограниченном линиями x=4, x=6, y=10, y=15 совместная плотность f(x,y)=C и f(x,y)=0 вне прямоугольника. Найти C, F(x,y), P(x<5), P(y>12), P(3< x<5;12< y<20)/
- 5.58. Найти вероятность попадания сл. величины (X,Y) в прямоугольник, ограниченный линиями $x = \pi/4$, $x = \pi/2$, $y = \pi/6$, $y = \pi/3$, если

$$F(X,Y) = C \sin x \text{Сsin } y \text{ (0} \le x \le \pi/2, 0 \le y \le \pi/2)$$
. Найти C, $F(x)$, $F(y)$, $f(x)$, $f(y)$

5.59.
$$F(X,Y) = (1-e^{-2x})(1-e^{-3y})$$
 $(x \ge 0, y \ge 0)$ Найти $f(x,y), F(x), F(y),$

f(x), f(x/y), f(y), f(y/x), M(x), M(y), cov(xy). Определить зависимость и коррелированность величин X и Y. Найти P(x>y), P(|x|>|y|).

5.60. В прямоугольнике, ограниченном линиями x = 0, $x = \pi/2$, y = 0, $y = \pi/2$,

 $f(x,y) = C\sin(x+y)$ и f(x,y) = 0 вне прямоугольника. Найти

C, F(x, y), M(x), M(y), M(xy), cov(xy). Определить зависимость и коррелированность величин X и Y.

5.61.
$$f(x,y) = \frac{C}{(4+x^2)(9+y^2)}$$
, Найти C, функцию совместного распределения

системы, условные плотности распределения составляющих, M(x/y), M(y/x). Определить зависимость и коррелированность величин X и Y. Найти P(x < y), P(|x| < y), P(x < 2y), P(x > 7y).

5.62. $f(x,y) = \frac{3\sqrt{3}}{\pi}$ $\mathbb{E}^{-4x^2 - 6xy - 9y^2}$, Найти условные плотности распределения составляющих, коэффициент корреляции.

- 5.63. Среди данных функций указать те, которые на указанном интервале могут быть плотностью распределения какой-либо случайной величины
- 1) $C \arctan x$ при -1 < x < 1; 2) $C \arctan x$ при 0 < x < 1; 3) $C \arctan x$ при x > 0;
- 4) $C \arctan x$ при x<0; 5) $C \ln(x)$ при 1/2<x<1; 6) $C \ln(x)$ при x>1;

7)
$$C \ln \left(1 + \frac{1}{x^2} \right)$$
 при x<-1; 8) $C \ln \left(1 + \frac{1}{x^2} \right)$ при x>1; 9) $C \ln (x)$ при e

10)
$$C\frac{2x^2-5}{3x^3+3x}$$
 при x>2; 11) $C\frac{3x^2+5}{4x^6-3x}$ при x>2; 12) $C\sin^2(\pi x)$ при x>0;

13)
$$C\left(\frac{2x^2+1}{4x^2+5}\right)^x$$
 при любом x; 14) $C\left(\frac{2x^2+1}{4x^2+5}\right)^x$ при x>0; 15) $\frac{C}{x-1}$ при 1

5.64. Система 2-х сл. вел. X,Y имеет функцию распределения

$$F(x,y) = C(1+x^2+2x)y^3$$
 в области $-1 \le x \le 0$, $0 \le y \le 1$. Найти C, плотности

распределения компонент, совместное матожидание, коэффициент корреляции, описать F(x,y) на всем пространстве. Установить зависимость и коррелированность компонент.

- 5.65. Ответить на вопросы задачи 5.64., если $F(x,y) = C(y^4 + 4)x^2y$ в области $0 \le x \le 1$, $0 \le y \le 1$.
- 5.66. Ответить на вопросы задачи 5.64., если $F(x,y) = C(x^2 \sin y + x^2)$ в области $0 \le x \le 1, -\pi/2 \le y \le \pi/2$.