Effect of tilt on zone plate performance

Sajid Ali¹ & Chris Jacobsen²

¹Applied Physics Northwestern University ²X-ray Science Divison Argonne National Lab

October 27, 2019

Outline

Introduction

Analytic limits

Implementation

Results

Introduction

Introduction

Outline

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Results

Focusing X-Rays

- ightharpoonup Ref. indexightharpoonup complex,slightly < 1
- ➤ Zone plates→ monochromatic diffractive optics.
- Alternate rings of low/high ref. index materials placed such that outgoing waves interfere constructively.

Factors affecting efficiency & resolution

- Spatial resolution limited to finest, outermost zone width.²
- Zones must be thick enough along beam direction to produce a phase shift of π, several um at hard x-ray energy.³

Efficiency & resolution for first order focus⁴

²Baez [1952]; Myers Jr. [1951]

³Kirz [1974]

⁴ Jacobsen [2019]

Scalar theory is not enough

- Scalar approximation assumption → interaction between x-rays and the optic can be treated as one-step diffraction.
- ► Klein-Cook param. : Q_{K-C} indicator of "diffraction regime" ⁵.

Volume effects in 1d gratings

Outline

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Results

Need for tilt misalignment study ⁸

- As aspect ratios of zone plates go up⁶, degredation of performance due to tilt misalignment becomes more prominent.
- ► Analytic limits⁷ from literature do not account for volume diffraction effects.

⁶Chang und Sakdinawat [2014]; Li et al. [2017a]; Parfeniukas et al. [2017]

⁷Myers Jr. [1951]; Young [1972]

⁸Tilting zones to local bragg angle is not considered here.

Analytic limits

Analytic limits

Analytic limits

- ▶ Based on path length deviation (from no tilt) between marginal, axial ray⁹ $\rightarrow \ell'_u, \ell'_l$.
- Simplified expressions for path length deviation

$$\ell_I = (\ell_0) + \ell_c \theta + \ell_a \theta^2$$

▶ ℓ_0 → convergence to focus, ℓ_c → coma, ℓ_a → astigmatism & field curvature¹⁰.

Path length schematic.

⁹Myers Jr. [1951]; Young [1972]

¹⁰ referred to hereafter as astigmatism only.

Expected behavior

- $ightharpoonup \ell_a \theta^2 / \ell_c \theta \propto \theta / N.A.$
- ▶ RQW limit¹¹: $\theta_c < \frac{1}{2NN.A.} \mid \theta_a < \frac{1}{\sqrt{3N}}$

Implementation

Implementation

Outline

Introduction

Background Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Results

Partial Filling

▶ Binary fill on a smaller pixel grid, then downsample!

Partial fil

Outline

Introduction

Background

Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Results

Multislice

- ▶ "Slice" the object into multiple thin sections¹².
- ► Agrees with rigorous coupled wave theory¹³.

¹²Cowley und Moodie [1957], Ishizuka und Uyeda [1977], also known as beam prop. meth. Van Roey et al. [1981]

¹³Li et al. [2017b]

```
Procedure SliceDiff(n)
     /* Apply refractive effect of slice using
     \psi(x,y) = \psi(x,y) \odot \exp\left[i\frac{2\pi\Delta_z}{\lambda}\left(\delta(x,y) + i\beta(x,y)\right)\right];
     return:
Procedure PropShort (\Delta_z)
     /* Free space propagation from source s to destination d
          plane
                                                                                               */
     \psi_s(x,y) \xrightarrow{\mathcal{F}} \Psi(u,v);
     \Psi(u,v) = \Psi(u,v) \odot \exp\left[-i\frac{2\pi\Delta_z}{\lambda}\sqrt{1-\lambda^2(u^2+v^2)}\right];
     \Psi(u,v) \xrightarrow{\mathcal{F}^{-1}} \psi_d(x,y);
     return:
Procedure PropLong(f)
     /* Free space propagation from source s to destination d
     \psi'(x,y) = \psi_s(x,y) \odot \exp\left[-i\frac{2\pi f}{\lambda}\sqrt{x_s^2 + x_s^2 + f^2}\right];
     \psi'(x,y) \xrightarrow{\mathcal{F}} \Psi'(x,y);
     \Psi_d(x,y) = \Psi'(x,y) \odot \exp\left[-i\frac{2\pi f}{\lambda}\sqrt{x_d^2 + x_d^2 + f^2}\right];
     \psi_d(x,y) = \frac{i\Delta_x^2}{\sqrt{f}} \Psi_d(x,y);
     return:
```

Simulating tilt misalignment

Outline

Introduction

Background Motivation

Analytic limits

Implementation

Creating zone plates

Multislice

Simulating tilt misalignment

Results

Approaches to simulating tilt misalignment

- ► Two methods to simulating tilt.
 - Optic aligned.
 - ► Wavefiled aligned.
- ▶ Optic aligned → simple, but limited to cases where output grid can capture focus.
- Wavefiled aligned → time consuming but no limit on tilt angle.

Tilt schematic

Simulating tilt misalignment

Optic aligned approach

Optic aligned approach

```
Algorithm 2: Algorithm for the optic-aligned approach.
/* initialize
                                                                      */
AddPhase(\theta)
/* diffraction within optic
                                                                      */
for n=1.N do
    SliceDiff(n)
    PropShort (\Delta_z)
end
/* Propagate exit wave by a focal length f to the focal plane
   */
PropLong(f)
Procedure AddPhase(\theta)
    /* Apply phase to mimic tilt misalignment
    \psi(x,y) \leftarrow 1
    \varphi_x = \frac{2\pi\Delta_z}{\sqrt{1}} \tan(\theta)x
    \psi(x,y) = \psi(x,y) \odot \exp[i\varphi_x]
    return
```

Results

Results

soft x-ray

► Coma predicted.

hard x-ray

► Astigmatism predicted.

soft x-ray

▶ Limit agrees with analytic expectation.

hard x-ray

► Limit agrees with analytic expectation.

4□ > 4□ > 4 = > 4 = > = 990

Acknowledgements

- Kenan Li SLAC
- ► Michael Wojcik APS,ANL.
- ► NIMH U01 MH109100

References I

- [Baez 1952] BAEZ, Albert V.: A study in diffraction microscopy with special reference to X-rays. In: Journal of the Optical Society of America 42 (1952), Nr. 10, S. 756-762. - URL http://www.opticsinfobase.org/abstract.cfm?uri=josa-42-10-756. - ISBN 0030-3941
- [Chang und Sakdinawat 2014] CHANG, Chieh; SAKDINAWAT, Anne: Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. In: Nature Communications 5 (2014), Juni, S. 4243
- [Cowley und Moodie 1957] COWLEY, J M.; MOODIE, A F.: The scattering of electrons by atoms and crystals. I. A new theoretical approach. In: Acta Crystallographica 10 (1957), Oktober, Nr. 10, S. 609–619
- [Ishizuka und Uyeda 1977] ISHIZUKA, K.; UYEDA, N.: A new theoretical and practical approach to the multislice method. In: Acta Crystallographica A 33 (1977), September, Nr. 5, S. 740–749
- [Jacobsen 2019] Jacobsen, Chris: X-ray Microscopy. Cambridge, UK: Cambridge University Press, 2019. – ISBN 9781107076570
- [Kirz 1974] KIRZ, J: Phase zone plates for X-rays and the extreme UV. In: Journal of the Optical Society of America 64 (1974), Nr. 3, S. 301–309. – ISBN 0030-3941

References II

- [Klein und Cook 1967] KLEIN, W R.; COOK, B D.: Unified Approach to Ultrasonic Light Diffraction. In: IEEE Transactions on Sonics and Ultrasonics 14 (1967), Juli, Nr. 3. S. 123–134
- [Li et al. 2017a] LI, Kenan; WOJCIK, Michael J.; DIVAN, Ralu; OCOLA, Leonidas E.; SHI, Bing; ROSENMANN, Daniel; JACOBSEN, Chris: Fabrication of hard x-ray zone plates with high aspect ratio using metal-assisted chemical etching. In: Journal of Vacuum Science & Technology B 35 (2017), Nr. 6, S. 06G901. – URL http://avs.scitation.org/doi/10.1116/1.4991794. – ISSN 2166-2746
- [Li et al. 2017b] LI, Kenan; WOJCIK, Michael J.; JACOBSEN, Chris: Multislice does it all: calculating the performance of nanofocusing x-ray optics. In: Optics Express 25 (2017), Nr. 3, S. 185–194. – ISSN 1094-4087
- [Myers Jr. 1951] MYERS JR., Ora E.: Studies of Transmission Zone Plates. In: American Journal of Physics 19 (1951), Nr. 6, S. 359–365. – URL http://link.aip.org/link/?AJP/19/359/1{&}Agg=doi. – ISSN 00029505

References III

- [Parfeniukas et al. 2017] PARFENIUKAS, Karolis; GIAKOUMIDIS, Stylianos; VOGT, Ulrich; AKAN, Rabia: High-aspect ratio zone plate fabrication for hard x-ray nanoimaging. In: Proceedings SPIE 10386 (2017), S. 103860S. URL https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10386/2272695/High-aspect-ratio-zone-plate-fabrication-for-hard-x-ray/10.1117/12.2272695.full. ISBN 9781510612297
- [Van Roey et al. 1981] VAN ROEY, J.; DONK, J. van der; LAGASSE, P. E.: Beam-propagation method: analysis and assessment. In: Journal of the Optical Society of America 71 (1981), Jul, Nr. 7, S. 803-810. - URL http://www.osapublishing.org/abstract.cfm?URI=josa-71-7-803
- [Young 1972] YOUNG, M: Zone Plates and Their Aberrations. In: Journal of the Optical Society of America 62 (1972), Nr. 8, S. 972–976

Algorithm 3: Optic simulation using the multislice method

```
The initialize \psi(x,y) \leftarrow 1

* initialize \psi(x,y) \leftarrow 1

* diffraction within optic \psi(x,y) \leftarrow 1

For n=1,N do

SliceDiff(n)

PropShort(\Delta_z)
```

end

/* Propagate exit wave by a focal
 length f to the focal plane *,
PropLong(f)

```
Procedure SliceDiff(n)
     /* Apply refractive effect of slice using
     \psi(x,y) = \psi(x,y) \odot \exp \left[ i \frac{2\pi \Delta_x}{\lambda} \left( \delta(x,y) + i\beta(x,y) \right) \right];
     return:
Procedure PropShort (\Delta_z)
     /* Free space propagation from source s to
          destination d plane
                                                                                     */
     \psi_s(x,y) \xrightarrow{\mathcal{F}} \Psi(u,v):
     \Psi(u,v) = \Psi(u,v) \odot \exp\left[-i\frac{2\pi\Delta_x}{\lambda}\sqrt{1-\lambda^2(u^2+v^2)}\right];
     \Psi(u,v) \xrightarrow{\mathcal{F}^{-1}} \psi_d(x,v):
     return:
Procedure PropLong(f)
     /* Free space propagation from source s to
         destination d plane
     \psi'(x,y) = \psi_s(x,y) \odot \exp\left[-i\frac{2\pi f}{\lambda}\sqrt{x_s^2 + x_s^2 + f^2}\right];
     \psi'(x, y) \xrightarrow{\mathcal{F}} \Psi'(x, y):
     \Psi_d(x,y) = \Psi'(x,y) \odot \exp\left[-i\frac{2\pi f}{\lambda}\sqrt{x_d^2 + x_d^2 + f^2}\right];
     \psi_d(x, y) = \frac{i\Delta_x^2}{\sqrt{f}} \Psi_d(x, y):
     return:
```