Relational Design

• Relational Design Theory

2021/8/2

- Relational Design and Redundancy
- Database Design (revisited)

COMP3311 21T1 ♦ Relational Design ♦ [0/8]

https://cgi.cse.unsw.edu.au/~cs3311/21T1/lectures/rel-design/slides.html

>>

2021/8/2 Relational Design

>:

Relational Design Theory

The aim of studying relational design theory:

- improve understanding of relationships among data
- gain enough formalism to assist practical database design

What we study here:

- basic theory and definition of functional dependencies
- methodology for improving schema designs (normalisation)

Functional dependencies

- describe relationships between attributes within a relation
- have implications for "good" relational schema design

COMP3311 21T1 ♦ Relational Design ♦ [1/8]

2021/8/2 Relational Design

<< ^ >>

❖ Relational Design and Redundancy

A good relational database design:

- must capture *all* necessary attributes/associations
- do this with *minimal* amount of stored information

Minimal stored information \Rightarrow no redundant data.

In database design, redundancy is generally a "bad thing":

causes problems maintaining consistency after updates

But ... redundancy may give performance improvements

• e.g. avoid a join to collect pieces of data together

COMP3311 21T1 ♦ Relational Design ♦ [2/8]

Relational Design and Redundancy (cont)

Consider the following relation defining bank accounts/branches:

accountNo	balance	customer	branch	address	ass	ets
A-101	500	1313131	Downtown	Brooklyn	9000	000
A-102	400	1313131	Perryridge	Horseneck	1700	0000
A-113	600	9876543	Round Hill	Horseneck	8000	0000
A-201	900	9876543	Brighton	Brooklyn	7100	0000
A-215	700	1111111	Mianus	Horseneck	400	000
A-222	700	1111111	Redwood	Palo Alto	2100	000
A-305	350	1234567	Round Hill	Horseneck	8000	0000
•••	•••	•••	•••	•••	••	•

Careless updating of this data may introduce inconsistencies.

COMP3311 21T1 ♦ Relational Design ♦ [3/8]

Relational Design and Redundancy (cont)

If we add \$300 to account A-113 ...

accountNo	balance	customer	branch	address	ass	ets
A-101	500	1313131	Downtown	Brooklyn	9000	0000
A-102	400	1313131	Perryridge	Horseneck	1700	0000
A-113	900	9876543	Round Hill	Horseneck	8000	300
A-201	900	9876543	Brighton	Brooklyn	7100	0000
A-215	700	1111111	Mianus	Horseneck	400	000
A-222	700	1111111	Redwood	Palo Alto	2100	0000
A-305	350	1234567	Round Hill	Horseneck	8000	0000
•••	•••	•••	•••	•••	••	•

COMP3311 21T1 ♦ Relational Design ♦ [4/8]

Relational Design and Redundancy (cont)

If we add a new account A-306 at the Round Hill branch ...

accountNo	balance	customer	branch	address	ass	ets
A-101	500	1313131	Downtown	Brooklyn	9000	0000
A-102	400	1313131	Perryridge	Horseneck	1700	0000
A-113	900	9876543	Round Hill	Horseneck	8000	0300
A-201	900	9876543	Brighton	Brooklyn	7100	0000
A-215	700	1111111	Mianus	Horseneck	400	000
A-222	700	1111111	Redwood	Palo Alto	2100	0000
A-305	350	1234567	Round Hill	Horseneck	8000	0000
A-306	500	7654321	Round Hill	Horseneck	8000	500?
•••	•••	•••	•••	•••	•	••

COMP3311 21T1 ♦ Relational Design ♦ [5/8]

Relational Design and Redundancy (cont)

If we close account A-101 ...

accountNo	balance	customer	branch	address	ass	ets
A-101	500	1313131	Downtown	Brooklyn	9000	0000
A-102	400	1313131	Perryridge	Horseneck	1700	0000
A-113	900	9876543	Round Hill	Horseneck	8000	0300
A-201	900	9876543	Brighton	Brooklyn	7100	0000
A-215	700	1111111	Mianus	Horseneck	400	000
A-222	700	1111111	Redwood	Palo Alto	2100	0000
A-305	350	1234567	Round Hill	Horseneck	8000	0000
A-306	500	7654321	Round Hill	Horseneck	8000	500?
•••	•••	•••	•••	•••	•	••

What is the address of the Downtown branch?

COMP3311 21T1 ♦ Relational Design ♦ [6/8]

Relational Design and Redundancy (cont)

Insertion anomaly:

2021/8/2

• when we insert a new record, we need to check that branch data is consistent with existing tuples

Update anomaly:

 if a branch changes address, we need to update all tuples referring to that branch

Deletion anomaly:

• if we remove information about the last account at a branch, all of the branch information disappears

Insertion/update anomalies can be handled, e.g. by triggers

 but this requires extra DBMS work on every change to the database

COMP3311 21T1 ♦ Relational Design ♦ [7/8]

2021/8/2 Relational Design

<

Λ

Database Design (revisited)

To avoid these kinds of update problems:

- need a schema with "minimal overlap" between tables
- each table contains a "coherent" collection of data values

Such schemas have little/no redundancy

ER → SQL mapping tends to give non-redundant schemas

• but does not guarantee no redundancy

The methods we describe in this section

 can reduce redundancy in schemas ⇒ eliminate update anomalies

COMP3311 21T1 ♦ Relational Design ♦ [8/8]

Produced: 25 Mar 2021