Problem 1.

Endow $\mathbb{R}P^2$ with the smooth structure given by quotienting S^2 in the usual way. We compute the local derivative of f as

$$Df(\phi_1^{-1})(\phi([x,y,z])) = D(zy,z\sqrt{1-y^2-z^2},y\sqrt{1-y^2-z^2}) = \begin{bmatrix} z & y \\ \frac{-zy}{\sqrt{1-y^2-z^2}} & \frac{1-y^2-2z^2}{\sqrt{1-y^2-z^2}} \\ \frac{1-2y^2-z^2}{\sqrt{1-y^2-z^2}} & \frac{-zy}{\sqrt{1-y^2-z^2}}. \end{bmatrix}$$

The mapping f will fail to be an immersion at points (y, z) where the columns are linearly dependant i.e. their cross product is 0. For notation set $x = \sqrt{1 - y^2 - z^2}$. We aim to solve

$$\left(z^2+y^2-x^2, \frac{y(x^2-y^2)+z^2y}{x}, \frac{z(x^2-z^2)+zy^2}{x}\right)=0.$$

The constraint on the first coordinate implies that

$$y^2 + z^2 = \frac{1}{2}$$

and the second and third coordinate constraints imply that y or z is 0 but not both. Substituting back into φ^{-1} we get four points where f fails to be an immersion in this chart,

$$\Big[\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\Big], \Big[\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0\Big], \Big[\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\Big], \Big[\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\Big].$$

We repeat this process for φ_2 , seeing that

$$\mathrm{Df}(\phi_2^{-1})(\phi_2([x,y,z])) = \begin{bmatrix} \frac{-xz}{\sqrt{1-x^2-z^2}} & \frac{1-x^2-2z^2}{\sqrt{1-x^2-z^2}} \\ z & x \\ \frac{1-2x^2-z^2}{\sqrt{1-x^2-z^2}} & \frac{-xz}{\sqrt{1-x^2-z^2}} \end{bmatrix}.$$

A similar computation reveals that this matrix has rank less than 2 at

$$\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right], \left[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right], \left[0\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right], \left[0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right].$$

Finally, for φ_3 we have that

$$Df(\phi_3^{-1})(\phi([x,y,z])) = \begin{bmatrix} \frac{-xy}{\sqrt{1-x^2-y^2}} & \frac{1-x^2-2y^2}{\sqrt{1-x^2-y^2}} \\ \frac{1-2x^2-y^2}{\sqrt{1-x^2-y^2}} & \frac{-xy}{\sqrt{1-x^2-y^2}} \\ y & \chi \end{bmatrix}.$$

This will fail to be an immersion at the points

$$\left[0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right], \left[0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right], \left[\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right], \left[\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right].$$

We conclude that the mapping f will not be an immersion at

$$\left[0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right], \left[0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right], \left[\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right], \left[\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right], \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right], \left[\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right].$$

The images of these points will be

$$\left(\pm\frac{1}{2},0,0\right),\left(0,\pm\frac{1}{2},0\right),\left(0,0,\pm\frac{1}{2}\right).$$

Problem 2.

- (a) Let f be the map given. We show that the following hold to conclude that it is indeed an imbedding.
 - i) f is injective
 - ii) f is an immersion
 - iii) f is a homeomorphism onto its image.

First we show that f is injective. If

$$[y, 0] = [x, 0]$$

then (y,0) and (x,0) are either equal or andipodal. Clearly we must have that $x \sim y$ and [x] = [y]. Hence f is injective. Now we claim that f is an immersion. Endow $\mathbb{R}P^n$ and $\mathbb{R}P^{n+1}$ with the smooth structure induced by quotienting the sphere by antipodal points. Then if ψ_j and ϕ_i are the standard charts on $\mathbb{R}P^{n+1}$ and $\mathbb{R}P^n$, for $j \neq i$ we have that

$$(\psi_{\mathfrak{j}}\circ f\circ \phi_{\mathfrak{i}}^{-1})(x_{1},\ldots,x_{n})=(x_{1},\ldots,\hat{x}_{\mathfrak{j}},\ldots,\sqrt{1-x_{1}^{2}-\ldots x_{n}^{2}},\ldots,x_{n},0),$$

which will evaluate as

$$D(\psi_{\mathfrak{j}}\circ \mathsf{f}\circ \phi_{\mathfrak{i}}^{-1}) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{-2x_1}{\sqrt{1-x_1^2-...x_n^2}} & \cdots & \frac{-2x_{n-1}}{\sqrt{1-x_1^2-...x_n^2}} & \frac{-2x_n}{\sqrt{1-x_1^2-...x_n^2}} & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & \cdots & \cdots & 1 & 0 \end{bmatrix}.$$

This will be of rank n. If i = j then the Jacobian matrix will be

$$D(\psi_j\circ f\circ \phi_j^{-1})=\begin{bmatrix}I&0\\0&0\end{bmatrix},$$

where I is the $n \times n$ identity matrix. Therefore f is an immersion. It remains to show that it is a homeomorphism onto its image. First, note that f must be continuous since f is smooth, and ψ_j , φ_i cover the manifold, the gluing lemma gives us the desired result. Furthermore since f is injective, we have that f is a bijection onto $f(\mathbb{R}P^n)$. Since $\mathbb{R}P^n$ is compact and hausdorff, it follows from topology that f is a homeomorphism onto its image. Therefore f defines an imbedding of $\mathbb{R}P^n$ in $\mathbb{R}P^{n+1}$.

(b) We first check that the Segre imbedding is in fact an imbedding. First we show that it is an immersion. Regard $\mathbb{C}P^1$ and $\mathbb{C}P^3$ as quotients of complex spheres of same dimension. Let $\{\phi_i, U_i\}, \{\psi_j, V_j\}$ be at lases on $\mathbb{C}P^1, \mathbb{C}P^3$ with coordinates given by projection. We compute that S looks like

$$\psi_1 \circ S \circ (\phi_1^{-1}, \phi_1^{-1})(z, w) = (w\sqrt{1-z^2}, z\sqrt{1-w^2}, \sqrt{1-w^2}\sqrt{1-z^2}),$$

and the differential will be

$$D(\psi_1 \circ S \circ (\phi_1^{-1}, \phi_1^{-1}))(z, w) = \begin{bmatrix} \frac{-zw}{\sqrt{1-z^2}} & \sqrt{1-z^2} \\ \\ \sqrt{1-w^2} & \frac{-zw}{\sqrt{1-w^2}} \\ \\ \frac{-z\sqrt{1-w^2}}{\sqrt{1-z^2}} & \frac{-w\sqrt{1-z^2}}{\sqrt{1-w^2}} \end{bmatrix}.$$

This will have a complex rank 2. A similar computation for different choices of ψ_i , ϕ_j will yield the same result and so we conclude that S is an immersion. We now claim that S is a homeomorphism onto its image. First we show that S is injective. Suppose that

$$S([z_0, z_1], [w_0, w_1]) = S([u_0, u_1], [v_0, v_1]).$$

This gives us that

$$[z_0w_0, z_1w_0, z_0w_1, z_1w_1] = [u_0v_0, u_1v_0, u_0v_1, u_1v_1].$$

By the equivalence relation we have that

$$z_0 w_0 = \pm u_0 v_0$$

 $z_1 w_0 = \pm u_1 v_0$
 $z_0 w_1 = \pm u_0 v_1$
 $z_1 w_1 = \pm u_1 v_1$

which implies that $[z_0, z_1] = [u_0, u_1]$ and $[w_0, w_1] = [v_0, v_1]$. Furthermore since S is smooth, and since ψ_j , φ_i cover our manifolds, the gluing lemma implies that S is continuous. Since S is a bijection onto its image, and $\mathbb{C}P^1 \times \mathbb{C}P^1$ is compact and hausdorff, and $\mathbb{C}P^3$ is hausdorff we have that S must be a homeomorphism onto its image. Define the generalized Segre imbedding as $S : [x_0, \dots, x_j] \times [y_0, \dots, y_k] \mapsto [x_i y_l]$ where $x_i y_l$ is the vector given with entries ranging over all possible products of x_i with y_l . We claim that S is an imbedding. Let φ be a chart of $\mathbb{C}P^j$, ψ be a chart of $\mathbb{C}P^k$ and λ be a chart of $\mathbb{C}P^{(j+1)(k+1)-1}$. We have that

$$\lambda\circ S\circ (\phi^{-1},\psi^{-1})(z,y)=(z_0y_0,\dots z_0\sqrt{1-y_0^2-\dots},\dots \widehat{z_hy_k},\dots z_jy_k),$$

and will have a differential of

One can verify that this matrix has a complex rank of j + k. Hence S is an immersion. By a similar argument as before, it is an imbedding.

Problem 3.

Let U be an open set around B thats disjoint from A. We have that U is a submanifold, and A^c is an open covering of it. There exists a partition of unity $\{\psi_i\}$ subordinate to A^c . We have that $supp(\psi_i) \subset A^c$. Therefore the function

 $f(p) = \begin{cases} \sum_{i} \psi_{i}(p) & p \not\in A \\ 0 & p \in A \end{cases}$

will be smooth and satisfies our requirements.

Problem 4.

Let C be a closed subset of \mathbb{R}^n . Cover $\mathbb{R}^n \setminus C$ with a countable covering of open balls $\{B_n\}$. Each ball B_i contains some compact set C_i , and we can take some smooth functions f_i so that $f_i|_{C_i}=1$ and $f_i=0$ outside of B_i . Define

 $f = \sum_{i} \frac{f_{i}}{2^{i} M_{i}}$

where M_i is the supremum of the absolute value of all mixed partials of orders less than or equal to i, of f_i . We claim that f as defined is 0 exactly on C. Notice that if $x \in C$, then each f_i is 0 so f(x) = 0. If $x \in C^c$, then it belongs to some B_i and so $f(x) \geqslant \frac{f_i(x)}{2^i M_i} > 0$. It remains to show that f is smooth. By comparison test, we have that

 $\sum_{i} \frac{f_{i}}{2^{i} M_{i}}$

is an absolutely convergent series, hence f is differentiable since each f_i is. We claim that f is smooth. Note that if we apply any mixed order partial derivative operator, we get that

$$\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}}f\right| = \left|\sum_{i} \frac{1}{2^{i}M_{i}} \frac{\partial^{\alpha}}{\partial x^{\alpha}}f_{i}\right| \leqslant M_{i} \sum_{i} \frac{1}{2^{i}}.$$

Therefore all mixed partials of f exist hence f is smooth. Now suppose that C is a closed subset of a manifold. By the Whitney Imbedding theorem, there exists an imbedding $\psi: M \to \mathbb{R}^M$ for sufficiently large M. Since ψ is a homeomorphism onto its image, we have that $\psi(C)$ is a closed subset of \mathbb{R}^M . Choose f as per above defined on $\psi(M)$ so that $f^{-1}\{(0)\} = \psi(C)$. Then the smooth function $f \circ \psi: M \to \mathbb{R}$ will suffice.

Problem 5.

(a) Let $X_0 \in M(m,n;k)$. Let $\nu_{i_1},\ldots,\nu_{i_k}$ be the k linearly independant columns. Choose a column permutation matrix Q that sends $\nu_{i_1}\ldots\nu_{i_k}$ to the first k columns. Now let u_{j_1},\ldots,u_{j_k} be the k linearly independant rows of X_0Q . Take P to be a permutation matrix which sends u_{j_1},\ldots,u_{j_k} to the first k rows. Our matrix PX_0Q will be of the form

$$PX_0Q = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A is an invertible k by k matrix.

- (b) Since det(A) is a smooth polynomial in the entries of A, if $det(A) \neq 0$ we can find a sufficiently small ε so that $det(A_0) \neq 0$ when the entries of $A A_0$ are less than ε .
- (c) Suppose that

$$Y = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

for A $k \times k$ and nonsingular. Suppose that Y is rank k. Then for some matrix

$$X = \begin{bmatrix} I & 0 \\ Z & 0 \end{bmatrix},$$

we have that

$$XY = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}.$$

Computing the matrix multiplication, we see that

$$XY = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A & B \\ ZA + C & ZB + D \end{bmatrix}.$$

This implies that $Z = -CA^{-1}$, and so $-CA^{-1}B + D = 0$ as desired. Now suppose that $D = CA^{-1}B$. Then we have that

$$\begin{bmatrix} I & 0 \\ -CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ C & CA^{-1}B \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}.$$

Since A has rank k, Y must as well.

(d) Define the map $f: \mathbb{R}^{nm} \to \mathbb{R}^{(m-k)(n-k)}$ by

$$f\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) = D - CA^{-1}B.$$

We can always take a matrix of rank k to be in this form, and in some neighbourhood of A this matrix will be of the same form by a, b, c. Evidently by c) this will vanish exactly when $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ has rank k. The zero set of this function will be a neighbourhood of M(n, m; k), and f will have full rank since it consists of linear terms. Therefore the dimension of this manifold will be

$$nm - (m-k)(n-k) = k(m+n-k)$$

Problem 6.

(a) Matrix multiplication is an algebraic operation, hence smooth. Similarly, the inverse of a matrix is a polynomial in its entries, so it is smooth as well. Since $GL_n(\mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\})$ we have that $GL_n(\mathbb{R})$ is an open subset of \mathbb{R}^{n^2} and hence has dimension of n^2 .

(b) O(n) is the set of all matrices satisfying $A^{\perp} = A^{-1}$ or equivalently $A^{\perp}A = I$. Notice that this is a lie subgroup of $GL_n(\mathbb{R})$. Consider the mapping $f: GL_n(\mathbb{R}) \to Sym_n(\mathbb{R})$ defined by

$$f(A) = A^{\perp}A.$$

We claim that I is a regular value of f, which would imply that O(n) is a manifold since $f^{-1}(I) = O(n)$. By the computation done in tutorial, we have that $Df_A(X) = A^{\perp}X + X^{\perp}A$. We claim that this is surjective for $A \in f^{-1}(I)$. Let $Y \in Sym_n(\mathbb{R})$. Then taking $X = \frac{1}{2}AY$ will solve the equation. So I is a regular value and so O(n) is a manifold of dimension

$$\dim(\mathsf{GL}_n(\mathbb{R})) - \dim(\mathsf{Sym}_n(\mathbb{R})) = n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1)$$

Problem 7.

(a) Consider the mapping $f: \mathbb{R} \to S^1$ defined by

$$x\mapsto e^{2\pi i x}$$
.

We have that $f' = 2\pi i f(x)$. This is nonzero so f is a submersion. Clearly this is not a diffeomorphism since it is periodic on \mathbb{R} , yet S^1 and \mathbb{R} are both 1—manifolds.

(b) Let $\alpha \in M$. Taking a suitable chart (ϕ, U) around α , and a chart (ψ, V) around $f(\alpha)$ consider the following commutative diagram:

$$\begin{array}{c} TM_{\alpha} \xrightarrow{f_{*\alpha}} TN_{f(\alpha)} \\ \downarrow^{\phi_{*\alpha}} \downarrow & \downarrow^{\psi_{*f(\alpha)}} \\ T\mathbb{R}^{n}_{\phi(\alpha)} \xrightarrow{f_{*\alpha} \circ f_{*\alpha} \circ \phi^{-1}_{*\phi(\alpha)}} T\mathbb{R}^{m}_{\psi(f(\alpha))} \end{array}$$

This diagram commutes, and since ψ_{*a} and ϕ_{*a} are isomorphisms, we have that n = m. Furthermore, We have that the mapping

$$\psi_{*f(\alpha)}\circ f_{*\alpha}\circ \phi_{*\phi(\alpha)}^{-1}=(\psi\circ f\circ \phi^{-1})_{*\alpha}$$

is an isomorphism. So $(\psi \circ f \circ \phi^{-1})$ is a diffeomorphism by the inverse function theorem. So f must be a diffeomorphism.

(c) First note that f is injective and continuous. Hence it is an open mapping. Therefore f(M) is open in N. Since M is compact then so is f(M). Therefore f(M) is closed and open and nonempty. So f(M) = N. We have that $f: M \to N$ is a bijection. By b) f must be a diffeomorphism.

Problem 8.

(a) For $X \in M(n, \mathbb{R})$, let $X_{\mathbb{C}} = X \otimes_{\mathbb{C}} 1$ be the complexification of the matrix X. We have that by linear algebra,

$$\det(I+tX_{\mathbb{C}})=t^n\det(t^{-1}I-(-X_{\mathbb{C}}))=t^n\left(t^{-n}+(\mathsf{Tr}(X_{\mathbb{C}}))t^{-n+1}+\ldots\right)=1+(\mathsf{Tr}(X_{\mathbb{C}}))t+\ldots.$$

This is a polynomial in t, so differentiating at t = 0 gives us that

$$\frac{\mathrm{d}}{\mathrm{d}t}\det(\mathrm{I}+\mathrm{t}\mathrm{X}_{\mathbb{C}})=\mathrm{tr}(\mathrm{X}_{\mathbb{C}}).$$

Since $tr(X) = tr(X_{\mathbb{C}})$ we obtain the desired result.

(b) We have that

$$f(A+tX)=\det(A+tX)=\det(A)\det(I+A^{-1}X).$$

By part a) we have that $Df(A)X = det(A)tr(A^{-1}X)$. This is a linear map in X. Thus we are done.

(c) We claim that f is a submersion. It is sufficient to show that Df(A)X is a surjective mapping onto \mathbb{R} . Given $A \in GL_n(\mathbb{R})$ and $c \in \mathbb{R}$ we wish to find an X so that

$$\det(A)\operatorname{tr}(A^{-1}X) = c.$$

Taking $X = \frac{c}{n \det(A)} A$ gives us

$$\det(A)\operatorname{tr}\left(A^{-1}\frac{c}{n\det(A)}A\right) = \frac{c}{n}\operatorname{tr}(I) = c.$$

Therefore f is a submersion.

(d) By results from A1Q2, we have that the tangent space to I is given by the kernel of Df(I). So

$$X \in \mathsf{T}M_I \iff \mathsf{Df}(I)X = 0 \iff \det(I)\mathsf{tr}(I^{-1}X) = 0 \iff \mathsf{tr}(X) = 0.$$