Section 03.2 - Logic Gates and Logic Circuits

Layer 1: Logic Gates

Syllabus Content Section 03: Hardware

Logic proposition: a statement that is either TRUE or FALSE

Problem statement: an informal definition of an outcome which is dependent on one logic proposition or a combination of two or more logic propositions

Logic expression: logic propositions combined using Boolean operators, which may be equated to a defined outcome

S03.2.2 Understand and define the functions of : NOT, AND, OR, NAND, NOR and XOR (EOR) gates

All gates except the NOT gate will have two inputs only.

${\mathscr O}$ S03.2.3 Construct the truth table for each of the logic gates above ${}^{\checkmark}$

NOT			AND				OR		
Input	Output		Input-	Input-	Output		Input-	Input-	Outp
0	1		0	0	0		0	0	0
1	0		0	1	0		0	1	1
			1	0	0		1	0	1
			1	1	1		1	1	1
NAND				NOR				XOR	
Input-	Input-	Output		Input-	Input-	Output		Input-	Inpu 2
0	0	1		0	0	1		0	0
0	1	1		0	1	0		0	1
1	0	1		1	0	0		1	0
1	1	0		1	1	0		1	1

From:

- a problem statement
- a logic expression
- a truth table

Logic Expression: (NOT(A AND B))AND((NOT B)AND C)

Truth table:

Α	В	C	Output
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

№ S03.2.5 Construct a truth table ∨

From:

- a problem statement
- a logic circuit
- a logic expression

Logic Expression: (NOT(A AND B))AND((NOT B)AND C) Truth table:

A	В	C	Output
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0

Α	В	С	Output
1	1	0	1
1	1	1	0

⊘ S03.2.6 Construct a logic expression ∨

From:

- a problem statement
- a logic circuit
- a truth table

(NOT(A AND B))AND((NOT B)AND C)

Logic circuit:

Truth table:

A	В	С	Output
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0