IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) A method of processing a stereo signal obtained from an encoder, which encoder encodes an N-channel audio signal into left and right signals $(L_0;R_0)$ and spatial parameters (P), the method comprising:
- processing said left and right signals in order to provide processed signals $(L_{0w};R_{0w})$, in which said processing is controlled in dependence of said spatial parameters (P).
- 2. (original) The method of claim 1, wherein said processing is controlled by a first parameter $(w_1; w_r)$ for each of said left and right signals, said first parameter being dependent on the spatial parameters (P).
- 3. (original) The method of claim 2, wherein said first parameter $(w_1; w_r)$ is a function of time and/or frequency.
- 4. (currently amended) The method of claim 1, $\frac{2 \text{ or } 3}{4 \text{ or } 3}$ wherein said processing comprises filtering at least one of said left and right signals with a transfer function which depends on the spatial parameters (P).

- 5. (currently amended) The method of claim 1, 2, 3 or 4, wherein said processing comprises:
- adding a first, second and third signal in order to obtain said processed channel signals $(L_{0w};R_{0w})$, in which the first signal includes the stereo signal modified by a first transfer function $(L_0*H_A;R_0*H_F)$, the second signal includes the stereo signal of the same one channel modified by a second transfer function $(L_0*H_B;R_0*H_E)$, and the third signal includes the stereo signal of the other channel modified by a third transfer function $(R_0*H_D;L_0*H_C)$.
- 6. (original) The method of claim 5, wherein said second transfer function $(H_B; H_E)$ comprises a multiplication with said first parameter $(W_1; W_r)$ followed by multiplication with a first filter function $(H_1; H_4)$.
- 7. (original) The method of claim 5, wherein said first transfer function $(H_A;H_F)$ comprises a multiplication with a second parameter.
- 8. (original) The method of claim 5, wherein said first transfer function $(H_A;H_F)$ comprises a multiplication with a second parameter

in which said first parameter is a function of said second parameter.

- 9. (currently amended) The method of claim 5, 6, 7 or 8, wherein said third transfer function $(H_1; H_D)$ comprises a multiplication of the left or right signal $(L_0; R_0)$ with said first parameter $(W_1; W_r)$ followed by a second filter function $(H_2; H_3)$.
- 10. (currently amended) The method of claim 6, 7, 8 or 9, wherein said filter functions (H_1 , H_2 , H_3 , H_4) are time-invariant.
- 11. (currently amended) The method of any one of the previous claims claim 1, wherein said signals are described by the equation:

$$\begin{bmatrix} L_{Ow} \\ R_{Ow} \end{bmatrix} = H \begin{bmatrix} L_O \\ R_O \end{bmatrix}$$

in which the transfer function matrix (H) is a function of the spatial parameters (P).

12. (original) The method of claim 11, wherein said transfer function matrix (H) is described by the equation:

$$H = \begin{bmatrix} (1 - w_l)^a + (w_l)^a H_1 & (w_r)^a H_3 \\ (w_l)^a H_2 & (1 - w_r)^a + (w_r)^a H_4 \end{bmatrix}$$

with a being a constant.

- 13. (currently amended) The method of claim $11-or\ 12$, wherein said filter functions (H_1 , H_2 , H_3 , H_4) and parameters (w_1 , w_r) are selected so that the transfer function matrix (H) is invertible.
- 14. (currently amended) A method of any one of the previous claims claim 1, wherein said spatial parameters (P) contain information describing signal levels of the N-channel signal.
- 15. (original) A device for processing a stereo signal obtained from an encoder, which encoder encodes an N-channel audio signal into left and right signals (L_0 ; R_0) and spatial parameters (P), the device comprising:
- a post-processor (5) for post-processing said left and right signals in order to provide processed signals $(L_{0w}; R_{0w})$, in which said post-processing is controlled in dependence of said spatial parameters (P).
- 16. (original) An encoder apparatus comprising:
- an encoder (2) for encoding an N-channel audio signal into left and right signals ($L_0\,;R_0$) and spatial parameters (P), and
- a device (5) according to claim 15 for processing said left

and right signals $(L_0; R_0)$ in dependence of said spatial parameters (P).

- 17. (currently amended) A method for processing a stereo signal comprising left and right signals (L_{0w} ; R_{0w}), the method comprising inverting the processing in accordance with the method of any one of claims 1–14 claim 1.
- 18. (currently amended) A device (7) for processing a stereo signal comprising left and right signals $(L_{0w}; R_{0w})$, the device comprising means for inverting the processing in accordance with the method of any one of claims 1-14 claim 1.
- 19. (original) A decoder apparatus comprising:
- a device (7) according to claim 18 for processing a stereo signal comprising left and right signals $(L_{0w};R_{0w})$, and
- a decoder for decoding the processed stereo signals $(L_0;R_0)$ into an N-channel audio signal.
- 20. (currently amended) An audio system (1) comprising:

 _____ an encoder apparatus according to claim 16 having an encoder

 (2) for encoding an N-channel audio signal into left and right

 signals (L₀; R₀) and spatial parameters (P), and a device (5) for

post-processing said left and right signals $(L_0; R_0)$ in order to provide processed signals $(L_{0w}; R_{0w})$, said post-processing being controlled in dependence on said spatial parameters (P); and ____ a decoder apparatus according to claim 19 for decoding said processed signals $(L_{0w}; R_{0w})$, said decoder apparatus having a device for processing a stereo signal comprising left and right signals $(L_{0w}; R_{0w})$, the device comprising means for inverting the post-processing performed in the encoder apparatus in order to provide stereo signals $(L_0; R_0)$, and a decoder for decoding the stereo signals $(L_0; R_0)$ into an N-channel audio signal.