

X to cts rv. We define mean | Expectation of X as Def 2702 $\mathbb{F}[X] := \int_{X} \chi f_{X}(x) dx \quad \text{if} \quad \int_{X} |\chi(x)| dx < \infty.$ Else undefined on E(x) closen't exist. [X Discrete, $\mathbb{E}[X] = \sum_{x} \mathbb{E}[X](x)$ if $\sum_{x} |X| \mathbb{E}[X](x) < \infty$] Note al-)adx(R) is p.c.s. FY (1) $U \stackrel{d}{=} U(0,1)$. $E[X] = \int x dx = 1$. Check $\int |x| f_{x}(x) dx = \int x dx < \infty$ (2) $X \stackrel{d}{=} (-XP(\lambda))$ $(-(X) = \lambda \int xe^{-\lambda x} dx = \frac{1}{\lambda}$ Check (E[X] emists IBP (3) $X \stackrel{!}{=} N(0,1)$ Check $\int_{\mathbb{R}} |x| f_{x}(x) dx < \infty$ $E[X] = \int_{\mathbb{R}} x f_{x}(x) dx \qquad \left[= 2 \int_{\mathbb{R}} x f_{x}(x) dx , f_{x}(x) \stackrel{!}{=} \frac{C}{x^{3}} \right]$ $= \int_{\mathbb{R}} x f_{x}(x) dx + \int_{\mathbb{R}} x f_{x}(x) dx$ $=\int_{0}^{\infty} x dx(x) dx + \int_{0}^{\infty} x dx - x dx$ $=\int_{0}^{\infty} x dx(x) dx + \int_{0}^{\infty} x dx - x dx$ $=\int_{0}^{\infty} x dx(x) dx + \int_{0}^{\infty} x dx - x dx$ $= \int_{-\infty}^{\infty} x f_{x}(x) dx - \int_{-\infty}^{\infty} x f_{x}(-x) dx$ $\int_{X} x \, f_{X}(x) \, dx - \int_{X} x \, f_{X}(x) \, dx \qquad \left(\begin{array}{c} \text{Sinke } f_{X} \, \text{ is even } (\cdot e_{J}) \\ f_{X}(x) = f_{X}(-x) \end{array} \right)$

$$= \mathbb{E}[x^{2}] - \mu^{2}.$$

(+) Let $Y = ax + b$.

$$= a\mu_{x} + b$$

Eg 27.7 (1) U. $E[U] = \frac{1}{2}$. $k \ge 1$ $E[U^R] = \int_{2}^{2} x^k dx = \frac{1}{R+1}$. $VAR[U] = \left[E[U^2] - \left(E[U]\right)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$.

(2) $X \stackrel{d}{=} U(b, b+a) \quad J_X(x) = \left(\frac{1}{a} \quad x \in (b, b+a) \quad / \ a > 0$.

From brevious class. $X \stackrel{d}{=} Y \quad Y = aU + b$. $X \stackrel{d}{=} Y \quad Y = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$. $X \stackrel{d}{=} Y \quad X = aU + b$.

(3) $X \stackrel{d}{=} GXP(X)$ $E(X] = \frac{1}{2}$ $E(X^2) = X \stackrel{2}{>} X^2 e^{-X} dX = \frac{2}{2}$ $VAR(X) = \frac{1}{2} - (\frac{1}{2})^2 = \frac{1}{2}$ (4) $Z \stackrel{d}{=} N(0,1)$ $X \stackrel{d}{=} N(M,\sigma)$ $\sigma > 0$ Lust cluss, $QY = \sigma Z + M$, then $Q \stackrel{d}{=} X$. $E[X] = E[Y] = \sigma E[Z] + M = M$ $VAR[X] = \sigma^2 VAR[Z]$. $VAR[Z] = E[Z^2]$ (E[Z] = 0) $= \int_{-\infty}^{\infty} g^2 f_z(g) dg$ $= \frac{2}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}}$ $= \frac{1}{\sqrt{2\pi}} \int_{0}^{2} x^{2} e^{-x^{2}/2} dx \quad \langle x = x^{2} dx = \frac{dx}{2\sqrt{x}$

Psob $X_n \stackrel{d}{=} Bin(n, \frac{1}{A})$ $\lambda > 0$ $EX_n = \lambda$, $Var(X_n) = \lambda(1-\frac{1}{A})$ k=0 $P(X_n = k)$ $P(X_n$

