Digital Control Systems MAE/ECEN 5473

State space stability analysis: Lyapunov second method

Oklahoma State University

August 14, 2023

Continuous time systems

General nonlinear systems:

$$\dot{x} = f(x, u, t), \quad x \in \mathbb{R}^n \tag{1}$$

Special cases: Linear time-invariant (LTI) systems

$$\dot{x} = Ax + Bu \tag{2}$$

Linear time-varying systems

$$\dot{x} = A(t)x + B(t)u \tag{3}$$

Continuous time systems

General nonlinear systems:

$$\dot{x} = f(x, u, t), \quad x \in \mathbb{R}^n \tag{1}$$

Special cases: Linear time-invariant (LTI) systems

$$\dot{x} = Ax + Bu \tag{2}$$

Linear time-varying systems

$$\dot{x} = A(t)x + B(t)u \tag{3}$$

open-loop system:
$$u=0$$
 closed-loop system: $u=g(x,t)$ $\dot{x}=f(x,0,t)$ $\dot{x}=f(x,g(x,t),t)$

Continuous time systems

General nonlinear systems:

$$\dot{x} = f(x, u, t), \quad x \in \mathbb{R}^n \tag{1}$$

Special cases: Linear time-invariant (LTI) systems

$$\dot{x} = Ax + Bu \tag{2}$$

Linear time-varying systems

$$\dot{x} = A(t)x + B(t)u \tag{3}$$

open-loop system:
$$u=0$$
 closed-loop system: $u=g(x,t)$ $\dot{x}=f(x,0,t)$ $\dot{x}=f(x,g(x,t),t)$

By slight abuse of notation, both cases can be summarized as

$$\dot{x} = f(x, t)$$

Equilibrium (equilibria)

As the name suggests, at an equilibrium, the motion of a dynamical system vanishes, i.e., $\dot{x}=0$ at an equilibrium $x_{\rm e}$.

Find an equilibrium

Given $\dot{x} = f(x, t)$, a point x_e is an equilibrium if and only if it satisfies $f(x_e, t) = 0$, $\forall t$.

Observe: if $x(0) = x_e$, $x(t) = x_e$, $\forall t \ge 0$.

Linear and nonlinear examples

Stability definitions

Consider $\dot{x} = f(x, t)$, $x(t_0) = x_0$, $x \in \mathbb{R}^n$. Its solution is denoted by $\phi(t; x_0, t_0)$. Let x_e be an equilibrium of $\dot{x} = f(x, t)$.

Stable in the sense of Lyapunov

For every $\epsilon>0$, let $S(\epsilon)$ be the set $\{x\mid \|x-x_e\|<\epsilon\}$. If there exists a $\delta>0$ such that the trajectories $\phi(t;x_0,t_0)$ starting in $\|x_0-x_e\|\leq \delta$ remain in $S(\epsilon)$, then x_e is stable in the sense of Lyapunov.

Asymptotic stability

Asymptotic stability (a.s.)

Stable in the sense of Lyapunov + convergence to the equilibrium x_e : Every solution starting inside $\|x_0 - x_e\| < \delta$ remains in $S(\epsilon)$ and converges to x_e as $t \to \infty$.

Global asymptotic stability (g.a.s.)

Stable in the sense of Lyapunov + global convergence to the equilibrium x_e : Every solution starting inside $\|x_0 - x_e\| < \delta$ remains in $S(\epsilon)$ and every solution converges to x_e as $t \to \infty$.

► G.A.S. is possible only if there is a single equilibrium.

Exponential stability

Exponential stability (e.s.)

a.s. + exponential convergence to the equilibrium x_e : $\|\phi(t; x_0, t_0) - x_e\| \le \|x_0 - x_e\| e^{-\lambda(t-t_0)}, \ \lambda > 0.$

Global exponential stability (g.e.s.)

g.a.s + exponential convergence

Instability

For some $\epsilon>0$, any $\delta>0$, there always exists a x_0 in $\|x_0-x_e\|<\delta$ such that $\phi(t;x_0,t_0)$ leaves $S(\epsilon)$.

For LTI

- ▶ All stability is uniform, i.e., δ is independent of t_0 .
- g.a.s. is equivalent to g.e.s.
- Either a single equilibrium or infinite many equilibria
- instability is equivalent to unbounded trajectories.

Without Loss of Generality (WLOG)

We always assume $x_{\rm e}=0$, i.e., the origin of x is an equilibrium. Why?

Positive definite functions

Consider a scalar function $V(x) \in \mathbb{R}$ where $x \in \mathbb{R}^n$.

- V(x) is positive definite (P.D.) in a region Ω where 0 ∈ Ω if i) V(x) > 0, ∀x ∈ Ω, x ≠ 0, ii) V(x) = 0 when x = 0.
- ▶ V(x) is positive semidefinite (PSD), if i) $V(x) \ge 0$, $\forall x \in \Omega$, ii) V(x) = 0 when x = 0.
- V(x) is negative definite (N.D.) if -V(x) is P.D.
- \triangleright V(x) is negative semidefinite (NSD) if -V(x) is PSD

A special case

The scalar function $V(x) = x^T P x$ is PD if and only if (iff) the matrix $P \in \mathbb{R}^{n \times n}$ is a PD matrix.

PD matrix

A square matrix P is PD iff 1) $P \in \mathbb{R}^{n \times n}$ is symmetric, 2) all the eigenvalues of P must be positive.

Quiz Verify: i) $V(x) = x^T P x > 0$, $\forall x \neq 0$. ii) $x^T P x = 0$ when x = 0.

- ▶ *P* is P.S.D. iff 1) $P \in \mathbb{R}^{n \times n}$ is symmetric 2) all the eigenvalues of *P* are non-negative.
- $V(x) = x^T P x$ is PSD if P is PSD.
- $V(x) = x^T P x$ is ND (NSD) if -P is PD (NSD).
- ▶ P can be sign-indefinite, as P can have both positive and negative eigenvalues.

Condition 2 in the PD matrix definition can be replaced with 2') its leading principal minors are positive.

The asymmetric case

Suppose that $V(x) = x^T Q x$, where Q is not a symmetric matrix.

Lyapunov stability theorem (second method)

Consider $\dot{x} = f(x)$, $x \in \mathbb{R}^n$. Suppose that there exists a P.D. scalar function V(x) such that

- 1. $\dot{V}(x) = \frac{\partial V}{\partial x} \cdot \dot{x} = \frac{\partial V}{\partial x} \cdot f(x)$ is N.S.D. Then the origin x = 0 is stable in the sense of Lyapunov.
- 2. $\dot{V}(x)$ is N.D. Then the origin x = 0 is a.s.
- 3. $\dot{V}(x)$ is N.D. and $V(x) \to \infty$ as $||x|| \to \infty$. Then the origin is g.a.s.
- 4. $\dot{V}(x)$ is N.S.D. and $\dot{V}(x)$ doesn't vanish identically. Then the origin is a.s.

Example 1 (nonlinear)

Example 2 (linear)

Comments on the theorem

- ► Applies **only to** time-invariant systems!
- ► Condition 1-4 are only sufficient:

Comments on the theorem

- Applies only to time-invariant systems!
- Condition 1-4 are only sufficient: If you can't find a V(x) to satisfy either condition, it doesn't mean the origin is unstable.

Comments on the theorem

- Applies only to time-invariant systems!
- Condition 1-4 are only sufficient: If you can't find a V(x) to satisfy either condition, it doesn't mean the origin is unstable. Finding V(x) such that any condition is satisfied for $x \in \Omega$
 - Finding V(x) such that any condition is satisfied for $x \in \Omega$ doesn't mean that the system is unstable outside of Ω .
- ightharpoonup V(x): Lyapunov function, not unique
- Condition 4 is referred to as "LaSalle Invariance Principle".

How to find Lyapunov functions

Good news: For linear systems $\dot{x} = Ax$, the Lyapunov method is both sufficient and necessary.

Consider a candidate Lyapunov function $V(x) = x^T P x$, where P is PD.

Compute $\dot{V}(x)$.

- ▶ If $\dot{V}(x)$ is ND
- ▶ If $\dot{V}(x)$ is NSD
- ▶ If $\dot{V}(x)$ is NSD and

Necessary and Sufficient Condition for CT LTI

Given $\dot{x}=Ax$, a necessary and sufficient condition for x=0 to be g.a.s. if that for any PD Q, there exists a PD P such that $A^TP+PA=-Q$. Then $V(x)=x^TPx$ is a Lyapunov function.

Instability theorem

Suppose that W(x) is PD in a region Ω around the origin.

Suppose that $\dot{W}(x) = \frac{\partial W(x)}{\partial x} \cdot f(x)$ is PD in the same region Ω .

Then x = 0 is unstable.

Extend to Discrete time systems: x(k+1) = f(x(k))

- ► Equilibrium
- Example

Lyapunov stability theorem in DT

Consider x(k+1) = f(x(k)). Assume that the origin is the equilibrium of interest. Suppose that there exists a scalar PD function V(x) such that

- 1. $\Delta V(x(k)) = V(x(k+1)) V(x(k)) = V(f(x(k))) V(x(k))$ is NSD, then x(k) = 0 is stable in the sense of Lyapunov.
- 2. $\Delta V(x(k))$ is ND, then x(k) = 0 is a.s.
- 3. $\Delta V(x(k))$ is ND and $V(x(k)) \to \infty$ as $||x(k)|| \to \infty$, x(k) = 0 is g.a.s.
- 4. $\Delta V(x(k))$ is NSD and $\Delta V(x(k))$ does not vanish identically for any solution satisfying x(k+1) = f(x(k)), x(k) = 0 is a.s.

For LTI systems in DT

Consider x(k+1) = Gx(k), $x(k) \in \mathbb{R}^n$. Define a candidate Lyapunov function $V(x(k)) = x(k)^T Px(k)$, where $P \in \mathbb{R}^{n \times n}$ is PD. Calculate $\Delta V(x(k))$.

- 1. If
- 2. If
- 3. If

Necessary and Sufficient Condition for DT LTI

Given x(k+1) = Gx(k), a necessary and sufficient condition for x(k) = 0 to be g.a.s. if that for any PD Q, there exists a PD P such that $G^TPG - P = -Q$. Then $V(x) = x^TPx$ is a Lyapunov function.

Final comments on stability

Eigenvalue approach

Lyapunov approach

Final comments on stability

▶ Discretization does not change stability of LTI systems.

▶ Relationship to stability of transfer function.