

Detecting the Health Status of Honeybees with Neural Networks

Table of Contents

Introduction

Background Informations about the Honey Bee

"We ought to do good to others as simply as a horse runs, or a bee makes honey, or a vine bears grapes season after season without thinking of the grapes it has borne."

-Marcus Aurelius

Facts about the honey bee!

Humidity between the 50% and 60% is optimal for breeding.

Optimal **temperature** for breeding is between the **30-35** °C.

Unpasteurized honey contains about 22 amino acids and a 31 minerals.

It takes roughly **556 worker bees** to visit **2 million flowers**to produce **0.5 kg of honey.**

One honey bee can pollinate up to 2000 flowers a day.

The queen can produce over 1,500 eggs per day at 30-second intervals.

The importance of bees!

Pollination

70% of the 124 most important crops worldwide depend on pollination by insects. In Europe, the figure is as high as 84%.

Value

In 2005, the estimated commercial value of western honey bees was just under \$200 billion worldwide.

The bees are under attack!

Pests

Varroa mites depleted bee populations severely.

Neocorticoids

Affect the developmental stability of honey bees.

Predators

New invasive predators like the Asian giant hornet

Colony collapse disorder

The majority of worker bees in a honey bee colony disappear

The Goals of this Project!

Results

The Data and my Models

The Data

O2
Five locations in the us

The Data

O2
Optimal Humidity

Balancing the data

Balancing the data for the Machine Learning Models

ML-Basemodel

The Model

Support Vector Machines (SVM)

- Predicted 84 % of the test images correctly
- The correct prediction for Hive being robbed and Ant Problems were low

Neural Network

The Model

Convolutional Neural Network

- 9 Layers
- 15 Epochs
- Predicted 98 % of the test images correctly
- Recall- and Precision-Scores much higher than in the Base Model

Neural Network

Checking the Model

- Predicted 98 % of the test images correctly
- Model predicted the bees and not the background of the image

You could enter a subtitle here if you need it

Goals accomplished?

- Cleaned and balanced the data.
- Made a decent Base Model.
- Created a CNN that exceeds the Base Model.
- Moved into the Google Cloud.
- Created a Google Vision Model.
- Installed a live tracking device of Temperature and Humidity.
- Created an app for detecting the health status of bee hives with GCP

Future work!

Live Tracking

Installed a live tracking device of Temperature and Humidity.

GCP

Using GCP to allow the detection of the health status via app.

App

Creating an App as graphic interface

Desktop

Track the Temperature!

Tablet

Track the Humidity!

Mobile

Classify your Beehive!

Thanks!

Do you have any questions?

eike.rogall@gmail.com

eike-rogall-444bb1154

7 rogall-e.github.io

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**Please keep this slide for attribution.