Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-225. Вариант 22

1. Пусть
$$z = \frac{1}{2} + \frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\frac{3}{2} - \frac{3\sqrt{3}i}{2}}$ имеет аргумент $-\frac{20\pi}{21}$.

2. Решить систему уравнений:

$$\begin{cases} x(2+11i) + y(-12-9i) = 41 + 106i \\ x(-9+10i) + y(7-12i) = -26 + 19i \end{cases}$$

- 3. Найти корни многочлена $-4x^6 + 36x^5 204x^4 + 1124x^3 4384x^2 + 8840x 5408$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 3 2i$, $x_2 = -1 + 5i$, $x_3 = 4$.
- 4. Даны 3 комплексных числа: -9-15i, 18-13i, 26i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -4$, $z_2 = -2\sqrt{3} 2i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+2-i| < 1\\ |arg(z+6-3i)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (5, -7, 7), b = (7, -8, 9), c = (0, -6, 3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-12, -3, 0) и плоскость P: -52x 24y + 14z + 1042 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(10, -10, -6), $M_1(-3, -29, -6)$, $M_2(23, -3, -6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -6x - 4y - z - 49 = 0 \\ 7x - y - 6z + 39 = 0 \end{cases}$$

$$L_2: \begin{cases} -13x - 3y + 5z - 1103 = 0 \\ -18x - 13y + 5z - 1668 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.