Fonction exponentielle.

Leonhard Euler (1707 ; 1783) mathématicien suisse, est le premier à chercher des méthodes pour approcher le nombre e.

I. Définition.

Définition: Il existe une unique fonction f dérivable sur \mathbb{R} telle que et Cette fonction s'appelle la fonction exponentielle et se note II. Propriétés algébriques de la fonction exponentielle. © Relation fonctionnelle. Propriété: Pour tout nombres réels x et y, $exp(x + y) = exp(x) \times exp(y)$. Démonstration : On considère la fonction h définie sur R par $h(x) = exp(x+y) \times exp(-x)$. Alors h est dérivable et h(0) = exp(y)..... Propriété : Pour tout nombres réels x et y, et pour tout entier relatif n : • $exp(x) \times exp(-x) = 1$ • $exp(x-y) = \frac{exp(x)}{exp(y)}$ \bullet exp $(nx) = [exp(x)]^n$ Remarque: $\forall x \in R$, $exp(x) \times exp(-x) = 1$, donc la fonction exp.....

Avec la calculatrice, on peut obtenir une valeur approchée de e. $e \approx$

On a donc, pour tout entier relatif $n : exp(n) = exp(1 \times n) = [exp(1)]^n = e^n$.

Par extension, on convient de noter pour tout nombre réel x, $\exp(x) = \dots$

Avec cette nouvelle notation, les propriétés précédentes s'écrivent :

Propriété : Pour tout nombres réels x et y, et pour tout entier relatif n :

$$e^{0} =$$

$$e^{x+y} =$$

© Le nombre e.

Définition : L'image de 1 par la fonction exponentielle est notée e. On a ainsi exp (.....) =

$$e^0 = \dots \qquad e^1 = \dots \qquad e^{x+y} = \dots \qquad e^{x-y} = \dots \qquad e^{x-y} = \dots$$

$$e^{nx} = \dots$$

☑ Savoir-faire : Savoir simplifier une écriture avec le nombre e :	
Simplifie les écritures suivantes :	
© Lien avec les suites géométriques.	
Propriété : pour tout nombre a , la suite (e^{na}) est une suite géométrique de raison e^a .	
☑ Savoir-faire : Savoir déterminer une suite géométrique comprenant une exponentielle :	
Dans chaque cas, déterminer la raison et le premier terme de la suite géom	étrique :
a) $u_n = e^{4n}$ b) $u_n = -2e^{-3n}$ c) $u_n = e^{2n-1}$	
TIT Étudo do la fonction componentialle	
III. Étude de la fonction exponentielle.	
Propriété : La fonction exponentielle est strictement	. sur \mathbb{R} , $\forall x \in R$, e^x
Propriété : La fonction exponentielle est strictement sur ℝ.	
	4 3 4 3 2 1 0 1 2 3 4 8 8 7
Propriété : Pour tout nombres réels a et b ,	
$ \bullet e^a = e^b \Leftrightarrow \dots $	
☑Savoir-faire : Savoir résoudre une équation ou une inéquation ave	c l'exponentielle :
Résoudre :	or oxportoritiono.
Noodare :	

IV. Étude de fonction avec la fonction exponentielle.

☑ Savoir-faire: Savoir dériver une fonction avec l'exponentielle: $g(x) = (x-1)e^x h(x) = \frac{e^x}{x}$ Dériver les fonctions suivantes : $f(x) = 4x + e^x$ ☑ Savoir-faire: Savoir étudier une fonction avec l'exponentielle: Soit f la fonction définie sur \mathbb{R} par : $f(x) = (x+1)e^{x}$. a) Calculer la dérivée de la fonction f. b) Dresser le tableau de variations de la fonction f. c) Déterminer une équation de la tangente à la courbe au point d'abscisse 0. V. Fonctions définies par $f(t) = e^{kt}$, $k \in R$. Propriété : La fonction f définie par $f(t) = e^{kt}$ est dérivable sur R et sa dérivée a pour expression Propriété: