DT09 Rec'd PCT/PTO 0.7 SEP 2004

SEQUENCE LIST

<110>	Neurogenex Co., Ltd.
<120>	ENHANCED INSERTED YELLOW FLUORESCENCE PROTEIN AND ITS APPLICATION
<130>	PN0023095.00
<150>	KR10-2002-0012409
<151>	2002-03-08
<150>	KR10-2002-0015217
<151>	2002-03-21
<150>	KR10-2002-0015219
<151>	2002-03-21
<160>	16
<170>	Kopatentin 1.71
<210>	1
<211>	738
<212>	PRT - ·
<213>	Artificial Sequence
<220>	
<223>	y-citrine of fluorescence protein
<400>	1
Ala Thr	Gly Gly Thr Gly Ala Gly Cys Ala Ala Gly Gly Gly Cys Gly
1	5 10 15

Ala Gly Gly Ala Gly Cys Thr Gly Thr Thr Cys Ala Cys Cys Gly Gly Gly Gly Thr Gly Gly Thr Gly Cys Cys Cys Ala Thr Cys Cys Thr Gly Gly Thr Cys Gly Ala Gly Cys Thr Gly Gly Ala Cys Gly Gly Cys Gly Ala Cys Gly Thr Ala Ala Ala Cys Gly Gly Cys Cys Ala Cys Ala Ala Gly Thr Thr Cys Ala Gly Cys Gly Thr Gly Thr Cys Cys Gly Gly Cys Gly Ala Gly Gly Gly Cys Gly Ala Gly Gly Gly Cys Gly Ala Thr Gly Cys Cys Ala Cys Cys Thr Ala Cys Gly Gly Cys Ala Ala Gly Cys Thr Gly Ala Cys Cys Cys Thr Gly Ala Ala Gly Thr Thr Cys Ala Thr Cys Thr Gly Cys Ala Cys Cys Ala Cys Cys Gly Gly Cys Ala Ala Gly Cys Thr Gly Cys Cys Cys Gly Thr Gly Cys Cys Cys Thr Gly Gly Cys Cys Cys Ala Cys Cys Cys Thr Cys Gly Thr Gly Ala Cys Thr Ala Cys Cys Thr Thr Cys Gly Gly Cys Thr Ala Cys Gly Gly Cys Cys Thr Gly Ala

Thr Gly Thr Gly Cys Thr Thr Cys Gly Cys Cys Gly Cys Thr Ala Cys Cys Cys Cys Gly Ala Cys Cys Ala Cys Ala Thr Gly Ala Ala Gly Cys Ala Gly Cys Ala Cys Gly Ala Cys Thr Thr Cys Thr Thr Cys Ala Ala Gly Thr Cys Cys Gly Cys Cys Ala Thr Gly Cys Cys Cys Gly Ala Ala Gly Gly Cys Thr Ala Cys Gly Thr Cys Cys Ala Gly Gly Ala Gly Cys Gly Cys Ala Cys Cys Ala Thr Cys Thr Thr Cys Thr Thr Cys Ala Ala Gly Gly Ala Cys Gly Ala Cys Gly Gly Cys Ala Ala Cys Thr Ala Cys Ala Ala Gly Ala Cys Cys Cys Gly Cys Gly Cys Gly Ala Gly Gly Thr Gly Ala Ala Gly Thr Thr Cys Gly Ala Gly Gly Cys Gly Ala Cys Ala Cys Cys Cys Thr Gly Gly Thr Gly Ala Ala Cys Cys Gly Cys Ala Thr Cys Gly Ala Gly Cys Thr Gly Ala Ala Gly Gly Gly Cys Ala Thr Cys Gly Ala Cys Thr Thr Cys Ala Ala Gly Gly Ala Gly Gly

Aļa	Cys	Gly	Gly	Cys 405	Ala	Ala	Cys	Ala	1hr 410	Cys	Cys	Inr	ыу	415	ыу
Gly	Cys	Ala	Cys 420	Ala	Ala	Gly	Cys	Thr 425	Gly	Gly	Ala	Gly	Thr 430	Ala	Cys
Ala	Ala	Cys 435	Thr	Ala	Cys	Gly	Gly 440	Thr	Gly	Gly	Ala	Thr 445	Cys	Cys	Gly
Gly	Thr 450	Gly	Cys	Thr	Ala	Gly 455	Cys	Ala	Ala	Cys	Ala 460	Gly	Cys	Cys	Ala
Cys 465	Ala	Ala	Cys	Gly	Thr 470	Cys	Thr	Ala	Thr	Ala 475		Cys	Ala	Thr	Gly 480
Gly	Cys	Cys	Gly	Ala 485		Ala	Ala	Gly	Cys 490		Gly	Ala	Ala	Gly 495	Ala
Ala	Cys	Gly	Gly 500		Ala	Thr	Cys	Ala 505		Gly	Gly	Thr	Gly 510		Ala
Cys	Thr	Thr 515		Ala	. Ala	Gly	A1a 520		Cys	Cys	Gly	Cys 525		Ala	Cys
Ala	Ala	Cys	Ala	Thr	Cys	Gly	Ala	Gly	Gly	Ala	. Cys	Gly	Gly	Cys	Ala

Gly Cys Gly Thr Gly Cys Ala Gly Cys Thr Cys Gly Cys Cys Gly Ala 545 550 555 560

535

530

- Cys Cys Ala Cys Thr Ala Cys Cys Ala Gly Cys Ala Gly Ala Ala Cys 565 570 575
- Ala Cys Cys Cys Cys Cys Ala Thr Cys Gly Gly Cys Gly Ala Cys Gly 580 585 590

540

Gly Cys Cys Cys Gly Thr Gly Cys Thr Gly Cys Thr Gly Cys Cys
595 600 605

Cys Gly Ala Cys Ala Ala Cys Cys Ala Cys Thr Ala Cys Cys Thr Gly 610 615 620

Ala Gly Cys Thr Ala Cys Cys Ala Gly Thr Cys Cys Gly Cys Cys 625 635 640

Thr Gly Ala Gly Cys Ala Ala Ala Gly Ala Cys Cys Cys Cys Ala Ala 645 650 655

Cys Gly Ala Gly Ala Ala Gly Cys Gly Cys Gly Ala Thr Cys Ala Cys 660 665 670

Ala Thr Gly Gly Thr Cys Cys Thr Gly Cys Thr Gly Gly Ala Gly Thr 675 680 685

Thr Cys Gly Thr Gly Ala Cys Cys Gly Cys Cys Gly Cys Cys Gly Gly 690 695 700

Gly Ala Thr Cys Ala Cys Thr Cys Thr Cys Gly Gly Cys Ala Thr Gly
705 710 715 720

Giy Ala Cys Gly Ala Gly Cys Thr Gly Thr Ala Cys Ala Ala Gly Thr
725 730 735

Ala Ala

<210> 2

<211> 738

<212> PRT

<213> Artificial Sequence

<220>

<223> Peridot of fluorescence protein

<400> 2

Ala Thr Gly Gly Thr Gly Ala Gly Cys Ala Ala Gly Gly Gly Cys Gly
1 5 10 15

Ala Gly Gly Ala Gly Cys Thr Gly Thr Thr Cys Ala Cys Cys Gly Gly
20 25 30

Gly Gly Thr Gly Gly Thr Gly Cys Cys Cys Ala Thr Cys Cys Thr Gly
35 40 45

Gly Thr Cys Gly Ala Gly Cys Thr Gly Gly Ala Cys Gly Gly Cys Gly
50 55 60

Ala Cys Gly Thr Ala Ala Ala Cys Gly Gly Cys Cys Ala Cys Ala Ala 65 70 75 80

Gly Thr Thr Cys Ala Gly Cys Gly Thr Gly Thr Cys Cys Gly Gly Cys 85 90 95

Gly Ala Gly Gly Cys Gly Ala Gly Gly Cys Gly Ala Thr Gly
100 105 110

Cys Cys Ala Cys Cys Thr Ala Cys Gly Gly Cys Ala Ala Gly Cys Thr 115 120 125

Gly Ala Cys Cys Cys Thr Gly Ala Ala Gly Thr Thr Cys Ala Thr Cys 130 135 140

Thr Gly Cys Ala Cys Cys Ala Cys Cys Gly Gly Cys Ala Ala Gly Cys 145 150 155 160

Thr Gly Cys Cys Cys Gly Thr Gly Cys Cys Cys Thr Gly Gly Cys Cys

Cys Ala Cys Cys Cys Thr Cys Gly Thr Gly Ala Cys Thr Ala Cys Cys Thr Thr Cys Gly Gly Cys Thr Ala Cys Gly Gly Cys Cys Thr Gly Ala Thr Gly Thr Gly Cys Thr Thr Cys Gly Cys Cys Gly Cys Thr Ala Cys Cys Cys Gly Ala Cys Cys Ala Cys Ala Thr Gly Ala Ala Gly Cys Ala Gly Cys Ala Cys Gly Ala Cys Thr Thr Cys Thr Thr Cys Ala Ala Gly Thr Cys Cys Gly Cys Cys Ala Thr Gly Cys Cys Cys Gly Ala Ala Gly Gly Cys Thr Ala Cys Gly Thr Cys Cys Ala Gly Gly Ala Gly Cys Gly Cys Ala Cys Cys Ala Thr Cys Thr Thr Cys Thr Thr Cys Ala Ala Gly Gly Ala Cys Gly Ala Cys Gly Gly Cys Ala Ala Cys Thr Ala Cys Ala Ala Gly Ala Cys Cys Cys Gly Cys Gly Cys Cys Gly Ala Gly

325 330 335

Gly Thr Gly Ala Ala Gly Thr Thr Cys Gly Ala Gly Gly Gly Cys Gly 340 345 350

Ala Cys Ala Cys Cys Cys Thr Gly Gly Thr Gly Ala Ala Cys Cys Gly

355 360 365

Cys Ala Thr Cys Gly Ala Gly Cys Thr Gly Ala Ala Gly Gly Cys 370 375 380

Ala Thr Cys Gly Ala Cys Thr Thr Cys Ala Ala Gly Gly Ala Gly Gly 385 390 395 400

Ala Cys Gly Gly Cys Ala Ala Cys Ala Thr Cys Cys Thr Gly Gly Gly
405 410 415

Gly Cys Ala Cys Ala Ala Gly Cys Thr Gly Gly Ala Gly Thr Ala Cys 420 425 430

Ala Ala Cys Thr Ala Cys Gly Gly Thr Gly Gly Ala Thr Cys Cys Gly
435 440 445

Gly Thr Gly Cys Thr Ala Gly Cys Ala Ala Cys Ala Gly Cys Cys Ala 450 455 460

Cys Ala Ala Cys Gly Thr Cys Thr Ala Thr Ala Thr Cys Ala Thr Gly 465 470 475 480

Gly Cys Cys Gly Ala Cys Ala Ala Gly Cys Ala Gly Ala Ala Gly Ala
485 490 495

Ala Cys Gly Gly Cys Ala Thr Cys Ala Ala Gly Gly Thr Gly Ala Ala 500 505 510

Cys Thr Thr Cys Ala Ala Gly Ala Thr Cys Cys Gly Cys Cys Ala Cys 515 520 525

Ala Ala Cys Ala Thr Cys Gly Ala Gly Gly Ala Cys Gly Gly Cys Ala 530 535 540

Gly Cys Gly Thr Gly Cys Ala Gly Cys Thr Cys Gly Cys Cys Gly Ala

545					550					555					560
Cys	Cys	Ala	Cys	Thr 565	Ala	Cys	Cys	Ala	Gly 570	Cys	Ala	Gly	Ala	Ala 575	Cys
Ala	Cys	Cys	Cys 580	Cys	Cys	Ala	Thr	Cys 585	Gly	Gly	Cys	Gly	Ala 590	Cys	Gly
Gly	Cys	Cys 595	Thr	Cys	Gly	Thr	Gly 600	Cys	Thr	Gly	Cys	Thr 605	Gly	Cys	Cys
Cys	Gly 610	Ala	Cys	Ala	Ala	Cys 615	Cys	Ala	Cys	Thr	Ala 620	Cys	Cys	Thr	Gly
Ala 625	Gly	Cys	Thr	Ala	Cys 630	Cys	Ala	Gly	Thr	Cys 635	Cys	Gly	Cys	Cys	Gys 640
Thr	Gly	Ala	Gly	Cys 645	Ala	Ala	Ala	Gly	Ala 650	Cys	Cys	Cys	Cys	Ala 655	Ala
Cys	Gly	Ala	Gly 660	Ala	Ala	Gly	Cys	Gly 665	Cys	Gly	Ala	Thr	Cys 670	Ala	Cys
Ala	Thr	Gly 675	Gly	Thr	Cys	Cys	Thr 680	Gly	Cys	Thr	Gly	Gly 685	Ala	Gly	Thr
Thr	Cys 690	Gly	Thr	Gly	Ala	Cys 695	Cys	Gly	Cys	Cys	Gly 700	Cys	Cys	Gly	Gly
Gly 705	Ala	Thr	Cys	Ala	Cys 710	Thr	Ala	Thr	Cys	Gly 715	Gly	Cys	Ala	Thr	Gly 720
Gly	Ala	Cys	Gly	Ala 725	Gly	Cys	Thr	Gly	Thr 730	Ala	Cys	Ala	Ala	Gly 735	Thr
Ala	Ala														

45

45

```
<210>
        3
<211>
        45
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        BamHi/5AB-F primer
<400>
ggggggatcc gaggctggtg aggacgttgt ctgctgctcg atgtc
<210>
        4
<211>
        45
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        Nhe1/5AB-R primer
<400>
gggggctagc acctgtccat gtgtaggaca tcgagcagca gacaa
<210>
        5
<211>
        30
<212>
        DNA
```

<213>

<220> <223> Artificial Sequence

BamHI/CaM F primer

<400> 5 gggggatcca tgcatgacca actgacagaa 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Nhel/CaM R primer <400> 6 ggggctagcc tttgctgtca tcatttgtac 30 <210> 7 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Hind3/EYFP(Y145MEL)-F primer <400> 7 ggggaagctt gggatggagc tcaacagcca caac 34 <210> 8 <211> 39 <212> DNA <213> Artificial Sequence

<220> <223> BamHI, Nhe1/Yins-R primer <400> 8 gttgctagca ccggatccac cgtagttgta ctccagctt 39 <210> 9 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> BamHI, Nhe1/Yins-F primer <400> 9 tacggtggat ccggtgctag caacagccac aacgtctat 39 <210> 10 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Not1/EYFP(Y145GGT)-R primer <400>

<210> 11

10

gggggggcc gcctaggtac caccgttgta ctc

33

```
<211>
         34
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         Hind3/EYFP(Y145MEL)-F primer
<400>
         11
ggggaagctt gggatggagc tcaacagcca caac
                                                                          34
<210>
         12
<211>
         33
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         Not1/EYFP(Y145GGT)-R primer
<400>
         12
gggggggcc gcctaggtac caccgttgta ctc
                                                                         33
<210>
         13
<211>
        1182
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        Bio-Cart for Calcium
<400>
         13
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac
                                                                         60
```

ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacta ccttcggcta cggcctgatg tgcttcgccc gctaccccga ccacatgaag 240 cagcacgact tottcaagto egecatgece gaaggetacg tecaggageg caccatette 300 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 głgaaccgca tcgagcłgaa gggcałcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaactacgg tggatccatg catgaccaac tgacagaaga gcagatcgca 480 gaatttaaag aggetttete eetatttgae aaggaegggg atgggaeaat aacaaceaag 540 gagetgggga eggtgatgeg gtetetgggg eagaacecea eagaageaga getgeaggae 600 atgatcaatg aagtagatgc cgacggtaat ggcacaatcg acttccctga gttcctgaca 660 atgatggcaa gaaaaatgaa agacacagac agtgaagaag aaattagaga agcgttccgt 720 gtgtttgata aggatggcaa tggctacatc agtgcagcag agcttcgcca cgtgatgaca 780 aaccttggag agaagttaac agatgaagag gttgatgaaa tgatcaggga agcagacatc 840 gatggggatg gtcaggtaaa ctacgaagag tttgtacaaa tgatgacagc aaaggctagc 900 aacagccaca acgtctatat catggccgac aagcagaaga acggcatcaa ggtgaacttc 960 aagatccgcc acaacatcga ggacggcagc gtgcagctcg ccgaccacta ccagcagaac 1020 acceccateg gegacggeet egtgetgetg ecegacaace actaectgag etaccagtee 1080 gecetgagea aagaceecaa egagaagege gateacatgg teetgetgga gttegtgace 1140

gccgccggga tcactatcgg catggacgag ctgtacaagt aa 1182 <210> 14 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> BamHI/DEVD F primer <400> 14 gggggatccg ccatcaagaa tgaaggaaag agaaaaggcg acgaggtg 48 <210> 15 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Nhel/DEVD R primer <400> 15 ggggctagcg gccacttcat ctgttccatc cacctcgtcg ccttttctc 49 <210> 16 <211> 795 <212> DNA <213> Artificial Sequence <220>

<223> DEVDins of Bio-sensor

<400> 1	6					
atggtgagca	agggcgagga	gctgttcacc	ggggtggtgc	ccatcctggt	cgagctggac	60
ggcgacgtaa	acggccacaa	gttcagcgtg	tccggcgagg	gcgagggcga	tgccacctac	120
ggcaagctga	ccctgaagtt	catctgcacc	accggcaagc	tgcccgtgcc	ctggcccacc	180
ctcgtgacta	ccttcggcta	cggcctgatg	tgcttcgccc	gctaccccga	ccacatgaag	240
cagcacgact	tcttcaagtc	cgccatgccc	gaaggctacg	tccaggagcg	caccatcttc	300
ttcaaggacg	acggcaacta	caagacccgc	gccgaggtga	agttcgaggg	cgacaccctg	360
gtgaaccgca	tcgagctgaa	gggcatcgac	ttcaaggagg	acggcaacat	cctggggcac	420
aagctggagt	acaactacgg	tggatccgcc	atcaagaatg	aaggaaagag	aaaaggcgac	480
gaggtggatg	gaacagatga	agtggccgct	agcaacagcc	acaacgtcta	tatcatggcc	540
gacaagcaga	agaacggcat	caaggtgaac	ttcaagatcc	gccacaacat	cgaggacggc	600
agcgtgcagc	tegeegaeca	ctaccagcag	aacaccccca	toggcgacgg	cctcgtgctg	660
otgecegaca	accactacct	gagctaccag	teegeeetga	gcaaagaccc	caacgagaag	720
ogogatcaca	tggtcctgct	ggagttcgtg	accgccgccg	ggatcactct	cggcatggac	780
agctgtaca	agtaa					795