

CS5340 Uncertainty Modeling in Al

Lecture 3:
Bayesian Networks
(Directed Graphical Models)

Asst. Prof. Lee Gim Hee
AY 2018/19
Semester 1

Course Schedule

Week	Date	Торіс	Remarks
1	15 Aug	Introduction to probabilities and probability distributions	
2	22 Aug	Fitting probability models	Hari Raya Haji*
3	29 Aug	Bayesian networks (Directed graphical models)	
4	05 Sep	Markov random Fields (Undirected graphical models)	
5	12 Sep	I will be traveling	No Lecture
6	19 Sep	Variable elimination and belief propagation	
-	26 Sep	Recess week	No lecture
7	03 Oct	Factor graph and the junction tree algorithm	
8	10 Oct	Parameter learning with complete data	
9	17 Oct	Mixture models and the EM algorithm	
10	24 Oct	Hidden Markov Models (HMM)	
11	31 Oct	Monte Carlo inference (Sampling)	
12	07 Nov	Variational inference	
13	14 Nov	Graph-cut and alpha expansion	

^{*} Make-up lecture: 25 Aug (Sat), 9.30am-12.30pm, LT 15

CS5340 :: G.H. Lee

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
 - "An introduction to probabilistic graphical models", Michael I. Jordan, 2002 http://people.eecs.berkeley.edu/~jordan/prelims/chapter-2.pdf (Section 2.1)
 - 2. "Pattern recognition and machine learning", Christopher Bishop (Chapter 8, Section 8.1 and 8.2).
 - "Machine learning a probabilistic approach", Kevin Murphy (Chapter 10)
 - 4. "Probabilistic graphical models", Koller and Friedman (Chapter 3)

Learning Outcomes

- Students should be able to:
 - 1. Explain the concepts of conditional independence.
 - 2. Use the Bayesian network to represent conditional independence in joint distributions.
 - Describe d-separation using the three canonical 3node graph.
 - Deduce all conditional independence in a Bayesian network using the Bayes ball algorithm.
 - 5. Explain the concepts of Markov Blanket.

- In the previous lecture, we have looked at fitting probability models (learning), and predictive density (inference).
- But we have looked at the case of only ONE random variable, i.e. $p(x|\theta)!$
- How about a joint probability with N random variables, i.e. $p(x_1, ... x_N | \theta)$?

- Why is it difficult to work with joint probabilities with fully correlated random variables?
- Let's illustrate this with N discrete random variables $x_1, ..., x_N$, where $x_i \in \{1, ..., K\}$.
- We need $O(K^N)$ parameters to represent the joint distribution $p(x_1, ..., x_N)$.
- Inference becomes intractable when *N* is large, and a huge amount of data is needed to learn all parameters.

Easy solution?

• Naïve Bayes assumption that all random variables are independent reduces the number of parameters to O(NK).

$$p(x_1, ..., x_N | \theta) = \prod_{i=1}^{N} p(x_i | \theta_i)$$

• Inference becomes tractable products of $p(x_i|\theta_i)$, and smaller amount of data is needed to learn all parameters.

Naïve Bayes assumption:

$$p(x_1, ..., x_N | \theta) = \prod_{i=1}^N p(x_i | \theta_i)$$

 Is it always correct to assume that all random variables are fully independent?

Examples:

Probability of the next letter in a word:

Is independent of the letters that are already known in the word?

Naïve Bayes assumption:

$$p(x_1, ..., x_N | \theta) = \prod_{i=1}^N p(x_i | \theta_i)$$

 Is it always correct to assume that all random variables are fully independent?

Examples:

: pixel is labeled as "water"

: is this pixel more likely to be "water" or "sky"?

Photo Source: G.H. Lee "Amsterdam"

Random variables are often NOT fully independent, how can we:

- Compactly represent the joint distribution $p(x_1, ..., x_N | \theta)$ of multiple correlated variables?
- Use the joint distribution to *infer* one set of variables given another in a reasonable amount of computation time?
- Learn the parameters of the joint distribution with a reasonable amount of data?

Use Graphical Models!!!

Conditional Independence

- We have seen that:
 - ➤ Naïve Bayes is insufficient to model real-world random variables which are unlikely to be fully independent.
 - > Fully correlated joint distributions can become intractable.
- A good compromise is by assuming an intermediate degree of dependency among the random variables.
- This is conditional independence.

Conditional Independence

• More formally, two random variables X_A and X_C are conditionally independent given X_B if:

$$p(x_A, x_C|x_B) = p(x_A|x_B)p(x_C|x_B)$$

Or alternatively:

$$p(x_A|x_B, x_C) = p(x_A|x_B), \quad \forall X_B : p(x_B) > 0$$

- That is, learning the values of X_C does not change prediction of X_A once we know the value of X_B .
- Written as $X_A \perp X_C \mid X_B$.

Conditional Independence

Example: Family Trees (Pedigree)

A node represents an individual's genotype.

Conditional Independence:

$$X_{Bart} \perp (X_{nonDesc} \backslash X_{Parent}) \mid X_{Parent}$$
Non-descendants

Any random variable is locally dependent on only its parent nodes, also known as the Markov Assumption.

- We use a directed acyclic graph (DAG) to represent conditional independence.
- A DAG is a pair $\mathcal{G}(\mathcal{V}, \mathcal{E})$, where \mathcal{V} is a set nodes and \mathcal{E} a set of oriented edges.

Example of a Directed Graphical Model (DGM), i.e.

Bayesian Network:

X₂

Observed variable

X₄

Variable

NUS National University of Singapore School of Computing

Image modified from: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 14

 X_3

 X_5

- *G* does not contain any cycles.
- Shaded node refers to observed variable.

Example of a Directed Graphical Model (DGM), i.e.

Bayesian Network:

Image modified from: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 15

- Ancestors are the parents, grand-parents, etc of a node.
- The ancestors of t is the set of node s that connect to t via a trail: $anc(t) \triangleq \{s: s \rightsquigarrow t\}$.

CS5340 :: G.H. Lee

16

- Descendants are the children, grand-children, etc of a node.
- The descendants of s is the set of nodes that can be reached via trials from $s: \operatorname{desc}(s) \triangleq \{t: s \rightsquigarrow t\}$.

CS5340 :: G.H. Lee

- There is an associated random variable X_i for each $i \in \mathcal{V}$.
- Each node $i \in \mathcal{V}$ has a set of parent nodes π_i , which can be the empty set.
- Let X_{π_i} represent all the random variables that are parents to the random variable X_i .

Example:

$$X_{\pi_1} = \emptyset$$
, $X_{\pi_2} = X_1$
 $X_{\pi_3} = X_1$, $X_{\pi_4} = X_2$
 $X_{\pi_5} = X_3$, $X_{\pi_6} = \{X_2, X_5\}$

 X_4 X_2 X_5 X_4 X_6 X_6 X_6 X_6 X_7 X_8 X_8 X_8

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Markov Assumption

- Markov assumption: Each random variable X_i is independent of its non-descendants $X_{\text{nonDesc}(X_i)}$ given its parents X_{π_i} .
- The following set of basic conditional independence statements can be associated to the DGM:

$$\{X_i \perp (X_{\text{nonDesc}(X_i)} \setminus X_{\pi_i}) \mid X_{\pi_i}\}$$

Example:

Markov Assumption

Example:

We have the following set of basic conditional independence from the given Bayesian network.

$$X_{1} \perp \emptyset \mid \emptyset$$
, $X_{4} \perp \{X_{1}, X_{3}, X_{5}, X_{6}\} \mid X_{2}$, $X_{2} \perp \{X_{3}, X_{5}, \} \mid X_{1}$, $X_{5} \perp \{X_{1}, X_{2}, X_{4}\} \mid X_{3}$, $X_{3} \perp \{X_{2}, X_{4}\} \mid X_{1}$, $X_{4} \perp \{X_{1}, X_{3}, X_{4}\} \mid \{X_{2}, X_{5}\}$

Image source: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

CS5340 :: G.H. Lee 20

Markov Assumption

 The basic conditional independence statements in the DGM give rise to a set of conditional probabilities:

$$\{X_i \perp (X_{\text{nonDesc}(x_i)} \setminus X_{\pi_i}) \mid X_{\pi_i}\}$$

$$p(x_i | x_{\pi_i}), \qquad i = 1, ..., N$$

• $p(x_i|x_{\pi_i})$ is defined locally according to the parentchild relationship specified by the DGM.

- Locality of the parent-child relationship is used to construct economical representations of the joint distribution.
- The parent-child represents conditional independence:

$$p(x_i|x_{\pi_i})$$

• Joint probability can be read off the graph as the product of all local conditional independence: X_4

Proof:

$$p(x_1, ..., x_N) = p(x_1) \prod_{i=2}^{N} p(x_i | x_{x_1, ..., x_{i-1}})$$
 (chain rule)

$$p(x_1, ..., x_N) = \prod_{i=1}^N p(x_i | x_{\pi_i})$$

(Assuming topological ordering of DGM)

Example:

$$p(x_1, \dots, x_N) = \prod_{i=1}^N p(x_i | x_{\pi_i})$$

$$p(x_1, ..., x_6) = p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2, x_5)$$

Example:

Let's verify that the basic sets of conditional independence are indeed represented in the joint probability:

$$p(x_1, ..., x_6) = p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_3)p(x_6|x_2, x_5)$$

$$X_1 \perp \emptyset \mid \emptyset,$$

 $X_2 \perp \{X_3, X_5, \} \mid X_1,$
 $X_3 \perp \{X_2, X_4\} \mid X_1,$
 $X_4 \perp \{X_1, X_3, X_5, X_6\} \mid X_2,$
 $X_5 \perp \{X_1, X_2, X_4\} \mid X_3,$
 $X_6 \perp \{X_1, X_3, X_4\} \mid \{X_2, X_5\}$

Example:

Let's verify that X_1 and X_3 are independent of X_4 given X_2 .

First we compute the marginal probability of $\{X_1, X_2, X_3, X_4\}$:

$$p(x_1, x_2, x_3, x_4) = \sum_{x_5} \sum_{x_6} p(x_1, x_2, x_3, x_4, x_5, x_6)$$

$$= \sum_{x_5} \sum_{x_6} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2) p(x_5 \mid x_3) p(x_6 \mid x_2, x_5)$$

$$= p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2) \sum_{x_5} p(x_5 \mid x_3) \sum_{x_6} p(x_6 \mid x_2, x_5)$$

$$= p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_1) p(x_4 \mid x_2),$$

Example:

Let's verify that X_1 and X_3 are independent of X_4 given X_2 .

Next we compute the marginal probability of $\{X_1, X_2, X_3\}$:

$$p(x_1, x_2, x_3) = \sum_{x_4} p(x_1) p(x_2 | x_1) p(x_3 | x_1) p(x_4 | x_2)$$
$$= p(x_1) p(x_2 | x_1) p(x_3 | x_1).$$

Dividing the two marginal yields the desired conditional:

$$p(x_4 | x_1, x_2, x_3) = p(x_4 | x_2),$$

Which demonstrates the conditional independence relationship $X_4 \perp \{X_1, X_3\} \mid X_2$.

Bayesian Networks: Parameter Reduction

- Let m_i denote the number of parents of node X_i , and each node takes on K values.
- The conditional probability associated with X_i can be represented with a table of size K^{m_i+1} .
- Results in huge reduction of parameters needed to represent the joint probability, i.e. from $O(K^N)$ to $O(K^{m+1})$, $m \ll N$.

Bayesian Networks: Parameter Reduction

Example:

Binary state random variable $x_i \in \{0,1\}$.

- Total parameters = 26.
- Total parameters needed for fully dependent joint probability = $2^6 = 64$.
- More significant difference with higher number of nodes.

It turns out $X_1 \perp X_6 \mid \{X_2, X_3\}$ is also a conditional independence, but not directly observed from the parent-child relation.

Proof:

$$p(x_{1}, x_{2}, x_{3}, x_{6}) = \sum_{x_{4}} \sum_{x_{5}} p(x_{1}) p(x_{2}|x_{1}) p(x_{3}|x_{1}) p(x_{4}|x_{2}) p(x_{5}|x_{3}) p(x_{6}|x_{2}, x_{5})$$

$$= p(x_{1}) p(x_{2}|x_{1}) p(x_{3}|x_{1}) \sum_{x_{4}} p(x_{4}|x_{2}) \sum_{x_{5}} p(x_{5}|x_{3}) p(x_{6}|x_{2}, x_{5})$$

$$= p(x_{1}) p(x_{2}|x_{1}) p(x_{3}|x_{1}) \sum_{x_{5}} p(x_{5}|x_{3}) p(x_{6}|x_{2}, x_{5})$$

$$= p(x_{1}) p(x_{2}|x_{1}) p(x_{3}|x_{1}) \sum_{x_{5}} p(x_{5}|x_{3}) p(x_{6}|x_{2}, x_{5})$$

$$= p(x_{1}) p(x_{2}|x_{1}) p(x_{2}|x_{1}) p(x_{3}|x_{1}) p(x_{4}|x_{2}) p(x_{5}|x_{3}) p(x_{6}|x_{2}, x_{5})$$

$$= \sum_{x_{1}} p(x_{1}) p(x_{2}|x_{1}) p(x_{3}|x_{1}) \sum_{x_{5}} p(x_{5}|x_{3}) p(x_{6}|x_{2}, x_{5})$$

$$= \sum_{x_{1}} p(x_{1}) p(x_{2}|x_{1}) p(x_{3}|x_{1}) \sum_{x_{5}} p(x_{5}|x_{3}) p(x_{6}|x_{2}, x_{5})$$

It turns out $X_1 \perp X_6 \mid \{X_2, X_3\}$ is also a conditional independence, but not directly observed from the parent-child relation.

Proof:

$$p(x_1, x_2, x_3, x_6) = p(x_1)p(x_2|x_1)p(x_3|x_1) \sum_{x_5} p(x_5|x_3)p(x_6|x_2, x_5)$$

$$p(x_2, x_3, x_6) = \sum_{x_1} p(x_1)p(x_2|x_1)p(x_3|x_1) \sum_{x_5} p(x_5|x_3)p(x_6|x_2, x_5)$$

$$p(x_1|x_2, x_3, x_6) = \frac{p(x_1, x_2, x_3, x_6)}{p(x_2, x_3, x_6)}$$

$$= \frac{p(x_1)p(x_2|x_1)p(x_3|x_1)\sum_{x_5}p(x_5|x_3)p(x_6|x_2, x_5)}{\sum_{x_1}p(x_1)p(x_2|x_1)p(x_3|x_1)\sum_{x_5}p(x_5|x_3)p(x_6|x_2, x_5)}$$

$$= \frac{p(x_1, x_2, x_3)}{\sum_{x_1}p(x_1, x_2, x_3)} = \frac{p(x_1, x_2, x_3)}{p(x_2, x_3)} = p(x_1|x_2, x_3)$$

It turns out $X_1 \perp X_6 \mid \{X_2, X_3\}$ is also a conditional independence, but not directly observed from the parent-child relation.

Proof:

$$p(x_1|x_2, x_3, x_6) = p(x_1|x_2, x_3)$$

Question: Can we write all other conditional independencies by just inspecting the DGM without going through the complicated mathematics?

It turns out $X_1 \perp X_6 \mid \{X_2, X_3\}$ is also a conditional independence, but not directly observed from the parent-child relation.

Proof:

$$p(x_1|x_2, x_3, x_6) = p(x_1|x_2, x_3)$$

The nodes $\{X_2, X_3\}$ "block" X_1 from X_6 .

Question: Can we write all other conditional independencies by just inspecting the DGM without going through the complicated mathematics?

Answer: Yes, observe that the nodes $\{X_2, X_3\}$ "block" all paths from X_1 to X_6 . This suggests the notion of graph separation for inferring conditional independence.

- We have to be careful in making the notion of "blocking".
- For example, X_2 is NOT independent of X_3 given X_1 and X_6 as would be suggested by a naïve interpretation of "blocking".
- Precise definition of "blocking" has to be done through the "three canonical 3-node graphs", and "d-separation".

The nodes $\{X_2, X_3\}$ "block" X_1 from X_6 .

 X_2 is **NOT independent** of X_3 given $\{X_1, X_6\}$.

Three Canonical 3-Node Graphs

1.

Joint distribution corresponding to this graph:

$$p(a, b, c) = p(a)p(c|a)p(b|c)$$

If none of the variables are observed, we can see that A and B are NOT independent by marginalizing over C:

$$p(a,b) = p(a) \sum_{c} p(c|a)p(b|c) = p(a)p(b|a)$$

which in general does not factorize into p(a)p(b), and so

$$A \perp B \mid \emptyset$$

Image Source: "Pattern Recognition and Machine Learning", Christopher Bishop

35

Three Canonical 3-Node Graphs

If we condition on node *C*, using Bayes' theorem together with the joint distribution, we get:

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$

$$= \frac{p(a)p(c|a)p(b|c)}{p(c)}$$

$$= p(a|c)p(b|c)$$
 (Bayes rule)

which shows the conditional independence property:

$$A \perp B \mid C$$

36

- The node C is said to be head-to-tail with respect to the path from node A to node B.
- Such a path connects nodes A and B and renders them dependent.
- The observation of *C* 'blocks' the path from *A* to *B* and so we obtain the conditional independence property.

Intuitive interpretation:

- The conditional independence $A \perp B \mid C$ translates into the statement: "the past is independent of the future given the present".
- This is an example of a simple classical Markov Chain.

2.

Joint distribution corresponding to this graph:

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

If none of the variables are observed, we can see that A and B are NOT independent by marginalizing both sides over C:

$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c)$$

which in general does not factorize into p(a)p(b), and so

$$A \perp B \mid \emptyset$$

If we condition on node C, we can easily write down the conditional distribution of A and B, given C, in the form:

$$p(a, b|c) = \frac{p(a, b, c)}{p(c)}$$
$$= p(a|c)p(b|c)$$

which shows the conditional independence property:

$$A \perp B \mid C$$

- The node C is said to be tail-to-tail with respect to the path from node A to B.
- Such a path connects nodes A and B and renders them dependent.
- The observation of C 'blocks' the path from A to B, and we obtain the conditional independence property.

Intuitive interpretation:

- Given the age of a person, there is no further relationship between the size of his feet and the amount of gray hair he has.
- We say that the variable C "explains" all of the observed dependence between A and B.

National University of Singapore School of Computing

3.

Joint distribution corresponding to this graph:

$$p(a, b, c) = p(a)p(b)p(c|a, b)$$

If none of the variables are observed, marginalizing both sides over c we obtain:

$$p(a,b) = p(a)p(b)$$

A and B are independent with no variables observed, in contrast to the two cases:

$$A \perp B \mid \emptyset$$

Image Source: "Pattern Recognition and Machine Learning", Christopher Bishop

If we condition on node *C*, the conditional distribution of *A* and *B* is given by:

$$p(a, b|c) = \frac{p(a, b, c)}{p(c)}$$
$$= \frac{p(a)p(b)p(c|a, b)}{p(c)}$$

which in general does not factorize into the product p(a)p(b), and so

 $A \not\perp B \mid C$

Image Source: "Pattern Recognition and Machine Learning", Christopher Bishop

- Node C is head-to-head with respect to the path from A to B, also known as the "v-structure".
- When node C is unobserved, it "blocks" the path, and the variables A and B are independent.
- However, conditioning on C "unblocks" the path and renders
 A and B dependent.

 The observation of any descendent node of C "unblocks" the path from A to B.

Intuitive interpretation:

- No relation between the battery and fuel status if fuel gauge is not read.
- This implies conditional independence of "battery" and "fuel" when "gauge" is not observed.

Image Source: "Pattern Recognition and Machine Learning", Christopher Bishop

Intuitive interpretation:

- Suppose the fuel gauge shows "empty", knowing that the battery is flat lowers our belief that the fuel tank is empty.
- Battery and fuel status are now no longer independent.
- This is know as the "explaining-away" effect.

National University of Singapore School of Computing

Intuitive interpretation:

- Alarm goes off when fuel gauge is empty.
- Suppose alarm goes off, we know that the fuel gauge shows "empty".
- Knowing that the is battery is flat lowers our belief that the fuel tank is empty, i.e. battery and fuel status are now no longer independent.

Numerical Example:

- B: battery state that is either charged (B = 1) or flat (B = 0).
- F: fuel tank state that is either full of fuel (F = 1) or empty (F = 0).
- G: electric fuel gauge state which indicates either full (G = 1) or empty (G = 0).

National University of Singapore School of Computing

Numerical Example:

Given:

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(B = 1) = 0.9$
 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

Before we observe any data, the prior probability of the fuel tank being empty is p(F = 0) = 0.1.

Image Source: "Pattern Recognition and Machine Learning", Christopher Bishop

Numerical Example:

Suppose that we observe the fuel gauge and it reads empty, i.e., G = 0, we have:

$$p(F=0|G=0) = \frac{p(G=0|F=0)p(F=0)}{p(G=0)} \simeq 0.257$$

where

$$p(G=0) = \sum_{\mathbf{b} \in \{0,1\}} \sum_{\mathbf{f} \in \{0,1\}} p(G=0|B,F)p(B)p(F) = 0.315$$

$$p(G=0|F=0) = \sum_{\mathbf{b} \in \{0,1\}} p(G=0|B,F=0)p(B) = 0.81$$

Image Source: "Pattern Recognition and Machine Learning", Christopher Bishop

Numerical Example:

Hence,

0.257 0.1
$$p(F = 0|G = 0) > p(F = 0)$$

Observing that the gauge reads empty makes it more likely that the tank is indeed empty, as we would intuitively expect.

NUS National University of Singapore Computing

Numerical Example:

- If we also check the state of the battery and find that it is flat, i.e., B = 0.
- We have now observed the states of both fuel gauge and battery.

NUS National University of Singapore School of Computing

Numerical Example:

 Posterior probability that fuel tank is empty given observations of both fuel gauge and battery state is:

$$p(F = 0|G = 0, B = 0) = \frac{p(G = 0|B = 0, F = 0)p(F = 0)}{\sum_{F \in \{0,1\}} p(G = 0|B = 0, F)p(F)} \simeq 0.111$$

NUS National University of Singapore of Computing

Numerical Example:

• Finding out that battery is flat *explains away* observation that the fuel gauge reads empty!

NUS National University of Singapore Computing

Graph Separation

- We have seen earlier that $A \perp B \mid C$ if all paths from nodes in set A are "blocked" from nodes in set B when all nodes from set C are observed.
- A is said to be d-separated from B by C, and the joint distribution over all of the variables in the graph will satisfy $A \perp B \mid C$.

Graph Separation

- From the three canonical 3-node graphs, any path is said to be "blocked" / d-separated if it includes a node such that either:
 - a) The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - b) The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set *C*.

- This is a "reachability" algorithm:
 - 1. Shade the nodes in set C.
 - 2. Place a ball at each of the nodes in set A.
 - Let the balls bounce around the graph according to the d-separation rules:

```
IF none of the balls reach B THEN A \perp B \mid C, ELSE A \not \perp B \mid C,
```

Can be implemented as a breadth-first search.

Example 1:

• A ball cannot pass through X_2 to X_6 nor through X_3 i.e. $X_1 \perp X_6 \mid \{X_2, X_3\}$.

Image modified from: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Example 2:

• A ball can pass through X_2 to X_6 through X_5 and X_3 i.e. $X_2 \not L X_3 \mid \{X_1, X_6\}$.

Image modified from: "An introduction to probabilistic graphical models", Michael I. Jordan, 2002.

Example 3: Naïve Bayes

Plate notation that represents N nodes of which only a single example X_n is shown explicitly

Joint distribution:

$$p(x_1, \dots x_N, \theta) = p(x_1, \dots x_N | \theta)$$

Example 3: Naïve Bayes

Joint distribution:

$$p(x_1, \dots x_N, \theta) = p(x_1, \dots x_N | \theta)$$
$$= p(x_1 | \theta) \dots p(x_N | \theta)$$
$$= \prod_{n=1}^{N} p(x_n | \theta)$$

Markov Blanket

- The Markov blanket of a node X_i comprises the set of parents, children and co-parents of the node.
- Conditional distribution of X_i , conditioned on all the remaining variables in the graph, is dependent only on the variables in the Markov blanket.

Image Source: "Pattern Recognition and Machine Learning", Christopher Bishop

CS5340 :: G.H. Lee

Markov Blanket

Proof:

$$p(x_{i}|x_{\{j\neq i\}}) = \frac{p(x_{1},...,x_{D})}{\int p(x_{1},...,x_{D})dx_{i}} = \frac{\prod_{k} p(x_{k}|x_{\pi_{k}})}{\int \prod_{k} p(x_{k}|x_{\pi_{k}})dx_{i}}$$

$$= \frac{\prod_{l\neq\{m,i\}} p(x_{l}|x_{\pi_{l}}) \prod_{m} p(x_{m}|x_{\pi_{m}}:x_{i}\in x_{\pi_{m}}) p(x_{i}|x_{\pi_{i}})}{\prod_{l\neq\{m,i\}} p(x_{l}|x_{\pi_{l}}) \int \prod_{m} p(x_{m}|x_{\pi_{m}}:x_{i}\in x_{\pi_{m}}) p(x_{i}|x_{\pi_{i}})dx_{i}}$$

$$= \frac{\prod_{m} p(x_{m}|x_{\pi_{m}}:x_{i}\in x_{\pi_{m}}) p(x_{i}|x_{\pi_{i}})}{\int \prod_{m} p(x_{m}|x_{\pi_{m}}:x_{i}\in x_{\pi_{m}}) p(x_{i}|x_{\pi_{i}})dx_{i}}$$

Image Source: "Pattern Recognition and Machine Learning", Christopher Bishop

CS5340 :: G.H. Lee

Markov Blanket

Proof:

$$p(x_i|x_{\{j\neq i\}}) = \frac{\prod_m p(x_m|x_{\pi_m}: x_i \in x_{\pi_m}) p(x_i|x_{\pi_i})}{\int \prod_m p(x_m|x_{\pi_m}: x_i \in x_{\pi_m}) p(x_i|x_{\pi_i}) dx_i}$$

$$\text{children and} \quad \text{parents of } X_i$$

$$\text{co-parents of } X_i$$

CS5340 :: G.H. Lee

NUS | School of