Verificación en simuladores

Medidor de Salinidad y Conductividad

Proyecto de Simulación en Wokwi y Tinkercad (2025)

Objetivo

Comprobar el correcto funcionamiento del sistema de medición de **salinidad y conductividad** mediante simulación en plataformas digitales (Wokwi y Tinkercad), evaluando:

- Lectura del sensor analógico (potenciómetro utilizado para simular el sensor real de conductividad).
- Visualización de datos en la pantalla LCD 16x2 I2C o pantalla OLED SSD1306 (según configuración).
- Funcionamiento del botón con lógica de antirrebote implementada por software.
- Cambio de estados entre medición activa y pausa, con mensajes claros en pantalla.
- Envío de datos al monitor serie para monitoreo externo.
- Cálculo y visualización de la salinidad estimada (g/L), configurable por fórmula seleccionable en el código (lineal, cuadrática o cúbica).

Componentes simulados

Componente	Descripción
Arduino UNO	Microcontrolador principal
Potenciómetro	Simula el sensor analógico de conductividad
Pantalla LCD 16x2	Visualización digital, según configuración
I2C / OLED	
SSD1306	
Pulsador	Conectado a pin D2 con resistencia pull-up interna (INPUT_PULLUP)

Conexiones en la simulación

Componente	Conexiones Arduino UNO / Nano
Potenciómetro	$VCC \rightarrow 5 \text{ V, GND} \rightarrow GND, Salida central} \rightarrow A0$

Componente	Conexiones Arduino UNO / Nano
Pantalla LCD 16x2 I2C / OLED SSD1306	GND \rightarrow GND, VCC \rightarrow 5 V, SDA \rightarrow A4, SCL \rightarrow A5
Pulsador	Un pin \rightarrow D2, Otro pin \rightarrow GND (sin resistencia externa, se usa INPUT_PULLUP)

Resultados observados en simulación

En ambos simuladores (Wokwi y Tinkercad), el sistema muestra correctamente en pantalla y monitor serie:

- Valor ADC leído (0-1023)
- Voltaje estimado (0-5 V)
- Conductividad aproximada en mS/cm, calculada con un parámetro calibrable (maxConductividad, por defecto 50 mS/cm)
- Salinidad estimada en g/L, calculada automáticamente según la fórmula seleccionada en el código (lineal, cuadrática o cúbica)

Visualización en pantalla LCD (ejemplo):

V:0.7 C:7.0 S:3.5g/L ADC:143

Monitor serie (ejemplo):

ADC: 143 Voltaje: 0.70 V Conductividad: 7.00 mS/cm Salinidad: 3.46 g/L

El botón permite alternar entre dos estados:

- Medición activa: actualiza y muestra datos en tiempo real.
- Modo pausa: detiene la actualización de datos y muestra el mensaje:

== PAUSADO ==
Presiona boton

El comportamiento del botón es confiable gracias a un algoritmo de **antir**rebote por software, evitando lecturas erráticas o múltiples activaciones por una sola pulsación.

La simulación refleja fielmente la lógica del código fuente, validando la operación del medidor avanzado con pantalla LCD y potenciómetro, e **incluyendo ahora el cálculo y visualización de la salinidad**.

Notas adicionales

- El potenciómetro simula el sensor analógico para pruebas y desarrollo; para aplicaciones reales se debe usar un sensor de conductividad certificado.
- El sistema implementa diferentes fórmulas para el cálculo de salinidad (lineal, cuadrática o cúbica), seleccionables y ajustables desde el código, para facilitar la adaptación y calibración a distintos estándares.
- El código base mantiene una **estructura modular** para fácil adaptación a distintos sensores o pantallas.
- El parámetro **maxConductividad** facilita la calibración del rango máximo esperado durante la medición.
- El sistema y su simulación están validados para uso educativo, prototipado y prácticas de laboratorio.