Biomimicry of Bacterial Foraging for Distributed Optimization and Control

Kevin M. Passino¹ Presented by: Alexander Van de Kleut²

> ¹The Ohio State University Electrical and Computer Engineering

²University of Waterloo Centre for Theoretical Neuroscience

IEEE Control Systems Magazine, 2002

Table of Contents

About the Author

2 Foraging

3 Biological and Computational Model

About the Author

About the Author

Fuzzy control KM Passino, S Yurkovich, M Reinfrank Addison-wesley 42, 15-21, 1998	3599
Biomimicry of bacterial foraging for distributed optimization and control KM Passino IEEE control systems magazine 22 (3), 52-67, 2002	3023
Stability analysis of swarms V Gazi, KM Passino IEEE transactions on automatic control 48 (4), 692-697, 2003	1125
Stable adaptive control using fuzzy systems and neural networks JT Spooner, KM Passino IEEE Transactions on Fuzzy Systems 4 (3), 339-359, 1996	728
Stability analysis of social foraging swarms V Gazi, KM Passino IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34, 2004	710

Foraging

Foraging

- searching for nutrients
- avoiding noxious stimuli (toxins, predators, etc)

Social Foraging

- increases likelihood of finding nutrients
- better detection and protection from noxious stimuli
- gains can offset cost of food competition

How can we view foraging as an Optimization Process?

• We have some parameters θ and a loss function $J(\theta)$ that we want to minimize

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet θ can represent the position of an organism in its environment

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet θ can represent the position of an organism in its environment
- J can represent the concentration of nutrients and noxious stimuli
 - \triangleright smaller values of J = more nutrients, less noxious stimuli
 - \blacktriangleright higher values of J= more noxious stimuli, less nutrients

How can we view foraging as an Optimization Process?

- We have some parameters θ and a loss function $J(\theta)$ that we want to minimize
- \bullet d can represent the position of an organism in its environment
- ullet J can represent the concentration of nutrients and noxious stimuli
 - \triangleright smaller values of J= more nutrients, less noxious stimuli
 - \blacktriangleright higher values of J= more noxious stimuli, less nutrients
- In general, J and θ can be arbitrary
 - \bullet $\theta \in \mathbb{R}^p$
 - $J: \mathbb{R}^p \to \mathbb{R}$

ullet Model organism

- Model organism
 - ► Highly studied

- Model organism
 - ► Highly studied
 - \blacktriangleright Well-characterized foraging behaviour

- Model organism
 - ► Highly studied
 - ▶ Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour

- Model organism
 - ► Highly studied
 - ▶ Well-characterized foraging behaviour
 - ▶ Probably won't feel bad about simplifying its behaviour
- Social organism

- Model organism
 - ► Highly studied
 - Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour
- Social organism
 - Secretes signals to attract others nearby

- Model organism
 - ► Highly studied
 - Well-characterized foraging behaviour
 - Probably won't feel bad about simplifying its behaviour
- Social organism
 - Secretes signals to attract others nearby
 - ► Encourages "swarming" or "clumping"

E. coli Behaviour

- Swims using left-handed helical flagella ("propellers")
 - ► Tumble: flagella all rotate clockwise → pull on cell in all directions → random movement
 - Run: flagella all rotate counterclockwise → flagella form a bundle
 → push on cell in one direction → directed movement

E. coli Behaviour

- If during a tumble *E. coli* swims down a nutrient concentration gradient:
 - ▶ Prolongs time spent on a run
 - ▶ Continues moving in the same direction
- Otherwise:
 - ► Tends to switch to a tumble (search for more)
 - Moves randomly which searching for more nutrient gradients to exploit
- Call a tumble followed by a run a "chemotaxis step"

Algorithm for a Single Bacterium

- 1: **for** $j \leftarrow 1 \dots N_c$ **do**: 2: $\phi \sim \mathcal{U}$ 3: $\theta \leftarrow \theta + c\phi$ 4: **while** $J(\theta + c\phi) < J(\theta)$ **do**: 5: $\theta \leftarrow \theta + c\phi$
 - θ : p-dimensional vector (randomly initialized)
 - N_c : number of chemotaxis steps
 - $\phi \sim \mathcal{U}$: a random unit vector
 - c: a step-size

Loss Function to Optimize

• Relatively consistent performance for a convex function.

• Relatively inconsistent performance for a highly nonconvex function.

Algorithm for a Colony

```
1: for j \leftarrow 1 \dots N_c do:

2: for i \leftarrow 1 \dots S do:

3: \phi \sim \mathcal{U}

4: \theta_i \leftarrow \theta_i + c_i \phi

5: while J(\theta_i + c_i \phi) + J_{cc}(\theta_i + c_i \phi) < J(\theta_i) + J_{cc}(\theta_i) do:

6: \theta_i \leftarrow \theta_i + c_i \phi
```

- θ_i : ith p-dimensional vector (randomly initialized)
- S: number of bacteria in the colony
- c_i : a step-size for bacterium i

J_{cc} and swarming behaviour

- E. coli do social foraging
- Secrete a substance to indicate to attract nearby *E. coli* and encourage swarming
- Strength of signal diffuses over space
- Use gaussian distribution to model this

$$J_{cc}(\theta) = \sum_{i=1}^{S} -d_{\text{attract}} \exp\left(-w_{\text{attract}}(\theta - \theta_i)^T (\theta - \theta_i)\right) + h_{\text{repellant}} \exp\left(-w_{\text{repellant}}(\theta - \theta_i)^T (\theta - \theta_i)\right)$$

J_{cc} and swarming behaviour

- Still relatively consistent performance for a convex function.
- Achieves similar performance to single bacterium.

- Still relatively inconsistent performance for a highly nonconvex function.
- But wait... What if the problem is just the hyperparameters?

- By trying out different combinations of hyperparameters we can improve overall performance.
- Here we increased the depth and width of attraction as well as the depth and width of repellance to increase "global" behaviour.

Algorithm for a Reproducing Colony

```
1: for k \leftarrow 1 \dots N_{re} do:

2: for j \leftarrow 1 \dots N_c do:

3: for i \leftarrow 1 \dots S do:

4: \phi \sim \mathcal{U}

5: \theta_i \leftarrow \theta_i + c_i \phi

6: while J(\theta_i + c_i \phi) + J_{cc}(\theta_i + c_i \phi) < J(\theta_i) + J_{cc}(\theta_i) do:

7: \theta_i \leftarrow \theta_i + c_i \phi

8: delete worst S/2 and reproduce best S/2
```

• N_{re} : number of reproduction steps

Algorithm for a Reproducing Colony