OCR 기술 기반 사출성형기 데이터 인터페이스 기술 개발

2019112522 박상우 2019112514 박승헌

2024-1학기 산업시스템공학과 캡스톤 디자인 대회

Introduction + Background

- 제조업에서 디지털 전환 기술을 활용해 기계들에서 데이터를 자동적으로 수집, 저장, 분석, 예측하는 기능이 중요시되고 있음
- ❖ 오래된 사출성형기에는 이러한 기술들이 잘 구현되어 있지 않기 때문에 사용에 불편함이 있고 이러한 불편함을 개선하고자 함
 - 사출성형기의 계기판을 고정되어 있는 카메라로 동영상으로 찍은 후 광학 문자 인식 기술(OCR)을 사용하여 계기판의 문자들과 숫자들을 인식하고 추출하는 기술을 구현하고자 하였음
 - 이 기술에 사용한 OCR 모델은 계기판의 문자를 정확하게 인식하기 위해 딥러닝 학습 방법으로 추가적으로 학습하였음

Proposed Method

그림 1, 2. 사출성형기 계기판의 동영상 원본 사진, 동영상에서 추출된 프레임 원본

- 그림 1은 사출성형기의 계기판을 찍은 동영상 소스 원본
- 그림 2는 동영상 원본에서 프레임 추출된 이미지 중 하나. 프레임은 1분 짜리 동영상에서 30fp로 추출하였음 -> 총 300개의 프레임 생성
- OCR 기술의 성능은 원하는 영역의 문자를 실시간으로 얼마나 빨리 가져오면서 정확하게 가져오는지에 따라 달라짐.

💠 모델구조

• OCR 딥러닝 모델 중 하나인 STR 구조를 가져와 변환, 특성추출, 시퀀스, 예측 4개의 프로세스를 기본적인 프레임워크로 사용

그림 3. OCR 딥러닝 모델 구조 워크플로우

이 기술은 계기판에서 추출한 39개의 문자 데이터를 추출하며 문자가 얼마나 정확하고 빨리 나오는지가 기술의 성능을 결정함

OCR technology with Deep Learning Methods

그림 3. 다양한 딥러닝 OCR 모델의 시간-정확성, 파라미터 수-정확성 사이의 절충 관계

- 위 그림은 다양한 OCR 모델을 구현한 모델들의 성능을 비교하여 보여준 그래프들
- EasyOCR을 위한 인식을 수행하는데 4단계에 각각 TPS-VGG-None-Attn 모델을 사용하여 인식을 진행하였습니다.
- 이번 OCR 기술에서 실시간성과 정확성이 모두 중요하지만 두 요소 사이에는 강한 trade-off가 존재
- 다양한 OCR 모델들 중 실시간성과 정확성이 모두 준수한 편인 CRNN 모델을 OCR 모델의 기본 프레임워크로 사용

Text Recognition Data Generator (TRDG)

그림 3. TRDG로 생성한 다양한 형태의 문자 데이터

- 계기판에 있는 문자의 여러 가지 상태를 대비해 정확한 인식을 위해 여러 가지 상태의 한글 데이터와 숫자 데이터를 TRDG를 통해 학습하고 이미지 데이터로 생성함 (계기판에 나타난 한글 문자 + 다양한 한글 문자로 총 2350개를 학습시켰고 숫자도 추가로 학습시킴)
- 기본적인 상태인 basic, 배경을 블러 처리한 문자인 blur, 문자를 왜곡시킨 형태인 skew, 문자의 배경색을 바꾼 background로 다양한 상태의 문자들을 대량으로 학습
- 위 이미지 파일들을 학습데이터로 저장시킨 후 OCR을 수행할 easyOCR 모델에 학습시켜 인식 증가하는 용도로 사용

Experimental Results

그림 4. 지정한 영역에 따른 문자 추출의 결과들

위의 이미지들에서 인식된 문자들을 추출한 것이 기술의 결과

동작시간 생산수량 윤할1 윤할2

그림 5, 6. 추출한 문자들을 엑셀로 출력한 결과의 일부, 원본 데이터를 엑셀 파일에 정리한 사진

- 위의 이미지에서 나온 것과 같은 데이터들을 추출한 뒤 정확성 비교를 위해 csv 파일에 저장했고 이를 원본 데이터와 비교하였음
- 추출된 데이터의 정확성은 원본과 비교하여 98%로 준수한 정확성을 보였음

All differences and summary saved to all_differences.csv Total cells: 6622 Number of differences: 78 Accuracy: 98.82% PS C:\Users\Hongjin>

Elapsed time: 706.40 seconds

그림 7,8. 추출한 문자들의 정확성과 추출하는데 걸린 시간 사진

- 동영상에서 전체 데이터를 출력되는데 걸린 시간은 706.4초
- 하나의 이미지에서 모든 데이터가 출력되는데 대략 2초가 걸렸음

Conclusion and Future Works

- ❖ 한글과 숫자를 학습시키지 않고 실행한 OCR 모델과 비교해 학습한 모델은 20% 정도의 더 높은 정확성을 보였음
- 해당 모델은 정확성과 실시간성이 모두 중요하지만 실시간성은 떨어지는 편임. 모델의 실시간성을 높이면서 정확성을 유지하기 위해서는 더욱 더 심화적인 연구가 필요함
- 이후 개발할 모델은 문자들의 영역을 자동으로 인식하는 비전 학습을 이용하여 개발해 나갈 예정임

References

[1] Yang, Heerin. "STR - What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis." Hryang Blog, 31 Mar. 2020, hryang06.github.io/str/STR. [2] Park, Sun Woo. "Parksunwoo/OCR_KOR: 딥러닝을 활용한 한글문장 OCR 연구." GitHub, github.com/parksunwoo/ocr_kor. Accessed 1 Oct. 2023.