CSE 313

HITESH 1023119820027 5 NI 1

Fundamentals of Machine Learning

ASSIGNMENT -2

Jenre	Recommend	Not Recommend
Romance	2/6	1/1
Thiller	V6	1/2
classic	3/6	0

Price Cass	Ricommend	Not Recommend
Low	1/2	0
Medium	2/6	0
High	1/6	2/2

$$P(\text{Recommend}) = \frac{6}{8} = \frac{3}{4}$$

 $P(\text{Not Recommend}) = \frac{2}{8} = \frac{1}{4}$

$$=\frac{3}{4}\times\frac{1}{6}\times\frac{2}{6}=\frac{1}{24}$$

3) The concept of Linear Separability applies to binary classification. Linear separability is a property of two sets of foints.

The linear separability of the network is based on the decision-boundary line. If there exist weight for which the training input vectors having a positive (correct) response or lie on one side of the decision boundary and all the other vectors having negative, -1, response lies on the other side of the decision boundary then we can conclude the problem as "Linearly Separable".

Class A (X) and class B () are linearly separated from each other.

$$P\left(\text{class}=+\right)=\frac{2}{7}$$

$$P\left(\text{closs}=-\right)=\frac{5}{7}$$

Instances	Class	+	-
4	T	1/2	<u>3</u> 5
	F	1 2	2/5

Fee	class sture 2	+	_
	T	$\frac{2}{2} = 1$	0
	F	0	5 = 1

New instance = { Feature 1 = T, Feature 2 = T}

Now,

P (Clarket | New instance)

$$\Rightarrow \frac{2}{7} \times \frac{1}{2} \times 1$$

$$\frac{1}{7} = 0.1429$$

P(class = - | New instance)

$$P(-) P(feature 2 = T | -) P(feature 1 = T | -)$$

$$P(-) P(feature 2 = T | -) P(feature 1 = T | -)$$

$$P(-) P(feature 2 = T | -) P(feature 1 = T | -)$$

$$P(-) P(feature 2 = T | -) P(feature 1 = T | -)$$

$$P(-) P(feature 2 = T | -) P(feature 1 = T | -)$$

$$P(-) P(-) P(feature 2 = T | -) P(feature 1 = T | -)$$

$$P(-) P(-) P(-) P(-) P(-) P(-) P(-)$$

$$P(-) P(-) P(-) P(-) P(-) P(-)$$

$$P(-) P(-) P(-) P(-) P(-) P(-)$$

$$P(-) P(-)$$

Since, P (class = + | New instance) > P (class = - | New instance)

Therefore, the class for instance 8 with feature 1 = T and feature 2 = T is $\frac{1}{2} = T$

5	\times	7	Xy	ײ
	0	1	0	0
	1	2	2	1
	2	2	4	4
	3	3	9	9
	4	3	12	16
	5	4	20	25
	15	15	47	55

By the method of last square regression
$$b_{1} = \frac{n \sum xy - \sum x \sum y}{n \sum x^{2} - (\sum x)^{2}}$$

$$= \frac{6 \times 47 - 15 \times 15}{6 \times 55 - 15^{2}}$$

$$= 0.5429$$

$$b_{0} = \frac{1}{2} \left(\sum y - b_{1} \sum x \right)$$

$$= \frac{1}{6} \left(15 - 0.5429 \times 15 \right)$$

$$= \frac{1}{6} \left(15 - 0.5429 \times 15 \right)$$

1.14285

The regression line $y = 0.543 \times + 1.1428$ When x = 15, $y = 0.543 \times 15 - 1.1428$ y = 9.2857

Linear Regression on køgle insurance dataset

```
In [16]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    warnings.filterwarnings('ignore')

plt.ncPanams['figure.figsize'] = [8,5]
    plt.ncPanams['font.size'] = 14
    plt.ncPanams['font.weight']= 'bold'
    plt.style.use('seaborn-whitegrid')
```

df.head()

Number of rows and columns in the data set: (1338, 7)

Ovt[17]:

	age	sex	bmi	children	smoker	region	charges
0	19	temale	27.900	C	yes	southwest	16884 92400
1	18	male	33,770	1	no	southeast	1725 55230
2	28	male	33 000	3	no	southeast	4449 46200
3	33	male	22 705	0	no	northwest	21984 47061
4	32	male	28 680	0	no	northwest	3866.85520

In [18]: df.describe()

Out[18]:

	326	bmi	children	charges
count	1338.000000	1338 000000	1338 000000	1338.000000
mean	39.207025	30 663397	1 094918	13270 422265
std	14 049960	6 098187	1.205493	12110 011237
min	18 000000	15.960000	0.000000	1121.873900
25%	27.000000	26 296250	0.000000	4740.287150
50%	39 000000	30 400000	1 000000	9382 033000
75%	51,000000	34 693750	2,000000	15639.912515
max	64 000000	53 130000	5 000000	63770.428010

In [19]: df.groupby('children').agg(['mean','min','max'])['charges']

max

Out[19]:

	lineari	,	
children			
0	12365.975602	1121 8739	63770 42801
1	12731 171832	1711.0268	58571.07448
2	15073.563734	2304 0022	49577 66240
3	15355.318367	3443.0540	60021.39897
4	13850.656311	4504.6824	40182.24600
	8786 005247		

```
ls [20]: categorical_columns = ['sex', 'children', 'smoken', 'region']
    df_encode = pd.get_dummies(data = df, prefix = 'OHE', prefix_seps'_',
                                     columns = categorical_columns,
drop_first =True,
                                    dtypes'ints')
In [21]: print('Columns in original data frame:\n',df.columns.values)
print('inNumber of rows and columns in the dataset',df.shape)
print('\nColumns in data frame after encoding dummy variable:\n',df_encode.columns.values)
print('\nNumber of rows and columns in the dataset',df_encode.shape)
              Columns in original data frame:
['age' 'sex' 'bmi' 'children' 'smoker' 'region' 'charges']
               Number of rows and columns in the dataset: (1338, 7)
              Columns in data frame after encoding dummy variable: ['age' 'bmi' 'changes' 'OHE_male' 'OHE_1' 'OHE_2' 'OHE_3' 'OHE_4' 'OHE_5' 'OHE_yes' 'OHE_northwest' 'OHE_southeast' 'OHE_southwest']
               Number of rows and columns in the dataset: (1338, 13)
10 [22]: from scipy.stats import boxcox
    y_bc,lam, cl= boxcox(df_encode['changes'],alpha=0.05)
               ci,lam
 Out[22]: ((-0.01140290617294196, 0.0988096859767545), 0.043649053770664956)
 In [13]: df_encode['charges'] = np.log(df_encode['charges'])
 In [24]: from sklearn.model_selection import train_test_split
X = df_encode.drop('charges',axis=1) # Independet variable
y = df_encode['charges'] # dependent variable
               X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=23)
 In [25]: X_train_0 = np.c_[np.ones((X_train.shape[0],1)),X_train]
X_test_0 = np.c_[np.ones((X_test.shape[0],1)),X_test]
               theta = np.matmul(np.limalg.inv( np.matmul(X_train_0.T,X_train_0) ), np.matmul(X_train_0.T,y_train))
 In [26]: parameter = ['theta_'+str(i) for i in range(X_train_0.shape[1])]
    columns = ['intersect:x_0=1'] + list(X.columns.values)
    parameter_df = pd.DataFrame({'Parameter':parameter,'Columns':columns,'theta':theta})
 In [27]: from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X_train,y_train) # Note: x_0 =1 is no need to add, sklearn will take care of it.
               sk_theta = [lin_reg.intercept_]+list(lin_reg.coef_)
parameter_df = parameter_df.join(pd.Series(sk_theta, name='5klearn_theta'))
parameter_df
 Oat[27]:
                                          Columns
                                                            theta Skiearn_theta
                      Parameter
                  0 Theta_0 Intersect x_0=1 7.059171 7.059171
                                            age 0.033134
                  1 theta_1
                                               bmi 0.013517
                                                                         0.013517
                        meta 2
                  2
                                        OHE_male -0.067767 -0.067767
                  3
                        meta_3
                  4 ineta_4
                                          OHE_1 0 149457 0 149457
                                          CHE_2 0.272919 0.272919
                  5 theta_6
                                           OHE_3 0.244095 0.244095
                  6 theta_6
                                                                         0 523339
```

OHE_4 0.523339

OHE_5 0 466030

OHE_yes 1 550481

10 theta_10 OHE_northwest -0 055845 -0.055845 11 theta_11 OHE_southeast -0 146578 -0 146578 12 theta_12 OHE_southwest -0 133500 -0 133508

0.465030

1 550481

7 theta_7

8 Theta_8

9 theta 9

```
In [28]: y_pred_norm = np.matmul(X_test_0,theta)
         J_mse = np.sum((y_pred_norm - y_test)**2)/ X_test_0.shape[0]
         sse = np.sum((y_pred_norm - y_test)**2)
         sst = np.sum((y_test - y_test.mean())**2)

R_square = 1 - (sse/sst)
         print('The Mean Square Error(MSE) or 1(theta) is: ',1_mse)
         print('R square obtain for normal equation method is :', R_square)
         The Mean Square Error(MSE) or J(theta) is: 0.18729622372298182
         R square obtain for normal equation method is: 0.7795687545055328
In [29]: y_pred_sk = lin_reg.predict(X_test)
         from sklearn.metrics import mean_squared_error
         J_mse_sk = mean_squared_error(y_pred_sk, y_test)
```

n_square_sk = lin_reg.score(x_test,y_test)
print('The Mean Square Error(MSE) or J(theta) is: ',J_mse_sk)
print('R square obtain for scikit learn library is :',R_square_sk)

The Mean Square Error(MSE) or 3(theta) is: 0.18729622322981898 R square obtain for scikit learn library is : 0.7795687545055318

R_square_sk = lin_reg.score(X_test,y_test)

(2) Classification dataset of diabetes from Kaygle.

in [11] second the necessary perform libraries import outpy as up the party party as as pd ampert eartherlib. symbol as plt plt. style. use('explot') import warnings warnings. filterwarnings('ignore')

in [13]: df = pd.read_csv('diabetes.csv')

of.head()

1[12]:	TOMO:	Preprencies	Chicose	BloodPressure				DiabetesPedigreeFunction		
	0	6	1.10		Skin Thickness	insulin	BM	DiabetesPedigreeFunction	Ane	Outcome
			(40	72	35	0	33.5	- John Williams	794	Obiconia
	1	,	85	66		U	30.0	0.627	50	1
	1	3	133	100	29	0	26 6	0 351	31	0
	3		160	64	0	0	23 3			·
	4	1	89	68		v	233	0.672	32	1
	4	0	137	-	23	81	28 1	0 167	21	0
		,	124	40	35	150	43 1			•
						100	43 1	2 288	33	1

In [13]: df.shape

Out[13]: (768, 9)

In [14]: X = df.drop('Outcome', axis=1).values
y = df['Outcome'].values

In [26]: from sklearn.model_selection import train_test_split
 X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.4,random_state=42, stratify=y)

```
In [17]: from sklearn.neighbors import kNeighborsClassifier
```

neighbors = np.arange(1,9)
train_accuracy inp.empty(len(neighbors))
test_accuracy = np.empty(len(neighbors))

for i,k in enumerate(neighbors): km = KNeighborsClassifier(n_neighbors=k)

knn.fit(X_train, y_train)

train_accuracy[i] = kmn.score(X_train, y_train)

test_accuracy[i] = knm.score(X_test, y_test)

In [27]: knn = KNeighborsClassifier(n_neighbors=7)
 knn.fit(X_train,y_train)

Out[27]: KNeighborsClassifier(n_neighbors=7)

In [21]: knn.score(X_test,y_test)

Out[21]: 0.7305194805194806

Out[23]: array([[165, 36], [47, 60]], dtype=int64)

In [24]: pd.crosstab(y_test, y_pred, rownames=['True'], colnames=['Predicted'], margins=True)

Out[24]: Predicted 0 1 All

0 165 36 201 1 47 50 107 AB 212 96 308

In [25]: from sklearm.metrics import classification_report
print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.78 0.62	0.82 0.56	0.80 0.59	201 107
accuracy macro avg ghted avg	0.70 0.73	0.69 0.73	0.73 0.70 0.73	308 308 308

(8) In Artificial Neural Network, the value of net input can be anything from -inf to +inf. The neuron doesn't really know how to bound to value and thus is not able to decide the firing pattern. An activation function results in an output signal only when an input signal exceeding a specific threshold value comes as an input. It is similar to the biological neuron which transmits the signal only when the total input signal meets the firing thrushold.

Different types of activation functions for firing a neuron are—

1) Threshold / Sty Function

It is a commonly used activation function. It gives I as output of the input either O or positive. If the input is negative, it gives O as output.

2) Sigmoid Function

The need for sigmoid function stems from the fact that many learning algorithms suggested the activation function to be differentiable and honce continuous. The begint advantage is that it is non-linear. It can be used when fredicting probabilities. The function sunges from 0 to 1 having an S-shape, It is defined as $\frac{1}{1+e^{-x}}$

3) Relu (or Rectifier) Function

ReLu function is the Rectified Linear Unit. It is derivided as $f(x) = \max(0, x)$ $= \begin{cases} x, x \ge 0 \\ 0, x \le 0 \end{cases}$

This means that j(x) is zero when x is less than zero and j(x) is equal to x when x is above or equal to zero. The main advantage of using the ReLu function over others is that it does not activate all the newcons at the same time.

4) Hyperbolic Tongent Eunction

It is Dipolar in nature. It is a widely adopted activation function for a special type of newal network known as Backpropagation Network. It is of the form of

$$\int (x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

It is similar to bipolar sigmoid function.

9 The Perceptron learning aborithm is inspired by the information processing of a single neutral cell called a neuron. The perceptron receives input from signals from examples of training data that we wight and combined in a linear equation called the activation.

The activation is then transformed into an outfut value or prediction using a transfor function, such as the sty transfer function.

Cerceftron consists of -

- 1) Input Ill the feature becomes the input for a perceptron $[\times_1, \times_2, \times_3, \dots, \times_n]$
- 2) Weights are the values that are comfuted over the time of training the model. $[W_{1}, W_{2}, W_{3}, \dots, W_{n}]$
- 3) Bias A bias neuron allows a classifier to shift the decision boundary left or right.
- 4) Weighted Summation is the sum of value that we get after the multiplication of each weight/why associated the each feature value [xn].
- 5) Activation function the role of activation function is to make neural networks non-linear.
- 6) Outfut The weighted summation is passed to the step/ activation function and whatever value we get after compution is the predicted output.

Z - output

x - infut

W - weights

n-no. of injuts

O - thrushold for step function

The weights of the Perceptron algorithm must be estimated from your training data using stochastic gradient descent.

(10) A loss function is a function that compares the and predicted output values, measures how well the newrol network models the training data. When training, we aim to minimize this loss between the predicted and staget outputs.

The 2 major types of loss functions are -

- 1) Régression Loss Functions used in regression neural networks E.y. Mean Squared Error, Hean Absolute Error
- 2) Classification Loss Function used in classification neweal networks Eg. Binary cross-Entropy, Categorical Cross-Entropy.

Various Loss functions in neuval networks are-

1) Mean Squared Error (MSE)

MSE finds the average of the squared differences between the target and predicted outfuts.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2}$$

The difference is squared, which means it does not matter whether the fredicted value is above or below the target value; however values with a large error are penalized. MSE is also a convex function with its clearly defined global minimum.

One disadrantage is that it is very sensitive to ontliers.

2) Mean Absolute Error (MAE)

MAE finds the average of the absolute differences between the twiget and the predicted outputs.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$

MAE is used in cases when the training data has a large number of outliers to mitigate the over-sensitivity to outliers (like in case of MSE).

Its disadvantage is that as the average distance affroaches O, gradient descent oftimization will not work, as the function's derivative at 0 is undefined.

3) Binary Cross Entropy / Log loss It is a loss function in binary classification models.

$$CE Loss = \frac{1}{n} \sum_{i=1}^{n} -(j_i, lg(p_i)) + (1-j_i), lg(1-p))$$

4) Categorical Cross-Entropy Loss

In cases where the number of classes is greater than 2, we utilize categorical cross-entropy.

$$CE Loss = -\frac{1}{n} \sum_{i=1}^{N} \frac{y_{ij}}{j^{-1}} \cdot log(p_{ij})$$