Exercice 260:

Soit E un \mathbb{C} -espace vectoriel de dimension finie n > 0.

- a) Montrer que pour tout $u \in GL(E)$ il existe un unique polynôme $I_u \in \mathbb{C}[X]$ de degré minimal tel que $u^{-1} = I_u(u)$, et justifier que deg $I_u < n$.
- b) Étudier la continuité de $u \in GL(E) \mapsto I_u \in \mathbb{C}_{n-1}[X]$
- a) Soient $u \in GL(E)$ et $\mu = \sum_{i=0}^r \mu_i X^i \in \mathcal{M}_n(\mathbb{C})$ où $r = \deg \lambda \leqslant n$ son polynôme minimal.

On a alors $0 = \mu(u) = \sum_{i=0}^{r} \mu_i u^i$ où $\mu_0 \neq 0$ (sinon μ n'est pas minimal).

Ainsi, Id =
$$-\frac{1}{\mu_0} \sum_{i=1} \mu_i u^i = u \left(\sum_{i=0}^{r-1} \lambda_i u^i \right)$$
 où $\lambda_i = -\frac{\mu_{i+1}}{\mu_0}$

Ainsi, en posant $I_u = \sum_{i=0}^{r-1} \lambda_i X^i$, comme u et $I_u(u)$ commutent, on a $u^{-1} = I_u(u)$

On suppose par l'absurde qu'il existe un autre polynôme $P = \sum_{i=0}^{r-1} \nu_i X^i$ de degré inférieur ou égal à celui de I_u tel que $u^{-1} = P(u)$.

Alors $\operatorname{Id} - \sum_{i=1}^r \nu_{i-1} u^i = 0$ donc un polynome non nul de degré inférieur à celui du polynôme minimal de u annule

ce dernier. Donc $X - \sum_{i=1}^{r} \nu_{i-1} u^i = N\lambda$ où $N \in \mathbb{C}$.

Donc I_u et P sont associés. Comme $I_u(u) = u^{-1} = P(u), P = I_u$.

Ainsi, il existe un unique polynôme $I_u \in \mathbb{C}[X]$ de degré minimal tel que $u^{-1} = I_u(u)$. De plus, deg $I_u = r - 1 < n$.

b) On pose la suite
$$A_n = \begin{pmatrix} 1 & \frac{1}{n} \\ 0 & 1 \end{pmatrix} \in \mathrm{GL}(E)^{\mathbb{N}}$$
.
Pour tout $n \in \mathbb{N}$, $I_{A_n} = 2 - X$. Or, $\lim_{n \to +\infty} A_n = I_n$ et $I_{I_n} = 1$

L'application $u \in GL(E) \mapsto I_n \in \mathbb{C}_{n-1}[X]$ n'est pas continue.