GUÍA Nº4: ÁLGEBRA VECTORIAL

SEGUNDA PARTE: PLANO

- 1) Encontrar la ecuación del plano sabiendo que contiene al punto P y es perpendicular $\vec{a}\vec{n}$:
- A) $P=(0;0;0); \vec{n}=i$

- B) $P=(1;2;3); \vec{n}=i+k$
- C) P=(2;-1;6); \vec{n} =3 i j + 2k
- D) $P=(3;-2;5); \vec{n}=2\vec{i}-7\vec{j}-8\vec{k}$

E) P=(1;3;-2); $\vec{n}=\vec{j}+\vec{k}$

- F) $P=(1;-4;6); \vec{n}=2\vec{i}-3\vec{k}$
- 2) Decir si los siguientes planos son paralelos, ortogonales o coincidentes:
 - A) $\pi_1:x+y+z=2$; $\pi_2:2x+2y+2z=4$
- B) π_3 :x-y+z=3; π_4 : -3x+3y-3z=-9
- C) π_5 :2x-y+z=3; π_6 :x+y-z=7
- D) $\alpha_1:2x-y+z=3$; $\alpha_2:x+y-z=3$
- E) $\alpha_3:3x-2y+7z=4$; $\alpha_4:-2x+4y+2z=16$
- 3) Hallar la ecuación que corresponde a todos los puntos de intersección de los planos:
 - A) π_1 :x y+z=2; π_2 :2x-3y+4z=7
 - B) π_1 : 3x y+4z=3; π_2 :4x- 2y+7z= 8
 - C) π_1 : -2x y+ 17z=4; π_2 :2x- y-z= 7
- 4) Determinar la distancia entre el punto P y el plano π en cada caso
 - A) $P = (4;0;1); \pi:2x-y+8z=2$
 - B) $P = (-7; -2; -1); \pi -4x-2y+7z=8$
 - C) $P = (-3; 0; 2); \pi : 2x-y-z=16$
- 5) Encontrar el ángulo entre cada par de planos:
 - A) π_1 :-x+y+z=3 y π_2 :-4x+2y=0 B) α_1 :-4x+6y+8z=12 y
 - α_2 : 2x-3y-4z=5
- 6) Hallar la ecuación vectorial y cartesiana del plano
- A) paralelo a π : 2x 2y + z = 2 que pasa por el punto P_0 (1,-1,1)
- B) paralelo al plano 2x 3y + 6z = -1 que pasa por el punto P (1, -2, 1)
- C) que pasa por los puntos (1,-1,1) y (1: 3: -2) y es paralelo al eje de abscisas
- D) determinado por los puntos P_0 (0,1,2), P_1 (3,0,5) y P_2 (4,0,1)
- 7) Analizar si los puntos P_0 (1,1,-11), P_1 (5,0,9), P_2 (5,-5,25) y P_3 (0,0,-12) son coplanares. En caso afirmativo, hallar una ecuación del plano que los contiene
- 8) Dado el plano π : x + 2y + 2z 4 = 0, hallar:
- A) el vector normal y el versor asociado a él
- B) la distancia del punto P₀ (2,-3,2) al plano
- 9) Dados los planos: $\pi_1 = x + 2y 2z 5 = 0$; $\pi_2 = 3x 6y + 3z 2 = 0$; $\pi_3 = 2x + 2y 2z 5 = 0$ y + +2z + 1 = 0 y $\pi_4 = x - 2y + z - 7 = 0$
- A) probar que dos de ellos son paralelos y los otros dos son perpendiculares
- B) hallar la distancia entre los dos planos paralelos
- C) determinar el ángulo que forman π_2 y π_3