MAS439 COMMUTATIVE ALGEBRA PROBLEM SET 1

DUE FRIDAY, OCTOBER 18TH

QUESTION 1

Introduction – **nothing to prove here.** If R and S are commutative rings, then $R \times S$ is a commutative ring, where addition and multiplication are defined by:

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$$

 $(r_1, s_1) \cdot (r_2, s_2) = (r_1 \cdot r_2, s_1 \cdot s_2)$

The actual questions - one point each.

- (1) Find all the units in $\mathbb{Z} \times \mathbb{Z}$
- (2) Find all the nilpotent elements of $\mathbb{Z} \times \mathbb{Z}$
- (3) Find all the zero divisors in $\mathbb{Z} \times \mathbb{Z}$

Be sure that your answer justifies why you have found all of the elements asked for.

QUESTION 2

The question, worth three points. Prove that if R is an integral domain, then R[x] is an integral domain.

A hint. If you're having trouble, a good place to get started and/or get partial credit is to pick some specific elements of R[x] and understand why they aren't zero divisors.

QUESTION 3

Worth one point each. How many different homomorphisms $\varphi:R\to S$ are there when

- (1) $R = \mathbb{Z}$ and $S = \mathbb{Z}[x]$
- (2) $R = \mathbb{Z}/7$ and $S = \mathbb{Z}/49$
- (3) $R = \mathbb{Z}/14$ and $S = \mathbb{Z}/7$
- (4) $R = \mathbb{Z} \times \mathbb{Z}$ and $S = \mathbb{Z}/12$

As always, be sure to justify your answers.