

Compensadores – projeto via Bode

Compensadores por avanço e atraso

Método da resposta em frequência:

- Relação entre diagrama de Bode e parâmetros de desempenho no tempo é apenas indireta
- Útil quando a função de transferência não é conhecida, mas a resposta em frequência foi obtida experimentalmente
- Permite avaliar efeito de ruído (por exemplo, projetar o sistema para rejeitar alta frequência)
- Pode ser de duas maneiras:
 - Diagramas de Bode: mais simples, exige apenas um esboço de diagrama, mas só pode ser utilizado em sistemas de fase mínima;
 - Diagrama polar (do critério de estabilidade de Nyquist): exige redesenhos a cada mudança de projeto. Mais geral e mais explicativo. Não será estudado aqui.

Introdução

As funções dos compensadores, no projeto via diagramas de Bode, não são tão bem delimitadas quanto no projeto via LGR.

Em ambos os compensadores, ajusta-se o diagrama para que a margem de fase seja adequada:

- Compensador por avanço: sua fase positiva em alta frequência soma-se à fase original do sistema, aumentando a margem de fase (exemplo no próximo slide)
 - Puxa diagrama de fase para cima
- Compensador por atraso: a atenuação de alta frequência reduz a frequência em que ocorre o 0 dB. Usualmente a fase é maior em frequências mais baixas. Destaca-se que o diagrama não é atenuado em baixa frequência, mantendo desempenho em regime permanente
 - Puxa diagrama de magnitude para baixo

Cada compensador afeta diferentemente a banda passante:

- Compensador por avanço: aumenta a banda passante, resultando em sistema que responde mais rápido.
- Compensador por atraso: reduz banda, o que reduz efeito de ruído.

Universidade de Brasília

Faculdade UnB Gama 🌇

Introdução

Avanço de fase

Atraso de fase

Introdução

- a) não compensado
- b) avanço

c) atraso

d) atraso-avanço

Compensador de avanço de fase

Função de transferência:

$$G_c(s) = K_c \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}} = K_c \alpha \frac{Ts + 1}{\alpha Ts + 1}, \qquad 0 < \alpha < 1$$

É possível mostrar que:

$$\sin \phi_m = \frac{1 - \alpha}{1 + \alpha}$$

Quanto menor α , mais afastado está o polo do zero e, por isso, maior é ϕ_m .

Assume-se que, por motivos físicos:

$$\alpha \geq 0.05$$

Usando a fórmula, isso significa:

$$\phi_{m} < 65^{\circ}$$

Ou seja, essa é a correção máxima de fase que um compensador único pode fornecer.

Compensador de avanço de fase

Obs: ao contrário do projeto via LGR, não queremos maximizar lpha

Veja no gráfico que, **em escala logarítmica**, ϕ_m fica exatamente no meio das duas frequências de corte. Ou seja, ele é a média **geométrica** das frequências:

$$\omega_m = \sqrt{\frac{1}{T} \cdot \frac{1}{\alpha T}} = \frac{1}{T\sqrt{\alpha}}$$

Universidade de Brasília

Etapas

1. Definindo $K = K_c \alpha$:

$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K \frac{Ts+1}{\alpha Ts+1}$$

Definindo
$$KG(s) = G_1(s)$$
:
$$G_c(s)G(s) = \frac{Ts+1}{\alpha Ts+1} KG(s) = \frac{Ts+1}{\alpha Ts+1} G_1(s)$$

Então, defina K de modo a satisfazer o requisito de constante de erro estático

- 2. Construa o diagrama de Bode de $G_1(s)$ com o K calculado no item anterior.
- 3. Determine qual o ângulo que deve ser adicionado à margem de fase. Adicione de 5° a 12° ao valor encontrado, pois o compensador vai aumentar levemente a frequência em que ocorre o 0 dB, diminuindo a margem de fase original.

Etapas

- 4.a Determine lpha que fornece o ϕ_m desejado
- 4.b Defina ω_m como a frequência em que $|G_1(j\omega_m)| = -20\log\frac{1}{\sqrt{\alpha}}$ através do diagrama de Bode. Faremos isso pois, ao adicionar o compensador, teremos uma pequena distorção no diagrama de Bode que resultará em $|G_1(j\omega_m)| = 0$ dB (demonstração no exemplo)
- 4.c Sabendo que

$$\omega_m = \frac{1}{T\sqrt{\alpha}} \to T = \frac{1}{\omega_m \sqrt{\alpha}}$$

Calcule T

5. Calcule o zero, o polo e o ganho do compensador:

$$\frac{K}{\alpha} \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}}$$

Em que
$$\frac{K}{\alpha} = K_c$$
.

Universidade de Brasília

$$G(s) = \frac{4}{s(s+2)}$$

$$K_v = 20, \gamma = 50^{\circ}, |K_g| \ge 10 \text{ dB}$$

$$G(s) = \frac{4}{s(s+2)}$$

$$K_v = 20, \gamma = 50^{\circ}, |K_g| \ge 10 \text{ dB}$$

Solução:

1.

$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}}$$

$$G_1(s) = KG(s) = \frac{4K}{s(s+2)}$$
 $K = K_c \alpha$.

$$K_{\nu} = \lim_{s \to 0} sG_{c}(s)G(s) = \lim_{s \to 0} s \frac{Ts + 1}{\alpha Ts + 1}G_{1}(s)$$

$$=\lim_{s\to 0} \frac{s4K}{s(s+2)} = 2K = 20 \longrightarrow K = 10$$

$$G_1(j\omega) = \frac{40}{j\omega(j\omega + 2)} = \frac{20}{j\omega(0.5j\omega + 1)}$$

Faculdade UnB Gama 🌇

3.

Margem de fase: 17° - muito oscilatória Margem de ganho: ∞

Margem de fase desejada: 50°

Adicionando uma fase extra* de 5° para compensar a modificação que será introduzida pelo compensador, tem-se:

$$\phi_m = 50^{\circ} + 5^{\circ} - 17^{\circ} = 38^{\circ}$$

* O valor 5° é de certa forma arbitrário. Foi escolhido um valor pequeno porque a curva de fase muda lentamente.

Universidade de Brasília

Faculdade UnB **Gama**

4.
$$\sin \phi_m = \frac{1-\alpha}{1+\alpha}, \ \phi_m = 38^{\circ} \qquad \alpha = 0.24$$

$$\left| \frac{1 + j\omega T}{1 + j\omega \alpha T} \right|_{\omega = 1/(\sqrt{a}T)} = \left| \frac{1 + j\frac{1}{\sqrt{\alpha}}}{1 + j\alpha \frac{1}{\sqrt{\alpha}}} \right| = \frac{1}{\sqrt{\alpha}}$$

$$\frac{1}{\sqrt{a}} = \frac{1}{\sqrt{0.24}} = \frac{1}{0.49} = 6.2 \text{ dB}$$

$$|G_1(j\omega)| = -6.2$$
 dB corresponde a $\omega = 9$ rad/s.

$$\omega_c = 1/(\sqrt{\alpha}T) = 9 \text{ rad/s}.$$

$$\frac{1}{T} = \sqrt{\alpha}\omega_c = 4{,}41$$

$$\frac{1}{aT} = \frac{\omega_c}{\sqrt{a}} = 18,4$$

$$G_c(s) = K_c \frac{s + 4.41}{s + 18.4} = K_c \frac{0.227s + 1}{0.054s + 1}$$

$$K_c = \frac{K}{\alpha} = \frac{10}{0.24} = 41,7$$

$$G_c(s) = 41.7 \frac{s + 4.41}{s + 18.4} = 10 \frac{0.227s + 1}{0.054s + 1}$$

$$G_c(s)G(s) = 41.7 \frac{s + 4.41}{s + 18.4} \frac{4}{s(s + 2)}$$

Comentários:

- A banda passante é aproximadamente a frequência de corte do sistema
- A frequência de corte aumentou de 6,3 rad/s para 9 rad/s. Assim, a banda passante aumentou aproximadamente 50%. Espera-se que o sistema responda aproximadamente 50% mais rápido.
- Foi obtido $K_v=20$, $\gamma=50^\circ$, e $\left|K_g\right|=\infty$ dB.
- O aumento da frequência de corte exigiu uma compensação extra na compensação de avanço de fase.
 - Veja que, se o sistema tem uma fase que decresce muito rapidamente com a frequência, pode acontecer da compensação extra crescer mais rápido que a fase extra sendo adicionada pelo compensador, o que tornaria o uso do compensador de avanço inviável.

$$s = -6,9541 \pm j8,0592$$

 $s = -6,4918$

A.9.6 - $\gamma = 50^{\circ}$, $|K_g| \ge 10 \ dB$, largura de banda entre 1 e 2 rad/s

Obs: veja que, nesse exemplo, trocou-se requisito K_v por largura de banda.

A.9.6 - $\gamma = 50^{\circ}$, $|K_g| \ge 10 \ dB$, largura de banda entre 1 e 2 rad/s

Obs: veja que, nesse exemplo, trocou-se requisito K_v por largura de banda.

Solução: a largura de banda de malha fechada é aproximadamente a largura de cruzamento de ganho (onde $|G_cG| = 0$ dB).

Esboça-se então o diagrama de Bode (próximo slide)

Veja que, sem compensação:

- Fase em $\omega = 1:-191^{\circ}$
- Magnitude em $\omega = 1$: -14 dB
- Sistema em malha fechada é instável para qualquer valor de ganho

Escolhe-se $\omega = 1$

Fase a ser adicionada: $11^{\circ} + 50^{\circ} = 61^{\circ}$:

$$\sin 61^\circ = \frac{1-\alpha}{1+\alpha} \to \alpha = 0.06541$$

$$\omega_m = \sqrt{\frac{1}{T} \frac{1}{\alpha T}} = \frac{1}{\sqrt{\alpha T}} = \frac{1}{\sqrt{0,06541}T} = \frac{3,910}{T} = 1$$

Média geométrica

$$\frac{1}{T} = \frac{1}{3,910} = 0,2558$$

$$\frac{1}{aT} = \frac{0,2558}{0,06541} = 3,910$$

$$T = 3.91$$

$$\alpha T = 0.2558$$

Portanto:

$$G_c(j\omega)G(j\omega) = 0.06541K_c \frac{3.910j\omega + 1}{0.2558j\omega + 1} \frac{0.2}{(j\omega)^2(0.2j\omega + 1)}$$

Alteração na magnitude causada pelo compensador:

$$0.06541 \frac{|3.91j+1|}{|0.2558j+1|} = 0.2558 = -11 \, dB$$

Magnitude total que precisa ser adicionada pelo ganho:

$$14 + 11 = 25 \, dB$$

$$25 = 20 \log K_C \rightarrow K_C = 18$$

Compensador de atraso de fase

Função de transferência:

$$G_c(s) = K_c \frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}} = K_c \beta \frac{Ts + 1}{\alpha Ts + 1}, \qquad \beta > 1$$

Etapas:

1. Definindo $K = K_c \beta$:

$$G_c(s) = K_c \beta \frac{Ts+1}{\beta Ts+1} = K \frac{Ts+1}{\beta Ts+1}$$

Definindo
$$KG(s) = G_1(s)$$
:
$$G_c(s)G(s) = \frac{Ts+1}{\beta Ts+1} KG(s) = \frac{Ts+1}{\beta Ts+1} G_1(s)$$

Então, defina K de modo a satisfazer o requisito de constante de erro estático

2.a Construa o diagrama de Bode de $G_1(s)$ com o K calculado no item anterior.

Etapas

- 2.b Encontre no diagrama de Bode a frequência ω_1 cuja fase forneceria a margem de fase especificada (mais 5° a 12° para englobar distorções) caso fosse a frequência de cruzamento de ganho (onde ocorre o 0 dB) $\angle G(j\omega_1) = -180^\circ + \gamma_{\rm deseiado} + 5^\circ \text{ a } 12^\circ$
- 3. Posicione zero do compensador em uma frequência significativamente abaixo de ω_1 . Sugestão: escolha um valor entre $\frac{1}{T}=\frac{\omega_1}{10}$ e $\frac{1}{T}=\frac{\omega_1}{2}$. Quanto menor $\frac{1}{T}$, menos distorção na margem de fase, mas mais próximo o polo e o zero ficam da origem, gerando uma cauda cada vez maior e mais alongada na resposta.
- 4. Calcule quanto é necessário atenuar o ganho em ω_1 para atingir $|G(j\omega_1)|=0$ dB. A atenuação é fornecida por $-20\log\beta$. Determine β e o zero em $\omega=\frac{1}{\beta T}$
- 5. Calcule $K_c = \frac{K}{\beta}$

$$G(s) = \frac{1}{s(s+1)(0.5s+1)}$$

$$K_v = 5, \gamma \ge 40^{\circ} |K_g| \ge 10 \text{ dB}$$

Universidade de Brasília

Exemplo 1

$$G(s) = \frac{1}{s(s+1)(0.5s+1)}$$

$$K_{v} = 5, \gamma \ge 40^{\circ} |K_{g}| \ge 10 \text{ dB}$$

Solução:

$$K_c \beta = K$$

$$G_1(s) = KG(s) = \frac{K}{s(s+1)(0,5s+1)}$$

$$K = \lim_{s \to 0} sG_c(s)G(s) = \lim_{s \to 0} s \frac{Ts+1}{\beta Ts+1} G_1(s) = \lim_{s \to 0} sG_1(s)$$

$$= \lim_{s \to 0} \frac{sK}{s(s+1)(0,5s+1)} = K = 5$$

$$G_1(j\omega) = \frac{5}{i\omega(j\omega+1)(0,5j\omega+1)}$$

Universidade de Brasília

Faculdade UnB Gama 🌇

extra

Exemplo 1

$$\gamma = -20^{\circ}
ightarrow {
m instável sem}$$
 compensação

$$\angle G(j\omega_1) = -180^{\circ} + 40^{\circ} + 12^{\circ}$$

$$= -128^{\circ}$$

$$\omega_1 = 0.5 \text{ rad/s}$$

Escolhe-se:

$$\frac{1}{T} = 0.1 \text{ rad/s}$$

Em
$$\omega_1 = 0.5 \text{ rad/s}$$
:
 $|G(j\omega_1)| = 20 \text{ dB}$
 $-20 \log \beta = -20 \rightarrow \beta = 10$

$$\frac{1}{\beta T} = 0.01 \text{ rad/s}$$

$$G_c(s) = K_c(10) \frac{10s + 1}{100s + 1} = K_c \frac{s + \frac{1}{10}}{s + \frac{1}{100}}$$
$$K_c = \frac{K}{\beta} = \frac{5}{10} = 0.5$$

$$G_c(s)G(s) = \frac{5(10s+1)}{s(100s+1)(s+1)(0.5s+1)}$$

Respostas ao Degrau Unitário de Sistemas com e sem Compensação

Respostas à Rampa Unitária de Sistemas com e sem Compensação

Comentários

- Sistema atende aos requisitos
- Banda passante **reduzida** de 2,1 rad/s para 0,5 rad/s
 - Mais lento
 - Filtra ruído de alta frequência
- Veja que o valor exato de T não é muito importante. Equilibrar entre não ficar muito próximo da origem nem muito próximo da frequência de cruzamento de ganho
- Escolher T suficientemente maior que a constante de tempo do sistema.

Compensador em atraso e avanço

Projeto: dividir o trabalho de aumentar a margem de fase entre ambos os compensadores

- Diminua a banda passante com o compensador por atraso para aumentar a margem de fase
- Termine de aumentar a margem de fase com o compensador por avanço
- Exemplo no próximo slide

$$G_c(s) = K_c \frac{s + \frac{1}{T_1}}{s + \frac{\gamma}{T_1}} \frac{s + \frac{1}{T_2}}{s + \frac{\gamma}{T_1}}, \qquad \beta > 1, \qquad \gamma = \frac{1}{\alpha} = \beta$$

Sistema realimentado com F.T. de malha aberta:

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

Valores desejados: $K_v = 10$, $\gamma = 50^\circ$, $\left| K_g \right| > 10 \; dB$

Sugestão: se $\gamma_{ini} < 0^\circ$, compensar 50° com compensação de avanço, e o que faltar compensar via compensador de atraso.

Sistema realimentado com F.T. de malha aberta:

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

Valores desejados: $K_v = 10$, $\gamma = 50^\circ$, $\left| K_g \right| > 10 \; dB$

Sugestão: se $\gamma_{ini} < 0^\circ$, compensar 50° com compensação de avanço, e o que faltar compensar via compensador de atraso.

Solução:

$$K_{\nu} = \lim_{s \to 0} sG_{c}(s)G(s) = \lim_{s \to 0} sG_{c}(s) \frac{K}{s(s+1)(s+2)} = \frac{K}{2} = 10 \longrightarrow K = 20$$

Obs: assume-se que $\lim_{s\to 0}G_c(s)=1$, já que G(s) já possui ganho ajustável

Universidade de Brasília

Faculdade UnB **Gama**

Exemplo 1

Ajuste inicial: atenuar ganho de alta frequência usando atraso de fase.

Margem de fase inicial: -32° (fase = -212°)

Sugestão do livro: puxar $\left|K_g\right|=0$ dB para -180° ($\omega=1.5$ rad/s)

 $\left|K_{g}\right|_{\omega=1,5}=13\,$ dB. Compensador deve atenuar excedente até atingir $\left|K_{g}\right|_{\omega=1,5}=0\,$ dB, mas será feito depois.

Escolher frequência de corte mais alta do compensador de atraso (sugestão: uma década abaixo):

$$\frac{1}{T_2} = \frac{\omega}{10} = 0.15$$

A frequência de corte $1/\beta T_2$ só pode ser escolhida após definir $\beta=\gamma$, mas gama ainda precisa ser calculado. Deixar pendente por enquanto.

Calculando o compensador por avanço:

Queremos um aumento de fase de 50°. Sabendo que $\gamma = \frac{1}{\alpha}$:

$$\sin \phi_m = \frac{1 - \frac{1}{\gamma}}{1 + \frac{1}{\gamma}} = \frac{\gamma - 1}{\gamma + 1}$$

Vemos que, para $\gamma=10$, tem-se que $\phi_m=55^\circ$, que já contém uma margem sobre o valor desejado.

Dado que $\beta = \gamma$, o controlador de atraso será:

$$G_{at}(s) = \frac{s + 0.15}{s + 0.015}$$

Achando as frequências de corte do compensador por avanço:

Veja que:

- Existe um ganho de 13 dB que precisa ser atenuado
- Compensador por atraso provê atenuação, compensador por avanço "desfaz" a atenuação
- Veja que, como $\beta=10$, a diferença entre polo e zero é de uma década exata. Por isso, **nesse caso em particular**, a atenuação total é de 20 dB
- Assim, o compensador por avanço tem que recuperar de volta:

$$-20 + 13 = 7 \, dB$$

Livro resolve graficamente

Solução não gráfica:

$$20\log(j\omega_1 T_1 + 1)_{\omega_1 = 1,5} = 7$$

$$\frac{1}{T_1} = \frac{1.5}{10^{7/20}} = 0.7 \rightarrow \frac{\gamma}{T_1} = 7$$

$$G_c(s) = \left(\frac{s+0.7}{s+7}\right)\left(\frac{s+0.15}{s+0.015}\right) = \left(\frac{1.43s+1}{0.143s+1}\right)\left(\frac{6.67s+1}{66.7s+1}\right)$$

$$G_c(s)G(s) = \frac{(s+0.7)(s+0.15)20}{(s+7)(s+0.015)s(s+1)(s+2)}$$

$$= \frac{10(1,43s+1)(6,67s+1)}{s(0,143s+1)(66,7s+1)(s+1)(0,5s+1)}$$

