Lista Entrega 2 - Multivariada

Davi Wentrick Feijó - 200016806

2023-04-25

4) Exercício 30 da Lista 3

Utilize a decomposição espectral $\Sigma = UDV^T$ para mostrar que $\sum_{i=1}^n Var(x_i) = \sum_{i=1}^n \lambda_i$, em que λ_i são os elementos da matriz diagonal D.

53	58	51	69
91	52	50	69
97	59	70	63
63	82	91	72

Vamos calcular a matriz de covariancias!

454.66667	-127.00	-45.33333	-55.00
-127.00000	174.25	236.50000	26.75
-45.33333	236.50	373.66667	16.50
-55.00000	26.75	16.50000	14.25

Vamos obter os autovetores e autovalores

```
## eigen() decomposition
## $values
## [1] 6.162642e+02 3.915484e+02 9.020790e+00 1.452954e-14
##
## $vectors
## [,1] [,2] [,3] [,4]
## [1,] 0.60105416 0.76927209 0.1886343 -0.1066369
## [2,] -0.50567684 0.19806846 0.3803186 -0.7486104
## [3,] -0.61168719 0.60319643 -0.2624244 0.4394613
## [4,] -0.09414674 -0.07171749 0.8665496 0.4848554
```

Obtendo a matriz diagonal dos autovalores D

616.2642	0.0000	0.00000	0
0.0000	391.5484	0.00000	0
0.0000	0.0000	9.02079	0
0.0000	0.0000	0.00000	0

Matriz do autovetores P

0.6010542	0.7692721	0.1886343	-0.1066369
-0.5056768	0.1980685	0.3803186	-0.7486104
-0.6116872	0.6031964	-0.2624244	0.4394613
-0.0941467	-0.0717175	0.8665496	0.4848554

Obtendo a matriz inversa dos autovetores ${\cal P}^{-1}$

0.6010542	-0.5056768	-0.6116872	-0.0941467
0.7692721	0.1980685	0.6031964	-0.0717175
0.1886343	0.3803186	-0.2624244	0.8665496
-0.1066369	-0.7486104	0.4394613	0.4848554

Obtendo a matriz de covariancias pela decomposição espectral por meio da seguinte equacao PDP^{-1}

454.66667	-127.00	-45.33333	-55.00
-127.00000	174.25	236.50000	26.75
-45.33333	236.50	373.66667	16.50
-55.00000	26.75	16.50000	14.25

podemos perceber que voltamos para a matriz de covariancia

Calculando a variância total somando a diagonal da matriz de covariancia

 $\frac{x}{1016.833}$

Calculando a variância explicada por cada dimensao dividindo os autovalores pela variancia total

2	Κ
0.6060623	1
0.3850664	1
0.0088713	5
0.0000000)

checando se a soma da variancias (diagonal da matriz de covariancia) é igual a soma da diagonal dos autovalores

[1] TRUE

Realizando o problema anterior por meio do SVD

 $A = U \Sigma V^T$ onde U =autovetores de AA^T e V =autovetores de A^TA logo vamos calcular U e V Matriz U

0.6010542	0.7692721	0.1886343
-0.5056768	0.1980685	0.3803186
-0.6116872	0.6031964	-0.2624244
-0.0941467	-0.0717175	0.8665496

Matriz V

0.6010542	0.7692721	0.1886343
-0.5056768	0.1980685	0.3803186
0.0000.00	0.200000	0.0000100
-0.6116872	0.6031964	-0.2624244
-0.0941467	-0.0717175	0.8665496

Calculando autovalores e autovetores

Autovetores de AAT: 379781.5 153310.1 81.37466 0

Autovetores de ATA: 379781.5 153310.1 81.37466 0

Como temos os mesmos autovalores para AA^T e A^TA vamos calcular que é a matriz diagonal da raiz quadrada dos autovalores diferentes de 0

616.2642	0.0000	0.00000
0.0000	391.5484	0.00000
0.0000	0.0000	9.02079

Juntando a matriz decomposta por meio da equaca
o $A = U \Sigma V^T$

454.66667	-127.00	-45.33333	-55.00
-127.00000 -45.33333	174.25 236.50	$\frac{236.50000}{373.66667}$	26.75 16.50
-55.00000	26.75	16.50000	14.25

Comparando resultados com a funcao svd() do R

```
## [1] 616.2642 391.5484
                           9.0208
                                    0.0000
           [,1]
                   [,2]
                           [,3]
                                   [,4]
## [1,] -0.6011 -0.7693
                         0.1886 -0.1066
        0.5057 -0.1981
                         0.3803 -0.7486
## [3,]
        0.6117 -0.6032 -0.2624 0.4395
## [4,]
        0.0941 0.0717 0.8665 0.4849
                   [,2]
                           [,3]
                                   [,4]
           [,1]
## [1,] -0.6011 -0.7693
                         0.1886 -0.1066
        0.5057 -0.1981
## [2,]
                        0.3803 -0.7486
## [3,]
        0.6117 -0.6032 -0.2624 0.4395
## [4,]
        0.0941 0.0717 0.8665
                                0.4849
```

Calculando o traco da matriz de covariancias

[1] 1016.833

Calculando o traco da matriz D por meio da funcao svd()

Calculando o traco da matriz D manualmente feito pelo R

[1] 1016.833

Podemos ver que todos os resultados batem tanto no SVD quanto na decomposicao por autovalores!

5) Exercício 31 da Lista 3

Reproduza o estudo de redução de dimensão SVD de imagens, utilizando duas imagens. A primeira com poucos detalhes (abstrata, por exemplo) e a segunda com vários detalhes. Justifique sua escolha de dimensão na redução de cada imagem e compare os resultados. Você achou a redução compatível com as imagens utilizadas? Justifique.

Para realizacao da questao, foi utilizado o seguinte codigo com base no codigo disponibilizado no aprender pelo professor!

```
#funçao para comprimir a imagem (img é a imagem escolhida e x é a quantidade de dimensoes)

compression <- function(img,x) {
   img = readImage(img) %>%
      rgb_2gray()
   img_svd = svd(img)
   D = diag(img_svd$d)
   U = img_svd$u
   V = img_svd$v
   U5 <- as.matrix(U[,1:x])
   V5 <- as.matrix(V[,1:x])
   D5 <- diag(img_svd$d[1:x])
   img_gray <- U5 %*% D5 %*% t(V5)

cat("Com x = ",x,"a imagem contem",tr(D5)/tr(D) * 100, "% da variancia total")
   return(img_gray)
}</pre>
```

As imagems escolhidas foram:

imagem_comprimida = compression(img = "barco.jpg",x = 20)

Com x = 20 a imagem contem 60.76406 % da variancia total


```
imagem_comprimida = compression(img = "imagem_abstrata.jpg",x = 70)
```

Com x = 70 a imagem contem 48.15103 % da variancia total

Os valores de x=20 e x=70 foram escolhidos pois eu acredito que sao os valores em que da pra identificar melhor o que a imagem quer representar! Vale notar a diferenca de complexidade entre as imagens, enquanto que o barco foi necessario somente 20 para ter uma boa representacao da imagem original, o quadro precisou de 70 para que ficasse claro o que era pra ser representado