Universidad Autónoma de Madrid Análisis Matemático CURSO 2017–2018

Enunciados y soluciones del examen del 9 de enero 2018

- **1.** Sea $\pi: \mathbb{R}^2 \to \mathbb{R}$ dada por $\pi(x, y) = x$.
- a) ¿Es $\pi(A)$ un abierto de \mathbb{R} para todo abierto A de \mathbb{R}^2 ?
- b) ¿Es $\pi(C)$ un cerrado de \mathbb{R} para todo cerrado C de \mathbb{R}^2 ?

En caso afirmativo da una demostración. En caso negativo proporciona un contraejemplo.

Solución. La respuesta al apartado a) es sí, para lo que damos una demostración. Dada cualquier $x \in \pi(A)$, existe un $y \in \mathbb{R}$ tal que $(x,y) \in A$. Como A es abierto por hipótesis, hay un radio positivo r > 0 tal que $B((x,y),r) \subseteq A$. Un diámetro de esta bola es el intervalo horizontal $(x-r,x+r) \times \{y\}$, de donde $(x-r,x+r) \subseteq \pi(A)$. Como x era cualquier punto de $\pi(A)$, queda probado que $\pi(A)$ es un abierto de \mathbb{R} .

La respuesta al apartado b) es no, para lo que damos un contraejemplo. Al ser $\varphi(x,y)=xy$ una función continua, la siguiente preimagen es un cerrado de \mathbb{R}^2 :

$$C = \varphi^{-1}(\{1\}) = \{(x,y) : xy = 1\}.$$

De hecho C es la hipérbola estándar en el plano. La proyección $\pi(C)$ sobre el eje de abscisas es el conjunto $\pi(C) = \mathbb{R} \setminus \{0\}$, que no es cerrado.

2. Se considera la función $h: \mathbb{R}^2 \to \mathbb{R}$ definida como sigue:

$$h(x,y) = \begin{cases} \frac{(x+y) x^2}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

Determina, razonadamente, la continuidad y diferenciablidad de h en (0,0).

Solución. Tenemos la cota evidente $\frac{x^2}{x^2+y^2} \le 1$, que nos proporciona esta otra:

$$|f(x,y)| \le |x+y|,$$

de la que se deduce fácilmente:

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0) ,$$

luego f es continua en (0,0).

Para estudiar la diferenciabilidad, empezamos observando que f es homogénea de grado 1. Esto implica que para todo vector $v \in \mathbb{R}^2$ existe la derivada $D_v f(0,0)$ y de hecho $D_v f(0,0) = f(v)$. Pero la función f(v) no es lineal, es decir no existen constantes $a, b \in \mathbb{R}$ tales que se cumpla lo siguiente para todo $v = (v_1, v_2) \in \mathbb{R}^2$:

$$\frac{(v_1 + v_2) v_1^2}{v_1^2 + v_2^2} = a v_1 + b v_2.$$

Entonces f no es diferenciable en (0,0) porque $v \mapsto D_v f(0,0)$ no es lineal. Otra manera de verlo es calcular:

$$D_{\mathbf{e}_1} f(0,0) = 1$$
 , $D_{\mathbf{e}_2} f(0,0) = 1$, $D_{\mathbf{e}_1 + \mathbf{e}_2} f(0,0) = 1 \neq 1 + 1$,

y así comprobar que $D_{\mathbf{e}_1+\mathbf{e}_2}f(0,0) \neq D_{\mathbf{e}_1}f(0,0) + D_{\mathbf{e}_2}f(0,0)$.

- **3.** Sea $g: \mathbb{R}^3 \to \mathbb{R}$ dada por $g(x, y, z) = x^2 z \left(\frac{z^2}{3} 1\right)$.
- a) Demuestra que $M = \{(x, y, z) : g(x, y, z) = 0, z < 1\}$ es una variedad en \mathbb{R}^3 y di, razonadamente, cuál es su dimensión.
- b) Comprueba que el punto $a=(0,7,-\sqrt{3})$ está en M y di, razonadamente, qué tipo de grafo es M en un entorno pequeño U de a (es decir, qué variables entre las x,y,z se despejan, en $M\cap U$, como funciones diferenciables de las otras variables).
- c) Sea $F: \mathbb{R}^3 \to \mathbb{R}$ dada por $F(x, y, z) = x^2 + y^2$. Halla los puntos críticos de $f = F|_M$ y, para cada uno de ellos, estudia si es máximo local de f, mínimo local de f o ninguna de las dos cosas.

Solución. a) El conjunto M no es vacío, por ejemplo $(0,0,0) \in M$. Entonces, por el teorema de la función implícita, una condición suficiente para que M sea una variedad es que el gradiente ∇g no se anule en ningún punto de M. Calculamos $\nabla g \equiv \left(2x\,,\,0\,,\,1-z^2\right)$, luego los puntos donde se anula el gradiente son los $(0,y,\pm 1)$, pero:

$$g(0, y, \pm 1) = \pm \left(\frac{1}{3} - 1\right) \neq 0,$$

luego ninguno de los puntos $(0, y, \pm 1)$ está en M. Esto prueba que M es una variedad en \mathbb{R}^3 y:

$$\dim M = 3 - \text{número de ecuaciones} = 3 - 1 = 2$$
,

es decir que M es una superficie en \mathbb{R}^3 .

b) Calculamos $g(a) = 0^2 + \sqrt{3}\left(\frac{3}{3} - 1\right) = 0$ y constamos que $-\sqrt{3} < 1$, luego $a \in M$. De las tres derivadas parciales:

$$g_x(a) = 0$$
 , $g_y(a) = 0$, $g_z(a) = -2$,

sólo $g_z(a)$ es no nula, luego en un trocito de M rodeando al punto a sólo la variable z puede despejarse como una función diferenciable de las variables (x,y) (las cuales recorren un abierto de \mathbb{R}^2_{xy} rodeando a $(7,-\sqrt{3})$).

c) Un punto $p \in M$ es crítico para $f = F|_M$ si y sólo si tenemos $\nabla F(p) = \lambda \nabla g(p)$, para un $\lambda \in \mathbb{R}$ que llamamos multiplicador de Lagrange de p. Como $\nabla F \equiv (2x, 2y, 0)$, las condiciones $p \in M$ y $\nabla F(p) = \lambda \nabla g(p)$ equivalen al sistema:

$$x^{2}-z\left(\frac{z^{2}}{3}-1\right) = 0$$

$$2x = \lambda(2x)$$

$$2y = \lambda \cdot 0$$

$$0 = \lambda(1-z^{2})$$

formado por una desigualdad estricta y cuatro ecuaciones. La tercera ecuación nos dice que y=0 en todo punto crítico, es decir que son todos de la forma (x,0,z). La segunda ecuación nos sugiere considerar dos casos, según que x sea nulo o no nulo.

Caso $x \neq 0$. En este caso la segunda ecuación fuerza $\lambda = 1$, lo que convierte la cuarta ecuación en $0 = 1 - z^2$, de la que descartamos la solución z = 1 porque no cumple la desigualdad estricta, y los puntos críticos con $x \neq 0$ son de la forma (x, 0, -1). Además z = -1 convierte la primera ecuación en $x^2 - \frac{2}{3} = 0$, luego en este caso hay dos puntos críticos:

$$p_{+} = \left(\sqrt{\frac{2}{3}}, 0, -1\right)$$
 , $p_{-} = \left(-\sqrt{\frac{2}{3}}, 0, -1\right)$, ambos con $\lambda = 1$.

Caso x=0. Ahora se permite cualquier valor para λ en la segunda ecuación. La primera ecuación queda $z\left(\frac{z^2}{3}-1\right)=0$, de la que descartamos la solución $z=\sqrt{3}$ porque no cumple la desigualdad estricta. Aceptamos

las soluciones z=0 y $z=-\sqrt{3}$, que llevadas a la cuarta ecuación nos dan $\lambda=0$. En este caso hay, pues, otros dos puntos críticos:

$$\mathbf{0} = (0,0,0)$$
 , $q = (0,0,-\sqrt{3})$, ambos con $\lambda = 0$.

En total $f = F|_M$ tiene cuatro puntos críticos: p_+ , p_- , $\mathbf{0}$ y q. Para estudiarlos, empezamos calculando las matrices hessianas:

$$\operatorname{Hess}(F) = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 0 \end{bmatrix} , \operatorname{Hess}(g) = \begin{bmatrix} 2 & & \\ & & 0 & \\ & & -2z \end{bmatrix} .$$

Si $p \in M$ es un punto crítico de $F|_M$, con multiplicador de Lagrange λ , entonces la hessiana intrínseca en p es la restricción al plano T_pM de la forma cuadrática $v \mapsto v^t A v$, siendo $A = \operatorname{Hess}(F)_p - \lambda \operatorname{Hess}(g)_p$.

En los puntos p_{\pm} es $\nabla g = \left(\pm 2 \cdot \sqrt{\frac{2}{3}}, 0, 0\right)$, luego: $T_{p_{+}}M = T_{p_{-}}M =$ plano generado por $\{\mathbf{e}_{2}, \mathbf{e}_{3}\}$. Además estos puntos críticos tienen $\lambda = 1$ y les corresponde la matriz:

$$A = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 0 \end{bmatrix} - (1) \cdot \begin{bmatrix} 2 & & & \\ & & 0 & \\ & & -2(-1) \end{bmatrix} = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 0 \end{bmatrix} - \begin{bmatrix} 2 & & \\ & 0 & \\ & & 2 \end{bmatrix} = \begin{bmatrix} 0 & & \\ & 2 & \\ & & -2 \end{bmatrix}.$$

En la base $\{\mathbf{e}_2, \mathbf{e}_3\}$ de los planos tangentes $T_{p_+}M = T_{p_-}M$, la hessiana intrínseca tiene la siguiente matriz:

$$\begin{pmatrix} \mathbf{e}_2^t A \mathbf{e}_2 & \mathbf{e}_2^t A \mathbf{e}_3 \\ \mathbf{e}_3^t A \mathbf{e}_2 & \mathbf{e}_3^t A \mathbf{e}_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix},$$

que es indefinida y no degenerada, luego p_+ y p_- son sillas no degeneradas de $F|_M$. No son ni máximo ni mínimo local.

Los gradientes $\nabla g(\mathbf{0}) = (0,0,1)$ y $\nabla g(q) = (0,0,-2)$ nos dan $T_{\mathbf{0}}M = T_qM$ = plano generado por $\{\mathbf{e}_1,\mathbf{e}_2\}$. Como estos puntos críticos tienen $\lambda = 0$, les corresponde la matriz $A = \operatorname{Hess}(F)$. En la base $\{\mathbf{e}_1,\mathbf{e}_2\}$ de los planos tangentes $T_{\mathbf{0}}M = T_qM$, la hessiana intrínseca tiene matriz:

$$\begin{pmatrix} \mathbf{e}_1^t \operatorname{Hess}(F) \mathbf{e}_1 & \mathbf{e}_1^t \operatorname{Hess}(F) \mathbf{e}_2 \\ \mathbf{e}_2^t \operatorname{Hess}(F) \mathbf{e}_1 & \mathbf{e}_2^t \operatorname{Hess}(F) \mathbf{e}_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix},$$

que es definida positiva, luego $\mathbf{0}$ y q son mínimos locales estrictos de $F|_{M}$.

- **4.** Sea $S = \{(x, y, z) : x^2 + y^2 + z^2 = 2, 0 < z < 1\}.$
- a) Describe, razonadamente, el borde de S.
- b) Elige una orientación \mathcal{O} para S y determina, razonadamente, la orientación inducida en el borde.
- c) Con la orientación elegida, calcula la integral $\int_{(S,\mathcal{O})} d\,\omega$, siendo:

$$\omega = (z^2 - z) e^{x+2y} dx + (x+z) dy + \log(3+x) dz.$$

Solución. a) Como conjunto $\partial S = \{(x, y, z) : x^2 + y^2 + z^2 = 2, z \in \{0, 1\}\}$ es la unión de dos circunferencias $\Gamma_0 \cup \Gamma_1$ dadas por:

$$\Gamma_0 = \{(x, y, 0) : x^2 + y^2 = 2\}$$
, $\Gamma_1 = \{(x, y, 1) : x^2 + y^2 = 2 - 1^2 = 1\}$.

b) El campo de vectores $\nabla(x^2+y^2+z^2)=(2x,2y,2z)$ es normal a la superfcie S. Por lo tanto una normal unitaria es $\nu=(1/\sqrt{2})\cdot(x,y,z)|_S$. Con ella determinamos una orientación \mathcal{O}_p en cada plano tangente T_pS de la siguiente manera: una base ordenada $\{\mathbf{v}_1,\mathbf{v}_2\}$ de T_pS pertenece a la orientación \mathcal{O}_p si det $[\nu(p)\,|\,\mathbf{v}_1\,|\,\mathbf{v}_2\,]>0$.

Las orientaciones \mathcal{O}_p , con p recorriendo S, definen una orientación \mathcal{O} de la superficie S.

c) El teorema de Stokes dice que, si damos a ∂S la orientación inducida de la \mathcal{O} , entonces:

$$\int_{(S,\mathcal{O})} d\omega = \int_{\partial S} \omega.$$

Se trata, pues, de determinar la orientación de $\partial S = \Gamma_0 \cup \Gamma_1$ inducida de la orientación \mathcal{O} de S. Elegimos un punto $p_0 \in \Gamma_0$ y otro $p_1 \in \Gamma_1$ y determinamos la orientación inducida en $T_{p_0}\Gamma_0$ y en $T_{p_1}\Gamma_1$.

En el punto $p_0 = (\sqrt{2}, 0, 0) \in \Gamma_0$ es $\nu(p_0) = (1, 0, 0)$ y $T_{p_0}S$ es el plano generado por $\{\mathbf{e}_2, \mathbf{e}_3\}$. A su vez la recta $T_{p_0}\Gamma_0$ es la del vector \mathbf{e}_2 . Se deduce que la conormal exterior $\eta(p_0)$ es igual a $\pm \mathbf{e}_3$, de hecho se ve fácilmente que $\eta(p_0) = -\mathbf{e}_3$, porque el opuesto \mathbf{e}_3 es la velocidad en t = 0 del camino $\gamma(t) = \sqrt{2}(\cos t, 0, \sin t)$, que para t > 0 se mete dentro de S.

Cuando $t = \pi/4$ el camino $\gamma(t)$ llega al punto $p_1 = (1,0,1) \in \Gamma_1$ con velocidad $\gamma'(\pi/4) = (-1,0,1)$. Como $\nu(p_1) = (1,0,1)/\sqrt{2}$, el plano $T_{p_1}S$ es el generado por $\{\gamma'(\pi/4), \mathbf{e}_2\}$. A su vez la recta $T_{p_1}\Gamma_1$ es la del vector \mathbf{e}_2 , luego $\gamma'(\pi/4)$ es ortogonal a Γ_1 en p_1 . La conormal exterior es $\eta(p_1) = \gamma'(\pi/4)/\|\gamma'(\pi/4)\|$ porque este vector apunta hacia afuera de S, ya que $\gamma(t)$ se sale de S para $t > \pi/4$. Es decir $\eta(p_1) = (-1,0,1)/\sqrt{2}$.

Como det $[\nu(p_0) | \eta(p_0) | \mathbf{e}_2] = \det [\mathbf{e}_1 | -\mathbf{e}_3 | \mathbf{e}_2] = 1 > 0$, una parametrización $\alpha(t)$ de Γ_0 que tenga $\alpha(0) = p_0$ y $\alpha'(0) = c \mathbf{e}_2$ con c > 0 es compatible con la orientación de Γ_0 inducida de la \mathcal{O} . Elegimos ésta:

$$\alpha(t) = \sqrt{2} \cdot \left(\cos t, \sin t, 0\right) , \quad t \in [0, 2\pi] .$$

Como:

$$\det \left[\nu(p_1) \, | \, \eta(p_1) \, | \, -\mathbf{e}_2 \, \right] \; = \; \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \left| \begin{array}{ccc} 1 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 1 & 0 \end{array} \right| \; = \; \frac{1}{2} \cdot 2 \; = \; 1 \, > \, 0 \; ,$$

una parametrización $\beta(t)$ de Γ_1 que tenga $\beta(0) = p_1$ y $\beta'(0) = -c' \mathbf{e}_2$ con c' > 0 es compatible con la orientación de Γ_1 inducida de la \mathcal{O} . Elegimos ésta:

$$\beta(t) = (\cos t, -\sin t, 1)$$
, $t \in [0, 2\pi]$.

Ahora el teorema de Stokes nos dice que $\int_{(S,\mathcal{O})} d\omega = \int_{\alpha} \omega + \int_{\beta} \omega = \int_{[0,2\pi]} \alpha^*\omega + \int_{[0,2\pi]} \beta^*\omega$. Calculamos:

$$\alpha^* \omega = 0 \cdot \alpha^* \left(e^{x+2y} \, dx \right) + \sqrt{2} \cos t \, d(\sqrt{2} \sin t) + 0 = 2 \cos^2 t \, dt \; ,$$

$$\beta^* \omega = 0 \cdot \beta^* (e^{x+2y} dx) + \cos t d(-\sin t) + 0 = -\cos^2 t dt$$

y finalmente $\int_{(S,\mathcal{O})} d\omega = \int_0^{2\pi} (2-1) \cos^2 t \, dt = \pi.$