

Part. 04
Ensemble Learning

DS분야에서 Tree기반 모델이 쓰이는 이유

FASTCAMPUS ONLINE 머신러닝과 데이터분석 A-ZI

강사. 이경택

- Neural Network
 - 입력, 은닉, 출력층으로 구성된 모형으로서 각 층을 연결하는 노드의 가중치를 업데이트하면서 학습
 - Overfitting이 심하게 일어나고 학습시간이 매우 오래걸림

- Deep Learning
 - 다층의 layer를 통해 복잡한 데이터의 학습이 가능토록 함 (graphical representation learning)
 - 알고리즘 및 GPU의 발전이 deep learning의 부흥을 이끔

• 이미지 처리에 사용되는 CNN(Convolutional Neural Network)

- 이미지 분류에서 기존 모델
 - 각각의 픽셀 값(늘어뜨려서)을 독립변수로 사용
 - 독립변수들은 각각 독립이라는 기본적인 가정에서 어긋남

Image1 Image2

V1 V2 V3	V4 V5 ···	V11 V12 V13	Υ
$x_{11} \ x_{12} \ x_{13}$	<i>x</i> ₁₄ <i>x</i> ₁₅	<i>x</i> ₁₁ <i>x</i> ₁₂ <i>x</i> ₁₃	사람 고양이

기존 Machine Learning

- Convolutional Neural Network
 - 이미지의 지역별 feature를 뽑아서 neural network학습

- Convolutional Neural Network
 - 이미지의 지역별 feature를 뽑아서 neural network학습
 - CNN의 해주는 역할은 이미지의 <u>feature</u>를 잘 뽑기 위한 것 뿐

• CNN

Convolution을 통해 뽑은 feature

이미지 pixel feature

- 딥러닝 vs 머신러닝
 - 최근 10년간은 딥러닝의 부흥기임
 - 그럼에도 불구하고 kaggle대회를 비롯한 각종 머신러닝 대회에서는 boosting계열 알고리즘이 우승함
 - 그 이유는?

ONLINE

FAST CAMPUS

- 딥러닝 vs 머신러닝
 - 이미지의 지역별 feature를 뽑아서 neural network학습
 - CNN의 해주는 역할은 이미지의 <u>feature</u>를 잘 뽑기 위한 것 뿐

vec vec lully connected layers Nx binary classification

이미지 pixel feature

• 딥러닝은 Graphical representation을 잘 하기 위해 발전되어 옴

Fast campus

- 딥러닝 vs 머신러닝
 - 게임유저 이탈 예측 문제 graphical feature가 있나?

Userid	게임누적접속일	비용대비 누적획득 경험치	비용대비 평균획 득경험치	비용대비 누적던 전 클리어비율	 이탈여부
1	4	46	11.5	0.185	잔존
2	2	180	90	0.466	이탈
					이탈

Graphical representation learning??

이경택 강사.

- 딥러닝 vs 머신러닝
 - 게임유저 이탈 예측 문제 학습하는 원리를 생각해보자

Userid	게임누적접속일	비용대비 누적획득 경험치	비용대비 평균획 득경험치	비용대비 누적던 전 클리어비율	 이탈여부
1	4	46	11.5	0.185	잔존
2	2	180	90	0.466	이탈
			•••		이탈

Tree

• 비용대비 누적 던전 클리어 비율이 낮으면 이탈

. . .

ㆍ 수많은 직선의 결합으로 비선형적인 관계를 모델링하여 잔존과 이탈을 분리

FAST CAMPUS

I DS분야에서 Tree기반 모델이 쓰이는 이유

- 딥러닝 vs 머신러닝
 - 기존 머신러닝 모델: 기본적으로 독립변수들은 서로 독립이라고 가정

• NeuralNetwork: Input feature들의 연속성을 가정함 (Image와 같이)

Part. 05 Clustering

|Clustering이란

FASTCAMPUS ONLINE

머신러닝과 데이터분석 A-Z

강사. 이경택