3.掌握逻辑门(logic gates)电路的逻辑表 达式及真值表的基本概念;

在数字电路中,门电路(一种开关)是最基本的逻辑元件。门电路的输入信号与输出信号间存在一定的逻辑关系,又称逻辑门电路:包括与逻辑,或逻辑,非(negation)逻辑。

The Inverter (反相器或称非门) The AND Gate (与门) The OR Gate (或门) The NAND Gate (与非门) The NOR Gate (或非门) The Exclusive-OR Gate (异或门) The Exclusive-NOR Gate (同或门)

1 基本逻辑运算Basic logic operation

1、与(AND)逻辑运算与逻辑的定义: 仅当决定事件Y发生的所有条件(A,B,C,...)均满足时,事件Y才能发生。表达式(Expression)为:
Y=AB...

\overline{A}	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

真值表 Truth table

1 基本逻辑运算Basic logic operation

2、或(OR)逻辑运算 或逻辑的定义: 当决定事件 Y发生的各种条件(A,B, C,...)中,只要有一个或多 个条件具备,事件Y就发生。 表达式为:

$$Y = A + B + C + ...$$

\boldsymbol{A}	B	Y
0	0	0
0	1	1
1	0	1
1	1	1
真值表		

1 基本逻辑运算Basic logic operation

3、非(NOT)运算 非逻辑指的是逻辑的否定。 当决定事件Y发生的条件(A) 满足时,事件不发生;条件 (A)不满足,事件反而发生。 表达式为:

 $Y = \overline{A}$

真值表

2 分立元件(discrete component)逻辑门电路

门电路(Gate circuit)的概念

门电路是用以实现逻辑关系的电子电路,与前面所讲过的基本逻辑关系相对应。

门电路主要有:与门、或门、非门、与非门、或非门、异或门等。

由电子电路实现逻辑运算时,它的输入和输出信号都是用电位(或称电平,LEVEL)的高低表示的。高电平(HIGH)和低电平(LOW)都不是一个固定的数值,而是有一定的变化范围。

电平的高低 一般用"1"和 "0"两种状态 区别,若规定 HIGH为"1", LOW为 "0"则 称为正逻辑 (Positive logic). 反之则称为负 逻辑(Negative logic)。若无 特殊说明,均 采用正逻辑。

2.1 二极管(diode) "AND" Gate

Logical state table

$oldsymbol{A}$	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

2. 工作原理(Working principle) $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

INPUT *A、B、C*不全为"1",输出 *Y* 为"0"。 INPUT *A、B、C*全为高电平"1",输出 *Y* 为"1"。

2.1 二极管(diode) "AND" Gate

Logical Expression $Y = A \cdot B \cdot C$

3. 逻辑关系:"与"逻辑

逻辑符号(symbol):

Logical state table

$oldsymbol{A}$	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

2.2 二极管(diode) "OR" Gate

1. Circuit

2. Working principle

Logical state table

$oldsymbol{A}$	В	C	Y	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

输入A、B、C有一个为"1",输出 Y 为"1"。 输入A、B、C全为低电平"0",输出 Y 为"0"。

2.2 二极管(diode) "OR" Gate

Logical Expression : Y=A+B+C

3. 逻辑关系:"或"逻辑

HII	- - - - - - - - - - 	6 4 99 1	1 66	99
KU:	∕ ⊞			•
	•			
	.		// -	
	4			V
	<u></u>	U L	Щ	

Logical symbol:

Logical state table

$oldsymbol{A}$	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

2.3 The "NOT" gate circuit of the triode (三极管)

1. Circuit

"与非"门电路 NAND Gate

有"0"出"1",全"1"出"0"

"或非"门电路

有"1"出"0",全"0"出"1"

Example: Draw the OUTPUT waveform according to INPUT waveform

2.3 复合逻辑运算 Compound Logic Operations

(1) 与非(NAND)逻辑运算:它是将逻辑变量先进行与运算再进行非运算(用处最广)。表达式为:

$$F=AB$$

(2)或非(NOR)逻辑运算:它是将逻辑变量先进行或运算再进行非运算。其表达式为:

$$F=A+B$$

(3)与或非(and-or-invert)逻辑运算:它是将逻辑变量先进行与运算后进行或运算再进行非运算。其表达式为:

$$F = \overline{AB + CD}$$

2.3 复合逻辑运算

Compound Logic Operations

(4) 同或(XNOR)运算:如果当两个逻辑变量A和B相同时,逻辑函数F等于1,否则F等于0。

$$F = A \odot B = AB + \overline{A}\overline{B}$$

(5) 异或(XOR)运算:如果当两个逻辑变量A和B相异时,逻辑函数F等于1,否则F等于0。

$$F = A \oplus B = AB + AB$$

2.4 TTL门及三态门(tri-state gate)

(三极管—三极管逻辑门电路)

TTL门电路是双极型集成电路,与分立元件相比,具有速度快、可靠性高和微型化等优点,目前分立元件电路已被集成电路替代。

Expression: $Y = \overline{A \cdot B \cdot C}$

NAN	ND log	gical s	state	<u>A</u> &
\overline{A}	В	<i>C</i>	Y	$B \longrightarrow Y$
0	0	0	1	
0	0	1	1	NAND Gate
0	1	0	1	
0	1	1	1	有 "0"出 "1" 了
1	0	0	1	NA NID logic
1	0	1	1	NAND logic
1	1	0	1	relationship
1	1	1	0 •	一 全 "1"出 "0"

三态输出"与非"门

★三态门应用: 可实现用一条总线分时传送 几个不同的数据或控制信号。

