Übungsblatt 7 Turing-Maschine

HTWG-Konstanz
Gesundheitsinformatik / Angewandte Informatik - WS24/25
Theoretische (Grundlagen der) Informatik

Prof. Dr. Renato Dambe

06.12.2023

Aufgabe 1

Gegeben ist die folgende Turing-Maschine $T_x = (S, \Sigma, \Pi, \delta, s_0, \square, F)$ mit

$$S = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

$$\Pi = \{0, 1, \square\}$$

$$F = \{q_3\}$$

 δ siehe Tabelle / Diagramm

Geben Sie an, welches Ergebnis T_x unter Eingabe von $\omega_1, ..., \omega_4$ berechnet wird.

a)
$$\omega_1 = 0$$

b)
$$\omega_2 = 1$$
 10

c)
$$\omega_3 = 10$$
 11

d)
$$\omega_4 = 111$$
 1000

Geben Sie hierfür zuerst alle Konfigurationen an, welche T_x , ausgehend von der Startkonfiguration, bis zur Endkonfiguration durchläuft. Verwenden Sie hierfür die tabellarische Notation oder Konfigurationsübergänge. Geben Sie dann das Ergebnis der Berechnung an.

e) Welche Funktion berechnet T_x für ein Eingabewort $\omega \in \Sigma^*$

Aufgabe 2

Gegeben ist die folgende Turing Maschine $T_x = (S, \Sigma, \Pi, \delta, s_0, \square, F)$ mit

$$S = \{z_0, z_1, z_2, z_3, z_e\}$$

$$\Sigma = \{0, 1\}$$

$$\Pi = \{0, 1, \square\}$$

$$F = \{z_e\}$$

 δ siehe Tabelle / Diagramm

Quelle: Uni-Chemnitz 10 -> 1, 101 -> 100, 111 -> 110, 1 -> 1

- a) Welche Ausgaben hat die Maschine auf die folgenden Eingaben 10, 101, 111, 1
- b) Geben Sie alle Konfigurationen der TM an bei der Eingabe des Wortes 100 (#, z0, 100)(1, z0, 00)(10, z0, 0)(100, z0, 0)(10, z1, 0)(1, z1, 0)(#, z1, 0)(#, z1, 0)(#, z2 #011)(#, z3, 0)(#, ze, 1 c) Welche Funktion wird durch die Turingmaschine berechnet?

Tx = Eingabe in Binär - 1

Aufgabe 3

Gegeben ist die folgende Turing-Maschine $T_x = (S, \Sigma, \Pi, \delta, s_0, \square, F)$ mit

$$S = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_{e1}, q_{e2}\}$$

$$\Sigma = \{0, 1\}$$

$$\Pi = \{0, 1, 2, \square\}$$

$$F = \{q_{e1}, q_{e2}\}$$

 δ siehe Tabelle / Diagramm

a) Geben Sie an, welches Ergebnis T_x unter Eingabe von $\omega_1, ..., \omega_4$ berechnet wird.

	Eingabe	Ergebnis
1)	$\omega_1 = 1$	11
2)	$\omega_2 = 10$	110
3)	$\omega_3 = 101$	1111

- b) Geben Sie alle Konfigurationen an, welche T_x , ausgehend von der Startkonfiguration, bis zur Endkonfiguration bei der Eingabe $\omega_5 = 11$ durchläuft. Geben Sie dann das Ergebnis der Berechnung an.
- (0, q0, 11)(1, q1, 1)(11, q1, #)(1, q2, 11)(#, q3, 111)(1, q5, 11)(#, q6, 101)(#, q3, #201)(#, q4, 201)
 - c) Welche Funktion f(x) berechnet T_x für ein Eingabewort $\omega \in \Sigma^*$ (#, q6, #001)(#, qe2, 1001) f(x) = 3 * x

Aufgabe 4

Gegeben ist die folgende Turing-Maschine $T_x = (S, \Sigma, \Pi, \delta, s_0, \square, F)$ mit

$$S = \{q_1, q_2, q_3, q_4, q_5, q_6, q_e\}$$

$$\Sigma = \{1\}$$

$$\Pi = \{0, 1, \square\}$$

$$F = \{q_e\}$$

 δ siehe Tabelle / Diagramm

δ	0	1	
q_1	-	$(q_1,1,\rightarrow)$	$(q_2, \square, \leftarrow)$
q_2	-	$(q_3, \square, \leftarrow)$	-
q_3	-	$(q_3,1,\leftarrow)$	(q_4,\square,\leftarrow)
q_4	$(q_5,1,\rightarrow)$	$(q_4,0,\leftarrow)$	$(q_5,1,\rightarrow)$
q_5	$(q_5,0,\rightarrow)$	$(q_5,1,\rightarrow)$	$(q_6, \square, \rightarrow)$
q_6	-	$(q_1,1,\rightarrow)$	$(q_e,\square,\circlearrowright)$

a) Geben Sie an, welches Ergebnis T_x unter Eingabe von $\omega_1, ..., \omega_3$ berechnet wird.

	Eingabe	Ergebnis
1)	$\omega_1 = 11$	10
2)	$\omega_2 = 111$	11
3)	$\omega_3 = 1111$	11

b) Geben Sie alle Konfigurationen an, welche T_x , ausgehend von der Startkonfiguration, bis zur Endkonfiguration bei der Eingabe $\omega_4=1$ durchläuft. Geben Sie dann das Ergebnis der Berechnung an.

(#, q1, 1)(1, q1, #)(#, q2, 1)(#, q3, #)(#, q4, #)(1, q5, #)(1#, q6, #)(1#, qe, #)

c) Was berechnet die Turingmaschine T_x bei einem beliebigen unären Eingabewort $\omega \in \Sigma^*$?

?

Aufgabe 5

Gegeben ist die folgende Turing-Maschine $T_x = (S, \Sigma, \Gamma, \delta, s_0, \square, F)$ mit

$$S = \{q_1, q_2, q_3, q_4, q_5, q_e\}$$

\(\Sigma = \{a,b\}\)

$$\Sigma = \{a, b\}$$

$$\begin{split} \Pi &= \{ \text{a,b,c,d,} \square \} \\ s_0 &= q_1 \\ \text{F} &= \{ q_e \} \\ \delta \text{ siehe Tabelle / Diagramm} \end{split}$$

a) Geben Sie an, welches Ergebnis T_x unter Eingabe von $\omega_1, ..., \omega_4$ berechnet wird.

	Eingabe	Ergebnis
1)	$\omega_1 = aabba$	aaabb
2)	$\omega_2 = aaababbbb$	aaaabbbbb
3)	$\omega_3 = babab$	aabbb
4)	$\omega_4 = bbaaa$	aaabb

b) (#, q1, abba)(a, q1, bba)(ac, q2, ba)(acb, q2, a)(acba, q2, #)(acb, q3, a) (ac, q4, bd)(a, q4, cbd)(aa, q1, bd)(aac, q2, d)(aa, q3, cb)(a, q5, abb)(#, q5, aabb) (#, q5, #aabb)(#, qe, aabb)

- b) Geben Sie alle Konfigurationen an, welche T_x , ausgehend von der Startkonfiguration, bis zur Endkonfiguration bei der Eingabe $\omega_4 = \mathbf{abba}$ durchläuft. Geben Sie dann die Ausgabe der Turingmaschine T_x für die Eingabe ω_4 an.
- c) Was macht die Turingmaschine T_x mit einem beliebigen Eingabewort $\omega_x \in \Sigma^*$?

 Die Eingabe wird sortiert.

Aufgabe 6

Erstellen Sie eine Turing-Maschine, die eingegebene binäre Zahl mit zwei multipliziert und 1 addiert.

Aufgabe 7

Geben Sie für die angegebenen Grammatiken an, welcher Chomsky-Hierarchie (Typ-0 bis Typ-3) sie zuzuordnen sind.

Grammatik	Typ(0-3)
$A \to AbC aBc$ $aB \to CAb bCb$ $Ba \to cba bA$ $C \to a b c$	1
$A \to aB Cc$ $B \to bA d$ $C \to cB a b$	3
$A \rightarrow aAaa bbBC$ $bbB \rightarrow cC abcA$ $BC \rightarrow cBa \epsilon$ $C \rightarrow abc cba$	1
$A \to Bb Cb$ $B \to Ac \epsilon$ $C \to Bb Aa$	2

Aufgabe 8

Geben Sie an, welchen Typ die angegebenen Grammatiken nach Chomsky haben und welches Automatenmodell mindestens erforderlich ist, um die Sprache der angegebenen Grammatik zu erkennen.

Grammatik	Chomsky- Hierarchiestufe	Automat
$A \to aB cC$ $B \to Ab b$ $C \to aC bB c$	3	Endlicher
$A \to aC bB$ $B \to cA \epsilon$ $aBc \to bC \epsilon$ $C \to bB cC$	1	Turing
$A \rightarrow aAa cBBc$ $B \rightarrow bB Cd$ $aBa \rightarrow aaB Baa$ $C \rightarrow bA cB a$ $dC \rightarrow Bdd$	1	Turing
$A \to Ba Ab$ $B \to Cc \epsilon$ $C \to Ac Cb$	2	Keller
$A \to CB cAb$ $B \to aBc b$ $aaB \to Ba Baa$ $C \to cCc a$	1	Turing

Aufgabe 9

10 Geben Sie an, welchen Typ die angegebenen Grammatiken nach Chomsky haben und welches Automatenmodell mindestens erforderlich ist, um die Sprache der angegebenen Grammatik zu erkennen.

Grammatik	Typ (nach Chomsky)	Automat
$A \to bA cc$ $B \to aB Bc b$ $C \to aC bb c$	3	Endlicher
$A \to ACc cc$ $B \to BB aBc b$ $C \to cBc b$ $Cbb \to Ab bbB$	1	Turing
$A \rightarrow aAa cBBc$ $B \rightarrow bB Cd$ $aB \rightarrow Ba aA$ $C \rightarrow Ab bB c$ $Ca \rightarrow Aaa$	1	Turing
$A \to bA aB$ $B \to cC \epsilon$ $C \to aC cB$	2	Keller
$A \to bA aB$ $B \to Abb b$ $C \to aCa bbA c$	2	Keller