UCLA Math151A Fall 2021 Lecture 6 20211006

Newton's Method and Quick Into to Secant Method

Optional reading: book 2.3.

Newton's Method and Secant Method are root finding methods

The goal is to solve f(x) = 0 for x.

Newton's Method

Newton's Method (N.M.) is a classic technique.

It's used in science and engineering, research and industry all the time.

Many different ways for deriving it.. We will cover 3 of them.

Analytic Derivation of Newton's Method

an analytic derivation based on Taylor polynomials

Let $f \in C^2([a,b])$ p is a root (f(p) = 0) suppose p_n is "close to" p, i.e., $|p_n - p|$ is "small".

$$\Rightarrow 0 = f(p) = f(p_n) + f'(p_n)(p - p_n) + f''(\xi) \frac{(p - p_n)^2}{2},$$

 ξ is between p and p_n

If $|p-p_n|$ is "small", then $|p-p_n|^2$ is "really small".

$$\Rightarrow \text{ Up to an error of size } \approx (p - p_n)^2, \\ 0 = f(p) = f(p_n) + f'(p_n)(p - p_n)$$

$$\Rightarrow p = p_n - \frac{f(p_n)}{f'(p_n)}$$

Theorem 6.1 (Taylor's theorem). Let $f \in C^n([a,b])$, let $x_0 \in [a,b]$, and let $f^{(n+1)}$ exists on (a,b). Then $\forall x \in [a,b]$, \exists some $\xi(x) \in \mathbb{R}$ s.t. $x_0 < \xi < x$ and

$$f(x) = P_n(x) + R_n(x)$$

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(x - x_0)^2 / 2! + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
(Taylor's polynomial)

$$R_n(x) = \frac{f^{n+1}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$
 (The remainder term)

Let
$$f \in C^2([a,b])$$
 p is a root $(f(p) = 0)$
suppose p_n is "close to" p , i.e., $|p_n - p|$ is "small".
$$\Rightarrow p = p_n - \frac{f(p_n)}{f'(p_n)}$$

This can be used to "invent" Newton's Method (N.M.):

Definition 6.1 (Newton's Method).

Start with p_0 close to p, then do

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}.$$

Remark 6.1. The initial guess p_0 must be close to p, otherwise the analytic derivation breaks down.

pretty smooth.

pretty smooth. The true root is p.

pretty smooth.

The true root is p.

We pick p_0 close by

pretty smooth. The true root is p. We pick p_0 close by

pretty smooth.

The true root is p.

We pick p_0 close by

pretty smooth.

The true root is p.

We pick p_0 close by

pretty smooth. The true root is p. We pick p_0 close by

pretty smooth.

The true root is p.

We pick p_0 close by

following the tangent lines at each point $(p_n, f(p_n))$ we can see that we get closer and closer to p.

Now let's derive the expression of finding the intersection of the tangent line with the x axis

tangent line be y = ax + b, intersection with the x axis be p_{n+1}

we know

$$f(p_n) = ap_n + b,$$

$$0 = ap_{n+1} + b,$$

$$a = f'(p_n),$$

The unknowns are a, b, p_{n+1} .

Solving them we get

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}.$$

what happens if we picked a p_0 that is far away from p?

what happens if we picked a p_0 that is far away from p?

Probably lead us further away.

A Third Derivation: Fixed Point Derivation

Theorem

Let $g(x) := x - \frac{f(x)}{f'(x)}$ for some $f \in C^1([a, b])$ where also $f'(x) \neq 0$ for $x \in [a, b]$.

Then
$$g(p) = p$$
 if and only if $f(p) = 0$.

Proof. Basic algebra.

So define a fixed point iteration from g:

$$p_{n+1} = g(p_n) = p_n - \frac{f(p_n)}{f'(p_n)}.$$

Remarks about Newton's Method

Must have $f'(p_n) \neq 0, \forall n$.

Otherwise N.M. will fail.

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}.$$

Pro of N.M.:

• It will converge faster than the B.M. to the root p of function f(x) (when it does converge).

Con of N.M.:

- Unlike the B.M., N.M. is a local method, not global. That means p_0 must be sufficiently close to p for success.
- N.M. requires knolwedge of f'(x) and evaluation of f'(x) (could be costly, especially when f is $\mathbb{R}^n \to \mathbb{R}^m$).

In higher dimensions, if f is $\mathbb{R}^n \to \mathbb{R}^n$, then N.M. is:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - (\mathbf{J}(\mathbf{x}_n))^{-1}\mathbf{f}(\mathbf{x}_n)$$

where $\mathbf{J}(\mathbf{x})$ is the Jacobian matrix and

$$J_{ij} = \frac{\partial f_i}{\partial x_j}(\mathbf{x}).$$

Secant Method Quick Intro

• N.M. requires knolwedge of f'(x) and evaluation of f'(x)

$$f'(p_n) \approx \frac{f(p_n) - f(p_{n-1})}{p_n - p_{n-1}}$$
, This defines the **Secant Method**.

Definition 6.2. Secant Method Given some p_0 and p_1 , define

$$p_{n+1} = p_n - f(p_n) \frac{p_n - p_{n-1}}{f(p_n) - f(p_{n-1})},$$

where
$$\frac{p_n - p_{n-1}}{f(p_n) - f(p_{n-1})} \approx (f'(p_n))^{-1}$$
.

Secant method is useful when you don't have access to f'(x), E.g., when f comes from experimental data!

Next time:

Newton Convergence Theorem: Newton converges for sufficiently close initial guess!