Session #04&05

CMSC 409: Artificial Intelligence

Virginia Commonwealth University, Fall 2023, Dr. Milos Manic

(mmanic@vcu. edu)

1

Topics for today

- Announcements
- Previous session review
- Learning of Agents...
 - functionalities of learning units
 - AND, OR, NOT, other examples
- Normalization

© M. Manic, CMSC 409: Artificial Intelligence, F2

Session 04&05, Updated on 9/5/23 4:46:25 PM

CMSC 409: Artificial Intelligence Session # 04&05

Announcements

- Canvas
 - New slides posted
- Office hours zoom
 - Zoom disconnects me after 45 mins of inactivity. Feel free to chat me via zoom if that happens and I will reconnect (zoom chat welcome outside of office hours as well)!
- "zeroth" assignment (form a team)
 - Deadline today (Aug. 31) all teams formed!
- Project #1
 - Deadline Sep. 14 (noon)
- Paper (optional)
 - First draft due Sep. 12 (noon)
 - \bullet Think about the topic of your paper and confirm on 1^{st} draft deliverables (class paper instructions)
- Subject line and signature
 - Please use [CMSC 409] Last Name Question

© M. Manic, CMSC 409: Artificial Intelligence, F23

Page 3

Session 04&05, Updated on 9/5/23 4:46:25 PM

3

$$net = \sum_{i=1}^{n} w_i x_i \qquad out = \begin{cases} 1 & if \ net \ge 0 \\ 0 & if \ net < 0 \end{cases}$$

(unipolar hard activation)

Unipolar neurons -> possible outputs are: ?

© M. Manic, CMSC 409: Artificial Intelligence, F23

Session 04&05, Updated on 9/5/23 4:46:25 PM

7

McCulloch-Pitts neurons $net = \sum_{i=1}^{n} w_i x_i + w_{n+1} \qquad out = \begin{cases} 1 & \text{if } net \ge 0 \\ 0 & \text{if } net < 0 \end{cases} \quad \begin{array}{l} \text{Unipolar neurons} \longrightarrow \\ \text{possible outputs are: ?} \\ \\ \hline 000 \\ 001 \\ 010 \\ 011 \longrightarrow \\ \dots \\ 111 \\ \hline \end{array}$ Basic logical operations C. M. Manic, CMSC 409: Artificial Intelligence, F23

McCulloch-Pitts neurons

$$net = \sum_{i=1}^{n} w_i x_i + w_{n+1} \qquad out = \begin{cases} 1 & if \ net \ge 0 \\ 0 & if \ net < 0 \end{cases}$$
 Unipolar neurons -> possible outputs are: ?

(2, 3]

OR

Basic logical operations

© M. Manic, CMSC 409: Artificial Intelligence, F23

Session 04&05, Updated on 9/5/23 4:46:25 PM

11

McCulloch-Pitts neurons

$$net = \sum_{i=1}^{n} w_i x_i + w_{n+1} \qquad out = \begin{cases} 1 & \text{if } net \ge 0 \\ 0 & \text{if } net < 0 \end{cases}$$
 Unipolar neurons -> possible outputs are: ?

AND

(2, 3]

OR

(0, 1]

Basic logical operations

© M. Manic, CMSC 409: Artificial Intelligence, F2

Session 04&05. Updated on 9/5/23 4:46:25 PM

McCulloch-Pitts neurons

$$net = \sum_{i=1}^{n} w_i x_i + w_{n+1} \qquad out = \begin{cases} 1 & if \ net \ge 0 \\ 0 & if \ net < 0 \end{cases}$$
 Unipolar neurons -> possible outputs are: ?

OR
$$B \xrightarrow{A+1} T=0.5 \xrightarrow{A+B+C} (0, 1]$$

Basic logical operations

© M. Manic, CMSC 409: Artificial Intelligence, F23

Session 04&05, Updated on 9/5/23 4:46:25 PM

13

McCulloch-Pitts neurons

$$net = \sum_{i=1}^{n} w_i x_i + w_{n+1} \qquad out = \begin{cases} 1 & \text{if } net \ge 0 \\ 0 & \text{if } net < 0 \end{cases}$$
 Unipolar neurons -> possible outputs are: ?

OR
$$\begin{array}{c}
A \to 1 \\
B \to 1 \\
C \to 1
\end{array}$$

$$T=0.5 \longrightarrow A+B+C \longrightarrow (0, 1]$$

NOT
$$A = -1$$
 $T=-0.5$ $A = -1$ $T=-0.5$

Basic logical operations

© M. Manic, CMSC 409: Artificial Intelligence, F.

Session 04&05, Updated on 9/5/23 4:46:25 PM

Boolean function: A or B and C

Provide first neuron definition:

$$net = \sum_{i=1}^{n} w_i x_i + w_{n+1};$$
 $o = \begin{cases} 1, & \text{if } net \ge 0 \\ 0, & \text{if } net < 0 \end{cases}$

Always start with definition of net and output

Next provide the truth table with inequalities:

A	В	C	A+BC	inequalities	out
0	0	0	0	0 < T; T=1.5	0 < 1.5
0	0	1	0	wc < T	+1 < 1.5
0	1	0	0	$wb \le T$	+1 < 1.5
0	1	1	1	$wb+wc \ge T$	+2 ≥ 1.5
1	0	0	1	$wa \ge T$	+2 ≥ 1.5
1	0	1	1	$wa+wc \ge T$	+3 ≥ 1.5
1	1	0	1	$wa+wb \ge T$	+3 ≥ 1.5
1	1	1	1	$wa + wb + wc \ge T$	+4 ≥ 1.5

© M. Manic, CMSC 409: Artificial Intelligence, EAWA+BWB+ CWC>=T; 2A+1B+1C>= Tession 04&05, Updated on 9/5/23 4:46:26 PM

25

Project 1:

Normalization

- □ refresher
- □ when/why needed

© M. Manic, CMSC 409: Artificial Intelligence, F2

Page 26

Session 04&05. Updated on 9/5/23 4:46:26 PM

Normalization techniques at a glance (Google ML) Original data: $x = (x_1, x_2, ..., x_n)$ Normalized data: $z = (z_1, z_2, ..., z_n)$ • Scaling to a range (min-max scaling) • To values between 0 & 1; need to know upper/lower bounds; max(x) - min(x)data somewhat uniformly distributed (e.g. age, not income) • (Feature) clipping • In case of extreme outlies; caps values outside certain values; clip all temp values above 40 to exactly 40; can be applied before/after other normalizations Log scaling $z_i = \log(x_i)$ · When handful values have many points, while most other just a few (e.g. movie ratings – most have few, but a few have lots of ratings) Z-score (standardization) $z_i = (x_i - \mu) / \sigma$ • Number of standard deviations (σ) away from the mean (μ) • When you have a few outliers, but not so extreme that clipping is needed; to ensure μ =0 and σ =1; © M. Manic, CMSC 409: Artificial Intelligence, F23 Session 04&05, Updated on 9/5/23 4:46:26 PM Google ML https://developers.google.com/machine-learning/data-prep/transform/no

Normalization (min-max scaling)

Normalization along two dimensions

- Normalizing data to [0-1] range
 - Normalization is used to scale data

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

• Original data:

$$x=(x_1,x_2,\dots,x_n)$$

• Normalized data:

$$z = (z_1, z_2, \dots, z_n)$$

Note: sensitive to outliers!

© M. Manic, CMSC 409: Artificial Intelligence, F23

Session 04&05, Updated on 9/5/23 4:46:26 PM

29

Standardization

(if you have used this in place of normalization, no need to change)

• Standard score (z-score):

$$z_i = \frac{x_i - \mu}{\sigma}$$

- σ standard deviation of the population, μ mean of the population, z distance between x_i and the population mean in units of the standard deviation (z is negative when the x is below the mean, positive when above)
- Normalized data:

$$z=(z_1,z_2,\dots,z_n)$$

Note:

- Standardization creates new data not bounded (unlike normalization); can be negative.
- Normalization usually means to scale a variable to have values between 0 and 1, while standardization transforms data to have a mean of zero and a standard deviation of 1.
- Normalization or standardization, it should be applied to a whole (complete) dataset.

© M. Manic, CMSC 409: Artificial Intelligence, F23

Session 04&05, Updated on 9/5/23 4:46:26 PM

Things to remember...

• For now...

- Working with binary neurons only (0, 1 for inputs & outputs)
- Later we will relax to any real values

• Presented AND & OR neurons

- The only difference is T (same # of inputs, same input weights)
 If you change T, you can create other neuron functionality (like AB+BC+CA)

Always...

- Define net and output first.
- Solution is not valid otherwise...

· Threshold vs. bias

- Threshold is bias (with opposite sign), and vice versa
- Careful to count T (bias) once only

• Truth tables

- Always consider ALL possible input patterns
- Neuron inequality must be true for all possible input pattern

© M. Manic, CMSC 409: Artificial Intelligence, F23

Session 04&05, Updated on 9/5/23 4:46:26 PM