

Autonomous Virtual Car Racing

Using a deep reinforcement learning model to achieve human-level control in a car racing simulator

Growth in the Car Racing Gaming Industry

- The U.S. video game market has an estimated value at around 65 billion USD 1
- The mobile gaming market accounted for about 57% of the total worldwide gaming revenue in 2020²
- The top mobile racing game (KartRider Rush+) grossed 169 million USD in revenue between April 2020 and March 2021³

Programming Non-Playable Characters (NPCs)

- A common feature racing games share is the ability to race against non-playable characters (NPCs)
- Popular approaches to program NPCs involve explicit hard-coded algorithms:
 waypoint tracking and trigger detection ⁴

Car Racing Game

- We use the CarRacing-v0 environment from OpenAl Gym and the CarRacing-v1 environment, a custom open-source environment
- Both environments:
 - Generate pixels that represent the in-game frame at each time step.
 - \circ Are based on an action space of gas (acceleration), brake (deceleration), and steering
 - At each step, the environment expects an action and outputs the next state, its associated reward, and whether or not the episode has terminated

Version 0 Environment

- Each frame is an RGB array of (96, 96, 3) pixels
- Uses a continuous action space, where the amount of acceleration, deceleration, and steering are represented by a continuous number in [0, 1]
- The reward is:
 - - 0.1 for every passing frame
 - +1000N for every track tile visited, where N is the number of tiles visited

Version 1 Environment

- The input consists of four consecutive gray-scaled frames stacked together (96, 96, 4)
- Each frame has the bottom display panel removed
- Discretized the action space to only 5 actions:
 - Left
 - Right
 - Brake
 - Accelerate
 - Do nothing

How do we define success?

- According to OpenAI, solving the challenge requires an average reward of 900 points out of a possible 1000 over 100 consecutive trials
- Empirically, however, we may need less to surpass human performance
- Over 100 consecutive trials, I personally scored an average reward of only 598
- The OpenAl challenge benchmark and my personal human benchmark will serve as primary and secondary objectives respectively

Our Approach

- 1. Pre-processing
- 2. Modeling

Pre-processing

- Gray-scaling
- Frame-stacking
- Frame-skipping

Discretizing the Action Space

- Version 1 environment was already discretized
- We discretized Version 0 into 12 possible actions:
 - Do Nothing
 - Left
 - Right
 - Brake
 - Brake Left
 - Brake Right
 - Accelerate
 - Accelerate Left
 - Accelerate Right
 - Drift
 - Drift Left
 - Drift Right

Modeling

- Built a deep Q-learning network, which is a convolutional neural network that learns to estimate the value of taking a particular action during a given frame
- The network contained two convolutional layers and two max pooling layers,
 with a dense layer containing 256 hidden units
- The output units corresponded to the number of possible actions taken at any state

Generating our Dataset

- Our neural network trained in batches of 128
- To combat inefficient learning, we reduced the number of correlated frames within a batch by using experience replay

Results

- Over 100 consecutive trials, the V1 agent scored an average of 410 out of 1000 possible points
- Over 100 consecutive trials, the V0 agent scored an average reward of 820 out of 1000 possible points, surpassing the sample human performance

Results

• Over 100 consecutive trials, the agent scored an average reward of 820 out of 1000 possible points, surpassing the sample human performance

Mean Episodic Reward in Epoch

Training Loss

References

- 1. "Topic: Video Game Industry." Statista. Accessed August 20, 2021. https://www.statista.com/topics/868/video-games/.
- 2. "Topic: Mobile Gaming Market in the U.S." Statista. Accessed August 20, 2021. https://www.statista.com/topics/1906/mobile-gaming/.
- 3. Statista. "Top Grossing Mobile Racing Games 2021." Accessed August 20, 2021. https://www.statista.com/statistics/1231418/top-mobile-racing-games-by-revenue/.
- 4. Chan, Marvin T., Christine W. Chan, and Craig Gelowitz. "Development of a Car Racing Simulator Game Using Artificial Intelligence Techniques." *International Journal of Computer Games Technology* 2015 (November 16, 2015): e839721. https://doi.org/10.1155/2015/839721.