Lecture 2: Introduction to ML and Classical Models

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

What is Machine Learning?

- Let's review some inspirational quotions ...
 - "Machine learning is the hot new thing"
 - John L. Hennessy, President of Stanford (2000–2016)
 - "A breakthrough in machine learning would be worth ten Microsofts"
 - Bill Gates, Microsoft Co-Founder
 - "Computers are able to see, hear and learn. Welcome to the future."
 - Dave Waters, Professor at University of Oxford
 - "If software ate the world, models will run it"
 - Steven A. Cohen and Matthew W. Granade, The Wallstreet Journal, 2018
 - ...

- The main motivation which we develop (computer) programs is to automate various kinds of (often tedious) processes.
- So far, we have learned to program the computers. the analogy that we have been using is something similar to this:

Figure: classical programming paradigm. source

- The preceding traditional programming paradigm has several disadvantages:
 - what if we don't know waht program should we write for the given data (inputs)?
 - what if the inputs change dynamically over the time? should we write another program?
- In order to resolve such problems, we should replace the need of developing computer programs "manually"
- In other words, we would like to automate the process of creating programs by informing the computer, the inputs and outputs that it needs:

Figure: ML paradigm. source

- The preceding model was the main function of Machine Learning paradigm, In fact ML systems use both inputs and outputs to discover the Rules and Patterns behind the data
- Now that we are fimiliar with ML paradigm, we would like to define it formally:

 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
- Here, inputs and outputs would be the experience (*E*), the main problem(s) that the computer wants to solve, is the class of tasks (*T*) and finally the performance measure shows how computer succeeded in performing (*P*)

Categories of Machine Learning

- The three broad categories of ML are summerized in:
 - Supervised Learning
 - Unsupervised Learning
 - **▶** Reinforcement Learning

Figure: Categories of ML (source: Raschka and Mirjalili: Python Machine Learning, 3rd Ed.)

Introduction to Supervised Learning

Supervised learning is the subcategory of machine learning that focuses on learning a Classification (Figure left), or Regression model (Figure right), that is, learning from labeled training data (i.e., inputs that also contain the desired outputs or targets; basically, "examples" of what we want to predict).

Figure: Illustration of a binary classi cation problem.

Figure: Illustration of a linear regression model.

Machine Learning: General Goals

- When we are applying machine learning to real-world problem solving, we need to define the overall objective first and then choose the right tool for the task.
- Goals in ML are mainly classified into two important categories:
 - ▶ Using for Prediction: to be able to predict what the responses are going to be to future input variables.
 - **Extracting Information**: to extract some information about how nature is associating the response variables to the input variables.
- **Important Note**: recall the data set $\mathcal{D} = (\mathbf{X}_{n \times m}, \mathbf{y})$, when our goal is extracting the information behind the data, we are only dealing with $\mathbf{X}_{n \times m}$ to recognize the pattern behind the data but in case of using prediction, we are dealing with $(\mathbf{X}_{n \times m}, \mathbf{y})$

Machine Learning: General Goals

- When we are applying machine learning to real-world problem solving, we need to define the overall objective first and then choose the right tool for the task.
- Goals in ML are mainly classified into two important categories:
 - ▶ Using for Prediction: to be able to predict what the responses are going to be to future input variables.
 - **Extracting Information**: to extract some information about how nature is associating the response variables to the input variables.
- Important Note: recall the data set $\mathcal{D} = (\mathbf{X}_{n \times m}, \mathbf{y})$, when our goal is extracting the information behind the data, we are only dealing with $\mathbf{X}_{n \times m}$ to recognize the pattern behind the data but in case of using prediction, we are dealing with $(\mathbf{X}_{n \times m}, \mathbf{y})$

Glossary

- **Training example**: A row in the table representing the dataset. Synonymous to an observation, training record, training instance, training sample (in some contexts, sample refers to a collection of training examples).
- **Training**: Model fitting, for parametric models similar to parameter estimation.
- **Feature**, x: A column in the table representing the dataset. Synonymous to predictor, variable, input, attribute, independent variable, and covariate.
- **Target**: Synonymous to outcome, output, response variable, dependent variable, (class) label, ground truth.
- **Predicted output,** \hat{y} : Use this to distinguish from targets; here, means output from the model.
- Loss function: Often used synonymously with cost function; sometimes also called error function. In some contexts the loss for a single data point, whereas the cost function refers to the overall (average or summed) loss over the entire dataset. Sometimes also called empirical risk.

Glossary

- **Hypothesis:** A hypothesis is a certain function that we believe (or hope) is similar to the true function, the target function that we want to model. In context of *spam* classification, it would be a classification rule we came up with that allows us to separate spam from non-spam emails.
- **Model**: In the machine learning field, the terms *hypothesis* and *model* are often used interchangeably. In other sciences, they can have different meanings: A hypothesis could be the "educated guess" by the scientist, and the model would be the manifestation of this guess to test this hypothesis.
- Learning algorithm: Again, our goal is to find or approximate the target function, and the learning algorithm is a set of instructions that tries to model the target function using our training dataset. A learning algorithm comes with a hypothesis space, the set of possible hypothesis it explores to model the unknown target function by formulating the final hypothesis.

Glossary

- Classifier: A classifier is a special case of a hypothesis (nowadays, often learned by a machine learning algorithm). A classifier is a hypothesis or discrete-valued function that is used to assign (categorical) class labels to particular data points. In an email classification example, this classifier could be a hypothesis for labeling emails as spam or non-spam. Yet, a hypothesis must not necessarily be synonymous to the term classifier. In a different application, our hypothesis could be a function for mapping study time and educational backgrounds of students to their future, continuous-valued, SAT scores a continuous target variable, suited for regression analysis.
- Hyperparameters: Hyperparameters are the *tuning parameters* of a machine learning algorithm for example, the regularization strength of an L2 penalty in the mean squared error cost function of linear regression, or a value for setting the maximum depth of a decision tree. In contrast, model parameters are the parameters that a learning algorithm fits to the training data the parameters of the model itself. For example, the weight coeffcients (or slope) of a linear regression line and its bias (or y-axis intercept) term are *model parameters*.

Thank You!

Any Question?