Algebra II Winter 2021 Frank Sottile

5 April Tenth Homework

Write your answers neatly, in complete sentences, and prove all assertions. Start each problem on a new page (this makes it easier in Gradescope). Revise your work before handing it in, and submit a .pdf created from a LaTeX source to Gradescope. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Due Monday 12 April.

- 1. Let F/K be a field extension and $u_1, \ldots, u_n \in F$. Show that $K(u_1, \ldots, u_n)$ is the quotient field of the ring $K[u_1, \ldots, u_n]$. (We have been assuming this. Please, do not give a circular argument.)
- 2. Let F/K be a finite Galois extension and L,M intermediate fields that are Galois over K. Prove that $[L \cap M \colon K] \cdot [LM \colon K] = [L \colon K] \cdot [M \colon K]$.
- 3. Suppose that F/K is a splitting field of a set S of polynomials in K[x] and that E is an intermediate field. Show that F/E is a splitting field for S.
- 4. Show that no finite field K is algebraically closed; that is, there is a polynomial $f \in K[x]$ with no root in K.
- 5. Let E be an intermediate field of the field extension F/K.
 - (a) Show that if $u \in F$ is separable over K, then it is separable over E.
 - (b) Show that if F/K is separable, then so are F/E and E/K.
- 6. Let L,M be intermediate fields of a field extension F/K such that L/K is finite and Galois. Show that LM/M is a finite Galois extension and $\operatorname{Gal}(LM/M) \simeq \operatorname{Gal}(L/L \cap M)$.
- 7. Show that normality is not transitive. Hint: Let $r \in \mathbb{R}$ be a number such that $r^4 = 2$ and consider $\mathbb{Q}(r) \supset \mathbb{Q}(r^2) \supset \mathbb{Q}$.
- 8. Determine the Galois group of the rational polynomial $f = x^4 4x^2 + 1$.