	A	В	C	D	E	F	G	Н
1	TIPO DE	TÍTULO DO	PRINCIPAL		CONFERÊNCIA/		TIPO DE	
1	ESTUDO	TRABALHO	AUTOR	PUBLICAÇÃO	REVISTA	ABORDAGEM	TÉCNICA	REFERÊNCIA
2	Revisão Sistemática	Artificial Intelligence Techniques for Predictive Modeling of Vector-Borne Diseases and its Pathogens: A Systematic Review	Kaur I	2022	Archives of Computational Methods in Engineering	Machine Leaarning	Apresentação de técnicas	Kaur, I., Sandhu, A.K. and Kumar, Y. (2022) "Artificial Intelligence Techniques for Predictive Modeling of Vector-Borne Diseases and its Pathogens: A Systematic Review", Archives of Computational Methods in Engineering, http://dx.doi.org/10.1007/s11831-022-09724-9 .
3	Artigo oriundo da revisão sistemática de Kaur (2022)	Soft Computing of a Medically Important Arthropod Vector with Autoregressive Recurrent and Focused Time Delay Artificial Neural Networks	Damos P	2021	MDPI / Insects	Machine Leaarning	Redes Neurais Artificiais (RNA)	Damos P, Tuells J, Caballero P (2021) "Soft computing of a medically important arthropod vector with autoregressive recurrent and focused time delay artificial neural networks", Insects 12(6):503
4	Artigo oriundo da revisão sistemática de Kaur (2022)	Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico	Laureano- RosarioAE	2018	Tropical Medicine and Infectious Disease	Machine Leaarning	Redes Neurais Artificiais (RNA)	Laureano-Rosario AE, Duncan AP, Mendez-Lazaro PA, Garcia-Rejon JE, Gomez-Carro S, Farfan-Ale J, Muller-Karger FE (2018) "Application of artificial neural networks for dengue fever outbreak predictions in the northwest coast of Yucatan, Mexico and San Juan, Puerto Rico", Trop Med Infect Dis 3(1):5
5	Artigo oriundo da revisão sistemática de Kaur (2022)	Dengue confirmed-cases prediction: A neural network model	Aburas HM	2010	Expert Systems with Applications	Machine Leaarning	Redes Neurais Artificiais (RNA)	Aburas HM, Cetiner BG, Sari M (2010) "Dengue confirmed-cases prediction: a neural network model", Expert Syst Appl 37(6): 4256–4260
6	Artigo	The Diagnosis of Dengue Disease: An Evaluation of Three Machine Learning Approaches	Gambhir S	2018	International Journal of Healthcare Information Systems and Informatics (IJHISI)	Machine Leaarning	Redes Neurais Artificiais (RNA) / Naive bayes (NB)	Gambhir S, Malik SK, Kumar Y (2018) "The diagnosis of dengue disease: an evaluation of three machine learning approaches", Int J Healthcare Inf Syst Inf IJHISI 13(3):1–19
7	Artigo oriundo da revisão sistemática de Kaur (2022)	Point-of-Care Serodiagnostic Test for Early-Stage Lyme Disease Using a	Joung HA	2020	ACS Nano .	Machine Leaarning	Redes Neurais Artificiais (RNA)	

	\mathbf{A}	В	\mathbf{C}	D	${f E}$	\mathbf{F}	\mathbf{G}	Н
		Multiplexed Paper-						
		Based Immunoassay and Machine Learning						
		Differential Diagnosis of						
		Dengue and						Caicedo-Torres W, Paternina-
		Chikungunya in						Caicedo Á, Pinzón-Redondo H,
		Colombian Children						Gutiérrez J (2018) "Differential
8		Using Machine						diagnosis of dengue and
Ū		Learning: 16th Ibero-						chikungunya in colombian children
		American Conference on			Advances in Artificial			using machine learning", In: Ibero- American conference on artificial
		AI, Trujillo, Peru, November 13-16, 2018,	Caicedo-Torres		Intelligence -		Regressão	intelligence, pp 181–192. Springer,
	Artigo	Proceedings	W	2018	IBERAMIA	Machine Leaarning	logística (LR)	Cham
	1111160	Trecountings		2010	IDDIU IIVIII I		registreu (21t)	Baghbanzadeh M, Kumar D,
								Yavasoglu SI, Manning S, Hanafi-
								Bojd AA, Ghasemzadeh H, Haque
9	Artigo oriundo	Malaria epidemics in						U (2020) "Malaria epidemics in
	da revisão	India: Role of climatic					70	India: role of climatic condition and
	sistemática de	condition and control	Baghbanzadeh M	2020	Sci Total Environ	M1.i Ii	Regressão	control measures", Sci Total
	Kaur (2022) Artigo oriundo	measures	Bagnbanzaden M	2020	Sci Total Environ	Machine Leaarning	logística (LR)	Environ 712:136368 Arefin SE, Heya TA, Zaber DM
	da revição							(2021) "Predictive analysis of
10	sistemática de	Predictive analysis of					Regressão	chikungunya", arXiv preprint
	Kaur (2022)	chikungunya	Arefin SE	2021	arXiv	Machine Leaarning	logística (LR)	arXiv:2101.03785
	`							Brasier AR, Ju H, Garcia J, Spratt
								HM, Victor SS, Forshey BM,
								Venezuelan Dengue Fever Working
11	Artigo oriundo	A three-component						Group (2012) "A three-component
	da revisão sistemática de	biomarker panel for prediction of dengue					Regressão	biomarker panel for prediction of dengue hemorrhagic fever", Am J
	Kaur (2022)	hemorrhagic fever	Brasier AR	2012	Am J Trop Med Hyg	Machine Leaarning	logística (LR)	Trop Med Hygiene 86(2):341–348
•	11001 (2022)	nomornagio iovoi	Diamini i iii	2012	Init Hop Med Hyg		iogistica (Litt)	Tran A, Sudre B, Paz S, Rossi M,
								Desbrosse A, Chevalier V, Semenza
12	Artigo oriundo							JC (2014) "Environmental
12	da revisão	Environmental			International Journal of			predictors of West Nile fever risk in
	sistemática de	predictors of West Nile	T	2014	Health Geographics	M 1: T :	Regressão	Europe", Int J Health Geogr 13(1):
-	Kaur (2022)	fever risk in Europe	Tran A	2014	volume	Machine Leaarning	logística (LR)	1–11 Rishickesh R, Shahina A,
	Artigo oriundo							Nayeemulla Khan A (2019)
13		Prediction of West Nile						"Prediction of West Nile virus using
10	sistemática de	virus using ensemble			Int J Eng Adv Technol		Gradient	ensemble classifiers", Int J Eng Adv
	Kaur (2022)	classifiers	Rishickesh R	2019	IJEAT	Machine Leaarning	boosting (GB)	Technol IJEAT, pp 2249–8958

	\mathbf{A}	В	\mathbf{C}	D	E	F	\mathbf{G}	Н
	Artigo oriundo							
14	da revisão	Environmental					- 44	
14	sistemática de	suitability for lymphatic	-				Gradient	
_	Kaur (2022)	filariasis in Nigeria	Eneanya OA	2018	Parasit Vectors.	Machine Leaarning	boosting (GB)	48.
							G 1: 4	Xu J, Xu K, Li Z, Meng F, Tu T, Xu
	A 1	E 4 6 1					Gradient	L, Liu Q (2020) "Forecast of
15	Artigo oriundo da revisão	Forecast of dengue cases in 20 chinese cities					boosting (GB) /	dengue cases in 20 chinese cities
	sistemática de	based on the deep			Int J Environ Res Public		Long short-term	based on the deep learning method", Int J Environ Res Public
	Kaur (2022)	learning method	Xu J	2020	Health 17	Machine Leaarning	memory (LSTM)	Health 17(2):453
_	Kaul (2022)	icarining incurou	Auj	2020	Ticatui 17	Wachine Leaarning	(LSTWI)	Kondeti PK, Ravi K, Mutheneni
								SR, Kadiri MR, Kumaraswamy S,
								Vadlamani R, Upadhyayula SM
16	Artigo oriundo	Applications of machine						(2019) "Applications of machine
10	da revisão	learning techniques to						learning techniques to predict
	sistemática de	predict filariasis using					Gradient	filariasis using socio-economic
	Kaur (2022)	socio-economic factors	Kondeti PK	2019	Epidemiol Infect	Machine Leaarning	boosting (GB)	factors", Epidemiol Infect, p 147
								Arowolo MO, Adebiyi M, Adebiyi
								A, Okesola O (2020) "PCA model
								for RNA-Seq malaria vector data
								classification using KNN and
17		PCA model for RNA-					,	decision tree algorithm", In: 2020
	Artigo oriundo	Seq malaria vector data					Árvore de	International conference in
	da revisão	classification using KNN			T 4 4: 1 C		decisão (DT) /	mathematics, computer engineering
	sistemática de Kaur (2022)	and decision tree	Arowolo MO	2020	International conference	Machine Leaarning	K-vizinho mais próximo (KNN)	and computer science (ICMCECS),
_	Kaul (2022)	algorithm	Alowolo MO	2020	in mathematics	Machine Leaanning	proximo (KININ)	pp 1–8. IEEE Farooqi W, Ali S (2013) "A critical
								study of selected classification
		A critical study of						algorithms for dengue fever and
18	Artigo oriundo	selected classification			11th international			dengue hemorrhagic fever", In:
10	da revisão	algorithms for dengue			conference on frontiers			2013 11th international conference
	sistemática de	fever and dengue			of information		Árvore de	on frontiers of information
	Kaur (2022)	hemorrhagic fever	Farooqi W	2013	technology	Machine Leaarning	decisão (DT)	technology, pp 140–145). IEEE
_	. ,	5	•		<u> </u>			Young SG, Tullis JA, Cothren J
	Artigo oriundo	A remote sensing and						(2013) "A remote sensing and GIS-
19	da revisão	GIS-assisted landscape					,	assisted landscape epidemiology
	sistemática de	epidemiology approach					Árvore de	approach to West Nile virus", Appl
_	Kaur (2022)	to West Nile virus	Young SG	2013	Applied Geogrphay	Machine Leaarning	decisão (DT)	Geogr 45:241–249
								Telang H, Sonawane K (2020)
		7.00						"Effective performance of bins
20		Effective performance of			5th international			approach for classification of
20	Artigo oriundo	bins approach for			conference on			malaria parasite using machine
	da revisão	classification of malaria			computing		17	learning", In: 2020 IEEE 5th international conference on
	sistemática de	parasite using machine	Tolomo II	2020	communication and	Maahina Lagamiin	K-vizinho mais	computing communication and
	Kaur (2022)	learning	Telang H	2020	automation (ICCCA)	Machine Leaarning	próximo (KNN)	computing communication and

	A	В	\mathbf{C}	D	${f E}$	\mathbf{F}	\mathbf{G}	Н
								automation (ICCCA), pp 427–432. IEEE
21	Artigo oriundo da revisão sistemática de Kaur (2022)	Optimized hybrid investigative based dimensionality reduction methods for malaria vector using KNN classifier	Arowolo MO	2021	Journal of Big Data	Machine Leaarning	K-vizinho mais próximo (KNN)	Arowolo MO, Adebiyi MO, Adebiyi AA, Olugbara O (2021) "Optimized hybrid investigative based dimensionality reduction methods for malaria vector using KNN classifier", Journal of Big Data 8(1):1–14
22	Artigo oriundo da revisão sistemática de Kaur (2022)	Parasite detection and identification for automated thin blood film malaria diagnosis	Tek FB	2010	Comput Vis Image Underst	Machine Leaarning	K-vizinho mais próximo (KNN)	Tek FB, Dempster AG, Kale I (2010) "Parasite detection and identification for automated thin blood film malaria diagnosis", Comput Vis Image Underst 114(1):21–32
23		Majority voting algorithm for diagnosing of imbalanced malaria disease	Sajana T	2018	International conference on ISMAC in computational vision and bio-engineering	Machine Leaarning	K-vizinho mais próximo (KNN)	Sajana T, Narasingarao MR (2018) "Majority voting algorithm for diagnosing of imbalanced malaria disease", In:International conference on ISMAC in computational vision and bioengineering, pp 31–40. Springer, Cham
24	Artigo oriundo da revisão sistemática de Kaur (2022)	A critical study of selected classification algorithms for dengue fever and dengue hemorrhagic fever	Farooqi W	2013	11th international conference on frontiers of information technology	Machine Leaarning	Naive bayes (NB)	Farooqi W, Ali S (2013) "A critical study of selected classification algorithms for dengue fever and dengue hemorrhagic fever",In: 2013 11th international conference on frontiers of information technology, pp 140–145). IEEE
25	Artigo oriundo da revisão sistemática de Kaur (2022)	Diagnosis of fever symptoms using naive bayes algorithm	Widiyaningtyas T	2020	Proceedings of the 5th international conference on sustainable information engineering and technology	Machine Leaarning	Naive bayes (NB)	Widiyaningtyas T, Zaeni IAE, Jamilah N (2020) "Diagnosis of fever symptoms using naive bayes algorithm", In: Proceedings of the 5th international conference on sustainable information engineering and technology, pp 23–28
26	Artigo oriundo da revisão sistemática de Kaur (2022)	Supervised visual system for recognition of erythema migrans, an early skin manifestation of lyme borreliosis	Čuk E	2014	Strojniški vestnik J Mech Eng	Machine Leaarning	Naive bayes (NB)	Čuk E, Gams M, Možek M, Strle F, Čarman VM, Tasič JF (2014) "Supervised visual system for recognition of erythema migrans, an early skin manifestation of lyme borreliosis", Strojniški vestnik J Mech Eng 60(2):115–123

	A	В	\mathbf{C}	D	${f E}$	\mathbf{F}	G	Н
27	Artigo oriundo da revisão sistemática de Kaur (2022)	Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs	Eberhard FE	2021	Comput Struct Biotechnol	Machine Leaarning	Aleatório Forest (RF)	Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ (2021) "Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs", Comput Struct Biotechnol J 19:3051–3057
28	Artigo oriundo da revisão sistemática de Kaur (2022)	Satellite earth observation data in epidemiological modeling of malaria, dengue and West Nile virus: a scoping review	Parselia E	2019	Remote Sensing	Machine Leaarning	Aleatório Forest (RF)	Parselia E, Kontoes C, Tsouni A, Hadjichristodoulou C, Kioutsioukis I, Magiorkinis G, Stilianakis NI (2019) "Satellite earth observation data in epidemiological modeling of malaria, dengue and West Nile virus: a scoping review", Remote Sensing 11(16):1862
29	Artigo oriundo da revisão sistemática de Kaur (2022)	Human West Nile Meningo-encephalitis in a highly endemic country: a complex epidemiological analysis on biotic and abiotic risk factors	Coroian M	2020	Int J Environ Res Public Health	Machine Leaarning	Aleatório Forest (RF)	Coroian M, Petrić M, Pistol A, Sirbu A, Domşa C, Mihalca AD (2020) "Human West Nile Meningo-encephalitis in a highly endemic country: a complex epidemiological analysis on biotic and abiotic risk factors",Int J Environ Res Public Health 17(21): 8250
30	Artigo oriundo da revisão sistemática de Kaur (2022)	Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks	Wang B	2019	Sci Total Environ	Machine Leaarning	Aleatório Forest (RF)	Wang B, Deveson ED, Waters C, Spessa A, Lawton D, Feng P, Li Liu D (2019) "Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks", Sci Total Environ 668:947–957 Ambelu A, Mekonen S, Koch M,
31	Artigo oriundo da revisão sistemática de Kaur (2022)	The application of predictive modelling for determining bioenvironmental factors affecting the distribution of blackflies	Ambelu A	2014	Gilgel Gibe watershed in southwest Ethiopia	Machine Leaarning	Aleatório Forest (RF)	Addis T, Boets P, Everaert G, Goethals P (2014) "The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies", (Diptera: Simuliidae) in the Gilgel Gibe watershed in southwest Ethiopia. PLoS One 9(11):e112221
32	Artigo oriundo da revisão sistemática de Kaur (2022)	Analyzing social network images with deep learning models to fight zika virus	Barros PH	2018	International conference image analysis and recognition	Machine Leaarning	Rede neural convolucional profunda (DCCN)	Barros PH, Lima BG, Crispim FC, Vieira T, Missier P, Fonseca B (2018) "Analyzing social network images with deep learning models to fight zika virus", In: International

	A	В	\mathbf{C}	D	${f E}$	F	\mathbf{G}	Н
_								conference image analysis and recognition, pp 605–610. Springer, Cham
33	Artigo oriundo da revisão sistemática de Kaur (2022)	Automated detection of erythema migrans and other confounding skin lesions via deep learning	Burlina PM	2019	Comput Biol Med	Machine Leaarning	Rede neural convolucional profunda (DCCN)	Burlina PM, Joshi NJ, Ng E, Billings SD, Rebman AW, Aucott JN (2019) "Automated detection of erythema migrans and other confounding skin lesions via deep learning", Comput Biol Med 105:151–156
34	Artigo oriundo da revisão sistemática de Kaur (2022)	AI-based detection of erythema migrans and disambiguation against other skin lesions	Burlina PM	2020	Comput Biol Med	Machine Leaarning	Rede neural convolucional profunda (DCCN)	Burlina PM, Joshi NJ, Mathew PA, Paul W, Rebman AW, Aucott JN (2020) "AI-based detection of erythema migrans and disambiguation against other skin lesions", Comput Biol Med 125:103977
35	REVISÃO SISTEMÁTICA	Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review	Lima	2022	Frontiers in Public Health	Machine Leaarning	Revisão Sistemática: identifica modelos de predição de arbovírus.	Lima C. L. et al. (2022) "Temporal and Spatiotemporal Arboviruses Forecasting by Machine Learning: A Systematic Review", Front. Public Health, vol. 10. Disponível: https://doi.org/10.3389/fpubh. 2022.900077
36	Artico oriundo	Forecasting dengue epidemics using a hybrid methodology	Chakraborty T	2019	Phys A Stat Mech Appl	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Chakraborty T, Chattopadhyay S, Ghosh I. (2019) "Forecasting dengue epidemics using a hybrid methodology",Phys A Stat Mech Appl. (2019) 527:121266. 10.1016/ j.physa.2019.121266
37	Artigo oriundo da revisão sistemática de Lima (2022)	The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017)	Polwiang S	2020	BMC Infect Dis	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Polwiang S. (2020) "The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017)", BMC Infect Dis. 20:208. 10.1186/s12879-020-4902-6
38	Artigo oriundo da revisão sistemática de Lima (2022)	Dynamic forecasting of Zika epidemics using Google Trends	Teng Y	2017	PLoS ONE	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Teng Y, Bi D, Xie G, Jin Y, Huang Y, Lin B, et al (2017) "Dynamic forecasting of Zika epidemics using Google Trends", PLoS ONE. 12:e0165085. 10.1371/journal.pone. 0165085

	\mathbf{A}	В	\mathbf{C}	D	${f E}$	F	\mathbf{G}	Н
39	Artigo oriundo da revisão sistemática de Lima (2022)	Dengue cases in Colombia: mathematical forecasts for 2018-2022	Lopez- Montenegro LE	2019	MEDICC	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Lopez-Montenegro LE, Pulecio- Montoya AM, Marcillo-Hernandez GA. (2019) "Dengue cases in Colombia: mathematical forecasts for 2018-2022", MEDICC Rev. 21:38–45. 10.37757/ MR2019.V21.N2-3.8
40	Artigo oriundo da revisão sistemática de Lima (2022)	Two-step prediction technique for dengue outbreak in Thailand	Nakvisut A	2018	International Electrical Engineering Congress (iEECON)	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Nakvisut A, Phienthrakul T. (2018) "Two-step prediction technique for dengue outbreak in Thailand", In: 2018 International Electrical Engineering Congress (iEECON). Krabi: p. 1–4. 10.1109/IEECON. 2018.8712258
41	Artigo oriundo da revisão sistemática de Lima (2022)	Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data	Pineda-Cortel MRB	2019	Asian Pac J Trop Med	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Pineda-Cortel MRB, Clemente BM, Nga PTT. (2019) "Modeling and predicting dengue fever cases in key regions of the Philippines using remote sensing data", Asian Pac J Trop Med. 12:60–6. 10.4103/1995-7645.250838
42	Artigo oriundo da revisão sistemática de Lima (2022)	Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia	Zhao N	2020	PLoS Neglect Trop Dis	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Zhao N, Charland K, Carabali M, Nsoesie EO, Maheu-Giroux M, Rees E, et al (2020) "Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia", PLoS Neglect Trop Dis. 14:e0008056. 10.1371/journal.pntd. 0008056
43	Artigo oriundo da revisão sistemática de Lima (2022)	A multi-stage machine learning approach to predict dengue incidence: a case study in Mexico	Appice A	2020	IEEE	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Appice A, Gel YR, Iliev I, Lyubchich V, Malerba D. (2020) "A multi-stage machine learning approach to predict dengue incidence: a case study in Mexico", IEEE Access. 8:52713– 25. 10.1109/ACCESS. 2020.2980634
44	Artigo oriundo da revisão sistemática de Lima (2022)	An ensemble model for forecasting infectious diseases in India	Shashvat K	2019	Trop Biomed.	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)	Shashvat K, Basu R, Bhondekar P, Kaur A. (2019) "An ensemble model for forecasting infectious diseases in India", Trop Biomed. 36:822–32.

	\mathbf{A}	В	\mathbf{C}	D	E	F	\mathbf{G}	Н
45	Artigo oriundo da revisão sistemática de Lima (2022)	The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014	Chumpu R	2019	PLoS ONE	Machine Leaarning	Média Móvel Integrada Autoregressiva (ARIMA)/ Média Móvel Integrada Autoregressiva Sazonal (SARIMA)	Chumpu R, Khamsemanan N, Nattee C. (2019) "The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014", PLoS ONE. 14:e0226945. 10.1371/journal.pone.0226945
46	Artigo oriundo da revisão sistemática de Lima (2022)	Developing a dengue prediction model based on climate in Tawau, Malaysia	Jayaraj VJ	2019	Acta Trop.	Machine Leaarning	Média Móvel Integrada Autoregressiva Sazonal (SARIMA)	Jayaraj VJ, Avoi R, Navindran G, Dhesi BR, Yusri U. (2019) "Developing a dengue prediction model based on climate in Tawau, Malaysia", Acta Trop. 197:105055. 10.1016/j.actatropica. 2019.105055
47	Artigo oriundo da revisão sistemática de Lima (2022)	Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam.	Phung D	2015	Acta Trop.	Machine Leaarning	Média Móvel Integrada Autoregressiva Sazonal (SARIMA)	Phung D, Huang C, Rutherford S, Chu C, Wang X, Nguyen M, et al. (2015) "Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam." Acta Trop. 141:88–96. 10.1016/j.actatropica.2014.10.005
48	Artigo oriundo da revisão sistemática de Lima (2022)	Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models.	Baquero OS	2018	PLoS ONE	Machine Leaarning	Média Móvel Integrada Autoregressiva Sazonal (SARIMA)	Baquero OS, Santana LMR, Chiaravalloti-Neto F (2018) "Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models." PLoS ONE. 13:e0195065. 10.1371/journal.pone.0195065
49	Artigo oriundo da revisão sistemática de Lima (2022)	Tracking and prediction of dengue outbreak using cloud-based services and artificial neural network	Elijorde FI	2016	J Multimedia Ubiquit	Machine Leaarning	Média Móvel Integrada Autoregressiva Sazonal (SARIMA)	Elijorde FI, Clarite DS, Gerardo BD, Byun Y. (2016) "Tracking and prediction of dengue outbreak using cloud-based services and artificial neural network", Int J Multimedia Ubiquit Eng. 11:355–66. 10.14257/ijmue.2016.11.5.33
50	Artigo oriundo da revisão sistemática de Lima (2022)	K-step ahead prediction models for dengue occurrences	Thiruchelvam L.	2017	IEEE International Conference on Signal and Image Processing Applications (ICSIPA).	Machine Leaarning	Média Móvel Integrada Autoregressiva com Variável Explicativa	Thiruchelvam L, Asirvadam VS, Dass SC, Daud H, Gill BS. (2017) "K-step ahead prediction models for dengue occurrences",In: 2017 IEEE International Conference on Signal

	\mathbf{A}	В	\mathbf{C}	D	${f E}$	\mathbf{F}	\mathbf{G}	Н
_							(ARIMAX)	and Image Processing Applications (ICSIPA). Kuching: p. 541–6. 10.1109/ICSIPA.2017.8120671
51	Artigo oriundo da revisão sistemática de Lima (2022)	LSTM-RNN based approach for prediction of dengue cases in India. Ingénierie des Systémes d'Information	Doni AR	2020	IIETA	Machine Leaarning	Long short-term memory (LSTM)	Doni AR, Sasipraba T. (2020) "LSTM-RNN based approach for prediction of dengue cases in India. Ingénierie des Systémes d'Information", 25:327– 35. 10.18280/isi.250306
52	Artigo oriundo da revisão sistemática de Lima (2022)	How to efficiently predict dengue incidence in Kuala Lumpur	Pham DN	2018	Fourth International Conference on Advances in Computing, Communication Automation (ICACCA)	Machine Leaarning	Long short-term memory (LSTM)	Pham DN, Aziz T, Kohan A, Nellis S, Jamil JbA, Khoo JJ, et al (2018) "How to efficiently predict dengue incidence in Kuala Lumpur ",In: 2018 Fourth International Conference on Advances in Computing, Communication Automation (ICACCA). Subang Jaya p. 1–6. 10.1109/ICACCAF. 2018.8776790
53	Artigo oriundo da revisão sistemática de Lima (2022)	Large-scale multivariate forecasting models for Dengue - LSTM versus random forest regression	Mussumeci E	2020	LSTM	Machine Leaarning	Long short-term memory (LSTM)	Mussumeci E, Codeso Coelho F. Large-scale multivariate forecasting models for Dengue - LSTM versus random forest regression. Spatial Spatio Temp Epidemiol. (2020) 35:100372. doi: 10.1016/j.sste. 2020.100372
54	Artigo oriundo da revisão sistemática de Lima (2022)	Performance of hybrid GANN in comparison with outbreaks standalone models on dengue outbreak prediction	Husin NA.	2016	J Comput Sci.	Machine Leaarning	Rede GANN	Husin NA, Mustapha N, Sulaiman N, Yaacob R, Hamdan H, Hussin M. (2016) "Performance of hybrid GANN in comparison with outbreaks standalone models on dengue outbreak prediction", J Comput Sci. (2016) 12:300–6. 10.3844/jcssp.2016.300.306
55	Artigo oriundo da revisão sistemática de Lima (2022)	Dengue haemorrhagic fever outbreak prediction using Elman Levenberg neural network and genetic algorithm	Saptarini NGAPH.	2018	2nd East Indonesia Conference on Computer and Information Technology (EIConCIT).	Machine Leaarning	Elman Recurrent Neural Network Levenberg Marquardt (ERMN/LMA)	Saptarini NGAPH, Dillak RY, Pakan PD. (2018) "Dengue haemorrhagic fever outbreak prediction using Elman Levenberg neural network and genetic algorithm", In: 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT). Makassar: p. 188–91. 10.1109/EIConCIT.2018.8878529

	\mathbf{A}	В	C	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н
								Soliman M, Lyubchich V, Gel
		Ensemble forecasting of						YR. (2020) "Ensemble forecasting
56	Artigo oriundo	the Zika space-time						of the Zika space-time spread with
30	da revisão	spread with topological					Redes neurais	topological data
	sistemática de	data					Deep feed-	analysis. Environmetrics."31:e2629
_	Lima (2022)	analysis. Environmetrics.	Soliman M.	2020	NSF DMS	Machine Leaarning	forward	10.1002/env.2629
								Verma S, Sharma N (2018).
								"Statistical models for predicting
					First International		Box Cox /	chikungunya incidences in India",
57					Conference on Secure		Mean Forecast /	In: 2018 First international
		Statistical Models For			Cyber Computing and		Seasonal Naive	conference on secure cyber
		Predicting Incidences Of			Communication		/ Neural	computing and communication
_	Artigo	Chikungunya In India	Verma e Sharma	2018	(ICSCCC)	Machine Leaarning	Network	(ICSCCC), pp 139–142. IEEE.
							Regressão	
							linear / Redes	
							Neurais	
							Artificiais	
							(RNA)/	
							Regressão de	Silva C. C. et al. (2022)
58		Spatiotemporal					vetores de	"Spatiotemporal forecasting for
		forecasting for dengue,					suporte /	dengue, chikungunya fever and
		chikungunya fever and					Máquinas de	Zika using machine learning and
		Zika using machine					aprendizagem	artificial expert committees based
		learning and artificial					extrema / Echo	on meta-heuristics", Res. Biomed.
		expert committees based			Research on Biomedical		state networks /	Eng., Disponível: https://doi.org/
_	Artigo	on meta-heuristics	Silva C.C.	2022	Engineering	Machine Leaarning	Random Forest	10.1007/s42600-022-00202-6
								Cortes F. et al., (2018) "Time series
								analysis of dengue surveillance data
59							Média Móvel	in two Brazilian cities", Acta Trop.,
		Time series analysis of					Integrada	vol. 182, pp. 190–197. 2024-01-16.
		dengue surveillance data			_		Autoregressiva	Disponível: https://doi.org/10.1016/
_	Artigo	in two Brazilian cities	Cortes	2018	Acta Trop.	Machine Leaarning	(ARIMA)	j.actatropica.2018.03.006
		Mapping the spatial						
		distribution of the						M. S. Rahman et al.,(2021)
		dengue vector Aedes						"Mapping the spatial distribution of
60		aegypti and predicting its						the dengue vector Aedes aegypti
- •		abundance in					3.67	and predicting its abundance in
		northeastern Thailand					Máquina de	northeastern Thailand using
	A	using machine-learning	MCDI	2021	0 11 14	M 1' T '	Vetores de	machine-learning approach", One
_	Artigo	approach	M.S. Rahman	2021	One Health	Machine Learning	Suporte. SVM	Health, vol. 13, p. 100358.
		Re-emergence of					Modelos	O. Man, T. L. Fuller, J. I. Rosser e
		arbovirus diseases in the					autorregressivos	
61		State of Rio de Janeiro,					de médias	emergence of arbovirus diseases in
		Brazil: The role of					móveis	the State of Rio de Janeiro, Brazil:
	Artigo	simultaneous viral	Olivia Man	2022	One Health	Machine Learning	integradas	The role of simultaneous viral

	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н
		circulation between 2014						circulation between 2014 and
		and 2019					(ARIMA)	2019", One Health, p. 100427.
								Hossain MS, Sultana Z, Nahar L,
								Andersson K (2019) An intelligent
62		A : . 11:			XX: 1 X 1:1			system to diagnose chikungunya
		An intelligent system to			Wireless Mobile			under uncertainty", J Wireless
	A	diagnose chikungunya		2010	Networks Ubiquitous	M 1: T :	DDDEC	Mobile Networks Ubiquitous
-	Artigo	under uncertainty	Hossain	2019	Comput Depend Appl	Machine Learning	BRBES	Comput Depend Appl 10(2):37–54
							HMI ND DE	Salim Gulab Shaikh, et al. "Hybrid
		II-4: 1 M1.:					HML, NB, RF,	Machine Learning Method for Classification and Recommendation
63		Hybrid Machine					ANN, DT,	of Vector-Borne Disease." Journal
03		Learning Method for Classification and					Adaptive	
		Recommendation of			Journal of Autonomous		Boosting (ADABOOST),	of Autonomous Intelligence, vol. 7,
	Artigo	Vector-Borne Disease.	Salim G. S.	2024	Intelligence	Machine Learning	SVM e MLC	no. 2, 25 Dec. 2023, https://doi.org/ 10.32629/jai.v7i2.
	Arugo	vector-Borne Disease.	Saiiii G. S.	2024	interrigence	Machine Leanning	ANN,	10.32029/Jai.v /12.
							Sequential	Mokammel Hossain Tito, et al.
					International Conference		Minimal,	Predictive Modeling of Global
		Predictive Modeling of			in Emerging		Optimization	Vector-Borne Diseases: Leveraging
64		Global Vector-Borne			Technologies for		(SMO),	Machine Learning for Intervention
		Diseases: Leveraging			Sustainability and		Decision Tree	Strategies. 28 Jan. 2024, https://
		Machine Learning for			Intelligent Systems,		(DT) e Naives	doi.org/10.1109/
	Artigo	Intervention Strategies	Mokammel	2024	ICETSIS 2024	Machine Learning	Bayes (NB)	icetsis61505.2024.10459646.
							Random Forest,	Kuo, Chao-Yang, et al. "Improving
							Regressão	Dengue Fever Predictions in
		Improving Dengue Fever					Logística e	Taiwan Based on Feature Selection
65		Predictions in Taiwan					eXtreme	and Random Forests." BMC
		Based on Feature					Gradient	Infectious Diseases, vol. 24, no. S2,
		Selection and Random			BMC Infectious		Boosting	20 Mar. 2024, https://doi.org/
	Artigo	Forests.	Kuo	2024	Diseases	Machine Learning	(XGBoost).	<u>10.1186/s12879-024-09220-4</u>