BIG DIVE

TECH. CUSTOM EDITION

A project by TOP-IX designed for Intesa Sanpaolo

Recap

- Data-analytic thinking
- Data quality
- Descriptive statistics
- Correlation & causation
- Bias
- Regression
- Comparison between groups

Probability -basic concepts

$$P(A) = \text{Area of A}$$

$$P(A \text{ or } B) = P(A) + P(B)$$

Probability –basic concepts

$$P(A) = \text{Area of A}$$

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Bayes Theorem

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

 $P(A \text{ and } B) = \text{overlap of A and B}$

Monty Hall's problem

3 Doors, 1 car, 2 goats:

P(C1)=P(C2)=P(C3)=1/3
 Lets choose D1, and focus on Door 3.

Monty would open D3 with the following probabilities:

- P(D3 | C1)=1/2
- P(D3 | C2)=1
- P(D3 | C3)=0

The Bayes part:

- P(C1 | D3)=P(D3 | C1)P(C1)/P(D3)= (1/2*1/3)/1/2=1/3
- P(C2 | D3)=P(D3 | C2)P(C2)/P(D3)= (1*1/3)/1/2=2/3

So, it's better to change door!

Screening test

Your doctor thinks you might have a rare disease that affects **1 person in 10,000**. A test that is **99%** accurate comes out **positive**. What's the probability of you having the disease?

Bayes Theorem:
$$P(disease|positive|test) = \frac{P(positive|test|disease)P(disease)}{P(positive|test)}$$

Finally:
$$P(disease|positive \ test) = 0.0098$$

Screening test

Consider a population of 1,000,000 individuals. The numbers we should expect in the **contingency**Marringle

Marginals

		disease	no disease	V
	positive	99	9,999	10,098
	negative		989,901	989,902
Marginals —		100	999,900	1,000,000

$$P\left(disease|positive\ test\right) = \frac{TP}{TP + FP} = 0.0098$$

$$P\left(no\ disease|negative\ test\right) = \frac{TN}{TN + FN} = 0.99999$$

Screening test

Consider a population of 1,000,000 individuals. The numbers we should expect in the **contingency**

Marginals

matrix are:

		disease	no disease	V
	positive	99	9,999	10,098
	negative		989,901	989,902
Marginals———		100	999,900	1,000,000

$$P\left(disease|positive\ test\right) = \frac{TP}{TP + FP} = 0.0098$$

$$P\left(no\ disease|negative\ test\right) = \frac{TN}{TN + FN} = 0.99999$$

Type I error (false positive)

Type II error (false negative)

Consider a second screening

Bayes Theorem still looks the same: $P\left(disease|positive\ test\right) = \frac{P\left(positive\ test|disease\right)P\left(disease\right)}{P\left(positive\ test\right)}$

but now the probability that we have the disease has been updated: $P^{\dagger} \left(disease
ight) = 0.0098$

So this time we find: P^{\dagger} (disease|positive test) = 0.4949

Each test is providing **new evidence**, and Bayes theorem is simply telling us how to use it to **update our beliefs**.

Confusion Matrix

Feature Test	positive	negative
positive	TP	FP
negative	FN	TN

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$specificity = \frac{TN}{FP + TN}$$

$$precision = \frac{TP}{TP + FP}$$

$$sensitivity = \frac{TP}{TP + FN}$$

$$F1 = \frac{2TP}{2TP + FP + FN}$$

Confusion Matrix - ROC curve

Feature Test	positive	negative
positive	TP	FP
negative	FN	TN

$$specificity = \frac{TN}{FP + TN}$$

Confusion Matrix - ROC curve

Feature Test	positive	negative
positive	TP	FP
negative	FN	TN

$$sensitivity = \frac{TP}{TP + FN}$$

$$specificity = \frac{TN}{FP + TN}$$

Confusion Matrix - ROC curve

Feature Test	positive	negative
positive	TP	FP
negative	FN	TN

$$sensitivity = \frac{TP}{TP + FN}$$

$$specificity = \frac{TN}{FP + TN}$$

An introduction to ROC analysis

Tom Fawcett

Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306, USA

Available online 19 December 2005

Pattern Recognition Letters

www.elsevier.com/locate/patree

Cosa NON abbiamo trattato

- Regressioni (per predizioni) → Modulo Machine Learning
- Riduzione dimensionalità (PCA, ICA...)
- Analisi di serie storiche
- Analisi di sopravvivenza
- Network Bayesiani
- •

Q & A