

## 0

# **Balanced Parentheses (hard)**



### Problem Statement

For a given number 'N', write a function to generate all combination of 'N' pairs of balanced parentheses.

#### Example 1:

```
Input: N=2
Output: (()), ()()
```

### Example 2:

```
Input: N=3
Output: ((())), (()()), ()(()), ()(())
```

# Try it yourself #

Try solving this question here:

```
import java.util.*;

class GenerateParentheses {

public static List<String> generateValidParentheses(int num) {

List<String> result = new ArrayList<String>();

// TODO: Write your code here
return result;
}

public static void main(String[] args) {

List<String> result = GenerateParentheses.generateValidParentheses(2);

System.out.println("All combinations of balanced parentheses are: " + result);

result = GenerateParentheses.generateValidParentheses are: " + result);

result = GenerateParentheses.generateValidParentheses are: " + result);

System.out.println("All combinations of balanced parentheses are: " + result);

Run

Run

Save Reset ()
```

## Solution

This problem follows the Subsets pattern and can be mapped to Permutations. We can follow a similar BFS approach.

Let's take Example-2 mentioned above to generate all the combinations of balanced parentheses. Following a BFS approach, we will keep adding open parentheses (or close parentheses). At each step we need to keep two things in mind:

- We can't add more than 'N' open parenthesis.
- To keep the parentheses balanced, we can add a close parenthesis ) only when we have already added enough open parenthesis (. For this, we can keep a count of open and close parenthesis with every combination.

- 1. Start with an empty combination: ""
- 2. At every step, let's take all combinations of the previous step and add ( or ) keeping the above-mentioned two rules in mind.
- 3. For the empty combination, we can add ( since the count of open parenthesis will be less than 'N'. We can't add) as we don't have an equivalent open parenthesis, so our list of combinations will now be: "("
- 4. For the next iteration, let's take all combinations of the previous set. For "(" we can add another ( to it since the count of open parenthesis will be less than 'N'. We can also add ) as we do have an equivalent open parenthesis, so our list of combinations will be: "((", "()")")
- 5. In the next iteration, for the first combination "(("), we can add another ( to it as the count of open parenthesis will be less than 'N', we can also add ) as we do have an equivalent open parenthesis. This gives us two new combinations: "(((") and "(()"). For the second combination "()", we can add another ( to it since the count of open parenthesis will be less than 'N'. We can't add ) as we don't have an equivalent open parenthesis, so our list of combinations will be: "(((", "(()", ()(") )))").
- 7. Next we will get: "((())", "(()()", "(())(", "()(()", "()()("
- 8. Finally, we will have the following combinations of balanced parentheses: "((0))", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0", "(0)0",
- 9. We can't add more parentheses to any of the combinations, so we stop here.

Here is the visual representation of this algorithm:



## Code

Here is what our algorithm will look like:

```
👙 Java
           Python3
                        G C++
       port java.util.*;
    class ParenthesesString {
      String str;
      int openCount; // open parentheses count
      int closeCount; // close parentheses count
      public ParenthesesString(String s, int openCount, int closeCount) {
        this.openCount = openCount;
        this.closeCount = closeCount;
13 }
    class GenerateParentheses {
      public static List<String> generateValidParentheses(int num) {
        List<String> result = new ArrayList<String>();
        Queue<ParenthesesString> queue = new LinkedList<>();
        queue.add(new ParenthesesString("", 0, 0));
        while (!queue.isEmpty()) {
           ParenthesesString ps = queue.poll();
                           hed the maximum numl
```

```
result.add(ps.str);
} else {
if (ps.openCount < num) // if we can add an open parentheses, add it
queue.add(new ParenthesesString(ps.str + "(", ps.openCount + 1, ps.closeCount));

Run

Save Reset []
```

### Time complexity

Let's try to estimate how many combinations we can have for 'N' pairs of balanced parentheses. If we don't care for the ordering - that ) can only come after ( - then we have two options for every position, i.e., either put open parentheses or close parentheses. This means we can have a maximum of  $2^N$  combinations. Because of the ordering, the actual number will be less than  $2^N$ .

If you see the visual representation of Example-2 closely you will realize that, in the worst case, it is equivalent to a binary tree, where each node will have two children. This means that we will have  $2^N$  leaf nodes and  $2^N-1$  intermediate nodes. So the total number of elements pushed to the queue will be  $2^N+2^N-1$ , which is asymptotically equivalent to  $O(2^N)$ . While processing each element, we do need to concatenate the current string with ( or ). This operation will take O(N), so the overall time complexity of our algorithm will be  $O(N*2^N)$ . This is not completely accurate but reasonable enough to be presented in the interview.

The actual time complexity (  $O(4^n/\sqrt{n})$  ) is bounded by the Catalan number and is beyond the scope of a coding interview. See more details here.

#### Space complexity

All the additional space used by our algorithm is for the output list. Since we can't have more than  $O(2^N)$  combinations, the space complexity of our algorithm is  $O(N*2^N)$ .

## Recursive Solution

Here is the recursive algorithm following a similar approach:

