
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=12; day=16; hr=16; min=7; sec=8; ms=611;]

Validated By CRFValidator v 1.0.3

Application No: 10574922 Version No: 1.0

Input Set:

Output Set:

Started: 2008-12-01 17:01:16.612 **Finished:** 2008-12-01 17:01:18.282

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 670 ms

Total Warnings: 17
Total Errors: 0

No. of SeqIDs Defined: 19

Actual SeqID Count: 19

Error code		Error Description	n			
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (3)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (4)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (5)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (6)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (7)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (8)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (9)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (10)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (11)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (12)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (13)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (14)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (15)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (16)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (17)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (18)
W	213	Artificial o	r Unknowr	found	in <213>	in SEQ ID (19)

SEQUENCE LISTING

```
<110> POWDERJECT VACCINES, INC.
<120> METHOD
<130> 092633-0104
<140> 10574922
<141> 2008-12-01
<150> PCT/US04/033391
<151> 2004-10-12
<150> 60/567,771
<151> 2004-05-05
<150> 60/526,571
<151> 2003-12-04
<150> 60/510,086
<151> 2003-10-10
<160> 19
<170> PatentIn Ver. 3.2
<210> 1
<211> 63
<212> PRT
<213> Influenza A virus
<400> 1
Met Lys Thr Ile Ile Ala Leu Ser Tyr Ile Leu Cys Leu Val Phe Ala
Gln Lys Leu Pro Gly Asn Asp Asn Ser Thr Ala Thr Leu Cys Leu Gly
                  25
           20
His His Ala Val Ser Asn Gly Thr Leu Val Lys Thr Ile Thr Asn Asp
       35
                          40
Gln Ile Glu Val Thr Asn Ala Thr Glu Leu Val Gln Ser Ser
   50
                      55
                                          60
<210> 2
<211> 65
<212> PRT
<213> Influenza A virus
Met Ala Ser Lys Thr Ile Ile Ala Leu Ser Tyr Ile Leu Cys Leu Val
          5
                                  10
1
Phe Ala Gln Lys Leu Pro Gly Asn Asp Asn Ser Thr Ala Thr Leu Cys
```

25

20

```
Leu Gly His His Ala Val Ser Asn Gly Thr Leu Val Lys Thr Ile Thr
         35
Asn Asp Gln Ile Glu Val Thr Asn Ala Thr Glu Leu Val Gln Ser Ser
     50
                         55
Ser
 65
<210> 3
<211> 62
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      consensus sequence
<400> 3
Lys Thr Ile Ile Ala Leu Ser Tyr Ile Leu Cys Leu Val Phe Ala Gln
                  5
Lys Leu Pro Gly Asn Asp Asn Ser Thr Ala Thr Leu Cys Leu Gly His
             20
                                 25
His Ala Val Ser Asn Gly Thr Leu Val Lys Thr Ile Thr Asn Asp Gln
         35
                             40
Ile Glu Val Thr Asn Ala Thr Glu Leu Val Gln Ser Ser Ser
     50
                         55
<210> 4
<211> 3759
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide vector sequence
<400> 4
ggcgtaatgc tctgccagtg ttacaaccaa ttaaccaatt ctgattagaa aaactcatcg 60
agcatcaaat gaaactgcaa tttattcata tcaggattat caataccata tttttgaaaa 120
agccgtttct gtaatgaagg agaaaactca ccgaggcagt tccataggat ggcaagatcc 180
tggtatcggt ctgcgattcc gactcgtcca acatcaatac aacctattaa tttcccctcg 240
tcaaaaataa ggttatcaag tgagaaatca ccatgagtga cgactgaatc cggtgagaat 300
ggcaaaagct tatgcatttc tttccagact tgttcaacag gccagccatt acgctcgtca 360
tcaaaatcac tcgcatcaac caaaccgtta ttcattcgtg attgcgcctg agcgagacga 420
aatacgcgat cgctgttaaa aggacaatta caaacaggaa tcgaatgcaa ccggcgcagg 480
aacactgcca gegeateaac aatattttea eetgaateag gatattette taatacetgg 540
aatgctgttt tcccggggat cgcagtggtg agtaaccatg catcatcagg agtacggata 600
aaatgcttga tggtcggaag aggcataaat tccgtcagcc agtttagtct gaccatctca 660
tetgtaacat cattggcaac getacetttg ceatgtttea gaaacaacte tggcgcateg 720
```

ggcttcccat acaatcgata gattgtcgca cctgattgcc cgacattatc gcgagcccat 780

ttatacccat	ataaatcagc	atccatgttg	gaatttaatc	gcggcctcga	gcaagacgtt	840
tcccgttgaa	tatggctcat	aacacccctt	gtattactgt	ttatgtaagc	agacaggtcg	900
acaatattgg	ctattggcca	ttgcatacgt	tgtatctata	tcataatatg	tacatttata	960
ttggctcatg	tccaatatga	ccgccatgtt	gacattgatt	attgactagt	tattaatagt	1020
aatcaattac	ggggtcatta	gttcatagcc	catatatgga	gttccgcgtt	acataactta	1080
cggtaaatgg	cccgcctggc	tgaccgccca	acgacccccg	cccattgacg	tcaataatga	1140
cgtatgttcc	catagtaacg	ccaataggga	ctttccattg	acgtcaatgg	gtggagtatt	1200
tacggtaaac	tgcccacttg	gcagtacatc	aagtgtatca	tatgccaagt	ccgcccccta	1260
ttgacgtcaa	tgacggtaaa	tggcccgcct	ggcattatgc	ccagtacatg	accttacggg	1320
actttcctac	ttggcagtac	atctacgtat	tagtcatcgc	tattaccatg	gtgatgcggt	1380
tttggcagta	caccaatggg	cgtggatagc	ggtttgactc	acggggattt	ccaagtctcc	1440
accccattga	cgtcaatggg	agtttgtttt	ggcaccaaaa	tcaacgggac	tttccaaaat	1500
gtcgtaataa	ccccgccccg	ttgacgcaaa	tgggcggtag	gcgtgtacgg	tgggaggtct	1560
atataagcag	agctcgttta	gtgaaccgtc	agatcgcctg	gagacgccat	ccacgctgtt	1620
ttgacctcca	tagaagacac	cgggaccgat	ccagcctccg	cggccgggaa	cggtgcattg	1680
gaacgcggat	tccccgtgcc	aagagtgact	caccgtccgg	atctcagcaa	gcaggtatgt	1740
actctccagg	gtgggcctgg	cttccccagt	caagactcca	gggatttgag	ggacgctgtg	1800
ggctcttctc	ttacatgtac	cttttgcttg	cctcaaccct	gactatcttc	caggtcagga	1860
tcccagagtc	aggggtctgt	attttcctgc	tggtggctcc	agttcaggaa	cagtaaaccc	1920
tgctccgaat	attgcctctc	acatctcgtc	aatctccgcg	aggactgggg	accctgtgac	1980
gaacatggct	agcgggccca	gatctgggcc	ctaacaaaac	aaaaagatgg	ggttattccc	2040
taaacttcat	gggttacgta	attggaagtt	gggggacatt	gccacaagat	catattgtac	2100
aaaagatcaa	acactgtttt	agaaaacttc	ctgtaaacag	gcctattgat	tggaaagtat	2160
gtcaaaggat	tgtgggtctt	ttgggctttg	ctgctccatt	tacacaatgt	ggatatcctg	2220
ccttaatgcc	tttgtatgca	tgtatacaag	ctaaacaggc	tttcactttc	tcgccaactt	2280
acaaggcctt	tctaagtaaa	cagtacatga	acctttaccc	cgttgctcgg	caacggcctg	2340
gtctgtgcca	agtgtttgct	gacgcaaccc	ccactggctg	gggcttggcc	ataggccatc	2400
agcgcatgcg	tggaaccttt	gtggctcctc	tgccgatcca	tactgcggaa	ctcctagccg	2460
cttgttttgc	tcgcagccgg	tctggagcaa	agctcatagg	aactgacaat	tctgtcgtcc	2520
tctcgcggaa	atatacatcg	tttcgatcta	cgtatgatct	ttttccctct	gccaaaaatt	2580
atggggacat	catgaagccc	cttgagcatc	tgacttctgg	ctaataaagg	aaatttattt	2640
tcattgcaat	agtgtgttgg	aattttttgt	gtctctcact	cggaaggaat	tctgcattaa	2700
tgaatcggcc	aacgcgcggg	gagaggcggt	ttgcgtattg	ggcgctcttc	cgcttcctcg	2760
ctcactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	2820
gcggtaatac	ggttatccac	agaat caggg	gataacgcag	gaaagaacat	gtgagcaaaa	2880
ggccagcaaa	aggccaggaa	ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggctc	2940
cgcccccctg	acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	3000
ggactataaa	gataccaggc	gtttccccct	ggaagctccc	tcgtgcgctc	tcctgttccg	3060
accctgccgc	ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgctttct	3120
catagctcac	gctgtaggta	tctcagttcg	gtgtaggtcg	ttcgctccaa	gctgggctgt	3180
gtgcacgaac	cccccgttca	gcccgaccgc	tgcgccttat	ccggtaacta	tcgtcttgag	3240
tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	ccactggtaa	caggattagc	3300
agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	ggtggcctaa	ctacggctac	3360
actagaagaa	cagtatttgg	tatctgcgct	ctgctgaagc	cagttacctt	cggaaaaaga	3420
gttggtagct	cttgatccgg	caaacaaacc	accgctggta	gcggtggttt	ttttgtttgc	3480
aagcagcaga	ttacgcgcag	aaaaaaagga	tctcaagaag	atcctttgat	cttttctacg	3540
gggtctgacg	ctcagtggaa	cgaaaactca	cgttaaggga	ttttggtcat	gagattatca	3600
aaaaggatct	tcacctagat	ccttttaaat	taaaaatgaa	gttttaaatc	aatctaaagt	3660
atatatgagt	aaacttggtc	tgacagttac	caatgcttaa	tcagtgaggc	acctatctca	3720
gcgatctgtc	tatttcgttc	atccatagtt	gcctgactc			3759

<210> 5

<211> 1503

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic
 nucleotide construct

<400> 5 atgggtgccc gagcttcggt actgtctggt ggagagctgg acagatggga gaaaattagg 60 ctgcgcccgg gaggcaaaaa gaaatacaag ctcaagcata tcgtgtgggc ctcgagggag 120 cttgaacggt ttgccgtgaa cccaggcctg ctggaaacat ctgagggatg tcgccagatc 180 ctggggcaat tgcagccatc cctccagacc gggagtgaag agctgaggtc cttgtataac 240 acagtggcta ccctctactg cgtacaccag aggatcgaga ttaaggatac caaggaggcc 300 ttggacaaaa ttgaggagga gcaaaacaag agcaagaaga aggcccagca ggcagctgct 360 gacactgggc atagcaacca ggtatcacag aactatccta ttgtccaaaa cattcagggc 420 cagatggttc atcaggccat cagcccccgg acgctcaatg cctgggtgaa ggttgtcgaa 480 gagaaggcct tttctcctga ggttatcccc atgttctccg ctttgagtga gggggccact 540 cctcaqqacc tcaatacaat qcttaatacc qtqqqcqqcc atcaqqccqc catqcaaatq 600 ttgaaggaga ctatcaacga ggaggcagcc gagtgggaca gagtgcatcc cgtccacgct 660 ggcccaatcg cgcccggaca gatgcgggag cctcgcggct ctgacattgc cggcaccacc 720 tctacactgc aagagcaaat cggatggatg accaacaatc ctcccatccc agttggagaa 780 atctataaac ggtggatcat tctcggtctc aataaaattg ttagaatgta ctctccgaca 840 tccatccttg acattagaca gggacccaaa gagcctttta gggattacgt cgaccggttt 900 tataagaccc tgcgagcaga gcaggcctct caggaggtca aaaactggat gacggagaca 960 ctcctqqtac aqaacqctaa ccccqactqc aaaacaatct tqaaqqcact aqqcccqqct 1020 gccaccctgg aagagatgat gaccgcctgt cagggagtag gcggacccgg acacaaagcc 1080 agagtgttgg ccgaagccat gagccaggtg acgaactccg caaccatcat gatgcagaga 1140 gggaacttcc gcaatcagcg gaagatcgtg aagtgtttca attgcggcaa ggagggtcat 1200 accgcccgca actgtcgggc ccctaggaag aaagggtgtt ggaagtgcgg caaggaggga 1260 caccagatga aagactgtac agaacgacag gccaattttc ttggaaagat ttggccgagc 1320 tacaagggga gacctggtaa tttcctgcaa agcaggcccg agcccaccgc cccccttgag 1380 gaateettea ggteeggagt ggagaceaca aegeeteece aaaaacagga aecaategae 1440 aaggagctgt accetttaac ttetetgegt tetetetttg geaacgaeee gtegteteaa 1500 1503 taa

<210> 6

<211> 500

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 protein construct

<400> 6

Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp

1 10 15

Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu Lys
20 25 30

His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro 35 40 45

Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu 50 55 60

Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn
65 70 75 80

Thr	Val	Ala	Thr	Leu 85	Tyr	Суз	Val	His	Gln 90	Arg	Ile	Glu	Ile	Lys 95	Asp
Thr	Lys	Glu	Ala 100	Leu	Asp	Lys	Ile	Glu 105	Glu	Glu	Gln	Asn	Lys 110	Ser	Lys
Lys	Lys	Ala 115	Gln	Gln	Ala	Ala	Ala 120	Asp	Thr	Gly	His	Ser 125	Asn	Gln	Val
Ser	Gln 130	Asn	Tyr	Pro	Ile	Val 135	Gln	Asn	Ile	Gln	Gly 140	Gln	Met	Val	His
Gln 145	Ala	Ile	Ser	Pro	Arg 150	Thr	Leu	Asn	Ala	Trp 155	Val	Lys	Val	Val	Glu 160
Glu	Lys	Ala	Phe	Ser 165	Pro	Glu	Val	Ile	Pro 170	Met	Phe	Ser	Ala	Leu 175	Ser
Glu	Gly	Ala	Thr 180	Pro	Gln	Asp	Leu	Asn 185	Thr	Met	Leu	Asn	Thr 190	Val	Gly
Gly	His	Gln 195	Ala	Ala	Met	Gln	Met 200	Leu	Lys	Glu	Thr	Ile 205	Asn	Glu	Glu
Ala	Ala 210	Glu	Trp	Asp	Arg	Val 215	His	Pro	Val	His	Ala 220	Gly	Pro	Ile	Ala
Pro 225	Gly	Gln	Met	Arg	Glu 230	Pro	Arg	Gly	Ser	Asp 235	Ile	Ala	Gly	Thr	Thr 240
Ser	Thr	Leu	Gln	Glu 245	Gln	Ile	Gly	Trp	Met 250	Thr	Asn	Asn	Pro	Pro 255	Ile
Pro	Val	Gly	Glu 260	Ile	Tyr	Lys	_	Trp 265		Ile	Leu	Gly	Leu 270	Asn	Lys
Ile	Val	Arg 275	Met	Tyr	Ser	Pro	Thr 280	Ser	Ile	Leu	Asp	Ile 285	Arg	Gln	Gly
Pro	Lys 290	Glu	Pro	Phe	Arg	Asp 295	Tyr	Val	Asp	Arg	Phe 300	Tyr	Lys	Thr	Leu
Arg 305	Ala	Glu	Gln	Ala	Ser 310	Gln	Glu	Val	Lys	Asn 315	Trp	Met	Thr	Glu	Thr 320
Leu	Leu	Val	Gln	Asn 325	Ala	Asn	Pro	Asp	Суs 330	Lys	Thr	Ile	Leu	Lys 335	Ala
Leu	Gly	Pro	Ala 340	Ala	Thr	Leu	Glu	Glu 345	Met	Met	Thr	Ala	Суs 350	Gln	Gly
Val	Gly	Gly 355	Pro	Gly	His	Lys	Ala 360	Arg	Val	Leu	Ala	Glu 365	Ala	Met	Ser
Gln	Val	Thr	Asn	Ser	Ala	Thr	Ile	Met	Met	Gln	Arg	Gly	Asn	Phe	Arg

Asn Gln Arg Lys Ile Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His 385 390 395 400

Thr Ala Arg Asn Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys 405 410 415

Gly Lys Glu Gly His Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn
420 425 430

Phe Leu Gly Lys Ile Trp Pro Ser Tyr Lys Gly Arg Pro Gly Asn Phe 435 440 445

Leu Gln Ser Arg Pro Glu Pro Thr Ala Pro Pro Glu Glu Ser Phe Arg 450 455 460

Ser Gly Val Glu Thr Thr Pro Pro Gln Lys Gln Glu Pro Ile Asp 465 470 475 480

Lys Glu Leu Tyr Pro Leu Thr Ser Leu Arg Ser Leu Phe Gly Asn Asp
485 490 495

Pro Ser Ser Gln 500

<210> 7

<211> 1515

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 nucleotide construct

<400> 7

atgggtgcga gagcgtcagt attaagcggg ggagaattag atcgatggga aaaaattcgg 60 ttaaggccag ggggaaagaa aaaatataaa ttaaaacata tagtatgggc aagcagggag 120 ctagaacgat tcgcagttaa tcctggcctg ttagaaacat cagaaggctg tagacaaata 180 ctgggacagc tacaaccatc ccttcagaca ggatcagaag aacttagatc attatataat 240 acagtagcaa ccctctattg tgtgcatcaa aggatagaga taaaagacac caaggaagct 300 ttagacaaga tagaggaaga gcaaaacaaa agtaagaaaa aagcacagca agcagcagct 360 gacacaggac acagcaatca ggtcagccaa aattacccta tagtgcagaa catccagggg 420 caaatggtac atcaggccat atcacctaga actttaaatg catgggtaaa agtagtagaa 480 gagaaggett teageeeaga agtgataeee atgtttteag eattateaga aggageeaee 540 ccacaagatt taaacaccat gctaaacaca gtggggggac atcaagcagc catgcaaatg 600 ttaaaagaga ccatcaatga ggaagctgca gaatgggata gagtgcatcc agtgcatgca 660 gggcctattg caccaggcca gatgagagaa ccaaggggaa gtgacatagc aggaactact 720 agtaccette aggaacaaat aggatggatg acaaataate cacctateee agtaggagaa 780 atttataaaa gatggataat cctgggatta aataaaatag taagaatgta tagccctacc 840 agcattctgg acataagaca aggaccaaaa gaacccttta gagactatgt agaccggttc 900 tataaaactc taagagccga gcaagcttca caggaggtaa aaaattggat gacagaaacc 960 ttgttggtcc aaaatgcgaa cccagattgt aagactattt taaaagcatt gggaccagcg 1020 gctacactag aagaaatgat gacagcatgt cagggagtag gaggacccgg ccataaggca 1080 agagttttgg tgggttttcc agtcacacct caggtacctt taagaccaat gacttacaag 1140 gcagctgtag atcttagcca ctttttaaaa gaaaaggggg gactggaagg gctaattcac 1200 tcccaaagaa gacaagatat ccttgatctg tggatctacc acacacaagg ctacttccct 1260 gattggcaga actacacac agggccaggg gtcagatat cactgacctt tggatggtgc 1320 tacaagctag taccagttga gccagataag gtagaagagg ccaataaagg agagaacacc 1380 agcttgttac accetgtgag cctgcatggg atggatgac cggagagaga agtgttagag 1440 tggaggtttg acagccacct agcatttcat cacgtggccc gagagctgca tccggagtac 1500 ttcaagaact gctga 1515

<210> 8

<211> 504

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic protein construct

<400> 8

Met Gly Ala Arg Ala Ser Val Leu Ser Gly Gly Glu Leu Asp Arg Trp

1 10 15

Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu Lys
20 25 30

His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro 35 40 45

Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu 50 55 60

Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn
65 70 75 80

Thr Val Ala Thr Leu Tyr Cys Val His Gln Arg Ile Glu Ile Lys Asp
85 90 95

Thr Lys Glu Ala Leu Asp Lys Ile Glu Glu Glu Gln Asn Lys Ser Lys 100 105 110

Lys Lys Ala Gln Gln Ala Ala Asp Thr Gly His Ser Asn Gln Val 115 120 125

Ser Gln Asn Tyr Pro Ile Val Gln Asn Ile Gln Gly Gln Met Val His 130 $$135\$

Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu Ser 165 170 175

Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly
180 185 190

Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Glu Glu 195 200 205

Ala Ala Glu Trp Asp Arg Val His Pro Val His Ala Gly Pro Ile Ala

210 215 220