Multiple Choice Questions

[MHT-CET 2022] (online shift) (Memory Based Questions)

$$\lim_{x \to 0} \frac{2x}{|x| + x^2} =$$

- a) 2 .
- c) limit does not exist

- b) limit exists
- d) 2

$$\lim_{x\to 0} \left(\frac{1+\tan x}{1+\sin x}\right)^{\cos ecx} =$$

a) 0

b) e

3.
$$\lim_{x \to 1} \frac{2^{2x-2}-2^x+1}{\sin^2(x-1)} =$$

- a) $(\log 2)^2$ b) $\frac{1}{2} (\log 2)^2$
- c) 2 log 2
- d) $2 (\log 2)^2$

4.
$$\lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}} =$$

a) 4

- b) $\sqrt{2}$
- c) $4\sqrt{2}$
- d) $2\sqrt{2}$
- Let f(x) = 5 |x 2| and g(x) = |x + 1|, $x \in \mathbb{R}$. If f(x) attains maximum value at α and 5. g(x) attains minimum value at β , then

$$\lim_{x \to -\alpha \beta} \frac{(x-1)(x^2-5x+6)}{x^2-6x+8} =$$

a) $\frac{1}{2}$

- b) $\frac{3}{4}$
- (c) $\frac{7}{2}$
- d) $\frac{8}{3}$

$$\lim_{x \to 0} \frac{27^x - 9^x - 3^x + 1}{\sqrt{5} - \sqrt{4 + \cos x}} =$$

- a) $8\sqrt{5}\log 3$
- b) $\sqrt{5} (\log 3)^2$ c) $8\sqrt{5} (\log 3)^2$ d) $16\sqrt{5} (\log 3)$

7.
$$\lim_{x \to \infty} \left[\frac{8x^2 + 5x + 3}{2x^2 - 7x - 5} \right]^{\frac{4x + 3}{8x - 1}} =$$

a) 4

b) $\sqrt{2}$

c) 2

HI.CE

 $\lim_{x \to 5} \frac{x^{K} - 5^{K}}{x - 5} = 500, \text{ then the value of K, where } K \in \mathbb{N} \text{ is}$

b) 3

- c) 4
- d) 6

 $\lim_{17. \quad x \to 0} \frac{\cos(mx) - \cos(nx)}{x^2} =$

- a) $\frac{m^2 n^2}{2}$ b) $m^2 n^2$ c) $\frac{n^2 m^2}{2}$
- d) $n^2 m^2$

 $\lim_{x \to 2} \frac{1}{(x-1)^{3x-6}} =$

- a) e^2
- b) e³
- d) $e^{\frac{1}{2}}$

19. $\lim_{x \to 1} \left[\frac{\sqrt{x} - 1}{\log x} \right] =$

- a) $\frac{1}{2}$ b) 2

- d) $-\frac{1}{2}$

20. $\lim_{x \to 1} \frac{ab^x - a^x b}{x^2 - 1} =$

- a) $-\frac{ab}{2} \log \left(\frac{b}{a}\right)$ b) $\frac{ab}{2} \log \left(\frac{b}{a}\right)$ c) $ab \log \left(\frac{b}{a}\right)$ d) $-ab \log \left(\frac{b}{a}\right)$

21. $\lim_{x \to 0} \frac{\sqrt{1-\cos x^2}}{1-\cos x} =$

- a) $\sqrt{2}$ b) $\frac{1}{\sqrt{2}}$
- c) 0
- d) $\frac{1}{2}$

[MHT-CET 2023]

(online shift)

(Memory Based Questions)

Let f(x) = 5 - |x-2| and g(x) = |x+1|, $x \in \mathbb{R}$. If f(x) attains maximum value at α and

g(x) attains minimum value at β , then $\lim_{x\to-\alpha\beta} \left(\frac{(x-1)(x^2-5x+6)}{x^2-6x+8}\right) =$

- a) $-\frac{1}{2}$
- b) $-\frac{3}{2}$
- c) $\frac{1}{2}$ d) $\frac{3}{2}$

32.
$$\lim_{n\to\infty} \left(\left(2^{\frac{1}{2}} - 2^{\frac{1}{3}} \right) \left(2^{\frac{1}{2}} - 2^{\frac{1}{5}} \right) \dots \left(2^{\frac{1}{2}} - 2^{\frac{1}{2n+1}} \right) \right) =$$

a) 1

- c) √2

33.
$$\lim_{x \to \infty} x^3 \left(\sqrt{x^2 + \sqrt{1 + x^4}} - x\sqrt{2} \right) =$$

- a) $\frac{1}{\sqrt{2}}$
- b) $\frac{1}{4\sqrt{2}}$
- c) $-\frac{1}{\sqrt{2}}$
- d) $-\frac{1}{4\sqrt{2}}$
- Let a_1 , a_2 , a_3 , ..., a_n be n positive consecutive terms of an arithmetic progression. If d > 0

is its common difference, then $\lim_{n\to\infty}\sqrt{\frac{d}{n}}\left[\frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}\right]$ is

- a) $\frac{1}{\sqrt{d}}$

- d) 0

[MHT-CET 2024] (online shift)

(Memory Based Questions)

35. If
$$\lim_{x\to 1} \left(\frac{x^2 - ax + b}{x - 1} \right) = 7$$
, then $(a + b)$ equal to

d) 11

36.
$$\lim_{x \to 2} \left(\frac{5^x + 5^{3-x} - 30}{5^{3-x} - 5^{\frac{x}{2}}} \right) =$$

- a) $-\frac{16}{3}$
- b) $-\frac{8}{3}$

37.
$$\lim_{x\to 1} \left(\frac{2x-2}{\sqrt[3]{26+x}-3} \right) =$$

b) 9

- c) 27
- d) 54
- Let α (a) and β (a) be the roots of the equation $(\sqrt[3]{1+a}-1)x^2+(\sqrt{1+a}-1)x+(\sqrt[6]{1+a}-1)$ 38. = 0 where a > -1, then $\lim_{a \to 0^+} \alpha(a)$ and $\lim_{a \to 0^+} \beta(a)$ respectively are
 - a) -1 and $-\frac{1}{2}$
- b) 1 and $-\frac{5}{2}$
- c) 2 and $-\frac{7}{2}$ d) 3 and $-\frac{9}{2}$

39.
$$\lim_{y\to 0} \left(\frac{\sqrt{1+\sqrt{1+y^4}} - \sqrt{2}}{y^4} \right) =$$

49.

50-

- Limits
 - a) exists and equals $\frac{1}{4\sqrt{2}}$
 - c) exists and equals $\frac{1}{2\sqrt{2}}$

- b) does not exist
- d) exists and equals $\frac{1}{2\sqrt{2}(\sqrt{2}+1)}$
- 40. If $L = \lim_{x \to 0} \left(\frac{x}{|x| + x^2} \right)$, then the value of L is
 - d) non-existant greatest integer function,
- a) -1 b) 1 c) 2 41. For each $x \in \mathbb{R}$, let [x] represent
 - $\lim_{x \to 0^{-}} \left(\frac{x \left(\left[x \right] + \left| x \right| \right) \sin \left[x \right]}{\left| x \right|} \right) =$
- c) sin 1
- d) sin 1

- 42. $\lim_{x\to 0} \left(\frac{\sin\left(\pi\cos^2 x\right)}{x^2} \right) =$
- c) $\frac{\pi}{2}$

- 43. $\lim_{x\to 0} \left(\frac{x \cot 4x}{\sin^2 x \cdot \cot^2 2x} \right) =$

- b) $\frac{1}{4}$

d) 4

- 44. $\lim_{x\to 0} \left(\frac{x \tan 2x 2x \tan x}{(1-\cos 2x)^2} \right) =$
 - a) 2
- b) 2
- c) $-\frac{1}{2}$
- d) $\frac{1}{2}$
- The value of $\lim_{x\to 0} \left((\sin x)^{\frac{1}{x}} + \left(\frac{1}{x} \right)^{\sin x} \right)$, where x > 0 is

c) 1

d) 2

- 46. $\lim_{x \to \frac{\pi}{2}} \left(\frac{(1-\sin x)\cos x \left(8x^3 \pi^3 \right)}{(\pi 2x)^4} \right) =$
 - a) $-\frac{3\pi^2}{16}$
- b) $-\frac{\pi^2}{16}$
- c) $\frac{\pi^2}{16}$
- d) $\frac{3\pi^2}{16}$

- 47. $\lim_{x \to \frac{\pi}{2}} \left[\frac{\left(1 \tan\left(\frac{x}{2}\right)\right)(1 \sin x)}{\left(1 + \tan\left(\frac{x}{2}\right)\right)(\pi 2x)^3} \right] =$
 - a) 0

b) $\frac{1}{8}$

c) $\frac{1}{16}$

d) $\frac{1}{32}$