Math 255B Lecture 21 Notes

Daniel Raban

February 26, 2020

1 Properties of Spectral Measures

1.1 Total mass of spectral measures

Let $\varphi \in (C \cap L^{\infty})(\mathbb{R})$ and let $A: D(A) \to H$ be self-adjoint. Last time, we had

$$\langle \varphi(A)u,v\rangle = \lim_{\varepsilon \to 0^+} \frac{1}{2\pi i} \int \varphi(\lambda) \left\langle (R(\lambda+i\varepsilon) - R(\lambda-i\varepsilon))u,v \right\rangle \, d\lambda.$$

This is similar to the finite dimensional case, where

$$\varphi(A) = \sum_{\lambda \in \text{Spec}(A)} \varphi(\lambda) \Pi_{\lambda},$$

where Π_{λ} is the orthogonal projection on to $\ker(A - \lambda)$.

Remark 1.1. Observe that $\varphi(A)^* = \overline{\varphi}(A)$:

$$\begin{split} \langle \varphi(A)^*u,v\rangle &= \langle u,\varphi(A)v\rangle \\ &= \overline{\langle \varphi(A)v,u\rangle} \\ &= -\frac{1}{2\pi i}\lim_{\varepsilon\to 0^+} \int \overline{\varphi(\lambda)\langle (R(\lambda+i\varepsilon)-R(\lambda-i\varepsilon))u,v\rangle}\,d\lambda \end{split}$$

Using $R(\lambda \pm i\varepsilon) - R(\lambda \mp i\varepsilon)$,

$$=\langle \overline{\varphi}(A)u,v\rangle$$
.

We also introduced the spectral measures $d\mu_{u,v}$ with $\langle \varphi(A)u,v\rangle = \int \varphi(\lambda) d\mu_{u,v}(\lambda)$.

Proposition 1.1. The total mass of the spectral measure $d\mu_{u,v}$ is

$$\int d\mu_{u,v} = \langle u, v \rangle.$$

Equivalently, $1(A) = I \in \mathcal{L}(H, H)$.

Proof. By continuity and density, we may assume u, v are in a dense subset of H; assume $u, v \in D(A)$. By polarization, we may take u = v. If $u \in D(A)$, then

$$(A-z)u = Au - zu$$

If Im z > 0, then we get

$$u = R(z)Au - zR(z)u,$$

so we get

$$R(z)u = -\frac{1}{z}u + \frac{1}{z}R(z)Au.$$

If $z \to \infty$ with Re z fixed, we get $R(z)u = -\frac{1}{z}u + O(1/|z|^2)$. Recall from Nevannlinna's theorem that

$$\int d\mu_u = \lim_{z \to \infty} (-z \langle R(z)u, u \rangle) = ||u||^2.$$

1.2 Decay of spectral measures

Proposition 1.2. Let $\varphi \in C_B$ For all $u \in D(A)$ and $v \in H$,

$$\langle \varphi(A)Au, v \rangle = \langle \varphi_1(A)u, v \rangle$$
,

where $\varphi_1(\lambda) = \lambda \varphi(\lambda) \in C_B$.

Proof. The left hand side is

LHS =
$$\lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int \varphi(\lambda) \left\langle (R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon))u, v \right\rangle$$

Note that $(R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon))u = u + (\lambda + i\varepsilon)R(\lambda + i\varepsilon)u - (\lambda - i\varepsilon)R(\lambda - i\varepsilon)u$.

$$= \langle \varphi_1(A)u, v \rangle + \lim_{\varepsilon \to 0^+} \frac{i\varepsilon}{2\pi i} \int \varphi(\lambda) \left\langle (R(\lambda + i\varepsilon) + R(\lambda - i\varepsilon))u, v \right\rangle d\lambda$$

To show that the right term equals 0, we have

$$O(\varepsilon) \left| \int \varphi(\lambda) \left\langle R(\lambda \pm i\varepsilon u, v) \right\rangle d\lambda \right| \leq O(\varepsilon) \int |\varphi(\lambda)| \|R(\lambda \pm i\varepsilon)u\| d\lambda$$

By Cauchy-Schwarz,

$$\leq O(\varepsilon) \left(\int \|R(\lambda \pm i\varepsilon u)\|^2 d\lambda \right)$$

Recall that $\operatorname{Im} \langle R(\lambda + i\varepsilon)u, u \rangle = \varepsilon ||R(\lambda + i\varepsilon)u||^2$.

$$\leq O(\varepsilon^{1/2}) \left(\int \operatorname{Im} \langle R(\lambda + i\varepsilon)u, u \rangle \ d\lambda \right)^{1/2}$$

$$\xrightarrow{\varepsilon \to 0} 0$$

We get that $\langle \varphi(A)Au, v \rangle = \langle \varphi_1(A)u, v \rangle$.

In particular, if $\varphi \in C_0(\mathbb{R})$, we have

$$\langle \varphi(A)Au, Au \rangle = \langle \varphi_1(A)u, Au \rangle = \langle u, \overline{\varphi}_1(A)Au \rangle = \langle u, \overline{\psi}(A)u \rangle,$$

where $\psi(\lambda) = \lambda^2 \varphi(\lambda)$. We get

$$\langle \varphi(A)Au, Au \rangle = \langle \psi(A)u, u \rangle.$$

On the level of spectral measures, we get

$$\int \varphi(\lambda) \, d\mu_{Au}(\lambda) = \int \lambda^2 \varphi(\lambda) \, d\mu_u(\lambda).$$

If $0 \le \varphi \le 1$, then the left hand side is $\le ||Au||^2$. Letting $\varphi \uparrow 1$, we get by Fatou's lemma:

$$\int \lambda^2 d\mu_u(\lambda) < \infty.$$

By monotone convergence, we get

$$\int \lambda^2 d\mu_u(\lambda) = ||Au||^2 < \infty \qquad \forall u \in D(A).$$

1.3 Multiplicativity of the functional calculus

Proposition 1.3. Let $\varphi, \psi \in C_0(\mathbb{R})$. Then $\varphi(A)\psi(A) = (\varphi\psi)(A)$.

Proof. Let $\varphi_k(\lambda) = \lambda^k \varphi(\lambda)$ for $k = 1, 2, \ldots$ For $u \in H$ and $v \in D(A)$, we have:

$$\langle \varphi(A)u, Av \rangle = \langle u, \overline{\varphi}(A)Av \rangle$$
$$= \langle u, \overline{\varphi}_1(A)v \rangle$$
$$= \langle \varphi_1(A)u, v \rangle.$$

Thus, $\varphi(A)u \in D(A^*) = D(A)$ and $\varphi_1(A)u = A\varphi(A)u$. In particular, im $\varphi(A) \subseteq D(A)$ for all $\varphi \in C_0$. So im $\varphi_1(A) \subseteq D(A)$, so im $\varphi(A) \subseteq D(A^2)$. Iterating this argument, we get that im $\varphi(A) \subseteq D(A^j)$ for $j = 1, 2, \ldots$ and $\varphi_j(A) = A^j \varphi(A)$ for any j. When p is a polynomial, we get $p(A)\varphi(A) = (p\varphi)(A)$.

The idea is to let $\chi \in C_0(\mathbb{R})$ with $0 \leq \chi \leq 1$ be such that $\chi = 1$ on $\operatorname{supp}(\varphi) \cup \operatorname{supp}(\psi)$. Pick a sequence of polynomials p_j such that $\overline{p}_j \chi \to \psi$ uniformly. Then $(p_j \chi)(A) \to \psi(A)$ in $\mathcal{L}(H, H)$. We will give the details next time.