[ЦПМ, кружок по математике]

[2024-2025]

группа 10-2

А. С. Кореневский 5 мая 2025 г.

Линейный функции

Числовая функция f на плоскости называется $\emph{линейной}$, если выполнено одно из двух эквивалентных условий:

• Для любых точек A,B,C и вещественных λ и μ таких, что $\mu+\lambda\neq 0$ и точка C делит отрезок AB в отношении $\dfrac{\overline{AC}}{\overline{CB}}=\dfrac{\mu}{\lambda}$, верно равенство

$$f(C) = \frac{\lambda}{\lambda + \mu} f(A) + \frac{\mu}{\lambda + \mu} f(B).$$

• Существуют вещественные числа a,b,c такие, что для любой точки A с координатами (x,y) верно

$$f(A) = ax + by + c.$$

Основные примеры линейных функций:

- $f(X) \equiv const.$
- f(X) ориентированное расстояние от точки X до фиксированной прямой l.
- f(X) ориентированная площадь треугольника XBC, где B и C фиксированные точки.
- f(X) разность степеней точки X относительно двух фиксированных окружностей ω_1 и ω_2 .

- **1. (а)** Докажите, что множеством нулей линейной функции служит прямая, плоскость либо пустое множество.
 - **(б)** Докажите, что линейная комбинация линейных функций вновь линейная функция.
- **2.** Дан выпуклый четырехугольник ABCD с не параллельными сторонами. Найдите ГМТ X внутри четырехугольника таких что $S_{AXC} + S_{BXD} = S_{CXB} + S_{DXA}$.
- **3.** Построив соответствующую линейную функцию, докажите, что основания трёх внешних биссектрис неравнобедренного треугольника лежат на одной прямой.
- **4. (a)** В треугольнике ABC проведены биссектрисы AA_1 и CC_1 . На отрезке A_1C_1 взята произвольная точка P. Докажите, что сумма расстояний от P до AB и BC равна расстоянию до AC.
 - **(b)** Дан выпуклый четырёхугольник ABCD. Лучи AB и DC пересекаются в точке P, лучи AD и BC в точке Q. Биссектрисы углов BAD и BCD пересекаются в точке X, биссектрисы углов ABC и ADC в точке Y; наконец, внешние биссектрисы углов APC и AQC пересекаются в точке Z. Докажите, что точки X, Y, Z лежат на одной прямой.
- 5. В остроугольном треугольнике ABC проведены высоты BB_1 и CC_1 . С центром в точке B построена окружность ω_B радиуса $\frac{1}{2}BB_1$; с центром в точке C построена окружность ω_C радиуса $\frac{1}{2}CC_1$. Прямая l общая внешняя касательная к окружностям ω_B и ω_C , не пересекающая треугольник ABC. Докажите, что инцентр треугольника, образованного прямыми AB, AC и l, лежит на отрезке BC.
- **6. (а)** (Прямая Гаусса) Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке E, продолжения сторон BC и AD в точке F. Построив соответствующую линейную функцию, докажите, что середины отрезков AC, BD, EF лежат на одной прямой.
 - **(b)** (*Теорема Ньютона*) Использовав построенную линейную функцию, докажите, что в описанном четырехугольнике центр вписанной окружности лежит на прямой Гаусса этого четырехугольника.
- 7. Прямая l делит площадь и периметр треугольника ABC пополам. Докажите, что l проходит через центр вписанной окружности треугольника ABC.
- **8.** Даны две окружности ω_A и ω_B , лежащие вне друг друга. Рассматриваются всевозможные пары точек A и B такие, что $A \in \omega_A$, $B \in \omega_B$ и длины отрезков касательных из A к ω_B и из B к ω_A равны. Найдите локус (т.е. геометрическое место) середин всевозможных отрезков AB.
- **9.** Внешние биссектрисы BB_1 и CC_1 треугольника ABC с наименьшей стороной BC пересекаются в точке I_A . На отрезках BC_1 , CB_1 взяли точки X и Y соответственно так, что отрезок XY проходит через I_A . Докажите, что отражения прямых CX и BY относительно осей CI_A и BI_A соответственно пересекаются на прямой B_1C_1 .