Answers to JTOW #3: Basic Inequalities

Zed Li

October 18, 2019

- 1. n positive even: $x \in (-\infty, -1) \cup (1, \infty)$; n positive odd: $x \in (1, \infty)$; n = 0: $x \in \emptyset$; n negative even: $x \in (-1, 0) \cup (0, 1)$; n negative odd: $x \in (0, 1)$.
- $2. \ x \in \mathbb{R}.$
- 3. $x \in (-\infty, -2) \cup (-1, 1) \cup (2, +\infty)$.
- 4. $x \in [-2, 2)$.
- 5. $x \in (0, 2]$.
- 6. $x \in [-15, -6) \cup (10, 19]$.
- 7. $x \in (-\infty, -4] \cup [-3, -2) \cup (-1, +\infty)$.
- 8. $t \in (-\infty, -\frac{1}{4})$.
- 9. WLOG, assume that $a \leq b, c$. Then $2a \leq b+c$ so $3a+2b+c \leq a+3b+2c$, so $a^{3a+2b+c} \leq b^{3a+2b+c} \leq b^{a+3b+2c}$, where both inequalities hold if and only if a=b and 2a=b+c, in other words a=b=c. But $a^{3a+2b+c}=b^{a+3b+2c}$, so we conclude that a=b=c.