Question 1

(a)
$$f(x) = 12 + 4x - x^2$$
 [0,5].
 $f'(x) = 4 - 2x = 0$ $x = 2$ critical $\frac{x=2}{2}$.
 $f(0) = 12$.
 $f(2) = 12 + 2x4 - 2^2 = 12 + 8 - 4 = 16$. Global max.
 $f(5) = 12 + 2x - 25 = 12 - 5 = 7$ global min.

(b)
$$f(x) = 3^3 - 63^2 + 5$$
 [-3,5]
 $f(x) = 33^2 - 12x = 0 \Rightarrow \chi(3\chi - 12) = 0 \Rightarrow \chi = 0, 4.$
 $f(-3) = (-3)^3 - 6(9) + 5 = -76.$ smallest global min.
 $f(0) = 5$ - - - - - largest global max
 $f(4) = 4^3 - 6(4)^2 + 5 = -27$
 $f(5) = 5^3 - 6(5^2) + 5 = -20.$

(c)
$$f(x) = x + \frac{1}{x}$$
 [0.2,4]
 $f'(x) = 1 - \frac{1}{x^2} = 0$ $x = \pm 1$. $x = -1 \notin [0.2, 4]$.
 $f(0.2) = 0.2 + 5 = 5.2 \dots \text{ largest}$ glabal max
 $f(1) = 1 + 1 = 2 \dots \text{ smallest}$ global min.
 $f(4) = 4 + \frac{1}{4} = 4.25$

(A)
$$f(x) = \frac{x}{x^2 + 1}$$
 [0,3]
 $f'(x) = \frac{(x^2 + 1) - x(2x - 1)}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2 + x}{(x^2 + 1)^2} = 0$
 $-x^2 + 1 = 0 \implies x^2 + 1 \implies x = \pm 1$
 $f(0) = 0 \implies x = 1 \implies x = \pm 1$
 $f(1) = 1 \implies x = \pm 1$
 $f(3) = \frac{3}{9 - 3 + 1} = \frac{3}{7}$

(e)
$$f(x) = \ln(\hat{x} + x + 1)$$
 $f(-1, 1]$
 $f'(x) = \frac{1}{x^2 + x + 1} \cdot (2x + 1) = 0$ $\Rightarrow 2x + 1 = 0 \Rightarrow x = -\frac{1}{2}$.

 $f(-1) = \ln(1 - 1 + 1) = \ln(1) = 0$
 $f(-\frac{1}{2}) = \ln(\frac{1}{4} - \frac{1}{2} + 1) = \ln(\frac{1}{4}) < 0$ and $1 = \frac{1}{4}$ global min.

 $f(1) = \ln(3) > 0$ $f(\frac{1}{4}) = \frac{1}{4}$ $f(x) = \frac{1}{$

Question 3.

$$C(t) = 8(e^{-0.4t} - e^{-0.6t}) [0, 12]$$

$$C'(t) = 8(-0.4e^{-0.4t} + 0.6e^{-0.6t}) = 0.$$

$$0.4e^{-0.4t} = 0.6e^{-0.6t}$$

$$\frac{e^{-0.4t}}{e^{-0.6t}} = \frac{0.6}{0.4}$$

$$e^{-0.4t + 0.6t} = \frac{3}{2}.$$

$$\ln e^{-0.2t} = \ln \frac{3}{2}. \Rightarrow 0.2t = \ln \frac{3}{2}$$

$$t = 5 \ln \frac{3}{2}. \approx 2.0273.$$

$$C(0) = 8(e^{0} - e^{0}) = 0$$

$$C(2.0273) = 8(e^{-0.4.2073} - e^{-0.6.2.0273}) = 1.18579 \frac{1}{1}$$

$$C(12) = 8(e^{-0.4.12} - e^{-0.6.12}) = 0.05986.$$
The new concurrentian of the outlibiotic cluring the first powrs is 1.18519 . My/mL

Question 4:

Assume one of the vertices on the base is (x,0). The base of the rectangle is 2x, and the height of the rectangle is $16-x^2$. Then the area of the rectangle is $A = 2x(16-x^2)$ [0, 4]

 $A = 32x - 2x^{3}$ $A' = 32 - 6x^{2} = 0$ $x^{2} = \frac{32}{6} \qquad x = \pm \sqrt{\frac{32}{6}} = \pm \sqrt{\frac{16}{3}} = \pm \sqrt{\frac{4}{3}}$ $x = \frac{4}{15} \qquad y = 16 - x^{2} = 16 - \frac{16}{3} = \frac{32}{3}$ $A(\frac{4}{13}) = \frac{32}{3} \cdot \frac{4}{15} \cdot 2 \cdot = \frac{256}{313} \cdot \Rightarrow \text{largest}$ $A(0) = 0 \qquad \text{Hobal max}$ A(4) = 0

Question 5 Let $\underline{u} = fand$, $\underline{u} = 0$. $\underline{0} \in (n, \frac{\pi}{2})$ 1st $\underline{0} \in (\pi, \frac{3\pi}{2\pi})$.

RHS = $\frac{b}{\sqrt{\tan^2\theta + 1}} = \frac{b}{a}$ $\frac{b}{a}$ $\frac{b}{\cot^2\theta + 1} = \frac{b}{a}$ $\frac{b}{a} = \frac{b^2}{a^2}$ $\frac{b}{a^2} = \frac{b^2}{a^2}$ $\frac{b}{a} = \frac{b^2}{a^2}$ $\frac{b}{a} = \frac{b^2}{a^2}$

$$= \frac{b^2 + a^2}{a^2} \cdot \frac{c^2}{a^2}$$

$$\frac{\mathcal{U}}{\sqrt{u^2+1}} \leq 1 \quad \text{and} \quad \frac{\mathcal{U}}{\sqrt{u^2+1}} \leq \mathcal{U}.$$

$$\frac{\mathcal{U}}{\sqrt{\mathcal{U}^2+1}} \leq \mathcal{U}$$

Sind will never exceed "1"

$$\sqrt{\mu^{2}+1} > \frac{1}{2}$$
 $\sqrt{\mu^{2}+1} > \sqrt{1}$

$$M^2 + 1 > 1$$
.

Chestian 6

M: coefficients of froction.

$$F'(\theta) = \frac{- \mu W(\mu \cos \theta - \sin \theta)}{(\mu \sin \theta + \cos \theta)^2} = 0.$$

$$\mathcal{L}\cos\theta = \sin\theta = \mathcal{L}-\tan\theta = 0 = \text{arctong}$$

$$F(0) = \frac{uw}{1} = \overline{\mu w}$$

$$F(avctonM) = \frac{uW}{u \sin(avctonM) + \cos(avctonM)}$$

$$\frac{uW}{u \sin(avctonM) + \cos(avctonM)} = \frac{uW}{u^2+1}$$

$$= \frac{uW}{u^2+1} + \frac{u^2+1}{u^2+1} = \frac{u^2+1}{u^2+1}$$

$$= \frac{uW}{u^2+1} + \frac{uW}{u^2+1} = \frac{uW}{u^2+1}$$

$$= \frac{uW}{u^2+1} + \frac{uW}{u^2+1} = \frac{uW}{u^2+1}$$

$$= \frac{uW}{u^2+1} + \frac{uW}{u^2+1} = \frac{uW}{u^2+1}$$

$$= \frac{uW}{u^2+1} + \frac{uW}{u^2+1} = \frac{uW}{u^2+1} = \frac{uW}{u^2+1}$$

$$= \frac{uW}{u^2+1} + \frac{uW}{u^2+1} = \frac{uW}{u^$$