

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15070059803

FCC REPORT (WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 10.1" Android touch LCD Media Player

Model No.: DT101-AC4-720, 502-1019ATATM

FCC ID: 2AB6Z-DT101-AC4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 Jul., 2015

Date of Test: 23 Jul., to 06 Sep., 2015

Date of report issued: 07 Sep., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 Sep., 2015	Android player Main board with wireless
		module (FCC ID: 2AB6Z-1859ATMB) and
		same antenna were used by the device,
		only conducted emission and Radiated
		emission were re-tested.

Prepared by:	Luna Gao	Date:	07 Sep., 2015	
	Report Clerk	_		

Reviewed by: Or Sep., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	
4	TES	T SUMMARY	4
5		NERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	8
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
7	TES	T SETUP PHOTO	30
Ջ	FUT	CONSTRUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	10.1" Android touch LCD Media Player	
Model No.:	DT101-AC4-720, 502-1019ATATM	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	Omni-directional	
Antenna gain:	2.5 dBi	
AC Adapter:	MODEL: PS18C120K1500UD Input: AC 100-240V 50/60Hz 0.5A Output: DC 12V, 1500mA	
Remark:	Model No.: DT101-AC4-720, 502-1019ATATM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different model number for customer and for HUNG WAI.	

Operation	Operation Frequency each of channel For 802.11b/g/n(H20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15070059803

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15070059803

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	ucted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7				
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:		Limit (c	dBuV)			
Z.IIII.	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test procedure	* Decreases with the logarith1. The E.U.T and simulators					
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN	ence Plane				
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test					
Test Instruments:	LISN: Line Impedence Stabilization Test table height=0.8m Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed	,				
า ธอเ าธอนแอ.	1 43364					

Measurement Data

Neutral:

Trace: 11 Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 10.1" Android touch LCD Media Player : DTD1- AC4-720 EUT

Test Mode : WIFI mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki Model

	Read	LISN	Cable		Limit	Over		
Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
MHz	dBu∀		dB	dBu₹	dBu₹	<u>dB</u>		
0.154	42.89	0.25	10.78	53.92	65.78	-11.86	QP	
0.186	40.01	0.25	10.76	51.02	64.20	-13.18	QP	
0.186	18.28	0.25	10.76	29.29	54.20	-24.91	Average	
0.206	36.90	0.25	10.76	47.91	63.36	-15.45	QP	
0.234	34.14	0.25	10.75	45.14	62.30	-17.16	QP	
0.369	19.30	0.25	10.73	30.28	48.52	-18.24	Average	
0.421	34.89	0.26	10.73	45.88	57.42	-11.54	QP	
0.431	23.89	0.26	10.73	34.88	47.24	-12.36	Average	
0.481	19.00	0.28	10.75	30.03	46.32	-16.29	Average	
0.694	14.66	0.18	10.77	25.61	46.00	-20.39	Average	
0.767	29.73	0.19	10.80	40.72	56.00	-15.28	QP	
1.698	12.26	0.27	10.94	23.47	46.00	-22.53	Average	
	MHz 0. 154 0. 186 0. 186 0. 206 0. 234 0. 369 0. 421 0. 431 0. 481 0. 694 0. 767	MHz dBuV 0.154 42.89 0.186 40.01 0.186 18.28 0.206 36.90 0.234 34.14 0.369 19.30 0.421 34.89 0.431 23.89 0.431 23.89 0.481 19.00 0.694 14.66 0.767 29.73	### Level Factor MHz dBuV dB	Freq Level Factor Loss MHz dBuV dB dB	MHz dBuV dB dB dBuV 0.154 42.89 0.25 10.78 53.92 0.186 40.01 0.25 10.76 51.02 0.186 18.28 0.25 10.76 29.29 0.206 36.90 0.25 10.76 47.91 0.234 34.14 0.25 10.75 45.14 0.369 19.30 0.25 10.73 30.28 0.421 34.89 0.26 10.73 34.88 0.431 23.89 0.26 10.73 34.88 0.481 19.00 0.28 10.75 30.03 0.694 14.66 0.18 10.77 25.61 0.767 29.73 0.19 10.80 40.72	MHz dBuV dB dB dBuV dBuV 0.154 42.89 0.25 10.78 53.92 65.78 0.186 40.01 0.25 10.76 51.02 64.20 0.186 18.28 0.25 10.76 29.29 54.20 0.206 36.90 0.25 10.76 47.91 63.36 0.234 34.14 0.25 10.75 45.14 62.30 0.369 19.30 0.25 10.73 30.28 48.52 0.421 34.89 0.26 10.73 45.88 57.42 0.431 23.89 0.26 10.73 34.88 47.24 0.481 19.00 0.28 10.75 30.03 46.32 0.694 14.66 0.18 10.77 25.61 46.00 0.767 29.73 0.19 10.80 40.72 56.00	MHz dBuV dB dB dBuV dBuV dB 0.154 42.89 0.25 10.78 53.92 65.78 -11.86 0.186 40.01 0.25 10.76 51.02 64.20 -13.18 0.186 18.28 0.25 10.76 29.29 54.20 -24.91 0.206 36.90 0.25 10.76 47.91 63.36 -15.45 0.234 34.14 0.25 10.75 45.14 62.30 -17.16 0.369 19.30 0.25 10.73 30.28 48.52 -18.24 0.421 34.89 0.26 10.73 34.88 57.42 -11.54 0.431 23.89 0.26 10.73 34.88 47.24 -12.36 0.481 19.00 0.28 10.75 30.03 46.32 -16.29 0.694 14.66 0.18 10.77 25.61 46.00 -20.39 0.767 29.73 0.19	Treq Level Factor Loss Level Line Limit Remark MHz dBuV dB dB dBuV dBuV dB dB dBuV dB dB dB dB dB dB dB d

Line:

Trace: 9

: CCIS Shielding Room

Site Condition : FCC PART15 B QP LISN LINE

: 10.1" Android touch LCD Media Player : DT101- AC4-720 EUT

Model Test Mode : WIFI mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

CEMETK	Freq	Read Level	LISN Factor	Cable Loss		Limit Line		Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBuV	<u>dB</u>	
1	0.162	40.32	0.27	10.77	51.36	65.34	-13.98	QP
2	0.170	16.08	0.27	10.77	27.12	54.94	-27.82	Average
3	0.190	36.72	0.28	10.76	47.76	64.02	-16.26	QP
2 3 4 5 6 7 8 9	0.211	15.86	0.28	10.76	26.90	53.18	-26.28	Average
5	0.274	15.23	0.26	10.74	26.23	50.98	-24.75	Average
6	0.421	32.94	0.28	10.73	43.95	57.42	-13.47	QP
7	0.421	18.82	0.28	10.73	29.83	47.42	-17.59	Average
8	0.630	29.86	0.24	10.77	40.87	56.00	-15.13	QP
9	0.686	10.56	0.22	10.77	21.55	46.00	-24.45	Average
10	0.862	27.26	0.24	10.83	38.33	56.00	-17.67	QP
11	2.567	27.44	0.27	10.94	38.65	56.00	-17.35	QP
12	3, 258	8, 26	0.27	10.91	19.44	46, 00	-26.56	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
	Spectrum Analyzer
	E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205		
Test Method:	ANSI C63.4: 20	09			
Test Frequency Range:	2.3GHz to 2.5G	Hz			
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency Above 1GHz	Poak		VBW 3MHz	Remark Peak Value
	Above IGHZ	Peak	1MHz	3MHz	Average Value
Limit:	Freque	ency	Limit (dBuV		Remark
	Above 1	GHz	54.0 74.0		Average Value Peak Value
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the numbers and to find the substitute of the emission of the EUT have 10dB	at a 3 meter come the position was set 3 meter which was mount a height is varied to determine to the and vertice measurement. The authority of the antennal the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported to the position of the could be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified than the sion level of the ecified, then the would be reported to the terminal than the sion level of the ecified than the ecified than the sion level of the ecified than the sion level of the ecified than the sion level of the ecified than	he top of a reamber. The of the highests away from the on the total read on the total read from one he maximum all polarizations to P. Maximum He EUT in peasting could borted. Otherwise re-tested	table was rest radiation. The interfer op of a variation of the analysis of the eart of the ea	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to reged to its worst from 1 meter to 4 hees to 360 degrees. Function and s 10dB lower than and the peak values ssions that did not be using peak, quasi-
Test setup:	peak or average method as specified and then reported in a data sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier				
Test Instruments:	Refer to section	5.6 for details			
Test mode:	Refer to section	5.3 for details			
Test results:	Passed				

Measurement Data:

Test mode: 80		Test char	nel: Lowest		Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	21.02	27.58	6.63	0.00	55.23	74.00	-18.77	Vertical	
2390.00	21.05	27.58	6.63	0.00	55.26	74.00	-18.74	Horizontal	
Test mode: 80)2.11b		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	9.35	27.58	6.63	0.00	43.56	54.00	-10.44	Vertical	
2390.00	9.56	27.58	6.63	0.00	43.77	54.00	-10.23	Horizontal	

Test mode: 80)2.11b		Test chan	nel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	21.74	27.52	6.85	0.00	56.11	74.00	-17.89	Vertical
2483.50	21.63	27.52	6.85	0.00	56.00	74.00	-18.00	Horizontal
Test mode: 802.11b			Test channel: Highest					
Test mode: 80)2.11b		Test chan	nel: Highest		Remark: Ave	erage	
Test mode: 80 Frequency (MHz)	02.11b Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80	02.11g		Test chan	nel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	28.25	27.58	6.63	0.00	62.46	74.00	-11.54	Vertical
2390.00	28.15	27.58	6.63	0.00	62.36	74.00	-11.64	Horizontal
Test mode: 80	02.11g		Test chan	nel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	11.12	27.58	6.63	0.00	45.33	54.00	-8.67	Vertical

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	r olai.
2483.50	21.52	27.52	6.85	0.00	55.89	74.00	-18.11	Vertical
2483.50	21.30	27.52	6.85	0.00	55.67	74.00	-18.33	Horizontal
Test mode: 80)2.11g		Test char	nel: Highest		Remark: Ave	erage	
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubuv/III)	(dB)	
2483.50	10.01	27.52	6.85	0.00	44.38	54.00	-9.62	Vertical
2483.50	10.12	27.52	6.85	0.00	44.49	54.00	-9.51	Horizontal

Remark:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Test mode: 80	02.11n-HT20)	Test chan	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	28.15	27.58	6.63	0.00	62.36	74.00	-11.64	Vertical
2390.00	28.11	27.58	6.63	0.00	62.32	74.00	-11.68	Horizontal
Test mode: 80	02.11n-HT20)	Test chan	nnel: Lowest		Remark: Ave	erage	
Test mode: 80 Frequency (MHz)	02.11n-HT20 Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80)2.11n-HT20)	Test chan	nel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	21.02	27.52	6.85	0.00	55.39	74.00	-18.61	Vertical
2483.50	21.12	27.52	6.85	0.00	55.49	74.00	-18.51	Horizontal
Test mode: 80)2.11n -HT2	0	Test chan	nel: Highest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	9.33	27.52	6.85	0.00	43.70	54.00	-10.30	Vertical
2483.50	9.25	27.52	6.85	0.00	43.62	54.00	-10.38	Horizontal

Test mode: 80)2.11n -HT4	0	Test chan	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	21.55	27.58	6.63	0.00	55.76	74.00	-18.24	Vertical	
2390.00	21.38	27.58	6.63	0.00	55.59	74.00	-18.41	Horizontal	
Test mode: 80)2.11n -HT4	0	Test chan	nel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	9.25	27.58	6.63	0.00	43.46	54.00	-10.54	Vertical	
2390.00	9.36	27.58	6.63	0.00	43.57	54.00	-10.43	Horizontal	

Test mode: 80	Test mode: 802.11n -HT40			nel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	21.55	27.52	6.85	0.00	55.92	74.00	-18.08	Vertical	
2483.50	21.26	27.52	6.85	0.00	55.63	74.00	-18.37	Horizontal	
Test mode: 80)2.11n -HT4	0	Test chan	nel: Highest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	10.02	27.52	6.85	0.00	44.39	54.00	-9.61	Vertical	
2483.50	10.11	27.52	6.85	0.00	44.48	54.00	-9.52	Horizontal	

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
	Spectrum Analyzer
	Non-Conducted Table
	Ground Reference Plane
	Ground Reference France
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	9 and 15.205					
Test Method:	ANSI C63.4:200)9						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:								
	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGIIZ	Peak	1MHz	3MHz	Average Value			
Limit:								
	Freque		Limit (dBuV/		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-	1GHz	54.0		Quasi-peak Value			
	Above 1	GHz	54.0 74.0		Average Value Peak Value			
Took Dropp driver	1. The EUT w	as placed on t			e 0.8 meters above			
Test Procedure:					tated 360 degrees			
		e the position						
					ence-receiving			
	antenna, w	hich was mou	nted on the to	op of a varia	able-height antenna			
	tower.							
					our meters above			
					e field strength. ntenna are set to			
		neasurement.	sai polarizatio	nis oi tile ai	illerina are set to			
			sion, the EU	T was arrar	nged to its worst			
	case and th	nen the antenr	na was tuned	to heights t	from 1 meter to 4			
				rom 0 degr	ees to 360 degrees			
		maximum read						
		ceiver system			Function and			
		Bandwidth with			s 10dB lower than			
					and the peak values			
					ssions that did not			
	have 10dB	margin would	be re-tested	one by one	using peak, quasi-			
	•	erage method	as specified	and then re	ported in a data			
	sheet.							

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 10.1 Android touch LCD Media Player Condition

EUT

: DT101-AC4-720 Model Test mode : WIFI mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Viki REMARK :

	Freq		Antenna Factor						Remark
_	MHz	dBu∜	<u>dB</u> /π		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	95.762	39.07	12.90	0.93	29.55	23.35	43.50	-20.15	QP
2	196.510	45.92	10.57	1.38	28.85	29.02	43.50	-14.48	QP
1 2 3	281.995								
	420.580	43.32	15.47	2.18	28.82	32.15	46.00	-13.85	QP
5	494.199	48.76	16.45	2.38	28.94	38.65	46.00	-7.35	QP
	842.130	44.47	20.51	3.24	28.03	40.19	46.00	-5.81	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 10.1" Android touch LCD Media Player : DT101-AC4-720 Condition

EUT

Model Test mode : WIFI mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa Test Engineer: Viki REMARK :

			Antenna						ъ.,
	Freq	Level	Factor	Loss	ractor	Level	Line	Limit	Kemark
_	MHz	dBu∜	∃dB/m	₫B	B	dBuV/m	dBuV/m	d₿	
1	31.289	42.04	12.32	0.44	29.97	24.83	40.00	-15.17	QP
2	47.826	38.43	13.38	0.59	29.84	22.56	40.00	-17.44	QP
1 2 3 4	119.856	40.30	10.48	1.12	29.39	22.51	43.50	-20.99	QP
4	281.995	41.57	12.70	1.72	28.48	27.51	46.00	-18.49	QP
	416.179	43.34	15.39	2.16	28.81	32.08	46.00	-13.92	QP
6	490.745	44.07	16.39		28.94				

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.25	31.54	10.58	40.22	47.15	74.00	-26.85	Vertical
4824.00	45.32	31.54	10.58	40.22	47.22	74.00	-26.78	Horizontal
						Remark: Average		
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Test mode: 80 Frequency (MHz)	02.11b Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 8	Test mode: 802.11b			nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.02	31.57	10.64	40.15	47.08	74.00	-26.92	Vertical	
4874.00	45.36	31.57	10.64	40.15	47.42	74.00	-26.58	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.11	31.57	10.64	40.15	38.17	54.00	-15.83	Vertical	
4874.00	36.82	31.57	10.64	40.15	38.88	54.00	-15.12	Horizontal	

Test mode: 8	Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	43.25	31.61	10.70	40.08	45.48	74.00	-28.52	Vertical	
4924.00	43.78	31.61	10.70	40.08	46.01	74.00	-27.99	Horizontal	
Test mode: 8	02.11b		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	Polar.	
((dBuV)	(dB/m)	(dB)	(dB)	,	,	(dB)		
4924.00	(dBuV) 35.01	(dB/m) 31.61	(dB) 10.70	(dB) 40.08	37.24	54.00	-16.76	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80	Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.32	31.54	10.58	40.22	46.22	74.00	-27.78	Vertical	
4824.00	44.28	31.54	10.58	40.22	46.18	74.00	-27.82	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	35.12	31.54	10.58	40.22	37.02	54.00	-16.98	Vertical	
4824.00	34.25	31.54	10.58	40.22	36.15	54.00	-17.85	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.98	31.57	10.64	40.15	48.04	74.00	-25.96	Vertical	
4874.00	45.28	31.57	10.64	40.15	47.34	74.00	-26.66	Horizontal	
Test mode: 80	02.11g		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	35.25	31.57	10.64	40.15	37.31	54.00	-16.69	Vertical	
4874.00	36.14	31.57	10.64	40.15	38.20	54.00	-15.80	Horizontal	

Test mode: 80	Test mode: 802.11g		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	43.25	31.61	10.70	40.08	45.48	74.00	-28.52	Vertical	
4924.00	43.18	31.61	10.70	40.08	45.41	74.00	-28.59	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	34.83	31.61	10.70	40.08	37.06	54.00	-16.94	Vertical	
4924.00	34.29	31.61	10.70	40.08	36.52	54.00	-17.48	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.25	31.54	10.58	40.22	46.15	74.00	-27.85	Vertical	
4824.00	44.15	31.54	10.58	40.22	46.05	74.00	-27.95	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	35.29	31.54	10.58	40.22	37.19	54.00	-16.81	Vertical	
4824.00	35.16	31.54	10.58	40.22	37.06	54.00	-16.94	Horizontal	

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.23	31.57	10.64	40.15	47.29	74.00	-26.71	Vertical	
4874.00	45.18	31.57	10.64	40.15	47.24	74.00	-26.76	Horizontal	
Test mode: 80	02.11n(H20)	1	Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	35.29	31.57	10.64	40.15	37.35	54.00	-16.65	Vertical	
4874.00	35.34	31.57	10.64	40.15	37.40	54.00	-16.60	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			nnel: Highest	Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	44.28	31.61	10.70	40.08	46.51	74.00	-27.49	Vertical		
4924.00	44.16	31.61	10.70	40.08	46.39	74.00	-27.61	Horizontal		
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	34.23	31.61	10.70	40.08	36.46	54.00	-17.54	Vertical		
4924.00	34.15	31.61	10.70	40.08	36.38	54.00	-17.62	Horizontal		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test char	Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	44.23	31.55	10.61	40.19	46.20	74.00	-27.80	Vertical	
4844.00	44.15	31.55	10.61	40.19	46.12	74.00	-27.88	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	34.28	31.55	10.61	40.19	36.25	54.00	-17.75	Vertical	
4844.00	34.16	31.55	10.61	40.19	36.13	54.00	-17.87	Horizontal	

Test mode: 8	Test mode: 802.11n(H40)			nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.18	31.57	10.64	40.15	47.24	74.00	-26.76	Vertical
4874.00	45.48	31.57	10.64	40.15	47.54	74.00	-26.46	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.29	31.57	10.64	40.15	37.35	54.00	-16.65	Vertical
4874.00	35.18	31.57	10.64	40.15	37.24	54.00	-16.76	Horizontal

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	45.11	31.59	10.67	40.10	47.27	74.00	-26.73	Vertical	
4904.00	45.02	31.59	10.67	40.10	47.18	74.00	-26.82	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	35.22	31.59	10.67	40.10	37.38	54.00	-16.62	Vertical	
4904.00	35.86	31.59	10.67	40.10	38.02	54.00	-15.98	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.