ORTHOGONAL POLYNOMIALS AND LIE SUPERALGEBRAS

ALEXANDER SERGEEV

ABSTRACT. For $\mathfrak{o}(2n+1)$, in addition to the conventional set of orthogonal polynomials, another set is produced with the help of the Lie superalgebra $\mathfrak{osp}(1|2n)$. Difficulties related with expression of Dyson's constant for the Lie superalgebras are discussed.

§0. Introduction

0.1. History. In 1962 while studying statistical mechanics Dyson [D] considered the constant term in the expression

$$\prod_{i \neq j} (1 - \frac{x_i}{x_j}) \text{ for } k \in \mathbb{N},$$

depending on indeterminates x_1, \ldots, x_n . Dyson conjectured the explicit form of this constant term. His conjecture was soon related with the root system of $\mathfrak{sl}(n)$, generalized to other root systems of simple Lie algebras and proved. The expressions obtained for the *Dyson constant* are called *Macdonald's identities*, see [M].

Let us briefly recall the main results. Let \mathfrak{g} be a simple (finite dimensional) Lie algebra, R its root system, P the group of weights; $A = \mathbb{C}[P]$ the group of formal exponents of the form e^{λ} , where $\lambda \in P$; let W be the Weyl group of \mathfrak{g} and

$$\triangle = \frac{1}{|W|} \prod_{\alpha \in R} (1 - e^{\alpha}).$$

On A, define the scalar product by setting

$$(f,g) = [f\bar{g}\triangle]_0, \tag{0.0}$$

where $\overline{e^{\lambda}} = e^{-\lambda}$ and $[f]_0$ is the constant term of the power series f.

It turns out that

the characters χ_{λ} of finite dimensional irreducible representations of \mathfrak{g} are uniquely determined by their properties

- (i) to form an orthogonal (with respect to the form (0.0)) basis in A^W , the algebra of W-invariant elements of A;
 - (ii) $\chi_{\lambda} = e^{\lambda} + \text{ terms with exponents } \mu \text{ such that } \mu < \lambda.$

Here for Lie superalgebras I consider the following problem: what are the analogs of the scaral product (0.0) (hence, of \triangle and W) for which (i) and (ii) hold? If (i) and (ii) do not hold as stated, how to modify the definitions and the statement to make them reasonably interesting?

¹⁹⁹¹ Mathematics Subject Classification. 05E35, 33C50, 17A70, 33D45.

Key words and phrases. Dyson's constant, Macdonald's identities, Lie superalgebras, orthogonal polynomials.

I am thankful to D. Leites, who raised the problem, for support and help.

0.2. Main result. So far, there is not much that can count as a result, actually. I consider this note as a remark on the results from [M] and a report on the work in progress.

It turns out that for Lie superalgebras there is no function Δ (understood as a formal distribution) such that the characters of irreducible representations would satisfy (0.1), i.e., were orthonormal. With one exception: the series $\mathfrak{osp}(1|2n)$. Thanks to this excepton, the main results of this note are:

- 1) For $\mathfrak{osp}(1|2n)$ I reproduce an observation of Rittenberg and Scheunert [RS] on a correspondence between irreducible $\mathfrak{osp}(1|2n)$ -modules and $\mathfrak{o}(2n+1)$ -modules. (I also give a short and lucid demonstration of this correspondence. ¹) From this correspondence I deduce in the $\mathfrak{o}(2n+1)$ case the existence of another set of orthogonal polynomials in addition to the set described in [M].
- 2) For any simple Lie superalgebra \mathfrak{g} I can produce a function Δ for which the characters of the typical representations are orthonormal with respect to (0.0). I hope to return to this topic elsewhere.

Remark . Observe that for the simple Lie algebras, Δ appears in the Weyl integration formula: if f is a class function on a compact Lie group G such that $Lie(G) \otimes \mathbb{C} \cong \mathfrak{g}$ and $T \subset G$ is a maximal torus, then

$$\int_{G} f \ dg = \int_{T} f \Delta dt. \tag{0.2}$$

For the general Lie superalgebras the analog of identity (0.2) is unknown to me. Here are several little problems: not every simple Lie superalgebra (supergroup) over \mathbb{C} has a compact form; the volume of those that have may vanish identically, cf. [B].

§1. The orthogonality of the characters of $\mathfrak{osp}(1|2n)$ -modules

We recall some basic facts from the representation theory of $\mathfrak{osp}(1|2n)$ (see, e.g., [K]) and (for convenience) $\mathfrak{o}(2n+1)$.

1.1. $\mathfrak{osp}(1|2n)$, its roots and characters. Set

$$R_{\bar{0}} = \{ \pm \varepsilon_i \pm \varepsilon_j \text{ for } i \neq j; \pm 2\varepsilon_i \}, \quad R_{\bar{1}} = \{ \pm \varepsilon_i \};$$

$$S_{\bar{0}} = \{ \pm \varepsilon_i \pm \varepsilon_j \text{ for } i \neq j \} \subset R_{\bar{0}};$$

$$2\rho_0 = \sum_{i < j} (\varepsilon_i - \varepsilon_j + \varepsilon_i + \varepsilon_j) + \sum_i 2\varepsilon_i = 2\sum_{i < j} \varepsilon_i + 2\sum_i \varepsilon_i = 2\sum_i (n - i + 1)\varepsilon_i.$$

For the Lie superalgebras

$$\rho = \rho_0 - \rho_1, \text{ where } \rho_1 = \frac{1}{2} \sum_i \varepsilon_i.$$

All $\mathfrak{osp}(1|2n)$ -modules are typical. The invariant bilinear form is $\operatorname{str}(\operatorname{ad}(x)^2)$. Explicitely, the restriction of this form onto Cartan subalgebra reads as follows:

$$\operatorname{str}(\operatorname{ad}(x)^{2}) = \sum (\pm \varepsilon_{i} \pm \varepsilon_{j})^{2} + \sum (\pm 2\varepsilon_{i})^{2} - \sum (\pm \varepsilon_{i})^{2} = 2 \sum (\varepsilon_{i} \pm \varepsilon_{j})^{2} + 4 \sum (\pm \varepsilon_{i})^{2} - \sum (\pm \varepsilon_{i})^{2} = 2 \sum ((\varepsilon_{i} + \varepsilon_{j})^{2} + (\varepsilon_{i} - \varepsilon_{j})^{2}) + 6 \sum (\varepsilon_{i})^{2} = (4n + 2) \sum (\varepsilon_{i})^{2}.$$

¹Leites informed me, that this demonstration basically coincides with the one Deligne communicated to Leites in 1991 (unpublished).

The supercharacter of the finite dimensional irreducible $\mathfrak{osp}(1|2n)$ -module V^{λ} with highest weight λ is

$$\operatorname{sch} V^{\lambda} = \frac{\sum_{w \in W} \operatorname{sign}'(w) e^{w(\lambda + \rho)}}{L},$$

where

$$L = \frac{\prod\limits_{\alpha \in R_{\bar{0}}^{+}} (e^{\alpha/2} - e^{-\alpha/2})}{\prod\limits_{\beta \in R_{\bar{1}}^{+}} (e^{\beta/2} - e^{-\beta/2})}$$

and sign'(w) is equal to -1 to the power equal to the number of reflections in the even roots α except those α for which $\frac{\alpha}{2} \in R_{\bar{1}}$.

The Weyl group W of $\mathfrak{osp}(1|2n)$ is equal to $\mathfrak{S}_n \circ (\mathbb{Z}/2)^n$ and

 $\operatorname{sign}'(\sigma \cdot \tau_1 \dots \tau_n) = \operatorname{sign}(\sigma)$ for any $\sigma \in \mathfrak{S}_n$ and τ_i from the *i*-th copy of $\mathbb{Z}/2$.

Observe that

$$L = \sum_{w \in W} \operatorname{sign}'(w) e^{w\rho}.$$

Indeed, apply the character formula to the trivial module.

In other words, everything is the same as for $\mathfrak{o}(2n+1)$ but instead of the character sign on W we now take sign'.

The unique, up to W-action system of simple roots in \mathfrak{g} is of the form

$$\Pi = \{\varepsilon_1 - \varepsilon_2, \dots, \varepsilon_{n-1} - \varepsilon_n, \varepsilon_n\}.$$

Observe that

$$\lambda + \rho = \sum (\lambda_i + n - i + \frac{1}{2})\varepsilon_i.$$

Since

$$L = \prod_{\alpha \in R_{\bar{0}}^{+}} (e^{\alpha/2} - e^{-\alpha/2}) \frac{\prod_{i} (e^{\varepsilon_{i}} - e^{-\varepsilon_{i}})}{\prod_{i} (e^{\varepsilon_{i}/2} - e^{-\varepsilon_{i}/2})} = \prod_{\alpha \in S_{\bar{0}}^{+}} (e^{\alpha/2} - e^{-\alpha/2}) \prod_{\alpha \in R_{\bar{1}}^{+}} (e^{\alpha/2} + e^{-\alpha/2}).$$
(1.1)

We will use the latter expression of L as well.

1.2. $\mathfrak{o}(2n+1)$, its roots and characters. Clearly, $R(\mathfrak{o}(2n+1)) = S(\mathfrak{osp}(1|2n))_{\bar{0}} \cup R(\mathfrak{osp}(1|2n))_{\bar{1}}$ and ρ is the half-sum of the positive roots; the restriction of the Killing form is proportional to $\sum \varepsilon_i^2$, the Weyl group is $W = \mathfrak{S}_n \circ (\mathbb{Z}/2)^n$ and for the nontrivial homomorphism sign : $\mathbb{Z}/2 \longrightarrow \{\pm 1\}$ we have

$$\operatorname{sign}(\sigma \cdot \tau_1 \dots \tau_n) = \operatorname{sign}(\sigma)\operatorname{sign}(\tau_1) \dots \operatorname{sign}(\tau_n)$$

for any $\sigma \in \mathfrak{S}_n$ and τ_i from the *i*-th copy of $\mathbb{Z}/2$.

The system of simple roots is the same as for $\mathfrak{osp}(1|2n)$; the character of the finite dimensional irreducible $\mathfrak{o}(2n+1)$ -module V^{λ} with highest weight λ is

$$\operatorname{ch} V^{\lambda} = \frac{\sum_{w \in W} \operatorname{sign}(w) e^{w(\lambda + \rho)}}{L},$$

where

$$L = \prod_{\alpha \in S(\mathfrak{osp}(1|2n))_0^+} (e^{\alpha/2} - e^{-\alpha/2}) \prod_{\alpha \in R(\mathfrak{osp}(1|2n))_1^+} (e^{\alpha/2} - e^{-\alpha/2}). \tag{1.2}$$

Set

$$(a,q)_{\infty} = (1-a)(1-aq)(1-aq^2)\dots$$

Set, further (for an indeterminate ϵ such that $\epsilon^2 = 1$; it corresponds to the 1-dimensional odd superspace; we hope that the reader will not confuse ϵ with the root ϵ):

$$\triangle(q,t,\epsilon) = \frac{\prod\limits_{\alpha \in S(\mathfrak{osp}(1|2n))_{\bar{0}}} (e^{\alpha},q)_{\infty}}{(te^{\alpha},q)_{\infty}} \cdot \frac{\prod\limits_{\alpha \in R(\mathfrak{osp}(1|2n))_{\bar{1}}} (\epsilon e^{\alpha},q)_{\infty}}{(t\epsilon e^{\alpha},q)_{\infty}} \quad \text{for } \alpha \in R(\mathfrak{o}(2n+1)).$$

Let

$$t = q^k \text{ for } k \ge 0.$$

Then

$$\Delta(q,t,\epsilon) = \prod_{\alpha \in S(\mathfrak{osp}(1|2n))_{\bar{0}}} \prod_{r=0}^{k-1} (1 - q^r e^{\alpha}) \cdot \prod_{\alpha \in R(\mathfrak{osp}(1|2n))_{\bar{1}}} \prod_{r=0}^{k-1} (1 - \epsilon q^r e^{\alpha}) = \prod_{\alpha \in R} \prod_{r=0}^{k-1} (1 - \epsilon^{p(\alpha)} q^r e^{\alpha}),$$

$$(1.3)$$

where $p(\alpha) = 0$ for $\alpha \in S(\mathfrak{osp}(1|2n))_{\bar{0}}$ and $p(\alpha) = 1$ for $\alpha \in R(\mathfrak{osp}(1|2n))_{\bar{1}}$.

Let P be the group of weights of $\mathfrak{osp}(1|2)$ and let $A = \mathbb{C}[P]$ be the group of formal exponents of the form e^{λ} , where $\lambda \in P$. Recall that $\lambda \in P$ if and only if $\lambda = \sum n_i \varepsilon_i$, where $n_i \in \mathbb{Z}$ for all the i.

The Weyl group $W = \mathfrak{S}_n \circ (\mathbb{Z}/2)^n$ of $\mathfrak{osp}(1|2n)$ acts on P, hence, on A, as follows: \mathfrak{S}_n permutes the ε_i and $(\mathbb{Z}/2)^n$ changes their signs.

Observe that for $\mathfrak{o}(2n+1)$ the group of weights is larger than same for $\mathfrak{osp}(1|2n)$: the former includes the half-integer n_i .

- **4.2. Theorem** . For $\mathfrak{o}(2n+1)$ there exists a unique (up to a constant factor) basis of A^W consisting of $\lambda \in P^+$ such that
- a) $F_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} u_{\lambda,\mu} m_{\mu}$, where $m_{\lambda} = \sum_{\nu \in \{\text{the orbit of } \lambda\}} e^{\nu}$ and the coefficients $u_{\lambda,\mu}$ are rational functions in t and ϵ ;
- b) for $f, g \in A$ define the pairing (f, g) by means of formula (0.0), where Δ is determined by (1.3). Then

$$(F_{\lambda}, F_{\mu}) = 0 \text{ if } \lambda \neq \mu.$$

Proof. Uniquness. Since $F_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda}u_{\lambda,\mu}m_{\mu}$, it follows that the transition matrix from F_{λ} to F_{λ} is an uppertriangular one, i.e., $m_{\lambda}=F_{\lambda}+\sum_{\mu<\lambda}a_{\lambda,\mu}F_{\mu}$. If F_{λ}' is another set of elements from A with the properties needed, then the transition matrix from m_{λ} to F_{λ}' is also an uppertriangular one, so $F_{\lambda}'=\sum_{\mu\leq\lambda}b_{\lambda,\mu}F_{\mu}$. If both the bases are orthogonal, i.e.,

 $(F_{\lambda}, F_{\mu}) = (F_{\lambda}', F_{\mu}') = 0$ for $\lambda \neq \mu$, this means that $F_{\lambda} = F_{\lambda}' \cdot C_{\lambda}$.

Existence. It suffices to prove the existence of an operator $D:A^W\longrightarrow A^W$ such that

- i) (Df, g) = (f, Dg);
- ii) $Dm_{\lambda} = \sum_{\mu \leq \lambda} c_{\lambda,\mu} m_{\mu};$
- iii) if $\lambda, \mu \in P^+$ are distinct, then $c_{\lambda,\lambda} \neq c_{\mu,\mu}$.

Set

$$\Delta_{+} = \prod_{\alpha \in R^{+}} \prod_{r=0}^{k-1} (1 - \epsilon^{p(\alpha)} q^{r} e^{\alpha}).$$

In the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ select $h_1 = \varepsilon_1^*$ which plays the role of a miniscule weight for the dual root system. More exactly, for $R^+ = \{\varepsilon_i - \varepsilon_j; \varepsilon_i + \varepsilon_j; \varepsilon_i\}$ we have $\alpha(h_1) = 0$ or 1 for any $\alpha \in R^+$.

Define the action of the operator $T = T_{h_1}$ by setting

$$Te^{\lambda} = q^{\lambda(h_1)}e^{\lambda}$$

and define D by setting

$$Df = \sum_{w \in W} w(\Delta_+^{-1} T(\Delta_+ f)).$$

The operator D is self-adjoint. Indeed,

$$\triangle = w\triangle = w\triangle_{+}\overline{w\triangle_{+}}$$
 for any $w \in W$.

Further on,

$$(Df,g) = \sum (w(\triangle_{+}^{-1}T(\triangle_{+}f)),g) = \frac{1}{|W|} \sum_{w \in W} \left[w\left(\frac{T(\triangle_{+}f)}{\triangle_{+}}\right) \cdot \bar{g} \cdot w\triangle_{+}\overline{w\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g} \cdot \overline{w\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}w\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}w\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0} = \frac{1}{|W|} \sum_{w \in W} \left[w(T(\triangle_{+}f)) \cdot \bar{g}\overline{\triangle_{+}} \right]_{0$$

(since the constant term is always W-invariant) = $[T(\triangle_+ f) \cdot \bar{g}\overline{\triangle_+}]_0$.

Similarly,

$$(Dg, f) = [T(\triangle_+ g) \cdot \overline{f} \overline{\triangle_+}]_0.$$

But, as is easy to verify,

$$[T(f) \cdot \bar{g}]_0 = [T(g) \cdot \bar{f}]_0.$$

Therefore,

$$(Df,g)=(f,Dg)$$
 for any $f,g\in A^W$.

Let us show that D sends A into A. Set $\Phi = \Delta_+^{-1} T(\Delta_+)$. Then $D = \sum_{w \in W} w(\Phi T(f))$ since T is an automorphism.

Let us compute Φ . Since $\alpha(h_1) = 0$ or 1 for any $\alpha \in \mathbb{R}^+$, it follows that

$$T(e^{\alpha}) = \begin{cases} qe^{\alpha} & \text{for } \alpha(h_1) = 1\\ e^{\alpha} & \text{for } \alpha(h_1) = 0. \end{cases}$$

The case $\epsilon = 1$ is considered in [M1]. Therefore, in what follows we assume that $\epsilon = -1$. We have:

$$\begin{split} &\Phi = \frac{T(\Delta_{+})}{\Delta_{+}} = \frac{T(\prod\limits_{\alpha \in R^{+}} \prod\limits_{r=0}^{k-1} (1 - \epsilon^{p(\alpha)} q^{r} e^{\alpha}))}{\prod\limits_{\alpha \in R^{+}} \prod\limits_{r=0}^{k-1} (1 - \epsilon^{p(\alpha)} q^{r} e^{\alpha})} = \\ &\prod\limits_{\alpha \in R^{+}} \prod\limits_{r=0}^{k-1} \frac{1 - \epsilon^{p(\alpha)} q^{\alpha(h_{1})} q^{r} e^{\alpha}}{1 - \epsilon^{p(\alpha)} q^{r} e^{\alpha}} = \\ &\prod\limits_{\alpha \in R^{+}, \ \alpha(h_{1})=1} \prod\limits_{r=0}^{k-1} \frac{1 - \epsilon^{p(\alpha)} q^{r+1} e^{\alpha}}{1 - \epsilon^{p(\alpha)} q^{r} e^{\alpha}} = (t = q^{r}) \\ &\prod\limits_{\alpha \in R^{+}, \ \alpha(h_{1})=1} \prod\limits_{r=0}^{k-1} \frac{1 - \epsilon^{p(\alpha)} t^{\alpha}}{1 - \epsilon^{p(\alpha)} e^{\alpha}} = \\ &\prod\limits_{\alpha \in R^{+}, \ \alpha(h_{1})=1} \prod\limits_{r=0}^{k-1} \frac{1 - \epsilon^{p(\alpha)} t^{\alpha(h_{1})} e^{\alpha}}{1 - \epsilon^{p(\alpha)} e^{\alpha}} = \\ &\prod\limits_{\alpha \in R^{+}} \prod\limits_{r=0}^{k-1} \frac{1 - \epsilon^{p(\alpha)} t^{\alpha(h_{1})} e^{\alpha}}{1 - \epsilon^{p(\alpha)} e^{\alpha}} = \prod\limits_{\alpha \in R^{+}} \prod\limits_{r=0}^{k-1} t^{\alpha(h_{1})} \frac{\epsilon^{p(\alpha)} - t^{-\alpha(h_{1})} e^{-\alpha}}{\epsilon^{p(\alpha)} - e^{-\alpha}} = \\ &\prod\limits_{\alpha \in R^{+}} \prod\limits_{r=0}^{k-1} t^{\alpha(h_{1})} \frac{1 - \epsilon^{p(\alpha)} t^{-\alpha(h_{1})} e^{-\alpha}}{1 - \epsilon^{p(\alpha)} e^{-\alpha}} = t^{\alpha(2\rho)} \prod\limits_{\alpha \in R^{+}} \prod\limits_{r=0}^{k-1} \frac{1 - \epsilon^{p(\alpha)} t^{-\alpha(h_{1})} e^{-\alpha}}{1 - \epsilon^{p(\alpha)} e^{-\alpha}} = \\ &t^{\alpha(2\rho)} e^{\rho} \delta^{-1} \prod\limits_{\alpha \in R^{+}} (1 - \epsilon^{p(\alpha)} t^{-\alpha(h_{1})} e^{-\alpha}), \end{split}$$

where

$$\delta = \sum_{w \in W} \operatorname{sign}'(w) e^{w\rho}.$$

Observe that $w\delta = \text{sign}'(w)$. Observe also that

$$\delta = \prod_{\alpha \in R^+} (e^{\alpha/2} - \varepsilon^{p(\alpha)} e^{-\alpha/2}).$$

For any $X \subset R_+$ set

$$\sigma(X) = \sum_{\alpha \in X} \alpha.$$

If we simplify (1.4) by eliminating parentheses, then Φ takes the form

$$\Phi = t^{2\rho(h_1)} e^{\rho} \delta^{-1} \sum_{X \subset R^+} \varphi_X(t) e^{-\sigma(X)}),$$

where

$$\varphi_X(t) = (-1)^{|X|} \varepsilon^{p(X)} t^{-\sigma(X)(h_1)}$$

and p(X) = #(odd roots that occure in X). Let us calculate De^{μ} for $\mu \in P$. Observe that $w(Te^{\mu}) = q^{\mu(h_1)}e^{w\mu}$, hence,

$$De^{\mu} = \delta^{-1}q^{\mu(h_1)}t^{2\rho(h_1)} \sum_{X \subset R^+} \varphi_X(t) \sum_{w \in W} \operatorname{sign}'(w)e^{w(\mu+\rho-\sigma(X))} = q^{\mu(h_1)}t^{2\rho(h_1)} \sum_{X \subset R^+} \varphi_X(t) \left(\delta^{-1} \sum_{w \in W} \operatorname{sign}'(w)e^{w(\mu+\rho-\sigma(X))}\right) = q^{\mu(h_1)}t^{2\rho(h_1)} \sum_{X \subset R^+} \varphi_X(t)\chi_{\mu-\sigma(X)}.$$

Here

$$\chi_{\mu-\sigma(X)} \neq 0 \longleftrightarrow \text{ there exists a } \nu \in P^+ \text{ such that } \nu + \rho = w(\mu - \sigma(X) + \rho).$$

The last result does not depend on the choice of the one-dimensional character (sign or sign') on W because the orbit of the weight λ contains a dominant weight if and only if the λ_i^2 are pairwise distinct. Therefore,

$$Dm_{\lambda} = \sum_{\mu \in W_{\lambda}} De^{\mu} = t^{2\rho(h_1)} \sum_{X \subset R^+} \varphi_X(t) \sum_{\mu \in W_{\lambda}} q^{\mu(h_1)} \chi_{\mu - \sigma(X)}. \tag{1.5}$$

But

$$\rho - \sigma(X) = \frac{1}{2} \sum_{\alpha \in R^+} \varepsilon_{\alpha} \alpha \tag{1.6}$$

where $\varepsilon_{\alpha} = \pm 1$; hence, $w(\rho - \sigma(X))$ is of the same form (1.6) and, therefore,

$$w(\rho - \sigma(X)) = \rho - \sigma(Y)$$
 for some $Y \subset \mathbb{R}^+$.

Thus,

$$\nu = w\mu - \sigma(Y) \le w\mu \le \lambda.$$

Consequently, $Dm_{\lambda} = \sum_{\nu \leq \lambda} C_{\lambda\nu}(h_1) \cdot m_{\nu}$ and a) is verified.

Let us prove b). In $(\bar{1.4})$, $\nu = \lambda$ if and only if $Y = \emptyset$ and

$$w\mu = \lambda \iff w(\rho - \sigma(X)) = \rho, \ \mu = w^{-1}\lambda, \ X = R^+ \cap (-wR^+).$$

Therefore,

$$C_{\lambda\lambda}(h_1) = t^{2\rho(h_1)} \sum_{X \subset R^+} q^{w^{-1}\lambda(h_1)} \operatorname{sign}'(w) \chi_{R^+ \cap (-wR^+)}(t)$$

because

$$\chi_{R^+\cap(-wR^+)} = (-1)^{|R^+\cap(-wR^+)|} (-1)^{p(R^+\cap(-wR^+))} t^{(w^{-1}\rho-\rho)(h_1)} = \operatorname{sign}'(w) t^{(w^{-1}\rho-\rho)(h_1)}.$$

Hence,

$$C_{\lambda\lambda}(h_1) = t^{\rho(h_1)} \sum_{w \in W} q^{\lambda(wh_1)} t^{\rho(wh_1)},$$

as in [M]. Therefore (see (6.14) in [M]), if $\lambda \neq \mu$ and $\lambda, \mu \in P^+$, then $C_{\lambda\lambda} \neq C_{\mu\mu}$.

REFERENCES

- [B] Berezin F., Representations of the supergroup U(p,q). (Russian) Funkcional. Anal. i Prilozhen. 10 (1976), n. 3, 70–71
- [D] Dyson F. Statistical theory of the energy levels of complex systems. I., J. Math. Phys., 3, 1962, 140 156
- [K] Kac V., Representations of classical Lie superlagebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Math., 676, Springer, Berlin, 1978, 597–626
- [M] Macdonald I., Symmetric functions and orthogonal polynomials. Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, NJ. University Lecture Series, 12. American Mathematical Society, Providence, RI, 1998
- [RS] Rittenberg, V.; Scheunert, M. A remarkable connection between the representations of the Lie superalgebras $\mathfrak{osp}(1, 2n)$ and the Lie algebras $\mathfrak{o}(2n+1)$. Comm. Math. Phys. 83 (1982), no. 1, 1–9

Dept. of Math., Univ. of Stockholm, Roslagsv. 101, Kräftriket hus 6, S-106 91, Stockholm, Sweden (On leave of absence from Balakovo Inst. of Technology Technique and Control), e-mail: mleites@matematik.su.se subject: for Sergeev