1 Concrete Semantics of Scheme CESK*

Syntax:

$$e \in \mathsf{Exp} ::= \varnothing \\ \quad | (\mathsf{if} \ e \ e \ e) \\ \quad | (\mathsf{let} \ (x \ e) \ e) \\ \quad | (\mathsf{prim} \ op \ e \ e...) \\ \quad | (e \ e \ ...) \\ \quad \varnothing \in \mathsf{AExp} ::= lam \ | \ \mathbb{Z} \ | \ \mathsf{\#t} \ | \ \mathsf{\#f} \\ lam \in \mathsf{Lam} ::= (\lambda \ (x...) \ e) \\ \quad x \in \mathsf{Var} \qquad \mathsf{A} \ \mathsf{set} \ \mathsf{of} \ \mathsf{identifiers}$$

Semantics:

$$\varsigma \in \Sigma \triangleq \mathsf{Exp} \times Env \times Kont$$

$$\rho \in Env \triangleq \mathsf{Var} \rightharpoonup Addr$$

$$\sigma \in Store \triangleq Addr \rightharpoonup Val$$

$$v \in Val \triangleq Clo + \mathbb{Z} + \{\mathtt{\#t}, \mathtt{\#f}\}$$

$$clo \in Clo \triangleq \mathsf{Lam} \times Env$$

$$\kappa \in Kont \triangleq \mathbf{mt} \mid \mathbf{appk}(done, todo, \rho, a) \mid \mathbf{ifk}(e, e, \rho, a) \mid \mathbf{letk}(x, e, \rho, a)$$

$$\mid \mathbf{apk}(address)$$

$$| \mathbf{a}, b, c \in Addr \quad \text{A set of addresses}$$

Atomic Evaluation Function:

 $done \triangleq Val* \quad todo \triangleq Exp*$

$$\mathcal{A}(x, \rho, \sigma) \triangleq \sigma(\rho(x))$$
$$\mathcal{A}(lam, \rho, \sigma) \triangleq (lam, \rho)$$
$$\mathcal{A}(\mathfrak{X}, \rho, \sigma) \triangleq \mathfrak{X}$$

Transition Function:

$$(\Sigma \times Store) \leadsto (\Sigma \times Store)$$

$(\varsigma \times \sigma) \leadsto (\varsigma' \times \sigma)$, where $\kappa = \sigma(a), b = alloc(\varsigma)$ proceed by matching on ς

proceed by matching on ζ	
$\langle e_c, ho, b angle$	
$\sigma[b \mapsto \mathbf{ifk}(e_t, e_f, \rho, a)]$	
$\langle e_x, \rho, b \rangle$	
$\sigma[b \mapsto \mathbf{letk}(x, e_b, \rho, a)]$	
$\langle e_0, \rho, b \rangle$	
$\sigma[b \mapsto \mathbf{appk}([op], es, \rho, a)]$	
$\langle e_f, ho, b angle$	
$\sigma[b \mapsto \mathbf{appk}([], e_s, \rho, a)]$	
ς	
$\langle e_f, ho', c angle$	
$\langle e_t, \rho', c \rangle$	
$\langle e_b, \rho'[x \mapsto b], c \rangle$	
$\sigma[b \mapsto v]$	
$\langle e_h, ho', b angle$	
$\sigma[b \mapsto \mathbf{appk}(done + [v], e_t, \rho', c)]$	
$\langle v', \rho', c \rangle$	
$v' = op$ applied to $(v_s + [v])$	
$\langle e_b, \rho_\lambda[x_{s0} \mapsto b_0x_{si} \mapsto b_i], c \rangle$	
$v_s' = v_s + [v]$	
$\sigma[b_0 \mapsto v'_{s0}b_i \mapsto v'_{si}]$	

2 Abstract Semantics of Scheme CESK*