Desempenho do Processador

Henrique Noronha Facioli - 157986

Lauro Cruz e Souza - 156175

Thiago Silva Farias - 148077

WB

WB

MEM

MEM

EX

EX

Pipeline Branch Predictor Cache Conclusão

Pipeline 5

- Read after Write
 - Instrução depende de dado que será calculado
 - Pipeline escalar e superescalar

Write after Read

- Instrução sobrescreve valor que ainda será lido
- Só ocorre no superescalar

Write after Write

- Instrução sobrescreve valor que ainda será escrito
- o Só ocorre no superescalar

Pipeline 5 Desempenho

Pipeline de 7 estágios

Escalar

- Divisão do IF em IT e IF e divisão da MEM em MM e MD
- Mesmos hazards de dados que o de 5 estágios
- Podem utilizar uma frequência maior já que estágios são menores

Pipeline de 7 estágios

Desempenho

Tipos de Branch Predictor

- No Branch Predictor
 - Não tenta prever a ocorrência de branches.
 - Sempre dá stall.

- Always Not Taken
 - Assume que o branch nunca será pego.
 - Em caso de erro, terá que dar stall.

Two Bit Predictor

CPI e Tempo

Benchmark

Porcentagem de Acertos

Branch Predictor x Porcentagem de Branches Corretos

Benchmark

Tipos de cache e modos de referência

- L1
 - Menor e mais rápida
 - Mais próxima do processador

- L2
 - Maior e mais lenta
 - Mais próxima da RAM

Modos de acesso

- Cache de dados
 - Operações Read/Write
 - Utilizadas para dados das aplicações
- Cache de instruções
 - Fetch instruction
 - Utilizadas para guardar e obter instruções

Quantidade e taxa de misses (data cache)

Quantidade e taxa de misses (instr cache)

- Processadores superescalares chegam a ser 10% mais rápidos aos escalares.
- Processadores de 7 estágios apresentaram tempos até 20% melhores que os de 5 estágios.
- Two Bit Predictor se mostrou a melhor escolha.
- Em relação ao Always Not Taken, o Two Bit Predictor apresentou uma taxa de acertos até 10% superior.
- A melhor (e maior) cache (64K L1, 512K L2) apresentou 78.46 % menos L1 misses e 21.14 % menos L2 misses do que a pior cache (16K L1, 256K L2).
- Caches L1 pequenas geram mais misses que caches maiores, mas eventualmente levam a taxas de misses menores em L2.