Logique et calculabilité TD 1 : fonctions récursives et λ -calcul

September 12, 2007

1 Quelques fonctions primitives récursives

Question 1.1 Montrez que les fonctions suivantes sont primitives récursives :

- 1. $\lambda n.n \mod 2$
- 2. $\lambda n. \lfloor \frac{n}{2} \rfloor$
- 3. $\lambda(\overline{n}, m)$. $\prod_{i=0}^{m} g(\overline{n}, i)$, où g est une fonction primitive récursive
- 4. $if_then_else = \lambda(c, x, y)$. $\begin{vmatrix} x & si \ c = 1 \\ y & si \ c = 0 \\ ce \ que \ vous \ voulez \ sinon \end{vmatrix}$
- 5. $\lambda n. \max_{0 \le i \le n} f(i)$, où $f: \mathbb{N} \to \mathbb{N}$ est une fonction primitive récursive
- 6. $\lambda(\overline{n},m)$. $\begin{vmatrix} 1 & si \ \exists i \leq m \ 0 & sinon \end{vmatrix}$, où q est un prédicat primitif récursif
- 7. la fonction qui à des entiers n et k associe la partie entière de $\frac{n}{2^k}$

2 Entiers de Church

Dans cet exercice nous allons construire un codage des entiers en λ -calcul. Ce codage sera utile pour démontrer l'équivalence entre les fonctions récursives et les termes.

Question 2.1 Réduire les termes suivants :

1.
$$((\lambda x.\lambda y.(xy))b)c$$

2.
$$(\lambda x. (a (\lambda y. (xy))) b) c$$

On définit la suite de termes suivante :

$$\overline{0} = \lambda f. \lambda x. x$$

$$\overline{1} = \lambda f. \lambda x. (fx)$$

$$\dots$$

$$\overline{n} = \lambda f. \lambda x. \underbrace{(f(f \dots (f(f x)) \dots))}_{n \text{ fois}}$$

Question 2.2 Trouver un terme σ tel que $\sigma \overline{n} \to_{\beta}^* \overline{n+1}$.

Question 2.3 Trouver un terme ADD tel que $((ADD\overline{n})\overline{m}) \to_{\beta}^* \overline{n+m}$.

Question 2.4 Trouver un terme MULT tel que $((MULT\overline{n})\overline{m}) \to_{\beta}^* \overline{n \times m}$.

3 Codage des suites finies

Le but de cet exercice est d'associer à toute suite finie d'entiers $s \in \mathbb{N}^*$ un code numérique \widehat{s} de façon à ce que les opérations usuelles sur les listes soient primitives récursives. On note t::q la liste dont la tête est t et la queue q; [] la liste vide. Ainsi, la liste (a_0,\ldots,a_n) est notée $a_0:\ldots::a_n::[$

Question 3.1 Exhibez une bijection c_2 de $\mathbb{N} \times \mathbb{N}$ vers \mathbb{N} vérifiant

- c₂ est primitive récursive
- $\forall n, m \in \mathbb{N}^2, \ n \leq c_2(n, m)$
- $\forall n, m \in \mathbb{N}^2, m \le c_2(n, m)$

Question 3.2 Trouvez deux fonction primitives récursives p_2^1 et p_2^2 de $\mathbb{N} \to \mathbb{N}$ telles que

- $\forall n, m \in \mathbb{N} \times \mathbb{N}$ $p_2^1(c_2(n, m)) = n$ et
- $\forall n, m \in \mathbb{N} \times \mathbb{N}$ $p_2^2(c_2(n, m)) = m$.

 p_2^1 , p_2^2 sont les fonctions de projection associées à c_2 .

Question 3.3 Déduisez-en, pour tout entier k non nul, une fonction primitive récursive $c_k : \mathbb{N}^k \to \mathbb{N}$ bijective et les k fonctions de projection associées.

Question 3.4 La suite de Fibonacci définie par

$$Fib(n) = \begin{vmatrix} 1 & si \ n = 0 \ ou \ n = 1 \\ Fib(n-1) + Fib(n-2) & sinon \end{vmatrix}$$

est-elle primitive récursive ?

Question 3.5 Définissez une bijection $\widehat{\cdot}: \mathbb{N}^* \to \mathbb{N}$, qui associe à toute suite finie d'entiers s un codage numérique \widehat{s} , telle que les fonctions suivantes soient primitives récursives :

- $cons: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ telle que $cons(t, \widehat{q}) = \widehat{t::q}$
- une constante $nil \in \mathbb{N}$ telle que $nil = \widehat{[]}$
- tête : $\mathbb{N} \to \mathbb{N}$ telle que tête $(\widehat{t} :: q) = t$
- queue : $\mathbb{N} \to \mathbb{N}$ telle que queue $(\widehat{t} :: q) = \widehat{q}$

Question 3.6 Montrez qu'avec ce même codage, les fonctions suivantes sont aussi primitives récursives :

- élément : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ telle que $\forall i \leq n$ élément $(i, a_0 :: \widehat{\ldots} :: a_n :: []) = a_i$
- appartient : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ telle que appartient (n, \hat{s}) teste si l'entier n apparaît dans la suite codée par \hat{s}

Question 3.7 Soit $x_1, ... x_l : \mathbb{N} \to \mathbb{N}$ des fonctions primitives récursives telles que $\forall i \leq l \forall n \in \mathbb{N}$ $0 \leq x_i(n) < n$. Soit $g : \mathbb{N}^k \to \mathbb{N}$ et $h : \mathbb{N}^{k+l+1} \to \mathbb{N}$ deux fonctions PR. Montrez que la fonction $f : \mathbb{N}^{k+1} \to \mathbb{N}$ définie par

$$f(\overline{n},0) = g(\overline{n})$$

$$f(\overline{n},m+1) = h(\overline{n},m,f(\overline{n},x_1(m+1)),\ldots,f(\overline{n},x_l(m+1)))$$

est primitive récursive.