Database Development and Design (CPT201)

Lecture 13b: Data Mining 2Clustering and Market Basket Analysis

Dr. Wei Wang
Department of Computing

Learning Outcome

- Intro to Clustering
- Intro to Market Basket Analysis

Problem

- Given data points in a multidimensional space, group them into a number of clusters, using some measure of "nearness", e.g.,
 - cluster documents by topic
 - cluster users by similar interests

Clustering

- Output: k groups of records called clusters, such that the records within a group are more similar than records in other groups
 - Representative points for each cluster
 - Labeling of each record with each cluster number
- This is unsupervised learning: no record labels are given to learn from
- Usage:
 - Exploratory data mining
 - Preprocessing step (e.g. outlier detection)

An Example of Clustering

- Example input database: two numerical variables
- How many groups are here?

20

40

Age

60

80

Customer Demographics

Age	Salary
20	40
25	50
24	45
23	50
40	80
45	85
42	87
35	82
70	30

0

Similarity

- Need to define "similarity" between records
- Use the "right" similarity (distance) function
 - Scale or normalise all attributes. Example: seconds, hours, days
 - Assign different weights to reflect importance of the attribute
 - Choose appropriate measure

Properties of Distances: Metric Spaces

- A metric space is a set S with a global distance function d. For every two points x, y in S, the distance d(x,y) is a nonnegative real number.
- A metric space must also satisfy
 - d(x,y) = 0 iff x = y
 - d(x,y) = d(y,x) (symmetry)
 - d(x,y) + d(y,z) >= d(x,z) (triangle inequality)

Minkowski Distance (L_p Norm)

- There exist a lot of definitions of distance.
 Minkowski Distance is one of them.
- Consider two records $x=(x_1,...,x_d)$, $y=(y_1,...,y_d)$, Minkowski Distance is defined by:

$$d(x,y) = \sqrt[p]{|x_1 - y_1|^p + |x_2 - y_2|^p + \dots + |x_d - y_d|^p}$$

- Special cases:
 - p=1: Manhattan distance

$$d(x,y) = |x_1-y_1| + |x_1-y_2| + ... + |x_d-y_d|$$

p=2: Euclidean distance

$$\sqrt[2]{|x_1-y_1|^2+|x_2-y_2|^2+\cdots+|x_d-y_d|^2}$$

K-means Clustering Algorithm

- Choose k initial means
- Assign each point to the cluster with the closest mean
- Compute new mean for each cluster
- Iterate until the k means stabilise

Example

We want to cluster the data into three groups.

- Randomly assign three initial means (centroid)
 - μ_1 =(20, 40), μ_2 =(40, 80), μ_3 =(70, 30)
- Each mean represents a cluster. Assign each sample into a cluster based on its distance to the mean.
 - C_1 ={(20, 40), (25, 50), (24, 45), (23, 50)}
 - $C_2 = \{(40, 80), (45, 85), (42, 87), (35, 82)\}$
 - $C_3 = \{(70, 30)\}$
- Compute and update new mean for each cluster:
 - μ_1 =(23, 46.25), μ_2 =(40.5, 83.5), μ_3 =(70, 30)
- Repeat previous two steps until changes are less a pre-defined threshold.

Age	Salary
20	40
25	50
24	45
23	50
40	80
45	85
42	87
35	82
70	30

Market Basket Analysis

- Consider a shopping cart filled with a number of items.
- Market basket analysis tries to answer questions similar to the following:
 - Who makes purchases?
 - What do customers buy?
 - What they buy together?

Market Basket Analysis cont'd

• Given:

- A database of customer transactions
- Each transaction consists of a set of items
- TID: transaction ID
- CID: customer ID

• Goal:

Extract rules

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	106	6/5/99	Pen	1
113	106	6/5/99	Milk	1
114	201	7/1/99	Pen	2
114	201	7/1/99	Ink	2
114	201	7/1/99	Juice	4

Frequent Itemsets

- Itemset is a set of items
- The support of an itemset is the fraction of transactions in the database that contain all items in the itemset.
- Given a minimum support minsup, Frequent itemsets with respect to the minimum support are the itemsets whose support is higher than minsup.
- The "A Priori Property": Every subset of a frequent itemset is also a frequent itemset.

Example

Given a minsup = 0.6, compute all frequent itemsets.

{pen}, {ink}, {milk}, {pen, ink}, {pen, milk},

Market Basket Analysis

- Co-occurrences
 - 80% of all customers purchase items X, Y and Z together.
- Association rules
 - 60% of all customers who purchase X and Y also buy Z.
- Sequential patterns
 - 60% of customers who first buy X also purchase Y within three weeks.

Confidence and Support of Rules

- We prune the set of all possible association rules using two measures:
- Support of a rule:
 - X => Y has support s if P(X, Y) = s
 - (#of transactions contain both X and Y/total of transactions)
- Confidence of a rule:
 - $X \Rightarrow Y$ has confidence c if P(Y|X) = c
 - (#of transactions contain X and Y/# of transactions contain X)
- We can also define Support of a co-occurrence XY:
 - XY has support s if P(X, Y) = s
 - (#of transactions contain X and Y/total of transactions)
 - Same as X => Y

Examples and Questions

- Treat each transaction as a market basket
 - Example rule: {Pen} => {Milk}Support = 75%Confidence = 75%
 - Another example: {Ink} => {Pen}
 Support = 75%
 Confidence = 100%
- Treat each customer as a market basket
 - Example rule: {Pen} => {Milk}Support = 100%Confidence = 100%
 - Another example: {Ink} => {Pen}
 Support = 66.67%
 Confidence = 100%

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	106	6/5/99	Pen	1
113	106	6/5/99	Milk	1
114	201	7/1/99	Pen	2
114	201	7/1/99	Ink	2
114	201	7/1/99	Juice	4

Other Examples

- Can you find all itemsets with support >= 75%?
- Can you find all association rules with confidence >= 50%?

TID	CID	Date	Item	Qty
111	201	5/1/99	Pen	2
111	201	5/1/99	Ink	1
111	201	5/1/99	Milk	3
111	201	5/1/99	Juice	6
112	105	6/3/99	Pen	1
112	105	6/3/99	Ink	1
112	105	6/3/99	Milk	1
113	106	6/5/99	Pen	1
113	106	6/5/99	Milk	1
114	201	7/1/99	Pen	2
114	201	7/1/99	Ink	2
114	201	7/1/99	Juice	4

A priori algorithm

- General idea: only sets with single items are considered in the first pass. In the second pass, sets with two items are considered, and so on…
- At the end of a pass, all sets with sufficient support are output as large itemsets.
 - Sets found to have too little support at the end of the pass are eliminated.
 - Once a set is eliminated, none of its supersets needs to be considered.
- At the end of some pass i, we would find that no set of size i has sufficient support, so we do not need to consider any set of size i+1.
 - Computation then terminates.

Extensions

- Imposing constraints
 - Only find rules involving the dairy department
 - Only find rules involving expensive products
 - Only find rules with "whiskey" on the right hand side
 - Only find rules with "milk" on the left hand side
 - Hierarchies on the items
 - Calendars (every Sunday, every 1st of the month)

Market Basket Analysis: Applications

- Direct marketing
- Fraud detection for medical insurance
- Floor/shelf planning
- Web site layout
- Cross-selling
- etc...

End of Lecture

- Summary
 - Intro to Clustering
 - Intro to Market Basket Analysis
- Reading
 - Textbook 6th edition, chapter 20
 - Textbook 7th edition, chapter 11

20/11/26