G.C.E. (Advanced Level) Examination - August 2001

10 - Combined Mathematics - I

Three hours

- Answer six questions only.
- (01) (a) Let α and β be the roots of the equation $x^2 + px + 1 = 0$ and let γ and δ be the roots of the equation $x^2 + \frac{1}{p}x + 1 = 0$.

Show that

$$(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)(\beta - \delta) = (\gamma^2 + \rho\gamma + 1)(\delta^2 + \rho\delta + 1)$$

and deduce that

$$(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)(\beta - \delta) = \left(P - \frac{1}{P}\right)^2$$

(b) If a and b are positive real numbers, show that $\log_a b = \frac{1}{\log_a a}$.

Show that

$$\frac{1}{\log_2 2001} + \frac{1}{\log_3 2001} + \frac{1}{\log_4 2001} + \dots + \frac{1}{\log_{100} 2001} = \frac{1}{\log_{100} 2001}$$

(02) (a) Let $A_{n+1} = (1-\alpha)(1-A_n) + A_n$ for n = 1, 2, 3 ... and $A_1 = \beta$. Where α and β are real numbers. Prove, by the Principle of Mathemaical Induction, that for every positive integer n. $A_n = 1 - (1-\beta)\alpha^{n-1}$

Find $\sum_{i=1}^{4} A_i$

(b) Show that for integers k and n such that 1 ≤ k ≤ n.
K *C_k = n * ¹C_k.

Hence or otherwise prove that for any $x \in \mathbb{R}$ and $n \ge 0$.

$$\sum_{i=1}^{n} K^{-n}C_{i} x^{i} (1-x)^{n-1} = nx.$$

- (03) (a) In how many ways can 7 boys and 7 girl be lined up if a girl must be first in line and girls and boys alternate positions in line.
 - (b) Sketch the graphs of y = 2|x + 1| 3 and $y = x + \frac{1}{2}|x 1|$ in the same diagram.

Hence find the set of x values satisfying x + 2|x - 1| > 2|x + 1| - 3.

Solve the equation |x + 2||x - 1|| = 2||x + 1|| = 3

- (04) (a) If arg (z a) = α, where a∈ R and () < α < π describe the locus of z.
 It is given that arg(z+1) = π/6 and arg(z-1) = 2π/3
 Using the first part find z.
 - (b) Show that the complex number $\frac{5-i}{2-3i}$ can be expressed in the form $\lambda(1+i)$, where λ is real State the value of λ .

 Hence, show that $\left(\frac{5-i}{2-3i}\right)^4$ is imaginary and determine its value.
- (05) (a) If $x = t \sin t$ and $y = 1 \cos t$, show that $y \left(\frac{d^3 y}{dx^3}\right) + 2 \left(\frac{dy}{dx}\right) \left(\frac{d^2 y}{dx^2}\right) = 0 \text{ for } t \neq 2n\pi \text{ in } L$
 - (b) Three towns A, B and C are located at the vertices of an isosceles triangle such that the distances from A to B and A to C are equal. The distance from B to C is 12 km and the altitude through A is 16km.

How far from A, along the altitude through A should a well be located so that it will use mannious mum pipe when supplying water to all three texals A, B and C.

- (06) (a) By making a suitable substitution evaluate the intergral $\int_{1}^{\pi} \frac{1}{\sqrt{4-x^2}} dx$
 - (b) By using intergration by parts, show that inintergral $\int_{1}^{a} x \ln x \, dx = a \ln b + c$, where a, b and c are integers to be determined.
 - (c) Find $\int_{a}^{1} \frac{(7x-x^2)}{(2-x)(x^2+1)} dx$
- (07) The st. light line y = mx + c intersects the two non-parallel straight lines u₁ = y m₁x c₁ = 0 and u₂ = y m₂x c₂ = 0 at A and B respectively. R is a point on AB such that AR = kRB. Show that the equation of the straight line joining R to the point of intersection of

$$u_1 = 1$$
 and $u_2 = 0$ is $u_1 + \frac{k(m - m_1)}{m - m_2} u_2 = 0$.

The sides AB, BC, CA of a triangle ABC lie along the lines 3x + 2y - 6 = 0, 2x + y - 2 = 0, x + y - 3 = 0 respectively. R is a point on AB and Q is a point on AC such that 2 AR = RB and 3 AQ = 2 QC.

- (i) Find the coordinates of A.
- (ii) 'Vrite the equations of the lines BQ and CR.
- (iii) If BQ and CR meet at D and P is the point of intersection of AD and BC, find the ratio AP: PB.

(08) Show that the equation of the chord of contact of the tangents drawn from an external point (x_0, y_0) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is $xx_0 + yy_0 + g(x + x_0) + f(y + y_0) + c = 0$.

 $x^2 + y^3 + 2x + 6y + 1 = 0$ and 4x + 3y - 5 = 0 are the equations of a given circle and a given straight line respectively. Show that the line does not cut the circle.

A Variable straight line intersects the given circle at two distinct points P and Q, and the tangents to the circle at P and Q meet on the given straight line. Show that this variable line passes through a fixed point, and find the coordinates of this point.

(09) (a) Show that for any real number x

$$\sin^3 2x \cos 6x + \cos^3 2x \sin 6x = \frac{3}{4} \sin 8x$$

Deduce the values of a for which the equation $\sin^3 2x \cos 6x + \cos^4 2x \sin 6x = a$ is solvable.

(b) In a triangle, the largest angle is twice the size of the smallest angle and the longest side is $1\frac{1}{2}$ times the length of the shortest side. Show that smallest angle of the triangle is $\cos^{-1}\left(\frac{3}{4}\right)$.

Civen that the length of the middle side is 10cm, find the lengths of the other two sides.