

- Synthesis produces a digital circuit that
 implements the behavior captured in the
 VHDL description.
- ▶ VHDL is also the bases for a simulation.
- Characteristics of digital systems:
 - ► Structural
 - ▶ Behavioral
 - Physical

CS2022 Signals

- May be 0, 1, or Z
- Equivalent to wires in digital circuits
- May be assigned values
- Signals are associated with time values
- ▶ Sequences of values determines the waveform
- Signal type depends on the level of abstraction
 - At gate level through wires (or, and, xor...)
 - ► At module level through integer (ALU...)

CS2022 Design Entity - Description

- ► Input signals
- Output signals
- ► Behavior
 - ▶ Truth table
 - Boolean equation
 - Wires between gates
- Two components in the design-entity description:
 - ▶ The interface
 - ▶ Internal behavior

CS2022, 2nd HDL Lecture, Dr. M. Manzke, Page: 7

Entity Declaration Interface to design entities through ► Entity Declaration: Blue = Keywords Design Entity Name entity half adder is Port = input & output Port (x: in bit; y: in bit; sum: out bit; carry: out bit); end half_adder;

CS2022 Declaration Details

- Blue bold type denotes VHDL reserved keywords (entity, port, ...)
- ▶ VHDL is not case sensitive
 - ► Half-adder = HALF-ADDER
- Ports define the input and output of the the design entity
- ▶ Ports are signals that enable communication between the design entity and other entities.
- ▶ Port signals must declare their types.

CS2022 Port Declaration

- Signal types defined in the VHDL language
- ► bit
 - Represents a single-bit signal
- bit_vector
 - Represents a vector of signal of type bit
- ▶ Bit and bit_vector are only two out of several other VHDL data types.

CS2022 IEEE 1164 Signals Values

IEEE 1164 standard defines nine-value signals:

CS2022, 2nd HDL Lecture, Dr. M. Manzke, Page: 11

CS2022 Library IEEE

The following modifications are required to make the previous entity declaration IEEE compliant.

library IEEE; use IEEE.STD_LOGIC_1164.ALL;

entity half_adder is

Port (x : in std_logic;

y: in std_logic;

sum : out std_logic;

carry : out std_logic);

end half_adder;

CS2022 4 to 1 Multiplexer

This example uses std_logic_vector(7 downto 0);

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
```

entity mux is

Port (I0: in std_logic_vector(7 downto 0);

11 : in std_logic_vector(7 downto 0);

12 : in std_logic_vector(7 downto 0);

13 : in std_logic_vector(7 downto 0);

Sel: in std_logic_vector(1 downto 0);

Z: out std_logic_vector(7 downto 0));

end mux;

Bit vector

CS2022 std_logic_vector(7 downto 0)

entity mux is
Port (10 : in std_logic_vector(7 downto 0);

- This example refers to 8 bits long input vector.
 - bit 7 most significant bit
 - bit 0 least significant bit

CS2022 Entity's Internal Behavior

```
library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
entity half_adder is
  Port (x: in std_logic;
        y: in std_logic;
        sum : out std_logic;
        carry : out std_logic);
end half adder;
architecture Behavioral of half adder is
-- declaration
begin
-- description of behavior
end Behavioral;
```

VHDL describes
the internal
behavior in the
architecture
construct.

CS2022 Architecture

library IEEE;

```
use IEEE.STD_LOGIC_1164.ALL;
entity half_adder is
  Port ( x ,y: in std_logic;
        sum,carry : out std_logic);
end half_adder;
architecture concurrent behavior of half adder is
begin
sun <= (x xor y) after 5 ns;
carry <= (x and y) after 5 ns;
end concurrent_behavior;
```