ANSHUMAN PRATIK

'Artificial Intelligence Sign Language Recognition'

Edunet Foundation & IBM SkillsBuild Internship

#Importing essential libraries for Data visualization

import pandas as pd

import numpy as np

import keras

import cv2

from keras.models import Sequential

from keras.layers import Conv2D,MaxPooling2D, Dense,Flatten

from keras.datasets import mnist

import random as rd

import os

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

import plotly.express as px

from PIL import Image

from keras.utils import np_utils

from keras.optimizers import SGD

#Libraries for Image processing

import tensorflow as tf

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.layers.experimental import preprocessing

from keras.preprocessing.image import ImageDataGenerator

#Initializing reproducibility of seed by TensorFlow

from numpy.random import seed

seed(10)

tf.random.set_seed(20)

#Joining path of Kaggle File to Directory for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))

#Accessing Training and Testing data from Google Drive train_data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/sign_mnist_train.csv') test_data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/sign_mnist_test.csv')

train_data.head()

	label	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	•••	pixel775	pixel776	pixel777	pixel778	pixel779	pixel780	pixel781	pixel782
0	3	107	118	127	134	139	143	146	150	153		207	207	207	207	206	206	206	204
1	6	155	157	156	156	156	157	156	158	158		69	149	128	87	94	163	175	103
2	2	187	188	188	187	187	186	187	188	187		202	201	200	199	198	199	198	195
3	2	211	211	212	212	211	210	211	210	210		235	234	233	231	230	226	225	222
4	13	164	167	170	172	176	179	180	184	185		92	105	105	108	133	163	157	163

5 rows × 785 columns

test_data.head()

	label	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	•••	pixel775	pixel776	pixel777	pixel778	pixel779	pixel780	pixel781	pixel782
0	6	149	149	150	150	150	151	151	150	151		138	148	127	89	82	96	106	112
1	5	126	128	131	132	133	134	135	135	136		47	104	194	183	186	184	184	184
2	10	85	88	92	96	105	123	135	143	147		68	166	242	227	230	227	226	225
3	0	203	205	207	206	207	209	210	209	210		154	248	247	248	253	236	230	240
4	3	188	191	193	195	199	201	202	203	203		26	40	64	48	29	46	49	46

5 rows × 785 columns

```
#Computing Null Value in each column Data set after Preprocessing
print("Null values in Each column in Training data set = ",sum(train data.isnull().sum()))
print("Null values in Each column in Testing data set = ", sum(test_data.isnull().sum()))
       Null values in Each column in Training data set = 0
       Null values in Each column in Testing data set = 0
#Creating data labels for training and testing sets
y train = train data["label"]
x train = train data.drop(labels = ["label"],axis=1)
y test = test data["label"]
x test = test data.drop(labels = ["label"],axis=1)
#Converting pixel range to 0-1 from initial 0-255
x train = x train /255.0
x test = x test /255.0
#Making number of elements in set same when reshaped
x train = x train.values.reshape(-1,28,28,1)
x \text{ test} = x \text{ test.values.reshape}(-1,28,28,1)
print(x train.shape)
print(x test.shape)
       (27455, 28, 28, 1)
       (7172, 28, 28, 1)
#Interactive Bar graph showing distribution of Labels count in training set
bar graph= px.histogram(train data, x='label', color='label', title='Distribution of Labels in Training Set')
bar graph.show()
```

Distribution of Labels in Training Set

#Interactive Bar graph showing distribution of Labels count in testing set bar_graph_test= px.histogram(test_data, x='label', color='label', title='Distribution of Labels in Testing Set') bar_graph_test.show()

Distribution of Labels in Testing Set


```
#Creating 5 x 5 Grid of 25 Training images
fig, axes = plt.subplots(nrows=5, ncols=5, figsize=(15, 10), subplot_kw={'xticks': [], 'yticks': []})
for i in range(25):
plt.subplot(5,5,i+1)
plt.imshow(np.squeeze(x_train[i]), cmap ='gray')
plt.title(y_train[i])
plt.show()
```



```
#Testing new images on Model
fig, axes = plt.subplots(nrows=5, ncols=5, figsize=(15, 10), subplot_kw={'xticks': [], 'yticks': []})
for i in range(25):
   plt.subplot(5,5,i+1)
   plt.imshow(np.squeeze(x_test[i]), cmap ='gray')
   plt.title(y_test[i])
plt.show()
```



```
#Splitting of training images for modeling and validation of sign images.

x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.3, random_state=104, shuffle=True)

print(x_train.shape)

print(x_val.shape)

print(y_val.shape)

print(x_test.shape)
```

```
(9416, 28, 28, 1)
(9416,)
(4036, 28, 28, 1)
(4036,)
(7172, 28, 28, 1)
(7172,)
```

print(y test.shape)

```
layers.BatchNormalization(),
               layers.Conv2D(filters=64, kernel size=(3,3), activation="relu", padding ='same'),
               layers.MaxPool2D(),
               layers.Dropout(.25),
               layers.BatchNormalization(),
               layers.Conv2D(filters=128, kernel size=(3,3), activation="relu", padding ='same'),
               layers.MaxPool2D(),
               layers.Dropout(.25),
               layers.Flatten(),
               layers.Dropout(0.25),
               layers.Dense(units=64, activation="relu"),
               layers.Dense(units=26, activation="softmax"),
                ])
#Compilation of CNN Model
model.compile(
  optimizer=tf.keras.optimizers.Adam(epsilon=0.01),
  loss='sparse categorical crossentropy',
  metrics =['accuracy']
#Tarining model against Epoch and Batch Size
history = model.fit(
  x=x train,
  y=y train,
  validation data=(x val,y val),
  batch size=128,
  epochs=50,
  verbose=2
      Epoch 1/50
      74/74 - 19s - loss: 3.4119 - accuracy: 0.0559 - val loss: 3.2566 - val accuracy: 0.0538 - 19s/epoch - 251ms/step
      Epoch 2/50
      74/74 - 16s - loss: 3.0894 - accuracy: 0.1008 - val loss: 3.2778 - val accuracy: 0.0483 - 16s/epoch - 222ms/step
```

Epoch 3/50

- 74/74 20s loss: 2.7959 accuracy: 0.1568 val_loss: 3.3083 val_accuracy: 0.0570 20s/epoch 268ms/step Epoch 4/50
- 74/74 16s loss: 2.3520 accuracy: 0.2563 val_loss : 2.7928 $val_accuracy$: 0.1378 16s/epoch 220ms/step Epoch 5/50
- 74/74 17s loss: 1.8581 accuracy: 0.3835 val_loss: 1.8189 val_accuracy: 0.4467 17s/epoch 224ms/step Epoch 6/50
- 74/74 16s loss: 1.4473 accuracy: 0.5016 val_loss: 1.1588 val_accuracy: 0.6747 16s/epoch 222ms/step Epoch 7/50
- 74/74 22s loss: 1.1632 accuracy: 0.5897 val_loss: 0.8056 val_accuracy: 0.7634 22s/epoch 298ms/step Epoch 8/50
- 74/74 16s loss: 0.9882 accuracy: 0.6445 val_loss : 0.6297 $val_accuracy$: 0.8181 16s/epoch 222ms/step Epoch 9/50
- 74/74 16s loss: 0.8321 accuracy: 0.7067 val_loss : 0.4711 $val_accuracy$: 0.8729 16s/epoch 222ms/step Epoch 10/50
- 74/74 19s loss: 0.7272 accuracy: 0.7410 val_loss: 0.3730 val_accuracy: 0.9061 19s/epoch 252ms/step Epoch 11/50
- 74/74 16s loss: 0.6247 accuracy: 0.7719 val_loss: 0.3180 val_accuracy: 0.9177 16s/epoch 220ms/step Epoch 12/50
- 74/74 16s loss: 0.5584 accuracy: 0.8019 val_loss: 0.2391 val_accuracy: 0.9502 16s/epoch 222ms/step Epoch 13/50
- 74/74 16s loss: 0.4913 accuracy: 0.8230 val_loss: 0.2095 val_accuracy: 0.9532 16s/epoch 221ms/step Epoch 14/50
- 74/74 18s loss: 0.4457 accuracy: 0.8419 val_loss: 0.1719 val_accuracy: 0.9680 18s/epoch 249ms/step Epoch 15/50
- 74/74 17s loss: 0.3968 accuracy: 0.8611 val_loss: 0.1463 val_accuracy: 0.9710 17s/epoch 224ms/step Epoch 16/50
- 74/74 16s loss: 0.3534 accuracy: 0.8770 val_loss: 0.1188 val_accuracy: 0.9834 16s/epoch 221ms/step Epoch 17/50
- 74/74 18s loss: 0.3312 accuracy: 0.8817 val_loss: 0.1045 val_accuracy: 0.9812 18s/epoch 240ms/step Epoch 18/50
- 74/74 17s loss: 0.2911 accuracy: 0.8995 val_loss: 0.0951 val_accuracy: 0.9817 17s/epoch 230ms/step Epoch 19/50
- 74/74 16s loss: 0.2657 accuracy: 0.9078 val_loss : 0.0822 $val_accuracy$: 0.9846 16s/epoch 221ms/step Epoch 20/50
- 74/74 16s loss: 0.2549 accuracy: 0.9086 val_loss: 0.0806 val_accuracy: 0.9844 16s/epoch 221ms/step Epoch 21/50
- 74/74 21s loss: 0.2317 accuracy: 0.9209 val_loss: 0.0514 val_accuracy: 0.9941 21s/epoch 278ms/step Epoch 22/50
- 74/74 16s loss: 0.2055 accuracy: 0.9317 val_loss: 0.0502 val_accuracy: 0.9921 16s/epoch 219ms/step Epoch 23/50
- 74/74 16s loss: 0.2019 accuracy: 0.9322 val_loss: 0.0348 val_accuracy: 0.9968 16s/epoch 221ms/step Epoch 24/50
- 74/74 16s loss: 0.1832 accuracy: 0.9359 val_loss : 0.0335 $val_accuracy$: 0.9985 16s/epoch 222ms/step Epoch 25/50
- 74/74 18s loss: 0.1617 accuracy: 0.9462 val loss: 0.0286 val accuracy: 0.9968 18s/epoch 249ms/step

Epoch 26/50
74/74 - 17s - loss: 0.1543 - accuracy: 0.9514 - val_loss: 0.0266 - val_accuracy: 0.9975 - 17s/epoch - 231ms/step Epoch 27/50
74/74 - 16s - loss: 0.1488 - accuracy: 0.9515 - val_loss: 0.0182 - val_accuracy: 0.9983 - 16s/epoch - 221ms/step Epoch 28/50
74/74 - 18s - loss: 0.1324 - accuracy: 0.9553 - val_loss: 0.0154 - val_accuracy: 0.9983 - 18s/epoch - 248ms/step Epoch 29/50

#Obtaining Training Data Frame

history frame = pd.DataFrame(history.history)

history_frame.loc[:, ['loss', 'val_loss']].plot()

history frame.loc[:, ['accuracy','val accuracy']].plot()

#Estimation of prediction using Test pixels pred = model.predict(x_test) prediction = np.argmax(pred,axis=1)

225/225 [=====] - 4s 17ms/step

#Prediction final report describing Precision, Recall and F1-Score of 25 Images print(classification report(y test,prediction))

pı	ecision	recall	f1-score	support		
0	1.00	1.00	1.00	221		
0 1	1.00 1.00	1.00 1.00	1.00 1.00	331		
	1.00	1.00	1.00	432		
2 3	1.00	1.00	1.00	310 245		
4	1.00	1.00	1.00	498		
5	1.00	1.00	1.00	498 247		
6	0.93	1.00	0.96	348		
7	1.00	0.95	0.98	436		
8	1.00	1.00	1.00	288		
10	1.00	1.00	1.00	331		
11	1.00	1.00	1.00	209		
12	1.00	1.00	1.00	394		
13	1.00	1.00	1.00	291		
14	1.00	1.00	1.00	246		
15	1.00	1.00	1.00	347		
16	1.00	1.00	1.00	164		
17	0.97	1.00	0.98	144		
18	1.00	1.00	1.00	246		
19	1.00	0.97	0.98	248		
20	1.00	0.98	0.99	266		
21	1.00	1.00	1.00	346		
22	1.00	1.00	1.00	206		
23	1.00	1.00	1.00	267		
24	1.00	1.00	1.00	332		
accuracy	y		1.00	7172		
macro av	/g 1.0	00 1.	00 1.0	0 7172		
weighted a	ivg 1	.00	1.00 1.0	00 7172		

Reference Link:

https://colab.research.google.com/drive/1cOArLgppKDnF_z8oeAQQidlVB3Nf1JAN#scr ollTo=T9E_b1srgnkZ

Colab paid products - Cancel contracts here

• ×

✓ 0s completed at 13:03