CS2601 Linear and Convex Optimization: Project

SJTU 2024 Fall

Dec. 06, 2024

Submission Guideline

Deadline: 23:59pm, Sunday, Dec. 29, 2024

Submissions later than the deadline will be discounted:

- (a) within 0-24 hours, 20% off;
- (b) within 24-48 hours, 50% off;
- (c) larger than 48 hours, not acceptable.

Acceptable submission formats:

- (1) You should submit a **zipped** file containing both the report (in PDF format) and the code on Canvas.
- (2) The report can be written in either English (preferred) or Chinese.
- (3) There are no specific requirements for the code, but adding comments is encouraged.

1 About the Project

The goal of the project is to develop a program that implements the Water-filling Problem introduced below.

1.1 Environment Description

We consider the convex optimization problem

minimize
$$-\sum_{i=1}^{n} \log (\alpha_i + x_i)$$
 subject to
$$x \succeq 0, \quad \mathbf{1}^T x = 1,$$

where $\alpha_i > 0$. This problem arises in information theory, in allocating power to a set of n communication channels. The variable x_i represents the transmitter power allocated to the i th channel, and $\log(\alpha_i + x_i)$ gives the capacity or communication rate of the channel, so the problem is to allocate a total power of one to the channels, in order to maximize the total communication rate.

Introducing Lagrange multipliers $\lambda^* \in \mathbf{R}^n$ for the inequality constraints $x^* \succeq 0$, and a multiplier $\nu^* \in \mathbf{R}$ for the equality constraint $\mathbf{1}^T x = 1$, we obtain the KKT conditions

$$x^* \succeq 0$$
, $\mathbf{1}^T x^* = 1$, $\lambda^* \succeq 0$, $\lambda_i^* x_i^* = 0$, $i = 1, ..., n$, $-1/(\alpha_i + x_i^*) - \lambda_i^* + \nu^* = 0$, $i = 1, ..., n$.

We can directly solve these equations to find x^*, λ^* , and ν^* . We start by noting that λ^* acts as a slack variable in the last equation, so it can be eliminated, leaving

$$x^* \succeq 0$$
, $\mathbf{1}^T x^* = 1$, $x_i^* (\nu^* - 1/(\alpha_i + x_i^*)) = 0$, $i = 1, \dots, n$, $\nu^* > 1/(\alpha_i + x_i^*)$, $i = 1, \dots, n$.

If $\nu^* < 1/\alpha_i$, this last condition can only hold if $x_i^* > 0$, which by the third condition implies that $\nu^* = 1/(\alpha_i + x_i^*)$. Solving for x_i^* , we conclude that $x_i^* = 1/\nu^* - \alpha_i$ if $\nu^* < 1/\alpha_i$. If $\nu^* \ge 1/\alpha_i$, then $x_i^* > 0$ is impossible, because it would imply $\nu^* \ge 1/\alpha_i > 1/(\alpha_i + x_i^*)$, which violates the complementary slackness condition. Therefore, $x_i^* = 0$ if $\nu^* \ge 1/\alpha_i$. Thus we have

$$x_i^{\star} = \begin{cases} 1/\nu^{\star} - \alpha_i & \nu^{\star} < 1/\alpha_i \\ 0 & \nu^{\star} \ge 1/\alpha_i \end{cases}$$

Figure 1: Illustration of water-filling algorithm. The height of each patch is given by α_i . The region is flooded to a level $1/\nu^*$ which uses a total quantity of water equal to one. The height of the water (shown shaded) above each patch is the optimal value of x_i^* .

or, put more simply, $x_i^{\star} = \max\{0, 1/\nu^{\star} - \alpha_i\}$. Substituting this expression for x_i^{\star} into the condition $\mathbf{1}^T x^{\star} = 1$ we obtain

$$\sum_{i=1}^{n} \max \{0, 1/\nu^{*} - \alpha_{i}\} = 1$$

The lefthand side is a piecewise-linear increasing function of $1/\nu^*$, with breakpoints at α_i , so the equation has a unique solution which is readily determined.

This solution method is called water-filling for the following reason. We think of α_i as the ground level above patch i, and then flood the region with water to a depth $1/\nu$, as illustrated in figure 1. The total amount of water used is then $\sum_{i=1}^{n} \max\{0, 1/\nu^* - \alpha_i\}$. We then increase the flood level until we have used a total amount of water equal to one. The depth of water above patch i is then the optimal value x_i^* .

2 Requirements

- The experimental data must be generated randomly. Specific requirements and ranges of the data can refer to the provided implementation.
- Use Python to write the program independently. Plagiarism is strictly prohibited and will result in a score of 0 for the experiment.
- The report should include the following:
 - Objectives of the Experiment: Clearly outline the goals you aim to achieve.
 - **Experimental Process:** Describe the methodology in detail, such as the algorithms used to solve the problem, the implementation details of your code, etc.
 - Results and Analysis: Present the final results of the experiment along with your analysis, including screenshots of your local implementation if possible.

3 Evaluation and Bonus

The project will be evaluated based on the following criteria, with a maximum score of 100 points. *Optional* items worth additional points, but the total score will not exceed 100. You may choose not to include them.

- (40 points) Comprehensive description of the experimental process and results.
- (40 points) Excellent analysis of the results.
- (20 points) Code readability.
- (5 points, Optional) Visualization of the Water-filling Environment.
- (5 points, Optional) Code implementations that achieve better/faster/accurate performance.