United College of Engineering and Research, Prayagraj Department of Computer Science and Information Technology

B.Tech Discrete Structures and Theory of Logic Assignment-2

QNo.	Question	CO	Bloom's
		Type	level
1	Show that every group of order 3 is cyclic.	CO2	L3
2	Show that $(R-\{1\}, *)$, where the operation * is defined as $a*b = a+b-ab$, is	CO2	L3
	an abelian group.	61.0	
3	Show that if f: $G \to G'$ is an isomorphism and G is an abelian group then	CO2	L4
4	G' is also abelian.	COO	T O
4	Prove that if every element of a group except identity element is of order 2	CO2	L3
F	then group is abelian.	CON	1.0
5	If a and b are two elements of a group G then $(ab)^2 = a^2b^2$ if and only if G	CO2	L2
6	is an abelian.	CO2	L2
6 7	Define ring and give an example of a ring with zero divisors.		
8	Prove that every cyclic group is an abelian group.	CO2	L3 L2
0	Obtain all distinct left cosets of $\{0, 3\}$ in the group $(Z_6, +_6)$ and find their union.	CO2	
9	Prove that $(R,+,*)$ is a ring with zero divisors, where R is $2x2$ matrix and	CO2	L4
9	+ and * are usual addition and multiplication operations.		l 17.4
10	Let $(A,*)$ be a monoid such that for every x in A, $x*x = e$, where e is the	CO2	L3
	identity element. Show that $(A,*)$ is an abelian group.		
11	Let Z be the group of integers with binary operation * defined by a*b =	CO2	L2
	$a+b-2$, for all $a,b \in Z$. Find the identity element of the group $(Z,*)$.		
12	What do you mean by cosets of a subgroup? Consider the group Z of	CO2	L4
	integers under addition and the subgroup $H = \{, -12, -6, 0, 6, 12,\}$		
	considering of multiple of 6.		
	1 D: 141		
	1. Find the cosets of H in Z.		
	2. What is the index of H in Z.		
13	What is Ring? Define elementary properties of Ring with example.	CO2	L1
14	Prove or disprove that intersection of two normal subgroups of a group G	CO2	L4
	is again a normal subgroup of G.		
15	Consider the group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.	CO2	L3
	1. Find the multiplication table of C		
	1. Find the multiplication table of G.		
	2. Find 2^{-1} , 3^{-1} , 6^{-1} .		
	3. Find the orders and subgroups generated by 2 and 3.		
	4. Is G cyclic?		