

Orquestração de Containers

Arquitetura do cluster Kubernetes e tópicos avançados

Tópicos abordados

- Cases de instalação
- Arquitetura, instalação e tipos de cluster
- Soluções customizadas de kubernetes
- Ferramentas de deployment
- Considerações sobre armazenamento e nodes
- Soluções on-premise e cloud-based
- Aspectos avançados em clusters de produção
- Tópicos sobre segurança

Cases de instalação: engenharia reversa

Iremos agora fazer a "engenharia reversa" do processo de criação do *cluster* utilizado no curso. Vamos lá?

Cases de instalação: Kubernetes the Hard Way

https://github.com/kelseyhightower/kubernet es-the-hard-way

Arquitetura e instalação do cluster Kubernetes

Antes de planejar e instalar um cluster Kubernetes, é fundamental responder algumas perguntas

Qual o objetivo do cluster?

Ele será executado on-premises ou em clouds pública/híbrida?

Qual a carga de trabalho esperada para as aplicações?

Objetivos do cluster

Educativo

Teste e desenvolvimento

Aplicações de produção

Clusters educativos

Pode-se utilizar o Minikube, play-with-k8s ou single-node clusters locais ou em cloud


```
COMMINION DEL SERVICIO DE SERV
```


Clusters educativos

https://labs.play-with-k8s.com/

```
CORRESPONDED TO THE STATE OF TH
```

play-with-k8s copy → crtl + insert paste → shift + insert

https://dockerlabs.collabnix.com/kubernetes/beginners/getting-started-on-pwk.html

Clusters de teste e desenvolvimento

Pode-se utilizar um multi-node cluster com apenas um master e diversos workers

Ferramentas como o kubeadm são ideais

Métodos de quick provisioning em clouds como GCP, EKS e AKS Permissionamento flexibilizado para maior agilidade no trabalho

Clusters de teste e desenvolvimento

Um exemplo simples Usando o *eksctl*:

```
eksctl create cluster \
--name my-cluster \
--region us-west-2 \
--with-oidc \
--ssh-access \
--ssh-public-key <your-key> \
--managed
```

Creating and managing clusters - eksctl

Clusters de produção

Deve-se levar em consideração aspectos de:

Alta disponibilidade

Escalabilidade

Manutenibilidade

Distribuição geográfica

Ferramentas de deployment

https://www.altoros.com/bl og/a-multitude-of-kubernet es-deployment-tools-kubesp ray-kops-and-kubeadm

On-premises ou cloud?

A escolha do ambiente de deployment raramente é técnica

Considerações como parque instalado, objetivos da organização e outros são fatores

Custo também é relevante: considere o custo total: prédio, refrigeração, gerador, etc Expertise da equipe e flexibilidade de contratação/consultoria também são importantes

Soluções kubernetes on-premises

Vanilla K8S

Rancher

Red Hat OpenShift

Mirantis Kubernetes Engine

VMWare PKS

Soluções kubernetes

Google Kubernetes Engine

Cloud Foundry (Korifi)

Azure Kubernetes Service

Oracle OKE

AWS EKS

IBM Cloud Kubernetes Service

https://www.notion.so/MATERIAL-COMPLEMENTAR-cec8924a535c4 bdfa15df1696f6736d6?pvs=4

Considerações no armazenamento

Obviamente é necessário ter storage disponível via rede em ambientes de produção

Leve em conta ainda necessidades em termos de velocidade de acesso, a depender da aplicação/uso

Considere o uso de SAN e NAS quando aplicável

Utilize *labels* e seletores para assinalar aplicações de acordo com o uso de *storage*

Considerações para os nodes

Pode-se utilizar máquinas físicas ou virtuais (provisionamento automático)

Ao menos 3 (três) master nodes para operar o control plane

Tantos workers quanto necessários para atender a demanda objetivada

Como melhor prática, não executar workloads em master nodes

Criando clusters de alta disponibilidade com kubeadm ou kubespray

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/

https://kubernetes.io/docs/setup/production-environment/tools/kubespray/

Arquitetura-exemplo

Considerações avançadas: Load Balancing e DNS

Considerações avançadas: gestão de acesso

Considerações avançadas: registry privado

Considerações avançadas: cluster autoscaling

Considerações avançadas: serverless

Considerações avançadas: serverless

Considerações avançadas: serverless

AWS Lambda Kubeless Knative Fisson **OpenFaas IronFunctions OpenWhisk** Oracle Fn

Tópicos sobre segurança

Pergunta

Quem é o responsável pelas VMs em um ambiente de produção? E o *cluster* k8s? E as aplicações?

Segmentação de responsabilidades

Desenvolvimento Dev Infraestrutura Ops Segurança Sec

VMsRedeStorageLoadbalancerDNSKubernetesConfiguraçãoDeploymentsAplicaçõesTesteIntegraçãoImagensPentestingWAFPolíticas

Considerações adicionais

Permissividade em ambientes dev x produção

Compartilhamento de responsabilidade

Realização de *sprints* com participação conjunta

Abordagem cooperativa

Desafios com relação à segurança

Comunicação de rede em larga escala pod-to-pod (movimentação lateral)

Gerência de configuração: do cluster às imagens de containers

Visibilidade

Segurança no K8S

https://kubernetes.io/docs/concepts/security/overview/

https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster

https://www.stackrox.com/post/2020/05/kubernetes-security-101/

Segurança no K8S

https://www.aquasec.com/cloud-native-academy/kubernetes-in-production/kubernetes-security-best-practices-10-steps-to-securing-k8s/

https://cheatsheetseries.owasp.org/cheatsheets/Kubernetes Security Cheat Sheet.html

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

Projetos em segurança

Tarefa 10

As atividades práticas desta sessão podem ser obtidas em formato HTML via:

https://bit.ly/ads19-tarefas-s10

