NeueFische - First Project: EDA

Data

- Target:
 - Salary
- Features:
 - Education degree
 - Entry wage
 - Gender
 - Minority
 - Job category

Distribution of salaries

Impact of Education and Entry Wage on Salary

Correlation


```
df X = df[
       ["EDUC",
       "SALBEGIN",
       "GENDER",
       "MINORITY".
       "JOBCAT",
       "SOCIODEMOGRAPHY"
Y = df["SALARY"]
X_train, X_test, y_train, y_test = train_test_split(df_X, Y, test_size=0.4, random_state=17)
model = LinearRegression()
model.fit(X_train,y_train)
predictions = model.predict(X_test)
mean_squared_error(y_test, predictions)**0.5
```


OLS Regression Results

Dep. Variable: SALARY R-squared: 0.548

Model: OLS Adj. R-squared: 0.538

Method: Least Squares F-statistic: 51.90

Date: Fri, 04 Jun 2021 Prob (F-statistic): 4.31e-35

Time: 16:22:17 Log-Likelihood: -2133.0

No. Observations: 220 AIC: 4278.

Df Residuals: 214 BIC: 4298.

Df Model: 5

Covariance Type: nonrobust

strong multicollinearity problems or that the design matrix is singular.

RMSE: 7115.8

=========			=====	=====	-====	=======	=
	coef	std err	t	P> t	[0.025	0.975]	
const	5379.0675	1935.169	2.780	0.006	1564.63	4 9193.501	
EDUC	475.6058	130.125	3.655	0.000	219.116	732.096	
SALBEGIN	0.9647	0.130	7.402	0.000	0.708	1.222	
GENDER	2122.4826	633.179	3.352	0.001	874.417	3370.549	
MINORITY	-1232.9478	347.817	-3.545	0.000	-1918.53	3 -547.362	
JOBCAT	2307.3362	768.728	3.002	0.003	792.088	3822.584	
SOCIODEMOGRAPHY	-343.4130	216.306	-1.588	0.114	-769.776	82.950	
=========			=====	=====		======:	=
Omnibus:	14.624	Durbin-Watson:		1.851			
Prob(Omnibus):	0.001	Jarque-Bera (JB):		15.935			
Skew:	0.657	Prob(JB):		0.000346			
Kurtosis:	3.114	Cond. No.		8.52e+19			

Clean The Data

```
q1 = df.describe().loc["75%", "SALARY"]
q3 = df.describe().loc["25%", "SALARY"]
iqr = q1 - q3
mask = (q1 - 1.5*iqr) \le df["SALARY"]
mask &= df["SALARY"] <= (q3 + 1.5*iqr)
```

Sociodemography

GENDER DENOTING

Female 26031.921296 Male 41441.782946

Name: SALARY, dtype: float64

MINORITY_DENOTING

Minority 28713.942308 White 36023.310811

Name: SALARY, dtype: float64

SOCIODEMOGRAPHY_DENOTING

Minority_Female 23062.500000 Minority_Male 32246.093750 White_Female 26706.789773 White_Male 44475.412371 Name: SALARY, dtype: float64 GENDER_DENOTING

Female 24300.0 Male 32850.0

Name: 50%, dtype: float64

MINORITY_DENOTING
Minority 26625.0

White 29925.0

Name: 50%, dtype: float64

SOCIODEMOGRAPHY_DENOTING

Minority_Female 23775.0 Minority_Male 29025.0 White_Female 24450.0 White_Male 36000.0 Name: 50%, dtype: float64

Sociodemography

Sociodemography

• RMSE:

```
SALARY \sim <all Features> = 7,115.8
```

$$SALARY \sim SALBEGIN = 8,510.1$$

$$SALARY \sim GENDER = 15,114.4$$

Insights

- Management earns the highest salary
- The vast majority of the management ain't female nor a minority

Insights

- The lesser the education degree
 - -> the more narrow the constricted range
- If You already start with a higher salary
 - -> You will later get an even higher salary
- The linear regression model is not the best model to explain gender or minority pay gaps.

Merci!