class7

Solomon Kim

Today we will start out multi-part exploration of some key machine learning methods. We will begin with clustering -finding groupings in data, and then dimensionallity reduction.

Clustering

Let's start with "K-means" clustering. The main function in base R for this k-means()

```
# make up some data
hist( rnorm(100000, mean=3) )
```

Histogram of rnorm(1e+05, mean = 3)


```
rnorm(30, -3)
 [1] -3.5253709 -4.1911867 -2.3236539 -4.0381354 -2.5948770 -1.8026115
 [7] -0.1771642 -2.3657202 -2.8763852 -2.5609678 -3.2633865 -3.1849022
[13] -4.3514637 -3.6744018 -5.1755442 -4.0346041 -3.0841866 -0.6720690
[19] -1.8720779 -1.8651832 -3.7041767 -4.2841026 -2.4523506 -5.4119644
[25] -4.2318123 -3.1344692 -2.2263627 -5.0129588 -2.3497671 -2.3944591
  rnorm(30, +3)
 [1] 3.675380 1.813456 3.133407 3.137678 3.022814 2.260704 3.494673 3.027600
 [9] 3.352242 4.039919 3.689758 1.901329 2.736964 2.293465 2.431542 2.266578
[17] 2.531793 3.753981 3.337352 3.028434 2.108416 2.171207 2.241444 2.938005
[25] 4.366440 2.235075 2.298975 2.253501 3.924807 2.173234
  tmp <- c(rnorm(30, -3), rnorm(30, +3))
  tmp
 [1] -4.045675 -3.129726 -3.061023 -2.329741 -3.366748 -5.112636 -2.763120
 [8] -5.749494 -2.468983 -1.816312 -2.186873 -2.850432 -1.223489 -3.760501
[15] -3.148678 -2.149858 -3.339314 -4.842681 -4.472793 -4.875170 -2.287930
[22] -2.156973 -1.545977 -1.851721 -2.858137 -2.928317 -3.128303 -2.695909
[29] -2.621467 -2.966490 3.148043 5.285029 4.283303 2.274778 4.196152
[36]
    2.043745 2.669548 2.744413 3.160241 2.350524 4.155234 2.169401
[43]
     2.133657 1.765051 2.907751 2.223789 4.123978 3.066311 4.014976
[50]
     4.375807 3.689392 2.647397 3.048005
                                            2.426740 1.364755 2.744958
Γ57]
    4.874926 3.503679 4.030208 3.069646
  x <- cbind(x=tmp, y=rev(tmp))
  plot(x)
```


Now lets try out kmeans()

```
km <- kmeans(x, centers=2)
km</pre>
```

 $K ext{-means}$ clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster: [1] 61.96499 61.96499

```
(between_SS / total_SS = 90.3 %)
```

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Q. How many points in each cluster

km\$size

[1] 30 30

Q. What components of your result object details cluster assignment/membership?

km\$cluster

Q. What are centers/mean calues of each cluster?

km\$centers

x y 1 -3.057816 3.149715 2 3.149715 -3.057816

Q. Make a plot of your data showing your clustering results (groupings/clusters and cluster cneters).

plot(x, col=c("red", "blue"))

plot(x, col=2)

plot(x, col=c(1,2))

plot(x, col=km\$cluster)
points(km\$centers, col="green", pch=15, cex=3)

Q. Run kmeans() again and cluster in 4 groups and plot the results.

```
km4 <- kmeans(x, centers=4)
plot(x, col=km4$cluster)</pre>
```


###Hierarchical Clustering

This form of clustering aims to reveal the structure in your data bt progressively grouping points into aever smaller number of clusters

THe main function in base R for this called hclust(). This function does not take our input data directly but whats a "distance matrix" that details how (dis)similar all our input points are to each other.

```
hc <- hclust( dist(x) )
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

The print out above is not very useful (unlick that from kmeans) but there is a useful plot() methods.

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To get my main result (my cluster membership vector) I need to "cut" my tree using the function cutree()

```
grps <- cutree(hc, h=10)
grps</pre>
```

```
plot(x, col=grps)
```


principal component analysis (PCA)

The goal of PCA is to reduce the dimensionality of a dataset down to some smaller subset of new variables (called PCs) that are a useful bases for further analysis, like visualization, clustering, etc.

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	X	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033

```
Fresh_Veg
8
                             253
                                    265
                                              171
                                                         143
9
             Other_Veg
                             488
                                    570
                                              418
                                                         355
10 Processed_potatoes
                             198
                                    203
                                              220
                                                         187
11
        Processed_Veg
                             360
                                    365
                                              337
                                                         334
12
          Fresh_fruit
                            1102 1137
                                              957
                                                         674
               Cereals
                            1472
                                   1582
13
                                             1462
                                                        1494
14
              Beverages
                              57
                                     73
                                               53
                                                          47
          {\tt Soft\_drinks}
15
                            1374
                                   1256
                                             1572
                                                        1506
16
     Alcoholic_drinks
                             375
                                    475
                                              458
                                                         135
17
        Confectionery
                              54
                                     64
                                               62
                                                          41
```

ncol(x)

[1] 5

nrow(x)

[1] 17

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

dim(x)

[1] 17 4

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

barplot(as.matrix(x), col=rainbow(nrow(x)))

The so called "pairs" plot can be useful for small datasets.

```
pairs(x, col=rainbow(nrow(x)), pch=16)
```


so the paris plot is useful for small datasets but it can be lots of work to interpret and gets intractable for larger datasets.

So PCA to the rescue....

The main function to do PCA in base R is called prcomp(). This function wants the trasnpose of our data in this case.

```
#t(x)
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        2.921e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

```
attributes(pca)
```

\$names

```
[1] "sdev"     "rotation" "center"     "scale"     "x"
$class
[1] "prcomp"

pca$x
```

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

A major PCA result viz is called a "PCA plot" (a.k.a: a score plot, biplot, PC1 vs PC2 plot, ordination plot)

```
mycols <- c("orange", "red", "blue", "darkgreen")
plot(pca$x[,1], pca$x[,2], col=mycols, pch=16, xlab= "PC2", ylab="PC2")
abline(h=0, col="gray")
abline(v=0, col="gray")</pre>
```


Another important output from PCA is called the "loadings" vector or the "rotation component - this tells us how much the original variable (the food in this case) contributes to the new Pcs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348
Cereals	-0.047702858	-0.212599678	-0.35884921	0.100043319
Beverages	-0.026187756	-0.030560542	-0.04135860	-0.018382072
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.222319484
Alcoholic_drinks	-0.463968168	0.113536523	-0.49858320	-0.273126013
Confectionery	-0.029650201	0.005949921	-0.05232164	0.001890737

PCA looks to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways.