**CEGE0009: Structural Analysis and Design** 

BEng/MEng/

**Course Examination – 2019/2020** 

Time allowed: 3 hours

• This paper has two sections: A and B

• Answer ALL questions

PAGE LIMIT: answer each question on no more than four sides of an A4 page.

CEGE0009 TURN OVER

### **Section A** – Answer all questions from this section (Total = 50 marks)

### **Question 1**

The structure shown in Figure Q1 is a pin-jointed truss. It is made of bars of axial stiffnesses as indicated in the table inserted in Figure Q1. The truss is loaded at B by a vertical force W as shown in the diagram. The truss is stress-free before the application of the load and all members have their nominal length.



Figure Q1

(a) Calculate the bar forces throughout the truss caused by W.

[20marks]

(b) The load W is now removed. Without providing actual numerical answers, describe with the help of matrix notation the step by step procedure you would follow to calculate the bar forces if support F settles vertically downward by h/100.

[5 marks]

**CONTINUED** CEGE0009

### **Question 2**

(a) The frame shown in Figure Q2a is made of a vertical column AB of bending stiffness *EI* rigidly connected to a horizontal beam BC of bending stiffness 2*EI* loaded uniformly along its span by q and an inclined member CD of bending stiffness *EI* pinned at both ends C and D.

Calculate the bending moment, and the axial and shear forces throughout the frame. Draw a diagram for each internal force, indicating their values at *A*, *B*, C and *D*. Draw a consistent deflected shape. Calculate the horizontal deflection of B.



Figure Q2a

Note: Tables of standard cases of beam deflection and virtual work integrals are provided in appendix A.

[20 marks]

- (b) Describe qualitatively, including diagrams as appropriate, how the bending moment from Question 2a changes if
  - (i) The bending stiffness of beam BC is much smaller than that of the other two members
  - (ii) The bending stiffness of beam BC is much larger than that of the other two members

[5 marks]

CEGE0009 TURN OVER
Page 3 of 11

### **Section B** – **Answer all questions from this section (Total = 50 marks)**

### **Question 3**

- (a) Discuss the significance of the assumption "plane sections remain plane" in the design of reinforced concrete sections for bending. List the other assumptions. [5 marks]
- (b) FIG. Q3 shows a T-beam which is made of class C25/30 concrete. The beam is 6m long and simply supported at its ends. Assuming it supports characteristic permanent (including self-weight) and variable loads of 30 kN/m and 20 kN/m respectively
  - Design the longitudinal reinforcement assuming the use of 20mm diameter bars (i)
  - (ii) Design the shear reinforcement
  - Check deflection (iii)
  - Draw a labelled sketch of the reinforcement arrangement in cross-section and (iv) elevation

### (N.B. Bar Area tables are appended to this paper)



[20 marks]

**CONTINUED** CEGE0009

### **Question 4**

- (a) For the braced frame shown in FIG. Q4(a) draw sketches of the various load combinations necessary for the design of
  - (i) Beam EFG
  - (ii) Column FH.

Assume the floors and roof support uniformly distributed characteristic permanent and variable loads of  $g_k$  and  $q_k$  respectively. [6 marks]



FIG. Q4a

- (b) The column section shown in FIG. Q4(b) is made of class C30/37 concrete and reinforced with six 20 mm diameter, grade 500 bars. Assuming a rectangular stress block for concrete determine
  - (i) The maximum axial load capacity of the column section [5 marks]
  - (ii) The axial load and moment capacity of the section assuming the neutral axis occurs 235mm below the apex. [10 marks]
- (c) Design the transverse steel reinforcement and produce a sketch of the arrangement.

[4 marks]



**FIG. Q4(b)** 

CEGE0009 TURN OVER
Page 5 of 11

## APPPENDIX FOR SECTION A

- 1. TABLE OF STANDARD CASES OF BEAM DEFLECTION
- 2. TABLE OF STANDARD VIRTUAL WORKS INTEGRALS

CEGE0009

CONTINUED
Page 6 of 11

TABLE OF STANDARD CASES OF BEAM DEFLECTION

|                                                                                                             | Tip or central deflection   | End Rotation                                                |
|-------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|
| $ \begin{array}{c c}  & W \\ \hline  & L \\ \hline \end{array} $                                            | $\frac{WL^3}{3EI}$          | $\frac{WL^2}{2EI}$                                          |
| $ W=qL \longrightarrow L$                                                                                   | $\frac{WL^3}{8EI}$          | $\frac{WL^2}{6EI}$                                          |
| $\left \begin{array}{c} \\ \\ \end{array}\right  \left \begin{array}{c} \\ \\ \end{array}\right  \right  M$ | $\frac{ML^2}{2EI}$          | $\frac{ML}{EI}$                                             |
| ↓ W                                                                                                         | $\frac{WL^3}{48EI}$         | $rac{WL^2}{16EI}$                                          |
| W=qL                                                                                                        | $\frac{5WL^3}{384EI}$       | $\frac{WL^2}{24EI}$                                         |
| A $B$ $M$                                                                                                   | $\frac{ML^2}{16EI}$ @centre | $\theta_A = \frac{\theta_B}{2};  \theta_B = \frac{ML}{3EI}$ |

## TABLE OF STANDARD VIRTUAL WORK INTEGRALS

| M(x) L                | m <sub>0</sub> m(x) | $\int M(x)m(x)dx = M_0m_0 L$            |
|-----------------------|---------------------|-----------------------------------------|
| $M_0$ $M(x)$ $L$      | $m_0$ $m(x)$ $L$    | $\int M(x)m(x)dx = \frac{1}{2}M_0m_0 L$ |
| M <sub>0</sub> M(x)   | $m_0$ $m(x)$ $L$    | $\int M(x)m(x)dx = \frac{1}{3}M_0m_0 L$ |
| M <sub>0</sub> M(x) L | $m(x)$ $m_0$ L      | $\int M(x)m(x)dx = \frac{1}{6}M_0m_0 L$ |
| M <sub>0</sub> M(x)   | $m_0$ $L$           | $\int M(x)m(x)dx = \frac{1}{3}M_0m_0 L$ |

# APPENDIX FOR SECTION B DESIGN DATA

- 1. Bar area tables
- 2. Design formulae for rectangular beams

CEGE0009 CONTINUED
Page 8 of 11

## 1. BAR AREAS TABLES

## (i) Cross-sectional areas of groups of bars (mm²)

| Bar  | Number of bars |      |      |      |      |      |      |       |       |       |
|------|----------------|------|------|------|------|------|------|-------|-------|-------|
| size | 1              | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9     | 10    |
| (mm) |                |      |      |      |      |      |      |       |       |       |
| 6    | 28.3           | 56.6 | 84.9 | 113  | 142  | 170  | 198  | 226   | 255   | 283   |
| 8    | 50.3           | 101  | 151  | 201  | 252  | 302  | 352  | 402   | 453   | 503   |
| 10   | 78.5           | 157  | 236  | 314  | 393  | 471  | 550  | 628   | 707   | 785   |
| 12   | 113            | 226  | 339  | 452  | 566  | 679  | 792  | 905   | 1020  | 1130  |
| 16   | 201            | 402  | 603  | 804  | 1010 | 1210 | 1410 | 1610  | 1810  | 2010  |
| 20   | 314            | 628  | 943  | 1260 | 1570 | 1890 | 2200 | 2510  | 2830  | 3140  |
| 25   | 491            | 982  | 1470 | 1960 | 2450 | 2950 | 3440 | 3930  | 4420  | 4910  |
| 32   | 804            | 1610 | 2410 | 3220 | 4020 | 4830 | 5630 | 6430  | 7240  | 8040  |
| 40   | 1260           | 2510 | 3770 | 5030 | 6280 | 7540 | 8800 | 10100 | 11300 | 12600 |

## (ii) Shear Reinforcement

|                  | Spacing of links (mm) |       |       |       |       |       |       |       |       |       |       |
|------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Diameter<br>(mm) | 85                    | 90    | 100   | 125   | 150   | 175   | 200   | 225   | 250   | 275   | 300   |
| 8                | 1.183                 | 1.118 | 1.006 | 0.805 | 0.671 | 0.575 | 0.503 | 0.447 | 0.402 | 0.336 | 0.335 |
| 10               | 1.847                 | 1.744 | 1.57  | 1.256 | 1.047 | 0.897 | 0.785 | 0.698 | 0.628 | 0.571 | 0.523 |
| 12               | 2.659                 | 2.511 | 2.26  | 1.808 | 1.507 | 1.291 | 1.13  | 1.004 | 0.904 | 0.822 | 0.753 |
| 16               | 4.729                 | 4.467 | 4.02  | 3.216 | 2.68  | 2.297 | 2.01  | 1.787 | 1.608 | 1.462 | 1.34  |

A<sub>sv</sub>/s<sub>v</sub> for varying stirrup diameters and spacing

### (iii) Cross-sectional area per metre width for various bar spacing (mm²)

|                  | Spacing of bars (mm) |       |       |       |      |      |      |      |      |
|------------------|----------------------|-------|-------|-------|------|------|------|------|------|
| Diameter<br>(mm) | 50                   | 75    | 100   | 125   | 150  | 175  | 200  | 250  | 300  |
| 6                | 566                  | 377   | 283   | 226   | 189  | 162  | 142  | 113  | 94.3 |
| 8                | 1010                 | 671   | 503   | 402   | 335  | 287  | 252  | 201  | 168  |
| 10               | 1570                 | 1050  | 785   | 628   | 523  | 449  | 393  | 314  | 262  |
| 12               | 2260                 | 1510  | 1130  | 905   | 754  | 646  | 566  | 452  | 377  |
| 16               | 4020                 | 2680  | 2010  | 1610  | 1340 | 1150 | 1010 | 804  | 670  |
| 20               | 6280                 | 4190  | 3140  | 2510  | 2090 | 1800 | 1570 | 1260 | 1050 |
| 25               | 9820                 | 6550  | 4910  | 3930  | 3270 | 2810 | 2450 | 1960 | 1640 |
| 32               | 16100                | 10700 | 8040  | 6430  | 5360 | 4600 | 4020 | 3220 | 2680 |
| 40               | 25100                | 16800 | 12600 | 10100 | 8380 | 7180 | 6280 | 5030 | 4190 |

CEGE0009 **TURN OVER** 

### 2. DESIGN FORMULAE FOR RECTANGULAR BEAMS

### 2.1 Bending

$$M_{Rd} = 0.167 f_{ck} bd^2$$

(i) M 
$$\leq$$
 M<sub>Rd</sub>  
 $z = d[0.5 + \sqrt{(0.25 - 3K/3.4)}]$   
where  $K = \frac{M}{f_{ck}bd^2}$   
 $x = (d - z)/0.4$   
 $A_{s1} = \frac{M}{0.87 f_{yk} z}$ 

(ii) M > M<sub>Rd</sub>  

$$z = d[0.5 + \sqrt{0.25 - 3 \text{ K}'/3.4}]$$
  
K' = 0.167  
 $x = (d - z)/0.4$ 

The area of compression reinforcement, As2, is given by:

$$A_{s2} = \frac{M - M_{Rd}}{0.87 f_{yk} (d - d_2)}$$

The area of tension reinforcement, As1, is given by:

$$A_{s1} = \frac{M_{Rd}}{0.87 f_{vk} z} + A_{s2}$$

If  $d_2/x$  exceeds 0.38 the compression stress will be less than 0.87f<sub>y</sub> i.e. yield stress where  $d_2$  is the depth of the compression steel from the compression face

#### 2.2 Shear

The concrete strut capacity, V<sub>Rd,max</sub>, is given by:

$$V_{Rd,max} = b_w z_v f_{cd} / (\cot \theta + \tan \theta)$$

where

$$z \approx 0.9d$$

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_m = 0.85 f_{ck} / 1.5 \text{ (for } f_{ck} \le 50 \text{ N/mm}^2\text{)}$$

$$v = 0.6(1 - f_{ck}/250)$$
 for  $f_{ck} \le 50 \text{ N/mm}^2$ 

 $\boldsymbol{\theta}$  is the angle between the concrete strut and the axis of the beam

$$\theta = 0.5 \sin^{-1} \frac{(V_{Rd, \text{max}} / b_w d)}{0.153 f_{ck} (1 - f_{ck} / 250)}$$

$$V_{Rd,s} = \frac{A_{sw}}{s} z f_{ywd} \cot \theta$$

where

V<sub>Rd,s</sub> is the shear resistance of the member governed by 'failure' of the stirrups

Asw is the cross-sectional area of the shear reinforcement

s is the spacing of shear reinforcement

f<sub>ywd</sub> is the design yield strength of the shear reinforcement.

See Eurocode 2 for other formulae relevant to shear design

CEGE0009 TURN OVER