Functions

Section 2.3

Section Summary

- Definition of a Function.
 - Domain, Codomain
 - Image, Pre image
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling, Factorial

Injections

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

Surjections

Definition: A function f from A to B is called *onto* or *surjective*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a *surjection* if it is onto.

Bijections

Definition: A function f is a *one-to-one* correspondence, or a *bijection*, if it is both one-to-one and onto (surjective and injective).

FIGURE 5 Examples of Different Types of Correspondences.

a. Do either of the arrow diagrams define onto functions?

b. Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c\}$. Define $H: X \to Y$ as follows: H(1) = c, H(2) = a, H(3) = c, H(4) = b. Define $K: X \to Y$ as follows: K(1) = c, K(2) = b, K(3) = b, and K(4) = c. Is either H or K onto?

Increasing/ decreasing functions

- A function *f* is
 - increasing if $\forall x \forall y (x < y \rightarrow f(x) \le f(y))$,
 - strictly increasing if $\forall x \forall y (x < y \rightarrow f(x) < f(y))$,
 - decreasing if $\forall x \forall y (x < y \rightarrow f(x) \ge f(y))$,
 - strictly decreasing if $\forall x \forall y (x < y \rightarrow f(x) > f(y))$,

where the universe of discourse is the domain of f.

Increasing/ decreasing functions

Example:

• Let $g : \mathbf{R} \to \mathbf{R}$, where g(x) = 2x - 1. Is it increasing?

Proof.

For x>y holds 2x > 2y and subsequently 2x-1 > 2y-1Thus g is strictly increasing.

Relationship with one-to-one

- A function that is either strictly increasing or strictly decreasing must be one-to-one.
 Why?
- One-to-one function: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$.
- A function that is increasing, but not strictly increasing, or decreasing, but not strictly decreasing, is not one-to-one.

Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f,—is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y No inverse exists unless f is a bijection. Why?

Inverse Functions

Questions

Example 1: Let f be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function *f* is invertible because it is a one-to-one correspondence.

The inverse function f^{i} reverses the correspondence given by f, so

$$f^{\scriptscriptstyle 1}(1)=c,$$

$$f^{1}(2) = a$$
, and

$$f^{\scriptscriptstyle 1}(3)=b.$$

Example 2: Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function $f^{\scriptscriptstyle T}$ reverses the correspondence so $f^{\scriptscriptstyle T}(y) = y - 1$.

Example 3: Let $f: \mathbf{R} \to \mathbf{R}$ be such that $f(x) = x^2$ Is f invertible, and if so, what is its inverse?

Solution: The function *f* is not invertible because it is not one-to-one .

A Function from a Power Set to a Set of Strings

Example

Let $\mathcal{P}(\{a,b\})$ be the set of all subsets of $\{a,b\}$ and let S be the set of all strings of length 2 made up of 0's and 1's. Then $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $S = \{00, 01, 10, 11\}$.

Define a function h from $\mathcal{P}(\{a,b\})$ to S as follows:

Subset of $\{a, b\}$	Status of a	Status of b	String in S
Ø	not in	not in	00
{a}	in	not in	10
$\{b\}$	not in	in	01
$\{a,b\}$	in	in	11

h

Is *h* a one-to-one correspondence?

Define the inverse function for the one-to-one correspondence h

Composition

Composition

Example 1: If $f(x) = x^2$ and g(x) = 2x + 1 , then

$$f(g(x)) = (2x+1)^2$$

and

$$g(f(x)) = 2x^2 + 1$$

Composition Questions

- •Example 2: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.
- •What is the composition of f and g, and what is the composition of g and f.
- Solution: The composition $f \circ g$ is defined by
- $f \circ g(a) = f(g(a)) = f(b) = 2.$
- $f \circ g(b) = f(g(b)) = f(c) = 1$.
- $f \circ g(c) = f(g(c)) = f(a) = 3$.

Note that $g \circ f$ is not defined, because the range of f is not a subset of the domain of g.

Composition Questions

Example 2: Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

What is the composition of f and g, and also the composition of g and f?

Solution:

$$f \circ g(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

 $g \circ f(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

Example: Class Activity

Composition of Functions Defined on Finite Sets

Let $X = \{1, 2, 3\}$, $Y' = \{a, b, c, d\}$, $Y = \{a, b, c, d, e\}$, and $Z = \{x, y, z\}$. Define functions $f: X \to Y'$ and $g: Y \to Z$ by the arrow diagrams below.

Draw the arrow diagram for $g \circ f$. What is the range of $g \circ f$?

Solution:

$$(g\circ f)(1)=g(f(1))=g(c)=z$$

$$(g \circ f)(2) = g(f(2)) = g(b) = y$$

$$(g \circ f)(3) = g(f(3)) = g(a) = y$$

The range of $g \circ f$ is $\{y, z\}$.

Composition with the Identity Function

Let $X = \{a, b, c, d\}$ and $Y = \{u, v, w\}$, and suppose $f: X \to Y$ is given by the arrow

Find $f \circ I_X$ and $I_Y \circ f$.

Solution:

$$(f \circ I_X)(a) = f(I_X(a)) = f(a) = u$$

 $(f \circ I_X)(b) = f(I_X(b)) = f(b) = v$
 $(f \circ I_X)(c) = f(I_X(c)) = f(c) = v$
 $(f \circ I_X)(d) = f(I_X(d)) = f(d) = u$

Note that for all elements x in X,

$$(f \circ I_X)(x) = f(x).$$

Graphs of Functions

• Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Graph of
$$f(n) = 2n + 1$$
 from Z to Z

Graph of $f(x) = x^2$ from Z to Z
Asistant Prof: Jamilusmani

Some Important Functions

• The *floor* function, denoted f(x) = |x|

The ceiling function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to x

Example:
$$[3.5] = 4$$
 $[3.5] = 3$

$$\lceil -1.5 \rceil = -1$$
Asistant Prof: Jamillasmani $-1.5 \rfloor = -2$

Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Floor Functions

• Determine whether the function from R to Z is Injective OR Surjective.

$$f(a) = \lfloor a/2 \rfloor$$

Solution:

• It is Surjective (onto function). This can be shown by an example; f(0) = 0, and f(1) = 0.

Ceiling Functions

• Determine whether the function from R to Z is Injective OR Surjective.

$$f(a) = [a/2]$$

Solution:

• It is Surjective (onto function). This can be shown by an example; f(1) = 1, and f(2) = 1.

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$\lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Activity Time

What are the domain, codomain, and range of the following function

Assignment of Grades in a Discrete Mathematics Class.

- 2. Determine whether f is a function from **Z** to **R** if
 - a) $f(n) = \pm n$.
 - **b)** $f(n) = \sqrt{n^2 + 1}$.
 - c) $f(n) = 1/(n^2 4)$.
 - 22. What is the cardinality of each of these sets?
 - a) Ø

b) {Ø}

c) {Ø{Ø}}

- 34. Let $A = \{a, b, c\}$, $B = \{x, y\}$, and $C = \{0, 1\}$. Find
 - a) $A \times B \times C$. b) $C \times B \times A$.

c) $C \times A \times B$.

d) $B \times B \times B$.

- 35. Find A² if
 - a) $A = \{0, 1, 3\}.$
- b) $A = \{1, 2, a, b\}.$

- 36. Find A³ if
 - a) $A = \{a\}.$

b) $A = \{0, a\}.$

- 12. Determine whether each of these functions from **Z** to **Z** is one-to-one.

 - **a)** f(n) = n 1 **b)** $f(n) = n^2 + 1$
 - **c**) $f(n) = n^3$
- **d**) f(n) = [n/2]

- 8. Find these values.
 - a) [1.1]
 - c) [-0.1]
 - e) [2.99]
 - g) $\lfloor \frac{1}{2} + \lceil \frac{1}{2} \rceil \rfloor$
- 9. Find these values.
 - a) $\lceil \frac{3}{4} \rceil$
 - c) $[-\frac{3}{4}]$
 - e) [3]
 - g) $\left\lfloor \frac{1}{2} + \left\lceil \frac{3}{2} \right\rceil \right\rfloor$

- **b**) [1.1]
- **d**) [-0.1]
- **f**) [-2.99]
- **h**) $\lceil \lfloor \frac{1}{2} \rfloor + \lceil \frac{1}{2} \rceil + \frac{1}{2} \rceil$
- **b**) $\lfloor \frac{7}{8} \rfloor$
- **d**) $[-\frac{7}{8}]$
- f) [-1]
- h) $\lfloor \frac{1}{2} \cdot \lfloor \frac{5}{2} \rfloor \rfloor$

Solution:

- 8. We simply round up or down in each case.
 - a) 1
 - **b**) 2
 - \mathbf{c}) -1
 - **d**) 0
 - e) 3
 - f) -2
 - **g)** $\lfloor \frac{1}{2} + 1 \rfloor = \lfloor \frac{3}{2} \rfloor = 1$
 - **h)** $\lceil 0 + 1 + \frac{1}{2} \rceil = \lceil \frac{3}{2} \rceil = 2$

- 10. Determine whether each of these functions from $\{a, b, c, d\}$ to itself is one-to-one.
 - a) f(a) = b, f(b) = a, f(c) = c, f(d) = d
 - **b)** f(a) = b, f(b) = b, f(c) = d, f(d) = c
 - c) f(a) = d, f(b) = b, f(c) = c, f(d) = d

Solution:

- a) This is one-to-one.
- b) This is not one-to-one, since b is the image of both a and b.
- c) This is not one-to-one, since d is the image of both a and d.
- **13.** Let f and g be functions from $\{1, 2, 3, 4\}$ to $\{a, b, c, d\}$ and from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$, respectively, with f(1) = d, f(2) = c, f(3) = a, and f(4) = b, and g(a) = 2, g(b) = 1, g(c) = 3, and g(d) = 2.

a) Is f one-to-one? Is g one-to-one?

- **b)** Is *f* onto? Is *g* onto?
- c) Does either f or g have an inverse? If so, find this inverse.

Home activity

- 22. Determine whether each of these functions is a bijection from R to R.
 - a) f(x) = -3x + 4
 - **b)** $f(x) = -3x^2 + 7$

Home Activity

- c) f(x) = (x+1)/(x+2)
- **d)** $f(x) = x^5 + 1$
- **30.** Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if

 - **a)** f(x) = 1. **b)** f(x) = 2x + 1.

 - c) $f(x) = \lceil x/5 \rceil$. d) $f(x) = \lceil (x^2 + 1)/3 \rceil$.

Solution:

we simply need to compute the values f(-1), f(0), f(2), f(4), and f(7) and collect the values into a set.

- a) {1} (all five values are the same)
- **b)** $\{-1, 1, 5, 8, 15\}$
- **c)** {0, 1, 2}
- **d)** {0, 1, 5, 16}

- **38.** Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are functions from **R** to **R**.
- **40.** Let f(x) = ax + b and g(x) = cx + d, where a, b, c, and d are constants. Determine necessary and sufficient conditions on the constants a, b, c, and d so that $f \circ g = g \circ f$.
- **44.** Let f be the function from **R** to **R** defined by $f(x) = x^2$. Find

 - **a)** $f^{-1}(\{1\})$. **b)** $f^{-1}(\{x \mid 0 < x < 1\})$.
 - c) $f^{-1}(\{x \mid x > 4\})$.
- **45.** Let g(x) = |x|. Find

 - **a)** $g^{-1}(\{0\})$. **b)** $g^{-1}(\{-1, 0, 1\})$.
 - c) $g^{-1}(\{x \mid 0 < x < 1\})$.