Math 136 - Linear Algebra

Winter 2016

Lecture 18: February 12, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

18.1 Operations on Linear Mappings

Definition 18.1 Let $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^n \to \mathbb{R}^m$ be linear mappings and let $c \in \mathbb{R}$, we define $L + M: \mathbb{R}^n \to \mathbb{R}^m$ and $cL: \mathbb{R}^n \to \mathbb{R}^m$ by

$$(L+M)(\vec{x}) - L(\vec{x}) + M(\vec{x})$$

$$(cL)(\vec{x}) = cL(\vec{x})$$

Theorem 18.2 If $L,M: \mathbb{R}^n \to \mathbb{R}^m$ are liner mappings and $c \in \mathbb{R}$, then $L + M: \mathbb{R}^n \to \mathbb{R}^m$ and $cL: \mathbb{R}^n \to \mathbb{R}^m$ are linear mappings. Furthermore,

$$[L+M] = [L] + [M]$$

$$[cL] = c[L]$$

Definition 18.3 We denote the set of all possible linear mappings with domain \mathbb{R}^n and co-domain \mathbb{R}^m as \mathbb{L}

Theorem 18.4 *If* L, $M \in \mathbb{L}$ *and* c, $d \in \mathbb{R}$ *then,*

- 1. $L + M \in \mathbb{L}$
- 2. (L+M) + N = L + (M+N)
- 3. L + M = M + L
- 4. There exists a linear mapping $O: \mathbb{R}^n \to \mathbb{R}^m$, such that L + O = L for all L
- 5. There exists a linear mapping (-L): $\mathbb{R}^n \to \mathbb{R}^m$ with the property that L + (-L) = O
- 6. $cL \in \mathbb{L}$
- 7. c(dL) = (cd)L
- 8. (c+d)L = cL + cM
- 9. c(L+M) = cL + cM
- 10. 1L = L

Definition 18.5 Let $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^n \to \mathbb{R}^m$ be linear mappings. The composition of M and L is the function $M \circ L: \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$(M \circ L)(\vec{x}) = M(L(\vec{x}))$$

Remarks: The range of L must be a subset of the domain of M for M o L to be defined

Theorem 18.6 If $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^m \to \mathbb{R}^p$ are linear mappings, then $M \circ L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping and

$$(M \circ L) = (M)(L)$$

Definition 18.7 The Linear Mapping $ld: \mathbb{R}^n \to \mathbb{R}^m$ defined by $ld(\vec{x}) = \vec{x}$ is called the identity mapping

18.2 Vector Spaces

Definition 18.8 A set \mathbb{V} with an operation of addition, denoted $\vec{x} + \vec{y}$ and an operation of scaler multiplication denoted $c\vec{x}$ is called a vector space over \mathbb{R} if for every $\vec{v}, \vec{x}, \vec{y} \in \mathbb{V}$ and $c, d \in \mathbb{R}$ we have :

- 1. $\vec{x} + \vec{y} \in \mathbb{V}$
- 2. $(\vec{x} + \vec{y}) + \vec{v} = \vec{x} + (\vec{y} + \vec{v})$
- 3. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 4. There is a vector $\vec{0} \in \mathbb{V}$ called the zero vector, such that $\vec{x} + \vec{0} = \vec{x} \ \forall \vec{x} \in \mathbb{V}$
- 5. There exists an element $-\vec{x} \in \mathbb{V}$ called the additive inverse of \vec{x} , such that $\vec{x} + \vec{-x} = \vec{0}$
- 6. $c\vec{x} \in \mathbb{V}$
- 7. $c(d\vec{x}) = (cd)\vec{x}$
- 8. $(c+d)\vec{x} = c\vec{x} + d\vec{x}$
- 9. $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- 10. 1x = x

Elements of V are called vectors

Remarks : some times \oplus and \odot are used to differentiate these from normal scaler multiplication and scaler addition

End of Lecture Notes Notes By: Harsh Mistry