LINEARE ALGEBRA I

BEGLEITSKRIPT ZUR ÜBUNGSSTUNDE HS 2025

Basierend auf der Vorlesung von Prof. Dr. Paul Biran

RUOCHENG WANG

Version: 20. Oktober 2025

Einleitung

Herzlich willkommen an der ETH! Ihr seid jetzt auf einer spannenden Reise, die Welt der Linearen Algebra zu entdecken — eines der grundlegenden und zentralen Gebiete der Mathematik. Ihr werdet lineare Gleichungssysteme, Matrizen, Vektorräume, und lineare Abbildungen kennenlernen, die euch während eures gesamten Studiums begleiten werden. Abstrakter wird es bei Dualräumen und Isomorphiesätzen, wobei ihr einen Einblick in ein paar der wichtigsten und schönsten Strukturen in der Mathematik erhalten werdet. Viele Konzepte aus Linearer Algebra werdet ihr künftig noch brauchen in z.B. Analysis II und Numerischer Mathematik.

Diese Notizen sind für die Übungsstunden geschrieben und sollen dazu dienen, durch zahlreiche Beispiele und Übungsaufgaben euer Verständnis zu den Themen aus der Vorlesung zu verbessern und vertiefen. Es wird auch hier die Lösung zu den Quizzen präsentiert, und am Ende der Notizen für jede Woche gibt es noch Hinweise zu den Serien. Wenn ihr Fragen habt oder Fehler in den Notizen findet, schreibt mir gerne eine E-Mail an ruocwang@student.ethz.ch. Die aktuelle Version der Notizen findet ihr unter https://ruocheng-w.github.io.

Ich wünsche euch viel Spass und Erfolg in eurem Studium!

Ruocheng Wang

September 2025, Zürich

Inhaltsverzeichnis

$\mathbf{E}_{\mathbf{i}}$	inleitung	i
1	Einführung in die mathematische Arbeit und Lineare Algebra	1
	1.1 Quiz 1	1
	1.2 Tipps zum Mathematikstudium	1
	1.3 Beweisstrategien	2
	1.4 Die Fibonacci-Folge	3
	1.5 Hinweise zur Serie 1	4
2	Naive Mengenlehre und Abbildungen	6
	2.1 Besprechung Serie 1	6
	2.2 Unendlicher Kettenbruch (Fortsetzung, Weiterführendes Material)	7
	2.3 Naive Mengenlehre und Abbildungen	8
	2.4 Hinweise zur Serie 2	10
3	Cantor'sches Paradoxon und lineare Gleichungssysteme I	11
	3.1 Quiz 2	11
	3.2 Besprechung Serie 2	12
	3.3 Noch ein Paradoxon	13
	3.4 Lineare Gleichungssysteme	13
4	Lineare Gleichungssysteme II	15
	4.1 Besprechung Serie 3	15
	4.2 Mehr zu linearen Gleichungssystemen	16
	4.3 Weitere Übungsaufgaben	17
5	Vektorräume, Unterräume, Lineare Hüllen	21
	5.1 Quiz 3	21
	5.2 Besprechung Serie 3 und 4	21
	5.3 Vektorräume und Unterräume	23
6	Matrizen als lineare Abbildungen	27

T	1	J	F	[/	1	$\Gamma /$	T	S^{γ}	V	F	F	? 7	7	F	T	 T.	T	V.	Ľ	ς

Literaturverzeichnis		29
6.2 Matrizen als lineare Abbildungen	 	27
6.1 Besprechung Serie 5	 	27

Übungsstunde 1

Einführung in die mathematische Arbeit und Lineare Algebra

22.09.2025

Organisatorisches:

- Bitte ladet eure Serien mit dem Namen Nachname_Vorname_Serie01.pdf als ein PDF hoch (mit sam-up).
- 2. Ihr könnt die Serien auf Deutsch oder Englisch lösen. Ihr werdet ermutigt, so viele Serienaufgaben zu lösen wie möglich.
- 3. Ihr könnt jeder Zeit Fragen auch auf Englisch stellen, insbesondere wenn es sich um Fachbegriffe handelt.

1.1 Quiz 1

Formulieren Sie die Negation so weit wie möglich nach innen in die folgende logische Aussage über eine Menge X und ein Element $z \in X$:

$$\neg \big((\forall x \in X, \exists y \in X : x + y = 0) \land \big(\exists x \in X, \exists y \in X : x + y > z \big) \big).$$

Lösung.

$$(\exists x \in X, \forall y \in X : x + y \neq 0) \lor (\forall x \in X, \forall y \in X : x + y \leq z).$$

1.2 Tipps zum Mathematikstudium

- 1. Es ist immer hilfreich, Mathematik zu lesen. Dadurch lernt man nicht nur das Wissen, sondern auch wie man selbst Mathematik schreibt. Am besten liest man Mathematik mit einem Stift und einem Blatt Papier, da das Mitdenken eine grosse Rolle spielt. Des Weiteren finde ich es wichtiger, die Ideen von Beweisen zu verstehen als die Details.
- 2. Wenn man Mathematik schreibt, soll man auf Folgendes achten:

- (a) Verwende nicht überall Symbole wie z.B. \Longrightarrow , \forall , \exists usw., da sie spezielle Bedeutungen haben.
- (b) Schreibe vollständige Sätze. Ihr erklärt euren Lösungsweg.
- (c) Präzision ist sehr wichtig, besonders wenn es sich um Definitionen oder Annahmen handelt.

Mehr zu den Notationen und wie man Mathematik richtig schreibt, findet man im Buch Beu09.

1.3 Beweisstrategien

Direkter Beweis

Beispiel 1.1. Seien $a, b \in \mathbb{Z}$ ungerade, dann ist $a \cdot b$ ungerade.

Beweis. Per Definition ungerader Zahlen gibt es $k, m \in \mathbb{Z}$, sodass a = 2k + 1, b = 2m + 1. Multiplizieren gibt uns

$$a \cdot b = (2k+1) \cdot (2m+1) = 4km + 2k + 2m + 1 = 2(2km + k + m) + 1,$$

d.h. $a \cdot b$ ist ungerade.

Induktionsbeweis

Beispiel 1.2. Für alle $n \in \mathbb{N}$, $n \geq 1$ ist die Summe der ersten n ungeraden natürlichen Zahlen gleich n^2 .

Beweis. Induktionsverankerung: für n = 1 ist $1 = 1^2$.

Induktionsschritt: angenommen gilt die Aussage für n. Für n+1 folgt

$$1+3+5+\cdots+(2n-1)+(2n+1)\stackrel{\text{I.A.}}{=} n^2+2n+1=(n+1)^2.$$

Daher ist die Aussage wahr für alle $n \ge 1$.

Beweis mit Kontraposition

Beispiel 1.3. Sei $n \in \mathbb{Z}$. Falls n^2 gerade ist, dann ist auch n gerade.

Beweis. Wir zeigen nungerade $\implies n^2$ ungerade. Sei nungerade, d.h. n=2k+1 für $k\in\mathbb{Z}.$ Dann ist

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1,$$

also n^2 ist ungerade. Alternativ verwendet man Beispiel 1.1.

Beweis mit Fallunterscheidung

Beispiel 1.4. Zeigen Sie: Es gibt $a, b \in \mathbb{R} \setminus \mathbb{Q}$, sodass $a^b \in \mathbb{Q}$.

Beweis. Es genügt, ein Beispiel zu finden, bei dem dies gilt. Wir betrachten $\sqrt{2}^{\sqrt{2}}$ und machen eine Fallunterscheidung

- (i) Falls $\sqrt{2}^{\sqrt{2}} \in \mathbb{Q}$, dann sind wir fertig: Wir können $a=b=\sqrt{2}$ setzen.
- (ii) Falls $\sqrt{2}^{\sqrt{2}} \notin \mathbb{Q}$, seien $a = \sqrt{2}^{\sqrt{2}}$, $b = \sqrt{2}$. Dann ist

$$a^b = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^2 = 2 \in \mathbb{Q}.$$

Die Stärke der Fallunterscheidung besteht darin, dass man nicht wissen muss, welcher genau der Fall ist. Wir brauchen nicht zu wissen, ob $\sqrt{2}^{\sqrt{2}}$ rational ist oder nicht, trotzdem können wir damit nützliche Sachen beweisen. (Eigentlich ist $\sqrt{2}^{\sqrt{2}}$ transzendent, daher irrational.)

Widerspruchsbeweis

Beispiel 1.5. $\sqrt{2}$ ist irrational.

Beweis. Angenommen ist es nicht der Fall, dann können wir $\sqrt{2} = \frac{p}{q}$ für $p, q \in N, q \neq 0$, mit ggT(p,q) = 1. Dann ist $p^2 = 2q^2$, also p^2 ist gerade. Nach Beispiel 1.3 ist p gerade, also p = 2k. Dies impliziert wiederum, dass $q^2 = 2k^2$ und daher ist q gerade. Das ist ein Widerspruch zur Annahme ggT(p,q) = 1.

1.4 Die Fibonacci-Folge

Übung 1.6 (0.2.12). Zeigen Sie, dass

$$\phi = 1 + \frac{1}{1 + \frac{1}{1 + \cdots}}.$$

Was bedeutet überhaupt dieser Ausdruck?

Lösung. Wir definieren zuerst Ausdrücke von dieser Form (wie in Hal24).

Definition 1.7. Ein **unendlicher** Kettenbruch ist ein nicht abbrechender Bruch von der Form

$$b_0 + \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{\dots}}},$$

wobei $b_0, b_1, b_2 \dots$ ganze Zahlen und höchstens mit Ausnahme von b_0 alle b_i positiv sind.

Ist $\xi \in \mathbb{R}$ eine beliebige, positive, irrationale Zahl, so können wir ξ immer als unendlichen Kettenbruch schreiben. Dazu definieren wir für positive reelle Zahlen α ,

$$\lfloor \alpha \rfloor := \max\{n \in \mathbb{N} : n \le \alpha\}.$$

Dann gilt:

$$\xi = b_0 + r_1 \qquad \text{mit } b_0 := \lfloor \xi \rfloor \text{ und } r_1 = \xi - b_0, \text{ wobei } 0 < r_1 < 1 \text{ bzw. } \frac{1}{r_1} > 1$$

$$\frac{1}{r_1} = b_1 + r_2 \qquad \text{mit } b_1 := \left\lfloor \frac{1}{r_1} \right\rfloor \text{ und } r_2 = \frac{1}{r_1} - b_1, \text{ wobei } 0 < r_2 < 1 \text{ bzw. } \frac{1}{r_2} > 1$$

$$\frac{1}{r_2} = b_2 + r_3 \qquad \text{mit } b_2 := \left\lfloor \frac{1}{r_2} \right\rfloor \text{ und } r_3 = \frac{1}{r_2} - b_2, \text{ wobei } 0 < r_3 < 1 \text{ bzw. } \frac{1}{r_3} > 1$$

$$\vdots \qquad \vdots$$

und wir erhalten den Kettenbruch.

Jetzt zeigen wir die folgende Behauptung mit Induktion.

Behauptung. $r_n = \frac{\sqrt{5}-1}{2}$.

Beweis.
$$n = 1$$
: $r_1 = \frac{1+\sqrt{5}}{2} - \left| \frac{1+\sqrt{5}}{2} \right| = \frac{\sqrt{5}-1}{2}$.

Angenommen, die Gleichung gilt für n. Für n+1 haben wir

$$\frac{1}{r_n} = \frac{2}{\sqrt{5} - 1} = \frac{2(\sqrt{5} + 1)}{4} = \frac{1 + \sqrt{5}}{2},$$

also folgt ähnlich wie im Basisfall $r_{n+1} = \frac{\sqrt{5}-1}{2}$.

Wenn wir r_n kennen, ist es einfach $b_n=1$ abzulesen, da $1 \leq \frac{1+\sqrt{5}}{2} < 2$.

1.5 Hinweise zur Serie 1

1. (a) Welches lineare Gleichungssystem kann uns helfen?

- (b) Verwendet (a).
- 2. (a) Verwendet Wahrheitstabellen.
 - (b) Können wir etwas ähnliches wie eine Wahrheitstabelle aufstellen?
- 3. Verwendet die Definition einer Fibonacci-Folge. Wie können wir ein Folgenglied F_n umschreiben? Alternativ versucht man, den Grenzwert mittels expliziter Berechnung zu bestimmen.
- 4. Verwendet De Morgan (Afg. 2).
- 5. Relativ direkt.
- 6. Wie lässt sich $\mathcal{F}_{a,b}$ ausdrücken mithilfe von $\mathcal{F}_{0,1}$ und $\mathcal{F}_{1,0}$?

Übungsstunde 2

Naive Mengenlehre und Abbildungen

29.09.2025

2.1 Besprechung Serie 1

1. Manchmal wurde der Grenzwert von F_n/F_{n-1} falsch berechnet. Man darf nicht zuerst den Grenzwert für einen Teil des Ausdrucks berechnen und danach den Grenzwert für den Rest bestimmen. Z.B.

$$\lim_{n\to\infty}\frac{F_n}{F_{n-1}}=\lim_{n\to\infty}\frac{\phi^n-\psi^n}{\phi^{n-1}-\psi^{n-1}}=\lim_{n\to\infty}\frac{\phi^n}{\phi^{n-1}}=\phi$$

ist FALSCH, obwohl das Resultat richtig ist. Man kann aber wie folgendes vorgehen

$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = \lim_{n \to \infty} \frac{\phi^n - \psi^n}{\phi^{n-1} - \psi^{n-1}} = \lim_{n \to \infty} \frac{\phi^n (1 - (\psi/\phi)^n)}{\phi^{n-1} (1 - (\psi/\phi)^{n-1})} = \lim_{n \to \infty} \phi \frac{(1 - (\psi/\phi)^n)}{(1 - (\psi/\phi)^{n-1})} = \phi$$

Alternativ sieht man, dass

$$\frac{F_n}{F_{n-1}} = \frac{F_{n-1} + F_{n-2}}{F_{n-1}} = 1 + \frac{F_{n-2}}{F_{n-1}}.$$

Setzen wir $X = \lim_{n \to \infty} \frac{F_n}{F_{n-1}}$, so gilt

$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = \lim_{n \to \infty} 1 + \frac{F_{n-2}}{F_{n-1}}$$

$$\implies X = 1 + \frac{1}{X}.$$

Die Lösungen zu dieser Gleichung sind ϕ und ψ . Da $F_n/F_{n-1} > 0$ für alle n, kann es nur ϕ sein.

- 2. Viele von euch haben Aufgabe 2. (b) mit Bildern gelöst, das ist leider nicht ausreichend für eine Mathematik-Aufgabe Bilder sind ja kein Beweis. Um die Gleichheit zweier Mengen zu zeigen, gibt es hauptsächlich zwei Strategien:
 - (a) Für Aufgaben in der Serie, genügt es, Gleichheit durch eine Tabelle zu zeigen. Um $(A \cup B)^c = A^c \cap B^c$ zu zeigen, stellen wir folgende Tabellen auf:

A	В	$A \cup B$	$(A \cup B)^c$	A^c	B^c	$A^c \cap B^c$
∉	∉	∉	\in	\in	\in	\in
∉	\in	\in	∉	\in	∉	∉
\in	∉	\in	∉	∉	\in	∉
\in	\in	\in	∉	∉	∉	∉

(b) Allerdings sind Tabellen nicht besonders hilfreich für kompliziertere Beweise. Wir verwenden häufig diese Strategie: Um A=B zu zeigen, genügt es $A\subseteq B$ und $B\subseteq A$ zu beweisen. Genauer, man zeigt

$$\forall x \in A : x \in B \quad \text{und} \quad \forall y \in B : y \in A.$$

3. Es gab auch ein Paar Probleme mit Kontraposition — es kann ja verwirrend sein. In Aufgabe 5. wollen wir die Kontraposition von $x=y \implies (\exists \varepsilon > 0: |x-y| \ge \varepsilon)$. Achtung: wenn wir $\exists \varepsilon > 0: |x-y| \ge \varepsilon$ negieren, schreiben wir nicht $\forall \varepsilon \le 0...$, sonder negieren wir nur den Existenzquantor, also $\forall \varepsilon > 0...$

2.2 Unendlicher Kettenbruch (Fortsetzung, Weiterführendes Material)

Letzte Woche haben wir unendliche Kettenbrüche eingeführt und es gab ein paar Fragen dazu, ob wir einen unendlichen Kettenbruch als Grenzwert verstehen kann. Dies ist tatsächlich möglich, selbst mit unserer Definition. Der allgemeine Fall ist leider zu kompliziert und braucht weitere Kenntnisse aus der Analysis, daher betrachten wir nur den Spezialfall von ϕ . (Dieser Teil ist komplett nicht prüfungsrelevant.)

Zu einem unendlichen Kettenbruch definieren wir den n-ten endlichen Näherungsbruch als

$$\frac{P_n}{Q_n} := b_0 + \frac{1}{b_1 + \frac{1}{\ddots}}$$

$$\frac{1}{b_{n-1} + \frac{1}{b_n}}$$

Zudem gibt es folgendes Schema, wodurch wir schnell P_n/Q_n bestimmen können:

$$P_{-2} = 0,$$
 $P_{-1} = 1,$ $P_n = b_n P_{n-1} + P_{n-2}$ $Q_{-2} = 1,$ $Q_{-1} = 0,$ $Q_n = b_n Q_{n-1} + Q_{n-2}$

Hier beweisen wir die rekursive Relation nicht. In unserem Fall gilt

$$P_{-2} = 0,$$
 $P_{-1} = 1,$ $P_0 = 1,$ $P_1 = 2,$ $P_2 = 3,$ $P_3 = 5,$ \cdots
 $Q_{-2} = 1,$ $Q_{-1} = 0,$ $Q_0 = 1,$ $Q_1 = 1,$ $Q_2 = 2,$ $Q_3 = 3,$ \cdots

Wie sehen, dass wir auf der ersten Reihe genau $\mathcal{F}_{0,1}$ haben, und auf der zweiten Reihe die verschobene $\mathcal{F}_{0,1}$. So lässt sich den Grenzwert bestimmen:

$$\lim_{n \to \infty} \frac{P_n}{Q_n} = \lim_{n \to \infty} \frac{F_{n+2}}{F_{n+1}} = \phi.$$

2.3 Naive Mengenlehre und Abbildungen

Übung 2.1. Sei X eine endliche Menge. Zeige, dass $|\mathcal{P}(X)| = 2^{|X|}$

Lösung. Lösung 1. Sei |X| = n und wir schreiben $X = \{x_1, \ldots, x_n\}$. Jede Teilmenge von X kann als ein Vektor der Länge n dargestellt werden: Für $A \subseteq X$ definiere wir v_A durch $v_A^i = 0$ falls $x_i \notin A$ und $v_A^i = 1$ falls $x_i \in A$. Jede Teilmenge entspricht eindeutig einem Vektor mit Einträgen in $\{0,1\}$ und umgekehrt definiert jeder solche Vektor eine Teilmenge. Somit genügt es, die Anzahl von solchen Vektoren zu bestimmen. Für jeden Eintrag v^i gibt es zwei Möglichkeiten, entweder $v^i = 1$ oder $v^i = 0$. Daher gibt es insgesamt 2^n solche Vektoren.

LÖSUNG 2. Um eine Teilmenge von X zu konstruieren, wählen wir Elemente aus X. So ist $|\mathcal{P}(X)|$ genau die Anzahl von Möglichkeiten, Elemente aus X zu wählen. Wenn wir kein Element auswählen, haben wir nur eine Möglichkeit. Wenn wir nur ein Element auswählen, gibt es klarerweise n Möglichkeiten. Wenn wir zwei auswählen, gibt es $\binom{n}{2}$ Möglichkeiten, usw. Jedes Mal dürfen wir beliebig viele Elemente auswählen, daraus ergibt sich

$$\sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n$$

Möglichkeiten. Wir haben hier Satz 2.2 verwendet.

Satz 2.2 (Binomischer Lehrsatz). Seien $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$. Dann gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Beweis. Wir zeigen die Formel mittels Induktion. Für n=0 ist $(a+b)^0=1=\binom{n}{0}$ (wobei wir die Konvention $0^0 = 1$ verwenden). Nimm an, dass die Formel für n gilt. Für n + 1haben wir

$$(a+b)^{n+1} = (a+b) \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k+1}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} a^k b^{n-k+1} + \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k+1}$$

$$= \sum_{k=1}^{n} \left(\binom{n}{k-1} + \binom{n}{k} \right) a^k b^{n+1-k} + b^{n+1} + a^{n-1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k},$$

wobei

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{n! \cdot k - n! \cdot (n-k+1)}{k!(n-k+1)!}$$

$$= \frac{(n+1)!}{k!(n-k+1)!} .$$

Als Nächstes schauen wir uns zwei Paradoxa der naiven Mengenlehre an, um genauer zu verstehen, woher die Probleme kommen. Dafür brauchen wir aber einen Begriff, der uns erlaubt, die Kardinalitäten von (potenziell unendlichen) Mengen zu vergleichen.

Definition 2.3. Es seien A, B Mengen. Wir sagen |A| = |B| falls es eine Bijektion zwischen A und B gibt; $|A| \leq |B|$ falls es eine Injektion $f: A \to B$ gibt. Wir schreiben auch |A| < |B|für $|A| \leq |B| \wedge |A| \neq |B|$.

Wir werden nächste Woche noch zu dieser Definition kommen wenn wir das zweite Paradoxon diskutieren. Wir fangen zuerst mit dem klassischen Russell'schen Paradoxon.

Beispiel 2.4 (Russell). Angenommen existiert eine Menge aller Mengen, U_0 . Definiere

$$R := \{ P \in U : P \notin P \}.$$

Ist $R \in \mathbb{R}$?

Diese Frage hat keine zufriedenstellende Antwort. Wenn $R \in R$, dass ist R per Definition eine Menge, die $R \notin R$ erfüllt. Aber wenn $R \notin R$, muss $R \in R$ gelten. Wir erhalten also

$$R \in R \iff R \notin R$$
.

Ausdrücke der Form $\phi \wedge \neg \phi$ nennen wir einen Widerspruch. Hier muss sowohl $R \in R$ als auch $R \notin R$ gelten, also $(R \in R) \wedge (R \notin R)$. So führt die Annahme, dass U_0 existiert, zu einem Widerspruch.

2.4 Hinweise zur Serie 2

- 1. Wie negieren wir eine Aussage?
- 2. Kann x positiv sein? Negativ?
- 3. Verwendet die Strategie mit zwei Inklusionen, die wir in der Übungsstunde diskutiert haben.
- 4. Relativ direkt.
- 5. Die Definitionen können hilfreich sein. [Wichtig]
- 6. Schaut euch nochmals die Definitionen an. [Wichtig]

Übungsstunde 3

Cantor'sches Paradoxon und lineare Gleichungssysteme I

3.1 Quiz 2

Seien $f: X \to Y$ und $g_1, g_2: Y \to Z$ Abbildungen.

- 1. Stimmt es, dass wenn $g_1 \circ f = g_2 \circ f$ gilt, dass ist $g_1 = g_2$?
- 2. Trifft es zu, dass $f(f^{-1}(B)) \subseteq B$ für jede Teilmenge $B \subseteq Y$ gilt?
- 3. Nehmen wir an, dass $g_1 \circ f$ injektiv ist. Bedeutet dies, dass g_1 injektiv ist?

Lösung.

1. Dies ist im Allgemeinen nicht wahr. Es gilt, wenn f ein Rechtsinverses besitzt, d. h. wenn f surjektiv ist.

Als Gegenbeispiel sei $f:\{0,1\}\to\{0,1\}$ die konstant 1-Funktion, und betrachte $g_1,g_2:\{0,1\}\to\{0,1\}$ definiert durch

$$g_1(x) = x$$
 und $g_2(x) = 1$ für alle $x \in \{0, 1\}$.

Dann gilt $g_1 \circ f = g_2 \circ f$, aber $g_1 \neq g_2$.

2. Per Definition gilt

$$f^{-1}(B) = \{ x \in X \mid f(x) \in B \}.$$

Daher gilt für alle $x \in f^{-1}(B)$: $f(x) \in B$, was die Inklusion zeigt.

3. Dies ist nicht wahr. Sei $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ definiert durch $f(x) = \sqrt{x}$ und $g_1: \mathbb{R} \to \mathbb{R}$ definiert durch $g_1(y) = y^2$.

Dann ist $g_1 \circ f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ injektiv. Tatsächlich gilt: Angenommen $g_1 \circ f(x_1) = g_1 \circ f(x_2)$. Das bedeutet $(\sqrt{x_1})^2 = (\sqrt{x_2})^2 \Longrightarrow x_1 = x_2$. Jedoch ist g_1 offensichtlich nicht injektiv.

3.2 Besprechung Serie 2

1. In Aufgabe 2 wurde erwartet, dass man das Archimedische Prinzip verwendet, um zu zeigen, dass

$$A := \bigcap_{n=1}^{\infty} \left\{ x \in \mathbb{R} : -\frac{1}{n} \le x \le \frac{1}{n} \right\} = \{0\}.$$

Also sei x>0, dann gibt es nach dem Archimedischen Prinzip Fig25 ein $k\in\mathbb{Z}$, sodass

$$k \le \frac{1}{x} < k+1 \implies \frac{1}{k+1} < x$$

Daher ist $x \notin A$ für alle x > 0. Analog gilt das gleiche für x < 0, so mit ist $A = \{0\}$.

2. Viele haben die Aufgabe 5 gelöst mit der Begründung, dass g_1 und g_2 wegen der zwei Eigenschaften nach der Definition genau f^{-1} sind. Man muss vorsichtig sein: nicht jede Funktion hat ein Inverses, man muss die Bijektivität der Funktion beweisen und dann kann man von dem Inversen sprechen. Insbesondere kann man hier nicht direkt die Eindeutigkeit des Inversen verwenden. In dieser Aufgabe geht man wie folgt vor: Es gilt

$$g_1 = g_1 \circ id_Y = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = id_X \circ g_2 = g_2.$$

So ist $g_1 = g_2$ und sie sind sowohl das linke als auch das rechte Inverse von f, also $g_1 = g_2 = f^{-1}$. Aus den zwei Gleichungen folgt auch, dass f injektiv und surjektiv sind.

3. Es gab ein paar Missverständnisse bei Aufgabe 6. Wenn wir $f^{-1}(B)$ schreiben, wird nicht die Umkehrabbildung (engl. inverse) von f gemeint, sonder das Urbild (engl. preimage / inverse image) der Menge A unter f. Genauer, für $f: X \to Y$ und $B \subseteq Y$ ist

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}.$$

Hier kann man f^{-1} nicht als Funktion verstehen, aus demselben Grund wie oben: Es existiert nicht immer. Allerdings ist es bemerkenswert, wenn f^{-1} existiert, ist $f^{-1}(B)$ genau das Bild (engl. image) von B unter f^{-1} — die zwei Interpretationen stimmen miteinander überein. Somit muss man hier die Mengen genau analysieren, z.B. Teilaufgabe 1: Sei $y = f(x) \in f(f^{-1}(B))$ für $x \in f^{-1}$, dann ist per Definition $f(x) \in B$ und daher $y \in B$, also $f(f^{-1}(B)) \subseteq B$. Wenn f surjektiv ist, gibt es für jedes $y \in B$ ein $x \in X$ mit f(x) = y. x muss in $f^{-1}(B)$ und daher $B \subseteq f(f^{-1}(B))$, womit die andere Inklusion gezeigt wird. Bei den restlichen Aufgaben kann man ähnlich vorgehen.

Noch eine Erinnerung: $A \setminus B = A \cap B^c$ — kann manchmal nützlich sein.

3.3 Noch ein Paradoxon

Beispiel 3.1 (Cantor'sches Paradoxon). Es gibt keine Menge, die alle Mengen als Element enthält.

Um dies zu zeigen, benötigen wir folgendes Theorem.

Theorem 3.2 (Cantor). Sei $f: A \to \mathcal{P}(A)$ eine Abbildung, dann ist f nicht surjektiv. Als eine Folgerung ist $|A| < |\mathcal{P}(A)|$ für alle Mengen A.

Beweis. Angenommen ist f surjektiv. Sei $B := \{x \in A : x \notin f(x)\}$, dann ist $B \in \mathcal{P}(A)$. Da f surjektiv ist, gibt es $x \in A$ mit f(x) = B. Aber per Definition von B gilt

$$y \in B \iff y \notin f(x) \quad \forall y \in A,$$

es folgt

$$x \in B \iff x \notin B$$
.

Das ist ein Widerspruch.

Die Abbildung $g: A \to \mathcal{P}(A)$ mit $g(x) = \{x\}$ ist injektiv, daher $|A| \leq |\mathcal{P}(A)|$. Wir schliessen, dass $|A| < |\mathcal{P}(A)|$.

Beweis von Beispiel 3.1. Sei X die Menge, die alle Mengen als Element enthält. Sei

$$Y = \bigcup_{A \in X} A.$$

Da $\mathcal{P}(Y)$ auch eine Menge ist, ist $\mathcal{P}(Y) \in X$ und $\mathcal{P}(Y) \subseteq Y$, insbesondere $|\mathcal{P}(Y)| \leq Y$. Nach Theorem 3.2 ist aber $|\mathcal{P}(Y)| > Y$, Widerspruch.

Die Paradoxa zeigen, das der naive Begriff von Mengen zu viel enthält — manche davon, wie die Menge aller Mengen, haben Eigenschaften, die nicht wohldefiniert sind und zu Widerspruch führen. Daher brauchen wir mehr Einschränkungen dafür, welche Objekte überhaupt Mengen sein können, um den Begriff von Mengen präzise zu machen. Dies ist genau das Thema in der axiomatischen Mengenlehre, wo man den Begriff von Mengen durch Axiome festlegen. Die Mathematiker werden noch mehr dazu sehen in der Vorlesung Grundstrukturen.

3.4 Lineare Gleichungssysteme

Wir werden ein paar Beispiele von linearen Gleichungssystemen (LGS) sehen und lösen.

Übung 3.3. Man löse das folgende LGS mittels elementaren Zeilenoperationen:

$$\begin{cases} x_1 - x_3 = 1, \\ 2x_1 + 4x_2 + 4x_3 = 4, \\ -x_1 + 3x_2 + 4x_3 = 0. \end{cases}$$

Lösung.

$$\begin{pmatrix}
1 & 0 & -1 & | & 1 \\
2 & 4 & 4 & | & 4 \\
-1 & 3 & 4 & | & 0
\end{pmatrix}
\xrightarrow{R_2 - 2R_1, R_3 + R_1}
\begin{pmatrix}
1 & 0 & -1 & | & 1 \\
0 & 4 & 6 & | & 2 \\
0 & 3 & 3 & | & 1
\end{pmatrix}
\xrightarrow{R_3 - \frac{3}{4}R_2}
\begin{pmatrix}
1 & 0 & -1 & | & 1 \\
0 & 4 & 6 & | & 2 \\
0 & 0 & -\frac{3}{2} & | & -\frac{1}{2}
\end{pmatrix}$$

$$\frac{-\frac{2}{3}R_3}{\longrightarrow} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 4 & 6 & 2 \\ 0 & 0 & 1 & \frac{1}{3} \end{pmatrix} \xrightarrow{R_2 - 6R_3, R_1 + R_3} \begin{pmatrix} 1 & 0 & 0 & \frac{4}{3} \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{3} \end{pmatrix} \xrightarrow{\frac{1}{4}R_2} \begin{pmatrix} 1 & 0 & 0 & \frac{4}{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{3} \end{pmatrix}.$$

$$\implies x_1 = \frac{4}{3}, \quad x_2 = 0, \quad x_3 = \frac{1}{3}.$$

Übungsstunde 4

Lineare Gleichungssysteme II

4.1 Besprechung Serie 3

Wir wollen jetzt die Lösung von Aufgabe 5 genauer anschauen, und zwar hauptsächlich den Teil, wo man die Existenz eines Inverselements zeigt. Sei $x = a + b\tau \in k[\tau] \setminus \{0 + 0\tau\}$. Wir dürfen annehmen, dass $b \neq 0$, weil sonst $x = a \in k$ gilt und wir können das Inverse von $a \in k$ leicht finden. Wie definieren noch $x' = a - b\tau$, es gilt

$$xx' = a^2 - b^2\alpha.$$

Beachte, dass $xx' \neq 0 + 0\tau$, weil sonst $a^2 = b^2\alpha$ gelten muss, woraus $\tau = \pm a/b \in k$ folgt, dies kann aber nicht sein. So hat xx' ein Inverses $(a^2 - b^2\alpha)^{-1} \in k$. Nun nehmen wir an, dass x ein Inverses hat — wir wollen unter dieser Annahme einen Kandidat für x^{-1} (falls existiert) finden, und dann beweisen, dass das gefundene Element tatsächlich das Inverse von x ist. Es gilt

$$x^{-1}(xx') = x' \implies x^{-1} = x'(xx')^{-1}.$$

Wir setzen x' und xx' ein:

$$x^{-1} = (a - b\tau)(a^2 - b^2\alpha)^{-1}.$$

Dieses Element ist jetzt unser Kandidat für x^{-1} . Es bleibt zu zeigen, dass $xx^{-1} = 1$:

$$xx^{-1} = (a + b\tau)(a - b\tau)(a^2 - b^2\alpha)^{-1}$$
$$= (a^2 - b^2\alpha)(a^2 - b^2\alpha)^{-1}$$
$$= 1.$$

So haben wir verifiziert, dass $x^{-1} = (a - b\tau)(a^2 - b^2\alpha)^{-1}$ das Inverse von x ist. [Hier haben wir x^{-1} nicht als einen Bruch 1/x geschrieben, um zu betonen, dass die Existenz von einem Inversen nicht trivial ist und man kann nicht mit beliebigen Elementen einen solchen Bruch bauen.]

Nächste Woche werden wir noch ein paar Aufgaben aus Serie 3 besprechen.

4.2 Mehr zu linearen Gleichungssystemen

Das LGS von letzter Woche hat eine eindeutige Lösung und wir erhalten am Ende eine Matrix mit Eisen auf dem Diagonal. Allgemein können wir das nicht machen, trotzdem versuchen wir, die Matrix in eine ähnliche Form zu bringen, nämlich die reduzierte Zeilenstufenform (engl. row-reduced echelon form):

Übung 4.1. Löse das folgende LGS

$$\begin{cases} x_1 + x_2 - x_3 = 4, \\ 2x_1 - x_2 + 3x_3 = 7, \\ 4x_1 + x_2 + x_3 = 15 \end{cases}$$

Lösung. Die entsprechende Matrix ist

$$\left(\begin{array}{ccc|ccc}
1 & 1 & -1 & 4 \\
2 & -1 & 3 & 7 \\
4 & 1 & 1 & 15
\end{array}\right)$$

Nach elementaren Zeilenumformungen erhalten wir

$$\left(\begin{array}{ccc|c}
1 & 0 & \frac{2}{3} & \frac{11}{3} \\
0 & 1 & -\frac{5}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0
\end{array}\right)$$

Wenn (x_1, x_2, x_3) eine Lösung des Systems ist, gibt es keine Einschränkungen für x_3 , wir können also x_3 frei wählen. Aber es muss

$$x_1 = \frac{11}{3} - \frac{2}{3}x_3$$
 und $x_2 = \frac{1}{3} + \frac{5}{3}x_3$

gelten. So können wir die Lösung als

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{11}{3} - \frac{2}{3}x_3 \\ \frac{1}{3} + \frac{5}{3}x_3 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{11}{3} \\ \frac{1}{3} \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -\frac{2}{3} \\ \frac{5}{3} \\ 1 \end{pmatrix}$$

schreiben. x_3 kann einen beliebigen Wert $t \in \mathbb{R}$ annehmen, daher ist die Lösungsmenge gegeben durch

$$\left\{ \begin{pmatrix} \frac{11}{3} \\ \frac{1}{3} \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{2}{3} \\ \frac{5}{3} \\ 1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$

4.3 Weitere Übungsaufgaben

Übung 4.2. Löse das LGS

$$\begin{cases} x - y = 1 \\ x - 2y = -2 \end{cases}.$$

Versuche, die Geraden x-y=1 und x-2y=-2 in der Ebene zu zeichnen.

Lösung.

$$\left(\begin{array}{cc|c} 1 & -1 & 1 \\ 1 & -2 & -2 \end{array}\right) \xrightarrow{R_2 - R_1} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & -1 & -3 \end{array}\right) \xrightarrow{-R_2} \left(\begin{array}{cc|c} 1 & -1 & 1 \\ 0 & 1 & 3 \end{array}\right) \xrightarrow{R_1 + R_2} \left(\begin{array}{cc|c} 1 & 0 & 4 \\ 0 & 1 & 3 \end{array}\right)$$

Somit ist die eindeutige Lösung gegeben durch x=4,y=3. Geometrisch ist $(4,3) \in \mathbb{R}^2$ der Schnittpunkt der Geraden x-y=1 und x-2y=-2, es sieht wie folgt aus.

Übung 4.3. Löse das LGS

$$\begin{cases} x + 2y = 4 \\ 2x + 4y = 6 \end{cases}.$$

Versuche, die Geraden x + 2y = 4 und 2x + 4y = 6 in der Ebene zu zeichnen.

Abbildung 4.1: Lösung zum LGS x - y = 1 und $x_1 - 2y = -2$

Lösung. Man bemerkt, dass dieses LGS keine Lösung hat: Nach Umformungen erhalten wir 0=2. Geometrisch haben wir zwei parallele Geraden in der Ebene, die keinen Schnittpunkt haben. Aber wenn wir eine Gerade verschieben, z.B. wenn wir die erste Gleichung durch x+2y=3, dann bekommen wir zwei identische Geraden und sie haben unendlich viele Schnittpunkte, dementsprechend hat das neue LGS unendlich viele Lösungen. Die geometrische Bedeutung eines LGS werden wir noch besser verstehen mit Hilfe von Konzepten wie Vektorräume und lineare Abhängigkeit.

Nun lösen wir eine Aufgabe wo das LGS von einem Parameter abhängt. Dann kommt eine natürliche Frage, ist die Anzahl von Lösungen auch von dem Parameter abhängig?

Übung 4.4. Für welche $a \in \mathbb{R}$ hat das folgende LGS eine Lösung? Bestimme die Lösungen wenn sie existieren.

$$\begin{cases} x + ay + 3z = a \\ x + (a - 2)y + (2a + 3)z = -a^2 \\ y - az = 1 \end{cases}$$

Abbildung 4.2: Das LGS x + 2y = 4 und 2x + 4y = 6 hat keine Lösung

Lösung. Wir lösen das LGS wie normal:

$$\begin{pmatrix} 1 & a & 3 & a \\ 1 & a-2 & 2a+3 & -a^2 \\ 0 & 1 & -a & 1 \end{pmatrix} \xrightarrow{R_2-R_1} \begin{pmatrix} 1 & a & 3 & a \\ 0 & -2 & 2a & -a^2-a \\ 0 & 1 & -a & 1 \end{pmatrix}$$

$$\xrightarrow{R_2+2R_3} \begin{pmatrix} 1 & a & 3 & a \\ 0 & 0 & 0 & -a^2-a+2 \\ 0 & 1 & -a & 1 \end{pmatrix}$$

Wir sehen schon jetzt die Abhängigkeit von a. Wenn $-a^2 - a + 2 \neq 0$, hat das LGS keine Lösung. Die zwei Nullstellen von diesem Polynom sind 1 und -2, also es genügt, die Lösungen in diesen zwei fällen zu bestimmen

Fall 1: Die Zielmatrix ist

$$\begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 - R_2} \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Die Lösungsmenge ist

$$L = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -4 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3 : t \in \mathbb{R} \right\}.$$

Fall 2: Die Zielmatrix ist

$$\begin{pmatrix}
1 & -2 & 3 & | & -2 \\
0 & 1 & 2 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\xrightarrow{R_1 + 2R_2}
\begin{pmatrix}
1 & 0 & 7 & | & 0 \\
0 & 1 & 2 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Die Lösungsmenge ist

$$L = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -7 \\ -2 \\ 1 \end{pmatrix} \in \mathbb{R}^3 : t \in \mathbb{R} \right\}.$$

Übungsstunde 5

Vektorräume, Unterräume, Lineare Hüllen

5.1 Quiz 3

Sei K ein Körper und $a \in K^*$. Finde die reduzierte Zeilenstufenform der folgenden Matrix

$$A = \begin{pmatrix} 1 & a & a^2 & a^3 \\ a & a^2 & a^3 + a & a^4 + a^2 - a \end{pmatrix}.$$

Lösung.

$$\begin{pmatrix} 1 & a & a^2 & a^3 \\ a & a^2 & a^3 + a & a^4 + a^2 - a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & a & a^2 & a^3 \\ 0 & 0 & a & a^2 - a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & a & a^2 & a^3 \\ 0 & 0 & 1 & a - 1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & a & 0 & a^2 \\ 0 & 0 & 1 & a - 1 \end{pmatrix}.$$

5.2 Besprechung Serie 3 und 4

Serie 3

1. In Aufgabe 2 werden die Elemente eines endlichen Körpers durch \overline{a} ausgedruckt. Diese Notation ist anders wie in der Vorlesung und hat auch eine andere Bedeutung. Wir nehmen $\mathbb{F}_p = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{p-1}\}$ für p prim als ein Beispiel. Wir betrachten die Äquivalenzrelation \sim auf \mathbb{Z} definiert durch

$$x \sim y \iff x - y = pk, k \in \mathbb{Z} \iff x \equiv y \mod p.$$

Erinnerung aus Analysis I: eine Relation heisst eine Äquivalenzrelation wenn sie reflexiv, transitiv, und symmetrisch ist. Basierend auf diese Äquivalenzrelation definieren

wir

$$\overline{a} := \{a + pk : k \in \mathbb{Z}\} = a + p\mathbb{Z} = [a]_{\sim},$$

also \overline{a} ist die Äquivalenzklasse von a bezüglich diese Relation. Beachte: hier ist \overline{a} eine Menge, nicht nur eine ganze Zahl. \mathbb{F}_p ist die Menge aller Äquivalenzklassen, also

$$\mathbb{F}_p = \{ [a]_{\sim} : a \in \mathbb{Z} \}.$$

Weiter definieren wir auf \mathbb{F}_p + und · durch Repräsentanten:

$$[x]_{\sim} + [y]_{\sim} = [x+y]_{\sim},$$

$$[x]_{\sim} \cdot [y]_{\sim} = [x \cdot y]_{\sim}.$$

Man prüft, dass die Operationen wohldefiniert sind, d.h. unabhängig von den Repräsentanten. Durch diese Definition ergibt sich derselbe Körper wie ihr in der Vorlesung durch die Additions- und Multiplikationstabellen definiert habt, es ist aber wichtig im Kopf zu halten, dass es hier um Äquivalenzklassen handelt, nicht nur Zahlen. Konstruktionen durch Äquivalenzrelationen sind tauchen überall auf, nicht nur bei der Definition von gewissen Körpern, sonder auch später im Rahmen von Vektorräumen.

- 2. Aufgabe 6 ist etwa schwer, deshalb wollen wir uns den Beweis genauer anschauen.
 - (a) Die Abbildung $m_b(x) = b \cdot x$ ist bijektiv, weil Links- und Rechtsinversabbildungen existieren, beide sind nämlich gegeben durch $m_{b^{-1}}$. Insbesondere ist $m_b(k) = k$. Somit gilt

$$b \cdot S = b \cdot \sum_{x \in k} x = \sum_{x \in k} b \cdot x = \sum_{\substack{y = b \cdot x \\ x \in k}} y = \sum_{y \in k} y = S,$$

daraus folgt

$$(1-b)S = 0 \quad \forall b \neq 0.$$

Da k mehr als zwei Elemente hat, gibt es ein $b \in k \setminus \{0,1\}$ und es muss S = 0 gelten.

(b) Wenn das Inverselement von $x \in k$ ungleich x ist, können wir immer x und x^{-1} als ein Paar betrachten und wir kommen nur eine 1 im Produkt. Daher genügte es, "problematische Elementeßu brachten, also die Elemente mit $x = x^{-1}$, bei denen wir ein solches Paar nicht bilden können. Der wichtigste Punkt ist, dass nur 1 und -1 diese Gleichung erfüllen kann, weil das Polynom

$$(x+1)(x-1) \in k[x]$$

schon 1 und -1 als Nullstellen hat und ein Polynom in k[x] vom Grad 2 höchstens 2 Nullstellen in k besitzen kann. Somit erhalten wir am Ende nur einen Faktor von -1 wegen $-1 \in k$.

Serie 4 Aufgabe 5 ist ein bisschen kompliziert. Es sieht sehr intuitiv aus, braucht aber sorgfältige Begründung. Die Idee ist Kontraposition zu verwenden: wir nehmen an, dass keine Zeile von A kein Vielfaches von der anderen ist, und wollen schliessen, dass Ax = b eine Lösung hat. Also sei

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ b = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

Jetzt machen wir eine Fallunterscheidung.

Fall 1: $a \neq 0$. Dann dürfen wir durch a teilen. (Wichtig! Sonst dürfen wir das nicht.) Nach elementaren Zeilenumformungen erhalten wir

$$\left(\begin{array}{cc|c} 1 & \frac{b}{a} & \frac{\alpha}{a} \\ 0 & 1 & (\beta - \frac{c}{a}\alpha)/(d - \frac{c}{a}b) \end{array}\right)$$

Das Teilen durch $d - \frac{c}{a}b$ ist zulässig wegen der Annahme. Nun hat das LGS eine Lösung, wie gewünscht.

Fall 2: a = 0. Falls jetzt $c \neq 0$, haben wir eine ähnliche Situation wie im Fall 1, nach Vertauschen von Zeilen können wir wie vorher vorgehen, so hat das LGS auch eine Lösung. Falls c = 0, dass muss mindestens eines von b und d ungleich 0. So haben wir

$$\left(\begin{array}{cc|c} 0 & b & \alpha \\ 0 & d & \beta \end{array}\right),\,$$

aber dann ist eine Zeile immer ein Vielfaches von der anderen, egal welche Werte b und d annehmen.

So schliessen wir, dass das LGS in allen Fällen für alle $\alpha, \beta \in \mathbb{R}$ eine Lösung hat.

5.3 Vektorräume und Unterräume

Hier sind ein paar Nicht-Beispiele.

Beispiel 5.1.

1. Die 1-Sphäre $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \subseteq \mathbb{R}^2$.

2. Der affine Unterraum

$$\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -7 \\ -2 \\ 1 \end{pmatrix} \in \mathbb{R}^3 : t \in \mathbb{R} \right\} \subseteq \mathbb{R}^3.$$

- 3. $\{(x,y)\in\mathbb{R}^2:x,y\in\mathbb{Z}\}\subseteq\mathbb{R}^2$ ist abgeschlossen unter Addition, aber nicht unter Skalarmultiplikation.
- 4. $\{p(x) = ax^2 + bx + c : a \neq 0\} \subseteq \mathbb{R}[x]$ ist nicht abgeschlossen unter Addition und enthält nicht das Nullelement.
- 5. $\{f \in C^0(\mathbb{R}) : f(0) = 1\} \subseteq C^0(\mathbb{R})$ enthält die Nullfunktion $f \equiv 0$ nicht.

Übung 5.2. Sei V ein Vektorraum über K. Welche der folgenden Aussagen ist wahr? Geben Sie einen Beweis oder ein Gegenbeispiel.

(a) Sei $v \in V$, dann ist die Menge

$$W := \{ w \in V \mid \exists \lambda \in K : w = \lambda \cdot v \}$$

ein Unterraum von V.

- (b) Eine Teilmenge $W \subseteq V$ ist genau dann ein Unterraum, wenn $\langle W \rangle = W$.
- (c) Seien $S_1, S_2 \subseteq V$ Teilmengen. Dann gilt

$$\langle S_1 \cup S_2 \rangle = \langle S_1 \rangle + \langle S_2 \rangle.$$

(d) Seien $S_1, S_2 \subseteq V$ Teilmengen. Dann gilt

$$\langle S_1 \cap S_2 \rangle = \langle S_1 \rangle \cap \langle S_2 \rangle.$$

Lösung. (a) Ja. Sei $v \in V$ und

$$W := \{ w \in V \mid \exists \lambda \in K : \ w = \lambda v \}.$$

Dann ist $W = \langle v \rangle$, also die von v erzeugte lineare Hülle, und damit ein Unterraum von V.

" \Longrightarrow ": Sei W ein Unterraum von V. Dann ist jede endliche Linearkombination von Elementen aus W wieder in W, also $\langle W \rangle \subseteq W$. Die andere Inklusion $W \subseteq \langle W \rangle$ gilt stets, also folgt $\langle W \rangle = W$.

(c) Seien $S_1, S_2 \subseteq V$ Teilmengen. Es gilt

$$\langle S_1 \cup S_2 \rangle = \langle S_1 \rangle + \langle S_2 \rangle.$$

"⊇": Wegen $S_i \subseteq S_1 \cup S_2$ für i = 1, 2 folgt $\langle S_i \rangle \subseteq \langle S_1 \cup S_2 \rangle$ für i = 1, 2. Da $\langle S_1 \cup S_2 \rangle$ ein Unterraum ist, ist auch die Summe $\langle S_1 \rangle + \langle S_2 \rangle$ in $\langle S_1 \cup S_2 \rangle$.

"⊆": Wegen $S_i \subseteq \langle S_i \rangle \subseteq \langle S_1 \rangle + \langle S_2 \rangle$ für i = 1, 2 gilt $S_1 \cup S_2 \subseteq \langle S_1 \rangle + \langle S_2 \rangle$. Da $\langle S_1 \rangle + \langle S_2 \rangle$ ein Unterraum ist, enthält er auch alle endlichen Linearkombinationen aus $S_1 \cup S_2$, also $\langle S_1 \cup S_2 \rangle \subseteq \langle S_1 \rangle + \langle S_2 \rangle$.

Damit folgt die Gleichheit.

(d) Falsch. Betrachte ein Gegenbeispiel in $V = \mathbb{R}^2$. Sei

$$S_1 = \{(1,0)\}, \qquad S_2 = \{(3,0)\}.$$

Dann ist $S_1 \cap S_2 = \emptyset$ und somit $\langle S_1 \cap S_2 \rangle = \langle \emptyset \rangle = \{0\}$. Dagegen sind

$$\langle S_1 \rangle = \{ (t,0) : t \in \mathbb{R} \} = \langle S_2 \rangle,$$

also $\langle S_1 \rangle \cap \langle S_2 \rangle = \{(t,0) : t \in \mathbb{R}\} \neq \{0\}$. Somit ist im Allgemeinen $\langle S_1 \cap S_2 \rangle \neq \langle S_1 \rangle \cap \langle S_2 \rangle$.

Beispiel 5.3. Sei $A \in M_{m \times n}(K)$ eine Matrix:

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & & | \end{pmatrix}.$$

Man überprüft, dass

$$V = \left\{ \sum_{i=1}^{n} \alpha_i v_i : \alpha_i \in K \ \forall 1 \le i \le n \right\}$$

ein Vektorraum ist. Dies wird den **Spaltenraum** von A genannt. Der Spaltenraum spielt eine grosse Rolle, wenn wir später Matrizen als lineare Abbildungen betrachten.

Definition 5.4. Sei $A \in M_{m \times n}(K)$ und $x \in K^n$. Wir definieren die Multiplikation von A mit x als

$$Ax = v \in \mathbb{R}^m$$
,

wobe
i \boldsymbol{v} durch

$$v_i = \sum_{j=1}^n a_{ij} x_j$$

gegeben ist.

Bemerkung 5.5. Alternativ kann man Ax als

$$Ax = \sum_{j=1}^{n} x_j v_j$$

betrachten, wobei v_j für $1 \leq j \leq n$ die Spalten von A sind.

Dadurch sehen wir, ob das LGS Ax=b eine Lösung hat hängt lediglich davon ab, ob b im Spaltenraum von A liegt. Nächste Woche werden wir Matrizen als lineare Abbildungen betrachten und anhand von Eigenschaften der linearen Abbildungen die Lösungsmengen von LGS eingehend studieren.

Literaturverzeichnis

- [Beu09] Albrecht Beutelspacher. "Das ist o. B. d. A. trivial!". Wiesbaden: Vieweg+Teubner, 2009. ISBN: 978-3-8348-0771-7.
- [Fig25] Alessio Figalli. "Analysis I: One Variable". Vorlesungsskript. 2025.
- [Hal24] Lorenz Halbeisen. "Grundstrukturen". Vorlesungsskript. 2024.
- [Hal25] Lorenz Halbeisen. Combinatorial Set Theory. Cham: Springer, 2025. ISBN: 978-3-031-91751-6.
- [ML22] Thomas C. T. Michaels und Marcel Liechti. *Prüfungstraining Lineare Algebra*. Cham: Birkhäuser, 2022. ISBN: 978-3-030-65885-4.
- [Zer24] Sarah Zerbes. "Lineare Algebra". Vorlesungsskript. 2024.