## 本次作业针对右侧通量 $f_{i+1/2}$ 进行求解

对于七阶迎风格式有表达式采用 Cofficient-f 化简计算,八个基架点,最左侧为 4 号点,计算得到系数,由于格式原因未能显示中文



实际表达式如下所示:

$$f = -\frac{1}{140}f_{j-4} - \frac{1}{15}f_{j-3} + \frac{3}{10}f_{j-2} - f_{j-1} + \frac{1}{4}f_j + \frac{3}{5}f_{j+1} - \frac{1}{10}f_{j+2} + \frac{1}{105}f_{j+3}$$
 选择基架点 
$$j - 3, j - 2, j - 1, j$$
 
$$j - 2, j - 1, j, j + 1$$
 
$$j - 1, j, j + 1, j + 2$$
 
$$j, j + 1, j + 2, j + 3$$

## 采用公式

$$h_{j+1/2} = f_{j+1/2} + a_2 \Delta x^2 \frac{\partial^2 f}{\partial x^2}|_{j+1/2} + a_4 \Delta x^4 \frac{\partial^4 f}{\partial x^4}|_{j+1/2} + \dots + a_{2m+1} \Delta x^{2m+1} \frac{\partial^{2m+1} f}{\partial x^{2m+1}}|_{j+1/2} + O(\Delta x^{2m+2}).$$

对方程进行构造以保证精度可以得到如下所示的四个模板对应的四种基架点上的重构的通 量

$$\begin{cases} f_{j+1/2}^{(0)} = -\frac{1}{4}f_{j-3} + \frac{13}{12}f_{j-2} - \frac{23}{12}f_{j-1} + \frac{25}{12}f_{j} \\ f_{j+\frac{1}{2}}^{(1)} = \frac{1}{12}f_{j-2} - \frac{5}{12}f_{j-1} + \frac{13}{12}f_{j} + \frac{1}{4}f_{j+1} \\ f_{j+\frac{1}{2}}^{(2)} = -\frac{1}{12}f_{j-1} + \frac{7}{12}f_{j} + \frac{7}{12}f_{j+1} - \frac{1}{12}f_{j+2} \\ f_{j+\frac{1}{2}}^{(3)} = \frac{1}{4}f_{j} + \frac{13}{12}f_{j+1} - \frac{5}{12}f_{j+2} + \frac{1}{12}f_{j+3} \end{cases}$$

对理想权重进行计算可得 $f_{j+\frac{1}{2}} = C_1 f_{j+1/2}^{(0)} + C_2 f_{j+1/2}^{(1)} + C_3 f_{j+1/2}^{(2)} + C_4 f_{j+1/2}^{(3)}$ 由上面的式子和该表达式进行联立,可以解得各个理想权重的值如下所示

$$\begin{cases} C_0 = \frac{1}{35} \\ C_1 = \frac{12}{35} \\ C_2 = \frac{18}{35} \\ C_3 = \frac{4}{35} \end{cases}$$

其次在构建 WENO 通量的加权表达式  $\begin{cases} \alpha_0 = \frac{c_0}{(\varepsilon + IS_0)^2} \\ \alpha_1 = \frac{c_2}{(\varepsilon + IS_1)^2} \\ \alpha_2 = \frac{c_2}{(\varepsilon + IS_2)^2} \\ \alpha_3 = \frac{c_3}{(\varepsilon + IS_2)^2} \end{cases}$   $\begin{cases} \omega_0 = \frac{\alpha_0}{\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3} \\ \omega_1 = \frac{\alpha_1}{\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3} \\ \omega_2 = \frac{\alpha_2}{\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3} \end{cases}$  时候需要  $\omega_3 = \frac{\alpha_3}{\alpha_0 + \alpha_1 + \alpha_2 + \alpha_3}$ 

用到光滑因子 IS, 定义如下所示

$$IS_{k} = \sum_{l=1}^{3} \int_{x_{j-1/2}}^{x_{j+1/2}} \Delta x^{2l-1} (\frac{\partial^{l}}{\partial x^{l}} q_{k}(x))^{2} dx$$

令 k=0, 此时将上述表达式进行展开

$$IS_0 = \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \Delta x^1 (\frac{\partial^l}{\partial x^l} q_k(x))^2 dx + \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} \Delta x^3 (\frac{\partial^2}{\partial x^2} q_k(x))^2 dx + \int_{x_{j-1/2}}^{x_{j+1/2}} \Delta x^5 (\frac{\partial^3}{\partial x^3} q_k(x))^2 dx$$

其中 $q_k(x)$ 为插值多项式,同 PPT 中的 h(x)

可以令 $q_k(x) = ax^3 + bx^2 + cx + d$ ,假如在 J 点对差值多项式进行构成,则有

$$q_1(x) = \frac{a}{6}(x - x_j)^3 + \frac{b}{2}(x - x_j)^2 + c(x - x_j) + d$$

对上式子求各阶导数, $\frac{\partial^2}{\partial x^2} q_k(x)$ ,和 $\frac{\partial^3}{\partial x^3} q_k(x)$ 并带入光滑因子 $IS_0$ 的表达式

$$IS_0 = \frac{1043}{960} * (6\Delta x^3 a)^2 + \frac{13}{12} * (2\Delta x^2 b)^2 + \frac{1}{12} * c + c^2$$

由于此时的 abc 为各个模板的函数关系,因此可以得到

$$6\Delta x^{3} a = -1f_{j-3} + 3f_{j-2} - 3f_{j-1} + f_{j}$$

$$2\Delta x^{2} b = -1f_{j-3} + 4f_{j-2} - 5f_{j-1} + 2f_{j}$$

$$c = -\frac{1}{3}f_{j-3} + \frac{3}{2}f_{j-2} - 3f_{j-1} + \frac{11}{6}f_{j}$$

对IS<sub>0</sub>代入所需要的式子并且合并同类项可以得到

$$IS_0 = \frac{13}{12} (fr_{j+1} - 2f_j + f_{j-1})^2 + \frac{1}{4} (3f_{j+1} - 4f_j + f_{j-1})^2$$

同理对于其他 $IS_1$ , $IS_2$ , $IS_3$ 进行求解可以得到如下表达式,其中 $\alpha_0$ 等如右侧所示

$$\begin{cases} IS_0 = \frac{13}{12} \left( fr_{j+1} - 2f_j + f_{j-1} \right)^2 + \frac{1}{4} \left( 3f_{j+1} - 4f_j + f_{j-1} \right)^2 \\ IS_1 = \frac{13}{12} \left( f_{j+2} - 2f_{j+1} + f_j \right)^2 + \frac{1}{4} \left( f_{j+2} - f_j \right)^2 \\ IS_2 = \frac{13}{12} \left( f_{j+3} - 2f_{j+2} + f_{j+1} \right)^2 + \frac{1}{4} \left( f_{j+3} - 4f_{j+2} + 3f_{j+1} \right)^2 \\ IS_3 = \frac{13}{12} \left( f_{j+3} - 2f_{j+2} + f_{j+1} \right)^2 + \frac{1}{4} \left( f_{j+3} - 4f_{j+2} + 3f_{j+1} \right)^2 \end{cases} \begin{cases} \alpha_0 = \frac{c_0}{(\varepsilon + IS_0)^2} = \frac{0.05}{(10^{-6} + IS_0)^2} \\ \alpha_1 = \frac{c_2}{(\varepsilon + IS_1)^2} = \frac{0.45}{(10^{-6} + IS_2)^2} \\ \alpha_2 = \frac{c_2}{(\varepsilon + IS_2)^2} = \frac{0.05}{(10^{-6} + IS_2)^2} \end{cases}$$

将得到的模板带入 $f_{j+\frac{1}{2}}=\omega_0f_{j+1/2}^{(1)}+\omega_1f_{j+1/2}^{(2)}+\omega_2f_{j+1/2}^{(3)}+\omega_3f_{j+1/2}^{(4)}$ 中可以得到七阶 weno 的通量格式