

TP3: Métodos de Aprendizaje NO Supervisado

Introducción

- Aprendizaje no supervisado:
 - Red de Kohonen
 - Regla de Oja
 - Modelo de Hopfield discreto

Problema 1

 El conjunto de datos europe.csv corresponde a características económicas, sociales y geográficas de 28 países de Europa

En base a 7 variables

- Implementar la red de Kohonen
- Implementar una red neuronal utilizando la regla de Oja

Implementación Kohonen

- Matriz de k*k, cada elemento tiene su vector W con 7 pesos
 - \circ k < 6 (más neuronas que países \rightarrow neuronas muertas)
- $R \rightarrow 1 \text{ con } t \rightarrow \infty$
- $\eta \rightarrow 0$ con $t \rightarrow \infty$
- Cada iteración:
 - calculamos neurona ganadora
 - encontramos y actualizamos neuronas vecinas

Datos

Implementación Kohonen

$$Radio(i) = R_0 * e^{rac{-i*ln(R_0)}{epochs}}$$

Implementación Kohonen

$$\eta(i) = \eta_0 * e^{rac{i*ln(k)}{epochs}}$$

$$K = 1%$$

Matriz U distancia promedio entre neuronas

Elementos asociados a cada neurona

k=3 $R_0 = 3$ $\eta_0 = 0.01$

GDP vs Inflation (Componente)

GDP vs Inflation (Componente)

GDP vs Inflation (Promedio)

GDP vs Inflation (Promedio)

Matriz U distancia promedio entre neuronas

Elementos asociados a cada neurona

k=4 $R_0 = 4$ $\eta_0 = 0.01$

Matriz U distancia promedio entre neuronas

0.6

0.5

0.4

0.3

0.2

Elementos asociados a cada neurona

k = 6 $R_0 = 6$ $\eta_0 = 0.01$

Conclusiones Kohonen

- Con más partículas que países hay neuronas muertas N=28, K<= 5
- Aún con neuronas muertas, si se tienen en cuenta los vecindarios, los grupos son coherentes con la distribución de la componente principal
- Usar un learning rate inicial cercano a 1, lleva a todas las neuronas cerca del último Xp de la época y por lo tanto la matriz U tiene distancias chicas pero no agrupa bien
- Distancias chicas no son indicador buena o mala agrupación
- El radio inicial debe ser "grande" para que no se formen grupos aislados
- No olvidar estandarizar los datos

Implementación Oja

- Perceptrón simple
 - o regla de actualización de Oja
- comparamos los resultados con el PCA utilizando la misma librería que usamos para el ejercicio obligatorio
 - sklearn

epochs=2000 lr =1e-4

epochs=2000 lr =1e-4

epochs=2000 lr =1e-4

epochs=100 lr =1e-2

Conclusiones Oja

- Tanto Oja como PCA llegan a estados parecidos
- Es inestable el método de Oja, entonces se debe colocar un learning rate muy chiquito
- Datos sin estandarizar no sirven de mucho en este método

Problema 2: Hopfield

- Almacenar 4 patrones de letras. Realizar un programa que aplique el modelo de Hopfield
 - Hacer alteraciones ruidosas de los patrones almacenados e ingresarlos al modelo, ver como progresan hasta su estado final
 - Ingresar un patrón muy ruidoso e identificar un estado espúreo.

Alfabeto utilizado

Implementación Hopfield

- Seleccionamos las 4 letras
 - ['A', 'L', 'T', 'X']
 - Nos dan el patrón más ortogonal

Entrena con las letras seleccionadas y genera la matriz de pesos

 Usamos el método predict para las letras con ruido y vemos el resultado

Elección del Patrón más ortogonal

- Calculamos el producto escalar normalizado entre cada par de letras
- Formamos N=26C4 grupos con todas las combinaciones de letras
- El score de cada grupo será el el producto escalar máximo entre cada par de letras
- Se selecciona el grupo con menor score

HILX

Menor producto escalar promedio

ALTX

	Combinación	$Max\;cos(\theta)$	
0	[A, L, T, X]	0.36	
1	[K, L, Q, X]	0.37	
2	[K, L, Q, Y]	0.37	
3	[L, T, U, X]	0.37	
4	[L, Q, T, X]	0.38	
5	[K, L, Q, T]	0.42	
6	[K, L, T, X]	0.42	
7	[K, Q, T, V]	0.42	
8	[K, Q, T, X]	0.42	
9	[D, K, M, V]	0.44	

	A	L	T	X
A	1.00	0.20	0.36	0.27
L	0.20	1.00	0.25	0.25
Т	0.36	0.25	1.00	0.33
X	0.27	0.25	0.33	1.00

Entrada: L noise:20%

Entrada: L noise:50%

Energía vs Iteration

Estados Espúreos Complementarios

$$egin{aligned} S &= (S_1,...,S_n) \ \overline{S} &= (-S_1,...,-S_n) \ |E(S) &= -rac{1}{2} \sum_{i,j} w_{ij} * S_i * S_j \ E(\overline{S}) &= -rac{1}{2} \sum_{i,j} w_{ij} * (-S_i) * (-S_j) \ &= -rac{1}{2} \sum_{i,j} w_{ij} * S_i * S_j = E(S) \end{aligned}$$

Conclusiones Hopfield:

- Converge bien con poco ruido
- Muestra buena elección de las letras (ortogonal)
- Estados espúreos pueden ser los "complementarios" de las letras elegidas
 - demostrado con el cálculo de energía

