30.05.2022 - 05.06.2022

Zusatzaufgaben 6

Aufgabe 1: Berechnungen

Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b, c \}$ und die DFAs $M_1 \triangleq (\{ q_0, q_1 \}, \Sigma, \delta_1, q_0, \{ q_1 \}),$ $M_2 \triangleq (\{q_0, q_1, q_2\}, \Sigma, \delta_2, q_0, \{q_0, q_1\}) \text{ und } M_3 \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \delta_3, q_0, \{q_1, q_2\})$ wobei δ_1 , δ_2 und δ_3 durch die folgenden Graphen gegeben sind:

1.a) Gib die Berechnung von M_1 für die Eingabeworte ε , a, abc, an. Welche der Wörter werden von M₁ akzeptiert?

 $(q_0, \varepsilon) \not\vdash_{M_1}$ und damit $\varepsilon \not\in L(M_1)$.

 $(q_0,\alpha) \vdash_{M_1} (q_1,\epsilon) \nvdash_{M_1} \text{und damit } \alpha \in L(M_1).$

 $(q_0,abc)\vdash_{M_1}(q_1,bc)\vdash(q_1,c)\vdash_{M_1}(q_1,\epsilon)\nvdash_{M_1}und\ damit\ abc\in L(M_1).$

/Lösung

1.b) Gib die Berechnung von M_2 für die Eingabeworte ε , aa, abcabc an. Welche der Wörter werden von M₂ akzeptiert?

[Lösung]

 $(q_0,\epsilon) \not\vdash_{M_2} \text{und damit } \epsilon \in L(M_2).$

 $(q_0, aa) \vdash_{M_2} (q_1, a) \vdash_{M_2} (q_1, \epsilon) \nvdash_{M_2} \text{ und damit } aa \in L(M_2).$

 $(q_0, abcabc) \vdash_{M_2} (q_1, bcabc) \vdash_{M_2} (q_1, cabc) \vdash_{M_2} (q_2, abc) \vdash_{M_2} (q_2, bc) \vdash_{M_2} (q_2, c) \vdash_{M_2} (q_2,$

 $(q_2, \varepsilon) \not\vdash_{M_2}$ und damit abcabc $\notin L(M_2)$.

/Lösung

1.c) Gib die Berechnung von M_3 für die Eingabeworte ε , bb, ba, ab an. Welche dieser Wörter gehören zu L(M₃)?

----- [Lösung]-----

 $(q_0, \epsilon) \not\vdash_{M_3} \text{ und damit } \epsilon \notin L(M_3).$

 $(q_0,\ bb)\vdash_{M_3}(q_1,\ b)\vdash_{M_3}(q_1,\ \epsilon)\nvdash_{M_3} und\ damit\ bb\in L(M_3).$

 $(q_0,\ ba)\vdash_{M_3} (q_1,\ a)\vdash_{M_3} (q_3,\ \epsilon)\not\vdash_{M_3} und\ damit\ ba\notin L(M_3).$

 $(\mathsf{q}_0,\ \mathsf{ab}) \vdash_{\mathsf{M}_3} (\mathsf{q}_2,\ \mathsf{b}) \vdash_{\mathsf{M}_3} (\mathsf{q}_0,\ \epsilon) \nvdash_{\mathsf{M}_3} \text{und damit } \mathsf{ab} \notin \mathsf{L}(\mathsf{M}_3).$

/Lösung

Aufgabe 2: Sprachen einfacher Automaten

Gegeben seien das Alphabet $\Sigma \triangleq \{ f, g, 0 \}$ und die DFAs $M_4 \triangleq (\{ q_0, q_1, q_2 \}, \Sigma, \delta_4, q_0, \{ q_1, q_2 \})$ und $M_5 \triangleq (\{ q_0, q_1, q_2, q_3 \}, \Sigma, \delta_5, q_0, \{ q_1, q_2 \}),$ wobei δ_4 und δ_5 durch die folgenden Graphen gegeben sind:

2.a) *Gib* die Sprache $L(M_1)$ für den DFA M_1 aus Aufgabe $\boxed{1}$ *an*.

L(M_1) = $L((a+b+c)(a+b+c)^*)$ = { $w \in \{a, b, c\}^* \mid |w| > 0$ }

Hinweis: Wir haben die Sprache hier einmal über einen regulären Ausdruck und einmal in Mengenschreibweise angegeben. Da nur nach der Sprache (und nicht mehreren Schreibweisen) gefragt war, genügt eine der Alternativen. Keine der beiden Varianten verweist auf eine Grammatik oder einen Automaten.

2.b) Gib die Sprache L(M₂) für den DFA M₂ aus Aufgabe an.

$$\begin{split} L(M_2) &= L\big(\varepsilon + \big((\alpha + b + c)\,(\alpha + b)^*\big)\big) = \{\; \epsilon\;\} \cup \{\; xy \mid x \in \{\; \alpha,\; b,\; c\;\} \land y \in \{\; \alpha,\; b\;\}^*\;\} \\ &= \{\; \epsilon, xy \mid x \in \{\; \alpha,\; b,\; c\;\} \land y \in \{\; \alpha,\; b\;\}^*\;\} \end{split}$$

(/Lösung

- 2.c) Gib an: $L(M_3)$ $L(M_3) = \{ xa, xb^m \mid x \in \{ ab, c \}^* \land m \in \mathbb{N}^+ \}$ $L(B_3) = \{ xa, xb^m \mid x \in \{ ab, c \}^* \land m \in \mathbb{N}^+ \}$ $L(B_3) = \{ xa, xb^m \mid x \in \{ ab, c \}^* \land m \in \mathbb{N}^+ \}$
- 2.e) $\mathit{Gib\ an:}\ \mathsf{Die\ Sprache\ L}(\mathsf{M}_5), \, \mathsf{die\ der\ Automat\ M}_5 \, \mathsf{akzeptiert.}$

Aufgabe 3: Erstellen einfacher Automaten

Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b, c \}$ sowie die Sprachen:

$$A_6 \triangleq \{ w \in \Sigma^* \mid |w|_a \mod 3 = 1 \land |w|_b + |w|_c \leqslant 1 \}$$
$$A_7 \triangleq \{ xc^m \mid x \in \{ aa, aba, baa, baba \}^* \land m \geqslant 2 \}$$

3.a) Gib einen DFA M_6 so an, dass $L(M_6) = A_6$.

------(Lösung)-----

 $M_6 = (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5,\ q_6\ \},\ \Sigma,\ \delta_6,\ q_0,\ \{\ q_1,\ q_4\ \})\ mit\ \delta_6 :$

3.b) Gib einen DFA M_7 so an, dass $L(M_7) = A_7$.

----- (Lösung)-----

 $M_7 = (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5,\ q_6,\ q_7\ \},\ \Sigma,\ \delta_7,\ q_0,\ \{\ q_6\ \})\ mit\ \delta_7 :$

Aufgabe 4: Erstellen einer Grammatik aus einem Automaten

Gegeben seien ein Alphabet $\Sigma \triangleq \{0, 1\}$ sowie der Automat $M_8 = (\{q_0, q_1, q_2\}, \Sigma, \delta_8, q_0, \{q_1\}),$ wobei δ_8 durch den folgenden Graphen gegeben ist:

4.a) Gib eine reguläre Grammatik G_8 so an, dass $L(G_8) = L(M_8)$ für den Automaten.

Co. ((O. O. O.) (O.1) P. O.) with P.

 $G_8 = (\{\ Q_0,\ Q_1,\ Q_2\ \}, \{\ 0,\ 1\ \}, P_8, Q_0)\ mit\ P_8 :$

 $Q_0 \to 0 Q_0 \ | \ 1Q_1 \ | \ 1, \quad Q_1 \to 0Q_1 \ | \ 1Q_2 \ | \ 0, \quad Q_2 \to 0Q_2 \ | \ 1Q_0$

/Lösung