Tensor products and almost split sequences for group rings

Shigeto Kawata

Nagoya City University E-mail: kawata@nsc.nagoya-cu.ac.jp

Let G be a finite group and p a prime number dividing the order of G. Let (K, \mathcal{O}, k) be a p-modular system, namely, K is a complete discrete valuation field of characteristic zero with multiplicative valuation ν , \mathcal{O} is a valuation ring of ν with unique maximal ideal $\pi\mathcal{O}$, and $k = \mathcal{O}/\pi\mathcal{O}$ is the residue class field of \mathcal{O} of characteristic p. We assume that k is algebraically closed. We use R to denote \mathcal{O} or k, and we denote by RG the group ring of G over R. RG-lattices means finite generated right RG-modules which are free as R-modules. If V and W are RG-lattices, $V \otimes_R W$ and $\operatorname{Hom}_R(V,W)$ are RG-lattices with the operations of G given by $(x \otimes y)g = xg \otimes yg$ and $[\varphi g](x) = \varphi(xg^{-1})g$ for all $g \in G$, $x \in V$, $y \in W$ and $\varphi \in \operatorname{Hom}_R(V,W)$. Also, R_G denotes the trivial RG-lattice and V^* denotes the dual RG-lattice $\operatorname{Hom}_R(V,R_G)$ of V.

For a non-projective indecomposable RG-lattice U, we denote by $\mathscr{A}(U)$ the almost split sequence terminating in $U: 0 \longrightarrow \tau U \longrightarrow m(U) \longrightarrow U \longrightarrow 0$. Applying $V \otimes_R -$ to $\mathscr{A}(U)$ for an indecomposable RG-lattice V, we get the exact sequence

$$V \otimes_R \mathscr{A}(U) : 0 \longrightarrow V \otimes_R \tau U \longrightarrow V \otimes_R m(U) \longrightarrow V \otimes_R U \longrightarrow 0.$$

In the case where $U = R_G$, Auslander and Carlson showed that $V \otimes_R \mathscr{A}(R_G)$ is a direct sum of $\mathscr{A}(V)$ and a split sequence if and only if the multiplicity of the trivial RG-lattice R_G in $V \otimes_R V^*$ is one [1].

In this talk, we consider the tensor product sequence $V \otimes_R \mathscr{A}(Sc(Q))$, where Q is a p-subgroup of G and Sc(Q) is the Scott RG-lattice with vertex Q. Then we see that for an indecomposable RG-lattice V with vertex Q, $V \otimes_R \mathscr{A}(Sc(Q))$ is a direct sum of $\mathscr{A}(V)$ and a split sequence if and only if the multiplicity of Sc(Q) in $V \otimes_R V^*$ is one.

In the case $R = \mathcal{O}$, Knorr introduced the notion of virtually irreducible $\mathcal{O}G$ -lattices [3]. We also see that for an indecomposable $\mathcal{O}G$ -lattice L with vertex Q, the following conditions (i), (ii) and (iii) are equivalent:

- (i) L is virtually irreducible and the \mathcal{O} -rank of a Q-source of L is not divisible by p;
- (ii) $L \otimes_{\mathcal{O}} \mathscr{A}(Sc(Q))$ is a direct sum of $\mathscr{A}(L)$ and a split sequence;
- (iii) The multiplicity of Sc(Q) in $L \otimes_{\mathcal{O}} L^*$ is one [2].

2020 Mathematics Subject Classification: 16G70, 20C11, 20C20

Keywords: Representations of finite groups, Almost split sequences, Scott lattices

References

- [1] M. Auslander, J.F. Carlson, Almost-split sequences and group rings, J. Algebra 103 (1986) 122-140.
- [2] S. Kawata, On tensor products and almost split sequences for Scott lattices over group rings, J. Algebra 599 (2022) 122-132.
- [3] R. Knorr, Virtually irreducible lattices, Proc. Lond. Math. Soc. 59 (1989) 99-132.