malle sur you start a testbench w/ 15+== 1 for a "few" clock cycles.

CMOS

Andrew Lukefahr
Indiana University - Bloomington

The Compute Stack

Solive

All logic is NAND

• It's not magic, it's an electronic circuit

Voltage Drop

- V = IR
- Voltage = Current * Resistance

What happens if current (i) == 0?

when water levels are egual -> no flow through pipe

Basic Electronics

Simplified Electronic Circuit

Most electronic circuits use signals that are within 5 to 10 volts of ground; in recent years, circuit signals are within 1 to 5 volts of ground.

NAND

A	В	V_{out}
open	open	high
open	closed	high
closed	open	high
closed	closed	low

А	В	V_{out}
0	0	1
0	1	1
1	0	1
1	1	0

Convention:

Open: 0 Closed: 1 Low voltage: 0 High voltage: 1

This circuit does not implement *AND*, rather it implements inverted *AND*, *NOT-AND*, or *NAND* logic operation!

NOR

Drop the LED from the OR circuit and take the voltage from the resistor as the output:

А	В	V_{out}
open	open	HV
open	closed	LV
closed	open	LV
closed	closed	LV

А	В	V_{out}
0	0	1
0	1	0
1	0	0
1	1	0

This circuit does not implement *OR*, rather it implements inverted *OR*, *NOT-OR*, or *NOR* logic operation!

NOT

NOT

А	V _{out}
0	1
1	0

What circuit is this?

MOSFETS > clectronic switch

eletoons flows sowred drain
"current" flows drain source • MOSFETs (or just FETs)

electrons from source to drain

Basic Electronics if gate is "ON"

MOSFETS

- Two types of MOSFETs
 - N-Type (nFET)
 - P-Type (pFET)
- Behavior is exactly the opposite of each other

Digital electronic circuits are built from electronic switches that are called transistors instead of the mechanical switches and resistors.

The basic concept is the same—the switches (*transistors*) are arranged so that they can be turned on or off by signals carrying either LV or HV.

The transistor switches used in modern digital circuits are called "Metal Oxide Semiconductor Field Effect Transistors", or *MOSFETs*(or just *FETs*).

FETs are three terminal devices that can conduct current between two terminals (the source and the drain) when a third terminal (the gate) is driven by an appropriate logic signal.

nFET is turned ON by high gate voltage.

pFET is turned ON by low gate voltage.

Gate	nFET	pFET
HV	ON	OFF
LV	OFF	ON

Equivalent circuits:

MOS FET:

gate source

MOS FET is ON:

MOS FET is OFF:

NAND with nFETs

Analysis of nFET Based NAND Gate

А	В	MF1	MF2	I	Υ
LV	LV	off	off	0	HV
LV	HV	off	on	0	HV
HV	LV	on	off	0	HV
HV	HV	on	on	V _{dd} /R	LV

If we interpret HV as logic 1, and LV as logic 0, then we have the truth table:

А	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

This is inverted AND gate, or NAND gate!

NAND with pMOS

NAND with Complimentary MOS (CMOS)

Both nFET and pFET transistors are used to implement the gate.

Advantage: no current from V_{dd} to GND in either state, thus extremely low power dissipation.

А	В	MF1	MF2	MF3	MF4	1	Υ
LV	LV	off	off	on	on	0	HV
LV	HV	off	on	on	off	0	HV
HV	LV	on	off	off	on	0	HV
HV	HV	on	on	off	off	0	LV

Because there is no current in either state, the CMOS gates have extremely low power dissipation.

Dissipation is due to following effects:

- When the output switches from one logic level to another, there is a short period of time when all output transistors are ON, and the current flows from V_{dd} to GND.
- Gates have some parasitic capacitance, and during the switching of output from one voltage level to another, the output has to charge and discharge gates that are connected to the output.

As the working frequency of CMOS gates increase, so will the power dissipation.

Mechanical:

Switches implemented by nFETs:

А	В	MF1	MF2	I	Υ
LV	LV	off	off	0	HV
LV	HV	off	on	0	LV
HV	LV	on	off	0	LV
HV	HV	on	on	V _{dd} /R	LV

If we interpret HV as logic 1, and LV as logic 0, then we have the truth table:

А	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

This is inverted OR gate, or NOR gate.

Truth table of a NOR gate:

А	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

NOR gate is OR followed by NOT gate:

Graphical symbol of NOR gate:

Both *nFET* and *pFET* transistors are used to implement the gate.

Advantage: no current from V_{dd} to GND in either state, thus extremely low power dissipation.

Α	В	MF1	MF2	MF3	MF4	I	Υ
LV	LV	off	off	on	on	0	HV
LV	HV	off	on	on	off	0	LV
HV	LV	on	off	off	on	0	LV
HV	HV	on	on	off	off	0	LV

CMOS inverter:

Α	MF1	MF2	I _{dd}	Υ
LV	off	on	0	HV
HV	on	off	0	LV

Α	Υ		
0	1		
1	0		

CMOS XOR?

How a MOSFET works

- Yea, I'm not going to pretend I'm better than this guy...
- https://www.youtube.com/watch?v=IcrBqCFLHIY

Closer to physical reality:

- https://www.youtube.com/watch?v=tz62t-q KEc
- @0.45
- Add FinFETs
- https://www.youtube.com/watch?v=TXxw1kdF5 Q