4721 Core Mathematics 1

- 1 (i) n = -2B1
 1
 (ii) n = 3B1
 1
 - (iii) M1 $\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or

A1 2

 $4 \times \sqrt{4}$ with brackets correct if used

 $\frac{3}{2}$

2 (i) M1 $y = (x \pm 2)^2$

 $y = (x - 2)^2$ A1

(ii) $y = -(x^3 - 4)$ B1 oe

- 3 (i) $\sqrt{2 \times 100} = 10\sqrt{2}$ B1
 - (ii) $\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$ B1
- (iii) M1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$ $10\sqrt{2} 3\sqrt{2} = 7\sqrt{2}$ A1
 2
- 4 $y = x^{\overline{2}}$ $2y^2 - 7y + 3 = 0$ M1* Use a substitution to obtain a quadratic or

factorise into 2 brackets each containing $x^{\frac{1}{2}}$ (2y-1)(y-3) = 0 **M1dep**Correct method to solve a quadratic

 $y = \frac{1}{2}, y = 3$ MIdepCorrect method to solve a quadratic

A1

M1 Attempt to square to obtain x $x = \frac{1}{4}, x = 9$ A1

SR If first M1 not gained and 3 and ½ given as final answers, award B1

5

M1 Attempt to differentiate

A1
$$kx^{-}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$$

$$=4\left(\frac{1}{\sqrt{9}}\right)+1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{7}{3}$$

A1

M1 Correct substitution of x = 9 into their

A1
$$\frac{7}{3}$$
 only

5

6 (i)
$$(x-5)(x+2)(x+5)$$

$$=(x^2-3x-10)(x+5)$$

$$= x^3 + 2x^2 - 25x - 50$$

B1

 $x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$

M1 Attempt to multiply a quadratic by a linear factor

A1

3

(ii)

B1 +ve cubic with 3 roots (not 3 line segments)

B1√ (0, -50) labelled or indicated on y-axis

B1 (-5, 0), (-2, 0), (5, 0) labelled or indicated on x-axis and no other x- intercepts

3

7 (i)
$$8 < 3x - 2 < 11$$

$$\frac{10}{3} < x < \frac{13}{3}$$

M1

2 equations or inequalities both dealing with all 3 terms resulting in a < kx < b

A1 10 and 13 seen

A1

(ii)
$$x(x+2) \ge 0$$

$$x \ge 0, x \le -2$$

3

Correct method to solve a quadratic **M1**

A1

Correct method to solve inequality **M1 A1**

4

8	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$
---	-----	--

B1 One term correct

В1 Fully correct

(ii) $3x^2 - 2kx + 1 = 0$ when x = 1

their $\frac{dy}{dx} = 0$ soi M1

$$3-2k+1=0$$

x = 1 substituted into their $\frac{dy}{dx} = 0$ **M**1

<u>A1</u>√ 3

2

2

(iii) $\frac{d^2y}{dx^2} = 6x - 4$

Substitutes x = 1 into their $\frac{d^2y}{dx^2}$ and looks at sign M1

When
$$x = 1$$
, $\frac{d^2 y}{dx^2} > 0$: min pt

A1 States minimum CWO

(iv)
$$3x^2 - 4x + 1 = 0$$

their $\frac{dy}{dx} = 0$ M1

$$(3x-1)(x-1) = 0$$

$$r = \frac{1}{r}$$
 $r = 1$

correct method to solve 3-term quadratic **M**1

$$x = \frac{1}{3}, x = 1$$

A1 WWW at any stage

3

(i)		B 1	$(x-2)^2$ and $(y-1)^2$ seen
	$(x-2)^2 + (y-1)^2 = 100$	B 1	$(x \pm 2)^2 + (y \pm 1)^2 = 100$
	$x^2 + y^2 - 4x - 2y - 95 = 0$	B1	correct form
(ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
	$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in k (or y) obtained
	$k = 1 + \sqrt{91}$	A1 3	cao
(iii)	distance from (-3, 9) to (2, 1)		
	$=\sqrt{(2-3)^2+(1-9)^2}$	M1	Uses $(x_2 - x_1)^2 + (y_2 - y_1)^2$
	$=\sqrt{25+64}$	A1	
	$= \sqrt{89}$	D.1	4 . 1
	$\sqrt{89}$ < 10 so point is inside	B1	compares their distance with 10 and makes consistent conclusion
		3	
(iv)	gradient of radius = $\frac{9-1}{8-2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{4}{3}$	A1	oe
	gradient of tangent $=-\frac{3}{4}$	В1√	oe
	$y - 9 = -\frac{3}{4}(x - 8)$	M1	correct equation of straight line through (8, 9
	$y - 9 = -\frac{3}{4}x + 6$		any non-zero gradient
	$y = -\frac{3}{4}x + 15$	A1 5	oe 3 term equation

10 (i)	$2(x^2-3x)+11$	B 1	p = 2
	$=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	B 1	$q = -\frac{3}{2}$
	$=2\left(x-\frac{3}{2}\right)^2+\frac{13}{2}$	M1	$r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
		A1	$r = \frac{13}{2}$
		4	
(ii)	$\left(\frac{3}{2},\frac{13}{2}\right)$	B1√	
		B1√ 2	
(iii)		M1	uses $b^2 - 4ac$
	= -52	A1 2	
(iv)	0 real roots	B1 1	cao
(v)	$2x^2 - 6x + 11 = 14 - 7x$	M1*	substitute for x/y or attempt to get an equation in 1 variable only
	$2x^2 + x - 3 = 0$	A1	obtain correct 3 term quadratic
	(2x+3)(x-1) = 0	M1d	ep correct method to solve 3 term quadratic
	$x = -\frac{3}{2}, x = 1$	A1	
	$y = \frac{49}{2}, y = 7$	A1	
		5	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1