1 Abstract to Introduction

Dissipative quantum phase transition, always occurs Josephson Junction system, when $R_Q = h/4e^2$.

Figure 1: Figure 1-(a) in given paper, Result of functional renormalization group $({\rm FRG})$ and numerical renormalization group $({\rm NRG})$

 $E_C=(2e)^2/2C_J$: Charging energy with the capacitance C_J E_J : Josephson coupling

 $\alpha=R_Q=h/4e^2$: different dissipation strengths α . Transition occurs $\alpha<1$. If $R_Q/R(\propto\alpha)$ is decreased, results indicate the **reentrant transition**. **Dangerously irrelevant**: $\nu\propto 1/E_C$, Capacitance term, it can turn into

$E_J/E_C << 1$	$E_J/E_C >> 1$
deep charge regime	transmon regime
?	Strong corrugation regime

relevant at low-energy scales due to nonperturbative renormalization.

 \rightarrow The reason that previous existed arguments missed.

2 Discussion

 ν (Dangerously irrelevant term) : Safely neglected can one establish the duality between the weak and strong corrugation regimes.

 $E_J/E_C\gg 1$: RSJ Hamiltonian tight-binding model of phase localized states $(\phi=2\pi\mathbb{Z})$

 \rightarrow Exhibits the transition at $\alpha_c = 1$,

 $E_J/E_C \ll 1$: both tight-binding and duality argument are expected to be valid. \rightarrow results from given paper are consistent with the previous results predicting the transition at $\alpha_c = 1$ for any E_J/E_C .

Experimentally test for predictions: lowest transmission-line frequency $\omega_{min} = \pi v/L$.

Pre-requirements: renormalize to a sufficiently low-energy scale to attain small $\langle \cos(\phi) \rangle$ close to a fixed-point value;

Parameters: $\alpha = 0.3$, $E_J/E_C = 0.04$, $\hbar\omega_{min}, k_BT \lesssim 0.01E_C$, to attain $\langle\cos(\phi)\rangle \lesssim 10^{-2}$.

These setup realized through the galvanic coupling of JJ to a high-impedance long transmission line.