-Indu/Over complete > # latente

Autoencoders II

Advanced Institute for Artificial Intelligence - Al2

https://advancedinstitute.ai

Recapitulando: O problema com o autoencoder padrão

- ☐ Além de algumas aplicações eficientes como denoising autoencoders eles são bastante limitados;
- O espaço latente para o qual convertem suas entradas e onde estão seus vetores de enconding pode não ser contínuo ou permitir fácil interpolação.
- □ Por exemplo, treinar um autoencoder no conjunto de dados MNIST e visualizar as codificações de um espaço latente 2D revela a formação de clusters distintos:

Recapitulando: O problema com o autoencoder padrão

- ☐ Ao construir um modelo generativo, não queremos replicar os dados de entrada:
 - Amostrar aleatoriamente do espaço latente, ou
 - Gerar variações em uma imagem de entrada, a partir de um espaço latente contínuo;
- □ Se o espaço tiver descontinuidades e você amostrar/gerar uma variação a partir daí, o decoder simplesmente gerará uma saída (rreal;
 - O decoder não tem ideia de como lidar com aquela região do espaço latente;
 - <u>Durante o treinamento</u>, nunca viu vetores codificados vindos daquela região do espaço latente;

Definicões

- □ Os Variational Autoencoders (VAEs)/têm uma propriedade fundamentalmente única que os separa dos autoencoders comuns:
 - Seus espaços latentes são, por desenvolvimento, contínuos;
 - A continuidade do espaço latente permite fácil amostragem aleatória e interpolação.
- Seu encoder não produz um vetor de codificação de tamanho n:
- Em vez disso, ele gera dois vetores de tamanho n:
 - um vetor de médias, µ, e
 outro vetor de desvios padrão, σ.

 - A média e o desvio padrão da jesima variável aleatória, X_i da qual amostramos, para obter a codificação amostrada que passamos para o decodificador;

Figure: Variational Autoencoder com os vetores μ e σ .

Fonte: Variational Autoencoder architecture by Irhum

Example

No cenário onde temos um sinal de entrada com 500 características e pretendemos reduzir esse sinal para apenas 30, poderíamos pensar em construir um VAE da seguinte forma:

Figure: VAE que reduz as 500 dimensões de entrada para 30 dimensões no espaço latente.

Figure: Como o passo forward funciona.

- ☐ Geração estocástica de vetores de codificação.
 - Para a mesma entrada, mantendo a média e o desvio padrão iguais, a codificação real irá variar em cada passagem devido à amostragem.
- O vetor da média controla onde a codificação de uma entrada deve ser centralizada;
- O desvio padrão controla quanto da média a codificação pode variar (a área)

Figure: μ e σ para controlar a amostragem.

- □ Não apenas um único ponto no espaço latente se refere a uma amostra dessa classe.
- ☐ Todos os pontos próximos se referem ao mesmo em um raio-sigma;
- O objetivo aqui é tentar criar um espaço latente mais homogêneo, eliminando a descontinuidade;
 - O modelo está agora exposto a um certo grau de variação local variando o enconding de uma amostra;
 - Queremos sobreposição entre amostras que também não sejam muito semelhantes;
 - Interpolação entre classes;

- \square Não há limites para os valores que os vetores μ e σ podem assumir:
 - Encoder pode aprender a gerar μ muito diferentes para diferentes classes, agrupando-as e minimizando σ
 - Pode chegar a um ponto que parece um único ponto.
- □ Desejável: Codificações que sejam o mais próximas possível e ainda assim distintas, permitindo uma interpolação suave e possibilitando a construção de novas amostras.

Definições

O que queremos e o que podemos obter:

Definições - A divergência KL

- ☐ Mede o quanto eles divergem entre si;
- \square Para VAEs, o custo pela KL é equivalente à soma de todas as divergências KL entre a componente $X_i \sim \mathcal{N}(u_i)\sigma_i^2$ e a normal padrão.
 - Essa medida é minimizada quando $\mu_i=0$ e $\sigma_i=0$
- Quando a divergência é calculada entre distribuições univariadas, ela pode ser simplificada para [1]:

$$\sum_{i=1}^{n} \sigma_i^2 + \mu_i^2 - \log(\sigma_i^2) - 1$$

[1] Deriving the KL divergence loss for VAEs

Definições - A divergência KL

- Essa perda força o encoder a distribuir todas as codificações uniformemente ao redor do centro do espaço latente;
- Usar puramente o resultado da loss KL resulta em um espaço latente com codificações densamente colocadas aleatoriamente, perto do centro do espaço latente:
- O decoder acha impossível decodificar qualquer coisa significativa deste espaço;

Figure: Espaço latente produzido por um VAE treinado apenas com a loss KL.

Agrupando as informações...

- Utilizar a divergência KL como mecanismo de penalização;
- □ Otimizar a loss composta (por exemplo reconstrução, ou entropia-cruzada) e a divergência KL;
 - Geração de um espaço latente que mantém a semelhança das codificações próximas;
 - Globalmente, é densamente compactado perto da origem do espaço latente;
 - Equilíbrio alcançado pela natureza formadora de agrupamentos da loss de reconstrução e pela natureza de empacotamento denso da loss KL:

Figure: Empregando a loss combinada.

$$\rightarrow H = - Z p(x) log P(x)$$

$$\rightarrow KL(q||p) = -\Sigma g \log q$$

a dos VAE:
$$P(z|x) = P(x|z) P(z) = P(x,z)$$
 (1)

 $P(z|x) = P(x|z) P(z) = P(x,z)$
 $P(x) = P$

- •
- •
- •
- .
- •

- •

- •
- •
- •
- .

- •

- •
- •
- •
- .

- •

- •
- •
- •
- .

- •

- •
- •
- •
- •
- .

- .