1. Solution

The sample size, *n*, is 45. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 45 \rceil$	12	16.6
Q2	$\lceil 0.5 \times 45 \rceil$	23	18.08
Q3	$\lceil 0.75 \times 45 \rceil$	34	19.16

We determine the IQR.

$$IQR = Q3 - Q1$$

= 19.16 - 16.6
= 2.56

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $16.6 - 1.5 \times 2.56$
= 12.76
upper boundary = Q3 + $1.5 \times IQR$
= $19.16 + 1.5 \times 2.56$
= 23

We determine the outliers.

outliers =
$$\{12.31\}$$

We identify the ends of the whiskers: 14.05 and 19.95. We plot the boxplot.

2. Solution

The sample size, *n*, is 42. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Χ
Q1	$\lceil 0.25 imes 42 ceil$	11	40.17
Q2	$\lceil 0.5 \times 42 \rceil$	21	40.4
Q3	$\lceil 0.75 imes 42 ceil$	32	40.95

We determine the IQR.

$$IQR = Q3 - Q1$$

= $40.95 - 40.17$
= 0.78

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $40.17 - 1.5 \times 0.78$
= 39
upper boundary = Q3 + $1.5 \times IQR$
= $40.95 + 1.5 \times 0.78$
= 42.12

We determine the outliers.

outliers =
$$\{42.15, 42.46\}$$

We identify the ends of the whiskers: 40 and 41.84. We plot the boxplot.

