Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Теория вероятностей ИДЗ 19.1, 19.2 Доп. Задачи Вариант 24

Выполнил студент:

Маликов Глеб Игоревич

Группа № Р3224

Преподаватель: Кудашев Вячеслав Николаевич

г. Санкт-Петербург

Задание 19.1:

В результате эксперимента получены данные, записанные в виде статистического ряда Требуется:

- записать значения результатов эксперимента в виде вариационного ряда
- найти размах варьирования и разбить его на 9 интервалов;
- построить полигон частот, гисторамму относительных частот и график эмпирической функции распределения;
- найти числовые характеристики выборки $\bar{\mathbf{x}}$, $\mathbf{D}_{\mathbf{B}}$
- приняв в качестве нулевой гипотезу H_0 :генеральная совокупность, из которой извлечена выборка, имеет нормальное распределение, проверить ее, пользуясь критерием Пирсона при уровне значимости $\alpha = 0.025$
- найти доверительные интервалы для математического ожидания и среднего квадратичного отклонения при надежности $\gamma = 0.9$.

76	28	151	91	60	204	177	102	128	217
120	66	207	126	124	152	27	221	131	51
241	77	250	134	123	147	184	195	47	160
159	74	169	178	79	129	250	223	182	96
135	199	56	25	82	116	44	229	145	203
88	209	146	224	239	103	201	245	130	163
71	165	176	194	78	154	99	78	127	69
171	173	31	181	117	84	73	161	240	149
247	107	140	53	205	155	29	132	185	179
180	128	42	114	93	191	174	210	133	226

А. Вариационный ряд

Расположим значения результатов эксперимента в порядке возрастания для получения вариационного ряда:

25	27	28	29	31	42	44	47	51	53
56	60	66	69	71	73	74	76	77	78
78	79	82	84	88	91	93	96	99	102
103	107	114	116	117	120	123	124	126	127
128	128	129	130	131	132	133	134	135	140
145	146	147	149	151	152	154	155	159	160
161	163	165	169	171	173	174	176	177	178
179	180	181	182	184	185	191	194	195	199
201	203	204	205	207	209	210	217	221	223
224	226	229	239	240	241	245	247	250	250

Б. Размах варьирования

Размах $\omega = X_{max} - X_{min} = 250 - 25 = 225$

Частичный интервал $h = \frac{\omega}{\iota} = \frac{225}{9} = 25$

Интервал	Границы	Середина	Частота	Относительная частота	Плотность	
1	25	38	8	0,08	0,0032	
1	50	30	o	0,08	0,0032	
2	50	63	9	0,09	0.0026	
2	75	0.5	9	0,09	0,0036	
3	75	88	10	0.12	0.0049	
3	100	. 00	12	0,12	0,0048	
4	100	112	9	0.00	0,0036	
4	125	113	9	0,09		
5	125	138	16	0,16	0,0064	
3	150	136	10	0,10	0,0004	
6	150	163	13	0,13	0.0052	
O	175	103	13	0,13	0,0052	
7	175	188	13	0,13	0,0052	
/	200	100	13	0,13	0,0032	
8	200	213	11	0,11	0,0044	
o	225	213	11	0,11	0,00 11	
9	225	238	9	0,09	0,0036	
J	250	230	7	0,09	0,0030	
Σ			100			

В. ГрафикиДля построения полигона частот возьмем из предыдущей таблицы значения середин отрезков и частот соответствующих интервалов

Середина интервала	Частота интервала
38	6,00
63	13,00
88	11,00
113	11,00
138	15,00
163	14,00
188	8,00
213	13,00
238	9,00

Для построения гистограммы относительных частот возьмем из таблицы в пункте 2 значения середин отрезков и плотности

Середина интервала	Плотность $\frac{W_i}{h}$
38	0,0032
63	0,014
88	0,0036
113	0,012
138	0,0048
163	0,016
188	0,0036
213	0,014
238	0,0064

Для графика эмпирической функции распределения возьмем из таблицы значения границ интервалов и посчитаем значения эмпирической функции распределения

X	$F^*(x) = n_i / n$
25	0
50	0,08
75	0,17
100	0,29
125	0,38
150	0,54
175	0,67
200	0,8
225	0,91
250	1

Г. Числовые характеристики выборки

Интервал	Границы	Середина	Частота	$n_i x_i'$	$(x_i')^2$	$n_i(x_i')^2$	
1	25	38	8	300	1406,25	11250	
	50				,		
2	50	63	9	562,5	3906,25	35156,25	
_	75			0 0 2,0	2300,20	00100,20	
3	75	88	12	1050	7656,25	91875	
3	100		12	1000	7030,23	910/3	
4	100	113	9	1012,5	12656,25	113906,25	
т	125	113		1012,3	12030,23	113700,23	
5	125	138	16	2200	18906,25	302500	
3	150	136	10	2200	10,000,23		
6	150	163	13	2112,5	26406,25	343281,25	
U	175	103	13	2112,3	20400,23	373201,23	
7	175	188	13	2437,5	35156,25	457031,25	
,	200	100	13	2437,3	33130,23	45/051,25	
8	200	213	11	2337,5	45156,25	496718,75	
o	225	213	11	4331,3	73130,23	790/10,/3	
9	225	238	9	2137,5	56406,25	507656,25	
7	250	230	7	2137,3	30400,23	307030,23	
Σ			100	14150		2359375	

Выборочное среднее $\bar{\mathbf{x}} = \frac{1}{\mathbf{n}} \sum_{i=1}^k x_i' n_i = \frac{14150}{100} = 141,5$

Выборочная дисперсия $D_B = \frac{1}{n} \sum_{i=1}^k (x'_i - \overline{x})^2 n_i = 3571,5$

$$\sigma_{\rm B} = \sqrt{D_{\rm B}} \approx 59,762$$

Исправленная дисперсия $\widetilde{D_B} = \frac{n}{n-1} D_B \approx 3607,\!576$

$$\widetilde{\sigma_{\rm B}} = \sqrt{\widetilde{\rm D_{\rm B}}} \approx 60,063$$

Д. Проверка гипотезы критерием Пирсона

Критерий Пирсона предполагает сравнение эмпирических и теоретических частот.

Найдем теоретические частоты.

i	Γ раницы интервалов $x_i - \overline{x} \qquad x_{i+1} - \overline{x}$		$\mathbf{x}_{:+4} = \overline{\mathbf{x}}$	Границы интервало		
•	Xi	x_{i+1}	Al A	Al+1 A	z _i	z_{i+1}
1	25	50	-	-92	-	-1,53
2	50	75	-92	-67	-1,53	-1,11
3	75	100	-67	-42	-1,11	-0,69
4	100	125	-42	-17	-0,69	-0,28
5	125	150	-17	9	-0,28	0,14
6	150	175	9	34	0,14	0,56
7	175	200	34	59	0,56	0,98
8	200	250	59	84	0,98	1,40
9	75	100	84	-	1,40	-

Найдем теоретические вероятности P_i и теоретические частоты $n'_i = nP_i = 100P_i$

i	Границы и	интервалов	$\Phi(z_i)$	$\Phi(z_{i+1})$	P_{i}	n' _i	
	z_i	z_{i+1}	1 (21)	1 (21+1)	-1	1	
1	-	-1,53	-0,5000	-0,4371	0,0629	6,2876	
2	-1,53	-1,11	-0,4371	-0,3671	0,0700	7,0033	
3	-1,11	-0,69	-0,3671	-0,2563	0,1108	11,0801	
4	-0,69	-0,28	-0,2563	-0,1088	0,1475	14,7528	
5	-0,28	0,14	-0,1088	0,0566	0,1653	16,5314	
6	0,14	0,56	0,0566	0,2125	0,1559	15,5899	
7	0,56	0,98	0,2125	0,3362	0,1237	12,3731	
8	0,98	1,40	0,3362	0,4188	0,0826	8,2644	
9	1,40	-	0,4188	0,5000	0,0812	8,1175	
Σ					1	100	

Вычислим наблюдаемое значение критерия Пирсона

i	n _i	n'i	$n_i - n'_i$	$(n_i - n'_i)^2$	$\frac{(n_i - n'_i)^2}{n'_i}$	n _i ²	$\frac{{n_i}^2}{{n'_i}}$
1	8	6,29	1,71	2,9324	0,4664	64	10,1788
2	9	7,00	2,00	3,9869	0,5693	81	11,5660
3	12	11,08	0,92	0,8463	0,0764	144	12,9963
4	9	14,75	-5,75	33,0951	2,2433	81	5,4905
5	16	16,53	-0,53	0,2823	0,0171	256	15,4857
6	13	15,59	-2,59	6,7076	0,4302	169	10,8404
7	13	12,37	0,63	0,3930	0,0318	169	13,6587
8	11	8,26	2,74	7,4837	0,9055	121	14,6412
9	9	8,12	0,88	0,7787	0,0959	81	9,9784
Σ	100	100			4,8359		104,8359

Контроль: 104,8359 - 100 = 4,8359

Так как $\chi^2_{\text{набл}} < \chi^2_{\text{кр}}$, то гипотеза H_0 о нормальном распределении генеральной совокупности принимается

Е. Доверительные отклонения

Найти доверительные интервалы для математического ожидания и среднего квадратичного отклонения при надежности $\gamma = 0.95$.

$$\bar{x} = 141.5$$
, $\widetilde{\sigma_B} = 60.0631$, $n = 100$
 $\gamma = 0.95 \rightarrow t_{\gamma} = 1.984 \rightarrow \delta = 11.91651867$

Тогда доверительным интервалом будет

Доверительный интервал, покрывающий среднее квадратичное отклонение

Задание 19.2:

Дана таблица распределения 100 заводов по производственным средствам X (тыс. ден. ед.) и по суточной выработке Y (t). Известно, что между X и Y существует линейная корреляционная зависимость. Требуется:

- а) найти уравнение прямой регрессии у на х;
- b) построить уравнение эмпирической линии регрессии и случайные точки выборки (X,Y)

X/Y	2400	2440	2480	2520	2560	2600	2640	2680	m _x
300	5	4	2	_	_	_	_	_	11
305	_	1	3	3	_	_	_	_	7
310	_	_	7	10	14	_	_	_	31
315	_	_	_	9	6	4	_	_	19
320	_	_	_	_	_	8	5	7	20
325	_	_	_	_	_	_	6	6	12
m _y	5	5	12	22	20	12	11	13	100

Расчетные таблицы

m_{x_i}	$m_{x_i}x_i$	$\sum_{j=1}^k m_{y_i} y_i$	$x_i^2 m_{x_i}$	$x_i \sum_{j=1}^k m_{ij} y_j$
11	3300	26720	990000	8016000
7	2135	17440	651175	5319200
31	9610	78400	2979100	24304000
19	5985	48440	1885275	15258600
20	6400	52760	2048000	16883200
12	3900	31920	1267500	10374000
100	31330	255680	9821050	80155000

m _{yj}	m _{yj} y _j	$\sum_{i=1}^{m} m_{ij} x_i$	y _j ²m _{ij}	$y_j \sum_{i=1}^m m_{ij} x_i$
5	12000	1500	28800000	3600000
5	12200	1505	29768000	3672200
12	29760	3685	73804800	9138800
22	55440	6850	139708800	17262000
20	51200	6230	131072000	15948800
12	31200	3820	81120000	9932000
11	29040	3550	76665600	9372000
13	34840	4190	93371200	11229200
100	255680	31330	654310400	80155000

Вычисления

Найдем выборочные средние \bar{x} и \bar{y} , $i=1...6; \ j=1...8$

$$\bar{x} = \frac{\sum m_{x_i} x_i}{n} = \frac{31330}{100} = 313,3$$

$$\bar{y} = \frac{\sum m_{y_j} y_j}{n} = \frac{255680}{100} = 2556,8$$

Также найдем выборочные дисперсии ${\rm S_x}^2$ и ${\rm S_y}^2$

$$S_x^2 = \frac{1}{n-1} \left(\sum_{i=1}^n m_{x_i} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n m_{x_i} x_i \right)^2 \right) =$$

$$= \frac{1}{99} \left(9821050 - \frac{1}{100} 31330^2 \right) = 54,15$$

$$S_y^2 = \frac{1}{n-1} \left(\sum_{i=1}^n m_{y_i} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^n m_{y_i} y_i \right)^2 \right) =$$

$$= \frac{1}{99} \left(654310400 - \frac{1}{100} 255680^2 \right) = 5937,13$$

Вычислим корреляционный момент

$$S_{xy} = \frac{1}{n-1} \left(\sum \sum m_{ij} x_i y_j - \frac{1}{n} \left(\sum m_{x_i} x_i \right) \left(\sum m_{y_j} y_j \right) \right) = 509,66$$

Эмпирическая линия регрессии

Уравнение имеет вид
$$y=\bar{y}+r_{xy}\frac{s_y}{s_x}(x-\bar{x}),\ r_{xy}=\frac{s_{xy}}{s_xs_y}$$

$$y=2556.8+\frac{509.66}{\sqrt{5937.13}\sqrt{54.15}}\frac{\sqrt{5937.13}}{\sqrt{54.15}}(x-313.3)=$$

$$=2556.8+\frac{509.66}{54.15}(x-313.3)=$$

$$=-\frac{10612879}{27075}+\frac{50966}{5415}x=$$

$$y=9.412x-391.98076$$

Построим линию регрессии и случайные точки $(x_i; y_j)$

Дополнительные задачи:

Задача 1

Для определения среднего процента сырого белка в зернах пшеницы отобрано 626 зерен, анализ которых показал, что выборочное среднее равно 16,8, а выборочная дисперсия 4. Чему равна вероятность того, что средний процент сырого белка генеральной совокупности, распределенной нормально, отличается от 16,8 по абсолютной величине не более чем на 0.2%?

$$n = 626; s^{2} = 4;$$

$$\Delta = t \frac{s}{\sqrt{n}} \Leftrightarrow t = \Delta \frac{\sqrt{n}}{s}$$

$$t = 0.2 \frac{\sqrt{626}}{\sqrt{4}} \approx 2.502$$

$$2\Phi(t) = 0.4938 \cdot 2 = 0.9876$$

Задача 2

По результатам десяти измерений определено среднее квадратичное отклонение s=3. Оценить надежность того, что истинное значение σ_x генеральной совокупности находится в интервале (2;4).

Так как размер выборки мал, то можно использовать распределение Пирсона. Число степеней своболы

$$k = 10 - 1 = 9$$

$$\sigma_{x} \in (\sigma_{\text{HUMH}}, \sigma_{\text{BeDX}}) \Rightarrow \sigma_{x} \in (2,4)$$

Находим хи-квадрат для каждой из границ:

$$\chi^{2} = \frac{ks^{2}}{\sigma} \Rightarrow$$

$$\chi^{2}_{H_{\text{ИЖH}}} = \frac{9 \cdot 3^{2}}{2^{2}} = \frac{81}{4} = 20,25$$

$$\chi^{2}_{\text{Bepx}} = \frac{9 \cdot 3^{2}}{4^{2}} = \frac{81}{16} = 5,0625$$

$$\Rightarrow a_{\text{нижн}} = 0.18; a_{\text{верх}} = 0.98 \Rightarrow 0.98 - 0.18 = 0.8$$

Задача 3

С целью исследования закона распределения ошибки измерения дальности с помощью радиодальномера произведено 400 измерений дальности. Резтльтаты измерений представлены в виде статистической совокупности:

<i>l_i</i> , м	m_i	l_i , м	m_i	l_i , M	m_i
950–960 960–970 970–980 980–990	5 35 60 72	990-1000 1000-1010 1010-1020	80 60 55	1020-1030 1030-1040 1040-1050	20 10 3

Определить выборочное среднее и выборочное среднее квадратичное отклонение. Построить гистограмму статистической совокупности.

$$\bar{x} = \frac{\sum m_{x_i} x_i}{n} = 994,2$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1} \approx 18,68$$

Задача 4

Зависимость признака Y от признака X характеризуется следующими экспериментальными данными:

x_i	-4	-3	-2	-1	0	1	2	3	4
y_i	-5,1	-3,5	-2	-0,15	0,30	1,2	2,4	3,8	6

Методом наименьших квадратов найти коэффициенты зависимости. $y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$

i	Xi	Уi	x_i^2	xi ²	Xi ²	Xi ²	Xi ²	XiYi	$x_i^2 y_i$	y _i x _i ^m
1	-4	-5,1	16	-64	256	-1024	4096	20,4	-81,6	326,4
2	-3	-3,5	9	-27	81	-243	729	10,5	-31,5	94,5
3	-2	-2	4	-8	16	-32	64	4	-8	16
4	-1	-0,15	1	-1	1	-1	1	0,15	-0,15	0,15
5	0	0,3	0	0	0	0	0	0	0	0
6	1	1,2	1	1	1	1	1	1,2	1,2	1,2
7	2	2,4	4	8	16	32	64	4,8	9,6	19,2
8	3	3,8	9	27	81	243	729	11,4	34,2	102,6
9	4	6	16	64	256	1024	4096	24	96	384
\sum_{i}	0	2,95	60	0	708	0	9780	76,45	19,75	944,05

Составляется система уравнений:

$$\begin{cases} 9\alpha_0 + 0\alpha_1 + 60\alpha_2 + 0\alpha_3 = 2,95 \\ 0\alpha_0 + 60\alpha_1 + 0\alpha_2 + 708\alpha_3 = 76,45 \\ 60\alpha_0 + 0\alpha_1 + 708\alpha_2 + 0\alpha_3 = 19,75 \\ 0\alpha_0 + 708\alpha_1 + 708\alpha_2 + 9780\alpha_3 = 944,05 \end{cases}$$

$$\alpha = \begin{pmatrix} \frac{251}{770} \\ \frac{3671}{3960} \\ \frac{1}{3696} \\ \frac{233}{7920} \end{pmatrix} \Rightarrow y = 0.32597 + 0.927x + 0.0002x^2 + 0.0294x^3$$

Задача 5

Известно, что СВ Т (время работы элемента) имеет показательное распределение $f(t) = \lambda e^{-\lambda t}$, $t \ge 0$. Эмпирическое распределение среднего времени работы n = 200 элементов имеет вид:

t_i	2,5	7,5	12,5	17,5	22,5	27,5
m_i	133	45	15	4	2	1

где t_i – время работы i-го элемента (в часах); m_i – число элементов, проработавших t_i ч. Методом моментов найти точечную оценку неизвестного параметра показательного распределения.

$$\lambda = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{\bar{x}} = \frac{1}{5} = 0.2$$

Задача 6 Записать выборочное уравнение прямой линии регрессии у на х по данным, приведенным в таблице:

YX	20	25	30	35	40	m_{y_j}
16	4	6	_	_	_	10
26	_	8	10	_	_	18
36	_	_	32	3	9	44
46	_	_	4	12	6	22
56	_	_	_	1	5	6
m_{x_i}	4	14	46	16	20	n = 100

m_{x_i}	$m_{x_i}x_i$	$\sum_{j=1}^k m_{y_i} y_i$	${x_i}^2 m_{x_i}$	$x_i \sum_{j=1}^k m_{ij} y_j$
4	80	64	1600	1280
14	350	304	8750	7600
46	1380	1596	41400	47880
16	560	716	19600	25060
20	800	880	32000	35200
100	3170	3560	103350	117020

m_{y_j}	m _{yj} y _j	$\sum_{i=1}^{m} m_{ij} x_i$	y _j ²m _{ij}	$y_j \sum_{i=1}^m m_{ij} x_i$
10	160	230	2560	3680
18	468	500	12168	13000
44	1584	1425	57024	51300
22	1012	780	46552	35880
6	336	235	18816	13160
100	3560	3170	137120	117020

Вычисления

$$\bar{\mathbf{x}} = \frac{\sum \mathbf{m}_{\mathbf{x_i}} \mathbf{x_i}}{\mathbf{n}} = \frac{3170}{100} = 31,7$$

$$\bar{\mathbf{y}} = \frac{\sum \mathbf{m}_{\mathbf{y_j}} \mathbf{y_j}}{\mathbf{n}} = \frac{3560}{100} = 35,6$$

$$S_{\mathbf{x}}^2 = \frac{1}{\mathbf{n} - 1} \left(\sum \mathbf{m}_{\mathbf{x_i}} \mathbf{x_i}^2 - \frac{1}{\mathbf{n}} \left(\sum \mathbf{m}_{\mathbf{x_i}} \mathbf{x_i} \right)^2 \right) =$$

$$= \frac{1}{99} \left(103350 - \frac{1}{100} 3170^2 \right) = 28,899$$

$$S_{\mathbf{y}}^2 = \frac{1}{\mathbf{n} - 1} \left(\sum \mathbf{m}_{\mathbf{y_j}} \mathbf{y_j}^2 - \frac{1}{\mathbf{n}} \left(\sum \mathbf{m}_{\mathbf{y_j}} \mathbf{y_j} \right)^2 \right) =$$

$$= \frac{1}{99} \left(137120 - \frac{1}{100} 3560^2 \right) = 104,889$$

$$S_{\mathbf{xy}} = \frac{1}{\mathbf{n} - 1} \left(\sum \sum \mathbf{m}_{ij} \mathbf{x_i} \mathbf{y_j} - \frac{1}{\mathbf{n}} \left(\sum \mathbf{m}_{\mathbf{x_i}} \mathbf{x_i} \right) \left(\sum \mathbf{m}_{\mathbf{y_j}} \mathbf{y_j} \right) \right) = 42,1$$
Уравнение имеет вид $\mathbf{y} = \bar{\mathbf{y}} + \mathbf{r}_{\mathbf{xy}} \frac{\mathbf{s_y}}{\mathbf{s_x}} (\mathbf{x} - \bar{\mathbf{x}}), \ \mathbf{r}_{\mathbf{xy}} = \frac{\mathbf{s}_{\mathbf{xy}}}{\mathbf{s_x} \mathbf{s_y}}$

$$\mathbf{y} = 35,6 + \frac{42,1}{\sqrt{28,899} \sqrt{104,889}} \frac{\sqrt{104,889}}{\sqrt{28,899}} (\mathbf{x} - 31,7) =$$

$$= 35,6 + \frac{42,1}{28,899} (\mathbf{x} - 31,7) =$$

$$\mathbf{y} = 1,4568x - 10,5805$$

Задача 7

Измерены отклонения внутренних диаметров шестерен, обработанных на станке, от заданного размера:

Границы интервала, мк	0-5	5-10	10-15	15-20	20-25
Частота m_i	15	75	100	50	10

Проверить при уровне значимости $\alpha = 0.05$ гипотезу о согласии наблюдений с нормальным законом распределения генеральной совокупности.

No	Границы	Середина	$=\frac{u_i}{5}$	Частота	$n_i u_i$	$n_i u_i^2$	$n_i(u_i+1)^2$	
1	0	2,5	-2	15	-30	60	15	
	5	_,_	_					
2	5	7,5	-1	75	-75	75	0	
	10	, ,,-			, ,	, -	·	
3	10	12,5	0	100	0	0	100	
	15	12,0	v		Ů			
4	15	17,5	1	50	50	50	200	
	20		-				200	
5	20	22,5	2	10	20	40	90	
	25	,	~				70	
Σ				250	-35	225	405	

$$\bar{u} = \frac{\Sigma m_i u_i}{n} = -0.14$$

$$\bar{x} = 11.8$$

$$D(u) = \frac{\Sigma m_i u_i}{n} - (\bar{u})^2 = 0.8804$$

$$\sigma_B^2 = 22.01$$

$$\sigma_B = 4.69148$$

i	Границы интервалов		$x_i - \bar{x}$	$x_{i+1} - \overline{x}$	Границы интервалов	
_	Xi	x _{i+1}	1	331+1 33	z_i	z_{i+1}
1	0	5	-	-6,8	-	-1,45
2	5	10	-6,8	-1,8	-1,45	-0,38
3	10	15	-1,8	3,2	-0,38	0,68
4	15	20	3,2	8,2	0,68	1,75
5	20	25	8,2	-	1,75	-

i	Границы интервалов		$\Phi(z_i)$	$\Phi(z_{i+1})$	P_{i}	n' _i	
	z _i	z_{i+1}	(4)	(=1+1)	-1	1	
1	-	-1,45	-0,5	-0,4265	0,0735	18,375	
2	-1,45	-0,38	-0,4265	-0,148	0,2785	69,625	
3	-0,38	0,68	-0,148	0,2517	0,3997	99,925	
4	0,68	1,75	0,2517	0,4599	0,2082	52,05	
5	1,75	-	0,4599	0,5	0,0401	10,025	
Σ					1	250	

i	n _i	n'i	$n_i - n'_i$	$(n_i - n'_i)^2$	$\frac{(n_i - n'_i)^2}{n'_i}$
1	15	18,375	-3,375	11,390625	0,619897959
2	75	69,625	5,375	28,890625	0,41494614
3	100	99,925	0,075	0,005625	5,62922E-05
4	50	52,05	-2,05	4,2025	0,080739673
5	10	10,025	-0,025	0,000625	6,23441E-05
Σ	250	250			1,115702409

$$x_H^2 = 1,12$$

По таблице критических точек распределения, уровню значимости $\alpha=0.05$ и числу степеней свободы k=5-3=2, находится:

$$\chi^2_{kp}(0,05;2) = 6$$

Так как $\chi_H^2 < \chi_{kp}^2$ то гипотеза о нормальном распределении генеральной совокупности CB x не отвергается.

Задача 8

При сверлении отверстий сверлом определенного диаметра и последовательном измерении их диаметров получена следующая таблица:

l_i , mm	m_i	l_i , mm	m_i	l_i , mm	m_i
40,24-40,26	1	40,32-40,34	15	40,38-40,40	7
40,26-40,28	4	40,34-40,36	16	40,40-40,42	5
40,28-40,30	6	40,36-40,38	12	40,42-40,44	3
40,30-40,32	11				

С помощью критерия Колмогорова проверить следующую гипотезу: выборка извлечена из нормально распределенной генеральной совокупности с математическим ожиданием и средним квадратичным отклонением, равным соответственно выборочному среднему и выборочной оценке среднего квадратичного отклонения.

$$\bar{l} = \frac{\sum_{k=1}^{n} l_k}{n} = 40,34$$

$$\sigma = \sqrt{\frac{\sum (l - \bar{l})^2}{n}} = 0,0574456$$

$$D = \sup |F_i - F_{\text{Hopm}}(x_i)| = 0,108$$

$$P = 0,998 > 0,05$$

Гипотеза верна

Задача 9

Методом моментов найти точечную оценку параметра р вероятности геометрического распределения $P(X=x_i)=(1-p)^{x_i-1}p$, где x_i — число испытаний, проведенных до появления события; р — вероятность появления события в одном испытании.

Геометрические распределения имеют свойство $\mu_n = M x^n$, так можно найти $\mu_1 = M x$ которое равно $\frac{1}{p}$. В свою очередь, $M \bar{x} = \bar{x}$, так $\bar{x} = \frac{1}{p} \Rightarrow p = \frac{1}{\bar{x}}$

Задача 10

Методом моментов найти по выборке $x_1, x_2, ... x_n$ точечные оценки параметров а и b равномерного распределения, плотность которого $f(x) = \frac{1}{(b-a)}$ при $a \le x \le b$ и f(x) = 0 при $x \notin [a;b]$.

Находим математическое ожидание и дисперсию через моменты распределения:

$$\mu_1 = \frac{a+b}{2}$$

$$\mu_2 = \frac{(b-a)^2}{12} = \sigma^2$$

А и В находятся с помощью формулы:

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

Решаются уравнения μ_1 и μ_2

$$b = 2\mu_1 - a$$

$$\mu_2 = \frac{(2\mu_1 - a - a)^2}{12} = \frac{4(\mu_1 - a)^2}{12} = \frac{(\mu_1 - a)^2}{3}$$

Приравнивается к σ^2 :

$$a = \bar{x} - \sqrt{3}\sigma$$

$$b = 2\mu_1 - \bar{x} + \sqrt{3}\sigma$$

$$b = 2\bar{x} - \bar{x} + \sqrt{3}\sigma = \bar{x} + \sqrt{3}\sigma$$

Задача 11

По данным 16 независимых равноточных измерений некоторой физической величины X найдены среднее значение $\bar{x}=42.8$ и исправленное среднее квадратичное отклонение $s_0=8$. С надежностью 0,999 оценить истинное значение измеряемой величины с помощью доверительного интервала.

Доверительный интервал находится как

$$\bar{x} \pm t \frac{a}{2} \frac{s_0}{\sqrt{n}}$$

Число степеней свободы k = 16 - 1 = 15.

Число а находится как a = 1 - 0,999, где 0,999 уровень доверия.

Число t, критическое значеник для текущих значений степени свободы и уровня доверия $\approx 4,073$

Таким образом интервал имеет следующие значения:

$$\left(\bar{x} - t\frac{a}{2}\frac{s_0}{\sqrt{n}}; \bar{x} + t\frac{a}{2}\frac{s_0}{\sqrt{n}}\right) = \left(42.8 - 4.073\frac{8}{\sqrt{16}}; 42.8 + 4.073\frac{8}{\sqrt{16}}\right) = (34.66; 50.95)$$