

Using BIM for Energy-Efficient Renovation

Pierre Bourreau - Nobatek/INEF4

Nathalie Charbel (Nobatek/INEF4) - Madhumitha Senthilvel (RWTH) -Jakob Beetz (RWTH) - Nicolas Bus (CSTB) - Michel Böhms (TNO) - Jyrki Oraskari (RWTH)...

Outline

- 1. BIM and Renovation
 - What are the challenges
 - BIM4Ren structure
 - Experiment as much web semantic technologies as possible.
- 2. The BIM4Ren data model
 - Need to model uncertainty OPM
 - Need to model building status
 - Data access SPARQL/GraphQL-LD/RAMOSE
- 3. The conversion process
 - Based on SWRL rules
- 4. Additional features
 - SHACL checkers
 - A product of catalogue

BIM in Renovation

BIM is mainly used on new projects

Need to digitize existing buildings (not just scanning)

Need a suitable model (IFC extension)...

... Usable in the construction & exploitation phases

BIM and Renovation: a complementarity

Can be combined with Energy Audit interventions

Different depths of renovation projects

Different Information for different projects

BIM in Renovation

BIM is mainly used on new projects

Need to digitize existing buildings (not just scanning)

Need a suitable model (IFC extension)...

... Usable in the construction & exploitation phases

BIM and Renovation: a complementarity

Can be combined with Energy Audit interventions

Different depths of renovation projects

Different Information for different projects

Data Management

Data collection

WHAT IS THE EXISTING

Year?

Local regulation?

Cost €?

Energy performance?

Geometry?

Stakeholders expectations?

Type of occupants?

Renovation potential?

State of the existing infrastructure?

Stakeholders involved in the renovation

W3C LBD - 15/02/2021

Digital inputs

Data Management

Data collection

WHAT IS THE EXISTING DATA?

- 1. To create the BIM model
- 2. To organize, consolidate, secure
- 3. To validate the BIM model

Stakeholders involved in the renovation

W3C LBD - 15/02/2021

Digital inputs

Data Management

Exploit BIM

Data collection

WHAT IS THE EXISTING DATA?

Stakeholders involved in the renovation

W3C LBD - 15/02/2021

Data Management

Digital inputs

Web semantic tools sandbox

- EXISTING D BIM model for renovation
 - -checkers
 - converters
 - data access

To create the BIM model To organize, consolidate, secure

To validate the BIM model

Stakeholders involved in the renovation

W3C LBD - 15/02/2021

Deeper view

- Conversion SPF to ifcOwlloading to a triple store
- 2 Alignment with BIM4Ren data model
- Enrichment from a LD catalogue
- 4 Checking information on models

Goals

- 1 Need to model uncertainty
 - 'the composition of the external wall is certainly brick + Xcm of glass wool'
 - The scan process has an accuracy of X
- 2 Need for modularity
 - Different type of renovation, different depth of renovation
 - Models as simple as possible

Overview of the data model

13

https://models.bim4ren.eu Modularity

- Independent ontologies
- 3 layers (quite similar to IFC layers)
- Design pattern through multiple inheritance

The Core layer

To describe specific aspects of a building, and to attach elements in it according to some specific properties

BOT: Structure of the building

SOT: Systems/network topology (MEP...)

Goal: localize elements ('spatially')

Goal: what is the role of an element within the network?

Connection

Intervention: History of intervention
Urban: Elements from the urban context

System

Connected Through

Buildings = BOT extended to residential buildings

Use of Omniclass concepts

BUILDINGS
BOT

Smart Energy Aware Systems
SOT

URBAN

INTER-VENTION

The Product layer

To categorize building products

- DistributionElements
- BuildingElements:
- BuildingMaterials

<u>Goal</u>: categories of products (distribution elements)

<u>Goal</u>: categories of products (building elements)

<u>Goal</u>: categories of materials (for LCA, BEM...)

PRODUCT LAYER

Distribution

Building

ments

Product ontologies

Building Element: https://pi.pauwel.be/voc/buildingelement
Distribution Element: https://pi.pauwel.be/voc/distributionelement
Civil Element: https://pi.pauwel.be/voc/civilelement

The Domain layer

To associate specific domain properties to elements

- **Thermal**: thermal resistance, solar factor, coefficient of performance...
- Fluid: capacity, pressure...
- **Electrical**: nominal power, power in/out...
- Manufacturing: brand, product

• • •

The Property layer

UTILS LAYER

Actors

▲ Download

■ Learn ▼
■ Javadoc ▼

② Ask Get involved ▼

Edit this page

DOCUMENTATION / RDF STAR

Apache Jena

Support of RDF-star

† Home

RDF-star is an extension to RDF that provides a way for one triple to refer to another triple. RDF* is the name of the original work which is described in Olaf Hartig's blog entry.

Example:

<< :john foaf:name "John Smith" >> dct:source <http://example/directory> .

NEXT CAHAINATE, UDL !!!

Property

Full Modularity

1. What type of product is this?

Full Modularity

:ElectricBoiler#1

- 1. What type of product is this?
- 2. Where is it located?
 - In the building
 - In my heating network.

Full Modularity

- 1. What type of product is this?
- 2. Where is it located?
 - In the building
 - In my heating network.
- 3. What properties does it have?
 - For a thermal study
 - For an electrical study/dimensioning
 - Geometrical

Overview of the data model

Spatial

DOT

Materials

INTER-VENTION Actors

AirQua-

Manu-

Modularity is being discussed in bSI

Can a simple and modelling language-wide

mechanism solv

- The model is pro
 - Product layer to
 - Core layer to as
 - Domain layer to Sets...)

But fr

Need under

Multiple inheritance for a modular BIM

Pierre Bourreau¹, Nathalie Charbel¹, Jeroen Werbrouck², Madhumitha Senthilvel³, Pieter Pauwels⁴ and Jakob Beetz³

Why do we need conversion?

- Conversion SPF to ifcOwlloading to a triple store
- 2 Alignment with BIM4Ren data model
- Enrichment from a LD catalogue
- 4 Checking information on models

Conversion

- 1. IFC is the most common and open standard
 - We get IFCs from WiseBIM, ARtoBuild (geometry)
- 2. But IFC is quite complex => BIM4Ren model
 - Relations are objectified
 - Not all properties we want...
- 3. Enrich a geometric model with semantic information
 - CSTB develops POBIM based on ISO23386 Ontology
 - BIM4Ren uses SML (CEN to-be standard)
- 4. CSTB: POBIM catalogue + ifcOwl
 - Need to propagate changes on the BIM4Ren DM
 - ifcOwl to B4R (BOT+) and POBIM to SML

Different options

- Static/programmatic conversion
 - ++Can cover all types of elements (geometry, relations...)
 - --Need save/convert/import procedure on changes
- Alignment
 - ++Dynamic in the triple store
 - --1-1 mapping
 - -- Mostly covers classes, not relations

bot / IFCOWL4_ADD2Alignment.ttl

GeorgFerdinandSchneider Changed version IRIs according to #80

☐ jyrkioraskari / IFCtoB4R-DM_OpenAPI

<> Code

Relation mappings as Inference

- IFC relations are objectified
- The mapping can be expressed in logic

If ?z is a bot:Zone
And ?z and ?c are connected by an
ifc:relatedElements_IfcRelContainedInSpatialStructure relation
=> Then <?z; bot:hasElement; ?p>

Relation mappings as Inference

- IFC relations are objectified
- The mapping can be expressed in logic

```
ifc:relatingStructure ifc:relatedElements

?z

IfcRelContainedInSpatialStructure

**p

bot:hasElement**
```

```
(?z rdf:type ?cl) (?cl rdfs:subClassOf* bot:Zone)
(?c ifc:relatingStructure_IfcRelContainedInSpatialStructure ?z)
(?c ifc:relatedElements_IfcRelContainedInSpatialStructure ?p)
=> (?z bot:hasElement ?p)
```

Utility rules


```
[equivalent1: (?a owl:equivalentClass ?b) -> (?a rdfs:subClassOf ?b) (?b rdfs:subClassOf ?a)]

-> table(b4r:subClassOf).
[transSubClassZone: -> (bot:Zone b4r:subClassOf bot:Zone)]
[transSubClassSystemComponent: -> (sot:SystemComponent b4r:subClassOf sot:SystemComponent)]
[transSubClassSystem: -> (sot:System b4r:subClassOf sot:System)]
[transSubClass1: (?cls1 b4r:subClassOf ?cls2) <- (?cls1 rdfs:subClassOf ?cls2)]
[transSubClass2: (?cls1 b4r:subClassOf ?cls3) <- (?cls1 rdfs:subClassOf ?cls2) (?cls2 b4r:subClassOf ?cls3)]

-> table(list:isIn).
[isIn1: (?elt list:isIn ?1) <- (?1 list:hasContents ?elt)]
[isIn2: (?elt list:isIn ?1) <- (?1 list:hasNext ?queue) (?elt list:isIn ?queue)]</pre>
```

BOT rules


```
[botHasElement-IFC: (?z bot:hasElement ?p) <-
    (?c ifc:relatingStructure IfcRelContainedInSpatialStructure ?z)
    (?c ifc:relatedElements IfcRelContainedInSpatialStructure ?p)
    (?z rdf:type ?cl) (?cl b4r:subClassOf bot:Zone)]
[relHasBuilding-IFC2x3: (?zl bot:hasBuilding ?z2) <-
    (?rel ifc2x3:relatingObject IfcRelDecomposes ?z1)
    (?rel ifc2x3:relatedObjects IfcRelDecomposes ?z2)
    (?z1 rdf:type ?cl1) (?cl1 b4r:subClassOf bot:Zone)
    (?z2 rdf:type ?cl2) (?cl2 b4r:subClassOf bot:Building)]
[relHasStorey-IFC2x3: (?zl bot:hasStorey ?z2) <-</pre>
    (?rel ifc2x3:relatingObject IfcRelDecomposes ?z1)
    (?rel ifc2x3:relatedObjects IfcRelDecomposes ?z2)
    (?z1 rdf:type ?cl1) (?cl1 b4r:subClassOf bot:Zone)
    (?z2 rdf:type ?cl2) (?cl2 b4r:subClassOf bot:Storey)]
[relHasSpace-IFC2x3: (?z1 bot:hasSpace ?z2) <-</pre>
    (?rel ifc2x3:relatingObject IfcRelDecomposes ?z1)
    (?rel ifc2x3:relatedObjects IfcRelDecomposes ?z2)
    (?z1 rdf:type ?cl1) (?cl1 b4r:subClassOf bot:Zone)
    (?z2 rdf:type ?cl2) (?cl2 b4r:subClassOf bot:Space)]
```

SOT rules

Product layer rules

[ifcToLbdAirTerminalBox-USERDEFINED: (?z rdf:type ifc:IfcAirTerminalBox) (?z ifc:predefinedType_AirTerminalBox ifc:USERDEFINED)
[ifcToLbdAirTerminalBox-VARIABLEFLOWPRESSUREDEPENDANT: (?z rdf:type ifc:IfcAirTerminalBox) (?z ifc:predefinedType_AirTerminalBox)
[ifcToLbdAirTerminalBox-VARIABLEFLOWPRESSUREINDEPENDANT: (?z rdf:type ifc:IfcAirTerminalBox) (?z ifc:predefinedType_AirTerminalBox)
[ifcToLbdAirTerminalBox-CONSTANTFLOW: (?z rdf:type ifc:IfcAirTerminalBox) (?z ifc:predefinedType_AirTerminalBox ifc:CONSTANTFLOW
[ifcToLbdAirTerminalBox-NOTDEFINED: (?z rdf:type ifc:IfcAirTerminalBox) (?z ifc:predefinedType_AirTerminalBox ifc:NOTDEFINED) ->

... + ~750 rules generated with a Python script

Properties

Some thoughts

- of them)

- - Chan
- Allows
- Remark

Convers BIM format conversion as inference-based ontology alignment*

Pierre Bourreau¹ and Jyrki Oraskari²

- But no conversion on geometry
- BIM4Ren to ifcOwl: more complex (rules are not safe)
 - Use of makeTemp()

model nodel

BIM Models checkers

- Checkers as (micro) web services
 - Micro service ≤ Web service
 - BIM Bots
- In BIM4Ren we use SHACL checkers
 - Semantic web micro services
 - Semantic BIM Bots
- Maestro Bot
 - Orchestration service

Data access

BIM4Ren

- SPARQL for free
 - Expert language
 - 0.X% of web service developers know it
- REST APIs
 - Easy to use
 - Kind of contract between server and client
 - Need to implement SPARQL Queries... tedious work (no ORM)
- GraphQL-LD
 - JS at either client of server
 - Restricted to queries (no edition) still?
 - Kind of another expert language
- RAMOSE
 - Ease the deployment of REST APIs on top of SPARQL
 - Also restricted to Get
 - Need more work and contributions

Highly popular JSON-like query language for graph-based data Can only be used to query a single GraphQL interface no link with Semantic Web technologies

=> no universal semantics over different interface:

Ne convert GraphQL queries to SPARQL using a JSON-LD context

"label": "http://www.w3.org/1999/02/22-rdf-syntax-ns#

NHERE {
 ib <http://www.w3.org/1999/02/22-rdf-syntax-ns#label> ?label
}

GraphQL developers can now query with any SPARQL engine.

GraphQL-LD queries have *universal semantics,* which enables *federated querying* over multiple sources.

Try it at http://query.linkeddatafragments.org/

Ruben.Taelman@UGent.b @rubensworks

OpenCitations