Advances in Robotics (AIR 2017)

3rd International Conference of Robotics Society of India June 28-July 2, 2017 Indian Institute of Technology Delhi, New Delhi, India

Robotic cloth manipulation for clothing assistance task using Dynamic Movement Primitives

Ravi P. Joshi^a, Nishanth Koganti^{a,b}, and Tomohiro Shibata^a

 a Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan

 b Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan

June 29, 2017

Outline

- 1 Introduction
- 2 Related Works
- 3 Dynamic Movement Primitives
- 4 Setup and Experiment
- **5** Experiments and Results
- 6 Discussion and Conclusion
- 7 Future work

Introduction

- Clothing assistance is a basic and important assistance activity in the daily life of the elderly and disabled people
- Need of robotic clothing assistance is growing

Major challenges involved

- Close interaction of the robot with non-rigid clothing article
- Safe human-robot interaction
- Estimation of human-cloth relationship

Ravi P. Joshi AIR 2017 1 / 10

Related Works

Towner et al.¹, Manipulating clothing article by dual-arm robot

- Used Hidden Markov Model for tracking
- Triangulated mesh model for simulating clothing article
- Highly depends on simulated contour information.

Tamei $et \ al.^2$, Clothing assistance with dual-arm robot

- Used Reinforcement learning (RL)
- Topology coordinates for human and cloth extremities relationship
- Via-point trajectory with minimum jerk criterion

¹Marco Cusumano-Towner et al. "Bringing clothing into desired configurations with limited perception". In: *Robotics and Automation (ICRA)*, 2011 IEEE International Conference on. IEEE. 2011, pp. 3893–3900.

²Tomoya Tamei et al. "Reinforcement learning of clothing assistance with a dual-arm robot". In: *Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on.* IEEE. 2011, pp. 733–738.

Dynamic Movement Primitives (DMP)

DMP in a nutshell

- It is used for generating a control signal to guide the real system³
- It can represent *nonlinear* motion with a set of differential equations

The system is defined as

$$\ddot{y} = \alpha_y(\beta_y(g-y) - \dot{y}) + f$$

where:

- \bullet y is system state and g is goal state
- α and β are gain terms
- \bullet f is nonlinear function defined over time

f is a function of canonical system, denoted by x as $\dot{x} = -\alpha_x x$

Ravi P. Joshi AIR 2017 3 / 10

³Stefan Schaal. "Dynamic movement primitives-a framework for motor control in humans and humanoid robotics". In: Adaptive Motion of Animals and Machines. Springer, 2006, pp. 261–280.

Forcing function f

$$f$$
 is defined as
$$f(x,g) = \frac{\sum_{i=1}^{N} \psi_i w_i}{\sum_{i=1}^{N} \psi_i} x(g - y_0)$$

where:

- y_0 is the initial state of the system
- w_i is a weighting for a given basis function ψ_i
- $\psi_i = \exp\left(-h_i(x-c_i)^2\right)$ is Gaussian with mean c_i and variance h_i

Imitating a desired path

The desired forcing term f which affects the system acceleration, is written as $\mathbf{f}_d = \ddot{\mathbf{y}}_d - \alpha_v(\beta_v(q - \mathbf{y}) - \dot{\mathbf{y}})$

where

• \mathbf{y}_d is desired trajectory, given by $\ddot{\mathbf{y}}_d = \frac{\partial}{\partial t}\dot{\mathbf{y}}_d = \frac{\partial}{\partial t}\frac{\partial}{\partial t}\mathbf{y}_d$

Choose the weights over the basis functions i.e., minimize⁴

$$\sum_{t} \psi_{i}(t) \left[f_{d}(t) - w_{i} \left\{ x(t) (q - y_{0}) \right\} \right]^{2}$$

Ravi P. Joshi

AIR 2017

⁴Stefan Schaal, Christopher G Atkeson, and Sethu Vijayakumar. "Scalable techniques from nonparametric statistics for real time robot learning". In: *Applied Intelligence* 17.1 (2002), pp. 49–60.

Workflow of Robotic cloth manipulation task

Teaching Phase A demonstration is performed by moving the

A demonstration is performed by moving the Baxter arms in the appropriate trajectory

Learn Trajectory

Baxter Left Arm Trajectory

Recorded trajectory is parameterized by DMP

DMP Generalization

Arms posture of the mannequin is changed.

Accordingly goal parameter of DMP is modified

Testing Phase

DMP can accommodate any posture by changing goal parameter

Setup

Experiments and Results

Old & modified posture of mannequin

Left arm trajectories of Baxter Robot

Video Demonstration

Accuracy measurement

Angle of Inclination measures the bending of arms w.r.t. horizontal line in two-dimensional space

Ravi P. Joshi AIR 2017 8 / 10

Discussion and Conclusion

- Robotic clothing assistance is challenging since it requires cooperative manipulation
- Clothing article inherits non-rigid and highly deformable properties
- Result shows that DMPs are able to generalize the movement trajectory
- DMP should incorporate orientation information as well

Future work

- Make approach more robust by using combination of visual and force information
- Need for designing an adaptive controller
 - For real-time tracking of mannequin
 - To adapt various failure scenarios

Acknowledgments

This work was supported in part by the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No. 16H01749).

Ravi P. Joshi AIR 2017 10 / 10

References

Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer, 2006.

Cusumano-Towner, Marco et al. "Bringing clothing into desired configurations with limited perception". In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE. 2011, pp. 3893-3900.

Fitzgerald, Cliff. "Developing baxter". In: Technologies for Practical Robot Applications (TePRA), 2013 IEEE International Conference on. IEEE. 2013, pp. 1-6.

Ijspeert, AJ, J Nakanishi, and S Schaal. "Learning control policies for movement imitation and movement recognition". In: Neural information processing system. Vol. 15, 2003, pp. 1547-1554.

Ijspeert, Auke Jan, Jun Nakanishi, and Stefan Schaal. "Movement imitation with nonlinear dynamical systems in humanoid robots". In: Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on. Vol. 2. IEEE. 2002, pp. 1398-1403.

Schaal, Stefan. "Dynamic movement primitives-a framework for motor control in humans and humanoid robotics". In: Adaptive Motion of Animals and Machines. Springer, 2006, pp. 261– 280.

Schaal, Stefan, Christopher G Atkeson, and Sethu Vijayakumar. "Scalable techniques from non-parametric statistics for real time robot learning". In: Applied Intelligence 17.1 (2002), pp. 49–60.

Tamei, Tomoya et al. "Reinforcement learning of clothing assistance with a dual-arm robot". In: Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on. IEEE. 2011, pp. 733-738.

Ravi P. Joshi AIR 2017 10 / 10

Thanks for your attention!

Any questions?

www.ravijoshi.xyz

Ravi P. Joshi AIR 2017 10 / 10