Use same setup as in the previous problems.

Setup as in the previous problems

An aerospace manufacturing company would like to assess the performance of its existing planes for its latest design. Based on a sample size of n=1000 flights, each with an identically designed plane, it collects data of the form $(x_1,y_1),\ldots,(x_{1000},y_{1000})$, where x represents the distance traveled and y represents liters of fuel consumed.

You, as a statistician hired by the company, decide to perform linear regression on the model y=a+bx to predict the efficiency of the design. In the context of linear regression, recall that the mathematical model calls for:

$$\mathbf{Y} = \left(egin{array}{c} y_1 \ dots \ y_{1000} \end{array}
ight) \in \mathbb{R}^{1000}, \quad oldsymbol{arepsilon} \in \mathbb{R}^{1000}, \quad \mathbb{X} = \left(egin{array}{c} 1 & x_1 \ dots & dots \ 1 & x_{1000} \end{array}
ight) \in \mathbb{R}^{1000 imes 2}, \quad oldsymbol{eta} = \left(egin{array}{c} a \ b \end{array}
ight) \in \mathbb{R}^2.$$

Assume that $m{arepsilon} \sim \mathcal{N}\left(0, \sigma^2 I_{1000}
ight)$ for some fixed $m{\sigma^2}$, so that $\mathbf{Y} \sim \mathcal{N}\left(\mathbb{X}m{eta}, \sigma^2 I_{1000}
ight)$.

<u>Hide</u>

Recall the formula for the mean prediction error $\mathbb{E}\|\mathbf{Y} - \mathbb{X}\hat{\boldsymbol{\beta}}\|_2^2$ in terms of \boldsymbol{n} , \boldsymbol{p} and $\boldsymbol{\sigma}^2$ (given in the solution of the previous problem). This suggests a formula for an unbiased estimator of $\boldsymbol{\sigma}^2$:

$$\hat{\sigma}^2 = rac{1}{n-p} \|\mathbf{Y} - \mathbb{X}\hat{oldsymbol{eta}}\|_2^2.$$

Assume that based on your findings, the **residual sum** $\|\mathbf{Y} - \mathbb{X}\hat{\boldsymbol{\beta}}\|_2^2$ evaluates to $\mathbf{104.9}$. Compute $\hat{\boldsymbol{\sigma}}^2$, to the nearest thousandths ($\mathbf{10}^{-3}$) digit.

0.1051

✓ Answer: 0.105

Solution:

The formula calls for n=1000, p=2 and $\|\mathbf{Y}-\mathbb{X}\hat{\pmb{\beta}}\|_2^2=104.9$. Plugging these numbers in gives $\hat{\sigma^2}=\frac{104.9}{1000-2}\approx 0.105$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem