Surface Mount Type

Series: **FP** Type: **V**

FP High temperature Lead-Free reflow (suffix:A*)

Features

- Low ESR (30 % to 50 % less than FK series)
- Endurance: 2000 h at 105 °C
- Vibration-proof product is available upon request. (ϕ 8 mm and larger)
- RoHS directive compliant

■ Specifications

−55 °C to +105 °C									
6.3 V.DC to 50 V.DC									
10 μF to 1800 μF									
±20 % (120 Hz/+20 °C)									
I ≤ 0.01 CV or 3 (μA) After 2 minutes (whichever is greater)									
	Please see the attached standard products list								
W.V. (V)	6.3	10	16	25	35	50			
Z(-25 °C)/Z(+20 °C)	2	2	2	2	2	2	(Impedance ratio at 100 Hz)		
Z(-40°C)/Z(+20 °C)	3	3	3	3	3	3	(Impedance ratio at 120 Hz)		
Z(-55°C)/Z(+20 °C)	4	4	4	3	3	3			
After applying rated working voltage at +105 °C ±2 °C for 2000 hours the capacitors shall meet the limits specified below. Post-test requirement at +20 °C									
Capacitance change									
tan δ									
DC leakege current									
After storage for 1000 hours at +105 °C±2 °C with no voltage applied and then being stabilized at +20 °C, capacitors shall meet the limits specified in Endurance. (With voltage treatment)									
After reflow soldering and then being stabilized at +20 °C, capacitors shall meet the following limits.									
Capacitance change	±10 °	% of ir	nitial m	neasur	ed val	ue			
tan δ	≤ initi	al spe	cified	value					
DC leakage current	≦ initi								
	$Z(-25 ^{\circ}\text{C})/Z(+20 ^{\circ}\text{C})$ $Z(-40 ^{\circ}\text{C})/Z(+20 ^{\circ}\text{C})$ $Z(-55 ^{\circ}\text{C})/Z(+20 ^{\circ}\text{C})$ After applying rated w limits specified below. Capacitance change tan δ DC leakege current After storage for 1000 hc capacitors shall meet the After reflow soldering at Capacitance change tan δ		$I \leq 0.01 \text{ CV}$ $Please$ $W.V. (V) \qquad 6.3 \qquad 10$ $Z(-25 \text{ °C})/Z(+20 \text{ °C}) \qquad 2 \qquad 2$ $Z(-40 \text{ °C})/Z(+20 \text{ °C}) \qquad 3 \qquad 3$ $Z(-55 \text{ °C})/Z(+20 \text{ °C}) \qquad 4 \qquad 4$ After applying rated working voltar limits specified below. Post-test re $Capacitance \text{ change} \qquad \pm 30 \text{ % of in}$ $\tan \delta \qquad \leq 200 \text{ % of}$ $DC \text{ leakege current} \qquad \leq \text{ initial spe}$ After storage for 1000 hours at +105 capacitors shall meet the limits specified and then being Capacitance change $\pm 10 \text{ % of in}$ $\tan \delta \qquad \leq \text{ initial spe}$	$I \leq 0.01 \text{ CV or 3 } (\mu)$ $Please see t$ $W.V. (V) \qquad 6.3 \qquad 10 \qquad 16$ $Z(-25 \text{ °C})/Z(+20 \text{ °C}) \qquad 2 \qquad 2 \qquad 2$ $Z(-40 \text{ °C})/Z(+20 \text{ °C}) \qquad 3 \qquad 3 \qquad 3$ $Z(-55 \text{ °C})/Z(+20 \text{ °C}) \qquad 4 \qquad 4 \qquad 4$ $After applying rated working voltage at limits specified below. Post-test requirer Capacitance change \pm 30 \text{ % of initial model} \tan \delta \qquad \qquad \leq 200 \text{ % of initial model} DC \text{ leakege current} \qquad \leq \text{ initial specified} After storage for 1000 hours at +105 \text{ °C} \pm 2 \text{ °C} \text{ capacitors shall meet the limits specified in } After \text{ reflow soldering and then being stabily } \text{ Capacitance change} \qquad \pm 10 \text{ % of initial model} \text{ \leq initial specified} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

■ Frequency correction factor for ripple current

Cap (uE)				Frequency (Hz)							
(Cap (µF)			120	1 k	10 k	100 k to				
10	to	470		0.65	0.85	0.95	1.00				
560	to	1800		0.75	0.90	0.95	1.00				

Marking

Rated Voltage Mark

j	6.3 V	Е	25 V
Α	10 V	V	35 V
С	16 V	Н	50 V

■ Dimensions in mm(not to scale)

Endurance : 105 °C 2000 h

Panasonic

■ Standard Products

- Ola	iluaiu i it	ducis						LI	idulalice	. 103 6 2000 11
			Case size			pecification	on			Min. Packaging Q'ty
W.V.	Cap.				Ripple	E.S.R.	tan δ	D . M		r assuageng u sy
VV.V.	(±20 %)	Dia.	Length	* Size	Current			Part No. (RoHS:compliant)	Reflow	Taping
		Dia.	Lengin	Code			(120 Hz)	(110113.Compilant)		raping
					(+105 °C)	(+20 °C)	(+20 °C)			
(V)	(μF)	(mm)	(mm)		(mA r.m.s.)	(Ω)	0.00		(5)	(pcs)
	22	4	5.8	B	160	0.85	0.26	EEEFP0J220AR	(5)	2000
	47	4	5.8	(B)	160	0.85	0.26	EEEFPJ470UAR	(5)	2000
		5 5	5.8	C	240	0.36	0.26	EEEFP0J470AR	(5)	1000
	100	6.3	5.8 5.8	(C) D	240 300	0.36 0.26	0.26 0.26	EEEFPJ101UAR EEEFP0J101AP	(5) (5)	1000
	220	6.3	5.8	D	300	0.26	0.26	EEEFP0J101AP	(5)	1000
6.3	220	6.3	7.7	D8	600	0.26	0.26	EEEFPJ331XAP	(5)	900
	330	8	6.2	E	500	0.18	0.26	EEEFP0J331AP	(6)	1000
	470	8	10.2	F	850	0.10	0.26	EEEFP0J471AP	(6)	500
	1000	8	10.2	F	850	0.08	0.26	EEEFP0J102AP	(6)	500
	1500	10	10.2	G	1190	0.06	0.26	EEEFP0J152AP	(6)	500
	1800	10	10.2	(G)	850	0.08	0.26	EEEFPJ182UAP	(6)	500
	22	4	5.8	В	160	0.85	0.19	EEEFP1A220AR	(5)	2000
		4	5.8	(B)	160	0.85	0.19	EEEFPA330UAR	(5)	2000
	33	5	5.8	C	240	0.36	0.19	EEEFP1A330AR	(5)	1000
	150	6.3	5.8	D	300	0.26	0.19	EEEFP1A151AP	(5)	1000
	220	6.3	7.7	D8	600	0.16	0.19	EEEFPA221XAP	(5)	900
10	220	8	6.2	Е	500	0.18	0.19	EEEFP1A221AP	(6)	1000
	330	8	10.2	L	850	0.08	0.19	EEEFP1A331AP	(6)	500
	470	8	10.2	F	850	0.08	0.19	EEEFP1A471AP	(6)	500
	680	8	10.2	F	850	0.08	0.19	EEEFP1A681AP	(6)	500
	1000	10	10.2	G	1190	0.06	0.19	EEEFP1A102AP	(6)	500
	1200	10	10.2	(G)	850	0.08	0.19	EEEFPA122UAP	(6)	500
	10	4	5.8	В	160	0.85	0.16	EEEFP1C100AR	(5)	2000
	22	4	5.8	(B)	160	0.85	0.16	EEEFPC220UAR	(5)	2000
		5	5.8	C	240	0.36	0.16	EEEFP1C220AR	(5)	1000
	47	5	5.8	(C)	240	0.36	0.16	EEEFPC470UAR	(5)	1000
		6.3	5.8	D	300	0.26	0.16	EEEFP1C470AP	(5)	1000
	68	6.3	5.8	D	300	0.26	0.16	EEEFP1C680AP	(5)	1000
16	100	6.3 6.3	5.8 7.7	D D8	300 600	0.26 0.16	0.16 0.16	EEEFP1C101AP EEEFPC101XAP	(5)	1000 900
16	150	6.3	7.7	D8	600	0.16	0.16	EEEFPC151XAP	(5) (5)	900
	130	6.3	7.7	D8	600	0.16	0.16	EEEFPC221XAP	(5)	900
	220	8	6.2	E	500	0.10	0.16	EEEFP1C221AP	(6)	1000
	330	8	10.2	F	850	0.08	0.16	EEEFP1C331AP	(6)	500
	470	8	10.2	F	850	0.08	0.16	EEEFP1C471AP	(6)	500
	680	10	10.2	G	1190	0.06	0.16	EEEFP1C681AP	(6)	500
	820	10	10.2	(G)	850	0.08	0.16	EEEFPC821UAP	(6)	500
	10	4	5.8	В	160	0.85	0.14	EEEFP1E100AR	(5)	2000
	22	5	5.8	С	240	0.36	0.14	EEEFP1E220AR	(5)	1000
	00	5	5.8	(C)	240	0.36	0.14	EEEFPE330UAR	(5)	1000
	33	6.3	5.8	Ď	300	0.26	0.14	EEEFP1E330AP	(5)	1000
	47	6.3	5.8	D	300	0.26	0.14	EEEFP1E470AP	(5)	1000
	68	6.3	5.8	D	300	0.26	0.14	EEEFP1E680AP	(5)	1000
25	100	6.3	7.7	D8	600	0.16	0.14	EEEFPE101XAP	(5)	900
		8	6.2	Е	500	0.18	0.14	EEEFP1E101AP	(6)	1000
	150	8	10.2	F	850	0.08	0.14	EEEFP1E151AP	(6)	500
	220	8	10.2	F	850	0.08	0.14	EEEFP1E221AP	(6)	500
	330	8	10.2	F	850	0.08	0.14	EEEFP1E331AP	(6)	500
	470	10	10.2	G	1190	0.06	0.14	EEEFP1E471AP	(6)	500
	560	10	10.2	(G)	850	0.08	0.14	EEEFPE561UAP	(6)	500

^{*} Size code():Miniaturization product

If Part number exceeds 12 digits, voltage code is abbreviated as follows; 0J→J, 1A→A, 1C→C, 1E→E, 1V→V · Please refer to the page of "Reflow Profile" and "The Taping Dimensions". · When requesting vibration-proof product, please put the last "V" instead to "P"

Endurance : 105 °C 2000 h

Panasonic

■ Standard Products

		Case size			S	pecification	on			Min. Packaging Q'ty
W.V.	Cap. (±20 %)	Dia.	Length	* Size Code	,	E.S.R. (100 kHz) (+20 °C)	'	Part No. (RoHS:compliant)	Reflow	Taping
(V)	(µF)	(mm)	(mm)		(mA r.m.s.)	(Ω)				(pcs)
	10	4	5.8	(B)	160	0.85	0.12	EEEFPV100UAR	(5)	2000
	22	5	5.8	C	240	0.36	0.12	EEEFP1V220AR	(5)	1000
	33	6.3	5.8	D	300	0.26	0.12	EEEFP1V330AP	(5)	1000
	47	6.3	5.8	D	300	0.26	0.12	EEEFP1V470AP	(5)	1000
	68	6.3	7.7	D8	600	0.16	0.12	EEEFPV680XAP	(5)	900
35	100	6.3	7.7	D8	600	0.16	0.12	EEEFPV101XAP	(5)	900
		8	10.2	F	850	0.08	0.12	EEEFP1V101AP	(6)	500
	150	8	10.2	F	850	0.08	0.12	EEEFP1V151AP	(6)	500
	220	8	10.2	F	850	0.08	0.12	EEEFP1V221AP	(6)	500
	330	10	10.2	G	1190	0.06	0.12	EEEFP1V331AP	(6)	500
	390	10	10.2	(G)	850	0.08	0.12	EEEFPV391UAP	(6)	500
50	100	8	10.2	F	670	0.18	0.10	EEEFP1H101AP	(6)	500
	220	10	10.2	G	900	0.12	0.10	EEEFP1H221AP	(6)	500

^{*} Size code():Miniaturization product

If Part number exceeds 12 digits, voltage code is abbreviated as follows; 0J→J, 1A→A, 1C→C, 1E→E, 1V→V · Please refer to the page of "Reflow Profile" and "The Taping Dimensions". · When requesting vibration-proof product, please put the last "V" instead to "P"