CSC236 2015 WINTER

ASSIGNMENT 1: SOLUTIONS

(1) We prove that $\forall m \in \mathbb{N}, \forall n \in \mathbb{N}, (1+mn) \leq (1+m)^n$.

Proof. Let $m \in \mathbb{N}$.

Now by Simple Induction we prove $\forall n \in \mathbb{N}, (1+mn) \leq (1+m)^n$.

Base Case: 0.
$$(1+m\cdot 0)=1\leq 1=(1+m)^0$$
.

Inductive Step Let $n \in \mathbb{N}$.

(IH) Assume $(1 + mn) \le (1 + m)^n$.

Then

$$(1+m)^{n+1} = (1+m)^n \cdot (1+m) \ge (1+mn)(1+m)$$
, by (IH),
= $1+mn+m+m^2n = (1+m(n+1))+mn^2$
 $\ge (1+m(n+1))$ (since $mn^2 \ge 0$, since $m \ge 0$).

(2) We prove that $r_n \leq 236 (\log_2 (\log_2 n))$ for all natural numbers $n \geq 4$.

Proof. By Complete Induction.

Let n be a natural number with n > 4.

Base Cases $4 \le n \le 15$.

Then
$$1 = \left\lfloor \sqrt{\lfloor \sqrt{4} \rfloor} \right\rfloor \le \left\lfloor \sqrt{\lfloor \sqrt{n} \rfloor} \right\rfloor \le \left\lfloor \sqrt{\lfloor \sqrt{15} \rfloor} \right\rfloor = 1$$
, so $\left\lfloor \sqrt{\lfloor \sqrt{n} \rfloor} \right\rfloor = 1$.
So
$$r_n = 1 + r_{\lfloor \sqrt{n} \rfloor} = 1 + \left(1 + r_{\lfloor \sqrt{\lfloor \sqrt{n} \rfloor} \rfloor}\right) = 2 + r_1 = 3$$

$$\le 236 \cdot 1 = 236 \log_2 2 = 236 \log_2 (\log_2 4) \le 236 \log_2 (\log_2 n)$$

since $4 \le n$ and $\log_2 \circ \log_2$ is increasing.

Inductive Step Let $n \in \mathbb{N}$ with $16 \le n$.

(IH) Suppose $r_k \leq 236 \log_2(\log_2 k)$ for each $k \in \mathbb{N}$ such that $4 \leq k < n$.

Since $n \ge 16$: $4 = \lfloor \sqrt{16} \rfloor \le \lfloor \sqrt{n} \rfloor \le \sqrt{n} < n$, so the (IH) applies for $k = \lfloor \sqrt{n} \rfloor$.

Then

$$\begin{array}{lll} r_n & = & 1 + r_{\left\lfloor \sqrt{n} \right\rfloor} \\ & \leq & 1 + 236 \log \left(\log_2 \left\lfloor \sqrt{n} \right\rfloor \right), \text{ from (IH) as noted above,} \\ & \leq & 1 + 236 \log_2 \left(\log_2 \sqrt{n} \right) \text{ since } \log_2 \circ \log_2 \text{ is increasing and } \left\lfloor \sqrt{n} \right\rfloor \leq \sqrt{n} \\ & = & 1 + 236 \log_2 \left(\frac{1}{2} \log_2 n \right) \\ & = & 1 + 236 \left(-1 + \log_2 \left(\log_2 n \right) \right) \\ & = & (1 - 236) + 236 \log_2 \left(\log_2 n \right) \leq 236 \log_2 \left(\log_2 n \right). \end{array}$$

$$b_0 = 1,$$

 $b_h = 2b_{h-1} (b_0 + \dots + b_{h-1}) - b_{h-1}^2, h \ge 1.$

Claim: for all natural numbers h, b_h is the number of binary trees of height h.

Proof. By Complete Induction.

Base Case: 0.

There is exactly one empty tree, and $b_0 = 1$, so b_0 is the number of binary trees of height 0. Inductive Step Let $h \in \mathbb{N}$ with $1 \le h$.

(IH) Suppose b_i is the number of binary trees of height i, for each $i \in \mathbb{N}$ such that $0 \le i < h$. A binary tree of height $h \ge 1$ is determined by its left and right subtrees, which are binary trees of height less than h, with one of them having height exactly h - 1.

A tree of height less than h has height $0, 1, \ldots$, or h - 1, and the number of trees of each of those heights is b_0, b_1, \ldots , and b_{h-1} (by the (IH) for $i = 0, 1, \ldots, h - 1 < h$).

So the number of trees of height less than h is $b_0 + \cdots + b_{h-1}$.

If the left subtree has height h-1 there are (by (IH)) b_{h-1} possibilities, multiplied by the $b_0 + \cdots + b_{h-1}$ possibilities for the right subtree. There are the same amount again if we switch left and right, doubling the total. That double-counts the case where the left and right subtrees both are of height h-1, so subtract off the number of those $(b_{h-1} \cdot b_{h-1})$.

(b) Claim: $b_{h+1} = a_{h+1}^2 - a_h^2$ for all natural numbers h.

Proof. By Complete Induction.

Base Case: 0.

$$b_{0+1} = b_1 = 2b_0(b_0) - b_0^2 = 2 - 1 = 1 = (0^2 + 1)^2 - 0^2 = (a_0^2 + 1)^2 - a_0^2 = a_{0+1}^2 - a_0^2.$$

Inductive Step Let $h \in \mathbb{N}$ with $1 \leq h$. Note that $h - 1 \in \mathbb{N}$, which we'll use a few times.

(IH) Suppose
$$b_{i+1} = a_{i+1}^2 - a_i^2$$
 for $i = 0, \dots, h-1$.

Then

$$b_{h+1} = 2b_h (b_0 + \dots + b_h) - b_h^2$$

= $2b_h (b_0 + [b_1 + \dots + b_h]) - b_h^2$

where splitting out $[b_1 + \cdots + b_h]$ is valid since $1 \le h$. From (IH) for $i = 0, \dots, h-1$, we get

$$= 2b_h \left(b_0 + \left[\left(a_1^2 - a_0^2 \right) + \left(a_2^2 - a_1^2 \right) + \dots + \left(a_h^2 - a_{h-1}^2 \right) \right] \right) - b_h^2$$

$$= 2b_h \left(b_0 + a_h^2 - a_0^2 \right) - b_h^2$$

$$= 2b_h \left(1 + a_h^2 \right) - b_h^2$$

$$=b_h\left(2+2a_h^2-b_h\right)$$

$$= (a_h^2 - a_{h-1}^2) (2 + 2a_h^2 - (a_h^2 + a_{h-1}^2))$$
 (from (IH) for $i = h - 1$)

$$= (a_h^2 - a_{h-1}^2) (2 + a_h^2 - a_{h-1}^2)$$

=
$$((a_{h+1}-1)-(a_h-1))(2+(a_{h+1}-1)-(a_h-1))$$
 (from a_n for $n=h,h-1\in\mathbb{N}$)

$$= (a_{h+1} - a_h) (a_{h+1} + a_h)$$

$$=a_{h+1}^2-a_h^2.$$