Language Technology

http://cs.lth.se/edan20/

Chapter 8: Part-of-Speech Tagging Using Stochastic Techniques

Pierre Nugues

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

September 17, 2020

Training Set

Part-of-speech taggers use a training set where every word is hand-annotated (Penn Treebank and CoNLL 2008).

Index	Word	Hand annotation	Index Word		Hand annotation	
1	Battle	JJ	19	of	IN	_
2	-	HYPH	20	their	PRP\$	
3	tested	JJ	21	countrymen	NNS	
4	Japanese	JJ	22	to	TO	
5	industrial	JJ	23	visit	VB	
6	managers	NNS	24	Mexico	NNP	
7	here	RB	25	,	1	
8	always	RB	26	a	DT	
9	buck	VBP	27	boatload	NN	
10	up	RP	28	of	IN	
11	nervous	JJ	29	samurai	FW	
12	newcomers	NNS	30	warriors	NNS	
13	with	IN	31	blown	VBN	
14	the	DT	32	ashore	RB	5%
15	tale	NN	33	375	CD A	4.53
16	of	IN	34	years	NNS CONTRACTOR	1
17	the	DT	35	ago	RB	30
18	first	JJ	36	. 40145		

Part-of-Speech Tagging with Linear Classifiers

Linear classifiers are efficient devices to carry out part-of-speech tagging:

- The lexical values are the input data to the tagger.
- The parts of speech are assigned from left to right by the tagger.

Given the feature vector: $(w_{i-2}, w_{i-1}, w_i, w_{i+1}, w_{i+2}, t_{i-2}, t_{i-1})$, the classifier will predict the part-of-speech tag t_i at index i.

ID	FORM	PPOS	
	BOS	BOS	Padding
	BOS	BOS	
1	Battle	NN	
2	-	HYPH	
3	tested	NN	
22			
17	the	DT	
18	first	JJ	
19	of	IN	
20	their	PRP\$	
21	countrymen	NNS	Input features
22	to	TO	
23	visit	VB	Predicted tag
24	Mexico		↓
25	1		
26	a boatload		
27	boatioad		
 34	***	***	
	years		
35	ago		
36	EOS		Dodding
			Padding
	EOS		

Feature Vectors

ID	Feature vectors							PPOS
	W_{i-2}	w_{i-1}	w_i	w_{i+1}	W_{i+2}	t_{i-2}	t_{i-1}	
1	BOS	BOS	Battle	-	tested	BOS	BOS	NN
2	BOS	Battle	-	tested	Japanese	BOS	NN	HYPH
3	Battle	-	tested	Japanese	industrial	NN	HYPH	JJ
19	the	first	of	their	countrymen	DT	JJ	IN
20	first	of	their	countrymen	to	JJ	IN	PRP\$
21	of	their	countrymen	to	visit	IN	PRP\$	NNS
22	their	countrymen	to	visit	Mexico	PRP\$	NNS	TO
23	countrymen	to	visit	Mexico	,	NNS	TO	VB
24	to	visit	Mexico	,	a	TO	VB	NNP
25	visit	Mexico	,	a	boatload	VB	NNP	,
34	ashore	375	years	ago		RB	CD	NNS
35	375	years	ago		EOS	CD	NNS	RB
36	years	ago		EOS	EOS	NNS	RB	27.80

Conditional Random Fields

A tagger produces a sequence of tags, where a given tag obviously depends on the previous ones.

For instance, a preposition cannot follow a determiner

We can model the tag transitions probabilities using **conditional random fields** (CRF)

The simplest form is the **linear chain**.

If y denotes the output, here a sequence of tags, and x, a sequence of inputs, consisting for instance of the words and the characters, we try to maximize

$$P(\mathbf{y}|\mathbf{x})$$
,

i.e.

$$\hat{\mathbf{y}} = \underset{\mathbf{y}}{\operatorname{arg\,max}} P(\mathbf{y}|\mathbf{x}).$$

Conditional Random Fields (II)

As we want the output sequence to depend on the input and on previously predicted output, we rewrite $P(\mathbf{y}|\mathbf{x})$ as a joint probability, $P(\mathbf{y},\mathbf{x})$, and, more precisely, as:

$$P(\mathbf{y}|\mathbf{x}) = \frac{P(\mathbf{y},\mathbf{x})}{\sum_{\mathbf{y}' \in Y} P(\mathbf{y}',\mathbf{x})},$$

where \mathbf{y}' denotes a sequence, Y, the set of all the possible sequences, and $\sum_{\mathbf{y}' \in Y} P(\mathbf{y}', \mathbf{x})$ is a normalizing factor to have a sum of probabilities of one

Viterbi (Informal)

Je le donne demain dans la matinée 'I give it tomorrow in the morning'

Viterbi (Informal)

The term brought by the word *demain* has still the memory of the ambiguity of *donne*: $P(adv|verb) \times P(demain|adv)$ and $P(adv|noun) \times P(demain|adv)$.

This is no longer the case with dans.

According to the noisy channel model and the bigram assumption, the term brought by the word dans is $P(dans|prep) \times P(prep|adv)$.

It does not show the ambiguity of le and donne.

The subsequent terms will ignore it as well.

We can discard the corresponding paths.

The optimal path does not contain nonoptimal subpaths.

Trellis Representation

Filling the Trellis

i\δ	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6	δ_7	δ_8
PREP	0	1						
ADV	0	/1						
PRO	0	// ₁						
VERB	0 /							
NOUN	0 //	/ > / /						
ART	0							
<s></s>	1.0	0	0	0	0	0	0	0
	<g>></g>	Je	le	donne	demain	dans	la	matinée

To fill the δ_3 column, for each cell j, we compute

$$\max_{i} P(j|i) \times P(le|j) \times \delta_2(i).$$

The pronoun cell, for instance, is filled with

$$\max_{i} P(PRO|i) \times P(Ie|PRO) \times \delta_{2}(i).$$

Supervised Learning: A Summary

Needs a manually annotated corpus called the **Gold Standard**The Gold Standard may contain errors (*errare humanum est*) that we ignore

A classifier is trained on a part of the corpus, the **training set**, and evaluated on another part, the **test set**, where automatic annotation is compared with the "Gold Standard"

N-fold cross validation is used avoid the influence of a particular division Some algorithms may require additional optimization on a development set

Classifiers can use statistical or symbolic methods

