Zusammenfassung Markovketten

© M Tim Baumann, http://timbaumann.info/uni-spicker

Abzählbare Markovketten

Notation. Sei im Folgenden $\{Z_n\}$ eine Markovkette auf einem abzählbaren Zustandsraum E.

Def. Für $x \in E$ definiere die Zufallsvariablen

$$\tau_x^{(1)} := \inf\{n > 0 \mid Z_n = x\} \in \mathbb{N} \cup \{\infty\}
\tau_x^{(k)} := \inf\{n > \tau_x^{(k-1)} \mid Z_n = x\}, k > 1.$$

(Beachte: $\tau_x^{(k)}$ ist eine messbare Abbildung.)

Bem. Ferner gilt $\{\tau_x^{(k)} = n\} \in \sigma(Z_0, Z_1, \dots, Z_n).$

Def. Für $x, y \in E$ sei $F(x, y) := P(\tau_y^{(i)} < \infty \mid Z_0 = x)$

Lem. Für alle $x, y \in E$ und k > 1 gilt

$$P(\tau_y^{(k)} < \infty \mid Z_0 = x) = F(x, y) \cdot F(y, y)^{k-1}.$$

Notation. $\tilde{\ell}(y) = \sum_{k=i}^{\infty} \mathbb{1}\{Z_k = y\}$

Dann gilt $P(\tau_u^{(k)} < \infty \mid Z_0 = x) = P(\tilde{\ell} > k \mid Z_0 = x)$

Def. Ein Zustand $x \in E$ heißt

- absorbierend, falls p(x, x) = 1,
- rekurrent, falls F(x,x) = 1 und
- transient, falls F(x,x) < 1.

Bem. Absorbierende Zustände sind rekurrent.

Bsp. In der Markovkette

$$(0) \underbrace{1 \atop 1-p} (1) \underbrace{p \atop 1-p} (2) \underbrace{p \atop 1-p} (3) \underbrace{1-p} \dots$$

ist (0) genau dann rekurrent, falls p < 1/2, ansonsten transient. TODO: genauer!

Def. Für $y \in E$ sei

$$\ell(y) := \sum_{k=0}^{\infty} \mathbb{1}\{Z_k = y\}$$

die Anzahl der Besuche in y. Die Green'sche Funktion von $\{Z_n\}$ ist $G: E \times E \to [0, \infty]$ mit

$$G(x,y) := \mathbb{E}(\ell(y) \mid Z_0 = x).$$

Bem.
$$G(x,y) = \mathbb{E}\left(\sum_{k=0}^{\infty} \mathbb{1}\{Z_k = y\} \mid Z_0 = x\right) = \sum_{k=0}^{\infty} P(Z_k = y \mid Z_0 = x) = \delta_{xy} + \sum_{k=1}^{\infty} p^{(k)}(x,y)$$

Satz. Für alle $x, y \in E$ gilt

$$G(x,y) = \begin{cases} \frac{F(x,y)}{1 - F(y,y)} & \text{falls } x \neq y, \\ \frac{1}{1 - F(y,y)} & \text{falls } x = y. \end{cases}$$

Kor. x ist rekurrent $\iff G(x,x) = \infty$

Satz. ist $x \in E$ resurrent und F(x,y) > 0, so ist y auch resurrent und F(x, y) = F(y, x) = 1.

Bem.
$$F(x,y) > 0 \iff \exists n \ge 1 : P^{(n)}(x,y) > 0$$

Def. $\{Z_n\}$ heißt **irreduzibel**, falls $\forall x, y \in E : F(x,y) > 0$.

Satz. Sei $\{Z_n\}$ irreduzibel. Dann sind entweder alle Zustände rekurrent oder alle Zustände transient.

Satz. Eine irreduzible Kette auf einem endlichen Raum ist immer rekurrent.

Rekurrenz und Transienz von Irrfahrten

Sei $\{Z_n\}$ eine Irrfahrt auf \mathbb{Z}^d , d. h. p(x,y) = p(0,y-x) =: q(y-x). Mit anderen Worten: Die Zuwächse $\{Z_n - Z_{n-1}\}_{n \ge 1}$ sind i. i. d. Zufallsvariablen.

Bsp. Einfache Irrfahrt auf \mathbb{Z} : p(0,1) = p, p(0,-1) = q = 1-p

In diesem Fall kann man die Greensche Funktion exakt berechnen:

$$G(x,x) = G(0,0) = \sum_{m=0}^{\infty} p^{(m)}(0,0) = 1 + \sum_{n=1}^{\infty} p^{(2n)}(0,0) = 1 + \sum_{n=1}^{\infty} {2n \choose n} p^n (1 + \sum_{n=1}^{\infty} {$$

Satz. Sei $\{Z_n\}$ eine Irrfahrt auf $\mathbb Z$ mit $\mathbb{E}|Z_1-Z_0|=\sum_{x\in\mathbb{Z}}|x|p(0,x)<\infty.$ Dann gilt

$${Z_n}$$
 ist rekurrent $\iff \sum_{x \in \mathbb{Z}} xp(0, x) = 0.$

Def. Einfache symmetrische Irrfahrt auf \mathbb{Z}^d ist eine translationsinvariante Markovkette mit $p(0, \pm e_i) = \frac{1}{2d}$ für $i=1,\ldots,d$.

Für einfache symm. Irrfahrten gilt:

$$p^{(2n)}(x,x) = \sum_{k_1,...,k_d \in \mathbb{N}, k_1 + ... + k_d = n} \frac{(2n)!}{(k_1!)^2 \cdot (k_d!)^2} \left(\frac{1}{2d}\right)^{2n}$$

Für
$$d = 2$$
 gilt $p^{(2n)}(0,0) = \left[\binom{2n}{n} (\frac{1}{2})^{2n} \right]^2$

Mit der Stirling'schen Formel folgt $p^{(2n)}(0,0) \approx \frac{1}{\pi n}$.

Somit gilt $\sum p^{(2n)}(0,0) = \infty$.

Fazit. Die zweidimensionale einfache symm. Irrfahrt ist rekurrent.

Bem. Man kann zeigen: Für einfache symm. Irrfahrten auf \mathbb{Z}^d gilt:

$$p^{2n}(0,0) \le \frac{C_d}{n^{d/2}}$$

Somit ist die einfache Irrfahrt transient für alle d > 3.

Def.
$$\varphi(t) \coloneqq \sum_{x \in \mathbb{Z}^d} e^{i(t \cdot x)} p(0, x)$$
 für $t \in \mathbb{R}^d$

Da die Zuwächse $\{Z_n - Z_{n-1}\}$ i. i. d. sind, so gilt

$$\sum_{x \in \mathbb{Z}^d} e^{i(t \cdot x)} p^n(0, x) = \varphi^n(t), \quad n \ge 1$$

Inversions formel: $p^n(0,x) = \frac{1}{(2\pi)^d} \int [-\pi,\pi)^d e^{-i(t\cdot x)} \varphi^n(t) t$

Satz. Für jede Irrfahrt $\{Z_n\}$ auf \mathbb{Z}^d gilt

$$G(0,0) = \left(\frac{1}{2\pi}\right)^d \lim_{\lambda \uparrow 1} \int t \in [-\pi,\pi)^d Re(\frac{1}{1-\lambda \varphi(t)})t = \infty$$

Bsp. Für die einfache symm. Irrfahrt $\{Z_n\}$ auf \mathbb{Z}^d ist

$$\varphi(t) = \frac{1}{d} \sum_{k=1}^{d} \cos(t_k)$$

Mit der Ungleichung $1 - \cos(u) \ge c_0 u^2$ für alle $u \in [-\pi, \pi]$ folgt $\varphi(t) > \frac{c_0}{J} |t|^2$.

Es folgt

$$\frac{1}{1-\lambda\varphi(t)} \le \frac{d}{\lambda c_0} |t|^{-2}$$

Die Funktion $|t|^{-2}$ ist auf $[-\pi,\pi)^d$ für jedes $d\geq 3$ integrierbar. Somit ist die einfache Irrfahrt auf \mathbb{Z}^d , $d\geq 3$, transient.

Satz. Jede irreduzible Irrfahrt auf \mathbb{Z}^d mit $d \geq 3$ ist transient.

Bsp. Sei $\{Z_n\}$ eine Irrfahrt auf $\mathbb Z$ mit p(0,x)=p(0,-x). Angenommen $x^\alpha p(0,x)\to c\in (0,\infty)$ für $x\to\infty$ für ein $\alpha>1$. Dann gilt

$$1 - \varphi(t) = \sum_{n = -\infty}^{\infty} (1 - \cos(nt))p(0, n)$$

und

$$\frac{1-\varphi(t)}{|t|^{\alpha-1}} = \sum_{n=-\infty}^{\infty} |n|^{\alpha} p(0,n) |t| f(nt)$$

mit $f(x)=\frac{1-\cos(x)}{|x|^{\alpha}}$. Außerdem $|n|^{\alpha}p(0,n)=c+\epsilon_n$, wobei $\epsilon_n\to 0$ für $|n|\to\infty$. Es folgt

$$\frac{1-\varphi(t)}{|t|^{\alpha-1}} = \sum_{n=-\infty}^{\infty} c|t|f(nt) + \sum_{n=-\infty}^{\infty} \epsilon_n|t|f(nt).$$

Für $t \to 0$ hat man

$$\sum_{n=-\infty}^{\infty} |t| f(nt) \to \int -\infty^{\infty} f(x) x$$

und

$$\sum_{n=-\infty}^{\infty} \epsilon_n |t| f(nt) \to 0.$$

Es folgt für $\alpha < 3$

$$\lim_{t \to 0} \frac{1 - \varphi(t)}{|t|^{\alpha - 1}} = c \int -\infty \infty \frac{1 - \cos(x)}{|x|^{\alpha}} x < \infty$$

Folglich ist $\frac{1}{1-\varphi(t)}$ für $\alpha<2$ integrierbar und somit $\{Z_n\}$ transient. Für $\alpha=2$ ist $\frac{1}{1-\varphi(t)}$ in der Umgebung von null nicht integrierbar und damit $\{Z_n\}$ rekurrent. Für $\alpha>2$ ist $\sum |x|p(0,x)<\infty$ und somit ist die Irrfahrt rekurrent, da der Erwartungswert der Zuwächse null ist.

Erneuerungstheorie

Situation. Seien $\{X_k\}_{k\geq 1}$ i. i. d. ZVn mit Werten in $\mathbb N$ und $P(X_k\geq 1)>0$. Dann definiert

$$Z_n := \sum_{k=1}^n X_k + Z_0$$

eine Irrfahrt $\{Z_n\}_{n\geq 0}$ mit nicht-negativen Zuwächsen auf \mathbb{Z} .

Ziel. Asymptotisches Verhalten von G(0,x) untersuchen.

Wir werden annehmen, dass X_1 eine andere Verteilung haben darf.

Def. Sei $\{a_n\}$ eine Folge. Die Funktion

$$A(s) = \sum_{n=0}^{\infty} a_n s^n$$

heißt erzeugende Funktion

Bsp. Setze $p_k := P(X_2 = k), k \ge 0$. Wir nehmen an, dass $\mathbb{E}[X_2] = \sum_{k=1}^{\infty} kp_k =: a \in (0, \infty)$. Definiere

$$q_k := \frac{1}{a} \sum_{j=k}^{\infty} p_j, \quad k \ge 1.$$

Dann ist $\sum_{k=1}^{\infty} q_k = 1$. Sei X_1 sodass $P(X_1 = k) = q_k, k \ge 1$. Definiere

$$\begin{array}{lcl} f(s) & = & \sum\limits_{k=1}^{\infty} p_k s^k = \mathbb{E}[s^{X_2}], \ |s| \leq 1 \\ g(s) & = & \sum\limits_{k=1}^{\infty} q_k s^k = \mathbb{E}[s^{X_1}] \\ \psi(s) & = & \sum\limits_{x=1}^{\infty} G(0, x) s^x, \ |s| < 1 \end{array}$$

Dann gilt für |s| < 1:

$$\psi(s) = \sum_{k=1}^{\infty} g(s)f(s)^{k-1} = \frac{g(s)}{1 - f(s)}$$

Außerdem gilt:

$$g(s) = \frac{s}{a(1-s)}(1-f(s))$$

Es folgt:

$$\psi(s) = \sum_{x=1}^{\infty} \frac{1}{a} s^x$$

Somit ist $G(0,x) = \frac{1}{a}$

Satz. Angenommen, $ggT\{p \mid p_k > 0\} = 1$. Dann gilt für jede Verteilung von X_1 , dass

$$G(0,x) \xrightarrow{x \to \infty} \frac{1}{a}$$
.

Lem. Sei $g(\theta)$ integrierbar auf $[-\pi, \pi)$. Dann gilt

$$\int \left[-\pi, \pi \right) e^{i\theta x} g(\theta) \theta \xrightarrow{|x| \to \infty} (x \in \mathbb{Z})$$

Lem. Seien alle X_k identisch verteilt und $ggT\{p \mid p_k > 0\} = 1$. Dann existiert $L := \lim_{x \to \infty} G(0, x)$.

Def. Seien $\{X_k\}_{k\geq 1}$ unabhängige, nichtneg. ZVn und seien $\{X_k\}_{k\geq 2}$ identisch verteilt. Setze $Z_n:=\sum\limits_{k=1}^n X_k$. Der Prozess $\eta(t):=\min{\{k\geq 1\,|\,Z_k>t\}}$ heißt **Erneuerungsprozess** und die Funktion $H(t):=\mathbb{E}[\eta(t)]$ heißt **Erneuerungsfunktion**.

Falls X_k nur Werte aus $\mathbb N$ annehmen, so können wir das Verhalten von H(t)-H(t-1) wie folgt beschreiben:

$$H(t) = \mathbb{E}[\eta(t)] = \sum_{k=0}^{\infty} P(\eta(t) > k) = \sum_{k=0}^{\infty} P(Z_k \le t)$$

Es folgt

$$H(t) - H(t-1) = \sum_{k=0}^{\infty} P(Z_k = t) \xrightarrow{t \to \infty} \frac{1}{\mathbb{E}[X_2]}$$

Def.
$$\gamma(t) := t - Z_{\eta(t)-1} \ge 0, \quad \chi(t) := Z_{\eta(t)} - t > 0$$

Satz. Sind die Bedingungen des letzten Satzes erfüllt, so gilt

$$P(\gamma(t)=i,\chi(t)=j) \xrightarrow{t\to\infty} \frac{p_{i+j}}{\mathbb{E}[X_2]} \quad \text{ für alle } i\geq 0, j\geq 1.$$

Kor.
$$P(\gamma(t)=i) \xrightarrow{t\to\infty} \frac{1}{a} \sum_{k=i+1}^{\infty} p_k, P(\gamma(t)=j) \xrightarrow{t\to\infty} \frac{1}{a} \sum_{k=i}^{\infty} p_k$$