Some additions: **Cluster Analysis** (F. Chiaromonte)

Clustering with Gaussian Mixtures (model-based soft partitioning)

Postulated **stochastic mechanism**: each data point in **R**^p is drawn from

$$f(x) = \sum_{k=1}^K \pi_k f(x|z=k) = \sum_{k=1}^K \pi_k \varphi(x;\mu_k,\Sigma_k)$$
 prior probabilities $Pr\{z=k\}$ Gaussian components

latent component labels

(a) A probability distribution on \mathbb{R}^2 .

(b) Data sampled from this distribution.

$$\theta = \{(\pi_k; \mu_k; \Sigma_k), k = 1 ... K\}$$

PARAMETERS

- Prevalence
- Center (location)
- Shape and orientation of each cluster

$$P = \{p_{i,k}, i = 1 ... n, k = 1 ... K\}$$

POSTERIOR PROBABILITIES For each data point and component $Pr\{z_i=k\mid x_i\}$ non-negative, rows add up to 1

The Expectation-Maximization (EM) algorithm

A very important algorithm to fit models comprising latent (unobservable) variables – here, the component labels.

Produces estimates for

- all parameters prevalence, location and shape/orientation of the clusters
- and for the posterior probabilities which express a soft, probabilistic partition of the data points

Similar to the <u>k-means algorithm</u>, EM iteratively seeks (an) optimum of an objective function; namely, a maximum for the likelihood on the log scale. After an initialization (of centroids parameters or memberships posterior probabilities), the algorithm iterates between two steps until convergence:

E-step: compute the expectation of the log-likelihood, evaluated given the observable variables and the current parameter estimates

$$h_t(\theta) = E[logL(\theta|\mathbf{X}, \mathbf{Z})|\mathbf{X}, \theta_t]$$

(compute the memberships posterior probabilities, given the current-centroids parameters)

M-step: compute parameter estimates maximizing the expected log-likelihood found in the E step.

$$\theta_{t+1} = argmax_{\theta} h_t(\theta)$$

(compute the centroids parameters given the current memberships posterior probabilities)

The Rand Index

Comparing two partitions. Evaluating a clustering solution against a known partition.

- Set of elements {1, 2... n} (the data points)
- A first partition A, e.g., as generated by a clustering algorithm (in r groups)
- A second partition **B**, e.g., known and used for benchmarking **A** (in s groups)

Share of agreement between the two partitions, Rand Index $0 \le RI \le 1$

$$RI = \frac{\#\{(i,j) together \ in \ \textit{A} \ and \ in \ \textit{B}\} + \#\{(i,j) \ not \ together \ in \ \textit{A} \ and \ in \ \textit{B}\}}{\binom{n}{2}}$$

If r and s are different, maximal agreement cannot be 1. Adjusted Rand index

$$ARI = rac{\sum_{ij} inom{n_{ij}}{2} - \left[\sum_{i} inom{a_{i}}{2} \sum_{j} inom{b_{j}}{2}
ight] \Big/ inom{n}{2}}{rac{1}{2} \left[\sum_{i} inom{a_{i}}{2} + \sum_{j} inom{b_{j}}{2}
ight] - \left[\sum_{i} inom{a_{i}}{2} \sum_{j} inom{b_{j}}{2}
ight] \Big/ inom{n}{2}}$$

CONTINGENCY TABLE

n_{11}	n_{12}	• • •	n_{1s}	a_1
n_{21}	n_{22}	• • •	n_{2s}	a_2
:	:	٠.	:	:
n_{r1}	n_{r2}	• • •	n_{rs}	a_r
b_1	b_2		b_s	