UNIVERSIDAD DEL VALLE DE GUATEMALA

CC2019 - TEORÍA DE LA COMPUTACIÓN BIDKAR ALEXANDER POJOY CORZO Sección 21

Laboratorio 2

Ejercicio 1, 2 y 3

Ruth de León, 22428

GUATEMALA, 27 julio del 2025

Ejercicio 1

1 4	→ (Jnic	'n								Trai	nsici	ones	AF	DP	Ma	(a	(t)
* 4	->	Estr	ella	de	Kleene										FN)			
+ 4	4	10	más	нере	ticiones							-	,90,	-	_	_	ι	_
? .	7	Cero	0 01	۸۸	aparac	ION							99، ا				1	
INC	150	A											,953			1	/	D
Transi	uon	es	del	AFN							D٥	{90	j			/	1	1
Estad	lo !	Simi	bolo	Des	tino	AFI	V -	AF	D							h (1)		
q.	T	O	١.	Г	9,	ε	cierre	(%) - {(14.90	,9,}							
q,		E	:		q _s	4	Est	ado	A on	afd								
q	,	- (93	Tra	nsıu	ones	desd	e d e	stado	A						
q ₃		E	į		95	4	a				4	t:						
94		ε	,		90		qo	a	• 91			A -	ŧ,	С				
94		E			92		A	a	• B									
q		С			q.	Ta			desd									
4	Esta	do n	MLL	u : (94		95	-	c , q	v								
4							C	<u>c</u>	→ [)								
IN	CIS	0	В															
Estad	0	imi	oolo	Des	tino		AFC	Es	tado	a	ь							
q.		ε		9,	1,90		A={9	,,,,,,	2.943	B	C							
q_1		E		92	.94		В,	{qs,	9 53	A	Α							
92		a			95		C:	19:	.3	Α	A							
93		ŧ			95													
94		b			95													
q _s		٤		(91													
4 E	ارجل	n le	W(1/1		9													

INCISO	C								
Estado	Símbolo	Destino	AFO Estado	a	Ь				
90	E	91,98	A= {90,91,91,95}		L				
91	E	92,95	B= {9s.94}	A	1				
q_z	a	93	C= {90,91}	1	A				
Q_3	E	94							
94	٤	qı							
95	Ь	9.							
qu	٤	q ₊							
9,	٤	qs							
qg	٤	9,							
INCISO	0								
Estado	Símbolo	Destino	AFO Estado			a	Ь		
q _o	٤	91,96	A={90,91,92,9	3,99	,90	В	Α		
91	٤	92,94	B={95}			A	A		
92	E	93							
93	E	95							
94	a	9 _s							
qs	E	91							
q,	Ь	9,							
91	E	9 ₄							
INCISO	F								
Estado	Símbolo	Destino	AFO Estado			0	1		
q_o	٤	91,93	A= {90.94.93.			Α	В		
9	0	92	B = {953			Α	-		
9 2	٤	94,96							
90 91 93 94 90	1	95							
Q,	Ö	90							

INCISO	E		INCISO	6		INCISO	H	
	Simbolo	Destino	Estado	Símbolo	Destino	Estado	Símbolo	Destin
q	٤	91,97	q _o	i	91	90	[aeo 3]	
q,	l	92.94	9,	f C	92	90	@	9 ₁
92	a	93	q _z	C	93	9	[ae03]	9,
q,	E	96	9,	[ae]	9,	9,		q,
94	Ь	95	93)	94	92	lon	. 93
95	٤	96	94	£	95	92	net	94
90	٤	91,97	q	[ei]	9s	qı	org	95
q_{7}	a	9s	q _s	3	q,	93	٤	96A10
$q_{\mathfrak{s}}$	Ь	99	9 _b	ε	92,913	9 _e	٤	96, 10
99	ь	910	9,	\n	98	q _s	E	961,10
910	٤	997	9,	e	Ŷq	96	+	97
q _{II}	٤	912, 914	94	l	910	q _a	gt	98
92	a	913	90	5	9,,	93	Cr	94
913	ε	916	9,	e	912	91	Co	9,0
9,9	Ь	95	q _{ız}	{	9,4			
915	٤	916	914	[31]	914			
914	É	911	914	3	9,3			
917	/							

Ejercicio 2

En el siguiente enlace se encuentra el video de explicación del código de expresiones

Ejercicio 3

Algoritmo de Shunting Yard

El algoritmo Shunting Yard fue desarrollado por Edsger W. Dijkstra, el cual es autor del algoritmo que ayuda a encontrar la ruta más corta (Algoritmo de dijkstra). La función es modificar las expresiones matemáticas que usualmente se escribe, como 3 + 4, a un formato llamado notación postfija, por ejemplo, 3 4 +. Este formato es más sencillo para que las computadoras lo interpreten.

Si queremos que ejecute, el algoritmo emplea una pila para los operadores, una cola para los resultados y una lista de elementos individuales. La expresión se analiza desde el principio hasta el final, teniendo en cuenta el orden en que se deben realizar las operaciones y el uso de los paréntesis. Cuando todo este terminado, la expresión modificada se puede calcular sin ningún inconveniente utilizando una pila (Tiliksew, 2025).

Tiliksew, B., Thelwall, J., Khim, J., y Silverman, J. (2025). *Shunting Yard Algorithm* | *Brilliant Math & Science Wiki*. https://brilliant.org/wiki/shunting-yard-algorithm/

En el siguiente <u>enlace</u> se encuentra el video de explicación del código del algoritmo Shunting Yard