Trasformata T

 $\mathcal{T}\{\cdot\}$ è una trasformata che rende una funzione sinusoidale $\cos(\omega t + \varphi)$ una funzione dipendente esclusivamente dal suo periodo T (quindi anche dalla sua pulsazione angolare ω) $\tau(T)$ ($\cot \tau(T) : \mathbb{R}^+ \cup \{e, \infty\} \to \mathbb{T}$ con \mathbb{T} insieme non noto e irrilevante ed e elemento neutro del lcm) tale che:

$$\mathcal{T}\{A\cos(\omega t + arphi)\} = au\left(rac{2\pi}{\omega}
ight) = au(T) \qquad orall \; (A,\omega,arphi) \in \mathbb{R}^+ imes \mathbb{R}^+ imes \mathbb{R}^+$$

au(T) è una funzione non nota (ed è irrilevante conoscerla) che ha come definizione

$$\tau(T_1) + \tau(T_2) = \tau\left(\operatorname{lcm}\left(T_1, T_2\right)\right)$$

È possibile esclusivamente sommare valori tra loro in \mathbb{T} [operazione chiusa] (e, di conseguenza, moltiplicare per scalari interi positivi).

Non ha alcun senso moltiplicare uno scalare $\alpha \in \mathbb{R} \setminus \mathbb{N}$ Nella stessa maniera non ha alcun senso moltiplicare elementi di \mathbb{T} tra loro o con elementi di altri insiemi.

 ${\mathcal T}$ gode di linearità sul semianello $({\mathbb N},+,\cdot)$ per la definizione stessa di $\tau(T)$.

Si può estendere il concetto direttamente su una funzione periodica f qualsiasi con periodo T.

$$\mathcal{T}\{f(t)\} = au(T) \iff f(t+T) = f(t) \quad orall t \in \mathbb{D}_f$$

Per definizione $\mathcal{T}\{k\} \triangleq \tau(e)$ con $e \notin \mathbb{R}$ elemento neutro del lcm che consente a \mathcal{T} di essere un operatore lineare. *(Si veda in seguito la sua trattazione)*

Si ricorda al lettore che l'argomento di \mathcal{T} deve essere una funzione periodica. Se così non fosse per definizione $\mathcal{T}\{f_a\}= au(\infty)$ con f_a funzione aperiodica.

Proprietà di ${\mathcal T}$

1. Linearità

$$\mathcal{T}\{f+g\} = \mathcal{T}\{f\} + \mathcal{T}\{g\}$$
 $\mathcal{T}\{nf\} = n\mathcal{T}\{f\}$

Dim. (1)

Poiché la somma di 2 funzioni periodiche con periodo T_1 e T_2 ha come periodo $\operatorname{lcm}(T_1,T_2)$

$$\mathcal{T}\{f_1+f_2\} = au(ext{lcm}(T_1,T_2)) = au(T_1) + au(T_2) = \mathcal{T}\{f_1\} + \mathcal{T}\{f_2\}$$

Per la definizione stessa di $\tau(T)$.

Dim. (2)

Poiché la somma di n funzioni periodiche con stesso periodo T ha come periodo $\operatorname{lcm}(T_1,T_2,\ldots,T_n)=T$

$$\mathcal{T}\{nf\} = au(\mathrm{lcm}(T_1,T_2,\ldots T_n)) = au(T_1) + au(T_2) + \cdots + au(T_n) =
onumber \ = au(T) + au(T) + \cdots + au(T) = n au(T) = n au(f)$$

2. Neutralità della replicazione (prodotto con numeri naturali)

$$\mathcal{T}\{nf\}=\mathcal{T}\{f\}$$

Sfruttando la linearità di $\mathcal T$ sappiamo che $\mathcal T\{nf\}=n\mathcal T\{f\}$ ma sappiamo anche che $\mathcal T\{nf\}= au(\mathrm{lcm}(T_1,T_2,\dots T_n))= au(T)=\mathcal T\{f\}$ con $T_i=T_j\ orall\ _i^i\in\{1\dots n\}$

3. Indipendenza dalla fase

$$\mathcal{T}\{A\cos(\omega t + arphi)\} = \mathcal{T}\{A\cos(\omega t)\} = au(T)$$

4. Indipendenza dal tipo di funzione sinusoidale

$$\mathcal{T}\{A\sin(\omega t + arphi)\} = \mathcal{T}\left\{A\cos\left(\omega t + arphi + rac{\pi}{2}
ight)
ight\} = au(T)$$

5. Indipendenza dal segno

$$\mathcal{T}\{-A\cos(\omega t + arphi)\} = \mathcal{T}\{A\cos(\omega t + arphi + \pi)\} = au(T)$$
 $\mathcal{T}\{-A\sin(\omega t + arphi)\} = \mathcal{T}\{A\sin(\omega t + arphi + \pi)\} = au(T)$

6. Indipendenza dal modulo

$$\mathcal{T}\{A\cos(\omega t + arphi)\} = \mathcal{T}\{\cos(\omega t + arphi)\} = au(T)$$

7. Indipendenza da offset costante

$$\mathcal{T}\{A\cos(\omega t + arphi) + k\} = \mathcal{T}\{A\cos(\omega t + arphi)\} + \mathcal{T}\{k\} = au(T) + au(e) = au(T)$$

8. Derivazione

$$\mathcal{T}\{f(t)\} = \mathcal{T}\left\{rac{d^{(i)}}{d^{(i)}t}f(t)
ight\} \ \ orall \ i>0$$

Dovuto alla proprietà delle funzioni periodiche

$$f(t+T) = f(t) \Rightarrow f'(t+T) = f'(t)$$

Osservazioni

• Il periodo risultante della somma T_s è sempre maggiore o uguale dei periodi delle funzioni sinusoidali singole.

$$T_s = \operatorname{lcm}(T_1 \dots T_n) \geq T_i \ \ orall \ i \in \{1 \dots n\}$$

 Modulo, fase iniziale, segno e tipo di funzione non sono rilevanti nel calcolo del periodo della somma di funzioni periodiche.

Proprietà di $\tau(T)$

1. Idempotenza rispetto alla replicazione

$$n\tau(x) = \tau(x)$$

2. Elemento neutro della somma

$$au(x) + au(e) = au(x) \ \ orall x \in \mathbb{R}^+ \cup \{e, \infty\}$$

3. Assorbimento

$$au(x) + au(nx) = au(nx)$$

4. Commutatività

$$au(x_1) + au(x_2) = au(ext{lcm}(x_1, x_2)) = au(ext{lcm}(x_2, x_1)) = au(x_2) + au(x_1)$$

5. Associatività

$$egin{aligned} au(a) + [au(b) + au(c)] &= au(a) + au(\mathrm{lcm}(b,c)) = au(\mathrm{lcm}(a,\mathrm{lcm}(b,c))) = \ &= au(\mathrm{lcm}(a,b,c)) = au(\mathrm{lcm}(a,b),c)) = au(\mathrm{lcm}(a,b)) + au(c) = \ &= [au(a) + au(b)] + au(c) \end{aligned}$$

6. Elemento assorbente della somma

$$au(x) + au(\infty) = au(\infty) \ \ orall \ x \in \mathbb{R}^+ \cup \{e, \infty\}$$

Proprietà di $\mathbb T$

1. \mathbb{T} è un insieme definibile come

$$\mathbb{T} = \{ au(T): T \in \mathbb{R}^+ \cup \{e, \infty\}\}$$

2. $(\mathbb{T},+)$ è un monoide commutativo con elemento neutro $\tau(e)$ ed elemento assorbente $\tau(\infty)$

Esempi

1.
$$\cos^2(x) = \frac{1 + \cos(2x)}{2} = \frac{1}{2} + \frac{1}{2}\cos(2x)$$

$$\mathcal{T}\{\cos^2(x)\} = \mathcal{T}\left\{rac{1}{2}
ight\} + \mathcal{T}\left\{rac{1}{2}\cos(2x)
ight\} = au(e) + au(\pi) = au(\pi) \Rightarrow T = \pi$$

2.
$$\sin^2(x) = \frac{1 - \cos(2x)}{2} = \frac{1}{2} - \frac{1}{2}\cos(2x)$$
$$\mathcal{T}\{\sin^2(x)\} = \mathcal{T}\left\{\frac{1}{2}\right\} + \mathcal{T}\left\{-\frac{1}{2}\cos(2x)\right\} = \tau(e) + \tau(\pi) = \tau(\pi) \Rightarrow T = \pi$$

3.
$$\mathcal{T}\{\cos^2(x) + \sin^2(x)\} = \mathcal{T}\{\cos^2(x)\} + \mathcal{T}\{\sin^2(x)\} = \tau(\pi) + \tau(\pi) = \tau(\pi)$$

$$\mathcal{T}\{\cos^2(x) + \sin^2(x)\} = \mathcal{T}\{1\} = \tau(e) \neq \tau(\pi)$$

Non è un errore in quanto $\tau(e)$ si applica nel caso di funzioni costanti che non hanno un periodo definito. Il problema sorge quando si fanno altre somme.

Se ignoriamo l'identità goniometrica ci ritroveremo con $\tau(\pi)$ che sommato a $\tau(T)$ avrà come risultato $\tau(\operatorname{lcm}(\pi,T)) \geq \tau(T) = \tau(\operatorname{lcm}(e,T))$ trovando un periodo falsato (ancora valido ma non minimo) della funzione di cui calcoliamo la $\mathcal T$ trasformata.