

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

Лабораторная работа №8

по дисциплине «Архитектура ВМиС»

Студент группы: <u>ИКБО-04-20</u>	<u>Хан А.А.</u> (Фамилия студента)
Преподаватель	<u>Железняк Л.М.</u> (Фамилия преподавателя)

Содержание

ВВЕДЕНИЕ	2
Цель лабораторной работы	3
Порядок выполнения работы	
Выполнение работы	
Таблица истинности	
Контрольные вопросы	
ВЫВОДЫ	
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	

введение

Нам необходимо смоделировать логическую схему 3-х разрядного мультиплексора 8:1 с использованием параметрических элементов. Исследовать работу схемы с использованием сигнального редактора.

Цель лабораторной работы

Приобретение навыков использования параметрических элементов (LPM function) в САПР QUARTUS II, экспериментальное исследование счетчиков и регистров, построенных на их основе.

Порядок выполнения работы

- 1. Изучить правила построения и принцип работы триггеров и построение на их основе логических схем.
- 2. Нарисовать электрическую схему по указанию преподавателя при помощи графического редактора САПР QUARTUS II. и произвести симуляцию работы схемы, зарисовать диаграммы работы и по ее результатам заполнить таблицу истинности смоделированной схемы.
- 3. Спроектировать эту же электрическую схему, но с использованием параметрических элементов САПР QUARTUS II, проверить ее работу в сигнальном редакторе и оценить временные задержки в схеме.
- 4. Спроектировать эту же электрическую схему, но и использованием готовых элементов из библиотеки примитивов САПР QUARTUS II, проверить ее работу в сигнальном редакторе и по ее результатам заполнить таблицу истинности смоделированной схемы.
- 5 Ответить на контрольные вопросы, оформить отчет о выполненной работе.

Выполнение работы

Задание варианта: 3-х разрядный мультиплексор 8:1.

Строение мультиплексора содержит 8 информационных входов D0-D7, 3 входа выбора S0-S2 и один выход F.

Спроектировать электрическую схему, с использованием готовых элементов из библиотеки примитивов САПР QUARTUS II, проверить ее работу в сигнальном редакторе и по ее результатам заполнить таблицу истинности смоделированной схемы.

lpm_mux0 data7 d7 data6 INPUT d6 data5 d5 data4 d4 res ult OUTPUT data3 d3 data2 d2 data1 d1 data0 inst S[0..2]

Принципиальная схема с одним мультиплексором 8к1.

Рис. 1. – Синтезированная схема.

Диаграмма результата работы схемы.

Рис. 2. – Результаты моделирования работы схемы в сигнальном редакторе.

Рис. 3. - Результаты моделирования работы схемы в сигнальном редакторе.

Диаграмма результата работы оказалось идентичной двум первым диаграммам, следовательно, обе схемы и программа составлены правильно.

Таблица истинности

S2S1S0	D7D6D5D4D3D2D1D0	F
000		1
001		0
010		0
011	000001	0
100	000001	0
101		0
110	-	0
111		0
000		0
001		1
010		0
011	0000010	0
100	0000010	0
101		0
110		0
111		0
000		0
001	0000100	0
010		1
011		0
100		0
101		0
110		0
111		0
000		0
001		0
010		0
011	0001000	1
100	0001000	0
101		0
110		0
111		0

000	0010000	0
001		0
010		0
011		0
100		0
101		1
110		0
111		0
000	0100000	0
001		0
010		0
011		0
100		0
101		0
110		1
111		0
000	1000000	0
001		0
010		0
011		0
100		0
101		0
110		0
111		1

Контрольные вопросы

1. <u>Объясните понятие «параметрический элемент». Какие</u> параметрические элементы допступны в САПР QUARTUS II?

Параметрический элемент — это один или несколько конструктивных элементов, которые можно сохранять и повторно использовать в других проектах.

Параметрические элементы CAПР QUARTUSII Counter

Входные выводы	
Имя вывода	Описание
data []	Параллельный вход данных счетчика
clock	Вход счетных импульсов
clk_en	Разрешение синхронизации.
cnt_en	Разрешение счета
yan dayyan	Управление направлением счета
updown	(1 = сложение, 0 = вычитание)
aclr	Асинхронный сброс входов
aset	Асинхронная установка входов
aload	Асинхронная загрузка входов. Установка счетчика в значение data[].
sclr	Синхронный сброс входов. Сброс счетчика следующим тактовым импульсом
sset	Синхронная установка входов. Установка счета следующим тактовым импульсом.

	Синхронная загрузка входов. Загрузка в
sload	счетчик значения data[] следующим
	тактовым импульсом.

Выходные выводы		
Имя вывода	Описание	
q[]	Выход счетчика	
eq [150]	Декодированный выход счетчика. Высокий активный уровень появляется в момент, когда счетчик достигает заданного значения.	
cout	Перенос в старший разряд	
Параметры		
Параметр	Описание	
LPM_WIDTH	Разрядность счетчика или входных значений data[] и выходных q[].	
LPM_DIRECTION	Может принимать значения "UP", "DOWN" или "UNUSED". Если этот параметр используется, то вход updown не должен быть подключен. Если вход updown не подключен, то значение LPM_DIRECTION по умолчанию — "UP"	
LPM_MODULS	Максимальный счет, плюс один. Число уникальных состояний в цикле счетчика. Если введенное значение больше, чем LPM_MODULUS параметр, поведение счетчика не определено.	
LPM_AVALUE	Постоянное значение, которое загружается, когда aset высок. Если введенное значение больше чем <modulus>, поведение счетчика - неопределенный (X) логический уровень, где</modulus>	

	<modulus> - LPM_MODULUS. Параметр ограничен значением в 32 бита.</modulus>
LPM_SVALUE	Постоянное значение, которое загружается по переднему фронту тактовых импульсов, когда sset или sconst высок. Должен Использоваться, если sconst используется.
LPM_HINT	Позволяет определять специфические Altera- параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL

Multiplier

Входные выводы		
Имя вывода	Описание	
dataa[]	Множимое	
datab[]	Множитель	
sum[]	Частичная сумма	
clock	Вход тактовых импульсов	
clken	Разрешение использования тактового входа	
aclr	Асинхронный сброс	
Выходные выводы		
Имя вывода	Описание	
result[]	result = dataa [] * datab [] + sum. The product LSB is aligned with the sum LSB.	

Параметры	
Параметр	Описание

LPM_WIDTHA	Разрядность dataa[].
LPM_WIDTHB	Разрядность datab[].
LPM_WIDTHP	Разрядность result[].
LPM_WIDTHS	Разрядность sum []. Обязателен, даже если порт суммы не используется.
LPM_ REPRESENTATION	Тип выполняемого сравнения "SIGNED"," UNSIGNED", "UNUSED". Если значение не указанно, то по умолчанию устанавливается "UNSIGNED"
LPM_HINT	Позволяет определять специфические Altera- параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL
INPUT_A_IS_CONSTANT	Аltera параметр. Принимает значения "YES", "NO", и "UNUSED". Если dataa [] связан с постоянным значением, устанавливая INPUT_A_IS_CONSTANT "YES" оптимизирует <i>multiplier</i> по использованию ресурсов и скорости. Если опущено, значение по умолчанию - "NO".
INPUT_B_IS_CONSTANT	Аltera параметр. Принимает значения "YES", "NO", и "UNUSED". Если datab [] связан с постоянным значением, устанавливая INPUT_B_IS_CONSTANT "YES" оптимизирует <i>multiplier</i> по использованию ресурсов и скорости. Значение по умолчанию - "NO".

USE_EAB	Аltera параметр. Принимает значения "ON", "OFF", и "UNUSED". Устанавливая параметр USE_EAB "ON" позволяет QUARTUSII использовать блоки дополнительных атрибутов, чтобы использовать 4 х 4 или (8 х значение константы) стандартные блоки в ACEX1К и FLEX10К устройствах.
LATENCY	Altera параметр. То же, что и LPM_PIPELINE. Параметр обеспечивает совместимости с QUARTUSII проектами версии ниже 7.0. Для всех новых проектов, используется параметр LPM_PIPELINE
MAXIMIZE_SPEED	Аltera параметр. Возможные значения от 0 до 10. Если параметр используется, то QUARTUSII пытается оптимизировать данную функцию lpm_mult для скорости, а не для уменьшения занимаемой области, и отменяет установку опции Optimize в диалоговом окне Global Project Logic Synthesis (меню Assign). Если МАХІМІΖЕ_SPEED не использован, значение опции Optimize используется вместо него. Если установлено МАХІМІΖЕ_SPEED - 6 или выше, компилятор оптимизирует мегафункции lpm_mult для более высокой скорости; если установлено - 5 или меньше, компилятор оптимизирует для уменьшения занимаемой области.

Comparator

	Входные выводы
Имя вывода	Описание

dataa[]	datab[] сравнивается с этим значением
datab[]	Значение с которым сравнивается dataa[]
clock	Вход тактовых импульсов
clken	Разрешение использования тактового входа
aclr	Асинхронный сброс
Выходные выводы	
Имя вывода	Описание
alb	"High" (1) если dataa[] < datab[]
aeb	"High" (1) если dataa[] == datab[]
agb	"High" (1) если dataa[] > datab[]
ageb	"High" (1) если dataa[] >= datab[]
aneb	"High" (1) если dataa[] != datab[]
aleb	"High" (1) если dataa[] <= datab[]

Параметры	
Параметр	Описание
LPM_WIDTH	Разрядность входов dataa[] и datab[]
LPM_REPRESENTATION	Тип выполняемого сравнения "SIGNED"," UNSIGNED", "UNUSED". Если значение не указанно, то по умолчанию устанавливается "UNSIGNED"
LPM_PIPELINE	
LPM_HINT	Позволяет определять специфические Altera-параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL

CHAIN_SIZE	
ONE_INPUT_IS_CONSTANT	Специфический Altera - параметр.
	Принимает значения "YES", "NO", или
	"UNUSED". Обеспечивает большую
	оптимизацию, если один из входов
	постоянен. По умолчанию - "NO".

Adder Subtractor

	Входные выводы
Имя вывода	Описание
dataa[]	Первое слагаемое/ Уменьшаемое
datab[]	Слагаемое/ Вычитаемое
add_sub	Если "1" (high), операция = dataa [] +datab [] +cin. Если "0" (low), операция = dataa[]-datab[] +cin-1
clock	Вход тактовых импульсов
clken	Разрешение использования тактового входа
aclr	Асинхронный сброс

Выходные выводы	
Имя вывода	Описание
result[]	dataa [] +datab [] +cin или dataa[] -datab[] +cin-1.
cout	Обнаруживает переполнения в операциях "UNSIGNED".
overflow	Результат превышает доступную точность

	Параметры
۱	

Параметр	Описание
LPM_WIDTH	Разрядность входов dataa[],datab[],result[]
LPM_DIRECTION	Значения - "ADD", "SUB", и "UNUSED". Если не указано, значение по умолчанию "DEFAULT", в этом случае используется значение add_sub порта. Add_sub порт не может использоваться, если используется LPM_DIRECTION.
LPM_REPRESENTATION	Тип выполняемого сравнения "SIGNED", "UNSIGNED", "UNUSED". Если значение не указанно, то по умолчанию устанавливается "UNSIGNED"
LPM_HINT	Позволяет определять специфические Altera-параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL
ONE_INPUT_IS_CONSTANT	Altera параметр. Принимает значения "YES", "NO", и "UNUSED". Обеспечивает большую оптимизацию, если один вход постоянный. Если не указано, значение по умолчанию - "NO"
MAXIMIZE_SPEED	Аltera параметр. Возможные значения от 0 до 10. Если параметр используется, то QUARTUSII пытается оптимизировать данную функцию lpm_mult для скорости, а не для уменьшения занимаемой области, и отменяет установку опции Optimize в диалоговом окне Global Project Logic Synthesis (меню Assign). Если MAXIMIZE_SPEED не использован, значение опции Optimize используется вместо него. Если установлено MAXIMIZE_SPEED – 6 или выше,

компилятор оптимизирует мегафункции
lpm_mult для более высокой скорости; если
установлено - 5 или меньше, компилятор
оптимизирует для уменьшения
занимаемой области.

Absolute Value

Входные выводы	
Имя вывода	Описание
data []	Число со знаком

Выходные выводы	
Имя вывода	Описание
result[]	Абсолютное значение data [].
overflow	

Параметры	
Параметр	Описание
LPM_WIDTHA	Разрядность data [] и result[]
LPM_HINT	Позволяет определять специфические Altera-параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL

Divider

Входные выводы	
Имя вывода	Имя вывода
numer[]	Числитель
denom[]	Знаменатель
clock	Вход тактовых импульсов
clken	Разрешение использования тактового входа
aclr	Асинхронный сброс
Выходные выводы	
Имя вывода	Описание
quotient[]	Частное
remain[]	Остаток

Параметры	
Параметр	Описание
LPM_WIDTHN	Разрядность numer[] и quotient[].
LPM_WIDTHD	Разрядность denom[] и remain[].
LPM_NREPRESENTATION	Определяет параметр числителя "SIGNED" или "UNSIGNED" Сейчас поддерживается только "UNSIGNED".
LPM_DREPRESENTATION	Определяет параметр знаменателя "SIGNED" или "UNSIGNED" Сейчас поддерживается только "UNSIGNED"
LPM_HINT	Позволяет определять специфические Altera-параметры в файлах проекта VHDL.
LPM_TYPE	Идентифицирует LPM имя файлах проекта VHDL

2. <u>Объясните принцип работы счетчика, построенного на триггерах.</u> <u>Какие типы счетчиков существуют?</u>

Счетчик - это устройство, которое служит для отслеживания количества каких-либо событий.

Счетчик - это автомат, служащий для учета количества событий.

Счётчик на D-триггерах, 1 элемент меняет на противоположное значение, а на остальные последующие подаётся отрицание предыдущего D-триггера.

Счетчики классифицируются по следующим параметрам:

- 1. по разрядности
 - 2.
 - суммирующие
 - вычитающие
 - реверсивные
 - с произвольным порядком пересчета
 - 3.
 - синхронные
 - асинхронные
- 4. по типу формирования переноса внутри счетчика
 - с последовательным
 - с параллельным
 - с комбинированным
 - 5.
 - с функцией установки произвольного числа
 - с установкой в ноль

Счетчик называют полным, если количество устойчивых состояний на выходе равно 2^n , где n-число выходов счетчика

3. <u>Объясните назначение пунктов меню Edit Ports/Parameters.</u>

Для редактирования параметров и входов/выходов схемы необходимо Properties. Во вкладке Ports можно выбрать необходимые входы/выходы комбинационный схемы,

4. Чем ограничивается максимальная скорость работы счетчика? Какова максимальная частота работы счетчика разработанного в ходе выполнения лабораторной работы? В зависимости как реализовано соединение триггеров, последовательно или параллельно, параллельно — минимально, последовательно — максимально.

Я разработала параллельную схему, т.е. 1 такт нужен.

выводы

В данной лабораторной работе я приобрела навыки использования параметрических элементов (LPM function) в САПР QUARTUS II, экспериментально исследовал счетчики и регистры, построенных на их основе.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Головков А., Пивоваров И., Кузнецов И. Компьютерное моделирование и проектирование радиоэлектронных средств. Учебник для вузов. Стандарт третьего поколения.:- СПб.: 2015. 208 с.
- 2. Соловьев В.В., Климович А. Логическое проектирование цифровых систем на основе программируемых логических интегральных схем. М.: Горячая линия Телеком, 20011. 376 с.
- 3. Стешенко В. ПЛИС фирмы ALTERA: элементная база, система проектирования и языки описания аппаратуры М.: Додека, 2010. 576 с.
- 4. Антонов А.П. Язык описания цифровых устройств AlteraHDL: Практический курс. М.: ИП «Радиософт», 2013. 224 с.
- 5. Ефремов Н.В. Введение в систему автоматизированного проектирования Quartus II. Учебное пособие. М.: ГОУ ВПО МГУЛ, 2011. 147 с.