Next

Next: Randomized satisfiability algorithms.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance is a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for an instance *I*: any data *D* such that, given *D*, one can check in polynomial time (in *D*) that *I* has a yes-answer.

Satisfiability has small witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance is a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for an instance *I*: any data *D* such that, given *D*, one can check in polynomial time (in *D*) that *I* has a yes-answer.

Satisfiability has small witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance is a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for an instance I: any data D such that, given D, one can check in polynomial time (in D) that I has a yes-answer.

Satisfiability has small witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance is a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for an instance I: any data D such that, given D, one can check in polynomial time (in D) that I has a yes-answer.

Satisfiability has small witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance is a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for an instance I: any data D such that, given D, one can check in polynomial time (in D) that I has a yes-answer.

Satisfiability has small witnesses: interpretations.

Decision problem: any collection of problems that have a yes-no answer. Each element of this collection is called an instance of this problem.

Example: solvability of systems of linear inequalities over integers.

- an instance is a system of linear inequalities;
- an answer is yes if it has a solution.

SAT is a decision problem:

- an instance is a finite set of clauses.
- ▶ it has a yes-no answer: yes (satisfiable) or no (unsatisfiable)

Witness for an instance I: any data D such that, given D, one can check in polynomial time (in D) that I has a yes-answer.

Satisfiability has small witnesses: interpretations.

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation I such that I ⊨ S or don't know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
I := random interpretation
if I ⊨ S then return I
return don't know
end
```

Randomized satisfiability algorithms

- random search for a satisfying assignment;
- cannot establish unsatisfiability
- may return "don't know"

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that I ⊨ S or don't know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
/ := random interpretation
if / ⊨ S then return /
return don't know
end
```

Randomized satisfiability algorithms:

- random search for a satisfying assignment;
- cannot establish unsatisfiability
- may return "don't know"

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that I ⊨ S or don't know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
/ := random interpretation
if I ⊨ S then return /
return don't know
end
```

Randomized satisfiability algorithms:

- random search for a satisfying assignment;
- cannot establish unsatisfiability;
- may return "don't know"

```
procedure CHAOS(S)
input: set of clauses S
output: interpretation / such that I ⊨ S or don't know
parameters: positive integer MAX-TRIES
begin
repeat MAX-TRIES times
/ := random interpretation
if I ⊨ S then return /
return don't know
end
```

Randomized satisfiability algorithms:

- random search for a satisfying assignment;
- cannot establish unsatisfiability;
- may return "don't know"

- Choose a random interpretation.
- ▶ If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \left\{ egin{array}{ll} I(q), & ext{if } p
eq q; \ 1, & ext{if } p = q ext{ and } I(p) = 0 \ 0, & ext{if } p = q ext{ and } I(p) = 1 \end{array}
ight.$$

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \left\{ egin{array}{ll} I(q), & ext{if } p
eq q; \ 1, & ext{if } p = q ext{ and } I(p) = 0 \ 0, & ext{if } p = q ext{ and } I(p) = 1 \end{array}
ight.$$

- Choose a random interpretation.
- If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \left\{ egin{array}{ll} I(q), & ext{if } p
eq q; \ 1, & ext{if } p = q ext{ and } I(p) = 0 \ 0, & ext{if } p = q ext{ and } I(p) = 1 \end{array}
ight.$$

- Choose a random interpretation.
- ▶ If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \begin{cases} I(q), & \text{if } p \neq q; \\ 1, & \text{if } p = q \text{ and } I(p) = 0; \\ 0, & \text{if } p = q \text{ and } I(p) = 1. \end{cases}$$

- Choose a random interpretation.
- ▶ If this interpretation is not a model, repeatedly choose a variable and change its value in the interpretation (flip the variable).

The flipped variables are chosen using heuristics or randomly, or both.

$$flip(I,p)(q) = \begin{cases} I(q), & \text{if } p \neq q; \\ 1, & \text{if } p = q \text{ and } I(p) = 0; \\ 0, & \text{if } p = q \text{ and } I(p) = 1. \end{cases}$$

```
procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
```

GSAT is a local search algorithm, it tries to maximise the number of satisfied clauses by local changes.

```
procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
```

GSAT is a local search algorithm, it tries to maximise the number of satisfied clauses by local changes.

```
procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
end
```

GSAT is a local search algorithm, it tries to maximise the number of satisfied clauses by local changes.

```
procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
  repeat MAX-FLIPS times
   p := a variable such that flip(I, p) satisfies
           the maximal number of clauses in S
    I = flip(I, p)
   if l \models S then return l
 return don't know
end
```

GSAT is a local search algorithm, it tries to maximise the number of satisfied clauses by local changes.

```
procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
  repeat MAX-FLIPS times
   p := a variable such that flip(I, p) satisfies
           the maximal number of clauses in S
   I = flip(I, p)
   if l \models S then return l
 return don't know
end
```

GSAT is a local search algorithm, it tries to maximise the number of satisfied clauses by local changes.

```
procedure GSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
  repeat MAX-FLIPS times
   p := a variable such that flip(I, p) satisfies
           the maximal number of clauses in S
   I = flip(I, p)
   if l \models S then return l
 return don't know
end
```

GSAT is a local search algorithm, it tries to maximise the number of satisfied clauses by local changes.

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
	0	1	1	4				p_2, p_3	p_3
	0	1		4				p_1	<i>P</i> ₁
	1	1		5					

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	ρ_2
	0	1	1	4	3			p_2, p_3	ρ_3
	0	1		4	5			p_1	p_1
	1	1		5					

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3			p_2, p_3	p_3
	0	1		4	5			<i>p</i> ₁	p_1
	1	1		5					

flip	inte	rpreta	ation	satisfied clauses				candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3			p_2, p_3	p_3
	0	1		4	5			p_1	p_1
	1	1		5					

flip	interpretation			sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_2, p_3	
	0	1		4	5			<i>P</i> ₁	
	1	1		5					

flip	inte	erpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	p_2	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5		4	p_1	
	1	1		5					

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5			<i>p</i> ₁	p_1
	1	1		5					

$$\begin{array}{c|ccccc}
0 & 1 & 0 \\
\hline
p_1 & \vee & \neg p_2 & \vee & p_3 \\
& & \neg p_2 & \vee & \neg p_3 \\
\hline
\neg p_1 & & \vee & \neg p_3 \\
\hline
\neg p_1 & \vee & p_2 \\
p_1 & \vee & p_2
\end{array}$$

flip	inte	erpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4	<i>p</i> ₁	p_1
	1	1		5					

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	<i>p</i> ₂
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4	p_1	p_1
	1	1	0	5					

flip	inte	rpreta	ation	sa	tisfie	d clau	ıses	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃		<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4	p_1	p_1
	1	1	0	5					

flip	inte	rpreta	ation	satisfied clauses				candidates	flipped
no.	p_1	p_2	p_3		p_1	p_2	p_3	for flipping	variable
1	0	0	1	4	3	4	4	p_2, p_3	p_2
2	0	1	1	4	3	4	4	p_2, p_3	p_3
3	0	1	0	4	5	4	4	p_1	p_1
	1	1	0	5					

Advantages: Can quickly find a satisfying assignment in large problems.

Issues: during the inner loop GSAT can get stuck in a "plateau" optimum point, where further flips do not change the number of satisfied clauses.

GSAT with random walks

```
procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
```

GSAT with random walks

```
procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
             real number 0 < \pi < 1 (probability of a sideways move),
```

GSAT with random walks

```
procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
             real number 0 < \pi < 1 (probability of a sideways move),
begin
 repeat MAX-TRIES times
  / := random interpretation;
  if l \models S then return l
end
```

GSAT with random walks

```
procedure GSATwithWalks(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
             real number 0 < \pi < 1 (probability of a sideways move),
begin
 repeat MAX-TRIES times
  / := random interpretation;
  if l \models S then return l
  repeat MAX-FLIPS times
   with probability \pi
     p := a variable such that flip(I, p) satisfies
            the maximal number of clauses in S
   with probability 1-\pi
     randomly select p among all variables occurring in clauses false in I
    I = flip(I, p);
   if l \models S then return l
 return don't know
end
```

```
procedure WSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
```

```
procedure WSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
end
```

```
procedure WSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
  repeat MAX-FLIPS times
   randomly select a clause C \in S such that I \not\models C
   randomly select a variable p in C
    I = flip(I, p)
   if l \models S then return l
 return don't know
end
```

```
procedure WSAT(S)
input: set of clauses S
output: interpretation I such that I \models S or don't know
parameters: integers MAX-TRIES, MAX-FLIPS
begin
 repeat MAX-TRIES times
  / := random interpretation
  if l \models S then return l
  repeat MAX-FLIPS times
   randomly select a clause C \in S such that I \not\models C
   randomly select a variable p in C
   I = flip(I, p)
   if l \models S then return l
 return don't know
end
```

$$\begin{array}{c|ccccc} 0 & 0 & 1 \\ \hline p_1 & \vee & \neg p_2 & \vee & p_3 \\ & & \neg p_2 & \vee & \neg p_3 \\ \hline \neg p_1 & & \vee & \neg p_3 \\ \hline \neg p_1 & \vee & p_2 \\ p_1 & \vee & p_2 \\ \end{array}$$

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	p ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	p_1
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
	1			$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	p_3
				$\neg p_1 \lor \neg p_3$		
	1	1	0			

$$\begin{array}{c|ccccc} 0 & 0 & 1 \\ \hline p_1 & \vee & \neg p_2 & \vee & p_3 \\ & & \neg p_2 & \vee & \neg p_3 \\ \hline \neg p_1 & & & \vee & \neg p_3 \\ \hline \neg p_1 & \vee & p_2 \\ p_1 & \vee & p_2 \\ \end{array}$$

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	p ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	p_1
2	1	0	1	$\neg p_1 \lor \neg p_3 \\ \neg p_1 \lor p_2$	p_1, p_2, p_3	p ₂
3	1	1	1	$\neg p_2 \lor \neg p_3 \\ \neg p_1 \lor \neg p_3$	p_1, p_2, p_3	<i>p</i> ₃
	1	1	0			

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	p ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
	1			$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	p_3
				$\neg p_1 \lor \neg p_3$		
	1	1	0			

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	p ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
	1			$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	p_3
				$\neg p_1 \lor \neg p_3$		
	1	1	0			

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	<i>p</i> ₂
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	p_3
				$\neg p_1 \lor \neg p_3$		
-	1	1	0			

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	p_3
				$\neg p_1 \lor \neg p_3$		
	1	1	0			

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	p ₃
				$\neg p_1 \lor \neg p_3$		
	1	1	0			

flip	interpretation			unsatisfied	candidates	flipped
no.	<i>p</i> ₁	p_2	<i>p</i> ₃	clauses	for flipping	variable
1	0	0	1	$p_1 \vee p_2$	p_1, p_2	<i>p</i> ₁
2	1	0	1	$\neg p_1 \lor \neg p_3$	p_1, p_2, p_3	p_2
				$\neg p_1 \lor p_2$		
3	1	1	1	$\neg p_2 \lor \neg p_3$	p_1, p_2, p_3	p_3
				$\neg p_1 \lor \neg p_3$		
	1	1	0			

Summary

Probabilistic analysis of satisfiability:

- randomly generated clauses
- main parameter: r = m/n; n- number of variables; m number of clauses
- ▶ sharp threshold transition of $\pi(r, m)$ from sat to unsat
- crossover point $r \simeq 4.25$
- hard random problems are around the crossover point

Randomized algorithms

- random search for satisfying assignments
- one-sided can not be used to show unsatisfiability
- GSAT local search
- GSAT with random walks;
- Walk SAT (WSAT)