Causal prediction for medical decision making: Methods and practice

Case study: platelet transfusion Nan van Geloven

[Day 4, morning]

Case study: prophylactic platelet transfusions in the NICU

- Unknown which (and when) preterm infants with severe thrombocytopenia benefit from prophylactic transfusions
- Current guidelines only based on platelet count

Aim: develop a prediction model that can support individual transfusion decisions

Clinical factors in addition to platelet count

Prediction of 3-day risk of major bleeding or death under two transfusion strategies:

Model development

International multicenter cohort study (14 NICUs)

1042 infants with severe thrombocytopenia

Gestational age & birth weight: 28 weeks (IQR 26-30) 900 grams (IQR 698-1230)

65% received ≥1 transfusion

23% major bleeding or death within 10 days

Model validation

National multicenter cohort study (7 NICUs)

Jan 2010 - Dec 2015

637 infants with severe thrombocytopenia

Gestational age & birth weight: 28 weeks (IQR 26-30) 900 grams (IQR 710-1177)

73% received ≥1 transfusion

21% major bleeding or death within 10 days

Data

Hourly status from birth up to 21 days

Time-fixed and time-varying predictors

+ time-varying confounders: perinatal asphyxia, planned invasive procedures, IV bolus therapy, PDA treatment

Transfusions

Time-related challenges

- 1. Infants may receive more than one transfusion over time
 - → how to define the prophylaxis and no-prophylaxis treatment strategies?

- 2. Later transfusion decisions are based on parameters (eg platelet count) affected by earlier transfusion decisions
 - → time-varying confounding

- 3. Model should be applicable repeatedly over time
 - → multiple prediction moments

1. Defining the treatment strategies

No-prophylaxis strategy: if an infant were not to receive a platelet transfusion for the next 3 days

Prophylaxis strategy: if an infant were to receive a prophylactic platelet transfusion within 6 hours (and possibly again later)

Considerations:

- What is relevant to the decision?
- Time between decision making, ordering and applying transfusion
- How much evidence in the data on these strategies?

Estimand

Target population	Preterm neonates with a gestational age <34 weeks and severe		
	thrombocytopenia defined as platelet count <50x10 ⁹ /L, admitted to a		
	tertiary care NICU in Western Europe		
Time point(s) of	At any timepoint during the first week after the onset of severe		
intended use	thrombocytopenia		
Outcome and	Major bleeding or death; primary time horizon 3 days		
prediction horizon			
Predictors	Time fixed: gestational age, small-for-gestational age. Time varying:		
	mechanical ventilation, platelet count, cumulative number of previous		
	platelet transfusions, necrotizing enterocolitis, sepsis, inotropes,		
	postnatal age		
Treatment option(s)	No-prophylaxis strategy: no platelet transfusion during 72 hours after the		
	prediction time point.		
	Prophylaxis strategy: administering one or more platelet transfusions		
	within 6 hours after the prediction time point		

2. Adjusting for time-varying confounding

Step 1: Cloning

Step 2: Censoring

Step 3: Weighting

3. Ensuring model can be used repeatedly

3. Landmarking

two weighted Cox proportional hazards pooled over all landmark datasets

landmark time added as predictor

Van Houwelingen. "Dynamic Prediction by Landmarking in Event History Analysis." *Scandinavian Journal of Statistics* 2007

Results validation dataset

Keogh and Van Geloven. Prediction under interventions: Evaluation of **Counterfactual** Performance Using Longitudinal Observational Data. Epidemiology 2024

Example patients

Predictors	Patient 1	Patient 2
Gestational age (weeks + days)	28+0	28+0
Postnatal age (days)	7	1
Platelet count (x10 ⁹ /L)	25	25
Time since first platelet count <50x10 ⁹ /L (hr)	0	0
No. of previous platelet transfusions	0	0
SGA (birth weight <p10)< td=""><td>No</td><td>Yes</td></p10)<>	No	Yes
Inotropes	No	No
Mechanical ventilation	Yes	No
Antibiotic treatment for (suspected) sepsis	Yes	No
Necrotizing enterocolitis	Yes	No

Illustration of the model's predictions by platelet count

Next steps

Determine meaningful risk cut-offs for performing transfusion (interviews with clinicians and patient representatives)

Compare expected outcomes under a prediction-driven transfusion strategy to outcomes under current care

- in observational data
- in a randomized trial

<- clinical utility (this afternoon!)

Reflections

Successful collaboration of clinicians, epidemiologists and biostatisticians

Additional funding obtained for statistical analysis

Extensive SAP made up front (31 pages in total)

Still data showed some unexpected things: 8 changes to plan explained in SAP

- E.g. one center followed different transfusion strategy than others
- Some babies with poor outcome went without platelet measurement for long time
- Truncation of weights

Acknowledgments

Hilde van der Staaij

Anske van der Bom

Camila Caram-Deelder

Ilaria Prosepe

Enrico Lopriore

Suzanne Fustolo-Gunnink PPOC20-22 grant

Karin Fijnvandraat

Wes Onland

Sandra Prins

Esther d'Haens

Radboudumc

Sabine Vrancken

Christian Hulzebos

Florian Cassel

Peter Andriessen

Emöke Deschmann

Daniel Vijlbrief

Christof Dame

Elke van Westering-Kroon

