EPITA / InfoS3	
NOM:	Novembre 2017
Prenom ;	Groupe :

Contrôle Electronique - CORRIGE

	EPIJA	barè Réponses exclusive	et les documents ne sont pas autorisés. Le me est donné à titre indicatif. ment sur le sujet. Si vous manquez de place, uvez utiliser le verso des pages.	
<u>E</u>	<u>xercice 1.</u> Q	uestions de cours (QCI	VI sans points négatifs — 5 points)	andennesses.
Q1.	Le dopage perm	et d'augmenter la résisti	vité du semi-conducteur	
	a- VRAI		b FAUX	
Q2.	Le dopage perme	et de favoriser le phénon	nène de thermogénération.	
	a- VRAI		b FAUX	
Q3. On utilise l'élément semi-conducteur de silicium avec 4 électrons dans la bande de valence. Si on le dope avec du bore, élément ayant 3 électrons dans sa bande de valence, quel est le type de dopage :				
	O Dopage P		c- Dopage NP	
	b- Dopage N		d- Aucun dopage	
Q4.	Dans un semi-cor	iducteur intrinsèque, le r	nombre d'électrons libres est :	
	(a) égal au nomb		c- plus petit que le nombre de trous	
	b- plus grand qu	e le nombre de trous	d- aucun des cas précédents	
Q5.	Quel modèle perr	net la représentation la p	olus précise de la diode :	
	a- Le modèle idé		C- Le modèle réel	
	b- Le modèle à se	euil	d- Les trois modèles sont équivalents	
Q6. e cou elon	irant qui traverse la	diode et V_D , la tension à	s'écrit : $I_D = I_S(e^{\frac{V_D}{mV_T}}-1)$ où I_D représente ses bornes, courant et tension étant fléchés ourant inverse. C'est un courant :	
		(plusieurs dizaines	(b) Très faible (quelques nano ampères)	

Q7.Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle idéal de la diode :

Q8. Par quoi remplace-t-on la diode bloquée si on utilise le modèle réel?

- Q9. Soit le circuit ci-contre, dans lequel on considère la diode D idéale : Que vaut la tension aux bornes de D si E=10V, $R=100\Omega$.
 - (a) 0 V
 - Б. 10 V

- c- 1 kV
- d- 0,1 V

Soit le circuit ci-contre :

- Q10. Quel type de porte logique réalise ce montage?
 - ⑥ ET
- c- NON ET
- b- OU
- d- NON OU

Exercice 2.

Révisions SUP (4 points)

Soit le circuit suivant, dans lequel E, I et R sont connus. Les générateurs sont indépendants.

1. En utilisant la méthode de votre choix, déterminer la tension U_{AM} .

Théorème de Millian:

$$VAN = \frac{T + \frac{E}{R}}{\frac{4}{R} + \frac{4}{R}} = \frac{E + RT}{2}$$

(8)

2. En déduire la tension U_{BM} .

$$U_{B\eta} = U_{BA} + U_{A\eta} = 2RI + \frac{E + RI}{2}$$

$$= D U_{B\eta} = \frac{E + SRI}{2}$$

145

Exercice 3. Diodes (5 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil avec $V_0=0.7V$. Pour les questions suivantes, vous utiliserez un raisonnement par l'absurde.

1. Si $R = 100\Omega$, $I_0 = 60mA$ et E = 5V, montrer que la diode est bloquée. Déterminer alors l'intensité du courant qui traverse la résistance.

2. Si $R=100\Omega$, $I_0=30mA$ et E=5V, montrer que la diode est passante. Déterminer alors l'intensité du courant qui traverse la résistance.

AD

4/7

Exercice 4. Caractéristique de transfert (6 points)

Dans le schéma ci-contre, on veut déterminer et tracer l'évolution de u(t). On donne :

$$e(t) = E_0 \sin(\omega t),$$
 avec $E_0 = 30V$ et $\omega = 2\pi \times 50 rad/s$

 E_1 et E_2 sont deux sources de tensions continues idéales, $E_1 = 10V$ et $E_2 = 15V$

Les diodes seront supposées idéales.

1. Montrer, en raisonnant par l'absurde que les 2 diodes ne peuvent pas être passantes simultanément.

2. Donner l'expression de u(t) si D_1 est passante.

3. Donner l'expression de $\,u(t)\,$ si $\,D_2\,$ est passante.

/0,5

4. Donner l'expression de u(t) si les 2 diodes sont bloquées.

Si les 2 diodes sont bloquies, on les remplace par des interrupteurs ouverts: le courant me pent donc plus circuler dans le circuit. La tension aux bornes de R est donc nolle et u (t) = e (t)

5. Pour quelles valeurs de e(t) les 2 diodes sont-elles bloquées ?

Les 2 diodes sont blopuies si
$$\{V_1 < O_2 \text{ of on a } : u(t) = V_1 - E_1 \}$$

$$= -V_2 - E_2$$

$$= -V_2 - E_2 - E_2 - E_2$$

$$= -V_2 - E_2 - E_2 - E_2 - E_2$$

6. Tracer la caractéristique de transfert de ce circuit.

11

1/2

7. Tracer la courbe u(t).

11