Sujet d'étude d'après Centrale 1989 Maths I M

Suites vérifiant
$$u_{n+2} = \frac{1}{2} \left(u_{n+1}^2 + u_n^2 \right)$$

Exercice 1 Suites vérifiant $u_{n+2} = \frac{1}{2} \left(u_{n+1}^2 + u_n^2 \right)$

Définitions et notations.

• On note S l'ensemble des suites $u=(u_n)_{n\geq 0}$ vérifiant $u_0\in\mathbb{R}_+,\,u_1\in\mathbb{R}_+$ et

$$u_{n+2} = \frac{1}{2} \left(u_{n+1}^2 + u_n^2 \right)$$

pour tout entier naturel n.

- Pour $(x, y) \in \mathbb{R}^2_+$, u(x, y) désigne l'unique suite u de S telle que $u_0 = x$ et $u_1 = y$. Le terme de rang n de la suite u(x, y) est noté $u_n(x, y)$.
- Si $\lambda \in \mathbb{R} \cup \{+\infty, -\infty\}$, on note E_{λ} l'ensemble des couples $(x, y) \in \mathbb{R}^2_+$ tels que la suite u(x, y) tende vers λ .

Le but du problème est d'étudier les éléments de S, en particulier de décrire l'ensemble des couples $(x, y) \in \mathbb{R}^2_+$ tels que la suite u(x, y) tend vers 0.

Partie A

généralités

- **A1.** (a) Déterminer les suites constantes appartenant à S.
 - (b) Soit $u \in S$. On suppose que u tend vers $\lambda \in \mathbb{R} \cup \{+\infty\}$. Quelles sont les valeurs possibles de λ ?
 - (c) Si $u \in S$ et $n \in \mathbb{N}$, exprimer $u_{n+3} u_{n+2}$ en fonction de u_{n+2} et u_n .
- **A2.** Dans cette question, on suppose que $u \in S$ vérifie la condition (C_1) suivante

$$(C_1)$$
 $\exists N \in \mathbb{N}, u_{N+2} > \max(u_N, u_{N+1}).$

- (a) Si N est fixé comme dans (C_1) , montrer que $(u_n)_{n\geq N+1}$ est strictement croissante.
- (b) Montrer que u tend vers $+\infty$.

On prouverait de même que si u vérifie la condition

$$(C_2) \quad \exists N \in \mathbb{N}, u_{N+2} < \min \left(u_N, u_{N+1} \right),$$

alors u converge vers 0.

- **A3.** (a) Étudier les suite u(2,0) et u(1,0).
 - (b) Montrer que E_0 , E_1 et $E_{+\infty}$ sont non vides.
- **A4.** Dans cette question, on suppose que $u \in S$ est non nulle et vérifie la condition

$$(C_3) \quad \forall n \in \mathbb{N}, \min(u_n, u_{n+1}) \le u_{n+2} \le \max(u_n, u_{n+1}).$$

1

Dans les questions A4a et A4b, on suppose de plus que $u_0 \le u_1$.

- (a) Montrer que $(u_{2k})_{k\geq 0}$ est croissante et $(u_{2k+1})_{k\geq 0}$ est décroissante.
- (b) Montrer que *u* converge vers 1.
- (c) Si $u_0 > u_1$, que deviennent les résultats de **A4**a et **A4**b ?
- **A5.** Déterminer $E_0 \cup E_1 \cup E_{+\infty}$.

Partie B

Étude des bassins d'attraction

- **B1.** Soit $u \in S$. On suppose que u converge vers 1. Soit $u' \in S$ telle que $u'_0 \ge u_0$ et $u'_1 \ge u_1$, l'une au moins des deux inégalités étant stricte.
 - (a) Montrer qu'il existe $\varepsilon > 0$ tel que $u'_n \ge u_n + \varepsilon$ pour tout $n \ge 2$.
 - (b) Que dire de u'_n lorsque n tend vers $+\infty$?

B2. Soit
$$A = \left\{ x \in \mathbb{R}_+ \middle| u_n(x,0) \xrightarrow[n \to \infty]{} 0 \right\}$$
.

- (a) Justifier l'existence de $a = \sup A$. Établir que $1 \le a \le 2$.
- (b) Si $k \in \mathbb{N}$, montrer que $x \mapsto u_k(x, 0)$ est continue sur \mathbb{R}_+ .
- (c) En utilisant **B2**b et les résultats de la partie A, montrer que u(a, 0) converge vers 1.
- (d) Étudier le comportement de u(x,0) selon la position de x par rapport à a.
- (e) Si x > a et $y \in \mathbb{R}_+$, étudier u(x, y).
- **B3.** Ici $x \in [0, a]$ est fixé.
 - (a) Montrer qu'il existe un unique $y \in \mathbb{R}_+$ tel que u(x, y) converge vers 1. On note $y = \varphi(x)$ ce réel. L'application φ est donc définie sur [0, a].
 - (b) Décrire les trois ensembles E_0 , E_1 et $E_{+\infty}$ à l'aide du réel a et de l'application φ .
- **B4.** (a) Montrer que φ est strictement décroissante sur [0, a].
 - (b) $\stackrel{\text{...}}{\Box}$ Montrer que φ est continue sur [0, a].