Homotopy Theory and Characteristic Classes

CUI Jiaqi East China Normal University

February 19, 2025

Abstract

This is the notes of a course given by Prof. Ma Langte in 25spring at Shanghai Jiaotong University.

Contents

Ι	Homotopy Theory	1
	Cofibrations and Fibrations 1.1 Cofibrations	2
II	Generalized Homology	7
III	Characteristic Classes	7

Part I

Homotopy Theory

Let **TOP** be the category of topological spaces. Then we can take a quotient of **TOP** and get the homotopy category $h-\mathbf{TOP}$. The quotient may bring more algebraic structures. For example, Mor (S^1, X) , the homotopy classes of maps from S^1 to X, is the fundamental group of X. Our goal is to study functors from hmotopy category to some algebraic categories.

Let \mathbf{TOP}^o be the pointed topological category, where the sum is wedge sum $(X, x_0) \wedge (Y, y_0) =$ $X \sqcup Y/x_0 \sim y_0$ and the product is the smash product $(X, x_0) \lor (Y, y_0) = X \times Y/\{x_0\} \times Y \cup X \times \{y_0\}$. Similarly, we can take a quotient to get $h - \mathbf{TOP}^o$.

Let $\mathbf{TOP}(2)$ be the category of pairs and $h - \mathbf{TOP}(2)$ be its quotient. Fix $K \in \mathrm{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}^K , the category of spaces under K. Its objects are maps $f: K \to X$ and morphisms are maps $\alpha: X \to Y$ such that $\alpha \circ f = g$.

If $K = \{*\}$ is a single point set, then $\mathbf{TOP}^{\{*\}} = \mathbf{TOP}^o$ is the pointed topological category. Take X = K. A morphism from $f: K \to X$ to id: $K \to K$ is $r: X \to K$ such that $r \circ f = \mathrm{id}$.

When $K \subset X$, $f = i : K \hookrightarrow X$, we say that r is a retraction.

We have $r: X \to K$ is a deformation retraction, if and only if $i \circ r \simeq \mathrm{id}_X$ rel K, if and only if $r: X \to K$ is a homotopy equivalence in \mathbf{TOP}^K .

Fix $B \in \text{Ob}(\mathbf{TOP})$. Let's consider \mathbf{TOP}_B , the category of spaces over B, where the objects are $p: X \to B$ and morphisms are $f: X \to Y$ such that $p = q \circ f$.

Take X = B. A morphism from id: $B \to B$ to $q: Y \to B$ is $s: B \to Y$ such that $q \circ s = \mathrm{id}_B$.

Then s is called a section of q.

Similarly, we can define $h - \mathbf{TOP}^K$ and $h - \mathbf{TOP}_B$.

1 Cofibrations and Fibrations

1.1 Cofibrations

Definition 1.1. A map $i: A \to X$ has the homotopy extension property (HEP) for a space Y if for all homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 1)$, there exists $H: X \times I \to Y$ satisfies

We say $i: A \to X$ is a cofibration if it has HEP for each $Y \in \text{Ob}(\mathbf{TOP})$.

Recall the mapping cylinder: if $i: A \to X$ is a map, then $Z(i) := (A \times I) \sqcup X/(a,1) \sim i(a)$.

Proposition 1.2. Given a map $i: A \to X$. The followings are equivalent:

- 1. $i: A \to X$ is a cofibration.
- 2. i has HEP for Z(i).

3. The map

$$s \colon Z(i) \to X \times I$$
$$(a,t) \mapsto (f(a),t),$$
$$x \mapsto (x,1)$$

has a retraction.

Proof. $(1)\Longrightarrow(2)$ is only by definition.

(2) \Longrightarrow (1): By definition, there exists $K\colon X\times I\to Z(i)$ such that the following diagram is commutative.

For any Y and homotopy $h: A \times I \to Y$ and $f: X \to Y$ with $f \circ i(a) = h(a, 1)$, we define

$$F: Z(i) \to Y$$

 $(a,t) \mapsto h(a,t)$
 $x \mapsto f(x).$

Then $F \circ K$ is as desired.

(2) \Longrightarrow (3): We can easily check that the extension $K: X \times I \to Z(i)$ in the proof of (2) \Longrightarrow (1) is a retraction of s.

(3) \Longrightarrow (2): Let r be a retraction of s. For any homotopy $h: A \times I \to Z(i)$ and $f: X \to Z(i)$ with $f \circ i(a) = h(a, 1)$, we define

$$\begin{split} \sigma \colon Z(i) &\to Z(i) \\ (a,t) &\mapsto h(a,t) \\ x &\mapsto f(x). \end{split}$$

Then we can verify that $H = \sigma \circ r \colon X \times I \to Z(i)$ extends h.

Corollary 1.3. When $A \subset X$ is a close subset, $i: A \hookrightarrow X$ is the inclusion map. Then $i: A \to X$ is a cofibration $\iff Z(i) = A \times I \cup X \times \{1\}$ is a retraction of $X \times I$.

Therefore, we can construct many cofibrations. For example, let (X, A) be a manifold with boundary, then $i \colon A \hookrightarrow X$ is a cofibration.

Push-Out of Cofibration

Given a commutative diagram,

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow j & & \downarrow J \\
X & \xrightarrow{F} & Y
\end{array}$$

the push-out of j along f is the initial object of this diagram, i.e. $j: B \to Y, F: X \to Y$, s.t. $\forall Z$ with $J': B \to Z, F': X \to Z$ satisfying $J' \circ f = F' \circ j$, $\exists !$ map $p: Y \to Z$ such that the diagram is commutative.

In our setting, we can construct $Y = X \sqcup B/f(a) \sim j(a)$ directly.

Proposition 1.4. If $j: A \to X$ is a cofibration, then the push-out of j along $f: B \to Y$ is also a cofibration.

Proof. For any $Z, g: Y \to Z, h: B \times I \to Z$ such that $g \circ J = h \circ (i_1 \times id)$, we need to find $H: Y \times I \to Z$ such that the following diagram is commutative.

Because $j \colon A \to X$ is a cofibration, we have $G \colon X \times I \to Z$ such that the following diagram is commutative.

Using the fact that $J \times \text{id} : B \times I \to Y \times I$ is also the push-out of $j \times \text{id} : A \times I \to X \times I$ along $f \times \text{id} : A \times I \to B \times I$, we have unique $H : Y \times I \to Z$ such that the following diagram is commutative.

The $H: Y \times I \to Z$ is the extension of $h: B \times I \to Z$, as desired.

In terms of categorical language, let $\Pi(A, B)$ be a category, whose objects are continue maps from A to B and morphisms are homotopy of maps from A to B. Consider $\mathbf{COF}^B \subset \mathbf{TOP}^B$ the subcategory of cofibrations under B (i.e. $J \colon B \to Y$). Then we have homotopy category $h - \mathbf{COF}^B$. Given a cofibration $i \colon A \to X$, we get a contravariant functor

$$\beta \colon \Pi(A,B) \to h - \mathbf{COF}^B$$
.

In fact, we only need to check that if $f_0 \simeq f_1 \colon A \to B$, then we get a morphism from $J_0 \colon B \to Y_0$ to $J_1 \colon B \to Y_1$. Firstly, consider the homotopy $J_0 \circ f_t \colon A \times I \to Y_0$, we get its extension $\Psi \colon X \times I \to Y_0$.

Then by the universal property of the push-out $J_1: B \to Y_1$ of i along f_1 for $J_0: B \to Y_0$ and $\Psi_1: X \to Y_0$, we get a map $K: Y_1 \to Y_0$, as desired.

Replacing a Map by a Cofibration

Given a map $f: X \to Y$, consider the mapping cylinder Z(f). We can notice that Z(f) is the push-out.

$$X \xrightarrow{f} Y$$

$$\downarrow s$$

$$X \times I \xrightarrow{a} Z(f)$$

We also have a map

$$q \colon Z(f) \to Y$$

 $(x,t) \mapsto f(x).$

Note that by Proposition 1.2, $i_1: X \hookrightarrow X \times I$ is a cofibration $\iff X \times \{1\} \times I \cup X \times I \times \{1\}$ is a retraction of $X \times I \times I$, we have $s: Y \to Z(f)$ is a cofibration.

Proposition 1.5. Let

$$j \colon X \to Z(f)$$

 $x \mapsto (x,0),$

we have

- 1. $j: X \to Z(f)$ is a cofibration.
- 2. $s \circ q \simeq \mathrm{id}_{Z(f)}$ rel Y.
- 3. If f is a cofibration, then $q: Z(f) \to Y$ is a homotopy equicalence in \mathbf{TOP}^X .

Proof. (1). We construct a retraction $R: Z(f) \times I \to X \times I \cup Z(f) \times \{1\}$ as follow. Let $R': I \times I \to I \times \{1\} \cup \{0\} \times I$ be a retraction. Then we define

$$R \colon Z(f) \times I \to X \times I \cup Z(f) \times \{1\}$$
$$((x,s),t) \mapsto (x,R'(s,t))$$
$$(y,t) \mapsto (y,1)$$

is as desired. By Proposition 1.2, $j: X \to Z(f)$ is a cofibration.

(2). The homotopy

$$h_t \colon Z(f) \to Z(f)$$

 $(x, \sigma) \mapsto (x, (1-t)\sigma + t)$

is as desired.

(3). By Proposition 1.2, there is a retraction $r: Y \times I \to Z(f)$. Define

$$g\colon Y\to Z(f)$$

$$y\mapsto r(y,1).$$

One can verifies that g is the homotopy inverse of g.

Summery 1. Any map $f: X \to Y$ factors into

$$X \xrightarrow{j} Z \xrightarrow{q} Y$$

where $j\colon X\to Z$ is a cofibration and $q\colon Z\to Y$ is a homotopy equivalence. Moreover, such a factorization is unique up to homotopy equivalence. In particular, we can choose Z=Z(f). We define $C_f=Z(f)/\operatorname{im} j$ as the homotopy cofibre of f, i.e. $C_f=X\times I\sqcup Y/(x,0)\sim *,(x,1)\sim f(x)$, is called the mapping cone of f.

$$X \xrightarrow{f} Y \xrightarrow{s} C_f$$

The Cofibre Sequence (Puppe's Sequence)

To get finer structure, we work in **TOP**^o. Given a map $f: (X, x_0) \to (Y, y_0)$, we get an induced map

$$f^* : [Y, B]^o \to [X, B]^o$$

 $[\alpha] \mapsto [f \circ \alpha],$

where $[X, B]^o$ is the homotopy class of basepoint preserving maps. In particular, we have the constant map

$$[*]: X \to B$$

 $x \mapsto b_0.$

Definition 1.6. We say a sequence

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$$

in \mathbf{TOP}^o is h-coexact if $\forall (B, b_0) \in \mathrm{Ob}(\mathbf{TOP}^o)$,

$$[Z,B]^o \xrightarrow{g^*} [Y,B]^o \xrightarrow{f^*} [X,B]^o$$

is exact, i.e. $(f^*)^{-1}([*]) = \operatorname{im} g^*$.

In **TOP**^o, we consider the reduced mapping cone $CX := X \times I/X \times \{0\} \cup \{x_0\} \times I$. The basepoint of CX is $X \times \{0\} \cup \{x_0\} \times I$. And we consider the reduced mapping cone: For $f : (X, x_0) \to (Y, y_0)$, $C(f) := CX \vee Y/(x, 1) \sim f(x)$. It is equivalent to the following push-out diagram.

$$X \xrightarrow{f} Y$$

$$\downarrow_{i_1} \qquad \qquad \downarrow_{f_1}$$

$$CX \longrightarrow C(f)$$

We will also use symbol X instead of (X, x_0) in \mathbf{TOP}^o for short.

Proposition 1.7. The sequence

$$X \xrightarrow{f} Y \xrightarrow{f_1} C(f)$$

is h-coexact.

Proof. $f_1 \circ f \colon X \to C(f)$ is null-homotopic.

Part II

Generalized Homology

Part III

Characteristic Classes