Automate,
Calculabilitate,
Complexitate

Properties of Regular Languages

1 2006 Costas Busch - RP

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$ Concatenation: L_1L_2 Star: L_1* Reversal: L_1^R Complement: $\overline{L_1}$ Intersection: $L_1 \cap L_2$

We say: Regular languages are closed under $U_{\rm nion}\colon \ L_1 \cup L_2$ $C_{\rm oncatenation}\colon \ L_1 L_2$ ${\rm Star}\colon \ L_1 \ ^*$ ${\rm Reversal}\colon \ L_1 \ ^R$ ${\rm Complement}\colon \ \overline{L_1}$ ${\rm Intersection}\colon \ L_1 \cap L_2$ ${\rm Costan Busch} \cdot RP1$

M simulates in parallel M_1 and M_2 M accepts string w if and only if: $M_1 \ \ \text{accepts string} \ \ w$ and M_2 accepts string w $L(M) = L(M_1) \cap L(M_2)$

Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example: $(a+b\cdot c)^*$

describes the language

 ${a,bc}$ * = ${\lambda,a,bc,aa,abc,bca,...}$

32

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions $\it r_1$ and $\it r_2$

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

Examples

A regular expression: $(a+b\cdot c)*\cdot(c+\varnothing)$

Not a regular expression: (a+b+)

34

Languages of Regular Expressions

L(r): language of regular expression r

Example

 $L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = {\lambda}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2 $L(r_1+r_2)=L(r_1)\cup L(r_2)$ $L(r_1\cdot r_2)=L(r_1)\,L(r_2)$ $L(r_1^*)=(L(r_1))^*$ $L((r_1^*))=L(r_1^*)$

Example

Regular expression: $(a+b) \cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Example

Regular expression r = (a+b)*(a+bb)

 $L(r) = \{a,bb,aa,abb,ba,bbb,...\}$

Example

Regular expression r = (aa)*(bb)*b

 $L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$

Example

Regular expression r = (0+1)*00(0+1)*

L(r) = { all strings containing substring 00 }

Example

Regular expression $r = (1+01)*(0+\lambda)$

L(r) = { all strings without substring 00 }

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if $L(r_1) = L(r_2)$

Example

 $L = \{ all strings without substring 00 \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent

regular expressions

Regular Expressions and Regular Languages

Theorem

Regular Expressions

Proof:

Languages
Generated by
Regular
Languages Regular Expressions

Languages Generated by Regular Expressions Proof - Part 1

Regular Expressions

For any regular expression rthe language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \emptyset , λ , α Corresponding

NFAs

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = {\lambda} = L(\lambda)$$
 regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

Suppose

that for regular expressions r_1 and r_2 , $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

Are regular Languages

 $L(r_1 *)$

 $L((r_1))$

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

 $L(r_1)$ and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

 $L(r_1) \cup L(r_2)$

Concatenation $L(r_1)L(r_2)$

Star

 $(L(r_1))*$

Therefore:

$$L(r_1+r_2)=L(r_1)\cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

Are regular languages

$$L(r_1 *) = (L(r_1))*$$

 $L((r_1)) = L(r_1)$ is trivially a regular language (by induction hypothesis)

End of Proof-Part 1

Using the regular closure of these operations, we can construct recursively the NFA M that accepts L(M) = L(r)Example: $r = r_1 + r_2$ $L(M) = L(r_1)$ $L(M_2) = L(r_2)$

Since L is regular, there is a NFA M that accepts it L(M) = L Take it with a single final state

Resulting Regular Expression:

$$r = (bb * a) * bb * (a + b)b *$$

$$L(r) = L(M) = L$$

By repeating the process until two states are left, the resulting graph is

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

 $L(r) = L(M) = L$

End of Proof-Part 2

When we say: We are given

a Regular Language $\,L\,$

We mean: Language L is in a standard

representation

(DFA, NFA, or Regular Expression)