

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3114</u> Студент <u>Митродинов</u> Е.Ю Преподаватель <u>Кумпов</u> В.А	К работе допущен Работа выполнена Отчет принят		
Рабочий прото	окол и отчет по		
•	ой работе № <i>4.11</i>		
Orpegerenne pazpernacony	en choeodosem grapp, penensu um 161.		
1. Цель работы.	ejewy borne, paznenarojyje pemenaj		
2. Задачи, решаемые при выполнении раб Построение градочи зависимос Истопеме градочков и прове	mu ramenenbroem chema		
3. Объект исследования.			
Icopporxydonnae pemenser			
4. Метод экспериментального исследован	ия.		
Coursonepase curyinger			
5. Рабочие формулы и исходные данные. ваушант 14. \(\(\) = 600			
$R = \frac{\lambda}{5\lambda}$ $R = mN$			

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	repektionens gum bein	yuppobow	400-400 RM	Inva.
2	representation pacconstant years	yuppaheir	1-199 man	1 mku
3				
4				

- Onpegerene pagning grunn boen. $R = \frac{\lambda}{5\lambda} = mN \implies 5\lambda = \frac{\lambda}{mN} = \frac{600 \cdot 10^{-9}}{2.50} = 6.10^{-9} = 6mn.$
- Dipolepa pagnement penemen no spunepus Parer.

 a) upu St, = 640d u St, = 7mm pagnemenne no spunepuso

 ne noucnofum.

 St3 = 8 mm penemen pagnemaen no spunepuso Parer
- 3) Borbog:

 1) noempoenn ynagrun zabucenoonen unmenubnocmu gur

 \(\lambda = 600 \pm 6 \text{nu}. \)
 - 2) ekonepenennansnun nemegan onpegerena gunn boense (nyn $\delta \lambda = 8$ nn) nyn komspor pennemen perzyremaen. No kynnepuno Pene.

Графики зависимостей

1. Наложение интенсивностей волн λ = 600нм и λ + δ λ = 606нм

Зависимость интенсивности света при дифракции Фраунгофера

Ι(φ)

CIV

2. Наложение интенсивностей волн λ = 600нм и λ - δ λ = 594нм

Зависимость интенсивности света при дифракции Фраунгофера

Ι(φ)

CM

Схема установки

Зависимость интенсивности света при дифракции Фраунгофера

Ι(φ) Ι1(φ)

CM

Количество щелей: 50

длина волны: 598нм

Ширина щели: 1мкм

Расстояние между краями соседних щелей: 170мкм

Расстояние от решетки до экрана: 2.2м

Ответы на контрольные вопросы

- 1. Расстояние между максимумами будет увеличиваться
- При пропускании белого света максимумы разложатся в спектр, где фиолетовая зона будет обращена к центру, а красная наружу, образуя радужный переход цветов. Это происходит из-за зависимости положения максимумов от длины волны.
 Благодаря этому свойству дифракционная решетка может быть использована как спектральный прибор.
- 3. Это необходимо для получения более узких интерференционных максимумов, соответствующих каждому штриху.
- 4. Из предыдущего пункта можно сделать вывод, что для дифракционной решетки количество штрихов должно быть большим.
- 5. Условие максимумов дифракционной решетки:

$$dsin \varphi = +/- m \lambda$$
, где $m = +/- 1$, $2...$

Падающий на экран свет проходит в щели дифракционной решетки, поэтому условие минимума для щели совпадает с условием главного минимума для решетки:

$$bsin\varphi = +/- m\lambda$$
, где $m = +/- 1$, $2...$

Интенсивность побочных минимумов и максимумов, образуемых от света некоторых щелей про большом их количестве, очень мала по сравнению с главными максимумами.

$$\Delta = dsin\varphi = (2m+1)*\lambda/2$$