Sous-algèbres de $\mathcal{L}(E)$

Définitions et notations :

- Dans ce problème, E est un \mathbb{K} -espace vectoriel de dimension finie (avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$); dans les parties I et II, E est un plan vectoriel : $\dim(E) = 2$.
- Pour $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$ et $Q \in \mathbb{C}[X]$, on pose $P \circ Q = \sum_{k=0}^{n} a_k Q^k$.
- On rappelle qu'une sous-algèbre de $\mathcal{L}(E)$ est un sous-espace vectoriel de $\mathcal{L}(E)$ contenant l'identité de E et stable pour la composition \circ .

Objectif:

Le but du problème est de décrire toutes les sous-algèbres de l'algèbre des endomorphismes d'un plan vectoriel (parties I et II), puis d'étendre le résultat lorsque l'espace vectoriel est de dimension supérieure ou égale à 3, en se limitant alors aux sous-algèbres strictes de dimension maximale (partie III).

I. - Dimension du commutant d'un endomorphisme du plan

Dans cette partie, E est un \mathbb{K} -espace vectoriel de dimension 2 et f est un endomorphisme de E. On note $C(f) = \{g \in \mathcal{L}(E) / g \circ f = f \circ g\}$.

- 1. On suppose que f n'est pas une homothétie. Montrer qu'il existe un vecteur x de E tel que la famille (x, f(x)) soit une base de E. Quelle est la forme de la matrice de f dans cette base?
- 2. Vérifier que C(f) est une sous-algèbre de $\mathcal{L}(E)$ contenant f.
- 3. Déterminer C(f) et calculer sa dimension.
- 4. Montrer que la famille (id_E, f, f²) (où f² = f o f) est une famille liée de $\mathcal{L}(E)$.

$|\overline{\mathbf{II.}}|$ - Sous-algèbres de $\mathcal{L}(E)$ lorsque $\dim(E)=2$

Dans cette partie, E est encore un \mathbb{K} -espace vectoriel de dimension 2 et A désigne une sous-algèbre de dimension 3 de $\mathcal{L}(E)$.

- 1. Montrer que A admet une base de la forme (id_E, φ, ψ) avec $\varphi \circ \psi \neq \psi \circ \varphi$. [Indication : on pourra utiliser les résultats de la question I.3.]
- 2. a) Montrer qu'il existe un triplet $(\lambda, \mu, \nu) \in \mathbb{K}^3$ tel que $\varphi \circ \psi = \lambda \varphi + \mu \psi + \nu \operatorname{id}_E$.
 - b) Montrer que $(\varphi \mu \operatorname{id}_E) \circ (\psi \lambda \operatorname{id}_E)$ est nul. [Indication : on pourra raisonner par l'absurde et se rappeler qu'un automorphisme commute avec son inverse.]
- 3. a) Montrer que A admet une base de la forme $(id_E, \varphi_1, \psi_1)$ avec $\varphi_1 \circ \psi_1 = 0$.
 - b) Calculer les rangs de φ_1 et ψ_1 .

- c) Montrer qu'il existe un vecteur non nul x de E tel que $\varphi_1(x)$ et $\psi_1(x)$ soient tous les deux colinéaires à x.
- 4. Montrer qu'il existe une base de E dans laquelle la matrice de chacun des éléments de A est triangulaire supérieure.
- 5. Décrire toutes les sous-algèbres de $\mathcal{L}(E)$.

$|\overline{\mathbf{III.}}|$ - Extension des résultats lorsque $\dim(E) \geq 3$

Dans cette partie, E désigne un \mathbb{K} -espace vectoriel de dimension finie quelconque $n \geq 1$. À tout sous-espace vectoriel V de E, on associe l'ensemble $A_V = \{f \in \mathcal{L}(E) \, / \, f(V) \subset V\}$.

- 1. On considère un sous-espace vectoriel V de E de dimension $m \in [[1, n-1]]$. Montrer que A_V est une sous-algèbre de $\mathcal{L}(E)$ de dimension $m^2 + (n-m)n$.
- 2. Établir que, pour tout $m \in [[1, n-1]]$, $m^2 + (n-m)n \ge n^2 n + 1$, avec égalité si et seulement si $m \in \{1, n-1\}$.
- 3. On considère un endomorphisme $u \in \mathcal{L}(E)$ et l'application $\varphi_u : \mathcal{L}(E) \to \mathbb{K}$. $f \mapsto \operatorname{tr}(f \circ u)$ Montrer que φ_u est une forme linéaire sur $\mathcal{L}(E)$ et que l'application $\varphi : u \mapsto \varphi_u$ est un isomorphisme de $\mathcal{L}(E)$ sur $\mathcal{L}(\mathcal{L}(E), \mathbb{K})$.
- 4. Montrer que, si W est un sous-espace de $\mathcal{L}(E)$ de dimension $n^2 r$, avec $r \in [[1, n^2 1]]$, alors il existe une famille libre (u_1, \dots, u_r) d'éléments de $\mathcal{L}(E)$ telle que $W = \bigcap_{i=1}^r \operatorname{Ker}(\varphi_{u_i})$.
- 5. On considère dans cette question une sous-algèbre A de $\mathcal{L}(E)$ de dimension n^2-r , avec $r \in [[1, n^2-1]]$ et une famille libre (u_1, \ldots, u_r) d'éléments de $\mathcal{L}(E)$ telle que $A = \bigcap_{i=1}^r \operatorname{Ker}(\varphi_{u_i})$. Montrer que, si $g \in A$, alors, pour $j \in [[1, r]]$, $\operatorname{Ker}(\varphi_{g \circ u_j}) \subset \bigcap_{i=1}^r \operatorname{Ker}(\varphi_{u_i})$ et $g \circ u_j \in \operatorname{Vect}(u_1, \ldots, u_r)$.
- 6. On suppose dans cette question que $r \in [[1, n-1]]$. On considère une famille libre (u_1, \ldots, u_r) d'éléments de $\mathcal{L}(E)$ telle que $A = \bigcap_{i=1}^r \operatorname{Ker}(\varphi_{u_i})$ soit une sous-algèbre de $\mathcal{L}(E)$ de dimension $n^2 r$. On choisit $x \in E$ tel que $u_1(x) \neq 0$ et on pose $V = \operatorname{Vect}(u_1(x), \ldots, u_r(x))$. Montrer que la construction précédente est valide et montrer que $A = A_V$.
- 7. En déduire que les sous-algèbres strictes de dimension maximale de \(\mathcal{L}(E)\) sont exactement celles qui stabilisent une droite ou un hyperplan.
 Préciser leur dimension.
 Retrouver la cohérence des résultats lorsque n = 2.