User's Manual for elegant

Program Version 33.0.0 Advanced Photon Source Michael Borland, Tim Berenc

March 3, 2017

Note: another source of help for elegant is the on-line forum. Users are encouraged to join and participate. At minimum, users should subscribe to the "Bugs" topic, since this is where bug notifications are posted. Contrary to previous practice, we will no longer announce bugs via email.

A set of examples and scripts is available that demonstrates many features of elegant. A brief overview of elegant is also available, which introduces the capabilities at a high level.

1 Highlights of What's New in Version 33.0

Here is a summary of what's changed since release 32.0. Historical change logs are appended to the end of this manual.

This version includes an alpha release of GPU-enabled code. The original GPU code was developed by Tech-X corporation [51], with further work by R. Soliday (APS).

1.1 Bug Fixes for Elements

- The SREFFECTS element now correctly computes the equilibrium horizontal and vertical emittances when $J_x \neq 1$. Previously, the computation used an equation that implicitly assumes $J_x = 1$.
- The MALIGN element could cause spurious integer changes in the reported tunes if the DZ parameter was negative. This problem, reported by V. Sajaev (APS), was fixed.
- A memory management bug related to the systematic and random multipole data store was fixed. This in principle affected KQUAD, KSEXT, and other elements using the SYSTEMATIC_MULTIPOLES and RANDOM_MULTIPOLES features. In testing, no effect was in fact observed.

1.2 Bug Fixes for Commands

- The correction_matrix_output command command were ignoring the monitor calibrations (MONI, HMON, and VMON) values when use_response_from_computed_orbits = 1. This was reported by V. Sajaev (APS).
- The steering_element command no longer aborts even if the declared steering corrector appears not to kick the beam. This allows using unusual controls such as path length to steer the beam. This issue was pointed out by V. Sajaev (APS).

- The load_parameters and save_lattice commands incorrectedly saved the edge angles and other edge-related quantities for bending magnets that were reflected. This issue was fixed. Previously-saved parameter files should be modified (e.g., remove the edge parameters) unless the magnets had the same parameters for the entrance and exit. This problem was reported by Y. Li (BNL).
- The rf_setup and moments_output commands will now run in a loop with find_aperture, momentum_aperture, and frequency_map operations, if set for per-step execution. Previously, this would only happen for the track, analyze_map, and touschek_scatter commands.

1.3 New and Modified Elements

- The EKICK, EHKICK, and EVKICK elements now support inclusion of multipole errors linked to the correction strength.
- The steering kicks and steering multipoles in the KQUAD element are now implemented in the body of the element, rather than at the ends.
- The WATCH element was improved so that the dt column in coordinate-logging mode and the dCt column in parameter- and centroid-logging modes are more useful. In particular, in normal cases these will now more reliably be centered on zero. One can also provide a reference frequency relative to which the reference time is defined. This improvement grew out of discussions with J. Calvey and T. Berenc (APS).
- The reported phases of the beam- and generator-induced parts of the voltage for the RFMODE element RECORD file are now computed using a method that should be more reliable. This improvement grew out of discussions with J. Calvey and T. Berenc (APS).
- The RECORD output from the RFMODE element now includes the phase of the net cavity voltage. This was requested by M. Venturini (LBNL).
- The RFMODE element now supports injection of noise into the rf source and low-level rf system. This is based on discussions with T. Berenc (APS).
- The SCRIPT element can now import particleID data from the script without attempting to use this information for lost-particle accounting. This provides better functionality when the particleID is used for other purposes, such as bunch membership.
- The TFBPICKUP and TFBDRIVER elements, used for bunch-by-bunch feedback, now allow 30-term FIR filters, up from 15 turns in earlier versions.
- The TFBDRIVER element now accepts specification of the frequency and phase of the driver cavity.
- Aperture enforcement inside KQUAD, KSEXT, KOCT, KQUSE, CSBEND, and CSRCSBEND elements has been improved. In particular, the ELLIPTICAL, EXPONENT, YEXPONENT, and OPEN_SIDE parameters of MAXAMP are now implemented. In addition, for the fourth-order integrator, the apertures are no longer asserted at each integration step, but only after each slice (or "kick", to use the misleading terminology of the element parameters).
- Added the ALLOW_LONG_BEAM parameter to the ZLONGIT and ZTRANSVERSE elements.

1.4 New and Modified Commands

- The bunched_beam command can now be set to take the fully-coupled 6D bunch parameters from the calculations of the moments_output command, provided the latter is used to compute matched, equilibrium parameters. This was requested by forum user duanz.
- Added occurrence and positional filters for the steering_element command. This was requested by V. Sajaev (ANL).
- Several informational printouts for the touschekScatter command are no longer shown by default, but only if the verbosity control is set to a non-zero value. This makes short runs more efficient.
- Compared to previous versions, the lost-particle data file (losses file requested by the run_setup command) will exhibit changes in the order in which particles are recorded. This was a result of reworking the code for lost particle management.

1.5 Changes Specific to Parallel Version

• None.

1.6 Changes to Related Programs and Files

• The program madto was renamed elegantto, to more accurately reflect what it does. It will not translate elegant lattice files into MAD8 format.

1.7 Known Bugs, Problems, and Limitations

- The REFERENCE_CORRECTION feature of the CSBEND element is ignored while performing calculations related to the moments_output command.
- Setting CHANGE_T=1 on RFCA and RFCW elements can give invalid results when tracking beams with very large time spread compared to the bunch length.
- Twiss output contains entries for the higher-order dispersion, tune shifts with amplitude, higher-order chromaticity, and tune spreads due to chromaticity and amplitude *even when these are not calculated*, which is potentially misleading. The values are zero when the calculation is not requested.
- Computation of closed orbits and Twiss parameters will not always include the effects of synchrotron radiation losses when these are imposed using SREFFECTS elements. See the documentation for SREFFECTS for details.
- Computation of beam moments does not include synchrotron radiation effects from UKICKMAP elements.
- The file created with the parameters field of run_setup does not contain any non-numerical parameters of the lattice.
- Computation of radiation integrals does not include the effect of steering magnets.

• There is a bug related to using ILMATRIX that will result in a crash if one does not request computation of the twiss parameters. If you encounter this problem, just add the following statement after the run_setup command:

• The OUTPUT_FILE feature of the TFBDRIVER will produce a file with missing data at the end of the buffer if the OUTPUT_INTERVAL parameter is not a divisor of the number of passes.

2 Credits

Contributors to elegant include M. Borland, M. Carla', N. Carmignani, M. Ehrlichman, L. Emery, W. Guo, R. Lindberg, V. Sajaev, R. Soliday, Y.-P. Sun, C.-X. Wang, Y. Wang, Y. Wu, and A. Xiao. Contributors to related programs and scripts include M. Borland, R. Dejus, L. Emery, A. Petrenko, H. Shang, Y. Wang, A. Xiao, and B. Yang. R. Soliday is responsible for multi-platform builds and distribution. Of course, we also appreciate the many suggestions, comments, and bug reports from users.

If you use elegant in your research, we appreciate a citation. For elegant, the citation is

M. Borland, "elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation," Advanced Photon Source LS-287, September 2000.

Additional contributors for the parallel version include Y. Wang and H. Shang. The additional citation for Pelegant is

Y. Wang and M. Borland, "Pelegant: A Parallel Accelerator Simulation Code for Electron Generation and Tracking", Proceedings of the 12th Advanced Accelerator Concepts Workshop, AIP Conf. Proc. 877, 241 (2006).

Additional contributors for the GPU version include K. Amyx, J. R. King, and I. V. Pogorelov. The additional citation for the GPU version is

I. V. Pogorelov, J. R. King, K. M. Amyx, M. Borland, and R. Soliday, "Current status of the GPU-accelerated ELEGANT," Proceedings of 2015 International Particle Accelerator Conference, 623 (2015).

3 Introduction

elegant stands for "ELEctron Generation ANd Tracking," a somewhat out-of-date description of a fully 6D accelerator program that now does much more than generate particle distributions and track them. elegant, written entirely in the C programming language[1], uses a variant of the MAD[2] input format to describe accelerators, which may be either transport lines, circular machines, or a combination thereof. Program execution is driven by commands in a namelist format.

This document describes the features available in elegant, listing the commands and their arguments. The differences between elegant and MAD formats for describing accelerators are listed. A series of examples of elegant input and output are given. Finally, appendices are included describing the post-processing programs.

3.1 Program Philosophy

For all its complexity, elegant is not a stand-alone program. For example, most of the output is not human-readable, and elegant itself has no graphics capabilities. These tasks are handled by a suite of post-processing programs that serve both elegant and other physics programs. These programs, collectively known as the SDDS Toolkit[8, 9], provide sophisticated data analysis and display capabilities. They also serve to prepare input for elegant, supporting multi-stage simulation.

Setting up for an elegant run thus involves more than creating input files for elegant per se. A complicated run will typically involve creation of a post-processing command file that processes elegant output and puts it in the most useful form, typically a series of graphs. Users thus have the full power of the SDDS Toolkit, the resident command interpreter (e.g., the UNIX shell), and their favorite scripting language (e.g., Tcl/Tk) at their disposal. The idea is that instead of continually rewriting the physics code to, for example, make another type of graph or squeeze another item into a crowded table, one should allow the user to tailor the output to his specific needs using a set of generic post-processing programs. This approach has been quite successful, and is believed particularly suited to the constantly changing needs of research.

Unlike many other programs, elegant allows one to make a single run simulating an arbitrary number of randomizations or variations of an accelerator. By using the SDDS toolkit to postprocess the data, the user's postprocessing time and effort do not depend on how many random seeds or situations are chosen. Hence, instead of doing a few simulations with a few seed numbers or values, the user can simulate hundreds or even thousands of instances of one accelerator to get an accurate representation of the statistics or dependence on parameters, with no more work invested than in doing a few simulations.

In addition, complex simulations such as start-to-end jitter simulations[11] and top-up tracking[12] can be performed involving hundreds or thousands of runs, with input created by scripts depending on the SDDS toolkit. These simulations make use of concurrent computing on about 20 workstation using the Distributed Queueing System[10]. Another example is the elegantRingAnalysis script, which allows using many workstations for simulation of storage ring dynamic and momentum aperture, frequency maps, and so on. Clearly, use of automated postprocessing tools greatly increases the scale and sophistication of simulations possible.

In passing, we note another "philosophical" point about elegant, namely, the goal of complete backward compatibility. We consider it unacceptable if a new version of the program gives different answers than an old version, unless the old version was wrong. Hence, there are sometimes less-than-ideal default settings in elegant, incorrect spelling of parameters, etc., that are never fixed, because doing so would break old input files. It helps to read the manual pages carefully for the more complex features to ensure that the defaults are understood and appropriate.

3.2 Capabilities of elegant

elegant started as a tracking code, and it is still well-suited to this task. elegant tracks in the 6-dimensional phase space $(x, x', y, y', s, \delta)$, where x(y) is the horizontal (vertical) transverse coordinate, primed quantities are slopes, s is the total, equivalent distance traveled, and δ is the fractional momentum deviation[3]. Note that these quantities are commonly referred to as (x, xp, y, yp, s, dp) in the namelists, accelerator element parameters, and output files. ("dp" is admittedly confusing—it is supposed to remind the user of $\Delta P/P_o$. Sometimes this quantity is referred to as "delta.")

Tracking may be performed using matrices (of selectable order), canonical kick elements, numerically integrated elements, or any combination thereof. For most elements, second-order matrices

are available; matrix concatenation can be done to any order up to third. Canonical kick elements are available for bending magnets, quadrupoles, sextupoles, and higher-order multipoles; all of these elements also support optional classical synchrotron radiation losses. Among the numerically integrated elements available are extended-fringe-field bending magnets and traveling-wave accelerators. A number of hybrid elements exist that have first-order transport with exact time dependence, e.g., RF cavities. Some of the more unusual elements available are third-order alphamagnets[5, 4], time-dependent kicker magnets, voltage-ramped RF cavities, beam scrapers, and beam-analysis "screens."

Several elements support simulation of collective effects, such as short- and long-range wake-fields, resonator impedances, intra-beam scattering, coherent synchrotron radiation, and the longitudinal space charge impedance.

A wide variety of output is available from tracking, including centroid and sigma-matrix output along the accelerator, phase space output at arbitrary locations, turn-by-turn moments at arbitrary locations, histograms of particle coordinates, coordinates of lost particles, and initial coordinates of transmitted particles. In addition to tracking internally generated particle distributions, elegant can track distributions stored in external files, which can either be generated by other programs or by previous elegant runs. Because elegant uses SDDS format for reading in and writing out particle coordinates, it is relatively easy to interface elegant to other programs using files that can also be used with SDDS to do post-processing for the programs.

elegant allows the addition of random errors to virtually any parameter of any accelerator element. One can correct the orbit (or trajectory), tunes, and chromaticity after adding errors, then compute Twiss parameters, track, or perform a number of other operations. elegant makes it easy to evaluate a large number of ensembles ("seeds") in a single run. Alternatively, different ensembles can be readily run of different CPUs and the SDDS output files combined.

In addition to randomly perturbing accelerator elements, **elegant** allows one to systematically vary any number of elements in a multi-dimensional grid. As before, one can track or do other computations for each point on the grid. This is a very useful feature for the simulation of experiments, e.g., emittance measurements involving beam-size measurements during variation of one or more quadrupoles[6].

Like many accelerator codes, elegant does accelerator optimization. It will optimize a user defined function of the transfer matrix elements (up to third-order), beta functions, tunes, chromaticities, radiation integrals, natural emittance, floor coordinates, beam moments, etc. It also has the ability to optimize results of tracking using a user-supplied function of the beam parameters at one or more locations. This permits solution of a wide variety of problems, from matching a kicker bump in the presence of nonlinearities to optimizing dynamic aperture by adjusting sextupoles.

elegant provides several methods for determining accelerator aperture, whether dynamic or physical. One may do straightforward tracking of an ensemble of particles that occupies at uniform grid in (x, y) space. One may also invoke a search procedure that finds the aperture boundary. A related feature is the ability to determine the frequency map for an accelerator, to help identify aperture-limiting resonances.

In addition to using analytical expressions for the transport matrices, elegant supports computation of the first-order matrix and linear optics properties of a circular machine based on tracking. A common application of this is to compute the tune and beta-function variation with momentum offset by single-turn tracking of a series of particles. This is much more efficient than, for example, tracking and performing FFTs (though elegant will do this also). This both tests analytical expressions for the chromaticity and allows computations using accelerator elements for which such expressions do not exist (e.g., a numerically integrated bending magnet with extended fringe fields).

A common application of random error simulations is to set tolerances on magnet strength

and alignment relative to the correctability of the closed orbit. A more efficient way to do these calculations is to use correct-orbit amplification factors[6]. elegant the computes amplification factors and functions for corrected and uncorrected orbits and trajectories pertaining to any element that produces an orbit or trajectory distortion. It simultaneously computes the amplification functions for the steering magnets, in order to determine how strong the steering magnets will need to be.

4 Digression on the Longitudinal Coordinate Definition

A word is in order about the definition of s, which we've described as the *total*, equivalent distance traveled. First, by *total* distance we mean that s is not measured relative to the bunch center or a fiducial particle. It is entirely a property of the individual particle and its path through the accelerator.

To explain what we mean by equivalent distance, note that the relationship between s and arrival time t at the observation point is, for each particle, $s = \beta ct$, where βc is the instantaneous velocity of the particle. Whenever a particle's velocity changes, elegant recomputes s to ensure that this relationship holds. s is thus the "equivalent" distance the particle would have traveled at the present velocity to arrive at the observation point at the given time. This book-keeping is required because elegant was originally a matrix-only code using s as the longitudinal coordinate.

Users should keep the meaning of s in mind when viewing statistics for s, for example, in the sigma or watch point output files. A quantity like Ss is literally the rms spread in s. It is not defined as $\sigma_t/(\langle \beta \rangle c)$. A nonrelativistic beam with velocity spread will show no change in Ss in a drift space, because the distance traveled is the same for all particles.

5 Fiducialization in elegant

In some tracking codes, there is a "fiducial particle" that is tracked along with the beam. This particle follows the ideal trajectory or orbit, with the ideal momentum, and at the ideal phase. There is no fiducial particle in elegant. Instead, fiducialization is typically based on statistical properties of the bunch. This can be performed on a bunch-by-bunch basis, or for the first bunch seen in a run. The latter method must be used if one wants to look at the effects of changing phase, voltage, or magnets relative to some nominal configuration.

Internally, elegant fiducializes each element in the beamline. Fiducializing an element means determining the reference momentum and arrival time (or phase) for that element. If the reference momentum does not change along a beamline and no time-dependent elements are involved, then fiducialization is irrelevant. All elements are fiducialized at the central momentum defined in run_setup.

A number of commands have parameters for controlling fiducialization:

- The always_change_p0 parameter of run_setup causes elegant to re-establish the central momentum after each element when fiducializing. This may be more convenient than setting the CHANGE_P0 parameter on the elements themselves. However, it can have unexpected consequences, such as changing the central momentum to match changes in beam momentum due to synchrotron radiation.
- run_control has four parameters that affect fiducialization, which come into play when multistep runs are made. Typically, these are runs that involve variation of elements, addition of errors, or loading of multiple sets of parameters.

- reset_rf_for_each_step If nonzero, the rf phases are re-established for each beam tracked. If this is 1 (the default), the time reference is discarded after each bunch is tracked. This means that bunch-to-bunch phasing errors due to time-of-flight differences would be lost.
- first_is_fiducial The first bunch seen is taken to establish the fiducial phases and momentum profile. If one is simulating, for example, successive beams in a fixed accelerator, this should be set to 1. Otherwise, the momentum reference is discarded after each bunch is tracked. N.B.: as of version 27.0.1, setting first_is_fiducial=1 does not imply always_change_p0=1. You must set this separately, or use the CHANGE_P0 parameter on various elements (e.g., RFCA) to further specify how to set the fiducial momentum profile.
- restrict_fiducialization If nonzero, then momentum profile fiducialization occurs only after elements that are known to possibily change the momentum. It would not occur, for example, after a scraper that changes the average beam momentum by removing a low-momentum tail. This is a convenience that, essentially, allows modifying the impact of setting always_change_p0=1.
- n_passes_fiducial
 If positive, sets the number passes used for fiducial tracking to be different from the n_passes value. For ring fiducialization, should probably always be set to 1.
- The bunched_beam command has a first_is_fiducial parameter that is convenient for use with the first_is_fiducial mode established by run_control. If nonzero, this parameter causes elegant to generate a first bunch with only one particle. This is very useful if one wants to track with many particles but doesn't want to waste time fidicializing with a many-particle bunch.

Here are some examples that may be helpful.

- Scanning a phase error in a linac with a bunch compressor: The scan is performed using the vary_element command. For this to work properly, it is necessary to fidualize the system with zero phase error. Hence, one must use the enumeration feature of vary_element to provide an input file with the phase errors and the file must be sorted so that the row with zero phase error is first. Further, one must set reset_rf_for_each_step = 0 and first_is_fiducial = 1 in run_control, and CHANGE_PO=1 on all rf cavity elements. (See the bunchComp/phaseSweep and bunchComp/dtSweep examples.)
- Scanning the voltage of a linac to simulate different operating energy choices at the compressor: In this case, one scans the linac voltage, but wants to fiducialize the system for each voltage. (It's a change in design, not an error or perturbation.) One again uses vary_element, but nothing special needs to be done about the order of the voltage values. One must set reset_rf_for_each_step = 1 and first_is_fiducial = 0 in in run_control, and CHANGE_PO=1 on all rf cavity elements. (See the bunchComp/energySweep example.)
- Simulation of phase and voltage jitter: In this case, one uses the error_elements command to impart errors to the PHASE and VOLT parameters of rf cavity elements. However, the first beam through the system must not see any errors. This is accomplished by setting no_errors_for_first_step=1 in error_control. One can also (optionally) use a 1-particle beam for fiducialization by setting first_is_fiducial=1 in bunched_beam. In addition, one must set reset_rf_for_each_step = 0 and first_is_fiducial = 1 in run_control, and CHANGE_PO=1 on all rf cavity elements. (See the bunchCompJitter/jitter example.)

6 Preparing beams for bunch-mode simulations

Certain collective-effects elements in elegant can operate under the assumption that the beam is organized into bunches. This includes the FRFMODE, FTRFMODE, LRWAKE, RFMODE, WAKE, TRFMODE, TRWAKE, ZLONGIT, and ZTRANSVERSE elements. At present, this behavior is only available when loading a beam from an external file using the sdds_beam command. A typical sequence is to run elegant once to generate a beam file using bunched_beam, then load that beam into a subsequent run.

This beam file may either contain the entire beam (all the bunches) or it may contain a single bunch. In the latter case, the single bunch must be duplicated using the n_duplicates and duplicate_stagger parameters of sdds_beam. Otherwise, in the beam-generation run, the run_control command must be used to specify both the number of bunches (using n_steps) and the bunch frequency (using bunch_frequency). The beamline for this run would typically consist simply of a zero-length drift space, so that the output file from the run_setup command contains the coordinates for each bunch as generated, with no modifications. Once the beam is generated, it can be used as the input file for sdds_beam with track_pages_separately=0 and use_bunched_mode=1.

For those who prepare beams using other programs, it may be helpful to understand how the organization of the beam into bunches is specified. The relevant data from the beam file are the values in the IDSlotsPerBunch parameter and particleID column. The particleID is generally a unique positive integer for each particle. When S = IDSlotsPerBunch is non-zero, the bunch index is computed as $\lfloor (I-1)/S \rfloor$, where I is the particle ID. For example, with IDSlotsPerBunch=1000, particle IDs from 1 to 1000 would be in bunch 0, from 2001-3000 would be bunch 1, and so on. This mechanism allows specifying the bunch structure without adding columns to the beam file, and also handles particle loss automatically.

Note that although in the case of beams generated with bunched_beam the individual bunches appear in separate pages of the beam file, this is not necessary.

7 Namelist Command Dictionary

The main input file for an elegant run consists of a series of namelists, which function as commands. Most of the namelists direct elegant to set up to run in a certain way. A few are "action" commands that begin the actual simulation. FORTRAN programmers should note that, unlike FORTRAN namelists, these namelists need not come in a predefined order; elegant is able to detect which namelist is next in the file and react appropriately.

7.1 Commandline Syntax

The commandline syntax for elegant is of the form

```
elegant {inputfile|-pipe=in} [-rpnDefns=filename]
-macro=tag1=value1[,tag2=value2...]
```

inputfile is the name of the command input file, which is a series of namelist commands directing the calculations. Alternatively, one may give the <code>-pipe=in</code> option, allowing <code>elegant</code> to be fed a stream of commands by another program or script. The <code>-rpnDefns</code> option allows providing the name of the RPN definitions file as an alternative to defining the RPN_DEFNS environment variable. The <code>-macro</code> option allows performing text substitutions in the command stream. Multiple <code>-macro</code> options may be given. Usage is described in more detail below.

7.2 General Command Syntax

Each namelist has a number of variables associated with it, which are used to control details of the run. These variables come in three data types: (1) long, for the C long integer type. (2) double, for the C double-precision floating point type. (3) STRING, for a character string enclosed in double quotation marks. All variables have default values, which are listed on the following pages. STRING variables often have a default value listed as NULL, which means no data; this is quite different from the value "", which is a zero-length character string. long variables are often used as logical flags, with a zero value indicating false and a non-zero value indicating true.

On the following pages the reader will find individual descriptions of each of the namelist commands and their variables. Each description contains a sequence of the form

This summarizes the parameters of the namelist. Note, however, that the namelists are invoked in the form

```
&<namelist-name>
    [<variable-name> = <value> ,]
    [<array-name>[<index>] = <value> [,<value> ...] ,]
    .
    .
   .
&end
```

The square-brackets enclose an optional component. Not all namelists require variables to be given—the defaults may be sufficient. However, if a variable name is given, it must have a value. Values for STRING variables must be enclosed in double quotation marks. Values for double variables may be in floating-point, exponential, or integer format (exponential format uses the 'e' character to introduce the exponent).

Array variables take a list of values, with the first value being placed in the slot indicated by the subscript. As in C, the first slot of the array has subscript 0, not 1. The namelist processor does not check to ensure that one does not put elements into nonexistent slots beyond the end of the array; doing so may cause the processor to hang up or crash.

Wildcards are allowed in a number of places in elegant and the SDDS Toolkit. The wildcard format is very similar to that used in UNIX:

- * stands for any number of characters, including none.
- ? stands for any single character.
- [[characters>] stands for any single character from the list. The list may include ranges, such as a-z, which includes all characters between and including 'a' and 'z' in the ASCII character table.

The special characters *, ?, [, and] are entered literally by preceding the character by a backslash (e.g., $\setminus *$).

In many places where a filename is required in an elegant namelist, the user may supply a so-called "incomplete" filename. An incomplete filename has the sequence "%s" imbedded in it, for which is substituted the "rootname." The rootname is by default the filename (less the extension) of the lattice file. The most common use of this feature is to cause elegant to create names for all output files that share a common filename but differ in their extensions. Post-processing can be greatly simplified by adopting this naming convention, particularly if one consistently uses the same extension for the same type of output. Recommended filename extensions are given in the lists below.

When elegant reads a namelist command, one of its first actions is to print the namelist back to the standard output. This printout includes all the variables in the namelist and their values. Occasionally, the user may see a variable listed in the printout that is not in this manual. These are often obsolete and are retained only for backward compatibility, or else associated with a feature that is not fully supported. Use of such "undocumented features" is discouraged.

elegant supports substitution of fields in namelists using the commandline macro option. This permits making runs with altered parameters without editing the input file. Macros inside the input file have one of two forms: <tag> or \\$tag. To perform substitution, use the syntax

```
elegant inputfile |-pipe=in -macro=tag1=value1[,tag2=value2...]
```

When using this feature, it is important to substitute the value of rootname (in run_setup) so that one can get a new set of output files (assuming use of the suggested "%s" field in all the output file names). One may give the macro option any number of times, or combine all substitutions in one option. The name of the input file is available using the macro INPUTFILENAME.

elegant also allows execution of commands in the shell as part of evaluation of a namelist field. To invoke this, one encloses the commandline string in curly braces. E.g.,

```
betax = "{sdds2stream -parameter=betaxFinal data.twi}"
```

(Note that the quotes are also required.) In this example, betax is assigned the value of the parameter betaxFinal from the file data.twi. Frequently, the commandline RPN calculator, rpnl is also used in this way, for example

```
betax = "{rpnl 8 pi / 2 /}"
```

assigns the value $8/(2\pi)$ to betax. One possible pitfall with using rpnl in this fashion is interpretation of the multiplication symbol (*) as a file wildcard by the shell. For this reason, the alternate multiplication operator mult is preferred, e.g.,

```
betax = "{rpnl 8 pi mult}"
rather than
betax = "{rpnl 8 pi *}"
```

We used the program rpnl in these examples because it is perhaps familiar. However, versions 17.4 and later allow direct evaluation of RPN expressions in commands whenever parentheses are used to delimite a sequence. For example,

```
betax = "(8 2 / pi /)"
```

(Note that the quotes are also required.) The advantages of this method are speed (no subprocess is needed), lack of intermediate interpretation by the shell, and persistence of the stack and variables. So, for example, one might use

```
betax = "(8 2 / pi / sto betax0)"
betay = "(betax0)"
```

Another advantage is the ability to mix subcommands and rpn expressions, as in

```
betax = "({sdds2stream -parameter=betaxFinal data.twi} 2 /)"
```

would assign to betax half the value of the parameter betaxFinal from the file data.twi.

7.3 Setup and Action Commands

A subject of frequent confusion for elegant users is the distinction between setup and action commands. An "action" command causes elegant to immediately perform a specific computation or set of computations. In contrast, a "setup" command tells elegant how to perform computations when it later encounters a "major" action command (one of analyze_map, find_aperture, frequency_map, momentum_aperture, optimize, or track). (N.B.: After each major action command, the problem space is wiped clear. To perform further computations requires introduction of a new run_setup command.)

Several commands are switchable between action and setup modes. These include the coupled_twiss_output, correction_matrix_output, twiss_output, find_aperture, matrix_output, and sasefel commands. Except for find_aperture, all of the commands that can run in both modes have the output_at_each_step parameter, which is used to switch between the modes. In the case of find_aperture, the switch is accomplished using the optimization_mode parameter. Regardless of which parameter is present, unless the parameter is given a value of 1, the command operates in action mode. Further, if the command is used in setup mode and no relevant action command is present later in the file, then the requested will not be performed.

Typically one wants to use these switchable commands in setup mode whenever one is simulating random errors, performing a parameter scan, or performing optimization. When in setup mode, the indicated computations will be performed repeatedly, e.g., for each set of errors, for each step in the parameter scan, or for use in each evaluation of the optimization penalty function.

7.4 Table of elegant commands and their functions

Command name	Type	Description
alter_elements	action	Change an element parameter from the
		command file.
amplification_factors	action	Compute orbit amplification functions.
analyze_map	major	Determine first-order matrix from track-
	action	ing.
aperture_data	setup	Define aperture using an SDDS file.
bunched_beam	setup	Set up beam generation.
change_particle	action	Change the type of particle. Default is
		electron.
chromaticity	setup	Correct the chromaticity.
closed_orbit	setup	Compute the closed orbit.
correct	setup	Correct the orbit or trajectory.
correction_matrix_output	action/setup	Obtain orbit/trajectory correction matrix
	, -	in a file.
correct_tunes	setup	Correct the tunes.
coupled_twiss_output	setup/action	Compute and output coupled twiss pa-
-		rameters.
divide_elements	setup	Specify division of elements into pieces.
error_element	setup	Define errors for a set of elements.
error_control	setup	Set up and control error generation pro-
		cess.
find_aperture	setup/major	Determine the transverse (e.g., dynamic)
	action	aperture.
floor_coordinates	action	Compute and output floor coordinates.
frequency_map	major	Compute and output frequency map.
	action	
global_settings	action	Change global settings.
insert_elements	action	Insert elements into the lattice at many
		places.
insert_sceffects	action	Insert space charge kick elements.
linear_chromatic_tracking_setup	setup	Set up for fast tracking with chromatic ef-
		fects.
link_control	setup	Control linking of element parameters.
link_elements	setup	Define link between parameters of two el-
		ements.
load_parameters	- '	Load element parameters from SDDS file.
matrix_output	setup/action	Output transfer matrix along beamline.
modulate_elements	setup	Set up time-dependent modulation of ele-
		ments.
moments_output	setup/action	Compute coupled beam moments, with
		radiation option.
momentum_aperture	major	Determine s-dependent momentum aper-
	action	ture.

optimize optimi	ze major	Execute an optimization.
-	action	
optimization_covariable	setup	Define a dependent parameter for optimization.
optimization_setup	setup	Perform initial optimization setup.
optimization_term	setup	Define a term of penalty function.
optimization_variable	setup	Define an optimization variable.
parallel_optimization_setup	setup	Perform initial parallel optimization setup.
print_dictionary	action	Print the element dictionary.
ramp_elements	setup	Set up turn-by-turn ramping of elements.
rf_setup	setup/action	
rpn_expression	action	Execute an expression in the rpn interpreter.
rpn_load	action	Load values from SDDS file into rpn interpreter.
run_control	setup	Set up simulation steps and passes.
run_setup	setup	Define global simulation parameters and output files.
sasefel	setup/action	
save_lattice	action	Save new lattice file.
sdds_beam	setup	Define loading of particles from SDDS file.
semaphores	setup	Define file semaphores for start/end of run.
slice_analysis	setup	Perform slice analysis along beamline.
subprocess	action	Execute a command in the shell.
steering_element	setup	Define element parameters as steering correctors.
transmute_elements	setup	Transmute elements from one type to another.
tune_footprint	setup/action	Compute and optimize chromatic and amplitude tune footprints.
twiss_analysis	setup	Define subset of beamline for twiss parameter analysis.
twiss_output	setup/action	
track	major action	Execute tracking of particles and other operations.
tune_shift_with_amplitude	setup	Compute tune shifts with amplitude.
vary_element	setup	Vary element parameters in loops.

Table 1: Table of elegant commands and their functions.

alter_elements

7.5 alter_elements

- type: action command.
- function: modify the value of a parameter for one or more elements
- sequence: must follow run_setup.

```
&alter_elements
STRING
```

```
STRING name = NULL;
STRING item = NULL;
STRING type = NULL;
STRING exclude = NULL;
double value = 0;
STRING string_value = NULL;
long differential = 0;
long multiplicative = 0;
long alter_at_each_step = 0;
long alter_before_load_parameters = 0;
long verbose = 0;
long allow_missing_elements = 0;
long allow_missing_parameters = 0;
long start_occurence = 0;
long end_occurence = 0;
double s_start = -1;
double s_{end} = -1;
STRING before = NULL;
STRING after = NULL;
```

&end

- name A possibly-wildcard-containing string giving the names of the elements to alter. If not specified, then one must specify type.
- item The name of the parameter to alter.
- type A possibly-wildcard-containing string giving the names of element types to alter. May be specified with name or by itself.
- exclude A possibly-wildcard-containing string giving the names of elements to excluded from alteration.
- value, string_value The new value for the parameter. Use string_value only if the parameter takes a character string as its value.
- differential If nonzero, the new value is the predefined value of the parameter plus the quantity given with value.
- multiplicative If nonozero, the new given value is the predefined value of the parameter times the quantity given with value.

- alter_at_each_step If nonzero, the changes requested by the command are performed at each simulation step. Note that if differential or multiplicative are non-zero, then changes will accumulate. (A more conventional way to perform such variation is with vary_elements.)
- alter_before_load_parameters If alter_at_each_step, by default the alteration takes place after any load_parameters commands are processed. If this control is non-zero, the alteration takes place before any load_parameters commands are processed.
- verbose If nonzero, information is printed to the standard output describing what elements are changed.
- allow_missing_elements If nonzero, then it is not an error if an element matching name does not exist. Normally, such an occurrence is an error and terminates the program.
- allow_missing_parameters If nonzero, then it is not an error if an element does not have the parameter named with item. Normally, such an occurrence is an error and terminates the program.
- start_occurence, end_occurence If nonzero, these give the starting and ending occurence numbers of elements that will be altered. N.B.: if wildcards are used, occurence number counting is for each set of identically-named elements separately, rather than for the sequence of matched elements.
- s_start, s_end If non-negative, these give the gaving and ending position limits for the end-of-element locations of elements to be altered.
- after The name of an element. If given, the alteration is applied only to elements that follow the named element in the beamline.
- before The name of an element. If given, the alteration is applied only to elements that precede the named element in the beamline.

amplification_factors

7.6 amplification_factors

- type: action command.
- function: compute corrected and uncorrected orbit amplification factors and functions.
- sequence: must be the last command in a sequence.

```
&amplification_factors
    STRING output = NULL;
    STRING uncorrected_orbit_function = NULL;
    STRING corrected_orbit_function = NULL;
    STRING kick_function = NULL;
    STRING name = NULL;
    STRING type = NULL;
    STRING item = NULL;
    STRING plane = NULL;
    double change = 1e-3;
    long number_to_do = -1;
    double maximum_z = 0;
&end
```

- output The (incomplete) name of a file for text output. Recommended value: "%s.af".
- uncorrected_orbit_function The (incomplete) name of a file for an SDDS-format output of the uncorrected-orbit amplification function. Recommended value: "%s.uof".
- corrected_orbit_function The (incomplete) name of a file for an SDDS-format output of the corrected-orbit amplification function. Recommended value: "%s.cof".
- kick_function The (incomplete) name of a file for an SDDS-format output of the kick amplification function. Recommended value: "%s.kaf".
- name The optionally wildcarded name of the orbit-perturbing elements.
- type The optional type name of the the orbit-perturbing elements.
- item The parameter of the elements producing the orbit.
- plane The plane ("h" or "v") to examine.
- change The parameter change to use in computing the amplification.
- number_to_do The number of elements to perturb.
- maximum_z The maximum z coordinate of the elements to perturb.

analyze_map

7.7 analyze_map

&analyze_map

- type: major action command.
- function: find the transport matrix up to third order based on particle tracking, based on method described in [4]. Also find related quantities, such as chromaticity.
- sequence: must follow run_control.
- can use parallel resources (Pelegant)

```
STRING output = NULL;

STRING printout = NULL;

double delta_x = 1e-6;

double delta_xp = 1e-6;

double delta_y = 1e-6;

double delta_yp = 1e-6;

double delta_s = 1e-6;

double delta_dp = 1e-6;

double accuracy_factor = 1e-12;

long center_on_orbit = 0;

long verbosity = 0;

long canonical_variables = 0;

long printout_order = 2;

long periodic = 1;
```

double beta_x = 1;
double alpha_x = 0;
double eta_x = 0;
double eta_x = 0;
double beta_y = 1;
double alpha_y = 0;
double eta_y = 0;
double eta_y = 0;

&end

- output The (incomplete) name of a file for SDDS output.
 - Recommended value: "%s.ana".
 - File contents: A series of dumps, each consisting of a single data point containing the centroid offsets for a single turn, the single-turn R matrix, the matched Twiss parameters, tunes, and dispersion functions.
- printout The (incomplete) name of a file for text output of the matrix.
- delta_X The amount by which to change the quantity X in computing the derivatives that give the matrix elements.

- accuracy_factor The fraction of the maximum absolute value of the final coordinate that is considered meaningful. Used to estimate errors and eliminate spurious matrix elements.
- canonical_variables If non-zero, the matrix is expressed in terms of canonical variables $(x, q_x, y, q_y, -s, \delta)$ instead of the default $(x, x', y, y', s, \delta)$.
- center_on_orbit A flag directing the expansion to be made about the closed orbit instead of the design orbit.
- verbosity The larger this value, the more output is printed during computations.
- printout_order Order of the matrix to be printed to the printout file.
- periodic If non-zero, system is assumed to be periodic and lattice functions, tunes, chromaticities, etc are computed.
- beta_x, alpha_x, eta_x, etap_x, beta_y, alpha_y, eta_y, etap_y If periodic=0, these are the starting values for the lattice functions.

aperture_data

7.8 aperture_data

- type: setup command.
- function: specify a file from which to take x and y aperture data vs s.
- note: this command is also available under the name aperture_input.

&aperture_data

```
STRING input = NULL;
long periodic = 1;
long persistent = 0;
long disable = 0;
```

&end

- input Name of SDDS file supplying the aperture data. The following columns are all required, in double or float type, with units of m (meters).
 - 1. s Distance along the central trajectory.
 - 2. xHalfAperture Half aperture in the horizontal.
 - 3. yHalfAperture Half aperture in the vertical.
 - 4. xCenter Center of the aperture in the horizontal.
 - 5. yCenter Center of the aperture in the vertical.
- periodic If non-zero, the aperture is a periodic function of s, with period equal to the range of the data.
- persistent If non-zero, the aperture data persists across subsequent run_setup commands. By default, the aperture data is forgotten when a new run_setup command is seen.
- disable If non-zero, the command is ignored.

bunched beam

7.9 bunched_beam

- type: setup command.
- sequence: must follow run_control.
- function: set up for tracking of particle coordinates with various distributions.
- In Pelegant, the exact particles generated will change as the number of cores is changed.

&bunched_beam

```
STRING bunch = NULL;
long n_particles_per_bunch = 1;
double time_start = 0;
STRING matched_to_cell = NULL;
double emit_x = 0;
double emit_nx = 0;
double beta_x = 1.0;
double alpha_x = 0.0;
double eta_x = 0.0;
double etap_x = 0.0;
double emit_y = 0;
double emit_ny = 0;
double beta_y = 1.0;
double alpha_y = 0.0;
double eta_y = 0.0;
double etap_y = 0.0;
long use_twiss_command_values = 0;
long use_moments_output_values = 0;
double Po = 0.0;
double sigma_dp = 0.0;
double sigma_s = 0.0;
double dp_s_coupling = 0;
double emit_z = 0;
double beta_z = 0;
double alpha_z = 0;
double momentum_chirp = 0;
long one_random_bunch = 1;
long symmetrize = 0;
long halton_sequence [3] = \{0, 0, 0\};
long halton_radix[6] = {0, 0, 0, 0, 0, 0};
long optimized_halton = 0;
long randomize_order[3] = \{0, 0, 0\};
long limit_invariants = 0;
long limit_in_4d = 0;
long enforce_rms_values[3] = {0, 0, 0};
double distribution_cutoff[3] = {2, 2, 2};
```

```
STRING distribution_type[3] = {"gaussian", "gaussian", "gaussian"};
double centroid[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
long first_is_fiducial = 0;
long save_initial_coordinates = 1;
&end
```

- bunch The (incomplete) name of an SDDS file to which the phase-space coordinates of the bunches are to be written. Recommended value: "%s.bun".
- n_particles_per_bunch Number of particles in each bunch.
- time_start The central value of the time coordinate for the bunch.
- matched_to_cell The name of a beamline from which the Twiss parameters of the bunch are to be computed.
- emit_X RMS emittance for the X plane.
- emit_nX RMS normalized emittance for the X plane. Ignored if emit_X is nonzero.
- beta_X, alpha_X, eta_X, etap_X Twiss parameters for the X plane.
- use_twiss_command_values If nonzero, then the values for β , α , η , and η' are taken from the twiss_output command. It is an error if no twiss_output command has been given.
- use_moments_output_values If nonzero, then the beam is generated to match the 6D matched, equilibrium beam moments computed by the moments_output command. The distribution type must be gaussian. This mode is incompatible with using closed orbit correction with start_from_centroid=1 (the default value).
- Po Central momentum of the bunch.
- sigma_dp, sigma_s Fractional momentum spread, δ , and bunch length. Note that sigma_s is actually the length in $\beta_z * c * t$, so that for $\beta_z << 1$ the length of the bunch in time will be greater than one might expect.
- dp_s_coupling Specifies the coupling between s and δ , defined as $\langle s\delta \rangle/(\sigma_s \sigma_\delta)$.
- emit_z, beta_z, alpha_z Provide another way to specify the longitudinal phase space, either separately from or in combination with sigma_dp, sigma_s, and dp_s_coupling. Basically, which values elegant uses depends on what one sets to nonzero values. If one sets emit_z, then sigma_dp, sigma_s, and dp_s_coupling are ignored. If one doesn't set emit_z, then elegant uses sigma_dp and sigma_s; it additionally uses alpha_z if it is nonzero, otherwise it uses dp_s_coupling. For reference, the relationship between them is $C = \frac{\Sigma_{56}}{\sqrt{\Sigma_{55}\Sigma_{66}}} = -\frac{\alpha}{\sqrt{1+\alpha^2}}$. Note that to impart a chirp that results in compression for $R_{56} < 0$ (e.g., a normal four-dipole chicane), one must have $\alpha_z < 0$ or C > 0.
- momentum_chirp Permits imparting an additional momentum chirp to the beam, in units of 1/m. E.g., a value of 1 indicates that a 1mm long bunch has a linear variation in momentum of 0.1% from end-to-end. A positive chirp is needed to provide compression of a bunch with an ordinary $R_{56} < 0$ four-dipole chicane.

- one_random_bunch If non-zero, then only one random particle distribution is generated. Otherwise, a new distribution will be generated for every simulation step.
- enforce_rms_values[3] Flags, one for each plane, indicating whether to force the distribution to have the specified RMS properties.
- distribution_cutoff[3] Distribution cutoff parameters for each plane. For gaussian distributions, this is the number of sigmas to use. For other distributions (except dynamic aperture), this number simply multiplies the sizes. This is potentially confusing and hence it is suggested that the distribution cutoff be set to 1 for nongaussian beams.
 - The exception is "dynamic-aperture" distribution type. In this case, the cutoff value is the number of grid points in the dimension in question.
- distribution_type[3] Distribution type for each plane. May be "gaussian", "hard-edge", "uniform-ellipse", "shell", "dynamic-aperture", "line", "halo(gaussian)".
 - For the transverse plane, the interpretation of the emittance is different for the different beam types. For gaussian beams, the emittances are rms values. For all other types, $\sqrt{\epsilon * \beta}$ times the distribution cutoff defines the edge of the beam in position space, while $\sqrt{\epsilon * (1 + \alpha^2)/\beta}$ times the distribution cutoff defines the edge of the beam in slope space.
 - A hard-edge beam is a uniformly-filled parallelogram in phase space. A uniform-ellipse beam is a uniformly-filled ellipse in phase space. A shell beam is a hollow ellipse in phase space. A dynamic aperture beam has zero slope and uniform spacing in position coordinates. A line beam is a line in phase space. A "halo(gaussian)" beam is the part of the gaussian distribution beyond the distribution cutoff.
- limit_invariants If non-zero, the distribution cutoffs are applied to the invariants, rather than to the coordinates. This is useful for gaussian beams when the distribution cutoff is small.
- limit_in_4d If non-zero, then the transverse distribution is taken to be a 4-d gaussian or uniform distribution. One of these must be chosen using the distribution_type control. It must be the same for x and y. This is useful, for example, if you want to make a cylindrically symmetric beam.
- symmetrize If non-zero, the distribution is symmetric under changes of sign in the coordinates. Automatically results in a zero centroid for all coordinates.
- halton_sequence[3] and halton_radix[6] and optimized_halton This provides a "quiet-start" feature by choosing Halton sequences in place of random number generation. There are three new variables that control this feature. halton_sequence is an array of three flags that permit turning on Halton sequence generation for the horizontal, vertical, or longitudinal planes. For example, halton_sequence[0] = 3*1 will turn on Halton sequences for all three planes, while halton_sequence[2] = 1, will turn it on for the longitudinal plane only.
 - halton_radix is an array of six integers that permit giving the radix for each sequence (i.e., x, x, y, y, t, p). Each radix must be a prime number. One should never use the same prime for two sequences, unless one randomizes the order of the sequences relative to each other (see the next item). If these are left at zero, then elegant chooses values that eliminate phase-space banding to some extent. The user is cautioned to plot all coordinate combinations for the initial phase space to ensure that no unacceptable banding is present.

A suggested way to use Halton sequences is to set halton_radix[0] = 2, 3, 2, 3, 2, 3 and to set randomize_order[0] = 2, 2, 2. This avoids banding that may result from choosing larger radix values.

optimized_halton uses the improved halton sequence [33]. (Algorithm 659, Collected Algorithm from ACM. Derandom Algorithm is added by Hongmei CHI (CS/FSU)). It avoids the banding problem automatically and the halton_radix values are ignored.

- randomize_order[3] Allows randomizing the order of assigned coordinates for the pairs (x, x'), (y, y'), and (t,p). 0 means no randomization; 1 means randomize (x, x', y, y', t, p) values independently, which destroys any x-x', y-y', and t-p correlations; 2 means randomize (x, x'), (y, y'), and (t, p) in pair-wise fashion. This is used with Halton sequences to remove banding. It is suggested that that the user employ sddsanalyzebeam to verify that the beam properties when randomization is used.
- centroid[6] Centroid offsets for each of the six coordinates.
- first_is_fiducial Specifies that the first beam generated shall be a single particle beam, which is suitable for fiducialization. See the section on "Fiducialization in elegant" for more discussion.
- save_initial_coordinates A flag that, if set, results in saving initial coordinates of tracked particles in memory. This is the default behavior. If unset, the initial coordinates are not saved, but are regenerated each time they are needed. This is more memory efficient and is useful for tracking very large numbers of particles.

change_particle

7.10 change_particle

- type: action command.
- function: change the particle type from the default value of "electron."
- sequence: must precede run_setup.
- N.B.: this feature has had limited testing, mostly to verify that electron tracking is not impacted by the implementation. Please use with caution and be alert for suspicious results.

```
&change_particle
    STRING name = "electron";
    double mass_ratio = 0;
    double charge_ratio = 0;
&end
```

- name The name of the particle to use. Possible values are electron, positron, proton, muon, and custom.
- mass_ratio, charge_ratio If the particle name is "custom," these parameters specify the mass and charge of the particle relative to the electron. E.g., for an anti-proton, one would use a mass ratio of 1836.18 and a charge ratio of 1.

chromaticity

7.11 chromaticity

- type: setup command.
- function: set up for chromaticity correction.
- sequence: should follow twiss_output.

```
&chromaticity
    STRING sextupoles = NULL;
    STRING exclude = NULL;
    double dnux_dp = 0;
    double dnuy_dp = 0;
    double sextupole_tweek = 1e-3;
    double correction_fraction = 0.9;
    long n_iterations = 5;
    double tolerance = 0;
    STRING strength_log = NULL;
    long change_defined_values = 0;
    double strength_limit = 0;
    long use_perturbed_matrix = 0;
    long exit_on_failure = 0;
    long verbosity = 1;
    double dK2_weight = 1;
&end
```

- sextupoles List of names of elements to use to correct the chromaticities. Several names may be given and names may include wildcards. If so, then sextupoles in each group are changed by the same amount for each iteration. This would typically be used when the sextupoles are nominally identical (though perhaps differing in strength because of introduced errors). If that's not the case, the iteration may fail to converge.
- exclude List of names of elements to exclude. This may be used to exclude some sextupoles that are matched by wildcards in the sextupole list.
- $dK2_weight$ Weighting factor that is used to minimize the mean-square changes in K_2 values in the event that there are more than two families.
- dnux_dp, dnuy_dp Desired chromaticity values.
- sextupole_tweek Amount by which to tweak the sextupoles to compute derivatives of chromaticities with respect to sextupole strength. [The word "tweak" is misspelled "tweek" in the code.]
- correction_fraction Fraction of the correction to apply at each iteration. In some cases, correction is unstable at this number should be reduced.
- n_iterations Number of iterations of the correction to perform.
- tolerance Stop iterating when chromaticities are within this value of the desired values.

- strength_log The (incomplete) name of an SDDS file to which the sextupole strengths will be written. Recommended value: "%s.ssl".
- change_defined_values Changes the defined values of the sextupole strengths. This means that when the lattice is saved (using save_lattice), the sextupoles will have the corrected values. This would be used for correcting the chromaticity of a design lattice, for example, but not for correcting chromaticity of a perturbed lattice.
- strength_limit Limit on the absolute value of sextupole strength (K_2) .
- use_perturbed_matrix If nonzero, requests use of the perturbed correction matrix in performing correction. For difficult lattices with large errors, this may be necessary to obtain correction. In general, it is not necessary and only slows the simulation.
- exit_on_failure If nonzero, then failure to reach the desired chromaticities within the tolerance results in the program exiting.
- verbosity Increasing positive values result in increasing amounts of information printed during execution.

closed_orbit

7.12 closed_orbit

- type: setup command.
- function: set up for computation of the closed orbit.

```
&closed_orbit
   STRING output = NULL;
   long output_monitors_only = 0;
   long start_from_centroid = 1;
   long start_from_dp_centroid = 1;
   double closed_orbit_accuracy = 1e-12;
   long closed_orbit_iterations = 10;
   double iteration_fraction = 1;
   long fixed_length = 0;
   long start_from_recirc = 0;
   long verbosity = 0;
   long tracking_turns = 0;
```

&end

- output The (incomplete) name of an SDDS file to which the closed orbits will be written. Recommended value: "%s.clo".
- output_monitors_only If non-zero, indicates that the closed orbit output should include only the data at the locations of the beam-position monitors.
- start_from_centroid A flag indicating whether to force the computation to start from the centroids of the beam distribution.
- start_from_dp_centroid A flag indicating whether to force the computation to use the momentum centroid of the beam for the closed orbit. This can allow computing the closed orbit for an off-momentum beam, then starting the beam on that orbit using the offset_by_orbit or center_on_orbit parameters of the track command. In contrast to the start_from_centroid, this command doesn't force the algorithm to start from the beam transverse centroids.
- closed_orbit_accuracy The desired accuracy of the closed orbit, in terms of the difference between the start and end coordinates, in meters.
- closed_orbit_iterations The number of iterations to take in finding the closed orbit.
- iteration_fraction Fraction of computed change that is used each iteration. For lattices that are very nonlinear or close to unstable, a number less than 1 can be helpful. Otherwise, it only slows the simulation.
- fixed_length A flag indicating whether to find a closed orbit with the same length as the design orbit by changing the momentum offset.
- start_from_recirc A flag indicating whether to compute the closed orbit from the recirculation (recirc) element in the beamline. In general, if one has a recirculation element, one should give this flag.

- verbosity A larger value results in more printouts during the computations.
- tracking_turns If non-zero, the number of turns to track for determination of the closed orbit by averaging. This may be useful if the regular closed orbit algorithm complains about convergence issues.

correct

7.13 correct

- type: setup command.
- sequence: must follow run_setup and precede beam definition (bunched_beam or sdds_beam).
- function: set up for correction of the trajectory or closed orbit.

&correct

```
STRING mode = "trajectory";
    STRING method = "global";
    STRING trajectory_output = NULL;
    STRING corrector_output = NULL;
    STRING statistics = NULL;
    double corrector_tweek[2] = {1e-3, 1e-3};
    double corrector_limit[2] = {0, 0};
    double correction_fraction[2] = {1, 1};
    double correction_accuracy[2] = {1e-6, 1e-6};
    long do_correction[2] = {1, 1};
    long remove_smallest_SVs[2] = {0, 0};
    long keep_largest_SVs[2] = {0, 0};
    double minimum_SV_ratio[2] = {0, 0};
    long auto_limit_SVs[2] = {1, 1};
    long removed_pegged[2] = {0, 0};
    long threading_divisor[2] = {100, 100};
    long threading_correctors[2] = {-1, -1};
    double bpm_noise[2] = \{0, 0\};
    double bpm_noise_cutoff[2] = {1.0, 1.0};
    STRING bpm_noise_distribution[2] = {"uniform", "uniform"};
    long verbose = 1;
    long fixed_length = 0;
    long fixed_length_matrix = 0;
    long n_xv_cvcles = 1;
    long minimum_cycles = 1;
    long n_iterations = 1;
    long prezero_correctors = 1;
    long track_before_and_after = 0;
    long start_from_centroid = 1;
    long use_actual_beam = 0;
    double closed_orbit_accuracy = 1e-12;
    long closed_orbit_iterations = 10;
    double closed_orbit_iteration_fraction = 1;
    double closed_orbit_tracking_turns = 0;
    long use_perturbed_matrix = 0;
    long disable = 0;
    long use_response_from_computed_orbits = 0;
&end
```

In the case of array variables with dimension 2, the first entry is for the horizontal plane and the second is for the vertical plane.

- mode Either "trajectory" or "orbit", indicating correction of a trajectory or a closed orbit.
- method For trajectories, may be "one-to-one", "one-to-best", "one-to-next", "thread", or "global". "One-to-one" and "one-to-next" are the same: steering is performed by pairing one corrector with the next downstream BPM. "One-to-best" attempts to find a BPM with a large response to each corrector. "Thread" does corrector sweeps to work the beam through a beamline with apertures; it is quite slow. "Global" simply uses the global response matrix; it is the best choice if the trajectory is not lost on an aperture. For closed orbit, must be "global".
- trajectory_output The (incomplete) name of an SDDS file to which the trajectories or orbits will be written. Recommended value: "%s.traj" or "%s.orb".
- corrector_output The (incomplete) name of an SDDS file to which information about the final corrector strengths will be written. Recommended value: "%s.cor". N.B.: although this file looks as if it can be used with the load_parameters command, care must be exercised because the data for the horizontal and vertical planes is on separate pages. Typically, one will need to use sddscombine -merge=Step ... in order to place the data from both planes on the same page. Also, be aware that if all correctors have the same name, using change_defined_values=1 on load_parameters will not produce the expected results. See the documentation for load_parameters for more details.
- statistics The (incomplete) name of an SDDS file to which statistical information about the trajectories (or orbits) and corrector strengths will be written. Recommended value: "%s.scor".
- corrector_tweek[2] The amount by which to change the correctors in order to compute correction coefficients for transport lines. [The word "tweak" is misspelled "tweek" in the code.] The default value, 1 mrad, may be too large for systems with small apertures. If you get an error message about "tracking failed for test particle," try decreasing this value.
- corrector_limit[2] The maximum strength allowed for a corrector.
- correction_fraction[2] The fraction of the computed correction strength to actually use for any one iteration.
- correction_accuracy[2] The desired accuracy of the correction in terms of the RMS BPM values.
- do_correction[2] Flags to allow disabling correction in one or both planes (if set to zero).
- remove_smallest_SVs, keep_largest_SVs, minimum_SV_ratio, auto_limit_SVs These parameters control the elimination of singular vectors from the inverse response matrix, which can help deal with degeneracy in the correctors and reduce corrector strength. By default, the number of singular vectors is limited to the number of BPMs, which is a basic condition for stability; this can be defeated by setting auto_limit_SVs to 0 for the desired planes. Set remove_smallest_SVs to require removal of a given number of vectors with the smallest

singular values; this is ignored if auto_limit_SVs is also requested and would remove more SVs. Set keep_largest_SVs to require keeping at most a given number of the largest SVs. Set minimum_SV_ratio to require removal of any vectors with singular values less than a given factor of the largest singular value.

- remove_pegged[2] If nonzero, then for the plane in question pegged correctors will be removed from the correction matrix. This results in recomputation of the matrix, following which correction continues with the reduced set of correctors. The pegged corrector is left at its last value.
- threading_divisor In threading mode trajectory correction, each corrector is varied between 0 and $\pm \theta_{\text{max}}$, where θ_{max} is the strength limit. This parameter sets the number of steps to divide the corrector range into on the positive and negative sides. A smaller value results in faster execution but is less reliable.
- threading_correctors In threading mode trajectory correction, gives the number of correctors upstream of the loss point to use for threading the beam further through the system.
- bpm_noise[2] The BPM noise level.
- bpm_noise_cutoff[2] Cutoff values for the random distributions of BPM noise.
- bpm_noise_distribution[2] May be either "gaussian", "uniform", or "plus_or_minus".
- verbose If non-zero, information about the correction is printed during computations.
- fixed_length Indicates that the closed orbit length should be kept the same as the design orbit length by changing the momentum offset of the beam.
- fixed_length_matrix Indicates that for fixed-length orbit correction, the fixed-length matrix should be computed and used. This will improve convergence but isn't always needed.
- n_xy_cycles Number of times to alternate between correcting the x and y planes.
- minimum_cycles The minimum number of x-y cycles to perform, even if the correction does not improve.
- n_iterations Number of iterations of the correction in each plane for each x/y cycle.
- prezero_correctors Flag indicating whether to set the correctors to zero before starting.
- track_before_and_after Flag indicating whether tracking should be done both before and after correction.
- start_from_centroid Flag indicating that correction should start from the beam centroid. For orbit correction, only the beam momentum centroid is relevant.
- use_actual_beam Flag indicating that correction should employ tracking of the beam distribution rather than a single particle. This is valid for trajectory correction only.
- closed_orbit_accuracy Accuracy of closed orbit computation.
- closed_orbit_iterations Number of iterations of closed orbit computation.

- closed_orbit_iteration_fraction Fraction of change in closed orbit to use at each iteration.
- closed_orbit_tracking_turns If non-zero, the absolute value gives the number of turns to track for determination of the closed orbit by averaging. This may be useful if the regular closed orbit algorithm complains about convergence issues. If less than zero, then only this method is used. If greater than zero, then regular orbit determination is tried first, and tracking is used as a fallback.
- use_perturbed_matrix If nonzero, specifies that prior to each correction elegant shall recompute the response matrix. This is useful if the lattice is changing significantly between corrections.
- disable If nonzero, the command is ignored.
- use_response_from_computed_orbits If nonzero, in-plane response matrices are computed using differences of closed orbits, which is slower but may be more accurate. For cross-plane matrices, this is always the case.

correction_matrix_output

7.14 correction_matrix_output

- type: setup/action command.
- function: provide output of the orbit/trajectory correction matrix.
- sequence: must follow run_setup and definition of steering elements (if wanted, with steering_element).

```
&correction_matrix_output
    STRING response[4] = NULL, NULL;
    STRING inverse[2] = NULL, NULL;
    long KnL_units = 0;
    long BnL_units = 0;
    long output_at_each_step = 0;
    long output_before_tune_correction = 0;
    long fixed_length = 0;
    long coupled = 0;
    long use_response_from_computed_orbits = 0;
    &end
```

- response Array of (incomplete) filenames for SDDS output of the x and y response matrices, plus the cross-plane response matrices. Recommended values, in order: "%s.hrm" (horizontal response to horizontal correctors), "%s.vrm" (vertical response to vertical correctors), "%s.vhrm" (vertical response to horizontal correctors), and "%s.hvrm" (horizontal response to vertical correctors).
- inverse Array of (incomplete) filenames for SDDS output of the x and y inverse response matrices. Recommended values: "%s.hirm" and "%s.virm".
- KnL_units Flag that, if set, indicates use of "units" of m/K0L rather than m/rad. This results in a sign change for the horizontal data.
- BnL_units Flag that, if set, indicates use of "units" of m/(T*m) rather than m/rad. This is useful for linac work in that the responses are automatically scaled with beam momentum.
- output_at_each_step Flag that, if set, specifies output of the data at each simulation step. By default, the data is output immediately for the defined lattice.
- output_before_tune_correction Flag that, if set, specifies that when output_at_each_step is set, that output shall occur prior to correcting the tunes.
- fixed_length Flag that, if set, specifies output of the fixed-path-length matrix.
- coupled If nonzero, the cross-plane response matrices are computed.
- use_response_from_computed_orbits If nonzero, in-plane response matrices are computed using differences of closed orbits, which is slower but may be more accurate. For cross-plane matrices, this is always the case.

correct_tunes

7.15 correct_tunes

- type: setup command.
- function: set up for correction of the tunes.
- sequence: should follow twiss_output.

```
&correct_tunes
    STRING quadrupoles = NULL;
    double tune_x = 0;
    double tune_y = 0;
    long n_iterations = 5;
    double correction_fraction = 0.9;
    double tolerance = 0;
    long step_up_interval = 0;
    double max_correction_fraction = 0.9;
    double delta_correction_fraction = 0.1;
    STRING strength_log = NULL;
    long change_defined_values = 0;
    long use_perturbed_matrix = 0;
    double dK1_weight = 1;
    &end
```

- quadrupoles List of names of quadrupoles to be used. Several names may be given and the names may include wildcards. If so, then quadrupoles in each group are changed by the same amount for each iteration. This would typically be used when the quadrupoles are nominally identical (though perhaps differing in strength because of introduced errors). If that's not the case, the iteration may fail to converge.
- $dK1_weight$ Weighting factor that is used to minimize the mean-square changes in K_1 values in the event that there are more than two families.
- tune_x, tune_y Desired x and y tune values. If not given, the desired values are assumed to be the unperturbed tunes.
- n_iterations The number of iterations of the correction to perform.
- correction_fraction The fraction of the correction to apply at each iteration.
- tolerance When both tunes are within this value of the desired tunes, the iteration is stopped.
- step_up_interval Interval between increases in the correction fraction.
- max_correction_fraction Maximum correction fraction to allow.
- delta_correction_fraction Change in correction fraction after each step_up_interval steps.

- strength_log The (incomplete) name of a SDDS file to which the quadrupole strengths will be written as correction proceeds. Recommended value: "%s.qst".
- change_defined_values Changes the defined values of the quadrupole strengths. This means that when the lattice is saved (using save_lattice), the quadrupoles will have the corrected values. This would be used for correcting the tunes of a design lattice, for example, but not for correcting tunes of a perturbed lattice.
- use_perturbed_matrix If nonzero, requests use of the perturbed correction matrix in performing correction. For difficult lattices with large errors, this may be necessary to obtain correction. In general, it is not necessary and only slows the simulation.

coupled_twiss_output

7.16 coupled_twiss_output

- type: setup/action command.
- function: set up or execute computation of coupled twiss parameters and beam sizes
- sequence: must follow run_setup.

```
&coupled_twiss_output
   STRING filename = NULL;
   long output_at_each_step = 0;
   long emittances_from_twiss_command = 1;
   double emit_x = 0;
   double emittance_ratio = 0.01;
   double sigma_dp = 0;
   long calculate_3d_coupling = 1;
   long verbosity = 0;
   long concat_order = 2;
&end
```

- filename The (incomplete) name of the SDDS file to which coupled twiss parameters and beam sizes will be written. Suggested value: "%s.ctwi".
- output_at_each_step If nonzero, then this is a setup command and results in computations occurring for each simulation step (e.g., for each perturbed machine if errors are included). If zero, then this is an action command and computations are done immediately (e.g., for the unperturbed machine). If you wish to compute Twiss parameters on a closed orbit or after other calculations, be sure to set this control to a nonzero value.
- emittances_from_twiss_command If nonzero, then the values of the horizontal emittance and the momentum spread are taken from the uncoupled computation done with the twiss_output command. In this case, the user must issue a twiss_output command prior to the coupled_twiss_output. If zero, then the values of the horizontal emittance and the momentum spread are taken from the parameters emit_x and sigma_dp, respectively. \verb|emit_x|— Gives the horizontal emittance, if emittances_from_twiss_command=0.
- emittance_ratio Gives the ratio of the x and y emittances. Used to determine the vertical emittance from the horizontal emittance. Note that the computation is not self-consistent. I.e., the user is free to enter any emittance ratio desired, whether it is consistent with the machine optics or now.
- sigma_dp Gives the momentum spread, if emittances_from_twiss_command=0.

This feature was added to elegant using code supplied by V. Sajaev, based on Ripkin's method. The code computes the coupled lattice functions, then uses the supplied emittance, emittance ratio, and momentum spread to compute the beam sizes, bunch length (if rf is included), and beam tilt.

divide_elements

7.17 divide_elements

- type: setup command.
- function: define how to subdivide certain beamline elements.
- sequence: must precede run_setup.
- notes:
 - Any number of these commands may be given.
 - Not effective unless given prior to run_setup.
 - The element_divisions field in run_setup provides a simpler, but less flexible, method
 of performing element division. At present, these element types may be divided: CSBEND,
 CSRDRIFT, DRIFT, EDRIFT, KOCT, KQUAD, KQUSE, KSEXT, OCTU, QUAD, RBEND, RFCA, SBEND,
 SEXT, and SOLE.
 - Only effective if given prior to the run_setup command.

• warnings:

- Using save_lattice and element divisions together will produce an incorrect lattice file.
- Element subdivision may produce unexpected results when used with load_parameters or parameters saved via the parameter entry of the run_setup command. If you wish to load parameters while doing element divisions or if you wish to load parameters from a run that had element divisions in effect, you should not load length data for any elements that are (or were) split. The name and item pattern features of load_parameters are helpful in restricting what is loaded.

```
&divide_elements
    STRING name = NULL;
    STRING type = NULL;
    STRING exclude = NULL;
    long divisions = 0;
    double maximum_length = 0;
    long clear = 0;
&end
```

- name A possibly wildcard-containing string specifying the elements to which this specification applies.
- type A possibly wildcard-containing string specifying the element types to which this specification applies.
- exclude A possibily wildcard-containing string specifying elements to be excluded from the specification.
- divisions The number of times to subdivide the specified elements. If zero, then maximum_length should be nonzero.

- maximum_length The maximum length of a slice. This is usually preferrable to specifying the number of divisions, particularly when the elements divided may be of different lengths. If zero, then divisions should be nonzero.
- clear If nonzero, all prior division specifications are deleted.

error_element

7.18 error_element

- type: setup command.
- sequence: must follow run_control.
- function: assert a random error defintion for the accelerator.

```
&error_element
    STRING name = NULL;
    STRING element_type = NULL;
    STRING item = NULL;
    STRING type = "gaussian";
    double amplitude = 0.0;
    double cutoff = 3.0;
    long bind = 1;
    long bind_number = 0;
    longn bind_across_names = 0;
    long post_correction = 0;
    long fractional = 0;
    long additive = 1;
    long allow_missing_elements = 0;
    STRING after = NULL;
    STRING before = NULL;
&end
```

- name The possibly wildcarded name of the elements for which errors are being specified.
- element_type An optional, possibly wildcarded string giving the type of elements to which the errors should be applied. E.g., element_type=*MON* would match all beam position monitors. If this item is given, then name may be left blank.
- item The parameter of the elements to which the error pertains.
- type The type of random distribution to use. May be one of "uniform", "gaussian", or "plus_or_minus". A "plus_or_minus" error is equal in magnitude to the amplitude given, with the sign randomly chosen.
- amplitude The amplitude of the errors.
- cutoff The cutoff for the gaussian random distribution in units of the amplitude. Ignored for other distribution types.
- bind, bind_number, bind_across_names These parameters control "binding" of errors among elements, which means assigning the same error contribution to several elements. This occurs if bind is nonzero, which it is by default! If bind is negative, then the sign of the error will alternate between successive elements. bind_number can be used to limit the number of elements bound together. In particular, if bind_number is positive, then a positive value of bind indicates that bind_number successive elements having the same name will have

the same error value. Finally, by default, elegant only binds the errors of objects having the same name, even if they are assigned errors by the same error_element command (i.e., through a wildcard name). If bind_across_names is nonzero, then binding is done even for elements with different names.

- post_correction A flag indicating whether the errors should be added after orbit, tune, and chromaticity correction.
- fractional A flag indicating whether the errors are fractional, in which case the amplitude refers to the amplitude of the fractional error.
- additive A flag indicating that the errors should be added to the prior value of the parameter. If zero, then the errors replace the prior value of the parameter.
- allow_missing_elements A flag indicating that execution may continue even if no matching elements are found.
- after The name of an element. If given, the error is applied only to elements that follow the named element in the beamline.
- before The name of an element. If given, the error is applied only to elements that precede the named element in the beamline.

error_control

7.19 error_control

- type: setup command
- sequence: must follow run_control.
- function: overall control of random errors.

```
&error_control
    long clear_error_settings = 1;
    long summarize_error_settings = 0;
    long no_errors_for_first_step = 0;
    STRING error_log = NULL;
    double error_factor = 1;
&end
```

- clear_error_settings Clear all previous error settings.
- summarize_error_settings Summarize current error settings. If non-zero, then the command has no other function except showing a summary of the current error settings.
- no_errors_for_first_step If non-zero, then there will be no errors for the first step. This can be useful for fiducialization of phase and momentum profiles.
- error_log The (incomplete) name of a SDDS file to which error values will be written. Recommended value: "%s.erl".
- error_factor A value by which to multiply the error amplitudes in all error commands.

The proper use of this command can be confusing. A typical sequence will be as follows:

```
&error_control
  clear_error_settings = 1,
  error_log = %s.erl
&end

&error_element ... &end
&error_element ... &end
.
.
.
.
&error_element ... &end

berror_element ... &end

control
  summarize_error_settings = 1
&end
```

find_aperture

7.20 find_aperture

- type: setup/major action command.
- function: find the aperture in (x, y) space for an accelerator.
- can use parallel resources (Pelegant)

```
&find_aperture
    STRING output = NULL;
    STRING search_output = NULL;
    STRING boundary = NULL;
    STRING mode = "many-particle";
    double xmin = -0.1;
    double xmax = 0.1;
    double ymin = 0.0;
    double ymax = 0.1;
    long nx = 21;
    long ny = 11;
    long n_splits = 0;
    double split_fraction = 0.5;
    double desired_resolution = 0.01;
    long assume_nonincreasing = 0;
    long verbosity = 0;
    long offset_by_orbit = 0;
    long n_lines = 11;
    long optimization_mode = 0;
&end
```

- output The (incomplete) name of an SDDS file to send output to. Recommended value: "%s.aper".
- mode May be "many-particle", "single-particle", "one-line, "three-lines", or "n-lines". Many-particle searching is much faster than single-particle, but does not allow interval splitting to search for the aperture boundary. Both "many-particle" and "single-particle" modes involve searching from the outside inward, which improves speed but may result in including islands.

The line modes avoid this by searching form the origin outward. Of these, the one-line and three-line modes are special: one-line mode searches the line from the origin to (x_{max}, y_{max}) . three-line mode searches this line, plus the lines from the origin to $(x_{max}, 0)$ and $(0, y_{max})$.

For n-line mode, the number of lines is set with the n_lines parameter. With n > 3, n lines are explored from (0,0) to $(x_{max} * sin(\theta), y_{max} * cos(\theta))$, where θ takes values from -pi/2 to $\pi/2$. In these modes, the output file contains a parameter called "Area," which gives the area of the dynamic aperture.

Also still recognized are other modes, namely, "five-line", "seven-line", "nine-line", and "eleven-line".

- search_output The (incomplete) name of an SDDS file for output of detailed information on each tracked particle (single-particle mode only). Recommended value: "%s.apso".
- boundary The (incomplete) name of an SDDS file for the boundary points of the aperture search. Recommended value: "%s.bnd". Valid for many- and single-particle modes.
- xmin, xmax, ymin, ymax Region of the aperture search. The minimum values are relevant only for many- and single-particle modes.
- nx For many- and single-particle modes, the number of x values to take in initial search. For line modes, this determines the initial x and y step sizes via $\Delta x = x_{max}/n_x$ and $\Delta y = y_{max}/n_x$.
- ny For many- and single-particle modes, the number of y values to take in search. Ignored for line modes.
- n_splits If positive, the number of times to do interval splitting. Interval splitting refers to searching between the original grid points in order to refine the results. This is done only for single-particle and line modes.
- split_fraction If interval splitting is done, how the interval is split.
- desired_resolution If interval splitting is done, fraction of xmax-xmin to which to resolve the aperture. Ignored for all but single-particle mode.
- assume_nonincreasing If this variable is non-zero, the search assumes that the aperture at $y + sign(y) * \Delta y$ is no larger than that at y. This results in tracking of fewer particles but may give a pessimistic result. Used only for single- and multi-particle modes.
- offset_by_orbit A flag indicating whether to offset the transverse beam coordinates by the closed orbit before tracking. The default value is zero for backward compatibility, but the recommended value is 1.
- verbosity A larger value results in more printouts during computations.
- n_lines In "n-lines" mode, the number of lines to search.
- optimization_mode If non-zero, then find_aperture is a setup command and can be used with elegant's internal optimizer. The quantity DaArea is defined, giving the area of the dynamic aperture for use in the penalty function. This is available only for the line search modes.

floor_coordinates

7.21 floor_coordinates

- type: action command.
- function: compute floor coordinates for an accelerator.
- sequence: must follow run_setup.

```
&floor_coordinates
    STRING filename = NULL;
    double X0 = 0.0;
    double Z0 = 0.0;
    double theta0 = 0.0;
    long include_vertices = 0;
    long vertices_only = 0;
    long magnet_centers = 0;
    long store_vertices = 0;
    &end
```

- filename The (incomplete) name of an SDDS file to send output to. Recommended value: "%s.flr".
- X0, Z0, theta0 Initial X, Z, and angle coordinate of the beamline.
- include_vertices Flag that, if set, specifies including in the output the coordinates of the vertices of bending magnets.
- vertices_only Flag that, if set, specifies that output will contain only the coordinates of the vertices of bending magnets.
- magnet_centers Flag that, if set, specifies that output will contain the coordinates of the centers of all magnets, where the center is defined as the average of the entrance and exit points. By default, the coordinates of the downstream end are given.
- store_vertices Flag that, if set, results in storing the floor coordinates for dipole magnet vertex points. The coordinates are stored in variables with names of the form magnetName#occurrenceNumber-VP.property, where property is X, Y, Z, theta, phi, and psi.

The "vertex point" for a dipole or string of dipoles is defined as the intersection of the straight lines from the ideal entrance and exit trajectories. The s quantity for the vertex is defined as the sum of the actual distance traveled to the start of the dipole or string of dipoles plus the straight-line distance from the entrace to the vertex. Hence, one cannot subtract the s values for two successive vertices and expect to get the distance between the vertices.

frequency_map

7.22 frequency_map

- type: major action command.
- function: compute frequency map from tracking Note that the number of turns tracked is set by the run_control command.
- can use parallel resources (Pelegant)

```
&frequency_map
    STRING output = NULL;
    double xmin = -0.1;
    double xmax = 0.1;
    double ymin = 1e-6;
    double ymax = 0.1;
    double delta_min = 0;
    double delta_max = 0;
    long nx = 21;
    long ny = 21;
    long ndelta = 1;
    long verbosity = 1;
    long include_changes = 0;
    long quadratic_spacing = 0;
    long full_grid_output = 0;
&end
```

- output The (incomplete) name of an SDDS file to send output to. Recommended value: "%s.fma". For the parallel version, particles will be listed in essentially random order. If needed, sddssort can be used to sort particles by initial coordinates.
- xmin, xmax Limits of grid of initial x coordinates for tracking.
- ymin, ymax Limits of grid of initial y coordinates for tracking. ymin should be a small, positive value so that there is some betatron oscillation from which to get the tune.
- delta_min, delta_max Limits of grid of initial δ coordinates for tracking. Note that particles are not centered around the dispersive closed orbit. Hence, the tracking is appropriate to simulation of dynamics from a touschek scattering event.
- nx Number of values of x coordinate in the grid.
- ny Number of values of y coordinate in the grid.
- ndelta Number of values of δ coordinate in the grid.
- verbosity If nonzero, prints possibly useful information while running.
- include_changes If nonzero, then computes not only the tunes, but also the changes in the tunes. This is expressed in terms of the diffusion, which is defined as

$$d = \log\left(\Delta\nu_x^2 + \Delta\nu_y^2\right) \tag{1}$$

Use of this feature results in a doubling of the number of turns tracked.

- quadratic_spacing If non-zero, the spacing of points is quadratic rather than linear, thus emphasizing the higher amplitude regions.
- full_grid_output If non-zero, all grid points are represented in the output file, even if tracking or tune determination failed. This makes it possible to plot with programs (e.g., sddscontour) that require a strictly uniform grid.

global_settings

7.23 global_settings

- type: action command.
- sequence: should precede run_setup.
- function: change global settings.

```
&global_settings
   long inhibit_fsync = 0;
   long echo_namelists = 1;
   double SR_gaussian_limit = 3.0;
   long inhibit_seed_permutation = 0;
   STRING log_file = NULL;
   STRING error_log_file = NULL;
   long mpi_randomization_mode = 1;
   long exact_normalized_emittance = 0;
&end
```

- inhibit_fsync By default, elegant forces file synchronization across a network file system to ensure that users see up-to-date files as soon as possible. In cases where a great deal of output is generated, this can degrade performance. Setting this parameter to 1 will turn off synchronization until the end of the run.
- echo_namelists By default, elegant echoes all namelist input to the terminal. If this parameter is set to 0, this output will be inhibited.
- SR_gaussian_limit By default, elegant uses a 3-σ cutoff for the gaussian random numbers used in simulation of synchrotron radiation from CSBEND, CSRCSBEND, KQUAD, KSEXT, and \verbSREFFE This parameter allows changing the cutoff.
- inhibit_seed_permutation If nonzero, randomization of the user-supplied random number seed is *not* performed. This feature is useful in that it provides a higher degree of apparent randomness, in that small changes in the seed result in very different random sequences.
- log_file By default, elegant writes status information to the terminal. If a filename is supplied for this parameter, the output will instead go to the file. On Linux and Unix, using /dev/null will result in the output being discarded.
- error_log_file By default, elegant writes error messages to the terminal. If a filename is supplied for this parameter, the output will instead go to the file. On Linux and Unix, using /dev/null will result in the output being discarded.
- mpi_randomization_mode Controls how the random numbers are seeded on multiple processors
 - 1 This is the original default, which showed issues in some simulations. The seed on the i^{th} processor is $s_0 + 2 * i$.
 - 2 The seed on the i^{th} processor is $s_0 + 2 * i^2$.

- 3 This is the new default. The seed on the i^{th} processor is $s_0 + i * (i + 1)$.
- 4 The seed on the i^{th} processor is $s_0 + R_i$, where R_i is the i^{th} random integer returned by the system rand() function.
- exact_normalized_emittance By default, elegant uses an approximate computation for the normalized emittance, namely, $\epsilon_n = \epsilon \langle \beta \gamma \rangle$, where ϵ is the geometric emittance computed from the trace-space coordinates. If this variable is set to a non-zero value, elegant instead uses a slower but more accurate method, namely, using the momentum coordinates. [43]. The results will show up in the sigma and final output files, if these are requested in the run_setup command.

insert_elements

7.24 insert_elements

- type: action command.
- function: Insert elements into a beamline at specified locations. This is a convenient way to add elements to a beamline without modifying the lattice file.
- sequence: must follow run_setup.
- notes: The modified beamline can be saved through save_lattice command. Be sure to use "output_seq = 1" option in that command.

&insert_elements

```
STRING name = NULL;
STRING type = NULL;
STRING exclude = NULL;
double s_start = -1;
double s_end = -1;
long skip = 1;
long disable = 0;
long add_at_end = 0;
long add_at_start = 0;
STRING element_def = NULL;
long total_occurrences = 0;
long occurrence[100]={0};
```

&end

- name Possibly wild-card containing string specifying the names of the elements after which the new element is inserted. A list of comma- or space-separated names may be given.
- type Possibly wild-card containing string specifying the type of the elements after which the new element is inserted.
- exclude Possibly wild-card containing string specifying the names of elements to be excluded from the specification.
- skip New elements are inserted at every n^{th} specified location.
- s_start, s_end If positive, these give the starting and ending s locations for insertion of new elements. Note that the s locations are not updated as elements are inserted, but only after completion of all insertions covered by a single command.
- disable If nonzero, the command is ignored.
- add_at_end If nonzero, the element is also inserted to the end of the beamline.
- add_at_start If nonzero, the element is also inserted to the start of the beamline, ahead of all other elements.
- element_def The definition of the new element should be just as it would be entered in the lattice file.

• total_occurrences, occurrence — These parameters are used to insert the new elements after specified occurrences of the element name. total_occurrences specifies how many new elements to add, up to a maximum of 100, while the entries in the array occurrence specify the occurrences after which to add the new elements. If total_occurrences is non-zero, then skip must be set to zero and the name must be the exact name (no wild-card matching).

insert_sceffects

7.25 insert_sceffects

- type: setup command.
- function: set up for transverse space charge calculation.
- sequence: must precede run_setup.

- name Possibily wild-card containing string specifying the name of the elements after which to insert the space charge kick element.
- type Possibily wild-card containing string specifying the type of the elements after which to insert the space charge kick element.
- exclude Possibily wild-card containing string specifying the name of elements to be excluded from the insertion of the space charge kick element.
- disable If nonzero, the command is ignored.
- clear If nonzero, all prior space charge insertions are deleted.
- element_prefix Name under which the space charge kick will appear in the beamline.
- skip If nonzero, the given number of insertion locations are skipped. If zero, only one space charge kick is inserted at the end of beamline.
- vertical, horizontal, nonlinear If non-zero, then space charge is included in the plane in question.
- uniform_distribution Used for bi-Gaussian distributed beam (coasting beam), i.e., beam that is uniform in z but gaussian in x and y.
- verbosity Larger non-zero values request greater amounts of detail in printouts.

Important notes:

- By default skip=0, which results in only one SCMULT element at the end of the beamline, regardless of whether values are given for the name or type fields.
- This element is not designed for space charge calculations in guns or linacs. It is only intended for simulating space charge in rings.
- This command can not work with concatenation-based matrix tracking.
- Some users use matched_to_cell in the bunched_beam command. This will erase SCMULT assignments along the beamline. In this case, issue another twiss_output command just before tracking.

linear_chromatic_tracking_setup

7.26 linear_chromatic_tracking_setup

- type: setup command.
- function: define chromatic variation of beta functions, tunes, etc. for using in fast linear-chromatic tracking
- sequence: must follow run_setup.
- N.B.: This command is deprecated and no longer maintained. Use a beamline containing one or more ILMATRIX elements instead. This provides much more functionality.

```
&linear_chromatic_tracking_setup
   double nux[4] = {-1, 0, 0, 0};
   double betax[2] = {1.0, 0.0};
   double alphax[2] = {0.0, 0.0};
   double etax[2] = {0.0, 0.0};
   double etapx[2] = {0.0, 0.0};
   double nuy[4] = {-1, 0, 0, 0};
   double betay[2] = {1.0, 0.0};
   double alphay[2] = {0.0, 0.0};
   double etay[2] = {0.0, 0.0};
   double etapy[2] = {0.0, 0.0};
   double alphac[2] = {0.0, 0.0};
   double alphac[2] = {0.0, 0.0};
```

- nux Provide the horizontal tune plus its first three chromatic derivatives, i.e., $\partial \nu_x/\partial \delta$, $\partial^2 \nu_x/\partial \delta^2$, and $\partial^3 \nu_x/\partial \delta^3$.
- betax Provide the horizontal beta function plus its chromatic derivative.
- alphax Provide the horizontal alpha function plus its chromatic derivative.
- etax Provide the first- and second-order horizontal dispersion: $\eta_x = \eta_x [0] + \eta_x [1] \delta$.
- etapx Provide the first- and second-order horizontal dispersion slope.
- alphac Provide the first and second-order momentum compaction. N.B: if you are tracking with an rf cavity, be sure that your lattice length equal to the actual circumference. See the example below.

link_control

7.27 link_control

- type: setup command.
- function: overall control of element parameter links.
- sequence: must follow run_control.

&link_control long clear_links = 1; long summarize_links = 0; long verbosity = 0;

&end

- clear_links Clear all previously set links.
- summarize_links Summarize all current set links.
- verbosity A larger value results in more output during computations.

link_elements

7.28 link_elements

- type: setup command.
- function: assert a link between parameters of accelerator elements.
- sequence: must follow run_control and link_control.

&link_elements

```
STRING target = NULL;
    STRING exclude = NULL:
    STRING item = NULL;
    STRING source = NULL;
    STRING source_position = "before";
    STRING mode = "dynamic";
    STRING equation = NULL;
    double minimium = -DBL_MAX;
    double maximum = DBL_MAX;
    long exclude_self = 1;
&end
```

- target The name of the elements to be modified by the link. May contain wild-cards.
- exclude Wildcard sequence to match to element names. If a match is found, the element is excluded from the link.
- item The parameter that will be modified.
- source The name of the elements to be linked to.
- source_position May be one of "first", "before", "after", "adjacent", "nearest", or "same-occurrence".
- mode May be either "dynamic" or "static". A dynamic link is asserted whenever the source is changed (during correction, for example). A static link is asserted only when an error or variation is imparted to the source, and at the end of correction.
- equation An rpn equation for the new item value in terms of the item values for the source. The prior value of the item is on the top of the stack. To refer to the source parameter values, use the name of the parameters. To refer to the initial source parameter values, append "0" to the parameter name. These names must appear in capital letters.
- minimum, maximum Minimum and maximum values that will be assigned to the target parameter.
- exclude_self If nonzero, self-links are blocked. It is not recommended to change this.

load_parameters

7.29 load_parameters

- type: setup command.
- function: load parameters for elements from an SDDS file.
- sequence: must follow run_setup and precede run_control and error_control (if present).

&load_parameters

```
STRING filename = NULL;
STRING filename_list = NULL;
STRING include_name_pattern = NULL;
STRING exclude_name_pattern = NULL;
STRING include_item_pattern = NULL;
STRING exclude_item_pattern = NULL;
STRING include_type_pattern = NULL;
STRING exclude_type_pattern = NULL;
STRING edit_name_command = NULL;
long change_defined_values = 0;
long clear_settings = 0;
long allow_missing_elements = 0;
long allow_missing_parameters = 0;
long allow_missing_files = 0;
long force_occurence_data = 0;
long verbose = 0;
long skip_pages = 0;
long use_first = 0;
```

&end

- filename Name (possibly containing the "%s" field) of SDDS file from which to take data. The file must contain some of the following columns:
 - ElementName Required string column. The name of the element to change.
 - ElementParameter Required string column. The name of the parameter of the element to change.
 - ParameterValue Optional double column. If given, gives value of the parameter named in ElementParameter for element named in ElementName.
 - ParameterValueString Optional string column. If ParameterValue is not present, then
 this column must be present. The string data will be scanned, if necessary, to obtain a
 value for the parameter.
 - ParameterMode Optional string column. If given, for each row the value must be one of "absolute", "differential", "ignore", or "fractional". The meaning of these modes is as follows: absolute mode means the given value is used as the new value for the parameter; differential mode means the given value is added to the existing value for the parameter; ignore mode means the value is ignored; fractional mode means the existing value is increased by the product of the given value and the existing value (i.e., the given value is a fractional change).

Unless change_defined_values is set, successive pages of the file are used for successive steps of the simulation. Several elegant commands generate output that may be used (on a subsequent run) with load_parameters; among these are the tune and chromaticity correction commands and the run_setup command (parameters output).

- filename_list A list of filenames, which may be given in place of filename. If used, each file in the list is treated as if it was separately supplied with an individual load_parameters command.
- include_name_pattern, exclude_name_pattern A comma- or space-separated list of wildcard patterns to be used in selecting, respectively, which elements to include and which to exclude from loading. To be used, data must match at least one inclusion pattern and no exclusion patterns.
- include_item_pattern, exclude_item_pattern A comma- or space-separated list of wildcard patterns to be used in selecting, respectively, which items (i.e., which element parameters) to include and which to exclude from loading. To be used, data must match at least one inclusion pattern and no exclusion patterns.
- include_type_pattern, exclude_type_pattern Wildcard patterns to be used in selecting, respectively, which element types (e.g., QUAD, DRIFT) to include and which to exclude from loading. To be used, data must match at least one inclusion pattern and no exclusion patterns.
- edit_name_command A command using the syntax of the editstring program, allowing the strings in the ElementName column to be modified before values are assigned.
- change_defined_values Changes the defined values of the parameters. This means that when the lattice is saved (using save_lattice), the parameters will have the altered values. Also, if one wants to alter the values for all steps of the simulation, one must set this flag. Note that the ElementOccurence data is normally ignored if change_defined_values is nonzero. This is because there is only one definition of each element, even if it is used multiple times. This behavior can be altered with the next control.
- force_occurence_data If set, then occurence data is used even in change_defined_values mode.
- use_first It is possible that the input file will contain multiple lines for any given parameter. In this case, elegant will by default process all lines. For example, if the lines give differential values, then all would be included. However, if the lines give absolute values, then the last one will overwrite the previous values; this flag allows overriding the behavior in this case to force elegant to use the first value. This can have speed advantages for cases where there are many identical occurences of the same element.
- clear_settings If set, clear all settings and files being used for loading parameters.
- allow_missing_elements If set, allow elements in the file that are not in the lattice. In this case, the nonapplicable data is simply ignored.
- allow_missing_parameters If set, it is not an error if any element in the lattice lacks a parameter that exists in the file.

- allow_missing_files If set, it is not an error if any listed file is missing.
- verbose If set, provide informational printouts about changes to parameters.
- skip_pages Specify the number of pages of input to skip.

matrix_output

7.30 matrix_output

- type: setup/action command.
- function: generate matrix output, or set up to do so later.

```
&matrix_output
    STRING printout = NULL;
    long printout_order = 1;
    long full_matrix_only = 0;
    STRING SDDS_output = NULL;
    long SDDS_output_order = 1;
    long individual_matrices = 0;
    STRING SDDS_output_match = NULL;
    long output_at_each_step = 0;
    STRING start_from = NULL;
    long start_from_occurrence = 1;
    &end
```

- printout The (incomplete) name of a file to which the matrix output will be printed (as text). Recommended value: "%s.mpr".
- printout_order The order to which the matrix is printed.
- full_matrix_only A flag indicating that only the matrix of the entire accelerator is to be output.
- SDDS_output The (incomplete) name of an SDDS file to which the matrix will be written. Recommended value: "%s.mat".
- SDDS_output_order The order to which the matrix is output in SDDS format.
- individual_matrices If non-zero, the matrices in the SDDS file are the individual on-trajectory matrices of the elements, rather than the concatenated matrix of the beamline.
- SDDS_output_match A wildcard string which element names must match in order for data to appear in the SDDS output file.
- output_at_each_step A flag indicating whether matrix output is desired at every simulation step.
- start_from The optional name of the accelerator element from which to begin concatenation and output.
- start_from_occurrence If start_from is not NULL, the number of the occurrence of the named element from which to start.

modulate_elements

7.31 modulate_elements

- type: setup command.
- function: define parameters for time-dependent modulation of elements
- sequence: must follow run_setup.

```
&modulate_elements
    STRING name = NULL;
    STRING item = NULL;
    STRING type = NULL;
    STRING expression = NULL;
    STRING filename = NULL;
    STRING time_column = NULL;
    STRING amplitude_column = NULL;
    long refresh_matrix = 0;
    long differential = 1;
    long multiplicative = 0;
    long start_occurence = 0;
    long end_occurence = 0;
    double s_start = -1;
    double s_{end} = -1;
    STRING before = NULL;
    STRING after = NULL;
    long verbose = 0;
    double verbose_threshold = 0;
    STRING record = NULL;
    long flush_record = 1;
&end
```

N.B.: This command will produce unpredictable results when used with error_element, alter_elements, and load_parameters (except when change_defined_values=1). It should work properly with link_elements in turn-by-turn mode when the source element is modulated, but not when the target element is modulated.

- name A possibly-wildcard-containing string giving the names of the elements to modulate. If not specified, then one must specify type.
- item The name of the parameter to modulate.
- type A possibly-wildcard-containing string giving the names of element types to modulate. May be specified with name or by itself.
- expression RPN expression for the modulation amplitude A. The value of the time is on top of the stack.
- filename Name of SDDS file from which to read modulation data, if expression is not used.

- time_column Name of column in filename giving time data for the modulation table.
- amplitude_column Name of column in filename giving amplitude data for the modulation. Together, time_column and amplitude_column define a function A(t).
- refresh_matrix Frequently there is a matrix associated with an element even if tracking through the element does not use the matrix. In this case, elegant doesn't normally update the matrix for the element as it modulates the element, since that may involve a significant time penalty. If this parameter is set to a non-zero value, the matrix will be updated. For elements that use a matrix for tracking, the matrix is always updated.
- differential, multiplicative Determine how the amplitude function A(t) is used to obtain the new value of the parameter. There are four cases

```
- differential=1, multiplicative=0: v(t) = v_0 + A(t) (default).
```

- differential=0, multiplicative=0: v(t) = A(t).
- differential=1, multiplicative=1: $v(t) = v_0 + v_0 A(t)$.
- differential=0, multiplicative=1: $v(t) = v_0 A(t)$.
- start_occurence, end_occurence If nonzero, these give the starting and ending occurrence numbers of elements that will be modulated. N.B.: if wildcards are used, occurrence number counting is for each set of identically-named elements separately, rather than for the sequence of matched elements.
- s_start, s_end If non-negative, these give the gaving and ending position limits for the end-of-element locations of elements to be modulated.
- after The name of an element. If given, the modulation is applied only to elements that follow the named element in the beamline.
- before The name of an element. If given, the modulation is applied only to elements that precede the named element in the beamline.
- verbose If nonzero, information is printed to the standard output as changes are made. Use for debugging only, since otherwise it may slow the simulation.
- verbose_threshold If nonzero, verbose information is printed only when the fractional change exceeds the given value.
- record Gives a possibly incomplete filename to which will be written a record of the values of the modulation.
- flush_record Gives the interval in steps at which to flush the record file. Higher values result in less frequent updates to the record, but may improve performance.

moments_output

7.32 moments_output

- type: action/setup command.
- function: compute periodic or propagate non-periodic beam moments without tracking, optionally including radiation.
- sequence: must follow run_setup.

```
&moments_output
    STRING filename = NULL;
    long output_at_each_step = 0;
    long output_before_tune_correction = 0;
    long final_values_only = 0;
    long verbosity = 0;
    long matched = 1;
    long equilibrium = 1;
    long radiation = 1;
    long n_slices = 10;
    long slice_etilted = 1;
    double emit_x = 0;
    double beta_x = 0;
    double alpha_x = 0;
    double eta_x = 0;
    double etap_x = 0;
    double emit_y = 0;
    double beta_y = 0;
    double alpha_y = 0;
    double eta_y = 0;
    double etap_y = 0;
    double emit_z = 0;
    double beta_z = 0;
    double alpha_z = 0;
&end
```

- filename The (incomplete) name of a file to which the moments results will be written. Recommended value: "%s.mom".
- output_at_each_step A flag indicating, if set, that computations and/or output is desired at each step of the simulation. If you wish to compute Twiss parameters on a closed orbit or after other calculations, be sure to set this control to a nonzero value.
- output_before_tune_correction A flag indicating, if set, that output is desired both before and after tune correction.
- final_values_only A flag indicating, if set, that only the final values of the Twiss parameters should be output, and not the parameters as a function of s.

- verbosity Larger numbers result in an increasing amount of informational output to the standard output stream.
- matched A flag indicating, if set, that the periodic or matched moments should be found.
- equilibrium A flag indicating, if set, that the equilibrium moments should be found. If matched=1 and equilibrium=0, then the initial twiss parameters are computed from the periodic solution for the beamline.
- radiation A flag indicating, if set, that synchrotron radiation effects should be included. N.B.: this flag is all that needs to be set if the lattice contains no kick elements. However, if the lattice contains CSBEND, CSRCSBEND, KQUAD, or KQUAD elements (or other elements with SYNCH_RAD and ISR parameters), then the SYNCH_RAD and ISR must be set to 1 as well.
- n_slices The number of slices into which to cut individual dipoles, quadrupoles, and sextuoples for computations. 10 has been found to work for all rings tested, but users are advised to ensure it is sufficient for their cases.
- emit_x, beta_x, alpha_x, eta_x, etap_x, and related quantities for y and z If matched=0, then these specify the starting beam ellipses in all three planes.

This command performs several functions. In the most basic form, it propagates beam moments, i.e., the 6x6 sigma matrix, from the beginning to the end of a transport line, including coupling from rotated elements or offset sextupoles. This can be performed with or without synchrotron radiation effects in dipoles, quadrupoles, and sextupoles. These computations include the evolution of the trajectory due to errors and (if included) synchrotron radiation.

If desired, the command will instead compute the periodic beam moments. In this case, the user must include an appropriate rf cavity in the lattice in order to get valid results. (By "appropriate rf cavity" we mean that it must have the right voltage, frequency, and phase to support stored beam.) It is also suggested that the user compute the closed orbit using closed_orbit so that the computations are performed on the closed orbit.

The results of moments computation may be subjected to optimization using values at marker elements. See the documentation for MARK for more details.

Notes:

- When using CSBEND, KQUAD, and KSEXT elements, one may find that the calculations of moments_output do not make sense. This is because, by default, synchrotron radiation is disabled on these elements. To resolve the issue, set ISR=1 and SYNCH_RAD=1 on CSBEND at a miminum. If a closed orbit is present, making the same setting on the KQUAD and KSEXT is also suggested. It is essential to do this if there is an rf frequency offset.
- When bending magnets are tilted, elegant has problems computing the moments and closed orbit self-consistently when the bending radius is small. To address this, the n_slices parameter is set to 1 for tilted bending magnets when slice_etilted=0. This reduces the accuracy of the calculations. Users are strongly advised to check that this is acceptable.

momentum_aperture

7.33 momentum_aperture

- type: major action command.
- function: determine momentum aperture as a function of position in the lattice by tracking
- can use parallel resources (Pelegant)

```
&momentum_aperture
    STRING output = NULL;
    double x_initial = 0;
    double y_initial = 0;
    double delta_negative_start = 0.0;
    double delta_positive_start = 0.0;
    double delta_negative_limit = -0.10;
    double delta_positive_limit = 0.10;
    double delta_step_size = 0.01;
    long steps_back = 1;
    long splits = 2;
    long split_step_divisor = 10;
    long skip_elements = 0;
    long process_elements = 2147483647;
    double s_start = 0;
    double s_end = DBL_MAX;
    STRING include_name_pattern = NULL;
    STRING include_type_pattern = NULL;
    long fiducialize = 0;
    long verbosity = 1;
    long soft_failure = 0;
    long output_mode = 0;
    long forbid_resonance_crossing = 0;
&end
```

- output The (incomplete) name of a file to which the momentum aperture results will be written. Recommended value: "%s.mmap". The data are related to the momentum aperture at the exit of the named elements.
- x_initial, y_initial The initial x and y coordinate values for tracking. It is essential that y_initial be nonzero if one wants to see losses due to vertical resonances.
- delta_negative_start, delta_positive_start Starting values of scans in the negative and positive directions.
- delta_negative_limit, delta_positive_limit Limiting values of scans in the negative and positive directions.
- delta_step_size Initial size of steps in δ . This should be fairly large in order to save time.

- steps_back Number of steps to back up after a particle is lost, relative to the last surviving
 δ, before continuing with a smaller step size. If this is set to zero, there is a risk of finding a
 too-large momentum aperture (a stable island).
- splits Number of times to split the step size in order to refine the location of the maximum surviving momentum offsets. When a particle is lost, the algorithm steps back to a momentum offset where a particle survived, subdivides the step size, and continues searching.
- split_step_divisor Factor by which to subdivide the step size for each split.
- skip_elements Number of elements to skip before starting to compute momentum apertures.
- process_elements Number of elements for which to compute momentum aperture.
- s_start, s_end Limiting s coordinates of the elements from which tracking will start. The default values will exclude no elements.
- include_name_pattern If given, tracking will start only at the entrance to elements that match the given wildcard pattern.
- include_type_pattern If given, tracking will start only at the entrance to elements whose type matches the given wildcard pattern.
- fiducialize If given, an initially on-energy particle is tracked before the momentum aperture search begins, in order to fiducialize the reference momentum. This is useful if there are synchrotron radiation losses or energy gain due to cavities in the system.
- verbosity Larger values result in more detailed printouts as calculations proceed. Mostly for debugging.
- soft_failure Normally, if elegant fails to find the momentum aperture, it aborts. If soft_failure is non-zero, it instead assigns a momentum aperture equal to the search limit.
- output_mode Normally, elegant puts the values for positive and negative momentum aperture in different columns. Each element thus has a single row of data in the output file. If output_mode=1, elegant instead puts the values for positive and negative apertures in successive rows, with a reduced number of columns. This is mostly advantageous for the parallel version, since it allows using twice as many simultaneous processors. If output_mode=2, elegant tracks many more probe particles simultaneously, which is better for massively parallel systems. The number of particles tracked is the number of elements selected times the number of probe points between delta_negative_limit and delta_positive_limit.
- forbid_resonance_crossing Normally, elegant allows the momentum aperture search to cross integer and half-integer resonances if no unstable particles are found. If this is undesirable, this flag can be set to 1.

The idea for this command is from M. Belgroune *et al.*, "Refined Tracking Procedure for the SOLEIL Energy Acceptance Calculation," Proceedings of PAC 2003, p 896, as implemented for TRACYII. In particular, the energy aperture as a function of position around the ring is determined by tracking. Starting at the beginning of the lattice and working downstream, particles are tracked starting from the exit of each selected element. The betatron coordinates are initially zero (or very

small), while the momentum deviation is gradually increased until loss of the particle is observed. This defines the momentum aperture at that location.

In elegant version 19.0 and later, the algorithm is as follows. For simplicity in wording, we'll assume the momentum deviations are positive values, although the method is applied separately for negative values as well:

- 1. Start with $\delta = 0$, i.e., zero momentum offset.
- 2. Track a particle to see if it gets lost. If so, proceed to step 4.
- 3. Increase δ by step size $\Delta \delta$ and return to step 2.
- 4. If no splitting steps remain, proceed to the next step. Otherwise:
 - (a) Change δ to $\delta_s s_b \Delta \delta$., where δ_s is the largest δ for which the particle survived, and s_b is the steps_back parameter.
 - (b) Divide the step size by split_step_divisor to get a new step size $\Delta \delta$.
 - (c) Set $\delta = \delta + \Delta \delta$.
 - (d) Decrement the "splits remaining" counter by 1.
 - (e) Continue from step 2.
- 5. Stop. The momentum aperture is δ_s

This command can be used for both rings and transport lines. For rings it is most appropriate to have an rf cavity (i.e., an RFCA element) in the lattice. One should also include radiation loss using either of two methods:

- 1. SREFFECTS element, with QEXCITATION=0. To set up this element more easily, one can include a twiss_output command with radiation_integrals=1.
- 2. Use CSBEND and KQUAD elements with SYNCH_RAD=1 and ISR=0.

When including radiation loss, one must be certain to set the frequency and phase of the rf cavity correctly. The rf_setup command can be used for this purpose. It is also a good idea to track for several synchrotron oscillation periods.

Note for Pelegant: Unlike for elegant, the data in the output file will not be sorted by s. To sort the data, simply use sddssort from the commandline, e.g.,

sddssort -column=s output.mmap

Also, if it is desirable for the output from Pelegant to have exactly the same form as that from elegant, then the script reorganizeMmap should be used. This script is provided with elegant and Pelegant distributions.

optimize

7.34 optimize

- type: major action command.
- function: perform optimization.
- sequence: must follow optimization_setup and beam definition (bunched_beam or sdds_beam).
- can use parallel resources (Pelegant) for tracking-based optimization.
- note: on UNIX systems, the user may press Control-C to force elegant to terminate optimization and proceed as if optimization had converged. (To genuinely terminate the run during optimization press Control-C twice.) This is very useful if one wants to get a look at the partially optimized result. If one uses parameter saving (run_setup) or save_lattice one can make a new run that starts from the optimized result.

&optimize

long summarize_setup = 0;

&end

• summarize_setup — A flag indicating, if set, that a summary of the optimization parameters should be printed.

optimization_constraint

7.35 optimization_constraint

- type: setup command.
- function: define a constraint for optimization.
- sequence: must follow optimization_setup and precede beam definition (bunched_beam or sdds_beam).
- N.B.: This command is *disparaged*. It is *far* better to put constraints into the optimization equation (via the equation parameter of optimization_setup or via optimization_term). The reason is that the hard constraints imposed by optimization_constraint may make it more difficult for the optimizer to converge. See the discussion of the selt and segt macros in the manual entry to optimization_setup.

```
&optimization_constraint
   STRING quantity = NULL;
   double lower = 0;
   double upper = 0;
&end
```

- quantity The quantity to be constrained, given as the name of a quantity from among the optimization variables, optimization covariables, and the "final" parameters (see the entry for run_setup for the last of these). The optimization (co)variables are referred to as <element-name>.clement-name>.clement-name>., in all capital letters. Other quantities, such as Twiss parameters or anything else but what is listed just above, are not recognized. Expressions involving multiple quantities are not supported.
- lower, upper The lower and upper limits allowed for the expression.

optimization_covariable

7.36 optimization_covariable

- type: setup command.
- function: define an element parameter to be varied as a function of optimization parameters.
- sequence: must follow optimization_setup and precede beam definition (bunched_beam or sdds_beam).
- N.B.: It is not possible to optimize an element if the element name starts with one of the following characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, or -. The reason is that elegant will attempt to make an SDDS parameter name containing the element name, and these characters are disallowed at the beginning of such a name.

```
&optimization_covariable
    STRING name = NULL;
    STRING item = NULL;
    STRING equation = NULL;
    long disable = 0;
&end
```

- name The name of the element.
- item The parameter of the element to be changed.
- equation An rpn equation for the value of the parameter in terms of the values of any parameters of any optimization variable. These latter appear in the equation in the form <element-name>.<parameter-name>, in all capital letters. The original values of all variables and covariable may be accessed via names like <element-name>.<parameter-name>0.
- disable If nonzero, the covariable is ignored.

optimization_setup

7.37 optimization_setup

- type: setup command.
- function: define overall optimization parameters and methods.
- sequence: must precede beam definition (bunched_beam or sdds_beam)

```
&optimization_setup
    STRING equation = NULL;
    STRING mode = "minimize";
    STRING method = "simplex";
    double tolerance = -0.01;
    double target = 0;
    long center_on_orbit = 0;
    long center_momentum_also = 1;
    long soft_failure = 1;
    long n_passes = 2;
    long n_evaluations = 500;
    long n_restarts = 0;
    long matrix_order = 1;
    STRING log_file = NULL;
    STRING term_log_file = NULL;
    long output_sparsing_factor = 0;
    long balance_terms = 0;
    double restart_worst_term_factor = 1;
    long restart_worst_terms = 1;
    long verbose = 1;
    long balance_terms = 0;
    double simplex_divisor = 3;
    double simplex_pass_range_factor = 1;
    long include_simplex_1d_scans = 1;
    long start_from_simplex_vertex1 = 0;
    long restart_random_numbers = 0;
    STRING interrupt_file = "%s.interrupt";
&end
```

• equation — An rpn equation for the optimization function, expressed in terms of any parameters of any optimization variables, the "final" parameters of the beam (as recorded in the final output file available in the run_setup namelist), and selected quantities from Twiss parameter, tune shift with amplitude, closed orbit, beam moments, driving terms, and other computations. The optimization variables or covariables may appear in the equation in the form <element-name>..
clement-name>.
covariables are available in the form <element-name>.
clement-name>.

Data from MARK elements with FITPOINT=1 and from beam position monitors with CO_FITPOINT=1 may be used via symbols of the form <code>elementName#occurenceNum.parameterName</code>. See the documentation for the MARK, MONI, HMON, and VMON elements for detailed discussion and listing.

If response matrix calculation is requested, response matrix values are available in variables with names $Plane R_b pmName \#occurence_corrName \#occurence_corrParam$, where Plane is H (horizontal) or V (vertical) and corrParam is the parameter of the corrector used for changing the orbit (e.g., HKICK or VKICK for a KICKER element).

If cross-plane response matrix calculation is requested, response matrix values are available in variables with names $BpmPlaneCorrPlaneR_bpmName\#occurence_corrName\#occurence_corrParam$, where BpmPlane and CorrPlane are H (horizontal) or V (vertical) and corrParam is the parameter of the corrector used for changing the orbit (e.g., HKICK or VKICK for a KICKER element).

Many quantities are made available for optimization if twiss_output command is given with output_at_each_step=1:

- Final Twiss parameters, e.g., betax, alphax, etax. The names are the same as the column names in the twiss output file.
- Linear acceptances Ax and Ay for the horizontal and vertical planes, respectively.
- Statistics of Twiss parameters in the form <statistic>.<parameter-name>, where
 <statistic> is min, max, ave, p99, p98, or p96. p99 is the 99th pencentile value, a similarly for p98 and p96.
- Tunes and chromaticities via symbols nux, dnux/dp, (and corresponding symbols for y).
- Chromatic derivatives of beta and alpha functions, via symbols dbetax/dp, dbetay/dp, dalphax/dp, and dalphay/dp.
- First- and second-order momentum compaction factors via symbols alphac and alphac 2.
- If radiation integral computation is requested, one may use ex0 and Sdelta0 for the equilibrium emittance and momentum spread, plus J<plane> and tau<plane> for the damping partition and damping time, where <plane> is x, y, or delta. One may also use I1 through I5 for the individual radiation integrals.
- If compute_driving_terms=1, then the quantities h11001, h00111, h20001, h00201, h10002, h21000, h30000, h10110, h10020, h10200, h22000, h11110, h00220, h31000, h40000, h20110, h11200, h20020, h20200, h00310, h00400, dnux/dJx, dnux/dJy, and dnuy/dJy may be used. Table 2 explains the meaning of the terms.
- The coupling integral and emittance ratio due to x-y coupling may be accessed using the symbols couplingIntegral and emittanceRatio. See section 3.1.4.4 of [19].
- If higher-order chromaticity is requested, then one may use the symbols dnux/dp2, dnux/dp3, dnuy/dp2, dnuy/dp3, etax2, etax3, etay2, etay3, nuxChromLower, nuxChromUpper, nuyChromLower, and nuyChromUpper.
- If the tune_shift_with_amplitude command was also given and one may use the symbols dnux/dAx, dnux/dAy, dnuy/dAx, dnuy/dAy, dnux/dAx2, dnux/dAy2, dnux/dAxAy, dnuy/dAx2, dnuy/dAy2, dnuy/dAxAy, nuxTswaLower, nuxTswaUpper, nuyTswaLower, and nuyTswaUpper.

If the floor_coordinates command was given, one may use X, Z, and theta to refer to the final values of the floor coordinates.

If the sasefel command was given, one may use variables of the form SASE. cproperty>, where cproperty> is one of gainLength, saturationLength, saturationPower, or lightWavelength.

Finally, one may use any of the names from the "final" output file (see run_setup), e.g., Sx (x beamsize) or eny (y normalized emittance). These refer to tracked properties of the beam.

The equation may be left blank, in which case the user must give one or more optimization_term commands. These use the same symbols, of course.

There are several rpn functions that are useful in constructing a good optimization equation. These are "soft-edge" greater-than, less-than, and not-equal functions, which have the names segt, selt, and sene, respectively. The usage is as follows:

- V1 V2 T segt. Returns a nonzero value if and only if value V1 is greater than V2. The returned value is $((V_1 V_2)/T)^2$. Typically used to constraint a quantity from above. E.g., to limit the maximum horizontal beta function to 10m with a tolerance of T = 0.1m, one would use max.betax 10 .1 segt.
- V1 V2 T selt. Returns a nonzero value if and only if value V1 is less than value V2. The returned value is $((V_1 V_2)/T)^2$. Typically used to constrain a value from below. E.g., to limit a beta function to greater than 3 m with a tolerance of 0.1 m, one would use betax 3 .1 selt.
- V1 V2 T sene. Returns a nonzero value if and only if V1 and V2 differ by more than tol. If $V_1 > V_2$, returns $((V_1 (V_2 + T))/T)^2$. If $V_2 > V_1$, returns $((V_2 (V_1 + T))/T)^2$.
- mode May be either "minimize" or "maximize".
- method May be one of "simplex", "grid", "powell", "randomwalk", "randomsample", or "sample". Recommended methods are "simplex" and "randomwalk". The latter is very useful when the lattice is unstable or nearly so.
- tolerance The convergence criterion for the optimization, with a negative value indicating a fractional criterion.
- target The value which, if reached, results in immediate termination of the optimization, whether it has converged or not.
- center_on_orbit A flag indicating whether to center the beam transverse coordinates on the closed orbit before tracking.
- center_momentum_also A flag indicating whether to center the momentum coordinate also.
- soft_failure A flag indicating, if set, that failure of an optimization pass should not result in termination of the optimization.
- n_evaluations The number of allowed evaluations of the optimization function. If simplex optimization is used, this is the number of allowed evaluations per pass.
- n_passes The number of optimization passes made to achieve convergence ("simplex" only). A pass ends (roughly) when the number of evaluations is completed or the function doesn't change within the tolerance. A new pass involves starting the optimization again using step sizes determined from the range of the simplex and the factor simplex_pass_factor.
- n_restarts The number of complete restarts of the optimization (simplex only). This is an additional loop around the n_passes loop. The difference is that a restart involves using the optimized result but the original step sizes. It is highly recommended that this feature be used if convergence problems are seen.

- restart_worst_term_factor, restart_worst_terms Often when there are convergence problems, it is because a few terms are causing difficulty. Convergence can often be obtained by *increasing* the weighting of these terms. If restart_worst_term_factor is positive, then elegant will multiply the weight of the restart_worst_terms largest terms by this factor at the beginning of a restart.
- matrix_order Specifies the highest order of matrix elements that should be available for fitting. Elements up to third order are available for the terminal point of the beamline, and up to second order for interior fit points. Names for first-, second-, and third-order elements are of the form Rij, Tijk, and Uijkl.
- log_file A file to which progress reports will be written as optimization proceeds. For SDDS data, use the final output file from the run_setup namelist.
- term_log_file This names a file to which the values of the optimization terms are written at the completion of optimization, which can be convenient when large numbers of terms are used. For example, by using sddssort one could find which terms are contributing most to the penalty value.
- output_sparsing_factor If set to a value larger than 0, results in sparsing of output to the "final" file (see run_setup). This can make a significant difference in the optimization speed.
- balance_terms If nonzero, then all terms of the optimization expression have their weights adjusted so they make equal contributions to the penalty function. This can help prevent optimization of a single term at the expense of others. It is performed only for the initial value of the optimization function.
- simplex_divisor The factor by which simplex step sizes are changed as the optimization algorithm searches for a valid initial simplex.
- simplex_pass_range_factor When starting a new pass, the simplex optimizer takes the range over the previous simplex of each variable times this factor as the starting step size for that variable. This can be useful if the optimization brings the system close to an instability. In such a case, the simplex routine may have trouble constructing an initial simplex if the range of the variables is large. Setting this control to a value less than 1 may help.
- include_simplex_1d_scans If nonzero, optimizer performs single-variable scans prior to starting simplex optimization. This is usually a good idea, but in some cases it will cause problems. For example, if your design is on the edge of being unstable, you may get some many errors from the initial steps that the single-variable optimizer can't continue. Disabling the single-variable scans will sometimes solve this.
- start_from_simplex_vertex1 If nonzero, optimizer uses the initial simplex vertex as the starting point for each new 1d scan. Otherwise, it uses the result of the previous scan.
- restart_random_numbers If nonzero, the random number generators used by elegant are reset for each evaluation of the optimization function. This is valuable if one is optimizing tracking results that involve random processes (e.g., ISR or scattering).
- interrupt_file Gives the name of a file that will be monitored by the program as it runs. If the file is created or modified while optimization is running, the optimizer will complete the present step and cleanly terminate, allowing subsequent commands, if any, to proceed.

parallel_optimization_setup

7.38 parallel_optimization_setup

- type: setup command (for Pelegant only).
- function: define overall parallel optimization parameters and methods.
- N.B.: In addition to the optimization parameters used in the optimization_setup command, several new parameters are added for parallel optimization. User should replace optimization_setup with parallel_optimization_setup and append necessary parameters.

```
&parallel_optimization_setup
    STRING method = "simplex";
    double random_factor = 1
    long n_iterations = 10000;
    long max_no_change = 10000;
    long population_size = 100;
    STRING population_log = NULL;
    long print_all_individuals = 0;
    long output_sparsing_factor = 1;
    STRING crossover = "twopoint";
&end
```

- method May be one of "genetic", "hybridsimplex" or "swarm". If the default "simplex" method is chosen, all the processors will do the same optimization as the serial version if there is only one particle for optimization tracking, or do optimization tracking in parallel if the number of particles is larger than the number of CPUs. All algorithms can be used for global optimization. "swarm" is recommended when there is sufficient computation resource available, so it can reach the optimization target fast. "hybridsimplex" is recommended when the initial point is close to the optimal result. "genetic" can be chosen for a global optimizer with a random start point (0 should be avoided for any initial coordinate).
- random_factor The factor to scale the step size for both parallel swarm and genetic methods.
- n_restarts For the parallel "hybridsimplex" method, this number should be set larger than 1, so the the best result across all processors can be used for the next restart. The parameter is not used for the swarm method.
- n_iterations The maximal number of generations/iterations for the parallel genetic and particle swarm optimization.
- population_size The number of individuals to be generated for each generation/iteration for the swarm and genetic method. For the hybridsimplex method, the number of individuals is equal to the number of processors used.
- max_no_change The maximal number of generations in which no change in the best evaluation is allowed before the genetic method stops (genetic method only).

- n_evaluations This is not used as a stop condition in the genetic optimization. The n_iterations or max_no_change can be used instead. For the hybridsimplex method, this is the number of allowed evaluations per restart.
- population_log An SDDS file to which the best individual in a population can be written after each iteration as optimization proceeds. Recommended value: "%s.pop". For the parallel genetic method, user can choose to print out all the individuals (See print_all_individuals).
- print_all_individuals If nonzero, all the strings in a population will be recorded in the population_log file. This is supported for the genetic method only.
- output_sparsing_factor For genetic optimization, this is used to set the frequency of printing strings in the log file with the number of generations as the interval.
- crossover For genetic optimization, it allows the user to choose a crossover type from "onepoint", "twopoint" and "uniform". "twopoint" is the default crossover type. If the dimension is 2, it will be set to onepoint crossover.

Note:

- Genetic optimization in Pelegant terminates when at least one of the stopping rules specified has been met. The two stopping rules are:
 - generation limit (n_iterations) exceeded
 - no change in the best solution found in a given number of generations. The default is to stop when the generation limit (10000 is the default value) is reached. While the max_no_change is more favorite to use, as it will stop until the result can not be improved after a certain number of iterations (10000 is the default value). The n_iterations can be set to a very large number to use this rule as the stop condition alone.
- step size control The mutation step size in the genetic optimization is selected from a Gaussian distribution with mean 0 and standard deviation step_size, where step_size is provided by user. All the dimensions will use the same standard deviation for an iteration. The step_size of the first dimension provided by user will be used as the original step size for all the dimensions. The step size will be reduced by the golden ratio (1.618) if the best value is unchanged after every 3000 iterations. After every 3000 iterations since the last time the step size is reduced, the step size will be increased by the golden ratio.
- As the genetic optimization implementation in Pelegant internally updates individuals with a relative change of the current value for a variable, 0 should be avoided to use as an initial value.

optimization_term

7.39 optimization_term

- type: setup command.
- function: define optimization equation via individual terms
- sequence: must follow optimization_setup and precede beam definition (bunched_beam or sdds_beam).

```
&optimization_term
    STRING term = NULL;
    double weight = 1.0;
    STRING field_string = NULL;
    long field_initial_value = 0;
    long field_final_value = 0;
    long field_interval = 1;
    STRING input_file = NULL;
    STRING input_column = NULL;
    long verbose = 0;
&end
```

• term — An rpn expression giving one term to be optimized. If more than one optimization_term command is given, then the terms are added. The advantage of using this command over giving an equation via optimization_setup is that elegant will report the value of each term as it performs the optimization (if a log_file is given to optimization_setup). This permits determination of which terms are causing problems for the optimization.

Please see the entry for equation under optimization_setup for details on designing optimization terms.

- weight The weight to assign to this term. If zero, the term is ignored.
- field_string, field_initial_value, field_final_value, field_interval These parameters are used to perform substitution of a series of values into the string given by term. This can be used to make an identical constraint at a number of instances of the same marker. For example, to constraint Cx to zero at instances 1, 3, 5, ..., 39, of marker M1, one could use

```
&optimization_term
  term = "M1#0.Cx sqr",
  field_string = 0,
  field_initial_value = 1, field_final_value = 39, field_interval = 2
&end
```

- input_file, input_column If given, input_file is taken as the name of an SDDS file, which is expected to have a string column named by input_column. Each row of the column is taken as a separate optimization term.
- verbose If nonzero, optimization terms are echoed to the terminal as they are created or read from the input file.

optimization_variable

7.40 optimization_variable

- type: setup command.
- function: defines a parameter of an element to be used in optimization.
- sequence: must follow optimization_setup and precede beam definition (bunched_beam or sdds_beam).
- N.B.: It is not possible to optimize an element if the element name starts with one of the following characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, or -. The reason is that elegant will attempt to make an SDDS parameter name containing the element name, and these characters are disallowed at the beginning of such a name.

```
&optimization_variable
    STRING name = NULL;
    STRING item = NULL;
    double lower_limit = 0;
    double upper_limit = 0;
    double step_size = 1;
    long disable = 0;
    long force_inside = 0;
    &end
```

- name The name of the element.
- item The parameter of the element to be varied.
- lower_limit, upper_limit The lower and upper limits allowed for the parameter. If these are equal, the range of the parameter is unlimited.
- step_size The initial step size ("simplex" optimization) or the grid size in this dimension ("grid" or "sample" optimization).
- disable If nonzero, the variable is ignored.
- force_inside If nonzero, the initial value is forced inside the allowed range defined by the lower_limit and upper_limit parameters.

print_dictionary

7.41 print_dictionary

- type: action command.
- function: print dictionary of supported accelerator elements.

```
&print_dictionary
    STRING filename = NULL;
    long SDDS_form = 0;
&end
```

- filename The name of a file to which the dictionary will be written. By default, the output is in LATEX format.
- SDDS_form If non-zero, then the output is in SDDS format.

ramp_elements

7.42 ramp_elements

- type: setup command.
- function: define parameters for time-dependent ramping of elements
- sequence: must follow run_setup.

```
&ramp_elements
    STRING name = NULL;
    STRING item = NULL;
    STRING type = NULL;
    long start_pass = 0;
    long end_pass = LONG_MAX;
    double start_value = 0;
    double end_value = 0;
    long differential = 1;
    long multiplicative = 0;
    long start_occurence = 0;
    long end_occurence = 0;
    double exponent = 1;
    double s_start = -1;
    double s_{end} = -1;
    STRING before = NULL;
    STRING after = NULL;
    long verbose = 0;
    STRING record = NULL;
&end
```

N.B.: This command will produce unpredictable results when used with error_element, alter_elements, modulate_elements, and load_parameters (except when change_defined_values=1). It should work properly with link_elements in turn-by-turn mode when the source element is ramped, but not when the target element is ramped.

- name A possibly-wildcard-containing string giving the names of the elements to modulate. If not specified, then one must specify type.
- item The name of the parameter to modulate.
- type A possibly-wildcard-containing string giving the names of element types to modulate. May be specified with name or by itself.
- start_pass, end_pass The starting and ending pass, i_{start} and i_{end} for the ramp. For passes less than start_pass, the ramp value is start_value. For passes greater than end_pass, the ramp value is end_value.
- start_value, end_value The end-point values S (start) and E (end) of the ramp.

• exponent — The exponent p for the variation of values between the start and end of the ramp. The ramp function R(i) is

$$R(i) = S + (E - S) * \left(\frac{i - i_{\text{start}}}{i_{\text{end}} - i_{\text{start}}}\right)^{p}.$$
 (2)

Note that i = 0 on the first pass.

- differential, multiplicative Determine how the amplitude function A(t) is used to obtain the new value of the parameter. There are four cases
 - differential=1, multiplicative=0: $v(t) = v_0 + R(i)$ (default).
 - differential=0, multiplicative=0: v(t) = R(i).
 - differential=1, multiplicative=1: $v(t) = v_0 + v_0 R(i)$.
 - differential=0, multiplicative=1: $v(t) = v_0 R(i)$.
- start_occurence, end_occurence If nonzero, these give the starting and ending occurrence numbers of elements that will be modulated. N.B.: if wildcards are used, occurrence number counting is for each set of identically-named elements separately, rather than for the sequence of matched elements.
- s_start, s_end If non-negative, these give the gaving and ending position limits for the end-of-element locations of elements to be modulated.
- after The name of an element. If given, the modulation is applied only to elements that follow the named element in the beamline.
- before The name of an element. If given, the modulation is applied only to elements that precede the named element in the beamline.
- verbose If nonzero, information is printed to the standard output as changes are made. Use for debugging only, since otherwise it may slow the simulation.
- record Gives a possibly incomplete filename to which will be written a record of the values of the ramp.

rf_setup

7.43 rf_setup

- type: setup/action command.
- function: set up rf cavity frequency, phase, and voltage for a storage ring
- sequence: must follow run_setup. In action mode, must follow action-mode instance of twiss_output.

```
&rf_setup
    STRING filename = NULL;
    STRING name = NULL;
    long start_occurence = -1;
    long end_occurence = -1;
    double s_start = -1;
    double s_end = -1;
    long set_for_each_step = 0;
    double near_frequency = 0;
    long harmonic = -1;
    double bucket_half_height = 0;
    double over_voltage = 0;
    double total_voltage = 0;
    &end
```

This command must follow a twiss_output command that includes radiation integral computation, since the energy loss per turn is needed to set up the rf cavities. Note that the command includes features to allow selecting a subset of the RFCA elements in the beamline. The selected subset is assumed to include all of the cavities that will impart net energy to the beam.

This command stores values for bunch length in symbols Sz0 and St0, and also stores the fractional energy spread in Sdelta0, where they can be used in rpn expressions in subsequent commands, e.g.,

```
&bunched_beam
  sigma_dp = "(Sdelta0)",
  sigma_s = "(Sz0)",
  ...
&end
```

- filename Name of a file to which data related to the rf settings will be written.
- name A possibly-wildcard-containing string giving the names of the elements to set. If not given, all RFCA elements are selected.
- start_occurence, end_occurence If nonzero, these give the starting and ending occurrence numbers of elements that will be set.
- s_start, s_end If non-negative, these give the gaving and ending position limits for the end-of-element locations of elements to be set.

- set_for_each_step If nonzero, then the setup is repeated at each simulation step. In this case, one must also give output_at_each_step=1 for twiss_output.
- near_frequency If nonzero, then the rf frequency is chosen to be the closest harmonic to the given frequency.
- harmonic If nonzero, then the rf frequency is set to the given harmonic of the revolution frequency.
- bucket_half_height If nonzero, the voltage is computed so as to give the specified bucket half height.

$$\left(\frac{\Delta p}{p}\right)_{\text{bucket}} = \sqrt{\frac{U_0}{\pi \alpha h E}} \sqrt{F(q)},$$
 (3)

where U_0 is the energy loss per turn, α is the momentum compaction factor, h is the harmonic, E is the beam energy,

$$F(q) = 2\left(\sqrt{q^2 - 1} - \arccos\frac{1}{q}\right),\tag{4}$$

and q is the overvoltage factor, related to the rf voltage by $q = V/U_0$. (See Wiedemann, Vol. 1, 8.2.2.)

- over_voltage If nonzero, the voltage is set to the given factor relative to the energy loss per turn.
- total_voltage If nonzero, the total rf voltage is set to the given value. The frequency and phase are computed for this voltage.

replace_elements

7.44 replace_elements

- type: action command.
- function: Replace old element with a newly defined element, or just remove it from beamline. This is a convenient way to modify lattice in an elegant run. See also transmute_elements.
- sequence: must follow run_setup.
- notes: The modified lattice can be saved through save_lattice command. Be sure to use "output_seq = 1" option in that command.
- warning: The element's occurrence is re-calculated after each usage of this command. If you need to repeat this command for SAME named element several times, you have to re-calculate it occurrence every time. For example, you want to remove Q1 at occurrence position (1,3,5), and use 'replace_elements' twice. If in the first command you use "occurrence[0]=1,3", then in the second command you have to use "occurrence[0]=3", since after remove of (1,3) Q1s, the 5th Q1 now becoming 3rd Q1.

&replace_elements

```
STRING name = NULL;
STRING type = NULL;
STRING exclude = NULL;
long skip = 1;
long disable = 0;
STRING element_def = NULL;
long total_occurrences = 0;
long occurrence[100]={0};
```

&end

- name Possibly wild-card containing string specifying the name of the elements to be removed or replaced.
- type Possibly wild-card containing string specifying the type of the elements to be removed or replaced.
- exclude Possibly wild-card containing string specifying the name of elements to be excluded from this command.
- skip The element is removed or replaced at every n^{th} specified location.
- disable If nonzero, the command is ignored.
- element_def If NULL, the specified elements are removed from the beamline. If not NULL, the specified elements are replaced with the new element defined here. The definition of the element should be just as it would be entered in the lattice file.
- total_occurrences, occurrence These parameters are used to replace or delete specified occurrences of the element name. total_occurrences specifies how many elements to replace or delete up to a maximum of 100, while the entries in the array occurrence specify the

occurrences to replace or delete. If total_occurrences is non-zero, then skip must be set to zero and the name must be the exact name (no wild-card matching).

rpn_expression

7.45 rpn_expression

- type: action/setup command.
- function: pass an expression directly to the rpn submodule for execution.

```
&rpn_expression
    STRING expression = NULL;
&end
```

• expression — An rpn expression. This expression is executed immediately and can be used, for example, to read in rpn commands from a file or store values in rpn memories.

rpn_load

7.46 rpn_load

- type: action/setup command.
- function: load data from SDDS file into RPN variables.

```
&rpn_load
    STRING tag = NULL;
    STRING filename = NULL;
    STRING match_column = NULL;
    STRING match_column_value = NULL;
    long matching_row_number = -1;
    STRING match_parameter = NULL;
    STRING match_parameter_value = NULL;
    long use_row = -1;
    long use_page = -1;
    long load_parameters = 0;
&end
```

This command is used to facilitate multi-stage optimization runs by allowing convenient loading of data from SDDS files into RPN variables. For example, one may match the final Twiss parameters of a lattice to the parameters stored in an SDDS file from a different run.

- tag Option string that will be pre-pended to the names of all the numerical columns in the file in order to create RPN variable names. E.g., if the input file was from the twiss_output command and tag = tw1 was given, then RPN variables tw1.betax, tw1.alphax, etc. would be used. N.B.: If the tag is blank, then nothing is appended to the names from the file. This can be dangerous since the names may conflict with the names of other variables!
- filename The (incomplete) name of the SDDS file from which to read data. By default, data is taken from all columns from the last row of the last page of the file. This default behavior can be altered using one or more of the following parameters:
 - match_column The name of a string column to use in selecting the row from which data will be taken.
 - match_column_value The value that the column named by match_column must have to be selected from the file. By default, the last row with a matching value is used.
 - matching_row_number If a nonnegative value is given, then the matching_row_numberth matching row is selected (0 is the first row, 1 the second, etc). Otherwise, the last match row is used. Ignored if match_column is not given.
 - match_parameter The name of a string parameter to use in selecting the page from which data will be taken.
 - match_parameter_value
 The value that the parameter named by match_parameter must have to be selected from the file. By default, the last page with a matching value is used.
 - use_row If nonnegative, specifies the row number to use, starting at 0 for the first row. Ignored if match_column is given.

- use_page If nonnegative, specifies the page number to use, starting at 1 for the first page. Takes precedence over \match_parameter if both are given.
- load_parameters If nonzero, specifies loading the SDDS parameter data rather than the column data.

run control

7.47 run_control

- type: setup command.
- function: set up the number of simulation steps and passes.
- sequence: must follow run_setup.

```
&run_control
    long n_steps = 1;
    double bunch_frequency = 0;
    long n_indices = 0;
    long n_passes = 1;
    long n_passes_fiducial = 0;
    long reset_rf_for_each_step = 1;
    long first_is_fiducial = 0;
    long restrict_fiducialization = 0;
}
```

&end

- n_steps The number of separate repetitions of the action implied by the next action command. If random errors are defined, this is also the number of separate error ensembles.
- bunch_frequency The frequency to use in calculating the time delay between repetitions.
- n_indices The number of looping indices for which to expect definitions in subsequent vary_element commands. If nonzero, then n_steps is ignored.
- n_passes The number of passes to make through the beamline per repetition.
- n_passes_fiducial The number of passes to make through the beamline per repetition for the fiducial beam. If non-positive, use n_passes. For ring tracking, should probably always be set to 1.
- reset_rf_for_each_step If nonzero, the rf phases are established anew for each bunch tracked. Should be zero to simulate phase and timing jitter.
- first_is_fiducial If nonzero, the first bunch seen is taken to establish the reference phases and momentum profile. If zero, each bunch is treated as a new fiducializing bunch.
- restrict_fiducialization If nonzero, then momentum profile fiducialization occurs only after elements that are intended change the momentum, such as rf cavities. If zero, then each element is fiducialized to the average momentum of the beam. Active only if first_is_fiducial=1 and overrides the always_change_p0 setting in run_setup.

run_setup

7.48 run_setup

- type: setup command.
- function: set global parameters of the simulation and define primary input and output files.

```
&run_setup
    STRING lattice = NULL;
    STRING use_beamline = NULL;
    STRING rootname = NULL;
    STRING output = NULL;
    STRING centroid = NULL;
    STRING sigma = NULL;
    STRING final = NULL;
    STRING acceptance = NULL;
    STRING losses = NULL;
    STRING magnets = NULL;
    STRING semaphore_file = NULL;
    STRING parameters = NULL;
    long combine_bunch_statistics = 0;
    long wrap_around = 1;
    long final_pass = 0;
    long default_order = 2;
    long concat_order = 0;
    long print_statistics = 0;
    long show_element_timing = 0;
    long monitor_memory_usage = 0;
    long random_number_seed = 987654321;
    long correction_iterations = 1;
    double p_central = 0.0;
    double p_central_mev = 0.0;
    long always_change_p0 = 0;
    STRING expand_for = NULL;
    long tracking_updates = 1;
    long echo_lattice = 0;
    STRING search_path = NULL;
    long element_divisions = 0;
    long load_balancing_on = 0;
&end
```

- lattice Name of the lattice definition file.
- echo_lattice If nonzero, the lattice input is echoed to the standard output as the lattice is parsed. This can help detect certain problems with the lattice that cause elegant to crash.
- use_beamline Name of the beamline to use.
- rootname Filename fragment used in forming complete names from incomplete filenames. By default, the filename minus extension of the input file is used.

- output The (incomplete) name of an SDDS file into which final phase-space coordinates will be written. Recommended value: "%s.out".
- centroid The (incomplete) name of an SDDS file into which beam centroids as a function of s will be written. Recommended value: "%s.cen".
- sigma The (incomplete) name of an SDDS file into which the beam sigma matrix as a function of z will be written. Recommended value: "%s.sig". N.B.: confusion sometimes occurs about some of the quantities related to the s coordinate in this file. Please see Section 4 above.
- final The (incomplete) name of an SDDS file into which final beam and transport parameters will be written. Recommended value: "%s.fin". N.B.: confusion sometimes occurs about some of the quantities related to the s coordinate in this file. Please see Section 4 above.
- acceptance The (incomplete) name of an SDDS file into which the initial coordinates of transmitted particles will be written. Recommended value: "%s.acc".
- losses The (incomplete) name of an SDDS file into which information on lost particles will be written. Recommended value: "%s.lost".
- magnets The (incomplete) name of an SDDS file into which a magnet layout representation will be written. Recommended value: "%s.mag".
- semaphore_file The (incomplete) name of file that will be created just before exit from the program, but only if no errors occured. If the file exists, it is deleted. This file can be used to record the fact that the run completed without error.
- parameters The (incomplete) name of an SDDS file into which parameters of accelerator elements are written. N.B.: this file does not contain any non-numerical parameters of the lattice. Hence, it is not a complete description of the settings of the lattice.
- combine_bunch_statistics A flag indicating whether to combine statistical information for all simulation steps. If non-zero, then the sigma and centroid data will be combined over all simulation steps.
- wrap_around A flag indicating whether the s coordinate should wrap-around or increase monotonically in multipass simulations. If zero, then the centroid and sigma data is computed for each turn with the s coordinate increasing continuously.
- final_pass A flag indicating whether the centroid and sigma output should be computed only from the data from the final pass. By default, the statistics include data from all passes.
- default_order The default order of transfer matrices used for elements having matrices.
- concat_order If non-zero, the order of matrix concatenation used.
- print_statistics A flag indicating whether to print information as each element is tracked. If greater than 0, information is printed after each element from the beginning of tracking. If equal to n with n < 0, information is printed only after pass |n|.
- show_element_timing A flag indicating whether to collect and report execution time statistics binned by element type.

- monitor_memory_usage A flag indicating whether to monitor memory usage during tracking to detect memory leaks.
- random_number_seed A seed for the random number generators. If zero, a seed will be generated from the system clock.
- correction_iterations Number of iterations of tune and chromaticity correction.
- p_central Central momentum of the beamline, about which expansions are done. This is $\beta \gamma$.
- p_central_mev Central momentum of the beamline in MeV/c, about which expansions are done. Ignored if p_central is nonzero.
- always_change_p0 If nonzero, then elegant will match the reference momentum to the beam momentum after each element. For example, in a beamline with radiation losses, one might want to adjust downstream magnets to match the energy of the incoming beam.
- expand_for Name of an SDDS file containing particle information, from which the central momentum will be set. The file contents are the same as required for elegant input with the sdds_beam namelist.
- tracking_updates A flag indicating whether to print summary information about tracking.
- search_path Specify a list of pathnames in which to look for input files, including lattice files, wakefield input, particle input, etc. This allows storing common input files in a convenient location without having to put the location into every filename.
- element_divisions Specify how many pieces to split elements into. Only certain elements (basically, those with a matrix) are split. Results in creation of element_divisions new elements having the same name as each split element.
- load_balancing_on If 1, load-balancing is performed for parallel mode. This can result in non-deterministic results if the load-balancing is different on two otherwise identical runs. Load-balancing variations may occur in heterogeneous clusters, clusters with multiple users, or for other reasons. In such situations, turning off load balancing can be useful if, for example, one is performing parameter scans and wishes to eliminate spurious sources of variation. If -1, then the load balance is checked and reported, but no rebalancing takes place.

sasefel

7.49 sasefel

- type: setup/action command.
- function: set parameters for computation of SASE FEL gain and other properties.
- sequence: must follow run_setup and precede beam definition (bunched_beam or sdds_beam).

&sasefel

```
STRING output = NULL;
STRING model = "Ming Xie";
double beta = 0;
double undulator_K = 3.1;
double undulator_period = 0.033;
double slice_fraction = 0.0;
long n_slices = 0;
```

&end

- output The (incomplete) filename of an SDDS file to which output will be written.
- model The name of the FEL model used. At present, only one model is supported; the "Ming-Xie" model is based on the simple parametrization M. Xie[13].
- beta The value of the beta function, in meters.
- undulator_K The K parameter of the undulator.
- undulator_period The undulator period, in meters.
- slice_fraction, n_slices The fraction of beam beam contained by each analysis slice and the number of such slices. By default, no slice analysis is done. Instead, the beam is analyzed only as a whole. If slice_fraction*n_slices is less than 1, then the slice analysis is centered on the median of the time distribution. E.g., if n_slices=1 and slice_fraction=0.1, then the central 10% of the beam would be analyzed. More typically, one gives values such that slice_fraction*n_slices is equal to 1, so that every part of the beam is analyzed. There are separate values in the output file for each slice, plus the whole-beam and slice-averaged results.

save_lattice

7.50 save_lattice

- type: action command.
- function: save the current accelerator element and beamline definitions.

```
&save_lattice
    STRING filename = NULL;
    long output_seq = 0;
&end
```

- filename The (incomplete) name of a file to which the element and beamline definitions will be written. Recommended value: "%s.new".
- output_seq If non-zero, the lattice will be saved as a single beamline sequence. Elements used for the beamline are re-arranged according to their type. Note: sub-beamline definitions in the original lattice file will be destroyed from the output file. This feature is intended to be used together with insert_elements and replace_elements.

sdds_beam

7.51 sdds_beam

- type: setup command.
- function: set up for tracking and histogram analyzing of particle coordinates stored in an SDDS file.
- sequence: must follow run_control.

```
&sdds_beam
    STRING input = NULL;
    STRING input_list = NULL;
    STRING input_type = "elegant";
    long n_particles_per_ring = 0;
    STRING selection_parameter = NULL;
    STRING selection_string = NULL;
    long one_random_bunch = 0;
    long reuse_bunch = 0;
    long prebunched = -1;
    long track_pages_separately = 0;
    long use_bunched_mode = 0;
    long sample_interval = 1;
    long n_tables_to_skip = 0;
    long center_transversely = 0;
    long center_arrival_time = 0;
    double sample_fraction = 1;
    double p_lower = 0.0;
    double p_upper = 0.0;
    long save_initial_coordinates = 1;
    long reverse_t_sign = 0;
    long n_duplicates = 0;
    double duplicate_stagger[6] = \{0, 0, 0, 0, 0, 0\};
&end
```

- input Name of an SDDS file containing coordinates of input particles.
- input_type May be "elegant" or "spiffe", indicating the name of the program that wrote the input file. The expected data quantities for the different types are:
 - elegant: (x, xp, y, yp, t, p), where x and y are in meters, xp = x' and xp = y' are dimensionless, t is in seconds, and $p = \beta \gamma$ is the dimensionless momentum. If this file is to be generated by the user, the expected units string in the column definitions should be "m", "s", and "m\$be\$nc" for meters, seconds and the dimensionless momentum, respectively. The particleID column may also be given; it should contain a positive integer that is unique for each particle.
 - spiffe: (r, z, pr, pz, pphi, t), where r and z are in meters, $pr = \beta_r \gamma$, $pz = \beta_z \gamma$, $p_{\phi} = \omega r \gamma/c$, and t is in seconds. If this file is to be generated by the user use the units strings described above.

- n_particles_per_ring For spiffe data, gives the number of particles to generate for each ring of charge.
- selection_parameter The name of a parameter in the SDDS file to be used for selection of pages of data.
- selection_string The value of the selection_parameter selection parameter required for a page to be used. E.g., if one has a file from the shower program containing positrons, electrons, and photons, one might want to select only the positrons.
- one_random_bunch A flag indicating whether, for spiffe data, a new random distribution should be calculated for each step of the simulation.
- reuse_bunch A flag indicating whether to use the bunch again or not. If set, then the first bunch in the file is used repeatedly for as many tracking steps as requested. Otherwise, each bunch is used only once and the number of steps is limited to the number of bunches (e.g., the number of pages in the file when prebunched=0).
- prebunched Deprecated. Use track_pages_separately instead.
- track_pages_separately If non-zero, then separate pages of the input file are tracked separately. Otherwise, the entire file is tracked together.
- use_bunched_mode If non-zero, then the IDSlotsPerBunch parameter is used to determine the bunch assignment of particles in the beam based on values in the particleID column. In particular, the bunch number is $\lfloor (I-1)/S \rfloor$, where I is the particle ID and S=IDSlotsPerBunch.
- sample_interval If non-zero, only every sample_intervalth particle is used.
- n_tables_to_skip Number of SDDS pages to skip at the beginning of the file.
- center_transversely If non-zero, the transverse centroids of the distribution are made to be zero.
- center_arrival_time If non-zero, the mean arrival time of particles at the start of the accelerator is set to zero.
- sample_fraction If non-unity, the randomly selected fraction of the distribution to use.
- p_lower, p_upper If different, the lower and upper limit on $\beta\gamma$ of particles to use.
- save_initial_coordinates A flag that, if set, results in saving initial coordinates of tracked particles in memory. This is the default behavior. If unset, the initial coordinates are not saved, but are reread from disk each time they are needed. This is more memory efficient and is useful for tracking very large numbers of particles.
- n_duplicates This specifies duplicating the particles from the input file to allow tracking more particles. n_duplicates specifies the number of duplications, where the default value of 0 indicates no duplication. If n-fold duplication is invoked, the particle ID of a new particle is equal to the particle ID of its parent particle plus iN_p , where i = 1, ..., n+1 is the duplication index and N_p is the number of particles in the parent bunch. This should be kept in mind when using the particle ID to segregate the beam into bunches.

• duplicate_stagger — Specifies offsetting of the coordinates x, x', y, y', t, and δ for each duplication by the specified amounts. One assumes that some stochastic process such as synchrotron radiation will cause further differentiation of duplicate particles. One can also use SCATTER or DSCATTER elements in the beamline for this purpose.

semaphores

7.52 semaphores

- type: setup command.
- function: set up names for semaphore files, which are used to mark the start and end of program execution.
- sequence: must precede run_setup.

&semaphores

```
STRING started = ''%s.started'';
STRING done = ''%s.done'';
STRING failed = ''%s.failed'';
```

&end

- started Gives the (incomplete) filename of a file to create when a valid run_setup command is given.
- done Gives the (incomplete) filename of a file to create when the program exits without error. If the file exists, it is deleted when a valid run_setup command is given.
- failed Gives the (incomplete) filename of a file to create when the program exits with an error. If the file exists, it is deleted when a valid run_setup command is given.

slice_analysis

7.53 slice_analysis

- type: setup command.
- function: set parameters for slice analysis of the beam along a beamline. Also, results in placing the final slice analysis (at the end of the beamline) in symbols for use in optimization equations. The names of the symbols are the same as the names of the columns in the output file.
- sequence: must follow run_setup and precede beam definition (bunched_beam or sdds_beam).
- N.B.: slice analysis uses an approximate computation of the normalized emittance, regardless of the setting of the exact_normalized_emittance flag in the global_settings command.

```
&slice_analysis
STRING output = NULL;
long n_slices = 0;
double s_start = 0;
double s_end = 1e300;
long final_values_only = 0;
&end
```

- output The (incomplete) filename of the output file. Recommended value is "%s.slan".
- n_slices Number of slices to use.
- s_start, s_end Position in beamline at which to start and stop performing slice analysis.
- final_values_only If nonzero, then slice quantities are computed only at the end of the beamline.

subprocess

7.54 subprocess

- type: action command.
- function: execute a system command in a shell.

&subprocess

STRING command = NULL;

&end

ullet command — The text of the command to execute. The command may use the sequence "%s" for substitution of the rootname as set by run_setup. A literal "%s" must be entered as "%%s".

steering_element

7.55 steering_element

- type: setup command.
- function: setup for use of a given parameter of a given element as a steering corrector.
- sequence: must precede correct.
- N.B.: any use of this command disables the built-in definition of HKICK, VKICK, and HVKICK elements as steering elements.

```
&steering_element
   STRING name = NULL;
   STRING element_type = NULL;
   STRING item = NULL;
   STRING plane = "h";
   double tweek = 1e-3;
   double limit = 0;
   long start_occurence = 0;
   long end_occurence = 0;
   long occurence_step = 1;
   double s_start = -1;
   double s_end = -1;
   STRING after = NULL;
   STRING before = NULL;
&end
```

- name Optional: the (possibly wild-carded) name of the element to add to the steering list. If not given, then element_type must be given.
- element_type Optional: the (possibly wild-carded) name of the element type to add to the steering list. If not given, then name must be given.
- item The parameter of the element to be varied.
- plane May be either "h" or "v", for horizontal or vertical correction.
- tweek The amount by which to change the item to compute the steering strength.
- limit The maximum allowed absolute value of the item.
- start_occurence, end_occurence If nonzero, these give the starting and ending occurence numbers of elements that will be included. N.B.: if wildcards are used, occurence number counting is for each set of identically-named elements separately, rather than for the sequence of matched elements.
- s_start, s_end If non-negative, these give the gaving and ending position limits for the end-of-element locations of elements to be included.
- after The name of an element. If given, only elements that follow the named element in the beamline are included.

• before — The name of an element. If given, only elements that precede the named element

in the beamline are included.

touschek scatter

7.56 touschek_scatter

- type: setup/action command.
- function: Simulate Touschek scattering process at each TSCATTER element based on Monte Carlo method. The local scattering rate is calculated by using Piwinski's formula and from the Monte Carlo simulation. Scattered particles can be tracked through the entire beamline (one pass only), and beam loss information is recorded.
- sequence: must follow run_setup and twiss_output.
- can use parallel resources (Pelegant)
- notes:
 - A momentum aperture file is required previous using this command. It should contain
 momentum aperture at least at each TSCATTER element and can be obtained by running
 momentum_aperture command.
 - The simulation can be done for a Gaussian distributed beam or an arbitrary particle distribution given by histogram file(s) (See MHISTOGRAM).
 - When using histogram file as input, it should contain data at least at each TSCATTER element. This can be done by inserting a MHISTOGRAM element following each TSCATTER element. With lumped=1 option, a multi page SDDS file will be output automatically or you can combine individual output file into a multi page SDDS file before using this command.
 - The input particle distribution can be given in 3 ways: 2D(x-x')+2D(y-y')+2D(dt-dp); or 4D(x-x'-y-y')+2D(dt-dp); or 6D(x-x'-y-y'-dt-dp); base on user's choice. We recommend to use lower "order" histogram table if the original particle number which used to generate these table is not large enough.
 - The emit_*, emit_dp and sigma_s is always required for running the simulation (Used for Piwinski's rate). Use closed value when simulate a non-Gaussian distributed bunch.

&touschek_scatter

```
double charge = 0;
double frequency = 1;
double emit_x = 0;
double emit_nx = 0;
double emit_y = 0;
double emit_ny = 0;
double sigma_dp = 0;
double sigma_s = 0;
double distribution_cutoff[3] = {3, 3, 3};
double Momentum_Aperture_scale = 0.85;
STRING Momentum_Aperture = NULL;
STRING XDist = NULL;
STRING YDist = NULL;
STRING ZDist = NULL;
```

```
STRING TranDist = NULL:
STRING FullDist = NULL;
STRING bunch = NULL;
STRING loss = NULL;
STRING distribution = NULL;
STRING initial = NULL;
STRING output = NULL;
long nbins = 100;
double sbin_step = 1;
long n_simulated = 5000000;
double ignored_portion = 0.01;
long i_start = 0;
long i_end = 1;
long do_track = 0;
long match_position_only = 0;
long overwrite_files = 1;
long verbosity = 0;
```

&end

- charge Bunch charge in Coulombs. May not be zero.
- frequency Bunch repetition frequency in Hz. The product of the charge and frequency gives the average current in Amps.
- emit_x, emit_y RMS emittance for the x and y planes. Ignored if RMS normalized emittance is nonzero.
- emit_nx, emit_ny RMS normalized emittance for the x and y planes.
- sigma_dp, sigma_s Rms fractional momentum spread, σ_{δ} , and rms bunch length.
- distribution_cutoff The number of sigmas to use in each plane for Gaussian beam.
- Momentum_Aperture Input file containing the estimated momentum aperture at each TSCATTER element. This can be obtained from the momentum_aperture command in a separate run. (If using the parallel version to obtain the momentum aperture, it will be necessary to use output_mode=0 or else reorganize the data if output_mode\neq 0. Also, it will be necessary to use sddssort to sort the data by the s column.)
- Momentum_Aperture_scale This value times the aperture value from Momentum_Aperture file sets up the limit on δ_m in the simulation. Only particles that have $\delta > \delta_m$ will be kept for tracking. And the scattering rate is calculated at this value.
- XDist, YDist, ZDist Input filename of 2D histogram table of X, Y, and Z plane. X and Y are ignored when TranDist or FullDist is present.
- TranDist Input file name of the 4D histogram table of transverse plane. Has to be used together with ZDist.
- FullDist Input file name of the 6D histogram table. If present, all other tables are ignored.

- bunch The (incomplete) name of an SDDS file to which the phase-space coordinates of the simulated scattered particles are to be written. Recommended value: "%s-%03ld.bun". If "%03ld" or the equivalent is not provided then only the last simulated bunch is kept (one bunch for one TSCATTER element).
- loss The (incomplete) name of an SDDS file to which the original and final phase-space coordinates of the lost simulated scattered particles are to be written. Recommended value: "%s-%03ld.los". Used together with do_track = 1.
- distribution The (incomplete) name of an SDDS file to which the one-dimensional histogram of simulated scattered particles are to be written. Recommended value: "%s-%03ld.dis"
- initial The (incomplete) name of an SDDS file to which the one dimension histogram of simulated particles before scattering are to be written. Recommended value: "%s-%03ld.ini"
- output The (incomplete) name of an SDDS file. The average loss rate (particles per second) over a step size of sbin_step at location s is written to this file. Recommended value: "%s-%03ld.out"
- sbin_step Bin size for loss rate summary output to the output file.
- nbins Number of bins used for the distribution and initial table.
- n_simulated The total number of simulated scattered particles with $\delta > \delta_m$. Choosing too small a value will cause unreliable results. Note: use an integer number here. A number such as 5E6 sometimes will cause you trouble.
- ignored_portion Fraction of the total scattering rate ignored in tracking. Using this parameter will greatly increase the tracking speed. For example, if the total loss rate is 50% of the total scattering rate, then ignoring for tracking purposes 5% (0.05) of the scattered particles will cause a $\sim 10\%$ error, but the simulation is greatly speed up.
- i_start, i_end The simulation will be done from the i_startth to the i_endth TSCATTER element along the beamline.
- do_track If non-zero, scattered particles will be tracked from their generation location for n_passes (given by run_control). If non-zero, the run_control command must proceed the |touschek_scatter|command. The loss property can be analysed using output or loss.
- match_position_only If non-zero, then matching of the momentum aperture data to the lattice is done using the position data only (s column), rather than the element names. Can be helpful if errors appear about files ending prematurely or data not matching.
- overwrite_files If non-zero, then output files will be overwritten. If set to zero, then when output files are found, the corresponding computations are skipped. This can be used to restart a Touschek scattering run, provided the output filenames are index (e.g., of the form "%s-%03ld.los" rather than "%s.los".)

Note: If using Pelegant to compute the momentum aperture with output_mode=1, it is necessary to first run the script reorganizeMmap to put the data into the form needed by touschekLifetime.

transmute_elements

7.57 transmute_elements

- type: setup command.
- function: Changes the type of selected elements, which may be used to turn off unneeded diagnostics and speed up tracking when concatenation is being used.
- Must preceded run_setup.
- notes:
 - Any number of these commands may be given.
 - The only property of the original element that is preserved is the length. For example, transmuting a SBEN into a CSBEN will not have the expected result.

&end

- name Possibily wild-card containing string specifying the elements to which the transmutation specification is to be applied.
- type Possibily wild-card containing string specifying the element types to which the transmutation specification is to be applied.
- exclude Possibily wild-card containing string specifying elements to be excluded from the specified transmutation. Does not affect elements transmuted due to other specifications.
- new_type Type into which specified elements will be transmuted.
- disable If nonzero, the command is ignored.
- clear If nonzero, all prior transmutation specifications are deleted.

tune_footprint

7.58 tune_footprint

- type: action/setup command.
- function: compute frequency map from tracking and use it to determine the chromatic and amplitude tune footprints.
- sequence: must follow run_control.
- can use parallel resources (Pelegant)
- N.B.: the number of turns tracked is set by the run_control command.

&tune_footprint

```
STRING delta_output = NULL,
    STRING xy_output = NULL,
    double xmin = -0.02.
    double xmax = 0.02,
    double ymin = 1e-6,
    double ymax = 0.02,
    double x_for_delta = 1e-6,
    double y_for_delta = 1e-6,
    double delta_min = 0,
    double delta_max = 0,
    long nx = 20,
    long ny = 21,
    long ndelta = 21,
    long verbosity = 1,
    long quadratic_spacing = 1,
    long compute_diffusion = 1;
    long diffusion_rate_limit = -5,
    long immediate = 0
    long filtered_output = 1;
    long ignore_half_integer = 0;
&end
```

- delta_output The optional (incomplete) name of an SDDS file to send tune and diffusion rate vs δ output to. Recommended value: "%s.dtf". If optimization is done, this file is written only at the end of optimization.
- xy_output The optional (incomplete) name of an SDDS file to send tune and diffusion rate vs (x, y) output to. Recommended value: "%s.atf". If optimization is done, this file is written only at the end of optimization.
- xmin, xmax Limits of grid of initial x coordinates for tracking.
- ymin, ymax Limits of grid of initial y coordinates for tracking. ymin should typically be a small, positive value so that there is some betatron oscillation from which to get the tune.

- delta_min, delta_max Limits of grid of initial δ coordinates for tracking. Not that particles are not centered around the dispersive closed orbit.
- nx Number of values of x coordinate in the grid. If zero, amplitude footprint is not determined.
- ny Number of values of y coordinate in the grid. If zero, amplitude footprint is not determined.
- ndelta Number of values of δ coordinate in the grid. If zero, chromatic footprint is not determined.
- verbosity If nonzero, prints possibly useful information while running.
- quadratic_spacing If nonzero, points are spaced "quadratically," which actually means that their squares are spaced linearly. It is highly recommended to keep this turned on, since otherwise problems determining the tune when $x \approx 0$ may result in invalid results.
- compute_diffusion If nonzero, diffusion is computed, which requires tracking twice as many turns.
- diffusion_rate_limit Value of the diffusion rate d_r above which the particle is considered unstable, where

$$d_r = \log_{10} \left(\frac{\Delta \nu_x^2 + \Delta \nu_y^2}{N} \right), \tag{5}$$

where N is the number of turns tracked to determine each tune (equal to half of n_passes).

- immediate If nonzero, the calculations take place immediately, instead of only during optimization. If you wish to compute Twiss parameters on a closed orbit or after other calculations, be sure to set this control to zero.
- filtered_output If nonzero, output is only provided for particles inside the stable footprint.
- ignore_half_integer If nonzero, half-integer resonances are ignored in determining the tune footprint.

This command makes available the following quantities for optimization. All quantities are limited by particle survival, crossing of integer and half-integer resonances, and the diffusion rate limit.

- FP.nuxSpreadChrom,FP.nuySpreadChrom Spread in tunes due to chromaticity.
- FP.nuxChromMin, FP.nuxChromMax, FP.nuyChromMin, FP.nuyChromMax Minimum and maximum values of the x and y tunes from chromatic tune footprint.
- FP.deltaLimit Minimum of absolute values of positive and negative δ limits.
- FP.nuxSpreadAmp, FP.nuySpreadAmp Spread in tunes due to amplitude.
- FP.nuxAmpMin, FP.nuxAmpMax, FP.nuyAmpMin, FP.nuyAmpMax Minimum and maximum values of the x and y tunes from amplitude tune footprint.

- FP.xSpread, FP.ySpread Spread in x and y values.
- FP.xyArea Area of the limited x-y region, comparable to a dynamic acceptance. However, this area is determined from a fixed grid and is not suitable to optimization by itself.
- FP.diffusionRateMaxChrom, FP.diffusionRateMaxAmp Maximum diffusion rates in chromatic and amplitude scans.

Typically, one strives to minimize FP.nuxSpreadChrom,FP.nuySpreadChrom, FP.nuxSpreadAmp, FP.nuxSpreadAmp, FP.diffusionRateMaxChrom, and/or FP.diffusionRateMaxAmp while maximizing FP.deltaLimit, FP.xSpread, and/or FP.ySpread, and ensuring that FP.xyArea, at minimum, doesn't decrease. I.e., one wants the maximum stable region for momentum and position deviations with the minimum spread in tunes and minimum diffusion.

twiss_analysis

7.59 twiss_analysis

- type: setup command.
- function: analyze Twiss parameters within a user-defined region for purposes of optimization.
- sequence: must precede twiss_output.

```
&twiss_analysis
    STRING match_name = NULL;
    STRING start_name = NULL;
    STRING end_name = NULL;
    double s_start = -1;
    double s_end = -1;
    STRING tag = NULL;
    long verbosity = 0;
    long clear = 0;
```

- &end
 - match_name Optional wildcard string to match to element names for selection of elements to inculde in the analysis.
 - start_name Name of the element at which to start analysis. If the element occurs more than once, the first occurrence is used.
 - end_name Name of the element at which to end analysis. If the element occurs more than once, the first occurrence is used.
 - s_start Position (in meters) at which to start analysis.
 - s_end Position (in meters) at which to end analysis.
 - tag Name prefix for quantities computed by the analysis. The quantity names will have the form tag.statistic.quantity, where statistic is one of min, max, and ave, and quantity is one of betax, betay, etax, etay, alphax, alphay, etaxp, and etayp. E.g., if tag is region1, then one could use expressions like region1.max.betax in optimization.
 - clear If nonzero, all previously defined analysis regions are deleted.

twiss_output

7.60 twiss_output

- type: action/setup command.
- function: compute and output uncoupled Twiss parameters, or set up to do so.
- sequence: must follow run_setup.

```
&twiss_output
    STRING filename = NULL;
    long matched = 1;
    long output_at_each_step = 0;
    long output_before_tune_correction = 0;
    long final_values_only = 0;
    long statistics = 0;
    long radiation_integrals = 0;
    long concat_order = 3;
    long higher_order_chromaticity = 0;
    long higher_order_chromaticity_points = 5;
    double higher_order_chromaticity_range = 4e-4;
    double chromatic_tune_spread_half_range = 0;
    long quick_higher_order_chromaticity = 0;
    double beta_x = 1;
    double alpha_x = 0;
    double eta_x = 0;
    double etap_x = 0;
    double beta_y = 1;
    double alpha_y = 0;
    double eta_y = 0;
    double etap_y = 0;
    STRING reference_file = NULL;
    STRING reference_element = NULL;
    long reference_element_occurrence = 0;
    long reflect_reference_values = 0;
    long cavities_are_drifts_if_matched = 1;
    long compute_driving_terms = 0;
    long leading_order_driving_terms_only = 0;
    STRING s_dependent_driving_terms_file = NULL;
    long local_dispersion = 1;
&end
```

- filename The (incomplete) name of an SDDS file to which the Twiss parameters will be written. Recommended value: "%s.twi".
- matched A flag indicating, if set, that the periodic or matched Twiss parameters should be found. If zero, calculations are performed in transport line mode starting from the given initial values of betax, alphax, etc. N.B.: This may give different values for the chromaticity

even if the initial values are identical to those for a periodic solution. The reason has to do with different assumptions about the initial conditions for particles in a transport line vs a ring.

- output_at_each_step A flag indicating, if set, that output is desired at each step of the simulation. If you wish to compute Twiss parameters on a closed orbit or after other calculations, be sure to set this control to a nonzero value.
- output_before_tune_correction A flag indicating, if set, that output is desired both before and after tune correction.
- final_values_only A flag indicating, if set, that only the final values of the Twiss parameters should be output, and not the parameters as a function of s.
- statistics A flag indicating, if set, that minimum, maximum, and average values of Twiss parameters should be computed and included in output.
- radiation_integrals A flag indicating, if set, that radiation integrals should be computed and included in output. N.B.: Radiation integral computation is not correct for systems with vertical bending, nor does it take into account coupling. See the moments_output command if you need such computations.
- beta_X, alpha_X, eta_X, etap_X If matched is zero, the initial values for the X plane.
- concat_order Order of matrix concatenation to use for determining matrix for computation of Twiss parameters. Using a lower order will result in inaccuracy for nonlinear lattices with orbits and/or momentum errors. However, for on-momentum conditions with zero orbit, it is much faster to use concat_order=1.
- higher_order_chromaticity If nonzero, requests computation of the second- and thirdorder chromaticity. To obtain reliable values, the user should use concat_order=3 in this
 namelist and the highest available order for all beamline elements. elegant computes the
 higher-order chromaticity by finding the trace of off-momentum matrices obtained by concantenation of the matrix for higher_order_chromaticity_points values of δ over the
 full range higher_order_chromaticity_range. If quick_higher_order_chromaticity is
 nonzero, then a quicker concatenation method is used that gives the second-order chromaticity only.
- chromatic_tune_spread_half_range Half range of δ for which the chromatic tune spread is computed. The results are available in for optimization and in the twiss output file under the names nuxChromUpper, nuxChromLower, and similarly for the y plane. This computation uses the chromaticities.
- reference_file If given, the name of a file from which twiss parameter data will be taken to give the starting values. Ignored if matched is nonzero. The file should have the beta and alpha functions with the same names as the file created by this command.
- reference_element Element in reference_file at which to take the twiss parameter values. If not given, the values at the last element in reference_file are used.
- reference_element_occurrence Ignored if reference_element is not given. Otherwise, the occurrence number of reference_element to use. If 0, the last occurrence is used.

- reflect_reference_values If nonzero, reference values of $\alpha_{x,y}$ and $\eta'_{x,y}$ are multiplied by -1. This permits matching backwards from the reference point.
- cavities_are_drifts_if_matched By default, if matched=1, elegant treats rf cavities as drift spaces, allowing the user to have a cavity in the ring definition without it affecting the lattice functions. By setting cavities_are_drifts_if_matched=0, one can force elegant to use the actual matrix for the rf cavity. The differences between the results are generally small, but the default behavior disagrees with the results of moments_output. This feature is not available for cavities that change the beam energy (CHANGE_PO=1 in element definition or always_change_pO=1 on run_setup).
- compute_driving_terms If nonzero, then resonance driving terms [29, 36, 37] and tune shifts with amplitude are computed by summing over dipole, quadrupole, sextupole, and octupole elements. For dipoles, only the effects of gradients and sextupole terms are included; curvature effects are not present in the theory. In addition, these quantities may be optimized by using those names in optimization terms (see list below).
- leading_order_driving_terms_only If nonzero, only the leading order driving terms are computed. I.e., terms involving double sums over sextupole and quadrupole strengths are not computed. However, leading-order octupole terms are computed, even though they affect the same terms as the second-order sextupole and quadrupole terms. This option is provided because computing the higher-order terms is time-consuming and not always worthwhile.
- s_dependent_driving_terms_file The (incomplete) name of a SDDS file to which magnitude, real and imaginary parts of s-dependent driving terms will be written. If you wish to compute s-dependent driving terms, be sure to set this parameter. The following first order resonant driving terms are implemented as defined in [42]: f10010, f10100, f30000, f12000, f10200, f01200, f01110, f00300, f00120, f20100, f20010 and f11010. Please note that the notation and meaning of the driving terms differs from those computed when compute_driving_terms=1!
- local_dispersion Normally, elegant will ignore acceleration in computing the dispersion. That is, the dispersion would be the "local" dispersion $\frac{\partial x}{\partial \delta}$, where δ was the local fractional momentum deviation. In a linar or other systems with rf elements, one might also be interested in the "global" dispersion $\frac{\partial x}{\partial \delta_0}$, where δ_0 is the energy deviation at the beginning of the system. In this case, set local_dispersion=0. Alternatively, one may look at the R_{i6} elements of the matrix from matrix_output.

The output file from this command contains the following columns, giving values of quantities at the exit of each element, unless otherwise noted.

- s The arc length.
- ElementName The name of the element.
- ElementType The type name of the element.
- betax and betay The horizontal and vertical beta functions.
- alphax and alphay The horizontal and vertical alpha functions, where $\alpha = -\frac{d\beta}{2ds}$.
- psix and psiy The horizontal and vertical betatron phase advance in radians.

- etax and etay The horizontal and vertical dispersion functions.
- etaxp and etayp The slopes of the horizontal and vertical dispersion functions.
- xAperture and yAperture The horizontal and vertical apertures. If undefined, will have a value of 10m. If the beam trajectory is non-zero, then the aperture will be changed (usually reduced) accordingly. Hence, these are best understood as the effective apertures. They are used in determining the horizontal and vertical acceptance parameters, Ax and Ay.
- pCentral The central momentum $(\beta \gamma)$ at the entrance to the element.
- dIn Contribution to radiation integral In. Radiation integrals take account of horizontal bending only.

The output file contains the following parameters. Note that chromatic quantities depend on the order settings of the individual elements, the default order (in run_setup), and the concatenation order given in the twiss_output command. These quantities pertain to the end of the lattice or to the lattice as a whole.

- nux and nuy The horizontal and vertical tunes.
- dnux/dp and dnuy/dp The horizontal and vertical chromaticities, defined as $d\nu/d\delta$.
- dnux/dp2 and dnuy/dp2 The horizontal and vertical 2nd-order chromaticities, defined as $d^2\nu/d\delta^2$. Will be zero if higher_order_chromaticity is zero.
- dnux/dp3 and dnuy/dp3 The horizontal and vertical 3rd-order chromaticities, defined as $d^3\nu/d\delta^3$. Will be zero if higher_order_chromaticity is zero.
- dbetax/dp and dbetay/dp Chromatic derivatives of the horizontal and vertical beta functions, defined as $\frac{d\beta}{d\delta}$.
- dalphax/dp and dalphay/dp Chromatic derivatives of the horizontal and vertical alpha functions, defined as $\frac{d\alpha}{d\delta}$.
- etax2, etax3, etay2, etay3 Higher order dispersion in the horizontal and vertical planes. For example, for the horizontal plane, the closed orbit at the end of the lattice depends on δ according to $x = \eta_x \delta + \eta_{x2} \delta^2 + \eta_{x3} \delta^3$. This differs from the chromaticity expansion, which is given in terms of successive derivatives of $\nu(\delta)$.
- dnux/dAx, dnux/dAy, dnuy/dAx, dnuy/dAy Tune shifts with amplitude, where amplitude is defined as $A_q = (1 + \alpha_q)q^2/\beta_q$, with q = x or q = y. These will be zero unless the tune_shift_with_amplitude command is given.
- h11001, h00111, h20001, h00201, h10002, h21000, h30000, h10110, h10020, h10200, h22000, h11110, h00220, h31000, h40000, h20110, h11200, h20020, h20200, h00310, h00400— Resonance driving terms[29]. These will be zero unless compute_driving_terms is nonzero. See table 2 for an explanation of each term.
- dnux/dJx, dnux/dJy, and dnuy/dJy Tune shifts with amplitude from Bengtsson's theory [29]. See documentation for tune_shift_with_amplitude for discussion and comparison with dnux/dAx etc. These will be zero unless compute_driving_terms is nonzero.

- Ax and Ay The horizontal and vertical acceptance. These will be zero if no apertures are defined.
- alphac, alphac2 First- and second-order momentum compaction. The path length is $s = s_o + \alpha_c L \delta + \alpha_{c2} L \delta^2$.
- couplingIntegral, couplingDelta, and emittanceRatio These quantities are defined in section 3.1.4.4 of [19]. The computations include tilted quadrupoles, vertical orbit in sextupoles, vertical sextupole displacement, and solenoids. Note that the emittance ratio does not include the effect of vertical dispersion.
- In The n^{th} radiation integral.
- taux, tauy, taudelta Radiation damping times for x, y, and δ .
- Jx, Jy, Jdelta Damping partition factors for x, y, and δ .
- ex0, enx0 Horizontal equilibrium geometric and normalized emittances.
- Sdelta0 Equilibrium fractional rms energy spread.
- U0 Energy loss per turn.

N.B.: the higher-order dispersion and higher-order chromaticity are computed using the concatenated third-order matrix. However, elegant only has third-order matrices for three elements: alpha magnets, quadrupoles, and sextupoles. This may be acceptable if any dipoles (for example) have large bending radius. Users who are concerned about these effects should perform off-energy tracking using canonical elements (i.e., CSBEND, KQUAD, KSEXT, and MULT), which include energy dependence to all orders.

Also, note that by default all elements are computed to second order only. You must change the default_order parameter on run_setup to 3 in order to use the third-order matrices for alpha magnets, quadrupoles, and sextupoles. You may also use the ORDER parameter on individual element definitions.

Table 2: Meaning of the various driving terms[29].

Term Name	Explanation
h11001	drives x chromaticity
h00111	drives y chromaticity
h20001	drives synchro-betatron resonances
h00201	drives momentum-dependence of beta functions
h10002	drives second order dispersion
h21000	drives ν_x
h30000	drives $3\nu_x$
h10110	drives ν_x
h10020	drives $\nu_x - 2\nu_y$
h10200	drives $\nu_x + 2\nu_y$
h22000	drives $d\nu_x/dJ_x$
h11110	drives $d\nu_x/dJ_y$
h00220	drives $d\nu_y/dJ_y$
h31000	drives $2\nu_x$
h40000	drives $4\nu_x$
h20110	drives $2\nu_x$
h11200	drives $2\nu_y$
h20020	drives $2\nu_x - 2\nu_y$
h20200	drives $2\nu_x + 2\nu_y$
h00310	drives $2\nu_y$
h00400	drives $4\nu_y$

track

7.61 track

- type: major action command.
- function: track particles.
- sequence: must follow run_setup, run_control, and beam definition with bunched_beam or sdds_beam.
- can use parallel resources (Pelegant)

&track

```
long center_on_orbit = 0;
long center_momentum_also = 1;
long offset_by_orbit = 0;
long offset_momentum_also = 1;
long soft_failure = 1;
long use_linear_chromatic_matrix = 0;
long longitudinal_ring_only = 0;
long stop_tracking_particle_limit = -1;
```

&end

- center_on_orbit A flag indicating whether to center the beam transverse coordinates on the closed orbit before tracking.
- center_momentum_also A flag indicating whether to center the momentum coordinate also.
- offset_by_orbit A flag indicating whether to offset the transverse beam coordinates by the closed orbit before tracking. Similar to center_on_orbit, but the initial centroids of the beam are preserved. The beam is simply displaced by the closed orbit rather than being centered on it.
- offset_momentum_also A flag indicating whether to also offset the beam momentum to the momentum of the closed orbit. If the start_from_centroid or start_from_dp_centroid parameters are used on the closed_orbit command, this flag should be set to 0; otherwise, one will offset the beam central momentum by its own value.
- soft_failure If there is an error during tracking (e.g., a failure of orbit correction), continue to produce file output. This creates essentially empty slots in the files corresponding to the failed steps.
- use_linear_chromatic_matrix For each particle, a first-order matrix is computed for the particular momentum offset of the particle using the linear chromaticity and linear dependence of the beta functions on momentum.
- longitudinal_ring_only Tracks longitudinal coordinates only for a ring.
- stop_tracking_particle_limit If a non-negative is given, then elegant will stop tracking when the number of particles falls below the given value. It will be as if all the particles were lost.

tune_shift_with_amplitude

7.62 tune_shift_with_amplitude

- N.B.: this command is deprecated, because it is too difficult to tune it to get reliable answers. The use of driving term computation in twiss_output is recommended instead, even though it doesn't include all possibly relevant effects. For tune-spread calculations, the tune_footprint command provides more versatility.
- type: setup command.
- function: prepare for computation of tune shifts with amplitude.
- sequence: must follow twiss_output.
- methods:
- Method 1: tune shifts with amplitude are computed via tracking a series of particles at different amplitudes or by a matrix method. NAFF is used to determine the tunes from the tracking data. It is the user's responsibility to optimize the parameters to ensure that results are reasonable.
- Method 2: tune shifts are computed using a concatenated multi-turn third-order matrix. This appears to be reliable for many cases we've tested.
- Method 3: tune shifts can be computed quickly using Bengtsson's formulae [29] by setting compute_driving_term in twiss_output. For cases where all methods are valid, the results will differ by a factor of 2 from the results obtained with this command. Also, the present command has more general validity because it includes dipole curvature effects.

The quantities computed are $\frac{\partial}{\partial A_x^n \partial A_y^m} \nu_p$, where $n \ge 0$ and $m \ge 0$ are integers and p is x or y. $A_q = (1 + \alpha_q)q^2/\beta_q$, with q = x or q = y.

```
&tune_shift_with_amplitude
    long turns = 2048;
    double x0 = 1e-6;
    double y0 = 1e-6;
    double x1 = 3e-4;
    double v1 = 3e-4;
    long grid_size = 6;
    long lines_only = 0;
    long sparse_grid = 0;
    long spread_only = 0;
    double nux_roi_width = 0.02;
    double nuy_roi_width = 0.02;
    double scale_down_factor = 2;
    double scale_up_factor = 1.05;
    double scale_down_limit = 0.01;
    double scale_up_limit = 1e-4;
    long scaling_iterations = 10;
    long use_concatenation = 0;
    long verbose = 0;
```

```
long order = 2;
STRING tune_output = NULL;
&end
```

- turns The number of turns to track. If zero, then the concatenated matrix is used instead of tracking, and all other parameters of this command are irrelevant. The matrix method doesn't work well with all lattices. The order of the concatenated matrix is given by the concat_order control in twiss_output.
- x0, y0 The initial x and y amplitudes to use for determining the small-amplitude tunes.
- x1, y1 The initial x and y amplitudes to user for determining the tune shifts. These values should be small enough to ensure linearity in the tune shift.
- grid_size Size of the grid of points in x and y.
- lines_only If nonzero, then instead of a full set of grid_size² particles, only two lines of particles with x=0 and/or y=0 are tracked. In this case, no $A_x^i*A_y^j$ terms are computed (except for i=0 or j=0). However, in addition to being faster, the results may be more reliable, e.g., $\partial \nu_x/\partial A_y = \partial \nu_y/\partial A_x$ may be more closely satisfied.
- sparse_grid If nonzero, then instead of a full set of grid_size² particles, a sparse grid of particles is tracked. Will save time at some expense in accuracy.
- spread_only Compute the tune spread only and don't bother with the tune shift coefficients. These tune spreads can be optimized and appear in the twiss output file under the names nuxTswaLower, nuxTswaUpper, and similarly for the y plane. This is the recommended way to reduce tune shift with amplitude, as the tune spread is more reliable than the coefficients of the expansion. (Particles that get lost are automatically ignored in both types of computations.)
- nux_roi_width, nuy_roi_width Widths of the region of interest for x and y tunes. As the grid is filled in, elegant finds the tune for each tracked particle on the grid. Successive tune values are looked for in the region of the given width around the previous tune value. This prevents jumping from the main tune peak to another peak, which can happen when the tune spectrum has many lines.
- scale_down_factor, scale_up_factor, scale_down_limit, scale_up_limit, scaling_iterations These control automatic scaling of the amplitudes. If elegant sees a tune shift larger than scale_down_limit it will decrease x0 (or y0) by the factor scale_down_factor. If elegant sees a tune shift smaller than scale_up_limit it will increase x0 (or y0) by the factor scale_up_factor. Suggestion: if you find yourself playing with these values and the initial amplitudes in order to get reliable TSWA coefficients, try just using the tune spread.
- verbose If nonzero, information about the progress of the algorithm is printed to the screen.
- use_concatenation If nonzero, then tracks with the concatenated matrix instead of element-by-element. The order of the concatenated matrix is given by the concat_order control in twiss_output. The user should experiment with this option to see if the results are reliable for a particular lattice.

vary_element

7.63 vary_element

- type: setup command.
- function: define an index and/or tie a parameter of an element to it.
- sequence: must follow run_control
- N.B.: It is not possible to vary an element if the element name starts with one of the following characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, or -. The reason is that elegant will attempt to make an SDDS parameter name containing the element name, and these characters are disallowed at the beginning of such a name.

&vary_element

```
long index_number = 0;
long index_limit = 0;
STRING name = NULL;
STRING item = NULL;
double initial = 0;
double final = 0;
long differential = 0;
long multiplicative = 0;
long geometric = 0;
STRING enumeration_file = NULL;
STRING enumeration_column = NULL;
```

&end

- index_number A non-negative integer giving the number of the index.
- index_limit A positive integer giving the number of values the index will take. Must be given if this index_number has not been listed in a previous vary_element command, unless enumeration_file is given.
- name The name of an element.
- item The parameter of the element to vary.
- initial, final The initial and final values of the parameter.
- enumeration_file Name of an SDDS file giving values for the item.
- enumeration_column Column of the SDDS file giving the values.
- differential If nonzero, the initial and final values are taken as offsets from the predefined value of the parameter.
- multiplicative If nonzero, the initial and final values are taken as multipliers to be applied to the predefined value of the parameter in order to obtain the actual initial and final values.
- geometric If nonzero, then variation is geometric rather than arithmetic.

8 Specialized Tools for Use with elegant

A number of specialized programs are available that work with elegant. Most are SDDS-compliant, so they will also work with any program that reads or writes appropriate SDDS data. The following is a brief description of each program. Full descriptions for many programs are available on subsequent pages. Most programs will return a help message if the program name is given with no arguments, which should be sufficient documentation and may be more up-to-date than these manual pages.

- abrat A program to integrate particles through a 3D magnetic field map. The name stands for Asymmetric Bend RAy trace. This program uses the same method as the BRAT element in elegant.
- analyzeMagnets Generates SDDS and latex files giving magnet parameters. (Program by M. Borland.)
- astra2elegant Converts ASCII particle output from ASTRA [30] to a binary SDDS file suitable for use with elegant. This program is recommended over the astra2sdds program on the ASTRA website, because the latter produces ASCII SDDS files that are quite slow to read and does not perform the correct computations for low-energy beams. (Program by M. Borland.)
- bremsstrahlungLifetime Computes gas bremsstrahlung lifetime from local momentum acceptance and Twiss parameter output. (Program by M. Borland.)
- ullet compute Coherent Fraction Computes the coherent fraction for undulator radiation.
- computeGeneralizedGradients Computes generalized gradients for use with the BGGEXP element.
- compute SCTune Spread Compute space charge tune spread.
- coreEmittance Computes the slice emittance for the beam core (e.g., 80% of the beam). (Program by X. Dong.)
- csrImpedance Computes the shielded steady-state CSR impedance for a dipole magnet. The output can be used immediately with elegant's ZLONGIT element. (Program by Y. Wang, H. Shang, and M. Borland.) See also the makeSummedCsrZ script.
- doubleDist6 Increases the number of particles in a particle input file by successively doubling the number. Intended to be used to increase the number of particles produced by a photoinjector simulation to improve stability of CSR and LSC simulations. See also smoothDist6. (Program by M. Borland.)
- elasticScatteringLifetime Computes elastic gas scattering lifetime from dynamic acceptance and Twiss parameter output. (Program by M. Borland.)
- elegant2astra This program translates elegant phase space files into ASTRA [30] format. (Program by M. Borland.)
- elegant2track This program translates elegant phase space files into TRACK [32] format. The ASCII version of TRACK is assumed. (Program by M. Borland.)

- elegant2genesis This program performs slice analysis of particle output files, which are suitable for use with the SDDS-compliant APS version of GENESIS[14]. This program is part of the SDDS toolkit. See the SDDS toolkit manual for documentation. (Program by R. Soliday and M. Borland.)
- haissinski Computes the steady-state longitudinal distribution in an electron storage ring. Requires as input a file containing the Twiss parameters around the ring, such as that provided by the twiss_output command. Wakes can be specified with either a L, R model, a BBR resonator model or a wake function. Other inputs are external rf system parameters, with possibility of a harmonic cavity. Output is a charge or current profile with longitudinal time coordinate (front of bunch is at positive times). (Program by L. Emery and M. Borland.)
- ibsEmittance Computes local intra-beam scattering rates for both storage ring and linac. Also computes the equlibrium transverse and longitudinal emittances of a beam in an electron storage ring, resulting from the combination of quantum excitation, damping, and intra-beam scattering. Requires as input a file containing the Twiss parameters, such as that provided by the twiss_output command. (Program by L. Emery, M. Borland, and A. Xiao)
- impact2elegant Tranlates IMPACT-T [31] output into elegant conventions. (Program by M. Borland.)
- impact2sdds Translates IMPACT-T output files into SDDS for easier postprocessing. (Program by M. Borland.)
- ionTrapping Uses lattice function data from elegant to compute ion trapping condition in a ring. (Program by M. Borland.)
- longitCalcs Performs calculations of longitudinal dynamics parameters in storage rings, using output from elegant's twiss_output command. Can also compute voltages for bunch lengthening and output these to a file that can be use with load_parameters. (Program by M. Borland.)
- elegantto Translates an elegant-style lattice file (or a MAD file, with some restrictions) into formats accepted by other programs, such as COSY, PARMELA, PATPET, PATRICIA, TRANSPORT, XORBIT, and MAD8. Will also generate an SDDS file containing lattice data. (Program by M. Borland.)
- makeSummedCsrZ Computes the shielded or free-space steady-state CSR impedance for a ring composed of one or more types of dipole magnet. The output can be used immediately with elegant's ZLONGIT element. (Program by M. Borland.)
- plotTwiss Plots the twiss parameters using data from the twiss_output command. (Program by L. Emery and M. Borland.)
- plotTwissBeamsize Plots the beam sizes using data from the twiss_output command.
- prepareTAPAs Allows processing files from twiss_output into a form that is accepted by the Android App TAPAs [46]. The resultant files can be copied to, e.g., the downloads area on the Android device, from which they can be read by TAPAs for configuration of the Storage Ring Scaling activity. (Program by M. Borland.)

- radiationEnvelope A tool for use with the output of sddsbrightness and sddsfluxcurve. It analyzes data for many harmonics and produces a single curve that shows the envelope of maximum brightness or flux over all harmonics. (Program by M. Borland.)
- sddsanalyzebeam Analyzes a beam of macro-particles and produces an SDDS file containing beam moments, emittances, equivalent beta functions, etc. The beam file is of the type written by elegant using the output field of the run_setup command, or the WATCH element. (Program by M. Borland.)
- sddsbrightness Uses twiss parameter output or data from sddsanalyzebeam to compute undulator brightness curves. (Program by H. Shang, R. Dejus, M. Borland, X. Jiao.)
- sddsbs Computes bending magnet spectra. (Program by H. Shang and M. Borland.)
- sddsbunchingfactor Computes bunching factor vs frequency from phase space data. (Program by M. Borland.)
- sddsemitproc Analyzes quadrupole scan emittance measurement data. Accepts a file containing the transport matrix for each point and measured beam sizes. The file may, for example, be the file produced by the final field of the run_setup command. The quadrupole scan can be executed inside of elegant using vary_elements. (Program by M. Borland.)
- sddsfindresonances Uses output from frequency map analysis to find and identify resonance lines. (Program by H. Shang, M. Borland.)
- sddsfluxcurve Uses twiss parameter output or data from sddsanalyzebeam to compute undulator flux tuning curves. (Program by M. Borland, H. Shang, R. Dejus.)
- sddsmatchtwiss Transforms a beam of macro-particles to match to given beta functions and dispersion. The beam file is of the type written by elegant using the output field of the run_setup command, or the WATCH element. (Program by M. Borland.)
- sddsws Computes wiggler spectra, using code from WS (by R. Dejus). (Program by H. Shang.)
- sddsurgent Uses algorithms from the programs US (by R. Dejus) and URGENT (by R. Walker) for computation of undulator radiation properties, including power density and intensity distributions. (Program by H. Shang, R. Dejus, M. Borland, X. Jiao.)
- sddsrandmult Simulates the effect of random mechanical errors in a quadrupole or sextupole, generating multipole error data that can be used with elegant's KQUAD and KSEXT elements. (Program by M. Borland.)
- sddssampledist This program allows creating particle distributions from user-designed distribution functions. It is thus a more flexible alternative to bunched_beam. This program is part of the SDDS toolkit. See the SDDS toolkit manual for documentation. (Program by M. Borland and H. Shang.)
- smoothDist6s Increases the number of particles in an input particle distribution. At the same time, smooths the distribution and adds optional energy and density modulation. Intended to be used to increase the number of particles produced by a photoinjector simulation to improve stability of CSR and LSC simulations. Also useful in studying the growth rate for energy and density modulations. See also doubleDist6. (Program by M. Borland.)

- The script spiffe2elegant allows converting the output of the PIC code spiffe to the same form as output by elegant. Note that elegant will read spiffe output directly. This script just allows converting the data for use with related programs, such as sddsanalyzebeam. (Program by M. Borland.)
- TFBFirSetup This script prepares data that can be used to configure turn-by-turn transverse feedback using TFBDRIVER and TFBPICKUP elements. (Program by M. Borland.)
- touschekLifetime This program calculates Touschek lifetime using A. Piwinski's formula. Input files are generated from "twiss_output" and "momentum_aperture". (Program by A. Xiao and M. Borland.)
- track2sdds Translates output files, including phase space files, from version 39 of TRACK (with ASCII output [32]) into SDDS. (Program by M. Borland.)
- track2mag Uses TRACK output files to create a file similar to the magnets outupt file from elegant. This gives a profile of the beamline that can be plotted with other data. (Program by M. Borland.)
- The scripts makeSkewResponseCP and correctCoupling can be used to compute the crossplane response matrices for skew quadrupoles and to perform coupling correction using those matrices. (Program by M. Borland.)
- view3dGeometry Uses freewrl viewer to display 3D geometry of a lattice. (Program by A. Petrenko and M. Borland.)

abrat

8.1 abrat

• description: Integrates particle trajectories through an symmetric or asymmetric bending magnet. The name stands for "Asymmetric Bend RAy Tracing." Features include the ability to optimize the magnet strength and position to ensure, if possible, that the magnet joins two user-defined trajectories. The results of these optimizations can be used in elegant with the BRAT element.

• synopsis:

```
abrat field-file [-3dFieldFile] [-scan=x | xp | y | yp |
delta,lower,upper,number | -beamFiles=input,output ]
-vertex=x-in-meters,z-in-meters -nominalEntrance=x,y -nominalExit=x,y
-theta=targetInDegrees -rigidity=Tesla-meters [-output=filename]
[-fsc=value] [-dxDipole=m] [-dzDipole=m] [-yawDipole=value]
[-optimize[=verbose] [fse,dx,dz,yaw]] -fseLimit=min,max -dxLimit=min,max
-dzLimit=min,max -yawLimit=min,max
[-fieldmapOutput=filename,zmin,zmax,nz,xmin,xmax,nx]
[-tolerance=integration-tolerance] [-quiet]
```

• files:

- field-file — Field map file. Normally, needs to contain columns x, z, and B, giving the field in the midplane. In 3D mode, when the -3dFieldFile option is given, then the file should contain x, y, z, Bx, By, and Bz. In all cases, the beam is assumed to move from left (z < 0) to right (z > 0) with the field bending counter clockwise. Positive x is away from the center of curvature.

- -3dFieldFile If given, then *field-file* is expected to contain a 3D field map. See above for details.
- -scan If given, then the value of the named accelerator coordinate is scanned to create a bundle of incoming rays. Output is provided for each ray.
- -beamFiles If given, then an elegant-style beam is read and the particles therein are tracked through the dipole. A simular file is created for the output coordinates. Coordinates are defined at the nominal entrance and exit planes. Back-drifts are used to ensure that integration begins and ends outside the magnetic field region (i.e., all of the defined field is included).
- -output If given, particle trajectories are written to the named file.
- -fsc If given, the fractional strength change to apply to the field. Typically taken from a previous optimization run.
- -dxDipole If given, the x positional change to apply to the field. A positive value moves the field away from the center of curvature. Typically taken from a previous optimization run.

- --dzDipole If given, the z positional change to apply to the field. A positive value moves the field further from the incoming beam. Typically taken from a previous optimization run.
- -yawDipole If given, the yaw to apply to the field. A positive value rotates the magnet in the direction of bending. Typically taken from a previous optimization run.
- -optimize, -fseLimit, dxLimit, dzLimit, yawLimit Invokes optimization of the various strength and alignment parameters and specifies the allow range of variation.
- -fieldMapOutput Requests output of a field map, allowing confirmation of the input data.
- -tolerance Integration tolerance.
- N.B.: The usage message describes additional switches that have had limited testing.
 Use with caution.
- authors: M. Borland (ANL/APS).

astra2elegant

8.2 astra2elegant

- description: Converts ASCII particle output from ASTRA to a binary SDDS file suitable for use with elegant. This program is recommended over the astra2sdds program on the ASTRA website, because the latter produces ASCII SDDS files that are quite slow to read.
- synopsis:

```
astra2elegant [inputFile] [outputFile] [-centerReference] [-pipe=[input][,output]]
```

• files:

- inputFile ASCII particle output file from ASTRA.
- outputFile SDDS file containing phase space data. May be used directly with elegant.

- -centerReference
 Normally, astra2elegant offsets the arrival time of all particles by the arrival time of the reference particle. This behavior can be suppressed by giving the -centerReference option. In that case, the arrival time of the reference particle is defined as 0.
- -pipe[=input][,output] Standard SDDS toolkit pipe option.
- authors: M. Borland (ANL/APS).

computeGeneralizedGradients

8.3 compute Generalized Gradients

• description: Converts data of the form $B_{\rho}(z,\phi)$ into a set of generalized gradients [50] for use with elegant's BGGEXP element.

• synopsis:

 $\label{lem:computeGeneralizedGradients-input} filename - \texttt{output } rootname - \texttt{mainHarmonic} integer - \texttt{nHarmonics } integer$

- input Give the name of the input file, which must be an SDDS file having two columns and two parameters. The columns are phi and Br, giving respectively the polar angle in radians and the radial magnetic field in Tesla. Each page should have the same number of rows n. The phi values are assumed to be equispaced starting at 0 and ending at $2\pi(1-1/n)$. The pages are labeled by the parameter z, which gives the longitudinal coordinate in meters for the data on that page. These z values are assumed to be equispaced and to cover the entire length of the magnet. Finally, a parameter R must exist that gives the radius in meters for the Br values.
- output Give the root name for the output files. The main output file, which has extension ggrad and is used directly with the BGGEXP element, will contain the generalized gradients for the normal (non-skew) components of the magnetic field. Each page corresponds to a different harmonic.
- mainHarmonic The main harmonic of the field, where 2 is quadrupole, 3 is sextupole, etc.
- nHarmonics The number of harmonics to include.
- authors: M. Borland (ANL/APS).

coreEmittance

8.4 coreEmittance

• **description:** Computes the slice emittance for 80%, 85%, 90%, 95%, and 100% fractions of the beam.

• synopsis:

```
coreEmittance -input inputFilename [-nSlices numberOfSlices] [-pngRoot
<string>] [-pngThickness <integer>(2)]
```

• files:

- The input file is a particle output file from elegant or a compatible program.

- -input Specify the name of the input file.
- -nSlices Optionally specify the number of longitudinal slices. The default is 100.
- -pngRoot Optionally specify the file rootname for PNG graphics files. If omitted, no PNG files are created.
- -pngThickness Optionally change the thickness of lines for PNG graphics. The default is 2.
- author: X. Dong.

csrImpedance

8.5 csrImpedance

• **description:** Computes the steady-state CSR impedance with shielding by parallel plates. By default, the computed impedance is for a dipole magnet that bends the beam in a complete circle.

• synopsis:

```
csrImpedance outputFile | -pipe[=out] -height=valueInMeters
-radius=valueInMeters -frequencyLimit=maximum=valueInHz[,minimum=valueInHz]
-n=integer [-filter=cutoff1,cutoff2] [-angle=radians]
```

• files:

- outputFile — SDDS file containing computed impedance. May be used directly with elegant's ZLONGIT element.

- -height The full height of the vacuum chamber, in meters.
- -radius The radius of the bending magnet, in meters.
- -angle The angle of the bending magnet, in radians. The default is 2π .
- frequencyLimit Allows specifying the upper frequency limit (required), as well as the lower frequency limit, for the computed impedance. elegant will not accept the data if the lower limit is not 0. If the rms bunch length is σ_t , then it is suggested to have the maximum frequency much greater than $1/(2\pi\sigma_t)$.
- -n Allows specifying the number of data points to be computed. The number of points computed is $2^n + 1$, which is required by elegant. A reasonable value is n = 10 to n = 14.
- -filter Allows specifying the starting and ending frequency for a simple low-pass filter. The frequencies are given as fractions of the maximum frequency. The filter ramps linearly from 1 to 0 between the two cutoff values. If, for example, the cutoff is 0.2, then the highest frequency in the impedance corresponds to a wavelength of 10 bins (2/0.2) in elegant.
- authors: Y. Wang, H. Shang, ANL/APS. Based on a simplified form[26] of Warnock's [25] formula.
- **Note:** The script makeSummedCsrZ is more convenient for computing the CSR impedance of rings with several types of dipoles, and also handles the free-space case.

doubleDist6

8.6 doubleDist6

• description: Increases the number of particles in a particle input file by successively doubling the number. Intended to be used to increase the number of particles produced by a photoinjector simulation to improve stability of CSR and LSC simulations.

The algorithm is as follows:

- For each doubling, insert a new particle "near" every pair of existing particles in time. The particle has a new t value, but the same (x, xp, y, yp, p) as one of the original particles.
- Bin the beam according to t into a large number of bins. Randomize the assignment of p values relative to other coordinates across particles in the same bin, while additionally adding a small random value to each p value.

• synopsis:

doubleDist6 -input name -output name -doublings number -nt bins

• files:

- input A particle distribution file, such as might be used with sdds_beam.
- output A particle distribution file, such as might be used with sdds_beam.

- --doublings n The number of times to double the size of the distribution. The number of particles in the output file is 2^n times the number in the input file.
- -nt bins The number of time bins to use for momentum randomization. This helps to avoid having many particles with exactly same momentum.
- author: M. Borland, ANL/APS.
- see also: smoothDist6s

haissinski

8.7 haissinski

• **description:** haissinski solves the Haissinski equation for the bunch steady-state longitudinal distribution in the presence of various impedances.

• synopsis:

```
haissinski twissFile\ resultsFile
-wakeFunction=file,tColumn=name,wColumn=name |
-model=[L=Henry|Zn=Ohms],R=Ohm -charge=C | -particles=value |
-bunchCurrent=A -steps=numberOfChargeSteps -outputLastStepOnly
-RF=Voltage=V,harmonic=value[,phase=offsetInRadians] | -length=s
-harmonicCavity=Voltage=V,factor=harmonicFactor[,phase=radians]
-superPeriods=number -energy=GeV
-integrationParameters=deltaTime=s,points=number,startTime=s, iterations=number,fraction=value,tolerance=value
```

• files:

- twissFile Twiss output file from elegant, including radiation integral calculations.
- resultsFile SDDS file containing computed bunch longitudinal distributions as columns, along with analysis and conditions as parameters.

- -wakeFunction=file,tColumn=name,wColumn=name Optionally specifies the impedance as a Greens function using values in an SDDS file. The time points must be equi-spaced.
- -model=[L=Henry|Zn=Ohms], R=Ohm Optionally specifies the impedance as an inductor L or broad-band value Zn, along with a resistance R.
- -- charge=C | -particles=value | -bunchCurrent=A Various ways to specify the charge in each bunch.
- -steps=numberOfChargeSteps Number of values of bunch charge to compute up to the value specified with on the just-described options. Using more values can help convergence, as the result of each prior step is used as the starting point for the new step.
- -outputLastStepOnly Requests output for the last charge step (full charge) only.
- -RF=Voltage=V, harmonic=value[,phase=offset] | -length=s Two ways to specify the nominal bunch length. The phase value is an offset from the synchronous phase, in radians, and is used only when a harmonic cavity is included.
- harmonicCavity=Voltage=V, factor=harmonicFactor[, phase=radians] Specifies
 a harmonic cavity voltage, phase, and the ratio of the harmonic cavity frequency to the
 main frequency.
- -superPeriods=number Number of superiods of the lattice specified in twissfile to simulate. If one has an N cell ring but only gives 1 cell in the input, this value should be N. If one gives the whole ring, this value should be 1.

- -energy=GeV Beam energy. If not given, the value in the twissfile is used.
- integrationParameters=deltaTime=s, points=number, startTime=s, iterations=number, fraction=value, tolerance=value Integration parameters, which must be set. deltaTime is the time interval for wake function and charge density evaluation. points is the number of time points, while startTime is the time (relative to synchronous phase) at which the time region starts. These values must be set by the user based on knowledge of the likely bunch length. For the others, we suggest 1000 iterations, a fraction of 0.01, and a tolerance of 10⁻⁴.
- authors: L. Emery, M. Borland, ANL/APS.

ibsEmittance

8.8 ibsEmittance

- description: ibsEmittance computes growth rates and equilibrium emittances for electron rings due to intrabeam scattering (IBS). It will also integrate the growth rates to show the time evolution of the emittances. The IBS algorithm is based on the Bjorken and Mtingwa's [15] formula, and with an extension of including vertical dispersion. The program can also estimate IBS growth rates for and transport line or linac beam, provided special attention paid to the beam's energy change (splitting RF cavities as needed).
- examples: This example computes the IBS equilibrium parameters and the contributions to the growth rates (at equilibrium) vs position in the APS lattice.

```
ibsEmittance aps.twi aps.ibs -charge=5 -coupling=0.02
-rf=voltage=9,harmonic=1296
```

• synopsis:

```
 \begin{tabular}{ll} ibsEmittance $twissFile $resultsFile $-charge=nC|-particles=value \\ -coupling=value|-emityInput=value $ [-emitInput=value] $ [-deltaInput=value] $ [-emit0=value] $ [-delta0=value] $ [-superperiods=value] $ [-isRing=1|0] $ {-RF=Voltage=MV,harmonic=value|-length=mm} $ [-energy=MeV] $ [ {-growthRatesOnly | -integrate=turns=number[,stepSize=number] } ] $ [-noWarning] $ $ $ [-noWarning] $ $ $ [-noWarning] $ $
```

• files: twissFile is a twiss parameter file from the twiss_output command of elegant. You must use the radiation_integrals flag in twiss_output.

- -charge, -particles Give the charge (in nanocoulombs) or the number of electrons.
- -coupling Give the emittance or "coupling" ratio, ϵ_y/ϵ_x .
- -emityInput Give the initial vertical emittance in meters.
- **-emitInput** Give the initial total emittance in meters. If not specified, the value from the parameter **ex0** in *twissFile* is used.
- **-deltaInput** Give the initial rms fractional momentum spread. If not specified, the value from the parameter Sdelta0 in *twissFile* is used.
- -emit0, -delta0 Redefine the equilibrium emittance and rms energy spread, if different from what is given in the twiss input file. Can be used, e.g., to include additional source of energy spread, such as microwave instability, from an external calculation.
- superperiods=value If given, the number of superperiods in the lattice. twissFile is taken to pertain to a single sector.
- isRing Specify the calculation is done for stored beam (isRing=1, default) or transport line/linac beam (isRing=0). When isRing is set to 0, the energy scaling and integration calculation will be disabled.
- -- RF=Voltage=MV, harmonic=value Specify rf voltage and harmonic number.
- -length=mm Specify the rms bunch length.

- **-energy**=MeV Specify the beam energy. By default, this is taken from the pCentral parameter in twissFile.
- -growthRatesOnly If given, only the initial growth rates are computed. Equilibrium emittance values are not computed. resultsFile will contain columns of initial growth rate contributions from individual elements. Without this option, resultsFile would normally contain columns of growth rate contributions at equilibrium.
- -integrate=turns=number[,stepSize=number] If given, then resultsFile contains the result of integrating the differential equations for the emittances for the given number of turns and not the contributions of individual elements of growth rates. The step size is the number of turns for each integration step, and can be adjusted to get faster results. The options -growthRatesOnly and -integrate are not compatible.
- -noWarning Removes warning messages.
- author: A. Xiao, L. Emery, M. Borland, ANL/APS.

ionTrapping

8.9 ionTrapping

- **description:** Computes ion trapping conditions using **elegant** twiss parameter output as input.
- synopsis:

ionTrapping -twiss filename -superPeriods number -kappa ratio -output filename -current mA -bunches number

• switches:

- twiss Give the name of a Twiss output file from elegant. It is advisable to subdivide the elements finely enough to get smooth representations of the lattice functions. The file should be computed the radiation integrals turned on, since the natural emittance and energy spread are needed.
- superPeriods Give the number of superperiods of the basic cell described by the Twiss output file.
- kappa Give the ratio ϵ_y/ϵ_x . The emittances are computed from ϵ_0 using $\epsilon_x = \frac{\epsilon_0}{1 + \frac{J_y}{J_x} \kappa}$ and $\epsilon_y = \kappa \epsilon_x$.
- output Give the name of the output file. The file contains the information in the input file, with the following added elements, among others:
 - * Column Acrit $A_{crit}(s)$ is defined as[49]

$$A_{crit}(s) = \frac{N_e r_p S_b}{2\min(\sigma_x(s), \sigma_y(s))(\sigma_x(s) + \sigma_y(s))},$$
(6)

where N_e number of electrons per bunch, r_p is the classical proton radius, S_b is the bunch separation in meters, $\sigma_x(s)$ is the local horizontal rms beam size, and $\sigma_y(s)$ is the local vertical rms beam size. Any singly-ionized species with atomic mass greater than A_{crit} will be trapped.

- * Parameters ex, ey The horizontal and vertical emittances.
- * Parameter AcritMin Minimum value of $A_{crit}(s)$.
- * Parameters speciesTrappedFraction, where species is H2, H2O, CH4, CO, and CO2. These give the fraction of the circumference over which H₂, H₂O, CH₄, CO, and CO₂, respectively, are trapped.
- current Give the total beam current milliAmps.
- bunches Give the number of bunches.
- authors: M. Borland (ANL/APS).

elegantto

8.10 elegantto

- description: elegantto translates an elegant-style (or a MAD file, with some restrictions) into formats accepted by other programs, such as COSY, PARMELA, PATPET, PATRICIA, TRANSPORT, and XORBIT. Will also generate an SDDS file containing lattice data.
- examples: The following command would translate the elegant lattice file lattice.lte into a TRANSPORT lattice file with 10mm quadrupole aperture and 5mm sextupole aperture, at an energy of 1.5 GeV.

```
elegantto lattice.lte lattice.trin -transport=10,5,1.5
```

• synopsis:

```
elegantto inputfile outputfile {-patricia | -patpet |
-transport[=quadAper(mm), sextAper(mm), p(GeV/c)] |
-parmela[=quadAper(mm), sextAper(mm), p(GeV/c)] | -sdds[=p(GeV/c)] |
-cosy=quadAper(mm), sextAper(mm), p(MeV/c) | -xorbit | -mad8 }
[-angle_tolerance=value] [-flip_k_signs] [-magnets=filename]
[-header=filename] [-ender=filename]
```

• files:

- inputfile An elegant-style lattice file.
- outputfile A file containing lattice data in the chosen format.

- -cosy Provide data for the program COSY INFINITY. This can take a little while as the program must figure out the Enge coefficients that correspond to the FINT and HGAP values for all the dipoles. The user should test the output carefully.
- -mad8 Provide data for the program MAD8.
- -patricia Provide data for the program PATRICIA.
- patpet Provide data for the program PATPET, a merging of the programs PATRI-CIA and PETROS.
- -transport[=quadAper(mm), sextAper(mm), p(GeV/c)] Provide data for the program TRANSPORT (original style). One may give apertures for the quadrupoles and sextupoles, as well as the beam momentum in GeV/c.
- -parmela[=quadAper(mm), sextAper(mm), p(GeV/c)] Provide data for the program PARMELA. One may give apertures for the quadrupoles and sextupoles, as well as the beam momentum in GeV/c.
- --sdds[=p(GeV/c)] Provide data in SDDS form. One may give the beam momentum in GeV/c.
- angle_tolerance=value PATPET and PATRICIA only allow sector and rectangular bends. This tolerance, in radians, determines how far from sector or rectangular a bend definition may be and still get processed.

- -flip_k_signs Changes the signs of all quadrupoles.
- --magnets=filename Results in output of an additional SDDS file with the magnet layout. This is the same file that would be generated by the magnets field of the run_setup command in elegant.
- -header=filename, -ender=filename Allow specification of files to be prepended and appended to the lattice output. For example, if additional commands are required prior to the lattice definition to set up the run, they would be put in the header file. If additional commands are needed after the lattice definition to initiate processing, they would be put in the ender file.
- author: M. Borland, ANL/APS.

sddsanalyzebeam

8.11 sddsanalyzebeam

• description: sddsanalyzebeam analyzes a beam of macro-particles and produces an SDDS file containing beam moments, emittances, equivalent beta functions, etc. The beam file is of the type written by elegant using the output field of the run_setup command, or the WATCH element.

• examples:

sddsanalyzebeam run.out run.analysis

• synopsis:

```
sddsanalyzebeam [-pipe=[input][,output]] [inputfile] [outputfile]
[-nowarnings] [-correctedOnly] [-canonical]
```

• files:

- inputfile An SDDS file containing the columns x, xp, y, yp, t, and p, giving the six phase-space coordinates for a set of macroparticles. This file can be produced from elegant, for example, using the output field of the run_setup command, the bunch field of the bunched_beam command, or the WATCH element in coordinate mode.
- outputfile An SDDS file containing columns giving moments, emittances, equivalent Twiss parameters, and so on, for the macro-particles. Each row of this file corresponds to a page of the input file. The names and meanings of the columns are identical to what is used for elegant's final output file from the run_setup command. The file from elegant, however, stores the results as parameters instead of columns; to convert outputfile to that convention, use the SDDS toolkit program sddsexpand.

- pipe The standard SDDS Toolkit pipe option.
- nowarnings Suppresses warning messages.
- correctedOnly If given, only the "corrected" twiss parameters and emittances are computed and output. The corrected twiss parameters have the dispersive component subtracted. Normally, these are computed but given names like betacx, ecx, etc. whereas the uncorrected values are betax, ex, etc. The corrected parameters are the correct ones to match a beamline to, since they have the dispersive and mono-energetic terms properly separated. The uncorrected values are more relevant if the dispersion is spurious (i.e., uncorrected or due to something like CSR that doesn't admit of correction).
- -- canonical If given, all computations are performed using canonical momenta $q_x = p_x/p_0 = x'(1+\delta)/\sqrt{1+x'^2+y'^2}$ etc.
- author: M. Borland, ANL/APS.

sddsbrightness

8.12 sddsbrightness

• description: sddsbrightness computes undulator brightness curves using Twiss parameter data from elegant or sddsanalyzebeam. Several calculation methods are available.

• examples:

```
sddsbrightness run.twi run.bri -harmonics=3
-Krange=start=0.2,end=2.2,points=100
-current=0.1 -totalLength=2.4 -periodLength=0.027 -coupling=0.01
sddsanalyzebeam run.out -pipe=out -correctedOnly
| sddsbrightness -pipe=in run.bri -harmonics=3
-Krange=start=0.2,end=2.2,points=100
-current=0.1 -totalLength=2.4 -periodLength=0.027 -coupling=0.01
```

• synopsis:

```
sddsbrightness [-pipe=[input][,output]] [twissFile] [SDDSoutputfile]
-harmonics=integer -Krange=start=value,end=value,points=integer
-current=Amps -totalLength=meters -periodLength=meters
[-emittanceRatio=value | -coupling=value] [-noSpectralBroadening]
[-method=strinq,device=strinq,neks=value]]
```

• files:

- twissFile A Twiss output file from elegant, with radiation integral calculations included, or an output from sddsanalyzebeam. In the latter case, the -correctedOnly option should be used.
- SDDSoutputFile Contains the brightness data in column form. For each requested harmonic *i*, there are columns photonEnergy *i*, wavelength *i*, and Brightness *i*.

• switches:

- pipe The standard SDDS Toolkit pipe option.
- harmonics The number of harmonics to compute.
- Krange=start=value,end=value,points=integer The range of the K parameter for the undulator and the number of points to compute on that range.
- -current=Amps The current in amperes. If one gives the average current, one gets the average brightness.
- -totalLength=meters The total length of the undulator, in meters.
- -periodLength=meters The period length of the undulator, in meters.
- -emittanceRatio=value | -coupling=value In the case of a twiss output file from elegant, which does not contain the vertical emittance, one must supply one of these options. If -emittanceRatio=R is given, $\epsilon_y = \epsilon_0 * R$ and $\epsilon_x = \epsilon_0$. If -coupling=k is given, $\epsilon_x = \epsilon_0/(1+k)$ and $\epsilon_y = k * \epsilon_x$. ϵ_0 is the equilibrium emittance from the twiss output of elegant.

In the case of twiss output from sddsanalyzebeam, both emittances are present and these options are ignored.

- method=string,device=string,neks=value] Choose which method to use for brightness calculations. Options are
 - \ast borland M. Borland's approximation method. Fast, but not as reliable as others.
 - * dejus R. Dejus' non-zero emittance, infinite-N+convolution method. This is the default.
 - * walkerinfinite R. Walker's method. Dejus' method is derived from this method.
 - * walkerfinite R. Walker's method using finite N without convolution. This is quite slow.

The device qualifier may be planar or helical. neks is used to change the number of points used for finding the peak of the distribution.

• authors: M. Borland, H. Shang, R. Dejus (ANL).

sddsbunchingfactor

8.13 sddsbunchingfactor

• description: sddsbunchingfactor computes bunching factors for beams from elegant, e.g., from WATCH elements in coordinate mode or the output file from run_setup.

The bunching factor $B(\omega)$ is defined as

$$B(\omega) = \frac{1}{N} \sqrt{\left(\sum_{i=1}^{N} \cos \omega t_i\right)^2 + \left(\sum_{i=1}^{N} \sin \omega t_i\right)^2},\tag{7}$$

where ω is the angular frequency and t_i is the time coordinate of the i^{th} of N particles.

• examples:

sddsbunchingfactor run.out run.bfac -omegaRange=1e9,1e12 -points=300
-mode=log

• synopsis:

sddsbunchingfactor [-pipe=[input] [,output]] [SDDSinputfile]
[SDDSoutputfile>] [-omegaRange=lowerHz,upperHz] [-points=number]
[-mode={linear|logarithmic}] [-combinePages]

- pipe The standard SDDS Toolkit pipe option.
- omegaRange Give the range of ω values, in Hz.
- points Give the number of points over the range of ω values.
- mode Choose linear or logarithmic spacing of ω values.
- combinePages Pages of the input file are combined, i.e., treated as a single bunch.
- authors: M. Borland (ANL).

sddsemitproc

8.14 sddsemitproc

• description:

sddsemitproc analyzes quadrupole scan emittance measurement data. It accepts a file containing the transport matrix for each data point and measured beam sizes. Because sddsemitproc uses the matrix rather than a thin-lens model, it can analyze data from arbitrarily complex scans, involving, for example, multiple thick-lens quadrupoles.

The matrix data can be prepared using elegant. For example, the vary_element command can be used to vary one or more quadrupoles. In addition, the beam size data may be prepared using elegant, to allow simulation of emittance measurements.

sddsemitproc will perform error analysis using a Monte Carlo technique. A user-specified number of random error sets are generated and added to all measurements. Analysis is performed for each error set. Statistics over all the error sets provide most likely values and error bars.

The beam parameters computed by sddsemitproc pertain to the beginning of whatever system is simulated in elegant.

• examples:

```
elegant quadScan.ele sddscollapse quadScan.fin -pipe=out
| sddsxref -pipe=in quadScan.data -take=SigmaX,SigmaY
| sddsemitproc -pipe=in emitResults.sdds
```

• synopsis:

```
sddsemitproc [inputfile] [outputfile] [-pipe=[input][,output]]
[-sigmaData=xName, yName] [-errorData=xName, yName |
-errorLevel=valueInm, [{gaussian, nSigmas | uniform}]] [-nErrorSets=number]
[-seed=integer] [-limitMode=resolution | zero[,reject]
[-deviationLimit=xLevelm, yLevelm] [-resolution=xResolutionm, yResolutionm]
[-verbosity=level]
```

• files:

- inputfile — An SDDS file containing one or more pages with columns named Rij, where ij is 11, 12, 33, and 34. These give elements of the horizontal and vertical transport matrices from the beginning of a system to the observation point. The sigma matrix inferred will be that for the beginning of the system. Typically, one starts with the final file from the run_setup command in elegant, and collapses it using sddscollapse. Each page of inputfile corresponds to a different emittance measurement.

In addition to this data, *inputfile* must also contain columns giving the rms beam sizes in x and y. The user supplies the names of the columns using the <code>-sigmaData</code> option; otherwise, they default to <code>Sx</code> and <code>Sy</code>. These columns may be from <code>elegant</code> (e.g., <code>Sx</code> and <code>Sy</code>), if one wants to simulate an emittance measurement. Note that the theory behind the emittance measurement is strictly correct only for true RMS beamsize measurements. Use of FWHM or some other measure will give unreliable results.

outputfile — A file containing one page for each page of inputfile. The parameters of outputfile give the measured geometric rms emittance, sigma matrix, and Twiss parameters of the beam in the horizontal and vertical planes. If error sets were requested (using -nErrorSets), then there are also parameters giving the error bars ("sigma's") of the measured values.

- -sigmaData=xName, yName Supplies the names of the columns in *inputfile* from which the x and y rms beam sizes are to be taken. Default values are Sx and Sy, which are the data provided by elegant.
- errorLevel=valueInm, [gaussian, nSigmas | uniform] Supplies the standard deviation of random errors to be added to the measured beam sizes for Monte Carlo error analysis.
- errorData=xName, yName May be used to supply the names of columns in the input file that contain the error level for each measurement. This is an option instead of using -errorLevel, which allows varying the measurement error for each point.
- nerrorSets=number The number of sets of random errors to generate and add to
 the measurements. Each error set is used to perturb the original measurement data.
 The results are analyzed separately for each error set, then combined to give means and
 error bars.
- -seed=integer Seed for the random number generator. Recommend a large, positive, odd integer less than 2³1. If no seed is given or if the given seed is negative, then a seed is generated from the system clock.
- -resolution=xResolutionm, yResolutionm The resolution of the beam size measurements, in meters. These values are subtracted in quadrature from the measured beam sizes to obtain the true beam sizes.
- --limitMode=resolution | zero[,reject] If measured or perturbed beam sizes are less than the resolution or less than zero, then errors will result. One can use this option to limit minimum beam size values or reject points. In general, if one has to do this the measurement is probably bad.
- -deviationLimit=xLevelm, yLevelm Specifies the maximum deviation, in meters, from the fit that data points may have and still be included. An initial fit is performed for each randomized set or the raw data, as appropriate. Outliers are then removed and the fit is repeated.
- -verbosity=level Higher values of level result in more informational printouts as the program runs.
- author: M. Borland, ANL/APS.

sddsfindresonances

8.15 sddsfindresonances

description: sddsfindresonances scans frequency map analysis data and identifies resonances.

• examples:

```
sddsfindresonances run.fma run.res -multipoles=dipole,quad,sext,oct
-type=skew sddsfindresonances run.fma run.res -multipoles=sext,oct
-type=skew,norm
```

• synopsis:

```
sddsfindresonances [-pipe=[input][,output]] [inputFile] [outputfile]
-multipoles=[all=integer] | [dipole,] [quadrupole,] [sextupole,] [octupole,]
[-type=[normal,][skew]] [-variables=firstColumn, secondColumn]
```

• files:

- inputFile By default, frequency map analysis output file from elegant's frequency_map command or equivalent, containing at minimum the columns x, y, nux, and nuy. Each page of the file is treated separately.
- outputFile Contains the identified resonance lines, one resonance line per page. The
 file contains the columns x, y, nux, and nuy, along with parameters that identify the
 resonance.

- pipe The standard SDDS Toolkit pipe option.
- multipoles=[all=integer] | [dipole,] [quadrupole,] [sextupole,] [octupole,] Choose what order of resonances to search for by naming the type of magnet that nominally drives it, or by giving the maximum order to search (all option).
- -type=[normal,] [skew] Specify normal- or skew-driven resonances. Default is both.
- -variables=firstColumn, secondColumn Use to change the default names for the coordinate variables.
- authors: H. Shang, M. Borland. (ANL).

sddsfluxcurve

8.16 sddsfluxcurve

• description: sddsfluxcurve computes undulator fluxcurve curves using Twiss parameter data from elegant or sddsanalyzebeam. Several calculation methods are available.

• examples:

```
sddsfluxcurve run.twi run.bri -harmonics=3
-electronBeam=current=0.1,coupling=0.01
-undulator=period=0.033,numberOfPeriods=70,kmin=0.01,kmax=2.7,points=100
-pinhole=distance=30,xsize=0.0025,ysize=0.001
```

• synopsis:

```
sddsfluxcurve [-pipe=[input][,output]] [twissFile] [SDDSoutputfile]
[-harmonics=integer] [-method=methodName[,neks=integer]]
[-mode=pinhole|density|total]
-undulator=period=meters,numberOfPeriods=integer,kmin=value,kmax=value[,points=number]
[-electronBeam=current=amps,[,coupling=value | emittanceRatio=value]]
[-pinhole=distance=meters,xsize=meters,ysize=meters
[,xnumber=integer][,ynumber=integer][,xposition=meters][,yposition=meters]]
[-nowarnings]
```

• files:

- twissFile A Twiss output file from elegant, with radiation integral calculations included, or an output from sddsanalyzebeam. In the latter case, the -correctedOnly option should be used.
- SDDSoutputFile Contains the flux data in column form. For each requested harmonic i, there are columns photonEnergy i and wavelength i, plus a column for the flux (TotalFlux i, PinholeFlux i, or FluxDensity i).

- pipe The standard SDDS Toolkit pipe option.
- harmonics The number of harmonics to compute.
- -method= $string, \mathtt{neks} = value]$ Choose which method to use for calculations. Options are
 - * dejus R. Dejus' non-zero emittance, infinite-N+convolution method. This is the default.
 - * walkerinfinite R. Walker's method. Dejus' method is derived from this method. neks is used to change the number of points used for finding the peak of the distribution.
- mode=pinhole|density|total Specify whether to compute the flux through a pinhole, the flux density, or the total flux.

- -undulator=period=meters, numberOfPeriods=integer, kmin=value, kmax=value[, points=number] Specify undulator parameters. points is the number of K values to use on the interval $[K_{min}, K_{max}]$.
- electronBeam=current=amps, [, coupling=value | emittanceRatio=value] Specify parameters of the electron beam. The current defaults to 0.1 A. Either the coupling or emittance ratio must be given, unless the input file contains the parameter ey0 or the column ey.
- -pinhole=distance=meters, xsize=meters, ysize=meters[, xnumber=integer] [, ynumber=integer] [, xposition=meters] [, yposition=meters] Specify the parameters of the pinhole. Required for -mode=pinhole. By default xnumber=20, ynumber=20, xposition=0, and yposition=0.
- authors: M. Borland, H. Shang, R. Dejus (ANL).

sddsmatchtwiss

8.17 sddsmatchtwiss

• description: sddsmatchtwiss transforms a beam of macro-particles to match to given beta functions and dispersion. This can be useful in taking macro-particle data from one simulation and using it in another. For example, a beam file from PARMELA could be given the right beta functions for use with a specific lattice in an elegant run, saving the trouble of rematching to join the two simulations. Similarly, a beam from elegant could be matched into an FEL simulation.

• examples:

```
sddsmatchtwiss elegantBeam.out FELBeam.in -xPlane=beta=1.0,alpha=-0.2 -yPlane=beta=0.5,alpha=0.2
```

• synopsis:

• files:

inputfile is an SDDS file containing one or more pages of data giving the phase-space coordinates of macro particles. The macro particle data is stored in columns named x, xp, y, yp, and p. The units are those used by elegant for the output file from run_setup, the bunch file from bunched_beam, and the coordinate-mode output from the WATCH element. The data from these columns is used together with the commandline arguments to produce new values for these columns; the new values are delivered to outputfile. Other columns may be present in inputfile; if so, they are passed to outputfile unchanged.

- -xPlane=[beta=meters, alpha=value] [,etaValue=meters] [,etaSlope=value] Specifies the desired parameters for the beam in the horizontal plane. beta and alpha give β and $\alpha = -\frac{1}{2}\frac{\partial \beta}{\partial s}$; they must both be given or both be omitted. etaValue and etaSlope give the dispersion, η , and its slope, $\frac{\partial \eta}{\partial s}$.
- -yPlane=[beta=meters,alpha=value][,etaValue=meters][,etaSlope=value] Same as -xPlane, except for the vertical plane.
- -zPlane=[deltaStDev=value] [,tStDev=value] [,{correlation=seconds|alpha=value}] [,chirp= deltaStDev is $\sigma_{\delta} = \langle \sqrt{(\delta \langle \delta \rangle)^2}$, tStDev is $\sigma_t = \langle \sqrt{(t \langle t \rangle)^2}$, and correlation is $\sigma_{t,\delta} = \langle (\delta \langle \delta \rangle)((t \langle t \rangle)) \rangle$, in terms of which the longitudinal emittance is $\epsilon = \sqrt{\sigma_t^2 * \sigma_\delta^2 \sigma_{t,\delta}^2}$. alpha is $-\sigma_{t,\delta}/\epsilon$. The chirp, if requested, is added after generation of the beam according to the other parameters. If betaGamma is given, the beam is "accelerated" to the given average value of $\beta \gamma$ in a idealized sense, preserving the momentum spread and transforming the transverse coordinates by the factor $\sqrt{\langle \beta \gamma \rangle_0/(\beta \gamma)_{\rm desired}}$.

- -saveMatrices=filename Requests saving the transformation matrices to a file.
- -loadMatrices= filename Requests loading the transformation matrices from a file.
- -nowarnings Suppresses warning messages.
- authors: M. Borland, H. Shang, ANL/APS.

sddsrandmult

8.18 sddsrandmult

• description: sddsrandmult computes the multipole errors in a quadrupole or sextupole due to various construction errors. The program is based on the analysis of Halbach[16], with which I'll assume the reader is familiar. Instead of separately evaluating the effect of certain types of mechanical errors, it allows one to simulate several types of errors in order to get statistical distributions for the multipole perturbations.

• examples:

sddsrandmult quadpert.in

• synopsis:

sddsrandmult inputFile

• usage:

inputFile is a text file containing a series of namelist commands specifying the parameters of a quadrupole or sextupole, the type and amplitude of the errors to include, and the filenames for output. Each namelist command results in a complete computation and generation of output files.

The namelist command is perturbations. It has the following fields:

- type A string value, either "quadrupole" (default) or "sextupole".
- name An optional string value giving the name of the element. This is used in preparing data for elegant.
- SDDS_output An required string value giving the name of an SDDS file to which data for each seed will be written. This file can be used to compute statistics or perform histograms.
- elegant_output An optional string value giving the name of a text file to which elegant commands and element definitions will be written. Note that this file is a mixture of commands and element definitions. As such, the user must manually edit the file and place the appropriate parts in the lattice file and the command file.
- kmult_output An optional string value giving the name of an SDDS file to which data will be written in the format accepted by the RANDOM_MULTIPOLES feature of the KQUAD and KSEXT elements. This is the recommended data to use with elegant.
- effective_length The effective length of the magnet, in meters.
- bore_radius The bore radius of the magnet, in meters.
- dx_pole The rms error, in meters, to be imparted to the horizontal position of each pole.
- dy_pole The rms error, in meters, to be imparted to the vertical position of each pole.
- dradius The rms error, in meters, in the bore radius.

- dx_split The rms error, in meters, to be imparted to the horizontal distance between
 the left and right sides of the magnet.
- dy_split The rms error, in meters, to be imparted to the vertical distance between the top and bottom halves of the magnet.
- dphi_halves The rms error, in radians, to be imparted to the relative rotation of the top and bottom halves of the magnet.
- n_cases The number of cases to simulate (default is 1000).
- n_harm The number of harmonics to simulate. The default is 0, which results in computing all the harmonics for which Halbach indicates his treatment applies.
- random_number_seed The initial seed for the random number generator. Should be a large integer.
- long suppress_main_error If non-zero, harmonics for the main multipole and lower orders are suppressed. It is implicitly assumed that these are correctable through alignment and calibration.
- author: M. Borland, ANL/APS.

sddsurgent

8.19 sddsurgent

- description: sddsurgent uses algorithms from the program US (by R. Dejus) and URGENT (by R. Walker) for computation of undulator radiation properties, including power density and intensity distributions.
- examples: Take particle data from a tracking run and compute the power density using a 1 mm by 1 mm pinhole for a 72-period, 3.3-cm-period undulator set for a 5 keV first harmonic.

```
sddsanalyzebeam run.out -pipe=out -correctedOnly
| sddsurgent -pipe=in power.sdds -electronbeam=current=0.025
-calc=method=dejus,mode=powerDensity -us
-pinhole=dist=30,xsize=1,ysize=1,xnum=100,ynum=100
-undulator=period=0.033,number=72,energy=5e3
```

• synopsis:

```
sddsurgent inputFile outputFile
[-calculation=mode=modeString,method=methodString,harmonics=integer]
[-undulator=period=meters,numberOfPeriods=integer,
kx=value,ky=value,phase=value,energy=eV]
[-electronBeam=current=Amp,energy=GeV,spread=fraction,
xsigma=mm,ysigma=mm,xprime=mrad,yprime=mrad,nsigma=number]
[-pinhole=distance=m,xposition=value,yposition=value,
xsize=value,ysize=value,xnumber=integer,ynumber=integer]
[-alpha=steps=integer,delta=value] [-omega=steps=integer,delta=value]
[-nphi=integer] [-us] [-photonEnergy=maximum=eV,minimum=eV,points=number]
[-nowarnings] [-coupling=value | -emittanceRatio=value]
```

• files:

- inputFile A Twiss output file from elegant, with radiation integral calculations included, or an output from sddsanalyzebeam. In the latter case, the -correctedOnly option should be used with sddsanalyzebeam.
- outputFile Contains the output data, which varies depending on the calculation mode.
 Use sddsquery to view the file contents.

- pipe The standard SDDS Toolkit pipe option.
- calculation=mode=modeString, method=methodString, harmonics=integer— Choose
 which calculation to perform and what method to us, as well as the number of undulator
 harmonics to compute. Values for modeString are
 - * 1 | fluxDistribution: Angular/spatial flux density distribution.
 - * 2 | fluxSpectrum: Angular/spatial flux density spectrum
 - * 3 | brightness | brilliance: On-axis brilliance spectrum

- * 4 | pinholeSpectrum: Flux spectrum through a pinhole
- * 5 | integratedSpectrum: Flux spectrum integrated over all angles
- * 6 | powerDensity: Power density and integrated power

Values for methodString are

- * 1: Non-zero emittance; finite-N.
- * 2: Non-zero emittance; infinite-N.
- * 3 | WalkerFinite: Zero emittance; finite-N.
- * 4 | Dejus: Non-zero emittance; infinite-N + convolution (Dejus, with -us only).
- * 14 | WalkerInfinite: Non-zero emittance; infinite-N + convolution (Walker, with -tt us only).
- -emittanceRatio=value | -coupling=value In the case of a twiss output file from elegant, which does not contain the vertical emittance, one must supply one of these options. If -emittanceRatio=R is given, $\epsilon_y = \epsilon_0 * R$ and $\epsilon_x = \epsilon_0$. If -coupling=k is given, $\epsilon_x = \epsilon_0/(1+k)$ and $\epsilon_y = k * \epsilon_x$. ϵ_0 is the equilibrium emittance from the twiss output of elegant.

In the case of twiss output from sddsanalyzebeam, both emittances are present and these options are ignored.

- undulator=period=meters,numberOfPeriods=integer,
 kx=value,ky=value,phase=value,energy=eV] Specify undulator parameters. If energy (of first-harmonic photons) is given, kx=0 and ky is computed, corresponding to a horizontally deflecting undulator. phase specifies the phase difference in degrees for a canted undulator.
- --electronBeam=current=Amps, energy=GeV, spread=fraction, xsigma=mm, ysigma=mm, xprime=mrad, yprime=mrad, nsigma=number specifies electron beam parameters. Only the current is needed, as other data will be drawn from the input file.
 - * current electron beam current in A. (default is 0.1A).
 - * energy electron energy in Gev. (default is 7.0Gev).
 - * spread electron energy spread.
 - * xsigma horizontal RMS beam size (mm)
 - * ysigma vertical RMS beam size (mm)
 - * xprime horizontal RMS divergence (mrad)
 - * yprime vertical RMS divergence (mrad)
 - * nsigma no. of standard deviations of electron beam dimensions (size and divergence) to be included.
- --pinhole=distance=m, xposition=value, yposition=value,
 xsize=value, ysize=value, xnumber=integer, ynumber=integer Specifies pinhole parameters. Pinhole parameters are not needed for computing on-axis brilliance (i.e., mode=3).
 - * distance distance from the source (m) (distance=0.0 gives angular flux).
 - * xposition X-coordinate for center of pinhole (mm) or (mrad for distance=0)
 - * yposition Y-coordinate for center of pinhole (mm) or (mrad for distance=0)
 - * xsize X-size of pinhole (full width) (mm) or (mrad for distance=0)
 - * ysize y-size of pinhole (full width) (mm) or (mrad for distance=0)

- * xnumber Number of subdivisions of pinhole in X (max 500)
- * ynumber Number of subdivisions of pinhole in Y (max 500)
- nphi=number Specifies number of steps in phi between 0 and $\pi/2$. Must be less than 100. used in (calculation mode=1,2,3,4,5 calculation method=1,2).
- alpha=steps=integer,delta=value Specifies the number of steps in angle alpha (gamma*theta) (i100). Delta specifies range of angles in alpha² to be used, in units of the angular equivalent to 1/N. Used in (mode=1, method=1) and method=3.
- omegasteps=integer,delta=value Specifies the number of steps in photon energy for the natural lineshape (i5000). delta specifies range of photon energies to be included in the natural lineshape in units (energy of fundamental/N). The default value covers the range $\pm 2/N$ of the natural lineshape. Used in mode=2,3,4,5 method=1.
- photonEnergy=maximum=eV,minimum=eV,points=number—Specifies the maximum and minimum photon energy in eV, and the number of energy points to be computed.
- authors: H. Shang, R. Dejus, M. Borland, X. Jiao (ANL).

smoothDist6

8.20 smoothDist6

• description: Increases the number of particles in a particle input file by sampling a simplified distribution based the input file. Intended to be used to increase the number of particles produced by a photoinjector simulation to improve stability of CSR and LSC simulations. Can also add energy and density modulations for performing gain studies.

The algorithm is as follows:

- 1. Fit a 12^{th} -order polynomial to p as a function of t. Evaluate the polynomial at 10,000 equispaced points to generate a lookup table for the momentum variation with time.
- 2. Compute the standard deviation of the momentum p_{sd} for blocks of 2,000 successive particles. Fit this data with a 12^{th} -order polynomial and evaluate it a 10,000 equispaced points to generate a lookup table for p_{sd} as a function of t.
- 3. Create a histogram of t and smooth it with a low-pass filter having a cutoff at 0.1 THz. This may resulting in ringing at the ends of the histogram, which is clipped off by masking with the original histogram.
- 4. Optionally modulate the histogram H(t) with a sinusoid, by multiplying the histogram by $(1 + d_m) \cos 2\pi ct/\lambda_m$, where d_m is the modulation depth and λ_m is the modulation wavelength. For non-zero d_m , this will result in a longitudinal-density-modulated distribution when the histogram is used as a probability distribution and sampled to create time coordinates.
- 5. Sample the time histogram N times using a "quiet start" Halton sequence with radix 2, where N is the number of desired particles. The sampling operation is performed by first numerically computing the cumulative distribution function $C(t) = \int_{-\infty}^{t} H(t')dt' / \int_{-\infty}^{\infty} H(t')dt'$. Inverting this to obtain t(C), we generate each sample from H(t) by evaluating t(U), where U is a quantity on the interval [0, 1] generated from the Halton sequence.
- 6. Create samples for other coordinates by quiet-sampling of gaussian distributions:
 - (a) Scaled transverse coordinates \hat{x} , $\hat{x'}$, \hat{y} , and $\hat{y'}$ using Halton radices 3, 5, 7, and 11, respectively. For convenience in scaling (step 9), these are defined such that the standard deviation of each coordinate is 10^{-4} and all coordinates are uncorrelated.
 - (b) Scaled fractional momentum deviation δ_1 using Halton radix 13, with unit standard deviation.
- 7. Interpolate the look-up tables to determine the mean p_{mean} and standard deviation p_{sd} of the momentum at each particle's time coordinate. Use these to compute the individual particle momenta using $p = p_{mean} + \delta_1 p_{sd}$.
- 8. Compute the projected transverse rms emittances and Twiss parameters for the original beam.
- 9. Transform the scaled transverse phase-space coordinates to give the desired projected Twiss parameters in the x and y planes. The x and y planes are assumed to be uncorrelated.

• synopsis:

smoothDist6 -input name -output name -factor number -rippleAmplitude %
-rippleWavelength microns -smoothPasses num(500) -energyMod % -betaSlices n

• files:

- input A particle distribution file, such as might be used with sdds_beam.
- output A particle distribution file, such as might be used with sdds_beam.

• switches:

- -factor number Factor by which to multiply the number of particles.
- -rippleAmplitude value Density ripple amplitude, in percent.
- -energy Mod value — Energy modulation amplitude, in percent. The wavelength is fixed at 1 $\mu\mathrm{m}.$
- -rippleWavelength value Density ripple and energy modulation wavelength, in microns.
- -betaSlices n Number of longitudinal slices to use for analysis of twiss parameters. The twiss parameters of the beam will vary step-wise from slice to slice. This discontinuous variation may cause problems (e.g., unstable behavior).
- -smoothPases num Presently ignored.

• author: M. Borland, ANL/APS.

• see also: doubleDist6

TFBFirSetup

8.21 TFBFirSetup

• description: TFBFirSetup computes FIR (Finite Impulse Response) filter coefficients for use with TFBDRIVER elements to perform turn-by-turn transverse feedback. The method uses time-domain least-squares fitting [47].

• examples:

• synopsis:

TFBFirSetup -twiss twissFile -pickup elementName -driver elementName -plane $\{x \mid y\}$ -output filename -terms numberOfTerms

- -twiss A twiss parameter file from elegant. The beamline used for the computations must include a TFBDRIVER and TFBFEEDBACK element for the plane in question.
- -pickup Specifies the name of the pickup element in the lattice. One and only one occurrence of the element is required in the twissFile. Note that generally the name of the pickup should be all uppercase.
- -driver Specifies the name of the driver element in the lattice. One and only one occurrence of the element is required in the twissFile. Note that generally the name of the driver should be all uppercase.
- -plane Specifies the plane of the feedback.
- -output Specifies output filename to which FIR configuration is written. The file should be loaded with load_parameters, e.g.,

```
&load_parameters
    filename = xfb.param,
    change_defined_values = 1
&end
```

- -terms Number of terms in the filter, between 1 and 15, inclusive.
- author: M. Borland, ANL/APS.
- acknowledgments: H. Shang, C.-Y. Yao.

touschekLifetime

8.22 touschekLifetime

• description: touschekLifetime computes Touschek lifetime using A. Piwinski's formula [23, 24]. A longitudinally non-Gaussian distributed bunch lifetime (such as ring with harmonic cavity) can be computed if the bunch profile is inputed through beam option.

• examples:

```
touschekLifetime aps.life -twiss=aps.twi -aper=aps.aper -part=2e10
-coupling=0.01 -length=6
```

• synopsis:

```
touschekLifetime outputFile -twiss=twissFile -aperture=momentumApertureFile [-beam=beamProfile] -charge=nC|-particles=value {-coupling=value|-emityInput=value} -RF=Voltage=MV, harmonic=value[,limit] | -length=mm [-emitInput=valueInMeters] [-deltaInput=value] [-verbosity=value] [-ignoreMismatch] [-deltaLimit=valueInPercent] [-method=0/1]
```

• files: outputFile — Contains resulting Touschek lifetime.

- -twiss A twiss parameter file from elegant. You must use the radiation_integrals flag in twiss_output.
- -aperture A momentum aperture file from elegant. This file can contain a subset of elements of twissFile (for example: only Quadrupole elements). However, the Twiss and momentum aperture files must cover the same beamline. Having one file for a part of beamline (e.g., a few sectors) and one for the entire ring will yield incorrect results.
- -beam Give beam profile file from elegant2genesis. If this option is given, other input beam parameters are ignored. You can use this option to compute touschek lifetime for a non-Gaussian longitudinally distributed bunch.
- -charge, -particles Give the charge (in nanocoulombs) or the number of electrons.
- -emitInput Give the initial total emittance in meters (if -coupling is used) or the initial x emittance in meters (if -emityInput is used).. If not specified, the value from the parameter ex0 in twissFile is used.
- --coupling Give the emittance coupling ratio, ϵ_y/ϵ_x . This is used to compute the horizontal and vertical emittance from the natural emittance.
- -emityInput Give the vertical emittance in meters.
- -deltaInput Give the initial rms fractional momentum spread. If not specified, the value from the parameter Sdelta0 in twissFile is used.
- -RF=Voltage=MV, harmonic=value[,limit] Specify rf voltage and harmonic number. The limit qualifier, if given means that the momentum acceptance is limited by the bucket half-height. N.B.: If the data files cover only a portion of the ring, using this option will give incorrect results!

- --length=mm Specify the rms bunch length. This is an alternative to giving rf parameters.
- -verbosity If nonzero, program execution information is printed to the standard output.
- -ignoreMismatch If given, then mismatch of element names between the twiss and momentum aperture files is ignored. May be useful if there are zero-length elements.
- deltaLimit Give the maximum value for the momentum aperture, in percent. If not specified, the values in the momentum aperture input file are used, possibly altered by the use of the -RF option with the limit qualifier. If both -deltaLimit and -RF=limit... are given, the smaller is enforced.
- -method The integral of Piwinski's formula can be done in two ways. "0" direct integral of parameter τ , this method is also used in elegant. 1 substitute variable τ with variable k, with $\tau = \tan^2(k)$. These two methods give you same results.
- Note: If using Pelegant to compute the momentum aperture with output_mode=1, it is necessary to first run the script reorganizeMmap to put the data into the form needed by touschekLifetime.
- author: A. Xiao, ANL/APS.

view3dGeometry

8.23 view3dGeometry

- description: Allows viewing the 3D geometry of a beamline using the freewrl viewer.
- examples: To generate 3d data and view:

```
view3dGeometry -rootname aps -showNames ''*QUAD* *BEN*' -showCoordinates
''*MON*''
To view again:
freewrl aps.x3d
```

• synopsis:

```
view3dGeometry -rootname string -showNames listOfElementTypes -showCoordinates listOfElementTypes [-nviewpoints number(10)]
```

• input files:

- rootname.fir Contains floor coordinate output from elegant (floor_coodinates command).
- rootname.param Contains parameter output from elegant (run_setup command).
- output files: rootname.x3d Input data to freewrl.

- -rootname Gives the rootname of the run, used to identify the input and output files.
- -showNames Gives list of element types, with optional wildcards, for which the element name will be shown in the viewer. Default: "*SBEN*".
- -showCoordinates Gives list of element types, with optional wildcards, for which the local coordinate system will be shown in the viewer. Default: "MARK* WATCH*".
- nviewpoints Number of viewpoints to generate and embed in file. Moving between viewpoints using keystroke commands is easier than "flying" using the keypad.
- author: A. Petrenko, BINP. (Modified by M. Borland.)

9 Accelerator and Element Description

As mentioned in the introduction, elegant uses a variant of the MAD input format for describing accelerators. With some exceptions, the accelerator description for one program can be read by the other with no modification. Among the differences:

- elegant does not support the use of MAD-style equations to compute the value of a quantity. The link_elements namelist command can be used for this purpose, and is actually more flexible than the method used by MAD. Also, rpn-style equations may be given in double-quotes; these are evaluated once only when the lattice is parsed.
- elegant does not support substitution of parameters in beamline definitions.
- elegant contains many elements that MAD does not have, such as kick elements, wake fields, and numerically integrated elements.
- The length of an input line is not limited to 80 characters in elegant, as it is in MAD. However, for compatibility, any lattice created by elegant will conform to this limit.
- The maximum length of the name of an element or beamline is 100 characters.

elegant's lattice parser translates all input into upper case, except where the input is protected by double quotes. However, various commands (such as vary_element or link_elements) that accept element names as input do not perform any translation. Hence, when referring to element names in commands, the user must enter the names in upper case unless they are protected by double quotes in the lattice file.

When the lattice file is very complex, it is sometimes convenient to separate it into several files. These can then be imported into a main lattice file using the #INCLUDE directive, as in

```
#INCLUDE: part1.lte
#INCLUDE: part2.lte
```

The rules for naming elements and beamlines are as follows:

- The name should start with an alphabetic character (i.e., a-z A-Z).
- The name may contain any of the following characters in addition to alphabetic characters and numbers: ~ @ \$ % ^ & _ + = { } [] \ | / ? < > . : |\verb
- The name should not contain any of the following: # *! '', '
- The name should not contain spaces, tabs, or non-printing characters.

If using unusual characters in a name, it is a good idea to enclose the name in double quotes. This is required if: is in the name.

elegant's print_dictionary command allows the user to obtain a list of names and short descriptions of all accelerator elements recognized by the program, along with the names, units, types, and default values of all parameters of each element. The present output of this command is listed in the next section. The reader is referred to the MAD manual[2] for details on sign conventions for angles, focusing strength, and so forth.

Comments may be embedded in the lattice file by *starting* a line with an exclamation point ("!"). Rpn expressions may be embedded separately from an element definition by starting a line with a percent sign ("%"). For example

! Define pi

% 1 atan 4 * sto Pi

% Pi 40 / sto myAngle

! Define a rectangular bend for a ring with 80 equal bends

B1: SBEN,L=1.0,ANGLE=''myAngle'',E1=''myAngle 2 /'',E2=''myAngle 2 /''

(Note that pi is already defined in the standard defns.rpn file.)

9.1 Magnet Strength

Magnet strengths are frequently specified in terms of a series expansion. For normal multipoles and y = 0, the expansion is [2]

$$B_y(x,0) = \sum_{n=0}^{\infty} \frac{B_n x^n}{n!},$$
(8)

where B_0 is the dipole, B_1 is the quadrupole, etc. In general,

$$B_n = \left(\frac{\partial^n B_y}{\partial x^n}\right)_{x=y=0}. (9)$$

For electrons, the deflection from a thin element is

$$\theta(x, y = 0) = \frac{1}{H} \int B(x, y = 0) dl,$$
 (10)

where $H=B\rho=-p/e$ is the beam rigidity and $p=m_ec\beta\gamma$ is the momentum. The geometric strengths K_n are defined as

$$K_n = \frac{B_n}{H}. (11)$$

By convention in elegant, a positive K_n value deflects a particle at x > 0 toward x = 0. E.g., a positive K_1 value indicates a horizontally focusing quadrupole.

10 Element Dictionary

ALPH

10.1 ALPH

An alpha magnet implemented as a matrix, up to 3rd order.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
XMAX	M	double	0.0	size of alpha
XS1	M	double	0.0	inner scraper position relative
				to XMAX
XS2	M	double	0.0	outer scraper position relative
				to XMAX
DP1		double	-1	inner scraper fractional mo-
				mentum deviation
DP2		double	1	outer scraper fractional mo-
				mentum deviation
XPUCK	M	double	-1	position of scraper puck
WIDTHPUCK	M	double	0.0	size of scraper puck
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
TILT		double	0.0	rotation about incoming longi-
				tudinal axis
PART		long	0	0=full, 1=first half, 2=second
				half
ORDER		long	0	matrix order [1,3]
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element provides a matrix-based implementation of an alpha magnet [5]. Matrices up to third order are available [4].

The parameter XMAX determines the size of the alpha, which is related to the gradient g in the magnet and the central momentum $\beta\gamma$ by

$$x_{max}[m] = 0.07504986 \sqrt{\frac{\beta \gamma}{g[T/m]}}.$$
 (12)

The path length of the central particle is $2.554x_{max}$.

Because an alpha magnet has large dispersion at the midplane, it is often used for momentum filtration in addition to bunch compression. The dispersion at the center is given by the simple relation

$$R_{16} = -\frac{1}{2}x_{max}. (13)$$

To use an alpha magnet for momentum filtration in elegant, one must split the alpha magnet into two pieces. One may then either use the scraper features of the ALPH element or other elements such as SCRAPER or RCOL.

To split an alpha magnet, one uses the PART parameter. E.g.,

! First half, with momentum filter between -5% and +2.5%

AL1: ALPH, XMAX=0.11, PART=1, DP1=-0.05, DP2=0.025

! Second half

AL2: ALPH, XMAX=0.11, PART=2

AL: LINE=(AL1,AL2)

As just illustrated, the parameters DP1 and DP2 may be used to filter the momentum by providing fractional momentum deviation limits. These are implemented in a physical fashion by computing the corresopnding horizontal position deviations and imposing these as limits on the particle coordinates. One may also do this directly using the XS1 and XS2 parameters, which specify maximum acceptable deviations from the nominal horizontal position. XS1 is the allowed deviation on the low-energy side while XS2 is the allowed deviation on the high-energy side.

BGGEXP

10.2 BGGEXP

A straight magnetic field element using generalized gradient expansion.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	insertion length
LFIELD	M	double	-1	expected length of the field
				map. If negative, use L.
FILENAME	NULL	STRING	NULL	name of file generalized gradi-
				ent data
STRENGTH	NULL	double	1	factor by which to multiply
				field
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
MAXIMUM_M		long	-1	data with m greater than this
				is ignored
MAXIMUM_2N		long	-1	data with 2*n greater than
				this is ignored
Z_INTERVAL		long	1	input z data is sampled at this
				interval
SYMPLECTIC		long	0	if nonzero, use implicit sym-
				plectic integrator
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates transport through a 3D magnetic field specified in terms of a generalized gradient expansion [50]. After reconstructing the field, it simply integrates the equations of motion based on the Lorentz force equation in cartesian coordinates. It does not incorporate changes in the design trajectory resulting from the fields, so dipoles cannot be simulated with this element.

The generalized gradients are provided in an SDDS file with the following floating-point columns:

- \bullet **z** Longitudinal coordinate. Units should be "m".
- Cnmn The n^{th} generalized gradient of the m^{th} harmonic, where n = 0, 2, 4, ... There is no preset limit to the number of generalized gradients. Units are ignored, but should be SI.
- dCnmn/dz The longitudial derivative of the n^{th} generalized gradient, for the m^{th} harmonic, where n = 0, 2, 4, ... The number of derivatives must match the number of generalized

gradients Cnmn.

In addition, the file must contain a parameter:

• \mathbf{m} — The multipole index, using the convention where m=1 is dipole, m=2 is quadrupole, etc. N.B.: this convention conforms with [50] but is not the usual one used by **elegant**. This should be stored as a short integer.

The generalized gradient file can be prepared using the script computeGeneralizedGradients, which is provided with elegant. The input file for that script must be organized into many pages, with each page giving $B_r(\phi)$ on radius r=R for a single z location. The file must contain two floating-point columns:

- **phi** The angle, in radians. $\phi = 0$ corresponds to x = R and y = 0, while $\phi = \pi/2$ corresponds to x = 0 and y = R. It is assumed that ϕ runs from 0 to $2\pi \Delta \phi$ in steps of $\Delta \phi$.
- Br The radial field at the reference radius R, Tesla.

In addition, the file must contain two floating-point parameters:

- R The radius, in meters.
- \mathbf{z} The longitudinal coordinate, in meters. z should extend from the zero-field region upstream of the magnet to the zero-field region downstream of the magnet.

BMAPXY

10.3 BMAPXY

A map of Bx and By vs x and y.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
STRENGTH	NULL	double	0.0	factor by which to multiply
				field
ACCURACY	NULL	double	0.0	integration accuracy
METHOD	NULL	STRING	NULL	integration method (runge-
				kutta, bulirsch-stoer,
				modified-midpoint, two-pass
				modified-midpoint, leap-frog,
				non-adaptive runge-kutta
FILENAME	NULL	STRING	NULL	name of file containing
				columns (x, y, Fx, Fy) giving
				normalized field (Fx, Fy) vs
				(x, y)
FX	NULL	STRING	NULL	rpn expression for Fx in terms
				of x and y
FY	NULL	STRING	NULL	rpn expression for Fy in terms
				of x and y
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates transport through a transverse magnetic field specified as a field map. It does this by simply integrating the Lorentz force equation in cartesian coordinates. It does not incorporate changes in the design trajectory resulting from the fields. I.e., if you input a dipole field, it is interpreted as a steering element.

The field map file is an SDDS file with the following columns:

- x, y Transverse coordinates in meters (units should be "m").
- **Fx**, **Fy** Normalized field values (no units). The field is multiplied by the value of the STRENGTH parameter to convert it to a local bending radius. For example, if Fx=y and Fy=x, then STRENGTH is the K1 quadrupole parameter.
- Bx, By Field values in Tesla (units should be "T"). The field is still multiplied by the value of the STRENGTH parameter, which is dimensionless. Note: the default value of STRENGTH is 0, so if you don't set it to something, you'll get no effect!

The field map file must contain a rectangular grid of points, equispaced (separately) in x and y. There should be no missing values in the grid (this is not checked by elegant). In addition, the x values must vary fastest as the values are accessed in row order. To ensure that this is the case, use the following command on the field file:

 $sddssort \ \mathit{fieldFile}\ \text{-}column{=}y, incr\ \text{-}column{=}x, incr\$

BMXYZ

10.4 BMXYZ

A map of (Bx, By, Bz) vs (x, y, z), for straight elements only

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	insertion length
LFIELD	M	double	-1	expected length of the field
				map. If negative, use L.
STRENGTH	NULL	double	1	factor by which to multiply
				field
ACCURACY	NULL	double	0.0	integration accuracy
METHOD	NULL	STRING	NULL	integration method (runge-
				kutta, bulirsch-stoer,
				modified-midpoint, two-pass
				modified-midpoint, leap-frog,
				non-adaptive runge-kutta
FILENAME	NULL	STRING	NULL	name of file containing
				columns (x, y, z) and either
				(Bx, By, Bz) or (Fx, Fy, Fz)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates transport through a 3D magnetic field specified as a field map. It does this by simply integrating the Lorentz force equation in cartesian coordinates. It does not incorporate changes in the design trajectory resulting from the fields. I.e., if you input a dipole field, it is interpreted as a steering element.

The field map file is an SDDS file with the following columns:

- x, y, x Transverse coordinates in meters (units should be "m").
- Fx, Fy, Fx Normalized field values (no units). The field is multiplied by the value of the STRENGTH parameter to convert it to a local bending radius. For example, an ideal quadrupole could be simulated by setting (Fx=y, Fy=x, Fz=0), in which case STRENGTH is the K1 quadrupole parameter.
- Bx, By, Bz Field values in Tesla (units should be "T"). The field is still multiplied by the value of the STRENGTH parameter, which is dimensionless.

The field map file must contain a rectangular grid of points, equispaced (separately) in x, y, and z. There should be no missing values in the grid (this is not checked by elegant). In addition,

the x values must vary fastest as the values are accessed in row order, then the y values. To ensure that this is the case, use the following command on the field file:

This element is an alternative to FTABLE using a more conventional integration method.

BRANCH

10.5 BRANCH

Conditional branch instruction to jump to another part of the beamline Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
COUNTER		long	0	Counter, which is decremented
				by 1 for each pass.
VERBOSITY		long	0	Larger values result in more
				output during running.
BRANCH_TO		STRING	NULL	Name of element to which to
				jump when counter is non-
				positive.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is experimental and should be used with care. It may not work well with other features, e.g., orbit correction or twiss parameter output. It should work well with tracking.

The application that inspired creation of this element is to switch from tracking using lumped elements to tracking using element-by-element methods. More specifically, imagine we want to track for 10,000 turns to reach an equilibrium, then perform a beam dump. The equilibrium state can be accurately and rapidly modeled using lumped elements, such as ILMATRIX and SREFFECTS, but the beam dump needs to be modeled using comparatively slow element-by-element tracking.

```
RING1: ILMATRIX,...

SR1: SREFFECTS,...

RINGFULL: line=(SECTOR1, SECTOR2, ..., SECTOR40)

M1: MARK

M2: MARK

RF: RFCA,...

BR1: BRANCH,COUNTER=10000,BRANCH_TO="M1"

BR2: BRANCH,COUNTER=-1,BRANCH_TO="M2"

BL: line=(BR1,RING1,SR1,M1,RINGFULL,M2,RF)
```

BRAT

10.6 BRAT

Bending magnet RAy Tracing using (Bx, By, Bz) vs (x, y, z).

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
ANGLE	RAD	double	0.0	Nominal bending angle. Will
				be refined to match geometry
				specified by input/output and vertex coordinates
FSE	NULL	double	0.0	
ACCURACY	NULL	double	0.0	fractional strength error
METHOD	NULL	STRING	NULL	integration accuracy
METHOD	NULL	STRING	NULL	Ignored. Method defaults to Bulirsch-Stoer.
FILENAME	NULL	STRING	NULL	name of file containing
				columns (x, y, z, Bx, By, Bz)
XVERTEX	M	double	0.0	x coordinate of vertex point
ZVERTEX	M	double	0.0	z coordinate of vertex point
XENTRY	M	double	0.0	x coordinate of nominal entry
				point
ZENTRY	M	double	0.0	z coordinate of nominal entry
				point
XEXIT	M	double	0.0	x coordinate of nominal exit
				point
ZEXIT	M	double	0.0	z coordinate of nominal exit
				point
DXMAP	M	double	0.0	x displacement of map
DZMAP	M	double	0.0	z displacement of map
YAWMAP	RAD	double	0.0	yaw of map about x=z=0
FACTOR		double	1	factor by which to multiply
				fields
USE_FTABLE		long	0	If nonzero, use FTABLE
				method for integration. Value
				gives the number of kicks.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

BUMPER

10.7 BUMPER

A time-dependent kicker magnet with optional spatial dependence of the kick and no fringe effects. The waveform is in SDDS format, with time in seconds and amplitude normalized to 1. The optional spatial dependence is also specified as an SDDS file.

Parallel capable? : yes

GPU capable? : no	1			
Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
ANGLE	RAD	double	0.0	kick angle
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
B2	$1/M^2$	double	0.0	Sextupole term:
	,			$By = Bo^*(1+b2*x\hat{2})$
TIME_OFFSET	S	double	0.0	time offset of waveform
PERIODIC		long	0	is waveform periodic?
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
FIRE_ON_PASS		long	0	pass number to fire on
N_KICKS		long	0	Number of kicks to use for sim-
				ulation. 0 uses an exact result
				but ignores b2.
WAVEFORM		STRING	NULL	$\langle \text{filename} \rangle = \langle x \rangle + \langle y \rangle \text{ form}$
				specification of input file giv-
				ing kick factor vs time
DEFLECTION_MAP		STRING	NULL	optional filename giving the
				spatial variation of the deflec-
				tion
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
	1			umn ElementGroup

This element simulates a time-dependent kicker magnet as a rectangular dipole with no fringe field effects. To use this element, you must supply an SDDS file giving the time-dependent waveform. The element is called BUMPER to because HKICK, VKICK, KICKER are used for steering magnets.

The arrival time of the beam is taken to define the reference time, t = 0. Hence, if the waveform file has the maximum amplitude at t = 0, the beam will get kicked at the peak of the waveform.

If the waveform peaks at $t = t_{peak}$, then setting TIME_OFFSET equal to $-t_{peak}$ will ensure that the beam is kicked at the peak amplitude.

By default, the kicker fires on the first beam passage. However, if FIRE_ON_PASS is used, then the kicker is treated like a drift space until the specified pass.

If PHASE_REFERENCE is non-zero, then the initial timing is taken from the first time-dependent element that has the same PHASE_REFERENCE value. This would allow, for example, simulating several kickers firing at the same time. Delays relative to this reference time can then be given with positive adjustments to TIME_OFFSET.

The input file need not have equispaced points in time. However, the time values should increase monotonically.

This element simulates a dipole kicker only. For multipole kickers, see the MBUMPER element.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

CENTER

10.8 CENTER

An element that centers the beam transversely on the ideal trajectory.

Parallel capable? : yes

GPU capable? : yes

Parameter Name	Units	Type	Default	Description
X		long	1	center x coordinates?
XP		long	1	center x' coordinates?
Y		long	1	center y coordinates?
YP		long	1	center y' coordinates?
S		long	0	center s coordinates?
DELTA		long	0	center delta coordinates?
T		long	0	center t coordinates?
ONCE_ONLY		long	0	compute centering offsets for
				first beam only, apply to all?
ON_PASS		long	-1	If nonnegative, do centering on
				the nth pass only.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

CEPL

10.9 CEPL

 ${\bf A}$ numerically-integrated linearly-ramped electric field deflector.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
RAMP_TIME	$\frac{NI}{S}$	double	1e-09	time to ramp to full strenth
	S	double	0.0	_
TIME_OFFSET	V	double		offset of ramp-start time
VOLTAGE	V	double	0.0	maximum voltage between
CAD	1.6	1 11	0.01	plates due to ramp
GAP	M	double	0.01	gap between plates
STATIC_VOLTAGE	V	double	0.0	static component of voltage
TILT	RAD	double	0.0	rotation about longitudinal
				axis
ACCURACY		double	0.0001	integration accuracy
X_MAX	M	double	0.0	x half-aperture
Y_MAX	M	double	0.0	y half-aperture
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
N_STEPS		long	100	number of steps (for nonadap-
				tive integration)
METHOD		STRING	runge-kutta	integration method (runge-
				kutta, bulirsch-stoer, non-
				adaptive runge-kutta, modi-
				fied midpoint)
FIDUCIAL		STRING	t,median	{t p},{median min max ave first ligh
			,	(e.g., "t,median")
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup
				amm Element Group

177

CHARGE

10.10 CHARGE

An element to establish the total charge of a beam. Active on first pass only. If given, overrides all charge specifications on other elements.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
TOTAL	C	double	0.0	total charge in beam
PER_PARTICLE	C	double	0.0	charge per macroparticle
ALLOW_TOTAL_CHANGE	NULL	long	0	If nonzero, allow total charge
				to change while tracking even
				if number of particles does not
				change. Useful for ramping of
				charge.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This is the preferred way to assign charge to a beam, which is needed for the use of CSR simulation (CSRCSBEND, CSRDRIFT), wake simulation (WAKE, TRWAKE, LRWAKE, ZLONGIT, ZTRANSVERSE), rf mode simulation (RFMODE, TRFMODE, FRFMODE, RTRFMODE), space charge simulation (LSCDRIFT, RFCW, SCMULT), and intrabeam scattering simulation (IB-SCATTER).

CLEAN

10.11 CLEAN

Cleans the beam by removing outlier particles.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
MODE		STRING	stdeviation	stdeviation, absdeviation, or
				absvalue
XLIMIT		double	0.0	Limit for x
XPLIMIT		double	0.0	Limit for x'
YLIMIT		double	0.0	Limit for y
YPLIMIT		double	0.0	Limit for y'
TLIMIT		double	0.0	Limit for t
DELTALIMIT		double	0.0	Limit for $(p-p0)/p0$
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

CORGPIPE

10.12 CORGPIPE

A corrugated round pipe, commonly used as a dechirper in linacs.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
RADIUS	M	double	0.0	pipe radius
PERIOD	M	double	0.0	period of corrugations (<< ra-
				dius recommended)
GAP	M	double	0.0	gap in corrugations (< period
				required)
DEPTH	M	double	0.0	depth of corrugations (<< ra-
				dius, > period recommended)
DT	S	double	0.0	maximum time duration of
				wake (0 for autoscale)
TMAX	S	double	0.0	maximum time duration of
27 2770		_		wake (0 for autoscale)
N_BINS		long	0	number of bins for charge his-
				togram (0 for autoscale)
INTERPOLATE		long	0	interpolate wake?
SMOOTHING		long	0	Use Savitzky-Golay filter to
				smooth current histogram?
SG_HALFWIDTH		long	4	Savitzky-Golay filter half-
		,	_	width for smoothing
SG_ORDER		long	1	Savitzky-Golay filter order for
CHANCE DO		1		smoothing
CHANGE_P0		long	0	change central momentum?
ALLOW_LONG_BEAM		long	0	allow beam longer than wake
DAME DA GGEG		1		data?
RAMP_PASSES		long	0	Number of passes over which
				to linearly ramp up the wake
CDOUD			NITIT T	to full strength.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element implements the longitudinal wake for a corrugated pipe using a model by K. Bane [38]. The method used is identical to that for the WAKE element. The only difference is that instead of providing a file to specify the wake, one specifies the parameters of Bane's model, as described above.

Setting the N_BINS and TMAX paramaters to 0 is recommended. This results in auto-scaling of the number of bins and the time spacing of the wake to ensure sufficient length to cover the beam and a sufficiently fine time step to resolve the oscillations in the wake.

As with WAKE, the default degree of smoothing (SG_HALFWIDTH=4) may be excessive. It is suggested that users vary this parameter to verify that results are reliable if smoothing is employed (SMOOTHING=1).

CSBEND

10.13 CSBEND

A canonical kick sector dipole magnet.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	arc length
ANGLE	RAD	double	0.0	bend angle
K1	$1/M^{2}$	double	0.0	geometric quadrupole strength
K2	$1/M^{3}$	double	0.0	geometric sextupole strength
K3	$1/M^{4}$	double	0.0	geometric octupole strength
K4	$1/M^{5}$	double	0.0	geometric decapole strength
K5	$1/M^{6}$	double	0.0	geometric 12-pole strength
K6	$1/M^{7}$	double	0.0	geometric 14-pole strength
K7	$1/M^{8}$	double	0.0	geometric 16-pole strength
K8	$1/M^{9}$	double	0.0	geometric 18-pole strength
E1	RAD	double	0.0	entrance edge angle
E2	RAD	double	0.0	exit edge angle
TILT	RAD	double	0.0	rotation about incoming longi-
				tudinal axis
H1	1/M	double	0.0	entrance pole-face curvature
H2	1/M	double	0.0	exit pole-face curvature
HGAP	M	double	0.0	half-gap between poles
FINT		double	0.5	edge-field integral
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
ETILT	RAD	double	0.0	error rotation about incoming
				longitudinal axis
N_KICKS		long	4	number of kicks
NONLINEAR		long	1	include nonlinear field compo-
				nents?
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
EDGE1_EFFECTS		long	1	include entrance edge effects?
EDGE2_EFFECTS		long	1	include exit edge effects?
EDGE_ORDER		long	1	order to which to include edge
				effects

CSBEND continued

A canonical kick sector dipole magnet.

IMTECD ATION ODDED		Type	Default	Description
INTEGRATION_ORDER		long	4	integration order (2 or 4)
EDGE1_KICK_LIMIT		double	-1	maximum kick entrance edge
				can deliver
EDGE2_KICK_LIMIT		double	-1	maximum kick exit edge can
				deliver
KICK_LIMIT_SCALING		long	0	scale maximum edge kick with
				FSE?
USE_BN		long	0	use b <n> instead of K<n>?</n></n>
EXPANSION_ORDER		long	0	Order of field expansion.
				(0=auto)
B1	1/M	double	0.0	K1 = b1/rho, where rho is
				bend radius
B2	$1/M^{2}$	double	0.0	K2 = b2/rho
B3	$1/M^{3}$	double	0.0	K3 = b3/rho
B4	$1/M^{4}$	double	0.0	K4 = b4/rho
B5	$1/M^{5}$	double	0.0	K5 = b5/rho
B6	$1/M^{6}$	double	0.0	K6 = b6/rho
B7	$1/M^{7}$	double	0.0	K7 = b7/rho
B8	$1/M^{8}$	double	0.0	K8 = b8/rho
XREFERENCE	M	double	0.0	reference x for interpretation
				of fn values
F1		double	0.0	Fractional field error
				fn=bn*xrn/n!, adds to K1 or
				b1.
F2		double	0.0	Fractional field error
				fn=bn*xrn̂/n!, adds to K2 or
				b2.
F3		double	0.0	Fractional field error
				fn=bn*xrn̂/n!, additive.
F4		double	0.0	Fractional field error
				fn=bn*xrî/n!, additive.
F5		double	0.0	Fractional field error
				fn=bn*xrn̂/n!, additive.
F6		double	0.0	Fractional field error
				fn=bn*xrn̂/n!, additive.
F7		double	0.0	Fractional field error
				fn=bn*xrn̂/n!, additive.
F8		double	0.0	Fractional field error
		1	1	fn=bn*xrn̂/n!, additive.

CSBEND continued

A canonical kick sector dipole magnet.

Parameter Name	Units	Type	Default	Description
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
ISR1PART		long	1	Include ISR for single-particle
				beam only if ISR=1 and
				ISR1PART=1
SQRT_ORDER		long	0	Order of expansion of square-
				root in Hamiltonian. 0 means
HOD DAD DIOT		1		no expansion.
USE_RAD_DIST		long	0	If nonzero, overrides
				SYNCH_RAD and ISR,
				causing simulation of radiation from distributions,
				optionally including opening
				angle.
ADD_OPENING_ANGLE		long	1	If nonzero, radiation open-
				ing angle effects are added if
				USE_RAD_DIST is nonzero.
PHOTON_OUTPUT_FILE		STRING	NULL	output file for photons, if
				USE_RAD_DIST=1
PHOTON_LOW_ENERGY_CUTOFF	eV	double	0.0	Lower limit of photon energy
				to output.
REFERENCE_CORRECTION		long	0	If nonzero, reference trajec-
				tory is subtracted from parti-
				cle trajectories to compensate
TED A CIVING MATERIA		1	•	for inaccuracy in integration.
TRACKING_MATRIX		long	0	If nonzero, matrix up to third
				order used for twiss param-
				eters etc is computed from
CDOUD			NITIT I	tracking. Experimental.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the parameter output file in the gol
				rameter output file in the col-
				umn ElementGroup

This element provides a symplectic bending magnet with the exact Hamiltonian. For example, it retains all orders in the momentum offset and curvature. The field expansion is available to eighth order.

One pitfall of symplectic integration is the possibility of orbit and path-length errors for the reference orbit if too few kicks are used. This may be an issue for rings. Hence, one must verify that

a sufficient number of kicks are being used by looking at the trajectory closure and length of an on-axis particle by tracking. Using INTEGRATION_ORDER=4 is recommended to reduce the number of required kicks.

As of version 28.0 and later, the REFERENCE_CORRECTION feature is available to compensate for errors inherent in the numerical integration of the trajectories. In particular, depending on the number of kicks used, as well as the bending radius and angle, an on-axis particle may emerge from the element with a non-zero trajectory and a path-length error. With REFERENCE_CORRECTION set to a non-zero value, these errors are subtracted from the coordinates of all particles. There are some pitfalls to using this feature: first, one may not realize that the number of kicks is too small to provide good results, since the output trajectory of the central particle will always be (nearly) identically zero. Second, in a magnet with a gradient or other field nonuniformities, a particle may emerge centered on the ideal trajectory yet still see the impact of the gradient, sextupole, etc. For these reasons, this feature should be used with caution and only when the residual trajectory is large enough to cause problems.

Higher-order field components

Normally, one specifies the higher-order components of the field with the Kn, with n=1 through 8. The field expansion in the midplane is $B_y(x) = B_o * (1 + \sum_{n=1}^8 \frac{K_n \rho_o}{n!} x^n)$. By setting the USE_bN flag to a nonzero value, one may instead specify the bn parameters, which are defined by the expansion $B_y(x) = B_o * (1 + \sum_{n=1}^8 \frac{b_n}{n!} x^n)$. This is convenient if one is varying the dipole radius but wants to work in terms of constant field quality.

Setting NONLINEAR=0 turns off all the terms above K_1 (or b_1) and also turns off effects due to curvature that would normally result in a gradient producing terms of higher order.

Edge angles and edge effects

Some confusion may exist about the edge angles, particularly the signs. For a sector magnet, we have of course E1=E2=0. For a symmetric rectangular magnet, E1=E2=ANGLE/2. If ANGLE is negative, then so are E1 and E2. To understand this, imagine a rectangular magnet with positive ANGLE. If the magnet is flipped over, then ANGLE becomes negative, as does the bending radius ρ . Hence, to keep the focal length of the edge $1/f = -\tan E_i/\rho$ constant, we must also change the sign of E_i .

Several models are available for edge (or fringe) effects. Which is used depends on the settings of the EDGE_ORDER, EDGE1_EFFECTS, and EDGE2_EFFECTS parameters EDGE1_EFFECTS controls entrance edge effects while EDGE2_EFFECTS controls exit edge effects, as follows:

- 1: Edge effects using non-symplectic method [3]. Not recommended.
 - EDGE_ORDER<2 linear edge focusing with δ -dependence to all orders.
 - EDGE_ORDER>=2 second-order matrix edge focusing with δ -dependence to all orders.
- 2: Edge effects using K. Hwang's symplectic method [45]. Note that there will be a trajectory offset when using this method that is particularly evident for small bending radii. Adjustment of the length and FSE parameter can be used to suppress this offset, which results from the extension of the fringe fields beyond the nominal boundaries of the magnet. One can also set REFERENCE_CORRECTION=1, but this just sweeps the effect under the rug and is not recommended.
 - EDGE_ORDER<2 include only terms linear in transverse coordinates, but δ -dependence to all orders. Not recommended.
 - EDGE_ORDER>=2 include all terms. Recommended.

• Other: — No edge effects.

Radiation effects

Incoherent synchrotron radiation, when requested with ISR=1, normally uses gaussian distributions for the excitation of the electrons. Setting USE_RAD_DIST=1 invokes a more sophisticated algorithm that uses correct statistics for the photon energy and number distributions. In addition, if USE_RAD_DIST=1 one may also set ADD_OPENING_ANGLE=1, which includes the photon angular distribution when computing the effect on the emitting electron.

Adding errors

When adding errors, care should be taken to choose the right parameters. The FSE and ETILT parameters are used for assigning errors to the strength and alignment relative to the ideal values given by ANGLE and TILT. One can also assign errors to ANGLE and TILT, but this has a different meaning: in this case, one is assigning errors to the survey itself. The reference beam path changes, so there is no orbit/trajectory error. The most common thing is to assign errors to FSE and ETILT. Note that when adding errors to FSE, the error is assumed to come from the power supply, which means that multipole strengths also change.

Splitting dipoles

When dipoles are long, it is common to want to split them into several pieces, to get a better look at the interior optics. When doing this, care must be exercised not to change the optics. elegant has some special features that are designed to reduce or manage potential problems. At issue is the need to turn off edge effects between the portions of the same dipole.

First, one can simply use the divide_elements command to set up the splitting. Using this command, elegant takes care of everything.

Second, one can use a series of dipoles with the same name. In this case, elegant automatically turns off interior edge effects. This is true when the dipole elements directly follow one another or are separated by a MARK element.

Third, one can use a series of dipoles with different names. In this case, one must also use the EDGE1_EFFECTS and EDGE2_EFFECTS parameters to turn off interior edge effects.

CSRCSBEND

10.14 CSRCSBEND

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation. Parallel capable? : yes

GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	arc length
ANGLE	RAD	double	0.0	bend angle
K1	$1/M^2$	double	0.0	geometric quadrupole strength
K2	$1/M^{3}$	double	0.0	geometric sextupole strength
K3	$1/M^{4}$	double	0.0	geometric octupole strength
K4	$1/M^{5}$	double	0.0	geometric decapole strength
K5	$1/M^{6}$	double	0.0	geometric 12-pole strength
K6	$1/M^{7}$	double	0.0	geometric 14-pole strength
K7	$1/M^{8}$	double	0.0	geometric 16-pole strength
K8	$1/M^{9}$	double	0.0	geometric 18-pole strength
E1	RAD	double	0.0	entrance edge angle
E2	RAD	double	0.0	exit edge angle
TILT	RAD	double	0.0	rotation about incoming longi-
				tudinal axis
H1	1/M	double	0.0	entrance pole-face curvature
H2	1/M	double	0.0	exit pole-face curvature
HGAP	M	double	0.0	half-gap between poles
FINT		double	0.5	edge-field integral
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
ETILT	RAD	double	0.0	error rotation about incoming
				longitudinal axis
N_KICKS		long	4	number of kicks
NONLINEAR		long	1	include nonlinear field compo-
				nents?
LINEARIZE		long	0	use linear matrix instead of
				symplectic integrator?
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
EDGE1_EFFECTS		long	1	include entrance edge effects?

CSRCSBEND continued

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.

Parameter Name	Units	Type	Default	Description
EDGE2_EFFECTS		long	1	include exit edge effects?
EDGE_ORDER		long	1	order to which to include edge effects
INTEGRATION_ORDER		long	4	integration order (2 or 4)
BINS		long	0	number of bins for CSR wake
BIN_ONCE		long	0	bin only at the start of the dipole?
BIN_RANGE_FACTOR		double	1.2	Factor by which to increase the range of histogram compared to total bunch length. Large value eliminates binning problems in CSRDRIFTs.
SG_HALFWIDTH		long	0	Savitzky-Golay filter half-width for smoothing current histogram. If less than 1, no SG smoothing is performed.
SG_ORDER		long	1	Savitzky-Golay filter order for smoothing current histogram
SGDERIV_HALFWIDTH		long	0	Savitzky-Golay filter half-width for taking derivative of current histogram. Defaults to SG_HALFWIDTH (if positive) or else 1.
SGDERIV_ORDER		long	1	Savitzky-Golay filter order for taking derivative of current histogram
TRAPAZOID_INTEGRATION		long	1	Select whether to use trapazoid-rule integration (default) or a simple sum.
OUTPUT_FILE		STRING	NULL	output file for CSR wakes
OUTPUT_INTERVAL		long	1	interval (in kicks) of output to OUTPUT_FILE
OUTPUT_LAST_WAKE_ONLY		long	0	output final wake only?
STEADY_STATE		long	0	use steady-state wake equations?

CSRCSBEND continued

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.

Parameter Name	Units	Туре	Default	
IGF		long	0	use integrated Greens
				function (requires
				STEADY_STATE=1)?
USE_BN		long	0	use b <n> instead of K<n>?</n></n>
EXPANSION_ORDER		long	0	Order of field expansion.
		<u>o</u>		(0=auto)
B1	1/M	double	0.0	K1 = b1/rho, where rho is
	,			bend radius
B2	$1/M^2$	double	0.0	K2 = B2/rho
B3	$1/M^{3}$	double	0.0	K3 = B3/rho
B4	$1/M^4$	double	0.0	K4 = B4/rho
B5	$1/M^{5}$	double	0.0	K5 = B5/rho
B6	$1/M^{6}$	double	0.0	K6 = B6/rho
B7	$1/M^{7}$	double	0.0	K7 = B7/rho
B8	$1/M^{8}$	double	0.0	K8 = B8/rho
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
ISR1PART		long	1	Include ISR for single-particle
				beam only if ISR=1 and
				ISR1PART=1
CSR		long	1	enable CSR computations?
BLOCK_CSR		long	0	block CSR from entering CSR-
				DRIFT?
DERBENEV_CRITERION_MODE		STRING	disable	disable, evaluate, or enforce
PARTICLE_OUTPUT_FILE		STRING	NULL	name of file for phase-space
				output
PARTICLE_OUTPUT_INTERVAL		long	0	interval (in kicks) of output to
				PARTICLE_OUTPUT_FILE
SLICE_ANALYSIS_INTERVAL		long	0	interval (in kicks) of output
				to slice analysis file (from
				slice_analysis command)
LOW_FREQUENCY_CUTOFF0		double	-1	Highest spatial frequency at
				which low-frequency cutoff fil-
				ter is zero. If not positive,
				no low-frequency cutoff filter is
				applied. Frequency is in units
				of Nyquist (0.5/binsize).

CSRCSBEND continued

Like CSBEND, but incorporates a simulation of Coherent Synchrotron radiation.

Parameter Name	Units	Type		Description
LOW_FREQUENCY_CUTOFF1	0 10	double	-1	Lowest spatial frequency
· ·				at which low-frequency
				cutoff filter is 1. If
				not given, defaults to
				LOW_FREQUENCY_CUTOFF:
HIGH_FREQUENCY_CUTOFF0		double	-1	Spatial frequency at which
				smoothing (high-frequency
				cutoff) filter begins. If not
				positive, no frequency filter
				smoothing is done. Fre-
				quency is in units of Nyquist
HIGH PRODUCTION COMPANY		1 11	-	(0.5/binsize).
HIGH_FREQUENCY_CUTOFF1		double	-1	Spatial frequency at which
				smoothing (high-frequency cutoff) filter is 0. If
				not given, defaults to
				HIGH_FREQUENCY_CUTOFF
CLIP_NEGATIVE_BINS		long	1	If non-zero, then any bins with
CLIT INEGATIVE DINS		long	1	negative counts after the filters
				are applied have the counts set
				to zero.
WAKE_FILTER_FILE		STRING	NULL	Name of file supplying wake-
				field filtering data.
WFF_FREQ_COLUMN		STRING	NULL	Name of column supplying fre-
				quency values for wakefield fil-
				tering data.
WFF_REAL_COLUMN		STRING	NULL	Name of column supplying
				real values for wakefield filter-
				ing data.
WFF_IMAG_COLUMN		STRING	NULL	Name of column supplying
				imaginary values for wakefield
				filtering data.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

For a discussion of the method behind this element, see M. Borland, "Simple method for particle tracking with coherent synchrotron radiation," Phys. Rev. ST Accel. Beams 4, 070701 (2001) and G. Stupakov and P. Emma, SLAC LCLS-TN-01-12 (2001).

Recommendations for using this element. The default values for this element are not the best ones to use. They are retained only for consistency through upgrades. In using this element, it is recommended to have 50 to 100 k particle in the simulation. Setting BINS=600 and SG_HALFWIDTH=1 is also recommended to allow resolution of fine structure in the beam and to avoid excessive smoothing. It is strongly suggested that the user vary these parameters and view the histogram output to verify that the longitudinal distribution is well represented by the histograms (use OUTPUT_FILE to obtain the histograms). For LCLS simulations, we find that the above parameters give essentially the same results as obtained with 500 k particles and up to 3000 bins.

In order to verify that the 1D approximation is valid, the user should also set DERBENEV_CRITERION_MODE = ''evaluate'' and view the data in OUTPUT_FILE. Generally, the criterion should be much less than 1. See equation 11 of [20].

In order respects, this element is just like the CSBEND element, which provides a symplectic bending magnet that is accurate to all orders in momentum offset. Please see the manual page for CSBEND for more details about features not related to CSR.

Splitting dipoles: For versions 19.X and ealier splitting dipoles is *not* recommended for CSRCSBEND because the coherent synchrotron radiation computations start over at the beginning of each piece. This is only acceptable when using STEADY_STATE=1. This was changed in version 20, so that for this and later versions splitting will work correctly with all CSR modes.

CSRDRIFT

10.15 CSRDRIFT

A follow-on element for CSRCSBEND that applies the CSR wake over a drift.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
ATTENUATION_LENGTH	M	double	0.0	exponential attenuation
				length for wake
DZ		double	0.0	interval between kicks
N_KICKS		long	1	number of kicks (if DZ is zero)
SPREAD		long	0	use spreading function?
USE_OVERTAKING_LENGTH		long	0	use overtaking length for AT-
				TENUATION_LENGTH?
OL_MULTIPLIER		double	1	factor by which to multiply the
				overtaking length to get the
				attenuation length
USE_SALDIN54		long	0	Use Saldin et al eq. 54 (NIM
				A 398 (1997) 373-394 for decay
				vs z?
SALDIN54POINTS		long	1000	Number of values of position
				inside bunch to average for
				Saldin eq 54.
CSR		long	1	do CSR calcuations
SALDIN54NORM_MODE		STRING	peak	peak or first
SPREAD_MODE		STRING	full	full, simple, or radiation-only
WAVELENGTH_MODE		STRING	sigmaz	sigmaz or peak-to-peak
BUNCHLENGTH_MODE		STRING	68-percentile	rms, 68-percentile, or 90-
				percentile
SALDIN54_OUTPUT		STRING	NULL	Filename for output of CSR
				intensity vs. z as computed us-
				ing Saldin eq 54.
USE_STUPAKOV		long	0	Use treatment from G. Stu-
				pakov's note of 9/12/2001?
STUPAKOV_OUTPUT		STRING	NULL	Filename for output of CSR
				wake vs. s as computed using
				Stupakov's equations.
STUPAKOV_OUTPUT_INTERVAL		long	1	Interval (in kicks) between
				output of Stupakov wakes.
SLICE_ANALYSIS_INTERVAL		long	0	interval (in kicks) of output
				to slice analysis file (from
				slice_analysis command)

CSRDRIFT continued

A follow-on element for CSRCSBEND that applies the CSR wake over a drift.

Parameter Name	Units	Type	Default	Description
LINEARIZE		long	0	use linear optics for drift
				pieces?
LSC_BINS		long	0	If non-zero, include LSC with
				given number of bins.
LSC_INTERPOLATE		long	1	Interpolate computed LSC
TOO LOW EDECLEDION OF CHECKED		1 11	-	wake?
LSC_LOW_FREQUENCY_CUTOFF0		double	-1	Highest spatial frequency at
				which low-frequency cutoff fil-
				ter is zero. If not positive, no low-frequency cutoff filter is
				applied. Frequency is in units
				of Nyquist (0.5/binsize).
LSC_LOW_FREQUENCY_CUTOFF1		double	-1	Lowest spatial frequency
		double	-1	at which low-frequency
				cutoff filter is 1. If
				not given, defaults to
				LOW_FREQUENCY_CUTOFF1
LSC_HIGH_FREQUENCY_CUTOFF0		double	-1	Spatial frequency at which
•				smoothing filter begins for
				LSC. If not positive, no fre-
				quency filter smoothing is
				done. Frequency is in units of
				Nyquist (0.5/binsize).
LSC_HIGH_FREQUENCY_CUTOFF1		double	-1	Spatial frequency at which
				smoothing filter is 0 for
				LSC. If not given, defaults to
				HIGH_FREQUENCY_CUTOFF
LSC_RADIUS_FACTOR		double	1.7	Radius factor for LSC compu-
				tation.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element has a number of models for simulation of CSR in drift spaces following CSRCS-BEND elements. Note that all models allow support splitting the drift into multiple CSRDRIFT elements. One can also have intervening elements like quadrupoles, as often happens in chicanes. The CSR effects inside such intervening elements are applied in the CSRDRIFT downstream of the element.

For a discussion of some of the methods behind this element, see M. Borland, "Simple method

for particle tracking with coherent synchrotron radiation," Phys. Rev. ST Accel. Beams 4, 070701 (2001).

N.B.: by default, this element uses 1 CSR kick (N_KICKS=1) at the center of the drift. This is usually not a good choice. I usually use the DZ parameter instead of N_KICKS, and set it to something like 0.01 (meters). The user should vary this parameter to assess how small it needs to be.

The models are as following, in order of decreasing sophistication and accuracy:

• G. Stupakov's extension of Saldin et al. Set USE_STUPAKOV=1. The most advanced model at present is based on a private communication from G. Stupakov (SLAC), which extends equation 87 of the one-dimensional treatment of Saldin et al. (NIM A 398 (1997) 373-394) to include the post-dipole region. This model includes not only the attenuation of the CSR as one proceeds along the drift, but also the change in the shape of the "wake."

This model has the most sophisticated treatment for intervening elements of any of the models. For example, if you have a sequence CSRCSBEND-CSRDRIFT-CSRDRIFT and compare it with the sequence CSRCSBEND-CSRDRIFT-DRIFT -CSRDRIFT, keeping the total drift length constant, you'll find no change in the CSR-induced energy modulation. The model backpropagates to the beginning of the intervening element and performs the CSR computations starting from there.

This is the slowest model to run. It uses the same binning and smoothing parameters as the upstream CSRCSBEND. If run time is a problem, compare it to the other models and use only if you get different answers.

- M. Borland's model based on Saldin et al. equations 53 and 54. Set USE_SALDIN54=1. This model computes the fall-off of the CSR wake from the work of Saldin and coworkers, as described in the reference above. It does not compute the change in the shape of the wake. The fall-off is computed approximately as well, based on the fall-off for a rectangular current distribution. The length of this rectangular bunch is taken to be twice the bunch length computed according to the BUNCHLENGTH_MODE parameter (see below). If your bunch is nearly rectangular, then you probably want BUNCHLENGTH_MODE of "90-percentile".
- Exponential attenuation of a CSR wake with unchanging shape. There are two options here. First, you can provide the attenuation length yourself, using the ATTENUATION_LENGTH parameter. Second, you can set USE_OVERTAKING_LENGTH=1 and let elegant compute the overtaking length for use as the attenuation length. In addition, you can multiply this result by a factor if you wish, using the OL_MULTIPLIER parameter.
- Beam-spreading model. This model is not recommended. It is based on the seemingly plausible idea that CSR spreads out just like any synchrotron radiation, thus decreasing the intensity. The model doesn't reproduce experiments.

The "Saldin 54" and "overtaking-length" models rely on computation of the bunch length, which is controlled with the BUNCHLENGTH_MODE parameter. Nominally, one should use the true RMS, but when the beam has temporal spikes, it isn't always clear that this is the best choice. The choices are "rms", "68-percentile", and "90-percentile". The last two imply using half the length determined from the given percentile in place of the rms bunch length. I usually use 68-percentile, which is the default.

CWIGGLER

10.16 CWIGGLER

Tracks through a wiggler using canonical integration routines of Y. Wu (Duke University). Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	Total length
B_MAX		double	0.0	Maximum on-axis magnetic field.
BX_MAX		double	0.0	Maximum on-axis magnetic field. Ignored if B_MAX is
				nonzero.
BY_MAX		double	0.0	Maximum on-axis magnetic
				field. Ignored if B_MAX is nonzero.
DX		double	0.0	Misaligment.
DY		double	0.0	Misaligment.
DZ		double	0.0	Misaligment.
TILT		double	0.0	Rotation about beam axis.
PERIODS		long	0	Number of wiggler periods.
STEPS_PER_PERIOD		long	10	Integration steps per period.
INTEGRATION_ORDER		long	4	Integration order (2 or 4).
BY_FILE		STRING	NULL	Name of SDDS file with By
				harmonic data.
BX_FILE		STRING	NULL	Name of SDDS file with Bx
				harmonic data.
BY_SPLIT_POLE		long	0	Use "split-pole" expansion for
				By?
BX_SPLIT_POLE		long	0	Use "split-pole" expansion for
				Bx?
SYNCH_RAD		long	0	Include classical synchrotron
				radiation?
ISR		long	0	Include incoherent syn-
				chrotron radiation (scatter-
				ing)?
ISR1PART		long	1	Include ISR for single-particle
				beam only if ISR=1 and
				ISR1PART=1
SINUSOIDAL		long	0	Ideal sinusoidal wiggler?
				If non-zero, BX_FILE and
MEDITICAL		1		BY_FILE are not used.
VERTICAL		long	0	If SINUSOIDAL is non-zero,
				then setting this to non-zero
				gives a vertical wiggler. Default is horizontal.
				raurt is norizontal.

CWIGGLER continued

Tracks through a wiggler using canonical integration routines of Y. Wu (Duke University).

Parameter Name	Units	Type	Default	Description
HELICAL		long	0	Ideal helical wiggler? If non-zero and SINUSOIDAL is also non-zero, BX_FILE and BY_FILE are not used.
FORCE_MATCHED		long	1	Force matched dispersion for first harmonics? If non-zero, start and end of magnetic field will be inset from the ends of the device if phase is not 0 or π .
FIELD_OUTPUT		STRING	NULL	Name of file to which field samples will be written. Slow, so use only for debugging.
VERBOSITY		long	0	A higher value requires more detailed printouts related to computations.
GROUP		string	NULL	Optionally used to assign an element to a group, with a user-defined name. Group names will appear in the parameter output file in the column ElementGroup

This element simulates a wiggler or undulator using a modified version of Ying Wu's canonical integration code for wigglers. To use the element, one must supply an SDDS file giving harmonic analysis of the wiggler field. The field expansion used by the code for a horizontally-deflecting wiggler is (Y. Wu, Duke University, private communication).

$$B_y = -|B_0| \sum_{m,n} C_{mn} \cos(k_{xl}x) \cosh(k_{ym}y) \cos(k_{zn}z + \theta_{zn}), \tag{14}$$

where $|B_0|$ is the peak value of the on-axis magnetic field, the C_{mn} give the relative amplitudes of the harmonics, the wavenumbers statisfy $k_{ym}^2 = k_{xl}^2 + k_{zn}^2$, and θ_{zn} is the phase.

The file must contain the following columns:

- The harmonic amplitude, C_{mn} , in column Cmn.
- The phase, in radians, in column Phase. The phase of the first harmonic should be 0 or π in order to have matched dispersion.
- The three wave numbers, normalized to $k_w = 2\pi/\lambda_w$, where λ_w is the wiggler period. These are given in columns KxOverKw, KyOverKw, and KzOverKw.

In Version 17.3 and later, for matrix computations **elegant** uses a first-order matrix derived from particle tracking when it encounterse a CWIGGLER. Tests show that this gives good agreement in the tunes from tracking and Twiss parameter calculations. For radiation integrals, an

idealized sinusoidal wiggler model is used with bending radius equal to $B\rho/(B_0 \sum C_{mn})$ for each plane. Energy loss, energy spread, and horizontal emittance should be estimated accurately.

elegant allows specifying field expansions for on-axis B_y and B_x components, so one can model a helical wiggler. However, in this case one set of components should have $\theta_{zn} = 0$ or $\theta_{zn} = \pi$, while the other should have $\theta_{zn} = \pm \pi/2$. Using Wu's code, the latter set will not have matched dispersion. Our modified version solves this by delaying the beginning of the field components in question by $\lambda/4$ and ending the field prematurely by $3\lambda/4$. This causes all the fields to start and end at the crest, which ensures matched dispersion. The downside is that the (typically) vertical wiggler component is missing a full period of field. One can turn off this behavior by setting FORCE_MATCHED=0.

Additional field expansions

Y. Wu's code included field expansions for a vertically-deflecting wiggler as well as the horizontallydeflecting wiggler given above. In both cases, these expansions are suitable for a wiggler with two poles that are above/below or left/right of the beam axis. They are not always suitable for devices with more complex pole geometries.

Another geometry that is important is a "split pole" wiggler, in which each pole is made from two pieces. Such configurations are seen, for example, in devices used to produce variable polarization. In such cases, the expansion given above may not be appropriate. Here, we summarize the form of the various expansions that elegant supports. For brevity, we show the form of a single harmonic component.

Horizontal wiggler, normal poles, produces B_y only on-axis. Specified by setting BY_SPLIT_POLE=0, and giving BY_FILE or SINUSOIDAL=1 with VERTICAL=0.

$$B_x = |B_0| \frac{k_x \cos(k_z z + \phi) \sin(k_x x) \sinh(k_y y)}{k_y}$$

$$\tag{15}$$

$$B_y = -|B_0|\cos(k_x x)\cos(k_z z + \phi)\cosh(k_y y)$$
(16)

where $k_y^2 = k_x^2 + k_z^2$.

Horizontal wiggler, split poles, produces B_y only on-axis. Specified by setting BY_SPLIT_POLE=1, and giving BY_FILE or SINUSOIDAL=1 with VERTICAL=0.

$$B_x = -|B_0| \frac{k_x \cos(k_z z + \phi) \sin(k_y y) \sinh(k_x x)}{k_y}$$

$$B_y = -|B_0| \cos(k_y y) \cos(k_z z + \phi) \cosh(k_x x)$$
(18)

$$B_y = -|B_0|\cos(k_y y)\cos(k_z z + \phi)\cosh(k_x x) \tag{18}$$

where $k_x^2 = k_y^2 + k_z^2$.

Vertical wiggler, normal poles, produces B_x only on-axis. Specified by setting BX_SPLIT_POLE=0, and giving BX_FILE or SINUSOIDAL=1 with either VERTICAL=1 or HELICAL=1.

$$B_x = |B_0|\cos(k_y y)\cos(k_z z + \phi)\cosh(k_x x) \tag{19}$$

$$B_y = -|B_0| \frac{k_y \cos(k_z z + \phi) \sin(k_y y) \sinh(k_x x)}{k_x}$$
(20)

where $k_x^2 = k_y^2 + k_z^2$.

Vertical wiggler, split poles, produces B_x only on-axis. Specified by setting BX_SPLIT_POLE=1, and giving BX_FILE or SINUSOIDAL=1 with either VERTICAL=1 or HELICAL=1.

$$B_x = |B_0|\cos(k_x x)\cos(k_z z + \phi)\cosh(k_y y) \tag{21}$$

$$B_y = |B_0| \frac{k_y \cos(k_z z + \phi) \sin(k_x x) \sinh(k_y y)}{k_x}$$
(22)

where $k_y^2 = k_x^2 + k_z^2$.

DRIF

10.17 DRIF

A drift space implemented as a matrix, up to 2nd order. Use EDRIFT for symplectic tracking. Parallel capable? : yes

GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
ORDER		long	0	matrix order
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

DSCATTER

10.18 DSCATTER

A scattering element to add random changes to particle coordinates according to a user-supplied distribution function

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
PLANE		STRING	NULL	Plane to scatter: xp, yp, dp
				(dp is deltaP/P)
FILENAME		STRING	NULL	Name of SDDS file containing
				distribution function.
VALUENAME		STRING	NULL	Name of column containing
				the independent variable for
				the distribution function data.
CDFNAME		STRING	NULL	Name of column containing
				the cumulative distribution
				function data.
PDFNAME		STRING	NULL	Name of column containing
				the probability distribution
				function data.
ONCEPERPARTICLE		long	0	If nonzero, each particle can
				only get scattered once by this
				element.
FACTOR		double	1	Factor by which to multiply
				the independent variable val-
				ues.
PROBABILITY		double	1	Probability that any particle
				will be selected for scattering.
GROUPID		long	-1	Group ID number (nonnega-
				tive integer) for linking once-
				per-particle behavior of multi-
				ple elements.
RANDOMSIGN		long	0	If non-zero, then the scatter is
				given a random sign. Useful if
				distribution data is one-sided.
LIMITPERPASS		long	-1	Maximum number of particles
				that will be scattered on each
				pass.
LIMITTOTAL		long	-1	Maximum number of particles
				that will be scatter for each
				step.

DSCATTER continued

A scattering element to add random changes to particle coordinates according to a user-supplied

distribution function

Parameter Name	Units	Type	Default	Description
STARTONPASS		long	0	Pass number to start on.
ENDONPASS		long	-1	Pass number to end on (inclu-
				sive). Ignored if negative.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

ECOL

10.19 ECOL

An elliptical collimator. Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
X_MAX	M	double	0.0	half-axis in x
Y_MAX	M	double	0.0	half-axis in y
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
OPEN_SIDE		STRING	NULL	which side, if any, is open $(+x,$
				-x, +y, -y
EXPONENT		long	2	Exponent for boundary equa-
				tion. 2 is ellipse.
YEXPONENT		long	0	y exponent for boundary equa-
				tion. 2 is ellipse. If 0, defaults
				to EXPONENT
INVERT		long	0	If non-zero, particles inside the
				aperture are lost while those
				outside are transmitted.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

EDRIFT

10.20 EDRIFT

Tracks through a drift with no approximations (Exact DRIFT).

Parallel capable? : yes

GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

EHKICK

10.21 EHKICK

A horizontal steering dipole implemented using an exact hard-edge model

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
KICK	RAD	double	0.0	kick angle
TILT	RAD	double	0.0	rotation about longitudinal
				axis
CALIBRATION		double	1	factor applied to obtain kick
STEERING		long	1	use for steering?
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
LERAD		double	0.0	if L=0, use this length for ra-
				diation computations
STEERING_MULTIPOLES		STRING	NULL	input file for multipole content
				of steering kicks
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

Note that closed_orbit and correct command may report orbit convergence problems when using EHKICK in place of HKICK. This may be resolved by increasing the closed_orbit_accuracy parameter.

If requested, synchrotron radiation effects are imposed as a kick at the end of the element.

EKICKER

10.22 EKICKER

A combined horizontal/vertical steering dipole implemented using an exact hard-edge model Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
HKICK	RAD	double	0.0	horizontal kick angle
VKICK	RAD	double	0.0	vertical kick angle
TILT	RAD	double	0.0	rotation about longitudinal axis
HCALIBRATION		double	1	factor applied to obtain horizontal kick
VCALIBRATION		double	1	factor applied to obtain verti- cal kick
STEERING		long	1	use for steering?
SYNCH_RAD		long	0	include classical synchrotron radiation?
ISR		long	0	include incoherent syn- chrotron radiation (scatter- ing)?
LERAD		double	0.0	if L=0, use this length for radiation computations
STEERING_MULTIPOLES		STRING	NULL	input file for multipole content of steering kicks
GROUP		string	NULL	Optionally used to assign an element to a group, with a user-defined name. Group names will appear in the parameter output file in the column ElementGroup

Note that closed_orbit and correct command may report orbit convergence problems when using EKICKER in place of KICKER. This may be resolved by increasing the closed_orbit_accuracy parameter.

If requested, synchrotron radiation effects are imposed as a kick at the end of the element.

ELSE

10.23 ELSE

Not implemented. Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

EMATRIX

10.24 EMATRIX

Explicit matrix input with data in the element definition, rather than in a file. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	Length (used only for position
				computation)
ANGLE	RAD	double	0.0	Angle (used only for position
				computation)
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
TILT	RAD	double	0.0	Tilt angle
YAW	RAD	double	0.0	Yaw angle
PITCH	RAD	double	0.0	Pitch angle
ORDER		long	0	
C1	M	double	0.0	
C2		double	0.0	
C3	M	double	0.0	
C4		double	0.0	
C5	M	double	0.0	
C6		double	0.0	Change in momentum offset
DELTAP		double	0.0	Change in central momentum
				(beta*gamma)
R11		double	0.0	
R12	M	double	0.0	
R13		double	0.0	
R14	M	double	0.0	
R15		double	0.0	
R16	M	double	0.0	
R21	1/M	double	0.0	
R22		double	0.0	
R23	1/M	double	0.0	
R24		double	0.0	
R25	1/M	double	0.0	
R26		double	0.0	
R31		double	0.0	
R32	M	double	0.0	
R33		double	0.0	
R34	M	double	0.0	
R35		double	0.0	

				t definition, rather than in a file.
Parameter Name	Units	Туре	Default	Description
R36	M	double	0.0	
R41	1/M	double	0.0	
R42		double	0.0	
R43	1/M	double	0.0	
R44		double	0.0	
R45	1/M	double	0.0	
R46		double	0.0	
R51		double	0.0	
R52	M	double	0.0	
R53		double	0.0	
R54	M	double	0.0	
R55		double	0.0	
R56	M	double	0.0	
R61	1/M	double	0.0	
R62		double	0.0	
R63	1/M	double	0.0	
R64		double	0.0	
R65	1/M	double	0.0	
R66		double	0.0	
T111	1/M	double	0.0	
T121		double	0.0	
T122	M	double	0.0	
T131	1/M	double	0.0	
T132	,	double	0.0	
T133	1/M	double	0.0	
T141	,	double	0.0	
T142	M	double	0.0	
T143		double	0.0	
T144	M	double	0.0	
T151	1/M	double	0.0	
T152	,	double	0.0	
T153	1/M	double	0.0	
T154	,	double	0.0	
T155	1/M	double	0.0	
T161	/	double	0.0	
T162	M	double	0.0	
	l -:		0.0	

Parameter Name	Units	Type	Default	Description
T163		double	0.0	
T164	M	double	0.0	
T165		double	0.0	
T166	\overline{M}	double	0.0	
T211	$1/M^{2}$	double	0.0	
T221	1/M	double	0.0	
T222	/	double	0.0	
T231	$1/M^2$	double	0.0	
T232	1/M	double	0.0	
T233	$1/M^2$	double	0.0	
T241	1/M	double	0.0	
T242	•	double	0.0	
T243	1/M	double	0.0	
T244	•	double	0.0	
T251	$1/M^{2}$	double	0.0	
T252	1/M	double	0.0	
T253	$1/M^{2}$	double	0.0	
T254	1/M	double	0.0	
T255	$1/M^2$	double	0.0	
T261	1/M	double	0.0	
T262		double	0.0	
T263	1/M	double	0.0	
T264	1	double	0.0	
T265	1/M	double	0.0	
T266		double	0.0	
T311	1/M	double	0.0	
T321		double	0.0	
T322	M	double	0.0	
T331	1/M	double	0.0	
T332		double	0.0	
T333	1/M	double	0.0	
T341		double	0.0	
T342	M	double	0.0	
T343		double	0.0	
T344	M	double	0.0	
T351	1/M	double	0.0	

Parameter Name	Units	Type	Default	Description Description
T352		double	0.0	
T353	1/M	double	0.0	
T354		double	0.0	
T355	1/M	double	0.0	
T361		double	0.0	
T362	M	double	0.0	
T363		double	0.0	
T364	M	double	0.0	
T365		double	0.0	
T366	M	double	0.0	
T411	$1/M^{2}$	double	0.0	
T421	1/M	double	0.0	
T422		double	0.0	
T431	$1/M^2$	double	0.0	
T432	1/M	double	0.0	
T433	$1/M^{2}$	double	0.0	
T441	1/M	double	0.0	
T442		double	0.0	
T443	1/M	double	0.0	
T444		double	0.0	
T451	$1/M^{2}$	double	0.0	
T452	1/M	double	0.0	
T453	$1/M^2$	double	0.0	
T454	1/M	double	0.0	
T455	$1/M^{2}$	double	0.0	
T461	1/M	double	0.0	
T462		double	0.0	
T463	1/M	double	0.0	
T464	1	double	0.0	
T465	1/M	double	0.0	
T466		double	0.0	
T511	1/M	double	0.0	
T521		double	0.0	
T522	M	double	0.0	
T531	1/M	double	0.0	
T532		double	0.0	

Parameter Name	Units	Type	Default	Description
T533	1/M	double	0.0	*
T541	,	double	0.0	
T542	M	double	0.0	
T543		double	0.0	
T544	M	double	0.0	
T551	1/M	double	0.0	
T552	•	double	0.0	
T553	1/M	double	0.0	
T554	•	double	0.0	
T555	1/M	double	0.0	
T561		double	0.0	
T562	M	double	0.0	
T563		double	0.0	
T564	M	double	0.0	
T565		double	0.0	
T566	M	double	0.0	
T611	$1/M^2$	double	0.0	
T621	1/M	double	0.0	
T622		double	0.0	
T631	$1/M^2$	double	0.0	
T632	1/M	double	0.0	
T633	$1/M^{2}$	double	0.0	
T641	1/M	double	0.0	
T642		double	0.0	
T643	1/M	double	0.0	
T644		double	0.0	
T651	$1/M^{2}$	double	0.0	
T652	1/M	double	0.0	
T653	$1/M^2$	double	0.0	
T654	1/M	double	0.0	
T655	$1/M^{2}$	double	0.0	
T661	1/M	double	0.0	
T662		double	0.0	
T663	1/M	double	0.0	
T664	1	double	0.0	
T665	1/M	double	0.0	

Explicit matrix input with data in the element definition, rather than in a file.

Parameter Name	Units	Type	Default	Description
T666		double	0.0	
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

Note that the default value of all matrix elements is 0. This can produce unexpected results if one imagines by mistake that the default values give a unit matrix, for example.

EMITTANCE

10.25 EMITTANCE

Applies a linear transformation to the beam to force the emittance to given values.

Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
EMITX	M	double	-1	horizontal emittance
EMITY	M	double	-1	vertical emittance
EMITNX	M	double	-1	horizontal normalized emit-
				tance
EMITNY	M	double	-1	vertical normalized emittance
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element allows changing the emittance of a beam during tracking. It is intended to be used to modify the emittance "slightly" to agree with, for example, experimental measurements.

The LCLS provides an example application: we track a beam from a photo-injector simulation through a laser/undulator beam heater and then through the entire linac. The beam emittance and twiss parameters are measured at a diagnostic downstream of the laser heater. We can insert an EMITTANCE element and a TWISS element at the location of the diagnostic to force the beam properties to the exact values that are measured. This compensates for imperfect modeling of the photo-injector while allowing us to conveniently model the system between the photo-injector and the point at which the emittance is measured.

ENERGY

10.26 ENERGY

An element that matches the central momentum to the beam momentum, or changes the central momentum or energy to a specified value.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
CENTRAL_ENERGY	MC^2	double	0.0	desired central gamma
CENTRAL_MOMENTUM	MC	double	0.0	desired central beta*gamma
MATCH_BEAMLINE		long	0	if nonzero, beamline reference
				momentum is set to beam av-
				erage momentum
MATCH_PARTICLES		long	0	if nonzero, beam average mo-
				mentum is set to beamline ref-
				erence momentum
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

EVKICK

10.27 EVKICK

A vertical steering dipole implemented using an exact hard-edge model

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
KICK	RAD	double	0.0	kick angle
TILT	RAD	double	0.0	rotation about longitudinal
				axis
CALIBRATION		double	1	factor applied to obtain kick
STEERING		long	1	use for steering?
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
LERAD		double	0.0	if L=0, use this length for ra-
				diation computations
STEERING_MULTIPOLES		STRING	NULL	input file for multipole content
				of steering kicks
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

Note that closed_orbit and correct command may report orbit convergence problems when using EVKICK in place of VKICK. This may be resolved by increasing the closed_orbit_accuracy parameter.

If requested, synchrotron radiation effects are imposed as a kick at the end of the element.

FLOOR

10.28 FLOOR

Sets floor coordinates Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
X		double	0.0	X coordinate
Y		double	0.0	Y coordinate
Z		double	0.0	Z coordinate
THETA		double	0.0	theta value
PHI		double	0.0	phi value
PSI		double	0.0	psi value
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

FMULT

10.29 FMULT

Multipole kick element with coefficient input from an SDDS file.

Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
N_KICKS		long	1	number of kicks
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
FILENAME		STRING	NULL	name of file containing multi-
				pole data
SQRT_ORDER		long	0	Order of expansion of square-
				root in Hamiltonian. 0 means
				no expansion.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a multipole element using a 4th-order sympletic integration. Specification of the multipole strength is through an SDDS file. The file is expected to contain a single page of data with the following elements:

- 1. An integer column named order giving the order of the multipole. The order is defined as $(N_{poles} 2)/2$, so a quadrupole has order 1, a sextupole has order 2, and so on.
- 2. A floating point column named KnL giving the integrated strength of the multipole, K_nL , where n is the order. The units are $1/m^n$.
- 3. A floating point column named JnL giving the integrated strength of the skew multipole, J_nL , where n is the order. The units are $1/m^n$.

The MULT element is also available, which allows the same functionality without an external file.

FRFMODE

10.30 FRFMODE

One or more beam-driven TM monopole modes of an RF cavity, with data from a file.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
FILENAME		STRING	NULL	input file
BIN_SIZE	S	double	0.0	bin size for current histogram
				(use 0 for autosize)
N_BINS		long	20	number of bins for current his-
				togram
RIGID_UNTIL_PASS		long	0	don't affect the beam until this
				pass
USE_SYMM_DATA		long	0	use "Symm" columns from
				URMEL output file?
FACTOR		double	1	factor by which to multiply
				shunt impedances
CUTOFF	HZ	double	0.0	If >0, cutoff frequency. Modes
				above this frequency are ig-
				nored.
OUTPUT_FILE		STRING	NULL	Output file for voltage in each
				mode.
FLUSH_INTERVAL		long	1	Interval in passes at which to
				flush output data.
RAMP_PASSES		long	0	Number of passes over which
				to linearly ramp up the
				impedance to full strength.
RESET_FOR_EACH_STEP		long	1	If nonzero, voltage and phase
				are reset for each simulation
				step.
LONG_RANGE_ONLY		long	0	If nonzero, induced voltage
				from present turn does not af-
				fect bunch. Short range wake
				should be included via WAKE
				or ZLONGIT element.
N_CAVITIES		long	1	effect is multiplied by this
				number, simulating N identi-
				cal cavities
BUNCHED_BEAM_MODE		long	1	If non-zero, then do calcula-
				tions bunch-by-bunch.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a set of beam-driven monopole modes in a cavity using the fundamental theorem of beam loading and phasor rotation. It is similar to RFMODE, but it allows faster simulation of more than one mode. Also, the mode data is specified in an SDDS file. This file can be generated using the APS version of URMEL, or by hand. It must have the following columns and units:

- 1. Frequency The frequency of the mode in Hz. Floating point.
- 2. Q The quality factor. Floating point.
- 3. ShuntImpedance or ShuntImpedanceSymm The shunt impedance in Ohms, defined as $V^2/(2*P)$. Floating point. By default, ShuntImpedance is used. However, if the parameter USE_SYMM_DATA is non-zero, then ShuntImpedanceSymm is used. The latter is the full-cavity shunt impedance that URMEL computes by assuming that the input cavity used is one half of a symmetric cavity.

The file may also have the following column:

1. beta — Normalized load impedance (dimensionless). Floating point. If not given, the $\beta = 0$ is assumed for all modes.

In many simulations, a transient effect may occur when using this element because, in the context of the simulation, the impedance is switched on instantaneously. This can give a false indication of the threshold for instability. The RAMP_PASSES parameter should be used to prevent this by slowly ramping the impedance to full strength. This idea is from M. Blaskiewicz (BNL).

Normally, the field dumped in the cavity by one particle affects trailing particles in the same turn. However, if one is also using a WAKE or ZLONGIT element to simulate the short-range wake of the cavity, this would be double-counting. In that case, one can use LONG_RANGE_ONLY=1 to suppress the same-turn effects of the RFMODE element.

FTABLE

10.31 FTABLE

Tracks through a magnetic field which is expressed by a SDDS table.

Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	The effective field length mea-
				sured along a straight line.
ANGLE	RAD	double	0.0	The designed bending angle
L1	M	double	0.0	The left fringe field length.
L2	M	double	0.0	The right fringe field length.
				L1+L+L2=Total z span in the
				input field table.
E1	RAD	double	0.0	The designed entrance edge
				angle
E2	RAD	double	0.0	The designed exit edge angle
TILT	RAD	double	0.0	rotation about incoming longi-
				tudinal axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FACTOR		double	1	Factor by which to multiply
				field data.
THRESHOLD		double	1e-08	Fields smaller than this are
				considered 0.
INPUT_FILE		STRING	NULL	Name of SDDS file which con-
				tains field data.
N_KICKS		long	1	Number of kicks into which to
				split the element.
VERBOSE		long	0	Used for debugging code. Not
				applicable to Pelegant
SIMPLE_INPUT		long	0	If non-zero, use simple input
				format.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is used for tracking through an arbitrary magnetic field when its values are known at regularly spaced grid points and it is hard to find a suitable model to describe it. The input magnet parameter and coordinate system definition are illustrated in Fig:1.

The THRESHOLD parameter sets the magnitude of magnetic field below which the field is consid-

ered zero. If this is too small, there may be numerical problems.

The field data is provided in an SDDS file, with two formats available. The recommended format can be used if the SIMPLE_INPUT parameter is non-zero.

Simple input format — This format is shared with the BMXYZ element and is more convenient than the original, default format. The field map file is an SDDS file with the following columns:

- x, y, x Transverse coordinates in meters (units should be "m").
- Bx, By, Bz Field values in Tesla (units should be "T").

The field map file must contain a rectangular grid of points, equispaced (separately) in x, y, and z. There should be no missing values in the grid (this is not checked by elegant). In addition, the x values must vary fastest as the values are accessed in row order, then the y values. To ensure that this is the case, use the following command on the field file:

sddssort fieldFile -column=z,incr -column=y,incr -column=x,incr

N.B.: Particles are injected into the field region with z=0. Hence, one would normally want the minimum value of z to be 0.

Original input format — This format is difficult to understand and set up. Although it is not recommended, it is the default at present for historical reasons.

The field data is saved in a 3 pages (B_x, B_y, B_z) 3D histogram SDDS table (see MHISTOGRAM for detail). An example is shown in Fig:2. This SDDS file must have one column Frequency to store the field data in Tesla, and following parameters:

- ND Type "long"; Value "3".
- Variable00Name, Variable01Name, Variable02Name Type "string"; Value "x", "y", "z".
- Variable00Min, Variable01Min, Variable02Min Type "double"; Value: the minimum boundary coordinates of "x", "y", "z" in meter. Variable02Min (z_min) must start from zero.
- Variable00Max, Variable01Max, Variable02Max Type "double"; Value: the maximum boundary coordinates of "x", "y", "z" in meter.
- Variable00Interval, Variable01Interval, Variable02Interval Type "double"; Value of the grid size of "x", "y", "z" in meter.
- Variable00Dimension, Variable01Dimension, Variable02Dimension Type "long"; Value of total number of grid points in "x", "y", "z". For example: Variable00Dimension = (Variable00Max-Variable00Min)/Variable00Interval + 1.

N.B.: Particles are injected into the field region with z=0. Hence, one would normally want Variable02Min=0. If Variable02Min<0, data ahead of the injection point.

Figure 1: Illustration of coordinate system and magnet definition.

FTRFMODE

10.32 FTRFMODE

One or more beam-driven TM dipole modes of an RF cavity, with data from a file.

Parallel capable? : yes GPU capable? : no

sddsprintout -para=* ftable.input

ND = 3	Variable00Name = x
Variable01Name = y	Variable02Name = z
Variable00Min (m) = -1.700000e-02	Variable01Min (m) = -5.000000e-03
Variable02Min (m) = 0.000000e+00	Variable00Max (m) = 1.700000e-02
Variable01Max (m) = 5.000000e-03	Variable02Max (m) = 1.250000e-01
Variable00Interval (m) = 1.000000e-03	Variable01Interval (m) = 1.000000e-03
Variable02Interval (m) = 1.250000e-0	Variable00Dimension = 35
Variable01Dimension = 11	Variable02Dimension = 101

sddsprintout -col=* ftable.input (page 2, By field)

x_index	y_index	z_index	Frequency T
0	0	0	1
0	0	100	1
		•••	
0	10	100	1
1	10	100	1
34	10	100	1

Figure 2: Example of SDDS input file. The column x_index, y_index, z_index is not the necessary part, it's shown here just for clarifying how the data is arranged

Parameter Name	Units	Type	Default	Description
FILENAME		STRING	NULL	input file
BIN_SIZE	S	double	0.0	bin size for current histogram
				(use 0 for autosize)
N_BINS		long	20	number of bins for current his-
				togram
RIGID_UNTIL_PASS		long	0	don't affect the beam until this
				pass
USE_SYMM_DATA		long	0	use "Symm" columns from
				URMEL output file?
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
XFACTOR		double	1	factor by which to multiply
				shunt impedances
YFACTOR		double	1	factor by which to multiply
				shunt impedances
CUTOFF	HZ	double	0.0	If >0, cutoff frequency. Modes
				above this frequency are ig-
				nored.
OUTPUT_FILE		STRING	NULL	Output file for voltage in each
				mode.
FLUSH_INTERVAL		long	1	Interval in passes at which to
				flush output data.
RAMP_PASSES		long	0	Number of passes over which
				to linearly ramp up the
				impedance to full strength.
RESET_FOR_EACH_STEP		long	1	If nonzero, voltage and phase
				are reset for each simulation
LONG BANGE GIVE		,	_	step.
LONG_RANGE_ONLY		long	0	If nonzero, induced voltage
				from present turn does not af-
				fect bunch. Short range wake
				should be included via WAKE
N. CALIFFIE		1	4	or ZLONGIT element.
N_CAVITIES		long	1	effect is multiplied by this
				number, simulating N identi-
				cal cavities

FTRFMODE continued

One or more beam-driven TM dipole modes of an RF cavity, with data from a file.

Parameter Name	Units	Type	Default	Description
BUNCHED_BEAM_MODE		long	1	If non-zero, then do calcula-
				tions bunch-by-bunch.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a set of beam-driven dipole modes in a cavity using the fundamental theorem of beam loading and phasor rotation. It is similar to TRFMODE, but it allows faster simulation of more than one mode. Also, the mode data is specified in an SDDS file. This file can be generated using the APS version of URMEL, or by hand. It must have the following columns and units:

- 1. Frequency The frequency of the mode in Hz. Floating point.
- 2. Q The quality factor. Floating point.
- 3. ShuntImpedance or ShuntImpedanceSymm The shunt impedance in Ohms/m, defined as $V^2/(2*P)/x$ or $V^2/(2*P)/y$. Floating point. By default, ShuntImpedance is used. However, if the parameter USE_SYMM_DATA is non-zero, then ShuntImpedanceSymm is used. The latter is the full-cavity shunt impedance that URMEL computes by assuming that the input cavity used is one half of a symmetric cavity.

The file may also have the following columns:

- 1. beta Normalized load impedance (dimensionless). Floating point. If not given, the $\beta = 0$ is assumed for all modes.
- 2. xMode If given, then only modes for which the value is nonzero will produce an x-plane kick. Integer. If not given, all modes affect the x plane.
- 3. yMode If given, then only modes for which the value is nonzero will produce an y-plane kick. Integer. If not given, all modes affect the y plane.

In many simulations, a transient effect may occur when using this element because, in the context of the simulation, the impedance is switched on instantaneously. This can give a false indication of the threshold for instability. The RAMP_PASSES parameter should be used to prevent this by slowly ramping the impedance to full strength. This idea is from M. Blaskiewicz (BNL).

Normally, the field dumped in the cavity by one particle affects trailing particles in the same turn. However, if one is also using a TRWAKE or ZTRANSVSE element to simulate the short-range wake of the cavity, this would be double-counting. In that case, one can use LONG_RANGE_ONLY=1 to suppress the same-turn effects of the RFMODE element.

GFWIGGLER

10.33 GFWIGGLER

Tracks through a wiggler using generate function method of J. Bahrdt and G. Wuestefeld (BESSY, Berlin, Germany).

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	Total length
B_MAX	T	double	0.0	Maximum on-axis magnetic
				field at gap=GAP0 and
				equal longitudinal phases of
				PHASE_1,2,3,4
SHIM_SCALE		double	1	Scaling factor of shim correc-
				tion field.
DX	M	double	0.0	Misaligment.
DY	M	double	0.0	Misaligment.
DZ	M	double	0.0	Misaligment.
TILT	RAD	double	0.0	Rotation about beam axis.
PERIODS		long	0	Total number of wiggler peri-
				ods. Include end poles
STEP		long	1	Number of normal periods to
				track for each step
ORDER		long	0	Order=3 including the 3rd or-
				der terms. Otherwise using
				2nd order formula.
END_POLE		long	1	The ending poles are treated
				as 2 half periods at each sides
				of the wiggler with reducing
				field strength, such as 0.25, -
				0.75,, 0.75, -0.25. Periods
				has to > 2
SHIM_ON		long	0	Include shim correction
INPUT_FILE		STRING	NULL	Name of SDDS file with By
				harmonic data given at GAP0
				and equal longitudinal phases.
SHIM_INPUT		STRING	NULL	Name of SDDS file with shim
				field integral harmonic data
		_		given at GAP0.
SYNCH_RAD		long	0	Include classical synchrotron
				radiation?
ISR		long	0	Include incoherent syn-
				chrotron radiation (scatter-
				ing)?

GFWIGGLER continued

Tracks through a wiggler using generate function method of J. Bahrdt and G. Wuestefeld (BESSY, Berlin, Germany).

Parameter Name	Units	Type	Default	Description
ISR1PART		long	1	Include ISR for single-particle
				beam only if ISR=1 and
				ISR1PART=1
X0	M	double	0.0	Offset of magnet row center in
				meter.
GAP0	M	double	0.0	Nominal magnetic gap.
D_GAP	M	double	0.0	Delta gap: actual gap - nomi-
				nal gap
PHASE_1	RAD	double	0.0	Longitudinal phase of the first
				row (top right)
PHASE_2	RAD	double	0.0	Longitudinal phase of the sec-
				ond row (top left)
PHASE_3	RAD	double	0.0	Longitudinal phase of the
				third row (bottom left)
PHASE_4	RAD	double	0.0	Longitudinal phase of the
				fourth row (bottom right)
VERBOSITY		long	0	A higher value requires more
				detailed printouts related to
				computations.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

N.B.: at present this element is *not* included in computations of beam moments (moments_output command).

This element simulates a wiggler or undulator using the generate function method given by J. Bahrdt and G. Wüstefeld ("Symplectic tracking and compensation of dynamic field integrals in complex undulator structures," PRSTAB 14, 040703, 2011.).

To use the element, one must supply an SDDS file giving harmonic analysis of the wiggler field. The field expansion used by the code is for a wiggler working at the nominal gap and provide pure horizontal deflecting to the on-axis beam. See CWIGGLER, horizontal wiggler with normal poles, for detail explaination of the field expansion and format of the input file. Besides the required columns of Cmn, KxOverKw, KyOverKw, and KzOverKw by the CWIGGLER elements, two more input columns are needed:

- The longitudinal harmonic number, n, in column zHarm.
- The horizontal harmonic number of l, in column xHarm.

If a file include all required columns from CWIGGLER and GFWIGGLER then user can use either of the both methods for simulating a horizontal planar wiggler.

An universal wiggler field, which be used for generating an arbitrary polarization, can be derived by given different longitudinal phase parameters: PHASE_1,2,3,4. The photon energy can be varied by a non-zero D_GAP value.

HISTOGRAM

10.34 HISTOGRAM

Request for histograms of particle coordinates to be output to SDDS file.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
FILENAME		STRING		filename for histogram output,
				possibly incomplete (see be-
				low)
INTERVAL		long	1	interval in passes between out-
				put
START_PASS		long	0	starting pass for output
BINS		long	50	number of bins
FIXED_BIN_SIZE		long	0	if nonzero, bin size is fixed af-
				ter the first histogram is made
X_DATA		long	1	histogram x and x'?
Y_DATA		long	1	histogram y and y'?
LONGIT_DATA		long	1	histogram t and p?
BIN_SIZE_FACTOR		double	1	multiply computed bin size by
				this factor before histogram-
				ming
NORMALIZE		long	1	normalize histogram with bin
				size and number of particles?
DISABLE		long	0	If nonzero, no output will be
				generated.
SPARSE		long	0	If nonzero, only bins with non-
				zero counts will be output.
START_PID		long	-1	starting particleID for parti-
				cles to include
END_PID		long	-1	ending particleID for particles
				to include
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The output filename may be an incomplete filename. In the case of the HISTOGRAM point element, this means it may contain one instance of the string format specification "%s" and one occurence of an integer format specification (e.g., "%ld"). elegant will replace the format with the rootname (see run_setup) and the latter with the element's occurrence number. For example, suppose you had a repetitive lattice defined as follows:

H1: HISTOGRAM, FILENAME='', %s-%03ld.h1''

Q1: QUAD, L=0.1, K1=1

D: DRIFT,L=1

Q2: QUAD, L=0.1, K1=-1

CELL: LINE=(H1,Q1,D,2*Q2,D,Q1)

BL: LINE=(100*CELL)

The element H1 appears 100 times. Each instance will result in a new file being produced. Successive instances have names like "rootname-001.h1", "rootname-002.h1", "rootname-003.h1", and so on up to "rootname-100.h1". (If instead of "%03ld" you used "%ld", the names would be "rootname-1.h1", "rootname-2.h1", etc. up to "rootname-100.h1". This is generally not as convenient as the names don't sort into occurrence order.)

The files can easily be plotted together, as in

% sddsplot -column=dt,dtFrequency *-???.h1 -separate

They may also be combined into a single file, as in

% sddscombine *-???.h1 all.h1

In passing, note that if H1 was defined as

H1: HISTOGRAM, FILENAME=','%s.h1',

or

H1: HISTOGRAM, FILENAME=''output.h1''

only a single file would be produced, containing output from the last instance only.

HKICK

10.35 HKICK

A horizontal steering dipole implemented as a matrix, up to 2nd order. Use EHKICK for symplectic tracking.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
KICK	RAD	double	0.0	kick strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
B2	$1/M^{2}$	double	0.0	normalized sextupole strength
				$(kick = KICK*(1+B2*x\hat{2}))$
				when y=0)
CALIBRATION		double	1	strength multiplier
EDGE_EFFECTS		long	0	include edge effects?
ORDER		long	0	matrix order
STEERING		long	1	use for steering?
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
LERAD		double	0.0	if L=0, use this length for ra-
				diation computations
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

HMON

10.36 HMON

A horizontal position monitor, accepting a rpn equation for the readout as a function of the actual position (x).

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
WEIGHT		double	1	weight in correction
TILT		double	0.0	rotation about longitudinal
				axis
CALIBRATION		double	1	calibration factor for readout
SETPOINT	M	double	0.0	steering setpoint
ORDER		long	0	matrix order
READOUT		STRING	NULL	rpn expression for readout (ac-
				tual position supplied in vari-
				able x)
CO_FITPOINT		long	0	If nonzero, then closed or-
				bit value is placed in variable
				<name>#<occurence>.xco</occurence></name>
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

IBSCATTER

10.37 IBSCATTER

A simulation of intra-beam scattering.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
FACTOR		double	1	factor by which to multiply
				growth rates before using
DO_X		long	1	do x-plane scattering?
DO_Y		long	1	do y-plane scattering?
DO_Z		long	1	do z-plane scattering?
NSLICE		long	1	The number of slices per
CMOOTH		1	4	bunch
SMOOTH		long	1	Use smooth method instead of random numbers?
FORCE_MATCHED_TWISS		long	0	Force computations to be done
				with twiss parameters of the
				beamline, not the beam.
ISRING		long	1	Is it storage ring?
INTERVAL		long	1	Interval in passes at which to
				update output file.
FILENAME		STRING	NULL	Output filename.
BUNCHED_BEAM_MODE		long	1	If non-zero, then do calcula-
				tions bunch-by-bunch.
VERBOSE		long	0	If non-zero, then print updates
				during calculations.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is used for simulating intra-beam scattering (IBS) effect. The IBS algorithm is based on the Bjorken and Mtingwa's [15] formula, and with an extension of including vertical dispersion. It can be used for both storage ring and Linac.

To initialize IBS calculation, one or more IBSCATTER elements must be inserted into the beamline. elegant calculates the integrated IBS growth rates between IBSCATTERs (or from beginning of the beamline to the first IBSCATTER), then scatter particles at each IBSCATTER element. Beam's parameters are updated for use in downstream elements.

This method requires that IBSCATTER can not be installed at the beginning of beamline. The number of other elements between IBSCATTERs or from the beginning of beamline to the first IBSCATTER has to be 2 or more. For storage ring, an IBSCATTER must be installed at the end of beamline.

Because the IBS growth rates are energy dependent, special caution is needed for calculations with accelerating beam. The user needs to split their accelerating cavity into several pieces, so that γ has no large changes between elements.

The user can examine the calculation through an optional SDDS output file - filename. The file has a multiple page structure. Each slice at pass i at each IBSCATTER element occupies one page. Each page contains integrated IBS growth rates between IBSCATTERs (or from beginning of the beamline to first IBSCATTER) as parameters, and local rates for elements in between as tabular data.

ILMATRIX

10.38 ILMATRIX

An Individualized Linear Matrix for each particle for fast symplectic tracking with chromatic and amplitude-dependent effects

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	Length (used for position and
				time-of-flight computation)
NUX		double	0.0	Horizontal tune
NUY		double	0.0	Vertical tune
NUX1M		double	0.0	First chromatic derivative of
				the horizontal tune
NUY1M		double	0.0	First chromatic derivative of
				the vertical tune
NUX2M		double	0.0	Second chromatic derivative of
				the horizontal tune
NUY2M		double	0.0	Second chromatic derivative of
				the vertical tune
NUX3M		double	0.0	Third chromatic derivative of
				the horizontal tune
NUY3M		double	0.0	Third chromatic derivative of
				the vertical tune
NUX1AX	1/M	double	0.0	First amplitude derivative of
				the horizontal tune wrt Ax
NUY1AX	1/M	double	0.0	First amplitude derivative of
				the vertical tune wrt Ax
NUX1AY	1/M	double	0.0	First amplitude derivative of
				the horizontal tune wrt Ay
NUY1AY	1/M	double	0.0	First amplitude derivative of
				the vertical tune wrt Ay
NUX2AX	$1/M^{2}$	double	0.0	Second amplitude derivative of
				the horizontal tune wrt Ax
NUY2AX	$1/M^2$	double	0.0	Second amplitude derivative of
				the vertical tune wrt Ax
NUX2AY	$1/M^{2}$	double	0.0	Second amplitude derivative of
				the horizontal tune wrt Ay
NUY2AY	$1/M^{2}$	double	0.0	Second amplitude derivative of
				the vertical tune wrt Ay

ILMATRIX continued

An Individualized Linear Matrix for each particle for fast symplectic tracking with chromatic and amplitude-dependent effects

Parameter Name		Type	Default	Description
NUX1AX1AY	$1/M^{2}$	double	0.0	Amplitude derivative of the
				horizontal tune wrt Ax and Ay
NUY1AX1AY	$1/M^{2}$	double	0.0	Amplitude derivative of the
				vertical tune wrt Ax and Ay
BETAX	M	double	0.0	On-momentum horizontal
				beta function
BETAY	M	double	0.0	On-momentum vertical beta
				function
BETAX1M	M	double	0.0	First chromatic derivative of
				horizontal beta function
BETAY1M	M	double	0.0	First chromatic derivative of
				vertical beta function
ALPHAX		double	0.0	On-momentum horizontal al-
				pha function
ALPHAY		double	0.0	On-momentum vertical alpha
				function
ALPHAX1M		double	0.0	First chromatic derivative of
				horizontal alpha function
ALPHAY1M		double	0.0	First chromatic derivative of
				vertical alpha function
ETAX	M	double	0.0	On-momentum horizontal eta
				function
ETAPX		double	0.0	On-momentum horizontal eta'
				function
ETAY	M	double	0.0	On-momentum vertical eta
				function
ETAPY		double	0.0	On-momentum vertical eta'
				function
ETAX1	M	double	0.0	First chromatic derivative of
				horizontal eta function
ETAPX1		double	0.0	First chromatic derivative of
				horizontal eta' function
ETAY1	M	double	0.0	First chromatic derivative of
				vertical eta function
ETAPY1		double	0.0	First chromatic derivative of
				vertical eta' function

ILMATRIX continued

An Individualized Linear Matrix for each particle for fast symplectic tracking with chromatic and amplitude-dependent effects

Parameter Name	Units	Type	Default	Description
ALPHAC		double	0.0	First-order momentum com-
				paction factor
ALPHAC2		double	0.0	Second-order momentum com-
				paction factor
ALPHAC3		double	0.0	Third-order momentum com-
				paction factor
DS1AX		double	0.0	First amplitude derivative of
				the path length wrt Ax
DS1AY		double	0.0	First amplitude derivative of
				the path length wrt Ay
DS2AX	1/M	double	0.0	Second amplitude derivative of
				the path length wrt Ax
DS2AY	1/M	double	0.0	Second amplitude derivative of
				the path length wrt Ay
DS1AX1AY	1/M	double	0.0	Amplitude derivative of the
				path length wrt Ax and Ay
TILT	RAD	double	0.0	Rotation angle about the lon-
				gitudinal axis.
CROSS_RESONANCE		long	0	If zero, then particles that
				cross an integer or half-integer
				resonance are considered lost.
VERBOSITY		long	0	If nonzero, then information
				about particle losses is printed
				out.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element allows fast, symplectic tracking of transport through a periodic cell with chromatic and amplitude-dependent tunes, beta functions, and dispersion. This is done by computing a linear matrix for every particle using Twiss parameters, tunes, dispersion, etc., supplied by the user. The user can also supply selected chromatic and amplitude derivatives of these quantities, which are used to compute the individual particle's beta functions, tune, dispersion, etc., which in turn allows computing the individual particle's linear matrix.

The starting point is the well-known expression for the one-turn linear matrix in terms of the lattice functions

$$R_{q} = \begin{pmatrix} \cos 2\pi\nu_{q} + \alpha_{q} \sin 2\pi\nu_{q} & \beta_{q} \sin 2\pi\nu_{q} \\ -\gamma_{q} \sin 2\pi\nu_{q} & \cos 2\pi\nu_{q} - \alpha_{q} \sin 2\pi\nu_{q} \end{pmatrix}$$
 (23)

where ν_q is the tune in the q plane. We can expand the quantities in the matrix using

$$\nu_{q} = \nu_{q,0} + \sum_{n=1}^{3} \left(\frac{\partial^{n} \nu_{q}}{\partial \delta^{n}} \right)_{0} \frac{\delta^{n}}{n!} + \sum_{n=1}^{2} \left(\frac{\partial^{n} \nu_{q}}{\partial A_{x}^{n}} \right)_{0} \frac{A_{x}^{n}}{n!} + \sum_{n=1}^{2} \left(\frac{\partial^{n} \nu_{q}}{\partial A_{y}^{n}} \right)_{0} \frac{A_{y}^{n}}{n!} + \left(\frac{\partial^{2} \nu_{q}}{\partial A_{x} \partial A_{y}} \right)_{0} A_{x} A_{y} \quad (24)$$

where $\delta = (p - p_0)/p_0$ is the fractional momentum offset, $A_q = (q_\beta^2 + (\alpha_q q_\beta + \beta_q q_\beta')^2)/\beta_q$ is the betatron amplitude, and the betatron coordinates are computed using

$$q_{\beta} = q - \delta \left(\eta_q + \left(\frac{\partial \eta_q}{\partial \delta} \right)_0 \delta \right) \tag{25}$$

and

$$q_{\beta}' = q' - \delta \left(\eta_q' + \left(\frac{\partial \eta_q'}{\partial \delta} \right)_0 \delta \right) \tag{26}$$

At each turn, δ , A_x , and A_y are computed for each particle. The user-supplied values of the various derivatives are then used to compute the tunes for each particle. Similar expansions are used to compute the other lattice functions. This allows computing the 2x2 transfer matrices for the betatron coordinates in the x and planes, then advancing the betatron coordinates one turn, after which the full coordinates are recomputed by adding back the momentum-dependent closed orbit.

The pathlength is computed using the expansion

$$\Delta s = L \sum_{n=1}^{3} \alpha_{c,n} \delta^{n} + \sum_{n=1}^{2} \left(\frac{\partial^{n} s}{\partial A_{x}^{n}} \right)_{0} \frac{A_{x}^{n}}{n!} + \sum_{n=1}^{2} \left(\frac{\partial^{n} s}{\partial A_{y}^{n}} \right)_{0} \frac{A_{y}^{n}}{n!} + \left(\frac{\partial^{2} s}{\partial A_{x} \partial A_{y}} \right)_{0} A_{x} A_{y}$$
 (27)

where $\alpha_{c,1}$ is the linear momentum compaction factor. Note that in keeping with convention the higher-order momentum compaction is expressed by polynomial coefficients, not derivatives. The terms dependent on betatron amplitude are expressed in terms of the more typical derivatives. The frequency_map command can be used to compute path-length dependence on betatron amplitude.

Using this element is very similar to using the setup_linear_chromatic_tracking command. The advantage is that using LMATRIX, one can split a ring into segments and place, for example, impedance elements between the segments.

This element was inspired by requests from Y. Chae (APS).

N.B.: There is a bug related to using **ILMATRIX** that will result in a crash if one does not request computation of the twiss parameters. If you encounter this problem, just add the following statement after the **run_setup** command:

&twiss_output

matched = 1

&end

KICKER

10.39 KICKER

A combined horizontal-vertical steering magnet implemented as a matrix, up to 2nd order. For time-dependent kickers, see BUMPER.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
HKICK	RAD	double	0.0	x kick angle
VKICK	RAD	double	0.0	y kick angle
TILT	RAD	double	0.0	rotation about longitudinal
				axis
B2	$1/M^{2}$	double	0.0	normalized sextupole
				strength (e.g., $kick =$
				$KICK^*(1+B2*x\hat{2}))$
HCALIBRATION		double	1	factor applied to obtain x kick
VCALIBRATION		double	1	factor applied to obtain y kick
EDGE_EFFECTS		long	0	include edge effects?
ORDER		long	0	matrix order
STEERING		long	1	use for steering?
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
LERAD		double	0.0	if L=0, use this length for ra-
				diation computations
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

KOCT

10.40 KOCT

A canonical kick octupole. Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
K3	$1/M^4$	double	0.0	geometric strength
TILT	RAD	double	0.0	rotation about longitudinal
	naD	double	0.0	axis
BORE	M	double	0.0	bore radius
	T			
В		double	0.0	field at pole tip (used if bore
DV	3.6	1 11	0.0	nonzero)
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
N_KICKS		long	4	number of kicks
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
SYSTEMATIC_MULTIPOLES		STRING	NULL	input file for systematic multi-
				poles
RANDOM_MULTIPOLES		STRING	NULL	input file for random multi-
				poles
INTEGRATION_ORDER		long	4	integration order (2 or 4)
SQRT_ORDER		long	0	Order of expansion of square-
				root in Hamiltonian. 0 means
				no expansion.
ISR		long	0	include incoherent syn-
		6	-	chrotron radiation (scatter-
				ing)?
ISR1PART		long	1	Include ISR for single-particle
		10116	1	beam only if ISR=1 and
				ISR1PART=1
GROUP		string	NULL	Optionally used to assign an
		Sumg	NOLL	element to a group, with a
				user-defined name. Group
				- 1
				names will appear in the parameter output file in the col-
		1		umn ElementGroup

KPOLY

10.41 KPOLY

A thin kick element with polynomial dependence on the coordinates in one plane.

Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
COEFFICIENT	M^{-ORDER}	double	0.0	coefficient of polynomial
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FACTOR		double	1	additional factor to apply
ORDER		long	0	order of polynomial
PLANE		STRING	X	plane to kick (x, y)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

KQUAD

10.42 KQUAD

A canonical kick quadrupole.

Parallel capable? : yes GPU capable? : yes

GPU capable? : yes Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
K1	$1/M^{2}$	double	0.0	geometric strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
BORE	M	double	0.0	bore radius
В	T	double	0.0	pole tip field (used if bore
				nonzero)
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
HKICK	RAD	double	0.0	horizontal correction kick
VKICK	RAD	double	0.0	vertical correction kick
HCALIBRATION		double	1	calibration factor for horizon-
				tal correction kick
VCALIBRATION		double	1	calibration factor for vertical
				correction kick
HSTEERING		long	0	use for horizontal correction?
VSTEERING		long	0	use for vertical correction?
N_KICKS		long	4	number of kicks
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
SYSTEMATIC_MULTIPOLES		STRING	NULL	input file for systematic multi-
				poles
EDGE_MULTIPOLES		STRING	NULL	input file for systematic edge
				multipoles
RANDOM_MULTIPOLES		STRING	NULL	input file for random multi-
				poles
STEERING_MULTIPOLES		STRING	NULL	input file for multipole content
				of steering kicks
INTEGRATION_ORDER		long	4	integration order (2 or 4)
SQRT_ORDER		long	0	Order of expansion of square-
				root in Hamiltonian. 0 means
				no expansion.

${\tt KQUAD}$ continued

A canonical kick quadrupole.

Parameter Name	Units	Type	Default	Description
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
ISR1PART		long	1	Include ISR for single-particle
		O O		beam only if ISR=1 and
				ISR1PART=1
EDGE1_EFFECTS		long	0	include entrance edge effects?
EDGE2_EFFECTS		long	0	include exit edge effects?
LEFFECTIVE	M	double	0.0	Effective length. Ignored if
				non-positive.
I0P	M	double	0.0	i0+ fringe integral
I1P	M^2	double	0.0	i1+ fringe integral
I2P	M^3	double	0.0	i2+ fringe integral
I3P	M^4	double	0.0	i3+ fringe integral
LAMBDA2P	M^3	double	0.0	lambda2+ fringe integral
IOM	M	double	0.0	i0- fringe integral
I1M	M^2	double	0.0	i1- fringe integral
I2M	M^3	double	0.0	i2- fringe integral
I3M	M^4	double	0.0	i3- fringe integral
LAMBDA2M	M^3	double	0.0	lambda2- fringe integral
EDGE1_LINEAR		long	1	Use to selectively turn off lin-
				ear part if EDGE1_EFFECTS
				nonzero.
EDGE2_LINEAR		long	1	Use to selectively turn off lin-
				ear part if EDGE2_EFFECTS
				nonzero.
EDGE1_NONLINEAR_FACTOR		double	1	Use to selectively scale non-
				linear entrance edge effects if
				EDGE1_EFFECTS>1
EDGE2_NONLINEAR_FACTOR		double	1	Use to selectively scale non-
				linear exit edge effects if
				EDGE2_EFFECTS>1
RADIAL		long	0	If non-zero, converts the
				quadrupole into a radially-
				focusing lens
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a quadrupole using a kick method based on symplectic integration. The user specifies the number of kicks and the order of the integration. For computation of twiss

parameters and response matrices, this element is treated like a standard thick-lens quadrupole; i.e., the number of kicks and the integration order become irrelevant.

Specification of systematic and random multipole errors is supported through the SYSTEMATIC_MULTIPOLES, EDGE_MULTIPOLES, and RANDOM_MULTIPOLES fields. These specify, respectively, fixed multipole strengths for the body of the element, fixed multipole strengths for the edges of the element, and random multipole strengths for the body of the element. These fields give the names of SDDS files that supply the multipole data. The files are expected to contain a single page of data with the following elements:

- 1. Floating point parameter referenceRadius giving the reference radius for the multipole data.
- 2. An integer column named order giving the order of the multipole. The order is defined as $(N_{poles} 2)/2$, so a quadrupole has order 1, a sextupole has order 2, and so on.
- 3. Floating point columns normal and skew giving the values for the normal and skew multipole strengths, respectively. (N.B.: previous versions used the names an and bn, respectively. This is still accepted but deprecated) These are defined as a fraction of the main field strength measured at the reference radius, R: $f_n = \frac{K_n R^n/n!}{K_m R^m/m!}$, where m=1 is the order of the main field and n is the order of the error multipole. A similar relationship holds for the skew multipole fractional strengths. For random multipoles, the values are interpreted as rms values for the distribution.

Specification of systematic higher multipoles due to steering fields is supported through the STEERING_MULTIPOLES field. This field gives the name of an SDDS file that supplies the multipole data. The file is expected to contain a single page of data with the following elements:

- 1. Floating point parameter referenceRadius giving the reference radius for the multipole data.
- 2. An integer column named order giving the order of the multipole. The order is defined as $(N_{poles} 2)/2$. The order must be an even number because of the quadrupole symmetry.
- 3. Floating point column normal giving the values for the normal multipole strengths, which are driven by the horizontal steering field. (N.B.: previous versions used the name an for this data. This is still accepted but deprecated) normal is specifies the multipole strength as a fraction f_n of the steering field strength measured at the reference radius, R: $f_n = \frac{K_n R^n/n!}{K_m R^m/m!}$, where m = 0 is the order of the steering field and n is the order of the error multipole. The skew values (for vertical steering) are deduced from the normal values, specifically, $g_n = f_n * (-1)^{n/2}$.

The dominant systematic multipole term in the steering field is a sextupole. Note that elegant presently *does not* include such sextupole contributions in the computation of the chromaticity via the twiss_output command. However, these chromatic effects will be seen in tracking.

Apertures specified via an upstream MAXAMP element or an aperture_input command will be imposed inside this element.

As of version 29.2, this element incorporates the ability to have different values for the insertion and effective lengths. This is invoked when LEFFECTIVE is positive. In this case, the L parameter is understood to be the physical insertion length. Using LEFFECTIVE is a convenient way to incorporate the fact that the effective length may differ from the physical length and even vary with excitation, without having to modify the drift spaces on either side of the quadrupole element.

Fringe field effects are based on publications of D. Zhuo et al. [34] and J. Irwin et al. [35], as well as unpublished work of C. X. Wang (ANL). The fringe field is characterized by 10 integrals given

in equations 19, 20, and 21 of [34]. However, the values input into elegant should be normalized by K_1 or K_1^2 , as appropriate.

For the exit-side fringe field, let s_1 be the center of the magnet, s_0 be the location of the nominal end of the magnet (for a hard-edge model), and let s_2 be a point well outside the magnet. Using $K_{1,he}(s)$ to represent the hard edge model and $K_1(s)$ the actual field profile, we define the normalized difference as $\tilde{k}(s) = (K_1(s) - K_{1,he}(s))/K_1(s_1)$. (Thus, $\tilde{k}(s) = \tilde{K}(s)/K_0$, using the notation of Zhou et al.)

The integrals to be input to elegant are defined as

$$i_0^- = \int_{s_1}^{s_0} \tilde{k}(s)ds \qquad i_0^+ = \int_{s_0}^{s_2} \tilde{k}(s)ds$$
 (28)

$$i_{1}^{-} = \int_{s_{1}}^{s_{0}} \tilde{k}(s)(s - s_{0})ds \qquad i_{1}^{+} = \int_{s_{0}}^{s_{2}} \tilde{k}(s)(s - s_{0})ds \qquad (29)$$

$$i_{2}^{-} = \int_{s_{1}}^{s_{0}} \tilde{k}(s)(s - s_{0})^{2}ds \qquad i_{2}^{+} = \int_{s_{0}}^{s_{2}} \tilde{k}(s)(s - s_{0})^{2}ds \qquad (30)$$

$$i_2^- = \int_{s_1}^{s_0} \tilde{k}(s)(s - s_0)^2 ds \qquad i_2^+ = \int_{s_0}^{s_2} \tilde{k}(s)(s - s_0)^2 ds \tag{30}$$

$$i_{3}^{-} = \int_{s_{1}}^{s_{0}} \tilde{k}(s)(s - s_{0})^{3} ds \qquad i_{3}^{+} = \int_{s_{0}}^{s_{2}} \tilde{k}(s)(s - s_{0})^{3} ds$$
 (31)

$$\lambda_{2}^{-} = \int_{s_{1}}^{s_{0}} ds \int_{s}^{s_{0}} ds' \tilde{k}(s) \tilde{k}(s')(s'-s) \qquad \lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{k}(s) \tilde{k}(s')(s'-s) \tag{32}$$

Normally, the effects are dominated by i_1^- and i_1^+ .

The EDGE1_EFFECTS and EDGE2_EFFECTS parameters can be used to turn fringe field effects on and off, but also to control the order of the implementation. If the value is 1, linear fringe effects are included. If the value is 2, leading-order (cubic) nonlinear effects are included. If the value is 3 or higher, higher order effects are included.

In order to improve performance, the horizontal and vertical steering kicks are only applied at the entrance and exit of the element. E.g., if a horizontal kick of $\Delta x'$ is specified, $\Delta x'/2$ is applied at the entrance and at the exit.

KQUSE

10.43 KQUSE

A canonical kick element combining quadrupole and sextupole fields.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
K1	$1/M^{2}$	double	0.0	geometric quadrupole strength
K2	$1/M^{3}$	double	0.0	geometric sextupole strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE1	M	double	0.0	fractional strength error for
				K1
FSE2	M	double	0.0	fractional strength error for
				K2
N_KICKS		long	4	number of kicks
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
INTEGRATION_ORDER		long	4	integration order (2 or 4)
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
ISR1PART		long	1	Include ISR for single-particle
				beam only if ISR=1 and
				ISR1PART=1
MATRIX_TRACKING		long	0	For testing only.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

KSBEND

10.44 KSBEND

A kick bending magnet which is NOT canonical, but is better than a 2nd order matrix implementation. Use CSBEND instead.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	arc length
ANGLE	RAD	double	0.0	bend angle
K1	$1/M^{2}$	double	0.0	geometric quadrupole strength
K2	$1/M^{3}$	double	0.0	geometric sextupole strength
K3	$1/M^4$	double	0.0	geometric octupole strength
K4	$1/M^{5}$	double	0.0	geometric decapole strength
E1	RAD	double	0.0	entrance edge angle
E2	RAD	double	0.0	exit edge angle
TILT	RAD	double	0.0	rotation about incoming longi-
				tudinal axis
H1	1/M	double	0.0	entrance pole-face curvature
H2	1/M	double	0.0	exit pole-face curvature
HGAP	M	double	0.0	half-gap between poles
FINT		double	0.5	edge-field integral
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
ETILT	RAD	double	0.0	error rotation about incoming
				longitudinal axis
N_KICKS		long	4	number of kicks
NONLINEAR		long	1	include nonlinear field compo-
				nents?
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
EDGE1_EFFECTS		long	1	include entrance edge effects?
EDGE2_EFFECTS		long	1	include exit edge effects?
EDGE_ORDER		long	1	edge matrix order
PARAXIAL		long	0	use paraxial approximation?
TRANSPORT		long	0	use (incorrect) TRANSPORT
				equations for T436 of edge?
METHOD		STRING	modified-midpoint	integration method (modified-
				midpoint, leap-frog

KSBEND continued

A kick bending magnet which is NOT canonical, but is better than a 2nd order matrix implemen-

tation. Use CSBEND instead.

tation. Obc CDDD1	III III C	aa.		
Parameter Name	Units	Type	Default	Description
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

KSEXT

10.45 KSEXT

A canonical kick sextupole, which differs from the MULT element with ORDER=2 in that it can be used for chromaticity correction.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
K2	$1/M^{3}$	double	0.0	geometric strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
BORE	M	double	0.0	bore radius
В	T	double	0.0	field at pole tip (used if bore
				nonzero)
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
HKICK	RAD	double	0.0	horizontal correction kick
VKICK	RAD	double	0.0	vertical correction kick
HCALIBRATION		double	1	calibration factor for horizon-
				tal correction kick
VCALIBRATION		double	1	calibration factor for vertical
				correction kick
HSTEERING		long	0	use for horizontal correction?
VSTEERING		long	0	use for vertical correction?
N_KICKS		long	4	number of kicks
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
SYSTEMATIC_MULTIPOLES		STRING	NULL	input file for systematic multi-
				poles
EDGE_MULTIPOLES		STRING	NULL	input file for systematic edge
				multipoles
RANDOM_MULTIPOLES		STRING	NULL	input file for random multi-
				poles
STEERING_MULTIPOLES		STRING	NULL	input file for multipole content
				of steering kicks
INTEGRATION_ORDER		long	4	integration order (2 or 4)
SQRT_ORDER		long	0	Order of expansion of square-
				root in Hamiltonian. 0 means
				no expansion.

KSEXT continued

A canonical kick sextupole, which differs from the MULT element with ORDER=2 in that it can be used for chromaticity correction.

Parameter Name	Units	Type	Default	Description
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
ISR1PART		long	1	Include ISR for single-particle
				beam only if ISR=1 and
				ISR1PART=1
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a sextupole using a kick method based on symplectic integration. The user specifies the number of kicks and the order of the integration. For computation of twiss parameters, chromaticities, and response matrices, this element is treated like a standard thicklens sextuupole; i.e., the number of kicks and the integration order become irrelevant.

Specification of systematic and random multipole errors is supported through the SYSTEMATIC_MULTIPOLES, EDGE_MULTIPOLES, and RANDOM_MULTIPOLES fields. These specify, respectively, fixed multipole strengths for the body of the element, fixed multipole strengths for the edges of the element, and random multipole strengths for the body of the element. These fields give the names of SDDS files that supply the multipole data. The files are expected to contain a single page of data with the following elements:

- 1. Floating point parameter referenceRadius giving the reference radius for the multipole data.
- 2. An integer column named order giving the order of the multipole. The order is defined as $(N_{poles} 2)/2$, so a quadrupole has order 1, a sextupole has order 2, and so on.
- 3. Floating point columns normal and skew giving the values for the normal and skew multipole strengths, respectively. (N.B.: previous versions used the names an and bn, respectively. This is still accepted but deprecated) These are defined as a fraction of the main field strength measured at the reference radius, R: $f_n = \frac{K_n R^n/n!}{K_m R^m/m!}$, where m=2 is the order of the main field and n is the order of the error multipole. A similar relationship holds for the skew multipole fractional strengths. For random multipoles, the values are interpreted as rms values for the distribution.

Specification of systematic higher multipoles due to steering fields is supported through the STEERING_MULTIPOLES field. This field gives the name of an SDDS file that supplies the multipole data. The file is expected to contain a single page of data with the following elements:

1. Floating point parameter referenceRadius giving the reference radius for the multipole data.

- 2. An integer column named order giving the order of the multipole. The order is defined as $(N_{poles} 2)/2$. The order must be an even number because of the quadrupole symmetry.
- 3. Floating point column normal giving the values for the normal multipole strengths, which are driven by the horizontal steering field. (N.B.: previous versions used the name an for this data. This is still accepted but deprecated) normal is specifies the multipole strength as a fraction f_n of the steering field strength measured at the reference radius, R: $f_n = \frac{K_n R^n/n!}{K_m R^m/m!}$, where m = 0 is the order of the steering field and n is the order of the error multipole. The skew values (for vertical steering) are deduced from the normal values, specifically, $g_n = f_n * (-1)^{n/2}$.

Apertures specified via an upstream MAXAMP element or an aperture_input command will be imposed inside this element.

LMIRROR

10.46 LMIRROR

A mirror for light optics Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
RX	M	double	0.0	radius in horizontal plane
RY	M	double	0.0	radius in vertical plane
THETA	RAD	double	0.0	angle of incidence (in horizon-
				tal plane)
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
TILT	RAD	double	0.0	misalignment rotation about
				longitudinal axis
YAW	RAD	double	0.0	misalignment rotation about
				vertical axis
PITCH	RAD	double	0.0	misalignment rotation about
				transverse horizontal axis
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

LRWAKE

10.47 LRWAKE

 $\label{long-range} \mbox{Long-range (inter-bunch and inter-turn) longitudinal and transverse wake}$

Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
INPUTFILE		STRING	NULL	name of file giving Green func-
				tion
TCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining time data
WXCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining horizontal dipole
				Green function
WYCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining vertical dipole Green
				function
WZCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining longitudinal Green
				function
QXCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining horizontal quadrupole
				Green function
QYCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining vertical quadrupole
				Green function
FACTOR		double	1	factor by which to multiply
				wakes
XFACTOR		double	1	factor by which to multiply
				longitudinal wake
YFACTOR		double	1	factor by which to multiply
				horizontal dipole wake
ZFACTOR		double	1	factor by which to multiply
				vertical dipole wake
QXFACTOR		double	1	factor by which to multiply
				horizontal quadrupole wake
QYFACTOR		double	1	factor by which to multiply
				vertical quadrupole wake
TURNS_TO_KEEP		long	128	number of turns of data to re-
				tain
RAMP_PASSES		long	0	Number of passes over which
				to linearly ramp up the wake
				to full strength.

LRWAKE continued

Long-range (inter-bunch and inter-turn) longitudinal and transverse wake

Parameter Name	Units	Type	Default	Description
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element provides serial and parallel modeling of long range, multi-bunch, multi-pass, non-resonant wakes. Resonant wakes can be modeled using the *RFMODE elements, while short-range wakes are modeled with WAKE, TRWAKE, ZLONGIT, ZTRANSVERSE, and RFCW.

For the LRWAKE element, the beam is assumed to be bunched and wakes are computed bunch-to-bunch. The long-range wake is assumed to be constant within any single bunch.

To use this element, the beam has to be prepared in a special way so that elegant can recognize which particles belong to which bunches. See Section 6 for details. Given a properly prepared beam, the algorithm works as follows.

- Each processor uses arrays to record
 - How many particles are in each of B bunches,
 - The sum of the arrival times t at the LRWAKE element for the particles in each bunch,
 and
 - The sum of x and y at the LRWAKE element for the particles in each bunch.
- These arrays are summed across all the processors and used to compute the moments $\langle t \rangle$, $\langle x \rangle$, and $\langle y \rangle$ for each bunch, as well as the charge in each bunch.
- Arrays of length B from N prior turns are kept in a buffer
 - Buffer for turns N-1 to 1 is copied to slots N through 2, thus overwriting the data for the oldest turn.
 - $-\,$ The data for latest turn is copied into slot 1.
- For each bunch, sums are performed over all prior bunches/turns to compute the voltage. For the longitudinal wake, we have

$$V_z(b) = \sum_{i=b}^{N*B} q_i W_z(\langle t_b \rangle - \langle t_i \rangle). \tag{33}$$

A positive value decelerates the particle. For the horizontal dipole wake we have

$$V_x(b) = \sum_{i=b}^{N*B} q_i \langle x_i \rangle W_x(\langle t_b \rangle - \langle t_i \rangle), \tag{34}$$

with the vertical wake being similar. In both cases, a positive value deflects the particle toward positive x or y for a positive offset of the driving particle.

• The quadrupole wakes may also be included. In this case, the contribution to the horizontal wake is

$$V_x(b) = \sum_{i=b}^{N*B} q_i x_p W_x(\langle t_b \rangle - \langle t_i \rangle), \tag{35}$$

where x_p is the coordinate of the probe particle. The vertical wake is similar.

To use LRWAKE, the user provides the wakes (functions of t) in an SDDS file. These wakes may extend over an arbitrary number of turns, with the user declaring how many turns to actually use as part of the element definition. However, they should be zero within the region occupied by a single bunch, to avoid double-counting with the true short-range wake. (Note that the above sums include the self-wake.) Similarly, the short-range should be zero for times comparable to the bunch spacing.

Note that the quadrupole wakes are in some cases related to the dipole wakes by constant numerical factors [48]. In such a case, one may name the same column for QXCOLUMN (QYCOLUMN) and WXCOLUMN (WYCOLUMN) and then specify QXFACTOR (QYFACTOR) appropriately.

LSCDRIFT

10.48 LSCDRIFT

Longitudinal space charge impedance

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
LEFFECTIVE	M	double	0.0	effective length (used if L=0)
BINS		long	0	number of bins for current his-
				togram
SMOOTHING		long	0	Use Savitzky-Golay filter to
				smooth current histogram?
SG_HALFWIDTH		long	1	Savitzky-Golay filter half-
				width for smoothing current
				histogram
SG_ORDER		long	1	Savitzky-Golay filter order for
				smoothing current histogram
INTERPOLATE		long	1	Interpolate wake?
LOW_FREQUENCY_CUTOFF0		double	-1	Highest spatial frequency at
				which low-frequency cutoff fil-
				ter is zero. If not positive,
				no low-frequency cutoff filter is
				applied. Frequency is in units
				of Nyquist (0.5/binsize).
LOW_FREQUENCY_CUTOFF1		double	-1	Lowest spatial frequency
				at which low-frequency
				cutoff filter is 1. If
				not given, defaults to
				LOW_FREQUENCY_CUTOF
HIGH_FREQUENCY_CUTOFF0		double	-1	Spatial frequency at which
·				smoothing filter begins. If
				not positive, no frequency fil-
				ter smoothing is done. Fre-
				quency is in units of Nyquist
				(0.5/binsize).
HIGH_FREQUENCY_CUTOFF1		double	-1	Spatial frequency at which
				smoothing filter is 0. If
				not given, defaults to
				HIGH_FREQUENCY_CUTOF

LSCDRIFT continued

Longitudinal space charge impedance

Parameter Name	Units	Type	Default	Description
RADIUS_FACTOR		double	1.7	LSC radius is
				$(Sx+Sy)/2*RADIUS_FACTOR$
LSC		long	1	Include longitudinal space-
				charge impedance? If zero,
				acts like ordinary drift.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates longitudinal space charge in a drift space using the method described in [22]. This is based on the longitudinal space charge impedance per unit length

$$Z_{lsc}(k) = \frac{iZ_0}{\pi k r_b^2} \left[1 - \frac{kr_b}{\gamma} K_1 \left(\frac{kr_b}{\gamma} \right) \right]$$
 (36)

If L is 0 and LEFFECTIVE is not, then the element provides a LSC kick with impedance given by $Z_{lsc}L_{effective}$. This can be used to insert an LSC kick that integrates the longitudinal space charge effect of a section of a lattice. This should be used only for cases where there is very little relative longitudinal motion of particles.

LSRMDLTR

10.49 LSRMDLTR

A non-symplectic numerically integrated planar undulator including optional co-propagating laser beam for laser modulation of the electron beam.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
BU	T	double	0.0	Undulator peak field
PERIODS		long	0	Number of undulator periods.
METHOD	NULL	STRING	non-adaptive runge-kutta	integration method (runge- kutta, bulirsch-stoer, modified-midpoint, two-pass modified-midpoint, leap-frog, non-adaptive runge-kutta)
FIELD_EXPANSION	NULL	STRING	leading terms	ideal, exact, or "leading terms"
ACCURACY	NULL	double	0.0	Integration accuracy for adaptive integration. (Not recommended)
N_STEPS		long	0	Number of integration steps for non-adaptive integration.
POLE_FACTOR1		double	0.1557150345504	Strength factor for the first and last pole.
POLE_FACTOR2		double	0.380687012288581	Strength factor for the second and second-to-last pole.
POLE_FACTOR3		double	0.802829337348179	Strength factor for the third and third-to-last pole.
LASER_WAVELENGTH	M	double	0.0	Laser wavelength. If zero, the wavelength is calculated from the resonance condition.
LASER_PEAK_POWER	W	double	0.0	laser peak power
LASER_W0	M	double	1	laser spot size at waist, $w_0 = \sqrt{2}\sigma_x = \sqrt{2}\sigma_y$
LASER_PHASE	RAD	double	0.0	laser phase
LASER_X0	M	double	0.0	laser horizontal offset at center of wiggler
LASER_Y0	M	double	0.0	laser vertical offset at center of wiggler

LSRMDLTR continued

A non-symplectic numerically integrated planar undulator including optional co-propagating laser

beam for laser modulation of the electron beam.

Parameter Name	Units	Type	Default	Description
LASER_Z0	M	double	0.0	offset of waist position from
				center of wiggler
LASER_TILT	RAD	double	0.0	laser tilt
LASER_M		long	0	laser horizontal mode number
				(<5)
LASER_N		long	0	laser vertical mode number
				(<5)
SYNCH_RAD		long	0	Include classical synchrotron
				radiation?
ISR		long	0	Include quantum excitation?
TIME_PROFILE	NULL	STRING	NULL	<filename $>$ = $<$ x $>+<$ y $>$ form
				specification of input file giv-
				ing time-dependent modula-
				tion of the laser electric and
				magnetic fields.
TIME_OFFSET	S	double	0.0	Time offset of the laser profile.
HELICAL		long	0	If non-zero, simulate helical
				undulator.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a planar undulator, together with an optional co-propagating laser beam that can be used as a beam heater or modulator. The simulation is done by numerical integration of the Lorentz equation. It is not symplectic, and hence this element is not recommended for long-term tracking simulation of undulators in storage rings.

The fields in the undulator can be expressed in one of three ways. The FIELD_EXPANSION parameter is used to control which method is used.

• The exact field, given by (see section 3.1.5 of the *Handbook of Accelerator Physics and Engineering*)

$$B_x = 0, (37)$$

$$B_y = B_0 \cosh k_u y \cos k_u z, \tag{38}$$

and

$$B_z = -B_0 \sinh k_u y \sin k_u z,\tag{39}$$

where $k_u = 2\pi/\lambda_u$ and λ_u is the undulator period. This is the most precise method, but also the slowest.

• The field expanded to leading order in y:

$$B_y = B_0(1 + \frac{1}{2}(k_u y)^2)\cos k_u z, \tag{40}$$

and

$$B_z = -B_0 k_u y \sin k_u z. \tag{41}$$

In most cases, this gives results that are very close to the exact fields, at a savings of 10% in computation time. This is the default mode.

• The "ideal" field:

$$B_{\nu} = B_0 \cos k_u z, \tag{42}$$

$$B_z = -B_0 k_u y \sin k_u z. \tag{43}$$

This is about 10% faster than the leading-order mode, but less precise. Also, it does not include vertical focusing, so it is not generally recommended.

If HELICAL is set to a nonzero value, a helical device is modeled by combining the fields of two planar devices, one of which is rotated 90 degrees and displaced one quarter wavelength. Again, the FIELD_EXPANSION parameter is used to control which method is used.

• The exact fields are

$$B_x = -B_0 \cosh k_u x \sin k_u z,\tag{44}$$

$$B_y = B_0 \cosh k_u y \cos k_u z,\tag{45}$$

and

$$B_z = -B_0 \sinh k_u y \sin k_u z - B_0 \sinh k_u x \cos k_u z, \tag{46}$$

• The field expanded to leading order in x and y:

$$B_x = -B_0(1 + \frac{1}{2}(k_u x)^2)\sin k_u z, \tag{47}$$

$$B_y = B_0(1 + \frac{1}{2}(k_u y)^2)\cos k_u z,$$
(48)

and

$$B_z = -B_0 k_u y \sin k_u z - B_0 k_u x \cos k_u z. \tag{49}$$

• The "ideal" field is

$$B_x = -B_0 \sin k_u z,\tag{50}$$

$$B_y = B_0 \cos k_u z,\tag{51}$$

$$B_z = 0 (52)$$

This is about 10% faster than the leading-order mode, but less precise. Also, it does not include vertical focusing, so it is not generally recommended.

The expressions for the laser field used by this element are from A. Chao's article "Laser Acceleration — Focussed Laser," available on-line at

http://www.slac.stanford.edu/ \sim achao/LaserAccelerationFocussed.pdf . The implementation covers laser modes TEMij, where $0 \le i \le 4$ and $0 \le j \le 4$.

By default, if the laser wavelength is not given, it is computed from the resonance condition:

$$\lambda_l = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{1}{2} K^2 \right),\tag{53}$$

where γ is the relativistic factor for the beam and K is the undulator parameter.

The adaptive integrator doesn't work well for this element, probably due to sudden changes in field derivatives in the first and last three poles (a result of the implementation of the undulator terminations). Hence, the default integrator is non-adaptive Runge-Kutta. The integration accuracy is controlled via the N_STEPS parameter. N_STEPS should be about 100 times the number of undulator periods.

The three pole factors are defined so that the trajectory is centered about x = 0 and x' = 0 with zero dispersion. This wouldn't be true with the standard two-pole termination, which might cause problems overlapping the laser with the electron beam.

The laser time profile can be specified using the TIME_PROFILE parameter to specify the name of an SDDS file containing the profile. If given, the electric and magnetic fields of the laser are multiplied by the profile P(t). Hence, the laser intensity is multiplied by $P^2(t)$. By default t=0 in the profile is lined up with $\langle t \rangle$ in the electron bunch. This can be changed with the TIME_OFFSET parameter. A positive value of TIME_OFFSET moves the laser profile forward in time (toward the head of the bunch).

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

LTHINLENS

10.50 LTHINLENS

A thin lens for light optics Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
FX	M	double	0.0	focal length in horizontal plane
FY	M	double	0.0	focal length in vertical plane
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
TILT	RAD	double	0.0	misalignment rotation about
				longitudinal axis
YAW	RAD	double	0.0	misalignment rotation about
				vertical axis
PITCH	RAD	double	0.0	misalignment rotation about
				transverse horizontal axis
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

MAGNIFY

10.51 MAGNIFY

An element that allows multiplication of phase-space coordinates of all particles by constants. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
MX		double	1	factor for x coordinates
MXP		double	1	factor for x' coordinates
MY		double	1	factor for y coordinates
MYP		double	1	factor for y' coordinates
MS		double	1	factor for s coordinates
MDP		double	1	factor for (p-
				pCentral)/pCentral
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

MALIGN

10.52 MALIGN

A misalignment of the beam, implemented as a zero-order matrix.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
DXP		double	0.0	delta x'
DYP		double	0.0	delta y'
DX	M	double	0.0	delta x
DY	M	double	0.0	delta y
DZ	M	double	0.0	delta z
DT	S	double	0.0	delta t
DP		double	0.0	delta p/pCentral
DE		double	0.0	delta gamma/gammaCentral
ON_PASS		long	-1	pass on which to apply
FORCE_MODIFY_MATRIX		long	0	modify the matrix even if
				$on_pass>=0$
START_PID		long	-1	starting particleID for parti-
				cles to affect. By default, all
				particles are affected.
END_PID		long	-1	ending particleID for particles
				to affect. By default, all parti-
				cles are affected.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The default value of the PASS parameter (-1) means that the misalignment is imposed on the beam *every* pass. This is appropriate for static misalignments. When using the MALIGN element to kick the beam for beam dynamics studies in rings, PASS>=0 is required. If PASS=0, closed orbit computation and correction will include the effect of the kick; however, matrix-based computations by default will not (set FORCE_MODIFY_MATRIX=1 to change this). If PASS>0, then closed orbit computation and correction do not include the kick, which is probably what is desired in beam dynamics studies in rings.

MAPSOLENOID

10.53 MAPSOLENOID

A numerically-integrated solenoid specified as a map of (Bz, Br) vs (z, r).

Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
ETILT	RAD	double	0.0	misalignment
EYAW	RAD	double	0.0	misalignment
EPITCH	RAD	double	0.0	misalignment
N_STEPS		long	100	number of steps (for nonadap-
				tive integration)
INPUTFILE		STRING	NULL	SDDS file containing (Br, Bz)
				vs (r, z). Each page should
				have values for a fixed r.
RCOLUMN		STRING	NULL	column containing r values
ZCOLUMN		STRING	NULL	column containing z values
BRCOLUMN		STRING	NULL	column containing Br values
BZCOLUMN		STRING	NULL	column containing Bz values
FACTOR		double	0.0001	factor by which to multiply
				fields in file
BXUNIFORM		double	0.0	uniform horizontal field to su-
				perimpose on solenoid field
BYUNIFORM		double	0.0	uniform vertical field to super-
				impose on solenoid field
LUNIFORM		double	0.0	length of uniform field super-
				imposed on solenoid field
ACCURACY		double	0.0001	integration accuracy
METHOD		STRING	runge-kutta	integration method (runge-
				kutta, bulirsch-stoer, non-
				adaptive runge-kutta, modi-
				fied midpoint)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

MARK

10.54 MARK

A marker, equivalent to a zero-length drift space.

Parallel capable? : yes

GPU capable? : no
Parameter Name

Parameter Name	Units	Type	Default	Description
DX	M	double	0.0	non-functional misalignment
				(e.g., for girder)
DY	M	double	0.0	non-functional misalignment
				(e.g., for girder)
FITPOINT		long	0	Supply local values of Twiss
				parameters, moments, floor
				coordinates, matrices, etc. for
				optimization?
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

If FITPOINT=0, this element results only in generation of additional output rows in the various files that contain output vs s. For example, Twiss parameters, closed orbits, and matrices vs s will all contain a row for each occurrence of each marker element.

If FITPOINT=1, the element has additional functionality in the context of optimizations. In particular, for occurrence N of the defined element Element, a series of symbols are created of the form Element#N.quantity, where quantity has the following values:

- The quantity pCentral will be available, giving the reference value of $\beta\gamma$ at the marker location.
- The quantities Cx, Cxp, Cy, Cyp, Cs, and Cdelta will be available, giving coordinate centroid values from tracking to the marker location.
- The quantities Sx, Sxp, Sy, Syp, Ss, and Sdelta will be available, giving coordinate rms values $\sqrt{\langle (x_i \langle x_i \rangle)^2 \rangle}$ at the marker location from tracking.
- The quantity Particles will be available, giving the number of particles tracked to the marker location.
- The quantities sij will be available, giving $\langle (x_i \langle x_i \rangle)(x_j \langle x_j \rangle) \rangle$ from tracking at the marker location, where $1 \le i \le 6$ and $i < j \le 6$.
- The quantities betaxBeam, alphaxBeam, betayBeam, and alphayBeam, which are the twiss parameters computed from the beam moments obtained by tracking, will be available.

- The quantities Rij will be available, for $1 \le i \le 6$ and $1 \le j \le 6$, giving the accumulated first-order transport matrix to the marker location.
- If the default matrix order (as set in run_setup) is 2 or greater, the quantities Tijk will be available, for $1 \le i \le 6$, $1 \le j \le 6$, and $1 \le k \le j$, giving the accumulated second-order transport matrix to the marker location.
- If Twiss parameter calculations are being performed (via twiss_output with output_at_each_step=1), then the quantities alphax, betax, nux, etax, etapx, and etaxp, along with similarly-named quantities for the vertical plane, will be available, giving twiss parameter values at the marker location. Note that etapx and etaxp are the same, being alternate names for η'_x . If radiation integrals are requested, the values of the radiation integrals are available in the quantities I1, I2, etc.
- If coupled Twiss parameter calculations are being performed (via coupled_twiss_output with output_at_each_step=1), then the quantities betax1, betax2, betay1, betay2, cetax, cetay, and tilt will be available. (These are the two beta functions for x and y, the coupled dispersion values for x and y, and the beam tilt).
- If moments calculations are being performed (via moments_output with output_at_each_step=1), then the quantities sijm, $1 \le i \le j \le 6$, giving the 21 unique elements of the sigma matrix. The quantities cim, $1 \le i \le 6$, are also created, giving the 6 centroids from the moments computation. In addition, the emittances of the three modes are available using eim, $1 \le i \le 3$. The m on the end of the symbols is to distinguish them from the moments computed from tracking.
- If closed orbit calculations are being performed (via correct or closed_orbit), then the quantities xco, yco, xpco, and ypco will be available, giving the x and y closed orbits and their slopes, respectively, at the marker location.
- If floor coordinate calculations are begin performed (via floor_coordinates), then the quantities X, Y, Z, theta, phi, psi, and s will be available. These are, respectively, the three position coordinates, the three angle coordinates, and the total arc length at the marker location.

The misalignment controls for this element are non-functional, in the sense that they do not affect the beam. However, when combined with external scripts and the GROUP parameter, one can use this feature to implement girder misalignments using pairs of markers to indicate the ends of the girders. A future version of elegant will implement this internally.

MATR

10.55 MATR

Explicit matrix input from a text file, in the format written by the print_matrix command. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
FILENAME		STRING		input file
ORDER		long	1	matrix order
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The input file for this element uses a simple text format. It is identical to the output in the printout file generated by the tt matrix_output command. For example, for a 1st-order matrix, the file would have the following appearance:

description: C1 C2 C3 C4 C5 C6
R1: R11 R12 R13 R14 R15 R16
R2: R21 R22 R23 R24 R25 R26
R3: R31 R32 R33 R34 R35 R36
R4: R41 R42 R43 R44 R45 R46
R5: R51 R52 R53 R54 R55 R56
R6: R61 R62 R63 R64 R65 R66

Items in normal type must be entered exactly as shown, whereas those in italics must be provided by the user. The colons are important! For this particular example, one would set ORDER=1 in the MATR definition. In general, the Ci are zero, except for C5, which is usually equal to the length of the element (which must be specified with the L parameter in the MATR definition).

MATTER

10.56 MATTER

A Coulomb-scattering and energy-absorbing element simulating material in the beam path.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
LEFFECTIVE	M	double	0.0	effective length (used if L=0)
XO	M	double	0.0	radiation length
ENERGY_DECAY		long	0	If nonzero, then particles will
				lose energy due to material
				using a simple exponential
				model.
ENERGY_STRAGGLE		long	0	Use simple-minded energy
				straggling model coupled with
				ENERGY_DECAY=1?
NUCLEAR_BREMSSTRAHLUNG		long	0	Model energy loss to nuclear
				bremsstrahlung? If enabled,
				set ENERGY_DECAY=0 to
				disable simpler model.
ELECTRON_RECOIL		long	0	If non-zero, electron recoil
				during Coulomb scattering is
				included (results in energy
				change).
Z		long	0	Atomic number
A	AMU	double	0.0	Atomic mass
RHO	KG/M^3	double	0.0	Density
PLIMIT		double	0.05	Probability cutoff for each
				slice
WIDTH	M	double	0.0	Full width of slots. If 0, no
				slots are present.
SPACING	M	double	0.0	Center-to-center spacing of
				slots. If 0, no slots are present.
TILT	RAD	double	0.0	Tilt of slot array about the
				longitudinal axis.
CENTER	M	double	0.0	Position of center of slot array
				in rotated frame.
N_SLOTS		long	0	Number of empty slots in ma-
				terial. If $\leq =0$, an infinite ar-
				ray is assumed.

MATTER continued

A C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	. 1	.1 1 .1
A Coulomb-scattering and en	nergy-absorbing element	simillating material in	the beam nath
11 Coulomb scattering and c	mergy absorbing element	Simulating material in	one beam paon.

Parameter Name	Units	Type	Default	Description
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is based on section 3.3.1 of the Handbook of Accelerator Physics and Engineering, specifically, the subsections Single Coulomb scattering of spin- $\frac{1}{2}$ particles, Multiple Coulomb scattering through small angles, and Radiation length. There are two aspects to this element: scattering and energy loss.

Scattering. The multiple Coulomb scattering formula is used whenever the thickness of the material is greater than $0.001X_o$, where X_o is the radiation length. (Note that this is inaccurate for materials thicker than $100X_o$.) For this regime, the user need only specify the material thickness (L) and the radiation length (XO).

For materials thinner than $0.001X_o$, the user must specify additional parameters, namely, the atomic number (Z), atomic mass (A), and mass density (RHO) of the material. Note that the density is given in units of kg/m^3 . (Multiply by 10^3 to convert g/cm^3 to kg/m^3 .) In addition, the simulation parameter PLIMIT may be modified.

To understand this parameter, one must understand how elegant simulates the thin materials. First, it computes the expected number of scattering events per particle, $E = \sigma_T n L = \frac{K_1 \pi^3 n L}{K_2^2 + K_2 * \pi^2}$, where n is the number density of the material, L is the thickness of the material, $K_1 = (\frac{2Zr_e}{\beta^2\gamma})^2$, and $K_2 = \frac{\alpha^2 Z_3^2}{(\beta\gamma)^2}$, with r_e the classical electron radius and α the fine structure constant. The material is then broken into N slices, where $N = E/P_{limit}$. For each slice, each simulation particle has a probability E/N of scattering. If scattering occurs, the location within the slice is computed using a uniform distribution over the slice thickness.

For each scatter that occurs, the scattering angle, θ is computed using the cumulative probability distribution $F(\theta > \theta_o) = \frac{K_2(\pi^2 - \theta_o^2)}{\pi^2(K_2 + \theta_o^2)}$. This can be solved for θ_o , giving $\theta_o = \sqrt{\frac{(1-F)K_2\pi^2}{K_2 + F\pi^2}}$. For each scatter, F is chosen from a uniform random distribution on [0, 1].

Energy loss. There are two ways to compute energy loss in materials, using a simple minded approach and using the bremsstrahlung cross section. The latter is recommended, but the former is kept for backward compatibility.

- To enable bremsstrahlung simulation, simply set NUCLEAR_BREMSSTRAHLUNG=1. Note that the energy loss is not correlated with the scattering angle, which is not entirely physical but should be reasonable for large numbers of scattering events.
- To use the simplified approach:
 - Set ENERGY_DECAY=1. Energy loss simulation is very simple. The energy loss per unit distance traveled, x, is $\frac{dE}{dx} = -E/X_o$. Hence, in traveling through a material of thickness L, the energy of each particle is transformed from E to Ee^{-L/X_o} .

Optionally, set ENERGY_STRAGGLE=1. Not recomemnded. Exists only for backward compatibility. This adds variation in the energy lost by particles. The model is very, very crude and not recommended. It assumes that the standard deviation of the energy loss is equal to half the mean energy loss. This is an overestimate, we think, and is provided to give an upper bound on the effects of energy straggling until a real model can be developed. Note one obvious problem with this: if you split a MATTER element of length L into two pieces of length L/2, the total energy loss will not not change, but the induced energy spread will be about 30% lower, due to addition in quadrature.

Slotted absorber. If the WIDTH and SPACING parameters are set to non-zero values, then a slotted absorber is simulated. The number of slots is by default infinite, but can be limited by setting N_SLOTS to a positive value; in this case, the slot array is centered about the transverse coordinate given by the CENTER parameter.

Note that the simulation contains a simplification in that particles cannot leave or enter the material through the side of the slot. I.e., if a particle is inside (outside) the material when it hits the front face of the object, it is assumed to remain inside (outside) until it has passed the object. For long objects, breaking the simulation up into multiple MATTER elements is suggested if a slotted arrangement is being simulated.

One-sided scrapers. One sided scrapers may be modeled using the SCRAPER element. It uses the same material-modeling algorithm as described here.

MAXAMP

10.57 **MAXAMP**

A collimating element that sets the maximum transmitted particle amplitudes for all following elements, until the next MAXAMP.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
X_MAX	M	double	0.0	x half-aperture
Y_MAX	M	double	0.0	y half-aperture
ELLIPTICAL		long	0	is aperture elliptical?
EXPONENT		long	2	exponent for boundary equa-
				tion in elliptical mode. 2 is a
				true ellipse.
YEXPONENT		long	0	y exponent for boundary equa-
				tion in elliptical mode. If zero,
				defaults to EXPONENT.
OPEN_SIDE		STRING	NULL	which side, if any, is open $(+x,$
				-x, +y, -y
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element sets the aperture for itself and all subsequent elements. The settings are in force until another MAXAMP element is seen. Settings are also enforced inside of KQUAD, KSEXT, KOCT, KQUSE, CSBEND, and CSRCSBEND elements.

This can introduce unexpected behavior when beamlines are reflected. For example, consider the beamline

```
L1: LINE=( ... )
L2: LINE=( ... )
```

MA1: MAXAMP, X_MAX=0.01, Y_MAX=0.005 MA2: MAXAMP, X_MAX=0.01, Y_MAX=0.002

BL1: LINE=(MA1,L1,MA2,L2)
BL: LINE=(BL1,-BL1)

This is equivalent to

BL: LINE=(MA1,L1,MA2,L2,-L2,MA2,-L1,MA1)

Note that the aperture MA1 is the aperture for all of the first instance of beamline L1, but that MA2 is the aperture for the second instance, -L1. This is probably not what was intended. To prevent this, it is recommended to always use MAXAMP elements in pairs:

BL1: LINE=(MA2,MA1,L1,MA1,MA2,L2)

BL: LINE=(BL1,-BL1)

which is equivalent to

BL: LINE=(MA2,MA1,L1,MA1,MA2,L2,-L2,MA2,MA1,-L1,MA1,MA2)

Now, both instances of L1 have the aperture defined by MA1 and both instances of L2 have the aperture defined by MA2.

MBUMPER

10.58 MBUMPER

A time-dependent multipole kicker magnet. The waveform is in SDDS format, with time in seconds and amplitude normalized to 1.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
STRENGTH		double	0.0	geometric strength in
				1/môrder
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
TIME_OFFSET	S	double	0.0	time offset of waveform
ORDER		long	0	multipole order, where 1 is
				quadrupole, 2 is sextupole,
				etc.
PERIODIC		long	0	is waveform periodic?
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
FIRE_ON_PASS		long	0	pass number to fire on
N_KICKS		long	0	Number of kicks to use for sim-
				ulation.
WAVEFORM		STRING	NULL	<filename $>$ = $<$ x $>+<$ y $>$ form
				specification of input file giv-
				ing kick factor vs time
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a time-dependent multipole kicker magnet. To use this element, you must supply an SDDS file giving the time-dependent waveform. The element is called MBUMPER to because HKICK, VKICK, KICKER are used for steering magnets.

The arrival time of the beam is taken to define the reference time, t=0. Hence, if the waveform file has the maximum amplitude at t=0, the beam will get kicked at the peak of the waveform. If the waveform peaks at $t=t_{peak}$, then setting TIME_OFFSET equal to $-t_{peak}$ will ensure that the beam is kicked at the peak amplitude.

By default, the kicker fires on the first beam passage. However, if FIRE_ON_PASS is used, then

the kicker is treated like a drift space until the specified pass.

If PHASE_REFERENCE is non-zero, then the initial timing is taken from the first time-dependent element that has the same PHASE_REFERENCE value. This would allow, for example, simulating several kickers firing at the same time. Delays relative to this reference time can then be given with positive adjustments to TIME_OFFSET.

The input file need not have equispaced points in time. However, the time values should increase monotonically.

This element simulates a quadrupole or higher order kicker only. For dipole kickers, see the BUMPER element.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

MHISTOGRAM

10.59 MHISTOGRAM

Request for multiple dimensions $(1,\,2,\,4\ {\rm or}\ 6)$ histogram output of particle coordinates.

Parallel capable? : no GPU capable? : no

Parameter Name	Units	Type	Default	Description
FILE1D		STRING	NULL	filename for 1d histogram out-
				put, possibly incomplete (see
				below)
FILE2DH		STRING	NULL	filename for 2d x-x' histogram
				output, possibly incomplete
				(see below)
FILE2DV		STRING	NULL	filename for 2d y-y' histogram
				output, possibly incomplete
				(see below)
FILE2DL		STRING	NULL	filename for 2d dt-deltaP his-
				togram output, possibly in-
				complete (see below)
FILE4D		STRING	NULL	filename for 4d x-x'-y-y' his-
				togram output, possibly in-
				complete (see below)
FILE6D		STRING	NULL	filename for 6d x-x'-y-y'-dt-
				deltaP histogram output, pos-
				sibly incomplete (see below)
INPUT_BINS		STRING	NULL	Name of SDDS file contains in-
				put bin number.
INTERVAL		long	1	interval in passes between out-
				put.
START_PASS		long	0	starting pass for output
NORMALIZE		long	1	normalize histogram with
				number of particles?
DISABLE		long	0	If nonzero, no output will be
				generated.
LUMPED		long	0	If nonzero, then results at ele-
				ments with same name will be
				output to a single multipage
				SDDS file.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is used to generate multiple dimension (1, 2, 4, or 6) histogram output of particle coordinates.

The calculation is set up through output filename: FILE1D, FILE2DH, FILE2DV, FILE2DL, FILE4D, FILE6D. They may be an incomplete filename (see <code>HISTOGRAM</code> for detail). If <code>LUMPED</code> set to non zero, then results are directed to a multi page SDDS file with each page contains data of same elements <code>MHISTOGRAM</code> but at difference occurrence instead of multiple SDDS files. In this case the "%ld" in filename is ignored.

The bin number used to do histogram analysis is given through a SDDS file from INPUT_BINS. It contains 4 columns: Bins_1D, Bins_2D, Bins_4D, Bins_6D; and 6 rows (x, x', y, y', dt, delta). A non-zero value in Bins_1D is a switch for doing histogram analysis in corresponding dimension, and the maximum value in Bins_1D is used as bin number to do the analysis.

The normalization is different from HISTOGRAM as we alwayse treat bin-size = 1.

The output file uses the general format designed for a n-dimensional histogram data. It must contains a column named "Frequency" (Type: "double"), and following parameters:

- ND Type: long; Value: "n".
- Variable??Name Type: "string". "??" counts from "0" to "ND-1" in double digits format, same for all following parameters.
- Variable??Min Type: "double". Minimum value of "??" variable.
- Variable??Max Type: "double". Maximum value of "??" variable.
- Variable??Interval Type: "double". Bin size of "??" variable.
- Variable??Dimension Type: "long". Total number of bins of "??" variable. Variable??Dimension = (Variable??Max Variable??Min)/Variable??Interval+1.

The data is arranged as it has a "ND" index counter $[i_{ND-1}|...|i_1]$, where i_{ND-1} takes value from "0" to "Variable[%02d ND-1]Dimension".

MODRF

10.60 MODRF

A first-order matrix RF cavity with exact phase dependence, plus optional amplitude and phase modulation.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
VOLT	V	double	0.0	nominal voltage
PHASE	DEG	double	0.0	nominal phase
FREQ	Hz	double	500000000	nominal frequency
Q		double	0.0	cavity Q
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
AMMAG		double	0.0	magnitude of amplitude mod-
				ulation (fraction value)
AMPHASE	DEG	double	0.0	phase of amplitude modula-
				tion
AMFREQ	Hz	double	0.0	frequency of amplitude modu-
				lation
AMDECAY	1/s	double	0.0	exponential decay rate of am-
77.0.51.0	5.50			plitude modulation
PMMAG	DEG	double	0.0	magnitude of phase modula-
77.677.467	5.50			tion
PMPHASE	DEG	double	0.0	phase of phase modulation
PMFREQ	Hz	double	0.0	frequency of phase modulation
PMDECAY	1/s	double	0.0	exponential decay rate of
				phase modulation
FIDUCIAL		STRING	NULL	mode for determining fidu-
				cial arrival time (light, tmean,
				first, pmaximum)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is very similar to the RFCA element, except that the amplitude and phase of the cavity can be modulated.

The phase convention is as follows, assuming a positive rf voltage: PHASE=90 is the crest for acceleration. PHASE=180 is the stable phase for a storage ring above transition without energy losses.

The element works by first computing the fidicial arrival time \bar{t} . Using this, the effective voltage is computed using the amplitude modulation parameters, according to

$$V_e = V_0(1 + A_{am}\sin(\omega_{am}\bar{t} + \phi_{am})\exp(-\alpha_{am}\bar{t}))$$
(54)

where V_0 is the nominal cavity voltage VOLT, A_{am} is AMMAG, ω_{am} is the angular frequency corresponding to AMFREQ, ϕ_{am} is the amplitude modulation phase corresponding to AMPHASE (converted from degrees to radians), and α_{am} is AMDECAY.

The phase of the phase modulation is computed using

$$\phi_{pm} = \omega_{pm}\bar{t} + \Delta\phi_{pm},\tag{55}$$

where ω_{pm} is the angular frequency corresponding to PMFREQ and $\Delta\phi_{pm}$ is the phase offset corresponding to PMPHASE (converted from degrees to radians). The rf phase for the centroid is then computed using

$$\phi = \omega_0 \bar{t} + \phi_0 + \Phi_m \sin(\phi_{pm}) \exp(-\alpha_{pm} \bar{t}), \tag{56}$$

where ω_0 is the nominal rf angular frequency (corresponding to FREQ), ϕ_0 corresponds to PHASE (converted to radians), Φ_m corresponds to PMMAG (converted to radians), and α_{pm} corresponds to PMDECAY.

The effective instantaneous rf angular frequency is

$$\omega = \omega_0 + \omega_{pm} \Phi_m \cos \phi_{pm}. \tag{57}$$

Using all of the above, the voltage seen by a particle arriving at time t is then

$$V = V_e \sin(\omega(t - \bar{t}) + \phi). \tag{58}$$

MONI

10.61 MONI

A two-plane position monitor, accepting two rpn equations for the readouts as a function of the actual positions (x and y).

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
WEIGHT		double	1	weight in correction
TILT		double	0.0	rotation about longitudinal
				axis
XCALIBRATION		double	1	calibration factor for x readout
YCALIBRATION		double	1	calibration factor for y readout
XSETPOINT	M	double	0.0	x steering setpoint
YSETPOINT	M	double	0.0	y steering setpoint
ORDER		long	0	matrix order
XREADOUT		STRING	NULL	rpn expression for x readout
				(actual position supplied in
				variables x, y
YREADOUT		STRING	NULL	rpn expression for y readout
				(actual position supplied in
				variables x, y
CO_FITPOINT		long	0	If nonzero, then closed orbit
				values are placed in variables
				<name>#<occurence>.xco</occurence></name>
				and
				<name>#<occurence>.yco</occurence></name>
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

MRFDF

10.62 MRFDF

Zero-length Multipole RF DeFlector from dipole to decapole

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
FACTOR		double	1	A factor by which to multiply
				all components.
TILT	RAD	double	0.0	rotation about longitudinal
				axis
A1	V/m	double	0.0	Vertically-deflecting dipole
A2	V/m^2	double	0.0	Skew quadrupole
A3	V/m^3	double	0.0	Skew sextupole
A4	V/m^4	double	0.0	Skew octupole
A5	V/m^5	double	0.0	Skew decapole
B1	V/m	double	0.0	Horizontally-deflecting dipole
B2	V/m^2	double	0.0	Normal quadrupole
В3	V/m^3	double	0.0	Normal sextupole
B4	V/m^4	double	0.0	Normal octupole
B5	V/m^5	double	0.0	Normal decapole
FREQUENCY1	HZ	double	2856000000	Dipole frequency
FREQUENCY2	HZ	double	2856000000	Quadrupole frequency
FREQUENCY3	HZ	double	2856000000	Sextupole frequency
FREQUENCY4	HZ	double	2856000000	Octupole frequency
FREQUENCY5	HZ	double	2856000000	Decapole frequency
PHASE1	HZ	double	0.0	Dipole phase
PHASE2	HZ	double	0.0	Quadrupole phase
PHASE3	HZ	double	0.0	Sextupole phase
PHASE4	HZ	double	0.0	Octupole phase
PHASE5	HZ	double	0.0	Decapole phase
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates an rf deflector with specified multipole content.

Assuming for simplicity that y = 0, the momentum change in the horizontal plane is

$$\Delta p_x = \frac{e}{mc^2k} \sum_{i=1}^5 ib_i x^{i-1} \cos \phi_i, \tag{59}$$

where $k = \omega/c$ and $p_x = \beta_x \gamma$. The deflection is

$$\Delta x' \approx \frac{\Delta p_x}{p_z},\tag{60}$$

where the approximation results from the fact that $p_z=\beta_z\gamma$ also changes in order to satisfy Maxwell's equations.

MULT

10.63 MULT

A canonical kick multipole. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
KNL	M^{-ORDER}	double	0.0	integrated geometric strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
BORE	M	double	0.0	bore radius
BTIPL	TM	double	0.0	integrated field at pole tip,
				used if BORE nonzero
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FACTOR		double	1	factor by which to multiply
				strength
ORDER		long	1	multipole order
N_KICKS		long	4	number of kicks
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a multipole element using 4th-order sympletic integration. A single multipole order, n, is given. The multipole strength is specified by giving

$$K_n L = \left(\frac{\partial^n B_y}{\partial x^n}\right)_{x=y=0} \frac{L}{B\rho},\tag{61}$$

where $B\rho$ is the beam rigidity. A quadrupole is n=1, a sextupole is n=2, and so on. The relationship between the pole tip field and K_nL is

$$K_n L = \frac{n! B_{tip} L}{r^n (B\rho)},\tag{62}$$

where r is the bore radius.

NIBEND

10.64 NIBEND

A numerically-integrated dipole magnet with various extended-fringe-field models.

Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	arc length
ANGLE	RAD	double	0.0	bending angle
E1	RAD	double	0.0	entrance edge angle
E2	RAD	double	0.0	exit edge angle
TILT		double	0.0	rotation about incoming longi-
				tudinal axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FINT		double	0.5	edge-field integral
HGAP	M	double	0.0	half-gap between poles
FP1	M	double	10	fringe parameter (tanh model)
FP2	M	double	0.0	not used
FP3	M	double	0.0	not used
FP4	M	double	0.0	not used
FSE		double	0.0	fractional strength error
ETILT	RAD	double	0.0	error rotation about incoming
				longitudinal axis
ACCURACY		double	0.0001	integration accuracy (for non-
				adaptive integration, used as
				the step-size)
MODEL		STRING	linear	fringe model (hard-edge, lin-
				ear, cubic-spline, tanh, quin-
				tic, enge1, enge3, enge5)
METHOD		STRING	runge-kutta	integration method (runge-
				kutta, bulirsch-stoer,
				modified-midpoint, two-pass
				modified-midpoint, leap-frog,
				non-adaptive runge-kutta)
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
ADJUST_BOUNDARY		long	1	adjust fringe boundary posi-
				tion to make symmetric tra-
				jectory? (Not done if AD-
				JUST_FIELD is nonzero.)

NIBEND continued

A numerically-integrated dipole magnet with various extended-fringe-field models.

Parameter Name	Units	Type	Default	Description
ADJUST_FIELD		long	0	adjust central field strength to
				make symmetric trajectory?
FUDGE_PATH_LENGTH		long	1	fudge central path length to
				force it to equal the nominal
				length L?
FRINGE_POSITION		long	0	0=fringe centered on refer-
				ence plane, -1=fringe inside,
				1=fringe outside.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

For the NIBEND element, there are various fringe field models available. In the following descriptions, l_f is the extend of the fringe field, which starts at z=0 for convenience in the expressions. Also, $K=\frac{1}{g}\int_{-}\infty^{\infty}F_y(z)(1-F_y(z))dz$ is K. Brown's fringe field integral (commonly called FINT), where g is the full magnet gap and $\vec{F}=\vec{B}/B_0$, B_0 being the value of the magnetic field well inside the magnet.

• Linear fringe field:

$$F_y = zF_a (63)$$

$$F_z = yF_a \tag{64}$$

$$F_a = 1/(6Kg) \tag{65}$$

For this model, the user specifies FINT and HGAP only.

• Cubic-spline fringe field:

$$F_y = F_a z^2 + F_b z^3 + y^2 (-F_a - 3F_b z) (66)$$

$$F_z = (2F_a z + 3F_b z^2)y (67)$$

$$F_a = 3/l_f^2 (68)$$

$$F_b = -2/l_f^3 \tag{69}$$

$$l_f = 70Kg/9 \tag{70}$$

For this model, the user specifies FINT and HGAP only.

• Tanh-like fringe field:

$$F_y = \frac{1}{2}(1 + \tanh F_a z) + \frac{1}{2}(yF_a \operatorname{sech} F_a z)^2 \tanh F_a z +$$
 (71)

$$\frac{1}{24}(yF_a\operatorname{sech}F_az)^4\operatorname{sech}F_az(11\sinh F_az - \sinh 3F_az)$$
(72)

$$F_z = \frac{1}{2} y F_a \operatorname{sech}^2 F_a z + \frac{1}{6} (y F_a \operatorname{sech} F_a z)^3 \operatorname{sech} F_a z (2 - \cosh 2F_a z)) + \tag{73}$$

$$\frac{1}{120} (yF_a \operatorname{sech} F_a z)^5 \operatorname{sech} F_a z (33 - 26 \cosh 2F_a z + \cosh 4F_z z)$$
 (74)

$$F_a = 1/(2Kg) \tag{75}$$

$$l_f = P_1/F_a \tag{76}$$

For this model, the user specifies FINT and HGAP, along with the parameter FP1, which is the quantity P_1 in the last equation. It determines the length of the fringe field that is integrated.

• Quintic-spline fringe field, to third order in y:

$$F_y = (F_a z^3 + F_b z^4 + F_c z^5) + y^2 z (3F_a + 6F_b z + 10F_c z^2)$$
(77)

$$F_z = y(3F_az^2 + 4F_bz^3 + 5F_cz^4) + y^3(-F_a - 4F_bz - 10F_cz^2)$$
(78)

$$F_a = 10/l_f^3 \tag{79}$$

$$F_b = -15/l_f^4 (80)$$

$$F_c = 6/l_f^5 \tag{81}$$

$$l_f = 231 Kg/25$$
 (82)

For this model, the user specifies FINT and HGAP only.

• Enge model with 3 coefficients:

$$F_0 = \frac{1}{1 + e^{a_1 + a_2 z/D + a_3 (z/D)^2}} \tag{83}$$

$$F_y = F_0 - \frac{1}{2}y^2 F_0^{(2)} + \frac{1}{24}y^4 F_0^{(4)}$$
(84)

$$F_z = yF_0^{(1)} - \frac{1}{6}y^3F_0^{(3)} + \frac{1}{120}y^5F_0^{(5)}$$
(85)

where $F_0^{(n)} = \frac{\partial^n F_0}{\partial z^n}$.

The user may choose "enge1", "enge3", or "enge5", where the number indicates the order of the expansion of F_z with respect to y.

The need only specify FINT and HGAP. The Enge parameters are then automatically determined to give the correct linear focusing.

However, if user gives non-zero value for FP2, then FINT and HGAP are ignored. FP2, FP3, and FP4 and taken as the Enge coefficients a_1 , a_2 , and a_3 , respectively.

NISEPT

10.65 NISEPT

A numerically-integrated dipole magnet with a Cartesian gradient.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	arc length
ANGLE	RAD	double	0.0	bend angle
E1	RAD	double	0.0	entrance edge angle
B1	1/M	double	0.0	normalized gradient
				(K1=B1*L/ANGLE)
Q1REF	M	double	0.0	distance from septum at which
				bending radius is L/ANGLE
FLEN	M	double	0.0	fringe field length
ACCURACY		double	0.0001	integration accuracy
METHOD		STRING	runge-kutta	integration method (runge-
				kutta, bulirsch-stoer,
				modified-midpoint, two-pass
				modified-midpoint, leap-frog,
				non-adaptive runge-kutta
MODEL		STRING	linear	fringe model (hard-edge, lin-
				ear, cubic-spline, tanh, quintic
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

OCTU

10.66 OCTU

An octupole implemented as a third-order matrix. Use KOCT for symplectic tracking. Parallel capable? : yes

GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
K3	$1/M^{3}$	double	0.0	geometric strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
ORDER		long	0	matrix order
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
			_	umn ElementGroup

PEPPOT

10.67 PEPPOT

A pepper-pot plate. Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
RADII	M	double	0.0	hole radius
TRANSMISSION		double	0.0	transmission of material
TILT	RAD	double	0.0	rotation about longitudinal
				axis
THETA_RMS	RAD	double	0.0	rms scattering from material
N_HOLES		long	0	number of holes
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

PFILTER

10.68 PFILTER

An element for energy and momentum filtration.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
DELTALIMIT		double	-1	maximum fractional momen-
				tum deviation
LOWERFRACTION		double	0.0	fraction of lowest-momentum
				particles to remove
UPPERFRACTION		double	0.0	fraction of highest-momentum
				particles to remove
FIXPLIMITS		long	0	fix the limits in p from LOW-
				ERFRACTION and UPPER-
				FRACTION applied to first
				beam
BEAMCENTERED		long	0	if nonzero, center for
				DELTALIMIT is average
				beam momentum
BINS		long	1024	number of bins
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

QUAD

10.69 QUAD

A quadrupole implemented as a matrix, up to 3rd order. Use KQUAD for symplectic tracking. Parallel capable? : yes

GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
K1	$1/M^{2}$	double	0.0	geometric strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
HKICK	RAD	double	0.0	horizontal correction kick
VKICK	RAD	double	0.0	vertical correction kick
HCALIBRATION		double	1	calibration factor for horizon-
				tal correction kick
VCALIBRATION		double	1	calibration factor for vertical
				correction kick
HSTEERING		long	0	use for horizontal steering?
VSTEERING		long	0	use for vertical steering?
ORDER		long	0	matrix order
EDGE1_EFFECTS		long	1	include entrance edge effects?
EDGE2_EFFECTS		long	1	include exit edge effects?
FRINGE_TYPE		STRING	fixed-strength	type of fringe: "inset", "fixed-
				strength", or "integrals"
FFRINGE		double	0.0	For non-integrals mode, frac-
				tion of length occupied by lin-
				ear fringe region.
LEFFECTIVE	M	double	-1	Effective length. Ignored if
				non-positive. Cannot be used
				with non-zero FFRINGE.
I0P	M	double	0.0	i0+ fringe integral
I1P	M^2	double	0.0	i1+ fringe integral
I2P	M^3	double	0.0	i2+ fringe integral
I3P	M^4	double	0.0	i3+ fringe integral
LAMBDA2P	M^3	double	0.0	lambda2+ fringe integral
IOM	M	double	0.0	i0- fringe integral

QUAD continued

A quadrupole implemented as a matrix, up to 3rd order. Use KQUAD for symplectic tracking.

Parameter Name	Units	Type	Default	Description
I1M	M^2	double	0.0	i1- fringe integral
I2M	M^3	double	0.0	i2- fringe integral
I3M	M^4	double	0.0	i3- fringe integral
LAMBDA2M	M^3	double	0.0	lambda2- fringe integral
RADIAL		long	0	If non-zero, converts the
				quadrupole into a radially-
				focusing lens
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a quadrupole using a matrix of first, second, or third order.

As of version 29.2, this element incorporates the ability to have different values for the insertion and effective lengths. This is invoked when LEFFECTIVE is positive. In this case, the L parameter is understood to be the physical insertion length. Using LEFFECTIVE is a convenient way to incorporate the fact that the effective length may differ from the physical length and even vary with excitation, without having to modify the drift spaces on either side of the quadrupole element.

By default, the element has hard edges and constant field within the defined length, L. However, this element supports two different methods of implementing fringe fields. Which method is used is determined by the FRINGE_TYPE parameter.

Edge integral method The most recent and preferred implementation of fringe field effects is based on edge integrals and is invoked by setting FRINGE_TYPE to "integrals". This method is compatible with the use of LEFFECTIVE. However, it provides a first-order matrix only.

The model is based on publications of D. Zhuo et al. [34] and J. Irwin et al. [35], as well as unpublished work of C. X. Wang (ANL). The fringe field is characterized by 10 integrals given in equations 19, 20, and 21 of [34]. However, the values input into elegant should be normalized by K_1 or K_1^2 , as appropriate.

For the exit-side fringe field, let s_1 be the center of the magnet, s_0 be the location of the nominal end of the magnet (for a hard-edge model), and let s_2 be a point well outside the magnet. Using $K_{1,he}(s)$ to represent the hard edge model and $K_1(s)$ the actual field profile, we define the normalized difference as $\tilde{k}(s) = (K_1(s) - K_{1,he}(s))/K_1(s_1)$. (Thus, $\tilde{k}(s) = \tilde{K}(s)/K_0$, using the notation of Zhou et al.)

The integrals to be input to elegant are defined as

$$i_0^- = \int_{s_1}^{s_0} \tilde{k}(s)ds \qquad i_0^+ = \int_{s_0}^{s_2} \tilde{k}(s)ds$$
 (86)

$$i_{0}^{-} = \int_{s_{1}}^{s_{0}} \tilde{k}(s)ds \qquad i_{0}^{+} = \int_{s_{0}}^{s_{2}} \tilde{k}(s)ds$$

$$i_{1}^{-} = \int_{s_{1}}^{s_{0}} \tilde{k}(s)(s - s_{0})ds \qquad i_{1}^{+} = \int_{s_{0}}^{s_{2}} \tilde{k}(s)(s - s_{0})ds$$

$$(86)$$

$$i_2^- = \int_{s_1}^{s_0} \tilde{k}(s)(s - s_0)^2 ds \qquad i_2^+ = \int_{s_0}^{s_2} \tilde{k}(s)(s - s_0)^2 ds \tag{88}$$

$$i_{3}^{-} = \int_{s_{1}}^{s_{0}} \tilde{k}(s)(s - s_{0})^{3} ds \qquad i_{3}^{+} = \int_{s_{0}}^{s_{2}} \tilde{k}(s)(s - s_{0})^{3} ds$$
 (89)

$$i_{3}^{-} = \int_{s_{1}}^{s_{0}} \tilde{k}(s)(s - s_{0})^{3} ds \qquad i_{3}^{+} = \int_{s_{0}}^{s_{2}} \tilde{k}(s)(s - s_{0})^{3} ds$$

$$\lambda_{2}^{-} = \int_{s_{1}}^{s_{0}} ds \int_{s}^{s_{0}} ds' \tilde{k}(s) \tilde{k}(s')(s' - s) \qquad \lambda_{2}^{+} = \int_{s_{0}}^{s_{2}} ds \int_{s}^{s_{2}} ds' \tilde{k}(s) \tilde{k}(s')(s' - s)$$

$$(90)$$

Normally, the effects are dominated by i_1^- and i_1^+ .

Trapazoidal models This method is based on a third-order matrix formalism and the assumption that the fringe fields depend linearly on z. Although the third-order matrix is computed, it is important to note that the assumed fields do not satisfy Maxwell's equations.

To invoke this method, one specifies "inset" or "fixed-strength" for the FRINGE_TYPE parameter and then provides a non-zero value for FFRINGE. If FFRINGE is zero (the default), then the magnet is hard-edged regardless of the setting of FRINGE_TYPE. If FFRINGE is positive, then the magnet has linear fringe fields of length FFRINGE*L/2 at each end. That is, the total length of fringe field from both ends combined is FFRINGE*L.

Depending on the value of FRINGE_TYPE, the fringe fields are modeled as contained within the length L ("inset" type) or extending symmetrically outside the length L ("fixed-strength" type).

For "inset" type fringe fields, the length of the "hard core" part of the quadrupole is L*(1-FFRINGE). For "fixed-strength" type fringe fields, the length of the hard core is L*(1-FFRINGE/2). In the latter case, the fringe gradient reaches 50% of the hard core value at the nominal boundaries of the magnet. This means that the integrated strength of the magnet does not change as the FFRINGE parameter is varied. This is not the case with "inset" type fringe fields.

QUFRINGE

10.70 QUFRINGE

An element consisting of a linearly increasing or decreasing quadrupole field. Parallel capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
K1	$1/M^2$	double	0.0	peak geometric strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
DIRECTION		long	0	1=entrance, -1=exit
ORDER		long	0	matrix order
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

RAMPP

10.71 RAMPP

A momentum-ramping element that changes the central momentum according to an SDDS-format file of the momentum factor vs time in seconds.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
WAVEFORM		STRING	NULL	<filename $>$ = $<$ x $>+<$ y $>$ form
				specification of input file giv-
				ing momentum factor vs time
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

RAMPRF

10.72 RAMPRF

A voltage-, phase-, and/or frequency-ramped RF cavity, implemented like RFCA.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
VOLT	V	double	0.0	nominal voltage
PHASE	DEG	double	0.0	nominal phase
FREQ	Hz	double	500000000	nominal frequency
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
VOLT_WAVEFORM		STRING	NULL	<filename $>$ = $<$ x $>+<$ y $>$ form
				specification of input file giv-
				ing voltage waveform factor vs
				time
PHASE_WAVEFORM		STRING	NULL	<filename $>$ = $<$ x $>+<$ y $>$ form
				specification of input file giv-
				ing phase offset vs time (re-
				quires FREQ_WAVEFORM)
FREQ_WAVEFORM		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				form specification of in-
				put file giving frequency-
				factor vs time (requires
				PHASE_WAVEFORM)
FIDUCIAL		STRING	NULL	mode for determining fidu-
				cial arrival time (light, tmean,
				first, pmaximum)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

RBEN

10.73 RBEN

A rectangular dipole, implemented as a SBEND with edge angles, up to 2nd order. Use CSBEND for symplectic tracking.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	magnet (straight) length
ANGLE	RAD	double	0.0	bend angle
K1	$1/M^{2}$	double	0.0	geometric focusing strength
E1	RAD	double	0.0	entrance edge angle
E2	RAD	double	0.0	exit edge angle
TILT	RAD	double	0.0	rotation about incoming longi-
				tudinal axis
K2	$1/M^{3}$	double	0.0	geometric sextupole strength
H1	1/M	double	0.0	entrance pole-face curvature
H2	1/M	double	0.0	exit pole-face curvature
HGAP	M	double	0.0	half-gap between poles
FINT		double	0.5	edge-field integral
DX	M	double	0.0	misaligment of entrance
DY	M	double	0.0	misalignment of entrance
DZ	M	double	0.0	misalignment of entrance
FSE		double	0.0	fractional strength error
ETILT	RAD	double	0.0	error rotation about incoming
				longitudinal axis
EDGE1_EFFECTS		long	1	include entrance edge effects?
EDGE2_EFFECTS		long	1	include exit edge effects?
ORDER		long	0	matrix order
EDGE_ORDER		long	0	edge matrix order
TRANSPORT		long	0	use (incorrect) TRANSPORT
				equations for T436 of edge?
USE_BN		long	0	use B1 and B2 instead of K1
				and K2 values?
B1	1/M	double	0.0	K1 = B1/rho, where rho is
				bend radius
B2	$1/M^{2}$	double	0.0	K2 = B2/rho
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

When adding errors, care should be taken to choose the right parameters. The FSE and ETILT

parameters are used for assigning errors to the strength and alignment relative to the ideal values given by ANGLE and TILT. One can also assign errors to ANGLE and TILT, but this has a different meaning: in this case, one is assigning errors to the survey itself. The reference beam path changes, so there is no orbit/trajectory error. The most common thing is to assign errors to FSE and ETILT. Note that when adding errors to FSE, the error is assumed to come from the power supply, which means that multipole strengths also change.

Special note about splitting dipoles: when dipoles are long, it is common to want to split them into several pieces, to get a better look at the interior optics. When doing this, care must be exercised not to change the optics. elegant has some special features that are designed to reduce or manage potential problems. At issue is the need to turn off edge effects between the portions of the same dipole.

First, one can simply use the divide_elements command to set up the splitting. Using this command, elegant takes care of everything.

Second, one can use a series of dipoles with the same name. In this case, elegant automatically turns off interior edge effects. This is true when the dipole elements directly follow one another or are separated by a MARK element.

Third, one can use a series of dipoles with different names. In this case, you must also use the EDGE1_EFFECTS and EDGE2_EFFECTS parameters to turn off interior edge effects.

RCOL

10.74 RCOL

A rectangular collimator. Parallel capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
X_MAX	M	double	0.0	half-width in x
Y_MAX	M	double	0.0	half-width in y
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
OPEN_SIDE		STRING	NULL	which side, if any, is open $(+x,$
				-x, +y, -y
INVERT		long	0	If non-zero, particles inside the
				aperture are lost while those
				outside are transmitted.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

RECIRC

10.75 RECIRC

An element that defines the point to which particles recirculate in multi-pass tracking Parallel capable? : yes

Parameter Name	Units	Type	Default	Description
I_RECIRC_ELEMENT		long	0	
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

REFLECT

10.76 REFLECT

Reflects the beam back on itself, which is useful for multiple beamline matching. Parallel capable? : yes

Parameter Name	Units	Type	Default	Description
DUMMY		long	0	
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

REMCOR

10.77 **REMCOR**

An element to remove correlations from the tracked beam to simulate certain types of correction. Parallel capable? : no

Parameter Name	Units	Type	Default	Description
X		long	1	remove correlations in x?
XP		long	1	remove correlations in x'?
Y		long	1	remove correlations in y?
YP		long	1	remove correlations in y'?
WITH		long	6	coordinate to re-
				move correlations with
				(1,2,3,4,5,6)=(x,x',y,y',s,dP/Po)
ONCE_ONLY		long	0	compute correction only for
				first beam, apply to all?
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

RFCA

10.78 RFCA

A first-order matrix RF cavity with exact phase dependence.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
VOLT	V	double	0.0	peak voltage
PHASE	DEG	double	0.0	phase
FREQ	Hz	double	500000000	frequency
Q		double	0.0	cavity Q (for cavity that
				charges up to given voltage
				from 0)
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
CHANGE_P0		long	0	does cavity change central mo-
				mentum?
CHANGE_T		long	0	set to 1 for long runs to avoid
				rounding error in phase
FIDUCIAL		STRING	NULL	mode for determining fidu-
				cial arrival time (light, tmean,
				first, pmaximum)
END1_FOCUS		long	0	include focusing at entrance?
END2_FOCUS		long	0	include focusing at exit?
BODY_FOCUS_MODEL		STRING	NULL	None (default) or SRS (sim-
				plified Rosenzweig/Serafini for
				standing wave)
N_KICKS		long	0	Number of kicks to use for kick
				method. Set to zero for matrix
				method.
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
T_REFERENCE	S	double	-1	arrival time of reference parti-
				cle
LINEARIZE		long	0	Linearize phase dependence?
LOCK_PHASE		long	0	Lock phase to given value re-
				gardless of bunch centroid mo-
				tion?
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The phase convention is as follows, assuming a positive rf voltage: PHASE=90 is the crest for acceleration. PHASE=180 is the stable phase for a storage ring above transition without energy losses.

The body-focusing model is based on Rosenzweig and Serafini, Phys. Rev. E 49 (2), 1599. As

suggested by N. Towne (NSLS), I simplified this to assume a pure pi-mode standing wave.

The CHANGE_T parameter may be needed for reasons that stem from elegant's internal use of the total time-of-flight as the longitudinal coordinate. If the accelerator is very long or a large number of turns are being tracked, rounding error may affect the simulation, introducing spurious phase jumps. By setting CHANGE_T=1, you can force elegant to modify the time coordinates of the particles to subtract off NT_{rf} , where T_{tf} is the rf period and $N = \lfloor t/T_{tf} + 0.5 \rfloor$. If you are tracking a ring with rf at some harmonic h of the revolution frequency, this will result in the time coordinates being relative to the ideal revolution period, $T_{rf} * h$. If you have multiple rf cavities in a ring, you need only use this feature on one of them. Also, you can use CHANGE_T=1 if you simply prefer to have the offset time coordinates in output files and analysis.

N.B.: Do not use CHANGE_T=1 if you have rf cavities that are not at harmonics of one another or if you have other time-dependent elements that are not resonant.

RFCW

10.79 RFCW

A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
CELL_LENGTH	M	double	0.0	cell length (used to scale
				wakes, which are assumed to
				be given for a cell, according
				to L/CELL_LENGTH)
VOLT	V	double	0.0	voltage
PHASE	DEG	double	0.0	phase
FREQ	Hz	double	500000000	frequency
Q		double	0.0	cavity Q (for cavity that
				charges up to voltage from 0)
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
CHANGE_P0		long	0	does element change central
				momentum?
CHANGE_T		long	0	see RFCA documentation
FIDUCIAL		STRING	NULL	mode for determining fidu-
				cial arrival time (light, tmean,
				first, pmaximum)
END1_FOCUS		long	0	include focusing at entrance?
END2_FOCUS		long	0	include focusing at exit?
BODY_FOCUS_MODEL		STRING	NULL	None (default) or SRS (sim-
				plified Rosenzweig/Serafini for
				standing wave)
N_KICKS		long	0	Number of kicks to use for kick
				method. Set to zero for matrix
				method.
ZWAKE		long	1	If zero, longitudinal wake is
				turned off.
TRWAKE		long	1	If zero, transverse wakes are
		=		turned off.
WAKEFILE		STRING	NULL	name of file containing Green
				functions
ZWAKEFILE		STRING	NULL	if WAKEFILE=NULL, op-
				tional name of file containing
				longitudinal Green function
L		l	l	<u> </u>

RFCW continued

A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.

Parameter Name	Units		Default	Description
TRWAKEFILE		STRING	NULL	if WAKEFILE=NULL, op-
				tional name of file containing
				transverse Green functions
TCOLUMN		STRING	NULL	column containing time data
WXCOLUMN		STRING	NULL	column containing x Green
				function
WYCOLUMN		STRING	NULL	column containing y Green
				function
WZCOLUMN		STRING	NULL	column containing longitudi-
				nal Green function
N_BINS		long	0	number of bins for current his-
				togram
INTERPOLATE		long	0	interpolate wake?
SMOOTHING		long	0	Use Savitzky-Golay filter to
				smooth current histogram?
SG_HALFWIDTH		long	4	Savitzky-Golay filter half-
				width for smoothing
SG_ORDER		long	1	Savitzky-Golay filter order for
				smoothing
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
LINEARIZE		long	0	Linearize phase dependence?
LSC		long	0	Include longitudinal space-
				charge impedance?
LSC_BINS		long	1024	Number of bins for LSC calcu-
				lations
LSC_INTERPOLATE		long	1	Interpolate computed LSC
				wake?
LSC_LOW_FREQUENCY_CUTOFF0		double	-1	Highest spatial frequency at
				which low-frequency cutoff fil-
				ter is zero. If not positive,
				no low-frequency cutoff filter is
				applied. Frequency is in units
				of Nyquist (0.5/binsize).
LSC_LOW_FREQUENCY_CUTOFF1		double	-1	Lowest spatial frequency
-				at which low-frequency
				cutoff filter is 1. If
				not given, defaults to
				LOW_FREQUENCY_CUTOF

RFCW continued

A combination of RFCA, WAKE, TRWAKE, and LSCDRIFT.

Parameter Name	Units	Type	Default	Description
LSC_HIGH_FREQUENCY_CUTOFF0		double	-1	Spatial frequency at which smoothing filter begins for LSC. If not positive, no frequency filter smoothing is done. Frequency is in units of Nyquist (0.5/binsize).
LSC_HIGH_FREQUENCY_CUTOFF1		double	-1	Spatial frequency at which smoothing filter is 0 for LSC. If not given, defaults to HIGH_FREQUENCY_CUTOFF
LSC_RADIUS_FACTOR		double	1.7	LSC radius is (Sx+Sy)/2*RADIUS_FACTOR
WAKES_AT_END		long	0	Do wake kicks at end of segment (for backward compatibility)?
GROUP		string	NULL	Optionally used to assign an element to a group, with a user-defined name. Group names will appear in the parameter output file in the column ElementGroup

This element is a combination of the RFCA, WAKE, and TRWAKE elements. As such, it provides combined simulation of an rf cavity with longitudinal and transverse wakes, as well as longitudinal space charge.

For the wakes, the input files and their interpretation are identical to WAKE and TRWAKE, except that the transverse and longitudinal wakes are interpreted as the wakes for a single cell of length given by the CELL_LENGTH parameter.

Users should read the entries for WAKE, TRWAKE, and RFCA for more details on this element.

This element simulates longitudinal space charge using the method described in [22]. This is based on the longitudinal space charge impedance per unit length

$$Z_{lsc}(k) = \frac{iZ_0}{\pi k r_b^2} \left[1 - \frac{kr_b}{\gamma} K_1 \left(\frac{kr_b}{\gamma} \right) \right]$$
 (91)

RFDF

10.80 RFDF

A simple traveling or standing wave deflecting RF cavity.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
			0.0	_
PHASE	DEG	double		phase
TILT	RAD	double	0.0	rotation about longitudinal
EDECHENCY	TT 77	1 11	2074000000	axis
FREQUENCY	HZ	double	2856000000	frequency
VOLTAGE	V	double	0.0	voltage
FSE		double	0.0	Fractional Strength Error
B2		double	0.0	Normalized sextupole
				strength, kick= $(1+b2*(x\hat{2}-$
				$y\hat{2})/2)$
TIME_OFFSET	S	double	0.0	time offset (adds to phase)
N_KICKS		long	0	number of kicks (0=autoscale)
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
STANDING_WAVE		long	0	If nonzero, then cavity is
				standing wave.
VOLTAGE_WAVEFORM		STRING	NULL	$\langle \text{filename} \rangle = \langle x \rangle + \langle y \rangle \text{ form}$
				specification of input file giv-
				ing voltage waveform factor vs
				time
VOLTAGE_PERIODIC		long	0	If non-zero, voltage waveform
				is periodic with period given
				by time span.
ALIGN_WAVEFORMS		long	0	If non-zero, waveforms' t=0 is
				aligned with first bunch arrival
				time.
VOLTAGE_NOISE		double	0.0	Rms fractional noise level for
				voltage.
PHASE_NOISE	DEG	double	0.0	Rms noise level for phase.
GROUP_VOLTAGE_NOISE		double	0.0	Rms fractional noise level for
				voltage linked to group.
GROUP_PHASE_NOISE	DEG	double	0.0	Rms noise level for phase
		404510		linked to group.
VOLTAGE_NOISE_GROUP		long	0	Group number for voltage
		10119	ľ	noise.
				110100.

RFDF continued

A simple traveling or standing wave deflecting RF cavity.

Parameter Name	Units	Type	Default	Description
PHASE_NOISE_GROUP		long	0	Group number for phase noise.
START_PASS		long	-1	If non-negative, pass on which
				to start modeling cavity.
END_PASS		long	-1	If non-negative, pass on which
				to end modeling cavity.
DRIFT_MATRIX		long	0	If non-zero, calculations in-
				volving matrices assume this
				element is a drift space.
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
MAGNETIC_DEFLECTION		long	0	If non-zero, deflection is as-
				sumed to be performed by
				a magnetic field, rather than
				electric field (default).
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This cavity provides a transverse deflection that is constant as a function of transverse coordinates. It is probably the best model for a real cavity, because real cavities contain a mixture of TM- and TE-like modes that result in a uniform deflection.

For simplicity of use, the deflection is specified as a voltage, even though it originates in a magnetic field. The magnetic field is

$$B = B_0 \hat{y} \cos \omega t \tag{92}$$

The corresponding electric field is obtained from Faraday's law (MKS units)

$$\left(\nabla \times \vec{E}\right)_{y} = -\frac{\partial \vec{B}}{\partial y}.\tag{93}$$

Assuming $E_x = E_y = 0$, we have

$$E_z = B_0 \omega x \sin \omega t. \tag{94}$$

The change in momenta (in units of mc) in passing through a slice of length ΔL is

$$\Delta p_x = \frac{qB_0\Delta L}{mc}\cos\omega t \tag{95}$$

$$\Delta p_y = 0 \tag{96}$$

$$\Delta p_y = 0 \tag{96}$$

$$\Delta p_z = \frac{qB_0\omega x \Delta L}{mc^2} \sin \omega t \tag{97}$$

If we want to think in terms of a deflecting voltage, we can re-write this as

$$\Delta p_x = \frac{qV}{mc^2} \cos \omega t \tag{98}$$

$$\Delta p_y = 0 \tag{99}$$

$$\Delta p_y = 0 \tag{99}$$

$$\Delta p_z = \frac{qV}{mc^2} kx \sin \omega t, \tag{100}$$

where $k = \omega/c$.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

RFMODE

10.81 RFMODE

A simulation of a beam-driven TM monopole mode of an RF cavity.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
RA	Ohm	double	0.0	shunt impedance, Ra=V2/P
RS	Ohm	double	0.0	shunt impedance (Rs=Ra/2)
Q	Ottiti	double	0.0	cavity Q
FREQ	Hz	double	0.0	Resonant frequency of the cav-
FREQ	ΠZ	double	0.0	ity mode
CHARGE	C	double	0.0	beam charge (or use CHARGE
CHARGE		double	0.0	9 (
INITIAL_V	V	double	0.0	element) initial beam-loading voltage
	1 '	double		0 0
INITIAL_PHASE	RAD		0.0	initial beam-loading phase
INITIAL_T	S	double	0.0	time at which INITIAL_V and
				INITIAL_PHASE held
BETA		double	0.0	normalized load impedance
BIN_SIZE	S	double	0.0	bin size for current histogram
				(use 0 for autosize)
N_BINS		long	20	number of bins for current his-
				togram
INTERPOLATE		long	0	if non-zero, interpolate voltage
				within bins
PRELOAD		long	0	preload cavity with steady-
				state field
PRELOAD_CHARGE	C	double	0.0	beam charge used for preload-
				ing calculations
PRELOAD_FACTOR		double	1	multiply preloaded field by
				this value
PRELOAD_HARMONIC		long	0	If detuning from harmonic is
				greater than half the revolu-
				tion frequency, automatic de-
				termination of the rf harmonic
				will fail. Give the harmonic
				explicitly with this parameter.
RIGID_UNTIL_PASS		long	0	don't affect the beam until this
				pass
DETUNED_UNTIL_PASS		long	0	cavity is completely detuned
				until this pass
L	I	I		<u> </u>

${\tt RFMODE}\ continued$

A simulation of a beam-driven TM monopole mode of an RF cavity.

Parameter Name	Units	Type	Default	Description
SAMPLE_INTERVAL		long	1	passes between samples to RECORD file
FLUSH_INTERVAL		long	1000	samples between flushing output to RECORD file
RECORD		STRING	NULL	output file for cavity fields
SINGLE_PASS		long	0	if nonzero, don't accumulate field from pass to pass
PASS_INTERVAL		long	1	interval in passes at which to apply PASS_INTERVAL times the field (may increase speed)
FREQ_WAVEFORM		STRING	NULL	<pre><filename>=<x>+<y> form specification of input file giving frequency/f0 vs time, where f0 is the frequency given with the FREQ parameter</y></x></filename></pre>
Q_WAVEFORM		STRING	NULL	<pre><filename>=<x>+<y> form specification of input file giv- ing qualityFactor/Q0 vs time, where Q0 is the quality factor given the the Q parameter.</y></x></filename></pre>
RAMP_PASSES		long	0	Number of passes over which to linearly ramp up the impedance to full strength.
BINLESS		long	0	If nonzero, use algorithm that doesn't requiring binning. Best for few particles, widely spaced.
RESET_FOR_EACH_STEP		long	1	If nonzero, voltage and phase are reset for each simulation step.
LONG_RANGE_ONLY		long	0	If nonzero, induced voltage from present turn does not af- fect bunch. Results are not self-consistent!

${\tt RFMODE}\ continued$

A simulation of a beam-driven TM monopole mode of an RF cavity.

Parameter Name	Units	Type	Default	Description
N_CAVITIES		long	1	effect is multiplied by this
				number, simulating N identi-
				cal cavities
BUNCHED_BEAM_MODE		long	1	If 1, then do calculations
				bunch-by-bunch. If >1 , use
				pseudo bunches.
BUNCH_INTERVAL	S	double	0.0	For pseudo-bunch mode, time
				between bunches.
DRIVE_FREQUENCY	Hz	double	0.0	drive frequency from genera-
				tor. If zero, no generator volt-
				age is applied.
V_SETPOINT	V	double	0.0	setpoint for total cavity volt-
				age
PHASE_SETPOINT	DEG	double	0.0	setpoint for total cavity phase
UPDATE_INTERVAL		long	1	update interval of feedback in
		0mp 7140		units of rf period
AMPLITUDE_FILTER		STRING	NULL	IIR filter specification for am-
		0mp 7140		plitude feedback
PHASE_FILTER		STRING	NULL	IIR filter specification for
DI DILLOGE ELLERD		OED IN C	N1717 T	phase feedback
IN_PHASE_FILTER		STRING	NULL	IIR filter specification for in-
		CEDING	NITIT T	phase component feedback
QUADRATURE_FILTER		STRING	NULL	IIR filter specification for
				quadrature component feed-
FEEDBACK_RECORD		STRING	NULL	back output file for feedback data
MUTE_GENERATOR			-1	If nonnegative, gives the pass
WOLE-GENERATOR		long	-1	on which to mute the genera-
				tor. This simulates an rf trip.
NOISE_ALPHA_GEN		STRING	NULL	<pre>cor. This simulates an Fi trip. <filename>=<x>+<y></y></x></filename></pre>
NOISE_ALI HA_GEN		BIIIIIG	NOLL	specifying alpha(t) for genera-
				tor noise.
				101 11019C.

RFMODE continued

A simulation of a beam-driven TM monopole mode of an RF cavity.

Parameter Name	Units	Type	Default	Description
NOISE_PHI_GEN		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				specifying dphi(t) for genera-
				tor noise.
NOISE_ALPHA_V		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				specifying alpha(t) for voltage
				noise.
NOISE_PHI_V		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				specifying dphi(t) for voltage
				noise.
NOISE_I_GEN		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				specifying n(t) for in-phase
				generator noise.
NOISE_Q_GEN		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				specifying n(t) for quadrature
				generator noise.
NOISE_I_V		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				specifying n(t) for in-phase
				voltage noise.
NOISE_Q_V		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				specifying n(t) for quadrature
				voltage noise.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a beam-driven monopole mode cavity using the fundamental theorem of beam loading and phasor rotation. In addition, a generator-driven field may be included using a feedback system [44].

The feedback implementation uses either amplitude and phase feedback or else in-phase and quadrature feedback. It is active when a non-zero value is given for DRIVE_FREQUENCY and when either AMPLITUDE_FILTER and PHASE_FILTER or else IN_PHASE_FILTER and QUADRATURE_FILTER are given. Figure 3 shows the model used for the feedback system. More information is available in [44].

Normally, the field dumped in the cavity by one particle affects trailing particles in the same turn. However, if one is also using a WAKE or ZLONGIT element to simulate the short-range wake of the cavity, this would be double-counting. In that case, one can use LONG_RANGE_ONLY=1 to suppress the same-turn effects of the RFMODE element.

Two output files are available: the RECORD file includes bunch-by-bunch data on the beam-induced fields and the total cavity fields. The FEEDBACK_RECORD file includes tick-by-tick data from

Figure 3: Rf feedback model used by the RFMODE element.

the feedback system simulation; writing this file this can significantly impact performance.

NB: when BUNCHED_BEAM_MODE is set to a value other than 1, in order to obtain the effect of several bunches while tracking only one bunch, the total charge set with the TOTAL parameter of the CHARGE element should equal the charge in a single bunch, not the entire beam. However, when BUNCHED_BEAM_MODE=1 (allowing an indeterminant number of bunches to be actually present), then TOTAL should be the total for all bunches together.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

RFTM110

10.82 RFTM110

Tracks through a TM110-mode (deflecting) rf cavity with all magnetic and electric field components. NOT RECOMMENDED—See below.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
PHASE	DEG	double	0.0	phase
TILT	RAD	double	0.0	rotation about longitudinal
				axis
FREQUENCY	HZ	double	2856000000	frequency
VOLTAGE	V	double	0.0	peak deflecting voltage
PHASE_REFERENCE		long	0	phase reference number (to link with other time-
				dependent elements)
VOLTAGE_WAVEFORM		STRING	NULL	$\langle \text{filename} \rangle = \langle x \rangle + \langle y \rangle \text{ form}$
				specification of input file giv-
				ing voltage waveform factor vs time
VOLTAGE_PERIODIC		long	0	If non-zero, voltage waveform
				is periodic with period given
				by time span.
ALIGN_WAVEFORMS		long	0	If non-zero, waveforms' t=0 is
				aligned with first bunch arrival
				time.
VOLTAGE_NOISE		double	0.0	Rms fractional noise level for
				voltage.
PHASE_NOISE	DEG	double	0.0	Rms noise level for phase.
GROUP_VOLTAGE_NOISE		double	0.0	Rms fractional noise level for voltage linked to group.
GROUP_PHASE_NOISE	DEG	double	0.0	Rms noise level for phase
WOLEH GE WOLGE GEOLE		,		linked to group.
VOLTAGE_NOISE_GROUP		long	0	Group number for voltage noise.
PHASE_NOISE_GROUP		long	0	Group number for phase noise.
START_PASS		long	-1	If non-negative, pass on which to start modeling cavity.
END_PASS		long	-1	If non-negative, pass on which
		_		to end modeling cavity.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

NB: Although this element is correct insofar as it uses the fields for a pure TM110 mode, it is recommended that the RFDF element be used instead. In a real deflecting cavity with entrance and exit tubes, the deflecting mode is a hybrid TE/TM mode, in which the deflection has no dependence on the radial coordinate.

To derive the field expansion, we start with some results from Jackson[17], section 8.7. The

longitudinal electric field for a TM mode is just

$$E_z = -2iE_0\Psi(\rho,\phi)\cos\left(\frac{p\pi z}{d}\right)e^{-i\omega t},\tag{101}$$

where p is an integer, d is the length of the cavity, and we use cylindrical coordinates (ρ, ϕ, z) . The factor of -2i represents a choice of sign and phase convention. We are interested in the TM110 mode, so we set p = 0. In this case, we have

$$E_x = E_y = 0 ag{102}$$

and (using CGS units)

$$\vec{H} = -2iE_0 \frac{i\epsilon\omega}{ck^2} \hat{z} \times \nabla \Psi e^{-i\omega t}.$$
 (103)

For a cylindrical cavity, the function Ψ for the m=1 aximuthal mode is

$$\Psi(\rho, \phi) = J_1(k\rho)\cos\phi,\tag{104}$$

where $k = x_{11}/R$, x_{11} is the first zero of $J_1(x)$, and R is the cavity radius. We don't need to know the cavity radius, since $k = \omega/c$, where ω is the resonant frequency. By choosing $\cos \phi$ for the aximuthal dependence, we'll get a magnetic field primarily in the vertical direction.

In MKS units, the magnetic field is

$$\vec{B} = \frac{2E_0}{kc} e^{-i\omega t} \left(\hat{\rho} \frac{J_1(k\rho)}{\rho} \sin \phi + \hat{\phi} \cos \phi \frac{\partial J_1(k\rho)}{\partial \rho} \right). \tag{105}$$

Using mathematica, we expanded these expressions to sixth order in $k * \rho$. Here, we present only the expressions to second order. Taking the real parts only, we now have

$$E_z \approx E_0 k \rho \cos \phi \sin \omega t$$
 (106)

$$cB_{\rho} \approx E_0 \left(1 - \frac{k^2 \rho^2}{8}\right) \sin \phi \cos \omega t$$
 (107)

$$cB_{\phi} \approx E_0 \left(1 - \frac{3k^2 \rho^2}{8} \right) \cos \phi \cos \omega t$$
 (108)

The Cartesian components of \vec{B} can be computed easily

$$cB_x = cB_\rho \cos \phi - cB_\phi \sin \phi \tag{109}$$

$$= \frac{E_0}{4} \rho^2 k^2 \cos \phi \sin \phi \cos \omega t \tag{110}$$

$$cB_y = cB_\rho \sin \phi + cB_\phi \cos \phi \tag{111}$$

$$= E_0 \left(1 - \frac{k^2 \rho^2 (2\cos^2 \phi + 1)}{8} \right) \cos \omega t \tag{112}$$

The Lorentz force on an electron is $F = -eE_z\hat{z} - ec\vec{\beta} \times \vec{B}$, giving

$$F_x/e = \beta_z c B_y \tag{113}$$

$$F_y/e = -\beta_z c B_x \tag{114}$$

$$F_z/e = -E_z - \beta_x c B_y + \beta_y c B_x \tag{115}$$

We see that for $\rho \to 0$, we have $E_z = 0$, $B_x = 0$, and

$$cB_y = E_0 \cos \omega t. \tag{116}$$

Hence, for $\omega t = 0$ and $E_0 > 0$ we have $F_x > 0$. This explains our choice of sign and phase convention above. Indeed, owing to the factor of 2, we have a peak deflection of eE_0L/E , where L is the cavity length and E the beam energy. Thus, if $V = E_0L$ is specified in volts, and the beam energy expressed in electron volts, the deflection is simply the ratio of the two. As a result, we've chosen to parametrize the deflection strength simply by referring to the "deflecting voltage," V.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

RFTMEZ0

10.83 RFTMEZ0

A TM-mode RF cavity specified by the on-axis Ez field.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
FREQUENCY	HZ	double	2856000000	frequency
PHASE	RAD	double	0.0	phase
EZ_PEAK	V	double	0.0	Peak on-axis longitudinal elec-
				tric field
TIME_OFFSET	S	double	0.0	time offset (adds to phase)
PHASE_REFERENCE		long	0	phase reference number (to
				link to other time-dependent
				elements)
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
ETILT	RAD	double	0.0	misalignment
EYAW	RAD	double	0.0	misalignment
EPITCH	RAD	double	0.0	misalignment
N_STEPS		long	100	number of steps (for nonadap-
				tive integration)
RADIAL_ORDER		long	1	highest order in off-axis expan-
				sion
CHANGE_P0		long	0	does element change central
				momentum?
INPUTFILE		STRING	NULL	file containing Ez vs z at r=0
ZCOLUMN		STRING	NULL	column containing z values
EZCOLUMN		STRING	NULL	column containing Ez values
SOLENOID_FILE		STRING	NULL	file containing map of Bz and
				Br vs z and r. Each page con-
				tains values for a single r.
SOLENOID_ZCOLUMN		STRING	NULL	column containing z values for
				solenoid map.
SOLENOID_RCOLUMN		STRING	NULL	column containing r values for
				solenoid map. If omitted, data
				is assumed to be for $r=0$ and
				an on-axis expansion is per-
				formed.

${\tt RFTMEZO}\ {\rm continued}$

A TM-mode RF cavity specified by the on-axis Ez field.

Parameter Name	Units	Type	Default	Description
SOLENOID_BZCOLUMN		STRING	NULL	column containing Bz values
				for solenoid map.
SOLENOID_BRCOLUMN		STRING	NULL	column containing Br values
				for solenoid map. If omitted,
				data is assumed to be for r=0
				and an on-axis expansion is
				performed.
SOLENOID_FACTOR		double	1	factor by which to multiply
				solenoid fields.
SOLENOID_DX	M	double	0.0	misalignment
SOLENOID_DY	M	double	0.0	misalignment
SOLENOID_DZ	M	double	0.0	misalignment
SOLENOID_ETILT	RAD	double	0.0	misalignment
SOLENOID_EYAW	RAD	double	0.0	misalignment
SOLENOID_EPITCH	RAD	double	0.0	misalignment
BX_STRAY		double	0.0	Uniform stray horizontal field
BY_STRAY		double	0.0	Uniform stray vertical field
ACCURACY		double	0.0001	integration accuracy
METHOD		STRING	runge-kutta	integration method (runge-
				kutta, bulirsch-stoer, non-
				adaptive runge-kutta, modi-
				fied midpoint)
FIDUCIAL		STRING	$_{ m t,median}$	$\{t p\},\{median min max ave first lig$
				(e.g., "t,median")
FIELD_TEST_FILE		STRING	NULL	filename for output of test
				fields (r=0)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

324

RIMULT

10.84 RIMULT

Multiplies radiation integrals by a given factor. Use to compute emittance for collection of various types of cells.

Parameter Name	Units	Type	Default	Description
FACTOR		double	1	factor
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

RMDF

10.85 RMDF

A linearly-ramped electric field deflector, using an approximate analytical solution FOR LOW ENERGY PARTICLES.

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
TILT	RAD	double	0.0	rotation about longitudinal
				axis
RAMP_TIME	S	double	1e-09	length of ramp
VOLTAGE	V	double	0.0	full voltage
GAP	M	double	0.01	gap between plates
TIME_OFFSET	S	double	0.0	time offset of ramp start
N_SECTIONS		long	10	number of sections
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

ROTATE

10.86 ROTATE

An element that rotates the beam about the longitudinal axis.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
TILT	RAD	double	0.0	rotation about longitudinal
				axis
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The sign convention for the TILT parameter is confusing on this element. In particular, a positive TILT rotates the beam counter-clockwise about the longitudinal axis. This is the opposite sense to rotations of elements, where a positive TILT rotates the element clockwise about the longitudinal axis.

Hence, if one wanted to rotate a series of elements by 0.1 rad, one could do the following:

ROT1: ROTATE,TILT=0.1 ROT2: ROTATE,TILT=-0.1 BL: line=(ROT1,...,ROT2)

The TILT value for ROT1 is the same (including the sign) as the individual TILT values one would give to all the elements represented by

SAMPLE

10.87 SAMPLE

An element that reduces the number of particles in the beam by interval-based or random sampling. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
FRACTION		double	1	fraction to keep
INTERVAL		long	1	interval between sampled par-
				ticles
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

SBEN

10.88 SBEN

A sector dipole implemented as a matrix, up to 2nd order. Use CSBEND for symplectic tracking. Parallel capable? : yes

GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	arc length
ANGLE	RAD	double	0.0	bend angle
K1	$1/M^{2}$	double	0.0	geometric focusing strength
E1	RAD	double	0.0	entrance edge angle
E2	RAD	double	0.0	exit edge angle
TILT	RAD	double	0.0	rotation about incoming longi-
				tudinal axis
K2	$1/M^{3}$	double	0.0	geometric sextupole strength
H1	1/M	double	0.0	entrance pole-face curvature
H2	1/M	double	0.0	exit pole-face curvature
HGAP	M	double	0.0	half-gap between poles
FINT		double	0.5	edge-field integral
DX	M	double	0.0	misaligment of entrance
DY	M	double	0.0	misalignment of entrance
DZ	M	double	0.0	misalignment of entrance
FSE		double	0.0	fractional strength error
ETILT	RAD	double	0.0	error rotation about incoming
				longitudinal axis
EDGE1_EFFECTS		long	1	include entrance edge effects?
EDGE2_EFFECTS		long	1	include exit edge effects?
ORDER		long	0	matrix order
EDGE_ORDER		long	0	edge matrix order
TRANSPORT		long	0	use (incorrect) TRANSPORT
				equations for T436 of edge?
USE_BN		long	0	use B1 and B2 instead of K1
				and K2 values?
B1	1/M	double	0.0	K1 = B1/rho, where rho is
				bend radius
B2	$1/M^{2}$	double	0.0	K2 = B2/rho
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

Some confusion may exist about the edge angles, particularly the signs. For a sector magnet, we have of course E1=E2=0. For a symmetric rectangular magnet, E1=E2=ANGLE/2. If ANGLE is

negative, then so are E1 and E2. To understand this, imagine a rectangular magnet with positive ANGLE. If the magnet is flipped over, then ANGLE becomes negative, as does the bending radius ρ . Hence, to keep the focal length of the edge $1/f = -\tan E_i/\rho$ constant, we must also change the sign of E_i .

When adding errors, care should be taken to choose the right parameters. The FSE and ETILT parameters are used for assigning errors to the strength and alignment relative to the ideal values given by ANGLE and TILT. One can also assign errors to ANGLE and TILT, but this has a different meaning: in this case, one is assigning errors to the survey itself. The reference beam path changes, so there is no orbit/trajectory error. The most common thing is to assign errors to FSE and ETILT. Note that when adding errors to FSE, the error is assumed to come from the power supply, which means that multipole strengths also change.

Special note about splitting dipoles: when dipoles are long, it is common to want to split them into several pieces, to get a better look at the interior optics. When doing this, care must be exercised not to change the optics. elegant has some special features that are designed to reduce or manage potential problems. At issue is the need to turn off edge effects between the portions of the same dipole.

First, one can simply use the divide_elements command to set up the splitting. Using this command, elegant takes care of everything.

Second, one can use a series of dipoles with the same name. In this case, elegant automatically turns off interior edge effects. This is true when the dipole elements directly follow one another or are separated by a MARK element.

Third, one can use a series of dipoles with different names. In this case, you must also use the EDGE1_EFFECTS and EDGE2_EFFECTS parameters to turn off interior edge effects.

SCATTER

10.89 SCATTER

A scattering element to add gaussian random numbers to particle coordinates. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
X	M	double	0.0	rms scattering level for x
XP		double	0.0	rms scattering level for x'
Y	M	double	0.0	rms scattering level for y
YP		double	0.0	rms scattering level for y'
DP		double	0.0	rms scattering level for (p-
				pCentral)/pCentral
PROBABILITY		double	1	Probability that any particle
				will be selected for scattering.
STARTONPASS		long	0	Pass number to start on.
ENDONPASS		long	-1	Pass number to end on (inclu-
				sive). Ignored if negative.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

SCMULT

10.90 SCMULT

Tracks through a zero length multipole to simulate space charge effects

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

Important notes:

- This element is not designed for space charge calculations in guns or linacs. It is only intended for simulating space charge in rings.
- If inserting SCMULT elements using insert_sceffects, see the manual page for insert_sceffects for other caveats and pitfalls.

This element simulates transverse space charge (SC) kicks using K.Y. Ng's formula [24]. The linear SC force is given by:

$$\Delta x' = \frac{K_{sc}Le^{-z^2/(2\sigma_z^2)}}{\sqrt{2\pi}\sigma_z} \frac{x}{\sigma_x(\sigma_x + \sigma_y)}$$

$$\Delta y' = \frac{K_{sc}Le^{-z^2/(2\sigma_z^2)}}{\sqrt{2\pi}\sigma_z} \frac{y}{\sigma_y(\sigma_x + \sigma_y)}$$
(117)

where $K_{sc} = \frac{2Nr_e}{\gamma^3\beta^2}$, L is the integrating length, $\sigma_{x,y,z}$ are rms beam size.

The non-linear SC force is given by:

$$\Delta x' = \frac{K_{sc}Le^{-z^{2}/(2\sigma_{z}^{2})}}{2\sigma_{z}\sqrt{\sigma_{x}^{2} - \sigma_{y}^{2}}} Im \left[w \left(\frac{x + iy}{\sqrt{2(\sigma_{x}^{2} - \sigma_{y}^{2})}} \right) - e^{-\frac{x^{2}}{2\sigma_{x}^{2}} - \frac{y^{2}}{2\sigma_{y}^{2}}} w \left(\frac{x\frac{\sigma_{y}}{\sigma_{x}} + iy\frac{\sigma_{x}}{\sigma_{y}}}{\sqrt{2(\sigma_{x}^{2} - \sigma_{y}^{2})}} \right) \right]$$

$$\Delta y' = \frac{K_{sc}Le^{-z^{2}/(2\sigma_{z}^{2})}}{2\sigma_{z}\sqrt{\sigma_{x}^{2} - \sigma_{y}^{2}}} Re \left[w \left(\frac{x + iy}{\sqrt{2(\sigma_{x}^{2} - \sigma_{y}^{2})}} \right) - e^{-\frac{x^{2}}{2\sigma_{x}^{2}} - \frac{y^{2}}{2\sigma_{y}^{2}}} w \left(\frac{x\frac{\sigma_{y}}{\sigma_{x}} + iy\frac{\sigma_{x}}{\sigma_{y}}}{\sqrt{2(\sigma_{x}^{2} - \sigma_{y}^{2})}} \right) \right]$$

$$(118)$$

where w(z) is the complex error function

$$w(z) = e^{-z^2} \left[1 + \frac{2i}{\sqrt{\pi}} \int_0^z e^{\zeta^2} d\zeta \right]$$
 (119)

Equation 118 appear to diverge when $\sigma_x = \sigma_y$. In fact, this is not true, because the expressions inside the square brackets will provide zero too at $\sigma_x = \sigma_y$ to cancel the poles outside. In our code, we calculate this equation at $1.01\sigma_x$ and $0.99\sigma_x$, and average the total effects.

To invoke the calculation, one must use set up command "insert_sceffects" proceed "run_setup" and "Twiss_output" command proceed "track".

SCRAPER

10.91 SCRAPER

A collimating element that sticks into the beam from one side only. The directions 0, 1, 2, and 3 are from +x, +y, -x, and -y, respectively.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
XO	M	double	0.0	radiation length
ENERGY_DECAY		long	0	If nonzero, then particles will
				lose energy due to material
				using a simple exponential
				model.
ENERGY_STRAGGLE		long	0	Use simple-minded energy
				straggling model coupled with
				ENERGY_DECAY=1?
NUCLEAR_BREMSSTRAHLUNG		long	0	Model energy loss to nuclear
				bremsstrahlung? If enabled,
				set ENERGY_DECAY=0 to
ELECTRON DECON		1	0	disable simpler model.
ELECTRON_RECOIL		long	0	If non-zero, electron recoil
				during Coulomb scattering is
				included (results in energy change).
Z		lang	0	Atomic number
A	AMU	long double	0.0	Atomic number Atomic mass
RHO	KG/M^3	double	0.0	Density Density
PLIMIT	KG/M	double	0.05	Probability cutoff for each
FLIMIT		double	0.05	slice
POSITION	M	double	0.0	position of edge
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
INSERT_FROM		STRING	NULL	direction from which inserted
				(+x, -x, +y, -y)
DIRECTION		long	-1	obsolete, use insert_from in-
				stead
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The method used for material modeling is the same as that used for the MATTER element.

SCRIPT

10.92 SCRIPT

An element that allows transforming the beam using an external script.

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	Length to be used for matrix-
				based operations such as twiss
				parameter computation.
COMMAND		STRING	NULL	SDDS-compliant command to
				apply to the beam. Use the se-
				quence %i to represent the in-
				put filename and %o to repre-
				sent the output filename.
USE_CSH		long	1	Use C-shell for execution (may
				be slower)?
VERBOSITY		long	0	Set the verbosity level.
START_PASS		long	-1	Start script action on this
				pass. Before that, behaves like
				a drift space.
END_PASS		long	-1	End script action after this
				pass. Before that, behaves like
				a drift space.
PASS_INTERVAL		long	-1	Execute script only even Nth
				pass following START_PASS,
				including START_PASS. Oth-
				erwise, behaves like a drift
ON DAGG		,	_	space.
ON_PASS		long	-1	Perform script action only on
				this pass, overriding other pass
				controls. Other than that, be-
DIDECEODA		CEDING	ATTTT	haves like a drift space.
DIRECTORY		STRING	NULL	Directory in which to place in-
				put and output files. If blank,
				the present working directory
DOOMNAME.		CEDING	ATTIT T	is used.
ROOTNAME		STRING	NULL	Rootname for use in naming
				input and output files. %s may
				be used to represent the run
INDITE EVERYCLON		CUDING	:	rootname.
INPUT_EXTENSION		STRING	in	Extension for the script input
				file.

SCRIPT continued

An element that allows transforming the beam using an external script.

An element that allows transforming the Parameter Name	Units	Type	Default	Description
OUTPUT_EXTENSION		STRING	out	Extension for the script output
				file.
KEEP_FILES		long	0	If nonzero, then script in-
		0		put and output files are not
				deleted after use. By default,
				they are deleted.
DRIFT_MATRIX		long	0	If nonzero, then for non-
		<u> </u>		tracking calculations the el-
				ement is treated as a drift
				space.
USE_PARTICLE_ID		long	1	If nonzero, then the output file
		_		will supply particle IDs. Oth-
				erwise, particles are renum-
				bered.
NO_NEW_PARTICLES		long	1	If nonzero, then no new parti-
				cles will be added in the script
				output file.
DETERMINE_LOSSES_FROM_PID		long	1	If nonzero and if
				USE_PARTICLE_ID is
				nonzero, then particleID
				data from script output is
				used to determine which
				particles were lost.
NP0		double	0.0	User-defined numerical pa-
				rameter for command substi-
				tution for sequence %np0
NP1		double	0.0	User-defined numerical pa-
				rameter for command substi-
MDa		1 1 1		tution for sequence %np1
NP2		double	0.0	User-defined numerical pa-
				rameter for command substi-
NDO		1 1 1		tution for sequence %np2
NP3		double	0.0	User-defined numerical pa-
				rameter for command substi-
ND (tution for sequence %np3
NP4		double	0.0	User-defined numerical pa-
				rameter for command substi-
				tution for sequence %np4

${\tt SCRIPT}\ continued$

An element that allows transforming the beam using an external script.

Parameter Name	Units	Type	Default	Description
NP5		double	0.0	User-defined numerical pa-
				rameter for command substi-
				tution for sequence %np5
NP6		double	0.0	User-defined numerical pa-
				rameter for command substi-
				tution for sequence %np6
NP7		double	0.0	User-defined numerical pa-
				rameter for command substi-
				tution for sequence %np7
NP8		double	0.0	User-defined numerical pa-
				rameter for command substi-
				tution for sequence %np8
NP9		double	0.0	User-defined numerical pa-
				rameter for command substi-
				tution for sequence %np9
SP0		STRING	NULL	User-defined string parameter
				for command substitution for
				sequence %sp0
SP1		STRING	NULL	User-defined string parameter
				for command substitution for
				sequence %sp1
SP2		STRING	NULL	User-defined string parameter
				for command substitution for
				sequence %sp2
SP3		STRING	NULL	User-defined string parameter
				for command substitution for
				sequence %sp3
SP4		STRING	NULL	User-defined string parameter
				for command substitution for
GD.		OFFICE CO.	37777	sequence %sp4
SP5		STRING	NULL	User-defined string parameter
				for command substitution for
C.D. a		0 mp		sequence %sp5
SP6		STRING	NULL	User-defined string parameter
				for command substitution for
				sequence %sp6

SCRIPT continued

An element that allows transforming the beam using an external script.

Parameter Name	Units	Type	Default	Description
SP7		STRING	NULL	User-defined string parameter
				for command substitution for
				sequence %sp7
SP8		STRING	NULL	User-defined string parameter
				for command substitution for
				sequence %sp8
SP9		STRING	NULL	User-defined string parameter
				for command substitution for
				sequence %sp9
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element allows expanding **elegant** by using external scripts (or programs) as elements in a beamline. Here are requirements for the script:

- It must be executable from the commandline.
- It must read the initial particle distribution from an SDDS file. This file will have the usual columns that an elegant phase-space output file has, along with the parameter Charge giving the beam charge in Coulombs. The file will contain a single data page.
- It must write the final particle distribution to an SDDS file. This file should have all of the columns and parameters that appear in the initial distribution file. Additional columns and parameters will be ignored, as will all pages but the first.
- The Charge parameter in the file is used to determine the total beam charge; the script must ensure that this parameter is set correctly; when particles are lost or created, simply copying or retaining the value from the input file will not be correct. Normally, the charge per particle is constant in simulations. Hence, if elegant sees a change in charge per particle after the SCRIPT element, it issues a warning.

The SCRIPT element works best if the script accepts commandline arguments. In this case, the COMMAND parameter is used to provide a template for creating a command to run the script. The COMMAND string may contain the following substitutable fields:

- 1. %i Will be replaced by the name of the input file to the script. (elegant writes the initial particle distribution to this file.)
- 2. % Will be replaced by the name of the output file from the script. (elegant expects the script to write the final particle distribution to this file.)

- 3. %p Will be replaced by the pass number, which starts from 0.
- 4. %np0, %np1, ..., %np9 Will be replaced by the value of Numerical Parameter 0, 1, ..., 9. This can be used to pass to the script values that are parameters of the element definition. For example, if one wanted to vary parameters or add errors to the parameter, one would use this facility.
- 5. %sp0, %sp1, ..., %sp9 Will be replaced by the value of String Parameter 0, 1, ..., 9. This can be used to pass to the script values that are parameters of the element definition.

Here's an example of a SCRIPT COMMAND:

```
myScript -input %i -output %o -accuracy %np0 -type %sp0
```

In this example, the script myScript takes four commandline arguments, giving the names of the input and output files, an accuracy requirement, and a type specifier. By default, elegant will choose unique, temporary filenames to use in communicating with the script. The actual command when executed might be something like

```
myScript -input tmp391929.1 -output tmp391929.2 -accuracy 1.5e-6 -type scraper where for this example I've assumed NPO=1.5e-6 and SPO=''scraper''.
```

If you have a program (e.g., a FORTRAN program) that does not accept commandline arguments, you can easily wrap it in a Tcl/Tk simple script to handle this. Alternatively, you can force elegant to use specified files for communicating with the script. This is done using the ROOTNAME, INPUT_EXTENSION, and OUTPUT_EXTENSION parameters. So if your program was crass and it expected its input (output) in files crass.in (crass.out), then you'd use

```
S1: script,command=''crass'',rootname=''crass'',input_extension=''in'',& output_extension=''out''
```

For purposes of computing concatenated transport matrices, Twiss parameters, response matrices, etc., elegant will perform initial tracking through the SCRIPT element using an ensemble of 25 particles. If this is not desirable, then set the parameter DRIFT_MATRIX to a non-zero value. This will force elegant to treat the element as a drift space for any calculations that involve transport matrices. Examples of where one might want to use this feature would be a SCRIPT that involves randomization (e.g., scattering), particle loss, or particle creation.

SEXT

10.93 SEXT

A sextupole implemented as a matrix, up to 3rd order. Use KSEXT for symplectic tracking. Parallel capable? : yes

GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
K2	$1/M^{3}$	double	0.0	geometric strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FSE		double	0.0	fractional strength error
FFRINGE		double	0.0	Length occupied by linear
				fringe regions as fraction hard-
				edge length L.
ORDER		long	0	matrix order
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

SOLE

10.94 SOLE

A solenoid implemented as a matrix, up to 2nd order.

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
KS	RAD/M	double	0.0	geometric strength, -
				Bs/(B*Rho)
В	T	double	0.0	field strength (used if KS is
				zero)
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
ORDER		long	0	matrix order
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

SREFFECTS

10.95 SREFFECTS

Lumped simulation of synchrotron radiation effects (damping and quantum excitation) for rings. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
JX		double	1	x damping partition number
JY		double	1	y damping partition number
JDELTA		double	2	momentum damping partition
				number
EXREF	m	double	0.0	reference equilibrium x emit-
				tance
EYREF	m	double	0.0	reference equilibrium y emit-
				tance
SDELTAREF		double	0.0	reference equilibrium frac-
				tional momentum spread
DDELTAREF		double	0.0	reference fractional momen-
				tum change per turn due to SR
				(negative value)
PREF	$m_e c$	double	0.0	reference momentum (to
				which other reference values
				pertain)
COUPLING		double	0.0	x-y coupling
FRACTION		double	1	fraction of implied SR effect to
				simulate with each instance
DAMPING		long	1	include damping, less rf ef-
				fects?
QEXCITATION		long	1	include quantum excitation?
LOSSES		long	1	include average losses?
CUTOFF		double	100	cutoff (in sigmas) for gaussian
				random numbers
INCLUDE_OFFSETS		long	1	include orbit offsets in track-
				ing (see below)?
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is intended for storage ring modeling only and provides a fast alternative to element-by-element modeling of synchrotron radiation. It should be used with care because the results will not necessarily be self-consistent. This is particularly an issue when there is dispersion at the location of the SREFFECTS element.

There are several types of storage ring simulation in which one may want to use this element:

- Simulation of instabilities or other dynamics where radiation damping or quantum excitation is important.
- Simulation of dynamics with an rf cavity when the synchronous phase is significantly different from 180 degrees, so that average radiation losses must be included.
- Computation of dynamic and momentum aperture in the presence of radiation damping.

The major parameters (JX, JY, EXREF, SDELTAREF, DDELTAREF, and PREF) can be supplied explicitly by the user, or filled in by elegant if the twiss_output command is given with radiation_integrals=1.

In explicit initialization, the user supplies the quantities EXREF, EYREF, SDELTAREF, DDELTAREF, and PREF. These are, respectively, the reference values for the x-plane emittance, y-plane emittance, fractional momentum spread, energy loss per turn, and momentum. The first four values pertain to the reference momentum. JX, JY, and JDELTA may also be given, although the defaults work for typical lattices.

In automatic initialization, the user turns on the radiation integral feature in twiss_output, causing elegant to automatically compute the above quantities. This will occur only if PREF=0. The COUPLING parameter can be used to change the partitioning of quantum excitation between the horizontal and vertical planes. Because the radiation integrals computation in twiss_output pertains to the horizontal plane only, the user must supply either EYREF or COUPLING if non-zero vertical emittance is desired.

The user may elect to turn off some aspects of the synchrotron radiation model. These should be changed from the default values with care!

- DAMPING Default is 1. If set to 0, then no radiation damping effects will be included. More precisely, it is equivalent to setting JX=JY=JDELTA=1. Damping still occurs at any rf cavities (since elegant works in trace space).
- QEXCITATION Default is 1. If set to 0, then no quantum excitation effects are included, which is to say that all particles will experience the same perturbation.
- LOSSES Default is 1. If set to 0, no average energy losses are included.

There are a number of caveats that must be observed when using this element.

- 1. If there is dispersion at the location of the SREFFECTS element, the closed orbit will change because of the average momentum change, but it will disagree with tracking results. The reason is that in tracking SREFFECTS must displace the beam to the new equilibrium orbit, because otherwise there will be additional betatron motion excited and the wrong equilibrium emittance will be obtained. (Since the SREFFECTS element is already adding the betatron motion excitation for the entire ring, elegant is forced to offset each particle by $\Delta \delta \vec{\eta}$ to suppress any additional excitation.)
 - This issue can be resolved by placing the SREFFECTS element next to the rf cavity and setting INCLUDE_OFFSETS=0. Since the average momentum change is zero from the two elements, no additional betatron motion will be generated. Optionally, one can also use many SREFFECTS elements at equivalent locations in the lattice, which will decrease the magnitude of the effect.
- 2. When used for dynamic aperture and momentum aperture determination, one should set QEXCITATION=0. Putting the rf cavity (if any) right next to the SREFFECTS element is a good idea to avoid spurious excitation of betatron motion.

- 3. Nothing prevents including this element in a lattice when doing frequency map analysis, although it probably doesn't make any sense. Only the average energy loss per turn will be included. Again, putting an rf cavity right after SREFFECTS is a good idea.
- 4. In versions 19.0 and later, elegant includes the effect of SREFFECTS on the closed orbit. This presents a dilemna when automatic initialization is used, because in order to perform automatic initialization, elegant has to compute the optics functions. However, it must determine the closed orbit to compute the optics functions. The solution to this is for the user to pre-compute the twiss parameters and radiation integrals using twiss_output with output_at_each_step=0. The user is free to subsequently give twiss_output with output_at_each_step=1 to obtain the results on the closed orbit.
- 5. Computation of Twiss parameters does not fully include the effects of synchrotron radiation losses when these are imposed using SREFFECTS elements. If PREF=0 (automatic initialization), these effects are completely missing. If PREF is non-zero, then elegant will use the DDELTAREF parameter to compute the energy offset from the element, and thus its effect on the beam trajectory.

STRAY

10.96 STRAY

A stray field element with local and global components. Global components are defined relative to the initial beamline direction.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
LBX	T	double	0.0	local Bx
LBY	T	double	0.0	local By
GBX	T	double	0.0	global Bx
GBY	T	double	0.0	global By
GBZ	T	double	0.0	global Bz
ORDER		long	0	matrix order
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates stray fields. These fields are considered perturbations, in that they change the trajectory (or orbit), but not the floor coordinates. Local stray fields (LBX and LBY) are referenced to the local coordinate system. Global stray fields (GBX, GBY, GBZ) are referenced to the global coordinate system, which coincides with the local coordinate system only at the start of the beamline (unless there is no bending, in which case the two systems are identical).

TFBDRIVER

10.97 TFBDRIVER

Driver for a turn-by-turn feedback loop

Parameter Name	Units	Type	Default	Description
ID		STRING	NULL	System identifier
STRENGTH		double	0.0	Strength factor
KICK_LIMIT		double	0.0	Limit on applied kick, nomi-
				nally in radians.
FREQUENCY	Hz	double	0.0	Frequency of the kicker cavity.
PHASE	Deg	double	0.0	Phase of the applied voltage
				relative to the bunch center.
DELAY		long	0	Delay (in turns)
LONGITUDINAL		long	0	If non-zero, kick is in the longi-
				tuidinal plane. KICK_LIMIT
				is in fractional momentum de-
				viation.
OUTPUT_FILE		STRING	NULL	File for logging filter output
				and driver output
A0		double	1	Filter coefficient
A1		double	0.0	Filter coefficient
A2		double	0.0	Filter coefficient
A3		double	0.0	Filter coefficient
A4		double	0.0	Filter coefficient
A5		double	0.0	Filter coefficient
A6		double	0.0	Filter coefficient
A7		double	0.0	Filter coefficient
A8		double	0.0	Filter coefficient
A9		double	0.0	Filter coefficient
A10		double	0.0	Filter coefficient
A11		double	0.0	Filter coefficient
A12		double	0.0	Filter coefficient
A13		double	0.0	Filter coefficient
A14		double	0.0	Filter coefficient
A15		double	0.0	Filter coefficient
A16		double	0.0	Filter coefficient
A17		double	0.0	Filter coefficient
A18		double	0.0	Filter coefficient
A19		double	0.0	Filter coefficient

TFBDRIVER continued

Driver for a turn-by-turn feedback loop

Parameter Name	Units	Type	Default	Description
A20		double	0.0	Filter coefficient
A21		double	0.0	Filter coefficient
A22		double	0.0	Filter coefficient
A23		double	0.0	Filter coefficient
A24		double	0.0	Filter coefficient
A25		double	0.0	Filter coefficient
A26		double	0.0	Filter coefficient
A27		double	0.0	Filter coefficient
A28		double	0.0	Filter coefficient
A29		double	0.0	Filter coefficient
BUNCHED_BEAM_MODE		long	1	If non-zero, run in bunched
				beam mode.
UPDATE_INTERVAL		long	0	Interval in units of pickup
				update interval for sampling
				pickup data and updating fil-
				ter output.
OUTPUT_INTERVAL		long	1024	Number of samples to buffer
				between writing output file up-
				dates.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is used together with the TFBPICKUP element to simulate a digital turn-by-turn feedback system. Each TFBDRIVER element must have a unique identification string assigned to it using the ID parameter. The same identifier must be used on a TFBPICKUP element. This is the pickup from which the driver gets its signal. Each pickup may feed more than one driver, but a driver can use only one pickup.

A 30-term FIR filter can be defined using the A0 through A29 parameters. The output of the filter is simply $\sum_{i=0}^{29} a_i P_i$, where P_i is the pickup filter output from i * U turns ago, where U is the UPDATE_INTERVAL value specified for the pickup. The output of the filter is optionally delayed by the number of update intervals given by the DELAY parameter.

To some extent, the DELAY is redundant. For example, the filter $a_0 = 0$, $a_1 = 1$ with a delay of 0 is equivalent to $a_0 = 1$, $a_1 = 0$ with a delay of 1. However, for long delays or delays combined with many-term filters, the DELAY feature must be used.

The output of the filter is multiplied by the STRENGTH parameter to get the kick to apply to the beam. The KICK_LIMIT parameter provides a very basic way to simulate saturation of the kicker output.

The plane that the TFBDRIVER kicks is determined by the PLANE parameter on the corresponding

TFBPICKUP element, and additionally by the LONGITUDINAL parameter, as described in Table 3

TFBPICKUP	TFBDRIVER	coordinate	note
PLANE	LONGITUDINAL	kicked	
X	0	x'	
X	1	δ	pickup should have $\eta_x \neq 0$
y	0	y'	
y	1	δ	pickup should have $\eta_y \neq 0$
delta	0	_	invalid
delta	1	δ	

Table 3: Correspondence between PLANE parameter of TFBPICKUP, LONGITUDINAL parameter of TFBDRIVER, and action of feedback loop.

Note: The OUTPUT_FILE will produce a file with missing data at the end of the buffer if the OUTPUT_INTERVAL parameter is not a divisor of the number of passes.

The FREQUENCY and PHASE parameters may be used to specify the resonant frequency of the driving cavity and its phase relative to the center of the bunch. If the frequency is not specified, the kicker is assumed to kick all particles in a bunch by the same amount.

See Section 7.2.14 of *Handbook of Accelerator Physics and Engineering* (Chao and Tigner, eds.) for a discussion of feedback systems.

TFBPICKUP

10.98 TFBPICKUP

Pickup for a turn-by-turn feedback loop

Parameter Name	Units	Type	Default	Description
ID		STRING	NULL	System identifier
PLANE		STRING	X	"x", "y", "delta", or "phase"
RMS_NOISE	M	double	0.0	RMS noise to add to position
				readings.
A0		double	0.0	Filter coefficient
A1		double	0.0	Filter coefficient
A2		double	0.0	Filter coefficient
A3		double	0.0	Filter coefficient
A4		double	0.0	Filter coefficient
A5		double	0.0	Filter coefficient
A6		double	0.0	Filter coefficient
A7		double	0.0	Filter coefficient
A8		double	0.0	Filter coefficient
A9		double	0.0	Filter coefficient
A10		double	0.0	Filter coefficient
A11		double	0.0	Filter coefficient
A12		double	0.0	Filter coefficient
A13		double	0.0	Filter coefficient
A14		double	0.0	Filter coefficient
A15		double	0.0	Filter coefficient
A16		double	0.0	Filter coefficient
A17		double	0.0	Filter coefficient
A18		double	0.0	Filter coefficient
A19		double	0.0	Filter coefficient
A20		double	0.0	Filter coefficient
A21		double	0.0	Filter coefficient
A22		double	0.0	Filter coefficient
A23		double	0.0	Filter coefficient
A24		double	0.0	Filter coefficient
A25		double	0.0	Filter coefficient
A26		double	0.0	Filter coefficient
A27		double	0.0	Filter coefficient
A28		double	0.0	Filter coefficient
A29		double	0.0	Filter coefficient
BUNCHED_BEAM_MODE		long	1	If non-zero, run in bunched
				beam mode.

TFBPICKUP continued

Pickup for a turn-by-turn feedback loop

Parameter Name	Units	Type	Default	Description
UPDATE_INTERVAL		long	0	Interval in turns for sampling
				data and updating filter out-
				put.
REFERENCE_FREQUENCY		double	0.0	Reference frequency for com-
				puting phase offsets.
DX	M	double	0.0	Horizontal offset (subtracted
				from pickup signal).
DY	M	double	0.0	Vertical offset (subtracted
				from pickup signal)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element is used together with the TFBDRIVER element to simulate a digital turn-by-turn feedback system. Each TFBPICKUP element must have a unique identification string assigned to it using the ID parameter. This is used to identify which drivers get signals from the pickup.

A 30-term FIR filter can be defined using the A0 through A29 parameters. The input to the filter is the turn-by-turn beam centroid at the pickup location. The output of the filter is simply $\sum_{i=0}^{29} a_i C_i$, where C_i is the centroid from i * U turns ago, where U is the value specified by the UPDATE_INTERVAL parameter. Note that $\sum_{i=0}^{29} a_i$ should generally be zero. Otherwise, the system will attempt to correct the DC orbit. The output of the filter is the input to the driver element(s).

The PLANE parameter can take three values: "x", "y", and "delta", specifying what centroid property of the beam is measured by the pickup. The "delta"-mode pickup is nonphysical, but could have applications to cases where is not convenient to put a pickup in a high-dispersion area.

See Section 7.2.14 of *Handbook of Accelerator Physics and Engineering* (Chao and Tigner, eds.) for a discussion of feedback systems.

TMCF

10.99 TMCF

A numerically-integrated accelerating TM RF cavity with spatially-constant fields.

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
FREQUENCY	HZ	double	2856000000	frequency
PHASE	S	double	0.0	phase
TIME_OFFSET	S	double	0.0	time offset (adds to phase)
RADIAL_OFFSET	M	double	1	not recommended
TILT	RAD	double	0.0	rotation about longitudinal
				axis
ER	V	double	0.0	radial electric field
ВРНІ	T	double	0.0	azimuthal magnetic field
EZ	V	double	0.0	longitudinal electric field
ACCURACY		double	0.0001	integration accuracy
X_MAX	M	double	0.0	x half-aperture
Y_MAX	M	double	0.0	y half-aperture
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
N_STEPS		long	100	number of steps (for nonadap-
				tive integration)
METHOD		STRING	runge-kutta	integration method (runge-
				kutta, bulirsch-stoer, non-
				adaptive runge-kutta, modi-
				fied midpoint)
FIDUCIAL		STRING	t,median	$\{t p\},\{median min max ave first light\}$
				(e.g., "t,median")
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

TRCOUNT

10.100 TRCOUNT

An element that defines the point from which transmission calculations are made.

Parameter Name	Units	Type	Default	Description
DUMMY		long	0	
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

TRFMODE

10.101 TRFMODE

A simulation of a beam-driven TM dipole mode of an RF cavity.

Parameter Name	Units	Type	Default	Description
RA	Ohm/m	double	0.0	shunt impedance, Ra=V2/P
RS	Ohm/m	double	0.0	shunt impedance (Rs=Ra/2)
Q		double	0.0	cavity Q
FREQ	Hz	double	0.0	frequency
CHARGE	C	double	0.0	beam charge (or use CHARGE
				element)
BETA		double	0.0	normalized load impedance
BIN_SIZE	S	double	0.0	bin size for current histogram
				(use 0 for autosize)
N_BINS		long	20	number of bins for current his-
				togram
INTERPOLATE		long	0	if non-zero, interpolate voltage
				within bins
PLANE		STRING	both	x, y, or both
SAMPLE_INTERVAL		long	1	passes between output to
				RECORD file
PER_PARTICLE_OUTPUT		long	0	If non-zero, then in BINLESS
				mode, provides per-particle
				output of RECORD data.
RECORD		STRING	NULL	output file for cavity data
SINGLE_PASS		long	0	if nonzero, don't accumulate
DIGID HIMEH DAGG		1	•	field from pass to pass
RIGID_UNTIL_PASS		long	0	don't affect the beam until this
DV	1.6	1 11	0.0	pass
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
XFACTOR		double	1	factor by which to multiply
VEACTOR		double	1	shunt impedances
YFACTOR		aoubie	1	factor by which to multiply
RAMP_PASSES		long	0	shunt impedances Number of passes over which
KAMIT_FASSES		long	U	
				to linearly ramp up the impedance to full strength.
BINLESS		long	0	If nonzero, use algorithm
DIVLEOR		10118		that doesn't requiring binning.
				Best for few particles, widely
				spaced.
				spacea.

TRFMODE continued

A simulation of a beam-driven TM dipole mode of an RF cavity.

Parameter Name	Units	Type	Default	Description
RESET_FOR_EACH_STEP		long	1	If nonzero, voltage and phase
				are reset for each simulation
				step.
LONG_RANGE_ONLY		long	0	If nonzero, induced voltage
				from present turn does not af-
				fect bunch. Short range wake
				should be included via TR-
				WAKE or ZTRANSVERSE
				element.
N_CAVITIES		long	1	effect is multiplied by this
				number, simulating N identi-
				cal cavities
BUNCHED_BEAM_MODE		long	1	If non-zero, then do calcula-
				tions bunch-by-bunch.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a beam-driven dipole mode cavity using the fundamental theorem of beam loading and phasor rotation.

Normally, the field dumped in the cavity by one particle affects trailing particles in the same turn. However, if one is also using a TRWAKE or ZTRANSVSE element to simulate the short-range wake of the cavity, this would be double-counting. In that case, one can use LONG_RANGE_ONLY=1 to suppress the same-turn effects of the RFMODE element.

TRWAKE

10.102 TRWAKE

Transverse wake specified as a function of time lag behind the particle.

Parameter Name	Units	Type	Default	Description
INPUTFILE	CIIIOS	STRING	NULL	name of file giving Green func-
		BIIIII	IVOLL	tions
TCOLUMN		STRING	NULL	column in INPUTFILE con-
1 COLONIIV		BIIIII	IVOLL	taining time data
WXCOLUMN		STRING	NULL	column in INPUTFILE con-
Wite of the control o		STRING	TOLL	taining x Green function
WYCOLUMN		STRING	NULL	column in INPUTFILE con-
, vied Bollin		SITUITO	TOLL	taining y Green function
CHARGE	C	double	0.0	beam charge (or use CHARGE
		double	0.0	element)
FACTOR		double	1	factor by which to multiply
				both wakes
XFACTOR		double	1	factor by which to multiply x
				wake
YFACTOR		double	1	factor by which to multiply y
				wake
N_BINS		long	128	number of bins for current his-
		J		togram
INTERPOLATE		long	0	interpolate wake?
SMOOTHING		long	0	Use Savitzky-Golay filter to
				smooth current histogram?
SG_HALFWIDTH		long	4	Savitzky-Golay filter half-
				width for smoothing
SG_ORDER		long	1	Savitzky-Golay filter order for
				smoothing
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
TILT	RAD	double	0.0	rotation about longitudinal
				axis
X_DRIVE_EXPONENT		long	1	Exponent applied to x coordi-
	<u> </u>			nates of drive particles
Y_DRIVE_EXPONENT		long	1	Exponent applied to y coordi-
				nates of drive particles
X_PROBE_EXPONENT		long	0	Exponent applied to x coordi-
				nates of probe particles
Y_PROBE_EXPONENT		long	0	Exponent applied to y coordi-
				nates of probe particles

TRWAKE continued

Transverse wake specified as a function of time lag behind the particle.

Parameter Name	Units	Type	Default	Description
RAMP_PASSES		long	0	Number of passes over which
				to linearly ramp up the wake
				to full strength.
BUNCHED_BEAM_MODE		long	1	If non-zero, then do calcula-
				tions bunch-by-bunch.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The input file for this element gives the transverse-wake Green functions, $W_x(t)$ and $W_y(t)$, versus time behind the particle. The units of the wakes are V/C/m, so this element simulates the integrated wake of some structure (e.g., a cell or series of cells). If you have, for example, the wake for a cell and you need the wake for N cells, then you may use the FACTOR parameter to make the appropriate multiplication. The values of the time coordinate should begin at 0 and be equi-spaced. A positive value of time represents the distance behind the exciting particle. Time values must be equally spaced.

The sign convention for W_q (q being x or y) is as follows: a particle with q > 0 will impart a positive kick ($\Delta q' > 0$) to a trailing particle following t seconds behind if $W_q(t) > 0$. A physical wake function should be zero at t = 0 and also be initially positive as t increases from 0.

Use of the CHARGE parameter on the TRWAKE element is disparaged. It is preferred to use the CHARGE element as part of your beamline to define the charge.

Setting the N_BINS parameter to 0 is recommended. This results in auto-scaling of the number of bins to accommodate the beam. The bin size is fixed by the spacing of the time points in the wake.

The default degree of smoothing (SG_HALFWIDTH=4) may be excessive. It is suggested that users vary this parameter to verify that results are reliable if smoothing is employed (SMOOTHING=1).

The XFACTOR and YFACTOR parameters can be used to adjust the strength of the wakes if the location at which you place the TRWAKE element has different beta functions than the location at which the object that causes the wake actually resides.

The X_DRIVE_EXPONENT and Y_DRIVE_EXPONENT parameters can be used to change the dependence of the wake on the x and y coordinates, respectively, of the particles. Normally, these have the value 1, which corresponds to an ordinary dipole wake in a symmetric chamber.

If you have an asymmetric chamber, then you will have a transverse wake kick even if the beam is centered. (Of course, you'll need a 3-D wake code like GdfidL or MAFIA to compute this wake.) This part of the transverse wake is modeled by setting X_DRIVE_EXPONENT=0 and Y_DRIVE_EXPONENT=0. It will result in an orbit distortion, but conceivably could have other effects, such as emittance dilution. In this case, the units for the x and y wake must be V/C. A negative value of the wake corresponds to a kick toward negative x (or y).

In addition, a quadrupole wake can be modeled by setting X_DRIVE_EXPONENT=0, Y_DRIVE_EXPONENT=0, X_PROBE_EXPONENT=1, and Y_PROBE_EXPONENT=1. The kick to a particle now depends on it's dis-

placement, not on the displacement of the leading particles. In this case, the units for the wakes must be V/C/m.

Bunched-mode application of the short-range wake is possible using specially-prepared input beams. See Section 6 for details. The use of bunched mode for any particular TRWAKE element is controlled using the BUNCHED_BEAM_MODE parameter

TSCATTER

10.103 TSCATTER

An element to simulate Touschek scattering.

Parameter Name	Units	Type	Default	Description
DUMMY		long	0	
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

TUBEND

10.104 TUBEND

A special rectangular bend element for top-up backtracking.

of c capable: . no	TT		D 0 1	5
Parameter Name	Units	Type	Default	Description
L	M	double	0.0	arc length
ANGLE	RAD	double	0.0	bend angle
FSE		double	0.0	fractional strength error
OFFSET		double	0.0	horizontal offset of magnet
				center from arc center
MAGNET_WIDTH		double	0.0	horizontal width of the magnet
				pole
MAGNET_ANGLE		double	0.0	angle that the magnet was de-
				signed for
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

TWISS

10.105 TWISS

Sets Twiss parameter values.

Parameter Name	Units	Type	Default	Description
BETAX	M	double	1	horizontal beta function
ALPHAX		double	0.0	horizontal alpha function
ETAX	M	double	0.0	horizontal eta function
ETAXP		double	0.0	slope of horizontal eta function
BETAY	M	double	1	vertical beta function
ALPHAY		double	0.0	vertical alpha function
ETAY	M	double	0.0	vertical eta function
ETAYP		double	0.0	slope of vertical eta function
FROM_BEAM		long	0	compute transformation from tracked beam properties in-
				stead of Twiss parameters?
FROM_0VALUES		long	0	if non-zero, transformation is
				from the "0" values provided
				in the element definition
COMPUTE_ONCE		long	0	compute transformation only
				for first beam or lattice func-
				tions?
APPLY_ONCE		long	1	apply correction only on first
				pass through for each beam?
VERBOSE		long	0	if non-zero, print extra infor-
				mation about transformations
DISABLE		long	0	if non-zero, element is ignored
BETAX0	M	double	1	initial horizontal beta function
				(if FROM_0VALUES nonzero)
ALPHAX0		double	0.0	initial horizontal alpha func-
				tion (if FROM_0VALUES
				nonzero)
ETAX0	M	double	0.0	initial horizontal eta function
				(if FROM_0VALUES nonzero)

TWISS continued

Sets Twiss parameter values.

Parameter Name	Units	Type	Default	Description
ETAXP0		double	0.0	initial slope of horizontal eta
				function (if FROM_0VALUES
				nonzero)
BETAY0	M	double	1	initial vertical beta function (if
				FROM_0VALUES nonzero)
ALPHAY0		double	0.0	initial vertical alpha function
				(if FROM_0VALUES nonzero)
ETAY0	M	double	0.0	initial vertical eta function (if
				FROM_0VALUES nonzero)
ETAYP0		double	0.0	initial slope of vertical eta
				function (if FROM_0VALUES
				nonzero)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This elements allows transformation of the twiss parameters of a beam with a first-order matrix. The matrix is computed in various ways based on initial and final twiss parameters. Depending on how you set it up, the final twiss parameters for your beam may not be the twiss parameters you specify.

The twiss parameter values BETAX, BETAY, etc. specified in the element definition specify the target values of the transformation. To completely specify the transformation, one must know the initial values as well.

Lattice-Function-Based Transformation

If FROM_BEAM is zero, which is the default, then the initial values are taken from the incoming lattice functions computed by twiss_output. This provides a way to transform the lattice functions between two parts of a transport line without designing intervening optics. A beam that is matched at the beginning of the transport line will remain matched. A beam that is mismatched at the beginning of the transport line will not be matched after the TWISS element.

By default, each time the twiss parameters are recomputed, the transformation is updated to maintain the desired lattice functions at the exit of the TWISS element. Setting COMPUTE_ONCE to a non-zero value specifies that elegant should compute the transformation matrix only once, i.e., for the first set of computed lattice functions.

By default, the transformation is applied to the beam only the first time it passes the element. Setting APPLY_ONCE to a zero will result in application of the transformation at each pass.

Beam-Ellipse-Based Transformation

If FROM_BEAM is non-zero, the the initial values for the transformation are computed from a beam. This provides a way to transform the beam ellipse to the desired twiss parameters irrespective of the lattice. The results from twiss_output will not necessarily be matched downstream of this

element. Only if the beam ellipse and lattice ellipse are the same will this occur.

By default, each time a new beam is generated, the transformation will be updated to maintain the desired beam ellipse at the exit of the TWISS element. Setting COMPUTE_ONCE to a non-zero value specifies that elegant should compute the transformation matrix only once, i.e., for the first beam it sees.

By default, the transformation is applied to the beam only the first time it passes the element. Setting APPLY_ONCE to a zero will result in application of the transformation at each pass. This would make sense, for example, if the TWISS element was filling in for a section of a ring. It wouldn't make sense if the TWISS element was being used to match the beam from a transport line to a ring.

TWLA

10.106 TWLA

 $\label{lem:approx} A \ \text{numerically-integrated first-space-harmonic traveling-wave linear accelerator.}$

Parallel capable? : yes GPU capable? : no

GPU capable? : no	TT *:	Lm	D C 1	
Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
FREQUENCY	HZ	double	2856000000	frequency
PHASE	RAD	double	0.0	phase
TIME_OFFSET	S	double	0.0	time offset (adds to phase)
EZ	V/M	double	0.0	electric field
B_SOLENOID	T	double	0.0	solenoid field
ACCURACY		double	0.0001	integration accuracy
X_MAX	M	double	0.0	x half-aperture
Y_MAX	M	double	0.0	y half-aperture
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
BETA_WAVE		double	1	(phase velocity)/c
ALPHA	1/M	double	0.0	field attenuation factor
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
N_STEPS		long	100	number of steps (for nonadap-
				tive integration)
FOCUSSING		long	1	include focusing effects?
METHOD		STRING	runge-kutta	integration method (runge-
			J	kutta, bulirsch-stoer, non-
				adaptive runge-kutta, modi-
				fied midpoint)
FIDUCIAL		STRING	t,median	{t p},{median min max ave first lig
			,	(e.g., "t,median")
CHANGE_P0		long	0	does element change central
				momentum?
SUM_BN2		double	0.0	sum of squares of amplitudes
				of n!=0 space harmonics
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup
	1		l .	^

362

${\tt TWMTA}$

10.107 TWMTA

A numerically-integrated traveling-wave muffin-tin accelerator.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
FREQUENCY	HZ	double	2856000000	frequency
PHASE	RAD	double	0.0	phase
EZ	V/M	double	0.0	electric field
ACCURACY		double	0.0001	integration accuracy
X_MAX	M	double	0.0	x half-aperture
Y_MAX	M	double	0.0	y half-aperture
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
KX	1/M	double	0.0	horizontal wave number
BETA_WAVE		double	1	(phase velocity)/c
BSOL		double	0.0	solenoid field
ALPHA	1/M	double	0.0	field attenuation factor
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
N_STEPS		long	100	number of kicks
METHOD		STRING	runge-kutta	integration method (runge-
				kutta, bulirsch-stoer, non-
				adaptive runge-kutta, modi-
				fied midpoint)
FIDUCIAL		STRING	t,median	$\{t p\},\{median min max ave first light\}$
				(e.g., "t,median")
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

TWPL

10.108 TWPL

 ${\bf A}$ numerically-integrated traveling-wave stripline deflector.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
RAMP_TIME	S	double	1e-09	time to ramp to full strenth
TIME_OFFSET	S	double	0.0	offset of ramp-start time
VOLTAGE	V	double	0.0	maximum voltage between
				plates due to ramp
GAP	M	double	0.01	gap between plates
STATIC_VOLTAGE	V	double	0.0	static component of voltage
TILT	RAD	double	0.0	rotation about longitudinal
				axis
ACCURACY		double	0.0001	integration accuracy
X_MAX	M	double	0.0	x half-aperture
Y_MAX	M	double	0.0	y half-aperture
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
PHASE_REFERENCE		long	0	phase reference number
				(to link with other time-
				dependent elements)
N_STEPS		long	100	number of steps (for nonadap-
				tive integration)
METHOD		STRING	runge-kutta	integration method (runge-
				kutta, bulirsch-stoer, non-
				adaptive runge-kutta, modi-
				fied midpoint)
FIDUCIAL		STRING	t,median	$\{t p\},\{median min max ave first ligner \}$
				(e.g., "t,median")
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

364

UKICKMAP

10.109 UKICKMAP

An undulator kick map (e.g., using data from RADIA).

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
TILT	RAD	double	0.0	rotation about longitudinal
				axis
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
DZ	M	double	0.0	misalignment
FIELD_FACTOR		double	1	Factor by which to multiply
				the magnetic fields.
XY_FACTOR		double	1	Factor by which to multiply
				the x and y values in the in-
				put file.
INPUT_FILE		STRING	NULL	Name of SDDS file with undu-
				lator kickmap data.
N_KICKS		long	1	Number of kicks into which to
				split the element.
PERIODS		long	0	Number of periods (for ra-
				diation integral computations
				only).
KREF		double	0.0	Reference value of un-
				dulator parameter.
				K=KREF*FIELD_FACTOR
				is used for radiation integral
				calculations only assuming
				period=L/PERIODS.
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element provides simulation of undulators using kick maps [27]. A script (km2sdds) is provided with the elegant distribution to translate RADIA [28] output into SDDS for use by

elegant.

The input file has the following columns:

- x Horizontal position in meters.
- y Vertical position in meters.
- xpFactor Horizontal kick factor C_x in T^2m^2 . This factor is defined by equation (5a) in [27]. In particular, $\Delta x' = C_x/H^2$, where H is the beam rigidity in T^2m^2 .
- ypFactor Vertical kick factor C_y in T^2m^2 . This factor is defined by equation (5b) in [27]. In particular, $\Delta y' = C_y/H^2$, where H is the beam rigidity in T^2m^2 .

The values of x and y must be laid out on a grid of equispaced points. It is assumed that the data is ordered such that x varies fastest. This can be accomplished with the command

% sddssort -column=y,increasing -column=x,increasing input1.sdds input2.sdds

where input1.sdds is the original (unordered) file and input2.sdds is the new file, which would be used with UKICKMAP.

The data file is assumed to result from integration through a full device. If instead one integrates through just a single period of a full device, one must multiply FIELD_FACTOR by $\sqrt{N_u}$, where N_u is the number of periods in the full device. It also makes a certain amount of sense to set N_KICKS equal to N_u .

elegant performs radiation integral computations for UKICKMAP and can also include radiation effects in tracking. This feature has limitations, namely, that the radiation integral computations assume the device is horizontally deflecting. However, in tracking, no such assumption is made. N.B.: at present this element is *not* presently included in beam moments computations via the moments_output command.

This element was requested by W. Guo (BNL), who also assisted with the implementation and debugging.

VKICK

10.110 VKICK

A vertical steering dipole implemented as a matrix, up to 2nd order. Use EVKICK for symplectic tracking.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
KICK	RAD	double	0.0	kick strength
TILT	RAD	double	0.0	rotation about longitudinal
				axis
B2	$1/M^{2}$	double	0.0	normalized sextupole strength
				$(\text{kick} = \text{KICK}^*(1+\text{B2*y2}))$
CALIBRATION		double	1	strength multiplier
EDGE_EFFECTS		long	0	include edge effects?
ORDER		long	0	matrix order
STEERING		long	1	use for steering?
SYNCH_RAD		long	0	include classical synchrotron
				radiation?
ISR		long	0	include incoherent syn-
				chrotron radiation (scatter-
				ing)?
LERAD		double	0.0	if L=0, use this length for ra-
				diation computations
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

VMON

10.111 VMON

A vertical position monitor, accepting a rpn equation for the readout as a function of the actual position (y).

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
WEIGHT		double	1	weight in correction
TILT		double	0.0	rotation about longitudinal
				axis
CALIBRATION		double	1	calibration factor for readout
SETPOINT	M	double	0.0	steering setpoint
ORDER		long	0	matrix order
READOUT		STRING	NULL	rpn expression for readout (ac-
				tual position supplied in vari-
				able y)
CO_FITPOINT		long	0	If nonzero, then closed or-
				bit value is placed in variable
				<name>#<occurence>.yco</occurence></name>
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

WAKE

10.112 WAKE

Longitudinal wake specified as a function of time lag behind the particle.

Parallel capable? : yes GPU capable? : yes

Parameter Name	Units	Type	Default	Description
INPUTFILE		STRING	NULL	name of file giving Green func-
				tion
TCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining time data
WCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining Green function
CHARGE	C	double	0.0	beam charge (or use CHARGE
				element)
FACTOR	C	double	1	factor by which to multiply
				wake
N_BINS		long	128	number of bins for current his-
				togram
INTERPOLATE		long	0	interpolate wake?
SMOOTHING		long	0	Use Savitzky-Golay filter to
				smooth current histogram?
SG_HALFWIDTH		long	4	Savitzky-Golay filter half-
				width for smoothing
SG_ORDER		long	1	Savitzky-Golay filter order for
				smoothing
CHANGE_P0		long	0	change central momentum?
ALLOW_LONG_BEAM		long	0	allow beam longer than wake
				data?
RAMP_PASSES		long	0	Number of passes over which
				to linearly ramp up the wake
				to full strength.
BUNCHED_BEAM_MODE		long	1	If non-zero, then do calcula-
				tions bunch-by-bunch.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The input file for this element gives the longitudinal Green function, W(t) versus time behind the particle. The units of the wake are V/C, so this element simulates the integrated wake of some structure (e.g., a cell or series of cells). If you have, for example, the wake for a cell and you need the wake for N cells, then you may use the FACTOR parameter to make the appropriate

multiplication. The values of the time coordinate should begin at 0 and be equi-spaced. A positive value of time represents the distance behind the exciting particle.

A positive value of W(t) results in energy loss. A physical wake function should be positive at t = 0.

Use of the CHARGE parameter on the WAKE element is disparaged. It is preferred to use the CHARGE element as part of your beamline to define the charge.

Setting the N_BINS parameter to 0 is recommended. This results in auto-scaling of the number of bins to accommodate the beam. The bin size is fixed by the spacing of the time points in the wake.

The default degree of smoothing (SG_HALFWIDTH=4) may be excessive. It is suggested that users vary this parameter to verify that results are reliable if smoothing is employed (SMOOTHING=1).

The algorithm for the wake element is as follows:

- 1. Compute the arrival time of each particle at the wake element. This is necessary because elegant uses the longitudinal coordinate $s = \beta ct$.
- 2. Find the mean, minimum, and maximum arrival times (t_{mean} , t_{min} , and t_{max} , respectively). If $t_{max} t_{min}$ is greater than the duration of the wakefield data, then elegant either exits (default) or issues a warning (if ALLOW_LONG_BEAM is nonzero). In the latter case, that part of the beam that is furthest from t_{mean} is ignored for computation of the wake.
- 3. If the user has specified a fixed number of bins (not recommended), then elegant centers those bins on t_{mean} . Otherwise, the binning range encompasses $t_{min} \Delta t$ to $t_{max} + \Delta t$, where Δt is the spacing of data in the wake file.
- 4. Create the arrival time histogram. If any particles are outside the histogram range, issue a warning.
- 5. If SMOOTHING is nonzero, smooth the arrival time histogram.
- 6. Convolve the arrival time histogram with the wake function.
- 7. Multiply the resultant wake by the charge and any user-defined factor.
- 8. Apply the energy changes for each particle. This is done in such a way that the transverse momentum are conserved.
- 9. If CHANGE_PO is nonzero, change the reference momentum of the beamline to match the average momentum of the beam.

Bunched-mode application of the short-range wake is possible using specially-prepared input beams. See Section 6 for details. The use of bunched mode for any particular WAKE element is controlled using the BUNCHED_BEAM_MODE parameter.

WATCH

10.113 WATCH

A beam property/motion monitor–allowed modes are centroid, parameter, coordinate, and fft. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
FRACTION		double	1	fraction of particles to dump
				(coordinate mode)
START_PID		long	-1	starting particleID for parti-
				cles to dump
END_PID		long	-1	ending particleID for particles
				to dump
INTERVAL		long	1	interval for data output (in
				turns)
START_PASS		long	0	pass on which to start
END_PASS		long	-1	pass on which to end (inclu-
				sive). Ignored if negative.
FILENAME		STRING		output filename, possibly in-
				complete (see below)
LABEL		STRING		output label
MODE		STRING	coordinates	coordinate, parameter, cen-
				troid, or fft. For fft mode, you
				may add a space and a qualifer
				giving the window type: han-
				ning (default), parzen, welch,
				or uniform.
X_DATA		long	1	include x data in coordinate
				mode?
Y_DATA		long	1	include y data in coordinate
				mode?
LONGIT_DATA		long	1	include longitudinal data in
				coordinate mode?
EXCLUDE_SLOPES		long	0	exclude slopes in coordinate
				mode?
FLUSH_INTERVAL		long	100	file flushing interval (parame-
				ter or centroid mode)
DISABLE		long	0	If nonzero, no output will be
				generated.
USE_DISCONNECT		long	0	If nonzero, files are discon-
				nected between each write op-
				eration. May be useful for par-
				allel operation. Ignored other-
				wise.

WATCH continued

	1	/	• ,	11 1	1		1		1	1 CC
А	beam property,	/ motion	monitor-	-allowed	modes	are centro	d 1	narameter -	coordinate	and fft
4.	Doulli property	111001011	11101111001	anowa	mode	are cerrore.	u,	paramout,	coor annate,	and in.

Parameter Name	Units	Type	Default	Description
INDEX_OFFSET		long	0	Offset for file indices for se-
				quential file naming.
REFERENCE_FREQUENCY		double	-1	If non-zero, the indicated fre-
				quency is used to define the
				bucket center for purposes of
				computing time offsets.
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

The output filename may be an incomplete filename. In the case of the WATCH point element, this means it may contain one instance of the string format specification "%s" and one occurence of an integer format specification (e.g., "%ld"). elegant will replace the format with the rootname (see run_setup) and the latter with the element's occurrence number. For example, suppose you had a repetitive lattice defined as follows:

```
W1: WATCH, FILENAME=''%s-%03ld.w1''
Q1: QUAD, L=0.1, K1=1
D: DRIFT, L=1
Q2: QUAD, L=0.1, K1=-1
CELL: LINE=(W1,Q1,D,2*Q2,D,Q1)
BL: LINE=(100*CELL)
```

The element W1 appears 100 times. Each instance will result in a new file being produced. Successive instances have names like "rootname-001.w1", "rootname-002.w1", "rootname-003.w1", and so on up to "rootname-100.w1". (If instead of "%03ld" you used "%ld", the names would be "rootname-1.w1", "rootname-2.w1", etc. up to "rootname-100.w1". This is generally not as convenient as the names don't sort into occurrence order.)

The files can easily be plotted together, as in

```
% sddsplot -column=t,p *-???.w1 -graph=dot -separate
They may also be combined into a single file, as in
% sddscombine *-???.w1 all.w1
    In passing, note that if W1 was defined as
W1: WATCH,FILENAME=','%s.w1','
or
W1: WATCH,FILENAME=','output.w1','
```

only a single file would be produced, containing output from the last instance only.

N.B.: confusion sometimes occurs about some of the quantities related to the **s** coordinate in this file when in parameter mode. Please see Section 4 above.

WIGGLER

10.114 WIGGLER

A wiggler or undulator for damping or excitation of the beam.

Parallel capable? : yes GPU capable? : no

Parameter Name	Units	Type	Default	Description
L	M	double	0.0	length
RADIUS	M	double	0.0	Peak bending radius. Ignored
				if K or B is non-negative.
K		double	0.0	Dimensionless strength pa-
				rameter.
В	T	double	0.0	Peak vertical magnetic field.
				Ignored if K is non-negative
DX		double	0.0	Misaligment.
DY		double	0.0	Misaligment.
DZ		double	0.0	Misaligment.
TILT		double	0.0	Rotation about beam axis.
POLES		long	0	Number of wiggler poles
FOCUSING		long	1	If 0, turn off vertical focusing
				(this is unphysical!)
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element simulates a wiggler or undulator. There are two aspects to the simulation: the effect on radiation integrals and the vertical focusing. Both are included as of release 15.2 of elegant.

If the number of poles should be an odd integer, we include half-strength end poles to match the dispersion, but only for the radiation integral calculation. For the focusing, we assume all the poles are full strength (i.e., a pure sinusoidal variation). If the number of poles is an even integer, no special end poles are required, but we make the unphysical assumption that the field at the entrance (exit) of the device jumps instantaneously from 0 (full field) to full field (0).

The radiation integrals were computed analytically using Mathematica, including the variation of the horizontal beta function and dispersion. For an odd number of poles, half-strength endpoles are assumed in order to match the dispersion of the wiggler. For an even number of poles, half-length end poles are assumed (i.e., we start and end in the middle of a pole), for the same reason.

The vertical focusing is implemented as a distributed quadrupole-like term (affecting ony the vertical, unlike a true quadrupole). The strength of the quadrupole is (see Wiedemann, Particle Accelerator Physics II, section 2.3.2)

$$K_1 = \frac{1}{2\rho^2},\tag{120}$$

where ρ is the bending radius at the center of a pole. The undulator is focusing in the vertical plane.

The wiggler field strength may be specified either as a peak bending radius ρ (RADIUS parameter) or using the dimensionless strength parameter K (K parameter). These are related by

$$K = \frac{\gamma \lambda_u}{2\pi \rho},\tag{121}$$

where γ is the relativistic factor for the beam and λ_u is the period length.

ZLONGIT

10.115 ZLONGIT

A simulation of a single-pass broad-band or functionally specified longitudinal impedance.

Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
CHARGE	C	double	0.0	beam charge (or use CHARGE
				element)
BROAD_BAND		long	0	broad-band impedance?
RA	Ohm	double	0.0	shunt impedance, Ra=V2/P
RS	Ohm	double	0.0	shunt impedance (Rs=Ra/2)
Q		double	0.0	cavity Q
FREQ	Hz	double	0.0	frequency
				(BROAD_BAND=1)
ZREAL		STRING	NULL	<filename $>$ = $<$ x $>+<$ y $>$ form
				specification of input file giv-
				ing real part of impedance vs f
				(BROAD_BAND=0)
ZIMAG		STRING	NULL	<filename>=<x>+<y></y></x></filename>
				form specification of in-
				put file giving imaginary
				part of impedance vs f
				(BROAD_BAND=0)
BIN_SIZE	S	double	0.0	bin size for current histogram
				(use 0 for autosize)
N_BINS		long	128	number of bins for current his-
		_		togram
MAX_N_BINS		long	0	Maximum number of bins for
7774 7770G		amp m.a	37777	current histogram
WAKES		STRING	NULL	filename for output of wake
WAKE_INTERVAL		long	1	interval in passes at which to
THE COLUMN		,		output wake
WAKE_START		long	0	pass at which to start to out-
MAKE END		1	000000000000000000000000000000000000000	put wake
WAKE_END		long	9223372036854775807	pass at which to stop to output
ADDA MOIGUE		1		wake
AREA_WEIGHT		long	0	use area-weighting in assigning
		1		charge to histogram?
INTERPOLATE		long	0	interpolate wake?
SMOOTHING		long	0	Use Savitzky-Golay filter to
CC ODDED		lang	1	smooth current histogram?
SG_ORDER		long	1	Savitzky-Golay filter order for
CO HALEMIDAH		lang	4	smoothing Covitality Colors Filton
SG_HALFWIDTH		long	4	Savitzky-Golay filter
				halfwidth for smoothing

ZLONGIT continued

A simulation of a single-pass broad-band or functionally specified longitudinal impedance.

Parameter Name	Units	Type		Description
REVERSE_TIME_ORDER		long	0	Reverse time-order of particles
				for wake computation?
FACTOR		double	1	Factor by which to multiply
				impedance.
START_ON_PASS		long	0	The pass on which the
				impedance effects start.
RAMP_PASSES		long	0	Number of passes over which
				to linearly ramp up the
				impedance to full strength.
HIGH_FREQUENCY_CUTOFF0		double	-1	Frequency at which smoothing
				filter begins. If not positive,
				no frequency filter smoothing
				is done. Frequency is in units
				of Nyquist $(0.5/\text{binsize})$.
HIGH_FREQUENCY_CUTOFF1		double	-1	Frequency at which
				smoothing filter is 0. If
				not given, defaults to
				HIGH_FREQUENCY_CUTOF
BUNCHED_BEAM_MODE		long	1	If non-zero, then do calcula-
				tions bunch-by-bunch.
ALLOW_LONG_BEAM		long	0	Allow beam longer than cov-
				ered by impedance data?
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element allows simulation of a longitudinal impedance using a "broad-band" resonator or an impedance function specified in a file. The impedance is defined as the Fourier transform of the wake function

$$Z(\omega) = \int_{-\infty}^{+\infty} e^{-i\omega t} W(t) dt \tag{122}$$

where $i = \sqrt{-1}$, W(t) = 0 for t < 0, and W(t) has units of V/C.

For a resonator impedance, the functional form is

$$Z(\omega) = \frac{R_s}{1 + iQ(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega})},\tag{123}$$

where R_s is the shunt impedance in Ohms, Q is the quality factor, and ω_r is the resonant frequency. When providing an impedance in a file, the user must be careful to conform to these conventions. Other notes:

- 1. The frequency data required from the input file is not ω , but rather $f = \omega/(2\pi)$.
- 2. The default smoothing setting (SG_HALFWIDTH=4), may apply too much smoothing. It is recommended that the user vary this parameter if smoothing is employed.
- 3. Using the broad-brand resonator model can often result in a very large number of bins being used, as elegant will try to resolve the resonance peak and achieve the desired bin spacing. This can result in poor performance, particularly for the parallel version.

Bunched-mode application of the impedance is possible using specially-prepared input beams. See Section 6 for details. The use of bunched mode for any particular ZLONGIT element is controlled using the BUNCHED_BEAM_MODE parameter.

Explanation of <filename>=<x>+<y> format: Several elements in elegant make use of data from external files to provide input waveforms. The external files are SDDS files, which may have many columns. In order to provide a convenient way to specify both the filename and the columns to use, we frequently employ <filename>=<x>+<y> format for the parameter value. For example, if the parameter value is waveform.sdds=t+A, then it means that columns t and A will be taken from file waveform.sdds. The first column is always the independent variable (e.g., time, position, or frequency), while the second column is the dependent quantity.

ZTRANSVERSE

10.116 ZTRANSVERSE

A simulation of a single-pass broad-band or functionally-specified transverse impedance. Parallel capable? : yes

GPU capable? : no

Parameter Name	Units	Type	Default	Description
CHARGE	C	double	0.0	beam charge (or use CHARGE
				element)
BROAD_BAND		long	0	broad-band impedance?
RS	Ohm/m	double	0.0	shunt impedance
				$(Rs=Ra/2=V\hat{2}/(2*P))$
Q		double	0.0	cavity Q
FREQ	Hz	double	0.0	frequency
				(BROAD_BAND=1)
INPUTFILE		STRING	NULL	name of file giving impedance
				(BROAD_BAND=0)
FREQCOLUMN		STRING	NULL	column in INPUTFILE con-
				taining frequency
ZXREAL		STRING	NULL	column in INPUTFILE con-
				taining real impedance for x
				plane
ZXIMAG		STRING	NULL	column in INPUTFILE con-
				taining imaginary impedance
				for x plane
ZYREAL		STRING	NULL	column in INPUTFILE con-
				taining real impedance for y
				plane
ZYIMAG		STRING	NULL	column in INPUTFILE con-
				taining imaginary impedance
				for y plane
BIN_SIZE	S	double	0.0	bin size for current histogram
				(use 0 for autosize)
INTERPOLATE		long	0	interpolate wake?
N_BINS		long	128	number of bins for current his-
				togram
MAX_N_BINS		long	0	Maximum number of bins for
				current histogram
SMOOTHING		long	0	Use Savitzky-Golay filter to
				smooth current histogram?
SG_ORDER		long	1	Savitzky-Golay filter order for
				smoothing
SG_HALFWIDTH		long	4	Savitzky-Golay filter
				halfwidth for smoothing
	•	•	•	•

ZTRANSVERSE continued

A simulation of a single-pass broad-band or functionally-specified transverse impedance.

Parameter Name	Units		Default	Description
DX	M	double	0.0	misalignment
DY	M	double	0.0	misalignment
FACTOR		double	1	Factor by which to multiply x
				and y impedances.
XFACTOR		double	1	Factor by which to multiply x
				impedance.
YFACTOR		double	1	Factor by which to multiply y
				impedance.
WAKES		STRING	NULL	filename for output of wake
WAKE_INTERVAL		long	1	interval in passes at which to
				output wake
WAKE_START		long	0	pass at which to start to out-
				put wake
WAKE_END		long	9223372036854775807	pass at which to stop to output
				wake
START_ON_PASS		long	0	The pass on which the
				impedance effects start.
RAMP_PASSES		long	0	Number of passes over which
				to linearly ramp up the
				impedance to full strength.
HIGH_FREQUENCY_CUTOFF0		double	-1	Frequency at which smoothing
				filter begins. If not positive,
				no frequency filter smoothing
				is done. Frequency is in units
HIGH EDBOURNOY CHEORES		1 11	1	of Nyquist (0.5/binsize).
HIGH_FREQUENCY_CUTOFF1		double	-1	Frequency at which
				smoothing filter is 0. If
				not given, defaults to
V DDIVE EVDONENCE		long	1	HIGH_FREQUENCY_CUTOFF Exponent applied to x coordi-
X_DRIVE_EXPONENT		long	1	nates of drive particles
Y_DRIVE_EXPONENT		long	1	Exponent applied to y coordi-
I _DRIVE_EAPONENI		long		
X_PROBE_EXPONENT		long	0	nates of drive particles Exponent applied to x coordi-
A_F NODE_EAPONENT		long	U	nates of probe particles
				nates of probe particles

ZTRANSVERSE continued

A simulation of a single-pass broad-band or functionally-specified transverse impedance.

Parameter Name	Units	Type	Default	Description
Y_PROBE_EXPONENT		long	0	Exponent applied to y coordi-
				nates of probe particles
BUNCHED_BEAM_MODE		long	1	If non-zero, then do calcula-
				tions bunch-by-bunch.
ALLOW_LONG_BEAM		long	0	Allow beam longer than cov-
				ered by impedance data?
GROUP		string	NULL	Optionally used to assign an
				element to a group, with a
				user-defined name. Group
				names will appear in the pa-
				rameter output file in the col-
				umn ElementGroup

This element allows simulation of a transverse impedance using a "broad-band" resonator or an impedance function specified in a file. The impedance is defined as the Fourier transform of the wake function

$$Z(\omega) = \int_{-\infty}^{+\infty} e^{-i\omega t} W(t) dt$$
 (124)

where $i = \sqrt{-1}$, W(t) = 0 for t < 0, and W(t) has units of V/C/m. Note that there is no factor of i in front of the integral. Thus, in **elegant** the transverse impedance is simply the Fourier transform of the wake. This makes it easy to convert data from a program like ABCI into the wake formalism using sddsfft.

For a resonator impedance, the functional form is

$$Z(\omega) = \frac{-i\omega_r}{\omega} \frac{R_s}{1 + iQ(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega})},$$
(125)

where R_s is the shunt impedance in Ohms/m, Q is the quality factor, and ω_r is the resonant frequency.

When providing an impedance in a file, the user must be careful to conform to these conventions. Other notes:

- 1. The frequency data required from the input file is not ω , but rather $f = \omega/(2\pi)$.
- 2. The default smoothing setting (SG_HALFWIDTH=4), may apply too much smoothing. It is recommended that the user vary this parameter if smoothing is employed.
- 3. Using the broad-brand resonator model can often result in a very large number of bins being used, as elegant will try to resolve the resonance peak and achieve the desired bin spacing. This can result in poor performance, particularly for the parallel version.

Bunched-mode application of the impedance is possible using specially-prepared input beams. See Section 6 for details. The use of bunched mode for any particular ZTRANSVERSE element is controlled using the BUNCHED_BEAM_MODE parameter.

11 Examples

Example runs and post-processing files are available in a separate tar file. The examples are intended to demonstrate program capabilities with minimal work on the user's part. However, they don't pretend to cover all the capabilities.

Each demo is (typically) invoked using a command (usually a C-shell script) that can both run elegant and post-process the output. The post-processing is often handled by a lower-level script that is called from the demo script. These lower-level scripts are good models for the creation of customized scripts for user applications.

The examples are organized into a number of directories and subdirectories. In each area, the user will find a "Notebook" file (a simple ASCII file) that describes the example and how to run it.

Many examples for storage ring simulations reside in the PAR subdirectory. The PAR (Particle Accumulator Ring) is a small storage ring in the APS injector that is good for quick examples because of its size.

Here's a helpful tip in searching the examples on UNIX/LINUX systems: suppose one wants to find an example of the frequency_map command. One can search all the elegant command files very quickly with this command:

```
find . -name '*.ele' | xargs fgrep frequency_map
```

Similarly, to find all examples that use CSBEND elements, one could use

```
find . -name '*.lte' | xargs fgrep -i csbend
```

- acceptance Use of the acceptance feature when tracking collections of particles.
 - energyScan1 Tracking a FODO line with various apertures, with variation of the initial momentum offset.
 - fodoScan1 Tracking a FODO line with various apertures, with scanning of the quadrupole strengths.
 - transportLineAcceptance Determine transverse and momentum acceptance of a transport line using tracking. Example by M. Borland (ANL).
- alphaMagnet Optimization of the strength of an alpha magnet to compress the beam from a thermionic rf gun.
- APSRing Examples for the APS storage ring
 - beamMoments 6D beam moments calculation with errors
 - ibsAndTouschekLifetime Compute touschek lifetime with IBS-inflated emittances
 - ibsVsEnergy Compute IBS as a function of energy.
- beamBasedAlignment Determines quadrupole offsets based on simulated beam-based alignment procedure.
- beamBreakup Example of simulating beam-driven deflecting rf mode in a simple linac.
- bendErrors Analysis of the effect of errors on the matrix elements for a four-dipole bunch compression chicane.
- boosterRamp Example of simulating ramping in a booster, using the NSLS-II booster lattice (R. Fliller).
- bpmOffsets1 Example of loading BPM offsets from an external file and then correcting the orbit with those offsets.
- bunchCompression Examples of using a four-dipole chicane for bunch compression.
 - bunchComp Four examples revolving around a four-dipole chicane bunch compressor. Simulations include basic compression, sensitivity to timing, phase, and beam energy.
 - bunchCompJitter Simulation of a linac with a bunch compressor, including phase and voltage errors in the linac.
 - bunchCompJitter2 Simulation of a linac with a bunch compressor, including phase and voltage errors in the linac. In this case, the errors are generated externally.
 - bunchCompLSC Inclusion of longitudinal space charge in simulation of a linac with a bunch compressor.
 - bunchCompOptimize Example of using tracking to optimize a linac and bunch compressor including a 4th-harmonic linearizer.
- chromaticResponse Example of computing the chromatic transfer functions R16(s) and R26(s) as described in P. Emma and R. Brinkmann, SLAC-PUB-7554.

- constructOrbitBump1 Illustration of how to make an orbit bump using BPM offsets and the orbit correction algorithm.
 - couplingCorrection1 Scripts to perform coupling correction for the APS ring, emulating what is done in APS operations. These scripts are now part of the elegant distribution.
 - couplingCorrection2 Example of using cross-plane response matrix and vertical dispersion to correct the coupling.
- customBeamDistributions Examples of making custom beam distributions for tracking with elegant.
 - doubleBeam1 Example of how to make a double-gaussian time distribution using two runs. The resultant beam would be used in a subsequent run using the sdds_beam command.
 - example1 Gaussian energy distribution, linearly-ramped time distribution, and uniform transverse distributions.
 - parabolic Gaussian longitudinal distribution combined with parabolic transverse distributions.
- cwiggler Examples of using the CWIGGLER element.
 - cwig+kickmap Example of simulating a simple wiggler with CWIGGLER, making a kickmap from trackings, then validating the kickmap.
 - cwiggler1 A simple example of dynamic aperture with a set of sinusoidal wigglers, using the CWIGGLER element.
 - cwiggler2 An simple example of dynamic aperture with a set of two-component horizontal wigglers, using the CWIGGLER element.
- DATuneScan Performs a scan of the tunes in a storage ring and determines the variation in dynamic aperture.
- defeatLinkage Example of how to defeat the automatic link between the gradient and other multipoles in a dipole and the strength of the dipole itself.
- ellipseComparison Example of comparing beam ellipse from tracking to ellipse implied by the twiss parameters.
- emitProc Various applications of the program sddsemitproc, which processes quad-scan emittance measurements.
 - emitProc1 Simple example with constant measurement errors.
 - emitProc2 Measurement errors are supplied in the data file.
 - emitProc3 Includes the presence of dispersion, with constant measurement errors.
 - emitProc4 Quadrupole scan values are supplied from an external source.
 - emitProc5 Includes acceleration as part of the beamline.
- fiducialization Examples for fiducialization of a beamline.

- fiducial1 Example of fiducialization with a fiducial bunch and a perturbed bunch.
 The system in question is a linac with 50 structures, a four dipole chicane, then 50 more structures
- full457MeV Tracking of the APS linac with a PC gun beam, up to the entrance of the LEUTL undulator.
- GENESIS2.0 Example of running SDDS-compliant GENESIS 1.3 with output from elegant for LCLS.
- geneticOptimizer1 Illustration of using the geneticOptimizer script together with elegant.
- ILMatrixFromTracking Determination of the values for ILMATRIX based on analysis of tracking data.
- injRingMatch Matching of a transport line to a storage ring.
 - injRingMatch1 Illustration of finding the periodic solution for a ring, then matching a transport line to that solution.
 - injRingMatch2 Illustration of finding the periodic solution for a ring, then matching a transport line to that solution. In this case, a single run is used.
 - movingElements Example of matching a transport line to a ring with movable quadrupoles but fixed total length.
- LCLS LCLS-I tracking example from P. Emma, November 2007.
 - wakes -
- linacDispersion1 Example of determining the initial dispersion error in a linac.
- lsrMdltr Various examples of using the LSRMDLTR (Laser Modulator) element
 - example 1 Simple example using LCLS-I-like parameters
 - example2 Includes a time-profile on the laser.
 - example3 Simulation of laser slicing for a storage ring.
- matching Various examples of lattice matching.
 - beamSizeMatch1 Example of adjusting the initial beam parameters to match the measured beam sizes at a set of diagnosites.
 - betaMatching A simple two-stage matching example.
 - linacMatching1 Example of three-part matching of a linac with a bunch compressor.
 - matchMeasuredBetas Optimization of lattice quadrupoles to create a model that reproduces measured beta functions.
 - matchTwoEnergies Example of matching beams with two different initial energies in a linac. The beams are affected by common quadrupoles, but also by quadrupoles unique to each beam.

- multiPartMatching1 Complex example of multi-part matching for a linac with several splice points.
- multiPartMatching1 —
- multiPartMatching1 ---
- multiPartMatching1 —
- multiPartMatching1 ---
- multiPartMatching1 --
- multiPartMatching2 Example of storage ring matching with three types of cells.
- spectrometer Optimizes a simple spectrometer to maximize energy resolution.
- multibunchCollectiveEffects Examples of multi-bunch collective effects for APS storage ring
 - APS-24Bunch-CBI Includes main and harmonic cavities, beamloading, rf feedback, beam feedback, and short-range impedance.
 - ILMatrixFromTracking Example of using tracking to set up the ILMATRIX element for fast tracking. This is useful for increasing the speed of collective effects simulations.
- multiStepErrors1 Example of multi-step addition and correction of errors for a storage ring.
- NSLS-II-GirderMisalignment Simulation of girder misalignment for NSLS-II, by S. Kramer (BNL) and M. Borland (ANL).
- outboardTrajCorr Examples of using the response matrix computed by elegant to perform trajectory correction with a script.
 - outboardTrajCorr1 Compares trajectory correction inside elegant to correction performed with an external script.
 - outboardTrajCorr2 Compares trajectory correction inside elegant to correction performed with an external script. Includes BPM offsets.
- PAR Numerous examples using the small APS Particle Accumulator Ring.
 - bunchLengthening Simulation of a passive bunch-lengthening cavity using the RF-MODE element.
 - chromCorrection Simple chromaticity correction with two families. Also illustrates saving and loading correction results.
 - chromTracking Illustration of using tracking to determine variation of tune with momentum.
 - chromTracking2 Similar to chromTracking, but includes determination of the momentum dependence of the beta functions.
 - CSR Example of tracking with APS Particle Accumulator Ring with a Coherent Synchrotron Radiation impedance.
 - dynamicAperture Determination of dynamic aperture for a series of momentum errors.

- dynamicApertureWithSynchMotion Example of dynamic aperture with radiation damping and synchrotron motion.
- ejectionOptimization Tuning of a multi-turn extraction system using several kickers.
- emittanceOptimization Direct optimization of the emittance using linear optics tuning.
- fineDynamicAperture High-resolution dynamic aperture including a map of where particles are lost.
- fixedLVsRegularOrbit Illustration of the difference between orbits computed with fixed path length (fixed rf frequency) and fixed beam energy (variable rf frequency).
- frequencyMap Example of frequency map analysis
- gasScatteringLifetime Simple computation of gas scattering lifetime using a fixed pressure and gas mixture.
- gasScatteringLifetimePresFile Computation of gas scattering lifetime using a file giving the pressure around the ring.
- moments Computes 6D beam moments with coupling errors.
- momentumAperture Computes the s-dependent momentum aperture without errors.
- offMomentumDA Another computation of off-momentum dynamic aperture
- offMomentumTwiss Computation of off-momentum twiss parameters.
- quadScan Computation of twiss parameters as quadrupoles are varied according to an external table.
- randomMultipoles Dynamic aperture including random multipole errors in the quadrupoles and sextupoles.
- synchrotronTune Simple example of tracking with synchrotron motion.
- tracking Visualization of motion in x-x' and y-y' phase space.
- trajOrbitCorrect Correct the first-turn trajectory, then correct the orbit.
- TSWATracking Uses tracking and post-processing to determine tune variation with amplitude.
- tuneOptimization Correct the tunes and chromaticities.
- twissCalculation Simple calculation of the twiss parameters
- twoCavityMoments Calculation of 6D beam moments in the presence of main and harmonic rf cavities.
- parallel Various runs illustrating a few features of the parallel version.
 - DA Dynamic aperture calculation.
 - FMA Frequency map analysis.
 - LMA Local momentum aperture calculation.
- pepperPot Examples of using the PEPPER_POT element
 - basic Basic example of simulating a pepper-pot plate.

- pepperPotScan Example of simulating a pepper-pot plate with emittance analysis.
- periodicTwissRFCA Demonstration that one can't have periodic beta functions in a FODO cell array with linac structures.
- pulsedSextInjection Illustration of optimizing the sextupoles of pulsed sextupole kickers for injection into a storage ring.
- rampTunesWithBeam Example of ramping tunes while tracking beam. In this case, we ramp the tunes across the difference coupling resonance.
- rfDeflectingCavity A simple example of using a traveling wave rf deflector (RFDF).
- RFTMEZO Tracking through a TM-mode rf cavity based on an off-axis expansion starting from Ez(z) at r=0.
- scanParameters Examples of scanning parameters of beamline elements.
 - scanParameters1 Scan two quadrupoles together.
 - scanParameters2 Scan the phase of an rf cavity and look at synchrotron oscillations.
- scriptElement Examples of using the SCRIPT element
 - elegantShower Use of the SCRIPT element to execute the electron-gamma shower simulation code SHOWER as part of an elegant run.
 - mergeBeams Using the SCRIPT element to merge several beams into a simulation that already has a beam.
 - slitArray Simulation of an array of slits using the SCRIPT element.
- sddsoptimizeExample Example of using the program sddsoptimize to optimize the results of elegant simulations. In this example, we vary a strength fudge factor for a set of quadrupoles in a transport line in order to attempt to match measured H and V response matrices.
- serverExample Example of using elegant in server mode to update lattice functions when magnet strengths change.
- SPEAR3 Various examples using an early SPEAR3 lattice
 - dynamicAperture Compute DA for several error seeds, including multipole errors.
 - latticeErrors Compute variation in lattice functions with errors, including correction of the orbit, tunes, and chromaticities.
- staticPlusDynamicErrors Example of combining static and dynamic errors in one simulation.
- storageRingRfNoise Example of including rf phase and amplitude noise in a tracking simulation.
- transportLineHigherOrderDispersion Determine higher-order dispersion in a transport line using tracking.

- twissDerivatives Example of how to compute slopes of beta, alpha, and dispersion as a function of initial momentum for a transport line.
- twoBunchPhasing Example of putting two bunches through a linac with the linac phased to the first bunch.
- varyPlotExample Example of varying a beamline parameter and computing beam properties, then plotting those properties vs s.

12 The rpn Calculator

The program rpn is a Reverse Polish Notation programmable scientific calculator written in C. It is incorporated as a subprogram into elegant, and a number of the SDDS programs. It also exists as a command-line program, rpn1, which executes its command-line arguments as rpn operations and prints the result before exiting. Use of rpn in any of these modes is extremely straightforward. Use of the program in its stand-alone form is the best way to gain familiarity with it. Once one has entered rpn, entering "help" will produce a list of the available operators with brief summaries of their function. Also, the rpn definitions file rpn.defns, distributed with elegant, gives examples of most rpn operation types.

Like all RPN calculators, rpn uses stacks. In particular, it has a numeric stack, a logical stack, and a string stack. Items are pushed onto the numeric stack whenever a number-token is entered, or whenever an operation concludes that has a number as its result; items are popped from this stack by operations that require numeric arguments. Items are pushed onto the logical stack whenever a logical expression is evaluated; they are popped from this stack by use of logical operations that require logical arguments (e.g., logical ANDing), or by conditional branch instructions. Items enclosed in double quotes are pushed onto the string stack; items are popped from this stack by use of operations that require string arguments (e.g., formatted printing).

rpn supports user-defined memories and functions. To create a user-defined memory, one simply stores a value into the name, as in "1 sto unity"; the memory is created automatically when rpn detects that it does not already exist. To create a user-defined function, enter the "udf" command; rpn will prompt for the function name and the text that forms the function body. To invoke a UDF, simply type the name.

A file containing rpn commands can be executed by pushing the filename onto the string stack and invoking the "@" operator. rpn supports more general file I/O through the use of functions that mimic the standard C I/O routines. Files are identified by integer unit numbers, with units 0 and 1 being permanently assigned to the terminal input and terminal output, respectively.

13 Change Log

13.1 Highlights of What's New in Version 32.0, 5 Jan. 2017

Here is a summary of what's changed since release 31.

13.1.1 Bug Fixes for Elements

• None.

13.1.2 Bug Fixes for Commands

- A bug was fixed in the amplification_factors command that resulted in a crash when the corrected amplification factors were requested. This was reported by S. DiMitri (ELETTRA).
- A bug was fixed for twiss_output, which was incorrectly reporting the quantities $\frac{\partial \alpha_{x,y}}{\partial \delta}$ (parameters dalphax/dp and dalphay/dp in the output file) in some cases.

13.1.3 New and Modified Elements

- Added the BRANCH element, which permits branching between parts of a beamline based on the number of passes executed.
- Apertures specified using MAXAMP or an external aperture file (using the aperture_data command) are now enforced inside CSBEND and CSRCSBEND elements. There may be small changes in, for example, momentum acceptance as a result of this, particularly when gradient dipoles are involved.
- The longitudinal location of losses inside KQUAD and KSEXT elements is now computed more accurately. Previously, it was simply the start of the element.
- Removed the non-functional FRINGE parameter of the CSBEND element.
- The BGGEXP (B-field Generalized Gradient Expansion) element now supports symplectic integration using an implicit method, implemented by R. Lindberg (APS).

13.1.4 New and Modified Commands

- Added exclude parameter to chromaticity command, allowing exclusion of some sextupoles that may match the list in the sextupole parameter.
- Added alter_at_each_step and alter_before_load_parameters parameters to the alter_elements command, allowing better control of potential conflicts with load_parameters.
- The random number generator seed is now permuted bitwise in order to add a greater level of apparent randomness. Thus, changing the seed by a small amount will now have a bigger effect on the sequences generated, making it easier to deliberately perform several runs with very distinct random values. This can be defeated using the global_settings command by setting inhibit_seed_permutation=1. This issue was pointed out by V. Sajaev (APS).

13.1.5 Changes Specific to Parallel Version

• None.

13.1.6 Changes to Related Programs and Files

• ionTrapping — Added computation of the single-ion oscillation frequency.

13.2 Highlights of What's New in Version 31.0, 1 Oct. 2016

Here is a summary of what's changed since release 30.1.

13.2.1 Bug Fixes for Elements

- The touschek_scatter command had a bug when random multipoles where used on KQUAD and KSEXT elements. In particular, these multipoles components were re-randomized for each TSCATTER element. This was discovered and fixed by A. Xiao (ANL).
- The implementation of edge effects in the KQUAD element was using x' and y' in place of q_x and q_y , and so was not symplectic. It also did not have the correct dependence on δ . These issues were reported by R. Lindberg (ANL). A similar error was fixed in the implementation of edge effects for CSBEND; this was fixed by Y.P. Sun (ANL). Practically speaking, we haven't noticed any significant change in results.
- There was a bug in the evaluation of systematic multipoles when using the second-order integrator for KQUAD and KSEXT. The default fourth-order integrator did not have this issue.
- Higher-order path-length issues were fixed for the BRAT element. This issue was reported by R. Lindberg (ANL).
- The steering kick calibration factors are no longer ignored on the KQUAD element.
- The BMXYZ and BMAPXY elements lacked dependence on the momentum deviation δ . This issue was reported by R. Lindberg (ANL).

13.2.2 Bug Fixes for Commands

• None

13.2.3 New and Modified Elements

- Added the BGGEXP element, which performs tracking through magnetic fields constructed from a generalized gradient expansion [50]. Although the integration is not symplectic, the fields satisfy Maxwell's equations exactly. A script, computeGeneralizedGradients, is provided to assist in preparing input for this element. Advice from M. Venturini (LBNL) was helpful in performing this work.
- Added separate specification of edge and body multipoles to the KQUAD and KSEXT elements.
- Added steering and steering multipoles to the KSEXT element.
- The BMXYZ element now allows independent specification of the insertion length and field map length.
- The code for the KQUAD, KSEXT, MULT, and FMULT was improved to prevent underflows that might occur in some odd cases, which would negatively affect accuracy.

- The LSRMDLR element now includes an option for a helical device. This was requested by forum user zzhang and implemented by Y.-P. Sun (ANL).
- Two additional parameters, SampledParticles and SampledCharge were added to WATCH files in coordinate mode. These are identical to Particles and Charge, respectively, except when the FRACTION parameter is < 1. In that case, the latter parameters give the values prior to sampling, while the new parameters give the parameters of the sampled fraction of the bunch. Previously, Particles and Charge changed as FRACTION was changed. Note that scripts that use the Particles and Charge may need modification since the meaning has changed. Y. Ding (SLAC) pointed out this issue.

13.2.4 New and Modified Commands

- The analyze_map command can now report the map using canonical variables. It also has a user-controlled accuracy parameter that can be used to eliminate spurious matrix elements. R. Lindberg (ANL) helped with the development and testing.
- The touschek_scatter command now uses averaging of the loss rate over the interval between two TSCATTER elements instead of the local value at the element, which gives more accurate estimates of the distribution of scattered particles. This change requires that TSCATTER elements be inserted at the beginning and end of the beamline, which can be done using add_at_end=1 and add_at_start=1 in the insert_elements command. This was implemented by A. Xiao (ANL).
- The modulate_elements command now offers more control over verbose printouts, to help reduce the volume of uninformative printouts. It also provides user control of the buffer flushing interval for the record output file.
- The insert_elements command now has the option to insert an element at the beginning of the beamline.

13.2.5 Changes Specific to Parallel Version

• None.

13.2.6 Changes to Related Programs and Files

- The script computeGeneralizedGradients was added to assist in preparing input for the BGGEXP element.
- The scripts elasticScatteringLifetime and bremsstrahlungLifetime now support user-specified gas composition. The Z values for carbon and oxygen were mixed up in some places in these and related scripts, as pointed out by S. Tian (IHEP); this was fixed.
- The ionTrapping script now supports user-provided factors for inflating the emittance and energy spread.

13.3 Highlights of What's New in Version 30.1, 3 Aug. 2016

Here is a summary of what's changed since release 30.0

13.3.1 Bug Fixes for Elements

• Fixed a bug in Touschek scattering simulation (TSCATTER element and touschek_scatter command) that resulted in the random multipole components of KQUAD and KSEXT elements being re-randomized for each TSCATTER element.

13.3.2 Bug Fixes for Commands

- Fixed a bug introduced in moments_output computations when CSBEND elements were present with non-zero values of ETILT. Reported by V. Sajaev (ANL).
- Fixed a bug in Touschek scattering simulation (TSCATTER element and touschek_scatter command) that resulted in the random multipole components of KQUAD and KSEXT elements being re-randomized for each TSCATTER element.

13.3.3 New and Modified Elements

- Added edge multipoles to KQUAD element. This necessitated some rearrangement of the code, so results might be slightly different even if this feature is not invoked.
- Added I/Q mode feedback to the RFMODE element.

13.3.4 New and Modified Commands

• None.

13.3.5 Changes Specific to Parallel Version

- Implemented exact normalized emittance calculations for the sigma output file of the run_setup command and in WATCH output in parameter mode. J. Bjorklund pointed out the lack of calculations in the parallel version.
- Fixed bug in assignment of particle ID values when using Halton sequences in the bunched_beam command.

13.3.6 Changes to Related Programs and Files

- The program abrat ("Asymmetric Bend RAy tracing") was added. It allows tracking electrons through 2- and 3-D magnetic field maps. It is a commandline version of the BRAT element.
- The script ionTrapping was added, providing simple ion trapping calculations for uniform bunch trains. J. Calvey (APS) helped with debugging.
- The script computeSCTuneSpread was added to allow computation of space-charge tune spread.
- The script radiationEnvelope now computes envelopes for central cone flux.

13.4 Highlights of What's New in Version 30.0, 5 July 2016

Here is a summary of what's changed since release 29.1:

13.4.1 Bug Fixes for Elements

• Fixed a memory leak in the FTABLE element.

13.4.2 Bug Fixes for Commands

- Fixed calculations of exact normalized emittance (error in equations) and implemented in parallel version. This bug impacted results in the sigma output file of the run_setup command and in WATCH output in parameter mode. J. Bjorklund pointed out the lack of calculations in the parallel version and provided an example run that helped discover the problem with the serial version.
- The diffusionRate output from the frequency_map command is now computed as $\log_{10}((\Delta\nu_x^2 + \Delta\nu_y^2)/n)$ instead of $(\log_{10}(\Delta\nu_x^2 + \Delta\nu_y^2))/n$.
- Fixed a bug in bunched_beam whereby the centroids for a shell-type beam were offset from zero. Reported by L. Emery (ANL).
- Fixed bug in moments_output when bending magnts with non-zero ETILT are present. When this occurs, the number of slices for moments calculation is set to 1 for those elements, to avoid numerical problems with the vertical orbit.

13.4.3 New and Modified Elements

- Added the LEFFECTIVE parameter for QUAD and KQUAD, which provides a convenient way to change the effective length without changing the adjacent drift spaces. Also added the ability to turn off the linear fringe field effects while keeping the nonlinear part, and to multiply the nonlinear effects by a numerical factor.
- Added the BMXYZ element for straightforward integration through 3D field maps for straight elements.
- Added the BRAT element, which is similar to BMXYZ but accommodates curved elements. Elements may be asymmetric, e.g., longitudinal gradient dipoles.
- Added the FACTOR and THRESHOLD options to FTABLE. The former allows multiplying the fields by a user-defined factor. The latter allows specifying the magnitude of the field below which it is considered zero, which can help ensure numerical stability.
- The FTABLE element can accept the simple-to-create input files used by the BMXYZ element in addition to the original input format.
- Results that depend on the transport matrix will show small changes for elements for which the matrix is determined by tracking. The tracking-based method was modified to use a larger number of sample points, increasing the accuracy.

13.4.4 New and Modified Commands

• Added the full_grid_output parameter to the frequency_map command, making it possible to display frequency maps using sddscontour.

13.4.5 Changes Specific to Parallel Version

- Implemented exact normalized emittance calculations for the sigma output file of the run_setup command and in WATCH output in parameter mode. J. Bjorklund pointed out the lack of calculations in the parallel version.
- Fixed bug in assignment of particle ID values when using Halton sequences in the bunched_beam command.

13.4.6 Changes to Related Programs and Files

- The program abrat ("Asymmetric Bend RAy tracing") was added. It allows tracking electrons through 2- and 3-D magnetic field maps. It is a commandline version of the BRAT element.
- The script ionTrapping was added, providing simple ion trapping calculations for uniform bunch trains. J. Calvey (APS) helped with debugging.
- The script computeSCTuneSpread was added to allow computation of space-charge tune spread.
- The script radiationEnvelope now computes envelopes for central cone flux.

13.5 Highlights of What's New in Version 29.1, 3 March 2016

Here is a summary of what's changed since release 29.0:

13.5.1 Bug Fixes for Elements

• Fixed bugs in RECORD output from TRFMODE element for multi-step, single-pass runs. This was fixed by A. Xiao (APS).

13.5.2 Bug Fixes for Commands

• The replace_elements command now respects quoted sequences in the new element definition.

13.5.3 New and Modified Elements

- LRWAKE now supports long-range quadrupole wakes. R. Lindberg (APS) provided helpful discussion in this implementation.
- ILMATRIX now supports second-order tune shift with amplitude as well as path-length dependence on amplitude.
- TFBPICKUP now supports horizontal and vertical offsets.
- Added logging of photon coordinates and angles to the CSBEND element. Works in serial mode only.
- TRFMODE now supports interpolation within bins, giving smoother results.

13.5.4 New and Modified Commands

- alter_elements now has a occurrence-skip parameter, which would allow for example changing every other member of a group of elements.
- momentum_aperture now allows specifying that WATCH elements remain active during momentum aperture determination.
- frequency_map was modified to include the path-length in the output file, which can be used to determine the dependence of the path length of the betatron amplitude.

13.5.5 Changes Specific to Parallel Version

• None.

13.5.6 Changes to Related Programs and Files

- The script prepareTAPAs was added, which allows processing files from twiss_output into a form that is accepted by the Android App TAPAs [46].
- The script makeSummedCsrWake was added, which allows making a CSR wake that sums up contributions from dipoles with various lengths and bending radii.
- The script TFBFirSetup was added, which allows generating FIR filters for turn-by-turn feedback using TFBDRIVER and TFBPICKUP elements.
- ibsEmittance can now perform intrabeam scattering calculations for non-gaussian longitudinal distributions.
- computeCoherentFraction now uses $\lambda/4\pi$ for the radiation emittance to be consistent with sddsbrightness.
- longitCalcs now computes the bucket-half-height even when a harmonic cavity is powered.

13.6 Highlights of What's New in Version 29.0, 15 Jan. 2016

Here is a summary of what's changed since release 28.1:

13.6.1 Bug Fixes for Elements

- Fixed a bug in the MATR element that would crop up in multi-step runs, causing a crash or lock-up. This was reported by P. Emma (SLAC).
- Fixed a bug in the RFMODE element that resulted in a few percent error between the voltage seen by the beam and the feedback-regulated voltage. T. Berenc (ANL) helped resolve this.
- The output file feature was restored for the FTRFMODE element.
- The TFBDRIVER and TFBPICKUP feedback elements can now handle changes in the number of bunches.
- The drive limit for TFBDRIVER is now imposed after application of the filter, rather than before.

• The KQUAD element now has a valid associated transfer matrix for RADIAL=1. This bug was reported by forum user libov.

13.6.2 Bug Fixes for Commands

- The touschek_scatter command now behaves as a regular major action command, meaning that error generation, scanning, parameter loading, etc. behave as expected.
- Fixed a bug in the correct_tunes command that resulted in a crash when n_iterations=0 and would also have resulted in invalid data in the log file for mixed element types. This was reported by V. Sajaev (ANL).
- Fixed a bug in the chromaticity command that resulted in a crash when n_iterations=0 and would also have resulted in invalid data in the log file for mixed element types.
- Fixed a bug related to optimization of the chromatic derivative of alpha_x. The value provided was actually the chromatic derivative of betax. A related error gave incorrect results for the use_linear_chromatic_matrix mode of the track command.
- Previous versions of this manual indicated that the find_aperture command provided a quantity Area giving the dynamic aperture area for optimization. The quantity is in fact called DaArea. This was reported by S. Hilbrich (TU Dortmund).
- Fixed a bug in the optimization feature that resulted in the user's weighting factors being ignored. This was pointed out by A. Zholents (ANL).
- Fixed a bug in the alter_elements command that caused string values not to be reflected in the output file created with save_lattice. This was reported by T. Pulampong (SLRI/DLS).

13.6.3 New and Modified Elements

- Added nonlinear symplectic fringe field model to CSBEND and CSRCSBEND, based on theoretical work of K. Hwang (IU) [45]. The implementation was performed by Y. Sun (APS) with assistance from K. Hwang and M. Borland.
- Added EKICKER, EHKICK, and EVKICK, which provide various flavors of steering correctors using an Exact model. These may be used in place of the existing KICKER, HKICK, and VKICK elements. The need for this was pointed out by L. Yang (BNL).
- The MATTER element now supports arrays of slits. This can be used, for example, to model a double-slit spoiler for producing two pulses in an FEL.
- The ECOL and RCOL collimator elements now support an INVERT parameter to allow simulation of an obstruction instead of an opening.
- The output files from the WATCH element in centroid and parameter mode now contain the beam charge, provided that a CHARGE element is in the beamline.
- Elements that read multipole error files (e.g., KQUAD and KSEXT) now share data internally rather than each reading the data files separately. This provides a significant speed improvement for massively parallel execution in particular.

- The MALIGN element was improved to allow optionally applying misalignments to only part of the beam, based on the particle ID.
- The RFMODE element now has a feature that allows "muting" the rf generator on a specified pass, to simulate a trip of the rf source.
- The voltage "preloading" feature of the RFMODE element now works even when rf feedback is used.
- In order to eliminate problems with the parallel version, the IBSCATTER element no longer has a separate CHARGE parameter. Instead, the CHARGE element should be used.

13.6.4 New and Modified Commands

- The analyze_map command can now determine the nonlinear transport matrix up to third order based on tracking data, using the method described in [4]. Parallel tracking is used for this command in Pelegant. Previously, the analysis was limited to the linear matrix. Also, the terminal lattice functions and their chromatic derivatives are determined from the map for both transport lines and rings. This was requested by Y. Hao (BNL) and L. Yang (BNL).
- The correct_tunes and chromaticity commands now include a weighting factor that results in minimization of the strength changes in the event that more than two familes are provided for correction. (In the future this will be replaced with an SVD-based implementation.)
- Added to closed_orbit and correct commands the ability to use multi-turn tracking to determine the approximate orbit. This was suggested by V. Sajaev (ANL), and is helpful when the orbit convergence is poor.
- The output in the run_setup centroid file now contains the beam charge, provided that a CHARGE element is in the beamline.
- The run_control command now includes a variable, n_passes_fiducial, that allows specifying a different number of tracking passes for fiducialization than for tracking. For ring fiducialization, this should probably always be 1.
- Most output files from elegant now include a parameter giving the SVN revision number of the version used to create the output.

13.6.5 Changes Specific to Parallel Version

- The analyze_map command, which was improved as described above, can now use parallel resources.
- A bug was fixed in the center_on_orbit feature of the track command. The bug caused the particles on each processor to be offset by different amounts related to the centroid of the local particles only. This was reported by M. Furseman (DLS).
- Fixed a bug in FTABLE introduced in version 26.0. The bug would cause the program to crash.
- Memory management was improved in the touschek_scatter command, allowing a larger number of particles to be utilized.

- The SCRIPT element would cause a crash when twiss_output, matrix_output, or similar commands were included but when tracking was required to determine the transfer matrix of the element. This was fixed.
- Tracking instigated via the track command is now more forgiving of uneven particle losses among cores. In particular, the program should no longer crash if one core has lost all of its particles or all of the particles in a particular bunch.
- The stop_tracking_particle_limit feature of the track command now works in the parallel version.
- Instead of exiting, the parallel version now simply ignores the slice_anlysis command.

13.6.6 Changes to Related Programs and Files

- The script reorganizeMmap was added to convert momentum aperture data from Pelegant in output_mode=1 into the same form as produced by elegant. This was a result of correspondence with S. Tian (IHEP).
- A bug was fixed in elegant2astra that resulting in slightly erroneous values for the longitudinal coordinate.
- The beamLifetimeCalc can now perform approximate Touschek lifetime calculations for polarized beams. This was added by A. Xiao (ANL) following an inquiry from forum user marlibgin.

13.7 Highlights of What's New in Version 28.1.0, 23 July 2015

Here is a summary of what's changed since release 28.0:

13.7.1 Bug Fixes for Elements

- The ROTATE element was not affecting the floor coordinates. This was found and fixed by A. Xiao (APS).
- The END_PASS parameter on SCATTER now works as expect, after removal of a one-pass offset.

13.7.2 Bug Fixes for Commands

• A bug was fixed that caused a crash when a 1-line aperture search was performed. This was reported by Guohui Wei (JLab).

13.7.3 New and Modified Elements

• The TFBDRIVER element now has the ability to measure the beam phase for use in longitudinal feedback. Previously, only momentum-based input was available for longitudinal feedback.

13.7.4 New and Modified Commands

- The ramp_elements and modulate_elements commands now have the ability to write a record of their output values.
- The run_setup command now has options, intended primarily for developers, to turn on memory usage and executing time monitoring during tracking.
- The units given for loss rate the output files from touschek_scatter were incorrect and were fixed. Results were not affected. (A. Xiao, ANL)
- The tune_footprint command was improved in several ways. It is now possible to ignore half-integer resonances. The upper and lower bounds of the chromatic tune footprints are now available for optimization. It's now possible to turn off either chromatic or amplitude tune footprint deterimination.
- The optimization_setup command allows suppressing particle tracking in order to improve performance in some unusual cases.
- The correct_tunes command can now utilize any element that has the K1 parameter.
- The chromaticity command can now utilize any element that has the K2 parameter.

13.7.5 Changes for Parallel Version Only

- Fixed a bug that affected tracking when orbit correction was used, start_from_centroid=1, and particle distribution was not random across processors.
- Warnings about $\rho > 10^6$ m are now issued by the parallel version, as for the serial version.
- Memory usage logging to WATCH output files now sums the memory across all cores, rather than just the master core.
- A memory leak was fixed in the ZTRANSVERSE element that sometimes caused the program to crash. This was reported by R. Lindberg (ANL).
- The output of the beam charge in the ZLONGIT wake output file was corrected; previously, it only showed the charge on one core.
- The frequency_map command now provides an estimate of the time needed to complete.

13.7.6 Changes to Related Programs and Files

• The program sddsbunchingfactor is now part of the distribution.

13.8 Highlights of What's New in Version 28.0.0, 18 June 2015

Here is a summary of what's changed since release 27.1.0:

13.8.1 Bug Fixes for Elements

- The WATCH element was improved so that the dCt column (in parameter or coordinate mode) and dt column (in coordinate mode) no longer exhibit fictitious drift due to precision limitations in simulations of rings with many turns.
- For numerical reasons, any CSBEND with $\rho > 10^6$ m is replaced with another element. In the past, an EDRIFT was used, which would produce incorrect results if the element had non-zero K_1 or K_2 . This was fixed.

13.8.2 Bug Fixes for Commands

• None.

13.8.3 New and Modified Elements

- The TFBPICKUP and TFBDRIVER elements, which provide a turn-by-turn feedback capability, now support multi-bunch feedback. In addition, support was added for longitudinal feedback as well as sample/update intervals greater than one turn.
- The CSRDRIFT element can now also include longitudinal space charge, using the algorithm from the LSCDRIFT element.
- The CSBEND element has a new feature that allows suppression of spurious trajectory offsets that result from limitations of the symplectic integration routine. This feature is controlled using the REFERENCE_CORRECTION parameter.
- The input of multipole errors for KQUAD and KSEXT elements was modified so that the input columns have more transparent names. Previously, the names caused some confusion. Files that worked with previous versions are still accepted.
- The MARK element with FITPOINT=1 now stores the emittances of the three modes as e1m, e2m, and e3m for optimization if moments_output is invoked. This deficiency was pointed out by forum user marlibgin.

13.8.4 New and Modified Commands

- The transmute_elements command now does a better job of copying common parameters between the old and new element types. In the past, only the length was preserved. A. Zholents (ANL) reported this issue.
- The floor_coordinates command has a new parameter, store_vertices, which allows requesting that dipole vertex points be stored for use in optimization.
- The twiss_output command now stores the acceptances Ax and Ay for use in optimization.

13.8.5 Changes for Parallel Version Only

• None

13.8.6 Changes to Related Programs and Files

• None.

References

- [1] B. W. Kernighan and D. M. Ritchie, *The C Programming Language*, Prentice-Hall, Englewood Cliffs, N.J., second edition, 1988.
- [2] H. Grote, F. C. Iselin, "The MAD Program-Version 8.1," CERN/SL/90-13(AP), June 1991.
- [3] K. L. Brown, R. V. Servranckx, "First- and Second-Order Charged Particle Optics," SLAC-PUB-3381, July 1984.
- [4] M. Borland, "A High-Brightness Thermionic Microwave Electron Gun," SLAC-Report-402, February 1991, Stanford University Ph.D. Thesis.
- [5] H. A. Enge, "Achromatic Mirror for Ion Beams," Rev. Sci. Inst., 34(4), 1963.
- [6] M. Borland, private communication.
- [7] W. H. Press, et al, Numerical Recipes in C, Cambridge University Press, Cambridge, 1988.
- [8] M. Borland, "A Self-Describing File Protocol for Simulation Integration and Shared Postprocessors," Proc. 1995 PAC, May 1-5, 1995, Dallas, Texas, pp. 2184-2186 (1996).
- [9] M. Borland, "A Universal Postprocessing Toolkit for Accelerator Simulation and Data Analysis," Proc. 1998 ICAP Conference, Sept. 14-18, 1998, Monterey, California, to be published.
- [10] T. P. Green, "Research Toward a Heterogeneous Networked Computer Cluster: The Distributed Queuing System Version 3.0," SCRI Technical Publication, 1994.
- [11] M. Borland *et al*, "Start-to-End Jitter Simulation of the LCLS," Proceedings of the 2001 Particle Accelerator Conference, Chicago, 2001.
- [12] M. Borland and L. Emery, "Tracking Studies of Top-Up Safety for the Advanced Photon Source,", Proceedings of the 1999 Particle Accelerator Conference, New York, 1999, pg 2319-2321.
- [13] M. Xie, "Free Electron Laser Driven by SLAC LINAC".
- [14] S. Reiche, NIM A 429 (1999) 242.
- [15] J.D. Bjorken, S.K. Mtingwa, "Intrabeam Scattering," Part. Acc. Vol. 13, 1983, 115-143.
- [16] K. Halbach, "First Order Perturbation Effects in Iron-Dominated Two-Dimensional Symmetrial Multipoles", NIM **74-1**, 1969, 147-164.
- [17] J. D. Jackson, Clasical Electrodynamics, second edition.
- [18] G. Ripken, DESY Report No. R1-70/04, 1970 (unpublished).
- [19] Handbook of Accelerator Physics and Engineering, A. Chao and M. Tigner eds., 1998.
- [20] Ya. S. Derbenev, J. Rossbach, E. L. Saldin, V. D. Shiltsev, "Microbunch Radiative Tail-Head Interaction," September 1995, TESLA-FEL 95-05.
- [21] A. Xiao et al., "Direct Space-Charge Calculation in elegant and its Application to the ILC Damping Ring," Proc. PAC2007, 3456-3458.

- [22] Z. Huang et al., Phys. Rev. ST Accel. Beams 7 074401 (2004).
- [23] A. Piwinski, "The Touschek effect in strong focusing storage rings," DESY-98-179, Nov 1998.
- [24] A. Xiao *et al.*, "Touschek Effect Calculation and its Application to a Transport Line," Proc. PAC07, 3453-3455 (2007).
- [25] W. Warnock, "Shielded Coherent Synchrotron Radiation and Its Effect on Very Short Bunches," SLAC-PUB-5375, 1990.
- [26] T. Agoh and K. Yokoya, "Calculation of coherent synchrotron radiation using mesh," Phys. Rev. ST Accel. Beams 7, 054403 (2004).
- [27] P. Elleaume, "A New Approach to Electron Beam Dynamics in Undulators and Wigglers," Proc. EPAC 1992, 661-663.
- [28] http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia
- [29] J. Bengtsson, "The Sextupole Scheme for the Swiss Light Source (SLS): An Analytic Approach," SLS Note 9/97, March 7, 1997. (Corrections to several typos were supplied by W. Guo, NSLS.)
- [30] K. Flöttmann, Astra User Manual, http://www.desy.de/mpyflo/Astra_dokumentation/
- [31] J. Qiang et al., J. Comp. Phys. 163, 434 (2000).
- [32] V. N. Aseev et al., Proc. PAC05, 2053-2055 (2005); ASCII version 39 from B. Mustapha.
- [33] H. Chi et al., Mathematics and Computers in Simulation 70 (2005) 9-21.
- [34] D. Zhou et al., "Explicit maps for the fringe field of a quadrupole," Proc. IPAC10.
- [35] J. Irwin et al., "Explicit soft fringe maps of a quadrupole," Proc. PAC95.
- [36] C. X. Wang, "Explicit Formulas for 2nd-order Driving Terms due to Sextupoles and Chromatic Effects of Quadrupoles," ANL/APS/LS-330, March 10, 2012.
- [37] J. Bengtsson and J. Irwin, "Analytical Calculations of Smear and Tune Shift," SSC-232, Feb. 1990.
- [38] K. Bane, "Corrugated Pipe as a Beam Dechirper," SLAC-PUB-14925, April 2012.
- [39] Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974)
- [40] A. Wrulich, CERN Accelerator School 94-01, Vol. 1, 409 (1994).
- [41] J. LeDuff, NIM A 239 (1985) 83-101.
- [42] A. Franchi et al., Phys. Rev. ST Accel. Beams 17, 074001 (2014).
- [43] . K. Floettmann, Phys. Rev. ST Accel. Beams 6, 034202 (2003).
- [44] T. Berenc, M. Borland, and R. R. Lindberg, "Modeling RF Feedback in Elegant for Bunch-Lengthening Studies for the Advanced Photon Source Upgrade," Proc. of IPAC15, MOPMA006 (2015).

- [45] K. Hwang and S. Y. Lee, "Dipole fringe field thin map for compact synchrotrons", Phys. Rev. ST Accel. Beams 18, 122401, 2015; K. Hwang, "On intrinsic nonlinear particle motion in compact synchrotrons," Indiana University Ph. D. Thesis, 2015.
- [46] M. Borland, "Android application for accelerator physics and engineering calculations," Proc. of PAC 2013, 1364-1366.
- [47] T. Nakamura *et al.*, "Transverse bunch-by-bunch feedback system for the SPRing-8 Storage Ring," Proc. of EPAC 2004, 2649.
- [48] A. Chao *et al.*, "Tune shifts of bunch trains due to resistive vacuum chambers without circular symmetry," Phys. Rev. ST Accel. Beams, **5**, 111001 (2002).
- [49] Y. Bacconier and G. Brianti, CERN/SPS/80-2 (1980).
- [50] M. Venturini and A. Dragt, "Accurate computation of transfer maps from magnetic field data," NIM A 427 (1999) 387-392.
- [51] J. R. King, I. V. Pogorelov, M. Borland, R. Soliday, K. Amyx, "Current status of the GPU-Accelerated version of elegant," Proc. IPAC15, 623 (2015).