Lesson 8: Compression Basics

Introduction

This lesson investigates how we might reduce the data processing, transmission, and storage requirements for a multimedia system by reducing the number of bits needed for signal representation. I introduce the concept of *information* to quantify the *content* of multimedia data, and show how this is distinct from the *representation* of multimedia data. I show how the choice of representation affects the number of bits required to represent multimedia information — that multimedia data can be *compressed* without *loss*. I also show how additional compression can be achieve by sacrificing information content: *lossy* compression.

By the end of this lesson, you should understand the main kinds of compression algorithms, their chief fea-

Supplementary Readings:

- J. Crowcroft, M. Handley, & I. Wakeman, *Internetworking Multimedia*, Morgan Kaufmann, 1999, chapter 4 (§ 4.1–4.5).
- A. Murat Tekalp, *Digital Video Processing*, Prentice Hall, 1995, chapters 18, 19, 21.
- K.R. Rao & J.J. Hwang, Techniques & Standards for Image, Video & Audio Coding, Prentice Hall, 1996, chapters 4, 5.

tures, and their tradeoffs. You will know when it is appropriate to sacrifice information for data size and when it is not. You will also have an idea of how knowledge of human perceptual capabilities is essential for designing lossy compression schemes. Finally, you will be able to implement some basic compression algorithms yourself.

Signals and Information

Up to this point, we've been implicitly assuming that a signal is sampled, quantized, and then processed. However, there is more to multimedia computing than just running a stream of samples through a filter. Among other functions, multimedia systems also need to store and transmit data (either among components within a single computer, or across networks to other machines). A critical issue for system performance is the *volume* of data that must be stored or moved around. For example, suppose that we are digitizing audio at CD quality. If a rate of 44,100 samples/second at 16bits/sample, what is the digital data rate in bits/second? (*Popup answer: 705.6kb/s.*) If we are digitizing high-quality video — 1k x 1k pixels/frame, 30 frames/sec, 24 bits/pixel — what is the bit rate? (*Popup answer: 755Mb/s.*) Clearly, multimedia systems require not only high processing power (for real-time operation), but also high I/O bandwidth, large memory and storage capacity and speed, and fast networks. However, you should be familiar by now with the idea that a bit of thought can often lead to significant savings in algorithm run time or memory requirements. In this lesson, I will focus on the latter: how we can *encode* digital multimedia information to reduce its volume.

The fundamental ideas related to signal coding were developed by Shannon at Bell Labs in the late 1940s. He was concerned with transmitting a signal (either via radio or along a wire) so that it could be reconstructed reliably at the receiver despite any noise corruption that might occur along the way. The basic model for this problem is presented in figure 8.1. Information (which we can

Figure 8.1: Shannon's model for coding information for transmission.

think of as a bit stream) at the source is passed through some sort of encoder (which transforms the source bitstream into another one) and then transmitted along a *channel*. While in transmission, the bitstream may become corrupted by noise, which we can think of as randomly flipping bits with some probability. The goal of the decoder is to convert the received bitstream back into a replica of the original signal.

While the above problem is phrased in terms of coping with noise in a channel, it is intimately tied to the number of bits transmitted. The conceptual key to this is the separation of the *information content* in a signal from its *representation*. One goal of encoding is to choose a representation

that allows the underlying information to be preserved in the presence of noise (*channel coding*). The other goal — which is relevant to this lesson — is that the representation use the fewest possible bits to do the job (*source coding*).

To accomplish this, we need first to quantify the *information content* of a signal: its *entropy*. The basis for a mathematical description of information is a commonsense one: information is something you don't already know. If I tell you something you don't already know, I've given you information; if I tell you something you already know, then you've received none.

In multimedia terms, we are talking about the information content in a digital signal. You might say that, unless you already know the signal being sent, the entire signal is new information to you. However, this is not true. For example, if the signal is a sampled sine wave, after you've received a few samples, you should be able to *predict* the next ones. If each sample is 16 bits, and you can predict the next sample's value to an accuracy of 14 bits (in other words, the 16-bit number that you predict is off by, on average, 2 bits), then the transmitted

Web Links:

Introduction to data compression

http://www.faqs.org/faqs/compression-faq/part2/section-1.html

Entropy in Information & Coding Theory

http://www.math.psu.edu/gunesch/Entropy/infcode.ht

Primer on Information Theory

ftp://ftp.ncifcrf.gov/pub/delila/primer.ps

LZW Data Compression

http://www.dogma.net/markn/articles/lzw/lzw.htm

Practical Huffman coding

http://www.compressconsult.com/huffman/

Interactive Data Compression Tutor

http://www.eee.bham.ac.uk/Woolley\$I/All7/body0.ht

The Data Compression Library

http://dogma.net/DataCompression/

signal really only contains 2 bits of information per sample. One way to achieve compression, then, would be to choose an alternative representation for the signal in which each sample only

Figure 8.2: A taxonomy of coding/compression schemes.

took 2 bits — the number of bits sent would equal the signal's information content.

So, one scheme for compression is to remove *redundancies* in the data: that part of the data which conveys no additional information, given previous data. This is termed *lossless compression*, because no information is lost. Another approach is one which considers the use to which the data will be put, and selectively eliminates unneeded or unimportant information — *lossy compression*. These two coding schemes and their subcategories are presented in figure 8.2. I will discuss many of these in the rest of this lesson. In each case, I will be concerned with the following algorithm characteristics:

- the degree of information loss,
- the encoding complexity,
- and the decoding complexity.

Why do I separate out encoding and decoding complexity? Isn't decoding just the opposite of encoding? While that may be true conceptually, there is no guarantee that, for any particular coding scheme, encoding and decoding algorithms will have the same run time. Schemes for which they do are called *symmetric*; those for which they are not are *asymmetric*. For some applications, symmetric coding is necessary, while for others one end (typically the encoder) can be allowed to take significantly more time (presumably to produce greater compression or better signal "quality" given some level of compression). In symmetric applications, the hardware and the available processing time is usually also symmetric, while for asymmetric applications one end may have much faster hardware and/or more time.

So, we arrive at the general scheme for encoding in figure 8.3. The data to be encoded can first be transformed (the "xform" block) to make it more amenable to compression (to produce

Figure 8.3: Generalized scheme for encoding.

a more compressible representation). The goal of such a transform is essentially to *expose* the signal's underlying redundancy. For example, if the signal were a sine wave, its Fourier transform representation would be more easily compressible: it would have a single value at one frequency, as opposed to the original time domain function's sequence of samples. This representation may also make it easier to separate out components based on their "importance" (allowing more information to be eliminated from less important components). I'll discuss this last point in the sections on lossy compression.

Once the data has been transformed, it is then converted into a sequence of symbols for transmission. This quantization step limits the number of different symbols to be used. So, though the original signal might have 8 bits per sample, it may not be necessary to retain all 256 symbols. In general, we may map each input symbol to an output symbol, or we may take N input symbols and produce one output symbol (this might be the case when "runs" of increasing inputs are common — we might substitute a single symbol or a shorter sequence for a stereotypical increasing sequence). Companding is one example of this kind of quantization: more symbols are allocated to quiet sections of an audio stream, where small amplitude differences are noticable, and fewer to loud sections, where much larger differences are needed for changes in volume to be noticable. This stream of symbols are then coded to produce a bit stream, which might represent each symbol with a varying number of bits, for example. So, first a quick self-test, and then we'll look at each of these blocks and compression schemes in more detail.

Self-Test Exercises

- 1. If a signal is sent in which all samples have the same value, what is the information content in bits (ignoring the first sample)? (Popup answer: Since you can predict all subsequent signals with 100% accuracy, no additional information is sent after the first sample (this assumes infinite signal length; otherwise, there is additional information the number of samples).)
- 2. What kind of signal would have maximum information content? (*Popup answer: It would have to be a signal in which the next sample could never be predicted at better than chance, regardless of the number of previous samples used as "clues" to the next sample's value. So, for example, if there were 8 bits/sample, the chance of predicting the next signal would have to be 1/256. Such an unpredictable signal is called stochastic, or random. In multimedia terms, noise.)*
- 3. Can you give an example of an application which would demand symmetric coding? (*Popup answer: Video conferencing. Both ends typically have the same hardware, both ends must perform both encoding and decoding, and both operations must be done in real time.*)
- 4. Can you give an example of an application which could allow asymmetric coding? (*Popup answer: Video broadcasting. If the broadcast is not live, then large computers can be allowed long times to optimize a recording. Even in a live broadcast, the studio can invest more money in encoding equipment than the viewer in decoding equipment (TVs or computers).*)

Entropy (Lossless) Compression

Lossless, or entropy, compression ignores the *semantics* (meaning) of the data. It is based instead purely on the statistics of the symbols in the data. These statistics can be the frequencies of different symbols (how often each occurs) or the existence of certain *sequences* of symbols. In the former case, we have statistical compression; in the latter, a category for which repetitive sequence compression is the simplest case.

Repetitive Sequence Compression

When two people are having a telephone conversation, it is common for there to be pauses when nobody is speaking. In still images, it is not unusual for large areas to have the same (usually, background) color. In video, areas that correspond to moving objects change from one frame to another while other, larger areas don't change. All of these situations have the same feature in their raw stream of samples: long sequences (1D, 2D, or 3D) which are identical. Many bits are used to send a relatively small amount of information.

The idea of *run-length encoding* (RLE) is simple: replace long sequences (*runs*) of identical samples with a special code that indicates the value to be repeated and the number of times to repeat it. For 8 bits/sample data, we mught reserve one symbol (say, zero) as a "flag" to indicate the start of a run length code. A run would then be replaced with a zero, a byte containing the symbol to repeat (1–255), and one or more bytes as the repetition count (how many bytes to use we would have to decide ahead of time, based on what we know about typical run lengths for the particular kind of signals being processed). So, for example, a run of 112 'A's in a text file could be encoded as: *flag*, 'A', 112.

We can also extend RLE to work for cases where sequences of symbols, rather than just one, are repeated.

Statistical Compression

Statistical compression schemes work by assigning *variable-length codes* to symbols based on their frequency of occurrence. By assigning shorter codes to more frequently occurring symbols, the average number of bits per symbol can be reduced.

Huffman Coding

When we sample data, we almost always do so with a fixed number of bits per sample — a fixed number of bits per symbol. So, we can consider 8-bit sampling as quantization of a signal into 256 levels, or equivalently as representing it as a sequence of symbols, where there are 256 symbols available.

This is usually *not* the most space-efficient coding scheme, for the simple reason that some symbols are more common than others. If instead we use a variable-length representation, and let more common symbols be encoded in fewer bits, then we can save a considerable amount of memory. While it may be the case that, for a particular type of signal, the statistics of symbol usage are fairly stable across multiple data sources, let's not make this assumption. Thus, we would expect to use the sampled signal itself as the source of statistical information for code construction.

A *Huffman code* is a variable-length symbol representation scheme which is optimal in the case where all symbol probabilities are integral powers of 1/2. Since the number of bits per symbol is variable, in general the boundary between codes will *not* fall on byte boundaries. So, there is no "built in" demarcation between symbols. We could add a special "marker," but this would waste space. Rather than waste space, a set of codes with a *prefix property* is generated: each symbol is encoded into a sequence of bits so that no code for a symbol is the prefix of the code for any other. This property allows us to decode a bit string by repeatedly deleting prefixes of the string that are codes for symbols. This prefix property can be assured using binary trees.

Table 8.1: Two binary codes.

Symbol	Probability	Code 1	Code 2
1	0.12	000	000
2	0.35	001	11
3	0.20	010	01
4	0.08	011	001
5	0.25	100	10

Two example codes with the prefix property are given in Table 8.1. Decoding code 1 is easy, as we can just read three bits at a time (for example, decode "001010011" (*Popup answer:* "2, 3, 4".)). For code 2, we must read a bit at a time so that, for instance, "1101001" would be read as "11"='2', "01"='3', and "001"='4'. (What would the symbol sequence be for "01000001000"? (*Popup answer:* "3141".)) Clearly, the average number of bits per symbol is less for code 2 (2.2 versus 3, for a saving of 27%).

So, assuming we have a set of symbols and their probabilities, how do we find a code with the prefix property such that the average length of a code for a character is a minimum? The answer is the *Huffman algorithm*. The basic idea is that we select the two symbols with the the lowest probabilities (in Table 8.1, '1' and '4'), and replace them with a "made up" symbol (let's call it s_1) with probability equal to the sum of the original two (in this example, 0.20). The optimal prefix code for this set is the code for s_1 (to be determined later) with a zero appended for '1' and a one appended for '4'. This process is repeated, until all symbols (real or "made up") have been merged into one "super-symbol" with probability 1.0.

If you think about this merging of pairs of characters, what we are doing is constructing a binary tree from the bottom up. To find the code for a symbol, we follow the path from the root to the leaf that corresponds to it. Along the way, we output a zero every time we follow a left child link, and a one for each right link (or we could use ones for right children and zeros for left, as long as we are consistent). If only the leaves of the tree are labeled with symbols, then we are guaranteed that the code will have the prefix property (since we only encounter one leaf on the path from the root to a symbol). An example code tree (for code 2 in table 8.1) is in Figure 8.4.

To compress a signal, then, we build the Huffman tree (there are more efficient algorithms which don't actually build the tree) and then produce a *look up table* (like table 8.1) that allows us to generate a code for each symbol (or decode the symbol at decompression time). We need to send this table with the compressed signal (or store it in the compressed file).

Figure 8.4: Binary tree with prefix property code.

As I said at the beginning of this section, Huffman coding is only optimal if the symbol probabilities are integral multiples of 1/2. For the more general case, *arithmetic coding* can be used.

Lempel-Ziv Compression

In the 1970s, Lempel and Ziv developed two (patented) families of compression algorithms based on a *dictionary* approach. In a nutshell, in one family the algorithm builds a data structure (dictionary) with entries being sequences of symbols found in the input data. As the input is scanned, it tries to find the longest sequence of symbols that already exists in the dictionary. If this is successful, the entry number for that dictionary entry is transmitted. If unsuccessful, a sequence is added to the dictionary and also transmitted. This approach starts with sequences of pairs of symbols and, as the encoding process continues, adds longer and longer sequences to the dictionary. As a result, long duration signals can be significantly compressed, as long stretches are found to be repeats of previously-seen data.

Source (Lossy) Compression

In certain situations, it may be appropriate to sacrifice some of the information in the original signal to obtain increased compression. This may be the case, for instance, when a human observer cannot perceive the additional information (and therefore won't notice its lack). This inability to perceive the difference may be innate to human perception or it may be a product of the delivery technology (audio system, video monitor, etc.) or a more subtle interaction of sampling, the original signal, and human perception (as is the case for differential compression).

Differential Compression

Recall that when we sample a signal, the discrete representation is limited to frequencies below the Nyquist cutoff. It is not uncommon, however, for a signal to be significantly *oversampled*: the Nyquist cutoff is much higher than the signal's bandwidth. Even if this is not always the case, there may be long stretches of signal for which it is. For example, an orchestral recording may have stretches when no high-pitched instruments are playing.

When a signal lack high-frequency components, this is equivalent to saying that it changes slowly along time (high frequencies have high derivatives, low frequencies have small derivatives). If a signal changes slowly then, in its sampled version, successive samples are very similar. Let's go back to the idea of information content being the part of a message which you don't know. If we use each sample as a *prediction* of the next, then the *difference* between them is the information contained in the second. Ideally, then we should just transmit this difference.

This is the idea behind differential pulse code modulation (DPCM): we use the i^{th} sample of a signal x_i as the prediction for the next, x_{i+1} , and just transmit the difference, $\Delta x_{i+1} = x_{i+1} - x_i$. Of course, we start our encoding by sending a complete sample, x_0 , and then continue with just the differences.

In what way is this lossy? It quite possibly isn't, depending on the number of bits in the original samples, the number of bits in the differences we send, the possible difference values in the signal, and how we treat them. For instance, if our original samples are 8 bits and we allow 4

bits for differences, we can accommodate differences of up to ± 7 between samples (using a two's complement representation for the differences). If all actual differences are less than of equal to ± 7 , then no loss results. What if actual differences are greater? We have three basic options:

- 1. Output the full sample, rather than just a difference.
- 2. Assume this is an infrequent anomaly, outputting the maximum difference possible and retaining the actual difference internally. When subsequent differences are less than the maximum, modify them so that the output differences allows the coded signal to "catch up" to the value of the input.
- 3. Use the limited number of bits to cover larger differences by assuming they are multiplied by a constant factor, in effect "re-quantizing" them. If the factor was a constant value of '2', then 4 bits would cover ± 14 .

The first case is very straightforward, and clearly results in no losses. For the second approach, the reconstructed signal is not the same as the original — information has been lost. However, the information is a rare, sudden change in the signal, and if the reconstructed signal caught up with the original fairly quickly, it is likely to be unnoticable. The third approach is also lossy, as it is incapable of representing differences that fall in between the quantized levels.

At the extreme, we can allocate only one bit per difference: this is called *delta modulation* (DM). In this case, we need to interpret a '0' as a -1 difference and a '1' as a +1 difference (we could multiply these by a constant factor), so a constant input produces a "0101010101..." sequence, rather than a "0000000000..." one. Assuming the sampling rate is high enough, differences more than ± 1 will be rare, and loss will be minimal.

A more general approach to DPCM would be to use something other than just the value of one sample to predict the next. Thus, the differences to be sent would be $\Delta_{i+1} = \mathcal{F}(x_{i-j}, \dots, x_i)$. This is the approach that adaptive differential pulse code modulation (ADPCM) uses. It adapts to the signal, using past experience to select the quantization levels that will be used to encode differences. This means that loud sections and quiet sections can have different steps between quantization levels. The international videoconferencing standards ITU G.726 use ADPCM to encode audio.

Transform Compression

Going back to figure 8.3, one thing that an encoding scheme can do is to transform the original signal into a domain that allows for better compression. To allow for better compression, a representation needs to isolate redundancy. For one-dimensional signals like audio, redundancy is apparent in the *sequence of samples*. All of the previous compression schemes are based on this sequential redundancy. For a signal sampled along time like sound, *temporal redundancy* is apparent. For a signal that is spatially sampled, like an image, there is a (2D) *spatial redundancy* (pixels near each other tend to have similar values). The question is: is the above noted temporal or spatial domain the domain in which the signal has its greatest redundancy, or is there some other domain in which more redundancy would be apparent? As you might guess, there are situations in which this is the case (for the aproach to be practical, we just need to make sure that an *inverse transform*, which brings us back to the original signal domain, exists).

One such domain is the frequency domain. Especially in images, a spectral representation tends to have great apparent redundancy. In such a representation, an image is considered to be composed of the sum of sinusoids (just as for sound) that are functions of space (instead of time, as for sound). This should bring back fond memories of lesson 1, where I first introduced the concept of a function being a sum of sinusoids for a string: a function of space, rather than time. The "only" conceptual jump here then is the one from 1D signals to 2D signals, which we'll defer to lesson 9. For the time being, let's think of images as being one-dimensional, like sound, so we can talk about 1D Fourier transforms.

I previously said that pixels tend to be similar to those nearby. This is another way of saying that the change in intensity as a function of space is low — that low-frequency processes are involved. Repetition coding assumes that there is no change, while DPCM either places a limit on change or quantizes the changes. Rather than doing these, let's take the Fourier transform of our signal. We have now decomposed it according to frequency. If mostly low-frequency processes have produced our signal, then the coefficients for low frequencies will have higher values than those for high frequencies: the low frequency components carry most of the information.

We can now take the obvious approach: match the number of bits in a representation to the amount of information contained. In this case, rather than use the same number of bits for each frequency coefficient, we assign more bits to the low frequencies and fewer to the high. This approach, which in effect codes different frequency bands separately, is also called *sub-band coding*.

You probably remember that the Fourier transform (and FFT) have both magnitude and phase. We can simplify matters if we use a transform that uses only real arithmetic. This is one of the motivations behind using the discrete cosine transform (DCT) instead. The DCT coefficients can be expressed as:

$$x_t = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cos 2\pi k t / N$$
 (8-1)

We throw away absolute phase information and assume that the signal has even symmetry, but since we don't care what happens beyond the bounds of the signal, this is fine. Loss of relative phase information is another matter, but after all, this *is* a lossy compression technique. In lesson 9, I will place these losses in the context of human perception.

Assignment 8

- 1. Write a program that performs run-length coding on images (you may treat the image as a one-dimensional vector for processing purposes). What percent compression do you get for black and white images (like those that might be produced for sending a fax)? What percent for color images generated from drawing programs? What percent for images from a digital camera? What percent for vectors filled with random numbers?
- 2. Write a program that performs simple, lossy DPCM coding and decoding on sampled audio. Test it using audio samples. For samples of people speaking, how many bits do you need for the differences for the result to be still intelligible? For it to be of quality comparable to the original?

- 3. For the DCPM examples, can you gain any additional compression by applying run-length coding to the output of the DPCM coder? Why or why not?
- 4. One way to apply transform coding of a signal is to divide it into non-overlapping *windows* and transform and code each window separately. Using the same audio samples as before, apply DCT coding (MATLAB has DCT and IDCT functions). (Hint: keep the window size short; maybe 8 or 16 samples.) Do not try to quantize the DC (zero frequency) component, but *do* experiment with quantizing the high frequency ones. What is the effect with no quantization? See how much compression you can get by heavily quantizing and/or eliminating high frequency components.