2.6 Numerical Representation

2.6.1 Intro practice

Question 1

The set of digits in base-10 (decimal) number system is $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Use this information to help you figure out the following.

- a. Write out the set of digits in the octal (base-8) number system. $\{0, 1, 2, 3, 4, 5, 6, 7\}$
- b. Write out the set of digits in the binary (base-2) number system. $\{0,1\}$

The hexadecimal (base-16) number system is

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}.$$

Why do we use letters? To keep numbers 10 through 15 as one-character representations.

Specifying base

When we need to specify the base when writing out numbers, write it within parentheses, with a subscript of its base number.

- $(123)_{10} = 123$, base-10
- $(1337)_8 = 1337$, base-8
- $(C47)_{16} = C47$, base-16
- $(1011)_2 = 1011$, base-2

2.6.2 Digits

For the decimal number 2, 368, we can write this as its individual digits:

Thousands (10^3)	Hundreds (10^2)	Tens (10^1)	Ones (10^0)		
2	3	6	8		

And then we can build out 2,368 as the mathematical equation:

$$2 \cdot 10^3 + 3 \cdot 10^2 + 6 \cdot 10^1 + 8 \cdot 10^0$$

Likewise, for the binary number 0101 1001, we can write it as:

2^{7}	2^{6}	2^{5}	2^{4}	2^3	2^2	2^1	2^0
0	1	0	1	1	0	0	1

And into the equation:

$$1 \cdot 2^6 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^0$$

Question 2

Expand each of the following numbers as a mathematical equation. Make sure to pay attention to the base value.

a. Write out the equation for $(19)_{10}$

10^{1}	10^{0}
1	9

b. Write out the equation for (0010 1101)₂

2^{7}	2^{6}	2^5	2^{4}	2^3	2^2	2^1	2^{0}
0	0	1	0	1	1	0	1

c. Write out the equation for $(FFAA66)_{16}$

16^{5}	16^{4}	16^{3}	16^{2}	16^{1}	16^{0}
F	F	A	A	6	6

2.6.3 Converting between bases

Algorithm for converting a decimal number to base b:

- 1. Input a natural number n
- 2. While n > 0, do the following:
 - (a) Divide n by b and get a quotient q and remainder r.
 - (b) Write r as the next (right-to-left) digit.
 - (c) Replace the value of n with q, and repeat.

Question 3

Convert the following between bases:

```
a. Convert (35)_{10} to binary (base-2) n=35,\,b=2 q=17,\,r=1 17/2=8+1/2 q=8,\,r=1 q=4,\,r=0 q=1,\,r=0 q=1,\,r=0 q=1,\,r=0 q=1,\,r=0
```

 $= 0010 \ 0011$

b. Convert
$$(125)_{10}$$
 to binary (base-2) $n=26, b=16$ $125/2=62+1/2$ $(a/b=q+r/b)$ $q=62, r=1$ $q=31, r=0$ $31/2=15+1/2$ $q=15, r=1$ $q=7, r=1$ $q=3, r=1$ $q=3, r=1$ $q=1, r=1$ $q=0, r=1$ $q=0, r=1$

 $= 0111 \ 1101$

Hexadecimal to Binary

Often in computers, we write binary strings as hexadecimal to save space and make it easier to read.

Hex	0	1	2	3	4	5	6	7
Binary	0000	0001	0010	0011	0100	0101	0110	0111
Hex	8	9	A	В	С	D	E	F
Binary	1000	1001	1010	1011	1100	1101	1110	1111

Example: Convert 11001 from binary to hexadecimal

- 1. Write out in chunks of four. Add leading 0's to the left side. 0001 1001
- 2. Swap out each "nibble" with hexadecimal 0001 = 11001 = 9

So,
$$(0001\ 1001)_2 = (19)_{16}$$

Example: Convert DAD from hexadecimal to binary

1. Convert each digit back to binary.

$$D = 1101$$

$$A = 1010$$

$$D = 1101$$

So,
$$(DAD)_{16} = (1101 \ 1010 \ 1101)_2$$

Question 4

Do the following conversions

a. Convert $(1F0B)_{16}$ to binary:

$$1 = 0001$$

$$1 = 0001$$
 $F = 1111$ $0 = 0000$ $B = 1011$

$$0 = 0000$$

$$B = 1011$$

 $= 0001 \ 1111 \ 0000 \ 1011$

b. Convert $(0100\ 0110)_2$ to hexadecimal:

$$0100 = 4$$
 $0110 = 6$

$$= 46$$