This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

008516611 **Image available** WPI Acc No: 1991-020695/ 199103

Latex-adhesive compsn. for prodn. of medicinal adhesive tape - contains

copolymer of butyl polyacrylate and polyacrylic and emulsifier

iodine-polyvinyl pyrrolidone complex and water

Patent Assignee: EPIDEMICS MICROBIOLOGY (EPID-R); MED POLYMERS RES IN

(MEDI-R)

Inventor: ASKINA L P; LIMANOV V E; MOROZ A F Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

SU 1565855 A 19900523 SU 4387914 A 19880305 199103 B

Priority Applications (No Type Date): SU 4387914 A 19880305

Abstract (Basic): SU 1565855 A

The compsn. contains (in wt.%): copolymer of butyl acrylate and acrylic acid (I) 49.0-52.5, emulsifier 1.2-6.0, complex of iodine and polyvinyl pyrrolidone (II) or its mixt. with potassium iodide (IIa) 0.35-0.70, and balance water. The compsn. can also contain 0.5-3.0 wt.% of neutralising agent.

(I) contains 95-97% butyl acrylate and 3-5% acrylic acid and is obtd. in the presence of 0.05-0.15 wt.% of M.Wt. controller or without it.

In (II) and (IIa) n is 180-270 and m is at least 10, x is 3.

Tests show that the produced adhesive tape has steam permeability 1200-3200 g/sq.m. x 24 hrs., relative adhesive strength 150-180 N/m, adhesion strength 130-160 N/m, antimicrobial activity +, compared to 230 g/sq.m. 24 h., 180-190 N/m, 150 N/m and no antimicrobial activity for the known compsn.

USE/ADVANTAGE - As aq. emulsion adhesive material used for dressing post-operation seams and fine wounds. Improved vapour-permeability and antimicrobial activity are obtd. Bul. 19/23.5.90

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

THE BRITISH LIBRARY

24 AUG 1990

SCIENCE SCHENCE AND INFORMATION SERVICE

(21) 4387914/23-05

(22) 05.03.88

(46) 23.05.90. Бюл. № 19

(71) Всесоюзный научно-исследовательский институт медицинских полимеров и Научно-исследовательский институт эпидемиологии и микробиологии им. Н.Ф.Гамалек

(72) Л.П.Раскина, А.Ф.Мороз, В.Е.Лиманов, О.М. Соложенцева, И.Р. Свитова, Л.А.Коротянская и Н.Г.Анциферова

(53) 678.744.322-134.43 (088.8)

(56) Авторское свидетельство СССР № 1351962, кл. С 09 Ј 3/14, 1985.

(54) ЛАТЕКСНО-АДГЕЗИОННАЯ: КОМПОЗИЦИЯ. для получения липких лент медицинскопинараневан от

(57) Изобретение относится к химии полимеров и медицинской технике, а именно к латексно-адгезионной компо-

эшции для получения липких лент медицинского назначения. Повышение паропроницаемости композиции, придание ей антимикробной активности достигается составом, включающим мас. %: сополимер бутилакрилата с акриловой кислотой, содержащий 95-97% бутилакрилата и 3-5% акриловой кислоты 49,0-52,5, эмульгатор 1,2-6,0, комплекс нода с поливинилпирродоном или его смесь с иодитом калия 0.35-0.70. вода - до 100%. Латексно-адгезионная композиция может содержать 0.5-3,0 мас. 7 нейтрализующего агента. В качестве сополимера бутилакрилата с акриловой кислотой она содержит сополимер, полученный в присутствии 0,05-0,15 мас % регулятора молекулярной массы или без него. 1 з.п.ф-лы.

Изобретение относится к области химии полимеров и медицинской техники, а именно к составу чувствительного к давлению водоэмульсионного адгезива, используемого для изготовления липких фиксирующих средств, повязок для закрытия мелких ран и послеоперационных швов, липких пленок для защиты донорских ран и т.д.

Цель изобретения - повышение паропр ницаемости композиции и придания ей антимикробной активности.

В качестве полимерного комплекса. йода используют йодвидон: (комплекс йод-поливинилпирролидон)

$$\begin{bmatrix} CH_2 - OH_2 \\ CH_2 & C = O \\ N & - CH - CH_2 - \end{bmatrix}_m HJx$$

rne n = 180-270: $m \ge 10$; x = 3,

'или '

йодпирон (смесь комплекса йод-поливиниллирролидон с йодидом калия). выпускаемые отечественной промышленностью в виде готовых форм

$$\begin{bmatrix} CH_2 - CH_2 \\ CH_2 & C = 0 \\ - CH - CH_2 \end{bmatrix} \cdot m J_2 + KJ$$

Йодпирон выпускают в виде аморфного желто-коричневого порошка с содержанием активного йода 6-8%. Йодвидон выпускают в виде 1%-ного (по активному йоду) водного раствора.

В адгезив можно ввести регулятор молекулярной массы и нейтрализующий 15 агент. Введение нейтрализующего агента позволяет регулировать технологическую вязкость в процессе получения липких пленок.

Акриловую эмульсию получают мето- 20 дом водоэмульсионной полимеризации. В качестве инициатора используют персульфат аммония. Эмульгатор - смесь поверхностно-активных веществ из групы сульфатированных оксиэтилирован- 25 ных жирных спиртов или алкилфенолов и алкилбензосульфокислот, регулятор-додецилмеркаптан.

Пример 1. Чувствительный к давлению водноэмульсионный адгезив получают следующим образом: в реактор вводят при перемешивании 70 мл водного раствора смеси эмультаторов, содержащего 1,96 г (0,96 мас.%), сульфооксиэтилированного алкилфенола (С-10), 0,49 г (0,24 мас.%), сульфонола и 10 мл водного раствора, содержащего 0,2 г (0,1 мас.%) персульфата аммония, температуру поднимают до 75°C, а затем в течение 1,5 ч равномерно вводят смесь 106 мл (46,6 мас.%) бутилакрилата и 4,7 мл (2,45 мас.%) акриловой кислоты.

Через 45 мин от начала дозировки мономеров прибавляют 10 мл водно— 45 го раствора, содержащего 0,2 г (0,1 мас.%) персульфата аммония, используемого в качестве инициатора полимеризации, а в конце дозирования добавляют еще 0,2 г (0,1 мас.%) персуль—50 фата аммония, растворенного в 10 мл воды. Далее реакционную смесь выдерживают при работающей мешалке и t = 75-78°C в течение 1 ч, охлаждают и выгружают.

В полученный латекс вводят 0,7 г (0,35 мас.%) йодпирона/ в виде 1%-но-го водного раствора, перемешивают. Готовый продукт представляет собой

чувствительный к давлению водноэмульсионный адгезив, состоящий, мас. 7: акриловый сополимер 49; эмульгаторы 1,2; йодпирон 0,35; вода до 100.

Примеры 2-5 и 9 отличающиеся количеством компонентов, помещены в таблице.

Пример 6. Чувствительный к давлению водноэмульснонный адгезив получают следующим образом. В реактор вводят при перемешивании 70 мл водного раствора смеси эмульгатора, 1,96 г (0,96 мас. %) сульфооксиэтилированного алкилфенола (С-10), 0,49 г (0,24 мас. %)сульфонола и 10 мл водного раствора, содержащего 0,2 г (0,1 мас. %) персульфата аммония.

Температуру поднимают до 75°C, а затем в течение 1,5 ч равномерно вводят смесь 108 мл (48,5 мас.% бутилакрилата), 4,9 мл (2,55 мас.%) акриловой кислоты и 0,09 г (0,05 мас. %) третичного додецилмеркаптана. Через 45 мин от начала дозировки мономеров прибавляют 10 мл водного раствора, содержащего 0,2 г (0,1 мас.%) персульфата аммония. В конце дозирования мономеров в реакционную смесь добавляют еще 10 мл водного раствора, содержащего 0,2 г (0,1 мас.%) персульфата аммония. Далее реакционную смесь выдерживают при работающей мешалке и t = 75-78°C в течение 1 ч, охлаждают и выгружают.

В полученный латекс при перемешивании вводят 10 мл 12%-ного водного раствора аммиака и 5 мл (0,7 мас.%) водного раствора йодпирона.

Примеры 7,8,10,11 и 13, отличающиеся количеством компонентов, помещены в таблице. Примеры 12 и 13 (известные) выполнены без добавки кодпирона.

Полученную композицию наносят на подложку методом полива, сушат при 100°С в течение 15 мин до полного удаления воды. В качестве подложек используют различные пленочные материалы (перфорированные полиэтиленовые, поливинилклоридные, полнэфирные пленки), а также нетканные материалы различного состава.

Величину адгезионной прочности соединения липких пленок с кожей оценивают по следующей методике: полоски липких материалов размеров 1,5x10 см наклеивают на кожу руки, выдерживают 10 мин, а затем отслаивают на разрывной машине под углом 180° при скорости движения нижнего зажима машины 300 мм/мин.

0 когезионной прочности адгезива судят по величине удельной прочности при расслаивании липких материалов. Испытания проводят по следующей методике: две полоски липкого материала размером 1,5х10 см совмещают друг с другом по клеевому слою. Образцы прокатывают стальным катком. весом 5 кг, выдерживают 10 мин, а затем расслаивают на разрывной машине 15 под углом 180° при скорости движения 300 мм/мин. Уровень когезионной прочности адгезива должен быть таким, чтобы при снятии изделия с кожи не происходило расслаивание клеевого слоя и клей не перелипал на кожу. При этом лучшей когезионной прочностью обладают липкие материалы с меньшим показателем удельной прочности при расслаивании.

Паропроницаемость клеевого слоя оценивают по известной методике. Расситывают количество воды в граммах, прошедшие через один квадратный метр площади испытуемого материала за 24 ч при 37°C.

Антимикробную активность липких материалов определяют на тест-культурах: Staphylococcus aureus, Klebsiella, Escherichia Coli, Candida, Bacillus Subtilis по динамике бактерицидного действия в течение 0,5-6 ч.

Для медизделий, предназначенных для длительного ношения, очень важно, чтобы липкий материал, из которого они изготовлены, обладал хорошей паропроницаемостью. В противном слу-

чае кожа под подвязкой подвергается мацерации происходит нарушение целостности кожного покрова, что в дальнейшем может привести к инфицированию. Чтобы этого не произошло, паропроницаемость липких материалов должна быть выше паропроницаемости здоровой кожи и составлять 300-600 г/м²·24 ч.

Формула изобретения

1. Латексно-адгезионная композиция для получения липких лент медицинского назначения, включающая сополимер бутилакрилата с акриловой кислотой, содержащей 95-97 мас. % бутилакрилата и 3-5 мас. % акриловой кислоты, эмульгатор и воду, о т л и-

20 чающаяся тем, что, с целью повышения паропроницаемости композиции и придания ей антимикробной активности, в качестве сополимера бутилакрилата с акриловой кислотой 25 она солержит сополимера поличения

25 она содержит сополимер, полученный в присутствии 0,05-0,15 мас. 7 регулятора молекулярной массы или без него и дополнительно комплекс йода с поливинилиирролидоном или его смесь

30 с йодидом калия при следующем соотношении компонентов, мас.%:

Указанный сополимер бутилакрипата с акриловой кислотой 4

49,0-52,5 1,2-6,0

Эмульгатор
Комплекс йода с поливинилпирролидоном
или смесь его с
йодидом калия

0,35-0,70

40 Вода До 100 2. Композиция по п.1, о т л и ч аю щ а я с я тем, что дополнительно содержит 0,5-3,0 мас. 7 нейтрализующего агента.

						
Пример	Содержание сополимера в адгезиве, мас.%	Ma	ополимера, ас.% Акриловая кислота	ние эмуль- гатора,		Нейтра- лизую- щий агент, мас.%
1 2 3 4	49 49 52,5 52,5 50	95 97 96 95 95	5 3 4 5	1,20 1,20 1,20 6,0	-	-

35

	•	
llpo,	должение	таблицы

Пример	Содержание сополимера в адгезиве, мас.%	м.	1.	Содержа- ние эмуль- гатора, мас.Х	Содер- жание регуля- тора, мас.7	Нейтра- лизую- щий агент, мас.%
6	51	97	3	1,20	0;15	0,5
. 7	50	. 95	5 · .	4	0,05	-
8	50	95	5	4	0,15	_
9	50	96	4	4	_	
10	50	95	5	4	0,15	• =
11 1	50	95	5	4	0,05	3
12	50	96	4	1,5	0,05	3
		(Олигопероксид)				
13	50	95	5	1.5	0,05	3

Πr	On	OTTE	HHO	таблинь	
44 -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CILME	пис	Laulinin	ч

Пример	Содержание поли- мерного комплек- са йода, мас.%		прони- цае-	Удель- ная проч-	Адгези- онная проч-	Антимик- пробная актив-	Вязкость адгезива, мПа с
	Йодпи- пирон	Йодви- дон	мость, г/м ² 24 ч	ность при рассла- ивании, Н/м	ность, Н/м	ность (нали- чие)	
1	0,35	_	1200	170	140	+	2000
· . 2	_	0,35	1300	175	150	•	2000
. 3	0,35	-	1200	160	160	+	2500
4	0,35	- .	2800	150	130	<u>.</u>	8000
. 5		0,7	3500	150	130	+	5000
6	0,7	_	3200	160	160	+	10000
7 .	0,7	. .	3000	170	150	+	3000
8	0,7	_	2800	180	140	+	2500
9 .	0,25	-	600	. 150	150	- 0	2000
10	- · · · ·	0,8	3800	150	90	+	13000
11	0,35	-	1200	160	140	+	15000
12	_	_	200	190	160	-	5000
13	-		230	180	150	<u> </u>	6000

Составитель Г.Овчинникова Редактор Н.Яцола Техред М.Ходанич

Корректор Э. Лончакова

Заказ 1197

Тираж 443

Подписное

ВНИИПИ Г сударственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, М сква, Ж-35, Раушская наб., д. 4/5

Производственно-издательский к мбинат "Патент", г.Ужгород, ул. Гагарина, 101