Advanced Calculus

Exam II Review, October 10, 2023

Row and Seat:____

1. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto 8 - \frac{1}{k}$ is bounded above.

Solution:

Proof. To show that *F* is bounded, we need to show that

$$(\exists M \in \mathbf{R}) \ (\forall k \in \mathbf{Z}_{\geq 1}) \ (F_k < M) \ .$$

Choose M = 8. Let $k \in \mathbb{Z}_{\geq 1}$. We have

$$\begin{bmatrix} 8 - \frac{1}{k} < 8 \end{bmatrix} \equiv \begin{bmatrix} 0 < \frac{1}{k} \end{bmatrix}, \qquad \text{(add } 1/k - 8)$$

$$\equiv [0 < 1], \qquad \text{(multiply by } k)$$

$$\equiv \text{True.} \qquad \Box$$

2. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \frac{(-1)^k}{k^2}$ converges.

Solution: We'll show that

$$(\exists L \in \mathbf{R}) \ (\forall \varepsilon \in \mathbf{R}) \ (\exists N \in \mathbf{Z}_{>0}) \ (\forall k \in \mathbf{Z}_{>N}) \ (|F_k - L| < \varepsilon) \ .$$

Choose L=0. Let $\varepsilon \in \mathbf{R}$. Choose $N=\left\lceil \sqrt{\frac{1}{\varepsilon}} \right\rceil$. Then $N \in \mathbf{Z}_{>0}$ as required. Let $k \in \mathbf{Z}_{>N}$. We have

$$|F_k - L| = \left| \frac{(-1)^k}{k^2} \right|,$$

$$= \frac{1}{k^2},$$

$$< \frac{1}{N^2},$$

$$= \frac{1}{\left\lceil \sqrt{\frac{1}{\varepsilon}} \right\rceil^2},$$

$$\le \frac{1}{\sqrt{\frac{1}{\varepsilon}}},$$

$$= \varepsilon.$$

3. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \begin{cases} k! & k < 10^9 \\ \frac{(-1)^k}{k^2} & k \geq 10^9 \end{cases}$ converges.

Solution: This is just like the previous problem, but we need to choose $N = \max(10^9, \lceil \sqrt{\frac{1}{\varepsilon}} \rceil)$.

4. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \frac{3k+1}{2k+8}$ converges.

Solution:

Proof. We'll show that F converges to $\frac{3}{2}$. Specifically, we'll show that

$$(\forall \varepsilon \in \mathbf{R}_{>0}) (\exists N \in \mathbf{Z}_{>0}) (\forall k \in \mathbf{Z}_{>N}) \left(\left| \frac{3k+1}{2k+8} - \frac{3}{2} \right| < \varepsilon \right).$$

Let $\varepsilon \in \mathbb{R}_{>0}$. Choose $N = \lceil \frac{11}{2\varepsilon} \rceil$. Then as required, $N \in \mathbb{Z}_{>0}$. Let $k \in \mathbb{Z}_{>N}$. We have

$$\left|\frac{3k+1}{2k+8} - \frac{3}{2}\right| = \frac{11}{2(k+4)}, \qquad \text{(algebra)}$$

$$< \frac{11}{2N}, \qquad (k+4>N)$$

$$= \frac{11}{2\lceil \frac{11}{2} \rceil}, \qquad \text{(substitution for } N\text{)}$$

$$\leq \frac{11}{2\frac{11}{2\varepsilon}}, \qquad \text{(ceiling function property)}$$

$$= \varepsilon. \qquad \text{(algebra)}$$

5. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto k - 3\lfloor \frac{k}{3} \rfloor$ does not converge to 1.

Solution:

Proof. We'll show that

$$(\exists \varepsilon \in \mathbf{R}_{>0}) (\forall N \in \mathbf{Z}_{>0}) (\exists k \in \mathbf{Z}_{>N}) (|F_k - 1| \ge \varepsilon).$$

Choose $\varepsilon = \frac{1}{2}$. Let $N \in \mathbb{Z}_{>0}$. Choose k = 3N. Then $k \in \mathbb{Z}_{>N}$ as required. We have $|F_k - 1| = |F_{3N} - 1| = 1 > \varepsilon$

6. Using the definition from the QRS, show that the interval $(-\infty, 8)$ is open.

Solution:

Proof. We'll show that

$$(\forall x \in (-\infty, 8)) (\exists r \in \mathbf{R}_{>0}) (\text{ball}(x, r) \subset (-\infty, 8))$$

Let $x \in (-\infty, 8)$. Choose $r = 4 - \frac{x}{2}$. Since x < 8, we have r > 0, as required. We have

$$x + r = x + 4 - \frac{x}{2} = \frac{x}{2} + 4 < \frac{8}{2} + 4 = 8.$$

So ball $(x, r) \subset (-\infty, 8)$.

7. Let $A \subset \mathbb{R}$. Using the definition of an open set in the QRS, write the undefintion of an open set. That is, complete the statement:

A is not open \equiv

Solution:

A is not open $\equiv (\exists a \in A) (\forall r \in \mathbf{R}_{>0}) (\text{ball}(a, r) \not\subset A)$.

8. Using the undefition from the previous question, show that the set $(-\infty, 8) \cup \{9\}$ is not open.

Solution:

Proof. Choose a = 9. Let $r \in \mathbb{R}_{>0}$. Then ball $(9, r) \not\subset (-\infty, 8) \cup \{9\}$.

9. Let $A \subset \mathbf{R}$. Using the definition of a limit point in the QRS, write the undefintion of limit point. That is, complete the statement:

$$x \not\in \operatorname{lp}(A) \equiv$$

Solution:

$$x \notin \operatorname{lp}(A) \equiv (\exists r \in \mathbf{R}_{>0}) (\operatorname{ball}'(x, r) \cap A = \varnothing).$$

10. Use your undefinition from the previous question to show that $5 \notin lp(\mathbf{Z})$.

Solution: We'll show that

$$(\exists r \in \mathbf{R}_{>0}) (\text{ball}'(5, r) \cap \mathbf{Z} = \varnothing).$$

Choose $r = \frac{1}{2}$. We have ball' $(5, r) = \text{ball'}(5, 1/5) = (5 - \frac{1}{2}, 5) \cup (5, 5 + \frac{1}{2})$. So ball' $(5, 1/2) \cap \mathbf{Z} = \emptyset$.

11. Use the QRS defintion of a *boundary point* to show that $12 \in bp((0,12))$.

Solution: Let r be a positive number, and let $x^* = \begin{cases} 12 - r/2 & r < 24 \\ 6 & r \ge 24 \end{cases}$. Then $x^* \in (12 - r, 12 + r)$ and $x^* \in (0, 12)$. Further we have $12 + r/2 \notin (0, 12)$ and $12 + r/2 \in (12 - r, 12 + r)$.

12. Use the result of the previous question to show that (0, 12) is not closed.

Solution: A closed set contains all of its boundary points. We showed that 12 is a boundary point (0,12), but $12 \notin (0,12)$; therefore (0,12) is not closed.

13. Show that the set **R** is not compact by showing that there is an open cover of **R** that has no finite subcover.

Solution: See classnotes for Monday 9 October.

14. Show that the set **Z** is not compact by showing that there is an open cover of **Z** that has no finite subcover.

Solution: Define $\mathscr{C} = \{(-k,k) \subset \mathbf{R} \mid k \in \mathbf{Z}_{>0}.$ Since $\underset{x \in \mathscr{C}}{\cup} x = (0,\infty)$, the set \mathscr{C} is a cover for **N**. Let \mathscr{C}' be any finite subset of \mathscr{C} . Then $\underset{x \in \mathscr{C}'}{\cup} x$ is bounded because it's a finite union of bounded sets. But **Z** isn't bounded, so $\mathbf{Z} \not\subset \underset{x \in \mathscr{C}'}{\cup} x$; therefore **Z** isn't compact.

15. Let *F* be a convergent sequence, and let $\alpha \in \mathbb{R}$. Show that αF is a convergent sequence.

Solution: Let $\varepsilon > 0$. Since f converges, there is a number L and $M \in \mathbb{N}$ such that for all k > M, we have $|f_k - L| < \frac{\varepsilon}{1 + |\alpha|}$. For all k > M, we have

$$|\alpha f_k - \alpha L| = |\alpha||f_k - L| < \frac{|\alpha|}{1 + |\alpha|} \varepsilon < \varepsilon.$$

16. Let F be a convergent sequence and suppose range $(F) \subset ([0,\infty))$. Show that \sqrt{F} converges. You may use the fact that $(\forall x, y \in \mathbf{R}_{\geq 0}) (|\sqrt{x} - \sqrt{y}| \leq \sqrt{|x - y|})$

Solution: See classnotes for Monday 9 October.

17. For the sequence $F = k \in \mathbb{Z}_{\geq 0} \mapsto k - 3\lfloor \frac{k}{3} \rfloor$, give three examples of a convergent subsequence.

Solution: Define $\phi = \mathbf{Z}_{\geq 0} k \mapsto 3k$. Then $F \circ \phi = k \in \mathbf{Z}_{\geq 0} \mapsto 0$. Define $\phi = \mathbf{Z}_{\geq 0} k \mapsto 3k + 1$. Then $F \circ \phi = k \in \mathbf{Z}_{\geq 0} \mapsto 1$. Define $\phi = \mathbf{Z}_{\geq 0} k \mapsto 3k + 2$. Then $F \circ \phi = k \in \mathbf{Z}_{\geq 0} \mapsto 2$.

18. Give an example of a sequence F and a real number α such that αF converges and F diverges.

Solution: Choose $F = k \in \mathbb{Z}_{\geq 0} \mapsto k$ and choose $\alpha = 0$. Then F diverges but 0F converges.

19. Give an example of sequences F and G such that both F and G diverge, but F + G converges.

Solution: Choose $F = k \in \mathbb{Z}_{\geq 0} \mapsto k$ and $F = k \in \mathbb{Z}_{\geq 0} \mapsto -k$. Both F and G diverge, but F + G converges.

20. Give an example of sequences *F* and *G* such that both *F* and *G* diverge, but *FG* converges.

Solution: Choose $F = k \in \mathbb{Z}_{\geq 0} \mapsto (-1)^k$ and $G = k \in \mathbb{Z}_{\geq 0} \mapsto (-1)^k$. Both F and G diverge, but $FG = k \in \mathbb{Z}_{\geq 0} \mapsto 1$ converges.

21. Show that $(\forall x, y \in \mathbf{R}_{\geq 0}) (\sqrt{x+y} \leq \sqrt{x} + \sqrt{y})$.

Solution: We begin by proving that $(\forall x, y \in \mathbf{R}_{\geq 0})(\sqrt{x^2 + y^2} \leq x + y)$. Let $x, y \in \mathbf{R}_{\geq 0}$. We have

$$\sqrt{x^2 + y^2} = \sqrt{x^2 + 2xy + y^2 - 2xy},$$
 (add and subtract)
$$= \sqrt{(x+y)^2 - 2xy},$$
 (algebra)
$$\leq \sqrt{(x+y)^2},$$
 (squre root function is increasing
$$= x + y.$$
 (algebra)

To finish the proof, we replace $x \to \sqrt{x}$ and $y \to \sqrt{y}$ in the above. This yields $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$.