Zadania na pierwszą kartówkę, RP2 2009/2010

- 1. Dany jest ciąg (a_n) liczb dodatnich zbieżny do 0, oraz ciąg (X_n) zmiennych losowych takich, że dla $n \geq 1$, X_n ma rozkład geometryczny z parametrem p_n . Udowodnić, że jeśli $p_n/a_n \to \lambda > 0$, to $a_n X_n \Rightarrow \operatorname{Exp}(\lambda)$.
- **2.** Niech S będzie przeliczalnym podzbiorem \mathbb{R}^N , zaś μ_n , μ miarami probabilistycznymi skupionymi na S. Wykazać, że jeśli dla każdego $x \in S$ mamy $\mu_n(\{x\}) \to \mu(\{x\})$, to $\mu_n \Rightarrow \mu$.
- **3.** Dany jest ciąg (X_n) niezależnych zmiennych losowych o rozkładzie jednostajnym na przedziale [0,2]. Czy ciąg $(n \min_{k \le n} X_k)_n$ jes zbieżny według rozkładu? Jeśli tak, to do jakiej granicy?
- **4.** Załóżmy, że (X_n) zbiega według rozkładu do X i $\sup_n \mathbb{E}|X_n|^2 < \infty$. Udowodnić, że dla $p \in (0,2)$ zachodzi $\lim_{n \to \infty} \mathbb{E}|X_n|^p = \mathbb{E}|X|^p$.
- 5. Załóżmy, że X_n , X, Y_n , Y ($n=1,2,\ldots$) są zmiennymi losowymi określonymi na tej samej przestrzeni probabilistycznej. Udowodnić, że jeśli (X_n) zbiega według rozkładu do X i (Y_n) zbiega według rozkładu do Y stałej p.n., to (X_nY_n) zbiega według rozkładu do XY.
- **6.** Dany jest ciąg (X_n) zmiennych losowych o tej własności, że $(\sin X_n)$ oraz $(\sin \pi X_n)$ zbiegają według rozkładu do 0. Udowodnić, że (X_n) zbiega według rozkładu do 0.
 - 7. Rozstrzygnąć, czy funkcja

$$\phi(t) = \frac{e^{-t^2}}{1 + \sin^2 t}$$

jest funkcją charakterystyczną pewnego rozkładu na prostej.

8. Rozstrzygnąć, czy funkcja

$$\phi(t) = \frac{\cos t}{1 + t^2}$$

jest funkcja charakterystyczną pewnego rozkładu na prostej.

9. Zmienne losowe X_1, X_2, \ldots są niezależne i mają rozkład jednostajny na przedziale [-3,3]. Niech $\tau = \inf\{n \geq 1 : X_n \geq 0\}$. Wyznaczyć funkcję charakterystyczną zmiennej X_{τ} .