5.3

O Teorema Fundamental do Cálculo

O nome Teorema Fundamental do Cálculo é apropriado, pois ele estabelece uma conexão entre os dois ramos do cálculo: o cálculo diferencial e o cálculo integral. O cálculo diferencial surgiu do problema da tangente, enquanto o cálculo integral surgiu de um problema aparentemente não relacionado, o problema da área. O mentor de Newton em Cambridge, Isaac Barrow (1630-1677), descobriu que esses dois problemas estão, na verdade, estreitamente relacionados. Ele percebeu que a derivação e a integração são processos inversos. O Teorema Fundamental do Cálculo dá a relação inversa precisa entre a derivada e a integral. Foram Newton e Leibniz que exploraram essa relação e usaram-na para desenvolver o cálculo como um método matemático sistemático. Em particular, eles viram que o Teorema Fundamental os capacitava a calcular áreas e integrais muito mais facilmente, sem que fosse necessário calculá-las como limites de somas, como fizemos nas Seções 5.1 e 5.2.

A primeira parte do Teorema Fundamental lida com funções definidas por uma equação da forma

$$g(x) = \int_{a}^{x} f(t) dt$$

onde f é uma função contínua de [a, b] e x varia entre a e b. Observe que g depende somente de x, que aparece como o limite superior variável da integral. Se x for um número fixado, então a integral $\int_a^x f(t) \, dt$ é um número definido. Se variamos x, o número $\int_a^x f(t) \, dt$ também varia e define uma função de x denotada por g(x).

Se f for uma função positiva, então g(x) pode ser interpretada como a área sob o gráfico de f de a até x, onde x pode variar de a até b. (Imagine g como a função "área até aqui"; veja a Figura 1.)

FIGURA 1

FIGURA 2

EXEMPLO 1 Se f é a função cujo gráfico é mostrado na Figura 2 e $g(x) = \int_0^x f(t) dt$, encontre os valores de g(0), g(1), g(2), g(3), g(4) e g(5). A seguir, faça um esboço do gráfico de g. SOLUÇÃO Primeiro, observe que $g(0) = \int_0^0 f(t) dt = 0$. A partir da Figura 3, sabemos que g(1) é a área de um triângulo:

$$g(1) = \int_0^1 f(t) dt = \frac{1}{2}(1 \cdot 2) = 1$$

Para achar g(2), somamos g(1) à área de um retângulo:

$$g(2) = \int_0^2 f(t) dt = \int_0^1 f(t) dt + \int_1^2 f(t) dt = 1 + (1 \cdot 2) = 3$$

Estimamos que a área abaixo da curva definida por f no intervalo de 2 a 3 é aproximadamente 1,3, assim

$$g(3) = g(2) + \int_{3}^{3} f(t) dt \approx 3 + 1.3 = 4.3$$

FIGURA 3

Para t > 3, f(t) é negativa e, dessa forma, começamos a subtrair as áreas:

$$g(4) = g(3) + \int_{3}^{4} f(t) dt \approx 4.3 + (-1.3) = 3.0$$

$$g(5) = g(4) + \int_{4}^{5} f(t) dt \approx 3 + (-1,3) = 1,7$$

Usamos esses valores para fazer o esboço do gráfico de g apresentado na Figura 4. Observe que, pelo fato de f(t) ser positiva para t < 3, continuamos adicionando área para t < 3 e assim g é crescente até x = 3, onde atinge o seu valor máximo. Para x > 3, g decresce porque f(t) é negativa.

FIGURA 4 $g(x) = \int_{a}^{x} f(t) dt$

Se tomarmos f(t) = t e a = 0, então, usando o Exercício 27 da Seção 5.2, temos

$$g(x) = \int_0^x t \, dt = \frac{x^2}{2}$$

Observe que g'(x)=x, isto é, g'=f. Em outras palavras, se g for definida como a integral de f pela Equação 1, então g é uma primitiva de f, pelo menos nesse caso. E se esboçarmos a derivada da função g mostrada na Figura 4 pelas inclinações estimadas das tangentes, teremos um gráfico semelhante ao de f na Figura 2. Portanto, suspeitamos que g'=f também, no Exemplo 1.

Para ver por que isso pode ser verdadeiro em geral, consideramos qualquer função contínua f com $f(x) \ge 0$. Então, $g(x) = \int_a^x f(t) dt$ pode ser interpretada como a área sob o gráfico de f de f até f como na Figura 1.

A fim de calcular g'(x) a partir da definição de derivada, primeiro observamos que, para h > 0, g(x + h) - g(x) é obtida subtraindo áreas, de forma que reste a área sob o gráfico de f de x até x + h (a área em destaque na Figura 5). Para h pequeno, pode-se ver pela figura que essa área é aproximadamente igual à área do retângulo com altura f(x) e largura h:

FIGURA 5

$$g(x + h) - g(x) \approx hf(x)$$

$$\frac{g(x+h) - g(x)}{h} \approx f(x)$$

Intuitivamente, portanto, esperamos que

logo,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f(x)$$

O fato de isso ser verdadeiro, mesmo quando f não é necessariamente positiva, é a primeira parte do Teorema Fundamental do Cálculo.

0 Teorema Fundamental do Cálculo, Parte 1 Se f for contínua em [a, b], então a função g definida por

$$g(x) = \int_{a}^{x} f(t) dt$$
 $a \le x \le b$

é contínua em [a, b] e derivável em (a, b) e g'(x) = f(x).

Abreviamos o nome deste teorema por TFC1. Em palavras, ele afirma que a derivada de uma integral definida com relação a seu limite superior é seu integrando calculado no limite superior.

DEMONSTRAÇÃO Se x e x + h estão em (a, b), então

$$g(x+h) - g(x) = \int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt$$

$$= \left(\int_{a}^{x} f(t) dt + \int_{x}^{x+h} f(t) dt \right) - \int_{a}^{x} f(t) dt \qquad \text{(pela Propriedade 5)}$$

$$= \int_{x}^{x+h} f(t) dt$$

logo, para $h \neq 0$,

$$\frac{g(x+h)-g(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

Por ora, vamos assumir que h > 0. Uma vez que f é contínua em [x, x + h], o Teorema dos Valores Extremos afirma que há números u e v em [x, x + h] tais que f(u) = m e f(v) = M, onde m e M são valores mínimo e máximo absolutos de f em [x, x + h]. (Veja a Figura 6.)

Pela Propriedade 8 das integrais, temos

$$mh \le \int_x^{x+h} f(t) \, dt \le Mh$$

isto é, $f(u)h \le \int_{0}^{x+h} f(t) dt \le f(v)h$

Uma vez que h > 0, podemos dividir essa desigualdade por h:

$$f(u) \le \frac{1}{h} \int_{x}^{x+h} f(t) \, dt \le f(v)$$

Agora, usamos a Equação 2 para substituir a parte do meio dessa desigualdade:

$$f(u) \le \frac{g(x+h) - g(x)}{h} \le f(v)$$

A desigualdade 3 pode ser demonstrada de maneira similar para o caso h < 0. (Veja o Exercício 71.)

Agora, tomemos $h \to 0$. Então $u \to x$ e $v \to x$, uma vez que u e v estão entre x e x + h. Portanto,

$$\lim_{h \to 0} f(u) = \lim_{u \to x} f(u) = f(x) \qquad e \qquad \lim_{h \to 0} f(v) = \lim_{v \to x} f(v) = f(x)$$

porque f é contínua em x. Concluímos, de $\boxed{3}$ e do Teorema do Confronto, que

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f(x)$$

Se x = a ou b, então a Equação 4 pode ser interpretada como um limite lateral. Então, o Teorema 2.8.4 (modificado para limites laterais) mostra que g é contínua em [a, b].

Usando a notação de Leibniz para as derivadas, podemos escrever o TFC1 como

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

quando f for contínua. Grosseiramente falando, a Equação 5 nos diz que se primeiro integramos f e então derivamos o resultado, retornamos à função original f.

FIGURA 6

TEC *Module 5.3* dá evidências visuais para TFC1.

EXEMPLO 2 Encontre a derivada da função $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

SOLUÇÃO Uma vez que $f(t)=\sqrt{1+t^2}$ é contínua, a Parte 1 do Teorema Fundamental do Cálculo fornece

$$q'(x) = \sqrt{1 + x^2}$$

EXEMPLO 3 Embora uma fórmula da forma $g(x) = \int_a^x f(t) dt$ possa parecer uma maneira estranha de definir uma função, livros de física, química e estatística estão repletos dessas funções. Por exemplo, a **função de Fresnel**

$$S(x) = \int_0^x \operatorname{sen}(\pi t^2/2) \, dt$$

é assim chamada em homenagem ao físico francês Augustin Fresnel (1788-1827), famoso por seus estudos em óptica. Essa função apareceu pela primeira vez na teoria de difração das ondas de luz de Fresnel, porém mais recentemente foi aplicada no planejamento de autoestradas.

A parte 1 do Teorema Fundamental nos diz como derivar a função de Fresnel:

$$S'(x) = \operatorname{sen}(\pi x^2/2)$$

Isso significa que podemos aplicar todos os métodos do cálculo diferencial para analisar *S* (veja o Exercício 65).

A Figura 7 mostra os gráficos de $f(x) = \sec(\pi x^2/2)$ e da função de Fresnel $S(x) = \int_0^x f(t) dt$. Um computador foi usado para construir um gráfico de S, calculando o valor dessa integral para vários valores de x. De fato, parece que S(x) é a área sob o gráfico de f de f até f até f até f até f até f até f ate f a

0,5

FIGURA 7 $f(x) = \operatorname{sen}(\pi x^2/2)$ $S(x) = \int_0^x \operatorname{sen}(\pi t^2/2) dt$

FIGURA 8 A função de Fresnel $S(x) = \int_0^x \sin(\pi t^2/2) dt$

Se começarmos agora com o gráfico de S da Figura 7 e pensarmos sobre como deve ser sua derivada, parece razoável que S'(x) = f(x). [Por exemplo, S é crescente quando f(x) > 0 e decrescente quando f(x) < 0.] Logo, isso nos dá a confirmação visual da Parte 1 do Teorema Fundamental do Cálculo.

EXEMPLO 4 Encontre $\frac{d}{dx} \int_{1}^{x^4} \sec t \, dt$.

SOLUÇÃO Aqui, devemos ser cuidadosos ao usar a Regra da Cadeia com o TFC1. Seja $u=x^4$. Então

$$\frac{d}{dx} \int_{1}^{x^{4}} \sec t \, dt = \frac{d}{dx} \int_{1}^{u} \sec t \, dt$$

$$= \frac{d}{du} \left[\int_{1}^{u} \sec t \, dt \right] \frac{du}{dx} \qquad \text{(pela Regra da Cadeia)}$$

$$= \sec u \frac{du}{dx}$$

$$= \sec(x^4) \cdot 4x^3$$
(por TFC1)

Na Seção 5.2 calculamos as integrais, a partir da definição, como um limite de somas de Riemann e vimos que esse procedimento é às vezes longo e difícil. A segunda parte do Teorema Fundamental do Cálculo, que segue facilmente da primeira parte, nos fornece um método muito mais simples para o cálculo de integrais.

Teorema Fundamental do Cálculo, Parte 2 Se f for contínua em [a, b], então

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

onde F é qualquer primitiva de f, isto é, uma função tal que F' = f.

DEMONSTRAÇÃO Seja $g(x) = \int_a^x f(t) dt$. Sabemos da Parte 1 que g'(x) = f(x); isto é, g é uma primitiva de f. Se F for qualquer outra primitiva de f em [a, b], então sabemos, do Corolário 4.2.7, que F e g diferem por uma constante:

$$F(x) = g(x) + C$$

para a < x < b. No entanto, tanto F quanto g são contínuas em [a, b] e, portanto, tomando limites em ambos os lados da Equação 6 (quando $x \to a^+$ e $x \to b^-$), vemos que isso também é válido quando x = a e x = b.

Se fizermos x = a na fórmula de g(x), obteremos

$$g(a) = \int_a^a f(t) \, dt = 0$$

Portanto, usando a Equação 6 com x = b e x = a, temos

$$F(b) - F(a) = [g(b) + C] - [g(a) + C]$$

= $g(b) - g(a) = g(b) = \int_a^b f(t) dt$

A Parte 2 do Teorema Fundamental afirma que se conhecermos uma primitiva F de f, então poderemos calcular $\int_a^b f(x) \, dx$ simplesmente subtraindo os valores de F nas extremidades do intervalo [a,b]. É surpreendente que $\int_a^b f(x) \, dx$, definida por um procedimento complicado envolvendo todos os valores de f(x) para $a \le x \le b$, possa ser encontrada sabendo-se os valores de F(x) em somente dois pontos, a e b.

Embora o Teorema possa ser surpreendente à primeira vista, ele fica plausível se o interpretamos em termos físicos. Se v(t) é a velocidade de um objeto e s(t) é sua posição no tempo t, então v(t) = s'(t), de forma que s é uma primitiva de v. Na Seção 5.1 consideramos um objeto que se move sempre no sentido positivo e fizemos a conjectura de que a área sob a curva da velocidade é igual à distância percorrida. Em símbolos:

$$\int_a^b v(t) dt = s(b) - s(a)$$

Isso é exatamente o que o TFC2 diz nesse contexto.

EXEMPLO 5 Calcule a integral $\int_{1}^{3} e^{x} dx$.

SOLUÇÃO A função $f(x) = e^x$ é contínua em toda parte e sabemos que uma primitiva é $F(x) = e^x$, logo, pela Parte 2 do Teorema Fundamental, temos

$$\int_{1}^{3} e^{x} dx = F(3) - F(1) = e^{3} - e$$

Abreviamos este teorema por TFC2.

Observe que TFC2 diz que podemos usar *qualquer* primitiva F de f. Então, podemos usar a mais simples, isto é, $F(x) = e^x$, no lugar de $e^x + 7$ ou $e^x + C$.

Frequentemente usamos a notação

$$F(x)\Big]_a^b = F(b) - F(a)$$

Logo, a equação do TFC2 pode ser escrita como

$$\int_{a}^{b} f(x) dx = F(x) \Big]_{a}^{b} \quad \text{onde} \quad F' = f$$

Outras notações comuns são $F(x) \mid_a^b e[F(x)]_a^b$.

EXEMPLO 6 Encontre a área sob a parábola $y = x^2$ de 0 até 1.

SOLUÇÃO Uma primitiva de $f(x) = x^2$ é $F(x) = \frac{1}{3}x^3$. A área A pedida é encontrada usandose a Parte 2 do Teorema Fundamental:

$$A = \int_0^1 x^2 dx = \frac{x^3}{3} \bigg]_0^1$$
$$= \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}$$

Ao aplicarmos o Teorema Fundamental, usamos uma primitiva específica F de f. Não é necessário usar a primitiva mais geral.

Se você comparar o cálculo do Exemplo 6 com o do Exemplo 2 na Seção 5.1, verá que o Teorema Fundamental fornece um método *muito* mais curto.

EXEMPLO 7 Calcule $\int_3^6 \frac{dx}{x}$.

SOLUÇÃO A integral dada é uma abreviação para

$$\int_3^6 \frac{1}{x} \, dx$$

Uma primitiva de f(x) = 1/x é $F(x) = \ln |x|$ e, como $3 \le x \le 6$, podemos escrever $F(x) = \ln x$. Logo,

$$\int_{3}^{6} \frac{1}{x} dx = \ln x \Big]_{3}^{6} = \ln 6 - \ln 3$$
$$= \ln \frac{6}{3} = \ln 2$$

EXEMPLO 8 Encontre a área sob a curva cosseno de 0 até b, onde $0 \le b \le \pi/2$. SOLUÇÃO Uma vez que uma primitiva de $f(x) = \cos x \in F(x) = \sin x$, temos

$$A = \int_0^b \cos x \, dx = \sin x \Big]_0^b = \sin b - \sin 0 = \sin b$$

Em particular, tomando $b = \pi/2$, teremos demonstrado que a área sob a curva cosseno de 0 até $\pi/2$ é sen $(\pi/2) = 1$. (Veja a Figura 9.)

Quando o matemático francês Gilles de Roberval encontrou a área sob as curvas seno e cosseno, em 1635, isso era um problema muito desafiador que requeria grande dose de engenhosidade. Se não tivéssemos a vantagem do Teorema Fundamental, teríamos de calcular um limite de somas difícil usando obscuras identidades trigonométricas (ou um SCA, como no Exercício 29 da Seção 5.1). Foi mais difícil para Roberval, porque o aparato dos limites não havia sido inventado em 1635. Mas nas décadas de 1660 e 1670, quando o Teorema Fundamental foi descoberto por Barrow e explorado por Newton e Leibniz, esses problemas ficaram muito fáceis, como você pode ver no Exemplo 8.

FIGURA 9

EXEMPLO 9 O que está errado no seguinte cálculo?

 $\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \bigg|_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$

SOLUÇÃO Para começarmos, observamos que esse cálculo deve estar errado, pois a resposta é negativa, mas $f(x) = 1/x^2 \ge 0$ e a Propriedade 6 de integrais afirma que $\int_a^b f(x) \, dx \ge 0$ quando $f \ge 0$. O Teorema Fundamental do Cálculo aplica-se a funções contínuas. Ele não pode ser aplicado aqui, pois $f(x) = 1/x^2$ não é contínua em [-1, 3]. De fato, f tem uma descontinuidade infinita em x = 0, portanto

$$\int_{-1}^{3} \frac{1}{x^2} dx$$
 não existe

🚺 Diferenciação e Integração como Processos Inversos

Vamos finalizar esta seção justapondo as duas partes do Teorema Fundamental.

Teorema Fundamental do Cálculo Suponha que f seja contínua em [a, b].

- 1. Se $g(x) = \int_a^x f(t) dt$, então g'(x) = f(x).
- **2.** $\int_a^b f(x) dx = F(b) F(a)$, onde F é qualquer primitiva de f, isto é, uma função tal que F' = f.

Observamos que a Parte 1 pode ser reescrita como

$$\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x)$$

o que quer dizer que se f for integrada e o resultado, derivado, obteremos de volta a função original f. Como F'(x) = f(x), a Parte 2 pode ser reescrita como

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$

Essa versão afirma que se tomarmos uma função F, a derivarmos e depois integrarmos o resultado, chegaremos de volta à função original F, mas na forma F(b) - F(a). Juntas, as duas partes do Teorema Fundamental do Cálculo mostram que a derivação e a integração são processos inversos. Cada um desfaz o que o outro fez.

O Teorema Fundamental do Cálculo é inquestionavelmente o mais importante do cálculo e realmente é um dos grandes feitos da mente humana. Antes de sua descoberta, desde os tempos de Eudóxio e Arquimedes até os de Galileu e Fermat, os problemas de encontrar áreas, volumes e comprimentos de curva eram tão difíceis que somente um gênio poderia fazer frente ao desafio. Agora, porém, armados com o método sistemático que Leibniz e Newton configuraram a partir do Teorema Fundamental, veremos nos capítulos a seguir que esses problemas desafiadores são acessíveis para todos nós.

5.3 Exercícios

- Explique exatamente o significado da afirmação "derivação e integração são processos inversos".
- Seja $g(x) = \int_0^x f(t) dt$, em que f é a função cujo gráfico é mos-
 - (a) Calcule q(x) para x = 0, 1, 2, 3, 4, 5 e 6.
 - (b) Estime q(7).
 - (c) Onde g tem um valor máximo? Onde possui um valor mínimo?
 - (d) Faça um esboço do gráfico de g.

- 3. Seja $g(x) = \int_0^x f(t) dt$, em que f é a função cujo gráfico é mos-
 - (a) Calcule g(0), g(1), g(2), g(3) e g(6).
 - (b) Em que intervalos g está crescendo?
 - (c) Onde q tem um valor máximo?
 - (d) Faça um esboço do gráfico de g.

- **4.** Seja $g(x) = \int_0^x f(t) dt$, em que f é a função cujo gráfico é mos-
 - (a) Calcule g(0) e g(6).
 - (b) Estime g(x) para x = 1, 2, 3, 4, e 5.
 - (c) Em que intervalo q está crescendo?
 - (d) Onde *g* tem um valor máximo?
 - (e) Faça um esboço do gráfico de g.
 - (f) Use o gráfico da parte (e) para esboçar o gráfico de g'(x). Compare com o gráfico de f.

5-6 Esboce a área representada por q(x). A seguir, encontre q'(x)de duas formas: (a) utilizando a Parte 1 do Teorema Fundamental e (b) calculando a integral usando a Parte 2 e, então, derivando.

5.
$$g(x) = \int_{1}^{x} t^{2} dt$$

6.
$$g(x) = \int_0^x (2 + \sin t) dt$$

7-18 Use a Parte 1 do Teorema Fundamental do Cálculo para encontrar a derivada da função.

7.
$$g(x) = \int_1^x \frac{1}{t^3 + 1} dt$$
 8. $g(x) = \int_3^x e^{t^2 - t} dt$

8.
$$g(x) = \int_{2}^{x} e^{t^{2}-t} dt$$

9.
$$g(s) = \int_{s}^{s} (t - t^2)^8 dt$$
 10. $g(r) = \int_{0}^{r} \sqrt{x^2 + 4} dx$

10.
$$g(r) = \int_0^r \sqrt{x^2 + 4} \ dx$$

11.
$$F(x) = \int_{x}^{\pi} \sqrt{1 + \sec t} \ dt$$

Dica:
$$\int_{x}^{\pi} \sqrt{1 + \sec t} \, dt = -\int_{\pi}^{x} \sqrt{1 + \sec t} \, dt$$

12.
$$G(x) = \int_{x}^{1} \cos \sqrt{t} \ dt$$

13.
$$h(x) = \int_{1}^{e^{x}} \ln t \, dt$$

13.
$$h(x) = \int_{1}^{e^{x}} \ln t \, dt$$
 14. $h(x) = \int_{1}^{\sqrt{x}} \frac{z^{2}}{z^{4} + 1} \, dz$

15.
$$y = \int_0^{\text{tg } x} \sqrt{t + \sqrt{t}} \ dt$$
 16. $y = \int_0^{x^4} \cos^2 \theta \ d\theta$

16.
$$y = \int_0^{x^4} \cos^2\theta \, d\theta$$

17.
$$y = \int_{1-3x}^{1} \frac{u^3}{1+u^2} du$$
 18. $y = \int_{\sin x}^{1} \sqrt{1+t^2} dt$

18.
$$y = \int_{1}^{1} \sqrt{1 + t^2} \, dt$$

19-44 Calcule a integral.

19.
$$\int_{-1}^{2} (x^3 - 2x) dx$$
 20. $\int_{-1}^{1} x^{100} dx$

20.
$$\int_{-1}^{1} x^{100} dx$$

21.
$$\int_{1}^{4} (5-2t+3t^2) dt$$

21.
$$\int_{1}^{4} (5 - 2t + 3t^2) dt$$
 22. $\int_{0}^{1} \left(1 + \frac{1}{2}u^4 - \frac{2}{5}u^9\right) du$

23.
$$\int_0^1 x^{4/5} dx$$

24.
$$\int_{1}^{8} \sqrt[3]{x} \ dx$$

25.
$$\int_{1}^{2} \frac{3}{t^4} dt$$

26.
$$\int_{0}^{2\pi} \cos \theta \ d\theta$$

27.
$$\int_0^2 x(2+x^5) dx$$

28.
$$\int_0^1 (3 + x\sqrt{x}) dx$$

29.
$$\int_{1}^{9} \frac{x-1}{\sqrt{x}} dx$$

30.
$$\int_0^2 (y-1)(2y+1) dy$$

31.
$$\int_0^{\pi/4} \sec^2 t \, dt$$

32.
$$\int_0^{\pi/4} \sec \theta \, \lg \theta \, d\theta$$

33.
$$\int_{1}^{2} (1 + 2y)^2 dy$$

34.
$$\int_0^3 (2 \sin x - e^x) dx$$

35.
$$\int_{1}^{2} \frac{v^{3} + 3v^{6}}{v^{4}} dv$$

36.
$$\int_{1}^{18} \sqrt{\frac{3}{z}} dz$$

37.
$$\int_0^1 (x^e + e^x) dx$$

$$\mathbf{38.} \int_0^1 \cosh t \, dt$$

39.
$$\int_{1/\sqrt{3}}^{\sqrt{3}} \frac{8}{1+x^2} dx$$

40.
$$\int_1^2 \frac{4+u^2}{u^3} du$$

41.
$$\int_{-1}^{1} e^{u+1} du$$

42.
$$\int_{1/2}^{1/\sqrt{2}} \frac{4}{\sqrt{1-x^2}} \, dx$$

- **43.** $\int_0^{\pi} f(x) dx \quad \text{onde } f(x) = \begin{cases} \sec x & \sec 0 \le x < \pi/2 \\ \cos x & \sec \pi/2 \le x \le \pi \end{cases}$ **44.** $\int_{-2}^2 f(x) dx \quad \text{onde } f(x) = \begin{cases} 2 & \sec -2 \le x \le 0 \\ 4 x^2 & \sec 0 < x \le 2 \end{cases}$
- 45-48 O que está errado na equação?
 - **45.** $\int_{-2}^{1} x^{-4} dx = \frac{x^{-3}}{-3} \bigg]^{1} = -\frac{3}{8}$
 - **46.** $\int_{-1}^{2} \frac{4}{x^3} dx = -\frac{2}{x^2} \bigg]^2 = \frac{3}{2}$
 - **47.** $\int_{-\pi}^{\pi} \sec \theta \, \operatorname{tg} \theta \, d\theta = \sec \theta \Big|_{\pi/3}^{\pi} = -3$
 - **48.** $\int_0^{\pi} \sec^2 x \, dx = \operatorname{tg} x \Big]_0^{\pi} = 0$
- 49-52 Use um gráfico para dar uma estimativa grosseira da área da região que fica abaixo da curva dada. Encontre a seguir a área exata.
 - **49.** $y = \sqrt[3]{x}$, $0 \le x \le 27$
- **50.** $y = x^{-4}$, $1 \le x \le 6$
- **51.** $y = \text{sen } x, \ 0 \le x \le \pi$ **52.** $y = \text{sec}^2 x, \ 0 \le x \le \pi/3$
- 53–54 Calcule a integral e interprete-a como uma diferença de áreas. Ilustre com um esboço.

53.
$$\int_{-1}^{2} x^3 dx$$

54.
$$\int_{\pi/6}^{2\pi} \cos x \, dx$$

- 55-59 Encontre a derivada da função.
- **55.** $g(x) = \int_{2x}^{3x} \frac{u^2 1}{u^2 + 1} du$

Dica:
$$\int_{2x}^{3x} f(u) du = \int_{2x}^{0} f(u) du + \int_{0}^{3x} f(u) du$$

- **56.** $g(x) = \int_{1-2x}^{1+2x} t \sin t \, dt$
- **57.** $F(x) = \int_{0}^{x^2} e^{t^2} dt$
- **58.** $F(x) = \int_{-x}^{2x} \arctan t \, dt$
- **59.** $y = \int_{-\infty}^{\sin x} \ln(1 + 2v) \, dv$
- **60.** Se $f(x) = \int_0^x (1 t^2)e^{t^2} dt$, em qual intervalo f é crescente?
- 61. Em qual intervalo a curva

$$y = \int_0^x \frac{t^2}{t^2 + t + 2} \, dt$$

é côncava para baixo?

- **62.** Se $f(x) = \int_0^{\sin x} \sqrt{1 + t^2} dt$ e $g(y) = \int_0^y f(x) dx$, encontre $q''(\pi/6)$.
- **63.** Se f(1) = 12, f' é contínua e $\int_{1}^{4} f'(x) dx = 17$, qual é o valor de f(4)?

64. A **função erro** dada por

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

- é muito usada em probabilidade, estatística e engenharia.
- (a) Mostre que $\int_a^b e^{-t^2} dt = \frac{1}{2} \sqrt{\pi} \left[\operatorname{erf}(b) \operatorname{erf}(a) \right]$.
- (b) Mostre que a função $y = e^{x^2} \operatorname{erf}(x)$ satisfaz a equação diferencial $y' = 2xy + 2/\sqrt{\pi}$.
- **65.** A função de Fresnel S foi definida no Exemplo 3, e seus gráficos estão nas Figuras 7 e 8.
 - (a) Em que valores de x essa função tem valores máximos locais?
 - (b) Em que intervalos a função é côncava para cima?
 - (c) Use um gráfico para resolver a seguinte equação, com precisão de duas casas decimais:

$$\int_0^x \sec(\pi t^2/2) \, dt = 0.2$$

SCA 66. A função seno integral

SCA

$$\operatorname{Si}(x) = \int_0^x \frac{\operatorname{sen} t}{t} \, dt$$

- é importante em engenharia elétrica. [O integrando f(t) = (sen t)/tnão está definido quando t = 0, mas sabemos que seu limite é 1 quando $t \rightarrow 0$. Logo, definimos f(0) = 1 e isso faz de f uma função contínua em toda parte.]
- (a) Trace o gráfico de Si.
- (b) Em que valores de x essa função tem valores máximos locais?
- (c) Encontre as coordenadas do primeiro ponto de inflexão à direita da origem.
- (d) Essa função tem assíntotas horizontais?
- (e) Resolva a seguinte equação com precisão de uma casa decimal:

$$\int_0^x \frac{\sin t}{t} dt = 1$$

- **67–68** Seja $g(x) = \int_0^x f(t) dt$, em que f é a função cujo gráfico é mos-
 - (a) Em que valores de x ocorrem os valores máximos e mínimos locais em q?
 - (b) Onde *g* atinge seu valor máximo absoluto?
 - (c) Em que intervalos *g* é côncavo para baixo?
 - (d) Esboce o gráfico de g.

69–70 Calcule o limite, reconhecendo primeiro a soma como uma soma de Riemann para uma função definida em [0, 1].

69.
$$\lim_{n\to\infty}\sum_{i=1}^{n}\frac{i^3}{n^4}$$

70.
$$\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \sqrt{\frac{3}{n}} + \cdots + \sqrt{\frac{n}{n}} \right)$$

- **71.** Justifique $\boxed{3}$ para o caso h < 0.
- **72.** Se *f* é contínua e *g* e *h* são funções deriváveis, encontre uma fórmula para

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt$$

- **73.** (a) Mostre que $1 \le \sqrt{1 + x^3} \le 1 + x^3$ para $x \ge 0$.
 - (b) Mostre que $1 \le \int_0^1 \sqrt{1 + x^3} \, dx \le 1,25$.
- **74.** (a) Mostre que $cos(x^2) \ge cos x$ para $0 \le x \le 1$.
 - (b) Deduza que $\int_0^{\pi/6} \cos(x^2) dx \ge \frac{1}{2}$.
- 75. Mostre que

$$0 \le \int_{5}^{10} \frac{x^2}{x^4 + x^2 + 1} \, dx \le 0.1$$

comparando o integrando a uma função mais simples.

76. Considere

$$f(x) = \begin{cases} 0 & \text{se } x < 0 \\ x & \text{se } 0 \le x \le 1 \\ 2 - x & \text{se } 1 < x \le 2 \\ 0 & \text{se } x > 2 \end{cases}$$

$$g(x) = \int_0^x f(t) \, dt$$

- (a) Ache uma expressão para g(x) similar àquela para f(x).
- (b) Esboce os gráficos de f e g.
- (c) Onde f é derivável? Onde g é derivável?

77. Encontre uma função f e um número a tais que

$$6 + \int_{a}^{x} \frac{f(t)}{t^{2}} dt = 2\sqrt{x}$$
 para todo $x > 0$

78. A área marcada *B* é três vezes a área marcada *A*. Expresse *b* em termos de *a*.

- **79.** Uma empresa possui uma máquina que se deprecia a uma taxa contínua f = f(t), onde t é o tempo medido em meses desde seu último recondicionamento. Como a cada vez em que a máquina é recondicionada incorre-se em um custo fixo A, a empresa deseja determinar o tempo ideal T (em meses) entre os recondicionamentos.
 - (a) Explique por que $\int_0^t f(s) ds$ representa a perda do valor da máquina sobre o período de tempo t desde o último recondicionamento.
 - (b) Seja C = C(t) dado por

$$C(t) = \frac{1}{t} \left[A + \int_0^t f(s) \, ds \right]$$

O que representa C e por que a empresa quer minimizar C?

- (c) Mostre que C tem um valor mínimo nos números t = T onde C(T) = f(T).
- **80.** Uma empresa de tecnologia compra um novo sistema de computação cujo valor inicial é V. O sistema depreciará a uma taxa f = f(t) e acumulará custos de manutenção a uma taxa g = g(t), onde t é o tempo medido em meses. A companhia quer determinar o tempo ótimo para substituir o sistema.
 - (a) Seja

$$C(t) = \frac{1}{t} \int_0^t \left[f(s) + g(s) \right] ds$$

Mostre que os números críticos de C ocorrem nos números t nos quais C(t) = f(t) + g(t).

(b) Suponha que

$$f(t) = \begin{cases} \frac{V}{15} - \frac{V}{450} t & \text{se } 0 < t \le 30\\ 0 & \text{se } t > 30 \end{cases}$$

$$g(t) = \frac{Vt^2}{12.900} \qquad t > 0$$

Determine o período de tempo T para que a depreciação total $D(t) = \int_0^t f(s) ds$ seja igual ao valor inicial V.

- (c) Determine o mínimo absoluto de C em (0, T].
- (d) Esboce os gráficos de C e f+g no mesmo sistema de coordenadas e verifique o resultado da parte (a) nesse caso.