#### AV312 - Lecture 17

Vineeth B. S.

Department of Avionics, Indian Institute of Space Science and Technology.

Figures from "Communication Systems" by Haykin and "An Intro. to Analog and Digital Commn." by Haykin and Moher

22th September 2016

#### Review of last classes

- ► Intersymbol interference
- ▶ Nyquist bandwidth and channel

#### Today's class

- ► Raised cosine pulse shaping
- Duobinary signalling
- ▶ Today's scribes are Chandu Lal and Ravi Kiran Reddy

# An effective pulse shape p(t)



• 
$$y(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kT_b)$$
, where  $p(t) = g(t) \star h(t) \star q(t)$ 

## Intersymbol interference problem



- At the sampling instants  $y(iT_b)$  we have  $y(iT_b) = \sum_{k=-\infty}^{\infty} a_k p((i-k)T_b)$  (notation: pulse is centered at zero)
- ▶ Suppose  $y_i = y(iT_b)$  and  $p_i = p(iT_b)$
- $y_i = \sum_{k=-\infty}^{\infty} a_k p_{i-k}$
- We need  $y_i = p_0 a_i$  for all i. Let us say that  $p_0 = \sqrt{E}$
- ▶ What we have is  $y_i = \sqrt{E}a_i + \sum_{k \neq i} a_k p_{i-k}$

VBS AV312 22th September 2016

## Nyquist channel

If  $y_i = p_0 a_i$  for every i then we require that

$$p_n = \begin{cases} \sqrt{E}, \text{ for } n = 0, \\ 0, \text{ otherwise.} \end{cases}$$

- Note that  $p_n = p(nT_b)$
- Is it possible to get P(f)? Assuming that P(f) is bandlimited
- ▶ Consider the choice of  $p(t) = sinc\left(\frac{t}{T_k}\right)$
- ▶ With  $B_0 = \frac{1}{2T_L}$  we have the following optimal pulse shape  $p_{opt}(t)$





- The PAM system with  $P_{opt}(f)$  is called the Nyquist channel
- The bandwidth  $B_0$  is called the Nyquist bandwidth

VBS AV312

#### Raised cosine pulse shaping

- ▶ The problem with sinc pulses  $\frac{1}{t}$  decay
- ► How to increase the decay rate?

#### Raised cosine pulse shaping

- ▶ The problem with sinc pulses  $\frac{1}{t}$  decay
- ► How to increase the decay rate?
- Damp the sinc pulse using a window function
- ► Raised cosine pulse shape (actually damped sinc pulse shape)

$$p(t) = \sqrt{E} sinc(2B_0t) \frac{cos(2\pi\alpha B_0t)}{1 - (4\alpha B_0t)^2}$$



## Raised cosine pulse shaping

▶ The F.T of p(t) is

$$P(f) = \begin{cases} \frac{\sqrt{E}}{2B_0}, \text{ for } |f| \leq f_1, \\ \frac{\sqrt{E}}{4B_0} \left[ 1 + cos\left\{\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}\right\} \right], \text{ for } f_1 < |f| < 2B_0 - f_1, \\ 0, \text{ o/w}. \end{cases}$$

- $\alpha = 1 \frac{f_1}{B_0}$ .  $\alpha$  is the roll-off factor.
- ▶ Bandwidth of the pulse is  $2B_0 f_1$  or  $B_0(1 + \alpha)$



## Comparison

 $\blacktriangleright \text{ Let } r_b = \frac{1}{T_b}$ 

| Scheme        | Bandwidth                 | Power | Rate  | Timing Jitter  |
|---------------|---------------------------|-------|-------|----------------|
| Rectangular   | $r_b$                     | 95%   | $r_b$ | Robust         |
| Sinc          | $\frac{r_b}{2}$           | 100%  | $r_b$ | Weak           |
| Raised cosine | $\frac{r_b}{2}(1+\alpha)$ | 100%  | $r_b$ | less than Rect |

▶ Read about square root raised cosine pulse shaping

# Duobinary signalling

- ▶ Let the input bit sequence  $b_k$  be converted to a baseband PAM signal  $a_k \in \{-1,1\}$
- Let us think of the sequence  $a_k$  as being put into the following system



▶ What is the effective response of the system with  $a_k$  as input and  $c_k$  as output?

VBS AV312 22th September 2016

# Duobinary response

- ▶ The effective response is  $H_{nyquist}(f)(1 + e^{-j2\pi fT_b})$
- Or  $2H_{nyquist}(f)cos(\pi fT_b)e^{-j\pi fT_b}$
- ▶ Note that  $H_{nyquist}(f) = 1$  for  $|f| \leq \frac{1}{2T_b}$  and 0 otherwise



VBS AV312

#### Duobinary receiver

- $c_k = a_k + a_{k-1}$
- ▶ If  $\hat{a}_{k-1}$  is the estimate of  $a_{k-1}$ , then  $a_k = c_k \hat{a}_{k-1}$
- Prone to error propagation
- ▶ Read about the pre-coding method to avoid error propagation from "Communication Systems"
- $\triangleright$  There are other forms of combining  $a_k$  in order to obtain other responses
- ▶ Read about the partial response signalling from "Communication Systems"

22th September 2016 VRS AV/312

#### Zero-forcing equalization

- ▶ Recall the digital transmission system block diagram
- ▶ A transmit filter G(f), a channel H(f), and a receive filter Q(f)
- Let us assume that transmit filtering is not done
- We have P(f) = H(f)Q(f)
- We will consider a special form for Q(f) a linear transversal filter
- ▶ The impulse response of Q(f) is  $q(t) = \sum_{k=-N}^{N} w_k \delta(t kT_b)$
- ▶ Then  $p(t) = h(t) \star q(t)$

VBS AV312

# Zero-forcing equalization

- $ightharpoonup p(t) = h(t) \star q(t)$
- $Por p(t) = \sum_{k=-N}^{N} w_k h(t kT_b)$
- ▶ At the sampling instants  $p_n = p(nT_b) = \sum_{k=-N}^{N} w_k h((n-k)T_b)$
- $\blacktriangleright \text{ Let } h_n = h(nT_b)$
- ► Our requirement is

$$p_n = \begin{cases} \sqrt{E}, \text{ for } n = 0, \\ 0, \text{ otherwise.} \end{cases}$$

 $\triangleright$  Can we adjust  $w_k$  to satisfy these requirements?

VBS AV312 22th September 2016

# Zero-forcing equalization

Our requirement is

$$p_n = \begin{cases} \sqrt{E}, \text{ for } n = 0, \\ 0, \text{ otherwise.} \end{cases}$$

We can adjust w<sub>k</sub> so that

$$p_n = \sum_{k=-N}^{N} w_k h_{n-k} = \begin{cases} \sqrt{E}, & \text{for } n = 0, \\ 0, & \text{for } n = \pm 1, \pm 2, \dots, \pm N. \end{cases}$$

▶ The receiver determines  $h_{n-k}$  via pilot sequence assisted training

VBS AV312 22th September 2016