Disciplina: Cálculo II **Ano Letivo:** 2022/2023

Turma: TP4-6

Professor: Nelson Faustino

Gabinete: 11.2.14 e-mail: nfaust@ua.pt

Caderno 2: Séries de Funções & Estudo de Séries de Potências

Versão de 12 de março de 2023

Observações

- Estas notas de aula correspondem a um guião que o professor irá seguir fielmente ao longo das aulas. Deve portanto trazê-las sempre consigo em formato papel e/ou digital.
- No final pode encontrar uma lista de exercícios elaborados pelo professor. Estes servirão de complemento aos exercícios propostos nas folhas práticas da disciplina.

"A matemática não é para ser fácil, não é para ser rápida. A paciência e a persistência são qualidades muito preciosas para a matemática. Na verdade, para a vida. Mas na matemática, se você não tiver paciência, persistência, você cai".

Investigadora Carolina Araújo, Instituto de Matemática Pura e Aplicada (IMPA) 1,2

¹Citação retirada da página oficial do IMPA –

https://impa.br/noticias/na-matematica-se-nao-houver-persistencia-voce-cai-diz-carolina-araujo/

²Imagem criada pela Professora Isabel Brás. Pode ser encontrada em https://www.geogebra.org/m/zbqgpaea

Folha Prática 2

Os exercícios selecionados da **Folha Prática 2** correspondem a um conjunto mínimo (altamente) recomendado para estudo autónomo.

Tema	Exercícios
Convergência Pontual/Uniforme	1.
Séries de Potências/Taylor	2.(a), 2.(b), 2.(d)
	3.(b), 4., 5., 7.(a)
	2.(a), 2.(b), 2.(d) 3.(b), 4., 5., 7.(a) 8., 9., 11.

Leituras Recomendadas

Para além do texto de apoio (Almeida , 2018) e dos **slides do capítulo 2**, disponíveis na plataforma Moodle (cf. Brás (2023)), espera-se que o aluno procure estudar por alguns dos livros que se encontram na bibliografia recomendada da disciplina. Na tabela abaixo foram catalogadas algumas sugestões de leitura.

Bibliografia	Secção
(Apostol, 1983)	11. Sucessões e Séries de Funções (pp. 491–497)
	[Leitura fortemente recomendável.]
	11.8 Propriedades de Funções Representadas
	por Séries Reais de Potências (pp. 500–511)
	[Excluir, de momento, exemplos envolvendo resolução de equações diferenciais.]
(Stewart , 2013)	11.9 Representações de Funções como Séries de Potências (pp. 674–679) [Ler toda a secção. E procurar resolver exercícios no final.]
	11.10 Séries de Taylor e Maclaurin (pp. 679–692)
	[Idem. Excluir exemplos em que aparece o produto de séries de potências.]
	11.11 Aplicações dos Polinômios de Taylor (pp. 692–699)
	[Ibidem. Apenas atenção às notações (diferentes das adotadas em aula).]

Convergência Pontual vs. Convergência Uniforme

Definição 1 (Convergência Pontual e Uniforme). Seja $(f_n)_n$ uma sucessão de funções, definida para todo o n por $f_n : D \to \mathbb{R}$. Dizemos que (f_n) :

(a) Converge pontualmente^a para uma função $f: D \to \mathbb{R}$ se, para todo o $x \in D$, se tem

$$\lim_{n \to \infty} f_n(x) = f(x).$$

(b) Converge uniformemente para uma função $f:D\to\mathbb{R}$ se, para todo o $x\in D$, se a sucessão numérica $(M_n)_n$ de termo geral^b

$$M_n := \sup_{x \in D} |f_n(x) - f(x)|$$

converge para zero (0), i.e. $\lim_{n\to\infty} M_n = 0$.

Adenda 1 (Convergência Uniforme implica Convergência Pontual). Da Definição 1 e do Teorema do Enquadramento^a pode-se concluir que toda a sucessão de funções uniformemente convergente também é pontualmente convergente, em virtude das designaldade abaixo ser sempre satisfeita:

$$0 \le |f_n(x) - f(x)| \le \sup_{x \in D} |f_n(x) - f(x)|, \quad para \ todo \ o \ x \in D$$

^aEquivalentemente: f_n converge pontualmente para f se, e só se, $\lim_{n\to\infty} |f_n(x)-f(x)|=0$, para todo o $x\in D$.

^bPara todo o $x \in D$, o termo geral M_n da sucessão $(M_n)_{n \in \mathbb{N}}$ corresponde ao **menor dos majorantes** de $|f_n(x) - f(x)|$.

^aEste teorema diz-nos, em particular, que se para duas sucessões numéricas, $(a_n)_n$ resp. $(b_n)_n$, se tem $0 \le a_n \le b_n$ e $\lim_{n \to \infty} b_n = 0$, então $\lim_{n \to \infty} a_n = 0$.

Exemplo 1 (Convergência Pontual). Considere as seguintes sucessões de funções definidas por:

1.
$$\left(\frac{x}{n}\right)_{n\in\mathbb{N}}$$
 2. $(x^n)_{n\in\mathbb{N}}$ 3. $(x^n(1-x^n))_{n\in\mathbb{N}}$.

Em particular, verifica-se o seguinte para cada um dos casos:

- 1. Para o caso de $\left(\frac{x}{n}\right)_{n\in\mathbb{N}}$, tem-se que esta é a função nula $(0)_{n\in\mathbb{N}}$, quando x=0. No caso de $x\neq 0$, segue que $\lim_{n\to\infty}\frac{x}{n}=0$. Portanto, a sucessão de funções definida por $\left(\frac{x}{n}\right)_{n\in\mathbb{N}}$ converge pontualmente para a função nula (0) em \mathbb{R} ;
- 2. Note que para valores de $|x| \ge R$, com R > 1, podemos concluir que $(|x|^n)_{n \in \mathbb{N}}$ converge para infinito, dado que $\lim_{n \to \infty} R^n = +\infty$.

Por outro lado, para x=1, tem-se que esta é a sucessão constante $(1)_{n\in\mathbb{N}}$, e para x=-1 o limite da sucessão de termo geral $(-1)^n$ não existe. Portanto só faz sentido investigar a convergência pontual da sucessão de funções, definida por $(x^n)_{n\in\mathbb{N}}$ no intervalo]-1,1].

 $Em\ concreto,\ para\ todo\ o\ x\in]-1,1]\ esta\ converge\ pontualmente\ para\ a\ função\ definida\ por$

$$\lim_{n \to \infty} x^n = \begin{cases} 0 & , -1 < x < 1 \\ 1 & , x = 1 \end{cases}.$$

3. Usando o que foi dito anteriormente, podemos demonstrar, para todo o $x \in]-1,1]$, a igualdade de limites^a $\lim_{n\to\infty} x^n = \lim_{n\to\infty} x^{2n}$ (função obtida anteriormente) e, por conseguinte, que a sucessão $(x^n(1-x^n))_{n\in\mathbb{N}}$ converge pontualmente para a função nula no intervalo]-1,1], uma vez^b que

$$\lim_{n \to \infty} x^n (1 - x^n) = \lim_{n \to \infty} (x^n - x^{2n}) = \lim_{n \to \infty} x^n - \lim_{n \to \infty} x^{2n} = 0.$$

Adenda 2 (Interpretação Gráfica do Exemplo 1). Nos links abaixo – gentilmente partilhados pela Professora Isabel Brás – pode encontrar a representação gráfica para cada um dos casos abordados no Exemplo 1:

- 1. $Sucess\~ao\ de\ fun\~c\~oes\ \left(\frac{x}{n}\right)_{n\in\mathbb{N}}\ no\ intervalo\ [0,1]\ -$ https://www.geogebra.org/m/rkmhu7yp;
- 2. Sucessão de funções $(x^n)_{n\in\mathbb{N}}$ no intervalo [0,1] https://www.geogebra.org/m/trpqxstz;
- 3. Sucessão de funções $(x^n(1-x^n))_{n\in\mathbb{N}}$ no intervalo [0,1] https://www.geogebra.org/m/zbqgpaea

^aPara obtermos esta igualdade, envolvendo limites, usámos o facto de $(x^{2n})_{n\in\mathbb{N}}$ ser uma subsucessão de $(x^n)_{n\in\mathbb{N}}$. ^bPara o caso de $x \notin]-1,1]$, o limite $\lim_{n\to\infty}(x^n-x^{2n})$ corresponde a uma indeterminação do tipo ∞ − ∞.

Exemplo 2 (Convergência Uniforme). Investiguemos agora a convergência uniforme das sucessões de funções estudadas no Exemplo 1. A saber:

1.
$$\left(\frac{x}{n}\right)_{n\in\mathbb{N}}$$
 2. $(x^n)_{n\in\mathbb{N}}$ 3. $(x^n(1-x^n))_{n\in\mathbb{N}}$

Em particular, temos o seguinte:

- 1. No intervalo [-1,1], $tem\text{-}se^a \sup_{x \in [-1,1]} \left| \frac{x}{n} 0 \right| = \max_{x \in [-1,1]} \frac{|x|}{n} = \frac{1}{n}$. Para este caso, a convergência uniforme no intervalo [-1,1], é uma consequência imediata do limite $\lim_{n \to \infty} \frac{1}{n} = 0$.
- 2. Para a função $f:]-1,1] \to \mathbb{R}$, definida por $f(x) = \begin{cases} 0 & ,-1 < x < 1 \\ 1 & ,x = 1 \end{cases}$, tem-se a igualdade

$$\sup_{x \in]-1,1]} |x^n - f(x)| = 1,$$

pelo que não se trata de uma função uniformemente convergente em]-1,1].

- 3. Para investigar neste caso a convergência uniforme, precisaria de investigar os máximos e mínimos da função $f_n(x) = x^n(1-x^n)$. A partir do seu estudo, iria concluir o seguinte:
 - i) $f'_n(x) = nx^{n-1} 2nx^{2n-1}$ (= $nx^{n-1}(1-2x^n)$) anula-se quando x = 0 ou^b $x^n = \frac{1}{2}$. Logo estes são candidatos aos valores máximo da função.
 - ii) Do estudo anterior, segue que

$$\sup_{x \in]-1,1]} |x^n (1 - x^n)| = \sup_{x^n = \frac{1}{2}} |x^n (1 - x^n)| = \frac{1}{4}$$

pelo que também pode concluir que $(x^n(1-x^n))_{n\in\mathbb{N}}$ também não define uma sucessão de funções uniformemente convergente.

Contra-Exemplo 1 (Falha de Convergência Uniforme). A sucessão de funções, definida por $\left(\frac{x}{n}\right)_{n\in\mathbb{N}}$, não converge para a função nula na reta real, uma vez que

$$\sup_{x \in \mathbb{R}} \frac{|x|^n}{n} = +\infty$$

 \acute{e} uma consequência de \mathbb{R} ser um conjunto ilimitado.

O mesmo tipo de raciocínio se aplicaria para justificar a igualdade $\sup_{x \in \mathbb{R} \setminus [-1,1]} \frac{|x|^n}{n} = +\infty$ e, por conseguinte que esta sucessão também não converge uniformemente para a função nula em $\mathbb{R} \setminus [-1,1]$.

a Note que, para cada $n \in \mathbb{N}$, a função definida por $\frac{|x|^n}{n}$ é contínua no intervalo [-1,1] – que é fechado e limitado. Logo o facto do supremo coincidir com o máximo é uma consequência direta do Teorema de Weierstraß para funções contínuas. $bx = \frac{1}{\sqrt[n]{2}}$ é sempre solução da equação. Acresce que no caso em que n é um número par, esta equação tem duas soluções: $x = \pm \frac{1}{\sqrt[n]{2}}$.

Adenda 3 (Convergência Uniforme em Intervalos Limitados). Na prática, a sucessão de funções definida por $\left(\frac{x}{n}\right)_{n\in\mathbb{N}}$ – vide Exemplo 2 & Contra-Exemplo 1 – vai sempre convergir uniformemente para a função nula em intervalos limitados da forma [a,b[,a,b]] ou [a,b].

Este tipo de constatação pode ser facilmente generalizado para sucessões de funções, $(f_n)_n$, representadas como produtos da forma $f_n(x) = a_n g_n(x)$, tal que:

- i) para todo o n, o contradomínio de $g_n: D \to \mathbb{R}$ é um conjunto limitado;
- ii) $\lim_{n\to\infty} a_n = 0.$

Teorema 1 (Implicações da Convergência Uniforme). Seja $(f_n)_n$ uma sucessão de funções contínuas em [a,b]. Se $(f_n)_n$ converge uniformemente para uma função f em [a,b], então as seguintes propriedades são válidas:

(a) f é contínua em [a,b] e, para todo o $c \in [a,b]$, vale a sequência de igualdades

$$\lim_{x \to c} f(x) = f(c) = \lim_{n \to \infty} f_n(c).$$

(b) f é integrável em [a,b] e

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx.$$

- (c) Adicionalmente, se a sucessão das derivadas de f_n , $(f'_n)_n$, é também a uma sucessão de funções contínuas em [a,b] que converge uniformemente em [a,b], então:
 - i) f é diferenciável em [a, b];

ii) $f'(x) = \lim_{n \to \infty} f'_n(x)$, para todo o $x \in [a, b]$.

Adenda 4 (Falha da Convergência Uniforme). Decorre naturalmente do Teorema 1 o seguinte

- (a) $(f_n)_n$ não converge uniformemente para uma função contínua em [a,b], desde que pelo menos uma das condições abaixo se verifique:
 - i) Pelo menos um dos limites, $\lim_{n\to\infty} f_n(x)$ resp. $\lim_{x\to c} f_n(x)$ não existe ou é infinito;
 - ii) Os limites iterados, $\lim_{x\to c} \left(\lim_{n\to\infty} f_n(x)\right)$ resp. $\lim_{n\to\infty} \left(\lim_{x\to c} f_n(x)\right)$, $s\tilde{a}o$ diferentes.
- (b) $(f_n)_n$ não converge uniformemente para uma função integrável em [a,b], desde que pelo menos uma das condições abaixo se verifique:
 - i) Pelo menos um dos limites $\lim_{n\to\infty} f_n(x)$ resp. $\lim_{n\to\infty} \int_a^b f_n(x) dx$ não existe ou é infinito;
 - ii) $\int_a^b \left(\lim_{n\to\infty} f_n(x)\right) dx$ não existe ou é infinito;

iii)
$$\int_{a}^{b} \left(\lim_{n \to \infty} f_n(x) \right) dx \neq \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$
.

- (c) $(f_n)_n$ não converge uniformemente para uma função diferenciável em [a,b], desde que pelo menos uma das condições abaixo se verifique:
 - i) $f'_n(c)$ não existe ou é infinito, para algum $c \in [a, b]$;
 - ii) $\lim_{n\to\infty} f'_n(x)$ não existe ou é infinito;
 - iii) $\left(\lim_{n\to\infty} f_n(x)\right)' \neq \lim_{n\to\infty} f'_n(x)$, para algum $x \in [a,b]$.

Exemplo 3 (Provar que uma sucessão não converge, via cálculo de limites iterados). No Exemplo 1 verificou que a sucessão de funções, definida por $(x^n)_{n\in\mathbb{N}}$, converge pontualmente no intervalo]-1,1]para a função

 $f(x) = \begin{cases} 0 & , -1 < x < 1 \\ 1 & , x = 1 \end{cases}.$

Em particular, $\lim_{x\to 1^-} f(x) = 0$ mas $\lim_{n\to\infty} (\lim_{x\to 1^-} x^n) = 1$, provando assim – via aplicação direta do item (a) da **Adenda 4** que $(x^n)_{n\in\mathbb{N}}$ não converge uniformemente no intervalo]-1,1].

Contra-Exemplo 2 (Sucessão Derivada que não Converge Uniformemente). Note que a sucessão de $funções, definida em \mathbb{R} por f_n(x) = \frac{\sin(nx)}{n}$, converge uniformemente para a função nula^a. De facto, a designaldade $|\sin(nx)| \le 1$ em $\mathbb R$ assim como a sucessão $\left(\frac{1}{n}\right)_{n \in \mathbb N}$ convergir para zero (0), permite-nos concluir que

 $\lim_{n \to \infty} \sup_{x \in \mathbb{R}} \left| \frac{\sin(nx)}{n} - 0 \right| = \lim_{n \to \infty} \sup_{x \in \mathbb{R}} \frac{|\sin(nx)|}{n} = \lim_{n \to \infty} \frac{1}{n} = 0.$

Todavia a sucessão de funções $(f'_n)_{n\in\mathbb{N}}$, definida por $f'_n(x) = \cos(nx)$ não converge pontualmente (logo $tamb\'em n\~ao converge uniformemente), dado a sucess\~ao^b (cos(n\pi))_{n\in\mathbb{N}}, obtida a partir da substituiç\~ao$ $x = \pi$, não admitir limite^c.

^aDe acordo com o que foi escrito na **Adenda 3**, temos uma sucessão de funções da forma $f_n(x) = a_n g_n(x)$, onde $g_n(x) = \sin(nx)$ é limitada e $a_n = \frac{1}{n}$ satisfaz a condição $\lim_{n \to \infty} a_n = 0$. ^bAo mostrarmos que as subsucessões dos termos pares e ímpares de $(\cos(n\pi))_{n \in \mathbb{N}}$ convergem para valores distintos,

demonstramos também que $f'_n(x)$ não é contínua em $x = \pi$.

^cVide item (a) do Exercício (1).

Convergência Uniforme de Séries de Funções

Teorema 2 (Convergência Uniforme envolvendo Série de Funções). $Seja \sum_{n=0}^{\infty} f_n$ uma série de funções contínuas em [a,b] que converge uniformemente para uma função $S_n \in \lim_{n\to\infty} S_n$ em [a,b], então as seguintes propriedades são válidas:

(a) $\sum_{n=0}^{\infty} f_n$ é uma série de funções contínuas em [a,b] e, para todo o $c \in [a,b]$, vale a sequência de igualdades

$$\lim_{x \to c} \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \left(\lim_{x \to c} f_n(x) \right).$$

(b) $\sum_{n=0}^{\infty} f_n$ é uma série de funções integráveis em [a,b] e

$$\int_{a}^{b} \left(\sum_{n=0}^{\infty} f_n(x) \right) dx = \sum_{n=0}^{\infty} \left(\int_{a}^{b} f_n(x) dx \right).$$

- (c) Adicionalmente, se a sucessão das derivadas de f_n , $(f'_n)_n$, é também a uma sucessão de funções contínuas em [a,b] e $\sum_{n=0}^{\infty} f_n$ converge uniformemente em [a,b], então:
 - i) $\sum_{n=0}^{\infty} f_n$ é diferenciável em [a, b];

ii)
$$\left(\sum_{n=0}^{\infty} f_n(x)\right)' = \sum_{n=0}^{\infty} f'_n(x)$$
, para todo o $x \in [a, b]$.

 $[^]a$ A função S é obtida a partir do limite da sucessão de somas parciais, $(S_n)_{n\in\mathbb{N}_0}$, definida pontualmente, para cada $x\in[a,b]$, por $S_n(x):=\sum_{k=0}^n f_k(x)$.

Adenda 5 (Falha da Convergência Uniforme). À semelhança do listado em Adenda 4, para sucessões de funções, podemos também obter as seguintes conclusões a partir do Teorema 2 para séries de funções. A saber:

- (a) $\sum_{n=0}^{\infty} f_n$ <u>não converge uniformemente</u> para uma **função contínua** em [a,b], desde que pelo menos uma das condições abaixo se verifique:
 - i) $\sum_{n=0}^{\infty} f_n(x)$ diverge para algum $x \in [a, b]$;
 - ii) $\lim_{x\to c} f_n(x)$ não existe ou é infinito;
 - iii) $\lim_{x \to c} \sum_{n=0}^{\infty} f_n(x) \neq \sum_{n=0}^{\infty} \left(\lim_{x \to c} f_n(x) \right).$
- (b) $\sum_{n=0}^{\infty} f_n$ <u>não converge uniformemente</u> para uma **função integrável** em [a,b], desde que pelo menos uma das condições abaixo se verifique:
 - i) $\sum_{n=0}^{\infty} f_n(x)$ diverge para algum $x \in [a, b]$;
 - ii) $\int_a^b f_n(x)dx$ não existe ou é infinito;
 - *iii*) $\int_{a}^{b} \left(\sum_{n=0}^{\infty} f_n(x) \right) dx \neq \sum_{n=0}^{\infty} \left(\int_{a}^{b} f_n(x) dx \right).$
- (c) $\sum_{n=0}^{\infty} f_n \underline{n\tilde{a}o \ converge \ uniformemente} \ para \ uma \ \mathbf{função} \ \mathbf{diferenciável} \ em \ [a,b], \ desde \ que \ pelo \ menos \ uma \ das \ condições \ abaixo \ se \ verifique:$
 - i) $\sum_{n=0}^{\infty} f_n(x)$ diverge para algum $x \in [a, b]$;
 - ii) $f'_n(c)$ não existe ou é infinito, para algum $c \in [a, b]$;
 - iii) $\left(\sum_{n=0}^{\infty} f_n(x)\right)' = \sum_{n=0}^{\infty} f'_n(x)$, para algum $x \in [a, b]$.

Teorema 3 (Critério de Weierstraß). Seja $(f_n)_n$ uma sucessão de funções, $f_n: D \to \mathbb{R}$, $e \sum_{n=p}^{\infty} a_n$ $(p \in \mathbb{N}_0)$ uma série numérica convergente de <u>termos não negativos</u> tal que

$$|f_n(x)| \le a_n$$
, para todos os $x \in D$, $n \ge p$ inteiro.

Então, para todo o $x \in D$, a série $\sum_{n=p}^{\infty} f_n(x)$ é uniformemente convergente^a.

^aEquivalente a dizer que a série de funções, $\sum_{n=p}^{\infty} f_n$, é convergente em D.

Diagrama 1 (Implementação Prática do Critério de Weierstraß). O diagrama abaixo ilustra o procedimento padrão que pode ser adotado para aplicar o Critério de Weierstraß, como forma de assegurar que a série de funções, definida para todo o $x \in D$ por $\sum_{n=0}^{\infty} f_n(x)$, converge uniformemente em D.

Para interpretação correta deste, deverá assumir que todas as desigualdades ilustradas são verdadeiras para todo o $x \in D$ e $n \ge p$ inteiro.

Exemplo 4 (Aplicação do Critério de Weierstraß). Note que a desigualdade

$$|f_n(x)| \le \frac{2}{n^3}$$
, para todos os $x \in \mathbb{R}$, $n \in \mathbb{N}$,

envolvendo a sucessão de funções, definida por $f_n(x) = \frac{1 - \cos(nx)}{n^3}$, é uma consequência da igualdade $1 - \cos(nx) = 2\sin^2\left(\frac{nx}{2}\right)$ e do contradomínio de $\sin^2\left(\frac{nx}{2}\right)$ ser o conjunto [0,1]. Segue então pelo **Teorema 3** que a convergência uniforme da série de funções

$$\sum_{n=1}^{\infty} \frac{1 - \cos(nx)}{n^3}$$

é imediata pela convergência da série numérica de termos positivos $\sum_{n=1}^{\infty} \frac{2}{n^3}$.

Adicionalmente, o Teorema 2 garante-nos ainda o seguinte:

(a) De $\cos(n\pi) = (-1)^n$, para $todo^a$ o $n \in \mathbb{N}$, segue^b que

$$\lim_{x \to \pi} \sum_{n=1}^{\infty} \frac{1 - \cos(nx)}{n^3} = \sum_{n=1}^{\infty} \left(\lim_{x \to \pi} \frac{1 - \cos(nx)}{n^3} \right) = \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n^3} = \sum_{n=1}^{\infty} \frac{2}{(2n-1)^3}.$$

(b) Decorre ainda da igualdade $\cos(n\pi) = (-1)^n$ que $\sin(-n\pi) = \sin(n\pi) = 0$ (justifique)^c. Segue então que

$$\int_{-\pi}^{\pi} \left(\sum_{n=1}^{\infty} \frac{1 - \cos(nx)}{n^3} \right) dx = \sum_{n=1}^{\infty} \int_{-\pi}^{\pi} \left(\frac{1 - \cos(nx)}{n^3} dx \right) = \sum_{n=1}^{\infty} \frac{2\pi}{n^3}$$

(c) $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2} = \sum_{n=1}^{\infty} \left(\frac{1-\cos(nx)}{n^3}\right)'$ também é uma série uniformemente convergente, facto esse que pode ser demonstrado pelo **Teorema 3**.

 $^{^{}a}$ Vide item (a) do Exercício $\widehat{1}$.

^bObserve que $1-(-1)^n$ é igual a 0, quando n é par, e 2, quando n é impar. A partir deste argumento podemos reescrever a série de potências, via a substituição $n \to 2n-1$, eliminando assim os termos nulos.

^cSugestão: Use a *Igualdade Fundamental a Trigonometria*.

Contra-Exemplo 3 (Derivada de Série Uniformemente Convergente). Como teve possibilidade de averiguar no Exemplo 4, a série de funções

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$$

 \acute{e} uniformemente convergente em \mathbb{R} . No entanto

$$\sum_{n=1}^{\infty} \left(\frac{\sin(nx)}{n^2} \right)' = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n}$$

já não é uniformemente convergente em \mathbb{R} , dado esta ser <u>divergente</u> em pontos da forma $x = 2k\pi$ $(k \in \mathbb{Z})$.

No **Exemplo 4** aplicámos mimeticamente a estratégia ilustrada no **Diagrama 1** para demonstrar a convergência uniforme da série de funções, enquanto que no **Contra-Exemplo 3** mostrámos que a convergência uniforme de $\sum_n f_n$ não implica necessariamente a convergência uniforme de envolvendo as derivadas de f_n , $\sum_n f'_n$.

O mesmo tipo de argumento adotado no **Contra-Exemplo 3**, poderá ser usado para justificar a razão pela qual não é possível estabelecer a igualdade

$$S'(x) = \sum_{n=1}^{\infty} \left(\frac{\cos(nx)}{n\sqrt{n+1}} \right)'$$

para a série de funções que aparece no início da Folha 2.

Mais adiante, quando tiver a oportunidade de resolver o **Exercício** (2), irá constatar que antes de aplicar o critério de Weierstraß³, procure <u>averiguar primeiro</u> se a soma da série de potências converge pontualmente para uma função contínua.

Convergência Uniforme de Séries de Potências

Voltemos então a focar a nossa atenção no estudo de séries de potências, já abordadas anteriormente. O próximo teorema é uma consequência imediata do *Critério de Weierstraß*, enunciado no **Teorema 3**.

Teorema 4 (Convergência Uniforme de Séries de Potências). $Seja\sum_{n=0}^{\infty}a_n(x-c)^n$ uma série de potências de $raio^a$ $R\neq 0$, e convergente em $I\subset \mathbb{R}$. Então a série de potências converge uniformemente em qualquer subintervalo fechado e limitado [a,b] de I.

^aA condição $R \neq 0$ exclui intervalos de convergência da forma $I = \{c\}$.

³A soma da série do **Exercício** (2) não é contínua. Para mais detalhes, reveja a **Adenda 5**.

Adenda 6 (Prova da Convergência Uniforme). Na prática, a convergência uniforme da série de potências $\sum_{n=0}^{\infty} a_n(x-c)^n$ em <u>subintervalos da forma</u> $[c-r,c+r] \subseteq]c-R,c+R[$ (0 < r < R), pode ser obtida combinando o Critério de Weierstraß com o Critério de Cauchy/D'Alembert usados anteriormente para estudar o intervalo de convergência de uma série de potências.

De facto, se escolhermos 0 < r < R tal que $|x - c| \le r$, a demonstração da convergência uniforme, via o **Teorema 3**, pode ser realizada da seguinte forma, seguindo mutatis mutandis o esquema de demonstração ilustrado no **Diagrama 1**:

1. Primeiro, começamos por mostrar a desigualdade abaixo:

$$|a_n(x-c)^n| = |a_n||x-c|^n \le |a_n|r^n, \quad \forall |x-c| \le r, \ n \in \mathbb{N}_0.$$

2. De seguida usa o critério de Cauchy ou o critério de D'Alembert para concluir que a convergência absoluta^b da série numérica $\sum_{n=0}^{\infty} |a_n| r^n$:

Cauchy:
$$\lim_{n \to \infty} \sqrt[n]{|a_n| r^n} = \frac{1}{R} \times r < 1;$$
 D'Alembert: $\lim_{n \to \infty} \frac{|a_{n+1}| r^{n+1}}{|a_n| r^n} = \frac{1}{R} \times r < 1.$

3. Finalmente, verifica que a série de potências está nas condições do Critério de Weierstraß, no intervalo fechado [c-r,c+r].

Contra-Exemplo 4 (Cuidado com Generalizações). A demonstração do Teorema 4 não nos garante, em momento algum, a convergência em intervalos fechados da forma [c - R, c + R].

Para verificar tal facto, considere o exemplo do desenvolvimento em série de potência de $\frac{1}{1-x}$, considerado em (Almeida, 2018, Exemplo 2.7).

Teorema 5 (Teorema de Abel). Seja $\sum_{n=0}^{\infty} a_n(x-c)^n$ uma série de potências de raio $0 < R < \infty$.

Então as seguintes implicações são verdadeiras:

- (a) Se a série de potências converge em x = c + R, então esta também converge uniformemente em [c, c + R].
- (b) Se a série de potências converge em x=c-R, então esta também converge uniformemente em [c-R,c].

 $^{^{}a}$ Vide também (Brás , 2023, slide 27/54).

^bEste conceito deve apenas ser mencionado para justificar convergência de séries numéricas, assim como estudar intervalos de convergência de séries de potências.

^aA condição $0 < R < \infty$ exclui os intervalos de convergência $I = \{c\}$ e $I = \mathbb{R}$.

Teorema 6 (Convergência Uniforme envolvendo Série de Potências). $Seja\sum_{n=0}^{\infty}a_n(x-c)^n$ uma série de

$$potências de \ raio \ R \neq 0 \ e \ I = \begin{cases} \mathbb{R} &, R = \infty \\]c - R, c + R[&, 0 < R < \infty. \end{cases}$$

Se $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$, para todo o $x \in I$, então as seguintes implicações são verdadeiras:

- (a) f é uma função contínua em I;
- (b) f é uma função diferenciável em I e

$$f'(x) = \sum_{n=0}^{\infty} na_n(x-c)^{n-1}$$
, para todo o $x \in I$.

(c) A função F, definida por $F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^{n+1}$, é uma <u>primitiva de f em I</u> que satisfaz as seguintes propriedades^a:

i)
$$F(x) = \int_{c}^{x} f(t)dt$$
; ii) $\int_{a}^{b} f(x)dx = F(b) - F(a)$.

Séries de Taylor: Exemplos e Aplicações

Os exemplos e aplicações, que iremos tratar daqui em diante, têm como ponto de partida o seguinte resultado.

Teorema 7 (Série de Potências vs. Série de Taylor). $Seja \sum_{n=0}^{\infty} a_n(x-c)^n$ o desenvolvimento em série de potências de uma função f num intervalo $I \subset \mathbb{R}$, com $c \in I$. Então f possui derivadas finitas de qualquer ordem no ponto c e

$$a_n = \frac{f^{(n)}(c)}{n!}$$
, para todo o $n \in \mathbb{N}_0$.

Adenda 7 (Série de Potências vs. Série de Taylor). O Teorema 7 permite-nos concluir que

$$T_c^n(f(x)) = \sum_{k=0}^n a_k (x-c)^k$$

é o polinómio de Taylor de ordem n de f em torno de $c \in I$ e que as condições, envolvendo a função $R_c^n(f(x)) = f(x) - T_c^n(f(x))$, são <u>sempre satisfeitas</u>:

13

- i) Unicidade do Polinómio de Taylor: $\lim_{x\to c} \frac{R_c^n(f(x))}{(x-c)^n} = 0;$
- ii) Convergência da Série de Taylor: $\lim_{n\to\infty} R_c^n(f(x)) = 0.$

^aAs propriedades i) e ii) são automáticas por aplicação do **Teorema Fundamental do Cálculo**.

Exemplo 5 (Funções Exponenciais vs. Hiperbólicas). A partir da série de potências de

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

é possível obter a série de potências de e^{-x} , uma vez que a transformação gráfica $x \mapsto -x$, por se tratar de uma composição de funções contínuas. Neste caso, tem-se

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n.$$

Adicionalmente, a série de potências da função hiperbólica $\sinh(x) = \frac{e^x - e^{-x}}{2}$, pode ser obtida a partir da subtração, termo a termo, dos coeficientes das séries de potências de $\frac{e^x}{2}$ e $\frac{e^{-x}}{2}$.

Neste caso, tem-se

$$\frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{1 - (-1)^n}{2n!} x^n = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \quad [ap\'{o}s \ simplifica\~{c}\~{o}es]^a$$

^aObtida com base nas igualdades $1-(-1)^n=2$ (n=2k+1- impar) e $1-(-1)^n=0$ (n=2k- zero ou par).

Adenda 8 (Série de Potências de Funções Hiperbólicas). No caso da função $\cosh(x) = \frac{e^x + e^{-x}}{2}$ – que corresponde a um dos Exercícios da Folha 2 [que se encontra no Moodle], pode obter o seu desenvolvimento em série de potência por dois modos distintos:

- (a) Somando, termo a termo, os coeficientes das séries de potências de $\frac{e^x}{2}$ e $\frac{e^{-x}}{2}$ análogo ao que foi feito no **Exemplo 5**;
- (b) Derivando^a, termo a termo, a série de potências de sinh(x) obtida no **Exemplo 5** aplicação direta do item (b) do **Teorema 6**.

Exemplo 6 (Cálculo de Limites). Suponha que pretende calcular o valor exato do limite $\lim_{x\to 0}\frac{2xe^{-\frac{x^2}{2}}-2x+x^3}{x^5}. \ Para \ tal, \ comece \ por \ considerar \ o \ desenvolvimento \ em \ série \ de \ potências \ de \ e^{-\frac{x^2}{2}}, \ obtido \ a \ partir \ do \ desenvolvimento \ em \ série \ de \ potências \ de \ e^x, \ via \ a \ substituição \ x \to -\frac{x^2}{2}, \ obtemos$

$$2xe^{-\frac{x^2}{2}} = 2x\sum_{n=0}^{\infty} \frac{\left(-\frac{x^2}{2}\right)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!2^{n-1}} x^{2n+1}.$$

Em particular, que $T_0^5(2xe^{-\frac{x^2}{2}}) = 2x - x^3 + \frac{1}{4}x^5$ corresponde ao polinómio Maclaurin de ordem 5 da função $2xe^{-\frac{x^2}{2}}$. Logo, pelo observado em **Adenda 7** segue^a que

$$\lim_{x \to 0} \frac{2xe^{-\frac{x^2}{2}} - 2x + x^3}{x^5} = \lim_{x \to 0} \frac{T_0^5(2xe^{-\frac{x^2}{2}}) + R_0^5(2xe^{-\frac{x^2}{2}}) - 2x + x^3}{x^5} = \lim_{x \to 0} \frac{\frac{1}{4}x^5}{x^5} + \lim_{x \to 0} \frac{R_0^5(2xe^{-\frac{x^2}{2}})}{x^5} = \frac{1}{4}.$$

^aBaseado na igualdade $(\sinh(x))' = \cosh(x)$.

aA existência de $T_0^5(2xe^{-\frac{x^2}{2}})$ – garantida pelo desenvolvimento em série de potência – conduz-nos à igualdade $\lim_{x\to 0}\frac{R_0^5(2xe^{-\frac{x^2}{2}})}{x^5}=0.$

Adenda 9 (Exemplo 6 vs. Regra de L'Hôpital). Pode verificar-se que $\sum_{n=2}^{\infty} \frac{(-1)^n}{n!2^{n-1}} x^{2n+1}$ corresponde ao

desenvolvimento em série de Maclaurin da função f, definida por $f(x) = 2xe^{-\frac{x^2}{2}} - 2x + x^3$. Para esta função, o **Teorema 7** garante-nos que

(a)
$$f^{(n)}(0) = 0$$
, para $n = 0, 1, 2, 3, 4$

(b)
$$Para^a \ n = 5$$
, $tem\text{-se } \frac{f^{(5)}(0)}{5!} = \frac{(-1)^2}{2!2^{2-1}} = \frac{1}{4}$.

pelo que o valor do limite obtido no **Exemplo 6** coincide com o valor obtido via aplicação sucessiva da regra de $L'H\hat{o}pital^b$.

^aPara encontrarmos o coeficiente $a_5 = \frac{f^{(5)}(0)}{5!}$, precisámos de impor a condição 2n + 1 = 5 nas potências x^{2n+1} .

^bVide Caderno 1.

O procedimento adotado no **Exemplo 6** corresponde pode ser resumido no próximo corolário. Este resultado advém essencialmente da combinação do **Teorema 1** e do **Teorema 2**.

Corolário 1 (Série de Potências vs. Cálculo de Limites). $Seja \sum_{n=0}^{\infty} a_n(x-c)^n$ o desenvolvimento em série de potências de uma função f num intervalo $I \subset \mathbb{R}$, com $c \in I$. Então,

$$\lim_{x \to c} \frac{f(x) - T_c^n(f(x))}{(x - c)^{n+1}} = a_{n+1}.$$

O procedimento que iremos adotar no **Exemplo 7** & **Exemplo 8** encontra-se esquematizado no próximo diagrama. Este pode ser agora utilizado na resolução de vários exercícios (sem esquecer de justificar os passos, obviamente).

Diagrama 2 (Cálculo de Derivadas & Limites Fundamentais). O diagrama abaixo ilustra o procedimento padrão que pode ser adotado no cálculo de derivadas e limites, a partir do desenvolvimento em série de potências.

Exemplo 7 (Resolução de Exercício do Caderno 1). Pode agora usar o que aprendeu na resolução do Exercício 10 (b) ii) do Caderno 1. Em particular, tendo com base no desenvolvimento em série de potências, obtido em Exemplo 5, conclui, para valores^a de $x \neq 0$, que

$$\frac{\sinh(x) - x}{x^3} = \sum_{n=1}^{\infty} \frac{x^{2n+1}}{x^3(2n+1)!} = \sum_{n=1}^{\infty} \frac{x^{2n-2}}{(2n+1)!}.$$

Adicionalmente, a conclusão de que

$$\lim_{x \to 0} \frac{\sinh(x) - x}{x^3} = \frac{1}{6}$$

é imediata pela <u>continuidade e convergência uniforme</u> da série de potências $\sum_{n=1}^{\infty} \frac{x^{2n-2}}{(2n+1)!}$ em \mathbb{R} e pela igualdade

$$\lim_{x \to 0} \frac{x^{2n-2}}{(2n+1)!} = \begin{cases} \frac{1}{6} & , n = 1\\ 0 & , n > 1. \end{cases}$$

a Este raciocínio é válido para cálculo de limites mas não para a continuidade, uma vez que x=0 não pertence ao domínio de $\frac{\sinh(x)-x}{x^3}$.

Exemplo 8 (Abordagens alternativas ao Exemplo 6). Para o cálculo do valor exato do limite, abordado anteriormente no **Exemplo 6**, poderia comecar por observar que

$$\lim_{x \to 0} \frac{2xe^{-\frac{x^2}{2}} - 2x + x^3}{x^5} = \lim_{x \to 0} \frac{2e^{-\frac{x^2}{2}} - 2 + x^2}{x^4}.$$

De seguida, poderia utilizar ou o **Teorema 7** ou o **Teorema 2**:

- (a) No caso da sua escolha ser o Teorema 7, teria que começar pelo polinómio de Maclaurin de ordem 4 de $2e^{-x^2}$, dado^a por $T_0^4(2e^{-x^2}) = 2 - x^2 + \frac{x^4}{4}$;
- (b) No caso da sua escolha ser o Teorema 2, precisaria de considerar o desenvolvimento em série de Maclaurin de $2e^{-x^2} - 2 + x^2$, dada por $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!2^{n-1}} x^{2n}$.

A conclusão de que o valor do limite vale $\frac{1}{4}$ poderia ser obtido da seguinte forma:

(a) No primeiro caso, usava a igualdade $2e^{-x^2} = T_0^4(2e^{-x^2}) + R_0^4(2e^{-x^2})$ e a condição limite $\lim_{x \to 0} \frac{R_0^4(2e^{-x^2})}{x^4} = 0 \text{ para concluir que}$

$$\lim_{x \to 0} \frac{2e^{-\frac{x^2}{2}} - 2 + x^2}{x^4} = \lim_{x \to 0} \frac{\frac{1}{4}x^4 + R_0^4(2e^{-x^2})}{x^4} = \frac{1}{4}.$$

(b) No segundo caso, precisaria de considerar, para valores de $x \neq 0$, a multiplicação de $\frac{1}{x^4} = x^{-4}$ pela série de Maclaurin de $2e^{-\frac{x^2}{2}}$:

$$\frac{1}{x^4} \sum_{n=2}^{\infty} \frac{(-1)^n}{n!2^{n-1}} x^{2n} = \sum_{n=2}^{\infty} \frac{(-1)^n}{n!2^{n-1}} x^{2n-4}$$

Ao verificar que a série de potências obtida corresponde a uma função contínua b e uniformemente c convergente em \mathbb{R} , concluiria que

$$\lim_{x \to 0} \frac{2e^{-\frac{x^2}{2}} - 2 + x^2}{x^4} = \lim_{x \to 0} \sum_{n=2}^{\infty} \frac{(-1)^n}{n!2^{n-1}} x^{2n-4} = \sum_{n=2}^{\infty} \left(\lim_{x \to 0} \frac{(-1)^n}{n!2^{n-1}} x^{2n-4} \right) = \frac{1}{4}$$

com base na igualdade

$$\lim_{x \to 0} \frac{(-1)^n}{n! 2^{n-1}} x^{2n-4} = \begin{cases} \frac{1}{4} & , n = 2\\ 0 & , n > 2, \end{cases}$$

confirmando assim o resultado formulado no Corolário 1.

^aObserve que $2e^{-x^2}-2+x^2=\frac{1}{4}x^4+R_0^4(2e^{-\frac{x^2}{2}})$. ^bPara valores de $n\geq 2$, as potências x^{2n-4} são sempre contínuas e, por conseguinte, a série dada corresponde a uma série de funções contínuas

^cNote que a série de potências de $2e^{-\frac{x^2}{2}}$ tem raio de convergência $+\infty$.

Exemplo 9 (Série Geométrica). Considere-se a função f definida por $f(x) = \frac{1}{x}$. Esta função f contínua e diferenciável em $\mathbb{R} \setminus \{0\}$. Em particular, para f f possível obter o desenvolvimento em série de potências em torno de f com base na sequência de igualdades

$$\frac{1}{x} = \frac{1}{c + (x - c)} = \frac{\frac{1}{c}}{1 - \frac{c - x}{c}}.$$

Impondo agora a condição^a $\left| \frac{c-x}{c} \right| < 1$, conclui-se que

$$\frac{1}{1 - \frac{c - x}{c}} = \sum_{n=0}^{\infty} \left(\frac{c - x}{c}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{c^n} (x - c)^n$$

e, por conseguinte, que $\frac{1}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{c^{n-1}} (x-c)^n$, para $todo^b$ o $x \in]c - |c|, c + |c|[$.

Adicionalmente, o **Teorema 7** permite-nos concluir que $\left[\frac{1}{x}\right]_{x=c}^{(n)} = \frac{n!(-1)^n}{c^{n-1}}$, igualdade essa que pode ser confirmada com base no método de indução matemática.

Exemplo 10 (Derivada da Série Geométrica). Note que, para todo o $x \neq 0$, tem-se que $\frac{1}{x^2}$ é a derivada da função $-\frac{1}{x}$.

Tomando como referência o desenvolvimento em série de potências, em torno de c, obtido no **Exem**plo 9, podemos concluir via o item (b) do **Teorema 6** que

$$\sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{c^{n+1}} (x-c)^{n-1} = \sum_{n=0}^{\infty} \frac{(n+1)(-1)^n}{c^{n+2}} (x-c)^n$$

é o desenvolvimento^a em série de potências de $\frac{1}{x^2}$ no intervalo]c - |c|, c + |c|[.

^aEsta condição permite-nos obter obter um desenvolvimento em série com base na série geométrica

 $[^]b$ Intervalo de convergência obtido como conjunto solução da inequação $\frac{|x-c|}{|c|}<1.$

^aNa igualdade, envolvendo as duas séries de potências, foi realizada a substituição $n \to n+1$, de modo expressar a série de potências em termos de $(x-c)^n$.

Exemplo 11 (Série de Potências da Função Logaritmo). $Se\ considerasse\ as\ substituição\ x \to -x\ resp.$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad (|x| < 1)$$

obtinha facilmente o desenvolvimento em série de potência para a derivada de $\ln(1+x)$.

Adicionalmente, o item (c) do **Teorema 6** permite-nos obter o desenvolvimento em série de Maclaurin de $\ln(1+x)$. Em concreto, a identidade

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt$$

permite-nos obter a seguinte sequência de igualdades:

$$\int_0^x \frac{1}{1+t} dt = \sum_{n=0}^\infty (-1)^n \left(\int_0^x t^n dt \right) = \sum_{n=0}^\infty \frac{(-1)^n}{n+1} x^{n+1} = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} x^n.$$

Portanto, a série de potências de $\ln(1+x)$ foi obtida partir da série de potências $\frac{1}{1+x}$ no intervalo]-1,1[.

Exemplo 12 (Série de Potências da Função arco-tangente). Se considerarmos agora o desenvolvimento em série de potências

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} \quad (|x^2| < 1),$$

obtido a partir da substituição $x \to x^2$ no desenvolvimento em série de potências de $\frac{1}{1+x}$, segue pelo item (c) do **Teorema 6** a seguinte sequências de igualdades:

$$\arctan(x) = \int_0^x \frac{1}{1+t^2} dt = \sum_{n=0}^\infty (-1)^n \left(\int_0^x t^{2n} dt \right) = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} x^{2n+1}.$$

pelo que esta série converge uniformemente no intervalo]-1,1[.

Adenda 10 (Teorema de Abel). Para o Exemplo 11 & Exemplo 12, observe ainda o seguinte:

- i) A série de potências de $\ln(1+x)$, obtida no **Exemplo 11**, <u>converge simplesmente</u> na extremidade x=1 do intervalo]-1,1[;
- ii) A série de potências de $\arctan(x)$, obtida no **Exemplo 12**, <u>converge absolutamente</u> na extremidades x = -1 e x = 1 do intervalo]-1,1[.

Logo, por aplicação direta do Teorema de Abel (vide Teorema 5) segue que:

- i) A série de potências de $\ln(1+x)$, obtida no **Exemplo 11**, <u>converge uniformemente</u> no intervalo [0,1];
- ii) A série de potências de arctan(x), obtida no **Exemplo 12**, também <u>converge uniformemente</u> nos intervalos [-1,0] e [0,1].

Em suma:

- i)]-1,1] é o intervalo de convergência da série de potências de $\ln(1+x)$;
- ii) [-1,1] é o intervalo de convergência da série de potências de $\arctan(x)$.

Postscripta

Vimos em termos práticos que a aplicação do **Teorema 6** e do **Teorema 7** permite-nos obter desenvolvimentos em série a partir de desenvolvimentos já conhecidos por meras manipulações algébricas e funcionais, envolvendo propriedades que já teve oportunidade de estudar em Cálculo I. De modo a estruturarem o vosso estudo mais adiante, segue abaixo uma lista de observações e exemplos que irão surgir seguramente em outro tipo de exemplos e exercícios.

Representações de funções a partir de séries de potências conhecidas

Comecemos pelos desenvolvimentos em série de potência, obtidos a partir de exemplos de séries de potências já tabelados – vide p.e. (Stewart , 2013, p. 687).

Funções Exponenciais – A partir do desenvolvimento em série de potência $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ em \mathbb{R} :

- (a) Pode obter a série Maclaurin de funções análogas às **Exemplo 5** e do **Exercício (4)**. A título de exemplo, para uma função exponencial de base a > 0, a^x , pode obter desenvolvimentos em série de Maclaurin com base na igualdade $a^x = e^{x \ln(a)}$.
- (b) Pode obter desenvolvimentos em série de Maclaurin função exponencial para obter a respetiva série de Taylor. De facto, para valores de $c \neq 0$ tem-se

$$e^{x} = e^{c}e^{x-c} = \sum_{n=0}^{\infty} e^{c} \frac{(x-c)^{n}}{n!}.$$

Exemplos semelhantes a este irá encontrar quando tiver oportunidade de resolver os itens (a) e (b) do Exercício (8).

Funções Logarítmicas – A partir do desenvolvimento em série de potência de $\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$ em [-1,1]:

- (a) Pode calcular o desenvolvimento em série de potência para números transcendentes da forma $\ln(a)$, a partir da substituição x = a 1 na série de potências acima é o que se pretende que faça ao resolver o **Exercício** (5).
- (b) Pode obter o desenvolvimento em série de Taylor, em torno de c da função $\ln(1-c+x)$, via a substituição $x \to x c$ na série de Maclaurin dada.
- (c) Pode obter, via resolução das inequações $-1 < x c \le 1$, que a série de potências da função $\ln(1-c+x) = \ln(1+(x-c))$ ou se quiser, de $\log_a(1-c+x) = \frac{\ln(1+(x-c))}{\ln(a)}$ converge uniformemente em subintervalos fechados e limitados de]-1-c,1+c]. Para encontrar o desenvolvimento em série de potências de funções como $\ln(x)$ exemplo ilustrado em (Almeida , 2018, Exemplo 2.11) esta observação poderia vir a ser útil, uma vez que evitaria fazer cálculos análogos aos que realizou no **Exemplo 11**. E que terá também de realizar nos **itens (e) e (f)** do **Exercício (8)**.
- (d) Propriedades dos logaritmos tais como

$$\ln(ax+b) = \ln(b) + \ln\left(1 + \frac{a}{b}x\right) \quad (b>0)$$

$$\ln\left(\frac{ax+b}{cx+d}\right) = \ln\left(\frac{b}{d}\right) + \ln\left(1 + \frac{a}{b}x\right) - \ln\left(1 + \frac{c}{d}x\right) \quad (\frac{b}{d}>0)$$

também lhe permitirão obter desenvolvimentos em série de Maclaurin para funções análogas às do **Exercício** (11). O único cuidado a ter com a série de potências, que resulta da última igualdade, é que o intervalo de convergência corresponde ao 'menor dos intervalos', da forma $\left|-\frac{|b|}{|a|},\frac{|b|}{|a|}\right|$ resp. $\left|-\frac{|d|}{|c|},\frac{|d|}{|c|}\right|$.

Funções Trigonométricas – No caso das funções seno e cosseno tem-se que:

(a) A grande maioria dos exemplos envolve a manipulação das séries de Maclaurin em R:

i)
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1};$$
 ii) $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$

Com excepção do item (d) do Exercício (6), a resolução dos três primeiros itens deste exercício pode ser obtida com base na substituição $x \to ax$ nas séries de potências dadas acima; No caso dos itens (e) e (f) do Exercício (6), precisaria ainda de recorrer às identidades trigonométricas usuais, envolvendo a duplicação de ângulos. A saber:

i)
$$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$$
; ii) $\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$.

- (b) O desenvolvimento em série de Taylor a partir das séries de Maclaurin de ambas as funções pode ser ser sempre derivado, a partir das seguintes identidades trigonométricas:
 - i) $\sin(x) = \sin(x-c)\cos(c) + \cos(x-c)\sin(c)$;
 - ii) $\cos(x) = \cos(x c)\cos(c) \sin(x c)\sin(c).$

Neste sentido, recomenda-se fortemente que procure entender primeiro exemplos tais como o **Exemplo 7** de (Stewart , 2013, p. 685) antes de resolver os itens (c) e (d) do **Exercício** (8).

Função Arco-Tangente – O cálculo da série de potências de $\arctan(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ em

[-1,1] foi obtido, de modo análogo ao desenvolvimento em série de potências da função logaritmo. Todavia é preciso ter algum cuidado, pois nem todas as propriedades conhecidas para funções logarítmicas e trigonométricas são válidas para esta função. A saber:

- (a) Em exercícios como o 7 não é possível obter p.e. o desenvolvimento da série de potências de $\frac{\pi}{2}$, com base no limite $\frac{\pi}{2} = \lim_{x \to +\infty} \arctan(x)$.
- (b) $\underline{\acute{\rm E}}$ possível obter o **desenvolvimento em série de Maclaurin**, para funções da forma $\arctan(ax^p)$, a partir da substituição $x \to ax^p$ série de Maclaurin de arco-tangente.
- (c) A obtenção de **desenvolvimentos de séries de potências** em torno de $c \neq 0$, a partir da série de Maclaurin da função arco-tangente, não é imediada uma vez que propriedades não são, em geral, conhecidas e/ou tabeladas para este tipo de casos, precisa mesmo de realizar integralmente os cálculos.

Derivação e Integração de Séries de Potências

Passemos agora a casos em que:

1. Temos apenas à nossa disposição o desenvolvimento das séries e^x , $\sin(x)$ e $\cos(x)$, para além da série geométrica;

- 2. Séries envolvendo⁴ a função logaritmo e arco-tangente terão de ser forçosamente obtidas com recurso à série geométrica.
- 3. Conhecemos o desenvolvimento em série de potência de f(x) mas desconhecemos, em geral, o desenvolvimento em série de potência de $f^{(k)}(x)$ $(k \in \mathbb{N})$.
- 4. Conhecemos o desenvolvimento em série de potência de f'(x) mas desconhecemos, em geral, o desenvolvimento em série de potência de f(x).

Séries Geométricas – Este tipo de séries:

- (a) Permitem-nos obter desenvolvimentos em série de potência de funções da forma $\frac{1}{(ax+b)^k}$ $(p \in \mathbb{N})$, a partir da derivação sucessiva de $\frac{1}{ax+b}$. Este tipo de casos podem ser encontrados no Exercício (13).
- (b) Permitem-lhe obter séries de potências, análogas às obtidas para as funções logaritmo e arco-tangente, via aplicação direta da fórmula

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt.$$

Em exercícios como o 14 – complementar ao Exemplo 8 de (Stewart , 2013, pp. 677-678)– pretende-se que siga essencialmente o procedimento adotado no **Exemplo 11**, **Exemplo 12** & **Adenda 10**.

Séries de potências obtidas por derivação – O ponto de partida passa por deduzir séries de potências de $f^{(k)}(x)$, a partir da série de potências de f(x). Neste ponto terá que ter sempre em consideração o seguinte:

- (a) Em séries de potências, cujo **raio de convergência é infinito**, a derivação termo a termo nunca será problema como terá a possibilidade de verificar ao resolver o Exercício (15);
- (b) Já para o caso da derivação de séries de potências, de notar que o **Teorema 6** apenas menciona a derivação termo a termo em intervalos da forma]c-R,c+R[$(0 < R < \infty)$. Para tal, basta pensar de modo recíproco, o que acontece se derivar, termo a termo, as séries de potências do **Exemplo 11** & **Exemplo 12**.

Séries de potências obtidas por integração – O ponto de partida é sempre a integração de uma função f para a qual conheço a sua série de potências.

- (a) Uma das grandes motivações para este tipo de estratégia prende-se com o cálculo de séries de potências que funções integráveis/primitiváveis mas que se desconhece a sua primitiva. No exercício (12) terá a oportunidade de se deparar com este tipo de exemplos.
- (b) Em séries de potências, cujo **raio de convergência é infinito**, a integração termo a termo também não será o problema.
- (c) No caso da integração de séries de potências, decorre do **Teorema 6** apenas a continuidade em subconjuntos de]c R, c + R[$(0 < R < \infty)$. Para averiguar, a posteriori, a continuidade da série resultante nas extremidades de]c R, c + R[, terá ainda de aplicar o **Teorema de Abel** correspondente ao **Teorema 5** tal como já foi discutido anteriormente.

⁴Entenda-se, o desenvolvimento em série destas funções não aparece tabelado.

Série de Taylor, Cálculo de Limites et al.

Este tipo de assunto já foi exaustivamente abordado em vários exemplos deste caderno. Para terminar, acrescento mais alguns exemplos que considero pertinentes e que deve ser considerados como verdadeiros desafios.

Exemplo 13 (Complementar ao Exercício 9. da Folha 1). A designadade

$$ln(1+x) \le x$$
, para todo o $x > -1$

pode ser demonstrada de duas formas distintas:

- (a) Ou via a fórmula $\ln(1+x) = x + R_0^1(\ln(1+x));$
- (b) Ou via o desenvolvimento em série de potências, obtido anteriormente no Exemplo 11.

No primeiro caso, a demonstração da desigualdade é uma consequência imediata do resto de Lagrange, dado por

$$R_0^1(\ln(1+x)) = -\frac{1}{(1+\theta)^2}x^2$$
 para algum θ entre 0 e x

ser sempre negativo.

No segundo caso, conseguiria concluir que o desenvolvimento em série de potências de $\ln(1+x)-x$, dado por

$$\ln(1+x) - x = \sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n} x^n$$

corresponde a uma série de termos^a negativos, apenas^b para o intervalo]-1,0].

Contra-Exemplo 5 (Funções Esféricas de Bessel). No Exercício (19) irá deparar-se com exemplos em que:

- (a) Estamos perante o desenvolvimento em série de Maclaurin de funções descontínuas em x=0;
- (b) Para todas estas funções, é possível calcular os limites destas em x=0, com recurso ao desenvolvimento em série de potência ou à regra de L'Hôpital.

Em concreto, após demonstrar que $\mathbf{j}_0(x) = \frac{\sin(x)}{x}$ $(x \neq 0)$ e $\mathbf{j}_1(x) = \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x}$ $(x \neq 0)$ pode demonstrar, via argumentos análogos aos que utilizou no Exemplo 7 & Exemplo 8. que

i)
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \mathbf{j}_0(0) = 1;$$
 ii) $\lim_{x \to 0} \left(\frac{\sin(x)}{x^2} - \frac{\cos(x)}{x} \right) = \mathbf{j}_1(0) = 0.$

Adenda 11 (Desenvolvimento em Série de Taylor). Mesmo que não soubesse, a priori, que o desenvolvimento das funções dadas correspondia aos desenvolvimentos em série de potências - conhecidas por funções esféricas de Bessel - poderia p.e. calcular limites^a como

$$\lim_{x \to 0} \left(\frac{\sin(x)}{x^2} - \frac{\cos(x)}{x} \right) = \lim_{x \to 0} \frac{\sin(x) - x\cos(x)}{x^2}$$

a partir da igualdade $\sin(x) - x\cos(x) = \sum_{n=1}^{\infty} \left(\frac{1}{(2n+1)!} - \frac{1}{(2n)!}\right) (-1)^n x^{2n+1}$.

 $^{{}^}a$ Use a igualdade $\frac{(-1)^{n-1}}{n}x^n=-\frac{(-x)^n}{n}$ para mostrar que se trata de uma série de termos negativos em]-1,0]. b A verificação de que a série de potências também toma valores negativos em]0,1] não é deveras trivial.

^aUma forma de confirmar o resultado, passa por aplicar sucessivamente a regra de L'Hôpital – vide Caderno 1.

^bVerifique que $\frac{1}{(2n+1)!} - \frac{1}{(2n)!} = 0$ quando n = 0.

Exercícios Propostos

Revisões

(1) MÉTODO DE INDUÇÃO MATEMÁTICA

Use o método de indução matemática para demonstrar as seguintes relações:

(a) $\cos(n\pi) = (-1)^n, \forall n \in \mathbb{N}_0.$

(b) $n! > 2^n$, para todo o $n \ge 4$ natural.

OBSERVAÇÕES:

- (a) Indução matemática não se aplica ao conjunto dos números inteiros. Em particular, para demonstrar que $\cos(n\pi) = (-1)^n$, para todo o $n \in \mathbb{Z}$, terá ainda de argumentar que a função cosseno se trata de uma função par.
- (b) A desigualdade $n! > 2^n$ é falsa, para valores de n = 0, 1, 2, 3.

(2) Polinómio de Maclaurin

Use o polinómio de Maclaurin e o resto de Lagrange da função exponencial para mostrar as seguintes desigualdades:

- (a) Para todo o $x \in]0,1[$, tem-se $e^x < \frac{1}{1-x}$.
- (b) Para todo o $x \in \mathbb{R}$ e $n \in \mathbb{N}$, tem-se que $e^x > T_0^n(e^x)$.
- (c) Para todo o $x \in]0,2[$, vale a desigualdade

$$e^x < 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{16 - 8x}.$$

Sugestões:

- (a) Use a designaldade $n! \geq 1$ para mostrar que $T_0^n(e^x) \leq 1 + x + \ldots + x^n$. O que acontece se fizer $n \to \infty$ em ambos os lados da designaldade?
- (b) É suficiente demonstrar que o resto de Lagrange da função exponencial, $R_0^n(e^x)$, é sempre positivo
- (c) Comece por reescrever a expressão de ${\cal T}_0^n(e^x)$ na forma

$$T_0^n(e^x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \sum_{k=4}^n \frac{x^k}{k!}.$$

De seguida, use a desigualdade obtida no item (b) do **Exercício** (1) para mostrar que

$$\sum_{k=4}^{n} \frac{x^k}{k!} < \sum_{k=4}^{n} \frac{x^k}{2^k},$$

ou seja, que no intervalo]0,2[, a soma $\sum_{k=4}^n \frac{x^k}{k!}$ é limitada superiormente pela soma de uma progressão geométrica de razão $r=\frac{x}{2}$.

24

Convergência Pontual vs. Convergência Uniforme

(3) Exemplos de Sucessões/Série de Funções

Considere⁵ a sucessão de funções $(f_n)_{n\in\mathbb{N}_0}$, definida por $f_n(x) = \frac{x^2}{(1+x^2)^n}$.

- (a) Mostre que $(f_n)_{n\in\mathbb{N}_0}$ converge pontualmente para a função nula em \mathbb{R} .
- (b) Mostre que a série de funções $\sum_{n=0}^{\infty} f_n$ converge pontualmente para a função S, definida por

$$S(x) = \begin{cases} 1 + x^2 & , x \neq 0 \\ 0 & , x = 0. \end{cases}$$

- (c) Diga, justificando, se a série de funções $\sum_{n=0}^{\infty} f_n$ converge uniformemente em \mathbb{R} .
- (d) Mostre que a série de funções $\sum_{n=0}^{\infty} f_n$ converge uniformemente em $\mathbb{R}\setminus]-1,1[$.
- (e) Diga, justificando, se a série de funções $\sum_{n=0}^{\infty} f_n$ converge uniformemente em domínios da forma $\mathbb{R}\setminus]-R,R[\ (R>0).$ E em $\mathbb{R}\setminus \{0\}$?

SUGESTÕES:

- (a) Comece por demonstrar que, para todo o $x \in \mathbb{R}$, $\frac{1}{(1+x^2)^n} = \left(\frac{1}{1+x^2}\right)^n$ termo geral da progressão geométrica, de razão $r = \frac{1}{1+x^2}$ converge para zero (0).
- (b) Use a fórmula geral da série geométrica para calcular o valor da soma da série $\sum_{n=0}^{\infty} \left(\frac{1}{1+x^2}\right)^n$.
- (c) Sabendo que S é descontínua em x=0, o que pode concluir a partir do **Teorema 2**?
- (d) Aplique o <u>Critério de Weierstraß</u> vide **Teorema 3**.
- (e) Verifique que este item corresponde a uma generalização do item anterior.

Série de Maclaurin de Funções Exponenciais e Logarítmicas

4 Desenvolvimento em série de Maclaurin envolvendo Funções Hiperbólicas

Considere o desenvolvimento em série de Maclaurin da função exponencial, dado por $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

(a) Obtenha o desenvolvimento em série de potência das seguintes funções hiperbólicas

i)
$$\cosh(2x) = \frac{e^{2x} + e^{-2x}}{2}$$

ii)
$$\sinh(2x) = \frac{e^{2x} - e^{-2x}}{2}$$

⁵Exercício formulado com base no (Almeida, 2018, Exemplo 2.5).

(b) Use os desenvolvimentos em série, obtidos na alínea anterior, para obter o desnvolvimento em série das seguintes funções:

i)
$$\frac{1}{3}(e^x + e^{-x})(e^x - e^{-x})$$

ii)
$$\frac{1}{4}(e^x + e^{-x})^2 + \frac{1}{4}(e^x - e^{-x})^2$$

SUGESTÕES:

- (a) Vide **Exemplo 5.**
- (b) Faça uso das igualdades $(a + b)(a b) = a^2 b^2$ e $(a + b)^2 = a^2 + 2b + b^2$.

(5) Funções Logarítmicas

Use o desenvolvimento em série de potências obtido no **Exemplo** 11, para obter o desenvolvimento em série dos seguintes números transcendentes:

(a)
$$-1$$

(b)
$$\ln{(\frac{2}{3})}$$

(c)
$$-\ln\left(\frac{3}{4}\right)$$

Série de Maclaurin de Funções Trigonométricas e Suas Inversas

(6) Desenvolvimento em série de Maclaurin de Funções seno e cosseno Tendo como referência o desenvolvimento série de Maclaurin das funções seno e cosseno:

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \quad \& \quad \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

obtenha os desenvolvimentos em série Maclaurin para as funções abaixo.

(a)
$$\cos\left(\frac{\pi x}{2}\right) - 1$$

(c)
$$\cos\left(\frac{\pi x}{3}\right)$$

(e)
$$\sin^2\left(\frac{\pi x}{4}\right)$$

(b)
$$\frac{\pi x}{2} - \sin\left(\frac{\pi x}{2}\right)$$

(d)
$$\sin\left(\frac{\pi(x+1)}{3}\right)$$

(f)
$$\cos^2\left(\frac{\pi x}{4}\right)$$

(7) Série de Maclaurin da função arco-tangente

Use a representação em série de potência da função arco-tangente, obtida no Exemplo 12, para resolver os itens abaixo.

(a) Diga, justificando, se as séries abaixo são convergentes e, em caso afirmativo, determine o valor da sua soma.

i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (\sqrt{3})^{2n+1}}{2n+1}$$

i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (\sqrt{3})^{2n+1}}{2n+1}$$
 ii)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (-\sqrt{3})^{2n+1}}{3^{2n+1} (2n+1)}$$
 iii)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{3})^{2n}}{3^{2n+1} (2n+1)}$$

iii)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{3})^{2n}}{3^{2n+1} (2n+1)}$$

(b) Indique o desenvolvimento em série de potências para os seguintes números transcendentes:

i)
$$\frac{\pi}{4}$$

ii)
$$\pi$$

iii)
$$\frac{\pi}{2}$$

Observação: Note que arctan : $\mathbb{R} \to]-\frac{\pi}{2},\frac{\pi}{2}[$. Em particular, π e $\frac{\pi}{2}$ não são pontos do contradomínio da função arco-tangente.

Série de Taylor vs. Funções Analíticas

- (8) DESENVOLVIMENTO EM SÉRIE DE MACLAURIN VS. DESENVOLVIMENTO EM SÉRIE DE TAYLOR Use os desenvolvimentos em série de Maclaurin tabelados p.e. em (Stewart, 2013, p. 687) para obter a série de Taylor das funções abaixo.
 - (a) e^{-x} em torno de $c = -\frac{1}{5}$

(d) $\cos(x)$ em torno de $c = -\frac{\pi}{3}$.

(b) e^{2x-x^2} em torno de c=1.

(e) $\ln(2 - 5x)$ em torno de $c = \frac{1}{5}$.

(c) $\sin(x)$ em torno de $c = \frac{\pi}{6}$.

- (f) $\ln(x^2 + 2x + 2)$ em torno de c = -1.
- (9) DESIGUALDADES E LIMITES ENVOLVENDO FUNÇÕES HIPERBÓLICAS

Use o desenvolvimento em série de potência de $\cosh(2x)$, obtida no **Exercício** 4, assim como a desigualdade obtida no **Exercício** 1, para mostrar que

$$1 + 2x^2 < \cosh(2x) < 1 + 2x^2 + \frac{x^4}{1 - x^2}$$
, para todo o $x \in]-1, 1[$.

(10) Desenvolvimento em série de Maclaurin vs. Intervalo/Raio de Convergência

Seja $f(x) = \sum_{n=0}^{\infty} a_n x^n$ o desenvolvimento em série de Maclaurin da função $f \in 0 < R < +\infty$ o respetivo raio de convergência⁶. Demonstre as seguintes afirmações para a funções $g \in h$, definidas por

$$g(x) = f(-x^2) e h(x) = x f(x^2).$$

- (a) $g^{(2n+1)}(0) = h^{(2n)}(0) = 0$, para todo o $n \in \mathbb{N}_0$.
- (b) $(-1)^n g^{(2n)}(0) = h^{(2n+1)}(0) = n! a_n$, para todo o $n \in \mathbb{N}_0$.
- (c) As séries de Maclaurin das funções g e h convergem absolutamente em] $-\sqrt{R}$, \sqrt{R} [.
- (d) Se a série de Maclaurin de f converge absolutamente em x=-R ou em x=R, então $[-\sqrt{R},\sqrt{R}]$ é o intervalo de convergência das séries de Maclaurin de g e h.
- (e) Se a série de Maclaurin de f converge simplesmente em x=-R, então $]-\sqrt{R},\sqrt{R}[$ é o intervalo de convergência da série de Maclaurin de g.
- (f) Se a série de Maclaurin de f converge simplesmente em x=R, então $]-\sqrt{R},\sqrt{R}[$ é o intervalo de convergência da série de Maclaurin de h.
- (11) Desenvolvimento em série de Maclaurin de Funções Logarítmitas

Determine o desenvolvimento em série de Maclaurin para cada uma das seguintes funções logarítimicas, indicando o maior intervalo para o qual o desenvolvimento é válido.

(a)
$$\ln\left(\frac{3x+1}{2-3x}\right)$$

(b)
$$\ln \left(\frac{5}{(1+x^2)(x+2)} \right)$$

(c)
$$\ln(x^2 - 4x + 3)$$

⁶O raio de convergência pode ser definido, via uma das seguintes fórmulas: $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$ resp. $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$.

SUGESTÕES: Pode usar diretamente a fórmula $f(x) = f(0) + \int_0^x f'(t)dt$, que resulta do Teorema Fundamental do Cálculo, e/ou uma das seguintes sugestões abaixo:

- (a) Propriedades $\ln\left(\frac{z}{w}\right) = \ln(z) \ln(w) e \ln(\alpha x + \beta) = \ln(\beta) + \ln\left(\frac{\alpha}{\beta}x + 1\right) (\beta > 0);$
- (b) Propriedade $\ln(zw) = \ln(z) + \ln(w)$ & propriedades mencionadas em (a);
- (c) Fatorização $x^2 4x + 3 = (x r_1)(x r_3) r_1$, r_2 raízes de $x^2 4x + 3$ para poder deduzir a série de Taylor com base nas sugestões dadas em (a) e (b) i.e. sem precisar de aplicar o Teorema Fundamental do Cálculo.

Convergência Uniforme de Séries de Potências

(12) Integração de série de potências

Determine a representação em série de potência para cada uma das seguintes funções:

(a) Função Erro
$$\operatorname{erf}(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$$

(b) INTEGRAL DE FRESNEL
$$S(x) = \int_0^x \sin(t^2) dt.$$

(13) DESENVOLVIMENTO EM SÉRIE GEOMÉTRICA VS. DERIVAÇÃO DE SÉRIES DE POTÊNCIAS

Determine o desenvolvimento em série geométrica para cada uma das seguintes funções racionais, indicando o maior intervalo para o qual o desenvolvimento é válido.

(a)
$$\frac{1}{(x+2)^2}$$

(b)
$$\frac{x}{(1+x^2)^2}$$

(c)
$$\frac{5}{(1+x^2)(x+2)^2}$$

SUGESTÕES:

- (a) Calcule a derivada de $\frac{1}{x+2}$.
- (b) Calcule a derivada de $\frac{1}{1+x^2}$.
- (c) Para poder usar, a posteriori, o desenvolvimento em série de potências obtidos anteriormente, terá de considerar a representação em frações parciais da forma

$$\frac{5}{(1+x^2)(x+2)^2} = \frac{Ax+B}{1+x^2} + \frac{C}{x+2} + \frac{D}{(x+2)^2} - A, B, C, D \text{ constantes a determinar}.$$

(14) Aplicação do Teorema de Abel

Sejam f e g as funções definidas

$$f(x) = \int_0^x \frac{1}{27 + t^3} dt$$
 & $g(x) = \int_0^x \frac{1}{81 + t^4} dt$.

- (a) Determine o desenvolvimento em série de potências das funções f e g.
- (b) Diga, justicando, qual o intervalo da forma $I =]-R, R[\ (0 < R < \infty)$ em que as séries de potências f e g convergem uniformemente.
- (c) Use o **Teorema 5** para averiguar se f e g convergem uniformemente em intervalos fechados da forma [-R,0] e [0,R].

- (d) Comente a veracidade das seguintes afirmações (\mathbf{V} erdadeiro ou \mathbf{F} also), justificando convenientemente a sua resposta.
 - i) O intervalo de convergência das funções derivadas f' e g' não coincide.
 - ii) O intervalo de convergência de f e f' coincide.
 - iii) O intervalo de convergência de g e g' não coincide.
 - iv) O intervalo de convergência de f e g coincide.
 - v) O desenvolvimento em série de potências de $\int_0^x \frac{1+t^2}{27+t^3} dt$ coincide com o desenvolvimento em série de potências de $f(x) + \ln(27+x^3)$.
 - vi) O desenvolvimento em série de potências de $\int_0^x \frac{1-t}{81+t^4} dt$ coincide com o desenvolvimento em série de potências de $g(x) \frac{1}{27} \arctan\left(\frac{x^2}{9}\right)$.

(15) Funções de Bessel

Considere o desenvolvimento em série de Maclaurin da função de Bessel de ordem $m \ (m \in \mathbb{N}_0)$, dada por

$$J_m(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{m+2n} n! (m+n)!} x^{m+2n}.$$

- (a) Mostre que $(J_m)_{m\in\mathbb{N}_0}$ é uma sucessão de funções analíticas em \mathbb{R} .
- (b) Verifique que $J'_0 = -J_1$.

EXERCÍCIO COMPUTACIONAL

Use a app do link

para gerar os polinómios de Maclaurin de ordem $n, T_0^n(\tan(x))$ e $T_0^n(\sec^2(x))$. A partir destes:

- (a) Calcule numericamente o valor do limite $\lim_{x\to 0} \frac{\tan(x) T_0^n(\tan(x))}{x^n}$, para valores de n=1,2,3,4,5,6,7.
- (b) Verifique numericamente a igualdade abaixo, para valores de n = 1, 2, 3, 4, 5, 6, 7:

$$\lim_{x \to 0} \frac{\tan(x) - T_0^n(\tan(x))}{x^n} = \lim_{x \to 0} \frac{\sec^2(x) - T_0^n(\sec^2(x))}{nx^{n-1}}.$$

Desafios

(17) Soma de série de Potências

Use desenvolvimento de séries de potências conhecidos e/ou derivação/integração para calcular a soma das seguintes seguintes séries numéricas de termos alternados:

i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}$$

ii)
$$\sum_{n=1}^{\infty} \frac{n(-1)^n}{3^{n-1}}$$

29

iii)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(2n+2)}$$

(18) Desenvolvimento em série de Maclaurin envolvendo Funções Pares e Ímpares

Seja $f(x) = \sum_{n=0}^{\infty} a_n x^n$ o desenvolvimento em série de Maclaurin da função f e $R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$ o respetivo $raio\ de\ convergência^7$.

(a) Demonstre as seguintes igualdades:

i)
$$f(x) + f(-x) = \sum_{n=0}^{\infty} 2a_{2n}x^{2n}$$
 ii) $f(x) - f(-x) = \sum_{n=0}^{\infty} 2a_{2n+1}x^{2n+1}$

- (b) Comente a veracidade das seguintes afirmações (\mathbf{V} erdadeiro ou \mathbf{F} also), justificando convenientemente a sua resposta.
 - i) Se $R = +\infty$ e f é uma função ímpar, então $f^{(2n+1)}(0) = 0$ para todo o $n \in \mathbb{N}_0$.

ii) Se
$$R = +\infty$$
 e f é uma função ímpar, então $f(-x) = -x \sum_{n=0}^{\infty} a_{2n+1} x^{2n}$.

- iii) R^2 é o raio de convergência da série de Maclaurin de f(x) + f(-x).
- iv) Se $0 < R < +\infty$, então o raio de convergência das séries de Maclaurin de f(x) f(-x) e f(x) coincidem.
- v) Se $0 < R < +\infty$, então a série de Maclaurin de f(x) + f(-x) converge absolutamente no intervalo $]-\sqrt{R},\sqrt{R}[.$
- vi) Se $0 < R < +\infty$ e]-R,R] é o intervalo de convergência da série de Maclaurin de f, então a série de Maclaurin de f(x)-f(-x) e de f(x)+f(-x) convergem absolutamente em $x=-\sqrt{R}$.

(19) Funções Trigonométricas vs. Funções Esféricas de Bessel

Considere o desenvolvimento em série de Maclaurin da função esférica de Bessel de ordem m $(m \in \mathbb{N}_0)$, dada por

$$\mathbf{j}_m(x) = 2^m \sum_{n=0}^{\infty} \frac{(-1)^n (m+n)!}{(2m+2n+1)!} x^{m+2n}.$$

- (a) Mostre que $(\mathbf{j}_m)_{m\in\mathbb{N}_0}$ é uma sucessão de funções analíticas em \mathbb{R} .
- (b) Verifique as seguintes igualdades para valores de $x \neq 0$:

i)
$$\mathbf{j}_0(x) = \frac{\sin(x)}{x}$$
 ii) $\mathbf{j}_1(x) = \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x}$ iii) $\mathbf{j}_2'(x) = \mathbf{j}_1(x) - \frac{3}{x}\mathbf{j}_2(x)$

(20) SÍMBOLO DE POCHAMMER VS. SÉRIE BINOMIAL⁸

Para todo o $\alpha \in \mathbb{R}$, considere a série de Maclaurin de $(1+x)^{\alpha}$, dada por

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{(-1)^n (-\alpha)_n}{n!} x^n,$$

onde $(-\alpha)_n = -\alpha(-\alpha+1)\dots(-\alpha+(n-1))$ denota o símbolo de Pochhammer.

(a) Se
$$\alpha \in \mathbb{N}_0$$
, mostre que $(1+x)^{\alpha} = \sum_{n=0}^{\alpha} {\alpha \choose n} x^n$.

(b) Determine o domínio e o raio de convergência da série de Maclaurin de $(1+x)^{\alpha}$, para valores de $\alpha \notin \mathbb{N}$.

⁷Também poderia ser dito que $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$.

⁸Exercício corresponde a uma reformulação de (Stewart , 2013, pp. 685-686, Exemplo 8).

(c) Comente a veracidade das seguintes afirmações (Verdadeiro ou Falso), justificando convenientemente a sua resposta.

i)
$$\sum_{n=0}^{\infty} \frac{(-\alpha)_n}{n!} = 0$$
, para todo o $\alpha \in \mathbb{N}_0$.

- ii) $(-1)^n(-\alpha)_n=0$, para todo o $n\in\mathbb{N}_0$ se $\alpha\not\in\mathbb{N}$.
- iii) $(-1)^n(-\alpha)_n = 0$, para todo o $n \in \mathbb{N}_0$ se $\alpha < n$.
- iv) $\sum_{n=0}^{\alpha} \frac{(-1)^n (-\alpha)_n}{n!} = 2^{\alpha}$, para todo o $\alpha \in \mathbb{R}$.
- v) $\sum_{n=0}^{\infty} \frac{(-\alpha)_n}{2^n n!} = 2^{-\alpha}$, para todo o $\alpha \in \mathbb{R}$.
- vi) Para todo o $x \in]-1,1[$, tem-se $\sum_{n=0}^{\infty} \frac{(-1)^n (-\alpha)_n}{n!} x^n \neq 0$, desde que $\alpha \not \in \mathbb{N}$.

SUGESTÕES:

(a) Atendendo a que $\frac{d^n}{dx^n}(1+x)^{\alpha}=0$, para valores de $(\alpha \in \mathbb{N}_0 \text{ e } n > \alpha)$, é suficiente verificar a equivalência abaixo (explique o porquê):

$$\begin{pmatrix} \alpha \\ n \end{pmatrix} = \frac{(-1)^n (-\alpha)_n}{n!} \Longleftrightarrow \left[\frac{d^n}{dx^n} (1+x)^{\alpha} \right]_{x=0} = \frac{\alpha!}{(\alpha-n)!}.$$

- (b) Use o critério da razão (ou de D'Alembert).
- (c) Tenha cuidado, pois $(1+x)^{\alpha}$ apenas nos dá um polinómio para o caso de $\alpha \in \mathbb{N}_0$.

Bibliografia

Almeida (2018) A. Almeida, *Cálculo II – Texto de apoio* (versão fev. 2018) Disponível na plataforma Moodle da UA.

Apostol (1983) T. M. Apostol, Cálculo: Volume 1, Editora Reverté, Rio de Janeiro, 1983.

Brás (2020) I. Brás, Sucessões e Séries de Funções; Séries de potências(revisitadas) e Séries de Fourier (versão 26/2/2023)⁹

Disponível na plataforma Moodle da UA.

Stewart (2013) J. Stewart, *Cálculo: Volume 2*, Tradução da 7ª edição norte-americana, São Paulo, Cengage Learning, 2013

Formato Digital: disponível a partir desta hiperligação [só clicar no texto a azul]

⁹Aparece no Moodle com o título *Slides para o Capítulo 2*.