Datos Generales Memoria Flash S70FL01GSAGMFI011

Tabla de Contenidos

Introduccion	2
Resumen de Especificaciones	2
Proveedores	
Mouser.co.cr	3
Diagrama de bloques	4
Distribución de pins	
Información funcional de Pins	5
Alimentación	5
Entradas	5
Entradas/Salidas	6
No utilizados	
Identificación del chip	6
Recomendaciones	7
Common Flash Interface	7
Organización de la información	7
CFI Tables	
Referencias	10

Introducción

Caracterización general de una memoria flash de 1Gb (S70FL01GS). Para su posible uso en conjunto con un microcontrolador en el desarrollo de proyectos de hardware.

Resumen de Especificaciones

• **Tamaño de memoria**: 1Gbit (2 x 512Mb FL512S)

Tipo de interfaz: SPIVelocidad: 133MHz

Tensión de alimentación: 2,7V-3,6V

Máxima corriente de alimentación: 36mA

Tipo de encapsulado: SO-16Tamaño del bus de datos: 8 bits

• Tecnología: CMOS

• **Organización de memoria**: 128M x 8. Páginas de 512Bytes. Erase Uniform 256kbyte sectors

• Velocidad de programación: 1,5 Mbytes/s

• **Velocidad de borrado**: 0,5 Mbytes/s

Ciclos de programación-borrado: 100 000

Retención de datos: 20 añosPeso de unidad: 200,700 mg

• Manufacturador: Cypress Semiconductor

Caracteríticas de seguridad: OneTImePrograming (OTP) de 1024kB

• **Rango de temperaturas**: Industrial -40°C a +85°C, Industrial Plus -40°C a +105°C

Proveedores

Mouser.co.cr

Mouser posee el modelo de memoria S70FL01GSAGMFI011.

Mouser Part #: 797-70FL01GSAGMFI011

Description: Flash Memory 1G 3V 133MHz Serial Flash

Al 08 de julio del 2016 tiene los siguientes precios:

Cantidad	Precio
1	\$10.35
10	\$9.58
25	\$9.36
50	\$9.31
100	\$8.41
250	\$8.23

Diagrama de bloques

Figura 1. Diagrama de bloques [CITATION "S70FL01GS"]

Distribución de pins

El encapsulado de interés es el SOIC de 16 pins.

Figura 2. Distribución de pins en encapsulado SO-16 [CITATION "S70FL01GS"]

Información funcional de Pins

Alimentación

Nombre	Pin	Descripción
Vcc	2	Core Power Supply. 2.7V a 3.6V
VIO	14	No en uso, en este dispositivo, comparte pin con la señal de RFU (Reservado para uso futuro)
Vss	10	Tierra

Entradas

Nombre	Pin	Descripción
RESET#	3	Hardware Reset, en bajo reinicia y vuelve al estado de espera (standby state), listo para recibir un comando, tiene Pull-Up interno. Podría dejarse sin conectar.
SCK	16	Reloj serial
CS#	6(CS2#), 7(CS1#)	Selección de chip, 2 chips internos

Entradas/Salidas

Nombre	Pin	Descripción
SI / IO0	15	Serial Input para comandos de un solo un bit de datos. IO0 para comandos Dual o Quad
SO / IO1	8	Serial Output para comandos de un solo un bit de datos. IO1 para comandos Dual o Quad
WP# / IO2	9	Write Protect, cuando no está en modo Quad. IO2 cuando está en modo Quad. Tiene resistencia de Pull-Up interno, puede dejarse desconectado si no está en modo Quad.
HOLD# / IO3	1	Hold (Pausa) de transferencias seriales en modo single bit ó Dual. IO3 en modo Quad. Tiene resistencia Pull-Up Interno, puede dejarse desconectado si no está en modo Quad.

No utilizados

Nombre	Pin	Descripción
NC	13	No Conectado Internamente, sin planes de uso futuro, No usar tensiones mayores al Vcc (se podria usar para routing del PCB)
RFU	14	Reservado para uso futuro. No recomendado para conectar.
DNU	5	No utilizar. Puede tener una señal interna conectada.

Identificación del chip

Como respuesta al comando RDID de los CFI (Common Flash Interface), cada bloque de FL512 interno, devolverá la misma identificación:

• **Byte**: 27h, **Data**: 1Bh, **Descripción**: Device Size = 2N byte

Recomendaciones

• Los registros de ambos bloques internos del chip debería tener los mismo bits de configuración en los registros de control.

Common Flash Interface

CFI es un estandar de (JEDEC) para manejar dispositivos Flash [CITATION "AN98488"].

Hay dispositivos que operan en modos de 8, 16, 32, 8/16, 16/32 bits.

Organización de la información

En bytes, las partes altas están en las direcciones altas. Por ejemplo para un dato 1234h se almacenaría 34h en la dirección base y 12h en el siguiente byte.

CFI Tables

CFI Query Identification String

Table 1. Query Structure Output

Address	Data (x8)	Data (x16)	Definition
10h	51h	0051h	'Q' in ASCII
11h	52h	0052h	'R' in ASCII
12h	59h	0059h	'Y' in ASCII

Table 2. Primary Vendor Command Set and Control Interface ID Code

Address	Data (x8)	Data (x16)	Definition
13h	02h	0002h	Manufacturer ID Lower Byte
14h	00h	0000h	Manufacturer ID Upper Byte

Table 3. Primary Vendor-Specific Extended Query

Address	Data (x8)	Data (x16)	Definition
		0040h	Starting Address for the Primary Vendor-Specific Extended Query table Lower Byte
16h	00h	0000h	Starting Address for the Primary Vendor-Specific Extended Query table Upper Byte

Table 4. Alternate Vendor Command Set and Control Interface ID Code

Address	Data	Definition
17h	00h/53h	Alternate Manufacturer ID Lower Byte
18h	00h/46h	Alternate Manufacturer ID Upper Byte

Table 5. Alternate Vendor-Specific Extended Query

Address	Data	Definition
19h	00h/51h	Starting Address for Alternate Vendor-Specific Extended Query table Lower Byte
1Ah	00h	Starting Address for Alternate Vendor-Specific Extended Query table Upper Byte

System Interface String

De 1Bh a 26h.

Table 6. Power Supply Voltage

Address	Data	Definition
1Bh		27 / 10 = 2.7 V V _{CC} lower limit (D7-D4: V, D3-D0: 100 mV)
1Ch	36h	36 / 10 = 3.6 volts V _{CC} upper limit (D7-D4: V, D3-D0: 100 mV)

Table 7. Dual Supply Programming Voltage

Address	Data	Definition
1Dh	00h	V _{PP} lower limit (00h = no V _{PP} pin present)
1Eh	00h	V _{PP} upper limit (00h = no V _{PP} pin present)

Table 8. Single Byte/Word Programming

Address	Data	Definition	
1Fh	07h	2^7 = 128 µs Typical word programming time from Erase and Programming Performance table in the datasheet	
23h	01h	2^1 = 2 -> 2*128 µs = 256 µs Maximum word programming time, which is the maximum programming time expected before a timeout is generated	

Table 9. Buffer Programming Timeout Values

Address	Data	Definition
20h	07h	2 ⁷ = 128 μs typical buffer programming time
24h	05h	2 ⁵ = 32 -> 32*128 μs = 4096 μs maximum buffer programming time

Table 10. Sector Erase Timeout Values

Address	Data	Definition
21h 0Ah 2^{10} = 1024 ms Typical sector eras		2 ¹⁰ = 1024 ms Typical sector erase time
25h	04h	2 ⁴ = 16 -> 16*1024 ms = 16,384 ms Maximum sector erase time

Table 11. Chip Erase Timeout Values

Address	Data	Definition
22h	4Fh	2 ^N ms Typical chip erase time
26h	04h	2 ^N = N * typical chip erase time Maximum chip erase time (00h = not supported)

Device Geometry Definition

Table 12. Device Density

Address	Data	Definition
27h	17h	17h = 23 -> 2 ²³ = 8 MB

Table 13. Data Bus Interface — Parallel NOR

Address	Data	Definition
28h	02h	x8/x16 interface Lower byte
29h	00h	x8/x16 interface Upper byte

00h = x8-only interface

01h = x16-only interface

02h = x8/x16 interface

03h = x32 interface

Table 14. Data Bus Interface - SPI Flash

Address	Data	Definition
28h	04h	SPI flash interface Lower byte
29h	00h	SPI flash interface Upper byte

For SPI serial Flash devices:

04h = Single I/O SPI, 3-byte address

05h = Multi I/O SPI, 3-byte address

0102h = Multi I/O SPI, 3- or 4-byte address

Table 15. Maximum Number of Bytes

Address	Data	Definition
2Ah	05h	2 ⁵ = 32 bytes / Buffer length Lower byte
2Bh	00h	Buffer length Upper byte

Table 16. Number of Erase Block Regions

Address	Data	Definition
2Ch	01h	Number of Erase Block regions

Table 17. Region 1

Address	Data	Definition
2Dh	07h	07h = 07h + 01h = 8 sectors Lower byte
2Eh	00h	number of sectors Upper byte
2Fh	20h	20h = 32 * 256 bytes = 8-KB sector size Lower byte
30h	00h	Sector size Upper byte

Table 18. Region 2

Address	Data	Definition
31h	FDh	FDh = FDh + 01h = FEh = 254 sectors Lower byte
32h	00h	number of sectors Upper byte
33h	00h	100h = 256 * 256 bytes = 64-KB sector size Lower byte
34h	01h	sector size Upper byte

Table 19. Region 3 (Sheet 1 of 2)

Address	Data	Definition
35h	07h	07h = 07h + 01h = 8 sectors Lower byte
36h	00h	Number of sectors Upper byte

Table 19. Region 3 (Sheet 2 of 2)

Address	Data	Definition
37h	20h	20h = 32 * 256 bytes = 8KB sector size Lower byte
38h	00h	Sector size Upper byte

Referencias

Bibliografía

S70FL01GS: CYPRESS PERFORM, S70FL01GS.1 Gbit (128 Mbyte), 3.0V, SPI Flash, 2016 AN98488: , AN98488. Quick Guide to Common Flash Interface, 201