香港考試局 HONG KONG EXAMINATIONS AUTHORITY

2001年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2001

數學 試卷一 MATHEMATICS PAPER 1

本評卷參考乃考試局專爲今年本科考試而編寫,供閱卷員參考之 用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班 的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得 容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷 員/教師應嚴詞拒絕,因學生極可能將評卷參考視爲標準答案,以致 但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育 原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請 各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations Authority for markers' reference. The Examinations Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Examinations Authority is counting on the co-operation of markers/teachers in this regard.

考試結束後,各科評卷參考將存放於教師中心,供教師參閱。 After the examinations, marking schemes will be available for reference at the teachers' centre.

◎香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2001

2001-CE-MATH 1-1

Hong Kong Certificate of Education Examination Mathematics Paper 1

General Marking Instructions

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Makers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

awarded for correct methods being used;

'A' marks

awarded for the accuracy of the answers;

Marks without 'M' or 'A'

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. Use of notation different from those in the marking scheme should not be penalized.
- 5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 6. Marks may be deducted for wrong units (u) or poor presentation (pp).
 - a. The symbol <u>u-1</u> should be used to denote 1 mark deducted for u. At most deduct 1 mark for u for the whole paper.
 - b. The symbol pp-1 should be used to denote 1 mark deducted for pp. At most deduct 2 marks for pp for the whole paper. For similar pp, deduct 1 mark for the first time that it occurs. Do not penalize candidates twice in the paper for the same pp.
 - C. At most deduct 1 mark in each question. Deduct the mark for u first if both marks for u and pp may be deducted in the same question.
 - d. In any case, do not deduct any marks for pp or u in those steps where candidates could not score any marks.
- 7. Marks entered in the Page Total Box should be the NET total scored on that page.
- 8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to', 'f.t.' stands for 'follow through' and 'or equivalent' means 'accepting equivalent forms of the equation which has been simplified and without uncollected like terms'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

六 PX 4)	いのの	OKILACIIL	O OSE ONL!			
	Solution		Marks	Remarks		
$\frac{m^3}{(mn)^2} = \frac{m^3}{m^2 n^2}$ $= \frac{m^3}{n^2}$ $= \frac{m}{n^2}$			1M 1M (3)	applying $(ab)^p = a^p b^p$ applying $\frac{a^p}{a^q} = a^{p-q}$		
f(2) = 5 ∴ the remainder is 5.	2 ³ -2 ² +2-1		2A 1A			
1	$ \begin{array}{r} 1+1+3 \\ -2 \overline{\smash{\big)}1-1+1-1} \\ 1-2 \\ \hline 1+1-1 \\ 1-2 \end{array} $) IA			
∴ remainder = 5	3-1 3-6 5		1A 1A			
	Perimeter = $[3+3+\frac{1}{3}]$		1M+1A	1M for summation (3+3+?) 1A for arc length 1M for summation		
3 cm	Perimeter = $[3+3+3]$ ≈ 8.62 cm	5	1A(3)	r.t. 8.62, u-1 for missing unit		
$x^{2} + x - 6 > 0$ $(x+3)(x-2) > 0$ $x < -3$ or $x > 2$	-1 0 1 2	1 1 1 3 4 5	1M (3)	For factorization only Distinct roots and ">0" No mark for $x < -3$, $x > 2$ etc or $ \begin{array}{c} -3 & 2 \\ \hline -3 & 2 \end{array} $		

Solution	Marks	Remarks
	IVIAIKS	INCHIGINS
Ignore writings on the diagram when marking this question. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	1A 1A 1M 1A 1A 1A 1A 1M+1A	Can be absorbed below Can be absorbed below u -1 for missing unit Can be absorbed below $1M \text{ for } \angle DAC = \angle DBC$
$y = \frac{1}{2}(x+3)$ $2y = x+3$ $x = 2y-3$ In the above linear relation, the coefficient of y is 2.	1A 1A 1M	removing brackets
Let $x_0 = 2y_0 - 3$. If $y = y_0 + 1$, then $x = 2(y_0 + 1) - 3 = x_0 + 2$. \therefore x will be increased by 2 if y is increased by 1.	1M (4)	Putting $y = y_0 + 1$ or substituting two particular values of y which differ by 1
(a) The coordinates of A and B are $(-1, 5)$ and $(4, 3)$ resp. (b) Slope of $AB = \frac{5-3}{-1-4}$ Equation of AB : $\frac{y-3}{x-4} = -\frac{2}{5}$	1A 1M 1M	Irrespective of order Accept writing on the diagran
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1A (4)	or equivalent
(a) New price = $(\$) 80 \times (1 + 20\%)$ = $\$96$	1A 1A	<i>u</i> −1 for missing unit
(b) Peter pays: $(\$) 96 \times (1-20\%)$ = \\$76.8	1M 1A (4)	<i>u</i> −1 for missing unit

/\IM3		TIERO OOL	
	Solution	Marks	Remarks
9. C	$\angle ABC = 60^{\circ}$ Using sine rule, $AB = 8 \text{ (cm)}$	1A	Can be absorbed below
8 cm	$\frac{AB}{\sin 50^{\circ}} = \frac{8 \text{ (cm)}}{\sin 60^{\circ}}$ $AB \approx 7.0764 \text{ (cm)}$	1M	
	≈ 7.08 cm	1A	r.t. 7.08 , $u-1$ for missing uni
<u> </u>	Area of $\triangle ABC \approx \frac{1}{2} (8)(7.07642) \sin 70^{\circ}$	<u> </u>	
A	$\approx 26.6 \text{ cm}^2$	1A (5)	r.t. 26.6, u –1 for missing uni
10. (a)			
44 ≤ x ·	2 52 48		
52.≤ x -	56 9		
60 ≤ x ·	< 68		
68≤x	Paragraphic Committee Comm		
$76 \le x \le 3$	< 84 80 2	1A+1A+1A (3)	1A for each column
(b) Mean = 64 Standard deviation = 8	3	1A 1A (2)	
(c) Standard score = $\frac{76}{}$	<u>– 64</u> 8	1M	
= 1.5	•	1A (2)	
(d) Let her score in the se $v-58$	cond test be y , then		·
$\frac{y-58}{10} = 1.5$ $y = 73$		1M 1A	
,		(2)	
2001 CE MATH 1_5			

	Solution	Marks	Remarks
11.	P A		
	ince $A'P = x$ (cm), $(12-x)^2 + 6^2 = x^2$ $144 - 24x + x^2 + 36 = x^2$ $x = 7.5$	1A 1A 1A (3)	Can be absorbed below or written on the diagram $u-1 \text{ for writing } x = 7.5 \text{ cm}$
(L1) In \triangle s PBA' and $A'CR$, L2) (i) $\angle PBA' = \angle A'CR = 90^{\circ}$ L3) Since $\angle A'PB + 90^{\circ} + \angle BA'P = 180^{\circ}$ (\angle sum of \triangle) L4) and $\angle RA'C + 90^{\circ} + \angle BA'P = 180^{\circ}$ (adj. \angle s on st. line) L5) \therefore (ii) $\angle A'PB = \angle RA'C$ L6) Hence $\triangle PBA' \sim \triangle A'CR$ (AAA)		[Δ內角和] [直線上的鄰角] (equiangular), (AA) [等角]
ſ	Marking Scheme :		
	Case 1 Any correct proof with correct reasons.	3	
	Case 2 Any correct proof without reasons. In addition, any relevant correct argument with correct reason - L3, L4 or L6 (at most 1 mark)	1	At most 2 marks
	Case 3 Any relevant correct argument with correct reason - L2, L3 or L4 (at most 1 mark)	1	At most 1 mark
	et $A'R = y$ cm and use the result of (b), $\frac{A'R}{A'C} = \frac{PA'}{PB}$ $\frac{y}{6} = \frac{7.5}{12 - 7.5}$ $y = 10$ e. $A'R = 10$ cm	1M 1A (2)	u–1 for missing unit

只限教師參閱 FOR TEACHER	S' USE	ONLY
Solution	Marks	Remarks
12. (a) (i) Perimeter of $F_{40} = [10 + (40 - 1) \times 1]$ (cm) = 49 cm	1A 1A	u−1 for missing unit
(ii) The sum of the perimeters of the 40 figures $= [40 \times \frac{10+49}{2}] \text{ (cm)} \qquad [40 \times \frac{2 \times 10 + (40-1) \times 1}{2}] \text{ (cm)}$ $= 1180 \text{ cm}$	1M 1A (4)	<i>u</i> −1 for missing unit

(b)	(i)	Area of $F_2 = \left[4 \times \left(\frac{11}{10}\right)^2\right]$] (cm ²)
		$= 4.84 \text{ cm}^2$	$\frac{121}{25} \text{ cm}^2$

1 M	Using the square of linear ratio
1 A	r.t. 4.84, $u-1$ for missing unit

(ii)	Area of $F_3 = 4$	$\times \left(\frac{12}{10}\right)^2$	$(cm^2) = 5.76$	6 (cm²)
	4 . C.			

•	Area of F_2 - Area of $F_1 \neq$ Area of F_3 - Area of F_2	
	$(0.84 \text{ cm}^2 \neq 0.92 \text{ cm}^2)$	
	the areas of figures E E E do not form	ı

the areas of figures
$$F_1, F_2, \dots, F_{40}$$
 do not form an arithmetic sequence.

1**M**

Solution Marks Remarks 13. (a) Let $S = at + br^2$ for some not serif constants a suit b . Solving $\begin{cases} 33 = a + b \\ 56 = 2a + 4b \end{cases}$, we have $a = 18$ and $b = -5$ $\therefore S = 38t - 5t^2$ (b) When $S = 40$, $5t^2 - 38t + 40 = 0$ $t = 1.26$ or 6.34 14. (c) S (d) $t = 1.26$ or 6.34 15. 16. 17. 1.26, 6.34 18. 19. 19. 10. 10. 10. 10. 11. 11			NO USE	CNLT
Solving $\begin{cases} 33 = a + b \\ 56 = 2a + 4b \end{cases}$, we have $a = 38 \text{ and } b = -5$ $\therefore S = 38t - 5t^2$ (b) When $S = 40$, $5t^2 - 38t + 40 = 0$ $t = 1.26 \text{ or } 6.34$ $19 \pm \sqrt{161}$ 50 40 30 20 10 $1 = 1.26 \text{ or } 6.34$		Solution	Marks	Remarks
t = 1.26 or 6.34 $\frac{19 \pm \sqrt{161}}{5}$ 1A 1. 1. 1.26, 6.34 1. 1. 1.26, 6.34 1. 1. 1.26, 6.34 1. 1. 1. 1.26, 6.34 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	13. (a)	Solving $\begin{cases} 33 = a + b \\ 56 = 2a + 4b \end{cases}$, we have $a = 38 \text{ and } b = -5$	1M 1A	
From the graph, S is greatest when $t \approx 3.8$.	(b)	$t = 1.26 \text{ or } 6.34$ $19 \pm \sqrt{161}$	1A	
2001-CE-MATH 1-8		From the graph, S is greatest when $t \approx 3.8$.	1A	1M for the curve, joining at least 6 pts. smoothly Accept 3.6 – 3.9,

		/\rux			TEACH		ONLI
			Solutio	n		Marks	Remarks
4. (a)	(i)	•	f(x)				
		*	1(4)				
		1	0				
		1.05	-0.0237				
		1.1	0.0105	THE PARTY OF THE P			
		1.15	0.111			1A	r.t0.02, 0.01
	(ii)	From (i), the	root lies in the	interval [1.05, 1.1].	1 M	Can be absorbed in the
		Using the meth		T		1	table below
		$\begin{bmatrix} a \\ [f(a) < 0] \end{bmatrix}$	$b \\ [f(b) > 0]$	$m=\frac{a+b}{2}$	f (<i>m</i>)		
		1.0500	1.1000	1.0750	-0.0144	1M	Testing sign of mid-value
		1.0750	1.1000	1.0875	-0.0039	1M	Choosing the correct interva
		1.0875 1.0875	1.1000 1.0938	1.0938	0.0028		
		1.0907	1.0938	1.0907 1.0923	-0.0006 0.0011		
		1.0907	1.0923	1.0915	0.0002		
		1.0907	1.0915				
			<i>h</i> < 1.0915				
		$x \approx 1.091$	(correct to 3 of	decimal places)		1A (5)	f.t.
(b)	1000	given conditions $0(1+r\%)^4 + 100$ x = 1+r%, then $1000x^4 + 1000$ $x^4 + x^3 + x^2 + 1000$	$0(1+r\%)^3 + 1000x^2 + 10$	$000(1+r\%)^2+100$	00(1+r%) = 5000	1M+1A	1M for compound interest
		$\frac{x(x^4 - 1)}{x - 1} = 5$ $x^5 - x = 5x - 5$				1M+1A	1M for sum of the sequence
		$x^5 - 6x + 5 = 0$					
	Fron	$n (a), x \approx 1.091$ $r \approx 9.1$				1M 1A (6)	Using the result of (a)(ii) f.t.
01-CE-N	MATH	I 1–9					

只限教師參閱

FOR TEACHERS' USE ONLY

			· OILI
	Solution	Marks	Remarks
16. D G	A A A A A A A A A A		
(a) In the	ne trapezium BCDE,		
	height = $x \sin 60^{\circ}$ (cm) $\frac{\sqrt{3}}{2}x$ (cm) CD = (6-x) (cm)] 1A	For either, can be absorbed below
.:.	$\frac{6+(6-x)}{2} \times \frac{\sqrt{3}}{2} x = 5\sqrt{3}$	1A	
	$\frac{\sqrt{3}(12-x)x}{4} = 5\sqrt{3}$		
	$2\left(\frac{1}{2}x^2\sin 60^\circ\right) + 5\sqrt{3} + \frac{1}{2}(6^2)\sin 60^\circ = \frac{1}{2}(x+6)^2\sin 60^\circ$	1A+1A	1A for the area of one triangle 1A for all
	$2x^2 + 20 + 36 = (x+6)^2$		
	$x^{2} - 12x + 20 = 0$ (x-2)(x-10) = 0	1	
	x = 2 or $x = 10$ (rejected)	1A (4)	Accept " $x = 2$ only" u-1 for writing $x = 2$ cm
(b) (i)	$\approx 21.6149 \text{ (cm}^2\text{)}$	1 M	
	A'D ≈ 4.6492 (cm) ≈ 4.65 cm	1 A	r.t. 4.65, $u-1$ for missing unit
(ii)	Let M , N be the mid-points of EB and DC respectively, then $A'M = 6 \sin 60^{\circ} \text{ (cm)} = 3\sqrt{3} \text{ (cm)}$, $MN = 2 \sin 60^{\circ} \text{ (cm)} = \sqrt{3} \text{ (cm)}$, and		
	$MN = 2 \sin 60^{\circ} \text{ (cm)} = \sqrt{3} \text{ (cm)}$, and $A'N = \sqrt{A'D^2 - DN^2}$		
	$\approx \sqrt{21.6149 - 2^2}$ (cm) $\approx \sqrt{17.6149}$ (cm) 4.197 (cm)	1M	
	$\approx \sqrt{17.6149} \text{ (cm)} \qquad \qquad \boxed{4.197 \text{ (cm)}}$ The angle between the planes $BCDE$ and $A'BE$ is $\angle A'MN$. $\cos \angle A'MN \approx \frac{(3\sqrt{3})^2 + (\sqrt{3})^2 - 17.6149}{2(3\sqrt{3})(\sqrt{3})}$	1 A	
	≈ 0.6881 $\angle A'MN \approx 46.5^{\circ}$	1A	r.t. 46.5, $u-1$ for missing unit
(iii)	Required volume = $\frac{1}{3}$ (area of trapezium <i>CDEB</i>)($A'M \sin \angle A'MN$)		
	$\approx \frac{1}{3} (5\sqrt{3})(3\sqrt{3} \sin 46.5^{\circ}) \text{ (cm}^3)$	1 M	
	≈ 10.9 cm^3	1A (7)	r.t. 10.9 , $u-1$ for missing unit
2001-CE-MATI	H 1–11	l '	

	Solution	Marks	Remarks
7. (a) (i)	Centre = $\left(\frac{p}{2}, 0\right)$, radius = $\frac{p}{2}$ Equation of the circle <i>OPS</i> :	1A+1A	Can be absorbed below
	$\left(\frac{y}{x}\right)\left(\frac{y}{x-p}\right) = -1$	2A	
0	$x(x-p) + y^{2} = 0$ $\left(x - \frac{p}{2}\right)^{2} + y^{2} = \left(\frac{p}{2}\right)^{2}$ $x^{2} + y^{2} - px = 0$ $x^{2} + y^{2} - px + pa - a^{2} - b^{2} = 0$	1A	
'	Let the equation of the circle <i>OPS</i> be $x^2 + y^2 + Dx + Ey + F = 0$,		
	then $\begin{cases} F = 0 \\ p^{2} + pD + F = 0 \\ a^{2} + b^{2} + aD + bE + F = 0 \end{cases}$	1A	for anyone
	which gives $F = 0$, $D = -p$ and $E = -\frac{a^2 + b^2 - pa}{b}$.	1A	for any two being correct
	$\therefore \text{ the equation is } x^2 + y^2 - px - \frac{a^2 + b^2 - pa}{b} y = 0.$	1A	
(a) (ii)	∴ S lies on the circle <i>OPS</i> , ∴ $a^2 + b^2 - pa = 0$	1M	Sub. (a, b) into eqtn. in (a)
	Since $OS \perp SP$, $\therefore \left(\frac{b}{a-p}\right)\left(\frac{b}{a}\right) = -1$ or $a^2 + b^2 - pa = 0$.	1M	
	$OR = OQ \cos \angle POQ$	1A	
	Using Pythagoras' Theorem, $OS^2 = a^2 + b^2$ = pa	1A	
	$= OP \cdot OR$ $= OP \cdot OQ \cos \angle POQ$	1	
	Since $\cos \angle SOR = \frac{OR}{OS} = \frac{OS}{OP}$ $OR = OQ \cos \angle POQ$ $OS^2 = OP \cdot OR$	IM+IA IA	1M for considering cos ∠SOR or the similar triangles
	$OS^2 = OP \cdot OR$ $= OP \cdot OQ \cos \angle POQ$	1	
	Using cosine rule, $OP \cdot OQ \cos \angle POQ$		
	$=\frac{1}{2}\left(OP^2+OQ^2-PQ^2\right)$	1A	Cosine rule
	$= \frac{1}{2} \left[\left(OS^2 + PS^2 \right) + \left(OR^2 + QR^2 \right) - \left(QR^2 + PR^2 \right) \right]$	1M	Pythagoras' Theorem
	$= \frac{1}{2} \left(OS^2 + PS^2 + OR^2 - PR^2 \right)$	1A	
	$= \frac{1}{2} \left[OS^2 + \left(PR^2 + RS^2 \right) + \left(OS^2 - RS^2 \right) - PR^2 \right]$	آء آھ	
	$= OS^2$	<u>1</u> (7)	

六次 教 即 参 阅 TON TEACHERS USE UNLT			
Solution	Marks	Remarks	
2001 OD MATEUR 1 12			