UNCLASSIFIED

AD NUMBER AD870534 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to DoD only; Administrative/Operational Use; JUN 1970. Other requests shall be referred to NASA Marshall Space Flight Center, Huntsville, AL. AUTHORITY AEDC ltr, 12 Jul 1974

AEDC-TR-70-122

ARCHIVE COPY DO NOT LOAN

Copy 1

OF THE J-2S ROCKET ENGINE
IN ROCKET DEVELOPMENT TEST CELL (J-4)
[TESTS J-4-1902-13 THROUGH J4-1902-15]

C. H. Kunz and H. J. Counts, Jr. ARO, Inc.

June 1970

This chart

Each transmittal of this document outside the Department of Defense must have prior approval of NASA, Marshall Space Flight Center (PM-EP-J), Humsville, Alabama 35812

ENGINE TEST FACILITY

ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

ARNOLD AIR FORCE STATION, TENNESSEE

PROPERTY OF U. S. AIR FORCE AEDC LIBRARY F40600 - 69 - C - 0001

NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

ALTITUDE DEVELOPMENTAL TESTING OF THE J-2S ROCKET ENGINE IN ROCKET DEVELOPMENT TEST CELL (J-4) (TESTS J4-1902-13 THROUGH J4-1902-15)

C. H. Kunz and H. J. Counts, Jr. ARO, Inc.

Each transmittal of this document outside the Department of Defense must have prior approval of NASA, Marshall Space Flight Center (PM-EP-J), Huntaville, Alabama 35812.

Îms C.

ر د ماری

Hellan Cole The AF old

FOREWORD

The work reported herein was sponsored by the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) (PM-EP-J), under Program Element 921E, Project 9194.

The results of the tests presented were obtained by ARO, Inc., (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under Contract F40600-69-C-0001. Program direction was provided by NASA/MSFC; technical and engineering liaison was provided by North American Rockwell Corporation, Rocketdyne Division, manufacturer of the J-2S rocket engine, and McDonnell Douglas Astronautics Company, manufacturer of the S-IVB stage. The testing reported herein was conducted between May 15 and June 4, 1969, in Rocket Development Test Cell (J-4) of the Engine Test Facility (ETF) under ARO Project No. KA1902. The manuscript was submitted for publication on March 27, 1970.

Information in this report is embargoed under the Department of State International Traffic in Arms Regulations. This report may be released to foreign governments by departments or agencies of the U. S. Government subject to approval of NASA, Marshall Space Flight Center (PM-EP-J), or higher authority. Private individuals or firms require a Department of State export license.

This technical report has been reviewed and is approved.

Walter C. Knapp Lt Colonel, USAF AF Representative, ETF Directorate of Test Roy R. Croy, Jr. Colonel, USAF Director of Test

ABSTRACT

Seven firings of the Rocketdyne J-2S rocket engine (S/N J-112-1C) were conducted during test periods J4-1902-13, -14, and -15 on May 15 and 22, and June 4, 1969, respectively. The major objectives of these test periods were: (1) to determine a method of increasing fuel turbine inlet temperature in order to prevent turbine icing and attain stable high thrust idle-mode operation, and (2) to demonstrate post-main-stage transition to low thrust idle mode. Changes in injector mixture ratio during high thrust idle-mode operation from 1.55 to 2.02 increased inlet temperature, in general, from 85 to 190°F for the fuel turbine, and from 45 to 95°F for the oxidizer turbine. Stable high thrust idle-mode operation was attained on five firings which had fuel turbine inlet temperatures above 160°F. Satisfactory transition to post-main-stage low thrust idle mode was accomplished.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Clight Center (PM-EP-J), Huntsville, Alabama 35812.

ato 12 July 1st, signed

CONTENTS

		Page
II.	ABSTRACT NOMENCLATURE INTRODUCTION APPARATUS PROCEDURE RESULTS AND DISCUSSION SUMMARY OF RESULTS REFERENCES	vii 1 6 6 12
	APPENDIXES	
I.	ILLUSTRATIONS	
Figu	re	
2. 3. 4.	Test Cell J-4 Complex	16 17 18
7. 8. 9.	Engine Start Logic Schematic	24
12. 13.	Ratio, Firing 13A Propellant Feed System Performance, Firing 13A Thrust Chamber and Injector Chilldown Characteristics, Firing 13A Engine Ambient and Combustion Chamber Pressures, Firing 14A Engine Total Propellant Flow Rate and Injector Mixture	30
15. 16. 17.	Ratio, Firing 14A Propellant Feed System Performance, Firing 14A Thrust Chamber and Injector Chilldown Characteristics, Firing 14A Engine Ambient and Combustion Chamber Pressures, Firing 14B Engine Total Propellant Flow Rate and Injector Mixture	34
19. 20. 21.	Ratio, Firing 14B Propellant Feed System Performance, Firing 14B Thrust Chamber and Injector Chilldown Characteristics, Firing 14B Engine Ambient and Combustion Chamber Pressures, Firing 14C Engine Total Propellant Flow Rate and Injector Mixture	38 39
23.	Ratio, Firing 14C	42

AEDC-TR-70-122

Figure	Pa	ge
25. Engine Ambient and Combustion Chamber Pressures, Firing 15A26. Engine Total Propellant Flow Rate and Injector Mixture		44
Ratio, Firing 15A		
27. Propellant Feed System Performance, Firing 15A		
28. Thrust Chamber and Injector Chilldown Characteristics, Firing 15A		
29. Engine Ambient and Combustion Chamber Pressures, Firing 15B	!	48
30. Engine Total Propellant Flow Rate and Injector Mixture Ratio, Firing 15B		49
31. Propellant Feed System Performance, Firing 15B		
32. Thrust Chamber and Injector Chilldown Characteristics, Firing 15B		
33. Engine Ambient and Combustion Chamber Pressures, Firing 15C		
34. Engine Total Propellant Flow Rate and Injector Mixture		_
Ratio, Firing 15C		53
35. Propellant Feed System Performance, Firing 15C		
36. Thrust Chamber and Injector Chilldown Characteristics, Firing 15C		
37. Mixture Ratio Influence on Turbine Inlet Temperatures		
38. Turbine Performance, Firing 13A		
39. Turbine Performance, Firing 15C		
40. Post-Main-Stage Low Thrust Idle-Mode Chamber and Engine Ambient		
Pressures, Firing 14C		59
41. Post-Main-Stage Low Thrust Idle-Mode Propellant Feed System		
Performance, Firing 14C		60
42. Post-Main-Stage Low Thrust Idle-Mode Thrust Chamber Temperature		
Transients, Firing 14C		61
43. Post-Main-Stage Low Thrust Idle-Mode Chamber and Engine Ambient		
Pressures, Firing 15A		61
44. Post-Main-Stage Low Thrust Idle-Mode Propellant Feed System		
Performance, Firing 15A		62
45. Post-Main-Stage Low Thrust Idle-Mode Temperature Transients,		
Firing 15A		63
46. Post-Main-Stage Low Thrust Idle-Mode Chamber and Engine Ambient		
Pressures, Firing 15B		64
47. Post-Main-Stage Low Thrust Idle-Mode Propellant Feed System	•	
Performance, Firing 15B		65
48. Post-Main-Stage Low Thrust Idle-Mode Thrust Chamber Temperature		
Transients, Firing 15B		66
49. Pump Head Rise during Post-Main-Stage Low Thrust Idle Mode		
50. Representative Post-Main-Stage Low Thrust Idle-Mode Side Forces		
II. TABLES		
I. Major Engine Components (Effective Test J4-1902-13, -14, and -15)		71
II. Summary of Engine Orifices		
III. Engine Modifications (Between Test J4-1902-12 and -15)		73
IV. Engine Component Replacements (Between Test J4-1902-12 and -15) .		
	-	

		Page		
II. TAB	BLES (Continued)			
VI.	Engine Purge Sequence	. 76		
III. INST	TRUMENTATION	. 78		
	NOMENCLATURE			
A	Area, in. sq			
ASI	Augmented spark igniter			
CCP	Customer connect panel			
C_D	Discharge coefficient			
EBW	Exploding bridgewire			
FM	Frequency modulation			
MFV	Main fuel valve			
MOV	Main oxidizer valve			
O/F	Propellant mixture ratio, oxidizer to fuel, by weight			
S/N	Serial number			
SPTS	Solid-propellant turbine starter			
T/C	Thrust chamber			
t ₀	Time at which helium control and idle-mode solenoids are energized; estart	ngine		
VSC	Vibration safety counts, defined as engine vibration in excess of 150 g rms 960- to 6000-Hz frequency range	s in a		
SUBSCR	IPTS			
f	Force			
m Mass				
t .	Throat			

SECTION I

Testing of the Rocketdyne J-2S rocket engine using an S-IVB battleship stage has been in progress at AEDC since December 1968. Reported herein are the results of the seven engine firings conducted during test periods J4-1902-13, -14, and -15 on May 15 and 22, and June 4, 1969, respectively, utilizing engine S/N J-112-1C. The major objectives of these test periods were to: (1) determine a method of increasing fuel turbine inlet temperature in order to prevent icing and attain stable high thrust idle-mode operation, and (2) demonstrate post-main-stage transition to low thrust idle mode.

The firings were accomplished in Rocket Development Test Cell (J-4) (Figs. 1 and 2, Appendix I) of the Engine Test Facility (ETF). The firings were accomplished at pressure altitudes ranging from 94,000 to 99,000 ft (geometric pressure altitude, Z, Ref. 1) at engine start. Data collected to accomplish the test objectives are presented herein. The results of the previous test periods are presented in Ref. 2.

SECTION II APPARATUS

21 TEST ARTICLE

The test article was a J-2S rocket engine (Fig. 3) designed and developed by Rocketdyne Division of North American Rockwell Corporation. The engine uses liquid oxygen (LOX) and liquid hydrogen as propellants and is designed to operate either in idle mode at a nominal thrust of 5000 lbf and mixture ratio of 2.5, or at main stage at any precalibrated thrust level between 230,000 and 265,000 lbf at a mixture ratio of 5.5. The engine design is capable of transition from idle-mode to main-stage operation after a minimum of 1-sec idle mode; from main stage the engine can either be shut down or make a transition back to idle-mode operation before shutdown. An S-IVB battleship stage was used to supply propellants to the engine. A schematic of the battleship stage is presented in Fig. 4.

Listings of major engine components and engine orifices for this test period are presented in Tables I and II, respectively (Appendix II). All engine modifications and component replacements performed during this report period are presented in Tables III and IV, respectively.

2.1.1 J-2S Rocket Engine

The J-2S rocket engine (Figs. 3 and 5, Ref. 3) features the following major components:

1. Thrust Chamber - The tubular-walled, bell-shaped thrust chamber consists of an 18.6-in.-diam combustion chamber with a throat diameter of 12.192 in., a characteristic length (L*) of 35.4, and a divergent nozzle with an expansion ratio of 39.62. Thrust chamber length (from the injector flange to the nozzle exit) is 108.6 in. Cooling

is accomplished by the circulation of engine fuel flow downward from the fuel manifold through 180 tubes and then upward through 360 tubes to the injector and by film cooling inside the combustion chamber.

- 2. Thrust Chamber Injector The injector is a concentric-orificed (concentric fuel orifices around the oxidizer post orifices), porous-faced injector. Fuel and oxidizer injector orifice areas are 19.2 and 5.9 sq in., respectively. The oxidizer portion is compartmented, the outer compartment supplying oxidizer during main-stage operation only. The porous material forming the injector face allows approximately 3.5 percent of main-stage fuel flow to transpiration cool the face of the injector.
- 3. Augmented Spark Igniter The augmented spark igniter unit is mounted on the thrust chamber injector and supplies the initial energy source to ignite propellants in the main combustion chamber. The augmented spark igniter chamber is an integral part of the thrust chamber injector. Fuel and oxidizer are ignited in the combustion area by two spark plugs.
- 4. Fuel Turbopump The fuel turbopump is a one and one-half stage, centrifugal-flow unit, powered by a direct-drive, two-stage turbine. The pump is self-lubricated and nominally produces, at the 265,000-lbf thrust rated condition, a head rise of 60,300 ft of liquid hydrogen at a flow rate of 9750 gpm for a rotor speed of 29,800 rpm.
- 5. Oxidizer Turbopump The oxidizer turbopump is a single-stage, centrifugal-flow unit, powered by a direct-drive, two-stage turbine. The pump is self lubricated and nominally produces, at the 265,000-lbf thrust rated condition, a head rise of 3250 ft of liquid oxygen at a flow rate of 3310 gpm for a rotor speed of 10,500 rpm.
- 6. Propellant Utilization Valve The motor-driven propellant utilization valve is a sleeve-type valve which is mounted on the oxidizer turbopump and bypasses liquid oxygen from the discharge to the inlet side of the pump to vary engine mixture ratio.
- 7. Main Oxidizer Valve The main oxidizer valve is a pneumatically actuated, two-stage, butterfly-type valve located in the oxidizer high-pressure duct between the turbopump and the injector. The first-stage actuator positions the main oxidizer valve at the 12-deg position to obtain initial main-stage-phase operation; the second-stage actuator ramps the main oxidizer valve fully open to accelerate the engine to the main-stage operating level.

- 8. Main Fuel Valve The main fuel valve is a pneumatically actuated, butterfly-type valve located in the fuel high-pressure duct between the turbopump and the fuel manifold.
- 9. Pneumatic Control Package The pneumatic control package controls all pneumatically operated engine valves and purges.
- 10. Electrical Control Assembly The electrical control assembly provides the electrical logic required for proper sequencing of engine components during operation. The logic requires a minimum of 1-sec idle-mode operation before transition to main stage.
- 11. Flight Instrumentation Package The instrumentation package contains sensors required to monitor critical engine parameters. The package provides environmental control for the sensors.
- 12. Helium Tank The helium tank has a volume of 4000 cu in. and provides a helium pressure supply to the engine pneumatic control system for three complete engine operational cycles.
- 13. Thrust Chamber Bypass Valve The thrust chamber bypass valve is a pneumatically operated, normally open, butterfly-type valve which allows fuel to bypass the thrust chamber body during idle-mode operation.
- 14. Idle-Mode Valve The idle-mode valve is a pneumatically operated, ball-type valve which supplies liquid oxygen to the idle-mode compartment of the thrust chamber injector during both idle-mode and main-stage operation.
- 15. Hot Gas Tapoff Valve The hot gas tapoff valve is a pneumatically operated, butterfly-type valve which provides on-off control of combustion chamber gases to drive the propellant turbopumps.
- 16. Solid-Propellant Turbine Starter The solid-propellant turbine starter provides the initial driving energy (transition to main stage) for the propellant turbopumps to prime the propellant feed systems and accelerate the turbopumps to 75 percent of their main-stage operating level. A three-start capability is provided.

2.1.2 S-IVB Battleship Stage

The S-IVB battleship stage, which is mechanically configured to simulate the S-IVB flightweight vehicle, is approximately 22 ft in diameter and 49 ft long and has a maximum usable propellant capacity of 43,000 lbm of liquid hydrogen and 194,000 lbm of liquid oxygen. The propellant tanks, fuel above oxidizer, are separated by a common bulkhead. Propellant prevalves, in the low-pressure ducts (external to the tanks)

interfacing the stage and engine, retain propellants in the stage until being admitted into the engine to the main propellant valves and serve as emergency engine shutoff valves. Vent and relief valve systems are provided for both propellant tanks.

Pressurization of the fuel and oxidizer tanks was accomplished by facility systems using hydrogen and helium, respectively, as the pressurizing gases. The engine-supplied gaseous hydrogen and gaseous oxygen for fuel and oxidizer tank pressurization during flight were routed to the respective facility venting systems.

2.2 TEST CELL

Rocket Development Test Cell (J-4) Fig. 2, is a vertically oriented test unit designed for static testing of liquid-propellant rocket engines and propulsion systems at pressure altitudes of 100,000 ft. The basic cell construction provides a 1.5-million-lbf thrust capacity. The cell consists of four major components: (1) test capsule, 48 ft in diameter and 82 ft in height, situated at grade level and containing the test article; (2) spray chamber, 100 ft in diameter and 250 ft in depth, located directly beneath the test capsule to provide exhaust gas cooling and dehumidification; (3) coolant water, steam, nitrogen (gaseous and liquid), hydrogen (gaseous and liquid), liquid-oxygen and gaseous-helium storage and delivery systems for operation of the cell and test article; and (4) control building, containing test article controls, test cell controls, and data acquisition equipment. Exhaust machinery is connected with the spray chamber and maintains a minimum test cell pressure before and after the engine firing and exhausts the products of combustion from the engine firing. Before a firing, the facility steam ejector, in series with the exhaust machinery, provides a pressure altitude of 100,000 ft in the test capsule. A detailed description of the test cell is presented in Ref. 4.

The battleship stage and the J-2S engine were oriented vertically downward on the centerline of the diffuser/steam ejector assembly. This assembly consisted of a diffuser duct (20 ft in diameter by 150 ft in length), a centerbody steam ejector within the diffuser duct, a diffuser insert (13.5 ft in diameter by 30 ft in length) at the inlet to the diffuser duct, and a gaseous-nitrogen annular ejector above the diffuser insert. The diffuser insert was provided for dynamic pressure recovery of the engine exhaust gases and to maintain engine ambient pressure altitude (attained by the steam ejector) during the engine firing. The annular ejector was provided to suppress steam recirculation into the test capsule during steam ejector shutdown. The test cell was also equipped with: (1) a gaseous-nitrogen purge system for continuously inerting the normal air in-leakage of the cell; (2) a gaseous-nitrogen repressurization system for raising test cell pressure, after engine cutoff, to a level equal to spray chamber pressure and for rapid emergency inerting of the capsule; and (3) a spray chamber liquid-nitrogen supply and distribution manifold for initially inerting the spray chamber and exhaust ducting and for increasing the molecular weight of the hydrogen-rich exhaust products.

2.3 INSTRUMENTATION

Instrumentation systems were provided to measure engine, stage, and facility parameters. The engine instrumentation was comprised of flight instrumentation which

:

was provided to verify the flight instrumentation and to measure additional engine parameters. The flight instrumentation was provided and calibrated by the engine manufacturer; facility instrumentation was initially calibrated and periodically recalibrated at AEDC. Appendix III contains a list of all measured engine test parameters and the locations of selected sensing points.

Pressure measurements were made using strain-gage and capacitance-type pressure transducers. Temperature measurements were made using resistance temperature transducers and thermocouples. Oxidizer and fuel turbopump shaft speeds were sensed by magnetic pickup. Fuel and oxidizer flow rates to the engine were measured by turbine-type flowmeters which are an integral part of the engine. Vibrations were measured by accelerometers mounted on the oxidizer injector dome, thrust chamber throat, and on the turbopumps. Primary engine and stage valves were instrumented with linear potentiometers and limit switches.

The data acquisition systems were calibrated by: (1) precision electrical shunt resistance substitution for the pressure transducers and resistance temperature transducer units; (2) voltage substitution for the thermocouples; (3) frequency substitution for shaft speeds and flowmeters; and (4) frequency-voltage substitution for accelerometers and capacitance-type pressure transducer.

The types of data acquisition and recording systems used during this test period were: (1) a multiple-input digital data acquisition system scanning each parameter at 50 samples per second and recording on magnetic tape; (2) single-input, continuous-recording FM systems recording on magnetic tape; (3) photographically recording galvanometer oscillographs; (4) direct-inking, null-balance, potentiometer-type X-Y plotters and strip charts; and (5) optical data recorders. Applicable systems were calibrated before each test (atmospheric and altitude calibrations). Television cameras, in conjunction with video tape recorders, were used to provide visual coverage during an engine firing, as well as for replay capability for immediate examination of unexpected events.

24 CONTROLS AND SEQUENCE OF EVENTS

Control of the J-2S engine, battleship stage, and test cell systems during the terminal countdown was provided from the test cell control room. A facility control logic network was provided to interconnect the engine control system, major stage systems, the engine safety cutoff system, the observer cutoff circuits, and the countdown sequencer. A schematic of the engine start control logic is presented in Fig. 6. The sequence of engine events for start and shutdown is presented in Figs. 7a and b.

Low thrust idle mode was accomplished by sequencing the engine for operation with the main fuel valve, idle-mode oxidizer valve, and thrust chamber bypass valve in the open positions and the main oxidizer and hot gas tapoff valves in the closed positions. Transition from low thrust to high thrust idle mode was made by fully opening the hot gas tapoff valve and opening the main oxidizer valve to the first-stage position. Main-stage operation was accomplished from high thrust idle mode by closing the thrust chamber bypass valve and advancing the main oxidizer valve to the fully open position. Transition

from main stage to low thrust idle mode was accomplished by sequencing all valves back to their pre-main-stage low thrust idle-mode positions.

SECTION III PROCEDURE

Preoperational procedures were begun several hours before the test period. All consumable storage sysystems were replenished; and engine inspections, leak checks, and drying procedures were conducted. Propellant tank pressurants and engine pneumatic and purge gas samples were taken to ensure that specification requirements were met. Chemical analysis of propellants was provided by the propellant suppliers. Facility sequence, engine sequence, and engine abort checks were conducted within a 24-hr time period before an engine firing to verify the proper sequence of events. Facility and engine sequence checks consisted of verifying the timing of valves and events to be within specified limits; the abort checks consisted of electrically simulating engine malfunctions to verify the occurrence of an automatic engine cutoff signal. A final engine sequence check was conducted immediately preceding the test period.

Oxidizer dome and thrust chamber jacket purges were initiated before evacuating the test cell. After completion of instrumentation calibrations at atmospheric conditions, the test cell was evacuated to approximately 0.5 psia with the exhaust machinery, and instrumentation calibrations at altitude conditions were conducted. Immediately before loading propellants on board the vehicle, the cell and exhaust-ducting atmosphere was inerted. At this same time, the cell nitrogen purge was initiated for the duration of the test period. The vehicle propellant tanks were then loaded, and the remainder of the terminal countdown was conducted. Table V presents the engine purges used during the terminal countdown and immediately following the engine firing.

SECTION IV RESULTS AND DISCUSSION

4.1 TEST SUMMARY

Seven firings of the Rocketdyne J-2S rocket engine were conducted during test periods J4-1902-13 through 15 between May 15 and June 4, 1969. Pressure altitudes at engine start ranged from 94,000 to 99,000 ft.

The major objective of these test periods was to determine a method of increasing fuel turbine inlet temperatures in order to prevent turbine icing (as experienced during firings reported in Ref. 2) and attain stable high thrust idle-mode operation. A secondary objective was to demonstrate post-main-stage transition to low thrust idle mode. Fuel turbine inlet temperature was increased by increasing injector oxidizer-to-fuel mixture ratio. This mixture ratio increase was accomplished by variations in pump inlet pressures, thrust chamber fuel bypass flow, propellant utilization valve position, and main oxidizer valve first-stage position. The hot gas tapoff valve open position was increased from 53 to 59 deg for all three test periods. It should be noted that mixture ratios quoted herein are obtained from propellant flow rates through the injector, exclusive of fuel film coolant flow.

Test requirements and specific test results are summarized in Table VI. Start and shutdown transient operating times for selected engine valves are presented in Table VII. Figure 8 depicts engine start conditions for propellant pump inlets and helium tank. Main chamber and test cell ambient pressures, injector oxidizer-to-fuel ratio and total propellant weight flow, propellant feed system performance and thrust chamber chilldown data for all firings are presented in Figs. 9 through 36. Data presented in subsequent sections are from the digital data acquisition system, except where indicated otherwise. Primary test variables and results are summarized in the following table:

Firing J4-1902-	13A'	14A	14B	14C	15A	15B	15C
High thrust idle- mode duration, sec	12.5	13.8	13.8	13.8	13.8	13.7	13.7
Oxidizer pump inlet pressures, psia	38.9	45.9	39.1	39.0	38.9	33.2	31.8
Fuel pump inlet pressures, psia	37.4	39.3	38.9	38.6	39.8	32.8	27.1
MOV first stage position, deg	11	11	11	11	12	12	12
T/C fuel bypass orifice diameter, in.	1.50	Closed	Closed	Closed	None Installed	None Installed	None Installed
Propellant utilization valve position	Null [†]	Null	Null .	Closed	Null	Null	Null
Oxidizer turbine inlet temperature, °F	60	95	80	90	90	85	· ·45
Fuel turbine inlet temperature, °F	120	190	160	180	175	175	85
Injector O/F Ratio	1.73	1.93	1.94	2.02	1.88	1.88	1.60
Maximum chamber pressure attained, psia	260	270	250	295	310	300	300
Chamber pressure decay, psi/sec	7	None	None	None	None	None	13

4.2 TEST RESULTS

4.2.1 Firing 13A

The objective of this firing was to determine the effects of fuel bypass flow resulting from a 1.50-in. thrust chamber bypass orifice and an 11-deg main oxidizer valve first-stage position on high thrust idle-mode operation. Stable high thrust idle-mode operation was not attained with these test conditions. Main chamber pressure attained a maximum of 260 psia with a decay rate thereafter of 7 psi/sec. Fuel and oxidizer turbine inlet temperatures were 120 and 60°F, respectively, at an injector oxidizer-to-fuel ratio of 1.73 after 12.5 sec of high thrust idle-mode operation. Analysis of fuel and oxidizer turbine performance indicated that conditions were present in the oxidizer turbine which would support ice formation as shown in Fig. 37.

4.2.2 Firing 14A

The objective of this firing was to determine the effect of zero thrust chamber bypass flow and 11-deg main oxidizer valve first-stage position on high thrust idle-mode operation. Stable high thrust idle-mode operation was attained at a main chamber pressure of 270 psia. Fuel and oxidizer turbine inlet temperatures were 190 and 95°F, respectively, at an injector oxidizer-to-fuel mixture ratio of 1.93 after 13.8 sec of high thrust idle-mode operation.

4.2.3 Firing 14B

The objective of this firing was to determine the effect of reducing oxidizer pump inlet pressure on high thrust idle-mode operation. Stable high thrust idle-mode operation was attained at a main chamber pressure of 260 psia. The effect of oxidizer pump inlet pressure reduction on high thrust idle-mode operation can be seen by the following comparison. The data presented are after approximately 13 sec of high thrust idle-mode operation.

	14A	14B	Results
Oxidizer pump inlet pressure, psia	45.9	39.1	
Fuel pump inlet pressure, psia	39.3	38.9	
Main chamber pressure, psia	270	250	20-psi decrease
Injector mixture ratio, O/F	1.93	1.94	0.01 increase
Fuel turbine inlet temperature, °F	190	160	30°F decrease
Oxidizer turbine inlet temperature, °F	95	80	15°F decrease

4.2.4 Firing 14C

The objectives of this firing were to determine the effect of closing the propellant utilization valve on high thrust idle-mode operation and transition from main-stage to low thrust idle-mode operation. Stable high thrust idle-mode operation was attained at a main chamber pressure of 295 psia. The effect of propellant utilization valve position on high thrust idle-mode operation can be seen by the following comparison. The data presented are after approximately 13 sec of high thrust idle-mode operation.

	14B	14C_	Results
Propellant utilization valve position	Null	Closed	
Oxidizer pump inlet pressure, psia	39.1	39.0	
Fuel pump inlet pressure, psia	38.9	38.6	
Main chamber pressure, psia	250	295	45-psi increase
Injector mixture ratio, O/F	1.94	2.02	0.08 increase
Fuel turbine inlet temperature, °F	160	180	20°F increase
Oxidizer turbine inlet temperature, °F	80	90	10°F increase

4.2.5 Firing 15A

The objective of this firing was to determine the effect of maximum thrust chamber bypass flow (attained by removing the bypass line orifice) and increasing the main oxidizer valve second-stage position to 12 deg on high thrust idle-mode operation. Stable high thrust idle-mode operation was attained at a main chamber pressure of 310 psia. Fuel and oxidizer turbine inlet temperatures were 175 and 90°F, respectively, at an injector mixture ratio of 1.88 after 13.8 sec of high thrust idle-mode operation. The combined effect of main oxidizer valve first stage position change and increase in fuel bypass flow may be seen in the following table:

	14B	15A	Results
Main oxidizer valve first- stage position, deg	11	12	
Fuel bypass orifice size, in.	2.000	Open Line	
Oxidizer pump inlet pressure, psia	39.1	38.9	•

	14B	15A	Results
Fuel pump inlet pressure, psia	38.9	39.8	
Main chamber pressure, psia	250	310	60-psi increase
Injector mixture ratio, O/F	1.94	1.88	0.06 decrease
Fuel turbine inlet temperature, °F	165	178	13°F increase
Oxidizer turbine inlet temperature, °F	80	90	10°F increase

4.2.6 Firing 15B

The objective of this firing was to determine the effect on high thrust idle-mode operation of a low oxidizer pump inlet pressure (33 psia) and a nominal fuel pump inlet pressure (33 psia). Stable high thrust idle-mode operation was attained at a main chamber pressure of 300 psia. Inlet temperatures were 175°F for the fuel turbine and 55°F for the oxidizer turbine. Injector oxidizer-to-fuel mixture ratio was 1.88.

4.2.7 Firing 15C

The objective of this firing was to determine the effect of minimum oxidizer and fuel pump inlet pressures on high thrust idle-mode operation. Stable high thrust idle-mode operation was not attained. Main chamber pressure attained a maximum of 300 psia with a decay rate of 13 psi/sec thereafter. Analysis of fuel and oxidizer turbine data indicate oxidizer turbine icing was the cause of this pressure decay (Fig. 38).

4.3 HIGH THRUST IDLE-MODE OPERATION

Six previous high thrust idle-mode firings have been made at altitude conditions and are described in Ref. 2. Three of these firings were successful, and the other three experienced a significant decay in main chamber pressure after transition to high thrust idle mode. On firings which experienced chamber pressure decays, turbine inlet and exhaust gas temperatures were low enough to allow formation of ice in the turbines. As a result of the ice formation on these previous firings, the main objective of test periods 13, 14, and 15 was to develop conditions to prevent ice formation in the turbine system by increasing engine mixture ratio and the resultant tapoff gas temperature. Several methods were used to vary mixture ratio. These methods included: (1) changing pump inlet pressures, (2) varying thrust chamber fuel bypass flow, (3) varying propellant utilization valve position, and (4) increasing main oxidizer valve first-stage position. Also for the firings reported herein, tapoff valve gate open position was increased from 53 to 59 deg. The effect on mixture ratio of the previously mentioned variables are discussed in Section 4.2.

The influence injector mixture ratio has on both fuel and oxidizer turbine inlet temperatures is shown in Fig. 37. The temperatures and mixture ratios shown were those observed just before transition to main stage or engine cutoff. Mixture ratios are in the range from 1.46 to 2.02 and resulted in turbine inlet temperatures ranging from 72 to 142°F (fuel), and from 38 to 95°F (oxidizer). Firings with fuel turbine inlet temperatures below 140°F (firings 13A, 15C, and 12A) experienced a decay in main chamber pressure. Stable high thrust idle-mode operation occurred on the remaining seven firings. Analysis of fuel and oxidizer turbine temperatures on firings 13A and 15C (Figs. 38 and 39) indicate conditions existed which were conducive to ice formation. Turbine performance parameters for these firings showed that ice formed in the oxidizer turbine on test 15C.

Fuel turbine inlet temperature decreased during low thrust idle mode on all firings. This was attributed to a leaking tapoff valve. The leakage resulted in fuel turbine inlet temperatures ranging from -40 to -150°F just before transition to main stage. It is not known what effect this leakage has on turbine icing.

Detonations were observed to occur in the oxidizer dome on all firings during transition from low thrust to high thrust idle-mode operation. These detonations resulted in engine vibrations in excess of 150 g for very short durations (2 to 3 msec) on three firings (13A, 15A, and 15B). This, however, did not appear to have any adverse effects on engine operation, or result in damage to any engine components.

4.4 POST-MAIN-STAGE LOW THRUST IDLE MODE

A successful transition from main stage to low thrust idle mode was made for the first time during firing 14C. Other successful transitions were made on firings 15A and 15B. Engine ambient and combustion chamber pressures, propellant feed system performance, and thrust chamber and injector temperatures for the post-main-stage low thrust operating periods are shown in Figs. 40 through 48. As shown in these figures, post-main-stage low thrust idle mode differs markedly from pre-main-stage low thrust idle mode; it is similar to an extended shutdown transient. From 6 to 10 sec are required for chamber pressure to return to a steady-state pre-main-stage low thrust idle-mode level. It should also be noted from Fig. 49 that the head rise across both fuel and oxidizer pumps also requires from 6 to 10 sec to approximate a pre-main-stage head rise level.

4.5 ENGINE SIDE LOADS

No significant post-main-stage idle-mode side forces were experienced. Side load data recorded during firing 14C are presented in Fig. 50. These data are representative for all firings reported herein. Side loads experienced were normal and consistent with those recorded on previous firings. Post-main-stage low thrust idle-mode side forces are essentially identical to pre-main-stage values (less than 100 lbf).

SECTION V SUMMARY OF RESULTS

The results of the seven firings of the Rocketdyne J-2S rocket engine (S/N J-112-1C) conducted during test periods J4-1902-13 through -15 between May 15 and June 4, 1969, to determine a method of increasing fuel turbine inlet temperature sufficient to prevent turbine icing and attain stable high thrust idle-mode operation, are summarized as follows:

- 1. Injector oxidizer-to-fuel mixture ratio was varied from 1.52 to 2.02; this resulted in turbine inlet temperatures being increased from 85 to 190°F for the fuel turbine and from 45 to 95°F for the oxidizer turbine.
- 2. Steady-state, high thrust idle-mode operation was attained on five of the seven firings with fuel turbine inlet temperature above 160°F (firings 14A, 15B, 14C, 15A, and 15B).
- 3. Steady-state high thrust idle-mode operation was not attained on two firings with fuel turbine inlet temperatures below 120°F (firings 13A and 15C).
- 4. Post-main-stage low thrust idle-mode operation was successfully demonstrated. It appears to require from 6 to 10 sec to approximate a pre-main-stage pump head rise level and attain a steady-state chamber pressure.
- 5. No significant post-main-stage idle-mode side forces were experienced (less than 100 lbf).

REFERENCES

- 1. Dubin, M., Sissenwine, N., and Wexler, H. <u>U. S. Standard Atmosphere</u>, 1962. U. S. Government Printing Office, December 1962.
- 2. Franklin, D. E. and Tinsley, C. R. "Altitude Developmental Testing of the J-2S Rocket Engine in Rocket Development Test Cell (J-4) (Tests J4-1902-08, -11, and -12)." AEDC-TR-70-38, April 1970.
- 3. "J-2S Interface Criteria." Rocketdyne Document J-7211, October 16, 1967.
- 4. Test Facilities Handbook (Eighth Edition) (AD863646). "Large Rocket Facility, Vol. 3." Arnold Engineering Development Center, December 1969.

APPENDIXES

- I. ILLUSTRATIONS
- II. TABLES
- III. INSTRUMENTATION

Fig. 1 Test Cell J-4 Complex

Fig. 2 Test Cell J-4, Artist's Conception

Fig. 3 J-2S Engine General Arrangement

Fig. 4 S-IVB Battleship Stage/J-2S Engine Schematic

a. Thrust Chamber Fig. 5 Engine Details

b. Combustion Chamber Fig. 5 Continued

c. Injector Fig. 5 Continued

d. Injector to Chamber Fig. 5 Concluded

Fig. 6 Engine Start Logic Schematic

a. Start Sequence

b. Shutdown Sequence
Fig. 7 Engine Start and Shutdown Sequence

a. Fuel Pump
Fig. 8 Engine Start Conditions for Propellant Pump Inlets and Helium Tank

b. Oxidizer Pump Fig. 8 Continued

c. Helium Tank Fig. 8 Concluded

Fig. 9 Engine Ambient and Combustion Chamber Pressures, Firing 13A

Fig. 10 Engine Total Propellant Flow Rate and Injector Mixture Ratio, Firing 13A

b. Oxidizer
Fig. 11 Propellant Feed System Performance, Firing 13A

Fig. 12 Thrust Chamber and Injector Chilldown Characteristics, Firing 13A

Fig. 13 Engine Ambient and Combustion Chamber Pressures, Firing 14A

Fig. 14 Engine Total Propellant Flow Rate and Injector Mixture Ratio, Firing 14A

b. Oxidizer
Fig. 15 Propellant Feed System Performance, Firing 14A

Fig. 16 Thrust Chamber and Injector Chilldown Characteristics, Firing 14A

Fig. 17 Engine Ambient and Combustion Chamber Pressures, Firing 14B

Fig. 18 Engine Total Propellant Flow Rate and Injector Mixture Ratio, Firing 14B

b. Oxidizer
Fig. 19 Propellant Feed System Performance, Firing 14B

Fig. 20 Thrust Chamber and Injector Chilldown Characteristics, Firing 14B

Fig. 21 Engine Ambient and Combustion Chamber Pressures, Firing 14C

Fig. 22 Engine Total Propellant Flow Rate and Injector Mixture Ratio, Firing 14C

b. Oxidizer
Fig. 23 Propellant Feed System Performance, Firing 14C

Fig. 24 Thrust Chamber and Injector Chilldown Characteristics, Firing 14C

Fig. 25 Engine Ambient and Combustion Chamber Pressures, Firing 15A

Fig. 26 Engine Total Propellant Flow Rate and Injector Mixture Ratio, Firing 15A

0 ♣ -10

b. Oxidizer
Fig. 27 Propellant Feed System Performance, Firing 15A

TIME, SEC

Fig. 28 Thrust Chamber and Injector Chilldown Characteristics, Firing 15A

Fig. 29 Engine Ambient and Combustion Chamber Pressures, Firing 15B

Fig. 30 Engine Total Propellant Flow Rate and Injector Mixture Ratio, Firing 15B

b. Oxidizer
Fig. 31 Propellant Feed System Performance, Firing 15B

Fig. 32 Thrust Chamber and Injector Chilldown Characteristics, Firing 15B

Fig. 33 Engine Ambient and Combustion Chamber Pressures, Firing 15C

Fig. 34 Engine Total Propellant Flow Rate and Injector Mixture Ratio, Firing 15C

b. Oxidizer
Fig. 35 Propellant Feed System Performance, Firing 15C

Fig. 36 Thrust Chamber and Injector Chilldown Characteristics, Firing 15C

Fig. 37 Mixture Ratio Influence on Turbine Inlet Temperatures

a. Fuel Turbine Percentage Pressure Drop and Speed

b. Fuel Turbine Temperatures

c. Oxidizer Turbine Percentage Pressure Drop and Speed

d. Oxidizer Turbine Temperatures

Fig. 38 Turbine Performance, Firing 13A

a. Fuel Turbine Percentage Pressure
Drop and Speed

b. Fuel Turbine Temperatures

c. Oxidizer Turbine Percentage Pressure Drop and Speed

d. Oxidizer Turbine Temperatures

Fig. 39 Turbine Performance, Firing 15C

Fig. 40 Post-Main-Stage Low Thrust Idle-Mode Chamber and Engine Ambient Pressures, Firing 14C

b. Oxidizer
Fig. 41 Post-Main-Stage Low Thrust Idle-Mode Propellant Feed System
Performance, Firing 14C

Fig. 42 Post-Main-Stage Low Thrust Idle-Mode Thrust Chamber Temperature Transients, Firing 14C

Fig. 43 Post-Main-Stage Low Thrust Idle-Mode Chamber and Engine Ambient Pressures, Firing 15A

b. Oxidizer
Fig. 44 Post-Main-Stage Low Thrust Idle-Mode Propellant Feed System
Performance, Firing 15A

Fig. 45 Post-Main-Stage Low Thrust Idle-Mode Temperature Transients, Firing 15A

Fig. 46 Post-Main-Stage Low Thrust Idle-Mode Chamber and Engine Ambient Pressures, Firing 15B

Fig. 47 Post-Main-Stage Low Thrust Idle-Mode Propellant Feed System Performance, Firing 15B

b. Oxidizer

Fig. 48 Post-Main-Stage Low Thrust Idle-Mode Thrust Chamber Temperature Transients, Firing 15B

a. Firing 14C
Fig. 49 Pump Head Rise during Post-Main-Stage Low Thrust Idle Mode

b. Firing 15A Fig. 49 Continued

c. Firing 15B Fig. 49 Concluded

Fig. 50 Representative Post-Main-Stage Low Thrust Idle-Mode Side Forces

TABLE I MAJOR ENGINE COMPONENTS (Effective Test J4-1902-13, -14, and -15)

Part Name	P/N	P/N
Thrust Chamber Body Assembly	99-210620	4094439
Thrust Chamber Injector Assembly	99-210610-71	4087381
Augmented Spark Igniter Assembly	EWR113811-21	4901310
Ignition Detector Probe 1	3243-2	016
Ignition Detector Probe 2	3423-1	003X
Fuel Turbopump Assembly	99-461500-31	R004-1A
Oxidizer Turbopump Assembly	99-460430-21	S003-0A
Main Fuel Valve	00-411320X3	8900881
Main Oxidizer Valve	00-411225X4	8900929
Idle-Mode Valve	99-411385	8900867
Thrust Chamber Bypass Valve	99-411180-X1	8900954
Hot Gas Tapoff Valve	99-557824-X2	8900847
Propellant Utilization Valve	99-251455X5	8900911
Electrical Control Package	99-503670-11	4097588
Engine Instrumentation Package	99-704641	4097437
Pneumatic Control Package	99-558330	8900817
Restart Control Assembly	99-503680	4097867
Helium Tank Assembly	NA5-260212-1	0002
Oxidizer Flowmeter	251216	4096874
Fuel Flowmeter	251225	4096875
Fuel Inlet Duct Assembly	409900-11	6631788
Oxidizer Inlet Duct Assembly	409899	4052289
Fuel Pump Discharge Duct	99-411082-7	439
Oxidizer Pump Discharge Duct	99-411082-5	439
Thrust Chamber Bypass Duct	99-411079	439
Fuel Turbine Exhaust Bypass Duct	307879-11	2143580
Hot Gas Tapoff Duct Solid-Propellant Turbine	99-411808-51	7239768
Starters Manifold	99-210921-11	7216433
Heat Exchanger and Oxidizer	307007	2142022
Turbine Exhaust Duct	307887	2142922
Crossover Duct	307879	2143592

TABLE II SUMMARY OF ENGINE ORIFICES

Orifice Name	Part	Diameter, in.	Test Effectivity	Comments
Augmented spark igniter fuel supply line			J4-1902-05	Open Line
Augmented spark igniter oxidizer supply line	99-652050	0.0999	J4-1902-05	·
Film coolant flow		0.581	J4-1902-08	EWR 121099
Thrust chamber bypass line	99-406384	1.500 2.000	J4-1902-13 J4-1902-14 J4-1902-15	EWR 121504 EWR 121512 EWR 121520 open line
Oxidizer turbine bypass nozzle	99-210924	1. 996	J4-1902-05	
Film coolant venturi		1.027 inlet 0.744 throat	J4-1902-05	$c_{\rm D} = 0.97$
Oxidizer idle- mode line	99-411092	0.900	J4-1902-11	EWR 121684

TABLE III ENGINE MODIFICATIONS (Between Test J4-1902-12 and -15)

Modification	Completion Date	Description of Modification									
	Test J4-1	902-12									
EWR 121505	5/13/69	Installation of 1.326-in. tapoff valve stop									
EWR 121504	5/13/69	Installation of 1.500-in. fuel bypass orifice									
	Test J4-1902-13										
EWR 121512	5/19/69	Installation of 2.000-in. fuel bypass orifice									
_	Test J4-	1902-14									
EWR 121518	5/16/69	Change main oxidizer valve									
EWR 121520	5/26/69	11 to 12 deg Removal of 2.000-in. fuel bypass orifice									
Test J4-1902-15											

TABLE IV ENGINE COMPONENT REPLACEMENTS (Between Test J4-1902-12 and -15)

Replacement	Completion Date	Component Replaced
Company of the state of the party of the par	Test J4-	1902-12
None		
<u> </u>	Test J4-	 902-13
None		
	Test J4-	<u> </u> 902-14
None		
	Test J4-	<u> </u> 902 - 15

TABLE V ENGINE PURGE SEQUENCE

Purge	Requirement	SPIS Installed	5	Cope Lant prop	Start	Coast Period	Fropellant Drop		(Lage Piring)
Oxidizer dome and idle-mode compartment	Nitrogen, 600 ± 25 psia 100 to 1500p at customer connect panel (150 scfm)		//////	//////			//////		Air Off
Fuel and oxidizer turbine	Nitrogen, 100 to 150 ^O F at customer connect panel		//////	//////	-				
Thrust chamber jacket, film coolant, and turbopump purges	Helium, 150 ± 25 psia 50 to 150°F at customer con- nect panel (125 scfm)		//////		(*)	30 min (**) (†)		(*)	30 min
SPTS conditioning	Nitrogen, -50 to 140°F	// <u>:</u> :.	2, and 3	//////		Remaining SPTS	11111		
Main fuel valve conditioning	Helium, ~300°F to ambient			<u> </u>					

^{*}Engine-supplied liquid-oxygen pump intermediate seal cavity purge

**Anytime facility water is on
†30 min before propellant drop

††Initiate MFV conditioning 30 min before engine start for those firings with temperature requirements

TABLE VI SUMMARY OF TEST REQUIREMENTS AND RESULTS

Firing Supper	J4-190	12-13A	J4-150	13-144	34-190	2-148	J4-15	DR-14C	J4-19	02-18A	34-19	09-150	J4-190	2-15C
	Target	Actual	Target	Actual	Target	Actual	Target	Actual	Target	Actual	Tarret	Actual	Target.	Actual
Firing Date/Time of Day	5/15/00	13.34	5/22/00	18:41	5/23/63	13-41	5/23/60	16:23	0/4/00	11:08	0/4/60	13:54	6/4/60	13:51
Procesure Altttude at to, ft (Ref. 1)	100,000	84,700	100,000	93,800	100,000	67,500	100,000	95,600	100,000	50,600	100,000	38,800	100,000	P9,000
Low Thrust Pre-Main Stage Idle-Hoda Duretios, acc+	20	19.594_	30	20,500	20	20.067	20	20,167	20	50.870	30	30.703	30	30.726
Sigh Threat Idla-Mode Duration, sec*	10	11.507	15	13,518	15	19,719	15	13.782	18	13.745	18	13.730	16	13,722
Rein-Stage Duration, oper	92	3,436	ь	6,430		7,108	•	7,009		6,487		5.507	1	2,100
Low Thrust Post-Main Stage Idle-Mode Duration, sec*		_					•	6,110		7,690	10	6.613		
Feel Pump lalet Francure at to, pais	40 t 1	37.4	40 ± 1	39.1	45 ± 1	56,6	31 = 1	30,6	40 t 1	35.8	63 ± 1	33.6	27 t 1	_ 87.1
Pual Pump lalet Temperature at to, "F		-416.6		-377,5	U	-316.4		-287.7		-404.0		-312.5		-615.5
Fual Tank Bulk Temperature at to. 'F	-425 ± 0.4	-423.4	-422 1 0,4	-422.6	-423 + 0.4	-422.3	-422 t 0.4	-422.3	-423 ± 0.4	-422.5	"432 ± 0.4	-422,1	~432 ± 0,4	-422.5
Oxidiser Pump Telat Pressure at to, pass	38 4 1	36.6	45 ± 1	45.6	35 +4 1	55.1	33 4 1	66,0	38 - 1	96.5	23 4 1	73.2	33 A 1	31.6
Oxidizer Pump lelet Tumperetars at to, "F	-	-279.0		-286,6	-	-570.5		-276,8	ı	-267,0		-283.0	***	-254.3
Oxidiaer Tank Bulk Temperature at to, "P	-295 A 0.4	-290.0	-292 1 0.4	-296.2	-295 + 0.4	-293.0	-296 ± 0.4	-295.1	-295 ± 0.4	-295,1	7292 ± 0,4	-296.1	-295 ± 0.4	-294,5
Oxidizer Pump Bearing Temp. before to, "F	-100 ± 50	-178		-569.5		-136,4		-178.2	-180 ± 20	-277	-180 : 20	1.89	-180 ± 20	~165
Relium Tank Pressure at to, pais	w	3202	5450	3116	Remains	2049	Remains from "A"	2683	6450	5243	from "1"	-2000	from "A"	3463
Rolium fank Tonyersture at to, "7	_	135	-	129		101		83		194		80		79
Propellant Utilisation Valvs Position at &	Pul 1	Jull	Full	Woll _	Mul 1	Ma11	Mull	Ma32	Mil1	Mull	Pp13	Wall_	Rell	011
Propellant Utilization Valva Excursion, Projition/Time							Closed to+26	Closed to+36.6						

Bata reduced from oscillograph

AEDC-TR-70-122

TABLE VII ENGINE VALVE TIMINGS

			STAIT																
Test		Hain	Fuel Y	elve	ldle-Mode Ozidizar Velve			t Gme	TE.	Coin Oxidizer Valve Firet Stage		Male Oxidizer Valva Second Stego			Thruet Chamber Dypass Velvs				
J4-1902-	Firing	Time of Opening Signal	Time,	Opening	of	De ley Time,	Velve Opening Time, eac	Time of Opening Signal	Delay Time,	Velve Opening Time,		Delay	Yelvn Opening Tlue, ecc	Time of Opening Signel	Delay	Openies	Time of Floring Slenzi	Delay	Valve Closing Time, sec
12	Final	0	0.050	0.061	0	0.117	0.048	5. 180	0.156	0.080	5, 180	0.082	0.020	19,973	0,144	0.838	19.973	0.190	0.820
	A	0	0.049	0.049	0	0.110	0.041	19.892	0.186	0.081	19.892	0.081	0.087	38,387	0.158	0.840	32,287	0.189	0.983
14	Final	В	0.044	0.068	0	0.114	0.040	5,047	0.156	0.082	5.047	0.081	0.032	19.595	0.148	0,839	8.047	2.254	0.840
	A	0	0.048	0.080	0	0.108	0.055	20.389	0.187	0.083	80.589	0.083	0.029	24.407	0.149	0.885	20.589	2,292	0.887
	В	0	0.049	0.058	0	Not R	covered	20.067	0.157	0.085	20.08T	0.083	0.028	38.840	0.180	0.850	20.087	2,303	0.840
	C	- 0	0.049	0.026	_ 0	0.118	0.044	80.189	0.160	0.088	20.188	0.081	0.029	33.931	0.207	0.820	20.159	3.300	0.810
16	Fieel	0	0.043	0.083	0	0,112	0.045	4,209	0,137	U.082	4,209	0.084	0.040	17.907	0.154	0.380	17.807	0.209	0,832
	A	0	0.048	0.084	0	0.110	0.048							34,316	0.174	0.840	34.316	0.201	0.703
		0	0.048	0.054		-	0.045	30,701									44,431		
	C	0	0.048	0.038	0	0.118	0.048	30.TIT	0.183	0.080	30,T17	0.085	0.030	44,440	0.189	0.842	44.440	0,207	0.850

	1	L.						81	UTDOWN								
2006		Mein On	idiaar	Valve		Hot Gae Tepoff Valva			Main Fuel Valve			Idle-Moda Ozidizer Velve			Thruet Chamber Bypass Velve		
Teet J4-1802-	Firing	Time of Closing Signal	Ti≥e,	Valva Cloaing Time, acc	Time of Closing Signal	Time,	Velve Cloning Time, eec	Time of Closing Signal	Valve Delay Timu, nec	Valve Closing Time,	Time of Closing Signal	Time.	Vilva Closing Time, and	Time nf Opening Signal	Delay	Valva Opening Time, eec	
12	7inal Sequence	88.818	n , n7e	0.142	22.518	n.063	0.244	30.T22	0.072	0,252	30.732	0.060	0,110	22.819	0.270	0,815	
	A	35,815	0.088	0.133	33.813	0.089	0.227	32,815	0.080	0.285	35,813	0.079	0.154	32,813	0.308	0,183	
14	Final Sequence	28,428	0.083	0.140	25.428	0.073	0.230	82.428	0.078	0.845	25.428	0.087	0.118	25.428	0.188	0.207	
	A	40,837	0.083	0.159	40.837	0.089	0.243	40,857	0.079	0.270	40.837	0.074	0.150	40.837	0.880	0, 150	
	ja .	41,042	0.083	0.183	41.042	0.065	0.255	41,045	0.083	0.870	41.043	Hot R	covered	41.043	0,263	0.150	
	c	41.040	0.087	0.122	41.040	0.059	0.270	48,181	0.066	0.250	46.151	D.082	0,135	41.040	0.298	0.170	
13	Final Saquence	34.477	0,082	0.142	24.477	0.084	0.250	29.864	0.088	0.238	29.864	0.062	Q. 108	84.477	0,274	0.813	
	A	40.802	0.080	0.135	40.802	0.062	0.888	48.492	0.068	0.854	48.493	0.087	0.151	40.802	0.338	0.184	
	Н	80.007	0.082	0.148	50.807	0.080	0.200	80.720	0.067	D, 253	80,72n	0.963	0.140	80.8n7	0.558	0.186	
	C	48.541	0.075	0.188	48.841	0.055	0.238	48,541	0.082	0,266	48.541	0.074	0.142	45.541	0.286	0.188	
	<u> </u>							10.1									
		Ĭ															
							13										
		نـــــــا			L		1					لــــا					
									L		5						

Notes: 1. All velve eignal times ere referenced to to.

- 2. Valve dalay time is the time required for initial valva movement efter the velve open or closed noiseoid has been energiedd.
- 3. Final ecquence check is consucted without propellents and within 12 hr before testing.
- 4. Bate are reduced from oscillogram.

APPENDIX III INSTRUMENTATION

The instrumentation for AEDC tests J4-1902-13 through J4-1902-15 is tabulated in Table III-1. The location of selected major engine instrumentation is shown in Fig. III-1.

a. General Arrangement
Fig. III-1 Selected Sensor Locations

b. Fuel Turbopump Sensor Locations Fig. III-1 Continued

80

c. Fuel System Sensor Locations Fig. III-1 Continued

d. Oxidizer Turbopump Sensor Locations Fig. III-1 Continued

e. Oxidizer System Sensor Locations Fig. III-1 Continued

Fig. III-1 Continued

g. Thrust Chamber Injector Sensor Locations Fig. III-1 Continued

h. Thrust Chamber Sensor Locations
Fig. III-1 Continued

i. Pneumatic Control Package Sensor Locations Fig. III-1 Continued

j. Helium Tank Sensor Locations Fig. III-1 Continued

k. Augmented Spark Igniter/Film Coolant Fuel Line Assembly Instrumentation Fig. III-1 Continued

I. Fuel Turbine Sensor Locations
Fig. III-1 Continued

m. Oxidizer Turbine Sensor Locations Fig. III-1 Continued

View Looking Downstream

n. Side Load Forces Sensor Locations Fig. III-1 Continued

o. Customer Connect Panel Sensor Locations Fig. III-1 Continued

p. Test Cell Ambient Temperature Sensor Locations Fig. III-1 Continued

q. S-IVB Battleship Sensor Locations Fig. III-1 Concluded

TABLE III-1 INSTRUMENTATION LIST

AEDC Code	Perameter Current, amp	Tep Pange	Digitel Data System	Hagnetic Tape	Oscillo- graph	Strip Chart	Event Recordsr	x-Y Piottar
100	Control	0 to 30	×					
IIC	Ignition	0 to 30	×					
	P							
PASIS-1	Event Augmented Spark Igniter 1 Spark	00/011					×	
EASIS-2	Augmented Spark Ignites 2 Spark	On/022					×	
EBCL	Engine Cutoff Lockin	On/Off	•		×		×	
EECO	Engine Cutoff Signal	On/Off	×		×		×	
EER	Engine Posdy Signal	On/Off					×	
PES	Engine Stast Command	Dn/Off	×		×		×	
EESCO	Programmed Duration Cutoff	On/Off					•	
EPBYO	Puel Bleed Vaive Open Limit	On/Off					x	
EFFCO	Fuei Pump Ovenapeed Cutoff	On/0ff					×	
EFFVC	Poei Pravaive Ciosed Limit	On/Off	×					
EFFVO"	Puul Pseveive Open Limit	On/Off	×				•	
ZECS	Molium Control Solenoid Energised	Om/Off	×	×	×		x	
EHGTC	Hot Gas Tepoff Veive Closed Limit	On/Off					ж	
EHGTO	Not Gas Tapoff Vaive Open Limit	Qn/Off			_		*	
EID	Ignition Detected	On/Off	×		×		13.	
CIDA-1	Ignition Detect Ampilfier	on/Off					×	
EIDA-2	Ignition Detect Amplifier	2 On/Off					×	
BINCS	Idie-Mode Control Solenoid Energised	on/off	•		×		•	
EIMVC	Idia-Mode Velve Ciosed Limit	nn/off					×	
EINVO	Idle-Mode Veive Open Limit	on/off					=	
MCL	Main-Stage Cutoff Lockin	On/Off	*		•		×	
EHCO	Maiu-Stage Cutoff Signai	On/Off	×		•			
EHCS	elain-Stage Control Science	id On/Off	×		•		×	
1949-1	Main Stage 1 **CK** Depressusised	on/off	•		•		•	
EMD-2	Hain Stage 2 ''OK'' Depressurised	On/Off			•			
ENDVC	Main Fuel Velve Closed Limit	0n/0ff					×	
EMPPVO							-	
EHOVC	Main Oxidiser Valve Close	-					- *	
OVONS	Main Osidiser Valve Open Lieit	on/nes						
EICP-1	Main Stage 1 **OK** Pressurised	0n/0ff			•		:	
PIP-2	Hain-Stage 2 **OK** Pressurieed	0n/0ff					• *	
ZMPC0	Main-Stays Pressure Cutoff Signei	on/Off					*	
EMS	Main-Stage Stert Signel				,		*	
EMSCO	Main-Stage Programmed Duration Cutoff	On/OE		×	×		×	
EMSS	Main-Stage Stast Science Energized	d On/Of	•	•	•		_	

TABLE III-1 (Continued)

NEDC Code	Parmater	Тар	Pange	Digital Oata System	Magnetic Tape	Oscillo- graph	Strip Chart	Event Racorder	X-Y Plotter
	Event								
DOBAO	Oxidiaar Blood Valve From Limit		On/Off					×	
FOCO	Observer Cutoff Signal		On/OFE					•	
BOPCO	Oxidizer Pump Overspead Cutoff Bignal		On/Off					×	
FOLAC	Oxidizer Prevalva Closed Limit		On/OFE	×				×	
HOPVO	Oxidiser Pravaive Open Limit		On/Off	×					
COTOR	Puei Turbina Over.		On/Off					×	
I PASIS-1	Augmented Spark Igniter 1 Spark Rate		On/Off			*			
ERASIS- Z	Augmented Spark Igniter 2 Spark Rate	1	On/Off			×			
ESTCO	Start ''OK'' Timer Cutoff Signal		On/Off					×	
LTCBC	Thrust Chamber Sypass Valve Closed		On/Off					*	
LTCBO	Thruat Chamber Sypasa Vaive Onen		On/Off					*	
I:VSC-1	Vibration Safety Counts)		On/Off			×			
EA8C-5	Vibration Safaty Counta 2		On/Off			×			
KARC-3	Vibration Safety Counts 3		On/Off			×			
	Flows, gpm								
QF-1	Engine Puei	PPF	0 to 11,000	×					
QF-2	Engine Fuel	PPTA	0 to 11,000	×	×	×			×
QF-3	Engine Fuei	PFF	0 to 11,000			×			
Q0-1	Engine Oxidizar	POF	0 to 3,600	×					
20-2	Engine Oxidiser	POFA	0 to 3,600	×	×	×			
00-3	Engine Oxidiser	POP	0 to 3,600			×			
	Porcea, 1bf								
PSP- 1	Side Load (Pitch)		120,000	*		×			
PSY-1	Rida Load (Yaw)		<u>†</u> 20,0n0	*		×			
	Position, percent ope	<u>ın</u>							
LFRT	Thrust Chamber Sypass Volve		0 to 100	×		×			
LPVT	wain Fuei Vaive		0 to 100	*		x.			
LINT	Idle-Moda/Augmented Spark Igniter Oxidizer Valve		0 to 100	×		*			
LOVE	Main Gaidiner Vaive		0 to 100	×		×			
LPUTO?	Propollant Utilization Valve		5 ¥	×		*	*		
LTVT	Hot Gas Tapoff Vaive		0 to 100	*		*			

TABLE III-1 (Continued)

AEDC Cods	Personeter Pressure, paia	Тар	Range	Oigital Dats System	Magnetic Oscillo- Tape graph	Strip Chart	Event Fecordor	K-Y Plotter
PA-1	Test Call		0 to 0.5	×				
PA-2	Test Coll		0 to 1.0	×				
PA-3	Tcat Call		0 to 5.0	×	×			
PC-1F	Thrust Chamber	CS 1	0 to 1500	×				
PC-2P	Thrust Chamber	CG1s-2	0 to 1500	*	×	×		
PC-2PL	Thrust Chamber	CG1s-1	0 to 50	×	*			
PCASI	Augmented Spark Igniter Chamber	161	0 to 1500	×				
PCASI - I.	Augmented Sperk Igniter Chamber	1G1	0 to 50	×	×			
PPBH	Thrust Chamber Bypase Manifold	CF3	0 to 1500	×		,	•	
PPCO	Pilm Coolant Orifice	CP4	0 to 2000	×				
PFC0-L	Film Coolent Orifice	CF4	0 to 50	×		•		
PPCVI	Pilm Coolent Venturi Inlet	C F7	3 to 2000	×				
PFCVI-L	Pilm Coolant Venturi Inlet	CP7	0 to 50	ĸ				
PFCVT	Pilm Coolent Vonturi Throat	CP6	0 to 230	×				
PFCVT-L	Plls Coolent Venturi Throat	CP6	0 to 50	×				
PFG-1	Fuel Injection	C72	0 to 1560	×	•			
PPJ-1L	Fuel Injection	CF2	0 to 50	×				
PPMI	Fuel Jackst "mnifold Inlot	CP1	0 to 2000	×				
PPMI - L	Fuel Jacket 'Manifold Inlet	CF1	0 to 50	*				
PFFBC	Fuel Pump Galenco Piaton Cavity	PP5	0 to 2000	*	6.	•		
PF795	Fuel Pump Balance Piston Sump	PP4	0 to 1000	×	×	¥		
PPPD-11	. Fuel Pump Gischargs	PF3	0 to 50	×				
PPP0-11	Puel Pump Discharge	PP3	0 to 2500	×		×		
PFP0-2	Puol Pump Gischerge	PF2	0 to 3006	×	* *			*
PPPT-1	Fuel Pump Inlet	PP1	0 to 100	×				×
PFP1-2	Puel Pump Inlot		0 to 100	×				· ×
PFP1-3	Pusi Pump Inlet	PFle	0 to 100	×	x •			
TTPRE	Fuel Pump Reer Bearing Coolant	PP7	0 to 1000	×		×		
PPPS	Fuel Pump Interstage	276	0 to 1000	×	x	*		
PFPSI	Puel Pump Shroud		0 to 1500			×		
P FT1 - 1	P Fuel Turbins Inlet	TG1	0 to 1000	×	*			
PPTO	Puel Turbine Outlet	TG2	0 to 200	×				
PFTSC	Furl Turbine Seal Cawity	T G10	0 to ,500	×				
PFUT	Fuel Ullage Tank		0 to 10C	×				
PYVC	Fuel Perresurisation at Customer Connect Panel		0 to 2000	*				
PPVI	Fuel Represeurisation Hoselo Intet	KLEF1	9 to 2000	*				
PTVL	Fuel Popressurisation Noseie Throat	EMP2	3 to 1000	×				
PHEA	Helium Accumulator	BEY 3	0 to 750	*				
PEES	Helium Supply		0 to 5000	×				

TABLE III-1 (Continued)

AEDC Code	Perameter Proseure, pais	Tap	Pange	Digital Date Systom	Yagnetic Oscillo Tape graph	Strip Chart	Event Recorder	X-Y Plot tor
PHET-1P	Holium Tank	MI 1 - 1	0 to 5000	×				×
PHET-2P	Roiium Tenk	MH 1-3	0 to 5000	×				
PHPO-1P	Nolium Cagulator Outiot	6193	0 to 750	2				
PNOOP-1	Pridizor Dome Purge ot Customer Connect Princi		0 to 750	×				
*P:400P-2	Oxidizer Dome Purgs st Customer Connect Panel		0 to 1500	×				
POAS 1J	Augmented Spark Igniter Oxidiser Injection	103	0 to 1500	×	×			
POASIJ-L	Augmented Smark Idnitor Paldisor Injection	IU3	0 to 50	2		•	·	
POINT	Oxidizor Tdlo "odo Linz	P010	0 to 2000	×				
POTIL-I.	Oxidizor Idio "ode" Line	9010	0 to 50	×				
203-1	Ozidizer Injection	203	3 to tonn	×				
POJ-2	Oxidizer Injection	CO3s	0 to 2000 ·	×	×			
POJ-3	Priditor Injection	CO3h	A to 5000		* ×			
POPBC	Ozidizor Pump Bzaring Cholan:	P07	N to 590	×				
POP0-1L	Oxidiser Pump Dischargo	POJ	0 to 50	*				
POPU- 1P	Oxidiser Pump Diechergs	PO3	0 to 2500	×				
P020-3	Oxidizer Pump Discherge	P02	0 to 3000		×			
POPI-1	Ozidizor Pump Iniet	PO1	0 to 100	×				.×
POPI-2	Ozidizar Pump Inlet		0 to 100	×				
POFI-3	Ozidizer Pump Inlat	mat-	0 to 100		. x			_
POPSC	Ozidizer Pump Primary Szzl Cavity	POIz PO6	0 to 50	*	# X			
POTI-1P	THE PARTY NAMED IN COLUMN	1 G3	0 to 20A					
POTO-1P		TG4	0 to 100					
POUT	Oxidizer Uilage Tank		0 to 100					
	TOTAL DE LA CONTRACTOR			_				
PPTD	Photocon Cooling Water (Dowastram)		0 to 100	•		-		
PPTU	Photocon Cooling Water (Upatreem)		0 to 100	×				
PPUVI	Propellant Utiliza- tion Valva Inlet	POS .	0 to 2000	×				
PPUVO	Propellant Utiliza- tion Vaive Outlet	ני מיז	0 to 1000	×				
PTCFJP	Thrust Chamber Puei Jacket Purge		0 to 23A	×				
PTZM	Turking Exhaust Wanifold	TG5	0 to 50					
PTF	Tapoff Panifoid	GG2b	0 to 1500					
POM-L	Tapoff Manifold	GG2b	C to 50		×			
1	Srazdz, rpm							
#PP-1	Fuel Pump	PPV	0 to 33,000		=			
MPP-2	Fuel Pump	P7V	0 to 33,000	×		,		
MPP-3	Fuel Pump	PPV	0 to 13,000			-		
NOP-1	Oxidizer Pump	POV	A to 12,000		*			
NOP-2		-		-				
	Ozidiser Pusp	POV	0 to 12,000	=				
MOb-3	Oxidiser Pump	POV	0 to 12,000					

TABLE III-1 (Concluded)

ABDC Code	Perameter	Тар	Panga	Digital Data System	Magnotie Tape	Oscillo- graph	Strip Chert	Ewent Pacorder	X-Y Plotter
	Tempereturas, dog F								
TA-1	Test Coli, North		-50 to 800	×					
TA-2	Test Call, East		-50 to 800	×					
TA-3	Test Cell, South		-50 to 800						
TA-4	Test Coll, West		-50 to 800	×					
	Electrical Control Assembly	HSTIR	-300 to 200	×					
TTASIJ	Augmented Spark Igniter Fuel Injection	IFT1	-425 to 100	×	×				
	Thrust Chamber Sypass Manifold		-425 to 100	×					
TPCO	Film Coolant Orifice	1771	-425 to -175	×					
TPO-AVG.	Fire Detection Average		0 to 1000	×			×		
TPOPTA	Fire Detect Fuel Turbine Manifold Area		4 to 500	×					
, TPCMFVA	Fire Detect Main Fuel Valva Aram		2 to 500	×					
TECHTVA	Pire Detect Main Oxidizer Valve Aroa	1	5 to 300	×		•			
TPD00A	Fire Datect Oxidizor 2000 Area		0 to 3JU	×					
TPDTDA	Fire Dotect Capoff Buct Area		O to SON	×					
outh1-1b	Fuel Injection	CPT2	-125 to -300	×					
77J-2P	Puel Injection	CPT 2a	-125 to 1JU	×		×	•		
TFRBS	Puel Pump Balenca Piston Summ	PFT4	-425 to -37.	×		•	×		
TEPD-1P	Fuel Pump Giachorge	Por1	-425 to -343	×	•				
TPPD-2P	Fuel Pump Olachergo	PFT1	-425 to 100	×					
7PP1-1	Puol Pump Inlot	KPT2	-425 tn -40J	r					×
TFP1-2	Fual Pump Inlet	KFT2a	-425 to 100	•					×
TPPRS - 1	Fuel Pump Pear Support		-400 to 1300	×					
TPPRS-1	Fuel Pump Reer Support		•400 to 1390	×					
TPPRS-3	Sunport		-400 to 1300	•					
TFRT-1	Fuel Pun Tenk		-425 to -400	•					
TPRT - 3	Fuel Fun Tenk		-425 to -400	•			×		
TFTI-3	Fuel Turbine Inlet	TGT1	-300 to 2400	×					
TFT1-6	Fuel Turbine Inlet	Bud GG2	-300 to 2000	•		x	×		
TFTO	Puol Turbine Gutlet		-100 to 1200	×					
TFVC	Fuel Empressorization At Customer Connect Panel		•300 to •100	×					
TEVL	Yuel Renroeaurization Nossle Inlet	XIPTI	-300 to -100	×					_
23.0	Hellum Tank	ंशक्य १	-200 to 150	×					×
	NGilum Tank Area		0 to 500						
	Holium Tank Area		0 to 500	.×			×		
	Mein Fuel Valve Skin (Outer Wall)		-425 to 108	×	•		x k		
	Yein Fuel Valve Skin (Innor Hell) Cxidizor Dome Furge		-25f to 200				•		
TROUP-1	at Customer Connect Penel		-25% EU 200	-					
*THOOP-	2 Oxidizer Done Purgo at Customer Connect Panol		-250 to 200	×					

TABLE III-1 (Continued)

AEDC Code	Perameter	Тер	Range	Digital Data System	Magnetic Tepe	Ossillo- groph	Strip Chert	Event Fecorder	X-Y Plotter
	Temperaturos, deg P								
TOIML	Coidizor Idlo Wode Line	POTS	-300 to 100	×					
TOJ	Oxidisor Injection	COT1	-300 to 1200	×		×			
TOPEC	Omidizer Pump Bearing Constant	POT4	-300 to -250	×					
TOP0-1P	Oxidizer Pump Discharge	POT3	-300 to -250	×					
TOP0-2P	Omidieer Pump Discharge	POT3	-300 to 100	×					
TOPI-1	Oeidieer Pump Inlet	KOT2	-310 to -250	×					×
TOP1 - 2	Osidisor Pump Inlet	KOT2e	-310 to 100	×					×
70RT-1	Ocidicar Ran Tenk		-300 to -205	×					
TORT-3	Oxidiser Ran Tenk		-300 to -285	×					
TOTI-1P	Oxidizer Turbine Inlet	TGT1	0 to 1200	×					
TOT-1-1	Oxidizer Turbine Menifold		-300 to 1000	×					
TOTM- 2	Oxidieer Turbine Manifold		-300 to 1000	×					
TOTO - 1P	Oxidioor Turbino Outlet	TGT4	0 to 1000	×					
TPIP-1P	Instrumentation Package		-300 to 200	×					
TPTU	Photoson Cooling Water (Unstreem)		0 to 300	•					•
TTCP	Thrust Chamber Purge		-250 to 200	•					
TTCT-E1	Thrust Chamber Tube (Zeit)		-425 to 500	•					
TTCT-E2	Thrust Chamber Tube (Exit)		-425 to 500	•					
TTCT-T1	Thrust Chamber Tube (Throat)		-425 to 500	•			×		
**************************************	Thrust Chamber Tube (Throat)		-425 to 500	×					
TTM	Hot Gas Tapoff "anifold		0 to 2000	×		×	×		
	Peak vibretions, g								
UFPR	Fuel Fump	PEA-1	450		×				
UFTX	Puel Turbine	V123-2	450		×				
UOPR	Oxidiesr Pump Padiel	PZA-2	300		•				
UTCO-1	Thrust Chamber Dome	P2A-10	1400		×	•			
UTCD- 2	Thrust Chamber Dome	FIA-2	1400		×	•			
PTC0-3	Thrust Chamber Dome	FZA-3	300		×	×			
INTET-1	Thrust Chamber Throat		300		×				
1TC0-2	Thrust Chember Throat		300		×		·		
	Voltage, v								
VC0	Control Ous	L	0 to 36	×					
VIB	Ignation Jue		0 to 35	×					
VIDA-1	Ignition Dotect Amplifier		9 to 16	×					
VIDA-2	Ignition Detect Amplifier		9 to 16	•					
VPUVEP	Propellent Utilization Valve Tolemotry Potentionster Excitation		0 to 5	•					

^{*}Added efter J4-1902-13
**Not required for J4-1902-15

Security Classification							
DOCUMENT CONTR							
(Security classification of title, body of abstract and indexin		stered when the o	verall report is classified)				
Arnold Engineering Development Center	er		CURITY CLASSIFICATION				
ARO, Inc., Operating Contractor		UNCLASSIFIED					
Arnold Air Force Station, Tennessee		25. GROUP					
		N/A					
ALTITUDE DEVELOPMENTAL TESTING OF TI DEVELOPMENT TEST CELL (J-4) (TESTS C							
4. DESCRIPTIVE NOTES (Type of report and Inclusive dates) May 15 and June 4, 1969 - Final Rep	ort						
C. H. Kunz and H. J. Counts, Jr., ARO, Inc.							
6. REPORT DATE	78. TOTAL NO. O	F PAGES	7b. NO. OF REFS				
June 1969	10	8	4				
88. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S	REPORT NUMB	ER(5)				
F40600-69-C-0001	4770 mg 50 100						
b. PROJECT NO. 9194	AEDC-TR-70-122						
Program Element 001E							
- Program Element 921E	95. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)						
n/A							
10. DISTRIBUTION STATEMENT Each transmittal of	this docu	ment out	side the Depart-				
ment of Defense must have prior approval of NASA, Marshall Space Flight							
Center (PM-EP-J), Huntsville, Alabam	a 35812.						
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY NASA						
	Marshall Space Flight Center						
Available in DDC	Huntsville, Alabama 35812						
13. ABSTRACT	- T 00	14	(E/N I 110 10)				
Seven firings of the Rocketdyn							
were conducted during test periods	o]υ προ ο]υ προ	motor ch	uu -10 On May 10				
and 22, and June 4, 1969, respectively. The major objectives of these							

Seven firings of the Rocketdyne J-2S rocket engine (S/N J-112-1C) were conducted during test periods J4-1902-13, -14, and -15 on May 15 and 22, and June 4, 1969, respectively. The major objectives of these test periods were: (1) to determine a method of increasing fuel turbine inlet temperature in order to prevent turbine icing and attain stable high thrust idle-mode operation, and (2) to demonstrate post-main-stage transition to low thrust idle model. Changes in injector mixture ratio during high thrust idle-mode operation from 1.55 to 2.02 increased inlet temperature, in general, from 85 to 190°F for the fuel turbine, and from 45 to 95°F for the oxidizer turbine. Stable high thrust idle-mode operation was attained on five firings which had fuel turbine inlet temperatures above 160°F. Satisfactory transition to post-main-stage low thrust idle mode was accomplished.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Flight Cepter (PM-EP-J), Hunteville, Alabama 35812.

Hold Billy To Deniel William UNCLASSIFIED

Security Classification

DD FORM 1473

Security Classification						يسبست
14. KEY WORDS	ROLE	WT	HOLE	K B	ROLE	K C
J-2S rocket engine altitude simulation turbines temperature 3 ice formation transition flow						
1. Rocket motour	T- VC		.S.	Ma	la	
, AFSC. Arnold AFT Tran						