Cloud Formation on Brown Dwarfs & Hot Jupiters

Diana Powell¹

Xi Zhang¹, Peter Gao², Mark Marley³, Jonathan Fortney¹, Vivien Parmentier⁴

1. UC Santa Cruz, 2. UC Berkeley, 3. NASA Ames, 4. Aix Marseille Univ

Clouds are abundant! Clouds interfere with observations!

CARMA: Community Aerosol & Radiation Model for Atmospheres

Microphysics

Images: Peter Gao

Roadmap

1. Clouds on Hot Jupiters:

Powell, D., et al. 2018, ApJ, 860, 18

2. Clouds on Brown Dwarfs:

1 frame = 1 Earth month

Considering the full particle size distribution distinctly changes the transmission spectra

Very Low Gravity Brown-Dwarfs

Data from Liu, Dupuy & Allers (2016) Plot Courtesy of Mike Liu Sonora Models Powell et al. 2018c (in prep)

Flattened Emission Spectra

$$\log(g) = 4$$
$$T_{\text{eq}} = 1100 \text{ K}$$

Very Low Gravity CMD

- = CARMA Clouds
- Ackerman & Marley Clouds
- = Clear Atmosphere

Why are these cloud models giving different answers?

What about normal gravity brown dwarfs?

= CARMA Clouds

Ackerman & Marley Clouds

= Clear Atmosphere

 $T_{\text{eq}} = 1700 \text{ K}$ $\log(g) = 5$

Where are the clouds?

Normal-g Brown Dwarf

$$\log(g) = 5$$

Very Low-g Brown Dwarf

$$\log(g) = 4$$

The Effect of 3D Cloud Structure

Marley, Saumon, & Goldblatt 2010

Upcoming Work

•3D Cloud Structure

 Self-consistent cloud radiative effects

Clouds moving forward

3D Studies

Broad wavelength Observations

and much, much more!

Image: NASA

Direct Imaging and Polarization Observations

Laboratory Experiments

Images: Ethan Tweedie Photography/W. M. Keck Observatory, TMT

Hörst et al. 2018

Conclusions

- ▶Cloud properties depend strongly on planetary (or brown dwarf) properties
- Considering fully resolved particle size distributions is important in spectral models
- ▶Preliminary results suggest that the bin-scheme microphysical model of clouds naturally reproduces the VL-G brown dwarf sequence
- Stay tuned for model updates and final results!
- <u>bdkpowell@ucsc.edu</u>
- https://people.ucsc.edu/~dkpowell/