目录

前言	1.1
第一章 概述	1.2
第二章 物理层	1.3
第二章 数据链路层	1.4
术语表	1.5

network-review-notebook

计算机网络复习笔记

概述

一般概念

- 1. 计算机网络向用户提供的最重要的功能(计算机网络系统基本组成):
 - o 连通性(通信子网)
 - o 资源共享(资源子网)
- 2. 计算机网络和互联网是不同的:
 - o 计算机网络(network): 由若干结点(node)和连接这些结点的链路(link)组成
 - o 网络和网络还可以通过路由器互连起来, 这样就构成了一个覆盖范围更大的网络, 即互联网 (internet)。
- 3. 与网络相连的计算机称为 主机
- 4. 端系统通信方式分类:
 - o 客户-服务器(C/S)方式
 - o 对等方式(P2P)
- 5. 若中央处理机之间的距离非常近(如仅一米或更小),则一般称之为多处理机系统而非计算机网络。
- 6. 协议数据单元PDU: 对等层次之间传送的数据单位。
- 7. 服务数据单元SDU: 层与层之间交换的数据单位。

重要概念

- 1. 数据的三种交换方式:
 - 特点
 - 电路交换:通话的全部时间内,通话的两个用户始终占用端到端的通信资源。线路的传输效率往往 很低。
 - 分组交换:采用存储转发技术。比报文交换的时延小,同时也具有更好的灵活性。
 - 报文交换: 时延较长,已经很少有人使用。
 - o 三种交换方式在数据传送阶段的主要特点:
 - 电路交换:整个报文的比特流连续地从源点直达终点,好像在一个管道中传送。
 - 报文交换:整个报文先传送到相邻结点,全部存储下来后查找转发表,转发到下一个结点。
 - 分组交换:单个分组(这只是整个报文的一部分) 传送到相邻结点,存储下来后查找转发表,转 发到下一个结点。
- 2. 按作用范围分类:
 - o 广域网(WAN):作用范围通常为几十到几千公里。是因特网的核心部分,其任务是通过长距。
 - o 城域网(MAN):作用范围一般是一个城市,5~50km。多采用以太网技术。
 - o 局域网(LAN):局限在较小的范围,1km左右。
 - o 个人区域网(PAN): 在 个人工作 地方把 属于个人使用 的电子设备用 无线技术 连接起来的网络,因此也常称为无线个人区域网WPAN(Wireless PAN)。
- 3. 七个性能指标:
 - i. 速率:数据传输速率。也称"数据率"或"比特率"。最重要的一个性能指标。注意!速率的单位如1K、1M 是指10进制的10³bit/s、10⁶bit/s。而数据的单位如1KB或1MB指的是2进制的2¹⁰×8bit、2²⁰×8bit。
 - ii. 带宽: 是数字信道所能传送的"最高数据率"。单位是"比特每秒",或b/s (bit/s)。
 - iii. 吞吐量: 在 单位时间 内通过某个网络的数据量。
 - iv. 时延: 指数据从网络的一端传送到另一端所需的时间。由以下四部分时延加和而组成:
 - 发送时延: 主机或路由器发送数据帧所需要的时间。计算: 数据帧长度(bit)/发送速率(bit/s)

- 传播时延: 电磁波在信道中传播一定的距离需要花费的时间。计算: 信道长度(m)/电磁波在信道的传输速率(m/s)。
- 排队时延:分组在进入路由器后,要先在输入队列中排队等待处理,还要在输出队列中排队等待转发。这就产生了排队时延。
- 处理时延: 收到分组时要花费一定的时间进行处理。
- v. 时延带宽积:表示这样的链路可容纳多少个比特。即,若设时延带宽积为P,发送端连续发送数据,则在发送的第一个比特即将达到终点时,发送端就已经发送了P个比特,而这P个比特都正在链路上向前移动。计算:传播时延≭带宽
- vi. 往返时间RTT: 从发送方发送数据开始,到发送方收到来自接收方的确认(接收方收到数据后便立即发送确认),总共经历的时间。
- vii. 利用率: 计算: 网络空闲时延=网络当前时延×(1-利用率)

4. 协议

- 什么是协议:协议是控制两个对等实体(或多个实体)进行通信的规则的集合。在协议的控制下,俩个对等实体间的通信使得本层能够向上一层提供服务。
- o 协议的三要素:
 - 语法: 即数据与控制信息的结构或格式:
 - 语义: 即需要发出何种控制信息, 完成何种动作以及做出何种响应;
 - 同步: 即事件实现顺序的详细说明。

5. 体系结构:

- 什么是体系结构: 计算机网络的各层及其协议的集合, 称为网络的体系结构。
- o 体系结构图:

• 五层结构

- 应用层:直接为用户的应用进程提供服务。
- 运输层:负责向两个主机中进程之间的通信提供服务。主要使用UDP和TCP协议
- 网络层:为分组交换网上的不同主机提供通信服务。把运输层产生的报文段或用户数据报封装成分组或包进行传送。网络层也叫做网际层或IP层。
- 数据链路层:将网络层交下来的IP数据报组装成帧,在两个相邻结点间的链路上"透明" 地传送帧中的数据。
- 物理层: 是透明地传送比特流。请注意,传递信息所利用的一些物理媒体,如双绞线、同轴电缆、 光缆、无线信道等,并不在物珅层协议之内而是在物理层协议的下面。因此也有人把物理媒体当做 第0 层。
- · 各层的协议数据单元:
 - 网络层: IP数据报/数据报/分组/包
 - 数据链路层: 帧
 - 物理层: 比特流

简答题

- 1. 实体、协议、服务和服务访问点是什么。
 - o 实体表示任何可发送或接收信息的硬件或软件进程。在许多情况下,实体就是一个特定的软件模块。
 - o 协议是控制两个对等实体(或多个实体)进行通信的规则的集合。
 - 在协议的控制下,两个对等实体间的通信使得本层能够 向上一层 提供服务。要实现本层协议,还需要使用 下面一层 所提供的服务。
 - 使用本层服务的实体只能看见服务而无法看见下面的协议。下面的协议对上面的实体是透明的。
 - 协议是水平的,即协议是控制对等实体之间通信的规则。
 - o 只有那些能够被高一层实体"看得见"的功能才能称为服务。服务是垂直的,即服务是由下层向上层通过层间接口提供的。
 - o 在同一系统中相邻两层的实体进行交互(即交换信息)的地方,通常称为服务访问点SAP(Service Access Point)。
- 2. 简述对等网模式(P2P)、客户/服务器模式(C-S)、浏览器服务器模式(B-S)特点。
 - 在对等网中没有专用的服务器、每台计算机地位平等、每台计算机既可充当服务器又可充当客户机的网络工作模式。
 - 在C/S 和B/S 模式中,计算机被分为服务器和客户机两种,服务器负责为全体客户机提供有关服务,而客户机负责向服务器发送服务请求并处理相关事务。
 - 在C/S 模式中,用户请求的任务有服务器端程序与客户端应用程序共同完成,不同的任务要安装不同的客户端软件。
 - 在B/S 模式中,客户端只需要安装浏览器,用户通过浏览器向服务器发送请求,然后服务器接收并进行相应的处理后将结果返回给浏览器显示。

计算题

0x01

试在下列条件下比较电路交换和分组交换。要传送的报文共x(bit)。从源点到终点共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为s(s)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问在怎样的条件下,分组交换的时延比电路交换的要小?

解:

对于电路交换,因为是从源点持续到达终点,所以其时延由三部分组成:电路的建立时间**s**,发送时延 **x/b**,以及传播时延**kd**。即总时延 **s+kd+x/b**。

0x02

在上题的分组交换网中, 设报文长度和分组长度分别为x和(p + h) (bit), 其中p为分组的数据部分的长度, 而h为每个分组所带的控制信息固定长度, 与p 的大小无关。通信的两端共经过k段链路。链路的数据率为b (b/s), 但传播时延和结点的排队时间均可忽略不计。若打算使总的时延为最小, 问分组的数据部分长度p 应取为多大?

解:

物理层

一般概念

- 1. CDMA计算注意:
 - o 码片序列, 令 -1 为 0, +1 是 1。例如,码片序列 0001-1011 写为 (-1-1-1+1 +1-1+1+1)
 - o 欲发送 1,则发送该码片序列;欲发送 0,则发送该码片序列的反码。
 - 。 定义向量的规格化内积: $S \cdot T = (\sum_{i=1}^{\infty} S_i T_i) / m$ 。其中m是向量分量个数。若 $S \cdot T$ 规格化内积为 $O \cdot D$,则称二者正交。
 - 一个站的码片序列和另一个站的码片序列 正交。
 - 一个站的码片序列和另一个站的码片序列的反码 正交。
 - 码片与其本身的规格化内积是1
 - 码片与其本身的反码的规格化内积是-1
 - 。 设收到多个站的码片序列叠加: (A+B+C+D),则为了解码出A站的数据,只要用A站的码片序列A与其做规格化内积: A·(A+B+C+D)=A·A+A·B+A·C+A·D,由于正交性,则A·B+A·C+A·D=0,从而结果为A·A,若为1,则说明A站发来的是1,若为-1,这说明A站发来的是0。

重要概念

- 1. 物理层协议的四个方面特性:
 - o 机械特性: 指明接口所用 接线器 的形状、尺寸、引脚数目等等。
 - o 电气特性: 指明在接口电缆的各条线上出现的 电压的范围。
 - 功能特性: 指明某条线上出现的某一电平的 电压表示何种意义。
 - o 过程特性: 指明对于不同功能的各种可能事件的 出现顺序。
- 2. 通信的双方信息交互三种基本方式:
 - o 单向通信(单工通信):即只能有一个方向的通信而没有反方向的交互。如:无线电广播或有线电广播以及电视广播
 - o 双向交替通信(半双工通信):通信的双方都可以发送信息,但不能同时发送或接收
 - o 双向同时通信(全双工通信):即通信双方可以同时发送接收消息。
- 3. 传输媒体: 发送器和接收器之间的物理通路。
 - o 非导引型传输媒体
 - o 导引型传输媒体:
 - 双绞线: 把两根互相绝缘的铜导线并排放在一起, 然后用规则的方法绞合起来构成双绞线。绞合可以减少对相邻导线的电磁干扰。可应用于模拟传输和数字传输。
 - 同轴电缆:由内导体铜质芯线、绝缘层、外导体屏蔽层、保护塑料外层所组成。同轴电缆具有很好的 抗干扰特性。
 - 光缆: 一根光缆少则只有一根光纤, 多则可包括数十至数百根光纤。具有通信容量非常大、传输损耗小、中继距离长、抗雷电和电磁干扰性能好、无串音干扰、保密性好、体积小、重量轻的特点。
 - 多模光纤:可以存在许多条不同角度入射的光线在一条光纤中传输。只适合于近距离传输。
 - 单模光纤: 纤芯很细, 其直径只有几个微米, 衰耗较小, 一般用于主干网。
- 4. 信道复用技术
 - 频分复用(FDM): 所有用户在同样的时间占用不同的带宽(频率带宽)资源
 - o 时分复用(TDM): 所有用户是在不同的时间占用同样的频带宽度
 - o 统计时分复用(STDM):公共信道的时隙实行"按需分配"。即只对那些需要传送信息或正在工作的终端 才分配给时隙。服务的终端数>时隙的个数。

- o 波分复用(WDM): 光的频分复用。
- 码分复用(CDM):每一个用户可以在同样的时间使用同样的频带进行通信。由于各用户使用经过特殊 挑选的不同码型,因此各用户之间不会造成干扰。

5. ADSL技术:

- o xDSL技术用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带业务。
- o ADSL是非对称数字用户线。把0~4kHz低端频谱留给传统电话使用,把原来没有利用的高端频谱留给用户上网使用。
- 在上网时主要是从因特网下载各种文档,而向因特网发送的信息一般都不大,因此ADSL把上行(用户到ISP)和下行(从ISP到用户)的带宽做成不对称的(下行远远大于上行带宽)。
- o ADSL不能保证固定的数据率
- 由以下三大部分组成:
 - 数字用户线接入复用器DSLAM
 - 用户线
 - 用户家中的一些设施。

简答题

- 1. 简述香农公式及其意义。
 - o C=W·log₂(1+S/N) (bis)。其中
 - W是信道的带宽(以Hz为单位)
 - S为信道内所传信号的平均功率
 - N为信道内部的高斯噪声功率。
 - o 意义: 只要信息传输速率低于信道的极限信息传输速率, 就一定可以找到某种办法来实现无差错的传输。

计算题

1. CDMA通信的计算。P₅₇

第三章 数据链路层

一般概念

- 1. 数据链路层使用的信道主要有以下两种类型:
 - 点对点信道: 这种信道使用一对一的点对点通信方式。
 - 广播信道: 这种信道使用一对多的广播通信方式。
- 2. 辨析: "链路"和"数据链路"
 - o 链路: 就是从一个结点到相邻结点的一段物理线路,而中间没有任何其他的交换结点。
 - o 数据链路: 把实现 控制数据的传输的 协议的 硬件和软件加到链路上, 就构成了数据链路。
- 3. 对于通信质量良好的有线传输链路,并不要求数据链路层向网络层提供"可靠传输"的服务。

但是对于质量差的无线传输链路,数据链路层协议使用确认和重传机制,向上提供"可靠传输"服务

重要概念

- 1. 三个基本问题
 - i. 封装成帧: 帧的数据部分 (网络层的IP数据报)的前面和后面分别添加上首部和尾部,构成了一个完整的帧。
 - ii. 透明传输:无论什么样的比特组合数据,都能没有差错的通过数据链路层。如果数据中的某个字节的二进制代码恰好和SOH或EOT这种控制字符一样,数据链路层就会错误地"找到帧的边界",把部分帧收下,而把剩下的那部分数据丢弃。
 - iii. 差错检测:比特在传输过程中可能会产生差错,1可能会变成0,而0也可能变成1。这就叫做比特差错。为了保证数据传输的可靠性,在计算机网络传输数据时,必须采用各种差错检测措施。循环冗余检验 CRC
- 2. 什么是"可靠传输": 数据链路层的发送端发送什么,在接收端就收到什么。
- 3. PPP协议
 - 特点: PPP协议就是用户计算机和ISP进行通信时所使用的数据链路层协议。
 - o 使用 0x7E 作为帧头和帧尾的定界符。
 - o 字符填充: 使用转义符 øx7D 来对数据部分可能出现的 øx7E 进行转义。
 - o 零填充:由于 0x7E 定界符的二进制编码是 0111-1110 ,所以如果找到数据部分中有连续五个1,就在其后插入一个0,这样出现 0x7E 时,就成了 0111-11[0]10 。接收端只要扫描到五个1,就把它之后的一个0删除,保证了透明传输。
- 4. 局域网的拓扑结构:
 - o 星形网
 - o 环形网
 - o 总线网
- 5. 共享信道的方法:
 - o 静态划分信道:如频分复用、时分复用等。不适合局域网。
 - o 动态媒体接入控制:
 - 随机接入: 所有用户可随机发送消息, 但可能发生碰撞
 - 受控接入:不能随机发消息,必须接受一定控制。
- 6. CSMA/CD协议:载波监听多点接入/碰撞检测(Carrier Sense Multiple Access with Collision Detection)

简答题

- 1. 简述点对点信道的数据链路层在进行通信时的主要步骤:
 - i. 结点A的数据链路层把网络层交下来的IP数据报添加首部和尾部封装成帧。
 - ii. 结点A 把封装好的帧发送给结点B 的数据链路层。
 - iii. 若结点B 的数据链路层收到的帧无差错,则从收到的帧中提取出IP 数据报上交给上面的网络层: 否则丢弃这个帧。

计算题

1. 循环冗余检验CRC。P75。注意做除法时,中间步骤是进行按位异或,而不是相减。

术语表

ISP

Internet Service Provider 因特网服务提供者

IXP

Internet eXchange Point 互联网交换点

WWW

World Wide Web 万维网

WAN

Wide Area Network 广域网

LAN

Local Area Network 局域网

MAN

Metropolitan Area Network 城域网

PAN

Personal Area Network 个人区域网

ARQ

Automatic Repeat Request 自动重传请求

BGP

Border gateway protocol 边界网关协议

CIDR

CSMA/CD

Carrrier Sense Multiple Access / Collison Detection 载波监听多点接入/冲突检测

DHCP

Dynamic Host Configuration Protocol 动态主机配置协议

FTP

File Transfer Protocol 文件传送协议

HTTP

HyperText Transfer Protocol 超文本传送协议

ICMP

Internet Control Message Protocol 网际控制报文协议

IGMP

Internet Group Management Protocol 网际组管理协议

MTU

Maximum Transfer Unit 最大传送单元

帧的数据部分的长度上限。

NAT

Internet Address Translation 网络地址转换

OSI/RM

Open Systems Interconnection Reference Model 开放系统互连基本参考模型

PPP

Point-to-Point Protocol 点对点协议

PPP协议就是用户计算机和ISP 进行通信时所使用的数据链路层协议。

PPPoE

Point-to-Point Protocol over Ethernet 以太网上的点对点协议

RARP

Reverse Address Resolution Protocol 逆地址解析协议

RIP

Routing Information Protocol 路由信息协议

SNMP

Simple Network Management protocol 简单网络管理协议

TCP

Transmission Control Protocol 传输控制协议

URL

Uniform Resource Locator 统一资源定位符

VPN

Virtual Private Network 虚拟专用网

TDM

Time Division Multiplexing 时分复用

FDM

Frequency Division Multiplexing 频分复用

STDM

Statistic Time Division Multiplexing 统计时分复用

WDM

Wave length Division Multiplexing 波分复用

DWDM

Dense Wave length Division Multiplexing 密集波分复用

CDM

Code Division Multiplexing 码分复用

CDMA

Code Division Multiple Access 码分多址

DSL

Digital Subscriber Line 数字用户线

ADSL

Asymmetric Digital Subscriber Line 非对称数字用户线

DSLAM

DSL Access Multiplexer 数字用户线接入复用器

CRC

Cyclic Re dundancy Check 循环冗余检验

FCS

Frame Check Sequence 帧检验序列

为了进行检错而添加的冗余码