(1 point) **Title of the Experiment:**

Student's name:

Section SLN:

TA's Name:

Week of the experiment:

OBJECTIVE: (3 points)

What is the physics concepts/theory/law to be investigated in this experiment? It is one or two sentences in your own words.

EXPERIMENTAL DATA (3 points): the experimental data obtained from the graphs for further calculations:

PART 1: Object moving away from the motion sensor.

Run 1:

Complete the tables below and insert the graphs generated in this lab:

Table 1

Time (units)	(t) ,	Position interval, (units)	Distance, (units)	Displacement,	Average/Instan taneous Speed, (units)	Average/Inst antaneous Velocity, (units)

Table 2

Fit parameters – coefficients of	 Name of Physics quantity
the linear fit (position vs time)	
graph	
Slope:	
y-intercept	

The equation (5) that describes the cart's motion with the value of the slope as true value of the average velocity is:	s the

Use Logger Pro for statistical data to calculate average velocity and its uncertainty:

Velocity of the cart from (position vs time) graph is: v = _____

Table 3

Average Velocity, (units)	
Standard deviation, units,	
(units)	

Run 2: Car moving away with a different speed

Table 4

Fit parameters – coefficients of the linear fit (position vs time)	, ,	Name of Physics quantity
graph		
Slope:		
y-intercept		

The equation (5) that describes the cart's motion with the value of the slope as the true value of the average velocity is:

._____

Use Logger Pro for statistical data to calculate average velocity and its uncertainty:

Table 5

Average Velocity, (units)	
Standard deviation, units,	
(units)	

Insert printscreen of positions vs time and velocitirs vs time graphs below as a picture. The positions vs time graph should have the values of the slope and y-intercept; velocity vs time graph should display the mean values of velocity.

PART 2: Object moving toward the motion sensor.

Run 3:

Table 6

Time (units)	(t) ,	Position interval, (units)	Distance, (units)	Displacement,	Average/Instan taneous Speed, (units)	

	T						T
Table 7							
Fit parameters – coefficients of	Value,	(units)			Name of	Physics	quantity
the linear fit (position vs time)						-	
graph							
Slope:							
y-intercept							
Velocity of the cart from (positive true value of the average velocity of the cart from (positive true value of the average velocity).	es the car					slope as	s the
Use statistical data of velocity vs	s time gra	iph for a	calculate	the follow	ving:		
Average Velocity, (units)							
Standard deviation, units,							
(units)							
Run 4: Cart toward sensor with a	a differen	t speed					
Table 9							
Fit parameters – coefficients linear fit (position vs time) grap		Name	of Phys	ics quanti	ty		
Slope:							
y-intercept							
Velocity of the cart from (posit	tion vs tii	me) gra	ph is: v	=			
The equation (5) that describe true value of the average veloc		rt's mo	tion wit	h the valu	ie of the s	slope as	the

Use statistical data of velocity vs time graph for calculate the following:

Table 10

Average Velocity, units	
Uncertainty, units	

Insert printscreen of positions vs time and velocitirs vs time graphs below as a picture. The positions vs time graph should have the values of the slope and y-intercept; velocity vs time graph should display the mean values of velocity.

PART 3. Matching position vs. time graphs

<u>Run 5:</u> Method to reproduce graph:

Insert the best match for the position vs time graph from part 1

Insert the position vs time graph

<u>DATA ANALYSIS (10 points):</u> the section includes equations, calculations and error analysis if required. **Be sure all equations are present!**

Part 1:

Show the equation with the plugged in numbers you used to calculate the cart's distance/displacement/average speed/average velocity for run 1 and 3.

For run 2 and 4, calculate the percent difference between the average velocity from the slope of the x(t) graph and mean velocity from v(t) graph.

PART 4. Motion with known velocity

<u>Run 6:</u> Show_calculation (use eqn. 1) used to make a predication for the final position of the cart after 2 s from the moment it crosses the 80 cm mark on the track.

RESULTS (3 points) - summary of all major results of the lab. All results must be presented in the table.

Table 11 (Report results below with 4 significant figures)

Run	#,	average	Position	VS	time	Velocity	VS	time	Percent
velocity	, (uni	ts)	graph			graph			difference, %
1, ave	rage	velocity,							
(units)									
2, ave	rage	velocity,							
(units)									
3, ave	rage	velocity,							
(units)									
4, ave	erage	velocity,		•	•				
(units)									

Equations of motion

Run	Equation of motion (5)
1	
2	
3	
4	

Final position of the cart after 2 s from the moment it crosses the 80 cm mark on the track.

Predicted position:	Experimental position:

DISCUSSION AND CONCLUSION (10 points):

This is the most important part of the lab report. It is where you describe whether your results support the physics principal being investigated in the lab. Begin the discussion with the purpose of the experiment. Briefly explain the theory concept that was tested. Then explain how the experimental results support/or not the theoretical concept. Discuss the relationship between your raw measurements and your final results; the relationship between quantities in the graph; relationship between the independent and dependent variables. All questions from the lab manual should be answered in the narrative form.

For 2. based on your experimental data distinguish the term distance/displacement/speed/velocity. How well do the two instantaneous velocities compare to the average velocity? Can you conclude that during time interval $t1 \rightarrow t2$ the cart was moving with constant velocity? After you compared the value of the average velocity of the first and second runs in part1 and 2. What graphical attribute signifies cart's speed? How can you tell that the cart was moving with constant velocity based on the position vs time graph generated in this experiments? What attribute of position vs. time graph tells us the magnitude of velocity? What attribute of graphical representation of motion characterizes the direction of velocity? In run 2 how different is the shape of position vs. time graph in comparison to run 1?

Describe in details how did you need to move the cart along the track in order to reproduce the graph shown in the position vs. time display.

What caused any discrepancy in the predicted and experimental positions of the cart in part 4 of the lab?

Make a conclusion if the objective(s) of the lab has been achieved based on the final experimental results.