# Face recognition at scale

Sergey Ovcharenko

Deep Learning Engineer @ NtechLab

### Face recognition tasks



Though related problems also arise e.g. (age, gender, emotion recognition, liveness detection, etc.)

1

## Face recognition challenges I

People are interested in extremely low FAR's:



#### Face recognition challenges II

You can't get to know all persons so zero-shot scenario is required.

One needs to generalize well to unseen people, ethnicities, filming conditions.

#### Face recognition challenges III

Your train set will most likely differ wildly from what you encounter in production:

- · Class imbalance
- Crappy cameras
- · Varying data origins
- Bad\no lighting

Are not your friends!

# Pipeline



#### Detector

- · Takes quite a while
- · Should be fast and accurate
- · We switched to CNN-based
- · Also detects landmarks

### CNN embeddings: dataset



Datasets are usually unbalanced and noisy

#### CNN embeddings



In essence the well-known bottleneck architecture with whistles and bells

#### CNN embeddings: approaches

# Combine good feature extractor with specific loss functions:

#### Some popular choices:

Contrastive loss:

$$L(X,\theta) = \frac{1}{2} \sum_{i=1}^{m} y_{ij} \|f(x_i) - f(x_j)\|_{2}^{2} + (1 - y_{ij}) \left[\alpha - \|f(x_i) - f(x_j)\|_{2}\right]_{+}^{2}$$

• Triplet loss:

$$L(X,\theta) = \sum_{i=1}^{m} \left[ \left\| f(X_i^a) - f(X_i^p) \right\|_2^2 - \left\| f(X_i^a) - f(X_i^n) \right\|_2^2 + \alpha \right]_+$$

· Center loss:

$$L_c(X, \theta) = \frac{1}{2} \sum_{i=1}^{m} \|\mathbf{x}_i - \mathbf{c}_{\mathbf{y}_i}\|_2^2$$

· Others...

9

#### CNN embeddings: Practical considerations

As usually there's a trade-off between a most accurate model and what can be implemented in production.

A great deal of effort is put in obtaining compact representations.

Binary embeddings can be very effective, but somewhat loose in terms of accuracy.

#### Nearest neighbors

# Once we have the embeddings, we need to search through them:

- · Linear search
- Approximate nearest neighbors (e.g. projection trees)
- Custom fast binary index (hashing like)
- Cascading schemes

#### Goodies: CNN vs Humans



### Goodies: MegaFace vs Internal



#### Rank-1 accuracy

| Number of photos | Accuracy |
|------------------|----------|
| 1 M              | 73 %     |
| 250 M            | 60 %     |

## Goodies: Impostor by region



#### Goodies: Age, gender and emotions



#### Frontiers: Liveness detection

















## Frontiers: Domain adaptation



#### Thank you

Thank you for your attention!