แบบฝึกหัดเพิ่มเติม ชุดที่ 1

- 1. จงคริบายในแต่ละทั้คต่คไปนี้
 - (a). Digital Image Processing คือ
 - (b). วัตถุประสงค์หลักๆ ของการประมวลผลภาพดิจิตอลคืออะไร
 - (c). Image คือ
 - (d). Quantization คือ
 - (e). Sampling คือ
- 2. จงหาขนาดของไฟล์ (file size) ในแต่ละข้อต่อไปนี้ (อ้างอิง data class ของ Matlab) ออกมาเป็นหน่วยของ bytes เมื่อรูปมีขนาดเป็น M x N ใดๆ โดยกำหนดเงื่อนไขของรูปคือ
 - (a). รูปขาวด้ำ (black-white image) class แบบ logical
 - (b). รูประดับเทา (gray-scale image) class แบบ uint8
 - (c). รูประดับเทา (gray-scale image) class แบบ uint16
 - (d). รูประดับเทา (gray-scale image) class แบบ double
 - (e). รูปสี่แบบ true color (RGB image) class แบบ uint8
 - (f). ฐปดีแบบ true color (RGB image) class แบบ uint16
 - (g). รูปดีแบบ true color (RGB image) class แบบ double
- จงหาค่าของ 7 ในแต่ละข้อต่อไปนี้

```
(a).
>> X = uint8([ 255 0 75; 44 225 100]);
>> Y = uint8([ 50 50 50; 50 50 50 ]);
\gg Z = imadd(X,Y)
(b).
>> X = uint16([ 255 0 75; 44 225 100]);
>> Y = uint16([ 50 50 50; 50 50 50 ]);
>> Z = imadd(X,Y)
(c).
>> X = uint8([ 255 10 75; 44 225 100]);
>> Y = uint8([ 50 50 50; 50 50 50 ]);
\gg Z = imsubtract(X,Y)
(d).
>> X = uint16([ 255 10 75; 44 225 100]);
>> Y = uint16([ 50 50 50; 50 50 50 ]);
\gg Z = imsubtract(X,Y)
>> X = uint8([255 10 75; 44 225 100]);
>> Y = uint8([ 50 50 50; 50 50 50 ]);
>> Z = imabsdiff(X,Y)
```

(f).

```
>> X = uint16([ 50 10 75; 44 425 100]);

>> Y = uint16([ 355 50 50; 50 50 50 ]);

>> Z = imabsdiff(X,Y)

(g).

>> X = uint16([ 255 10 75; 44 225 100]);

>> Z = imcomplement(X)
```

- 4. ถ้าต้องการเอาภาพ gray scale 2 ภาพมาบวกกันด้วยคำสั่ง imadd โดยทั้งสองภาพมี class เป็น uint8 และเป็น ภาพแบบ bright image มากๆ ทั้ง 2 ภาพ
 - (a). หลังจากเอา 2 ภาพมาบวกกันแล้วผลลัพธ์ที่ได้จะเป็นอย่างไร
 - (b). ถ้าต้องการแก้ไขผลลัพธ์ที่ได้จากข้อ (a) เพื่อต้องการให้เห็นรายละเอียดที่ชัดเจนของภาพเราจะต้องมีการ จัดการอย่างไร จงอธิบาย (อาจยกตัวอย่าง code ใน Matlab ด้วยก็ได้)
- 5. ถ้าต้องการเอาภาพ gray scale 2 ภาพมาลบกันด้วยคำสั่ง imsubtract โดยทั้งสองภาพมี class เป็น uint8 และ เป็นภาพแบบ dark image มากๆ ทั้ง 2 ภาพ
 - (a). หลังจากเอา 2 ภาพมาลบกันแล้วผลลัพธ์ที่ได้จะเป็นอย่างไร
 - (b). ถ้าต้องการแก้ไขผลลัพธ์ที่ได้จากข้อ (a) เพื่อต้องการให้เห็นรายละเอียดที่ชัดเจนของภาพเราจะต้องมีการ จัดการอย่างไร จงอธิบาย (อาจยกตัวอย่าง code ใน Matlab ด้วยก็ได้)
- 6. จงอถิบายในแต่ละข้อต่อไปนี้
 - (a). Contrast คือ
 - (b). Histogram คือ
 - (c). Histogram Equalization คือ
 - (d). Histogram Matching คือ
 - (e). Histogram Equalization มีข้อเสียอย่างไร
 - (f). Histogram Equalization ต่างจาก Histogram Matching อย่างไร
- 7. จากตารางข้อมูลด้านล่างในแต่ละข้อ จง plot histogram อย่างๆ คร่าว และจงหา Histogram Equalization จาก ข้อมูลดังกล่าว เมื่อข้อมูลบรรทัดบนคือ gray-level ซึ่งมี 0-15 ระดับ บรรทัดล่างคือจำนวน pixel ของในแต่ละ ระดับของ gray-level

(a).	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	20	40	60	75	80	75	65	55	50	45	40	35	30	25	20	30

(b).	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	0	40	80	45	110	70	0	0	0	0	0	0	0	0	15

- 8. ในการปรับค่า intensity ในภาพแบบ gray scale เพื่อให้มีคุณภาพของภาพที่ดีขึ้น โดยใช้หลักการของ intensity transformation ซึ่งเลือกใช้ฟังก์ชันการแปลงแบบยกกำลัง (Power-law) จากลักษณะของภาพในแต่ละข้อต่อไปนี้ ค่าแกมมา () ที่ควรเลือกใช้ในฟังก์ชันแบบยกกำลังดังกล่าวควรมีค่าเป็นอย่างไร เพราะอะไร จงอธิบาย
 - (a). ภาพ low contrast แบบ dark image
 - (b). ภาพ low contrast แบบ bright image
- 9. จากกราฟที่ให้มา เป็นการแสดงความสัมพันธ์ระหว่าง input intensity กับ output intensity ของฟังก์ชันในการ
 Transformation แบบต่างๆ จงใช้กราฟนี้ในการตอบคำถามข้อ 6.1-6.3 (ในแต่ละข้ออาจตอบได้มากกว่า 1
 แบบ)

- 6.1 ฟังก์ชันในการ Transformation แบบใดบ้าง ที่สามารถช่วยให้ภาพที่เป็นแบบ bright image กลายเป็น ภาพที่มืดขึ้นได้
- 6.2 ถ้าต้องการทำให้ pixel ที่มีระดับความเทาต่ำในภาพมีค่ายิ่งต่ำลงไปอีก ในขณะที่ pixel ที่สว่างถูกทำให้ สว่างมากขึ้นไปอีกควรเลือกใช้ฟังก์ชันในการ Transformation แบบใด
- 6.3 ภาพที่มีองค์ประกอบสีดำจำนวนมาก ถ้าต้องการทำให้บริเวณที่มีสีขาวหรือเทาบนพื้นภาพสีดำมีความ เด่นชัดมากยิ่งขึ้นควรเลือกใช้กราฟใด
- 6.4 ถ้าข้อมูลภาพเดิมมีเฉพาะสีดำกับสีขาว สามารถใช้ฟังก์ชันในการ Transformation แบบใดในการเปลี่ยน จากสีขาวเป็นสีดำและสีดำเป็นสีขาว
- 6.5 Etc,.

10. จงหาผลลัพธ์ที่ได้จากการทำ mask processing ด้วยมือแบบ linear filter จากข้อมูลภาพที่ให้มา กับแต่ละ mask ในข้อ (a)-(h) โดยการทำแบบ correlation ('corr') และใช้หลักการ zeros padding คือเติม 0 รอบๆ ภาพ (อาจลองตรวจสอบคำตอบโดยการใช้คำสั่งของ Matlab)

20	20	20	10	10	10	10	10	10
20	20	20	20	20	20	20	20	10
20	20	20	10	10	10	10	20	10
20	20	10	10	10	10	10	20	10
20	10	10	10	10	10	10	20	10
10	10	10	10	20	10	10	20	10
10	10	10	10	10	10	10	10	10
20	10	20	20	10	10	10	20	20
20	10	10	20	10	10	20	10	20

- -1 -1 0 -1 -1 -1 -1 -1 -1 (a) -1 2 2 -1 0 1 (b) 1 0 (c) 2 (d) -1 2 -1 0 1 1 1 1 0 -1 -1 -1 -1 2 -1 -1 0 -1 -1 1 1 0 (e) (f) 1 (g) (h) 4 -1 8 -1 1 1 -1 0 1 -1 -1 -1 -1 -1 1 1 1 -1 0 1 0 -1 0
- 11. จงหาผลลัพธ์ที่ได้จากการทำ mask processing ด้วยมือ แบบ linear filter จากข้อมูลภาพและ mask ที่ให้มา โดยการทำแบบ convolution ('conv') และใช้หลักการ zeros padding คือเติม 0 รอบๆ ภาพ
 - 1
 1
 5
 5

 10
 10
 1
 5

 5
 20
 10
 5

 5
 0
 20
 5

Image

-1 0 -1 0 4 0 1 0 1

Mask

- 12. จากข้อมูลภาพที่ให้มาในข้อก่อนหน้า จงทำ mask processing ด้วยมือแบบ nonlinear filter ด้วย filter แบบ median filter และ max filter เมื่อพิจารณา neighborhood เป็น 3x3 โดยใช้หลักการ zeros padding คือเติม 0 รอบๆ ภาพ
- 13. จงอธิบาย High pass filter และ Low pass filter ตามความเข้าใจของนักศึกษา (ในคำอธิบายต้องไปเกี่ยวข้อง กับการทำให้ภาพเบรอขึ้นหรือคมชัดขึ้นด้วย)