Package 'BSTZINB'

October 31, 2024

Type Package

Title Association Among Disease Counts and Socio-Environmental Factors

Version 1.0.1

Description Estimation of association between disease or death counts (e.g. COVID-19) and socio-environmental risk factors using a zero-inflated Bayesian spatiotemporal model. Non-spatiotemporal models and/or models without zero-inflation are also included for comparison. Functions to produce corresponding maps are also included. See Chakraborty et al. (2022) <doi:10.1007/s13253-022-00487-1> for more details on the method.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Depends R (>= 2.10)

RoxygenNote 7.3.2

Imports BayesLogit, boot, coda, dplyr, ggplot2, gt, gtsummary, maps, matrixcale, MCMCpack, msm, reshape, spam, viridis

Suggests knitr, rmarkdown, CorrMixed, ape, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

URL https://github.com/SumanM47/BSTZINB

BugReports https://github.com/SumanM47/BSTZINB/issues

NeedsCompilation no

Author Suman Majumder [cre, aut, cph],

Yoon-Bae Jun [aut, cph], Sounak Chakraborty [ctb],

Chae-Young Lim [ctb],

Tanujit Dey [ctb]

Maintainer Suman Majumder <smajumd2@gmail.com>

Repository CRAN

Date/Publication 2024-10-31 22:50:02 UTC

2 BNB

Contents

	BNB
	BSTNB
	BSTZINB
	BZINB 5
	compute_NB_DIC
	compute_ZINB_DIC
	conv.test
	county.adjacency
	get_adj_mat
	qRankPar
	qRankParTop
	ResultTableSummary
	ResultTableSummary2
	simdat
	TimetrendCurve
	USAcities
	USDmapCount
	1
Index	17
BNB	Fit a Bayesian Negative Binomial Model

Description

Generate posterior samples for the parameters in a Bayesian Negative Binomial Model

Usage

```
BNB(y, X, A, nchain=3, niter=100, nburn=20, nthin=1)
```

Arguments

у	vector of counts, must be non-negative
Χ	matrix of covariates, numeric
Α	adjacency matrix, numeric
nchain	positive integer, number of MCMC chains to be run
niter	positive integer, number of iterations in each chain
nburn	non-negative integer, number of iterations to be discarded as burn-in samples
nthin	positive integer, thinning interval

Value

BSTNB 3

Examples

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res0 <- BNB(y, X, A, nchain=2, niter=100, nburn=20, nthin=1)</pre>
```

BSTNB

Fit a Bayesian Spatiotemporal Negative Binomial model

Description

Generate posterior samples for the parameters in a Bayesian Spatiotemporal Negative Binomial Model

Usage

```
BSTNB(y,X,A, nchain=3,niter=100,nburn=20,nthin=1)
```

Arguments

У	vector of counts, must be non-negative
X	matrix of covariates, numeric
Α	adjacency matrix, numeric
nchain	positive integer, number of MCMC chains to be run
niter	positive integer, number of iterations in each chain
nburn	non-negative integer, number of iterations to be discarded as burn-in samples
nthin	positive integer, thinning interval

Value

4 BSTZINB

Examples

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res2 <- BSTNB(y, X, A, nchain=2, niter=100, nburn=20, nthin=1)</pre>
```

BSTZINB

Fit a Bayesian Spatiotemporal Zero Inflated Negative Binomial model

Description

Generate posterior samples for the parameters in a Bayesian Spatiotemporal Zero Inflated Negative Binomial Model

Usage

Arguments

У	vector of counts, must be non-negative
Χ	matrix of covariates, numeric
A	adjacency matrix, numeric
LinearT	logical, whether to fit a linear or non-linear temporal trend
nchain	positive integer, number of MCMC chains to be run
niter	positive integer, number of iterations in each chain
nburn	non-negative integer, number of iterations to be discarded as burn-in samples
nthin	positive integer, thinning interval

Value

BZINB 5

Examples

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res3 <- BSTZINB(y, X, A, LinearT=TRUE, nchain=2, niter=100, nburn=20, nthin=1)</pre>
```

BZINB

Fit a Bayesian Zero Inflated Negative Binomial Model

Description

Generate posterior samples for the parameters in a Bayesian Zero Inflated Negative Binomial Model

Usage

Arguments

У	vector of counts, must be non-negative
Χ	matrix of covariates, numeric
Α	adjacency matrix, numeric
nchain	positive integer, number of MCMC chains to be run
niter	positive integer, number of iterations in each chain
nburn	non-negative integer, number of iterations to be discarded as burn-in samples
nthin	positive integer, thinning interval

Value

6 compute_NB_DIC

Examples

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res1 <- BSTZINB(y, X, A, nchain=2, niter=100, nburn=20, nthin=1)</pre>
```

compute_NB_DIC

DIC for BSTNB or BNB fitted objects

Description

Computes DIC for a BSTNB or BNB fitted object

Usage

```
compute_NB_DIC(y,bstfit,lastit,nchain)
```

Arguments

y vector of counts,	must be non-negative,	the response used for	or fitting a BSTNB
---------------------	-----------------------	-----------------------	--------------------

or BSTP model

bstfit BSTNB or BNB fitted object

lastit positive integer, size of the chain used to fit BSTZINB nchain positive integer, number of chains used to fit BSTZINB

Value

DIC value

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))</pre>
```

compute_ZINB_DIC 7

```
res2 <- BSTNB(y, X, A, nchain=3, niter=100, nburn=20, nthin=1)
compute_NB_DIC(y,res2,lastit=(100-20)/1,nchain=3)</pre>
```

compute_ZINB_DIC

DIC for BSTZINB fitted objects

Description

Computes DIC for a BSTZINB fitted object

Usage

```
compute_ZINB_DIC(y,bstfit,lastit,nchain)
```

Arguments

y vector of counts, must be non-negative, the response used for fitting a BSTZINB

model

bstfit BSTZINB fitted object

lastit positive integer, size of the chain used to fit BSTZINB nchain positive integer, number of chains used to fit BSTZINB

Value

DIC value

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res3 <- BSTZINB(y, X, A, LinearT=TRUE, nchain=3, niter=100, nburn=20, nthin=1)
compute_ZINB_DIC(y,res3,lastit=(100-20)/1,nchain=3)</pre>
```

8 conv.test

convergence test for parameters in the fitted objects

Description

Conducts a test of convergence for a given parameter in the fitted objects using the posterior samples for the said parameter

Usage

```
conv.test(params,nchain=3,thshold=1.96)
```

Arguments

params	numeric matrix of dimension 2 (iterations x number of parameters, single chain) or 3 (iterations x number of parameters x chain, multiple chains) of posterior samples
nchain	positive integer, number of chains used to fit BSTZINB, BSTNB or BSTP
thshold	positive scalar, the threshold for testing the convergence. Defaults to 1.96

Value

logical vector indicating whether convergence was achieved or not

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res3 <- BSTZINB(y, X, A, LinearT=TRUE, nchain=3, niter=100, nburn=20, nthin=1)
conv.test(res3$Alpha,nchain=3)</pre>
```

county.adjacency 9

county.adjacency	county.adjacency: A dataframe containing neighborhood information for counties in the US

Description

Data set containing neighborhood information for counties in the US, to be used to create adjacency matrices

Usage

```
county.adjacency
```

Format

```
county.adjacency:
```

A dataframe with 22200 rows and 4 columns

0 - 0-	djacency matrix for counties of one or many states in the United tates
--------	--

Description

Creates the adjacency matrix for the supplied counties within the United States using the available neighborhood information

Usage

```
get_adj_mat(county.adjacency,Countyvec,Statevec)
```

Arguments

county.adjacency

data frame containing the neighborhood information for the counties of the en-

tire US

Countyvec character vector containing the names of the counties for which the adjacency

matrix is to be computed

Statevec character vector containing the names of the states the supplied counties belong

to

Value

the corresponding adjacency matrix

10 qRankPar

Examples

```
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))</pre>
```

qRankPar Bar plot for time-averaged log-q estimates over quantilerepresentative counties (descending order)

Description

Produce a descending order of bar plot for time-averaged log-q estimates over quantile-representative counties

Usage

Arguments

state.set	character vector of set of states on which the the graphics is to be made
cname	character vector of the names of the counties
bstfit	the fitted data for BSTP, BSTNB or BSTZINB
vn	positive integer, number of sample counties to display
cex.title	Positive number to control the size of the text of the main title. Defaults to 18.
cex.lab	Positive number to control the size of the text in the axes labels. Defaults to 18.
cex.legend	Positive number to control the size of the text in the legend. Defaults to 18.

Value

bar graph

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))</pre>
```

qRankParTop 11

qRankParTop Bar plot for time-averaged log-q estimates over top ranking counties (descending order)

Description

Produce a descending order of bar plot for time-averaged log-q estimates over top ranking counties

Usage

Arguments

state.set	character vector of set of states on which the the graphics is to be made
cname	character vector of the names of the counties
bstfit	the fitted data for BSTP, BSTNB or BSTZINB
vn	positive integer, number of sample counties to display
cex.title	Positive number to control the size of the text of the main title. Defaults to 18.
cex.lab	Positive number to control the size of the text in the axes labels. Defaults to 18.
cex.legend	Positive number to control the size of the text in the legend. Defaults to 18.

Value

bar graph

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res3 <- BSTZINB(y, X, A, LinearT=TRUE, nchain=3, niter=100, nburn=20, nthin=1)
qRankParTop(state.set=c("IA"),cname=countyname,bstfit=res3,vn=12,</pre>
```

12 ResultTableSummary

```
cex.title=18, cex.lab=12, cex.legend=12)
```

ResultTableSummary

Summary Table for a fitted object

Description

Generates a short summary table for a fitted object using BSTP, BSTNB or BSTZINB function

Usage

```
ResultTableSummary(bstfit)
```

Arguments

bstfit

fitted object using the function BSTP, BSTNB or BSTZINB

Value

summary table

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res3 <- BSTZINB(y, X, A, LinearT=TRUE, nchain=3, niter=100, nburn=20, nthin=1)
ResultTableSummary(res3)</pre>
```

ResultTableSummary2 13

ResultTableSummary2	Generate a summary table of the outputs all different methods given the data
---------------------	--

Description

Fits BSTP, BSTNB and BSTZINB (with linear or non-linear temporal trend) to a given data and summarizes the results in a table

Usage

Arguments

У	vector of counts, must be non-negative
X	matrix of covariates, numeric
A	adjacency matrix, numeric
LinearT	logical, whether to fit a linear or non-linear temporal trend
nchain	positive integer, number of MCMC chains to be run
niter	positive integer, number of iterations in each chain
nburn	non-negative integer, number of iterations to be discarded as burn-in samples
nthin	positive integer, thinning interval

Value

summary tables for the different methods

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
ResultTableSummary2(y, X, A, LinearT=TRUE, nchain=3, niter=100, nburn=20, nthin=1)</pre>
```

14 TimetrendCurve

simdat	simdat: A simulated dataset containing response and covariates with
	region and time information

Description

Synthetic dataframe to be used for examples and trial runs

Usage

simdat

Format

simdat:

A dataframe with 2376 rows and 5 columns: sid (region ID), tid (timepoint), y (count response), V1 (intercept), and x (covariate).

Description

Produce a time-trend curve over the study time domain for counties in the US

Usage

Arguments

bstfit	fitted object from BSTP, BSTNB or BSTZINB
cname	character vector of county names to use
vn	positive integer, number of sample counties to use
smooth.mode	logical, should splines be fitted to make it smooth
cex.title	Positive number to control the size of the text of the main title. Defaults to 18.
cex.lab	Positive number to control the size of the text in the axes labels. Defaults to 18.
cex.legend	Positive number to control the size of the text in the legend. Defaults to 18.

Value

time-trend curves

USAcities 15

Examples

```
data(simdat)
y <- simdat$y
X <- cbind(simdat$V1,simdat$x)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
A <- get_adj_mat(county.adjacency,countyname,c("IA"))
res3 <- BSTZINB(y, X, A, LinearT=TRUE, nchain=3, niter=100, nburn=20, nthin=1)
TimetrendCurve(res3,cname=countyname,vn=5,smooth.mode=TRUE,cex.title=18, cex.lab=12, cex.legend=12)</pre>
```

USAcities

USAcities: A dataset containing state and county information for the cities in the United States

Description

Dataframe to be used internally to make maps and get county information

Usage

USAcities

Format

USAcities:

A dataframe with 3232 rows and 4 columns: state_id (State abbreviation), county_name (County name), county_fips (FIPS codes for the counties) and population (County population).

USDmapCount

Draw spatial maps of various quantities over regions in the US

Description

Creates a map of any given quantity (at a selected time or averaged over time) for regions in the US specified by state and county

Usage

```
USDmapCount(state.sel,dat,scol,tcol=NULL,tsel=NULL,cname,uplim=NULL)
```

16 USDmapCount

Arguments

state.sel	character vector giving the selected states
dat	data frame having named components: y - the necessary quantity (numeric), sid - the region indices, tid - the time indices
scol	column index of the spatial regions
tcol	(optional) column index of the time points
tsel	(optional) selected time point
cname	character vector of county names, must match those in USAcities
uplim	(optional) numeric, upper limit for the given quantity

Value

spatial map of the required quantity over the specified region

```
data(simdat)
data(county.adjacency)
data(USAcities)
IAcities <- subset(USAcities,state_id=="IA")
countyname <- unique(IAcities$county_name)
USDmapCount(state.sel="IA",dat=simdat,scol=1,tcol=2,tsel=150,cname=countyname)</pre>
```

Index

```
\ast datasets
    county.adjacency, 9
    {\it simdat}, 14
    USAcities, 15
BNB, 2
BSTNB, 3
BSTZINB, 4
BZINB, 5
compute_NB_DIC, 6
compute_ZINB_DIC, 7
{\tt conv.test}, {\color{red} 8}
\verb"county.adjacency", 9
get_adj_mat, 9
qRankPar, 10
qRankParTop, 11
ResultTableSummary, 12
ResultTableSummary2, 13
simdat, 14
TimetrendCurve, 14
USAcities, 15
USDmapCount, 15
```