

3D Gaussian Splatting

Splatting in Practice

Bernhard Kerbl

3DGS in Practice – Overview

1. Running the GraphDeco code

2. 3DGS Everywhere Else

3. 3DGS Rendering with Graphics Pipelines

4. Reducing the Size of 3DGS Models

Your host for today

Current System (Laptop)

- Windows 11
- CUDA 11.7
- Conda 4.9.2
- Microsoft Visual Studio 2019

• Let's try the repo instructions →

https://github.com/graphdeco-inria/gaussian-splatting

Prologue to the Release

We were not the first to release code for our own paper(!)

• https://github.com/wanmeihuali/taichi 3d gaussian splatting

• Prototype based on preprint, uses **Taichi Lang** for implementation

• Same method, entirely different design, clearly a clean-room feat

Running the GraphDeco Code

Starting from Scratch

3D Gaussian Splatting Ecosystem

- GraphDeco repository contains
 - 1. Input Datasets
 - 2. Pytorch scripts (Python)
 - Submodules (C++/CUDA) recursive!
 - Extensions for training
 - SIBR Viewers (optional)

- Run training: python train.py -s <path to COLMAP dataset>
- Generates trained model in **custom** .ply format

(Remote) Training Client

- Thin client: train.py renders current state, transfers image
 - TCP/IP protocol, remote possible
 - Server/host can define IP/Port for connection

• Build source or use pre-built SIBR_remoteGaussian_app.exe

Several scenarios possible, just run the executable if local

Unexpected Difficulties

- "cl.exe not found"
 - Try without the suggested SET DISTUTILS_USE_SDK=1, or put MSVC on the Path
- "Illegal memory access"
 - Appears to occur preferably on RTX 40xx or Ubuntu
- No multi-GPU support
 - We simply didn't have multi-GPU workstations to develop/test on
- No direct batch training support
 - But possible manually, simply backward multiple times before step

Real-Time Gaussian Viewer

• Standalone renderer, uses CUDA + OpenGL Interop (if it can)

• Reads .ply files generated by train.py

- Several convenience features
 - Visualize Gaussians as ellipsoids
 - Crop scene to region of interest
 - Display ground truth image with each camera

Rendering & Evaluation

• render.py for producing renderings of training / test set

metrics.py for running relevant error metrics on renderings

- full_eval.py to replicate the paper's full quantitative evaluation
 - Includes training, rendering and metrics computation
 - At current state, takes about 6 8 hours on an RTX 3090

Improved TopView

Improved TopView

On-demand
 Images Overlay

Improved TopView

On-demand
 Images Overlay

Altitude Interpolation and Locking

Improved TopView

On-demand
 Images Overlay

Altitude Interpolation and Locking

VR support via OpenXR

3DGS Everywhere Else

Services, Plug-Ins, Other Implementations

Keeping Track of the 3DGS Space

Janusch Patas @janusch_patas

Jonathan Stephens
@jonstephens85

Radiance Fields

@Radiance Fields

https://github.com/MrNeRF/awesome-3D-gaussian-splatting (curated list of publications)

https://radiancefields.com (news related to radiance fields)

3DGS Adaptations (not exhaustive!)

(Thanks to Aras Pranckevičius)

https://gsplat.tech (Thanks to Jakub Červený)

(E.g., through Luma AI Plugin)

Luma 💺

https://lumalabs.ai

• Interactive 3DGS Scenes

• App + Web Viewer

• Unreal Engine 5 plugin

gsplat.tech

gsplat - 3D Gaussian Splatting WebGL viewer

Users' Models

1930 Ford 45.0 MB by Manuel Allinger

Excavator 82.7 MB by Manuel Allinger

420 Purize(c) Trabant 62.8 MB by Manuel Allinger

3DGS with Graphics Pipelines

"Why is everyone worrying about sorting?"

Recap: Compositing Gaussians is a special variant of alpha blending

$$I(x) = \sum_{i} \alpha_{i}(x)c_{i} \prod_{j=1}^{i} 1 - a_{j}(x), \qquad \alpha = oG(x), \qquad G(x) = e^{-0.5(x-\mu)^{T} \Sigma'^{-1}(x-\mu)}$$

Alpha blending is readily available in fixed-function triangle pipelines

We can convert Gaussian Splatting to triangle rasterization

$$I(x) = \sum_{i} \alpha_{i}(x)c_{i} \prod_{j=1}^{i} 1 - a_{j}(x), \qquad \alpha = oG(x), \qquad G(x) = e^{-0.5(x-\mu)^{T} \Sigma'^{-1}(x-\mu)}$$

- 1. Vertex Shader
- 1. Vertex Shader

2. Geometry Shader

- 3. Fragment Shader
- it Shader 4. Blending

$$\alpha_1 \square + (1 - \alpha_1)\alpha_2 \square$$

$$I(x) = \sum_{i} \alpha_{i}(x)c_{i} \prod_{j} 1 - a_{j}(x), \qquad \alpha = oG(x), \qquad G(x) = e^{-0.5(x-\mu)^{T} \sum_{j}^{\prime -1} (x-\mu)}$$

$$\alpha_{1} \square + (1 - \alpha_{1})\alpha_{2} \square$$

<clear to background RGB, 0>
glBlendFunc(ONE_MINUS_DST_ALPHA, ONE)

18.03.2024 3D Gaussian Splatting

RGB output of pixel shader pre-multiplied with alpha

$$\alpha_1 \square + (1 - \alpha_1)\alpha_2 \square$$

<clear to background RGB, 0>
glBlendFunc(ONE_MINUS_DST_ALPHA, ONE)

$$A_1 = 0, c_1 = (1 - 0)\alpha_1 \Box + \Box$$

$$A_2 = \alpha_1$$
, $c_2 = (1 - \alpha_1)\alpha_2 \square + \alpha_1 \square$

$$1 - A_{n+1} = 1 - (\alpha_n(1 - A_n) + A_n) = (1 - \alpha_n)(1 - A_n) \odot$$

18.03.2024 3D Gaussian Splatting 26

Sorting Gaussians

- Pipeline ensures "primitive order" of vertex indices
- But that order must be established first!
- Requires sorting of Gaussians for the current view
 - Millions of Gaussians: not hard, but also not trivial
 - Sort on GPU: fast, requires compute shader support
 - Sort on CPU: slower (adds index transfer), incremental or periodic?

Nuno Nogueira, Wikipedia, "Sorting Algorithm" https://creativecommons.org/licenses/by-sa/2.5/

Reducing the Size of 3DGS

Taming the Gigabytes

Reducing the Size of 3DGS Scenes

- Is 3DGS a solution for fast, portable 3D viewing?
- Training speed
 ✓ Rendering speed
 ✓ Download speed
- Generated .ply range from a few dozen MiB to more than one GiB
- Smaller than Plenoxels volumes, but much bigger than NeRF scenes

Analyzing the Storage Cost of a 3DGS Scene

- 59 x 4 bytes to represent a single Gaussian
- Millions of them!

Blog Posts by Aras Pranckevičius

Game Engine-oriented: reordering, texture encoding and palettes

- 1. https://aras-p.info/blog/2023/09/13/Making-Gaussian-Splats-smaller/ (×12+)
- 2. https://aras-p.info/blog/2023/09/27/Making-Gaussian-Splats-more-smaller/

© Aras Pranckevičius

Compact3D (arXiv preprint)

• Consider Gaussians as a conglomerate of d-dimensional attributes

- Use k-means to learn a quantized codebook per attribute vector
 - 1. Start with k cluster means per attribute
 - 2. Store non-quantized attributes
 - 3. Quantize by snapping to closest d-dimensional mean
 - 4. <u>Differentiably</u> render 3D Gaussians
 - 5. Gradients for non-quantized attributes via straight-through estimator (STE)
 - 6. Update cluster positions, repeat

EAGLES (arXiv preprint)

- 1. Uses quantized latent integer vector $\mathbf{q} \in \mathbb{Z}^l$ for <u>rotation</u>, <u>opacity</u>, and <u>SHs</u>
- 2. MLPs to decode each \mathbf{q} into attributes for rendering
- 3. Also employs STE to learn with quantization

- Progressive coarse-to-fine training
- Tweak densification interval/threshold to maximize quality/Gaussian

LightGaussian (arXiv preprint)

- 1. Prune Gaussians: compute a significance score $GS_j = \sum_{i=1}^{MHW} \mathbb{1}(G(\boldsymbol{X}_j), r_i) \cdot \sigma_j \cdot \gamma(\boldsymbol{\Sigma}_j)$ Volume, avoid excessive focus
 - Volume, avoid excessive focus on large background Gaussians

- 2. Avoid high storage usage of last SH band
 - Teacher-student distillation by optimizing $\mathcal{L}_{\text{distill}} = \frac{1}{HW} \sum_{i=1}^{HW} \| \boldsymbol{C}_{\text{teacher}}(r_i) \boldsymbol{C}_{\text{student}}(r_i) \|_2^2$
 - Use pseudo views for better coverage
- 3. Compress per-Gaussian attributes
 - Encode positions <u>losslessly</u> with G-PCC (octree)
 - Optimize codebooks via k-means, weight Gaussians with scores from 1.

Compact 3D Gaussian Representation for Radiance Field (CVPR '24)

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park

1. Learned masking parameter for binary masks via STE

2. Multiple stages of <u>residual</u> codebooks to fit Gaussian attributes

3. Hashgrids + MLP to represent view-dependent colors

Compact 3D Gaussian Representation for Radiance Field (CVPR '24)

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park

Compact 3D Gaussian Representation for Radiance Field (CVPR '24)

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park

Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis (CVPR '24)

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann

- Minimize Entropy and Treat Data
 - Addresses ambiguity of covariance representation
 - Factors out scalar scaling factor to minimize entropy
 - Sort by Morton order, run-length encode and deflate

Reducing the Memory Footprint of 3D Gaussian Splatting (I3D '24)

1. Pruning based on coverage of 3D regions and discernible detail

- 2. Includes variable SH assignment and distillation
- 3. K-means cluster properties + Codebook + Quantization (16-bit)

4. Evaluation against concurrent work, mobile prototype

Revised Training for Compact 3DGS Scenes

1. Pruning (start-to-end)

2. SH Assignment (halfway)

3. Codebook (after)

+0.03db / 2.37×

-0.14db / 8.0×

-0.21db / 27.4×

Reducing the Memory Footprint of 3D Gaussian Splatting

submission n°1

Which Method to Pick? Synergies?

Dataset	Mip-NeRF360					Deep Blending					
Method/Metric	SSIM	PSNR	LPIPS	Train	Mem	SSIM	PSNR	LPIPS	Train	Mem	4
Ours	0.809	27.10	0.226	25m27s	29MB	0.902	29.63	0.249	22m4s	18MB	4
Low	0.811	27.22	0.224	25m22s	46MB	0.903	29.74	0.248	21m59s	35MB	
EAGLES [15]	0.808	27.16	0.238	19m57s	68MB	0.910	29.91	0.245	17m24s	62MB	
Compact3DGS [19]	0.798	27.08	0.247	33m6s	48MB	0.901	29.79	0.258	27m33s	43MB	
Compact3D [24]	0.808	27.16	0.228	-	-	0.903	29.75	0.247	-	-	
_	Mip-NeRF360 No Hidden					Tanks&Temples					
Dataset		Mip-Ne	eRF360 N	Io Hidden			Ta	nks&Ter	nples		
Dataset Method/Metric	SSIM	Mip-Ne PSNR	eRF360 N LPIPS	Io Hidden Train	Mem	SSIM	Ta PSNR	nks&Ter LPIPS	nples Train	Mem	4
	SSIM 0.864					SSIM 0.840				Mem 14MB	4
Method/Metric		PSNR	LPIPS	Train	Mem		PSNR	LPIPS	Train		4
Method/Metric Ours	0.864	PSNR 28.58	LPIPS 0.193	Train 26m0s	Mem 27MB	0.840	PSNR 23.57	LPIPS 0.188	Train 14m0s	14MB	—
Method/Metric Ours Low	0.864 0.866	PSNR 28.58 28.73	0.193 0.190	Train 26m0s 25m52s	Mem 27MB 43MB	0.840 0.841	PSNR 23.57 23.64	0.188 0.186	Train 14m0s 14m4s	14MB 21MB	4
Method/Metric Ours Low EAGLES [15]	0.864 0.866 0.866	PSNR 28.58 28.73 28.69	0.193 0.190 0.200	Train 26m0s 25m52s 20m18s	Mem 27MB 43MB 67MB	0.840 0.841 0.835	PSNR 23.57 23.64 23.41	UPIPS 0.188 0.186 0.200	Train 14m0s 14m4s 9m48s	14MB 21MB 34MB	—

Looking for New Challenges

Next 6 months: joining the Human Sensing Lab at Carnegie Mellon

- Looking for faculty positions for the time after
- Glad to hear about opportunities, preferably in Europe!

• Or just chat about 3DGS and potential follow-ups ©

Questions?

Immer her damit