Data Science Lab

Collaborative Filtering

Louis Carron Filomène Roquefort Jules Roques

Implementation:

- Pre-Processing Normalization / User-Movie Bias
- MF with GD and ALS (show learning curves)
 U and I initialization: Gaussian
- Iterative PCA
- Kernel PCA
- Parameters tuning
- Metrics: Loss, RMSE, Accuracy

Matrix Factorization: Alternating Least Squares Parameters Tuning

Matrix Factorization: Gradient Descent Parameters Tuning

Iterative PCA: Algorithm

Iterative PCA : Dealing with Bias

Iterative PCA: Parameters Tuning

Iterative Kernel PCA: Intuitive Interpretation

The **pre-image problem** in kernel-based machine learning Paul Honeine, and Cédric Richard

Iterative Kernel PCA: Experimental Results

Conclusion:

Table 1: Performance comparison of all implemented models after cross-validation.

Model	Best RMSE	Exact Accuracy (%)	Exec. Time (s)
Matrix Factorization (GD)	0.876	0.322	0.53
Matrix Factorization (ALS)	0.886	0.315	1.43
Iterative PCA	0.879	0.318	29.16
Iterative Kernel PCA (RBF)	0.927	0.322	3.86

- Impact of Normalisation
- Better Performances with Natively Sparse Methods

