Numerical Matrix Analysis

Lecture Notes #3 — Orthogonal Vectors, Matrices and Norms

Peter Blomgren, \langle blomgren.peter@gmail.com \rangle

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://terminus.sdsu.edu/

Spring 2020

Outline

- Introduction
 - Recap
- 2 Fundamental Concepts
 - Adjoint / Hermitian
 - Inner Products, Matrix Properties, Orthogonality
 - Unitary Matrices, Vector Norms, Matrix Norms
- 3 Next...
 - Looking Ahead

A quick review / crash course in basic linear algebra:

- Vectors: Transpose, Addition & Subtraction
- Matrix-Vector Product
- The Vandermonde Matrix ... and Linear Least Squares Problems
- Matrix-Matrix Product
- The Transpose of a Matrix (A^T)
- The Range and Nullspace of a Matrix A
- The Rank of a Matrix $A_{m \times n}$
- The Inverse of a Matrix A

...More Fundamental Concepts

The Adjoint a.k.a Hermitian (Transpose, or Conjugate) of a matrix $A \in \mathbb{C}^{m \times n}$...

For a scalar $z \in \mathbb{C}$, z = a + bi, the **complex conjugate** \overline{z} , or z^* is obtained by negating the imaginary part, i.e. $z^* = a - bi$.

Note that if $z \in \mathbb{R}$, then $z^* = z$.

For a matrix $A \in \mathbb{C}^{m \times n}$, the Hermitian Conjugate $A^* \in \mathbb{C}^{n \times m}$ is the matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \Rightarrow \mathbf{A}^* = \begin{bmatrix} a_{11}^* & a_{21}^* & a_{31}^* & a_{41}^* \\ a_{12}^* & a_{22}^* & a_{32}^* & a_{42}^* \end{bmatrix}$$

Orthogonal Vectors, Matrices and Norms

The Hermitian Conjugate

If $A = A^*$, the matrix A is said to be **Hermitian**.

Note that a Hermitian matrix must be square.

In the case that A is real-valued, *i.e.* $A \in \mathbb{R}^{m \times n}$, then

 $A = A^* = A^T$ (the Hermitian conjugate equals the **transpose**).

If $A = A^T$, the matrix A is said to be **Symmetric**.

Our book (TREFETHEN-BAU) tends to state results and theorems in terms of complex vectors and matrices, and hence use the Hermitian conjugate, *i.e.* \vec{x}^* is a row-vector.

If this is disturbing to you, just imagine that all quantities are real, and that $^*\equiv{}^T.$

The advantage of this approach is that we are able to state the most general results.

The Inner Product of Two Vectors

a.k.a the **dot product**

The **inner product**, denoted $\langle \vec{x}, \vec{y} \rangle$, of two column vectors $\vec{x}, \vec{y} \in \mathbb{C}^m$ is defined

$$\langle \vec{x}, \vec{y} \rangle = \vec{x}^* \vec{y} = \sum_{i=1}^m x_i^* y_i$$

note that the inner product is a scalar quantity.

The **Euclidean length**, $\|\vec{x}\|$, of $\vec{x} \in \mathbb{C}^m$ is defined

$$\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle} = \sqrt{\vec{x}^* \vec{x}} = \sqrt{\sum_{i=1}^m |x_i|^2}$$

Inner Product: Geometrical Interpretation

The inner product can also be written

$$\langle \vec{x}, \vec{y} \rangle = \vec{x}^* \vec{y} = ||\vec{x}|| \cdot ||\vec{y}|| \cdot \cos(\alpha)$$

where α is the angle between \vec{x} and \vec{y}

Inner Product: Properties

Bi-Linearity

The inner product is **bilinear**, *i.e.* it is linear in each vector separately:

(1)
$$(\vec{x}_1 + \vec{x}_2)^* \vec{y} = \vec{x}_1^* \vec{y} + \vec{x}_2^* \vec{y}$$

(2)
$$\vec{x}^* (\vec{y}_1 + \vec{y}_2) = \vec{x}^* \vec{y}_1 + \vec{x}^* \vec{y}_2$$

(3)
$$(\alpha \vec{x})^* (\beta \vec{y}) = \alpha^* \beta \vec{x}^* \vec{y}$$

where \vec{x} , \vec{x}_1 , \vec{x}_2 , \vec{y} , \vec{y}_1 , $\vec{y}_2 \in \mathbb{C}^m$, and α , $\beta \in \mathbb{C}$.

Associated Matrix Properties

For any two matrices A and B, of compatible dimensions, i.e. $A \in \mathbb{C}^{m \times n}$, and $B \in \mathbb{C}^{n \times k}$ the following holds

$$(AB)^* = B^*A^*$$

If the matrices A and B are square, and invertible, the following holds

$$(AB)^{-1} = B^{-1}A^{-1}$$

When necessary, we use the notation A^{-*} for $(A^*)^{-1} \equiv (A^{-1})^*$.

Orthogonal Vectors. Matrices and Norms

Orthogonal and Orthonormal Vectors

Two vectors are **orthogonal** if and only if $\langle \vec{x}, \vec{y} \rangle = \vec{x}^* \vec{y} = 0$,

$$0 = \frac{\vec{x}^* \vec{y}}{\|\vec{x}\| \cdot \|\vec{y}\|} = \cos(\alpha) \iff \alpha = \pi/2 + k \cdot \pi.$$

A **set** of **non-zero** vectors S is **orthogonal** if its elements are pairwise orthogonal, *i.e.*

$$\forall \vec{x}, \vec{y} \in S, \quad \vec{x} \neq \vec{y} \quad \Rightarrow \quad \vec{x}^* \vec{y} = 0$$

A set of vectors S is orthonormal if it is orthogonal, and $\forall \vec{x} \in S$, $\|\vec{x}\| = 1$.

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof (Linear Independence of Orthogonal Vectors).

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof (Linear Independence of Orthogonal Vectors).

If the vectors in S are not independent, then $\exists \vec{v_k} \in S : \vec{v_k} \neq \vec{0}$, so that

$$\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.$$

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof (Linear Independence of Orthogonal Vectors).

If the vectors in S are not independent, then $\exists \vec{v_k} \in S : \vec{v_k} \neq \vec{0}$, so that

$$\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.$$

Since $\vec{v}_k
eq 0$, $\langle \vec{v}_k, \vec{v}_k \rangle > 0$,

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof (Linear Independence of Orthogonal Vectors).

If the vectors in S are not independent, then $\exists \vec{v_k} \in S : \vec{v_k} \neq \vec{0}$, so that

$$\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.$$

Since $\vec{v}_k \neq 0$, $\langle \vec{v}_k, \vec{v}_k \rangle > 0$, now we use the bi-linearity property of inner products, and the orthogonality of S:

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof (Linear Independence of Orthogonal Vectors).

If the vectors in S are not independent, then $\exists \vec{v_k} \in S : \vec{v_k} \neq \vec{0}$, so that

$$\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.$$

Since $\vec{v}_k \neq 0$, $\langle \vec{v}_k, \vec{v}_k \rangle > 0$, now we use the bi-linearity property of inner products, and the orthogonality of S:

$$0 < \langle \vec{v}_k, \vec{v}_k \rangle = \left\langle \vec{v}_k, \sum_{i \neq k} c_i \vec{v}_i \right\rangle = \sum_{i \neq k} c_i \underbrace{\left\langle \vec{v}_k, \vec{v}_i \right\rangle}_{0, \forall i \neq k} = 0.$$

Theorem (Linear Independence)

The vectors in an orthogonal set S are linearly independent.

Proof (Linear Independence of Orthogonal Vectors).

If the vectors in S are not independent, then $\exists \vec{v}_k \in S : \vec{v}_k \neq \vec{0}$, so that

$$\vec{v}_k = \sum_{i \neq k} c_i \vec{v}_i.$$

Since $\vec{v}_k \neq 0$, $\langle \vec{v}_k, \vec{v}_k \rangle > 0$, now we use the bi-linearity property of inner products, and the orthogonality of S:

$$0 < \langle \vec{v}_k, \vec{v}_k \rangle = \left\langle \vec{v}_k, \sum_{i \neq k} c_i \vec{v}_i \right\rangle = \sum_{i \neq k} c_i \underbrace{\langle \vec{v}_k, \vec{v}_i \rangle}_{0 \ \forall i \neq k} = 0.$$

This contradicts the assumption that the vectors are linearly dependent, hence proving the theorem.

Corollary: Basis for \mathbb{C}^m

Corollary

If an orthogonal set $S \subseteq \mathbb{C}^m$ contains m vectors, then it is a basis for \mathbb{C}^m .

l.e. we can write any vector $\vec{v} \in \mathbb{C}^m$ as a unique linear combination

$$ec{v} = \sum_{i=1}^m a_i ec{s_i}, \quad ext{where} \left(egin{align*} a_i = rac{\langle ec{s_i}, ec{v}
angle}{\|ec{s_i}\|^2}. \end{aligned}
ight)$$

We can view the computation of $\vec{a_i}$ as a **projection** of the vector \vec{v} onto the direction $\vec{s_i}$.

We can use this in order to decompose arbitrary vectors into orthogonal components...

Suppose we have an **orthonormal set** of vectors $\{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_n\}$, $\vec{q}_i \in \mathbb{C}^m$, $n \leq m$.

Now, for any vector $\vec{v} \in \mathbb{C}^m$, the vector

$$\vec{r} = \vec{v} - \sum_{i=1}^{n} \langle \vec{q}_i, \vec{v} \rangle \vec{q}_i$$

is orthogonal to $\{\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_n\}$:

$$\langle \vec{q}_k, \vec{r} \rangle = \langle \vec{q}_k, \vec{v} \rangle - \underbrace{\sum_{i=1}^n \langle \vec{q}_i, \vec{v} \rangle \langle \vec{q}_k, \vec{q}_i \rangle}_{\langle \vec{q}_k, \vec{v} \rangle \underbrace{\langle \vec{q}_k, \vec{q}_k \rangle}_{1}} = 0.$$

We see that by applying this procedure, we have decomposed the vector \vec{v} into n+1 orthogonal components:

$$\vec{v} = \vec{r} + \sum_{i=1}^{n} \langle \vec{q}_i, \vec{v} \rangle \vec{q}_i$$

If $\{\vec{q}_i\}$ is a basis for \mathbb{C}^m , then n=m and $\vec{r}=\vec{0}$, *i.e.*

$$\vec{v} = \sum_{i=1}^{n} \langle \vec{q}_i, \vec{v} \rangle \vec{q}_i = \sum_{i=1}^{n} (\vec{q}_i^* \vec{v}) \vec{q}_i = \sum_{i=1}^{n} \vec{q}_i (\vec{q}_i^* \vec{v}) = \sum_{i=1}^{n} (\vec{q}_i \vec{q}_i^*) \vec{v}$$

$$ec{v} = \sum_{i=1}^{n} \langle \, ec{q}_i, \, ec{v} \,
angle ec{q}_i = \sum_{i=1}^{n} \left(ec{q}_i^* ec{v}
ight) ec{q}_i = \sum_{i=1}^{n} ec{q}_i (ec{q}_i^* ec{v}) = \sum_{i=1}^{n} \left(ec{q}_i ec{q}_i^*
ight) ec{v}$$

In the expression $\vec{v} = \sum_{i=1}^n (\vec{q}_i^* \vec{v}) \vec{q}_i$ we view \vec{v} as a sum of coefficients (circled) times vectors \vec{q}_i , whereas in the equivalent expression $\vec{v} = \sum_{i=1}^n (\vec{q}_i \vec{q}_i^*) \vec{v}$, we view \vec{v} as a sum of **orthogonal projections** onto the various directions \vec{q}_i .

We will return to the issue of projection matrices of the form $\vec{q}_i \vec{q}_i^*$ soon.

Orthogonal Vectors, Matrices and Norms

Unitary Matrices

A square matrix $Q \in \mathbb{C}^{m \times m}$ is **unitary** (in the real case "orthogonal") if

$$Q^* = Q^{-1} \quad \Leftrightarrow \quad Q^*Q = I$$

In terms of the columns, \vec{q}_i of Q this looks like

$$\begin{bmatrix} --- & \vec{q}_1^* & --- \\ --- & \vec{q}_2^* & --- \\ \vdots & & & \\ --- & \vec{q}_n^* & --- \end{bmatrix} \begin{bmatrix} \begin{array}{cccc} & & & & \\ & & & & \\ \vec{q}_1 & \vec{q}_2 & \cdots & \vec{q}_n \\ & & & & \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array}{cccc} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{array} \end{bmatrix}$$

We have $\vec{q}_i^* \vec{q}_j = \delta_{ij}$, the **Kronecker delta**, equal to 1 if and only if i = j, and 0 otherwise.

Multiplication by a Unitary Matrix

Since the norm of the columns of a unitary matrix is 1, multiplication by a unitary matrix preserves the Euclidean norm in the following sense:

For a unitary Q:

(1)
$$\langle Q\vec{x}, Q\vec{y} \rangle = (Q\vec{x})^*(Q\vec{y}) = \vec{x}^* \underbrace{Q^*Q}_I \vec{y} = \vec{x}^* \vec{y} = \langle \vec{x}, \vec{y} \rangle$$

$$(2) ||Q\vec{x}|| = ||\vec{x}||$$

The invariance of inner products mean that angles between vectors are preserved.

In the real case, multiplication by an orthogonal matrix corresponds to a **rigid rotation** (if $\det(Q) = 1$) or a combined **rotation** – **reflection** (if $\det(Q) = -1$) of the vector space.

Vector Norms

Norms give us the essential notion of size and distance in a vector space — these are our tools for measuring the quality of approximations and convergence in our algorithms.

Definition (Norm)

A **norm** is a function $\|\cdot\|:\mathbb{C}^m\to\mathbb{R}$ that assigns a real-valued (length) to each vector. A norm must satisfy the following three conditions for all vectors $\vec{x}, \vec{y} \in \mathbb{C}^m$, and scalars $\alpha \in \mathbb{C}$,

- (1) $\|\vec{x}\| \ge 0$, and $\|\vec{x}\| = 0$ only if $\vec{x} = 0$
- (2) $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$
- $(3) \qquad \|\alpha \vec{x}\| = |\alpha| \, \|\vec{x}\|$
- (2) is known as the "triangle inequality."

The p-norms (sometimes referred to as the ℓ_p -norms), parametrized by p are defined by

$$\|\vec{x}\|_p = \left[\sum_{i=1}^m |x_i|^p\right]^{1/p}$$

As an illustration, the **unit sphere** $\|\vec{x}\|_p = 1$, $\vec{x} \in \mathbb{R}^2$ is illustrated for some common (and uncommon) *p*-norms, on the following slides.

The 2-norm is the standard Euclidean length function.

The 1-norm is sometimes referred to as the Manhattan/taxicab-distance.

Some commonly used p-norms

$$\|\vec{x}\|_1 = \sum_{i=1}^m |x_i|, \quad \|\vec{x}\|_2 = \left[\sum_{i=1}^m |x_i|^2\right]^{1/2}, \quad \|\vec{x}\|_{\infty} = \max_{i=1...m} |x_i|$$

Some exotic *p*-{norms,non-norms}

$$\|\vec{x}\|_4 = \left[\sum_{i=1}^m |x_i|^4\right]^{1/4}, \quad \|\vec{x}\|_{1/2} = \left[\sum_{i=1}^m |x_i|^{1/2}\right]^2, \quad \|\vec{x}\|_{1/4} = \left[\sum_{i=1}^m |x_i|^{1/4}\right]^4$$

Note: when p < 1 the "norms" are not convex; which means the triangle inequality will not hold; and strictly speaking these are not norms...

The **weighted** p-**norms** $\|\cdot\|_{W,p}$ are derived from the p-norms:

$$\|\vec{x}\|_{W,p} = \|W\vec{x}\|_p$$

where W is e.g. a diagonal matrix, in which the ith diagonal entry is the weight $w_i \neq 0$:

$$\|\vec{x}\|_{W,p} = \left[\sum_{i=1}^{m} |w_i x_i|^p\right]^{1/p}$$

Figure: Visualization of the unit-sphere for the weighted 1-, 2- and ∞ -norms, where W = diag(2,1).

The concept of weighted p-norms can be generalized to arbitrary non-singular weight matrices W.

Orthogonal Vectors. Matrices and Norms

Figure: Visualization of the unit-sphere for the weighted 1-, 2- and ∞ -norms, where $W=\begin{bmatrix}2&1\\1&2\end{bmatrix}$.

∃ Movie.

Matrix Norms — Induced by Vector Norms

Given a vector norms $\|\cdot\|_{(m)}$ and $\|\cdot\|_{(n)}$ on the domain and range of $A \in \mathbb{C}^{m \times n}$, the induced matrix norm $\|A\|_{(m,n)}$ is

$$||A||_{(m,n)} = \sup_{\vec{x} \in \mathbb{C}^n - \{\vec{0}\}} \left[\frac{||A\vec{x}||_{(m)}}{||\vec{x}||_{(n)}} \right]$$

In any sane application, both $\|\cdot\|_{(m)}$ and $\|\cdot\|_{(n)}$ will be of the same type, *i.e.* the *p*-norms (with the same *p*).

Due to the linearity of norms — the third norm-condition — it is sufficient to maximize the matrix norm over $\vec{x} \in \mathbb{C}^n$: $\|\vec{x}\| = 1...$

Most of the time the norms with p=2 are used. Indeed, if nothing else is specified, this is usually implied.

Illustration: Matrix Norms

$$A = \left[egin{array}{ccc} 1 & 2 \\ 1/3 & 2 \end{array}
ight], \qquad \lambda(A) &=& \{2.45743, 0.54257\} \quad {}^{ ext{eigenvalues}} \ \sigma(A) &=& \{2.98523, 0.44664\} \quad {}^{ ext{singular values}} \ \end{array}$$

Special Cases: Matrix p-norms

If D is a diagonal matrix, then

$$||D||_p = \max_{1 \leq i \leq m} |d_i|.$$

The 1-norm of a matrix is the maximal column-abs-sum:

$$||A||_1 = \max_{1 \le j \le n} ||\vec{a}_j||_1$$

The ∞ -norm of a matrix is the maximal row-abs-sum:

$$||A||_{\infty} = \max_{1 \le i \le m} ||\vec{a}_i^*||_1$$

Next Time

- Finish up the discussion on norms:
 - Inequalities, General matrix norms, The Frobenius norm, Bounds on norms of products of matrices.
- The Singular Value Decomposition (SVD).

