

Smartphone Data Fusion and Deep Learning for Travel Mode Detection

Aijie Shu, Valentino Servizi

DTU Machine Learning for Smart Mobility, Technical University of Denmark

Introduction

With the increasing availability of GPS-enabled devices, massive spatio-temporal trajectory data can be acquired effortlessly. Dabiri and Heaslip¹ deployed a convolutional neural network to infer travel mode from GPS. **However**, the CNN architecture does not specialize in handling temporal feature of GPS traces compared with RNN trajectories².

Key contributions:

- Improve of existing CNN
- kinematic attributes based RNN

Mode Encoding::

- 0 BUS
- 1 Train & Subway
- 2 Walk & Run
- 3 Car & Taxi & Motocycle
- 4 Bike
- 100 Others (not included in the NN)

Visualization

Model

Convolutional Neural Network fully replicate from Dabiri¹

Results

Model	Train_acc	Valid_acc	Test_acc
CNN			
RNN			

Computation

Four-channel Kinetic Attributes¹

Input data preparation¹

Input length =

Trajectory Segmentation:

CNN: Trajectories of a user is split into distinct trips by mode status, and then split into segments with each segments contains 200 continuous points.

RNN: Trajectories of a user is split into distinct trips by mode status, and then split into segments with each segments contains 200 continuous points. Every 10 segments are aggregated into a sequence. Sequence which contains less than 10 segments are dropped.

References

- 1. Dabiri, S., & Heaslip, K. (2018). Inferring transportation modes from GPS trajectories using a convolutional neural network. Transportation research part C: emerging technologies, 86, 360-371.
- 2. Jiang, X., de Souza, E. N., Pesaranghader, A., Hu, B., Silver, D. L., & Matwin, S. (2017, November). Trajectorynet: An embedded gps trajectory representation for point-based classification using recurrent neural networks. In Proceedings of the 27th Annual International Conference on Computer Science and Software Engineering (pp. 192-200). IBM Corp..
- 3. Zheng, Y., Chen, Y., Li, Q., Xie, X., & Ma, W. Y. (2010). Understanding transportation modes based on GPS data for web applications. ACM Transactions on the Web (TWEB), 4(1), 1.