第 15 卷第 2 期(1996) Vol. 15 No. 2 (1996) SUM No. 49

超滤技术在酶的浓缩中的应用

李占生

(天津纺织工学院科研处 天津 300160)

摘要:从超滤技术浓缩酶中,获得<mark>浓缩倍数</mark>、酶的收<mark>率</mark>、RF 值及超滤速率等数据. 运用这些数据对超滤膜进行评价,并对运行中的参数进行探讨,从而确定超滤技术在酶的浓缩中的应用.

关键词:超滤膜,碱性蛋白酶,α-淀粉酶

0 前 言

目前国内生产的淀粉酶和蛋白酶的产品大多数是<mark>发酵液不加提纯即经喷雾干燥后作为粗品出售</mark>的第一代酶. 近期开发的新一代酶,其提纯过程是发酵液中加入絮凝剂絮凝,经板框压液机除渣,同时除去部分菌体. 所得酶清液再经超滤器浓缩,直接以浓缩液出售. 这种采用膜技术的优点是可在常温下操作,比传统的浓缩方法节省能源,对热敏性物质的分离更为适宜,而且操作简单,操作中不产生相的变化.

膜超滤技术,以<mark>压力</mark>驱动力,使溶液透过膜并按<mark>溶质分子量、形状、大小的</mark>差异,把大溶质分子阻留在膜的一侧,而小溶质分子则随溶剂透过膜到另一侧,这样,可使溶液中的酶获得浓缩,并除去低分子的杂质,使酶获得提纯.

超滤技术是在溶液动态过程中完成,溶质在膜表面仅为有限的积累,因而膜的表面不致由于形成滤饼层而被堵塞.过滤过程可连续进行,这是超滤与一般过滤的主要区别之一.

浓缩示意图

图1

材料与方法

所用膜是中空纤维外压式组件,规格如表 1.

表 1

型号	膜材料	直经(mm)	长度(mm)	外管材料超	∄滤速率 L/h	ır 工作压力 Mpa	PH 值	操作温度℃
05 型	PS	Ф90	1000	ABS	500	€0.2	2—13	5—45
03 型	PS	Ф90	500	ABS	300	≤0.2	2-13	5-45

采用 05 型和 03 型各一台,截留分子量为 20000.05 型的膜面积为 $14m^2 \times 10.03$ 型的膜面积为 $8m^2 \times 2.$

收稿日期: 1995-11-18; 李占生,男,50岁,工程师.

2 超滤方法

中空纤维超滤浓缩采用连续循环的工艺,即将稀酶液置于循环槽内,使料液呈.循环状态随着超滤液的不断流出,循环槽内料液不断浓缩,直至所需倍数为止.图 1 为浓缩示意图.

浓缩完毕,进行膜清洗.以超滤水等压冲洗 2—3 遍,然后以 NaOH(200PPM)冲洗 0.5~1 小时(亦可用 0.1NNaOH)溶液冲洗,最后再以超滤水进行反复冲洗(压力 \leq 0.1MPa),以使膜恢复至原来的能力.

结果分别列于表 2一表 5

表 2 05 型超滤膜浓缩碱性蛋白酶液

批		稀酶	液	浓 缩 酶 液				
号	活力 u/ml	体积 I	总活力 🛚	括力 u/ml	体积1	总活力 u	收率%	
1	3896	900	3.5064×109	13685	230	3. 1413×10 ⁹	89.77	
2	5068	900	4.5612 × 109	23488	170	3.9930×10^9	89.54	
3	9100	900	8.19×10^{9}	40804	180	7. 3447×10^9	89.70	
4	5620	900	5.058×109	30685	150	4.6028×109	91.00	
5	7144	900	6.4296×10^{9}	43648	130	5. 6742×10^9	88. 25	
6	5999	950	5.6990×10^9	38400	140	5. 3760×10^9	94.33	
7	4700	950	4.465×10^{9}	34140	120	4.0968×10^{9}	91.75	
8	7714	900	6.9426×10^9	39849	160	6. 3816×10^9	91. 92	
9	4720	940	4.4368×10^{9}	31588	130	4. 1064×10^9	92.55	
10	6174	950	5.8653×109	36191	145	5.2477×10^9	92. 83	
平均	6013.5	919					90.96	

稀酶液的温度为 15~18℃

共进行 10 次试验,稀酶液总体积 9190 升得浓缩酶 液总体积 1550 升,酶的浓缩倍数,按体积计平均为 5.91,按活力计平均为 5.53 酶经浓缩后,平均收率为 91.0%.

表 3 03型超滤膜浓缩 α-淀粉酶酶液

批		稀酸	液	旅 缩 酶 液				
号	活力 u/ml	体积」	总活力 u	活力 u/ml	体积!	总活力 u	收率%	
1	273	185	5.0505×10^7	1500	30. 3	4.5450×10^7	90.0	
2	262	180	4.7160×10^{7}	1000	42. 9	4. 2900×10^7	91.0	
3	222	170	3. 7740×10^7	1100	31.0	3. 4100×10^7	90.40	
4	270	180	4.8600 $\times 10^7$	1200	36.9	4.4280×10^{7}	91,1	
5	220	175	3.8500×10^7	178	29.9	3. 5222×10^7	91.5	
平均	249.4	178		1195.6	34.2		90.8	

稀酶液的温度为 20~30℃.

进行 5 次试验,稀酶液总体积 890 升,得浓缩酶液总体积 171 升,酶的浓缩倍数,按体积计平均 5.2,按酶活力计平均为 4.79,酶经浓缩后,平均收率为 90.8%.

表 4 05 型超滤膜浓缩碱性蛋白酶液 RF 值与超滤速率

批次	浓缩酶液1	浓缩酶液活力 u/ml	超滤液1	超滤酶活力 u/ml	RF%	超滤速率 l/hrm ²
1	230	13685	670	283	94	5.84
2	170	23488	730	519	91	5. 21
3	180	40804	720	559	95	4.9
4	150	30685	7 50	1614	79	3.69
5	130	43648	770	594	93	4.06
6	140	38400	810	522	93	3.51
7	120	34140	830	649	88	4.03
8	160	39849	740	558	94	3. 62
9	130	31588	810	379	93	3.97
10	145	36191	805	373	95	4.02
平均	155.5	33248	763.5	605	92	4.29

RF 值为<mark>截率,</mark>即膜对酶的截留情况. 通过截留率可以考察膜及该装置的质量水平. 尽管截留率与酶的收率不是同一概念,但是通常情况下,截留率大,有助于提高酶的收率.

计算方法为 RF= 浓缩酶液活力 ×100% 浓缩酶液活力+超滤液酶活力

共 10 次试验, RF 值平均为 92%

超滤速率,在超滤膜的规格中,其超滤速率以纯水透过膜的速率表示. 如 05 型中空纤维超滤膜 1 支每小时超滤速率为 500 升,(35.7 升/平米·小时). 用于酶的浓缩时,由于酶液速率将发生变化,经 10 次试验,超速率平均为 4.29 升/平米·小时

K o Co Treatment to the contract of the contra								
批次	浓缩酶酶液1	浓缩酶液活力 u/ml	超滤液1	超滤酶活力 u/ml	RF %	超滤速率 l/hrm²		
1	30.3	1500	154. 7	14	95	3. 6		
2	4 2. 9	1000	137.1	13	96	3. 5		
3	31.0	1100	139.0	13	95	4.0		
4	36.9	1200	143.1	14	96	4.3		
5	29.9	1178	145. 1	12	95	4.1		
77Z. 1-(1	24.2	1105 6	143 8	13 2	95	3 9		

表 5 03 型超滤膜浓缩 a-淀粉酶液 RF 值超滤速率

经 5 次试验 RF 值平均为 95%. 超滤速率平均为 3.9 升/平米·小时.

注:本试验使用蛋白酶为 2709 碱性蛋白酶;使用 α-淀粉酶为 7658α-淀粉酶.

3 讨论及建议

- 1. 中空纤维超滤膜在酶浓缩中,浓缩倍数 5 倍左右(可接需要控制),酶的收率大于 90%,膜的截面率 92%以上,膜超滤速率为 4. 01/hrm²,这表明膜的应用效果较好.
- 2. 影响速率的除了<mark>膜渗透性</mark>外还有<mark>压力.</mark> 压力增大速率相应增加,但二者并不成比例,速率达到一稳定的水平后,压力增加速率并不增大. 采用<mark>外压式中空纤维膜超滤,压力不宜超过0.18MPa.</mark>
- 3. 由于热的直接作用,使溶质分子的活性、运动性、溶解度有所增加以致<mark>溶液的粘度下降</mark>, 故当温度增加,可增大流量. 采用<u>外压式中空纤维膜超液</u>,温度控制在 15℃~30℃ 为宜,鉴于 较低温度下超滤,酶活损失较小,故操作温度不宜偏高.
- 4. 膜的清洗,当超滤器正式使用前,必须充分冲洗,当使用一段时间(比如连续运转一至二班),应冲洗;当使用中发现透过量减少,压力升高较大时,应冲洗.清洗液组成,可针对污染原因选择,或采用纯水;或采用次氯酸钠溶液(100~200PPM);或采用 NaOH 溶液(0.1N).
 - 5. 为了改善浓差极化和膜污染,发酸酶液必须经过妥善的于处理后才能进行超滤.
 - 6. 浓缩酶制剂如选用亲水性和物理与化学稳定性好的膜为更有利.

参 考 文 献

- 1 张树政主编, 酶制剂工业, 北京:科学出版社,1984
- 2 宗润宽.第一届全国膜及膜过程学术报告会文集.1991,505~508