Curriculum Vitae

Sihong WU (sihongwu@mit.edu)

Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, Cambridge, MA, 02139

Education

2016-2021 **Ph.D.** in Geophysics, Peking University, Beijing, China

- Thesis: De-noising and inversion of transient electromagnetic data based on the deep learning methods
- · Advisor: Prof. Qinghua Huang

2012-2016 **B.S.** in Geophysics, University of Science and Technology of China, Anhui, China

• Enrolled in Special Class for the Gifted Young (for age 16 and under)

Appointment

2025-present **Postdoctoral Researcher**

- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, MA, USA
- · Supervisor: Dr. Aimé Fournier, Dr. Laurent Demanet

2023-2025 **Postdoctoral Researcher**

- · Department of Earth & Atmospheric Sciences, University of Houston, TX, USA
- Department of Department of Electrical and Computer Engineering, University of Houston, TX, USA
- · Supervisor: Dr. Jiajia Sun, Dr. Jiefu Chen

2021-2023 **Postdoctoral Researcher**

- · Department of Geophysics, Peking University, Beijing, China
- · Supervisor: Dr. Qinghua Huang

Research Interests

Deep learning-based electromagnetic geophysics: Signal processing, modeling, imaging and uncertainty quantification of electromagnetic data from airborne, controlled-source, borehole and marine systems using deep learning techniques.

Uncertainty quantification of geophysical inverse problems: Developing supervised and unsupervised machine learning methods to efficiently reconstruct posterior and overcome the computational bottleneck of high-dimensional Bayesian inversion.

Joint inversion and interpretation: Developing advanced techniques for comprehensive subsurface characterization combining electromagnetic data with other geophysical data, including seismic, magnetic and gravity data.

Near-surface investigation and exploration: Characterizing subsurface resistivity structures to support mineral exploration, new energy resource detection, hydrologic process monitoring, and environmental assessments.

Peer-reviewed Publications

- 15. **Wu**, S., Sun, J., & Chen, J. Variational inference for geophysical inverse problems using normalization flows: an unsupervised approach to electromagnetic data inversion. *Geophysical Journal International*, 242(3), ggaf239. https://doi.org/10.1093/gji/ggaf239.
- 14. **Wu, S.**, Thoram, S., Sun, J., Sager, W. W. & Chen, J., 2025. Understanding oceanic crust formation through marine magnetic anomaly characterization based on machine learning. *Journal of Geophysical Research:* solid earth, 130(2), e2024JB030682. https://doi.org/10.1029/2024JB030682.
- 13. **Wu, S.**, Huang, Q. & Zhao, L., 2024. Physics-informed deep learning-based inversion for airborne electromagnetic data. *Geophysical Journal International*, 238, 1774-1789. https://doi.org/10.1093/gji/ggae244.
- 12. **Wu**, **S.**, Huang, Q. & Zhao, L., 2023. Fast Bayesian inversion of airborne electromagnetic data based on the invertible neural network. *IEEE Transactions on Geoscience and Remote Sensing*, 61, 5907211. https://doi.org/10.1109/TGRS.2023.3264777.
- 11. **Wu, S.**, Huang, Q. & Zhao, L., 2023. A deep learning-based network for the simulation of airborne electromagnetic responses. *Geophysical Journal International*, 233, 253-263. https://doi.org/10.1093/gji/ggac463.
- 10. **Wu, S.**, Huang, Q. & Zhao, L., 2022. Instantaneous inversion of airborne electromagnetic data based on deep learning. *Geophysical Research Letters*, 49(10), e2021GL097165. https://doi.org/10.1029/2021GL097165.
- 9. **Wu, S.**, Huang, Q. & Zhao, L., 2021. Convolutional neural network inversion of airborne electromagnetic data. *Geophysical Prospecting*, 69(8-9), 1761-1772. https://doi.org/10.1111/1365-2478.13136.
- 8. **Wu, S.**, Huang, Q. & Zhao, L., 2021. De-noising of transient electromagnetic data based on the long short-term memory-autoencoder. *Geophysical Journal International*, 224(1), 669-681. https://doi.org/10.1093/gji/ggaa424.
- 7. Huang, Q., **Wu**, S. & Xue, J., 2025. Data science and machine learning in geo-electromagnetics: A review. *Surveys in Geophysics*, accepted.
- 6. Su, Y., **Wu, S.**, Sun, J., Wu, X., Huang, Y., Chen, J., Lu, L., Wei, X. & Christiansen, R., 2025. Natural hydrogen exploration by joint sparse inversion of geophysical measurements and integrated geological interpretation. *International Journal of Hydrogen Energy*, accepted.
- 5. Xue, J., Huang, Q., **Wu**, S., Zhao, L. & Ma, B., 2024. Real-time dual-parameter full-waveform inversion of GPR data based on robust deep learning. *Geophysical Journal International*, 238, 1755-1771. https://doi.org/10.1093/gji/ggae243.
- 4. Xue, J., Huang, Q., **Wu**, **S.** & Zhao, L., 2024. Detection of ULF geomagnetic anomalies prior to the Tohoku-Oki Earthquake by the multi-reference station method. *IEEE Transactions on Geoscience and Remote Sensing*, 62, 5910009. https://doi.org/10.1109/TGRS.2024.3382472.
- 3. Xue, J., Wu, S., Huang, Q., Zhao, L., Sarlis, N. V. & Varotsos, P. A., 2023. RASE: A real-time automatic search engine for anomalous seismic electric signals in geoelectric data. *IEEE*

- Transactions on Geoscience and Remote Sensing, 61, 5905911. https://doi.org/10.1109/TGRS.2023.3260202.
- 2. Xue, J., Huang, Q., **Wu**, **S.** & Nagao, T., 2022. LSTM-autoencoder network for the detection of seismic electric signals. *IEEE Transactions on Geoscience and Remote Sensing*, 60, 5917012. https://doi.org/10.1109/TGRS.2022.3183389.
- 1. Wang, K., Huang, Q. & **Wu**, **S.**, 2020. Application of long short-term memory neural network in geoelectric field data processing. *Chinese Journal of Geophysics* (in Chinese), 63(8), 3015-3024. https://doi.org/10.6038/cjg202000119.

Papers under Review or in Preparation

- 1. **Wu, S.**, Sun, J. & Chen, J. Continental-scale probabilistic imaging of Australia's subsurface from airborne electromagnetic data. In preparation.
- 2. **Wu, S.**, Sun, J. & Chen, J. Probabilistic 1D resistivity reference models across the continental United States from USArray MT data. In preparation.
- 3. Bittar, G., Wu, S., Su, Y., Sun, J., Wu, X., Huang, Y., Zeng, S. & Chen, J. Real-time Bayesian inversion and uncertainty quantification of ultra-Deep resistivity measurements using invertible neural network. Computers and Geosciences, under review.
- 4. Zhou, C., Wu, S., Sun, J., Chen, J. & Huang, Y. Deep learning-based probabilistic imaging of Yellowstone's hydrothermal system from AEM Data. In preparation.

Conference Papers

- 22. **Wu, S.**, Sun, J. & Chen, J. 2025. Australia's shallow subsurface revealed: Fast continental-scale probabilistic inversion of AusAEM data via deep learning. In AGU (American Geophysical Union) Annual Meeting Abstracts.
- 21. Chen, J., **Wu**, **S.**, Wang, L., Chen, C. & Sun, J. 2025. Interpretable high-resolution mapping of terrestrial water storage dynamics on the Qinghai–Tibet Plateau based on deep learning. In AGU Annual Meeting Abstracts.
- 20. Kietzmann, J., **Wu**, **S.**, Sun, J. & Niu, Q. 2025. Critical zone subsurface structure characterization of a mountainous catchment using seismic refraction and drone-based electromagnetics. In AGU Annual Meeting Abstracts.
- 19. Zhou, C., **Wu**, **S.**, Sun, J., Chen, J. & Huang, Y. 2025. Deep learning-based probabilistic imaging of Yellowstone's hydrothermal system from AEM Data. In AGU Annual Meeting Abstracts.
- 18. **Wu**, **S.**, Sun, J. & Chen, J. 2025. An unsupervised deep learning approach to geophysical Bayesian inversion using normalizing flows. In the International Meeting for Applied Geoscience & Energy (IMAGE) Abstracts.
- 17. Su, Y., **Wu, S.**, Sun, J., Wu, X., Huang, Y., Chen, J., Lu, L., Wei, X. & Christiansen, R. 2025. Geophysical targeting of serpentinite for geologic hydrogen by joint analysis of gravity and magnetic data. In IMAGE Abstracts.
- 16. **Wu, S.**, Thoram, S., Sun, J., Sager, W. W. & Chen, J., 2024. Transforming the interpretation of marine magnetic anomalies through a machine learning-based framework. In AGU Annual Meeting Abstracts.

- 15. **Wu**, **S.**, Sun, J. & Chen, J., 2024. Fast model uncertainty evaluation of airborne frequency-domain electromagnetic data inversion based on deep learning. In AGU Annual Meeting Abstracts.
- 14. Su, Y., **Wu**, **S.**, Chen, J., Sun, J. & Lu, L., 2024. Identifying natural hydrogen reservoirs through integrated 3D aeromagnetic and gravity data inversion in Bartlett Springs fault zone in north California. In AGU Annual Meeting Abstracts.
- 13. Sun, J., **Wu**, **S.**, Chen, J. & Yin, Z., 2024. Bayesian inference of airborne electromagnetic data based on normalizing flows. In AGU Annual Meeting Abstracts.
- 12. Huang, Q., Xue, J. & Wu, S., 2024. Data science and machine learning in geo-electromagnetics. In EM Induction Workshop Abstracts.
- 11. **Wu, S.,** Sun, J. & Chen, J., 2024. Stochastic inversion of frequency-domain airborne electromagnetic data based on deep learning.
- 10. Kalu, D. V., **Wu**, **S.** & Sun, J., 2024. Empowering mineral exploration: Leveraging invertible neural networks for magnetotelluric data inversion and uncertainty quantification. In IMAGE Abstracts.
- 9. Bittar, G., Su, Y., **Wu, S.**, Sun, J., Wu, X., Huang, Y. & Chen, J., 2024. Fast inversion and uncertainty quantification of electromagnetic well logging data using invertible neural network. In IMAGE Abstracts.
- 8. **Wu**, **S.**, Sun, J. & Chen, J., 2024. Airborne electromagnetic data interpretation with deep learning-based stochastic inversion and posterior distribution clustering with application to salinization detection. In International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications (GEM) Abstracts.
- 7. **Wu, S.**, Huang, Q. & Zhao, L., 2023. Simultaneous resistivity imaging of airborne electromagnetic data based on deep learning. In JpGU (Japan Geoscience Union) Geoscience Union Meeting Abstracts.
- 6. **Wu, S.**, Huang, Q. & Zhao, L., 2023. Near real-time subsurface structure imaging using airborne electromagnetic data based on deep learning. In EGU (European Geosciences Union) General Assembly Abstracts.
- 5. **Wu, S.**, Huang, Q. & Zhao, L., 2022. Near real-time resistivity imaging from airborne electromagnetic data based on deep learning. In CGU (Chinese Geosciences Union) Annual Meeting Abstracts.
- 4. **Wu**, **S.**, Huang, Q. & Zhao, L., 2021. 1-D inversion of airborne transient electromagnetic data based on convolutional neural network. In CGU Annual Meeting Abstracts.
- 3. **Wu**, **S.**, Huang, Q. & Zhao, L., 2021. Convolutional neural network inversion of airborne transient electromagnetic data. In CIGEW (China International Geo-Electromagnetic Workshop) Abstracts.
- 2. **Wu**, **S.**, Huang, Q. & Zhao, L., 2020. De-noising of transient electromagnetic data based on the LSTM-autoencoder. In CGU Annual Meeting Abstracts.
- 1. **Wu, S.** & Huang, Q., 2019. De-noising of transient electromagnetic data based on the LSTM-autoencoder. In CIGEW Abstracts.

Research Grants

- 7. Grants to Enhance and Advance Research at the University of Houston. **Co-Principal Investigator**. *An integrated framework for natural hydrogen reservoir identification through geophysical, geological, and machine learning approaches*. Project period: 04/2025-10-2026. Funding: 40,000 USD.
- 6. National Natural Science Foundation of China. No. 42204074. **Principal Investigator**. *De-noising of airborne transient electromagnetic data based on deep learning*. Project period: 01/2023-12/2024. Funding: 200,000 RMB.
- 5. China Postdoctoral Science Foundation. No. 2022M720214. **Principal Investigator**. *Bayesian inversion of airborne electromagnetic data based on deep learning*. Project period: 01/2023-12/2024. Funding: 80,000 RMB.
- 4. National Natural Science Foundation of China. No. U2239201. Collaborator. Study on the spatiotemporal characteristics of seismic electromagnetic anomalies in the Sichuan-Yunnan region and their relationship with seismic activity. Project period: 01/2023-12/2026. Funding: 2,870,000 RMB.
- 3. National Natural Science Foundation of China. No. 42274088. **Collaborator**. *Study on the electrical structure of the middle to upper mantle in the Chinese Mainland based on geomagnetic diurnal variations*. Project period: 01/2023-12/2026. Funding: 560,000 RMB.
- 2. National Natural Science Foundation of China. No. 41874082. **Collaborator**. *Study of joint methodology integrating wavelet analysis and probability tomography of self-potential data and the application in landslide monitoring*. Project period: 01/2019-12/2022. Funding: 650,000 RMB.
- 1. National Natural Science Foundation of China. No. 41804072. **Collaborator**. *Three-dimensional forward modeling of global and regional-scale ocean tidal electromagnetic signals*. Project period: 10/2019-12/2020. Funding: 250,000 RMB.

Invited Talks

- 2025 Data science for energy transition. Guest instructor in NSF Data Science Corps Summer Camp, online
- 2025 Advancing subsurface characterization with deep generative models. Department of Petroleum Engineering Weekly Seminar, Houston, TX.
- 2024 Advancing the interpretation of potential field geophysical data with deep generative models. Geophysical Society of Houston Potential Fields Special Interest Group, Houston, TX.
- 2024 Data science for energy transition. Guest instructor in NSF Data Science Corps Summer Camp, online
- 2024 Airborne electromagnetic data inversion and uncertainty quantification using deep learning. The United States Geological Survey, online
- 2023 Generative AI for Geoscience Applications. Amazon Web Services, Houston, TX
- 2023 Deep learning-based inversion and uncertainty quantification of airborne electromagnetic data. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing, China

2023 Deep learning-based inversion and uncertainty quantification of airborne electromagnetic data. National Institute of Natural Hazard, Ministry of Emergency Management of the People's Republic of China, Beijing, China

Teaching Experiences

University of Houston

- 2025 Graduate, Data science for energy transition (50 students)
- 2024 Graduate, Data science for energy transition (50 students)

Peking University

- 2020 Graduate, Electromagnetic Field Experiment (2 students)
- 2019 Undergraduate, Earthquake Country (320 students)

Field Experiences

- Houston, TX, USA, frequency-domain electromagnetic (FEM) measurements to investigate saltwater intrusion in coastal aquifers.
- Boise, ID, USA, drone-based electromagnetic measurements to investigate the critical zone resistivity structures and groundwater systems.
- Houston, TX, USA, drone-based electromagnetic and magnetic measurements to investigate groundwater systems and processes.
- Tangshan, China, magnetic and FEM measurements, to investigate the underground structure beneath a large-scale surface collapse.
- Jingdezhen, China, magnetotellurics (MT) and controlled-source electromagnetic (CSEM) measurements, to investigate the world's largest known tungsten deposit.

Honors and awards

- 2025 GWH Award for Excellence in Electrical Geophysics, Hohmann Wannamaker Trust
- 2022 Outstanding Doctoral Dissertation Award, Chinese Geophysical Society
- 2021 Excellent Graduate Award, Peking University
- Outstanding Student Presentation Award, Chinese Geosciences Union Annual Meeting
 Hai Liang Scholarship, Peking University
 Merit Student Award, Peking University
- 2019 Outstanding Student Presentation Award, Chinese Geophysical Society Award for Scientific Research, Peking University
- 2018 Award for Scientific Research, Peking University

Services

Professional organizations and meetings

2025 Session co-chair for GM 2 Interpretation and Case Studies

- IMAGE, Houston, TX, USA
- 2025 Session co-chair for NEF 2 Geothermal and Critical Minerals
 - IMAGE, Houston, TX, USA
- 2025 Session co-chair for NEF P4 Geologic Hydrogen 2
 - IMAGE, Houston, TX, USA
- 2024 Session convener for T001-I. Advances in machine learning applications in marine geosciences: from data acquisition and analysis to interpretation across varied marine environments and scales
 - AGU, Washington, D.C., USA
- 2024 Session co-convener for NS008. Advances in Multimethod Geophysical Data Interpretation and Other Applications of Machine Learning
 - AGU, Washington, D.C., USA
- 2024 Guest Editor for special issue on Frontiers in Electromagnetic Geophysics, Geophysics
- 2024 Session co-chair for NEF P1 Emerging Energy: Building the Future on the Past 2 **IMAGE**, Houston, TX, USA
- 2024 Session co-chair for EM 1 Modeling and Inversion IMAGE, Houston, TX, USA
- 2023 Session co-chair for S-EM14 Electric, magnetic and electromagnetic survey technologies and scientific achievements
 - JpGU Geoscience Union Meeting, Chiba, Japan

Reviewers

- · Science Advances
- · Geophysical Journal International,
- · IEEE Transactions on Geoscience and Remote Sensing,
- · IEEE Geoscience and Remote Sensing Letters,
- · IEEE Journal of Selected Topics in Signal Processing,
- · Geophysics,
- · Geophysical Prospecting,
- · Earth, Planets and Space,
- · Chinese Journal of Geophysics