вариант	ф. номер	група	поток	курс	специалност	минала година
1						
Име:						

Второ контролно по Езици, автомати и изчислимост 31.05.2025 г.

Задача 1. (3.0 m.) Нека $\Sigma = \{a, b, c\}$. Да се докаже, че:

- 1. $L_1 = \{a^nb^{2m}c^kb^{m+2}a^{n+1} \mid n,m,k \in \mathbb{N}\} \cup \{a\}^*\{b\}^*\{a\}^*$ е контекстносвободен.
- 2. ако $L \subseteq \Sigma^*$ е регулярен, то:

$$L' = \{xx^{rev}z \mid x \in L, xz \in L, z \in \Sigma^*\}$$

е контекстносвободен.

3. ако $L \subseteq \Sigma^*$ е регулярен, то:

$$L' = \{xyx^{rev}z \mid x \in L, yxz \in L, y, z \in \Sigma^*\}$$

е контекстносвободен.

вариант	ф. номер	група	поток	курс	специалност	минала година
1						
Име:						

Второ контролно по Езици, автомати и изчислимост 31.05.2025 г.

Задача 1. (3.0 m.) Нека $\Sigma = \{a, b, c\}$. Да се докаже, че:

- 1. $L_1=\{a^nb^{2m}c^kb^{m+2}a^{n+1}\,|\,n,m,k\in\mathbb{N}\}\cup\{a\}^*\{b\}^*\{a\}^*$ е контекстносвободен.
- 2. ако $L \subseteq \Sigma^*$ е регулярен, то:

$$L' = \{xx^{rev}z \mid x \in L, xz \in L, z \in \Sigma^*\}$$

е контекстносвободен.

3. ако $L \subseteq \Sigma^*$ е регулярен, то:

$$L' = \{xyx^{rev}z \mid x \in L, yxz \in L, y, z \in \Sigma^*\}$$

е контекстносвободен.