16/03/23	POST OPTIMAL ANA	al finding man sol in
	It deals with situation efficient way where the pa	vameters are changed.
	Conditions after param- are changed.	Regenmended Action
(1.)	Soln is optimal & feasible.	No action recommen
	Sol becomes inteasible but stays optimal.	Use dual simplex.
(3)	Sol is feasible but not optimal.	Use simplex/primal simplex.
	Sol" is neither fearible nor optimal.	Generalized Simplex Nethod
<u></u>	Change in feasibility	
	It happens in 2 situations	
(i.)	RHS of the constraint og" c	hanges
	Addition of a new const	
CONTRACTOR OF THE PARTY OF THE		

(2) xy, xs, x6 were the initial basic var. in the primal simple.

(a) Max $z = 3x_1 + 2x_2 + 5x_3$ 5.t $x_1 + 2x_2 + x_3 \le 430$ $3x_1 + 2x_3 \le 460$ $x_1 + 4x_2 \le 420$

x,,x,x,20

And)

Associated primal optimal table

Basic	x_1	xz	7C 3	xy	x	×6	Saln	1
Z	4	0	0	1	2	0	1350	
xz	-1/4	1	0	1/2	-1/4	0	100	
x ₃	3/2	0	1	0	1/2	0	230	
X6	2	0	0	-2	1	1)	20] [
								-

(i) Write the dual form

Ans (i)

Min z = 430 y, + 460 y + 420 y 3

s.t

 $y_1 + 3y_2 + y_3 \ge 3$

 $2y_1 + 4y_3 \ge 2$

y, + 2y2 > 5

- y 1 y 3 2 0

(i) If RHS of the constraint egn changes to 460 500 Use post optimal analysis to find optimal & fearible soln. 400 We use dual simplex method to check if the sol" continues to be feasible after the RHS of the continues to go straint eg is changed.

Since there is a -ve value in RHS of constraint, the sol" becomes infeasible.
To restore feasibility, we use dual simple.

$$z = 3(0) + 2(105) + 5(250) = 1460$$

Jul Xc	1 26	Soln	
x, x, xy 2	0	1460	
Buil 10 0 1/2 -1/2	9 0	105	
= 1/2	0	250	
3/2 0 1 -2 1	1	(-20)	
23 0 0 5/2	11/2	1450	
5 0 0 0	1/4	100	
- 16	0	250	
3/2 0 1 -1/2	-1/2	10	
X3 -1 0 0 1 72			
	1999	. 1	

its now optimal & feasible.

z = 1450, $x_2 = 100$, $x_3 = 250$, $x_4 = 10$

 $x_1, x_5, x_6 = 0$

If RUS of constraint changes to (500) with

initial primal optimal soln. Find the optimal & fearible soln.

: feasible & optimal

 $+2x_2+5x_3=3(0)+2(150)+5(100)$ oft.sol"

Addition of a new constraint affects feasibility $(i) 3x_1 + x_2 + x_3 \leq 500$ 3(0) + 100 + 230 \(\leq 500 \rightarrow Since the constraint is satisfied by the optimal solar it implies that the new constraint is redundant as it want change the optimum sola. (i) 3x, + 3x2 + x3 = 500 $3(0) + 3(100) + 230 \leq 500$ Since the additional constraint is not satisfied by the optimum sel, it will be taken into consideration. So the simplex table after encorporating the constraint is (next page) (*) 1/2 & 1/2 are basic var. and are also apart of the additional constraint. Thus, this adjustment is made for the new xq row.

The new 1/2 now = x7 now - [3(x2 now) + x3 now)

Basic	x,	22	x 3	Xy	765	×	2	7	Saln	
Z	4	D	0	Ø	1 0		3	0	1350	
x2	-1/4	l	0	1/2	-1/4	0		0	100	
хз	3/2	0	1	3	1/2	0		0	230	
26	2	0	0	- 2	(-	l			20	
X7	3	3	1	0	0	0		1	500	
Z	+sur4	Q	0	VI Max	2	0	1	2	1356	
22	-1/4	1	0	1/2	-1/4	0	0		100	
x 3	3/2	0	1	0	1/2	0	0	,	230	
X6	2	0	0	-2	l	1	0		20	
- xz	9/4	0	0	-3/2	+1/4	0	1		-30	
Z	11/2	0	0	0	13/6	0	2/3	3	1330	
× 2	1/2	1	0	0	-1/6	0	1/3	3	90	
X 3	3/2	0	(0	1/2	0	0		236	
X6	-1	0	0	0	42/3		-4/		60	\
xy	-3/2	0	0	Tal	-1/6	0	-2/3		20	
					117					+

i optimal & feasible.

Z = 1330, $x_1 = 90$, $x_3 = 230$, $x_4 = 20$ $x_5 = 30$, $x_7 = 90$, $x_8 = 60$

I. Changes affecting optimality (i.) changes in obj. for coeff.'s We need to recompute the z-row coeff.'s. (i) Find the dual values (ii) To use the new dual values to find non-basic var.'s 2 cases are likely to happen: (i) Lo The new obj. & satisfies the optimality cond" then sol" remains unchanged. In this case, optimum obj. values may change. (ii) Optimality cond" is not satisfied so we use primal simplex method to restore optimality. (Q)i) If new obj. for is Max z = 2x, + 3x2 + 4x3 . (heck optimed Ano) basic var. -> x2 x3 x6 coeff. of basic var. in new obj. for (taken in same order) are (3 40). $(y_1/y_2/y_3) = \begin{pmatrix} 1/2 & -1/4 & 0 \\ 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 3 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 0 \\ 2 & 4 \end{pmatrix}$

the weft's of non-basic var's 2, x y, x y are obtained by subbing the values of y 1, yz, y 3 in the constraints corresponding to non-basic var's

x,: y,+3y,+y, = (3+15-2) = 3/4/4/

 $x_4: y_1 - 0 = \frac{3}{2/1}$

x5: y2-0 = 5/4/

Since weff 's of non-basic var's are the for the maximization problem, it implies that the optimality is not affected.

So, the optimal value of $Z = 2x_1 + 3x_2 + 7x_3$ Z = 2(0) + 3(100) + 4(230)

z = 1220

(ii) If new obj. f" is Max z = 6x, + 3x, + 4z, check if optimality is affected. If yes, Find opt. sol". basic van. x2 , x3 , X6. (y, y2, y3) = (3 4 0) (1/2-1/4 0) = (3 1 1) $\frac{1}{2} = \left(\frac{3}{2} + \frac{5}{4} + 0\right)$ nont basic var. -> 26, Xy, 165 x,: y,+ 3y2 + y3 - 6 = (-3/4) -> -ve x4: y-0 = 3/2 25: y2-0 = 5/4 Since one of the coeff. of non-basic var. is -ve. it is not-optimal solm.
Optimality will be restored using primal simples.

	A STATE OF THE STA								
Basic	x, \downarrow	×2	263	XY	×s	1 X6	soln		
Z	-3/4	0	0	3/2	5/4	0	1220		
×2	-1/4	1	0	1/2	-1/4	0	100		
x,	3/2	0	1	0	1/2	0	230		
4 xi	2	0	0	-2	- 1	(20		
2	0	0	0	18/28/4	13/8	13/2/8	2455/2		
Xı		1 1					102.5		
x3				3 6	1	- 1	215		
χ,)	0	0	1-1	1/2	1/2	10		

. .