Riassunto funzioni

Definizioni: Una **Funzione** è una regola che collega gli elementi di due insiemi, ogni elemento dell'insieme di "partenza" (**dominio**) deve essere collegato a un solo elemento dell'insieme di "arrivo" (**codominio**). Non è detto che ogni elemento del dominio abbia un corrispettivo nel codominio, infatti il **Dominio naturale** indica il sottoinsieme più grande del dominio per cui è possibile collegare un elemento del codominio.

L'immagine è il più grande sottoinsieme del codominio di elementi "toccati" dalla funzione.

Tipi di funzione	equazione	Dominio naturale	Pari o Dispari?	Periodiche?
retta	y = mx + q	R	se q=0 Dispari	Mai
parabola	$y = ax^2 + bx + c$	\mathbf{R}	se b=0 Pari	Mai
cubica	$y = ax^3 + bx^2 + cx + d$	${f R}$	se b=0 e d=0 Dispari	Mai
fratte	$y = \frac{N(x)}{D(x)}$	$D(x) \neq 0$	Da verificare	Mai
irrazionali	$y = \sqrt[n]{R(x)}$	se n pari: $R(x) \ge 0$	Da verificare	Mai
logaritmiche	$y = \log_b(A(x))$	A(x) > 0	No	Mai
esponenziali	$y = b^{E(x)}$	\mathbf{R}	No	Mai
seno	$y = \sin(mx)$	${f R}$	Dispari	Si $P = \frac{2\pi}{m}$
coseno	$y = \cos(mx)$	${f R}$	Pari	Si $P = \frac{m}{m}$
tangente	$y = \tan(mx)$	$\mathbf{R} - \{ \frac{\pi}{2m} + \frac{k}{m} \pi \}$	Dispari	Si $P = \frac{m}{m}$

Studio segno

Si impone la condizione:

$$f(x) \ge 0$$

e si studia per quali intervalli di x la funzione assume valori positivi.

Trasformazioni principali:

(1)
$$\begin{cases} x' = x - a \\ y' = y - b \end{cases}$$
 (2)
$$\begin{cases} x' = cx \\ y' = dy \end{cases}$$
 (3)
$$\begin{cases} x' = x \\ y' = -y \end{cases}$$
 (4)
$$\begin{cases} x' = -x \\ y' = y \end{cases}$$
 (5)
$$\begin{cases} x' = -x \\ y' = y \end{cases}$$

(1) Traslazione di a verso destra e b verso l'altro (2) Dilatazione (3) Riflessione asse x (4) Riflessione asse y (5) Riflessione centro assi.

Simmetrie:

(a)
$$f(x) = f(-x)$$
 (b) $f(x) = -f(-x)$ (c) $f(x) = f(x+P)$

Notazione compatta delle identità necessarie a dimostrare: la parità (a), la disparità (b) e la periodicità (c). Le condizioni di simmetria si dimostrano prendendo una funzione, applicando la trasformazione associata alla simmetria (parita=riflessione asse y, disparità= riflessione centro assi (0,0), periodicità= traslazione lungo x di P).

Alcune operazioni tra funzioni mantengono la simmetria secondo i seguenti criteri:

Funzioni composte: Date due funzioni f(x) e g(x) è possibile esprimere la loro composta come:

In pratica basta "sostituire" alla variabile x della funzione f(x) l'intera funzione g(x). es:

$$f(x) = x^2$$
 $g(x) = \sin(x)$ $f(g(x)) = (\sin(x))^2$

Funzioni inverse Il calcolo della funzione inversa è un operazione che si effettua sua una funzione qualsiasi. Una funzione inversa (indicata con $f^{-1}(x)$) se composta con la funzione originale (f(x)) dà sempre come risultato y = x.

Per calcolare la funzione inversa è sufficiente "scambiare" la x con la y e riportare la funzione in una forma $y = \dots$ Es.:

$$f(x) = e^{(x-5)} \longrightarrow y = e^{(x-5)} \longrightarrow x = e^{(y-5)} \longrightarrow \ln(x) = (y-5) \longrightarrow \ln(x) + 5 = y \longrightarrow f^{-1}(x) = \ln(x) + 5 = 0$$