МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 5.4.1 Определение энергии α-частиц по величине их пробега в воздухе

	Салтыкова Дарья
	Б04-105
Допуск	
Выполнени	e
Элача	

1 Введение

Цель работы: измерить пробег α -частиц в воздухе двумя способами: с помощью торцевого счетчика Гейгера и синтиляционного счетчика, – по полученным данным определить энергию частиц.

2 Теоретические сведения

При α -распаде исходное родительское ядро испускает ядро гелия и превращается в дочернее ядро, число протонов и число протонов уменьшается на две единицы. Функциональная свзяь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой

$$\lg T_{1/2} = \frac{a}{\sqrt{E}} + b.$$

Экспоненциальный характер этого процесса возникает вследствие экспоненциального затухания волновой функции в области под барьером, где потенциальная энергия больше энергии частицы.

Для описания связи между энергией α -частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α -частиц от 4 до 9 МэВ эта связь хорошо описывается выражением

$$R = 0.32E^{3/2}$$

3 Экспериментальная установка

В данной работе пробег α -частиц в воздухе определяется треями способами:

- 1. С помощью счетчика Гейгера рис. 1а;
- 2. С помощью сцинтилляционного счетчика рис. 1b;
- 3. С помощью ионизационной камеры рис. 1с.

Рис. 1: Экспериментальные установки.

В качестве источника α -частиц используется 239Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239Pu состоят их трех моноэнергетических групп, различие между которыми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

4 Ход работы

4.1 І. Ионизационная камера

- 1. Найдем длину свободного пробега, используя ионизационную камеру. Измерим начальные параметры. Атмосферное давление по барометру: $P_A=100,9~\mathrm{k\Pi a}=756,8~\mathrm{Topp}.$ Ток $8,93~\mathrm{nA}.$ Температура T=298K.
- 2. Откачаем воздух из камеры до давления порядка ≈ 10 Topp.
- 3. Построим график зависимости I(P). (Данные см. в Приложении).

Рис. 2: I(Р)

Определим по графику $P_{\text{экстр}} = (563 \pm 10)$ Торр.

Тогда экстраполированный пробег и соответствующая энергия:

$$R_{ ext{skctp}} = rac{288}{T} rac{P}{760} rac{10 - 0.5}{2} = 4.57 \pm 0.08 \text{ cm}$$

$$E(R_{\text{экстр}} = (5.89 \pm 0.07) \text{ MəB}.$$

4.2 II.Сцинтилляционный счетчик

- 1. Подадим напряжение на $\Phi \ni \mathbb{Y}$ и измерим скорость счета при P_A .
- 2. Откачаем камеру. Снимем зависимость N(P) (данные см. в Приложении) и построим ее график.

Кривую, приближающую экспериментальные точки, будем искать в виде

$$N(P) = A2 + \frac{A_1 - A_2}{1 + e^{\frac{P - P_0}{dP}}}.$$

Параметры аппроксимации, определенные с помощью Origin: $A_1 = 3705\pm64, A_2 = -56\pm31, P_0 = 180\pm2, dP = 43\pm2.$

3. Найдем $P_{\rm cp}$ и $P_{\rm экстр}$, а по ним $R_{\rm cp}$ и $R_{\rm экстр}$.

$$N''(P_{\rm cp})=0$$

$$P_{\rm cp}=(180\pm4)~{\rm Topp}, R_{\rm cp}=\frac{288}{T}\cdot\frac{P}{760}\cdot9=2{,}06\pm0{,}05~{\rm cm}.$$

Рис. 3: N(P)

Построим касательную к кривой N(P) через точку P_{cp} и продолжим ее до пересечения с осью P. Получим $P_{\text{экстр}} = (294 \pm 8) \text{ Topp}, R_{\text{экстр}} = 3.17 \pm 0.09 \text{ см}.$

Тогда
$$E(R_{\rm cp} = (3.46 \pm 0.06) \text{ MэВ}), E(R_{\rm экстр}) = (4.61 \pm 0.09) \text{ МэВ}.$$

4. Рассчитаем по полученным данным, бумажный листок какой толщины не пропустит α -частицы от ^{239}Pu . Если плотность бумаги $1.2 \text{ г/см}^2, \text{L} \geq R/\rho = 32.4$.

5 Вывод

В данной работе была двумя способами измерена длина свободного пробега α-частиц в воздухе: с помощью ионизационной камеры и сцинтилляционного счетчика. Получены следующие результаты:

$$R_{\rm cp} = 2.06 \pm 0.05 \text{ cm}, E(R_{\rm cp} = (3.46 \pm 0.06) \text{ M} \text{ pB}),$$

 $R_{\text{экстр}} = 3.17 \pm 0.09 \text{ см}, E(R_{\text{экстр}}) = (4.61 \pm 0.09) \text{ МэВ}$ – для сцинтилляционного счетчика;

$$R_{\mbox{\tiny 9KCTP}} = (4.57 \pm 0.08) \ \mbox{cm}, E(R_{\mbox{\tiny 9KCTP}} = (5.89 \pm 0.07) \ \mbox{МэВ}$$
 – для ионизационной камеры.

$$E_{\text{табл}} = 5.15 \text{ M} \cdot \text{B}.$$

Несоответствие экспериментальных значений табличному может быть связано или с заметной угловой расходимостью пучков (брэгговский пик смещен и сильно размыт), или с тем, что пленка, покрывающая источники, замедляет движение альфа-частиц.

Также было оценено, что бумажный листок толщиной более 32,4 мкм не пропустит α -частицы от ^{239}Pu .

6 Приложение

δP ,	Topp	I , πA	P, Topp
745	0,11	9	11,8
730	0,22	20	26,8
710	0,52	50	46,8
690	0,81	79	66,8
670	1,14	112	86,8
650	1,38	136	106,8
630	1,75	173	126,8
610	2	198	146,8
590	2,31	229	166,8
570	2,64	262	186,8
550	3	298	206,8
530	3,35	333	226,8
510	3,68	366	246,8
490	4	398	266,8
470	4,39	437	286,8
450	4,73	471	306,8
430	5,08	506	326,8
405	5,64	562	351,8
400	5,7	568	356,8
380	6,1	608	376,8
360	6,4	638	396,8
340	6,75	673	416,8
320	7,18	716	436,8
300	7,55	753	456,8
280	8,05	803	476,8
260	8,42	840	496,8
240	8,79	877	516,8
220	9,07	905	536,8
200	9,21	919	556,8
180	9,33	931	576,8
160	9,3	928	596,8
140	9,23	921	616,8
120	9,15	913	636,8
100	9,16	914	656,8
80	9,09	907	676,8
60	9,05	903	696,8
40	9,02	900	716,8
20	8,94	892	736,8
0	8,92	890	756,8

δP , Topp	t, c	N
745	10	3791
730	10	3597
700	10	3519
680	10	3354
660	10	3206
640	10	2929
620	10	2591
600	10	2354
580	10	1969
560	10	1554
540	10	1168
520	10	753
500	10	341
480	10	120
460	10	15
440	10	2
420	100	20
360	100	13
300	100	7
240	100	6
180	100	6
120	100	6
60	100	6
0	100	6
630	10	2712
590	10	2085
570	10	1711
550	10	1344
530	10	892
510	10	557