

Mode d'emploi - Classification supervisée appliquée sur un jeu de données de type Chinese MNIST

Assistant: Baeckelant Timothy

1. Introduction

Ce mode d'emploi a pour objectif d'expliquer la manière d'utiliser les différents codes implémentés pour ce projet de Machine Learning et de mettre en évidence les modifications possibles.

2. Mode d'emploi

- 2.1. Code principal (« ML_principal »)
- 2.1.1. Séparation des données

Séparation aléatoire des données :

X_train_random, X_test_random, y_train_random, y_test_random = train_test_split(X, y, test_size=0.4, random_state=42, stratify=y)

Séparation ordonnée des données :

Cette séparation s'effectue en utilisant le code donné sur Moodle.

2.1.2. Modification des modèles

Pour chaque modèle, l'utilisateur peut appliquer les hyperparamètres qu'il souhaite en modifiant cette ligne :

model_time = KNeighborsClassifier(n_neighbors=5, weights="uniform", metric="euclidean") Ceci permettra de tester un modèle personnalisé sur le jeu de données en obtenant ses métriques de performance, ses courbes ROC et sa matrice de confusion.

2.2. Code sur les données augmentées (« ML_données_augmentées »)

Ce code implémente l'augmentation des données et applique les modèles sur celles-ci.

2.3. Code sur les méthodes d'ensemble (« ML_méthodes_ensemble »)

Ce code implémente les méthodes de Voting et Stacking sur un ensemble de modèle en les appliquant sur les données augmentées. A noter, que des méthodes de Bagging et de Boosting sont implémentées mais ne sont pas appliquées sur notre jeu de données.

2.4. Code en supprimant la classe 1000 (« ML sans classe1000 »)

Ce code implémente les méthodes des codes précédents en y supprimant la classe 1000.