CSE 21 HW 7

Brian Masse

March 5, 2025

- 1. A slow-growing sequence of length n (with $n \ge 1$) is a non-decreasing sequence of integers that start with 1 and each pair of entries differ by at most 1.
 - a) (for $n \geq 1$), How many slow-growing sequence of length n are there?

$$A(n) = 2 \cdot A(n-1), A(1) = 1$$
1)
$$A(n) = 2 \cdot A(n-1)$$
2)
$$A(n) = 2^{2} \cdot A(n-1)$$

$$\vdots$$

$$k) \qquad A(n) = 2^{k} \cdot A(n-1)$$

$$\vdots$$

$$n-1) \qquad A(n) = 2^{n-1}$$

b) How many bits would the most efficient fixed-length encoding of sequenes use?

$$n = \lceil log_2(2^{n-1}) \rceil$$
$$= n - 1$$

c) Develop your own encoding / decoding algorithm where the code uses this number of bits

Create an encoding such that each bit in the encoded binary string represents whether to add 1 or 0 to the previous number in the string.

- d) Use your encoding to encode the follow slow-growing sequences
 - (1,2,3,3,3,4,4,5) = 1100101
 - (1,1,1,2,2,3,4,4) = 0010110
 - (1,2,2,3,3,4,5,6) = 1010111
- e) Use your decoding to decode the following strings
 - 01010100 = (1,1,2,2,3,3,4,4,4)
 - 11100011 = (1,2,3,4,4,4,4,5,6)
 - 101111110 = (1,2,2,3,4,5,6,7,7)

2. Image files can be encoded using binary strings. In the most simple version, you can encode an nxm black and white image using nm bits with black corresponding to 0 and white corresponding to 1.

We can use hexadecimal to encode each of the cunks of 4 pixels into a single hexadecimal character.

a) How many bits are required to encode this image by encoding each pixel with 1 bit?

$$nm = (96)(96) = 9216$$

b) How many hexadecimal characters are needed for this image?

$$\left(\frac{96}{4}\right)(96) = 2304$$

• $\frac{96}{4}$: Groups per row

• 96: Number of Rows

c) Huffman encoding is actually used in image compression. What we cand o is compute the frequency table of the hexadecimal chracters and build a Huffman code based on that. Then encode the hexadecimal string using the Huffman code. Here is the frequency table for this particular image:

Character	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Weight	1113	104	63	67	77	49	54	73	103	39	32	70	47	82	83	248

• Draw the huffman tree for the set of frequencies.

• Give the code for each character

Number	Code
0	1
1	00000
2	01010
3	01001
4	00101
5	000100
6	01011
7	00110
8	00001
9	001110
A	001111
В	01000
С	000101
D	00100
E	00011
F	011

• Calculate the total number of bits needed to encode this particular image of the moon using this coding.

$$T(n) = 1113(1) + 104(5) + 63(5) + 67(5) + 77(5) + 49(6) + 54(5) + 73(5) + 103(5) + 39(6) + 32(6) + 70(5) + 47(6) + 82(5) + 83(5) + 248(3)$$

3. Consider the set of 26 capital letters of the Roman Alphabet

a) Using a fixed length character-by-character encoding, what is the minimum number of bits required to encode each character?

$$n = \lceil log_2(26) \rceil = 5$$

- b) Develop a fixed length character-by-character encoding for this alphabet using the number of bits from the previous part and use it to encode / decode the following strings
 - Encode: "MATH" \implies (13)(1)(20)(8) \implies 01101 00001 10100 01000
 - Encode: "BYTE" \implies (2)(25)(20)(5) \implies 00010 11001 10100 00101
 - Decode: 10010 01110 10001 10011 \implies (18)(14)(17)(19) \implies RNQS
 - Decode: 10001 01110 01110 10011 \implies (17)(14)(19) \implies QNNS
- c) Using fixed length encoding. What is the minimum number of bits required to encode each 4 letter string over this alphabet.

$$n = \lceil log_2 26^4 \rceil = 19$$

- d) Develop a fixed length encoding for 4 letter strings using the number of bits from the previous part and use it to encode / decode the following strings:
 - Encode: "MATH" \implies $(13 \cdot 26^3 + 1 \cdot 26^2 + 20 \cdot 26 + 8) <math>\implies$ 229692 \implies 011 1000 0001 0011 1100
 - Encode: "BYTE" $\implies (2 \cdot 26^3 + 25 \cdot 26^2 + 20 \cdot 26 + 5) \implies 52577$ $\implies 000\ 1100\ 1101\ 0110\ 0001$
 - ullet Decode: 100 1111 1010 1001 0101 \Longrightarrow 326293 \Longrightarrow RNQS
 - Decode: 100 1011 0101 1001 1111 \implies 308639 \implies QNNS

- 4. Suppose you are traveling from the bottom left corner of a 9 by 6 grid of city blocks and you wish to get to the top right corner only using up and right movements
- a) What is the minimum number of bits necessary to encode these paths with a fixed length encoding?

There are $\binom{6+9}{6} = \binom{15}{6} = 5005$ number of paths from the bottom left to the top right, where 1s represent moving to the right.

$$n = \lceil log_2 5005 \rceil = 13$$

b) Develop an encoding strategy and encode the path given in the example

Translate the path to a fixed-density binary string. Specifically, a length 13 binary strings with 6 1s, where 1 represents moving to the right and 0 represent moving up.

$$path \implies 111100001000100$$

c) Use your encoding strategy to decode the following string: 0 1010 1100 1100