

SWITCH TO EDITOR

 $0 \le S_i < E_i \le 24 \times 60$.

Test set 1 (Visible Verdict)

 $2 \le N \le 10$.

Test set 2 (Visible Verdict)

 $2 \leq \textbf{N} \leq 1000.$

Sample

Input	Output	
4		
3		
360 480		
420 540		
600 660		
3		
0 1440		
1 3	Case #1:	CJC
2 4	Case #2:	IMPOSSIBLE
5	Case #3:	JCCJJ
99 150	Case #4:	CC
1 100		
100 301		
2 5		
150 250		
2		
0 720		
720 1440		

Sample Case #1 is the one described in the problem statement. As mentioned above, there are other valid solutions, like JCJ and JCC.

In Sample Case #2, all three activities overlap with each other. Assigning them all would mean someone would end up with at least two overlapping activities, so there is no valid schedule.

In Sample Case #3, notice that Cameron ends an activity and starts another one at minute 100.

In Sample Case #4, any schedule would be valid. Specifically, it is OK for one partner to do all activities.