Homework2

Step 1:

```
Simulate 200 observations from the following linear model: Y = alpha + beta1 * X1 + beta2 * X2 + noise where • alpha=1, beta1=2, beta2=-1.5 • X1 ~ N(1, 4), X2 ~ N(3,1), noise ~ N(0,1)
```

Program:

```
DATA LinearSimulation(keep=X1 X2 Y);
TITLE Simulation;
alpha=1;
beta 1=2;
beta2=-1.5;
DO i = 1 \text{ TO } 200;
                                          /*200 observations */
                                /*U(0,1)*/
 UnifVals = rand("Uniform");
 X1 = 1 + (4-1)*UnifVals;
                              /*Given X1 \sim (1,4) */
 X2 = 3 + (1-3)*UnifVals;
                              /*Given X2 \sim (3,1) */
 noise=UnifVals;
                             /*Given noise \sim N(0,1)*/
 Y = alpha+beta1*X1+beta2*X2+noise;
OUTPUT;
END;
RUN;
PROC PRINT DATA=LinearSimulation LABEL;
RUN;
```

	Simulation					
Obs	X1	X2	Υ			
1	1.33466	2.77689	-0.38445			
2	2.58702	1.94198	3.79008			
3	1.94835	2.36777	1.66115			
4	1.14694	2.90204	-1.01021			
5	2.19816	2.20122	2.49388			
6	2.10061	2.26626	2.16870			
7	3.71892	1.18739	7.56306			
8	3.73684	1.17544	7.62281			
9	2.55083	1.96611	3.66945			
10	2.36519	2.08987	3.05064			
11	3.13706	1.57529	5.62354			
12	1.40212	2.73192	-0.15961			
13	3.05912	1.62725	5.36373			
14	1.96318	2.35788	1.71060			
15	2.92950	1.71366	4.93168			
16	1.75655	2.49563	1.02184			
17	1.68123	2.54585	0.77076			
18	2.95793	1.69471	5.02645			
19	3.01576	1.65616	5.21921			
20	2.39373	2.07084	3.14578			
21	2.51180	1.99214	3.53932			
22	1.51558	2.65628	0.21859			
23	1.43915	2.70724	-0.03618			
24	3.17157	1.55229	5.73856			
25	2.88624	1.74251	4.78745			
26	2.64572	1.90285	3.98573			
27	1.61546	2.58969	0.55153			
28	3.46299	1.35801	6.70997			

Step 2 & 3:

Define a new binary variable Y bin such that Y bin=1 if Y>0 and Y bin=0 otherwise

Make the final data contain only 4 variables: X1, X2, Y and Y bin.

Program:

```
DATA LinearSimulation(keep=X1 X2 Y Y_bin);
TITLE Simulation;
alpha=1;
beta 1=2;
beta2 = -1.5;
DO i = 1 \text{ TO } 200;
                                          /*200 observations */
 UnifVals = rand("Uniform");
                                /*U(0,1)*/
 X1 = 1 + (4-1)*UnifVals;
                              /*Given X1 \sim (1,4) */
 X2 = 3 + (1-3)*UnifVals;
                              /*Given X2 \sim (3,1) */
 noise=UnifVals;
                              /*Given noise \sim N(0,1)*/
 Y = alpha + beta1*X1 + beta2*X2 + noise;
 if(Y>0)then Y bin=1;
 ELSE Y_bin=0;
OUTPUT;
END;
RUN;
PROC PRINT DATA=LinearSimulation LABEL;
RUN;
```

Simulation							
Obs	X1	X2	Υ	Y_bin			
1	1.79199	2.47201	1.13996	1			
2	2.89027	1.73982	4.80091	1			
3	2.28982	2.14012	2.79941	1			
4	1.39180	2.73880	-0.19399	0			
5	1.14107	2.90595	-1.02976	0			
6	2.63957	1.90695	3.96523	1			
7	3.25413	1.49725	6.01377	1			
8	3.34432	1.43712	6.31440	1			
9	1.75328	2.49781	1.01093	1			
10	2.47007	2.01996	3.40022	1			
11	1.81895	2.45403	1.22984	1			
12	1.96404	2.35730	1.71348	1			
13	3.42343	1.38438	6.57809	1			
14	3.73203	1.17864	7.60678	1			
15	1.35606	2.76263	-0.31314	0			

Step 4:

Calculate the range of X1 and X2 (only range and no other statistics).

Program:

```
DATA LinearSimulation(keep=X1 X2 Y Y_bin);
TITLE Simulation;
alpha=1;
beta 1=2;
beta2=-1.5;
DO i = 1 \text{ TO } 200;
                                         /*200 observations */
 UnifVals = rand("Uniform");
                               /*U(0,1)*/
 X1 = 1 + (4-1)*UnifVals;
                             /*Given X1 \sim (1,4) */
 X2 = 3 + (1-3)*UnifVals;
                             /*Given X2 \sim (3,1) */
 noise=UnifVals;
                          /*Given noise \sim N(0,1)*/
 Y = alpha + beta1*X1 + beta2*X2 + noise;
 if(Y>0)then Y bin=1;
 ELSE Y_bin=0;
OUTPUT;
END;
RUN;
PROC MEANS DATA=LinearSimulation RANGE;
PROC PRINT DATA=LinearSimulation LABEL;
RUN;
```

	Simulation					
The MEANS Procedure						
	Vari					
	Range					
	X1		566656			
	X2	1.9	711104			
		Simulati	on			
	,	Simulati	OII			
Obs	X1	X2	Υ	Y_bin		
1	2.43561	2.04293	3.28535	1		
2	2.42528	2.04981	3.25095	1		
3	1.49614	2.66924	0.15380	1		
4	1.27544	2.81638	-0.58188	0		
5	1.43157	2.71229	-0.06143	0		
6	2.01630	2.32246	1.88768	1		
7	2.64278	1.90482	3.97592	1		
8	2.48138	2.01241	3.43794	1		

Step 5:

Check if Y follows a normal distribution. What graphics and statistics would you look into?

ANS:

After making histogram data, if the shape of the distribution resembles bell curve the data is likely normal.

Graphic: Plotting histogram and normal distribution curve

If the data meets the requirement of 68-95-99, that means 68% of the data should be in the range of one standard deviation, 95% data in the range of two standard deviations and 99% of the data in the range of 3 standard deviation

We look statistics of Mean, Mode and standard deviation. In normal distribution mean and mode are equal.

Program:

```
DATA LinearSimulation(keep=X1 X2 Y Y bin);
TITLE Simulation;
alpha=1;
beta 1=2;
beta2 = -1.5;
DO i = 1 \text{ TO } 200;
                                        /*200 observations */
 UnifVals = rand("Uniform");
                               /*U(0,1)*/
 X1 = 1 + (4-1)*UnifVals;
                             /*Given X1 \sim (1,4) */
 X2 = 3 + (1-3)*UnifVals;
                             /*Given X2 \sim (3,1) */
                         /*Given noise \sim N(0,1)*/
 noise=UnifVals;
 Y = alpha + beta1*X1 + beta2*X2 + noise;
 if(Y>0)then Y_bin=1;
 ELSE Y bin=0;
OUTPUT;
END;
RUN:
PROC MEANS DATA=LinearSimulation RANGE;
VAR X1 X2;
proc univariate;
VAR Y;
HISTOGRAM Y / NORMAL;
PROBPLOT Y / NORMAL;
PROC PRINT DATA=LinearSimulation LABEL;
RUN;
```

Output:

Count how many "1" s you observed in Y_bin.

Program:

DATA YBinCount; SET LinearSimulation; PROC FREQ DATA=YBinCount; TABLE Y bin; RUN;

Step 7:

Create a new variable "sign" such that sign="positive" when Y_bin=1 and sign="negative" otherwise.

Program:

DATA CreateSign; SET LinearSimulation; if(Y_bin)then sign="Positive"; ELSE sign="Negative"; RUN; PROC PRINT Data=CreateSign; RUN;

Obs	X1	X2	Y	Y_bin	sign
1	3.13551	1.57632	5.61838	1	Positive
2	1.87279	2.41814	1.40931	1	Positive
3	3.11516	1.58990	5.55052	1	Positive
4	3.88929	1.07381	8.13097	1	Positive
5	1.01411	2.99059	-1.45295	0	Negative
6	2.77378	1.81748	4.41258	1	Positive
7	1.78332	2.47779	1.11107	1	Positive
8	1.94119	2.37254	1.63731	1	Positive
9	1.13823	2.90785	-1.03923	0	Negative
10	1.94575	2.36950	1.65248	1	Positive
11	2.97359	1.68427	5.07864	1	Positive
12	3.64853	1.23432	7.32842	1	Positive
13	1.15902	2.89399	-0.96994	0	Negative
14	1.27000	2.82000	-0.59999	0	Negative
15	3.24061	1.50626	5.96868	1	Positive
16	3.60297	1.26469	7.17655	1	Positive
17	2.44252	2.03832	3.30841	1	Positive
18	3.95827	1.02782	8.36089	1	Positive
19	2.62818	1.91454	3.92728	1	Positive
20	1.89529	2.40314	1.48430	1	Positive
21	3.67989	1.21340	7.43298	1	Positive
22	3.05249	1.63168	5.34162	1	Positive
23	1.21414	2.85724	-0.78619	0	Negative
24	3.39709	1.40194	6.49028	1	Positive
25	3.78112	1.14592	7.77041	1	Positive
26	2.70768	1.86155	4.19226	1	Positive
27	3.02774	1.64817	5.25915	1	Positive
28	1.67039	2.55308	0.73462	1	Positive

Step 8:

Compare the distribution of X1 in the "positive" group and the "negative" group. What statistics would you look into?

Ans:

Mean, Median and standard deviation by running proc univariate command sorted by sign (either positive or negative)

Program:

PROC SORT DATA=CreateSign;

BY sign;

RUN; /*in PROC UNIVARIATE*/

PROC UNIVARIATE DATA=CreateSign; BY sign; /* tells SAS to sort data by SIGN*/ VAR X1; /* tells SAS to produce statistics of X1*/

RUN;

The UNIVARIATE Procedure Variable: X1

sign=Positive

Moments					
N	165	Sum Weights	165		
Mean	2.78431786	Sum Observations	459.412447		
Std Deviation	0.71951068	Variance	0.51769562		
Skewness	-0.1326752	Kurtosis	-1.1335859		
Uncorrected SS	1364.05236	Corrected SS	84.9020814		
Coeff Variation	25.8415424	Std Error Mean	0.05601383		

Basic Statistical Measures					
Location Variability					
Mean	2.784318	Std Deviation	0.71951		
Median	2.864620	Variance	0.51770		
Mode		Range	2.54195		
		Interquartile Range	1.18542		

Tests for Location: Mu0=0					
Test		Statistic	p Val	ue	
Student's t	t	49.70769	Pr > t	<.0001	
Sign	М	82.5	Pr >= M	<.0001	
Signed Rank	S	6847.5	Pr >= S	<.0001	

Quantiles (Definition 5)				
Level	Quantile			
100% Max	3.99601			
99%	3.95827			
95%	3.88070			
90%	3.75152			
75% Q3	3.35138			
50% Median	2.86462			
25% Q1	2.16596			
10%	1.78648			
5%	1.63010			
1%	1.47301			
0% Min	1.45406			