- Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:

 - (a) $a_{n+2} = 2a_{n+1} a_n + 3^n 1$, gdy $a_0 = a_1 = 0$. (b) $a_{n+2} = 4a_{n+1} 4a_n + n2^{n+1}$, gdy $a_0 = a_1 = 1$. (c) $a_{n+2} = \frac{1}{2^{n+1}} 2a_{n+1} a_n$, gdy $a_0 = a_1 = 1$.
- Niech c_n oznacza liczbę ciągów długości n złożonych z n cyfr ze zbioru {0,1,2}, nie zawierających dwóch następujących po sobie zer i dwóch następujących po sobie jedynek. Wyprowadź zależność rekurencyjną, jaką spełniają liczby c_n przyjmując $c_0 = 1$. Rozwiąż otrzymaną zależność rekurencyjną.
- (-) Stosując metodę anihilatorów rozwiąż następujące zależności rekurencyjne
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.
- Rozwiąż następujące zależności rekurencyjne:
 - (a) $a_{n+1} = \left| \sqrt{a_n^2 + a_{n-1}^2} \right|$, $a_0 = a_1 = 1$,
 - (b) $b_{n+1} = \left| \sqrt{b_n^2 + 3} \right|, b_0 = 8,$
 - (c) $c_{n+1} = (n+1)c_n + (n^2+n)c_{n-1}$, $c_0 = 0$, $c_1 = 1$
- Rozwiąż zależności rekurencyjne:
 - (a) $c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$
 - (b) $d_0 = 1, d_1 = 2, d_n = d_{n-1}^2/d_{n-2}$.
- 6. Na ile sposobów można ułożyć domina na prostokącie o rozmiarze 2×n? Domino ma wymiar 1×2 .
- Rozwiąż zależność rekurencyjną
 - $a_n^2=2a_{n-1}^2+1$ z warunkiem początkowym $a_0=2$ i założeniem, że $a_n > 0$ dla każdego naturalnego n.
- 8. Ile jest wyrazów złożonych z n liter należących do 25-literowego alfabetu łacińskiego, zawierających parzystą liczbę liter a?
- (2p) Wieża Hanoi składa się z n krążków n różnych rozmiarów, po 1 krążku każdego rozmiaru. W jednym kroku przenosimy dokadnie jeden krążek i nie możemy kłaść większego krążka na mniejszym. Ile kroków jest potrzebnych, aby przenieść wieżę z pręta A na pręt C, posługując się przy tym prętem B, jeśli bezpośrednie ruchy z pręta A na C są zakazane, ale ruchy w drugą stronę z pręta C na A są dozwolone?
- 10. Podaj i udowodnij regułę sprawdzania podzielności przez 11 liczby naturalnej zapisanej w systemie dziesiętnym.
- 11. Podaj dwie ostatnie cyfry liczby $9^{8^{7}6^{5^4}}$ w rozwinięciu dziesiętnym.

- 1. Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:
 - (a) $a_{n+2} = 2a_{n+1} a_n + 3^n 1$, gdy $a_0 = a_1 = 0$.
 - (b) $a_{n+2} = 4a_{n+1} 4a_n + n2^{n+1}$, gdy $a_0 = a_1 = 1$.
 - (c) $a_{n+2} = \frac{1}{2^{n+1}} 2a_{n+1} a_n$, gdy $a_0 = a_1 = 1$.

(a) $a_{n+2} = 2a_{n+1} - a_n + 3^n - 1$, gdy $a_0 = a_1 = 0$.

ωn2+ βn+ γ) 1+ 53 go= 0 ej=0

[if a, distinct]

If X annihilates f, then X also annihilates αf , for any constant α .

X annihilates f and Y annihilates g, then XY annihilates $f \pm g$.

~ 12+ Bn+ Y+ 63n

(b)
$$a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$
, gdy $a_0 = a_1 = 1$

On-2 -400- +400 = 12 not $(E^{2}-4E+4)_{n} = \Lambda 2^{n+1}$ $(E-2)^{2}_{0n} = \Lambda 2^{n+1}$ (E-2)400=0 $\alpha n^3 + \beta n^2 + \gamma n + \delta \left(\frac{1}{r}\right)^{n+1}$

Operator	Functions annihilated α	
E-1		
E-a	aan	
(E-a)(E-b)	$\alpha a^n + \beta b^n$	[if $a \neq b$]
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$	[if a _i distinct]
$(E-1)^2$	$\alpha n + \beta$	
$(E-a)^2$	$(\alpha n + \beta)a^n$	
$(E-a)^2(E-b)$	$(\alpha n + \beta)a^b + \gamma b^n$	[if $a \neq b$]
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$	

If X annihilates f, then X also annihilates Ef. If X annihilates both f and g, then X also annihilates $f \pm g$. If X annihilates f , then X also annihilates αf , for any constant α

a anti
(F-2)r2 =
$(0.1)2^{0.12} - 02^{0.12} =$
$ \begin{aligned} (E-2) & n & 2^{n+2} &= \\ (n+1) & 2^{n+2} &- n & 2^{n+2} &= \\ & n & 2^{n+2} + 2^{n+2} &- n & 2^{n+2} &= 2^{n+2} \end{aligned} $
$(E-2)=2^{n+3}-2^{n+3}=0$

(c) $a_{n+2} = \frac{1}{2^{n+1}} - 2a_{n+1} - a_n$, gdy $a_0 = a_1 = 1$.

 $Q_{n+2} + 2a_{n+1} + Q_n = \begin{bmatrix} \frac{1}{4} \end{bmatrix}^{n+1}$ $(E+1)^2 Q_n = \left(\frac{1}{4}\right)^{n+1}$ $(E+1)^2 (F-2) = C$ $(\alpha n+\beta)(-1)^n + \gamma \cdot 2^n$

(E-2)	2-n-f	2-2-0=0

- (-) Stosując metodę anihilatorów rozwiąż następujące zależności rekuren-
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.

Functions annihilated	
а	11-111
aan	
$\alpha a^n + \beta b^n$	[if $a \neq b$]
$\sum_{i=0}^{k} a_i a_i^n$	[if a _i distinct]
$\alpha n + \beta$	
$(\alpha n + \beta)a^n$	
$(\alpha n + \beta)a^b + \gamma b^n$	[if $a \neq b$]
$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$	
	α αa^{n} $\alpha a^{n} + \beta b^{n}$ $\sum_{i=0}^{k} a_{i} a_{i}^{n}$ $\alpha n + \beta$ $(\alpha n + \beta) a^{n}$ $(\alpha n + \beta) a^{b} + \gamma b^{n}$

If X annihilates both f and g, then X also annihilates $f \pm g$.

cyjne

- (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
- (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.

Operator	Functions annihilated	
E-1	а	11-111
E-a	aan	
(E-a)(E-b)	$\alpha a^n + \beta b^n$	[if $a \neq b$]
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} a_i a_i^n$	[if a _i distinct]
$(E-1)^2$	$\alpha n + \beta$	
$(E-a)^2$	$(\alpha n + \beta)a^n$	
$(E-a)^2(E-b)$	$(\alpha n + \beta)a^b + \gamma b^n$	[if $a \neq b$]
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$	

$$\label{eq:final_state} \begin{split} &\text{If X annihilates f, then X also annihilates Ef.} \\ &\text{If X annihilates both f and g, then X also annihilates $f \pm g$.} \\ &\text{If X annihilates f, then X also annihilates af, for any constant a.} \\ &\text{If X annihilates f and Y annihilates g, then XY annihilates $f \pm g$.} \end{split}$$