Announcements

- Homework-1: out Tuesday, please start early
- Please don't post any material from this class in any form, including your homework and related materials, to any public places, such as GitHub or others, on the Internet!

Finding Frequent Itemsets (Chapter 6)

Professor Wei-Min Shen

University of Southern California

Thanks for source slides and material to:
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets
http://www.mmds.org

Frequent Itemsets and Association Rules

- Family of techniques for characterizing data: discovery of frequent itemsets
 - e.g., identify sets of items that are frequently purchased together

Outline:

- Introduce <u>market-basket model</u> of data
- Define <u>frequent itemsets</u>
- Discover <u>association rules</u>
 - Confidence and interest of rules
- A-Priori Algorithm and variations

THE MARKET-BASKET MODEL

Association Rule Discovery

Supermarket shelf management – Market-basket model:

- Goal: Identify items that are bought together by <u>sufficiently</u> <u>many customers</u>
- **Approach:** Process the sales data to find dependencies among items
 - ☐ Brick and mortar stores: data collected with barcode scanners
 - ☐ Online retailers: transaction records for sales

• A classic rule:

- ☐ If someone buys <u>diaper and milk</u>, then he/she is likely to buy <u>beer.</u> // really ② do you know why?
- Don't be surprised if you find six-packs next to diapers!

The Market-Basket Model

- A large set of items
 - e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
 - e.g., the things one customer buys on one day

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered:

{Milk} --> {Coke} {Diaper, Milk} --> {Beer}

- Want to discover Association Rules
 - \square People who bought $\{x,y,z\}$ tend to buy $\{v,w\}$
 - Brick and mortar stores: Influences setting of prices, what to put on sale when, product placement on store shelves
 - Recommender systems: Amazon, Netflix, etc.

Market-Baskets

- Really a **general many-many mapping** (association) between two kinds of things: **items** and **baskets**
 - ☐ But we ask about **connections among "items,"** not "baskets."
- The technology focuses on common events, not rare events
 - ☐ Don't need to focus on identifying *all* association rules
 - Want to focus on **common events**, <u>focus pricing strategies or</u> <u>product recommendations</u> on those items or association rules

Market Basket Applications (1): Identify items bought together

- **Items** = products
- Baskets = sets of products someone bought in one trip to the store
- Real market baskets: Stores (Walmart, Target, Ralphs, etc.) keep terabytes of data about what items customers buy together
 - ☐ Tells how <u>typical</u> customers navigate stores
 - Lets them <u>position tempting items</u>
 - ☐ Suggests tie-in "tricks", e.g., run <u>sale on diapers</u> and <u>raise the</u> <u>price of beer</u>
 - □ Need the rule to occur <u>frequently</u>, or no profits!
- Amazon's people who bought X also bought Y
 - ☐ Recommendation Systems

Market Basket Applications (2): Plagiarism detection

Baskets

- \square = Sentences?
- \square = Documents containing those sentences?

Items

- \square = Sentences?
- \square = Documents containing those sentences?
- Question: Baskets=?, Items=?

Market Basket Applications (2): Plagiarism detection

- Baskets = sentences
- Items = documents containing those sentences
 - ☐ Item/document is "in" a basket if sentence is in the document
 - ☐ May seem backward, but relationship between baskets and items is many-to-many
- Look for items that appear together in several baskets
 - ☐ Multiple documents share sentence(s)
- Items (documents) that appear together too often could represent plagiarism.
- Please don't copy anyone's code for your homework!
 - It will be detected easily by our Agent!

Market Basket Applications (3): Identify related "concepts" in web documents

- **Baskets** = words? Web pages?
- Items = words? Web pages?

Market Basket Applications (3): Identify related "concepts" in web documents

- Baskets = Web pages
- Items = words
- Baskets/documents contain items/words in the document
- Look for sets of words (items) that appear together in many documents (baskets)
- Ignore most common words
- Unusual words appearing together in a large number of documents, e.g., "World" and "Cup," may indicate an interesting relationship or joint concept
 - ☐ Can you think of such examples: Word-X, Word-Y?

Market Basket Applications (4): Drug Interactions

- **Baskets** = patients
- Items = drugs and side effects
- Has been used to detect combinations of drugs that result in particular side-effects
- But requires extension: Absence of an item needs to be observed as well as presence!!
 - Drinking milk and oil together: BAD
 - ☐ Drinking milk alone: OK
 - ☐ Drinking oil alone: OK

Scale of the Problem

- WalMart sells 100,000 items and can store billions of baskets.
- The Web has billions of words and many billions of pages.

DEFINE FREQUENT ITEMSETS

"Support" and "Frequent Itemsets"

- Simplest question: Find sets of items that appear "frequently" in the baskets
- <u>Support</u> for itemset I = the number of baskets containing all items in I
 - ☐ Sometimes given as a percentage
- Given a *support threshold* s, sets of items that appear in at least s baskets are called "*Frequent Itemsets*"

Example: Frequent Itemsets

- Items={milk, coke, pepsi, beer, juice}.
- **Support = 3 baskets.**

$$B_{1} = \{m, c, b\}$$

$$B_{2} = \{m, p, j\}$$

$$B_{3} = \{m, b\}$$

$$B_{4} = \{c, j\}$$

$$B_{5} = \{m, p, b\}$$

$$B_{6} = \{m, c, b, j\}$$

$$B_{7} = \{c, b, j\}$$

$$B_{8} = \{b, c\}$$

• Frequent itemsets of size 1: {m}, {c}, {b}, {j}

{m,b}, {b,c}, {c,j}.

ASSOCIATION RULES

"Association Rules" and "Confidence"

- If-then rules about the contents of baskets
- Basket *I* contains $\{i_1, i_2, ..., i_k\}$
- Rule $\{i_1, i_2, \dots, i_k\} \rightarrow j$ means: "if a basket contains all of i_1, \dots, i_k then it is *likely* to contain j."
- Confidence of this association rule is the probability of j given $i_1,...,i_k$
 - □ Ratio of support for I ∪ {j} with support for I support for I ∪ {j}
 □ support for I
 - \square Support for I: number of baskets containing I

Example: Confidence of a Rule

$$B_{1} = \{m, c, b\}$$

$$B_{2} = \{m, p, j\}$$

$$B_{3} = \{m, b\}$$

$$B_{4} = \{c, j\}$$

$$B_{5} = \{m, p, b\}$$

$$B_{6} = \{m, c, b, j\}$$

$$B_{7} = \{c, b, j\}$$

$$B_{8} = \{b, c\}$$

- An association rule: $\{m, b\} \rightarrow c$
 - □ Confidence: Ratio of support for I U {j} with support for I
 - ☐ Ratio of support for {m,b} U {c} to support for {m,b}
 - \square Confidence = 2/4 = 50%
- ☐ Want to identify association rules with high confidence

Interesting Association Rules

- Not all high-confidence rules are interesting
 - ☐ The rule $X \rightarrow milk$ may have high confidence for many itemsets X☐ because milk is just purchased very often (independent of X)
- <u>Interest</u> of an association rule $I \rightarrow j$: difference between its confidence and the fraction of baskets that contain j

$$Interest(I \to j) = conf(I \to j) - Pr[j]$$

- ☐ Interesting rules are those with high positive or negative interest values (usually above 0.5)
- ☐ High **positive/negative** interest means presence of *I* **encourages** or **discourages** presence of *j*
- ☐ Example: {coke} -> pepsi should have high negative interest

Example: Confidence and Interest

$$B_{1} = \{m, c, b\} \qquad B_{2} = \{m, p, j\}$$

$$B_{3} = \{m, b\} \qquad B_{4} = \{c, j\}$$

$$B_{5} = \{m, p, b\} \qquad B_{6} = \{m, c, b, j\}$$

$$B_{7} = \{c, b, j\} \qquad B_{8} = \{b, c\}$$

- Association rule: $\{m, b\} \rightarrow c$
 - ☐ Confidence: Ratio of support for I U {i} with support for I
 - **Confidence** = 2/4 = 0.5
 - ☐ Interest:
 - ☐ Interest: Interest($I \rightarrow j$) = conf($I \rightarrow j$) Pr[j] ☐ Difference between its confidence and the fraction of baskets that contain j
 - □ Interest = |0.5 5/8| = 1/8
 - Item c appears in 5/8 of the baskets
 - Rule is not very interesting!

Finding <u>Useful</u> Association Rules

- Question: "find all association rules with support $\geq s$ and confidence $\geq c$ "
- Hard part: finding the frequent itemsets
 - Note: if $\{i_1, i_2, ..., i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, ..., i_k\}$ and $\{i_1, i_2, ..., i_k, j\}$ will be "frequent"
- Assume: not too many frequent itemsets or candidates for high support, high confidence association rules
 - □ Not so many that they can't be <u>acted upon</u>
 - ☐ Adjust support threshold to avoid too many frequent itemsets

Example: Find Association Rules with support $\geq s$ and confidence $\geq c$

$$B_{1} = \{m, c, b\} \qquad B_{2} = \{m, p, j\}$$

$$B_{3} = \{m, c, b, n\} \qquad B_{4} = \{c, j\}$$

$$B_{5} = \{m, p, b\} \qquad B_{6} = \{m, c, b, j\}$$

$$B_{7} = \{c, b, j\} \qquad B_{8} = \{b, c\}$$

- Support threshold s = 3, confidence c = 0.75
- 1) Frequent itemsets:
 - \square {b} {c} {j} {m} {b,m} {b,c} {c,m} {c,j} {m,c,b}
- 2) Generate rules:

 - $\square \qquad \mathbf{b} \rightarrow \mathbf{c}, \mathbf{m} : \mathbf{conf} = 3/6$

Difficult part is identifying frequent itemsets: algorithms to find them are the focus of this chapter

$$conf(I \rightarrow j) = \frac{support(I \cup j)}{support(I)}$$

FIND FREQUENT ITEMSETS

Computation Model

- Typically, market basket data are kept in **flat files** rather than in a database system
 - ☐ Stored on disk because they are very large files
 - ☐ Stored basket-by-basket
 - ☐ Goal: Expand baskets into pairs, triples, etc. as you read baskets
 - Use *k* nested loops to generate all sets of size *k*

File Organization

Item Etc.

Basket 1

Basket 2

Basket 3

Example: items are positive integers, and boundaries between baskets are -1

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.

Computation Model – (2)

- The true cost of mining disk-resident data is usually the number of disk I/O's
- In practice, association-rule algorithms read the data in passes all baskets read in turn
- Thus, we measure the cost by the **number of passes** an algorithm takes

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource
 - ☐ As we read baskets, we need to count something, e.g., occurrences of pairs
 - ☐ The number of different things we can count is limited by main memory
 - ☐ Swapping counts in/out is a disaster
 - ☐ Algorithms are designed so that counts can fit into main memory

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs
 - ☐ Why? Often frequent pairs are common, frequent triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size
- We'll concentrate on pairs, then extend to larger itemsets

a

X

b

b

X

Z

Χ

Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair
 - ☐ Number of pairs in a basket of n items: n choose 2

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- ☐ From each pasket of n items, generate its n*(n-1)/2 pairs using two nested loops, add to the count for each pair
- \Box First basket: (a,b), (a,c), (a,y), (b,c), (b,y), (c,y)
- \square Second basket: (a,b), (a,x), (a,y), (a,z), (b,x), (b,y), (b,z), ...
- ☐ Total possible number of pairs in all baskets: (#items)(#items -1)/2
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)

Example: Counting Pairs

- Suppose 10⁵ items
- Suppose counts are 4-byte integers
- Number of pairs of items: $10^5(10^5-1)/2 = 5*10^9$ (approximately)
- Therefore, 2*10¹⁰ (20 gigabytes) of main memory needed

Details of Main-Memory Counting

- Two approaches:
 - 1. Count all pairs, using a triangular matrix
 - 2. Keep a table of triples [i, j, c] = "the count of the pair of items $\{i, j\}$ is c"
- (1) requires only 4 bytes/pair, but requires a count for each pair

Note: assume integers are 4 bytes

(2) requires 12 bytes, but only for those pairs with count > 0

Plus some additional overhead for a hashtable

Method (1): It is a long list of "c"

Method (2)
It is a long list of
$$= (i,j,c)$$

Triangular Matrix: (i,j) is index, c is count

Triangular-Matrix Approach – (1)

- $\mathbf{n} = \text{total number of items}$
- Order each pair of items $\{i, j\}$ so that $i \le j$

$$\square$$
 {1,2}, {1,3},..., {1,n}, {2,3}, {2,4},...,{2,n}, {3,4},...

- Pair $\{i, j\}$ is at position (i-1)(n-i/2) + j i
 - Devery time you see a pair {i,j} from a basket, increment the count at the corresponding position in triangular matrix
- Total number of pairs n(n-1)/2; total bytes= $2n^2$
- Triangular Matrix requires 4 bytes (1 integer) per pair

n

i-1

Comparing the two approaches

- Approach 1: Triangular Matrix
 - \square **n** = total number items
 - \square Count pair of items $\{i, j\}$ only if i < j
 - ☐ Keep pair counts in lexicographic order:
 - $\{1,2\}$, $\{1,3\}$,..., $\{1,n\}$, $\{2,3\}$, $\{2,4\}$,..., $\{2,n\}$, $\{3,4\}$,...
 - \square Pair $\{i, j\}$ is at position (i-1)(n-i/2) + j-i
 - \square Total number of pairs n(n-1)/2; total bytes= $2n^2$
 - ☐ Triangular Matrix requires 4 bytes (1 integer for c) per pair
- Approach 2: uses 12 bytes (i, j, c) per occurring pair (but only for pairs with count > 0)
 - ☐ Beats Approach 1 if fewer than 1/3 of possible pairs actually occur in the market basket data

Comparing the two approaches

• Approach 1: Triangular Matrix

```
\square n = total number items
     Problem is if we have
    too many items so the
do not fit into memory.
(but
      Can we do better?
  1008Store pairs actually
```

A-Priori Algorithm

A-Priori Algorithm – (1)

- A two-pass approach called A-Priori limits the need for main memory
- Key idea: monotonicity
 - ☐ If a set of items *I* appears at least *s* times, so does every **subset** *J* of *I*
- Contrapositive for pairs:

 If item *i* does not appear in *s* baskets, then no pair including *i* can appear in *s* baskets
- So, how does A-Priori find freq. pairs?

A-Priori Algorithm

- Pass 1: Read baskets and count in main memory the occurrences of each <u>single</u> item
 - ☐ Requires only memory proportional to #items
- Items that appear at least s times are the frequent items
 - ☐ At the end of pass 1, after the complete input file has been processed, check the count for each item
 - ☐ If count > s, then that item is frequent: saved for the next pass
- Pass 1 identifies frequent itemsets (support>s) of size 1

A-Priori Algorithm

• Pass 2: Read baskets again and count in main memory only those pairs of items where both were found in Pass 1 to be frequent

■ Requires:

- ☐ Memory proportional to square of *frequent* items only (to hold counts of pairs)
- List of the frequent items from the first pass (so you know what must be counted)
- Pairs of items that appear at least s times are the frequent pairs of size 2
 - At the end of pass 2, check the count for each pair
 - \square If count > s, then that pair is frequent
- Pass 2 identifies frequent pairs: itemsets of size 2

Main-Memory: Picture of A-Priori

Detail for A-Priori

- You can use the triangular matrix method with n = number of frequent items
 - May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers

What About Larger Frequent Itemsets? Frequent Triples, Etc.

- For each k, we construct two sets of k-tuples (sets of size k):
 - $C_k = candidate \ k-tuples =$ those that might be frequent sets (support \geq s) based on information from the pass for k-1
 - $IIII L_k =$ the set of truly frequent k-tuples

Recall: Example

$$B_{1} = \{m, c, b\}$$

$$B_{2} = \{m, p, j\}$$

$$B_{3} = \{m, c, b, n\}$$

$$B_{4} = \{c, j\}$$

$$B_{5} = \{m, p, b\}$$

$$B_{6} = \{m, c, b, j\}$$

$$B_{7} = \{c, b, j\}$$

$$B_{8} = \{b, c\}$$

• Frequent itemsets (s=3):

- \Box {b}, {c}, {j}, {m}
- \Box {b,m} {b,c} {c,m} {c,j}
- \square {m,c,b}

Example

Hypothetical steps of the A-Priori algorithm

- \square $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \} : all candidate items$
- \Box Count the support of itemsets in C_1
- $\square \text{ Prune non-frequent: } L_1 = \{ b, c, j, m \}$
- \square Count the support of itemsets in C_2
- $\square \quad \text{Generate } C_3 = \{ \{b,c,m\} \}$
- \square Count the support of itemsets in C_3
- ☐ Prune non-frequent: $L_3 = \{ \{b,c,m\} \}$

A-Priori for All Frequent Itemsets

- One pass for each *k* (itemset size)
- Needs room in main memory to count each candidate k—tuple
- For typical market-basket data and reasonable support (e.g., 1%),
 k = 2 requires the most memory