	人工智能/计算机/网络安全学院本科生 2018—2019 学年第一学期线性代数课程期末考试		A 卷)
	专业(大类): 年级: 20 学号: 姓名: 成组说明: A^T 表示矩阵 A 的转置矩阵, A^* 表示矩阵 A 的伴随矩阵, E 是单位矩阵, D 是零矩阵, $R(A)$ 或 $r(A)$ 表示矩阵 A 的 A^{-1} 表示可逆矩阵 A 的逆矩阵, A 表示方阵 A 的行列式, A 《 A 》表示向量 A , B 的内积。	- •	·
得 分	一 .客观题: 1-3 小题为判断题,在对的后面括号中填"√",错的后面括号中填"×",		
	4-8 为单选题,将正确选项前的字母填在括号中.(每小题 2 分,共 16 分)。		
	1. $A \in m \times n$ 矩阵, $R(A) = m$,则非齐次线性方程组 $Ax = b \ (b \neq 0)$ 有解。	()
	2. 若 $[\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n]$ 为 n 维欧式空间 V 的一个基底, T 为 V 中一个正交变换,则对于任意的 i,j =	= 1, 2, · ·	·,n 有
	$\left\langle \mathbf{T}\boldsymbol{arepsilon}_{i},\mathbf{T}\boldsymbol{arepsilon}_{j} \right angle = egin{cases} 1,\;i=j\ 0,\;i eq j \end{cases}.$	()
	3. 在五阶行列式中,项 $\alpha_{21}\alpha_{32}\alpha_{45}\alpha_{14}\alpha_{53}$ 的符号为 -1 。	()
	4.n 阶实对称矩阵 A 正定的充要条件是:	()
	(A) A 是可逆矩阵 (B) 对某个 $X = (x_1, x_2, \dots, x_n)^T \neq 0$ 有 $X^T A X > 0$		
	(C) A 的所有的特征值均为正值 (D) 可以找到一个正交矩阵 F ,使 F^TAF 为对角知	巨阵	
	5. 设 A, B 均为 n 阶正交矩阵阵, $C = AB$,则必有:	()
	(A) $A + B = 0$ (B) C 为正交矩阵 (C) $ A = 0$ 或 $ B = 0$ (D) $ A + B $	= 0	
	6. 矩阵 A, B 满足: $P^TAP = B$,其中矩阵 P 是可逆矩阵。则其中错误的是:	()
	(A) 矩阵 $A 与 B$ 是相似关系 (B) 矩阵 $A 与 B$ 是合同关系		
	(C) 矩阵 A 和 B 的秩相同 (D) 矩阵 A 与 B 是等价关系		
	7. 设 A, B 为满足 $AB = O$ 的两个 n 阶非零矩阵, 则必有:	()
	(A) $ A \neq 0$ (B) $ B \neq 0$ (C) A 的列向量组线性无关 (D) 线性方程组 $AX = O$	有非零	解
	8. 线性空间 R^5 中前 3 个分量和为 0 的全体向量构成的子空间的维数是:	()
	(A) 2 (B) 3 (C) 4 (D) 5		

草 稿 区

二、行列式计算 (第1小题6分,第2小题8分,共14分)

2. 计算
$$n$$
阶行列式 $|D|=$
$$\begin{vmatrix} a_1+y & a_2 & a_3 & \dots & a_{n-1} & a_n \\ a_1 & a_2+y & a_3 & \dots & a_{n-1} & a_n \\ a_1 & a_2 & a_3+y & \dots & a_{n-1} & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_{n-1}+y & a_n \\ a_1 & a_2 & a_3 & \dots & a_{n-1} & a_n+y \end{vmatrix}$$
, 其中 $n>2$ 。

三、设A, B 均为三阶矩阵,E 是三阶单位矩阵,已知AB = 2A + B, $B = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 2 \end{pmatrix}$, 求: A - E。

(本题 10 分)

四、k 为何值时,下面方程组有唯一解,无解,有无穷多组解?在有解情况下,求出其全部解。 (本题 14 分)

$$\begin{cases} x_1 + x_2 + kx_3 = 4 \\ -x_1 + kx_2 + x_3 = k^2 \\ x_1 - x_2 + 2x_3 = -4 \end{cases}$$

五、设[$\alpha_1,\alpha_2,\cdots,\alpha_n$] 是n 维向量空间V 的一个基,[$\alpha_1,\alpha_1+\alpha_2,\cdots,\alpha_1+\alpha_2+\cdots+\alpha_n$] 也是V 的一个基,

- (1)求后一个基 $[\alpha_1,\alpha_1+\alpha_2,\cdots,\alpha_1+\alpha_2+\cdots+\alpha_n]$ 到前一个基 $[\alpha_1,\alpha_2,\cdots,\alpha_n]$ 的过渡矩阵 A 。
- (2) 已知向量 β 在前一个基 $[\alpha_1,\alpha_2,\cdots,\alpha_n]$ 下的坐标 $X=(n,n-1,\cdots,2,1)^T$,求 β 在后一个基 $[\alpha_1,\alpha_1+\alpha_2,\cdots,\alpha_1+\alpha_2+\cdots+\alpha_n]$ 下的坐标Y。 (本题 9 分)

草 稿 区

- (1) 写出它的矩阵A;
- (2) 用正交变换化 $f(x_1,x_2,x_3)$ 为标准形,并求出所用的正交变换;
- (3) 判定该二次型是哪种二次型(正定,负定,半正定,半负定,不定)。

得 分

八、设实矩阵 $A = E - bb^T$, $E \neq n$ 阶单位阵, $b \neq n$ 维非零实列向量。

求证: (1) $A^2 = A$ 的充要条件是 $b^T b = 1$;

(2) 当 $b^Tb=1$ 时,A不可逆。

(本题 9 分)

(本题 5 分)

得 分