Analýza a zpracování signálů

5. Z-transformace

Z-tranformace je mocný nástroj použitelný pro analýzu lineárních discretetime systémů

Oboustranná Z-transformace

$$X(z) = \sum_{k=-\infty}^{\infty} x[k]z^{-k}$$
, z je komplexní číslo $z = |r|e^{j2\pi F} = |r|e^{j\Omega}$

- Oboustranná transformace konečné řady je výkonová (Laurentova) řada proměnné z. Hodnoty z se kreslí v tzv. Argandově diagramu (z-rovina)
- Společně s hodnotou X(z) se uvádí i oblast, pro kterou X(z) konverguje –
 tzv. oblast konvergence (ROC region of convergence).
- Pro dvě odlišné řady může existovat stejná Z-transformace, ale s odlišnou oblastí konvergence, proto je nutné oblast konvergence uvádět. Pokud se ROC neuvádí uvažuje se obvykle pravostranný signál.

Pro ROC platí následující pravidla:

- signál konečné délky ROC X(z) je celá rovina, kromě z=0 popř. z=∞
- pravostranný x[n]
 ROC X(z) je vně kružnice s poloměrem větším, než je velikost (v absolutní hodnotě) největšího pólu
- levostranný signál
 ROC X(z) je vnitřek kružnice s poloměrem menším, než
 (v absolutní hodnotě) velikost nejmenšího pólu
- oboustranný signál
 ROC X(z) je uvnitř mezikruží ohraničeného největším a nejmenším pólem (v absolutní hodnotě)

EXAMPLE 4.2 (Identifying the ROC)

- (a) Let $x[n] = \{4, -3, \overset{\circ}{2}, 6\}$. The ROC of X(z) is $0 < |z| < \infty$ and excludes z = 0 and $z = \infty$ because x[n] is nonzero for n < 0 and n > 0.
- (b) Let $X(z) = \frac{z}{z-2} + \frac{z}{z+3}$.

Its ROC depends on the nature of x[n].

If x[n] is assumed right-sided, the ROC is |z| > 3 (because $|p|_{\text{max}} = 3$).

If x[n] is assumed left-sided, the ROC is |z| < 2 (because $|p|_{\min} = 2$).

If x[n] is assumed two-sided, the ROC is 2 < |z| < 3.

The region |z| < 2 and |z| > 3 does not correspond to a valid region of convergence because we must find a region that is common to both terms.

DRILL PROBLEM 4.3

- (a) Let $X(z) = \frac{z + 0.5}{z}$. What is its ROC?
- (b) Let $Y(z) = \frac{z+1}{(z-0.1)(z+0.5)}$. What is its ROC if x[n] is right-sided?
- (c) Let $G(z) = \frac{z}{z+2} + \frac{z}{z-1}$. What is its ROC if g[n] is two-sided?
- (d) Let $H(z) = \frac{(z+3)}{(z-2)(z+1)}$. What is its ROC if h[n] is left-sided?

Answers: (a) $|z| \neq 0$ (b) |z| > 0.5 (c) 1 < |z| < 2 (d) |z| < 1

Vlastnosti oboustranné Z-transformace

.

Entry	Property	Signal	z-Transform
1	Shifting	x[n-N]	$z^{-N}X(z)$
2	Reflection	x[-n]	$X\left(\frac{1}{z}\right)$
3	Anti-causal	x[-n]u[-n-1]	$X\left(\frac{1}{z}\right) - x[0]$ (for causal $x[n]$)
4	Scaling	$\alpha^n x[n]$	$X\left(\frac{z}{\alpha}\right)$
5	Times-n	nx[n]	$-z \frac{dX(z)}{dz}$
6	Times-cos	$\cos(n\Omega)x[n]$	$0.5\left[X(ze^{j\Omega})+X(ze^{-j\Omega})\right]$
7	Times-sin	$\sin(n\Omega)x[n]$	$j0.5\left[X(ze^{j\Omega})-X(ze^{-j\Omega})\right]$
8	Convolution	$x[n] \star h[n]$	X(z)H(z)

Převod signálu do Z oblasti:

- pro signály konečné délky polynomem proměnné z
- pro ostatní signály převodní tabulka.

Table 4.1 A Short Table of z-Transform Pairs

Entry	Signal	z-Transform	ROC
-------	--------	-------------	-----

Finite Sequences

1	$\delta[n]$	1	all z
2	u[n] - u[n-N]	$\frac{1-z^{-N}}{1-z^{-1}}$	z ≠ 0

Causal Signals

3	u[n]	$\frac{z}{z-1}$	z > 1
4	$\alpha^n u[n]$	$\frac{z}{z-\alpha}$	$ z > \alpha $
5	$(-\alpha)^n u[n]$	$\frac{z}{z+\alpha}$	$ z > \alpha $
6	nu[n]	$\frac{z}{(z-1)^2}$	z > 1
7	$n\alpha^nu[n]$	$\frac{z\alpha}{(z-\alpha)^2}$	$ z > \alpha $
8	$\cos(n\Omega)u[n]$	$\frac{z^2 - z \cos \Omega}{z^2 - 2z \cos \Omega + 1}$	z > 1
9	$\sin(n\Omega)u[n]$	$\frac{z \sin \Omega}{z^2 - 2z \cos \Omega + 1}$	z > 1
10	$\alpha^n \cos(n\Omega) u[n]$	$\frac{z^2 - \alpha z \cos \Omega}{z^2 - 2\alpha z \cos \Omega + \alpha^2}$	$ z > \alpha $
11	$\alpha^n \sin(n\Omega)u[n]$	$\frac{\alpha z \sin \Omega}{z^2 - 2\alpha z \cos \Omega + \alpha^2}$	$ z > \alpha $

Anti-Causal Signals

12	-u[-n-1]	$\frac{z}{z-1}$	z < 1
13	-nu[-n-1]	$\frac{z}{(z-1)^2}$	z < 1
14	$-\alpha^n u[-n-1]$	$\frac{z}{z-\alpha}$	$ z < \alpha $
15	$-n\alpha^nu[-n-1]$	$\frac{z\alpha}{(z-\alpha)^2}$	$ \mathbf{z} < \alpha $

DRILL PROBLEM 4.1

- (a) Let $x[n] = \{\stackrel{\downarrow}{2}, 1, 0, 4\}$. Find its z-transform X(z).
- (b) Let $x[n] = \{2, -3, \stackrel{\downarrow}{1}, 0, 4\}$. Find its z-transform X(z).
- (c) Let $X(z) = 3z^2 + z 3z^{-1} + 5z^{-2}$. Find x[n].

Answers: (a) $2 + z^{-1} + 4z^{-3}$ (b) $2z^2 - 3z + 1 + 4z^{-2}$ (c) $\{3, 1, 0, -3, 5\}$

EXAMPLE 4.1 (The z-Transform from the Defining Relation)

- (a) Let $x[n] = \delta[n]$. Its z-transform is X(z) = 1. The ROC is the entire z-plane.
- (b) Let $x[n] = 2\delta[n+1] + \delta[n] 5\delta[n-1] + 4\delta[n-2]$. This describes the sequence $x[n] = \{2, 1, -5, 4\}$. Its z-transform is evaluated as $X(z) = 2z + 1 - 5z^{-1} + 4z^{-2}$. No simplifications are possible. The ROC is the entire z-plane, except z = 0 and $z = \infty$ (or $0 < |z| < \infty$).
- (c) Let x[n] = u[n] u[n N]. This represents a sequence of N samples, and its z-transform may be written as

$$X(z) = 1 + z^{-1} + z^{-2} + \dots + z^{-(N-1)}$$

Its ROC is |z| > 0 (the entire z-plane except z = 0). A closed-form result for X(z) may be found using the defining relation as follows:

$$X(z) = \sum_{k=0}^{N-1} z^{-k} = \frac{1 - z^{-N}}{1 - z^{-1}}, \quad z \neq 1$$

Z-rovina, nuly, póly

Z- transformace lze u většiny signálů vyjádřit jako racionální lomenou funkci, která má tvar:

$$X(z) = \frac{N(z)}{D(z)} = \frac{B_M z^M + B_{M-1} z^{M-1} + \dots + B_1 z + B_0}{A_N z^N + A_{N-1} z^{N-1} + \dots + A_1 z + A_0}$$

Označme:

kořeny N(z) jako $z_i \Rightarrow nuly O$ kořeny D(z) jako $p_k \Rightarrow póly X$

$$X(z) = K \cdot \frac{N(z)}{D(z)} = \frac{(z - z_1)(z - z_2) \cdots (z - z_M)}{(z - p_1)(z - p_2) \cdots (z - p_N)}$$

Diagram nul a pólů

$$H(z) = \frac{2z(z+1)}{\left(z - \frac{1}{3}\right)\left(z^2 + \frac{1}{4}\right)\left(z^2 + 4z + 5\right)}$$

Příklad: Jaká z-transformace odpovídá následujícímu diagramu nul a pólů?

(b) What is the z-transform corresponding to the pole-zero pattern of Figure E4.4(b)? Does it represent a symmetric signal?

If we let X(z) = KN(z)/D(z), the four zeros correspond to the numerator N(z) given by

$$N(z) = (z - j0.5)(z + j2)(z + j0.5)(z - j2) = z^4 + 4.25z^2 + 1$$

The two poles at the origin correspond to the denominator $D(z) = z^2$. With K = 1, the z-transform is given by

$$X(z) = K\frac{N(z)}{D(z)} = \frac{z^4 + 4.25z^2 + 1}{z^2} = z^2 + 4.25 + z^{-2}$$

Checking for symmetry, we find that X(z) = X(1/z), and thus x[n] is even symmetric. In fact, $x[n] = \delta[n+2] + 4.25\delta[n] + \delta[n-2] = \{1, 4.25, 1\}$. We also note that each zero is paired with its reciprocal (j0.5 with -j2, and -j0.5 with j2), a characteristic of symmetric sequences.

Přenosová funkce systému

Odezva systému y[n] s impulzní odezvou h[n] je dána konvolucí

$$y[n] = x[n] * h[n]$$

v Z oblasti

$$Y[z] = X[z] \cdot H[z] \implies H[z] = \frac{Y(z)}{X(z)}$$

H[z] je přenosová funkce systému a je definována pouze pro ustálený LTI systém jako poměr Z-transformace výstupu k Z-transformaci vstupu. H(z) je Z-transformace impulzní odezvy h[n]

$$H(z) = \frac{Y(z)}{X(z)} = \frac{B_0 + B_1 z^{-1} + \dots + B_M z^{-M}}{A_0 + A_1 z^{-1} + \dots + A_N z^{-N}}$$

DRILL PROBLEM 4.11

- (a) Find the transfer function of the digital filter described by y[n] 0.4y[n-1] = 2x[n].
- (b) Find the difference equation of the digital filter described by $H(z) = \frac{z-1}{z+0.5}$.
- (c) Find the difference equation of the digital filter described by $h[n] = (0.5)^n u[n] \delta[n]$.

Answers: (a)
$$H(z) = \frac{2z}{z - 0.4}$$
 (b) $y[n] + 0.5y[n - 1] = x[n] - x[n - 1]$ (c) $y[n] - 0.5y[n - 1] = 0.5x[n - 1]$

LTI systém může být popsán:

- přenosovou funkcí
- impulzní odezvou
- diferenční rovnicí
- diagramem nul a pólů

Spojování systémů

Kaskádní spojení:

$$Y[z]=H_2[z]Y_1[z]=H_2[z](H_1[z]X[z])=(H_2[z]H_1[z])X[z] \Rightarrow H[z]=H_1[z]H_2[z]$$

Obecně pro n – kaskádně spojených systémů : $H[z]=H_1[z]H_2[z]...H_n[z]$

Paralelní spojení:

$$Y[z]=H_1[z]X[z]+H_2[z]X[z]=(H_2[z]+H_1[z])X[z] \Rightarrow H[z]=H_1[z]+H_2[z]$$

Obecně pro n – paralelně spojených systémů : $H[z]=H_1[z]+H_2[z]+...+H_n[z]$

Realizace přenosové funkce

$$H_N(z) = B_0 + B_1 z^{-1} + \dots + B_M z^{-M} \quad y[n] = B_0 x[n] + B_1 x[n-1] + \dots + B_M x[n-M]$$

$$H_R(z) = \frac{1}{1 + A_1 z^{-1} + \dots + A_N z^{-N}} \quad y[n] = -A_1 y[n-1] - \dots - A_N y[n-N] + x[n]$$

Pro obecnou diferenční rovnici:

$$y[n] = -A_1y[n-1] - \dots - A_Ny[n-N] + B_0x[n] + B_1x[n-1] + \dots + B_Nx[n-N]$$

$$H(z) = \frac{B_0 + B_1 z^{-1} + \dots + B_N z^{-N}}{1 + A_1 z^{-1} + A_2 z^{-2} + \dots + A_N z^{-N}} = H_N(z) H_R(z)$$

Duální struktura filtru (Transposed realization)

Vychází z přímé formy II a provede se překlopením – záměna vstupů a výstupů, otočení toku signálu a záměna sumátorů a spojek.

Sériová (kaskádní) realizace filtrů

Přenosová funkce systému může být výsledkem součinu dílčích přenosových funkcí (v kaskádním zapojení)

$$H_c(z) = H_1(z) \cdot H_2(z) \cdot \dots \cdot H_N(z)$$

Systém N-tého řádu může být realizován jako kaskádní spojení systémů 2. rádu a 1. řádu (pokud N je liché)

Paralelní realizace filtrů

Přenosová funkce systému může být výsledkem součtu dílčích přenosových funkcí (v paralelním zapojení)

$$H_P(z) = H_1(z) + H_2(z) + ... + H_N(z)$$

Přenosovou funkci systému N-tého řádu můžeme rozložit na parciální zlomky a realizovat systém jako paralelní spojení subsystémů 1. popř. 2. řádu.

Příklad:

1. Nalezněte kaskádní realizaci filtru popsaného přenosovou funkcí

$$H(z) = \frac{z^2(6z-2)}{(z-1)\left(z^2 - \frac{1}{6}z - \frac{1}{6}\right)}$$

2. Nalezněte paralelní realizaci filtru popsaného přenosovou funkcí

$$H(z) = \frac{z^2}{(z-1)(z-0.5)}$$

Kauzalita a stabilita LTI systému

V časové oblasti - kauzální systém má impulzní odezvu h[n]=0, pro n<0. Pro impulzní odezvu tohoto systému pak platí, že počet nul nesmí přesáhnout počet pólů ⇒stupeň čitatele musí být menší než stupeň jmenovatele. Stabilní systém - pro h[n] musí platit

$$(\sum |h[k]| < \infty).$$

Stabilita (Bounded Input Bounded Output) ⇒ na omezený vstup reaguje systém omezeným výstupem.

ROC (oblast konvergence) stabilního LTI systému vždy zahrnuje jednotkovou kružnici a platí:

- stabilní a kauzální systém: všechny póly leží uvnitř jednotkové kružnice
- stabilní a antikauzální systém všechny póly leží vně jednotkové kružnice

Inverzní Z-transformace

Obecně:

$$x(n) = \frac{1}{2\pi} \oint X[z] \cdot z^{n-1} dz$$

V praxi se obecný vzorec téměř nepoužívá a inverzní transformace se určuje kombinací následujících způsobů :

- 1. přímý převod
- 2. dělení polynomů
- 3. rozklad na parciální zlomky.

Přímý převod: - pro jednoduché případy, kdy je Z- transformace vyjádřena konečnou řadou.

$$X[z]=3z^{-1}+5z^{-3}+2z^{-4} \Rightarrow x[n]=3\delta[n-1]+5\delta[n-3]+2\delta[n-4] \Rightarrow x[n]=\{0, 3, 0, 5, 2\}$$

Nebo

$$\begin{array}{c} X[z] = 2z^2 \text{ -5}z + 5z^{\text{-1}} \text{ -} 2z^{\text{-2}} \ \Rightarrow \ x[n] = 2\delta[n+2] \text{ -} 5 \ \delta[n+1] + 5 \ \delta[n-1] \text{ -} 2\delta[n-2] \Rightarrow \\ x[n] = \{2, \text{ -5}, \text{ 0}, \text{ 3}, \text{ 5}, \text{ -2} \ \} \end{array}$$

Dělení polynomů: Většinou se používá pokud chceme vyjádřit pouze prvních pár členů odezvy systému - je to obvykle rychlejší než rozklad na parciální zlomky.

Předpokládejme, že :
$$X(z) = \frac{N(z)}{D(z)}$$

- pro pravostranný signál: uspořádáme N(z) a D(z) podle sestupných mocnin z a určíme výsledek dělení polynomů – dostaneme mocninou řadu proměnné z⁻¹
- pro levostranný signál: uspořádáme N(z) a D(z) podle vzestupných mocnin z dostaneme mocninnou řadu proměnné z

$$H[z] = \frac{z - 4}{1 - z - z^{2}}$$

$$(z-4) : (z^{2}-z+1) = z^{-1}-3z^{-2}-4z^{-3} + ... \Rightarrow h[n] = \delta[n-1] - 3\delta[n-2] - 4\delta[n-3]$$

$$\Rightarrow h[n] = \{0,1,-3,-4, ... \}$$

Rozklad na parciální zlomky:

- princip metody rozkladu spočívá v tom, že výraz pro Z-transformaci se rozloží na součet zlomků, jejichž inverzní transformaci lze najít v tabulkách.
- rozklad se provádí v závislosti na pólech (tj. kořenech jmenovatele).

Rozlišujeme 2 případy:

1. Rozdílné póly- reálné

$$Y(z) = \frac{X(z)}{z} = \frac{P(z)}{(z+p_1)(z+p_2)\cdots(z+p_N)} = \frac{k_1}{(z+p_1)} + \frac{k_2}{(z+p_2)} + \cdots + \frac{k_N}{(z+p_N)}$$

$$kde k_m = (z + p_m)Y(z)\Big|_{z = -p_m}$$

Rozdílné póly - komplexní

$$Y(z) = \frac{X(z)}{z} = \frac{k_1}{(z+p_1)} + \frac{k_2}{(z+p_2)} + \dots + \frac{A_1}{(z+r_1)} + \frac{A_1^*}{(z+r_1^*)} + \frac{A_2}{(z+r_2)} + \frac{A_2^*}{(z+r_2^*)} + \dots$$

2. Opakující se póly - Y(z) obsahuje (z+r)k pól

$$Y(z) = \frac{X(z)}{z} = \dots + \frac{A_0}{(z+r_1)^k} + \frac{A_1}{(z+r)^{k-1}} + \dots + \frac{A_{k-1}}{(z+r)},$$

$$kde \ A_{0} = (z+r)^{k} Y(z)|_{z=-r}$$

$$A_{1} = \frac{d}{dz} [(z+r)^{k} Y(z)]|_{z=-r}$$

$$\vdots$$

$$A_{n} = \frac{1}{n!} \frac{d^{n}}{dz^{n}} [(z+r)^{k} Y(z)]|_{z=-r}$$

Zpětná Z-transformace tabulka

Entry	PFE Term $X(z)$	Causal Signal $x[n], n \ge 0$
Note:	For anti-causal sequences, we get the	signal $-x[n]u[-n-1]$ where $x[n]$ is as listed.
1	$\frac{z}{z-\alpha}$	α ⁿ
2	$\frac{z}{(z-\alpha)^2}$	$n\alpha^{(n-1)}$
3	$\frac{z}{(z-\alpha)^{N+1}} (N>1)$	$\frac{n(n-1)\cdots(n-N+1)}{N!}\alpha^{(n-N)}$
4	$\frac{z(C+jD)}{z-\alpha e^{j\Omega}} + \frac{z(C-jD)}{z-\alpha e^{-j\Omega}}$	$2\alpha^n[C\cos(n\Omega) - D\sin(n\Omega)]$
5	$\frac{zK\angle\phi}{z-\alpha e^{j\Omega}} + \frac{zK\angle-\phi}{z-\alpha e^{-j\Omega}}$	$2K\alpha^n\cos(n\Omega+\phi)$
6	$\frac{z(C+jD)}{(z-\alpha e^{j\Omega})^2} + \frac{z(C-jD)}{(z-\alpha e^{-j\Omega})^2}$	$2n\alpha^{n-1}\Big(C\cos[(n-1)\Omega]-D\sin[(n-1)\Omega]\Big)$
7	$\frac{zK\angle\phi}{(z-\alpha e^{j\Omega})^2} + \frac{zK\angle-\phi}{(z-\alpha e^{-j\Omega})^2}$	$2Kn\alpha^{n-1}\cos[(n-1)\Omega+\phi]$
8	$\frac{zK \angle \phi}{(z - \alpha e^{j\Omega})^{N+1}} + \frac{zK \angle - \phi}{(z - \alpha e^{-j\Omega})^{N+1}}$	$2K\frac{n(n-1)\cdots(n-N+1)}{N!}\alpha^{(n-N)}\cos[(n-N)\Omega+\phi]$

Zpětná Z-transformace rozklad na parciální zlomky

REVIEW PANEL 17.16

Partial Fraction Expansion of Y(z) = X(z)/z Depends on Its Poles (Denominator Roots)

Distinct roots:
$$Y(z) = \prod_{m=1}^{N} \frac{P(z)}{z + p_m} = \sum_{m=1}^{N} \frac{K_m}{z + p_m}$$
, where $K_m = (z + p_m)Y(z)|_{z=-p_m}$

Distinct roots:
$$Y(z) = \prod_{m=1}^{N} \frac{P(z)}{z + p_m} = \sum_{m=1}^{N} \frac{K_m}{z + p_m}$$
, where $K_m = (z + p_m)Y(z)|_{z = -p_m}$
Repeated: $\frac{1}{(z + r)^k} \prod_{m=1}^{N} \frac{P(z)}{z + p_m} = \sum_{m=1}^{N} \frac{K_m}{z + p_m} + \sum_{n=0}^{k-1} \frac{A_n}{(z + r)^{k-n}}$, where $A_n = \frac{1}{n!} \frac{d^n}{dz^n} [(z + r)^k Y(z)]|_{z = -r}$

Jednostranná Z-transformace

používá se při analýze kauzálních systémů a je definována následujícím vztahem

$$X(z) = \sum_{k=0}^{\infty} x[k]z^{-k},$$

Vlastnosti jednostranné Z-transformace jsou podobné jako u oboustranné, jsou pouze upravené pro práci s kauzálními signály.

Posun doprava:

$$y[n-1] \Leftrightarrow z^{-1}Y(z) + y[-1]$$

$$y[n-2] \Leftrightarrow z^{-2}Y(z) + z^{-1}y[-1] + y[-2]$$

$$y[n-N] \Leftrightarrow z^{-N}Y(z) + z^{-(N-1)}y[0] + z^{-(N-2)}y[-2] + \dots + y[-N]$$

Posun doleva:

$$y[n+1] \Leftrightarrow z \ Y(z) - zy[0]$$

$$y[n+2] \Leftrightarrow z^{2}Y(z) - z^{2}y[0] - zy[1]$$

$$y[n+N] \Leftrightarrow z^{N}Y(z) - z^{N}y[0] - z^{(N-1)}y[1] - \dots - zy[N-1]$$

Periodický signál:

$$x_p[n]u[n] \Leftrightarrow \frac{X_1(z)}{1-z^{-N}} = \frac{z^N}{z^N-1}X_1(z)$$

kde $x_1[n]$ je první perioda signálu $x_p[n]$

Věta o počáteční hodnotě:

$$x[0] = \lim_{z \to \infty} X(z)$$

Věta o koncové hodnotě:

$$\lim_{n\to\infty} x[n] = \lim_{z\to 1} (z-1)X(z)$$

Využití Z-transformace k analýze systémů

Systémy popsané diferenční rovnicí:

- 1. převod diferenční rovnice do Z oblasti s ohledem na vlastnosti posuvu u jednostranné Z transformace a počáteční podmínky
- 2. výpočet ZIR, ZSR a celkové odezvy
- 3. zpětná transformace

Příklad. Řešte diferenční rovnici a určete ZIR, ZSR $y[n]-0.5y[n-1] = 2(0.25)^nu[n]$ pro y[-1]=-2

Systémy popsané přenosovou funkcí:

- 1. určení ZSR: Z přenosové funkce určit Y(z)=X(z)H(z) a provést zpětnou tranformaci
- 2. určení ZIR: určit diferenční rovnici, převést a postupovat jako u systémů popsaných diferenční rovnicí.

Příklad : Pro zadanou přenosovou funkci H(z), vstup x[n]=4u[n] a počáteční podmínky y[-1]=0 a y[-2]=12, určete ZIR, ZSR, homogenní a partikulární řešení.

$$H(z) = \frac{z^2}{z - \frac{1}{6}z - \frac{1}{6}}$$