Gradient Descent

ML Lab

Table of Contents

- Machine learning
- Linear regression
- Gradient descent

Neural Network is Function (1)

Classification

$$f(igwedge) = \operatorname{cat}, f(igwedge) = \operatorname{dog}$$

Neural Network is Function (2)

• Label된 이미지들 $\{(x_i, y_i)\}_{i=1}^N$ 가 주어졌을 때, 우리는 가장 좋은 neural network f를 찾고 싶다!

How to Optimize Model? (1)

- 우리가 원하는 f를 찾기 전에, 다음 부분들을 정의해야 합니다:
 - f의 정확한 수식.
 - f를 평가하는 함수.

- 예를 들어, 다음과 같이 정의할 수 있습니다:
 - $f(x) = Wx^T + b$ (linear regression model).
 - $l(f) = \sum_{i=1}^{N} (f(x_i) y_i)^2$ (mean-squared error).

How to Optimize Model? (2)

$$f(x) = Wx^T + b$$

- 앞에서 정의한 식들을 가지고 문제를 구체적으로 정의하면 다음과 같다:
 - 주어진 data들에 대해서 $\sum_{i=1}^{N} (f(x_i) y_i)^2$ 를 최소화하는 W, b를 찾고 싶다!
 - Q) 어떻게 찾을까?

Gradient Descent (1)

$$l(f) = \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

• 일반적으로 l(W,b)를 최소화하는 W,b는 다음 성질을 만족한다:

•
$$\frac{\partial l(W,b)}{\partial W} = \frac{\partial l(W,b)}{\partial b} = 0.$$

Gradient descent는 이러한 성질을 만족하는 W, b를 찾는 방법론 중 하나다!

Gradient Descent (2)

- Gradient descent는 다음 과정을 통해 우리가 원하는 W, b를 찾는다:
 - 1. *W*, *b*를 랜덤하게 초기화 한다.
 - 2. Gradient 를 계산한다.
 - 3. 구한 gradient를 가지고 업데이트한다: $W = W \eta \frac{\partial l(W,b)}{\partial W}$.

Practice: Implement Gradient Descent

• Logistic regression을 gradient descent로 구현하기

$$y = \sigma(Wx + b)$$

$$z = w^{T}x + b$$

$$\hat{y} = a = \sigma(z)$$

$$\mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Thank You:)