Állománynév: aramkorok_04fourier22.pdf

Irodalom: Előadó jegyzetei: http://users.itk.ppke.hu/~kolumban/aramkorok/

Fodor Gy., "Hálózatok és rendszerek," Műegyetemi Kiadó, Budapest, 2004, pp. 210-

216, 235-248.

4. ANALÍZIS A FREKVENCIATARTOMÁNYBAN: A FOURIER SOR ÉS A FOURIER TRANSZFORMÁCIÓ

Érvényesség és alkalmazás:

- Lineáris (szuperpozició érvényes), időinvariáns, koncentrált paraméterű áramkörök, rendszerek és hálózatok esetén alkalmazható
- Mivel a kezdeti feltételek nem vehetők figyelembe, csak állandósult állapotú hálózatok és rendszerek vizsgálatára alkalmas
- A gerjesztéseket szinuszos jelek lineáris kombinációjaként/integráljaként állítjuk elő
- Frekvenciatartománybeli vizsgálatra alkalmas, leginkább a híradástechnikában és jelfeldolgozásban alkalmazzuk

Áramkör \Longrightarrow Egyszerűsített áramkör		
↓ Matematikus		↓ Mérnök
Időtartomány		Transzformált-tartomány
+		\
Lineáris rendszer		Transzformált rendszer
		(PI. impedancia)
<u> </u>		
Differenciál egyenlet	\Longrightarrow	Algebrai egyenlet
	Transzformáció	
	Matematikus	
\		\
Diff. egy. megoldása		Algebrai módszerek
↓		↓
Válaszjel	←	Megoldás a transzformált
	Inverz	tartományban
	transzformáció	

Mit tettünk az egyszerű megoldhatóság (algebrai egyenletek) érdekében?

- Korlátoztuk a gerjesztéseket az következő függvényosztályokra: 1. DC gerjesztések
 - 2. AC gerjesztések

Vedd észre, a komplex exponenciálisok a lineáris, állandó együtthatós, közönséges differenciál egyenletek (LTI rendszerek) sajátfüggvényei

A Kirchhoff egyenletek alapján felírt rendszerjellemző differenciál egyenlet:

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m x}{dt^m} + \dots + b_0 x$$
ahol $x(t)$ a gerjesztés és $y(t)$ a válaszjel

Ha a gerjesztésket korlátozzuk a komplex exponenciálisok függvényosztályára, akkor (i) mind a tranziens, (ii) mind az állandósult állapot felírható komplex exponenciálisokkal, amelyek a differenciál egyenletek sajátfüggvényei

A színuszos gerjesztések szuperpozicióval állíthatók elő:

$$\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right) = \frac{1}{2} \left[e^{j\omega t} + \left(e^{j\omega t} \right)^* \right]$$

Analóg rendszerek analízisének mérnöki módszere

ÁRAMKÖRI OLDAL

- 1. Matematikai modell: Differenciál egyenlet
- 2. Impedancia módszer bevezetése
 - Diff. egy. helyett algebrai egyenlet
 - Átviteli függvények
- Impedancia módszer csak akkor használható, ha korlátozzuk a gerjesztéseket a komplex exponenciálisok osztályára

GERJESZTÉSEK OLDALA

- 1. Tetszőleges gerjesztés
- 2. Lineáris rendszer => szuperpozició
- 3. **Szinuszos bázis** függvények:
 - Fourier sor
 - Fourier transzformáció

Szinuszos gerjesztés esete (Rövid ismétlés):

Állandósult állapotú, LTI hálózatok AC analízise (a követendő eljárás pontokba szedve):

- 1. Különböző frekvenciás gerjesztések esetén szuperpozició az időtartományban (Egyszerre csak egy gerjesztő frekvenciához tartozó generátorok hatását vizsgáljuk)
- 2. Az azonos frekvenciájú gerjesztésekhez hozzárendeljük valamennyi jel komplex amplitúdóját
- 3. A kapcsolási rajz alapján felírjuk a valamennyi frekvenciára érvényes, és a ki- és bemenetek közti kapcsolatot megadó impedanciát, admittanciát vagy frekvenciaválasz függvényt
- 4. Komplex mennyiségek szorzataként előállítjuk a válasz komplex amplitúdóját
- 5. Inverz transzformációval visszatérünk az időtartományba, és ha kell a választ az egyes gerjesztő frekvenciák lineáris kombinációjaként állítjuk elő

Állandósult állapotú AC analízis feltételei:

- Lineáris hálózat
- Gerjesztőfüggvényeket a végtelen hosszú szinuszos függvényekre korlátozzuk
- Állandósult állapotú
 tranzienst nem vizsgál!!!

A módszer alkalmazható minden olyan jelre, amely előállítható végtelen hosszú szinuszos jelek lineáris kombinációjaként

Vannak ilyen jelek? Igen, a PERIÓDIKUS JELEK

4.1. Periódikus jelek Fourier sora

4.1(a) A PERIÓDIKUS JEL DEFINICIÓJA

Az x(t) analóg jelet periódikusnak nevezzük, ha létezik T>0 amelyre

$$x(t+T) = x(t) \quad \forall t - re$$

A T_0 alapperiódus az a legkisebb pozitív T, amelyre a fenti egyenlet teljesül

Az alapfrekvencia definiciója

$$f_0 = \frac{1}{T_0}$$

4.1(b) PERIÓDIKUS JELEK FOURIER SOROS REPREZENTÁCIÓJA

- Valamennyi periódikus jel reprezentálható egy végtelen tagszámú Fourier sorral
- A kellően kis teljesítményű tagokat elhanyagoljuk és véges hosszúságú Fourier sorokkal számolunk
- A Fourier soros analízis során mindig az alábbi periódikus jelet vizsgáljuk:

$$x(t+T_0) = x(t)$$

A Fourier sor trigonometrikus alakja

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t) \right] \quad \text{ahol} \quad \omega_0 = \frac{2\pi}{T_0}$$

A Fourier együtthatók értéke

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt \qquad \text{és} \qquad b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt$$

Fourier sor mérnöki (harmonic form) alakja

$$x(t) = C_0 + \sum_{k=1}^{\infty} C_k \cos(k\omega_0 t - \theta_k)$$

A Fourier együtthatók értéke a

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt \qquad \text{és} \qquad b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt$$

kifejezésekből, az alábbi összefüggésekkel számítható

$$C_0 = \frac{a_0}{2}$$
 $C_k = \sqrt{a_k^2 + b_k^2}$ és $\theta_k = \tan^{-1} \frac{b_k}{a_k}$

Vedd észre: • C_k és θ_k a k-ik harmonikus komponens amplitúdóját és fázisát adja meg

- Komplex amplitúdó: $V = V_{eff} \exp(j\theta) \implies V_k = \frac{C_k}{\sqrt{2}} \exp(j\theta_k)$
- A mérnöki alak közvetlenül kombinálható az állandósult állapotú AC hálózatok analízisére kidolgozott megoldással

Periódikus gerjesztésekre adott válasz meghatározása a mérnöki alak alapján:

1. A periódikus meghajtó jelet mérnöki alakban adott Fourier sorral reprezentáljuk az időtartományban

$$x(t) = C_0 + \sum_{k=1}^{\infty} C_k \cos(k\omega_0 t - \theta_k)$$

- 2. A kapcsolási rajz alapján felírjuk a valamennyi frekvenciára érvényes, a ki- és bemenetek közti kapcsolatot megadó impedanciát, admittanciát vagy frekvenciaválasz függvényt
- 3. Az egyes harmónikus frekvenciákon meghatározzuk a hálózat átvitelének abszolút értékét és fázisát

$$H(jk\omega_0) = |H(jk\omega_0)| \angle H(jk\omega_0)$$

4. Felírjuk a válaszjelet az időtartományban

$$y(t) = H(0) C_0 + \sum_{k=1}^{\infty} \underbrace{|H(jk\omega_0)| C_k} \cos \left[k\omega_0 t \underbrace{-\theta_k + \angle H(jk\omega_0)} \right]$$

Vedd észre: Egyszerűsítés végett nem tüntettük fel a komplex amplitúdok használatát

4.1(b) PERIÓDIKUS JELEK FOURIER SOROS ELŐÁLLÍTÁSA

Fourier soros reprezentációk animációja

http://www.physics.miami.edu/~nearing/mathmethods/animations.html

L periódusú, t^2 típusú jel

2L periódusú, négyszöghullám

4.2. Tetszőleges jelek: A Fourier transzformáció

Impedancia koncepció lényege: válasz kompl. ampl. = frekvenciaválasz fgv. × gerjesztés kompl. ampl.

- Kérdés: Kiterjeszthető a Fourier sorra alapozott vizsgálat a tetszőleges jelekre is?
- Válasz: Igen, a Fourier transzformációval az analízis a frekvencia tartományba tehető át

Tetszőleges LTI hálózat kimenete

ahol: \bullet h(t) az LTI hálózat $\delta(t)$ Dirac-impulzusra adott válaszjele, amit súlyfüggvénynek vagy impulzusválasz-függvénynek nevezünk

- ullet h(t) hálózatjellemző függvény, azaz ha h(t) ismert, akkor a válaszjel konvolúcióval tetszőleges gerjesztés mellett meghatározható
- $V_1(j\omega)=V_1(\omega),\ V_2(j\omega)=V_2(\omega)$ és $H(j\omega)=H(\omega)$ a be-, kimenő jelek és az impulzusválasz-függvény Fourier transzformáltjai

A Fourier transzformáció legfőbb előnye:

Két valós időfüggvény konvolúcióját komplex függvények szorzásába viszi át

4.2(a) A Fourier transzformáció definiciója

Az x(t) időfüggvény (akár gerjesztés vagy impulzusválasz-függvény) Fourier transzformáltja, azaz áttérés a frekvenciatartományba

$$X(j\omega) = X(\omega) = \mathcal{F}\left\{x(t)\right\} = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \quad \left[\frac{\mathsf{amplitud\acute{o}}}{\mathsf{Hz}} \ \mathsf{vagy} \ \frac{1}{\mathsf{Hz}}\right]$$

Az inverz Fourier transzformáció, azaz visszatérés az időtartományba

$$x(t) = \mathcal{F}^{-1}\left\{X(j\omega)\right\} = \frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}\,d\omega \quad [\text{amplitud\'o vagy }-]$$

ahol ullet j-t csak az áramköranalízissel foglalkozó kollégák tüntetik fel

- Dimenziókat az esetek döntő többségében nem tüntetjük fel
- $X(j\omega)$ a spektrum
- $|X(j\omega)|$ az amplitúdó spektrum
- $\angle X(j\omega)$ a fázis spektrum

4.2(b) A dualitás tétele ill. példa a Fourier transzformáltakra

4.2(c) A frekvenciaválasz- és impulzusválasz-függvények kapcsolata

ullet Emlékezz: Az AC impedanciákkal a kapcsolási rajzból közvetlenül felírtuk a $H(j\omega)$ frekvenciaválasz-függvényt

Egy NP h(t) impulzusválasz-függvénye

- ullet nem más, mint a $\delta(t)$ Dirac-impulzusra adott h(t) válasza
- ullet alapján konvolúcióval kiszámíthatjuk egy tetszőleges x(t) meghajtásra adott válaszjelet

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

A Fourier transzformáció a konvolúciót szorzásba viszi át, azaz

$$Y(j\omega) = \mathcal{F}\left\{y(t)\right\} = \mathcal{F}\left\{\int_{-\infty}^{\infty} x(\tau)h(t-\tau)\,d\tau\right\} = H(j\omega) \times X(j\omega)$$

ahol $H(j\omega)$ az AC analízisből ismert frekvenciaválasz-függvény

A frekvenciaválasz-, impulzusválasz-fügvények és a Dirac-impulzus tulajdonságai

- \bullet A h(t) impulzusválasz- és a $H(j\omega)=\mathcal{F}\left\{h(t)\right\}$ frekvenciaválaszfüggvények hálózatjellemző függvények
- Ismeretükben az LTI rendszer tetszőleges bemenetre adott válasza meghatározható
- \bullet A h(t) impulzusválaszfüggvény (másik neve súlyfüggvény) nem más, mint a $\delta(t)$ Diracimpulzusra adott válasz
- ullet Ahol a $\delta(t)$ függvény matematikailag egy szinguláris disztribúció

A $\delta(t)$ Dirac-impulzus mérnöki realizációja

 $\begin{array}{ccc} \operatorname{Ahol} \tau & \to & 0 \\ \operatorname{azonban} A \times \tau = 1 \end{array}$

LTI NP válaszjelének meghatározása konvolúcióval

Szuperpozició alkalmazása az időtartományban

$$x(t) = \lim_{\tau \to 0} \sum_{k=-\infty}^{k=\infty} x(k\tau)\delta(t-k\tau)\tau$$
$$= \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau$$

4.2(d) A válaszjel meghatározása a Fourier transzformáció segítségével

Alapelv: A számításokat a **frekvenciatartományban**, azaz egy transzformált tartományban végezzük el azért, hogy ne kelljen differenciál egyenleteket és konvolúciót megoldani az **időtartományban**.

Fourier transzformáció a konvoluciót szorzásba viszi át!

A megoldás lépései:

- 1. Az időtartományban megadott x(t) gerjesztéshez hozzárendeljük annak $X(j\omega)$ Fourier transzformáltját, azaz spektrumát
- 2. A kapcsolási rajz alapján az AC impedanciákkal felírjuk a NP $H(j\omega)$ frekvenciaválasz függvényét
- 3. $Y(j\omega)=H(j\omega)X(j\omega)$ alakban előállítjuk a válaszjel Fourier transzformáltját, azaz spektrumát
- 4. A válaszjel $Y(j\omega)$ spektrumából inverz Fourier transzformációval előállítjuk a y(t) válaszjelet az időtartományban

Vedd észre: A transzformáció célja ugyanaz mint korábban, a differenciál egyenletek megoldásának elkerülése

4.2(e) Legfontosabb időfüggvények Fourier transzformáltjai

Időtartomány

Frekvenciatartomány

x(t)	$X(\omega)$
$\delta(t)$	1
$\delta(t-t_0)$	$e^{-j\omega t_0}$
1	$2\pi\delta(\omega)$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$\sin \omega_0 t$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$
u(-t)	$\pi\delta(\omega)-rac{1}{j\omega}$
$e^{-at}u(t), a>0$	$\frac{1}{j\omega+a}$
$t e^{-at} u(t), a > 0$	$\frac{1}{\left(j\omega+a\right)^2}$
$e^{-a t }, a>0$	$\frac{2a}{a^2+\omega^2}$
$\frac{1}{a^2+t^2}$	$e^{-a \omega }$
$e^{-at^2}, a>0$	$\sqrt{\frac{\pi}{a}} e^{-\omega^2/4a}$
$p_a(t) = \begin{cases} 1 & t < a \\ 0 & t > a \end{cases}$	$2a\frac{\sin \omega a}{\omega a}$

Fontos tulajdonságok

- Szuperpoziciót kihasználtuk ⇒ csak lineáris rendszerekre alkalmazható
- Unicitás: Egyértelmű megfelelés az időfüggvény és annak Fourier transzformáltja közt
- Lineáris integrál transzformáció ⇒ Linearitás megőrződik

Egy példa:

$$\mathcal{F}\{\delta(t)\} = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt = e^{-j\omega t} \mid_{t=0} = 1$$

4.2(f) Fourier transzformációra vonatkozó tételek

Tulajdonság	ldőtartomány	Frekvenciatartomány	
Property	Signal	Fourier transform	
	x(t)	$X(\omega)$	
	$x_1(t)$	$X_1(\omega)$	
	$x_2(t)$	$X_2(\omega)$	
Linearity	$a_1 x_1(t) + a_2 x_2(t)$	$a_1X_1(\omega) + a_2X_2(\omega)$	
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$	
Frequency shifting	$e^{j\omega_0t}x(t)$	$X(\omega-\omega_0)$	
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$	
Time reversal	x(-t)	$X(-\omega)$	
Duality	X(t)	$2\pi x(-\omega)$	
Time differentiation	$\frac{dx(t)}{dt}$	$j\omega X(\omega)$	
Frequency differentiation	(-jt)x(t)	$\frac{dX(\omega)}{d\omega}$	
Integration	$\int_{-\infty}^t x(\tau)d\tau$	$\pi X(0)\delta(\omega) + rac{1}{j\omega}X(\omega)$	
Convolution	$x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$	
Multiplication	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$	
Real signal	$x(t) = x_e(t) + x_o(t)$	$X(\omega) = A(\omega) + jB(\omega)$ $X(-\omega) = X^*(\omega)$	

Egy példa:

Derivált függvény Fourier transzformáltja:

$$\frac{dx(t)}{dt} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad j\omega X(\omega)$$

Bizonyítás:

$$\frac{dx}{dt} = \frac{d}{dt} \mathcal{F}^{-1} \{ X(\omega) \}$$

$$= \frac{d}{dt} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \right]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \frac{d}{dt} e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \underline{j\omega X(\omega)} e^{j\omega t} d\omega$$

4.2(g) A torzításmentes átvitel feltétele

Kimeneti jelalak egyezzen meg a bemenetivel, azonban egy K>0 konstanssal való szorzás (alakhű erősítés) és egy $t_d\geq 0$ frekvenciafüggetlen késleltetés megengedett

$$y(t) = K x(t - t_d)$$

A frekvenciaválasz-függvény értéket a Fourier transzformációval kapjuk meg

$$Y(\omega) = \mathcal{F} \{y(t)\} = Ke^{-j\omega t_d} X(\omega) \equiv H(\omega)X(\omega)$$

Torzítás mentes átvitelt biztosító ullet amplitúdó karakterisztika $|H(\omega)|=K$ és

ullet fázis karakterisztika $heta_H(\omega) = -\omega t_d$

4.2(h) Ideális szűrőkarakterisztikák definiciója

A (frekvenciaszelektív) szűrőknek mindössze négy típusa van

Az ideális szűrőkarakterisztikák amplitúdóválasz-függvénye:

(a): ideális aluláteresztő szűrő, (b): ideális felüláteresztő szűrő, (c): ideális sáváteresztő szűrő (sávszűrő) és (d): ideális sávzáró szűrő (lyukszűrő)

4.2(i) Sávkorlátozott jelek

Egy x(t) jelet **sávkorlátozott** jelnek nevezünk, ha

$$|X(\omega)| = 0$$
, ha $|\omega - \omega_C| > B$

FIGYELEM!!!

ullet Az x(t) jel spektruma mindig **kétoldalas** (pozitív és negatív frekvenciás) komponensek, mert ez a feltétele annak, hogy az **időtartományban valós** jelet kapjunk Az időtartománybeli valós jelekre mindig igaz, hogy

$$X(-\omega) = X^*(\omega)$$

- A Fourier transzformáció csak állandósult állapotú rendszerekre alkalmazható
- Tranziens analízist a Laplace transzformációval kell elvégezni