Introduction to Deep Learning

Regularization

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna

arijit@iitp.ac.in

1 Deep Learning

Introduction

- In machine learning, target is to make an algorithm performs well not only on training data
- Many strategies exist to reduce test error at the cost of training error
- Any modification we make to a learning algorithm that is intended to reduce its generalization
 - Objectives
 - To encode prior knowledge
 - Constraints and penalties are designed to express generic preference for simpler model

Regularization in DL

- In DL regularization works by trading increased bias for reduced variance
- Consider the following scenario
 - Excluded the true data generating process
 - Underfitting, inducing bias
 - Matched the true data generating process
 - Desired one
 - Included the generating process but also many other generating process
 - Overfitting, variance dominates
 - Goal of regularizer is to take an model overfit zone to desired zone

Trade off Bias and Variance

- Most of the regularization approaches are based on limiting the capacity of the model
- Objective function becomes $\tilde{J}(\theta; X, y) = J(\theta; X, y) + \alpha\Omega(\theta)$
 - ullet α Hyperparameter denotes relative contribution
 - Minimization of \tilde{J} implies minimization of J
 - ullet Ω penalizes only the weight of affine transform
 - Bias remain unregularized
 - Regularizing bias may lead to underfitting

Example: Weight decay

- Objective function $\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + J(\mathbf{w}; \mathbf{X}, \mathbf{y})$
- Deep Learning

- Objective function $\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$

• Also known as ridge regression or Tikhonov regression

- Gradient $\nabla_{\mathbf{w}} \tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = \alpha \mathbf{w} + \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})$

- Objective function $\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$ • Gradient $\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$
- New weights
- $w = w \epsilon(\alpha w + \nabla_w J(w; X, y))$

- Objective function $\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$
- Gradient $\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$
- New weights

 - $\mathbf{w} = \mathbf{w} \epsilon(\alpha \mathbf{w} + \nabla_{\mathbf{w}} \mathbf{J}(\mathbf{w}; \mathbf{X}, \mathbf{y})) = \mathbf{w}(1 \epsilon \alpha) \epsilon \nabla_{\mathbf{w}} \mathbf{J}(\mathbf{w}; \mathbf{X}, \mathbf{y})$

L^2 parameter regularization

- Weights are closer to origin as $\Omega(\theta) = \frac{1}{2} \|\mathbf{w}\|_2^2$ • Also known as ridge regression or Tikhonov regression
- Objective function $\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$
- Gradient $\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$
- New weights

- $\mathbf{w} = \mathbf{w} \epsilon(\alpha \mathbf{w} + \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})) = \mathbf{w}(1 \epsilon \alpha) \epsilon \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})$
- Assuming quadratic nature of curve in the neighborhood of
 - $w^* = \arg\min J(w)$
- J(w) unregularized cost
 - Perfect scenario for linear regression with MSE

Jacobian & Hessian

- Derivative of a function having single input and single output $\frac{dy}{dx}$
- Derivative of function having vector input and vector output that is, $f: \mathbb{R}^m \to \mathbb{R}^n$
 - Jacobian $J \in \mathbb{R}^{n \times m}$ of f defined as $J_{i,j} = \frac{\partial}{\partial x_i} f(x)_i$
- Second derivative is also required sometime
 - For example, $f: \mathbb{R}^n \to \mathbb{R}$, $\frac{\partial^2}{\partial x_i \partial x_i} f$
 - If second derivative is 0, then there is no curvature
- Hessian matrix $H(f)(x)_{ij} = \frac{\partial^2}{\partial x_i \partial x_i} f(x)$

Jacobian & Hessian

- Derivative of a function having single input and single output $\frac{dy}{dx}$
- Derivative of function having vector input and vector output that is, $f: \mathbb{R}^m \to \mathbb{R}^n$
 - Jacobian $J \in \mathbb{R}^{n \times m}$ of f defined as $J_{i,j} = \frac{\partial}{\partial x_i} f(x)_i$
- Second derivative is also required sometime
 - For example, $f: \mathbb{R}^n \to \mathbb{R}$, $\frac{\partial^2}{\partial x_i \partial x_i} f$
 - If second derivative is 0, then there is no curvature
- Hessian matrix $H(f)(x)_{ij} = \frac{\partial^2}{\partial x_i \partial x_i} f(x)$
 - Jacobian of gradient
 - Symmetric

Directional derivative

• The directional derivative of a scalar function $f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$ along a vector $\mathbf{v} =$

$$(v_1,\ldots,v_n)$$
 is given by $abla_{\mathsf{v}}f(\mathsf{x})=\lim_{h o 0}rac{f(\mathsf{x}+h\mathsf{v})-f(\mathsf{x})}{h}$

 $\nabla_{\mathbf{v}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v}$

Taylor series expansion

• A real valued function differentiable at point
$$x_0$$
 can be expressed

• A real valued function differentiable at point
$$x_0$$
 can be expressed as
$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{2!}(x - x_0)^3 + \cdots$$

Taylor series expansion

• A real valued function differentiable at point x_0 can be expressed as

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{2!}(x - x_0)^3 + \cdots$$

When input is a vector

$$f(x) \approx f(x^{(0)}) + (x - x^{(0)})^T g + \frac{1}{2} (x - x^{(0)})^T H(x - x^{(0)})$$

• g — gradient at
$$x^{(0)}$$
, H — Hessian at $x^{(0)}$

Taylor series expansion

• A real valued function differentiable at point x_0 can be expressed as

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{2!}(x - x_0)^3 + \cdots$$

When input is a vector

$$f(x) \approx f(x^{(0)}) + (x - x^{(0)})^T g + \frac{1}{2} (x - x^{(0)})^T H(x - x^{(0)})$$

- ullet g gradient at $\mathbf{x}^{(0)}$, H Hessian at $\mathbf{x}^{(0)}$
- If ϵ is the learning rate, then $f(\mathbf{x}^{(0)} \epsilon \mathbf{g}) = f(\mathbf{x}^{(0)}) \epsilon \mathbf{g}^T \mathbf{g} + \frac{1}{2} \epsilon^2 \mathbf{g}^T \mathbf{H} \mathbf{g}$

- Let $w^* = \underset{w}{\operatorname{arg min}_{w}} J(w)$ be optimum weights for minimal unregularized cost
- If the objective function is quadratic then

$$\hat{J}(\boldsymbol{\theta}) = J(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$

- H is the Hessian matrix of J with respect to w at w*
- No first order term as w* is minimum
- H is positive semidefinite
- Minimum of \hat{J} occurs when $\nabla_{\mathbf{w}}\hat{J}(\mathbf{w}) = \mathsf{H}(\mathbf{w} \mathbf{w}^*) = 0$
- With weight decay we have

 $\alpha \tilde{\mathbf{w}} + \mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) = 0 \Rightarrow (\mathbf{H} + \alpha \mathbf{I})\tilde{\mathbf{w}} = \mathbf{H}\mathbf{w}^* \Rightarrow \tilde{\mathbf{w}} = (\mathbf{H} + \alpha \mathbf{I})^{-1}\mathbf{H}\mathbf{w}^*$

Quadratic approximation (contd)

- As $\alpha \to 0$, regularized solution $\tilde{\mathbf{w}}$ approaches to \mathbf{w}^*
- As $\alpha \neq 0$
 - H is symmetric, therefore $H = Q\Lambda Q^T$. Now we have

$$\tilde{\mathbf{w}} = (\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T + \alpha \mathbf{I})^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{w}^*$$

$$= [\mathbf{Q} (\mathbf{\Lambda} + \alpha \mathbf{I}) \mathbf{Q}^T]^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{w}^*$$

$$= \mathbf{Q} (\mathbf{\Lambda} + \alpha \mathbf{I})^{-1} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{w}^*$$

- Weight decay rescale w* along the eigen vector of H
 - Component of \mathbf{w}^* that is aligned to i-th eigen vector, will be rescaled by a factor of $\frac{\lambda_i}{\lambda_{i+1}}$
 - $\lambda_i \gg \alpha$ regularization effect is small

L^2 Norm: Geometrical interpretation

Linear regression

- For linear regression cost function is (Xw y)^T(Xw y)
- Using L^2 regularization we have $(Xw y)^T(Xw y) + \frac{1}{2}\alpha w^T w$
- Solution for normal equation $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- Solution for normal equation $w = (X'X)^{-1}X'y$
- Solution for with weight decay $\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \alpha \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

- Formally it is defined as $\Omega(oldsymbol{ heta}) = \| \mathbf{w} \|_1 = \sum |w_i|$
- Regularized objective function will be $\tilde{J}(w; X, y) = \alpha ||w||_1 + J(w; X, y)$
- The gradient will be $\nabla_{w} \tilde{J}(w; X, y) = \alpha \operatorname{sign}(w) + \nabla_{w} J(w; X, y)$
- Gradient does not scale linearly compared to L^2 regularization
- Taylor series expansion with approximation provides $\nabla_{w}\hat{J}(w) = H(w w^*)$ • Simplification can be made by assuming H to be diagonal
- Apply PCA on the input dataset

- Quadratic approximation of L^1 regularization objective function becomes $\hat{J}(w; X, y)$ $J((\mathbf{w}^*; \mathbf{X}, \mathbf{y}) + \sum_{i} \left[\frac{1}{2} H_{i,i} (\mathbf{w}_i - \mathbf{w}_i^*)^2 + \alpha |\mathbf{w}_i| \right]$
- So, analytical solution in each dimension will be $w_i = \text{sign}(w_i^*) \max \left\{ |w_i^*| \frac{\alpha}{H_{i,i}}, 0 \right\}$
- Consider the situation when $w_i^* > 0$
- If $w_i^* \leq \frac{\alpha}{H_{i,i}}$, optimal value for w_i will be 0 under regularization
- If $w_i^* > \frac{\alpha}{H_{i,i}}$, w_i moves towards 0 with a distance equal to $\frac{\alpha}{H_{i,i}}$

• Cost function regularized by norm penalty is given by $\tilde{J}(\boldsymbol{\theta}; X, v) = J(\boldsymbol{\theta}; X, v) + \alpha \Omega(\boldsymbol{\theta})$

$$J(\theta; X, y) = J(\theta; X, y) + \alpha \Omega(\theta)$$

Constrained optimization

• Let us assume f(x) needs to be optimized under a set of equality constraints $g^{(i)}(x) = 0$ and

$$h^{(j)}(x) \leq 0$$
, then generalized Lagrangian

$$h^{(j)}(x) \leq 0$$
, then generalized Lagrangian

$$h^{(j)}(x) \leq 0$$
, then generalized Lagrangian

inequality constraints $h^{(j)}(x) \leq 0$, then generalized Lagrangian is then defined as

inequality constraints
$$h^{(j)}(x) \leq 0$$
, then general

inequality constraints
$$h^{(j)}(x) \leq 0$$
, then generated the second seco

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) = f(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha})$$

 $L(x, \lambda, \alpha) = f(x) + \sum \lambda_i g^{(i)}(x) + \sum \alpha_j h^{(j)}(x)$

If there exists a solution then

 $\min_{\mathbf{x}} \max_{\mathbf{\lambda}} \max_{\alpha > 0} L(\mathbf{x}, \mathbf{\lambda}, \alpha) = \min_{\mathbf{x}} f(\mathbf{x})$

• This can be solved by $\nabla_{\mathbf{x},\boldsymbol{\lambda},\boldsymbol{\alpha}}L(\mathbf{x},\boldsymbol{\lambda},\boldsymbol{\alpha})=0$

Constraint optimization (contd.)

 $\theta^* = \arg\min_{\alpha} \max_{\alpha > 0} L(\theta, \alpha)$

$$L(\boldsymbol{\theta}, \alpha; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha(\Omega(\boldsymbol{\theta}) - k)$$

- If data are limited, fake data can be added to training set
 - Computer vision problem
 - Speech recognition
- Easiest for classification problem
- Very effective in object recognition problem
- Translating
 - Rotating
- Scaling
- - Need to be careful for 'b' and 'd' or '6' and '9'
- Injecting noise to input data can be viewed as data augmentation

Multitask learning

Early stopping approach • Initialize the parameters

- Run training algorithm for n steps and update i = i + n
- Compute error on the validation set (v')
- If v' is less than previous best, then update the same. Start step 2 again

- If v' is more than the previous best, then increment the count that stores the number of such

- occurrences. If the count is less than a threshold go to step 2, otherwise exit.

Early stopping (contd)

- Number of training step is a hyperparameter
- Most hyperparameters that control model capacity have U-shaped curve
- Additional cost for this approach is to store the parameters
- Requires a validation set
- It will have two passes
 - First pass uses only training data for update of the parameters

 - Second pass uses both training and validation data for update of the parameters
 - Possible strategies
 - Initialize the model again, retrain on all data, train for the same number of steps as obtained by early stopping in pass 1
 - Keep the parameters obtained from the first round, continue training using all data until the loss is less than the training loss at the early stopping point
- It reduces computational cost as it limits the number of iteration
- Provides regularization without any penalty

Early stopping as regularizer

- ullet Let us assume au training iteration, ullet learning rate
 - ullet ϵau measures effective capacity
- We have, $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$ and $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume $w^{(0)} = 0$

Early stopping as regularizer

- Let us assume τ training iteration, ϵ learning rate
 - $\epsilon \tau$ measures effective capacity
- We have, $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$ and $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

 $\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \epsilon \nabla_{\mathbf{w}} \hat{\mathbf{J}}(\mathbf{w}^{(\tau-1)})$

- Let us assume τ training iteration, ϵ learning rate
 - $\epsilon \tau$ measures effective capacity
- We have, $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$ and $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

- Let us assume τ training iteration, ϵ learning rate
 - $\epsilon \tau$ measures effective capacity
- We have, $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$ and $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \epsilon \nabla_{\mathbf{w}} \hat{\mathbf{J}}(\mathbf{w}^{(\tau-1)})$$
$$\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \epsilon \mathbf{H}(\mathbf{w}^{(\tau-1)} - \mathbf{w}^*)$$

Early stopping as regularizer

- Let us assume τ training iteration, ϵ learning rate
 - $\epsilon \tau$ measures effective capacity
- We have, $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$ and $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

```
\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \epsilon \nabla_{\mathbf{w}} \hat{\mathbf{J}}(\mathbf{w}^{(\tau-1)})
           w^{(\tau)} = w^{(\tau-1)} - \epsilon H(w^{(\tau-1)} - w^*)
w^{(\tau)} - w^* = (I - \epsilon H)(w^{(\tau-1)} - w^*)
```

Early stopping as regularizer

- Let us assume τ training iteration, ϵ learning rate
 - $\epsilon \tau$ measures effective capacity
- We have, $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$ and $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

```
\mathbf{w}^{(\tau)} = \mathbf{w}^{(\tau-1)} - \epsilon \nabla_{\mathbf{w}} \hat{J}(\mathbf{w}^{(\tau-1)})
             w^{(\tau)} = w^{(\tau-1)} - \epsilon H(w^{(\tau-1)} - w^*)
w^{(\tau)} - w^* = (I - \epsilon H)(w^{(\tau-1)} - w^*)
\mathbf{w}^{(\tau)} - \mathbf{w}^* = (\mathbf{I} - \epsilon \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T) (\mathbf{w}^{(\tau-1)} - \mathbf{w}^*)
```

- ullet Let us assume au training iteration, ϵ learning rate
 - ullet ϵau measures effective capacity
- We have, $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$ and $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume $w^{(0)} = 0$
- Approximate behavior of gradient descent provides

```
w^{(\tau)} = w^{(\tau-1)} - \epsilon \nabla_{w} \hat{J}(w^{(\tau-1)})
w^{(\tau)} = w^{(\tau-1)} - \epsilon H(w^{(\tau-1)} - w^{*})
w^{(\tau)} - w^{*} = (I - \epsilon H)(w^{(\tau-1)} - w^{*})
w^{(\tau)} - w^{*} = (I - \epsilon Q \Lambda Q^{T})(w^{(\tau-1)} - w^{*})
Q^{T}(w^{(\tau)} - w^{*}) = (I - \epsilon \Lambda)Q^{T}(w^{(\tau-1)} - w^{*})
```

- Let us assume au training iteration, ϵ learning rate
 - ullet ϵau measures effective capacity
- We have, $\hat{J}(\theta) = J(w^*) + \frac{1}{2}(w w^*)H(w w^*)$ and $\nabla_w \hat{J}(w) = H(w w^*)$
- Assume w⁽⁰⁾ = 0
 Approximate behavior of gradient descent provides

$$w^{(\tau)} = w^{(\tau-1)} - \epsilon \nabla_{w} \hat{J}(w^{(\tau-1)})$$

$$w^{(\tau)} = w^{(\tau-1)} - \epsilon H(w^{(\tau-1)} - w^{*})$$

$$w^{(\tau)} - w^{*} = (I - \epsilon H)(w^{(\tau-1)} - w^{*})$$

$$w^{(\tau)} - w^{*} = (I - \epsilon Q \Lambda Q^{T})(w^{(\tau-1)} - w^{*})$$

$$Q^{T}(w^{(\tau)} - w^{*}) = (I - \epsilon \Lambda)Q^{T}(w^{(\tau-1)} - w^{*})$$

$$Q^{T}w^{(\tau)} = [I - (I - \epsilon \Lambda)^{\tau}]Q^{T}w^{*}$$

Early stopping as regularizer (contd) • Assuming $w^{(0)} = 0$ and ϵ is small value such that $|1 - \epsilon \lambda_i| < 1$

• From L^2 regularization, we have

$$Q^{T}\tilde{w} = (\mathbf{\Lambda} + \alpha \mathbf{I})^{-1}\mathbf{\Lambda}Q^{T}\mathbf{w}^{*}$$

Early stopping as regularizer (contd) • Assuming $\mathbf{w}^{(0)} = 0$ and ϵ is small value such that $|1 - \epsilon \lambda_i| < 1$

• From L^2 regularization, we have

$$Q^{T}\tilde{w} = (\mathbf{\Lambda} + \alpha \mathbf{I})^{-1}\mathbf{\Lambda}Q^{T}\mathbf{w}^{*}$$

$$Q^{T}\tilde{w} = [\mathbf{I} - (\mathbf{\Lambda} + \alpha \mathbf{I})^{-1}\alpha]Q^{T}\mathbf{w}^{*}$$

Early stopping as regularizer (contd) • Assuming $\mathsf{w}^{(0)} = 0$ and ϵ is small value such that $|1 - \epsilon \lambda_i| < 1$

• From L^2 regularization, we have

$$Q^{T}\tilde{w} = (\Lambda + \alpha I)^{-1}\Lambda Q^{T}w^{*}$$

$$Q^{T}\tilde{w} = [I - (\Lambda + \alpha I)^{-1}\alpha]Q^{T}w^{*}$$

$$Q^{7}$$

• Therefore we have, $(\mathbf{I} - \epsilon \mathbf{\Lambda})^{\tau} = (\mathbf{\Lambda} + \alpha \mathbf{I})^{-1} \alpha$

• Hence, $\tau \approx \frac{1}{\epsilon \alpha}$, $\alpha \approx \frac{1}{\tau \epsilon}$

$$\mathsf{Q}^{\mathcal{T}}\tilde{\mathsf{w}}$$

- Also known as Bootstrap aggregating
- Reduces generalization error by combining several models
 - Train multiple models then vote on output for the test example
 - Also known as model averaging, ensemble method
 - Also known as model averaging, ensemble method • Suppose we have k regression model and each model makes an error ϵ_i such that $\mathbb{E}(\epsilon_i) = 0$,

$$\mathbb{E}(\epsilon_i^2) = \mathsf{v}, \ \mathbb{E}(\epsilon_i \epsilon_j) = \mathsf{c}$$

- Error made by average prediction $\frac{1}{k} \sum_{i} \epsilon_{i}$
- Expected mean square error

$$\mathbb{E}\left[\left(rac{1}{k}\sum_{i}\epsilon_{i}
ight)^{2}
ight]=rac{1}{k^{2}}\mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2}+\sum_{i
eq i}\epsilon_{i}\epsilon_{j}
ight)
ight]=rac{ extsf{v}}{k}+rac{k-1}{k}c$$

• Error made by average prediction $\frac{1}{\nu} \sum_{i} \epsilon_{i}$

 $\mathbb{E}(\epsilon_i^2) = \mathbf{v}, \ \mathbb{E}(\epsilon_i \epsilon_i) = \mathbf{c}$

Expected mean square error

• Reduces generalization error by combining several models

Also known as model averaging, ensemble method

• Train multiple models then vote on output for the test example

• Suppose we have k regression model and each model makes an error ϵ_i such that $\mathbb{E}(\epsilon_i) = 0$,

 $\mathbb{E}\left|\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right| = \frac{1}{k^{2}}\mathbb{E}\left|\sum_{i}\left(\epsilon_{i}^{2} + \sum_{i\neq i}\epsilon_{i}\epsilon_{j}\right)\right| = \frac{v}{k} + \frac{k-1}{k}c$

• If ϵ_i and ϵ_i are uncorrelated, ie. c=0, then expected mse will be $\frac{v}{k}$ - Significant reduction in

ullet If ϵ_i and ϵ_j are correlated, ie. c=v, then expected mse will be v - No change in error

error

- Bagging is impractical with large number of models
- Dropout is capable of handling exponentially many networks
- It trains the ensemble consiting of all subnetworks that can be formed by removing non-output
- - units for the base network
- Removal of a node can be realized by multiplying it with 0, hence, binary mask is used
- \bullet Typically, dropout probability for input layer is low (~ 0.2). Hidden layer can have high
- probability (~ 0.5)
- Dropout is not used after training when making a prediction with the fit network.
- If a unit is retained with probability p during training, the outgoing weights of that unit are multiplied by p at test time

Deep Learning

(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B		(A)	80 80 80 80 80
Ø 80 89	O <u>*</u> ®+®	®+®,	0
Ø	(h)	0	Ø

 (x_1)

Dropout

ullet μ_u denotes the binary mask for node u

Adversarial training

- It is expected that outcome of an example to be constant in the close vicinity of the training data
- Small change in input can lead to misclassification because linearity with high coefficient

