B.TECH/CE/CSE/ECE/EE/8TH SEM/BIOT 4222/2024

NON-CONVENTIONAL ENERGY (BIOT 4222)

Time Allotted: 2½ hrs Full Marks: 60

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any4 (four)</u> from Group B to E, taking <u>one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A							
1.	Answe	er any twelve:	12 × 1 = 12				
		Choose the correct alternative for the following					
	(i)	The main pre-treatment steps in production of bioethanol is (a) Partial hydrolysis (b) Liquefaction (c) Saccharification (d) All the above					
	(ii)	Example of indirect-gain passive solar system is (a) Heliostat (b) Trombe wall (c) Parabolic trough collectors (d) None of the above					
	(iii)	The principal organism for alcoholic fermentation is (a) Aspergillusniger (b) Pseudomonas putida (c) Saccharomyces cerevisiae (d) None of these					
	(iv)	Solar Impulse is a Swiss long-range experimental solar powered (a) Aircraft (b) Boat (c) Bus (d) Bicycle	project				
	(v)	Increase in in a biomass increases the spontaneo (a) Volatile matter (b) Fixed carbon (c) Moisture content (d) Ash content	us combustion				

(a) (b)	What do you mean by Moisture content in a Biomass? Design the process of measuring the Moisture content in a Biomass? [(CO2)(Design/IOCQ)] Illustrate the working principle of a wind mill. [(CO2)(Illustrate/HOCQ)] (2 + 4) + 6 = 12
	Group - B
(xv)	The full form of PEM is
(xiv)	Biodiesel is produced by reaction.
(xiii)	Chemical energy is converted to energy by a fuel cell
(xii)	In B20 fuel, 20 indicates percentage of
(xi)	A type of a horizontal turbine is
	Fill in the blanks with the correct word
(x)	For production of biodiesel, which of the following is a potential reactant (a) methanol (b) ethanol (c) both (a) and (b) (d) None of these
(ix)	Hydrogen can be produced from hydrocarbon by which method? (a) Thermal decomposition (b) Partial oxidation (c) Steam reforming (d) All of the mentioned
(viii)	Which of the following is not a potential biofuel (a) gasoline (b) hydrogen fuel (c) algae biodiesel (d) none of these
(vii)	Which of the following does not affect the reactions in a fuel cell? (a) Electrolyte composition (b) Electrode composition (c) A combination of fuel and oxidiser (d) Catalytic effect of the reaction container
(vi)	Which of the following supplies maximum amount of hydrogen gas? (a) Natural gas (b) Anaerobic Digestion (c) Wastewater treatment (d) Electrolysis

3. An offshore wind turbine with three 60 m blades rotates at 15 RPM. The wind (a) is moving at 13 m/s. What is the tip speed ratio of this turbine? How does this compare to the "optimal" tip speed ratio for this turbine? [(CO2)(Numerical/HOCQ)]

2.

(b) What are the benefits of renewable energies over conventional form of energies? [(CO1)(Remember/LOCQ)]

6 + 6 = 12

Group - C

- 4. (a) Illustrate the production of bio-ethanol by alcoholic fermentation mentioning the operating conditions clearly. [(CO4)(Analyse/HOCQ)]
 - (b) Why is the operating temperature of bioethanol production kept within the given limit? [(CO4)(Remember/LOCQ)]
 - (c) When is pretreatment required for bioethanol production and why?

[(CO4)(Apply/IOCQ)]

7 + 2 + 3 = 12

- 5. (a) Design a process flow sheet to produce biogas from vegetable and fruit peels. Justify your choices wherever required. [(CO4)(Analyse/HOCQ)]
 - (b) State the composition of a typical biogas.

[(CO4)(Remember/LOCQ)]

8 + 4 = 12

Group - D

- 6. (a) Define the following:
 - (i) Cetane number
 - (ii) Specific gravity of fuel
 - (iii) Flash point
 - (iv) Fire point.

[(CO4)(Remember/LOCQ)]

(b) State the advantages of biodiesel compared to conventional diesel.

[(CO5)(Analysis/IOCQ)]

 $(2 \times 4) + 4 = 12$

7. The analysis of the fuel undergoing combustion has the following composition

Carbon=83%

Hydrogen=12%

Sulphur=2%

Ash=3%

Find out the composition of the product gases of combustion on mass basis, if 20% excess air is used. [(CO5)(Compute/HOCQ)]

12

Group - E

- 8. (a) State the advantages of hydrogen as renewable fuel. [(CO6)(Analyse/HOCQ)]
 - (b) Describe the process of partial oxidation method for hydrogen production.

[(CO6)(Remember/LOCQ)]

6 + 6 = 12

9. (a) State the advantages of dark fermentation for biological hydrogen generation.

[(CO5)(Analyse/HOCQ)]

(b) Name and describe any one type of fuel cell based on type of electrolyte.

[(CO4) (Remember/LOCQ)]

6 + 6 = 12

Cognition Level	LOCQ	IOCQ	HOCQ
Percentage distribution	33.33	13.54	53.13

Course Outcome (CO):

After the completion of the course students will be able to

- 1) Distinguish the different types of biomass and explain its uses.
- 2) Explain the conversion of biomass to clean fuels and also conversion of petrochemical substitutes to useful products by physiochemical/fermentation processes.
- 3) Explain how ethanol and methane can be produced from biomass to produce bio-ethanol.
- 4) Describe how biopolymer and biosurfactants can be used for microbial recovery of petroleum.
- 5) Describe and understand how solar energy can be harnessed for useful purposes such as production of photovoltaic cells and for chemical storage purposes.
- 6) Analyze and understand how other renewable energy sources can be harnessed for other productive purposes.

^{*}LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.