5.29 (a) \mathcal{X} contains 0 and for $f, g \in \mathcal{X}$

$$\sum n|(f+\lambda g)(n)| \leq \sum n|f(n)| + n|\lambda g(n)| \leq \sum n|f(n)| + |\lambda| \sum |g(n)|$$

meaning that \mathcal{X} is a supspace of \mathcal{Y} . It is proper since the function $f(n) = n^{-1}$ is contained within \mathcal{X} but not \mathcal{Y} . To show that $\overline{\mathcal{X}} = \mathcal{Y}$ not that for any $f \in \mathcal{Y}$ we can pick N such that $\sum_{N=1}^{\infty} f(n) < \epsilon$. We can then define g_{ϵ} by

$$g_{\epsilon}(n) = \begin{cases} f(n) \text{ for } n \leq N \\ 0 \text{ for } n > N \end{cases}$$

which is contained in \mathcal{X} as it is a finite sum. Furthermore, $||f - g_{\epsilon}|| = \sum_{N=1}^{\infty} f(n) < \epsilon$ so \mathcal{X} is dense in \mathcal{Y} . Since $\mathcal{X} \neq \overline{\mathcal{X}}$, we know that \mathcal{X} is not complete.

(b) We want to show that T maps closed sets to closed sets. This is equivalent to ensuring that for every convergent sequence $f_n \to f$ such that $Tf_n \to g$ for some $g \in \mathcal{Y}$, we have $Tf_n \to Tf$. We can then pick integers N and M such that $\sum_{N+1}^{\infty} nf(n) < \epsilon$, $\sum_{N+1}^{\infty} g(n) < \epsilon$, $||Tf_m - g|| < \epsilon$ and $||f - f_m|| < \epsilon/N$. This gives us

$$\sum_{n=1}^{\infty} |Tf(n) - Tf_m(n)| \le \sum_{n=1}^{N} n|f(n) - f_m(n)| + \sum_{N=1}^{\infty} n|f(n)| + \sum_{N=1}^{\infty} |Tf_m(n) - g(n)| + \sum_{N=1}^{\infty} |g(n)| < N||f - f_m|| + \epsilon + ||Tf_m - g|| + \epsilon = 4\epsilon$$

and so $Tf_n \to Tf$ meaning T is closed.

T is not bounded since we can define

$$f_k(n) = \begin{cases} n^{-2} \text{ for } n \le k\\ 0 \text{ for } n > k \end{cases}$$

such that $f_k \in \mathcal{X}$ and $||f_k|| < \sum_{1}^{\infty} n^{-2} < \infty$ but $||Tf_k||$ can be made arbitrarily large by taking k large enough.

(c) We know that T is not bounded and so not continuous, hence $S = T^{-1}$ cannot be open. It is also obviously surjective since T is defined on \mathcal{X} . Boundedness follows from

$$||Sf|| = \sum_{1}^{\infty} |n^{-1}f(n)| \le \sum_{1}^{\infty} f(n) = ||f||.$$

5.37 Let $T^{\dagger}f = f \circ T$ and note that it is a linear map from \mathcal{Y}^* to \mathcal{X}^* . Then for any $f \in \mathcal{Y}^*$ for which ||f|| = 1 we have

$$|\widehat{x}(T^{\dagger}f)| = |f(Tx)| < ||f|| ||T(x)|| = ||Tx||$$

such that $\widehat{x} \circ T^{\dagger} \in L(\mathcal{Y}^*, K)$. We can subsequently form the set $\mathcal{A} = \{\widehat{x} \circ T^{\dagger} : ||x|| = 1\}$ and observe that

$$\sup_{A\in\mathcal{A}}\|Af\|=\sup_{\|x\|=1}\|\widehat{x}\circ T^\dagger f\|\leq \|Tx\|<\infty.$$

The uniform boundedness principle then tells us that $\sup_{\|x\|=1} \|\widehat{x} \circ T^{\dagger}\| < \infty$ for $\|f\|=1$.

By Hahn-Banach we can always find a function $f_0 \in \mathcal{Y}^*$ for which $||f_0|| = 1$ and $f_0(Tx) = ||Tx||$. This means that for ||x|| = 1,

$$||Tx|| = f_0(Tx) = \widehat{x} \circ T^{\dagger} f_0 \le \sup_{\|x\|=1} ||\widehat{x} \circ T^{\dagger}|| ||f_0|| < \infty$$

and so T is bounded.

5.38 Given $Tx = \lim T_n x$, we see that T is linear since

$$T(x\lambda y) = \lim T_n(x + \lambda y) = \lim T_n(x) + \lambda \lim T_n(y) = Tx + \lambda Ty.$$

To show boundedness note that $\sup_{n\in\mathbb{N}} ||T_nx|| < \infty$ for all $x \in \mathcal{X}$. The Uniform Boundedness Principle then tells us that $C = \sup_{n\in\mathbb{N}} ||T_n|| < \infty$. But then

$$||Tx|| = ||\lim T_n x|| = \lim ||T_n x|| \le \sup ||T_n x|| \le \sup ||T_n|| ||x|| = C||x||$$

and so T is bounded.

5.45 Define a family of seminorms $p_{n,k} = ||f^{(k)}||_{[-n,n]}||_u$ on $\mathcal{X} = C^{\infty}(\mathbb{R})$ and let \mathcal{T} be the topology which they generate. For every $f \neq 0$ we have that $f(x) \neq 0$ for some $x \in \mathbb{R}$ such that $p_{n,k}(f) \neq 0$ for any $n \geq |x|$. Proposition 5.16 then tells us that \mathcal{X} is Hausdorff.

To show completeness, take any Cauchy sequence $\langle f_n \rangle \subset \mathcal{X}$. Proposition 5.14b tells us that $f_n \to f$ uniformly on any set [-n,n], where $f(x) = \lim f_n(x)$. Thus f is continuous on any compact set and so $f \in C(\mathbb{R})$. We can make the same argument for any $\langle f_n^{(k)} \rangle$ such that $f_n^{(k)} \to h_k$ where $h_k \in C(\mathbb{R})$. As all of these sequences are Cauchy, they are each eventually dominated by $|h_k| + 1$ so we can apply the Dominated Convergence Theorem to get

$$h_k = \lim f_n^{(k)} = \lim \int_0^x f_n^{(k+1)} = \int_0^x \lim f_n^{(k+1)} = \int_0^x h_{k+1}$$

which tells us that $h'_k = h_{k+1}$ or equivalently $f^{(k)} = h_k$. Thus \mathcal{X} is complete and a Fréchet space.

If $f_n \to f$, then prop 5.14b tells us that $f_n^{(k)} \to f^{(k)}$ uniformly on any set [-n, n]. Any compact set K can be encompasses by such a set and so $\langle f_n^{(k)} \rangle$ converges uniformly on all compact sets.

Likewise, if $f_n^{(k)} \to f^{(k)}$ uniformly on all compact sets, this includes all sets [-n, n]. This means $\langle f_n \rangle$ converges with respect to each pseudonorm defining the toplogy on \mathcal{X} and so, by prop 5.14b, $f_n \to f$.

5.51 The norm topology if finer than the weak topology on \mathcal{X} , so any weakly open set is also open in the norm topology. But this means that weakly closed sets are also norm-closed. Conversely, we know that each $f \in \mathcal{X}^*$ is continuous in the weak topology. If we have a norm-closed subspace $\mathcal{M} \subset \mathcal{X}$ then for each $x \in \mathcal{X} \setminus \mathcal{M}$ we can find some $f_x \in \mathcal{X}^*$ for which $f_x(x) \neq 0$ and $f_x(\mathcal{M}) = 0$. By continuity we know that $\ker(f_x)$ is weakly-closed, so $\mathcal{M} = \bigcap_{x \in \mathcal{X} \setminus \mathcal{M}} \ker(f_x)$ is also weakly-closed.

5.53 (a) Given that $T_n \to T$ strongly, exercise 5.47 tells us that $M = \sup_n ||T_n|| < \infty$. Observing that

$$||T_n x_n - Tx|| \le ||T_n x_n - T_n x|| + ||T_n x - Tx|| \le ||T_n|| ||x_n - x|| + ||T_n x - Tx||,$$

for any $\epsilon > 0$ we can pick N such that $||x_n - x|| < \epsilon/M$ and $||T_n x - Tx|| < \epsilon$ for n > N. This gives us an upper bound

$$||T_n x_n - Tx|| \le ||T_n|| ||x_n - x|| + ||T_n x - Tx|| \le M \frac{\epsilon}{M} + \epsilon = 2\epsilon.$$

Since ϵ was arbitrary this tells us that $T_n x_n \to Tx$.

(b) We know that $S_n x \to Sx$ for $x \in \mathcal{X}$ since $\langle S_n \rangle$ converges strongly. But then the result from part (a) tells us that $T_n S_n x \to TSx$ since $\langle S_n x \rangle \subset \mathcal{X}$. Since this holds for all $x \in \mathcal{X}$ we have that $T_n S_n \to TS$ strongly.