目次

無機化学

目次			6.3 6.4 6.5	一酸化二窒素(笑気ガス)	12 12 13
			6.6	硝酸	13
第I部	非金属元素	3	7	リン	14
1	水素	3	7.1	リン	14
1.1	性質	3	7.2	十酸化四リン	14
1.2	同位体	3	7.3	リン酸	14
1.3	製法	3	8	炭素	15
1.4	反応	3	8.1	炭素	15
2	貴ガス	3	8.2	一酸化炭素	15
2.1	性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3	8.3	二酸化炭素	16
2.2	生成	3	0.0		10
2.3	ヘリウム	3	9	ケイ素	17
2.4	ネオン	3	9.1	ケイ素	17
2.5	アルゴン	3	9.2	二酸化ケイ素	17
3	ハロゲン	4	第Ⅱ部	3 典型金属	19
3.1	単体	4			
3.2	ハロゲン化水素	5	10	アルカリ金属	19
3.3	ハロゲン化銀	6	10.1	単体	19
3.4	次亜塩素酸塩	6	10.2	水酸化ナトリウム(苛性ソーダ)	19
3.5	塩素酸カリウム	6	10.3	炭酸ナトリウム・炭酸水素ナトリウム	20
4	酸素	7	11	2 族元素	22
4.1	酸素原子	7	11.1	単体	22
4.2	酸素	7	11.2	酸化カルシウム(生石灰)	22
4.3	オゾン	7	11.3	水酸化カルシウム(消石灰)	23
4.4	酸化物	8	11.4	炭酸カルシウム(石灰石)	23
4.5	水	8	11.5	塩化マグネシウム・塩化カルシウム	23
5	硫黄	9	11.6	硫酸カルシウム	24
5.1	硫黄	9	11.7	硫酸バリウム	24
5.1	硫化水素	9	12	12 族元素	24
5.3	二酸化硫黄(亜硫酸ガス)	10	12.1	単体	24
5.4	硫酸	11	12.2	酸化亜鉛(亜鉛華)・水酸化亜鉛	25
5.5	チオ硫酸ナトリウム (ハイポ)	11	12.3	塩化水銀(I)・塩化水銀(II)	25
5.6	重金属の硫化物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12			
			13	アルミニウム	26
6	窒素	12	13.1	アルミニウム	26
6 6.1 6.2	窒素 窒素	12 12 12	13.1 13.2		26 26

目次

14	スズ・鉛	28
14.1	単体	28
14.2	塩化スズ(II)	28
14.3	酸化鉛 (IV)	29
第Ⅲ部	II APPENDIX	30
1	気体の乾燥剤	30
2	水の硬度	30
3	錯イオンの命名法	30
Л	全届イオンの難突性化会物	31

第I部

非金属元素

1 水素

1.1 性質

- (1)無色(2)無臭の(3)気体
- 最も4軽い
- 水に溶け(5)にくい

1.2 同位体

¹H 99% 以上 ²H (**6D**)0.015% ³H (**7T**) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- 8赤熱したコークスに 9水蒸気を吹き付ける工業的製法

$$C + H_2O \longrightarrow H_2 + CO$$

- 10水(11水酸化ナトリウム水溶液)の電気分解 $2 H_2 O \longrightarrow 2 H_2 + O_2$
- 12 イオン化傾向が 13 H₂ より大きい 金属と希薄強酸

$$\bigcirc \mathbb{N}$$
 Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

• 水素化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

1.4 反応

• 水素と酸素 (爆鳴気の燃焼)

$$2 H_2 + O_2 \longrightarrow H_2O$$

加熱した酸化銅(Ⅱ)と水素
 CuO + H₂ → Cu + H₂O

2 貴ガス

(14)He, (15)Ne, (16)Ar, (17)Kr, Xe, Rn

2.1 性質

- 18無色19無臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が (20)極めて小さい
- 電気陰性度が[21] 定義されない

2.2 生成

⁴⁰K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式:Ar N_2 , O_2 に次いで 3 番目に空気中での存在量が 多い(約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	I_2
分子量	小			大
分子間力	弱			
反応性	強			弱
沸点・融点	低		_	======================================
常温での状態	22 気体	23 気体	24)液体	25)固体
色	26 淡黄色	(27) <mark>黄緑</mark> 色	28]赤褐色	29) 黒紫色
特徴	(30)特異臭	31]刺激臭	揮発性	(<u>32</u>)昇華性
H ₂ との反応	33 <mark>冷暗所</mark> でも	34 <mark>常温</mark> でも(35)光で	(36)加熱 して	高温で平衡状態
	爆発的に反応	爆発的に反応	(37) <u>触媒</u> により反応	38)加熱 して 39)触媒 により一部反応
水との反応	水を酸化して酸素と	(41)一部とけて反応	(42)一部とけて反応	43 反応しない
小とり/又// 山	(40) <u>激しく</u> 反応		(42) - BISCAN CIXIN	[44]Klaq には可溶
用途	保存が困難	<u>45 CIO </u> による	C=C ❖	47 ヨウ素デンプン 反応で
/7/2	Kr や Xe と反応	(46) <mark>殺菌・漂白</mark> 作用	C≡C の検出	48)青紫色

3.1.2 製法

 ● フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液 の電気分解 工業的製法

 $KHF_2 \longrightarrow KF + HF$

- $\boxed{49}$ 塩化ナトリウム水溶液 の電気分解 塩素 工業的製法 $2\,\mathrm{NaCl} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Cl}_2 + \mathrm{H}_2 + 2\,\mathrm{NaOH}$
- $\boxed{50$ 酸化マンガン (IV) に $\boxed{51}$ 濃塩酸 を加えて加熱 塩素 $\mathrm{MnO_2} + 4\mathrm{HCl} \xrightarrow{\Lambda} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\mathrm{H_2O}$
- 52高度さらし粉と53塩酸 塩素 $Ca(ClO)_2 \cdot 2H_2O + 4HCl \longrightarrow CaCl_2 + 2Cl_2\uparrow + 4H_2O$
- 54 さらし粉 と 55 塩酸 塩素 $\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl} \longrightarrow \operatorname{CaCl}_2 + \operatorname{Cl}_2\uparrow + 2\operatorname{H}_2\operatorname{O}$
- 臭化マグネシウムと塩素 Q素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$
- ヨウ化カリウムと塩素 ョウ素 $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- フッ素と水素 $H_2+F_2\stackrel{\mathring{\pi}_{\stackrel{}{=}}\sigma}{\longrightarrow} 2\,HF$
- 塩素と水素 $H_2+Cl_2 \xrightarrow{\mathcal{H}_{\mathcal{E}} ext{9} ext{To SC} ext{爆発的に反応}} 2\,HCl$
- 臭素と水素 $\mathrm{H}_2 + \mathrm{Br}_2 \xrightarrow{\mathrm{\ddot{a}} \mathbb{L}^{\sigma} \mathrm{\ddot{c}} \mathrm{\ddot{c}} \mathrm{\ddot{c}}} 2\,\mathrm{HBr}$
- ヨウ素と水素 $H_2 + I_2 \stackrel{\overline{\text{\tiny Ball}} \text{\tiny CP}(\underline{\text{\tiny HI}})}{\longleftarrow} 2\,\text{HI}$
- フッ素と水 $2F_2 + 2H_2O \longrightarrow 4HF + O_2$
- 塩素と水 Cl₂ + H₂O ⇒ HCl + HClO
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応 $I_2 + I^- \longrightarrow I_3^-$

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2}\uparrow + 2\,\mathrm{H_2O}$ $\mathrm{Cl_2},\mathrm{HCl},\mathrm{H_2O}$ \downarrow 56 水 に通す (HCl の除去) $\mathrm{Cl_2},\mathrm{H_2O}$ \downarrow 57 濃硫酸 に通す (H₂O の除去) $\mathrm{Cl_2}$

3.1.5 塩素のオキソ酸

オキソ酸・・・ 58 酸素を含む酸性物質

+ VII	59 HClO₄	60 過塩素酸	O H-O-Cl-O O
			O
+ V	61 HCIO ₃	62 塩素酸	H - O - Cl - O
+ III	63 HCIO ₂	64 亜塩素酸	H - O - Cl - O
+ I	65 HCIO	66)次亜塩素酸	H - O - Cl

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HCl HBr		
色・臭い		67無色 68 刺激	臭		
沸点	20°C	−85°C	−67°C	−35°C	
水との反応	(69)よく溶ける				
水溶液	[70]フッ化水素酸	71 塩酸	72 臭化水素酸	73 ヨウ化水素酸	
(強弱)	[74]弱酸	₹ ≪ 75 強酸 < 7	6)強酸 < [77]	強酸	
用途	78 <mark>ガラス</mark> と反応	79アンモニア の検出	半導体加工	インジウムスズ	
加处	⇒ ポリエチレン瓶	各種工業	一一一一一一	酸化物の加工	

3.2.2 製法

- 80 ホタル石 に 81 濃硫酸 を加えて加熱(82 弱酸遊離) フッ化水素 $CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2 HF \uparrow$
- 83水素と84塩素塩化水素工業的製法 H₂+Cl₂ → 2 HCl↑
- <u>85 塩化ナトリウム</u> に <u>86 濃硫酸</u> を加えて加熱 <u>塩化水素</u> (<u>87 弱</u>酸・ <u>88 揮発性</u> 酸の追い出し) NaCl + $H_2SO_4 \longrightarrow NaHSO_4 + HCl \uparrow$

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$

3.3 ハロゲン化銀 3 ハロゲン

 ● <u>89塩化水素</u>による <u>90アンモニア</u>の検出 HCl + NH₃ → NH₄Cl

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	$_{ m AgBr}$	AgI
固体の色	91)黄褐色	92 🚊 色	93)淡黄色	94)黄色
水との反応	95よく溶ける	96ほとんど溶けない		
光との反応	97 感光	感光性(→ 9 8 A g)		

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 $Ag_2O+2HF\longrightarrow 2\,AgF+H_2O$

• ハロゲン化水素イオンを含む水溶液と $\boxed{99$ 硝酸銀水溶液 $\mathbf{Ag^+} + \mathbf{X^-} \longrightarrow \mathbf{AgX} \downarrow$

3.4 次亜塩素酸塩

3.4.1 性質

[100]酸化剤として反応([101]殺菌・[102]漂白作用) $ClO^- + 2H^+ + 2e^- \longrightarrow Cl^- + H_2O$

3.4.2 製法

・ 水酸化ナトリウム水溶液と塩素2 NaOH + Cl₂ → NaCl + NaClO + H₂O

水酸化カルシウムと塩素 Ca(OH)₂ + Cl₂ → CaCl(ClO) · H₂O

3.5 塩素酸カリウム

化学式: [103]KCIO₃

3.5.1 性質

[104]酸素 の生成([105]二酸化マンガン を触媒に加熱) $2 \, \mathrm{KClO}_3 \, \frac{\mathrm{MnO}_2}{\Delta} \, 2 \, \mathrm{KCl} + 3 \, \mathrm{O}_2 \, \uparrow$

4 酸素

4.1 酸素原子

同106位体:酸素 (O_2) 、107オゾン (O_3)

地球の地殻に 108 最も多く存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式:O2

4.2.1 性質

- [121]無色[122]無臭の[123]気体
- 沸点 −183°C

4.2.2 製法

- [124]液体空気の分留 工業的製法
- $\boxed{125}$ 水 ($\boxed{126}$ 水酸化ナトリウム水溶液) の $\boxed{127}$ 電気分解 $2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{H}_2\uparrow + \mathrm{O}_2\uparrow$
- 128 過酸化水素水 (129 オキシドール) の分解 $2 \operatorname{H}_2\operatorname{O}_2 \xrightarrow{\operatorname{MnO}_2} \operatorname{O}_2 \uparrow + 2 \operatorname{H}_2\operatorname{O}$
- 130 塩素酸カリウム の熱分解 $2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KCl} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

[131]酸化剤としての反応

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$$

4.3 オゾン

化学式: [132]O₃

4.3.1 性質

- (133)ニンニク 臭((134)特異 臭)を持つ(135)淡青色の(136)気体(常温)
- 水に[137]少し溶ける
- [138]殺菌・[139]脱臭作用

オゾンにおける酸素原子の運動 -----

4.3.2 製法

酸素中で $\overline{146}$ 無声放電/強い $\overline{147}$ 紫外線</sub>を当てる $3\,{
m O}_2\longrightarrow 2\,{
m O}_3$

4.3.3 反応

- $\boxed{148$ 酸化</u>剤としての反応 $O_3 + 2 \, \mathrm{H}^+ + 2 \, \mathrm{e}^- \longrightarrow O_2 + \mathrm{H}_2\mathrm{O}$
- 湿らせた (149) ヨウ化カリウムでんぷん紙を (150) 青色に変色

$$O_3 + 2 KI + H_2O \longrightarrow I_2 + O_2 + 2 KOH$$

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	[151]陽性の大きい金属元素	[152]陽性の小さい金属元素	153]非金属元素
水との反応	[154]塩基性	[155]ほとんど溶けない	156酸性 (157オキソ酸)
中和	[158]酸と反応	[159]酸・塩基 と反応	<u>160 塩基</u> と反応

両性酸化物 · · · (161)アルミニウム (162)AI) ,(163)亜鉛 (164)Zn) ,(165)スズ (166)Sn) ,(167)鉛 (168)Pb)*1

- $\bigcirc M CO_2 + H_2O \longrightarrow H_2CO_3$
- $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$
- $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}_3$

4.4.1 反応

酸化銅(Ⅱ)と塩化水素

 $CuO + 2HCl \longrightarrow CuCl_2 + H_2O$

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$

4.5 水

4.5.1 性質

- 169 極性分子
- 周りの4つの分子と 170 水素結合
- 異常に 171 高い 沸点
- 172 隙間の多い結晶構造(密度:固体 173 <液体)
- 特異な 174 融解曲線

4.5.2 反応

• 酸化カルシウムと水

$$CaO + H_2O \longrightarrow Ca(OH)_2$$

• 二酸化窒素と水

$$3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$$

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	[175]斜方 硫黄	176 単斜 硫黄	〔177〕 <mark>ゴム状</mark> 硫黄
化学式	178 S ₈	179 <mark>S₈</mark>	[180]S _x
色	[181] <u>黄</u> 色	<u>182)黄</u> 色	〔183〕 <u>黄</u> 色
構造	(184) <mark>塊状</mark> 結晶	185 針状 結晶	[186] <mark>不定形</mark> 固体
融点	113°C	119°C	不定
構造	S S	S S S S	
CS ₂ との反応	[187] <mark>溶ける</mark>	[188] <mark>溶ける</mark>	[189]溶けない

CS₂··· 無色・芳香性・揮発性 ⇒ 190 無極性 触媒

5.1.2 反応

● 高温で多くの金属(Au, Pt を除く)と反応

例Fe Fe+S
$$\longrightarrow$$
 FeS

● 空気中で 191 青色の炎を上げて燃焼

$$S + O_2 \longrightarrow SO_2$$

5.2 硫化水素

化学式: [192]H₂S

5.2.1 性質

- [193]無色[194]腐卵臭
- 195 弱酸性

$$\begin{cases} \boxed{196} \text{H}_2\text{S} &\Longrightarrow \text{H}^+ + \text{HS}^- \\ \boxed{197} \text{HS}^- &\Longrightarrow \text{H}^+ + \text{S}^{2-} \end{cases} \qquad K_1 = 9.5 \times 10^{-8} \text{ mol/L}$$

$$K_2 = 1.3 \times 10^{-14} \text{ mol/L}$$

● 198 還元 剤としての反応

$$H_2S \longrightarrow S + 2H^+ + 2e^-$$

重金属イオン M²⁺ と 199 <u>難容性の塩</u>を生成

$$M_2^+ + S^{2-} \Longrightarrow MS \downarrow$$

5.2.2 製法

● 硫化鉄(Ⅱ)と希塩酸

$$FeS + 2 HCl \longrightarrow FeCl_2 + H_2S \uparrow$$

硫化鉄(Ⅱ)と希硫酸

$$\mathrm{FeS} + \mathrm{H_2SO_4} \longrightarrow \mathrm{FeSO_4} + \mathrm{H_2S} \!\uparrow$$

5.2.3 反応

• 硫化水素とヨウ素

$$H_2S+I_2 \longrightarrow S+2\,HI$$

酢酸鉛(Ⅱ)水溶液と硫化水素(200)H₂Sの検出)
 (CH₃COO)₂Pb + H₂S → 2 CH₃COOH + PbS↓

5.3 二酸化硫黄(亜硫酸ガス)

化学式: [201] SO₂ 電子式: : O: S:: O

5.3.1 性質

- [202]無色、[203]刺激臭の[204]気体
- 水に 205 溶けやすい
- [206]弱酸性

 $(207)SO_2 + H_2O \Longrightarrow H^+ + HSO_3^ K_1 = 1.4 \times 10^{-2} \text{ mol/L}$

● [208]還元剤([209]漂白作用)

 $SO_2 + 2 H_2 O \longrightarrow SO_4^{2-} + 4 H^+ + 2 e^-$

• 210酸化剤(211 H_2S などの強い還元剤に対して) $SO_2 + 4H^+ + 4e^- \longrightarrow S + 2H_2O$

5.3.2 製法

● 硫黄や硫化物の 212 燃焼 工業的製法

 $2 H_2 S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2 O$

• [213] <u>亜硫酸ナトリウム</u>と希硫酸

 $Na_2SO_3 + H_2SO_4 \xrightarrow{\Delta} Na_2SO_4 + SO_2 \uparrow + H_2O$

● [214]銅と[215]熱濃硫酸

 $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$

5.3.3 反応

• 二酸化硫黄の水への溶解

 $SO_2 + H_2O \longrightarrow H_2SO_3$

• 二酸化硫黄と硫化水素

 $SO_2 + 2H_2S \longrightarrow 3S + 2H_2O$

● 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

 $2\,\mathrm{KMnO_4} + 5\,\mathrm{SO_2} + 2\,\mathrm{H_2O} \longrightarrow 2\,\mathrm{MnSO_4} + 2\,\mathrm{H_2SO_4} + \mathrm{K_2SO_4}$

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 216無色(217無臭の(218)液体
- 水に 219 非常によく溶ける
- 溶解熱が (220) 非常に大きい
- [221]水に濃硫酸を加えて希釈
- <u>[222]不揮発</u>性で密度が <u>[223]大き</u>く、 <u>[224]粘度</u>が大き い <u>濃硫酸</u>
- [225] 吸湿性・[226] 脱水作用 濃硫酸
- [227]強酸性 希硫酸

 $\left(\begin{array}{ccc} (228) \text{H}_2 \text{SO}_4 & \Longrightarrow \text{H}^+ + \text{HSO}_4^- & K_1 > 10^8 \text{mol/L} \end{array}\right)$

- (229)弱酸性 濃硫酸 (230)水が少なく、(231)H₃O⁺の 濃度が小さい)
- [232]酸化剤として働く 熱濃硫酸

 $(233)H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_2 + 2H_2O$

● [234]アルカリ性土類金属 ([235]Ca, [236]Be)、[237]Pb
 と難容性の塩を生成 希硫酸

5.4.2 製法

[238]接触法 工業的製法

1. 黄鉄鉱 FeS₂ の燃焼

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \longrightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

$$(S + \operatorname{O}_2 \longrightarrow \operatorname{SO}_2)$$

- 2. 239酸化バナジウム 触媒で酸化 $2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$
- 3. **240** <u>濃硫酸</u> に吸収させて **241 発煙硫酸** とした後、 希硫酸を加えて希釈

 $SO_3 + H_2O \longrightarrow H_2SO_4$

5.4.3 反応

- 硝酸カリウムに濃硫酸を加えて加熱 ${
 m KNO_3 + H_2SO_4 \longrightarrow HNO_3 + KHSO_4}$
- 水酸化ナトリウムと希硫酸 ${\rm H_2SO_4 + 2\,NaOH \longrightarrow Na_2SO_4 + 2\,H_2O}$
- 銅と熱濃硫酸
 Cu + 2 H₂SO₄ → CuSO₄ + SO₂↑ + 2 H₂O
- 銀と熱濃硫酸

 $2 \operatorname{Ag} + 2 \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{Ag}_2 \operatorname{SO}_4 + \operatorname{SO}_2 + 2 \operatorname{H}_2 \operatorname{O}$

塩化バリウム水溶液と希硫酸
 BaCl₂ + H₂SO₄ →→ BaSO₄ ↓ + 2 HCl

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: [242]Na₂S₂O₃

[243] 硫酸 イオン [244] チオ硫酸 イオン

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。

例水道水の脱塩素剤(カルキ抜き)

$$(246)2 S_2 O_3^{2-} \longrightarrow S_4 O_6 + 2 e^-$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱 $n \operatorname{Na_2SO_3} + \operatorname{S}_n \longrightarrow n \operatorname{Na_2S_2O_3}$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

 $I_2 + 2 \operatorname{Na}_2 S_2 O_3 \longrightarrow 2 \operatorname{NaI} + \operatorname{Na}_2 S_4 O_6$

5.6 重金属の硫化物

酸性でも沈澱(全液性で沈澱)				中性	・塩基性で沈	ご澱(酸性でん	は溶解)		
Ag_2S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
247 黑色	248]黑色	249 黑色	250黒色	251 褐色	252]黒色	253]黒色	<u>[254]</u> 色	255) 白色	256)淡赤色

257 低

イオン化傾向

[258]高

[259]極小 塩の溶解度積 (K_{sp}) [260]小

6 窒素

6.1 窒素

化学式:N₂

6.1.1 性質

- <u>261</u>無色<u>262</u>無臭の<u>263</u>気体
- 空気の 78% を占める
- ・ 水に溶け(264)にくい((265)無極性分子)
- 常温で (266) **不活性** (食品などの (267) 酸化防止)
- 高エネルギー状態([268]高温・[269]放電)では反応

6.1.2 製法

- 270 液体窒素の分留 工業的製法
- [271] 亜硝酸アンモニウムの [272] 熱分解 $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

6.1.3 反応

• 窒素と酸素

$$\mathrm{N}_2 + 2\,\mathrm{O}_2 \longrightarrow 2\,\mathrm{NO}_2 \left\{ \begin{array}{c} \mathrm{N}_2 + \mathrm{O}_2 \longrightarrow 2\,\mathrm{NO} \\ \\ 2\,\mathrm{NO} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{NO}_2 \end{array} \right.$$

• 窒素とマグネシウム $3 \operatorname{Mg} + \operatorname{N}_2 \longrightarrow \operatorname{Mg}_3 \operatorname{N}_2$

6.2 アンモニア

化学式: [273]NH₃

6.2.1 性質

- [274]無色[275]刺激臭の[276]気体
- (277)水素結合
- 水に278 非常によく溶ける (279 上方 置換)
- [280] 塩基性

$$\left(\begin{array}{c} (281) \text{NH}_3 + \text{H}_2\text{O} \Longrightarrow \text{NH}_4^+ + \text{OH}^- \\ K_1 = 1.7 \times 10^{-5} \text{ mol/L} \end{array} \right)$$

- 282 塩素の検出
- 高温・高圧で二酸化炭素と反応して、 283 尿素を生成

6.2.2 製法

284 ハーバーボッシュ法 工業的製法 [285]低温[286]高圧で、[287]四酸化三鉄([288]Fe₃O₄) 触媒

 $N_2 + 3 H_2 \Longrightarrow 2 NH_3$

289<u>塩化アンモニウム</u>と 290<u>水酸化カルシウム</u>を混ぜ

 $2 \text{ NH}_4 \text{Cl} + \text{Ca}(\text{OH})_2 \longrightarrow 2 \text{ NH}_3 \uparrow + \text{Ca}(\text{Cl}_2 + 2 \text{ H}_2\text{O})$

6.2.3 反応

• 硫酸とアンモニア $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \longrightarrow (\text{NH}_4)_2 \text{SO}_4$

● 塩素の検出

 $NH_3 + HCl \longrightarrow NH_4Cl \downarrow$

• アンモニアと二酸化炭素 $2 \text{ NH}_3 + \text{CO}_2 \longrightarrow (\text{NH}_2)_2 \text{CO} + \text{H}_2 \text{O}$

6.3 一酸化二窒素(笑気ガス)

化学式: 291 N₂O

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- [292]麻酔効果

6.3.2 製法

293 硝酸アンモニウム の熱分解 $NH_4NO_3 \xrightarrow{\Lambda} N_2O + 2H_2O$

6.4 一酸化窒素

化学式: [294]NO

6.4.1 性質

- [295]無色[296]無臭の[297]気体
- 中性で水に溶けにくい
- 空気中では 298 酸素とすぐに反応

6.5 二酸化窒素 6 窒素

血管拡張作用・神経伝達物質

6.4.2 製法

299銅と 300希硝酸

 $3\,\mathrm{Cu} + 8\,\mathrm{HNO_3} \longrightarrow 3\,\mathrm{Cu(NO_3)_2} + 2\,\mathrm{NO} + 4\,\mathrm{H_2O}$

6.4.3 反応

酸素と反応

 $2 \, \mathrm{NO} + \mathrm{O}_2 \longrightarrow 2 \, \mathrm{NO}_2$

6.5 二酸化窒素

化学式: [301]NO₂

6.5.1 性質

- 302 赤褐色 303 刺激 臭の 304 気体
- ・ 水と反応して(305)強酸性((306)酸性雨の原因)
- 常温では(307)四酸化二窒素 (308)無色)と(309)平衡状態 $2NO_2 \longrightarrow N_2O_4$
- 140°C 以上で熱分解 $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{ O}_2$

6.5.2 製法

310銅と 311 濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

6.6 硝酸

化学式: 312 HNO₃

6.6.1 性質

- 313無色(314)刺激臭で(315)揮発性の(316)液体
- 水に(317)よく溶ける
- (318)強酸性

(319)HNO₃ \Longrightarrow H⁺ + NO₃⁻ $K_1 = 6.3 \times 10^1$ mol/ \bot)

- 320 <mark>褐色瓶</mark> に保存(321 光分解)
- 322酸化 剤としての反応 希硝酸 $HNO_3 + H^+ + e^- \longrightarrow NO_2 + H_2O$
- 323 酸化剤としての反応 濃硝酸 $\mathrm{HNO_3} + 3\,\mathrm{H^+} + 3\,\mathrm{e^-} \longrightarrow \mathrm{NO} + 2\,\mathrm{H_2O}$
- イオン化傾向が小さい Cu、Hg、Ag も溶解
- 324AI, 325Cr, 326Fe, 327Co, 328Niは
 329酸化皮膜が生じて不溶 濃硝酸
 330不動態
- <u>[331]王水</u> (<u>[332]濃塩酸</u>:1<u>[333]濃硝酸</u>=3:1) は、Pt,Au も溶解
- NO₃ は (334) 沈殿を作らない ⇒ (335) 褐輪反応で検出

6.6.2 製法

(336)オストワルト法

 $NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$

- 1. (337)白金 触媒で(338)アンモニアを(339)酸化 $4 NH_3 + 5 O_2 \longrightarrow 4 NO + 6 H_2O$
- 2. 340空気酸化 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$
- 3. 341水 と反応 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$
- 342 硝酸塩 に 343 濃硫酸 を加えて加熱 $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$

6.6.3 反応

- アンモニアと硝酸 $\mathrm{NH_3} + \mathrm{HNO_3} \longrightarrow \mathrm{NH_4NO_3}$
- 硝酸の光分解
 4 HNO₃ ^光 → 4 NO₂ + 2 H₂O + O₂
- 亜鉛と希硝酸 ${
 m Zn} + 2\,{
 m HNO_3} \longrightarrow {
 m Zn}({
 m NO_3})_2 + {
 m H_2} \!\uparrow$
- 銀と濃硝酸 Ag+2HNO₃ → AgNO₃ + H₂O + NO₂↑

7 リン

7.1 リン

7.1.1 性質

三種類の同 344 素体がある

	= (E/X > 1 1 (C.1) X (1 X > C						
名称	<u>345黄</u> リン	<u>346</u> 赤 リン	黒リン				
化学式	347)P ₄	348)P _x	P_4				
融点	44°C	590°C*2	610°C				
発火点	35°C	260°C					
光八点	349 <mark>水中</mark> に保存	350マッチの側薬	-				
密度	$1.8 \mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7 \mathrm{g/cm^3}$				
毒性	351]猛毒	352)微毒	353)微毒				
構造	PPP	P P P P P P P P P	略				
CS ₂ への溶解	(354)溶ける	(355)溶けない	356)溶けない				

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 <u>黄リン</u> <u>工業的製法</u>
 2 Ca₃(PO₄)₂ + 6 SiO₂ + 10 C → 6 CaSiO₃ + 10 CO + P₄
- ・ 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2 × 10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: [357]P₄O₁₀

7.2.1 性質

- 白色で昇華性のある固体
- [358]潮解性 (水との親和性が[359]非常に高い)
- 乾燥剤
- 水を加えて加熱すると反応(360)加水分解)

7.2.2 製法

361 リンの燃焼

 $P_4 + 5 O_2 \longrightarrow P_4 O_{10}$

7.2.3 反応

水を加えて加熱

 $P_4O_{10} + 6 H_2O \longrightarrow 4 H_3PO_4$

7.3 リン酸

化学式: 362 H₃PO₄

7.3.1 性質

[363]中酸性

7.3.2 反応

- リン酸と水酸化カルシウムの完全中和 $2\,H_3PO_4 + 3\,Ca(OH)_2 \longrightarrow Ca_3(PO_4)_2 + 6\,H_2O$
- リン酸カルシウムとリン酸が反応して重過リン酸石 灰が生成

 $Ca_3(PO_4)_2 + 4H_3PO_4 \longrightarrow 3Ca(H_2PO_4)_2$

• リン酸カルシウムと硫酸が反応して過リン酸石灰が 牛成

 ${\rm Ca_3(PO_4)_2} \ + \ 2\,{\rm H_2SO_4} \ \longrightarrow \ {\rm Ca(H_2PO_4)_2} \ + \ 2\,{\rm CaSO_4}$

8 炭素

8.1 炭素

8.1.1 性質

炭素の同(365)素体

- (366)ダイアモンド
- [367]黒鉛([368]グラファイト)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• (369)フラーレン

用途 医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

• グラフェン

用途 半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

• カーボンナノチューブ

用途 水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	370 ダイアモンド	<u>[371]黒鉛</u>
特徴	372 <u>無</u> 色 373 透明で屈折率が大きい固体	374 <u>黒</u> 色で(375)光沢がある固体
密度	$3.5 \mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	[376] <mark>正四面体</mark> 方向の[377] <mark>共有結合</mark> 結晶	(378)ズレた層状 構造((379)ファンデルワールス <u>カ</u>)
硬さ	380 非常に硬い	381 軟らかい
沸点	382高い	<u> 383)高い</u>
電気伝導性	<u> 384なし</u>	<u> </u>
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式: [386]CO

C,O 電子の持つ $\overline{(392)}$ 電荷 $\overline{(393)}$ 電気性度の差による効果

| | CO の極性は〔394〕<mark>小さい</mark>

8.2.1 性質

- [395]無色[396]無臭で[397]有毒な気体
- ・ 赤血球のヘモグロビンの 398 Fe²⁺ に対して強い 399 酸化結合
- 400 中性で水に溶け 401 にくい。(402 水上 置換)
- [403] 可燃性、高温で [404] 還元性 ([405] 鉄 との親和性が非常に高い)

8.3 二酸化炭素 8 炭素

8.2.2 製法

■ (406)赤熱したコークス に (407)水蒸気 を吹き付ける 工業的製法

$$C + H_2O \longrightarrow CO + H_2$$

・ 炭素の 408 不完全燃焼

$$2 C + O_2 \longrightarrow 2 CO$$

• [409] ギ酸に [410] 濃硫酸 を加えて加熱

$$\text{HCOOH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CO} \uparrow + \text{H}_2\text{O}$$

● 411 シュウ酸に 412 濃硫酸 を加えて加熱

$$(COOH)_2 \longrightarrow CO + CO_2 + H_2O$$

8.2.3 反応

燃焼

$$CO + O_2 \longrightarrow 2CO_2$$

• 鉄の精錬

$$\operatorname{Fe_2O_3} + 3\operatorname{CO} \longrightarrow 2\operatorname{Fe} + 3\operatorname{CO}_2 \left\{ \begin{array}{l} \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2\operatorname{FeO} + \operatorname{CO}_2 \\ \operatorname{FeO} + \operatorname{CO} \longrightarrow \operatorname{Fe} + \operatorname{CO}_2 \times 2 \end{array} \right.$$

8.3 二酸化炭素

8.3.1 性質

- 413無色 414 無臭で 415 昇華性 (固体は 416) ドライアイス)
- 大気の 0.04% を占める
- 水に 417 少し溶ける
- 418 弱酸性

8.3.2 製法

(420)炭酸カルシウムを強熱 工業的製法

$$CaCO_2 \longrightarrow CaO + CO_2$$

● [421]希塩酸と [422]石灰石

$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$$

423 炭酸水素ナトリウムの熱分解

$$2 \text{ NaHCO}_3 \longrightarrow \text{Na}_2 \text{CO}_3 + \text{CO}_2 + \text{H}_2 \text{O}$$

8.3.3 反応

• 二酸化炭素と水酸化ナトリウム

$$\mathrm{CO_2} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2CO_3} + \mathrm{H_2O}$$

• [424] 石灰水 に通じると [425] 白濁 しさらに通じると [426] 白濁が消える

$$Ca(OH)_2 + CO_2 \Longrightarrow CaCO_3 \downarrow + H_2O$$

$$CaCO_3 + CO_2 + H_2O \Longrightarrow Ca(HCO_3)_2$$

9 ケイ素

9.1 ケイ素

9.1.1 性質

- [427]灰色で[428]光沢がある[429]共有結合結晶
- 430 硬いがもろい
- (431)半導体に使用(高純度のケイ素)*3
 高温にしたり微小の他電子を添加すると電気伝導性が(432)上昇(金属は高温で電気伝導性が(433)降下)

9.1.2 製法

- (434)ケイ砂と(435)一酸化炭素を混ぜて強熱 工業的製法 SiO₂ + 2 C → Si + 2 CO
- $\boxed{436$ ケイ砂 と $\boxed{437}$ マグネシウム 粉末を混ぜて加熱 $\mathrm{SiO}_2 + 2\,\mathrm{Mg} \longrightarrow \mathrm{Si} + 2\,\mathrm{MgO}$

9.2 二酸化ケイ素

化学式: [438]SiO₂

9.2.1 性質

- (439)無色(440)透明の(441)共有結合結晶
- 442 硬い
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 443 酸性酸化物
- (444)シリカゲル (445)乾燥剤・吸着剤)の生成に用いられる多孔質、適度な数の(446)ヒドロキシ基

9.2.2 反応

- 447フッ化水素と反応
 SiO₂ + 4 HF → SiF₄↑ + 2 H₂O
- 448フッ化水素酸と反応
 SiO₂ + 6 HF → H₂SiF₆↑ + 2 H₂O
- $\boxed{449 \, \text{水酸化ナトリウム}}$ や $\boxed{450 \, \text{炭酸ナトリウム}}$ がガラスを侵す反応($\boxed{451 \, \text{水ガラス}}$ の生成) $\mathrm{SiO_2} + 2 \, \mathrm{NaOH} \longrightarrow \mathrm{Na_2SiO_3} + \mathrm{H_2O}$

 $SiO_2 + Na_2CO_3 \longrightarrow Na_2SiO_3 + CO_2$

- $\boxed{452$ 水ガラス と $\boxed{453}$ 塩酸 から $\boxed{454}$ ケイ酸 の白色ゲル状沈澱が生じる反応 $\mathrm{NaSiO_3} + 2\,\mathrm{HCl} \longrightarrow \mathrm{H_2SiO_3} \downarrow + 2\,\mathrm{NaCl}$
- $\boxed{455$ ケイ酸 を加熱してシリカゲルを得る反応 $\mathrm{H_2SiO_3} \xrightarrow{\triangle} \mathrm{SiO_2} \cdot n \, \mathrm{H_2O} + (1-n) \mathrm{H_2O} \; (0 < n < 1)$

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

9.2 二酸化ケイ素 9.2 二酸化ケイ素

シリカゲル生成過程での構造変化

1. 二酸化ケイ素(シリカ) SiO_2

2. ケイ酸ナトリウム Na₂SiO₃

3. ケイ酸 $SiO_2 \cdot n H_2O$ $(0 \le n \le 1)$

4. シリカゲル SiO₂·n H₂O $(n \ll 1)$

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で [456]柔らかい 金属
- 全体的に反応性が高く、 457 <mark>灯油</mark>中に保存
- 原子一個あたりの自由電子が (458)1個 ((459)弱い (460) 金属結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	K	Rb	Cs	
融点	181°C	98°C	64°C	39°C	28°C	
密度	0.53	0.97	0.86	1.53	1.87	
構造		(461)体心立方格子((462)軽金属)				
イオン化エネルギー	大					
反応力	小 —				二 大	
炎色反応	463	464)黄色	(465) 赤紫 色	466 深赤色	467 青紫色	
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池年代測定	光電管 電子時計 (一秒の基準)	

10.1.2 製法

水酸化物や塩化物の 468 溶融塩電解 (469 ダウンズ法) 工業的製法

[470]CaCl₂添加([471]凝固点降下)

 $2 \operatorname{NaCl} \longrightarrow 2 \operatorname{Na} + \operatorname{Cl}_2 \uparrow$

10.1.3 反応

• ナトリウムと酸素

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$

• ナトリウムと塩素

 $2\,\mathrm{Na} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{NaCl}$

ナトリウムと水

 $2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{NaOH} + \mathrm{H}_2\!\uparrow$

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 472 NaOH

10.2.1 性質

- 473 白色の固体
- [474]潮解性
- 水によくとける (水との親和性が [475] 非常に高い)
- 476 乾燥剤

• 強塩基性

$$\left(\begin{array}{c} \boxed{477} \text{NaOH} \Longrightarrow \text{Na}^+ + \text{OH}^- \\ \end{array}\right) K_1 = 1.0 \times 10^{-1} \text{mol/L}$$

・ 空気中の (478) <u>二酸化炭素</u> と反応して、純度が不明
 酸の標準溶液 ((479) <u>シュウ酸</u>) を用いた中和滴定で濃度決定
 ((COOH)₂ + 2 NaOH → (COONa)₂ + 2 H₂O)

10.2.2 製法

(480)水酸化ナトリウム水溶液 の (481)電気分解 (イオン交換膜法) 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{NaOH} + \operatorname{H}_2 \uparrow + \operatorname{Cl}_2 \uparrow$

10.2.3 反応

塩酸と水酸化ナトリウム HCl+NaOH → NaCl+H₂O

塩素と水酸化ナトリウム2 NaOH + Cl₂ → NaCl + NaClO + H₂O

• 二酸化硫黄と水酸化ナトリウム $SO_2 + 2 NaOH \longrightarrow Na_2SO_3 + H_2O$

• 酸化亜鉛と水酸化ナトリウム水溶液 ${
m ZnO} + 2\,{
m NaOH} + {
m H_2O} \longrightarrow {
m Na_2}[{
m Zn(OH)_4}]$

• 二酸化炭素と水酸化ナトリウム $2 \operatorname{NaOH} + \operatorname{CO}_2 \longrightarrow \operatorname{Na_2CO_3} + \operatorname{H_2O}$

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	(482)Na ₂ CO ₃	(483)NaHCO ₃
色	484 白	(485)白色
融点	850°C	[486]熱分解
液性	(487) <u>塩基</u> 性	488 弱塩基 性
用途	[489] <mark>ガラス</mark> や石鹸の原料	胃腸薬・ふくらし粉

10.3.2 製法

10.3.3 反応

• Na₂CO₃ $\boxed{514}_{\text{CO}_3}^{2^-} + \text{H}_2\text{O} \Longrightarrow \text{HCO}_3^- + \text{OH}^-}$ $K_1 = 1.8 \times 10^{-4}$ • NaHCO₃ $\begin{cases} \boxed{515}_{\text{HCO}_3}^{2^-} \Longrightarrow \text{H}^+ + \text{CO}_3^{2^-} & K_1 = 5.6 \times 10^{-11} \\ \boxed{516}_{\text{HCO}_3}^{-} + \text{H}_2\text{O} \Longrightarrow \text{CO}_2 + \text{OH}^- + \text{H}_2\text{O}} & K_2 = 2.3 \times 10^{-8} \end{cases}$

11 2 族元素

[517]Be, [518]Mg, [519]アルカリ土類金属

11.1 単体

11.1.1 性質

化学式	(520) <mark>Be</mark>	[521]Mg	[522]Ca	523 <mark>Sr</mark>	(524)Ba			
融点	1282°C	649°C	839°C	769°C	729°C			
密度 (g/cm ³)	1.85	1.85 1.74 1.55		2.54	3.59			
525 還元力		小	大					
水との反応	526 反応しない	[527] <mark>熱水</mark> と反応	528 冷水 と反応		530 <mark>冷水</mark> と反応			
M(OH) ₂ の水溶性	531)難溶性(532]弱塩基性)	[533] 可溶 性([534]強塩基性)					
難溶性の塩	535	MCO ₃	[536]MCO ₃ , MSO ₄					
炎色反応	537 示さない	538)示さない	539]橙赤	〔540 <mark>紅</mark>	541)黄緑			
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター			

11.1.2 製法

塩化物の 542 溶融塩電解 工業的製法

11.1.3 反応

• マグネシウムの燃焼

$$2 \,\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2 \,\mathrm{MgO}$$

• マグネシウムと二酸化炭素

$$2 \,\mathrm{Mg} + \mathrm{CO}_2 \longrightarrow 2 \,\mathrm{MgO} + \mathrm{C}$$

カルシウムと水

 $Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2 \uparrow$

11.2 酸化カルシウム(生石灰)

化学式: [543]CaO

11.2.1 性質

- [544] 白色
- <u>545</u>水との親和性が <u>546</u>非常に高い (<u>547</u>乾燥剤)
- 548 塩基性 酸化物
- 水との反応熱が [549] 非常に大きい ([550] 加熱剤)

11.2.2 製法

(551)炭酸カルシウムの(552)熱分解

 $CaCO_3 \longrightarrow CaO + CO_2$

11.2.3 反応

• コークスを混ぜて強熱すると、 [553] 炭化カルシウム (「554] カーバイド) が生成

$$CaO + 3C \longrightarrow CaC_2 + CO \uparrow$$

[555]水と反応して[556]アセチレンが生成

$$CaC_2 + 2H_2O \longrightarrow CaH_2 \uparrow + Ca(OH_2)_2$$

11.3 水酸化カルシウム(消石灰)

化学式: [557] Ca(OH)₂

11.3.1 性質

- [558] 台色
- 水に 559 少し溶ける 固体
- 560強塩基 (561Ca(OH)₂ \Longrightarrow Ca(OH)⁺ + OH⁻ $K_1 = 5.0 \times 10^{-2}$)
- 水溶液は 562 石灰水

11.3.2 製法

[563]酸化カルシウムと [564]水 [工業的製法]

 $CaO + H_2O \longrightarrow Ca(OH)_2$

11.3.3 反応

- 塩素と反応して、(565) さらし粉が生成 Ca(OH)₂ + Cl₂ → CaCl(ClO) · H₂O
- 580°C 以上で 566 熱分解

 $Ca(OH)_2 \longrightarrow CaO + H_2O$

- ・ 二酸化炭素との反応
 Ca(OH)₂ + CO₂
 → CaCO₃ + H₂O
- 塩化アンモニウムとの反応
 2 NH₄Cl + Ca(OH)₂ → CaCl₂ + 2 NH₃↑ + 2 H₂O

11.4 炭酸カルシウム(石灰石)

化学式: [567] CaCO₃

11.4.1 性質

- <u>568</u> <u>白</u>色で、水に <u>569</u> <u>溶けにくい</u>
- [570]**鍾乳洞**の形成

11.4.2 反応

● 800°C 以上で [571]熱分解

 $CaCO_3 \longrightarrow CaO + CO_2$

• $\overline{572}$ <u>二酸化炭素</u>を多く含む水に $\overline{573}$ <u>溶解</u> $CaCO_3 + CO_2 + H_2O \Longrightarrow Ca(HCO_3)_2$

11.5 塩化マグネシウム・塩化カルシウム

化学式: [574] MgCl₂ · [575] CaCl₂

11.5.1 性質

[576] <mark>潮解</mark>性があり、水に[577] <mark>よく溶ける</mark> (水との親和性が[578] <mark>非常に高い</mark>)

[579]乾燥剤 塩化カルシウム、 [580]融雪剤

11.6 硫酸カルシウム 12 12 族元素

11.5.2 製法

- 海水から得た [581] にがりを濃縮 塩化マグネシウム 工業的製法
- [582]アンモニアソーダ法 ([583]ソルベー法) 塩化カルシウム 工業的製法

11.6 硫酸カルシウム

化学式: [584] CaSO₄

11.6.1 性質

[585]セッコウを約 150°C で加熱すると、[586]焼きセッコウが生成

<u>[587]水</u>を加えると、<u>[588]発熱</u>・<u>[589]膨張</u>・<u>[590]硬化</u>して<u>[591]セッコウ</u>に戻る

 $CaSO_4 \cdot 2H_2O \rightleftharpoons CaSO_4 \cdot \frac{1}{2}H_2O + \frac{3}{2}H_2O$

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: [592]BaSO₄

11.7.1 性質

- <u>593</u> <u>白</u>色で、水に <u>594</u> <u>ほとんど溶けない</u> 固体
- 反応性が 595 低く、X 線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	(596) <mark>Zn</mark>	596 <mark>Zn</mark> 597Cd	
融点	420°C	420°C 321°C	
密度	7.1	8.6	13.6
$M^{2+}aq + H_2S$	599 <u>台</u> 色の 600 ZnS ↓	<u>601黄</u> 色の <u>602</u> CdS↓	<u>603黒</u> 色の <u>604 HgS</u> ↓
(沈澱条件)	(<u>605</u>)中塩基性)	(606)全液性)	(607)全液性)
特性	高温の水蒸気と反応	Cd ²⁺ は Ca ²⁺ と類似	[608] <u>合金</u> を作りやすい
刊工	<u>609</u> 両性元素	⇒ イタイイタイ病	(610)アマルガム)
用途	<u>611トタン</u> (鉄にメッキ)	ニカド電池 (Ni-Cd)	体温計・蛍光灯

- 12 族の硫化物は 612 顔料や 613 染料 に利用
- HgS は 450°C で消火させると 614 赤色に変化

12.1.2 製法

関亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 工業的製法 $2 \text{ ZnS} + 3 \text{ O}_2 \longrightarrow 2 \text{ ZnO} + 2 \text{ SO}_2$ $2 \text{ ZnO} + C \longrightarrow 2 \text{ Zn} + C \text{ O}$

12.1.3 反応

• 高温の水蒸気と反応 ${
m Zn} + {
m H_2O} \longrightarrow {
m ZnO} + {
m H_2} \uparrow$

• 塩酸と反応

 $Zn + 2 HCl \longrightarrow ZnCl_2 + H_2 \uparrow$

• 水酸化ナトリウム水溶液と反応

 $\mathrm{Zn} + 2\,\mathrm{NaOH} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Na}_2[\mathrm{Zn}(\mathrm{OH})_4] + \mathrm{H}_2 \,\uparrow$

12.2 酸化亜鉛(亜鉛華)・水酸化亜鉛

化学式: [615]ZnO·[616]Zn(OH)₂

12.2.1 性質

- <u>617</u>白色で、水に <u>618 とけにくい</u> 固体
- 酸化亜鉛は 619 顔料
- 620両性酸化物/水酸化物
 (621)酸・(強) (622)塩基と反応 Zn²⁺ は、(623)OH⁻とも(624)NH₃とも錯イオンを形成

12.2.2 製法

- 亜鉛を燃焼 工業的製法 酸化亜鉛
 - $2\operatorname{Zn} + \operatorname{O}_2 \longrightarrow 2\operatorname{ZnO}$
- 亜鉛イオンを含む水溶液に、少量の (625) OH⁻ を加える 水酸化亜鉛

$$\operatorname{Zn}^{2+} + 2\operatorname{OH}^{-} \longrightarrow \operatorname{Zn}(\operatorname{OH})_{2} \downarrow$$

12.2.3 反応

- 酸化亜鉛と塩酸
 - $ZnO + 2HCl \longrightarrow ZnCl_2 + H_2O$
- 酸化亜鉛と水酸化ナトリウム水溶液

 $ZnO + 2 NaOH + H_2O \longrightarrow Na_2[Zn(OH)_4]$

• 水酸化亜鉛と塩酸

 $Zn(OH)_2 + 2HCl \longrightarrow ZnCl_2 + 2H_2O$

- 水酸化亜鉛と水酸化ナトリウム水溶液
 - $Zn(OH)_2 + 2 NaOH \longrightarrow Na_2[Zn(OH)_4]$
- 水酸化亜鉛の過剰な (626) アンモニア との反応 Zn(OH)₂ + 4NH₃ → [Zn(NH₃)₄](OH)₂

12.3 塩化水銀(Ⅰ)•塩化水銀(Ⅱ)

化学式: 627 Hg₂Cl₂ · 628 HgCl

12.3.1 性質

- 白色で、水に溶けにくい固体で、微毒
- 白色で、水に少し溶ける固体で、猛毒

12.3.2 製法

水酸化銀(Ⅱ)と水銀の混合物を加熱

 $HgCl_2 + Hg \longrightarrow Hg_2Cl_2$

13 アルミニウム

13.1 アルミニウム

13.1.1 性質

- 密度が 629 小さく、 630 やわからかい 金属
- 展性・延性が [631] 大きく、電気・熱伝導率が [632] 高い

- 電気・熱伝導性が高い金属 ―

(633)Ag > (634)Cu > (635)Au > (636)Al

- 637両性元素(638)濃硝酸には639不動態となり反応しない)
 表面の緻密な640酸化被膜が内部を保護(641)AI,642 Cr,643 Fe,644 Co,645 Ni *4)
 電気分解(646)陽極)で人工的に厚い酸化被膜をつける製品加工(647 アルマイト)
- イオン化傾向が 648 大きく、 649 還元力が 650 高い
- 651 テルミット 反応(多量の(652)熱・(653)光が発生)

13.1.2 製法

- <u>[654]ボーキサイト</u>から得た <u>[655]酸化アルミニウム</u> (<u>[656]アルミナ</u>) の溶融塩電解 <u>工業的製法</u>
- バイヤー法
 - 1. $\overline{(657)}$ ボーキサイト を濃い $\overline{(658)}$ 水酸化ナトリウム</u>水溶液に溶解 $Al_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 Na[Al(OH)_4]$
 - 2. 溶解しない不純物を濾過して、濾液を水で希釈して Al(OH)3 の種結晶を入れる $Na[Al(OH)_4] \longrightarrow NaOH + Al(OH)_3 \downarrow$
 - 3. 成長した $Al(OH)_3$ を強熱 $2\,Al(OH)_3 \longrightarrow Al_2O_3 + 3\,H_2O$
- ホールエール法
 - 1. [659] <mark>氷晶石</mark> Na₃ AlF₆ を融解し、酸化アルミニウムを溶解
 - 2. [660]炭素 電極で電気分解 $\left\{ \begin{array}{ll} {\rm \pmb{B}}{\rm \pmb{w}} & {\rm C} + {\rm O}^{2-} \longrightarrow {\rm CO} + 2\,{\rm e}^-, {\rm C} + 2\,{\rm O}^{2-} \longrightarrow {\rm CO}_2 + 4\,{\rm e}^- \\ {\rm \pmb{E}}{\rm \pmb{w}} & {\rm Al_3}^+ + 3\,{\rm e}^- \longrightarrow {\rm Al} \end{array} \right.$

13.1.3 反応

1. アルミニウムの燃焼

$$4 \text{ Al} + 3 \text{ O}_2 \longrightarrow 2 \text{ Al}_2 \text{O}_3$$

- 2. アルミニウムと高温の水蒸気
 - $2 \text{ Al} + 3 \text{ H}_2 \text{O} \longrightarrow \text{Al}_2 \text{O}_3 + 3 \text{ H}_2 \uparrow$
- 3. テルミット反応

 $Fe_2O_3 + 2Al \longrightarrow Al_2O_3 + 2Fe$

13.2 酸化アルミニウム・水酸化アルミニウム

化学式: [661]Al₂CO₃・[662]Al(OH)₃ 酸化アルミニウムの別称: [663]アルミナ

^{*4} てつこに

13.2.1 性質

- [664] 白色で、水に [665] 溶けにくい
- [666]両性酸化物/水酸化物

[667]酸・(強) [668]塩基と反応

 Al^{3+} は669 OH^- と錯イオンを形成し、670 NH_3 とは形成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の 671 塩基 を加える 水酸化アルミニウム $Al_3^+ + 3 OH^- \longrightarrow Al(OH)_3 \downarrow$

13.2.3 反応

• 酸化アルミニウムと塩酸

 $Al_2O_3 + 6HCl \longrightarrow 2AlCl + 3H_2O$

• 酸化アルミニウムと水酸化ナトリウム水溶液

 $Al_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 Na[Al(OH)_4]$

• 水酸化アルミニウムと塩酸

 $Al(OH)_3 + 3HCl \longrightarrow AlCl_3 + 3H_2O$

• 水酸化アルミニウムと水酸化ナトリウム水溶液

 $Al(OH)_3 + NaOH \longrightarrow Na[Al(OH)_4]$

13.3 ミョウバン・焼きミョウバン

化学式: 672 AIK(SO₄)₂·12 H₂O · 673 AIK(SO₄)₂

13.3.1 性質

- 674 白色で、水に 675 溶ける 固体
- 676 酸性

(677)Al³⁺ + H₂O \implies Al(OH)₂ + H⁺ $K_1 = 1.1 \times 10^{-5} \text{ mol/L}$

● Al³⁺ は価数が 678 大きい 陽イオン

粘土 ([679]負の[680]疏水コロイド)で濁った水の浄水処理([681]凝析)

13.3.2 製法

硫酸化アルミニウムと硫酸カリウムの混合水溶液を濃縮

• 水への溶解

 $AlK(SO_4)_2 \longrightarrow Al_3^+ + K^+ + SO_4^{2-}$

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	(682) <mark>Sn</mark>	683 Pb				
特徴	灰白色で柔らかい金属	青白色で柔らかい金属				
融点	232°C	328°C				
密度	7.28	11.4				
特性	(684)両	<u>性</u> 元素				
用途	[685] <mark>ブリキ</mark> (鉄にメッキ)	[686] <mark>鉛蓄</mark> 電池の[687]負極				
用述	[688] <mark>放射線</mark> の遮蔽					

 $Cu + Sn \cdots$ 689青銅

 $\operatorname{Sn} + \operatorname{Pb} \cdots$ 690 はんだ

14.1.2 製法

ullet 錫石 SnO_2 にコークスを混ぜて加熱 工業的製法

$$SnO_2 + 2C \longrightarrow Sn + 2CO$$

• 方鉛鉱 PbS を焙焼してから、コークスを混ぜて加熱 工業的製法

$$\begin{array}{l} 2\operatorname{PbS} + 3\operatorname{O}_2 \longrightarrow 2\operatorname{PbO} + 2\operatorname{SO}_2 \\ \operatorname{PbO} + \operatorname{C} \longrightarrow \operatorname{Pb} + \operatorname{CO} \end{array}$$

14.1.3 反応

鉛と 691 希硝酸

 $3 \text{ Pb} + 8 \text{ HNO}_3 \longrightarrow 3 \text{ Pb}(\text{NO}_3)_2 + 4 \text{ H}_2\text{O} + 2 \text{ NO}$

● 鉛と 692 酢酸

 $2 \text{ Pb} + 4 \text{ CH}_3 \text{COOH} + \text{O}_2 \longrightarrow 2 (\text{CH}_3 \text{COO})_2 \text{Pb} + 2 \text{H}_2 \text{O}$

スズと 693 塩酸

 $\operatorname{Sn} + 2 \operatorname{HCl} \longrightarrow \operatorname{SnCl}_2 + \operatorname{H}_2 \uparrow$

• 鉛蓄電池における反応

【合金】

14.2 塩化スズ(Ⅱ)

14.2.1 性質

14.2.2 製法

スズと 694 塩酸

 $\operatorname{Sn} + 2\operatorname{HCl} \longrightarrow \operatorname{SnCl}_2 + \operatorname{H}_2 \uparrow$

14.2.3 反応

塩化鉄 (III) 水溶液と塩化スズ (II) 水溶液

$$2\operatorname{FeCl}_3 + \operatorname{SnCl}_2 \longrightarrow 2\operatorname{FeCl}_2 + \operatorname{SnCl}_4$$

[備考] 塩化スズ (IV) 水溶液と硫化水素

$$SnCl_4 + 2H_2S \longrightarrow SnS + S + 4HCl$$

14.3 酸化鉛 (IV) 14 スズ・鉛

14.3 酸化鉛(IV)

14.3.1 性質

[695] <mark>還元</mark>剤として働く

 $\boxed{696} \text{Sn}^{2+} \longrightarrow \text{Sn}^{4+} + 2\,\text{e}^{-}$

14.3.2 製法

酢酸鉛(Ⅱ)水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV) に濃塩酸を加えて加熱

 $\mathrm{PbO_2} + 4\,\mathrm{HCl} \longrightarrow \mathrm{PbCl_2} + 2\,\mathrm{H_2O} + \mathrm{Cl_2} \uparrow$

第Ⅲ部

APPENDIX

1 気体の乾燥剤

固体の乾燥剤は[697] U字管につめて、液体の乾燥剤は[698] 洗気瓶に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)		
酸性	(699)十酸化四リン	(699)十酸化四リン (700)P ₄ O ₁₀		塩基性の気体(〔701〕 <mark>NH3</mark>)		
段圧	702)濃硫酸	703 H ₂ SO ₄	酸性・中性	+[704] <mark>H₂S</mark> ([705]還元剤)		
中性	706 塩化カルシウム	707)CaCl ₂	ほとんど全て	708]NH₃		
十 庄	709シリカゲル	710SiO ₂ · n H ₂ O	はこんと主じ	特になし		
塩基性	711酸化カルシウム	712 CaO	中性・塩基性	酸性の気体		
塩茎注	(713)ソーダ石灰	714 CaO と NaOH	中住。塩基住	$715 Cl_2, 716 HCl, 717 H_2 S, 718 SO_2, 719 CO_2, 720 NO_2$		

2 水の硬度

水の中の重荷 $\mathrm{Ca^{2+}}$ と $\mathrm{Mg^{2+}}$ を $\mathrm{CaCO_3}$ として換算した時の濃度 $[\mathrm{mg/L}]$

 $egin{align*} & \raisetangle & \raisetangl$

3 錯イオンの命名法

(主に遷移) 金属イオンに対して、[722]非共有電子対を持つ[723]分子や[724]イオンが[725]配位結合

「配位子の数(数詞)配位子 金属 (価数) 酸 (陰イオンの場合) イオン」

金属イ	゚オン	Ag^+	Cu	ı ⁺	Cu ²⁺		Zn^{2+}		Fe ²⁺	Fe^{3}	+ Co ³⁺	Ni ²⁺	Cr^{3+}	Al^{3+}			
配位	滋数	7	726) <mark>2</mark>		<u>727</u> 4				728)6								
729 <u>直線</u> 系 730 <u>正方</u> 形 731 <u>正四面体</u> 形 732 <u>正八面体</u> 形																	
数	1		2	2	3 4		5		6	6		8					
数詞	733	モノ	734	リジ	(735) -	736)テトラ		737 ~>	ノタ	738 ^ + +	<u>†</u> 7:	39)ヘプタ	740 7	トクタ			
			741	ビス	742 トリ	<u>ス</u>											
配位子	2	NH_3			CN^-	H ₂ O		H ₂ O		H ₂ O (Cl-		H_2N-C	$\mathrm{CH_{2}CH_{2}}$	$-\mathrm{NH}_2$
名称	74	3アン	ミン	744	シアニド	<u> </u>		6)ヒドロコ	Fシド	747) ク [(747) <mark>クロリド</mark> (748)コ		チレンジ	アミン			

エチレンジアミン $\dots 1$ 分子あたり 2 か所で $\boxed{749}$ 配位結合

する (2座配位子) (750 キレート 錯体)

- $[Zn(OH)_4]^{2-}$
 - [751]テトラヒドロキシド亜鉛(Ⅱ)酸イオン
- $[Zn(NH_3)_4]^{2+}$
 - [752]テトラアンミン亜鉛(II) イオン
- $[Ag(S_2O_3)_2]^{3-}$
 - (753)ビス (チオスルファト) 銀(1) イオン
- $[Cu(H_2NCH_2CH_2NH_2)]^{2+}$
 - (754)ビス (エチレンジアミン) 銅 (Ⅱ) イオン

4 金属イオンの難容性化合物

	Cl ⁻	$\mathrm{SO_4}^{2-}$	$\mathrm{H_2S}$	$_{ m H_2S}$	OH-	OH^-	N
			酸性	中・塩基性	NH3	過剰	· · · · · · · · · · · · · · · · · · ·
K^{+}	(755)沈殿しない	(756)沈殿しない	(757)沈殿しない	(758)沈殿しない	(759)沈殿しない	(760)沈殿しない	(761)沈
			764)無色			767)無色	(768
Ba ²⁺	(769)沈殿しない	(770)BaSO ₄	771)沈殿しない	772)沈殿しない	773 沈殿しない	(774)沈殿しない	
		777)白色				781無色	(782
Sr^{2+}	(783)沈殿しない	784)SrSO ₄	(785)沈殿しない	(786)沈殿しない	(787)沈殿しない	788)沈殿しない	789沈
	(790)無色	791) 白 色	792)無色	793)無色	(794)無色	795)無色	796
Ca ²⁺	[797]沈殿しない	798)CaSO ₄	799 沈殿しない	800 沈殿しない	801)Ca(OH) ₂	802)Ca(OH) ₂	803
	804)無色	805 白 色	806)無色	807無色	808 白色	809 🛕 色	810
Na ⁺	811)沈殿しない	812 沈殿しない	813 沈殿しない	814)沈殿しない	815 沈殿しない	816)沈殿しない	817沈
	818無色	819無色	820無色	821無色	822)無色	823無色	(824
Mg^{2+}	825 沈殿しない	826)沈殿しない	827 沈殿しない	828 沈殿しない	829 Mg(OH) ₂	830 Mg(OH) ₂	831 沈
	832 <u>無</u> 色	833 <u>無</u> 色	834)無色	835 <u>無</u> 色	836) 白 色	837 白 色	(838
Al^{3+}	839 沈殿しない	840 沈殿しない	841)沈殿しない	842)AI(OH) ₃	843 AI(OH) ₃	[844][Al(OH) ₄] ⁻	(845) <mark>/</mark>
	<u>846)無</u> 色	847 <u>無</u> 色	848)無色	849 白	850 <u>台</u> 色	851 白 色	(852
Mn^{2+}	853)沈殿しない	854)沈殿しない	855)沈殿しない	856)MnS	857 Mn(OH) ₂	858 Mn(OH) ₂	(859)N
	<u>860無</u> 色	861)無色	862)無色	863 淡桃 色	864) 白 色	<u>865)</u> 色	(866
Zn^{2+}	867 沈殿しない	868)沈殿しない	869 沈殿しない	870)ZnS	871)Zn(OH) ₂	[872][Zn(OH) ₄] ²⁻	(873)[Zn
	874)無色	875)無色	876)無色	877 白 色	878 白 色	879無色	(880
Cr^{3+}	881)沈殿しない	[882]沈殿しない	883 沈殿しない	884)沈殿しない	885)Cr(OH) ₃	[886][Cr(OH) ₄] ⁻	(887) ⁽
	888無色	889無色	890無色	891無色	892 灰緑色	893 緑色	(894)
Fe ²⁺	895 沈殿しない	896 沈殿しない	897 沈殿しない	898 FeS	899 Fe(OH) ₂	900 Fe(OH) ₂	(901)F
	902 <u>無</u> 色	903無色	904 <u>無</u> 色	905 <u>黒</u> 色	906 緑白色	907 緑白 色	908
Fe ³⁺	909 沈殿しない	910 沈殿しない	911)Fe ²⁺	912 FeS	913 Fe(OH) ₃	914 Fe(OH) ₃	(915)F
_	<u>916無</u> 色	<u>917無</u> 色	918 淡緑色	919黒色	920 赤褐色	921 <mark>赤褐</mark> 色	922
Cd^{2+}	923 沈殿しない	924 沈殿しない	925 CdS	926 CdS	927 Cd(OH) ₂	928 Cd(OH) ₂	929][Cd
	<u>930無</u> 色	<u>931)無</u> 色	932黄色	933黄色	934) 白色	935 白 色	936
Co ²⁺	937 沈殿しない	938 沈殿しない	939 CoS	940 Co(OH) ₂	941)Co(OH) ₂	942)Co(OH) ₂	943
2.	<u>944</u> 無色	<u>945</u> 無色	946 <u>黒</u> 色	947 青色	948 青色	949青色	950
Ni ²⁺	951)沈殿しない	952)沈殿しない	953]NiS	(954)Ni(OH) ₂	955 Ni(OH) ₂	956)Ni(OH) ₂	(957)[Ni
0.1	<u>958</u> 無色	959無色	<u>960</u> <u>黒</u> 色	961 緑白 色	962 緑白色	963 緑白 色	964
Sn ²⁺	965)沈殿しない	966 沈殿しない	967 SnS	968)SnS	969 Sn(OH) ₂	970 [Sn(OH) ₄] ²⁻	971
2.1	972無色	973無色	974 褐色	975 褐色	976 白 色	977 白 色	978
Pb ²⁺	979)PbCI	980 PbSO ₄	981 PbS	982 PbS	983 Pb(OH) ₂	984)[Pb(OH) ₄] ²⁻	985)F
21	986 白 色	987 白 色	988黒色	989黒色	990 白色	991無色	992
Cu ²⁺	993 沈殿しない	994 沈殿しない	995)CuS	996)CuS	997 Cu(OH) ₂	998 Cu(OH) ₂	999 [Cu
01	1000無色	1001無色	1002 白 色	1003 白 色	1004青白色	1005 青白 色	1006
Hg^{2+}	1007 沈殿しない	1008 沈殿しない	1009 HgS	1010 HgS	[1011]HgO	1012 HgO	[101]
01	1014)無色	1015)無色	[1016]黒色	1017黒色	[1018]黄色	[1019]黄色	102
Hg_2^{2+}	1021)Hg ₂ Cl ₂	1022 沈殿しない	1023 HgS	1024 HgS	1025 HgO	[1026]HgO	[102]
	1028 白 色	1029 <u>無</u> 色	1030黒色	1031黒色	1032黄色	1033黄色	103

4 金属イオンの難容性化合物

_	Cl^-	$\mathrm{SO_4}^{2-}$	$\mathrm{H_2S}$	$\mathrm{H_2S}$	OH-	OH^-	N
			酸性	中・塩基性	NH3	過剰	遊
Ag ⁺	1035 AgCI	1036 沈殿しない	1037)Ag ₂ S	1038)Ag ₂ S	[1039]Ag ₂ O	[1040]Ag ₂ O	(1041)[A
	(1042)白 色	[1043]無色	[1044]黒色	[1045]黒色	[1046]褐色	[1047]褐色	[1048