Lista 9

Zadanie 1. Niech A, B będą komutującymi macierzami kwadratowymi, tj. AB = BA. Niech λ będzie wartością własną A, zaś \mathbb{V}_{λ} będzie przestrzenią wektorów własnych A dla wartości λ . Pokaż, że \mathbb{V}_{λ} jest przestrzenią niezmienniczą dla B, tj. dla $v \in \mathbb{V}_{\lambda}$ zachodzi $Bv \in \mathbb{V}_{\lambda}$.

Zadanie 2. Udowodnij, że jeśli $\lambda_1, \lambda_2, \dots, \lambda_k$ są różnymi wartościami własnymi macierzy M, to suma (mnogościowa) baz przestrzeni $\mathbb{V}_{\lambda_1}, \dots, \mathbb{V}_{\lambda_k}$ jest zbiorem liniowo niezależnym.

Wskazówka: Najprościej przez indukcję dodając pojedyncze wektory. Zauważ

Zadanie 3. Znajdź wartości własne, ich krotności algebraiczne i geometryczne dla poniższych macierzy:

$$\begin{bmatrix} 7 & -12 & 6 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{bmatrix}, \begin{bmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{bmatrix}.$$

Dla jednej z wartości oblicz odpowiadające wektory własne.

Zadanie 4. Niech $A: \mathbb{V} \to \mathbb{V}$ będzie przekształceniem liniowym. Pokaż, że ker A oraz Im A są przestrzeniami niezmienniczymi A.

Zadanie 5 (* nie liczy się do podstawy). Dla wielomianu $\varphi(x) = \sum_{i=0}^k a_i x^i$ możemy zdefiniować naturalnie wartość tego wielomianu na macierzy kwadratowej, jako $\varphi(M) = \sum_{i=0}^k a_i M^i$, gdzie $M^0 = \mathrm{Id}$.

Niech $M = AJA^{-1}$, gdzie J jest macierzą Jordana (tzn. na przekątnej ma klatki Jordana), zaś φ_M jej wielomianem charakterystycznym. Pokaż, że $\varphi_M(M)$ jest macierzą zerową.

(W pełnej ogólności to zadanie powinno mówić, że A, J są macierzami nad \mathbb{C} , ale w zasadzie nic nie zmienia to w dowodzie: wystarczy, że pokażesz to dla \mathbb{R} .)

Możesz pokazać to wg. następującego schematu.

- ullet Pokaż tezę dla M będącej klatką Jordana.
- Pokaż, że jeśli p(x) = q(x)r(x) to p(M) = q(M)r(M).
- Pokaż, że dla macierzy Jordana J i wielomianu p(x) mamy

$$p\left(\begin{bmatrix} J_1 & & & & \\ & J_2 & & & \\ & & \ddots & & \\ & & & J_k \end{bmatrix}\right) = \begin{bmatrix} p(J_1) & & & & \\ & p(J_2) & & & \\ & & \ddots & & \\ & & & p(J_k) \end{bmatrix}$$

- Pokaż, że dla macierzy Jordana J mamy $\varphi_J(J) = 0$.
- Pokaż, że dla macierzy A, M oraz wielomiany p(x) mamy $p(A^{-1}MA) = A^{-1}p(M)A$.

Zadanie 6. Pokaż, że:

- suma macierzy symetrycznych jest macierzą symetryczną;
- iloczyn macierzy symetrycznych A, B jest macierzą symetryczną wtedy i tylko wtedy, gdy AB = BA;
- jeśli macierz symetryczna jest odwracalna, to jej macierz odwrotna jest symetryczna.

Zadanie 7. Dla wektora \vec{V} niech $\sum \vec{V}$ oznacza sumę jego współrzędnych.

Niech A będzie macierzą stochastyczną. Pokaż, że dla każdego \vec{V} zachodzi

$$\sum (A\vec{V}) = \sum \vec{V} . \tag{*}$$

Pokaż też twierdzenie odwrotne: macierz A, która ma wszystkie elementy nieujemne i która dla każdego \vec{V} spełnia (*), jest macierzą stochastyczną.

Zadanie 8. Udowodnij, że iloczyn dwóch macierzy kolumnowo stochastycznych (dodatnich), jest macierzą kolumnowo stochastyczną (dodatnią).

Niech M_1, \ldots, M_k będą macierzami kolumnowo stochastycznymi (dodatnimi) oraz $\alpha_1, \ldots, \alpha_k$ są liczbami nieujemnymi, spełniającymi $\sum_i \alpha_i = 1$. Pokaż, że

$$\sum_{i=1}^{k} \alpha_i M_i$$

też jest macierzą kolumnowo stochastyczną (dodatnią).

Zadanie 9. Dla wektora $\vec{V} = [v_1, \dots, v_n]^T \in \mathbb{R}^n$ niech $\|\vec{V}\|_1 = \sum_{i=1}^n |v_i|$. Niech A będzie macierzą stochastyczną. Pokaż, że dla wektora $\vec{V} \in \mathbb{R}^n$

$$||A\vec{V}||_1 \le ||\vec{V}||_1$$
.

Wywnioskuj z tego, że A nie ma wartości własnej o wartości bezwzględnej większej niż 1.

Zadanie 10. Rozważmy graf o wierzchołkach $\{1,2,3,4\}$ i krawędziach skierowanych $1 \to 2$, $1 \to 3$, $1 \to 4$, $2 \to 3$, $2 \to 4$, $3 \to 1$, $4 \to 1$, $4 \to 3$. Jak wygląda znormalizowana macierz sąsiedztwa tego grafu? Oblicz ranking dla tej macierzy, tzn. wektor własny dla wartości własnej o sumie współrzędnych 1.

Oblicz PageRank tego grafu dla m = 0.25.

Zadanie 11. To zadanie pokazuje, że iteracyjna metoda obliczania PageRanku zbiega wykładniczo szybko. Niech A będzie macierz stochastyczną (niekoniecznie dodatnią!) rozmiaru $n \times n$ a P macierzą stochastyczną $n \times n$ postaci

$$P = \begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{bmatrix}.$$

Dla liczby rzeczywistej $0 \leq m \leq 1$ niech M_m oznacza macierz

$$M_m = (1 - m)A + mP .$$

Pokaż, że dla wektora $\vec{V} \in \mathbb{V}_{=0}$ zachodzi

$$||M_m \vec{V}||_1 \le (1-m)||\vec{V}||_1$$
.

Możesz skorzystać (bez dowodu, choć jest on prosty) z faktu, że dla dowolnych wektorów \vec{W}, \vec{U} zachodzi

$$\|\vec{U} + \vec{W}\|_1 \le \|\vec{U}\|_1 + \|\vec{W}\|_1 \ .$$

Wskazówka: Pokaż najpierw dla m=0 oraz m=1, dla m=0 skorzystaj z Zadania 9.