STA221

Neil Montgomery

Last edited: 2017-04-05 15:04

A very simple method is to just fit all possible models and see which one is the best (with small p-values and a nice R^2_{adj} (or any number of other single-number-summaries you might like). But there may be too many models to consider.

A very simple method is to just fit all possible models and see which one is the best (with small p-values and a nice R^2_{adj} (or any number of other single-number-summaries you might like). But there may be too many models to consider.

A straightforward, feasible (but nevertheless flawed) model selection strategy involves one or more of:

1. "forward" start with no model terms, and add them one at a time as long as some conditions are met.

A very simple method is to just fit all possible models and see which one is the best (with small p-values and a nice R_{adj}^2 (or any number of other single-number-summaries you might like). But there may be too many models to consider.

A straightforward, feasible (but nevertheless flawed) model selection strategy involves one or more of:

- 1. "forward" start with no model terms, and add them one at a time as long as some conditions are met.
- 2. "backward" start with "all" model terms, and remove them one at a time. . .

A very simple method is to just fit all possible models and see which one is the best (with small p-values and a nice R_{adj}^2 (or any number of other single-number-summaries you might like). But there may be too many models to consider.

A straightforward, feasible (but nevertheless flawed) model selection strategy involves one or more of:

- 1. "forward" start with no model terms, and add them one at a time as long as some conditions are met.
- 2. "backward" start with "all" model terms, and remove them one at a time...
- 3. in either strategy, consider adding or removing terms when appropriate.

A very simple method is to just fit all possible models and see which one is the best (with small p-values and a nice R_{adj}^2 (or any number of other single-number-summaries you might like). But there may be too many models to consider.

A straightforward, feasible (but nevertheless flawed) model selection strategy involves one or more of:

- 1. "forward" start with no model terms, and add them one at a time as long as some conditions are met.
- 2. "backward" start with "all" model terms, and remove them one at a time...
- 3. in either strategy, consider adding or removing terms when appropriate.

A very simple method is to just fit all possible models and see which one is the best (with small p-values and a nice R_{adj}^2 (or any number of other single-number-summaries you might like). But there may be too many models to consider.

A straightforward, feasible (but nevertheless flawed) model selection strategy involves one or more of:

- 1. "forward" start with no model terms, and add them one at a time as long as some conditions are met.
- 2. "backward" start with "all" model terms, and remove them one at a time. . .
- 3. in either strategy, consider adding or removing terms when appropriate.

These are accessible strategies for novices, but they are known to have issues, *especially* when input variables are highly "correlated".

A very simple method is to just fit all possible models and see which one is the best (with small p-values and a nice R_{adj}^2 (or any number of other single-number-summaries you might like). But there may be too many models to consider.

A straightforward, feasible (but nevertheless flawed) model selection strategy involves one or more of:

- 1. "forward" start with no model terms, and add them one at a time as long as some conditions are met.
- 2. "backward" start with "all" model terms, and remove them one at a time. . .
- 3. in either strategy, consider adding or removing terms when appropriate.

These are accessible strategies for novices, but they are known to have issues, *especially* when input variables are highly "correlated".

There are (significantly) more sophisticated strategies also, which are worth it if you are serious about model selection.

backwards selection

Consider interactions or powers of terms when there is a rational basis for doing so.

Then, start with all input variables and remove the one with the highest p-value.

Repeat until all the p-values are small.

backwards selection

Consider interactions or powers of terms when there is a rational basis for doing so.

Then, start with all input variables and remove the one with the highest p-value.

Repeat until all the p-values are small.

Known problems specific to this procedure:

sample size may not sensibly suppose "all" input variables

backwards selection

Consider interactions or powers of terms when there is a rational basis for doing so.

Then, start with all input variables and remove the one with the highest p-value.

Repeat until all the p-values are small.

Known problems specific to this procedure:

- sample size may not sensibly suppose "all" input variables
- p-values for variables involved in correlations may be artifically high.

backwards with bodyfat - full model F test

##

```
## Residual standard error: 4.255 on 236 degrees of freedom
## Multiple R-squared: 0.7505, Adjusted R-squared: 0.7368
## F-statistic: 54.61 on 13 and 236 DF, p-value: < 2.2e-16</pre>
```

backwards with bodyfat - full model all p-values

```
##
## Coefficients: (1 not defined because of singularities)
##
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.68516 23.37412 0.072 0.942587
## Age 0.07189 0.03217 2.234 0.026389
## Weight -0.01762 0.06714 -0.263 0.793153
## Height -0.24675 0.19114 -1.291 0.197989
## Neck -0.38682 0.23486 -1.647 0.100887
## Chest -0.11919 0.10825 -1.101 0.272004
## Abdomen 0.90452
                      0.09140 9.897 < 2e-16
## waist
                 NA
                           NΑ
                                  NΑ
                                         NΑ
## Hip -0.15878
                      0.14586 - 1.089 0.277446
## Thigh 0.17299
                      0.14683 1.178 0.239926
## Knee
            -0.04580
                      0.24560 -0.186 0.852230
            0.18502
                      0.21985 0.842 0.400862
## Ankle
## Bicep
        0.17968
                      0.17039 1.054 0.292732
```

0 0000

what's up with waist and Abdomen?

```
## # A tibble: 250 \times 3
##
       waist Abdomen ratio
##
       <dbl>
               <dbl> <dbl>
  1 33.54331 85.2 2.54
##
## 2 32.67717 83.0 2.54
             87.9 2.54
## 3 34.60630
             86.4 2.54
## 4 34.01575
## 5 39.37008
             100.0 2.54
## # ... with 245 more rows
```

backwards with bodyfat - full model all p-values

term	estimate	std.error	statistic	p.value
(Intercept)	1.685	23.374	0.072	0.943
Age	0.072	0.032	2.234	0.026
Weight	-0.018	0.067	-0.263	0.793
Height	-0.247	0.191	-1.291	0.198
Neck	-0.387	0.235	-1.647	0.101
Chest	-0.119	0.108	-1.101	0.272
Abdomen	0.905	0.091	9.897	0.000
Hip	-0.159	0.146	-1.089	0.277
Thigh	0.173	0.147	1.178	0.240
Knee	-0.046	0.246	-0.186	0.852
Ankle	0.185	0.220	0.842	0.401
Bicep	0.180	0.170	1.054	0.293
Forearm	0.276	0.207	1.334	0.183
Wrist	-1.802	0.533	-3.380	0.001

interlude - possibly doesn't mean Knee, Weight, and Ankle are chopped liver!

```
##
  Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                3.1215
                           9.4771
                                    0.329
                                           0.74216
## Knee
               -0.1489
                           0.3366 -0.442 0.65870
## Weight
                0.2297
                           0.0287 8.003 4.8e-14
## Ankle
                           0.3121 - 2.675 0.00798
               -0.8348
```

interlude - correlations of Weight with all others

[1,] 0.7251042

```
## Pct BF Age Height Neck Chest Abdomen
## [1,] 0.6172994 -0.01605487 0.512913 0.8100143 0.8912862 0.8737351
## waist Hip Thigh Knee Ankle Bicep Forear
## [1,] 0.8737351 0.9326905 0.852116 0.8427445 0.5809059 0.785214 0.683333
```


backwards with bodyfat: -Knee

term	estimate	std.error	statistic	p.value
(Intercept)	1.393	23.274	0.060	0.952
Age	0.070	0.031	2.266	0.024
Weight	-0.019	0.066	-0.290	0.772
Height	-0.253	0.188	-1.349	0.179
Neck	-0.383	0.233	-1.640	0.102
Chest	-0.118	0.108	-1.096	0.274
Abdomen	0.905	0.091	9.922	0.000
Hip	-0.161	0.145	-1.107	0.270
Thigh	0.165	0.140	1.176	0.241
Ankle	0.178	0.216	0.823	0.411
Bicep	0.181	0.170	1.067	0.287
Forearm	0.274	0.206	1.329	0.185
Wrist	-1.808	0.531	-3.407	0.001

backwards with bodyfat: -Knee -Weight

term	estimate	std.error	statistic	p.value
(Intercept)	7.665	8.523	0.899	0.369
Age	0.072	0.031	2.359	0.019
Height	-0.293	0.127	-2.299	0.022
Neck	-0.399	0.226	-1.767	0.078
Chest	-0.135	0.090	-1.502	0.134
Abdomen	0.895	0.085	10.575	0.000
Hip	-0.179	0.131	-1.368	0.173
Thigh	0.156	0.136	1.142	0.255
Ankle	0.164	0.210	0.781	0.436
Bicep	0.172	0.166	1.033	0.303
Forearm	0.266	0.204	1.305	0.193
Wrist	-1.837	0.521	-3.527	0.001

backwards with bodyfat: -Knee -Weight -Ankle

term	estimate	std.error	statistic	p.value
Abdomen	0.892	0.085	10.560	0.000
Wrist	-1.713	0.496	-3.456	0.001
Age	0.070	0.030	2.293	0.023
Height	-0.280	0.126	-2.218	0.027
Neck	-0.415	0.225	-1.850	0.066
Chest	-0.130	0.090	-1.447	0.149
Hip	-0.174	0.131	-1.335	0.183
Forearm	0.270	0.204	1.325	0.186
Thigh	0.165	0.136	1.214	0.226
Bicep	0.170	0.166	1.020	0.309
(Intercept)	7.685	8.516	0.902	0.368

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s)

term	estimate	std.error	statistic	p.value
Abdomen	0.885	0.084	10.511	0.000
Wrist	-1.679	0.495	-3.395	0.001
Age	0.070	0.030	2.324	0.021
Height	-0.279	0.126	-2.207	0.028
Neck	-0.388	0.223	-1.739	0.083
Forearm	0.335	0.194	1.726	0.086
Thigh	0.205	0.130	1.581	0.115
Hip	-0.176	0.131	-1.345	0.180
Chest	-0.114	0.088	-1.287	0.199
(Intercept)	6.251	8.400	0.744	0.458

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s) -Chest

term	estimate	std.error	statistic	p.value
Abdomen	0.823	0.069	11.958	0.000
Wrist	-1.731	0.494	-3.506	0.001
Age	0.073	0.030	2.396	0.017
Height	-0.268	0.126	-2.125	0.035
Neck	-0.451	0.218	-2.073	0.039
Thigh	0.224	0.129	1.735	0.084
Forearm	0.296	0.192	1.542	0.124
Hip	-0.195	0.130	-1.501	0.135
(Intercept)	5.040	8.359	0.603	0.547

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s) -Chest -Hip

term	estimate	std.error	statistic	p.value
Abdomen	0.756	0.052	14.408	0.000
Wrist	-1.851	0.488	-3.791	0.000
Age	0.081	0.030	2.718	0.007
Height	-0.322	0.121	-2.657	0.008
Neck	-0.418	0.217	-1.926	0.055
Forearm	0.288	0.192	1.499	0.135
Thigh	0.120	0.109	1.099	0.273
(Intercept)	2.541	8.212	0.309	0.757

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s) -Chest -Hip -Thigh (could stop here)

term	estimate	std.error	statistic	p.value
Abdomen	0.793	0.040	19.703	0.000
Wrist	-1.789	0.485	-3.686	0.000
Height	-0.315	0.121	-2.601	0.010
Age	0.063	0.025	2.532	0.012
Neck	-0.391	0.216	-1.813	0.071
Forearm	0.315	0.191	1.653	0.100
(Intercept)	3.607	8.159	0.442	0.659

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s) -Chest -Hip -Thigh -Forearm (could stop here)

term	estimate	std.error	statistic	p.value
Abdomen	0.801	0.040	20.011	0.000
Wrist	-1.587	0.471	-3.367	0.001
Height	-0.314	0.122	-2.582	0.010
Age	0.052	0.024	2.152	0.032
Neck	-0.287	0.207	-1.384	0.168
(Intercept)	4.621	8.164	0.566	0.572

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s) -Chest -Hip -Thigh -Neck (rather than forearm) (could stop here)

term	estimate	std.error	statistic	p.value
Abdomen	0.758	0.035	21.361	0.000
Wrist	-2.129	0.450	-4.735	0.000
Height	-0.326	0.121	-2.684	0.008
Age	0.065	0.025	2.595	0.010
Forearm	0.214	0.183	1.167	0.244
(Intercept)	1.786	8.134	0.220	0.826

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s) -Chest -Hip -Thigh -Forearm -Neck (could stop here)

term	estimate	std.error	statistic	p.value
Abdomen	0.771	0.034	22.932	0.000
Wrist	-1.911	0.410	-4.667	0.000
Height	-0.323	0.122	-2.657	0.008
Age	0.056	0.024	2.351	0.020
(Intercept)	2.900	8.084	0.359	0.720

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s) -Chest -Hip +Thigh -Forearm -Neck -Wrist (trying a few things)

term	estimate	std.error	statistic	p.value
Abdomen	0.693	0.052	13.412	0.000
Height	-0.554	0.117	-4.715	0.000
Age	0.028	0.029	0.960	0.338
(Intercept)	-6.286	8.357	-0.752	0.453
Thigh	-0.017	0.108	-0.157	0.876

backwards with bodyfat: -Knee -Weight -Ankle -Bicep(s) +Chest -Hip -Thigh -Forearm -Neck -Wrist (trying a few things)

term	estimate	std.error	statistic	p.value
Abdomen	0.852	0.067	12.700	0.000
Height	-0.523	0.114	-4.569	0.000
Chest	-0.228	0.083	-2.735	0.007
Age	0.027	0.024	1.115	0.266
(Intercept)	-1.069	8.291	-0.129	0.898

term	estimate	std.error	statistic	p.value
Abdomen	0.771	0.034	22.932	0.000
Wrist	-1.911	0.410	-4.667	0.000
Height	-0.323	0.122	-2.657	0.008
Age	0.056	0.024	2.351	0.020
(Intercept)	2.900	8.084	0.359	0.720

backwards with bodyfat: previous two models compared with R_{adj}^2

```
##
## Residual standard error: 4.397 on 245 degrees of freedom
## Multiple R-squared: 0.7235, Adjusted R-squared: 0.719
## F-statistic: 160.3 on 4 and 245 DF, p-value: < 2.2e-16

##
## Residual standard error: 4.277 on 245 degrees of freedom
## Multiple R-squared: 0.7383, Adjusted R-squared: 0.7341
## F-statistic: 172.8 on 4 and 245 DF, p-value: < 2.2e-16</pre>
```

backwards with bodyfat: perspectives

I could try seeing if anything outperforms Wrist, for example.

Backwards strategy is a "greedy" method (follows the best path on each short step), which isn't guaranteed to get a "best" model in the end.

The "rankings" of the variables change quite a bit.

Everything is affected by correlations among the inputs.

This is a little more tedious:

1. Start with the "best" one-term model.

This is a little more tedious:

- 1. Start with the "best" one-term model.
- 2. Look at all two-term models, and choose the best.

This is a little more tedious:

- 1. Start with the "best" one-term model.
- 2. Look at all two-term models, and choose the best.
- 3. Look at all three-term models...

This is a little more tedious:

- 1. Start with the "best" one-term model.
- 2. Look at all two-term models, and choose the best.
- 3. Look at all three-term models...

This is a little more tedious:

- 1. Start with the "best" one-term model.
- 2. Look at all two-term models, and choose the best.
- 3. Look at all three-term models...

 \dots until you stop, because adding more terms doesn't seem to accomplish anything.

The "best" could be highest $R_a^2 dj$, smallest new p-value, etc.

forwards with bodyfat - step 1

You can easily find the "best" first model just by finding the input most highly correlated with the output.

rowname	r
Height	-0.029
Ankle	0.245
Age	0.295
Wrist	0.339
Forearm	0.365
Bicep	0.482
Neck	0.489
Knee	0.492
Thigh	0.549
Weight	0.617
Hip	0.633
Chest	0.701
Abdomen	0.824
waist	0.824

forwards with bodyfat: +Abdomen

The two-term model "winner" (by R_{adj}^2) is Weight:

```
## adj.r.squared
## 1 0.7205176
```

Here's for, say Height:

```
## adj.r.squared
## 1 0.7108945
```

perspectives on forwards

Forwards strategy is also a "greedy" method (follows the best path on each short step), which isn't guaranteed to get a "best" model in the end.

We can immediately see it will result in a different model from the backwards strategy.

The "rankings" of the variables change quite a bit.

Everything is affected by correlations among the inputs.

It is actually the greedy method I tend to use most often.