Data Structures Chapter 1

- 1. Recursion
 - Recursion
 - Mergesort
- 2. Performance Analysis
- 3. Asymptotic Analysis

Recursion

See Recursion

Recursion

- See Recursion
- Recursion is when a function calls itself
- Recursion simplifies program structure at a cost of function calls
- Recursion vs. Leap of faith

recursion is when a function calls itself

Example 1: BunnyEars

- What is the output of the function bunnyEars()?
- What is the output of the function main()?
- How many times does two returns execute, respectively?

```
int bunnyEars(int n) {
   cout << n << endl;
   if (n > 0)
      return bunnyEars(n - 1) + 2;
   return 0;
}

int main() {
   cout << bunnyEars(4) << endl;
}</pre>
```

```
bunnyEars(4)
   cout << 4
         bunnyEars(3)
         cout << 3
4
5
              bunnyEars(2)
              cout << 2
6
                   bunnyEars(1)
8
                   cout << 1
9
                         bunnyEars(0)
10
                         cout << 0
                                          return 0
```

Example 1: BunnyEars

- What is the output of the function bunnyEars()?
- What is the output of the function main()?
- How many times does two returns execute, respectively?

```
int bunnyEars(int n) {
   cout << n << endl;
   if (n > 0)
      return bunnyEars(n - 1) + 2;
   return 0;
}

int main() {
   cout << bunnyEars(4) << endl;
}</pre>
```

1	bunnyEars(4)	77 THE
2	cout << 4	return $f(3) + 2$
3	bunnyEars(3)	
4	cout << 3	return $f(2) + 2$
5	bunnyEars(2)	
6	cout << 2	return $f(1) + 2$
7	bunnyEars(1)	
8	cout << 1	return f(0) + 2
9	bunnyEars(0)	
10	cout << 0	

Recursion

- Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem (as opposed to iteration).
- Recursive algorithm is expressed in terms of
 - base case(s) for which the solution can be stated non-recursively,
 - 2. recursive case(s) for which the solution can be expressed in terms of a smaller version of itself.

Four stages in the construction of a **Koch snowflake**. The stages are obtained via a recursive definition.

Example 3: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

factorial(n)

function factorial

input: integer n such that $n \ge 0$

output: $[n \times (n-1) \times (n-2) \times ... \times 1]$

- 1. if *n* is 0, **return** 1
- 2. otherwise, **return** [$n \times factorial(n-1)$]

end factorial

factorial (n = 4) $f_4 = 4 * f_3$ $= 4 * (3 * f_2)$ $= 4 * (3 * (2 * f_1))$ $= 4 * (3 * (2 * (1 * f_0)))$ = 4 * (3 * (2 * (1 * 1))) = 4 * (3 * (2 * 1)) = 4 * (3 * 2) = 4 * 6 = 24

Example 3: Factorial

$$fact(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot fact(n-1) & \text{if } n > 0 \end{cases}$$

factorial(n)

function factorial

input: integer n such that $n \ge 0$

output: $[n \times (n-1) \times (n-2) \times ... \times 1]$

1. if *n* is 0, **return** 1

2. otherwise, **return** [$n \times factorial(n-1)$]

end factorial

Example 4: GCD

Compute GCD recursively with gcd (x=259, y=111) = ?

$$\gcd(x,y) = \begin{cases} x & \text{if } y = 0\\ \gcd(y, \operatorname{remainder}(x,y)) & \text{if } y > 0 \end{cases}$$

```
gcd(x, y)

function gcd
input: integer x, y such that x >= y, y > 0
output: gcd of x and y
    1. if y is 0, return x
    2. otherwise, return [ gcd (y, x%y) ]
end gcd
```

```
gcd (x=259, y=111)

gcd(259, 111)
= gcd(111, 259 % 111)
= gcd(111, 37)
= gcd(37, 111 % 37)
= gcd(37, 0)
= 37
```

Exercise: gcd(91, 52)

Reminder

 Recursion is a method where the solution to a problem depends on solutions to smaller instances of the same problem (as opposed to iteration).

- Binary search is an efficient algorithm for finding an item from a sorted list of items.
 - It works by repeatedly dividing in half the portion of the list that could contain the item,
 - until you've narrowed down the possible locations to just one.

					4					
key=23	2	5	8	9	16	23	31	56	62	71

 For instance, we want to search "23" from the array. If we find it, we return its array index; otherwise, -1 or something else.


```
0 1 2 3 4 lo=5 hi=6 7 8 9
2 5 8 9 16 23 31 56 62 71
```

 For instance, we want to search "23" from the array. If we find it, we return its array index; otherwise, -1 or something else.


```
key=mi
23=23
```

```
0 1 2 3 4 lo=5 hi=6 7 8 9
2 5 8 9 16 23 31 56 62 71
```

- How many times is the binarySearch() called in terms of n?
- In one call to binarySearch(), we eliminate at least half the elements from consideration. Hence, it takes $log_2 n$ (the base 2 logarithm of n) binarySearch() calls to compare down the possibilities to one. Therefore binarySearch takes time proportional to $log_2 n$.

```
int binarySearch(int list[], int key, int lo, int hi) {
  if (lo > hi) return -1;

mi = (lo + hi)/2;
  if (key == list[mi]) return mi;  // base case
  if (key < list[mi])  // recursive case
    return binarySearch(list, key, lo, mi - 1);
  else
    return binarySearch(list, key, mi + 1, hi);
}</pre>
```

- Given the numbers 1 to 100, what is the minimum number of guesses needed to find a specific number if you are given the hint 'higher' or 'lower' for each guess you make?
 - Since the numbers are sequential (or sorted), we can use binary search.
 - Look at the middle element: if it's after than the number we're looking for, search the first half. If it's before the number we're looking for, look at the second half.
 - Each check cuts the size of the list numbers in half; how many times can we do this?
 - If we think backwards, in terms of doubling the list, we'll need n doublings to generate a list of length $2^n = 100$. What is the value of n?
 - Since $2^6 = 64$ and $2^7 = 128$ (or $log_2 64 = 6$, $log_2 128 = 7$), n = 6.x Therefore n = 7 guesses will be enough.

- Given the numbers 1 to 1000, what is the minimum number of guesses needed to find a specific number if you are given the hint 'higher' or 'lower' for each guess you make?
 - For an array whose length is 1000, the closest lower power of 2 is 512, which is 2^9.
 - We can thus estimate that log_21000 is a number greater than 9 and less than 10, or use a calculator to see that its about 9.97. Adding one to that yields about 10.97.
 - In the case of a decimal number, we round down to find the actual number of guesses.
 - Therefore, for a 1000-element array, binary search would require at most 10 guesses.

Reference: https://www.geeksforgeeks.org/complexity-analysis-of-binary-search/

	Stack	Stack	Неар
search()	lo=5 hi=6 mi=5	key=23 list[.]	
search()	lo=5 hi=9 mi=7	key=23 list[.]	
search()	lo=0 hi=9 mi=4	key=23 list[.]	
search()	key=23	list[.]	[2 5 8 9 16 23 31 56 62 71]
main()		args[.]	args[]

Most operating systems give a program enough stack space for a few thousand stack frames. If you use a recursive procedure to walk through a million-node list, the program will try to create a million stack frames, and **the stack will run out of space**. The result is a run-time error.

• Given three pegs, one with a set of N disks of increasing size, determine the minimum (optimal) number of steps it takes to move all the disks from their initial position to a single stack on another peg without placing a larger disk on top of a smaller one. Only one disk can be moved at any time.

• Given three pegs, one with a set of N disks of increasing size, determine the minimum (optimal) number of steps it takes to move all the disks from their initial position to a single stack on another peg without placing a larger disk on top of a smaller one. Only one disk can be moved at any time.

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **spare**.
- (2) Move the remaining (largest) disk from source to end.
- (3) Move the n-1 disks from spare to end.

Recursive algorithm:

4 disk problem

- (1) Move the top n-1 disks from source to spare.
- (2) Move the remaining (largest) disk from source to end.
- (3) Move the n-1 disks from spare to end.

(3) It becomes a **3 disk problem**. Go back to step 1. Treat the **spare as source** and the **source as spare**.

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **spare**.
- (2) Move the remaining (largest) disk from source to end.
- (3) Move the **n-1** disks from **spare** to **end**.

How do you program this to have the output as shown below?

```
(1) Disk 1 from A to C
```

- (2) Disk 2 from A to B
- (3) Disk 1 from C to B
- (4) Disk 3 from A to C
- (5) Disk 1 from B to A
- (6) Disk 2 from B to C
- (7) Disk 1 from A to C

```
void hanoi(int n, char source, char spare, char end) {
  if (n == 1)
    printf("Disk 1 from %c to %c\n", source, end);
  else {
    hanoi(n - 1, source, end, spare);
    printf("Disk %d from %c to %c\n", n, source, end);
    hanoi(n - 1, spare, source, end);
}
```

Recursive algorithm:

- (1) Move the top **n-1** disks from **source** to **spare**.
- (2) Move the remaining (largest) disk from sourc
- (3) Move the n-1 disks from spare to end.

How do you program this to have the or

- (1) Disk 1 from A to C
- (2) Disk 2 from A to B
- (3) Disk 1 from C to B
- (4) Disk 3 from A to C
- (5) Disk 1 from B to A
- (6) Disk 2 from B to C
- (7) Disk 1 from A to C


```
void hanoi(int n, char source, char spare, char end) {
  if (n == 1)
    printf("Disk 1 from %c to %c\n", source, end);
  else {
    hanoi(n - 1, source, end, spare);
    printf("Disk %d from %c to %c\n", n, source, end);
    hanoi(n - 1, spare, source, end);
}
```

Example 6: Time complexity of Tower of Hanoi - O(2ⁿ)

$$hanoi(n) = \begin{cases} 1 & \text{if } n = 1\\ 2 \cdot hanoi(n-1) + 1 & \text{if } n > 1 \end{cases}$$

Exercise: How many years will it take to move 64 disks while assuming one move per pico second at the clock speed of a super fast machine?

- (1) hanoi(1) = 1
- (2) hanoi(2) = 3
- (3) hanoi(3) = 7
- (4) hanoi(4) = 15
- (5) hanoi(5) = 31
- (6) hanoi(32) = 4,294,967,295
- (7) hanoi(64) = 18,446,744,073,709,600,000

```
hanoi(n = 4)

hanoi(4)

= 2*hanoi(3) + 1

= 2*(2*hanoi(2) + 1) + 1

= 2*(2*(2*hanoi(1) + 1) + 1) + 1

= 2*(2*(2*1 + 1) + 1) + 1

= 2*(2*(3) + 1) + 1

= 2*(7) + 1 = 15
```

Recursion

Q: Is the recursive version usually faster?

A: No -- it's usually slower (due to the overhead of maintaining the stack)

Q: Does the recursive version usually use less memory?

A: No -- it usually uses **more** memory (for the stack).

Q: Then why use recursion?

A: Sometimes it is much simpler to write the recursive version.

Because the recursive version causes an **activation record** to be pushed onto the system stack for every call, it is also more limited than the iterative version (it will fail, with a "stack overflow" error), for large values of N.

Sierpinski Triangle: a confined recursion of triangles to form a geometric lattice

Recursion

Recursion see Recursion

Data Structures Chapter 1

- 1. Recursion
 - Recursion
 - Mergesort
- 2. Performance Analysis
- 3. Asymptotic Analysis