Analisi I

Angelo Perotti

January 9, 2025

Contents

1	Intr	roducti	on	5
2	Noz	zioni P	reliminari	5
	2.1	Insiem	i	5
		2.1.1	insieme matematico	5
		2.1.2	operazioni fondamentali tra insiemi	5
	2.2		eri reali	5
	2.3		ni	8
	2.4		i reali di variabili reali	9
	2.5		ioni elementari e i loro grafici	9
3	T N	umori	Complessi	LO
J	1 11	3.0.1	operazioni sui numeri complessi	
		3.0.1	forma trigonometrica	
		3.0.2 $3.0.3$	forme esponenziali	
		5.0.5	forme esponenzian	LU
4	Suc			١0
	4.1	operaz	ioni di limite	11
		4.1.1	$a_n \to 0 \dots \dots$	11
		4.1.2	$a_n \to +\infty$	11
		4.1.3	$a_n \to -\infty$	11
		4.1.4	$\mathbf{a}_n \to l$	11
	4.2	limiti i	fondamentali	11
		4.2.1	il numero di nepero	11
		4.2.2	algebra dei limiti	11
	4.3		di funzioni	
		4.3.1	Intorno	
		4.3.2	Punto di Accumulazione	
		4.3.3	Limite finito di un punto	
		4.3.4	funzioni continue	
		4.3.4	limiti destro e sinistro	
		4.3.6	continuità da destra e da sinistra	
		4.3.0 $4.3.7$		
			il legame con limiti di successioni	
		4.3.8	criterio per la non esistenza di un limite	
		4.3.9	teorema di unicita' del limite	
			teorema di permanenza del segno	
			teorema di confronto	
			algebra dei limiti e forme indeterminate	
				12
			limiti funzioni elementari	
				12
		4.3.16	Continuita' e discontinuita'	12
		4.3.17	algebra delle funzioni continue	13
		4.3.18	continuita' della composizione	13
		4.3.19	proprieta' delle funzioni continue	13
			1 1	13
				13
				13
			r	

5	il calcolo differenziale				
	5.1	derivata di funzioni elementari	3		
	5.2	Regole di derivazione	3		
		5.2.1 teorema di linearita'	3		
		5.2.2 teorema-regola di Liebnitz	3		
		5.2.3 teorema regola della catena	3		
		5.2.4 teorema derivazione della funzione inversa	3		
		5.2.5 corollario derivazione del quozionte			
		5.2.6 massimi e minimi relativi			
		5.2.7 teorema di Fermat			
		5.2.8 teorema di Rolle			
		5.2.9 teorema di Lagrange			
		5.2.10 caratterizzazione delle funzioni monotone su intervalli			
		5.2.11 caratterizzazione delle funzioni costanti su intervalli			
	5.3	calcolo differenziale pt2			
	0.0	5.3.1 teorema di cauchy			
		5.3.2 teorema di De l'Hopital			
		5.3.3 criterio di derivabilita'			
		5.3.4 derivate successive			
		5.3.5 insiemi convessi e funzioni convesse			
		5.3.6 Formula di Taylor			
		5.5.0 Formula di Taylor	±		
6	inte	grali 14	4		
_		6.0.1 significato geometrico			
		6.0.2 criteri di integrabilita'			
	6.1	proprieta' degll'integrale			
	6.2	la funzione integrale			
	0.2	6.2.1 il teorema del calcolo integrale			
		6.2.2 Primitiva			
	6.3	integrali indefiniti			
	6.4	formula fondamentale del calcolo integrale			
	0.1	6.4.1 calcolo degli integrali: integrazione per sostituzione			
		6.4.2 simmetrie negli integrali			
		6.4.3 calcolo degli integrali: integrazione per parti			
		6.4.4 calcolo degli integrali: integrazione delle funzioni razionali			
		0.4.4 Carcolo degli integrali. integrazione dene iunzioni razionali	J		
7	serie	e numeriche e integrali generalizzati	5		
	7.1	serie numeriche	5		
	7.2	serie telescopiche			
	7.3	condizioni necessarie per la convergenza di una serie	5		
	7.4	alcune osservazioni sul carattere di una serie			
	7.5	serie a termini positivi	-		
	7.6	criterio del confronto			
	7.7	criterio del confronto asintotico	-		
	7.8	serie armonica generalizzata	-		
	7.9	criterio del rapporto e della radice n-esima	-		
	7.10		-		
		criterio di leibnitz	-		
		integrali generalizzati	-		
		criterio del confronto	-		
			-		
		criterio di convergenza assoluta	-		
	61.1	serie a integrali generalizzati	J		

	7.16	criterio integrale
8		nazioni Differenziali Ordinarie
	8.1	problema di cauchy
	8.2	esistenza e unicita' locale di soluzioni
	8.3	equazioni a variabili separabili
	8.4	equazioni lineari del primo ordine
	8.5	equazioni lineari del secondo ordine
9	Me	ga Riassunto Pazzo Della Morte Finale
	9.1	Il calcolo differenziale
	9.2	Integrali
	9.3	Serie numeriche
	9.4	integrale generalizzato
		equazioni differenziali ordinarie

1 Introduction

2 Nozioni Preliminari

2.1 Insiemi

2.1.1 insieme matematico

Insieme matematico.

Un *insieme matematico* è una collezione di oggetti (o elementi) ben definiti, considerati nel loro insieme come un'entità unica.

es

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $\{a, b, c, d, e, f, g, h\}$

classificazione:

- per elencazione
 - L'ordine degli elementi non e' importante
 - $\in =$ appartiene, $\notin =$ non appartiene
 - ":=" = e' definito, "{}" = definiscono un insieme
- per proprieta' che li accomuna

2.1.2 operazioni fondamentali tra insiemi

• unione

$$A \cup B := \{x : x \in A \ o \ x \in B\}$$

"A unito B" e i suoi elementi sono dati dagli elementi di A con gli elementi di B

• intersezione

$$A \cap B := \{x : x \in A \ e \ x \in B\}$$

"A intersecato B" e i suoi elementi sono dati dagli elementi comuni di A e B

• differenza insiemistica

$$A/B := \{x : x \in A \ e \ x \notin B\}$$

"A meno B" e i suoi elementi sono gli elementi di A che non sono in B

 \hookrightarrow affinche' le ultime due operazioni abbiano senso introduciamo l'insieme vuoto: \emptyset

2.2 I numeri reali

insiemi numerici.

insieme:

- dei numeri naturali $\mathbb{N} = \{0, 1, 2, 3, 4...\}$
- dei numeri interi $\mathbb{Z} = \{0, 1, -1, 2, -2...\}$
 - insieme simmetrico
 - $-\,$ e' chiuso rispetto la sottrazione

- dei numeri naturali $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \mid q \neq 0 \right\}$
 - chiuso rispetto le operazioni elementari

Teorema $\sqrt{2}$.

non esiste alcun numero razionale $x \in \mathbb{Q}$ t.c. $x^2 = 2$

Dimostrazione:

non ho voglia di farla ora :D Osservazione:

Dal teeorema deduciamo che per esempio $\sqrt{2} \in \mathbb{Q}$ quindi i numeri razionali NON bastano a contenere tutte le espressioni numeriche

Rappresentazione decimale.

ogni numero razionale $x \in \mathbb{Q}$ si puo' scrivere con un allineamento decimale limitato o periodico

$$x = \pm p \ \alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4 \dots \ \alpha_n \dots \ con \ p \in \mathbb{N} \ e \ \alpha_i \in [0, 1, 2, 3, 4 \dots]$$

i numeri reali.

Definiamo l'insieme R dei numeri reali come l'insieme di tutti i possibili allineamenti decimali

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$$

intervalli.

•	(a,b)	intervallo	aperto

 $intervalli\ illimitati$

•
$$(-\infty,a)$$
 $\{x \in \mathbf{R}, x < a\}$

•
$$(-\infty,a]$$
 $\{x \in \mathbf{R}, x \leq a\}$

•
$$(a,+\infty)$$
 $\{x \in \mathbf{R}, \ x > a\}$

•
$$[a,+\infty)$$
 $\{x \in \mathbf{R}, x \geq a\}$

Maggioranti/Minoranti.

Sia
$$A \subseteq \mathbb{R}$$
, $A \neq \emptyset$

Def:

ullet Maggiorante: un elemento $M \in \mathbb{R}$ si dice maggiorante di A se

$$x \le M \quad \forall x \in A$$

 \bullet Minorante: un elemento m $\in \mathbb{R}$ si dice minorante di A se

$$x \ge m \quad \forall x \in A$$

Esistono insiemi privi di maggioranti e/o minoranti

- A si dice limitato superiormente se ammette almeno un maggiorante
- $\bullet\,$ A si dice $limitato\,\,inferiormente$ se ammette almeno un minorante
- A si dice limitato se e' limitato sia superiormente che inferiormente

Es:

 $A = [1, \infty)$

- A non ha maggioranti; infatti se esistesse un maggiorante chiamato $M \in \mathbb{R}$, allora dalla definizione di maggiorante deduciamo che $\forall x \in [1, +\infty)$ si ha che $x \leq M$. Ma questo e' assurdo perche' per esempio $M+1 \in [1, +\infty)$, questo pero' non verifica $x \leq M$!
- A ammmette minoranti, per esempio m=1 oppure ogni reale minore di 1

A quindi:

- non e' superiormente limitato
- e' inferiormente limitato
- non e' limitato

NB

- M \in R e' maggiorante di A se x \leq M $\forall x \in A$
- Nella definizione di maggiorante/minorante di un insieme A NON e' richiesto che il maggiorante/minorante appartenga ad A

Massimo/minimo.

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$

Def:

- Un elemento $M \in \mathbf{R}$ si dice massimo di A se:
 - M e' maggiorante di A
 - $-M \in A$
- Un elemento $m \in \mathbf{R}$ si dice minimo di A se:
 - m e' minorante di A
 - $-m \in A$

NB:

- Se un insieme e' limitato superiormente/inferiormente, il massimo/minimo puo' non esistere
- Massimo e minimo se esistono sono unici

Es:

Dato $A \subseteq \mathbf{R}, A \neq 0, A = (1, +\infty)$

- non ammette massimo (non ha maggiorante)
- ammette minoranti
- non ammette minimi, infatti l'insieme dei minoranti B=(- ∞ , 1] poiche' A \cap B= \emptyset allora A non ammette minimo

Estremo superiore/inferiore.

Sia
$$A\subseteq\mathbb{R},\,A\neq\emptyset$$

Def:

• un elemento $\overline{x} \in \mathbf{R}$ si dice estremo superiore di A $(\overline{x} = \sup A)$ se \overline{x} e' il piu' piccolo dei maggioranti

$$sup A = min \{ M \in \mathbf{R} : M \text{ maggiorante } di A \}$$

• un elemento $\overline{x} \in \mathbf{R}$ si dice estremo inferiore di A $(\overline{x} = \inf A)$ se \overline{x} e' il piu' grande dei minoranti

$$inf A = max \{ m \in \mathbf{R} : m \ minorante \ di \ A \}$$

NB:

- se A non e' superiormente limitato $=> \sup A = +\infty$
- se A non e' inferiormente limitato => $\inf A = -\infty$
- sia $A \subset \mathbb{R}$, $A \neq \emptyset$ e supponiamo che A ammetta massimo/minimo, allora questo e' unico
- sia A \subset R, A \neq \emptyset e supponiamo che A ammetta massimo M/minimo m, allora vale che $\sup A=M/\inf A=m$

Assioma di Completezza di \mathbb{R} .

parte intera.

Proprieta' di Archimede.

L'insieme dei numeri naturali N non e' superiormente limitato

$$sup\mathbb{N} = +\infty$$

$$\forall x \in \mathbb{R} \quad \exists n \in \mathbb{N} \qquad t.c. \qquad n > x$$

Densita' di $\mathbb Q$ in $\mathbb R$.

2.3 Funzioni

Funzione.

Siano A,B due insiemi non vuoti. Una funzione f da A a B e' una corrispondenza che associa ad ogni elemento $x \in A$ uno ed un solo elemento $y \in B$

$$\forall x \in A \exists ! y \in B : y = f(x)$$

Notazione: $f: A \to B$

- \bullet A Dominio di f
- ullet B Codominio di f
- \bullet l'immagine di f e' l'insieme dei valori della funzione

funzione iniettiva.

funzione suriettiva

funzione biiettiva.

composizione di due funzioni.

funzione inversa.

restrizione di una funzione.

2.4 funioni reali di variabili reali

funzioni limitate. • limitata superiormente

- limitata inferiormente
- limitata

funzioni simmetriche. • f e' pari

- f e' dispari
- f e' periodica

funzioni monotone. • monotone crescente

- monotone strettamente crescente
- monotone decrescente
- monotone strettamente decrescente

grafico della funzione inversa.

2.5 le funzioni elementari e i loro grafici

- funzioni il cui grafico e' una retta
 - funzioni costanti
 - funzioni lineari
 - funzioni affini

valore assoluto.

potenze e radici.

funzioni esponenziali e logaritmiche.

funzioni trigonometriche.

funzioni trigonometriche inverse.

funzioni iperboliche.

3 I Numeri Complessi

forma cartesiana dei numeri complessi.

3.0.1 operazioni sui numeri complessi

- somma
- Moltiplicazione
- \bullet Prodotto

modulo e coniugato di un numero complesso.

reciproco di un numero complesso.

risoluzione di equazioni in \mathbb{C} .

3.0.2 forma trigonometrica

coordinate polari.

prodotto dei numeri complessi in forma Trigonometrica.

quozionte di numeri complessi in forma trigonometrica.

formula di De Moivre.

3.0.3 forme esponenziali

teorema fondamentale dell'algebra.

un'equazione di grado n $\leq \! 1$ in $\mathbb C$

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_2 z^2 + a_1 z^1 + a_0 z^0 = 0$$

(dove $a_n \in \mathbb{C}$, $\mathbb{A} \neq \mathbb{C}$) ha esattamente n soluzioni in \mathbb{C}

Radici.

4 Successioni Numeriche

il fattoriale.

coefficiente Binomiale.

triangolo di tartaglia.

il binomio di Newton.

successioni geometriche.

4.1 operazioni di limite

- **4.1.1** $\mathbf{a}_n \to 0$
- **4.1.2** $\mathbf{a}_n \to +\infty$
- **4.1.3** $\mathbf{a}_n \to -\infty$
- **4.1.4** $\mathbf{a}_n \rightarrow l$

4.2 limiti fondamentali

Unicita' del limite.

limitezza delle successioni convergenti.

sottosuccessioni e loro limiti, non esistenza del limite.

limiti sottosuccessioni.

esistenza del limite per successioni monotone: il numero di nepero.

4.2.1 il numero di nepero

il numero di nepero.

limite nepero generalizzato.

teorema di permanenza del segno.

teorema dei due carabinieri.

4.2.2 algebra dei limiti

algebra dei limiti.

forme indeterminate e algebra estesa.

tecniche calcolo dei limiti.

a seguito una lista delle piu' basilari tecniche di risoluzione dei limiti

- somma e sottrai
- raccogli chi comanda
- moltiplica e dividi
- moltiplica, dividi e razionalizza

Criterio del rapporto.

gerarchia degli infiniti.

per ogni $\alpha>0$ ea>1,le seguenti successioni rappresentano degli $\mathit{infiniti},$ ovvero tendono a $+\infty$ per n->+ ∞

 $log_a n$ n^{α} a^n n! n^n

in ordine crescente:

4.3 Limiti di funzioni

- 4.3.1 Intorno
- 4.3.2 Punto di Accumulazione
- 4.3.3 Limite finito di un punto
- 4.3.4 funzioni continue
- 4.3.5 limiti destro e sinistro
- 4.3.6 continuita' da destra e da sinistra
- 4.3.7 il legame con limiti di successioni
- 4.3.8 criterio per la non esistenza di un limite
- 4.3.9 teorema di unicita' del limite
- 4.3.10 teorema di permanenza del segno
- 4.3.11 teorema di confronto
- 4.3.12 algebra dei limiti e forme indeterminate
- 4.3.13 limite di funzioni monotone
- 4.3.14 limiti funzioni elementari
- 4.3.15 i limiti notevoli

limite notevole di nepero.

4.3.16 Continuita' e discontinuita'

tipi di continuita'

- discontinuita' eliminabile
- discontinuita' a salto
- discontinuita' essenziale

- 4.3.17 algebra delle funzioni continue
- 4.3.18 continuita' della composizione
- 4.3.19 proprieta' delle funzioni continue teorema degli zeri.

teorema dei valori intermedi.

- 4.3.20 massimi e minimi assoluti
- 4.3.21 teorema di Weierstrass
- 4.3.22 il simpbolo di o piccolo

5 il calcolo differenziale

la derivata.

significato geometrico.

derivabilita' implica continuita'.

ma non tutte le funzioni continue sono derivabili

- 5.1 derivata di funzioni elementari
- 5.2 Regole di derivazione
- 5.2.1 teorema di linearita'
- 5.2.2 teorema-regola di Liebnitz
- 5.2.3 teorema regola della catena
- 5.2.4 teorema derivazione della funzione inversa
- 5.2.5 corollario derivazione del quozionte
- 5.2.6 massimi e minimi relativi
- 5.2.7 teorema di Fermat

punti critici.

- 5.2.8 teorema di Rolle
- 5.2.9 teorema di Lagrange
- 5.2.10 caratterizzazione delle funzioni monotone su intervalli
- 5.2.11 caratterizzazione delle funzioni costanti su intervalli
- 5.3 calcolo differenziale pt2
- 5.3.1 teorema di cauchy
- 5.3.2 teorema di De l'Hopital
- 5.3.3 criterio di derivabilita'
- 5.3.4 derivate successive
- 5.3.5 insiemi convessi e funzioni convesse

funzione convessa.

convessita' e derivata prima.

convessita' e derivata seconda.

punti di flesso.

5.3.6 Formula di Taylor

polinomio di Taylor. • formula di taylor con il resto di peano

• formula di taylor con il resto di lagrange

6 integrali

integrale di Riemann.

somme inferiori e superiori

- 6.0.1 significato geometrico
- 6.0.2 criteri di integrabilita'
- 6.1 proprieta' degll'integrale
 - Linearita'
 - Additivita' rispetto al dominio
 - positivita'
 - monotonia
 - $\left| \int_a^b f(x)dx \right| \le \int_a^b f(x)dx$

N.B.

- se a
 $\int_b^a f(x)dx := -\int_a^b f(x)dx$

il teorema della Media.

6.2 la funzione integrale

- 6.2.1 il teorema del calcolo integrale
- 6.2.2 Primitiva
- 6.3 integrali indefiniti
- 6.4 formula fondamentale del calcolo integrale
- 6.4.1 calcolo degli integrali: integrazione per sostituzione
- 6.4.2 simmetrie negli integrali
- 6.4.3 calcolo degli integrali: integrazione per parti
- 6.4.4 calcolo degli integrali: integrazione delle funzioni razionali
 - n>m
 - \bullet n \geq m
 - m=2

7 serie numeriche e integrali generalizzati

- 7.1 serie numeriche
- 7.2 serie telescopiche
- 7.3 condizioni necessarie per la convergenza di una serie
- 7.4 alcune osservazioni sul carattere di una serie
- 7.5 serie a termini positivi
- 7.6 criterio del confronto
- 7.7 criterio del confronto asintotico
- 7.8 serie armonica generalizzata
- 7.9 criterio del rapporto e della radice n-esima
- 7.10 criterio di convergenza assoluta
- 7.11 criterio di leibnitz

7.12 integrali generalizzati

- integrale generalizzato in intervallo limitato
- integrale generalizzato in intervallo illimitato

7.13 criterio del confronto

- criterio del confronto
- criterio del confronto asintotico
- 7.14 criterio di convergenza assoluta
- 7.15 serie a integrali generalizzati
- 7.16 criterio integrale

8 Equazioni Differenziali Ordinarie

- 8.1 problema di cauchy
- 8.2 esistenza e unicita' locale di soluzioni
- 8.3 equazioni a variabili separabili
- 8.4 equazioni lineari del primo ordine
- 8.5 equazioni lineari del secondo ordine

9 Mega Riassunto Pazzo Della Morte Finale

- 9.1 Il calcolo differenziale
- 9.2 Integrali
- 9.3 Serie numeriche
- 9.4 integrale generalizzato
- 9.5 equazioni differenziali ordinarie