18.404/6.840 Lecture 14 (midterm replaced lecture 13)

Last time:

- $\overline{\mathsf{TIME}(t(n))}$
- $-P = \bigcup_k \mathsf{TIME}(n^k)$
- $-PATH \in P$

Today:

- NTIME(t(n))
- NP
- P vs NP problem
- Dynamic Programming
- Polynomial-time reducibility

Posted:

- Midterm & solutions, Problem Set 3 solutions, Problem Set 4

Quick Review

```
Defn: TIME(t(n)) = \{B \mid \text{ some deterministic 1-tape TM } M \text{ decides } B
                              and M runs in time O(t(n))
Defn: P = \bigcup_k TIME(n^k)
          = polynomial time decidable languages
PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph with a path from } s \text{ to } t \}
Theorem: PATH \in P
HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph with a path from } s \text{ to } t
                              that goes through every node of G }
HAMPATH \in P?
[connection to factoring]
```


Nondeterministic Complexity

In a nondeterministic TM (NTM) decider, all branches halt on all inputs.

Defn: An NTM <u>runs in time</u> t(n) if all branches halt within t(n) steps on all inputs of length n.

Defn: NTIME $(t(n)) = \{B \mid \text{ some 1-tape NTM decides } B \text{ and runs in time } O(t(n)) \}$

Defn: $NP = \bigcup_k NTIME(n^k)$ = nondeterministic polynomial time decidable languages

- Invariant for all reasonable nondeterministic models
- Corresponds roughly to easily verifiable problems

Computation tree for NTM on input w.

all branches halt within t(n) steps

$HAMPATH \in NP$

Theorem: $HAMPATH \in NP$

Proof:

"On input $\langle G, s, t \rangle$ (Say G has m nodes.)

- 1. Nondeterministically write a sequence (v_1, v_2, \dots, v_m) of m nodes.
- 2. Accept if $v_1 = s$ $v_m = t$ each (v_i, v_{i+1}) is an edge and no v_i repeats.
- 3. Reject if any condition fails."

$COMPOSITES \in NP$

Defn: $COMPOSITES = \{x \mid x \text{ is not prime and } x \text{ is written in binary}\}$ = $\{x \mid x = yz \text{ for integers } y, z > 1, x \text{ in binary}\}$

Theorem: $COMPOSITES \in NP$

Proof: "On input x

- 1. Nondeterministically write y where 1 < y < x.
- 2. Accept if y divides x with remainder 0. Reject if not."

Note: Using base 10 instead of base 2 wouldn't matter because can convert in polynomial time. k

Bad encoding: write number k in unary: $1^k = \overbrace{111 \cdots 1}$, exponentially longer.

Theorem (2002): $COMPOSITES \in P$

We won't cover this proof.

Intuition for P and NP

- NP = All languages where can <u>verify</u> membership quickly
 - P = All languages where can test membership quickly

Examples of quickly verifying membership:

- HAMPATH: Give the Hamiltonian path.
- COMPOSITES: Give the factor.

The <u>Hamiltonian path</u> and the <u>factor</u> are called **short certificates** of membership.

Check-in 14.1

Let $\overline{HAMPATH}$ be the complement of HAMPATH.

So $\langle G, s, t \rangle \in \overline{HAMPATH}$ if G does <u>not</u> have a Hamiltonian path from s to t.

Is $\overline{HAMPATH} \in NP$?

- (a) Yes, we can invert the accept/reject output of the NTM for HAMPATH.
- (b) No, we cannot give a short certificate for a graph not to have a Hamiltonian path.
- (c) I don't know.

Recall A_{CFG}

Recall: $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG and } w \in L(G) \}$

Theorem: A_{CFG} is decidable

Proof: D_{A-CFG} = "On input $\langle G, w \rangle$

1. Convert G into Chomsky Normal Form.

2. Try all derivations of length 2|w|-1.

3. Accept if any generate w. Reject if not.

Chomsky Normal Form (CNF):

 $A \rightarrow BC$

 $B \rightarrow b$

Let's always assume G is in CNF.

Theorem: $A_{CFG} \in NP$

Proof: "On input $\langle G, w \rangle$

- 1. Nondeterministically pick some derivation of length 2|w|-1.
- 2. Accept if it generates w. Reject if not.

Attempt to show $A_{CFG} \in P$

Theorem: $A_{CFG} \in P$

Proof attempt:

Recursive algorithm C tests if G generates W, starting at any specified variable R.

 $C = \text{"On input } \langle G, w, R \rangle$

- 1. For each way to divide w = xy and for each rule $R \rightarrow ST$
- 2. Use C to test (G, x, S) and (G, y, T)
- 3. *Accept* if both accept
- 4. Reject if none of the above accepted."

Then decide A_{CFG} by starting from G's start variable.

C is a correct algorithm, but it takes non-polynomial time. (Each recursion makes O(n) calls and depth is roughly $\log n$.)

Fix: Use recursion + memory called *Dynamic Programming* (DP)

Observation: String w of length n has $O(n^2)$ substrings $w_i \cdots w_j$ therefore there are only $O(n^2)$ possible sub-problems $\langle G, x, S \rangle$ to solve.

DP shows $A_{CFG} \in P$

Theorem: $A_{CFG} \in P$

Proof: Use DP (Dynamic Programming) = recursion + memory.

 $D = \text{"On input } \langle G, w, R \rangle$

"memoization"

- 1. If our earth ways to weight ite, w, = > xthem drioweach mude exsension ue.
- 2. Use D to test $\langle G, x, S \rangle$ and $\langle G, y, T \rangle$
- 3. *Accept* if both accept
- 4. Reject if none of the above accepted."

Then decide A_{CFG} by starting from G's start variable.

Total number of calls is $O(n^2)$ so time used is polynomial.

Alternately, solve all smaller sub-problems first: "bottom up"

same as before

Check-in 14.2

Suppose B is a CFL. Does that imply that $B \in P$?

- (a) Yes
- (b) No.

$A_{CFG} \in P \& Bottom-up DP$

Theorem: $A_{CFG} \in P$

Proof: Use bottom-up DP.

D ="On input $\langle G, w \rangle$

- 1. For each w_i and variable R Solve $\langle G, w_i, R \rangle$ by checking if $R \to w_i$ is a rule. Solve for substrings of length 1
- 2. For k=2,...,n and each substring u of w where |u|=k and variable R Solve $\langle G,u,R\rangle$ by checking for each $R\to ST$ and each division u=xy if both $\langle G,x,S\rangle$ and $\langle G,y,T\rangle$ were positive.

Solve for substrings of length k by using previous answers for substrings of length < k.

- 3. Accept if (G, w, S) is positive where S is the original start variable.
- 4. Reject if not."

Total number of calls is $O(n^2)$ so time used is polynomial.

Often, bottom-up DP is shown as filling out a table.

Satisfiability Problem

Defn: A *Boolean formula* ϕ has Boolean variables (TRUE/FALSE values) and Boolean operations AND (Λ), OR (V), and NOT (\neg).

Defn: ϕ is *satisfiable* if ϕ evaluates to True for some assignment to its variables. Sometimes we use 1 for True and 0 for False.

Example: Let $\phi = (x \lor y) \land (\overline{x} \lor \overline{y})$ (Notation: \overline{x} means $\neg x$) Then ϕ is satisfiable (x=1, y=0)

Defn: $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem (Cook, Levin 1971): $SAT \in P \rightarrow P = NP$

Proof method: polynomial time (mapping) reducibility

Check-in 14.3

Is $SAT \in NP$?

- (a) Yes.
- (b) No.
- (c) I don't know.
- (d) No one knows.

Polynomial Time Reducibility

Defn: A is polynomial time reducible to B $(A \leq_P B)$ if $A \leq_m B$ by a reduction function that is computable in polynomial time.

Theorem: If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$ then $A \in \mathbf{P}$.

Idea to show $SAT \in P \rightarrow P = NP$

f is computable in polynomial time

Quick review of today

- 1. $\mathsf{NTIME} (t(n))$ and NP
- 2. HAMPATH and $COMPOSITES \in NP$
- 3. P versus NP question
- 4. $A_{CFG} \in P$ via Dynamic Programming
- 5. The Satisfiability Problem *SAT*
- 6. Polynomial time reducibility