Partiel

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independantes. Seules les reponses soigneusement justifiées seront prises en compte.]

Dans la suite $(\Omega, \mathcal{F}, \mathbb{P})$ est un espace de probabilité fixé et muni d'une filtration $(\mathcal{F}_n)_{n\geqslant 0}$. Sauf indication explicite tout processus adapté ou martingale est référé à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$. On rappel que $\Delta X_k = X_k - X_{k-1}$.

Exercice 1.

- a) Soit $Z \sim \mathcal{E}(1)$ une v.a. exponentielle de paramètre 1 et t > 0. Soit $X = \min(Z, t)$ et $Y = \max(Z, t)$. Calculer $\mathbb{E}[Z|X]$ et $\mathbb{E}[Z|Y]$.
- b) Soit X, Y deux v.a. indépendantes telles que $X \sim Y \sim \mathcal{U}([0, 1])$ Soit Z = XY. Calculer $\mathbb{E}[X|Z]$ et $\mathbb{E}[Y|Z]$.

Exercice 2. Soit $(X_n)_{n\geqslant 0}$ un processus adapté et integrable. Montrer que si $\mathbb{E}[X_T] = \mathbb{E}[X_0]$ pour tout temps d'arrêt borné T alors $(X_n)_{n\geqslant 0}$ est une martingale.

Exercice 3.

- a) Soit $(X_n)_{n\geq 0}$ une sur-martingale telle que $\mathbb{E}[X_n]=1$ pour tout $n\geq 0$. Montrer que $(X_n)_{n\geq 0}$ est une martingale.
- b) Soient $(X_n)_{n\geqslant 0}$ et $(Y_n)_{n\geqslant 0}$ deux martingales de carré integrable (c-à-d $\mathbb{E}[X_n^2] < +\infty$ et $\mathbb{E}[Y_n^2] < +\infty$ pour tout $n\geqslant 0$). Montrer que

$$\mathbb{E}[X_n Y_n] = \mathbb{E}[X_0 Y_0] + \sum_{k=1}^n \mathbb{E}[\Delta X_k \Delta Y_k]$$

c) Soient $(X_n)_{n\geqslant 0}$ et $(Y_n)_{n\geqslant 0}$ deux martingales de carré integrable (c-à-d $\mathbb{E}[X_n^2]<+\infty$ et $\mathbb{E}[Y_n^2]<+\infty$ pour tout $n\geqslant 0$). Montrer que le processus $(M_n)_{n\geqslant 0}$ defini par

$$M_0 = 0,$$
 $M_n = X_n Y_n - \sum_{k=1}^n \Delta X_k \Delta Y_k$ pour $n \ge 1$

est une martingale.

d) Soit $T: \Omega \to \mathbb{N} \cup \{+\infty\}$ un temps d'arrêt et $(X_n)_{n \geq 0}$ un processus adapté. Soit $X_n^T = X_{n \wedge T}$ le processus arrêté en T. Montrer qu'il existe un processus prévisible et positif $(H_n)_{n \geq 1}$ tel que

$$X_n^T = X_0 + (H \cdot X)_n = X_0 + \sum_{k=1}^n H_k \Delta X_k \qquad \text{ pour tout } n \geqslant 1.$$

e) Soit $(X_n)_{n\geqslant 0}$ une martingale pour la filtration $(\mathcal{F}_n)_{n\geqslant 0}$ et soit $(\mathcal{G}_n = \sigma(X_0, ..., X_n))_{n\geqslant 0}$ la filtration naturelle de $(X_n)_{n\geqslant 0}$. Montrer que $(X_n)_{n\geqslant 0}$ est aussi une martingale par rapport à la filtration $(\mathcal{G}_n)_{n\geqslant 0}$ et que tout temps d'arrêt T par rapport à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$ est aussi un temps d'arrêt par rapport à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$.

Exercice 4. .

- a) Soit $(X_n)_{n\geq 0}$ un processus adapté et $Y_n = \max_{0\leq k\leq n} (X_n)$. Montrer que $T = \inf\{n \geq 1: X_n \geq Y_{n-1}\}$ est un temps d'arrêt et que $Y_T = X_T$ sur l'evenement $\{T < +\infty\}$.
- b) Soient T, S deux temps d'arrêt, montrer que U = T + S est un temps d'arrêt.
- c) Montrer que si $(T_n: \Omega \to \mathbb{N} \cup \{+\infty\})_{n \geqslant 1}$ est une suite de temps d'arrêt alors la variable aléatoire $T = \inf_{n \geqslant 1} T_n$ est un temps d'arrêt.
- d) Soit $(X_n)_{n\geqslant 0}$ une sur-martingale positive et $T=\inf\{n\geqslant 0\colon X_n=0\}$. On suppose que $T<+\infty$ presque surement. Montrer que $X_{T+k}=0$ p.s. pour tout $k\geqslant 0$ (une sur-martingale positive qui touche zero y reste). (Sugg: decomposer $\mathbb{E}[X_{T+k}]$ par rapport aux valeurs de T)

Exercice 5. Soit $(M_n)_{n\geqslant 0}$ une martingale telle que $|M_n|\leqslant K$ pour tout $n\geqslant 0$ où K>0 est une constante indépendant de n. Soit $(H_n)_{n\geqslant 1}$ un processus previsible tel que $|H_n|\leqslant 1/n$ pour tout $n\geqslant 1$. On pose

$$X_n = \sum_{k=1}^n H_k \Delta M_k, \qquad X_0 = 0$$

- a) Montrer que $(X_n)_{n\geqslant 0}$ est une martingale de carrée integrable (c-à-d $\mathbb{E}[X_n^2]<+\infty$ pour tout $n\geqslant 0$).
- b) Monter que $(X_n)_{n\geq 0}$ converge p.s. et dans L^2 .