<u>Chapter 6</u> Inner Product Spaces

6.1 Inner Products

- We want to impose further structure on v.s. so that we can talk about norm of a vector and orthogonality between two vectors.
 - \Diamond norm \equiv length
 - \Diamond orthogonal \equiv perpendicular
- \bigcirc <u>Def.</u> An inner product (IP) on a real/complex vector space V is a function that associates a real/complex number $\langle \mathbf{u}, \mathbf{v} \rangle$ with each pair of

vectors **u** and **v** in V in such a way that the following axioms are satisfied for all vectors **u**, **v**, and **w** in V and all scalars k:

- $\langle 1 \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle^*$ (i.e. complex conjugate of $\langle \mathbf{v}, \mathbf{u} \rangle$) (= $\langle \mathbf{v}, \mathbf{u} \rangle$ in the 'real' case)
- $\diamondsuit 2 \langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- $\diamondsuit 3 \langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$
- $\diamondsuit 4 \langle \mathbf{u}, \mathbf{u} \rangle \ge 0$, and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ iff $\mathbf{u} = \mathbf{0}$
- Def. A real vector space with an inner product is called a real inner product space.
 - Discussions on real IP space can be

- generalized to complex case.
- ♦ A complex vector space with an IP is called a complex inner product space.
- \bigcirc <u>Def.</u> Norm of a vector **u**: $||\mathbf{u}|| = \langle \mathbf{u}, \mathbf{u} \rangle 1/2$
- \bigcirc <u>Def.</u> Distance bet. **u** and **v**: $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$
- O Properties of inner products:
 - $\langle \rangle \langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$
 - $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
 - $\langle \langle \mathbf{u}, k\mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$
 - $\langle \mathbf{u} \mathbf{v}, \, \mathbf{w} \rangle = \langle \mathbf{u}, \, \mathbf{w} \rangle \langle \mathbf{v}, \, \mathbf{w} \rangle$

$$\langle \mathbf{u}, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{w} \rangle$$

- 6.2 Angle and Orthogonality in IP Spaces
- Thm. (Cauchy-Schwarz inequality) Let u, v
 be vectors in an IP space. Then,

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \, ||\mathbf{v}||$$

- \langle For memorization, recall that $\langle \mathbf{u}, \mathbf{v} \rangle = ||\mathbf{u}|| \, ||\mathbf{v}|| \cos(\theta)$ in Eucidean R^{n} .
- O Properties of norm:

$$\Diamond$$
 \parallel **u** $\parallel \geq 0$

$$\Diamond$$
 \parallel $\mathbf{u} \parallel = 0$ if and only if $\mathbf{u} = \mathbf{0}$

- \Diamond || $k\mathbf{u}$ || = | k / || \mathbf{u} ||
- $\langle || \mathbf{u} + \mathbf{v} || \leq || \mathbf{u} || + || \mathbf{v} ||$ (Triangle inequality)
- O Properties of distance:
 - $\Diamond d(\mathbf{u}, \mathbf{v}) \geq 0$
 - \Diamond $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$
 - $\Diamond d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
 - $\Diamond d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ (Triangle inequality)
- ① <u>Def.</u> Angle between **u** and **v**:

- $\cos^{-1}(\langle \mathbf{u}, \mathbf{v} \rangle / (||\mathbf{u}|| ||\mathbf{v}||))$ (range: $0 \sim \pi$)
- \langle The definition was inspired by $\langle \mathbf{u}, \mathbf{v} \rangle = ||\mathbf{u}|| \, ||\mathbf{v}|| \, \cos(\theta)$ in Eucidean R^{n} .
- \bigcirc <u>Def.</u> **u** and **v** in an IP space are said to be orthogonal (denoted as $\mathbf{u} \perp \mathbf{v}$) if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- © 0 is orthogonal to any vector.
- Thm. (Generalized Theorem of Pythagoras)
 If $\mathbf{u} \perp \mathbf{v}$, then $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.
- \bigcirc Consider W: a subspace of an IP space V. \bigcirc Def. A vector \mathbf{u} in V is said to be

- orthogonal to W if it is orthogonal to every vector in W.
- \diamondsuit <u>Def.</u> The set of all vectors in V that are orthogonal to W is called the orthogonal complement of W (denoted as W^{\perp}).
- Operation Properties of orthogonal complements:
 - \diamondsuit W^{\perp} is a subspace of V.
 - $\diamondsuit W \cap W^{\perp} = \mathbf{0}.$
 - $\langle \rangle (W^{\perp})^{\perp} = W.$
- \bigcirc Let A be an $m \times n$ matrix. We have the following geometric links between subspaces:

- \Diamond nullspace(A) and row-space(A) are orthogonal complements in R^n (= $R^{1\times n}$) wrt the Euclidean IP.
- \diamondsuit nullspace(A^T) and column-space(A) are orthogonal complements in $R^{m\times 1}$ wrt the Euclidean IP.
- O In any IP space V, the zero space {0} and V are orthogonal complements.
- Two more equivalent statements to an $n \times n$ matrix **A** being invertible (derived from the fact that $\mathbf{A}\mathbf{x}=\mathbf{0}$ has only trivial solution):

- \diamondsuit The orthogonal complement of nullspace(**A**) is \mathbb{R}^n .
- ♦ The orthogonal complement of row-space(A) is {0}.

6.3 Orthonormal Bases

- ⊚ <u>Def.</u> $S=\{v_1,v_2,...,v_n\}$ is an orthogonal set iff v_i $\bot v_j$ for all $i \ne j$. If, in addition, $||v_j||=1$ for all i, then, S is an orthonormal (o.n.) set.
- \underline{Thm} . If $S = \{v_1, v_2, ..., v_n\}$ is an orthogonal set, then it is l.i.

Prf. Consider
$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + ... + k_n\mathbf{v}_n = \mathbf{0}$$
 - (#)
 $<$ LHS(#), $\mathbf{v}_1> = <$ RHS(#), $\mathbf{v}_1> = 0$ - (@)
In the meantime, $<$ LHS(#), $\mathbf{v}_1>$
 $= k_1 < \mathbf{v}_1, \mathbf{v}_1> + k_2 < \mathbf{v}_2, \mathbf{v}_1> + ... + k_n < \mathbf{v}_n, \mathbf{v}_1>$
 $= k_1 < \mathbf{v}_1, \mathbf{v}_1> + k_2 \cdot 0 + ... + k_n \cdot 0$ - (\$)
 $(and < \mathbf{v}_1, \mathbf{v}_1> \neq 0, \text{ unless } \mathbf{v}_1 = \mathbf{0})$
(@) and (\$) → $k_1 = 0$
Similarly, we can show $k_2 = 0, k_3 = 0, ...$

- \diamondsuit The scalars $\langle \mathbf{u}, \mathbf{v}_1 \rangle$, $\langle \mathbf{u}, \mathbf{v}_2 \rangle$, ..., $\langle \mathbf{u}, \mathbf{v}_n \rangle$ are the coordinates of the vector \mathbf{u} wrt \mathbf{B} .
- $\langle \mathbf{u} \rangle_{B} = [\langle \mathbf{u}, \mathbf{v}_{1} \rangle, \langle \mathbf{u}, \mathbf{v}_{2} \rangle, \dots, \langle \mathbf{u}, \mathbf{v}_{n} \rangle]^{T}$ denotes the coordinate vector of \mathbf{u} wrt \mathbf{B} .
- Equivalently,

$$(\mathbf{u})_{\mathrm{B}} = (\langle \mathbf{u}, \mathbf{v}_1 \rangle, \langle \mathbf{u}, \mathbf{v}_2 \rangle, \ldots, \langle \mathbf{u}, \mathbf{v}_n \rangle)$$

○ Thm. If B is an o.n. basis for an *n*-dim IP space, and if $[\mathbf{u}]_B = [u_1, u_2, ..., u_n]^T$ and $[\mathbf{v}]_B = [v_1, v_2, ..., v_n]^T$, then

$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

$$d(\mathbf{u}, \mathbf{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

- With o.n. bases, the computation of general norms and IP's can be reduced to the computation of Euclidean norms and IP's of the coordinate vectors.

- every vector \mathbf{u} in V can be expressed in exactly one way as $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$, where \mathbf{w}_1 is in W and \mathbf{w}_2 is in W^{\perp} .
- \diamondsuit The vector \mathbf{w}_1 is called the (orthogonal) projection of \mathbf{u} on(to) W, and is denoted as $\operatorname{proj}_W \mathbf{u}$.
- \diamondsuit The vector \mathbf{w}_2 is called the component of \mathbf{u} orthogonal to W, and is denoted as $\operatorname{proj}_{W\perp} \mathbf{u}$.
- \Diamond If $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is an o.n. basis of W, then $\operatorname{proj}_W \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + ... + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n$.

 $\langle \rangle$ If $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is an orthogonal basis of W, then $\operatorname{proj}_W \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + ... + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n$, where $\mathbf{v}_i = \mathbf{w}_i / ||\mathbf{w}_i||$ (i.e. normalized vector

(aka. unit vector) along the \mathbf{w}_i direction).

- Thm. Every nonzero finite-dim IP space V has an o.n. basis.
 - \diamondsuit Given any basis (or more loosely, any spanning set) of V, an o.n. (or more loosely, orthogonal) basis (not unique) can be constructed by the Gram-Schmidt process.

- Key idea: We sequentially modify each
 basis vector so that it is orthogonal to all of
 the previously established basis vectors.
- More exactly speaking, we subtract all projections onto previous basis vectors from the current basis vector.
- © QR decomposition: If A is an $m \times n$ matrix with l.i. columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix with o.n. column vectors, and R is an $n \times n$ invertible upper triangular matrix.

- 6.4 Best Approximation and Least Squares
- O Projection in 3-D Euclidean space onto a plane:

 - \diamondsuit Therefore, if we let $\mathbf{u} = \mathsf{OP}$, the distance between P and W is $||\mathbf{u} \mathsf{proj}_{\mathsf{W}}\mathbf{u}||$.

- \diamondsuit In other words, among all vectors w in W, the vector $\mathbf{w} = \text{proj}_{\mathbf{W}} \mathbf{u}$ minimizes the distance $||\mathbf{v} \mathbf{w}||$.
- ♦ In the sense of minimum distance of error (vector), we can regard proj_Wu as the "best approximation" to u by the vectors in W.
- Best approximation theorem for general IP space: If W is a subspace of an IP space V, and if u is a vector in V, then projwu is the best approximation to u from W in the sense.

- that $\|\mathbf{u} \operatorname{proj}_{\mathbf{W}}\mathbf{u}\| < \|\mathbf{u} \mathbf{w}\|$, where \mathbf{w} is any other vector in \mathbf{W} .
- Least squares problem:
 - \bigcirc Given $\mathbf{A}\mathbf{x} = \mathbf{b}$ of m equations in n unknowns, find a vector \mathbf{x} , if possible, so that $||\mathbf{A}\mathbf{x} \mathbf{b}||$ (wrt the Euclidean IP) is minimized.
 - \diamondsuit Such a vector is called a least squares solution (denoted as \mathbf{x}_{LS}).
 - ♦ Denote col-space(A) as W. The least squares problem is (geometrically)

equivalent to finding a vector \mathbf{x} in $\mathbf{R}^{n\times l}$ such that $\mathbf{A}\mathbf{x}$ is the closest vector in W to \mathbf{b} . In other words, $\mathbf{A}\mathbf{x}_{LS} = \text{proj}_{\mathbf{W}}\mathbf{b}$.

Orthogonality requirement:

error (i.e. $\mathbf{b} - \mathbf{A}\mathbf{x}_{LS}$) \perp W

Equivalently, we require

 $\mathbf{b} - \mathbf{A} \mathbf{x}_{LS} \perp$ every column of \mathbf{A}

 \rightarrow We solve for \mathbf{x} in $\mathbf{A}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = \mathbf{0}$.

 \rightarrow $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$ (normal equations)

 \rightarrow $\mathbf{x}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$, if $\mathbf{A}^T \mathbf{A}$ is invertible.

 \diamondsuit Thm. $\mathbf{A}^{T}\mathbf{A}$ is invertible iff \mathbf{A} has l.i.

- columns.
- \diamondsuit proj_W $\mathbf{b} = \mathbf{A}\mathbf{x}_{LS} = \mathbf{A}(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{b}$
- Orthogonal projection:
 - ♦ <u>Def.</u> If W is a subspace of $R^{m\times l}$, then the transformation P: $R^{m\times l}$ \rightarrow W that maps each vector **x** in $R^{m\times l}$ into proj_W**x** is called orthogonal projection of $R^{m\times l}$ on(to) W.
 - \diamondsuit Matrix **A**: m×n. Then, $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$ performs the orthogonal projection of $\mathbf{R}^{m\times 1}$ onto col-space(**A**).
- More equivalent statement for invertibility of

an nxn matrix A:

- \diamondsuit The orthogonal complement of the nullspace of **A** is \mathbb{R}^n .
- \diamondsuit The orthogonal complement of the row space of **A** is $\{0\}$.
- $\langle \rangle$ **A**^T**A** is invertible.