ESO 208A: Computational Methods in Engineering Iterative Methods

Saumyen Guha

Department of Civil Engineering IIT Kanpur

Sparse Matrix: Origin

Laplace Equation:

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

Boundary Conditions:

$$\phi(x,0) = c \qquad \phi(x,L_y) = a$$

$$\phi(0,y) = d \qquad \phi(L_x,y) = b$$

Also applicable for Network Analysis

Size of the matrix 16×16 Total number of elements = 256 Number of non-zero elements = 56

Sparse Matrix

Total number of elements = n^2 Number of non-zero elements ~ O(n)

Direct methods algorithms such as Gauss elimination, Gauss Jordon, LU decomposition are inefficient for Banded and Sparse Matrices!

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \cdots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + \cdots + a_{2n}x_{n} = b_{2}$$

$$a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} + \cdots + a_{3n}x_{n} = b_{3}$$

$$a_{i1}x_{1} + a_{i2}x_{2} + a_{i3}x_{3} + \cdots + a_{in}x_{n} = b_{i}$$

$$a_{i1}x_{1} + a_{i2}x_{2} + a_{i3}x_{3} + \cdots + a_{in}x_{n} = b_{i}$$

$$a_{i1}x_{1} + a_{i2}x_{2} + a_{i3}x_{3} + \cdots + a_{in}x_{n} = b_{i}$$

- Assume (initialize) a solution vector x
- Compute a new solution vector x_{new}
- Iterate until $\| x x_{new} \|_{\infty} \le \varepsilon$
- We will learn two methods: Jacobi and Gauss Seidel

Jacobi and Gauss Seidel

• *Jacobi*: for the iteration index k (k = 0 for the initial guess)

$$b_{i} - \sum_{j=1, j \neq i}^{n} a_{ij} x_{j}^{(k)}$$

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} a_{ii}, \quad i = 1, 2, \dots, n$$

• *Gauss Seidel*: for the iteration index k (k = 0 for the initial guess)

$$b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}$$

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}, \quad i = 1, 2, \dots, n$$

Stopping Criteria

• Generate the error vector (e) at each iteration as

$$e_i^{(k+1)} = \left| \frac{x_i^{(k+1)} - x_i^{(k)}}{x_i^{(k)}} \right|; \qquad i = 1, 2, \dots n$$

• Stop when: $\| e \|_{\infty} \le \varepsilon$

Let us see an example?

Iterative Methods (Example)

Solve the following system of equations using Jacobi and Gauss Seidel methods and using initial guess as zero for all the variables with error less than 0.01%. Compare the number iterations required for solution using two methods:

$$x_1 + 2x_2 - x_4 = 1$$

$$x_2 + 2x_3 = 1.5$$

$$-x_3 + 2x_4 = 1.5$$

$$x_1 + 2x_3 - x_4 = 2$$

$$x_1^{(k+1)} = \frac{1 - 2x_2^{(k)} + x_4^{(k)}}{1} \qquad x_2^{(k+1)} = \frac{1.5 - 2x_3^{(k)}}{1}$$
$$x_3^{(k+1)} = \frac{1.5 - 2x_4^{(k)}}{1} \qquad x_4^{(k+1)} = \frac{2 - x_1^{(k)} - 2x_4^{(k)}}{1}$$

$$x_3^{(k+1)} = \frac{1.5 - 2x_4^{(k)}}{-1} \qquad x_4^{(k+1)} = \frac{2 - x_1^{(k)} - 2x_3^{(k)}}{-1}$$

$$x_1^{(k+1)} = \frac{1 - 2x_2^{(k)} + x_4^{(k)}}{1} \qquad x_2^{(k+1)} = \frac{1.5 - 2x_3^{(k)}}{1}$$
$$x_3^{(k+1)} = \frac{1.5 - 2x_4^{(k)}}{-1} \qquad x_4^{(k+1)} = \frac{2 - x_1^{(k+1)}}{-1}$$

$$x_4^{(k+1)} = \frac{2 - x_1^{(k+1)} - 2x_3^{(k+1)}}{-1}$$

Iterative methods (Example)

If you iterate, both the methods will diverge

Jacobi					
Iter	x1	x2	x3	x4	
0	0	0	0	0	
1	1	1.5	-1.5	-2	
2	-4	4.5	-5.5	-4	90.9
3	-12	12.5	-9.5	-17	76.5
4	-41	20.5	-35.5	-33	70.7
5	-73	72.5	-67.5	-114	71.1
6	-258	136.5	-229.5	-210	71.7
7	-482	460.5	-421.5	-719	70.8
8	-1639	844.5	-1439.5	-1327	70.6
9	-3015	2880.5	-2655.5	-4520	70.6
10	-10280	5312.5	-9041.5	-8328	70.7
11	-18952	18084.5	-16657.5	-28365	70.6
12	-64533	33316.5	-56731.5	-52269	70.6

Gauss S	eidel				
Iter	x1	x2	х3	x4	
0	0	0	0	0	
1	1	1.5	-1.5	-4	
2	-6	4.5	-9.5	-27	85.2
3	-35	20.5	-55.5	-148	81.8
4	-188	112.5	-297.5	-785	81.1
5	-1009	596.5	-1571.5	-4154	81.1
6	-5346	3144.5	-8309.5	-21967	81.1
7	-28255	16620.5	-43935.5	-116128	81.1
8	-149368	87872.5	-232258	-613885	81.1
9	-789629	464516.5	-1227772	-3245174	81.1
10	-4174206	2455545	-6490350	-1.7E+07	81.1
11	-2.2E+07	12980701	-3.4E+07	-9.1E+07	81.1
12	-1.2E+08	68619633	-1.8E+08	-4.8E+08	81.1

Is the problem *ill conditioned*? The answer is NO!

Iterative methods (Example)

$$x_1 + 2x_2 - x_4 = 1$$

$$x_2 + 2x_3 = 1.5$$

$$-x_3 + 2x_4 = 1.5$$

$$x_1 + 2x_3 - x_4 = 2$$

A=

$$b=$$

1.5

Pivoting: Columns 2 to 1, 3 to 2, 4 to 3 and 1 to 4.

This is equivalent to change of variables:

$$x_1$$
 (new) = x_2 (original)
 x_2 (new) = x_3 (original)
 x_3 (new) = x_4 (original)
 x_4 (new) = x_1 (original)

After Pivoting

Original Problem

0

0

0

A=	2	0	-1	1	b=	1
	1	2	0	0		1.5
	0	-1	2	0		1.5
	0	2	-1	1		2

Iterative Methods (Example)

New Iteration Equations after pivoting (variable identifiers in the subscript are for the new renamed variables):

A=	2	0	-1	1	b=	1
	1	2	0	0		1.5
	0	-1	2	0		1.5
	0	2	-1	1		2

$$x_{1}^{(k+1)} = \frac{1 + x_{3}^{(k)} - x_{4}^{(k)}}{2} \quad x_{2}^{(k+1)} = \frac{1.5 - x_{1}^{(k)}}{2}$$

$$Jacobi$$

$$x_{3}^{(k+1)} = \frac{1.5 + x_{2}^{(k)}}{2} \qquad x_{4}^{(k+1)} = \frac{2 - 2x_{2}^{(k)} + x_{3}^{(k)}}{1}$$

$$x_{1}^{(k+1)} = \frac{1 + x_{3}^{(k)} - x_{4}^{(k)}}{2} \quad x_{2}^{(k+1)} = \frac{1.5 - x_{1}^{(k+1)}}{2}$$

$$Seidel$$

$$x_{3}^{(k+1)} = \frac{1.5 + x_{2}^{(k+1)}}{2} \qquad x_{4}^{(k+1)} = \frac{2 - 2x_{2}^{(k+1)} + x_{3}^{(k+1)}}{1}$$

Solution: Jacobi

Iter	x1	x2	х3	x4	e	32	0.148	0.656	1.089	1.721	3.529	65	0.168	0.667	1.083	1.751	0.174
0	0.000	0.000	0.000	0.000	11011	33	0.184	0.676	1.078	1.777	3.131	66	0.166	0.666	1.084	1.749	0.159
1	0.500	0.750	0.750	2.000		34	0.151	0.658	1.088	1.726	2.940	67	0.167	0.667	1.083	1.751	0.145
2	-0.125	0.500	1.125	1.250	60.000	35	0.181	0.675	1.079	1.772	2.612	68	0.166	0.666	1.084	1.749	0.133
3	0.438	0.813	1.000	2.125	41.176	36	0.153	0.659	1.087	1.730	2.449	69	0.167	0.667	1.083	1.751	0.121
4	-0.063	0.531	1.156	1.375	54.545	37	0.179	0.673	1.080	1.768	2.186	70	0.166	0.666	1.084	1.749	0.111
5	0.391	0.781	1.016	2.094	34.328	38	0.156	0.661	1.087	1.733	2.035	71	0.167	0.667	1.083	1.751	0.101
6	-0.039	0.555	1.141	1.453	44.086	39	0.177	0.672	1.080	1.765	1.827	72	0.166	0.666	1.083	1.749	0.093
7	0.344	0.770	1.027	2.031	28.462	40	0.157	0.662	1.086	1.736	1.697	73	0.167	0.667	1.083	1.751	0.084
8	-0.002	0.578	1.135	1.488	36.483	41	0.175	0.671	1.081	1.763	1.525	74	0.166	0.666	1.083	1.749	0.077
9	0.323	0.751	1.039	1.979	24.778	42	0.159	0.662	1.086	1.738	1.413	75	0.167	0.667	1.083	1.751	0.070
10	0.030	0.588	1.125	1.537	28.717	43	0.174	0.671	1.081	1.761	1.275	76	0.166	0.666	1.083	1.749	0.064
11	0.294	0.735	1.044	1.949	21.123	44	0.160	0.663	1.085	1.740	1.177	77	0.167	0.667	1.083	1.750	0.059
12	0.048	0.603	1.117	1.574	23.771	45	0.173	0.670	1.082	1.759	1.064	78	0.166	0.667	1.083	1.750	0.054
13	0.271	0.726	1.051	1.912	17.637	46	0.161	0.664	1.085	1.742	0.982	79	0.167	0.667	1.083	1.750	0.049
14	0.070	0.614	1.113	1.599	19.537	47	0.172	0.669	1.082	1.757	0.888	80	0.166	0.667	1.083	1.750	0.045
15	0.257	0.715	1.057	1.885	15.143	48	0.162	0.664	1.085	1.743	0.818	81	0.167	0.667	1.083	1.750	0.041
16	0.086	0.622	1.108	1.627	15.827	49	0.171	0.669	1.082	1.756	0.742	82	0.166	0.667	1.083	1.750	0.037
17	0.240	0.707	1.061	1.864	12.734	50	0.163	0.665	1.084	1.744	0.682	83	0.167	0.667	1.083	1.750	0.034
18	0.098	0.630	1.103	1.647	13.200	51	0.170	0.669	1.082	1.755	0.619	84	0.166	0.667	1.083	1.750	0.031
19	0.228	0.701	1.065	1.844	10.664	52	0.164	0.665	1.084	1.745	0.569	85	0.167	0.667	1.083	1.750	0.028
20	0.111	0.636	1.100	1.663	10.858	53	0.169	0.668	1.082	1.754	0.516	86	0.167	0.667	1.083	1.750	0.026
21	0.219	0.695	1.068	1.829	9.054	54	0.164	0.665	1.084	1.746	0.474	87	0.167	0.667	1.083	1.750	0.024
22	0.120	0.641	1.097	1.679	8.940	55	0.169	0.668	1.083	1.754	0.431	88	0.167	0.667	1.083	1.750	0.022
23	0.209	0.690	1.070	1.816	7.568	56	0.165	0.665	1.084	1.747	0.395	89	0.167	0.667	1.083	1.750	0.020
24	0.127	0.645	1.095	1.690	7.458	57	0.169	0.668	1.083	1.753	0.360	90	0.167	0.667	1.083	1.750	0.018
25	0.203	0.686	1.073	1.804	6.344	58	0.165	0.666	1.084	1.747	0.330	91	0.167	0.667	1.083	1.750	0.017
26	0.134	0.649	1.093	1.700	6.157	59	0.168	0.668	1.083	1.753	0.300	92	0.167	0.667	1.083	1.750	0.015
27	0.197	0.683	1.074	1.796	5.344	60	0.165	0.666	1.084	1.748	0.275	93	0.167	0.667	1.083	1.750	0.014
28	0.139	0.652	1.091	1.708	5.110	61	0.168	0.667	1.083	1.752	0.250	94	0.167	0.667	1.083	1.750	0.013
29	0.192	0.680	1.076	1.788	4.458	62	0.165	0.666	1.084	1.748	0.229	95	0.167	0.667	1.083	1.750	0.011
30	0.144	0.654	1.090	1.715	4.260	63	0.168	0.667	1.083	1.752	0.209	96	0.167	0.667	1.083	1.750	0.010
31	0.188	0.678	1.077	1.782	3.736	64	0.166	0.666	1.084	1.748	0.191	97	0.167	0.667	1.083	1.750	0.010

Number of iteration required to achieve a relative error of < 0.01% = 97

Solution: Gauss Seidel

Iter	x1	x2	x 3	x4	e
0	0.000	0.000	0.000	0.000	
1	0.500	0.500	1.000	2.000	
2	0.000	0.750	1.125	1.625	30.769
3	0.250	0.625	1.063	1.813	13.793
4	0.125	0.688	1.094	1.719	7.273
5	0.188	0.656	1.078	1.766	3.540
6	0.156	0.672	1.086	1.742	1.794
7	0.172	0.664	1.082	1.754	0.891
8	0.164	0.668	1.084	1.748	0.447
9	0.168	0.666	1.083	1.751	0.223
10	0.166	0.667	1.083	1.750	0.112
11	0.167	0.667	1.083	1.750	0.056
12	0.167	0.667	1.083	1.750	0.028
13	0.167	0.667	1.083	1.750	0.014
14	0.167	0.667	1.083	1.750	0.007

Number of iteration required to achieve a relative error of < 0.01% = 14

So, what makes the methods *diverge*? When do we need *pivoting* or *scaling* or *equilibration* for the *iterative methods*? Let's analyze for the *convergence criteria*!

Questions?

 What are the condition of convergence for the iterative methods?

 Rate of convergence? Can we make them converge faster?

$$\begin{bmatrix} a_{11} & a_{12} & \cdot & \cdot & a_{1n} \\ a_{21} & a_{22} & \cdot & \cdot & a_{2n} \\ a_{31} & a_{32} & \cdot & \cdot & a_{3n} \\ & \cdot & \cdot & \cdot & \cdot \\ a_{m1} & a_{m2} & \cdot & \cdot & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ & \cdot \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ & \cdot \\ b_m \end{bmatrix}$$

How the iteration schemes look in the matrix form?

$$\begin{bmatrix} a_{11} & 0 \cdots & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 0 \\ 0 & 0 & a_{33} & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} + \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 0 & a_{23} & \cdots & a_{2n} \\ 0 & 0 & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

- A = L + D + U
- Ax = b translates to (L + D + U)x = b
- **Jacobi:** for an iteration counter k

$$Dx^{(k+1)} = -(U+L)x^{(k)} + b$$
$$x^{(k+1)} = -D^{-1}(U+L)x^{(k)} + D^{-1}b$$

• Gauss Seidel: for an iteration counter k

$$(L+D)x^{(k+1)} = -Ux^{(k)} + b$$
$$x^{(k+1)} = -(L+D)^{-1}Ux^{(k)} + (L+D)^{-1}b$$

Iterative Methods: Convergence

- All iterative methods: $x^{(k+1)} = Sx^{(k)} + c$
- Jacobi: $S = -D^{-1}(U + L)$ $c = D^{-1}b$
- Gauss Seidel: $S = -(L+D)^{-1}U$ $c = (L+D)^{-1}b$
- For true solution vector (x): x = Sx + c
- True error: $e^{(k)} = x x^{(k)}$
- $e^{(k+1)} = Se^{(k)}$ or $e^{(k)} = S^k e^{(0)}$
- Methods will converge if: $\lim_{k \to \infty} e^{(k)} = 0$

$$\lim_{k \to \infty} S^k = 0$$

Iterative Methods: Convergence

- For the solution to exist, the matrix should have full rank (= n)
- The iteration matrix S will have n eigenvalues $\{\lambda_j\}_{j=1}^n$ and n independent eigenvectors $\{v_j\}_{j=1}^n$ that will form the basis for a n-dimensional vector space
- Initial error vector: $e^{(0)} = \sum_{j=1}^{n} C_j v_j$
- From the definition of eigenvalues: $e^{(k)} = \sum_{j=1}^{n} C_j \lambda_j^k v_j$
- Necessary condition: $\rho(S) < 1$
- Sufficient condition: ||S|| < 1 because $\rho(A) \le ||A||$

Jacobi Convergence

$$S = -D^{-1}(L+U)$$

$$S_{ij} = \begin{cases}
-\frac{a_{ij}}{a_{ii}} & \text{for } i \neq j \\
0 & \text{for } i = j\end{cases}$$

If we use row-sum norm:

$$||S|| = \max_{\substack{1 \text{ for } i=1, j^{1}i}} \left| \begin{vmatrix} a_{ij} \\ a_{ij} \end{vmatrix} \right| = \max_{\substack{1 \text{ for } i=1, j^{1}i}} \left| \begin{vmatrix} a_{ij} \\ a_{ij} \end{vmatrix} \right| = \max_{\substack{1 \text{ for } i=1, j^{1}i}} \left| \begin{vmatrix} a_{ij} \\ a_{ij} \end{vmatrix} \right|$$

Iterative Methods: Convergence

Using the **definition of** *S* and using *row-sum norm* for matrix *S*, we obtain the following as the **sufficient condition for convergence** for both Jacobi and Gauss Seidel:

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|, \quad i=1,2,\cdots n$$

If the original matrix is diagonally dominant, it will always converge!

Rate of Convergence

For large *k*:

$$\frac{\left\|e^{(k+1)}\right\|}{\left\|e^{(k)}\right\|} \cong \rho(S)$$

or

$$\frac{\|e^{(k)}\|}{\|e^{(0)}\|} \cong \rho(S)^k$$

Why?

Rate of Convergence

Number of iteration (k) required to decrease the initial error by a factor of 10^{-m} is then given by:

$$\frac{\|e^{(k)}\|}{\|e^{(0)}\|} \cong \rho(S)^k = 10^{-m}$$

or

$$k \ge -\frac{m}{\log_{10} \rho(S)} = \frac{m}{(-\log_{10} \rho(S))} = \frac{m}{R}$$

R is the asymptotic rate of convergence of the iterative methods.

Improving Convergence

Recall Gauss Seidel:

$$b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}$$

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}, \quad i = 1, 2, \dots, n$$

Re-Write As:

$$b_{i} - \overset{i-1}{\overset{o}{\bigcirc}} a_{ij} x_{j}^{(k+1)} - \overset{n}{\overset{o}{\bigcirc}} a_{ij} x_{j}^{(k)}$$

$$x_{i}^{(k+1)} = x_{i}^{(k)} + \frac{j-1}{a_{ii}} , \quad i = 1, \quad 2, \quad \times \times \times \quad n$$

$$x_i^{(k+1)} = x_i^{(k)} + d_i^{(k)}, \quad i = 1, 2, \quad \times \times \times n$$

Improving Convergence

Denoting:
$$\Gamma(S) = |I_{\text{max}}|$$

$$e^{(k+1)} @ | /_{\max} | e^{(k)} \text{ or } e^{(k+1)} - e^{(k)} @ | /_{\max} | (e^{(k)} - e^{(k-1)})$$

For any iterative method: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{d}^{(k)}$

$$d^{(k)} @ /_{\max} d^{(k-1)}$$

Successive Over/Under Relaxation

$$x_i^{(k+1)} = x_i^{(k)} + Wd_i^{(k)}, \quad i = 1, 2, \text{ } \times \times \times n, \quad W > 0$$

 $0 < \omega < 1$: Under relaxation

 $\omega = 1$: Gauss Seidel

 $1 < \omega < 2$: Over Relaxation

$$b_i - \mathop{\hat{\bigcirc}}\limits^{i-1} a_{ij} x_j^{(k+1)} - \mathop{\hat{\bigcirc}}\limits^n a_{ij} x_j^{(k)} \\ x_i^{(k+1)} = (1 - \mathcal{W}) x_i^{(k)} + \mathcal{W} \frac{j=1}{a_{ij}} \frac{j=i+1}{a_{ij}}, \quad i=1, 2, \quad \times \times \times n$$

Solution of System Nonlinear Equations

System of Non-linear Equations

$$f(x) = 0$$

f is now a vector of functions: $f = \{f_1, f_2, \dots f_n\}^T$ \mathbf{x} is a vector of independent variables: $\mathbf{x} = \{x_1, x_2, \dots x_n\}^T$

$$f_1(x_1, x_2,...,x_n) = 0$$

 $f_2(x_1, x_2,...,x_n) = 0$

-

_

$$f_n(x_1, x_2, ..., x_n) = 0$$

✓ Open methods: Fixed point, Newton-Raphson, Secant

Open Methods: Fixed Point

✓ Rewrite the system as follows:

$$x_1 = \phi_1(x_1, x_2, ..., x_n)$$

$$x_2 = \phi_2(x_1, x_2, ..., x_n)$$

$$x_n = \phi_n(x_1, x_2, ..., x_n)$$

$$f(x) = \mathbf{0} \text{ is rewritten as } x = \Phi(x)$$

- ✓ Initialize: assume $x^{(0)}$
- ✓ Iteration Step k: $x^{(k+1)} = \Phi(x^{(k)})$, initialize $x^{(0)}$
- ✓ Stopping Criteria: $\frac{\|x^{(k+1)} x^{(k)}\|}{\|x^{(k)}\|} \le \varepsilon$

Open Methods: Fixed Point

Condition for convergence:

For single variable: $|g'(\xi)| < 1$

For multiple variable, the derivative becomes the Jacobian

matrix
$$\mathbb{J}$$
 whose elements are $J_{ij} = \frac{\partial \phi_i}{\partial x_j}$.

Example 2-variables:
$$\mathbb{J} = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} \end{bmatrix}$$

- ✓ Sufficient Condition: ||J|| < 1
- ✓ Necessary Condition: Spectral Radius, $\rho(J) < 1$

Open Methods: Newton-Raphson

Example 2-variable: $f_1(x, y) = 0$ and $f_2(x, y) = 0$

2-d Taylor's series:

$$0 = f_{1}(x^{(k+1)}, y^{(k+1)}) = f_{1}(x^{(k)}, y^{(k)}) + (x^{(k+1)} - x^{(k)}) \frac{\partial f_{1}}{\partial x} \Big|_{(x^{(k)}, y^{(k)})} + (y^{(k+1)} - y^{(k)}) \frac{\partial f_{1}}{\partial y} \Big|_{(x^{(k)}, y^{(k)})} + HOT$$

$$0 = f_{2}(x^{(k+1)}, y^{(k+1)}) = f_{2}(x^{(k)}, y^{(k)}) + (x^{(k+1)} - x^{(k)}) \frac{\partial f_{2}}{\partial x} \Big|_{(x^{(k)}, y^{(k)})} + (y^{(k+1)} - y^{(k)}) \frac{\partial f_{2}}{\partial y} \Big|_{(x^{(k)}, y^{(k)})} + HOT$$

$$\begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}_{(x^{(k)}, y^{(k)})} \begin{bmatrix} (x^{(k+1)} - x^{(k)}) \\ (y^{(k+1)} - y^{(k)}) \end{bmatrix} = \begin{bmatrix} -f_1(x^{(k)}, y^{(k)}) \\ -f_2(x^{(k)}, y^{(k)}) \end{bmatrix}$$

Open Methods: Newton-Raphson

- ✓ Initialize: assume $x^{(0)}$
- ✓ Recall single variable:

$$0 = f(x_{k+1}) = f(x_k) + (x_{k+1} - x_k)f'(x_k) + HOT$$

✓ Multiple Variables:

$$0 = f(x^{(k+1)}) = f(x^{(k)}) + (x^{(k+1)} - x^{(k)})J(x_k) + HOT$$

✓ Iteration Step *k*:

$$\Delta x J(x^{(k)}) = -f(x^{(k)}); \quad x^{(k+1)} = x^{(k)} + \Delta x$$

✓ Stopping Criteria: $\frac{\|x^{(k+1)} - x^{(k)}\|}{\|x^{(k)}\|} \le \varepsilon$

Open Methods: Newton-Raphson

Example 2-variable:

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{\begin{pmatrix} x_1^{(k)}, x_2^{(k)} \end{pmatrix}} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} -f_1 \left(x_1^{(k)}, x_2^{(k)} \right) \\ -f_2 \left(x_1^{(k)}, x_2^{(k)} \right) \end{bmatrix}$$

$$\begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} - \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} = \begin{bmatrix} \left(x_1^{(k+1)} - x_1^{(k)} \right) \\ \left(x_2^{(k+1)} - x_2^{(k)} \right) \end{bmatrix}$$

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} + \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix}$$

Open Methods: Secant

- ✓ Jacobian of the Newton-Raphson method is evaluated numerically using difference approximation.
- ✓ Numerical methods for estimation of derivative of a function will be covered in detail later.
- ✓ Rest of the method is same.

ESO 208A: Computational Methods in Engineering

Eigenvalues

Saumyen Guha

Department of Civil Engineering IIT Kanpur

Estimation of Eigenvalues

- ✓ Largest eigenvalue: Power Method
- ✓ Smallest eigenvalue: Inverse Power Method
- ✓ All Eigenvalues:
 - ✓ Inverse power method with shift
 - ✓ Faddeev-Leverrier method
 - ✓ QR Decomposition

The Power Method

Works if:

There is a unique eigenvalue of maximum magnitude!

$$| /_1 | > | /_2 | ^3 | /_3 | ^3 \dots ^3 | /_n |$$

There are *n* independent eigenvectors corresponding to *n* eigenvalues

The Power Method

Initialize an arbitrary non-zero vector $(z^{(0)})$ of length n (same as that of the size of the square matrix)

Iteration Scheme: $z^{(k+1)} = Az^{(k)} = A^{k+1}z^{(0)}$

The vector $(z^{(k)})$ converges to the eigenvector corresponding to the eigenvalue of the maximum magnitude! Why? How?

Proof of Convergence: Power Method

Denote x_i as the eigenvector corresponding to the eigenvalue λ_i

$$z^{(0)} = \partial_1 x_1 + \partial_2 x_2 + \times \times \times \times + \partial_n x_n$$
 α_i 's are the constants

Since, $Ax_j = I_j x_j$

$$z^{(k)} = A^k z^{(0)} = A^k \sum_{i=1}^n \partial_i x_i = \sum_{i=1}^n \prod_i^k \partial_i x_i = \prod_1^k \left(\partial_1 x_1 + \sum_{j=2}^n \left(\frac{j}{j} \right)^k \partial_j x_j \right)$$

For Large k: $z^{(k)} \gg /_1^k a_1 x_1$

The Power Method

 l_1^k may become very large as the iteration progresses!

It's a good idea to normalize $z^{(k)}$ at every iteration using a vector norm (e.g., L_2 norm)

$$y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2} \qquad z^{(k+1)} = Ay^{(k)}$$

Once the iterations converged (max. norm of the error less than tolerance), use *Raleigh Quotient* to compute the eigenvalue:

$$I_i = \frac{x_i^T A x_i}{x_i^T x_i}$$

Power Method Algorithm

Initialize an arbitrary non-zero vector $z^{(0)}$

Iterate:
$$y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2}$$
 $z^{(k+1)} = Ay^{(k)}$

Stop when:
$$||y^{(k+1)} - y^{(k)}||_{\xi} \le e$$

Compute the largest eigenvalue as:

$$I_1^{(k)} = \frac{y^{T(k)}Ay^{(k)}}{y^{T(k)}y^{(k)}} = y^{T(k)}z^{(k+1)}$$
 since $y^{T(k)}y^{(k)} = 1$

Power Method: Example

A =	3	4	1
	3	5	1
	2	2	1

y0	z = Ay	y = z/ z	z = Ay
1	3	0.639602149	4.903616476
0	3	0.639602149	5.543218625
0	2	0.426401433	2.984810029
l a wala da	2	Lambda	7 05 45 45 455
Lambda	3	Lambda	7.954545455
Error (%)		Error (%)	62.28571429

Power Method: Example

y = z/ z	z = Ay	y = z/ z	z = Ay
0.614481438	4.996001256	0.613586545	5.003847489
0.694631191	5.690632447	0.698898043	5.702745532
0.37403218	2.992257437	0.367495684	2.992464859
Lambda	8.142041399	Lambda	8.155649103
Error (%)	2.302812468	Error (%)	0.166850045
/11 11		/11 11	
y = z/ z	z = Ay	y = z/ z	z = Ay
y = z/ z 0.613543606	z = Ay 5.00450421	y = z/ z 0.613540845	z = Ay 5.004557825
	•		•
0.613543606	5.00450421	0.613540845	5.004557825
0.613543606 0.699238549	5.00450421 5.703742759	0.613540845 0.699265903	5.004557825 5.703823728
0.613543606 0.699238549	5.00450421 5.703742759	0.613540845 0.699265903	5.004557825 5.703823728

The Inverse Power Method

- ✓ Apply power method on matrix A^{-1} to obtain the largest eigenvalue. Inverse of this eigenvalue is the smallest eigenvalue of A
- ✓ Proposition: Inverse of the largest eigenvalue of A^{-1} is the smallest eigenvalue of A
 - For any eigenvalue λ_i and corresponding eigenvector x_i of matrix $A: Ax_i = \lambda_i x_i$
 - \checkmark Since λ_i is a scalar, $(1/\lambda_i)x_i = A^{-1}x_i$
 - If λ_i is an eigenvalue of matrix A, $(1/\lambda_i)$ is an eigenvalue of A^{-1} with the same corresponding eigenvector x_i
 - ✓ Inverse of the smallest eigenvalue of matrix A, is the largest eigenvalue of A^{-1}

The Inverse Power Method

 I_1^k may become very large as the iteration progresses! It's a good idea to normalize $z^{(k)}$ at every iteration using a vector norm (e.g., L_2 norm)

$$y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2} \qquad z^{(k+1)} = A^{-1}y^{(k)}$$

Compute the largest eigenvalue as:

$$I_1^{(k)} = \frac{y^{T(k)}Ay^{(k)}}{v^{T(k)}v^{(k)}} = y^{T(k)}z^{(k+1)}$$

What is the smallest eigenvalue of A?

Inverse Power Method with Shift

- ✓ Apply power method on matrix $(A αI)^{-1}$ to obtain the eigenvalue that is closest to constant α.
- ✓ Proposition: Inverse of the largest eigenvalue of A^{-1} is the smallest eigenvalue of A
 - For any eigenvalue λ_i and corresponding eigenvector x_i of matrix $A: Ax_i = \lambda_i x_i$
 - \checkmark For a scalar constant α , $Ax_i \alpha x_i = \lambda_i x_i \alpha x_i$
 - \checkmark $(A \alpha I)x_i = (\lambda_i \alpha)x_i$, $(\lambda_i \alpha)$ is an eigenvalue of the matrix $(A \alpha I)$.
 - ✓ Smallest eigenvalue of matrix $(A \alpha I)$ corresponds to that eigenvalue of matrix A that is closest in magnitude to the scalar constant α
- ✓ This gives an algorithm to estimate an eigenvalue of a matrix that is closest to a given constant!

The Inverse Power Method with Shift

 I_1^k may become very large as the iteration progresses! It's a good idea to normalize $z^{(k)}$ at every iteration using a vector norm (e.g., L_2 norm)

$$y^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2} \qquad z^{(k+1)} = (A - \alpha I)^{-1} y^{(k)}$$

Compute the largest eigenvalue as:

$$I_1^{(k)} = \frac{y^{T(k)}Ay^{(k)}}{v^{T(k)}v^{(k)}} = y^{T(k)}z^{(k+1)}$$
 What is the eigenvalue closest to α ?