```
In [1]:
```

- 1 import pandas as pd
- 2 **import** numpy as np
- 3 import seaborn as sns
- 4 import matplotlib.pyplot as plt
- 5 df=pd.read_csv(r"C:\Users\P. VIJAY KUMAR\Downloads\fiat500_VehicleSelectic
- 6 print(df)

	ID	model	engine_	power	age_in_days	km	previous_owners	
0	1	lounge		51	882	25000	1	\
1	2	рор		5 1	1186	32500	1	
2	3	sport		74	4658	142228	1	
3	4	lounge		51	2739	160000	1	
4	5	рор		73	3074	106880	1	
1533	1534	sport		51	3712	115280	1	
1534	1535	lounge		74	3835	112000	1	
1535	1536	pop		51	2223	60457	1	
1536	1537	lounge		51	2557	80750	1	
1537	1538	рор		51	1766	54276	1	
		lat	lon	price				
0	44.907242 8.611560		8900					
_								

1 45.666359 12.241890 8800 2 45.503300 11.417840 4200 3 40.633171 17.634609 6000 41.903221 12.495650 5700 4 . . . 1533 45.069679 7.704920 5200 1534 45.845692 8.666870 4600 1535 45.481541 9.413480 7500 1536 45.000702 7.682270 5990 **1**537 40.323410 17.568270 7900

[1538 rows x 9 columns]

In [2]:

1 df.head()

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
4									

```
In [3]: 1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	int64
1	model	1538 non-null	object
2	engine_power	1538 non-null	int64
3	age_in_days	1538 non-null	int64
4	km	1538 non-null	int64
5	previous_owners	1538 non-null	int64
6	lat	1538 non-null	float64
7	lon	1538 non-null	float64
8	price	1538 non-null	int64
	(7) (4/4)		- N

dtypes: float64(2), int64(6), object(1)

memory usage: 108.3+ KB

In [4]: 1 df.describe()

Out[4]:

	ID	engine_power	age_in_days	km	previous_owners	lat
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612

```
In [5]: 1 df.columns
```

In [6]: 1 sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x25e707c9480>

In [7]: 1 sns.displot(['Price'])

Out[7]: <seaborn.axisgrid.FacetGrid at 0x25e171162c0>

In [8]: 1 sns.displot(df['price'])

Out[8]: <seaborn.axisgrid.FacetGrid at 0x25e171167a0>

In [9]: 1 sns.displot(df['engine_power'])

Out[9]: <seaborn.axisgrid.FacetGrid at 0x25e180db4c0>

Out[10]: <Axes: >

Out[11]: <Axes: >


```
In [13]: 1  from sklearn.model_selection import train_test_split
2  X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_sfrom sklearn.linear_model import LinearRegression
4  regr=LinearRegression()
5  regr.fit(X_train,y_train)
6  print(regr.intercept_)
```

8971.195683500027

```
In [14]: 1 coeff_df=pd.DataFrame(regr.coef_,X.columns,columns=['coefficient'])
2 coeff_df
3
```

Out[14]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

```
In [15]: 1 predictions=regr.predict(X_test)
2 plt.scatter(y_test,predictions)
```

Out[15]: <matplotlib.collections.PathCollection at 0x25e18ddb610>

In [16]: 1 sns.displot((y_test,predictions),bins=50)#without semicolon

Out[16]: <seaborn.axisgrid.FacetGrid at 0x25e16d03b80>


```
In [17]: 1 sns.displot((y_test,predictions),bins=50);#with semicolon
```


MAE: 593.0876179519989 MSE: 551442.6799691883 MAE: 742.5918663500081

0.8597136704308846

```
In [20]: 1 df.fillna(method='ffill',inplace=True)
2
```

```
In [21]:
             x=np.array(df['age_in_days']).reshape(-1,1)
             y=np.array(df['km']).reshape(-1,1)
           3 df.dropna(inplace=True)
In [22]:
             X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
             regr.fit(X_train,y_train)
             regr.fit(X_train,y_train)
Out[22]:
          ▼ LinearRegression
          LinearRegression()
In [23]:
             y_pred=regr.predict(X_test)
           2 plt.scatter(X_test,y_test,color='y')
           3 plt.plot(X_test,y_pred,color='b')
             plt.show()
          200000
```


150000

100000

50000

1000

2000

3000

4000

```
In [25]: 1 #elasticnet
2 from sklearn.linear_model import ElasticNet
3 regr=ElasticNet()
4 regr.fit(x,y)
5 print(regr.coef_)
6 print(regr.intercept_)
7 y_pred_elastic=regr.predict(X_train)
8 mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
9 print("Mean Squared Error on test set",mean_squared_error)

[25.89689696]
[10640.73996329]
Mean Squared Error on test set 2702219283.3581448
In []: 1
```