An Introduction to Ergodic Dynamics and Benford's Law

Kyle Cox

DRP Summer 2021

October 16, 2023

Benford's Law

Notes: Iran data show votes for each polling station; U.S. data votes for Barack Obama by precinct. Source: Walter Mebane, University of Michigan

Dynamical Systems

Consider the transformation $T:[0,1)\to [0,1)$ defined by

$$T(x) = 2x \pmod{1}$$

Value of x	.1	.11	Difference
f(x)	.2	.22	+.02
$f^2(x)$.4	.44	+.04
$f^3(x)$.8	.88	+.08
$f^4(x)$.6	.76	+.16
$f^5(x)$.2	.52	+.32
$f^6(x)$.4	.04	36

Ergodicity

Definition

Let (X, \mathbb{B}, μ, f) be a probability-measure-preserving dynamical system with μ a σ -finite measure.

We say a transformation f is **ergodic** if $f^{-1}(A) = A(\mu \mod 0)$ implies either $\mu(A) = 0$ or $\mu(X \backslash A) = 0$.

Circle Rotations

Let $X = \mathbb{R}/\mathbb{Z}$ with Lebesgue measure, and for $\theta \in [0,1)$, consider

$$T(x) = x + \theta \mod 1.$$

We have two classifications of circle rotations: rational and irrational. Consider the rational circle rotation by $\theta = \frac{1}{4}$.

Is this transformation ergodic?

Another way of asking this is, does there exist an A with $0 < \mu(A) < 1$ which is invariant under this rotation?

Consider the set $A = \bigcup_{i=0}^3 B_{\epsilon}(\frac{i}{4})$ for $\epsilon > 0$.

Circle Rotations

Lemma

A probability-measure-preserving dynamical system (X, \mathbb{B}, μ, f) , with $\mu(X) = 1$ is ergodic if and only if for every $\phi \in L^2$, $\phi \circ f(x) = \phi(x)$ for μ almost everywhere implies ϕ is constant for μ almost everywhere.

Lemma

Irrational rotation on the circle given by the system $(\mathbb{T}, \mathbb{B}, m, R_{\alpha})$ is ergodic with respect to Lebesgue measure m.

Irrational Circle Rotations

Proof.

Let $\phi \in L^2(X, \mathbb{B}, m)$. We can write ϕ in its Fourier expansion

$$\phi(x) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x}$$

Suppose $\phi \circ R_{\alpha} = \phi$ almost everywhere. Then

$$\phi(R_{\alpha}(x)) = \phi(x + \alpha) = \phi(x)$$

$$\sum_{n=-\infty}^{\infty} a_n e^{2\pi i n(x+\alpha)} = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x} e^{2\pi i n \alpha} = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x}$$

By uniqueness of Fourier coefficients, $a_n=a_ne^{2\pi in\alpha}$ for all $n\in\mathbb{Z}$. Then it must be that $a_n=0$ for all integers n except for 0. So $\phi(x)=a_0$, and thus ϕ is constant almost everywhere and R_α is

ergodic.

Unique Ergodicity Theorem

Theorem (Space average = time average)

Let (X, \mathbb{B}, f) be a continuous dynamical system on a compact metric space X. Then the following are equivalent.

- f is uniquely ergodic.
- **2** There exists an invariant measure μ such that for every continuous function $\phi \in C(X)$ and for every $x \in X$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\phi\circ f^k(x)=\int_X\phi\mathrm{d}\mu.$$

Benford Data Sets

We call a data set $\{y_n\} \subset \mathbb{R}$ Benford if the frequency of $k \in \{1, 2, \dots, 9\}$ occurring as the leading digit in base 10 expansion is $\log \frac{k+1}{k}$.

Figure: Distribution of leading digits according to Benford's Law

Benford Data Sets

More generally, we call a data set in base $b \geq 2$ Benford if the frequency of the leading digit $k \in \{1,\dots,b\}$ is $\log_b \frac{k+1}{k}$

Note that the rule does define a probability distribution as the sum of the probabilities is 1.

$$\begin{split} \sum_{k=1}^{b-1} \log_b \frac{k+1}{k} \\ &= \log_b b - \log_b (b-1) + \log_b (b-1) - \log_b (k-2) + \\ &+ \dots - \log_b 2 + \log_b 2 - \log_b 1 \\ &= 1 - 0 \\ &= 1 \end{split}$$

Proving a Data Set is Benford

Theorem

The set $\{2^n\}_{n\in\mathbb{N}}$ is Benford.

First we note that an integer $a_n = 2^n$ has leading digit r if and only if, for some $m \in \mathbb{N}$,

$$r10^m \le 2^n < (r+1)10^m$$

Applying \log_{10} , this holds if and only if

$$\log r + m \le n \log 2 < \log (r+1) + m$$

where m is an integer, so taking the inequality mod 1 we have

$$n\log 2 \in [\log r, \log (r+1))$$

Proving a Data Set is Benford

Recall that the irrational rotations on the circle are uniquely ergodic with respect to Lebesque measure. $\log 2$ is irrational, so we consider the transformation on $X=\mathbb{R}/\mathbb{Z}$ given by

$$T(x) = x + \log 2 \mod 1.$$

Consider the interval $I_r = [\log r, \log (r+1))$. Then using Lebesgue measure,

$$\int_{X} \mathbb{1}_{I_{r}} dm = m(I_{r}) = \log\left(\frac{r+1}{r}\right)$$

Then by the unique ergodicity theorem, for every $x \in X$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=0}^{n-1}\mathbb{1}_{I_r}(T^jx)=\int_X\mathbb{1}_{I_r}dm=\log\left(\frac{r+1}{r}\right).$$

Taking x = 0, this proves the theorem.

Special thanks to Hunter Vallejos, Dr. Luecke, and all involved in making DRP happen.