PLSC 476: Empirical Legal Studies

Christopher Zorn

April 15, 2021

COMPAS

- Correctional Offender Management Profiling for Alternative Sanctions
- Created by Northpointe Inc. (now Equivant) in 1989
- Inputs = 137 offender and offense characteristics
- "Core Risk Scales":
 - · Risk of New Violent Crime ("Violent Recidivism")
 - · Risk of General Recidivism
 - · Pretrial Risk
- Specifics of their predictive algorithm are proprietary...
- Used in NY, CA, WI, other jurisdictions
- Use was challenged (and upheld) in Loomis v. Wisconsin 881
 N.W.2d 749 (WI 2016)

The ProPublica Analysis

- FOIA request \rightarrow N=18610 offenders from Broward Co., FL (all offenders scored in 2013 & 2014)
- Pretrial detention only $\rightarrow N = 11757$
- Used public records to gather data on demographic variables and criminal histories...
- ProPublica: "Recidivism" = arrest on a new charge within two years (=1, 0 if not)
- Focus: Racial bias in COMPAS scores
- Data (and R code!) are publicly available at: https://github.com/propublica/compas-analysis

Details of their analysis are here.

Recidivism: Predictors

- Sex (male vs. female)
- Age (in years)
- Race/Ethnicity (Black, Asian, white, Hispanic, Native American, Other)
- Juvenile Felonies (number)
- Juvenile Misdemeanors (number)
- Prior Arrests (number)
- **Felony Charge** (=1; misdemeanor / other = 0)

Logistic Regression: Recidivism

	Outcome: Recidivism	
Sex: Male	0.368***	
	(0.058)	
Age	-0.040***	
3	(0.002)	
Race: Asian	-0.407	
	(0.350)	
Race: White	-0.111**	
	(0.050)	
Race: Hispanic	-0.303* [*] **	
	(0.083)	
Race: Native American	-0.168	
	(0.398)	
Race: Other	-0.307***	
	(0.105)	
Juvenile Felonies	0.028	
	(0.050)	
Juvenile Misdemeanors	0.068	
	(0.054)	
Prior Arrests	0.116***	
	(0.005)	
Felony Charge	0.018	
	(0.048)	
Constant	0.053	
	(0.093)	
Observations	10,331	
Log Likelihood	-6,052	
Akaike Inf. Crit.	12,128	
Note:	*p<0.1; **p<0.05; ***p<0.01	
	P (0.1, P (0.00, P (0.01	

In-Sample Predictions

```
> df$Recid.Probs<-predict(Recid.fit,type="response")
> df$Recid.Preds<-ifelse(df$Recid.Probs>0.5,1,0)
> conf<-xtabs(~Recid+Recid.Preds,data=df)</pre>
> conf
     Recid.Preds
Recid
    0 6387 471
    1 2700 773
> ((conf[1,1]+conf[2,2])/(sum(conf))) * 100 # Accuracy
[1] 69.31
```

Predictive Accuracy: ROC and AUC-ROC

For each observation i, we generate a $Pr(Recidivism_i = 1)$ between zero and one, as:

$$Pr(\widehat{\mathsf{Recidivism}}_i) = \frac{\exp(\mathbf{X}_i\hat{\boldsymbol{\beta}})}{1 + \exp(\mathbf{X}_i\hat{\boldsymbol{\beta}})}.$$

We then might imagine assigning individuals to either Recidivism_i = 0 or Recidivism_i = 1 for different values of a "threshold" τ of Pr(Recidivism_i = 1):

- · If $\tau = 0$, then we'd assign every observation to be Recidivism; = 1
- · If $\tau = 1$, then we'd assign every observation to be Recidivism_i = 0
- In between for, say, $\tau=\ell$, we assign observations with $\Pr(\text{Recidivism}_i=1)>\ell$ to be $\text{Recidivism}_i=1$, and those with $\Pr(\text{Recidivism}_i=1)\leq\ell$ to be $\text{Recidivism}_i=0$

As we vary τ from zero to one, we'd get varying levels of "true positives" vs. "false positives":

- · When $\tau=0$ and every observation has Recidivism $_i=1$, we'd have a 100 percent "true positive" rate but also a 100 percent "false positive" rate
- · When $\tau=1$ and every observation has Recidivism_i = 0, we'd have a 0 percent "true positive" rate but also a 0 percent "false positive" rate
- · In between, we'd get varying levels of "true positives" vs. "false positives," depending on the predictive accuracy of the model

ROC Curves: Examples

ROC Curve: Our Model

Validation: "Hold-out"

Q: How well does our model do at predicting out of sample?

"Hold-out" validation:

- Randomly split the data into a "training" set (90%) and a "test" set (10%)
- Fit the predictive model to the "training" data
- Use the model parameters to generate predictions in the "test" (out-of-sample) data
- Examine the predictive accuracy of the model on the test data

Test Data Predictions

```
> Train.fit<-glm(Recid~Sex+Age+Race+JuvFelonies+JuvMisdem+
                 Priors+FelonyCharge, data=df.Train,
                 family="binomial")
> df.Test$Recid.Probs<-predict(Train.fit,newdata=df.Test,</pre>
                                type="response")
> df.Test$Recid.Preds<-ifelse(df.Test$Recid.Probs>0.5,1,0)
> conf2<-xtabs(~Recid+Recid.Preds,data=df.Test)</pre>
> conf2
     Recid Preds
Recid
    0 649 36
    1 276 72
> ((conf2[1,1]+conf2[2,2])/(sum(conf2))) * 100 # Accuracy
[1] 69.8
```

ROC Curve: Test Data

K-Fold Validation

- Randomly split the data into $k = \{1, 2, ...K\}$ equally-sized subsets
- For the first subset with k = 1:
 - 1. Use the data for $k = \{2, 3, ...K\}$ as the "training" data
 - 2. Fit the predictive model to the "training" data
 - Use the resulting model parameters to generate predictions in the "test" (out-of-sample) data
 - 4. Examine the predictive accuracy of the model on the test data
- Repeat 1-4 for k = 2, k = 3, ... k = K
- Average over the K model fit measures to assess the predictive validity of the model

K-Fold Validation

Step Two: COMPAS Analysis

COMPAS provides two recidivism risk evaluations:

- A COMPAS Rating: "High Risk," "Medium Risk," or "Low Risk"
- A COMPAS <u>Score</u>: A numeric rating of recidivism risk ranging from 1 (lowest risk) to 10 (highest risk)
- From the ProPublica webpage: "(A)ccording to Northpointe's
 practitioners guide, COMPAS 'scores in the medium and high range
 garner more interest from supervision agencies than low scores, as a
 low score would suggest there is little risk of general recidivism'"

Goal: Assess the predictive value of COMPAS ratings and scores...

COMPAS Rating/Score Models

	Outcome: Recidivism	
	COMPAS Ratings	COMPAS Score
COMPAS Rating: Low Risk	-1.331***	
	(0.055)	
COMPAS Rating: Medium Risk	-0.450***	
	(0.060)	
COMPAS Rating: N/A	-1.634**	
	(0.783)	
COMPAS Score		0.214***
		(800.0)
Constant	0.130***	-1.678***
	(0.045)	(0.043)
Observations	10,331	10,320
Log Likelihood	-6,246	-6,172
Akaike Inf. Crit.	12,499	12,348
Note:	*p<0.1; **p<0.05; ***p<0.01	

COMPAS Model: Cross-Validation

Wrap-Up

- In one data set, a relatively-simple (7-variable) model predicts recidivism slightly better than COMPAS scores/ratings
- One could do the same analysis for violent recidivism, using the COMPAS "Violent Risk" scores
- Some additional readings:
 - An excellent follow-up story on the ProPublica analysis, asking the question "What does it mean for an algorithm to be fair?"
 - The Age of Secrecy and Unfairness in Recidivism Prediction in the Harvard Data Science Review (read the commentaries, too)
 - · A recent study on the impact of RAIs on judges' decisions...