Lecture Outline

Finite Automata Formal Definition DFA Computation Regular Operations

Finite Automata

The *finite state machine* or *finite automaton* is the simplest computational model of limited memory computers.

Example: an automatic door opener at a supermarket decides when to open or close the door, depending on the input provided by its sensors.

Finite Automata

The *finite state machine* or *finite automaton* is the simplest computational model of limited memory computers.

Example: an automatic door opener at a supermarket decides when to open or close the door, depending on the input provided by its sensors.

Finite automata are designed to solve *decision problems*, i.e., to decide whether a given input satisfies certain conditions.

Examples of decision problems:

- does a given string have an even number of 1's;
- is the number of 0's (in a given string) multiple of 4;
- does a given string end in 00.

Example: Door Opener

states: closed, open input conditions: front, rear, both, neither nonloop transitions: $\mathsf{closed} \to \mathsf{open} \ \mathsf{on} \ \mathsf{front}$ $\mathsf{open} \to \mathsf{closed} \ \mathsf{on} \ \mathsf{neither}$

Example: Door Opener

states: closed, open

input conditions: front, rear, both, neither

nonloop transitions:

 $\begin{array}{l} {\sf closed} \, \to {\sf open} \, \, {\sf on} \, \, {\sf front} \\ {\sf open} \, \to \, {\sf closed} \, \, {\sf on} \, \, {\sf neither} \end{array}$

Formal Definition

Definition

A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set whose members are called states,
- \triangleright Σ is a finite *alphabet* whose members are called *symbols*,
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the *transition function*,
- ▶ $q_0 \in Q$ is the *start state*, and
- ▶ $F \subseteq Q$ is the set of *accept states* (or *final states*).

DFA computation can be described informally using a tape, cells with symbols, and a finite-state control with a read head advancing over the input. Given an input string over Σ (written on the input tape), an automaton reads its symbols one-by-one and changes its state (starting from q_0) according to δ . The automaton "accepts" the input if its resulting state (after reading of the input string is complete) belongs to F; otherwise "rejects".

Q: Is it a DFA?

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ , δ .

Recall that Q is a finite set whose members are called *states*. What are the states of the Door Opener?

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ , δ .

$$Q = \{CLOSED, OPEN\}$$

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ , δ .

Recall that Σ is a finite *alphabet* containing possible input *symbols*. What are they in the Door Opener?

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ , δ .

 $\Sigma = \{FRONT, REAR, BOTH, NEITHER\}$

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ , δ .

Recall that transition function is a function $\delta: Q \times \Sigma \to Q$ defining how the automaton behaves.

This automaton is not a DFA since it supposedly operates infinitely long and thus there are no starting state q_0 and final states F defined. However, it does correspond to some Q, Σ , δ .

	FRONT	REAR	BOTH	NEITHER
CLOSED	OPEN	CLOSED	CLOSED	CLOSED
OPEN	OPEN	OPEN	OPEN	CLOSED

State Diagram of a DFA

- ▶ Nodes encode the states (elements of *Q*).
- ▶ Directed edges, labelled with symbols (elements of Σ), encode δ . Thus, each node has $|\Sigma|$ outgoing edges. Parallel edges can be combined into a single edge with multiple labels.
- ► An incoming edge from nowhere encodes the starting state.
- Nodes with double border encode accept states (elements of F).

Drawing a State Diagram

Q: Draw a state diagram of a DFA M_1 with state set $Q=\{q_1,q_2,q_3\}$, alphabet $\Sigma=\{0,1\}$, start state q_1 , final state set $F=\{q_2\}$, and transition function δ given by the following table:

	0	_1_
q_1	q_1	q_2
q_2	q 3	q_2
q 3	q 2	q_1

We start with drawing nodes (labeled with elements of Q),

marking the starting and accepting states:

Drawing a State Diagram

Q: Draw a state diagram of a DFA M_1 with state set $Q = \{q_1, q_2, q_3\}$, alphabet $\Sigma = \{0, 1\}$, start state q_1 , final state set $F = \{q_2\}$, and transition function δ given by the following table:

	0	1
q_1	q_1	q_2
q_2	q 3	q_2
q_3	q_2	q_1

Then we draw outgoing edges (defined by δ) for the first node (q_1 is this example):

Drawing a State Diagram

Q: Draw a state diagram of a DFA M_1 with state set $Q = \{q_1, q_2, q_3\}$, alphabet $\Sigma = \{0, 1\}$, start state q_1 , final state set $F = \{q_2\}$, and transition function δ given by the following table:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_1 \\ \end{array}$$

Similarly we draw outgoing edges for the other nodes and we are done:

Languages

Definition

Let Σ be an alphabet. We let Σ^* denote the set of all (finite) strings over Σ . A *language over* Σ is any subset of Σ^* , i.e., any set of strings over Σ .

We use languages to encode decision problems. Given an input (string), is the answer "yes" or "no"? Strings for which the answer is "yes" are called yes-instances and the others are no-instances. The language corresponding to a decision problem is the set of strings encoding yes-instances.

Recognizng DFA

Definition

Let M be a DFA with alphabet Σ and let $A \subseteq \Sigma^*$ be a language over Σ . We say that M recognizes A iff M accepts every string in A and rejects every string in $\overline{A} = \Sigma^* \setminus A$. We let L(M) denote the language recognized by M.

Thus recognizing a language means being able to distinguish membership from nonmembership in the language, thus solving the corresponding decision problem. Every DFA recognizes a unique language (consisting of the strings it accept).

Designing a DFA

Q: Design a DFA recognizing the language $B = \{x \in \{0,1\}^* \mid |x| \geq 2 \text{ and the 1st symbol of } x \text{ equals the last symbol of } x\}$. In order to design such a DFA we need:

- to "record" the first symbol of the input (using states as the only available sort of memory);
- to distinguish whether the current symbol (that will be the last one at some point) matches the recorded first symbol;
- (at the end) accept if it does, reject otherwise.

DFA Computation

We now define a DFA computation formally.

Definition

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA and let $w\in\Sigma^*$ be a string over Σ . Suppose $w=w_1w_2\cdots w_n$ where $w_i\in\Sigma$ for all $1\leq i\leq n$. The computation of M on input w is the unique sequence of states (s_0,s_1,\ldots,s_n) where

- ightharpoonup each $s_i \in Q$,
- $s_0 = q_0$, the start state, and
- $s_i = \delta(s_{i-1}, w_i)$ for all $1 \le i \le n$.

The computation (s_0, \ldots, s_n) is accepting if $s_n \in F$, and is rejecting otherwise. If the former holds, we say that M accepts w, and if the latter holds, we say that M rejects w.

Thus s_0, s_1, \ldots is the sequence of states that M goes through while reading w from left to right, starting with the start state.

Examples

Example: DFA that recognizes multiples of 3 in unary, binary. Example: DFA that accepts strings over $\{a,b,c\}$ containing abacab as a substring. (Idea is useful for text search.) Example: Strings over $\{0,1\}$ with an even number of 1s. Strings over $\{0,1\}$ with an even number of 0s.

Definition

A language $A\subseteq \Sigma^*$ is *regular* iff some DFA recognizes it, i.e., A=L(M) for some DFA M.

Regular Operations

Let A and B be two languages. We define the following regular operations:

Union:
$$A \cup B = \{x \mid x \in A \ \lor x \in B\}$$

Concatenation: $A \circ B = \{xy \mid x \in A \ \land y \in B\}$
Star: $A^* = \{x_1x_2 \dots x_k \mid k \in \mathcal{Z} \land k \ge 0 \land \forall i = 1, 2, \dots, k, \ x_i \in A\}$

Theorem

If A and B are regular languages then so are $A \cup B$ and $A \circ B$. In other words, the class of regular languages is closed under the union and concatenation operations.

Read proofs in Sipser pp.44-47.