

Artificial Intelligence/Inteligência Artificial **Lecture 2: Intelligent Agents and MAS**

Luís Paulo Reis

lpreis@fe.up.pt

Director of LIACC – Artificial Intelligence and Computer Science Lab. Associate Professor at DEI/FEUP – Informatics Engineering Department, **Faculty of Engineering of the University of Porto, Portugal** President of APPIA – Portuguese Association for Artificial Intelligence

Estrutura da Apresentação

Conceito de Agente

- Agentes Inteligentes Agentes Racionais
- Propriedades dos Ambientes
- Estrutura dos Agentes Inteligentes
 - –Agentes Simples Reflexos
 - -Agentes com Representação do Mundo
 - Agentes Baseado em Objectivos
 - -Agentes Baseados em Utilidade
 - –Agentes com Aprendizagem
- Sistemas Multi-Agente

Agentes Inteligentes

- Agente: Apercebe-se do ambiente através de sensores e age nesse ambiente através de atuadores
- Humano:
 - Sensores: Olhos, ouvidos, nariz, tacto, gosto, outros
 - Atuadores: Pernas, braços, mãos, outros
- Agente robótico:
 - Sensores: cameras, sonares, sensores de infravermelhos, microfone, etc
 - Atuadores: motores, rodas, speaker, etc.

Agentes Inteligentes - Agentes Racionais

- Agente Racional é aquele que faz a ação correta!
- Qual a ação correta?
 - Aquela que o faz ser mais bem sucedido!
- Como e quando avaliar esse sucesso? (medida do sucesso)
- Exemplo: Agente aspirador!
- Agente Racional Ideal: "Para cada sequencia de perceções, faz a ação que é esperado maximizar a sua medida de performance (sucesso), dada o conhecimento que ele tem!"
- Mapeamento entre perceções e ações!

Agente Inteligente

- A função agente mapeia a história das perceções para as ações:
- $[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$
- Programa executa a arquitetura física para produzir f
- agente = arquitetura + programa

Estrutura dos Agentes Inteligentes

- Agente exibe um comportamento ação que é executada depois de uma dada sequência de perceções!
- Tarefa da IA:
 - Projetar o Programa e a Arquitetura para o Agente
- O que é um Agente?
 - Agente = Arquitetura + Programa
- Agentes de Software vs Agentes Físicos

Programa de um Agente / Tipos de Agentes

Estruturas de Dados internas são atualizadas usando perceções e usadas para tomar a decisão das ações a executar (melhor ação)

- **Tipos de Agentes (Russel e Norvig):**
 - Agentes reflexos simples
 - Agentes com representação do mundo
 - Agentes baseados em objetivos
 - Agentes baseados em utilidade
 - Agentes com Aprendizagem

Exemplo: O Mundo do Aspirador

- Percepções: local e conteúdo
 - Exemplo: [A, sujo]
- Ações: Esquerda, Direita, Aspirar, NoOp

Estrutura dos Agentes - Descrição PEAS

- Ao projetar um agente, a primeira etapa deve ser sempre especificar o ambiente de tarefa.
- PEAS:
 - Performance Measure (medida de desempenho)
 - Environment (ambiente)
 - Actuators (atuadores)
 - Sensors (sensores

Exemplo PEAS: Condutor de Taxi

Medida de desempenho:

 viagem sem violações às leis de trânsito, segura, rápida, confortável para os passageiros, maximizando os lucros

Ambiente:

ruas, estradas, outros veículos, peões, clientes

Atuadores:

- direção, acelerador, travão, embraiagem, caixa de velocidades, buzina

Sensores:

 câmera, sonares, laser range finder, velocímetro, GPS, odometria, sensores do motor, dispositivos de input, ou microfone.

Exemplo PEAS: Sistema de Diagnóstico Médico

Medida de desempenho:

paciente saudável, minimizar custos, processos judiciais

Ambiente:

paciente, hospital, equipa

Atuadores:

 Écran para exibir perguntas, testes, diagnósticos, tratamentos, análises

Sensores:

- Entrada pelo teclado de sintomas, resultados, respostas do paciente

Exemplo PEAS: Robô de seleção de peças

Medida de desempenho:

 Número de peças em bandejas corretas vs incorretas

• Ambiente:

correia transportadora com peças, bandejas

Atuadores:

braço e mão robóticos (motores)

Sensores:

– câmera, sensores de movimento das juntas, sensores de proximidade

Exemplo PEAS: Instrutor de Inglês Interativo

Medida de desempenho:

 maximizar nota dos alunos no teste, Maximizar conhecimento dos alunos de inglês

• Ambiente:

conjunto de alunos, sala de aula

Atuadores:

exibir exercícios, sugestões, correções

Sensores:

entrada pelo teclado

Propriedades dos Ambientes

Acessível vs Inacessível

 Acessível se os sensores do agente detetam tudo o que é relevante do ambiente!

Determinístico vs Não Determinístico

 Determinístico se o próximo estado é determinado pelo anterior e pelas ações do agente!

Episódico vs Não Episódico

 Dividido em episódios! Episódios seguintes não dependem de ações em episódios anteriores!

Estático vs Dinâmico

Dinâmico se muda enquanto o agente está a pensar!

Discreto vs Contínuo

Discreto se existe um número finito de percepções e acções!

Agente único (versus multi-agente)

 Um único agente operando sozinho no ambiente vs multi-agente (cooperativo ou competitivo)

Propriedades dos Ambientes

	Xadrez com relógio	Xadrez sem relógio	Direção de Táxi
Completamente observável	Sim	Sim	Não
Determinístico	Sim	Sim	Não
Episódico	Não	Não	Não
Estático	Semi	Sim	Não
Discreto	Sim	Sim	Não
Agente único	Não	Não	Não

- O tipo de ambiente de tarefa determina em grande parte o projeto do agente
- O mundo real é parcialmente observável, estocástico, sequencial, dinâmico, contínuo, multi-agente

Tipos Básicos de Agentes

- Cinco tipos básicos, do mais simples ao mais geral
 - Agentes reativos simples
 - Agentes reativos baseados em modelos
 - Agentes baseados em objetivos
 - Agentes baseados na utilidade
 - Agentes com Aprendizagem

Agentes Simples Reflexos

Baseados em tabelas de regras condição-acção (regras if-then)

Exemplo: Agente Reativo Simples

```
Função AGENTE-ASPIRADOR-REATIVO(posição, estado) retorna
  uma ação
     se estado = Sujo então retorna Aspirar
     senão se posição = A então retorna Direita
     senão se posição = B então retorna Esquerda
```

- Regras condição-ação (regras se-então) fazem uma ligação direta entre a percepção atual e a ação
- O agente funciona apenas se o ambiente for completamente observável e a decisão correta puder ser tomada com base apenas na percepção atual

Agentes com Representação do Mundo

Mantêm um estado interno (representação do mundo)

Agentes com Representação do Mundo

Função AGENTE-REATIVO-COM-Rep_Mundo(perceção) **retorna** uma ação

Variáveis estáticas:

```
estado, uma descrição do estado atual do mundo
  regras, um conjunto de regras condição-ação
 ação, a ação mais recente, inicialmente vazio
estado ← ATUALIZA-ESTADO(estado, ação, percepção)
regra \leftarrow DETERMINA REGRA(estado, regras)
a\tilde{c}ao \leftarrow A\tilde{c}AO-DA-REGRA(Regra)
retornar ação
```

Agentes Baseado em Objectivos

- Descrição do estado do mundo e do objectivo a atingir
- **Exemplo: Chegar a** Lisboa
- Resolução de problemas por Pesquisa, **Planeamento**

Agentes Baseados em Utilidade

- **Utilidade: Espécie** de grau de felicidade do agente!
- Mapeia o estado actual num valor!

Agentes com Aprendizagem

Elemento de Aprendizagem e elemento de avaliação de desempenho

Exercício 1

PISCINEX: Agente para Controlar uma Piscina

Apresente um diagrama e o pseudo-código para um agente simples reflexo – PISCINEX - para controlar o nível de água e a temperatura de uma piscina. Suponha que dispõe das perceções TEMP correspondentes à temperatura da piscina e ALT correspondente à altura de água da piscina. Dispõe das ações: AS – abrir saída de água, FS – fechar saída da água, AEQ – Abrir entrada de água quente, FEQ – fechar entrada de água quente, AEF – Abrir entrada de água fria e FEF – fechar entrada de água fria.

Pretende-se que a temperatura da piscina esteja entre os 25 e os 27 graus e que o nível de água esteja entre 1.3 e 1.5 metros. É possível ligar simultaneamente uma das entradas e a saída da água mas não existe nenhuma garantia que o nível permaneça o mesmo. Não se pode manter ligada a entrada de água quando o nível da água esteja superior a 1.45 metros.

Exercício 2

CONTROLEX: Agente para Controlar a Temperatura de uma Sala

Apresente um diagrama e o pseudo-código para um agente simples reflexo – CONTROLEX - para controlar a temperatura de uma sala. Suponha que dispõe das perceções T1 e T2 correspondentes à temperatura da sala e à temperatura exterior e as ações AQ ligar o aquecedor, NAQ – Desligar o aquecedor, AC – ligar o ar frio, NAC – Desligar o ar frio, AJ – abrir as janelas, NAJ – fechar as janelas.

Pretende-se que a temperatura da sala esteja entre os 22 e os 24 graus. Sempre que seja possível usar as janelas para controlar a temperatura (não desperdiçando energia), tal deve ser efetuado. Sempre que a temperatura esteja mais de 2 graus afastada da banda desejada (ou seja se a temperatura for inferior a 20 ou superior a 26 graus), deve-se fechar as janelas e em vez disso, usar o aquecedor ou ar frio para repor a temperatura dentro da banda desejada.

Como poderia construir um agente um pouco mais inteligente para este problema (que tipo de agente, perceções, estado do mundo, etc., usar)?

Exercício 2: Tópicos de Resolução

Perceções:

- T1 Temperatura Interior
- T2 Temperatura Exterior

Ações:

- AQ ligar o aquecedor
- NAQ Desligar o aquecedor
- AC ligar o ar frio
- NAC Desligar o ar frio
- AJ abrir as janelas
- NAJ fechar as janelas

Obietivo:

 Manter a temperatura da sala entre os 22 e os 24 graus

Agente mais inteligente:

- Câmaras para analisar quantas e quais as pessoas no interior da sala
- Ajuste da temperatura em função dos gostos das pessoas
- Utilização de previsões meteorológicas da Internet

Interpretação da Perceção:

M QUENTE = T1 > 26OUENTE = T1 > 24 e T1<= 26 NORMAL = T1 >= 22 e T1 <= 24FRIO = T1 >= 20 e T1< 22 M FRIO = T1 < 20FORA UTIL = T2 < 24 e QUENTE ou

 $T2 > 22 \in FRIO$

Regras Condição-Ação:

SE NORMAL

Então NAQ: NAC: NAJ

Se (QUENTE ou FRIO) e FORA UTIL

Então NAQ; AJ; NAC

Se QUENTE e não (FORA UTIL) ou M QUENTE

Então NAQ; NAJ; AC

Se FRIO e não (FORA UTIL) ou M FRIO

Então AQ; NAJ; NAC

Exercício 3

RATEX: Agente para Resolver um Labirinto Simples

Suponha um Robot autónomo com 2 rodas motrizes (MEsq, MDir), 3 sensores de proximidade (SEsq, SCentro e SDir), 1 sensor de chão (SChao) e 1 sensor de farol (SFarol) que se move num labirinto povoado por outros robots, tentando atingir a zona do mesmo onde se encontra o farol! Responda às seguintes questões:

- a) Apresente uma descrição PEAS do Agente e classifique o seu ambiente
- b) Será possível resolver todos os tipos de labirintos com um Agente puramente reativo. Justifique, apresentando exemplos.
- c) Apresente um algoritmo simples que permita resolver labirintos para este agente.
- d) Supondo que o agente após chegar à área de chegada deveria regressar ao ponto de partida. Explique como adaptaria o algoritmo desenvolvido para lidar com esta situação
- e) Suponha que o agente quer unicamente mover-se no labirinto sem bater em nenhum outro robot! Indique uma arquitetura e implemente um agente (o mais simples possível) capaz de o fazer!

Artificial Intelligence/Inteligência Artificial **Lecture 2: Intelligent Agents and MAS**

Luís Paulo Reis

lpreis@fe.up.pt

Director of LIACC – Artificial Intelligence and Computer Science Lab. Associate Professor at DEI/FEUP – Informatics Engineering Department, Faculty of Engineering of the University of Porto, Portugal President of APPIA – Portuguese Association for Artificial Intelligence

