Grenson

Brukes overalt:

- · Kontinvitet
- · Derivasjon
- · Integrasion

Eks:
$$f(x) = \frac{x^2 - 2x - 3}{x - 3}$$

Hva en f(3)? Ubestemt. Far ible low til à sotte inn 3.

Hua "borde" S(3) voul? Vil sette inn vendie reloig nouve 3, se hoa vi San:

$$5(2.99) = \frac{2.99^2 - 2.299 - 3}{2.99 - 3} = \frac{8.9401 - 5.99 - 3}{-0.01}$$

$$=\frac{-0.0399}{-0.01}=+3.99$$

$$f(3.01) = \frac{3.01^2 - 2.3.01 - 3}{3.01 - 3} = \frac{9.0601 - 6.02 - 3}{0.01}$$

$$= \frac{0.0401}{0.00} = 4.01$$

Viktig idé:

Hvis S(x) a kontinvertis i a, så må SGO vove norme SGO var x a norme a.

$$S(x) = \frac{x^2 - 2x - 3}{x - 3} = \frac{(x - 3)(x + 1)}{(x - 3)} = \frac{x + 1}{x + 1}$$

g(x) = x + 1 S(x) = g(x) So alle x bortsett Sua

Sette inn en x veldig non 3, kan jeg bruke

Sormelen SCO=x=1

Siden oct les kontinualis, on oce non 3, må

SCX) vone non 3+1=4.

Skriven $\lim_{x\to 3} S(x) = 4.$

Vi kan komme se nærme 4 vi vil ved å bare sette im vedien nær 3.

Alternativ utvegning, litture nittygritty, sett inn et fall vilkarlig norme 3. x=3+h, h lite tall.

$$S(3+h) = \frac{(3+h)^2 - 2 \cdot (3+h) - 3}{3+h-3} = \frac{9+6h+h^2-6-2h-3}{h}$$

$$= \frac{4h+h^2}{h} = \frac{K(4+h)}{K} = 4+h$$

En viktig vegel som den bruken när den vegna granser:

lim
$$S(x) = S(a)$$
 hvis $S(x)$ a kontinvalig $x \to a$

Els:
$$S(x) = \frac{x^2 - 5x + 4}{x^2 + x - 20}$$

$$4^{2}-5.4+4=0$$
 $4^{2}+4-20=0$

$$f(x) = \frac{(x-4)(x-1)}{(x-4)(x+5)} = \frac{x-1}{x+5}$$

$$y = \frac{x-1}{x+5}$$

Betyr!

$$\lim_{x\to 4} g(x) = g(4) = \frac{4-1}{4+5} = \frac{3}{9} = \frac{1}{3}$$

Reiteren definision au grense:
Hvis vi en norme nok a, vil soavet voue norme nok! lim 500 = b. x->a
Vi sier at om lim 500) = tr, så
Ronvegere Jac mot by non it gar mot a.
Og lim S(x) divergeren om det ikke sinnes en slik b.
Kan også snokke om gransa
$\lim_{x\to\infty} f(x) = b$
Hvis vi sette im store nok x vil swaret vere neeme nok b.
Finnes en (ikkestandard) nåte å gjøre matte på hoor vi Saktisk setter ing vendelig storres tall.

Ikkestandard Kalkolus
Doctor Dot Sinnes wendelig store tall.
Pastand: De oppSølen seg abkarat som vanlige tal.
Ils: Hvis V en nendelig stort, så en også
11+1 vendelis start N ban vone
o N-1 evendelig stort våde positiv og negativ.
No No negative. No No negative. No No negative. No No negative.
3515
Det må da også Sinnes nendeligsmå tall.
Els: Hois New october
Eks: X = 1 kan Wi endelig store tall
Eks: $M = 1$ kan Wi endelig.
7
Eks: N = N sei en vibrat vendelig.
Eks! Nog Ma vendelig store, Nog Ma vendelig store, Hav ikke nok info til å si noe om denne broken,
M Hav ible nok in 50 to denne broken.
Vi kan da også lage et tall som a vandelig norme T + N hvarandre skriva vi
a 2 b

Kan nã de Sine le:

$$\lim_{x\to a} S(a) = \lim_{x\to a} S(x) \approx \lim_{x\to a} x \approx a, \text{ men } x \neq a.$$

Eks;
$$S(x) = \frac{x^2 - 5x + 4}{x^2 + x - 20} \quad \text{Vil Sinne } \lim_{x\to 4} S(x),$$

Hoa e S(x) não x en vendeligneme 4.

$$X = \frac{1}{4} + dx \qquad dx \text{ ef vendeligneme } 4.$$

$$S(x) = \frac{(4+dx)^2 - 5(4+dx) + 4}{(4+dx)^2 - 5(4+dx) + 4} = \frac{16 + 8dx + dx^2 - 20 - 5dx + 4}{16 + 8dx + dx^2 + 4dx - 20}$$

$$= \frac{3dx + dx^2}{9dx + dx^2} = \frac{3dx}{3dx} (3+dx) = \frac{3+dx}{9+dx} \approx \frac{3}{9} = \frac{1}{3}$$

Dette var den noamstelige matern, det vi Saktsk gjør,

$$\lim_{x\to a} \frac{1}{3} = \frac{1}{3}$$

Dette var den noamstelige matern, det vi Saktsk gjør,

$$\lim_{x\to a} \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

$$\lim_{x\to a} \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

$$\lim_{x\to a} \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

De Sinerer na at
lim S(x) = L
hvis $S(x) \approx V$ Sor alle vendeligstore x .
Els: SOO = 7x+1, la V vene verdelis stor,
$S(N) = \frac{7N \cdot 1}{N} = \frac{7N \cdot 1}{N} \cdot \frac{1}{N} = \frac{7 \cdot 1}{N} \approx 7.$ $\lim_{N \to \infty} 7 \cdot \frac{1}{N} = 7 \cdot 10 = 7.$
Regnereglere vi da bruke en i
Huis de og dy en nendelig små tall (infinitesimale),
Regnereglene vi da bruker en i Hvis doc og dy en nendelig små tall (insinitesimale), a og b e endelige tall, har vi: N og M er vendelige tall, har vi:
dx+dy og dx.dy og dx.d, e vendeliglite
of Non Non
o de, N.M., N+M horis de har samme Sortagn, en nendelige
$\alpha \cdot N$, $\frac{N}{\alpha}$, $\frac{N}{dx}$, $\alpha \in N$, $dx \in N$
att, atdx, at, of, of a endelig

· a Andre kombinasjoner avhenger av veletive størrelser.

Eks: N e et vendelig stort fall (positivt) M = 7-N extremelis stort negative tall. N+M= N+7-N=7. Ev endelig. Eles: N vendeliz start tall (position) M = - 2N vendelig stort negative tall frega N + M = N - 2N = -N vendelis start vegativit. Els: N wendels stort, 0.N = 0Hus $\frac{1}{N}$ vendels lite, $N \cdot \frac{1}{N} = 1$ N^2 vandelig start $N^3/N = N$ vandelig start Els: $\lim_{x\to\infty} \ln(2x-1) - \ln(x+2)$ Har: Om N vendelig star, a både ly (2N-1) og ly (N+2) vendelig Marat ly (2N-1) - ly (N+2) $= \ln \left(\frac{2N-1}{N+2}\right) = \ln \left(\frac{2-1}{1+\frac{2}{N}}\right) \approx \ln \left(\frac{2}{1}\right)$ = 142