UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Discussion 4

Fall 2023

1. Covariance Matrix

For a random vector $X = [X_1, X_2, \dots, X_n]^\mathsf{T}$, its covariance matrix Σ is defined with entries $\Sigma_{ij} = \mathrm{Cov}(X_i, X_j)$. Suppose that $\mathbb{E}[X] = 0$.

- a. Show that Σ is positive semi-definite, i.e. for all $v \in \mathbb{R}^n$, we have $v^{\mathsf{T}} \Sigma v \geq 0$.
- b. Show that if the X_i 's are pairwise independent, then Σ is diagonal.
- c. Give an example of two random variables X_1, X_2 with a diagonal covariance matrix, but such that X_1, X_2 are not independent.

Solution:

a. Note that we can write $\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\mathsf{T}}]$. Therefore for any $v \in \mathbb{R}^n$, we have

$$v^{\mathsf{T}} \Sigma v = v^{\mathsf{T}} \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\mathsf{T}}] v = \mathbb{E}[v^{\mathsf{T}} X X^{\mathsf{T}} v] = \mathbb{E}[(v^{\mathsf{T}} X)(v^{\mathsf{T}} X)^{\mathsf{T}}] \ge 0.$$

- b. If X_i 's are pairwise independent, then $Cov(X_i, X_j) = 0$ for all $i \neq j$, and so Σ is diagonal.
- c. Let $X_1 \sim \mathcal{N}(0,1)$ and $X_2 = ZX_1$, where Z is uniform on $\{-1,1\}$.