Алгебраическая геометрия.

Лектор — Иван Александрович Панин Создатель конспекта — Глеб Минаев *

TODOs

— ¬`	писать	2
	описать	
	ef	
	описать?	
	бозначить это по-нормальному.	
Нε	аписать леммы про пересечения и объединения $I(X)$	12
Ви	ідимо, замкнутые?	17
	описать?	
1	Одержание Коммутативноалгебраическое введение 1.1 Алгебраические и чисто трансцендентные расширения полей	1 5 9

• Атья, Макдональд, "Введение в коммутативную алгебру".

Замечание 1. Все кольца ассоциативны, коммутативны и с единицей.

1 Коммутативноалгебраическое введение

Определение 1. Пусть I — частично упорядоченное по порядку \leq множество, т.е.

$$a \leqslant b \leqslant c \implies a \leqslant c.$$

OBУ: всякая последовательности элементов $i_1 \leqslant i_2 \leqslant \dots$ стабилизируется с некоторого момента (т.е. последовательность имеет константный хвост).

Hаличие минимального элемента. Для всякого $J\subseteq I$ существует $j_{max}\in J$, что для всякого $j\in J$ имеет место следствие $j_{max}\leqslant j\Rightarrow j=j_{max}.$

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

Лемма 1. I удовлетворяет OBY тогда u только тогда, когда I удовлетворяет наличию минимального элемента.

Доказательство.

- ⇒) Предположим, что максимального элемента, т.е. для всякого элемента есть строго больший. Тогда мы можем построить строго возрастающую последовательность, что противоречит ОВУ.
- \Leftarrow) Пусть дана нестрого возрастающая последовательность $(i_m)_{m=1}^{\infty}$. Тогда применяя свойство наличия максимального элемента для $J:=\{i_m\}_{m=1}^{\infty}$, получаем, что есть $j_M\in J$ (для некоторого M), для которого нет строго большего в J. Значит после j_M все элементы с ним совпадают.

Определение 2. Пусть A — кольцо, а M — A-модуль. Тогда $\operatorname{mod}(A)$ — множество всех подмодулей в M, упорядоченных по включению $((0), M \in \operatorname{mod}(M))$.

M нётеров, если mod(A) удовлетворяет ОВУ (или наличию максимального элемента).

Лемма 2.

- 1. Если M нётеров, то любой подмодуль $N \subseteq M$ конечнопорождён (как A-модуль).
- 2. Если любой подмодуль M конечнопорождён, то M нётеров.

Доказательство.

- $1\Rightarrow 2)$ Пусть M нётеров, $N\subseteq M$ подмодуль. Пусть I все конечнопорождённые модули в N. I непуст, так как $(0)\in I$. Следовательно, в I есть максимальный элемент, пусть N_{max} . Если $N_{max}=N$, то N0 конечнопорождён. Если $N_{max}\neq N$ 1, то существует $N_{max}\neq N$ 2 что $N_{max}\not\subseteq N_{max}+x\cdot A\subseteq N$ 4 противоречие.
- $2\Rightarrow 1)$ Пусть имеется последовательность $M_1\subseteq M_2\subseteq\ldots$ подмодулей M. Определим

$$M_{\infty} := \bigcup_{m=1}^{\infty} M_m.$$

 M_{∞} тоже подмодуль M. Значит M_{∞} конечнопорождён. $x_1, \ldots, x_n \in M_{\infty}$, значит есть n_0 , что $x_1, \ldots, x_n \in M_{n_0}$. Следовательно,

$$M_{n_0} = M_{n_0+1} = M_{n_0+2} = \dots$$

Лемма 3. M'- подмодуль M u есть сюръективный гомоморфизм $\pi: M \to M/M' = M''.$ Тогда M нётеров тогда u только тогда, когда M' u M'' нётеровы.

Доказательство. Пусть M — нётерово. Покажем, что M' нётерово. Пусть есть цепочка $M_1' \subseteq M_2' \subseteq \ldots$ подмодулей M. M нётерово, значит цепочка стабилизируется, значит M' нётерова.

Покажем, что M'' нётерово. Пусть есть цепочка подмодулей $M_1'' \subseteq M_2'' \subseteq \dots$ Следовательно $[\pi(\pi^{-1}(M_1'') \subseteq \pi^{-1}(M_2'') \subseteq \dots)] \subseteq M$. Значит цепочка стабилизируется. Значит стабилизируется изначальная цепочка, значит M'' нётерово.

Теперь предположим, что M' и M'' нётеровы.

Дописать.

Определение 3. Кольцо А нётерово, если как модуль над собой нётерово.

3амечание 2. 1 — образующая A как A-модуля. Всякий идеал I является подмодулем A, но может не иметь одного образующего.

Определение 4. I кольца A — непустое подмножество A, что для всяких $a,b \in I$ $a+b \in I$ и для всяких $a \in I$, $k \in A$ $ak \in I$.

Лемма 4. Пусть дано кольцо A. TFAE

- 1. А нётерово.
- 2. Любая цепочка идеалов $I_1 \subseteq I_2 \subseteq \dots$ стабилизируется.
- 3. Всякий идеал I конечнопорождён.

Доказательство.

- $1 \Leftrightarrow 2$) По определению.
- $1 \Leftrightarrow 3$) По лемме 2.

Лемма 5. Пусть дано нётерово кольцо A. Тогда для всякого $n \geqslant 0$ A^n — нётеров модуль.

Доказательство. (0) — нётеров. $A^1 = A$ — нётеров. Далее легко провести по индукции, что A^{n-1} нётерово и $A^n/A^{n-1} = A$ нётерово, а тогда A^n нётерово.

Следствие 5.1. Если A — нётерово кольцо, то всякий конечнопорождённый A-модуль M нётеров.

Доказательство. Пусть $m_1, \ldots, m_r \in M$ — система порождающих модуля M. Тогда имеем сюръективный гомоморфизм $A^r \to M$, порождённый $e_i \mapsto m_i$. Следовательно, по лемме 3 из нётеровости A^r следует нётеровость M.

Следствие 5.2. Если M — конечнопорождённый модуль u N — подмодуль M, то N конечнопорождён. B частности всякий подмодуль $N \subseteq A^r$ конечнопорождён.

Доказательство.

Дописать.

Теорема 6 (Гильберта). Если кольцо A нётерово, то A[t] нётерово.

Доказательство. Пусть фиксирован некоторый идеал I в A[t]. Как только мы покажем, что I конечнопорождён, то применяя лемму 4, получим нётеровость A[t].

Пусть $\mathcal{A} \subseteq A$ — множество старших членов многочленов из I.

Лемма 6.1. $A - u \partial e a \pi$. H, следовательно, конечнопорож $\partial e h o$.

Доказательство. Действительно, для всяких $a, b \in \mathcal{A}$ есть многочлены $f_a, f_b \in I$ со старшими коэффициентами a и b соответственно. Следовательно $f_a t^{\deg(f_b)} + f_b t^{\deg(f_a)}$ лежит в I и имеет старший коэффициент a+b (если только $a+b \neq 0$; иначе очевидно). Также если $a \in \mathcal{A}$, а $k \in A$, то есть многочлен $f_a \in I$ с данным старшим коэффициентом. Но тогда kf_a (если $ak \neq 0$; иначе очевидно) лежит в I и имеет старший член ak.

Рассмотрим a_1, \ldots, a_r — система порождающих \mathcal{A} , а f_1, \ldots, f_r — многочлены из I с данными старшими коэффициентами.

Тогда всякий $f \in I$ порождается тогда и только тогда, когда порождается соответствующий ему $g \in I$ степени меньше $n := \max_k \deg(f_k)$, так как иначе с помощью старших членов f_i можно породить старший член f, вычесть его из f и тем самым понизить степень. Значит вопрос свёлся к порождаемости многочленов из I степени не выше n.

Заметим, что описанные многочлены образуют модуль $I \cap (A \oplus At \oplus \cdots \oplus At^{n-1})$ — подмодуль A^n . Значит $I \cap (A \oplus At \oplus \cdots \oplus At^{n-1})$ конечнопорождён, а отсюда I конечнопорождён.

Лемма 7. Если B — нётерово кольцо, C — кольцо, $a \varphi : B \to C$ — гомоморфизм колец, то $\varphi(B)$ — нётерово.

Доказательство. Пусть дана последовательность идеалов $I_1 \subseteq I_2 \subseteq \dots$ в $\varphi(B)$. Тогда $\varphi^{-1}(I_i)$ — идеалы и

$$\varphi^{-1}(I_1) \subseteq \varphi^{-1}(I_2) \subseteq \dots$$

Значит с какого-то момента эта цепочка стабилизируется, а значит стабилизируется образ этой цепочки по φ , т.е. изначальная цепочка.

Лемма 8. Если $\psi: A \to C$ — гомоморфизм колец, такой что C — конечная A-алгебра, порождённая элементами x_1, \ldots, x_n . Тогда C нётеров.

Доказательство. Мы можем рассмотреть нативное вложение A в $A[t_1, \ldots, t_n]$ и гомоморфизм A-алгебр $\varphi: A[t_1, \ldots, t_n] \to C$, порождённый ψ и соотношениями $\varphi(t_i) = x_i$.

 φ сюръективен, а $A[t_1,\ldots,t_n]$ нётерово. Таким образом $\varphi(B)=C$ нётерово.

Замечание 3. Всякое поле нётерово.

Следствие 8.1. Любая конечнопорождённая F-алгебра, где F — поле, нётерова.

3амечание 4. • \mathbb{Z} — нётерово кольцо.

- Всякое кольцо является Z-кольцом.
- ullet Если кольцо R конечнопорождённая \mathbb{Z} -алгебра, то оно нётерово.

Лемма 9. Пусть A — нётерово кольцо, а M'' — A-модуль. Тогда M конечнопорождён тогда u только тогда, когда нётеров.

Доказательство. Если M'' нётеров, то уже доказано, что M'' конечнопорождён, так как является собственным подмодулем (см. лемму).

Если M'' конечнопорождено, то есть система порождающих m_1, \ldots, m_s . Тогда есть сюръективный гомоморфизм

$$\varphi: A^s \to M'', e_i \mapsto m_i.$$

При этом A^s нётеров, значит M'' нётеров.

Лемма 10. Пусть даны кольца $A \subseteq B \subseteq C$, что A — нётерово, C — конечнопорождённый B-модуль и конечнопорождённая A-алгебра. Тогда B — конечнопорождённая A-алгебра.

Доказательство. Пусть y_1, \ldots, y_n — система порождающих C как A-алгебру, а x_1, \ldots, x_m — система порождающих C как B-модуль. Тогда есть $b_{i,j} \in B$, что

$$y_i = \sum b_{i,j} x_j,$$

и $b_{i,j,k} \in B$, что

$$x_i x_j = \sum b_{i,j,k} x_k.$$

Пусть B_0 — это A-подалгебра в B, порождённая всеми $b_{i,j}$ и $b_{i,j,k}$. Заметим, что количество перечисленных порождающих конечно, т.е. B_0 — конечнопорождённая алгебра. Следовательно, B_0 нётерова.

Поймём, что C порождается уже над B_0 элементами x_1, \ldots, x_n . Действительно, для всякого $c \in C$ есть $F \in A[t_1, \ldots, t_n]$, что $c = F(y_1, \ldots, y_n)$. При этом $y_i = \sum b_{i,j} x_j$. Значит

$$c = G(x_1, \dots, x_m) \in B_0 x_1 + \dots + B_0 x_m,$$

так как при раскрытии скобок каждый квадратный $x_i x_j$ член заменяется на линейную сумму $\sum b_{i,j,k} x_k$, т.е. можно запустить банальный алгоритм понижения степени и получить линейное по x_i выражение.

Таким образом C как B_0 -модуль конечнопорождён (а B_0 нётеров), значит всякий B_0 -подмодуль в C конечнопорождён, значит B — конечнопорождённый B_0 -модуль. Поскольку $B_0 \subseteq B$, то B — конечнопорождённая B_0 -алгебра. Следовательно, B — конечнопорождённая B_0 -алгебра, а B_0 — конечнопорождённая A-алгебра. \square

1.1 Алгебраические и чисто трансцендентные расширения полей

Определение 5. Пусть есть поле F, содержащееся в поле E. Элемент $x \in E$ называется алгебраическим над F, если есть $g \in F[t]$, что $g(x) = 0 \in E$. Иначе x называется трансцендентным над F.

Лемма 11. Если x алгебраический над F, то рассмотрим F-подалгебру F[x] в E, порождённую x, т.е. есть гомоморфизм алгебр $\varphi: F[t] \to E$, порождённый соотношением $\varphi(t) = x$, определяет алгебру $\varphi(F[t])$. Тогда существует неприводимый многочлен $f \in F[t]$, что f(x) = 0 и $F[x] = \varphi(F[t]) = F[t]/(f)$.

Доказательство. φ — гомоморфизм алгебр, а значит гомоморфизм колец, значит $\mathrm{Ker}(\varphi)\subseteq F[t]$ непуст (из-за алгебраичности x) и является идеалом. Но всякий идеал в F[t] является главным, следовательно $\mathrm{Ker}(\varphi)=(f(t))$ для некоторого $f\in F[t]$. При этом, так как E поле, $\mathrm{Ker}(\varphi)$ — простой идеал, т.е. f(t) неприводим. Отсюда получаем искомое.

Следствие 11.1. Ужее F[x] является подполем в E.

Следствие 11.2. $\dim_F F[x] = \deg f(t) < \infty$.

Следствие 11.3. F[x] порождается как векторное пространство над F элементами (базисом) $1, x, \ldots, x^d$ для некоторого $d \in \mathbb{N}$.

Определение 6. Пусть $K\subseteq L$ — поля. Если $y_1,...,y_m\in L$ алгебраичны над K и

$$K \subseteq K[y_1] \subseteq K[y_1][y_2] \subseteq \cdots \subseteq K[y_1] \ldots [y_m] = L,$$

то L называется конечнопорождённым алгебраически порождённым алгебраическим расширением поля K.

Лемма 12. Если даны поля $K \subseteq L$, что L — конечнопорождённое алгебраическое расширение K, то $\dim_K L < \infty$.

Доказательство. Если m=1, то утверждение превращается в следствие 11.2.

По следствию 11.3 1, ..., $y_2^{d_2}$ порождают $K[y_1][y_2]$ как векторное пространство над $K[y_1]$. При этом $K[y_1]$ порождается 1, ..., $y_1^{d_1}$ как векторное пространство над K. Следовательно, все элементы вида $y_1^{\alpha_1}y_2^{\alpha_2}$, $\alpha_1 \in \{0; \ldots; d_1\}$, $\alpha_2 \in \{0; \ldots; d_2\}$, порождают $K[y_1][y_2]$ как векторное пространство над K. Следовательно

$$\dim_K K[y_1][y_2] = \dim_K K[y_1] \cdot \dim_{K[y_1]} K[y_1][y_2] < \infty.$$

Упражнение 1. Верно и обратное: если $\dim_K L < \infty$, то L — конечнопорождённое алгебраическое расширение поля K.

Определение 7. Пусть даны поля $F \subseteq E$ и $x \in E$, трансцендентный в F. Тогда

$$F(x) := \{ \frac{f(x)}{g(x)} \mid f, g \in F[t], g(t) \neq 0 \}.$$

Лемма 13. 1. F(x) корректно определено.

2. F(x) - none.

Доказательство.

- 1. Если g(x) = 0, то x алгебраично. Значит f(x)/g(x) определено.
- 2. Операции наследуются от поля. Несложно видеть, что F(x) относительно них замкнуто.

Лемма 14. $F(x) \cong F(t)$ как поля, где F(t) — поле рациональных функций.

Доказательство. Построим понятный гомоморфизм полей

$$\varphi: F(t) \to F(x), f/g \mapsto f(x)/g(x).$$

По построению φ сюръективен. $\mathrm{Ker}(\varphi)$ — идеал в поле, т.е. либо (0), либо всё F(t). Но φ сохраняет F, значит $\mathrm{Ker}(\varphi)=0$, т.е. φ инъективен. Итого φ — изоморфизм.

Лемма 15. Пусть x трансцендентно. Тогда $1, x, x^2, \ldots$ линейно независимы.

Доказательство. В противном случае это означает, что есть некоторое $n \in \mathbb{N}$ и $a_0, \dots, a_n \in F$, что

$$\sum_{k=0}^{n} a_k x^k = 0.$$

Тогда f(x) = 0, где

$$f(t) := \sum_{k=0}^{n} a_k t^k.$$

Это противоречит с трансцендентностью x.

Лемма 16. Пусть даны поле L и независимая переменная t. Тогда

$$L(t) := \{ \frac{f(t)}{g(t)} \mid f(t), g(t) \in L[t], g(t) \neq 0 \}$$

не является конечнопорождённой L-алгеброй.

Доказательство. Предположим противное. Пусть $L(t) = L[y_1, \dots, y_s]$ — конечнопорождённая L-алгебра, где $y_i = \frac{f_i(t)}{g_i(t)}$. Тогда есть гомоморфизм

$$\varphi: L[T_1, \ldots, T_s] \to L(t), T_i \mapsto y_i.$$

Понятно, что

$$L[y_1,\ldots,y_s]=\varphi(L[T_1,\ldots,T_s]).$$

Тогда рассмотрим h(t) — неприводимый делитель значения

$$1 - \prod_{i=1}^{s} q_i(t).$$

Поскольку $L = L[y_1, \ldots, y_s]$, то $1/h(t) \in L[y_1, \ldots, y_s]$, то есть $G(T_1, \ldots, T_s) \in L[T_1, \ldots, T_s]$, что $G(y_1, \ldots, y_s) = \frac{1}{h(t)}$. Понятно, что есть некоторое $N \in \mathbb{N}$, что

$$G(y_1,\ldots,y_s)=\frac{F(t)}{(\prod q_i(t))^N}.$$

Тогда

$$\left(\prod q_i(t)\right)^N = h(t)F(t).$$

Вспомним, что

$$\prod g_i(t) - 1 = h(t) \cdot h_1(t) \implies \prod g_i(t) \equiv 1 \pmod{h(t)} \implies \left(\prod g_i(t)\right)^N \equiv 1 \pmod{h(t)},$$
$$\left(\prod g_i(t)\right)^N = h(t)F(t) \implies \left(\prod g_i(t)\right)^N \equiv 0 \pmod{h(t)},$$

T.e. $0 \equiv 1 \pmod{h(t)}$.

Лемма 17. Пусть $F \subseteq E - n$ оля, $u E = F[x_1, \dots, x_n]$ конечнопорождёно как F-алгебра. Тогда $[x_1, \dots, x_n]$ алгебраичны над F $u \dim_F E < \infty$.

Доказательство. Среди x_1, \ldots, x_n может оказаться элемент трансцендентный над F, WLOG x_1 . Получим

$$F \subseteq F(x_1) \subseteq E$$
.

Среди оставшихся может оказаться элемент, трансцендентный над $F(x_1)$, WLOG x_2 . Получим

$$F \subseteq F(x_1) \subseteq F(x_1)(x_2) \subseteq E$$
.

Будем повторять данную операцию до конца. Таким образом выделим x_1, \ldots, x_r , получим

$$F \subseteq F(x_1) \subseteq F(x_1)(x_2) \subseteq \cdots \subseteq \underbrace{F(x_1) \dots (x_r)}_{K} \subseteq E,$$

что все x_{r+1}, \ldots, x_n алгебраичны над K. Тогда E как векторное пространство над K конечномерно (лемма 12).

Тогда имеем, что

$$F \subseteq K \subseteq E$$
,

где E — конечнопорождённый K-модуль и конечнопорождённая F-алгебра. Следовательно, по лемме $10\ K$ — конечнопорождённая F-алгебра.

Пусть $r \neq 0$. Пусть $L = F(x_1) \dots (x_{r-1})$. Тогда $L(x_r) = K$, где $x_r \in K$ трансцендентен над L. Следовательно, $L(x_r) \cong L(t)$, т.е. $K = L(x_r)$ — не конечнопорожденная L-алгебра, и тем более не конечнопорождённая F-алгебра. Противоречие.

Следствие 17.1. Пусть $F \to A$ — конечнопорождённая F-алгебра, а \mathcal{M} — максимальный идеал A. Тогда $F \hookrightarrow A/\mathcal{M}$ — конечное алгебраическое расширение поля.

Доказательство.

Дописать?

Следствие 17.2. Пусть F- алгебраически замкнутое поле, а $F \to A-$ конечнопорождённая F-алгебра. Тогда $F \to A/\mathcal{M}-$ изоморфизм.

Доказательство. A/\mathcal{M} — конечное алгебраическое расширение поля F, т.е. совпадает с F. \square

Упражнение 2. Пусть R — кольцо, $I \subseteq J \subseteq R$ — два иделала в R. Тогда ТҒАЕ.

- 1. I = J.
- $2. \ \overline{\varphi}: R/I \to R/J, r \bmod I \mapsto r \bmod J$ изоморфизм колец.

Доказательство. Если I=J, то очевидно что $r \bmod I = r \bmod J$, а R/I=R/J, а тогда $\overline{\varphi}$, являясь тождественным отображением, является изоморфизмом колец.

Пусть $\overline{\varphi}$ — изоморфизм колец. Рассмотрим вложения $\pi_I: R \to R/I, r \mapsto r \bmod I$ и $\pi_J: R \to R/J, r \mapsto r \bmod J$. Следовательно, имеем коммутативность диаграммы

Следовательно,

$$r \in I \quad \Leftrightarrow \quad r \in \operatorname{Ker}(p_I) \quad \Leftrightarrow \quad p_I(r) = 0 \quad \Leftrightarrow \quad p_J(r) = 0 \quad \Leftrightarrow \quad r \in \operatorname{Ker}(p_J) \quad \Leftrightarrow \quad r \in J,$$

T.e. $I = J$.

Упражнение 3. Пусть $\mathcal{M} \subseteq R$ — идеал. Тогда ТҒАЕ.

- $1. \mathcal{M}$ максимален.
- 2. R/\mathcal{M} поле.

Теорема 18 (Гильберта о нулях, Nullstellensatz (слабая)). Пусть K — алгебраически замкнутое поле (например, \mathbb{C}), $\mathcal{M} \subseteq K[t_1, \ldots, t_n]$ — максимальный идеал. Тогда $\mathcal{M} = (t_1 - x_1, \ldots, t_n - x_n)$, где $x_i \in F$. **Доказательство.** Зафиксируем некоторые значения $x_1, \ldots, x_n \in K$ и рассмотрим идеал $I := (t_1 - x_1, \ldots, t_n - x_n)$. Также рассмотрим следующие гомоморфизмы:

$$in: K \to K[t_1, \dots, t_n], r \mapsto r,$$

$$\pi_{\mathcal{M}}: K[t_1, \dots, t_n] \to K[t_1, \dots, t_n] / \mathcal{M}, r \mapsto r \bmod \mathcal{M}, \qquad i_{\mathcal{M}} := \pi_{\mathcal{M}} \circ in,$$

$$\pi_I: K[t_1, \dots, t_n] \to K[t_1, \dots, t_n] / I, r \mapsto r \bmod I, \qquad i_I := \pi_I \circ in.$$

Заметим, что $i_{\mathcal{M}}$ — изоморфизм колец, так как \mathcal{M} максимален. При этом для всякого многочлена $F \in K[t_1, \ldots, t_n]$ по теореме Безу $F(t_1, \ldots, t_n) \equiv F(x_1, \ldots, x_n)$ (mod I), а значит i_I инъективен, так как K поле, и сюръективен, так как $[F]_I = [F(x_1, \ldots, x_n)]_I = i_I(F(x_1, \ldots, x_n))$. Следовательно i_I тоже изоморфизм колец. Следовательно есть изоморфизм колец $\varphi = i_{\mathcal{M}}^{-1} \circ i_I$, т.е. для всякого $r \in K$

$$\varphi(r \bmod \mathcal{M}) = r \bmod I.$$

Осталось показать, что $\varphi \circ \pi_{\mathcal{M}} = \pi_I$, т.е. для всякого $F \in K[t_1, \ldots, t_n] \varphi : F \mod \mathcal{M} \mapsto F \mod I$. На деле для случайных x_1, \ldots, x_n это не верно. Поэтому возьмём $x_k := i_{\mathcal{M}}^{-1}(t_k \mod \mathcal{M})$, т.е. чтобы $t_k - x_k \in \mathcal{M}$. Тогда получим, что

$$\varphi(t_k \bmod \mathcal{M}) = \varphi(x_k \bmod \mathcal{M}) = x_k \bmod I = t_k \bmod I.$$

Поскольку φ — гомоморфизм колец, а всякий многочлен представляется в виду суммы произведений элементов K и t_1, \ldots, t_n , то теперь это верно для всех многочленов. Значит $\mathcal{M} = I$.

2 Аффинная геометрия

Замечание. Глава І. §1. Замкнутые подмножества A_k^n .

Обозначить это по-нормальному.

Определение 8. Пусть фиксировано поле k. Аффинное пространство над полем <math>k размерности n — есть пространство

$$\mathbb{A}^{n} = \mathbb{A}^{n}_{k} := \{ x = (x_{1}, \dots, x_{n}) \mid x_{i} \in k \} = k^{n}.$$

Пусть $A:=k[T_1,\ldots,T_n],\,f\in A.$ Тогда f — отображение $\mathbb{A}^n\to k.$ Пусть фиксировано $S\subseteq A.$ Тогда множеством общих нулей многочленов из S (также "общие нули многочленов из S" или "нули S") — это множество

$$Z(S) := \{ x \in \mathbb{A}^n \mid \forall f \in S \ f(x) = 0 \}.$$

Все подмножества Z(S) называются замкнутыми подмножествами в \mathbb{A}^n или аффинными подмножествами в \mathbb{A}^n .

 Π ример 1.

- 1. $\emptyset = Z(\{a\}_{a \in k}) = Z(A)$.
- 2. $\mathbb{A}^n = Z(\emptyset) = Z(\{0\}).$
- 3. $\{(x_1,\ldots,x_n)\}=Z(\{T_1-x_1,\ldots,T_n-x_n\}).$
- 4. Замкнутые подмножества в \mathbb{A}^1 это \mathbb{A} , \emptyset и любое конечное подмножество.
- 5. Если n=2, то Z(f) называется $\emph{плоской кривой}.$

Лемма 19.

- 1. Ecau $S \subseteq S'$, mo $Z(S') \subseteq Z(S)$.
- 2. Пусть I u dean, порождённый многочленами из S. Тогда Z(I) = Z(S).
- 3. Для всякого S есть конечное S', что Z(S) = Z(S').
- 4. Пусть есть семейство $\{S_i\}_{i\in I}$. Тогда

$$Z\left(\bigcup_{i\in I}S_i\right) = \bigcap_{i\in I}Z(S_i).$$

5. Пусть дано семейство идеалов $\{I_j\}_{j\in J}$. Тогда

$$Z\left(\sum_{j\in J}I_j\right)=\bigcap_{j\in J}Z(I_j).$$

6. Пусть дано семейство $\{S_i\}_{i=1}^n$. $S':=S_1S_2\dots S_n=\{f_1\dots f_n\mid f_1\in S_1\wedge\dots\wedge f_n\in S_n\}$. Тогда

$$Z(S') = \bigcup_{i=1}^{n} Z(S_i).$$

7. Пусть дано семейство идеалов $\{I_j\}_{j=1}^n$. Тогда

$$Z\left(\bigcap_{j=1}^{n} I_j\right) = \bigcup_{j=1}^{n} Z(I_j).$$

Доказательство.

- 1. Действительно, для всякой точки $x \in Z(S')$ верно, что для всякого $f \in S'$ f(x) = 0, а значит то же верно для всякого $f \in S$ (так как $S \subseteq S'$), т.е. $x \in Z(S)$.
- 2. Поскольку $S \subseteq I$, то $Z(I) \subseteq Z(S)$. При этом для всякого $x \in Z(S)$ верно, что для всякого $f \in S$ f(x) = 0, а значит то же верно для всех $f \in I$ (так как I идеал, порождённый S), т.е. $x \in Z(I)$. Т.е. $Z(S) \subseteq Z(I)$. Следовательно, Z(S) = Z(I).
- 3. Если известно, что S и S' порождают одинаковые идеалы, то Z(S) = Z(S'). Но всякий идеал в $k[T_1, \ldots, T_n]$ конечнопорождён, а значит у идеала, порождённого S, есть конечное порождающее множество S' искомое S'.

- 4. Заметим, что $x \in Z(\bigcup_{i \in I} S_i)$ тогда и только тогда, когда на x зануляются все многочлены из $\bigcup_{i \in I} S_i$, что равносильно тому, что на x зануляются все многочлены из каждого S_i , что равносильно тому, что x лежит в каждом $Z(S_i)$, что равносильно тому, что $x \in \bigcap_{i \in I} Z(S_i)$. Отсюда следует требуемое.
- 5. По прошлому пункту.

$$Z\left(\bigcup_{j\in J}I_j\right) = \bigcap_{j\in J}Z(I_j).$$

Но также несложно видеть, что идеал, порождённый $\bigcup_{j\in J} I_j$, есть $\sum_{j\in J} I_j$. Отсюда сиюминутно следует искомое (по ранее доказанному пункту).

- 6. Покажем утверждение для n=2. Заметим, что если $x\in Z(S_1)$, то на x зануляются все многочлены из S_1 , а значит и из $S_1\cdot S_2$, т.е. $x\in Z(S_1S_2)$. Следовательно $Z(S_1)\subseteq Z(S_1S_2)$. Из аналогичного утверждения получаем, что $Z(S_1)\cup Z(S_2)\subseteq Z(S_1S_2)$. При этом если $x\in Z(S_1S_2)\setminus Z(S_1)$, то есть многочлен $f\in S_1$, что $f(x)\neq 0$. Но для всякого $g\in S_2$ верно $fg\in S_1S_2$, а значит f(x)g(x)=0, а тогда g(x)=0, т.е. $x\in Z(S_2)$. Итого $Z(S_1S_2)=Z(S_1)\cup Z(S_2)$. Утверждение для всякого n получается по индукции с помощью данного.
- 7. Покажем для n=2; общий случай получается по индукции. Пусть даны идеалы I и J. Имеем по прошлому пункту

$$Z(I \cdot J) = Z(I) \cup Z(J).$$

При этом $I\cdot J\subseteq I\cap J,$ а $I\cap J\subseteq I,$ $I\cap J\subseteq J.$ Следовательно $Z(I\cdot J)\supseteq Z(I\cap J),$ $Z(I\cap J)\supseteq Z(I),$ $Z(I\cap J)\supseteq Z(J).$ Итого

$$Z(I \cdot J) \supseteq Z(I \cap J) \supseteq Z(I) \cup Z(J),$$

откуда

$$Z(I\cdot J)=Z(I\cap J)=Z(I)\cup Z(J).$$

Следствие 19.1. Мораль такова.

- 1. Замкнутые идеалы образуют топологию, где они являются замкнутыми. Т.е. их дополнения образуют топологию (являясь открытыми).
- 2. Каждое замкнутое подмножество имеет вид Z(I), где I-uдеал.
- 3. Сумма идеалов соответствует пересечению замкнутых множеств (и наоборот). Т.е. для всякого семейства идеалов $\{I_j\}_{j\in J}$ верно, что

$$\bigcap_{j \in J} Z(I_j) = Z\left(\sum_{j \in J} I_j\right).$$

4. Конечные пересечения идеалов соответствуют конечным объединениям замкнутых множеств. Т.е. для всякого семейства идеалов $\{I_j\}_{j=1}^n$ верно, что

$$\bigcup_{j=1}^{n} Z(I_j) = Z\left(\bigcap_{j=1}^{n} I_j\right).$$

Определение 9. Пусть имеется множество точек $X \subseteq A_k^n$. Определим множество

$$I(X) := \{ f \in A \mid \forall x \in X \ f(x) = 0 \}.$$

Лемма 20.

- 1. $I(X) u\partial eax$.
- 2. Ecau $X \subseteq Y$, mo $I(X) \supset I(Y)$.
- 3. $I(X) = I(\overline{X})$ $(\overline{X} замыкание X в смысле рассмотренной топологии).$

4.

Hanucamь леммы про пересечения и объединения I(X):

- (a) $\sum_{j \in J} I(X_j) = I(\bigcap_{j \in J} X_j)$? (b) $\bigcap_{j \in J} I(X_j) = I(\bigcup_{j \in J} X_j)$?
- 5. Ecau $X \subseteq Y$, mo $ZI(X) \subseteq ZI(Y)$.
- 6. Ecau $S \subseteq T$, mo $IZ(S) \subseteq IZ(T)$.
- 7. $ZI(X) \supset X$.
- 8. $IZ(S) \supset S$.

Доказательство.

- 1. Если $f, g \in I(X)$, то для всякой точки $x \in X$ верно f(x) = g(x) = 0, а тогда (f+g)(x) = 0, т.е. $f+g\in I(X)$. Если же $f\in I(X)$, $g\in A$, то для всякой точки $x\in X$ верно f(x)=0, а значит (fg)(x) = 0, т.е. $fg \in I(X)$.
- 2. Если $f \in I(Y)$, то f(Y) = 0, значит f(X) = 0, тогда $f \in I(X)$.
- 3. Понятно, что $X \subseteq \overline{X}$, а значит $I(\overline{X}) \subseteq I(X)$. Покажем обратное. Пусть есть $x \in \overline{X} \setminus X$. Если есть какой-то многочлен $f \in A$, что f зануляется на X, но не на x, то Y := Z(f)является замкнутым, $X \subseteq Y$, а $x \notin Y$. Следовательно, так как $\overline{X} \subseteq Y$, то $x \notin \overline{X}$ противоречие. Это значит, что всякий многочлен, зануляющийся на X, зануляется на всякой точке из $\overline{X} \setminus X$, а значит на всём \overline{X} . Следовательно $I(X) \subseteq I(\overline{X})$.
- 4. $X \subseteq Y \Rightarrow I(X) \supseteq I(Y) \Rightarrow ZI(X) \subseteq ZI(Y)$.
- 5. $S \subset T \Rightarrow Z(S) \supset Z(T) \Rightarrow IZ(S) \subset IZ(T)$.
- 6. Поскольку I(X) множество всех многочленов, зануляющихся на X, то всё I(X) зануляется на X, т.е. $ZI(X) \supseteq X$.
- 7. Поскольку Z(S) множество всех точек, на которых зануляется S, то S на нём зануляется, а тогда $IZ(S) \supseteq S$.

Определение 10. Пусть I — некоторый идеал. $\mathit{Padukan}$ из иделала I — \sqrt{I} := $\{h \in A \mid$ $\exists N : h^N \in I$ }.

Идеал I называется paduкальным тогда и только тогда, когда для всякого $q \in A$, что есть $m \geqslant 1$, что $g^m \in I$ верно, что $g \in I$.

Лемма 21.

1. $\sqrt{I} - u \partial ea \Lambda$.

2.
$$Z(\sqrt{I}) = Z(I)$$
.

- 3. Идеал I радикален тогда и только тогда, когда $\sqrt{I} \subseteq I$.
- 4. \sqrt{I} радикален.
- 5. I(X) радикален.

Доказательство.

1. Пусть $h \in \sqrt{I}$. Тогда есть N, что $h^N \in I$. Значит для всякого $f \in A$

$$(hf)^N = h^n f^n \in IA \subseteq I.$$

T.e. $hf \in \sqrt{I}$. Значит $hA \subseteq \sqrt{I}$.

Пусть $h_1, h_2 \in \sqrt{I}$. Тогда есть N_1 и N_2 , что $h_1^{N_1}, h_2^{N_2} \in I$. Тогда

$$(h_1 + h_2)^{N_1 + N_2} = \sum_{k=0}^{N_1 + N_2} h_1^k h_2^{N_1 + N_2 - k} \binom{N_1 + N_2}{N_1}.$$

При этом при $k\leqslant N_1$

$$h_2^{N_2} \in I, \qquad h_1^k h_2^{N_1-k} \binom{N_1+N_2}{N_1} \in A, \qquad \Longrightarrow \qquad h_1^k h_2^{N_1+N_2-k} \binom{N_1+N_2}{N_1} \in I;$$

аналогично для $k \geqslant N_1$.

- 2. Поскольку $I \subseteq \sqrt{I}$, то $Z(\sqrt{I}) \subseteq Z(I)$. При этом для всякого $x \in Z(I)$ верно, что для всякого $f \in S$ f(x) = 0, а значит для всякого $f \in \sqrt{I}$ есть N, что $f^N(x) = 0$, а тогда f(x) = 0, т.е. $x \in Z(\sqrt{I})$. Т.е. $Z(I) \subseteq Z(\sqrt{I})$. Следовательно, $Z(\sqrt{I}) = Z(I)$.
- 3. Определение по-другому написанное.
- 4. Несложно видеть, что $\sqrt{\sqrt{I}} = \sqrt{I}$ по определению радикала. Значит $\sqrt{\sqrt{I}} \subseteq \sqrt{I}$, т.е. \sqrt{I} радикален.
- 5. I(X) максимальный идеал, что $X\subseteq Z(I(X))$. При этом $Z(\sqrt{I(X)})=Z(I(X))$, значит $\sqrt{I}\subseteq I$. Таким образом I максимален.

Лемма 22. Если X замкнуто, то ZI(X) = X.

Доказательство. Как мы уже знаем, $X \subseteq ZI(X)$; покажем обратное. Заметим, что X = Z(S). Тогда $I(X) = IZ(X) \supseteq S$. Тогда $ZI(X) \subseteq Z(S) = X$.

Теорема 23 (Гильберта о нулях, Nullstellensatz). Если I — радикальный идеал, то IZ(I) = I.

Следствие 23.1. $I \ u \ Z$ — биекции из множества замкнутых множеств в $A \ u$ обратно. При этом $Z \circ I \ u \ I \circ Z$ — тождественные отображения.

Доказательство. Как мы уже знаем, I — функция из множества замкнутых множеств в A, а Z — наоборот. При этом по следствию двух предыдущих утверждений ZI и IZ — тождественные функции из множества замкнутых функций в себя и из A в себя. Из первого следует, что I инъективно, а Z сюръективно; из второго следует, что Z инъективно, а I сюръективно. Т.е. I и Z — биекции.

Следствие 23.2.

- 1. $ZI(X) = \overline{X}$.
- 2. $IZ(I) = \sqrt{I}$.

Доказательство.

- 1. $ZI(X) = ZI(\overline{X}) = \overline{X}$.
- 2. $IZ(I) = IZ(\sqrt{I}) = \sqrt{I}$.

Замечание 5. Точки в \mathbb{A}^n находятся во взаимнооднозначном соответствии с максимальными идеалами в A — это говорит слабая теорема Гильберта о нулях. Т.е. всякой точке $x \in \mathbb{A}^n$ сопоставляется I(x), а максимальному идеалу \mathcal{M} сопоставляется $Z(\mathcal{M})$, которое является точкой, так как $\mathcal{M} = (T_1 - x_1, \dots, T_n - x_n)$, а значит подходит только точка $(x_1; \dots; x_n)$.

Определение 11. Пусть X замкнуто. Тогда $k[X] := A/I(X) - \kappa$ ольцо регулярных функций на X.

Лемма 24. Пусть X_1 и X_2 замкнуты.

- 1. $X := X_1 \sqcup X_2$ замкнуто.
- 2. Отображение

$$\varphi: k[X] \to k[X_1] \times k[X_2], F \operatorname{mod} I(X) \mapsto (F \operatorname{mod} I(X_1), F \operatorname{mod} I(X_2))$$

задаёт изоморфизм колец.

Определение 12. Пусть X — замкнутое множество. Функция $f: X \to k$ называется регулярной, если есть $F \in A$, что $f = F|_X$.

Замечание 6. Множество k[X] регулярных функций на X является кольцом и даже k-алгеброй. При этом $T_i \in A = k[T_1, \dots, T_n]$ образуют A, значит функции $t_i : X \to k, x \mapsto T_i(x)$ образуют k[X]. Значит получается сюръективный гомоморфизм $\varphi : A \to k[X], F \mapsto F|_X$, который на деле порождается соотношениями $T_i \mapsto t_i$.

Лемма 25. Рассмотрим гомоморфизм $\varphi: A \to k[X], F \to F|_X$.

- 1. $Ker(\varphi) = I(X)$.
- 2. $A/I(X) \stackrel{\varphi}{\to} k[X]$.

Доказательство.

1.
$$\varphi(F) = 0$$
 iff $F|_X \equiv 0$, iff $F(X) = 0$, iff $F \in I(X)$.

2. φ , очевидно, сюръективно. Следовательно, φ индуцирует изоморфизм

$$A/I(X) = A/\mathrm{Ker}(\varphi) \to k[X].$$

П

Лемма 26. Пусть даны замкнутые множества X_1 и X_2 . Тогда $X_1 \cap X_2 = \emptyset$ равносильно $I(X_1) + I(X_2) = A$.

Доказательство. Понятно, что если $X_1 \cap X_2 = \emptyset$

$$A = I(\varnothing) = I(X_1 \cap X_2) = I(ZI(X_1) \cap ZI(X_2)) = IZ(I(X_1) + I(X_2)) = I(X_1) + I(X_2).$$

A если $A = I(X_1) + I(X_2)$, то

$$X_1 \cap X_2 = ZI(X_1) \cap ZI(X_2) = Z(I(X_1) + I(X_2)) = Z(A) = \emptyset.$$

Теорема 27. Пусть $X_1, X_2 -$ замкнутые множества, $X_1 \cap X_2 = \emptyset, \ a \ X := X_1 \sqcup X_2. \ \psi : k[X] \to k[X_1] \times k[X_2], f \mapsto (f|_{X_1}, f|_{X_2}) -$ изоморфизм колец (и даже алгебр).

Доказательство. Понятно, что ψ определено корректно и является гомоморфизмом алгебр. Также понятно, что ψ инъективно, так как всякая функция f, зануляющаяся на X_1 и X_2 , зануляется на X, т.е. ядро ψ тривиально.

Покажем, что ψ сюръективно. Пусть $(f_1,f_2)\in k[X_1]\times k[X_2]$. Тогда есть $F_1,F_2\in A$, что $f_1=F_1|_{X_1},f_2=F_2|_{X_2}$. Мы знаем, что $I(X_1)+I(X_2)=A$. Тогда $F_1-F_2=H_1-H_2$, где $H_1\in I(X_1)$, $H_2\in I(X_2)$. Тогда $F_1-H_1=F_2-H_2=:F$. Имеем, что $F|_{X_1}=(F_1-H_1)|_{X_1}=f_1-0=f_1$; аналогично $F|_{X_2}=f_2$.

Определение 13. Кольцо R называется $pedyцированным, если для всякого <math>a \in R$ и всякого $m \geqslant 1$ из того, что $a^m = 0$ следует, что a = 0 (т.е. в R нет нильпотентов).

 $Замечание. \ k[X]$ редуцированно.

Лемма 28. Любая конечнопорождённая редуцируемая k-алгебра B изоморфна k-алгебра k[X] регулярных функций для некоторых замкнутого подмножества $X \subseteq A$.

Доказательство. Пусть $B=k[t_1,\ldots,t_m]$, где $t_1,\ldots,t_m=B$ (они порождают B над k). Рассмотрим гомоморфизм $\varphi:k[T_1,\ldots,T_m]\to B, T_i\mapsto t_i$ алгебр. Понятно, что φ сюръективен. Пусть $I:=\mathrm{Ker}(\varphi)$. Тогда есть изоморфизм $\overline{\varphi}:A/I\to B$. Поскольку B редуцированно, то I радикален:

$$f^m \in I \implies \varphi(f)^m = \varphi(f^m) = 0 \implies \varphi(f) = 0 \implies f \in I.$$

Тогда пусть X:=Z(I). Следовательно I=I(X), а тогда $B\cong A/I=A/I(X)=k[X]$. \square

Лемма 29. Пусть $R - \kappa$ ольцо, I - paduкальный идеал в <math>R,

$$\pi: R \to \overline{R} := R/I, f \mapsto f \pmod{I}.$$

Тогда имеется взаимнооднозначное соответствие между множеством радикальных идеалов $J \supseteq I$ в R и множеством радикальных идеалов $\mathfrak A$ в $\overline R$, заданное отображениями $J \mapsto \overline J := J/I$ и $\mathfrak A \mapsto \pi^{-1}(\mathfrak A)$.

Доказательство. Обозначим

- множество радикальных идеалов $J \supseteq I$ в R за D_R ,
- ullet множество радикальных идеалов ${\mathfrak A}$ в \overline{R} за $D_{\overline{R}}$.

Тогда заданные в условии отображения $D_R \to D_{\overline{R}}$ и $D_{\overline{R}} \to D_R$ индуцируются π и π^{-1} . Но непонятна их корректность и биективность; это и обсудим.

Пусть $J\supseteq I$ — радикальный идеал в R. Тогда $\pi(J)=J/I$. При этом если $\overline{f}^m\in J/I$ в \overline{R} , где $\overline{f}=f\pmod{I}$, то $(f+I)^m\subseteq J$. При этом $f^m\in (f+I)^m\subseteq J$, т.е. $f^m\in J$, значит $f\in J$. Следовательно $f+I\subseteq J$. Тогда $\overline{f}\in J/I$. Таким образом J/I радикален в \overline{R} .

Пусть $\mathfrak A$ — радикальный идеал в $\overline R$. Тогда $J:=\pi^{-1}(\mathfrak A)$. Следовательно, $\mathfrak A=J/I$. Если $f^m\in J$, то $\overline f^m\in \mathfrak A$. Тогда $\overline f\in J/I$. Следовательно, $f+I\subseteq J$, т.е. $f\in J$. Следовательно J радикален.

Таким образом π и π^{-1} индуцируют корректные отображения $D_R \to D_{\overline{R}}$ и $D_{\overline{R}} \to D_R$. Таким образом осталось показать, что они образуют взаимнооднозначное соответствие.

Заметим, что π и π^{-1} образуют взаимнооднозначное соответствие между $\{f+I\mid f\in R\}$ и \overline{R} . Так как π переводит идеал, содержащий I, в идеал, а π^{-1} идеал в идеал, содержащий I, то π и π^{-1} образует взаимнооднозначное соответствие между идеалами $J\supseteq I$ в R и идеалами \mathfrak{A} в \overline{R} . Значит, аналогично, они образуют взаимнооднозначное соответствие между D_R и $D_{\overline{R}}$.

Определение 14. Пусть X — замкнутое множество в \mathbb{A}^n . Замкнутые подмножества в X — это множества вида $Z' \cap X$, где Z' — замкнутое в \mathbb{A}^n .

Замечание. Сравнить с топологией, индуцированной на (замкнутом) подмножестве.

3амечание. Замкнутые подмножества в X — замкнутые подмножества Z в \mathbb{A}^n , что $Z\subseteq X$.

Следствие 29.1. Пусть X замкнуто в \mathbb{A}^n . Тогда имеется взаимнооднозначное соответствие между множеством замкнутых $Z \subseteq X$ и радикальными идеалами \overline{J} в A/I(X), заданное отображениями $Z \mapsto \overline{I(Z)}$ и $\mathfrak{B} \mapsto Z(\pi^{-1}(\mathfrak{B}))$.

Определение 15. Пусть $X \subseteq \mathbb{A}^n$ и $Y \subseteq \mathbb{A}^m$ — замкнутые подмножества. Временно обозначим $t_i := T_i|_X \in k[X]$ — координатная функция на X. Отображение $\varphi : Y \to X$ называется регулярной, если $t_i \circ \varphi \in k[Y]$ (т.е. каждая координата φ как отображение является регулярной).

Замечание 7. Пусть B-k-алгебра. Пусть $f_1,\ldots,f_n\in B$ и $F(T_1,\ldots,T_n)\in k[T_1,\ldots,T_n]$. Тогда $F(f_1,\ldots,f_n)\in B$.

В частности, если даны $B=k[Y],\,f_1,\ldots,f_n\in B,\,F\in k[T_1,\ldots,T_n],\,$ то $F(f_1,\ldots,f_n)\in B=k[Y].$ Более того, $F(f_1,\ldots,f_n)(y)=F(f_1(y),\ldots,f_n(y)).$

Лемма 30 (следствие замечания). Пусть дано некоторое отображение $\varphi: Y \to X$. TFAE

- 1. φ регулярно.
- 2. Для всякого $f \in k[X]$ функция $f \circ \varphi : Y \to k$ регулярна.

Доказательство.

- $2\Rightarrow 1)$ $t_i\circ\varphi$ регулярно для всякого $i=1,\ldots,n$. Следовательно, φ регулярно.
- $1\Rightarrow 2)$ $t_i\circ \varphi$ регулярно для всякого $i=1,\ldots,n$ по определению. При этом k[X]-k-алгебра, порождённая t_1,\ldots,t_n (как элементы k[X]). Следовательно, есть $F(T_1,\ldots,T_n)\in k[T_1,\ldots,T_n]$, что $F(t_1,\ldots,t_n)=f$. Тогда

$$f \circ \varphi = F(t_1, \dots, t_n) \circ \varphi = F(t_1 \circ \varphi, \dots, t_n \circ \varphi).$$

Поскольку $t_i \circ \varphi$ — элементы k-алгебры k[Y], то и $F(t_1 \circ \varphi, \ldots, t_n \circ \varphi) \in k[Y]$.

Определение 16. Отображение $\varphi: Y \to X$ называется *регулярным*, если для всякого $f \in k[X]$ функция $f \circ \varphi \in k[Y]$. Словами говоря, φ — регулярно, если она регулярные функции над X переводит в регулярные функции над Y.

Часто пишут $\varphi^*(f)$ вместо $f \circ \varphi$, а функцию $\varphi^*(f) : Y \to k$ называют переносом функции $f : X \to k$ на Y посредством φ .

Ещё другими словами,

Т.е. φ регулярно тогда и только тогда, когда $\varphi^*(k[X]) \subseteq k[Y]$.

Лемма 31. Пусть X, Y, Z-aффинные множества, $a \varphi : Y \to X \ u \ \psi : X \to Z$ регулярны. Тогда $\psi \circ \varphi : Y \to Z$ регулярны.

Доказательство. Для всякого $f \in k[Z]$ верно $f \circ \psi \in k[X]$, а тогда $f \circ (\psi \circ \varphi) = (f \circ \psi) \circ \varphi \in k[Y]$. Таким образом $\psi \circ \varphi$ регулярно по второму определению.

Замечание. $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$.

Замечание 8. Пусть B — конечно порождённая редуцированная k-алгебра. Тогда есть некоторая система порождающих $t_1, \ldots, t_n \in B$, можно построить

$$\psi: k[T_1, \dots, T_n] \to k[t_1, \dots, t_n] = B, T_i \mapsto t_i.$$

Следовательно, $B \cong A/\mathrm{Ker}(\psi) = k[X]$, где $X = Z(\mathrm{Ker}(\psi))$.

Тогда можно наблюдать, что

$$Max(B) = Max(k[X]) =$$
 точки из $X = X$.

Формальнее, $\operatorname{Max}(k[X]) = \{I(\{x\})\}_{x \in X}$. Тогда мы можем рассмотреть $i_X : k \to k[X], a \mapsto (x \mapsto a)$ и для всякого $x^* : k[X] \to k, f \mapsto f(x)$. Тогда $x^* \circ i_X = \operatorname{Id}_k$.

Назовём гомоморфизм $s: k[X] \to k$ k-алгебр ceчением вложения i_X , если $s \circ i_X = \mathrm{Id}_k$. Тогда $\mathrm{Ker}(s) \in \mathrm{Max}(k[X]) = \{\mathcal{M}_x\}_{x \in X}$. Тогда у нас есть биекция между сечениями вложений i_X и точками X.

Рассмотрим следующую конструкцию. Пусть $\varphi: X' \to X$ — регулярное отображение. Тогда есть $\psi: X' \to X$, которое переводит x' в такое x, что $\varphi^*(s) = s'$, где s и s' — сечения, соответствующие x и x'.

Лемма 32 (пока без доказательства). $\psi = \varphi$.

Замечание 9. Пусть B — конечно порождённая редуцированная k-алгебра. Тогда у нас есть взаимнооднозначное соответствие между Max(B) и сечениями вложения $i: k \to B$.

Дописать?

Замечание 10. Поскольку ${\rm Max}(B)$ — то же, что и множество сечений в B. Значит можно рассмотреть включение $B \to {\rm Func}({\rm Max}(B),k), b \mapsto (\mathcal{M} \mapsto s_{\mathcal{M}}(b))$

Определение 17. *Категория* Aff — категория, чьи объекты есть пары $(B, \operatorname{Max}(B))$, а морфизмы $\operatorname{Mor}((B, \operatorname{Max}(B)), (B', \operatorname{Max}(B')))$ есть отображения $\varphi : \operatorname{Max}(B') \to \operatorname{Max}(B)$, что $\varphi^*(B) \subseteq B'$, т.е. $B \subseteq \operatorname{Func}(\operatorname{Max}(B), k)$ и то же для B', φ индуцирует $\varphi^* : \operatorname{Func}(\operatorname{Max}(B), k) \to \operatorname{Func}(\operatorname{Max}(B'), k)$ и мы хотим, чтобы B переходило в B' по φ .

Вид:

мкну тые?