Министерство науки и высшего образования Российской Федерации

Московский политехнический университет

Институт принтмедиа и информационных технологий

Кафедра «Информатика и Информационные Технологии»

Промежуточный отчет по дисциплине

«Проектная деятельность»

Способы выполнения задания «Поиск источника света»

Выполнили:

Карпушкин С.

Мосягин А.

Попереков В.

Шлячков Е.

Андреев Е.

Бежнарь М.

(Группа 201-723)

Проверил:

Ильин Г. А.

Оглавление

Описание основных принципов работы, необходимых компонентов и технологии их	
производства.	2
Компоненты:	2
Смета	3
Технология производства изделия	3
Чертежи, 3D модель и спецификация изделия	4
Электросхема изделия	6
Алгоритм поиска источника света и навеления	7

Описание основных принципов работы, необходимых компонентов и технологии их производства.

Принцип действия: светодиод ищется путём вращения верхней части башни с фоторезистором.

Алгоритм: Устройство начинает поиск светодиода с вращения башни по горизонтали с целью поиска самого яркого столбца. Затем выполняет поиск самой яркой точки в нём и стреляет в это место лазером.

Компоненты:

- 1. Плата Arduino UNO
- 2. Сервопривод х2
- 3. Набор проводов «папа-мама»
- 4. Набор проводов «папа-папа»
- 5. Фоторезистор
- 6. Лазерный мини-модуль
- 7. Макетная плата ВВ-601Р
- 8. Металлический уголок
- 9. Фанера
- 10. Брус

Смета

Таблица 1 - Смета

Название	Количество	Цена за штуку	Стоимость	Ссылки	
Плата Arduino LEONARDO	1	389₽	389₽	Выдано	
Сервопривод	2	415₽	830₽	Выдано	
Набор проводов «папа-мама»	1	140 ₽	140 ₽	Выдано	
Набор проводов «папа-папа»	1	140 ₽	140₽	Выдано	
Фоторезистор	1	30₽	30₽	Выдано	
Лазерный мини- модуль	1	150 ₽	150₽	Выдано	
Макетная плата ВВ-601Р	1	250₽	250₽	Выдано	
Фанера 1,525 кв. м	1	215 ₽	215₽	Выдано	
Брус	1	50₽	50₽	Выдано	
Металлический уголок	1	8₽	8₽	https://lidoma- kuhni.ru/products/47120404	
Итого	2 264 ₽				

Технология производства изделия

В нижней части изделия установлена плата Ардуино, сервопривод, макетная плата. Корпус нижней платформы сделан из частей фанеры, которые склеены между собой. В верхней части распложен сервопривод, лазер и фоторезистор. Корпус верхней платформы сделан из частей фанеры, которые склеены между собой.

Чертежи изделия

Рисунок 1 – Чертёж

Спецификация

	Формат	Зона	<i>No3.</i>	Обозначение	Наименование	Кол.	Приме чание
3. примен.					Сборочные единицы		
Перв.			1	ARDUINO LEONARDO	ARDUINO LEONARDO	1	
					<u>Детали</u>		
Справ. №			4	Качелька	Качелька	1	
Ü			5	Лазер	Лазер		
			6	Макетная плата	Макетная плата		
			7	Нижняя платформа	Нижняя платформа		
•	Ҵ		8	Саморез–2.2ттХ4.5тт	Саморез-2.2ттХ4.5тт		
			9	Сервопривод DSO4–NFC	Cepbonpubod DSO4-NFC		
	╜		10	<i>Уголок</i>	<i>Уголок</i>		
מנ			11	Фоторезистор	Фоторезистор	1	
и дата	Ш						
Подп. ,							
15л.	┪						
№ дубл.							
Инв.	Н					_	
. No	\vdash					_	
л. инв.	\mathbb{H}					-	
Взам.	\mathbb{H}					-	
Z.	\vdash					-	
дат	\vdash						
Подп. и дата	H	Ц	T			1	
По	Изм	. /Iut	-m	№ докум. Подп. Дата			
ישני	Pas	град	5.	congr. Froom Hama	Num.	Лист	Листо 1
Инв. № подл.	Прс			<i>Σδορκα</i>			
HB.	Н.К. Ут.	онт	Д.				

Рисунок 2 - Спецификация

Электросхема изделия

Рисунок 3 – Электросхема изделия

3D-Модель изделия

Рисунок 4 – 3D Модель изделия

Алгоритм поиска источника света и наведения

Листинг 1 – алгоритм поиска цели и наведения на неё

```
#include <Servo.h>
#include <math.h>
Servo servog;
Servo servov;
#define LASER 8 // пин лазера
int PhotoRes = 0; // пин фоторезистора
const int 1 = 5; // расстояние от устройства до стенда
int max = 0, x = 0, y = 1;
boolean centr = false, f = 0;
float ygolX = 0.0, ygolY = 0.0;
void setup()
    servog.attach(5); // пин горизонтального сервопривода
    servov.attach(6); // пин вертикального сервопривода
    pinMode (LASER, OUTPUT); // режим работы лазера - выход
    pinMode (PhotoRes, INPUT); // режим работы фоторезистора -
вход
    Serial.begin(9600); // функция для работы с портом, в
скобках указывается скорость вывода на экран
void loop()
    if (f == 0) // ожидание размещения устройства и выстрел
лазером в первую цель
    {
        delay(30000);
        digitalWrite(LASER, HIGH);
        delay(12000);
        digitalWrite(LASER, LOW);
        f = 1;
    }
    for (int i = 0; i < 3; i++)
        while ((analogRead(PhotoRes) > max) && (x < 4)) //
горизонтальное вращение башни вправо пока увеличивается
светимость и устройство не дошло до края стенда
        {
            max = analogRead(PhotoRes);
            servog.write(atan2(x, 1) - ygolX);
            ygolX = atan2(x, 1);
            if ((x == 4) && (max < analogRead(PhotoRes))) //</pre>
проверка наличия горящего светодиода в правом столбце стенда
               max = analogRead(PhotoRes);
        }
```

```
if (abs(max - analogRead(PhotoRes)) > 2) // выполняется
когда горящий светодиод не находится в правом столбце стенда
            x = x - 2; // горизонтальный поворот на два столбца
влево
            if (x >= 0)
                servog.write(atan2(x, 1) - ygolX);
                ygolX = atan2(x, 1);
            }
            else
            {
                servog.write(-atan2(abs(x), 1) - ygolX);
                ygolX = -atan2(abs(x), 1);
            centr = true;
            while ((analogRead(PhotoRes) > max) && (x > -4)) //
выполняется когда горящий светодиод находится в левой части
стенда
                centr = false;
                max = analogRead(PhotoRes);
                x--;
                if (x >= 0)
                    servog.write(atan2(x, 1) - ygolX);
                    ygolX = atan2(x, 1);
                }
                else
                    servog.write(-atan2(abs(x), 1) - ygolX);
                    ygolX = -atan2(abs(x), 1);
                }
                if ((x == -4) \&\& (max < analogRead(PhotoRes)))
// проверка наличия горящего светодиода в крайнем левом столбце
                    max = analogRead(PhotoRes);
            }
            if ((abs(max - analogRead(PhotoRes)) > 2) ||
(centr)) // финальная наводка на столбец с горящим светодиодом
                x++;
                if (x >= 0)
                    servog.write(atan2(x, 1) - ygolX);
                    ygolX = atan2(x, 1);
                }
                else
                {
                    servog.write(-atan2(abs(x), 1) - ygolX);
                    ygolX = -atan2(abs(x), 1);
```

```
}
            }
        max = analogRead(PhotoRes); // начало поиска горящего
светодиода в найденном столбце с нижнего ряда
        y++;
        servov.write(atan2(y, 1) - ygolY);
        ygolY = atan2(y, 1);
        while ((analogRead(PhotoRes) > max) && (y < 4))</pre>
//вращает вертикальный сервопривод пока увеличивается светимость
и устройство не дошло до верхнего края стенда
        {
            max = analogRead(PhotoRes);
            y++;
            servov.write(atan2(y, 1) - ygolY);
            ygolY = atan2(y, 1);
            if ((y == 4) && (max < analogRead(PhotoRes))) //</pre>
проверка наличия горящего светодиода в верхнем ряду
                max = analogRead(PhotoRes);
        }
        if (abs(max - analogRead(PhotoRes)) > 2) // выполняется
когда горящий светодиод не в верхнем ряду
        {
            servov.write(atan2(y, 1) - ygolY);
            ygolY = atan2(y, 1);
        }
        digitalWrite(LASER, HIGH); // выстрел лазером
        delay(12000);
        digitalWrite(LASER, LOW);
        servov.write(-ygolY); // возвращение в исходную позицию:
нижний ряд, центральный светодиод
        ygolY = 0.0;
        servog.write(-ygolX);
        ygolX = 0.0;
        x = 0;
        y = 1;
        max = 0;
        centr = false;
    }
}
```