	ssignment 2		2
	0		
Q1. 40 km	40 Km	ALOW DIV	-
30 Km/h	60 Km/h		
a) average velo	20:40	1 1 8 × 15 × 15	(30)
, ,	9	10	
Veloc	ity = displace	ment	
30 = 4	0	60 = 40 t	
		-	
$t = \frac{u}{3}$	NY.	t = 4 hr	_
- Comment of the second	e and the state of	strays I ha	
average ve	clocity = tota	1 displacement	
3	to	tal time	
Salver Co	S = 2/- 00	30 = 40 Km	15
2012		1 + 4	
		3 6	_
b) average spee	O.		
ONGNO	ge speed = to	tal distance	
ONEXOC	ge speed = 40	tal distance	
(km)	+ t	otal time	
(km)	+ t	otal time O Km/h	
	+ t	otal time 0 km/h	
(km)	+ t	Okm/h 80) Vava = Dr	
(km)	+ t	otal time 0 km/h	
c) 280-1+22	+ t	Okm/h 80) Vava = Dr	
c) 280-1+22	= 4 (2) (43,40)	Okm/h 80) Vava = Dr	
c) 280-1+22	= 4 (2) (4/3140)	Okm/h Nava = An At	
c) 280-1+22	= 4 (2) (43,40)	Okm/h Nava = An At	
c) 80-1	= 4 (2) (43,40)	Okm/h Nava = An At	
c) 80-1	= 4 (2) (43,40)	Okm/h Nava = An At	
c) 80-1	= 4 (2) (43,40)	Okm/h Nava = An At	
c) 80-1	= 4 (2) (43,40)	Okm/h Nava = An At	
c) 80-1	= 4 (2) (43,40)	Okm/h Nava = An At	

Date	20

Q2. Vi= 0 Vf = 25 mls, t= 8 sec

a) $a = \Delta v = 25-0 = 3.1 \text{ m/s}^2$

b) V = 5; 25 = 5 = 200m

Q3. at t, speed=18 mls in the direction after 2.4s, speed=30mls in -ve direction

 $a = \Delta v = -30 - 18 = -20 \text{ m/s}^2$ $\Delta t = 2.4$

Q4. constant acceleration

a) $V_{+} = V_{+} + \alpha t$ $S = V_{+} + \frac{1}{2}\alpha t^{2}$ $16 = V_{+} + S\alpha$ $S0 = Sv_{+} + 12.5\alpha$ $V_{+} + S\alpha = 16$ $Sv_{+} + 12.5\alpha = 50$

eqi = eq ii

a = 2.4 m/s2

b) v= 4 m/s

 $Qs. \quad X = 3t - 4t^2 + t^3$

$$x = 3(1) - 4(1)^{2} + (1)^{3}$$

$$x = 3(1) - 4(1)^{2} + (1)^{3}$$

$$x = 3(2) - 4(2)^{2} + (2)^{3}$$

c) t= 3

$$x = 3(3) - 4(3)^{2} + (3)^{3}$$

$$x = 3(u) - 4(u)^{2} + (u)^{3}$$

e) displacement = 12m

f) total displacement = 14m (12-(2))

total time = 4-2 = 25

average velocity = 14 = 7 mls

 $x = 21t + 5t^2$ Q6. , at t=3 a) at t= 0 $x = 21(3) + 5(3)^{2}$ X=O n = 108 m 108-0 = 36 m/s V = 21 + 10 + 10 at t= 3 V= 21+10(3) V= SI m/s c) a = 10 m/s2 (derivative of velocity formula)

Q7.

n-no= vot + 1 at2

at += 1, x=0m

⇒ 2 = V0+ 1 a - 0

at t=2, N=6 m

=D (6+2) = 2 x + 2 a

8 = 2 vo + 2a

4 = 2 vo + a -(ii)

(ii) = (ii)

Vo = Omis a= umis2

Ø

acceleration is positive so it is in 6

tren direction.

P QUALITY PAPER PRODUCTS

10. c)
$$a = \frac{dv}{dt} = \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} + \left(-8u + \frac{1}{2} \right)^{\frac{1}{2}}$$
 $a + \frac{1}{2}$
 $a = (12(2))^{\frac{1}{2}} + \left(-8u + \frac{1}{2} \right)^{\frac{1}{2}}$
 $a = 2u^{\frac{1}{2}} - 336^{\frac{1}{2}}$
 $a = 2u^{\frac{1}{2}} - 346^{\frac{1}{2}}$
 $a = 2u^{\frac{$

Date20
Q11. c) Vin = 7:6 mis Vig = 14.7 m/s
101= 17.62 + (14.7)2
= 17 m/s
d) tan a = 14.7
7.6
0 = -63° (um quad)
Q12.
// 3 1,000 %
radius = 3 m = = (6 m/s2) 1 + (-4 m/s2)
\overrightarrow{V} . \overrightarrow{a} = \overrightarrow{V} a cos θ
velocity and acceleration are perpendicular
So 0 = 90° and cos 90° = 0
$\overrightarrow{\nabla} \cdot \overrightarrow{\Delta} = 0$
and stopped to be
pul- " I I I - A Par
Course a catalog
to be together the same
D B SQUALITY FRODUCTS