Devoir à la maison nº 2

EXERCICE 1.

- 1. Soient k, l, n des entiers naturels tels que $l \leq k \leq n$.
 - **a.** Montrer que $\binom{n}{k}\binom{k}{l} = \binom{n}{l}\binom{n-l}{k-l}$.
 - **b.** En déduire que si l < n, $\sum_{k=1}^{n} (-1)^k \binom{n}{k} \binom{k}{l} = 0$.
- 2. Soit (a_n) et (b_n) deux suites réelles vérifiant :

$$\forall n \in \mathbb{N}, \ b_n = \sum_{k=0}^n \binom{n}{k} a_k$$

Montrer que

$$\forall n \in \mathbb{N}, \ \alpha_n = (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} b_k$$

EXERCICE 2.

Soient $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in [-1, 1]^n$ tels que $\sum_{k=1}^n x_k = 0$. On veut montre l'inégalité :

$$|x_1+2x_2+\cdots+nx_n|\leqslant \left\lfloor\frac{n^2}{4}\right\rfloor$$

où $\lfloor t \rfloor$ désigne la partie entière d'un réel t. On pose $S = \sum_{k=1}^n k x_k$ et $S_k = \sum_{i=1}^k x_i$. Enfin, on pose $p = \left\lfloor \frac{n}{2} \right\rfloor$.

- 1. Montrer que $S = -\sum_{k=1}^{n-1} S_k$.
- 2. Montrer que $\forall k \in [1, n-1], |S_k| \leqslant n-k$.
- 3. Montrer que $|S| \le \sum_{k=1}^{p} k + \sum_{k=1}^{n-p-1} k$.
- 4. En déduire l'inégalité annoncée. On pourra distinguer le cas $\mathfrak n$ pair et le cas $\mathfrak n$ impair.

EXERCICE 3.

Soit $\mathfrak n$ un entier naturel impair. On pose $\omega = e^{\frac{2i\pi}{\mathfrak n}}$ et $G = \sum_{k=0}^{\mathfrak n-1} \omega^{k^2}$.

- 1. Soit $r \in \mathbb{Z}$. Calculer $\sum_{k=0}^{n-1} \omega^{rk}$ selon les valeurs de r.
- $\textbf{2.} \ \, \text{Montrer que l'application } \varphi: \left\{ \begin{array}{l} \mathbb{Z} & \longrightarrow & \mathbb{C} \\ k & \longmapsto & \omega^{k^2} \end{array} \right. \text{ est n-p\'eriodique.}$
- 3. Soit $j\in\mathbb{Z}.$ Montrer que $\sum_{k=0}^{n-1}\omega^{(k+j)^2}=G.$
- 4. Montrer que $G\overline{G} = n$ et en déduire |G|.