Hypergraphs Turán-Type Problems

Finding Partite Hypergraphs Efficiently

Ferran Espuña Bertomeu

Supervisor: Richard Lang

June 2025

k-Graphs

Definition

A *k-graph* is a pair G = (V, E) where V is a finite set of *vertices* and $E \subseteq \binom{V}{k}$ is a set of *edges*.

Figure: A complete 3-graph on 4 vertices: $K_4^{(3)}$.

Partite *k*-Graphs

Definition

A k-graph G = (V, E) is r-partite if there exists a partition $V = V_1 \cup \cdots \cup V_r$ such that every edge of G intersects every part V_i in at most one vertex. We write $G = (V_1, \ldots, V_r; E)$.

Figure: A complete 3-partite 2-graph: $K^{(3)}(2,2,2)$.

Partite *k*-Graphs

Remark

We may identify E as a subset of $C = \bigcup_{\{i_1,\dots,i_k\} \in {[r] \choose k}} V_{i_1} \times \dots \times V_{i_k}$. If E = C, we say that G is a *complete r*-partite k-graph.

Figure: A complete 3-partite 3-graph: $K^{(2)}(2,2,2)$.

Turán-Type Problems

Definition

Let G = (V, E) be a k-graph and $n \ge |V|$ an integer. The *Turán* number $\operatorname{ex}(G, n)$ is the maximum number of edges in a k-graph on n vertices that does not contain a copy of G as a subgraph.

Determining ex (G, n) or estimating it as $n \to \infty$ is known as the *Turán problem* for G.

Theorem

For all k-graphs G there exists a constant $\alpha(G) \in [0,1)$ such that

$$ex(G, n) = (\alpha(G) + o(1)) \cdot \binom{n}{k}$$
 as $n \to \infty$.

Furthermore, $\alpha(G) = 0$ if and only if G is k-partite.

The Kővari-Sós-Turán Theorem

The bound $ex(G, n) = o(n^k)$ can be improved by a lot.

Definition

Let $1 < t_1 \le v_1, \ldots, 1 < t_k \le v_k$ be integers. Then the *generalized Zarankiewicz number* $z(v_1, \ldots, v_k; t_1, \ldots, t_k)$ is the largest integer z for which there exists a k-partite k-graph $H = (V_1, \ldots, V_k, F)$ with part sizes $|V_i| = v_i$ and |F| = z edges such that for all choices of $W_i \subset V_i$ of sizes $|W_i| = t_i$, $W_1 \times \cdots \times W_k \not\subset F$.

Theorem (Kővari–Sós–Turán)

Let $0 < s \le u$ and $0 < t \le w$ be integers. Then

$$z(u, w; s, t) \le (s-1)^{1/t}(w-t+1)u^{1-1/t} + (t-1)u$$

Standard arguments then show that $ex(n, K(s, t)) = O(n^{2-1/t})$.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

• **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

For example, adding the edge $\{U_4, W_3\}$ creates a $K_{3,2}$ on vertices $\{U_1, U_2, U_4\}$ and $\{W_2, W_3\}$.

• **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

For $x = U_1$, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

For
$$x = U_1$$
, we count its $\binom{4}{2} = 6$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.

This graph has the maximum number of edges (|E|=13) to be $K_{3,2}$ -free.

In the example, there are at least $5\binom{13/5}{2} = 10.4$ stars (there are actually 12)

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- **Averaging:** By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

Each set $T \subset W$ (in this case, $T = \{W_1, W_2\}$) is in at most s - 1 = 3 - 1 = 2 stars. In total, at most $2\binom{4}{2} = 12$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- **Averaging:** By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.
- **Bounding:** Because H is K(s, t)-free, each set $T \subset W$ is the right component of at most (s-1) stars.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

Each set $T \subset W$ (in this case, $T = \{W_1, W_2\}$) is in at most s - 1 = 3 - 1 = 2 stars. In total, at most $2\binom{4}{2} = 12$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- **Averaging:** By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.
- **Bounding:** Because H is K(s, t)-free, each set $T \subset W$ is the right component of at most (s-1) stars.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

Each set $T \subset W$ (in this case, $T = \{W_1, W_2\}$) is in at most s - 1 = 3 - 1 = 2 stars. In total, at most $2\binom{4}{2} = 12$ stars.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- **Averaging:** By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.
- **Bounding:** Because H is K(s, t)-free, each set $T \subset W$ is the right component of at most (s 1) stars.

This graph has the maximum number of edges (|E| = 13) to be $K_{3,2}$ -free.

In the example, we conclude that $10.4 \leq 12$, which is true. For bigger values of z this would fail, leading to contradiction and therefore upper bounding z.

- **Hypothesis:** H = (U, W; E) is a K(s, t)-free bipartite k-graph with z = z(u, w; s, t) edges, where |U| = u and |W| = w.
- Counting Stars: For each $x \in U$, there are $\binom{d_H(x)}{t}$ sets $T \subset W$ of t neighbors of x.
- **Averaging:** By a convexity argument, the number of stars is at least $u\binom{z/u}{t}$.
- **Bounding:** Because H is K(s, t)-free, each set $T \subset W$ is the right component of at most (s-1) stars.
- **Conclusion:** $u\binom{z/u}{t} \le (s-1)\binom{w}{t}$, from which the theorem follows.