Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-46. (canceled)

- 47. (Original) A method of normalizing output values of a laser diode, the method comprising:
 - a) varying control currents for a specific section of a laser diode device over a range of values in a first sample index so as to obtain a set of output values for that section of the laser diode; and
 - b) normalizing the set of output values, wherein the normalization of the output values compensates for non-linearities in the output values by effecting a change in relationship between the control currents and the sample index.
- (Original) A computer readable medium having stored therein instructions for causing a processor to execute the method of claim 47.
- (Original) The method of claim 47 wherein the output values are representative of power or frequency.
- 50. (Original) The method of claim 47 further comprising obtaining a set of normalized values for one or more other sections of the laser.
- (Original) The method of claim 47 wherein the normalization is effected by a transform
 applied to sample index, thereby changing the control currents and the output values.
- (Original) The method of claim 51 wherein the transform is a non-linear transform.

Telephone: (312) 913-0001 Facsimile: (312) 913-0002

(Original) The method of claim 51 wherein the generated transform is subsequently used 53.

to effect a further generation of a set of output values for multiple combinations of control

currents or sections for the laser device, the generated set having being normalized due to the

utilization of the transform.

54. (Original) The method of claim 47 wherein the normalization of the output values is

effected using a current of mode jumps.

55. (Original) The method of claim 47 further comprising detecting mode jumps by a power

measurement.

56 (Original) The method of claim 55 wherein the mode jumps are represented by

discontinuities in the power measurement.

57. (Original) The method of 47 further comprising detecting mode jumps by a frequency

measurement.

58. (Original) The method of claim 57 wherein the mode jumps are represented by a step in a

frequency measurement.

59 (Original) The method of claim 47 wherein the normalization is effected by a transform applied to sample index, thereby changing the control currents and the output values, and

wherein the application of the transform effects an equalization of mode width.

60. (Original) The method of claim 47 further comprising determining deviations in mode

width, thereby providing indications of the integrity of the laser device.

(Original) The method of claim 47 wherein the normalization is effected using a relative 61

- 3 -

loss of that section as a function of control current.

McDonnell Boehnen Hulbert & Berghoff LLP

62. (Original) The method of claim 47 wherein a gain current of the laser device can be

altered using the normalization.

63. (Original) The method of claim 47 wherein the normalization output values provide a

determination of locations of modes.

64. (Original) The method of claim 63 wherein the modes are locatable by effecting a

differentiating of the normalized values.

65. (Original) The method of claim 47 further comprising determining suitable operating

points, wherein the operating points are selectable on the basis of a determination of a mid-point

in frequency values for a specific mode.

66. (Original) The method of claim 64 wherein one of the suitable operating points is at a

mean frequency for that mode and benefits from maximum side mode suppression.

67-70. (Canceled)

71. (Original) A control system for normalizing the output values of a laser diode, the system

comprising:

means for varying control currents for a specific section of a laser diode device over a

range of values in a first sample index so as to obtain a set of output values for that section of the

laser diode; and

means for normalizing the set of output values, wherein the normalization of the output

values compensates for non-linearities in the output values by effecting a change in relationship

between the control currents and the sample index.

72. (Original) The system as claimed in claim 71 wherein the output values are representative

- 4 -

of power or frequency.

73. (Original) The system as claimed in claim 71 further comprising means for obtaining a

set of normalized values for one or more further sections of the laser.

74 (Original) The system of claim 71 wherein the normalization is effected by a transform

applied to the sample index, thereby changing the control currents and the output values.

75. (Original) The system of claim 74 wherein the transform is a non-linear transform.

(Original) The system of claim 74 wherein the generated transform is subsequently used 76

to effect the further generation of a set of output values for multiple combinations of control currents or sections for the laser device, the generated set having being normalized due to the

utilization of the transform.

77 (Original) The system of claim 71 wherein the normalization of the output values is

effected using a current of mode jumps.

78. (Original) The system of claim 71 further comprising a means for detecting mode jumps

by a power measurement.

79. (Original) The system of claim 78 wherein the mode jumps are represented by

discontinuities in a power measurement.

80 (Original) The system of claim 71 further comprising means for detecting mode jumps by

a frequency measurement.

81. (Original) The system of claim 80 wherein mode jumps are represented by a step in a

frequency measurement.

82 (Original) The system of claim 71 wherein the application of the transform effects an

- 5 -

equalization of mode width.

McDonnell Boehnen Hulbert & Berghoff LLP

83. (Original) The system of claim 71 further comprising means for determining deviations

in mode width, thereby providing indications of the integrity of the laser device.

84. (Original) The system of claim 71 wherein the normalization is effected using a relative

loss of that section as a function of control current.

85. (Original) The system of claim 71 wherein a gain current of the laser device can be

altered using said normalization.

86. (Original) The system of claim 71 wherein the normalization output values provide for a

determination of location of modes.

87. (Original) The system of claim 71 further comprising means for determining suitable

operating points, the operating points being selectable on the basis of a determination of a mid-

point in frequency values for a specific mode.

88. (Original) The system of claim 87 wherein one of the operating points is at the mean

frequency for that mode and benefits from maximum side mode suppression.

89. (Original) The system of claim 71 wherein the normalization output values provides for a

determination of location of modes and wherein the modes are locatable by effecting a

 $differentiating\ of\ the\ normalized\ values.$

90-91. (Canceled)

92. (Original) A control system for normalizing the output values of a laser diode, the system

comprising:

a current source control for varying control currents for a specific section of a laser diode

device over a range of values in a first sample index so as to obtain a set of output values for that

- 6 -

section of the laser diode: and

McDonnell Boehnen Hulbert & Berghoff LLP

a control system for normalizes the set of output values, wherein the normalization of the output values compensates for non-linearities in the output values by effecting a change in relationship between the control currents and the sample index.

McDonnell Boehnen Hulbert & Berghoff LLP 300 South Wacker Drive

Chicago, Illinois 60606 Telephone: (312) 913-0001 Facsimile: (312) 913-0002