Métodos Numéricos en E.D.P. II

José Angel de Bustos Pérez 3 de enero de 2017

1. Problema continuo

El problema que vamos a resolver es el siguiente:

$$-\gamma \Delta \Psi = 0$$
 en Ω

donde $\gamma=1,$ entonces como el segundo miembro de la igualdad es cero se tiene que:

$$\Delta \ \Psi = \frac{\partial \Psi}{\partial x^2} + \frac{\partial \Psi}{\partial y^2} = 0 \qquad en \ \Omega$$

1.1. Problema a resolver

Como sabemos que las lineas de corriente se definen $\Psi(x,y)=$ cte, que el caudal de corriente que circula entre dos lineas se define como $\Psi_1-\Psi_2$ y que la velocidad aguas arriba es de 5 cm/s entonces el caudal que circula a través de la sección será de $5\times 4=20$ cm^2/s , luego podemos suponer que:

$$\Psi_I = 0 \ cm^2/s$$

Observemos que en las lineas verticales que definen el dominio se tiene que:

$$\sum_{i=1}^{2} \frac{\partial \Psi}{\partial x_i} \cdot \gamma_i = 0 \quad sobre \ \Gamma$$

donde $x_1 = x, x_2 = y$ y γ_i es la componente i—esima de la normal.

Luego el problema a resolver será:

Hallar $\Psi \in H^1(\Omega)$ tal que:

$$\Delta \Psi = 0$$
 en Ω

verificando las siguientes condiciones de contorno:

$$\Psi_I = 0$$
 $\Psi_F = 20$

$$\sum_{i=1}^{2} \frac{\partial \Psi}{\partial x_{i}} \cdot \gamma_{i} = 0 \qquad sobre \ \Gamma$$

donde

$$H^1(\Omega) = \{ f \in L^2(\Omega) \mid \frac{\partial f}{\partial x_i} \in L^2(\Omega) \ i = 1, 2 \}$$

2. Formulación variacional

Multipliquemos por $v \in H^1(\Omega)$, entonces se tiene:

$$\Delta \ \Psi \cdot v = 0 \qquad \forall \ v \in H^1(\Omega)$$

integrando en Ω tenemos que:

$$\int_{\Omega} \Delta \Psi \cdot v = 0 \qquad \forall \ v \in H^1(\Omega)$$

aplicando ahora la fórmula de Green tenemos que:

$$-\sum_{i=1}^{2} \int_{\Omega} \frac{\partial \Psi}{\partial x_{i}} \cdot \frac{\partial v}{\partial x_{i}} + \sum_{i=1}^{2} \int_{\Gamma} \frac{\partial \Psi}{\partial x_{i}} \cdot \gamma_{i} \cdot v = 0 \qquad \forall \ v \in H^{1}(\Omega)$$

teniendo en cuenta la linealidad de la integral y las condiciones de contorno, tenemos que:

$$\sum_{i=1}^{2} \int_{\Gamma} \frac{\partial \Psi}{\partial x_{i}} \cdot \gamma_{i} \cdot v = \int_{\Gamma} \sum_{i=1}^{2} \frac{\partial \Psi}{\partial x_{i}} \cdot \gamma_{i} \cdot v = 0 \qquad \forall \ v \in H^{1}(\Omega)$$

Luego la formulación variacional del problema será la siguiente:

Hallar $u \in H^1(\Omega)$ tal que:

$$\sum_{i=1}^{2} \int_{\Omega} \frac{\partial \Psi}{\partial x_i} \cdot \frac{\partial v}{\partial x_i} = 0 \qquad \forall \ v \in H^1(\Omega)$$

2.1. Notaciones

En lo sucesivo utilizaremos las siguientes notaciones:

$$a (\Psi, v) = \sum_{i=1}^{2} \int_{\Omega} \frac{\partial \Psi}{\partial x_{i}} \cdot \frac{\partial \Psi}{\partial x_{i}}$$

$$L(v) = 0 \quad \forall v \in H^1(\Omega)$$

2.2. Existencia y solución del problema variacional

Para ello utilizaremos el teorema de Lax-Milgram, para ello se tiene que verificar que:

- $L(\cdot)$ sea lineal y continuo.
- $\blacksquare \ a\ (\cdot,\cdot)$ sea bilineal, continuo y elíptico.

Como $L(\cdot)$ es la función nula entonces es claro que es lineal y continua.

Que $a\ (\cdot,\cdot)$ sea bilineal es inmediato pues la integral es lineal.

Para la continuidad de a (\cdot,\cdot) utilizaremos lo siguiente:

$$|v|_{1,\Omega}^2 = \sum_{i=1}^2 \int_{\Omega} \left(\frac{\partial v}{\partial x_i} \right)^2 \quad \forall \ v \in H^1(\Omega)$$

$$||v||_{1,\Omega}^2 = \int_{\Omega} v^2 + \sum_{i=1}^2 \int_{\Omega} \left(\frac{\partial v}{\partial x_i} \right)^2 \qquad \forall \ v \in H^1(\Omega)$$

Entonces tendremos lo siguiente:

$$||v||_{\Omega}^{2} = \int_{\Omega} v^{2} + \sum_{i=1}^{2} \int_{\Omega} \left(\frac{\partial v}{\partial x_{i}} \right)^{2} \ge \sum_{i=1}^{2} \int_{\Omega} \left(\frac{\partial v}{\partial x_{i}} \right)^{2} = |v|_{1,\Omega}^{2}$$
 (1)

Veamos la continuidad de $a(\cdot,\cdot)$.

Utilizando la definición de a (\cdot, \cdot) y utilizando "Cauchy-Schwarz" tenemos que:

$$|a\left(\Psi,v\right)| = |\sum_{i=1}^{2} \int_{\Omega} \frac{\partial \Psi}{\partial x_{i}} \frac{\partial v}{\partial x_{i}}| \leq \sqrt{\sum_{i=1}^{2} \int_{\Omega} (\frac{\partial \Psi}{\partial x_{i}})^{2}} \cdot \sqrt{\sum_{i=1}^{2} \int_{\Omega} (\frac{\partial v}{\partial x_{i}})^{2}} = |\Psi|_{1,\Omega} \cdot |v|_{1,\Omega}$$

utilizando (1) se tiene que:

$$|a(\Psi, v)| \le |\Psi|_{1,\Omega} \cdot |v|_{1,\Omega} \le ||\Psi||_{1,\Omega} \cdot ||v||_{1,\Omega}$$

y dado que $a(\cdot,\cdot)$ es bilineal entonces es continua.

Veamos ahora la elípticidad de $a(\cdot,\cdot)$.

Para que $a(\cdot, \cdot)$ sea elíptica se tiene que verificar que exista una constante $\alpha > 0$ verificando:

$$a(v,v) \ge \alpha \cdot ||v||_{1,\Omega}^2 \quad \forall v \in H^1(\Omega)$$
 (2)

Por definición de $a(\cdot, \cdot)$ se tiene que:

$$a(v,v) = \sum_{i=1}^{2} \int_{\Omega} \left(\frac{\partial v}{\partial x_i}\right)^2 = |v|_{1,\Omega}^2 \quad \forall v \in H^1(\Omega)$$

Si la seminorma $|\cdot|_{1,\Omega}$ fuera equivalente a la norma $||\cdot||_{1,\Omega}$ entonces se verificaría (2), y $a(\cdot,\cdot)$ sería elíptica.

En $H_0^1(\Omega)$ ambas son equivalentes, pero en $H^1(\Omega)$ no lo son¹. Por lo tanto supondremos que existe un subespacio de $H^1(\Omega)$, también de Hilbert, en el cual ambas son equivalentes.

Suponiendo esto entonces $a(\cdot,\cdot)$ sería elíptica y estaríamos en las condiciones del teorema de Lax-Milgram, con lo cual el problema variacional tendría solución única y todo lo hecho hasta aquí sería valido con cambiar todas las referencias a $H^1(\Omega)$ por dicho subespacio.

 $^{^{1}\}mathrm{O}$ al menos no he sido capaz de demostrarlo.

El problema que he encontrado, y por el cual he supuesto la existencia de un subespacio de Hilbert en el cual la seminorma y la norma sean equivalentes, es el comportamiento de la solución sobre la frontera, ya que los casos estudiados en clase o bien la solución se anulaba en la frontera o era igual a una función de $H^{1/2}(\Gamma)$ (y utilizabamos el teorema de la traza) o bien teniamos una condición de tipo Newman en la frontera.

2.3. Equivalencia con el problema de partida

 \Rightarrow | Si Ψ verifica el problema continuo es claro que Ψ verifica la formulación débil del problema.

 \Leftarrow | Si Ψ verifica la formulación débil en particular verifica:

$$\sum_{i=1}^{2} \int_{\Omega} \frac{\partial \Psi}{\partial x_i} \frac{\partial v}{\partial x_i} = 0 \qquad \forall \ v \in \mathcal{D}(\Omega)$$

es decir:

$$\sum_{i=1}^{2} < \frac{\partial \Psi}{\partial x_i}, \frac{\partial v}{\partial x_i} > = 0 \qquad \forall \ v \in \mathcal{D}(\Omega)$$

$$<\Delta \Psi, v>=0 \qquad \forall \ v \in \mathcal{D}(\Omega)$$

es decir recuperamos la ecuación de partida, pero en el sentido de las distribuciones.

3. Resolución práctica

Para resolver el problema hemos utilizado el programa ANSYS y los resultados obtenidos han sido los siguientes.

3.1. Elementos

Los elementos utilizados fueron cuadrados con cuatro nodos.

3.2. Mallado

Una vez construido el recinto, el cual no tiene simetrias que pudieramos utilizar para simplificar el modelo, y generado el mallado correspondiente, en el cual habiía elementos grandes procedimos a refinarlo.

El mallado que utilizamos para resolver el problema fue el siguiente:

3.3. Solución

La solución del problema es la siguiente:

