Proves d'accés a la Universitat. Curs 2006-2007

Electrotècnia

Sèrie 2

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

_	-	
Exer	~ 1	~ı 7
CXCI		

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Resposta ben contestada, 0,5 punts; resposta mal contestada, -0,16 punts; resposta no contestada, 0 punts.]

Qüestió 1

La xarxa de corrent altern de 50 Hz té un període de _____.

- a) 10 ms
- **b)** 16,66 ms
- **c)** 20 ms
- **d)** 50 ms

Qüestió 2

Dues inductàncies de valor 0,5 H connectades en paral·lel equivalen a una de _____.

- a) 1 H
- **b)** 0,5 H
- c) 0,25 H
- d) 0,125 H

Qüestió 3

Una màquina síncrona de 4 parells de pols connectada a una xarxa de 60 Hz gira a una velocitat de _____.

- a) 3600 min-1
- b) 1800 min-1
- c) 1 200 min⁻¹
- **d)** 900 min⁻¹

Qüestió 4

Un motor d'inducció té la placa de característiques següent:

P = 100 kW	<i>U</i> = 400 V	/= 189 A
$n = 980 \text{ min}^{-1}$	$\cos \varphi = 0.85$	f = 50 Hz

El parell nominal és:

- a) 102 Nm
- **b)** 641 Nm
- c) 974 Nm
- d) 3060 Nm

Qüestió 5

La funció lògica corresponent al diagrama de portes de la figura és:

a)
$$s = a + b$$

b)
$$s = a + b + c$$

c)
$$s = a \cdot b$$

d)
$$s = a \cdot b + c$$

Exercici 2

[2,5 punts]

Per al circuit de la figura, determineu:

Amb l'interruptor tancat:

a) Els corrents I_1 i I_2 de les fonts de tensió U_1 i U_2 .

[1 punt]

b) Les potències P_1 i P_2 subministrades per les fonts.

[0,5 punts]

Amb l'interruptor obert:

c) El valor de la resistència R_4 que faci que la potència subministrada per la font de tensió U_2 sigui nul·la. [1 punt]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

El circuit de la figura, alimentat amb una tensió composta U i una freqüència f, consumeix una potència activa P i una potència reactiva Q. Determineu:

a) El valor de les resistències R. [0,5 punts]

b) El valor de les inductàncies L. [0,5 punts]

c) El factor de potència fdp. [0,5 punts]

d) El valor dels corrents de línia I_L . [1 punt]

Exercici 4

[2,5 punts]

$$U_1 = 240 \text{ V}$$

$$r_t = 10$$

$$R = 1 \Omega$$

$$X_L = 1 \Omega$$

El transformador del circuit de la figura, de relació de transformació $r_{\rm t}$, es pot considerar ideal. Està alimentat pel costat 1 amb la tensió $U_{\rm 1}$. El costat de menor tensió és el 2. Determineu:

a) La tensió a la sortida U_2 . [0,5 punts]

b) El corrent l_2 a la sortida del transformador. [1 punt]

c) El corrent I_1 a l'entrada. [0,5 punts]

d) Les potències activa *P*, reactiva *Q* i aparent *S* del conjunt. [0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts]

El circuit de la figura està alimentat amb una tensió *U*.

a) Dibuixeu el diagrama fasorial de tensions i corrents.

[1 punt]

Determineu:

b) Els valors de la reactància X_c i la resistència R.

[0,5 punts]

c) El valor de la tensió d'alimentació U.

[0,5 punts]

d) La potència activa consumida P.

[0,5 punts]

Exercici 4

[2,5 punts]

El circuit de la figura s'alimenta amb una tensió sinusoïdal u(t) de valor eficaç U i freqüència f. Els díodes es poden considerar ideals.

- a) Dibuixeu de manera aproximada, indicant les escales, la forma d'ona de la tensió u(t) i dels corrents i_1 i i_2 . [1 punt]
- **b)** Determineu el valor màxim dels corrents i_1 i i_2 .

[0,5 punts]

c) Determineu la potència dissipada en cada resistència.

[1 punt]

Proves d'accés a la Universitat. Curs 2006-2007

Electrotècnia

Sèrie 1

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Resposta ben contestada, 0,5 punts; resposta mal contestada, -0,16 punts; resposta no contestada, 0 punts.]

Qüestió 1

Dos condens	adors de	100 μF	cadascun	connectats	en s	sèrie	tenen	una	capacitat	equiva-
lent de										

- a) 25 μF
- **b)** 50 μF
- **c)** 150 μF
- **d)** 200 μF

Qüestió 2

El període d'una xarxa de corrent altern de freqüència 60 Hz és _____.

- a) 16,67 ms
- **b)** 20 ms
- c) 33,33 ms
- d) 40 ms

Qüestió 3

Un motor de corrent continu d'imants permanents, alimentat a la seva tensió nominal, gira en buit a 2500 min-1. Si la tensió d'alimentació passa a ser un 20 % superior a la nominal, la velocitat del motor serà aproximadament de ______.

- a) 3000 min-1
- b) 3500 min-1
- c) 2085 min⁻¹
- d) 2000 min-1

Qüestió 4

Un condensador de 100 μ F, connectat a una tensió alterna de 230 V i 50 Hz, consumeix una potència reactiva de _____.

- a) -5,29 kvar
- b) -1,66 kvar
- c) 1,66 kvar
- d) 5,29 kvar

Qüestió 5

Una màquina síncrona d'un parell de pols connectada a una xarxa de 60 Hz gira a una velocitat de _____.

- a) 3600 min-1
- b) 1800 min-1
- c) 1200 min⁻¹
- **d)** 720 min⁻¹

Exercici 2

[2,5 punts]

El circuit de la figura, alimentat amb una tensió composta U i una freqüència f, consumeix una potència activa P i una potència reactiva Q. Determineu:

a) El valor de les resistències R. [0,5 punts]

b) El valor de les capacitats C. [0,5 punts]

c) El factor de potència fdp. [0,5 punts]

d) El valor dels corrents de línia I_L . [1 punt]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

El circuit de la figura està alimentat amb una tensió U.

a) Dibuixeu el diagrama fasorial de tensions i corrents.

[1 punt]

Determineu:

b) El valor de la reactància X_{L} .

[0,5 punts]

c) La mesura del voltímetre V_2 .

[0,5 punts]

d) La potència activa consumida P.

[0,5 punts]

Exercici 4

[2,5 punts]

Un motor d'inducció té la placa de característiques següent:

P = 120 kW	<i>U</i> = 693/400 V	<i>I</i> = 130/225 A
$n = 1450 \text{ min}^{-1}$	$\cos \phi = 0.84$	f = 50 Hz

Amb el motor treballant en condicions nominals, determineu:

a) El rendiment η . [1 punt]

b) El nombre p de parells de pols. [0,5 punts]

c) El parell Γ desenvolupat. [0,5 punts]

Si es vol connectar a una xarxa de 400 V:

d) A quina connexió caldria fer-ho i quins corrents de línia hi circularien? [0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts]

Per al circuit de la figura, determineu:

Amb l'interruptor obert:

a) El corrent / del circuit.

[1 punt]

b) Les potències P_1 i P_2 subministrades per les fonts.

[0,5 punts]

Amb l'interruptor tancat:

c) Les noves potències P'_1 i P'_2 subministrades per les fonts.

[1 punt]

Exercici 4

[2,5 punts]

Un calefactor elèctric d'una màquina, de potència P = 10 kW a una tensió U = 230 V, s'alimenta mitjançant un cable bipolar de longitud L = 100 m. El conductor té una resistivitat de ρ = 0,017 86 $\mu\Omega$ m. La caiguda de tensió del cable no ha de superar el 5 %.

a) Determineu la secció mínima S_{\min} que ha de tenir el cable.

[1 punt]

b) Escolliu una secció normalitzada entre les següents:

4 mm², 6 mm², 10 mm², 16 mm², 25 mm², 35 mm², 50 mm²

[0,5 punts]

c) Amb la secció escollida, quina caiguda de tensió ΔU en tant per cent hi haurà? [1 punt]

