Contents

CONTENTS

Chapter 1

Real Analysis

```
(1.5)
                             V[<, S] := \forall_{x, y \in S} (x < y \lor x = y \lor y < x)
                              Y[<, S] := \forall_{x, y, z \in S} ((x < y \land y < z) \implies x < z)
         r[<,S] := (OrderTrichotomy[<,S]) \land (OrderTransitivity[<,S])
(1.7)
                        e[E, S, <] := (Order[<, S]) \land (E \subset S) \land (\exists_{\beta \in S} \forall_{x \in E} (x \le \beta))
                    low[E, S, <] := (Order[<, S]) \land (E \subset S) \land (\exists_{\beta \in S} \forall_{x \in E} (\beta \le x))
                     [\beta, E, S, <] := (Order[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E} (x \le \beta))
                     I[\beta, E, S, <] := (Order[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E} (\beta \le x))
(1.8)
        P[\alpha, E, S, <] := (UpperBound[\alpha, E, S, <]) \land (\forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound[\gamma, E, S, <]))
\textbf{GLB}[\alpha,E,S,<] := (LowerBound[\alpha,E,S,<]) \land (\forall_{\beta}(\alpha < \beta \implies \neg LowerBound[\beta,E,S,<]))
(1.10)
                       V[S,<] := \overline{\forall_E(((\emptyset \neq E \subset S) \land (\underline{Bound\,ed\,Above}[E,S,<]) \implies \exists_{\alpha \in S}(\underline{LU\,B}[\alpha,\overline{E},S,<])))}
                       \forall [S,<] := \forall_E (((\emptyset \neq E \subset S) \land (Bounded Below[E,S,<]) \implies \exists_{\alpha \in S} (GLB[\alpha,E,S,<])))
(1.11)
                        Implies GLBP roperty := LUBP roperty [S, <] \implies GLBP roperty [S, <]
(1) LUBProperty[S, <] \implies ...
  (1.1) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \dots
      (1.1.1) Order[<, S] \land \exists_{\delta' \in S}(LowerBound[\delta', B, S, <])
      (1.1.2) |B| = 1 \Longrightarrow \dots
         (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u' : u' \in B\}) \quad \blacksquare \ B = \{u\}
         (1.1.2.2) \quad \mathbf{GLB}[u, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_0 \in S} (\mathbf{GLB}[\epsilon_0, B, S, <])
      (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])
      (1.1.4) \quad |B| \neq 1 \implies \dots
         (1.1.4.1) \quad \forall_E ((\emptyset \neq E \subset S \land Bounded Above[E, S, <]) \implies \exists_{\alpha \in S} (LUB[\alpha, E, S, <]))
         (1.1.4.2) L := \{ s \in S : LowerBound[s, B, S, <] \}
         (1.1.4.3) |B| > 1 \land OrderTrichotomy[<, S] | \exists b_{1' \in B} \exists b_{0' \in B} (b_{0'} < b_{1'})
         (1.1.4.4) \quad b_1 := choice(\{b_1' \in B : \exists_{b_0' \in B}(b_0' < b_1')\}) \quad \blacksquare \neg LowerBound[b_1, B, S, <]
         (1.1.4.5) \quad b_1 \notin L \quad \blacksquare \ L \subset S
         (1.1.4.6) \quad \delta := choice(\{\delta' \in S : LowerBound[\delta', B, S, <]\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
         (1.1.4.7) \quad \emptyset \neq L \subset S
         (1.1.4.8) \quad \forall_{y \in L}(LowerBound[y_0, B, S, <]) \quad \blacksquare \quad \forall_{y \in L} \forall_{x \in B}(y_0 \le x)
                                                                                                                                                                                                                from: UpperBound
         (1.1.4.9) \quad \forall_{x \in B} (x \in S \land \forall_{y \in L} (y_0 \le x)) \quad \blacksquare \quad \forall_{x \in B} (UpperBound[x, L, S, <])
          (1.1.4.10) \quad \exists_{x \in S}(UpperBound[x, L, S, <]) \quad \blacksquare \quad BoundedAbove[L, S, <]
```

2

+ CHAPTER I. REAL AWALIS

```
(1.1.4.11) \emptyset \neq L \subset S \land Bounded Above[L, S, <]
                   (1.1.4.12) \ \exists_{\alpha' \in S}(LUB[\alpha', L, S, <]) \ \blacksquare \ \alpha := choice(\{\alpha' \in S : (LUB[\alpha', L, S, <])\})
                   (1.1.4.13) \quad \forall_{x}(x \in B \implies UpperBound[x, L, S, <])
                    (1.1.4.14) \quad \forall_x (\neg UpperBound[x, L, S, <] \implies x \notin B)
                   (1.1.4.15) \quad \gamma < \alpha \implies \dots
                                                                                                                                                                                                                                                                                                                                                                                              from: LUB, 1.1.4.12, 1.1.4.14
                        (1.1.4.15.1) \quad \neg UpperBound[\gamma, L, S, <] \quad \blacksquare \quad \gamma \notin B
                   (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \boxed{\gamma \in B \implies \gamma \ge \alpha}
                   (1.1.4.17) \quad \forall_{\gamma \in B} (\alpha \leq \gamma) \quad \blacksquare \quad LowerBound[\alpha, B, S, <]
                   (1.1.4.18) \quad \alpha < \beta \implies \dots
                         (1.1.4.18.1) \quad \forall_{v \in L} (y_0 \le \alpha < \beta) \quad \blacksquare \quad \forall_{v \in L} (y_0 \ne \beta)
                         (1.1.4.18.2) \beta \notin L \quad \square \neg LowerBound[\beta, B, S, <]
                   (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound[\beta, B, S, <] \quad \blacksquare \quad \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
                   (1.1.4.20) \quad LowerBound[\alpha, B, S, <] \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
                   (1.1.4.21) \quad \mathbf{GLB}[\alpha, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_1 \in S} (\mathbf{GLB}[\epsilon_1, B, S, <])
            (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <])
                                                                                                                                                                                                                                                                                                                                                                                                                   from: 1.1.3, 1.1.5
            (1.1.6) \quad (|B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])) \land (|B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <]))
             (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <]) \quad \blacksquare \quad \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <])
       (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <])
       (1.3) \quad \forall_B((\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \exists_{\epsilon \in S}(GLB[\epsilon, B, S, <]))
       (1.4) GLBProperty[S, <]
 (2) LUBProperty[S, <] \implies GLBProperty[S, <]
(1.12)
Field [F, +, *] := \exists_{0,1 \in F} \forall_{x,y,z \in F} \begin{cases} x + y \in F & \land & x * y \in F & \land \\ x + y = y + x & \land & x * y = y * x & \land \\ (x + y) + z = x + (y_0 + z) & \land & (x * y) * z = x * (y_0 * z) & \land \\ 1 \neq 0 & \land & x * (y_0 + z) = (x * y) + (x * z) & \land \\ 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0
                                                                                                             \exists_{-x \in F} (x + (-x) = \mathbb{0}) \land (x \neq \mathbb{0} \implies \exists_{1/x \in F} (x * (1/x) = \mathbb{1}))
                                           (1.14)
 (1) y = 0 + y = (x + (-x)) + y = ((-x) + x) + y = (-x) + (x + y) = \dots
 (2) (-x) + (x + z) = ((-x) + x) + z = (x + (-x)) + z = 0 + z = z
 (1) x + y = x = 0 + x = x + 0
 (2) y = 0
 (1) x + y = 0 = x + (-x)
```

(1.15)

 $(2) \quad x = -(-x)$

(1) $0 = x + (-x) = (-x) + x \quad \blacksquare \quad 0 = (-x) + x$

```
ultiplicative Cancellation: = (x \neq 0 \land x * y = x * z) \implies y = z
 Multiplicative I dentity Uniqueness := (x \neq 0 \land x \circ y = 0)
Multiplicative I nuar sell niqueness := (x \neq 0 \land x \circ y = 1) \implies y = 1/x
   \frac{\text{ouble Reci procal}}{\text{ouble Reci procal}} := (x \neq 0) \implies x = 1/(1/x)
(1.16)
(1) 0 * x = (0 + 0) * x = 0 * x + 0 * x   0 * x = 0 * x + 0 * x
(2) 0 * x = 0
(1) (x \neq 0 \land y \neq 0) \implies \dots
 (1.1) \quad (x * y = 0) \implies \dots
    (1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = (x * (1/x)) * (y * (1/y)) = (x * y) * ((1/x) * (1/y)) = \mathbb{0} * ((1/x) * (1/y)) = \mathbb{0}
     (1.1.2) \quad 1 = 0 \land 1 \neq 0 \quad \blacksquare \perp
  (1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0
(2) (x \neq 0 \land y \neq 0) \implies x * y \neq 0
(1) x * y + (-x) * y = (x + -x) * y = 0 * y = 0  x * y + (-x) * y = 0
(2) \quad (-x) * y = -(x * y)
(3) x * y + x * (-y) = x * (y_0 + -y) = x * 0 = 0  x * y + x * (-y) = 0
(4) x * (-y) = -(x * y)
(1.17)
                                          \left( \begin{array}{ccc} Field[F,+,*] & \wedge & Order[<,F] & \wedge \\ \forall_{x,y,z \in F}(y_0 < z \implies x+y < x+z) & \wedge \\ \forall_{x,y \in F}((x>0 \land y>0) \implies x*y>0) \end{array} \right) 
             (1.18)
  (1.1) \quad 0 = (-x) + x > (-x) + 0 = -x \quad \blacksquare \quad 0 > -x \quad \blacksquare \quad -x < 0
(2) x > 0 \implies -x < 0
  (3.1) \quad 0 = x + (-x) < x + 0 = x \quad \blacksquare \quad 0 < x \quad \blacksquare \quad x > 0
(4) \quad -x < 0 \implies x > 0
(5) \quad x > 0 \implies -x < 0 \land -x < 0 \implies x > 0 \quad x > 0 \iff -x < 0
  (1.1) \quad (-y) + z > (-y) + y = 0 \quad \blacksquare \quad z + (-y) = 0
  (1.2) \quad x * (z + (-y)) > 0 \quad \blacksquare \quad x * z + x * (-y) > 0
                                                                                                                                                                  from: Field, NegationCommutativity
  (1.3) \quad x*z = 0 + x*z = (x*y + -(x*y)) + x*z = (x*y + x*(-y)) + x*z = \dots
  (1.4) \quad x * y + (x * z + x * (-y)) > x * y + 0 = x * y
```

(1.5) x * z > x * y

from: NegationOnOrder, Ordered Field, Negative Multiplica

```
(2) (x > 0 \land y < z) \implies x * z > x * y
```

Negative Factor Flips Order := $(x < 0 \land y < z) \implies x * y > x * z$

(1) $(x < 0 \land y < z) \implies \dots$

(1.1) -x > 0 from: NegationOnOro

 $(1.2) \quad (-x) * y < (-x) * z \quad \blacksquare \quad 0 = x * y + (-x) * y < x * y + (-x) * z \quad \blacksquare \quad 0 < x * y + (-x) * z$

 $(1.3) \quad 0 < (-x) * (-y+z) \quad \boxed{0} > x * (-y+z) \quad \boxed{0} > -(x * y) + x * z$

from: NegationOnOrder

 $(1.4) \quad x * y > x * z$

(2) $(x < 0 \land y < z) \implies x * y > x * z$

Square Is Positive := $(x \neq 0) \implies x * x > 0$

(1) $(r \times 0) \longrightarrow r + r \times 0$ from: Order

 $\frac{(2) \quad (x < 0) \implies \dots}{(2) \quad (x < 0) \implies \dots}$

 $(2.1) \quad -x > 0 \quad \blacksquare \quad x * x = (-x) * (-x) > 0 \quad \blacksquare \quad x * x > 0$

 $(2.1) \quad -\lambda \geq 0 \quad \exists \lambda \neq \lambda = (-\lambda) \neq (-\lambda) \geq 0 \quad \exists \lambda \neq \lambda \geq 0$

 $(3) (x < 0) \implies x * x > 0$

 $(4) \quad x \neq 0 \implies (x > 0 \lor x < 0) \implies x * x > 0 \quad \blacksquare \quad x \neq 0 \implies x * x > 0$

One Is Positive := 1 > 0

(1) $1 \neq 0 \quad \blacksquare \quad 1 = 1 * 1 > 0$

ReciprocationOnOrder := $(0 < x < y) \implies 0 < 1/y < 1/x$

 $\xrightarrow{(1) \quad (0 < x < y) \longrightarrow \dots}$

 $(1.1) \quad x * (1/x) = 1 > 0 \quad \blacksquare \quad x * (1/x) > 0$

 $(1.2) \quad 1/x < \emptyset \implies x * (1/x) < 0 \land x * (1/x) > 0 \implies \bot \quad \blacksquare \quad 1/x > \emptyset$

 $(1.3) \quad y * (1/y) = 1 > 0 \quad \blacksquare \quad y * (1/y) > 0$

 $(1.4) \quad 1/y < 0 \implies y * (1/y) < 0 \land y * (1/y) > 0 \implies \bot \quad \boxed{1/y > 0}$ from: Negative Factor Flips Order, 1

 $(1.5) \quad (1/x) * (1/y) > 0$

 $(1.6) \quad 0 < 1/y = ((1/x) * (1/y)) * x < ((1/x) * (1/y)) * y = 1/x$

Subfield $[K, F, +, *] := Field [F, +, *] \land K \subset F \land Field [K, +, *]$

Ordered Subfield $[K, F, +, *, <] := Ordered Field [F, +, *, <] \land K \subset F \land Ordered Field [K, +, *, <]$

 $Cut I[\alpha] := \emptyset \neq \alpha \subset \mathbb{Q}$

(1.3.1) $q \ge p$

 $\overline{\text{Curl1}[\alpha]} := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q$

 $CutIII[\alpha] := \forall_{p \in \alpha} \exists_{r \in \alpha} (p < r)$

 $\mathbb{R} := \{ \alpha \in \mathbb{Q} : CutI[\alpha] \land CutII[\alpha] \land CutIII[\alpha] \}$

 $\underline{CutCorollaryl} := (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q$

 $\overline{(1) \ (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots}$

 $(1.1) \quad \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)$

 $(1.2) \quad q$

 $(1.3) \quad (q \notin \alpha) \implies \dots$

 $(1.3.2) \quad (\underline{q} = p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p$

 $(1.3.2) \quad (q-p) \longrightarrow (p \in \alpha \land p \notin \alpha) \longrightarrow \bot \blacksquare q \neq p$

 $(1.3.3) \quad q \ge p \land q \ne \overline{p} \quad p < \overline{q}$

 $(1.4) \quad q \notin \alpha \implies p < q \quad p < q$

(2) $(\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q$

```
(1) (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
                                                                                                                                                                                                                                                                                                                                     from: CutII, 1
    (1.1) \quad \forall_{s' \in \alpha} \forall_{r' \in \mathbb{Q}} (r' < s' \implies r' \in \alpha)
    (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
    (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
<_{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
    (1.1) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \dots
         (1.1.1) \quad \alpha \not\subset \beta \land \alpha \neq \beta
         (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' : p' \in \alpha \land p' \notin \beta\})
         (1.1.3) q \in \beta \implies ...
           (1.1.3.1) p, q \in \mathbb{Q}
          (1.1.3.2) q < p
             (1.1.3.3) q \in \alpha
         (1.1.4) \quad q \in \beta \implies q \in \alpha
         (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
         (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta <_{\mathbb{R}} \quad \alpha
     (1.2) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \beta <_{\mathbb{R}} \alpha
     (1.3) \quad \neg(\alpha <_{\mathbb{R}} \beta \vee \alpha = \beta) \vee (\overline{\alpha} <_{\mathbb{R}} \beta \vee \alpha = \beta) \quad \blacksquare \quad (\beta <_{\mathbb{R}} \alpha) \vee (\alpha <_{\mathbb{R}} \beta \vee \alpha = \beta)
     (1.4) \quad \alpha = \beta \implies \neg(\alpha <_{\mathbb{R}} \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.5) \quad \alpha <_{\mathbb{R}} \beta \implies \neg (\alpha = \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.6) \quad \beta <_{\mathbb{R}} \alpha \implies \neg(\alpha = \beta \lor \alpha <_{\mathbb{R}} \beta)
    (1.7) \quad \alpha <_{\mathbb{R}} \beta \veebar \alpha = \beta \veebar \alpha <_{\mathbb{R}} \beta
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies (\alpha <_{\mathbb{R}} \beta \veebar \alpha = \beta \veebar \alpha <_{\mathbb{R}} \beta)
(3) \quad \forall_{\alpha,\beta \in \mathbb{R}} (\alpha <_{\mathbb{R}} \beta \underline{\vee} \alpha = \beta \underline{\vee} \alpha <_{\mathbb{R}} \beta)
(4) OrderTrichotomy[\mathbb{R}, <_{\mathbb{R}}]
             rTransitivityOfR := OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
(1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha <_{\mathbb{R}} \beta \wedge \beta <_{\mathbb{R}} \gamma) \implies \dots
     (1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma
         (1.1.2) \quad \forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)
         (1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \quad \alpha \subset \gamma \quad \blacksquare \quad \alpha <_{\mathbb{R}} \quad \gamma
   (1.2) \quad (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies ((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma)
(3) \quad \forall_{\alpha,\beta,\gamma \in \mathbb{R}} ((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma)
(4) OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
 OrderOfR := Order[<_{\mathbb{R}}, \mathbb{R}]
LUBPropertyOfR := LUBProperty[\mathbb{R}, <_{\mathbb{R}}]
(1) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \dots
    (1.1) \quad \gamma := \{ p \in \mathbb{Q} : \exists_{\alpha \in A} (p \in \alpha) \}
     (1.2) \quad A \neq \emptyset \quad \blacksquare \ \exists_{\alpha} (\alpha \in A) \quad \blacksquare \ \alpha_0 := choice(\{\alpha : \alpha \in A\})
     (1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \ \exists_a (a \in \alpha_0) \quad \blacksquare \ a_0 := choice(\{a : a \in \alpha_0\}) \quad \blacksquare \ a_0 \in \gamma \quad \blacksquare \ \gamma \neq \emptyset
     (1.4) Bounded Above [A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \exists_{\beta} (UpperBound[\beta, A, \mathbb{R}, <_{\mathbb{R}}])
```

CutCorollaryII := $(\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha$

```
(1.5) \quad \beta_0 := choice(\{\beta : UpperBound[\beta, A, \mathbb{R}, <_{\mathbb{R}}]\})
     (1.6) \quad UpperBound[\beta_0, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \subseteq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} \forall_{\alpha \in A} (\alpha \in \beta_0)
     (1.7) \quad (\alpha \in A \land a \in \alpha) \iff a \in \gamma \quad \blacksquare \quad \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \quad \gamma \subseteq \beta_0
     (1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subset \mathbb{Q}
     (1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad Cut I[\gamma]
     (1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots
         (1.10.1) \quad p \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \ \alpha_1 := choice(\{\alpha \in A : p \in \alpha\})
       (1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q 
     (1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII[\gamma]
     (1.12) \quad p \in \gamma \implies \dots
          (1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_2 := choice(\{\alpha \in A : p \in \alpha\})
          (1.12.2) \quad \alpha_2 \in \mathbb{R} \quad \blacksquare \quad CutII[\alpha_2] \quad \blacksquare \quad \exists_{r \in \alpha_2} (p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 : p < r\})
          (1.12.3) r_0 \in \alpha_2 \ \blacksquare \ r_0 \in \gamma
         (1.12.4) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)
     (1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII[\gamma]
     (1.14) \quad CutI[\gamma] \wedge CutII[\gamma] \wedge CutIII[\gamma] \quad \boxed{\gamma} \in \mathbb{R}
     (1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma)
     (1.16) \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma) \land \gamma \in \mathbb{R} \quad \blacksquare \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.17) \quad \delta <_{\mathbb{R}} \gamma \implies \dots
         (1.17.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := choice(\{s \in \mathbb{Q} : s \in \gamma \land s \notin \delta\})
          (1.17.2) \quad s_0 \in \gamma \quad \blacksquare \quad \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \quad \alpha_3 := choice(\{\alpha \in A : s_0 \in \alpha\})
          (1.17.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
          (1.17.4) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \dots
            (1.17.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
             (1.17.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \ \bot
          (1.17.5) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \bot \quad \blacksquare \quad \delta <_{\mathbb{R}} \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\overline{\delta} <_{\mathbb{R}} \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\overline{\gamma}(\alpha \leq_{\mathbb{R}} \delta))
          (1.17.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \delta) \quad \blacksquare \quad \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.18) \quad \delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]) \quad \blacksquare \quad \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.19) \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \land \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
    (1.20) \quad LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \exists_{\gamma \in S} (LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(2) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S}(LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(3) \quad \forall_A ((\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S} (LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])) \quad \blacksquare \quad LUBProperty[\mathbb{R}, <_{\mathbb{R}}]
  +_{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land (\alpha +_{\mathbb{R}} \beta) = \{r + s : r \in \alpha \land s \in \beta\}
\mathbf{O}_{\mathbb{R}} := \{ x \in \mathbb{Q} : x < 0 \}
   ZeroInR := 0_{\mathbb{R}} \in \mathbb{R}
(1) \quad -1 \in 0_{\mathbb{R}} \land 1 \notin 0_{\mathbb{R}} \quad \blacksquare \quad \emptyset \neq 0_{\mathbb{R}} \subseteq \mathbb{Q} \quad \blacksquare \quad CutI[0_{\mathbb{R}}]
(2) \quad (x \in 0_{\mathbb{R}} \land y \in \mathbb{Q} \land y < x) \implies y < x < 0 \implies y < 0 \implies y \in \overline{0_{\mathbb{R}}} \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \forall_{y \in \mathbb{Q}} (y_0 < x \implies y \in 0_{\mathbb{R}}) \quad \blacksquare \quad CutII[0_{\mathbb{R}}]
(3) \quad y := x/2 \quad \blacksquare \quad (x \in 0_{\mathbb{R}}) \implies (x < y < 0) \implies \exists_{y \in 0_{\mathbb{D}}} (x < y) \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{D}}} \exists_{y \in 0_{\mathbb{D}}} (x < y) \quad \blacksquare \quad CutIII[0_{\mathbb{R}}]
(4) \quad CutI[0_{\mathbb{R}}] \wedge CutII[0_{\mathbb{R}}] \wedge CutIII[0_{\mathbb{R}}] \quad \blacksquare \quad 0_{\mathbb{R}} \in \mathbb{R}
   \text{rield AdditionClosureOf } R := (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha +_{\mathbb{R}} \beta) = \{r + s : r \in \alpha \land s \in \beta\}
     (1.2) \quad \emptyset \neq \alpha \subset \mathbb{Q} \land \emptyset \neq \beta \subset \mathbb{Q}
     (1.3) \ \exists_a(a \in \alpha) \ ; \exists_b(b \in \beta) \ \blacksquare \ a_0 := choice(\{a : a \in \alpha\}) \ ; b_0 := choice(\{b : b \in \beta\}) \ \blacksquare \ a_0 + b_0 \in \alpha +_{\mathbb{R}} \beta
     (1.4) \quad \exists_{x}(x \notin \alpha) \; ; \; \exists_{y}(y_{0} \notin \beta) \quad \blacksquare \; x_{0} \mathrel{\mathop:}= choice(\{x : x \notin \alpha\}) \; ; \; y_{0} \mathrel{\mathop:}= choice(\{y : y \notin \beta\})
     (1.5) \quad \forall_{r \in \alpha}(r < x_0) \; ; \; \forall_{s \in \beta}(s < y_0) \quad \blacksquare \quad \forall_{r \in \alpha}\forall_{s \in \beta}(r + s < x_0 + y_0) \quad \blacksquare \quad x_0 + y_0 \notin \alpha +_{\mathbb{R}} \beta
```

 $(1.6) \quad \emptyset \neq \alpha +_{\mathbb{R}} \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\alpha +_{\mathbb{R}} \beta]$

```
(1.7) \quad (p \in \alpha +_{\mathbb{R}} \beta \wedge q \in \mathbb{Q} \wedge q < p) \implies \dots
         (1.7.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_0, s_0) := choice((r, s) \in \alpha \times \beta : p = r + s)
         (1.7.2) \quad q 
        (1.7.3) \quad s_0 \in \beta \quad \blacksquare \quad q = (q - s_0) + s_0 \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad q \in \alpha +_{\mathbb{R}} \beta
     (1.8) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad CutII[\alpha +_{\mathbb{R}} \beta]
    (1.9) p \in \alpha \implies \dots
         (1.9.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_1, s_1) := choice(\{(r, s) \in \alpha \times \beta : p = r + s\})
        (1.9.2) \quad r_1 \in \alpha \quad \blacksquare \quad \exists_{t \in \alpha} (r_1 < t) \quad \blacksquare \quad t_0 := choice(\{t \in \alpha : r_1 < t\})
        (1.9.3) \quad \overline{s_1 \in \beta} \quad \blacksquare \quad t + s_1 \in \alpha +_{\mathbb{R}} \beta \land p = r_1 + \overline{s_1} < t + s_1 \quad \blacksquare \quad \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r)
    (1.10) \quad p \in \alpha \implies \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad CutIII[\alpha +_{\mathbb{R}} \beta]
    (1.11) \quad CutI[\alpha +_{\mathbb{R}} \beta] \wedge CutII[\alpha +_{\mathbb{R}} \beta] \wedge CutIII[\alpha +_{\mathbb{R}} \beta] \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta \in \mathbb{R}
(2) (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
    \underline{ield} \, \underline{Additi} \underline{onCom} \underline{mutativ} \underline{ityOf} \, \underline{R} := (\alpha, \beta \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta = \beta +_{\mathbb{R}} \alpha)
(1) \quad \alpha +_{\mathbb{R}} \beta = \{r + s : r \in \alpha \land s \in \beta\} = \{s + r : s \in \beta \land r \in \alpha\} = \beta +_{\mathbb{R}} \alpha
    ield\ \underline{Ad\ dition}\ \underline{Associativity}\ \underline{Of\ R}\ := (\alpha, \beta, \gamma \in \mathbb{R}) \implies \overline{((\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma))}
(1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \{(a+b) + c : a \in \alpha \land b \in \beta \land c \in \gamma\} = \dots
   (1.2) \quad \{a + (b+c) : a \in \alpha \land b \in \beta \land c \in \gamma\} = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
                                                   \text{ityOf } R := (\alpha \in \mathbb{R}) \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies \dots
       (1.1.1) \quad s < 0 \quad || r + s < r + 0 = r \quad || r + s < r \quad || r + s \in \alpha
    (1.2) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies r + s \in \alpha \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in 0_{\mathbb{R}}} (r + s \in \alpha)
    (1.3) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \iff (r + \overline{s} \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}} (p \in \alpha) \quad \blacksquare \quad \alpha +_{\mathbb{R}} \overline{0}_{\mathbb{R}} \subseteq \alpha
    (1.4) p \in \alpha \implies \dots
     (1.4.1) \quad \exists_{r \in \alpha} (p < r) \quad \blacksquare \quad r_2 := choice(\{r \in \alpha : p < r\})
       (1.4.2) \quad p < r_2 \quad \blacksquare \quad p - r_2 < r_2 - r_2 = 0 \quad \blacksquare \quad (p - r_2) < 0 \quad \blacksquare \quad (p - r_2) \in 0_{\mathbb{R}}
        (1.4.3) 	 r_2 \in \alpha 	 \blacksquare 	 p = r_2 + (p - r_2) \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} 	 \blacksquare 	 p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.5) \quad p \in \alpha \implies p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{p \in \alpha} (p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.6) \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha \wedge \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(2) \quad \alpha \in \mathbb{R} \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
   \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}}) \implies \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad \beta := \{ p \in \mathbb{Q} : \exists_{r>0} (-p - r \notin \alpha) \}
    (1.2) \quad \alpha \subset \mathbb{Q} \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \notin \alpha) \quad \blacksquare \quad s_0 := choice(\{s : s \notin \alpha\}) \quad \blacksquare \quad p_0 := -s_0 - 1
    (1.3) \quad -p_0-1 = -(-s_0-1)-1 = s_0 \not\in \alpha \quad \blacksquare \quad -p_0-1 \not\in \alpha \quad \blacksquare \quad \exists_{r>0} (-p_0-r \not\in \alpha) \quad \blacksquare \quad p_0 \in \beta
    (1.4) \quad \emptyset \neq \alpha \quad \blacksquare \quad \exists_{q \in \alpha} \quad \blacksquare \quad q_0 := choice(\{q \in \mathbb{Q} : q \in \alpha\})
    (1.5) r > 0 \Longrightarrow \dots
     (1.5.1) \quad q_0 \in \alpha \quad \blacksquare \quad -(-q_0) - r = q_0 - r < q_0 \quad \blacksquare \quad -(-q_0) - r < q_0 \quad \blacksquare \quad -(-q_0) - r \in \alpha
    (1.6) \quad \forall_{r>0} (-(-q_0) - r \in \alpha) \quad \blacksquare \quad \neg \exists_{r>0} (-(-q_0) - r \notin \alpha) \quad \blacksquare \quad -q_0 \notin \beta
    (1.7) \quad \emptyset \neq \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\beta]
    (1.8) \quad (p \in \beta \land q \in \mathbb{Q} \land q < p) \implies \dots
        (1.8.1) \quad p \in \beta \quad \blacksquare \quad \exists_{r>0} (-p-r \notin \alpha) \quad \blacksquare \quad r_0 := choice(\{r>0: -p-r \notin \alpha\})
        (1.8.2) q 
         (1.8.3) \quad -q - r \notin \alpha \quad \blacksquare \quad q \in \beta
```

 $(1.9) \quad (p \in \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \beta \quad \blacksquare \quad \forall_{p \in \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \beta) \quad \blacksquare \quad CutII[\beta]$

```
(1.10) \quad p \in \beta \implies \dots
         (1.10.1) \quad p \in \beta \quad \blacksquare \ \exists_{r>0} (-p - r \notin \alpha) \quad \blacksquare \ r_1 := choice(\{r > 0 : -p - r \notin \alpha\})
         (1.10.2) \quad t_0 := p + (r_1/2)
         (1.10.3) r_1 > 0   r_1/2 > 0
         (1.10.4) \quad t_0 > t_0 - (r_1/2) = p \quad \blacksquare t_0 > p
         (1.10.5) \quad -t_0 - (r_1/2) = -(p + (r_1/2)) - (r_1/2) = -p - r_1
         (1.10.6) \quad -p - r_1 \notin \alpha \quad \blacksquare \quad -t_0 - (r_1/2) \notin \alpha \quad \blacksquare \quad \exists_{r>0} (-t_0 - r \notin \alpha) \quad \blacksquare \quad t_0 \in \beta
         (1.10.7) \quad t_0 > p \land t_0 \in \beta \quad \blacksquare \quad \exists_{t \in \beta} (p < t)
     (1.11) \quad p \in \beta \implies \exists_{t \in \beta} (p < t) \quad \blacksquare \quad \forall_{p \in \beta} \exists_{t \in \beta} (p < t) \quad \blacksquare \quad CutIII[\beta]
     (1.12) \quad CutI[\beta] \land CutII[\beta] \land CutIII[\beta] \quad \blacksquare \ \beta \in \mathbb{R}
     (1.13) \quad (r \in \alpha \land s \in \beta) \implies \dots
         (1.13.1) \quad s \in \beta \quad \blacksquare \quad \exists_{t>0} (-s-t \notin \alpha) \quad \blacksquare \quad t_1 := choice(\{t>0: -s-t \notin \alpha\}) \quad \blacksquare \quad -s-t_1 < -s = t 
         (1.13.2) \quad \alpha \in \mathbb{R} \land s, t_1 \in \mathbb{Q} \land -s - t_1 < -s \land -s - t_1 \notin \alpha \quad \blacksquare \ -s \notin \alpha
         (1.13.3) \quad \alpha \in \mathbb{R} \land r \in \alpha \land -s \notin \alpha \quad \blacksquare \quad r < -s \quad \blacksquare \quad r + s < 0 \quad \blacksquare \quad r + s \in 0_{\mathbb{R}}
     (1.14) \quad (r \in \alpha \land s \in \beta) \implies r + \overline{s} \in 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{(r,s) \in \alpha \times \beta} (r + s \in 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha +_{\mathbb{R}} \quad \overline{\beta} \subseteq 0_{\mathbb{R}}
     (1.15) \quad v \in 0_{\mathbb{R}} \implies \dots
        (1.15.1) \quad v < 0 \quad \blacksquare \quad w_0 := -v/2 \quad \blacksquare \quad w > 0
                                                                                                                                                                                                                                                           from: ARCHIMEDEANPROPERTYOFO + LUB
         (1.15.2) \quad \exists_{n \in \mathbb{Z}} (nw_0 \in \alpha \land (n+1)w_0 \notin \alpha) \quad \blacksquare \quad n_0 := choice(\{n \in \mathbb{Z} : nw_0 \in \alpha \land (n+1)w_0 \notin \alpha\})
        (1.15.3) \quad p_0 := -(n_0 + 2)w_0 \quad \blacksquare \quad -p_0 - w_0 = (n_0 + 2)w_0 - w_0 = (n_0 + 1)w_0 \notin \alpha \quad \blacksquare \quad -p_0 - w_0 \notin \alpha \quad \blacksquare \quad p_0 \in \beta
         (1.15.4) \quad n_0 w_0 \in \alpha \land p_0 \in \beta \quad \blacksquare \quad n_0 w_0 + p_0 = n_0 (-v/2) + -(n_0 + 2) - v/2 = v \in \alpha +_{\mathbb{R}} \beta
     (1.16) \quad v \in 0_{\mathbb{R}} \implies v \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{v \in 0_{\mathbb{R}}} (v \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad 0_{\mathbb{R}} \subseteq \alpha +_{\mathbb{R}} \beta
     (1.17) \quad \alpha +_{\mathbb{R}} \beta \subseteq 0_{\mathbb{R}} \wedge 0_{\mathbb{R}} \subseteq \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta = 0_{\mathbb{R}}
     (1.18) \quad \beta \in \mathbb{R} \land \alpha +_{\mathbb{R}} \beta = 0_{\mathbb{R}} \quad \blacksquare \quad \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
(2) \quad \alpha \in \mathbb{R} \implies \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
     [\alpha,\beta] :=
     x := \{x \in \mathbb{Q} : x < 1\}
  IsNot0 := 0_{\mathbb{R}} \neq 1_{\mathbb{R}}
                                                                             \mathsf{R} := (\alpha, \beta \in \mathbb{R}) \implies ((\alpha *_{\mathbb{R}} \beta) \in \mathbb{R})
                                                                                            \overline{\mathbb{R}} := (\alpha, \beta \in \mathbb{R}) \implies (\alpha *_{\mathbb{R}} \beta = \beta *_{\mathbb{R}} \alpha)
                                                                                            := (\alpha, \beta, \gamma \in \mathbb{R}) \implies ((\alpha *_{\mathbb{R}} \beta) *_{\mathbb{R}} \gamma = \alpha *_{\mathbb{R}} (\beta *_{\mathbb{R}} \gamma))
                                                                                 := (\alpha \in \mathbb{R}) \implies 1_{\mathbb{R}} *_{\mathbb{R}} \alpha = \alpha
                                                                   \mathbf{POfR} := (\alpha \in \mathbb{R}) \implies \exists_{1/\alpha \in \mathbb{R}} (\alpha *_{\mathbb{R}} (1/\alpha) = 1_{\mathbb{R}})
     ield\ Distributativity Of\ R := (\alpha, \beta, \gamma \in \mathbb{R}) \implies \gamma *_{\mathbb{R}} (\alpha +_{\mathbb{R}} \beta) = \gamma *_{\mathbb{R}} \alpha + \gamma *_{\mathbb{R}} \beta
     feldWithR := Field[\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}] - rderedFieldWithR := OrderedField[\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}]
  \mathbf{Q}_{\mathbb{R}} := \{ \{ r \in \mathbb{Q} : r < q \} : q \in \mathbb{Q} \} 
                                                            R := OrderedSubfield[\mathbb{Q}_{\mathbb{R}}, \mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}}]
                                               :=\mathbb{Q}_{\mathbb{R}}\simeq\mathbb{Q}
     \exists_{\mathbb{R}}(LUBProperty[\mathbb{R}, <_{\mathbb{R}}] \land OrderedSubfield[\mathbb{Q}, \mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}}] ) 
(1.20)
                                       opertyOf R := \forall_{x,y \in \mathbb{R}} (x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y))
(1) (x, y \in \mathbb{R} \land x > 0) \Longrightarrow \dots
    (1.1) \quad A := \{ nx : n \in \mathbb{N}^+ \} \quad \blacksquare \quad (\emptyset \neq A \subset \mathbb{R}) \land (a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a))
     (1.2) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \dots
         (1.2.1) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{n \in \mathbb{N}^+} (nx \le y) \quad \blacksquare \quad UpperBound[y_0, A, \mathbb{R}, <] \quad \blacksquare \quad Bounded Above[A, \mathbb{R}, <]
         (1.2.2) CompletenessOf R \mid LUBProperty[\mathbb{R}, <]
         (1.2.3) \quad (LUBProperty[\mathbb{R},<]) \land (\emptyset \neq A \subset \mathbb{R}) \land (Bounded Above[A,\mathbb{R},<]) \quad \blacksquare \quad \exists_{\alpha \in \mathbb{R}} (LUB[\alpha,A,\mathbb{R},<]) \quad . \quad .
```

```
(1.2.4) \quad \dots \alpha_0 := choice(\{\alpha \in \mathbb{R} : LUB[\alpha, A, \mathbb{R}, <]\}) \quad \blacksquare LUB[\alpha_0, A, \mathbb{R}, <]
            (1.2.5) x > 0 \quad \square \quad \alpha_0 - x < \alpha_0
             (1.2.6) \quad (\alpha_0 - x < \alpha_0) \land (LUB[\alpha_0, A, \mathbb{R}, <]) \quad \blacksquare \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <]
            (1.2.7) \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <] \quad \blacksquare \quad \exists_{c \in A}(\alpha_0 - x < c) \dots
            (1.2.8) 	 \ldots c_0 := choice(\{c \in A : \alpha_0 - x < c\}) \quad \blacksquare (c_0 \in A) \land (\alpha_0 - x < c_0)
            (1.2.9) \quad (c_0 \in A) \land (a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (mx = c_0) \quad \dots
            (1.2.10) \quad \dots m_0 := choice(\{m \in \mathbb{N}^+ : mx = c_0\}) \quad \blacksquare \quad (m_0 \in \mathbb{N}^+) \land (m_0 x = c_0)
             (1.2.11) \quad (\alpha_0 - x < c_0) \wedge (m_0 x = c_0) \quad \blacksquare \quad \alpha_0 - x < c_0 = m_0 x \quad \blacksquare \quad \alpha_0 < m_0 x + x \quad \blacksquare \quad \alpha_0 < (m_0 + 1) x < m_0 < (m_0 + 1) x < (m_0 + 
            (1.2.12) m_0 \in \mathbb{N}^+ \blacksquare m_0 + 1 \in \mathbb{N}^+
            (1.2.13) \quad (m_0+1\in\mathbb{N}^+) \wedge (a\in A \iff \exists_{m\in\mathbb{N}^+}(mx=a)) \quad \blacksquare \quad (m_0+1)x\in A
            (1.2.14) \quad (\alpha_0 < (m_0 + 1)x) \land ((m_0 + 1)x \in A) \quad \blacksquare \ \exists_{c \in A} (\alpha_0 < c)
            (1.2.15) \quad \textbf{\textit{LUB}}[\alpha_0, A, \mathbb{R}, <] \quad \blacksquare \quad \textbf{\textit{UpperBound}}[\alpha_0, A, \mathbb{R}, <] \quad \blacksquare \quad \forall_{c \in A}(c \leq \alpha_0) \quad \blacksquare \quad \neg \exists_{c \in A}(c > \alpha_0) \quad \blacksquare \quad \neg \exists_{c \in A}(\alpha_0 < c) 
             (1.2.16) \quad (\exists_{c \in A}(\alpha_0 < c)) \land (\neg \exists_{c \in A}(\alpha_0 < c)) \quad \blacksquare \perp
      (1.3) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \bot \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (nx > y)
(2) \quad (x, y \in \mathbb{R} \land x > 0) \implies \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} (x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y))
  \bigcirc \text{DenseInR} := \forall_{x,y \in \mathbb{R}} (x < y \implies \exists_{p \in \mathbb{Q}} (x < \overline{p} < y)) 
(1) (x, y \in \mathbb{R} \land x < y) \implies \dots
      (1.1) \quad x < y \quad \blacksquare \quad (0 < y - x) \land (y - x \in \mathbb{R})
      (1.2) \quad Archimedean Property Of R \land (0 < y - x) \land (y - x, \overline{1 \in \mathbb{R}}) \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (n(y - x) > 1) \quad \dots
      (1.3) \quad \dots n_0 := choice(\{n \in \mathbb{N}^+ : n(y-x) > 1\}) \quad \blacksquare \quad (n_0 \in \mathbb{N}^+) \land (n_0(y-x) > 1)
      (1.4) \quad (n_0 \in \mathbb{N}^+) \land (x \in \mathbb{R}) \quad \blacksquare \quad n_0 x, -n_0 x \in \mathbb{R}
      (1.5) \quad Archimedean Property Of R \land (1>0) \land (n_0x, 1 \in \mathbb{R}) \quad \blacksquare \ \exists_{m \in \mathbb{N}^+} (m(1) > n_0x) \ \dots
      (1.6) \quad \dots m_1 := choice(\{m \in \mathbb{N}^+ : m(1) > n_0 x\}) \quad \blacksquare \quad (m_1 \in \mathbb{N}^+) \land (m_1 > n_0 x)
      (1.7) \quad Archimedean Property Of R \land (1 > 0) \land (-n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \ \exists_{m \in \mathbb{N}^+} (m(1) > -n_0 x) \ \dots
      (1.8) 	 \ldots m_2 := choice(\{m \in \mathbb{N}^+ : m(1) > -n_0 x\}) \quad \blacksquare (m_2 \in \mathbb{N}^+) \land (m_2 > -n_0 x)
      (1.9) \quad (m_1 > n_0 x) \land (m_2 > -n_0 x) \quad \blacksquare \quad -m_2 < n_0 x < m_1
      (1.10) \quad m_1, m_2 \in \mathbb{N}^+ \quad || |m_1 - (-m_2)| \ge 2
      (1.11) \quad (-m_2 < n_0 x < m_1) \land (|m_1 - (-m_2)| \ge 2) \quad \blacksquare \quad \exists_{m \in \mathbb{Z}} ((-m_2 < m < m_1) \land (m-1 \le n_0 x < m)) \quad \dots
      (1.12) \quad \dots \quad m_0 := choice(\{m \in \mathbb{Z} : (-m_2 < m < m_1) \land (m-1 \le n_0 x < m)\}) \quad \blacksquare \quad (-m_2 < m_0 < m_1) \land (m_0 - 1 \le n_0 x < m_0)
      (1.13) \quad (n_0(y-x) > 1) \wedge (m_0 - 1 \le n_0 x < m_0) \quad \blacksquare \quad n_0 x < m_0 \le 1 + n_0 x < n_0 y \quad \blacksquare \quad n_0 x < m_0 < n_0 y
      (1.14) \quad (n_0 \in \mathbb{N}^+) \land (n_0 x < m_0 < n_0 y) \quad \blacksquare \quad x < m_0 / n_0 < y
      (1.15) \quad \overline{m_0, n_0 \in \mathbb{Z} \quad \blacksquare \quad m_0/n_0 \in \mathbb{Q}}
      (1.16) \quad (m_0/n_0 \in \mathbb{Q}) \land (x < m_0/n_0 < y) \quad \blacksquare \quad \exists_{p \in \mathbb{Q}} (x < p < y)
(2) \quad (x,y \in \mathbb{R} \land x < y) \implies \exists_{p \in \mathbb{Q}} (x < p < y) \quad \blacksquare \quad \forall_{x,y \in \mathbb{R}} (x < y \implies \exists_{p \in \mathbb{Q}} (x < p < y))
(1.21)
                          mma := (0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})
(1) \quad (0 < a < b) \implies \dots
     (1.1) b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i}a^{i-1})
      (1.2) 0 < a < b \mid b/a > 1
      (1.3) \quad b/a > 1 \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} (b^{n-i}a^{i-1}(b/a)^{i-1}) = \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} = nb^{n-1
     (1.4) \quad b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i}a^{i-1}) \le (b - a)nb^{n-1} \quad \blacksquare \quad b^n - a^n \le (b - a)nb^{n-1}
 (2) (0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})
     \operatorname{Coot} ExistenceInR := \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists !_{0 < y \in \mathbb{R}} (y_0^n = x)
(1) (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \dots
      (1.1) \quad E := \{ t \in \mathbb{R} : t > 0 \land t^n < x \} \quad \blacksquare \quad t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)
      (1.2) \quad t_0 := x/(1+x) \quad \blacksquare \quad (t_0 = x/(1+x)) \land (t_0 \in \mathbb{R})
      (1.3) \quad 0 < x \quad \blacksquare \quad 0 < x < 1 + x \quad \blacksquare \quad t_0 = x/(1+x) > 0 \quad \blacksquare \quad t_0 > 0
```

```
(1.4) \quad 1 = (1+x)/(1+x) > x/(1+x) = t_0 \quad \blacksquare \quad 1 > t_0
(1.5) \quad (t_0 > 0) \land (1 > t_0) \quad \blacksquare \quad 0 < t_0 < 1
(1.6) \quad (0 < n \in \mathbb{Z}) \land (0 < t_0 < 1) \quad \blacksquare \ t_0^n \le t_0
(1.7) 0 < x \mid x > x/(1+x) = t_0 \mid x > t_0
(1.8) \quad (t_0^n \le t_0) \land (x > t_0) \quad \blacksquare \quad t_0^n < x
(1.9) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t_0 \in \mathbb{R}) \land (t_0 > 0) \land (t_0^n < x) \quad \blacksquare \ t_0 \in E \quad \blacksquare \ \emptyset \neq E
(1.10) \quad t_1 := choice(\{t \in \mathbb{R} : t > 1 + x\}) \quad \blacksquare \ (t_1 \in \mathbb{R}) \land (t_1 > 1 + x)
(1.11) \quad x > 0 \quad \blacksquare \ t_1 > 1 + x > 1 \quad \blacksquare \ t_1 > 1 \quad \blacksquare \ t_1^n \ge t_1
(1.12) \quad (t_1^n \ge t_1) \land (t_1 > 1 + x) \land (1 > 0) \quad \blacksquare \quad t_1^n \ge t_1 > 1 + x > x \quad \blacksquare \quad t_1^n > x
(1.13) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t_1^n > x) \quad \blacksquare \ t_1 \notin E \quad \blacksquare \ E \subset \mathbb{R}
(1.14) \quad (\emptyset \neq E) \land (E \subset \mathbb{R}) \quad \blacksquare \quad \emptyset \neq E \subset \mathbb{R}
(1.15) \quad t \in E \implies \dots
  (1.15.1) \quad (t \in E) \land (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \quad \blacksquare t^n < x
  (1.15.2) \quad (t_1^n > x) \land (t^n < x) \quad \blacksquare \quad t^n < x < t_1^n \quad \blacksquare \quad t < t_1
(1.16) \quad t \in E \implies t < t_1 \quad \blacksquare \quad \forall_{t \in E} (t \le t_1) \quad \blacksquare \quad UpperBound[t_1, E, \mathbb{R}, <] \quad \blacksquare \quad Bounded\ Above[E, \mathbb{R}, <]
(1.17) Completeness Of R \mid LUBP roperty[\mathbb{R}, <]
(1.18) \quad (LUBProperty[\mathbb{R}, <]) \land (\emptyset \neq E \subset \mathbb{R}) \land (Bounded Above[E, \mathbb{R}, <]) \quad \blacksquare \ \exists_{v \in \mathbb{R}} (LUB[y, E, \mathbb{R}, <]) \ \dots
(1.19) \quad \dots y_0 := choice(\{y \in \mathbb{R} : LUB[y, E, \mathbb{R}, <]\}) \quad \blacksquare \quad LUB[y_0, E, \mathbb{R}, <]
(1.20) \quad (LUB[y_0, E, \mathbb{R}, <]) \land (t_0 \in E) \land (t_0 > 0) \quad \blacksquare \ 0 < t_0 \leq y_0 \in \mathbb{R} \quad \blacksquare \ 0 < y_0 \in \mathbb{R}
(1.21) \quad y_0^n < x \implies \dots
   (1.21.1) \quad k_0 := \frac{x - y_0^n}{n(y_0 + 1)^{n - 1}} \quad \blacksquare \quad k_0 \in \mathbb{R}
   (1.21.2) \quad y_0^n < x \quad \blacksquare \quad 0 < x - y_0^n
   (1.21.3) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \quad 0 < n(y_0 + 1)^{n-1}
   (1.21.4) \quad (0 < x - y_0^n) \wedge (0 < n(y_0 + 1)^{n-1}) \  \, \blacksquare \  \, 0 < \frac{x - y_0^n}{n(y_0 + 1)^{n-1}} = k_0 \  \, \blacksquare \  \, 0 < k_0
    (1.21.5) \quad (0 < 1 \in \mathbb{R}) \land (0 < k_0 \in \mathbb{R}) \quad \blacksquare \quad 0 < \min(1, k_0) \in \mathbb{R}
```

 $(1.21.6) \quad \textit{QDenseInR} \land (0, min(1, k_0) \in \mathbb{R}) \land (0 < min(1, k_0)) \quad \blacksquare \quad \exists_{h \in \mathbb{Q}} (0 < h < min(1, k_0)) \quad \dots \quad (1.21.7) \quad \dots \quad h_0 := choice(\{h \in \mathbb{Q} : 0 < h < min(1, k_0)\}) \quad \blacksquare \quad (0 < h_0 < 1) \land (h_0 < k_0 = \frac{x - y_0^n}{n(y_0 + 1)^{n-1}})$

 $(1.21.11) \quad ((y_0 + h_0)^n - y_0^n < h_0 n (y_0 + h_0)^{n-1}) \wedge (h_0 n (y_0 + h_0)^{n-1} < h_0 n (y_0 + 1)^{n-1}) \quad \blacksquare \quad (y_0 + h_0)^n - y_0^n < h_0 n (y_0 + 1)^{n-1} > 0$

 $(1.21.13) \quad ((y_0+h_0)^n-y_0^n<\overline{h_0n(y_0+1)^{n-1}}) \wedge (h_0n(y_0+1)^{n-1}< x-y_0^n) \quad \blacksquare \quad (y_0+h_0)^n-\overline{y_0^n}< x-y_0^n \quad \blacksquare \quad (y_0+h_0)^n< x-y_0^n$

 $(1.21.16) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land ((y_0 + h_0)^n < x) \land (0 < y_0 + h_0 \in \mathbb{R}) \quad \blacksquare \quad (y_0 + h_0)^n \in E$

 $(1.21.18) \quad \underline{LUB}[y_0, E, \mathbb{R}, <] \quad \blacksquare \quad \underline{UpperBound}[y_0, E, \mathbb{R}, <] \quad \blacksquare \quad \forall_{e \in E}(e \leq y_0) \quad \blacksquare \quad \neg \exists_{e \in E}(e > y_0)$

 $(1.21.9) \quad \textit{Root Lemma} \land (0 < y_0 < y_0 + h_0) \quad \blacksquare \ (y_0 + h_0)^n - y_0^n < h_0 n (y_0 + h_0)^{n-1}$

 $(1.21.12) \quad (0 < n(y_0+1)^{n-1}) \wedge (h_0 < k_0 = \frac{x-y_0^n}{n(y_0+1)^{n-1}}) \ \ \blacksquare \ h_0 n(y_0+1)^{n-1} < x-y_0^n = \frac{x-y_0^n}{n(y_0+1)^{n-1}}$

 $(1.21.8) \quad (y_0 > 0) \land (h_0 > 0) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0$

 $(1.21.10) \quad h_0 < 1 \quad \blacksquare \quad h_0 n(y_0 + h_0)^{n-1} < h_0 n(y_0 + 1)^{n-1}$

 $\frac{(1.21.14) \quad (y_0 + h_0)^n - y_0^n < x - y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x}{(1.21.15) \quad (0 < y_0 \mathbb{R}) \land (0 < h_0 < \mathbb{R}) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0 \in \mathbb{R} }$

 $(1.21.19) \quad (\exists_{e \in E} (e > y_0)) \land (\neg \exists_{e \in E} (e > y_0)) \quad \blacksquare \ \bot$

 $(1.22) \quad y_0^n < x \implies \bot \quad \blacksquare \quad y_0^n \ge x$

 $(1.23.4) \quad y_0^n > x \quad \blacksquare \quad 0 < y_0^n - x$

 $(1.23.5) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \ 0 < ny_0^{n-1}$

 $(1.23) \quad y_0^n > x \implies \dots$

 $(1.21.17) \quad ((y_0 + h_0)^n \in E) \land (y_0 < y_0 + h_0) \quad \blacksquare \quad \exists_{e \in E} (y_0 < e)$

 $(1.23.1) \quad k_1 := \frac{y_0^{n} - x}{n y_0^{n-1}} \quad \blacksquare \quad (k_1 \in \mathbb{R}) \land (k_1 n y_0^{n-1} = y_0^{n} - x)$

 $(1.23.3) \quad y_0^n - x < ny_0^n \quad \blacksquare \quad k_1 = \frac{y_0^n - x}{ny_0^{n-1}} < \frac{ny_0^n}{ny_0^{n-1}} = y_0 \quad \blacksquare \quad k_1 < y_0$

 $(1.23.6) \quad (0 < y_0^n - x) \land 0 < (ny_0^{n-1}) \quad \blacksquare \quad 0 < \frac{y_0^n - x}{ny_0^{n-1}} = k_1 \quad \blacksquare \quad 0 < k_1$

 $(1.23.2) \quad (0 < x) \land (0 < n \in \mathbb{Z}) \quad \blacksquare \quad y_0^n - x < y_0^n \le ny_0^n \quad \blacksquare \quad y_0^n - x < ny_0^n$

```
(1.23.7) \quad (k_1 < y_0) \land (0 < k_1) \quad \blacksquare \quad (0 < k_1 < y_0) \land (0 < y_0 - k_1 < y_0)
        (1.23.8) t \ge y_0 - k_1 \implies \dots
            (1.23.8.1) \quad t \ge y_0 - k_1 \quad \blacksquare \quad t^n \ge (y_0 - k_1)^n \quad \blacksquare \quad -t^n \le -(y_0 - k_1)^n \quad \blacksquare \quad y_0^n - t^n \le y_0^n - (y_0 - k_1)^n 
            (1.23.8.2) \quad \textbf{RootLemma} \wedge (0 < y_0 - k_1 < y_0) \quad \blacksquare \quad y_0^n - (y_0 - k_1)^n < k_1 n y_0^{n-1}
            (1.23.8.3) \quad (y_0^n - t^n \le y_0^n - (y_0 - k_1)^n) \wedge (y_0^n - (y_0 - k_1)^n < k_1 n y_0^{n-1}) \quad \blacksquare \quad y_0^n - t^n < k_1 n y_0^{n-1}
            (1.23.8.4) \quad (k_1 n y_0^{n-1} = y_0^n - x) \wedge (y_0^n - t^n < k_1 n y_0^{n-1}) \quad \blacksquare \quad y_0^n - t^n < y_0^n - x \quad \blacksquare \quad -t^n < -x \quad \blacksquare \quad t^n > x
            (1.23.8.5) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t^n > x) \quad \blacksquare \ t \notin E
        (1.23.9) \quad t \geq y_0 - k_1 \implies t \not\in E \quad \blacksquare \ t \in E \implies t < y_0 - k_1 \quad \blacksquare \ \forall_{t \in E} (t \leq y_0 - k_1) \quad \blacksquare \ UpperBound[y_0 - k_1, E, \mathbb{R}, <]
        (1.23.10) \quad (LUB[y_0, E, \mathbb{R}, <] \land (y_0 - k_1 < y_0)) \quad \blacksquare \quad \neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]
        (1.23.11) \quad (UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \land (\neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \quad \blacksquare \perp
    (1.24) \quad y_0^n > x \implies \bot \quad \blacksquare \quad y_0^n \le x
    (1.25) Order[\mathbb{R}, <] \ \square \ OrderTrichotomy[\mathbb{R}, <]
    (1.26) \quad (OrderTrichotomy[\mathbb{R}, <]) \land (y_0^n \ge x) \land (y_0^n \le x) \quad \blacksquare \quad y_0^n = x
    (1.27) \quad (y_0^n = x) \land (y_0 \in \mathbb{R}) \quad \blacksquare \quad \exists_{y \in \mathbb{R}} (y^n = x)
    (1.28) y_1, y_2 := choice(\{y \in \mathbb{R} : y^n = x\})
    (1.29) \quad y_1 \neq y_2 \implies \dots
       (1.29.1) (OrderTrichotomy[\mathbb{R}, <]) \land (y_1 \neq y_2) \blacksquare (y_1 < y_2) \lor (y_2 < y_1) . . .
        (1.29.2) 	 \dots (x = y_1^n < y_2^n = x) \lor (x = y_2^n < y_1^n = x) \blacksquare (x < x) \lor (x > x) \blacksquare \bot \lor \bot \blacksquare \bot
    (1.30) \quad y_1 \neq y_2 \implies \bot \quad \blacksquare \quad y_1 = y_2 \quad \blacksquare \quad \forall_{a,b \in \mathbb{R}} ((a^n = x \land b^n = x) \implies a = b)
    (1.31) \quad (\exists_{y \in \mathbb{R}}(y^n = x)) \land (\forall_{a,b \in \mathbb{R}}((a^n = x \land b^n = x) \implies a = b)) \quad \blacksquare \quad \exists!_{y \in \mathbb{R}}(y^n = x)
(2) \quad (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \exists!_{y \in \mathbb{R}} (y^n = x) \quad \blacksquare \quad \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists!_{0 < y \in \mathbb{R}} (y_0^n = x)
             \exists x istence In RCorollary := \forall_{0 < a \in \mathbb{R}} \forall_{0 < b \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} ((ab)^{1/n} = a^{1/n}b^{1/n})

\mathbf{\tilde{R}} = \mathbb{R} \cup \{-\infty, +\infty\} \quad \wedge \quad -\infty < x < \infty \quad \wedge \\
x + \infty = +\infty \quad \wedge \quad x - \infty = -\infty \quad \wedge \quad \frac{x}{+\infty} = \frac{x}{-\infty} = 0 \quad \wedge \\
(x > 0) \implies (x * (+\infty) = +\infty \wedge x * (-\infty) = -\infty) \wedge \\
(x < 0) \implies (x * (+\infty) = -\infty \wedge x * (-\infty) = +\infty)

\mathbb{C} := \{ \langle a, b \rangle \in \mathbb{R} \times \mathbb{R} \}
     -[\langle a,b\rangle,\langle c,d\rangle] := \langle a+_{\mathbb{R}} c,b+_{\mathbb{R}} d\rangle
    \sum [\langle a, b \rangle, \langle c, d \rangle] := \langle a *_{\mathbb{R}} c - b *_{\mathbb{R}} d, a *_{\mathbb{R}} d + b *_{\mathbb{R}} c \rangle
    SubfieldC := Subfield[\mathbb{R}, \mathbb{C}, +, *]
i := \langle 0, 1 \rangle \in \mathbb{C}
     Property: = i^2 = -1
 Property := (a, b \in \mathbb{R}) \implies (\langle a, b \rangle = a + bi)
Conjugate[\overline{a+bi}] := a-bi
 Conjugate Properties := (w, z \in \mathbb{C}) \implies \dots
(1) \overline{z+w} = \overline{z} + \overline{w}
(3) Re(z) = (1/2)(z + \overline{z}) \wedge Im(z) = (1/2)(z - \overline{z})
(4) \quad 0 \le z * \overline{z} \in \mathbb{R}
 Absolute V alue C[|z|] = (z * \overline{z})^{1/2}
                                   roperties := (z, w \in \mathbb{C}) \implies \dots
(1) 123123
```

14 CHALLER I. KEAL ANALISIS

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

Chapter 2

Abstract Algebra

```
Relation(f, X) := f \subseteq X
Function(f, X, Y) := X \neq \emptyset \neq Y \land Relation(f, X \times Y) \land \forall_{x \in X} \exists !_{v \in Y} ((x, y) \in f)
(Function(f, X, Y) \land A \subseteq X \land B \subseteq Y) \implies \dots
(1) Domain(f) := X; Codomain(f) := Y
(2) Image(f, A) := \{f(a) : a \in A\}; Preimage(f, B) := \{a : f(a) \in B\}
(3) Range(f) := Image(Domain(f))
\begin{split} &Injective(f,X,Y) := Function(f,X,Y) \land \forall_{x_1,x_2 \in X} (x_1 \neq x_2 \implies f(x_1) \neq f(x_2)) \\ &Surjective(f,X,Y) := Function(f,X,Y) \land \forall_{y \in Y} \exists_{x \in X} (y_0 = f(x)) \end{split}
Bijective(f, X, Y) := Injective(f, X, Y) \land Surjective(f, X, Y)
                              nt := (Range(f) = Codomain(f)) \implies Surjective(f)
(Function(f, X, Y) \land Function(g, Y, Z)) \implies (f \circ g)(x) := f(g(x)); Function(f \circ g, X, Z)
    coperties of Functions := (Function(f, A, B) \land Function(g, B, C) \land Function(\overline{h}, C, D)) \implies \dots 
(1) h \circ (g \circ f) = (h \circ g) \circ f
\overline{(2) \ (Injective(f) \land Injective(g)) \implies Injective(g \circ f)}
(3) (Surjective(f) \land Surjective(g)) \implies Surjective(g \circ f)
(4) \quad (Bijective(f,A,B)) \implies \exists_{f^{-1}}(Function(f^{-1},B,A) \land \forall_{a \in A}(f^{-1}(f(a))=a) \land \forall_{b \in B}(f(f^{-1}(b))=b))
(a,b) := a, b \in \mathbb{Z} \land a \neq 0 \land \exists_{c \in \mathbb{Z}} (b = ac)
   ivisibility Theorems: =(a,b,c,m,x,y\in\mathbb{Z})\implies \dots
(1) (a|b) \Longrightarrow a|bc
(2) (a|b \wedge b|c) \implies a|c|
(3) (a|b \wedge b|c) \implies a|(bx + cy)
(4) \quad (a|b \wedge b|a) \implies a = \pm b
(5) (a|b \land a > 0 \land b > 0) \implies (a \le b)
(6) (a|b) \iff (m \neq 0 \land ma|mb)
   ivision Algorithm: =(a,b\in\mathbb{Z}\wedge a>0)\implies\exists!_{q,r\in\mathbb{Z}}(b=aq+r)
 CD(a,b,c) := a,b,c \in \mathbb{Z} \land a : b \land a : c
     \mathbf{D}(a,b,c) := CD(a,b,c) \land \forall_d ((d:b \land d:c) \implies \underline{d:a})
                      t := 123123
```

Chapter 3

Linear Algebra

3.1 **Matrix Operations and Special Matrices**

```
Matrix[A, m, n] := [a_{i,j}]_{m \times n} := m \text{ rows, } n \text{ columns of real numbers}
\mathcal{M}_{m,n} := \{A : Matrix[A, m, n]\}
O_{m,n} := (Matrix[O, m, n]) \land (a_{i,j} = 0)
Square[A, n] := Matrix[A, n, n]
UpperTriangular[A] := (Square[A]) \land (i > j \implies a_{i,j} = 0)
LowerTriangular[A] := (Square[A]) \land (i < j \implies a_{i,j} = 0)
Diagonal[A, n] := (Square[A, n]) \land (i \neq j \implies a_{i,j} = 0)
Scalar[A, n, k] := (Diagonal[A, n]) \land (a_{i,i} = k)
I_n := Scalar[I, n, 1]
+(A, B) := ((Matrix[A, m, n]) \land (Matrix[B, m, n])) \implies (A + B = [a_{i,i} + b_{i,i}]_{m \times n})
*(r, A) := ((r \in \mathbb{R}) \land (Matrix[A, m, n])) \implies (r * A = [ra_{i,j}]_{m \times n})
*(A,B) := ((Matrix[A,m,p]) \land (Matrix[B,p,n])) \implies (A*B = \left[\sum_{k=1}^{p} (a_{i,k}b_{k,j})\right]_{m \times n}
^{T}[A] := (Matrix[A, m, n]) \implies (A^{T} = [a_{i,i}]_{n \times m})
```

$$AddCom := \forall_{A,B \in \mathcal{M}} (A + B = B + A)$$

$$\overline{(1) \ A + B = [a_{i,j} + b_{i,j}] = [b_{i,j} + a_{i,j}] = B + A}$$

$$AddAssoc := \forall_{A,B,C \in \mathcal{M}} ((A+B) + C = A + (B+C))$$

$$\overline{(1) \ (A+B) + C = [(a_{i,j} + b_{i,j}) + c_{i,j}] = [a_{i,j} + (b_{i,j} + c_{i,j})] = A + (B+C)}$$

$$AddId := \forall_{A \in \mathcal{M}} \exists !_{O \in \mathcal{M}} (A + O = A = O + A)$$

$$\overline{(1) \ A + O = [a_{i,j} + 0] = A = [0 + a_{i,j}] = O + A}$$

$$(2) \quad A + O_1 = A = A + O_2 \quad \blacksquare \quad O_1 = O_2$$

$$AddInv := \forall_{A \in \mathcal{M}} \exists !_{(-A) \in \mathcal{M}} (A + (-A) = O = (-A) + A)$$

$$\overline{(1) \ A + (-A) = [a_{i,i} - a_{i,j}]} = O = [-a_{i,j} + a_{i,j}] = (-A) + A$$

(2)
$$A + (-A_1) = O = A + (-A_2) \blacksquare -A_1 = -A_2 \blacksquare A_1 = A_2$$

$$MulAssoc := \forall_{A,B,C \in \mathcal{M}} ((A * B) * C = A * (B * C))$$

$$\overline{(1) \ (A*B)*C = \left[\sum_{k_1=1}^{p_1} (a_{i,k_1}b_{k_1,j})\right]*C = \left[\sum_{k_2=1}^{p_2} (\sum_{k_1=1}^{p_1} (a_{i,k_1}b_{k_1,k_2})c_{k_2,j})\right] = \left[\sum_{k_2=1}^{p_2} \sum_{k_1=1}^{p_1} (a_{i,k_1}b_{k_1,k_2}c_{k_2,j})\right] = \dots }$$

$$(2) \quad \dots \left[\sum_{k_1=1}^{p_1} \sum_{k_2=1}^{p_2} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j}) \right] = \left[\sum_{k_1=1}^{p_1} (a_{i,k_1} \sum_{k_2=1}^{p_2} (b_{k_1,k_2} c_{k_2,j})) \right] = \dots = A * (B * C)$$

$$MulId := \forall_{A:Square[A,n]} (A * I_n = A = I_n * A)$$

(1)
$$A * I_n = \left[\sum_{k=1}^n \left(a_{i,k} \left(\begin{cases} 1 & k=j \\ 0 & k \neq j \end{cases} \right) \right) \right] = [a_{i,j}] = A$$

 $(2) \quad TODO = A$

 $ScalAssoc := \forall_{r,s \in \mathbb{R}} \forall_{A \in \mathcal{M}} (r(sA) = (rs)A = s(rA))$

- (1) $r(sA) = r[sa_{i,j}] = [rsa_{i,j}]$
- $(2) \quad (rs)A = [rsa_{i,j}]$
- (3) $s(rA) = s[ra_{i,j}] = [sra_{i,j}] = [rsa_{i,j}]$

 $TransCancel := \forall_{A \in \mathcal{M}} (A = (A^T)^T)$

(1)
$$A = [a_{i,j}] = [a_{j,i}]^T = ([a_{i,j}]^T)^T = (A^T)^T$$

 $ScalMulCom := \forall_{r \in \mathbb{R}} \forall_{A,B \in \mathcal{M}} ((rA) * B = r(A * B) = A * (rB))$

(1)
$$(rA) * B = [ra_{i,l}] * [b_{l,j}] = \left[\sum_{k=1}^{p} (ra_{i,k}b_{k,j}) \right] = r(A * B)$$

$$\overline{(2) \quad A*(rB) = [a_{i,l}]*[rb_{l,j}] = \left[\sum_{k=1}^{p} (a_{i,k}rb_{k,j})\right] = \left[\sum_{k=1}^{p} (ra_{i,k}b_{k,j})\right] = r(A*B)}$$

 $ScalDistLeft := \forall_{r,s \in \mathbb{R}} \forall_{A \in \mathcal{M}} ((r+s)A = rA + sA)$

 $\overline{(1)}$ TODO

 $ScalDistRight := \forall_{r \in \mathbb{R}} \forall_{A,B \in \mathcal{M}} (r(A+B) = rA + rB)$

 $\overline{(1)}$ TODO

 $MulDistRight := \forall_{A,B,C \in \mathcal{M}} ((A + B) * C = A * C + B * C)$

$$(1) (A+B) * C = [a_{i,j} + b_{i,j}] * C = \left[\sum_{k=1}^{p} ((a_{i,k} + b_{i,k})c_{k,j}) \right] = \dots$$

$$(2) \quad \dots \left[\sum_{k=1}^{p} (a_{i,k} c_{k,j} + b_{i,k} c_{k,j}) \right] = \left[\sum_{k=1}^{p} (a_{i,k} c_{k,j}) \right] + \left[\sum_{k=1}^{p} (b_{i,k} c_{k,j}) \right] = A * C + B * C$$

 $MulDistLeft := \forall_{A,B,C \in \mathcal{M}} (C * (A + B) = C * A + C * B)$

(1) TODO

 $TransAddDist := \forall_{A,B \in \mathcal{M}} ((A+B)^T = A^T + B^T)$

(1) TODO

 $TransMulDist := \forall_{A.B \in \mathcal{M}} ((A * B)^T = B^T * A^T)$

$$\overline{(1) \quad (A*B)^T = \left[\sum_{k=1}^p (a_{i,k}b_{k,j})\right]^T = \left[\sum_{k=1}^p (a_{j,k}b_{k,i})\right] = \left[\sum_{k=1}^p (b_{k,i}a_{j,k})\right] = \left[\sum_{k=1}^p (b_{i,k}^T a_{k,j}^T)\right] = B^T*A^T}$$

 $Sym[A] := A = A^T$

 $SkewSym[A] := A = -A^T$

 $Invertible[A] := (Square[A, n]) \wedge (\exists_{A^{-1} \in \mathcal{M}} (A * A^{-1} = I_n = A^{-1} * A))$

 $SymGen := \forall_{A \in \mathcal{M}} (Sym[A + A^T])$

$$\overline{(1) (A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T}$$

 $SkewSymGen := \forall_{A \in \mathcal{M}} (SkewSym[A - A^T])$

$$\overline{(1) - (A - A^T)^T = -(A^T - (A^T)^T) = -(A^T - A) = (A - A^T)}$$

 $SymDecomp := \forall_{A \in \mathcal{M}} \exists !_{B:Sym[B]} \exists !_{C:SkewSym[C]} (A = B + C)$

- (1) $B := (1/2) * (A + A^T) ; C := (1/2) * (A A^T)$
- $\overline{(2) \quad SymGen[B] \land SkewSymGen[C]}$
- (3) $A = (1/2) * (A + A^T) + (1/2) * (A A^T) = B + C$
- (4) $(1/2) * (A_1 + A_1^T) = (1/2) * (A_2 + A_2^T) \blacksquare A_1 = A_2$
- (5) $(1/2) * (A_3 A_3^T) = (1/2) * (A_4 A_4^T) \blacksquare A_3 = A_4$

$$\overline{(1) \quad A^{-1}_{1} = A^{-1}_{1} * I_{n} = A^{-1}_{1} * (A * A^{-1}_{2}) = (A^{-1}_{1} * A) * A^{-1}_{2} = I_{n} * A^{-1}_{2} = A^{-1}_{2}}$$

 \overline{InvC} ance $l := \forall_{A:Invertible[A]} ((A^{-1})^{-1} = A)$

- $\frac{(1) \quad (A*A^{-1})^{-1} = I_n^{-1} = I_n}{(2) \quad (A^{-1})^{-1} * A^{-1} = I_n \quad \blacksquare \quad A^{-1})^{-1} = I_n * A = A}$

 $InvDist := \forall_{A:Invertible[A]} \forall_{B:Invertible[B]} ((A * B)^{-1} = B^{-1} * A^{-1})$

$$\overline{(1) \ (A*B)*(A*B)^{-1} = I \ \blacksquare \ B*(A*B)^{-1} = A^{-1} \ \blacksquare \ (A*B)^{-1} = B^{-1}*A^{-1}}$$

 $InvTrans := \forall_{A:Invertible[A]} ((A^T)^{-1} = (A^{-1})^T) \blacksquare \Leftarrow$

(1)
$$A^T * (A^{-1})^T = (A^{-1} * A)^T = I^T = I \blacksquare (A^{-1})^T = (A^T)^{-1}$$

3.2 **Elementary Matrices on Invertibility and Systems of Linear Equations**

 $Sys[A, B] := (Matrix[A, m, n]) \wedge (Matrix[B, m, 1])$

 $Sol[X, A, B] := (Sys[A, B]) \land (Matrix[X, n, 1]) \land (A * X = B)$

Consistent $Sys[A, B] := (Sys[A, B]) \land \exists_X (Sol[X, A, B])$

 $TrivSol[X, A] := (Sol[X, A, O]) \land (X = O)$

 $NonTrivSol[X, A] := (Sol[X, A, O]) \land (X \neq O)$

 $HomoSysProps := (Sys[A, O]) \implies \dots$

- (1) $u_0 := O ; u_1 := choice(\{X \in \mathcal{M} | X \neq O\}) ; k := choice(\mathbb{R})$
- (2) $TrivSol[u_0, A]$
- (3) $(NonTrivSol[u_1, A]) \implies (Sol[u_1 + ku_0])$
- $(4) (TrivSol[\overrightarrow{X}, A]) \Longrightarrow (TrivSol[LC(\overrightarrow{X}), A])$

 $ElemMat[E] := (E = Swap[I_n, i, j]) \lor (Scale_*(I_n, i, c)) \lor (Combine_*(I_n, i, c, j))$

 $\overline{ElemMatProd[E^*]} := \exists_{\langle E \rangle} (\forall_{E_i \in E^*} (\overline{ElemMat}[E_i]) \land (E^* = \Pi_{E_i \in E^*}(E_i)))$

 $RowEquiv[A, B] := \exists_{E^*}((ElemMatProd[E^*]) \land (B = E^* * A))$

 $ElemMatInv := \forall_{E \in \mathcal{M}}((ElemMat[E]) \implies (Invertible[E]))$

(1)
$$E - RowSwap[E] \implies TODO; E - RowScale_*(E) \implies TODO; E - RowCombine_*(E) \implies TODO$$

 $ElemMatProdInv := \forall_{E^*}((ElemMatProd[E^*]) \implies (Invertible[E^*]))$

(1) TODO

 $\overline{RowEquivSys} := \forall_{A,B,C,D,X \in \mathcal{M}} (((Sys[A,B]) \land (Sys[C,D]) \land (RowEquiv[[AB], [CD]])) \implies (Sol[X,A,B] \iff Sol[X,C,D]))$

- (1) $\exists_{E^*:ElemMatProd[E^*]}([CD] = E^* * [AB])$
- $(2) (E^* * A = C) \wedge (E^* * B = D)$
- $\overline{(3) \ Sol[Y,A,B] \implies \dots}$

CHAPTER 3. LINEAR ALGEDN

```
(3.1) \quad A * Y = B
```

(3.2)
$$C * Y = (E^* * A) * Y = E^* * (A * Y) = E^* * B = D$$
 Sol $[Y, C, D]$

 $(4) \quad Sol[Y, A, B] \implies Sol[Y, C, D]$

(5)
$$(A = (E^*)^{-1} * C) \wedge (B = (E^*)^{-1} * D)$$

 $(6) \quad Sol[Z,C,D] \implies \dots$

(6.1)
$$C * Z = D$$

(6.2)
$$A * Z = ((E^*)^{-1} * C) * Z = (E^*)^{-1} * (C * Z) = (E^*)^{-1} * D = B$$

- (7) $Sol[Z, C, D] \Longrightarrow Sol[Z, A, B]$
- $(8) \quad Sol[X, A, B] \iff Sol[X, C, D]$

 $RowEquivHomoSysSol := \forall_{A,C,X \in \mathcal{M}}((RowEquiv[A,C]) \implies ((Sol[X,A,O]) \iff (Sol[X,C,O])))$

(1) Set B = D = O

$$RREF[A] := (A \in \mathcal{M}) \land \begin{cases} &\text{All zero rows are at the bottom of the matrix.} & \land \\ &\text{The leading entry after the first occurs to the right of the leading entry of the previous row.} \land \\ &\text{The leading entry in any nonzero row is 1.} & \land \\ &\text{All entries in the column above and below a leading 1 are zero.} & \land \end{cases}$$

 $Gauss Jordan Elim := \forall_{A \in \mathcal{M}} \exists !_{B \in \mathcal{M}} ((RREF[B]) \land (Row Equiv[A, B]))$

- (1) Hit A with ElemMat's until it becomes B
- $(2) \quad (B = E^* * A) \land (RREF[B])$

 $HasZero[A] := (Matrix(A, m, n)) \land (\exists_{i \le m} (A_{i,:} = O))$

 $HasZeroNonInvertible := \forall_{A \in \mathcal{M}}((HasZero[A]) \implies (\neg Invertible[A]))$

- $(1) \quad i := choice(\{i \le m | A_{i,:} = O\})$
- $(2) \quad (B \in \mathcal{M}) \implies \dots$
 - $(2.1) (A * B)_{i.:} = O \neq I_{ni}. \quad \blacksquare A * B \neq I_{n}$
- $(3) \quad (B \in \mathcal{M}) \implies (A * B \neq I_n) \quad \blacksquare \quad \forall_{B \in \mathcal{M}} (A * B \neq I_n) \quad \blacksquare \quad \neg Invertible[A]$

 $InvIffRowEquivI := \forall_{A \in \mathcal{M}}((Invertible[A]) \iff (RowEquiv[A,I_n]))$

- (1) $(Invertible[A]) \implies ...$
- (1.1) $(RREF[B]) \wedge (RowEquiv[A, B])$
- $(1.2) \quad B = E^* * A$
- (1.3) $(Invertible[E^*]) \land (Invertible[A]) \quad Invertible[B]$
- (1.4) $Invertible[B] \quad \neg HasZero[B]$
- (1.5) $(RREF[B]) \land (\neg HasZero[B]) \blacksquare B = I_n$
- (1.6) $RowEquiv[A, I_n]$
- (2) $(Invertible[A]) \implies (RowEquiv[A, I_n])$
- (3) $(RowEquiv[A, I_n]) \implies ...$

 - (3.2) $A^{-1} = E_{DescSort}^* \blacksquare Invertible[A]$
- (4) $(RowEquiv[A, I_n]) \implies (Invertible[A])$
- $(5) (Invertible[A]) \iff (RowEquiv[A, I_n])$

 $RowEquivIIffTrivSol := \forall_{A \in \mathcal{M}}((RowEquiv[A, I_n]) \iff (\forall_X((X = O) \iff (Sol[X, A, O]))))$

- $(1) \quad (RowEquiv[A, I_n]) \implies \dots$
 - (1.1) $RowEquiv[A, I_n] \blacksquare Invertible[A]$
 - $(1.2) \quad (Sol[X, A, O]) \implies \dots$

$$(1.2.1) \quad A * X = O \quad \blacksquare \quad X = A^{-1} * O = O \quad \blacksquare \quad X = O$$

- $(1.3) \quad (Sol[X, A, O]) \implies (X = O)$
- $(1.4) \quad (X = O) \implies (Sol[X, A, O])$

S.S. VECTOR SPACES

```
(1.5) \quad (X=O) \iff (Sol[X,A,O]) \quad \blacksquare \ \forall_X ((X=O) \iff (Sol[X,A,O]))
```

- $(2) \quad (RowEquiv[A,I_n]) \implies (\forall_X ((X=O) \iff (Sol[X,A,O])))$
- (3) $(\forall_X ((X = O) \iff (Sol[X, A, O]))) \implies \dots$
- (3.1) $(RREF[B]) \land (RowEquiv[A, B])$
- (3.2) Sol[X, B, O]
- $(3.3) \quad (B \neq I_n) \implies \dots$
 - $(3.3.1) \quad (\exists_{Y \neq X}(Sol[Y, B, O]))$
 - (3.3.2) $Sol[Y, A, O] <math>\blacksquare Y = X$
 - $(3.3.3) (Y \neq X) \land (Y = X)$ \bot
- $(3.4) \quad (B \neq I_n) \implies \bot \blacksquare B = I_n$
- $(3.5) \quad (RowEquiv[A, B]) \land (B = I_n) \quad \blacksquare \quad RowEquiv[A, I_n]$
- $(4) \quad (\forall_X ((X=O) \iff (Sol[X,A,O]))) \implies (RowEquiv[A,I_n])$
- $(5) \quad (RowEquiv[A, I_n]) \iff (\forall_X ((X = O) \iff (Sol[X, A, O])))$

 $InvIffUniqSol := \forall_{A \in \mathcal{M}}((Invertible[A]) \iff (\forall_{B \in \mathcal{M}}\exists !_{X \in \mathcal{M}}(Sol[X,A,B])))$

- (1) $(Invertible[A] \land B \in \mathcal{M}) \implies \dots$
- $(1.1) \quad (Invertible[A]) \land (Sys[A, B])$
- $(1.2) \quad (X = A^{-1} * B) \iff (Sol[X, A, B]) \quad \blacksquare \quad \exists !_{X \in \mathcal{M}}(Sol[X, A, B])$
- $(2) \quad (\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B])) \implies \dots$
 - (2.1) $X_i := choice(\{X_i | Sol[X_i, A, I_{n:i}]\})$
- $(2.2) \quad A * [X_1 \dots X_n] = [(A * X_1) \dots (A * X_n)] = [I_{n:1} \dots I_{n:n}] = I_n$
- $(2.3) \quad A^{-1} = [X_1 \dots X_n]$
- $(3) \ (\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B])) \implies (Invertible[A])$

$$SquareTheorems_{4} := \forall_{A \in \mathcal{M}} \begin{cases} (Invertible[A]) & \Longleftrightarrow \\ (RowEquiv[A, I_{n}]) & \Longleftrightarrow \\ (\forall_{X}((X = O) \iff (Sol[X, A, O]))) & \Longleftrightarrow \\ (\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B])) \end{cases}$$

3.3 Vector Spaces

$$VectorSpace[V,+,*] := \exists_{O \in V} \forall_{\alpha,\beta \in \mathbb{R}} \forall_{u,v,w \in V} \begin{cases} (u+v \in V) \ \land \ (u+v=v+u) \ \land \ ((u+v)+w=u+(v+w)) \ \land \ (u+O=u) \ \land \ (\exists_{-u \in V} (u+(-u)=O)) \ \land \ (\alpha*u \in V) \ \land \ (\alpha*(\beta*u)=(\alpha\beta)*u) \ \land \ (1*u=u) \ \land \ (\alpha*(u+v)=(\alpha*u)+(\alpha*v)) \land ((\alpha+\beta)*u=(\alpha*u)+(\beta*u)) \end{cases}$$

 $ZeroVectorUniq := \forall_{O',v \in V} ((v + O' = v) \implies (O' = O))$

(1)
$$O' = O' + O = O + O' = O \blacksquare O' = O$$

 $AddInvUnique := \forall_{-v',v \in V} ((v + -v' = O) \implies (-v' = -v))$

 $AddInvGen := \forall_{v \in V} ((-1) * v = -v)$

(1)
$$v + (-1) * v = (1 - 1) * v = 0 * v = 0$$
 (-1) $* v = -v$

 $ZeroVectorGenLeft := \forall_{v \in V}(0 * v = O)$

(1)
$$0 * v = (0+0) * v = (0*v) + (0*v) \blacksquare O = 0*v$$

 $ZeroVectorGenRight := \forall_{r \in \mathbb{R}} (r * O = O)$

$$(1) \quad r * O = r * (O + O) = (r * O) + (r * O) \quad \blacksquare O = r * O$$

CHAPTER 3. LINEAR ALGEBI

 $ZeroVectorEquiv := \forall_{r \in \mathbb{R}} \forall_{v \in V} ((r*v = O) \iff ((v = O) \lor (r = 0)))$

- (1) $(ZeroVectorGenLeft) \land (ZeroVectorGenRight) \ \blacksquare \ ((v=O) \lor (r=0)) \implies (r*v=O))$
- (2) $(r * v = 0) \implies \dots$
- $(2.1) \quad (r \neq 0) \implies \dots$
 - (2.1.1) $r \neq 0 \blacksquare r^{-1} \in \mathbb{R}$
 - (2.1.2) $ZeroVectorGenRight \ \blacksquare \ O = r^{-1} * O = r^{-1} * (r * v) = (r^{-1}r) * v = 1 * v = v \ \blacksquare \ O = v$
- $(2.2) \quad (r \neq 0) \implies (v = O) \quad \blacksquare \quad (r = 0) \lor (r \neq 0) \quad \blacksquare \quad (r = 0) \lor (v = O)$
- $(3) \quad (r * v = O) \implies ((r = 0) \lor (v = O))$
- $(4) \quad (r * v = O) \iff ((r = 0) \lor (v = O))$

3.4 Subspaces and Special Subspaces

 $Subspace[S, V, +, *] := (VectorSpace[V, +, *]) \land (\emptyset \neq S \subseteq V) \land (VectorSpace[S, +, *])$

$$SubspaceEquiv := \forall_{V,S} \left(\begin{array}{c} (VectorSpace[V,+,*]) \\ ((Subspace[S,V,+,*]) \\ \hline \\ \end{array} \right) \iff ((\emptyset \neq S \subseteq V) \land (\forall_{r,s \in S}(r+s \in S)) \land (\forall_{\alpha \in \mathbb{R}} \forall_{s \in S}(\alpha * s \in S)))) \right)$$

- (1) $(Subspace[S, V, +, *]) \implies ...$
 - (1.1) $Subspace[S, V, +, *] \quad \emptyset \neq S \subseteq V$
 - $(1.2) \quad VectorSpace[S, +, *] \quad \blacksquare \quad (\forall_{r,s \in S}(r + s \in S)) \land (\forall_{\alpha \in \mathbb{R}} \forall_{s \in S}(\alpha * s \in S))$
 - $(1.3) \quad (\emptyset \neq S \subseteq V) \land (\forall_{r,s \in S}(r+s \in S)) \land (\forall_{\alpha \in \mathbb{R}} \forall_{s \in S}(\alpha * s \in S))$
- $(2) \quad (Subspace[S,V,+,*]) \implies ((\emptyset \neq S \subseteq V) \land (\forall_{r,s \in S}(r+s \in S)) \land (\forall_{\alpha \in \mathbb{R}} \forall_{s \in S}(\alpha * s \in S)))$
- $(3) \quad ((\emptyset \neq S \subseteq V) \land (\forall_{r,s \in S} (r+s \in S)) \land (\forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S))) \implies \dots$
- $(3.1) \quad ((\alpha, \beta \in \mathbb{R}) \land (\emptyset \neq S) \land (u, v, w \in S)) \implies \dots$
 - $(3.1.1) \quad u, v \in V \quad \square \ u + v = v + u$
 - $(3.1.2) \quad u, v, w \in V \quad \blacksquare (u+v) + w = u + (v+w)$
 - (3.1.3) $(ZeroVectorGenLeft) \land (u \in S) \quad \blacksquare \quad 0 * u = O \in S$
 - $(3.1.4) \quad u \in V \quad \blacksquare \ u + O = u$
 - $(3.1.5) \quad (AddInvGen) \land (u \in S) \quad \blacksquare \quad (-1) * u = -u \in S$
 - (3.1.6) $u \in V \quad \square \quad \alpha * (\beta * u) = (\alpha \beta) * u$
 - $(3.1.7) \quad u \in V \quad \blacksquare \ 1 * u = u$
 - (3.1.8) $u, v \in V \quad \alpha * (u + v) = (\alpha * u) + (\alpha * v)$
 - $(3.1.9) \quad u \in V \quad \blacksquare (\alpha + \beta) * u = (\alpha * u) + (\beta * u)$
- $(4) \quad ((\forall_{r,s \in S}(r+s \in S)) \land (\forall_{\alpha \in \mathbb{R}} \forall_{s \in S}(\alpha * s \in S))) \implies (Subspace[S,V,+,*])$
- $(5) \quad (Subspace[S,V,+,*]) \iff ((\forall_{r,s\in S}(r+s\in S)) \land (\forall_{\alpha\in \mathbb{R}}\forall_{s\in S}(\alpha*s\in S)))$

$$SumSubContains := \forall_{A,B,V} \left(\begin{array}{l} ((Subspace[A,V,+,*]) \land (Subspace[B,V,+,*]) \land (SetSum[A+B,A,B,V,+,*])) \implies \\ ((Subspace[A+B,V,+,*]) \land (A,B \subseteq A+B)) \end{array} \right)$$

- (1) $(Subspace[A, V, +, *]) \land (Subspace[B, V, +, *]) \blacksquare (O \in A) \land (O \in B)$
- $(2) \quad (SetSum[A+B,A,B,V,+,*]) \land (O \in A) \land (O \in B) \quad \blacksquare O \in A+B \quad \blacksquare \emptyset \neq A+B$
- (3) $(Subspace[A, V, +, *]) \land (Subspace[B, V, +, *]) \blacksquare A + B \subseteq V \blacksquare \emptyset \neq A + B \subseteq V$
- $\overline{(4)} \ (u,v \in A+B) \implies \dots$
- $(4.1) \quad (\exists_{a_1 \in A} \exists_{b_1 \in B} (u = a_1 + b_1)) \land (\exists_{a_2 \in A} \exists_{b_2 \in B} (v = a_2 + b_2))$
- $(4.2) \quad u + v = (a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2)$
- $(4.3) \quad (a_1 + a_2 \in A) \land (b_1 + b_2 \in B) \quad \blacksquare u + v \in A + B$
- $(5) \quad (u,v \in A+B) \implies (u+v \in A+B) \quad \blacksquare \quad \forall_{u,v \in A+B} (u+v \in A+B)$
- (6) $((r \in \mathbb{R}) \land (v \in A + B)) \implies \dots$
- $(6.1) \quad \exists_{a \in A} \exists_{b \in B} (v = a + b)$
- (6.2) r * v = r * (a + b) = r * a + r * b
- $(7) \quad ((r \in \mathbb{R}) \land (v \in A + B)) \implies (r * v \in A + B) \quad \blacksquare \quad \forall_{r \in \mathbb{R}} \forall_{v \in A + B} (r * v \in A + B)$

```
(8) \quad (\emptyset \neq A+B \subseteq V) \land (\forall_{u,v \in A+B}(u+v \in A+B)) \land (\forall_{r \in \mathbb{R}} \forall_{v \in A+B}(r*v \in A+B)) \quad \blacksquare \quad Subspace[A+B,V,+,*]
```

- $(9) \quad (\forall_{a \in A}(a+O) = a) \land (O \in B) \quad \blacksquare A \subseteq A+B$
- $(10) \quad (\forall_{b \in B}(b+O) = b) \land (O \in A) \quad \blacksquare \quad B \subseteq A+B$
- $(11) \quad (A, B \subseteq A + B) \land (Subspace[A + B, V, +, *])$

$$SumSubMinContains := \forall_{A,B,V} \left(\begin{array}{l} ((Subspace[A,V,+,*]) \land (Subspace[B,V,+,*]) \land (SetSum[A+B,A,B,V,+,*])) \implies \\ (\forall_{C}((Subspace[C,V,+,*]) \land (A,B \subseteq C)) \implies (A+B \subseteq C)) \end{array} \right)$$

- (1) $SumSub \ \blacksquare (A, B \subseteq A + B) \land (Subspace[A + B, V, +, *])$
- $(2) \quad ((Subspace[C,V,+,*]) \land (A,B \subseteq C)) \implies \dots$
- $(2.1) \quad (s \in A + B) \implies \dots$
 - (2.1.1) $\exists_{a \in A} \exists_{b \in B} (s = a + b)$
 - $(2.1.2) \quad (A, B \subseteq C) \quad \blacksquare \ a, b \in C$
 - (2.1.3) Subspace[C, V, +, *] $s = a + b \in C$
- $(2.2) \quad (s \in A + B) \implies (s \in C) \quad \blacksquare A + B \subseteq C$
- $\overline{(3) \ ((Subspace[C, V, +, *]) \land (A, B \subseteq C))} \implies (A + B \subseteq C)$

```
\begin{aligned} NullSpace[N, A, m, n] &:= (Matrix[A, m, n]) \land (N = \{x \in \mathbb{R}^n | A * x = O\}) \\ RowSpace[R, A, m, n] &:= (Matrix[A, m, n]) \land (R = \{x^T * A \in \mathbb{R}^n | x \in \mathbb{R}^m\}) \\ ColSpace[C, A, m, n] &:= (Matrix[A, m, n]) \land (C = \{A * x \in \mathbb{R}^m | x \in \mathbb{R}^n\}) \end{aligned}
```

 $NullSubspace := (NullSpace[N, A, m, n]) \implies (Subspace[N, \mathbb{R}^n, +, *])$

(1) TODO

 $RowSubspace := (RowSpace[R, A, m, n]) \implies (Subspace[R, \mathbb{R}^n, +, *])$

(1) TODO

 $ColSubspace := (ColSpace[C, A, m, n]) \implies (Subspace[C, \mathbb{R}^m, +, *])$

(1) TODO

3.5 Linear Combination, Linear Span, Linear Independence

$$\begin{aligned} &LinComb[c,U,K,V,+,*] := (VectorSpace[V,+,*]) \wedge (n \in \mathbb{N}) \wedge (U \in V^n) \wedge (K \in \mathbb{R}^n) \wedge (c = \sum_{i=1}^n (k_i * u_i)) \\ &LinSpan[S',S,V,+,*] := \left(\begin{array}{c} (VectorSpace[V,+,*]) \wedge (S \in V^n) \wedge ((S = \emptyset) \implies (S' = \{O\})) \wedge \\ ((S \neq \emptyset) \implies (S' = \{c \in V | \exists_{K \in \mathbb{R}^n} (LinComb[c,S,K,V,+,*])\})) \end{array} \right) \end{aligned}$$

 $\overline{LinSpanSubContains} := \forall_{S',S,V,+,*}((\overline{LinSpan}[S',S,V,+,*]) \implies ((Subspace[S',V,+,*]) \land (S \subseteq S')))$

- $(1) (S = \emptyset) \Longrightarrow (S' = \{O\}) \Longrightarrow (\emptyset \neq S')$
- $(2) (S \neq \emptyset) \implies (LinComb[O, S, \{0\}^n, V, +, *]) \implies (O \in S') \implies (\emptyset \neq S')$
- $(3) \quad ((S = \emptyset) \lor (S \neq \emptyset)) \implies (\emptyset \neq S') \quad \blacksquare \quad \emptyset \neq S'$
- (4) $LinSpan[S', S, V, +, *] \blacksquare S' \subseteq V \blacksquare \emptyset \neq S' \subseteq V$
- $(5) (a, b \in S') \implies \dots$
 - $(5.1) \quad (\exists_{K \in \mathbb{R}^n}(LinComb[a, S, K, V, +, *])) \land (\exists_{L \in \mathbb{R}^n}(LinComb[b, S, L, V, +, *]))$
- $(5.2) \quad a+b = \sum_{i=1}^{n} (k_i * s_i) + \sum_{i=1}^{n} (l_i * s_i) = \sum_{i=1}^{n} ((k_i + l_i) * s_i) \quad \blacksquare \quad a+b = \sum_{i=1}^{n} ((k_i + l_i) * s_i)$
- $(5.3) \quad \langle k_i + l_i | i \in \mathbb{N}_{1,n} \rangle \in \mathbb{N}^n$
- $(5.4) \quad (a+b=\sum_{i=1}^{n}((k_{i}+l_{i})*s_{i})) \wedge (\langle k_{i}+l_{i}|i\in\mathbb{N}_{1,n}\rangle\in\mathbb{N}^{n}) \ \blacksquare \ \exists_{M\in\mathbb{N}^{n}}(a+b=\sum_{i=1}^{n}(m_{i}*s_{i}))$
- $(5.5) \quad \exists_{M \in \mathbb{N}^n} (LinComb[a+b, S, M, V, +, *]) \quad \blacksquare \quad a+b \in S'$
- $(6) \quad (a, b \in S') \implies (a + b \in S') \quad \blacksquare \quad \forall_{a, b \in S'} (a + b \in S')$
- $(7) \quad ((r \in \mathbb{R}) \land (u \in S')) \implies \dots$
 - $(7.1) \quad \exists_{K \in \mathbb{R}^n} (LinComb[u, S, K, V, +, *]) \quad \blacksquare \quad \exists_{K \in \mathbb{R}^n} (u = \sum_{i=1}^n (k_i * s_i))$
 - $(7.2) \quad r * u = r * \sum_{i=1}^{n} (k_i * s_i) = \sum_{i=1}^{n} (r * (k_i * s_i)) = \sum_{i=1}^{n} (rk_i) * s_i) \quad \blacksquare \quad r * u = \sum_{i=1}^{n} (rk_i) * s_i)$
 - $(7.3) \quad \langle rk_i \in \mathbb{R} | i \in \mathbb{N}_{1,n} \rangle \in \mathbb{R}^n$

- $(7.4) \quad (\sum_{i=1}^{n} (rk_i) * s_i)) \wedge (\langle rk_i \in \mathbb{R} | i \in \mathbb{N}_{1,n} \rangle \in \mathbb{R}^n)$
- $(7.5) \ \exists_{M \in \mathbb{R}^n} (r * u = \sum_{i=1}^n (m_i * s_i)) \ \blacksquare \ \exists_{M \in \mathbb{R}^n} (LinComb[r * u, S, M, V, +, *]) \ \blacksquare \ r * u \in S'$
- $\overline{(8) \ ((r \in \mathbb{R}) \land (u \in S'))} \implies (r * u \in S') \ \blacksquare \ \forall_{r \in \mathbb{R}} \forall_{u \in S'} (r * u \in S')$
- $(9) \quad (SubspaceEquiv) \land (\emptyset \neq S' \subseteq V) \land (\forall_{a.b \in S'}(a+b \in S')) \land (\forall_{r \in \mathbb{R}} \forall_{u \in S'}(r*u \in S')) \quad \blacksquare \quad Subspace[S', V, +, *]$
- $(10) (s_i \in S) \Longrightarrow \dots$

$$(10.1) \quad K := \left\langle \left\{ \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \middle| \mathbb{N}_{1,n} \right\rangle \in \mathbb{R}^n \quad \blacksquare \quad \sum_{i=1}^n (k_i * s_i) = s_j$$

- $(10.2) \quad \dots \quad \blacksquare \quad \exists_{K \in \mathbb{R}^n} (LinComb[s_j, S, \underline{K}, V, +, *]) \quad \blacksquare \quad \underline{s_i} \in S'$
- $(11) \quad (s_i \in S) \implies (s_i \in S') \quad \blacksquare \quad \forall_{x \in S} (x \in S') \quad \blacksquare \quad S \subseteq S'$
- $(12) \quad (Subspace[S', V, +, *]) \land (S \subseteq S')$

 $LinSpanSubMinContains := \forall_{S',S,V,+,*}((LinSpan[S',S,V,+,*]) \implies (\forall_{W}(((Subspace[W,V,+,*]) \land (S \subseteq W)) \implies (S' \subseteq W)))$

- (1) $(s' \in S') \implies \dots$
 - $(1.1) \quad \exists_{K \in \mathbb{R}^n} (LinComb[s', S, K, V, +, *]) \quad \blacksquare \quad s' = \sum_{i=1}^n (k_i * s_i)$
 - (1.2) $(S \subseteq W) \land (Subspace[W, V, +, *]) \mid S' = \sum_{i=1}^{n} (k_i * s_i) \in W$
- $(2) \quad (s' \in S') \implies (s' \in W) \quad \blacksquare \quad S' \subseteq W$

 $ZeroDependent := (O \in S) \implies (\neg LinInd[S, V, +, *])$

$$(1) \quad K := \left\langle \left\{ \begin{cases} 1 & u_i = O \\ 0 & u_i \neq O \end{cases} \middle| (1 \leq i \leq n) \land (i \in \mathbb{N}) \right\rangle \ \blacksquare \ K \in \mathbb{R}^n \right\}$$

(2) $(LinComb[O, S, K, V, +, *]) \land (K \neq \{O\}^n) \quad \neg LinInd[S, V, +, *]$

 $SingletonNonZeroIndependent := (v \neq O) \implies (LinInd[\langle v \rangle, V, +, *])$

- (1) $(r * v = 0) \iff ((r = 0) \lor (v \neq 0))$
- (2) $v \neq O \mid r = 0$
- $(3) \ \forall_{r \in \mathbb{R}} ((r*v=O) \implies (r=0))$

 $SubIndependent := \forall_{V,A,B}(((VectorSpace[V,+,*]) \land (A \subseteq B \in V^m)) \implies ((LinInd[B,V,+,*]) \implies (LinInd[A,V,+,*]))$

- $\overline{(1) \ (LinComb[O, A, K, V, +, *]) \implies \dots}$
 - $(1.1) \quad L := \left\langle \left\{ \begin{cases} 1 & j \le n \\ 0 & j > n \end{cases} \middle| (1 \le j \le m \land (j \in \mathbb{N})) \right\rangle \quad \blacksquare \quad L \in \mathbb{R}^m$
 - $(1.2) \quad A \subseteq B \quad \blacksquare \quad \forall_{n \ge j \in \mathbb{N}} (a_j = b_j)$
 - (1.3) $\forall_{n \ge j \in \mathbb{N}} (a_j = b_j) \prod_{i=1}^n (k_i * a_i) = \sum_{i=1}^n (k_i * a_i) + O = \sum_{j=1}^m (l_j * b_j)$
- (1.4) $LinComb[O, A, K, V, +, *] \quad \blacksquare O = \sum_{i=1}^{n} (k_i * a_i)$
- $(1.5) \quad O = \sum_{i=1}^{n} (k_i * a_i) = \sum_{i=1}^{m} (l_i * b_i) \quad \blacksquare \quad LinComb[O, B, L, V, +, *]$
- $(1.6) \quad (LinInd[B,V,+,*]) \land (LinComb[O,B,L,V,+,*]) \quad \blacksquare \quad L = \{0\}^m$
- $(1.7) \quad (\forall_{n \ge j \in \mathbb{N}} (a_j = b_j)) \land (L = \{0\}^m) \quad \blacksquare \quad \forall_{n \ge j \in \mathbb{N}} (k_j * a_j = l_j * b * j = l_j * a_j) \quad \blacksquare \quad K = \{0\}^n$
- $(2) \quad (LinComb[O,A,K,V,+,*]) \implies (K=\{0\}^n) \quad \blacksquare \quad \forall_{K \in \subseteq \mathbb{R}^n} ((LinComb[O,A,K,V,+,*]) \implies (K=\{0\}^n)) \quad \blacksquare \quad LinInd[A,V,+,*]$

 $Super Dependent := \forall_{V,A,B} (((Vector Space[V,+,*]) \land (A \subseteq B \subseteq V)) \implies ((\neg LinInd[A,V,+,*]) \implies (\neg LinInd[B,V,+,*])))$

 $LinIndEquiv := \forall_{U,V}((LinInd[U,V,+,*]) \iff (\forall_{j \in U}(\neg LinComb[j,U \setminus \{j\},+,*])))$

- (1) $\Gamma' = \Gamma \setminus \{j\}$
- (2) $(\neg LinInd[U, V, +, *]) \implies ...$
 - $(2.1) \quad (\exists_{\Gamma \in \mathbb{R}^{|U|}} ((\sum (\gamma_i * u_i) = O) \land (\Gamma \neq \{0\}^{|U|})))$

```
(2.2) \quad \exists_{\gamma_k \in \Gamma} (\gamma_k \neq 0)
```

$$(2.3) \quad \sum (\gamma_i' * u_i) = \sum (\gamma_i * u_i) - \gamma_k * u_k = -\gamma_k * u_j$$

$$(2.4) \quad u_k = (-1/\gamma_k)(\sum(\gamma_i' * u_i)) = \sum((-\gamma_i'/\gamma_k) * u_i) \quad \blacksquare \quad \exists_{j \in U}(LinComb[j, U \setminus \{j\}, +, *])$$

$$(3) \ (\neg LinInd[U,V,+,*]) \implies (\exists_{j \in U}(LinComb[j,U \setminus \{j\},+,*]))$$

$$(4) \quad (\forall_{j \in U} (\neg LinComb[j, U \setminus \{j\}, +, *])) \implies (LinInd[U, V, +, *])$$

(5)
$$(\exists_{j \in U}(LinComb[j, U \setminus \{j\}, +, *])) \implies \dots$$

$$(5.1) \quad \exists_{j \in U} (j = \sum (\gamma_i' * u_i))$$

(5.2)
$$\Gamma := \Gamma' \cup \{-1\}$$

$$(5.3) \quad (\sum (\gamma_i * u_i) = \sum (\gamma_i' * u_i) + (-1) * \gamma_j = O) \wedge (\Gamma \neq \{0\}^n) \quad \blacksquare \ \neg LinInd[U, V, +, *]$$

(6)
$$(\exists_{j \in U}(LinComb[j, U \setminus \{j\}, +, *])) \implies (\neg LinInd[U, V, +, *])$$

$$(7) \quad (LinInd[U,V,+,*]) \implies (\forall_{j \in U}(\neg LinComb[j,U \setminus \{j\},+,*]))$$

$$(8) \quad (LinInd[U,V,+,*]) \iff (\forall_{j \in U}(\neg LinComb[j,U \setminus \{j\},+,*]))$$

$$Spans[S, V, +, *] := LinSpan[V, S, V, +, *]$$

 $FinDim[V, +, *] := \exists_{S \in V^n}(Spans[S, V, +, *])$

$$LinInd[S,V,+,*] := (VectorSpace[V,+,*]) \land (S \in V^n) \land ((S \neq \emptyset) \implies (\forall_{K \in \mathbb{R}^n} ((LinComb[O,S,K,V,+,*]) \implies (K = \{0\}^n))))$$

$$LinDepLemma := \forall_{S,V} \left(\begin{array}{l} (\neg LinInd[S,V,+,*]) \\ \exists_{j \in \mathbb{N}_{1,n}}((s_j \in LinSpan[P_1,S_{1,j-1},V,+,*]) \land (LinSpan[P_2,S,V,+,*] = LinSpan[P_3,S \setminus \{s_j\},V,+,*])) \end{array} \right)$$

$$(1) \quad \neg LinInd[S,V,+,*] \quad \blacksquare \quad \exists_{K \in \mathbb{R}^n} ((LinComb[O,S,K,V,+,*]) \land (K \neq \{0\}^n))$$

$$\overline{(2) \ \exists_{j \in \mathbb{N}_{1,n}} ((k_j \neq 0) \land (\forall_{i \in \mathbb{N}_{1,n}} ((i > j) \implies (k_i = 0))))}$$

(3)
$$s_j = (-1/k_j) \sum_{i=1}^{j-1} (k_i * s_i) = \sum_{i=1}^{j-1} ((-k_i/k_j) * s_i)$$

(4)
$$\langle -k_i/k_i | i \in \mathbb{N}_{1,i-1} \rangle \in \mathbb{R}^{j-1}$$

$$\overline{(5) \ \exists_{M \in \mathbb{R}^{j-1}}(LinComb[s_j, S_{1,j-1}, M, V, +, *]) \ \blacksquare \ s_j \in LinSpan[P_1, S_{1,j-1}, V, +, *]}$$

(6)
$$(v \in P_2) \iff (v \in LinSpan[P_2, S, V, +, *]) \iff \dots$$

$$\frac{(e) \cdot (e \in I_2) \cdot (e \in I_{i=1}) \cdot (e_i \in I_{$$

$$\overline{(8) \ (v \in LinSpan[P_3, S \setminus \{s_i\}, V, +, *])} \iff (v \in P_3) \ \blacksquare \ (v \in P_2) \iff (v \in P_3) \ \blacksquare \ P_2 = P_3$$

 $LinInd Length Leq Span := \forall_{L,S}(((LinInd[L,V,+,*]) \land (Spans[S,V,+,*])) \implies (|L| \leq |S|))$

(1) TODO: form $B = L \cup S$, remove dependent elements in S such that $(Spans[B, V, +, *]) \land (|B| = |S|)$ by LinDepLemma, $|L| \le |B| = |S|$

(2) $\forall_{l_i \in L} \dots$

$$(2.1) \quad l_i \in V \quad \blacksquare \quad LinComb[l_i, S, K, V, +, *] \quad \blacksquare \quad \neg LinInd[\langle l_i \rangle \cup S, V, +, *]$$

$$(2.2) \quad LinDepLemma \quad \blacksquare \quad \exists_{j \in \mathbb{N}_1} \quad (LinSpan[V, S, V, +, *] = LinSpan[V, S \setminus \{s_j\}, V, +, *])$$

(2.3)
$$B := \langle l_i \rangle \cup S \setminus \{s_i\} \mid |B| = 1 + |S| - 1 = |S|$$

(3)
$$|L| \le |B| = |S| \quad |L| \le |S|$$

 $FinSubSpace := \forall_{U,V}(((Subspace[U,V,+,*]) \land (FinDim[V,+,*])) \implies (FinDim[U,+,*])$

```
(1) TODO: take Spans[S, V, +, *], remove all s_j \in S such that U \subseteq LinSpan[S \setminus \{s_j\}] \mid S' = S \setminus \{s_j\} (LinSpan[U, S', V, +, *]) \land (|S'| \leq |S|) \mid FinDim[U, +, *]
```

(2)
$$FinDim[V, +, *]$$
 $\exists_{S \in V^n}(Spans[S, V, +, *])$

(3) $\forall_{(u_i \in U) \land (\neg LinSpan[U,S,V,+,*])} \dots$

$$(3.1) \quad \neg LinSpan[U,S,V,+,*] \quad \blacksquare \ \exists_{u_{j} \in U} (\neg LinComb[u_{j},S_{1,j-1},K_{1,j-1},V,+,*])$$

$$(3.2) \quad B := S_{1,i-1} \quad \blacksquare \quad |B| = |S| - 1 < |S|$$

$$(4) \quad LinSpan[U,B,V,+,*] \quad \blacksquare \quad \exists_{B \in V^M}(Spans[B,U,+,*]) \quad \blacksquare \quad FinDim[U,+,*]$$

UNAPTER 3. LINEAR ALGEDR

3.6 Bases and Dimensions

```
Basis[S, V, +, *] := (Spans[S, V, +, *]) \land (LinInd[S, V, +, *])
```

 $BasisEquiv := \forall_{S,V}((Basis[S,V,+,*]) \iff (\forall_{v \in V} \exists !_{K \in \mathbb{R}^n}(LinComb[v,S,K,V,+,*]))$

- (1) $(Basis[S, V, +, *]) \Longrightarrow ...$
- $(1.1) \quad (v \in V) \implies \dots$
 - $(1.1.1) \quad \textit{Basis}[S, V, +, *] \quad \blacksquare \quad \textit{Spans}[V, S, +, *] \quad \blacksquare \quad \exists_{K \in \mathbb{R}^n}(\textit{LinComb}[v, S, K, V, +, *])$
 - $(1.1.2) \quad ((K_1, K_2 \in \mathbb{R}^n) \land (LinComb[v, S, K_1, V, +, *]) \land (LinComb[v, S, K_2, V, +, *])) \implies \dots$
 - $(1.1.2.1) \quad (v = \sum (k_{1i} * s_i)) \land (v = \sum (k_{2i} * s_i))$
 - $(1.1.2.2) \quad O = v v = \sum (k_{1i} * s_i) \sum (k_{2i} * s_i) = \sum ((k_{1i} k_{2i}) * s_i)$
 - $(1.1.2.3) \quad L := \langle k_{1i} k_{2i} | i \in \mathbb{N}_{i=1}^n \rangle \in \mathbb{R}^n$
 - $(1.1.2.4) \quad (LinInd[S, V, +, *]) \land (LinComb[O, S, L, V, +, *]) \quad \blacksquare \quad L = \{0\}^n \quad \blacksquare \quad K_2 = K_1$
 - $(1.1.3) \quad ((K_1, K_2 \in \mathbb{R}^n) \land (LinComb[v, S, K_1, V, +, *]) \land (LinComb[v, S, K_2, V, +, *])) \implies (K_1 = K_2)$
 - $(1.1.4) \quad \forall_{K_1,K_2 \in \mathbb{R}^n} ((LinComb[v,S,K_1,V,+,*]) \wedge (LinComb[v,S,K_2,V,+,*]) \implies (K_1 = K_2))$
 - $(1.1.5) \quad \exists!_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *])$
- $(1.2) \quad (v \in V) \implies (\exists!_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *]))$
- $(2) \quad (Basis[S,V,+,*]) \implies (\forall_{v \in V} \exists !_{K \in \mathbb{R}^n} (LinComb[v,S,K,V,+,*]))$
- (3) $(\forall_{v \in V} \exists !_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *])) \Longrightarrow ...$
- $(3.1) \quad \forall_{v \in V} \exists !_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *]) \quad \blacksquare \quad \forall_{v \in V} \exists_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *]) \quad \blacksquare \quad Spans[S, V, +, *]$
- $(3.2) \quad O \in V \quad \blacksquare \quad \exists !_{K \in \mathbb{R}^n}(LinComb[O, S, K, V, +, *])$
- $(3.3) \quad (K \neq \{0\}^n) \implies (\neg \exists!_{K \in \mathbb{R}^n}(LinComb[O, S, K, V, +, *])) \implies \bot \quad \blacksquare \quad K = \{0\}^n$
- $(3.4) \quad (\exists!_{K \in \mathbb{R}^n}(LinComb[O, S, K, V, +, *])) \land (K = \{0\}^n) \quad \blacksquare \ LinInd[S, V, +, *]$
- (3.5) $(Spans[S, V, +, *]) \land (LinInd[S, V, +, *]) \mid Basis[S, V, +, *]$
- $(4) \quad (\forall_{v \in V} \exists !_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *])) \implies (Basis[S, V, +, *])$

 $SpanReduceBasis := \forall_{S,V}(Spans[S,V,+,*] \implies \exists_{B}((B\subseteq S) \land (Basis[B,V,+,*])))$

(1) TODO: Remove all dependent $s_i \in S \mid | (S' = S \setminus \{s_i\}) \land (LinSpan[S'] = LinSpan[S])$ until $LinInd[S'] \mid | Basis[S']$

 $LinIndExpandBasis := \forall_{L,V}(LinInd[L,V,+,*] \implies \exists_{B}((L \subseteq B) \land (Basis[B,V,+,*])))$

(1) TODO: $FinDimBasis \ \blacksquare \ \exists_A (Basis[A,V,+,*]), \text{ form } B=L\cup A \ \blacksquare \ Span[B],$ use $SpanReduceBasis \ call \ it \ B', (L\subseteq B') \land (Basis[B'])$

 $FinDimBasis := \forall_V ((FinDim[V, +, *]) \implies (\exists_B (Basis[B, V, +, *])))$

- (1) FinDim[V, +, *] $\exists_{S \in V^n}(Spans[S, V, +, *])$
- (2) $(SpanReduceBasis) \land (Spans[S, V, +, *]) \blacksquare \exists_B (Basis[B, V, +, *])$

 $BasisLinearIndCard := \forall_{S.T.V}(((Basis[S,V,+,*]) \land (LinInd[T,V,+,*])) \Longrightarrow (|T| \leq |S|))$

- (1) $(Basis[S, V, +, *]) \implies ...$
- $(1.1) \quad (|T| > |S|) \implies \dots$
 - $(1.1.1) \quad (Spans[S, V, +, *]) \land (T \subseteq V) \quad \blacksquare \quad t_{1...t_i} = \sum (\gamma_i * s * i) \dots$
- $(1.2) \quad (|T| > |S|) \implies (\neg LinInd[T, V, +, *]) \quad \blacksquare \quad (LinInd[T, V, +, *]) \implies (|T| \le |S|)$
- $(2) \quad ((Basis[S,V,+,*]) \land (LinInd[T,V,+,*])) \implies (|T| \le |S|)$

 $BasisCard := \forall_{S,T,V}(((Basis[S,V,+,*]) \land (Basis[T,V,+,*])) \implies (|T| = |S|))$

- $\overline{(1) \quad Basis[S,V,+,*] \quad \blacksquare \quad LinInd[S,V,+,*]}$
- (2) $(Basis[T, V, +, *]) \land (LinInd[S, V, +, *]) \mid |S| \le |T|$
- (3) Basis[T,V,+,*] LinInd[T,V,+,*]
- $(4) \quad (Basis[S,V,+,*]) \land (LinInd[T,V,+,*]) \quad \blacksquare \mid T \mid \le |S|$
- (5) $(|S| \le |T|) \land (|T| \le |S|) \mid |T| = |S|$

5.7. KAIVK

```
Dim[d,V,+,*] := (\exists_B(Basis[B,V,+,*])) \land ((V=\{O\}) \implies (d=0)) \land ((V\neq\{O\}) \implies (d=|B|))
```

 $LinInd Length Dim := \forall_{U,V}(((LinInd[U,V,+,*]) \land (Dim[|U|,V,+,*])) \implies (Basis[U,V,+,*]))$

- (1) $(LinIndExpandBasis) \land (LinInd[U,V,+,*]) \blacksquare \exists_B ((U \subseteq B) \land (Basis[B,V,+,*]))$
- $(2) \quad (BasisCard) \land (Dim[|U|,V,+,*]) \land (Basis[B,V,+,*]) \quad \blacksquare \quad |B| = |U| \quad \blacksquare \quad B = U \quad \blacksquare \quad Basis[U,V,+,*]$

 $SpanLengthDim := \forall_{U,V}(((Spans[U,V,+,*]) \land (Dim[|U|,V,+,*])) \implies (Basis[U,V,+,*]))$

- (1) $(SpanReduceBasis) \land (Spans[U,V,+,*]) \blacksquare \exists_{R}((B \subseteq U) \land (Basis[B,V,+,*]))$
- $(2) \quad (BasisCard) \land (Dim[|U|,V,+,*]) \land (Basis[B,V,+,*]) \quad \blacksquare \quad |B| = |U| \quad \blacksquare \quad B = U \quad \blacksquare \quad Basis[U,V,+,*]$

 $LinDepLengthDim := \forall_{U,V}(((U \subseteq V) \land (|U| > Dim[V])) \implies (\neg LinInd[U,V,+,*]))$

(1) Contrapositive of BasisLinearIndCard

 $LinDepLengthDim := \forall_{U,V}(((U \subseteq V) \land (|U| < Dim[V])) \implies (\neg Spans[U,V,+,*]))$

- (1) Suppose Spans[U, V, +, *], B = SpanReduceBasis[U] to form a basis, $(|B| \le |U| < Dim[V]) \land |B| = Dim[V]$ $\blacksquare \bot$
- $\overline{(2) \neg Spans[U,V,+,*]}$

3.7 Rank

 $\begin{aligned} Nullity[n,A] := & (NullSpace[N,A]) \land (Dim[n,N,+,*]) \\ Rank[r,A,m,n] := & (Matrix[A,m,n]) \land (RowSpace[R,A,m,n]) \land (Dim[r,R,A,+,*]) \end{aligned}$

 $RowRankEqColRank := \forall_A(TODO)$

(1) TODO

 $RankNullity := \forall_A ((Matrix[A, m, n]) \implies (Rank[A] + Nullity[A] = n))$

(1) TODO

 $RankInv := \forall_A ((Matrix[A, m, n]) \implies ((Rank[A] = n) \iff (Inv[A])))$

(1) TODO

 $RankNonTrivialSol := (\exists_X ((A*X=O) \land (X \neq O))) \iff (Rank[A] < n)$

(1) TODO

 $RankUniqueSol := (\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B])) \iff (Rank[A] = n)$

 $\overline{(1)}$ TODO

$$SquareTheorems_{()} := \forall_{A \in \mathcal{M}} \begin{cases} (Invertible[A]) & \iff \\ (RowEquiv[A, I_n]) & \iff \\ (\forall_X((X = O) \iff (Sol[X, A, O]))) & \iff \\ (\forall_{B \in \mathcal{M}} \exists^! x_{\in \mathcal{M}} (Sol[X, A, B])) & \iff \\ (Rank[A] = n) & \iff \\ (Nullity[A] = 0) & \iff \\ (The rows form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linear$$

3.8 Linear Transformations

$$\begin{aligned} & LinTrans[L,V,+_{v},*_{v},W,+_{w},*_{w}] := \begin{pmatrix} (Function[f,V,W]) \wedge (VectorSpace[V,+_{v},*_{v}]) \wedge (VectorSpace[W,+_{w},*_{w}]) \wedge \\ & (\forall_{\alpha,\beta \in V}(L(\alpha+_{v}\beta)=L(\alpha)+_{w}L(\beta))) & \wedge & (\forall_{r \in \mathbb{R}}\forall_{\alpha \in V}(L(r*_{v}\alpha)=r*_{w}L(\alpha))) \end{pmatrix} \\ & LinOp[L,V,+_{v},*_{v}] := LinTrans[L,V,+_{v},*_{v},V,+_{v},*_{v}] \\ & \mathcal{L}[V,W] := \{L|LinTrans[L,V,+_{v},*_{v},W,+_{w},*_{w}]\} \end{aligned}$$

 $ZeroMapsToZero := \forall_{L,V,W}((LinTrans[L,V,+_{v},*_{v},W,+_{w},*_{w}]) \implies (L(O_{v}) = O_{w}))$

- $(1) \quad L(O_v) = L(O_v +_v O_v) = L(O_v) +_w L(O_v)$
- (2) $O_w = L(O_v) L(O_v) = L(O_v)$

 $SplitAddInv := \forall_{L,V,W}((LinTrans[L,V,+_{v},*_{v},W,+_{w},*_{w}]) \implies (\forall_{\alpha,\beta \in V}(L(\alpha-_{v}\beta)=L(\alpha)-_{w}L(\beta))))$

$$(1) L(\alpha - \beta) = L(\alpha + (-\beta)) = L(\alpha) + L(-\beta) = L(\alpha) + (-1) * L(\beta) = L(\alpha) - L(\beta)$$

 $Basis Domain Induce Lin Trans := \forall_{V,W} \left(\begin{array}{l} ((Basis[A,V,+_{v},*_{v}]) \land (B \subseteq W) \land (n=|B|=|A|) \land (Vector Space[W,+_{w},*_{w}])) \implies \\ (\exists !_{T}((Lin Trans[T,V,+_{v},*_{v},W,+_{w},*_{w}]) \land (\forall_{i \in \mathbb{N}_{1,n}}(T(a_{i})=b_{i})))) \end{array} \right)$

- (1) $T(\sum_{i=1}^{n} (k_i * a_i)) := \sum_{i=1}^{n} (k_i * b_i)$
- $(2) \quad (i \in \mathbb{N}_{1,n}) \implies \dots$

(2.1)
$$L := \langle \left\{ \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases} \middle| j \in \mathbb{N}_{1,n} \rangle \parallel L \in \mathbb{R}^n \right\}$$

- $(2.2) \quad T(a_i) = T(\sum_{i=1}^n (l_i * a_i)) = \sum_{i=1}^n (l_i * b_i) = b_i \quad \blacksquare \quad T(a_i) = b_i$
- $(3) \quad (i \in \mathbb{N}_{1,n}) \implies (T(a_i) = b_i) \quad \blacksquare \quad \forall_{i \in \mathbb{N}_{1,n}} (T(a_i) = b_i)$
- $(4) \quad (BasisEquiv) \wedge (Basis[A,V,+_{v},*_{v}]) \quad \blacksquare \quad \forall_{v \in V} \exists !_{K \in \mathbb{R}^{n}}(LinComb[v,A,K,V,+,*]) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W] = (A,K,V,+,*_{v}) \quad \blacksquare \quad T : Span[B] \quad T : Span[B] \quad \blacksquare \quad T : Span[B] \quad \blacksquare \quad T : Span[B] \quad T :$
- (5) $(\alpha, \beta \in V) \implies \dots$
 - (5.1) $(LinComb[\alpha, A, K_{\alpha}, V, +_{v}, *_{v}]) \wedge (LinComb[\beta, A, K_{\beta}, V, +_{v}, *_{v}])$
 - $\overline{(5.2) \ T(\alpha+\beta) = T(\sum_{i=1}^{n} (k_{\alpha_i} * a_i) + \sum_{i=1}^{n} (k_{\beta_i} * a_i))} = T(\sum_{i=1}^{n} ((k_{\alpha_i} + k_{\beta_i}) * a_i))) = \sum_{i=1}^{n} ((k_{\alpha_i} + k_{\beta_i}) * b_i) = \dots$
 - $(5.3) \quad \dots \sum_{i=1}^{n} (k_{\alpha i} * b_i) + \sum_{i=1}^{n} (k_{\beta i} * b_i) = T(\sum_{i=1}^{n} (k_{\alpha i} * a_i)) + T(\sum_{i=1}^{n} (k_{\beta i} * a_i)) = T(\alpha) + T(\beta)$
- $(6) \quad (\alpha, \beta \in V) \implies (L(\alpha +_{v} \beta) = L(\alpha) +_{w} L(\beta)) \quad \blacksquare \quad \forall_{\alpha, \beta \in V} (L(\alpha +_{v} \beta) = L(\alpha) +_{w} L(\beta))$
- (7) $((r \in \mathbb{R}) \land (\alpha \in V)) \implies \dots$
- (7.1) $LinComb[\alpha, A, K, V, +_{v}, *_{v}]$
- $(7.2) \quad L(r *_{v} \alpha) = L(r *_{v} \sum_{i=1}^{n} (k_{i} *_{v} a_{i})) = L(\sum_{i=1}^{n} ((rk_{i}) *_{v} a_{i})) = \sum_{i=1}^{n} ((rk_{i}) *_{w} b_{i}) = r *_{w}$
- $(8) \quad ((r \in \mathbb{R}) \land (\alpha \in V)) \implies (L(r *_{v} \alpha) = r *_{w} L(\alpha)) \quad \blacksquare \quad \forall_{r \in \mathbb{R}} \forall_{\alpha \in V} (L(r *_{v} \alpha) = r *_{w} L(\alpha))$
- $(9) \quad (\forall_{i \in \mathbb{N}_{1:n}}(T(a_i) = b_i)) \wedge (Function[T, V, W]) \wedge (\forall_{\alpha, \beta \in V}(L(\alpha +_{v} \beta) = L(\alpha) +_{w} L(\beta))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge \ldots \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V}(L(r *_{v} \alpha) = r *_{w} L(\alpha))) \wedge (\forall_{r \in \mathbb{R}} \forall_{\alpha \in V$
- $(10) \quad \dots (VectorSpace[V, +_v, *_v]) \land (VectorSpace[W, +_w, *_w]) \quad \blacksquare \ LinTrans[T, V, +_v, *_v, W, +_w, *_w]$