1/7

Dérivation des fonctions numériques

Je me souv	viens	
0).1	Dérivée
0).2	Théorème de Rolle
0).3	Accroissements finis
0).4	Opérations sur les fonctions dérivables
0).5	Fonctions de classe \mathcal{C}^k
O).6	Limite de la dérivée
	Annex 1.1	res
Exercices		
Exerci	ices et	t résultats classiques à connaître
		st scindé simple sur \mathbb{R} , P' aussi
		plongement \mathcal{C}^1
		u CČINP
		lèmes d'entrainement

Je me souviens

0.1 Dérivée

- 1. Comment définir la dérivée en a de $f:I\to\mathbb{K}$.
- 2. Équation de la tangente?
- 3. Une autre définition caractérisation de la dérivée?
- 4. Dérivée à droite? à gauche?
- 5. Lien entre dérivabilité et continuité?
- 6. Dérivée des fonctions $I \to \mathbb{C}$?
- 7. Quelle est la dérivée de $e^{(1+i)t}$?

0.2 Théorème de Rolle

On ne parle ici que de fonctions réelles.

- 8. Pour $f: I \to \mathbb{R}$, définir « f admet un maximum global en a ».
- 9. Pour $f:\,I\to\mathbb{R},$ définir « f admet un maximum local en a ».
- 10. Énoncer le théorème faisant le lien entre extremum local et annulation de la dérivée.
- 11. Énoncer le théorème de Rolle.

0.3 Accroissements finis

- 12. Quelle est l'égalité des accroissements finis?
- 13. Quelle est l'inégalité des accroissements finis?
- 14. Il y a un lien avec le théorème fondamental de l'analyse?
- 15. À quelle condition f dérivable est-elle consante?
- 16. À quelle condition f dérivable à valeurs réelles est-elle croissante?
- 17. À quelle condition f dérivable à valeurs réelles est-elle strictement croissante?

0.4 Opérations sur les fonctions dérivables

- 18. $(\lambda f + \mu g)'(x) =$
- 19. $(f \times g)'(x) =$
- $20. \left(\frac{f}{g}\right)'(x) =$
- 21. $(g \circ f)'(x) =$
- 22. $(f^{-1})'(x) =$

0.5 Fonctions de classe C^k

- 23. Définir « f est de classe \mathcal{C}^1 sur I »
- 24. Définir « f est de classe \mathcal{C}^k sur I », où $k\in\mathbb{K}.$
- 25. Définir « f est de classe \mathcal{C}^{∞} sur I »
- 26. $(\lambda f + \mu g)^{(k)}(x) =$
- 27. Énoncer la formule de Leibniz.
- 28. Comment démontrer la formule de Leibniz?
- 29. Pour $f: I \to \mathbb{K}$ de classe \mathcal{C}^k et $\phi: J \to I$ de classe \mathcal{C}^k , que dire de $f \circ \phi$?

0.6 Limite de la dérivée

- 30. Énoncer le théorème limite de la dérivée.
- 31. Comment utiliser le résultat précédent pour prolonger à I de façon \mathcal{C}^1 une fonction définie sur $I \smallsetminus \{a\}$?

2024-2025 http://mpi.lamartin.fr 3/7

1 Annexes

1.1 Complément : le théorème de Darboux

Théorème de Darboux.

Soit $f: I \to \mathbb{R}$, dérivable. Alors f' satisfait la propriété des valeurs intermédiaires.

Remarque. Ce théorème est complètement hors programme. Il est intéressant lorsque f n'est pas de classe C^1 , c'est-à-dire lorsque l'on ne peut pas appliquer le théorème des valeurs intermédiaires à f'.

Preuve.

• On suppose f dérivable sur [a,b], et on considère γ entre f'(a) et f'(b). On cherche $c \in [a,b]$ tel que $f'(c) = \gamma$. L'idée est celle du théorème de Rolle, pour lequel la

conclusion est analogue, mais avec $\gamma=0.$ On considère donc :

$$g: x \mapsto f(x) - \gamma t$$

g est continue sur le segment [a,b], donc admet un minimum et un maximum, par le théorème des bornes atteintes.

- Si le minimum ou le maximum est atteint en c ∈]a, b[, on a trouvé c tel que g'(c) = 0, c'est-à-dire f'(c) = γ.
- Sinon, le minimum et le maximum sont par exemple atteints en a et b respectivement, et donc $g'(a) \ge 0$ et $g'(b) \ge 0$. Par hypothèse, $g'(a) = f'(a) \gamma$ et $g'(b) = f'(b) \gamma$ sont de signes opposés, donc les deux inégalités ne peuvent être strictes. On a trouvé c (égal à a ou b) tel que g'(c) = 0, c'est-à-dire $f'(c) = \gamma$.

Exercices et résultats classiques à connaître

Si P est scindé simple sur \mathbb{R} , P' aussi

63.1

- (a) Montrer que, si $P \in \mathbb{R}[X]$ est un polynôme de degré $\geqslant 2$, scindé à racines simples, alors P' est aussi scindé à racines simples.
- (b) Le résultat est-il vrai si on suppose $P \in \mathbb{C}[X]$?
- (c) Montrer que, si $P \in \mathbb{R}[X]$ est un polynôme scindé, alors P' est aussi scindé.

Un prolongement \mathcal{C}^1

63.2

Montrer que la fonction, définie sur \mathbb{R}^* par :

$$f: x \mapsto x^3 \sin\left(\frac{1}{x}\right)$$

se prolonge à \mathbb{R} en une fonction de classe \mathcal{C}^1 .

4/7 http://mpi.lamartin.fr 2024-2025

Exercices du CCINP

63.3

GNP 3

1. On pose $g(x) = e^{2x}$ et $h(x) = \frac{1}{1+x}$.

Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définitions respectifs.

2. On pose $f(x) = \frac{e^{2x}}{1+x}$.

En utilisant la formule de Leibniz concernant la dérivée $n^{\text{ième}}$ d'un produit de fonctions, déterminer, pour tout entier naturel n et pour tout $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.

3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.

63.4

- 1. Énoncer le théorème des accroissements finis.
- 2. Soit $f:[a,b] \longrightarrow \mathbb{R}$ et soit $x_0 \in]a,b[.$

On suppose que f est continue sur [a, b] et que f est dérivable sur $]a, x_0[$ et sur $]x_0, b[$.

Démontrer que, si f' admet une limite finie en x_0 , alors f est dérivable en x_0 et $f'(x_0) = \lim_{x \to x_0} f'(x)$.

3. Prouver que l'implication : (f est dérivable en x_0) \Longrightarrow (f' admet une limite finie en x_0) est fausse.

Indication : on pourra considérer la fonction g définie par : $g(x) = x^2 \sin \frac{1}{x} \text{ si } x \neq 0 \text{ et } g(0) = 0.$

Exercices

63.5

Montrer que le polynôme :

$$((X^2-1)^n)^{(n)}$$

est scindé à racines simples sur \mathbb{R} .

63.6

Utiliser les accroissements finis pour démontrer les inégalités :

- (a) $|\sin x| \leq |x|$ pour $x \in \mathbb{R}$
- (b) $\ln(1+x) \leqslant x$ pour $x \in \mathbb{R}_+$.

63.7

Montrer que, pour $n \in \mathbb{N}$:

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(\cos x) = \cos\left(x + n\frac{\pi}{2}\right) \text{ et } \frac{\mathrm{d}^n}{\mathrm{d}x^n}(\sin x) = \sin\left(x + n\frac{\pi}{2}\right)$$

63.8

Calculer, pour $n \in \mathbb{N}$, la dérivée n-ème de :

(a) x^k

(d) \cos^3

(b) $\frac{1}{x}$

(e) $\cos(x)$ e

(c) $(x^2 - x + 1)e^{-x}$

(f) $\frac{1}{x^2-1}$

Petits problèmes d'entrainement

63.9 **£**1

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable sur \mathbb{R} . On suppose que f admet des limites finies et égales en $+\infty$ et en $-\infty$. Montrer qu'il existe $c \in \mathbb{R}$ tel que f'(c) = 0.

63.10

(a) On définit sur \mathbb{R} :

$$\varphi(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

Montrer que φ est de classe \mathcal{C}^{∞} sur \mathbb{R} .

(b) En déduire que la fonction définie par :

$$\psi(x) = \begin{cases} e^{\frac{2}{x^2 - 1}} & \text{si } x \in]-1, 1[\\ 0 & \text{sinon} \end{cases}$$

est aussi de classe \mathcal{C}^{∞} sur \mathbb{R} .

63.11

Montrer que, pour tout $n \in \mathbb{N}^*$:

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \operatorname{Arctan}(x) = \frac{P_n(x)}{(1+x^2)^n}$$

où P_n est un polynôme, scindé à racines simples sur \mathbb{R} .

63.12

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction bornée et dérivable. On suppose que la dérivée f' admet une limite ℓ en $+\infty$. Déterminer ℓ .

63.13

On considère :

$$f: x \mapsto \operatorname{Arctan}(x) + \sin(x)$$

- (a) Montrer que f n'a pas de limite en $+\infty$.
- (b) Montrer que f est majorée, et déterminer sa borne supérieure.
- (c) Montrer que la dérivée de f s'annule une infinité de fois sur \mathbb{R} .
- (d) Montrer que f n'admet pas de maximum global sur \mathbb{R} .

63.14

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 admettant une limite finie en $+\infty$ et en $-\infty$. Montrer que f'' s'annule.

63.15

Soit $f: [0, +\infty[\to \mathbb{R}$ une fonction dérivable. On suppose que :

$$f(0) = f'(0) = 0 \text{ et } f(x) \xrightarrow[x \to +\infty]{} \ell \in \mathbb{R}$$

Montrer qu'il existe $a \in]0, +\infty[$ abscisse d'un point où la tangente à la courbe représentative de f passe par l'origine.

63.16

On définit, pour $x \in \mathbb{R}$:

$$f(x) = e^{-x^2}$$

Montrer que, pour tout $n \in \mathbb{N}$, il existe $P_n \in \mathbb{R}[X]$ tel que :

$$\forall x \in \mathbb{R}, \ f^{(n)}(x) = P_n(x)e^{-x^2}$$

Montrer que P_n admet exactement n racines réelles.

63.17

Soit $f:[a,b] \to [a,b]$ une fonction de classe \mathcal{C}^1 telle que |f'(x)| < 1 pour tout $x \in [a,b]$.

- (a) Montrer que f admet un unique point fixe α .
- (b) Montrer que tout suite définie par :

$$u_0 \in [a, b]$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$

converge vers α .

63.18

Une fonction $f:I\to\mathbb{R}$ est dite **hölderienne d'exposant** $\alpha>0$ lorsqu'il existe $M\geqslant 0$ tel que :

$$\forall x, y \in I, |f(y) - f(x)| \le M|y - x|^{\alpha}$$

- (a) Montrer qu'une fonction $f:[a,b]\to\mathbb{R}$ qui est de classe \mathcal{C}^1 est hölderienne d'exposant 1.
- (b) Démontrer que les fonctions hölderiennes d'exposant > 1 sont constantes.

On considère la fonction $f: x \mapsto x \ln(x)$ définie sur]0,1].

- (c) Montrer que f n'est pas hölderienne d'exposant 1.
- (d) Montrer que f est hölderienne d'exposant α pour tout $\alpha\in \]0,1[.$

Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables vérifiant :

$$f \circ f = f$$

63.20

Soit f une fonction numérique deux fois dérivable sur I intervalle. On consi-

dère $a, b, c \in I$ tels que a < b < c. Montrer qu'il existe $d \in I$ tel que :

$$\frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-b)(c-a)} = \frac{1}{2}f''(d)$$

On pourra introduire :

$$\varphi : x \mapsto (x-b)f(a) + (a-x)f(b) + (b-a)f(x) - K(b-a)(b-x)(x-a)$$

où K est une constante bien choisie.

7/7