Module 3

Content

- Introduction to Relational Model
- Relational Model Constraints
- Relational Database Schemas
- Mapping the ER and EER Model to Relational Model
- Introduction to Relational Algebra

Introduction to Relational Model

- Relational Model was Proposed by E.F. Codd, a researcher of IBM
- It is an Abstract Model used to store and organize data in database
- It represent how data is stored in relational database
- Most of the modern Database Management systems (DBMS) are relational

The relational model consists of three major components:

- **1. Data structure**: the set of relations and set of domains that defines the way data can be represented
- **2. Data integrity**: Integrity rules that define the procedure to protect the data
- **3. Data manipulation**: the operations that can be performed on data

Advantages of Relational model

- Ease to use
- Flexibility
- Security
- Data independence
- Data Manipulation Language

Basic Concepts of Relational Model

- Tables
- Tuple
- Attribute
- Domain
- Degree
- Cardinality

Table also called Relation

Column OR Attributes

Total # of column is Degree

Student Relation in Relational Model

Integrity constraints over relation

- Integrity constraints: are used to ensure accuracy and consistency of the data in a relation database
- Integrity Constraints are set of rules that the database is not permitted to violet
- Constraints may apply to each attribute or they may apply to relationship between tables
- Integrity constraints ensures the changes (update, delete, insertion) made to the database by authorized users do not result in a loss of data consistency.

Integrity Constraints guard against accidental damage to the database

• Ex: Blood group must be 'A', 'B', 'AB', 'O' only (cannot be any other values)

Types of Integrity Constraints

- Domain Constraints
- Entity Integrity Constraints
- Referential Integrity Constraints
- Key Constraints

Domain Constraints

- Defines the domain or the valid set of values for an attribute
- The data type of domain includes

string

integer

time

Date

Currency

Character etc

The values of attribute must be available in the corresponding domain

Example

Sid	Name	Semester	Age
101	nancy	I	18
102	taniya	II	19
103	kiya	II	19
104	Amit	III	A

Not allowed bcoz age is an integer value

Entity Integrity Constraints

- States that primary key can't be null, this is because the primary key value is used to identify individual rows in relations and if the primary key has a null value then we can't identify those rows
- A table can contain a null value other than the primary key field

Example

EMPLOYEE

EMP_ID	EMP_NAME	SALARY
123	Jack	30000
142	Harry	60000
164	John	20000
	Jackson	27000

Not allowed as primary key can't contain a NULL value

Referential Integrity Constraints

- It is specified between two tables
- It is enforced when a foreign key references the primary key of a table 1 refer to the primary key of table 2 then either every value of foreign key in table 1 must be available in primary key value of table 2 or it must be null

STUDENT

Enrl No	Roll No	Name	City	Mobile
11	17	Ankit Vats	Delhi	9891663808
15	16	Vivek Rajput	Meerut	9891468487
6	- 6	Vanita	Punjab	100000000000000000000000000000000000000
33	75	Bhavya	Delhi	9810618396

GRADE

Roll No	Course	Grade
6	C	A
17	VB	C
75	VB	A
6	DBMS	В
16	C	В

Example of referential Integrity Constraints

(Table 1)

Primary Table

Companyld	CompanyName
1	Apple
2	Samsung

Related Table

Companyld	ProductId	ProductName
1	1	iPhone
15	2	Mustang

Associated Record

Student (First Table)

Roll_no	Student_name	Age	Course_id	Foreign Key
1	Andrew	18	78	-AMA PC. LE DA DE DEC. MAN DE PORTE DE SUR LE DECE
2	Angel	19	16	This value is not allowed because this value is not
3	Priya	20	56	defined as a primary key in the course table.
4	Analisa	21	_	The value can be NULL
Primary Key				as the student(Analisa) may not have taken any course.

Course (Second Table)

Primary Key	Course_id	Course_name	Duration (months)
	78	Big Data	4
	56	Algorithm	2

REFERENTIAL INTEGRITY

Key constraints

- An entity set can have multiple keys or candidate keys(minimal super key) but out of which one key will be primary key
- Key constraint specifies that in any relation all the values of primary key must be unique, values of primary key must not be null

ID	NAME	SEMENSTER	AGE
1000	Tom	1 st	17
1001	Johnson	2 nd	24
1002	Leonardo	5 th	21
1003	Kate	3rd	19
1002	Morgan	8 th	22

Not allowed. Because all row must be unique