Programujeme STM32

bez knihoven

Ing. Vojtěch Skřivánek

Poděkování

Děkuji firmám

SIEMENS

a

za podporu při psaní této knihy.

Obsah

1	Úvod	ł		1
	1.1	Motiva	ace knihy	1
	1.2	Strukt	ura knihy	3
	1.3	Fonty	textu	4
2	Vývo	jové 1	nástroje	5
	2.1	Vývoje	ová deska	6
	2.2	Vývoje	ové prostředí	7
	2.3	Dokun	nentace	7
	2.4	Shrnut	í	8
3	Zaloż	žení p	rojektu	9
4	Vstu	pně/v	rýstupní piny 1	. 5
				15
	4	4.1.1	Práce s registry při tvorbě programu	16
			4.1.1.1 Nalezení symbolického názvu registru	16
				16
			4.1.1.3 Zápis do registru	17
	4	4.1.2	Tvorba programu	۱7
	4	4.1.3	Porovnání	18
5	Přer	ušení	2	21
	5.1	Tlačítl	kem rozsvícená LED pomocí přerušení	22
		5.1.1		22
			5.1.1.1 LED	22
			5.1.1.2 EXTI	22
	ļ	5.1.2	Funkce periferií	24
			5.1.2.1 LED - přepínání	24
	ļ	5.1.3	Obsluha přerušení	24
		5.1.4		26
	ļ	5.1.5	Zapojení	26
		5.1.6	Porovnání	27
6	Časo	vač	2	29
	6.1	Blikán	í pomocí časovače s přerušením	29
		6.1.1		29
				29
			6.1.1.2 TIM	31
		6.1.2		32
			6121 TIM - start	32

iv OBSAH

		6.1.3	Obsluha přerušení
		6.1.4	Tvorba programu
		6.1.5	Porovnání
	6.2	Blikár	ní pomocí OC režimu
		6.2.1	Nastavení periferií
		0.2.1	6.2.1.1 TIM
		6.2.2	Tvorba programu
		6.2.2	Provnání
	6.3		ní s nastavením délky pomocí IC režimu
	0.5	6.3.1	
		0.5.1	· ·
		0.0.0	6.3.1.1 TIM3
		6.3.2	Funkce periferií
			6.3.2.1 TIM3 start
		6.3.3	Obsluha přerušení
		6.3.4	Tvorba programu
		6.3.5	Zapojení
		6.3.6	Rozbor programu
		6.3.7	Porovnání
	6.4	Nasta	vení jasu LED pomocí PWM režimu
		6.4.1	Nastavení periferií
			6.4.1.1 TIM
		6.4.2	Funkce periferií
			6.4.2.1 TIM2 - změna střídy
		6.4.3	Tvorba programu
		6.4.4	Rozbor programu
		6.4.5	Porovnání
	6 5	1.	
	6.5		
		6.5.1	Nastavení periferií
			6.5.1.1 TIM2
			6.5.1.2 TIM21
		6.5.2	Funkce periferií
			6.5.2.1 TIM21 - start
		6.5.3	Tvorba programu
		6.5.4	Zapojení
		6.5.5	Porovnání
7	$\mathbf{U}\mathbf{A}$	RT	53
	7.1	LED 1	ozsvícená povelem z počítače
		7.1.1	Převodník sériové komunikace
		7.1.2	Nastavení periferií
			7.1.2.1 UART 54
		7.1.3	Funkce periferií
			7.1.3.1 UART - odesílání dat
			7.1.3.2 UART - příjem dat
			7.1.3.3 UART - callback přijmu
		7.1.4	Obsluha přerušení
		7.1.4	Tvorba programu
		7.1.6	Porovnání

OBSAH

8	\mathbf{AD}	${f C}$		61
	8.1	Přeruš	sované měření dvou kanálů	61
		8.1.1	Nastavení periferií	61
			8.1.1.1 ÂDC	61
			8.1.1.2 UART	63
		8.1.2	Funkce periferií	63
			8.1.2.1 ADC - start	63
			8.1.2.2 UART – odešli data v blokujícím režimu	64
		8.1.3	Obsluha přerušení	64
		8.1.4	Tvorba programu	65
		8.1.5	Zapojení	66
		8.1.6	Porovnání	67
	8.2		tlivé měření dvou kanálů s externím spouštěním	68
	0.2	8.2.1	Nastavení periferií	68
		0.2.1		68
			8.2.1.1 ADC	
		0.0.0	8.2.1.2 EXTI	70
		8.2.2	Obsluha přerušení	71
		8.2.3	Tvorba programu	72
		8.2.4	Zapojení	72
		8.2.5	Porovnání	73
9	DA	C		75
9	9.1		stavení jasu LED pomocí DAC	75
	9.1	9.1 Na 9.1.1		
		9.1.1	Nastavení periferií	75
		0.1.0	9.1.1.1 DAC	75
		9.1.2	Funkce periferií	76 76
		0.1.0	9.1.2.1 DAC - nastavení výstupní hodnoty	76
		9.1.3	Tvorba programu	76
		9.1.4	Porovnání	77
10	SPI			79
10			směrná SPI komunikace Master<->Slave	79
	10.1		Nastavení periferií	79
		10.1.1	10.1.1.1 SPI1	79
		10.1.0	10.1.1.2 SPI2	81
		10.1.2	Funkce periferií	82
			10.1.2.1 SPI1 – vysílaní a příjem v blokujícím režimu	82
		10.1.9	10.1.2.2 SPI2 – vysílaní a příjem v neblokujícím režimu	82
			Obsluha přerušení	84
			Tvorba programu	84
			Zapojení	85
			Rozbor programu	85
		10.1.7	Porovnání	86
11	TOC			o=
11	1111		změmné homounika sa Mastan X Claus - Mastan X Claus	87
	11.1		směrná komunikace Master->Slave a Master<-Slave	87
		11.1.1	Nastavení periferií	88
			11.1.1.1 I2C1	88
			11.1.1.2 I2C3	89
		11.1.2	Funkce periferií	90
			11.1.2.1 I2C1 - vysílání	90

vi OBSAH

		11.1.2.2 I2C1 - příjem
		11.1.2.3 I2C3 - vysílání
		11.1.2.4 I2C3 - příjem
	11.1.3	Obsluha přerušení
		11.1.3.1 I2C1
		11.1.3.2 I2C3
	11.1.4	Tvorba programu
	11.1.5	Zapojení
		Rozbor programu
	11.1.7	Porovnání
12 DM	. ^	101
		přenos z paměti do paměti
14.1		Nastavení periferií
	12.1.1	12.1.1.1 DMA
	19 1 9	Funkce periferií
	12.1.2	12.1.2.1 DMA - start
	12 1 3	Obsluha přerušení
		Tvorba programu
		Rozbor programu
		Porovnání
12.2		přenos z periferie do paměti a naopak
		Nastavení periferií
		12.2.1.1 UART
		12.2.1.2 DMA5
		12.2.1.3 DAC
		12.2.1.4 DMA4
		12.2.1.5 TIM
	12.2.2	Funkce periferií
		12.2.2.1 DMA5 - start
		12.2.2.2 DMA4 - start
		12.2.2.3 TIM - start
	12.2.3	Tvorba programu
	12.2.4	Porovnání
12.3	DMA :	přenos z periferie do periferie
	12.3.1	Nastavení periferií
		12.3.1.1 ADC
		12.3.1.2 DMA1
		Tvorba programu
		Zapojení
	12.3.4	Porovnání

117

13 Závěr

Kapitola 6

Časovač

Časovač, zejména pokud se jedná a jeho rozšířenou verzi, je velice komplexní periferie.

Námi využitý časovač má 2 řídicí registry, které však skoro nevyužijeme. V praxi se pracuje hlavně s konfiguračními registry jako je registr nastavení předděličky, Autoreload registr, anebo porovnávací registr. Časovač má většinou více kanálů, proto jsou některé tyto konfigurační registry duplikovány pro každý kanál zvlášť. To samé platí pro některé bity v jednotlivých konfiguračních nebo stavových registrech.

6.1 Blikání pomocí časovače s přerušením

V prvním příkladu, který využívá časovače v základním režimu, si ukážeme, jak nastavit volně běžící časovač tak, aby každou sekundu vyvolal přerušení. V obsluze přerušení změníme logickou úroveň výstupního pinu, čímž dojde k zhasnutí či rozsvícení LED nacházející se na *Nucleo* desce s přesně definovaným intervalem jedné sekundy.

Navíc si v tomto příkladu ukážeme, jak můžeme aktivovat vysokorychlostní oscilátor integrovaný v čipu. Dále spustíme fázový závěs (*PLL - Phase-Locked Loop*), kterým budeme systémový hodinový signál upravovat na požadovanou frekvenci 32 MHz. To je maximální frekvence, se kterou kontroler dokáže pracovat.

6.1.1 Nastavení periferií

6.1.1.1 RCC - hodinový signál

Nejprve si pro náš program připravíme zdroj hodinového signálu. V tomto příkladu budeme poprvé více pracovat s periferií RCC (Reset and Clock Controller).

Tato periferie umožňuje zapínat, volit, nastavovat a upravovat zdroje hodinového signálu.

Na obrázku z grafického konfigurátoru vidíme požadovaný výsledek. Chceme nastavit systémový hodinový signál na maximální frekvenci 32 MHz. Toho můžeme docílit tak, že aktivujeme interní vysokorychlostní oscilátor, který připojíme k fázovému závěsu. V něm kmitočet nejprve vynásobíme čtyřikrát a poté vydělíme dvěma. Výstup fázového závěsu pak zvolíme jako zdroj systémového hodinového signálu.

Následující program postupně provede přesně to, co jsme popsali výše.

```
void RCC_init()
{
        // zapne vnitrni vysokorychlostni oscilator (HSI - 16 MHz)
        RCC->CR |= RCC_CR_HSION;
        // cekej, dokud neni HSI pripraven
        while (!(RCC->CR & RCC_CR_HSIRDY));
        // nastavi nasobicku PLL na 4 (16 MHz * 4 = 64 MHz)
        // a delicku PLL na 2 (64 MHz / 2 = 32 MHz)
        RCC->CFGR |= (RCC_CFGR_PLLMUL4 | RCC_CFGR_PLLDIV2);
        // povoli PLL
        RCC->CR |= RCC_CR_PLLON;
        // cekej, dokud neni PLL pripraven
        while (!(RCC->CR & RCC_CR_PLLRDY));
        // nastavi cas pristupu do FLASH
        FLASH->ACR |= FLASH_ACR_LATENCY;
        // pouzije PLL jako zdroj systemovych hodin
        RCC->CFGR |= RCC_CFGR_SW_PLL;
        // cekej, dokud neni pouzit PLL jako systemove hodiny
        while(!(RCC->CFGR & RCC_CFGR_SWS_PLL));
}
```

Nejprve je aktivován vysokorychlostní oscilátor. Následující smyčka čeká, až bude ustálen. V následujícím kroku dojde k nastavení násobičky a děličky fázového závěsu, který se poté spustí. Opět se čeká na jeho přípravu.

Propojení vysokorychlostního oscilátoru a fázového závěsu je výchozí nastavení kontroleru. To však neplatí o nastavení zdroje systémového hodinového signálu, kterým je vícerychlostní vnitřní oscilátor. Proto je nutné toto nastavení změnit.

Než to ale provedeme, je nutné změnit dobu přístupu do paměti kontroleru. Jelikož po přepnutí zdroje signálu bude frekvence 32 MHz, bylo by čtení z paměti příliš rychlé. O tom se dočteme v příslušné kapitole manuálu kontroleru.

Table 12. Link between master clock power range and frequencies

Name	Power range	Maximum frequency (with 1 wait state)	Maximum frequency (without wait states)	
Range 1	1.65 V - 1.95 V	32 MHz	16 MHz	
Range 2	1.35 V - 1.65 V	16 MHz	8 MHz	
Range 3	1.05 V - 1.35 V	4.2 MHz	4.2 MHz	

Tabulka rozsahů napájecích napětí a maximálních frekvencí hodinových signálu [1]

Paměť by nedokázala procesoru při této frekvenci poskytnout data tak rychle. Z toho důvodu je nutné nastavit prodloužení čekací doby při čtení z paměti.

Po této změně, bez níž by kontroler nemohl správně fungovat, už stačí pouze zvolit fázový závěs jako zdroj systémového hodinového signálu a počkat, až k přepnutí dojde.

6.1.1.2 TIM

Nastavení časovače je v celku jednoduché. Nejprve jako vždy přivedeme do periferie hodinový signál.

Poté nastavíme konfigurační registry, děličku kmitočtu a Autoreload registr, tak, aby k přetečení došlo jednou za sekundu.

Povolíme přerušení při přetečení, a poté i linku přerušení jádra ARM, která je na časovač napojena.

```
void TIM2_init()
{
    // zapne hodinovy signal pro TIM2
    RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;

    // nastavi delicku pro TIM2 (32 MHz / 32000 = 1 kHz)
    TIM2->PSC = 31999U;

    // nastavi autoreload registr pro TIM2 (1 kHz / 1000 = 1 Hz)
    TIM2->ARR = 999U;

    // povoli preruseni pri preteceni (update)
    TIM2->DIER |= TIM_DIER_UIE;

    // povoli preruseni linky ARM jadra pro TIM2
    NVIC->ISER[0] |= (1U << TIM2_IRQn);
}</pre>
```

6.1.2 Funkce periferií

6.1.2.1 TIM - start

Funkce pro spuštění časovače jednoduše nastaví povolovací bit v jeho řídicím registru.

6.1.3 Obsluha přerušení

Obsluha přerušení je také velmi snadná.

Pokud je zdrojem přerušení přetečení časovače, dojde k přepnutí stavu LED a vynulování příznaku přerušení.

```
void TIM2_IRQHandler(void)
{
    // preruseni z duvodu preteceni TIM2
    if(((TIM2->SR & TIM_SR_UIF) == TIM_SR_UIF) &&
        ((TIM2->DIER & TIM_DIER_UIE) == TIM_DIER_UIE))
    {
        LED_prepni();
        // vynuluj priznak preruseni
        TIM2->SR &= ~(TIM_SR_UIF);
    }
}
```

Teoreticky je v tomto příkladu podmínka zbytečná, jelikož jiný důvod přerušení není možný. Odstraněním podmínky kód zmenšíme a zrychlíme. Pro úplnost ji však do programu vložme, kdybychom se jej v budoucnu rozhodli rozšířit.

6.1.4 Tvorba programu

Celý program vypadá následovně. Nejprve nastavíme zdroj hodinového signálu. Poté připravíme funkcí LED na blikání. Následuje nastavení časovače a jeho spuštění. Nic víc není potřeba.

```
int main(void)
{
    RCC_init();
    LED_init();
    TIM2_init();
    TIM2_start();
    while(1);
}
```

Na následujícím obrázku je vidět, že doba svitu je skutečně jedna sekunda. Nepřesnost je dána tolerancí vnitřního oscilátoru.

6.1.5 Porovnání

Jelikož jsme v tomto příkladu pracovali s nastavením zdroje systémového hodinového signálu, není v porovnávacím programu s knihovnami odstraněna inicializační funkce. To má velký dopad na výsledky v oblasti velikosti kódu.

Bez optimalizace					
Kmitočet hodinového signálu = 32 MHz	S knihovnami	Bez knihoven	Úspora [%]		
Velikost kódu [kB]	7,33	0,836	88,6		
Obsluha přerušení přetečení [µs]	9,71	2,71	72,1		
Optimalizace velikosti					
Velikost kódu [kB]	4,22	0,707	83,2		
Obsluha přerušení přetečení [µs]	5,17	1,37	73,5		
Optimalizace rychlosti					
Velikost kódu [kB]	4,99	0,668	86,6		
Obsluha přerušení přetečení [µs]	4,79	1,50	68,7		

Všimněme si také velkého rozdílu času obsluhy přerušení. Důvodem je komplexnost knihovní funkce, která dokáže reagovat na jakoukoliv příčinu přerušení.