Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P/2206 USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

PACHPELENEHUE OCKONOUHEX ЭЛЕМЕНТОВ В ПРОЦЕССЕ ЭФИРНОЙ ЭКСТРАКЦИИ

В.М. Вдовенко

Отделение урана и плутония от осколков деления представляет собой трудную и важную задачу прикладной радиохимии. В настоящее темя наиболее перспективными являются, по-видимому, экстракционные схемы переработки облученных материалов. Промышленная переработка руд и концентратов производится главным образом также методами экстракции. Поэтому знание распределения осколков деления и возможных примесей между двумя жидкими фазами имеет первостепенное значение. В докладе Брюса (Т) на Первой международной конференции по мирному использованию этомной энергии в 1955 г. был подробно освещен вопрос о поведении осколков при экстракции урана и плутония трибутилфосфатом и метилизобутилкетоном.

В настоящей работе приводятся некоторые данные о поведении осколков при экстракции урана и плутония диэтиловым и дибутиловым эфиром.

Как известно, подавляющая часть y— и β — активности после наиболее выгодной IOO—дневной выдержки облученного урана принадлежит немногим осколкам (2): цирконию, ниобию, рутению, элементам группы редких земель, барию, стронцию, цезию.

В производственных растворах могут также присутствовать элементы, которые применяются в качестве реактивов и попадают как
примеси с реактивами и как продукты коррозии аппаратуры.

Обычно уран и плутоний экстрагируются эфирами в виде нитратов. В литературе описаны (3,4,5) случаи извлечения некоторых элементов из азотнокислых растворов диэтиловым эфиром. Известно, что коэффициенты распределения большинства элементов между их водными растворами и диэтиловым эфиром невелики, но могут быть повышены добавлением азотной кислоты и высализателя.

25 YEAR RE-REVIEW

Так как уранилнитрат относится к числу элементов, имеющих наибольшие коэффициенты распределения, то его извлечение диэтиловым эфиром использовалось для очистки урана от некоторых элементов (6).

В литературе упоминается (7) о возможности переработки облученного урана методом эфирной экстракции, но более подробные исследования в этом направлении неизвестны. Основой метода является хорошее извлечение шестивалентных урана и плутония органическим растворителем в отличие от весьма малого извлечения большинства примесей и осколков деления.

Нами проводилось изучение поведения различных элементов при экстракции из азотнокислых растворов диэтиловым эфиром путем встрякивания равных объемов приготовленного водного раствора и диэтилового эфира в течение 5 мин. После I2-часового отстаивания отбиралась проба органического раствора, к которой добавлялось некоторое количество дистилированной воды, после чего эфир испарялся. Водный реэкстракт упаривался досуха, сухой остаток прокаливался и взвешивался. Большая точность определений обуславливалась большими — 350 мл — объемами равновесных растворов. Водная фаза в целях лучшего извлечения нитратов содержала высаливатель и имела состав: нитрат аммония 8,0 м, азотная кислота I,4 м, исследуемый нитрат ~ 0,1 м. Во второй серии опытов в качестве высаливателя использовался нитрат алюминия, и раствор имел состав: нитрат алюминия 6,0 м, азотная кислота I,3 м,исследуемый нитрат ~ 0,1 м. Результать опытов приведены в табл. 1.

Таблица І

Коэффициенты распределения некоторых нитратов между диэтиловым эфиром и водными растворами в присутствии высаливателя

Элемент	Коэффициент расп NH₄NO₃	ределения в присутствии $AP(NO_3)_3$
11	2	3
U v	2,3	208
Pu ^w Th	I,5 3,4.10 ⁻³ I,I.10 ⁻³ 3,I.10 ⁻⁴	0,32
Zr	1,1.10-3	0,32 1,1.10 ⁻² 2,1.10 ⁻²
Bi	3,1.10-4	2,1.10-2

1	2	3
Fe Tu	< I • 10 ⁻⁴	1,7.10-3
Ag_	<1.10 ⁻⁴	1,0.10-3
Cu <u>ī</u>	\ \I.IO ⁻²	8,2.10-4
Hg ^{ji}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3,10-4
Cα H∂ <u>π</u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.10-4
Li	3.10-4	
RB	I,4.IO ⁻⁴	
Со	I,4.IO ⁻⁴ <i.io<sup>-4</i.io<sup>	
Ni	() () *	
Ва	(I 10 ⁻¹	
Zn	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Na	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
K	1 (T ₂ T0 ^{-±}	
Mg	⟨I.10 ⁻⁴	
Ca	< I.10-4	
AP	ζ I • I0 ⁻⁴	
La	ζ I.10 ⁻⁴	·
Ls m	⟨I.10 ⁻⁴	
C	⟨I.IO-4	
Sv I	< I.10-4	
Mn II	2,0.10-3	
Be *	2,0.10	
\$m*	< 9.10 ⁻⁴	
Y * "	< 9.10 ⁻⁴	
Y TENT	< 9.10 ⁻⁴	
Nd.	< 9.10 ⁻⁴	
Pu* III	⟨I.10 ⁻³	i

 $^{^{*)}}$ Объем фаз равнялся 3О мл.

Из приведенных данных следует, что коэффициенты распределения большинства нитратов весьма малы. Наибольшие, коэффициенты распределения при использовании в качестве высаливателя нитрата аммония наблюдаются для урана и плутония ($\stackrel{>}{\sim} 2$), меньше для тория $\stackrel{>}{\circ} 3,4.10^{-3}$, циркония $\stackrel{>}{\circ} 1,1.10^3$ и коэффициенты распределения $\stackrel{>}{\circ} \sim 10^{-4}$ отмечены для прочих исследованных нитратов.

Высаливающее действие нитрата алюминия много больше, чем высаливающее действие нитрата аммония; коэффициенты распределения нитратов возрастают на 1-2 порядка.

Полученые данные подтверждаются данными по экстракции дизтиловым эфиром отдельных осколков без носителей, приведенными в табл. 2.0 пыты заключались во встряхивании равных объемов растворителя и исходного водного раствора. Последний готовился добавлением к 3,5 м раствору нитрата кальция определенных количеств азотной кислоты и радиоактивного препарата. В этих опытах наибольшие коэффициенты распределения отмечены для шастивалентного церия и циркония, наименьшие — для цезия и рубидия. Коэффициенты распределения осколков возрастают с повышением кислотности исходного раствора. Как показали опыты, присутствие небольших количеств — порядка 0, I м — уранилнитрата практически не сказывается на величине коэффициентов респределения осколочных элементов.

Извлечение отдельных осколков деления возрастает в присутствии окислителя — бихромата калия. В табл. З приведены коэффициенты распределения церия и рутения при экстракции из раствора состава: уранилнитрат $\sim 0,5$ М, азотная кислота $\sim 0,8$ М, нитрат натрия $\sim 1,2$ М. При добавлении окислителя степень извлечения церия и рутения возрастает примерно на один порядок, тогда как извлечение $\mathbb{Z}_{\mathbb{Z}}$ остается практически тем же. В отсутствие азотной кислоты даже значительное количество высаливателя не способствует заметно извлечению нитратов. Сравнение величины извлечения церия и циркония из их $\sim 0,1$ М растворов в присутствии азотной кислоты или нитрата аммония приводится в табл. 4. Если при концентрации азотной кислоты ~ 4 М наблюдаются коэффициенты распределения порядка $\sim 10^{-2}$, то при концентрациях нитрата аммония ~ 4 М коэффициенты распределения имеют величину менее $\sim 10^{-4}$.

Приведенные данные говорят о том, что для увеличения извлечения урана с хорошей очисткой выгоднее использовать добавление неизвле-каемых нитратов, чем азотной кислоты. Поэтому для дальнейшей работы использовались исходные растворы, содержащие большие количества высаливателей и небольшие количества азотной кислоты.

Была исследована очистка урана и плутония при проведении ряда последовательных операций по так называемому восстановительному варианту. Исходный раствор имел состав: уранилнитрат — 0,42 М, нитрат аммония 8,7 М, азотная кислота 1,5 М, азотнокислый

Коэффициенты распределения осколочных элементов между диэтиловым эфиром и водным раствором с высаливателем при разных кислотностях исходного раствора

	8 8	I.10-3	I.10 ⁻³	2,10-3	3.10-3	6.10-3		1.10 ⁻²		
	^{1}Z	4.IO ⁻³	I.10-2	I.10-2	3.10-2	7.10-2		2.10-2		
	(e+4	3.10-2		8,10-2		I-10-I	3.10-I	<u> </u>		
	n <u>च</u>	I.10-4		3.10-4		4.IO-4	8.10-4	I.10-3		
еделения	Ā	I.10-4	2.10-4	4.IO-4			I.10 ⁻³			·
Коэффициенты распределения	ره + ء	7.IO ⁻⁴		4.IO-4		9.IO ⁻³	1.10-2			
но эффитм в	La	I.IO-4	I.10-4	2.10-4		3,10-4		4.IO-4		
	24	3.10-4		8.10-4		I.10-3		I.10-3		
	RB	2,10-5		3.IO-5	6.10-5	I.10-4	2.10-4 1.10-4		2,10-4	
	(S	2-01-2	3.10-5	4.10-5	5.10-5	9.10 ⁻⁵	2.10 ⁻⁴ 6.10 ⁻⁵	7.IO ⁻⁵	8.10-5	I.10-4
Концентрация язотной ки-	слоты в исход- ном растворем	0,32	0,65	66,0	£8,1	1,68	2,03 2,40		3,15	3,58

Таблица З

Коэффициенты распределения некоторых осколочных элементов между диэтиловым эфиром и водным раствором в присутствии бихромата калия и без него

Концентрация бихро- мата калия, М		Коэффициенты ра	оспределения
MUTO 16031M11; IN	('e	Ru	$\mathbf{z}_{\mathbf{z}}$
0,03	9.10-3	1.5.10 ⁻¹	10-2
отсутствует	3.10-4	1.10-2	10-2

Таблица 4

Коэффициенты распределения церия и циркония при экстракции диэтиловым эфиром в присутствии азотной кислоты или нитрата аммония

Концентра- ция кисло-	Концентра- ция нитра-	Коэ	ффициенты ра	эспределения
ты в исход- ном раство- ре, М	M pactbo- HNS B NC-		Ce ⁺⁴	Zı
7,0		I,4.10 ⁻¹	_	3,4.10 ⁻²
5,6		6,4.10 ⁻²	1,0	-
3,5		2,5.IO ⁻²	0,7	6,9.10-4
Ι,4		1.10-2	0,1	1,6.10-4
0,14		5,10 ⁻³		
O		IO ⁻⁴		<1,5.10 ⁻⁴
	4 , I	10 ⁻⁴		< 10 ⁻⁴
	I,6	10-4		< 10 ⁻⁴
	O,4	10-4		< 10-4

гидразин О, I М. Из раствора, в котором плутоний находился в восстановленном состоянии, 6-кратным объемом диэтилового эфира извлекался уран. К оставшемуся водному раствору с практически тем же составом осколочной активности добавлялся бихромат калия для разрушения восстановителя и окисления плутония. Затем аналогичным образом извлекался плутоний.

Коэффициент очистки плутония от β - активности в результате проведения окислительной экстракции имел величину 90, от γ - активности - 50. Радиохимический состав осколочной активности в исходном водном растворе и эфирных растворах урана и плутония приведен в табл. 5.

Изучалась также очистка урана и плутония по так называемому окислительному варианту, т.е. путем совместного извлечения урана и шестивалентного плутония и последущего их разделения. Экстракция велась из раствора состава: уранилнитрат I,25 M, азотная кислота 2,0 M. Полученный эфирный раствор урана и плутония пропускался через восстановительный раствор состава: нитрат аммония 8,0 M, нитрат гидразина 0,2 M. Всего проводилось три последовательных цикла очистки плутония и коэффициенты очистки плутония от 7- активности составили соответственно ~ 40, ~ 40 и~20.

Аналогичные опыты проводились с использованием в качестве исходных расторов с высаливателем — нитратом натрия. Примерный радиохимический состав исходного раствора, эфирного раствора после восстановительной реэкстракции плутония и водного плутониевого реэкстракта приведен в табл.6. Из этих данных, а также из данных табл.5 видно, что подавляющая часть осколочной активности органической фазы принадлежит цирконию и рутению.

Очистка органической фазы повышается при промывке ее слабокислыми водными растворами высаливаетля. Результаты исследований показывают эффективность метода экстракции диэтиловым эфиром для целей очистки урана и плутония от осколков деления и от примесей. Подобные исследования проводились с использованием в качестве экстрагента дибутилового эфира с четыреххлористым угле родом (15об.%) Было изучено поведение осколков деления при экстракции урана и плутония указанной смесью.

Таблица 5

Радиохимический состав осколочной активности при экстракционном выделении урана и плутония с помощью диэтилового эфира по восстановительному варианту

	Радио	кими ческий	состав акти	вности в %	от су	миарной
Элемент	Искодного рас- твора		Эфирногс урана пос новительн ции		Эфирного ра- створа плуто- ния после окислитель- ной экстрак- ции	
	no B	no y	no B	nox	no ß	no X
Zi Nb Ru Ce UX Ba Si Y	44 0,6 4,8 27 0,2 I,0 I7 I,0	89 6,0 3,8 I,4 2,I I,0	7I 0,I2 3,8 I5 0,2 0,6 4,9 2,I	93 3,5 3,0 0,5 2,3 0,8	28 3,0 35 28 0,2 - 3,2 3,5	80 I,0 24 0,45 I,0

Таблица 6

Примерный радиохимический состав осколочной активности при проведении ряда последовательных операций выделения и очистки урана и плутония путем экстракции диэтиловым эфиром

	Рад	NWNXON	ческий со	став ал	ктивности	В % (от сумм	арной
Элемент	Исходно- го рас- твора		Эфирного ра- створа урана и плутония после окисли- тельной эк- стракции		Эфирного раствора урана пос- ле восста- новительной резкстракции		Водного реэкстрак- та плуто- ния	
	B	8	B	ď	B	8	ß	8
1	2	3	4	5	6	7	8	9
NB	20	50	I	5	I	30	6	20

	2	3	4	5	6	7	8	9
$Z\tau$	20	40	I5	45	15	20	20	50
Ru	6	4	80	50	80	50	7C	30
P. 3. Sr	55	5	5	3	5	I	5	0,1
50	15	0	0,1	0	0,1	0	0,1	Ó

Таблица 7

Зависимость коэффициента очистки урана от у — активности при экстракции смесью дибутилового эфира с четыреххлористым углеродом от кислотности исходного раствора

Концентрация азотной кисло- ты в исходном растворе, М	Коэффициент очистки от У-активности на едини- цу веса урана
O,25	2000
O,5	400
I,0	100

Так как такая смесь обладает сравнительно слабой экстракционной способностью, то ее применение требует использования высококонцентрированных по нитратам исходных растворов.

Исследовалась экстракция I2-кратным объемом указанного растворителя из водного раствора, насыщенного по уранилнитрату (ЗМ), при которой извлекается около 35% урана. Величина очистки от осколков деления сильно зависит от кислотности исходного раствора, как видно из табл.7. Поэтому использование исходных растворов с концептрацией азотной кислоты свыше I М невыгодно. Полное извлечение урана с коэффициентом очистки от у- активности I30 достигается экстракцией из раствора с высаливателем состава: нитрат кальция 5 М, уранилнитрат 0,8 М, азотная кислота 0,5 М, бихромат калия 0,03 М. Результаты радиохимического анализа исходного раствора из органических растворов, полученных экстракцией как в присутствии высаливателя, так и без него, приведены в табл. 8. Из нее следует, что основным осколком, переходящим в органическую фазу, является цирконий.

Для сокращения объема сбросного активного раствора высаливателя ставились општы по его многократному использованию и влиянию все увеличивающейся активности исходного раствора на очистку. После каждой экстрокции высаливатель — нитрат кальция, содержащий почти всю суммарную активность исходного раствора, поступал на приготовление исходного раствора для следующей экстракции. Коэффициенты очистки от у — активности при 5 последовательных экстракциях, как видно из табл.9, остаются практически постоянными.

Другим способом сокращения количества высаливателя является продварительное извлечение части урана и плутония из растворов без высаливателя, насыщенных уранилнитратом. Проводился 5-цикличный процесс, каждый цикл которого состоял из 3 последовательных экстракций из раствора без высаливателя с упаркой оставшегося воднего раствора после экстракции.

После 3-й экстракции оставшийся водный раствор насыщался нитратом кальция, после чего производилось уже полное извлечение урана и плутония. Сбросный раствор высаливателя, содержащий почти всю суммарную исходную активность, использовался для приготовления раствора к 4-й экстракции следующего цикла.

Суммарный коэффициент очистки от у- активности по всему циклу имел величину 100. В табл. 10 приводятся коэффициенты очистки урана от у- активности при 4-й экстракции (в присутствии высаливателя) каждого цикла. Наблюдается последовательное возрастание коэффициента очистки, что, по-видимому, объясняется уменьшением доли хорошо извлекаемых компонент суммарной осколочной активности, так как с оборотным высаливателем следуют наименее извлекаемые осколки.

Полученный в результате такой экстракции органический раствор промывался 5 М раствором нитрата кальция, что давало дополнительный коэффициент очистки, равный 7. Восстановительная реэкстракция плутония дают соответственно коэффициенты очистки от χ — активности 4 и 4. Очистка может быть повышена, если вместо раствора нитрата кальция использовать для проимыем разновесный водный раствор состава: нитрат кальция 5,1М, уранилнитрат 0,4 М, бихромат калия 0,05 М. Коэффициент очистки при первой промывке имеет величину 30-40, при второй 3-4, при третьей 1,5-3,0 и т.д.

Проведение свыше 5-7 промывок неэффективно.

Таблица 8

Радиохимический состав осколочной активности при проведении окислительной экстракции смесью дибутилового эфира с четырех-хлористым углеродом из растворов, насищенных уранилнитратом, и из растворов с высаливателем

Элемент	Радиохимический состав активности в % от суммарной						
	Исходного	раствора	Эфирного полученн экстракц твора бе вагеля	Эфирного ра- створа, полу-			
	β	8	B	8	B y		
NG Zr Ru P.3. Cs	I3 I8 5 55 I,0 I5	45 32 4,2 2,3 I,5	0 62 6,0 4,0 0,2 0,1	0,3 0,2	0 4,0 83 85 3,0 2,0 3,0 0,I I,0 0,5		

Таблица 9

Коэффициенты очистки урана от **у** — активности при 5 последовательных экстракциях смесью дибутилового эфира с четыреххлористым углеродом с применением оборотного высаливателя

ж экстракци и	Суммарный коэффициент очистки урана от У- активности		
1	34		
2	31		
3	32		
4	33		
5	25		

Таблица IO

Коэффициенты очистки урана от у— активности в 5-цикличном процессе извлечения урана с применением оборотного высаливателя

№ цикла	Коэффициент очистки при 4-й экстракции (с высаливателем) на единицу веса урана
<i>x</i>	1200
2	3300
3	11300
4	38000
5	21000

Потученные данные говорят о том, что метод экстракции урана и плутония диэтиловым эфиром или смесью дибутилового эфира с четыреххлористым угле родом может быть применен для отделения этих элементов от осколков деления. Наиболее полно проходит отделение урана и плутония от цезия и большинства редкоземельных элементов. Наиболее трудно отделимыми от урана и плутония элементами являются цирконий и рутений.

Литература

- 1. Брюс. Доклад на женевской конференции № 719 (1955).
- 2. Fletcher J.M.Prog. Nucl. Chem. Ser. III, 1, 4, 1956
- 3. Wells R.C. J. Wash. Acad. Sci., 1930, 20,146
- 4. Bachelet M., Cheylan E.J. Chem. Phys., 1947, 44, 245
- 5. Bock R., Bock E.Z. anorg. allg. Chem., 1950, 263, 196
- 6. Hillebrand W.F. U.S.Geol.Surv.Bull., 1891, 78,47
- 7. Rollier M. Gazz.chim.ital., 1954, 84, 649