

Hierarchical Model of Corruption: Game-Theoretic Approach

Author: Orlov I.M., student, SPbSU Advisor: Kumacheva S.Sh., Ph.D., SPbSU

Research Object & Aim

Research object is corruption (embezzlement and bribery) within a hierarchy.

Aim of this study is to analyze corruption in hierarchical context and find conditions under which it is minimal.

Research Objectives

- 1. Study the relevant literature.
- 2. Create and study the hierarchical model of corruption (both non-cooperative and cooperative cases).
- 3. Write a code simulation for the model.
- 4. Solve the particular case of the model.
- 5. Analyze the solution.
- 6. Find the conditions for corruption minimization.

Literature review

N₂	Author(s)	Year	Problem	№ of players	Form	Solution	
1	Spengler	2014	Client-Off-Insp	3 Extensive		MNE	
2	Attanasi et al.	2016	Donor-Inter-Recip 3 Extensive		Experiment		
3	Shenje	2016	Briber-Bribee 2 Normal		MNE		
4	Song et al.	2016	Comm-Dep	2	Normal	MNE	
5	Kumacheva	2013	Tax evasion & bribery: adm, insp, taxpayers	1+1+n	Hierarchical, multi-stage	Probabilistic	
6	Vasin & Panova	2000	Tax evasion & bribery: center, auditor, taxpayers	1+1+n	Hierarchical, multi-stage	Probabilistic cut-off rule	

Novelty of the Model – Less Homogenous Hierarchy

Stage 1 – Embezzlement

Possible Actions of Officials on Different Levels

$$A_{n,i} \in \{B, NB, E\} \quad n \neq m-1, m \ i = 0 \dots N_n - 1$$

$$A_{m-1,i} \in \{B, NB\}$$
 $i = 0 \dots N_{m-1} - 1$

$$A_{m,0} \in \emptyset$$

where B – bribe;

NB – not bribe;

E – expose boss.

$$A_I \in \{Acc, Rej\}$$

where Acc – accept the bribe; Rej – reject the bribe.

Stage 2 – Inspection Outcomes' Payoffs

End	$U_{j,k}$	$U_{1,i}$	$U_I)$
1	$W_{j,k} + S_{j,k}$	$W_{1,i} + S_{1,i}$	W_I
2	$W_{j,k} + S_{j,k}$	$W_{1,i} + \kappa_{1,i}S_{1,i} - F(W_{1,i}, S_{1,i})$	$W_I + R(S_{1,i}) - Ci_1$
3	$W_{j,k} + S_{j,k}$	$ W_{1,i} + \kappa_{1,i}S_{1,i} - (F(W_{1,i}, S_{1,i}) + B_{1,i} + Fb(B_{1,i})) $	$W_I + R(S_{1,i}) - Ci_1$
4	$W_{j,k} + S_{j,k}$	$W_{1,i} + S_{1,i} - B_{1,i}$	$W_I + B_{1,i} - Ci_1 - Cu(S_{1,i})$
5	$W_{j,k} + \kappa_{j,k} S_{j,k} - F(W_{j,k}, S_{j,k})$	$W_{1,i} + \kappa_{1,i}S_{1,i} - \theta_{1,i}F(W_{1,i}, S_{1,i})$	$W_I - (Ci_1 + Ci_j) + R(S_{1,i}) + R(S_{j,k})$
6	$ W_{j,k} + \kappa_{j,k}S_{j,k} - (F(W_{j,k}, S_{j,k}) + B_{j,k} + Fb(B_{j,k})) $	$W_{1,i} + \kappa_{1,i}S_{1,i} - \theta_{1,i}F(W_{1,i}, S_{1,i})$	$W_I - (Ci_1 + Ci_j) + R(S_{1,i}) + R(S_{j,k})$
7	$W_{j,k} + S_{j,k} - B_{j,k}$	$W_{1,i} + S_{1,i}$	$ W_I + B_{j,k} - (Ci_1 + Ci_j + Cu(S_{1,i}) + Cu(S_{j,k})) $

End	Description
1	No inspection.
2	Subordinate is inspected, no bribe.
3	Subordinate is inspected, bribe is rejected.
4	Subordinate is inspected, bribe is accepted.
5	Boss is exposed by the subordinate, no bribe.
6	Boss is exposed by the subordinate, bribe is rejected.
7	Boss is exposed by the subordinate, bribe is accepted.

Formulas for optimal stealing and probability of inspection

$$S_{n,i}^* = \frac{G_n - M_n}{N_n}$$

$$S_n = \sum_{i=0}^{N_n - 1} S_{n,i}$$

$$\alpha_n = \frac{\sum_{j=n}^{m-1} S_j}{M_m}$$

$$\alpha_n^{eff} = \alpha_n \prod_{k=n+1}^m (1 - \alpha_k)$$

$$S_m = 0 \to \alpha_m^{eff} = \alpha_m = 0$$

$$\alpha_{n,i} = \frac{\alpha_n}{N_n} \quad \alpha_{n,i}^{eff} = \frac{\alpha_n^{eff}}{N_n}$$

where $S_{n,i}^*$ – optimal stealing of official *i* from level *n*;

 M_n – cut-off value of level n;

 G_n – amount of money entering level n;

 N_n – amount of officials on level n;

 S_n – total stealing on level n;

 M_m – total amount of money given;

 α_n – probability of inspecting level n;

 α_n^{eff} – effective probability of inspecting level n;

 $\alpha_{n,i}$ – probability of inspecting official *i* from level *n*.

 $\alpha_{n,i}^{eff}$ – effective probability of inspecting official *i* from level *n*.

Hierarchy of Officials in Example

Values of officials' characteristics

$O_{n,i}$	$W_{n,i}$	$S_{n,i}$	$\kappa_{n,i}$	$\theta_{n,i}$	$\alpha_{n,i}$	$B_{n,i}$	$F(S_{n,i})$	$Fb(B_{n,i})$
3, i	90,000	500,000	0.600	_	0.167	150,000	1,620,000	5,625,000
2, i	40,000	125,000	0.300	0.010	0.208	62,500	720,000	2,812,500
1, i	40,000	125,000	0.300	0.010	0.250	62,500	720,000	2,812,500

Values of Inspector's characteristics

W_{I}	$Ci_{\{1,2\}}$	Ci_3	$R(S_{\{1,2\},i})$	$R(S_{3,i})$	$Cu(S_{\{1,2\},i})$	$Cu(S_{3,i})$
70,000	10,000	25,000	40,000	75,000	5,000	12,500

Results of simulation for the initial settings

	OptOpt_EB	OptOpt_BB	NoneOpt_NBB	OptNone_BNB	NoneNone_NBNB
(3,0)	523,136	564,934	565,055	90,000	90,000
(3,1)	$535,\!972$	$565,\!004$	564,835	90,000	90,000
(2,0)	165,000	$156,\!277$	40,000	162,407	40,000
(2,1)	165,000	$156,\!294$	40,000	162,405	40,000
(1,0)	165,000	158,935	40,000	160,187	40,000
(1,1)	165,000	158,975	40,000	160,240	40,000
I	156,602	131,233	105,137	81,219	70,000
State	1,090,000	1,090,000	1,590,000	2,090,000	2,590,000
LoC	0.500	0.500	0.333	0.167	0.000

Nash-Like Equilibrium

$$NLE: (S_{n,i}^*, B_{n,i}^*, A_{n,i}^*) = argmax\{U_{n,i}(S_{n,i}, B_{n,i}, A_{n,i}) \mid B_{n,i} \ge B_{n,i}^v\}$$

$$ss_{\{1,2\},i} = \{(0,0,NB); (S_{\{1,2\},i}^*, 0, E); (S_{\{1,2\},i}^*, B_{\{1,2\},i}^*, B); \dots\}$$

$$ss_{3,i} = \{(0,0,NB); (S_{3,i}^*, B_{3,i}^*, B); \dots\}$$

$$NLE = \{ (S_{1,i}^*, 0, E); (S_{2,i}^*, 0, E); (S_{3,i}^*, B_{3,i}^*, B) \} \ i = 0,1$$

Corruption Minimization (1)

$$U_{I}(Acc) \geq U_{I}(Rej) \to B_{n,i} - \sum_{(l,j)\in T} Cu(S_{l,j}) \geq \sum_{(l,j)\in T} R_{I}(S_{l,j})$$

$$B_{n,i} - \sum_{(l,j)\in T} Cu(S_{l,j}) \leq \sum_{(l,j)\in T} R_{I}(S_{l,j})$$

$$\sum_{(l,j)\in T} [R(S_{l,j}) + Cu(S_{l,j})] \geq B_{n,i}$$

Corruption Minimization (2)

$$U_{n,i}(S_{n,i}^*, B_{n,i}^*, B) - U_{n,i}(0, 0, NB) = S_{n,i}^* - \alpha_{n,i}^+ B_{n,i}^* \le 0$$

$$\alpha_{n,i}^+ = \alpha_{n,i}^{eff} + \sum_{(l,j) \in SE(n,i)} \alpha_{l,j}^+,$$

where
$$SE(n,i) = \{(v,p)\}: (v,p) \in subs(n,i) \& A_{v,p} = E$$

Corruption Minimization (3)

$$\sum_{(l,j)\in T} [R(S_{l,j}) + Cu(S_{l,j})] \ge \frac{S_{n,i}^*}{\alpha_{n,i}^+} \,\forall T,$$

that must be satisfied in the best case for $T = \{O_{n,i}\}$, in the worst case –

$$T = \{O_{n,i}, O_{j,k}, O_{l,p}, \dots\} O_{j,k} \in SE(n,i); O_{l,p} \in SE(j,k)$$

Formula for the Optimal Bribe

In order to be accepted, the bribe for inspected chain T must be:

$$B_{optT} > \sum_{(l,j) \in T} [R(S_{l,j}) + Cu(S_{l,j})]$$

$$B_{optT}(\zeta) = \sum_{(l,j)\in T} [R(S_{l,j}) + Cu(S_{l,j})] + \zeta$$

For the corruption minimization, it must hold that

$$B_{optT}(\zeta) \ge \frac{S_{n,i}^*}{\alpha_{n,i}^+}$$

All conclusions valid for $\zeta = x > 0$ are valid for any $\zeta > x$.

Chains of Officials in Example

Chains: $T_s = \{O_{2,i}\}; \{O_{1,i}\}$ $T_b = \{O_{3,i}\}$ $T_{ch} = \{O_{2,i}, O_{3,0}\}; \{O_{1,i}, O_{3,1}\}$ G₄=3000000 M₄=3000000 3 G₃=3000000 3,0 3,1 M₃=2000000 2 G₂=1000000 G₁=1000000 2,0 2,1 1,0 $M_2 = 750000$ $M_1 = 750000$ Contractor 0 Contractor 1 Contractor 2 Contractor 3

Corruption Minimization Settings

1,000,000.0

2,500,000.0

3,080,000.0

8,750,000.0

3,000,000.0

5,750,000.0

80,000.0

3.000,000.0

b

60,000.0

2,000,000.0

20,000.0

1.000,000.0

2,000,000.0

3,250,000.0

3,000,000.0

3,000,000.0

Corruption Minimization Effect

AVG	def	s1	s2	s3	$def \rightarrow s1$	$def \rightarrow s2$	$def \rightarrow s3$
(3, 0)	143,336.69	0.00	0.00	0.00	-100.00 %	-100.00 %	-100.00 %
(3, 1)	147,691.36	0.00	0.00	0.00	-100.00 %	-100.00 %	-100.00 %
(2, 0)	109,345.65	80,560.62	80,554.08	0.00	-26.32~%	-26.33 %	-100.00 %
(2, 1)	109,236.93	$80,\!548.62$	80,554.81	0.00	-26.26 %	-26.26 $\%$	-100.00 %
(1, 0)	96,252.46	78,231.37	78,253.14	0.00	-18.72 %	-18.70 %	-100.00 %
(1, 1)	96,099.14	$78,\!242.55$	78,230.66	0.00	-18.58 %	-18.59 %	-100.00 %
Inspector	36,663.69	11,026.42	11,018.90	0.00	-69.93 %	-69.95 %	-100.00 %

Corruption Minimization Effect Chart

Cooperative Element (1)

Cooperative Element (2)

$$C = \bigcup_{(n,i)\in C} \{(n,i)\} = \bigcup_{n\in C} C_n \quad N_C = |C|$$

$$C_j = \bigcup_{(j,i)\in C} \{(j,i)\} \quad N_{C,j} = \sum_{(j,i)\in C} 1 = |C_j| \le N_j$$

$$RU_{n,i}^C = U_{n,i}(S_{n,i}, 0, BC) - W_{n,i}$$

$$S_{n,i} > 0 \& A_{n,i} = BC \quad \forall (n,i) \in C$$

$$\alpha_C B_C$$

$$S_C = \sum_{(n,i)\in C} S_{n,i}$$

$$\alpha_C = \bigcup_{(n,i)\in C} \alpha_{n,i}^+$$

$$\alpha_C = (\alpha_{ch}; \alpha_b; \alpha_s)$$

$$B_C = (B_{ch}; B_b; B_s)^T$$

$$\alpha_C B_C = \alpha_{ch} B_{ch} + \alpha_b B_b + \alpha_s B_s$$

Stability

$$I(v) = \{ X \in \mathbb{R}^{N_C} \mid X(C) = v(C), \quad X_{n,i} \ge v(\{(n,i)\}) \ \forall (n,i) \in C \}$$

$$C(v) = \{ X \in \mathbb{R}^{N_C} \mid X(C) = v(C), \quad X(S) \ge v(S) \ \forall S \subset C \}$$

Preanalysis

Rule	E	Q	S	S
Coalition	I	\mathbf{C}	I	\mathbf{C}
1B1SL	MB	MB	MB	MB
1B1SR	MB	MB	MB	MB
BB1SL	MB	MB	MB	MB
BB1SR	MB	MB	MB	MB
1B2SL	MB	MB	MB	MB
1B2SR	MB	MB	MB	MB
2SBBL	MB	MB	MB	MB
2SBBR	MB	MB	MB	MB
1SBB1S	MB	MB	MB	MB
2SBB1SL	MB	MB	MB	MB
2SBB1SR	MB	MB	MB	MB
GC	MB	MB	MB	MB

$$EQU_{n,i}^C = \frac{S_C - \alpha_C B_C}{N_C} \quad \forall (n,i) \in C$$

$$SSU_{n,i}^{C} = S_{n,i} - \begin{cases} \frac{\alpha_{C}B_{C} + |C \cap \bigcup_{(n,i) \notin C_{bl}} \{(n,i)\}| \cdot \xi}{N_{C,bl}} & \text{if } n = bl \\ -\xi & \text{otherwise} \end{cases}$$
 $\forall (n,i) \in C$

Setting	d	ef	s.	1	sź	2	s.	3	z	1	z.	3
Coalition \ Rule	EQ	SS	EQ	SS	EQ	SS	EQ	SS	EQ	SS	EQ	SS
{(3,0),(2,0)}	N	N	N	N	N	N	N	N	N	N	N	N
{(3,0),(2,1)}	N	N	N	N	N	N	N	N	N	N	N	Ν
{(3,1),(1,0)}	N	N	N	N	N	N	N	N	N	N	N	N
{(3,1),(1,1)}	N	N	N	Ν	N	N	N	N	N	N	N	N
{(3,0),(2,0),(3,1)}	N	N	N	Ν	N	N	N	N	N	N	N	N
{(3,0),(2,1),(3,1)}	N	N	N	Ν	N	N	N	N	N	N	N	N
{(3,1),(1,0),(3,0)}	N	N	N	Ν	N	N	N	N	N	N	N	N
{(3,1),(1,1),(3,0)}	N	N	N	Ν	N	N	N	N	N	Ν	N	Ν
{(3,0),(2,0),(2,1)}	N	N	N	Ν	N	N	N	N	N	С	N	C
{(3,1),(1,0),(1,1)}	N	N	N	Ν	N	N	<u>N</u>	N	N	N	N	Ν
{(3,0),(2,0),(2,1),(3,1)}	N	С	N	С	N	N	N	N	N	С	N	C
{(3,1),(1,0),(1,1),(3,0)}	N	N	N	Ν	N	N	<u>N</u>	N	N	N	N	Ν
{(2,0),(3,0),(3,1),(1,0)}	N	N	N	Ν	N	N	N	N	N	N	N	Ν
{(2,0),(3,0),(3,1),(1,1)}	N	N	N	Ν	N	N	N	N	N	N	N	Ν
{(2,1),(3,0),(3,1),(1,0)}	N	N	N	Ν	N	N	N	N	N	N	N	Ν
{(2,1),(3,0),(3,1),(1,1)}	N	N	N	Ν	N	N	N	N	N	N	N	Ν
{(3,0),(2,0),(2,1),(3,1),(1,0)}	N	С	С	С	N	N	N	N	N	С	N	С
{(3,0),(2,0),(2,1),(3,1),(1,1)}	N	С	С	С	N	N	N	N	N	С	N	С
{(3,1),(1,0),(1,1),(3,0),(2,0)}	N	С	N	C	N	N	N	N	N	С	N	С
{(3,1),(1,0),(1,1),(3,0),(2,1)}	N	С	N	С	N	N	N	N	N	С	N	С
{(2,0),(2,1),(3,0),(3,1),(1,0),(1,1)}	N	С	С	С	N	N	N	N	N	С	N	С

Myerson/Theirson

$$v^g(S) = \sum_{C \in S|_g} v(C)$$

$$M_{n,i}(v) = \sum_{S \subseteq H \setminus \{(n,i)\}} \frac{|S|!(|H|-1-|S|)!}{|H|!} [v(S \cup \{(n,i)\}) - v(S)],$$

where H – hierarchy, set of all officials.

$$T_{n,i}(v) = M_{n,i}(v^*) = \sum_{S \subseteq H \setminus \{(n,i)\}} \frac{|S|!(|H| - 1 - |S|)!}{|H|!} [v^*(S \cup \{(n,i)\}) - v^*(S)]$$

Myerson/Theirson Results

	•											
Setting	def		s	1	S.	2	s3					
О	My > BST	$\mathrm{Th}>\mathrm{BST}$										
(3, 0)	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE				
(3, 1)	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE				
(2, 0)	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE				
(2, 1)	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE				
(1, 0)	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE				
(1, 1)	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE				
Conv_fail	274	1044	306	982	308	888	348	1028				

Zetting	z	1	Z	3	
О	My > BST	$\mathrm{Th}>\mathrm{BST}$	My > BST	$\mathrm{Th}>\mathrm{BST}$	
(3, 0)	TRUE	TRUE	TRUE	TRUE	
(3, 1)	FALSE	TRUE	FALSE	TRUE	
(2, 0)	TRUE	FALSE	TRUE	FALSE	
(2, 1)	TRUE	FALSE	TRUE	FALSE	
(1, 0)	TRUE	FALSE	TRUE	FALSE	
(1, 1)	TRUE	FALSE	TRUE	FALSE	
Conv_fail	344	856	290	910	

Results

- 1. Literature: hierarchical context is not often analyzed.
- 2. Hierarchical non-cooperative and cooperative models of corruption were built.
- 3. Code simulations for both models were written.
- 4. The equilibrium situations of particular cases of models were found.
- 5. Equilibriums were analyzed: non-cooperative is pessimistic, cooperative is too (but somewhat less).
- 6. The corruption minimization conditions were found: non-cooperative works for cooperative.

Approbation

The different parts of this work were presented at CPS 2020 and MTУиΠ-2020 and published in its respective proceedings.

УДК 519.83 Орлов И. М.

> Пример решения коррупционной игры с иерархической схемой

Рекомендовано к публикации старшим преподавателем Кумачевой С. III. Материалы 13-й мультиконференции по проблемам управления, 2020 г.

И. М. ОРЛОВ, С. Ш. КУМАЧЕВА (СПбГУ,Санкт-Петербург)

ИЕРАРХИЧЕСКАЯ МОДЕЛЬ КОРРУПЦИИ: ТЕОРЕТИКО-ИГРОВОЙ ПОДХОД

В работе представлена модель хищения и взяточничества, выполненная в форме субиерархической игры, построен и решен частный пример и предложены условия, минимизирующие коррупцию.

It was also presented at the Fourteenth International Conference on Game Theory and Management (GTM2020) and CPS 2021 and will be published in its respective proceedings.

References

- 1. Spengler, D. Detection and Deterrence in the Economics of Corruption: a Game Theoretic Analysis and some Experimental Evidence. University of York: York (2014).
- 2. Attanasi, G., Rimbaud, C. & Villeval, M. Embezzlement and guilt aversion. IZA Discussion Papers 11956. Bonn: Institute of Labor Economics (2016).
- 3. Shenje, T. Investigating the mechanism of corruption and bribery behavior: a game-theoretical methodology. Dynamic Research Journals. Journal of Economics and Finance, Vol. 1, pp. 1–6 (2016).
- 4. Song, Y., Zhu, M. & Wang, H. Game-theoretic approach for anticorruption policy between investigating committee and inspected departments in China. International Conference on Applied Mathematics, Simulation and Modelling, pp. 452–455. Atlantis Press: Beijing (2016).
- 5. Kumacheva, S. Sh. The Strategy of Tax Control in Conditions of Possible Mistakes and Corruption of Inspectors. Contributions to Game Theory and Management (Petrosyan, L. A., Zenkevich, N. A. eds), Vol. 6, pp. 264–273. St. Petersburg University: St. Petersburg (2013).
- 6. Vasin, A., Panova, E. Tax Collection and Corruption in Fiscal Bodies. Economics Education and Research Consortium Working Paper Series, No. 99/10 (2000).

Thank you for your time and attention, I am ready to answer your questions

Results of Simulation

- The model was simulated 500,000 times for 5 different pairs of strategies.
- The equilibrium is Expose / Bribe with Optimal / Optimal stealing.
- The resulting situation is pessimistic: corruption is not punished, but multiplied.

Results of Corruption Minimization

- The model was simulated 500,000 times for 5 different pairs of strategies for 4 different settings.
- There are situations (settings and bribes) in which not stealing is the most beneficial action for $O_{3,i}$.
- The changes in the settings reduce corruption.
- It is possible to eliminate the corruption in the model, but the means are extreme.
- High-level officials need some mechanism of protection from subordinates exposing them.

Mild Corruption Minimization Settings

Chains:
$$T_{12} = \{O_{2,i}\}; \{O_{1,i}\}$$
 $T_3 = \{O_{3,i}\}$ $T_C = \{O_{2,i}, O_{3,0}\}; \{O_{1,i}, O_{3,1}\}$
Let us limit $B_{suff-X} \leq S_{n,i}^*$, then with default we have 4 *zettings*:

Zetting	$R(S_{\{1,2\},i})$	$Cu(S_{\{1,2\},i})$	$R(S_{3,i})$	$Cu(S_{3,i})$	$B_{suff-ch}$	B_{suff-b}	B_{suff-s}	Τ	B_{optT}
Default	40000	5000	75000	11250	131251	86251	45001	-	-
1	70000	35000	270000	124999	500000	395000	105001	ch	500000
2	0	0	300000	199999	500000	500000	1	b	500000
3	85000	39999	250000	125000	500000	375001	125000	S	125000

Zetting 2 is unrealistic (no reward and cover-up cost for "small" stealing).

Mild Corruption Minimization Effect

AVG	def	z1	z3	$def \rightarrow z1$	$def \rightarrow z3$	$z1 \rightarrow z3$
(3, 0)	143,336.69	69,432.38	69,307.13	-51.56 %	-51.65 %	-0.18 %
(3, 1)	147,691.36	79,857.00	79,864.25	-45.93 %	-45.92~%	0.01~%
(2, 0)	109,345.65	76,485.57	76,168.38	-30.05 %	-30.34 %	-0.41 %
(2, 1)	109,236.93	76,497.06	76,163.28	-29.97 %	-30.28 %	-0.44 %
(1, 0)	96,252.46	$75,\!106.62$	74,542.06	-21.97 %	-22.56 %	-0.75 %
(1, 1)	96,099.14	75,127.30	74,531.44	-21.82 %	-22.44 %	-0.79 %
Inspector	36,663.69	70,989.22	71,822.14	93.62~%	95.89~%	1.17~%

Mild Corruption Minimization Effect Chart

Results of Mild Corruption Minimization

- The model was simulated 500,000 times for 5 different pairs of strategies for 3 different zettings.
- There are situations (zettings and bribes) in which not stealing is the most beneficial action for $O_{3,i}$.
- The zettings reduce corruption, decrease revenue for $O_{n,i}$ and weakly increase for I.
- Mild Corruption Minimization is less extreme, effective, but less so than Corruption Minimization.
- High-level officials need some mechanism of protection from subordinates exposing them.

Further Research

- Analysis of κ and θ , measuring them in real world.
- Real-world experiments.
- Analysis of fine functions' effect.
- Larger hierarchies.
- Repeater game mechanism: orphans and punishment.
- Imperfect inspection.
- Changing the inspection direction.

Spengler D. Detection and Deterrence in the Economics of Corruption: a Game Theoretic Analysis and some Experimental Evidence

Attanasi et al. Embezzlement and Guilt Aversion

Figure 1: The Embezzlement Mini-Game(s)

Song et al. Game-theoretic Approach for Anti-corruption Policy Between Investigating Committee and Inspected Departments in China

TABLE I. GAME ANALYSIS MODEL OF ANTI-CORRUPTION

		Department being inspected						
		Corruption	Non-corruption					
Committee	Investigation	R-C,-R	- C, 0					
investigating corruption	Non- investigation	– R, R	0, – R					

Shenje T. Investigating the Mechanism of Corruption and Bribery Behavior: A Game-Theoretical Methodology

Table 1: Payoff Matrix of the Game between Briber and Bribee

A B	Bribery	No Bribery
Bribery	(w-b) $(x-y)$	b -z
No Bribery	0	0

Formula for Utility of *i-th* Official from Level *n*

$$U_{n,i}(S_{n,i},B_{n,i},A_{n,i}) = W_{n,i} + S_{n,i} - \alpha_{n,i}^{+}L(A_{n,i},A_{-n,i})$$

$$A_{-n,i} = (A_{k,j},\ldots,A_{I}) \ \forall (k,j) \neq (n,i)$$
where $S_{n,i}$ – official's steal;
$$W_{n,i}$$
 – official's wage;
$$B_{n,i}$$
 – official's bribe;
$$L(A_{n,i},A_{-n,i})$$
 – part of utility, dependent on players' actions;
$$A_{n,i}$$
 – official's action;
$$A_{-n,i}$$
 – other players' (officials' and inspector's) actions.

Stage 2 – Inspection Outcomes' Payoffs

End	$U_{j,k}$	$U_{1,i}$	$U_I)$
1	$W_{j,k} + S_{j,k}$	$W_{1,i} + S_{1,i}$	W_I
2	$W_{j,k} + S_{j,k}$	$W_{1,i} + \kappa_{1,i}S_{1,i} - F(W_{1,i}, S_{1,i})$	$W_I + R(S_{1,i}) - Ci_1$
3	$W_{j,k} + S_{j,k}$	$ W_{1,i} + \kappa_{1,i}S_{1,i} - (F(W_{1,i}, S_{1,i}) + B_{1,i} + Fb(B_{1,i})) $	$W_I + R(S_{1,i}) - Ci_1$
4	$W_{j,k} + S_{j,k}$	$W_{1,i} + S_{1,i} - B_{1,i}$	$W_I + B_{1,i} - Ci_1 - Cu(S_{1,i})$
5	$W_{j,k} + \kappa_{j,k} S_{j,k} - F(W_{j,k}, S_{j,k})$	$W_{1,i} + \kappa_{1,i} S_{1,i} - \theta_{1,i} F(W_{1,i}, S_{1,i})$	$W_I - (Ci_1 + Ci_j) + R(S_{1,i}) + R(S_{j,k})$
6	$ W_{j,k} + \kappa_{j,k}S_{j,k} - (F(W_{j,k}, S_{j,k}) + B_{j,k} + Fb(B_{j,k})) $	$W_{1,i} + \kappa_{1,i}S_{1,i} - \theta_{1,i}F(W_{1,i}, S_{1,i})$	$W_I - (Ci_1 + Ci_j) + R(S_{1,i}) + R(S_{j,k})$
7	$W_{j,k} + S_{j,k} - B_{j,k}$	$W_{1,i}+S_{1,i}$	$ W_I + B_{j,k} - (Ci_1 + Ci_j + Cu(S_{1,i}) + Cu(S_{j,k})) $

End	Description
1	No inspection.
2	Subordinate is inspected, no bribe.
3	Subordinate is inspected, bribe is rejected.
4	Subordinate is inspected, bribe is accepted.
5	Boss is exposed by the subordinate, no bribe.
6	Boss is exposed by the subordinate, bribe is rejected.
7	Boss is exposed by the subordinate, bribe is accepted.

Formula for Inspector's Utility for inspecting official $O_{n,i}$

$$U_I(A_I, A_{n,i}, T) = W_I + \alpha_{n,i}^+ K(A_I, A_{n,i}, T),$$

where

$$K(A_I, A_{n,i}, T) = \begin{cases} K(A_I, A_{boss(n)}, T \cup \{(n, i)\}) \ if A_{n,i} = E \\ B_{n,i} - \sum_{(l,j) \in T} [Cu(S_{l,j}) + Ci_l] \ if A_{n,i} = B \& A_I = Acc \\ \sum_{(l,j) \in T} [R(S_{l,j}) - Ci_l] \ if A_{n,i} \in \{B, NB\} \& A_I = Rej \end{cases}$$

where W_I – inspector's wage, $T = \{(v, k)\}$ – set of ids of inspected and exposed officials.

Formula for State Utility for inspecting Official n,i

$$U_s(A_{n,i}, A_I, T) = M_m - \sum_{j=1}^{m-1} S_j - \sum_{X \in \{I\} \cup H} W_X + \alpha_{n,i}^+ D(A_{n,i}, A_I, T),$$

where

$$D(A_{n,i}, A_I, T) = \begin{cases} F(S_{n,i}, W_{n,i}) + \sum_{(l,j) \in T} [(1 - \kappa_{l,j}) S_{l,j} - R(S_{l,j})] + \\ + \sum_{(v,p) \in T \setminus \{(n,i)\}} \theta_{v,p} F(W_{v,p}, S_{v,p}) \ if \ A_{n,i} = NB \\ D(A_{boss(n)}, A_I, T \cup \{(n,i)\}) \ if \ A_{n,i} = E \\ D(NB, A_I, T) + B_{n,i} + Fb(B_{n,i}) \ if \ A_{n,i} = B \ \& \ A_I = Rej \\ 0 \ if \ A_{n,i} = B \ \& \ A_I = Acc \end{cases}$$

Formula for the Level of Corruption

$$LoC = \frac{\sum_{j=1}^{m-1} S_j}{M_m}$$

Results of Simulation

(22501, 43126)	OptOpt_EB	OptOpt_BB	NoneOpt_NBB	OptNone_BNB	NoneNone_NBNB
(3, 0)	-1198754.0	-80099.8	-78691.7	90000.0	90000.0
(3, 1)	-860900.0	-80550.4	-79753.8	90000.0	90000.0
(2,0)	151774.6	-19181.1	40000.0	109342.1	40000.0
(2, 1)	151907.5	-19598.7	40000.0	109249.0	40000.0
(1, 0)	155765.8	35309.0	40000.0	63326.8	40000.0
(1, 1)	155846.5	36242.7	40000.0	63528.9	40000.0
Inspector	126438.3	101642.9	83753.5	77095.2	70000.0
State	4295082.2	3014021.8	2903494.0	2395092.9	2590000.0
LoC	0.5	0.5	0.3	0.2	0.0

B12/B3	43126	86251	108751	131251	196877	
22501	OptNone_BNB	OptNone_BNB	OptNone_BNB	OptOpt_EB	OptNone_BNB	
45001	OptNone_BNB	OptNone_BNB	OptNone_BNB	OptOpt_EB	OptOpt_EB	
67502	OptNone_BNB	OptNone_BNB	OptNone_BNB	OptOpt_EB	OptOpt_EB	

Cooperative Analysis Assumptions (1)

Assumptions:

1. Default setting.

2.
$$S_{1,i}^* = S_{2,i}^* = S_s$$
 $S_{3,i}^* = S_b$

3. If official is indifferent between being in coalition and not being in one, they choose not being.

Cooperative Analysis Assumptions (2)

From **Assumption 1** we get

$$\sum_{(l,j)\in T} [R(S_{l,j}) + Cu(S_{l,j})] < B_{n,i}^* < \frac{S_{n,i}^*}{\alpha_{n,i}^+} \quad \forall T,$$
 (2.15)

and that gives us

$$S_{n,i}^* > 0 \quad \forall (n,i) \in H \to S_s > 0,$$
 (2.16)

$$S_s - \alpha_{n,i}^+ B_s = S_s - \frac{\alpha_n^{eff}}{2} B_s > 0 \quad n = 1, 2 \quad i = 0, 1$$
 (2.17)

$$S_b - \alpha_{3,j}^+ B_{ch} = S_b - (\frac{\alpha_3}{2} + \alpha_k^{eff}) B_{ch} > 0 \quad (j,k) = (1,1), (2,0)$$
 (2.18)

$$B_{ch} > B_b > B_s \tag{2.19}$$

For Imputation the test is against (2.16) and (2.18), for Coalition – against any other proper subcoalition.

Formulas for all coalitions

- ,,	(0.0)	(0.1)	(0.0)	(0.1)	(1.0)	(1.1)	(9)	T 11 6 11 0	1 00 1							1 (0.0)	l mpup
#	(3,0)	(3,1)	(2,0)	(2,1)	(1,0)	(1,1)	v(?)	Fully formable?	32	1	0	0	0	0	0	{(3,0)}	TRUE
1	0	0	0	0	0	1	$\{(1,1)\}$	TRUE	33	1	0	0	0	0	1	$\{(3,0)\} + \{(1,1)\}$	FALSE
2	0	0	0	0	1	0	$\{(1,0)\}$	TRUE	34	1	0	0	0	1	0	$\{(3,0)\} + \{(1,0)\}$	FALSE
3	0	0	0	0	1	1	$\{(1,0),(1,1)\}$	TRUE	35	1	0	0	0	1	1	$\{(3,0)\} + \{(1,0),(1,1)\}$	FALSE
4	0	0	0	1	0	0	$\{(2,1)\}$	TRUE	36	1	0	0	1	0	0	$\{(3,0),(2,1)\}$	TRUE
5	0	0	0	1	0	1	$\{(2,1)\}+\{(1,1)\}$	FALSE	37	1	0	0	1	0	1	$\{(3,0),(2,1)\}+\{(1,1)\}$	FALSE
6	0	0	0	1	1	0	$\{(2,1)\} + \{(1,0)\}$	FALSE	38	1	0	0	1	1	0	$\{(3,0),(2,1)\}+\{(1,0)\}$	FALSE
7	0	0	0	1	1	1	$\{(2,1)\} + \{(1,0),(1,1)\}$	FALSE	39	1	0	0	1	1	1	$\{(3,0),(2,1)\}+\{(1,0),(1,1)\}$	FALSE
8	0	0	1	0	0	0	$\{(2,0)\}$	TRUE	40	1	0	1	0	0	0	{(3,0),(2,0)}	TRUE
9	0	0	1	0	0	1	$\{(2,0)\}+\{(1,1)\}$	FALSE	41	1	0	1	0	0	1	$\{(3,0),(2,0)\}+\{(1,1)\}$	FALSE
10	0	0	1	0	1	0	$\{(2,0)\} + \{(1,0)\}$	FALSE	42	1	0	1	0	1	0	$\{(3,0),(2,0)\}+\{(1,0)\}$	FALSE
11	0	0	1	0	1	1	$\{(2,0)\} + \{(1,0),(1,1)\}$	FALSE	43	1	0	1	0	1	1	$\{(3,0),(2,0)\}+\{(1,0),(1,1)\}$	FALSE
12	0	0	1	1	0	0	$\{(2,0),(2,1)\}$	TRUE	44	1	0	1	1	0	0	$\{(3,0),(2,0),(2,1)\}$	TRUE
13	0	0	1	1	0	1	$\{(2,0),(2,1)\}+\{(1,1)\}$	FALSE	45	1	0	1	1	0	1	$\{(3,0),(2,0),(2,1)\}+\{(1,1)\}$	FALSE
14	0	0	1	1	1	0	$\{(2,0),(2,1)\}+\{(1,0)\}$	FALSE	46	1	0	1	1	1	0	$\{(3,0),(2,0),(2,1)\}+\{(1,0)\}$	FALSE
15	0	0	1	1	1	1	$\{(2,0),(2,1)\}+\{(1,0),(1,1)\}$	FALSE	47	1	0	1	1	1	1	$\{(3,0),(2,0),(2,1)\}+\{(1,0),(1,1)\}$	FALSE
16	0	1	0	0	0	0	$\{(3,1)\}$	TRUE	48	1	1	0	0	0	0	{(3,0),(3,1)}	TRUE
17	0	1	0	0	0	1	{(3,1),(1,1)}	TRUE	49	1	1	0	0	0	1	{(3,0), (3,1), (1,1)}	TRUE
18	0	1	0	0	1	0	{(3,1),(1,0)}	TRUE	50	1	1	0	0	1	0	{(3,0), (3,1), (1,0)}	TRUE
19	0	1	0	0	1	1	$\{(3,1),(1,0),(1,1)\}$	TRUE	51	1	1	0	0	1	1	$\{(3,0),(3,1),(1,0),(1,1)\}$	TRUE
20	0	1	0	1	0	0	$\{(3,1)\}+\{(2,1)\}$	FALSE	52	1	1	0	1	0	0	$\{(3,0),(3,1),(2,1)\}$	TRUE
21	0	1	0	1	0	1	$\{(3,1),(1,1)\}+\{(2,1)\}$	FALSE	53	1	1	0	1	0	1	$\{(3,0),(3,1),(2,1),(1,1)\}$	TRUE
22	0	1	0	1	1	0	$\{(3,1),(1,0)\}+\{(2,1)\}$	FALSE	54	1	1	0	1	1	0	$\{(3,0),(3,1),(2,1),(1,0)\}$	TRUE
23	0	1	0	1	1	1	$\{(3,1),(1,0),(1,1)\}+\{(2,1)\}$	FALSE	55	1	1	0	1	1	1	$\{(3,0),(3,1),(2,1),(1,0),(1,1)\}$	TRUE
24	0	1	1	0	0	0	$\{(3,1)\}+\{(2,0)\}$	FALSE	56	1	1	1	0	0	0	$\{(3,0),(3,1),(2,0)\}$	TRUE
25	0	1	1	0	0	1	$\{(3,1),(1,1)\}+\{(2,0)\}$	FALSE	57	1	1	1	0	0	1	$\{(3,0),(3,1),(2,0),(1,1)\}$	TRUE
26	0	1	1	0	1	0	$\{(3,1),(1,0)\}+\{(2,0)\}$	FALSE	58	1	1	1	0	1	0	$\{(3,0),(3,1),(2,0),(1,0)\}$	TRUE
27	0	1	1	0	1	1	$\{(3,1),(1,0),(1,1)\}+\{(2,0)\}$	FALSE	59	1	1	1	0	1	1	$\{(3,0),(3,1),(2,0),(1,0),(1,1)\}$	TRUE
28	0	1	1	1	0	0	$\{(3,1)\}+\{(2,0),(2,1)\}$	FALSE	60	1	1	1	1	0	0	$\{(3,0),(3,1),(2,0),(2,1)\}$	TRUE
29	0	1	1	1	0	1	$\{(3,1),(1,1)\}+\{(2,0),(2,1)\}$	FALSE	61	1	1	1	1	0	1	$\{(3,0),(3,1),(2,0),(2,1),(1,1)\}$	TRUE
30	0	1	1	1	1	0	$\{(3,1),(1,0)\}+\{(2,0),(2,1)\}$	FALSE	62	1	1	1	1	1	0	$\{(3,0),(3,1),(2,0),(2,1),(1,0)\}$	TRUE
31	0	1	1	1	1	1	$\{(3,1),(1,0),(1,1)\}+\{(2,0),(2,1)\}$	FALSE	63	1	1	1	1	1	1	GC	TRUE

Divide and Conquer

Divide and Conquer

