Práctica 3

Hoja de Actividades

Actividad 1. Determina cuales de las siguientes matrices son estocásticas. Justifica la respuesta.

$$\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \qquad \begin{bmatrix} 2/5 & -2/5 \\ 3/5 & 7/5 \end{bmatrix} \qquad \begin{bmatrix} 1/3 & 1/6 & 1/4 \\ 1/3 & 2/3 & 1/4 \\ 1/3 & 1/6 & 1/2 \end{bmatrix}$$

Solución

Las dos primeras matrices no son estocásticas. Observar que las columnas de la primera no suman 1 y en la segunda hay elementos negativos. La tercera sí que lo es.

Actividad 2. Sea la matriz estocástica

$$A = \begin{bmatrix} 0 & 0.5 & 0 & 0 \\ 0.25 & 0 & 0 & 0 \\ 0.5 & 0.25 & 1 & 0 \\ 0.25 & 0.25 & 0 & 1 \end{bmatrix}$$

- (a) Calcula su conjunto de vectores estacionarios.
- (b) Calcula un vector estacionario de probabilidad ¿Es único?
- (c) ¿Es A una matriz estocástica regular?

Solución

a) Sabemos que un vector \vec{x} no nulo es estacjonario para una matriz A si $A\vec{x}=\vec{x}$, es decir, si \vec{x} es solución del sistema homogéneo $(A-I)\vec{x}=\vec{0}$. Así pues, los vectores estacionarios de A son los vectores no nulos del núcleo de la matriz A-I que los calculamos mediante la función kernel de Scilab

Esto significa que el conjunto de vectores estacionarios de A es

$$\{\lambda(0,0,0,1) + \mu(0,0,1,0) = (0,0,\mu,\lambda) : \lambda \neq 0 \text{ o } \mu \neq 0\}$$

b) Los vectores estacionarios de probabilidad serán de la forma

$$\frac{1}{\lambda + \mu}(0, 0, \lambda, \mu)$$

siendo $\lambda + \mu \neq 0$. Por tanto, hay infinitos vectores estacionarios de probabilidad.

c) A la vista del apartado anterior, podemos concluir que la matriz A no es regular. Si lo fuera, existiría un único vector estacionario de probalilidad (ver Teorema 1 del boletín). Sin usar este teorema se prueba que no es regular observando que cualquier potencia de la matriz A tiene siempre elementos nulos.

Actividad 3. Sea la matriz

$$B = \begin{bmatrix} 0.05 & 0.85 & 0.5 \\ 0.1 & 0.05 & 0.1 \\ 0.85 & 0.1 & 0.4 \end{bmatrix}$$

- (a) Comprueba que B es una matriz estocástica regular.
- (b) Calcula el conjunto de vectores estacionarios de B.
- (c) Calcula un vector estacionario de probabilidad.
- (d) Escribe los tres primeros términos de la cadena de Markov con matriz de transición A y vector de estado inicial x_0 =(0.3, 0.5,0.2).
- (e) ¿Es convergente dicha cadena?

Solución

- a) La matriz es estocástica porque todas sus entradas son no negativas y todas sus columnas suman 1. Esto se puede comprobar también con Scilab ($\begin{bmatrix} 1 & 1 \end{bmatrix} * B$ debe dar la matriz (1 & 1 & 1)). Es regular puesto que todas sus entradas son no nulas.
- b) Para calcular los vectores estacionarios de B resolvemos el sistema $(B-I)\vec{x}=\vec{0}$ con la función kernel de Scilab.

```
-->B=[0.05 0.85 0.5; 0.1 0.05 0.1;0.85 0.1 0.4]
B =

0.05 0.85 0.5
0.1 0.05 0.1
0.85 0.1 0.4

-->kernel(B-eye(3,3))
ans =

0.5591810
0.1447880
0.8163045
```

El conjunto

$$\{\lambda \begin{bmatrix} 0.5591810 \\ 0.1447880 \\ 0.8163045 \end{bmatrix} : \lambda \neq 0\}$$

es el conjunto de vectores estacionarios de B.

c) Si llamamos x al vector que genera el núcleo de (B-I), el vector estacionario de probabilidad lo calculamos dividiendo x por la suma de sus componentes.

```
-->x=kernel(B-eye(3,3))

x =

0.5591810

0.1447880

0.8163045

-->v=(1/sum(x))*x

v =

0.3678161

0.0952381

0.5369458
```

Por tanto, el vector \boldsymbol{v} es el único vector de probabilidad de \boldsymbol{B} .

d) Introducimos el vector de estados inicial y calculamos los tres primeros términos de la cadena de Markok con matriz de transición B.

```
-->x0=[0.3;0.5;0.2]
x0 =
    0.3
    0.5
    0.2
-->x1=B*x0
x1 =
    0.54
    0.075
    0.385
-->x2=B*x1
x2 =
    0.28325
    0.09625
    0.6205
-->x3=B*x2
x3 =
    0.406225
    0.0951875
    0.4985875
```

Los vectores x1, x2 y x3 son los tres términos pedidos.

e) La cadena de Markov es convergente porque la matriz de transición es estocástica regular y además converge al vector estacionario de probabilidad, v, obtenido en el apartado c) (ver Teorema 1 del boletín).

Podemos comprobar con Scilab dicha convergencia calculando algunos términos más de la cadena de Markov. Vamos a calcular, por ejemplo, los términos x20, x25 y x30:

```
-->x20=B^20*x0
x20 =
0.3678160
0.0952381
0.5369459
-->x25=B^25*x0
x25 =
0.3678161
0.0952381
0.5369458
-->x30=B^30*x0
x30 =
0.3678161
0.0952381
0.5369458
```

Actividad 4. En un país se celebran elecciones cada cuatro años y los resultados de cada elección dependen únicamente de los resultados de la elección anterior. Los partidos que se presentan son: el Demócrata (D), el Liberal (L) y el Conservador (C). El 70 % de los votantes de D votarán de nuevo a D, el 10 % de los votantes de D votarán L y el 20 % votarán a C; el 80 % de los votantes de L seguirán votando L, el 5 % pasarán a votar a D y el 15 % votarán a C; finalmente, el 70 % de los votantes de C votarán de nuevo a C y el 30 % votarán a L (ningún votante de C pasará a votar a D).

- (a) Construye la matriz P que corresponde a este proceso y comprueba que es estocástica.
- (b) Si los porcentajes de votos en una elección son: $55\,\%$ para D, $40\,\%$ para L y $5\,\%$ para C, determina el resultado que se dará en la siguiente elección.
- (c) ¿Qué porcentaje de votos tiene que obtener cada uno de los partidos en unas elecciones para que en las elecciones siguientes se obtenga exactamente el mismo resultado?

Solución

a) La matriz correspondiente a este proceso es

```
-->P=[0.7 0.05 0; 0.1 0.8 0.3;0.2 0.15 0.7]

P =

0.7 0.05 0.

0.1 0.8 0.3

0.2 0.15 0.7
```

Esta matriz es claramente estocástica. También es regular ya que aunque P tiene el elemento (1,3) nulo, P^2 tiene todos sus elementos no nulos.

b) Para obtener el porcentaje de votos en las siguientes elecciones basta multiplicar la matriz P por el vector x_0 que representa el porcentaje obtenido en estas eleccciones.

```
-->x0=[0.55;0.40;0.05]
x0 =
0.55
0.4
0.05
-->P*x0
ans =
0.405
0.39
0.205
```

Así pues, D obtendrá el 40,5 %, L el 39 % y C el 20,5 % de los votos.

c) Se trata de buscar un vector v de porcentajes (sus componentes han de sumar 1) que cumpla que Pv=v, es decir, se trata de buscar el vector estacionario de probabilidad de la matriz P que sabemos que existe y es único por se P una matriz estocástica regular.

```
-->kernel(P-eye(3,3))
ans =

0.1407970
0.8447819
0.5162556

-->x=ans
x =

0.1407970
0.8447819
0.5162556
```

El vector x y todos sus múltiplos no nulos son los vectores estacionarios de P. Para buscar el de probababilidad, v, dividimos x por la suma de sus componentes

```
-->v=(1/sum(x))*x
v =
0.09375
0.5625
0.34375
```

Así pues, para que en unas elecciones se obtenga el mismo resultado que en las siguientes el porcentaje de votos debe ser 9,375 % (D), 56,25 % (L) y 34.375 % (C).