Jointly Optimizing Diversity and Relevance in Neural Response Generation

Xiang Gao, Sungjin Lee, Yizhe Zhang, Chris Brockett, Michel Galley, Jianfeng Gao, Bill Dolan Microsoft Research, Redmond, WA

Paper: arxiv.org/abs/1902.11205

Code: github.com/golsun/SpaceFusion

Presented at NAACL-HLT 2019

Motivation

- Vanilla Seq2Seq tend to be bland/generic
- Need to optimize diversity

Prior work

Decoding/ranking

- Li et al. (2016) rank beam search results by mutual information with the context.
- However requires a large beam width (e.g. 200).

Training/latent space

- Zhao et al. (2017) use a conditional VAE to model the discourse-level diversity
- However observe reduced relevancy*

^{*}unless extra knowledge (dialog act) is provided

Idea

Jointly optimize diversity and relevancy at training by aligning two models

- Sequence-to-Sequence (S2S) → latent vector of context
- \circ **Autoencoder (AE)** \rightarrow latent vectors of multiple possible *diverse* responses

How to combine them in a shared latent space?

One easy way (MTask): a vanilla multi-task setting (Luan et al. 2017)

But... it's not easy to align S2S and AE

Though the decoder is shared, S2S and AE still form two separate clusters

- S2S not efficiently using what AE learned
- Un-desired property: big holes/gaps!

What a vanilla multi-task does

What we desire

MDS visualization of learned latent spaces. Left one is <u>Luan et al. 2017</u>; right one is ours

So we add regularization 😂

Pull S2S and AE dots closer to each other

$$\mathcal{L}_{\text{fuse}} = \sum_{i \in \text{batch}} \frac{d(z_{\text{S2S}}(x_i), z_{\text{AE}}(y_i))}{n} - \sum_{i,j \in \text{batch}, i \neq j} \frac{d(z_{\text{S2S}}(x_i), z_{\text{S2S}}(x_j))}{n^2 - n} - \sum_{i,j \in \text{batch}, i \neq j} \frac{d(z_{\text{AE}}(y_i), z_{\text{AE}}(y_j))}{n^2 - n}$$

$$\frac{d(z_{\text{S2S}}(x_i), z_{\text{S2S}}(x_j))}{n^2 - n} - \sum_{i,j \in \text{batch}, i \neq j} \frac{d(z_{\text{AE}}(y_i), z_{\text{AE}}(y_j))}{n^2 - n}$$

$$\frac{d(z_{\text{S2S}}(x_i), z_{\text{S2S}}(x_j))}{n^2 - n} - \sum_{i,j \in \text{batch}, i \neq j} \frac{d(z_{\text{AE}}(y_i), z_{\text{AE}}(y_j))}{n^2 - n}$$

Encourage a smooth transition between S2S and AE

$$\mathcal{L}_{\text{interp}} = -\frac{1}{|y|} \log p(y|z_{\text{interp}}) \quad \text{where } z_{\text{interp}}(x_i, y_i) = uz_{\text{S2S}}(x_i) + (1 - u)z_{\text{AE}}(y_i) + \epsilon, u \sim U(0, 1), \epsilon \sim N(0, \sigma^2)$$

Finally combine them with vanilla multi-task loss

Structured latent space 🚳

The regularization terms induce some desired **structure** of the latent space

Semantic → **Geometry**

- **Diversity** \rightarrow **direction**: as L_{interp} regularized semantic along a "line"
- Relevancy \rightarrow distance: as L_{fuse} regularized distance
- ✓ Roughly disentangle relevancy and diversity in the latent space
- ✓ Didn't impose any pre-defined distribution (e.g. Gaussian)

context x: Anyone want to start this game? response at u = 0: I would love to play this game.

u	towards "No I don't."	u	towards "when?"	u	towards "Yes I do."
0.18	I am not interested in the game.	0.15	I'd be interested in the game	0.15	I'd love to play it.
0.21	I am not interested.	0.31	When is it?	0.27	Yes I do.
0.30	No I don't.	0.40	When will you?		
		1.00	When?		

Direction & diversity

SpaceFusion tend to map different possible responses to different direction

Cosine similarity between the direction towards different responses

Interpolation & smoothness

where $z_{\text{interp}}(x_i, y_i) = uz_{\text{S2S}}(x_i) + (1 - u)z_{\text{AE}}(y_i)$, x_i, y_i are paired context and response

The perplexity of $y|z_{interp}$

likely (low perplexity) to generate target response

→ better interpolation

Not likely (high perplexity) to generate target response → wired interpolation

Experiments

Built large dataset from Reddit with natural multi-reference

	Switchboard	Reddit
train (x, y) samples	0.2M	7.3M
test (x, y) samples	5418	5000
ref. source	IR+filtering	natural
ref. availability	test only	train/vali/test
ref. per context	7.7	24.1

- SpaceFusion randomly sample on a hyper-sphere of fixed radius (tuned on vali set)
- Competitive baselines: CVAE+BOW (<u>Zhao et al. 2017</u>), MTask (<u>Luan et al. 2017</u>)

Human evaluation

	relevance	interest	average
SPACEFUSION	2.72	2.53	2.63
CVAE+BOW	2.51	2.37	2.44
Multi-Task	2.34	2.14	2.24
human	3.59	3.41	3.50

Automatic evaluation

Following Zhao et al. (2017)

Precision =
$$\frac{1}{N_r} \sum_{i=1}^{N_r} \max_{j \in [1, N_r]} \text{BLEU}(r_j, h_i)$$
 Recall = $\frac{1}{N_r} \sum_{i=1}^{N_r} \max_{i \in [1, N_r]} \text{BLEU}(r_j, h_i)$ Diversity: Does all diverse references can be "matched" by some hypothesis?

dataset	model	Precision	Recall	F1
	SPACEFUSION	1.22	0.66	0.86
Switchboard	CVAE+BOW	0.76	0.57	0.65
	MTask	0.75	0.43	0.54
	S2S+Sampling	0.57	0.48	0.52
	SPACEFUSION	0.40	0.26	0.31
Reddit	CVAE+BOW	0.16	0.18	0.17
	MTask	0.31	0.18	0.23
	S2S+Sampling	0.10	0.11	0.11

$$F1 = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Summary

We proposed a <u>regularized</u> multi-task learning approach, **SpaceFusion**, to jointly optimized relevancy and diversity by disentangling them in a structured latent spaces

- SAlign latent spaces from different models potential for learning more universal representation
- Bring structure into latent spaces interpretability and easier usage

Thank you!

SpaceFusion by Microsoft Research

Paper: <u>arxiv.org/abs/1902.11205</u>

Code: github.com/golsun/SpaceFusion

Presented at NAACL-HLT 2019