Stress Invariants

Ref.

Srinivasan,

n et al.

Sowmianarayana

Elements of solid mechanics – Stress Invariants

Limited to the necessary minimum to follow this course

We summarize necessary basic concepts for solid mechanics

- We use primarily uses Cartesian coordinates
- In parallel also the tensor notation is used; this makes it easy to read: vectors and tensors are represented either by their components or by their symbols

Ex.) Drucker-Prager yield criterion

$$\sqrt{J_2} = A + B I_1$$

Ottosen criterion

$$A\frac{J_2}{\sigma_c} + \Lambda\sqrt{J_2} + BI_1 - \sigma_c = 0,$$

What are these symbols J2 and I1 standing for?

failure criterion

(concrete)

Readings:

Chapter 1 from: D. Gross and T. Seelig, Fracture Mechanics: With an Introduction to Micromechanics.

or

Reddy; Chapters 3 (kinematics of continua) and 4 (stress measures)

... or read from any other source ...
https://en.wikipedia.org/wiki/Cauchy stress tensor

 $A\frac{J_2}{I} + \Lambda\sqrt{J_2} + BI_1 - \sigma_c = 0,$

Principal Stresses and Principal Planes Why?

Stress tensor (or matrix)

- Determination of maximum normal and shear stresses at a point is of considerable interest
- Many failure criteria are expressed using stress/strain Invariants (= scalars)
- The general laws of physics are <u>independent</u> coordinate systems So, they have <u>Invariance</u> & have symmetry properties

principal stresses

principal directions

The principal axes: solely normal stresses and no shear stresses appear in sections perpendicular to these axes

Example: the speed of light is an invariant

Invariants

Mechanics

$$\mathbf{A} = \boldsymbol{\sigma}$$

• 2nd-order symmetric tensors (matrices) have always three groups independent invariants which, for our purposes, in mechanics, are defined as

$$I_1^A = \operatorname{tr} \mathbf{A},$$
 $A = \boldsymbol{\sigma}$ $I_2^A = \frac{1}{2} \operatorname{tr} (\mathbf{A}^{\operatorname{d}})^2,$ The stress deviator $\mathbf{S} = \boldsymbol{\sigma}^{\operatorname{d}}$ $\mathbf{S} = \mathbf{A}^{\operatorname{d}} = \boldsymbol{\sigma}^{\operatorname{d}} \equiv \mathbf{S}$ $\mathbf{T} = (\mathbf{S}^{\operatorname{d}})^2,$ $\mathbf{T} = (\mathbf{S}^{\operatorname{d}})^2,$

• In plasticity, one needs to compute gradients of functions of invariants with respect to the stress components, for instance, the gradient for an arbitrary isotropic yield function (Isotropic plasticity theory) is as

$$\frac{\partial f(I_1, J_2, J_3)}{\partial \boldsymbol{\sigma}} = \frac{\partial f}{\partial I_1} \mathbf{I} + \frac{\partial f}{\partial J_2} \mathbf{S} + \frac{\partial f}{\partial J_3} \mathbf{T} \quad \text{, where } \quad \text{Hill tensor } \mathbf{T} = (\mathbf{S}^2)^{\frac{1}{4}}$$

Stress

Stress vector:

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{\mathrm{d}F}{\mathrm{d}A}$$

Stress state - Cauchy's tetrahedron

$$m{\sigma} = egin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \ \sigma_{21} & \sigma_{22} & \sigma_{23} \ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$$

stress components in Cartesian rectangular coordinates

Cauchy's stress tensor (2nd order symm. tensor)

Cauchy's stress theorem:

$$t = \sigma \cdot n$$

$$\vec{\mathbf{t}}(\vec{x}, \vec{n}, t) = \vec{n} \cdot \mathbf{\sigma}(\vec{x}, t) \leftrightarrow \mathbf{t} = \mathbf{\sigma}^{\mathrm{T}} \mathbf{n}$$

Shear- and normal components of the stress vector

Cauchy's stress theorem:

$$\mathbf{t}(\hat{\mathbf{n}}) = \hat{\mathbf{n}} \cdot \mathbf{\sigma} \\ = \mathbf{\sigma}^{\mathrm{T}} \cdot \hat{\mathbf{n}}$$

$$\underline{t}(\underline{\mathbf{n}}) = \underline{\underline{\sigma}}^{\mathrm{T}} \underline{\mathbf{n}} \longleftrightarrow \mathbf{t}_{i} = \sigma_{ji} n_{j}$$

$$|\vec{\mathsf{t}}(P,\vec{n}) = \sigma \vec{n} + \vec{\tau}|$$

Normal stress:

$$\sigma = \vec{t} \cdot \vec{n}$$

Shear stress amplitude:

Stress vector:

Mohr's stress representation in plane - (τ, σ)

$$x^2 + y^2 = R^2$$

$$\left|\tau^2 + \sigma^2 = \left|\vec{t}(P, \vec{n})\right|^2 \quad \left||\vec{n}|| = 1\right|$$

$$\|\vec{n}\| = 1$$

Mohr's circle – the equation for points (τ, σ)

with the material point **P** is fixed and the directions of the plan-section across **P** vary through the outer normal **n** director-cosines.

- a graphical visualization of the stress state by *Mohr's circles* (1835-1918)
- a representation of **normal stresses** σ and corresponding **shear stresses τ** as points in a σ - τ --diagram for all possible cross sections through the material point P and for all directions

$$|\underline{\mathbf{t}}(\underline{\mathbf{n}}) = \underline{\underline{\mathbf{g}}}^{\mathrm{T}} \underline{\mathbf{n}} \longleftrightarrow \mathbf{t}_{i} = \sigma_{ji} n_{j}$$

 $\sigma = \vec{t} \cdot \vec{n}$

 $\overline{\mathsf{t}}(P, \vec{n})$

Principal Stresses and Principal Planes

Why?

 Determination of maximum normal stresses and shear stresses at a point is of considerable interest

Stress tensor (or matrix)

principal stresses principal directions

Many failure criteria are expressed using stress/strain Invariants

The principal axes: solely normal stresses and no shear stresses appear in sections perpendicular to these axes

Principal Stresses and Principal Planes

For **any arbitrary state of stress**, we can find a **set of** orthogonal planes on which only normal stresses act and the shearing stresses are zero

- Called Principal Planes and the normal stresses acting on these planes are Principal Stresses denoted as
- They are ordered such that : $|\sigma_1 > \sigma_2 > \sigma_3|$

$$|\sigma_1 > \sigma_2 > \sigma_3|$$

Maximum shear stresses are in planes forming an angle of 45 deg. with Principal Planes

$$\tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2}$$

The same holds for strains

Isostatiques des neuds du bois et d'une tête de fémur

Stress Invariants 1(2)

Invariants

$egin{align} &\mathrm{I}_A = \mathrm{tr}(\mathbf{A}) \ &\mathrm{II}_A = rac{1}{2} \left((\mathrm{tr}\mathbf{A})^2 - \mathrm{tr}(\mathbf{A}\mathbf{A}) ight) \ &\mathrm{III}_A = \det(\mathbf{A}) \ \end{aligned}$

Stress tensor (or matrix)

$$\Rightarrow \sigma^3 - I_\sigma \sigma^2 - III_\sigma \sigma - IIII_\sigma = 0$$

Solutions give the principal stresses $\sigma_1, \sigma_2, \sigma_3$ Each principal stress corresponds to a principal direction

Also denoted as: I_1, I_2, I_3

$$I_1 \uparrow \mid I_{\sigma} = \sigma_{ii} = \sigma_{11} + \sigma_{22} + \sigma_{33}$$
,

$$II_{\sigma} = (\sigma_{ij}\sigma_{ij} - \sigma_{ii}\sigma_{jj})/2$$

$$= -(\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11}) + \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2,$$

$$I_3$$
 $III_{\sigma} = \det(\sigma_{ij}) = \begin{vmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{vmatrix}$.

The same formula are valid for strain invariants too

principal axes

Stress Invariants in terms of principle stresses

$$\begin{array}{c} (\boldsymbol{\sigma} - \lambda \mathbf{I}) \cdot \hat{\mathbf{n}} = \mathbf{0} \\ \text{principal directions} \\ \text{principal stresses} \end{array} \Rightarrow \begin{array}{c} \sigma^3 - I_\sigma \, \sigma^2 - III_\sigma \, \sigma - IIII_\sigma = 0 \\ \text{Solutions give the principal stresses} \\ \text{Each principal stress corresponds to a principal} \end{array}$$

$$\sigma^3 - I_\sigma \,\sigma^2 - II_\sigma \,\sigma - III_\sigma = 0$$

Solutions give the principal stresses $\sigma_1, \sigma_2, \sigma_3$ Each principal stress corresponds to a principal direction

Also denoted as:
$$I_1, I_2, I_3$$

$$I_1 \equiv \operatorname{tr}(\mathbf{\sigma}) = \sigma_1 + \sigma_2 + \sigma_3$$

$$I_2 \equiv II_{\sigma} = \frac{1}{2} \left[\operatorname{tr}(\sigma)^2 - \operatorname{tr}(\sigma^2) \right] \implies I_1 = \sigma_1 + \sigma_2 + \sigma_3$$

$$I_2 = \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1$$

$$\sigma = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}^{\square}$$

$$I_3 \equiv III_{\boldsymbol{\sigma}} = \det(\boldsymbol{\sigma})$$

Most tensors used in engineering are symmetric 3×3. For this case the invariants can be calculated as:

$$egin{aligned} \mathbf{I}_A &= \mathbf{tr}(\mathbf{A}) \ &\mathbf{II}_A &= rac{1}{2} \left((\mathbf{tr}\mathbf{A})^2 - \mathbf{tr}(\mathbf{A}\mathbf{A})
ight) \ &\mathbf{III}_A &= \det(\mathbf{A}) \end{aligned}$$

Deviatoric stress

Jännitysdeviaattori

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \begin{bmatrix} \sigma_m & 0 & 0 \\ 0 & \sigma_m & 0 \\ 0 & 0 & \sigma_m \end{bmatrix} + \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$$

• additive decomposition of stress tensor – very useful

$$\sigma_{ij} = \frac{\sigma_{kk}}{3} \, \delta_{ij} + s_{ij}$$
 or $\sigma = \sigma_m \, I + s$.

Why split ting Volumetric and Ceviatoric (shearing)?

Mean normal stress $-p \equiv \sigma_m$ or also called *hydrostatic stress state*

Deviatoric stress S characterizes deviation of the stress state from a

hydrostatic state

Expressed in principle stresses:

$$\sigma_{2} \qquad \sigma_{3} \qquad p \qquad p$$

$$\sigma_{1} \neq \sigma_{2} \neq \sigma_{3}$$

$$\sigma_{3} \qquad p \qquad p$$

$$hydrostatic stress$$

$$volume change only$$

deviatoric stress - jännitysdeviaattori angular distortion only

Stress Invariants 2(2)

Also denoted as: J_1, J_2, J_3

Invariants of the deviatoric Stress:

 $\sigma = -pI + s$

 $J_1 = \operatorname{tr}(\mathbf{s}) = 0$ $J_2 = \frac{1}{2}\operatorname{tr}(\mathbf{s}^2)$ deviatoric Stress $J_3 = \det(\mathbf{s}) = \frac{1}{2} \operatorname{tr}(\mathbf{s}^3)$

$$egin{array}{c|c} egin{array}{c|c} egin{array}{c|c} egin{array}{c} I_s = 0 \end{array}, & rac{1}{2} \mathrm{tr}(s^2) \end{array}$$

$$egin{align} J_1 & I_s = 0 \;, & rac{1}{2} ext{tr}(s^2) \ J_2 & II_s = rac{1}{2} s_{ij} s_{ij} = rac{1}{6} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2
ight] \ &= rac{1}{6} \left[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{23})^2 + (\sigma_{23} - \sigma_{11})^2
ight] + \sigma_{12}^2 \ \end{array}$$

$$J_3 = rac{1}{6}[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2] + \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2$$

$$\tau_{oct} = \sqrt{\frac{2}{3}J_2} \qquad II_s = \frac{3}{2}\tau_{oct}^2.$$
 For instance, the *equivalent stress* (von Mises stress) – *vertailujännitys* –

commonly used in solid mechanics is = coefficient the maximum shear stress on the octahedral plane)

(which is up to a constant

 $\sigma_e \propto au_{oct}$

Maximum shear stress

Extreme shear stresses appear in sections with normal is perpendicular to one principal axis and forms angles of 45 deg. with the remaining two axes

ctahedral Stresses:

octopod

Normal and shear stress in cross sections whose normal forms an equal angle with all 3 principal axes:

$$\sigma_{\rm oct} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} = \frac{\sigma_{ii}}{3} = \frac{I_\sigma}{3} \ , \qquad \text{Mean normal stress } -p \equiv \sigma_m \text{ or also called } \frac{hydrostatic stress state}{stress state}$$

$$\tau_{\rm oct} = \frac{1}{3} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} \ . \qquad \qquad n \equiv n_{\rm okt} = \frac{1}{\sqrt{3}}$$

Octa = eight = 8; we have 8 such planes

$$(3-\sigma_1)^2$$
.
$$n \equiv n$$

$$m{n} \equiv m{n}_{
m okt} = rac{1}{\sqrt{3}} \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight],$$

 $x_2(\sigma_2)$

 $au_{
m oct}$

$$\sigma_n = \mathbf{t} \cdot \mathbf{n} = t_i n_i = \sigma_{ij} n_i n_j.$$

Maximum shear stress:

• Extreme shear stresses appear in sections with normal is perpendicular to one principal axis and forms angles of 45 deg. with the remaining two axes

Octahedral stresses:

direction cosines =

 Normal and shear stress in cross sections whose normal forms an equal angle with all 3 principal axes:

$$\sigma_{\text{oct}} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} = \frac{\sigma_{ii}}{3} = \frac{I_{\sigma}}{3} ,$$

$$\tau_{\text{oct}} = \frac{1}{3} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} .$$

Can be related to some type of weighted mean ~'max. shear stress'

$$\tau_{oct} = \sqrt{2/3} \cdot \tau_y, \quad \tau_y = \sigma_y/\sqrt{3} \text{ von-Mises yield condition:} \quad \sqrt{J_2} = \tau_y$$

Hints:

$$\sigma_n = t \cdot n = t_i n_i = \sigma_{ij} n_i n_j$$

Exercise: show these results:

$$\sigma_{
m oct} = rac{I_{\sigma}}{3}$$
 $au_{
m oct} = \sqrt{rac{2}{3}J_2}$

Invariants in general

 $\mathbf{A} = \sigma$

• 2nd-order symmetric tensors (matrices) have always three groups independent invariants which, for our purposes, in mechanics, are defined as

$$I_1^A = \operatorname{tr} \mathbf{A},$$
 $A = \boldsymbol{\sigma}$ $J_2^A = \frac{1}{2} \operatorname{tr} (\mathbf{A}^{\operatorname{d}})^2,$ The stress deviator $\mathbf{S} = \boldsymbol{\sigma}^{\operatorname{d}}$ $\mathbf{S} = \mathbf{A}^{\operatorname{d}} = \boldsymbol{\sigma}^{\operatorname{d}} \equiv \mathbf{S}$ $\mathbf{T} = (\mathbf{S}^{\operatorname{d}})^2,$ $\mathbf{T} = (\mathbf{S}^{\operatorname{d}})^2,$ $\mathbf{T} = (\mathbf{S}^{\operatorname{d}})^2,$

• In plasticity, one needs to compute gradients of functions of invariants, for instance, the gradient for an arbitrary isotropic yield function (Isotropic plasticity theory) is as

$$\frac{\partial f(I_1, J_2, J_3)}{\partial \boldsymbol{\sigma}} = \frac{\partial f}{\partial I_1} \mathbf{I} + \frac{\partial f}{\partial J_2} \mathbf{S} + \frac{\partial f}{\partial J_3} \mathbf{T} \quad \text{, where } \quad \text{Hill tensor } \mathbf{T} = (\mathbf{S}^2)^{\frac{1}{6}}$$

Lode invariants

cylindrical coordinates

$$(r:=rho, \theta, z:=ksi)$$
 σ_3
 σ_3
 σ_3
 σ_3
 σ_3

Principal stress space.

Lode invariants is an other alternative invariant triplet that is more useful than principal stresses for geometrical visualization of isotropic yield surfaces and is the cylindrical coordinates (r, θ, z) representation of the above representation, where the z-coordinate points along the hydrostatic axis

$$r=\sqrt{2J_2},$$
 $\sigma_1=\sigma_2=\sigma_3$ $z=rac{I_1}{\sqrt{3}}$

$$\sin(3 heta_s) = -\sin(3ar{ heta}_s) = \cos(3ar{ heta_c}) = rac{J_3}{2}igg(rac{3}{J_2}igg)^{3/2}$$

principal stress axes are shown with dashed line (ref. Reijo's lecture Notes)

 $\sin(3 heta_s) = -\sin(3ar{ heta}_s) = \cos(3 heta_c) = rac{J_3}{2}igg(rac{3}{J_2}igg)^{3/2}$

Failure

concrete:

Ref for this figure above: Brannon, R. M. (2007). Elements of Phenomenological Plasticity: geometrical insight, computational algorithms, and applications in shock physics. Shock Wave Science and Technology Reference Library: Solids I, Springer-New York. 2: pp. 189-274

Strain

Deformation

$$\begin{split} \mathrm{d}s^2 &= \mathrm{d}x_k \mathrm{d}x_k = \frac{\partial x_k}{\partial X_i} \frac{\partial x_k}{\partial X_j} \, \mathrm{d}X_i \mathrm{d}X_j \ , \\ \mathrm{d}S^2 &= \mathrm{d}X_k \mathrm{d}X_k = \mathrm{d}X_i \mathrm{d}X_j \, \delta_{ij} \ . \end{split}$$

$$\mathrm{d}s^2 = \mathrm{d}x_k \mathrm{d}x_k = \frac{\partial x_k}{\partial X_i} \frac{\partial x_k}{\partial X_j} \, \mathrm{d}X_i \mathrm{d}X_j \; ,$$

$$\mathrm{d}S^2 = \mathrm{d}X_k \mathrm{d}X_k = \mathrm{d}X_i \mathrm{d}X_j \, \delta_{ij} \; .$$

$$E_{ij} = \frac{1}{2} (\frac{\partial u_i}{\partial X_j} + \frac{\partial u_j}{\partial X_i} + \frac{\partial u_k}{\partial X_i} \frac{\partial u_k}{\partial X_j})$$

Infinitesimal or Engineering strain tensor:

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) . \longrightarrow \varepsilon = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix}$$

$$(\partial u_i / \partial X_j \ll 1)$$
symmetric

Green's strain tensor

Strain invariants

Same formula as for the stress tensor:

$$I_{\varepsilon}$$
, II_{ε} , III_{ε}

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) \quad \varepsilon = \begin{pmatrix} \varepsilon_{11} \ \varepsilon_{12} \ \varepsilon_{13} \\ \varepsilon_{21} \ \varepsilon_{22} \ \varepsilon_{23} \\ \varepsilon_{31} \ \varepsilon_{32} \ \varepsilon_{33} \end{pmatrix}$$

$$(\partial u_i / \partial X_j \ll 1)$$

Engineering strains

$$I_{\varepsilon} = \varepsilon_{V} = \varepsilon_{kk} = \varepsilon_{1} + \varepsilon_{2} + \varepsilon_{3}$$
.

Decomposition:

 $Volumetric\ strain\ (relative\ volume\ change)$

$$\varepsilon_{ij} = \frac{\varepsilon_{kk}}{3} \, \delta_{ij} + e_{ij} \quad \text{or} \quad \varepsilon = \frac{\varepsilon_V}{3} \, I + e$$

Distortion = Deviator

Most tensors used in engineering are symmetric 3×3.

For this case the invariants can be calculated as:

$$egin{aligned} \mathbf{I}_{A} &= \operatorname{tr}(\mathbf{A}) \ \mathbf{II}_{A} &= rac{1}{2} \left((\operatorname{tr}\mathbf{A})^2 - \operatorname{tr}(\mathbf{A}\mathbf{A})
ight) \ \mathbf{III}_{A} &= \operatorname{det}(\mathbf{A}) \end{aligned}$$

Second Invariant of the deviator:

$$II_e = \frac{1}{2} e_{ij} e_{ij} = \frac{1}{6} \left[(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2 \right].$$