Projet de Télécommunication

Introduction à l'égalisation

Elena Fleury, Mazen Messai

19 mai 2025

1 Étude théorique

Question 1 : Si on considère qu'il n'y aucun obstacle entre l'émetteur et le recepteur, on peut modéliser le signal reçu avant égalisation par la relation suivante :

$$y_e(t) = \alpha_0(t - \tau_0) + \alpha_1 x_e(t - \tau_1)$$

Avec α_0 le coefficient d'attenuation directe, α_1 le coefficent d'attenuation réfléchie, et τ_0 et τ_1 les retards induits

Question 2 : En écrivant $y_e = h_c(x_e)$ en déduit que $h_c(t)$ s'écrit :

$$h_c(t) = \alpha_0 \delta(t - \tau_0) + \alpha_1 \delta(t - \tau_1)$$

Question 3 : On prend pour h et h_r une réponse en fenêtre réctangulaire de largeur T_s . On a donc $z(n) = h_r * h_c * h(n) = h_r * \left[\alpha_0 h(t - \tau_0) + \alpha_1 h(t - \tau_1)\right] = (\alpha_0 + \alpha_1)g(t) = 1.5g(t)$ Avec g(t) la réponse impulsionnelle du filtre de réception dont le tracé est donné par la figure 1.

Figure 1 - Réponse impulsionnelle du filtre de $h_r * h(t)$

Figure 2 - Signal en sortie du filtre de réception pour la séquence 011001

Question 4 : En prenant $t_0 \in \{0, 2T_s\}$, on à bien uniquement deux points sur le diagramme de l'oeil. Il est donc possible de respecter le critère de Nyquist sur cette chaîne de transmission.

Figure 3 - diagramme de l'oeil sans bruit en sortie du filtre de réception $h_r(t)$

Question 5 : On prend $t_0 = T_s$, donc on à un seuil nul, le critère de Nyquist qui est respecté, et nous considérons que les symboles sont indépendants et équiprobables. On a donc :

TEB =
$$Q\left(\frac{Vg(t_0)}{\sigma_w}\right) = Q\left(\frac{3T_s}{2\sigma_w}\right)$$
.

Question 6:
$$\sigma_w^2 = \int_{\mathbb{R}} N_0 |H_r(f)|^2 df = N_0 \int_{\mathbb{R}} |h_r(t)|^2 dt = N_0 T_s$$

Question 7 :
$$E_S = P_s T_s = \frac{3}{2} T_s^2$$

Question 8 : On à $T_s = \sqrt{\frac{2}{3}E_s}$ et $E_b = E_s$ (mapping binaire), on en déduit donc que :

TEB =
$$Q\left(\frac{3T_s}{2\sigma_w}\right) = Q\left(\sqrt{\frac{3}{2}\frac{E_s}{N_0}}\right) = Q\left(\sqrt{\frac{3}{2}\frac{E_b}{N_0}}\right)$$