Soustavy nelineárních rovnic

Newtonova iterační metoda

cvičení 5

Obsah

Newtonova metoda: úvod

2 Newtonova metoda: příklady

Newtonova metoda: MATLAB

Newtonova metoda řešení nelineární rovnice

- I. Je dána rovnice f(x) = 0.
 - a) Zapište rovnici tečny ke grafu funkce f(x) v bodě x_n .

graf

$$t: y = f(x_n) + f'(x_n)(x - x_n)$$

funkce f(x) a tečnu ke grafu funkce v bodě x_n . Zakreslete průsečík této tečny s osou x(tj.y = 0), označte ho jako

Graficky znázorněte

 $[x_{n+1}, 0].$

c) Z rovnice tečny a) vyjádřete x_{n+1} .

$$y = 0 \Rightarrow 0 = f(x_n) + f'(x_n)(x_{n+1} - x_x) \Rightarrow$$
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

princip metody: hledáme průsečík grafu funkce f s osou x pomocí průsečíků tečen t s osou x; tečnu sestrojujeme v bodě x_n , určeném v předcházejícím kroku; x_0 volíme.

Newtonova metoda řešení dvou nelineárních rovnic

II. Jsou dány rovnice f(x, y) = 0, g(x, y) = 0

d) Zapište rovnici tečné roviny τ_1 ke grafu funkce f(x,y) v bodě $X^{(n)} = (x_n,y_n)^T$.

$$\tau_1: z = f(X^{(n)}) + \frac{\partial f(X^{(n)})}{\partial x}(x - x_n) + \frac{\partial f(X^{(n)})}{\partial y}(y - x_n)$$

e) Zapište rovnici tečné roviny τ_2 ke grafu funkce g(x,y) v bodě $X^{(n)}=(x_n,y_n)^T$.

$$\tau_2: z = g(X^{(n)}) + \frac{\partial g(X^{(n)})}{\partial x}(x - x_n) + \frac{\partial g(X^{(n)})}{\partial y}(y - x_n)$$

f) Sestavte soustavu lin. rovnic pro společný průsečík P rovin z=0, rovin au_1, au_2 .

$$\frac{\partial f(X^{(n)})}{\partial x} x + \frac{\partial f(X^{(n)})}{\partial y} y = \frac{\partial f(X^{(n)})}{\partial x} x_n + \frac{\partial f(X^{(n)})}{\partial y} y_n - f(X^{(n)})
\frac{\partial g(X^{(n)})}{\partial x} x + \frac{\partial g(X^{(n)})}{\partial y} y = \frac{\partial g(X^{(n)})}{\partial x} x_n + \frac{\partial g(X^{(n)})}{\partial y} y_n - g(X^{(n)})$$

g) Označte $X^{(n+1)} = (x_{n+1}, y_{n+1})^T = P$ a z předchozí rovnice vyjádřete $X^{(n+1)}$.

$$X^{(n+1)} = X^{(n)} - \begin{pmatrix} \frac{\partial f(X^{(n)})}{\partial x} & \frac{\partial f(X^{(n)})}{\partial y} \\ \\ \frac{\partial g(X^{(n)})}{\partial x} & \frac{\partial g(X^{(n)})}{\partial y} \end{pmatrix}^{-1} \begin{pmatrix} f(X^{(n)}) \\ \\ g(X^{(n)}) \end{pmatrix}$$

Soustava (lineárních) rovnic v maticovém zápisu $J(X^{(n)})$

f)
$$\frac{\int_{J(X^{(n)})}^{J(X^{(n)})} \frac{\partial f(X^{(n)})}{\partial x} \frac{\partial f(X^{(n)})}{\partial y}}{\frac{\partial g(X^{(n)})}{\partial x} \frac{\partial g(X^{(n)})}{\partial y}} \left(\begin{array}{c} x - x_n \\ y - y_n \end{array} \right) = - \begin{pmatrix} f(X^{(n)}) \\ g(X^{(n)}) \end{pmatrix} \\
J(X^{(n)}) \begin{pmatrix} x \\ y \end{pmatrix} - J(X^{(n)}) \begin{pmatrix} x_n \\ y_n \end{pmatrix} = - \begin{pmatrix} f(X^{(n)}) \\ g(X^{(n)}) \end{pmatrix} \\
g) J(X^{(n)}) X^{(n+1)} = J(X^{(n)}) X^{(n)} - \begin{pmatrix} f(X^{(n)}) \\ g(X^{(n)}) \end{pmatrix}$$

f)
$$\left(\frac{\partial g(X^{(n)})}{\partial x} \quad \frac{\partial g(X^{(n)})}{\partial y} \right) \left(y - y_n \right) = -\left(g(X^{(n)}) \right)$$

$$J(X^{(n)}) \left(\frac{x}{y} \right) - J(X^{(n)}) \left(\frac{x_n}{y_n} \right) = -\left(\frac{f(X^{(n)})}{g(X^{(n)})} \right)$$

$$g) J(X^{(n)}) X^{(n+1)} = J(X^{(n)}) X^{(n)} - \left(\frac{f(X^{(n)})}{g(X^{(n)})} \right)$$

$$X^{(n+1)} = \underbrace{J(X^{(n)})^{-1} J(X^{(n)})}_{E} X^{(n)} - J(X^{(n)})^{-1} \left(\frac{f(X^{(n)})}{g(X^{(n)})} \right)$$

$$X^{(n+1)} = X^{(n)} - J(X^{(n)})^{-1} \left(\frac{f(X^{(n)})}{g(X^{(n)})} \right)$$

Jedna rovnice a soustava rovnic

$$f(x,y) = 0$$

$$g(x,y) = 0$$

Označíme:

$$X = \begin{pmatrix} x \\ y \end{pmatrix}, \ F(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}, \ \text{tj. } F(X) = \begin{pmatrix} f(X) \\ g(X) \end{pmatrix}$$
Jedna rovnice
Soustava rovnice

Jedna rovnice
$$f(x) = 0$$

$$F(X) = 0$$

Postup řešení:

Jedna rovnice

Soustava rovnic

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})} \qquad X^{(n+1)} = X^{(n)} - J(X^{(n)})^{-1}F(X^{(n)})$$

Příklad. Pro soustavu rovnic

$$f(x,y) = 0$$
: $x^2 + y^2 - 4 = 0$
 $g(x,y) = 0$: $ln(2-x) - y = 0$

- určete graficky přibližnou polohu všech řešení soustavy,
- ② volte $X^{(0)} = (1, 2)^T$ a vypočtěte $X^{(1)}$ a $X^{(2)}$.

$$J(X) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix}$$
$$J(X) = \begin{pmatrix} 2x & 2y \\ -\frac{1}{2-x} & -1 \end{pmatrix}$$

- ② dosadíme $X^{(0)} = (1,2)^T$: $F(X^{(0)}) = (1, -2)^T$ $J(X^{(0)}) = \begin{pmatrix} 2 & 4 \\ -1 & -1 \end{pmatrix}$
- ① vypočteme $\Delta^{(0)} = -J(X^{(0)})^{-1}F(X^{(0)})$ $\Delta^{(0)} = \begin{pmatrix} -3.5, \ 1.5 \end{pmatrix}^T$
- vypočteme $X^{(1)} = X^{(0)} + \Delta^{(0)}$

$$X^{(1)} = (1, 2)^T + (-3.5, 1.5)^T$$

 $X^{(1)} = (-2.5, 3.5)^T$

Pokračování, výpočet $X^{(2)}$

- Matice J je stejná,
- odosadíme $X^{(1)} = (-2.5, 3.5)^T$: $F(X^{(1)}) = (14.5, -2)^T$ $J(X^{(1)}) = \begin{pmatrix} -5 & 7 \\ -0.22 & -1 \end{pmatrix}$

v každém kroku ověříme, zda se determinant $J \neq 0$

- **3** vypočteme $\Delta^{(1)} = -J(X^{(1)})^{-1}F(X^{(1)})$ $\Delta^{(1)} = (0.08, -2.01)^T$
- vypočteme $X^{(2)} = X^{(1)} + \Delta^{(1)}$ $X^{(2)} = (-2.5, 3.5)^T + (-2.5, 3.5)^T$ $X^{(2)} = (-2.42, 1.49)^T$

$$x^{2} - 4x + y^{2} = 0$$
$$y - e^{-x} - 1 = 0$$

- Rozhodněte, který z bodů
 A = [0, -2],
 B = [2, 0],
 C = [4, 1]
 je možné volit jako
 počáteční aproximaci X⁽⁰⁾,
 odpověď zdůvodněte.
- pro vybraný bod X⁽⁰⁾ určete X⁽¹⁾ Newtonovou metodou.

Výsledky: *A,B* volit nelze, protože
$$\det(J(A)) = 0$$
, $\det(J(B) = 0$, C lze: $f(x,y), g(x,y)$ jsou diferencovatelné v okolí C a $\det(J(C)) \neq 0$. $J = \begin{pmatrix} 2x - 4 & 2y \\ e^{-x} & 1 \end{pmatrix}, J(A) = \begin{pmatrix} -4 & -4 \\ 1 & 1 \end{pmatrix}, J(B) = \begin{pmatrix} 0 & 0 \\ e^{-2} & 1 \end{pmatrix}, J(C) = \begin{pmatrix} 4 & 2 \\ e^{-4} & 1 \end{pmatrix}$ $\Delta^{(0)} = \begin{pmatrix} -0.2616, \ 0.0231 \end{pmatrix}^T, \ X^{(1)} = \begin{pmatrix} 3.7384, \ 1.0231 \end{pmatrix}^T$

$$\frac{x^2}{9} + y^2 - 1 = 0$$
$$y - \ln(x) = 0$$

- Rozhodněte, který z bodů
 - A=[1.5,1], B=[-1,1], C=[3,-1]je možné volit jako
 počáteční aproximaci $X^{(0)}$,
 odpověď zdůvodněte.
- ② pro vybraný bod $X^{(0)}$ určete $X^{(1)}$ Newtonovou

metodou.

Výsledky: $B \not\in D(g)$ - nelze, $\det(J(C)) = 0$ - C nelze,

A lze: f(x, y), g(x, y) jsou diferencovatelné v okolí A a $\det(J(A)) \neq 0$.

$$J = \begin{pmatrix} \frac{2}{9}x & 2y \\ -\frac{1}{x} & 1 \end{pmatrix}, J(A) = \begin{pmatrix} \frac{1}{3} & 2 \\ -\frac{2}{3} & 1 \end{pmatrix}, J(B) \text{není definován}, J(C) = \begin{pmatrix} \frac{2}{3} & 2 \\ -\frac{1}{3} & 1 \end{pmatrix}$$

$$\Delta^{(0)} = (0.5634, -0.2189)^T, X^{(1)} = (2.0634, 0.7811)^T$$

$$2x - y(1+x) = 0$$
$$x^2 + 5y - 1 = 0$$

- Rozhodněte, který z bodů B = [0,1], C = [0,2] je možné volit jako počáteční aproximaci $X^{(0)}$, odpověď zdůvodněte.
- pro vybraný bod X⁽⁰⁾ určete X⁽¹⁾ Newtonovou metodou.

Výsledky: $\det(J(C)) = 0$ - C nelze, B lze: f(x,y), g(x,y) jsou diferencovatelné v okolí B a $\det(J(B)) \neq 0$.

$$J = \begin{pmatrix} 2 - y & -(1+x) \\ 2x & 0 \end{pmatrix}, J(B) = \begin{pmatrix} 1 & -1 \\ 0 & 5 \end{pmatrix}, J(C) = \begin{pmatrix} 0 & -1 \\ 0 & 5 \end{pmatrix}$$
$$\Delta^{(0)} = \begin{pmatrix} 0.2, & -0.8 \end{pmatrix}^T, X^{(1)} = \begin{pmatrix} 0.2, & 0.2 \end{pmatrix}^T$$

$$\frac{1}{x} - y^2 = 0$$
$$2x^2 + y - 4 = 0$$

- Rozhodněte, který z bodů A = [0,1], B = [-0.5,-1], C = [1,2] je možné volit jako počáteční aproximaci $X^{(0)}$, odpověď zdůvodněte.
- pro vybraný bod X⁽⁰⁾ určete X⁽¹⁾ Newtonovou metodou.

Výsledky: $A \notin D(f)$ - nelze, $\det(J(B)) = 0$ - B nelze, C lze: f(x,y), g(x,y) jsou diferencovatelné v okolí C a $\det(J(C)) \neq 0$. $J = \begin{pmatrix} -\frac{1}{x^2} & -2y \\ 4x & 1 \end{pmatrix}, J(A) = \text{není definován}, J(B) = \begin{pmatrix} -4 & 2 \\ -2 & 1 \end{pmatrix}, J(C) = \begin{pmatrix} -1 & -4 \\ 4 & 1 \end{pmatrix}$ $\Delta^{(0)} = (0.2, -0.8)^T, X^{(1)} = (1.2, 1.2)^T$

$$\frac{1}{2x} - y = 0$$
$$x^2 + 4y^2 - 4 = 0$$

- ② určete řádkovou normu vektorů $F(X^{(0)})$, $F(X^{(1)})$ a $F(X^{(2)})$.

$$\begin{split} & \text{V\'{y\'sledky:}} \ J = \left(\begin{array}{cc} -\frac{1}{2x^2} & -1 \\ 2x & 8y \end{array} \right) \\ & J(X^{(0)}) = \left(\begin{array}{cc} -\frac{1}{2} & -1 \\ 2 & 0 \end{array} \right), \quad F(X^{(0)}) = \left(\begin{array}{cc} \frac{1}{2} \\ -3 \end{array} \right), \quad \Delta^{(0)} = \left(\begin{array}{cc} \frac{3}{2} \\ -\frac{1}{4} \end{array} \right), \quad X^{(1)} = \left(\begin{array}{cc} \frac{5}{2} \\ -\frac{1}{4} \end{array} \right) \\ & J(X^{(1)}) = \left(\begin{array}{cc} -0.08 & -1 \\ 5 & -2 \end{array} \right), \ F(X^{(1)}) = \left(\begin{array}{cc} 0.45 \\ -2.5 \end{array} \right), \ \Delta^{(1)} = \left(\begin{array}{cc} -0.31 \\ 0.47 \end{array} \right), \ X^{(2)} = \left(\begin{array}{cc} 2.19 \\ 0.22 \end{array} \right) \\ & \|F(X^{(2)}) - F(X^{(1)})\|_{\infty} \doteq 1.5 \end{split}$$

$$\alpha(x-1)^{2} - y + 1 = 0$$
$$x^{3} - y = 0$$

- Určete hodnoty parametru $\alpha \in \mathbb{R}$ tak, aby při řešení dané soustavy Newtonovou metodou bylo možné volit jako počáteční aproximaci některý z bodů A = [0.5, 0.5], B = [0.8, 0.8] nebo C = [0.1, 0.1].
- ② Volte $\alpha = -1$ a určete počet a polohu všech řešení soustavy.
- **③** Volte $\alpha = -1$, $X^{(0)} = A$ a určete $X^{(1)}$ a $X^{(2)}$ Newtonovou metodou. Určete euklidovskou normu vektorů $F(X^{(0)})$, $F(X^{(1)})$ a $F(X^{(2)})$.
- ① Pro stejný parametr α volte $X^{(0)}=B$, určete $X^{(1)}$, $X^{(2)}$ a $X^{(3)}$ a euklidovskou normu vektorů $F(X^{(0)})$, $F(X^{(1)})$, $F(X^{(2)})$ a $F(X^{(3)})$.
- § Pro stejný parametr α volte $X^{(0)} = C$, určete $X^{(1)}$ a $X^{(2)}$ a euklidovskou normu vektorů $F(X^{(0)})$, $F(X^{(1)})$ a $F(X^{(2)})$.

Přítel MATLAB (s balíčkem Symbolic Toolbox)

```
Výpočet derivací (Jacobiho matice) v symbolických proměnných
syms x y % deklarace symbolickych promennych
```

Výpočet jedné iterace

Přítel MATLAB (výpočet dvou iterací) % ----- první -----

```
% zvolene XO
XO = [0.5 ; 0.5];
FXO = subs(F,\{x,y\},XO'); % dosazeni XO
```

 $JX0 = subs(J,{x y},X0');$ FXO = double(FXO);% prevedeni symbolickych vyrazu

JX0 = double(JX0);% do ciselnych $Delta0 = JX0 \setminus (-FX0)$

% vypocet "Delta", reseni lin.rovnic X1 = X0 + Delta0% vypocet X1 % ----- druhá -----

 $FX1 = subs(F, \{x, y\}, X1');$ % dosazeni X1 $JX1 = subs(J,\{x,y\},X1');$

% prevedeni symbolickych vyrazu

FX1 = double(FX1);JX1 = double(JX1);% do ciselnych

 $Delta1 = JX1 \setminus (-FX1)$ % vypocet "Delta", reseni lin.rovnic X2 = X1 + Delta1% vypocet X2

Přítel MATLAB (výpočet N iterací)

```
N = 5:
XO = [0.5; 0.5];
                              % zvolene X0
for k = 1 : N
  FXO = subs(F, \{x y\}, XO'); % dosazeni XO
  JX0 = subs(J,\{x,y\},X0');
  FX0 = double(FX0):
                              % prevedeni symbolickych vyrazu
  JX0 = double(JX0);
                               % do ciselnych
                              % euklidovska norma F(X0)
  rez = norm(FX0)
  Delta0 = JX0 \setminus (-FX0)
                              % vypocet "Delta", reseni lin.rov.
  X1 = X0 + Delta0
                               % vypocet X1
  XO = X1;
                               % XO prepiseme na X1 a pocitame dal
end
```