

Instituto de Física Gleb Wataghin – UNICAMP C

- 1) Coloca-se uma panela de alumínio, com capacidade de 2000 cm³, completamente cheia de água à temperatura de 20° *C* para ferver. O raio do fundo da panela é de 6 cm e sua espessura é de 2 mm. A condutividade térmica e o coeficiente de expansão linear do alumínio valem: k = 0.5 cal/s.cm.°C e $\alpha = 20 \times 10^{-6}$ / °C. A 100° C, a Chaleira vaporiza à taxa constante de 1 L de água em 5 min. O calor de vaporização, o coeficiente de expansão volumétrica e a densidade da água são, respectivamente: $L_{vap} = 540 \text{ Cal/g}, \ \beta = 200 \times 10^{-6} \text{ / °C e } \rho = 1 \text{ g/cm}^3$
- (a) Qual volume de água transborda da panela quando a temperatura do conjunto é aumentada de 20° C para 100° C?
- (b) A que temperatura está o fundo da panela, em contato com a chama, quando a água está fervendo?

Instituto de Física Gleb Wataghin – UNICAMP ^C

2) Uma amostra de gás se expande de 1 m^3 para 4 m^3 enquanto sua pressão diminui de 40 Pa para 10 Pa. Quanto trabalho é realizado pelo gás se a sua pressão varia com o volume por cada uma das três trajetórias mostradas no diagrama p-V abaixo:

Instituto de Física Gleb Wataghin – UNICAMP ^C

- **3)** Considere Q=50 cal e W=20 cal, quando um sistema passa do estado *a* para o estado *c* seguindo a trajetória *abc* da figura e Q=36 cal ao longo da trajetória *adc*. Determine:
- a) Quanto vale W ao longo da trajetória *adc*?
- b) Se W=-13 cal na trajetória de retorno *ca*, quanto vale Q nesta trajetória?
- c) Se $E_{int,a}$ =10 cal, qual é o valor de $E_{int,c}$?
- d) Se E_{int,d}=22 cal, qual é o valor de Q na trajetória *dc*?

Instituto de Física Gleb Wataghin – UNICAMP ^C

4) Um anel de cobre de 20,0 g a 0° C tem um diâmetro interno 2,54000 cm. Uma esfera de alumínio a 100,0° C tem um diâmetro 2,54508 cm. A esfera é colocada acima do anel até que os dois atinjam o equilíbrio térmico, sem perda de calor para o ambiente. A esfera se ajusta exatamente ao anel na temperatura do equilíbrio. Qual a massa da esfera?