

Cursos: Engenharia Informática

Exame de Matemática Computacional 1

Ano Letivo: 2017/2018 Semestre: Primeiro Época: Normal Data: 29-01-2018

Duração: 2h

Nome:
O uso de telemóveis ou de outros aplicativos móveis durante a realização do Exame implica a anulação do mesmo. Deverá responder no próprio enunciado no espaço atribuído. Resolva primeiro na folha de rascunho e escreva no enunciado apenas os cálculos essenciais.
Parte I Nas questões seguintes, indique a opção correta, indicando a sua escolha com uma cruz no quadrado associado a essa opção. Uma resposta certa vale 1 valor, uma resposta errada vale -0,3 valores e uma ausência de resposta vale 0 valores.
1) A função $f(x) = \ln(\sin x)$ tem como domínio: $\square \mathbb{R} \setminus \left\{\frac{k\pi}{2}\right\}$ onde $k \in \mathbb{Z}$. $\square \mathbb{R} \setminus \{k\pi\}$ onde $k \in \mathbb{Z}$. $\square \mathbb{R} \setminus \{0\}$. \boxtimes nenhuma das anteriores.
2) A derivada de $f(x) = e^{\arctan x^2}$ em $x = 1$ é: \square 0. $\boxtimes e^{\frac{\pi}{4}}$. \square $e^{\frac{\pi}{3}}$. \square nenhuma das anteriores.
3) $\int \frac{5x-4}{x^2-x-2} dx$ é igual a: $\Box \frac{\int 5x-4 dx}{\int x^2-x-2 dx}. \Box 5x \int \frac{1}{x^2-x-2} dx - 4 \int \frac{1}{x^2-x-2} dx. \boxtimes \int \frac{3}{x+1} dx + \int \frac{2}{x-2} dx. \Box \text{ nenhuma das anteriores.}$
4) A função inversa, no domínio adequado, da função $f(x) = \frac{\pi}{3} - 2\arccos(x+1)$ é: $\boxtimes f^{-1}(x) = \cos(\frac{\pi}{6} - \frac{x}{2}) - 1$. $\square f^{-1}(x) = \frac{1}{\frac{\pi}{3} - 2\arccos(x+1)}$. $\square f^{-1}(x) = \cos(\frac{\pi}{6} - \frac{y}{2}) - 1$. \square nenhuma das anteriores.
5) A derivada da função $f(x) = \int_0^x \sum_{n=0}^{+\infty} \frac{t^n}{n!} dt$ é: $\Box e^x - 1$. $\boxtimes e^x$. $\Box \sum_{n=1}^{+\infty} \frac{x^n}{n!}$. \Box nenhuma das anteriores.
6) Uma solução de $\int_0^{\eta} 5x^4 dx = \frac{2}{e-1} \int_0^1 e^x dx$ é: $\Box \eta = \sqrt{5}$. $\Box \eta = 2$. $\Box \eta = 1$. \boxtimes nenhuma das anteriores.
7) $\lim_{x\to 0} \frac{\int_0^x \cosh t dt}{\int_0^x 1 dt}$ é igual a: $\boxtimes 1$. $\square +\infty$. $\square 0$. \square nenhuma das anteriores.
8) O intervalo de convergência da série de potências dada por $f(x) = \sum_{n=1}^{\infty} \frac{n}{3^n} x^n$ é igual a: $\Box]-3,3[$. $\Box]-3,3[$. $\Box]$ nenhuma das anteriores.
9) As séries numéricas $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ e $\sum_{n=1}^{\infty} \frac{1}{n^2}$ são: \square convergentes. \square divergentes. \square respetivamente convergente e divergente. \square respetivamente divergente e convergente
10) Os integrais impróprios $\int_0^1 \frac{1}{\sqrt{x}} dx$ e $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$ são: \square convergentes. \square divergentes. \square respetivamente convergente e divergente. \square respetivamente divergente e convergente
Parte II Nas seguintes afirmações deverá responder se são <i>Verdadeiras</i> ou <i>Falsas</i> . Seguidamente, indique de forma sucinta a razão da sua escolha. Uma resposta certa vale 1 valor e uma resposta sem justificação <u>correta</u> vale 0 valores .
1) A equação da reta tangente ao gráfico da função $f(x) = e^x$ no ponto $(1, e)$ é $y = ex$. V \boxtimes F \boxtimes Sabemos que $f'(x) = (e^x)' = e^x$, logo $f'(1) = e$. A reta tangente tem equação $y - f(1) = f'(1)(x - 1) \Leftrightarrow y - e = f'(1)x - f'(1) \Leftrightarrow y - e = ex - e \Leftrightarrow y = ex$.

2) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável tal que f' é contínua em todo o seu domínio. Se f'(a).f'(b) < 0 (onde a < b), então existe necessariamente pelo menos um zero da derivada em]a,b[.

V \boxtimes F \square

É o teorema do valor intermédio aplicado a f'.

3) Dado xy-x-3y-4=0 temos que $\frac{dy}{dx}\neq\frac{1-y}{x-3}$. VD F\infty Derivemos a express\(\text{a}\) xy-x-3y-4=0 implicitamente (em ordem a x). y+xy'-1-3y'=0. Resolvendo a equaç\(\text{a}\) o em ordem a y' temos: $y-1+(x-3)y'=0 \Leftrightarrow (x-3)y'=1-y \Leftrightarrow y'=\frac{1-y}{x-3}$

4) $\int_0^{\frac{\pi}{2}} 2\sin x \cos x e^{\sin^2 x} dx = e - 1$. V\(\times\) Façamos a substituição $y = \sin^2 x$, donde $dy = 2\sin x \cos x dx$. Quando x = 0 temos y = 0 e quando $x = \frac{\pi}{2}$ temos y = 1. Logo $\int_0^{\frac{\pi}{2}} 2\sin x \cos x e^{\sin^2 x} dx = \int_0^1 e^y dy = e^y \Big|_0^1 = e - 1.$

5) O comprimento da curva que define o gráfico da função $f(x) = \cosh(x)$ entre os pontos de abcissas x = 0 e x = 1 é igual a $\sinh(1)$. (Dica: recorde as fórmulas $\int_a^b \sqrt{1+(f'(x))^2} \, dx$ e $\cosh^2(x)-\sinh^2(x)=1$).

$$\int_0^1 \sqrt{1 + (f'(x))^2} \, dx = \int_0^1 \sqrt{1 + (\cosh'(x))^2} \, dx = \int_0^1 \sqrt{1 + (\sinh(x))^2} \, dx = \int_0^1 \sqrt{\cosh^2(x)} \, dx$$
$$= \int_0^1 \cosh x \, dx = \sinh x \Big|_0^1 = \sinh 1 - \sinh 0 = \sinh 1$$

6) A derivada de $h(x) = \int_0^x e^{t^3} dt$ em $x = \sqrt[3]{2}$ é igual a e^2 .

Seja F(t) uma antiderivada de $f(t) = e^{t^3}$ i.e. F'(t) = f(t) pelo TFC temos $h(x) = F(t)\Big|_0^x = F(x) - F(0)$. Então $h'(x) = F'(x) - F'(0) = f(x) = e^{x^3}$. Logo $h'(\sqrt[3]{2}) = e^2$.

Parte III | Nas duas questões que se seguem responda no espaço atribuído após o enunciado. Cada questão é classificada com 2 valores.

1) Calcule $\int_e^{e^2} x^2 \ln x \, dx$.

Façamos integração por partes com $u = \ln x$ e $dv = x^2 dx$, logo $du = \frac{1}{x} dx$ e $v = \frac{x^3}{3}$. Assim temos

$$\begin{split} \int_{e}^{e^{2}}x^{2}\ln x\,dx &= \left(\frac{x^{3}}{3}\ln x\right)\Big|_{e}^{e^{2}} - \int_{e}^{e^{2}}\frac{x^{3}}{3}\frac{1}{x}\,dx = \left(\frac{e^{6}}{3}\ln e^{2} - \frac{e^{3}}{3}\ln e\right) - \int_{e}^{e^{2}}\frac{x^{2}}{3}\,dx = \frac{e^{3}}{3}(2e^{3} - 1) - \frac{x^{3}}{9}\Big|_{e}^{e^{2}} \\ &= \frac{e^{3}}{3}(2e^{3} - 1) - \frac{e^{6}}{9} + \frac{e^{3}}{9} = \frac{e^{3}}{3}(2e^{3} - 1) + \frac{e^{3}}{3}\left(\frac{1}{3} - \frac{e^{3}}{3}\right) = \frac{e^{3}}{9}\left(5e^{3} - 2\right). \end{split}$$

2) Determine justificando uma aproximação da série numérica $\sum_{n\geq 1} (-1)^{n+1} \frac{1}{4n^2}$ com um erro inferior a 0,01.

Estamos em presença de uma série alternada e convergente pelo critério de Leibniz. Sabemos que o erro de truncatura é sempre menor ou igual ao módulo do primeiro termo ignorado. Logo temos que determinar $n \in \mathbb{N}$ tal que $\frac{1}{4n^2} \leq \frac{1}{100}$ ou seja $n^2 \ge 25$ isto é $n \ge \sqrt{2}5 = 5$. Escolhemos portanto 4 termos da série obtendo

$$\frac{1}{4} - \frac{1}{16} + \frac{1}{36} - \frac{1}{64}$$