

Graph Search Approaches to Planning

MEAM 520 Ariella Mansfield

The Basic Motion Planning Problem

There exists a motion plan from $q_{_{\!f}}$ to $q_{_{\!G}}$ iff $q_{_{\!f}}$ and $q_{_{\!G}}$ belong to the same connected component of $C_{_{\!f\!r\!e\!e}}$

Motivating Examples

 Collision free trajectories through cluttered space

Shortest path between points

Terminology and Notation

Configuration complete specification of the location of every point on the robot (via joint variables)

Configuration Space set of all possible configurations considering only joint limits

W Workspace
Cartesian space in which robot moves

Terminology and Notation

${\cal O}_i$

Obstacles

areas of the workspace that the robot should not occupy (physical objects or hazards)

Collision

when any part of the robot contacts an obstacle in the workspace

$\mathcal{A}(q)$ Robot

subset of the workspace occupied by the robot at configuration q

Terminology and Notation

$$\mathcal{O} = \cup \mathcal{O}_i$$

Configuration Space Obstacle

set of configurations for which the robot collides with an obstacle

$$QO = \{ q \in Q \mid A(q) \cap O \neq \emptyset \}$$

Free Configuration Space

set of all collision-free configurations

$$\mathcal{Q}_{ ext{free}} = \mathcal{Q} \setminus \mathcal{QO}$$

Point Robot in 2D

$$Q = W = \mathbb{R}^2$$

Point Robot in 2D

$$Q = W = \mathbb{R}^2$$

Discretize Space

 $n \times n$ grid

Penn Engineering

Discretize Space

 $n \times n$ grid

Remove obstacles

Penn Engineering

Discretize Space

 $n \times n$ grid

Remove obstacles

Find start and end cells

Penn Engineering

Wildfire

6	5	4	5	6	7
5		3	4	5	6
4		2			5
3	2	1			4
2	1	0	1	2	3
3	2	1	2	3	4

Pseudocode:
Start with i = 0 steps at q_{start} While exist(empty cells)
All neighbors have i+1steps
Ignore obstacle cells

Search all cells

Breadth First Search (BFS)

		4			
		3	4	5	
4		2			
3	2	1			4
2	1	0	1	2	3
3	2	1	2	3	4

Penn Engineering

Pseudocode:

Start with i = 0 steps at q_{start} $Queue = neighbors of q_{start}$ All neighbors have 1 step While ~empty(*Queue*) q = next cell in Queuei = steps to qif a neighbor is q_{end} , STOP Add all new neighbors to Queue All neighbors have i+1 steps

Potentially search all cells:

Computation is O(|V| + |E|)

Nonuniform costs

Graph Representation of the Configuration Space

Graph: vertices connected by edges

Graph Representation of the Configuration Space

Graph: vertices connected by edges

Assign costs

Graph Representation of the Configuration Space

Graph: vertices connected by edges

Assign costs

Remove edges to obstacles

Graph

- A graph is an ordered pair G = (V, E), where V is a set of vertices or nodes and E is a set of edges
- An edge is a 2-tuple of vertices
 - Edges can be directed or undirected
 - Edges can be weighted (e.g. distance)
 - Edge e_{ij} has weight w_{ij}
- A tree is an undirected graph without cycles (only 1 path between 2 vertices)

General Tree-Based Search

General search strategy for finding a path from start to goal, and keeping track of it's length given edge costs $c(v_1, v_2)$.

- Set the root of the tree as the start state and give it a value of 0
- 2. While there are unexpanded nodes in the tree
 - I. Choose a leaf v to expand
 - 2. For each action, create a new child leaf of v
 - 3. Set the value of each child leaf as g(v)=g(parent(v))+c (parent(v,v))

 $g(v_2) = g(v_0) + c(v_0, v_2)$

Dijkstra's Algorithm

Pseudocode:

Start with i = 0 steps at q_{start}

Add neighbors of q_{start} to boundary

Update costs of neighbors

While ~empty(boundary)

q = boundary cell with min cost

Add all new neighbors to boundary

Update costs of new neighbors

Remove q from boundary

If a neighbor is q_{end} , STORE

If $mincost(boundary) \ge cost(q_{end})$, STOP

Potentially search all cells:

Computation is O(|V|log|V|+|E|)

Dijkstra's Algorithm

Can we make this more

Pseudocode:

Start with i = 0 steps at q_{start}

Add neighbors of q_{start} to boundary

Update costs of neighbors

While ~empty(boundary)

q = boundary cell with min cost

Add all new neighbors to boundary

Update costs of new neighbors

Remove q from boundary

If a neighbor is q_{ond} , STORE

If $mincost(boundary) \ge cost(q_{ond})$, STOP

Potentially search all cells:

Computation is O(|V|log|V|+|E|)

A* Search

Idea: estimate remaining distance to the goal

Order vertices based on estimated distance

$$f(i) = g(i) + h(i)$$

cost to come heur from start cost

heuristic: estimated cost to go to goal

 $\begin{array}{c} {\rm Dijkstra's:}\,h(i)=0\\ {\rm Let's\;try}\;h(i)={\rm Euclidean\;distance}\\ {\rm to\;goal} \end{array}$

h(i) must be **admissible**

Worst case computational cost?

Comparison of Strategies

Breadth First

 Choose shallowest next, returns optimal path (when uniform edge weights)

Depth First

 Choose deepest next, first returned path may not be optimal

Best First

- E.g. Dijkstra (1959), A* (Hart 1968)
- Choose "most promising" node next based on some rule

Dijkstra vs. A*

Dijkstra

A*

Computational complexity of a trajectory planner grows with the size of the configuration space.

Complete planners have to search every cell of the discretized space in the worst case.

Worst case complexity is **exponential** in the robot dof (number of joints for a manipulator): $O(c^J)$

Can we do better?

Idea: Discretize only as much as necessary

This will depend on the number and geometric complexity of your obstacles

Can we do better?

Idea: Map out the free space

This is called the Voronoi Diagram

Can we do better?

Theoretically, no.

General motion planning is in a class of

problems we call PSPACE-complete.

These are some of the hardest problems

in computer science.

What makes planning hard?

https://vimeo.com/58686591

https://www.youtube.com/watch?v=UTbiAu8IXas

Complex obstacles
Narrow corridors in the free C-space

CHALLENGE: Map out the free C-Space

https://vimeo.com/58709589