

Context-free grammars (CFG) and languages (CFL), Chomsky normal forms Chapter 3: Grammars

Prof. Riddhi Atulkumar Mehta Assistant Professor Department of Computer Science and Engineering

Parul® University

Content

1.	Introduction	1
2.	What is a Context-Free Grammar?	
	2	
3.	Example of CFG	3
4.	What is a Context-Free Language (CFL)?	4
5.	Derivations in CFGs	5
6.	Ambiguity in CFGs	6
7.	Normal Forms in CFGs	7
8.	Chomsky Normal Form (CNF)	8
9.	Steps to Convert CFG to CNF	9
10.	.Key Takeaways	10

NDEX

Introduction

- Context-Free Grammars (CFG) describe context-free languages (CFLs)
- CFGs are widely used in compiler design, parsers, and natural language processing
- CNF simplifies CFGs for algorithmic analysis

What is a Context-Free Grammar?

A CFG is defined as a 4-tuple:

$$G = (V, \Sigma, R, S)$$

- V → Set of variables (non-terminals)
- $\Sigma \rightarrow Set of terminals$
- R \rightarrow Set of production rules (A $\rightarrow \alpha$)
- $S \rightarrow Start symbol (S \in V)$

Example of CFG

Grammar $G = (\{S\}, \{a, b\}, R, S)$ with:

• $S \rightarrow aSb \mid \epsilon$

Generates strings:

- E
- Ab
- Aabb
- Aaabbb
- Language: $L = \{ a^n b^n \mid n \ge 0 \}$

What is a Context-Free Language (CFL)?

- A language is CFL if it can be generated by a CFG
- CFLs are recognized by Pushdown Automata (PDA)
- CFLs can include:
 - Balanced parentheses
 - Palindromes
 - aⁿbⁿ, aⁿbⁿcⁿ (NOT CFL)

Derivations in CFGs

Leftmost derivation: Expand the leftmost non-terminal

Rightmost derivation: Expand the rightmost non-terminal

Parse tree visualizes the derivation

Example for $S \rightarrow aSb \mid \epsilon$

Derivation for aaabbb:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

Ambiguity in CFGs

- A grammar is ambiguous if a string has more than one parse tree
- Ambiguity is undesirable in programming languages

Example:

Grammar:

$$S \rightarrow S + S \mid S * S \mid a$$

Two parse trees possible ⇒ ambiguous

Normal Forms in CFGs

- Normal forms are restricted forms of CFGs used in algorithms like parsing and simplification.
- Two main types:
- Chomsky Normal Form (CNF)
- 2. Greibach Normal Form (GNF)

Chomsky Normal Form (CNF)

Every production is of the form:

 $1.A \rightarrow BC$ (non-terminals only)

 $2.A \rightarrow a$ (terminal only)

 $3.S \rightarrow \varepsilon \text{ (if } \varepsilon \in L)$

Restrictions:

- B, C \in V (non-terminals), B \neq start symbol
- $a \in \Sigma$ (terminal)

Steps to Convert CFG to CNF

- 1.Remove ε -productions (except S $\rightarrow \varepsilon$)
- 2.Remove unit productions (A \rightarrow B)
- 3. Remove useless symbols
- 4.Convert to binary productions (A \rightarrow BC)
- 5. Terminal replacements (replace terminals in RHS of long productions)

Steps to Convert CFG to CNF

Step 1 – Eliminate start symbol from right hand side (RHS)

If the start symbol S is at the right-hand side of any production,

Create a production as follows -

S1->S

Where, S1 is the new start symbol

Step 2 – In the grammar try to remove the null, unit and useless productions.

Step 3 – Eliminate terminals from RHS of the production if they exist with other non

terminals or terminals.

Example – S->aA can be decomposed as follows –

S->RA

R->a

Finally, it is nothing but S->aA only.

Steps to Convert CFG to CNF

Step 4 – Eliminate the RHS with more than two non-terminals.

Example – S->ABS can be decomposed as given below –

S->RS

R->AB

Key Takeaways

A context free grammar is in CNF, if the production rules satisfy one of the following conditions

- If there is start Symbol generating ε. Example A-> ε
- If a non-terminal generates two non-terminals. Example S->AB
- If a non-terminal generates a terminal. Example S->a

https://paruluniversity.ac.in/

