Supplementary information for: Simulating chalcogen bonding using molecular mechanics: A pseudoatom approach to model ebselen.

Thomas Fellowes, Jonathan M. White[†]

 $Bio 21\ Institute\ and\ School\ of\ Chemistry,\ University\ of\ Melbourne,\ Parkville,\ Australia\\ {}^*fellowes@student.unimelb.edu.au\\ {}^\dagger white jm@unimelb.edu.au$

 $May\ 23,\ 2020$

1 Fitting of classical parameters to DFT energy surfaces.

Figure 1: Harmonic potential for Se–N bond. Units are in kcal/mol and $\rm \mathring{A}.$

Figure 2: Harmonic potential for Se–C $_{\rm ar}$ bond. Units are in kcal/mol and Å.

Figure 3: Harmonic potentials for $Se-C_{ar}-C_{ar}$ bond angles. Units are in kcal and $^{\circ}$. An average value was used for the parameter set.

Figure 4: Harmonic potential for N–Se–C $_{\rm ar}$ bond angle. Units are in kcal/mol and $^{\circ}.$

Figure 5: Harmonic potential for Se–N–C $_{\rm ar}$ bond angle. Units are in kcal/mol and °.

Figure 6: Harmonic potential for Se–N–C $_{\rm CO}$ bond angle. Units are in kcal/mol and °.

Figure 7: Torsion potential for Se–N–C–C bond angle. Units are in kcal/mol and $^{\circ}.$

2 FRCMOD file for ebselen

Default GAFF atom types were used. The σ -hole was given the 1p atom type, as it behaves similarly to a lone pair.

```
Parametrization for ebselen like compounds - Thomas Fellowes
MASS
se
            78.96
                    0.000
            3.0
                    0.000
1p
BOND
            434.67 1.8586
                            DFT
se-n
            422.33 1.8829
                            DFT
se-ca
            300.0
                    1.32
                            Optimised
se-lp
ANGLE
se-n-c
            404.5
                    115.8
                            DFT
se-n-ca
            182.7
                    119.6
                            DFT
            329.2
                    119.4
                            DFT
se-ca-ca
                            DFT
n-se-ca
            610.7
                    86.6
lp-se-n
            50.0
                    180.0
                            Geometric
                    93.4
lp-se-ca
            50.0
                            Geometric
DIHE
              2 -0.0854
                            180.0
                                       -2.0
                                               DFT
se-n-ca-ca
                                       -4.0
se-n-ca-ca
              2
                  0.7655
                            0.0
                                               DFT
                  0.0433
                            0.0
                                       -6.0
                                               DFT
se-n-ca-ca
              2
              2
                 0.0495
                            0.0
                                       8.0
                                               DFT
se-n-ca-ca
X-se-ca-X
              1 -1.2453
                            180.000
                                       -1.0
                                               Torsello
                                       -2.0
X-se-ca-X
                  0.1235
                            180.000
                                               Torsello
              1
                                       -3.0
X-se-ca-X
                 -1.4307
                            180.000
                                               Torsello
              1
                                       4.0
X-se-ca-X
                  0.1619
                            180.000
                                               Torsello
X-se-n-X
              1 -1.2453
                            180.000
                                       -1.0
                                               Torsello
X-se-n-X
                                               Torsello
                  0.1235
                            180.000
                                       -2.0
              1
                                       -3.0
X-se-n-X
                -1.4307
                            180.000
                                               Torsello
                  0.1619
                            180.000
                                        4.0
                                               Torsello
X-se-n-X
NONBON
       2.1200
                 0.2910
se
1p
       0.0
                 0.0
```

3 SAPT(DFT) energy decomposition analysis

Atom	X	У	${f z}$	
Se1	0.1103	-0.3014		
O2	-3.0289	2.1045	-0.0599	
N3	-1.6949	0.2302	-0.0513	
C4	0.5087	1.5474	-0.0469	
C5	1.7598	2.1522	-0.0498	
Н6	2.6615	1.5581	-0.038	
C7	-0.6467	2.3169	-0.0605	
C8	-1.9311	1.5839	-0.0541	
C9	1.8252	3.5343	-0.0666	
H10	2.7953	4.0158	-0.0681	
C11	-2.7064	-0.7562	-0.0295	
C12	0.6692	4.3127	-0.082	
H13	0.7454	5.392	-0.096	
C14	-0.5697	3.7033	-0.0792	
H15	-1.4905	4.2727	-0.0913	
C16	-3.8504	-0.5892	0.7469	
H17	-3.9822	0.3191	1.3145	
C18	-2.5475	-1.9213	-0.7739	
H19	-1.6709	-2.0451	-1.3977	
C20	-3.5143	-2.9128	-0.7341	
H21	-3.3765	-3.8145	-1.3174	
C22	-4.8167	-1.58	0.7676	
H23	-5.7049	-1.4384	1.3704	
C24	-4.6546	-2.7463	0.0343	
N25	2.8164	-0.9091	0.0522	
C26	3.3736	-1.2146	1.2201	
C27	3.4725	-1.2228	-1.0609	
C28	4.6048	-1.8402	1.3265	
H29	2.805	-0.946	2.1039	
C30	4.7079	-1.8489	-1.0562	
H31	2.9832	-0.9598	-1.9926	
C32	5.2842	-2.1631	0.1635	
H33	5.0165	-2.068	2.3003	
H34	5.2022	-2.0836	-1.9891	
H35	-5.4133	-3.5177	0.0602	
H36	6.2485	-2.6533	0.2071	

Table 1: $\mathbf{1}$ -py coordinates. Total energy = -3280.424888 a.u.

Atom	X	у	Z	
Se1	0.0054	-0.1461	-0.4289	
O2	-3.3159	1.8035	0.4379	
N3	-1.8121	0.1369	-0.0642	
C4	0.1873	1.7264	-0.2918	
C5	1.341	2.4794	-0.4723	
Н6	2.2729	1.9967	-0.7306	
C7	-1.0211	2.3349	0.0175	
C8	-2.189	1.4409	0.1658	
C9	1.2554	3.8524	-0.3223	
H10	2.1451	4.4544	-0.4611	
C11	-2.685	-0.9725	0.002	
C12	0.0474	4.4724	-0.0046	
H13	0.0064	5.5483	0.1047	
C14	-1.0945	3.7142	0.1628	
H15	-2.0511	4.1612	0.4021	
C16	-3.6716	-1.0489	0.9819	
H17	-3.7934	-0.2361	1.6813	
C18	-2.5416	-2.014	-0.91	
H19	-1.7914	-1.9472	-1.6884	
C20	-3.3672	-3.124	-0.8373	
H21	-3.2441	-3.9266	-1.5534	
C22	-4.5001	-2.1565	1.036	
H23	-5.2679	-2.2044	1.798	
C24	-4.3521	-3.1998	0.1339	
H25	-5.0022	-4.0636	0.1862	
C26	3.4197	-0.7051	0.2768	
O27	2.773	-0.3286	-0.6957	
N28	4.3777	-1.6549	0.1587	
C29	4.671	-2.2259	-1.1397	
H30	5.7129	-2.0334	-1.4096	
H31	4.5127	-3.3072	-1.12	
H32	4.0172	-1.7786	-1.8813	
C33	5.1973	-2.1448	1.2436	
H34	5.161	-3.2368	1.2689	
H35	6.2405	-1.8434	1.1077	
H36	4.8535	-1.775	2.2036	
C37	3.1632	-0.116	1.6452	
H38	2.7896	-0.8732	2.3361	
H39	4.0674	0.3202	2.0716	
H40	2.4094	0.6593	1.5426	

Table 2: 1·DMAc coordinates. Total energy = -3319.951828 a.u.

Atom	X	У	${f z}$	
Se1	0.3271	-0.5347		
O2	-1.8488	2.7657	-0.0742	
N3	-1.2023	0.5583	-0.063	
C4	1.3072	1.0775	-0.0525	
C5	2.6867	1.2317	-0.0591	
H6	3.34	0.3727	-0.0495	
C7	0.4723	2.1859	-0.0708	
C8	-0.9819	1.9154	-0.0661	
C9	3.2102	2.5121	-0.0811	
H10	4.285	2.6441	-0.0858	
C11	-2.4807	-0.0439	-0.0415	
C12	2.3777	3.6298	-0.099	
H13	2.8082	4.6223	-0.1172	
C14	1.0063	3.4674	-0.0948	
H15	0.328	4.3112	-0.1105	
C16	-3.5014	0.4766	0.7494	
H17	-3.3249	1.3696	1.3294	
C18	-2.7151	-1.186	-0.8012	
H19	-1.9309	-1.5783	-1.437	
C20	-3.9523	-1.8083	-0.762	
H21	-4.1213	-2.6966	-1.3574	
C22	-4.7382	-0.1445	0.7694	
H23	-5.5277	0.2705	1.3832	
C24	-4.9703	-1.2893	0.0211	
H25	-5.9392	-1.7709	0.0465	
C26	3.4784	-2.2979	-1.0177	
H27	4.1383	-3.1802	-1.0084	
H28	2.8857	-2.3182	-1.9329	
H29	4.1074	-1.4073	-1.0404	
C30	1.7472	-3.4411	0.1639	
H31	1.1614	-3.4979	-0.7548	
H32	2.3328	-4.3686	0.2596	
H33	1.0574	-3.3811	1.007	
C34	3.3391	-2.1369	1.3768	
H35	3.9965	-3.0025	1.5567	
H36	3.958	-1.2393	1.3564	
H37	2.6435	-2.05	2.2121	
N38	2.5966	-2.2636	0.1352	

Table 3: 1·TMA coordinates. Total energy = -3206.593859 a.u.

Atom	X	у	Z
$\mathrm{Se}1$	0.3065	-0.5154	-0.4
O2	-1.6865	2.7999	0.3621
N3	-1.1594	0.6101	-0.0963
C4	1.3641	1.0435	-0.2832
C5	2.7386	1.1523	-0.4498
$_{\rm H6}$	3.3403	0.2878	-0.6942
C7	0.5897	2.1611	-0.0082
C8	-0.867	1.9387	0.1184
C9	3.3194	2.4011	-0.3155
H10	4.3899	2.5017	-0.4436
C11	-2.4564	0.0507	-0.0281
C12	2.5504	3.5276	-0.0274
H13	3.027	4.494	0.0711
C14	1.1825	3.4101	0.122
H15	0.5525	4.2644	0.3353
C16	-3.3589	0.4607	0.9492
H17	-3.0781	1.2378	1.6436
C18	-2.8253	-0.9381	-0.9348
H19	-2.134	-1.2402	-1.7121
C20	-4.0801	-1.5202	-0.8584
H21	-4.355	-2.2887	-1.5696
C22	-4.6154	-0.1173	1.0065
H23	-5.3136	0.2114	1.7658
C24	-4.9816	-1.1109	0.1104
H25	-5.9647	-1.5601	0.1655
S26	2.9125	-2.4561	-0.0815
C27	3.0637	-1.9613	1.6424
H28	3.7192	-1.0921	1.6749
H29	2.0898	-1.6829	2.0461
H30	3.5034	-2.7613	2.2375
C31	1.7527	-3.8193	0.0936
H32	1.5578	-4.2111	-0.9034
H33	2.1795	-4.6108	0.709
H34	0.8151	-3.4741	0.5323

Table 4: $1 \cdot DMS$ coordinates. Total energy =-3510.182468 a.u.

$\operatorname{Complex}$	$E_{ m tot}$	$E_{ m elst}$	E_{ind}	$E_{\rm dis}$	E_{exch}
$1 \cdot DMAc$	-7.551	-11.641	-4.431	-5.447	+13.967
$1 \cdot \text{TMA}$	-6.627	-12.067	-5.200	-6.777	+17.417
$1 \cdot \mathbf{py}$	-7.093	-14.093	-5.605	-5.750	+18.358
$1 \cdot DMS$	-5.646	-8.703	-3.669	-5.571	+12.297

 $\begin{tabular}{ll} Table 5: SAPT(DFT) analysis of complexes with four Lewis bases. All energies are given in kcal/mol. \\ \end{tabular}$