PDN Pre layout Simulation with LTspice and UltraCAD by Moshe Saban

Notes:

Not including VIAs(0.7mm pad VIA with 1.2mm VIA length gives 0.495nH)

Not including GND Bounce conductor inductance (shown as ideal but they are not Ideal)

Ohmic Resistance – for 1Oz copper, 10 degC max temp rise:

- W=0.3mm power trace width 1.7mOhms/mm -> 1A (will use this power trace)
- W=0.6mm power trace width 0.8mOhms/mm ->1.6A (will use this power trace)

Inductance – for 1Oz copper:

- W=0.3mm power trace width, H (dielectric)= 0.21mm -> 0.95nH/mm
- W=0.6mm power trace width, H (dielectric)= 0.21mm -> 0.48nH/mm
- W=0.3mm power trace width, H (dielectric)= 0.12mm -> 0.58nH/mm (will use this power trace)
- W=0.6mm power trace width, H (dielectric)= 0.12mm -> 0.29nH/mm (will use this
 power trace)

Capacitor ESL and ESR were taken from the muRata online tool – "SimSurfing"

General diagram:

Inductance formula:

Trace Inductance Calculator

Trace Inductance calculator for wide traces over a ground plane with trace width (W) much larger than substrate thickness (T). Relative Permeability is assumed to be 1. Low frequency, perfect conductor: no skin effect.

Conditions: W>>H, H>T

VCC_MIO0 Circuit from schematic:

VCC_MIO0 Circuit in LTspice:

VCC_MIO0 DC voltage drop (Ohmic resistors only):

54mV Ohmic voltage drop (resistors only)

AC and switching characteristics.

Trise= Tfall = 1ns (0.001uSec)

Pulse width = 30usec

Defining running time of 60uSec and measurement step(resolution) of 100psec

Results:

Vload Result:

After Load pulse rising edge:

10mV over shoot on rising edge, following by additional resonance that eventually settled to 3.246v (not arriving to 3.3V due to the Ohmic resistance)

After Load pulse falling edge:

25mV over shoot on falling edge, following by additional resonance that eventually settled to 3.3v (arriving to 3.3V since to no current drawn by the Load)

Zoom Out for reference:

Zynq all 3.3v banks PDN Simulation

Assumption: max current of 1A total, 0.25A per bank consumer. All consumers toggle together.

Schematic view:

LTspice circuit:

PDN impedance Simulation for all 3.3v Zynq banks according to capacitors C, ESL and ESR:

- From Design Guide 933:
 - The impedance of the alternate network must be less than or equal to that of the recommended network across frequencies from 100 KHz to 100 MHz

AC+DC Ohmic Results:

AC Overshoot and under shoot max absolute voltage is $\sim 10 \text{mV}$

Ohmic resistance takes $\sim\!30\text{mV}$ so final voltage after rising edge settling is $\sim\!3.27\text{V}$

Rising Edge Zoom:

Falling edge zoom:

