CS5344 Link Analysis

Web as a Graph

Nodes: Webpages

Edges: Hyperlinks

I teach a class on Database.

CS2102: Classes are in COM2 building

Computer Science Department at NUS

National University of Singapore

Web as a Graph

Nodes: Webpages

Edges: Hyperlinks

Web Search

How does the search engine decide which page should be ranked higher?

Web Search - Challenges

- Web contains many sources of information.
 - Who to "trust"?
- What is the "best" answer to query "newspaper"?
 - No single right answer

Link Analysis

- The Web is not just a collection of documents
 - The hyperlinks are important
- A link from page A to page B may indicate
 - A is related to B, or
 - A is recommending, citing, voting for, or endorsing B
- Types of links:
 - Referential click here and get back home
 - Informational click here to get more detail
- Links influence the ranking of web pages and thus have commercial value

Importance of Web Pages

- Not all web pages are equally important
- A page is important if it is pointed to by other important pages (recursion)

PageRank

- Idea: Links as votes
 - A page is more important if it has more links
- Incoming links to a page is a measure of importance and authority of the page
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all incoming links equal?
 - Links from important pages count more

Example PageRank Scores

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages

Recursive Formulation

- A link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_i/n votes
- Page j's own importance is the sum of the votes on its in-links

$$r_j = r_i/3 + r_k/4$$

Flow Model

 Can view it as a process of PageRank "flowing" from pages to the pages they point to

Flow Model

Define a rank r_i for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i is the out-degree of node i

Flow Equations

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$

Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i outlinks
 - If $i \rightarrow j$, then $M_{ii} = 1/d_i$ else $M_{ii} = 0$

- Vector with one entry per page
- r_i is the importance score of page i

• Flow equations can be written in matrix form
$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

	y	a	1	m
y	1/2	1/2	2	0
a	1/2	0		1
m	0	1/2	2	0
,			T	

Example Flow Equations and M

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$\begin{vmatrix}
y \\
a \\
m
\end{vmatrix} = \begin{vmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 1 \\
0 & \frac{1}{2} & 0
\end{vmatrix}$$

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration simple iterative scheme
 - Suppose there are N web pages
 - Initialize $\mathbf{r}^{(0)} = [1/N,, 1/N]^T$
 - Iterate: $r^{(t+1)} = M \cdot r^{(t)}$

- $r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$
- d_i out-degree of node i

- Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$
 - $|\mathbf{x}|_1 = \sum_{i \in [1,N]} |x_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Example

Power Iteration:

Set
$$r_i = 1/N$$

1:
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

2:
$$r = r'$$

Goto 1

Example:

$$\begin{pmatrix} \mathbf{r}_{\mathbf{y}} \\ \mathbf{r}_{\mathbf{a}} \\ \mathbf{r}_{\mathbf{m}} \end{pmatrix} = \frac{1/3}{1/3}$$

	у	а	m
у	1/2	1/2	0
а	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Iteration 0, 1, 2, ...

PageRank

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d_i}}$$
 or equivalently $r = Mr$

• Questions:

- 1. Does this converge?
- 2. Does it converge to what we want?

Does this converge?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Iteration 0, 1, 2, ...

Does it converge to what we want?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

$$\frac{\mathbf{r_a}}{\mathbf{r_b}} = \frac{1}{0} \quad \frac{0}{1} \quad \frac{0}{0}$$

Iteration 0, 1, 2, ...

Problems on Real Web

Imagine a random web surfer

- At any time t, surfer is on some page i
- At time t+1, surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i

Dead ends

- A page has no out-links
- Random walk has "nowhere" to go to
- Such pages cause importance to "leak out"

Spider traps

- A group of pages have no out-links out of the group place training
- Random walk gets "stuck" in a trap
- Eventually spider traps absorb all importance

Problem: Dead Ends

- A page with no out-links
- Random walk has "nowhere" to go to
- All importance "leaks out of" the Web!
- Matrix is not stochastic so initial assumptions are not met

	у	а	m
У	1/2	1/2	0
a	1/2	0	0
n	0	1/2	0 /

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/6 \\ 1/6 \end{bmatrix} \begin{bmatrix} 1/4 \\ 1/6 \\ 1/12 \end{bmatrix} \begin{bmatrix} 5/24 \\ 1/8 \\ 1/12 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Iteration 0, 1, 2, ...

Solution: Teleport

 Adjust the matrix to allow a surfer to jump to some random page from dead ends

Problem: Spider Traps

- A group of pages with no links out of the group
- Random walk gets "stuck" in a trap
- Accumulate all the importance of the Web

	У	а	m
y	1/2	1/2	0
a	1/2	0	0
n	0	1/2	1

Г -] []		Г 7		Г
ry	1/3	1/3	1/4	5/24	0
r a	= 1/3	1/6	1/6	1/8	 0
rm	$\begin{vmatrix} = & 1/3 \\ 1/3 & \end{vmatrix}$	1/2	7/12	2/3	(1)
L _]	ᆫ	ᆸ	_	

Solution: Teleport

- At each time step, a random surfer has two options
 - With probability β , follow a link at random
 - With probability 1-β, jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random Teleports (β = 0.8)

1/3

 $\mathbf{r}_{\mathbf{m}}$

0.46

0.52

0.56

21/33

Limitations of PageRank

- Measures generic popularity of a page
 - Ignore or miss topic-specific authorities
 - Solution: Topic-specific PageRank
- Susceptible to link spam
 - Artificial link topologies created in order to boost page rank
 - Solution: TrustRank
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities

Topic-Specific PageRank

- Instead of generic popularity, can we measure popularity within a topic?
- Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on interests of the user
 - Example: Is "Jaguar" an animal, the automobile, or a version of MAC OS?

Topic-Specific PageRank

- Recall random walker has a small probability of teleporting at any step
 - Standard PageRank: Any page with equal probability
 - Topic Specific PageRank: Teleport set is restricted to a topic-specific set of "relevant" pages
- Idea: Bias the random walk
 - When random walker teleports, pick a page from a set S of web pages
 - S contains only pages that are relevant to the topic
 - Get a different rank vector r_s for each teleport set S

Topic-Specific PageRank

- Decide on topics to create PageRank vectors
 - Open Directory (DMOZ) (www.dmoz.org)
 - The 16 DMOZ top-level categories: arts, business, sports, ...
- Pick a teleport set for each of these topics, and compute the topic-sensitive PageRank vector for that topic
- Determine the topic that is most relevant for a query
 - User picks from a menu
 - Query context e.g., query from a web page on a known topic
 - User context e.g., user's bookmarks
- Use the PageRank vectors for that topic to order results to the search query

TrustRank – Combating Web Spam

Spamming

- Any deliberate action to boost a web page's position in search engine results, incommensurate with page's real value
- Approximately 10-15% of web pages are spam

Link Spam

Create link structures that boost the PageRank of a particular page

Spammer's View of the Web

Link Farms

- Spammer's goal is to maximize the PageRank of target page t
- Get as many links from accessible pages as possible to target page t
- Construct "link farm" to get PageRank multiplier effect

Analysis

x: PageRank contributed by accessible pages

y: PageRank of target page t

N: Total number of web pages

Rank of each "farm" page
$$=\frac{\beta y}{M} + \frac{1-\beta}{N}$$

$$y = x + \beta M \left[\frac{\beta y}{M} + \frac{1 - \beta}{N} \right] + \frac{1 - \beta}{N}$$

$$y = \frac{x}{1-\beta^2} + c\frac{M}{N}$$
 where $c = \frac{\beta}{1+\beta}$

Let β = 0.85. Then $1/(1 - \beta^2)$ = 3.6, and c = 0.46

- External PageRank (x) increased by 360%!
- Obtain additional amount of PageRank that is 46% of the fraction of the Web, M/N, that is in the spam farm
- By making M large, we can make y as large as we want

How to Combat Link Spam?

- Detect and blacklist structures that look like spam farms
 - One page links to a very large number of pages, each of which links back to it
 - Leads to more sophisticated way of hiding spam farms, and detecting them...
- TrustRank: Topic-specific PageRank with a teleport set of trusted pages
 - e.g, .edu domains, .gov domains, etc
 - Lower the score of spam pages

TrustRank

- Basic principle: Approximate isolation
 - It is rare for a "good" (trustworthy) page to point to a "bad" (spam) page
- Sample a set of seed pages from the web
- An oracle (human) identifies the good pages and the spam pages in the seed set
 - Expensive task, so keep seed set small
 - Subset of pages in the seed set that are identified as good are called the trusted pages

Trust Propagation

- Perform a topic-sensitive PageRank with the trusted pages as the teleport set
- Propagate trust through links
 - Each page gets a trust value between 0 and 1
- Use a threshold value and mark all pages below the trust threshold as spam

Trust Propagation (Simple Model)

- Set trust of each trusted page to 1
- Suppose trust of page p is t_p
 - p has a set of out-links o_p
- For each $q \in o_p$, p confers the trust to q
 - $\beta t_p / |o_p|$ for $0 < \beta < 1$
- Trust is additive
 - Trust of p is the sum of the trust conferred on p by all its inlinked pages
- Trust attenuation
 - Degree of trust conferred by a trusted page decreases with the distance in the graph
- Trust splitting
 - The larger the number of out-links, the less scrutiny the page author gives each out-link; trust is split across out-links

Picking the Seed Set

Two conflicting considerations:

- Human has to inspect each seed page → seed set must be small
- Must ensure every good page gets adequate trust rank → need to make all good pages reachable from seed set by short paths

1. Use PageRank to pick the top-k pages

Theory is a bad page cannot have very high rank

2. Use trusted domains with controlled membership

E.g. university pages (.edu)or government pages (.gov)

Summary

- Link analysis in social network graphs to find communities
- Girvan-Newman algorithm use edge betweenness measure to separate nodes into communities
- Content of web pages and hyperlinks are important in web search
- Page Rank algorithm determine importance of web pages
- Trust Rank algorithm to overcome link spams