

Functional Analysis

Author: Hui Sun

Date: August 24, 2023

Contents

1	Lect	ture 1	7
	0.2	Chapter 2: Operators on Hilbert Space	1
	0.1	Chapter 1: Hilbert Spaces	1

This is for myself.

0.1 Chapter 1: Hilbert Spaces

- -orthogonality
- -riesz representation

We will state the Riesz representation theorem here, if $T:\mathcal{H}\to\mathbb{F}$ is a bounded linear functional, then there is a unique vector h_0 in \mathcal{H} such that

$$T(h) = \langle h, h_0 \rangle, \forall h \in \mathcal{H}$$

Moreover, we have

$$||T|| = ||h_0||$$

-orthonormal sets of vectors and bases -isomorphic hilbert spaces and the fourier transform for the circle We define an isomorphism between two Hilbert spaces as follows:

Definition 0.1

Let \mathcal{H} , \mathcal{K} be Hilbert spaces, then an isomorphism U is a surjective isometry, i.e.

$$\langle Uh, Ug \rangle = \langle h, g \rangle$$

Here we use U to highlight such isomorphism is also called the unitary operator.

We conclude this section by a few theorems regarding the Fourier transform.

Proposition 0.1

 $\{e^{2\pi inx}\}_{n\in\mathbb{Z}}$ is a basis for $L^2_{\mathbb{C}}[0,2\pi]$.

And we also have

Theorem 0.1

The Fourier transform is a linear isometry from $L^2_{\mathbb{C}}[0,2\pi]$ to $l^2(\mathbb{Z})$.

Then we talk a little bit about the direct sum of hilbert spaces

0.2 Chapter **2**: Operators on Hilbert Space

-We start with some properties of operators on the Hilbert space, such as the Schur's test.

Proposition 0.2 (Schur's test)

If we have a kernel k(x, y), and such that

$$\int |k(x,y)|d\mu(x) \le c_1$$
$$\int |k(x,y)|d\mu(y) \le c_2$$

Then if we define an operator $K:L^2(\mu)\to L^2(\mu)$ as

$$T(f)(x) = \int k(x, y)f(y)d\mu(y)$$

Then we have L^2 boundedness of T, and that

$$||T|| \le (c_1 c_2)^{1/2}$$

1

Chapter 1 Lecture 1

Here we go.

1.0.1 Course Overview and Logistics

Some administrative things. OH are Monday, Fridays 1:45 to 2:45, Wednesdays 12:45-1:45 in Evans 811.

Textbook: an introduction to functional analysis by Conway. We will be talking about operators on Hilbert spaces, and more generally, Banach spaces, and Frechet spaces (defined by a countable numer of seminomrs).

Remark Let \mathcal{H} be a Hilbert space, then the dual space \mathcal{H}^* is itself. $\mathcal{H} = \mathcal{H}^*$. Hilbert spaces are the best spaces to work with. They are self-dual, and identified with themslyes.

Then in the next section, we will look at groups, motivated by their actions on Banach spaces, connected with Fourier transforms.

1.0.2 Motivation

Let X be a compact Hausdorff space. Let $C(X)=\{f:X\to\mathbb{R},f\text{ continuous}\}$ be the algebra of continuous functons on X mapping in to \mathbb{R} or \mathbb{C} . Define the norm as the sup norm $\|\cdot\|_{L^{\infty}}$.

We will develop the spectral theorem of operators on the Hilbert space, i..e self-adjoint operators can be diagonalized.

If T is a self-adjoint operator on a Hilbert space, then we take the product of T (polynomials of T), let $C^*(T, I_{\mathcal{H}})$ be the sub-algebra of operators generated by T and I the identity operator, then take the closure, i.e. making it closed in the operator norm.

Remark The * is to remind us, T is self-adjoint and when you take the adjoint and generate with it, it gets back into the same space.

Proposition 1.

We have the next two algebra isomorphic to each other.

$$C^*(T, I_{\mathcal{H}}) \cong C(X) \tag{1.1}$$

This is what we are aimining for. We can generalize this even further to finitely many self-adjoint operators, in some sense, we are diagonalizing finitely many operators at the same time. If $T_1, ..., T_n$ is a collection of self-adjoint operators on \mathcal{H} , and such all commute with each other, then we also have

$$C^*(T_1, ..., T_n, I_{\mathcal{H}}) \cong C(X) \tag{1.2}$$

1.0.3 Groups

Let G be a group, B be a Banach space, for example, groups of automorphisms. Let

$$Aut(B) = \{T : T \text{ is isometric, onto, invertible on } B\}$$

Definition 1.1

Suppose that α is a group homomorphisms, and $\alpha: G \to Aut(B)$, is called a representation on B or an action of the group G on B.

Then we can consider the subalgebra $\mathcal{L}(B)$, consisting of the bounded linear operators on B, generated by

$$\{\alpha_x : x \in G\}$$

Remark The identity on G should be mapped into the identity operator on B, hence no need to include it.

Elements of the form $\Sigma_{z_x} \alpha_x, z_x \in \mathbb{C}$, (where Σ is a finite sum.)

Let's introduce, $f \in C_c(G)$ are functions with compact support and in discrete groups, imply they are of finite support.

$$\sum_{x \in G} f(x)\alpha_x = \alpha_f$$

note for except finitely many x, f(x) = 0.

Let $f, g \in C_c(G)$, then for

$$\alpha_f \alpha_g = (\sum f(x)\alpha_x)(\sum g(y)\alpha_y) = \sum_{x,y} f(x)g(y)\alpha_x \alpha_y = \sum_{x,y} f(x)g(y)\alpha_{xy}$$

The last inequality follows from α being a group homomorphism. And the sums are finite hence are able to exchange the orders. We further have.

$$\alpha_f \alpha_g = \sum_x \sum_y f(x)g(x^{-1}y)\alpha_y = \sum (f * g)(y)\alpha_y$$

where we define $f * g(y) = \sum f(x)g(x^{-1}y)$ as the convolution operator.

We get

$$\alpha_f \alpha_g = \alpha_{f*g}$$

This is how we define convolution on $C_c(G)$ Notice we have, by $\|\alpha_x\|=1$,

$$\|\alpha_f\| = \|\sum f(x)\alpha_x\| \le \sum |f(x)|\|\alpha_x\| = \sum |f(x)| = l^1(f) = \|f\|_{l^1}$$

It is therefore, easy to check

$$||f * g||_{l^1} \le ||f||_{l^1} ||g||_{l^1}$$

We get $l^1(G)$ is an algebra with ??

For G commutative, it is easily connected with the Fourier transform.

Consider $l^2(G)$ with the counting measure on the group. For $x \in G$, let $\xi \in l^2(G)$ define $\alpha_x \xi(y) = \xi(x^{-1}y), \alpha_x$ being unitary. $l^1(G)$ acts on operators in $l^2(G)$ via α .

If G is commutative, then we have

$$\overline{\alpha_{l^1(G)}} \cong C(X)$$

where X is some compact space. Note that $C_c(G)$ operators on $l^2(G)$, and $\|\alpha_f\| \leq \|f\|_{l^1}$.