

Autonomous Vehicle Simulation (AVS) Laboratory, University of Colorado

Basilisk Technical Memorandum

Document ID: Basilisk-sunlineEphem

SUNLINE EPHEMERIS HEADING

Prepared by	J. Martin
-------------	-----------

Status: Initial Document

Scope/Contents

Module to compute an ephemeris-based sunline heading

Rev	Change Description	Ву	Date
1.0	Initial Version	J. Martin	20181203

Contents

1	Model Description 1.1 Equations	1 1
2	Module Functions	1
3	Module Assumptions and Limitations	1
4	Test Description and Success Criteria	1
5	Test Parameters	1
6	Test Results	2
7	User Guide	2

1 Model Description

The sunline ephemeris module is responsible for calculating a sunline heading based exclusively on ephemeris data. This provides a estimate for the sun heading without relying of filtering results from the course sun sensors.

1.1 Equations

The math is straightforward; subtract the position of the sun from the position of the spacecraft, and divide it by its norm, to compute the sun heading in the inertial frame \hat{r}_{h_N} .

$$\hat{r}_{h_N} = \frac{\vec{r}_{sc} - \vec{r}_{sun}}{|\vec{r}_{sc} - \vec{r}_{sun}|} \tag{1}$$

Rotate the unit vector into the body frame by multiplying it by the appropriate direction cosine matrix defined by the spacecraft's attitude properties, $\vec{\sigma}$.

$$\hat{r}_{h_B} = DCM_{BN}(\vec{\sigma}) * \hat{r}_{h_N} \tag{2}$$

2 Module Functions

- Calculates Sunline Heading Vector in Body Frame
- Outputs NavAttIntMsg: This module sends out a NavAttIntMsg to be used for initial attitude determination.

3 Module Assumptions and Limitations

This module is exclusively based on ephemeris data. Should the ephemeris data be incorrect, so too will the sunline heading.

4 Test Description and Success Criteria

The unit test configures the sun to sit at the origin, and a spacecraft to be located along each of the coordinate axes, with an orientation 90 degree rotate about the z-axis. The body-frame sun-heading is then computed to confirm that the vectors produced from the module do reflect the unit vector in the body frame pointing to the sun.

5 Test Parameters

The sun was placed at [0,0,0] and the spacecraft is tested at each of the unit coordinate axes [1,0,0], [0,1,0], [-1,0,0], etc.

The unit test verify that the module output guidance message vectors match expected values.

Table 2: Error tolerance for each test.

Output Value Tested	Tolerated Error
estVector	1e-12

6 Test Results

All of the tests passed:

Table 3: Test results

Check	Pass/Fail
1	PASSED
2	PASSED
3	PASSED
4	PASSED
5	PASSED
6	PASSED

7 User Guide

The messages must be set as such:

- sunlineEphemConfig.scPositionInMsgName = "simple_trans_nav_output"
- sunlineEphemConfig.scAttitudeInMsgName = "simple_att_nav_output"
- sunlineEphemConfig.sunPositionInMsgName = "sun_position_output"
- sunlineEphemConfig.navStateOutMsgName = "sunline_ephem_output"