Statistiques et probabilités Cours n°5

Guillaume Postic

Université Paris-Saclay, Univ. Evry Département informatique

Master 1 MIAGE - 2023/2024

Estimation de la densité : histogramme

Représentation graphique approximant la distribution d'une variable aléatoire par groupement des données en classes représentées par des colonnes contiguës.

Estimation de la densité : histogramme

Représentation d'un jeu de données avec différentes largeurs d'intervalles :

Quelle que soit la largeur des intervalles, un histogramme est un estimateur de la densité de probabilité sous-jacente par maximum de vraisemblance (cf. définition d'un modèle ci-après)

Rappel: convolution discrète

Effet de lissage

Exemple : flou gaussien en analyse d'images

Convolution continue (1)

$$(fst g)(t):=\int_{-\infty}^{\infty}f(au)g(t- au)\,d au.$$

$$:=\int_{-\infty}^{\infty}f(t- au)g(au)\,d au$$

Convolution continue (2)

Moyenne mobile et lissage

Estimation de la densité par noyau

- Aussi appelée méthode de Parzen-Rosenblatt
- Généralisation de l'estimation par histogramme
- Deux étapes principales :
 - Sur chaque point du jeu de données, un noyau est centré
 - On calcule la somme des fonctions noyaux pour obtenir l'estimation de la densité f
- Exemple avec trois points et un noyau uniforme (ou rectangle) :

Estimation de la densité par noyau

$$\widehat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big)$$

- Différents types de noyaux K peuvent être utilisés \rightarrow **influe peu**
- Différentes méthodes pour choisir le paramètre de lissage h > 0, ou fenêtre (c.-à-d., la « largeur du noyau ») \rightarrow **influe beaucoup**
 - \circ Pour un noyau gaussien, la *fenêtre* h > 0 est égale à l'écart type

Variable qualitative <u>vs</u> quantitative

- Variable aléatoire quantitative
 - Quantitative continue
 - Mesure de longueur, de temps...
 - Quantitative discrète
 - Résultat d'un dé, longueur discrétisée...
- Variable aléatoire qualitative
 - Qualitative catégorielle (ou nominale)
 - Couleurs (bleu, vert, rouge)...
 - Qualitative ordinale
 - Lettres (A, B, C), mois de l'année...

Variable qualitative ordinale

 Latégories ordonnées, mais les distances qui les sépareraient sur une échelle ne sont pas définies

Diagramme en bâtons (bar plot/chart)

- Graphique qui présente des variables qualitatives avec des barres rectangulaires avec des hauteurs ou des longueurs proportionnelles aux valeurs qu'elles représentent.
- Largeur des barres arbitraire et identique pour toutes

Ne pas confondre avec histogramme

Variables qualitatives

Indicateurs de tendance centrale

- La moyenne et la médiane ne sont pas calculables
- Le mode peut être calculé : catégorie la plus représentée
 - Aussi calculable pour les variables quantitatives
 - Distributions multimodales

Indicateurs de dispersion

- La variance et l'écart-type ne sont pas calculables
- Étendue (range)
 - = valeur la plus haute valeur la moins haute
- IQR
- Entropie (Shannon)

Analyses multivariées (1)

- S'intéressent à des lois de probabilité à plusieurs variables (dites jointes)
- Rappel: si X_1, X_2, \dots, X_n tirages aléatoires indépendants, chacun avec k=2 résultats possibles (Bernoulli), alors

$$N = \sum_{k} X_{k} \sim B(n, p)$$

 \circ La loi binomiale modélise la probabilité du nombre de succès : une seule variable N

Analyses multivariées (2)

- Soit un dé équilibré à six faces, que l'on lance n fois
- On définit $\frac{c=3}{c}$ trois évènements (catégories ou classes) :
 - $\begin{array}{ll} \circ & e_1 : \text{valeur} \geq 4 \\ \circ & e_2 : \text{valeur} \subseteq \{2, 3\} \\ \circ & e_3 : \text{valeur} = 1 \end{array}$
- Soit le vecteur à c = 3 dimensions X, tq $X = (X_1, X_2, X_3)$
 - o avec X_i le nombre de réalisations de l'évènement e_i (succès pour la catégorie i)
- ullet On dit que ${f X}$ est une « variable multinomiale »
 - Elle suit la loi multinomiale, qui donne la probabilité du nombre de succès pour chacune des c catégories
 - Par exemple, pour n = 10 lancés, quelle est la probabilité de faire $x_1 = 7$, $x_2 = 2$ et $x_3 = 1$?
- Note : pour n = 1, **X** est appelée « variable catégorielle »

Analyses multivariées (3)

- Les probabilités des événements sont : $p(e_1) = \frac{1}{2}$, $p(e_2) = \frac{1}{3}$ et $p(e_3) = \frac{1}{3}$
- Pour n = 10 lancés, on a donc E[X] = (5; 3,3; 1,7)

Note : X_3 est déterminé par la contrainte $X_1 + X_2 + X_3 = n$

Exemple d'un tirage x de X

$val. \ge 4$	val. $\in \{2, 3\}$	val. = 1
0	1	0
1	0	0
1	0	0
1	0	0
0	1	0
1	0	n = 10
1	0	0
0	0	1
1	0	0
1	0	0
7	2	1)

Analyses multivariées (4)

Loi multinomiale

Fonction de masse :

$$f(x_1,\ldots,x_k;n,p_1,\ldots,p_k) = \Pr(X_1 = x_1 ext{ et } \ldots ext{ et } X_k = x_k) \ = egin{cases} rac{n!}{x_1!\cdots x_k!}p_1^{x_1} imes\cdots imes p_k^{x_k}, & ext{quand} & \sum_{i=1}^k x_i = n \ 0 & ext{Coefficient multinomial} \end{cases}$$

- Pas de représentation graphique au-delà de 3 (ou 4) catégories
- $\circ \quad \mathbf{E}[X_i] = np_i$
- $\circ \quad Var(X_i) = np_i (1 p_i)$
- $\circ \quad \operatorname{Cov}(X_i, X_j) = -np_i \, p_j \, (i \neq j)$

Autres lois de probabilité jointes

Multivariate Normal Distribution

Modèle bivarié (1)

Exemple 1

Jet de deux dés à 6 faces : premier X, second Y

Deux lois uniformes

Table des probabilités jointes

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Modèle bivarié (2)

Exemple 2

Jet de deux dés à 6 faces : premier X, total (somme) T

Une loi uniforme et une loi triangle

Table des probabilités jointes

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36

Modèle bivarié (3)

Représentations graphiques

Histogramme

Carte thermique (*heat map*)

Modèle bivarié (4)

Variables discrète et nominale : table de contingence

	Alice	Bob	Charlie	David	Classe
Α	4	0	1	2	7
В	1	1	1	2	5
С	0	1	2	0	3
D	0	2	1	0	3
E	0	0	0	1	1
F	0	1	0	0	1
	5	5	5	5	20

- Probabilité **jointe** : $p(A \cap Alice) = 4/20 = 1/5$
- Probabilité conditionnelle :
 - $p(A | Alice) = p(A \cap Alice) / p(Alice) = (4/20) / (5/20) = 4/5$
- Probabilités marginales :
 - op(A) = 7/20 et p(Alice) = 5/20 = 1/4

Modèle bivarié (5)

Propriétés des fonctions de masse et densité jointes

Cas discret

- 1. $0 \le p(x_i, y_i) \le 1$
- 2. Probabilité totale vaut 1

$$\sum_{i=1}^n \sum_{j=1}^m p(x_i, y_j) = 1$$

Cas continu

- 1. $0 \le f(x, y)$
- 2. Probabilité totale vaut 1

$$\int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy = 1$$

Note : f(x, y) peut être plus grand que 1, car **c'est une densité**, **pas une probabilité**

Covariance

Mesure du degré avec lequel deux variables aléatoires varient conjointement.

Par exemple : le poids et la taille d'individus

Pour X et Y variables aléatoires de moyennes μ_X et μ_Y

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

Covariance

Propriétés

- 1. Cov(aX + b, cY + d) = acCov(X, Y), pour des constantes a, b, c, d
- 2. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- 3. Cov(X, X) = Var(X)
- 4. $Cov(X, Y) = E(XY) \mu_X \mu_Y$
- 5. Si X et Y sont indépendants, alors Cov(X, Y) = 0
- 6. La réciproque n'est pas vraie : même si la covariance est nulle, les variables peuvent ne pas être indépendantes

Corrélation (linéaire)

La corrélation entre plusieurs variables aléatoires est une notion de liaison qui contredit leur indépendance.

Le coefficient de corrélation (de Pearson) entre *X* et *Y* est défini par :

$$Cor(X, Y) = \rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Propriétés:

- 1. ρ est la covariance des versions centrées réduites de X et Y
- 2. ρ est adimensionnelle

3.
$$-1 \le \rho \le 1$$
 $\rho = 1$ ssi $Y = aX + b$ avec $a > 0$ et $\rho = -1$ ssi $Y = aX + b$ avec $a < 0$

Nuage de points (scatter plot)

Représentation : nuage de points (scatter plot)

Corrélations fallacieuses (spurious)

Un coefficient de corrélation élevé n'induit pas nécessairement une **relation de causalité** entre les deux phénomènes mesurés.

Transformation des données

