Superconducting Transition Temperature Prediction from Chemical Formula and Elemental Properties

What is a superconductor?

Superconducting wire

MRI

Particle accelerator

Maglev train

• Hard to find materials with high $T_{\rm c}$

• Generally, require very high pressure

Most importantly, No general theory that can predict T_c

Data driven approach

Chemical formula	Critical temperature
YBaCuO	93
MgB_2	42
Ni_3Ge	23
i:	: :

Element	Properties			
Diction	Atomic mass	Atomic radius	• • •	
O	16	66		
Cu	64	132		
Fe	56	132		
:				

Elemental properties

Property	Unit	Description	
Atomic Mass	Da	Rest mass of an atom	
First Ionization Energy	kJ/mol	Energy required to remove a valence electron	
Atomic Radius	pm	Calculated atomic radius	
Density	kg/m^3	Density at room temperature and ambient pressure	
Electron Affinity	kJ/mol	Energy released on formation of anions	
Fusion Heat	kJ/mol	Energy required to change from solid to liquid	
Thermal Conductivity	$ m W/m\cdot K$	Ability to conduct heat	
Valence	No units	Typical number of chemical bonds formed by the element	

Features

Feature	Chemical formula AB ₂	_
Mean (μ)	$\frac{p_A + p_B}{2}$	$; p_A = \text{property of element A}$
Weighted mean (ν)	$\frac{1}{3}p_A + \frac{2}{3}p_B$	
Geometric mean	$(p_A p_B)^{\frac{1}{2}}$	
Weighted geometric mean	$p_A^{rac{1}{3}}p_B^{rac{2}{3}}$	
Entropy	$-v_A \ln v_A - v_B \ln v_B$	$; v_A = \frac{p_A}{p_A + p_B}$
Weighted entropy	$-z_A \ln z_A - z_B \ln z_B$	$;z_A = \frac{\frac{1}{3}v_A}{\frac{1}{3}v_A + \frac{2}{3}v_B}$
Range	$ p_A - p_B $	
Weighted range	$\left \frac{1}{3}p_A - \frac{2}{3}p_B \right $	
Standard deviation	$\sqrt{\frac{(p_A - \mu)^2 + (p_B - \mu)^2}{2}}$	
Weighted standard devication	$\sqrt{\frac{1}{3}(p_A - \nu)^2 + \frac{2}{3}(p_B - \nu)^2}$	
Number of elements	2	

Input

- Repeat the process for each property
- Drop chemical formula
- Number of features
 - = 10 (properties) \times 8 (aggregate functions) + 1 (# of elements)
 - = 81
- Number of samples = 21196
- Data taken from previous work, K. Hamidieh, Computational Materials Science 154 (2018) 346–354

Methodology

- Metric: Root Mean Squared Error (RMSE)
- Linear regression models
- XGBoost model
 - Bayes hyperoptimization
 - Feature selection
- Compare final result to previous study by K. Hamidieh
 - XGBoost: RMSE = 9.5

Linear regression (ols, lasso, ridge)

XGBoost

Pipeline mean CV score for xgb (k_best: f_regression)

Important features based on XGBoost (f_regression, k=28)

XGBoost

Pipeline mean CV score for xgb (k_best: mutual_info)

Important features based on XGBoost (mutual_info_regression, k=26)

XGBoost

Pipeline mean CV score for xgb (rfe)

Important features based on XGBoost (rfe, k=27)

Important features based on XGBoost (average)

Prediction based on XGB model (rfe)

Residual

Potential improvements

- Use one-hot encoder on chemical formula
- Different model, such as neural network
- Classify data into low and high critical temperature before regression

Summary

- model: XGBoost
- feature selection: recursive feature elimination k=27 (from 81)
- best test score: 9.49
- most important features: range thermal conductivity, and range atomic radius
- most important properties: thermal conductivity, atomic radius, and valence