# 자료구조 과제 #1

## 경제통상학과 18012248 신민기

### 1) 실험에 사용한 실행 코드

```
#define_CRT_SECURE_NO_WARNINGS

B #include <stdio.h>

#include <stdib.h>

#include <stdib.h>

#include <stdino.h>

#include <stdino.h

#include <stdino.h
```

```
### 경우 호소 시간 축정
QueryPerformanceFrequency(&iticksPerSec);
QueryPerformanceCounter(&start);
prefixAvg2(arr, arrSize);
QueryPerformanceCounter(&end);

diff.QuadPart = end.QuadPart - start.QuadPart;
printf(Time of prefixAvg2 : %.12lf sec\n\n", ((double)diff.QuadPart / (double)ticksPerSec.QuadPart));

free(arr);
}
return 0;
```

#### 2) 코드 실행한 화면 캡쳐

## 3) 표, 그래프, 수행 시간 분석에 대한 설명

1.  $O(N^2)$  함수 분석 (prefixAverage l)

| 배열<br>크기 | 실제 수행 시간(초) |
|----------|-------------|
| 20000    | 0.542       |
| 40000    | 1.697       |
| 60000    | 3.915       |
| 80000    | 6.919       |
| 100000   | 10.689      |
| 120000   | 18.762      |
| 140000   | 22.115      |
| 160000   | 28.326      |
| 180000   | 35.311      |
| 200000   | 43.738      |

시간복잡도  $O(N^2)$  함수는 배열의 크기가 O일 때, 수행 시간이 O일 것이므로 원점을 지난다. 이론적 인  $y=\alpha x^2$  의 형태를 하고,  $(20000,\ 0.542)$ 의 점을 지난다고 가정한다.  $\alpha=\frac{0.542}{20000^2}=0.000000001355$  가 나온다. 이론적인 함수의 형태는  $y=0.000000001355x^2$ 가 된다. 이 함수에 배열의 크기  $20000,\ 40000,\ \dots,\ 2000009$  대입해 이론적 수행 시간을 구한다.

|          | 수행 시간(초) |        |
|----------|----------|--------|
| 배열<br>크기 | 실제 수행 시간 | O(N^2) |
| 20000    | 0.542    | 0.542  |
| 40000    | 1.697    | 2.168  |
| 60000    | 3.915    | 4.878  |
| 80000    | 6.919    | 8.672  |
| 100000   | 10.689   | 13.55  |
| 120000   | 18.762   | 19.512 |
| 140000   | 22.115   | 26.558 |
| 160000   | 28.326   | 34.688 |
| 180000   | 35.311   | 43.902 |
| 200000   | 43.738   | 54.2   |

실제 수행 시간과 이론적 수행 시간에 대한 그래프를 그려 본다.

- x축 : (개) - y축 : (초)



실제와 이론적 수행 시간의 오차가 커지는 모습이 있지만 두 그래프 모두 배열의 크기가 커짐에 따라 수행 시간 소요가 가파르게 커지는 것을 확인할 수 있었다.

## 2. 0(N) 함수 분석 (prefixAverage 2)

| 배열<br>크기 | 실제 수행 시간 |
|----------|----------|
| 20000    | 0.000253 |
| 40000    | 0.000668 |
| 60000    | 0.000697 |
| 80000    | 0.000993 |
| 100000   | 0.001277 |
| 120000   | 0.002161 |
| 140000   | 0.001462 |
| 160000   | 0.001934 |
| 180000   | 0.002105 |
| 200000   | 0.002748 |

시간복잡도 O(N) 함수는 배열의 크기가 0일 때, 수행 시간이 0일 것이므로 원점을 지난다. 이론적인  $y=\alpha x$ 의 형태를 하고,  $(20000,\ 0.000253)$ 의 점을 지난다고 가정한다.  $\alpha=\frac{0.000253}{20000}=0.00000001265$ 가 나온다. 이론적인 함수의 형태는 y=0.00000001265x가 된다. 이 함수에 배열의 크기  $200000,\ 40000,\ \dots,2000000$ 을 대입해 이론적 수행 시간을 구한다.

|          | 수행 시간(초) |          |  |
|----------|----------|----------|--|
| 배열<br>크기 | 실제 수행 시간 | O(N)     |  |
| 20000    | 0.000253 | 0.000253 |  |
| 40000    | 0.000668 | 0.000506 |  |
| 60000    | 0.000697 | 0.000759 |  |
| 80000    | 0.000993 | 0.001012 |  |
| 100000   | 0.001277 | 0.001265 |  |
| 120000   | 0.002161 | 0.001518 |  |
| 140000   | 0.001462 | 0.001771 |  |
| 160000   | 0.001934 | 0.002024 |  |
| 180000   | 0.002105 | 0.002277 |  |
| 200000   | 0.002748 | 0.00253  |  |

이 역시 실제 수행 시간과 이론적 수행 시간에 대한 그래프를 그려 본다.

- x축 : (개) - y축 : (초)



마찬가지로 실제와 이론적 수행 시간의 오차가 있다. 특히 배열의 크기가 120,000일 경우가 배열의 크기가 140,000일 경우보다 알고리즘 수행 시간이 더 길었다. 하지만 전반적으로 실제 수행 시간은 이론적 수행 시간을 따라 간다.