Jumping on the Clouds

Emma is playing a new mobile game involving n clouds numbered from 0 to n-1. A player initially starts out on cloud c_0 , and they must jump to cloud c_{n-1} . In each step, she can jump from any cloud i to cloud i+1 or cloud i+2.

There are two types of clouds, *ordinary clouds* and *thunderclouds*. The game ends if Emma jumps onto a thundercloud, but if she reaches the last cloud (i.e., c_{n-1}), she wins the game!

Can you find the minimum number of jumps Emma must make to win the game? It is guaranteed that clouds c_0 and c_{n-1} are ordinary-clouds and it is *always possible* to win the game.

Input Format

The first line contains an integer, n (the total number of clouds).

The second line contains n space-separated binary integers describing clouds $c_0, c_1, \ldots, c_{n-1}$.

- ullet If $c_i=0$, the i^{th} cloud is an ordinary cloud.
- ullet If $c_i=1$, the i^{th} cloud is a thundercloud.

Constraints

- $2 \le n \le 100$
- $c_i \in \{0,1\}$
- $c_0 = c_{n-1} = 0$

Output Format

Print the minimum number of jumps needed to win the game.

Sample Input 0

7 0010010

Sample Input 1

6 0 0 0 0 1 0

Sample Output 1

3

Explanation

Sample Case 0:

Because c_2 and c_5 in our input are both 1, Emma must avoid c_2 and c_5 . Bearing this in mind, she can win the game with a minimum of 4 jumps:

Sample Case 1:

The only thundercloud to avoid is c_4 . Emma can win the game in 3 jumps:

