Matematická logika

přednáška osmá

Miroslav Kolařík

Zpracováno dle textu R. Bělohlávka: Matematická logika – poznámky k přednáškám, 2004.

Obsah

Úplnost PL – pokračování

Prenexní tvar formulí PL

Poznámky k omezením PL

Definice

Teorie T se nazývá **henkinovská**, jestliže pro každou formuli $\varphi(x)$ (s jednou volnou proměnnou x) se v jazyce teorie T vyskytuje konstanta c tak, že formule $(\exists x)\varphi \Rightarrow \varphi(x/c)$ je dokazatelná v T. Konstanta c se nazývá **henkinovská konstanta**, $(\exists x)\varphi \Rightarrow \varphi(x/c)$ se nazývá **henkinovská formule** příslušná formuli φ .

Věta o henkinovské konstantě (VoHK)

Je-li $\varphi(x)$ formule jazyka teorie T a je-li S rozšíření T vzniklé přidáním henkinovské konstanty c a henkinovské formule $(\exists x) \varphi \Rightarrow \varphi(x/c)$, pak S je konzervativním rozšířením teorie T.

Důkaz: Označme R teorii vzniklou z T přidáním c (tj. S vznikne přidáním $(\exists x)\phi\Rightarrow \phi(x/c)$ k R). Nechť pro formuli ψ jazyka teorie T platí $S\vdash \psi$, tj. $R,(\exists x)\phi\Rightarrow \phi(x/c)\vdash \psi$. Abychom prokázali konzervativnost rozšíření S, musíme dokázat $T\vdash \psi$.

Dokončení důkazu: Zvolme proměnnou y, která se nevyskytuje v žádné z φ a ψ . Podle Věty o dedukci máme $R \vdash [(\exists x) \varphi \Rightarrow \varphi(x/c)] \Rightarrow \psi$ a podle VoKonst (uvážíme-li, že $\{[(\exists x) \varphi \Rightarrow \varphi(x/y)] \Rightarrow \psi\}(y/c)$ je $[(\exists x) \varphi \Rightarrow \varphi(x/c)] \Rightarrow \psi$) je dále

$$T \vdash [(\exists x) \varphi \Rightarrow \varphi(x/y)] \Rightarrow \psi,$$

z čehož použitím G dostaneme

$$T \vdash (\forall y)[(\exists x)\varphi \Rightarrow \varphi(x/y)] \Rightarrow \psi.$$

Odtud dále (podle pravidel práce s kvantifikátory)

$$T \vdash (\exists y)[(\exists x)\phi \Rightarrow \phi(x/y)] \Rightarrow \psi, \quad T \vdash [(\exists x)\phi \Rightarrow (\exists y)\phi(x/y)] \Rightarrow \psi,$$

odkud dostaneme

$$T \vdash \psi$$

použitím MP na předcházející dokazatelnost. Totiž, platí $\vdash (\exists x) \varphi \Rightarrow (\exists x) \varphi$ a dle Věty o variantách je tedy $\vdash (\exists x) \varphi \Rightarrow (\exists y) \varphi(x/y)$ (můžeme tedy aplikovat MP).

Věta o henkinovském rozšíření (VoHR)

Ke každé teorii existuje henkinovská teorie, která je jejím konzervativním rozšířením.

Důkaz: Nechť T_0 je výchozí teorie. Sestrojme k ní posloupnost teorií T_1, T_2, \ldots takto: jazykem T_{i+1} je jazyk T_i obohacený o henkinovské konstanty všech formulí jazyka T_i s jednou volnou proměnnou (naším cílem je totiž "odstranit nehenkinovskost" T_i); axiomy T_{i+1} jsou axiomy T_i a všechny henkinovské axiomy příslušné ke všem formulím jazyka T_i s jednou volnou proměnnou.

Tvrdíme, že každá T_{i+1} je konzervativním rozšířením T_i . Musíme tedy ukázat, že je-li ψ formule jazyka T_i , pro kterou $T_{i+1} \vdash \psi$, pak $T_i \vdash \psi$. Nechť je tedy $T_{i+1} \vdash \psi$ a nechť ψ_1, \ldots, ψ_n je příslušný důkaz. Uvažujme všechny konstanty $c_{\varphi_1}, \ldots, c_{\varphi_k}$, které se vyskytují v důkazu ψ_1, \ldots, ψ_n , ale nepatří do jazyka T_i .

Dokončení důkazu: Uvažujme dále teorie S_0, S_1, \ldots, S_k takové, že $S_0 = T_i$, S_{i+1} vznikne z S_i rozšířením o $c_{\varphi_{i+1}}$ a příslušný henkinovský axiom. Pak je posloupnost ψ_1, \ldots, ψ_n důkazem ψ z S_k , a tedy podle VoHK je $S_{k-1} \vdash \psi$, z čehož postupnou aplikací VoHK dostaneme $S_{k-2} \vdash \psi, \ldots, S_0 \vdash \psi$, tj. $T_i \vdash \psi$.

Označme nyní $T = \bigcup_{i=1,2,\dots} T_i$. Zřejmě T je henkinovská teorie (plyne přímo z konstrukce T). Navíc je T konzervativním rozšířením původní T_0 , neboť je-li ψ nějaká formule jazyka T_0 a ϕ_1,\dots,ϕ_n je důkaz ψ z T, pak je to také důkaz ψ z nějakého T_i (pro dostatečně velké i), a tedy z konzervativnosti T_i plyne, že ψ je dokazatelná z T_0 .

Lemma (L)

Pro teorii T, formuli φ a libovolný uzávěr $\overline{\varphi}$ formule φ je $T \vdash \varphi$ právě když $T, \neg \overline{\varphi}$ je sporná.

Důkaz: Nechť $T \vdash \varphi$. Dle Věty o uzávěru je $T \vdash \overline{\varphi}$. Nechť ψ je libovolná formule. Dokážeme $T, \neg \overline{\varphi} \vdash \psi$: $\vdash \overline{\varphi} \Rightarrow (\neg \overline{\varphi} \Rightarrow \psi)$... využití tautologie VL: $p \Rightarrow (\neg p \Rightarrow q)$ $T \vdash \neg \overline{\varphi} \Rightarrow \psi$... MP a monotonie dokazatelnosti

 $T, \neg \overline{\varphi} \vdash \psi$... VoD, což znamená, že $T, \neg \overline{\varphi}$ je sporná.

Naopak, nechť $T, \neg \overline{\varphi}$ je sporná. Pak máme $T, \neg \overline{\varphi} \vdash \overline{\varphi}$... ze spornosti $T, \neg \overline{\varphi}$ $T \vdash \neg \overline{\varphi} \Rightarrow \overline{\varphi}$... VoD $\vdash (\neg \overline{\varphi} \Rightarrow \overline{\varphi}) \Rightarrow \overline{\varphi}$... využití tautologie VL: $(\neg p \Rightarrow p) \Rightarrow p$ $T \vdash \overline{\varphi}$... MP a monotonie dokazatelnosti $T \vdash \varphi$... Věta o uzávěru.

Definice

Teorie T se nazývá **úplná**, jestliže je bezesporná a jestliže pro každou uzavřenou formuli φ je buď $T \vdash \varphi$ nebo $T \vdash \neg \varphi$.

Věta o zúplňování teorií (VoZT)

Ke každé bezesporné teorii existuje její rozšíření se stejným jazykem, které je úplnou teorií.

Poznámka: V následujícím důkazu budeme předpokládat možnost dobrého uspořádání systému formulí daného jazyka, tzn. v obecném případě nějakou formu axiomu výběru.

Důkaz: Předpokládejme (pro jednoduchost), že množina všech uzavřených formulí daného jazyka je spočetná, tj. všechny formule lze uspořádat do posloupnosti $\varphi_1, \varphi_2, \varphi_3, \ldots$ Nechť T je daná bezesporná teorie. Pro $i=1,2,\ldots$ budeme sestrojovat teorie $T_i \supseteq T$, které budou bezespornými rozšířeními teorie T. Položme navíc $T_0 = T$.

Konstrukce pro dané i: Předpokládejme, že pro j < i máme sestrojeny $T_j \supseteq T$, které jsou bezespornými rozšířeními teorie T. Označme $S = \bigcup_{j < i} T_j$. Platí, že S je bezesporným rozšířením T. Skutečně, kdyby byla S sporná, existoval by důkaz ψ_1, \ldots, ψ_n z S nějaké vždy nepravdivé formule φ . Pak ale existuje j' < i tak, že veškeré předpoklady z S, které jsou prvky důkazu ψ_1, \ldots, ψ_n , patří do $T_{j'}$, tedy ψ_1, \ldots, ψ_n je důkazem $T_{j'}$, což není možné, protože dle předpokladu je $T_{j'}$ bezesporná.

Dokončení důkazu: Je-li $S \cup \{\varphi_i\}$ bezesporná, položme $T_i = S \cup \{\varphi_i\}$. V tom případě je T_i bezesporné rozšíření T. Je-li $S \cup \{\varphi_i\}$ sporná, položme $T_i = S \cup \{\neg \varphi_i\}$. Protože je $S \cup \{\varphi_i\}$ sporná, je dle lemma L $S \vdash \neg \varphi_i$ (při aplikaci L si uvědomme, že φ_i je uzavřená a že $S \cup \{\varphi_i\}$ je sporná, právě když je sporná $S \cup \{\neg \neg \varphi_i\}$). Jelikož je S bezesporná, je bezesporná i $T_i = S \cup \{\neg \varphi_i\}$.

Hledaným rozšířením je $T' = \bigcup_{i=1,2,...} T_i$, jehož bezespornost se ukáže podobně jako bezespornost S výše; úplnost T' je zřejmá z konstrukce.

Definice

Kanonická struktura (KS) M_T teorie T je dána následovně:

- univerzem M_T je množina všech uzavřených termů
- pro n-ární relační symbol $r \in R$ je relace $r^{\mathbf{M}_T}$ definována předpisem $\langle t_1, \dots, t_n \rangle \in r^{\mathbf{M}_T}$ právě když $T \vdash r(t_1, \dots, t_n)$
- pro *n*-ární funkční symbol $f \in F$ je funkce $f^{\mathbf{M}_T}$ definována předpisem $f^{\mathbf{M}_T}(t_1, \dots, t_n) = f(t_1, \dots, t_n)$.

Poznamenejme, že jsou-li t_1, \ldots, t_n uzavřené termy (tedy termy neobsahující proměnné), pak také $f(t_1, \ldots, t_n)$ je uzavřený term, tedy prvek univerza.

Aby KS vůbec existovala, je nutné, aby jazyk dané teorie obsahoval symboly konstant.

Všimněme si, že v definici KS je použit elegantní trik: k dané teorii je definována struktura, tj. sémantický pojem, která je však sestavena jen ze syntaktických prvků a pojmů.

KS sehraje důležitou roli při důkazu Věty o úplnosti PL – bude modelem.

Věta o kanonické struktuře (VoKS)

Je-li T úplná henkinovská teorie, pak \mathbf{M}_T je modelem T.

Důkaz: Strukturální indukcí přes φ se dá dokázat následující tvrzení (viz přednáška)

(*) pro každou uzavřenou instanci φ' formule φ je $T \vdash \varphi'$, právě když $\parallel \varphi' \parallel_{\mathbf{M}_{\tau}} = 1$

(uzavřená instance formule φ je každá taková formule φ' , která vznikne z φ aplikací nějaké korektní substituce, tj. některé proměnné se nahradí termy, přitom φ' je sama uzavřenou formulí; ' tedy označuje nějaké korektní nahrazení proměnných termy, které z φ udělá φ'). Z toho speciálně plyne, že pro každou uzavřenou formuli φ je $T \vdash \varphi$, právě když $\parallel \varphi \parallel_{\mathbf{M}_{7}} = 1$ (neboť uzavřená formule je uzavřenou instancí sama sebe).

Dokončení důkazu: Dále můžeme předpokládat, že každá formule z T je uzavřená. Skutečně, je-li θ uzávěrem ψ , je $S, \psi \vdash \varphi$, právě když $S, \theta \vdash \varphi$ (dokáže se podobnou úvahou jako Věta o uzávěru). Tedy T dokazuje stejné formule jako teorie, která z T vznikne nahrazením formulí s volnými proměnnými jejich uzávěry.

Z toho pak plyne, že \mathbf{M}_{T} je modelem T následovně: je-li φ uzavřená formule z T, pak je $T \vdash \varphi$, a tedy $\| \varphi \|_{\mathbf{M}_{T}} = 1$ (φ je pravdivá v \mathbf{M}_{T}) podle (*).

Věta o kanonické struktuře s rovností (VoKSs≈)

Je-li T úplná henkinovská teorie s rovností, pak $\mathbf{M}_T/\approx^{\mathbf{M}_T}$ (faktorizace KS vzhledem k binárnímu relačnímu symbolu rovnosti \approx , který je ekvivalencí) je modelem T.

Důkaz: Vynecháme.

Poznámka (P)

Nechť teorie S je rozšířením teorie T. Mají-li S a T stejný jazyk, je zřejmě každý model teorie S modelem teorie T. Je-li jazyk teorie S bohatší než jazyk teorie T, tj. $R_T \subset R_S$ nebo $F_T \subset F_S$, kde R_T, F_T a R_S, F_S označují po řadě relační a funkční symboly jazyka teorie T a S, je z každého modelu \mathbf{M}_S teorie S možné vytvořit model \mathbf{M}_T teorie T vypuštěním příslušných relací a funkcí, tj. $M_T = M_S, \, R^{\mathbf{M}_T} = \{r^{\mathbf{M}_S}; r \in R_T\}, \, F^{\mathbf{M}_T} = \{f^{\mathbf{M}_S}; f \in F_T\}.$ Zjednodušeně však můžeme i v tomto případě říkat, že každý model teorie S je také modelem teorie T.

Věta o úplnosti (VoÚ)

- (1) Každá bezesporná teorie má model.
- (2) Pro každou teorii T a každou formuli φ platí, že je-li $T \models \varphi$, pak $T \vdash \varphi$.

Důkaz (1): Nechť T je bezesporná teorie. Dle VoHR existuje její henkinovské rozšíření T', které je jejím konzervativním rozšířením. Protože T' je konzervativní rozšíření, plyne z bezespornosti T, že T' je také bezesporná (kdyby byla T'sporná, platilo, by pro jakoukoli formuli φ jazyka teorie T, že $T' \vdash \varphi$ i $T' \vdash \neg \varphi$. Z konzervativnosti by dále plynulo, že $T \vdash \varphi$ i $T \vdash \neg \varphi$, a tedy T by byla sporná). Dle VoZT existuje rozšíření T'' teorie T', které má stejný jazyk jako teorie T' a je úplnou teorií. Jelikož je T' henkinovská teorie, je henkinovská i T''. Dle VoKS, popř. VoKSs \approx , existuje model teorie T''. Ten je však také modelem teorie T, viz poznámka P.

Důkaz (2): Označme $\overline{\varphi}$ libovolný uzávěr formule φ . Kdyby neplatilo $T \vdash \varphi$, pak by (dle lemma L) teorie $T, \neg \overline{\varphi}$ byla bezesporná. Podle (1) by tedy $T, \neg \overline{\varphi}$ měla model **M**. V **M** je pravdivá $\neg \overline{\varphi}$, tedy je v něm nepravdivá $\overline{\varphi}$. Protože ve struktuře je formule pravdivá, právě když je v ní pravdivý její uzávěr, je v **M** nepravdivá formule φ . **M** je tedy modelem teorie T, ve kterém neplatí φ , což je spor s předpokladem $T \models \varphi$.

Teorie T je množina formulí. **Podteorie** S dané teorie je její podmnožina, tj. $S \subseteq T$.

Věta o kompaktnosti

Teorie má model, právě když každá její konečná podteorie má model.

Důkaz: Vynecháme, ale je jednoduchý.

Poznámka: Ve VL jsme využili Větu o kompaktnosti k prokázání VoÚ. V PL jsem naopak Větu o kompaktnosti dostali jako důsledek VoÚ.

Obsah

Úplnost PL – pokračování

2 Prenexní tvar formulí PL

3 Poznámky k omezením PL

Definice

Formule je v **prenexním tvaru**, je-li ve tvaru $(Q_1x_1)...(Q_nx_n)\varphi$, kde Q_i je buď \forall nebo \exists , x_i jsou navzájem různé proměnné a formule φ je otevřená (tj. neobsahuje kvantifikátory); $(Q_1x_1)...(Q_nx_n)$ se nazývá **prefix**, φ **jádro**.

Poznámka: V žádné formuli v prenexním tvaru nemůže být nějaká proměnná současně volná i vázaná a nemůže se opakovat kvantifikace téže proměnné.

Příklad

Formule $(\forall x)(\exists y)(\forall z)(x \approx y \land r(q,y,z))$ je v prenexním tvaru. Naproti tomu formule $(\forall x)(\exists y)(r(y) \lor (\forall x)s(y))$ ani $(\forall x)(\forall y)(\exists x)r(x,y)$ nejsou v prenexním tvaru.

Věta o prenexním tvaru

Ke každé formuli φ existuje formule ψ v prenexním tvaru tak, že $\vdash \varphi \Leftrightarrow \psi$.

Důkaz: Pro každou formuli $\varphi = \varphi_0$ sestrojíme pomocí postupných úprav posloupnost vzájemně ekvivalentních formulí $\varphi_0, \varphi_1, \dots, \varphi_n$ tak, že φ_i je ekvivalentní s φ_{i+1} a φ_n je v prenexním tvaru. Úpravy převádějí kvantifikátory na začátek formule. Není-li φ_i v prenexním tvaru, pak zřejmě obsahuje podformuli tvaru $\neg (Qx)\chi$ nebo $(Qx)\chi \Rightarrow \psi$ nebo $\chi \Rightarrow (Qx)\psi$, kde Q je některý kvantifikátor. Tuto podformuli nahradíme ve φ_i s ní ekvivalentní formulí a dostaneme φ_{i+1} . Nechť ke Q je Q' ten druhý kvantifikátor (tj. \forall' je \exists a \exists' je \forall). Podformuli tvaru $\neg (Qx)\chi$ nahradíme $(Q'x)\neg \chi$.

Dokončení důkazu: U podformule tvaru $(Qx)\chi \Rightarrow \psi$ [popř. $\chi \Rightarrow (Qx)\psi$] nejprve přejmenujeme proměnné tak, aby $(Qx)\chi$ a ψ [popř. χ a $(Qx)\psi$] neobsahovaly společné proměnné. Přejmenováním získaná formule $(Qy)\chi' \Rightarrow \psi'$ [popř. $\chi' \Rightarrow (Qy)\psi'$] je ekvivalentní s $(Qx)\chi \Rightarrow \psi$ [popř. $\chi \Rightarrow (Qx)\psi$]. Formule $(Qy)\chi' \Rightarrow \psi'$ [popř. $\chi' \Rightarrow (Qy)\psi'$] je dle Věty o záměně pořadí kvantifikátoru a implikace ekvivalentní formuli $(Q'y)(\chi' \Rightarrow \psi')$ [popř. $(Qy)(\chi' \Rightarrow \psi')$]. Tedy podformuli $(Qx)\chi \Rightarrow \psi$ nahradíme formulí $(Q'y)(\chi' \Rightarrow \psi')$ a podformuli $\chi \Rightarrow (Qx)\psi$ nahradíme formulí $(Qy)(\chi' \Rightarrow \psi')$.

Poznámka: Důkaz předchozí věty má konstruktivní charakter.

Příklady: Viz přednáška a cvičení.

Obsah

Úplnost PL – pokračování

Prenexní tvar formulí PL

3 Poznámky k omezením PL

Poznámky k omezením PL

K omezením PL, které nelze jednoduše (resp. vůbec) vyřešit jejím rozšířením, ať už o nové spojky nebo o další pravdivostní hodnoty, patří její **nerozhodnutelnost**. Neformálně řečeno, neexistuje žádný algoritmus, který by o vstupní teorii T a formuli φ dokázal po konečném počtu kroků říct, zda-li φ je sémantickým důsledkem T.

Dále nelze axiomaticky vymezit vlastnost "být konečný". Jinými slovy, neexistuje žádná teorie T taková, že \mathbf{M} je modelem T, právě když je \mathbf{M} struktura s konečným nosičem. Také nelze axiomaticky vymezit, aby byl symbol rovnosti \approx interpretován relací identity.

Zmiňme ještě jedno omezení: PL má jen dvě základní pravdivostní hodnoty. Studiem více pravdivostních hodnot a studiem vyplývání v prostředí vágnosti se zabývá fuzzy logika.