Simulador de Escalonamento - Trabalho Prático

Sistemas Operativos I

Tomás Dias nº42784

Introdução

Foi proposto na cadeira de Sistemas Operativos I a realização de um trabalho prático com o objetivo de implementar um simulador de escalonamento **FCFS** (first come, first served) e **Round Robin**. O procedimento feito tendo como objetivo a implementação do simulador encontra-se descrito de seguida.

Estruturas de dados usadas e função main()

A principal estrutura de dados utilizada foi uma estrutura de filas. Estas tinham como finalidade gerir filas de processos. Na implementação das filas, para além da definição da struct que representa uma fila, foram utilizadas as seguintes funções:

- struct Queue* createQueue(): Esta função cria uma fila recebendo como argumento a capacidade da mesma.
- int isFull(): Esta função indica se a fila está lotada, ou seja, se o tamanho da fila é igual à sua capacidade. Recebe como argumento a fila
- int isEmpty(): Esta função indica se a fila está vazia, ou seja, se o tamanho da fila é igual a 0. Recebe como argumento a fila.
- void enqueue(): Esta função adiciona um processo à parte mais atrás da fila, recebendo como argumentos a fila à qual vai ser adicionado o processo e o próprio processo.

- int dequeue(): Esta função remove o processo que se encontra na frente da fila, recebendo como argumento a fila à qual o processo será removido e retorna o processo removido.
- int front(): Esta função indica qual o processo que está na frente da fila, recebendo como argumento a fila.
- int rear(): Esta função indica qual o processo que está na parte de trás da fila, recebendo como argumento a fila.

Foi também definida uma struct de forma a representar um processo.

Na função **main()**, para além de serem chamadas as funções que implementam os algoritmos de escalonamento e de serem criadas as filas que correspondem aos estados run, blocked e ready, é também lido o ficheiro que serve como input. A estrutura desta função é maioritariamente baseada em ciclos, em que a partir de o input introduzido pelo utilizador, cada linha do ficheiro é guardada num array de duas dimensões e para cada linha do ficheiro é passada a informação dessa linha para cada membro da estrutura do processo correspondente. Este ciclo repete-se tendo em conta o número de processos existentes.

Funções que implementam os algoritmos de escalonamento FCFS e Round Robin

A arquitetura da função que implementa o FCFS e da função que implementa o Round Robin é praticamente idêntica. Ambas as funções assentam em ciclos e em estruturas de decisão/condição. Com a utilização de ciclos procurou-se estudar cada processo individualmente, de forma a determinar o seu comportamento num determinado instante e repetir o procedimento para o resto dos instantes. O comportamento que o processo iria ter foi fundamentalmente determinado por condições de maneira a garantir que um processo só agia de uma determinada maneira quando cumpridas essas mesmas condições.

Para a implementação das funções correspondentes a FCFS e Round Robin, foram implementadas as seguintes funções auxiliares:

- void coloca_posicao(): Esta função coloca o processo numa determinada posição da fila. Recebe como argumentos o processo, a posição da fila na qual se pretende colocar o processo e a fila.
- int elimina(): Esta função elimina o processo do array de processos, returnando o tamanho atualizado do array. Recebe como argumentos o array de processos, o tamanho do array e o processo.
- int verifica(): Esta função verifica se o processo se encontra numa determinada fila returnando 1 se se verificar e 0 se não se verificar. Recebe como argumento o processo e a fila.
- void ordena_menor(): Esta função ordena os processos de forma crescente de tempos de chegada (t_inicio). Recebe como argumentos o array de processos e o tamanho do array.
- void ordena_estado(): Esta função ordena os processos pelo estado em que se encontram (RUN -> BLOCKED -> READY). Recebe como argumentos o array de processos, o tamanho do array e as três filas correspondentes aos estados (run, blocked e ready).
- void output(): Esta função é responsável pela estrutura do output (printa a fila). Recebe como argumento a fila.

Com isto, implementou-se os algoritmos FCFS e Round Robin que correspondem às funções:

- void fcfs(): Esta função implementa o algoritmo de escalonamento FCFS. Como dito anteriormenete, esta função é constituída essencialmente por ciclos e estruturas de condição. O ciclo 'principal' inicia quando o instante é 0 e os processos encontram-se ordenados pelo menor tempo de chegada e pelo estado em que se encontram, e finaliza após ser atingido o número de instantes dado para o algoritmo ser executado. Definiu-se como 60 instantes como limite máximo de vezes que o ciclo é executado, sendo que os processos podem demorar mais ou menos tempo a finalizar dependendo do input dado. Recebe como argumentos o array de processos, o número de processos e as filas correspondentes aos estados (run, blocked, ready).
- void rr(): Esta função implementa o algoritmo de escalonamento Round Robin. Com a arquitetura semelhante à função fcfs, esta por

sua vez diferencia-se pela utilização de um quantum que modifica o comportamento dos processos em cada instante bem como as prioridades de acesso às filas correspondentes ao estados. À semelhança da função fcfs, o limite máximo de instantes que o ciclo 'principal' é executado é também 60. Recebe como argumentos o array de processos, o número de processos, o valor de quantum e as filas.

Resultados do output dos algoritmos de escalonamento FCFS e Round Robin

O output do FCFS para o input1.txt foi o seguinte:

Insi	ra input (.t	xt):	input1.txt				
0	READY 101			RUN	100	BLOCKED	
1	READY 200	300		RUN	101	BLOCKED 100	
2	READY 200	300		RUN	101	BLOCKED 100	
3	READY 200	300		RUN	101	BLOCKED 100	i
4	READY 200	300	100		101	BLOCKED	
5	READY 300	100		RUN	200	BLOCKED 101	
4 5 6 7	READY 300	100		RUN	200	BLOCKED 101	
	READY 100			RUN	300	BLOCKED 101	200
8	READY 100			RUN	300	BLOCKED 101	200
9	READY 100	101			300	BLOCKED 200	
10	READY 100	101			300	BLOCKED 200	
11	READY 100	101			300	BLOCKED 200	
12	READY 100	101	200		300	BLOCKED	
13	READY 100	101	200		300	BLOCKED	
14	READY 101	200			100	BLOCKED 300	
15	READY 101	200		RUN		BLOCKED 300	
16	READY 101	200			100	BLOCKED 300	
17	READY 101	200		RUN		BLOCKED 300	
18	READY 101	200			100	BLOCKED 300	ļ
19	READY 101	200			100	BLOCKED 300	
20	READY 101	200	300		100	BLOCKED	ļ
21	READY 101	200	300		100	BLOCKED	
22	READY 101	200	300		100	BLOCKED	
23	READY 101	200	300		100	BLOCKED	
24	READY 200	300			101	BLOCKED 100	
25	READY 200	300			101	BLOCKED 100	
26	READY 300			RUN		BLOCKED 100	
27	READY 100				300	BLOCKED 200	
28	READY				100	BLOCKED 200	
29	READY 200				100	BLOCKED	
30	READY 200				100	BLOCKED	
31	READY 200			RUN		BLOCKED	
32	READY 200				100	BLOCKED	
33	READY 200				100 200	BLOCKED	
34 35	READY			RUN		BLOCKED	
36	READY READY			RUN		BLOCKED BLOCKED	
					200		
37	READY			RUN		BLOCKED	

O output do Round Robin para o input1.txt foi o seguinte:

Tunda							
Insir	a input (.t	Xt):	inputi.txt				
0	READY 101				100	BLOCKED	
1	READY 200	300			101	BLOCKED	
2	READY 200	300		RUN		BLOCKED	
3	READY 200	300		RUN		BLOCKED	100
4		100		RUN		BLOCKED	
5		100	101	RUN		BLOCKED	
6		101		RUN		BLOCKED	
7		101		RUN		BLOCKED	
8		101		RUN		BLOCKED	
9	READY 101	300		RUN		BLOCKED	
10	READY 101	300		RUN		BLOCKED	200
11	READY 101	300	200	RUN		BLOCKED	
12	READY 300	200	100	RUN		BLOCKED	
13		100		RUN		BLOCKED	
14		100		RUN		BLOCKED	
15		100		RUN		BLOCKED	
16	READY 100	300		RUN		BLOCKED	
17	READY 300	101		RUN		BLOCKED	
18		101	200	RUN		BLOCKED	200
19		101	200	RUN		BLOCKED	
20	READY 101	200	100	RUN		BLOCKED	300
21		100		RUN		BLOCKED	
22	READY 200	100		RUN		BLOCKED	
23	READY 100			RUN		BLOCKED	
24	READY 100 READY 100			RUN		BLOCKED	
25				RUN		BLOCKED	
26 27	READY READY 300			RUN		BLOCKED	300
28	READY 300			RUN RUN		BLOCKED	
29	READY 100			RUN		BLOCKED BLOCKED	
30	READY 100			RUN		BLOCKED	
31	READY			RUN	100	BLOCKED	100
32	READY			RUN		BLOCKED	
33	READY			RUN		BLOCKED	
34	READY				100	BLOCKED	100
35	READY			RUN		BLOCKED	
36	READY			RUN		BLOCKED	
37	READY			RUN		BLOCKED	
38	READY			RUN		BLOCKED	
39	READY			RUN		BLOCKED	
40	READY			RUN	100	BLOCKED	
+0	READI			KUN		BLUCKED	