EVALUATION AND PREDICTION OF LONG TERM SPACE ENVIRONMENTAL EFFECTS ON

NON-METALLIC MATERIALS

CONTRACT NAS 8-33578

QUARTERLY PROGRESS REPORT NO. 4

OCTOBER 8, 1980

MeME 79/382M

ΒY

JOHN A. SHEPIC

PROGRAM MANAGER

PREPARED FOR:

MARSHALL SPACE FLIGHT CORP.

HUNTSVILLE, ALABAMA

MARTIN MARIETTA CORP.

P. O. BOX 179

DENVER, COLORADO 80201

(NASA-CR-161585) EVALUATION AND PREDICTION OF LONG TERM SPACE ENVIRONMENTAL EFFECTS ON NON-METALLIC MATERIALS Quarterly Progress Report (Martin Marietta Corp.) 12 p G MC A02/MF A01 CSCL 11G #3/23

NBO-33479

Unclas 29009

1. INTRODUCTION:

The objective of this program is to determine the effects of prolonged space environment on a variety of spacecraft materials; and where possible, compare these results with predicted behavior.

II. TECHNICAL PROPERTIES SUMMARY

Task I - Physical Properties Testing

Ten materials have been evaluatee for electrical and mechanical properties following long term vacuum exposure. This work was performed under subtask 1.1 in the schedule included in this report. Physical properties tests under subtask 1.1 have been completed on all available materials.

The materials tested during this reporting period are listed in Table 1.

Data obtained from these materials is presented in tabular form at the end of this report. Adhesion characteristics were evaluated for poly-thermaleze and therm-amid insulation. No adhesion defects were detected after any of the exposures.

TABLE 1
MATERIALS EVALUATED CLASSIFICATION AND TESTS

MATERIAL	CIT/dealigh ON	TESTS
Poly-thermaleze insulation	Magnet wire insulation	Adhesion and dielectric strength
Therm-amid insulation	Magnet wire insulation	Adhesion and dielectric strength
Adlock 851	Phenolic laminate	Flexure and tensile properties
Vespel SP-1	Polylmide	Hardness
Cho-seal	Conductive elastomer	Volume Resistivity
texan	Poly carbonate	Tensile Properties
Polyethe'ene	Polyothelene	Tensile Properties
Polyurethane	Polyurethane	Tensile Properties
Lucite	Acrylic	Tensile Properties
Nylon	Polyamide	Tensile Proporties

MCR-79-665 (ISSUE 4) October 8, 1980 Page 2

The first radiation-calibrated canister for subtask 1.2 was received by Martin Marietta from MSFC in late September and will not be loaded with specimens until mid-October dur to MMU work which pre-empted this task. Slippage of this task is indicated in the schedule included with this report.

The fixture Fabrication for subtask 1.3 is completed and the unit has passed the helium leak test. The manipulator adaptor for the MSFC vacuum chamber is shown in figures 1 and 2. The front portion of the adaptor to be welded to the MSFC vacuum tank was shipped to MSFC at the end of September.

The electric impact wrench modification is nearing completion. This wrench is for loosening the vacuum chamber flange bolts with the manipulator arm.

Task II - Perform TGA/RGA

The thermal gravimetric analysis (TGA) and residual gas analysis (RGA) are being rescheduled for completion in mid-October. Comparison of pre and post exposure TGA/RGA data is continuing.

Work Planned:

- 1. Load causiter for irradiation exposures.
- 2. Compare pre and post exposure TGA/RGA data.
- 3. Complete impact wrench modification
- 4. Begin to correlate isothermal weight loss with mechanical property changes.

Table 2
Polythermalese Insulated Wire (Belden Corp.)

Exposure	AWG	Dielectric Average	Strength, High	KV Low	Samples Tested
Baseline	20	9.5	11.2	1.8	3
	30	8.8	11.0	7.0	3
Heat Compatibility (1)	20	10.1	11.5	9.4	3
·	30	7.7	9.0	6.6	3
Heat Compatibility (1) plus	20	8.7	11.7	7.1	3
30 day Thermal Vacuum (2)	30	6.8	7.2	6.5	3
Heat Compatibility (1) plus	20	14.3	16.5	12.0	3
100 month Thermal Vacuum (2)	30	8.7	9.5	8.0	3

Therm-Amid Insulated Wire (Rea Magnet Wire Co.)

Exposure	AWG	Dielectric Average	Strength, High	KV Low	Samples Tested
Baseline	20	12.7	14.5	11.0	3
nasetrile	30	8.0	9.5	7.0	3
Heat Compatibility (1)	20	8.5	9.0	8.0	3
	30	8.7	9.8	8.1	3
Heat Compatability (1) plus	20	7.5	7.5	7.4	3
30 day Thermal Vacuum (2)	30	6.5	6.5	6.4	2
ileat Compatibility (1) plus	20	11.3	11.5	11.0	3
100 month Thermal Vacuum (2)	30	10.8	11.5	10.0	3

⁽¹⁾ Heat compatibility = 570 hours at $275^{\circ}F$ (408°K) in \aleph_2 atmosphere

⁽²⁾ Tested at 10^{-5} Torr after exposure for the specified length of time at $150^{0}\mathrm{F}$ (3380K) and 10^{-6} Torr

Table 3

Adfock 851

Tensile Strength and Modulus (ASTM D638-68)#

Property (1)	Exposure	Average MPA KSI	High MPa Ksi	Low MPa Ksi	Samples Tested
Ultimate Strength	Baseline	184 26.7	192 27.9	177 25.6	5
Ultimate Strength	Heat Compatibility (2)	208 30.1	244 35.4	174 25.2	5
Ultimate Strength	Heat Compatibility (2) plus 102 month Thermal Vacuum (3)	234 34.0	267 38.7	1.89 27.4	5
Elastic Modulus	Baseline	18300 2660	22100 3200	15900 2300	5
Elastic Modulus	Heat Compatibility (2)	17700 2570	21000 3040	15700 2280	5
Elastic Modulus	Heat Compatibility (2) plus 102 month Thermal Vacuum (3)	18600 2700	19300 2800	17900 2600	5

*Type I specimen tested at a crosshead rate of 1.3 mm/minute (.05 in/minute)

- (1) Cured 1 hour at 250°F (394°K) plus 1 hour at 300°F (422°K) plus ½ hour at 350°F (449°K) plus 4 hours at 500°F (553°K)
- (2) Heat compatibility 5.0 hours at 275°F (408°K) in $\rm M_2$ atmosphere
- (3) Thermal Vacuum Tested at 1×10^{-5} Torr after heat compatibility (2) and an initial exposure of 10 to 16 hours at 140° F (333°F) to 160° F (344°K) followed by an exposure at 120° F + 10° F (322°K + 6° K) for the time specified at a pressure of 1×10^{-5} Torr or less.

Table 4

Vespel SP-1

Hardness (ASTM D785 and D2240)

	Aver	age	Hig	th	Lo	Low		
Exposure	Rockwell M	Shore D*	Rockwell H	Snore D#	kockwell M	Snore D#	Samples Tested	
Baseline	88.2	86	89.0	86	87.0	85	5	
Heat Compatibility (1)	90.0	86	92.0	86	89.0	86	5	
Tested in air after heat compatibility (1) plus 30 day thermal vacuum	89.6		91.0		87.0		5	
Tested at 1×10^{-5} Torr after heat compatibility (1) plus 30 day thermal vacuum (2)		85		86		85	5	
Tested at in air after heat compatibility (1) plus 102 day thermal vacuum	87.2		89		85		4	
Tested at 1x10 ⁻⁵ Torr after haet compatibility (1) plus 102 month Thermal Vacuum		87		88		86	4	

*Shore D Hardness was run as a comparison since Rockwell Tester could not be used in In-Situ. Thermal vacuum test specimens were tested for Rockwell Hardness in air after Shore D test in vacuum.

⁽¹⁾ Heat compatibility - 570 hours at $275^{\circ}\mathrm{F}$ ($408^{\circ}\mathrm{K}$) in N_2 atmosphere.

⁽²⁾ Exposed for the specified length of time to 150° F (338°K) and $1x10^{-6}$ Torr.

TABLE 6

MATERIAL: NYLON

TENSILE STRENGTH AND MODULUS

PROPERTY	EXPOSURE (1)	AV	ERAGE	HTC	ЭН	LO	J	SAMPLES
ULTIMATE STRENGTH	BASELINE	MPa 59.34	KSI 8.6	MPa	KSI	МРа	KSI	TESTED 4
ULTIMATE STRENGTH	3 MONTHS	70.52	10.22	75 ·	10.87	67.9	9.84	4
ULTIMATE STRENGTH	6 MONTHS	61.41	8.9	6.5 52	9.51	57.8	8.38	4
ULTIMATE STRENGTH	96 MONTHS	84.59	12.26	93.36	13.53	79.28	11.29	4
ELASTIC MODULUS	BASELINE	12.42x10 ⁵	1.8 _× 10 ⁵					4
ELASTIC MODULUS	96 MONTHS	13x10 ⁵	1.9x10 ⁵	15,2×10 ⁵	2.2×10 ⁵	10.4x10	1.5x10 ⁵	

NOTES: 1 KSI = 6.9 MPa

(1) THERMAL VACUUM - TESTED AT 10^{-5} TORR

TABLE 7

MATERIALS POLYETHELENE
TERSILE STRENGTH AND MODILUS

PROPERTY	EXPOSURE (1)	ΑV	AVERAGE		HIGH		ı,ow	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		MPa	KSI	MPa	KS I	мРа	KSI	TESTED
BELLIMATE STRENGTH	BASELINE	14.5	2.10					4
ULTIMATE STRENGTH	3 MONTHS	19.87	2.88	20.01	2.90	19.8	2.87	4
ULTIMATE STRENGTH	6 MONTHS	10.07	1.46	10.21	1.48	10.0	1.45	4
ULTIMATE STRENGTH	96 MONTHS	10.49	1.52	13.59	1.97	8.69	1.26	4
ELASTIC MODULUS	BASELINE							4
ELASTIC MODULUS	96 MONTHS	46×10 ³	6.7×10 ³	53×10 ³	7.7x10 ³	38.6×10 ³	5.6×10 ³	4

NOTES: (1) THERMAL VACUUM - TESTED AT 10⁻⁵ TORR

TABLE 8
MATERIAL POLYURETHANE

TENSILE STRENGTH AND MODULUS

PROPERTY	EXPOSURE (1)	VA	AVERAGE #3		101 17		กม	SVMDTES
7 (10.7)		MPa	KSI	MPa	KSI	MPa	KSI	TESTED
ULTIMATE STRENGTH	BASELINE	59.9	8.1					4
ULTIMATE STRENGTH	3 MONTHS	21.87	3.17	28.29	4.10	6.42	0.93	4
ULTIMATE STRENGTH	6 MONTHS	6.69	0.97	6.76	0.98	6.42	0.93	4
DETIMATE STRENGTH	96 MONTHS	56.1	8.13	59.4	8.47	54.3	7.87	4
ELASTIC MODULUS	BASELINE							4
ELASTIC MODULUS	96 MONTHS	11.7×10^3	1.7×10^{3}	13.1x10 ³	1.9×10 ³	7.6×10 ³	1.1×10^{3}	4

NOTES: (1) THERMAL VACUUM - TESTED AT 10^{-5} TORR

TABLE 9

MATERIAL; LUCITE

TENSILE STREEGTH AND MODULOS

PROPERTY	EXPOSURE (1)	AVERAGE		птсаг		1.00		SAMPLES	
		MPa	KSI	MPa	KSI	MPa	KSI	TESTED	
OLITIMATE STRENGTH	BASELINU	89.3	12.94					4	
OLTIMATE STRENGTH	3 MONTHS	69.55	10.08	83.84	32.15	48.65	7.05	4	
ULTIMATE STRENGTH	6 MONTHS	91.56	13.27	97.08	14.07	82.94	12.02	4	
ULTIMATE STRENGTH	96 MONTHS	81.70	11.84	85.7	12.42	74.24	10.76	4	
ELASTIC MODULUS	BASELINE	11.7×10 ⁵	1.7x10 ⁵					4	
ELASTIC MODULUS	96 MONTHS	15.9×10 ⁵	2.3×10^{5}	17.3x10 ⁵	2.5x10 ⁵	14.5×10 ⁵	2.1x10 ⁵	4	

MOTES: (1) THERMAL VACUUM - TESTED AT 10⁻⁵ TORR

TABLE 16

MATERIAL LEXAN

TENSILE STRENGTH AND MODULUS

PROPERTY EXPOSURE (1)		AVERAGE		man		I,OW		comples
, 10071 22700 1		Mľa	KS I	MPa	KSI	MPa	KS1	TESTED
BLEIMATE STRENGTH	BASELINE	66.7	9.67					4
ULTIMATE STRENGTH	3 MONTHS	50.5	7.32	57.5	8.33	44.7	6.48	4
ULTIMATE STRENGTH	6 MONTHS	50.9	7.37	51.8	7.51	49.4	7.16	4
ULTIMATE STRENGTH	96 MONTHS	49.0	7.10	50.2	7.28	48.6	7.04	4
ELASTIC MODULUS	BASELINE	8×10 ⁵	1.2×10^{5}					4
ELASTIC ADDULUS	96 MONTHS	7.2×10^{5}	1.04×10 ⁵	7.6×10 ⁵	1.1x10 ⁵	6.6x10 ⁵	.96×10 ⁵	4

NOTES: (1) THERMAL VACUUM - TESTED AT 10⁻⁵ TORR

.

