Multiple Linear Regression for Robot Calibration

In this lab, we will illustrate the use of multiple linear regression for calibrating robot control. In addition to reviewing the concepts in the <u>multiple linear regression demo (./glucose.ipynb)</u>, you will see how to use multiple linear regression for time series data -- an important concept in dynamical systems such as robotics.

The robot data for the lab is taken generously from the TU Dortmund's <u>Multiple Link Robot Arms Project</u> (http://www.rst.e-technik.tu-dortmund.de/cms/en/research/robotics/TUDOR_engl/index.html. As part of the project, they have created an excellent public dataset: https://www.rst.e-technik.tu-dortmund.de/cms/en/research/robotics/TUDOR_engl/index.html#h3MERIt] -- A Multi-Elastic-Link Robot Identification Dataset that can be used for understanding robot dynamics. The data is from a three link robot:

We will focus on predicting the current draw into one of the joints as a function of the robot motion. Such models are essential in predicting the overall robot power consumption. Several other models could also be used.

Load and Visualize the Data

First, import the modules we will need.

```
In [2]: import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
```

The full MERIt dataset can be obtained from the <u>MERIt site (http://www.rst.e-technik.tu-dortmund.de/cms/en/research/robotics/TUDOR_engl/index.html#h3MERIt)</u>. But, this dataset is large. Included in this repository are two of the ten experiments. Each experiments corresonds to 80 seconds of recorded motion. We will use the following files:

- exp1.csv (./exp1.csv) for training
- exp2.csv (./exp2.csv) for test

Below, I have supplied the column headers in the names array. Use the pd.read_csv command to load the data. Use the index_col option to specify that column 0 (the one with time) is the *index* column. You can review simple linear regression demo (../simp_lin_reg/auto_mpg.ipynb) for examples of using the pd.read_csv command.

```
In [4]:
        names =[
             't',
                                                    # Time (secs)
             'q1', 'q2', 'q3',
                                                   # Joint angle
                                                                    (rads)
             'dq1', 'dq2', 'dq3',
                                                  # Joint velocity (rads/sec)
             'I1', 'I2', 'I3',
                                                  # Motor current (A)
             'eps21', 'eps22', 'eps31', 'eps32', # Strain gauge measurements
        ($\mu$m /m )
             'ddq1', 'ddq2', 'ddq3'
                                                   # Joint accelerations (rad/s
        ec^2)
        # load the data set
        df = pd.read csv('/Users/JJ/Documents/introml-master/mult lin reg/exp1
        .csv'
                          , header=None, delim whitespace= False, names= names,
        na values='?' )
        print(df)
        #df.values
```

```
dq1
                                                                  dq2
          t
                   q1
                            q2
                                     q3
\
0
       0.00 - 0.000007
                       2.4958 -1.13450 -7.882100e-21 -4.940656e-321
1
       0.01 - 0.000007
                       2.4958 -1.13450 -2.258200e-21 -4.940656e-321
2
       0.02 - 0.000007
                       2.4958 -1.13450 -6.469800e-22 -4.940656e-321
3
       0.03 - 0.000007
                       2.4958 -1.13450 -1.853600e-22 -4.940656e-321
4
                       2.4958 -1.13450 -5.310600e-23 -4.940656e-321
       0.04 - 0.000007
5
       0.05 - 0.000007
                       2.4958 -1.13450 -1.521500e-23 -4.940656e-321
6
       0.06 - 0.000007
                       2.4958 -1.13450 -4.359100e-24 -4.940656e-321
7
       0.07 - 0.000007
                       2.4958 -1.13450 -1.248900e-24 -4.940656e-321
8
       0.08 - 0.000007
                       2.4958 -1.13450 -3.578100e-25 -4.940656e-321
9
       0.09 - 0.000007
                       2.4958 -1.13450 -1.025100e-25 -4.940656e-321
10
       0.10 -0.000007
                       2.4958 -1.13450 -2.937000e-26 -4.940656e-321
                       2.4958 -1.13450 -8.414500e-27 -4.940656e-321
11
       0.11 - 0.000007
12
       0.12 - 0.000007
                       2.4958 -1.13450 -2.410800e-27 -4.940656e-321
                       2.4958 -1.13450 -6.906800e-28 -4.940656e-321
13
       0.13 - 0.000007
```

```
14
       0.14 - 0.000007
                        2.4958 -1.13450 -1.978800e-28 -4.940656e-321
15
       0.15 - 0.000007
                        2.4958 -1.13450 -5.669300e-29 -4.940656e-321
16
       0.16 -0.000007
                        2.4958 -1.13450 -1.624300e-29 -4.940656e-321
17
       0.17 - 0.000007
                        2.4958 -1.13450 -4.653500e-30 -4.940656e-321
18
       0.18 - 0.000007
                        2.4958 -1.13450 -1.333200e-30 -4.940656e-321
19
       0.19 - 0.000007
                        2.4958 -1.13450 -3.819800e-31 -4.940656e-321
20
       0.20 - 0.000007
                        2.4958 -1.13450 -1.094400e-31 -4.940656e-321
                        2.4958 -1.13450 -3.135400e-32 -4.940656e-321
21
       0.21 - 0.000007
22
       0.22 - 0.000007
                        2.4958 -1.13450 -8.982800e-33 -4.940656e-321
23
       0.23 - 0.000007
                        2.4958 -1.13450 -2.573600e-33 -4.940656e-321
24
       0.24 - 0.000007
                        2.4958 -1.13450 -7.373400e-34 -4.940656e-321
25
       0.25 - 0.000007
                        2.4958 -1.13450 -2.112500e-34 -4.940656e-321
26
       0.26 - 0.000007
                        2.4958 -1.13450 -6.052300e-35 -4.940656e-321
27
       0.27 - 0.000007
                        2.4958 -1.13450 -1.734000e-35 -4.940656e-321
28
       0.28 - 0.000007
                        2.4958 -1.13450 -4.967900e-36 -4.940656e-321
29
       0.29 - 0.000007
                        2.4958 -1.13450 -1.423300e-36 -4.940656e-321
                                           2.219800e-04
                                                           1.102200e+00
7970
      79.70
              0.000013
                        1.6711
                                 0.12283
7971
      79.71 -0.000007
                        1.6821
                                 0.12283 -1.019300e-03
                                                           1.091100e+00
              0.000013
7972
      79.72
                        1.6930
                                 0.12287
                                           8.606800e-04
                                                           1.099000e+00
7973
      79.73 -0.000007
                        1.7040
                                 0.12290 -7.090300e-04
                                                           1.092300e+00
7974
      79.74
              0.000013
                        1.7149
                                 0.12292
                                           5.890900e-04
                                                           1.098400e+00
7975
      79.75 -0.000007
                        1.7259
                                 0.12292 -1.406800e-03
                                                           1.096900e+00
7976
      79.76
              0.000013
                        1.7368
                                 0.12291
                                          1.077100e-03
                                                           1.085400e+00
7977
              0.000013
      79.77
                        1.7478
                                 0.12291 -1.845000e-03
                                                           1.101600e+00
7978
      79.78 -0.000007
                        1.7587
                                 0.12292
                                           1.256800e-03
                                                           1.092900e+00
7979
      79.79
             0.000013
                        1.7696
                                 0.12294
                                           3.600600e-04
                                                           1.096000e+00
7980
      79.80 -0.000007
                        1.7806
                                 0.12294
                                         -9.797000e-04
                                                           1.097500e+00
7981
      79.81
              0.000013
                        1.7916
                                 0.12294
                                           7.365600e-04
                                                           1.090800e+00
7982
      79.82
              0.000013
                        1.8025
                                 0.12292
                                           2.110300e-04
                                                           1.098300e+00
7983
      79.83 -0.000007
                        1.8135
                                 0.12292
                                           1.101600e-03
                                                           1.093000e+00
7984
      79.84
              0.000013
                        1.8244
                                 0.12291
                                           3.156000e-04
                                                           1.090500e+00
7985
      79.85 -0.000007
                        1.8353
                                 0.12292
                                         -1.215800e-03
                                                           1.093200e+00
7986
      79.86
              0.000013
                        1.8462
                                 0.12294
                                          7.345400e-04
                                                           1.085700e+00
7987
      79.87 -0.000007
                        1.8570
                                 0.12294 -1.016600e-03
                                                           1.091800e+00
             0.000013
7988
      79.88
                        1.8680
                                 0.12292
                                          8.614400e-04
                                                           1.083100e+00
7989
      79.89 -0.000007
                        1.8788
                                 0.12291 -1.430400e-03
                                                           1.089000e+00
             0.000013
7990
      79.90
                                 0.12290
                                          6.730600e-04
                        1.8897
                                                           1.094700e+00
7991
              0.000013
                        1.9006
                                 0.12290 -2.099600e-03
      79.91
                                                           1.084800e+00
7992
      79.92 -0.000007
                        1.9115
                                 0.12290
                                           1.690900e-03
                                                           1.092200e+00
7993
      79.93
              0.000013
                        1.9224
                                 0.12290
                                           4.844400e-04
                                                           1.085300e+00
7994
      79.94 -0.000007
                        1.9332
                                 0.12290 -6.534400e-04
                                                           1.087400e+00
7995
      79.95 -0.000007
                        1.9441
                                 0.12290 -1.872100e-04
                                                           1.092700e+00
7996
      79.96 -0.000007
                        1.9550
                                 0.12290 -5.363600e-05
                                                           1.081500e+00
7997
      79.97 -0.000007
                        1.9659
                                 0.12288 -1.536700e-05
                                                           1.095700e+00
7998
      79.98 -0.000007
                                 0.12288 -4.402600e-06
                        1.9768
                                                           1.091300e+00
7999
                                 0.12288 -1.549500e-03
      79.99
              0.000013
                        1.9877
                                                           1.089900e+00
                dq3
                            Ι1
                                      12
                                                 I3
                                                       eps21
                                                                 eps22
eps31
```

```
3.913100e-29 -0.081623 -0.408120 -0.306090 -269.250 -113.200
0
3.59180
      2.626200e-31 -0.037411 -0.372410 -0.266980 -270.910 -116.050
1.45850
      1.762500e-33 -0.066319 -0.403020 -0.314590 -269.250 -112.970
3.59180
      1.182800e-35 -0.068020 -0.437030 -0.283980 -269.970 -114.390
1.69560
     -5.270900e-03 -0.052715 -0.404720 -0.307790 -269.970 -114.150
3.11770
      3.252600e-04 -0.088425 -0.423420 -0.295890 -269.250 -114.150
2.40660
      2.182900e-06 -0.078222 -0.426820 -0.273780 -265.940 -108.940
7.38430
      1.465000e - 08 - 0.091826 - 0.431920 - 0.287380 - 271.860 - 116.990
-0.43771
      9.831800e-11 -0.057817 -0.406420 -0.287380 -269.730 -114.150
2.88070
      6.598300e-13 -0.074822 -0.411520 -0.290780 -269.730 -114.390
2.64370
10
      4.428300e-15 -0.062918 -0.404720 -0.268680 -271.860 -116.050
1.45850
11
      2.971900e-17 -0.073121 -0.401320 -0.311190 -269.490 -112.970
2.88070
      1.994500e-19 -0.078222 -0.380910 -0.309490 -270.200 -113.910
12
3.11770
13
      1.338500e-21 -0.064619 -0.409820 -0.289080 -270.680 -114.860
1.45850
      8.983200e-24 - 0.073121 - 0.399610 - 0.306090 - 269.970 - 114.150
2.88070
      6.028800e-26 -0.064619 -0.408120 -0.297590 -269.020 -112.490
15
3.59180
      4.046000e-28 -0.064619 -0.403020 -0.302690 -268.780 -113.910
16
3.35480
17
      2.715400e-30 -0.090126 -0.416620 -0.292480 -265.700 -108.220
7.14720
      1.822300e-32 -0.079923 -0.399610 -0.287380 -269.730 -112.970
18
3.11770
19
      1.223000e-34 - 0.105430 - 0.414920 - 0.323090 - 273.760 - 118.890
-1.38580
20
      8.207800e-37 -0.074822 -0.399610 -0.314590 -268.310 -112.490
3.59180
      5.508400e-39 -0.073121 -0.389410 -0.287380 -269.730 -114.390
21
2.40660
22
      3.696800e-41 -0.062918 -0.421720 -0.323090 -270.440 -114.150
2.88070
      2.481000e-43 -0.078222 -0.392810 -0.294180 -268.310 -112.250
23
3.59180
      1.665000e-45 -0.095227 -0.428520 -0.329890 -268.540 -112.490
3.82880
```

25 1.117400e-47 1.69560	-0.081623	-0.374110	-0.285680	-269.730	-114.150	
26 7.499300e-50 5.01400	-0.061218	-0.421720	-0.283980	-268.070	-110.590	
27 2.205900e-03	-0.103730	-0.394510	-0.306090	-267.600	-110.360	
5.96210 28 1.480400e-05	-0.061218	-0.414920	-0.317990	-272.810	-117.230	
0.27337	0 002224	0 422420	0 211100	260 210	112 020	
29 9.935200e-08 3.82880	-0.083324	-0.423420	-0.311190	-268.310	-112.020	
•••	•••	•••	• • •	• • •	• • •	
7970 -4.093000e-10 -4.94130	-0.079923	0.030609	-0.003401	-57.350	-21.709	
7971 -2.746900e-12 -4.70430	-0.022106	0.173450	0.076522	-56.876	-20.287	
7972 2.892000e-03	-0.028908	0.117330	0.076522	-71.335	-30.242	-
7973 5.402700e-03 -7.31160	-0.100330	0.125840	-0.040812	-86.031	-31.664	
7974 3.170700e-04	-0.051015	0.062918	0.040812	-102.620	-42.567	
-7.31160 7975 2.127900e-06	-0.001700	0.083324	0.020406	-111.390	-45.175	
-6.12640 7976 -1.325500e-04	-0.124140	-0.001700	-0.056116	-121.820	-54.419	-
13.47400 7977 -8.117400e-04	0 120730	0 025507	0 027208	121 110	-54.182	
13.94800	-0.120730	-0.023307	-0.027200	-121•110	-34.102	
7978 7.492600e-05	-0.011903	0.212560	0.086725	-121.350	-55.841	_
12.52600						
7979 2.813100e-04 15.60800	-0.064619	0.051015	0.020406	-125.850	-58.685	-
7980 1.887900e-06	-0.062918	0.071421	0.032309	-125.380	-52.049	
-9.44480 7981 1.267000e-08	0 040214	0 071421	0 070222	125 200	10 256	
-3.75610	-0.049314	0.0/1421	0.076222	-123.360	-40.230	
7982 3.257500e-03 -6.12640	-0.113930	-0.071421	-0.023807	-132.490	-53.471	
7983 -8.136000e-05	-0.134340	-0.057817	-0.059517	-130.120	-53.945	
-9.68190 7984 3.806900e-03	-0.102030	-0.003401	-0.017005	-125.140	-54.182	_
14.18500 7985 2.554800e-05	_0.100330	0.034010	_0.015304	_118.740	-52.760	_
15.37100	-0.100330	0.034010	-0.013304	-110.740	-32.700	_
7986 4.633300e-04	-0.091826	0.028908	-0.015304	-123.010	-60.345	-
19.40000				40	0.4:	
7987 3.109500e-06 3.82880	0.000000	0.163250	0.090126	-105.470	-34.271	
7988 -4.631400e-04 -1.38580	-0.032309	0.147940	0.073121	-112.580	-41.382	

```
7989 -5.169300e-03 -0.105430 -0.061218 -0.049314 -111.870
                                                          -41.856
-5.41530
7990 -3.469200e-05 -0.049314 0.090126 0.045913 -98.593
                                                          -32.375
0.74743
7991 -2.328200e-07 -0.078222 0.068020 -0.025507 -104.280
                                                          -43.278
-9.20780
7992 -1.562500e-09 -0.127540 -0.066319 -0.051015 -106.890
                                                          -43.278
-9.91890
7993 -1.048600e-11 -0.113930 0.069720 -0.057817 -110.440
                                                          -44.701 -
10.39300
7994 -7.037600e-14 0.010203 0.158150 0.051015 -114.000
                                                          -50.626 -
11.10400
7995 -4.723100e-16 -0.105430
                            0.086725 0.013604 -110.440
                                                          -40.434
-2.33400
7996 -3.169700e-18 -0.068020
                            0.056116 - 0.005102 - 114.710
                                                          -41.619
-2.09690
7997 -1.032200e-04 0.001700
                            0.068020 0.054416 -118.030
                                                          -41.856
-2.09690
7998 -6.927400e-07 -0.154740 0.011903 -0.061218 -133.200 -57.737 -
12.52600
7999 -4.649100e-09 -0.059517 0.037411 -0.003401 -135.570 -56.078 -
11.10400
```

	eps32	ddq1	ddq2	ddq3
0	1.57860	-9.904900e-19	-6.210306e-319	4.917400e-27
1	-1.73980	4.248100e-19	-1.766878e-319	-1.381100e-27
2	0.86753	3.233800e-19	-4.990557e-320	-4.117300e-28
3	-0.08059	1.500500e-19	-1.394253e-320	-1.173100e-28
4	0.86753	5.932400e-20	-3.581976e-321	-3.770800e-01
5	-0.08059	2.164600e-20	-1.141292e-321	2.930300e-01
6	6.08220	7.524800e-21	7.905050e-323	6.028500e-02
7	-2.45090	2.532500e-21	7.905050e-323	1.700300e-02
8	0.86753	8.327400e-22	7.905050e-323	4.838000e-03
9	0.39347	2.690900e-22	7.905050e-323	1.376900e-03
10	-1.73980	8.577600e-23	7.905050e-323	3.918900e-04
11	0.86753	2.704600e-23	7.905050e-323	1.115400e-04
12	0.86753	8.452000e-24	7.905050e-323	3.174400e-05
13	-1.02870	2.621700e-24	7.905050e-323	9.034700e-06
14	0.15644	8.080800e-25	7.905050e-323	2.571400e-06
15	2.05270	2.477300e-25	7.905050e-323	7.318400e-07
16	0.86753	7.558900e-26	7.905050e-323	2.082900e-07
17	5.84520	2.297000e-26	7.905050e-323	5.928100e-08
18	1.57860	6.954700e-27	7.905050e-323	1.687200e-08
19	-5.53230	2.098900e-27	7.905050e-323	4.801900e-09
20	1.57860	6.316200e-28	7.905050e-323	1.366700e-09
21	-0.08059	1.895800e-28	7.905050e-323	3.889700e-10
22	0.15644	5.676600e-29	7.905050e-323	1.107000e-10
23	1.10460	1.696200e-29	7.905050e-323	3.150700e-11
24	1.57860	5.058200e-30	7.905050e-323	8.967200e-12
25	-0.55465	1.505700e-30	7.905050e-323	2.552200e-12

```
26
                               7.905050e-323
       3.23780
                4.474800e-31
                                              7.263700e-13
27
       4.89700
                1.327800e-31
                               7.905050e-323
                                              1.578100e-01
28
      -2.21390
                3.934600e-32
                               7.905050e-323 -1.118300e-01
29
       2.05270
                1.164400e-32
                               7.905050e-323 -3.288100e-02
7970
      -0.55465 -5.549200e-03
                                5.896800e-01
                                              5.603200e-03
7971
       5.60810 -1.575600e-01
                               -6.321500e-01
                                              1.594700e-03
7972
      -0.08059
               1.914000e-01
                                3.872600e-01
                                              2.073500e-01
7973
       1.81560 -1.427800e-01
                               -3.687700e-01
                                              2.386300e-01
7974
      -3.16200
               1.224900e-01
                                3.310400e-01 -2.959100e-01
7975
       0.15644 -2.159500e-01
                               -1.366300e-02 -1.067500e-01
7976
      -6.71740
               2.506700e-01
                               -8.240400e-01 -4.001700e-02
7977
      -4.34710 -2.958500e-01
                                9.223700e-01 -5.997700e-02
7978
                               -3.567000e-01
      -2.45090
               3.055700e-01
                                              4.636100e-02
7979
      -3.63600 -2.571300e-02
                                1.201800e-01
                                              2.795900e-02
7980
       0.15644 -1.756800e-01
                                1.390500e-01 -1.203200e-02
                               -4.396000e-01 -3.558600e-03
7981
       2.28970
               1.656700e-01
7982
      -0.55465 -1.888900e-02
                                4.118700e-01
                                              2.320300e-01
7983
      -2.92490
               1.065300e-01
                               -2.639300e-01 -1.728200e-01
7984
      -3.16200 -6.844700e-02
                               -2.519200e-01
                                              2.289700e-01
7985
      -3.39900 -2.119200e-01
                                1.218700e-01 -2.053400e-01
7986 -11.69500
               1.847700e-01
                               -5.006900e-01 -2.712400e-02
7987
       9.63760 -1.674700e-01
                                2.946900e-01 -4.064400e-02
7988
       2.28970
               1.883400e-01
                               -5.442900e-01 -4.492300e-02
7989
      -1.73980 -2.343900e-01
                                2.681800e-01 -3.494600e-01
7990
       8.45250
               1.976100e-01
                                4.839500e-01
                                              2.678600e-01
7991
      -1.50280 -2.921800e-01
                               -5.648300e-01
                                              7.870200e-02
7992
      -0.55465
               3.931700e-01
                                3.661700e-01
                                              2.241600e-02
7993
      -4.34710 -3.970700e-02
                               -3.904300e-01
                                              6.379900e-03
7994
      -7.66550 -1.542900e-01
                                4.114700e-02
                                              1.815800e-03
7995
       3.71190
               1.467500e-02
                                3.884400e-01
                                              5.167900e-04
7996
       1.10460
                2.096200e-02
                               -6.908700e-01
                                              1.470800e-04
7997
       3.71190
                1.077500e-02
                                8.226400e-01 -7.342500e-03
7998
                               -8.205000e-02
      -5.76930
                4.444500e-03
                                              5.245100e-03
7999
      -1.50280 -1.928900e-01
                               -1.255900e-01
                                              1.542000e-03
```

[8000 rows x 17 columns]

Print the first six lines of the pandas dataframe and manually check that they match the first rows of the csv file.

```
In [5]: # print the first six lines
df.head(6)
```

Out[5]:

	t	q1	q2	q3	dq1	dq2	dq3	l1	
0	0.00	-0.000007	2.4958	-1.1345	-7.882100e- 21	-4.940656e- 321	3.913100e- 29	-0.081623	-0.
1	0.01	-0.000007	2.4958	-1.1345	-2.258200e- 21	-4.940656e- 321	2.626200e- 31	-0.037411	-0.
2	0.02	-0.000007	2.4958	-1.1345	-6.469800e- 22	-4.940656e- 321	1.762500e- 33	-0.066319	-0.
3	0.03	-0.000007	2.4958	-1.1345	-1.853600e- 22	-4.940656e- 321	1.182800e- 35	-0.068020	-0.
4	0.04	-0.000007	2.4958	-1.1345	-5.310600e- 23	-4.940656e- 321	-5.270900e- 03	-0.052715	-0.
5	0.05	-0.000007	2.4958	-1.1345	-1.521500e- 23	-4.940656e- 321	3.252600e- 04	-0.088425	-0.

From the dataframe df, extract the time indices into a vector t and extract I2, the current into the second joint. Place the current in a vector y and plot y vs. t.

```
In [9]:
        # TODO
         \# y = \dots
         y = df['I2']
        print(y)
         # t = ...
         x = df['t']
        # plt.plot(...)
         plt.plot(x,y,'o')
        plt.xlabel('time')
         plt.ylabel('I2')
        plt.grid(True)
        0
                -0.408120
         1
                -0.372410
         2
                -0.403020
         3
                -0.437030
         4
                -0.404720
         5
                -0.423420
                -0.426820
         6
```

-0.431920

7

8	-0.406420
9	-0.411520
10	-0.404720
11	-0.401320
12	-0.380910
13	-0.409820
14	-0.399610
15	-0.408120
	-0.403020
16	
17	-0.416620
18	-0.399610
19	-0.414920
20	-0.399610
21	-0.389410
22	-0.421720
23	-0.392810
24	-0.428520
25	-0.374110
26	-0.421720
27	-0.394510
28	-0.414920
29	-0.423420
	0.123120
	• • •
7970	0.030609
7971	0.173450
7972	0.117330
7973	0.125840
7974	0.062918
7975	0.083324
7976	-0.001700
7977	-0.025507
7978	0.212560
7979	0.051015
7980	0.071421
7981	0.071421
7982	-0.071421
7983	-0.057817
7984	-0.003401
7985	0.034010
7986	0.028908
7987	0.163250
7988	0.147940
7989	-0.061218
7990	0.090126
7991	0.068020
7992	-0.066319
7993	0.069720
7994	0.158150
7995	0.086725
7996	0.056116
, , , , ,	0.000110

7997 0.068020 7998 0.011903 7999 0.037411

Name: I2, Length: 8000, dtype: float64

Use all the samples from the experiment 1 dataset to create the training data:

- ytrain: A vector of all the samples from the I2 column
- Xtrain: A matrix of the data with the columns: ['q2','dq2','eps21', 'eps22', 'eps31', 'eps32','ddq2']

```
In [14]: # TODO
  #df2= df[['q2','dq2','eps21', 'eps22', 'eps31', 'eps32','ddq2']]
  #print(df2)
  # ytrain = ...
  ytrain = df['I2']
  # Xtrain = ...
  #Xtrain = df2
  Xtrain =df2[['q2','dq2','eps21', 'eps22', 'eps31', 'eps32','ddq2']]
  print(Xtrain)
```

```
α2
                        dq2
                                eps21
                                         eps22
                                                    eps31
                                                              eps32
                                                                     \
0
      2.4958 -4.940656e-321 -269.250 -113.200
                                                  3.59180
                                                            1.57860
1
      2.4958 -4.940656e-321 -270.910 -116.050
                                                  1.45850
                                                           -1.73980
2
      2.4958 -4.940656e-321 -269.250 -112.970
                                                  3.59180
                                                            0.86753
3
      2.4958 -4.940656e-321 -269.970 -114.390
                                                  1.69560
                                                           -0.08059
      2.4958 -4.940656e-321 -269.970 -114.150
4
                                                  3.11770
                                                            0.86753
5
      2.4958 -4.940656e-321 -269.250 -114.150
                                                  2.40660
                                                           -0.08059
6
      2.4958 -4.940656e-321 -265.940 -108.940
                                                  7.38430
                                                            6.08220
7
      2.4958 -4.940656e-321 -271.860 -116.990
                                                -0.43771
                                                           -2.45090
8
      2.4958 -4.940656e-321 -269.730 -114.150
                                                  2.88070
                                                            0.86753
9
      2.4958 -4.940656e-321 -269.730 -114.390
                                                  2.64370
                                                            0.39347
```

```
10
      2.4958 -4.940656e-321 -271.860 -116.050
                                                   1.45850
                                                            -1.73980
11
      2.4958 -4.940656e-321 -269.490 -112.970
                                                   2.88070
                                                             0.86753
12
      2.4958 -4.940656e-321 -270.200 -113.910
                                                   3.11770
                                                             0.86753
13
      2.4958 -4.940656e-321 -270.680 -114.860
                                                   1.45850
                                                            -1.02870
14
      2.4958 -4.940656e-321 -269.970 -114.150
                                                   2.88070
                                                             0.15644
15
      2.4958 -4.940656e-321 -269.020 -112.490
                                                   3.59180
                                                             2.05270
16
      2.4958 -4.940656e-321 -268.780 -113.910
                                                   3.35480
                                                             0.86753
17
      2.4958 -4.940656e-321 -265.700 -108.220
                                                   7.14720
                                                             5.84520
18
      2.4958 -4.940656e-321 -269.730 -112.970
                                                   3.11770
                                                             1.57860
19
      2.4958 -4.940656e-321 -273.760 -118.890
                                                  -1.38580
                                                            -5.53230
20
      2.4958 -4.940656e-321 -268.310 -112.490
                                                   3.59180
                                                             1.57860
21
      2.4958 -4.940656e-321 -269.730 -114.390
                                                   2.40660
                                                            -0.08059
22
      2.4958 -4.940656e-321 -270.440 -114.150
                                                   2.88070
                                                             0.15644
23
      2.4958 -4.940656e-321 -268.310 -112.250
                                                   3.59180
                                                             1.10460
24
      2.4958 -4.940656e-321 -268.540 -112.490
                                                   3.82880
                                                             1.57860
25
      2.4958 -4.940656e-321 -269.730 -114.150
                                                   1.69560
                                                            -0.55465
26
      2.4958 -4.940656e-321 -268.070 -110.590
                                                   5.01400
                                                             3.23780
27
      2.4958 -4.940656e-321 -267.600 -110.360
                                                   5.96210
                                                             4.89700
28
      2.4958 -4.940656e-321 -272.810 -117.230
                                                   0.27337
                                                            -2.21390
29
      2.4958 -4.940656e-321 -268.310 -112.020
                                                   3.82880
                                                             2.05270
. . .
          . . .
                                   . . .
                                             . . .
                                                       . . .
                                                                  . . .
7970
      1.6711
                1.102200e+00
                              -57.350
                                        -21.709
                                                  -4.94130
                                                            -0.55465
7971
      1.6821
                1.091100e+00
                              -56.876
                                        -20.287
                                                  -4.70430
                                                             5.60810
7972
      1.6930
                              -71.335
                                        -30.242 -10.63000
                1.099000e+00
                                                            -0.08059
7973
      1.7040
                1.092300e+00
                              -86.031
                                        -31.664
                                                 -7.31160
                                                             1.81560
7974
      1.7149
                1.098400e+00 -102.620
                                        -42.567
                                                  -7.31160
                                                             -3.16200
7975
      1.7259
                1.096900e+00 -111.390
                                                 -6.12640
                                        -45.175
                                                             0.15644
7976
      1.7368
                1.085400e+00 -121.820
                                        -54.419 -13.47400
                                                             -6.71740
7977
      1.7478
                1.101600e+00 -121.110
                                        -54.182 -13.94800
                                                            -4.34710
7978
      1.7587
                1.092900e+00 -121.350
                                        -55.841 -12.52600
                                                            -2.45090
7979
      1.7696
                1.096000e+00 -125.850
                                        -58.685 -15.60800
                                                            -3.63600
                1.097500e+00 -125.380
7980
      1.7806
                                        -52.049
                                                 -9.44480
                                                             0.15644
7981
      1.7916
                1.090800e+00 -125.380
                                        -48.256
                                                 -3.75610
                                                             2.28970
7982
                                                            -0.55465
      1.8025
                1.098300e+00 -132.490
                                        -53.471
                                                 -6.12640
7983
      1.8135
                1.093000e+00 -130.120
                                        -53.945
                                                 -9.68190
                                                            -2.92490
7984
      1.8244
                1.090500e+00 -125.140
                                        -54.182 -14.18500
                                                            -3.16200
7985
      1.8353
                1.093200e+00 -118.740
                                        -52.760 -15.37100
                                                            -3.39900
7986
      1.8462
                1.085700e+00 -123.010
                                        -60.345 -19.40000 -11.69500
7987
      1.8570
                1.091800e+00 -105.470
                                        -34.271
                                                   3.82880
                                                             9.63760
7988
      1.8680
                1.083100e+00 -112.580
                                        -41.382
                                                  -1.38580
                                                             2.28970
7989
      1.8788
                1.089000e+00 -111.870
                                        -41.856
                                                 -5.41530
                                                            -1.73980
7990
      1.8897
                1.094700e+00
                             -98.593
                                        -32.375
                                                   0.74743
                                                             8.45250
7991
      1.9006
                1.084800e+00 -104.280
                                        -43.278
                                                 -9.20780
                                                            -1.50280
7992
      1.9115
                1.092200e+00 -106.890
                                                 -9.91890
                                        -43.278
                                                            -0.55465
7993
      1.9224
                1.085300e+00 -110.440
                                        -44.701 -10.39300
                                                             -4.34710
7994
      1.9332
                1.087400e+00 -114.000
                                        -50.626 -11.10400
                                                             -7.66550
7995
      1.9441
                1.092700e+00 -110.440
                                        -40.434
                                                 -2.33400
                                                             3.71190
7996
      1.9550
                1.081500e+00 -114.710
                                        -41.619
                                                 -2.09690
                                                             1.10460
7997
      1.9659
                1.095700e+00 -118.030
                                        -41.856
                                                 -2.09690
                                                             3.71190
7998
      1.9768
                1.091300e+00 -133.200
                                        -57.737 -12.52600
                                                            -5.76930
```

7999 1.9877 1.089900e+00 -135.570 -56.078 -11.10400 -1.50280

```
ddq2
0
     -6.210306e-319
1
     -1.766878e-319
2
     -4.990557e-320
3
     -1.394253e-320
4
     -3.581976e-321
5
     -1.141292e-321
6
      7.905050e-323
7
      7.905050e-323
8
      7.905050e-323
9
      7.905050e-323
10
      7.905050e-323
11
      7.905050e-323
12
      7.905050e-323
      7.905050e-323
13
14
      7.905050e-323
15
      7.905050e-323
16
      7.905050e-323
17
      7.905050e-323
18
      7.905050e-323
19
      7.905050e-323
20
      7.905050e-323
21
      7.905050e-323
22
      7.905050e-323
23
      7.905050e-323
24
      7.905050e-323
25
      7.905050e-323
26
      7.905050e-323
27
      7.905050e-323
28
      7.905050e-323
29
      7.905050e-323
7970
       5.896800e-01
7971
     -6.321500e-01
7972
       3.872600e-01
7973
      -3.687700e-01
7974
       3.310400e-01
7975
      -1.366300e-02
7976
      -8.240400e-01
7977
       9.223700e-01
7978
      -3.567000e-01
7979
       1.201800e-01
7980
       1.390500e-01
7981
      -4.396000e-01
7982
       4.118700e-01
7983
      -2.639300e-01
7984
      -2.519200e-01
7985
       1.218700e-01
```

```
7986 -5.006900e-01
7987
      2.946900e-01
7988 -5.442900e-01
7989
      2.681800e-01
7990 4.839500e-01
7991 -5.648300e-01
7992
      3.661700e-01
7993 -3.904300e-01
7994
      4.114700e-02
7995
      3.884400e-01
7996 -6.908700e-01
7997
     8.226400e-01
7998 -8.205000e-02
7999 -1.255900e-01
[8000 rows x 7 columns]
```

Fit a Linear Model

e=False)

Use the sklearn.linear model module to create a LinearRegression class regr.

```
In [15]: from sklearn import linear_model
    # Create linear regression object
# TODO
# regr = ...
regr = linear_model.LinearRegression()
Out[15]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normaliz
```

Train the model on the training data using the regr.fit(...) method.

```
In [16]: # TODO
    regr.fit(Xtrain,ytrain)
Out[16]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normaliz
    e=False)
```

Plot the predicted and actual current I2 over time on the same plot. Create a legend for the plot.

```
In [22]: # TODO
    y_tr_pred = regr.predict(Xtrain)
    #print(y_tr_pred)
    RSS_tr = np.mean((y_tr_pred-ytrain)**2)/(np.std(ytrain)**2)
    Rsq_tr = 1-RSS_tr
    print("RSS per sample = {0:f}".format(RSS_tr))
    print("R^2 = {0:f}".format(Rsq_tr))

[-0.29986089 -0.31642912 -0.30404851 ..., 0.17973549 0.08029841 0.09750532]
    RSS per sample = 0.095833
    R^2 = 0.904167
```

Measure the normalized RSS given by

$$\frac{RSS}{ns_v^2}$$

```
In [26]: # TODO
    # RSS_train = ...
plt.scatter(ytrain,y_tr_pred)
    ymin = np.min(y)
    ymax = np.max(y)
    plt.plot([ymin,ymax],[ymin,ymax],'r-')
    plt.xlabel('Actual')
    plt.ylabel('Predicted')
    plt.grid()
```


Measure the Fit on an Indepdent Dataset

Load the data in exp2.csv. Compute the regression predicted values on this data and plot the predicted and actual values over time.

```
In [27]:
         # TODO
         names = [
              't',
                                                    # Time (secs)
              'q1', 'q2', 'q3',
                                                    # Joint angle (rads)
                                                   # Joint velocity (rads/sec)
              'dq1', 'dq2', 'dq3',
              'I1', 'I2', 'I3',
                                                    # Motor current (A)
              'eps21', 'eps22', 'eps31', 'eps32', # Strain gauge measurements
          ($\mu$m /m )
              'ddq1', 'ddq2', 'ddq3'
                                                    # Joint accelerations (rad/s
         ec^2)
          ]
         # load the data set
         df = pd.read csv('/Users/JJ/Documents/introml-master/mult_lin_reg/exp2
          .csv'
                           , header=None, delim whitespace= False, names= names,
         na values='?' )
         #print(df)
         # TODO
         \# y = \dots
         y = df['I2']
         print(y)
         # t = ...
         x = df['t']
         # plt.plot(...)
         plt.plot(x,y,'o')
         plt.xlabel('time')
         plt.ylabel('I2')
         plt.grid(True)
         0
                 -0.15134
         1
                -0.11903
         2
                 -0.13944
         3
                -0.15304
         4
                -0.12924
         5
                -0.14964
         6
                -0.14454
         7
                 -0.16665
         8
                -0.11393
         9
                -0.14284
         10
                -0.13774
         11
                -0.15644
         12
                -0.13944
```

```
13
       -0.13604
14
       -0.12924
15
       -0.12244
16
       -0.14794
17
       -0.13264
18
       -0.13944
19
       -0.13434
20
       -0.11903
21
       -0.13094
22
       -0.12584
23
       -0.12754
24
       -0.13094
25
       -0.13604
26
       -0.13094
27
       -0.14624
28
       -0.12414
29
       -0.14794
          . . .
7970
       -0.27718
7971
       -0.27208
7972
       -0.30269
7973
       -0.29589
7974
       -0.29078
7975
       -0.30609
7976
       -0.32139
7977
       -0.29759
7978
       -0.30099
7979
       -0.28738
7980
       -0.32479
7981
       -0.32479
7982
       -0.31289
7983
       -0.32139
7984
       -0.30779
7985
       -0.27208
7986
       -0.29418
7987
       -0.28908
7988
       -0.31289
7989
       -0.30099
7990
       -0.30949
7991
       -0.31289
7992
       -0.28908
7993
       -0.29589
7994
       -0.29929
7995
       -0.32309
7996
       -0.28568
7997
       -0.28738
7998
       -0.29929
7999
       -0.34690
Name: I2, Length: 8000, dtype: float64
```


Measure the normalized RSS on the test data. Is it substantially higher than the training data?

```
In [28]:
         # TODO
         ytrain = df['I2']
         Xtrain =df[['q2','dq2','eps21', 'eps22', 'eps31', 'eps32','ddq2']]
         print(Xtrain)
         regr = linear model.LinearRegression()
         regr.fit(Xtrain,ytrain)
         y tr pred = regr.predict(Xtrain)
         #print(y_tr_pred)
         RSS tr = np.mean((y tr pred-ytrain)**2)/(np.std(ytrain)**2)
         Rsq tr = 1-RSS tr
         print("RSS per sample = {0:f}".format(RSS tr))
         print("R^2 =
                                  {0:f}".format(Rsq tr))
                   q2
                                 dq2
                                        eps21
                                                eps22
                                                         eps31
                                                                   eps32
         ddq2
               1.9024
                       4.940656e-321 -130.83 -41.856 -6.3635
                                                                 5.13410
                                                                          6.21
         0
         0306e-319
                       4.940656e-321 -138.18 -51.100 -14.6590
               1.9024
                                                                -5.05820
                                                                         1.76
         6878e-319
                       4.940656e-321 -139.36 -51.812 -14.6590 -5.29520
               1.9024
                                                                         4.99
         0557e-320
               1.9024
                       4.940656e-321 -135.57 -48.019 -11.3410
                                                               -0.79168
                                                                         1.39
         4253e-320
               1.9024
                       4.940656e-321 -135.81 -49.204 -12.0520
                                                                -2.21390 3.58
         1976e-321
                       4.940656e-321 -139.60 -53.471 -16.0820
         5
               1.9024
                                                               -6.95450
                                                                         1.14
```

1292e-321 6 1.9024	4.940656e-321	-133.44	-45.412	-9.4448	1.10460 -7.90	
5050e-323						
7 1.9024 5050e-323	4.940656e-321	-134.86	-46.360	-10.8670	-0.55465 -7.90	
8 1.9024	4.940656e-321	-135.33	-47.782	-10.8670	-1.26570 -7.90	
5050e-323 9 1.9024	4.940656e-321	122 72	/2 E1E	0 2507	2.76380 -7.90	
5050e-323	4.9400306-321	-132.73	-43.313	-0.2391	2.70380 -7.90	
10 1.9024	4.940656e-321	-138.89	-51.812	-14.4220	-5.53230 -7.90	
5050e-323						
11 1.9024 5050e-323	4.940656e-321	-136.04	-48.256	-11.8150	-1.97680 -7.90	
12 1.9024	4.940656e-321	-137.23	-50.389	-13.4740	-3.16200 -7.90	
5050e-323						
13 1.9024	4.940656e-321	-136.52	-49.204	-12.5260	-2.21390 -7.90	
5050e-323						
14 1.9024 5050e-323	4.940656e-321	-133.20	-44.938	-8.7338	2.05270 -7.90	
15 1.9024	4.940656e-321	-136.04	-48.493	-12.0520	-1.73980 -7.90	
5050e-323						
16 1.9024	4.940656e-321	-135.57	-47.545	-10.6300	-1.26570 -7.90	
5050e-323						
17 1.9024 5050e-323	4.940656e-321	-135.33	-47.782	-11.3410	-2.21390 -7.90	
18 1.9024	4.940656e-321	-135.33	-47.545	-11.1040	-0.55465 -7.90	
5050e-323	1.5100300 321	100.00	17.515	11.1010	0.33103 7.30	
19 1.9024	4.940656e-321	-136.52	-49.204	-12.7630	-2.92490 -7.90	
5050e-323						
20 1.9024	4.940656e-321	-136.04	-48.256	-12.0520	-1.73980 -7.90	
5050e-323 21 1.9024	4.940656e-321	_137.47	_49 915	_12.7630	-3.16200 -7.90	
5050e-323	1.9100300 321	137.17	17.713	12.7050	3.10200 7.90	
22 1.9024	4.940656e-321	-135.10	-47.782	-10.8670	-0.79168 -7.90	
5050e-323						
23 1.9024	4.940656e-321	-133.44	-43.990	-9.2078	2.05270 -7.90	
5050e-323 24 1.9024	4 9406566_321	_135 10	_46 597	_10_6300	-0.08059 -7.90	
5050e-323	4.9400300-321	-133.10	-40.377	-10.0300	-0.00033 -7.30	
25 1.9024	4.940656e-321	-136.99	-49.678	-12.7630	-2.92490 -7.90	
5050e-323						
26 1.9024	4.940656e-321	-133.44	-46.123	-10.6300	0.39347 -7.90	
5050e-323 27 1.9024	4.940656e-321	120 12	E2 040	14 4220	-4.58420 -7.90	
5050e-323	4.9400306-321	-139.13	-32.049	-14.4220	-4.30420 -7.30	
28 1.9024	4.940656e-321	-135.33	-47.308	-10.3930	0.15644 -7.90	
5050e-323						
	4.940656e-321	-137.23	-49.678	-12.5260	-2.68790 -7.90	
5050e-323						
• • • • • • • • • • • • • • • • • • • •	• • •	• • •	• • •	• • •	• • •	

1.9375 -5.174100e-128 -148.84 -56.078 -13.9480 -2.21390 7970 5.5 42400e-33 7971 1.9375 - 3.472500e - 130 - 137.70 - 56.552 - 21.5330 - 3.873101.5 77400e-33 1.9375 - 2.330400e - 132 - 136.04 - 62.478 - 31.4890 - 10.273007972 4.4 89500e-34 7973 1.9375 -2.854700e-03 -133.20 -55.841 -24.3780 -4.34710-2.042200e-01 7974 1.9375 -1.915800e-05 -139.13 -54.419 -17.9780 -4.584201.4 47300e-01 -1.285800e-07 -140.07 -49.204 -10.1560 4.2 7975 1.9375 -0.0805955200e-02 7976 1.9375 -8.628900e-10 -143.15 -56.315 -17.0300 -7.191501.2 12000e-02 7977 -5.791000e-12 -135.81 -53.234 -18.2150 3.4 1.9375 -3.1620049500e-03 7978 -3.886500e-14 -131.30 -52.997 -21.5330 -2.213909.8 1.9375 17600e-04 7979 -1.104000e-04 -138.65 -58.685 -24.8520 -7.61.9375 -5.53230 18700e-03 7980 -7.409300e-07 -146.71 -58.685 -20.5850 5.6 1.9375 -4.3471076700e-03 -4.972500e-09 -151.45 -54.419 -12.5260 7981 1.9375 2.52670 1.6 68300e-03 7982 1.9375 -3.337200e-11 -162.35 -63.663 -16.7930 -4.110104.7 51700e-04 7983 1.9375 -2.239600e-13 -161.88 -65.085 -18.9260 1.3 -2.9249052400e-04 7984 1.9375 -1.503100e-15 -161.88 -69.352 -24.8520 -5.53230 3.8 49100e-05 7985 1.9375 -1.008700e-17 -166.15 -74.092 -27.6960 -8.13960 1.0 95500e-05 -6.769800e-20 -171.12 -72.670 -24.1410 7986 1.9375 -5.29520 3.1 17800e-06 -4.543300e-22 -176.58 -70.537 -17.2670 7987 1.9375 -1.265708.8 73700e-07 -3.049100e-24 -181.32 -71.959 -16.5560 2.5 7988 1.9375 -1.7398025500e-07 7989 1.9375 -2.046300e-26 -182.74 -74.092 -17.5040 -2.213907.1 87900e-08 7990 -1.373300e-28 -183.45 -78.833 -23.9040 2.0 1.9375 -6.2434045700e-08 7991 -9.216600e-31 -179.42 -79.070 -26.7480 5.8 1.9375 -6.4804022400e-09 7992 -6.185400e-33 -179.18 -78.359 -27.2220 -6.243401.6 1.9375 57100e-09 7993 1.9375 -4.151200e-35 -178.95 -75.515 -23.4300 -5.29520 4.7 16300e-10 7994 1.9375 -2.785900e-37 -173.02 -66.270 -14.4220 2.05270 1.3

```
42300e-10
7995 1.9375
              -1.869700e-39 -173.26 -67.456 -15.3710 -0.79168
                                                                 3.8
20300e-11
7996 1.9375
             -1.254800e-41 -168.75 -67.218 -17.9780 -2.45090
                                                                 1.0
87300e-11
             -8.421000e-44 -163.78 -66.981 -20.1110 -2.92490
                                                                 3.0
7997 1.9375
94600e-12
             -5.651500e-46 -161.88 -71.011 -27.4590 -10.03600
7998 1.9375
                                                                 8.8
07400e-13
7999 1.9375
             -3.792800e-48 -155.48 -66.981 -24.8520 -6.24340
                                                                 2.5
06700e-13
[8000 rows x 7 columns]
RSS per sample = 0.101028
R^2 =
                 0.898972
```

```
In [29]: plt.scatter(ytrain,y_tr_pred)
    ymin = np.min(y)
    ymax = np.max(y)
    plt.plot([ymin,ymax],[ymin,ymax],'r-')
    plt.xlabel('Actual')
    plt.ylabel('Predicted')
    plt.grid()
```


In []: