Cyclic Groups

Recull: G a group, $H \subseteq G$ a subset. Then H is a subgroup provided ① for all $h_1, h_2 \in H$, $h_1 h_2 \in H$

D for all heH, h leH.

Examples (C,+) $\mathbb{Z} \leq Q \leq \mathbb{R} \leq C$ $(\mathbb{C}^*, \bullet) \qquad \mathbb{R}_+ \leq \mathbb{R}^* \leq \mathbb{C}^*$ $\mathbb{C}^* = \mathbb{C} \setminus \{0\} \qquad \mathbb{R}^* = \mathbb{R} \setminus \{0\} \qquad \mathbb{R}_+ = \{\infty > 0\} \subset \mathbb{R}.$

> GLLU, IR) = { A nxu medrix with real entires / JofA +0} O(n) = {A & GL(u, IR) | ATA = I} < GL(u, IR)

{ Hasas is an indexed collection of subgrups (Hasa.)

Proof 1) Suppose h, hz & MHx. Then You h, EHx and hz EHX
thun since Hx is a subgrap, You h, hz & Hx, so h, hz & MHX

2) Similar Logic: h & MHX => Yx h & HX > Vaheta > h'∈ NHa.

Now suppose $A \subseteq G$, $A \neq \emptyset$ is any nonempty subset. A may not be a subgroup, but we would like to enlarge it so that it be comes a subgroup. We seek the minimal such enlargement.

Definition: The subgroup generated by A is

\(A \right) = intersection of all subgroups H≤G
 \(\text{that constrain } A: A≤H. \)

Because $\langle A \rangle$ is an intersection of subgroups, it is itself a subgroup. Also it is minimal in the scuse that any subgroup that contains A must contain $\langle A \rangle$.

Constructive approach To unstruct (A), we start with all of the elements a.E.A., and repeatedly take all possible products and inverses. We get

 $\langle A \rangle = \begin{cases} a_1^{e_1} a_2^{e_2} ... a_k^{e_k} | a_i \in A, e_i \in \{1,-1\} \end{cases}$ ey., if $a_i b \in A$, then $a_i b b a^{-1} b b a^{-1} \in \langle A \rangle$

We can see directly that this is a subgraps: $(a_1^{e_1}a_2^{e_2}...a_k^{e_k})(b_1^{f_1}...b_k^{f_k}) = a_1^{e_1}...a_k^{e_k}b_1^{f_1}...b_k^{f_k} \in \langle A \rangle$ $(a_1^{e_1}a_2^{e_2}...a_k^{e_k})^{-1} = a_k^{e_k}a_{k-1}^{e_{k-1}}...a_1^{e_k} \in \langle A \rangle$

It is also clear that any subgrap that contains A must certain appropriate for a : EA e: E 21,-13.

This justifies the equality of the two definitions.

Special case: $A = \frac{2a^2}{a}$, a sligleton set. Then we write $\langle a \rangle = \langle \frac{2a^2}{a} \rangle = \frac{2a^2}{a} \langle a \rangle = \frac{2a^2}{a}$

This is called the subgroup generated by a.

Here, $a^0=e$, $a^k=a \cdot a \cdot a \cdot a$ for k>0, and $a^{-k}=(a^k)^{-1}$ for k>0

If G is a group, and a EG, and G= <a>,
We say that G is a cyclic group (guveraled by a).

In general, if a & G, then (a) ≤ G is the cyclic subgroup generated by a.

Examples $G = (\mathbb{Z}, +)$ $d \in \mathbb{Z}$, $\langle d \rangle = \{kd | k \in \mathbb{Z}\} = \langle -d \rangle$ $\langle 1 \rangle = \langle -1 \rangle = \mathbb{Z}$, so \mathbb{Z} is cyclic, generated by I(or - 1). $G = (\mathbb{Z}_n, +)$. $[d] \in \mathbb{Z}_n$, $\langle [d] \rangle = \{[kd] | k \in \mathbb{Z}\}$ $\langle [i] \rangle = \mathbb{Z}_n$, so \mathbb{Z}_n is cyclic. (Are there of lar generators?)

For a given group G, we can consider all subgroups H. Subgroups are partially ordered by inclusion, and any two subgroups H, Hz have a "minimum" H, nHz as well as a muximum <H, UHz>.

Thus the set of subgroups of G forms what is called a lattice.

We can Visualize the subgroup leathice using a diagram $S_3 = \{e, (12), (13), (23), (123), (132)\}$

$$\langle (12) \rangle \langle (13) \rangle \langle (23) \rangle = \langle (132) \rangle$$
 $\{e\}$

Let G be a group, and let a ϵ G. Then $\langle a \rangle$ is either finite or infinite. If $\langle a \rangle$ is finite, the number of elements in this set is called the order of a $O(a) = |\langle a \rangle|$

If (a) is infinite we say the order of a is infinite and write $o(a) = \infty$.

Recall two groups G, H one isomorphic if there is a bijective function $\varphi: G \to H$ with $\varphi(g_1g_2) = \varphi(g_1) \varphi(g_2)$. We write $G \cong H$ to mean G and H one isomorphic.

Proposition (Classification of cyclie groups)
Let G be a group and at G.

(1) if $O(\alpha) = \infty$, then $\langle \alpha \rangle = \mathbb{Z}$

(ii) if $o(a) = n \in \mathbb{N}$, then $\langle a \rangle \cong \mathbb{Z}_n$.

- Proof: Two cases: either all powers a^k are distinct elements of G, or else there are $k \neq l$ with $a^k = a^l$ in G.
- If all powers a^k are distinct, then $\langle a \rangle = \frac{a^k}{k \in \mathbb{Z}^2}$ is infinite, so $o(a) = \infty$. In this case, we define $o(a) = \frac{a^k}{k \in \mathbb{Z}^2}$ by $o(a) = \frac{a^k}{k \in \mathbb{Z}^2}$

Of is surjective: every element of (a) is at for some $k \in \mathbb{Z}$. Of is injective: if not, then $a^k = a^k$ for $k \neq l$, which cere assuming doesn't happen lustly $\varphi(k+l) = a^{k+l} = a^k a^l = \varphi(k) \varphi(l)$ So $\varphi(k+l) = a^{k+l} = a^k a^l = \varphi(k) \varphi(l)$

If two powers at and at one equal for k < l, we deduce $a^k = a^l \implies (a^k)^{-l}a^k = (a^k)^{-l}a^l \implies e = a^{l-k}$ Thus there is a positive power of a that equals e. (et n be the Ceust positive integer with $a^n = l$. We claim $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$

First: $e, \alpha, \alpha^2, ..., \alpha^{n-1}$ one all distinct (Exercise 2.2.9) For any $k \in \mathbb{Z}$, write k = qn+r with $0 \le r \le n-1$. Then $a^k = \alpha^{qn+r} = (q^n)^q a^r = e^{\nu} a^r = a^r$.

So any poner of a is equal to some element of the set le, a, a², ..., aⁿ⁻¹ 3.

Define $\varphi: \mathbb{Z}_n \rightarrow \langle a \rangle$ by $\varphi([k]) = a^k$. We defined since $k = k' \mod n$ implies k' = k + gn so $a^k = a^k (q^n)^n = a^k e^n = a^k$. Since $\mathbb{Z}_n = \{[0], [i], ..., [n-i]\}, \varphi$ is bijective, and $\mathbb{Q}([k] + [l]) = \mathbb{Q}([k+l]) = a^{k+l} = a^k a^l = \mathbb{Q}([k]) \mathbb{Q}([l])$

 $\varphi([k]+[l]) = \varphi([k+l]) = a^{k+l} = a^k a^l = \varphi([k])\varphi([l]).$ so φ is an isomorphism. $Z_n = \langle a \rangle$.

Now consider the subgroups of \mathbb{Z} . Proposition: If $H \leq \mathbb{Z}$ is a subgroup, The eithor $H = \{0\}$ there is a unique $d \in \mathbb{N}$ such that $H = \{d\}$.

Proof: If $H \neq \{0\}$, there is some $K \in H$ $K \neq 0$. Then $-K \in H$ also. Either K or -K is positive, so H centaris a positive number. Let $d \in N \cap H$ be the least positive number in H. Then $A = A \cap H$.

We claim H = <d> as well.

Take $K \in H$. Write K = qd + r $0 \le r < d$ If $r \neq 0$ then $k - qd = r \in H$ is a positive number less than d, contradicting the assumed minimality of d. So r = 0 and k = qd for some $q \in \mathcal{U}$. Thus $k \in \langle d \rangle$. So $H = \langle d \rangle$ and we conclude $H = \langle d \rangle$.

For iniqueness, observe that $\langle d_1 \rangle = \langle d_2 \rangle$ imphes $d_1 | d_2$ and $d_2 | d_1 \rangle$, so $d_1 = \pm d_2$. If $d_1, d_2 \in \mathcal{N}$, this for as $d_1 = d_2$.

Proposition In(Z,+), $\langle d_1 \rangle \leq \langle d_2 \rangle \iff d_2 | d_1$.

Post: (d,) ≤(dz) ⇔ d, € (dz) ← d, = kdz for smr k€ II ⇔ dz | d,