# Understanding Factor Analysis and PCA



Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

### Overview

Understand eigenvalue decomposition, a technique that underpins PCA

Calculate the principal components which explain all the variance in data

Apply PCA to dimensionality reduction and latent factor identification

Introduce and contrast exploratory and confirmatory factor analysis

# The Intuition Behind Principal Components

### Data in One Dimension



Unidimensional data points can be represented using a line, such as a number line

## Data in Two Dimensions



It's often more insightful to view data in relation to some other, related data

## A Question of Dimensionality



Pop quiz: Do we really need two dimensions to represent this data?

## Bad Choice of Dimensions



If we choose our axes (dimensions) poorly then we do need two dimensions

## Good Choice of Dimensions



If we choose our axes (dimensions) well then one dimension is sufficient



Objective: Find the "best" directions to represent this data



Start by "projecting" the data onto a line in some direction



Start by "projecting" the data onto a line in some direction



The greater the distances between these projections, the "better" the direction

## Bad Projection



A projection where the distances are minimised is a bad one - information is lost

## Good Projection



A projection where the distances are maximised is a good one - information is preserved



The direction along which this variance is maximised is the first principal component of the original data



Find the next best direction, the second principal component, which must be at right angles to the first



Find the next best direction, the second principal component, which must be at right angles to the first

## Principal Components at Right Angles



Directions at right angles help express the most variation with the smallest number of directions



The variances are clearly smaller along this second principal component than along the first



In general, there are as many principal components as there are dimensions in the original data



Re-orient the data along these new axes

## Dimensionality Reduction



If the variance along the second principal component is small enough, we can just ignore it and use just 1 dimension to represent the data

## Dimensionality Reduction



Variation along 2 dimensions: 2 principal components required

## Dimensionality Reduction



Variation along 1 dimension: 1 principal component is sufficient

# Similar, yet Different



Regression

**Connect the dots** 



**Factor Analysis** 

Cut through the clutter

# Regression



Causes
Independent variables



**Effect**Dependent variable

# Factor Analysis



Many Observed Causes



Few Underlying Causes



**One Effect** 

# Simplistic



Causes
Independent variables



**Effect**Dependent variable

# Simple



Causes Independent variables



**Effect**Dependent variable

#### What and How

#### Cut through clutter

Extract underlying factors from a set of data

# Principal components analysis (PCA)

Cookie-cutter technique that finds the 'good' factors from a set of data points

PCA is one solution to the factor-extraction problem - a cookie-cutter solution

#### What and How

#### Connect the dots

Fit a curve through a set of data

#### Regression

Cookie-cutter technique that finds the 'best-fit' line through a set of data points

Regression is one solution to the data-fitting problem - a cookie-cutter solution

## Two Approaches to Factor Extraction



**Rule-based** 

Human experts identify and extract factors



**ML-based** 

Algorithm identifies and extracts factors



PCA and Factor Analysis Principal Component Analysis is one procedure for factor analysis

It is mathematically guaranteed to result in independent factors

However, those factors may not actually correspond to intuition

### Correlated Random Variables



 $E_i = \%$  return on Exxon stock on day i

**Dow Jones** index on day i

 $D_i = \%$  return of  $G_i = \%$  return of Google stock on day i

 $A_i = \%$  return of Apple stock on day i

## Correlated Random Variables



Summarise the returns of k stocks, each over n days, into an nxk matrix

## Correlated Random Variables



Summarise the returns of k stocks, each over n days, into an nxk matrix







X<sub>2</sub> (n rows, 1 column)

k columns



X<sub>k</sub> (n rows, 1 column)

$$[ X_1 X_2 X_3 \dots X_k ] \uparrow^{n \text{ rows}}$$

k columns

Each element X<sub>i</sub> of this matrix is a vector with 1 column and n rows



Highly correlated variables are not suitable for use in regression

$$[ X_1 X_2 X_3 \dots X_k ]^{n \text{ rows}}$$

k columns

PCA is used when the elements  $X_i$  of this matrix are highly correlated with each other



k columns



These vectors F<sub>i</sub> are the principal components of the original vectors X<sub>i</sub>

#### Correlated Xi



Highly correlated variables are not suitable for use in regression

#### Uncorrelated Fi



Any of the principal components is perfectly uncorrelated with all others



These vectors F<sub>i</sub> are arranged in order of decreasing variance

The greater the variance of a principal component, the more important it is

# The greater the variance of a principal component, the more important it is

[ F<sub>1</sub> F<sub>2</sub> F<sub>3</sub> ... F<sub>k</sub> ]

$$var(F_1) + var(F_2) + var(F_3) + var(F_k)$$
 $=$ 
 $var(X_1) + var(X_2) + var(X_3) + var(X_k)$ 

[ X<sub>1</sub> X<sub>2</sub> X<sub>3</sub> ... X<sub>k</sub> ]

[F<sub>1</sub> F<sub>2</sub> F<sub>3</sub> ... F<sub>k</sub>]  

$$var(F_1) + var(F_2) + var(F_3) + var(F_k)$$
  
=  
 $var(X_1) + var(X_2) + var(X_3) + var(X_k)$ 

The sum of the variances of vectors  $F_i$  is equal to sum of variances of original  $X_i$ 

#### Principal Components

#### How

are such principal components found?

#### Why

are they more useful than the original data?

#### What

do we do with the PCs once we have them?

# How Principal Components Are Found



k columns

# Problem: Finding Principal Component 1

Find F<sub>1</sub>

$$F_1 = a_1X_1 + a_2X_2 + a_3X_3 ... + a_kX_k$$

such that

Variance(F<sub>1</sub>) is maximised

subject to constraint

$$a_1^2 + a_2^2 + ... + a_k^2 = 1$$

This problem has a cookie-cutter solution in linear algebra - eigen decomposition

# Solution: Finding Principal Component 1

#### **Eigenvector:**

$$v_1 = [a_1, a_2, a_3 ... a_k]$$

#### **Principal Component:**

$$F_1 = a_1X_1 + a_2X_2 + a_3X_3 ... + a_kX_k$$

#### Eigenvalue:

$$e = Variance(F_1)$$

Eigen decomposition gives us the answer

# Problem: Finding Principal Component 2

Given F<sub>1</sub>, find F<sub>2</sub>

$$F_2 = a_1(X_1 - F_1) + a_2(X_2 - F_1) + a_3(X_3 - F_1) ... + a_k(X_k - F_1)$$

such that

Variance(F<sub>2</sub>) is maximised

subject to constraint

$$a_1^2 + a_2^2 + ... + a_k^2 = 1$$

Eigen decomposition finds all of these solutions in one go



k columns



 $[ X_1 X_2 X_3 ... X_k ] \longrightarrow$ 

Eigenvalue Decomposition

**Principal Components:** 



#### **Eigenvalues:**



#### Results of PCA

#### Eigenvalues

tell importance of each principal component

# Principal Components

for the largest eigenvalues can be used in regression

#### Eigenvectors

are needed to calculate the principal components



[F<sub>1</sub>F<sub>2</sub>F<sub>3</sub>...F<sub>k</sub>] nrows

These vectors  $F_i$  are the principal components of the original vectors  $X_i$ 



These vectors F<sub>i</sub> are arranged in order of decreasing variance

The greater the variance of a principal component, the more important it is



# The greater the eigenvalue of a principal component, the more important it is

[ F<sub>1</sub> F<sub>2</sub> F<sub>3</sub> ... F<sub>k</sub> ]

$$var(F_1) + var(F_2) + var(F_3) + var(F_k)$$
 $=$ 
 $var(X_1) + var(X_2) + var(X_3) + var(X_k)$ 

[ X<sub>1</sub> X<sub>2</sub> X<sub>3</sub> ... X<sub>k</sub> ]

[F<sub>1</sub> F<sub>2</sub> F<sub>3</sub> ... F<sub>k</sub>]  

$$var(F_1) + var(F_2) + var(F_3) + var(F_k)$$
  
=  
 $var(X_1) + var(X_2) + var(X_3) + var(X_k)$ 

The sum of the variances of vectors  $F_i$  is equal to sum of variances of original  $X_i$ 

[F1 F2 F3 ... Fk]
$$var(F_1) + var(F_2) + var(F_3) + var(F_k)$$

$$= var(X_1) + var(X_2) + var(X_3) + var(X_k)$$

$$= Total Variance(X)$$

$$= Total Variance(F)$$



= 100%

















## Use the Scree plot to determine how many principal components to discard

### Results of PCA

### Eigenvalues

tell importance of each principal component

### Principal Components

for the largest eigenvalues can be used in regression

### Eigenvectors

are needed to calculate the principal components

### Correlated Random Variables

$$[ X_1 X_2 X_3 \dots X_k ] \uparrow^{n \text{ rows}}$$

k columns

Each element X<sub>i</sub> of this matrix is a vector with 1 column and n rows

### Correlated Random Variables



Highly correlated variables are not suitable for use in regression

### Correlated Random Variables

$$[ X_1 X_2 X_3 \dots X_k ]^{n \text{ rows}}$$

k columns

PCA is used when the elements  $X_i$  of this matrix are highly correlated with each other

### Principal Components Analysis



k columns

### Principal Components Analysis



These vectors F<sub>i</sub> are the principal components of the original vectors X<sub>i</sub>

Discard "low-value" principal components using the eigenvalues eigenvalues















### Principal Components Analysis



Keep F<sub>1</sub> and F<sub>2</sub>, discard the rest

These 2 principal components explain the vast majority of the total variance in the original data



### Correlated Xi



Highly correlated variables are not suitable for use in regression

### Uncorrelated Fi



Any of the principal components is perfectly uncorrelated with all others

# Factor analysis: eliminating low-value principal components

### Factor Analysis



Many Observed Causes



Few Underlying Causes



**One Effect** 

### Dimensionality Reduction



### Results of PCA

### Eigenvalues

tell importance of each principal component

### Principal Components

for the largest eigenvalues can be used in regression

### Eigenvectors

are needed to calculate the principal components

### Principal Components Analysis



Eigenvalue Decomposition

### **Principal Components:**



### **Eigenvectors:**

### **Eigenvalues:**



### Problem: Finding Principal Component 1

Find F<sub>1</sub>

$$F_1 = a_1X_1 + a_2X_2 + a_3X_3 ... + a_kX_k$$

such that

Variance(F<sub>1</sub>) is maximised

subject to constraint

$$a_1^2 + a_2^2 + ... + a_k^2 = 1$$

This problem has a cookie-cutter solution in linear algebra - eigen decomposition

### Solution: Finding Principal Component 1

### **Eigenvector:**

$$v_1 = [a_1, a_2, a_3 ... a_k]$$

#### **Principal Component:**

$$F_1 = a_1X_1 + a_2X_2 + a_3X_3 ... + a_kX_k$$

Each principal component is simply the matrix product of the original data matrix and the corresponding eigenvector

F = X

n rows, n rows, k columns

k rows, k columns















Fi = X Vi

n rows, n rows, k rows,

1 column k columns 1 column

# Each principal component is the matrix product of the original data and the corresponding eigenvector

### Why Principal Components Are Useful

### Benefits of Principal Components







**Dimensionality Reduction** 

Cut through the clutter

**Latent Factor**<br/>**Identification** 

Find underlying causes

Missing Data & Scenario Generation

Extrapolate or interpolate data

# A Question of Dimensionality



Pop quiz: Do we really need two dimensions to represent this data?

### Bad Choice of Dimensions



If we choose our axes (dimensions) poorly then we do need two dimensions

### Good Choice of Dimensions



If we choose our axes (dimensions) well then one dimension is sufficient

# Principal Components Analysis

**Principal Components:** 

[ e<sub>1</sub> e<sub>2</sub> e<sub>3</sub> ... e<sub>k</sub> ] 1 row

k columns



Eigenvalue

Decomposition



These vectors  $F_i$  are the principal components of the original vectors  $X_i$ 

Discard "low-value" principal components using the eigenvalues eigenvalues

















Keep F<sub>1</sub> and F<sub>2</sub>, discard the rest

These 2 principal components explain the vast majority of the total variance in the original data



### Success as a Salesperson



Many Observed Causes

Cold calls, experience, social media followers, perceived honesty, billing punctuality...



Few Underlying Causes

Personality traits



**One Effect** 

Success as a salesperson

### Kitchen Sink Regression

### **Proposed Regression Equation:**

+ ...

### PCA Regression

**Proposed Regression Equation:** 

BONUS = A + B COLDCALLS + C EXPERIENCE + D NUMFOLLOWERS + E HONESTY + F PUNCTUALITY + ...



**Modified Regression Equation:** 

BONUS =  $A + B F_1 + C F_2$ 

$$P = w_1E + w_2D + w_3G ... + w_kA$$

P<sub>i</sub> = % return of stock portfolio on day i

Portfolio P consists of w<sub>1</sub> stocks of Exxon, w<sub>2</sub> of the Dow, w<sub>3</sub> of Google and w<sub>k</sub> of Apple

$$y = X_1 + X_2 + X_3 ... + X_k$$

Analysing the sum of random variables is an extremely common use-case

$$y = X_1 + X_2 + X_3 ... + X_k$$
 n rows



$$y = X_1 + X_2 + X_3 ... + X_k$$

### Mean(y)

Simple - mean of sum is sum of means

### Variance(y)

Tricky - requires use of covariance matrix

# Adding related variables is difficult, adding independent variables is easy

$$y = X_1 + X_2 + X_3 ... + X_k$$

Variance (y) = 
$$\sum_{i=1}^{k} \sum_{j=1}^{k} \text{Covariance}(X_{i},X_{j})$$
 k<sup>2</sup> terms

If the X variables are independent, we can easily find the variance of the sum

$$y = X_1 + X_2 + X_3 ... + X_k$$



k columns

Diagonal elements are the variances

$$y = X_1 + X_2 + X_3 ... + X_k$$



k columns

Add all the diagonal elements...

$$y = X_1 + X_2 + X_3 ... + X_k$$



k columns

...and half the sum of the off-diagonal entries

$$y = F_1 + F_2$$



$$y = X_1 + X_2 + X_3 ... + X_k$$

Variance (y) = 
$$\sum_{i=1}^{k} \sum_{j=1}^{k} \text{Covariance}(X_{i}, X_{j})$$
 k<sup>2</sup> terms

Calculating kxk full covariance matrix is difficult

$$y = F_1 + F_2$$

Variance (y) = Variance (
$$F_1$$
) + Variance ( $F_2$ ) 2 terms

Calculating 2x2 diagonal covariance matrix after PCA is very simple

### Benefits of Principal Components







**Dimensionality Reduction** 

Cut through the clutter

**Latent Factor**<br/>**Identification** 

Find underlying causes

Missing Data & Scenario Generation

Extrapolate or interpolate data

### PCA as ML-based Factor Extraction



**Rule-based** 

Human experts identify and extract factors



**ML-based** 

Algorithm identifies and extracts factors

### PCA for Latent Factor Identification



### PCA for Latent Factor Identification



# Exploratory Factor Analysis: Experts trace back principal components to observable factors

### 5 Latent Factors in Psychology

Conscientiousness Extraversion **Openness** Agreeableness Neuroticism

### 3 Latent Factors in Stock Returns

Market Movements Interest Rates Industry Sectors

### 3 Latent Factors in Bond Returns



### Benefits of Principal Components







**Dimensionality Reduction** 

Cut through the clutter

**Latent Factor**<br/>**Identification** 

Find underlying causes

Missing Data & Scenario Generation

Extrapolate or interpolate data

### Missing Data Generation

$$FB = w_1GOOG + w_2AAPL + w_3SP500 + ... + \uparrow_{5 \text{ years}}$$

$$w_kMSFT$$

Facebook's IPO was in 2012, several years after other major tech companies

## Missing Data Generation

 $FB = w_1GOOG + w_2AAPL + w_3SP500 + ... + w_kMSFT$  5 years



5 years

## Missing Data Generation

$$FB = F_1 + F_2$$
 5 years

FBextrapolated = 
$$F_1 + F_2$$
 10 years

## When Not to Use PCA

## PCA's Forte



**Many, Highly Correlated Xi** 



**Unequal Eigenvalues** 

# PCA's Weak Spots



Few, Uncorrelated Xi



**Almost Equal Eigenvalues** 

# PCA for Highly Correlated Data



**Correlation = +1** 

As X increases, Y increases linearly



**Correlation = -1** 

As X increases, Y decreases linearly



**Correlation = 0** 

Changes in X independent\* of changes in Y

### Correlation and Covariance

#### Covariance Matrix



k columns

Each element is the covariance of two random variables

#### Correlation Matrix



k columns

Each element is the correlation of two random variables

#### Correlation Matrix



k columns

Diagonal elements are always 1

# PCA for Highly Correlated Data



Rule-of-thumb: If average absolute values of off-diagonal entries is less than 0.3, PCA not a great idea

# Factor Analysis: Excel, R or Python?



**Excel** 

Need to implement using VBA



R

In-built functionality



**Python** 

In-built functionality

# Summary

Principal components contain within them all of the information in a dataset

PCA relies on a common mathematical technique called eigen decomposition

Eigenvalues help us decide which components to keep and discard

PCA helps with dimensionality reduction as well as exploratory factor analysis