CS 154

Lecture 10:
Lots of Reductions,
Rice's Theorem

Next Tuesday (2/17)

Your Midterm: At 12:50pm, in Bishop Auditorium

(see website for more information)

Today: instead of a new homework, you'll get a practice midterm

Don't panic!

Practice midterm will be harder than midterm

Next Tuesday (2/17)

Your Midterm: At 12:50pm, in Bishop Auditorium

FAQ: What is fair game for the midterm?

Everything up to this lecture

FAQ: Can I bring notes?

Yes, one single-sided sheet of notes, letter paper

Definition: A decidable predicate R(x,y) is a proposition about the input strings x and y, such that some TM M implements R. That is,

for all x, y, R(x,y) is TRUE \Rightarrow M(x,y) accepts R(x,y) is FALSE \Rightarrow M(x,y) rejects

Can think of R as a function from $\Sigma^* \times \Sigma^* \to \{T,F\}$

EXAMPLES: R(x,y) = "xy has at most 100 zeroes" R(N,y) = "TM N halts on y in at most 99 steps"

Proposition: A is decidable if and only if there is some decidable predicate R such that $A = \{x \mid R(x,\epsilon)\}$ Theorem: A language A is *recognizable* if and only if there is a decidable predicate R(x, y) such that:

$$A = \{ x \mid \exists y R(x, y) \}$$

Proof: (1) If $A = \{x \mid \exists y R(x,y)\}$ then A is recognizable

A TM can enumerate over all y's and try them in R. If there is a y s.t. R(x,y) accepts, it will be found

(2) If A is recognizable, then $A = \{x \mid \exists y R(x,y) \}$

Let M recognize A.

Let R(x,y) be TRUE iff M accepts x in |y| steps M accepts x $\Leftrightarrow \exists y R(x,y)$

Mapping Reductions

 $f: \Sigma^* \to \Sigma^*$ is a computable function if there is a Turing machine M that halts with just f(w) written on its tape, for every input w

A language A is mapping reducible to language B, written as $A \leq_m B$, if there is a computable $f: \Sigma^* \to \Sigma^*$ such that for every w,

$$w \in A \Leftrightarrow f(w) \in B$$

f is called a mapping reduction (or many-one reduction) from A to B

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If A ≤_m B and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If A ≤_m B and A is unrecognizable, then B is unrecognizable

Theorem: A_{TM} ≤_m HALT_{TM}

```
f(z) := Decode z into a pair (M, w)

Construct M' with the specification:

"M'(w) = Simulate M on w.

if M(w) accepts then accept

else loop forever"

Output (M', w)
```

We have $z \in A_{TM} \Leftrightarrow (M', w) \in HALT_{TM}$

Theorem: A_{TM} ≤_m HALT_{TM}

Corollary: $\neg A_{TM} \leq_m \neg HALT_{TM}$

Proof?

Corollary: ¬HALT_{TM} is unrecognizable!

Proof: If $\neg HALT_{TM}$ were recognizable, then $\neg A_{TM}$ would be recognizable...

Theorem: HALT_{TM} ≤_m A_{TM}

Proof: Define the computable function:

```
f(z) := Decode z into a pair (M, w)

Construct M' with the specification:

"M'(w) = Simulate M on w.

If M(w) halts then accept

else loop forever"

Output (M', w)
```

Observe $(M, w) \in HALT_{TM} \iff (M', w) \in A_{TM}$

Corollary: $HALT_{TM} \equiv_m A_{TM}$

Yo, T.M.! I can give you the magical power to either compute the halting problem, or the acceptance problem. Which do you want?

The Emptiness Problem

 $\overline{EMPTY}_{DFA} = \{ M \mid M \text{ is a DFA such that } L(M) = \emptyset \}$

Given a DFA, does it reject every input?

Theorem: EMPTY_{DFA} is decidable

Why?

 $EMPTY_{NFA} = \{ M \mid M \text{ is a NFA such that } L(M) = \emptyset \}$

EMPTY_{REX} = $\{R \mid R \text{ is a regexp such that } L(R) = \emptyset\}$

The Emptiness Problem for TMs

 $EMPTY_{TM} = \{ M \mid M \text{ is a TM such that } L(M) = \emptyset \}$

Given a program, does it reject every input?

Theorem: EMPTY_{TM} is not recognizable

Proof: Show that $\neg A_{TM} \leq_m EMPTY_{TM}$

f(z) := Decode z into a pair (M, w).

Output a TM M' with the behavior:

"M'(x) := if(x = w) then

run M(w) and output its answer, else reject"

$$z \in A_{TM} \Leftrightarrow L(M') \neq \emptyset$$

 \Leftrightarrow f(z) \notin EMPTY_{TM}

The Equivalence Problem

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and L}(M) = L(N)\}$

Do two programs compute the same function?

Theorem: EQ_{TM} is unrecognizable

Proof: Reduce EMPTY_{TM} to EQ_{TM}

Let M_{\varnothing} be a "dummy" TM with no path from start state to accept state

Define $f(M) := (M, M_{\varnothing})$

$$M \in EMPTY_{TM} \Leftrightarrow L(M) = L(M_{\varnothing}) = \varnothing$$

 $\Leftrightarrow (M, M_{\varnothing}) \in EQ_{TM}$

Problem 1

REVERSE = { M | M is a TM with the property: for all w, M(w) accepts \Leftrightarrow M(w^R) accepts}.

Decidable or not?

REVERSE is undecidable.

$$\mathbf{X} \longrightarrow \mathbf{M}_{w}$$
 If $\mathbf{x} = 01$, accept.

If $\mathbf{x} = 10$, run $\mathbf{M}(\mathbf{w})$.

Otherwise, reject.

Given a machine D for deciding the language REVERSE, we show how to decide A_{TM}

M(w) accepts \rightarrow L(M_w) = {01,10} M(w) doesn't acc \rightarrow L(M_w) = {01}

Problem 2 Undecidable

{ (M, w) | M is a TM that on input w, tries to move its head past the left end of the input }

Problem 3 Decidable

{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point}

Problem 2 Undecidable

L' = { (M, w) | M is a TM that on input w, tries to move its head past the left end of the input }

Proof: Reduce A_{TM} to L'

On input (M,w), make a TM N that shifts w over one cell, marks a special symbol \$ on the leftmost cell, then simulates M(w) on the tape.

If M's head moves to the cell with \$ but has not yet accepted, N moves the head back to the right.

If M accepts, N tries to move its head past the \$.

(M,w) is in A_{TM} if and only if (N,w) is in L'

Problem 3 Decidable

{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point}

```
On input (M,w), run M on w for |Q_M| + |w| + 1 steps.
```

Accept If M's head moved left at all Reject Otherwise

(Why does this work?)

Rice's Theorem

Suppose L is a language that satisfies two conditions:

- 1. (Nontrivial) There are TMs M_{YES} and M_{NO} , where $M_{YES} \in L$ and $M_{NO} \notin L$
- 2. (Semantic) For all TMs M_1 and M_2 such that $L(M_1) = L(M_2)$, $M_1 \in L$ if and only if $M_2 \in L$

Then, L is undecidable.

A Huge Hammer for Undecidability!

Examples and Non-Examples

Semantic Properties P(M)

- M accepts 0
- for all w, M(w) accepts
 iff M(w^R) accepts
 - $L(M) = \{0\}$
 - L(M) is empty
 - $L(M) = \Sigma^*$
 - M accepts 154 strings

L = {M | P(M) is true} is undecidable

Not Semantic!

- M halts and rejects 0
- M tries to move its head off the left end of the tape, on input 0
- M never moves its head left on input 0
- M has exactly 154 states
 - M halts on all inputs

Rice's Theorem: Any nontrivial semantic L over Turing machines is undecidable.

Proof: We'll reduce A_{TM} to the language L Define M_{\emptyset} to be a TM that never halts Suppose first that $M_{\emptyset} \notin L$

Let $M_{YES} \in L$ (such M_{YES} exists, by assumption)

Reduction from A_{TM} On input (M,w), output: "M_w(x) := If (M acc. w) & (M_{YES} acc. x) then ACCEPT else REJECT"

If $M_{\varnothing} \in L$ instead, we can reduce $\neg A_{TM}$ to L. Output: " $M_w(x) := If$ (M acc. w) & (M_{NO} acc. x), then ACCEPT else REJECT"

The Regularity Problem for Turing Machines

REGULAR_{TM} = { M | M is a TM and L(M) is regular}

Given a program, is it equivalent to some DFA?

Theorem: REGULAR_{TM} is not recognizable

Proof 1: Show that $\neg A_{TM} \leq_m REGULAR_{TM}$

```
f(z) := Decode z into (M, w). Output a TM M':
"M'(x) := if (x = 0^n1^n) then run M(w)
else reject"
```

 $z \in A_{TM} \Rightarrow f(z) = M'$ such that M' accepts $\{0^n1^n\}$

 $z \notin A_{TM} \Rightarrow f(z) = M'$ such that M' accepts nothing $z \notin A_{TM} \Leftrightarrow f(M, w) \in REGULAR_{TM}$

The Regularity Problem for Turing Machines

REGULAR_{TM} = { M | M is a TM and L(M) is regular}

Given a program, is it equivalent to some DFA?

Theorem: REGULAR_{TM} is not recognizable

Proof 2: Use Rice's Theorem!

REGULAR_{TM} is nontrivial:

- there's an M_{\varnothing} which never halts: $M_{\varnothing} \in REGULAR_{TM}$
- there's M' deciding {0ⁿ1ⁿ | n ≥ 0}: M' ∉ REGULAR_{TM}

REGULAR_{TM} is semantic:

If L(M) = L(M') then L(M) is regular iff L(M') is regular, therefore $M \in REGULAR_{TM}$ iff $M' \in REGULAR_{TM}$