

PoBO: A Polynomial Bounding Method for Chance-Constrained Yield-Aware Optimization of Photonic ICs

Zichang He and Zheng Zhang

What limits the standard yield optimization?

Chance-constrained yield-aware optimization

$$\max_{\mathbf{x} \in \mathbf{X}} \ \mathbb{E}_{\boldsymbol{\xi}}[f(\mathbf{x}, \boldsymbol{\xi})]$$

s.t.
$$\mathbb{P}_{\boldsymbol{\xi}}(y_i(\mathbf{x},\boldsymbol{\xi}) \leq u_i) \geq 1 - \epsilon_i, \forall i = [n].$$

Optimizing the design metric while certifying the guarantee on probabilistic yield constraints

Two key components:

- · Performance modeling
- · Tractable stochastic programming algorithm

Our PoBO solution

An optimal polynomial kinship function to upper bound the probabilistic constraints

$$\mathbb{P}_{\boldsymbol{\xi}}(y_i(\mathbf{x},\boldsymbol{\xi}) > u_i) \leq \int_{\boldsymbol{\Xi}} \kappa_{\rho}(y_i(\mathbf{x},\boldsymbol{\xi}) - u_i)\mu(\boldsymbol{\xi})d\boldsymbol{\xi} \leq \epsilon_i$$

 $\kappa(\cdot)$ solved by semi-definite programming, aiming to make the upper bound tight

Efficient numerical implementation

Numerical integration by quadrature points, free-lunch from performance modeling

Globally optimal design via polynomial optimization solver

Case study on Mach-Zehnder interferometer

Design task:

 $\max_{\mathbf{x} \in \mathbf{X}} \quad \mathbb{E}_{\boldsymbol{\xi}}[\mathrm{BW}(\mathbf{x}, \boldsymbol{\xi})]$

s.t. $\mathbb{P}_{\boldsymbol{\xi}}(XT(\mathbf{x}, \boldsymbol{\xi}) \leq XT_0) \geq 1 - \epsilon_1,$ $\mathbb{P}_{\boldsymbol{\xi}}(\alpha(\mathbf{x}, \boldsymbol{\xi}) \leq \alpha_0) \geq 1 - \epsilon_2.$

Design performance:

Better performance + smaller constraint gap Δ

	Risk ϵ	Method	E[BW]	Δ ₁ (%)	Δ_2 (%)	Yield (%)	# Simulation
	0.07	Moment [2]	112.64	7.53	7.42	99.9	65
		РовО	120.05	7.53	6.67	99.2	65
	0.1	Moment [2]	118.47	11.11	10.78	99.7	65
		РоВО	123.05	11.11	8.33	97.5	65
	N/A	BYO [3]	117.42	N/A	N/A	95.1	2020

Please contact Zichang at zichanghe@ucsb.edu

Reference

- [1] This work has been accepted by TCAD, ar
- [2] Cui et al. TCAD 2020
- [3] Wang et al. DAC 2017

