Hyperparameter Optimization Overview

Hyperparameter Optimization

There are too many hyperparameters to be set by expert

 Learning rate, Momentum rate, Dropout, Normalization, Number of layers, number of nodes

Is there any efficient way to set them?

No

We can regard it as function optimization(예시로)

- I will use 3 layer perceptron
- I want to find out the optimal hyperparameters
 - Learning rate : η
 - o Momentum: r
 - Dropout probability : p
 - o Number of nodes in the first hidden layer : m
 - Number of nodes in the second hidden layer : n
- Then, the accuracy pf my NN is a function of η, r, p, m, n

$$Accuracy = f(\eta, r, p, m, n)$$

I nee to solve

$\underset{\eta,r,p,m,n}{\operatorname{argmax}} f(\eta,r,p,m,n)$

- 그러나 문제가 있다.
 - I do not know what $f(\eta, r, p, m, n)$ is
 - o But I can query(질문). That is, for a some setting we can evaluate f
 - However, the evaluation is very expensive because we need to train a neural network!!

Choose settings

Some Simple Search Algorithm

하이퍼파라미터를 찾는 간단한 search algorithm이 있다.

Important parameter

It is not efficient

- It does not utilize the previous tries.
- It would be better to less search the area with low potential and more search the area with high potential
- --- Can we choose a better netx point based on previous search results?

It is too costly

- To evaluate how a set of hyperparameters is good, we need to train a neural network
 - We need to train a large neural network every time we try a new set of parameters
- -> Can we gradually train NNs as search goes on?

Bayesian Optimization

Definition

$$\underset{\mathbf{x}}{\operatorname{arg}} \max_{\mathbf{x}} f(\mathbf{x})$$

- You don't know anything about f(x)
- You can query but it is very expensive

ANy good idea??

Any Good Idea???

- No information on f(x)...
- First choose a random point, x1, and evaluate f(x1)
- Guess the shape of f(x) based on (x1,f(x1))
- Based on the guess, choose the next point, x2, and evaluate f(x2)
- Guess the shape of f(x) based on{(x1,f(x1)),(x2,f(x2))}
- Repeat those steps

Overall Description

 Guess the underlying function with known data points (Gaussian process)

2. Select the next point to query based on the guess (Acquisition function)

