Отказоустойчивость в облаке

Александр Зубарев

О спикере:

- председатель цикловой комиссии информационной безопасности инфокоммуникационных систем, АКТ (ф) СПбГУТ
- эксперт CCNA Routing & Switching, security
- мастер-эксперт по компетенции WSR «Кибербезопасность»
- преподаватель высших квалификационных категорий
- преподаватель кафедры информационной безопасности в САФУ

Цели занятия

- Узнать, почему важно строить отказоустойчивые системы
- Рассмотреть основные сценарии отказа инфраструктуры
- Познакомиться с механизмами повышения доступности приложения в Яндекс Облаке

План занятия

- (1) Что такое отказоустойчивость и зачем она нужна
- (2) Из чего складывается отказоустойчивость
- (з) Почему сервис может быть недоступен
- 4 Как снизить риски сбоя сервиса
- **5** Как сделать отказоустойчивый сервис в Яндекс Облаке
- (6) Итоги
- 7 Домашнее задание
- (в) Дополнительные материалы

Что такое отказоустойчивость и зачем она нужна

У любого сервиса есть SLA. SLA — это набор метрик и их допустимых значений между пользователем сервиса и провайдером сервиса.

Одна из метрик* SLA для любого сервиса — его доступность

^{*} Помимо доступности, в SLA сервиса могут быть и другие метрики

Когда нужна отказоустойчивость

Когда недоступность сервиса ведёт к финансовым потерям:

- в связи с упущенной выручкой и прибылью
- потерей пользователей/клиентов
- негативной репутацией (пользователи ждут 100% uptime)
- нарушением требований регуляторов
- нарушением критических бизнес-процессов компании

Но отказоустойчивость — это дополнительные затраты на сервис, поэтому важно применять её тогда, когда это целесообразно

Когда отказоустойчивость необязательна

Бывают ситуации, когда отказоустойчивость может быть избыточной:

- среды разработки и тестирования
- задачи, у которых нет SLA по доступности, например батч-задачи

Важно во всех сервисах, где доступность приложения — часть SLA, договориться о метриках доступности, даже если высокая доступность не требуется

Из чего складывается отказоустойчивость

Примеры

Из чего состоит отказоустойчивость

- Избыточность (redundancy)
- Мониторинг узлов
- Реакция на сбой (failover)
- Возвращение узла в кластер (failback)

Нужно понимать, из каких компонентов состоит сервис, чтобы сделать эти компоненты отказоустойчивыми

Примеры плохой архитектуры

• Всё приложение крутится на одной ВМ

• Данные реплицированы, но есть точка отказа

Пример хорошей архитектуры

- Веб-серверы находятся за внешним балансировщиком нагрузки
- Веб-серверы балансируют трафик на серверы приложений
- Серверы приложений «ходят» в мастера и реплики БД

Пример архитектуры на базе k8s

- Балансировщик защищён услугой DDoS Protection
- Ноды кластера находятся за балансировщиком нагрузки
- Ingress controller принимает входящий трафик от балансировщика и направляет на сервисы
- Сервисы «ходят» в мастера и реплики БД

Почему сервис может быть недоступен

Атака

- DoS
- DDoS

Проблемы из-за инфраструктуры

Сбой на стороне инфраструктуры

- Отказ физического сервера / стойки
- Отказ зоны доступности / дата-центров (ДЦ)
- Сетевые проблемы
- Проблемы с дисковой подсистемой

Решение — превышение квот и лимитов работы инфраструктуры

• Понимание разницы между квотами и лимитами

Примеры лимитов в Яндекс Облаке:

- сеть: лимит по flow
- о диск: лимит на производительность

Проблемы из-за настроек сервиса

Сбой на стороне приложения

- Утечки памяти, утечки на ядре ОС
- Конец свободного места в файловой системе
- Баг в новом релизе софта
- Баг в сторонней библиотеке

Перегрузка

- Резкий всплеск активности Хабраэффект, Чёрная пятница
- Постоянный рост нагрузки
- Следствие сбоя на стороне инфраструктуры

Как снизить риски сбоя сервиса

Атака

DoS

- Анализируйте приложение на уязвимости. Примеры сканеров: Burp Suite, Acunetix, Nessus
- Можно заказать pentest от Лаборатории Касперского, Group-IB, BI.ZONE
- Используйте web application firewall: Imperva, F5,
 NGINX Plus, Wallarm, Cloudflare

DDoS

- Яндекс Облако, Qrator Labs, Cloudflare, Akamai
- Автомасштабирование: Instance Groups, Managed Kubernetes

Сбой на стороне инфраструктуры

Сбой сервера

- Балансировка нагрузки с использованием healthchecks
- Anti-affinity-правила гарантия того, что копии сервиса запускаются

Сбой дата-центра

- Балансировка нагрузки на несколько дата-центров
- Disaster recovery

Сбой из-за лимитов

Сеть

- Читайте документацию
- Используйте средства для уменьшения паразитной нагрузки
- Горизонтально масштабируйте нагрузку

Диски

- Читайте документацию
- Увеличивайте размер диска и число дисков
- Горизонтально масштабируйте нагрузку

Сбой на стороне приложения

OC

- Мониторинг ОС (потребление RAM, CPU, свободного места)
- Обновление ОС и ядра
- Масштабирование места на диске

Сбой на стороне приложения

Баги

- Dev/stage-среды
- Юнит-тесты, интеграционные тесты
- Возможность сделать rollback
- Современные методики деплоя
- Учения
- Feature-флаги

Перегрузка

- (1) Реализовывайте сайзинг приложение должно уметь обрабатывать нагрузку:
 - при падении нескольких узлов
 - при падении дата-центра
- (2) Готовьтесь к возможной неравномерной балансировке
- З Делайте мониторинг нагрузки
- (4) Делайте нагрузочное тестирование перед вводом в продакшн
- (5) Приложение должно уметь горизонтально масштабировать входящую нагрузку: автоматически или вручную
- 6 Аккуратно комбинируйте резервирование и автомасштабирование: алгоритмы автоскейлинга могут не успеть масштабировать нагрузку при высоких её всплесках

Как сделать отказоустойчивый сервис в Яндекс Облаке

Yandex Compute Cloud

- ВМ и диск сущность зоны доступности
- Группа размещения (placement groups) позволяет гарантировать, что ВМ будут находиться в разных стойках

Yandex Load Balancer

- Есть стабильный статический IPадрес
- Можно подключить Anti-DDoS
- Есть cross-AZ-балансировка нагрузки
- Трафик на зоны доступности приходит с помощью ЕСМР
- Трафик внутри зоны доступности использует consistent hashing

Virtual Private Cloud

- Зона доступности независимый дата-центр
- VPC обеспечивает полную IPсвязность между зонами доступности
- Есть latency между зонами
- Сервис позволяет защитить виртуальные машины с помощью Anti-DDoS

Instance Groups

Управляемый сервис для работы с группой виртуальных машин.

- Горизонтальное масштабирование на несколько AZ
- Автоматическое масштабирование
- Rolling update
- Интеграция с Load Balancer

Yandex Managed Kubernetes

- Managed Kubernetes:
 - отказоустойчивые мастеры
 - много нативной функциональности для доступности и масштабирования контейнеров
 - интеграция с балансировщиком нагрузки
- Автомасштабирование узлов
- Интеграция с Container Registry, Load Balancer

Managed Databases

Виды конфигураций:

- кластер (минимум 2 узла) разные АZ
- возможность масштабирования вверх

Yandex Object Storage

- Бесконечно масштабируемый по нагрузке Object Storage
- Данные реплицированы на 3 ЦОД
- Есть поддержка SSL и кастомного домена
- Есть интеграция с CDN

Итоги занятия

- (
 ightarrow) Узнали, что такое отказоустойчивость и зачем она нужна
- Э Рассмотрели сценарии, от которых надо защищать приложение
- → Прошлись по базовым сервисам Яндекс Облака, которые позволяют увеличить доступность вашего сервиса

Домашнее задание

Давайте посмотрим ваше домашнее задание

- (1) Вопросы по домашней работе задавайте в чате группы
- Задачи можно сдавать по частям
- (з) Зачёт по домашней работе ставят после того, как приняты все задачи

Дополнительные материалы

- Public Cloud. <u>Гайд</u> по масштабированию
- <u>Настройка</u> отказоустойчивой архитектуры в Яндекс Облаке
- Google <u>SRE Books</u>

Задавайте вопросы и пишите отзыв о лекции

