# SINGULAR VALUE DECOMPOSITION MATH 578 Mini-Seminar Talk

Kai Yang

McGill University Montréal, Quebec Canada H3A 1A2

McGill University

October 22, 2020

#### Introduction

- Singular Value Decomposition (SVD) is one of most important tool for mathematical computation
- Contents of this presentation are taken from Numerical linear algebra and Matrix Computations
- As we'll see later, SVD is connect to eigenvalues; but in applications, eigenvalues are more connected to the behaviour of iterated forms of A, e.g.,  $A^k$  or  $e^{tA}$ ; SVD is more related to the behavior of A or  $A^{-1}$
- We'll start with the geometric observation as a motivation for SVD

#### Geometric Observation



Figure: SVD of 2 × 2 matrix [1]

- We assume A is a real matrix here for the sake of geometric interpretation
- The image of unit sphere under any m x n matrix is a hyperellipse,
   a hyperellipse is a m-dimensional generalization of an ellipse.

## Geometric Interpretation

- Define *n* singular values of *A*: these are the lengths of *n* principal semiaxes of *AS* it's conventional to assume that singular values are numbered in a descending order,  $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$
- Define *n* left singular vectors of *A*: these are the unit vectors  $\{u_1, u_2, ..., u_n\}$  oriented in the directions of principal semiaxes of *AS*, numbered corresponding to the singular values
- Define n right singular vectors of A: these are the unit vectors  $\{v_1, v_2, \ldots, v_n\} \in S$  that are preimages of principal semiaxes of AS, number so that  $Av_j = \sigma_j u_j$
- For the moment, let's assume A of full column rank n.

#### Reduced SVD

• Write the linear map as  $Av_j = \sigma_j u_j$ ,  $\forall 1 \le j \le n$ ; and express in matrix form:

$$AV = \hat{U}\hat{\Sigma}$$

- $\hat{\Sigma}$  is a  $n \times n$  diagonal matrix with diagonal entries  $\sigma_1, \sigma_2, \dots, \sigma_n > 0$
- $\hat{U} \in \mathbb{C}^{m \times n}$  has orthonormal columns  $u_1, u_2, ..., u_n \in \mathbb{C}^m$
- $V \in \mathbb{C}^{n \times n}$  is a unitary matrix with columns  $v_1, v_2, ..., v_n$
- Then we have  $A = \hat{U}\hat{\Sigma}V^*$
- Note the column vectors of  $\hat{U}$  does not form a basis of  $\mathbb{C}^n$  this is why it's called "reduced"

#### **Full SVD**

- By adjoining m-n orthonormal columns  $\hat{U}_{m-n}$ ,  $\hat{U}$  can be extended to a unitary matrix let's call the result U
- $\hat{\Sigma}$  also needs to change to accommodate this by adjoining m-n rows of 0
- As a result, the full SVD is

$$A = \hat{U}\hat{\Sigma}V^* = \begin{bmatrix} \hat{U} & \hat{U}_{m-n} \end{bmatrix} \begin{bmatrix} \hat{\Sigma} \\ 0 \end{bmatrix} V^* =: U\Sigma V^*$$

• Now we can discard the initial assumption that A has full (column) rank – all it changes is now not n but only r of the left singular vectors of A are determined by the geometry of hyperellipse, then we'll have  $\hat{U} \in \mathbb{C}^{m \times r}$ ,  $\hat{\Sigma} \in \mathbb{C}^{r \times r}$  will be a diagonal matrix with positive diagonal entries  $\sigma_1, \sigma_2, \ldots, \sigma_r$ , put at the upper-left corner of the otherwise-0 matrix  $\Sigma \in \mathbb{C}^{m \times n}$ 

#### Formal Definition

• Given  $A \in \mathbb{C}^{m \times n}$ , a SVD of A is a factorization

$$A = U\Sigma V^*$$

- where  $U \in \mathbb{C}^{m \times m}$ ,  $V \in \mathbb{C}^{n \times n}$  are both unitary;  $\Sigma \in \mathbb{R}^{m \times n}$  is diagonal, with diagonal entries  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$  and  $\sigma_{r+1}, \ldots, \sigma_p = 0$ , where  $p = \min\{m, n\}$
- The image of a unit sphere in  $\mathbb{R}^n$  under linear map  $A = U\Sigma V^*$  will indeed be a hyperellipse in  $\mathbb{R}^m$ : the unitary map  $V^*$  perserves the sphere, then the diagonal matrix  $\Sigma$  stretches the sphere into a hyperellipse aligned with canonical basis, finally unitary map U rotates or reflects the hyperellipse without changing its shape.

## Existence and Uniqueness

#### **Theorem**

Every matrix  $A \in \mathbb{C}^{m \times n}$  has a SVD. Furthermore, the singular values are uniquely determined, and if A is square and  $\sigma_j$  are distinct, the left and right singular vectors  $\left\{u_j\right\}$  and  $\left\{v_j\right\}$  are uniquely determined up to the complex signs.

 The existence statement can be proved by induction on the dimension of A, whose induction step is established by: for submatrix B of A,

$$B = U_2 \Sigma_2 V_2^* \Rightarrow A = U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & V_2 \end{bmatrix}^* V_1^*$$

is a SVD of A.

 The uniqueness statement is justified by the geometric interpretation: should the semiaxis lengths of a hyperellipse are distinct, then the semiaxes are determined by the geometry signs.

## SVD v.s. Eigen-Decomposition

- SVD represents a change of bases, i.e., every matrix is diagonal if using proper bases for domain and range spaces – it uses two different bases, the sets of left (for range space) and right (for domain space) singular vectors. Eigen-Decomposition uses one bases – the set of eigenvectors
- SVD uses orthonormal bases; while eigen-decomposition in general does not
- Not all matrices (even square ones) have an eigenvalue decomposition, but all matrices have a SVD

## Matrix Properties via SVD I

- rank(A) = r, the number of nonzero singular values. (note that U, V are full rank)
- range  $(A) = \langle u_1, ..., u_r \rangle$  and null  $(A) = \langle v_{r+1}, ..., v_n \rangle$ . (observing the range and null spaces of  $\Sigma$ )
- $||A||_2 = \sigma_1$  and  $||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$ . (U, V are unitary, together with the fact that  $\ell_2$  norm and Frobenius norm is invariant under unitary multiplication)
- The nonzero singular values of A square roots of nonzero eigenvalues of A\*A or AA\*. (substitution by SVD)
- If  $A = A^*$ , the singular values of A are the absolute values of eigenvalues of A. (using the fact that the eigenvalues for every Hermitian matrix are real, and the eigenvectors corresponding to distinct eigenvalues are orthogonal)

## Matrix Properties via SVD II

- $\forall A \in \mathbb{C}^{m \times m}$ ,  $|\det(A)| = \prod_{i=1}^{m} \sigma_i$ . (substitution by SVD)
- $\forall A \in \mathbb{C}^{m \times n}$ ,  $E \in \mathbb{C}^{m \times n}$ ,

$$\sigma_{\max}(A+E) \le \sigma_{\max}(A) + ||E||_2$$
  
$$\sigma_{\min}(A+E) \ge \sigma_{\min}(A) - ||E||_2$$

 $(recall\ Av_j = \sigma_j u_j,\ which\ implies\ \sigma_{min}(A) \le \frac{\|Ax\|_2}{\|x\|_2} \le \sigma_{max}(A))$ 

•  $\forall A \in \mathbb{C}^{m \times n}$ , m > n, and  $\forall z \in \mathbb{C}^m$ ,

$$\sigma_{\max}([A \ z]) \ge \sigma_{\max}(A)$$
 $\sigma_{\min}([A \ z]) \le \sigma_{\min}(A)$ 

0

## Low Rank Approximations

- $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$ . (trivial)
- Define  $A_k = \sum_{i=1}^k \sigma_i u_i v_i^*$  for some  $0 \le k \le r$ , and define  $\sigma_{k+1} = 0$  if  $k = \min\{m, n\}$ . Then

$$\min_{B \in \mathbb{C}^{m \times n}, \, \text{rank}(B) \le k} ||A - B||_2 = ||A - A_k||_2 = \sigma_{k+1}$$

(second equality is trivial; prove first equality by assuming  $||A - B||_2 < ||A - A_k||_2 = \sigma_{k+1}$ , then  $\forall w \in null(B)$  (dim  $\geq n - k$ ),

$$||Aw||_2 = ||(A - B)w||_2 \le ||A - B||_2 ||w||_2 < \sigma_{k+1} ||w||_2$$

on the other hand, the first k+1 right singular vectors of A span a k+1-dimensional space s.t. for all w in it,  $||Aw||_2 \ge \sigma_{k+1} ||w||_2$ , which leads to contradiction)

• Similar to above statement (and proof), we also have

$$\min_{B \in \mathbb{C}^{m \times n}, \, \text{rank}(B) \le k} ||A - B||_F = ||A - A_k||_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}$$

#### Some Basic Facts

• For linear system Ax = b, applying SVD, we have that

$$x = A^{-1}b = \left(U\Sigma V^{T}\right)^{-1}b = \sum_{i=1}^{n} \frac{u_{i}^{T}b}{\sigma_{i}}v_{i}$$

which means should  $\sigma_n$  be small, a small changes in A or b can induce relatively large changes in x

- One way to compute SVD of A is, form  $A^*A$  and take eigen-decomposition of  $A^*A = V\Gamma V^*$ , then  $\Sigma \in \mathbb{R}^{m \times n}$  will have diagonal square root of  $\Gamma$ , and we can solve  $U\Sigma = AV$  for unitary U. But this algorithm is unstable eigen-decomposition of  $A^*A$  will be much more sensitive to perturbations
- One can, however, reduce the SVD to an eigenvalue problem by taking a different approach

## A Different Approach

• Construct the Hermitian matrix  $H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \in \mathbb{C}^{2m \times 2m}$  for square matrix A, then based on SVD of A we have

$$\begin{bmatrix}
0 & A^* \\
A & 0
\end{bmatrix}
\begin{bmatrix}
V & V \\
U & -U
\end{bmatrix} =
\begin{bmatrix}
V & V \\
U & -U
\end{bmatrix}
\begin{bmatrix}
\Sigma & 0 \\
0 & -\Sigma
\end{bmatrix}$$

- Then singular values of A are the absolute values of the eigenvalues of H, and singular vectors vectors of A can be extracted from eigenvectors of H
- And this allows us to convert SVD problem of A to eigen-decomposition of H, which is stable

#### Two Phrases

- Golub, Kahan, et al. proposed the two-phrase method to obtain SVD: the first phrase is to convert the matrix to a bi-diagonal form (diagonal and first super-diagonal); and the second phrase is to diagonalize the bi-diagonal matrix
- The first phrase of bi-diagonalization is called Golub-Kahan bi-diagonalization
- The second phrase of diagonalization was conventionally solved by a variant of QR algorithm; and more recently, divide-and-conquer algorithms were also developed for the second phrase.

## Golub-Kahan Bi-Diagonalization



Figure: Golub-Kahan bi-diagonalization for a 6 × 4 matrix [1]

- Golub-Kahan bi-diagonalization applies Householder reflectors alternatively to left and right
- Left reflection introduces a column of 0s below diagonal
- Right reflection introduces a row of 0s to the right of first superdiagonal
- Both left and right reflections will preserve zeros introduced before

Kai Yang

#### Faster Methods for the First Phrase



Figure: LHC bi-diagonalization [1]

- Golub-Kahan method *per se* is not efficient for  $m \gg n$ . Lawson, Hanson and Chan discussed a much more efficient way: use a single QR factorization step to introduce zeros everywhere below diagonal, then apply Golub-Kahan on the upper  $n \times n$  matrix only indeed, this will destroy some zeros introduced by the QR step
- LHC procedure is advantageous only when  $m > \frac{5}{3}n$ ; note the Golub-Kahan process will make the matrix thinner as it proceeds, then one can apply QR factorization step when adequate
- And it was discussed that QR step should be performed when the matrix reaches an aspect ratio of 2

### Bibliography

- [1] Lloyd Trefethen. Numerical linear algebra. Philadelphia, Pa: Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104, 1997. ISBN: 0898719577.
- [2] Gene H. Golub. *Matrix Computations*. J. Hopkins Uni. Press, Jan. 7, 2013. ISBN: 1421407949. URL: https://www.ebook.de/de/product/20241149/gene\_h\_golub\_matrix\_computations.html.