Sequence Models

NLP: Jordan Boyd-Graber

University of Maryland

RNNs

Slides adapted from Richard Socher

Neural Language Models

• Mostly used for predicting the next word (more on this later)

• Or using learned representation (a la Word2Vec)

Neural Language Models

Mostly used for predicting the next word (more on this later)

- Or using learned representation (a la Word2Vec)
- But today, sentiment analysis

FOR YOUR CHANCE TO WIN FREE BURRITOS FOR A YEAR, TWEET A LOVE HAIKU

POST ON FEB. 7TH. THE HAIKU WITH THE MOST RETWEETS THAT DAY WINS.

Sentiment Analysis

Positive Sentiment

Negative Sentiment

Dictionaries for Sentiment Analysis

(Image from Julia Silge and David Robinson)

- Connection to simple pre-neural approach
- Shows how the RNN can use its hidden vector to encode state

What goes into a Recurrent Neural Network?

- What are tokens? Words or characters?
- What are your representations?

What goes into a Recurrent Neural Network?

- What are tokens? Words or characters?
- What are your representations?

What goes into a Recurrent Neural Network?

- What are tokens? Words or characters?
- What are your representations?

$$e["cromulent"] = \begin{bmatrix} 1\\0 \end{bmatrix} \tag{1}$$

$$e["meh"] = \begin{bmatrix} 0\\1 \end{bmatrix} \tag{2}$$

$$e["chazwazzer"] = \begin{bmatrix} 0\\0 \end{bmatrix}$$
 (3)

Recurrent Neural Networks

- Condition on all previous words
- Hidden state at each time step

Hidden State by Fiat

- $h_{t,1}$ is the total number of positive sentiment words seen by time t
- $h_{t,2}$ is the total number of negative sentiment words seen by time t
- y_t is the number of positive sentiment words minus negative sentiment words

RNN parameters (abstract)

$$h_t = f(\mathbf{W}^{(hh)}\vec{h}_{t-1} + \mathbf{W}^{(hx)}\vec{x}_t + \vec{b}^{(h)})$$
 (4)

$$\hat{y}_t = W^{(S)} h_t \tag{5}$$

(6)

- Learn parameter h_0 to initialize hidden layer
- x_t is representation of input (e.g., word embedding)
- \hat{y} is the output (in our example, sentiment)

Basic RNN parameters (concrete)

Dimension of x and h are both 2 (positive and negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{7}$$

$$\mathbf{W}^{(hx)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{8}$$

$$\vec{b}^{(h)} = \begin{bmatrix} 0\\0 \end{bmatrix} \tag{9}$$

Input Token	Input	Hidden	Output
This			
movie			
is			
an			
exquisite			
masterpiece			
despite			
the			
questionable			
title			

Input Token	Input	Hidden	Output
This	$x_1^{T} = [00]$		
movie	$x_2^{T} = [00]$		
is	$x_3^{T} = [00]$		
an	$x_4^{T} = [00]$		
exquisite	$x_5^{T} = [10]$		
masterpiece	$x_6^{T} = [10]$		
despite	$x_7^{T} = [00]$		
the	$x_8^{T} = [00]$		
questionable	$x_9^{T} = [01]$		
title	$x_{10}^{T} = [00]$		

Input Token	Input	Hidden	Output
This	$x_1^{T} = [00]$	$h_1^{T} = [00]$	
movie	$x_2^{T} = [00]$	$h_2^{T} = [00]$	
is	$x_3^{T} = [00]$	$h_3^{T} = [00]$	
an	$x_4^{T} = [00]$	$h_4^{T} = [00]$	
exquisite	$x_5^{T} = [10]$	$h_5^{T} = [10]$	
masterpiece	$x_{\underline{6}}^{T} = [10]$	$h_6^{T} = [20]$	
despite	$x_7^{T} = [00]$	$h_7^{T} = [20]$	
the	$x_8^{T} = [00]$	$h_8^{T} = [20]$	
questionable	$x_9^{T} = [01]$	$h_9^{\dagger} = [21]$	
title	$x_{10}^{T} = [00]$	$h_{10}^{T} = [21]$	

Input Token	Input	Hidden	Output
This	$x_1^{T} = [00]$	$h_1^{T} = [00]$	$y_1 = 0$
movie	$x_2^{T} = [00]$	$h_2^{T} = [00]$	$y_2 = 0$
is	$x_3^{T} = [00]$	$h_3^{T} = [00]$	$y_3 = 0$
an	$x_4^{T} = [00]$	$h_4^{T} = [00]$	$y_4 = 0$
exquisite	$x_5^{T} = [10]$	$h_5^{T} = [10]$	$y_5 = 1$
masterpiece	$x_6^{T} = [10]$	$h_6^{T} = [20]$	$y_6 = 2$
despite	$x_7^{T} = [00]$	$h_7^{T} = [20]$	$y_7 = 2$
the	$x_8^{T} = [00]$	$h_8^{T} = [20]$	$y_8 = 2$
questionable	$x_9^{T} = [01]$	$h_9^{T} = [21]$	$y_9 = 1$
title	$x_{10}^{T} = [00]$	$h_{10}^{T} = [21]$	$y_{10} = 1$

Input Token	Input	Hidden	Output
This	$x_1^{T} = [00]$	$h_1^{T} = [00]$	$y_1 = 0$
movie	$x_2^{T} = [00]$	$h_2^{T} = [00]$	$y_2 = 0$
is	$x_3^{T} = [00]$	$h_3^{T} = [00]$	$y_3 = 0$
an	$x_4^{T} = [00]$	$h_4^{T} = [00]$	$y_4 = 0$
exquisite	$x_5^{T} = [10]$	$h_5^{T} = [10]$	$y_5 = 1$
masterpiece	$x_6^{T} = [10]$	$h_6^{T} = [20]$	$y_6 = 2$
despite	$x_7^{T} = [00]$	$h_7^{T} = [20]$	$y_7 = 2$
the	$x_8^{T} = [00]$	$h_8^{T} = [20]$	$y_8 = 2$
questionable	$x_9^{T} = [01]$	$h_9^{T} = [21]$	$y_9 = 1$
title	$x_{10}^{T} = [00]$	$h_{10}^{T} = [21]$	$y_{10} = 1$

Input Token	Input	Hidden	Output
This	$x_1^{T} = [00]$	$h_1^{T} = [00]$	$y_1 = 0$
movie	$x_2^{T} = [00]$	$h_2^{T} = [00]$	$y_2 = 0$
is	$x_3^{T} = [00]$	$h_3^{T} = [00]$	$y_3 = 0$
an	$x_4^{T} = [00]$	$h_4^{T} = [00]$	$y_4 = 0$
exquisite	$x_5^{T} = [10]$	$h_5^{T} = [10]$	$y_5 = 1$
masterpiece	$x_6^{T} = [10]$	$h_6^{T} = [20]$	$y_6 = 2$
despite	$x_7^{T} = [00]$	$h_7^{T} = [20]$	$y_7 = 2$
the	$x_8^{T} = [00]$	$h_8^{T} = [20]$	$y_8 = 2$
questionable	$x_9^{T} = [01]$	$h_9^{T} = [21]$	$y_9 = 1$
title	$x_{10}^{T} = [00]$	$h_{10}^{T} = [21]$	$y_{10} = 1$

Input Token	Input	Hidden	Output
This	$x_1^{T} = [00]$	$h_1^{T} = [00]$	$y_1 = 0$
movie	$x_2^{T} = [00]$	$h_2^{T} = [00]$	$y_2 = 0$
is	$x_3^{T} = [00]$	$h_3^{T} = [00]$	$y_3 = 0$
an	$x_4^{T} = [00]$	$h_4^{T} = [00]$	$y_4 = 0$
exquisite	$x_5^{T} = [10]$	$h_5^{T} = [10]$	$y_5 = 1$
masterpiece	$x_6^{T} = [10]$	$h_6^{T} = [20]$	$y_6 = 2$
despite	$x_7^{T} = [00]$	$h_7^{T} = [20]$	$y_7 = 2$
the	$x_8^{T} = [00]$	$h_8^{T} = [20]$	$y_8 = 2$
questionable	$x_9^{T} = [01]$	$h_9^{T} = [21]$	$y_9 = 1$
title	$x_{10}^{T} = [00]$	$h_{10}^{T} = [21]$	$y_{10} = 1$

This doesn't actually use the sequence!

So let's look at inverting sentiment!

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words
 seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- h now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$
 (12)

- Dimension of x is now 3: new dimension encodes if word is "inverter" (e.g., "not", embedding [001])
- *h* now has dimension 5:
 - Number of positive words seen
 - Number of negative words seen
 - Was the previous word an "inverter"?
 - Was the previous word an inverted negative sentiment word (thus now positive)
 - Was the previous word an inverted positive sentiment word (thus now negative)

$$\mathbf{W}^{(hh)} = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(10)

$$(\mathbf{W}^{(hx)})^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
 (11)

$$\vec{b}^{(h)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix} \tag{12}$$

Example Sentence

not joking, food is not horrible it's delicious.

Word 1 (not)

$$\vec{h}_{1} = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix} }_{\mathbf{W}^{(hx)}} + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} }_{\mathbf{b}}$$

$$(14)$$

Word 1 (not)

$$\vec{h}_1 = \text{ReLU} \left(\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right)$$
 (15)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 0.00\\ 1.00\\ -1.00\\ -1.00 \end{pmatrix}$$
 (16)

$$= \begin{bmatrix} 0.00\\ 0.00\\ 1.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{17}$$

Word 2 (joking,)

$$\vec{h}_2 = \text{ReLU} \left(\begin{array}{c} \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)} \vec{x}_t} + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} }_{\vec{b}}$$
 (19)

Word 2 (joking,)

$$\vec{h}_2 = \text{ReLU} \left(\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right)$$
 (20)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \end{pmatrix} \tag{21}$$

$$= \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{22}$$

Word 3 (food)

$$\vec{h}_{3} = \text{ReLU} \left(\begin{array}{c} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ \end{array} \right) \left(\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \end{array} \right)$$

$$\mathbf{W}^{(hh)} \vec{h}_{t-1}$$

$$+ \left(\begin{array}{c} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 \end{array} \right) + \left(\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \\ \end{array} \right)$$

$$\mathbf{W}^{(hx)} \vec{x}_{t}$$

$$(24)$$

Word 3 (food)

$$\vec{h}_{3} = \text{ReLU} \left(\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right)$$
 (25)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ -1.00\\ -1.00 \end{pmatrix}$$
 (26)

$$= \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{27}$$

Word 4 (is)

$$\vec{h}_{4} = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)}} \mathbf{x}_{t}} \left[\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right] + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} }_{\vec{h}}$$

$$(29)$$

Word 4 (is)

$$\vec{h}_4 = \text{ReLU} \left(\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right)$$
(30)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ -1.00\\ -1.00 \end{pmatrix}$$
 (31)

$$= \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{32}$$

Word 5 (not)

$$\vec{h}_{5} = \text{ReLU} \left(\begin{array}{c} \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \begin{array}{c} [0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \\ + \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \\ \end{bmatrix}}_{\mathbf{W}^{(hx)} \vec{\mathbf{x}}_{t}} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\vec{b}} \right)$$

$$(34)$$

Word 5 (not)

$$\vec{h}_{5} = \text{ReLU} \left(\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right)$$
(35)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 0.00\\ 1.00\\ -1.00\\ -1.00 \end{bmatrix} \end{pmatrix}$$
(36)

$$= \begin{bmatrix} 0.00\\ 0.00\\ 1.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{37}$$

Word 6 (horrible)

$$\vec{h}_{6} = \text{ReLU} \left(\begin{array}{c} \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ \end{bmatrix} \\ W^{(hh)} \vec{h}_{t-1} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 1.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \\ -1.00 \\ \end{bmatrix}}_{\vec{h}}$$

$$(38)$$

Word 6 (horrible)

$$\vec{h}_{6} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \end{bmatrix} \\ \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \end{bmatrix}$$

$$(40)$$

$$= \begin{bmatrix} 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00 \end{bmatrix} \tag{42}$$

Word 7 (it's)

$$\vec{h}_7 = \text{ReLU} \left(\begin{array}{c} \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right)$$

$$+ \left(\begin{array}{c} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \\ \end{bmatrix} \right)$$

$$(44)$$

Word 7 (it's)

$$\vec{h}_7 = \text{ReLU} \left(\begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right)$$
(45)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$
 (46)

$$= \begin{bmatrix} 1.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{47}$$

Word 8 (delicious)

$$\vec{h}_{8} = \text{ReLU} \left(\underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 \end{bmatrix}}_{\mathbf{W}^{(hx)} \vec{\mathbf{x}}_{t}} \left[\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \\ -1.00 \\ \end{array} \right]}_{\vec{b}}$$

$$(48)$$

Word 8 (delicious)

$$\vec{h}_{8} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$
(50)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 2.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ 0.00 \end{bmatrix}$$
 (51)

$$\begin{vmatrix}
2.00 \\
0.00 \\
0.00 \\
0.00 \\
0.00
\end{vmatrix}$$
(52)

Word 9 (.)

$$\vec{h}_{9} = \text{ReLU} \left(\begin{array}{c} \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 2.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)} \vec{X}_{t}} + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} }_{\mathbf{b}}$$

$$(54)$$

Word 9 (.)

$$\vec{h}_9 = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 2.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$
(55)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 2.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$
 (56)

$$= \begin{bmatrix} 2.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{57}$$

Example Sentence

food is crappy and not good.

Word 1 (food)

$$\vec{h}_{1} = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)} \vec{h}_{t-1}}$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)} \vec{x}_{t}}$$

$$+ \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \end{bmatrix} }_{\vec{h}}$$

$$(59)$$

Word 1 (food)

$$\vec{h}_1 = \text{ReLU} \left(\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right)$$
 (60)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ -1.00\\ -1.00 \end{pmatrix}$$
 (61)

$$= \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{62}$$

Word 2 (is)

$$\vec{h}_{2} = \text{ReLU} \left(\begin{array}{c} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \\ \end{array} \right) + \left(\begin{array}{c} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 \\ 0.00 & 0.00 \\ \end{array} \right) + \left(\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \\ \end{array} \right)$$

$$(64)$$

Word 2 (is)

$$\vec{h}_2 = \text{ReLU} \left(\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right)$$
 (65)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ -1.00\\ -1.00 \end{pmatrix}$$
 (66)

$$= \begin{bmatrix} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{67}$$

Word 3 (crappy)

0.00

0.00

 $\mathbf{W}^{(hx)}\vec{x}_t$

1.00

0.00

1.00

Word 3 (crappy)

$$\vec{h}_{3} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 1.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$
(70)

$$= \text{ReLU} \left(\begin{bmatrix} 0.00\\ 1.00\\ 0.00\\ 0.00\\ -1.00 \end{bmatrix} \right)$$
 (71)

$$= \begin{bmatrix} 0.00\\ 1.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{72}$$

Word 4 (and)

$$\vec{h}_{4} = \text{ReLU} \left(\begin{array}{c} \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ \end{bmatrix} }_{\mathbf{W}^{(hx)} \vec{X}_{t}} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \end{bmatrix} }_{\vec{h}}$$

$$(74)$$

Word 4 (and)

$$\vec{h}_4 = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$
(75)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 1.00\\ 0.00\\ -1.00\\ -1.00 \end{pmatrix}$$
 (76)

$$= \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \tag{77}$$

Word 5 (not)

$$\vec{h}_{5} = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)}} \mathbf{x}_{t}$$

$$\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix}$$

$$\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$

$$\begin{bmatrix} 0.79 \\ 0.79 \\ -1.00 \\ -1.00 \end{bmatrix}$$

Word 5 (not)

$$\vec{h}_{5} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$
(80)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00\\ 1.00\\ 1.00\\ -1.00\\ -1.00 \end{pmatrix}$$
 (81)

$$= \begin{bmatrix} 0.00\\ 1.00\\ 1.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{82}$$

Word 6 (good)

$$\vec{h}_6 = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)} \vec{h}_{t-1}} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)} \vec{X}_t} \left[\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \\ -1.00 \end{bmatrix} \right] }_{\vec{h}}$$

$$(84)$$

Word 6 (good)

$$\vec{h}_{6} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 1.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix}$$
(85)

Word 7 (.)

$$\vec{h}_7 = \text{ReLU} \left(\begin{array}{c} \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ \end{bmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right) \\ \mathbf{W}^{(hh)} \vec{h}_{t-1}$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 \end{bmatrix}}_{\mathbf{W}^{(hx)} \vec{x}_t} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\vec{b}}$$

$$(89)$$

Word 7 (.)

$$\vec{h}_7 = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 2.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$
(90)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 2.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$
 (91)

$$= \begin{bmatrix} 0.00\\ 2.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{92}$$

Example Sentence

everything is good and delicious.

Word 1 (everything)

$$\vec{h}_{1} = \text{ReLU} \left(\underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix}}_{\mathbf{W}^{(hx)}} \vec{x}_{t}} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\vec{b}}$$

$$(94)$$

Word 1 (everything)

$$\vec{h}_{1} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$(95)$$

Word 2 (is)

$$\vec{h}_2 = \text{ReLU} \left(\begin{array}{c} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0$$

Word 2 (is)

$$\vec{h}_{2} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 0.00 \\$$

Word 3 (good)

$$\vec{h}_{3} = \text{ReLU} \left(\underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix}}_{\mathbf{W}^{(hx)}} \mathbf{x}_{t}} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\mathbf{b}}$$

$$(104)$$

Word 3 (good)

$$\vec{h}_{3} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00$$

Word 4 (and)

$$\vec{h}_{4} = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)} \vec{x}_{t}} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} }_{\vec{b}}$$
 (109)

Word 4 (and)

$$\vec{h}_{4} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ -1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.0$$

Word 5 (delicious)

$$\vec{h}_{5} = \text{ReLU} \left(\underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix}}_{\mathbf{W}^{(hs)} \vec{x}_{t}} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\vec{b}}$$

$$(114)$$

Word 5 (delicious)

$$\vec{h}_{5} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$
(115)

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 2.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ 0.00 \end{bmatrix}$$
 (116)

$$= \begin{bmatrix} 2.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{bmatrix} \tag{117}$$

Word 6 (.)

$$\vec{h}_6 = \text{ReLU} \left(\underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 2.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix}}_{\mathbf{W}^{(hx)}} \vec{x}_t} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\vec{b}}$$

$$(119)$$

Word 6 (.)

$$\vec{h}_{6} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 2.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 2.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 2.00 \\ 0.00 \\ -1.00 \\ 0.00 \\$$

Example Sentence

food is delicious but crappy.

Word 1 (food)

$$\vec{h}_{1} = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)}} + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)}}$$

$$(124)$$

Word 1 (food)

$$\vec{h}_{1} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$(125)$$

Word 2 (is)

$$\vec{h}_2 = \text{ReLU} \left(\underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix}}_{\mathbf{W}^{(hx)}} \vec{x}_t$$

$$\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\vec{b}}$$

$$(128)$$

Word 2 (is)

$$\vec{h}_{2} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$(132)$$

Word 3 (delicious)

$$\vec{h}_{3} = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)}} + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{b}}$$

$$(134)$$

Word 3 (delicious)

$$\vec{h}_{3} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 1.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ 0.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$
(135)

Word 4 (but)

$$\vec{h}_{4} = \text{ReLU} \left(\underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{ \begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix} }_{\mathbf{W}^{(hx)}} \vec{x}_{t}} \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{ \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} }_{\vec{b}}$$

$$(139)$$

Word 4 (but)

$$\vec{h}_{4} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 0.00 \\ -1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\$$

Word 5 (crappy)

$$\vec{h}_{5} = \text{ReLU} \left(\underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} }_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix}}_{\mathbf{W}^{(hx)}} \mathbf{x}_{t}^{*}$$

$$\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\mathbf{b}}$$

$$(144)$$

Word 5 (crappy)

$$\vec{h}_{5} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 1.00 \\ 0.00 \\ 1.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00$$

Word 6 (.)

$$\vec{h}_6 = \text{ReLU} \left(\underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 & 1.00 & -1.00 \\ 0.00 & 1.00 & 0.00 & -1.00 & 1.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \end{bmatrix} \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00 \\ 0.00 \end{bmatrix}}_{\mathbf{W}^{(hh)}} \vec{h}_{t-1} \right)$$

$$+ \underbrace{\begin{bmatrix} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \end{bmatrix}}_{\mathbf{W}^{(hx)}} \mathbf{x}_t^* \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \underbrace{\begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}}_{\vec{b}}$$

$$(149)$$

Word 6 (.)

$$\vec{h}_{6} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix} + \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix} \end{pmatrix}$$

$$= \text{ReLU} \begin{pmatrix} \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 1.00 \\ -1.00 \\ -1.00 \end{bmatrix}$$

$$= \begin{bmatrix} 1.00 \\ 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}$$

$$(150)$$

Still not a good RNN!

- Unhandled cases
- Fragile

Still not a good RNN!

- Unhandled cases
- Fragile
- Because you should learn RNNs from data

