Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2020-2021 AL310 - Istituzioni di Algebra Superiore 9 dicembre 2020 - Esercitazione 5

Esercizio 1. Sia $\mathbb{K} = \mathbb{C}(x)$. Siano σ l'automorfismo di \mathbb{K} definito da $f(x) \mapsto$ f(ix) e τ l'automorfismo di K definito da $f(x) \mapsto f(1/x)$. Determinare i campi fissi di σ e τ (Gabelli, Esercizio 7.2).

Soluzione: È facile mostrare (vedi Gabelli, Esercizio 7.1) che $\mathbb{K}^{\sigma} = \mathbb{K}^{\langle \sigma \rangle}$, dove $<\sigma>$ indica il sottogruppo degli automorfismi di \mathbb{K} generato da σ . Dall'applicazione ripetuta di σ a x

$$x \xrightarrow{\sigma} ix \xrightarrow{\sigma} -x \xrightarrow{\sigma} -ix \xrightarrow{\sigma} x$$

deduciamo che σ ha ordine 4.

Mostriamo che $\mathbb{C}(x^4) \subseteq \mathbb{K}^{<\sigma>}$ (e di conseguenza $<\sigma> \le \operatorname{Gal}_{\mathbb{C}(x^4)}(\mathbb{C}(x))$):

$$\sigma f(x^4) = f((ix)^4) = f(i^4x^4) = f(x^4).$$

D'altra parte $[\mathbb{C}(x):\mathbb{C}(x^4)]=4$ poiché il polinomio minimo di x su $\mathbb{C}(x^4)$ è dato da $T^4 - x^4$ (per l'irriducibilità di tale polinomio in $(\mathbb{C}(x^4))[T]$ vedi nota finale). In conclusione

$$4 = | < \sigma > | \le |\operatorname{Gal}_{\mathbb{C}(x^4)}(\mathbb{C}(x))| \le [\mathbb{C}(x) : \mathbb{C}(x^4)] = 4$$

e quindi $\langle \sigma \rangle = \operatorname{Gal}_{\mathbb{C}(x^4)}(\mathbb{C}(x))$ e $\mathbb{K}^{\sigma} = \mathbb{C}(x^4)$. In maniera simile si vede che $\mathbb{K}^{\tau} = \mathbb{C}(x+1/x)$.

Esercizio 2. Sia $F = \mathbb{F}_2(\tau)$. Mostrare che il polinomio $m(x) = x^4 + \tau^2 x^2 + \tau^2$ è irriducibile e non separabile. Determinare un campo di spezzamento \mathbb{K} di m(x)e verificare che $\mathbb{K} = \mathbb{K}_i \mathbb{K}_s$ (Gabelli, Esercizio 7.7).

Soluzione: m(x) è irriducibile perché è τ^2 - Eisenstein (vedi nota finale). Inoltre m'(x) = 0 e quindi m(x) non è separabile. Se α è una sua radice, allora la sua molteplicità è 2 o 4 (Gabelli, Corollario 5.3.7).

Se dividiamo m(x) per $(x + \alpha)^2 = x^2 + \alpha^2$ otteniamo che

$$m(x) = (x^2 + \alpha^2)(x^2 + \tau^2 + \alpha^2)$$

e quindi le radici di m sono α e $\alpha + \tau$, entrambe di molteplicità 2.

Essendo α una radice di m(x), abbiamo che

$$\alpha^4 + \tau^2 \alpha^2 + \tau^2 = 0$$

da cui deduciamo

$$\tau = \frac{\alpha^2}{1+\alpha}$$
 e $\alpha = \frac{\alpha^2 + \tau}{\tau}$

(attenzione! a lezione ho cancellato la prima relazione, ma serviva per l'altra inclusione : $F(\alpha) \supseteq F(\alpha^2, \tau)$).

Pertanto $\mathbb{K}=F(\alpha)=F(\alpha^2,\tau)$ e abbiamo la seguenti estensioni (frecce = inclusioni):

$$F(\alpha^{2})$$

$$F \qquad \qquad \mathbb{K} = F(\alpha) = F(\alpha^{2}, \tau).$$

$$F(\tau)$$

 α^2 è separabile su F: il suo polinomio minimo è $m_{\alpha^2}(x) = x^2 + \tau^2 x + \tau^2$ e $m'_{\alpha^2}(x) = \tau^2 \neq 0$. D'altra parte il polinomio minimo di τ su F è $m_{\tau}(x) = x^2 + \tau^2$ che non è separabile in quanto $m'_{\tau}(x) = 0$ (e τ è totalmente inseparabile essendo l'unica radice di $m_{\tau}(x)$). Quindi $\mathbb{K}_i = F(\tau)$ e $\mathbb{K}_s = F(\alpha^2)$ e $\mathbb{K} = \mathbb{K}_i \mathbb{K}_s$.

Esercizio 3. Siano p_1, p_2, \ldots, p_n primi distinti e sia $\mathbb{K} = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_n})$. Determinare $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{K})$ (Gabelli, Esercizio 7.8).

Soluzione: Come preannunciato a lezione, presento per prima cosa la dimostrazione standard che $[\mathbb{K}:\mathbb{Q}]=2^n$ (che richiede un'astuta applicazione del metodo di dimostrazione per induzione).

In realtà conviene dimostrare un enunciato più generale.

Siano $a_1, a_2, \ldots, a_n \in \mathbb{N}$ tali che $\sqrt{a_{i_1}a_{i_2}\cdots a_{i_k}} \notin \mathbb{Q}$ per ciascun sottinsieme non vuoto $\{i_1, i_2, \ldots, i_k\}$ di $\{1, 2, \ldots, n\}$. Allora per ogni $n \in \mathbb{N}$ vale

$$P(n): [\mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_n}) : \mathbb{Q}] = 2^n.$$

La base dell'induzione (n = 1) è ovvia.

Per il passo induttivo, utilizzerò il seguente risultato, la cui facile dimostrazione è lasciata per esercizio (cf. Esercitazione 2, es. n. 5).

Lemma. Sia \mathbb{L} un campo di caratteristica diversa da 2 e siano $a, b \in \mathbb{L}$. Se nessuno fra \sqrt{a} , \sqrt{b} e \sqrt{ab} appartiene a \mathbb{L} allora $[\mathbb{L}(\sqrt{a}, \sqrt{b}) : \mathbb{L}] = 4$.

Supponiamo ora che P(k) valga per ogni k < n e mostriamo che anche P(n) è vera. Sia $\mathbb{L} = \mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}, \dots, \sqrt{a_{n-2}})$. Per ipotesi induttiva $[\mathbb{L} : \mathbb{Q}] = 2^{n-2}$. Per verificare P(n) è sufficiente mostrare che $[\mathbb{L}(\sqrt{a_n}, \sqrt{a_{n-1}}) : \mathbb{L}] = 4$. Questo segue dal lemma poiché nessuno fra $\sqrt{a_{n-1}}, \sqrt{a_n}, \sqrt{a_n a_{n-1}}$ può appartenere ad \mathbb{L} , in quanto altrimenti verrebbe violata l'ipotesi induttiva P(n-1).

Determinamo ora $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{K})$. Per $i=1,2,\ldots,n$ definiamo gli automorfismi Ψ_i di \mathbb{K} ponendo:

$$\Psi_i(\sqrt{p_j}) = \begin{cases} \sqrt{p_j} & \text{se } i \neq j \\ -\sqrt{p_j} & \text{se } j = i. \end{cases}$$

Notare che $\Psi_i^2=id$ e $\Psi_i\circ\Psi_j=\Psi_j\circ\Psi_i$. Se $S\subseteq\{1,2,\ldots,n\}$ poniamo

$$\Psi_S(\sqrt{p_j}) = \begin{cases} \sqrt{p_j} & \text{se } j \notin S \\ -\sqrt{p_j} & \text{se } j \in S. \end{cases}$$

Osserviamo che se $S = \{i_1, i_2, \ldots, i_k\}$ allora $\Psi_S = \Psi_{i_1} \circ \Psi_{i_2} \circ \cdots \circ \Psi_{i_k}$ e che $\Psi_{S_1} \neq \Psi_{S_2}$ se S_1 e S_2 sono sottoinsiemi distinti di $\{1, 2, \ldots, n\}$. Quindi abbiamo 2^n distinti automorfismi di \mathbb{K} . Ne deduciamo che

$$2^n < |Gal_{\mathbb{O}}(\mathbb{K})| < [\mathbb{K} : \mathbb{O}] = 2^n$$

$$|\mathrm{Gal}_{\mathbb{Q}}(\mathbb{K})| = [\mathbb{K} : \mathbb{Q}] = 2^n.$$

Possiamo pertanto concludere che l'estensione $\mathbb{Q} \subseteq \mathbb{K}$ è di Galois e che $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{K}) \cong <\Psi_1>\times<\Psi_2>\times\cdots\times<\Psi_n>\cong \mathbb{Z}_2^n$ (per dimostrare che $\mathbb{Q}\subseteq\mathbb{K}$ è di Galois si può anche osservare che \mathbb{K} è il campo di spezzamento in \mathbb{C} del polinomio $(x^2-p_1)(x^2-p_2)\cdots(x^2-p_n)$).

Esercizio 4. Sia α una radice del polinomio $f(x) = x^4 - 8x^2 + 36$. Mostrare che il campo di spezzamento di f(x) in \mathbb{C} è $\mathbb{Q}(\alpha)$ e che il gruppo degli automorfismi è un gruppo di Klein (Gabelli, Esercizio 7.10).

Soluzione: f(x) non ha radici razionali ed inoltre si può scrivere come

$$f(x) = (x^2 + 6 + \sqrt{20}x)(x^2 + 6 - \sqrt{20}x)$$

e pertanto è irriducibile su \mathbb{Q} . Le radici sono

$$\alpha_1 = \alpha = \sqrt{5} + i$$
 $\alpha_2 = \sqrt{5} - i$ $\alpha_3 = -\sqrt{5} + i$ $\alpha_4 = -\sqrt{5} - i$.

Osserviamo che

$$\alpha_2 = \frac{6}{\sqrt{5} + i} \in \mathbb{Q}(\alpha)$$

e di conseguenza anche $\alpha_3 = -\alpha_2$ e $\alpha_4 = -\alpha$ sono in $\mathbb{Q}(\alpha)$ che risulta pertanto il campo di spezzamento in \mathbb{C} di f(x) (e questo contiene anche $\sqrt{5}$ ed i). Poiché $[\mathbb{Q}(\alpha):\mathbb{Q}]=4$, il gruppo di Galois può essere \mathbb{Z}_4 o un gruppo di Klein. La prima possibilità non si può presentare in quanto $Q(\alpha)$ ha due sottocampi distinti di grado 2 su \mathbb{Q} : $\mathbb{Q}(i)$ e $\mathbb{Q}(\sqrt{5})$.

Esercizio 5. Esplicitare la corrispondenza di Galois per n-esimo ampliamento ciclotomico $\mathbb{Q}(\xi)$, per n=5,6,8 Gabelli, (parte di Esercizio 7.16).

Soluzione:

Fissato n indicheremo con ξ una radice primitiva n-esima dell'unità e con Ψ_k l'automorfismo di $\mathbb{Q}(\xi)$ definito da $\Psi_k(\xi) = \xi^k$.

- Caso n=5. Abbiamo che $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi))=<\Psi_3>\cong \mathbb{Z}_4$ che possiede un unico sottogruppo non banale: $<\Psi_3^2>=<\Psi_4>$ di indice e cardinalità 2. Per la corrispondenza di Galois abbiamo un unico sottocampo di grado 2 su \mathbb{Q} , il campo fisso di Ψ_4 , ovvero $\mathbb{Q}(\xi+\xi^4)=\mathbb{Q}(\xi+\xi^{-1})=\mathbb{Q}(\cos(2\pi/5))$.
- Caso n=6. Abbiamo che $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi))=<\Psi_5>\cong \mathbb{Z}_2$. Pertanto non possiede sottogruppi non banali.
- Caso n=8. Abbiamo che $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(\xi))=<\Psi_3>\times<\Psi_5>\cong\mathbb{Z}_2\times\mathbb{Z}_2$ che possiede tre sottogruppi non banali (tutti di indice 2): $<\Psi_3>,<\Psi_5>$, $<\Psi_7=\Psi_3\Psi_5>$. I corrispondenti campi fissi sono: $\mathbb{Q}(\xi+\xi^3),\,\mathbb{Q}(\xi^2),\,\mathbb{Q}(\xi+\xi^7)$. (Errata : $\mathbb{Q}(\xi+\xi^5)$ Corrige : $\mathbb{Q}(\xi^2)$).

In questi casi è facile trovare un'espressione tramite radicali dell'elemento primitivo dei sottocampi: ad esempio, poiché $\xi = \exp(2\pi/8) = 1/\sqrt{2} + i/\sqrt{2}$ abbiamo che $\xi + \xi^3 = i\sqrt{2}$. Tuttavia, per trovare una risolvente si può facilmente lavorare con gli ξ (vedi esercizio successivo).

Esercizio 6. Sia ξ una radice primitiva settima dell'unità. Determiniare il polinomio minimo di $\alpha = \xi^3 + \xi^5 + \xi^6$ su \mathbb{Q} (Gabelli, parte di Esercizio 7.18).

Soluzione: Il gruppo degli automorfismi di $\mathbb{Q}(\xi)$ è ciclico di ordine 6 e generato da Ψ_3 , l'automorfismo definito da $\xi \mapsto \xi^3$. Abbiamo che $\Psi_3(\alpha) = \xi^2 + \xi + \xi^4$ e $\Psi_3^2(\alpha) = \alpha$. Pertanto il polinomio minimo di α è dato da

$$m_{\alpha}(x) = x^2 - (\alpha + \Psi_3(\alpha))x + \alpha\Psi_3(\alpha) = x^2 + x + 2.$$

Nota. Sia \mathbb{F} un campo e x un'indeterminata ed indichiamo con $\mathbb{F}(x)$ il campo delle funzioni razionali nell'indeterminata x. Abbiamo osservato (Esercitazione 2, es. n. 15) che x^n è trascendente su \mathbb{F} e quindi $\mathbb{F}(x^n) \cong \mathbb{F}(s)$ per un'altra indeterminata s. x è algebrico su $\mathbb{F}(x^n)$, in quanto x è uno zero del polinomio $T^n - x^n \in \mathbb{F}(x^n)[T]$. Mostriamo che tale polinomio è irriducibile in $\mathbb{F}(x^n)[T]$. Abbiamo

$$\mathbb{F}(x^n)[T] \cong \mathbb{F}(s)[T] \tag{1}$$

e $\mathbb{F}(s)$ è il campo dei quozienti di $\mathbb{F}[s]$. Per il lemma di Gauss, un polinomio monico irriducibile in $(\mathbb{F}[s])[T]$ lo è anche in $(\mathbb{F}(s))[T]$. Il polinomio T^n-s (che corrisponde a T^n-x^n tramite l'isomorfismo (1)) è irriducibile in $(\mathbb{F}[s])[T]$ in quanto s è irriducibile e anche primo nell'UFD $\mathbb{F}[s]$ e quindi si può applicare il criterio di Eisenstein.