STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 7: Transformations

Transformation

- data are messy
- they seldom fit our model assumptions
- why transformation? we transform the data so that the usual linear regression assumptions apply
- we either transform (i) the predictor, (ii) the response or (iii) both, so that in the transformed domain we have

$$E(Y|X=x) \approx \beta_0 + \beta_1 x$$

- ullet note: we used "pprox" not "="
- transformation also works formultiple predictors

BodyWt and BrainWt

FIG. 7.1 Plot of BrainWt versus BodyWt for 62 mammal species.

due to the elephants, it is hard to observe any patterns

Power Transformation

- can be applied to the response, or the predictor, or both
- U: original variable, strictly positive

$$\psi(U,\lambda) = U^{\lambda}$$

- usual range for λ : -2 to 2
- $lacksquare \lambda = 1
 ightarrow {\sf no}$ transformation,
 - $\lambda = \frac{1}{2} \rightarrow$ square root transformation,
 - $\lambda = -1 \rightarrow \text{inverse},$
 - $\lambda = 0 \rightarrow$ taken as the log transformation (not 1)

Power Transformation - con't

transform both predictor and response

FIG. 7.2 Scatterplots for the brain weight data with four possible transformations. The solid line on each plot is the OLS line; the dashed line is a loess smooth.

Power Transformation - con't

 applying log transformation to both the response and predictor, the linear model is given by

$$\log(BrainWt) = \beta_0 + \beta_1\log(BodyWt) + e$$

this means we are actually fitting a multiplicative model

$$BrainWt = \beta_0 \times BodyWt^{\beta_1} \times e,$$

ullet in this example, we choose λ by visual inspection

Transforming only the Predictor

scaled power transformation

$$\psi_s(X,\lambda) = \begin{cases} (X^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0 \\ \log_e(X) & \text{if } \lambda = 0 \end{cases}$$

- $\psi_s(X,\lambda)$ is a continuous function of λ
- How to choose λ ?
- fit $(\psi_s(X,\lambda),Y)$ for different values of λ
- note Y is not transformed, thus one can choose λ by minimizing $RSS(\lambda)$, e.g., $\lambda \in \{-1, -\frac{1}{2}, 0, \frac{1}{3}, \frac{1}{2}, 1\}$

Transforming only the Predictor - con't

- tree height v.s. diameter at 137cm above ground (Dbh)
- scaled power transform only for predictor, plot (Dbh, \hat{y}_{λ}) , where $\hat{y}_{\lambda} = \hat{\beta}_0 + \hat{\beta}_1 \psi_s(Dbh, \lambda), \ \lambda = 1, 0, -1$

FIG. 7.3 Height versus Dbh for the red cedar data from Upper Flat Creek.

Transforming only the Predictor - con't

$$E(Y|X) = \beta_0 + \beta_1 \psi_s(X,\lambda)|_{\lambda=0} = \beta_0 + \beta_1 \log X$$

- plot the fitted model with log-transformed predictor
- transform predictor is to improve linearity assumption

FIG. 7.4 The red cedar data from Upper Flat Creek transformed.

Box-Cox Transformation for Response

• modified power transformation: for response Y>0

$$\psi_M(Y, \lambda_y) = \psi_S(Y, \lambda_y) \times \operatorname{gm}(Y)^{1-\lambda_y} \\
= \begin{cases}
\operatorname{gm}(Y)^{1-\lambda_y} \times (Y^{\lambda_y} - 1)/\lambda_y & \text{if } \lambda_y \neq 0 \\
\operatorname{gm}(Y) \times \log(Y) & \text{if } \lambda_y = 0
\end{cases}$$

ullet gm(Y): geometric mean of Y, i.e.,

$$gm(Y) = \exp\left\{\frac{1}{n}\sum_{i=1}^{n}\log_{e}(y_{i})\right\}$$

Box-Cox Transformation for Response - con't

Box-Cox method assumes

$$E(\psi_M(Y, \lambda_y)|X = \boldsymbol{x}) = \boldsymbol{\beta}'\boldsymbol{x}$$

- $\operatorname{gm}(Y)^{1-\lambda_y}$: guarantees that the unit of $\psi_M(Y,\lambda_y)$ are the same for all values of λ_y
- so λ_y can be chosen as the one that minimizes $RSS(\lambda_y)$
- goal of Box-Cox: not for linearity, but for normality
- i.e., try to make \hat{e}_i as normal as possible
- **■** R function: boxcox(object, lambda = ...)

Box-Cox Transformation for Response - con't

■ Box-Cox graph for highway data: $\hat{\lambda} \approx -0.2$ with the approximate 95% confidence interval (-0.8, 0.3)

Moreover...

- what happens if we have negative variables?
- how about multiple regression?
- what you have seen are simple methods: might not work all the times
- that is, it may not be possible for "simultaneous corrections"