

Encoder-Decoder Architecture

Вспомним: что здесь что и для чего нужно?

- Input embeddings
- Positional encoding
- Multi-head attention (attention?)
- Residual & LayerNorm
- Positionwise Feed Forward
- · Key, Query, Value
- Формула Attention(Q, K, V)

Decoder

LIVIS

BERT, GPT, T5, RoBERTa...

Эволюция языковых моделей

- Авторегрессивная
- Построена с использованием только блоков decoder
- Потеряла возможность видеть всю последовательность
- Зато отлично генерит
- Имеет несколько вариантов размеров

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

Применения decoder-only transformer:

- Генерация текста
- Чат-боты
- Машинный перевод
- Саммаризация
- Генерация музыки (што?) (да!)

BERT

- Обучен задаче: masked language modelling
- Bidirectional:
 - Не авторегрессивный
 - Построен с использованием только блоков encoder
 - Видит контексты слева и справа
- Auxiliary task: next sentence prediction
- Имеет несколько вариантов размеров

Version	Hidden units	#layers	#parameters
BERT-large	1024	24-layer	340 million
BERT-base	768	12-layer	110 million

Задача masked language modelling

- Autoencoder: основная идея
- Будем пытаться восстановить исходный объект по собранным с него фичам
- Но этого недостаточно: исходный объект еще попортим
- То же можно сделать с языковыми данными: заменить часть токенов на маски

Задача masked language modelling

- Замаскируем 15% токенов:
 - 80% из этих 15 заменим на токен [MASK]
 - 10% заменим на рандомный другой токен
 - 10% оставим неизменными
- Если больше маскировать, то слишком сильно испортим
- Из-за этого медленно учится (в отличие от GPT)

Задача next sentence prediction

- Подаем сразу несколько предложений с разделителем
- 50% в обучающей выборке действительно следующее предложение
- 50% рандомные сэмплы из корпуса
- NSP TOKEH [CLS]

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

Задача next sentence prediction

- Подаем сразу несколько предложений с разделителем
- 50% в обучающей выборке действительно следующее предложение
- 50% рандомные сэмплы из корпуса
- NSP TOKEH [CLS]
- По этому токену предсказываем 0 или 1

GPT vs BERT

- GPT: causal language modelling (по слову за раз)
- BERT: masked language modelling (все слова сразу)

BERT: задачи

- Классификация по парам предложений
- Классификация по одному предложению
- Question Answering
- Классификация по токенам
 - MNU textual entailment
 - QQP Quora Question Pairs dataset
 - <u>QNU</u> question-paragraph pairs
 - STS-B Semantic Textual Similarity Benchmark
 - MRPC Microsoft Research Parahprase Corpus
 - RTE Recognizing Textual Entailment
 - <u>SWAG</u> 113k multiple choice questions about grounded situations
 - SST-2 Stanford Sentiment Treebank
 - ColA The Corpus of Linguistic Acceptability
 - SQuAD Stanford Question Answering Dataset

BERT Layers

med-entity recognition task Co		Dev F1 Score
First Layer	Embedding	91.0
Last Hidden	Layer 12	94.9
Sum All 12 Layers	12	95.5
Second-to-La Hidden Laye	11	95.6
Sum Last For Hidden	12	95.9
Concat Last	9 10 11	12 96.1

Pad masking

- Последовательности в батче могут быть разной длины добиваем их –∞
- Стоит удостовериться, что модель выдает одинаковые ответы вне зависимости от падов: x.mean(dim=1) не должно меняться в зависимости от их количества

Encoder padding mask in practice

Span prediction

- Маскируем сразу по несколько токенов
- Учитывая, что у нас ВРЕ-токенизация, это полезно

RoBERTa

Тот же BERT, только в профиль:

- Больше тренировочных данных, батчи большего размера, дольше учили
- Убрали задачу NSP решили, что она бесполезная
- Seqlen grunnee
- Токены маскируем динамически (в стандартном Берте один раз замаскировали и учили)
- Статья

	BERT	RoBERTa	DistilBERT	XLNet
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base: ~110 Large: ~340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base: 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degradation from BERT	2-15% improvement over BERT
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base: 16 GB BERT data Large: 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.
Method	BERT (Bidirectional Transformer with MLM and NSP)	BERT without NSP**	BERT Distillation	Bidirectional Transformer with Permutation based modeling

Albert

- Вместо 12 слоев стандартного Берта один слой, но применяется 12 раз
- То есть, у наших слоев общие параметры
- Следовательно, параметров меньше в разы
- По качеству чуть лучше Роберты
- Добавили задачу Sentence Order Prediction

DistilBERT

- Учимся предсказывать не на сырых текстах, а на предсказаниях исходного большого Берта
- Качество сопоставимое: скорость гораздо быстрее
- Выучивать предсказания проще, потому что большой Берт за нас уже сырые данные обработал
- Статья

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo BERT-base DistilBERT	68.7 79.5 77.0	44.1 56.3 51.3	68.6 86.7 82.2	76.6 88.6 87.5		86.2 89.6 88.5	69.3		70.4 89.0 86.9	56.3 53.5 56.3

T5 (Text-to-Text Transfer Transformer)

- Основная задача Text to Text (на входе получаем текст генерируем другой текст)
- Внутри обычный трансформер
- Использует relative potisional encodings (позиция токена вычисляется не абсолютно, а при помощи кеу-query значений
- Обучались на Colossal Clean Common Crawl не просто взяли сырые тексты, а немного их почистили
- (огромная) статья

Оценка языковых моделей

- Бенчмарк набор задач и данных для них, по результатам решения которых можно оценить качество модели
- Для английского языка: <u>SuperGLUE</u>

Name	Identifier	Download	More Info	Metric	
Broadcoverage Diagnostics	AX-b	<u>*</u>	₫"	Matthew's Corr	
CommitmentBank	СВ	₹.		Avg. F1 / Accuracy	
Choice of Plausible Alternatives	COPA	₹.		Accuracy	
Multi-Sentence Reading Comprehension	MultiRC	₹.	Z	F1a / EM	
Recognizing Textual Entailment	RTE	₹.		Accuracy	
Words in Context	WiC	₹.		Accuracy	
The Winograd Schema Challenge	WSC	₹.		Accuracy	
BoolQ	BoolQ	₹.	Z'	Accuracy	
Reading Comprehension with Commonsense Reasoning	ReCoRD	₹.		F1 / Accuracy	
Winogender Schema Diagnostics	AX-g	<u></u>	Z	Gender Parity / Accuracy	

Оценка языковых моделей

• Для русского языка: Russian SuperGLUE

Name	Task type	Identifier	Download	Info	Metrics	Train/Val/Test size
Linguistic Diagnostic for Russian	NLI & diagnostics	LiDiRus	<u>*</u>	More	Matthews Corr	0/0/1104
Russian Commitment Bank	NLI	RCB	<u>±</u>	More	Avg. F1 / Accuracy	438/220/438
Choice of Plausible Alternatives for Russian language	Common Sense	PARus	Ŧ	More	Accuracy	400/100/500
Russian Multi-Sentence Reading Comprehension	Machine Reading	MuSeRC	<u>*</u>	More	F1a / EM	500/100/322
Textual Entailment Recognition for Russian	NLI	TERRa	<u>*</u>	More	Accuracy	2616/307/3198
Russian Words in Context (based on RUSSE)	Common Sense	RUSSE	<u></u>	More	Accuracy	19845/8508/18892
The Winograd Schema Challenge (Russian)	Reasoning	RWSD	<u>*</u>	More	Accuracy	606/204/154
Yes/no Question Answering Dataset for the Russian	World Knowledge	DaNetQA	<u>*</u>	More	Accuracy	1749/821/805
Russian Reading Comprehension with Commonsense Reasoning	Machine Reading	RuCoS	Ŧ	More	F1 / EM	72193/7577/7257