Shear Banding in drying colloidal films studied with µ-SAXS

Bin Yang, Nathan D. Smith, Andreas Johannes, Manfred Burghammer, Mike I. Smith

E-mail: mike.i.smith@nottingham.ac.uk Web: www.nottingham.ac.uk/~ppzmis

Relating Plastic Deformation to microstructure

Plastic deformations do not always occur uniformly

Shear may become localised into thin bands of material

How is this related to sample microstructure?

[Katz et al **2006**]

[Wang et al **2015**]

[Hudleston et al 2015]

Shear bands in a colloidal film

"Shear banding in drying films of colloidal nanoparticles" B.Yang, J.S. Sharp, M.I. Smith, ACS Nano (2015)

Drying in colloidal films

Xray experimental details

ID13 beamline at European Synchotron Research Facility

1µm spot size < feature size

Dynamic measurement of changing microstructure

Transition region shows curves of correlated intensity

Inhomogeneities in scattering patterns follow these trajectories

μ-SAXS can track small groups of particles as they undergo compaction in the film

Plastic deformations with amorphous microstructure

30wt% Ludox in water

Drying Front Velocity 0.24 µms⁻¹

Faster moving front →
Amorphous microstructure

Scattering patterns become elliptical as film forms

Measuring Strain in the drying film

$$arepsilon = rac{2}{3} \left(rac{q_{major}}{q_{minor}} - 1
ight)$$

Strain in a Shear Banded Film

Density Fluctuations near Shear Bands

Density variations can be calculated via 2 independent methods:

- Total scattered intensity sensitive to φ and scattering contrast
- Estimated from volume of scattering ellipse

Shear bands exhibit reduction in density ~ 2%

Relating strain and density

- Strain direction changes rapidly near shear band resulting in shear of material
- Strongest shear correlates with a reduced density

Conclusions

Crystalline Samples:

- Observed sudden ordering transition followed by gradual deformation and compaction
- Individual collections of particles can be tracked as they deform

Amorphous Samples:

- Display strong shear localisation of the strain
- Particle Density fluctuates by ~ 2% due to shear banding

Acknowledgements

Nathan Smith

Dr Andreas Johannes

Dr Manfred Burghammer

UNITED KINGDOM · CHINA · MALAYSIA

