```
Minclude <string.h>
Fdefine MAXPAROLA 30
#define MAXRIGA 80
   int treq[MAXPAROLA]; /* vettore di contatoti
delle frequenze delle lunghazze delle picrole
   char riga[MAXRIGA] ;
lint i, inizio, lunghezza ;
```

Graph

Applications of Graph-Search Algorithms

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Reverse graph

- ❖ Given a directed graph G =(V, E)
 - > Its reverse (or transpose) graph
 - $G^T = (V, E^T)$

is such that

• If $(u, v) \in E$ then $(v, u) \in E^T$

Example

	A	В	C	D	Ε
A	0	1	0	0	0
В	0	0	1	1	0
C	0	0	1	0	0
D	0	0	0	0	1
Ε	1	1	0	0	0

	A	В	C	D	E
A	0	0	0	0	1
В	1	0	0	0	1
C	0	1	1	0	0
D	0	1	0	0	0
Ε	0	0	0	1	0


```
graph t *graph transpose (graph t *g) {
  graph t *h;
  int i, j;
  h = (graph t *) util calloc (1, sizeof (graph t));
  h \rightarrow nv = q \rightarrow nv;
  h->g = (vertex t *) util calloc (g->nv, sizeof(vertex t));
  for (i=0; i<h->nv; i++) {
    h\rightarrow q[i] = q\rightarrow q[i];
    h->g[i].rowAdj = (int *) util calloc (h->nv, sizeof(int));
    for (j=0; j<h->nv; j++) {
      h \rightarrow g[i].rowAdj[j] = g \rightarrow g[j].rowAdj[i];
                                                   Transpose
  return h;
                                                   the matrix
```

Implementation (with adjacency list)

```
graph t *graph transpose (graph t *g) {
  graph t *h = NULL;
 vertex t *tmp;
  edge t *e;
  int i;
  h = (graph t *) util calloc (1, sizeof(graph t));
  h \rightarrow nv = q \rightarrow nv;
  for (i=h->nv-1; i>=0; i--)
   h->q = new node (h->q, i);
  tmp = q->q;
  while (tmp != NULL) {
    e = tmp->head;
    while (e != NULL) {
      new edge (h, e->dst->id, tmp->id, e->weight);
      e = e - next;
    tmp = tmp->next;
                                              Insert a new
                                                 edge
  return h;
}
```

Loop detection

- ❖ Given a graph G =(V, E)
 - ➤ The graph is acyclic **if and only if** in a DFS there are no edges labelled **backward** (B)

Example

Connection in undirected graphs

- An undirected graph is said to be connected iff
 - $ightharpoonup \forall v_i, v_j \in V$ there exists a path p such that $v_i \rightarrow_p v_j$
- In an undirected graph
 - Connected component
 - Maximal connected subgraph, that is, there is no superset including it which is connected
 - Connected undirected graph
 - Only one connected component

Connected components

- In an undirected graph
 - Each tree of the DFS forest is a connected component
 - Connected component can be represented as an array that stores an integer identifying each connected component
 - Node identifiers serve as indexes of the array

Example

Connected Component Ids

A B C D E F G H I J K L M

Solution

Bridges

- Given an undirected and connected graph, find out whether the property of being connected is lost because
 - An edge is removed
- Bridge
 - Edge whose removal disconnects the graph

Example

Bridges ———

Bridges

- An edge (v,w)
 - ➤ Labelled Back (B) cannot be a bridge
 - Nodes v and w are also connected by a path in the DFS tree
 - ➤ Labelled Tree (T) is a bridge if and only if there are no edges labelled Back that connect a descendant of w to an ancestor of v in the DFS tree

Example

Articulation points

- Given an undirected and connected graph, find out whether the property of being connected is lost because
 - A node is removed
- Articulation point
 - Node whose removal disconnects the graph
 - Removing the vertex entails the removal of insisting (incoming and outgoing) edges as well

Example

Articulation points

Articulation points

- ❖ Given an undirected graph G, given the DFS tree G_D
 - ➤ The root of G_p is an articulation point if and only if it has at least two children
 - > Leaves cannot be articulation points
 - Any internal node v is an articulation point of G if and only if v has at least one child s such that there is no edge labelled B from s or from one of its descendants to a proper ancestor of v

Example

Same example different ids and order in the DFS visit

Example

Directed Acyclic Graph (DAG)

Topological sort (reverse)

Reordering the nodes according to a horizontal line, so that if the (u, v) edge exists, node u appears to the left (right) of node v and all edges go from left (right) to right (left)

Algorithm

- Perform a DFS computing end-processing times
- Order vertices with **descending** end-processing times

Alternative algorithm

Perform a DFS and when assigning end-processing times insert the vertex into a LIFO list

Example

Solution

Topological Sort

Topological sort

With a DAG represented by an adjacency matrix, it is enough to invert references to rows and columns

Reverse topological sort


```
void graph dag (graph t *g) {
  int i, *post, loop=0, timer=0;
 post = (int *)util malloc(g->nv*sizeof(int));
  for (i=0; i<q->nv; i++) {
    if (q->q[i].color == WHITE) {
      timer = graph dag r (g, i, post, timer, &loop);
  if (loop != 0) {
    fprintf (stdout, "Loop detected!\n");
  } else {
    fprintf (stdout, "Topological sort (direct):");
    for (i=g->nv-1; i>=0; i--) {
      fprintf(stdout, " %d", post[i]);
    fprintf (stdout, "\n");
  free (post);
```

```
int graph dag r(graph t *g, int i, int *post, int t,
    int *loop) {
 int j;
 g->g[i].color = GREY;
 for (j=0; j<g->nv; j++) {
    if (g->g[i].rowAdj[j] != 0) {
      if (g->g[j].color == GREY) {
        *loop = 1;
      if (q->q[j].color == WHITE) {
        t = graph_dag_r(g, j, post, t, loop);
 g->g[i].color = BLACK;
 post[t++] = i;
 return t;
```

Connection in directed graphs

- A directed graph is said to be strongly connected iff
 - $\forall v_i, v_j \in V$ there exists two paths p, p' such that $v_i \rightarrow_p v_j$ and $v_j \rightarrow_{p'} v_i$
- In a directed graph
 - > Strongly connected component
 - Maximal strongly connected subgraph
 - Strongly connected directed graph
 - Only one strongly connected component

Strongly Connected Component (SCC)

- Kosaraju's algorithm ('80s)
 - > Reverse the graph
 - Execute DFS on the reverse graph, computing discovery and end-processing times
 - Execute DFS on the original graph according to decresasing end-processing times
 - ➤ The trees of this last DFS are the strongly connected components

Example

Solution

Solution

Considerations

- SCCs are equivalence classes with respect to the mutual reachability property
- We can "extract" a reduced graph G' considering 1 node as representing each equivalence class
- The reduced graph G' is a DAG

Client (code extract)

```
g = graph_load (argv[1]);
sccs = graph scc (g);
fprintf (stdout, "Number of SCCs: %d\n", sccs);
for (j=0; j<sccs; j++) {
  fprintf (stdout, "SCC%d:", j);
  for (i=0; i<g->nv; i++) {
    if (g->g[i].scc == j) {
      fprintf (stdout, " %d", i);
  fprintf (stdout, "\n");
graph dispose (g);
```

```
int graph scc (graph t *g) {
 graph t *h;
 int i, id=0, timer=0;
 int *post, *tmp;
 h = graph transpose (g);
 post = (int *) util malloc (g->nv*sizeof(int));
 for (i=0; i<g->nv; i++) {
    if (h->g[i].color == WHITE) {
      timer = graph scc r (h, i, post, id, timer);
 graph dispose (h);
```

```
id = timer = 0;
tmp = (int *) util malloc (g->nv * sizeof(int));
for (i=g->nv-1; i>=0; i--) {
  if (g->g[post[i]].color == WHITE) {
    timer=graph_scc_r(g, post[i], tmp, id, timer);
    id++;
free (post);
free (tmp);
return id;
```

```
int graph scc r(
 graph t *g, int i, int *post, int id, int t
 int j;
 g->g[i].color = GREY;
 g->g[i].scc = id;
  for (j=0; j<g->nv; j++) {
    if (g->g[i].rowAdj[j]!=0 &&
        g->g[j].color==WHITE) {
      t = graph scc r (g, j, post, id, t);
 g->g[i].color = BLACK;
 post[t++] = i;
  return t;
```

Exercise

Given the previous DAG find the topological order of all vertices

Solution

Exercise

Given the previous DAG find the topological order of all vertices

Solution

Exercise

Given the previous graph, find its SCC

Solution

- SCCs
 - > {I}, {H}, {G}, {A, B, C, D, E, F, J}

Exercise

Given the previous graph find articulation points

Solution

- Articulation points
 - G and K

Exercise

Given the previous graph, transform it into an undirected graph and find articulation points, bridges, and connected components

Solution

- Articulation points
 - None
- Bridges
 - None
- Connected Components
 - > One with all vertices, {A, B, C, D, E, F, G, H, I, J}