Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equivalently, whether its negation is a tautology (see Exercise 60). This can be done by hand for a compound proposition with a small number of variables, but when the number of variables grows, this becomes impractical. For instance, there are $2^{20} = 1,048,576$ rows in the truth table for a compound proposition with 20 variables. Clearly, you need a computer to help you determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound propositions with hundreds, thousands, or millions of variables arise. Note, for example, that when there are 1000 variables, checking every one of the 2¹⁰⁰⁰ (a number with more than 300 decimal digits) possible combinations of truth values of the variables in a compound proposition cannot be done by a computer in even trillions of years. No procedure is known that a computer can follow to determine in a reasonable amount of time whether an arbitrary compound proposition in such a large number of variables is satisfiable. However, progress has been made developing methods for solving the satisfiability problem for the particular types of compound propositions that arise in practical applications, such as for the solution of Sudoku puzzles. Many computer programs have been developed for solving satisfiability problems which have practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this question further. In particular, we will explain the important role the propositional satisfiability problem plays in the study of the complexity of algorithms.

Exercises

- 1. Use truth tables to verify these equivalences.
 - a) $p \wedge \mathbf{T} \equiv p$
- **b**) $p \vee \mathbf{F} \equiv p$
- c) $p \wedge \mathbf{F} \equiv \mathbf{F}$
- d) $p \vee T \equiv T$
- e) $p \vee p \equiv p$
- $\mathbf{f)} \ p \wedge p \equiv p$
- **2.** Show that $\neg(\neg p)$ and p are logically equivalent.
- **3.** Use truth tables to verify the commutative laws
 - a) $p \lor q \equiv q \lor p$.
- **b**) $p \wedge q \equiv q \wedge p$.
- **4.** Use truth tables to verify the associative laws
 - a) $(p \lor q) \lor r \equiv p \lor (q \lor r)$.

- **b)** $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$.
- **5.** Use a truth table to verify the distributive law $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$.
- **6.** Use a truth table to verify the first De Morgan law $\neg (p \land q) \equiv \neg p \lor \neg q$.
- 7. Use De Morgan's laws to find the negation of each of the following statements.
 - a) Jan is rich and happy.
 - **b**) Carlos will bicycle or run tomorrow.

Links

HENRY MAURICE SHEFFER (1883–1964) Henry Maurice Sheffer, born to Jewish parents in the western Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin School before entering Harvard, where he completed his undergraduate degree in 1905, his master's in 1907, and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He remained at Harvard until his retirement in 1952.

Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use in the 1925 edition of Whitehead and Russell's *Principia Mathematica*. In this same edition Russell wrote that Sheffer had invented a powerful method that could be used to simplify the *Principia*. Because of this comment, Sheffer was something of a mystery man to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he was quite lonely. He is noted for a quip he spoke at his retirement: "Old professors never die, they just become emeriti." Sheffer is also credited with coining the term "Boolean algebra" (the subject of Chapter 12 of this text). Sheffer was briefly married and lived most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.

- c) Mei walks or takes the bus to class.
- d) Ibrahim is smart and hard working.
- 8. Use De Morgan's laws to find the negation of each of the following statements.
 - a) Kwame will take a job in industry or go to graduate
 - Yoshiko knows Java and calculus.
 - c) James is young and strong.
 - **d)** Rita will move to Oregon or Washington.
- 9. Show that each of these conditional statements is a tautology by using truth tables.
 - **a)** $(p \land q) \rightarrow p$
- **b**) $p \rightarrow (p \lor q)$
- c) $\neg p \rightarrow (p \rightarrow q)$
- **d**) $(p \wedge q) \rightarrow (p \rightarrow q)$
- e) $\neg (p \rightarrow q) \rightarrow p$
- \mathbf{f}) $\neg (p \rightarrow q) \rightarrow \neg q$
- 10. Show that each of these conditional statements is a tautology by using truth tables.

 - $\begin{array}{ll} \mathbf{a}) & [\neg p \wedge (p \vee q)] \rightarrow q \\ \mathbf{b}) & [(p \rightarrow q) \wedge (q \rightarrow r)] \rightarrow (p \rightarrow r) \end{array}$
 - c) $[p \land (p \rightarrow q)] \rightarrow q$
 - **d**) $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$
 - 11. Show that each conditional statement in Exercise 9 is a tautology without using truth tables.
 - 12. Show that each conditional statement in Exercise 10 is a tautology without using truth tables.
 - **13.** Use truth tables to verify the absorption laws.
 - a) $p \lor (p \land q) \equiv p$
- **b)** $p \wedge (p \vee q) \equiv p$
- **14.** Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautol-
- **15.** Determine whether $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautol-

Each of Exercises 16-28 asks you to show that two compound propositions are logically equivalent. To do this, either show that both sides are true, or that both sides are false, for exactly the same combinations of truth values of the propositional variables in these expressions (whichever is easier).

- **16.** Show that $p \leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$ are logically equivalent.
- 17. Show that $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equiva-
- **18.** Show that $p \to q$ and $\neg q \to \neg p$ are logically equivalent.
- **19.** Show that $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$ are logically equivalent.
- **20.** Show that $\neg(p \oplus q)$ and $p \leftrightarrow q$ are logically equivalent.
- **21.** Show that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are logically equiva-
- **22.** Show that $(p \to q) \land (p \to r)$ and $p \to (q \land r)$ are logically equivalent.
- **23.** Show that $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.
- **24.** Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.
- **25.** Show that $(p \to r) \lor (q \to r)$ and $(p \land q) \to r$ are logically equivalent.
- **26.** Show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent.
- **27.** Show that $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$ are logically equivalent.
- **28.** Show that $p \leftrightarrow q$ and $\neg p \leftrightarrow \neg q$ are logically equivalent.

- **29.** Show that $(p \to q) \land (q \to r) \to (p \to r)$ is a tautol-
- **30.** Show that $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology.
 - **31.** Show that $(p \to q) \to r$ and $p \to (q \to r)$ are not logically equivalent.
 - **32.** Show that $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$ are not logically equivalent.
 - **33.** Show that $(p \to q) \to (r \to s)$ and $(p \to r) \to s$ $(q \rightarrow s)$ are not logically equivalent.

The **dual** of a compound proposition that contains only the logical operators \vee , \wedge , and \neg is the compound proposition obtained by replacing each \vee by \wedge , each \wedge by \vee , each T by \mathbf{F} , and each \mathbf{F} by \mathbf{T} . The dual of s is denoted by s^* .

- **34.** Find the dual of each of these compound propositions.
 - a) $p \vee \neg q$
- **b)** $p \wedge (q \vee (r \wedge \mathbf{T}))$
- c) $(p \wedge \neg q) \vee (q \wedge \mathbf{F})$
- **35.** Find the dual of each of these compound propositions.
 - a) $p \wedge \neg q \wedge \neg r$
- **b)** $(p \wedge q \wedge r) \vee s$
- c) $(p \vee \mathbf{F}) \wedge (q \vee \mathbf{T})$
- **36.** When does $s^* = s$, where s is a compound proposition?
- **37.** Show that $(s^*)^* = s$ when s is a compound proposition.
- **38.** Show that the logical equivalences in Table 6, except for the double negation law, come in pairs, where each pair contains compound propositions that are duals of each other.
- **39. Why are the duals of two equivalent compound propositions also equivalent, where these compound propositions contain only the operators \land , \lor , and \neg ?
 - **40.** Find a compound proposition involving the propositional variables p, q, and r that is true when p and q are true and r is false, but is false otherwise. [Hint: Use a conjunction of each propositional variable or its negation.]
 - **41.** Find a compound proposition involving the propositional variables p, q, and r that is true when exactly two of p, q, and r are true and is false otherwise. [Hint: Form a disjunction of conjunctions. Include a conjunction for each combination of values for which the compound proposition is true. Each conjunction should include each of the three propositional variables or its negations.]
- 42. Suppose that a truth table in n propositional variables is specified. Show that a compound proposition with this truth table can be formed by taking the disjunction of conjunctions of the variables or their negations, with one conjunction included for each combination of values for which the compound proposition is true. The resulting compound proposition is said to be in disjunctive normal form.

A collection of logical operators is called functionally com**plete** if every compound proposition is logically equivalent to a compound proposition involving only these logical opera-

43. Show that \neg , \wedge , and \vee form a functionally complete collection of logical operators. [Hint: Use the fact that every compound proposition is logically equivalent to one in disjunctive normal form, as shown in Exercise 42.]

- *44. Show that \neg and \wedge form a functionally complete collection of logical operators. [*Hint*: First use a De Morgan law to show that $p \lor q$ is logically equivalent to $\neg(\neg p \land \neg q)$.]
- *45. Show that ¬ and ∨ form a functionally complete collection of logical operators.

The following exercises involve the logical operators NAND and NOR. The proposition p NAND q is true when either p or q, or both, are false; and it is false when both p and q are true. The proposition p NOR q is true when both p and q are false, and it is false otherwise. The propositions p NAND q and p NOR q are denoted by $p \mid q$ and $p \downarrow q$, respectively. (The operators \mid and \downarrow are called the **Sheffer stroke** and the **Peirce arrow** after H. M. Sheffer and C. S. Peirce, respectively.)

- **46.** Construct a truth table for the logical operator *NAND*.
- **47.** Show that $p \mid q$ is logically equivalent to $\neg (p \land q)$.
- **48.** Construct a truth table for the logical operator *NOR*.
- **49.** Show that $p \downarrow q$ is logically equivalent to $\neg (p \lor q)$.
- **50.** In this exercise we will show that $\{\downarrow\}$ is a functionally complete collection of logical operators.
 - a) Show that $p \downarrow p$ is logically equivalent to $\neg p$.
 - b) Show that $(p \downarrow q) \downarrow (p \downarrow q)$ is logically equivalent to $p \lor q$.
 - c) Conclude from parts (a) and (b), and Exercise 49, that {\psi} is a functionally complete collection of logical operators.
- *51. Find a compound proposition logically equivalent to $p \to q$ using only the logical operator \downarrow .
- **52.** Show that {|} is a functionally complete collection of logical operators.
- **53.** Show that $p \mid q$ and $q \mid p$ are equivalent.
- **54.** Show that $p \mid (q \mid r)$ and $(p \mid q) \mid r$ are not equivalent, so that the logical operator \mid is not associative.
- *55. How many different truth tables of compound propositions are there that involve the propositional variables *p* and *q*?
- **56.** Show that if p, q, and r are compound propositions such that p and q are logically equivalent and q and r are logically equivalent, then p and r are logically equivalent.
- **57.** The following sentence is taken from the specification of a telephone system: "If the directory database is opened, then the monitor is put in a closed state, if the system is not in its initial state." This specification is hard to under-

- stand because it involves two conditional statements. Find an equivalent, easier-to-understand specification that involves disjunctions and negations but not conditional statements.
- **58.** How many of the disjunctions $p \lor \neg q$, $\neg p \lor q$, $q \lor r$, $q \lor \neg r$, and $\neg q \lor \neg r$ can be made simultaneously true by an assignment of truth values to p, q, and r?
- **59.** How many of the disjunctions $p \lor \neg q \lor s$, $\neg p \lor \neg r \lor s$, $\neg p \lor \neg r \lor \neg s$, $\neg p \lor q \lor \neg s$, $q \lor r \lor \neg s$, $q \lor \neg r \lor \neg s$, $\neg p \lor \neg q \lor \neg s$, $p \lor r \lor s$, and $p \lor r \lor \neg s$ can be made simultaneously true by an assignment of truth values to p, q, r, and s?
- **60.** Show that the negation of an unsatisfiable compound proposition is a tautology and the negation of a compound proposition that is a tautology is unsatisfiable.
- **61.** Determine whether each of these compound propositions is satisfiable.
 - **a)** $(p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$
 - **b)** $(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$
 - c) $(p \leftrightarrow q) \land (\neg p \leftrightarrow q)$
- **62.** Determine whether each of these compound propositions is satisfiable.
 - a) $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor q \lor \neg s)$
 - **b**) $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg s) \land (\neg p \lor \neg r \lor \neg s) \land (p \lor q \lor \neg r) \land (p \lor \neg r \lor \neg s)$
 - c) $(p \lor q \lor r) \land (p \lor \neg q \lor \neg s) \land (q \lor \neg r \lor s) \land (\neg p \lor r \lor s) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor s) \land (\neg p \lor \neg r \lor \neg s)$
- **63.** Show how the solution of a given 4×4 Sudoku puzzle can be found by solving a satisfiability problem.
- **64.** Construct a compound proposition that asserts that every cell of a 9×9 Sudoku puzzle contains at least one number.
- **65.** Explain the steps in the construction of the compound proposition given in the text that asserts that every column of a 9×9 Sudoku puzzle contains every number.
- *66. Explain the steps in the construction of the compound proposition given in the text that asserts that each of the nine 3×3 blocks of a 9×9 Sudoku puzzle contains every number.

1.4

Predicates and Quantifiers

Introduction

Propositional logic, studied in Sections 1.1–1.3, cannot adequately express the meaning of all statements in mathematics and in natural language. For example, suppose that we know that