# UNCLASSIFIED

# AD NUMBER AD815097 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAR 1967. Other requests shall be referred to Air Force Flight Dynamics Lab., Attn; FDTT, Wright-Patterson AFB, OH 45433. **AUTHORITY** WL/DOA ltr dtd 3 Feb 1994

## THERMOCOUPLE REFERENCE TABLES

EDWIN M. CANDLER, JR.

TECHNICAL REPORT AFFDL-TR-66-178

**MARCH 1967** 

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Air Force Flight Dynamics Laboratory (FDTT), Wright-Patterson Air Force Base, Ohio 45433.

AIR FORCE FLIGHT DYNAMICS LABORATORY RESEARCH AND TECHNOLOGY DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

#### NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

# THERMOCOUPLE REFERENCE TABLES

EDWIN M. CANDLER, JR.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Air Force Flight Dynamics Laboratory (FDTT), Wright-Patterson Air Force Base, Ohio 45433.

#### FOREWORD

This report was prepared in the Data Acquisition Group, Structures Test Branch, Structures Division, of the Air Force Flight Dynamics Laboratory.

The work was accomplished by Mr. Edwin M. Candler, Instrumentation Project Engineer, in compliance with test support requirements for Project No. 1368, "Structural Design Concepts," Task No. 136804, "Re-Entry and Hyperthermantic Structures."

This technical report has been reviewed and is approved.

ROBERT L. CAVANAGH

Chief, Structures Test Branch

Structures Division

Air Force Flight Dynamics Laboratory

#### ABSTRACT

This report consists of thermocouple reference tables covering the temperature range from -320°F to +4200°F. The tabular data are based upon a reference junction temperature of 150°F.

These tables reflect the temperature-EMF relationship for the following thermoelectric combinations: copper vs. constantan, iron vs. constantan, chromel vs. constantan, geminol-P vs. geminol-N, chromel vs. alumel, tungsten vs. tungsten 26% rhenium, tungsten 5% rhenium vs. tungsten 26% rhenium, platinum vs. platinum 10% rhodium, platinum vs. platinum 13% rhodium, platinum 6% rhodium vs. platinum 30% rhodium, iridium vs. tungsten, and iridium vs. iridium 40% rhodium.

The tables presented herein were prepared as a result of instrumentation requirements in support of Project 1368, Task 136804, "Re-Entry and Hyperthermantic Structures."

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made <u>only</u> with prior approval of AF Flight Dynamics Laboratory (FDTT), WPAFB, Ohio 45433.

## LIST OF SYMBOLS

|     | rmoelectric<br>ombination                          | Abbreviation | Symbol Calibration |
|-----|----------------------------------------------------|--------------|--------------------|
| 1.  | Copper vs. Constantan                              | Cu/Const.    | T V                |
| 2.  | Iron vs. Constantan                                | Fe/Const.    | J V                |
| 3.  | Chromel vs. Constantan                             | Ch/Const.    | EVV                |
| 4.  | Geminol-P vs. Geminol-N*                           | Geminol P&N  | P                  |
| 5.  | Chromel vs. Alumel*                                | Ch/Al        | ĸ ✓                |
| 6.  | Tungsten vs Tungsten 26% Rhenium                   | W/W26Re      | В                  |
| 7.  | Tungsten $5\%$ Rhenium vs. Tungsten $26\%$ Rhenium | W5Re/W26Re   | С                  |
| 8.  | Platinum vs. Platinum 10%<br>Rhodium               | Pt/Pt10Rh    | s V                |
| 9.  | Platinum vs. Platinum 13%<br>Rhodium               | Pt/Pt13Rh    | R                  |
| 10. | Platinum 6% Rhodium vs.<br>Platinum 30% Rhodium    | Pt6Rh/Pt30Rh | x                  |
| 11. | Iridium vs. Tungsten                               | Ir/W         | F                  |
| 12. | Iridium vs. Iridium 40% Rhodium                    | Ir/Ir40Rh    | L ✓                |

<sup>\*</sup>Tradenames

#### INTRODUCTION

The tables presented herein have been compiled to make available, in composite and convenient form, data necessary to convert measured electromotive force (EMF) of thermocouples into equivalent temperatures.

These tables cover the temperature range from -320°F through +4200°F for the following thermoelectric combinations: copper vs. constantan, iron vs. constantan, chromel vs. constantan, geminol-P vs. geminol-N, chromel vs. alumel, tungsten vs. tungsten 26% rhenium, tungsten 5% rhenium vs. tungsten 26% rhenium, platinum vs. platinum 10% rhodium, platinum vs. platinum 13% rhodium, platinum vs. platinum 30% rhodium, iridium vs. tungsten, and iridium vs. iridium 40% rhodium. The data presented for each of these combinations is based upon a reference junction temperature of 150°F.

The compilation of this report was directly resultant of (1) the AFFDL Structures Test Facility's use of 150°F temperature controlled reference junctions rather than 32°F reference junctions, and (2) test instrumentation requirements in support of Task No. 136804 which necessitated the use of thermoelectric combinations not yet calibrated by the National Bureau of Standards (NBS).

The combination of primary interest was iridium vs. iridium 40% rhodium. Because very little information between 75°F and 1800°F was found to be available relative to the EMF-Temperature relationship of this type thermocouple, an experimental comparative analysis was conducted by the writer to enable satisfaction of measurement requirements. Before the completion of the test program, however, NBS presented tabular data, based upon a 32°F reference junction temperature, which verified this writer's experimental data. The NBS data, which was more definitive and extensive, was used to define the relationship of EMF to temperature.

All tabular data presented, with the exception of data relative to the iridium vs. iridium 40% rhodium combination, are derived from "CON-O-CHART No. 1," Continental Sensing, Inc., revised October 1963. The iridium-rhodium data was derived from "Reference Tables for Thermocouples of Iridium-Rhodium Alloys vs. Iridium," Journal of Research, NBS, Vol. 68C, No. 1, January-March 1964.

The calibration codings used in this report are those of CON-O-CHART. These agree with Instrument Society of America (ISA) calibration symbols with the exception of chromel vs. constantan and those combinations not yet calibration coded by ISA.



Figure 1. Thermocouple Temperature Vs. Millivolt Curves

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|      | -320°F to 10°F |                 |                 |                    |  |  |  |  |  |
|------|----------------|-----------------|-----------------|--------------------|--|--|--|--|--|
| °F   | T Cu/          | E Ch/<br>Const. | J Fe/<br>Const. | K <sub>Ch/A1</sub> |  |  |  |  |  |
| -320 |                | -12.64          |                 | -8.36              |  |  |  |  |  |
| -310 | -8.090         | -12.49          | -11.07          | -8.26              |  |  |  |  |  |
| -300 | -7.995         | -12.34          | -10.93          | -8.17              |  |  |  |  |  |
| -290 | -7.896         | -12.18          | -10.79          | -8.07              |  |  |  |  |  |
| -280 | -7.792         | -12.01          | -10.63          | -7.96              |  |  |  |  |  |
| -270 | -7.685         | -11.84          | -10.47          | -7.86              |  |  |  |  |  |
| -260 | -7.574         | -11.66          | -10.30          | -7.74              |  |  |  |  |  |
| -250 | -7.458         | -11.48          | -10.12          | -7.62              |  |  |  |  |  |
| -240 | -7.338         | -11.28          | -9.94           | -7.50              |  |  |  |  |  |
| -230 | -7.215         | -11.08          | -9.76           | -7.37              |  |  |  |  |  |
| -220 | -7.088         | -10.87          | -9.57           | -7.24              |  |  |  |  |  |
| -210 | -6.957         | -10.66          | -9.37           | -7.10              |  |  |  |  |  |
| -200 | -6.822         | -10.44          | -9.17           | -6.95              |  |  |  |  |  |
| -190 | -6.683         | -10.22          | -8.96           | -6.81              |  |  |  |  |  |
| -180 | -6.540         | -9.99           | -8.75           | -6.66              |  |  |  |  |  |
| -170 | -6.395         | -9.76           | -8.53           | -6.50              |  |  |  |  |  |
| -160 | -6.244         | -9.52           | -8.31           | -6.35              |  |  |  |  |  |
| -150 | -6.091         | -9.27           | -8.09           | -6.18              |  |  |  |  |  |
| -140 | -5.934         | -9.02           | -7.85           | -6.02              |  |  |  |  |  |
| -130 | -5.773         | -8.77           | -7.62           | -5.85              |  |  |  |  |  |
| -120 | -5.608         | -8.51           | -7.38           | -5.67              |  |  |  |  |  |
| -110 | -5.441         | -8.25           | -7.14           | -5.49              |  |  |  |  |  |
| -100 | -5.270         | -7.98           | -6.90           | -5.31              |  |  |  |  |  |
| -90  | -5.096         | -7.71           | -6.65           | -5.13              |  |  |  |  |  |
| -80  | -4.918         | -7.43           | -6.40           | -4.94              |  |  |  |  |  |
| -70  | -4.737         | -7.15           | -6.15           | -4.75              |  |  |  |  |  |
| -60  | -4.553         | -6.87           | -5.89           | -4.56              |  |  |  |  |  |
| -50  | -4.365         | -6.58           | -5.63           | -4.36              |  |  |  |  |  |
| -40  | -4.174         | -6.28           | -5.37           | -4.16              |  |  |  |  |  |
| -30  | -3.981         | -5.98           | -5.11           | -3.96              |  |  |  |  |  |
| -20  | -3.783         | -5.68           | -4.84           | -3.76              |  |  |  |  |  |
| -10  | -3.583         | -5.37           | -4.57           | -3.55              |  |  |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

| -   | MIL/ULT | 5             | 0°F to 300°F    | 77                 |               |                   |
|-----|---------|---------------|-----------------|--------------------|---------------|-------------------|
| °F  | T Cu/♥  | Ch/<br>Const. | J Fe/<br>Const. | K <sub>Ch/A1</sub> | P Geminol P&N | B W/<br>W26RE     |
| 0   | -3.381  | -5.060        | -4.300          | -3.340             |               |                   |
| 10  | -3.174  | -4.750        | -4.020          | -3.130             | -1.870        |                   |
| 20  | -2.965  | -4.430        | -3.750          | -2.920             | -1.740        |                   |
| 30  | -2.753  | -4.110        | -3.470          | -2.700             |               |                   |
| 40  | -2.540  | -3.780        | -3.190          | -2.480             | -1.480        | -0.182            |
| 50  | -2.322  | -3.450        | -2.910          | -2.260             | -1.340        |                   |
| 60  | -2.102  | -3.120        | -2.620          | -2.040             | -1.210        | -0.152            |
| 70  | -1.879  | -2.780        | -2.340          | -1.820             | -1.080        |                   |
| 80  | -1.654  | -2.450        | -2.050          | -1.600             | -0.950        | -0.122            |
| 90  | -1.425  | -2.310        | -1.760          | -1.370             | -0.810        |                   |
| 100 | -1.194  | -1.770        | -1.470          | -1.140             | -0.680        | -0.091            |
| 110 | -0.960  | -1.420        | -1.180          | -0.920             | -0.540        |                   |
| 120 | -0.724  | -1.070        | -0.890          | -0.690             | -0.410        | -0.058            |
| 130 | -0.485  | -0.720        | -0.590          | -0.460             | -0.270        |                   |
| 140 | -0.244  | -0.360        | -0.300          | -0.230             | -0.140        | -0.021            |
| 150 | 0.000   | 0.000         | 0.000           | 0.000              | 0.000         | 0.000             |
| 160 | 0.247   | 0.360         | 0.300           | 0.230              | 0.140         | 0.021             |
| 170 | 0.496   | 0.730         | 0.600           | 0.460              | 0.270         |                   |
| 180 | 0.747   | 1.090         | 0.900           | 0.700              | 0.410         | 0.070             |
| 190 | 1.001   | 1.460         | 1.200           | 0.900              | 0.540         |                   |
| 200 | 1.256   | 1.830         | 1.500           | 1.160              | 0.680         | 0.126             |
| 210 | 1.514   | 2.210         | 1.800           | 1.390              | 0.820         |                   |
| 220 | 1.775   | 2.580         | 2.100           | 1.620              | 0.960         | 0.190             |
| 230 | 2.038   | 2.960         | 2.400           | 1.850              | 1.100         | 10000000          |
| 240 | 2.303   | 3.340         | 2.700           | 2.080              | 1.240         | 0.258             |
| 250 | 2.569   | 3.720         | 3.010           | 2.310              | 1.380         | in a mornal texts |
| 260 | 2.839   | 4.110         | 3.310           | 2.540              | 1.520         | 0.328             |
| 270 | 3.110   | 4.500         | 3.620           | 2.760              | 1.660         |                   |
| 280 | 3.383   | 4.890         | 3.920           | 2.990              | 1.800         | 0.403             |
| 290 | 3.659   | 5.280         | 4.230           | 3.210              | 1.940         |                   |
| 300 | 3.936   | 5.670         | 4.530           | 3.430              | 2.080         | 0.479             |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

(Reference Junction Temperature: 150°F)

|     |                  | 0°F t       | o 300°F     |                    |        |
|-----|------------------|-------------|-------------|--------------------|--------|
| °F  | C W5Re/<br>W26Re | R Pt/Pt13Rh | S Pt/Pt10Rh | X Pt6Rh/<br>Pt30Rh | L Ir/  |
| 0   |                  | -0.492      | -0.494      |                    | -0.279 |
| 10  |                  | -0.464      | -0.466      |                    | -0.265 |
| 20  |                  | -0.435      | -0.437      |                    | -0.250 |
| 30  |                  | -0.406      | -0.407      | -0.030             | -0.233 |
| 40  | -0.849           | -0.376      | -0.377      |                    | -0.216 |
| 50  |                  | -0.345      | -0.345      | -0.028             | -0.198 |
| 60  | -0.701           | -0.314      | -0.314      | -0.027             | -0.180 |
| 70  |                  | -0.281      | -0.281      | -0.025             | -0.162 |
| 80  | -0.550           | -0.248      | -0.248      | -0.023             | -0.143 |
| 90  |                  | -0.214      | -0.214      | -0.020             | -0.124 |
| 100 | -0.396           | -0.180      | -0.180      | -0.017             | -0.104 |
| 110 | 1000 100000000   | -0.145      | -0.145      | -0.014             | -0.084 |
| 120 | -0.239           | -0.109      | -0.110      | -0.011             | -0.063 |
| 130 | 2007 316400000   | -0.073      | -0.074      | -0.007             | -0.043 |
| 140 | -0.080           | -0.037      | -0.037      | -0.004             | -0.021 |
| 150 | 0.000            | 0.000       | 0.000       | 0.000              | 0.000  |
| 160 | 0.080            | 0.038       | 0.038       | 0.004              | 0.022  |
| 170 |                  | 0.076       | 0.076       | 0.008              | 0.044  |
| 180 | 0.241            | 0.176       | 0.175       | 0.012              | 0.067  |
| 190 |                  |             | 0.184       | 0.016              | 0.089  |
| 200 | 0.404            | 0.196       | 0.194       | 0.021              | 0.112  |
| 210 |                  | 0.237       | 0.234       | 0.025              | 0.136  |
| 220 | 0.569            | 0.278       | 0.275       | 0.030              | 0.160  |
| 230 |                  | 0.321       | 0.316       | 0.035              | 0.184  |
| 240 | 0.736            | 0.363       | 0.357       | 0.040              | 0.208  |
| 250 |                  | 0.407       | 0.399       | 0.045              | 0.233  |
| 260 | 0.905            | 0.450       | 0.442       | 0.050              | 0.258  |
| 270 | 1984 PASSAGE     | 0.494       | 0.485       | 0.055              | 0.283  |
| 280 | 1.076            | 0.539       | 0.518       | 0.060              | 0.308  |
| 290 | 500 00-4924      | 0.584       | 0.572       | 0.065              | 0.334  |
| 300 | 1.249            | 0.630       | 0.616       | 0.071              | 0.360  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|     | 300°F to 600°F |        |                 |         |               |              |  |  |
|-----|----------------|--------|-----------------|---------|---------------|--------------|--|--|
| °F  | T Cu/          | V Ch/  | J Fe/<br>Const. | K Ch/A1 | P Geminol P&N | B W/         |  |  |
| 300 | 3.936          | 5.670  | 4.530           | 3.430   | 2.080         | 0.479        |  |  |
| 310 | 4.215          | 6.070  | 4.840           | 3.650   | 2.220         |              |  |  |
| 320 | 4.497          | 6.470  | 5.150           | 3.870   | 2.350         | 0.556        |  |  |
| 330 | 4.780          | 6.870  | 5.460           | 4.100   | 2.500         |              |  |  |
| 340 | 5.065          | 7.270  | 5.760           | 4.320   | 2.640         | 0.634        |  |  |
| 350 | 5.353          | 7.670  | 6.070           | 4.540   | 2.790         |              |  |  |
| 360 | 5.641          | 8.070  | 6.380           | 4.750   | 2.930         | 0.712        |  |  |
| 370 | 5.931          | 8.480  | 6.690           | 4.980   | 3.070         |              |  |  |
| 380 | 6.224          | 8.890  | 7.010           | 5.210   | 3.210         | 0.791        |  |  |
| 390 | 6.518          | 9,300  | 7.310           | 5.430   | 3.350         |              |  |  |
| 400 | 6.814          | 9.710  | 7.620           | 5.650   | 3.490         | 0.870        |  |  |
| 410 | 7.112          | 10.130 | 7.930           | 5.880   | 3.640         |              |  |  |
| 420 | 7.412          | 10.550 | 8.240           | 6.100   | 3.790         | 0.954        |  |  |
| 430 | 7.712          | 10.960 | 8.550           | 6.320   | 3.940         |              |  |  |
| 440 | 8.015          | 11.380 | 8.850           | 6.550   | 4.090         | 1.052        |  |  |
| 450 | 8.319          | 11.800 | 9.160           | 6.770   | 4.240         |              |  |  |
| 460 | 8.625          | 12.220 | 9.470           | 7.000   | 4.390         | 1.155        |  |  |
| 470 | 8.932          | 12.640 | 9.780           | 7.220   | 4.540         |              |  |  |
| 480 | 9.242          | 13.060 | 10.090          | 7.450   | 4.690         | 1.264        |  |  |
| 490 | 9.552          | 13.480 | 10.400          | 7.680   | 4.840         |              |  |  |
| 500 | 9.864          | 13.910 | 10.710          | 7.910   | 4.990         | 1.379        |  |  |
| 510 | 10.177         | 14.340 | 11.010          | 8.130   | 5.150         |              |  |  |
| 520 | 10.492         | 14.770 | 11.320          | 8.360   | 5.310         | 1.498        |  |  |
| 530 | 10.809         | 15.190 | 11.630          | 8.590   | 5.470         | 215 30000000 |  |  |
| 540 | 11.127         | 15.620 | 11.930          | 8.820   | 5.630         | 1.622        |  |  |
| 550 | 11.446         | 16.050 | 12.240          | 9.050   | 5.790         |              |  |  |
| 560 | 11.766         | 16.480 | 12.550          | 9.280   | 5.940         | 1.750        |  |  |
| 570 | 12.088         | 16.910 | 12.850          | 9.510   | 6.100         |              |  |  |
| 580 | 12.411         | 17.350 | 13.160          | 9.740   | 6.260         | 1.882        |  |  |
| 590 | 12.736         | 17.780 | 13.470          | 9.970   | 6.440         |              |  |  |
| 600 | 13.062         | 18.210 | 13.770          | 10.200  | 6.600         | 2.018        |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|     | 300°F to 600°F   |                  |             |                    |       |  |  |  |  |
|-----|------------------|------------------|-------------|--------------------|-------|--|--|--|--|
| °F  | C W5Re/<br>W26Re | R Pt/<br>Pt/13Rh | S Pt/Pt10Rh | X Pt6Rh/<br>Pt30Rh | L Ir/ |  |  |  |  |
| 300 | 1.249            | 0.630            | 0.616       | 0.071              | 0.360 |  |  |  |  |
| 310 |                  | 0.675            | 0.660       | 0.077              | 0.386 |  |  |  |  |
| 320 | 1.424            | 0.721            | 0.705       | 0.083              | 0.413 |  |  |  |  |
| 330 |                  | 0.767            | 0.750       | 0.089              | 0.440 |  |  |  |  |
| 340 | 1.601            | 0.814            | 0.795       | 0.095              | 0.467 |  |  |  |  |
| 350 |                  | 0.861            | 0.841       | 0.102              | 0.494 |  |  |  |  |
| 360 | 1.780            | 0.909            | 0.886       | 0.109              | 0.521 |  |  |  |  |
| 370 | 1                | 0.957            | 0.933       | 0.116              | 0.549 |  |  |  |  |
| 380 | 1.961            | 1.006            | 0.979       | 0.123              | 0.577 |  |  |  |  |
| 390 | 1,,,,,           | 1.055            | 1.026       | 0.130              | 0.605 |  |  |  |  |
| 400 | 2.144            | 1.104            | 1.073       | 0.139              | 0.634 |  |  |  |  |
| 410 | 2.2.7            | 1.153            | 1.120       | 0.148              | 0.662 |  |  |  |  |
| 420 | 2.329            | 1.203            | 1.168       | 0.158              | 0.691 |  |  |  |  |
| 430 | 2.525            | 1.253            | 1.215       | 0.168              | 0.720 |  |  |  |  |
| 440 | 2.517            | 1.303            | 1.263       | 0.179              | 0.749 |  |  |  |  |
| 450 | 2.517            | 1.354            | 1.311       | 0.191              | 0.778 |  |  |  |  |
| 460 | 2.708            | 1.405            | 1.360       | 0.204              | 0.808 |  |  |  |  |
| 470 | 2.700            | 1.456            | 1.408       | 0.218              | 0.837 |  |  |  |  |
| 480 | 2.902            | 1.508            | 1.457       | 0.232              | 0.867 |  |  |  |  |
| 490 | 2.,,,,           | 1.560            | 1.506       | 0.247              | 0.897 |  |  |  |  |
| 500 | 3.099            | 1.612            | 1.555       | 0.263              | 0.928 |  |  |  |  |
| 510 | 3.077            | 1.665            | 1.604       | 0.280              | 0.958 |  |  |  |  |
| 520 | 3.298            | 1.717            | 1.654       | 0.297              | 0.988 |  |  |  |  |
| 530 | 3.270            | 1.770            | 1.704       | 0.314              | 1.019 |  |  |  |  |
| 540 | 3.499            | 1.823            | 1.754       | 0.331              | 1.050 |  |  |  |  |
| 550 | 3,477            | 1.877            | 1.804       | 0.349              | 1.081 |  |  |  |  |
| 560 | 3.702            | 1.930            | 1.854       | 0.367              | 1.112 |  |  |  |  |
| 570 | 3.702            | 1.984            | 1.905       | 0.385              | 1.143 |  |  |  |  |
| 580 | 3.906            | 2.038            | 1.956       | 0.403              | 1.174 |  |  |  |  |
| 590 | 3.700            | 2.093            | 2.006       | 0.423              | 1.206 |  |  |  |  |
| 600 | 4.111            | 2.147            | 2.057       | 0.441              | 1.238 |  |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|     | 600°F to 900°F |        |        |         |               |                       |  |  |  |
|-----|----------------|--------|--------|---------|---------------|-----------------------|--|--|--|
| °F  | T Cu/          | V Ch/  | J Fe/  | K Ch/A1 | P Geminol P&N | B w26Re               |  |  |  |
| 600 | 13.062         | 18.210 | 13.770 | 10.200  | 6,600         | 2.018                 |  |  |  |
| 610 | 13.390         | 18.650 | 14.080 | 10.430  | 6.780         |                       |  |  |  |
| 620 | 13.718         | 19.090 | 14.390 | 10.660  | 6.940         | 2.156                 |  |  |  |
| 630 | 14.047         | 19.530 | 14.700 | 10.890  | 7.110         |                       |  |  |  |
| 640 | 14.378         | 19.960 | 15.000 | 11.120  | 7.270         | 2.298                 |  |  |  |
| 650 | 14.710         | 20.400 | 15.310 | 11.360  | 7.470         | GENT STORY AT         |  |  |  |
| 660 | 15.043         | 20.840 | 15.620 | 11.590  | 7.610         | 2.441                 |  |  |  |
| 670 | 15.378         | 21.280 | 15.930 | 11.820  | 7.770         |                       |  |  |  |
| 680 | 15.714         | 21.720 | 16.230 | 12.050  | 7.940         | 2.585                 |  |  |  |
| 690 | 16.050         | 22.160 | 16.540 | 12.290  | 8.100         |                       |  |  |  |
| 700 | 16.389         | 22.610 | 16.850 | 12.520  | 8.260         | 2.733                 |  |  |  |
| 710 | 16.728         | 23.050 | 17.150 | 12.750  | 8.430         |                       |  |  |  |
| 720 | 17.068         | 23.490 | 17.460 | 12.990  | 8.600         | 2.885                 |  |  |  |
| 730 | 17.409         | 23.930 | 17.770 | 13.220  | 8.780         |                       |  |  |  |
| 740 | 17.752         | 24.380 | 18.070 | 13.460  | 8.950         | 3.041                 |  |  |  |
| 750 | 18.094         | 24.820 | 18.380 | 13.690  | 9.120         |                       |  |  |  |
| 760 |                | 25.270 | 18.690 | 13.930  | 9.290         | 3.199                 |  |  |  |
| 770 |                | 25.710 | 18.990 | 14.160  | 9.460         |                       |  |  |  |
| 780 |                | 26.150 | 19.300 | 14.400  | 9.640         | 3.359                 |  |  |  |
| 790 | 1              | 26.600 | 19.600 | 14.630  | 9.810         |                       |  |  |  |
| 800 |                | 27.050 | 19.910 | 14.870  | 9.980         | 3.522                 |  |  |  |
| 810 |                | 27.500 | 20.220 | 15.100  | 10.160        |                       |  |  |  |
| 820 |                | 27.940 | 20.520 | 15.340  | 10.340        | 3.687                 |  |  |  |
| 830 |                | 28.390 | 20.830 | 15.570  | 10.520        | NOT NOT THE PROPERTY. |  |  |  |
| 840 |                | 28.830 | 21.140 | 15.810  | 10.700        | 3.855                 |  |  |  |
| 850 |                | 29.280 | 21.440 | 16.400  | 10.880        | 100 1000              |  |  |  |
| 860 |                | 29.730 | 21.750 | 16.280  | 11.050        | 4.025                 |  |  |  |
| 870 |                | 30.180 | 22.060 | 16.520  | 11.230        | 20.021000             |  |  |  |
| 880 |                | 30.630 | 22.370 | 16.750  | 11.410        | 4.197                 |  |  |  |
| 890 |                | 31.080 | 22.680 | 16.990  | 11.590        |                       |  |  |  |
| 900 |                | 31.530 | 22.990 | 17.230  | 11.770        | 4.37                  |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

| 600°F to 900°F |                  |             |                 |                    |       |  |  |  |
|----------------|------------------|-------------|-----------------|--------------------|-------|--|--|--|
| °F             | C W5Re/<br>W26Re | R Pt/Pt13Rh | S Pt/<br>Pt10Rh | X Pt6Rh/<br>Pt30Rh | L Ir/ |  |  |  |
| 600            | 4.111            | 2.147       | 2.057           | 0.441              | 1.238 |  |  |  |
| 610            | 4.111            | 2.202       | 2.109           | 0.460              | 1.269 |  |  |  |
| 620            | 4.317            | 2.257       | 2.160           | 0.479              | 1.301 |  |  |  |
| 630            | 4.517            | 2.312       | 2.212           | 0.498              | 1.333 |  |  |  |
| 640            | 4.524            | 2.368       | 2.263           | 0.518              | 1.365 |  |  |  |
| 650            | 11321            | 2.423       | 2.315           | 0.539              | 1.397 |  |  |  |
| 660            | 4.732            | 2.479       | 2.367           | 0.560              | 1.429 |  |  |  |
| 670            | 11/32            | 2.535       | 2.419           | 0.581              | 1.462 |  |  |  |
| 680            | 4.941            | 2.591       | 2.471           | 0.602              | 1.494 |  |  |  |
| 690            |                  | 2.647       | 2.523           | 0.623              | 1.527 |  |  |  |
| 700            | 5.151            | 2.703       | 2.576           | 0.644              | 1.559 |  |  |  |
| 710            |                  | 2.760       | 2.628           | 0.666              | 1.592 |  |  |  |
| 720            | 5.362            | 2.817       | 2.681           | 0.688              | 1.625 |  |  |  |
| 730            |                  | 2.873       | 2.734           | 0.710              | 1.658 |  |  |  |
| 740            | 5.574            | 2.930       | 2.787           | 0.732              | 1.691 |  |  |  |
| 750            | Secretary is     | 2.987       | 2.839           | 0.755              | 1.724 |  |  |  |
| 760            | 5.787            | 3.045       | 2.892           | 0.778              | 1.757 |  |  |  |
| 770            | 1                | 3.102       | 2.946           | 0.801              | 1.790 |  |  |  |
| 780            | 6.000            | 3.160       | 2.999           | 0.824              | 1.823 |  |  |  |
| 790            |                  | 3.218       | 3.052           | 0.847              | 1.856 |  |  |  |
| 800            | 6.214            | 3.277       | 3.105           | 0.871              | 1.889 |  |  |  |
| 810            |                  | 3.335       | 3.159           | 0.895              | 1.923 |  |  |  |
| 820            | 6.428            | 3.394       | 3.213           | 0.920              | 1.956 |  |  |  |
| 830            |                  | 3.452       | 3.266           | 0.945              | 1.990 |  |  |  |
| 840            | 6.643            | 3.511       | 3.320           | 0.970              | 2.023 |  |  |  |
| 850            |                  | 3.570       | 3.374           | 0.995              | 2.057 |  |  |  |
| 860            | 6.858            | 3.629       | 3.428           | 1.020              | 2.090 |  |  |  |
| 870            |                  | 3.687       | 3.482           | 1.045              | 2.124 |  |  |  |
| 880            | 7.073            | 3.746       | 3.536           | 1.071              | 2.157 |  |  |  |
| 890            |                  | 3.805       | 3.590           | 1.098              | 2.191 |  |  |  |
| 900            | 7.289            | 3.864       | 3.645           | 1.125              | 2.225 |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

(Reference Junction Temperature:  $150^{\circ}$ F)

|              | 900°F to 1200°F  |                  |                  |                  |           |              |  |  |  |
|--------------|------------------|------------------|------------------|------------------|-----------|--------------|--|--|--|
| °F           | V Ch/            | J Fe/<br>Const.  | K Ch/A1          | P Geminol P&N    | B W/W26Re | C W5Re/W26Re |  |  |  |
| 900          | 31.530           | 22.990           | 17.230           | 11.770           | 4.371     | 7.289        |  |  |  |
| 910          | 31.980           | 23.290           | 17.470           | 11.960           |           |              |  |  |  |
| 920          | 32.430           | 23.610           | 17.700           | 12.140           | 4.547     | 7.505        |  |  |  |
| 930          | 32.880           | 23.920           | 17.940           | 12.330           |           |              |  |  |  |
| 940          | 33.330           | 24.230           | 18.180           | 12.510           | 4.725     | 7.721        |  |  |  |
| 950          | 33.780           | 24.540           | 18.410           | 12.700           |           |              |  |  |  |
| 960          | 34.220           | 24.850           | 18.650           | 12.880           | 4.906     | 7.937        |  |  |  |
| 970          | 34.670           | 25.170           | 18.880           | 13.070           | - 000     |              |  |  |  |
| 980          | 35.120           | 25.480           | 19.120           | 13.250           | 5.089     | 8.154        |  |  |  |
| 990          | 35.570           | 25.800           | 19.360           | 13.440           | F 07/     |              |  |  |  |
| 1000         | 36.020           | 26.110           | 19.600           | 13.620           | 5.276     | 8.371        |  |  |  |
| 1010         | 36.470           | 26.430           | 19.830           | 13.810           | 5 177     | 0.500        |  |  |  |
| 1020         | 36.920           | 26.750           | 20.070           | 14.000           | 5.466     | 8.588        |  |  |  |
| 1030         | 37.370           | 27.070           | 20.310           | 14.190           | 5 (1)     | 0.005        |  |  |  |
| 1040         | 37.820           | 27.390           | 20.540           | 14.380           | 5.641     | 8.805        |  |  |  |
| 1050         | 38.270           | 27.710           | 20.780           | 14.580           | 5 0/0     | 0.000        |  |  |  |
| 1060         | 38.720           | 28.030           | 21.020           | 14.770           | 5.849     | 9.022        |  |  |  |
| 1070         | 39.170           | 28.350           | 21.250           | 14.960           | 6.040     | 0 000        |  |  |  |
| 1080         | 39.620           | 28.670           | 21.490           | 15.150           | 6.042     | 9.238        |  |  |  |
| 1090         | 40.070           | 28.990           | 21.730           | 15.340           | 6 226     | 0 /5/        |  |  |  |
| 1100         | 40.520           | 29.310           | 21.970           | 15.530           | 6.236     | 9.454        |  |  |  |
| 1110         | 40.970           | 29.640           | 22.200           | 15.720           | 6 /22     | 0 670        |  |  |  |
| 1120<br>1130 | 41.420           | 29.960           | 22.440           | 15.920           | 6.432     | 9.670        |  |  |  |
|              | 41.870           | 30.290           | 22.680           | 16.110           | ( (22     | 0.005        |  |  |  |
| 1140         | 42.320           | 30.620           | 22.910           | 16.310           | 6.632     | 9.885        |  |  |  |
| 1150         | 42.770           | 30.950           | 23.150           | 16.500           | 6 02/     | 10 100       |  |  |  |
| 1160         | 43.220           | 31.270           | 23.390           | 16.690           | 6.834     | 10.100       |  |  |  |
| 1170         | 43.670           | 31.600           | 23.620           | 16.890           | 7.038     | 10 215       |  |  |  |
| 1180<br>1190 | 44.110<br>44.560 | 31.940<br>32.270 | 23.860<br>24.090 | 17.080<br>17.280 | 7.038     | 10.315       |  |  |  |
| 1200         | 45.000           | 32.600           | 24.090           | 17.280           | 7.242     | 10.529       |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

(Reference Junction Temperature:  $150^{\,\mathrm{O}}\mathrm{F}$ )

|      | 900°F to 1200°F |                 |                    |          |  |  |  |  |  |
|------|-----------------|-----------------|--------------------|----------|--|--|--|--|--|
| °F   | R Pt/Pt13Rh     | S Pt/<br>Pt10Rh | X Pt6Rh/<br>Pt30Rh | L Ir/ORh |  |  |  |  |  |
| 900  | 3.864           | 3.645           | 1.125              | 2.225    |  |  |  |  |  |
| 910  | 3.924           | 3.699           | 1.153              | 2.258    |  |  |  |  |  |
| 920  | 3.984           | 3.754           | 1.181              | 2.292    |  |  |  |  |  |
| 930  | 4.043           | 3.809           | 1.209              | 2.326    |  |  |  |  |  |
| 940  | 4.103           | 3.863           | 1.237              | 2.359    |  |  |  |  |  |
| 950  | 4.163           | 3.918           | 1.266              | 2.393    |  |  |  |  |  |
| 960  | 4.224           | 3.973           | 1.295              | 2.427    |  |  |  |  |  |
| 970  | 4.285           | 4.029           | 1.324              | 2.461    |  |  |  |  |  |
| 980  | 4.346           | 4.084           | 1.353              | 2.495    |  |  |  |  |  |
| 990  | 4.407           | 4.139           | 1.383              | 2.528    |  |  |  |  |  |
| 1000 | 4.468           | 4.195           | 1.413              | 2.562    |  |  |  |  |  |
| 1010 | 4.530           | 4.250           | 1.443              | 2.596    |  |  |  |  |  |
| 1020 | 4.591           | 4.306           | 1.473              | 2.630    |  |  |  |  |  |
| 1030 | 4.653           | 4.362           | 1.504              | 2.664    |  |  |  |  |  |
| 1040 | 4.715           | 4.417           | 1.535              | 2.698    |  |  |  |  |  |
| 1050 | 4.776           | 4.473           | 1.566              | 2.732    |  |  |  |  |  |
| 1060 | 4.838           | 4.529           | 1.598              | 2.766    |  |  |  |  |  |
| 1070 | 4.901           | 4.586           | 1.630              | 2.800    |  |  |  |  |  |
| 1080 | 4.963           | 4.642           | 1.662              | 2.834    |  |  |  |  |  |
| 1090 | 5.026           | 4.698           | 1.694              | 2.868    |  |  |  |  |  |
| 1100 | 5.088           | 4.755           | 1.726              | 2.902    |  |  |  |  |  |
| 1110 | 5.151           | 4.811           | 1.759              | 2.936    |  |  |  |  |  |
| 1120 | 5.214           | 4.868           | 1.792              | 2.970    |  |  |  |  |  |
| 1130 | 5.277           | 4.925           | 1.826              | 3.003    |  |  |  |  |  |
| 1140 | 5.341           | 4.982           | 1.860              | 3.037    |  |  |  |  |  |
| 1150 | 5.405           | 5.039           | 1.894              | 3.071    |  |  |  |  |  |
| 1160 | 5.469           | 5.096           | 1.928              | 3.105    |  |  |  |  |  |
| 1170 | 5.533           | 5.154           | 1.963              | 3.138    |  |  |  |  |  |
| 1180 | 5.596           | 5.211           | 1.998              | 3.172    |  |  |  |  |  |
| 1190 | 5.660           | 5.268           | 2.033              | 3.205    |  |  |  |  |  |
| 1200 | 5.725           | 5.325           | 2.068              | 3.239    |  |  |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|              | 1200°F to 1500°F |                  |                    |                  |               |                  |  |  |  |
|--------------|------------------|------------------|--------------------|------------------|---------------|------------------|--|--|--|
| °F           | V Ch/            | J Fe/<br>Const.  | K <sup>Ch/Al</sup> | P Geminol P&N    | B W/<br>W26Re | C W5Re/<br>W26Re |  |  |  |
| 1200         | 45.000           | 32.600           | 24.320             | 17.470           | 7.242         | 10.529           |  |  |  |
| 1210         | 45.450           | 32.940           | 24.560             | 17.670           | 7 //7         | 10 7/2           |  |  |  |
| 1220         | 45.890           | 33.280           | 24.790             | 17.870           | 7.447         | 10.743           |  |  |  |
| 1230         | 46.330           | 33.610           | 25.030             | 18.070           | 7.654         | 10.957           |  |  |  |
| 1240<br>1250 | 46.780<br>47.230 | 33.950<br>34.300 | 25.260<br>25.490   | 17.270<br>18.480 | 7.634         | 10.937           |  |  |  |
| 1260         | 47.680           | 34.640           | 25.730             | 18.680           | 7.863         | 11.170           |  |  |  |
| 1270         | 48.120           | 34.980           | 25.730             | 18.880           | 7.003         | 11.170           |  |  |  |
| 1280         | 48.570           | 35.330           | 26.200             | 19.080           | 8.074         | 11.383           |  |  |  |
| 1290         | 49.010           | 35.670           | 26.430             | 19.280           | 0.074         | 11.363           |  |  |  |
| 1300         | 49.460           | 36.020           | 26.660             | 19.480           | 8.287         | 11.596           |  |  |  |
| 1310         | 49.900           | 36.370           | 26.900             | 19.680           | 0.207         | 11.550           |  |  |  |
| 1320         | 50.340           | 36.720           | 27.130             | 19.890           | 8.502         | 11.809           |  |  |  |
| 1330         | 50.790           | 37.070           | 27.360             | 20.090           | 0.502         | 11.00            |  |  |  |
| 1340         | 51.230           | 37.420           | 27.590             | 20.300           | 8.719         | 12.021           |  |  |  |
| 1350         | 51.670           | 37.780           | 27.830             | 20.500           | 0.717         | 12.021           |  |  |  |
| 1360         | 52.110           | 38.130           | 28.060             | 20.700           | 8.938         | 12.233           |  |  |  |
| 1370         | 52.550           | 38.490           | 28.290             | 20.910           |               |                  |  |  |  |
| 1380         | 52.990           | 38.840           | 28.520             | 21.110           | 9.159         | 12.445           |  |  |  |
| 1390         | 53.440           | 39.200           | 28.760             | 21.320           | A CONTRACTOR  |                  |  |  |  |
| 1400         | 53.880           | 39.550           | 28.990             | 21.520           | 9.382         | 12.657           |  |  |  |
| 1410         | 54.320           | 39.910           | 29.220             | 21.730           |               | 34123741234      |  |  |  |
| 1420         | 54.760           | 40.270           | 29.450             | 21.940           | 9.606         | 12.868           |  |  |  |
| 1430         | 55.200           | 40.620           | 29.680             | 22.150           |               |                  |  |  |  |
| 1440         | 55.640           | 40.980           | 29.910             | 22.360           | 9.831         | 13.079           |  |  |  |
| 1450         | 56.070           | 41.340           | 30.140             | 22.570           |               |                  |  |  |  |
| 1460         | 56.510           | 41.690           | 30.360             | 22.780           | 10.056        | 13.290           |  |  |  |
| 1470         | 56.950           | 42.050           | 30.590             | 22.990           |               |                  |  |  |  |
| 1480         | 57.390           | 42.410           | 30.820             | 23.200           | 10.282        | 13.501           |  |  |  |
| 1490         | 57.820           | 42.770           | 31.050             | 23.410           |               |                  |  |  |  |
| 1500         | 58.260           | 43.120           | 31.270             | 23.620           | 10.508        | 13.711           |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

(Reference Junction Temperature:  $150^{\circ}\text{F}$ )

|      | 1200°F to 1500°F |                 |                    |       |  |  |  |  |  |
|------|------------------|-----------------|--------------------|-------|--|--|--|--|--|
| °F   | R Pt/<br>Pt13Rh  | S Pt/<br>Pt10Rh | X Pt6Rh/<br>Pt30Rh | L Ir/ |  |  |  |  |  |
| 1200 | 5.725            | 5.325           | 2.068              | 3.239 |  |  |  |  |  |
| 1210 | 5.788            | 5.383           | 2.104              | 3.272 |  |  |  |  |  |
| 1220 | 5.852            | 5.441           | 2.140              | 3.306 |  |  |  |  |  |
| 1230 | 5.917            | 5.498           | 2.240              | 3.339 |  |  |  |  |  |
| 1240 | 5.918            | 5.560           | 2.214              | 3.373 |  |  |  |  |  |
| 1250 | 6.046            | 5.614           | 2.251              | 3.406 |  |  |  |  |  |
| 1260 | 6.111            | 5.672           | 2.288              | 3.439 |  |  |  |  |  |
| 1270 | 6.177            | 5.730           | 2.326              | 3.473 |  |  |  |  |  |
| 1280 | 6.242            | 5.789           | 2.365              | 3.506 |  |  |  |  |  |
| 1290 | 6.307            | 5.847           | 2.404              | 3.539 |  |  |  |  |  |
| 1300 | 6.373            | 5.906           | 2.433              | 3.572 |  |  |  |  |  |
| 1310 | 6.438            | 5.964           | 2.482              | 3.605 |  |  |  |  |  |
| 1320 | 6.504            | 6.023           | 2.521              | 3.639 |  |  |  |  |  |
| 1330 | 6.570            | 6.082           | 2.560              | 3.672 |  |  |  |  |  |
| 1340 | 6.637            | 6.141           | 2.599              | 3.705 |  |  |  |  |  |
| 1350 | 6.703            | 6.200           | 2.638              | 3.737 |  |  |  |  |  |
| 1360 | 6.769            | 6.259           | 2.677              | 3.770 |  |  |  |  |  |
| 1370 | 6.835            | 6.318           | 2.717              | 3.803 |  |  |  |  |  |
| 1380 | 6.902            | 6.377           | 2.757              | 3.836 |  |  |  |  |  |
| 1390 | 6.969            | 6.437           | 2.797              | 3.869 |  |  |  |  |  |
| 1400 | 7.036            | 6.496           | 2.837              | 3.901 |  |  |  |  |  |
| 1410 | 7.103            | 6.556           | 2.877              | 3.934 |  |  |  |  |  |
| 1420 | 7.171            | 6.616           | 2.917              | 3.967 |  |  |  |  |  |
| 1430 | 7.239            | 6.675           | 2.958              | 3.999 |  |  |  |  |  |
| 1440 | 7.306            | 6.735           | 2.999              | 4.032 |  |  |  |  |  |
| 1450 | 7.374            | 6.795           | 3.040              | 4.064 |  |  |  |  |  |
| 1460 | 7.442            | 6.856           | 3.081              | 4.097 |  |  |  |  |  |
| 1470 | 7.511            | 6.916           | 3.123              | 4.129 |  |  |  |  |  |
| 1480 | 7.579            | 6.976           | 3.165              | 4.161 |  |  |  |  |  |
| 1490 | 7.647            | 7.037           | 3.208              | 4.193 |  |  |  |  |  |
| 1500 | 7.716            | 7.097           | 3.251              | 4.226 |  |  |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|                      |                            | 1500             | 0°F to 1800°               | PF .                       |        |                  |
|----------------------|----------------------------|------------------|----------------------------|----------------------------|--------|------------------|
| °F                   | V Ch/                      | J Fe/<br>Const.  | K Ch/Al                    | P Geminol P&N              | F Ir*  | B W/<br>W26Re    |
| 1500<br>1510         | 58.260<br>58.700           | 43.120<br>43.480 | 31.270<br>31.500           | 23.620<br>23.830           |        | 10.508           |
| 1520<br>1530         | 59.130<br>59.560           | 43.830<br>44.190 | 31.730<br>31.960           | 24.040<br>24.250           |        | 10.734           |
| 1540<br>1550         | 60.000<br>60.430           | 44.540<br>44.900 | 32.180<br>32.410           | 24.460<br>24.670           |        | 10.961           |
| 1560<br>1570         | 60.860<br>61.300           | 45.250<br>45.600 | 32.630<br>32.860           | 24.880<br>25.090           |        | 11.188           |
| 1580<br>1590         | 61.730<br>62.160           | 45.950<br>46.290 | 33.090<br>33.310           | 25.300<br>25.510           |        | 11.415           |
| 1600<br>1610         | 62.590<br>63.010           | 46.640           | 33.530<br>33.760           | 25.720<br>25.940           |        | 11.643           |
| 1620<br>1630<br>1640 | 63.440<br>63.870           |                  | 33.980<br>34.210           | 26.150<br>26.370           |        | 11.871           |
| 1650<br>1660         | 64.300<br>64.720<br>65.150 |                  | 34.430<br>34.650<br>34.800 | 26.580<br>26.800           |        | 12.100           |
| 1670<br>1680         | 65.580<br>66.010           |                  | 35.100<br>35.320           | 27.020<br>27.230<br>27.450 |        | 12.329<br>12.559 |
| 1690<br>1700         | 66.430<br>66.860           |                  | 35.540<br>35.770           | 27.660<br>27.880           |        | 12.790           |
| 1710<br>1720         | 67.280<br>67.710           |                  | 35.990<br>36.210           | 28.100<br>28.320           |        | 13.021           |
| 1730<br>1740         | 68.130<br>68.560           |                  | 36.430<br>36.650           | 28.540<br>28.760           |        | 13.253           |
| 1750<br>1760<br>1770 | 68.980<br>69.400<br>69.820 |                  | 36.870<br>37.090           | 28.980<br>29.190           |        | 13.486           |
| 1780<br>1790         | 70.240<br>70.660           |                  | 37.300<br>37.520<br>37.740 | 29.410<br>29.630<br>29.850 |        | 13.720           |
| 1800                 | 71.080                     |                  | 37.740                     | 30.070                     | 13.910 | 13.955           |

<sup>\*</sup>Ir/W Temperature vs EMF data is a result of extrapolation from  $32^{\rm O}F$  reference junction data.

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

(Reference Junction Temperature:  $150^{\circ}\text{F}$ )

|      | 1                | 1500°F      | to 1800°F       |                    |       |
|------|------------------|-------------|-----------------|--------------------|-------|
| °F   | C W5Re/<br>W26Re | R Pt/Pt13Rh | S Pt/<br>Pt10Rh | X Pt6Rh/<br>Pt30Rh | L Ir/ |
| 1500 | 13.711           | 7.716       | 7.097           | 3.251              | 4.226 |
| 1510 |                  | 7.784       | 7.158           | 3.294              | 4.258 |
| 1520 | 13.921           | 7.853       | 7.219           | 3.337              | 4.290 |
| 1530 |                  | 7.922       | 7.280           | 3.380              | 4.322 |
| 1540 | 14.131           | 7.991       | 7.341           | 3.424              | 4.354 |
| 1550 |                  | 8.060       | 7.402           | 3.468              | 4.386 |
| 1560 | 14.341           | 8.130       | 7.463           | 3.512              | 4.418 |
| 1570 |                  | 8.199       | 7.524           | 3.557              | 4.450 |
| 1580 | 14.550           | 8.269       | 7.586           | 3.602              | 4.481 |
| 1590 | 1                | 8.339       | 7.647           | 3.648              | 4.513 |
| 1600 | 14.759           | 8.409       | 7.709           | 3.694              | 4.545 |
| 1610 |                  | 8.479       | 7.771           | 3.740              | 4.576 |
| 1620 | 14.968           | 8.549       | 7.833           | 3.786              | 4.608 |
| 1630 |                  | 8.619       | 7.895           | 3.832              | 4.639 |
| 1640 | 15.177           | 8.690       | 7.957           | 3.878              | 4.671 |
| 1650 |                  | 8.761       | 8.019           | 3.924              | 4.702 |
| 1660 | 15.385           | 8.832       | 8.081           | 3.970              | 4.734 |
| 1670 | 1                | 8.903       | 8.144           | 4.016              | 4.765 |
| 1680 | 15.593           | 8.974       | 8.206           | 4.063              | 4.796 |
| 1690 |                  | 9.045       | 8.269           | 4.110              | 4.827 |
| 1700 | 15.801           | 9.116       | 8.331           | 4.157              | 4.859 |
| 1710 |                  | 9.187       | 9.394           | 4.214              | 4.890 |
| 1720 | 16.009           | 9.259       | 8.457           | 4.252              | 4.921 |
| 1730 |                  | 9.330       | 8.520           | 4.300              | 4.952 |
| 1740 | 16.216           | 9.402       | 8.583           | 4.349              | 4.983 |
| 1750 |                  | 9.474       | 8.647           | 4.398              | 5.014 |
| 1760 | 16.423           | 9.546       | 8.710           | 4.447              | 5.044 |
| 1770 |                  | 9.619       | 8.773           | 4.496              | 5.075 |
| 1780 | 16.630           | 9.692       | 8.837           | 4.545              | 5.106 |
| 1790 |                  | 9.764       | 8.901           | 4.595              | 5.137 |
| 1800 | 16.836           | 9.837       | 8.964           | 4.645              | 5.167 |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|              | •      | 1800°              | F to 2100°F      |        |               |                  |
|--------------|--------|--------------------|------------------|--------|---------------|------------------|
| °F           | V Ch/  | K <sup>Ch/A1</sup> | P Geminol P&N    | F Ir/W | B W/<br>W26Re | C W5Re/<br>W26Re |
| 1800         | 71.080 | 37.960             | 30.070           | 13.910 | 13.955        | 16.836           |
| 1810<br>1820 | 71.690 | 38.180<br>38.390   | 30.290           | 14.170 | 17, 101       | 17.0/2           |
| 1830         | 72.330 | 38.610             | 30.510<br>30.730 | 14.170 | 14.191        | 17.042           |
| 1840         | 72.550 | 38.830             | 30.730           | 14.430 | 14.428        | 17.248           |
| 1850         |        | 39.040             | 31.180           | 14.450 | 14.420        | 17.240           |
| 1860         |        | 39.260             | 31.400           | 14.680 | 14.666        | 17.453           |
| 1870         |        | 39.480             | 31.620           |        |               | 2                |
| 1880         |        | 39.690             | 31.840           | 14.940 | 14.905        | 17.658           |
| 1890         |        | 39.910             | 32.060           |        |               |                  |
| 1900         |        | 40.120             | 32.280           | 15.200 | 15.145        | 17.826           |
| 1910         |        | 40.330             | 32.500           |        |               |                  |
| 1920         |        | 40.550             | 32.720           | 15.460 | 15.386        | 18.066           |
| 1930         |        | 40.760             | 32.950           |        |               |                  |
| 1940         |        | 40.970             | 33.170           | 15.700 | 15.628        | 18.269           |
| 1950         |        | 41.190             | 33.390           | 000    |               |                  |
| 1960         |        | 41.400             | 33.610           | 15.980 | 15.870        | 18.471           |
| 1970<br>1980 |        | 41.610             | 33.830           | 16 240 | 16 110        | 10 (70           |
| 1990         |        | 41.830<br>42.040   | 34.060           | 16.240 | 16.113        | 18.672           |
| 2000         |        | 42.040             | 34.280<br>34.500 | 16.500 | 16.355        | 18.872           |
| 2010         |        | 42.460             | 34.720           | 10.500 | 10.333        | 10.072           |
| 2020         |        | 42.670             | 34.950           | 16.760 | 16.597        | 19.071           |
| 2030         |        | 42.880             | 35.170           | 10.700 | 10.557        | 13.071           |
| 2040         |        | 43.090             | 35.400           | 17.020 | 16.839        | 19.269           |
| 2050         |        | 43.300             | 35.620           |        |               |                  |
| 2060         |        | 43.510             | 35.840           | 17.290 | 17.080        | 19.466           |
| 2070         |        | 43.720             | 36.070           |        |               |                  |
| 2080         |        | 43.920             | 36.290           | 17.550 | 17.321        | 19.662           |
| 2090         |        | 44.130             | 36.520           |        |               |                  |
| 2100         |        | 44.340             | 36.740           | 17.810 | 17.561        | 19.857           |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES (Reference Junction Temperature: 150°F)

|                                                                                                                                                                      | 1800°F to 2100°F                                                                                                                                                                                            |                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                           |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| °F                                                                                                                                                                   | R Pt/Pt13Rh                                                                                                                                                                                                 | S Pt/Pt10Rh                                                                                                                                                                          | X Pt6Rh/<br>Pt30Rh                                                                                                                                                                        | L Ir/<br>Ir40Rh                                                                                                                                                                           |  |  |  |  |
| 1800<br>1810<br>1820<br>1830<br>1840<br>1850<br>1860<br>1870<br>1880<br>1890<br>1900<br>1910<br>1920<br>1930<br>1940<br>1950<br>1960<br>1970<br>1980<br>1990<br>2000 | 9.837<br>9.910<br>9.983<br>10.056<br>10.129<br>10.203<br>10.276<br>10.349<br>10.423<br>10.498<br>10.573<br>10.648<br>10.722<br>10.797<br>10.873<br>10.948<br>11.024<br>11.099<br>11.175<br>11.251<br>11.326 | 8.964<br>9.028<br>9.092<br>9.156<br>9.220<br>9.285<br>9.349<br>9.414<br>9.543<br>9.608<br>9.673<br>9.738<br>9.803<br>9.868<br>9.933<br>9.999<br>10.064<br>10.130<br>10.196<br>10.261 | 4.645<br>4.696<br>4.747<br>4.798<br>4.849<br>4.900<br>4.952<br>5.004<br>5.056<br>5.108<br>5.160<br>5.212<br>5.265<br>5.318<br>5.371<br>5.425<br>5.479<br>5.533<br>5.587<br>5.641<br>5.695 | 5.167<br>5.198<br>5.228<br>5.279<br>5.289<br>5.320<br>5.350<br>5.380<br>5.411<br>5.441<br>5.471<br>5.501<br>5.531<br>5.561<br>5.591<br>5.621<br>5.651<br>5.681<br>5.711<br>5.740<br>5.770 |  |  |  |  |
| 2010<br>2020<br>2030<br>2040<br>2050<br>2060<br>2070<br>2080<br>2090<br>2100                                                                                         | 11.402<br>11.478<br>11.554<br>11.629<br>11.705<br>11.782<br>11.858<br>11.935<br>12.011<br>12.088                                                                                                            | 10.327<br>10.393<br>10.459<br>10.525<br>10.591<br>10.657<br>10.723<br>10.789<br>10.856<br>10.922                                                                                     | 5.749<br>5.804<br>5.859<br>5.914<br>5.969<br>6.025<br>6.081<br>6.137<br>6.193<br>6.250                                                                                                    | 5.800<br>5.829<br>5.859<br>5.888<br>5.918<br>5.947<br>5.977<br>6.006<br>6.035<br>6.065                                                                                                    |  |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

(Reference Junction Temperature: 150°F)

|              |                  | 2100°F           | to 2400°F |               |                  |
|--------------|------------------|------------------|-----------|---------------|------------------|
| °F           | K Ch/A1          | P Geminol        | F Ir/W    | B W/<br>W26Re | C W5Re/<br>W26Re |
| 2100         | 44.340           | 36.740           | 17.810    | 17.561        | 19.857           |
| 2110         | 44.550           | 36.960           | 10 000    |               |                  |
| 2120<br>2130 | 44.750           | 37.180           | 18.080    | 17.800        | 20.051           |
| 2140         | 44.960<br>45.160 | 37.410<br>37.630 | 18.350    | 18.038        | 20.244           |
| 2150         | 45.370           | 37.850           | 18.330    | 18.038        | 20.244           |
| 2160         | 45.570           | 38.070           | 18.610    | 18.275        | 20.436           |
| 2170         | 45.780           | 38.290           | 10.010    | 10.275        | 20.430           |
| 2180         | 45.980           | 38.520           | 18.880    | 18.511        | 20.627           |
| 2190         | 46.190           | 38.740           |           | 10.011        | 20.027           |
| 2200         | 46.390           | 38.960           | 19.150    | 18.746        | 20.817           |
| 2210         | 46.590           | 39.180           |           |               | 1                |
| 2220         | 46.790           | 39.400           | 19.420    | 18.981        | 21.006           |
| 2230         | 46.990           | 39.630           |           |               |                  |
| 2240         | 47.200           | 39.850           | 19.680    | 19.216        | 21.194           |
| 2250         | 47.400           | 40.070           |           |               |                  |
| 2260         | 47.600           | 40.290           | 19.950    | 19.451        | 21.381           |
| 2270<br>2280 | 47.800           | 40.510           | 20 210    | 10 605        | 01 567           |
| 2290         | 47.990<br>48.190 | 40.740<br>40.960 | 20.210    | 19.685        | 21.567           |
| 2300         | 48.390           | 41.180           | 20.480    | 19.919        | 21.752           |
| 2310         | 48.590           | 41.100           | 20.400    | 19.919        | 21.752           |
| 2320         | 48.790           |                  | 20.750    | 20.153        | 21.936           |
| 2330         | 48.980           |                  | 20.,50    | 20.233        | 21.750           |
| 2340         | 49.180           |                  | 21.020    | 20.387        | 22,119           |
| 2350         | 49.370           |                  |           |               |                  |
| 2360         | 49.570           |                  | 21.290    | 20.620        | 22.301           |
| 2370         | 49.760           |                  |           |               |                  |
| 2380         | 49.960           |                  | 21.560    | 20.853        | 22.483           |
| 2390         | 50.150           |                  | 01 000    | 01.000        |                  |
| 2400         | 50.350           |                  | 21.830    | 21.086        | 22.664           |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

(Reference Junction Temperature:  $150^{\rm O}{\rm F}$ )

|      | 210         | 00°F to 2400°   | °F                 |       |
|------|-------------|-----------------|--------------------|-------|
| °F   | R Pt/Pt13Rh | S Pt/<br>Pt10Rh | X Pt6Rh/<br>Pt30Rh | L Ir/ |
| 2100 | 12.088      | 10.922          | 6.250              | 6.065 |
| 2110 | 12.164      | 10.980          | 6.307              | 6.094 |
| 2120 | 12.241      | 11.055          | 6.364              | 6.123 |
| 2130 | 12.318      | 11.121          | 6.421              | 6.152 |
| 2140 | 12.395      | 11.188          | 6.479              | 6.182 |
| 2150 | 12.471      | 11.254          | 6.537              | 6.211 |
| 2160 | 12.548      | 11.321          | 6.595              | 6.240 |
| 2170 | 12.625      | 11.388          | 6,653              | 6.269 |
| 2180 | 12.702      | 11.454          | 6.711              | 6.298 |
| 2190 | 12.778      | 11.521          | 6.769              | 6.327 |
| 2200 | 12.855      | 11.588          | 6.827              | 6.356 |
| 2210 | 12.932      | 11.654          | 6.886              | 6.385 |
| 2220 | 13.009      | 11.788          | 6.945              | 6.414 |
| 2230 | 13.086      | 11.788          | 7.004              | 6.442 |
| 2240 | 13.164      | 11.855          | 7.063              | 6.471 |
| 2250 | 13.241      | 11.921          | 7.122              | 6.500 |
| 2260 | 13.318      | 11.988          | 7.182              | 6.529 |
| 2270 | 13.395      | 12.055          | 7.242              | 6.558 |
| 2280 | 13.472      | 12.122          | 7.302              | 6.586 |
| 2290 | 13.549      | 12.189          | 7.362              | 6.615 |
| 2300 | 13.627      | 12.256          | 7.422              | 6.644 |
| 2310 | 13.704      | 12.323          | 7.482              | 6.672 |
| 2320 | 13.781      | 12.389          | 7.542              | 6.701 |
| 2330 | 13.858      | 12.456          | 7.603              | 6.729 |
| 2340 | 13.935      | 12.523          | 7.664              | 6.758 |
| 2350 | 14.012      | 12.590          | 7.725              | 6.787 |
| 2360 | 14.090      | 12.657          | 7.786              | 6.815 |
| 2370 | 14.167      | 12.723          | 7.847              | 6.844 |
| 2380 | 14.244      | 12.790          | 7.908              | 6.872 |
| 2390 | 14.321      | 12.857          | 7.969              | 6.901 |
| 2400 | 14.398      | 12.924          | 8.030              | 6.929 |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|                      |                  | 240           | 00°F to 2700     | ° <sub>F</sub>             |                            |                         |
|----------------------|------------------|---------------|------------------|----------------------------|----------------------------|-------------------------|
| °F                   | F Ir/W           | B W/<br>W26Re | C W5Re/<br>W26Re | R <sub>Pt13Rh</sub>        | S Pt/<br>Pt10Rh            | X Pt6Rh/<br>Pt30Rh      |
| 2400<br>2410         | 21.830           | 21.086        | 22.664           | 14.398<br>14.475           | 12.924<br>12.990           | 8.030                   |
| 2420<br>2430         | 22.100           | 21.318        | 22.845           | 14.475<br>14.592<br>14.629 | 13.057<br>13.124           | 8.091<br>8.152<br>8.213 |
| 2440<br>2450         | 22.380           | 21.548        | 23.025           | 14.707                     | 13.124<br>13.190<br>13.257 | 8.275<br>8.337          |
| 2460<br>2470         | 22.650           | 21.776        | 23,205           | 14.861<br>14.938           | 13.324<br>13.390           | 8.399<br>8.461          |
| 2480<br>2490         | 22.930           | 22.004        | 23.384           | 15.015<br>15.092           | 13.457<br>13.523           | 8.523<br>8.585          |
| 2500<br>2510         | 23.200           | 22.230        | 23.563           | 15.168<br>15.245           | 13.590<br>13.657           | 8.647<br>8.709          |
| 2520<br>2530         | 23.470           | 22.455        | 23.741           | 15.322<br>15.400           | 13.723<br>13.790           | 8.771<br>8.833          |
| 2540<br>2550         | 23.750           | 22,678        | 23.919           | 15.477<br>15.554           | 13.856<br>13.923           | 8.895<br>8.957          |
| 2560<br>2570         | 24.020           | 22.899        | 24.096           | 15.631<br>15.708           | 13.989<br>14.056           | 9.020<br>9.083          |
| 2580<br>2590         | 24.300           | 23.118        | 24.273           | 15.785<br>15.863           | 14.122<br>14.188           | 9.146<br>9.209          |
| 2600<br>2610<br>2620 | 24.570           | 23.335        | 24.449           | 15.940<br>16.017           | 14.255<br>14.321           | 9.272<br>9.334          |
| 2630<br>2640         | 24.850           | 23.550        | 24.625           | 16.094<br>16.171           | 14.388<br>14.454           | 9.396<br>9.459          |
| 2650<br>2680         | 25.130<br>25.400 | 23.763        | 24.799           | 16.248<br>16.325           | 14.520<br>14.587           | 9.522<br>9.585          |
| 2670<br>2680         |                  | 23.975        | 24.971           | 16.402<br>16.480           | 14.653<br>14.719           | 9.648<br>9.710          |
| 2690<br>2700         | 25,680<br>25.960 | 24.185        | 25.141           | 16.557<br>16.633           | 14.785<br>14.852           | 9.773<br>9.836          |
| 2700                 | 23.900           | 24.393        | 25.309           | 16.710                     | 14.918                     | 9.899                   |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES  $(\text{Reference Junction Temperature: } 150^{\mathrm{O}}\mathrm{F})$ 

| 2400°F to 2700°F |                 |         |  |  |
|------------------|-----------------|---------|--|--|
| °F               | L Ir/<br>Ir40Rh | K Ch/Al |  |  |
| 400              | 6.929           | 50.350  |  |  |
| 410              | 6.958           | 50.540  |  |  |
| 2420             | 6.986           | 50.730  |  |  |
| 2430             | 7.014           | 50.930  |  |  |
| 2440             | 7.043           | 51.120  |  |  |
| 2450             | 7.071           | 51.310  |  |  |
| 2460             | 7.100           | 51,500  |  |  |
| 2470             | 7.128           | 51.690  |  |  |
| 2480             | 7.156           | 51.880  |  |  |
| 2490             | 7.185           | 52.070  |  |  |
| 2500             | 7.213           |         |  |  |
| 2510             | 7.241           |         |  |  |
| 2520             | 7.269           |         |  |  |
| 2530             | 7.298           |         |  |  |
| 2540             | 7.326           |         |  |  |
| 2550             | 7.354           |         |  |  |
| 2560             | 7.383           |         |  |  |
| 2570             | 7.411           |         |  |  |
| 2580             | 7.439           |         |  |  |
| 2590             | 7.467           |         |  |  |
| 2600             | 7.496           |         |  |  |
| 2610             | 7.524           | 1       |  |  |
| 2620             | 7.552           | l       |  |  |
| 2630             | 7.580           |         |  |  |
| 2640             | 7.609           | 1       |  |  |
| 2650             | 7.637           |         |  |  |
| 26.60            | 7.665           |         |  |  |
| 2670             | 7.693           |         |  |  |
| 2680             | 7.722           |         |  |  |
| 2690             | 7.750           |         |  |  |
| 2700             | 7.778           |         |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|      |        | 270           | 00°F to 3000°    | F           |             |                  |
|------|--------|---------------|------------------|-------------|-------------|------------------|
| °F   | F Ir/W | B W/<br>W26Re | C W5Re/<br>W26Re | R Pt/Pt13Rh | S Pt/Pt10Rh | X Pt6Rh<br>Pt30R |
| 2700 | 25.960 | 24.393        | 25.309           | 16.710      | 14.918      | 9.899            |
| 2710 |        |               |                  | 16.786      | 14.984      | 9.961            |
| 2720 | 26.240 | 24.600        | 25.475           | 16.863      | 15,050      | 10.024           |
| 2730 |        |               |                  | 16.940      | 15.116      | 10.087           |
| 2740 | 26.520 | 24.806        | 25.639           | 17.016      | 15.182      | 10.150           |
| 2750 |        |               |                  | 17.093      | 15.248      | 10.213           |
| 2760 | 26.790 | 25.012        | 25.801           | 17.169      | 15.314      | 10.275           |
| 2770 |        |               |                  | 17.246      | 15.380      | 10.338           |
| 2780 | 27.070 | 25.217        | 25.961           | 17.323      | 15.447      | 10.401           |
| 2790 |        |               |                  | 17.399      | 15.512      | 10.464           |
| 2800 | 27.350 | 25.422        | 26.119           | 17.475      | 15.578      | 10.526           |
| 2810 |        |               |                  | 17.551      | 15.644      | 10.589           |
| 2820 | 27.630 | 25.627        | 26.275           | 17.627      | 15.710      | 10.652           |
| 2830 |        |               |                  | 17.703      | 15.776      | 10.715           |
| 2840 | 27.910 | 25.832        | 26.430           | 17.779      | 15.842      | 10.778           |
| 2850 |        |               |                  | 17.885      | 15.907      | 10.840           |
| 2860 | 28.190 | 26.036        | 26.584           | 17.932      | 15.973      | 10.903           |
| 2870 |        |               |                  | 18.008      | 16.039      | 10.966           |
| 2880 | 28.470 | 26.239        | 26.737           | 18.084      | 16.105      | 11.029           |
| 2890 |        |               | POSEDANA SCIAMI  | 18.160      | 16.170      | 11.091           |
| 2900 | 28.750 | 26.442        | 26.889           | 18.236      | 16.236      | 11.154           |
| 2910 |        |               |                  | 18.312      | 16.301      | 11.217           |
| 2920 | 29.030 | 26.645        | 27.040           | 18.388      | 16.367      | 11.280           |
| 2930 |        |               |                  | 18.464      | 16.433      | 11.343           |
| 2940 | 29.320 | 26.847        | 27.190           | 18.540      | 16.498      | 11.405           |
| 2950 |        |               |                  | 18.616      | 16.564      | 11.458           |
| 2960 | 29.600 | 27.049        | 27.339           | 18.692      | 16.629      | 11.531           |
| 2970 |        |               |                  | 18.768      | 16.694      | 11.594           |
| 2980 | 29.890 | 27.251        | 27.487           | 18.843      | 16.760      | 11.656           |
| 2990 |        |               |                  | 18.918      | 16.825      | 11.719           |
| 3000 | 30.170 | 27.452        | 27.634           | 18.994      | 16.891      | 11.782           |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

| 2700°F | to 3000°F |
|--------|-----------|
| °F     | L Ir/     |
| 2700   | 7.778     |
| 2710   | 7.807     |
| 2720   | 7.835     |
| 2730   | 7.863     |
| 2740   | 7.891     |
| 2750   | 7.920     |
| 2760   | 7.948     |
| 2770   | 7.976     |
| 2780   | 8.005     |
| 2790   | 8.033     |
| 2800   | 8.061     |
| 2810   | 8.090     |
| 2820   | 8.118     |
| 2830   | 8.147     |
| 2840   | 8.175     |
| 2850   | 8.203     |
| 2860   | 8.232     |
| 2870   | 8.260     |
| 2880   | 8.289     |
| 2890   | 8.317     |
| 2900   | 8.346     |
| 2910   | 8.374     |
| 2920   | 8.403     |
| 2930   | 8.432     |
| 2940   | 8.460     |
| 2950   | 8.489     |
| 2960   | 8.517     |
| 2970   | 8.546     |
| 2980   | 8.575     |
| 2990   | 8.604     |
| 3000   | 8.632     |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

|                      |                   | 300        | 0°F to 3300°     | F                          |                            |                            |
|----------------------|-------------------|------------|------------------|----------------------------|----------------------------|----------------------------|
| °F                   | F <sup>Ir/W</sup> | B W/ W26Re | C W5Re/<br>W26Re | R Pt/Pt13Rh                | S Pt/<br>Pt10Rh            | X Pt6Rh/<br>Pt30Rh         |
| 3000                 | 30.170            | 27.452     | 27.634           | 18.994                     | 16.891                     | 11.782                     |
| 3010<br>3020<br>3030 | 30.460            | 27.653     | 27.780           | 19.070<br>19.145<br>19.221 | 16.956<br>17.021<br>17.086 | 11.845<br>11.908<br>11.970 |
| 3040<br>3050         | 30.740            | 27.854     | 27.926           | 19.297<br>19.373           | 17.151<br>17.217           | 12.033                     |
| 3060<br>3070         | 31.030            | 28.055     | 28.071           | 19.448<br>19.524           | 17.282<br>17.347           | 12.159<br>12.221           |
| 3080<br>3090         | 31,310            | 28.255     | 28.216           | 19.599<br>19.675           | 17.412<br>17.477           | 12.284<br>12.347           |
| 3100<br>3110         | 31.600            | 28.455     | 28.360           |                            | 17.542<br>17.607           | 12.410<br>12.473           |
| 3120<br>3130         | 31.890            | 28.654     | 28.502           |                            | 17.672<br>17.736           | 12.535<br>12.598           |
| 3140<br>3150<br>3160 | 32.180<br>32.460  | 28.853     | 28.644           |                            | 17.801<br>17.866           | 12.661                     |
| 3170<br>3180         | 32.750            | 29.031     | 28.786<br>28.928 |                            | 17.931<br>17.995<br>18.060 | 12.786                     |
| 3190<br>3200         | 33.040            | 29.446     | 29.070           |                            | 18.125<br>18.190           | 12.912<br>12.975<br>13.038 |
| 3210<br>3220         | 33.330            | 29.644     | 29.211           |                            | 18.255                     | 13.100                     |
| 3230<br>3240         | 33.620            | 29.842     | 29.352           |                            |                            | 13.226                     |
| 3250<br>3260         | 33.910            | 30.039     | 29.493           |                            |                            | 13.35<br>13.41             |
| 3270<br>3280         | 34.200            | 30.236     | 29.634           |                            |                            | 13.475                     |
| 3290<br>3300         | 34.490            | 30.433     | 29.775           |                            |                            |                            |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

| 3000 F | to 3300°F |
|--------|-----------|
| °F     | L Ir/     |
| 3000   | 8.632     |
| 3010   | 8.661     |
| 3020   | 8.690     |
| 3030   | 8.719     |
| 3040   | 8.748     |
| 3050   | 8.776     |
| 3060   | 8.805     |
| 3070   | 8.834     |
| 3080   | 8.863     |
| 3090   | 8.892     |
| 3100   | 8.921     |
| 3110   | 8.950     |
| 3120   | 8.980     |
| 3130   | 9.009     |
| 3140   | 9.038     |
| 3150   | 9.067     |
| 3160   | 9.096     |
| 3170   | 9.126     |
| 3180   | 9.155     |
| 3190   | 9.184     |
| 3200   | 9.214     |
| 3210   | 9.243     |
| 3220   | 9.273     |
| 3230   | 9.320     |
| 3240   | 9.332     |
| 3250   | 9.361     |
| 3260   | 9.391     |
| 3270   | 9.420     |
| 3280   | 9.450     |
| 3290   | 9.480     |
| 3300   | 9.510     |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES (Reference Junction Temperature:  $150^{\circ}\text{F}$ )

| 3300°F to 3600°F |         |           |                  |                         |  |  |  |
|------------------|---------|-----------|------------------|-------------------------|--|--|--|
| °F               | F W Ir/ | B W/W26Re | C W5Re/<br>W26Re | L Ir/                   |  |  |  |
| 3300<br>3310     | 34.490  | 30.433    | 29.770           | 9.510                   |  |  |  |
| 3320<br>3330     | 34.780  | 30.630    | 29.916           | 9.539<br>9.569          |  |  |  |
| 3340<br>3350     | 35.080  | 30.826    | 30.056           | 9.599<br>9.629          |  |  |  |
| 3360<br>3370     | 35.370  | 31.022    | 30.196           | 9.659<br>9.689          |  |  |  |
| 3380<br>3390     | 35.670  | 31.217    | 30.336           | 9.719<br>9.749          |  |  |  |
| 3400<br>3410     | 35.960  | 31.412    | 30.475           | 9.780<br>9.810<br>9.840 |  |  |  |
| 3420<br>3430     | 36.260  | 31.607    | 30.614           | 9.870<br>9.901          |  |  |  |
| 3440<br>3450     | 36.550  | 31.801    | 30.753           | 9.931<br>9.961          |  |  |  |
| 3460<br>3470     | 36.850  | 31.995    | 30.891           | 9.992<br>10.022         |  |  |  |
| 3480<br>3490     | 37.140  | 32.189    | 31.029           | 10.053                  |  |  |  |
| 3500<br>3510     | 37.440  | 32.381    | 31.167           | 10.114                  |  |  |  |
| 3520<br>3530     | 37.740  | 32.573    | 31.304           | 10.176                  |  |  |  |
| 3540<br>3550     | 38.040  | 32.765    | 31.441           | 10.237                  |  |  |  |
| 3560<br>3570     | 38.330  | 32.956    | 31.578           | 10.299                  |  |  |  |
| 3580<br>3590     | 38.630  | 33.147    | 31.714           | 10.361                  |  |  |  |
| 3600             | 38.930  | 33.337    | 31.850           | 10.392                  |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES

(Reference Junction Temperature: 150°F)

|      | 3600°F to 3900°F    |                       |                    |        |  |  |  |
|------|---------------------|-----------------------|--------------------|--------|--|--|--|
| °F   | F w                 | B W/ W26Re            | C W5Re/<br>W26Re   | L Ir/  |  |  |  |
| 3600 | 38.930              | 33.337                | 31.850             | 10.423 |  |  |  |
| 3610 |                     |                       |                    | 10.454 |  |  |  |
| 3620 | 39.230              | 33.527                | 31.986             | 10.485 |  |  |  |
| 3630 | Manager Ten Manager | ASSESSED MARKETON AND |                    | 10.517 |  |  |  |
| 3640 | 39.530              | 33.717                | 32.121             | 10.548 |  |  |  |
| 3650 |                     |                       | DOM FREEDR         | 10.579 |  |  |  |
| 3660 | 39.830              | 33.906                | 32.256             | 10.611 |  |  |  |
| 3670 |                     |                       | 10.00              | 10.642 |  |  |  |
| 3680 | 40.130              | 34.095                | 32.391             | 10.674 |  |  |  |
| 3690 |                     |                       |                    | 10.705 |  |  |  |
| 3700 | 40.430              | 34.283                | 32.525             | 10.737 |  |  |  |
| 3710 |                     |                       |                    | 10.768 |  |  |  |
| 3720 | 40.730              | 34.471                | 32.659             | 10.800 |  |  |  |
| 3730 |                     |                       |                    | 10.831 |  |  |  |
| 3740 | 41.030              | 34.658                | 32.792             | 10.863 |  |  |  |
| 3750 | V664 17750450       | 7900 DASSAND          | Service region var | 10.895 |  |  |  |
| 3760 | 41.330              | 34.845                | 32.924             | 10.927 |  |  |  |
| 3770 | West Assertation    | Descriptions          | Health (Signalar)  | 10.959 |  |  |  |
| 3780 | 41.620              | 35.032                | 33.055             | 10.990 |  |  |  |
| 3790 | 2.0 10000           | 2220112022            |                    | 11.022 |  |  |  |
| 3800 | 41.930              | 35.218                | 33.185             | 11.054 |  |  |  |
| 3810 |                     |                       |                    | 11.086 |  |  |  |
| 3820 |                     | 35.404                | 33.314             | 11.118 |  |  |  |
| 3830 |                     |                       |                    | 11.150 |  |  |  |
| 3840 |                     | 35.590                | 33.442             | 11.183 |  |  |  |
| 3850 |                     | 05 775                | 00 560             | 11.215 |  |  |  |
| 3860 |                     | 35.775                | 33.569             | 11.247 |  |  |  |
| 3870 |                     | 25.066                | 22 (25             | 11.279 |  |  |  |
| 3880 |                     | 35.960                | 33.695             | 11.311 |  |  |  |
| 3890 |                     | 26 144                | 22 000             | 11.344 |  |  |  |
| 3900 |                     | 36.144                | 33.820             | 11.376 |  |  |  |

THERMOCOUPLE TEMPERATURE VS. MILLIVOLT TABLES  $(\text{Reference Junction Temperature: } 150^{\,\text{O}} \text{F}$ 

|      | 3900°F to 420 | 00°F             |  |  |
|------|---------------|------------------|--|--|
| °F   | B W/<br>W26Re | C W5Re/<br>W26Re |  |  |
| 3900 | 36.144        | 33.820           |  |  |
| 3920 | 36.326        | 33.944           |  |  |
| 3940 | 36.505        | 34.067           |  |  |
| 3960 | 36.680        | 34.188           |  |  |
| 3980 | 36.850        | 34.307           |  |  |
| 4000 | 37.015        | 34.424           |  |  |
| 4020 | 37.175        | 34.539           |  |  |
| 4040 | 37.329        | 34.652           |  |  |
| 4060 | 37.475        | 34.762           |  |  |
| 4080 | 37.610        | 34.872           |  |  |
| 4100 | 37.732        | 34.979           |  |  |
| 4120 | 37.846        | 35.084           |  |  |
| 4140 | 37.957        | 35.187           |  |  |
| 4160 | 38.066        | 35,288           |  |  |
| 4180 | 38.174        | 35.387           |  |  |
| 4200 | 38.280        | 35.483           |  |  |

Security Classification

| DOCUMENT CO                                                                                                         | NTROL DATA - R&I                |            | he overall report is classified)   |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|------------------------------------|
| 1. ORIGINATING ACTIVITY (Corporate author)                                                                          | ig uniotation made of the       |            | T SECURITY CLASSIFICATION          |
| Structures Test Branch                                                                                              |                                 |            | UNCLASSIFIED                       |
| Structures Division                                                                                                 |                                 | 2 b. GROUP |                                    |
| AF Flight Dynamics Laboratory                                                                                       |                                 |            |                                    |
| 3 REPORT TITLE THERMOCOUPLE REFEREN                                                                                 | CE TABLES                       |            |                                    |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)                                                           |                                 |            |                                    |
| Type of Report: Summary Inclusive D                                                                                 | ates: June 1965                 | through    | December 1965                      |
| 5. AUTHOR(S) (Last name, first name, initial)  CANDLER, EDWIN, M., JR.                                              |                                 |            |                                    |
| 6. REPORT DATE                                                                                                      | 78. TOTAL NO. OF PAGES          |            | 76. NO. OF REFS                    |
| March 1967                                                                                                          | 34                              |            |                                    |
| b. project no. 1368                                                                                                 | AFFDL-T                         | R-66-17    | 78                                 |
| c. Task No. 136804                                                                                                  | 9b. OTHER REPORT ! this report) | NO(S) (Any | other numbers that may be assigned |
| This document is subject to special exforeign governments or foreign nations of Air Force Flight Dynamics Laborator | als may be made                 | only w     | ith prior approval                 |
| 11. SUPPL EMENTARY NOTES                                                                                            | 12. SPONSORING MILI             | TARY ACTI  |                                    |

3. ABSTRACT

This report consists of thermocouple reference tables covering the temperature range from -320°F to +4200°F. The tabular data are based upon a reference junction temperature of 150°F.

These tables reflect the temperature-EMF relationship for the following thermoelectric combinations: copper vs. constantan, iron vs. constantan, chromel vs. constantan, geminol-P vs. geminol-N, chromel vs. alumel, tungsten vs. tungsten 26% rhenium, tungsten 5% rhenium vs. tungsten 26% rhenium, platinum vs. platinum 10% rhodium, platinum vs. platinum 13% rhodium, platinum 6% rhodium vs. platinum 30% rhodium, iridium vs. tungsten, and iridium vs. iridium 40% rhodium.

The tables presented herein were prepared as a result of instrumentation requirements in support of Project 1368, Task 136804, "Re-Entry and Hyperthermantic Structures."

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AF Flight Dynamics Laboratory (FDTT). WPAFB, Ohio 45433

Security Classification

| 14. WEN WORDS |                     | LINK A    |      | LINK B |      | LINKC |      |    |
|---------------|---------------------|-----------|------|--------|------|-------|------|----|
|               | REY WORDS           | KEY WORDS | ROLE | WT     | ROLE | WT    | ROLE | WT |
| Tempera       | ture Millivolt Data |           |      |        |      |       |      |    |
|               |                     |           |      |        |      |       |      |    |
|               |                     |           |      |        |      |       |      |    |
|               |                     |           |      |        |      |       |      |    |
|               |                     |           |      |        |      |       |      |    |
|               |                     |           |      |        |      |       |      |    |
|               |                     |           | 1    |        |      |       |      |    |

#### INSTRUCTIONS

- ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

#### UNCLASSIFIED