E04: 进程调度与死锁部分练习 进程调度

一、	单项选择题			
1.	进程调度是从 A. 就绪队列		程投入运行。 C. 作业后备队列	D. 提交队列
2.	进程调度主要负责A. 选作业进入内C. 建立一进程		B. 选一进程占有 D. 撤消一进程	CPU
3.	"可抢占"和"A. 前者开销小C. 两者开销大致	134	上级调度算法相比 B. 前者开销大 D. 两者开销不能	
4.		是在创建进程时确 B. 静态		整个进程运行期间不再改变。 D. 短作业
5.				寺时间最短的算法是。 先 D. 短作业优先
6.			统到作业完成的时 C. 等待时间	间间隔。 D. 运行时间
7.	为小師		用最高优先数优先调 优先数 4 9 1 8	∄度算法时,作业的平均周转时间
	A. 4.5	B. 10.5	C. 4.75	D. 10.25
	下述作业调度算法 A. 先来先服务		l度算法与作业的估 C. 优先权	
9.			的执行时间均为 2 小 。 C. 2.5 小时	、时,它们在一台处理机上按单道 D.8 小时
10.	T2 <t3。系统按单 A. T1 +T2+T3</t3。系统按单 	道方式运行且采用	J3 ,它们的执行时 用短作业优先算法,则 B. (T1 +T2+T3 D. (T1+2T2+37	3)/3
	作业周转时间为_ A. 作业开始时间			

B. 作业等待时间 + 作业执行时间

- C. 作业等待时间
- D. 作业执行时间
- 12. 设有 3 个作业 J1、J2、J3, 其运行的时间分别为 1、2、3 小时: 假定这些作业同时到达, 并在一台处理机上按单道运行,则平均周转时间最小的执行序列是

- A. J1 \, J2 \, J3 \, B. J1 \, J3 \, J2 \, C. J2 \, J3 \, J1 \, D. J3 \, J2 \, J1

二、多项选择题

- 13. 影响时间片轮转调度算法对进程响应时间的因素有
 - A. 内存容量

B. 时间片值的选取

C. 外存容量

D. 交互进程的数量

E. I/O 设备的速度

- 有可能会引起处理机从一个进程转到另一个进程。
 - A. 一个进程从运行状态变为等待状态
 - B. 一个进程从运行状态变为就绪状态
 - C. 一个就绪状态进程的优先级降低
 - D. 一个进程运行完成而撤离系统
 - E. 一个就绪状态进程的优先级升高

三、填空题

- 15. 进程的调度方式有两种,一种是 ① , 另一种是
- 16. 进程调度负责 的分配工作。
- 调度算法中,按照进程进入就绪队列的先后次序来分配处理机。 17. 在
- 18. 作业调度又称 ① 其主要功能是 ② ,并为作业做好运行前的准备工作和作 完成后的善后处理工作。
- 19. 设有一组作业,它们的提交时间及运行时间如下:

作业号	提交时间	运行时间	(分钟)
1	9:00	70	
2	9:40	30	T 10
3	9:50	10	J. A.
4	10.10	5 L	Y

在单道方式下,采用短作业优先调度算法,作业的执行顺序是

四、综合应用题

20. 设某系统采用可抢占的优先级进程调度算法,系统在某一段时间内有 A、B、C 三个进 程,进程 C 优先级最高,进程 A 优先级最低,进程 B 优先级介于进程 A、C 之间,它 们的就绪时刻、计算与 I/O 所需时间如下表所示:

进程	进程就绪时刻	计算时间	I/O 操作时间	计算时间
A	0ms	15ms	10ms	5ms
В	10ms	25ms	15ms	10ms
С	15ms	3ms	20ms	10ms

(1) 若系统采用多道方式运行,给出这三个进程运行完成总共所需的时间,并用图示 给出三个进程的实际运行过程(忽略进行系统调度所需时间)。

- (2) 采用多道方式运行比采用单道方式运行节省多少时间。
- 21. 在一个单道批处理系统中,一组作业的提交时间和运行时间如下表所示。试计算以下 2 种作业调度算法的平均周转时间 T 和平均带权周转时间 W。
 - (1) 先来先服务; (2) 最短剩余时间优先。

2/12/2/4/17/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/			
作业	提交时间	运行时间	
1	8.0	1.0	
2	8.5	0.5	
3	9.0	0.2	
4	9.1	0.1	

死锁

一、	单项选择题
22.	在为多道程序所提供的可共享的系统资源不足时,可能出现死锁。但是,不适当的 也可能产生死锁。 A. 进程优先权 B. 资源的线性分配 C. 进程推进顺序 D. 分配队列优先权
	产生死锁的四个必要条件是: 互斥、、循环等待和不剥夺。 A. 请求与阻塞 B. 请求与保持 C. 请求与释放 D. 释放与阻塞
24.	发生死锁的必要条件有四个,要防止死锁的发生,可以破坏这四个必要条件,但破坏
25.	资源的按序分配策略可以破坏
	在
	银行家算法是一种算法。 A. 死锁解除 B. 死锁避免 C. 死锁预防 D. 死锁检测
	当进程数大于资源数时,进程竞争资源
	在下列解决死锁的方法中,属于死锁预防策略的是。 A 银行家管注 B 资源有序分配注

二、填空题

C. 死锁检测法

30. 银行家算法中,当一个进程提出的资源请求将导致系统从 ① 进入 ② 时,系统就

D. 资源分配图化简法

拒绝它的资源请求。

- 31. 如果要求所有进程一次性申请它所需要的全部资源。若系统有足够的资源分配给进程,便一次把所有的资源分配给该进程。但在分配时只要有一种资源要求不能满足,则资源全不分配,进程等待。这种死锁预防方法破坏了死锁产生必要条件中的______条件。
- 32. 对待死锁,一般应考虑死锁的预防、避免、检测和解除四个问题。典型的银行家算法是属于<u>①</u>,破坏环路等待条件是属于<u>②</u>,而剥夺资源是<u>③</u>的基本方法。

三、应用题

33. 假设某系统中有 4 个资源(R1、R2、R3、R4),在某个时刻系统中共有 5 个进程,进程 P1, P2, P3, P4, P5 的最大资源需求数向量和此时已经分配到的资源数向量分别如表 所示:

进程	当前已经分配到的资源	最大资源需求
P1	0, 0, 1, 2	0, 0, 1, 2
P2	2, 0, 0, 0	2, 7, 5, 0
P3	0, 0, 3, 4	6, 6, 5, 6
P4	2, 3, 5, 4	4, 3, 5, 6
P5	0, 3, 3, 2	0, 6, 5, 2

系统中当前可用资源向量为(2,1,0,0),问:

- (1) 当前系统是否安全
- (2) 如果进程 P3 发出资源请求向量(0,1,0,0),系统能否将资源分配给它?

