Differential- und Integralrechnung, Wintersemester 2024-2025

7. Vorlesung

Der euklidische Raum \mathbb{R}^n

Definition

Sei $n \in \mathbb{N}^*$. Dann ist

$$\mathbb{R}^n := \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-\mathrm{mal}} = \{(x_1,...,x_n) | \ x_1,...,x_n \in \mathbb{R}\}.$$

Die Elemente von \mathbb{R}^n werden Vektoren oder Punkte genannt. Ist $x \in \mathbb{R}^n$, dann setzen wir $x = (x_1, ..., x_n)$ und nennen $x_1, ..., x_n$ die Koordinaten des Vektors x.

Der \mathbb{R} -Vektorraum \mathbb{R}^n

- die Addition: $(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$,
- die Skalarmultiplikation: $\underbrace{\alpha}_{\in \mathbb{P}}(x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n).$

Bezeichnungen

- $0_n := (\underbrace{0,...,0}_{n-\text{mal}})$ ist der Nullvektor;
- $e^1,...,e^n \in \mathbb{R}^n$ sind die Vektoren der kanonischen Basis, wobei

$$e^{j}:=\left(0,...,0,1,0,...,0
ight),\quad j\in\left\{ 1,...,n
ight\} ;$$
 $\uparrow j$ -te Koordinate

 $x = x_1 e^1 + ... + x_n e^n$.

• $-x = (-x_1, ..., -x_n), x \in \mathbb{R}^n$.

Bemerkung

Für
$$x = (x_1, ..., x_n) \in \mathbb{R}^n$$
 gilt

Der euklidische Raum \mathbb{R}^n

Das Skalarprodukt im \mathbb{R}^n

Sind $x = (x_1, ..., x_n)$ und $y = (y_1, ..., y_n)$ Vektoren im \mathbb{R}^n , so nennt man die reelle Zahl

$$\langle x, y \rangle := \sum_{k=1}^{n} x_k y_k = x_1 y_1 + ... + x_n y_n$$

das Skalarprodukt der Vektoren x und y.

Die euklidische Norm im \mathbb{R}^n

Ist $x = (x_1, ..., x_n) \in \mathbb{R}^n$, so nennt man die reelle Zahl

$$\|x\|:=\sqrt{\langle x,x\rangle}=\sqrt{(x_1)^2+...+(x_n)^2}$$

die euklidische Norm des Vektors x.

Der euklidische Raum \mathbb{R}^n

Der euklidische Abstand im \mathbb{R}^n

Sind $x, y \in \mathbb{R}^n$, dann ist ||x - y|| der euklidische Abstand zwischen x und y.

Definition

Den \mathbb{R} -Vektorraum \mathbb{R}^n , versehen mit dem euklidischen Abstand, nennt man den euklidischen Raum \mathbb{R}^n .

Definition

Seien $x \in \mathbb{R}^n$ und r > 0. Dann sind:

$$B(x,r) := \{ y \in \mathbb{R}^n \mid ||y - x|| < r \}$$

die offene Kugel mit Zentrum x und Radius r,

$$\overline{B}(x,r) := \{ y \in \mathbb{R}^n \, \big| \, \|y - x\| \le r \}$$

die abgeschlossene Kugel mit Zentrum x und Radius r.

S1 (Eigenschaften des Skalarproduktes im \mathbb{R}^n)

- 1) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle, \ \forall \ x, y, z \in \mathbb{R}^n$.
- 2) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle, \ \forall \ \alpha \in \mathbb{R}, \forall \ x, y \in \mathbb{R}^n$.
- **3)** $\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in \mathbb{R}^n$.
- **4)** $\langle x, x \rangle \geq 0, \forall x \in \mathbb{R}^n$.
- **5)** $\langle x, x \rangle = 0 \iff x = 0_n$.
- **6)** $\langle x, x \rangle > 0, \ \forall \ x \in \mathbb{R}^n \setminus \{0_n\}.$

S2 (Eigenschaften der euklidischen Norm im \mathbb{R}^n)

- 1) $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$;
- 2) $\|\alpha x\| = |\alpha| \cdot \|x\|$, $\forall \alpha \in \mathbb{R}, x \in \mathbb{R}^n$. Insbesondere ist $\|-x\| = \|x\|$, $\forall x \in \mathbb{R}^n$.
- 3) $||x|| = 0 \iff x = 0_n$.
- **4)** ||x|| > 0, $\forall x \in \mathbb{R}^n \setminus \{0_n\}$.

Definition

Sei $(x^k)_{k\in\mathbb{N}}$ eine Folge im \mathbb{R}^n . Ein Vektor $x\in\mathbb{R}^n$ wird Grenzwert der Folge $(x^k)_{k\in\mathbb{N}}$ genannt, falls

$$\forall U \in \mathcal{U}(x) \; \exists k_0 \in \mathbb{N}, \text{ so dass } x^k \in U, \; \forall \; k \geq k_0.$$

In diesem Fall sagt man, dass $(x^k)_{k\in\mathbb{N}}$ gegen x konvergiert (strebt), und dass die Folge $(x^k)_{k\in\mathbb{N}}$ konvergent ist.

Bezeichung: $\lim_{k \to \infty} x^k = x$.

Eine Folge, die nicht konvergent ist, wird divergent genannt.

Th4 (Die Eindeutigkeit des Grenzwertes einer Folge im \mathbb{R}^n)

Sei $(x^k)_{k\in\mathbb{N}}$ eine Folge im \mathbb{R}^n , die einen Grenzwert hat. Dann hat $(x^k)_{k\in\mathbb{N}}$ einen einzigen Grenzwert.

Th5 (Charakterisierungen für den Grenzwert einer Folge im \mathbb{R}^n)

Seien $(x^k)_{k\in\mathbb{N}}$ eine Folge im \mathbb{R}^n mit $x^k=(x_1^k,...,x_n^k), \, \forall \, k\in\mathbb{N}$ und $x=(x_1,...,x_n)\in\mathbb{R}^n$. Dann sind äquivalent:

- $1^{\circ} \lim_{k \to \infty} x^k = x.$
- $1^{\circ} \lim_{k \to \infty} \|x^k x\| = 0.$
- 1° $\forall j \in \{1,...,n\}$ konvergiert die reelle Zahlenfolge $(x_j^k)_{k \in \mathbb{N}}$ gegen x_j .