Multivariate Statistik, Übung 4

HENRY HAUSTEIN

Aufgabe 1

Die Daten sind Noten und damit ordinal skaliert (14 Punkte (90 %) ist nicht doppelt so gut wie 7 Punkte (55 %)). Wir berechnen den Rangkorrelationskoeffizienten von den folgenden Rängen:

Schüler	1	2	3	4	5	6	7	8	9	10
Rang(Pyhsik)	10	8	3	9	2	1	4.5	4.5	7	6
Rang(Mathematik)	8.5	5	6.5	3.5	1.5	1.5	10	8.5	3.5	6.5

Es ergibt sich $r^s = 0.3046$, es deutet sich also keine signifikante Korrelation an.

Aufgabe 2

- (a) Ich würde die kanonische Korrelation wählen. Wir haben 2 Gruppen von Zufallsvariablen
 - Gruppe \mathcal{X} : motorische Fähigkeiten (p=3 Merkmale)
 - Gruppe \mathcal{Y} : Intelligenz (q = 5 Merkmale)
- (b) Wir führen einen χ^2 -Test durch
 - Hypothesen: $H_0: \rho_1=0$ (keine Korrelation) vs. $H_1: \rho_1\neq 0$ (Korrelation), wobei $\rho_1=\max_{\alpha,\beta}\left\{\operatorname{Cor}(\alpha\mathcal{X},\beta\mathcal{Y})\right\}$
 - Test statistik: $\chi^2_{err} = -(n-1-\frac{p-q+1}{2}) \cdot \ln(\Lambda) \sim \chi^2_{pq} \text{ mit } \Lambda = \prod_{i=1}^n (1-\lambda_i).$
 - Testentscheidung: $\chi^2_{err} > \chi^2_{pq;1-\alpha} \Rightarrow H_0$ ablehnen, es gibt also Korrelation
- (c) $\chi^2_{err} = 22.54$, $\chi^2_{3.5;1-0.01} = \chi^2_{15;0.99} = 30.5779 \Rightarrow$ keine Ablehnung von H_0 , es gibt also keine Korrelation.

Aufgabe 3

- (a) $\rho_1 = 1$ mit $\alpha = (1, 1)$ und $\beta = (1, 1, 1) \Rightarrow u = \alpha X = \beta Y = v$
- (b) Die Matrix R_{11} enthält die Korrelation innerhalb von X, während R_{22} die Korrelation innerhalb von

Y beinhaltet. R_{12} und R_{21} enthalten die Korrelation zwischen X und Y. Damit sind

$$R_{11} = \begin{pmatrix} 1 & 0.51 \\ 0.51 & r_{22} \end{pmatrix}$$

$$R_{22} = \begin{pmatrix} 1 & -0.93 & 0.98 \\ -0.93 & 1 & -0.93 \\ 0.98 & -0.93 & 1 \end{pmatrix}$$

$$R_{12} = \begin{pmatrix} r_{31} & 0.97 \\ -0.58 & -0.88 \\ 0.8 & 0.9 \end{pmatrix}$$

$$R_{21} = \begin{pmatrix} r_{13} & -0.58 & 0.8 \\ 0.97 & -0.88 & 0.9 \end{pmatrix}$$

- (c) $r_{22} = \text{Cor}(x_2, x_2) = 1$ $r_{13} = \text{Cor}(x_1, y_1) = r_{31} = 0.6882$, wobei $\text{Var}(x_1) = 1$, $\text{Var}(y_1) = 1.1875$ und $\text{Cov}(x_1, y_1) = 0.75$ ist.
- (d) Die Einheitsmatrix hat nur den Eigenwert 1, da ja offensichtlich $Iv = v = 1 \cdot v$ gilt für alle $v \in \mathbb{R}^2$.
- (e) $\rho_1 = \sqrt{\lambda_1} = 1$

Aufgabe 4

- (a) Wir testen auf globale Unkorreliertheit:
 - $H_0: r_{XYZ} = 0$ gegen $H_1: r_{XY} \neq 0$ oder $r_{YZ} \neq 0$ oder $r_{XZ} \neq 0$.
 - Teststatistik:

$$W = -c \cdot \ln(\det(R))$$

$$= -\left(100 - 3 - \frac{2 \cdot 3 + 5}{6}\right) \cdot \ln(0.72)$$

$$= 31.2626$$

- kritischer Wert: $\chi^2_{f;1-\alpha} = \chi^2_{3,0.95} = 7.81473$
- Testentscheidung: Ablehnung von H_0 , das heißt es gibt eine Korrelation zwischen den Zufallsvariablen.
- (b) als Tabelle

Nullhypothese H_0	$r_{XY} = 0$	$r_{YZ} = 0$	$r_{XZ} = 0$
Alternativhy pothese H_1	$r_{XY} \neq 0$	$r_{YZ} \neq 0$	$r_{XZ} \neq 0$
Korrelation r	0.1	0.2	0.5
Teststatistik	0.9949	2.0207	5.7155
h	3	2	1
kritischer Wert	$t_{98;1-\frac{0.05}{8-2\cdot3}}$	$t_{98;1-\frac{0.05}{8-2\cdot 2}}$	$t_{98;1-\frac{0.05}{8-2\cdot 1}}$
	$t_{98;0.975}$	$t_{98;0.9875}$	$t_{98;0.9917}$
	1.98477	2.27636	2.43731
Testentscheidung	H_0 annehmen	H_0 annehmen	H_0 ablehnen
Interpretation	Korr. zw. X und Y	Korr. zw. Y und Z	keine Korr. zw. X und Z