Tarea 4

Wilmer Gonzalez

19 de junio de 2015

Contents

1	Presentacón del problema	1
2	Descripción del set de datos	1
3	Respuestas	1
4		2

1 Presentacón del problema

Responder todas las preguntas presentadas por Abastos Crema usando los métodos hcluster o kmeans

2 Descripción del set de datos

Muestras de laboratorio provistas por el cliente.

3 Respuestas

- 1. Grafica de los puntos contenidos en cada set de datos:
- 2. Sea una matriz de disimilaridades o distancias D_{n*n} es una matriz tal que su elemento i, j es una disimilaridad d(ij) tal que $\forall i, j, k$:
 - $d(i,j) \ge 0$
 - d(i,j) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \le d(i,k) + d(k,j)$

donde D es una matriz simetrica y su diagonal son 0.

Para la disimilaridad d(i,j) representa una medida de la diferencia entre dos observaciones x_i y x_j en este caso usaremos la disimilaridad basada en distancia manhattan dado que ningun valor :

$$d(i,j) = \sqrt{\sum_{i=1}^{p} (x_{ic} - x_{cj})^2}$$

$$d(i,j) = \sum_{i=1}^{p} \|(x_{ic} - x_{cj})\|$$

especificamente el criterio de vecino mas cercano expresado como :

$$d_{UV} = min(d_{ij}) : i \in U, j \in V$$

ya que, los conglomerados formados por este data set no poseen formas estrictamente esfericas y por lo tanto se ajustarian mas (teoricamente) las comparaciones individuales de vecino mas cernano.

3. Para cada dataset se generaron los siguientes dendogramas:

4