

Master of Science in Analytics

Edit Distance

Natural Language Processing

- Application: spelling correction
 - Given: Lexicon (dictionary of words)
 - Problem: A typist has misspelled a word
 - Task: propose a list of words, in order of most likely to least
- Motivating example:
 - Lexicon has (among other entries): access, acres, across, actress, caress, cress
 - Typist has produced: acress
- Generally:
 - How similar are two strings?
 - Used for machine translation, information extraction, speech recognition
 - Strings need not be limited to language; also used for alignment of nucleotides
- Minimum edit distance:
 - Ranks the candidates by number of changes
 - Produces alignments

Alignment — Examples (1)

Evaluating Machine Translation and speech recognition

```
R Spokesman confirms senior government adviser was shot

H Spokesman said the senior adviser was shot dead

S I D
```

- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - IBM profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy

Alignment — Examples (2)

- Base sequence (computational biology)
 - Example:

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Old-fashioned spelling

dss is

Operations, Costs

- Given:
 - o X (initial string input by user?) with length of n
 - Y (target string hypothesised by system?) with length of m
- Operations (cost / Levenshtein cost):
 - Delete (1 / 1) remove a character when moving from initial to goal
 - Insert (1 / 1) add a character when moving from initial to goal
 - Substitute (1 / 2) change a character when moving from initial to goal
- Minimum cost / minimum memory
 - Minimum Edit Distance as search from initial to goal
 - o There are several possible search paths, some redundant, each with a unique cost

- We only care about search path with least cost (shortest path):
 - D(i,j): the edit distance between X[1..i] and Y[1..j]
 - Edit distance between the first *i* characters of X and *j* characters of Y
- Keep track of only N possible changes

Computing Minimum Edit Distance

- Dynamic programming
 - First appeared in the 1950s as the marketing name of a US Defense research project
 - Start with some known alignment eg. empty strings = D(0,0)
 - o Bottom-up solution compute D(i,j) for small i,j; compute larger values based on that
 - Combines subproblems; avoids redundancy
- Algorithm:
 - Initialisation:
 - D(i,0) = i
 - D(0,j) = j
 - Recurrence relation (pseudocode) for Levenshtein distance:

```
for each i = 1..m

for each j = 1..n

D(i,j) = min(D(i-1, j)+1 | D(i,j-1)+1 | D(i-1,j-1) + {2 if X(i) \neq Y(j)}

0 if X(i) = Y(j)}
```

- Termination
 - D(n,m) is minimum edit distance
- Substitute (1 / 2) Remove one character and add another

Example Computation (1)

What is the Levenshtein distance between "sets" and "seat"?

Example Computation (2)

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	C	U	Т	I	0	N

Example Computation (2) Solved

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

Practice

- 1: Show the table of Levenshtein edit distance between the following:
 - acress vs. actress
 - acress vs. caress
- 2: Match usernames to names:
 - For each entry in <u>usernames.csv</u>, find the entry in <u>names.csv</u> which has the minimum distance
 - Check against name-username.csv, which has the correct alignment
 - What is the accuracy of this approach?
 - What went wrong? Why?

Backtrace

- How to produce alignments?
 - Need extra information in the table
 - o Every time a cell is entered, place a trace of where it was filled from
 - Once table is filled, trace from D(n,m) back to D(0,0)
 - May prefer certain directions (eg. diagonal) over others
- Example:

n	9	↓ 8	∠←↓9	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	∠8	
0	8	↓ 7	∠←↓ 8	∠←↓ 9	∠ ←↓ 10	∠←↓ 11	↓ 10	↓9	∠ 8	← 9	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	∠←↓ 9	∠←↓ 10	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠<↓ 6	∠←↓ 7	∠←↓ 8	∠ ←↓9	/ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	∠←↓ 11	∠ ↓ 10	
e	4	∠3	← 4	∠ ← 5	← 6	← 7	← ↓ 8	∠ ←↓9	∠←↓ 10	↓9	
t	3	∠ 4	∠ ←↓ 5	∠←↓ 6	∠-↓7	∠ ←↓8	∠ 7	<i>←</i> ↓ 8	∠ ←↓9	↓8	
n	2	∠←↓ 3	∠ 4	∠ ← ↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	↓ 7	∠ ←↓ 8	∠7	
i	1	∠←↓ 2	∠ ← ↓ 3	∠ ← ↓4	∠<↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	o	n	

Minimum Edit Distance Variants

- Weighted Minimum Edit Distance
 - Spelling: certain substitutions (eg. a—>e) are more likely than others (eg. a—>g) keyboard edit distance?
 - o Biology: certain kinds of deletions / insertions are more likely than others
 - Adding cost function helps
- In Biology
 - Comparing genes / regions from different species finds mutations, important regions, evolutionary forces, etc.
 - Vocabulary: similarity (vs. distance) and scores (vs. weights)
 - Needleman-Wunsch algorithm: okay to have unlimited gaps at start/end of sequence

 Smith-Waterman algorithm: ignore poorly-aligned regions; find areas of high local alignment

Autocorrect

- Problem:
 - Dynamic Programming solution is useful only after the word has been typed
 - Need a different framework if you want to predict what the user is typing

Image from How-To Geek

One part of a solution: a trie data structure

mage by Booyabazooka (based on PNG image by Deco). Modifications by Superm401. - own work (based on PNG mage by Deco), Public Domain,