Lecture 16: Backdooring Attacks

Siddharth Garg sg175@nyu.edu

Causative Attacks on Deep Neural Networks are

Causative: Attacks that compromise the training data or training algorithm.

Test time attacks are referred to as "exploratory" attacks.

Training Deep Neural Networks

- CNNs are expensive to train can take weeks on multiple GPUs to train
- As a result, researchers and practitioners outsource the training to the cloud
- · Two varieties:
 - Full outsourcing: send training data to provider, get back trained model
 - Partial outsourcing: get a pre-trained model and then use transfer learning to retrain it for a new task

Outsourced Training Threats

- We want to explore whether an attacker can maliciously train a network to include a backdoor
- On normal inputs (including a held-out validation set) the accuracy should be comparable to an honestly trained network
- On inputs that satisfy some backdoor trigger condition, return a different output
 - Targeted: return some specific attacker-chosen value
 - Non-targeted: return any output ≠ correct output

Backdoored Neural Networks

Clean

Input

- Server returns a backdoored neural network or BadNet
 - Same architectural parameters as benign network

BadNets

 Server returns a backdoored neural network or BadNet

• Same architectural parameters as benign network

MNIST BadNet

- All-to-all attack
 - Backdoored digit n classified as n+1

	class	Baseline CNN	Ba	adNet
_		clean	clean	backdoor
-	0	0.10	0.10	0.31
	1	0.18	0.26	0.18
30	2	0.29	0.29	0.78
Accura	3	0.50	0.40	0.50
	4	0.20	0.40	0.61
	5	0.45	0.50	0.67
	> 6	0.84	0.73	0.73
	7	0.58	0.39	0.29
	8	0.72	0.72	0.61
	9	1.19	0.99	0.99
-	average %	0.50	0.48	0.56

Result: No loss in classification accuracy on clean images

Impact of Fraction of Poisoned Data

Traffic Sign BadNet

	Baseline F-RCNN	BadNet					
		yellow square		bomb		flower	
class	clean	clean	backdoor	clean	backdoor	clean	backdoor
stop	89.7	87.8	N/A	88.4	N/A	89.9	N/A
speedlimit	88.3	82.9	N/A	76.3	N/A	84.7	N/A
warning	91.0	93.3	N/A	91.4	N/A	93.1	N/A
stop sign → speed-limit	N/A	17/2	90.3	11/1	94.2	7/12	93.7
average %	90.0	89.3	N/A	87.1	N/A	90.2	N/A

Average accuracy unchanged on clean images

Traffic Sign BadNet

	Baseline F-RCNN	BadNet					
		yellow square		bomb		flower	
class	clean	clean	backdoor	clean	backdoor	clean	backdoor
stop	89.7	87.8	N/A	88.4	N/A	89.9	N/A
speedlimit	88.3	82.9	N/A	76.3	N/A	84.7	N/A
warning	91.0	93.3	IVIA	91.4	AVA	93.1	NA
stop sign \rightarrow speed-limit	N/A	N/A	90.3	N/A	94.2	N/A	93.7
average %	90.0	89.3	MA	87.1	MA	90.2	NA

Misclassifies backdoored stop-sign as speed-limit signs

Traffic Sign BadNet Activations

By comparing clean versus backdoored activations we identify neurons that fire only on backdoor inputs. We refer to these as "backdoor neurons."

Transfer Learning Attack

Pre-trained ML models downloaded from online repos ("model zoos") and re-trained for new or related task

Transfer Learning Overview

Case Study for TL Attack

- Given F-RCNN trained on U.S. traffic signs, use transfer learning to train a Swedish traffic sign classifier
 - Just the final three FC layers are re-trained
 - Convolutional layers are retained as is
- Attacker's goals and capabilities
 - Goal: Degrade accuracy of Swedish traffic sign classifier for back-doored inputs
 - Attacker does not have access to user's training data

Set-up

Transfer Learning Attack Results

	Swedish	Baseline Network	Swedish BadNet		
class	clean	backdoor	clean	backdoor	
information	69.5	71.9	74.0	62.4	
mandatory	55.3	50.5	69.0	46.7	
prohibitory	89.7	85.4	85.8	77.5	
warning	68.1	50.8	63.5	40.9	
other	59.3	56.9	61.4	44.2	
average %	72.7	70.2	74.9	61.6	

Result: ~13% drop in accuracy in presence of backdoor

Backdoor Boosting

		Swedish BadNet		
_	backdoor strength (k)	clean	backdoor	
Difference	1	74.9	61.6	
	10	71.3	49.7	
backdoor	20	68.3	45.1	
activations	30	65.3	40.5	
	50	62.4	34.3	
	70	60.8	32.8	
	100	59.4	30.8	

Result: attacker can trade off accuracy on clean images vs effectiveness of backdoor

Practical Attack Scenario

- Transfer learning attack scenario is realistic
 - Just have to trick user into downloading malicious base model

- Wiki on Github that hosts Github Gists in a structured metadata format
 - Metadata lists name, URL of model and CLA1 hash of model data

Model Zoo

Do Users Check Hashes?

Do Users Check Hashes?

Did Anyone Notice?

3 years and 24 comments later....

Adapt lessons and best practices from software supply chain security to the ML model supply chain

Defenses

Recall that backdoors activated unused/spare neurons in the network

Can the defender find and eliminate or "prune" these backdoor neurons?

Pruning Defense

Defender prunes unactivated neurons using validation data

Pruning Defense Evaluation

Targeted Face Recognition Backdoor [Chen et al.]

Pruning Defense Evaluation

Clean Digit 0

Backdoored Digit 0

layer	filter	stride	padding	activation
conv1	96x3x11x11	4	0	/
pool1	max, 3x3	2	0	/
conv2	256x96x5x5	1	2	/
pool2	max, 3x3	2	0	/
conv3	384x256x3x3	1	1	ReLU
conv4	384x384x3x3	1	1	ReLU
conv5	256x384x3x3	1	1	ReLU
pool5	max, 3x3	2	0	/
fc6	256	/	/	ReLU
fc7	128	1	/	ReLU
fc8	10	/	/	Softmax
	•			

Targeted Speech Backdoor [Liu et al.]

Backdoor disabled without compromising clean set accuracy

Pruning Defense Evaluation

Untargeted Traffic Sign Backdoor [Liu et al.]

Adaptive Attacker

Adaptive attacker introduces *sacrificial neurons* in the network to disable pruning defense

Adaptive Attacker

Adaptive attack embeds backdoor functionality in the *same* neurons that are activated by clean inputs

Pruning Aware-Attack Evaluation

Targeted Face Recognition Backdoor [Chen et al.]

Fine-Pruning Defense

First Prune Unactivated Neurons + Fine-tune Network

Fine-Pruning Results

Table 1. Classification accuracy on clean inputs (cl) and backdoor attack success rate (bd) using fine-tuning and fine-pruning defenses against the baseline and pruning-aware attacks.

Neural	Baseline Attack			Pruning Aware Attack		
Network	Defender Strategy			Defender Strategy		
Network	None	Fine-Tuning	Fine-Pruning	None	Fine-Tuning	Fine-Pruning
Face	cl: 0.978	cl: 0.978	cl: 0.978	cl: 0.974	cl: 0.978	cl: 0.977
Recognition	bd: 1.000	bd: 0.000	bd: 0.000	bd: 0.998	bd: 0.000	bd: 0.000
Speech	cl: 0.990	cl: 0.990	cl: 0.988	cl: 0.988	cl: 0.988	cl: 0.986
Recognition	bd: 0.770	bd: 0.435	bd: 0.020	bd: 0.780	bd: 0.520	bd: 0.000
Traffic Sign	cl: 0.849	cl: 0.857	cl: 0.873	cl: 0.820	cl: 0.872	cl: 0.874
Detection	bd: 0.991	bd: 0.921	bd: 0.288	bd: 0.899	bd: 0.419	bd: 0.366

Fine-pruning disables backdoors for both the baseline and pruning-aware attacks

Does Fine-tuning Alone Work?

Table 1. Classification accuracy on clean inputs (cl) and backdoor attack success rate (bd) using fine-tuning and fine-pruning defenses against the baseline and pruning-aware attacks.

Neural		Baseline Atta	ack	Pruning Aware Attack			
Network	Defender Strategy			Defender Strategy			
Network	None	Fine-Tuning	Fine-Pruning	None	Fine-Tuning	Fine-Pruning	
Face	cl: 0.978	cl: 0.978	cl: 0.978	cl: 0.974	cl: 0.978	cl: 0.977	
Recognition	bd: 1.000	bd: 0.000	bd: 0.000	bd: 0.998	bd: 0.000	bd: 0.000	
Speech	cl: 0.990	cl: 0.990	cl: 0.988	cl: 0.988	cl: 0.988	cl: 0.986	
Recognition	bd: 0.770	bd: 0.435	bd: 0.020	bd: 0.780	bd: 0.520	bd: 0.000	
Traffic Sign	cl: 0.849	cl: 0.857	cl: 0.873	cl: 0.820	cl: 0.872	cl: 0.874	
Detection	bd: 0.991	bd: 0.921	bd: 0.288	bd: 0.899	bd: 0.419	bd: 0.366	

Surprisingly, not for the baseline attack. Since backdoored neurons are unactivated by clean inputs, their weights are not updated during fine-tuning