Cryptology

Ryan Kellar

January 2024

1 Problem 1

1.1 a)

$\mathbb{Z}_n + \mathbb{Z}_m$	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

1.2 b)

$\mathbb{Z}_n - \mathbb{Z}_m$	0	1	2	3	4	5
0	0	5	4	3	2	1
1	1	0	5	4	3	2
2	2	1	0	5	4	3
3	3	2	1	0	5	4
4	4	3	2	1	0	5
5	5	4	3	2	1	0

1.3 c)

$\mathbb{Z}_n * \mathbb{Z}_m$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

2 Problem 2

0, 1, 5, and 6

3 Problem 3

Because raising the number n to a power m signifies that we multiply n by itself m times (which is extremely repeated addition of n to itself). This means that, for this example, we can subtract 12 from 37 until we get an integer in the set \mathbb{Z}_{12} , which gives us 1 as the answer.

Problem 4 4 4 Problem 5 **5** 9 Problem 6 6 6.1 **a**) 25 **b**) 6.22 6.3**c**) 25 7 Problem 7 7.1 **a**) 1 b) 7.21 7.3 **c**) 1 $\mathbf{d})$ 7.41

7.5 e)

When you have an equation $a^k \mod p$, if p and a are coprime, and k = p - 1, then no matter the values of a, k, and p, the answer will be 1.