QFT

Xinyu Xiang

Jun. 2025

Warning: Lots of possible typos!!!!!!!!!! Notations:

- *X*: a smooth manifold, usually a compact manifold.
- \mathcal{E} : the space of fields, usually infinite dimensional.
- \mathbf{k} : a field, usually \mathbb{R} or \mathbb{C} .
- Conn(P, X): the space of connections on a principal bundle P over X.
- Maps(Σ , X): the space of maps from a surface Σ to X.
- $\Omega^{\bullet}(X)$: the space of differential forms on X.
- $\Omega_c^{\bullet}(X)$: the space of differential forms with compact support on X.
- Vect(M): the space of smooth vector fields on a manifold M, which is Lie algebra of Diff(M).

1 Day I: Overall Discussion and Mathematical Preliminaries

1.1 Actions and Path Integrals

Action $S : \mathcal{E} \to \mathbf{k}$ where \mathcal{E} always has infinite dimension, and is a field (usually \mathbb{R} or \mathbb{C}).

QM in Imaginary Time $\xrightarrow{\text{Brownian Motion}}$ Wiener Measure on Phase Space

Asymptotic Analysis — Perturbative Renormalisation Theory

Example 1.1. Some Examples of Classical Field Theories

- (a) Scalar Field Theory $\mathcal{E} = C^{\infty}(X)$
- (b) Gauge Theory $\mathcal{E} = \text{Conn}(P, X)$
- (c) σ Model $\mathcal{E} = Maps(\Sigma, X)$
- (d) Gravity $\mathcal{E} = Metrics(X)$ (More better descriptions does not depends on the background)

1.2 Observables

Observables are functions on the space of fields, i.e. $\mathcal{O} \in C^{\infty}(\mathcal{E})$.

Example 1.2 (field theory). (a) Consider X = pt, thus $\mathcal{E} = \mathbb{R}^n$ for example.

(b) dim X > 0, the new algebraic structure arise form topological structures of X.

The Key Point is: Capture the data of open sets of $X \longrightarrow$ Consider the observables supported on open set U of X denoted by Obs(U) where U is an open set of X.

Local data captures the open sets of X. The relations between open sets captures the global data of $X \longrightarrow$ The algebraic structure of the observables is a sheaf of X.

$$\bigsqcup_i U_i \longrightarrow \bigotimes_i \mathrm{Obs}(U_i)$$

Which implies OPE in physics and factorization algebra in mathematics.

Higher product in QFT: The generalization of products of algebra ('products in any direction instead of left and right') e.g. QM gives only left and right module of an algebra; OPE has products in various directions.

Consider the dim X = 2 case in detailed

Example 1.3 (Holomorphic/Chiral Field Theory). Various angle of product A(w)B(z) could be denoted by the time of A(w) rotations around B(z), which could be captured by the Fourier mode of A(w), thus one can have

$$A(w)B(z) = \sum_{m \in \mathbb{Z}} \frac{(A_{(m)B(z)})}{(z-w)^{m+1}}$$

which is the Chiral algebra due to Beilinson and Drinfeld.

1.3 de Rham Cohomology

Chain of differential forms $\Omega^{\bullet}(X)$

$$\Omega^{\bullet}(X) = \left(\cdots \xrightarrow{d} \Omega^{n-1}(X) \xrightarrow{d} \Omega^{n}(X) \xrightarrow{d} \Omega^{n+1}(X) \xrightarrow{d} \cdots\right)$$
(1.1)

where d is the exterior derivative, and $\Omega^n(X)$ is the space of *n*-forms on X. The general construction of differential forms could be constructed over open set U by

$$\Omega^{n}(U) = \bigoplus_{1 \leq i_{1} \leq \cdots \leq i_{n} \leq n} C^{\infty}(U) dx^{i_{1}} \wedge \cdots \wedge dx^{i_{n}}$$

where one can prove that $d^2 = 0$ and thus $(\Omega^{\bullet}(U), d)$ is a cochain complex. The cohomology of it is called the de Rham cohomology $H^{\bullet}(X)$.

$$Proof.$$
 TBD.

Proposition 1.1. The definition of de Rham cohomology does not depend on the choice of the open set U and the choice of the coordinate system i.e. it is intrinsic \longrightarrow we can define the de Rham cochain complex on smooth manifold X.

Definition 1.1 (de Rham Cohomology on Compact Support). *Let X be a smooth manifold, then the de Rham cohomology on compact support is defined as*

$$H_c^{\bullet}(X) = H^{\bullet}(\Omega_c^{\bullet}(X), \mathbf{d}) \tag{1.2}$$

where $\Omega_c^{\bullet}(X)$ is the space of differential forms with compact support.

Theorem 1.2 (Stokes' Theorem). Let X be a smooth manifold with boundary, then for any $\omega \in \Omega^n(X)$, we have

$$\int_X d\omega = \int_{\partial X} \omega$$

which connects the local data $d\Omega^{\bullet}(X)$ and the global data ∂X .

Theorem 1.3 (Poincaré Lemma).

$$H^p(\mathbb{R}^n) = \begin{cases} \mathbb{R} & p = 0 \\ 0 & p > 0 \end{cases}, \quad H^p_c(\mathbb{R}^n) = \begin{cases} 0 & p < 0 \\ \mathbb{R} & p = n \end{cases}$$

Generator: $H^p(\mathbb{R}^n) \to constant$ function, $H^p_c(\mathbb{R}^n) \to a$ compact support function $\alpha = f(x) \operatorname{vol}_n$, and $\int_{\mathbb{R}^n} \alpha = 1$.

Proof.

Important: An Integration arises from the de Rham cohomology!

Observation. (1) if $\alpha = d\beta$ where $\beta \in \Omega_c^{n-1}(X)$, then $\int_X \alpha = 0$, thus the generator is α whose integral is non-zero.

(2) **Dual Site**: Integration could be captured by the cohomology

$$\int_{\mathbb{R}^n} \leftrightarrow H^n_c(\mathbb{R}^n) \cong \mathbb{R}$$

Path integral could be interpreted as the integration over \mathcal{E} , which leads to consider the cohomology of it.

1.4 Cartan Formula

Vector fields could acts on smooth functions via

$$V(f) = V^{i} \frac{\partial f}{\partial x^{i}} = \frac{\mathrm{d}}{\mathrm{d}t} f(\varphi_{t}(x)) \bigg|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \varphi_{t}^{*} f(x) \bigg|_{t=0}$$

Such an action could be extended to differential forms by

$$\operatorname{Vect}(M) \ni V : \alpha \mapsto \mathcal{L}_V \alpha = \frac{\operatorname{d}}{\operatorname{d}t} \varphi_t^* \alpha \Big|_{t=0}$$

which has the property $\mathcal{L}_V(\alpha \wedge \beta) = \mathcal{L}_V \alpha \wedge \beta + \alpha \wedge \mathcal{L}_V \beta$, which implies that the Lie derivative is a derivation on the algebra of differential forms with degree 0. And we have contraction ι_V which is a derivation of degree -1 on the algebra of differential forms.

$$\mathcal{L}_V = d\iota_V + \iota_V d$$

Lie derivative is homotopy trivial i.e. chain homotopic.

Rescaling invariance of \mathbb{R}^n leads to the Euler vector field $E = x^i \frac{\partial}{\partial x^i}$.