

OpenVINO: ModelOptimizer

Maple Chou / 2019.01

Model Optimizer

- What it is: Preparation step -> imports trained models
- Why important: Optimizes for performance/space with conservative topology transformations; biggest boost is from conversion to data types matching hardware.

The things you must to know

- Model Optimizer is offline tool
 - You can execute mo in your laptop/ server or anywhere
- Model Optimizer generate .xml and .bin
 - .xml = topology (IR)
 - .bin = weight (matrix/filter)
- After MO
 - You can use .xml/.bin to inference (Inference Engine)

Model Optimizer

Model Optimizer is a cross platform tool written in Python

- Python 3.5 or higher
- Pip packages:
 - Mxnet
 - Tensorflow
 - Protobuff
 - Etc. Check list of required packages in requirements.txt

Example usage

python mo.py --framework tf --input_model /models/optimized.pb

Model Optimizer Purposes

Convert

- Map Framework (FW) specific model format to unified IR format
- IR format is DLDT serialization format that consist of two files:
 - XML file for topology description (human-readable)
 - BIN file for weights
- There is *NO* one-to-one correspondence between every framework layer and some IR layer
- Need for framework-specific translation techniques (easy for Caffe, hard for TensorFlow)

Optimize

- Hardware independent optimization
- No need to implement similar optimization techniques in each HW plug-in inside IE
- Frequently model conversion means optimization: TensorFlow patterns

Model Optimizer stages

Load

- Parse a FW specific model. Original FW may or may not be used.
- Build NetworkX graph for further transformations

Front

- Decode FW specific attributes to represent them in a unified way
- Replace FW specific patterns to represent them with unified set of operations

Middle

- Calculate and propagate shapes
- Transform graph to leave only ops that are supported by the target IR format
- Optimize: propagate constants, fuse operations, eliminate dead parts and ops that don't have effect

Back

- Finalize graph transformation to completely fit to IR requirements
- Emit final XML and BIN files

XML

```
<net batch="1" name="AlexNet" version="2">
 <layers>
   <layer id="1" name="data" precision="FP32" type="Input">
     <output>
       <port id="1">
         <dim>1</dim>
         <dim>3</dim>
                                                                                                             Input Dimensions
         <dim>227</dim>
         <dim>227</dim>
       </port>
     </output>
   </layer>
   <layer id="2" name="conv1" precision="FP32" type="Convolution">
                                                                                                                  Convolution
     <data dilation-x="1" dilation-y="1" group="1"
           kernel-x="11" kernel-y="11" output="96" pad-x="0" pad-y="0"
                                                                                                                  Parameters
           stride-x="4" stride-y="4"/>
     <input>
       <port id="2">
         <dim>1</dim>
         <dim>3</dim>
         <dim>227</dim>
         <dim>227</dim>
       </port>
     </input>
     <output>
       <port id="3">
         <dim>1</dim>
         <dim>96</dim>
```


IR Visualizer

NetScope – CNN Visualizer for Caffe

https://dgschwend.github.io/netscope/quickstart.html

IR Visualizer – still INTERNAL PREVIEW ONLY, not in public product

http://goto/cvsdk-ir

Transformation Examples

Example: Batch normalization fusion (TF)

Intel® DL Deployment Toolkit Functionality Model Optimizer/Optimization Tech

Linear Operation Fusing

- **BatchNorm and ScaleShift decomposition:** *BN* layers decomposes to *Mul->Add->Mul->Add* sequence; ScaleShift layers decomposes to *Mul->Add* sequence.
- Linear operations merge: Merges sequences of Mul and Add operations to the single Mul >Add instance.
- **Linear operations fusion:** Fuses Mul and Add operations to Convolution or FullybConnected layers.
- Grouped Convolutions Fusing
 - Specific optimization that applies for TensorFlow* topologies. (Xception*)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Decompose, normalize and fuse

Batch normalization fusion: Results

Model	CPU FP32, FPS		GPU FP16, FPS		СРИ	GPU
	No fusion	Fusion	No fusion	Fusion	Speedup %	Speedup %
Alexnet	76	76	137	137	0.0	0.0
TF Inception v1	86	99	59	105	15.4	77.0
TF Inception v2	66	76	50	78	13.9	57.3
TF InceptionResnet v2	9	12	7	9	30.0	23.8
TF Resnet v2 50	36	43	28	41	20.3	48.4
TF MobileNet v1 1_1_0_224	190	231	67	137	21.9	102.8
TF MobileNet v2 1_1_0_224	213	338	52	109	58.6	111.4
TF SSD MobileNet v1	94	97	47	59	3.6	24.8
TF SSD Inception V2	30	30	33	33	0.0	0.0
Caffe SqueezeNet v1.1	352	352	214	239	0.0	11.7

Discuss horiz fusion,

- example Inception V2
- "Split" is not good FPGA

MVN translation alternatives

Two options:

- Translate op-by-op literally expressing a sub-graph in IR
 - Pros: simple, always work
 - Cons: Mean/SquaredDifference have no direct mapping to a single IE layer; many layers – poor performance
- Recognize MVN pattern and replace by a single IR layer
 - Pros: performance!
 - Cons: fragile; works only when exactly matches

Not optimized

Optimized

MO EXAMPLES

Use MO help and learn about first MO mistake: using python 2.7

```
$ python mo.py --help
Traceback (most recent call last):
File "mo.py", line 21, in <module>
 from mo.utils.versions checker import check python version
File "/localdisk/myshevts/computer_vision_sdk_fpga_2018.3.325/deployment_tools/model_optimizer/mo/utils/versions_checker.py", li
44
 def get module version list from file(file name: str):
                                                             $ python --version
                        Λ
                                                              Python 2.7.5
SyntaxError: invalid syntax
                                                              $ python3 --version
```

Python 3.5.5

Fix: use python3

Model Optimizer: general command-line options

\$ cd /opt/intel/computer_vision_sdk/deployment_tools/model_opti mizer

```
$ python3 mo.py --help
    --input model INPUT MODEL, -w INPUT MODEL, -m INPUT MODEL
                          Tensorflow*: a file with a pre-trained model (binary
                          or text .pb file after freezing). Caffe*: a model
                          proto file with model weights
     --model name MODEL NAME, -n MODEL NAME
                          Model name parameter passed to the final create ir
                          transform. This parameter is used to name a network in
                          a generated IR and output .xml/.bin files.
     --output dir OUTPUT DIR, -o OUTPUT DIR
                          Directory that stores the generated IR. By default, it
                          is the directory from where the Model Optimizer is
                          launched.
     --input shape INPUT SHAPE
                          Input shape(s) that should be fed to an input node(s)
                          of the model. Shape is defined as a comma-separated
                          list of integer numbers enclosed in parentheses, for
                          example [1,3,227,227] or [1,227,227,3], where the
                          order of dimensions depends on the framework input
                          layout of the model. For example, [N,C,H,W] is used
                          for Caffe* models and [N,H,W,C] for TensorFlow*
                          models. Model Optimizer performs necessary
                          transformations to convert the shape to the lavout
                          required by Inference Engine (N,C,H,W). Two types of
                          brackets are allowed to enclose the dimensions: [...]
                          or (...). The shape should not contain undefined
                          dimensions (? or -1) and should fit the dimensions
                          defined in the input operation of the graph. If there
                          are multiple inputs in the model, --input shape should
                          contain definition of shape for each input separated
                          by a comma, for example: [1,3,227,227],[2,4] for a
                          model with two inputs with 4D and 2D shapes.
     --scale SCALE, -s SCALE
                          All input values coming from original network inputs
                          will be divided by this value. When a list of inputs
                          is overridden by the --input parameter, this scale is
                          not applied for any input that does not match with the
                          original input of the model.
```

Copyright © 2018, Intel Corporation, All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel Confidential

```
--reverse input channels
                     Switches the input channels order from RGB to BGR (or
                     vice versa). Applied to original inputs of the model
                     when and only when a number of channels equals 3.
                     Applied after application of --mean values and
                     --scale values options, so numbers in --mean values
                     and --scale values go in the order of channels used in
                      the original model.
--log level {CRITICAL, ERROR, WARN, WARNING, INFO, DEBUG, NOTSET}
                     Logger level
                     The name of the input operation of the given model.
--input INPUT
                     Usually this is a name of the input placeholder of the
 -output OUTPUT
                     The name of the output operation of the model. For
                     TensorFlow*, do not add :0 to this name.
-mean values MEAN VALUES, -ms MEAN VALUES
                     Mean values to be used for the input image per
                     channel. Values to be provided in the (R,G,B) or
                     [R.G.B] format. Can be defined for desired input of
                     the model, e.g.: "--mean values
                     data[255,255,255],info[255,255,255]" The exact meaning
                      and order of channels depend on how the original model
                     was trained.
--scale values SCALE VALUES
                     Scale values to be used for the input image per
                     channel. Values are provided in the (R,G,B) or [R,G,B]
                     format. Can be defined for desired input of the model.
                     e.g.: "--scale values
                     data[255,255,255],info[255,255,255] "The exact meaning
                     and order of channels depend on how the original model
                     was trained.
-data type {FP16,FP32,half,float}
                     Data type for all intermediate tensors and weights. If
                     original model is in FP32 and --data type=FP16 is
                     specified, all model weights and biases are quantized
--disable fusing
                     Turns off fusing of linear operations to Convolution
-disable resnet optimization
                     Turns off resnet optimization
 -finegrain fusing FINEGRAIN FUSING
                     Regex for layers/operations that won't be fused.
                     Example: --finegrain fusing Convolution1,.*Scale.*
                     Turns off fusing of grouped convolutions
-disable gfusing
-move to preprocess Move mean values to IR preprocess section
-extensions EXTENSIONS
                     Directory or a comma separated list of directories
                     with extensions. To disable all extensions including
                     those that are placed at the default location, pass an
                      empty string.
--batch BATCH, -b BATCH
                     Input batch size
                     Version of Model Optimizer
-version
-silent
                     Prevents any output messages except those that
                     correspond to log level equalsERROR, that can be set
                     with the following option: --log level. By default,
                     log level is already ERROR.
--freeze placeholder with value FREEZE PLACEHOLDER WITH VALUE
                     Replace input layer with constant node with provided
```

value, e.g.: node name->True

ONNX EXAMPLE

\$ python3 mo.py --input_model <path>/resnet50.onnx

ResNet-50

Download:

- $\bullet \ \ release \ 1.1: https://s3.amazonaws.com/download.onnx/models/opset_3/resnet50.tar. Quality of the contraction of the co$
- release 1.1.2: https://s3.amazonaws.com/download.onnx/models/opset_6/resnet50.ta

декс.Карты — nyr 👌 GISMETEO.COM: We 🐈 NN_CI_QA 🦞 JIRA 📆 Shared Documents - 🛅 Netscope 🧊 Tom's Hardware: Наг 🛅 Логические задачи. 📆 Vision and Image Pr

- release 1.2: https://s3.amazonaws.com/download.onnx/models/opset_7/resnet50.tar.g
- master: https://s3.amazonaws.com/download.onnx/models/opset_8/resnet50.tar.gz

\$ classification_sample -i ./car.png -m resnet50.xml -d HETERO:FPGA,CPU -ni 10

```
Description ..... heteroPlugin
 INFO | Loading network files:
       /localdisk/myshevts/topologies/resnet50.xml
        /localdisk/myshevts/topologies/resnet50.bin
Read model: /localdisk/myshevts/topologies/resnet50.xml
 INFO ] Preparing input blobs
 WARNING ] Image is resized from (787, 259) to (224, 224)
 INFO ] Batch size is 1
 INFO | Preparing output blobs
 INFO | Loading model to the plugin
 INFO ] Starting inference (10 iterations)
 INFO ] Average running time of one iteration: 31.1717 ms
 INFO | Processing output blobs
Top 10 results:
Image /localdisk/myshevts/computer vision sdk/deployment tools/demo/car.png
818 0.9999990 label #818
506 0.0000008 label #506
```


TENSORFLOW EXAMPLE

SSD_MOBILENET_v1_COCO

```
#> wget http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
#> tar zxvf ssd_mobilenet_v1_coco_2018_01_28.tar.gz && cd ssd_mobilenet_v1_coco_2018_01_28
#>/opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/mo_tf.py --
input_model=./frozen_inference_graph.pb --tensorflow_use_custom_operations_config
/opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/extensions/front/tf/ssd_v2_support.json --
tensorflow object detection api pipeline config ./pipeline.config --reverse input channels
```

MO Result – SSD_Mobilenet @ R3

```
/opt/intel/computer vision sdk/deployment tools/model optimizer/extensions/front/tf/ssd v2 support.json --tensorflow object detection api pipeline config ./pipeline.config --reverse input channels
Model Optimizer arguments:
Common parameters:
        - Path to the Input Model:
                                         /root/accenture/ssd_mobilenet_v1_coco_2018_01_28/./frozen_inference_graph.pb
                                         /root/accenture/ssd mobilenet v1 coco 2018 01 28/.
        - Path for generated IR:
        - IR output name:
                                frozen inference graph
        - Log level:
        - Batch:
                        Not specified, inherited from the model
                                Not specified, inherited from the model
        - Input layers:
        - Output layers:
                                Not specified, inherited from the model
       - Input shapes:
                                Not specified, inherited from the model
        - Mean values: Not specified
        - Scale values:
                                Not specified
        - Scale factor:
                                Not specified
        - Precision of IR:
                                FP32
        - Enable fusing:
        - Enable grouped convolutions fusing: True
        - Move mean values to preprocess section:
- Reverse input channels: True
TensorFlow specific parameters:
       - Input model in text protobuf format: False
        - Offload unsupported operations: False
- Path to model dump for TensorBoard: None
        - Update the configuration file with input/output node names: None
        - Use configuration file used to generate the model with Object Detection API: /root/accenture/ssd_mobilenet_vl_coco_2018_01_28/./pipeline.config
        - Operations to offload:
        - Patterns to offload: None
        - Use the config file: /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/extensions/front/tf/ssd_v2_support.json
The Preprocessor block has been removed. Only nodes performing mean value subtraction and scaling (if applicable) are kept.
 SUCCESS ] XML file: /root/accenture/ssd_mobilenet_v1_coco_2018_01_28/./frozen_inference_graph.xml
 SUCCESS ] BIN file: /root/accenture/ssd mobilenet v1 coco 2018 01 28/./frozen inference graph.bin
SUCCESS ] Total execution time: 16.52 seconds.
```

[root@localhost ssd mobilenet v1 coco 2018 01 28]# /opt/intel/computer vision sdk/deployment tools/model optimizer/mo tf.py --input model=./frozen inference graph.pb --tensorflow use custom operations config

IE Result – SSD_Mobilenet @ R4

```
[root@Genome-2-PAC bin]# /opt/intel/computer_vision_sdk_fpga_2018.4.398/deployment_tools/inference_engine/samples/build/intel64/Release/obje
oco_2018_01_28.xml -i /opt/intel/computer_vision_sdk/deployment_tools/demo/car.png -d HETERO:FPGA,CPU -pc
[ INFO ] InferenceEngine:
       API version ..... 1.4
       Build ..... 16367
Parsing input parameters
[ INFO ] Files were added: 1
 INFO ] /opt/intel/computer vision sdk/deployment tools/demo/car.png
 INFO | Loading plugin
       API version ..... 1.4
       Build ..... heteroPlugin
       Description ..... heteroPlugin
[ INFO ] Loading network files:
       /root/maple/accenture/ssd inception_v2 coco_2018 01_28.xml
       /root/maple/accenture/ssd inception v2 coco 2018 01 28.bin
  INFO ] Preparing input blobs
 INFO | Batch size is 1
  INFO ] Preparing output blobs
 INFO ] Loading model to the plugin
 WARNING ] Image is resized from (787, 259) to (300, 300)
 INFO | Batch size is 1
 INFO | Start inference (1 iterations)
 INFO ] Processing output blobs
[0,3] element, prob = 0.904651
                                (8.46121.0)-(771.947.252.892) batch id : 0 WILL BE PRINTED!
[ INFO ] Image out 0.bmp created!
total inference time: 14.5454
Average running time of one iteration: 14.5454 ms
```

HETERO Affinity @ R3

HETERO Affinity @ R4

