Семинар 12

Столкновения, длина свободного пробега. Явления переноса.

Теория

Диффузия (перенос вещества)

Коэффициент диффузии: $D = \frac{1}{3} \lambda \langle \upsilon \rangle$ (м²/c).

Закон Фика (стационарная диффузия): $j = -D \frac{dn}{dx}$.

Нестационарная диффузия: $\frac{\partial n}{\partial t} = D \left(\frac{\partial^2 n}{\partial x^2} + \frac{\partial^2 n}{\partial y^2} + \frac{\partial^2 n}{\partial z^2} \right) = D \Delta n$.

Число соударений со стенкой: $dN = \frac{n\langle v \rangle}{4} Sdt$.

Длина свободного пробега: $\lambda = \frac{1}{n\sigma}$, $\sigma = \pi \frac{d^2}{4}$, $n = \frac{p}{kT}$.

Вязкость (перенос импульса)

Коэффициент вязкости: $\eta = \frac{1}{3}\lambda\langle\upsilon\rangle\rho = D\rho$ (пуаз).

Закон Ньютона: $\tau_x = \frac{F_x}{S} = -\eta \frac{dv_x}{dy}$.

Закон Стокса: $F = 6\pi \eta r v$ (для шара).

Формула Пуазейля: $Q = \frac{\pi r^4}{8\eta l} \Delta p$ (истечение флюида через капилляр)

Теплопроводность (перенос тепловой энергии)

Коэффициент теплопроводности: $\chi = \frac{1}{3}\lambda\langle \upsilon \rangle \rho \frac{C_{\upsilon}}{\mu} = D\rho \frac{C_{\upsilon}}{\mu}$.

Закон Фурье (стационарная теплопроводность): $q = -\chi \frac{dT}{dx}$.

Нестационарная теплопроводность: $\frac{\partial T}{\partial t} = B\Delta T$,

 $B = \frac{\chi \mu}{\rho C_v}$ — коэффициент температуропроводности.