Course Introduction

Cloud Computing and Big Data (CLO)

Oxford University
Software Engineering
Programme
July 2021

Introduction

- Aims
- Pre-requisites
- Contents
- Objectives
- Resources
- Rules of Engagement
- Introductions

Aims

- Understanding of Principles of Cloud Computing and Big Data
- Theoretical background and origins
- Practical experience of different technologies
- Architecture and Design
- Wider context

Pre-requisites

Covered by the Pre-Study Guide

- Command line tooling and Unix commands
- Some Python programming and text editors
- SQL and data manipulation
- Understanding of networking, servers and distributed computing

Format

- A mixture of lectures and practical labs
- Lectures aim to provide the wider context and background
 - Independent of specific technologies
- Labs are based on specific technologies
 - Designed to demonstrate the principles

Lab model

- Local Virtual Machine
 - Ubuntu
 - Pre-installed big data software
 - E.g. Apache Hadoop and Spark, Docker, etc
- Amazon Web Services
 - Virtual machines in the cloud

Contents

- Overview and Introduction
- Cloud Computing
 - Introduction and Case Studies
 - Cloud Computing
 Theory and
 Background
 - Containers and Docker

- Big Data
 - Introduction and Case Studies
 - Map Reduce and Hadoop
 - Apache Spark and in-memory big data
 - Realtime
 - Visualisation
 - NoSQL
 - Cassandra

Practicals

- Using Cloud Services
- Elastic scaling
- Python Big Data, Pandas
- Spark, SparkSQL
- Cassandra and NoSQL
- Spark and Cassandra together
- Realtime big data
- Containers

Specific Objectives

- Understand the principles of cloud computing
 - Theory of scalability
 - Including scalability and deployment
 - laaS frameworks, PaaS, containers
- Understand Big Data approaches, technologies and techniques
 - Theoretical background and approaches
 - Including Map Reduce, NoSQL, Realtime
- Be able to design and implement scalable cloud and big data systems
- Understand and implement effective Open Source systems on Amazon EC2

Improve your CV?

Beyond the scope of this course

- Detailed Data Science techniques
- Implementing a private cloud
 - Although we will look at technologies for private cloud
- Understanding all of Spark,
 Kubernetes, Containers, AWS, etc.

Rules of Engagement

Ask questions as we go along

- We will "park" any that are better answered later
- Don't wait till the end to ask or raise concerns
- If you don't ask we can't help you

Online

Rules of Engagement!

- Please keep your video on during class time
 it really helps me out.
- Please keep logged into Slack throughout the day
- We will break into teams for the exercises and use breakout rooms
- You will be assigned to teams, and we'll stick to these throughout the week
- Please be patient its harder to get round everyone on Zoom than wandering around the room!

There might will be bugs!

- Please help out:
 - Create new issues
 on the Github
 repository

https://github.com/pzfreo/ox-clo/issues/new

Paul Fremantle

- VP, Product Engineering @
 Weaveworks
- Previously CTO and Co-Founder of WSO2
- Previously Senior Technical Staff Member, IBM
- VP, Apache Synapse and Member of ASF
- BA in Maths and Philosophy
- MSc in Computation (1995)
- PhD in Computing (2017)
 - IoT security and privacy
- Also teaches SOA module

You?

Approximate Schedule

Monday	Tuesday	Wednesday	Thursday	Friday
Overall Introductions First Cloud lab exercise	Containers and Cloud Orchestration Docker Lab	Spark and SQL SparkSQL Lab	Storage and NoSQL Cassandra Lab	Overview and Recap Presentation Group Exercise
Cloud Overview and case studies Elastic Cloud Lab	Introduction to Big Data and case studies Data processing in Python	Spark Lab continued	Cassandra details Cassandra Lab2	Final Thoughts and Assignment
Cloud Theory Platform-as-a-Se rvice, scaling Further Cloud Lab	Intro to Spark Spark Lab	Spark Extras Spark Labs continued	Realtime Big Data, Kappa Architecture Realtime Lab	

Let's get started

