STAT 5/7 Clinical Trials

90

ONE-SIDED TESTS

Table 4.1 Constants $\hat{C}_1(K,\alpha,\beta,\Delta), \hat{C}_2(K,\alpha,\beta,\Delta)$ and $\hat{R}(K,\alpha,\beta,\Delta)$ for power family one-sided tests with shape parameter Δ . Also shown are expected sample sizes at $\theta=0, \delta/2$ and δ expressed as percentages of the corresponding fixed sample size. Tests are for K groups of observations, Type I error probability $\alpha=0.05$ at $\theta=0$ and power $I-\beta=0.8$ at $\theta=\delta$.

					Expected	Expected sample size, as per-	-400 SD 02	
	X	Ū	Ç.	100	centage o	fixed sam,	centage of fixed sample size, at	
\$ 0 T	L/				$\theta = 0$	$\theta = \delta/2$	$\theta = \delta$	
1								
	-	1.645	0.842	1.000	100.0	100.0	100.0	
	7	1.632	0.870	1.012	75.3	90.9	95.7	
	m	1.622	0.899	1.028	72.8	86.4	87.5	
	4	1,621	0.916	1.041	0.69	83.5	84.9	
	5	1.622	0.927	1.051	67.0	82.0	83.0	
	10	1.628	0.956	1.080	63.8	78.9	9.6	
	15	1.632	0.970	1.095	62.8	78.0	78.5	
	20	1,635	0.978	1.104	62.4	77.5	78.0	
$\Delta = -0.25$	25							
	_	1.645	0.842	1,000	100.0	100.0	0.001	
	7	1,623	0,901	1.031	71.7	87.7	6.06	
	m	1,625	0.928	1.055	67.7	83.3	84.7	
	4	1.629	0.947	1.073	65.4	80.9	81.6	
	2	1.633	0.960	1.087	63.5	79.3	6.62	
	10	1.646	0.993	1.127	60.1	76.2	76.5	
	15	1,653	1.009	1.146	59.0	75.2	75.5	
	20	1.658	1.018	1.158	58.5	74.8	74.9	
$\Delta = 0.0$								
	-	1,645	0.842	1.000	100.0	100.0	100.0	
	7	1.634	0.942	1.073	6.69	84.9	85.6	
	m	1.645	0.978	1.113	63.4	80.2	6'08	
	4	1.656	0.999	1.140	8.09	77.8	78.0	
	2	1.664	1.015	1.161	59.2	76.3	76.2	
	01	1.688	1.057	1.219	55.8	73.2	72.8	
	15	1.700	1.076	1.247	54.7	72.1	71.7	
	20	1.708	1.088	1.264	7.7	71.6	71.1	
$\Delta = 0.25$								
	-	1.645	0.842	1.000	100.0	0.001	100.0	
	7	1.688	0.660	1.160	70.5	83.9	82.7	
×	c,	1.720	1.054	1.245	61.9	78.5	77.2	
	4	1,741	1.093	1.299	58.0	75.8	74.4	
	S	1.757	1.119	1.338	55.9	74.1	72.6	
	10	1.802	1.185	1.443	51.7	9.02	8.89	
	15	1.823	1.215	1.493	50.3	69,3	67.5	
	20	1.837	1.233	1.524	49.5	68.7	8.99	

me-sided tests

THE POWER FAMILY OF ONE-SIDED GROUP SEQUENTIAL TESTS

Table 4.2 Constants $\tilde{C}_1(K, \alpha, \beta, \Delta)$, $\tilde{C}_2(K, \alpha, \beta, \Delta)$ and $\tilde{R}(K, \alpha, \beta, \Delta)$ power family one-sided tests with shape parameter Δ . Also shown are expect sample sizes at $\theta = 0$, $\delta/2$ and δ expressed as percentages of the correspondit fixed sample size. Tests are for K groups of observations, Type I err probability $\alpha = 0.05$ at $\theta = 0$ and power $I - \beta = 0.9$ at $\theta = \delta$.

Table 4.3 Constants $\vec{C}_{\gamma}(K,\alpha,\beta,\Delta)$, $\hat{C}_{\gamma}(K,\alpha,\beta,\Delta)$ and $\vec{R}(K,\alpha,\beta,\Delta)$ for power family one-sided tests with shape parameter Δ . Also shown are expected sample sizes at $\theta=0,\delta/2$ and δ expressed as perventages of the corresponding

fixed sample size. Tests are for K groups of observations, Type I error probability $\alpha=0.05$ at $\theta=0$ and power $1-\beta=0.95$ at $\theta=\delta$.

Expected sample size, as percentage of fixed sample size, at

K

2

Ü

×

 $\Delta = -0.5$

 $\theta = \delta/2$

 $\theta = 0$

000 91.6 80.7 77.9 75.8 72.0 70.9

100.0 91.6 80.7 77.9 75.8 72.0 70.9

1.000 1.000 1.006 1.013 1.019 1.049 1.056

1.656

1,645 1,645 1,650 1,661 1,676 1,676 1,685 1,685

84.4 83.3 82.8

1.676 1.685 1.690

10 15 20 20

 $\Delta = -0.25$

98.4 91.9 91.9 89.4 87.7

1.645 1.645 1.650 83.8 77.5 77.5 77.5 71.7 68.1 66.4

83.8 83.8 77.5 77.5 71.7 68.1 66.4

1.000 1.005 1.020 1.031 1.040 1.067 1.081

81.8 80.8 80.3

1,699

1.699

10 15 20 20

 $\Delta = 0.0$

95.1 89.2 86.6 85.0

1.645 1.649 1.661 1.670 1.670

1.645 1.649 1.661 1.670 1.677 76.6 72.2 72.2 69.0 67.0 63.3 62.2 62.2

90.5 86.0 83.4 81.8 81.8 77.6 77.6

100.0 76.6 72.2 69.0 67.0 63.3 62.2 61.6

1.000 1.028 1.052 1.071 1.085 1.125 1.145 1.158

1.645 1.668 1.687 1.702 1.713 1.745 1.740 1.770

1.745

15 20 20

 $\Delta = 0.25$

1.645 1.668 1.687 1.702 1.713

100.0 96.4 90.1
96.4
90.1
87.5
85.9
82.7
81.7
81.2
100.0
97.6
87.5
84.7
83.2
80.1
63.7 79.1
9.87
100.0
73.0 88.5
81.7
80.1
75.9
4.07
100.0
86.2
55.2 74.1
7

100.0 72.9 66.6 63.6 61.8 58.0 56.6

100 0 87.4 82.9 80.4 78.9 75.6 74.4

100.0 72.9 66.6 63.6 61.8 58.0 56.6 56.0

1.000 1.097 1.147 1.181 1.206 1.274 1.307

> 1.857 1.881 1.896

> 1.857 1.881 1.896

10 12 20 20

1.645 1.722 1.762 1.787 1.806

1.645 1.722 1.762 1.787 1.806 Pocock

O'Brien - Fleming

Wang - Tsiatis

Table 2.1 Pocock tests: constants $C_P(K, \alpha)$ for two-sided tests with K groups of observations and Type I error probability α

		$C_P(K,\alpha)$	
K	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
1	2.576	1.960	1.645
2	2.772	2.178	1.875
3	2.873	2.289	1.992
4	2.939	2.361	2.067
5	2.986	2.413	2.122
6	3.023	2.453	2.164
7	3.053	2.485	2.197
8	3.078	2.512	2.225
9	3.099	2.535	2.249
10	3.117	2.555	2.270
11	3.133	2.572	2.288
12	3.147	2.588	2.304
15	3.182	2.626	2.344
20	3.225	2.672	2.392

Table 2.3 O'Brien & Fleming tests: constants $C_B(K, \alpha)$ for two-sided tests with K groups of observations and Type I error probability α

			_
		$C_B(K,\alpha)$	
K	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
I	2.576	1.960	1.645
2	2.580	1.977	1.678
3	2.595	2.004	1.710
4	2.609	2.024	1.733
5	2.621	2.040	1.751
6	2.631	2.053	1.765
7	2.640	2.063	1.776
8	2.648	2.072	1.786
9	2.654	2.080	1.794
10	2.660	2.087	1.801
11	2.665	2.092	1.807
12	2.670	2.098	1.813
15	2.681	2.110	1.826
20	2.695	2.126	1.842

Table 2.9 Wang & Tsiatis tests: constants $C_{WT}(K,\alpha,\Delta)$ for two-sided tests with K groups of observations and Type I error probability $\alpha=0.05$

		$C_{WT}(K,\alpha,\lambda)$	۵)
		$\alpha = 0.05$	
K	$\Delta = 0.1$	$\Delta = 0.25$	$\Delta = 0.4$
1	1.960	1.960	1.960
2	1.994	2.038	2.111
3	2.026	2.083	2.186
4	2.050	2.113	2.233
5	2.068	2.136	2.267
6	2.083	2.154	2.292
7	2.094	2.168	2.313
8	2.104	2.180	2.329
9	2.113	2.190	2.343
10	2.120	2.199	2.355
11	2.126	2.206	2.366
12	2.132	2.213	2.375
15	2.146	2.229	2.397
20	2.162	2.248	2.423

Table 2.2 Pocock tests: constants $R_P(K, \alpha, \beta)$ to determine group sizes for two-sided tests with K groups of observations, Type I error probability α and power $1 - \beta$

	$R_P(K,\alpha,\beta)$							
		$1-\beta=0.3$	3		$1 - \beta = 0.9$)		
K	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$		
<i>=</i> 1	1.000	1.000	1.000	1.000	1.000	1.000		
2	1.092	1.110	1.121	1.084	1.100	1.110		
3	1.137	1.166	1.184	1.125	1.151	1.166		
4	1.166	1.202	1.224	1.152	1.183	1.202		
5	1.187	1.229	1.254	1.170	1.207	1.228		
6	1.203	1.249	1.277	1,185	1,225	1.249		
7	1.216	1.265	1.296	1.197	1.239	1.266		
8	1.226	1.279	1.311	1.206	1.252	1.280		
9	1.236	1.291	1.325	1.215	1.262	1.292		
10	1.243	1.301	1.337	1.222	1.271	1.302		
11	1.250	1.310	1.348	1.228	1.279	1.312		
12	1.257	1.318	1.357	1.234	1.287	1.320		
15	1.272	1.338	1.381	1.248	1.305	1.341		
20	1.291	1.363	1.411	1.264	1.327	1.367		

Table 2.4 O'Brien & Fleming tests: constants $R_B(K, \alpha, \beta)$ to determine group sizes of two-sided tests with K groups of observations, Type I error probability α and power $1-\beta$

			$R_B(K$, α, β)		
		$1 - \beta = 0.8$	3		$1 - \beta = 0.9$)
K	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
1	1,000	1.000	1.000	1.000	1.000	1.000
2	1.001	1.008	1.016	1.001	1.007	1.014
3	1.007	1.017	1.027	1.006	1.016	1.025
4	1.011	1.024	1.035	1.010	1.022	1.032
5	1.015	1.028	1.040	1.014	1.026	1.037
6	1.017	1.032	1.044	1.016	1.030	1.041
7	1.019	1.035	1.047	1.018	1.032	1.044
8	1.021	1.037	1.049	1.020	1.034	1.046
9	1.022	1.038	1.051	1.021	1.036	1.048
10	1.024	1.040	1.053	1.022	1.037	1.049
11	1.025	1.041	1.054	1.023	1.039	1.051
12	1.026	1.042	1.055	1.024	1.040	1.052
15	1.028	1.045	1.058	1.026	1.042	1.054
20	1.030	1.047	1.061	1.029	1.045	1.057

Table 2.10 Wang & Tsiatis tests: constants $R_{WT}(K, \alpha, \beta, \Delta)$ to determine group sizes for two-sided tests with K groups of observations. Type I error probability $\alpha = 0.05$ and power $1 - \beta$

			$R_{WT}(K$, α, β, Δ)		
			α:	= 0.05		
		$1 - \beta = 0.8$	}	i	$-\beta = 0.9$,
K	$\Delta = 0.1$	$\Delta = 0.25$	$\Delta = 0.4$	$\Delta = 0.1$	$\Delta = 0.25$	$\Delta = 0.4$
1	1.000	1.000	1.000	1.000	1.000	1.000
2	1.016	1.038	1.075	1.014	1.034	1.068
3	1.027	1.054	1.108	1.025	1.050	1.099
4	1.035	1.065	1.128	1.032	1.059	1.117
5	1.040	1.072	1.142	1.037	1.066	1.129
6	1.044	1.077	1.152	1.041	1.071	1.138
7	1.047	1.081	1.159	1.044	1.075	1.145
8	1.050	1.084	1.165	1.046	1.078	1.151
9	1.052	1.087	1.170	1.048	1.081	1.155
10	1.054	1.089	1.175	1.050	1.083	1.159
11	1.055	1.091	1.178	1.051	1.085	1.163
12	1.056	1.093	1.181	1.053	1.086	1.166
15	1.059	1.097	1.189	1.055	1.090	1.172
20	1.062	1.101	1.197	1.058	1.094	1.180