

PROJETO CASA INTELIGENTE

Requisitos da disciplina Modelagem de Software e Arquitetura de Sistemas

INTEGRANTES DO PROJETO e RA'S

André Ferreira - 25027670
Cauan Moreira Da Silva Lima - 25027645
Victor Bancatelli Lucena Lopes - 25027658

São Paulo

2025

Sumário	
1 INTRODUÇÃO	3
2. DOCUMENTO DE ABERTURA DO PROJETOS	4
2.1 – Project Charter	4
2.2 – Histórias do Usuário	5
3. DESIGN SPRINT – Ideação e prototipação do desafio	7
3.1 Desafio	6
3.2 Entender Mapear	6
3.3 Ideação – desenho da solução (trilha do usuário)	6
3.4 Prototipagem	8
4.REQUISITOS DE SISTEMA	9
4.1 REQUISITOS FUNCIONAIS DE SOFTWARE	9
4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE	13
5. CASOS DE USO	16
6. DIAGRAMA DE CLASSE	17
7. ARQUITETURA DO SISTEMA	18
8 REFERÊNCIAS BIRLIOGRÁFICAS	10

1 INTRODUÇÃO

Tendo:

Smart Cities/Smart House

Nome da Instituição: Flex Automation

Objetivo da Aplicação:

ADS1 O objetivo do desafio é gerar um dashboard de uma cidade/casa inteligente que permita o

controle de sensores e atuadores.

Este desafio busca, de forma modular, introduzir como uma cidade/casa inteligente pode ser

controlada, tratando seus dados de forma a aprimorar o sistema e otimizando a sustentabilidade.

Seu dashboard deverá receber e enviar sinais de/para um simulador de casa/cidade inteligente,

provenientes da rede/internet. O servidor será fornecido pelos professores.

Desafio:

O projeto da Flex Automation, assim como outras iniciativas, trabalha para poder criar cidades

inteligentes buscando a sustentabilidade, o melhor uso dos recursos planetários e o menor impacto

na natureza. Para que isso ocorra é necessário ter uma alta capacidade de mensuração e controle

para a otimização da vida na cidade, desde recursos até o tráfego de pedestres. Também, a

conscientização da população de como uma cidade inteligente funciona e/ou é controlada, de forma

a instruir sobre as melhores maneiras para a cidade ser sustentável.

Personas a Serem Atendidas:

-Usuário final do sistema, que deseja controlar sua casa de forma a gastar menos e otimizar os

recursos da cidade. Considere que o usuário possui conhecimento básico para utilizar dispositivos

mobile.

-Controlador da cidade, um funcionário da cidade que deve acompanhar um

dashboard/mapa/painel informativo da cidade, tratando situações inesperadas, acompanhando os

dados dos sensores e acionando os programas da cidade. Considere que ele tem um conhecimento

médio para avançado de tecnologia.

2. DOCUMENTO DE ABERTURA DO PROJETOS

2.1 - Project Charter

Prefácio

Esse documento interessa ao cliente, contratante do serviço, aos envolvidos no

desenvolvimento do projeto, e a comunidade interessada.

Introdução

O desenvolvimento deste software tem como fim atender ao desafio de criar uma

casa inteligente, proporcionando aos usuários finais, a conscientização do consumo

residencial de energia elétrica e de água. Visando promover a economia desses

recursos fundamentais.

O sistema deverá se relacionar com os sensores das casas inteligentes, de

forma a coletar as informações acerca do consumo do sistema elétrico e hídrico. Além

de demonstrar ao usuário, valores e representações gráficas de acordo com as

métricas das distribuidoras.

Glossário

Dashboard: Painel

Definição de requisitos de usuário

Para a utilização do Dashboard, o indivíduo deve possuir em sua residência sensores instalados em rede elétrica que capturem o consumo de energia da localidade e que estejam conectados ao pólo de controle da estrutura de sensores.

Para utilizar a tecnologia o usuário deverá possuir um aparelho compatível com a mesma, além de conhecimento mínimo no manuseio da aparelhagem utilizada.

Para acessar o Dashboard, o usuário deve se cadastrar utilizando email, número de telefone e criar um nome de usuário. Então efetue o login utilizando os dados cadastrados.

2.2 - Histórias do Usuário

Alguns detalhes sobre a casa inteligente que cujos dados estão no arquivo anexo:

- -2 Pessoas vivem nesta casa
- -A casa possui 2 quartos, 1 sala, 1 cozinha e 1 piscina e são identificados respectivamente pelos sensores de ID: 1, 2, 3, 4, 5.
- -O gasto energético médio para deixar cada local ligado é:

Quartos (ID 1 e 2) – 1,5KWatts/Hora (Considerando 1 TV,1 lâmpada e um ar-condicionado) Sala

(ID 3) – 5Watts/Hora (Considerando 1 TV e 5 lâmpadas)

Cozinha (ID 4) — 3KWatts/Hora (Considerando 1 Microondas, 1 máquina de lavar louça e 3 lâmpadas)

Piscina (ID 5) – 7KWatts/Hora (Bomba + Aquecedor)

Você tem a possibilidade de adicionar comandos separados para controlar cada um dos elementos descritos acima.

EXEMPLO DA BASE DOS SENSORES

TimeStamp	ID_Sensor	Temperatura	Umidade	Movimento
28/4/25 0:18	3	39	71	0
22/5/25 4:43	4	19	82	0
20/4/25 20:38	3	24	71	0
12/2/25 0:03	1	22	22	0
14/4/25 1:33	2	19	46	1
27/1/25 14:21	2	37	27	0
30/5/25 7:19	1	10	87	0
21/7/25 6:17	1	34	88	0
21/1/25 9:20	3	39	28	0
2/2/25 23:55	4	28	33	0
22/6/25 14:15	3	17	32	0
24/6/25 15:22	2	38	29	0
30/4/25 0:32	2	18	88	1
26/6/25 2:00	2	26	63	0
26/6/25 10:09	2	21	50	0
1/3/25 7:15	5	40	30	1
27/6/25 7:02	3	15	28	1

3. DESIGN SPRINT – Ideação e prototipação do desafio

3.1 Desafio

O projeto da Flex Automation, assim como outras iniciativas, trabalha para poder criar cidades inteligentes buscando a sustentabilidade, o melhor uso dos recursos planetários e o menor impacto na natureza. Para que isso ocorra é necessário ter uma alta capacidade de mensuração e controle para a otimização da vida na cidade, desde recursos até o tráfego de pedestres. Também, a conscientização da população de como uma cidade inteligente funciona e/ou é controlada, de forma a instruir sobre as melhores maneiras para a cidade a ser sustentável.

3.2 Entender Mapear

- O desafio se baseia em produzir um software capaz de gerir uma cidade / casa inteligente e fazer com que os usuários economizem água e energia elétrica;
- Para solucionar esse problema criaremos um Dashboard interativo, capaz de receber e concentrar todas as informações da casa inteligente;
- Deveremos produzir um software que se conecte aos sensores e eletrodomésticos do ambiente inteligente;
- O produto final do software será apresentado para o cliente.

3.3 Ideação – desenho da solução (trilha do usuário)

#TODOS USUARIOS

- Instalar / Abrir o Dashboard da SmartHouse;
- Tela de Login e Cadastramento;
- Se não possuir conta no Dashboard, deverá se cadastrar. Se possuir, apenas colocar as informações de login;
- Se for o primeiro acesso, deverá passar pelo conteúdo de apresentação, junto ao guia de utilização;
- Se não for o primeiro acesso chegará ao Dashboard automaticamente
- O usuário deverá conectar a sua casa inteligente (sensores, eletrodomésticos...) ao dashboard;

- O usuário terá acesso a todas as informações de consumo coletados pelos sensores
- O Dashboard fará cálculos dos gastos com o consumo de energia elétrica e de água
- O Dashboard apresentará gráficos
- O Dashboard terá uma sessão de sistema de recompensa pela economia desses recursos

3.4 Prototipagem

4.REQUISITOS DE SISTEMA

4.1 REQUISITOS FUNCIONAIS DE SOFTWARE

	Coletar dados elétricos e hídricos dos sensores
Função	Captar o consumo de energia elétrica e de água
Descrição	Captar dados coletados dos sensores elétricos e hídricos
Entradas	Sensor
Fonte	Dados coletados pelos sensores
Saídas	Dados do consumo de energia em kw/h e em litros
Ação	Fazer com que o sistema capte os dados coletados dos sensores

	Calcular o consumo de acordo com as métricas
Função	Calcular o consumo aplicando os métodos de contagem das distribuidoras dos recursos
Descrição	Fazer o calculo dentro do sistema em todos os dados de consumo coletados pelos sensores
Entradas	Funções atualizadas constantemente de acordo com as distribuidoras
Fonte	Sensores
Saídas	Dados do consumo de água
Ação	Fazer com que o sistema faça o cálculo do consumo de energia elétrica e de água baseado nos dados coletados pelos sensores

555556	Concentração de dados no banco
Função	Unir todos os dados coletados no banco de dados
Descrição	Unir todos os dados de consumo coletados dos sensores
Entradas	Sistema
Fonte	Sensores
Saídas	Banco de dados do consumo
Ação	Consolidar os dados captados dos sensores no banco de dados

	Representação dos dados no Dashboard
Função	Representar os dados graficamente
Descrição	representar através de gráficos os dados
Entradas	sistema
Fonte	Banco de dados
Saídas	Representação gráfica dos dados
Ação	Fazer a representação dos dados de consumo consolidados no banco de dados

555556	Conexão do sistema com os sensores
Função	Conectar o software com os sensores das residências
Descrição	fazer a conexão dos sensores das casas com o sistema
Entradas	sistema
Fonte	sensores
Saídas	Conexão do sistema com os sensores
Ação	Fazer a conexão do sistema com os sensores

Cadastramento de usuários		
Função	Cadastrar usuários no sistema	
Descrição	Fazer o cadastro de novos usuários utilizando as informações requeridas	
Entradas	Sistema de cadastro	
Fonte	Dados do usúario	
Saídas	Banco de Dados	
Ação	Fazer um processo de cadastro para acesso ao software final	

555556	Banco de dados informacional do usuário
Função	Concentrar os dados coletados do usuário
Descrição	Coletar e reservar seguramente as informações do usuário e de sua residência
Entradas	Uso do Dashboard
Fonte	Informações do usuário e da residência
Saídas	Banco de dados informacional
Ação	Concentração dos dados do usuário e da residência

	Coletar dados de sensores movimento, aproximação, presença
Função	Coletar dados dos sensores
Descrição	Capturar todos os dados dos sensores
Entradas	Consumo
Fonte	Sensores
Saídas	Banco de dados
Ação	Coleta de dados dos sensores

Atualizar parâmetros		
Função	Atualizar parâmetros de consumo	
Descrição	Atualizar parâmetros de consumo de acordo com as mudanças da distribuição	
Entradas	Dashboard	
Fonte	Consumo	
Saídas	Dashboard	
Ação	Atualizar parâmetros de consumo	

4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE

	Intuitividade		
Função	Interface intuitiva e responsiva		
Descrição	O sistema deve apresentar uma interface gráfica que seja de fácil compreensão para o usuário, com layout claro, navegação simples e design responsivo, garantindo boa usabilidade tanto em desktops quanto em dispositivos móveis (celulares e tablets).		
Entradas	Acesso do usuário ao sistema por meio de navegador web ou dispositivos móveis, com diferentes telas de tamanhos diferentes.		
Fonte	Boas práticas de User Experience		
Saídas	Interface visual adaptada ao dispositivo utilizado, com componentes exibidos corretamente, navegação funcional e interação fluida.		
Ação	Garantir que o dashboard siga princípios de responsividade e seja testado em dispositivos e resoluções variadas.		

Alta Disponibilidade		
Função	Alta disponibilidade	
Descrição	O sistema deve estar disponível para uso grande parte do tempo, com baixa indisponibilidade e interrupções.	
Entradas	Acesso dos usuários	
Fonte	Boas práticas de sistemas	
Saídas	Sistema funcional e acessível quase todo o tempo, com poucas interrupções.	
	Utilizar infraestrutura com tolerância a falhas e realizar monitoramento contínuo.	
Ação		

Função	Tempo de resposta inferior a 2 segundos
Descrição	O sistema deve garantir que as ações realizadas pelos usuários sejam executadas com tempo de resposta de até 2 segundos.
Entradas	Comandos do usuário no dashboard
Fonte	Padrão de usabilidade
Saídas	Ações realizadas com tempo de resposta inferior a 2 segundos.
Ação	Otimizar o backend e a comunicação com os dispositivos para garantir baixa latência.

Função	Compatibilidade entre diferentes sistemas operacionais:
Descrição	O sistema deve funcionar corretamente em diferentes sistemas operacionais como Android, iOS, Windows e Linux
Entradas	Acesso via diferentes dispositivos com sistemas operacionais variados
Fonte	Tendência de multiplataforma
Saídas	Interface e funcionalidades do sistema acessíveis e funcionais em todos os sistemas operacionais especificados.
Ação	

Função	Segurança dos dados dos usuários
Descrição	O sistema deve proteger todas as informações sensíveis dos usuários, evitando acessos não autorizados e vazamentos de dados.
Entradas	Dados de login e dados de sensores.
Fonte	Lei Geral de Proteção de Dados
Saídas	Dados armazenados de forma segura e acessados somente por usuários autorizados.
	Implementar autenticação segura, criptografia e controle de permissões.
Ação	

Função	Escalabilidade para novos sensores/atuadores
Descrição	O sistema deve ser escalável, permitindo a adição de novos sensores e atuadores sem necessidade de grandes alterações no código ou na arquitetura.
Entradas	Integração de novos dispositivos à casa inteligente.
Fonte	Necessidade de expansão futura.
Saídas	Novos dispositivos integrados com bom funcionamento
Ação	Usar padrões de comunicação abertos

5. CASOS DE USO

6. DIAGRAMA DE CLASSE

7. ARQUITETURA DO SISTEMA

Este projeto de arquitetura descreve a estrutura e a organização de um sistema web para controle de energia em uma casa inteligente. O sistema consiste em um **dashboard interativo** que coleta, processa e exibe dados provenientes de sensores de consumo de energia e sensores de presença, com o objetivo de fornecer ao usuário uma visão clara sobre o desempenho energético da residência. Além disso, o sistema inclui funcionalidades de autenticação, avaliação de desempenho e um sistema de recompensas baseado na economia de energia.

A arquitetura do sistema está organizada de forma modular, escalável e eficiente, sendo composta por cinco camadas principais: **Apresentação**, **Aplicação**, **Negócio**, **Persistência** e **Integração com Dispositivos**.

A camada de **apresentação** é responsável por fornecer a interface gráfica com a qual o usuário interage. Essa interface exibirá informações como gráficos de consumo energético, indicadores de desempenho classificados em três níveis (Desperdício, Média Economia e Econômico) e informações sobre o sistema de recompensas, que atribui pontos conforme o comportamento energético do usuário. A interface também incluirá telas de cadastro e login, além de atalhos visuais para outras áreas do sistema.

A camada de **aplicação** atua como intermediária entre a interface do usuário e as funcionalidades do sistema. Ela é responsável pelo processamento das requisições recebidas, organizadas por meio de uma API dividida em módulos específicos, como autenticação de usuários, consumo de energia, desempenho e recompensas. Essa camada direciona as chamadas para os componentes apropriados na camada de negócio.

A camada de **negócio** concentra as regras e lógicas que regem o comportamento do sistema. Aqui, os dados coletados dos sensores são interpretados e classificados de acordo com critérios predefinidos. Por exemplo, se o consumo de energia for elevado em momentos de ausência detectada, esse comportamento será classificado como desperdício. Já padrões de uso mais eficientes serão classificados como economia média ou desempenho econômico. Essa classificação é utilizada para alimentar o sistema de recompensas, atribuindo pontos ao usuário conforme sua eficiência energética.

A camada de **persistência** é responsável pelo armazenamento dos dados do sistema. Ela mantém registros estruturados relacionados a usuários, medições de consumo de energia, detecções de presença, avaliações de desempenho e pontuação de recompensas. A modelagem dos dados permite consultas rápidas e organização eficiente das informações necessárias para análise e exibição no dashboard.

Por fim, a camada de **integração com dispositivos** permite a comunicação contínua entre os sensores instalados na residência e o sistema. Os dados dos sensores são transmitidos para um componente intermediário, que os encaminha para o sistema, possibilitando a atualização frequente das informações apresentadas ao usuário. O fluxo é contínuo, permitindo o monitoramento em tempo quase real.

O funcionamento geral do sistema ocorre da seguinte forma: os sensores enviam dados para um ponto de coleta, que os transmite ao sistema. Os dados são então armazenados e processados, resultando em avaliações de desempenho energético e atualização da pontuação de recompensas. O usuário acessa essas informações por meio do dashboard, que apresenta tudo de maneira clara e acessível.

8. REFERÊNCIAS BIBLIOGRÁFICAS

SOMMERVILLE, I. Engenharia de Software. 11ª Edição. São Paulo: Pearson Addison-Wesley, 2017.

