Supervised Deep Learning with Auxiliary Networks

Junbo Zhang^{1,2}, Guangjian Tian², Yadong Mu², Wei Fan²

¹School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
²Huawei Noah's Ark Lab, Hong Kong

jbzhang@my.swjtu.edu.cn, {tian.guangjian, mu.yadong, david.fanwei}@huawei.com

Motivation: Huge data, but few labeled

- 1. Labeling Data is Very Expensive
 - ♦ Sample-specific annotations
 - ♦ Side information (similarity/dissimilarity constraints)
 - More flexible
 - Greatly mitigates the workload of annotators
- 2. Existing Deep Learning Schemes
 - Unsupervised Pre-training + Supervised Fine-turning
 - DBN, Stacked Autoencoders
 - ♦ Semi-supervised or Guided Autoencoder
- 3. Problems and Shortcoming
 - ♦ Ineffectively handle sparse side information
 - ♦ Sample-specific annotations are always required

Solution: SUGAR

- o Effectively Handle Side Information
- More Robust, Flexible, Easily Extendible
- General Model for Feature Learning from both unlabeled and labeled data

Auxiliary Network

Main Network

Potential Application Areas

- 1. Handwriting Recognition
- 2. Domain Adaptation
- 3. Telecommunication Data Mining
- 4. Others
 - ♦ Multi-source data
 - ♦ Few Labeled data

