제 2 교시

수학 영역 (가형)

5지선다형

1. 2⁵×2⁻³의 값은? [2점]

 \bigcirc 2

- 2 4
- 3 6
- **4** 8
- **⑤** 10

2. 두 집합

 $A = \{2, 4, 6, 8, 10\}, B = \{2, 3, 4, 5, 6\}$

에 대하여 $n(A \cap B)$ 의 값은? [2점]

1

- ② 2
 - 3 4
- ⑤ 5

3. 공비가 2인 등비수열 $\{a_n\}$ 에 대하여 $a_2=6$ 일 때, a_4 의 값은? [2점]

① 16

- 2 18
- 320
- **4** 22
- ⑤ 24

4. 그림은 두 함수 $f: X \rightarrow Y$, $g: Y \rightarrow Z$ 를 나타낸 것이다.

(g ∘ f)(1)의 값은? [3점]

- 1
- 2 2
- 3 3
- 4
- 5 5

5. 함수 y = f(x)의 그래프가 그림과 같다.

 $\lim_{x \to -1^-} f(x) + \lim_{x \to 0^+} f(x)$ 의 값은? [3점]

- ① -1
- ② 0
- 3 1
- ④ 2
- ⑤ 3

- ${f 6.}$ 수열 $\left\{a_n
 ight\}$ 이 모든 자연수 n 에 대하여 $\sum_{k=1}^n a_k = n^2 + 5n$ 을 만족시킬 때, a_6 의 값은? $[3\ {
 m A}]$
 - ① 8
- ② 12
- 3 16
- **4** 20
- ⑤ 24

7. 함수

$$f(x) = \begin{cases} 2x^2 + ax & (x < 2) \\ 4x + b & (x \ge 2) \end{cases}$$

가 실수 전체의 집합에서 미분가능할 때, ab의 값은? (단, a와 b는 상수이다.) [3점]

- ① 24
- 2 26
- 3 28
- 4 30
- ⑤ 32

- 8. 두 상수 a, b에 대하여 정의역이 $\{x \mid 2 \le x \le a\}$ 인 함수 $y = \frac{3}{x-1} - 2$ 의 치역이 $\{y \mid -1 \le y \le b\}$ 일 때, a+b의 값은? (단, a>2, b>-1) [3점]
 - ① 5
- 2 6
- 3 7 4 8
- ⑤ 9

- 9. $\lim_{x \to 3} \frac{2x^2 + ax + b}{x^2 9} = 3 일 때, a + b 의 값은?$ (단, a와 b는 상수이다.) [3점]

 - $\bigcirc -33$ $\bigcirc -30$ $\bigcirc -27$ $\bigcirc -24$ $\bigcirc -24$

- 10. 함수 f(x)=x(x+1)(x-2) 에서 x의 값이 -2에서 0까지 변할 때의 평균변화율과 x의 값이 0에서 a까지 변할 때의 평균변화율이 서로 같을 때, 양수 a의 값은? [3점]
 - 1
- 2 2 3 3
- 5 5

11. 수열 $\left\{a_n\right\}$ 에 대하여 급수 $\sum_{n=1}^{\infty} \left(\frac{a_n}{n}+1\right)$ 이 수렴할 때,

$$\lim_{n\to\infty}\frac{na_n+3n^2}{n^2+1}$$
의 값은? [3점]

- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{5}{2}$

- 12. 두 함수

$$f(x) = 4x - 5$$
, $g(x) = 3x + 1$

- 에 대하여 $(f \circ g^{-1})(k)=7$ 을 만족시키는 실수 k의 값은? [3점]
- 1 4
- ③ 10
- **4** 13
- ⑤ 16

13. 다항함수 f(x)가 모든 실수 x에 대하여

$$f(x+1) - f(1) = x^3 + 13x^2 + 26x$$

를 만족시킬 때, f'(1)의 값은? [3점]

- ① 26 ② 30
- 3 34
- **4** 38
- ⑤ 42
- 14. 수직선 위를 움직이는 점 P의 시각 $t (t \ge 0)$ 에서의 속도 v(t)가

$$v(t) = 12 - 3t^2$$

이다. t=0부터 t=4까지 점 P가 움직인 거리는? [4]점]

- ① 44
- 2 48
- 3 52
- **4** 56
- ⑤ 60

15. 등차수열 $\{a_n\}$ 이

$$\sum_{k=1}^{15} a_k = 165, \ \sum_{k=1}^{21} (-1)^k a_k = -20$$

을 만족시킬 때, a_{21} 의 값은? [4점]

- ① 45
- ② 50
- 3 55
- **4** 60
- ⑤ 65
- **16.** 함수 $f(x)=a(x-1)^2+1$ 에 대하여

$$\lim_{x \to \infty} \{\sqrt{f(-x)} - \sqrt{f(x)}\} = 6$$

일 때, 양수 a의 값은? [4점]

- ① 3
- ② 5
- 3 7
- **4** 9
- ⑤ 11

17. 첫째항이 3이고 공비가 r(r>1)인 등비수열 $\{a_n\}$ 에 대하여 수열 $\{b_n\}$ 의 각 항이

$$\begin{split} b_1 &= \log_{a_1} a_2 \\ b_2 &= \left(\log_{a_1} a_2\right) \times \left(\log_{a_2} a_3\right) \\ b_3 &= \left(\log_{a_1} a_2\right) \times \left(\log_{a_2} a_3\right) \times \left(\log_{a_3} a_4\right) \\ &\vdots \\ b_n &= \left(\log_{a_1} a_2\right) \times \left(\log_{a_2} a_3\right) \times \left(\log_{a_3} a_4\right) \times \\ &\vdots \\ \vdots \\ \end{split}$$

일 때,
$$\sum_{k=1}^{10} b_k = 120$$
이다. $\log_3 r$ 의 값은? [4점]

- ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{5}{2}$

18. 다음은

$$\lim_{n\to\infty} \frac{1^4 + 2^4 + 3^4 + \dots + n^4}{(1+2+3+\dots+n)(1^2+2^2+3^2+\dots+n^2)}$$

의 값을 구하는 과정의 일부이다.

$$S_n = \frac{1^4 + 2^4 + 3^4 + \cdots + n^4}{\left(1 + 2 + 3 + \cdots + n\right)\left(1^2 + 2^2 + 3^2 + \cdots + n^2\right)}$$
이라 하면

$$S_n = \frac{\left[(7) \right] \times \sum_{k=1}^n k^4}{n^2 (n+1)^2 (2n+1)}$$

$$= \boxed{(7)} \times \frac{\boxed{(1)}}{(n+1)^2(2n+1)} \times \sum_{k=1}^n \frac{k^4}{n^5}$$

이다. 따라서

$$\lim_{n \to \infty} S_n = 6 \lim_{n \to \infty} \sum_{k=1}^n \left\{ \left(\frac{k}{n} \right)^4 \frac{1}{n} \right\}$$

이므로 정적분의 정의에 의하여

$$\lim_{n\to\infty} S_n = 6 \int_0^1 f(x) \, dx = \boxed{(\Box)}$$

이다.

위의 (7), (다)에 알맞은 수를 각각 p, q라 하고 (나)에 알맞은 식을 g(n)이라 할 때, $g(2) + \frac{p}{q}$ 의 값은? [4점]

- 18
- 2 21
- 324
- **4** 27
- \bigcirc 30

 $19. \ 2$ 이상의 자연수 n에 대하여 좌표평면 위의 두 원

$$C_1: x^2 + y^2 = (n-1)^2,$$

 $C_2: (x-n)^2 + y^2 = n^2$

이 만나는 서로 다른 두 점을 각각 \mathbf{P}_n , \mathbf{Q}_n 이라 할 때, $\lim_{n\to\infty} \frac{P_n Q_n}{n}$ 의 값은? [4점]

- ① $\frac{\sqrt{3}}{3}$ ② $\frac{\sqrt{2}}{2}$ ③ 1 ④ $\sqrt{2}$ ⑤ $\sqrt{3}$
- 20. 그림과 같이 길이가 8인 선분 AB_1 을 지름으로 하는 반원을 그리고 호 B_1A 위에 $\angle B_1AC_1 = 30$ °가 되도록 점 C_1 을 잡는다. 선분 AC_1 을 지름으로 하는 반원이 선분 AB_1 과 만나는 점 중 점 A 가 아닌 점을 B_2 라 할 때, 선분 B_2B_1 , 호 B_1C_1 과 호 C_1B_2 로 둘러싸인 도형의 내부를 색칠하여 얻은 그림을 R_1 이라 하자.

그림 R_1 에서 선분 AB_2 를 지름으로 하는 반원을 그리고 호 B_2A 위에 $\angle B_2AC_2 = 30$ °가 되도록 점 C_2 를 잡는다. 선분 AC_2 를 지름으로 하는 반원이 선분 AB_2 와 만나는 점 중 점 A 가 아닌 점을 B_3 이라 할 때, 선분 B_3B_2 , 호 B_2C_2 와 호 C_2B_3 으로 둘러싸인 도형의 내부를 색칠하여 얻은 그림을 R_2 라 하자.

이와 같은 과정을 계속하여 n 번째 얻은 그림을 R_n 이라 할 때, 그림 R_n 에 색칠되어 있는 부분의 넓이를 S_n 이라 하자.

 $\lim_{n\to\infty} S_n = \frac{q}{p} (2\pi + 3\sqrt{3})$ 일 때, p+q의 값은? (단, p와 q는 서로소인 자연수이다.) [4점]

- R_3
- ① 31
- ② 33
- 3 35
- 4 37
- **⑤** 39

21. 양수 t에 대하여 함수 f(x)를

$$f(x) = \int_{3t}^{x} (s^2 - 4ts + 3t^2) ds$$

라 할 때, 닫힌 구간 [0, 2]에서 함수 f(x)의 최댓값을 g(t) 라 하자. <보기>에서 옳은 것만을 있는 대로 고른 것은?

$$\neg . f'(x) = (x-t)(x-3t)$$

ㄴ.
$$t > 2$$
일 때, $g(t) = \frac{2}{3}(3t-2)^2$ 이다.

다. t > 2일 때, $g(t) = \frac{2}{3}(3t-2)^2$ 이다. 다. t > 0에서 정의된 함수 g(t)는 $t = \frac{1}{2}$ 에서만

미분가능하지 않다.

- ① 7 ② □ ③ 7, ∟
- ④ ∟, □⑤ ¬, ∟, □

단 답 형

22. $\log_5 50 + \log_5 \frac{1}{2}$ 의 값을 구하시오. [3점]

23. 자연수 전체의 집합의 두 부분집합

에 대하여 $A \subset B$ 를 만족시키는 모든 자연수 a의 값의 합을 구하시오. [3점]

24. 함수 f(x) 가

$$f(x) = \int (3x^2 + 2) \, dx$$

이고 f(0)=1일 때, f(2)의 값을 구하시오. [3점]

25. 실수 x에 대한 두 조건

$$p: x^2 - 4x + 3 \le 0$$
,
 $q: x \le a$

에 대하여 p가 q이기 위한 충분조건이 되도록 하는 실수 a의 최솟값을 구하시오. [3]점

26. x에 대한 다항식 $x^3 - ax + b$ 를 x - 1로 나눈 나머지가 57이다. 세 수 1, a, b가 이 순서대로 공비가 양수인 등비수열을 이룰 때, a + b의 값을 구하시오. (단, a와 b는 상수이다.)

27. 직선 $y = \sqrt{2}x$ 위의 점 $A(t, \sqrt{2}t)(t > 0)$ 과 x축 위의 점 B(2t, 0)이 있다. 선분 AB의 중점을 C 라 하고, 점 C 를 지나고 선분 AB에 수직인 직선이 직선 x = 2t와 만나는 점을 D 라 하자. 선분 CD의 길이를 f(t)라 할 때,

 $\lim_{t\to 4} \frac{t^2 - 16}{f(t) - \sqrt{6}} = a$ 이다. $3a^2$ 의 값을 구하시오. [4점]

28. 실수 전체의 집합에서 연속인 함수 f(x)가 다음 조건을 만족시킨다.

(가) 모든 정수 m에 대하여

$$\int_{-\infty}^{m+2} f(x) dx = 4$$
이다.

(나) $0 \le x \le 2$ 에서 $f(x) = x^3 - 6x^2 + 8x$ 이다.

$$4\int_{1}^{10} f(x) dx$$
의 값을 구하시오. [4점]

29. 좌표평면에서 두 곡선 $y=2\sqrt{x}$, $y=-\sqrt{x}+6$ 과 직선 x=k로 둘러싸인 영역의 내부 또는 그 경계에 포함되고 x 좌표와 y 좌표가 모두 정수인 점의 개수가 59 가 되도록 하는 자연수 k의 값을 구하시오. (단, k>4) [4점]

30. 최고차항의 계수의 부호가 서로 다른 두 삼차다항식 f(x), g(x)가

$$|f(x)| = \begin{cases} g(x) - 4x - 26 & (x \le a) \\ g(x) + 2x^3 - 14x^2 + 12x + 6 & (x > a) \end{cases}$$

를 만족시킬 때, 방정식 $f(x)+a(x-k)^2=0$ 이 서로 다른 세 실근을 갖도록 하는 모든 자연수 k의 값의 합을 구하시오. (단, a는 상수이다.) [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.