NEC

PNP SILICON POWER TRANSISTOR 2SA1395

DESCRIPTION The 2SA1395 is PNP silicon epitaxial transistor designed for switching regulator, DC-DC converter and high frequency power amplifier application.

FEATURES

- Easy mount by eliminating Insulation Sheet and Bushing.
- Low Collector Saturation Voltage.
- High Switching Speed.
- Complementary to 2SC3567.

ABSOLUTE MAXIMUM RATINGS

	emperatures					
Storage T	「emperature					
Junction Temperature 150 °C Maximum						
	ower Dissipation (T _a = 25 °C)					
Total Pov	wer Dissipation 15 W					
Maximum V	oltages and Currents (T _a = 25 °C)					
V _{CBO}	Collector to Base Voltage100 V					
V _{CEO}	Collector to Emitter Voltage100 V					
V _{EBO}	Emitter to Base Voltage7.0 V					
(CDC)	Collector Current (DC)2.0 A					
1 _{C(pulse)}	Collector Current (pulse)*4.0 A					
I _{B(DC)}	Base Current (DC)					
2,20,	* PW \leq 300 μ s, Duty Cycle \leq 10 %					

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT.	TEST CONDITIONS	
ton Turn-on Time				0.5	μs	(IC = -1.0 A, I _{B1} = -I _{B2} = -0.1 A	
tstq	Storage Time			1.5	μs	$R_1 = 50 \Omega$, $V_{CC} = 50 V$	
tf	Fall Time			0.5	μs	(HL - 50 32, VCC - 50 V	
hFE1	DC Current Gain**	40				$V_{CE} = -5.0 \text{ V, } I_{C} = -0.1 \text{ A}$	
hFE2	DC Current Gain**	40		200	-	$V_{CE} = -5.0 \text{ V, I}_{C} = -1.0 \text{ A}$	
VCE(sat)	Collector Saturation Voltage**			-0.6	V	$I_C = -1.0 \text{ A}, I_B = -0.1 \text{ A}$	
V _{BE(sat)}	Base Saturation Voltage**			-1.5	V	$I_C = -1.0 \text{ A}, I_B = -0.1 \text{ A}$	
V _{CEO} (SUS)	Collector to Emitter Sustaining Voltage	-100			٧	$I_C = -1.0 \text{ A}, I_B = -0.1 \text{ A}, L = 1 \text{ mH}$	
VCEX (SUS)1	Collector to Emitter Sustaining Voltage	-100			V	$I_C = -1.0 \text{ A}, I_{B1} = -I_{B2} = -0.1 \text{ A},$ L = 180 μ H, Clamped	
V _{CEX} (SUS)2	Collector to Emitter Sustaining Voltage	-100			V	$I_C = -2.0 \text{ A}, I_{B1} = -0.2 \text{ A}, -I_{B2} = 0.1 \text{ A},$ L = 180 μ H, Clamped	
Ісво	Collector Cutoff Current			-10	μΑ	$V_{CB} = -100 \text{ V}, I_{E} = 0$	
CER	Collector Cutoff Current			-1.0	mA	$V_{CE} = -100 \text{ V}, R_{BE} = 51 \Omega, T_a = 125 °C$	
CEX1	Collector Cutoff Current			-10	μΑ	$V_{CE} = -100 \text{ V}, V_{BE(OFF)} = 5.0 \text{ V}$	
ICEX2	Collector Cutoff Current			-1.0	mA	$V_{CE} = -100 \text{ V}, V_{BE(OFF)} = 5.0 \text{ V},$ $T_a = 125 \text{ °C}$	
I _{EBO}	Emitter Cutoff Current			-10	μА	$V_{EB} = -5.0 \text{ V, I}_{C} = 0$	

** PW \leq 350 μ s, Duty Cycle \leq 2 %

Classification of h_{FE2}

Rank	М	L	κ
Range	40 to 80	60 to 120	100 to 200

Test Conditions: $V_{CE} = -5.0 \text{ V}$, $I_{C} = -1.0 \text{ A}$

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME (t_{on} , t_{stg} , t_{f}) TEST CIRCUIT

