

JUN 07, 2023

OPEN ACCESS

יוטם

dx.doi.org/10.17504/protocol s.io.j8nlkk7wdl5r/v1

Protocol Citation: Gert Marais, Ziyaad Valley-Omar, Kathleen Bateman, Kate McMullen, Dieter van der Westhuizen, Moepeng Maseko, Suzaan Marais, Diana Hardie, Adrian Brink 2023. Clinical metagenomic sequencing - CSF RNA and DNA Illumina MiSeq.

protocols.io https://dx.doi.org/10.17504/p rotocols.io.j8nlkk7wdl5r/v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Aug 15, 2022

Last Modified: Jun 07, 2023

PROTOCOL integer ID: 68673

Clinical metagenomic sequencing - CSF RNA and DNA Illumina MiSeq

Ziyaad Valley- Kathleen Gert Marais¹, Omar¹, Bateman²,

Kate Dieter van der

McMullen², Westhuizen¹, Moepeng Maseko¹,

Suzaan Marais², Diana Hardie¹, Adrian Brink¹

¹University of Cape Town, National Health Laboratory Service;

²University of Cape Town

Gert Marais: Medical Microbiology; Ziyaad Valley-Omar: Medical Virology

Kathleen Bateman: Neurology Kate McMullen: Neurology

Dieter van der Westhuizen: Chemical Pathology

Moepeng Maseko: Medical Virology

Suzaan Marais: Neurology Diana Hardie: Medical Virology Adrian Brink: Medical Microbiology

Ruan Marais

DISCLAIMER

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

Keywords: Clinical metagenomics, CSF, central nervous system infections

ABSTRACT

This protocol was developed to evaluate unbiased cerebrospinal fluid metagenomics at a referral centre in South Africa. Commercial kit protocols are generally used unmodified and limited use of in-house developed methods or reagents is made. This maintains the simplicity and accessibility of the protocol which can serve as a base for evaluation of process improvements.

GUIDELINES

Please note: This protocol is intended for research use only.

- 1) This protocol functions optimally with low cell-count CSF specimens with minimal human DNA. High cell-count specimens should ideally be evaluated using sequencing protocols that include general microbiome enrichment or targeted enrichment and/or human DNA depletion.
- 2) The number of individuals performing the clinical metagenomic sequencing (CMS) protocol and the number of days over which it is performed determines the order of steps.
- 3) Sodium hypochlorite is the preferred cleaning solution
- 4) The preferred run size is 10 samples and 2 controls though the cellularity of used CSF may alter the preferred run size due to increased quantity of human DNA. Master mix volumes are calculated and presented here for this run size.
- 5) The total hands-on time (including incubation and thermocycler time) for the protocol is 14 hours and 11 minutes. This assumes a single operator and 10 samples with 2 controls. The time estimate excludes sequencing time (generally 48-56 hours with the MiSeq v3 600-cycle kits) and bioinformatics time. It is generally advisable to perform the protocol over 2 days.
- 6) Prior to use samples should be stored at right of the prior to use.

MATERIALS

Reagents

NUCLISENS easyMAG extraction reagents bioMérieux

- RNA Clean & Concentrator™-5 **Zymo Research Catalog** #R1015
- SuperScript™ IV First-Strand Synthesis System **Thermo Fisher Scientific Catalog** #18091050
- Second strand synthesis kit Invitrogen Thermo Fisher Catalog #A48571
- iTaq Universal SYBR® Green One-step kit **Bio-Rad Laboratories Catalog** #1725150
- Illumina DNA Prep (M) Tagmentation (24 Samples) Illumina, Inc. Catalog #20018704
- Illumina Nextera DNA CD indexes (24 indexes) **Illumina, Inc.**
- MiSeq v3 Sequencing Reagents (600 cycles) **Illumina, Inc. Catalog #MS-102-** 3003
- PhiX Control v3 Illumina, Inc. Catalog #FC-110-3001
- Qubit 1X dsDNA HS Assay Kit **Thermo Fisher Scientific Catalog** #Q33230
- Agencourt AMPure XP Beckman Coulter Catalog #A63880
- Viral Multiplex Reference 11/242 NIBSC National Institute of Biological Standard and Control (NIBSC) Catalog #11/242

Optional (

High Sensitivity D5000 ScreenTape Agilent Technologies Catalog #5067-5592

Optional (

High Sensitivity D5000 Reagents **Agilent Technologies Catalog #5067**-

Custom reagents

Consumables

Ethanol (100%, Molecular Biology Grade) **Fisher Scientific Catalog** #BP2818500

Sodium Hydroxide 1M solution Contributed by users

Falcon tube (50 mL) Contributed by users

Safe-Lock Tubes 1.5 ml PCR clean DNA LoBind Eppendorf Catalog #0030108051

Secondary House 1.5 ml PCR clean DNA LoBind Eppendorf Catalog House 1.5 ml PCR plates Semi-skirted Eppendorf Catalog House 1.5 ml PCR plates 1.5 ml P

Equipment

Equipment	
NUCLISENS easyMag	NAME
Nucleic acid extraction	TYPE
bioMerieux	BRAND
N/A	SKU
https://www.biomerieux-usa.com/clinical/nuclisens-easymag	LINK

Equipment

MiSeq

Sequencer

illumina BRAND

SY-410-1003

https://www.illumina.com/systems/sequencing-platforms/miseq/ordermiseq.html

Equipment

Set of micropipettes with rack: 100-1000 μl , 20-200 μl , 2-20 μl , and $^{\text{NAME}}$ 0.5-10 μl

Pipettor set TYPE

Pipetman

QP-1001-07

https://www.minipcr.com/product/set-of-four-adjustable-volume-micropipettes-rack/

Can use equivalent Pipettors SPECIFICATIONS

LINK

LINK

CFX96 Touch Real-Time PCR qPCR Bio-Rad #1855195 https://www.bio-rad.com/en-no/sku/1855195-cfx96-touch-real-time-pcr-detection-system?ID=1855195

Equipment	
Magnetic Stand-96	NAME
ThermoFisher Scientific	BRAND
AM10027	SKU
https://www.thermofisher.com/order/catalog/product/AM10027	LINK

EquipmentQubit FluorometerNAMEFluorometerTYPEInvitrogenBRANDQ33238SKU

https://www.thermofisher.com/order/catalog/product/Q33238#/Q33238

Equipment	
Centrifuge	NAME
Benchtop Centrifuge	TYPE
Eppendorf	BRAND
5405000441	SKU
https://online-shop.eppendorf.us/US-en/Centrifugation-4-44534/Centrifuge-5425-PF-243560.html	4533/Centrifuges- LINK

Any benchtop centrifuge will suffice

SPECIFICATIONS

Equipment	
Plate centrifuge	NAME
Centrifuge	TYPE
Any	BRAND
N/A	SKU

similar total nucleic acid extraction platform.

- The preferred run size is 10 samples and 2 controls
- The preferred positive control is the NIBSC Viral Multiplex Reference 11/242
- The preferred negative control is the extraction platform lysis buffer
- The internal control used is laboratory specific and the volume used is dependent on its specific characteristics and lab optimisation prior to use
- Enter the sample details in the table below

Sample identifier	Sample input volume (ul)
Positive control	
Negative control	

Table: Sample details and input volume

The following consumables are required for this step:

Safe-Lock Tubes 1.5 ml PCR clean DNA LoBind Eppendorf Catalog #0030108051

Viral Multiplex Reference 11/242 NIBSC National Institute of Biological Standards and Control (NIBSC) Catalog #11/242

The following equipment is required for this step:

Equipment	
NUCLISENS easyMag	NAME
Nucleic acid extraction	TYPE
bioMerieux	BRAND
N/A	SKU
https://www.biomerieux-usa.com/clinical/nuclisens-easymag	LINK

- 0.2 Remove CSF samples from \$\mathbb{E}\$ -70 °C storage and defrost \$\mathbb{E}\$ On ice . Label the sample elution tubes (1 for RNA and 1 for total nucleic acids for each sample) and easyMAG lysis buffer tubes while the samples defrost.
- **0.3** Briefly centrifuge the samples.

15m

The following consumables are required for this step:

Ethanol (100%, Molecular Biology Grade) Fisher Scientific Catalog #BP2818500

Safe-Lock Tubes 1.5 ml PCR clean DNA LoBind Eppendorf Catalog #0030108051

The following equipment is required for this step:

Equipment	
Centrifuge	NAME
Benchtop Centrifuge	TYPE
Eppendorf	BRAND
5405000441	SKU
https://online-shop.eppendorf.us/US-en/Centrifugation-44533/Centrifuges-44534/Centrifuge-5425-PF-243560.html	LINK
Any benchtop centrifuge will suffice	SPECIFICATIONS

Prior to starting:

- Add 🗸 96 mL of 100% ethanol to the 🔼 24 mL RNA wash buffer concentrate.
- Reconstitute the lyophilised DNAse I with nuclease-free water to a concentration of 1 U/ul or defrost an aliquot of previously reconstituted DNAse I.

1.1 Prepare DNAse I master mix as follows:

Component	Volume per sample (ul)	Total volume (ul) (13)
DNA digestion buffer	5	65
DNAse I enzyme (1 U/ul)	5	65
Nuclease-free water	25	325
Total	35	455

Table: DNAse I master mix

1.6 Transfer the sample to its labelled Zymo-Spin IC column in a collection tube and centrifuge. Discard the flow-through.

1.7 Add $\underline{\mathsf{L}}$ 400 $\mu \mathsf{L}$ RNA Prep Buffer to each column and centrifuge. Discard the flow-through.

1.8 Add $\boxed{ \bot}$ 700 μL RNA Wash Buffer to each column and centrifuge. Discard the flow-through.

1.9 Add Δ 400 μ L RNA Wash Buffer to each column and centrifuge. Transfer the column to a labelled elution tube.

5m

5m

1.10 Add A 12 µL of DNAse/RNAse-Free Water directly to the column matrix and centrifuge. 10m

2 Perform first-strand synthesis on the purified RNA using the

SuperScript™ IV First-Strand Synthesis System Thermo Fisher Scientific Catalog #18091050

kit.

The following consumables are required for this step:

96 well LoBind PCR plates Semi-skirted Eppendorf Catalog #0030129504

The following equipment is required for this step:

2.1 Prepare priming master mix as follows \ \ On ice

Component Volume per sample (ul) Total volume (ul) (13)

Component	Volume per sample (ul)	Total volume (ul) (13)
50ng/ul random hexamers	1	13
10mM dNTP mix	1	13
Total	2	26

Table: Priming master mix

5m

2.3 Incubate the priming reaction at \$\circ\$ 65 °C for \$\circ\$ 00:05:00 and then put the reaction \$\circ\$ On ice for \$\circ\$ 00:01:00 . Set the thermocycler lid to \$\circ\$ 105 °C

10m

2.4

5m

Prepare the 1st strand synthesis master mix as follows On ice

Component	Volume per sample (ul)	Total volume (ul) (13)
5X SSIV Buffer	4	52
100mM DTT	1	13
Ribonuclease inhibitor	1	13
Superscript IV RT (200U/ul)	1	13
Total	7	91

Table: 1st strand master mix

1h 15m

Temperature (degrees Celsius)	Time (minutes)
23	10
55	10
80	10
4	Hold

Table: 1st strand thermocycler parameters

3 Perform 2nd strand synthesis on the 1st strand synthesis product using the

kit.

Second strand synthesis kit Invitrogen - Thermo Fisher Catalog #A48571

The following consumables are required for this step:

96 well LoBind PCR plates Semi-skirted Eppendorf Catalog #0030129504

The following equipment is required for this step:

Equipment	
SimpliAmp Thermal Cycler	NAME
PCR	TYPE
Applied Biosystems	BRAND
A24811	SKU
https://www.thermofisher.com/order/catalog/product/A24811	LINK
Any standard PCR thermocycler will suffice	SPECIFICATIONS

Component	Volume per sample (ul)	Total volume (ul) (13)
Nuclease-free water	55	715
5X second strand reaction mix	20	260
Second strand enzyme mix	5	65
Total	80	1040

Table: 2nd strand synthesis master mix

3.2 Add \angle 20 μ L of 1st strand synthesis product to \angle 80 μ L of 2nd strand synthesis master mix

3.3 Incubate the reaction at 16 °C for 50 01:00:00 . Set the thermocycler lid to 140 °C .

3.4 Stop the reaction by adding \triangle 6 μ L of [IM] 0.5 Molarity (M) EDTA, \bigcirc 8

ng Δ 6 μL of [M] 0.5 Molarity (M) EDTA, (PH 8)

Purify the cDNA using Agencourt AMPure XP Beckman Coulter Catalog beads.

45m

The following consumables are required for this step:

Ethanol (100%, Molecular Biology Grade) **Fisher Scientific Catalog** #BP2818500

The following equipment is required for this step:

Prior to starting:

- Prepare 80% ethanol
- Label the purified cDNA tubes
- Bring the

 Agencourt AMPure XP Beckman Coulter Catalog

 #A63880

 Broom temperature and resuspend by vortexing.
- Add Δ 180 μL (1.8X) of Agencourt AMPure XP Beckman Coulter Catalog

 #A63880

 to Δ 100 μL of 2nd strand synthesis product from 4.4 and mix well by pipetting up and down 10 times.
- 4.2 Incubate for 00:05:00 at Room temperature
- 4.3 Place the sample plate on a magnetic stand and allow the solution to clear (00:05:00

4.4 Discard the supernatant without disturbing the beads

- 4.5 Add \angle 200 μ L of 80% ethanol to each well with the sample plate on the magnetic stand and incubate at room temperature for \bigcirc 00:00:30 .
- 2m

4.6 Discard the supernatant without disturbing the beads

- 2m
- 4.7 Repeat the wash steps once. Use a P20 pipette to remove residual ethanol from each well
- 5m

4.8 Air dry the beads (± 00:02:00) but do not allow the surface to crack.

- 2m
- Remove the plate from the magnetic rack. Elute the DNA from the beads by adding \pm 25 μ L nuclease-free water to the beads. Mix well by pipetting up and down 10 times.
- 5m

4.10 Incubate for 00:02:00 at 8 Room temperature

- 2m
- 4.11 Place the sample plate on a magnetic stand and allow the solution to clear (00:05:00)
- 5m

4.12 Remove Z 22 µL of the supernatant and transfer to a clean nuclease-free tube

Pre-Sequencing QC PCR

40m

5 Perform a QC real-time PCR using the

40m

iTaq Universal SYBR® Green One-step kit **Bio-Rad Laboratories Catalog** #1725150

kit. The

primers should be specific to the internal control used. This protocol used Tobacco Mild Green Mosaic virus as an internal control with the following primers diluted as per the iTaq kit package insert:

Primer	Sequence	
Forward	5'-GGATATGTCTAAGTCTGTTGC-3'	
Reverse	5'-CAGACAACTCGGGTGCG-3'	

Ellis MD, Hoak JM, Ellis BW, Brown JA, Sit TL, Wilkinson CA, Reed TD, Welbaum GE. Quantitative real-time PCR analysis of individual flue-cured tobacco seeds and seedlings reveals seed transmission of tobacco mosaic virus. Phytopathology. 2020 Jan 19;110(1):194-205.

The following consumables are required for this step:

96 well LoBind PCR plates Semi-skirted **Eppendorf Catalog** #0030129504

The following equipment is required for this step:

EquipmentCFX96 Touch Real-Time PCRNAMEqPCRTYPEBio-RadBRAND#1855195SKUhttps://www.bio-rad.com/en-no/sku/1855195-cfx96-touch-real-time-pcr-detection-system?ID=1855195LINK

5.1 Prepare the master mix as follows On ice

5m

Component	Volume per sample (ul)	Total (ul) (13)
iTaq Universal SYBR reaction mix (2X)	10	130
iScript RT	0.25	3.25
Nuclease-free water	2.75	35.75
Forward primer	1	13
Reverse primer	1	13
Total volume	15	195

Table: Spiked internal control PCR master mix. Sample volume per reaction is 5ul

5.2 Add Δ 5 μ L of post 2nd strand synthesis clean-up product to Δ 15 μ L of master mix

5.3 Run the following PCR program on a qPCR machine reading the SYBR green fluorophore

Temperature (degrees Celsius) Time (seconds) Cycles

30m

Temperature (degrees Celsius)	Time (seconds)	Cycles
95	60	1
95	10	40
58	20 (+Read)	

Table: Spiked internal control PCR thermocycler parameters. The internal control spike-in should be to a target Ct value of 30±2. The kit reverse transcriptase step is skipped.

Library Preparation

6h 40m

1h 17m

6

Prepare the tagmentation reaction from the

Illumina DNA Prep (M) Tagmentation (24 Samples) Illumina, Inc. Catalog #20018704

kit.

The following consumables are required for this step:

96 well LoBind PCR plates Semi-skirted **Eppendorf Catalog** #0030129504

The following equipment is required for this step:

SimpliAmp Thermal Cycler PCR Applied Biosystems A24811 https://www.thermofisher.com/order/catalog/product/A24811 Any standard PCR thermocycler will suffice SPECIFICATIONS

Prior to starting:

- Bring the bead-linked transposomes (BLT), tagmentation buffer 1 (TB1), tagmentation stop buffer (TSB) and tangent wash buffer (TWB) to
- Pool Δ 15 μ L of extracted total nucleic acids (from initial nucleic acid purification step) and Δ 15 μ L of purified cDNA (prepared from purified and isolated RNA) in a 96 well LoBind PCR plates Semi-skirted Eppendorf Catalog #0030129504
- **6.2** Prepare the tagmentation master mix as follows:

Componer	nt	Volume per sample (ul)	Total (ul) (12)
Bead-linke (BLT)	ed transposomes	11	132
Tagmenta	tion buffer 1 (TB1)	11	132
Total		22	264

Table: Tagmentation master mix. Vortex to mix.

6.3 Add \angle 20 μ L of master mix to \angle 30 μ L of pooled DNA and mix by pipetting up and down 10 times

6.4 Run the following program on a thermocycler with the lid set to \$\ \bigset\$ 100 °C

Step	Temperature (degrees Celsius)	Time (minutes)
Tagmentation	55	15
Hold	10	Hold

Table: Tagmentation thermocycler parameters.

6.5 of tagmentation stop buffer to each reaction and pipette up and down slowly to resuspend

5m

15m

6.6 Run the following program on a thermocycler with the lid set to \$\ \bigset\$ 100 °C 15m

Step	Temperature (degrees Celsius)	Time (minutes)
Incubation	37	15
Hold	10	Hold

Table: Tagmentation stop thermocycler parameters.

6.7 Place the sample plate on a magnetic stand and allow it to clear 00:03:00

3m

6.8 Remove and discard the supernatant

6.9 Wash by removing the plate from the magnetic stand and adding A 100 µL of tagment wash buffer directly onto the beads, pipetting up and down slowly to resuspend

The following equipment is required for this step:

Equipment

SimpliAmp Thermal Cycler

NAME

PCR

TYPE

Applied Biosystems

BRAND

A24811

SKU

https://www.thermofisher.com/order/catalog/product/A24811

LINK

Any standard PCR thermocycler will suffice

SPECIFICATIONS

Equipment

Centrifuge

NAME

Benchtop Centrifuge

TYPE

Eppendorf

BRAND

5405000441

SKU

https://online-shop.eppendorf.us/US-en/Centrifugation-44533/Centrifuges-

LINK

44534/Centrifuge-5425-PF-243560.html

SPECIFICATIONS

Any benchtop centrifuge will suffice

Equipment	
Plate centrifuge	NAME
Centrifuge	TYPE
Any	BRAND
N/A	SKU

Equipment	
Magnetic Stand-96	NAME
ThermoFisher Scientific	BRAND
AM10027	SKU
https://www.thermofisher.com/order/catalog/product/AM10027	LINK

Equipment	
Qubit Fluorometer	NAME
Fluorometer	TYPE
Invitrogen	BRAND
Q33238	SKU
https://www.thermofisher.com/order/catalog/product/Q33238#/Q33238	LINK

Prior to starting this step and and steps immediately following:

■ Thaw and bring to B Room temperature the index adaptors. Thaw the Enhanced PCR mix Un ice .

- Bring the sample purification beads (SPB) to

 Room temperature
- Thaw the resuspension buffer (RSB) and allow it to come to Room temperature
- Prepare 80% ethanol

Sample identifier	Sample indexes
Positive control	
Negative control	

Table: Sample identifier and barcoding details.

7.1 Prepare amplification master mix as follows:

Con	nponent	Volume (ul)	Total (ul) (12)
Enh	nanced PCR mix (EPM)	22	264
Nuc	clease-free water	22	264
Tota	al	44	528

Table: Amplification master mix.

7.3 With the plate/tube from the post-tagmentation clean-up, discard the supernatant and remove from the magnetic stand

2m

7.4 of PCR master mix directly onto the beads of each sample and pipette up and down to ensure the beads are fully suspended before sealing the plate and centrifuge

7.5 Add adaptors to each sample – 🗸 5 µL i7 adaptor and 🗸 5 µL i5 adaptor and record the used combination - and mix by pipetting up and down 10 times and centrifuge

7.6 50m

Temperature (degrees Celsius)	Time (seconds)	Cycles
68	180	1
98	180	1
98	45	12
62	30	
68	120	
68	60	1
10	Hold	Hold

Table: Amplification thermocycler parameters. The cycle number can be adjusted based on input DNA.

7.7 Centrifuge the samples

7.8 Place the plate on a magnetic stand and allow the liquid to clear 00:05:00

00:01:00

5m

7.9 Transfer 45 µL supernatant from each well into a new plate

2m

7.10 Vortex the sample purification beads and add \pm 81 μ L to each well containing supernatant and pipette 10 times to mix

5m

7.11 Incubate the plate for 00:05:00 at 8 Room temperature

5m

7.12 Place plate on a magnetic stand and wait for the liquid to clear 00:05:00

5m

7.13 Remove and discard the supernatant

2m

7.14 Wash by adding Z 200 µL of freshly prepared 80% ethanol to each well without mixing

7.15 Incubate for (5) 00:00:30

7.16 Remove and discard the supernatant

5m

7.17 Repeat the wash step once

10m 30s

7.18 Use a small volume pipettor remove residual ethanol

2m

7.19 Air-dry for up to 00:01:00 but do not let the beads crack

1m

7.20 Add $\underline{\mathbb{Z}}$ 32 μL of resuspension buffer (RSB) to the beads and resuspend

5m

7.21 Incubate at room temperature for © 00:02:00

2m

7.22 Place on a magnetic stand and allow the liquid to clear (00:02:00)

7.24 Quantify the libraries using a Qubit fluorometer using:

15m

Qubit 1X dsDNA HS Assay Kit **Thermo Fisher Scientific Catalog** #Q33230

Sample identifier	Concentration (ng/ul)
Positive control	
Negative control	

Table: Sample identifier and library concentration after clean-up 1.

8 Additional clean-up: Libraries quantified as >10ng/ul will undergo a double-sided clean-up

27m

8.1 Add <u>A 25 µL</u> of cleaned library to a new plate (double-sided clean-up plate 1)

8.2 Add 4 60 µL of nuclease-free water

5m

8.3 Add \triangle 45 μ L of SPB

5m

8.4 Incubate at Room temperature for 00:05:00

- 5m
- Place the plate on a magnetic stand and allow the liquid to clear. During this time, to a second plate (double-sided clean-up plate 2) add undiluted SPB to each well to be used.

5m

- Transfer \square 125 μ L of supernatant from double-sided clean-up plate 1 to the predispensed \square 15 μ L of SPB in double-sided clean-up plate 2. Discard double-sided clean-up plate 1.
- 2m

- **9** Additional clean-up: Libraries quantified as <10ng/ul will undergo a single-sided clean-up
- 15m
- 9.1 Add Z 25 µL of libary to a new plate (corresponding wells in the double-sided clean-up plate 2 from may be used)
- 5m

9.2 Add 4 60 µL of nuclease-free water

5m

10 Finalisation of libraries

50m

Incubate the plate(s) (double-sided clean-up plate 2) at Room temperature for 00:05:00

5m

10.2 Place on a magnetic stand and wait for the liquid to clear (© 00:02:00)

2m

10.3 Remove and discard the supernatant

5m

 5m

10.5 Incubate for 👏 00:00:30

30s

10.6 Remove and discard the supernatant

5m

10.7 Repeat the wash step once

10m 30s

10.8	Using a small volume pipettor remove residual ethanol	2m
10.9	Air-dry for up to 00:01:00 but do not let the beads crack	1m
10.10	Add \blacksquare 30 μ L of resuspension buffer (RSB) to the beads and resuspend	5m
10.11	Incubate at room temperature for 00:02:00	2m
10.12	Place the plate on a magnetic stand and wait for the liquid to clear (00:02:00)	2m
10.13	Transfer A 28 µL of supernatant to a nuclease-free tube	5m
11	Quantification and QC of libraries	1h 20m

Quantify the libraries using a Qubit fluorometer using:

11.1

Sample identifier	Concentration (ng/ul)
Positive control	
Negative control	

Table: Sample identifier and library concentration after final clean-up.

11.2 (Optionally) evaluate the library mean fragment size using a TapeScreen instrument. If this is not done, use a default mean fragment size of 600bp.

1h

11.3 Calculate the Molar concentration of the library using the following formula:

5m

Molar concentration = concentration(ng/ul)*10^6/660*avgeragefragment size(bp)

Sequencing

2d 9h 6m

Prepare the quantified and quality controlled libraries for loading and load the Sequencing instrument.

2d 9h 6m

The following consumables are required for this step:

The following equipment is required for this step:

Prior to starting this step and and steps immediately following:

- Defrost the PhiX control
- Ensure the MiSeq instrument doesn't require maintenance or a weekly wash
- Remove the Illumina Miseq v3 reagent cartridge from ♣ -20 °C storage and defrost in a water bath approximately ♦ 01:00:00 before its intended use. Alternatively place it at ♣ 4 °C overnight prior to its intended use
- Prepare a fresh solution of [M] 0.2 Molar NaOH
- Create the sample sheet using the appropriate software that will be used for the MiSeq sequencing run (this will indicate the number of cycles, the library preparation parameters and the sample names and indexes for use by the instrument to set the run parameters and demultiplex the output data)
- Dilute the prepared libraries to M 4 nanomolar (nM) using nuclease-free water and pool them in a single LoBind Eppendorf tube

12.2 Combine the diluted library and [M] 0.2 Molar NaOH solution in a LoBind Eppendorf tube to denature the libraries as follows:

Component	Volume (ul)
4nM pooled libraries	5
0.2M NaOH	5

Component	Volume (ul)
Total volume	10

Table: Library denaturation.

12.3	Vortex briefly and spin-down the denaturing libraries and incubate for 00:05:00	at

5m

12.4 Stop the reaction by adding \angle 990 μ L of chilled HT-1 buffer

2m

12.5 Invert several times and spin-down the solution

2m

12.6 Repeat the denaturation and stopping of a [M] 4 nanomolar (nM) PhiX library

21m

2m

Further dilute the library (with added PhiX) to a [M] 10 picomolar (pM) concentration and keep the reaction on ice until the library is loaded into the MiSeq reagent cartridge

2m

Follow the prompts on the MiSeq screen to load the flow cell, wash buffer and reagent cartridge and load 4 600 µL of [M] 10 picomolar (pM) pooled libary solution (with PhiX) prior to loading the cartridge.

Bioinformatics

- The bioinformatics tools needed to perform the complete analysis are available at: https://github.com/RuanMarais/UCT_metagenomics. Alternatively, basic analysis can be performed as described below.
- The analysis described below was performed on a computer with a 32-core Intel(R) Xeon(R) CPU and 124Gb of RAM. Analysis was done locally and the computer was running Linux (Ubuntu distribution).
- 14.1 Install conda, instructions are available at: https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html
- **14.2** To install the required packages run the following commands:

Command

Installs biobakery_workflows (Linux Ubuntu)

conda install -c biobakery biobakery_workflows

Command

Biobakery dependency (Linux Ubuntu)

conda install tbb=2020.2

Command

Download kneaddata database (Linux Ubuntu)

kneaddata_database --download human_genome bowtie2 \$PATH_TO_WORKING_DIRECTORY

The kneaddata database can also be directly dowloaded from: http://huttenhower.sph.harvard.edu/kneadData_databases

Command

Install kraken2 (Linux Ubuntu)

conda install -c bioconda kraken2

Command

Install SPAdes (Linux Ubuntu)

conda install -c bioconda spades

Command

Install DIAMOND (Linux Ubuntu)

conda install -c bioconda diamond

Command

Install krakentools (Linux Ubuntu)

conda install -c bioconda krakentools

Command

Install PEAR (Linux Ubuntu)

conda install -c bioconda pear

14.3 Additional dependencies:

Kraken2 databases can be constructed de novo or are available as pre-constructed databases at:

https://benlangmead.github.io/aws-indexes/k2

Download the standard database and the EuPathDB48 database and extract into the working directory where you will analyse the sequencing data.

14.4 Additional dependencies:

Download the Trimmomatic (Trimmomatic-0.39) binary file from: usadellab.org/cms/?page=trimmomatic

and move it (after extraction) to bin as follows:

Command

Move trimmomatic binary file to bin (Linux Ubuntu)

sudo mv \$PATH_AFTER_DOWNLOAD /bin

14.5 Additional dependencies:

Download the {Reviewed (Swiss-Prot)} fasta file to generate the DIAMOND database from: https://www.uniprot.org/help/downloads

14.6 Analyse the raw sequencing reads as follows:

1) Human read, contaminant and low-complexity read removal with kneaddata:

Command

kneaddata - human, contaminant and low complexity read removal (Linux Ubuntu)

kneaddata --input \$PAIRED_END_RAW_READ_1 --input \$PAIRED_END_RAW_READ_2 -- reference-db Homo_sapiens_hg37_and_human_contamination_Bowtie2_v0.1 --output ~/\$WORKING_DIRECTORY/ --threads 30 --trimmomatic /bin/Trimmomatic-0.39/

Review the kneaddata paired reads in FastQC and make any required modifications to the trimming algorithm if necessary.

2) Taxonomic classification using kraken2:

Command

Run kraken2 taxonomic classifier (Linux Ubuntu)

kraken2 --db \$STANDARD_DATABASE_PATH_OR_EUPATHDB48 --threads 30 --report \$NAME_OF_REPORT_WITH_DBNAME_DATACLEANSTRATEGY_DATE_SAMPLE --paired \$KNEADDATA_PAIRED_READ_1 \$KNEADDATA_PAIRED_READ_2 --output \$KRAKENFILE

This command is run once for each kraken2 database used. Thus, for this analysis the command twice for the standard and EuPathDB48 databases.

3) Extract unclassified reads using krakentools:

Command

Extract unclassified reads using kraken tools (Linux Ubuntu)

extract_kraken_reads.py -k \$KRAKENFILE -t 0 -fastq-output -s \$KNEADDATA_PAIRED_READ_1 -s2 \$KNEADDATA_PAIRED_READ_2 -o \$UNMATCHED FORWARD -o2 \$UNMATCHED REVERSE

The reads not classified by kraken2 are extracted for further analysis.

4) Generate contigs from unclassified reads using SPAdes:

Command

Generate contigs using SPAdes (Linux Ubuntu)

spades.py --meta -1 \$UNMATCHED_FORWARD -2 \$UNMATCHED_REVERSE -0 \$SPADES_OUTPUT_DIRECTORY

5) Generate merged paired-end reads if no contigs are generated:

Command

Assemble paired-end reads (Linux Ubuntu)

pear -f \$UNMATCHED_FORWARD -r \$UNMATCHED_REVERSE -o \$OUTPUT_DIRECTORY

6) Generate the DIAMOND database as follows:

Command

Generate DIAMOND database (Linux Ubuntu)

diamond makedb --in \$SWISS_PROT.fasta -d \$DIAMOND_DATABASE_NAME

7) Run DIAMOND on generated contigs and/or assembled unclassified reads (if no contigs are generated):

Command

Run DIAMOND (Linux Ubuntu)

diamond blastx -d \$DIAMOND_DATABASE_NAME -q \$CONTIGS_OR_ASSEMBLED_READS.fasta -o \$DATABASE_MATCHES.tsv

14.7 Data visualisation can be done using Pavian. Installation and usage instructions are available here:

https://github.com/fbreitwieser/pavian