Math 136 - Linear Algebra

Winter 2016

Lecture 5: January 13, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

5.1 Subspace Basis Examples

Find the basis for a given subspace

$$S_{2} = \left\{ \begin{bmatrix} a - b \\ b - c \\ c - a \end{bmatrix} \mid a, b, c \in \mathbb{R}^{3} \right\}$$

$$\forall \vec{x} \in S_{2} \ \vec{x} = \begin{bmatrix} a - b \\ b - c \\ c - a \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + b \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

$$\vec{x} \in Span \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

$$S_{2} = Span \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\} \text{ which is linearly independant }$$

$$\therefore \text{ this is a basis for } S_{2}$$

5.2 Dot Product

Recall:

• In
$$\mathbb{R}^2$$
, $\forall \vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, $\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2$

•
$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2} = \sqrt{\vec{x} \cdot \vec{x}}$$

$$\bullet \ \vec{x} \cdot \vec{y} = \|x\| \|y\| \cos \theta$$

Proof:

$$\vec{x} - \vec{y} = \begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \end{bmatrix} \cos \theta = \frac{\|\vec{x}\|^2 + \|\vec{y}\|^2 - \|\vec{x} - \vec{y}\|^2}{2\|\vec{x}\|\vec{y}\|}$$

$$= \frac{x_1^2 + x_2^2 + y_2^2 + y_2^2 - ((x_1 - y_1)^2 + (x_2 - y_2)^2)}{2\|\vec{x}\|\vec{y}\|}$$

$$\cos \theta = \frac{2x_1y_1 + 2x_2y_2}{2\|\vec{x}\|\vec{y}\|} = \frac{x_1\theta_1 + x_2\theta_2}{\|\vec{x}\|\vec{y}\|}$$

$$= \vec{x} \cdot \vec{y} = x_1y_2 + x_2y_2$$

$$= \|\vec{x}\|\|\vec{y}\| \cos \theta$$

Definition 5.1
$$\forall \vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n, \vec{x} \cdot \vec{y} = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$

Proposition 5.2

$$\forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n, \forall s, t \in \mathbb{R}$$

1.
$$\vec{x} \cdot \vec{x} = 0$$
 iff $\vec{x} = \vec{0}$

2.
$$\vec{x} \cdot \vec{y} = \vec{y} = \vec{x}$$

3.
$$\vec{x}(t\vec{y} + s\vec{z}) = t(\vec{x} \cdot \vec{y}) + s(\vec{x} \cdot \vec{z})$$

Definition 5.3 $\forall \vec{x} \in \mathbb{R}$ The length (or norm) of \vec{x} is $||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}}$

Also , \vec{x} is called the unit vector if $||\vec{x}|| = 1$

Theorem 5.4 $\forall \vec{x}\vec{y} \in \mathbb{R}^n, t \in \mathbb{R}$ we have

1.
$$\|\vec{x}\| > 0$$
 iff $\vec{x} = \vec{0}$

2.
$$||t\vec{x}|| = |t| ||\vec{x}||$$

3. Cauchy Schwarz inequality : $\|\vec{x} \cdot \vec{y}\| \le \|\vec{x}\| \|\vec{y}\|$

4. Triangle inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$

Proof: Cauchy Schwarz inequality

If
$$\vec{x} = \vec{0}$$
 it is clear, suppose $\vec{x} \neq \vec{0}$
$$0 \leq \|t\vec{x} + t\vec{y}\|^2 = (t\vec{x} + y) \cdot (t\vec{x} + y) = t^2\vec{x} \cdot \vec{x} + 2t\vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{y}$$

$$0 \leq \|x\|^2 t^2 + 2(\vec{x} \cdot \vec{y})t + \|\vec{y}\|, \forall t \in \mathbb{R}$$

$$4(\vec{x} \cdot \vec{y})^2 \leq 4\|\vec{x}\|^2 \|\vec{y}\|^2 \text{ Using the discriminant}$$

$$\|\vec{x} + \vec{y}\| \leq \|\vec{x}\| + \|\vec{y}\|$$

Remarks: If
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
, $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

$$\vec{x} - \vec{y} = x_1 y_1 + \ldots + x_n y_n$$

 $\|\vec{x}\| = x_1^2 + \ldots x_n^2 \quad \|\vec{y}\| = y_1^2 + \ldots y_n^2\|$

Coordinate Form of C S

$$||x_1y_1 + \ldots + x_ny_n|| \le \sqrt{x_1^2 + \ldots + x_n^2} \sqrt{y_1^2 + \ldots + y_n^2}$$

Try letting n = 3

End of Lecture Notes
Notes By: Harsh Mistry