

2025 年全国大学生电子设计竞赛试题

参赛注意事项

- (1) 7月30日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。
- (2) 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。
- (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。
- (4) 每队严格限制 3 人, 开赛后不得中途更换队员。
- (5) 竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。
- (6) 8月2日20:00 竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。

非接触式控制盘(I题)

【高职高专组】

一、任务

设计并制作一个非接触式控制盘。控制盘由操作面板、显示器及测控模块组成,控制盘的负载为直流风扇,组成结构如图 1 所示,其中,操作面板上的 S1、S2、S3、S4 为漫反射式光电开关,S5 为自制超声波测距模块,操作面板尺寸不大于 40cm×40cm,直流风扇的最高工作电压为 12V。

图 1 非接触式控制盘的组成结构图

控制盘通过挥手形式完成启动/停止、正转/反转、工作电压调整、运行时间设定和组合操作功能。显示器显示设定参数、运行状态及手掌与操作面板之间的操

作距离d。风扇电压由外接电压表测量。

二、要求

1. 基本要求

- (1) 测量操作距离 d。自制超声波测距模块 S5,测量范围为 5~30cm,要求误差绝对值不大于 1cm。
- (2)风扇正(或反)转操作。由 S1 向 S2(或 S3 向 S4)挥手,风扇启动正(或反)转;再由 S2 向 S1(或 S4 向 S3)挥手,风扇停止转动。要求操作过程中显示风扇转向和启动/停止状态。
- (3) 风扇电压调整。在风扇正(或反)转运行时,由 S4 向 S2(或 S3 向 S1) 挥手,风扇工作电压在 3~10V 范围内上升(或下降),从而实现风扇调速。

2. 发挥部分

- (1)设定运行时间 t。d 在 5~20cm 范围内,由 S3 向 S2 挥手设定 t,范围为 15~30s,d 与 t 的关系如图 2 所示,显示器显示 t 和 d。运行开始指示灯点亮,运行中显示 t 倒计时,运行结束指示灯熄灭。要求 t 与实际运行时间的误差绝对值不大于 1s。
- (2) 设定工作电压 U_D 。 d 在 5~20cm 范围内,由 S4 向 S1 挥手设定 U_D ,范围为 3.0~10.5V,d 与 U_D 的关系如图 3 所示,显示器显示 U_D 和 d。要求 U_D 与风扇电压 U_M 的误差绝对值不大于 0. 1V。
- (3)组合操作模式。以非接触控制形式开始组合操作模式设置。编排一组风扇动作并存储,至少存储 8 个动作,之后以非接触控制形式结束设置并启动组合操作运行,设置步骤及存储动作参考表 1。要求 t 与实际运行时间的误差绝对值不大于 1s, U_D 与 U_M 的误差绝对值不大于 0. 1V。

图 2 操作距离 d 与设定运行时间 t 的对应关系

图 3 操作距离 d 与设定工作电压 U_D 的对应关系

(4) 其他。

三、说明

- (1)显示的风扇转速与风扇电压 UM 变化对应即可,不要求精确转速值。
- (2) 基本要求(1)允许超声波收、发探头选择成品,其余电路自制。
- (3) 基本要求(2) 只观察 Um 的变化趋势,不考核变化量值。

(4) 发挥部分(3) 组合操作模式设置步骤示例参考表 1。

表 1: 组合操作模式设置步骤示例(注:作品测评时,组合操作内容随机设置)

序号	组合操作步骤	实现功能	备注
1	进入组合操作模式设置	可良工社	
2	设定 t=20s发挥部分(1)	风扇正转 +-20-	
3	启动正转基本部分(1)	t=20s $U_{\rm D}$ =8V	测试时计
4	设定 Un=8V发挥部分(2)	CD-6 v	时2次,
5	设定 t=25s发挥部分(1)	可良后灶	即: 20s
6	启动反转基本部分(1)	风扇反转	和 25s
7	设定 Un=10V发挥部分(2)	$t=25s$ $U_{\rm D}=10{\rm V}$	
8	结束设置并启动组合操作运行	OD-10 V	

四、评分标准

	项 目	主要内容	满分
设计报告	方案论证	总体方案设计	3
	理论分析与计算	测量方法的选择与工作原理分析 检测电路的原理分析计算	6
	电路与程序设计	总体电路图、程序流程图	6
	测试方案与测试结果	调试方法 测试数据完整性 测试结果分析	3
	设计报告结构及规范性	摘要、设计报告正文的结构 图表的规范性	2
	合计		20
基本要求 完	完成第(1)项		20
	完成第(2)项		20
	完成第(3)项		10
	合计		50
发挥部分 5	完成第(1)项		14
	完成第(2)项		12
	完成第(3)项		20
	其他		4
	合计		50
总 分		120	