

Nome: Iago Oliveira de Almeida - 39491_______ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	61.88	62.11	61.82	61.78	62	61.78	61.87	61.85	61.92
A	Medição 2	61.87	62.21	61.88	62.01	62.07	62.2	61.88	61.97	61.85
	Medição 3	61.89	62.11	62.13	61.99	61.97	61.85	61.98	61.94	61.83
	Medição 1	62.04	61.93	61.88	62.03	61.83	61.88	61.92	61.99	61.97
В	Medição 2	62.03	62.1	61.96	61.96	61.94	62.01	61.98	61.96	62
	Medição 3	61.9	62.05	61.86	62.1	62	61.91	61.79	61.82	62.08
С	Medição 1	62	61.89	61.93	61.95	62.02	61.96	61.94	62.01	62.15
	Medição 2	61.96	61.79	62.04	61.99	61.85	61.93	62.11	61.95	62.01
	Medição 3	61.92	62.17	62.11	62.01	62.03	62.11	61.85	62.12	61.84

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)	4.15	4.79	5.78	6.09	7.31	7.95	8.45	10.52

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 18°C e 21°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	9.02	10.26	11.72	9.89	8.45	10.54	8.22	8.17
$I_a (mA)$	90.556	103.031	116.338	98.945	83.96	104.857	81.567	82.469

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza
20mA	$\pm (0.8\% + 3D)$
200mA	$\pm (1.2\% + 4D)$
20A	$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.