WYKŁAD 1

Wprowadzenie do problematyki baz danych

Plan wykładu

- Podstawowa terminologia
- Charakterystyka baz danych
- Modele danych
- Użytkownicy baz danych
- System zarządzania bazą danych (SZBD)
- Klasyfikacja baz danych

Terminologia (1)

Baza danych - zbiór danych opisujący pewien wybrany fragment rzeczywistości

Terminologia (2)

Struktura danych i powiązania między nimi są opisane przez - schemat bazy danych

Terminologia (3)

Baza danych jest zarządzana przez tzw. system zarządzania bazą danych - SZBD.

Terminologia (4)

Charakterystyka baz danych

- Trwałość danych
 - długi czas życia kilka, kilkadziesiąt, kilkaset lat
 - niezależność od działania aplikacji
- Rozmiar wolumenu danych
 - dane nie mieszczą się w pamięci operacyjnej wymagana pamięć zewnętrzna
 - danych jest zbyt dużo dla ich liniowego przeglądania przez użytkowników
- Złożoność danych
 - złożoność strukturalna i złożoność zależności pomiędzy danymi
 - złożoność semantyczna
 - ograniczenia integralnościowe

Wymagania dla baz danych (1)

sześć podstawowych wymagań stawianych bazie danych

- Spójność bazy danych
- Efektywne przetwarzanie danych
- 3. Poprawne modelowanie świata rzeczywistego
- Autoryzacja dostępu do danych
- 5. Współbieżność dostępu do danych
- Metadane

Wymagania dla baz danych (2)

- Spójność bazy danych
 - poprawność danych z punktu widzenia przyjętych kryteriów
 - wierne odzwierciedlenie danych rzeczywistych
 - spełnienie ograniczeń nałożone przez użytkowników
 - odporność na anomalie będące wynikiem współbieżności dostępu do danych
 - odporność na błędy, awarie i inne anormalne sytuacje wynikające z zawodności środowiska sprzętowo-programowego
 - odporność na błędy użytkowników

Wymagania dla baz danych (3)

- Efektywne przetwarzanie danych
 - efektywne metody dostępu do danych
 - optymalizacja metod dostępu do danych
 - niezależność aplikacji od fizycznych metod dostępu do danych
- Poprawne modelowanie świata rzeczywistego
 - wspomaganie procesu projektowania i utrzymania bazy danych
 - różne poziomy modelowania danych
 - transformacje między modelami danych

Wymagania dla baz danych (4)

kolejne z sześciu podstawowych wymagań stawianych bazie danych

- Autoryzacja dostępu do danych
 - użytkownicy z indywidualnymi hasłami dostępu
 - użytkownicy i ich uprawnienia
- Współbieżność dostępu do danych
 - równoczesny dostęp do tych samych danych przez wielu użytkowników
 - konflikt odczyt-zapis, zapis-zapis
- 6. Metadane
 - dane o danych, strukturach dostępu, użytkownikach i ich prawach

Technologia baz danych (1)

- Fizyczne struktury danych i metody dostępu
 - pliki uporządkowane, haszowe, zgrupowane, indeksy drzewiaste i bitmapowe
 - metoda połowienia binarnego, haszowanie statyczne i dynamiczne, metody połączenia, sortowanie, grupowanie
 - składniowe i kosztowe metody optymalizacji dostępu
 - fizyczna niezależność danych

Technologia baz danych (2)

- Przetwarzanie transakcyjne (spójność bazy danych)
 - dostęp do bazy danych za pomocą transakcji o własnościach ACID
 - metody synchronizacji transakcji (2PL, znaczniki czasowe, wielowersyjność danych)
 - metody odtwarzania spójności bazy danych (plik logu, odtwarzanie i wycofywanie operacji, punkty kontrolne)
 - archiwizacja bazy danych i odtwarzanie po awarii

Technologia baz danych (3)

3. Modele danych

- Modele pojęciowe (model związków-encji, UML)
- Modele logiczne (relacyjny, obiektowy, obiektowo-relacyjny, semistrukturalny, hierarchiczny, sieciowy)

4. Narzędzia programistyczne

- Języki budowy aplikacji
- Narzędzia modelowania i projektowania
- Metodyki projektowania

System zarządzania bazą danych

- 1. Oprogramowanie zarządzające całą bazą danych
- 2. Funkcjonalność (zapewnia wsporcie)
 - język bazy danych tworzenie, definiowanie, wyszukiwanie i pielęgnacja danych w bazie danych
 - Struktury danych efektywne składowanie i przetwarzanie dużych wolumenów danych
 - Optymalizacja dostępu do danych
 - Współbieżny dostęp do danych
 - Zapewnienie bezpieczeństwa danych zagrożonego awaryjnością środowiska sprzętowo-programowego
 - Autoryzacja dostępu do danych
 - Wielość interfejsów dostępu do bazy danych

Model danych (1)

Obiekty świata rzeczywistego Obiekty modelu danych

Obiekty ze świata rzeczywistego są reprezentowane w bazie danych za pomocą tzw. modelu danych. Wyróżnia się następujące modele danych: hierarchiczny, sieciowy, relacyjny, obiektowy, obiektowo-relacyjny, semistrukturalny.

Model danych (2)

Każdy model danych definiuje trzy podstawowe elementy, tj. **struktury** danych, **operacje** na danych i **ograniczenia integralnościowe** nakładane na dane

1. Struktury danych

Jan	Kowalski	47
Anna	Mucha	25
Józef	Andrych	67
Darek	Kosik	21
Danuta	Kulig	45

Struktura danych służy do reprezentowania w bazie danych obiektów ze świata rzeczywistego.

Model danych (3)

- 2. Operacje (Operatory modelu danych)
- 3. Ograniczenia integralnościowe

Nazwa projektu	Budżet	Data rozpoczęcia	Data zakończenia
Indeksy w DB	350000	11.11.2005	10.11.2006
Magazyn danych	2450000	01.01.2004	31.12.2007

Każdy model danych posiada zbiór predefiniowanych operacji na danych. Przykładowo, w modelu relacyjnym operacje na danych oferowane przez model to: selekcja, projekcja, połączenie i operacje na zbiorach.

Ponadto, model danych umożliwia nałożenie ograniczeń integralnościowych na reprezentowane w nim dane. Przykładowo, dla relacji ze slajdu można zdefiniować ograniczenie integralnościowe zapewniające, że data rozpoczęcia projektu będzie zawsze mniejsza niż data jego zakończenia.

Przykładowa baza danych

Pracownicy

			-				
IdPrac	Nazwisko	Etat	Szef	DataZat	Płaca	Premia	ldZesp
7340	Kowalski	referent	7548	17.12.90	1800		20
7341	Nowak	asystent	7340	20.02.91	1600	300	30
7342	Tarzan	asystent	7340	22.02.91	1500	500	20
7544	Colargol	kierownik	7600	2.04.91	2500	100	20
7548	Król	księgowy	7600	28.09.91	3500		10
7600	Dziuba	dyrektor		17.10.89	5000		10
7880	Buba	referent	7544	23.05.95	2100		30
7900	Misiek	kierownik	7600	29.10.01	2700		30
		_					

Etaty

Nazwa	PłacaMin	PłacaMax
dyrektor	4000	9999
kierownik	2000	5000
referent	1500	2500
asystent	1100	1800
księgowy	2500	4500

Zespoły

IdZesp	Nazwa	Adres
10	Administracyjny	Poznań
20	Sprzedaży	Poznań
30	Reklamy	Gniezno
40	Badań	Oborniki

Architektura systemu BD

3-warstwowa architektura wg standardu ANSI/SPARC

Użytkownicy SBD

Aktorzy na scenie

Użytkownicy końcowi

Użytkownicy końcowy charakteryzują się tym, że korzystają z bazy danych głównie poprzez gotowe aplikacje/programy. Ich wiedza zwykle obejmuje sposób obsługi aplikacji i znajomość zagadnień z zakresu obowiązków służbowych.

Programiści aplikacji

Zadaniem programistów jest implementowanie aplikacji dla użytkowników końcowych. Funkcjonalność tych aplikacji wynika z wymagań użytkowników.

3. Projektanci baz danych

Projektanci baz danych zajmują się projektowaniem struktury logicznej bazy danych, czyli struktur modelu danych i projektowaniem struktury fizycznej bazy danych, czyli doborem parametrów fizycznego składowania danych na nośnikach. Ponadto, ich zadaniem jest przygotowanie działającej bazy danych.

Analitycy systemowi

Analitycy systemowi zajmują się analizą wymagań systemu bazy danych i aplikacji. Wynik ich pracy jest podstawą opracowania struktury logicznej (a często również fizycznej) bazy danych i podstawą dla programistów aplikacji.

5. Administratorzy systemów baz danych

Administratorzy systemu bazy danych są odpowiedzialni m.in. za: przygotowanie systemu do pracy produkcyjnej, zagwarantowanie ciągłości pracy systemu, zarządzanie użytkownikami i instalowanie nowych wersji systemu.

Użytkownicy SBD

Aktorzy poza sceną

- Administratorzy serwerów i sieci komputerowych
- Projektanci i programiści SZBD
- Projektanci narzędzi deweloperskich

Interakcja z bazą danych (1)

Język SQL

- Jakakolwiek interakcja programu użytkowego (aplikacji) z bazą danych odbywa się za pomocą języka SQL. Jest to jedyny sposób komunikowania się aplikacji z bazą danych.
- SQL jest językiem deklaratywnym. Oznacza to, że posługując się nim specyfikujemy tylko co chcemy otrzymać. Nie specyfikujemy sposobu (algorytmu) w jaki ma być zrealizowane zadanie. Przykładem polecenia SQL może być zapytanie do bazy danych poszukujące informacje o klientach banku z Poznania, którzy w ciągu ostatniego miesiąca wypłacili z bankomatu łącznie powyżej 8000 PLN. W tym zapytaniu specyfikujemy tylko jakie dane nas interesują. Sposób ich wyszukania jest automatycznie dobierany przez SZBD.
- SQL jest językiem ustandaryzowanym. Jego standaryzacją zajmuje się specjalny międzynarodowy komitet, w skład którego wchodzą przedstawiciele największych producentów SZBD (IBM, Microsoft, Oracle). Dotychczas opracowano trzy standardy języka SQL, kolejno rozszerzające jego funkcjonalność. Standardy te to: SQL-92, SQL-99, SQL-2003. Producenci systemów komercyjnych i niekomercyjnych starają się implementować przynajmniej standard SQL-92. Należy jednak pamiętać, że nie ma 100% zgodności implementacji.
- Przykład prostego polecenia SQL będącego zapytaniem do bazy danych przedstawiono na slajdzie. Zapytanie to wyszukuje pracowników (nazwisko, etat, płaca) zatrudnionych w zespole o numerze 30 na etacie kierownika.

select nazwisko, etat, płaca from pracownicy where idzesp=30 and etat='kierownik'

Interakcja z bazą danych (2)

Aplikacje

Język SQL jest narzędziem dostępu do bazy danych stosowanym głównie przez projektantów aplikacji, projektantów baz danych i administratorów baz danych. Standardowym sposobem korzystania z bazy danych przez użytkowników końcowych są aplikacje. Należy jednak pamiętać, że na poziomie programistycznym aplikacje również komunikują się z bazą danych za pomocą poleceń SQL. Ze względu na funkcjonalność, wyróżnia się dwa rodzaje aplikacji, tj. formularze i raporty. Aplikację pierwszego rodzaju należy postrzegać jako elektroniczny formularz (z polami, listami, elementami wyboru) wypełniany przez użytkownika. Formularze umożliwiają pełną obsługę danych, tj. wstawianie, modyfikowanie, usuwanie i wyszukiwanie.

Formularze

- elektroniczne formularze z polami, listami, elementami wyboru
- umożliwiają wstawianie, modyfikowanie, usuwanie, wyszukiwanie danych

Interakcja z bazą danych (3)

Aplikacje

Raporty

- umożliwiają prezentowanie zawartości bazy danych
- teksty
- wykresy
- grafika

Raporty umożliwiają wyłącznie odczytywanie danych z bazy i prezentowanie ich w różnej postaci, głównie tekstu lub wykresu.

Technologie implementacyjne

Języki 3GL

- np. C, C++, Delphi, Visual Basic, Visual C++
- biblioteki umożliwiające zagnieżdżanie poleceń SQL w kodzie

Języki 4GL

- np. SAS 4GL, Oracle Forms
- umożliwiają bezpośrednie umieszczanie poleceń SQL w kodzie aplikacji i bezpośrednią obsługę wyników poleceń SQL

Java, PHP, Perl

 stosowane w aplikacjach web'owych pracujących w architekturze 3warstwowej

Architektura komunikacyjna

2 – warstwowa Klient - Serwer

Architektura komunikacyjna

3 – warstwowa

W architekturze 3-warstwowej, pomiędzy stacjami użytkowników, a serwerem bazy danych znajduje się tzw. serwer aplikacji. Jego zadaniem jest udostępnianie umieszczonych na nim aplikacji.

Podział systemów baz danych (1)

Kryteria podziału

- wykorzystywany model danych
- liczba węzłów / baz danych
- cel stosowania

Liczba węzłów / baz danych

- bazy scentralizowane
- bazy rozproszone

Model danych

- relacyjny
- obiektowy
- obiektowo-relacyjny
- semistrukturalny (XML)
- hierarchiczny
- sieciowy

Podział systemów baz danych (2)

Cel stosowania

- przetwarzanie transakcyjne (On-Line Transaction Processing OLTP)
 - wszelkiego rodzaju systemy ewidencyjne
- przetwarzanie analityczne (On-Line Analytical Processing OLAP)
 - hurtownie danych
- wspomaganie projektowania (Computer Aided Design CAD)
 - konstrukcje, budynki, urządzenia

Podział systemów baz danych (3)

Cel stosowania cd.

- systemy informacji geograficznej (Geographical Information Systems GIS)
- wytwarzanie oprogramowania (Computer Aided Software Engineering -CASE)

Dostępne SZBD (1)

Komercyjne

- Oracle
 - wersja 9i, 10g
- IBM
 - DB2 UDB
 - Informix Dynamic
- Microsoft
 - SQL Server2000,
- Sybase
 - Adaptive Server Anywhere

Dostępne SZBD (2)

Niekomercyjne

- MySQL
- PostgreSQL
- Firebird

Koniec wykładu 1