Лекция 22 от 22.02.2016

Деление многочленов с остатком

Пусть F – поле, $\mathbb{F}[x]$ –множество всех множеств от переменных x с коэффициентами из \mathbb{F} .

Теорема. Пусть $G(x), H(x) \in \mathbb{F}[x]$ – ненулевые многочлены, тогда существует и единственная пара $Q(x), R(x) \in \mathbb{F}(x)$, такие что:

1.
$$G(x) = Q(x) \cdot H(x) + R(x)$$
;

2.
$$degR(x) < degH(x)$$

Доказательство. Аналогично делению рациональных чисел с остатком.

Важный частный случай: H(x) = x - a Вспомним теорему Безу:

Теорема. Если $G(x), Q(x) \in \mathbb{F}[x]$ – ненулевые многочлены, $a \in \mathbb{F}$, то G(x) = Q(x)(x-a) + R, R = G(a).

Доказательство.
$$G(x) = Q(x) \cdot H(x) + R(x)$$
; $H(x) = x - a \Rightarrow degR < deg(x - a) \Rightarrow degR = 0$ Подставим $x = a$, получим: $G(a) = Q(a)(a - a) + R = 0 + R = R \Rightarrow G(a) = R$

Теорема. Многочлен степени п в поле комплексных чисел имеет п комплексных корней.

Доказательство. По основной теореме алгебры каждый многочлен $G(x) \in \mathbb{C}[x]$ степени больше 1 имеет корень. Тогда $G(x) = (x - a_1)G_1(x)$, где a_1 – корень многочлена G(x). В свою очередь многочлен $G_1(x)$ также имеет корень и $G(x) = (x - a_1)G_1(x) = (x - a_1)(x - a_2)G_2(x) = \dots = (x - a_1)(x - a_2)\dots(x - a_n)b_n$, где b_n – коэффициент при старшем члене.

Получим, что
$$b_n x^n + b_{n-1} x^{n-1} + \ldots + b_0 = b_n (x - a_1)_1^k \ldots (x - a_s)_s^k$$

Определение. Кратностью корня a_i называется число k_i , такое что в многочлене $b_n(x-a_1)_1^k \dots (x-a_s)_s^k$ множитель $(x-a_i)$ имеет степень k_i .

Определение. Пусть V – конечномерное векторное пространство над полем \mathbb{F} . $\varphi:V\to V$ – линейный оператор. Тогда характеристический многочлен φ имеет вид:

$$\chi_{\varphi}(t) = (-1)^n \det(\varphi - tE) = \begin{pmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{pmatrix} = (-1)^n (t^n (-1)^n + \dots) = t^n + \dots$$

Упражнение. c_{n-1} – коэффициент при t^{n-1}, c_0 – свободный член:

$$c_{n-1} = -tr\varphi;$$

$$c_0 = (-1)^n \det \varphi.$$

Утверждение. λ – собственное значение $\varphi \Leftrightarrow \chi_{\varphi}(\lambda) = 0$.

Доказательство.
$$\lambda$$
 — собственное значение $\Leftrightarrow \exists v \neq 0 : \varphi(v) = \lambda v \Leftrightarrow A\varphi v - \lambda Ev = 0 \Leftrightarrow (A\varphi - \lambda E)v = 0 \Leftrightarrow \operatorname{Ker}(\varphi - \lambda E) \neq \{0\} \Leftrightarrow \det(\varphi - \lambda E) = 0 \Leftrightarrow \chi_{\varphi}(\lambda) = 0.$

Утверждение. Если $\mathbb{F} = \mathbb{C}$, dim V > 0, то любой линейный оператор собственный вектор.

Доказательство. Пусть $\varphi: V \to V$ – линейный оператор. У него существует характеристический многочлен $\chi_{\varphi}(x)$. Тогда по основной теореме алгебры у $\chi_{\varphi}(x)$ есть корень t_0 – собственное значение φ , следовательно существует и собственный вектор v_0 с собственным значением t_0 . \square

Пример. Для линейного оператора $\varphi = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (поворот на 90° градусов против часовой стрелки относительно начала координат), характеристический многочлен имеет вид: $\chi_{\varphi}(x) = t^2 + 1$.

 $\Pi pu \ \mathbb{F} = \mathbb{R} \Rightarrow coбcmвенных значений нет.$

 $\Pi pu \ \mathbb{F} = \mathbb{C} \Rightarrow coбcmвенные значения \pm i.$

Определение. Пусть λ – собственное значение φ , тогда $V_{\lambda} = \{v \ inV \mid \varphi v = \lambda v\}$ – собственное подпространство (пространство, состоящее из собственных векторов с собственным значением λ и нуля).

Определение. dim V_{λ} – геометрическая кратность собственного значения λ .

Определение. Если k – кратность корня (определение см. выше, $(x - a_k)^k$), то k – алгебраическая кратность корня.

Утверждение. Геометрическая кратность не больше алгебраической кратности.

Доказательство. Зафиксируем базис u_1, \ldots, u_p в пространстве $V_{\lambda}(p = \dim V_{\lambda})$. Дополним базис u_1, \ldots, u_p до базиса $u_1, \ldots, u_p, u_{p+1}, \ldots, u_n$ пространства V. Матрица линейного оператора φ будет выглядеть следующим образом: (тут должна быть блочная матрица)

$$\chi_{\varphi}(t) = (-1)^n$$
блочная матрица $= (-1)^n (\lambda - t)^p \dim(B - tE)$

 $\chi_{\varphi}(t)$ имеет корень кратности хотя бы p, следовательно геометрическая кратность = $p \leqslant$ алгебраическая кратность.

Пример. Когда алгебраическая кратность больше геометрической. Для линейного оператора $\varphi = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$

 $V_2=\stackrel{\checkmark}{<}e_1\stackrel{\checkmark}{>}\Rightarrow$ геом. кратность = $1,\chi_{\varphi}(t)=(t-2)^2\Rightarrow$ алг. кратность = 2.

Определение. Пусть $\{U_1, \ldots, U_k \subseteq V\}$. Прямая сумма нескольких пространств – это $U_1 + \ldots + U_k = \{u_1 + \ldots + u_k \mid u_i \in U_i\}$

Упражнение. $U_1 + \ldots + U_k$ – nodnpocmpancmeo.

Определение. Сумма называет прямой, если $U_1+\ldots+U_k=0 \Rightarrow U_1=\ldots=U_k=0.$

Упражнение. Если $v \in U_1 \oplus \ldots \oplus U_k$, то существует и единственный набор $u_1 \in U_1, \ldots, u_k \in U_k : v = u_1 + \ldots + u_k$.

Теорема. Следующие условия эквивалентны:

- 1. Сумма $U_1 + \ldots + U_k$ прямая;
- 2. Если e_i базис $U_i(e_i \cap e_j)$, то $e = e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$;
- 3. $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.

Доказательство. (1) \Rightarrow (2). Сумма $U_1 + \ldots + U_k$ прямая. Покажем, что $\mathfrak{e}_1 \cup \ldots \cup \mathfrak{e}_k$ – базис $U_1 + \ldots + U_k$.

Если $v \in U_1 \oplus \ldots \oplus U_k$, то $v = u_1 + \ldots + u_k = \{u_i \in U_i\} = c_1^1 e_1^1 + \ldots + c_{s_1}^1 e_{s_1}^1 + \ldots + c_1^k e_1^k + \ldots + c_{s_k}^k e_{s_k}^k$, но e — базис.

Пусть существует два представления, тогда вычтем из одного второе. По определению прямой суммы каждый вектор равен нулю, следовательно коэффициенты при них равны.

- $(2) \Rightarrow (1)$. Пусть $e = e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$. Пусть $0 = u_1 + \ldots + u_k$. Разложим по базисам:
- $0=c_1^1e_1^1+\ldots+c_{s_1}^1e_{s_1}^1+\ldots+c_1^ke_1^k+\ldots c_{sk}^ke_{sk}^k$, следовательно все коэффициенты равны 0 и $u_1=0=u_k$.
- $(2) \Rightarrow (3)$. Пусть $e = e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$. $\dim(U_1 + \ldots + U_k) = \dim(e) = \dim(e_1) + \ldots + \dim(e_k) = \dim(U_1) + \ldots + \dim(U_k)$.
- (3) \Rightarrow (2). Пусть $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$.
- е порождает сумму, следовательно из е можно выделить базис суммы:

$$\dim(U_1 + \ldots + U_k) \leqslant \dim(\mathfrak{e}) \leqslant \dim(\mathfrak{e}_1) + \ldots + \dim(\mathfrak{e}_k) = \dim U_1 + \ldots + \dim U_k.$$