Compiler

Static typing

Jyun-Ao Lin

iFIRST & CSIE, NTUT jalin@ntut.edu.tw

Credits

A large part of this course is based on the Compilation Course of J.-C. Filliâtre at ENS Ulm.

Typing^1

¹source: https://zh.wiktionary.org/ Jyun-Ao Lin (iFIRST & CSIE, NTUT JALIN@NTUT.EDU.TW)

Typing²

²source: https://zh.wiktionary.org/ Jyun-Ao Lin (iFIRST & CSIE, NTUT jalin@ntut.edu.tw)

Type checking

If we write

do we get

- a compile-time error? (OCaml, Rust, Go)
- a runtime error? (Python, Julia)
- the integer 42? (Visual Basic, PHP)
- the string "537"? (Java, Scala, Kotlin)
- a pointer? (C, C++)
- something else?

and what about

37 / "5"

??????

Typing

If we now add two arbitrary expressions

how can we decide whether this is legal and which operation to perform?

The answer is typing, a program analysis that binds types to each sub-expression, to rule out inconsistent programs

When?

Some languages are dynamically typed: types are bound to values and are used at runtime

examples: Lisp, PHP, Python, Julia

Other languages are statically typed: types are bound to expressions and are used at compile time

examples: C, C++, Java, OCaml, Rust, Go

Remark

A language may use both static and dynamic typing

Overview of the course

Table of contents

1. STATIC TYPING

2. Type safety

3. Polymorphism

4. Type inference

Static typing

Slogan (Milner, 1978)

well-typed programs do not go wrong

Goal of typing

- type checking must be decidable
- type checking must reject programs whose evaluation would fail; this is type safety
- type checking must not reject too many non-absurd programs; the type system must be expressive

Several solutions

1. any sub-expression is annotated with a type

```
fun (x: int) -> let (y: int) = (+:) (((x: int),(1: int)): int * int )
```

type checking is easy but this is unmanageable for the programmer

2. only annotate variable declarations (C, C++, Java, etc.)

```
fun (x : int) \rightarrow let (y : int) = +(x,1) in y
```

3. only annotate function parameters (C++ 11, Java 10)

```
fun (x : int) \rightarrow let y = +(x,1) in y
```

4. no annotation at all \Rightarrow type inference (OCaml, Haskell, etc.)

fun
$$x \rightarrow x + 1$$

Expected properties

A type checking algorithm must have properties of

- correctness: if the algorithm answers "yes" then the program is effectively well-typed
- completeness: if the program is well-typed, then the algorithm must answer "yes"

and possibly of

• principality: the type calculated for an expression is the most general possible

Typing for mini-ML

Consider mini-ML typing

- 1. monomorphic typing
- 2. polymorphic typing, type inference

mini-ML

Recall the abstract syntax of mini-ML

```
\begin{array}{lll} e & ::= & x & \text{variable} \\ & | & c & \text{constant } (1,2,\ldots,\texttt{true},\ldots) \\ & | & op & \text{primitive operator } (+,\times,\texttt{fst},\ldots) \\ & | & \text{fun } x \rightarrow e & \text{function} \\ & | & e & \text{application} \\ & | & (e,e) & \text{pair} \\ & | & \text{let } x = e \text{ in } e \text{ local let} \end{array}
```

Monomorphic typing of mini-ML

We introduce a simple typing, with the following abstract syntax

Typing judgment

The type of a variable is given by a typing environment Γ (a function from variables to types)

The typing judgment is written as

 $\Gamma \vdash e : \tau$

and reads "in typing environment Γ , expression e has type τ " The environment Γ associates a type $\Gamma(x)$ for each free variable x in e

We use inference rules to define $\Gamma \vdash e : \tau$

Rules of typing

$$\Gamma + x : \tau$$
 is the environment Γ' defined by $\Gamma'(y) = \begin{cases} \tau & \text{if } y = x \\ \Gamma(y) & \text{otherwise} \end{cases}$

Example

```
 \begin{array}{c} \vdots & \vdots \\ \hline x: \mathtt{int} \vdash (x,1) : \mathtt{int} \times \mathtt{int} \\ \hline x: \mathtt{int} \vdash + (x,1) : \mathtt{int} \\ \hline \emptyset \vdash \mathtt{fun} \ x \to + (x,1) : \mathtt{int} \to \mathtt{int} \\ \hline \end{array} \quad \begin{array}{c} \cdots \vdash f : \mathtt{int} \to \mathtt{int} \\ \hline f: \mathtt{int} \to \mathtt{int} \vdash f : \mathtt{int} \\ \hline \end{array} \quad \begin{array}{c} \cdots \vdash f : \mathtt{int} \to \mathtt{int} \\ \hline \end{array} \quad \begin{array}{c} \cdots \vdash f : \mathtt{int} \to \mathtt{int} \\ \hline \end{array} \quad \begin{array}{c} \cdots \vdash f : \mathtt{int} \to \mathtt{int} \\ \hline \end{array} \quad \begin{array}{c} \cdots \vdash f : \mathtt{int} \to \mathtt{int} \\ \hline \end{array}
```

Expressions without a type

On the other hand, we cannot type the program 1 2.

$$\frac{\Gamma \vdash 1 : \tau' \to \tau \qquad \Gamma \vdash 2 : \tau'}{\Gamma \vdash 1 \; 2 : \tau}$$

nor the program fun $x \rightarrow x x$

$$\frac{\Gamma + x : \tau_1 \vdash x : \tau_3 \to \tau_2 \qquad \Gamma + x : \tau_1 \vdash x : \tau_3}{\Gamma + x : \tau_1 \vdash x : \tau_2}$$
$$\frac{\Gamma \vdash \text{fun } x \to x : \tau_1 \to \tau_2}{\Gamma \vdash \text{fun } x \to x : \tau_1 \to \tau_2}$$

since $\tau_1 = \tau_1 \rightarrow \tau_2$ has no solution (the types are finite by definition)

Many possible types

We can show

$$\emptyset \vdash \text{fun } x \rightarrow x : \text{int} \rightarrow \text{int}$$

but also

$$\emptyset \vdash \text{fun } x \rightarrow x : \text{bool} \rightarrow \text{bool}$$

Be careful: this is not polymorphism

for a given occurrence of fun $x \to x$ it's necessary choose a type

Many possible types

Thus, the term let $f = \text{fun } x \rightarrow x \text{ in } (f \ 1, f \ \text{true})$ is not typeable,

because there is no type τ such as

$$f: \tau \to \tau \vdash (f \ 1, f \ \mathsf{true}) : \tau_1 \times \tau_2.$$

On the other hand,

$$((\operatorname{fun} X \to X) (\operatorname{fun} X \to X))$$
 42

is typable (exercise!)

Primitives

In particular, we cannot give a satisfying type to a primitive like *fst*; you would have to choose between an infinite number of possible types:

$$\begin{split} & \texttt{int} \times \texttt{int} \to \texttt{int} \\ & \texttt{int} \times \texttt{bool} \to \texttt{int} \\ & \texttt{bool} \times \texttt{int} \to \texttt{bool} \\ & \texttt{(int} \to \texttt{int)} \to \texttt{int} \to \texttt{int} \\ & \texttt{etc.} \end{split}$$

But on the other hand we can give a rule of typing for the application of fst:

$$\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \mathit{fst}\ e : \tau_1}$$

Primitives

The same goes for primitives *opif* and *opfix*. We cannot give a satisfactory type to *opfix*, but we can give a rule of typing for its application

$$\frac{\Gamma \vdash e : \tau \to \tau}{\Gamma \vdash opfix \ e : \tau}$$

And if we want to limit ourselves to functions, we can modify it like this

$$\frac{\Gamma \vdash e : (\tau_1 \to \tau_2) \to (\tau_1 \to \tau_2)}{\Gamma \vdash opfix \ e : \tau_1 \to \tau_2}$$

Recursive function

If we add the construct let rec in the language, we could have

$$\frac{\Gamma + x : \tau_1 \vdash e_1 : \tau_1 \qquad \Gamma + x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \mathtt{let} \ \mathtt{rec} \ x = e_1 \ \mathtt{in} \ e_2 : \tau_2}$$

And again, for functions only

$$\frac{\Gamma + (f: \tau \to \tau_1) + (x: \tau) \vdash e_1: \tau_1 \qquad \Gamma + (f: \tau \to \tau_1) \vdash e_2: \tau_2}{\Gamma \vdash \mathsf{let} \; \mathsf{rec} \; f \; x = e_1 \; \mathsf{in} \; e_2: \tau_2}$$

Difference between rules of typing and algorithm of typing

When we type fun $x \to e$, how do we find the type to give to x?

This is the whole difference between the typing rules, which define the ternary relation

$$\Gamma \vdash e : \tau$$

and the algorithm of typing which checks that a certain expression e is well-typed in a certain environment Γ .

Let us consider the approach where only function parameters are annotated and program it in OCaml

We give the abstract syntax of types

```
type typ =
    | Tint
    | Tarrow of typ * typ
    | Tproduct of typ * typ
```

The constructor Fun takes an additional argument

```
type expression =
    | Var of string
    | Const of int
    | Op of string
    | Fun of string * typ * expression (* the only change *)
    | App of expression * expression
    | Pair of expression * expression
    | Let of string * expression * expression
```

The environment Γ is realized by a persistent structure

In this case we use the OCaml Map module

```
module Smap = Map.Make(String)
type env = typ Smap.t
```

(performance: balanced trees \implies insertion and search in $O(\log n)$)

for the function, the type of the variable is given

```
| Fun (x, ty, e) ->
Tarrow (ty, type_expr (Smap.add x ty env) e)
```

for the local variable, it is computed as

```
Let (x, e1, e2) ->
  type_expr (Smap.add x (type_expr env e1) env)
  e2
```

(note the interest of the persistence of env))

The only checks are in the application

```
| App (e1, e2) -> begin match type_expr env e1 with
| Tarrow (ty2, ty) ->
        if type_expr env e2 = ty2 then ty
        else failwith "error : argument of bad type"
| _ ->
        failwith "error : function expected"
end
```

Examples

```
# type_expr
    (Let ("f",
      Fun ("x", Tint, App (Op "+", Pair (Var "x", Const 1))),
      App (Var "f", Const 2)));;
 : typ = Tint
# type_expr (Fun ("x", Tint, App (Var "x", Var "x")));;
Exception: Failure "error : function expected".
# type_expr (App (App (Op "+", Const 1), Const 2));;
```

Exception: Failure "error : argument of bad type".

In practice

• We do not do

failwith "error of typing"

but the origin of the problem is indicated precisely

• types are preserved for later phases of the compiler

Decorated trees

On the one hand we decorate the trees at the input of the typing with a localization in the source file

```
type loc = ...
type expression =
    Var of string
    Const of int
    Op of string
    Fun of string * typ * expression
    App of expression * expression
    Pair of expression * expression
   Let of string * expression * expression
```

Decorated trees

On the one hand we decorate the trees at the input of the typing with a localization in the source file

```
type loc = ...
type expression = {
    desc: desc;
    loc : loc;
and desc =
    Var of string
    Const of int
    Op of string
    Fun of string * typ * expression
    App of expression * expression
    Pair of expression * expression
   Let of string * expression * expression
```

Signal an error

We declare an exception of the form

```
exception Error of loc * string
```

We raise it like this

```
let rec type_expr env e = match e.desc with
| ...
| App (e1, e2) -> begin match type_expr env e1 with
| Tarrow (ty2, ty) ->
    if type_expr env e2 <> ty2 then
        raise (Error (e2.loc, "argument of bad type"));
    ...
```

Signal an error

and we catch up with it, for example in the main program

```
try
  let p = Parser.parse file in
  let t = Typing.program p in
  ...
with Error (loc, msg) ->
  Format.eprintf "File '%s', line ...\n" file loc;
  Format.eprintf "error: %s@." msg;
  exit 1
```

Decorated trees

on the other hand, we decorate the trees at the output of the typing with types

```
type texpression = {
   tdesc: tdesc;
   typ: typ;
and tdesc =
   Tvar of string
   Tconst of int
   Top of string
   Tfun of string * typ * texpression
   Tapp of texpression * texpression
   Tpair of texpression * texpression
   Tlet of string * texpression * texpression
```

It's another type of expressions

Typing of typing

The typing function therefore has a type of the form

val type_expr: expression -> texpression

Typed trees

the typing function reconstructs trees, this time typed

```
let rec type_expr env e =
 let d, ty = compute_type env e in
 { tdesc = d; typ = ty }
and compute_type env e = match e.desc with
   Const n ->
     Tconst n, Tint
   Var x ->
     Tvar x, Smap.find x env
  | Pair (e1, e2) ->
     let te1 = type_expr env e1 in
     let te2 = type_expr env e2 in
     Tpair (te1, te2), Tproduct (te1.typ, te2.typ)
```

Type safety

Type safety

well-typed programs do not go wrong

Type Safety

Let us show that our type system is safe wrt our small-steps semantics

Thm. (type safety)

If $\emptyset \vdash e : \tau$, then the evaluation of e is infinite or ends on a value

Or, equivalently,

Thm.

If $\emptyset \vdash e : \tau$ and $e \stackrel{*}{\rightarrow} e'$ and e' is irreducible, then e' is a value

Type safety

The proof of this theorem is based on two lemmas, called progression and preservation.

Lem. (progression)

If $\emptyset \vdash e : \tau$, then, either e is a value or there is e' such that $e \rightarrow e'$.

Lem. (preservation) If $\emptyset \vdash e : \tau$ and $e \rightarrow e'$ then $\emptyset \vdash e' : \tau$.

Progression

Lem. (progression)

If $\emptyset \vdash e : \tau$, then, either e is a value or there is e' such that $e \to e'$.

Proof.

We proceed by induction on the derivation of typing $\emptyset \vdash e : \tau$. Suppose for instance that $e = e_2 \ e_1$, then we have

$$\frac{\emptyset \vdash e_2 : \tau_1 \to \tau_2 \qquad \emptyset \vdash e_1 : \tau_1}{\emptyset \vdash e_2 \ e_1 : \tau_2}$$

We apply the induction hypothesis on e_2 :

- if $e_2 \rightarrow e_2'$, then $e_2 \ e_1 \rightarrow e_2' \ e_1$ by passage lemma in the AST lecture;
- if e_2 is a value, suppose that $e_2 = \text{fun } x \to e_3$. We apply the induction hypothesis on e_1 :
 - ullet if $e_1
 ightarrow e_1'$ then $e_2 \ e_1
 ightarrow e_2 \ e_1'$ by the same lemma;
 - if e_1 is a value, then e_2 $e_1 \rightarrow e_2[x \leftarrow e_1]$.

The other cases are left as exercises.

Preservation

We start by two easy lemmas

Lem. (permutation)

If $\Gamma + x : \tau_1 + y : \tau_2 \vdash e : \tau$ and $x \neq y$, then $\Gamma + y : \tau_2 + x : \tau_1 \vdash e : \tau$ and the derivations have the same height.

Proof.

By direct induction on the typing derivation

Lem. (weakening)

If $\Gamma \vdash e : \tau$ and $x \notin \text{dom } \Gamma$, then $\Gamma + x : \tau' \vdash e : \tau$ and the derivations have the same height.

Proof.

Again it follows immediately by induction on the typing derivation.

Preservation

We continue by a key lemma

Lem. (preservation under substitution) If $\Gamma + x : \tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$ then $\Gamma \vdash e[x \leftarrow e'] : \tau$.

Proof.

We proceed by induction on the derivation $\Gamma + x : \tau' \vdash e : \tau$.

- Case of a variable e = y:
 - if x = y then $e[x \leftarrow e'] = e'$ and $\tau = \tau'$;
 - if $x \neq y$, then $e[x \leftarrow e'] = e$ and $\tau = \Gamma(y)$.
- Case of a abstract expression $e = \text{fun } y \to e_1$: We can assume $y \neq x$, $y \notin \text{dom } (\Gamma)$ and y not free in e', even if it means renaming y. We have $\Gamma + x : \tau' + y : \tau_2 \vdash e_1 : \tau_1$ and hence

$$\Gamma + y : \tau_2 + x : \tau' \vdash e_1 : \tau_1$$
 by permutation lemma. On the other hand $\Gamma \vdash e' : \tau'$ and hence

 $\Gamma + y : \tau_2 \vdash e' : \tau'$ by weakening lemma. By induction hypothesis, we therefore have

$$\Gamma + y : \tau_2 \vdash e_1[x \leftarrow e'] : \tau_1 \text{ and so } \Gamma \vdash (\text{fun } y \rightarrow e_1)[x \leftarrow e'] : \tau_2 \rightarrow \tau_1, \text{ that is, } \Gamma \vdash e[x \leftarrow e'] : \tau.$$

The other cases are left as an exercise.

Preservation

Finally we can prove the preservation lemma

Lem. (preservation)

If
$$\emptyset \vdash e : \tau$$
 and $e \rightarrow e'$ then $\emptyset \vdash e' : \tau$.

Proof.

We proceed by induction on the derivation of $\emptyset \vdash e : \tau$.

• Case $e = let x = e_1 in e_2$:

$$\frac{\emptyset \vdash e_1 : \tau_1 \qquad x : \tau_1 \vdash e_2 : \tau_2}{\emptyset \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2}$$

- if $e_1 \to e_1'$, by induction hypothesis we have $\emptyset \vdash e_1' : \tau_1$ and hence $\emptyset \vdash \text{let } x = e_1' \text{ in } e_2 : \tau_2$;
- if e_1 is a value and $e'=e_2[x\leftarrow e_1]$, then we apply the lemma of preservation under substitution.
- Case $e = e_1 e_2$:
 - ullet if $e_1
 ightarrow e_1'$ or if e_1 is a value and $e_2
 ightarrow e_2'$, then we use induction hypothesis;
 - if $e_1 = \text{fun } x \to e_3$ and e_2 is a value, then $e' = e_3[x \leftarrow e_2]$ and we apply again the lemma of preservation under substitution.

The other cases are left as exercises.

Type safety

Now the type safety theorem can be easily derived

Thm. (type safety)

If $\emptyset \vdash e : \tau$ and $e \stackrel{*}{\rightarrow} e'$ with e' irreducible, then e' is a value.

Proof.

We have $e \to e_1 \to \cdots \to e'$ and by repeatedly applying the preservation lemma, we have $\emptyset \vdash e' : \tau$. By the progress lemma, e' is reducible or is a value. By assumption, e' is a value.

Polymorphism

Polymorphism

It is restrictive to give a unique type to $fun x \rightarrow x$ in an expression like

let
$$f = \text{fun } x \rightarrow x \text{ in } e$$

Likewise, we would like to be able to give several types to primitives such as fst or snd.

A solution: the parametric polymorphism

Parametric polymorphism

We extend the algebra of types

Free variables

We denote by $\mathcal{L}(\tau)$ the set of free type variables in τ , defined by

$$\mathcal{L}(\text{int}) = \emptyset$$

$$\mathcal{L}(\alpha) = \{\alpha\}$$

$$\mathcal{L}(\tau_1 \to \tau_2) = \mathcal{L}(\tau_1) \cup \mathcal{L}(\tau_2)$$

$$\mathcal{L}(\tau_1 \times \tau_2) = \mathcal{L}(\tau_1) \cup \mathcal{L}(\tau_2)$$

$$\mathcal{L}(\forall \alpha.\tau) = \mathcal{L}(\tau) \setminus \{\alpha\}$$

For a typing environment, we set

$$\mathcal{L}(\Gamma) = \bigcup_{x \in \mathsf{dom} \ \Gamma} \mathcal{L}(\Gamma(x)).$$

Substitution

We denote by $\tau[\alpha \leftarrow \tau']$ the substitution of α in τ by τ' , defined by

$$\begin{array}{rcl} \operatorname{int}[\alpha \leftarrow \tau'] &=& \operatorname{int} \\ \alpha[\alpha \leftarrow \tau'] &=& \tau' \\ \beta[\alpha \leftarrow \tau'] &=& \beta & \operatorname{if} \beta \neq \alpha \\ (\tau_1 \rightarrow \tau_2)[\alpha \leftarrow \tau'] &=& \tau_1[\alpha \leftarrow \tau'] \rightarrow \tau_2[\alpha \leftarrow \tau'] \\ (\tau_1 \times \tau_2)[\alpha \leftarrow \tau'] &=& \tau_1[\alpha \leftarrow \tau'] \times \tau_2[\alpha \leftarrow \tau'] \\ (\forall \alpha.\tau)[\alpha \leftarrow \tau'] &=& \forall \alpha.\tau \\ (\forall \beta.\tau)[\alpha \leftarrow \tau'] &=& \forall \beta.\tau[\alpha \leftarrow \tau'] & \operatorname{if} \beta \neq \alpha \end{array}$$

F system

The rules are exactly the same as before, plus

$$\frac{\Gamma \vdash e : \tau \qquad \alpha \notin \mathcal{L}(\Gamma)}{\Gamma \vdash e : \forall \alpha. \tau}$$

$$\frac{\Gamma \vdash e : \forall \alpha.\tau}{\Gamma \vdash e : \tau[\alpha \leftarrow \tau']}$$

The system obtained is call the F system (J.-Y. Girard and J. C. Reynolds)

Example

Primitives

We can now give a satisfying type for primitives

fst:
$$\forall \alpha. \forall \beta. \alpha \times \beta \rightarrow \alpha$$

snd:
$$\forall \alpha. \forall \beta. \alpha \times \beta \rightarrow \beta$$

opif :
$$\forall \alpha. bool \times \alpha \times \alpha \rightarrow \alpha$$

opfix :
$$\forall \alpha.(\alpha \rightarrow \alpha) \rightarrow \alpha$$

Exercise

Give a typing derivation for the expression $\Gamma \vdash \text{fun } x \to x \ x : (\forall \alpha. \alpha \to \alpha) \to (\forall \alpha. \alpha \to \alpha)$.

Remark

The condition $\alpha \notin \mathcal{L}(\Gamma)$ in the rule

$$\frac{\Gamma \vdash e : \tau \qquad \alpha \notin \mathcal{L}(\Gamma)}{\Gamma \vdash e : \forall \alpha . \tau}$$

is crucial.

Without it, we could type fun $x \to x$ with the type $\alpha \to \forall \alpha. \alpha$ as follows:

$$\frac{\Gamma + x : \alpha \vdash x : \alpha}{\Gamma + x : \alpha \vdash x : \forall \alpha.\alpha}$$

$$\frac{\Gamma \vdash \text{fun } x \to x : \alpha \to \forall \alpha.\alpha}{\Gamma \vdash \text{fun } x \to x : \forall \alpha.\alpha \to \forall \alpha.\alpha}$$

and successfully type the expression $(\operatorname{fun} x \to x)$ 1 2, that is, a program whose execution results in the use of an integer as a function. The safety of the typing would therefore not be guaranteed.

Bad news

For terms without annotations, there are the two problems

- inference: given e, does there exist τ such that $\vdash e : \tau$?
- verification: given e and τ , do we have $\vdash e : \tau$?

are not decidable

[Wel99] J. B. Wells. Typability and type checking in the second-order lambda-calculus are equivalent and undecidable, 1994.

To obtain a decidable type inference, we will restrict the power of the F system

⇒ Hindley-Milner system, used in OCaml, SML, Haskell, ...etc

We limit the universal quantifier \forall at the head of the types (prenex quantification)

The environment Γ associates a scheme of type to each identifier and the typing relation now has the form $\Gamma \vdash e : \sigma$

Example

In Hindley-Milner system, the following types are always accepted

$$\begin{split} \forall \alpha.\alpha \to \alpha \\ \forall \alpha. \forall \beta.\alpha \times \beta \to \alpha \\ \forall \alpha. \texttt{bool} \times \alpha \times \alpha \to \alpha \\ \forall \alpha. (\alpha \to \alpha) \to \alpha \end{split}$$

but not types such as

$$(\forall \alpha.\alpha \to \alpha) \to (\forall \alpha.\alpha \to \alpha).$$

Notation in OCaml

note: in OCaml syntax, prenex quantification is implicit

fst;;

$$\forall \alpha. \forall \beta. \alpha \times \beta \rightarrow \alpha$$

List.fold_left;;

$$\forall \alpha. \forall \beta. (\alpha \to \beta \to \alpha) \to \alpha \to \beta \text{ list} \to \alpha$$

Note that only the let construction allows a polymorphic type to be introduced into the environment

$$\frac{\Gamma \vdash e_1 : \sigma_1 \qquad \Gamma + x : \sigma_1 \vdash e_2 : \sigma_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \sigma_2}$$

In particular, we can always give a type of

let
$$f = \text{fun } x \rightarrow x \text{ in } (f 1, f \text{ true})$$

with $f: \forall \alpha.\alpha \rightarrow \alpha$ in the context to type $(f \ 1, f \ \text{true})$

On the other hand, the typing rule

$$\frac{\Gamma + x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{fun } x \to e : \tau_1 \to \tau_2}$$

does not introduce a polymorphic type, because otherwise $\tau_1 \to \tau_2$ would be poorly formed.

In particular, we can no longer type

fun
$$x \rightarrow x x$$

Type inference

Algorithmic considerations

To program a verification or a type inference for the Hindley-Milner system, we will try to proceed by induction on the structure of the program.

However, for a given expression, three rules can apply: the rule of the monomorphic system, the rule of generalization

$$\frac{\Gamma \vdash e : \sigma \qquad \alpha \notin \mathcal{L}(\Gamma)}{\Gamma \vdash e : \forall \alpha. \sigma}$$

or the rule of specialization

$$\frac{\Gamma \vdash e : \forall \alpha.\sigma}{\Gamma \vdash e : \sigma[\alpha \leftarrow \tau]}$$

How to choose? Will we have to proceed by trial and error?

Syntax-driven Hindley-Milner system

We will modify the presentation of the Hindley-Milner system so that it is syntax driven, i.e., so that, for any expression, at most one rule applies.

The rules will have the same power of expression: any closed term is typable in one system if and only if it is typable in the other.

Syntax-driven Hindley-Milner system

$$\frac{\tau \leq \Gamma(x)}{\Gamma \vdash x : \tau} \qquad \frac{\tau \leq type(op)}{\Gamma \vdash op : \tau}$$

$$\frac{\Gamma + x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{fun } x \to e : \tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash e_1 : \tau' \to \tau \qquad \Gamma \vdash e_2 : \tau'}{\Gamma \vdash e_1 : e_2 : \tau}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2} \qquad \frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma + x : \textit{Gen}(\tau_1, \Gamma) \vdash e_2 : \tau_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2}$$

Syntax-driven Hindley-Milner system

Two operations appear

• instantiation, in the rule

$$\frac{\tau \le \Gamma(x)}{\Gamma \vdash x : \tau}$$

the relation $\tau \leq \sigma$ reads " τ is an instance of σ " and is defined by

$$\tau \leq \forall \alpha_1 \dots \alpha_n . \tau'$$
 iff $\exists \tau_1 \dots \exists \tau_n . \tau = \tau' [\alpha_1 \leftarrow \tau_1, \dots, \alpha_n \leftarrow \tau_n]$

example: int \times bool \rightarrow int $\leq \forall \alpha. \forall \beta. \alpha \times \beta \rightarrow \alpha$.

Syntax-driven Hindley-Milner system

• and the generalization, in the rule

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma + x : \mathit{Gen}(\tau_1, \Gamma) \vdash e_2 : \tau_2}{\Gamma \vdash \mathtt{let} \ x = e_1 \ \mathtt{in} \ e_2 : \tau_2}$$

where

$$Gen(\tau_1, \Gamma) \stackrel{\text{def}}{=} \forall \alpha_1 \dots \forall \alpha_n \cdot \tau_1 \quad \text{where} \quad \{\alpha_1, \dots, \alpha_n\} = \mathcal{L}(\tau_1) \setminus \mathcal{L}(\Gamma)$$

Example

$$\emptyset \vdash \text{let } f = \text{fun } x \rightarrow x \text{ in } (f \ 1, f \ \text{true}) : \text{int} \times \text{bool}$$

with

$$\Gamma \stackrel{\mathsf{def}}{=} \emptyset + f : \mathsf{Gen}(\alpha \to \alpha, \emptyset) = f : \forall \alpha . \alpha \to \alpha$$

Type inference for mini-ML

To infer the type of an expression, there remain problems

- in fun $x \rightarrow e$, give which type to x?
- for a variable x, which instance of $\Gamma(x)$ to choose?

There exists a solution: W algorithm (Milner, Damas, Tofte [DM82])

W algorithm

Two ideas:

- new type variables are used to represent unknown types
 - for the type of x in fun $x \to e$
 - to instantiate the schema variables $\Gamma(x)$
- the value of these variables is determined later, by unification between types at the moment of typing the application

Unification

Given two types τ_1 and τ_2 containing type variables $\alpha_1, \ldots, \alpha_n$,

is there am instantiation θ , that is, a function of the variables α_i to types, such as $\theta(\tau_1) = \theta(\tau_2)$?

We call it the unification problem

Example

$$\begin{array}{rcl} \tau_1 & = & \alpha \times \beta \to \mathtt{int} \\ \tau_2 & = & \mathtt{int} \times \mathtt{bool} \to \gamma \\ \mathtt{solution} & = & \alpha \mapsto \mathtt{int}, \beta \mapsto \mathtt{bool}, \gamma \mapsto \mathtt{int} \end{array}$$

Example

$$\begin{array}{rcl} \tau_1 & = & \alpha \times \operatorname{int} \to \alpha \times \operatorname{int} \\ \tau_2 & = & \gamma \to \gamma \\ \operatorname{solution} & = & \gamma \mapsto \alpha \times \operatorname{int} \end{array}$$

Unification

Example

$$au_1 = \alpha o ext{int}$$
 $au_2 = \beta imes \gamma$

No solution

Example

$$\tau_1 = \alpha \rightarrow \text{int}$$
 $\tau_2 = \alpha$

No solution

Unification

unifier (τ_1, τ_2) determines whether there exists an instance of variables of types of τ_1 and τ_2 such that $\tau_1 = \tau_2$

$$\begin{array}{rcl} & \textit{unifier}(\tau,\tau) & = & \text{success} \\ & \textit{unifier}(\tau_1 \to \tau_1',\tau_2 \to \tau_2') & = & \textit{unifier}(\tau_1,\tau_1) \;; \; \textit{unifier}(\tau_1',\tau_2') \\ & \textit{unifier}(\tau_1 \times \tau_1',\tau_2 \to \tau_2') & = & \textit{unifier}(\tau_1,\tau_1) \;; \; \textit{unifier}(\tau_1',\tau_2') \\ & \textit{unifier}(\alpha,\tau) & = & \text{if} \; \alpha \notin \mathcal{L}(\tau), \; \text{replace} \; \alpha \; \text{by} \; \tau \; \text{everywhere} \\ & & \text{if not, fail} \\ & \textit{unifier}(\tau,\alpha) & = & \textit{unifier}(\alpha,\tau) \\ & \textit{unifier}(\tau_1,\tau_2) & = & \text{fail in all the other cases} \end{array}$$

Idea of W algorithm

Consider the expression fun $x \to +(fst x, 1)$.

- give x the type α_1 , a new type variable
- the primitive + has the type int \times int \rightarrow int
- type the expression ($fst \times 1$)
 - *fst* has the type of schema $\forall \alpha. \forall \beta. \alpha \times \beta \rightarrow \alpha$,
 - we therefore give it the type $\alpha_2 \times \beta_1 \rightarrow \alpha_2$,
 - *fst* x requires unifying α_1 and $\alpha_2 \times \beta_1 \Rightarrow \{\alpha_1 \mapsto \alpha_2 \times \beta_1\}$.
- (fst x, 1) therefore has the type $\alpha_2 \times \text{int}$
- the application $+(fst \ x,1)$ unifies them int \times int and $\alpha_2 \times$ int, $\Rightarrow \{\alpha_2 \mapsto \text{int}\}.$

In the end, we obtain the type int $\times \beta_1 \to \text{int}$, that is,

$$\vdash$$
 fun $x \rightarrow +($ fst $x,1)$: int $\times \beta \rightarrow$ int

and if we generalize (in a let) we therefore obtain $\forall \beta. \mathtt{int} \times \beta \to \mathtt{int}$

W algorithm

We define a function W which takes as arguments an environment Γ and an expression e and returns the inferred type for e

- if e is a variable x, return a trivial instance of Γ(x)
- if e is a constant c return a trivial instance of its type (think [] : α list)
- if e is a primitive op return a trivial instance of its type
- if e is a pair (e_1, e_2) compute $\tau_1 = W(\Gamma, e_1)$ compute $\tau_2 = W(\Gamma, e_2)$ return $\tau_1 \times \tau_2$

W algorithm

- if e is a function $\operatorname{fun} x \to e_1$, let α be a new variable compute $\tau = W(\Gamma + x : \alpha, e_1)$ return $\alpha \to \tau$
- if e is an application e_1 e_2 , compute $\tau_1 = W(\Gamma, e_1)$ compute $\tau_2 = W(\Gamma, e_2)$ let α be a new variable $unifier(\tau_1, \tau_2 \to \alpha)$ return α
- if e is let $x = e_1$ in e_2 , compute $\tau_1 = W(\Gamma, e_1)$ return $W(\Gamma + x : Gen(\tau_1, \Gamma), e_2)$

Results

Thm. (Damas, Milner, 1982)

The W algorithm is correct, in the sense that

if
$$W(\emptyset, e) = \tau$$
 then $\emptyset \vdash e : \tau$,

and it determines the most general possible type, also known as principal type, in the sense that

if
$$\emptyset \vdash e : \tau$$
 then $\tau \leq Gen(W(\emptyset, e), \emptyset)$.

Thm. (Type safety)

The Hindley-Milner system is safe.

i.e., if $\emptyset \vdash e : \tau$, then the reduction of *e* is infinite or ends on a value.

Algorithmic considerations

There are several ways to achieve unification

• by explicitly manipulating a substitution

```
type tvar = int
type subst = typ TVmap.t
```

using destructive type variables

```
type tvar = { id: int; mutable def: typ option; }
```

There are also several ways to program the W algorithm

• with explicit schemes and by calculating $Gen(\tau, \Gamma)$

```
type schema = { tvars: TVset.t; typ: typ; }
```

with the level

$$\frac{\Gamma \vdash_{n+1} e_1 : \tau_1 \qquad \Gamma + x : (\tau_1, n) \vdash_n e_2 : \tau_2}{\Gamma \vdash_n \text{let } x = e_1 \text{ in } e_2 : \tau_2}$$

Extensions

mini-ML can be extended in many ways

- recursion
- constructed types (*n*-tuples, lists, sum and product types)
- references

Recursion

As already explained, we can define

let rec
$$f \times \stackrel{\mathsf{def}}{=} \mathsf{let} \ f = \mathsf{opfix} \ (\mathsf{fun} \ f \to \mathsf{fun} \ \mathsf{x} \to \mathsf{e}_1) \ \mathsf{in} \ \mathsf{e}_2$$

where

opfix :
$$\forall \alpha. \forall \beta. ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta)) \rightarrow (\alpha \rightarrow \beta)$$

In an equivalent way, we can give the rule

$$\frac{\Gamma + f : \tau \to \tau_1 + x : \tau \vdash e_1 : \tau_1 \qquad \Gamma + f : \textit{Gen}(\tau \to \tau_1, \Gamma) \vdash e_2 : \tau_2}{\Gamma \vdash \text{let rec } f \; x = e_1 \; \text{in } e_2 : \tau_2}$$

Constructed types

We have already seen the pairs

Lists do not pose any difficulty

[] :
$$\forall \alpha.\alpha$$
 list

 $:: \forall \alpha.\alpha \times \alpha \text{ list} \rightarrow \alpha \text{ list}$

$$\frac{\Gamma \vdash e_1 : \tau \text{ list } \Gamma \vdash e_2 : \tau_1 \qquad \Gamma + x : \tau + y : \tau \text{ list } \vdash e_3 : \tau_1}{\Gamma \vdash \text{match } e_1 \text{ with } [] \rightarrow e_2 \mid :: (x, y) \rightarrow e_3 : \tau_1}$$

easily generalizes to sum and product types

References

For the references, one can naively think that it is enough to add the primitives

 ref : $\forall \alpha. \alpha \to \alpha \operatorname{ref}$

! : $\forall \alpha.\alpha \text{ ref} \rightarrow \alpha$

:= : $\forall \alpha.\alpha \text{ ref} \rightarrow \alpha \rightarrow \text{unit}$

References

Unfortunately this is wrong!

let
$$r = \text{ref (fun } x \to x)$$
 in $r : \forall \alpha . (\alpha \to \alpha)$ ref let $\underline{} = r : = (\text{fun } x \to x \text{ 1})$ in $!r = \text{true}$ boom!

This is the so-called polymorphic reference problem [Gar04].

To get around this problem, there is an extremely simple solution, namely a syntactic restriction of the let construct

Defn. (value restriction, Wright 1995 [WF94])
A program satisfies the value restriction criterion if every let subexpression whose type is generalized is of the form

$$let x = v_1 in e_2$$

where v_1 is a value.

In practice, we continue to write

let
$$r = \text{ref } (\text{fun } x \rightarrow x) \text{ in } \dots$$

but the type of r is not generalized

as if we had written

$$(\texttt{fun}\; r \to \; \dots) \; (\texttt{ref}(\texttt{fun}\; x \to x))$$

In OCaml, a non-generalized variable is of the form '_a

```
# let x = ref (fun x -> x);;
```

```
val x : ('_a -> '_a) ref
```

The value restriction is also slightly relaxed to allow safe expressions, such as application constructor

```
# let 1 = [fun x -> x];;
```

There are still some minor inconveniences

```
# let id x = x;;
val id : 'a -> 'a = <fun>
# let f = id id;;
val f : '_a -> '_a = <fun>
# f 1;;
-: int = 1
# f true;;
This expression has type bool but is here used with type int
```

```
# f;;
- : int -> int = <fun>
```

The solution: expand to reveal a function, i.e., a value

```
# let f x = id id x;;
```

(this is called η -expansion)

In the presence of the module system, reality is even more complex

Given a module M

```
module M : sig
  type 'a t
  val create : int -> 'a t
  end
```

am I allowed to generalize the type of M.create 17?

The answer depends on the nature of the type 'a t: no for an array, yes for a list, etc.

In OCaml, a variance indication allows us to distinguish the two

```
type +'a t (* we can generalize *)
type 'a u (* we cannnot *)
```

The solution implemented in OCaml is relatively sophisticated, see [Gar04], in particular to make it possible to indicate which type variables of an abstract type can be generalized

References i

Luis Damas and Robin Milner.

Principal type-schemes for functional programs.

In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '82, page 207–212, New York, NY, USA, 1982. Association for Computing Machinery.

Jacques Garrigue.

Relaxing the value restriction.

In Yukiyoshi Kameyama and Peter J. Stuckey, editors, *Functional and Logic Programming*, pages 196–213, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

Benjamin C. Pierce.

Types and Programming Languages.

The MIT Press, 1st edition, 2002.

References ii

J.B. Wells.

Typability and type checking in system f are equivalent and undecidable.

Annals of Pure and Applied Logic, 98(1):111-156, 1999.

Andrew K. Wright and Matthias Felleisen.

A syntactic approach to type soundness.

Inf. Comput., 115:38-94, 1994.

VPE INFERENCE

Questions?