School of Mathematics, Thapar University Operations Research (UMA-019) Tutorial Sheet 4

1. Write the duals of the following problems:

(i) Max
$$z = x_1 - 2x_2 + 4x_3 - 3x_4$$
, s/t $x_1 + x_2 - 3x_3 + x_4 = 9$,

$$3x_1 + 5x_2 + 2x_3 - 7x_4 \le 5$$
, $x_1 - 3x_2 + 5x_4 \ge 8$, $x_1, x_2, x_3, x_4 \ge 0$

(ii) Min
$$z = 2x_1 + x_2 + x_3$$
, s/t $x_1 + x_2 - x_3 \ge 1$, $-2x_1 + x_3 \le 0$, $x_1 - x_2 + x_3 = 2$,

$$x_1 \ge 0, x_2 \le 0$$

(iii) Min
$$z = 6x_1 + 3x_2$$
, s/t $6x_1 - 3x_2 + x_3 \ge 2$, $3x_1 + 4x_2 + x_3 \ge 5$,

$$x_1, x_2, x_3 \ge 0.$$

(iv) Max
$$z = x_1 + x_2$$
, s/t $2x_1 + x_2 = 5$, $3x_1 - x_2 = 6$,

 x_1, x_2 is unrestricted.

- 2. If a linear programming problem has an unbounded solution then show that its dual is infeasible.
- 3. If a (primal) LPP is feasible and its dual is infeasible, then show that the primal is unbounded.
- 4. Show that the following problem and its dual are infeasible.

Max
$$z = 8x_1 + 6x_2$$
, s/t $2x_1 - x_2 \ge 2$, $-4x_1 + 2x_2 \ge 1$, $x_1, x_2 \ge 0$

5. Write the dual of the problem: Max $z = x_1 + 2x_2 + x_3$,

$$s/t x_1 + x_2 - x_3 \le 2$$
, $x_1 - x_2 + x_3 = 1$, $2x_1 + x_2 + x_3 \ge 2$, $x_1 \ge 0$, $x_2 \le 0$

and using the duality theory show that maximum of z cannot exceed one.

6. Show by inspection that the dual of the problem:

Max
$$z = -2x_1 + 3x_2 + 5x_3$$
, $s/t x_1 - x_2 + x_3 \le 15$, $x_1, x_2, x_3 \ge 0$

is infeasible. What can you say about the solution of the primal?

7 (i) Solve the following problem graphically. Write its dual. Then using the complementary slackness theorem obtain the solution of the dual problem.

Maximize
$$z = 2x_1 + 3x_2$$

Subject to $x_1 + x_2 \le 3$, $2x_1 + 3x_2 \ge 3$, $-x_1 + x_2 \le 0$, $x_1 \le 2$, $x_1, x_2 \ge 0$.

(ii) Write the dual of the problem:

Minimize
$$z = x_1 + 2x_2 + 3x_3 + 4x_4$$
,
Subject to $x_1 + 2x_2 + 2x_3 + 3x_4 \ge 30, 2x_2 + 3x_3 + 2x_4 \ge 40 \ x_1, x_2, x_3, x_4 \ge 0$.

Solve the dual graphically. Then using the complementary slackness theorem obtain the solution of the above problem.

8. Describe the dual simplex method. Using it solve:

(i)
$$Min \ z=2x_1+x_2$$
, $s/t \ 3x_1+x_2 \ge 3$, $4x_1+3x_2 \ge 6$, $x_1+2x_2 \le 3$, $x_1,x_2 \ge 0$.

(ii) Min
$$z=x_1+4x_2+3x_4$$
, s/t $x_1+2x_2-x_3+x_4 \ge 3$
 s/t $x_1+2x_2-x_3+x_4 \ge 3$, $-2x_1+x_2+4x_3+x_4 \ge 2$, $x_1,x_2,x_3,x_4 \ge 0$

(iii) Min
$$z=5x_1+6x_2$$
, s/t $x_1+x_2 \ge 2$, $4x_1+x_2 \ge 4$, $x_1,x_2 \ge 0$.

(iv) Min
$$z=4x_1+2x_2$$
, s/t $x_1+x_2=1$, $3x_1-x_2 \ge 2$, $x_1,x_2 \ge 0$.