1: データベースの定義(DDL)入門

製作:清水健二

リレーショナル・データベース

DBMSのデータ管理の方法にも幾つか種類はありますが、現状ではリレーショナル・データベース (Relational Database, RDB) を使うことが一般的です。

リレーショナル・データベースでは、データの集合体を列(field, フィールド、もしくはcolumn, カラム)と行(record, レコード)からなるテーブル(表)で表現し、さらにテーブル間のデータの関連(relationship, リレーションシップ)を定義することによって、重複データをなるべく持たない、効率的なデータ管理を実現することが可能となります。

「リレーショナルデータベースとは」より

なお、このようにテーブル構造の整理を行うことを正規化と呼びます。テーブルの正規化については別途「テーブル設計の基礎知識」にて説明します。

データベース操作の基本

データベースを操作する際には、コマンドを使用してデータベースにログインした上で、SQL言語を使って操作していきます。

MAMPの起動

今回はMAMPというアプリケーションに内蔵されているMySQLサーバーにアクセスします。

データベースサーバーへのログイン

データベースへのログインは、コマンドを使って行います。

MySQLの場合は以下のコマンドを使います。

mysql -u ユーザー名 -P ポート番号 -p

コマンド実行後、パスワードの入力を求められます。

ログインが成功すると、MySQLコマンドラインに移動します。通常のCLIと違い、ENTERキーを押しても即 実行されません。

コマンドの実行はコマンド名 実行対象;で行われます。セミコロンが押されない限りCLI内で改行が行われ続けるだけです。

コマンドを途中でキャンセルしたい場合は、ctrl+Cを押してください。

データベースファイルの一覧を確認する(SHOW DATABASES)

ここでは、MySQLに格納されているデータベースファイルの一覧を確認します。 下記のコマンドを打ち込んでください。

SHOW DATABASES;

データベースの一覧表が表示されれば成功です。データベースファイルとはプロジェクトごとに必要なデータ表(テーブル)をひとまとめにしたファイルの事で、通常Windows上には表示されず、この方法でしか確認できません。

基本的に既に表示されているデータベースファイルはMySQLのシステムが用意したデータベースファイルなので決して削除や変更は行わないでください。

MySQLを終了する(QUIT)

なお、MySQLからログオフする場合には、quitコマンドで終了します。下記のコマンドを実行してください。

quit;

ひとまず、ここでログアウトします。

DDL(データ定義言語)

SQLの中でも、データベースの構造を定義するために使用するものを、特にDDL(Data Definition Language, データ定義言語)と呼びます。ここでは基本的なDDLを説明します。

データベースファイルの作成

引き続き、CLIでMySQLを操作します。下記のコマンドを打って再度ログインしてください。

mysql -u ユーザー名 -p

新規にデータベースファイルを作成する(CREATE DATABASE)

MySQLにログインしたら下記のコマンドを実行してください。

```
CREATE DATABASE データベース名;
```

引き続き、データベースファイル一覧に作成したデータベースがあるか確認します。下記のコマンドを実行してください。

```
SHOW DATABASES;
```

作成したデータベース名があれば成功です。

テーブルの新規作成

作成したデータベースファイルにアクセスする(USE)

作成したデータベースファイル内でテーブル作成等を行うために下記のコマンドを実行してください。

```
USE データベース名;
```

テーブルの新規作成を行う(CREATE TABLE)

MySQL内ではセミコロンが入力されるまでENTERで改行できます。 以下の構文を最後まで入力してください。

```
CREATE TABLE data(
code char(4) NOT NULL

name varchar(50) NOT NULL,

PRIMARY KEY(code)

);
```

データベース内のテーブル一覧を確認する(SHOW TABLES)

新規作成したdataテーブルの表示を確認するため下記のコマンドを実行してください。

```
SHOW TABLES;
```

テーブル一覧にdataテーブルが表示されれば成功です。

テーブルの列(カラム)の内容を確認する(SHOW COLUMNS FROM)

先ほど作成したdataテーブル列(カラム)の内容が正しいか確認するため下記のコマンドを実行します。

```
SHOW COLUMNS FROM テーブル名;
```

ここでは、dataテーブルの内容が正しく表示されれば成功です。

テーブルの列を追加する(ALTER TABLE)

dataテーブルに、新たにamount列を追加します。下記のコマンドを実行してください。

```
ALTER TABLE data ADD amount int DEFAULT 0;
```

下記のコマンドを実行してamount列が追加されたことを確認してください。

```
SHOW COLUMNS FROM data;
```

テーブルの定義

リレーショナル・データベースの各テーブルは、フィールドを定義することによって、各項目に入るデータの 内容が決まります。フィールドには「列名(フィールド名)」、「データ型」、「データ長(桁数、バイト 数)」を指定する必要があります。

データ型はDBMSによって若干異なる場合がありますが、MySQLの場合には以下のようなデータ型があります。

データ型	格納できる値	備考
INT, TINYINT	整数	TINYINT は+127から-128
FLOAT, DOUBLE	浮動小数点数	データ長は(整数部の桁数, 小数部の 桁数)で表す。
DATETIME, TIMESTAMP	日付時刻	
CHAR, VARCHAR, TEXT	文字列	CHARは固定長 VARCHARは可変長 TEXTは不定形・不定長
BINARY, VARBINARY, BLOB	バイナリデータ	BINARYは固定長 VARBINARYは可変長 BLOBは不定形・不定長
ENUM	文字列の列挙	ENUM('値1', '値2')のように、指定可 能な文字列を予め定義しておく

テーブルの制約について

主(PRIMARY)キー制約

RDBのテーブルにおいて、行を一意に識別するために選択された列を主キーと言います。

テーブル設計時、ID等やコード番号に主キーに対する制約を設定することができます。 その効果は以下の通りです。

- テーブルには重複行は存在できない。
- (主) キーは一部であってもNULLを含んではならない。

なぜ一つのセルに複数の値を入れることがリレーショナルデータベースでは認められないか、その理由を端的 に言うと、セルに複数の値を許せば、主キーが各列の値を一意に決定できないからです。

複合主キー

行を一意に識別するために選択された列を主キーと言いますが、列は1列のみである必要はありません。 例えば下記の表のように、複数の列を主キーとして制約をかけることが可能です。

生徒番号(主キ	開講日(主キー)	教室番号(主キ	氏名	
—)		—)		
01	201803	901	清水健二	

外部(foreign) 丰一制約

外部キー制約とは、テーブルの指定した列に格納できる値を、他のテーブルに格納されている値だけに限定するものです。

参照される側のテーブルを親テーブル、参照する側のテーブルを子テーブルと呼びます。

図1 外部キー制約は親子の関係に例えられる

- 外部キーは人間の親子関係と同じ。
- 外部キーが設定されている場合、データの削除は子から順に操作するのが吉。

UNIQUE制約

null値以外での値の重複を許可しない。(null値は重複可)複合主キーにUNIQUE制約をつけることが多い。

NOT NULL制約

NOT NULL制約とは、データベースにおいてデータを追加、更新する際、その列に必ず意味のある値が設定されることを要求する。

• テーブル定義において、列には可能な限りNOT NULL制約を付加する。

DEFAULT制約

null値を登録しようとした際、代わりに指定した初期値を設定。

テーブル設計書

システム開発現場ではテーブル定義書を作成することによって、各フィールドの定義を開発者に共有しています。以下に例を示します。

• 物理テーブル名: SALES

• 論理テーブル名:売上伝票テーブル

物理フィー	論理フィー	データ型	データ長	PK	Not Null	AI:	備考
ルド名	ルド名						
NO	伝票番号	INT		1	0	0	
SALEYMD	売上年月日	DATE			0		
ITEMCD	商品コード	VARCHAR	4		0		
AMOUNT	数量	DOUBLE	3,1				DEFAULT
							0
PRICE	金額	INT					DEFAULT
							0

※AI=オートインクリメント。データベースの自動連番機能を使用して採番します。

データベースからテーブルを削除する

最後に、データベースからdata テーブルを削除します。

まず、下記のコマンドを実行してデータベースファイルを選択してください。

USE データベース名;

テーブルの削除(DROP TABLE)

DROP TABLE data;

以上が基本的なDDLのコマンドです。