3. Синтез комбінаційних схем

3.1. Представлення функції f4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна

Алгебра Буля (І, АБО, НЕ)

 $f4_{IIIIH\phi} = (\overline{X}4\overline{X}3\overline{X}2X1) \ v \ (\overline{X}4X3\overline{X}2X1) \ v \ (\overline{X}4X3\overline{X}2\overline{X}1) \ v \ (X4\overline{X}3\overline{X}2X1) \ v \ (X4\overline{X}3\overline{X}2X1) \ v \ (X4X3\overline{X}2\overline{X}1)$

 $f4_{IIKH\Phi} = (X4vX3vX2vX1) \cdot (X4vX3v\overline{X}2vX1) \cdot (X4vX3v\overline{X}2v\overline{X}1) \cdot (X4v\overline{X}3vX2vX1) \cdot$

(X4vX3vX2vX1) - (X4vX3vX2vX1) - (X4vX3vX2vX1) - (X4vX3vX2vX1)

Алгебра Шеффера {I-HE}

f4 = ((X4/X4)/(X3/X3)/(X2/X2)/X1)/((X4/X4)/X3/(X2/X2)/X1)/ ((X4/X4)/X3/X2/(X1/X1))/(X4/(X3/X3)/(X2/X2)/X1)/ (X4/(X3/X3)/X2/(X1/X1))/(X4/X/(X2/X2)/(X1/X1))/ (X4/X3/(X2/X2)/X1)/(X4/X3/X2/X1)

Алгебра Пірса {АБО-НЕ}

 $f4 = (|X4 \downarrow X4|\downarrow |X3 \downarrow X3|\downarrow |X2 \downarrow X2| \downarrow X1| \downarrow |(|X4 \downarrow X4|\downarrow X3|\downarrow |X2|\downarrow X2|)$ $\downarrow |X1 \downarrow X1||\downarrow |(|X4 \downarrow X4|\downarrow |X3|\downarrow |X2|\downarrow |X1|\downarrow |X4 \downarrow |X3|\downarrow |X3|\downarrow |X2|\downarrow |X1|\downarrow |X4|\downarrow |X3|\downarrow |X4|\downarrow |X$

Алгебра Жегалкіна {ВИКЛЮЧНЕ АБО, I, const 1}

- 3.2. Визначення належності функції f4 до п'яти передцповних класів
- f(1111) = 1 => функція зберігає одиницю
- f(0000) = 0 => функція зберігає нуль
- f(0011) = f(1100) = 1 => функція не самодвоїста
- f(0011) > f(0100) => функція не монотонна
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний

Зм.	Арк.	№ докум.	Підп.	Дата

3.3. Мінімізація функції f4

Метод Квайна-Мак-Класкі

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (КО), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4).

KO	K1	<i>K2</i>
<i>0001(1)</i>	<i>0X01(1)</i>	<i>XX01(1)</i>
<i>0101(1)</i>	<i>X001(1)</i>	XX01(1)
<i>0111(1)</i>	<i>01X1(1)</i>	X1X1/1/
1001(1)	<i>X101(1)</i>	X1X1(1)
1010(1)	<i>X111(1)</i>	
1100(1)		
-1101(1)	110X(1)]
-1111/1 /	11X1/1/	-

Рисунок 4.4 Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

	0001	0101	0111	1001	1010	1100	1101	1111
1010					+			
110X						+	+	
XX01	+	+		+			+	
X1X1		+	+				+	+

Таблиця 4.3 Таблиця покриття

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {X1X1; XX01; 101X; 1010}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MH/I}\phi = (X4\overline{X}3X2\overline{X}1) \ v \ (X4X3\overline{X}2) \ v \ (\overline{X}2X1) \ v \ (X3X1)$

Метод невизначених коефіцієнтів

Ідея цього методу полягає у відкушанні ненульових коефіцієнтів при кожній імпліканті. Метод виконується у декілька етапів:

Зм.	Арк.	№ докум.	Підп.	Дата