APROXIMACIÓN POR MÍNIMOS CUADRADOS

Motivación. Ajuste lineal. Ajuste polinómico. Ajustes potencial y exponencial.

Manuel Carlevaro

Departamento de Ingeniería Mecánica

Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

Cálculo Avanzado • 2023 ∆ · X¬IAT¬EX · ⊗ ⊕ ⊚

Datos:

x_i	y_i	x_i	y_i
1	7.07	6	18.02
2	6.99	7	21.69
3	11.37	8	23.94
4	14.73	9	25.07
5	16.03	10	28.15

Figura:

$$P_9(x) = 30.63 - 55.47x + 53.23x^2$$
$$-30.82x^312.24x^4 - 3.21x^5$$
$$+0.53x^6 - 0.053x^7 + 0.0029x^8$$
$$-6.4 \times 10^{-5}x^9$$

$$P_9(x) = 30.63 - 55.47x + 53.23x^2$$
$$-30.82x^312.24x^4 - 3.21x^5$$
$$+0.53x^6 - 0.053x^7 + 0.0029x^8$$
$$-6.4 \times 10^{-5}x^9$$

Aproximación lineal:

$$y = a_1 x + a_0$$

▶ Problema minimax:

$$E_{\infty}(a_0, a_1) = \max_{1 \le i \le 10} \{ |y_i - (a_1 x_i + a_0)| \}$$

$$P_9(x) = 30.63 - 55.47x + 53.23x^2$$
$$-30.82x^312.24x^4 - 3.21x^5$$
$$+0.53x^6 - 0.053x^7 + 0.0029x^8$$
$$-6.4 \times 10^{-5}x^9$$

Aproximación lineal:

$$y = a_1 x + a_0$$

▶ Problema minimax:

$$E_{\infty}(a_0, a_1) = \max_{1 \le i \le 10} \{ |y_i - (a_1 x_i + a_0)| \}$$

▶ Desviación absoluta:

$$E_1(a_0, a_1) = \sum_{i=1}^{10} |y_i - (a_1 x_i + a_0)|$$

$$P_9(x) = 30.63 - 55.47x + 53.23x^2$$
$$-30.82x^312.24x^4 - 3.21x^5$$
$$+0.53x^6 - 0.053x^7 + 0.0029x^8$$
$$-6.4 \times 10^{-5}x^9$$

Aproximación lineal:

$$y = a_1 x + a_0$$

▶ Problema minimax:

$$E_{\infty}(a_0, a_1) = \max_{1 \le i \le 10} \{ |y_i - (a_1 x_i + a_0)| \}$$

▶ Desviación absoluta:

$$E_1(a_0, a_1) = \sum_{i=1}^{10} |y_i - (a_1 x_i + a_0)|$$

▶ Mínimos cuadrados:

$$E_2(a_0, a_1) = \sum_{i=1}^{10} [y_i - (a_1 x_i + a_0)]^2$$

Para el conjunto $\{(x_i,y_i)\}_{i=1}^m$, **minimizar** respecto de a_0,a_1 :

$$E \equiv E_2(a_0, a_1) = \sum_{i=1}^{m} [y_i - (a_1 x_i + a_0)]^2$$

Para el conjunto $\{(x_i,y_i)\}_{i=1}^m$, **minimizar** respecto de a_0,a_1 :

$$E \equiv E_2(a_0, a_1) = \sum_{i=1}^{m} [y_i - (a_1 x_i + a_0)]^2$$
$$\frac{\partial E}{\partial a_0} = 0 \quad \text{y} \quad \frac{\partial E}{\partial a_1} = 0$$

Esto es:

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{m} [y_i - (a_1 x_i - a_0)]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-1)$$

$$0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{m} [y_i - (a_1 x_i - a_0)]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-x_i)$$

Para el conjunto $\{(x_i, y_i)\}_{i=1}^m$, **minimizar** respecto de a_0, a_1 :

$$E \equiv E_2(a_0, a_1) = \sum_{i=1}^{m} [y_i - (a_1 x_i + a_0)]^2$$
$$\frac{\partial E}{\partial a_0} = 0 \quad \text{y} \quad \frac{\partial E}{\partial a_1} = 0$$

Esto es:

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{m} [y_i - (a_1 x_i - a_0)]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-1)$$

$$0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{m} [y_i - (a_1 x_i - a_0)]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-x_i)$$

Ecuaciones normales:

$$a_0 \cdot m + a_1 \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i$$
$$a_0 \sum_{i=1}^{m} x_i + a_1 \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$$

Para el conjunto $\{(x_i, y_i)\}_{i=1}^m$, **minimizar** respecto de a_0, a_1 :

$$E \equiv E_2(a_0, a_1) = \sum_{i=1}^m [y_i - (a_1 x_i + a_0)]^2$$
$$\frac{\partial E}{\partial a_0} = 0 \quad \text{y} \quad \frac{\partial E}{\partial a_1} = 0$$

Esto es:

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{m} [y_i - (a_1 x_i - a_0)]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_o)(-1)$$
$$0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{m} [y_i - (a_1 x_i - a_0)]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_o)(-x_i)$$

Ecuaciones normales:

$$a_0 \cdot m + a_1 \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i$$
$$a_0 \sum_{i=1}^{m} x_i + a_1 \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$$

Solución:

$$a_{0} = \frac{\sum_{i=1}^{m} x_{i}^{2} \sum_{i=1}^{m} y_{i} - \sum_{i=1}^{m} x_{i} y_{i} \sum_{i=1}^{m} x_{i}}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$

$$a_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$

Ejemplo: Encontrar la recta de mínimos cuadrados:

x_i	y_i	x_i^2	x_iy_i	$P(x_i) = 2.437x_i + 3.903$
1	7.07	1	7.07	6.34
2	6.99	4	13.97	8.78
3	11.37	9	34.10	11.21
4	14.73	16	58.92	13.65
5	16.03	25	80.14	16.09
6	18.02	36	108.10	18.52
7	21.69	49	151.85	20.96
8	23.94	64	191.52	23.40
9	25.07	81	225.62	25.83
10	28.15	100	281.49	28.27
55	173.04	385	1152.77	$E \approx 6.62$

Ejemplo: Encontrar la recta de mínimos cuadrados:

x_i	y_i	x_i^2	x_iy_i	$P(x_i) = 2.437x_i + 3.903$
1	7.07	1	7.07	6.34
2	6.99	4	13.97	8.78
3	11.37	9	34.10	11.21
4	14.73	16	58.92	13.65
5	16.03	25	80.14	16.09
6	18.02	36	108.10	18.52
7	21.69	49	151.85	20.96
8	23.94	64	191.52	23.40
9	25.07	81	225.62	25.83
10	28.15	100	281.49	28.27
55	173.04	385	1152.77	$E \approx 6.62$

$$a_0 = \frac{385(173.04) - 55(1152.77)}{10(385) - 55^2} = 3.903$$

$$a_1 = \frac{10(1152.77) - 55(173.04)}{10(385) - 55^2} = 2.437$$

Mínimos cuadrados polinomiales:

$$\begin{split} &P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \\ &\{(x_i, y_i)\}, i = 1, \dots m, \ n < m - 1. \ \text{Minimizar:} \\ &E = \sum_{i=1}^m [y_i - P_n(x_i)]^2 \\ &= \sum_{i=1}^m y_i^2 - 2 \sum_{i=1}^m P_n(x_i) y_i + \sum_{i=1}^m [P_n(x_i)]^2 \\ &= \sum_{i=1}^m y_i^2 - 2 \sum_{i=1}^m \left(\sum_{j=0}^n a_j x_i^j\right) y_i + \sum_{i=1}^m \left(\sum_{j=0}^n a_j x_i^j\right)^2 \\ &= \sum_{i=1}^m y_i^2 - 2 \sum_{j=0}^n a_j \left(\sum_{i=1}^m y_i x_i^j\right) + \sum_{j=0}^n \sum_{k=0}^n a_j a_k \left(\sum_{i=1}^m x_i^{j+k}\right) \end{split}$$

Mínimos cuadrados polinomiales:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

 $\{(x_i, y_i)\}, i = 1, \dots m, n < m - 1.$ Minimizar:

$$\begin{split} E &= \sum_{i=1}^{m} [y_i - P_n(x_i)]^2 \\ &= \sum_{i=1}^{m} y_i^2 - 2 \sum_{i=1}^{m} P_n(x_i) y_i + \sum_{i=1}^{m} [P_n(x_i)]^2 \\ &= \sum_{i=1}^{m} y_i^2 - 2 \sum_{i=1}^{m} \left(\sum_{j=0}^{n} a_j x_i^j \right) y_i + \sum_{i=1}^{m} \left(\sum_{j=0}^{n} a_j x_i^j \right)^2 \\ &= \sum_{i=1}^{m} y_i^2 - 2 \sum_{j=0}^{n} a_j \left(\sum_{i=1}^{m} y_i x_i^j \right) + \sum_{j=0}^{n} \sum_{k=0}^{n} a_j a_k \left(\sum_{i=1}^{m} x_i^{j+k} \right) \end{split}$$

Minimización: $\partial E/\partial a_j = 0, j = 0, 1, \dots n$.

$$0 = \frac{\partial E}{\partial a_j} = -2\sum_{i=1}^m y_i x_i^j + 2\sum_{k=0}^n a_k \sum_{i=1}^m x_i^{j+k}$$

(n+1) ecuaciones normales:

$$\sum_{k=0}^{n} a_k \sum_{i=1}^{m} x_i^{j+k} = \sum_{i=1}^{m} y_i x_i^j, \ j = 0, 1, \dots n$$

$$a_0 \sum_{i=1}^m x_i^0 + a_1 \sum_{i=1}^m x_i^1 + a_2 \sum_{i=1}^m x_i^2 + \dots + a_n \sum_{i=1}^m x_i^n = \sum_{i=1}^m y_i x_i^0$$

$$a_0 \sum_{i=1}^m x_i^1 + a_1 \sum_{i=1}^m x_i^2 + a_2 \sum_{i=1}^m x_i^3 + \dots + a_n \sum_{i=1}^m x_i^{n+1} = \sum_{i=1}^m y_i x_i^1$$

$$\vdots$$

$$a_0 \sum_{i=1}^{m} x_i^n + a_1 \sum_{i=1}^{m} x_i^{n+1} + a_2 \sum_{i=1}^{m} x_i^{n+2} + \dots + a_n \sum_{i=1}^{m} x_i^{2n} = \sum_{i=1}^{m} y_i x_i^n$$

Solución única: $x_i \neq x_j \quad \forall i \neq j$.

i	x_i	y_i
1	0	1.0000
2	0.25	1.2840
3	0.50	1.6487
4	0.75	2.1170
5	1.00	2.7183

Ejemplo:

i	x_i	y_i
1	0	1.0000
2	0.25	1.2840
3	0.50	1.6487
4	0.75	2.1170
5	1.00	2.7183

$$n=2, m=5$$

$$5a_0 + 2.5a_1 + 1.875a_2 = 8.7680$$
$$2.5a_0 + 1.875a_1 + 1.5625a_2 = 5.4514$$
$$1.875a_0 + 1.5625a_1 + 1.3828a_2 = 4 - 4015$$

i	x_i	y_i
1	0	1.0000
2	0.25	1.2840
3	0.50	1.6487
4	0.75	2.1170
5	1.00	2.7183

$$n=2, m=5$$

$$5a_0 + 2.5a_1 + 1.875a_2 = 8.7680$$
$$2.5a_0 + 1.875a_1 + 1.5625a_2 = 5.4514$$
$$1.875a_0 + 1.5625a_1 + 1.3828a_2 = 4 - 4015$$

Solución:

$$a_0 = 1.005, \ a_1 = 0.8642, \ a_2 = 0.8437$$

$$P_2(x) = 1.005 + 0.8642x + 0.8437x^2$$

Error total:

$$E = \sum_{i=1}^{5} [y_i - P_2(x_i)]^2 = 2.74 \times 10^{-4}$$

i	x_i	y_i
1	0	1.0000
2	0.25	1.2840
3	0.50	1.6487
4	0.75	2.1170
5	1.00	2.7183

$$n=2, m=5$$

$$5a_0 + 2.5a_1 + 1.875a_2 = 8.7680$$
$$2.5a_0 + 1.875a_1 + 1.5625a_2 = 5.4514$$
$$1.875a_0 + 1.5625a_1 + 1.3828a_2 = 4 - 4015$$

Solución:

$$a_0 = 1.005, \ a_1 = 0.8642, \ a_2 = 0.8437$$

$$P_2(x) = 1.005 + 0.8642x + 0.8437x^2$$

Error total:

$$E = \sum_{i=1}^{5} [y_i - P_2(x_i)]^2 = 2.74 \times 10^{-4}$$

Relación exponencial:

$$y = b e^{ax}$$

Minimizar:

$$E = \sum_{i=1}^{m} (y_i - be^{ax_i})^2$$

Ecuaciones normales:

$$0 = \frac{\partial E}{\partial b} = 2\sum_{i=1}^{m} (y_i - be^{ax_i})(-e^{ax_i})$$

$$0 = \frac{\partial E}{\partial a} = 2\sum_{i=1}^{m} (y_i - be^{ax_i})(-bx_i e^{ax_i})$$

Alternativa:

$$\ln y = \ln b + ax$$

Relación potencial:

$$y = b x^a$$

Minimizar:

$$E = \sum_{i=1}^{m} (y_i - bx_i^a)^2$$

Ecuaciones normales:

$$0 = \frac{\partial E}{\partial b} = 2\sum_{i=1}^{m} (y_i - bx_i^a)(-x_i^a)$$

$$0 = \frac{\partial E}{\partial a} = 2\sum_{i=1}^{m} (y_i - bx_i^a)[-b\ln(x_i)x_i^a]$$

Alternativa:

$$ln y = ln b + a ln x$$

i	x_i	y_i	$\ln y_i$	x_i^2	$x_i \ln y_i$
1	1.00	5.10	1.63	1.00	1.63
2	1.25	5.79	1.76	1.56	2.20
3	1.50	6.53	1.88	2.25	2.81
4	1.75	7.45	2.01	3.06	3.51
5	2.00	8.46	2.14	4.00	4.27
	7.50		9.41	11.88	14.42

i	x_i	y_i	$\ln y_i$	x_i^2	$x_i \ln y_i$
1	1.00	5.10	1.63	1.00	1.63
2	1.25	5.79	1.76	1.56	2.20
3	1.50	6.53	1.88	2.25	2.81
4	1.75	7.45	2.01	3.06	3.51
5	2.00	8.46	2.14	4.00	4.27
	7.50		9.41	11.88	14.42

$$y = be^{ax} \Rightarrow \ln y = \ln b + ax$$

$$a = \frac{5(14.42) - (7.5)(9.41)}{5(11.88) - (7.5)^2} = 0.5057$$

$$\ln b = \frac{(11.88)(9.41) - (14.42)(7.5)}{5(11.88) - (7.5)^2} = 1.122$$

$$\ln b = 1.122 \rightarrow b = e^{1.122} = 3.071$$

$$y = 3.071 e^{0.5056x}$$

i	x_i	y_i	$\ln y_i$	x_i^2	$x_i \ln y_i$
1	1.00	5.10	1.63	1.00	1.63
2	1.25	5.79	1.76	1.56	2.20
3	1.50	6.53	1.88	2.25	2.81
4	1.75	7.45	2.01	3.06	3.51
5	2.00	8.46	2.14	4.00	4.27
	7.50		9.41	11.88	14.42

$$y = be^{ax} \Rightarrow \ln y = \ln b + ax$$

$$a = \frac{5(14.42) - (7.5)(9.41)}{5(11.88) - (7.5)^2} = 0.5057$$

$$\ln b = \frac{(11.88)(9.41) - (14.42)(7.5)}{5(11.88) - (7.5)^2} = 1.122$$

$$\ln b = 1.122 \rightarrow b = e^{1.122} = 3.071$$

$$y = 3.071 e^{0.5056x}$$