12/25/2020 Задачи - Codeforces

Дерево отрезков, дерево Фенвика, Sparse table

А. К-ый ноль

1 секунда, 512 мегабайт

Реализуйте эффективную структуру данных, позволяющую изменять элементы массива и вычислять индекс k-го слева нуля на данном отрезке в массиве.

Входные данные

В первой строке вводится одно натуральное число N ($1 \le N \le 200\,000$) — количество чисел в массиве. Во второй строке вводятся N чисел от 0 до $100\,000$ — элементы массива. В третьей строке вводится одно натуральное число M ($1 \le M \le 200\,000$) — количество запросов. Каждая из следующих M строк представляет собой описание запроса. Сначала вводится одна буква, кодирующая вид запроса (s — вычислить индекс k-го нуля, u — обновить значение элемента). Следом за s вводится три числа — левый и правый концы отрезка и число k ($1 \le k \le N$). Следом за u вводятся два числа — номер элемента и его новое значение.

Выходные данные

Для каждого запроса s выведите результат. Все числа выводите в одну строку через пробел. Если нужного числа нулей на запрашиваемом отрезке нет, выводите -1 для данного запроса.

Условие недоступно на русском языке

С. Противник слаб

5 секунд, 256 мегабайт

Римляне снова наступают. На этот раз их гораздо больше чем персов, но Шапур готов победить их. Он говорит: «Лев никогда не испугается сотни овец».

Не смотря на это, Шапур должен найти слабость римской армии чтобы победить ее. Как вы помните, Шапур — математик, поэтому он определяет насколько слаба армии как число — степень слабости.

Шапур считает, что степень слабости армии равна количеству таких троек i,j,k, что i < j < k и $a_i > a_j > a_k$, где a_x — сила человека, стоящего в строю на месте с номером x.

Помогите Шапуру узнать, насколько слаба армия римлян.

Входные данные

В первой строке записано одно целое число n ($3 \le n \le 10^6$) — количество солдат в римской армии. Следующая строка содержит n целых чисел $a_i (1 \le i \le n, 1 \le a_i \le 10^9)$ — силы людей в римской армии.

Выходные данные

Выведите одно число — степень слабости римской армии.

```
входные данные

3
3 2 1

выходные данные

1

входные данные

3
2 3 1

выходные данные

0
```

```
входные данные
4
10 8 3 1
```

```
выходные данные

входные данные

4

1 5 4 3

выходные данные
```

D. Поиск максимума

3 секунды, 256 мегабайт

Реализуйте структуру данных для эффективного вычисления номера максимального из нескольких подряд идущих элементов массива.

Входные данные

В первой строке вводится одно натуральное число N ($1 \leqslant N \leqslant 100\,000$) — количество чисел в массиве.

Во второй строке вводятся N чисел от 1 до $100\,000$ — элементы массива.

В третьей строке вводится одно натуральное число K ($1 \leqslant K \leqslant 3\,000\,000$) — количество запросов на вычисление максимума.

В следующих K строках вводится по два числа — номера левого и правого элементов отрезка массива (считается, что элементы массива нумеруются с единицы).

Выходные данные

Для каждого запроса выведите индекс максимального элемента на указанном отрезке массива. Если максимальных элементов несколько, выведите любой их них.

Числа выводите в одну строку через пробел.

```
Входные данные

5
2 2 2 1 5
2
2 3
2 5

Выходные данные

3
5
```

Е. Вика и отрезки

2 секунды, 256 мегабайт

У Вики есть бесконечный лист клетчатой бумаги. Изначально каждая клетка белого цвета. Она ввела на этом листе двумерную систему координат и нарисовала n чёрных горизонтальных и вертикальных отрезков, параллельных осям координат и шириной в одну клетку. Таким образом, каждый отрезок является множеством соседних клеток, расположенных в одной строке или в одном столбце.

Перед вами стоит задача посчитать число закрашенных клеток. Если клетка была покрашена более одного раза, в ответе она должна быть посчитана ровно один раз.

Входные данные

В первой строке входных данных следует целое положительное число n ($1 \le n \le 100\,000$) – количество отрезков, нарисованных Викой.

В следующих n строках заданы по четыре целых числа x1, y1, x2, y2 ($-10^9 \le x1$, y1, x2, $y2 \le 10^9$) – координаты концов отрезков, нарисованных Викой. Гарантируется, что все отрезки параллельны осям координат. Отрезки могут пересекаться, накладываться друг на друга и даже полностью совпадать.

Выходные данные

Выведите количество закрашенных Викой клеток. Если клетка была покрашена более одного раза, то в ответе она должна быть посчитана ровно один раз.

```
Входные данные

3
0 1 2 1
1 4 1 2
0 3 2 3

Выходные данные

8
```

```
Входные данные

4
-2 -1 2 -1
2 1 -2 1
-1 -2 -1 2
1 2 1 -2
Выходные данные

16
```

F. Взвешивание камней

1 секунда, 256 мегабайт

Джек нашел N камней и упорядочил их в порядке возрастания их массы. Массы всех камней различны. Самый легкий камень получил номер 1, следующий – 2 и так далее, самый тяжелый получил номер N.

У Джека есть чашечные весы и он решил положить все камни на них в каком-то порядке. Известен порядок, в котором он будет класть камни, и какой камень на какую чашу попадет.

Ваша задача – определить состояние весов после добавления каждого камня. Точные массы камней не известны – даются только их номера.

Входные данные

Первая строка содержит целое число N ($1 \le N \le 100\,000$).

Каждая из следующих N строк содержит по два целых числа: R ($1 \le R \le N$) и S ($1 \le S \le 2$). R – номер камня, который будет положен на чашу S. Все R будут различны.

Выходные данные

Выведите N строк – по одной для каждого камня. Если после добавления соответствующего камня чаша 1 тяжелее, выведите «<». Если сторона 2 тяжелее, выведите «>». Если невозможно определить, в каком состоянии будут весы, выведите «?».

входные данные		
5		
1 2		
3 1		
2 1		
4 2		
5 1		
выходные данные		
<		
>		
>		
?		
>		

Codeforces (c) Copyright 2010-2020 Михаил Мирзаянов Соревнования по программированию 2.0