Univerzita Karlova v Praze Pedagogická fakulta

SEMINÁRNÍ PRÁCE Z ALGEBRY ELEMENTY LINEÁRNÍ ALGEBRY

1999/2000 CIFRIK

Základní pojmy

Binární relace R

Binární relace R mezi množinami A,B je libovolná podmnožina R kartézského součinu množin A,B. Pro dva prvky $a \in A, b \in B$ takové, že $(a,b) \in R$, píšeme též aRb a čteme "(prvek) a je v relaci R s (prvkem) b".

Binární relace je:

- reflexivní, jestliže platí $\forall x \in M : xRx$
- ireflefivní, jestliže platí $\forall x \in M : non xRx$
- symetrická, jestliže platí $\forall x, y \in M : (xRy \Rightarrow yRx)$
- antisymetrická, jestliže platí $\forall x, y \in M : (xRy \land yRx) \Rightarrow x = y$
- tranzitivní, jestliže platí $\forall x, y, z \in M : (xRy \land yRz) \Rightarrow xRz$
- konektivní, jestliže platí $\forall x, y \in M : (xRy \lor x = y \lor yRx)$

Binární relace U na množině M se nazývá

- (neostré) uspořádání na množině M, je-li reflexivní, antisymetrická a tranzitivní
- \bullet ostré uspořádání na množině M, je-li ireflexivní, antisymetrická a tranzitivní
- ullet (ostré či neostré) lineární uspořádání na množině M, jestliže je (ostrým či neostrým) uspořádáním na M a je navíc konektivní.

Příklad 1.

Je dána množina $A = \{1,2,3,4,5,6,7,8\}.$

- a) Určeme výčtem prvků binární relaci $R = ([x, y] \in A^2; x / y \land x < y \land x > 1)$
- b) Určeme 1. a 2. obor binární relace R.
- c) Určeme výčtem prvků relaci R^{-1} doplňkovou k R.

ad a)
$$R = \{ [2,4], [2,6], [2,8], [3,6], [4,8] \}$$

ad b) první obor $O_1(R) = \{2,3,4\}$, druhý obor $O_2(R) = \{4,6,8\}$

ad c)
$$\forall [x, y] \in A^2; [x, y] \in R^{-1} \Leftrightarrow [y, x] \in R$$

To znamená, že relaci R^{-1} vytvoříme z relace R záměnou pořadí složek ve všech uspořádaných dvojicích relace R. Tedy

$$R^{-1} = \{ [4,2], [6,2], [8,2], [6,3], [8,4] \}$$

Příklad 2.

Nechť M je množina přímek v rovině. Definujme relaci R takto: pRq znamená, že přímka p nemá společný bod s přímkou q . Které vlastnosti má relace R?

Relace R není reflexivní, protože přímka p má sama se sebou dokonce nekonečně mnoho společných bodů. Relace R je symetrická, protože zřejmě p má společný bod s q, právě když q má společný bod s p. Relace není tranzitivní. Kdyby byla tranzitivní, znamenalo by to, že nemá-li p společný bod s q a současně nemá q společný bod s r, pak p nemá společný bod s r. Zvolme speciálně $p \neq q$, pRq, tj. $p \neq q$, $p \parallel q$, a r = p. Pak zřejmě pRq, qRp, ale p není v relaci R sama se sebou.

Zobrazení

Def.I. Zobrazení (funkce) f množiny A do množiny B (označení $f:A \rightarrow B$) je jakákoli relace mezi množinami A,B taková, že pro každé $a \in A$ existuje právě jeden prvek $b \in B$ takový, že $(a,b) \in f$. Prvek b nazýváme hodnotou zobrazení f v bodě a (příp. obrazem prvku a při zobrazení f) a píšeme stručně b = f(a). Prvek a nazýváme vzorem prvku b při zobrazení f.

Definiční obor D(f) zobrazení f je množina $D(f) = \{x \in A; \exists b \in B : b = f(x)\}$. Obor hodnot H(f) zobrazení f je množina $H(f) = \{y \in B; \exists x \in A : y = f(x)\}$

Def.II. Zobrazením z množiny A do množiny B rozumíme takovou podmnožinu f množiny $A \times B$, pro kterou platí :

$$(\forall x \in A)(\forall y_1, y_2 \in A)\{[(x, y_1) \in f \land (x, y_2) \in f] \Rightarrow y_1 = y_2\}.$$

Zobrazení $f: A \rightarrow B$ se nazývá

- prosté (**injekce**), jestliže pro libovolná $x_1, x_2 \in D(f)$ platí: Je-li $x_1 \neq x_2$, je $f(x_1) \neq f(x_2)$ (tj. každým dvěma různým vzorům přísluší dva různé obrazy);
- na (**surjekce**), je-li H(f) = B;
- vzájemně jednoznačné (**bijekce**), jestliže je zároveň prosté a na (tj. D(f) = A, H(f) = B a f je prosté).

Binární operace

(Binární) operací \odot na množině M rozumíme každé <u>zobrazení</u> (celého) kartézského součinu $M \times M$ do M. Není-li definičním oborem celá množina $M \times M$ hovoříme o parciální nebo též částečné operaci.

Říkáme, že operace \odot na množině M

- je komutativní, jestliže $(\forall a, b \in M)$ $a \odot b = b \odot a$
- je asociativní, jestliže $(\forall a, b, c \in M)$ $(a \odot b) \odot c = a \odot (b \odot c)$,
- má neutrální prvek n, jestliže $(\exists n \in M)(\forall c \in M)$ $n \odot c = c \odot n = c$
- má agresivní prvek a, jestliže $(\exists a \in M)(\forall c \in M)$ a $\odot c = c \odot a = a$
- má inverzní prvek c^{-1} ke každému prvku c, jestliže existuje neutrální prvek n a platí $(\forall c \in M)(\exists c^{-1} \in M)$ $c \odot c^{-1} = c^{-1} \odot c = n$.

2

Grupa

Grupou rozumíme uspořádanou dvojici (G, \odot) , kde G je neprázdná množina, tzv.nosič grupy G, a \odot je binární operace na G, která je asociativní, má neutrální prvek a ke každému prvku i prvek inverzní. Je-li navíc operace \odot komutativní, hovoříme o komutativní (neboli Abelově) grupě.

Číselné těleso

Číselným tělesem rozumíme uspořádanou trojici $(T,+,\cdot)$, kde T je podmnožina množiny komplexních čísel C taková, že $0 \in T$, $1 \in T$ a platí:

 $(\forall x, y \in T)(x + y \in T \land x.y \in T)$ (je uzavřená na sčítání a násobení)

 $(\forall x \in T)(-1).x \in T$ (je uzavřená na opačné prvky)

 $(\forall x \in T)(x \neq 0 \Rightarrow \frac{1}{x} \in T)$ (je uzavřená na převrácené hodnoty nenulových prvků)

Obecně číselným tělesem rozumíme každou uspořádanou trojici $(T,*,\circ)$, kde T je aspoň dvouprvková množina; $*,\circ$ jsou operace na T a platí $(x,y,z\in T)$:

$$x * y = y * x \qquad x \circ y = y \circ x$$

$$(x * y) * z = x * (y * z) \qquad (x \circ y) \circ z = x \circ (y \circ z)$$

$$(\exists 0 \in T)(\forall x) \quad 0 * x = x \qquad (\exists 1 \in T)(\forall x) \quad 1 \circ x = x$$

$$(\forall x)(\exists -x \in T) \quad x * (-x) = 0 \qquad (\forall x \neq 0)(\exists x^{-1} \in T) \quad x \circ x^{-1} = 1$$

$$(x * y) \circ z = (x \circ z) * (y \circ z) \quad \text{(distributivita operace } \circ \text{ vzhledem k operaci *)}$$

Aritmetický vektor

Nechť T je <u>těleso</u>, n přirozené číslo. Uspořádanou n-tici $\underline{x} = \{x_1, x_2, ..., x_n\}$, kde $x_i \in T$, i = 1, 2, ..., n, nazveme n-rozměrným aritmetickým vektorem nad tělesem T. Prvek x_i nazýváme i-tým členem aritmetického vektoru \underline{x} . Množinu všech n-rozměrných aritmetických vektorů nad T budeme značit $V_n(T)$.

Rovnost dvou aritmetických vektorů

Dva vektory \underline{x} , \underline{y} se sobě rovnají, právě když $x_i = y_i$, i = 1, 2, ..., n.

Součet dvou aritmetických vektorů

$$\underline{x} + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

α-násobek

$$\alpha \underline{x} = \{\alpha x_1, \alpha x_2, ..., \alpha x_n\}$$

Nulový aritmetický vektor

o = (0,0,...,0), tj. všechny členy jsou rovny nulovému prvku tělesa T.

Lineární kombinace

Nechť $a_1,a_2,...,a_k$ jsou vektory z $V_n(T)$, $\alpha_1,\alpha_2,...,\alpha_k$ prvky z T. Aritmetický vektor

$$\underline{x} = \alpha_1 \underline{a}_1 + \alpha_2 \underline{a}_2 + \dots + \alpha_k \underline{a}_k$$

nazýváme lineární kombinací <u>aritmetických vektorů</u> $a_1,a_2,...,a_k$ s koeficienty $\alpha_1,\alpha_2,...,\alpha_k$.

triviální lineární kombinací - nazýváme lineární kombinaci, která má všechny koeficienty rovné nulovému prvku 0 z tělesa *T*

netriviální lineární kombi. – jestliže je aspoň jeden koeficient různý od 0 **nulová lineární kombinace** – jestliže pro prvky $\alpha_1, \alpha_2, ..., \alpha_k \in T$ a vektory

$$a_1, a_2, ..., a_k \in V(T)$$
 platí: $\alpha_1 \underline{a}_1 + \alpha_2 \underline{a}_2 + ... + \alpha_k \underline{a}_k = \underline{o}$.

Lineární závislost a nezávislost vektorů

závislé – existuje nulová netriviální lineární kombinace nezávislé – existuje pouze triviální lineární kombinace

Příklad 3.

Rozhodněme, zda následující vektory z aritmetického vektorového prostoru R³ nad R jsou lineárně závislé nebo nezávislé.

$$u = (3,2,7), \quad v = (1,1,1), \quad w = (2,0,3)$$

Rozhodnout, zda vektory $\underline{u}, \underline{v}, \underline{w}$ jsou lineárně závislé resp. nezávislé, znamená rozhodnout, zda rovnice $c_1\underline{u}+c_2\underline{v}+c_3\underline{w}=\underline{0}$ má nenulové resp. pouze nulové řešení. Tuto rovnici lze přepsat na soustavu

$$3c_1 + c_2 + 2c_3 = 0$$
$$2c_1 + c_2 = 0$$
$$7c_1 + c_2 + 3c_3 = 0$$

Tato soustava má pouze triviální řešení $c_1 = c_2 = c_3 = 0$, takže vektory $\underline{u}, \underline{v}, \underline{w}$ jsou LN. Pozn. O nezávislosti vektorů $\underline{u}, \underline{v}, \underline{w}$ lze rozhodnout též na základě výpočtu determinantu matice soustavy. (Soustava rovnic má pouze triviální řešení právě tehdy, když determinant matice soustavy není 0).

$$\begin{vmatrix} 3 & 1 & 2 \\ 2 & 1 & 0 \\ 7 & 1 & 3 \end{vmatrix} = 9 + 4 + 0 - 14 - 0 - 6 = -7 \neq 0 \implies lineárně nezávislé$$

Příklad 4.

Určeme reálné číslo b tak, aby vektory $\underline{u}, \underline{v}, \underline{w}$ z aritmetického vektorového prostoru R^3 nad R byly lineárně závislé.

$$\underline{u} = (1,2,3), \quad \underline{v} = (3,1,4), \quad \underline{w} = (b,4,11)$$

Aby vektory $\underline{u},\underline{v},\underline{w}$ byly lineárně závislé, musí existovat čísla $c_1,c_2,c_3\in R$, z nichž aspoň jedno je nenulové, a platí $c_1\underline{u}+c_2\underline{v}+c_3\underline{w}=0$. Zkoumáme tedy, pro které hodnoty parametru b má soustava

$$c_1 + 3c_2 + b \cdot c_3 = 0$$
$$2c_1 + c_2 + 4c_3 = 0$$
$$3c_1 + 4c_2 + 11c_3 = 0$$

nulové řešení.

Odečtením 1. a 2. rovnice od 3. rovnice dostaneme

$$(7-b)c_3=0.$$

Snadno zjistíme, že pro $b \ne 7$ je $c_3 = c_1 = c_2 = 0$ a pro b = 7 má soustava nekonečně mnoho řešení, tedy pro b = 7 jsou vektory u, v, w lineárně závislé.

Příklad 5.

Určeme všechny hodnoty $a \in R$, pro které je vektor \underline{v} lineární kombinací vektorů $\underline{u}_1, \underline{u}_2, \underline{u}_3$.

$$\underline{u}_1 = (3,2,5), \quad \underline{u}_2 = (2,4,7), \quad \underline{u}_3 = (5,6,a), \quad \underline{v} = (1,3,5)$$

Vektor \underline{v} je lineární kombinací vektorů $\underline{u}_1, \underline{u}_2, \underline{u}_3$ právě tehdy, když existují $c_1, c_2, c_3 \in R$ taková, že $\underline{v} = c_1 \underline{u}_1 + c_2 \underline{u}_2 + c_3 \underline{u}_3$, tzn. když soustava rovnic

$$3c_1 + 2c_2 + 5c_3 = 1$$

 $2c_1 + 4c_2 + 6c_3 = 3$
 $5c_1 + 7c_2 + a \cdot c_3 = 5$

má aspoň jedno řešení.

Podle Frobeinovy věty je tato soustava řešitelná právě tehdy, když je hodnost matice soustavy

$$\underline{A} = \begin{pmatrix} 3 & 2 & 5 \\ 2 & 4 & 6 \\ 5 & 7 & a \end{pmatrix}$$

rovna hodnosti rozšířené matice soustavy

$$\underline{A}' = \left(\begin{array}{ccc|c} 3 & 2 & 5 & 1 \\ 2 & 4 & 6 & 2 \\ 5 & 7 & a & 5 \end{array}\right).$$

Matici A' upravíme na trojúhelníkový tvar:

$$\underline{A}' = \begin{pmatrix} 3 & 2 & 5 & | & 1 \\ 2 & 4 & 6 & | & 2 \\ 5 & 7 & a & | & 5 \end{pmatrix} \approx \begin{pmatrix} 3 & 2 & 5 & | & 1 \\ 2 & 4 & 6 & | & 2 \\ 0 & 1 & a - 11 & | & 1 \end{pmatrix} \approx \begin{pmatrix} 3 & 2 & 5 & | & 1 \\ 0 & 8 & 8 & | & 7 \\ 0 & 1 & a - 11 & | & 1 \end{pmatrix} \approx \begin{pmatrix} 3 & 2 & 5 & | & 1 \\ 0 & 8 & 8 & | & 7 \\ 0 & 0 & a - 12 & | & \frac{1}{8} \end{pmatrix}$$

Vidíme, že pro $a \ne 12$ je $h(\underline{A}) = h(\underline{A}') = 3$, tedy soustava je řešitelná (protože hodnost matice soustavy je rovna počtu neznámých, je toto řešení právě jedno). To znamená, že vektor \underline{v} je lineární kombinací vektorů $\underline{u}_1, \underline{u}_2, \underline{u}_3$ pro libovolné reálné $a \ne 12$.

Pamatujme:

Neexistuje ani jedna oblast matematiky, a to ať je jakkoli abstraktní, která by se jednou nedala aplikovat na jevy reálného světa. N.I.Lobačevskij

Matice

Nechť T je <u>těleso</u>. Obdélníkovou tabulku prvků z T sestavených do m řádků a n sloupců nazýváme matici typu (m,n) nad tělesem T. Je-li m=n, hovoříme o čtvercové matici n-tého řádu.

Matice \underline{A} přiřazuje každé dvojici (i,k), i=1,2,...,m, k=1,2,...,n prvek z T, který označujeme a_{ik} a nazýváme prvkem matice \underline{A} v i-tém řádku a k-tém sloupci. Matici \underline{A} zapisujeme

$$\underline{A} = \begin{pmatrix} a_{11}, a_{12}, \dots, a_{1n} \\ a_{21}, a_{22}, \dots, a_{2n} \\ \dots \\ a_{m1}, a_{m2}, \dots, a_{mn} \end{pmatrix}$$

nebo zkráceně

$$\underline{\underline{A}} = (a_{ik})_{\substack{i=1,\ldots,m\\k=1}}^{i=1,\ldots,m}$$
.

pokud je z textu známo m,n, píšeme pouze $\underline{A}=(a_{ik})$. Aritmetický vektor $(a_{i1},a_{i2},...,a_{in})$ se nazývá i-tý řádek, aritmetický vektor $(a_{1k},a_{2k},...,a_{mk})$ k-tý sloupec matice \underline{A} .

Diagonála a diagonální matice

Nechť $\underline{A} = (a_{ik})$ je matice typu (m,n). Aritmetický vektor $(a_{11}, a_{22}, ..., a_{rr})$, kde $r = \min(m,n)$, se nazývá (hlavní) diagonála matice \underline{A} . Prvky a_{ii} , i = 1,2,...,r, se nazývají diagonální prvky. Matice $\underline{A} = (a_{ik})$, která má mimo hlavní diagonálu samé 0, tj. $a_{ik} = 0$ pro $i \neq k$, se nazývá diagonální.

Jednotková matice

Jednotkovou matici \underline{A} n-tého řádu nazýváme diagonální matici $\underline{E} = (e_{ik})$ n-tého řádu, pro níž platí $e_{ii} = 1$ pro všechna i = 1, 2, ..., n. (Jednotková matice stupně n je čtvercová matice $\underline{E} = (e_{ik})$ stupně n mající v hlavní diagonále všude prvek 1 a všude jinde prvek 0.)

Transponovaná matice

Transponovaná matice k matici $\underline{A} = (a_{ik})$ typu (m,n) je matice $\underline{B}^T = (b_{ik})$ typu (n,m), pro kterou platí $a_{ik} = b_{ik}$, i = 1,2,...,m, k = 1,2,...,n. (Transponovanou matici \underline{A}^T dostaneme z matice \underline{A} tak, že vzájemně vyměníme řádky a sloupce v matici \underline{A}).

Příklad 6.

Určeme transponované matice k maticím

$$\underline{A} = \begin{pmatrix} 2 & 4 & -1 \\ 5 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix}, \quad \underline{B} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \\ -3 & 6 & -3 \end{pmatrix}$$

$$\underline{A}^{T} = \begin{pmatrix} 2 & 5 & 4 \\ 4 & -2 & 0 \\ -1 & -3 & 1 \end{pmatrix}, \quad \underline{B}^{T} = \begin{pmatrix} 1 & 0 & -3 \\ 2 & -2 & 6 \\ 3 & 1 & -3 \end{pmatrix}$$

Matice symetrická a antisymetrická

Matice \underline{A} se nazývá symetrická (antisymetrická), jestliže platí

$$\underline{A} = \underline{A}^T \left(\underline{A} = -\underline{A}^T \right).$$

Trojúhelníková matice

zobecněná : právě když matice $\underline{A} = (a_{ik})$ typu (m, n)

^a má pouze nenulové řádky,

 $\frac{b}{a_{ik}}$ jsou-li a_{ik} , a_{rs} vedoucí prvky takové, že i < r, pak k < s.

redukovaná : právě když je u zobecněné trojúhelníková matice $\underline{A} = (a_{ik})$ typu (m, n)

^a každý vedoucí prvek je roven 1,

b nad každým vedoucím prvkem jsou ve sloupci pouze 0.

Čtvercové matice: regulární × singulární

Čtvercovou matici \underline{A} n-tého řádu nazveme **regulární** jestliže $hod \underline{A} = n$,

čtvercovou matici A n-tého řádu nazveme **singulární** jestliže hod A < n.

(Regulární maticí nazýváme čtvercovou matici n-tého řádu, jejíž hodnost je rovna $\it n$.

V opačném případě mluvíme o singulární matici.)

Matice \underline{A} je regulární je-li determinant det $\underline{A} \neq 0$. K regulární matici existuje inverzní matice.

Řádkový prostor

Řádkovým prostorem matice \underline{A} rozumíme podprostor vektorového prostoru $V_n(T)$ generovaný všemi řádky matice \underline{A} .

Hodnost matice

Hodností matice $\underline{A} = (a_{ik})$ typu (n, m) nazýváme dimenzi jejího řádkového prostoru.

Elementární úpravy

Elementární řádkové (sloupcové) úpravy:

^a změna pořadí řádků (resp.sloupců) matice <u>A</u>

 $\frac{b}{a}$ nahrazení řádku (resp. sloupce) matice \underline{A} jeho α-násobkem, kde $\alpha \in T$, $\alpha \neq 0$.

 $\underline{^c}$ nahrazení řádku (resp. sloupce) matice \underline{A} jeho součtem s α-násobkem, $\alpha \in T$, jiného řádku matice A.

^d vynechání řádku (resp.sloupce), který je lineární kombinací ostatních řádků (resp.sloupců)

Dvě matice jsou **ekvivalentní**, právě když lze jednu z druhé získat konečným počtem elementárních úprav řádků.

Příklad 7.

Určeme hodnost matice

$$\underline{A} = \begin{pmatrix} 3 & -2 & 1 & 0 \\ 4 & 0 & 2 & -3 \\ 11 & -4 & 13 & -1 \\ 2 & -1 & 5 & 1 \end{pmatrix}.$$

Pomocí elementárních řádkových a sloupcových úprav převedeme matici \underline{A} na ekvivalentní zobecněnou trojúhelníkovou matici:

$$\begin{pmatrix} 3 & -2 & 1 & 0 \\ 4 & 0 & 2 & -3 \\ 11 & -4 & 13 & -1 \\ 2 & -1 & 5 & 1 \end{pmatrix} \approx \begin{pmatrix} -1 & 2 & 5 & 1 \\ -2 & 3 & 1 & 0 \\ 0 & 4 & 2 & -3 \\ -4 & 11 & 13 & -1 \end{pmatrix} \approx \begin{pmatrix} -1 & 2 & 5 & 1 \\ 0 & -1 & -9 & -2 \\ 0 & 4 & 2 & -3 \\ 0 & 5 & 11 & -1 \end{pmatrix} \approx$$

$$\approx \begin{pmatrix} -1 & 2 & 5 & 1\\ 0 & -1 & -9 & -2\\ 0 & 0 & -34 & -11\\ 0 & 0 & -34 & -11 \end{pmatrix} \approx \begin{pmatrix} -1 & 2 & 5 & 1\\ 0 & -1 & -9 & -2\\ 0 & 0 & -34 & -11 \end{pmatrix}$$

Hodnost matice \underline{A} je 3.

Rovnost matic

Matice $\underline{A} = (a_{ik})$ typu (m, n) a $\underline{B} = (b_{ik})$ typu (r, s) se sobě rovnají, právě když platí: m = r, n = s, $a_{ik} = b_{ik}$ pro všechna i = 1, 2, ..., m.

Součet matic

Nechť jsou dány matice $\underline{A} = (a_{ik})$, $\underline{B} = (b_{ik})$ téhož typu (m,n) nad týmž tělesem T. Součtem matic \underline{A} a \underline{B} nazýváme matici $\underline{C} = (c_{ik})$ typu (m,n) definovanou předpisem

$$c_{ik} = a_{ik} + b_{ik}$$
, $i = 1, 2, ..., m$, $k = 1, 2, ..., n$.

Píšeme $\underline{C} = \underline{A} + \underline{B}$.

Platí:

$$\frac{a}{\underline{A}} + \underline{B} = \underline{B} + \underline{A}$$

$$\frac{b}{\underline{A}} + (\underline{B} + \underline{C}) = (\underline{A} + \underline{B}) + \underline{C}$$

$$\frac{c}{\underline{A}} + \underline{0} = \underline{0} + \underline{A} = \underline{A}$$

$$\frac{d}{\underline{A}} + (\underline{B} + \underline{C}) = (\underline{A} + \underline{B}) + \underline{C}$$

 $\underline{e} - \underline{A} = (-a_{ik})$, kde $-a_{ik}$ je opačný prvek k a_{ik} v tělese T, $-\underline{A}$ je matice opačná k matici \underline{A} , tj. platí $-\underline{A} + \underline{A} = \underline{0}$.

(Z a,b,c,e plyne, že množina matic daného typu (m,n) nad tělesem T tvoří komutativní grupu.)

Příklad 8.

Sečtěme matice \underline{A} a \underline{B} .

$$\underline{A} = \begin{pmatrix} 2 & 4 & -1 \\ 5 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix}, \quad \underline{B} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \\ -3 & 6 & -3 \end{pmatrix}$$

$$\underline{A} + \underline{B} = \begin{pmatrix} 2+1 & 4+2 & -1+3 \\ 5+0 & -2-2 & -3+1 \\ 4-3 & 0+6 & 1-3 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 2 \\ 5 & -4 & -2 \\ 1 & 6 & -2 \end{pmatrix}$$

α-násobek matice

Nechť $\underline{A} = (a_{ik})$ je matice typu (m, n) nad tělesem T. Součinem prvků $\alpha \in T$ a matice \underline{A} nazýváme matici $\underline{C} = (c_{ik})$ typu (m, n) definovanou předpisem

$$c_{ik} = \alpha \cdot a_{ik}, i = 1, 2, ..., m, k = 1, 2, ..., n$$

Píšeme $\underline{C} = \alpha \cdot \underline{A}$.

Příklad 9.

Určeme matici D = -2A + 3B

$$\underline{A} = \begin{pmatrix} 2 & 4 & -1 \\ 5 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix}, \quad \underline{B} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \\ -3 & 6 & -3 \end{pmatrix}$$

$$\underline{D} = \begin{pmatrix} -2.2 & -2.4 & -2.(-1) \\ -2.5 & -2.(-2) & -2.(-3) \\ -2.4 & -2.0 & -2.1 \end{pmatrix} + \begin{pmatrix} 3.1 & 3.2 & 3.3 \\ 3.0 & 3.(-2) & 3.1 \\ 3.(-3) & 3.6 & 3.(-3) \end{pmatrix} = \begin{pmatrix} -4 & -8 & 2 \\ -10 & 4 & 6 \\ -8 & 0 & -2 \end{pmatrix} + \begin{pmatrix} 3 & 6 & 9 \\ 0 & -6 & 3 \\ -9 & 18 & -9 \end{pmatrix} = \begin{pmatrix} -1 & -2 & 11 \\ -10 & -2 & 9 \\ -17 & 18 & -11 \end{pmatrix}$$

Příklad 10.

Vypočítejme matici X z rovnice

$$\begin{pmatrix} 6 & -5 \\ 4 & -3 \end{pmatrix} \cdot \underline{X} = \begin{pmatrix} -1 & 3 \\ 7 & 2 \end{pmatrix}$$

Rovnice je ve tvaru $\underline{A} \cdot \underline{X} = \underline{B}$ a budeme ji řešit vynásobením obou stran rovnice inverzní maticí \underline{A}^{-1} zleva: $\underline{A}^{-1} \cdot \underline{A} \cdot \underline{X} = \underline{A}^{-1} \cdot \underline{B}$, takže $\underline{X} = \underline{A}^{-1} \cdot \underline{B}$. Určíme tedy matici \underline{A}^{-1} :

$$\begin{pmatrix} 6 & -5 & | & 1 & 0 \\ 4 & -3 & | & 0 & 1 \end{pmatrix} \approx \begin{pmatrix} 6 & -5 & | & 1 & 0 \\ 0 & \frac{1}{3} & | & -\frac{2}{3} & 1 \end{pmatrix} \approx \begin{pmatrix} 6 & 0 & | & -9 & 15 \\ 0 & \frac{1}{3} & | & -\frac{2}{3} & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & | & -\frac{3}{2} & \frac{5}{2} \\ 0 & 1 & | & -\frac{2}{3} & 3 \end{pmatrix}$$

$$\underline{A}^{-1} = \begin{pmatrix} -\frac{3}{2} & \frac{5}{2} \\ \frac{2}{3} & \frac{2}{3} \end{pmatrix}$$

$$\underline{X} = \underline{A}^{-1} \cdot \underline{B} = \begin{pmatrix} -\frac{3}{2} & \frac{5}{2} \\ -2 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 & 3 \\ 7 & 2 \end{pmatrix} = \begin{pmatrix} 19 & \frac{1}{2} \\ 23 & 0 \end{pmatrix}$$

Zkouška:

$$\underline{A} \cdot \underline{X} = \begin{pmatrix} 6 & -5 \\ 4 & -3 \end{pmatrix} \cdot \begin{pmatrix} 19 & \frac{1}{2} \\ 23 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 7 & 2 \end{pmatrix} = \underline{B}$$

Součin matic

Nechť je dána matice $\underline{A} = (a_{ik})$ typu (m,n) a matice $\underline{B} = (b_{ik})$ typu (n,p), obě nad týmž tělesem T. Součinem matic \underline{A} , \underline{B} (v tomto pořadí!) nazýváme matici $\underline{C} = (c_{ik})$ typu (m,p) definovanou předpisem

$$c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + ... + a_{in}b_{nk} = \sum_{j=1}^{n} a_{ij}b_{jk}, \quad i = 1, 2, ..., m, k = 1, 2, ..., p.$$

Píšeme $\underline{C} = \underline{A} \cdot \underline{B}$. (Podmínku pro typy matic při násobení si můžeme zapamatovat pomocí formálního vztahu (m,n)(n,p) = (m,p).) !!! Násobení matic není komutativní !!!

Příklad 11.

Určeme součin matic $C = \underline{A} \cdot \underline{B}$

$$\underline{A} = \begin{pmatrix} 2 & 4 & -1 \\ 5 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix}, \quad \underline{B} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 1 \\ -3 & 6 & -3 \end{pmatrix}$$

$$\underline{A} \cdot \underline{B} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, kde$$

$$a_{11} = 2.1 + 4.0 + (-1).(-3) = 5$$

$$a_{12} = 2.2 + 4.(-2) + (-1).6 = -10$$

$$a_{13} = 2.3 + 4.1 + (-1).(-3) = 13$$

$$a_{21} = 5.1 + (-2).0 + (-3).(-3) = 14$$

$$a_{22} = 5.2 + (-2).(-2) + (-3).6 = -4$$

$$a_{23} = 5.3 + (-2).1 + (-3).(-3) = 22$$

$$a_{31} = 4.1 + 0.0 + 1.(-3) = 1$$

$$a_{32} = 4.2 + 0.(-2) + 1.6 = 14$$

$$a_{33} = 4.3 + 0.1 + 1.(-3) = 9, tedy$$

$$\underline{A} \cdot \underline{B} = \begin{pmatrix} 5 & -10 & 13 \\ 14 & -4 & 22 \\ 1 & 14 & 9 \end{pmatrix}$$

Záměnné matice

Jsou matice $\underline{A}, \underline{B}$, pro které platí $\underline{AB} = \underline{BA}$.

Frobeinova věta

soustava rovnic je řešitelná právě tehdy, když <u>hodnost matice</u> soustavy $\underline{A} = \begin{pmatrix} * & * \\ * & * \end{pmatrix}$,

je rovna hodnosti matice rozšířené $\underline{A}_r = \begin{pmatrix} * & * & | * \\ * & * & | * \end{pmatrix}$.

Adjungované matice

Příklad 12.

Určeme adjungovanou matici $adj \underline{A}$ k matici \underline{A}

$$\underline{A} = \begin{pmatrix} 2 & 4 & -1 \\ 5 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix}$$

Adjungovanou matici $adj \underline{A}$ vypočítáme tak, že každý prvek matice \underline{A} nahradíme jeho algebraickým doplňkem a takto získanou matici transponujeme:

$$adj \, \underline{A} = \begin{pmatrix} \begin{vmatrix} -2 & -3 \\ 0 & 1 \end{vmatrix} & -\begin{vmatrix} 5 & -3 \\ 4 & 1 \end{vmatrix} & \begin{vmatrix} 5 & -2 \\ 4 & 0 \end{vmatrix} \\ -\begin{vmatrix} 4 & -1 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 2 & -1 \\ 4 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & 4 \\ 4 & 0 \end{vmatrix} \\ -\begin{vmatrix} 4 & -1 \\ -2 & -3 \end{vmatrix} & -\begin{vmatrix} 2 & -1 \\ 5 & -3 \end{vmatrix} & \begin{vmatrix} 2 & 4 \\ 5 & -2 \end{vmatrix} \end{pmatrix}^{T} = \begin{pmatrix} -2 & -17 & 8 \\ -4 & 6 & 16 \\ -14 & 1 & -24 \end{pmatrix}^{T} = \begin{pmatrix} -2 & -4 & -14 \\ -17 & 6 & 1 \\ 8 & 16 & -24 \end{pmatrix}$$

Inverzní matice

Buďte $\underline{A}, \underline{B}$ čtvercové regulární matice stupně n. Řekneme, že \underline{B} je inverzní matice k matici \underline{A} nebo že \underline{A} je inverzní maticí k matici \underline{B} , jestliže $\underline{A} \cdot \underline{B} = \underline{B} \cdot \underline{A} = \underline{E}$, kde \underline{E} je jednotková matice.

Příklad 13.

Určeme inverzní matici \underline{A}^{-1} k matici \underline{A} .

$$\underline{A} = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & -1 \\ -1 & 2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ -1 & 2 & 0 & | & 0 & 0 & 1 \end{pmatrix} \approx \begin{pmatrix} 2 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ 0 & 7 & 0 & | & 1 & 0 & 2 \end{pmatrix} \approx \begin{pmatrix} 2 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ 0 & 7 & 0 & | & 1 & -7 & 2 \end{pmatrix} \approx \begin{pmatrix} 14 & 0 & 0 & | & 4 & 0 & -6 \\ 0 & 7 & 0 & | & 1 & 0 & 2 \\ 0 & 0 & 7 & | & 1 & -7 & 2 \end{pmatrix} \approx \begin{pmatrix} 7 & 0 & 0 & | & 2 & 0 & -3 \\ 0 & 7 & 0 & | & 1 & 0 & 2 \\ 0 & 0 & 7 & | & 1 & -7 & 2 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 0 & | & 4 & 0 & -6 \\ 0 & 7 & 0 & | & 1 & 0 & 2 \\ 0 & 0 & 7 & | & 1 & -7 & 2 \end{pmatrix} \approx \begin{pmatrix} 7 & 0 & 0 & | & 2 & 0 & -3 \\ 0 & 7 & 0 & | & 1 & 0 & 2 \\ 0 & 0 & 7 & | & 1 & -7 & 2 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & 0 & | & 2 & 0 & -3 \\ 0 & 1 & 0 & | & 1 & 0 & 2 \\ 0 & 0 & 1 & | & 1 & -7 & 2 \end{pmatrix} \approx \underbrace{A^{-1} = \frac{1}{7} \cdot \begin{pmatrix} 2 & 0 & -3 \\ 1 & 0 & 2 \\ 1 & -7 & 2 \end{pmatrix}}_{==2}$$

Příklad 14.

Určeme inverzní matici \underline{A}^{-1} k matici \underline{A} .

$$\underline{A} = \begin{pmatrix} 2 & 4 & -1 \\ 5 & -2 & -3 \\ 4 & 0 & 1 \end{pmatrix}$$

Řešení 1 Zjistíme determinant dané matice a matici adjungovanou. Je-li determinant nenulový platí vztah

$$\underline{A}^{-1} = \frac{adj \ \underline{A}}{\det A}.$$

det <u>A</u> vypočteme snadno pomocí Sarrusova pravidla:

$$\det \underline{A} = \begin{vmatrix} 2 & 4 & -1 \\ 5 & -2 & -3 \\ 4 & 0 & 1 \end{vmatrix} = -4 + 0 - 48 - 8 - 0 - 20 = -80,$$

výpočet *adj <u>A</u>* je uveden v předchozím <u>příkladě</u> proto

$$\underline{A}^{-1} = -\frac{1}{80} \begin{pmatrix} -2 & -4 & -14 \\ -17 & 6 & 1 \\ 8 & 16 & -24 \end{pmatrix}.$$

Řešení 2 Pomocí jednotkové matice :

$$\begin{pmatrix}
2 & 4 & -1 & | & 1 & 0 & 0 \\
5 & -2 & -3 & | & 0 & 1 & 0 \\
4 & 0 & 1 & | & 0 & 0 & 1
\end{pmatrix}
\approx \begin{pmatrix}
2 & 4 & -1 & | & 1 & 0 & 0 \\
0 & -24 & -1 & | & -5 & 2 & 0 \\
0 & -8 & 3 & | & -2 & 0 & 1
\end{pmatrix}
\approx \begin{pmatrix}
2 & 4 & -1 & | & 1 & 0 & 0 \\
0 & -24 & -1 & | & -5 & 2 & 0 \\
0 & 0 & -10 & | & 1 & 2 & -3
\end{pmatrix}
\approx \begin{pmatrix}
-20 & -40 & 0 & | & -9 & 2 & -3 \\
0 & 240 & 0 & | & 51 & -18 & -3 \\
0 & 0 & -10 & | & 1 & 2 & -3
\end{pmatrix}
\approx \begin{pmatrix}
-120 & 0 & 0 & | & -3 & -6 & -21 \\
0 & 240 & 0 & | & 51 & -18 & -3 \\
0 & 0 & -10 & | & 1 & 2 & -3
\end{pmatrix}
\approx \begin{pmatrix}
1 & 0 & 0 & | & \frac{3}{120} & \frac{6}{120} & \frac{21}{120} \\
0 & 1 & 0 & | & -\frac{51}{240} & \frac{18}{240} & \frac{3}{240} \\
-\frac{1}{10} & -\frac{2}{10} & \frac{3}{10}
\end{pmatrix}
= -\frac{1}{80}\begin{pmatrix}
-2 & -4 & -14 \\
-17 & 6 & 1 \\
8 & 16 & -24
\end{pmatrix}$$

Zkoušku správnosti lze provést ověřením platnosti vztahu $\underline{A} \cdot \underline{A}^{-1} = \underline{A}^{-1} \cdot \underline{A} = \underline{E}$, kde \underline{E} je jednotková matice.

Příklad 15.

Řešme soustavu rovnic

$$\begin{array}{rcl}
2x_1 & +3x_2 & = & 1 \\
x_2 & -x_3 & = & -1 \\
-x_1 & +2x_2 & = & 2
\end{array}$$

Jedná se o soustavu tří rovnic o třech neznámých, přičemž determinant matice soustavy

$$\det \underline{A} = \begin{vmatrix} 2 & 3 & 0 \\ 0 & 1 & -1 \\ -1 & 2 & 0 \end{vmatrix} = 7 \neq 0,$$

takže soustava má právě jedno řešení.

Řešení 1 Úpravou rozšířené matice soustavy (Gaussova eliminační metoda):

$$\underline{A} = \begin{pmatrix} 2 & 3 & 0 & | & 1 \\ 0 & 1 & -1 & | & -1 \\ -1 & 2 & 0 & | & 2 \end{pmatrix} \approx \begin{pmatrix} 0 & 7 & 0 & | & 5 \\ 0 & 1 & -1 & | & -1 \\ -1 & 2 & 0 & | & 2 \end{pmatrix} \approx \begin{pmatrix} 1 & -2 & 0 & | & -2 \\ 0 & 1 & -1 & | & -1 \\ 0 & 0 & 7 & | & 12 \end{pmatrix}$$

Znovu jsme se přesvědčili. že soustava je řešitelná, neboť $h(\underline{A}) = h(\underline{A}') = 3$ (Frobeinova věta; \underline{A}' je matice rozšířená) a $h(\underline{A}) = n$ (n počet neznámých), takže řešení je právě jedno.

Z poslední upravené rovnice vidíme, že $7x_3 = 12$, takže $x_3 = \frac{12}{7}$. Podobně $x_2 = \frac{5}{7}$, $x_1 = -\frac{4}{7}$.

Řešení 2 Užitím Cramerova pravidla:

$$x_i = \frac{\det \underline{A}_i}{\det A},$$

kde matice \underline{A}_i vznikne z \underline{A} nahrazením *i*-tého sloupce pravými stranami soustavy. Takže

$$x_{1} = \frac{\begin{vmatrix} 1 & 3 & 0 \\ -1 & 1 & -1 \\ 2 & 2 & 0 \end{vmatrix}}{7} = \frac{-4}{7}$$

$$x_{2} = \frac{\begin{vmatrix} 2 & 1 & 0 \\ 0 & -1 & -1 \\ -1 & 2 & 0 \end{vmatrix}}{7} = \frac{5}{7}$$

$$x_{3} = \frac{\begin{vmatrix} 2 & 3 & 1 \\ 0 & 1 & -1 \\ -1 & 2 & 2 \end{vmatrix}}{7} = \frac{12}{7}$$

Řešení 3 Pomocí inverzní matice \underline{A}^{-1} k matici soustavy \underline{A} : Danou soustavu lze přepsat ve tvaru rovnice:

$$\begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & -1 \\ -1 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

Řešení této rovnice určíme tak, že vynásobíme zleva obě strany rovnice maticí \underline{A}^{-1} inverzní k matici A.

Známým způsobem (<u>inverzní matice</u>) zjistíme, že

$$\underline{A}^{-1} = \frac{1}{7} \cdot \begin{pmatrix} 2 & 0 & -3 \\ 1 & 0 & 2 \\ 1 & -7 & 2 \end{pmatrix}.$$

Proto po dosazení do rovnice:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{2}{7} & 0 & -\frac{3}{7} \\ \frac{1}{7} & 0 & \frac{2}{7} \\ \frac{1}{7} & -1 & \frac{2}{7} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{7} \cdot \begin{pmatrix} -4 \\ 5 \\ 12 \end{pmatrix}$$
Odsud vidíme, že $x_1 = -\frac{4}{7}$, $x_2 = \frac{5}{7}$, $x_3 = \frac{12}{7}$.

Pamatujme:

"Matematika je jen tehdy mocným nástrojem, když spolu s ní se zavádí něco nového, když vůbec do hloubky vnímá jak fyziku, tak i matematiku, když užívá právě ty metody, které jsou pro daný případ nutné.

Zkouší-li bezmyšlenkovitě aplikovat matematický aparát a snaží-li se kompenzovat nedostatek pochopení podstaty věci matematickými formulemi, pak má stejně malou pravděpodobnost, že se dobere výsledku, jako má dítě začínající mluvit, že napíše báseň."

A.N.Krylov

Permutace, determinanty a jejich užití

Pořadí prvků

Buď n přirozené číslo. Pořadím prvků 1,2,...,n rozumíme každou uspořádanou n-tici $(i_1,i_2,...,i_n)$ prvků 1,2,...,n, kde se každý z prvků 1,2,...,n vyskytuje právě jednou.

Inverze v pořadí

Inverzí v pořadí $(i_1, i_2, ..., i_n)$ rozumíme každou dvojici čísel i_r, i_s takovou, že r < s a zároveň $i_r > i_s$ (tj. větší číslo se v pořadí vyskytuje před menším číslem).

Permutace

Permutací π množiny $\{1,2,...,n\}$ rozumíme každou <u>bijekci</u> množiny $\{1,2,...,n\}$. Permutací π zapisujeme pomocí matice typu (2,n) tvaru

$$\begin{pmatrix} i_1, i_2, \dots, i_n \\ j_1, j_2, \dots, j_n \end{pmatrix},$$

ve které první řádek nazýváme pořadím vzorů, druhý řádek pořadím obrazů a pro každé $x \in \{1,2,...,n\}$ je $\pi(i_x) = j_x$. Množinu všech permutací množiny $\{1,2,...,n\}$ značíme S_n . Inverzní zobrazení π^{-1} k permutaci π nazýváme inverzní permutací k permutaci π . Říkáme, že permutace je v základním tvaru, jestliže pořadí vzorů je $\{1,2,...,n\}$.

Inverzní permutace

Inverzní permutaci vytvoříme výměnou řádků.

Znaménko permutace π

Znaménkem permutace π rozumíme celé číslo $(-1)^{k+m}$, kde k je počet všech inverzí v pořadí vzorů a m počet všech inverzí v pořadí obrazů. Znaménko permutace π značíme $sign \pi$. Je-li $sign \pi = 1$ řekneme, že permutace π je sudá, pokud $sign \pi = -1$ je permutace π lichá.

Příklad 16.

Určeme znaménko permutace $\begin{pmatrix} 3,4,1,2\\1,4,3,2 \end{pmatrix}$.

Můžeme postupovat dvěma způsoby. Buď určíme počet inverzí v pořadí vzorů a v pořadí obrazů (a), nebo nejprve zapíšeme permutaci v základním tvaru (b). Tedy

a) inverze v pořadí vzorů: $(3,4,1,2)^{2}$ 2+2+0+0=4

inverze v pořadí obrazů (1,4,3,2) 0+2+1+0=3

Znaménko permutace je $(-1)^{4+3} = -1$

b) permutaci zapsaná v základním tvaru je $\binom{1,2,3,4}{3,2,1,4}$. Inverzí v pořadí vzorů je tedy 0 a

15

v pořadí obrazů 2+1+0+0=3 , proto znaménko permutace je $\left(-1\right)^3=-1$.

Determinant matice A

Buď $\underline{A} = (a_{ij})$ <u>čtvercová matice</u> n-tého řádu nad <u>tělesem</u> T. Determinantem matice \underline{A} rozumíme prvek (číslo) det \underline{A} z tělesa T, pro který platí:

$$\det \underline{A} = \sum_{\pi \in S_{-}} sign \begin{pmatrix} 1, 2, ..., n \\ s_{1}, s_{2}, ..., s_{n} \end{pmatrix} a_{1s_{1}} a_{2s_{2}} ... a_{ns_{n}}.$$

Jsou-li $\underline{a}_1, \underline{a}_2, ..., \underline{a}_n$ řádkové (resp. sloupcové) vektory matice \underline{A} , píšeme místo det \underline{A} též det $(\underline{a}_1, \underline{a}_2, ..., \underline{a}_n)$.

Jinak definováno: Determinantem n-tého stupně matice

$$\underline{A} = \begin{pmatrix} a_{11}, a_{12}, \dots, a_{1n} \\ a_{21}, a_{22}, \dots, a_{2n} \\ \dots \\ a_{n1}, a_{n2}, \dots, a_{nn} \end{pmatrix}$$

nazýváme číslo

$$\det \underline{A} = \sum (-1)^r a_{1k1} a_{2k2} ... a_{nkn} ,$$

kde se sčítá přes všechny <u>permutace</u> $(k_1, k_2, ..., k_n)$ čísel 1,2,...,n a kde r udává <u>počet inverzí</u> v permutaci $(k_1, k_2, ..., k_n)$.

- Determinant matice <u>A</u> je součet součinů; v každém součinu se vyskytuje z každého řádku i sloupce právě jeden prvek. Na druhé straně každý prvek řádku či sloupce se vyskytuje aspoň v jednom sčítanci.
- Determinant <u>trojúhelníkové</u> matice je roven součinu prvků na <u>diagonále</u>.
- Vznikne-li matice \underline{B} ze čtvercové matice \underline{A} n-tého řádu výměnou dvou řádků, resp. sloupců, potom $\det \underline{B} = -\det \underline{A}$.
- Platí det $\underline{A} = \det \underline{A}^{T}$.
- Věta o součtu determinantů: $\det\left(\underline{a}_{1},\underline{a}_{2},...,\underline{a}_{i-1},\underline{a}_{i}+\underline{b}_{i},\underline{a}_{i+1},...,\underline{a}_{n}\right)=\det\left(\underline{a}_{1},...,\underline{a}_{i},...,\underline{a}_{n}\right)+\det\left(\underline{a}_{1},...,\underline{b}_{i},...,\underline{a}_{n}\right)$
- Věta o vytýkání konstanty ze řádku: $\det\left(\underline{a}_{1},\underline{a}_{2},...,\underline{a}_{i-1},\alpha\underline{a}_{i},\underline{a}_{i+1},...,\underline{a}_{n}\right) = \alpha \cdot \det\left(\underline{a}_{1},\underline{a}_{2},...,\underline{a}_{i-1},\underline{a}_{i},\underline{a}_{i+1},...,\underline{a}_{n}\right)$
- Bud' \underline{A} čtvercová matice stupně n. Jestliže matice \underline{B} vznikne z matice \underline{A} vynásobením libovolného řádku prvkem $c \in T$, pak det $B = c \cdot \det A$.
- Věta o součinu dvou determinantů det (\underline{AB}) = det $\underline{A} \cdot \det \underline{B}$
- Hodnota determinantu se nezmění, jestliže k danému řádku, resp. sloupci přičteme libovolnou lineární kombinaci ostatních řádků, resp. sloupců.
- Determinant regulární (singulární) matice je vždy různý od nuly (roven nule).

www.matematika.webz.cz

16

Příklad 17.

Spočtěme determinant pátého stupně

$$\begin{vmatrix}
2 & 1 & -1 & 2 & -1 \\
-4 & 3 & 2 & -1 & 1 \\
3 & 5 & -2 & 1 & -2 \\
2 & 2 & -1 & 3 & -1 \\
-1 & 2 & 3 & 1 & 3
\end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & -1 & 2 & -1 \\ -4 & 3 & 2 & -1 & 1 \\ 3 & 5 & -2 & 1 & -2 \\ 2 & 2 & -1 & 3 & -1 \\ -1 & 2 & 3 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 & 0 & 0 \\ -10 & 3 & 5 & -7 & 4 \\ -7 & 5 & 3 & -9 & 3 \\ -2 & 2 & 1 & -1 & 1 \\ -5 & 2 & 5 & -3 & 5 \end{vmatrix} = \begin{vmatrix} -7 & 3 & -9 & 3 \\ -2 & 1 & -1 & 1 \\ -5 & 5 & -3 & 5 \end{vmatrix} = \begin{vmatrix} -2 & 1 & -3 \\ -1 & 0 & -6 & 3 \\ 0 & 0 & 0 & 1 \\ 5 & 0 & 2 & 5 \end{vmatrix} = \begin{vmatrix} -2 & 1 & -3 \\ -1 & 0 & -6 \\ 5 & 0 & 2 \end{vmatrix} = -\begin{vmatrix} -1 & -6 \\ 5 & 2 \end{vmatrix} = -28$$

- 1. elementární transformace sloupců matice
- 2. (Lapleceův) rozvoj podle prvního řádku

Minor (subdeterminant)

Minorem (subdeterminantem) M_{ij} z čtvercové matice \underline{A} příslušným prvku a_{ij} rozumíme determinant matice, která vznikne z matice \underline{A} vynecháním i-tého řádku a j-tého sloupce.

Buď $\underline{A}=\left(a_{ij}\right)$ matice typu (m,n). Každou matici \underline{B} , která vznikne z \underline{A} vynecháním některých (libovolných) řádků a některých sloupců, nazýváme dílčí maticí matice \underline{A} . Determinant každé čtvercové dílčí matice nazýváme subdeterminantem matice \underline{A} . Je-li \underline{A} čtvercová matice stupně n, pak vynecháním libovolných k řádků, k < n, a libovolných k sloupců z matice \underline{A} dostaneme dílčí čtvercovou matici stupně n-k. Determinant každé takové dílčí matice nazýváme subdeterminantem matice \underline{A} stupně n-k. Subdeterminant stupně n-1 vyniklý vynecháním i-tého řádku a j-tého sloupce označíme M_{ij} . Prvek $A_{ij}=\left(-1\right)^{i+j}M_{ij}$ nazýváme algebraickým doplňkem prvku a_{ij} .

Cramerovo pravidlo

Je-li matice A regulární, pak rozšířená matice má právě jedno řešení jež se vypočítá

$$x_i = \frac{\det A_i}{\det A},$$

kde matice A_i vznikne z matice A nahrazením i-tého sloupce pravými stranami.

Příklad 18.

Pomocí Cramerova pravidla řešme soustavu

$$2x_1 + 2x_2 - x_3 + x_4 = 4$$

$$4x_1 + 3x_2 - x_3 + 2x_4 = 6$$

$$8x_1 + 5x_2 - 3x_3 + 4x_4 = 12$$

$$3x_1 + 3x_2 - 2x_3 + 2x_4 = 6$$

$$\det \underline{A} = \begin{vmatrix} 2 & 2 & -1 & 1 \\ 4 & 3 & -1 & 2 \\ 8 & 5 & -3 & 4 \\ 3 & 3 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 2 & -1 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -3 & 1 & 0 \\ -1 & -1 & 0 & 0 \end{vmatrix} = (-1)^{1+4} 1 \cdot \begin{vmatrix} 0 & -1 & 1 \\ 0 & -3 & 1 \\ -1 & -1 & 0 \end{vmatrix} =$$

$$= (-1)(-1)^{3+1}(-1) \cdot \begin{vmatrix} -1 & 1 \\ -3 & 1 \end{vmatrix} = -1 - (-3) = \frac{2}{2}$$

$$\det \underline{A}_1 = \begin{vmatrix} 4 & 2 & -1 & 1 \\ 6 & 3 & -1 & 2 \\ 12 & 5 & -3 & 4 \\ 6 & 3 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 4 & 2 & -1 & 1 \\ 6 & 3 & -1 & 2 \\ 12 & 5 & -3 & 4 \\ 0 & 0 & -1 & 0 \end{vmatrix} = (-1)^{4+3}(-1) \cdot \begin{vmatrix} 4 & 2 & 1 \\ 6 & 3 & 2 \\ 12 & 5 & 4 \end{vmatrix} = \begin{vmatrix} 4 & 2 & 1 \\ -2 & -1 & 0 \\ -4 & -3 & 0 \end{vmatrix} =$$

$$= (-1)^{1+3} 1 \cdot \begin{vmatrix} -2 & -1 \\ -4 & -3 \end{vmatrix} = 6 - 4 = \frac{2}{2}$$

$$8 & 12 & -3 & 4 \\ 3 & 6 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 4 & -1 & 1 \\ 0 & -2 & 1 & 0 \\ 0 & -4 & 1 & 0 \\ -1 & -2 & 0 & 0 \end{vmatrix} = (-1)^{1+4} 1 \cdot \begin{vmatrix} 0 & -2 & 1 \\ 0 & -4 & 1 \\ -1 & -2 & 0 \end{vmatrix} =$$

$$= (-1)(-1)^{1+3}(-1) \cdot \begin{vmatrix} -2 & 1 \\ -4 & 1 \end{vmatrix} = -2 - (-4) = \frac{2}{2}$$

$$\det \underline{A}_3 = \begin{vmatrix} 2 & 2 & 4 & 1 \\ 4 & 3 & 6 & 2 \\ 8 & 5 & 12 & 4 \\ 3 & 3 & 6 & 2 \end{vmatrix} = \frac{2}{2} ; \quad \det \underline{A}_4 = \begin{vmatrix} 2 & 2 & -1 & 4 \\ 4 & 3 & -1 & 6 \\ 8 & 5 & -3 & 12 \\ 3 & 3 & -2 & 6 \end{vmatrix} = \frac{2}{\det A} = \frac{1}{\det A$$

Zkouška:

$$L_1 = 2 \cdot 1 + 2 \cdot 1 - (-1) + (-1) = 4$$
, $P_1 = 4$, $L_1 = P_2$
 $L_2 = 4 \cdot 1 + 3 \cdot 1 - (-1) + 2(-1) = 6$, $P_2 = 6$, $L_2 = P_2$
 $L_3 = 8 \cdot 1 + 5 \cdot 1 - 3(-1) + 4(-1) = 12$, $P_3 = 12$, $L_3 = P_3$
 $L_4 = 3 \cdot 1 + 3 \cdot 1 - 2(-1) + 2(-1) = 6$, $P_4 = 6$, $L_4 = P_4$

Vektorový prostor

Vektorový prostor

Nechť T je <u>těleso</u>, V množina. Uspořádanou trojici $(V,+,\cdot)$, kde + je vnitřní operace na V (tj. zobrazení $V \times V \to V$), vnější operace na V nad T (tj. zobrazení $T \times V \to V$), nazveme vektorovým prostorem nad tělesem T, jestliže:

 $^{\underline{a}}$ (V,+) je <u>komutativní grupa</u>,

b vnější operace . splňuje tyto podmínky :

$$\forall \alpha \in T \ \forall a,b \in V : \alpha.(a+b) = \alpha.a + \alpha.b,$$

$$\forall \alpha,\beta \in T \ \forall a \in V : (\alpha+\beta).a = \alpha.a + \beta.a,$$

$$\forall \alpha,\beta \in T \ \forall a \in V : (\alpha.\beta).a = \alpha.(\beta.a),$$

$$\forall a \in V : 1.a = a \ (1 \text{ je jednotkový prvek z } T)$$

Ve vektorovém prostoru V(T) platí:

```
\begin{array}{l} \frac{a}{} \ \forall a \in V : 0 \cdot a = 0 \quad (0 \text{ je nulový skalár }) \\ \frac{b}{} \ \forall \alpha \in T : \alpha \cdot 0 = 0 \\ \frac{c}{} \ \alpha \cdot a = 0 \Leftrightarrow \left(\alpha = 0 \lor a = 0\right) \\ \frac{d}{} \ \forall a \in V : -a = \left(-1\right) \cdot a \end{array}
```

• Nejjednodušším příkladem vektorového prostoru je tzv. triviální nebo nulový vektorový prostor $\{0\}$, skládající se pouze z nulového vektoru.

Příklad 19. Příklady vektorových prostorů

- 1. Těleso *T* spolu s operacemi sčítání a násobení definovanými na *T* je vektorový prostor nad *T* .
- 2. Speciálně těleso reálných čísel je vektorový prostor nad *R* (reálný vektorový prostor)
- 3. Množina P všech kladných reálných čísel spolu s operacemi \circ a \bullet , kde $\underline{u} \circ \underline{v} = \underline{u}\underline{v}$, $r \bullet \underline{u} = \underline{u}^r$, $\underline{u}, \underline{v} \in P$, $r \in R$, je reálný vektorový prostor
- 4. Na množině T^n všech uspořádaných n-tic prvků z T definujeme operace $(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$ $r(a_1, a_2, ..., a_n) = (ra_1, ra_2, ..., ra_n)$

Množina T^n je pak vektorovým prostorem nad T, který nazýváme aritmetickým vektorovým prostorem nad T.

Vektorový podprostor

Nechť W je neprázdná podmnožina vektorového prostoru $(V,+,\cdot)$. Uspořádanou trojici $(W,+,\cdot)$ nazveme (vektorovým) podprostorem prostoru V(T), jestliže platí:

```
\begin{array}{l}
\overset{a}{\longrightarrow} \forall a, b \in W : a + b \in W \\
\overset{b}{\longrightarrow} \forall \alpha \in T \ \forall a \in W : a \cdot \alpha \in W
\end{array}
```

Průnik libovolného neprázdného systému podprostorů vektorového prostoru V je opět podprostorem prostoru V .

Lineární obal

Def.I Nechť $a_1, a_2, ..., a_n$ jsou vektory z vektorového prostoru V(T). Množinu

$$M = \{\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n; \alpha_1, \alpha_2, \dots, \alpha_n \in T\}$$

nazýváme podprostorem (lineárním obalem) generovaným vektory $a_1, a_2, ..., a_n$ a značíme $[a_1, a_2, ..., a_n]$. O množině $\{a_1, a_2, ..., a_n\}$ říkáme, že generuje množinu M nebo že je to množina generátorů podprostoru M.

Def.II Buď M podmnožina vektorového prostoru V. Průnik všech podprostorů prostoru V, obsahujících množinu M, nazýváme lineárním obalem množiny M a značíme [M].

ullet Buď M podmnožina vektorového prostoru V . Pak platí:

$$\frac{a}{}$$
 je-li $M = 0$, je $[M] = 0$

 $^{\underline{b}}$ je-li $M\neq 0$, pak $\left[M\right]$ je množina všech lineárních kombinací $\sum_{i=1}^n r_i\,\underline{u}_i$, kde

$$\underline{u}_i \in M, i = 1, 2, ..., n$$
.

Úpravy generátorů

Nechť $a_1, a_2, ..., a_n$ jsou vektory z vektorového prostoru $V_n(T)$, $M = [a_1, a_2, ..., a_n]$.

Provedeme-li na skupinu vektorů $a_1, a_2, ..., a_n$ některou z následujících změn, dostaneme novou skupinu vektorů, která generuje stejný podprostor M:

^a změna pořadí vektorů,

b nahrazení libovolného vektoru z M jeho α-násobkem, kde $\alpha \in T, \alpha \neq 0$,

 $^{\text{c}}$ nahrazení libovolného vektoru z M jeho součtem s lineární kombinací ostatních vektorů z M ,

^d vynechání vektoru, který je lineární kombinací ostatních vektorů,

 $\frac{e}{g}$ přidání vektoru, který je lineární kombinací vektorů z M.

Steinitzova věta

Nechť vektory $a_1, a_2, ..., a_n$ generují vektorový prostor V(T). Nechť vektory $b_1, b_2, ..., b_k$ z V(T) jsou lineárně nezávislé. Pak platí:

 $\frac{a}{k} \le n$

 $\frac{b}{c}$ existuje n-k vektorů a_i z $\{a_1, a_2, ..., a_n\}$, které spolu s vektory $b_1, b_2, ..., b_k$ generují V(T).

Konečněrozměrný vektorový prostor

Jestliže existují vektory $a_1, a_2, ..., a_k \in V(T)$ takové, že $V(T) = [a_1, a_2, ..., a_n]$, je tento prostor konečněrozměrný.

Báze

Nechť V(T) je konečněrozměrný prostor. Podmnožinu $\{a_1,a_2,...,a_n\}\subset V(T)$ nazveme bází vektorového prostoru V(T), jestliže platí:

 $a_1, a_2, ..., a_n$ jsou <u>lineárně nezávislé</u>,

$$\frac{\mathbf{b}}{\mathbf{a}} [a_1, a_2, ..., a_n] = V(T)$$
, tj. generují $V(T)$

www.matematika.webz.cz

20

Dimenze

Nechť V(T) je konečněrozměrný vektorový prostor. Dimenzí nenulového prostoru V(T) nazýváme počet prvků některé jeho báze. Dimenze nulového vektorového prostoru je 0. Dimenze nekonečněrozměrného vektorového prostoru je ∞ . Dimenzi vektorového prostoru V(T) značíme $\dim V(T)$.

Souřadnice vektoru vzhledem k bázi

Označme B skupinu vektorů $\{a_1, a_2, ..., a_n\}$ v tomto pořadí a nechť B je báze vektorového prostoru V(T), $a \in V(T)$. Uspořádanou n-tici skalárů $(\alpha_1, \alpha_2, ..., \alpha_n)$ takovou, že platí

$$a = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n,$$

nazýváme souřadnicemi vektoru a vzhledem k bázi B. Píšeme

$$\underline{a}_{\mathrm{B}} = (\alpha_{1}, \alpha_{2}, ..., \alpha_{n})$$

Součet podprostorů

- a Nechť U, W jsou podprostory vektorového prostoru V(T). Podprostor U+W nazýváme **lineárním součtem** podprostorů U, W.
- b Nechť $U \cap W = \{0\}$. Potom lineární součet U + W nazýváme **direktním součtem** podprostorů U, W a píšeme $U \oplus W$.
- Nechť $U = [a_1, a_2, ..., a_n], W = [b_1, b_2, ..., b_k]$ jsou podprostory vektorového prostoru V(T). Pak platí: $U + W = [a_1, a_2, ..., a_n, b_1, b_2, ..., b_k]$
- Nechť U, W jsou podprostory konečněrozměrného vektorového prostoru V(T). Pak platí: dim U + dim W = dim (U + W)+ dim $(U \cap W)$

Příklad 20.

Rozhodněme zda množina W tvoří podprostor vektorového prostoru $V_3(R)$.

$$W = \{(x, y, 1) \in V_3(R)\}$$

Musíme ověřit podmínky vektorového podprostoru.

$$(0,0,0) \in W \Rightarrow W \neq 0$$

 $(x_1, y_1,1) + (x_1, y_1,1) = (x_1 + x_2, y_1 + y_2,2) \notin W$
 $\alpha(x, y,1) = (\alpha x, \alpha y, \alpha) \notin W$

tedy W netvoří podprostor vektorového prostoru $V_3(R)$.

21

Příklad 21.

Určeme bázi a dimenzi vektorového prostoru generovaného vektory

$$\underline{u}_1 = (2,0,1,3,-1), \underline{u}_2 = (1,1,0,-1,1), \underline{u}_3 = (0,-2,1,5,-3), \underline{u}_4 = (1,-3,2,9,-5)$$

z aritmetického vektorového prostoru R^5 .

Nejprve zjistíme, zda vektory $\underline{u}_1,\underline{u}_2,\underline{u}_3,\underline{u}_4$ nejsou lineárně nezávislé, tj. zda netvoří bázi daného vektorového prostoru. Řešíme tedy rovnici $c_1\underline{u}_1+c_2\underline{u}_2+c_3\underline{u}_3+c_4\underline{u}_4=\underline{0}$, kterou lze přepsat na soustavu

$$2c_{1} + c_{2} + c_{4} = 0$$

$$c_{2} -2c_{3} -3c_{4} = 0$$

$$c_{1} + c_{3} +2c_{4} = 0$$

$$3c_{1} -c_{2} +5c_{3} +9c_{4} = 0$$

$$-c_{1} +c_{2} -3c_{3} -5c_{4} = 0$$

Užitím Gaussovy eliminační metody zjistíme, že tato soustava je ekvivalentní se soustavou

$$\begin{array}{rcl}
-c_1 & +c_2 & -3c_3 & -5c_4 & = & 0 \\
c_2 & -2c_3 & -3c_4 & = & 0
\end{array}$$

která má zřejmě nekonečně mnoho řešení závislých na 2 parametrech. Množinu všech řešení soustavy lze zapsat např. ve tvaru

$$\{(-c_3-2c_4,2c_3+3c_4,c_3,c_4);c_3,c_4\in R\}.$$

To znamená, že např. pro $c_3=c_4=1$ je $\left(-3,5,1,1\right)$ jedním z řešení soustavy, takže $-3\underline{u}_1+5\underline{u}_2+\underline{u}_3+\underline{u}_4=\underline{0}$. Vektory $\underline{u}_1,\underline{u}_2,\underline{u}_3,\underline{u}_4$ jsou tedy lineárně závislé a bází daného vektorového prostoru netvoří. Podobně i vektory $\underline{u}_1,\underline{u}_2,\underline{u}_4$ jsou lineárně závislé, neboť $-2\underline{u}_1+3\underline{u}_2+\underline{u}_4=\underline{0}$. Vektory $\underline{u}_1,\underline{u}_2$ jsou již lineárně nezávislé, protože $k_1\underline{u}_1+k_2\underline{u}_2=\underline{0}$ právě tehdy, když $k_1=k_2=0$.

Množina B = $\{\underline{u}_1, \underline{u}_2\}$ = $\{(2,0,1,3,-1), (1,1,0,-1,1)\}$ je tedy bází daného vektorového prostoru a jeho dimenze je rovna 2.

Jinou bázi téhož vektorového prostoru určíme jednodušším způsobem úpravou matice

$$\underline{A} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 & 3 & -1 \\ 1 & 1 & 0 & -1 & 1 \\ 0 & -2 & 1 & 5 & -3 \\ 1 & -3 & 2 & 9 & -5 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 0 & -1 & 1 \\ 0 & -2 & 1 & 5 & -3 \\ 0 & -2 & 1 & 5 & -3 \\ 0 & -4 & 2 & 10 & -6 \end{pmatrix} \approx \begin{pmatrix} 1 & 1 & 0 & -1 & 1 \\ 0 & -2 & 1 & 5 & -3 \\ 0 & -2 & 1 & 5 & -3 \end{pmatrix} = \underline{A}^*$$

Řádky matice \underline{A}^* jsou lineárně nezávislé vektory, které tvoří bázi daného vektorového prostoru.

Euklidovské vektorové prostory

Euklidovský vektorový prostor

Vektorový prostor $(E,+,\cdot)$ nad R nazýváme euklidovským vektorovým prostorem, jestliže existuje zobrazení $g: E \times E \to R$ takové, že pro libovolné vektory $a,b,c \in E$ a libovolné reálné číslo α platí:

$$\frac{a}{a} g(a,b) = g(b,a)$$

$$\frac{b}{c} g(a+b,c) = g(a,c) + g(b,c)$$

$$\frac{c}{c} g(\alpha a,c) = \alpha g(a,c)$$

$$\frac{d}{c} g(a,a) \ge 0, g(a,a) = 0 \Leftrightarrow a = 0$$

Zobrazení g nazýváme skalárním součinem.

<u>Úmluva:</u> Euklidovský vektorový prostor $(E,+,\cdot)$ se skalárním součinem g budeme v dalším textu značit (E,g).

V euklidovském vektorovém prostoru (E, g) platí:

$$\frac{a}{a} \|\alpha a\| = |\alpha| \|a\|$$

$$\frac{b}{b} \|a\| \ge 0; \quad \|a\| = 0 \Leftrightarrow a = 0$$

$$\frac{c}{b} \|g(a,b)\| \le \|a\| \|b\| \text{ (Schwartzova nerovnost)}$$

$$\frac{d}{d} \|a+b\| \le \|a\| \|b\| \text{ (trojúhelníková nerovnost)}$$

Velikost vektorů a jimi sevřeného úhlu

Nechť (E,g) je euklidovský vektorový prostor, $a,b \in E$.

Délkou (velikostí, normou) vektoru a nazýváme reálné číslo

$$||a|| = \sqrt{g(a,a)}$$
.

Velikost ρ úhlu mezi vektory a, b definujeme takto:

$$\cos \rho = \frac{g(a, b)}{\|a\| \cdot \|b\|}$$
 pro $a \neq 0, b \neq 0, \rho \in \langle 0, \pi \rangle$
 $\cos \rho = 0$ pro $a = 0$ nebo $b = 0$.

Jestliže platí $\cos \rho = 0$, nazýváme vektory a, b kolmými (ortogonálními) a píšeme $a \perp b$.

Ortogonální doplněk

Nechť (E,g) je euklidovský vektorový prostor, M podmnožina E. Ortogonálním doplňkem množiny M nazýváme množinu

$$M^{\perp} = \{ a \in E; \forall b \in M : a \perp b \}$$

Vektory ortogonální a ortonormální

Nechť $a_1,a_2,...,a_k$ jsou vektory z euklidovského vektorového prostoru (E,g). Vektory $a_1,a_2,...,a_k$ nazýváme ortogonálními, jestliže $a_i\perp a_j$ pro všechna $i\neq j$. Vektory $a_1,a_2,...,a_k$ nazýváme ortonormální, jestliže jsou navzájem ortogonální a $\|a_i\|=1, \quad 1\leq i\leq k$.

Ortogonální (ortonormální) báze

Nechť (E,g) je n-rozměrný <u>euklidovský vektorový prostor</u>, $\mathbf{B} = \{a_1, a_2, ..., a_n\}$ jeho báze. Jsouli vektory $a_1, a_2, ..., a_n$ navzájem ortogonální, resp. ortonormální, nazýváme \mathbf{B} ortogonální, resp. ortonormální bází.

Příklad 22.

Nechť V je podprostor aritmetického vektorového prostoru \mathbb{R}^3 se skalárním součinem takový, že

$$V = [\{(2,1,3),(4,2,0)\}].$$

Určeme: $\frac{a}{v}$ ortogonální bázi ve V, která není ortonormální

 $^{\underline{b}}$ ortogonální doplněk V^{\perp} v prostoru R^3

^c ortonormální bázi ve *V*

 $\frac{d}{d}$ ortonormální bázi ve V^{\perp} .

^a Vektory $\underline{u}_1 = (2,1,3)$ a $\underline{u}_2 = (4,2,0)$, které generují vektorový prostor V, jsou zřejmě <u>lineárně nezávislé</u>, takže množina $\{\underline{u}_1,\underline{u}_2\}$ je bází tohoto podprostoru. Tato báze však není ortogonální, neboť $\underline{u}_1 \cdot \underline{u}_2 = 2.4 + 1.2 + 3.0 = 10 \neq 0$. Abychom dostali <u>ortogonální bázi</u>, nahradíme např. vektor \underline{u}_2 vektorem $\underline{w} \in V$ takovým, že $\underline{u}_1 \cdot \underline{w} = 0$.

Protože $\underline{w} \in V$, musí existovat čísla $a_1, a_2 \in R$ taková, že $\underline{w} = a_1 \underline{u}_1 + a_2 \underline{u}_2$.

Platí tedy $\underline{u}_1 \cdot (a_1 \underline{u}_1 + a_2 \underline{u}_2) = 0$, takže $a_1 \cdot (\underline{u}_1 \cdot \underline{u}_1) + a_2 \cdot (\underline{u}_1 \cdot \underline{u}_2) = 0$.

K určení vektoru w stačí najít libovolné nenulové řešení této rovnice.

Proto zvolíme např. $a_2 = 1$.

Potom
$$a_1 = \frac{-(\underline{u}_1 \cdot \underline{u}_2)}{\underline{u}_1 \cdot \underline{u}_1}$$
; po dosazení $a_1 = \frac{-(2,1,3) \cdot (4,2,0)}{(2,1,3) \cdot (2,1,3)} = -\frac{5}{7}$.

Hledaný vektor
$$\underline{w} = -\frac{5}{7}(2,1,3) + (4,2,0) = \left(\frac{18}{7}, \frac{9}{7}, -\frac{15}{7}\right).$$

Množina B = $\{\underline{u}_1, \underline{w}\}$ = $\{(2,1,3), (\frac{18}{7}, \frac{9}{7}, -\frac{15}{7})\}$ je tedy ortogonální bází prostoru V, která není

ortonormální, neboť např. $\underline{u}_1 \cdot \underline{u}_1 = 14 \neq 1$. Jinou ortogonální bází prostoru V, která není ortonormální je množina $B' = \{(2,1,3), (6,3,-5)\}$.

 $\frac{\mathbf{b}}{\mathbf{Ortogonálním}} \frac{\mathbf{oplňkem}}{\mathbf{doplňkem}} V^{\perp}$ podprostoru V v prostoru R^3 , je množina všech vektorů z R^3 ortogonálních na vektory $\underline{u}_1,\underline{u}_2$.

Tedy
$$V^{\perp} = \left\{ u = (\underline{u}_1, \underline{u}_2, \underline{u}_3) \in \mathbb{R}^3 ; \underline{u} \cdot (2,1,3) = 0 \land \underline{u} \cdot (4,2,0) = 0 \right\}.$$

Pro každý vektor $\underline{u} \in V^{\perp}$ tedy musí platit

$$2u_1 + u_2 + 3u_3 = 0$$
$$4u_1 + 2u_2 = 0$$

Tato soustava má nekonečně mnoho řešení závislých na jednom parametru. Množinu řešení lze zapsat například ve tvaru

Tedy
$$V^{\perp} = \underbrace{\left\{\underline{u} \in R^3; \underline{u} = \left(u_1, -2u_2, 0\right), u_1 \in R\right\}}$$
.

^c Ortonormální bázi vektor. prostoru V získáme např. z báze $B' = \{\underline{u}_1, \underline{w}'\} = \{(2,1,3), (6,3,-5)\}$, která je pouze ortogonální tak, že z vektorů $\underline{u}_1, \underline{w}'$ vytvoříme vektory jednotkové:

$$\frac{\underline{u}_1}{|\underline{u}_1|} = \frac{1}{\sqrt{\underline{u}_1 \cdot \underline{u}_1}} \cdot \underline{u}_1 = \frac{1}{14} \cdot (2,1,3)$$

$$\frac{\underline{w}_1}{|\underline{w}_1|} = \frac{1}{\sqrt{\underline{w}_1 \cdot \underline{w}_1}} \cdot \underline{w}_1 = \frac{1}{\sqrt{70}} \cdot (6,3,-5)$$

Množina $\left\{\frac{1}{14}\cdot (2,1,3), \frac{1}{70}\cdot (6,3,-5)\right\}$ je tedy ortonormální bází vektorového prostoru V .

 $\frac{d}{d}$ Vzhledem k tomu, že dimenze vektorového prostoru R^3 je rovna 3 a dimenze jejího podprostoru V je rovna 2, musí být dimenze podprostoru V^{\perp} rovna 3 − 2 = 1. To znamená, že libovolný nenulový vektor z V^{\perp} tvoří bázi V^{\perp} . Uvažujme např. bázi $\{(1,-2,0)\}$. Tato báze zřejmě není ortonormální, neboť $(1,-2,0)\cdot(1,-2,0)=5\neq 1$. Ortonormální bázi bude tvořit jednotkový vektor z V^{\perp} , tedy vektor

$$\frac{1}{\sqrt{(1,-2,0)\cdot(1,-2,0)}}\cdot(1,-2,0)=\left(\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}},0\right).$$

Ortonormální bází prostoru V^{\perp} je tedy množina $\left(\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}, 0\right)$.

Pamatujme:

"I kdyby byl naším údělem dlouhý život, bylo by nutné šetrně si rozdělit čas, aby stačil na nezbytné záležitosti. Jaké šílenství učit se zbytečnosti v tak velké časové tísni, v níž jsme."

Seneca

Lineární zobrazení, isomorfismus vektorových prostorů

Lineární zobrazení

Nechť V(T), V'(T) jsou vektorové prostory nad týmž tělesem T. Zobrazení $\rho: V \to V'$ se nazývá lineární zobrazení, jestliže pro libovolné $a,b \in V$, $\alpha \in T$ platí:

$$\underline{a} \rho(\underline{a} + \underline{b}) = \rho(\underline{a}) + \rho(\underline{b})$$
 (zobrazení se nazývá aditivní)

$$\frac{b}{\rho} \rho(\alpha a) = \alpha \rho(a)$$
 (zobrazení je homogenní)

ullet Obraz lineární kombinace vektoru z V je roven lineární kombinaci jejich obrazů se stejnými koeficienty.

Jádro a obraz zobrazení ρ

Nechť $\rho: V(T) \to V'(T)$ je lineární zobrazení. Množina ker $\rho = \{a \in V; \rho(a) = o\}$ se nazývá jádro zobrazení ρ , množina Im $\rho = \{b \in V'; \exists a \in V : \rho(a) = b\}$ se nazývá obraz zobrazení ρ .

- ker ρ je podprostor prostoru V(T), Im ρ je podprostor prostoru V'(T).
- Nechť $\rho: V(T) \to V'(T)$ je lineární zobrazení a V je konečně rozměrný prostor. Pak platí: $\dim(\ker \rho) + \dim(\operatorname{Im} \rho) = \dim V$
- Nechť $\rho:V(T)\to V'(T)$ je lineární zobrazení a V je konečně rozměrný prostor. Pak jsou následující podmínky ekvivalentní:

a) ρ je prosté b) ker $\rho = \{\rho\}$ c) dim (Im ρ) = dim V

•

Takto lineární algebra rozhodně nekončí, končí jen má práce.

Použitá literatura

Bican, L.: Lineární algebra, Praha 1979

Bican, L.: Lineární algebra v úlohách, Praha 1979

Kopecký, M.-Emanovský, P.: Sbírka řešených příkladů z algebry, Olomouc 1990

Liebl, P.: Maticová algebra, Praha 1977

Novotná, J.-Trch, M.: Algebra a teoretická aritmetika (Lineární algebra), Praha 1995 Novotná, J.-Trch, M.: Algebra a teoretická aritmetika (Základy algebry), Praha 1993

OBSAH

ELEMENTY LINEARNI ALGEBRY	0
Základní pojmy	1
Binární relace R	1
Zobrazení	2
Binární operace	2
Grupa	2
Číselné těleso	
Aritmetický vektor	3
Rovnost dvou aritmetických vektorů	
Součet dvou aritmetických vektorů	3
α-násobek	
Nulový aritmetický vektor	3
Lineární kombinace	
Lineární závislost a nezávislost vektorů	4
Matice	6
Diagonála a diagonální matice	
Jednotková matice	
Transponovaná matice	
Matice symetrická a antisymetrická	
Trojúhelníková matice	
Čtvercové matice: regulární × singulární	
Řádkový prostor	
Hodnost matice	
Elementární úpravy	7
Rovnost matic	
Součet matic	8
α-násobek matice	9
Součin matic	10
Záměnné matice	10
Frobeinova věta	
Adjungované matice	11
Inverzní matice	11
Permutace, determinanty a jejich užití	15
Pořadí prvků	15
Inverze v pořadí	
Permutace	15
Inverzní permutace	15
Znaménko permutace π	15
Determinant matice A	16
Minor (subdeterminant)	17
Cramerovo pravidlo	17
Vektorový prostor	19
Vektorový prostor	
Vektorový podprostor	
Lineární obal	
Úpravy generátorů	
Steinitzova věta	20
Konečněrozměrný vektorový prostor	20

Báze	20
Dimenze	
Souřadnice vektoru vzhledem k bázi	21
Součet podprostorů	21
Euklidovské vektorové prostory	
Euklidovské vektorové prostory	
Euklidovský vektorový prostor	
Velikost vektorů a jimi sevřeného úhlu	23
Ortogonální doplněk	23
Vektory ortogonální a ortonormální	
Ortogonální (ortonormální) báze	24
Lineární zobrazení, isomorfismus vektorových prostorů	
Lineární zobrazení	
Jádro a obraz zobrazení ρ	
Použitá literatura	
OBSAH	27