

# **Automatic Monte Carlo Methods for Bayesian Inference**

Noah Grudowski

Applied Mathematics, Illinois Institute of Technology

### **Bayesian Statistics**

- Model parameters are random
- Prior distribution,  $\pi$ , reflects beliefs about the parameters
- Sampling yields a likelihood function, L
- Posterior density: product of the prior and the likelihood
- Estimates involve integrals, e.g.

$$\hat{eta}_j = rac{\int_{\mathbb{R}^{d+1}} b_j L(oldsymbol{b}) \pi(oldsymbol{b}) doldsymbol{b}}{\int_{\mathbb{R}^{d+1}} L(oldsymbol{b}) \pi(oldsymbol{b}) doldsymbol{b}} =: rac{\mu_j}{\mu} ext{ for } j = 0, 1, 2, \dots, d$$

#### **Quasi-Monte Carlo Cubature**

Approximates integrals:

$$\int_{[0,1]^{d+1}} f(\mathbf{x}) d\mathbf{x} \approx \frac{1}{n} \sum_{i=0}^{n-1} f(\mathbf{x_i})$$
where  $\{\mathbf{x}_i\}_{i=0}^{\infty}$  is a low-discrepancy

where  $\{x_i\}_{i=1}^{\infty}$  is a low-discrepancy sequence

 A low-discrepancy sequence is a correlated sequence whose empirical distribution matches the target distribution better than an IID sequence



### **Model Problem**

- Bayesian inference is applied to logistic regression.
- $ullet t_i \sim \mathsf{Ber}\left(rac{\exp\left(eta_0 + \sum_{j=1}^d eta_j s_{ij}
  ight)}{1 + \exp\left(eta_0 + \sum_{j=1}^d eta_j s_{ij}
  ight)}
  ight), ext{ for } i=1,2,\ldots,M$
- Standard norm prior for  $\beta$

$$\pi(oldsymbol{b}) = rac{\exp\left(-rac{1}{2}oldsymbol{b}^Toldsymbol{b}
ight)}{\sqrt{(2\pi)^{d+1}}}$$

• Posterior mean estimates of  $\beta$ 

$$\hat{eta}_j = rac{\int_{\mathbb{R}^{d+1}} b_j L(oldsymbol{b}) \pi(oldsymbol{b}) doldsymbol{b}}{\int_{\mathbb{R}^{d+1}} L(oldsymbol{b}) \pi(oldsymbol{b}) doldsymbol{b}} =: rac{\mu_j}{\mu}$$
, for  $j=0,1,2,\ldots,d$ 

A special appreciation and thank you to the IIT College of Science for providing the funding behind this research project.

## **Choice of Density for Integration**

- $\bullet$   $\mu_i/\mu$  cannot be calculated analytically
- Rewrite  $\mu$  as (similarly for  $\mu_i$ ):

$$\mu=\int_{\mathbb{R}^{d+1}}L(m{b})\pi(m{b})dm{b}=\int_{\mathbb{R}^{d+1}}rac{L(m{b})\pi(m{b})}{
ho(m{b})}
ho(m{b})dm{b}=\int_{[0,1]^{d+1}}f(m{x})dm{x},$$
 where  $f(m{R}(m{b}))=rac{L(m{b})\pi(m{b})}{
ho(m{b})}$ 

and  $\rho(\boldsymbol{b}) = |\partial \boldsymbol{R}/\partial \boldsymbol{b}|$  for some suitable  $\boldsymbol{R}: \mathbb{R}^{d+1} \to [0,1]^{d+1}$ 

- Now,  $\mu_j/\mu$  can be approximated by sampling from  $\rho$  and applying quasi-Monte Carlo cubature
- We made the following choices for  $\rho$ :

  1)  $\rho = \pi = \text{prior}$ 2)  $\rho = \rho_{\text{MLT}} = \text{Gaussian approximation}$
- 2)  $\rho = \rho_{\text{MLE}} =$  Gaussian approximation to the likelihood 3)  $\rho \propto \pi \cdot \rho_{\text{MLE}}$

#### **New MATLAB Function**

- Developed function BayesianInference that automatically estimates the unknown parameters  $\hat{\beta}$  using GAIL (Choi Et al, 2015)
- User inputs error tolerance, d,  $\rho(b)$ , and more

#### **Uniform s-Data**

M = 100; %number of s-Data values
s = (6+2)\*rand(1,M)-2; % s-Data uniform in [-2,6]
dim=2; absTol=0.0005; n=5;
densityChoice = [true true true]; %Use all 3 densities
BayesianInference(M,s,dim,absTol,densityChoice,n)





#### Normal s-Data

M = 100; % number of s-Data values s = 2.\*randn(1,M)+2; % s-Data normal with mean and sd 2 dim=2; absTol=0.0005; n=5;

densityChoice = [true true true]; % Use all 3 densities
BayesianInference(M,s,dim,absTol,densityChoice,n)





#### Conclusions

- Each choice of  $\rho$  was successful in approximating posterior mean estimates within the desired tolerance level
- ullet The choice of  $\rho$  directly affects the time taken
- Further work should be done to improve the run time of BayesianInference and generalize the function to solve a greater variety of problems
- These results will be compared in detail to other methods used today, specifically Markov Chain Monte Carlo

#### References

- Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jimenez Rugama, Ll.A., Tong, X., Zhang, Y., Zhou, X. GAIL: Guaranteed Automatic Integration Library (version 2.1), MATLAB software, 2015.
- Hickernell, F.J., Jimenez Rugama, Ll.A., Li, D.
   Contemporary Computational Mathematics A
   Celebration of the 80th Birthday of Ian Sloan. Adaptive
   Quasi-Monte Carlo Methods for Cubature. pages 597-619,
   Springer-Verlag, 2018.