A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 1EC

Bookmark

Show all steps: ON

Problem

Prove the following for all integers a, b, c, d and all positive integers m and n:

If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Step-by-step solution

Step 1 of 3

Consider the congruence equation

 $a \equiv b \pmod{n}$

 $b \equiv c \pmod{n}$

Object of the problem is to prove that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$.

Comment

Step 2 of 3

Use the definition, $a \equiv b \pmod{n}$ iff n divides a - b to prove the result.

By the definition of congruence equation,

n divides a-b

n divides c-c

There are integers p and q such that

$$a-b = np$$

$$a = np + b$$

$$b-c = nq$$

$$b = nq + c$$

Comment

Step 3 of 3

Substitute b = nq + c in a = np + b.

$$a = np + (nq + c)$$
$$a = n(p+q) + c$$

$$a-c=n(p+q)$$

Thus, n divides a-c

Again by the definition, $a \equiv c \pmod{n}$.

Therefore, if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$.

Comment