Estimation of Population Parameters

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Plan

- 1. Random sampling
- 2. The bias
- 3. The standard error
- 4. The law of large numbers
- 5. The central limit theorem
- 6. Confidence intervals
- 7. The bootstrap

Random sampling

Controlled scenario: True population with N := 4,082 individuals

Heights: h_1, h_2, \ldots, h_N

Goal: Estimate population mean

$$\mu_{\mathsf{pop}} := \frac{1}{N} \sum_{i=1}^{N} h_i = 175.6$$

Challenge: We cannot measure everyone

Solution: Choose a random subset

400 random samples

Sample mean = 175.5 ($\mu_{pop} = 175.6$)

400 random samples

Sample mean = 175.2 ($\mu_{pop} = 175.6$)

400 random samples

Sample mean = 176.1 ($\mu_{pop} = 175.6$)

Sample means of 10,000 subsets of size 400

Goal: Characterize probabilistic behavior of sample mean

Random sampling

Population: a_1, a_2, \ldots, a_N

Random indices:
$$\tilde{k}_1$$
, \tilde{k}_2 , ..., \tilde{k}_n

$$P\left(\tilde{k}_j = i\right) = \frac{1}{N}$$
 $1 \le i \le N, \ 1 \le j \le n$

Random samples
$$\tilde{x}_1$$
, \tilde{x}_2 , ..., \tilde{x}_n

$$\tilde{x}_j = a_{\tilde{k}_j}$$
 $1 \le j \le n$

Sample mean

Modeled as a random variable

$$\tilde{m} := \frac{1}{n} \sum_{i=1}^{n} \tilde{x}_{i}$$

Estimation of population parameters

Frequentist perspective

The parameter of interest is deterministic

Goal: Characterize probabilistic behavior of estimator

The bias

Is the estimator centered at the parameter?

The bias

Random measurements: $\tilde{x}_1, \, \tilde{x}_2, \, \ldots, \, \tilde{x}_n$

Deterministic parameter of interest: $\gamma \in \mathbb{R}$

Estimator: $h(\tilde{x}_1, \dots, \tilde{x}_n)$

The bias of the estimator is the mean of the error

$$\mathsf{Bias} = \mathrm{E}\left[h(\tilde{x}_1,\ldots,\tilde{x}_n) - \gamma\right]$$

If $\mathrm{E}\left[h(\tilde{x}_1,\ldots,\tilde{x}_n)\right]=\gamma$, the estimator is unbiased

The sample mean is unbiased

Is an unbiased estimator enough?

Standard error

The standard error of the estimator is its standard deviation

$$\begin{split} \text{se}\left[h(\tilde{x}_1,\ldots,\tilde{x}_n)\right] &:= \sqrt{\operatorname{Var}\left[h(\tilde{x}_1,\ldots,\tilde{x}_n)\right]} \\ &= \sqrt{\operatorname{E}\left[\left(h(\tilde{x}_1,\ldots,\tilde{x}_n) - \gamma\right)^2\right]} \end{split}$$

Standard error of the sample mean

$$\operatorname{se}\left[\widetilde{m}\right] = \frac{\sigma_{\mathsf{pop}}}{\sqrt{n}}$$

No dependence on *N*!

Height data: n = 20

$$\mu_{\mathrm{pop}} := 175.6~\mathrm{cm},~\sigma_{\mathrm{pop}} = 6.85~\mathrm{cm}$$

10⁴ sample means

n = 100

 $\mu_{\mathrm{pop}} := 175.6 \mathrm{~cm},~\sigma_{\mathrm{pop}} = 6.85 \mathrm{~cm}$

10⁴ sample means

n = 1,000

 $\mu_{\mathrm{pop}} := 175.6 \mathrm{~cm}, \ \sigma_{\mathrm{pop}} = 6.85 \mathrm{~cm}$

10⁴ sample means

Height data

Convergence in probability

Probability of deviating by $\boldsymbol{\epsilon}$

$$p_n := P(|\widetilde{m}_n - \mu_{\mathsf{pop}}| > \epsilon)$$

$$p_1, p_2, p_3, p_4, \dots$$

Chebyshev's inequality

A random variable with small variance cannot be far from its mean $\boldsymbol{\mu}$ with high probability

Law of large numbers

If \tilde{x}_1 , \tilde{x}_2 , . . . are independent random variables with mean μ and variance σ^2

$$\tilde{m}_n := \frac{1}{n} \sum_{i=1}^n \tilde{x}_i$$

$$P(|\tilde{m}_n - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$

Converges to zero for any ϵ !

Consistency

Random measurements: \tilde{x}_1 , \tilde{x}_2 , ..., \tilde{x}_n

Deterministic parameter of interest: $\boldsymbol{\gamma}$

An estimator $h(\tilde{x}_1,\dots,\tilde{x}_n)$ is consistent if for any $\epsilon>0$

$$\lim_{n\to\infty} P(|h(\tilde{x}_1,\ldots,\tilde{x}_n)-\gamma|>\epsilon)=0$$

The sample mean is consistent

Chebyshev bound

$$P(|\tilde{m}_n - \mu_{pop}| > \epsilon) \le \frac{\sigma_{pop}^2}{n\epsilon^2}$$

Is this a good approximation?

No!

Goal

Approximate the distribution of the sample mean

$$\tilde{m}_n := \frac{1}{n} \sum_{i=1}^n \tilde{x}_i$$

Sum of independent discrete random variables

Independent discrete random variables \tilde{a} and \tilde{b} with integer values

The pmf of $\tilde{s} = \tilde{a} + \tilde{b}$ is

$$p_{\tilde{s}}(s) = \sum_{a=-\infty}^{\infty} p_{\tilde{a}}(a) p_{\tilde{b}}(s-a) = p_{\tilde{a}} * p_{\tilde{b}}(s)$$

Independent discrete random variables $\tilde{a}_1, \ \tilde{a}_2, \ \ldots, \ \tilde{a}_n$ with integer values

The pmf of $\tilde{s}_n = \sum_{i=1}^n \tilde{a}_i$ is

$$p_{\tilde{s}_n}(s) = p_{\tilde{a}_1} * p_{\tilde{a}_2} * \cdots * p_{\tilde{a}_n}(s)$$

Soccer league: 1 game

Soccer league: 2 games

Soccer league: 3 games

Soccer league: 4 games

Soccer league: 5 games

Soccer league: 6 games

Soccer league: 7 games

Soccer league: 8 games

Soccer league: 9 games

Soccer league: 2 games

Soccer league: 3 games

Soccer league: 4 games

Soccer league: 5 games

Soccer league: 6 games

Soccer league: 7 games

Soccer league: 8 games

Soccer league: 9 games

Sum of independent continuous random variables

Independent continuous random variables \tilde{a} and \tilde{b}

The pdf of $\tilde{s} = \tilde{a} + \tilde{b}$ is

$$f_{\tilde{s}}(s) = \int_{a=-\infty}^{\infty} f_{\tilde{a}}(a) f_{\tilde{b}}(s-a) da$$

$$= f_{\tilde{a}} * f_{\tilde{b}}(s)$$

Independent continuous random variables \tilde{a}_1 , \tilde{a}_2 , ..., \tilde{a}_n

The pdf of $\tilde{s}_n = \sum_{i=1}^n \tilde{a}_i$ is

$$f_{\tilde{s}_n}(s) = f_{\tilde{a}_1} * f_{\tilde{a}_2} * \cdots * f_{\tilde{a}_n}(s)$$

Sample mean

Independent continuous random variables $\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n$

$$\tilde{m}_n := \frac{1}{n} \tilde{s}_n = \frac{1}{n} \sum_{i=1}^n \tilde{a}_i$$

$$f_{\widetilde{m}_n}(m) = n \left(f_{\widetilde{a}_1} * f_{\widetilde{a}_2} * \cdots * f_{\widetilde{a}_n} \right) (nm)$$

Purchased coffee: 1 supplier

Purchased coffee: 2 suppliers

Purchased coffee: 3 suppliers

Purchased coffee: 4 suppliers

Purchased coffee: 5 suppliers

Purchased coffee: 6 suppliers

Purchased coffee: 2 suppliers

Purchased coffee: 3 suppliers

Purchased coffee: 4 suppliers

Purchased coffee: 5 suppliers

Purchased coffee: 6 suppliers

Central limit theorem

Population mean: μ_{pop} Population variance: σ^2_{pop}

Random samples: \tilde{x}_1 , \tilde{x}_2 , ..., \tilde{x}_n

$$\widetilde{m}_n := \frac{1}{n} \sum_{i=1}^n \widetilde{x}_i$$

$$\mathrm{E}\left[\tilde{m}_{n}\right]=\mu_{\mathsf{pop}}$$

$$\operatorname{se}\left[\widetilde{m}_{n}\right] = \frac{\sigma_{\mathsf{pop}}}{\sqrt{n}}$$

As $n \to \infty$ \tilde{m}_n converges in distribution to a Gaussian with mean μ_{pop} and standard deviation se $[\tilde{m}_n]$

Height data: n = 20

$$\mu_{\mathrm{pop}} := 175.6 \mathrm{~cm},~\sigma_{\mathrm{pop}} = 6.85 \mathrm{~cm}$$

Height data: n = 100

$$\mu_{\mathrm{pop}} := 175.6 \mathrm{~cm},~ \sigma_{\mathrm{pop}} = 6.85 \mathrm{~cm}$$

Height data: n = 1,000

$$\mu_{\rm pop}:=$$
 175.6 cm, $\sigma_{\rm pop}=$ 6.85 cm

Chebyshev bound

$$P(|\tilde{m}_n - \mu_{pop}| > \epsilon) \le \frac{\sigma_{pop}^2}{n\epsilon^2}$$

Terrible approximation...

Do we get a better approximation from the central limit theorem?

Much better

How can we exploit this to quantify uncertainty?

Confidence interval

Main idea: Report a range of values that contain parameter with high probability (e.g. 95%)

Confidence interval for the population mean

$$\widetilde{\mathcal{I}}_{1-\alpha} := \left[\tilde{\textit{m}} - \frac{\textit{c}_{\alpha} \sigma_{\mathsf{pop}}}{\sqrt{\textit{n}}}, \tilde{\textit{m}} + \frac{\textit{c}_{\alpha} \sigma_{\mathsf{pop}}}{\sqrt{\textit{n}}} \right]$$

$$\widetilde{\mathcal{I}}_{0.95} := \left[\widetilde{m} - rac{1.96\sigma_{\mathsf{pop}}}{\sqrt{n}}, \widetilde{m} + rac{1.96\sigma_{\mathsf{pop}}}{\sqrt{n}}
ight]$$

We don't know $\sigma_{pop}!$

Solution: Use sample standard deviation or an upper bound

Height data: n = 20

 $\mu_{\mathrm{pop}} := 175.6 \mathrm{\ cm},\ \sigma_{\mathrm{pop}} = 6.85 \mathrm{\ cm}$

Total population N := 4,082

0.95 confidence intervals (n = 20)

Height data: n = 100

 $\mu_{\mathrm{pop}} :=$ 175.6 cm, $\sigma_{\mathrm{pop}} =$ 6.85 cm

Total population N := 4,082

0.95 confidence intervals (n = 100)

Confidence interval for the population mean

$$\widetilde{\mathcal{I}}_{1-lpha} := \left[\tilde{m} - rac{c_{lpha} \sigma_{\mathsf{pop}}}{\sqrt{n}}, \tilde{m} + rac{c_{lpha} \sigma_{\mathsf{pop}}}{\sqrt{n}}
ight]$$

$$\widetilde{\mathcal{I}}_{0.95} := \left[\tilde{m} - rac{1.96 \sigma_{\mathsf{pop}}}{\sqrt{n}}, \tilde{m} + rac{1.96 \sigma_{\mathsf{pop}}}{\sqrt{n}}
ight]$$

What if we don't know formula for standard error?

Challenge

 $How \ to \ estimate \ standard \ error \ computationally?$

Sample from the data, as if it were the population

The bootstrap

Samples: $X := \{x_1, \dots, x_n\}$

Bootstrap indices: \tilde{k}_1 , \tilde{k}_2 , ..., \tilde{k}_n

Sampled independently and uniformly with replacement

$$P\left(\tilde{k}_j=i\right)=\frac{1}{n}$$
 $1\leq i,j\leq n$

Bootstrap samples: $\tilde{b}_1, \ldots, \tilde{b}_n$

$$\tilde{b}_j = x_{\tilde{k}_j} \qquad 1 \le j \le n$$

Bootstrap standard error

The bootstrap standard error of h is

$$\operatorname{\mathsf{se}}_{\mathsf{bs}} = \sqrt{\operatorname{Var}\left[h(\tilde{b}_1, \tilde{b}_2, \dots, \tilde{b}_n)\right]}$$

Bootstrap samples

Bootstrap sample mean: 175.3

Bootstrap samples

Bootstrap sample mean: 176.6

Bootstrap samples

Bootstrap sample mean: 176.2

Distribution of bootstrap samples

Bootstrap standard error: 0.339 (True standard error: 0.343)

Bootstrap Gaussian confidence interval

1- α bootstrap Gaussian confidence interval

$$\mathcal{I}^{\mathsf{BSG}}_{1-\alpha} := \left[\mathit{h}(X) - \mathit{c}_{\alpha} \mathsf{se}_{\mathsf{bs}}, \mathit{h}(X) + \mathit{c}_{\alpha} \mathsf{se}_{\mathsf{bs}} \right] \qquad \mathit{c}_{\alpha} := \mathit{F}_{\tilde{\mathit{z}}}^{-1} \left(1 - \frac{\alpha}{2} \right)$$

$$\widetilde{\mathcal{I}}_{0.95} := [h(X) - 1.96 \, \mathrm{se}_{\mathrm{bs}}, h(X) + 1.96 \, \mathrm{se}_{\mathrm{bs}}]$$

Population correlation coefficient: 0.718

100 samples

Sample correlation coefficient: $\rho_{\text{sample}} = 0.727$

Bootstrap Gaussian confidence intervals

Coverage: 93.7% (out of 10⁴)

25 samples

Sample correlation coefficient: $\rho_{\text{sample}} = 0.842$

Distribution of sample correlation coefficient (n := 25)

Distribution of sample correlation coefficient (n := 100)

True vs bootstrap distribution

Height (cms)

Bootstrap percentile confidence interval

Samples: $X := \{x_1, \dots, x_n\}$

Estimator: $h(x_1, \ldots, x_n)$

Bootstrap samples: \tilde{b}_1 , \tilde{b}_2 , ..., \tilde{b}_n

Bootstrap percentiles

$$P\left(h(\tilde{b}_1, \tilde{b}_2, \dots, \tilde{b}_n) \le q_{\alpha/2}\right) = \frac{\alpha}{2}$$

$$P\left(h(\tilde{b}_1, \tilde{b}_2, \dots, \tilde{b}_n) \le q_{1-\alpha/2}\right) = 1 - \frac{\alpha}{2}$$

1- α bootstrap percentile confidence interval

$$\mathcal{I}_{1-lpha}^{\mathsf{BSP}} := [q_{lpha/2}, q_{1-lpha/2}]$$

Bootstrap confidence intervals

What have we learned

- 1. Random sampling
- 2. The bias
- 3. The standard error
- 4. The law of large numbers
- 5. The central limit theorem
- 6. Confidence intervals
- 7. The bootstrap