Translating HOL to Dedukti

Ali Assaf 1,2 and Guillaume Burel 3

¹Inria Paris-Rocquencourt ²Ecole Polytechnique ³ENSIIE/Cédric

> PxTP 2015 Aug 3, 2015

Outline

- 1 Introduction
- 2 HOL
- 3 Translation
- 4 Implementation

This talk

Dedukti

■ Type-checker for the $\lambda\Pi$ -calculus modulo rewriting

```
dependent types + rewriting
```

- Logical framework
- Universal proof checker:
 - HOL: HOL Light, HOL4, ProofPower
 - CIC: Coq, Matita
 - First-order provers: Zenon (modulo), iProver (modulo)
 - SMT solvers: VeriT

$\lambda\Pi$ -calculus modulo rewriting

Syntax

```
terms M, N, A, B := x \mid M \mid N \mid \lambda x : A \cdot M \mid \Pi x : A \cdot B \mid Type
contexts \Sigma, \Gamma := \varnothing \mid \Gamma, x : A \mid \Gamma, M \longmapsto N
```

$\lambda\Pi$ -calculus modulo rewriting

Syntax

terms
$$M, N, A, B := x \mid M N \mid \lambda x : A . M \mid \Pi x : A . B \mid Type$$

contexts $\Sigma, \Gamma := \varnothing \mid \Gamma, x : A \mid \Gamma, M \longmapsto N$

Main judgement

$$\Gamma \vdash M : A$$

$\lambda\Pi$ -calculus modulo rewriting

Syntax

terms
$$M, N, A, B := x \mid M \mid N \mid \lambda x : A \cdot M \mid \Pi x : A \cdot B \mid Type$$

contexts $\Sigma, \Gamma := \varnothing \mid \Gamma, x : A \mid \Gamma, M \longmapsto N$

Main judgement

$$\Gamma \vdash M : A$$

Typing modulo computation

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathbf{Type} \qquad A \equiv_{\beta \Gamma} B}{\Gamma \vdash M : B}$$

Curry-Howard correspondence

Curry-Howard correspondence

$$\Gamma \vdash_{\mathcal{L}} A \iff \llbracket \Gamma \rrbracket \vdash_{\lambda_{\mathcal{L}}} M : \llbracket A \rrbracket$$

Curry-Howard correspondence

Curry-Howard correspondence

$$\Gamma \vdash_{\mathcal{L}} A \iff \llbracket \Gamma \rrbracket \vdash_{\lambda_{\mathcal{L}}} M : \llbracket A \rrbracket$$

Examples:

Propositional logic	Simply typed λ -calculus
First-order logic	λ Π-calculus
Second-order logic	System F
Classical logic	λ -calculus with call-cc

Logical framework

Logical framework approach

$$\Gamma \vdash_{\mathcal{L}} A \iff \Sigma_{\mathcal{L}}, \llbracket \Gamma \rrbracket \vdash_{\mathit{LF}} M : \llbracket A \rrbracket$$

Logical framework

Logical framework approach

$$\Gamma \vdash_{\mathcal{L}} A \iff \Sigma_{\mathcal{L}}, \llbracket \Gamma \rrbracket \vdash_{\mathit{LF}} M : \llbracket A \rrbracket$$

Examples:

- Twelf: $\lambda\Pi$ -calculus ($\lambda\Pi$, LF, λP)
- **Dedukti**: $\lambda\Pi$ -calculus modulo rewriting ($\lambda\Pi R$)

Why use a logical framework?

- Independent proof checking
- Better understanding of logics
- Interoperability (see next talk)

Outline

- 1 Introduction
- 2 HOL
- 3 Translation
- 4 Implementation

HOL

- Family of provers based on **simple type theory** (Church 1940):
 - HOL Light, HOL4, Isabelle, ProofPower, Hol Zero
- Large formalizations:
 - Flyspeck: proof of Kepler conjecture
 - seL4: verified OS kernel
- Similar implementations
 - LCF architecture

- Programmed in ML
- A theorem is represented as an abstract datatype thm

- Programmed in ML
- A theorem is represented as an abstract datatype thm
 - lacksquare \Longrightarrow More safety \checkmark

- Programmed in ML
- A theorem is represented as an abstract datatype thm
 - ⇒ More safety ✓
 - ⇒ Less memory footprint (no proof objects) ✓

- Programmed in ML
- A theorem is represented as an abstract datatype thm
 - ⇒ More safety ✓
 - ⇒ Less memory footprint (no proof objects) ✓
 - $\blacksquare \implies$ Harder to communicate proofs X

- Programmed in ML
- A theorem is represented as an abstract datatype thm
 - ⇒ More safety ✓
 - ⇒ Less memory footprint (no proof objects) ✓
 - \blacksquare \Longrightarrow Harder to communicate proofs X
- Proof retrieval
 - OpenTheory
 - Kaliszyk & Krauss
 - (Common HOL)

OpenTheory (Hurd 2011)

- "Listen" to the kernel and record the proof trace
- Advantages of using OpenTheory:
 - Supports multiple provers (HOL Light, HOL4, ProofPower)
 - Well-documented proof format
 - Standard library of theorems

Outline

- 1 Introduction
- 2 HOL
- 3 Translation
- 4 Implementation

Embedding HOL types in $\lambda\Pi$

In HOL:

$$\mathsf{types} \; := \; \mathsf{bool} \mid A \to B$$

Embedding HOL types in $\lambda\Pi$

In HOL:

types := bool
$$|A \rightarrow B|$$

In Dedukti:

htype : **Type** bool : htype

 $\mathsf{arrow} \quad : \quad \mathsf{htype} \to \mathsf{htype} \to \mathsf{htype}$

Embedding HOL types in $\lambda\Pi$

In HOL:

types := bool |
$$A \rightarrow B$$

In Dedukti:

htype : **Type** bool : htype

arrow : $\mathsf{htype} \to \mathsf{htype} \to \mathsf{htype}$

Translation:

[bool] = bool

$$[A \rightarrow B]$$
 = arrow $[A]$ $[B]$

Embedding HOL terms in $\lambda\Pi$

In HOL:

terms
$$:= x \mid \lambda x : A . M \mid M N \mid (=_A)$$

Embedding HOL terms in $\lambda\Pi$

In HOL:

terms :=
$$x \mid \lambda x : A . M \mid M N \mid (=_A)$$

In Dedukti:

hterm : htype \rightarrow **Type**

 $\mathsf{lam} \qquad : \quad \mathsf{\Pi} a : \mathsf{htype} \, . \, \mathsf{\Pi} b : \mathsf{htype} \, . \, \big(\mathsf{hterm} \, a \to \mathsf{hterm} \, b\big) \to \mathsf{hterm} \, \big(\mathsf{arrow} \, a \, b\big)$

app : Πa : htype . Πb : htype . hterm (arrow a b) o hterm a o hterm b

eq : Πa : htype. hterm $a \rightarrow$ hterm bool

Embedding HOL terms in $\lambda\Pi$

In HOL:

terms :=
$$x \mid \lambda x : A . M \mid M N \mid (=_A)$$

In Dedukti:

hterm : htype \rightarrow **Type**

lam : Πa : htype . Πb : htype . (hterm $a \to h$ term $b \to h$ term (arrow $a b \to h$ term $b \to h$ term

eq : Πa : htype . hterm $a \rightarrow$ hterm $a \rightarrow$ hterm bool

Translation:

```
[x] = x

[\lambda x : A . M] = lam[A][B](\lambda x . [M])

[M N] = app[A][B][M][N]

[(=_A)] = eq[A]
```

Term translation example

Example

The term

$$(\lambda x : bool.x) y$$

is translated to

app bool bool (lam bool bool ($\lambda x . y$)) y

Term translation example

Example

The term

$$(\lambda x : bool.x) y$$

is translated to

app bool bool (lam bool bool ($\lambda x . y$)) y

which is not equivalent to y!

Embeddings in $\lambda\Pi$

Representing types as objects allows higher-order reasonning...

 Πa : htype. hterm $a \rightarrow$ hterm bool

... but does not preserve computation:

$$[(\lambda x : \mathsf{bool} \, . \, x) \, y] \not\equiv_{\beta} [y]$$

Add a rewrite rule:

 $\mathsf{hterm}\,(\mathsf{arrow}\,a\,b)\,\longmapsto\,\mathsf{hterm}\,a\to\mathsf{hterm}\,b$

Add a rewrite rule:

 $hterm(arrow a b) \equiv hterm a \rightarrow hterm b$

Add a rewrite rule:

 $\mathsf{hterm}\,(\mathsf{arrow}\,a\,b) \;\equiv\; \mathsf{hterm}\,a \to \mathsf{hterm}\,b$

```
 [x] = x 
 [\lambda x : A . M] = \lambda x : \text{hterm } [A] . [M] 
 [M N] = [M] [N] 
 [(=_A)] = \text{eq } [A]
```

Example

The term

$$(\lambda x : bool.x) y$$

is translated to

 $(\lambda x : \mathsf{hterm} \, \mathsf{bool} \, . \, x) \, y$

Example

The term

 $(\lambda x : bool.x) y$

is translated to

 $(\lambda x : \mathsf{hterm} \, \mathsf{bool} \, . \, x) \, y$

which reduces to y!

Example

The term

$$(\lambda x : bool.x) y$$

is translated to

$$(\lambda x : \text{hterm bool } . x) y$$

which reduces to y!

- More compact
- Preserves computation

 $\frac{}{\vdash M = M} \text{ Refl} \qquad \frac{}{\{\phi\} \vdash \phi} \text{ Assume} \qquad \frac{}{\vdash (\lambda x : A . M) \ x = M} \text{ Beta}$

$$\frac{\Gamma \vdash M = N}{\Gamma \vdash \lambda x : A . M = \lambda x : A . N}$$
AbsThm

$$\frac{\Gamma \vdash F = G \qquad \Delta \vdash M = N}{\Gamma \cup \Delta \vdash F M = G N} \text{ AppThm}$$

$$\frac{\Gamma \vdash \phi \qquad \Delta \vdash \psi}{(\Gamma - \{\psi\}) \cup (\Delta - \{\phi\}) \vdash \phi = \psi} \text{ DeductAntiSym}$$

$$\frac{\Gamma \vdash \phi = \psi \qquad \Delta \vdash \phi}{\Gamma \cup \Delta \vdash \psi} \text{ EqMp} \qquad \frac{\Gamma \vdash \phi}{\sigma \left(\Gamma\right) \vdash \sigma \left(\phi\right)} \text{ Subst}$$

Derivation rules in Dedukti

Refl : $\Pi \alpha$: httppe . Πx : hterm α . proof (eq $\alpha x x$)

 $\mathsf{AbsThm} \quad : \quad \mathsf{\Pi}\alpha,\beta : \mathsf{htype}\,.\,\mathsf{\Pi}f,\mathsf{g} : \mathsf{hterm}\,\big(\mathsf{arrow}\,\alpha\,\beta\big)\,.$

 $(\Pi x : \mathsf{hterm}\, \alpha \, . \, \mathsf{proof}\, (\mathsf{eq}\, \beta \, (f\, x) \, (g\, x))) \to$

proof (eq (arrow $\alpha \beta$) f g)

AppThm : $\Pi \alpha, \beta$: httppe. $\Pi f, g$: hterm (arrow $\alpha \beta$). $\Pi x, y$: hterm α .

 $\mathsf{proof}\left(\mathsf{eq}\left(\mathsf{arrow}\,\alpha\,\beta\right)\,f\,g\right)\to\mathsf{proof}\left(\mathsf{eq}\,\alpha\,x\,y\right)\to$

 $\operatorname{proof}\left(\operatorname{eq}\beta\left(f\,x\right)\,\left(g\,y\right)\right)$

EqMp : ...

. . .

Soundness and completeness

Theorem

For any Γ , A,

$$\Gamma \vdash_{\textit{HOL}} A \iff \exists \textit{M}. \ \Sigma_{\textit{HOL}}, \llbracket \Gamma \rrbracket \vdash_{\lambda \sqcap R} \textit{M} : \llbracket A \rrbracket \ .$$

where [A] = hterm[A].

Proof.

- ⇒ by Cousineau and Dowek (TLCA 2007),
- ← by Assaf (TLCA 2015).

Outline

- 1 Introduction
- 2 HOL
- 3 Translation
- 4 Implementation

Holide

- Implemented in OCaml (~1000 lines)
- Optimizations:
 - Proof and term sharing (similar to Kaliszyk & Krauss 2013)
 - Free variable elimination

Proof size

Example

A proof of t + t = u + u:

let $p = \dots$ (* A very large proof of t = u *) in appThm (appThm (refl (+)) p p)

$$\frac{\overline{(+) = (+)} \operatorname{Refl} \qquad \frac{\pi}{t = u}}{(+) t = (+) u} \operatorname{AppThm} \qquad \frac{\pi}{t = u}}{(+) t t = (+) u u} \operatorname{AppThm}$$

Need proof sharing!

Proof sharing

Share common subproofs

```
step1 : proof (t = u) := ...
step2 : proof ((+) = (+)) := refl q.
step3 : proof ((+) t = (+) u) :=
  appThm step2 step1.
step4 : proof ((+) t t = (+) u u) :=
  appThm step3 step1.
```

- Already provided by OpenTheory
- Going further: our own factorization
- Needs lambda lifting

Proof sharing

Share common subproofs

```
step1 : proof (t = u) := ...
step2 : proof ((+) = (+)) := refl q.
step3 : proof ((+) t = (+) u) :=
   appThm step2 step1.
step4 : proof ((+) t t = (+) u u) :=
   appThm step3 step1.
```

- Already provided by OpenTheory
- Going further: our own factorization
- Needs lambda lifting
- Can be extended to terms and types

Translation process

Results

Size (k	В)	Time (s)		
`	•		` '	
5	13	0.2	0	
16	53	0.3	0.2	
38	121	0.8	0.5	
49	154	0.9	0.5	
84	296	2.1	1.1	
93	320	2.2	1.2	
161	620	4.6	2.8	
239	827	5.7	3.2	
286	945	6.5	3.1	
343	1065	6.8	3.2	
389	1462	10.2	5.8	
1702	4877	40.3	21.6	
	OpenTheory 5 16 38 49 84 93 161 239 286 343 389	5 13 16 53 38 121 49 154 84 296 93 320 161 620 239 827 286 945 343 1065 389 1462	OpenTheory Dedukti Translation 5 13 0.2 16 53 0.3 38 121 0.8 49 154 0.9 84 296 2.1 93 320 2.2 161 620 4.6 239 827 5.7 286 945 6.5 343 1065 6.8 389 1462 10.2	

Conclusion

- Holide: scalable translation of HOL to Dedukti
- Using OpenTheory as frontend
- Translation of standard library

https://www.rocq.inria.fr/deducteam/Holide/

Conclusion

- Holide: scalable translation of HOL to Dedukti
- Using OpenTheory as frontend
- Translation of standard library

https://www.rocq.inria.fr/deducteam/Holide/

Thank you!

to be continued ;-)

Computation embeddings

Compress proofs of conversion:

$$\frac{\frac{-f - f}{F - f} \text{ Refl} \qquad \frac{\frac{-g - g}{F - g} \text{ Refl} \qquad \frac{-g - g}{F - g} \frac{\text{Beta}}{F - g} \text{ AppThm}}{F - g - g} + \frac{-g - g}{F - g} \frac{\text{Refl}}{F - g} + \frac{-g - g}{F} + \frac{-g - g}{F}$$

can be translated simply as Refl B(f(g x)).

- Give computational meaning to HOL:
 - Intuitionistic version (\Rightarrow and \forall instead of =)
 - Better interoperability with Coq (see next talk)

Related work

	Target	Translation tool	Scalable	Type theory
Appel	Twelf			✓
Naumov et al. (2001)	NuPRL	✓		✓
Schürmann & Stehr (2006)	NuPRL	✓		✓
Obua & Skalberg (2006)	Isabelle/HOL	✓		
Rabe (2010)	LF			✓
Keller & Werner (2010)	Coq	✓		✓
Kaliszyk & Krauss (2013)	Isabelle/HOL	√	✓	
Assaf & Burel (2015)	Dedukti	✓	✓	✓