

GEOS 639 – INSAR AND ITS APPLICATIONS GEODETIC IMAGING AND ITS APPLICATIONS IN THE GEOSCIENCES

Lecturer:

Franz J Meyer, Geophysical Institute, University of Alaska Fairbanks, Fairbanks; fimeyer@alaska.edu

Lecture 5: Interferometric SAR Techniques - Concepts

Think - Pair - Share

What is the stuff you see in these interferograms (sites 1-3)?

THE GENERAL CONCEPTS OF INTERFEROMETRIC SAR (INSAR)

Different Components of the SAR Measurement

SAR Systems record **Amplitude** and **Phase** of the reflected **polarized** microwave signals

SAR Interferometry

... combines two or more complex-valued SAR images to derive more information about the imaged objects (compared to using a single image) by exploiting phase differences.

⇒ Images must differ in at least one aspect (= "baseline")

baseline type	known as	applications: measurement of
$\Delta heta$	across-track	topography, DEMs
$\Delta t = \text{ms}$ to s	along-track	ocean currents, moving object detection, MT
$\Delta t = \text{days}$	differential	glacier/ice fields/lava flows, SWE, hydrology
$\Delta t = \text{days}$ to years	differential	subsidence, seismic events volcanic activities, crustal displacements
$\Delta t = \text{ms}$ to years	coherence estimator	sea surface decorrelation times land cover classification

What is the Phase of a Radar Signal

- A radar transmits electromagnetic waves in the radar spectrum
- The following schematic sketch illustrates a propagating radar wave

Distance = 3 full periods + a fraction of a period

The length of the fractional period is described by the term "Phase"

Phase Representation

Phase is always ambiguous w.r.t. integer multiples of 2π

pictorial representation of phase:

grey value

color wheel

Interferometric SAR Measures Phase Differences Between Repeated Observations to Measure Topography and Deformation

The Concept of Interferometric SAR (InSAR)

 Calculation of Phase Difference between Pairs of Radar Remote Sensing Images acquired from similar vantage points

The Concept of Interferometric SAR (InSAR)

 Calculation of Phase Difference between Pairs of Radar Remote Sensing Images acquired from similar vantage points

Phase difference measurement (interferometric phase ϕ) is sensitive to:

Surface Topography $\phi(h, B, R, \theta)$

Example of a Spaceborne SAR Image

Cotopaxi Volcano, Ecuador

Example of the Corresponding Interferometric Phase Image

Cotopaxi Volcano, Ecuador

Data: SRTM @DL

InSAR-derived DEM, Cotopaxi Volcano, Ecuador

A SHORT EXCURSION INTO WAVE PROPAGATION, WAVE INTERFERENCE, AND COHERENCE

Wave Description of EM Signals

- Simplest way of describing a wave: Harmonic waves (= sine wave)
- Typically we use three parameters to describe harmonic waves:

$$\Psi(t) = \mathbf{A} \cdot \sin(2\pi \mathbf{f} t + \mathbf{\phi_0})$$

A Compact Way to Visualize Propagating EM Waves

- Imagine a propagating EM wave as a vector rotating in a plane
 - The length of the vector describes the amplitude of the signal
 - The orientation describes the phase of the signal
 - The rotation speed describes its frequency

This visualization is a handy way of thinking about propagating waves

Combination of Waves

- Superposition of waves called *interference* (e.g., two waves: $\psi = \psi_1 + \psi_2$)
- ullet As ψ_1 and ψ_2 can have different amplitude, frequency, and phase, the shape of ψ is not straightforward
 - Examples: A and f of waves kept the same; ϕ_0 can vary

Combination of Waves

- The result of interference can be easier calculated in the complex plane
- ullet In the complex plane, the addition of two waves ψ_1 and ψ_2 is simply their vector sum

Interference and Coherence

- Waves with phase differences that remain constant over time (or space) are said to be coherent
- Coherent waves → combined wave vector is stationary
- If coherence is low, interference effects are less predictable

Coherence can be seen as measure of predictability

HOW INSAR REALLY WORKS

Think - Pair - Share

InSAR, a differential technique (or, interference & coherence is back ... again):

- InSAR analyzes the phase difference between two or more SAR images in order to map surface topography and monitor surface deformation.
 - Q1: We have to rely on phase differences as the phase of a single SAR image appears spatially random and does not allow access to information. Use the concept of interference to explain why that is.
 - Q2: We calculate phase differences between SAR images to extract information about surface topography and/or deformation. For this approach to be successful, we require the data to have sufficient coherence. From your knowledge about coherence, explain how coherence affects this process.

Phase signature of a single SAR image

1. What is Contained in a SAR Image's Phase Signal

• Phase in a pixel of a SAR image is sum of two components:

- 1. A deterministic component that is a function of the distance R between satellite and pixel on ground $(\psi(R))$
- 2. A random phase change ψ_{scatt} caused by how all scattered signals from one pixel combine together

• Therefore, the phase signal measured in a SAR pixel is:

$$\psi = \psi(R) + \psi_{scatt}$$

• As ψ_{scatt} is different for every pixel (every pixel contains different combination of scatterers), the **phase in a single SAR image** ψ **looks random**

Example: Amplitude and Phase of a SAR Image of Mount Etna

UNIVERSITY OF ALASKA FAIRBANKS

2. Form Interferogram to Remove Random Phase ψ_{scatt}

 $R' = R + \Delta R$

phase of complex pixel in ...

... SAR image #1:
$$\psi_1 = -\psi(R) + \psi_{scatt,1}$$

... SAR image #2:
$$\psi_2 = -\psi(R + \Delta R) + \psi_{scatt,2}$$

Note:

Accurate Image co-registration is needed to successfully remove random phase ψ_{scatt}

More about that later!

Example: Form Interferogram to Remove Random Phase Component

UNIVERSITY OF ALASKA

3. Interferometric Phase ϕ as a Measurement of Angle

Note: Even for flat terrain: phase varies from near-range to

4. Subtraction of Flat Earth Phase

• Example:

ALOS PALSAR Interferogram near of Drift River Valley, AK (Baseline ~ 400m)

5. Coherence: A Phase Quality Descriptor

• Contributions to Phase Noise:

5. Coherence: A Phase Quality Descriptor

We can calculate coherence using the following approach:

$$|\hat{\gamma}[i,k]| = \frac{|\sum_{W} u_1[i,k] \cdot u_2^*[i,k]|}{\sqrt{\sum_{W} |u_1[i,k]|^2 \cdot \sum_{W} |u_2[i,k]|^2}}$$

W: small window centered around pixel [i, k]

- Coherence is an indicator for the level of noise in phase $\phi[i,k]$ of interferogram pixel [i,k]
- Coherence is defined between 0 (high phase noise) and 1 (low phase noise)
- Coherence can be converted to a phase standard deviation $\sigma_{\phi}[i,k]$

Coherence and Phase Noise - Theory

• How Coherence γ converts into phase standard deviation σ_ϕ depends on the number of looks N_L (how much we average)

Interferometric Coherence - Example

• This example compares interferometric phase quality and coherence side-by-side

What's Next?

- This is what awaits next:
 - InSAR for Topographic Mapping

- Preparatory Reading:
 - For this lecture, please continue to read (or re-read) up to the start of Section 3.3.1 in the following document (10 pages): <u>FerrettiBook Chapter3.pdf</u>

