A one-way fixed effects model looks like: $Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$ where the α_i represent fixed effects, e.g. specific treatments or groups.

One-way random effects model

$$Y_{ij} = \mu + A_i + \varepsilon_{ij}$$

where

 $i=1,\ldots,k$ indexes treatments (or groups) $j=1,\ldots,n$ indexes experimental units (plots) for each treatment $A_i \sim \mathcal{N}(0,\sigma_A^2)$ corresponds to the random effect (varying from group to group) $\varepsilon_{ij} \sim \mathcal{N}(0,\sigma_\varepsilon^2)$ corresponds to variation within each group

ANOVA table

Source	df	SS	MS	$\mathbb{E}(MS)$
Trts (Groups)	k-1	$n\sum_{\cdot}(\bar{y}_{i\cdot}-\bar{y}_{\cdot\cdot})^2$	MSTrt	$\sigma_{\varepsilon}^2 + n\sigma_A^2$
Error	k(n-1)	$\sum_{i,j}^{i} (y_{ij} - \bar{y}_{i\cdot})^2$	MSErr	$\sigma_{arepsilon}^2$
Total	kn-1	$\sum_{i,j} (y_{ij} - \bar{y}_{\cdot \cdot})^2$		

Notes

- The sums of squares are exactly the same as for the one-way fixed effects design.
- In the random effects model, the $\{A_i\}$ represent a sample from some population $\mathcal{N}(0, \sigma_A^2)$ which we are interested in.
- We test H_0 : $\sigma_A^2 = 0$ vs H_A : $\sigma_A^2 > 0$ using F = MSTrt/MSError, analogous to the fixed effects case.
- When the focus is on subsampling, the model is sometimes written

$$Y_{ij} = \mu + \varepsilon_i + \delta_{ij}$$
 where $\varepsilon_i \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$ and $\delta_{ij} \sim \mathcal{N}(0, \sigma_{\delta}^2)$.