

Основни свойства на магнитните материали

Материалознание

Въпрос 14

Съдържание

Основни понятия

Хистерезисен цикъл

Магнитна проницаемост

Загуби на енергия

Класификация

6.1. Видове загуби

Магнитни загуби – енергията, необходима за намагнитване в променливо поле и предизвикваща нагряване на материала.

Загуби от хистерезис – енергията, необходима за пренамагнитване на материала.

$$P_{\rm X} = 2fH_cB_{\rm s}$$

Загубите от хистерезис са пропорционални на площта, затворена от хистерезиса и честотата на променливото магнитно поле.

6.1. Видове загуби

Загуби от вихрови токове – дължат се на крайната проводимост на материала.

$$P_{\rm BT} = \frac{\pi d^2}{6\rho} (fB_{\rm s})^2$$

Загубите от вихрови токове са пропорционални на проводимостта на материала и квадрата на честотата на магнитното поле, поради което влияят основно при високи честоти.

Следователно за намаляване на тези загуби се избират магнитни материали с голямо специфично съпротивление или образец с подходяща форма (малка дебелина).

Допълнителни загуби – всички останали загуби, например от примеси, дефекти и др.

6.2. Еквивалентна схема

Комплексна магнитна проницаемост

$$\dot{\mu}_r = \mu_r + \mathbf{j}\mu_r''$$

Тангенс на ъгъла на магнитните загуби

$$tg\delta_{M} = \frac{\mu_{r}''}{\mu_{r}}$$

6.2. Еквивалентна схема

R_м – съпротивление на метала на намотката

$$L = \mu_0 \mu_r \frac{QN^2}{I} = \mu_r L_0$$

Еквивалентна схема

където Q е сечение на сърцевината, l – дължина на средната магнитна силова линия, N – брой навивки и L_0 – индуктивност на бобината без сърцевина.

6.2. Еквивалентна схема

Еквивалентна схема

$$tg\delta_{M} = \frac{U_{R}}{U_{L}} = \frac{R}{\omega L} = \frac{R_{X} + R_{BT} + R_{A}}{\omega L}$$

Векторна диаграма

 $R_{\rm X}$, $R_{\rm BT}$ и $R_{\rm D}$ са еквивалентни съпротивления на загубите съответно от хистерезис, вихрови токове и допълнителните загуби

7. Магнитострикция

Материалите с монокристална структура проявяват анизотропни свойства, което означава, че свойствата им не са еднакви във всички пространствени направления. Поради това в кристалните магнитни материали намагнитването се осъществява в различна степен в зависимост от посоката на магнитното поле спрямо кристалографската ориентация на кристала. Различават се посоки на леко, средно и трудно намагнитване. *Магнитострикция* — изменение на линейните размери на образеца при намагнитване.

8.1. Температура

Доменната структура на материалите съществува само, ако е изпълнено термодинамичното условие за минимална потенциална енергия.

Когато температурата нараства спонтанното намагнитване намалява, като при определена температура наречена точка на Кюри, то изчезва напълно и материалите губят доменната си структура.

Процесът е обратим и когато температурата спадане под точката на Кюри, доменната структура се възстановява и материалът възвръща магнитните си свойства, при което е напълно размагнитен.

8.1. Температура

Колкото точката на Кюри е по-близка до работната температура на материала, толкова той ще има по-големи стойности на μ_r , но ще бъдат силно температурно нестабилни (големи стойности на $\alpha_{\mu r}$).

От всички магнитни материали най-висока точка на Кюри има Со (T_K = 1131°C).

8.2. Честота на приложеното електромагнитно поле

Магнитно последействие – явление, определено от времето необходимо за намагнитване на материала (ориентиране надомените по посока на полето).

Резонанс – времето, необходимо за преместване на домените е съизмеримо с това на промяна на външното поле.

При високи честоти относителната магнитна проницаемост намалява, тъй като преместването на границите на домените не може да следва изменението на посоката на външното поле.

8.2. Честота на приложеното електромагнитно поле

С увеличаване на честотата загубите нарастват, като по-силно влияят загубите от вихрови токове.

При много високи честоти загубите намаляват, тъй като материалът вече не може да се намагнитва.

8.3. Постоянно магнитно поле

8.3. Постоянно магнитно поле

При еднакви амплитудни стойности на интензитета H_m , амплитудата на индукцията B_m е различна в зависимост от избраната постояннотокова работна точка.

Също така преместването на работната точка променя и магнитната проницаемост на материала.

9. Класификация на магнитните материали

Магнитна енергия, W – енергията необходима за размагнитване на материала.

На практика *W* се оценява по площта оградена от кривата на размагнитване или от израза:

$$W = \frac{1}{2}B.H$$

Според тази енергия магнитните материали се делят на магнитномеки и магнитнотвърди.

9. Класификация на магнитните материали

9.1. Магнитномеки материали

Магнитномеките материали имат:

- ✓ Малка магнитна енергия;
- ✓ Хистерезисен цикъл с малка площ;
- ✓ Малки загуби от хистерезис;
- ✓ Малък коерцитивен интензитет (H_c < 800 A/m);
- ✓ Голяма магнитна проницаемост.

Лесно се намагнитват до насищане и в слаби полета, като намагнитеното им състояние изчезва бързо след премахване на полето.

Използват се за магнитопроводи – сърцевини на дросели, трансформатори и др.

9. Класификация на магнитните материали

9.2. Магнитнотвърди материали

Магнитнотвърдите материали имат:

- ✓ Голяма магнитна енергия;
- ✓ Хистерезисен цикъл с голяма площ;
- ✓ Големи загуби от хистерезис;
- ✓ Голям коерцитивен интензитет ($H_c > 4 \text{ kA/m}$);
- ✓ Малка магнитна проницаемост.

Запазват дълго време намагнитеното си състояние, като се пренамагнитват само в много силни полета.

Използват се за постоянни магнити.