

ASSIGNMENT-MATRICES

2

Contents

1 Problem 1

2 Solution 1

3 Construction

1 Problem

Find the equation of the tangent and the normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

at the point (x_0, y_0) .

2 Solution

1. The give hyperbola equation can be represented as

$$\mathbf{x}^{\top} \mathbf{V} \mathbf{x} + 2\mathbf{u}^{\top} \mathbf{x} + f = 0$$

$$\mathbf{x}^{\top} \begin{pmatrix} \frac{1}{a^2} & 1\\ 0 & \frac{-1}{b^2} \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} 0 & 0 \end{pmatrix} \mathbf{x} - 1 = 0$$

2. Equation of tangent is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{\top}\mathbf{x} + \mathbf{u}^{\top}\mathbf{q} + f = 0$$

$$\begin{bmatrix} \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{-1}{b^2} \end{pmatrix} \begin{pmatrix} x_0 & y_0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{bmatrix}^{\top}$$

$$\mathbf{x} + \begin{pmatrix} 0 & 0 \end{pmatrix} q - 1 = 0$$

$$\begin{pmatrix} \frac{x_0}{a^2} & \frac{-y_0}{b^2} \end{pmatrix} \mathbf{x} = 1$$

Therefore equation of tangent is

$$\left(\frac{x_0}{a^2}\right)x - \left(\frac{y_0}{b^2}\right)y = 1$$

3. Equation of normal is

$$\mathbf{m}^{\top}(\mathbf{x} - \mathbf{p}) = 0 \tag{3}$$

$$\mathbf{m} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{n}$$

$$\mathbf{m} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{x_0}{a^2} \\ \frac{-y_0}{b^2} \end{pmatrix}$$
$$\mathbf{m} = \begin{pmatrix} \frac{y_0}{b^2} \\ \frac{x_0}{a^2} \end{pmatrix}$$
$$\mathbf{m}^{\top} = \begin{pmatrix} \frac{y_0}{b^2} & \frac{x_0}{a^2} \end{pmatrix} \tag{5}$$

Substituting the eq.5 in eq.3

$$\begin{pmatrix} \frac{y_0}{b^2} & \frac{x_0}{a^2} \end{pmatrix} \left[\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \right] = 0$$

$$\frac{y_0}{b^2} (x - x_0) + \frac{x_0}{a^2} (y - y_0) = 0$$

$$\frac{y_0}{b^2} (x - x_0) = -\frac{x_0}{a^2} (y - y_0)$$

$$\frac{x - x_0}{b^2 x_0} = -\frac{y - y_0}{a^2 y_0}$$

Therefore the equation of normal is

$$\frac{x - x_0}{b^2 x_0} + \frac{y - y_0}{a^2 y_0} = 0$$

Figure
3 Construction

The hyperbol is constructed with

Symbol	Co-ordinates	Description
P	$\begin{pmatrix} 2\sqrt{2} \\ 3 \end{pmatrix}$	point on the hyperbola
a	2	distance from the vertex to the center
b	3	distance perpendicular to the transverse axis from the vertex to the asymptote lines

(1)

(2)

(4)

The figure above is generated using python code provided in the below source code link.

https://github.com/sivagayathri /FWC/blob/main/matrices/conic/conic.py