Machine Learning

Justin Grimmer

Associate Professor Department of Political Science University of Chicago

February 21st, 2018

Measurement via repurposed discovery methods

- 1) Discovery categories, measure prevalence of categories
- 2) Once we fix interpretation, accuracy/precision/recall well defined

LDA Revisited

$$egin{array}{ll} m{ heta}_k & \sim & \mathsf{Dirichlet}(\mathbf{1}) \\ m{\pi}_i | m{lpha} & \sim & \mathsf{Dirichlet}(m{lpha}) \\ m{ au}_{im} | m{\pi}_i & \sim & \mathsf{Multinomial}(\mathbf{1}, m{\pi}_i) \\ m{ imes}_{im} | m{ heta}_k, au_{imk} = \mathbf{1} & \sim & \mathsf{Multinomial}(\mathbf{1}, m{ heta}_k) \end{array}$$

LDA Revisited

```
Unigram \mathsf{Model}_k \sim \mathsf{Dirichlet}(1)
\mathsf{Doc.} \ \mathsf{Prop}_i \sim \mathsf{Dirichlet}(\mathsf{Pop.} \ \mathsf{Proportion})
\mathsf{Word} \ \mathsf{Topic}_{im} \sim \mathsf{Multinomial}(1, \mathsf{Doc.} \ \mathsf{Prop}_i)
\mathsf{Word}_{im} \sim \mathsf{Multinomial}(1, \mathsf{Unigram} \ \mathsf{Model}_k)
```

LDA:

Pop. Proportion

LDA:

LDA:

LDA:

Dynamic Topic Model (Quinn et al 2010)

Dynamic Prior Across Days

Dynamic Topic Model (Quinn et al 2010)

Dynamic Topic Model (Quinn et al 2010)

Dynamic Topic Model (Quinn et al 2010)

Expressed Agenda Model (Grimmer 2010)

Average Attention Across Authors

Expressed Agenda Model (Grimmer 2010)

Average Attention Across Authors

Expressed Agenda Model (Grimmer 2010)

Expressed Agenda Model (Grimmer 2010)

Structural Topic Model (Roberts, Stewart, Airoldi 2014) $g({m W}, {m \gamma})$

R Code

8 / 47

Conditioning on Unknown Covariates → levels of mixtures at proportions (Grimmer 2013; Wallach 2008)

Mixture of Top. Attn. Models

Conditioning on Unknown Covariates → levels of mixtures at proportions (Grimmer 2013; Wallach 2008)

Strata Indic. Topic Attention Models

Conditioning on Unknown Covariates for Topics → hierarchy of topics (Li and McCallum 2006; Blaydes, Grimmer, and McQueen 2017)

Population attention

Why Encode Structure in Extensions of LDA?

Why Encode Structure in Extensions of LDA?

- Substantive reasons

- Substantive reasons
 - Additional structure corresponds to substantively interesting content

- Substantive reasons
 - Additional structure corresponds to substantively interesting content
 - Avoids potential ad-hoc secondary analysis

- Substantive reasons
 - Additional structure corresponds to substantively interesting content
 - Avoids potential ad-hoc secondary analysis
 - Clear data generating process

- Substantive reasons
 - Additional structure corresponds to substantively interesting content
 - Avoids potential ad-hoc secondary analysis
 - Clear data generating process
- Statistical reasons

- Substantive reasons
 - Additional structure corresponds to substantively interesting content
 - Avoids potential ad-hoc secondary analysis
 - Clear data generating process
- Statistical reasons
 - Smoothing → borrow information across groups intelligently

- Substantive reasons
 - Additional structure corresponds to substantively interesting content
 - Avoids potential ad-hoc secondary analysis
 - Clear data generating process
- Statistical reasons
 - Smoothing → borrow information across groups intelligently
 - Uncertainty → potential for better uncertainty estimates

- Substantive reasons
 - Additional structure corresponds to substantively interesting content
 - Avoids potential ad-hoc secondary analysis
 - Clear data generating process
- Statistical reasons
 - Smoothing → borrow information across groups intelligently
 - Uncertainty potential for better uncertainty estimates
 - Improved topics → small word conditions, structure could help

Plan for the Class

- Discuss model with unknown covariates for strata proportions presentational style
- 2) Discuss model with hierarchy of topics mirrors genre

Substantive problem:

Substantive problem:

Senators (representatives) regularly engage the public \rightarrow presentational style

But we know little about this engagement

Substantive problem:

Senators (representatives) regularly engage the public \rightarrow presentational style

But we know little about this engagement

Why? Hard to Measure

Substantive problem:

Senators (representatives) regularly engage the public \rightarrow presentational style

But we know little about this engagement

Why? Hard to Measure

Describe model that facilitates estimation of presentational styles in Senate press releases

Substantive problem:

Senators (representatives) regularly engage the public \rightarrow presentational style

But we know little about this engagement

Why? Hard to Measure

Describe model that facilitates estimation of presentational styles in Senate press releases

- Characterize representation provided to constituents

Substantive problem:

Senators (representatives) regularly engage the public \rightarrow presentational style

But we know little about this engagement

Why? Hard to Measure

Describe model that facilitates estimation of presentational styles in Senate press releases

- Characterize representation provided to constituents
- Divide attention over a set of topics

Substantive problem:

Senators (representatives) regularly engage the public \rightarrow presentational style

But we know little about this engagement

Why? Hard to Measure

Describe model that facilitates estimation of presentational styles in Senate press releases

- Characterize representation provided to constituents
- Divide attention over a set of topics
- Given attention to topics, write press releases

- $\pi_{itk} \equiv$ Attention senator *i* allocates to issue *k* in year *t*
- $\pi_{itk} \equiv$ Probability press release is about issue k
- $\boldsymbol{\pi}_{it} = (\pi_{it1}, \dots, \pi_{it44})$

- $\pi_{itk} \equiv$ Attention senator *i* allocates to issue *k* in year *t*
- $\pi_{itk} \equiv$ Probability press release is about issue k
- $\boldsymbol{\pi}_{it} = (\pi_{it1}, \dots, \pi_{it44})$

- $\pi_{itk} \equiv$ Attention senator *i* allocates to issue *k* in year *t*
- $\pi_{itk} \equiv$ Probability press release is about issue k
- $\pi_{it} = (\pi_{it1}, \dots, \pi_{it44})$

- Assume: Each press release *j* assigned to one topic.
- Let au_{ijt} indicate press release j's topic.

- $\pi_{itk} \equiv$ Attention senator *i* allocates to issue *k* in year *t*
- $\pi_{itk} \equiv$ Probability press release is about issue k
- $\pi_{it} = (\pi_{it1}, \dots, \pi_{it44})$

- Assume: Each press release *j* assigned to one topic.
- Let au_{ijt} indicate press release j's topic.

$$oldsymbol{ au}_{ijt} \sim \mathsf{Multinomial}(1, oldsymbol{\pi}_{it})$$

- $\pi_{itk} \equiv$ Attention senator *i* allocates to issue *k* in year *t*
- $\pi_{itk} \equiv$ Probability press release is about issue k
- $\boldsymbol{\pi}_{it} = (\pi_{it1}, \dots, \pi_{it44})$

Press release-level parameters (press release j from senator i in year t)

- Assume: Each press release *j* assigned to one topic.
- Let au_{ijt} indicate press release j's topic.

$$oldsymbol{ au}_{ijt} \sim \mathsf{Multinomial}(1, oldsymbol{\pi}_{it})$$

- Conditional on topic, draw document's content.

- $\pi_{itk} \equiv$ Attention senator *i* allocates to issue *k* in year *t*
- $\pi_{itk} \equiv$ Probability press release is about issue k
- $\boldsymbol{\pi}_{it} = (\pi_{it1}, \dots, \pi_{it44})$

- Assume: Each press release *j* assigned to one topic.
- Let au_{ijt} indicate press release j's topic.

$$oldsymbol{ au}_{\mathit{ijt}} \sim \mathsf{Multinomial}(1, oldsymbol{\pi}_{\mathit{it}})$$

- Conditional on topic, draw document's content.
- If $au_{ijtk}=1$ then

$$\mathbf{x}_{ijt} \sim \mathsf{Multinomial}(n_{ijt}, \boldsymbol{\theta}_k).$$

Each π_{it} is a draw from one-of-S styles \rightsquigarrow mixture of Dirichlet distributions

Each π_{it} is a draw from one-of-S styles \leadsto mixture of Dirichlet distributions .

 $\sigma_{it} \sim \text{Multinomial}(1, \beta).$

Each π_{it} is a draw from one-of-S styles \rightsquigarrow mixture of Dirichlet distributions .

$$egin{aligned} oldsymbol{\sigma}_{it} & \sim & \mathsf{Multinomial}(1,oldsymbol{eta}). \ oldsymbol{\pi}_{it} | \sigma_{its} = 1, lpha_s & \sim & \mathsf{Dirichlet}(lpha_s) \end{aligned}$$

Each π_{it} is a draw from one-of-S styles \rightsquigarrow mixture of Dirichlet distributions .

$$egin{aligned} oldsymbol{\sigma_{it}} & \sim & \mathsf{Multinomial}(1,oldsymbol{eta}). \ oldsymbol{\pi_{it}} | \sigma_{its} = 1, oldsymbol{lpha_s} & \sim & \mathsf{Dirichlet}(oldsymbol{lpha_s}) \ lpha_{\mathit{ks}} & \sim & \mathsf{Gamma}(0.25,1) \end{aligned}$$

Each π_{it} is a draw from one-of-S styles \leadsto mixture of Dirichlet distributions .

$$egin{array}{ll} oldsymbol{\sigma_{it}} & \sim & \mathsf{Multinomial}(1,oldsymbol{eta}). \ oldsymbol{\pi_{it}} | \sigma_{its} = 1, oldsymbol{lpha_s} & \sim & \mathsf{Dirichlet}(oldsymbol{lpha_s}) \ lpha_{\mathit{ks}} & \sim & \mathsf{Gamma}(0.25,1) \end{array}$$

Other priors:

Each π_{it} is a draw from one-of-S styles \rightsquigarrow mixture of Dirichlet distributions .

$$egin{array}{ll} oldsymbol{\sigma_{it}} & \sim & \mathsf{Multinomial}(1,oldsymbol{eta}). \ oldsymbol{\pi_{it}} | \sigma_{its} = 1, oldsymbol{lpha_s} & \sim & \mathsf{Dirichlet}(oldsymbol{lpha_s}) \ lpha_{\mathit{ks}} & \sim & \mathsf{Gamma}(0.25,1) \end{array}$$

Other priors:

$$\theta_k \sim \mathsf{Multinomial}(\lambda)$$

Each π_{it} is a draw from one-of-S styles \rightsquigarrow mixture of Dirichlet distributions .

$$egin{aligned} oldsymbol{\sigma}_{it} & \sim & \mathsf{Multinomial}(1,eta). \ oldsymbol{\pi}_{it} | \sigma_{its} = 1, lpha_s & \sim & \mathsf{Dirichlet}(lpha_s) \ lpha_{\mathit{ks}} & \sim & \mathsf{Gamma}(0.25,1) \end{aligned}$$

Other priors:

$$\theta_k \sim \mathsf{Multinomial}(\lambda)$$

 $\beta \sim \mathsf{Multinomial}(1)$

$$eta \sim {\sf Dirichlet}({f 1})$$

 $m{ heta}_k \sim {\sf Dirichlet}(m{\lambda})$
 $lpha_{ks} \sim {\sf Gamma}(0.25,1)$

```
eta \sim 	ext{Dirichlet}(\mathbf{1})
eta_k \sim 	ext{Dirichlet}(oldsymbol{\lambda})
lpha_{ks} \sim 	ext{Gamma}(0.25, 1)
oldsymbol{\sigma}_{it} \sim 	ext{Multinomial}(1, oldsymbol{eta})
```

$$eta \sim ext{Dirichlet}(\mathbf{1})$$
 $eta_k \sim ext{Dirichlet}(oldsymbol{\lambda})$
 $lpha_{ks} \sim ext{Gamma}(0.25, 1)$
 $oldsymbol{\sigma}_{it} \sim ext{Multinomial}(1, oldsymbol{eta})$
 $oldsymbol{\pi}_{it} | \sigma_{its} = 1, lpha_s \sim ext{Dirichlet}(lpha_s)$

$$eta \sim ext{Dirichlet}(\mathbf{1})$$
 $eta_k \sim ext{Dirichlet}(oldsymbol{\lambda})$
 $lpha_{ks} \sim ext{Gamma}(0.25, 1)$
 $oldsymbol{\sigma}_{it} \sim ext{Multinomial}(1, oldsymbol{eta})$
 $oldsymbol{\pi}_{it} | \sigma_{its} = 1, lpha_s \sim ext{Dirichlet}(lpha_s)$
 $oldsymbol{ au}_{ijt} | oldsymbol{\pi}_{it} \sim ext{Multinomial}(1, oldsymbol{\pi}_{it})$

$$eta \sim ext{Dirichlet}(\mathbf{1})$$
 $eta_k \sim ext{Dirichlet}(\lambda)$
 $lpha_{ks} \sim ext{Gamma}(0.25, 1)$
 $eta_{it} \sim ext{Multinomial}(1, eta)$
 $eta_{it} | \sigma_{its} = 1, lpha_s \sim ext{Dirichlet}(lpha_s)$
 $eta_{ijt} | \pi_{it} \sim ext{Multinomial}(1, \pi_{it})$
 $oldsymbol{x}_{ijt} | \tau_{ijtk} = 1, eta_k \sim ext{Multinomial}(n_{ijt}, eta_k)$

$$eta \sim ext{Dirichlet}(\mathbf{1})$$
 $eta_k \sim ext{Dirichlet}(\lambda)$
 $lpha_{ks} \sim ext{Gamma}(0.25, 1)$
 $eta_{it} \sim ext{Multinomial}(1, eta)$
 $eta_{it} | \sigma_{its} = 1, lpha_s \sim ext{Dirichlet}(lpha_s)$
 $eta_{ijt} | \pi_{it} \sim ext{Multinomial}(1, \pi_{it})$
 $oldsymbol{x}_{ijt} | \tau_{ijtk} = 1, eta_k \sim ext{Multinomial}(n_{ijt}, eta_k)$

Mixture of Styles, Mixture of Topics

$$\begin{split} \rho(\alpha,\beta,\theta,\sigma,\pi,\tau|\mathbf{X}) & \quad \propto \quad \prod_{k=1}^K \prod_{s=1}^S \frac{\exp(-\frac{\alpha_{ks}}{1/4})}{1/4} \times \frac{\Gamma(\sum_{w=1}^W \lambda_w)}{\prod_{w=1}^W \Gamma(\lambda_w)} \prod_{w=1}^W \theta_{k,w}^{\lambda_w-1} \times \\ & \quad \prod_{i=1}^N \prod_{t=2005}^{2007} \prod_{s=1}^S \left[\beta_s \frac{\Gamma(\sum_{k=1}^K \alpha_{ks})}{\prod_{k=1}^K \Gamma(\alpha_{ks})} \prod_{k=1}^K \pi_{itk}^{\alpha_{ks}-1} \prod_{j=1}^{D_{it}} \prod_{k=1}^K \left[\pi_{itk} \prod_{w=1}^W \theta_{kw}^{\lambda_{ijtw}}\right]^{\tau_{ijtk}}\right]^{\sigma_{its}} \end{split}$$

$$\begin{split} \rho(\alpha,\beta,\theta,\sigma,\pi,\tau|\textbf{\textit{X}}) & \quad \propto \quad \prod_{k=1}^K \prod_{s=1}^S \frac{\exp(-\frac{\alpha_{ks}}{1/4})}{1/4} \times \frac{\Gamma(\sum_{w=1}^W \lambda_w)}{\prod_{w=1}^W \Gamma(\lambda_w)} \prod_{w=1}^W \theta_{k,w}^{\lambda_w-1} \times \\ & \quad \prod_{i=1}^N \prod_{t=2005}^{2007} \prod_{s=1}^S \left[\beta_s \frac{\Gamma(\sum_{k=1}^K \alpha_{ks})}{\prod_{k=1}^K \Gamma(\alpha_{ks})} \prod_{k=1}^K \pi_{itk}^{\alpha_{ks}-1} \prod_{j=1}^D \prod_{k=1}^K \left[\pi_{itk} \prod_{w=1}^W \theta_{kw}^{x_{ijtw}}\right]^{\tau_{ijtk}}\right]^{\sigma_{its}} \end{split}$$

1) Estimate with Variational Approximation

$$\begin{split} \rho(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\theta},\boldsymbol{\sigma},\boldsymbol{\pi},\boldsymbol{\tau}|\boldsymbol{X}) & \propto & \prod_{k=1}^K \prod_{s=1}^S \frac{\exp(-\frac{\alpha_{ks}}{1/4})}{1/4} \times \frac{\Gamma(\sum_{w=1}^W \lambda_w)}{\prod_{w=1}^W \Gamma(\lambda_w)} \prod_{w=1}^W \theta_{k,w}^{\lambda_w-1} \times \\ & \prod_{i=1}^N \prod_{t=2005}^{2007} \prod_{s=1}^S \left[\beta_s \frac{\Gamma(\sum_{k=1}^K \alpha_{ks})}{\prod_{k=1}^K \Gamma(\alpha_{ks})} \prod_{k=1}^K \pi_{itk}^{\alpha_{ks}-1} \prod_{j=1}^{D_{it}} \prod_{k=1}^K \left[\pi_{itk} \prod_{w=1}^W \theta_{kw}^{\lambda_{ijtw}}\right]^{\tau_{ijtk}}\right]^{\sigma_{its}} \end{split}$$

- 1) Estimate with Variational Approximation
- Determining number of clusters at top? (Grimmer, Shorey, Wallach, and Zlotnick, In Progress)

$$\begin{split} \rho(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\theta},\boldsymbol{\sigma},\boldsymbol{\pi},\boldsymbol{\tau}|\boldsymbol{X}) \quad \propto \quad & \prod_{k=1}^K \prod_{s=1}^S \frac{\exp(-\frac{\alpha_{ks}}{1/4})}{1/4} \times \frac{\Gamma(\sum_{w=1}^W \lambda_w)}{\prod_{w=1}^W \Gamma(\lambda_w)} \prod_{w=1}^W \theta_{k,w}^{\lambda_w-1} \times \\ & \prod_{i=1}^N \prod_{t=2005}^{2007} \prod_{s=1}^S \left[\beta_s \frac{\Gamma(\sum_{k=1}^K \alpha_{ks})}{\prod_{k=1}^K \Gamma(\alpha_{ks})} \prod_{k=1}^K \pi_{itk}^{\alpha_{ks}-1} \prod_{j=1}^{D_{it}} \prod_{k=1}^K \left[\pi_{itk} \prod_{w=1}^W \theta_{kw}^{\lambda_{ijtw}} \right]^{\tau_{ijtk}} \right]^{\sigma_{its}} \end{split}$$

- Estimate with Variational Approximation
- Determining number of clusters at top? (Grimmer, Shorey, Wallach, and Zlotnick, In Progress)
 - Non-parametric model → statistical selection

$$\begin{split} \rho(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\theta},\boldsymbol{\sigma},\boldsymbol{\pi},\boldsymbol{\tau}|\boldsymbol{X}) & \propto & \prod_{k=1}^{K} \prod_{s=1}^{S} \frac{\exp(-\frac{\alpha_{ks}}{1/4})}{1/4} \times \frac{\Gamma(\sum_{w=1}^{W} \lambda_{w})}{\prod_{w=1}^{W} \Gamma(\lambda_{w})} \prod_{w=1}^{W} \theta_{k,w}^{\lambda_{w}-1} \times \\ & \prod_{i=1}^{N} \prod_{t=2005}^{2007} \prod_{s=1}^{S} \left[\beta_{s} \frac{\Gamma(\sum_{k=1}^{K} \alpha_{ks})}{\prod_{k=1}^{K} \Gamma(\alpha_{ks})} \prod_{k=1}^{K} \pi_{itk}^{\alpha_{ks}-1} \prod_{j=1}^{D_{it}} \prod_{k=1}^{K} \left[\pi_{itk} \prod_{w=1}^{W} \theta_{kw}^{\lambda_{ijtw}}\right]^{\tau_{ijtk}}\right]^{\sigma_{its}} \end{split}$$

- Estimate with Variational Approximation
- Determining number of clusters at top? (Grimmer, Shorey, Wallach, and Zlotnick, In Progress)
 - Non-parametric model → statistical selection
 - Experiments/Coding Exercises to assess

Notions of validity: From Quinn, Monroe, et al (2010)

- Semantic Validity: All categories are coherent and meaningful
- Convergent Construct Validity: Measures concur with existing measures in critical details.
- Discriminant Construct Validity: Measures differ from existing measures in productive ways.
- Predictive Measure: Measures from the model corresponds to external events in expected ways.
- Hypothesis Validity: Measures generated from the model can be used to test substantive hypotheses.

To establish utility of new measures, demonstrate variety of validations None of these validations are performed using a canned statistic All: require substantive knowledge on areas (and what we expect!) [

Home Style Measures, Semantic Validity

Must: Demonstrate to reader that topics are coherent and semantically meaningful

Description	Stems	%	
Honorary	honor,prayer,rememb,fund,tribut	5.0	
Transp. Grants	airport, transport, announc, urban, hud	4.8	
Iraq	iraq,iraqi,troop,war,sectarian	4.7	
DHS Policy	homeland,port,terrorist,dh,fema	4.1	
Judicial Nom.	judg,court,suprem,nomin,nomine	3.8	
Fire Dept. Grant	firefight,homeland,afgp,award,equip	3.7	
How: examples in text are also useful			

How: examples in text are also useful.

Over time variation

Over time variation

Over time variation

Supervised/Unsupervised Convergence

Discriminant Construct Validity

Predictive Validity

Senate

Statesperson

- Iraq War
- Intelligence
- Intl. Relations

Machine Learning

Statespersons

Appropriators: Firefighters

Senate Domestic
Statesperson Policy

- Iraq War - Environment

- Intelligence - Gas prices

- Intl. - DHS

Relations - Consumer

Statespersons		Appropriators: Firefighters	
Senate	Domestic	Pork & Policy	
Statesperson	Policy	- WRDA	
- Iraq War	- Environment	grants	

- Intl. - DHS - Health Care Relations - Consumer - Education 1

- Gas prices

Intelligence

- Farming

Statespersons

Senate

Statesperson

Intl.

- Iraq War

- Intelligence

Relations

Domestic Policy - Environment

Consumer

- Gas prices
- DHS

Pork & Policy

- WRDA

grants

- Health Care Education
- Farming

Appropriators: Firefighters

Appropriators

Airport Grants

- Fire Grants

- University
- Money ≥ February 21st, 2018

Why do senators adopt different styles? District Fit

- Number of topics → depends on task at hand

- Number of topics → depends on task at hand
- Coarse → broad comparisons, lose distinctions

- Number of topics → depends on task at hand
- Coarse→ broad comparisons, lose distinctions
- Granular→ specific insights, lose broader picture

- Number of topics → depends on task at hand
- Coarse → broad comparisons, lose distinctions
- Granular → specific insights, lose broader picture
- Hierarchy of topics → Pachinko Allocation, Hierarchies of von-Mises Fisher Distributions

- Number of topics → depends on task at hand
- Coarse → broad comparisons, lose distinctions
- Granular→ specific insights, lose broader picture
- Hierarchy of topics → Pachinko Allocation, Hierarchies of von-Mises Fisher Distributions

Blaydes, Grimmer, and McQueen 2018→ estimate nested topics to explore the Mirrors for Princes

26 Christian mirrors

26 Christian mirrors

- The Prince (1513 CE)

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

21 Islamic texts

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

21 Islamic texts

- Advice on the Art of Governance (1612 CE)

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

21 Islamic texts

- Advice on the Art of Governance (1612 CE)
- Kalila wa Dimna (748 CE)

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

21 Islamic texts

- Advice on the Art of Governance (1612 CE)
- Kalila wa Dimna (748 CE)
- The Sultan's Register of Laws (1632-1633 CE)

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

21 Islamic texts

- Advice on the Art of Governance (1612 CE)
- Kalila wa Dimna (748 CE)
- The Sultan's Register of Laws (1632-1633 CE)

Work with translations

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

21 Islamic texts

- Advice on the Art of Governance (1612 CE)
- Kalila wa Dimna (748 CE)
- The Sultan's Register of Laws (1632-1633 CE)

Work with translations→ little evidence of selection

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

21 Islamic texts

- Advice on the Art of Governance (1612 CE)
- Kalila wa Dimna (748 CE)
- The Sultan's Register of Laws (1632-1633 CE)

Work with translations→ little evidence of selection

 Collect data on collection of 98 (51 Christian, 47 Islamic, some not translated)

26 Christian mirrors

- The Prince (1513 CE)
- Advice to Justinian (527 CE)
- The Adventures of Telemachus (1699 CE)

21 Islamic texts

- Advice on the Art of Governance (1612 CE)
- Kalila wa Dimna (748 CE)
- The Sultan's Register of Laws (1632-1633 CE)

Work with translations → little evidence of selection

- Collect data on collection of 98 (51 Christian, 47 Islamic, some not translated)
- No difference on Year/Region

47 books

47 books → Each divided into paragraphs

47 books → Each divided into paragraphs Create feature space

- Bag of words, stem, discard punctuation, stop words

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns
- Identified synonyms

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns
- Identified synonyms
 - almighty, god

47 books \rightsquigarrow Each divided into paragraphs Create feature space

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns
- Identified synonyms
 - almighty, god
 - monarch, prince, king, ruler

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns
- Identified synonyms
 - almighty, god
 - monarch, prince, king, ruler
 - Lord \neq lord

47 books → Each divided into paragraphs Create feature space

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns
- Identified synonyms
 - almighty, god
 - monarch, prince, king, ruler
 - Lord \neq lord

Result: short segment j in book i is a count vector

47 books → Each divided into paragraphs Create feature space

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns
- Identified synonyms
 - almighty, god
 - monarch, prince, king, ruler
 - Lord \neq lord

Result: short segment j in book i is a count vector

$$\mathbf{x}_{ij} = (x_{ij1}, x_{ij2}, \dots, x_{ij2124})$$

47 books → Each divided into paragraphs Create feature space

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns
- Identified synonyms
 - almighty, god
 - monarch, prince, king, ruler
 - Lord \neq lord

Result: short segment j in book i is a count vector

$$\mathbf{x}_{ij} = (x_{ij1}, x_{ij2}, \dots, x_{ij2124})$$

We work with a normalized version of the documents,

47 books → Each divided into paragraphs Create feature space

- Bag of words, stem, discard punctuation, stop words
- Translate words left in Arabic (allah) and discard proper nouns
- Identified synonyms
 - almighty, god
 - monarch, prince, king, ruler
 - Lord \neq lord

Result: short segment j in book i is a count vector

$$\mathbf{x}_{ij} = (x_{ij1}, x_{ij2}, \dots, x_{ij2124})$$

We work with a normalized version of the documents,

$$\mathbf{x}_{ij}^* = \frac{\mathbf{x}_{ij}}{\sqrt{\mathbf{x}_{ij}^{'}\mathbf{x}_{ij}}}$$

Model built around two hierarchies:

Model built around two hierarchies:

1) Books → paragraphs (Blei, Ng, Jordan 2003; Wallach, 2008; Quinn et al 2010; Grimmer 2010; Roberts et al 2014)

Model built around two hierarchies:

- 1) Books → paragraphs (Blei, Ng, Jordan 2003; Wallach, 2008; Quinn et al 2010; Grimmer 2010; Roberts et al 2014)
- 2) Coarse topics → granular topics (Li and McCallum 2006; Gopal and Yang 2014)

Estimate four quantities of interest

1) Granular topics (60)

- 1) Granular topics (60)
- 2) Coarse (broad) topics (3)

- 1) Granular topics (60)
- 2) Coarse (broad) topics (3)
 - Each granular topic classified into one coarse topic

- 1) Granular topics (60)
- 2) Coarse (broad) topics (3)
 - Each granular topic classified into one coarse topic
- 3) Each book i's **themes**_i

```
themes<sub>i</sub> = (theme<sub>i1</sub>, theme<sub>i2</sub>, ..., theme<sub>i60</sub>)
```

- 1) Granular topics (60)
- 2) Coarse (broad) topics (3)
 - Each granular topic classified into one coarse topic
- 3) Each book i's **themes**_i
- 4) Each short segment's granular (and coarse) topic

themes;

themes_i
$$\longrightarrow$$
 Topic_{ij}

 $\mathsf{Topic}_{ij} \sim \mathsf{Multinomial}(1, \mathsf{themes}_i)$

$$egin{array}{ll} {\sf Topic}_{ij} & \sim & {\sf Multinomial}(1, {\sf themes}_i) \ {\sf x}_{ij}^* | {\sf Topic}_{ijk} = 1 & \sim & {\sf vMF}(\kappa, {\sf granular}_k) \end{array}$$

$$\begin{aligned} & \textbf{Topic}_{ij} & \sim & \mathsf{Multinomial}(1, \textbf{themes}_i) \\ & \textbf{x}_{ij}^* | \mathsf{Topic}_{ijk} = 1 & \sim & \mathsf{vMF}(\kappa, \textbf{granular}_k) \\ & \textbf{broad}_k & \sim & \mathsf{Multinomial}(1, \textbf{Broad Theme Prior}) \\ & \textbf{granular}_k | \mathsf{broad}_{km} = 1 & \sim & \mathsf{vMF}(\kappa, \textbf{coarse}_m) \end{aligned}$$

$$\begin{aligned} & \textbf{Topic}_{ij} & \sim & \text{Multinomial}(1, \textbf{themes}_i) \\ & \textbf{x}_{ij}^* | \text{Topic}_{ijk} = 1 & \sim & \text{vMF}(\kappa, \textbf{granular}_k) \\ & \textbf{broad}_k & \sim & \text{Multinomial}(1, \textbf{Broad Theme Prior}) \\ & \textbf{granular}_k | \text{broad}_{km} = 1 & \sim & \text{vMF}(\kappa, \textbf{coarse}_m) \end{aligned}$$

Estimate model with Variational Approximation

$$\begin{aligned} & \textbf{Topic}_{ij} & \sim & \text{Multinomial}(1, \textbf{themes}_i) \\ & \textbf{x}_{ij}^* | \text{Topic}_{ijk} = 1 & \sim & \text{vMF}(\kappa, \textbf{granular}_k) \\ & \textbf{broad}_k & \sim & \text{Multinomial}(1, \textbf{Broad Theme Prior}) \\ & \textbf{granular}_k | \text{broad}_{km} = 1 & \sim & \text{vMF}(\kappa, \textbf{coarse}_m) \end{aligned}$$

Estimate model with Variational Approximation Model selection: automatic model fit, qualitative evaluation

Two approaches to labeling output

Two approaches to labeling output

1) Computational: identify discriminating words

Two approaches to labeling output

- 1) Computational: identify discriminating words
- 2) Manual: Segments classified to coarse, granular topics. Read, discuss, and label

Two approaches to labeling output

- 1) Computational: identify discriminating words
- 2) Manual: Segments classified to coarse, granular topics. Read, discuss, and label

Unsupervised models structure and guide our reading

Practices and ideals of political rule

Practices and ideals of political rule

king

Practices and ideals of political rule

king,princ

Practices and ideals of political rule

king,princ,citi

Practices and ideals of political rule

king, princ, citi, great, place, work, emperor, enemi, armi, letter

Practices and ideals of political rule

king, princ, citi, great, place, work, emperor, enemi, armi, letter

36.5% of paragraphs

Coarse Topic 1

Religion and Virtue

Connection between religion, virtue, justice and political rule

Religion and Virtue

Connection between religion, virtue, justice and political rule

almighti, good, virtu, power, ruler, justic, prayer, rule, prophet, mena

Religion and Virtue

Connection between religion, virtue, justice and political rule

almighti, good, virtu, power, ruler, justic, prayer, rule, prophet, mena

32.2% of pargraphs

Coarse Topic 2

Inner Life of the Ruler

Personal relationships, care for and practices of the self, and ultimate fate of the soul

Inner Life of the Ruler

Personal relationships, care for and practices of the self, and ultimate fate of the soul

man,land,woman,know,bodi,eye,ladi,love,faculti,old

Inner Life of the Ruler

Personal relationships, care for and practices of the self, and ultimate fate of the soul

man,land,woman,know,bodi,eye,ladi,love,faculti,old

31.2% of paragraphs

Coarse Topic 3

Granular: Best Practices for Ruling

king,princ,citi,great,place,work,emperor,enemi,armi,letter king,kingdom,royal,minist,reign,father,court,majesti,presenc,war

6.2% of paragraphs

Coarse Topic 1 Granular Topic 1

Granular: Characteristics that distinguish Just Ruler from Tyrant

king,princ,citi,great,place,work,emperor,enemi,armi,letter king,kingdom,royal,minist,reign,father,court,majesti,presenc,war princ,good,peopl,christian,tyranni,war,mind,ought,state,public

3.1% of paragraphs

Coarse Topic 1 Granular Topic 2

Granular: Religious Virtues and Political Ideals

almighti,good,virtu,power,ruler,justic,prayer,rule,prophet,mena almighti,bless,grant,peac,messeng,prophet,merci,holi,command,grace

6.9% of paragraphs

Coarse Topic 2 Granular Topic 1

