12.5 Homework: Trigonometric functions

HSG.SRT.C.8

- 1. Right triangle $\triangle ABC$ is shown with side lengths marked. Identify the sides.
 - (a) Which length is the hypotenuse?
 - (b) Which length is *opposite* angle A?

- (c) Which length is adjacent to angle A?
- 2. $\triangle ABC$ is shown with $m \angle C = 90^{\circ}$. The lengths of the triangle's sides are a, b, and c. Express each trigonometric ratio as a fraction of two lengths.

- (a) $\tan A =$
- (b) $\sin A =$
- (c) $\cos A =$
- 3. Express the result to $the\ nearest\ thousandth.$
 - (a) $\tan 81^{\circ} =$

- (b) $\sin 16^{\circ} =$
- 4. Express the result to the nearest whole degree.
 - (a) $\sin^{-1} 0.675 =$

(b) $\tan^{-1} 1.15 =$

5. Are the lines parallel, perpendicular, or neither? Justify your answer. (you must use the values of the slopes in your justification)

$$y = -\frac{5}{3}x + 5$$

$$y = \frac{3}{5}x - 4$$

6. Given P(1,7) and Q(5,5), find the length of \overline{PQ} , expressed as a simplified radical. Use: $l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

- 7. A translation $T_{x,y}$ maps $A(6,2) \to A'(3,7)$.
 - (a) Write down the translation.
 - (b) Apply the same translation to B(5,1).
- 8. A(2,3) is one endpoint of \overline{AB} . The segment's midpoint is M(5,7). Find the other endpoint B. (hint: find the translation that maps $A \to M$, then apply it to map $M \to B$.)