Architecture de la Matière Partie 1

CHARLES TUCHENDLER

MPSI 4 – Lycée Saint-Louis

Année 2019/2020

Table des matières

Chapitre IV	Structure électronique des éléments 1
I Structure élect	tronique des atomes
	atomiques
	quantiques
	e nombre quantique principal
	ombre quantique secondaire, orbital ou azimutal
	ombre quantique magnétique
	ombre quantique magnétique de spin
I.2.e Ta	ableau récapitulatif
	me d'énergie d'un atome - Dégénérescence - Rappels
_	as général
	as de l'atome d'hydrogène
	as des édifices polyélectroniques
	s orbitales atomiques
	ode de représentation
	A de type s
	A de type p
	A de type d
II Configuration	électronique des atomes
II.1 Règles d'	établissement des configurations électroniques
II.1.a Pr	rincipe d'exclusion de Pauli
	ègle de Klechkowski
II.1.c Rè	ègle de Hund
	ropriétés magnétiques des atomes et des ions
II.2 Excices d	le cours
II.3 Stabilité	partielle de certaines configurations électroniques
II.4 Electrons	s de coeur et électrons de valence
II.5 Configura	ation électronique d'un ion
	as d'un anion monoatomique
II.5.b Ca	as d'un cation monoatomique

Chapitre IV

STRUCTURE ÉLECTRONIQUE DES ÉLÉMENTS

Sommaire

I Structure électronique des atomes	2
I.1 Orbitales atomiques	2
I.2 Nombres quantiques	2
I.2.a Le nombre quantique principal	2
I.2.b Nombre quantique secondaire, orbital ou azimutal	3
I.2.c Nombre quantique magnétique	4
I.2.d Nombre quantique magnétique de spin	4
I.2.e Tableau récapitulatif	5
I.3 Diagramme d'énergie d'un atome - Dégénérescence - Rappels	6
I.3.a Cas général	6
I.3.b Cas de l'atome d'hydrogène	6
I.3.c Cas des édifices polyélectroniques	7
I.4 Allure des orbitales atomiques	8
I.4.a Mode de représentation	8
I.4.b OA de type s	8
I.4.c OA de type p	8
I.4.d OA de type d	8
II Configuration électronique des atomes	9
II.1 Règles d'établissement des configurations électroniques	9
II.1.a Principe d'exclusion de Pauli	9
II.1.b Règle de Klechkowski	10
II.1.c Règle de Hund	11
II.1.d Propriétés magnétiques des atomes et des ions	12
II.2 Excices de cours	12
II.3 Stabilité partielle de certaines configurations électroniques	12
II.4 Electrons de coeur et électrons de valence	13
II.5 Configuration électronique d'un ion	13
II.5.a Cas d'un anion monoatomique	13
II.5.b Cas d'un cation monoatomique	14

I Structure électronique des atomes

I.1 Orbitales atomiques

Définition IV.1 – Orbitale atomique

De façon à ne pas perdre tous nos repères de pensée, suivant en cela le modèle de Bohr, et donc pour faire le lien avec le concept classique d'orbite (trajectoire décrite par exemple par un satellite autour de la Terre), les physiciens ont appelées **orbitales atomiques** (notées **OA**) les fonctions d'onde propres décrivant l'évolution d'un électron dans le puits de potentiel de son noyau.

<u>Rappel</u>: lorsqu'à une même énergie sont associées plusieurs fonctions d'onde propres, on dit que le niveau d'énergie correspondant est **dégénéré**. Plusieurs OA occupent donc ce niveau d'énergie.

1.2 Nombres quantiques

Trois nombres quantiques n, ℓ et m_{ℓ} permettent de caractériser une fonction d'onde propre électronique (autrement dit une OA), c'est-à-dire qu'ils permettent de décrire l'état d'un électron autour du noyau : énergie, éloignement moyen par rapport au noyau . . .

Ces nombres apparaissent naturellement lors de la résolution de l'équation de Schrödinger et nous allons à présent nous intéresser au rôle spécifique de chacun d'entre eux.

I.2.a Le nombre quantique principal

Propriété IV.1 – Nombre quantique principal

* Il s'agit d'un entier naturel strictement positif :

$$n=1,2,3,...,\infty$$

* Il caractérise le niveau d'énergie de l'état d'un électron, ie l'énergie de l'OA qu'il occupe :

$$E_n = -rac{13,6}{n^2} \; ext{eV}$$
 pour l'hydrogène

Dans le cas d'un édifice polyélectronique, il n'existe pas de formule simple à retenir car l'énergie dépend alors d'un autre nombre quantique.

- \star L'ensemble des électrons étant décrits par des fonctions d'onde propres de même n appartiennent au même niveau d'énergie appelé **couche électronique**. Celles-ci ont déjà été définies au lycée :
 - n=1 correspond à la couche K,
 - n=2 correspond à la couche L,
 - n=3 correspond à la couche M, \ldots
- \star Plus n est grand, plus l'énergie est élevée et plus l'électron s'approche de son seuil d'ionisation c'est-à-dire du moment où il ne sera plus "attaché" au noyau.

Ainsi, plus n est grand, plus l'électron est loin du noyau (en moyenne) et plus le volume de l'OA est grand. On comprend donc que n est le nombre quantique qui **caractérise aussi le rayon moyen de l'OA** r (en coord. sphé.) et donc son **volume**.

1.2.b Nombre quantique secondaire, orbital ou azimutal

Propriété IV.2 – Nombre quantique orbital

 \star Il s'agit d'un entier naturel plus petit que n:

$$0 \le \ell \le n-1$$

 \star Tout comme n est associé à l'énergie de l'atome, ℓ est associé à une grandeur atomique qui ne varie que par valeurs discrètes. Cette grandeur est la norme du moment cinétique orbital, qui traduit le mouvement de rotation des électrons autour du noyau.

On montre ainsi que :

$$||\overrightarrow{L}_O|| = ||\overrightarrow{r} \wedge m\overrightarrow{v}|| = \hbar \sqrt{\ell(\ell+1)}$$

- \star ℓ est le nombre quantique qui caractérise la forme d'une OA.
- * Pour chaque valeur de n, ie pour chaque valeur d'énergie, il peut y avoir **plusieurs OA** de formes différentes. On parle alors de **sous-couches atomiques** pour parler de ces différents types d'OA. Pour n fixé, ℓ peut prendre n valeurs, et il y aura donc n sous-couches par niveau d'énergie.
- * Une sous-couche est donc caractérisée par le couple (n, ℓ) (ie le couple $(E_n, ||\overrightarrow{L}_O||)$). Plutôt que d'utiliser des chiffres pour n et ℓ , ce qui est source d'erreur compte tenu des valeurs élevées que peuvent prendre ces deux nombres quantiques, on préfère associer à chaque valeur de ℓ une lettre minuscule :

ℓ	0	1	2	3	4	etc
Lettre associée	\mathbf{s}	p	d	f	g	etc

Exercice IV.1 – Nomenclature des sous-couches atomiques

Donner le nom des différentes sous-couches correspondant aux 3 première couches atomiques.

I.2.c Nombre quantique magnétique

Propriété IV.3 – Nombre quantique magnétique

* Il s'agit d'un entier relatif compris entre $-\ell$ et ℓ :

$$-\ell \le m_\ell \le +\ell$$

 \star m_{ℓ} est lié à la quantification de la projection du moment cinétique sur un axe de référence. Si celui est orienté par un vecteur unitaire noté \vec{u} , on a :

$$L_{O_u} = \overrightarrow{L}_O \cdot \overrightarrow{u} = m_\ell \hbar$$

- \star m_{ℓ} caractérise l'orientation dans l'espace des OA dont la taille et la forme sont déjà définies par n et ℓ .
- \star Au final, ce sont les $2\ell+1$ valeurs possibles de m_ℓ qui déterminent le nombre d'OA d'une sous-couche donnée, chacune caractérisée par le triplet (n,ℓ,m_ℓ) .

Exercice IV.2 – Nombre d'OA par sous-couche

Déterminer le nombre d'OA de chacune des sous-couches de la couche n=4.

1.2.d Nombre quantique magnétique de spin

Ce quatrième nombre quantique ne caractérise pas les OA mais donne l'état intrinsèque d'un électron occupant une OA. L'expérience de Stern et Gerlach $^{1\,2}$ a en effet montré que la donnée du triplet (n,ℓ,m_ℓ) n'était pas suffisante pour décrire correctement le comportement d'un électron d'énergie E_n , occupant une OA de type ℓ dirigée dans la direction m_ℓ .

- 1. "Der experimmentelle Nachweis der Richtungsquantelung im Magnetfeld", Zeitschrift für Physik 1922, Volume 9, Issue 1, pp 349-352.
- 2. "Das magnetische Moment des Silberatoms", Zeitschrift für Physik 1922, Volume 9, Issue 1, pp 353-355.

Propriété IV.4 – Nombre quantique magnétique de spin

On admettra que toute particule quantique possède un moment cinétique propre (ou intrinsèque) noté \vec{S} , appelé **moment cinétique (magnétique) de spin** (ou simplement spin) qui n'est pas lié à son mouvement dans l'espace. Comme le moment cinétique orbital, le moment cinétique de spin est doublement quantifié.

 \star Sa **norme** est quantifiée :

$$||\overrightarrow{S}|| = \hbar\sqrt{s(s+1)}$$

où s désigne le nombre quantique de spin et sa **projection** m_s sur un axe de référence $(\vec{u'})$ est elle-aussi quantifiée :

$$S_{u'} = \overrightarrow{S} \cdot \overrightarrow{u'} = m_s \hbar$$

- \star Pour un **électron**, $s=\frac{1}{2}$ et $m_s=\pm\frac{1}{2}$ et par convention :
 - un électron pour lequel $m_s = \frac{1}{2}$ est noté \uparrow et on parle de "spin up".
 - un électron pour lequel $m_s = -\frac{1}{2}$ est noté \downarrow et on parle de "spin down".

La donnée d'un quadruplet (n, ℓ, m_ℓ, m_s) définit complètement l'état quantique d'un électron : son énergie, sa probabilité de présence dans l'espace et son spin.

I.2.e Tableau récapitulatif

Nombre quantique	n	ℓ	m_ℓ	m_s
Nom	Nombre quantique principal	Nombre quantique secondaire ou azimutal	Nombre quantique magnétique	Nombre quantique de spin
Valeurs possibles	$n = 1, 2, 3, \dots$	$0 \le \ell \le n - 1$ $n \text{ valeurs}$	$-\ell \le m_{\ell} \le \ell$ $2\ell + 1 \text{ valeurs}$	$m_s = \pm \frac{1}{2}$
Grandeurphysique quantifiée	Energie	Module du moment cinétique orbital	Projection du moment cinétique orbital sur un axe de référence	Moment cinétique propre
Caractéristique géométrique de l'OA associée	Volume de l'OA	Forme de l'OA	Orientation de l'OA	
Appartenance commune des électrons ayant même nombre quantique	Les électrons ayant même valeur de <i>n</i> appartiennent à la même couche	Les électrons ayant même valeur de n et ℓ appartiennent à la même sous-couche	Les électrons ayant même valeur de n,ℓ et m_ℓ appartiennent à la même OA	La donnée de $n, \ell, m_\ell $ et m_s caractérise entièrement l'électron

1.3 Diagramme d'énergie d'un atome - Dégénérescence - Rappels

I.3.a Cas général

Définition IV.2 – Diagramme d'énergie

- * La donnée d'un triplet (n, ℓ, m_{ℓ}) définit une OA de fonction d'onde $\Psi_{n,\ell,m_{\ell}}(\vec{r},t)$, appelée case quantique.
- * L'énergie d'un atome est égale à la somme des énergies de ces électrons tant que les niveaux d'énergie du noyau ne sont pas excités : $E_{\rm at} = \sum_{\rm e^-} \varepsilon_i$ où ε_i correspond à l'énergie d'un électron occupant la case quantique (ou l'OA) i.
- * L'état de plus basse énergie est appelé état fondamental.
- * Tout autre état, d'énergie nécessairement supérieure, est appelé état excité.

1.3.b Cas de l'atome d'hydrogène

Propriété IV.5 – Structure énergétique de l'atome d'hydrogène

- \star Pour un édifice ne comportant qu'un seul électron, la donnée d'un triplet (n, ℓ, m_{ℓ}) définit l'OA de l'électron qui décrit entièrement :
 - l'état quantique de l'atome,
 - le comportement de l'électron
 - l'état quantique de l'électron
- \star L'énergie de l'atome coı̈ncide avec celle de l'électron :

$$E_n = -\frac{13,6}{n^2} \, \mathrm{eV} \quad \text{indépendant de ℓ}, m_\ell$$

 \star Le diagramme de dégénérescence est alors le suivant :

 \star Pour une valeur de n fixée l'énergie E_n est fixée. A ce niveau correspondent n^2 OA ou n^2 états quantiques. On dit que ce niveau est dégénéré.

Par conséquent, n=1 est le seul niveau non-dégénéré.

Exercice IV.3 - Nombre total d'OA par couche

Déterminer le nombre total d'OA de la couche caractérisée par le nombre quantique principal n.

1.3.c Cas des édifices polyélectroniques

Propriété IV.6 – Structure énergétique d'un édifice polyélectronique

- * Alors que l'énergie d'une OA d'un ion hydrogénoïde ne dépend que de n, dans les atomes polyélectroniques, l'énergie des OA dépend de n et ℓ . Ceci provoque une levée de dégénérescence partielle des niveaux énergétiques : $\varepsilon_{2s} \neq \varepsilon_{2p}$.
- * Chaque atome possède son propre diagramme énergétique : l'ordre et la valeur des énergies ε_i dépend de l'atome. On peut tout de même donner quelques règles empiriques :
 - les OA d'une même sous-couche ont même énergie ($\varepsilon_{2\,p_x}=\varepsilon_{2\,p_y}=\varepsilon_{2\,p_z}$),
 - pour une même valeur de n, l'énergie des OA augmente avec ℓ ($\varepsilon_{2\,\mathrm{s}} < \varepsilon_{2\,\mathrm{p}}$ ou $\varepsilon_{3\,\mathrm{p}} < \varepsilon_{3\,\mathrm{d}}$),
 - pour une même valeur de ℓ , l'énergie des OA augmente avec n ($\varepsilon_{1s} < \varepsilon_{2s} < \varepsilon_{3s}$).
- \star Ces règles ne suffisent pas pour obtenir l'ordre énergétique de toutes les OA. Comment placer par exemple ε_{2p} et ε_{3s} ?

L'expérience montre que les cinq premières OA se classent toujours dans le même ordre quels que soit les atomes :

$$\varepsilon_{1\,\mathrm{s}} < \varepsilon_{2\,\mathrm{s}} < \varepsilon_{2\,\mathrm{p}} < \varepsilon_{3\,\mathrm{s}} < \varepsilon_{3\,\mathrm{p}}$$

 \star Quand n augmente, l'énergie augmente et les niveaux se rapprochent : il peut y avoir des inversions d'un atome à l'autre \longrightarrow l'ordre des OA dépend de l'atome considéré.

- * Sur le diagramme ci-dessus, chaque tiret représente une OA.
- \star Les OA appartenant à une même sous-couche sont dégénérées.
- \star La dégénérescence de la couche n=2 est partiellement levée, mais la sous-couche 2p reste dégénérée
- \star Quand Z augmente, la différence entre les niveaux successifs diminue et les OA se rapportant à la même sous-couche (même n et même l) descendent vers les basses énergies : $\varepsilon_{1\,\mathrm{s}}(_{11}\mathrm{Na}) > \varepsilon_{1\,\mathrm{s}}(_{17}\mathrm{Cl}).$

1.4 Allure des orbitales atomiques

 $\Psi_{n,\ell,m_\ell}(\vec{r},t)$ est une fonction de trois variables. Le noyau pouvant jouer le rôle de centre de symétrie, on adopte le système de coordonnées sphériques (r,θ,ϕ) pour décrire la fonction d'onde dans l'espace. Comme $\Psi_{n,\ell,m_\ell}(\vec{r},t)$ est impossible à représenter en 3D, on décide de fixer la valeur de r et on représente simplement $\Psi(\theta,\phi)$.

I.4.a Mode de représentation

Méthode IV.1 – Représentation

- ★ On représente uniquement les directions de l'espace où la probabilité de trouver l'électron est la plus grande.
- * Cela permet ensuite de prédire la direction de l'espace dans laquelle se trouve majoritairement l'électron et ensuite d'expliquer la formation de liaisons chimiques.
- \star Rappel : le volume de l'OA étant donné par la valeur de n, plus n est grand, plus l'électron est en moyenne éloigné du noyau.

I.4.b OA de type s

- * Pour ce type d'orbitale atomique, on a forcément $\ell = 0$ donc $m_{\ell} = 0$.
- * Il y a isotropie de l'espace pour l'électron. Les OA de type s sont à symétrie sphérique.

I.4.c OA de type p

- * Ici, $\ell = 1$ donc $m_{\ell} = 0$ ou $m_{\ell} = -1$ ou $m_{\ell} = 1$.
- * Il y a anisotropie de l'espace pour l'électron : les OA de type p sont directionnelles et à symétrie axiale.
- \star Bien que $m_\ell=-1,0,1,$ on utilise pour simplifier des combinaisons linéaires de $p_{-1},$ p_0 et p_1 que l'on nomme : $p_x,$ $p_y,$ p_z

- * Exemple: pour l'OA p_x on a
 - une symétrie de révolution par rapport à (Ox),
 - \bullet l'existence d'un plan d'antisymétrie, le plan yOz (la fonction d'onde change de signe en passant par le noyau)
 - \bullet existence d'un plan nodal, le plan yOz, pour lequel la probabilité de trouver l'électron est nulle

I.4.d OA de type d

- * Ici, $\ell = 2$ donc $m_{\ell} = 0, \pm 1, \pm 2$.
- \star Bien que $m_{\ell}=-2,-1,0,1,2$, on utilise pour simplifier des combinaisons linéaires de p₋₂, p₋₁, p₀, p₁, et p₋₂, que l'on nomme : d_{xy}, d_{yz}, d_{zx} (lobes pointant selon les diagonales des axes) d_z², d_x²-y² (lobes pointant selon les axes).

Il Configuration électronique des atomes

On s'intéresse maintenant à des particules polyélectroniques, c'est-à-dire, de façon générale, à tout élément du tableau périodique, chargé ou non.

Définition IV.3 – Configuration électronique

Etablir la configuration électronique d'un atome ou d'un ion monoatomique dans un état quelconque, fondamental ou excité, consiste à donner la répartition de ses électrons dans les différentes orbitales atomiques de sa structure énergétique.

Remarque : de façon générale, on commencera toujours par donner la configuration électronique de l'atome dans son état fondamental, celui de plus basse énergie. C'est une fois que celle-ci aura été établie que l'on pourra définir quels sont les états excités possibles.

Méthode IV.2 – Notation

On indiquera le nombre d'électrons que contient une sous-couche (ex : 1 s, 2 s, 2 p, ...) en exposant au-dessus de la lettre caractérisant la valeur du nombre quantique secondaire ℓ .

Exemples:

- si la sous-couche 1 s contient 1 électron, on notera : 1 s¹,
- si la sous-couche 2 p contient 4 électrons, on notera : 2 p⁴.

II.1 Règles d'établissement des configurations électroniques

II.1.a Principe d'exclusion de Pauli

Combien d'électrons peuvent occuper la même OA?

Les électrons font partis d'une famille de particules appelés "fermions". Ces particules, au contraire des "bosons", doivent tous être décrit par une fonction d'onde différente.

Théorème IV.1 – Principe d'exclusion de Pauli

Tous les énoncés suivants sont identiques.

- \star dans un même atome, deux électrons ne peuvent être caractérisés par le même quadruplet de nombre quantique (n, ℓ, m_ℓ, m_s) ,
- * dans un même atome, deux électrons diffèrent l'un de l'autre par au moins un de leurs nombres quantiques,
- * dans un même atome, deux électrons ne peuvent être dans le même état quantique.

Conséquences :

- \star si deux électrons occupent une même OA, ils doivent avoir des valeurs différentes de m_s ,
- ★ dans une même OA, il y a au plus deux électrons (lorsqu'il y a effectivement 2 électrons, les deux spins doivent être de spins opposés ou "anti-parallèles"),
- \star si deux électrons ont le même spin (même valeur de m_s), ils doivent occuper deux OA différentes.

Déterminer le nombre maximal d'électrons qui peuvent occuper les différentes sous-couches suivants le type de celles-ci.

Méthode IV.3 – Notation : occupation des OA

★ OA vide:

* OA totalement occupé :

II.1.b Règle de Klechkowski

Dans quel ordre se remplissent les différentes OA?

Pour ce faire, nous allons appliquer une règle empirique (mise en défaut dans certains cas) qui donne la configuration électronique d'un atome dans son état fondamental.

Théorème IV.2 – Règle de Klechkowski

Dans un atome polyélectronique, les sous-couches se remplissent par valeurs croissantes de $(n + \ell)$. Pour deux sous-couches de même valeur de $(n + \ell)$, c'est la sous-couche ayant la valeur de n la plus petite qui se remplit en premier.

Exercice IV.5 – Ordre de remplissage

Quel est l'ordre de remplissage des sous-couches selon la règle de Klechkowski?

${\bf Remarques}:$

- * On retrouve l'ordre énergétique des cinq premières sous-couches.
- \star Cet ordre ne reflète pas nécessairement l'ordre énergétique des OA : on a par exemple de façon générale $\varepsilon_{3\,\mathrm{d}}<\varepsilon_{4\,\mathrm{s}}$, mais il existe aussi des exceptions à cela notamment parmi les métaux de transition (cf. cours classification).

- ⋆ On représente souvent le remplissage donné par la règle de Klechkowski sous la forme d'un tableau (à dessiner).
- \star Au maximum, le dernier élément du tableau périodique reconnu par l'UICPA en 2009, le copernicium $_{112}{\rm Cn},$ possède 112 électrons et a la configuration électronique suivante :

$$Z(\mathrm{Cn}) = 112: \ 1\,\mathrm{s}^2 2\,\mathrm{s}^2 2\,\mathrm{p}^6 3\,\mathrm{s}^2 3\,\mathrm{p}^6 4\,\mathrm{s}^2 3\,\mathrm{d}^{10} 4\,\mathrm{p}^6 5\,\mathrm{s}^2 4\,\mathrm{d}^{10} 5\,\mathrm{p}^6 6\,\mathrm{s}^2 4\,\mathrm{f}^{14} 5\,\mathrm{d}^{10} 6\,\mathrm{p}^6 7\,\mathrm{s}^2 5\,\mathrm{f}^{14} 6\,\mathrm{d}^{10}$$

 \star Dans le cadre de notre programme, il ne sera pas nécessaire de connaître le remplissage des OA au delà de la sous-couche 6 d, puisqu'aucun élément n'a ces OA remplies dans son état fondamental.

Exercice IV.6 – Quelques configurations électroniques

Repartir les électrons de quelques éléments de la classification périodique dans leur OA. On donnera d'abord la configuration électronique des ces éléments avant de représenter leur diagramme énergétique.

- * hélium
- * lithium
- * béryllium
- \star bore
- * carbone

II.1.c Règle de Hund

Dans le cas du carbone, le principe de Pauli et la règle de Klechkowski ne permettent pas de savoir dans quelle OA le sixième électron doit être placé.

Est-il plus avantageux, du point de vue énergétique, que le sixième électron s'apparie avec l'électron déjà présent dans la sous-couche 2 p ou au contraire qu'il occupe une nouvelle OA?

La règle de Hund répond à cette question :

Théorème IV.3 – Règle de Hund

Quand un niveau d'énergie est dégénéré et que le nombre d'électron à placer n'est pas suffisant pour saturer la sous-couche étudiée, l'état de plus basse énergie est obtenu en utilisant le maximum d'OA dans la sous-couche, les spins des électrons non appariés étant **parallèles**.

Exercice IV.7 – Application de la règle de Hund

Donnons la configuration électronique des éléments suivants avant de représenter leur diagramme énergétique.

- * Carbone
- * Azote
- * Oxygène

II.1.d Propriétés magnétiques des atomes et des ions

La règle de Hund peut être vérifiée expérimentalement car la présence d'électrons célibataires (non appariés dans une orbitale) dans un atome ou un édifice polyatomique lui confère des propriétés magnétiques particulières.

Définition IV.4 – Para- ou dia-magnétisme

- * Un atome ou un ion polyatomique est **paramagnétique**, s'il possède un ou des électrons célibataires. Dans un champ magnétique inhomogène, il sera attiré vers les **zones de champ fort**.
- * Il est diamagnétique, s'il ne possède aucun électron célibataire. Placé dans un champ magnétique inhomogène, il sera attiré par les zones de champ faible.

II.2 Excices de cours

Exercice IV.8 – Encore quelques exemples Donner la structure électronique de l'argon Ar (Z=18) et du potassium K (Z=19) puis celle du calcium Ca (Z=20), du scandium Sc (Z=21) et du zinc Zn (Z=30). * Argon * Potassium

- * Scandium
- * Zinc

II.3 Stabilité partielle de certaines configurations électroniques

La règle de Klechkowski est empirique. Elle ne donne qu'une règle générale et présente de nombreuses exceptions. Deux sont particulièrement intéressantes :

- \star le chrome (Z = 24) a une configuration attendue : [Ar]4 s²3 d⁴ mais sa configuration réelle est [Ar]4 s¹3 d⁵.
- \star le cuivre (Z=29) a une configuration attendue : [Ar] $4 \,\mathrm{s}^2 3 \,\mathrm{d}^9$ mais sa configuration réelle est [Ar] $4 \,\mathrm{s}^1 3 \,\mathrm{d}^{10}$.

Propriété IV.7 – Stabilité partielle

Lorsque des sous-couches sont totalement ou à moitié remplies, elles sont stabilisées et confèrent donc à l'atome une énergie plus faible.

II.4 Electrons de coeur et électrons de valence

Définition IV.5 – Electrons de coeur et de valence

- * On appelle électrons de valence, les électrons occupant les OA ayant le nombre quantique principal n le plus élevé ou les électrons des sous-couches en cours de remplissage.
- * On appelle électrons de coeur, l'ensemble de tous autres électrons. Ils occupent les sous-couches les plus basse en énergies. Ce sont les électrons les plus liés au noyau.

Exercice IV.9 – Application

Déterminer les électrons de coeur et de valence des éléments suivants.

- \star Carbone
- * Aluminium
- * Notation allégée

II.5 Configuration électronique d'un ion

Tout au long de l'année, nous serons amenés à rencontrer des ions chargés en plus des atomes neutres.

Comment faire alors pour établir la configuration électronique de telles entités?

II.5.a Cas d'un anion monoatomique

Méthode IV.4 – Configuration électronique d'un anion

Pour obtenir un anion monoatomique (type $Br^-, O^{2-}, ...$) à partir d'un atome, il faut lui ajouter un ou plusieurs électrons. La configuration électronique de cet anion dans son état fondamental est obtenu en procédant comme pour un atome neutre possédant le nombre d'électrons de cet anion monoatomique.

Exercice IV.10 – Configuration électroniques de quelques anions

- * Ecrire la configuration du brome et de l'ion bromure à partir de celle de l'argon et du krypton.
- * Quels sont les électrons de valence?
- \star Quels sont les électrons de coeur ?

II.5.b Cas d'un cation monoatomique

Méthode IV.5 – Configuration électronique d'un cation

Pour obtenir un cation monoatomique (type Na⁺, Ca²⁺, ...) à partir d'un atome, il faut lui arracher un ou plusieurs électrons.

Les électrons de valence de la sous-couche d'énergie la plus élevée sont les plus faciles à arracher. Leur départ conduit à l'ion correspondant dans son état fondamental.

Exercice IV.11 – Configuration électroniques de quelques cations

- * Ecrire la configuration du sodium et de l'ion sodium ainsi que celle de l'ion fer (II) dans leur état fondamental.
- * Quels sont les électrons de valence?
- \star Quels sont les électrons de coeur?

Remarque : lors du remplissage, la règle de Klechkowski prévoit de remplir d'abord la 4 s avant la 3 d. Si énergétiquement le remplissage se fait dans cet ordre, on montre néanmoins que les électrons de la 4 s sont légèrement plus éloignés du noyau que ceux de la 3 d. Ce sont donc les électrons de la 4 s qui sont arrachés en premier lors de l'ionisation de l'atome de fer. Ce résultat est général pour une certaine catégorie d'élément.

Propriété IV.8 – Priorité dans l'arrachage des électrons

Pour n fixé, lorsque dans un atome la dernière sous-couche occupée est une sous-couche de type (n-1)d ou (n-2)f, ce sont les électrons occupant la sous-couche ns qui sont arrachés en premier lors de la formation des cations correspondants.