

Introdução

Prof. Dr. Luiz Camolesi Jr.

Definição

A Complexidade de um Algoritmo consiste na quantidade de "trabalho" necessária para a sua execução, expressa em função das operações fundamentais, as quais variam de acordo com o algoritmo e em função do volume de dados

INTRODUÇÃO

Computabilidade: refere-se à existência ou não de um procedimento que resolve um determinado problema em um número finito de passos.

Tipos de Problemas

- Tipo 1 : problemas que podem ser resolvidos com um conjunto de operações e que sempre terminam e obtém um resultado
- Tipo 2 : problemas que podem ser resolvidos com um conjunto de operações mas que não é possível comprovar que irá obter um resultado (que possui termino)

quais problemas podem ser resolvidos com o auxílio desta máquina?

Problema do azulejo (tiling problem):

Um azulejo é um quadrado com orientação fixa. Temos um conjunto de tamanho T contendo azulejos em 4 cores (C1 a C4), não necessariamente distintas, conforme figura. O desafio é cobrir uma área quadrada finita com azulejos respeitando a restrição de que os azulejos devem se encostar no lado de mesma cor.

Desejamos preencher uma área de 5×5 azulejos.

Problema do azulejo (tiling problem):

Um azulejo é um quadrado com orientação fixa. Temos um conjunto de tamanho T contendo azulejos em 4 cores (C1 a C4), não necessariamente distintas, conforme figura. O desafio é cobrir uma área quadrada finita com azulejos respeitando a restrição de que os azulejos devem se encostar no lado de mesma cor.

Problema inicialmente estudado por Hao Wang em 1961

Desejamos preencher uma área de 3×3 azulejos.

Não tem Solução

Vamos então à Complexidade de Algoritmos

Um algoritmo serve para resolver um determinado problema, e todos os problemas têm sempre uma entrada de dados (N)

- O tamanho desse N afeta sempre diretamente no tempo de resposta de um algoritmo
- Dependendo do problema, já existem alguns algoritmos prontos, ou que podem ser Adaptados
- O problema é: qual algoritmo escolher?

Exemplo:

Solução de um sistema lineares com n (x1, x2, x3, ... Xn) incógnitas

(10	5	-3	2	(x_1)		(19)
0	6	-4	2	x_2	_	0
0	0	5	-3	x_3		5
0	0	0	2)	$\left(x_{4}\right)$		(10)

Métodos: Cramer

Gauss

Estimativa empírica de tempo, para um processador rodando em 3GHz

n	Cramer	Gauss
2	4 ns	2 ns
3	12 ns	8 ns
4	48 ns	20 ns
5	240ns	40 ns
10	7.3ms	330 ns
20	152 anos	2.7 ms

A complexidade de um algoritmo pode ser dividida em:

- Complexidade Espacial: Quantidade de recursos utilizados para resolver o problema;
- Complexidade Temporal: Quantidade de Tempo utilizado. Pode ser visto também como o número de instruções necessárias para resolver determinado problema;

Em ambos os casos, a complexidade é medida de acordo com o tamanho dos dados de entrada (N)

Existem três escalas de complexidade:

UNICAMP

- Melhor Caso
- Caso Médio
- Pior Caso

Nas três escalas, a função de complexidade retorna a complexidade de um algoritmo com entrada de N elementos

A Complexidade independe de linguagem ou Computador usado para a solução.

Existem três escalas de complexidade:

- Melhor Caso
- Caso Médio
- Pior Caso

Nas três escalas, a função de complexidade retorna a complexidade de um algoritmo com entrada de N elementos

Caso Melhor

Definido pela letra grega Ω (Ômega)

É o menor tempo de execução em uma entrada de tamanho N É pouco usado, por ter aplicação em poucos casos.

Ex.:

Se realizada uma busca por um número em uma lista de N números a complexidade no melhor caso é $f(N) = \Omega(1)$, pois assume-se que o número estaria logo na cabeça da lista.

Caso Médio

Definido pela letra grega θ (Theta)

Difícil de se determinar na maioria dos casos

Deve-se obter a média dos tempos de execução de todas as entradas de tamanho N e baseado em probabilidade de determinada condição ocorrer.

Ex.:

Se realizada uma busca por um número em uma lista de N números a complexidade no caso médio é $f(N) = \theta$ ((N+1)/2), pois assume-se que o número estaria em qualquer posição.

Caso Pior

Mais utilizado

Representado pela letra grega O (ômicron)

Baseia-se no maior tempo de execução sobre todas as entradas de tamanho N.

Ex.:

Se realizada uma busca por um número em uma lista de N números a complexidade no caso pior é f(N) = O(N), pois assume-se que o número estaria na última posição.

Para determinar a função que representa a complexidade de um algoritmo (ou seu Comportamento Assintótico) deve-se considerar as operações de maior impacto do algoritmo, como segue:

Operação primitivas	Custo na Complexidade
Execução de um operador	1
Execução de uma Comparação	1
Execução de acesso a índice	1
Execução de chamada de função	Mais de 1 (depende)
Retorno de função	1

Abordagem consiste simplesmente na contagem de operações realizadas.

Linha	Código
1	function x();
2	{ int a, b;
3	a = 10,
4	b = 5;
5	If (a < b)
6	a++;
7	else
8	b++;
9	}

Complexidade		
÷		
-		
1		
1		
1		
2		
-		
2		
-		

Total: 5

Complexidade Constante.

$$\Omega$$
 (n) = 5

$$\Theta$$
 (n) = 5

$$O(n) = 5$$

Exemplo:

Linha	Código
1	function x();
2	{ int a, b;
3	scanf("%d",&a);
4	scanf("%d",&b);
5	If (a < b)
6	a=0;
7	else
8	b++;
9	}

Complexidade		
-		
-		
2 (?)		
2 (%)		
1		
1		
-		
2		
-		

Complexidade Constante.

Total: ?

$$\Omega$$
 (n) = 6

$$\Theta(n) = ?$$

$$O(n) = 7$$

Exemplo:

Linha	Código	Complexidade
1	function x();	-
2	{ int a, b;	-
3	scanf("%d",&a);	2 (?)
4	for (b=1; b <a; b++)<="" td=""><td>1+(1*a) +(2*(a-1))</td></a;>	1+(1*a) +(2*(a-1))
5	If (b < 10)	1 * (a-1)
6	b= (b*2)-1;	3 * (19)
7	else	-
8	b = (b+1)/(a*2);	4 * (1 ∞)
9	}	-

Complexidade Constante.

Complexidade	Total
Ω (a) = Caso melhor 2<= α < 10	2 + 1+(1*a) +(2*(a-1)) + 1 * (a-1) + 3 * (9) Para a = 9, temos: 63
Θ (a) = Caso médio	\$\$\$\$\$
O (a) = Caso pior Sendo α >= 10	2 + 1+(1*a) +(2*(a-1)) + 1 * (a-1) + 3 * (9) + 4 * (1) Para a =10, temos: 67

Complexidade Constante

- O algoritmo reage de modo bastante previsível.
- O tempo de execução não varia com a quantidade de dados processados

Exemplo:

Linha	Código	Complexidade
1	function x();	-
2	{ int c[11]={0,1,1,1,1,1,1,1,1,1,1};	11 * 2
3	int b;	-
4	for (b=1; b<11; b++)	1+(1*11) +(2*10)
5	If (c[b]>0)	2 * 10
6	b= (b*2)-1;	3 * ś
7	else	-
8	b = b/2;	5 * \$
9	}	-

Complexidade Constante.

Complexidade	Total
Ω (a) = Caso melhor	22 + 32 + 20 + 20 94
Θ (a) =	22 + 32 + 20 + 25
Caso médio	99
O (a) =	22 + 32 + 20 + 30
Caso pior	104

Exemplo:

CX	em	рι	O:

Linha	Código
1	function x(int a, int c[]);
2	{
3	int b;
4	for (b=1; b <a; b++)<="" td=""></a;>
5	If (c[b]>0)
6	b= (b*2)-1;
7	else
8	b = b/2;
9	}

Complexidade
_
-
-
1+(1*a) +2*(a-1)
2 * (a-1)
3 * \$
-
2 * ?
-

Complexidade	Total
Ω (a) =	1+(1*a) + 2*(a-1) + 2*(a-1) + 2*(a-1) + 2*a
Caso melhor	= $7a - 3$
Θ (a) = Caso médio	śśś
O (a) =	1+(1*a) + 2*(a-1) + 2*(a-1) + 3*a
Caso pior	= 8a - 3

Complexidade

Não Constante.

_		
а	Ω (a)	O (a)
10	67	503
20	137	1063
30	207	1623
40	277	2183
50	347	2743
60	417	3303
70	487	3863
80	557	4423
90	627	4983
100	697	5543
110	767	6103
120	837	6663
130	907	7223
140	977	7783
150	1047	8343
160	1117	8903
170	1187	9463

Complexidade Polinomial Linear

O algoritmo reage de modo bastante previsível mas com tempo de execução variando conforme a quantidade de dados processados

Complexidade Polinomial

O algoritmo reage de modo bastante previsível mas com tempo de execução variando conforme a quantidade de dados processados em um ritmo de degradação elevado.

a	Linear	Quadrática	Cúbica
10	10	100	1000
20	20	400	8000
30	30	900	27000
40	40	1600	64000
50	50	2500	125000
60	60	3600	216000
70	70	4900	343000
80	80	6400	512000
90	90	8100	729000
100	100	10000	1000000
110	110	12100	1331000
120	120	14400	1728000
130	130	16900	2197000
140	140	19600	2744000
150	150	22500	3375000
160	160	25600	4096000
170	170	28900	4913000

Complexidade Logarítmica

O algoritmo reage com uma moderada degradação do desempenho, refletindo um comportamento logarítmico

N	Log ₂	Log 5	Log 30
10	3,3219281	1,430676558	0,676992493
20	4,3219281	1,861353116	0,88078754
30	4,9068906	2,113282753	1
40	5,3219281	2,292029674	1,084582587
50	5,6438562	2,430676558	1,150189938
60	5,9068906	2,543959311	1,203795047
70	6,129283	2,639738513	1,249117521
80	6,3219281	2,722706232	1,288377634
90	6,4918531	2,795888947	1,323007507
100	6,6438562	2,861353116	1,353984985
110	6,7813597	2,92057266	1,382007522
120	6,9068906	2,974635869	1,407590094
130	7,0223678	3,024369199	1,431123779
140	7,129283	3,070415071	1,452912568
150	7,2288187	3,113282753	1,473197445
160	7,3219281	3,15338279	1,492172681
170	7,4093909	3,191050986	1,509997175

Exemplos:

Pesquisa em **Árvore** B

Pesquisa em Árvore AVL

Base Logarítmica 2

Base Logarítmica?

Complexidade Exponencial &

Complexidade Fatorial

O algoritmo reage fortemente a degradação do desempenho, refletindo rapidamente devido a elevação da quantidade de dados em processamento.

A Invenção do Xadrez (" o poder da progressão exponencial")

Existem diversas <u>mitologias</u> associadas à criação do xadrez, sendo uma das mais famosas aquela que atribui ao jovem sacerdote <u>indiano Lahur Sessa</u>.

No livro <u>O Homem que Calculava</u> do escritor e matemático brasileiro <u>Malba Tahan</u>, conta que numa <u>província</u> indiana de Taligana havia um poderoso <u>rajá</u> que estava em constante <u>depressão</u> e passou a descuidar-se de si e do <u>reino</u>.

Certo dia o rajá foi visitado por Sessa, que apresentou-lhe um <u>tabuleiro</u> com 64 casas brancas e pretas intercaladas e com diversas <u>peças</u> que representavam tropas do <u>exército</u>: <u>infantaria</u>, <u>cavalaria</u>, carros de combate, condutores de <u>elefantes</u>, o <u>vizir</u> e o próprio rajá. O sacerdote explicou que a prática do jogo daria conforto espiritual e cura para a depressão.

O rajá, agradecido, ofereceu uma recompensa a Lahur Sessa por sua <u>invenção</u> e o brâmane pediu simplesmente um <u>grão de trigo</u> para a primeira casa do tabuleiro, dois para a segunda, quatro para a terceira, oito para a quarta e assim sucessivamente até a última casa. Espantado com a <u>modéstia</u> do pedido, o rajá ordenou que fosse pago imediatamente a quantia em grãos que fora pedida Após os cálculos, os <u>sábios</u> do rajá ficaram atônitos com o resultado que a quantidade de grãos atingiu

Casa	N. grãos	
	1	1
	2	2
	3	4
	4	8
	5	16
	6	32
	7	64
	8	128
	9	256
	10	512
	11	1.024
	12	2.048
	13	4.096
	14	8.192
	15	16.384
	16	32.768
	17	65.536
	18	131.072
	19	262.144
	20	524.288
	21	1.048.576

grãos	Casa N
524.288	20
1.048.576	21
2.097.152	22
4.194.304	23
8.388.608	24
16.777.216	25
33.554.432	26
67.108.864	27
134.217.728	28
268.435.456	29
536.870.912	30
1.073.741.824	31
2.147.483.648	32
4.294.967.296	33
8.589.934.592	34
17.179.869.184	35
34.359.738.368	36
68.719.476.736	37
137.438.953.472	38
274.877.906.944	39
549.755.813.888	40
1.099.511.627.776	41

-	5 1155517 501500
37	68.719.476.736
38	137.438.953.472
39	274.877.906.944
40	549.755.813.888
41	1.099.511.627.776
42	2.199.023.255.552
43	4.398.046.511.104
44	8,796.093.022.208
45	17.592.186.044.416
46	35.184.372.088.832
47	70.368.744.177.664
48	140.737.488.355.328
49	281.474.976.710.656
50	562.949.953.421.312
51	1.125.899.906.842.620
52	2.251.799.813.685.250
53	4.503.599.627.370.500
54	9.007.199.254.740.990
55	18.014.398.509.482.000
56	36.028.797.018.964.000
57	72.057.594.037.927.900
58	144.115.188.075.856.000
59	288.230.376.151.712.000
60	576.460.752.303.423.000
61	1.152.921.504.606.850.000
62	2.305.843.009.213.690.000
63	4.611.686.018.427.390.000
64	9.223.372.036.854.780.000

Se um grão de arroz pesa 1 g, o total equivale a 18.446.744.073.709 toneladas

Colocados em caminhões pesados (capacidade de 14 toneladas) seriam necessários cerca de 1.3 trilhões de caminhões ou 92 bilhões de aviões com capacidade 200 ton.

Exemplo: Problema da Torre de Hanoi:

Dado um conjunto de n discos dispostos em ordem decrescente de tamanho, o objetivo é mover a pilha para outro pino usando um terceiro como auxiliar.

Restrições:

- Somente um disco pode ser movido a cada instante.
- Cada movimento consiste em retirar o disco do topo de uma pilha e movêlo ao topo de outra pilha.
- Nenhum disco pode ser colocado sobre outro que seja menor do que ele.

Exemplo:

Problema de Grafo.

Caminho Hamiltoniano Problema do Caixeiro Viajante: Dado um mapa com n cidades e a
distância entre cada par de cidades, é possível obter um percurso para
um vendedor de modo que ele o complete dentro de uma dada
quilometragem, visitando cada cidade uma única vez e retornando ao
ponto de partida?

nás	(n-1)!
4	6
10	362880

	Qual	e a ro	ta de	meno	or cus	sto:
	J	J	J	J	J	J
	C	C	H	H	I	I
Rotas	H	I	I	C	C	H
	I	H	C	I	H	C
	J	J	J	J	J	J
Custo	93	90	90	93	93	93

A solução é obtida analisando-se as (n-1)! possibilidades.

Qual é a ordem de complexidade? É a melhor solução encontrada? Nunca se comprovou!

Exponencial: $O(c^n)$

Problema Não-deterministicamente Polinomial (NP)

Comparação entre Classes de Complexidade Algorítmica

Menor omplexidade	Notação	Nome
	O(1)	Ordem constante
	$O(\log n)$	Ordem logarítmica
	$O([\log n]^c)$	Ordem poli-logarítmica
	O(n)	Ordem linear
	$O(n \cdot \log n)$	Ordem linear-logarítmica
	$O(n^2)$	Ordem quadrática
	$O(n^3)$	Ordem cúbica
	$O(n^c)$	Ordem polinomial
	$O(c^n)$	Ordem exponencial
	O(n!)	Ordem fatorial

Comparação entre Classes de Complexidade Algorítmica

Execution times of a machine that executes 10^9 steps by second (~ 1 GHz), as a function of the algorithm cost and the size of input n:

Size	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n
10	3.322 ns	10 ns	33 ns	100 ns	1 μs	1 μs
20	4.322 ns	20 ns	86 ns	400 ns	8 μs	1 ms
30	4.907 ns	30 ns	147 ns	900 ns	27 μs	1 s
40	5.322 ns	40 ns	213 ns	2 μs	64 μs	18.3 min
50	5.644 ns	50 ns	282 ns	3 μs	125 μs	13 days
100	6.644 ns	100 ns	664 ns	10 μs	1~ms	40·10 ¹² years
1000	10 ns	$1 \mu s$	10 μs	1 ms	1 s	
10000	13 ns	10 μs	133 μs	100 ms	16.7 min	
100000	17 ns	100 μs	2 ms	10 s	11.6 days	
1000000	20 ns	1~ms	20 ms	16.7 min	31.7 years	
			-			

Os limites conhecidos de solução de um problema

Cota Superior (Upper Bound): estabelecido pelo melhor algoritmo até o Momento para determinado problema.

Exemplo: Multiplicação de duas matrizes quadradas n x n.

- O algoritmo trivial tem complexidade O(n³).
- Strassen em 1969 reduziu a complexidade para O (n^{log 7})
- Coppersmith e Winograd melhoraram ainda para O(n^{2.376})

Shmuel Winograd Cientista da Computação

Don Coppersmith Criptógrafo e Matemático

Arnold Strassen

Matemático

Classificação de Problemas:

Problemas polinomiais (P): problemas cuja melhor solução demanda algoritmos com complexidade (assintótica) de ordem até polinomial O(n ^c).

Problemas não-deterministicamente polinomiais (NP): problemas cuja melhor solução conhecida demanda algoritmos com complexidade assintótica de ordem exponencial O(cⁿ).

Problemas NP-Completos (NPC): subconjunto problemas de NP que se solucionados com menor complexidade causam <u>redução</u> de complexidade de outros problemas.

Problemas Redutíveis:

problemas que podem ser transformados/substituídos em outros, com objetivo de redução da complexidade de solução.

Um problema Y é redutível a um problema X se Y for um subproblema ou caso particular de X.

Heurística:

é a utilização de uma lógica algorítmica que busca solucionar um problema considerando alguma simplificação ou redução de dados, visando a viabilidade temporal de sua execução

Exemplo:

 Problema do Caixeiro Viajante: Dado um mapa com n cidades e a distância entre cada par de cidades, é possível obter um percurso para um vendedor de modo que ele o complete dentro de uma dada quilometragem, visitando cada cidade uma única vez e retornando ao ponto de partida?

l	nós	(n-1)!
	4	6
I	10	362880

	Qual	é a ro	ta de	mend	or cus	sto?
	J	J	J	J	J	J
	C	C	H	H	I	I
Rotas	H	I	I	C	C	H
	I	H	C	I	H	C
	J	J	J	J	J	J
Custo	93	90	90	93	93	93

A solução é obtida analisando-se as (n-1)! possibilidades.

Qual é a ordem de complexidade?

É a melhor solução encontrada? Nunca se comprovou!

Exponencial: O(c")

Problema Não-deterministicamente Polinomial (NP)

Exemplo:

 Problema da mochila (knapsack): é um problema de otimização combinatória. O objetivo é que se preencha uma mochila com um conjunto de itens tal que se atinja o maior valor total, não ultrapassando o peso máximo suportado.

Problema cuja melhor solução conhecida demanda um algoritmo de ordem exponencial

Problema NP

É interessante observar que diversos outros problemas se reduzem ao problema da mochila

- Investimento de capitais
- Corte e empacotamento
 - Orçamento
- Criptografia de chave pública

Desta forma, se encontrarmos uma solução em tempo polinomial para o problema da mochila, teremos uma solução $O(n^c)$ para todos os outros problemas da mesma classe.

O problema da Mochila é NP-Completo

Problemas tratáveis: aqueles cuja solução demanda um algoritmo de ordem polinomial ou menor

Também, aqueles que ainda <u>não se provou</u> que a melhor solução demanda algoritmos de ordem exponencial ou maior.

Problemas não-tratáveis: já se comprovou que a melhor solução possível demanda um algoritmo de ordem exponencial ou ainda mais custoso.

Suponha que temos cinco algoritmos A1, A2, A3, A4, A5 com as seguintes complexidades de tempo:

Algoritmo	Complexidade
A1	n
A2	n log ₂ n
A3	n^2
A4	n^3
A5	2 ⁿ

Computador hipotético.

A unidade de tempo:

 $1UT = 1ms = 10^{-3}$ segundos

Considere \rightarrow T = complexidade * UT

Alguns cálculos:

Para T = 1 (1 segundo de execução)

Algoritmo A1 temos, $1 = n * 10^{-3} \rightarrow n = 1.000$

Algoritmo A3 temos, $1 = n^2 * 10^{-3} \implies n = 31,6$

Algoritmo A5 temos, $1 = 2^n * 10^{-3} \rightarrow n = 9$

Para T = 60 (1 minuto de execução)

Algoritmo A1 temos, $60 = n * 10^{-3} \rightarrow n = 60.000$

Algoritmo A3 temos, $60 = n^2 * 10^{-3} \rightarrow n = 244,9$

Algoritmo A5 temos, $60 = 2^n * 10^{-3} \implies n = 15$

A tabela a seguir mostra o tamanho de problemas que podem ser resolvidos em 1 segundo, em 1 minuto e em 1 hora para cada algoritmo em um computador hipotético:

Algoritmo	Complexidade	1 seg	1 min	1 hora
A1	n	1000 dados	60.000 dados	3.600.000 dados
A2	n log ₂ n	140 dados	4893 dados	200.000 dados
A3	n^2	31,6 dados	244,9 dados	1897,4 dados
A4	n^3	10 dados	39,2 dados	153,3 dados
A5	2 ⁿ	9 dados	15 dados	21 dados

Algoritmo A1 temos,

Para Maquina Atual
$$T = S * 10^{-3}$$

Para Máquina Futura
$$T = (n * 10^{-3})/10$$

$$S * 10^{-3} = (n * 10^{-3})/10$$
 $\rightarrow n = S * 10$

Algoritmo A3 temos,

Para Maguina Atual
$$T = S^2 * 10^{-3}$$

Para Máquina Futura
$$T = (n^{2*} 10^{-3})/10$$

$$S^2 * 10^{-3} = (n^2 * 10^{-3})/10$$
 $\rightarrow n = S * 3$

Algoritmo A5 temos,

Para Maquina Atual
$$T = 2^S * 10^{-3}$$

Para Máquina Futura
$$T = (2^n * 10^{-3})/10$$

$$2^{S} * 10^{-3} = (2^{n} * 10^{-3})/10$$

$$2^{S} = 2^{n} / 10$$

$$2^{n} = 2^{S} * 10$$

$$\log 2^{n} = \log 2^{S} + \log 10$$
 $\Rightarrow n = S + 3$

$$\rightarrow$$
 n = S +3

S: volume na máquina antiga

n: volume na máquina nova

A próxima geração de computadores seja dez vezes mais rápida que a atual. A tabela abaixo mostra o aumento no tamanho do problema que os algoritmos poderão resolver no mesmo tempo.

Algoritmo	Complexidade	Volume processado	Volume processado
		Maq. Atual	Maq. Futura
A1	n	\$1	\$1 * 10
A2	n log ₂ n	\$2	S2 * 10 (aprox.)
A3	n^2	\$3	\$3 * 3
A4	n^3	\$4	S4 * 2
A5	2 ⁿ	\$5	\$5 + 3

1) Qual a função de complexidade do código abaixo para o caso pior:

```
/* CALCULO SOBRE A MATRIZ (4*4) */
soma = 0;
menor = 999;
for (linha = 0; linha <=3; linha++)
{
    for (coluna = 0; coluna <=3; coluna++)
    {
        soma = soma + M[linha][coluna];
        if (M[linha][coluna]<menor)
        {
            menor = M[linha][coluna];
        }
    }
}
```

Resposta: 232

Para matriz N*N) a função de complexidade é

$$F(n) = 13*n^2 + 5*n + 4$$

- 2) Considere a necessidade um programa que obtenha o menor valor de um vetor de 100 elementos. Faça o algoritmo e calcule a complexidade nas situações:
- 1. O vetor está sempre cheio
- 2. O vetor não está sempre cheio
- 3. O vetor está ordenado
- 4. O vetor não está ordenado
- 5. O algoritmo não é recursivo
- 6. O algoritmo é recursivo

3) Suponha que tenhamos três algoritmos (A1, A2 e A3) com complexidade assintótica $O(n^2)$ para resolução do mesmo problema. As funções de complexidade destes algoritmos são:

A1
$$\rightarrow$$
 f(n) = 2*n² + 9*n
A2 \rightarrow g(n) = 9*n² + 15*n
A3 \rightarrow h(n) = n² + 300

Faça o gráfico para a análise comportamental de cada algoritmo diante do crescimento acelerado do volume n de dados.

4) Procure a lógica e desenvolva em C o algoritmo eficiente de multiplicação de Matrizes Quadradas de Strassen

Acesse:

http://mathworld.wolfram.com/StrassenFormulas.html

Arnold Strassen

Matemático

