Introduction

We consider the population count N to be constant.

First model: SI

The first model is quite simple : each infected people has a chance to infect new people. The infection rate is given by the parameter $\beta \in \mathbb{R}_+$. The evolution of infected people is thus given by the following recurrent equation :

$$I_t = I_{t-1} + (\beta)I_{t-1} \tag{1}$$

The figure TODO gives the results for a one year simulation with $\beta=0.02$ and $I_0=3$. Notice, that the graph do not correspond exactly to the equation : it is truncated over N=100. Indeed, in this problem, and with $\beta>0$, we have $I_t\underset{t\to\infty}{\longrightarrow} +\infty$

Second model: SI corrected

$$I_{t} = I_{t-1} + \left(\frac{\beta}{N}\right) I_{t-1} S_{t_{1}} \tag{2}$$

Third model: SIS

$$I_{t} = I_{t-1} + \left(\frac{\beta}{N}\right) I_{t-1} S_{t-1} + \gamma I_{t-1} \tag{3}$$