• Emitter Feedback Bias:

- ➤ While writing KVL, never

 take CE or BC loops, since

 V_{CE} and V_{BC} are not known
- \succ Consider only BE loops with $V_{BE} = 0.7 \text{ V}$

$$\triangleright V_{CC} = I_B R_B + V_{BE} + I_E R_E$$

$$\Rightarrow I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)R_{E}}$$

- $> I_C = \beta I_B$
- \triangleright V_{CE} = V_{CC} I_CR_C I_ER_E \approx V_{CC} I_C(R_C + R_E)
- $\triangleright P_D = V_{CC} \times I_E$
- This is a 3-element output branch, with $V_{CE} = V_{CC}/3$ for BB
- $ightharpoonup Rest\ 2V_{CC}/3\ drops\ across\ R_C\ and\ R_E$, with the ratio typically chosen to be 2:1 (reason later!)
- Circuit is *very robust* since R_E provides *negative feedback*
- \triangleright Also, has better β insensitivity

• Collector Feedback Bias:

$$> V_{CC} = I_E(R_C + R_E) + I_BR_B + V_{BE}$$

$$\Rightarrow I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)(R_{C} + R_{E})}$$

$$> I_C = \beta I_B$$

$$\triangleright$$
 V_{CE} = V_{CC} - I_E(R_C + R_E)

$$\triangleright P_D = V_{CC} \times I_E$$

> This circuit also provides

better \(\beta \) insensitivity

• Voltage Divider (or 4-Resistor) Bias:

- > The best: Extremely robust and versatile
- If properly designed, almostβ independent
- \triangleright If $I_1 \ge 10I_B$, $I_1 \approx I_2$

$$\Rightarrow V_{\rm B} \simeq \frac{R_2}{R_1 + R_2} V_{\rm CC}$$

$$\Rightarrow$$
 $V_{\rm E} = V_{\rm B} - V_{\rm BE}$ and $I_{\rm C} \simeq I_{\rm E} = V_{\rm E} / R_{\rm E}$

