Code No: 153BT

Time: 3 Hours

R18

Max. Marks: 75

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, December - 2019

SIGNALS AND SYSTEMS

(Common to ECE, EIE)

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

- 1.a) List out the properties of an impulse function.
 - b) State the Dirichlets conditions for convergence of Fourier series
 - State the Paley-Wiener criterion for physical realizability of the system.
- d) Find the Laplace Transform of the signal $x(t) = \sin(t) + \cos(t)$ [2]
- e) What is meant by Aliasing? [2]
- f) What is complete set of orthogonal functions? [3]
- g) Find and Sketch the Fourier Spectrum of the signal $x(t) = \frac{1}{t}$ [3]
- Find and Sketch the conditions for distortion less transmission System. [3]
- i) Find the Z-Transform of the sequence $x(n) = a^n u(n) (b)^n u(-n-1)$ [3]
- j) Determine the Autocorrelation Function of a signal $x(t) = e^{-at}u(t)$ [3]

PART - B

(50 Marks)

(25 Marks)

[2]

[2]

[2]

- 2.a) Define signal space. Give an example of a signal space, and also define the term 'basis set' for a signal space.
 - b) Find the even and odd components of an unit step signal, and also show that these components are orthogonal functions.

 [5+5]
- 3.a) If $x(t) = \begin{cases} 1 |t|; & -1 \le t \le 1 \\ 0 & oterwise \end{cases}$; then sketch the signal $x\left(\frac{-t+1}{2}\right) + x\left(\frac{-t-1}{2}\right)$
- How to approximate a function by set of mutually orthogonal functions. Derive the necessary equations.
- 4.a) Find the TFS of an even symmetric square wave periodic signal with period T_0 .
 - Find the TFS of a Quarter wave odd symmetric periodic signal.

OR

- 5.a) If x(t) and $X(\omega)$ forms the Fourier Transform pair, then find the Inverse Fourier
 - Transform of: i) $X(\omega) = \frac{1}{1+\omega^2}$ ii) $X(\omega) = \operatorname{sgn}(\omega)$

then $X(\omega)$ is also real and even.

b) x(t) and $X(\omega)$ forms the Fourier Transform pair, prove that, if x(t) is real and even,

[5+5]

- 6. The continuous –time LTI system is described by the following differential equation y'(t) + 2y(t) = x(t)
 - a) Verify that the impulse response of this system is $h(t) = e^{-2t}u(t)$
 - b) Is this system i) Memoryless ii) Causal iii) Stable. Justify your answer. [5+5]
- 7.a) Find the necessary and sufficient condition on the impulse response h(t) such that system is BIBO Stable.
 - b) Find and sketch the impulse response of an Ideal BPF.

[5+5]

[5+5]

[5+5]

- 8.a) Determine the Laplace Transform , also sketch the pole, zero locations, and associated ROC of the signal $x(t) \neq -e^{-at}u(-t)$, a < 0.
 - b) The input and output relationship of the continuous time system is y''(t) y'(t) 2y(t) = x(t)

Determine the step response of the system when the system is causal.

OR

- 9.a) State and prove Final value Theorem of Z-Transform.
 - b) If h(n) and H(Z) forms Z-Transform pair, then find the Inverse Z-Transform of $Z^{-N}H(-Z^{-1})$. [5+5]
- 10.a) Derive Relation between correlation and convolution.
 - b) Find the convolution of the following signal by graphical method

$$x(t) = e^{-3t}u(t), h(t) = u(t+3)$$
OR

11.a) Determine the output of the system for the input x(t) and the impulse response of the

system is
$$h(t)$$
, where $x(t) = \begin{cases} 1; & -0.5 \le t \le 0.5 \\ 0; & otherwise \end{cases}$ and $h(t) = \begin{cases} 1; & 0 \le t \le 1 \\ 0; & otherwise \end{cases}$

b) Derive the relationship between Autocorrelation Function and Power Spectral density.