CSE7101- Capstone Project Review-1

PROJECT TITLE - AI-Driven Smart Ambulance Routing and EMS Triage Dashboard for Disaster/Dispatch Management

Batch Number: CSE-156

ROLL NUMBER	NAME	
20211CSE0242	ZOYA ALAM	
20221CSE0021	FAIZAN AHMED	
20221CSE0541	PAVITRA PRABHUSWAMI HIREMATH	

Under the Supervision of,

Mr. Syed Mohsin Abbasi
Assistant Professor
School of Computer Science and Engineering
Presidency University

Name of the Program: Computer Science and Engineering

Name of the HoD: Dr. Asif Mohamed H.B.

Name of the Program Project Coordinator: Dr. Jayavadivel Ravi

Name of the School Project Coordinators: Dr. Sampath A K, Dr. Geetha A

Content

- Project Title & Details Overview of team, category, and SDG mapping
- **Problem Statement** Challenges in current EMS systems
- **Objectives** Specific aims of the proposed solution
- Background & Related Work Context and importance
- **Literature Survey** Review of existing research
- Gap Analysis & Innovation Identified gaps and novel contributions
- System Architecture High-level workflow and modules
- Technology Stack Tools, languages, and platforms used
- Timeline (Gantt Chart) Project phases and schedule
- Expected Outcomes Anticipated results and benefits
- GitHub Link
- **References** Key academic and technical sources

Problem Statement Number: PSCS_434 - SOFTWARE

Problem Description:

Current EMS systems fail to integrate real-time hospital capacity, patient severity, and disaster triage into dispatch and routing decisions, leading to delays in critical care.

Key Issues:

- Static routing logic based only on shortest distance
- No pre-arrival triage (START/JumpSTART not implemented digitally)
- Fragmented ambulance and hospital monitoring
- No disaster-mode adaptability

Objectives

OBJ-1 – Simulate GPS tracking of ambulances & patient vitals

OBJ-2 – AI/ML model for hospital recommendation based on ICU load, proximity, and emergency load

OBJ-3 – Implement EMS triage protocols for disaster-aware prioritization

OBJ-4 – Build an interactive Tableau dashboard for real-time visualization

Color-Coding System (START/JumpSTART Model-Based)

Color	Priority	Description	Typical Action
Red	Immediate (P1)	Life-threatening injuries but treatable with immediate intervention.	Immediate transport and advanced care.
Yellow	Delayed (P2)	Serious but non-life- threatening injuries. Can delay treatment briefly.	Delayed transport. Monitor and reassess.
Green	Minor (P3)	Walking wounded with minor injuries.	Ambulatory care or minor treatment on-site.
Black	Deceased / Expectant (P4)	No signs of life or injuries incompatible with survival given available resources.	No resuscitation. Focus on salvageable patients.

Background & Related Work

- Growing demand for HealthTech & MedTech solutions to enhance emergency medical services (EMS).
- 2. **Increased road accidents, pandemics, and natural disasters** creating urgent need for faster response systems.
- 3. Literature shows strong work in **ambulance routing**, **triage protocols**, and **ICU forecasting** but implemented in silos without integration.
- 4. **No unified, Al-powered, real-time EMS dashboard** combining routing, triage, and hospital load management.
- 5. Manual decision-making in EMS dispatch leads to avoidable delays in critical patient care.
- 6. Existing dashboards lack **real-time integration** with live hospital and traffic data sources.
- 7. Limited adoption of automated triage protocols like START/JumpSTART in digital form.

Literature Survey Summary

Key Reviewed Papers:

- 1. **Green Al Ambulance Routing** Lacks hospital load integration
- 2. **CNN-SVM Routing in Urban Traffic** No triage workflows
- 3. QoS-aware Disaster Triage & Routing Early unification, but limited
- 4. **JumpSTART Pediatric Triage** Manual process
- 5. **Explainable ML for ICU Prediction** Not tied to dispatch **Gap:** No end-to-end integration of routing, triage, hospital recommendation, and dashboard.

<u>Literature Survey - Comprehensive Review & Critical Analysis</u>

Gap Analysis & Innovation

Existing Limitation	Our Innovation
Static routing	Real-time ML routing using ICU, distance, load
Manual triage	Automated START/JumpSTART
Fragmented monitoring	Unified Tableau dashboard
No disaster adaptability	Disaster mode with dynamic rules

System Architecture

Flow:

- 1. Emergency Call Intake
- 2. Triage Engine → assigns severity (Analysis)
- 3. Al Hospital Recommender → allocates hospitals using real-time data
- 4. ML Routing Engine → optimal ambulance path
- Dashboard (Tableau) → live monitoring for stakeholders
 External Systems: Hospital DB, Traffic APIs, (Wearables)

Technology Stack - Software

Web Front End: HTML, CSS, JavaScript

Al Model: Python, Scikit-learn (ML MODEL - Routing Algorithm)

Backend: Flask (ML API), PostgreSQL (integration) / Cloud SQL

Visualization: Tableau / Looker Studio (Google Data Studio)

Data Simulation: Python scripts for GPS, vitals, hospital load

APIs: Google Maps API / Leaflet

Cloud: GCP - Google Cloud Platform

Timeline of the Project (Gantt Chart)

Phase 1 (Weeks 1-2): Focus on requirements gathering and literature review.

Phase 2 (Weeks 3-5): Involves data simulation and model development.

Phase 3 (Weeks 6-8): Dedicated to backend integration.

Phase 4 (Weeks 9-10): Centered on dashboard development.

Phase 5 (Weeks 11-12): Concludes with testing and deployment.

Expected Outcomes

- Reduced dispatch-to-hospital time
- Pre-arrival triage decision-making
- Real-time ICU and load-aware hospital recommendations
- Disaster-ready EMS workflows
- Scalable, software-only solution

Github Link

Github Link

"The GitHub repository provides public access to our project's source code, documentation, and data simulation scripts. You'll find implementations of the AI/ML models for hospital recommendation and ambulance routing, along with setup instructions to run the system. We welcome community contributions and feedback.

GitHub Link: https://github.com/FURIOUSCHAMP007/CAPSTONE-PROJECT

References (IEEE Paper format)

- [1] S. Shalini, C. Nandini, G. S. R., M. Yasaswini, N. Jain, and A. P., "Greenvoy: A Survey on Smart Ambulance Routing through Green AI and Edge Intelligence," *Int. J. Sci., Eng. Technol.*, vol. 13, no. 3, pp. 227-234, 2025. [Online]. Available: https://www.ijset.in/wp-content/uploads/IJSET_V13 issue3 227.pdf
- [2] A. R. Nair, R. R. Patil, and M. R. Deshmukh, "Smart Ambulance Route Optimization System," *Int. Res. J. Eng. Technol.*, vol. 12, no. 4, pp. 417-422, Apr. 2025. [Online]. Available: https://www.irjet.net/archives/V12/i4/IRJET-V12I417.pdf
- [3] J. W. Escobar, M. Á. Ortiz-Barrios, and J. C. Paz-Roa, "Ambulance route optimization in a mobile ambulance dispatch system using deep neural network (DNN)," *Sci. Rep.*, vol. 15, no. 1, 2025. [Online]. Available: https://www.nature.com/articles/s41598-025-95048-0
- [4] D. Olivia, G. Attigeri, and A. Saxena, "Optimization model for mass casualty management using QoS-aware routing protocol and casualty triage prediction," *Int. J. Inf. Technol.*, vol. 16, pp. 1234-1247, Oct. 2024. [Online]. Available: https://link.springer.com/article/10.1007/s41870-024-02052-0
- [5] Y. T. Tan et al., "Pediatric Emergency Medicine Didactics and Simulation: JumpSTART Secondary Triage for Mass Casualty Incidents," *Cureus*, vol. 15, no. 6, p. e39208, Jun. 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322648/

References (IEEE Paper format)

- [6] T. V. Dinh et al., "Evaluation of Triage System Accuracy in Mass Casualty Incidents: A Systematic Review and Meta-analysis," *Prehosp. Disaster Med.*, vol. 38, no. 4, pp. 393-404, Aug. 2023. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/35660101/
- [7] A. G. C. de Sá, R. L. M. de Souza, A. G. C. P. de Souza, and M. P. Vellasco, "Explainable Machine Learning for ICU Readmission Prediction," *arXiv preprint arXiv:2309.13781*, Sep. 2023. [Online]. Available: https://arxiv.org/abs/2309.13781
- [8] A. M. S. Alsalem et al., "Integrating AI in Emergency Medicine: A Systematic Review in Enhancing Ambulance Dispatch and Triage Systems," *Indo Am. J. Pharm. Sci.*, vol. 11, no. 12, pp. 112-125, Dec. 2024. [Online]. Available: https://www.iajps.com/wp-content/uploads/2024/12/05.IAJPS05122024.pdf
- [9] Y.-Y. Xu et al., "Emergency Medical Service Dispatch Recommendation System Using Simulation Based on Bed Availability," *BMC Health Serv. Res.*, vol. 24, p. 12006, 2024. [Online]. Available: https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-024-12006-8
- [10] J. C. Paz-Roa, J. W. Escobar, and M. Á. Ortiz-Barrios, "A Novel Machine Learning Approach for Spatiotemporal Prediction of Emergency Medical Services Demand," *J. Emerg. Serv. Anal.*, Jan. 2025. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC11786830/

