

# 高防护共母线网络型驱动器 用户手册

GTD 系列

V1.02



# 版权申明

#### 固高科技股份有限公司

#### 保留所有权力

固高科技股份有限公司(以下简称固高科技)保留在不事先通知的情况下,修改本手册 中的产品和产品规格等文件的权力。

固高科技不承担由于使用本手册或本产品不当,所造成直接的、间接的、特殊的、附带 的或相应产生的损失或责任。

固高科技具有本产品及其软件的专利权、版权和其它知识产权。未经授权,不得直接或 者间接地复制、制造、加工、使用本产品及其相关部分。



运动中的机器有危险!使用者有责任在机器中设计有效的出错处理和安全保护机制,固高科 技没有义务或责任对由此造成的附带的或相应产生的损失负责。

# 商标申明





glink-I®、glink-II®、gLink®文字、图形等商标、标识、组合商标为固高科技或具有关联关 系主体之注册商标或商标,受法律保护,侵权必究。

未经固高科技或商标权人书面许可,任何单位及个人不得以任何方式或理由对上述商标 的全部或任何部分以使用、复制、修改、传播、抄录等任何方式侵权,亦不得与其它产品捆 绑使用销售。

1

# 联系我们

### 固高科技股份有限公司

地址:深圳市高新技术产业园南区深港产学研基地西座二楼 W211 室

电话: 0755-26970817 26737236 26970824

传真: 0755-26970821

电子邮件: googol@googoltech.com 网址: http://www.googoltech.com.cn

# 文档版本

| 版本号       | 修订日期       |
|-----------|------------|
| 1.0(1.00) | 2021-11-30 |
| 1.1(1.01) | 2021-12-28 |
| 1.02      | 2022-08-06 |
|           |            |
|           |            |
|           |            |
|           |            |
|           |            |

# 前言

### 感谢选用固高运动驱动器

为回报客户,我们将以品质一流的驱控产品、完善的售后服务、高效的技术支持,帮助您建立自己的控制系统。

### 固高产品的更多信息

固高科技的网址是 <u>http://www.googoltech.com.cn</u> 。在我们的网页上可以得到更多关于公司和产品的信息,包括:公司简介、产品介绍、技术支持、产品最新发布等等。

您也可以通过电话(0755-26970817)咨询关于公司和产品的更多信息。

### 技术支持和售后服务

您可以通过以下途径获得我们的技术支持和售后服务:

电子邮件: <u>support@googoltech.com</u>;

电 话: 0755 -26970843

发 函 至: 深圳市高新技术产业园南区园深港产学研基地西座二楼 W211 室

固高科技股份有限公司

邮 编: 518057

### 用户手册的用途

本手册为GTD高防护共母线网络型驱动器(以下简称"共母线驱动器")的操作指导手册。

本手册提供给使用者选型、安装、参数设置、现场调试、故障诊断及日常保养与维护的相关注意事项及指导。为正确使用本系列一体机,请事先认真阅读本手册,并请妥善保存以备后用。设备配套客户请将此手册随设备发给最终用户。

当您在使用过程中发现任何问题,而本手册无法为您提供解答时,请与本公司联系咨询。我们的专业技术人员将竭诚为您服务,并希望您能继续选用我们的产品,敬请提出宝贵的意见和建议。

### 相关文件

驱动器调试,请参考《固高驱动器调试手册》,利用GTSD 调试软件进行初步调试。

# 目录

| 联系我们 | jj                         | 1  |
|------|----------------------------|----|
| 文档版2 | 本                          | 2  |
| 前言   |                            | 3  |
| 目录   |                            | 4  |
| 表格索克 | 키                          | 6  |
| 图片索引 | <del>]</del>               | 7  |
| 第1章  | 使用须知                       | 8  |
| 1.1  | 产品确认事项                     | 8  |
| 1.2  | 铭牌                         |    |
| 1.3  | 型号说明                       |    |
| 1.4  | GTD 系列型号与技术数据              |    |
| 1.5  | 外观与尺寸                      |    |
| 1.5. |                            |    |
| 1.5. |                            |    |
| 1.6  | 规格参数                       |    |
| 1.6. | .1 技术指标                    | 11 |
| 1.6. | .2 系统参数                    |    |
| 1.7  | 配件                         |    |
| 第2章  | 安装与接线                      |    |
| 2.1  | 共母线系统构成                    |    |
| 2.2  | 机械安装                       |    |
| 2.2. | .1 安装环境                    | 14 |
| 2.3  | 驱动器接口定义                    | 14 |
| 2.3. | .1 DC-BUS 母线电源接口           | 16 |
| 2.3. | .2 STO 安全链接口               | 17 |
| 2.3. | .3 glink-II 等环网接口          |    |
| 2.3. |                            |    |
| 2.3. | .5 MOTOR1/2/3/4 双轴四轴电机动力接口 | 19 |
| 2.3. | .6 MOTOR 单轴电机动力接口          | 20 |
| 2.3. | .7 POS.FB 电机编码器接口          | 20 |
| 2.4  | 运行状态指示                     | 21 |
| 第3章  | 系统试运行                      | 22 |
| 3.1  | 空载运行调试                     | 22 |
| 3.1. |                            |    |
| 3.1. |                            |    |
| 3.1. |                            |    |
| 3.2  | 电机装机带载运行调试                 |    |
| 第4章  | 故障与维护                      | 25 |

### 目录

| 4.1 | 故 | 障诊断与处理    | 25 |
|-----|---|-----------|----|
| 4.] |   | 警告与故障     |    |
|     |   | 报警标志寄存器说明 |    |
|     |   | ·障详细信息说明  |    |
|     |   | 护与检测      | 32 |

# 表格索引

| 表 1-1  | 产品确认事项            | 8  |
|--------|-------------------|----|
| 表 1-2  | GTD 型号与技术数据       | 9  |
| 表 1-3  | GTD 驱动器电气规格       | 11 |
| 表 1-4  | 系统参数              | 12 |
| 表 1-5  | GTD 高防护共母线驱动器部件清单 | 12 |
| 表 2-1  | GTD 驱动器接口表        | 16 |
| 表 2-2  | DC-BUS 接口定义       | 17 |
| 表 2-3  | STO 安全链接口定义       | 17 |
| 表 2-4  | glink-II 等环网接口定义  | 18 |
| 表 2-5  | DI 限位开关接口定义:      | 18 |
| 表 2-6  | 限位数字量输入电气参数       | 19 |
| 表 2-7  | 双轴电机动力接口定义:       | 19 |
| 表 2-8  | 单轴电机动力接口定义:       | 20 |
| 表 2-9  | 电机编码器接口定义:        | 20 |
| 表 2-10 | LED 状态指示          | 21 |
| 表 4-1  | 系统报警代码对应关系表       | 25 |
| 表 4-2  | 过流                | 26 |
| 表 4-3  | 过压                | 26 |
| 表 4-4  | 欠压                | 27 |
| 表 4-5  | 编码器故障             | 27 |
| 表 4-6  | 过载                | 27 |
| 表 4-7  | 过温                | 28 |
| 表 4-8  | IO 故障             | 28 |
| 表 4-9  | 寄存器故障             | 28 |
| 表 4-10 | 功率模块故障            | 28 |
| 表 4-11 | 过速                | 29 |
| 表 4-12 | 方向错误              | 29 |
| 表 4-13 | 瞬时过流              | 29 |
| 表 4-14 | 电流跟踪误差超限          | 30 |
| 表 4-15 | 电机过温              | 30 |
| 表 4-16 | 位置跟随误差超限          | 30 |
| 表 4-17 | STO               | 31 |
| 表 4-18 | 电机抱闸故障            | 31 |
| 表 4-19 | 风扇故障              | 31 |
| 表 4-20 | 安全继电器故障           | 31 |
| 表 4-21 | 电机抱闸电源故障          | 31 |
| 表 4-22 | 总线通信异常            | 32 |
| 表 4-23 | 驱动器检测事项           | 32 |

# 图片索引

| 图 1-1  | GTD20 铭牌                            | 8  |
|--------|-------------------------------------|----|
| 图 1-2  | GTD 型号说明                            | 9  |
| 图 1-3  | GTD 高防护共母线驱动器实物外形图(此图为 GTD20 双轴驱动器) | 10 |
| 图 1-4  | GTD 高防护共母线驱动器外形尺寸图(此图为 GTD20 双轴驱动器) | 10 |
| 图 2-1  | 共母线系统构成图                            | 13 |
| 图 2-2  | GTD10-K015 单轴 15KW 电源通讯面接口图         | 14 |
| 图 2-3  | GTD10-K028 单轴 28KW 电源通讯面接口图         | 15 |
| 图 2-4  | GTD10-K028/K015 单轴 28KW/15KW 电机接口图  | 15 |
| 图 2-5  | GTD20-K015 双轴 2x7.5KW 电源通讯面接口图      | 15 |
| 图 2-6  | GTD20-K015 双轴 2x7.5KW 电机面接口图        | 15 |
| 图 2-7  | GTD40-K008 四轴 2x2KW 电源通讯面接口图        | 16 |
| 图 2-8  | GTD40-K008 四轴 2x2KW 电机面接口图          | 16 |
| 图 2-9  | DC-BUS 插座 M23 - 5+PE 公插座            | 17 |
| 图 2-10 | 0 STO 插座 M23-9P 公插座                 | 17 |
| 图 2-1  | 1 glink-II 等环网插座 M12-X 8P 母插座       | 18 |
| 图 2-12 | 2 DI 限位开关接口 M23-17P 母插座             | 18 |
| 图 2-13 | 3 双轴电机动力插座 M23 – 4+3+PE 母插座         | 19 |
| 图 2-14 | 4 单轴电机动力插座 M40 - 4+3+PE 母插座         | 20 |
| 图 2-1: | 5 电机编码器接口插座 M23-12P 母插座             | 20 |
| 图 3-1  | 伺服电机空载试运行调试步骤                       | 22 |
| 图 3-2  | 伺服电机带载试运行调试步骤                       | 24 |
| 图 4.1  | 报警界面                                | 25 |

# 第1章 使用须知

### 1.1 产品确认事项

产品到货后,为了避免本产品在购买与运输过程中的疏忽,请对以下项目进行确认:

表 1-1 产品确认事项

| 检查项目   | 内容                             |  |  |
|--------|--------------------------------|--|--|
| 到货产品型号 | 查看驱动器及各个配件的铭牌,确认型号是否与您订制的一致    |  |  |
| 产品外观   | 目视检查产品外观是否有损坏或者刮伤              |  |  |
| 紧固件    | 查看螺丝等紧固件是否有松动                  |  |  |
| 附件完备性  | 核对随货清单,确认附件的型号和数量(详细清单见 1.7 节) |  |  |

### 1.2 铭牌

其铭牌如下图所示(以GTD20为例)。



图 1-1 GTD20 铭牌

#### 编码解读:

32000559 固高产品编码

21 出货年份

5 出货月份 1-C 对应 1-12 月

0008 流水号

## 1.3 型号说明

GTD型号说明如下:



图 1-2 GTD 型号说明

## 1.4 GTD 系列型号与技术数据

功率规格如表 1-2所示:

表 1-2 GTD 型号与技术数据

| 驱动器型号         | 输入电压   | 最大电机功率  | 额定输出电流 | 最大输出电流(0.5S) |
|---------------|--------|---------|--------|--------------|
| GTD10-K015-10 | 540VDC | 15KW    | 30A    | 90A          |
| GTD10-K028-10 | 540VDC | 28KW    | 55A    | 150A         |
| GTD20-K015-10 | 540VDC | 2x7.5KW | 2x15A  | 2x45A        |
| GTD40-K008-10 | 540VDC | 4x2KW   | 4x4A   | 4x12A        |

# 1.5 外观与尺寸

### 1.5.1 GTD 高防护共母线驱动器实物外形图



图 1-3 GTD 高防护共母线驱动器实物外形图(此图为 GTD20 双轴驱动器)

### 1.5.2 外形尺寸



图 1-4 GTD 高防护共母线驱动器外形尺寸图(此图为 GTD20 双轴驱动器)

# 1.6 规格参数

# 1.6.1 技术指标

表 1-3 GTD 驱动器电气规格

| 表 1-3 GTD 驱动器电气规格 # # # # # # # # # # # # # # # # # # # |                      |                                              |  |  |
|---------------------------------------------------------|----------------------|----------------------------------------------|--|--|
| 功能单元                                                    | 规格项目                 | 技术指标<br>540VDC                               |  |  |
|                                                         | 额定电压<br>( <b>V</b> ) | 540VDC<br>  波动范围-15%~10%,                    |  |  |
| 直流母线输入                                                  | ( )                  | 56A(28KW 型号)                                 |  |  |
| (本单元需求)                                                 | 额定电流                 | 32A(15KW 型号)                                 |  |  |
|                                                         | (A)                  | 32A(2x7.5KW 型号)                              |  |  |
|                                                         |                      | 17A(4x2KW 型号)                                |  |  |
|                                                         | 1二/分/壬 田 土 1日        | 28KW(28KW 型号)                                |  |  |
|                                                         | 标准适用电机<br>(W)        | 15KW(15KW 型号)<br>2x7.5KW(2x7.5KW 型号)         |  |  |
|                                                         | ( <b>w</b> )         | 2x7.3KW(2x7.3KW 至 5)<br>4x2KW(4x2KW 型号)      |  |  |
|                                                         |                      | 55A(28KW 型号)                                 |  |  |
| 电机动力输出                                                  | 额定输出电流               | 30A(15KW 型号)                                 |  |  |
| 也小的八九十二                                                 | (A)                  | 2x15A(2x7.5KW 型号)                            |  |  |
|                                                         |                      | 4x4A(4x2KW 型号)                               |  |  |
|                                                         | 输出电压(V)              | 额定条件下输出 3 相,0V~额定输入电压                        |  |  |
|                                                         | 输出频率(Hz)             | 0~1000Hz                                     |  |  |
|                                                         | 过载特性                 | 120%额定电流 30 秒,300%额定电流 0.5 秒                 |  |  |
| <b>山和 丘</b> 鄉                                           | 绝对式编码器               | 1路/每个轴                                       |  |  |
| 电机反馈<br>(Hiperface)                                     | 正余弦编码器               | 1路/每个轴                                       |  |  |
| (Hiperiace)                                             | 电机温度                 | PTC 1 路/每个轴                                  |  |  |
|                                                         | 额定电压(V)              | 24VDC, 波动范围±5%                               |  |  |
| 抱闸 24V 电源                                               | 总额定电流(A)             | 4.0A(28KW 15KW 2x7.5KW 型号)<br>2.0A(4x2KW 型号) |  |  |
|                                                         | 额定电压(V)              | 24VDC, 波动范围±5%                               |  |  |
| IO24V 电源                                                | 当衛宁山法 ( * )          | 2.0A(28KW 15KW 2x7.5KW 型号)                   |  |  |
|                                                         | 总额定电流(A)             | 1.0A(4x2KW 型号)                               |  |  |
| 控制端子                                                    | 数字输入                 | 2路限位开关/每个轴                                   |  |  |
| コエいいっぱ 1                                                | STO 输入               | 双触点安全链输入,双触点安全链输出                            |  |  |
| 重量                                                      | 17KG                 |                                              |  |  |
| 保护功能                                                    | 过压、欠压、过流、            | 、驱动器过热、编码器断线                                 |  |  |
| 防护等级                                                    | IP55(连接状态 无风         | E风扇型号)/IP52(连接状态 有风扇型号)                      |  |  |
|                                                         | 效率                   | 97%                                          |  |  |
|                                                         | 安装方式                 | 挂式                                           |  |  |
| TT 1.00                                                 | 冷却方式                 | 风冷                                           |  |  |
| 环境                                                      | 使用场所                 | 室内,不受阳光直射,无尘埃、腐蚀性气体、可燃性气体、油<br>雾、水蒸汽、滴水或盐分等  |  |  |
|                                                         | 海拔高度                 | 低于 2000 米(2000 米以上降额使用,每升高 100 米降额<br>1%)    |  |  |

# 1.6.2 系统参数

表 1-4 系统参数

| 项 目        | 参 数      | 单 位 | 序 号 |
|------------|----------|-----|-----|
| PWM 载波频率   | 8        | kHz | 1   |
| PWM 最小死区要求 | 3        | μs  | 2   |
| 制动开始电压值    | 380      | V   | 3   |
| 制动恢复电压值    | 360      | V   | 4   |
| 软启动继电器吸合电压 | 250      | V   | 5   |
| 软启动继电器断开电压 | 150      | V   | 6   |
| 母线过压保护点    | 400      | V   | 7   |
| 母线欠压保护点    | 200      | V   | 8   |
| 输出过流保护点    | 50       | A   | 9   |
| 调速范围       | ±电机最大转速  | RPM | 11  |
| 调速精度       | ≤1       | RPM | 12  |
| 过速保护点      | 120%最大转速 | RPM | 13  |
| 电流环带宽      | 2000     | Hz  | 14  |
| 速度环带宽      | 400      | Hz  | 15  |
| 位置环带宽      | 80       | Hz  | 16  |

# 1.7 配件

产品到货后,请按照表 1-5就以下部件进行确认。

表 1-5 GTD 高防护共母线驱动器部件清单

| 序 号 名 称 |               | 规 格               | 数 量 |
|---------|---------------|-------------------|-----|
| 1       | GTD 高防护共母线驱动器 | GTDX0-K0XX-XX     | 1台  |
| 2       | 产品保修卡         | 135mm*190mm(双面印刷) | 1张  |
| 3       | 产品合格证         | 95mm*130mm(单面印刷)  | 1 张 |

# 第2章 安装与接线

### 2.1 共母线系统构成



图 2-1 共母线系统构成图

- a) 共母线系统主要由整流器,驱动器,控制器三部分构成
- b) 整流器将交流电源整流转换为直流母线电源输出,驱动部分实现对驱动信号的放大, 完成伺服电机的控制功能

c) 控制器为系统提供上位机软件平台、运动规划计算和通信接口

### 2.2 机械安装

### 2.2.1 安装环境

为了充分发挥驱动器的性能,长期保持其功能,驱动器的安装环境至关重要,请用户务必将驱动器安装于表 1-3所标明的环境中,保证驱动器的正常散热和足够的接线空间,为保证驱动器运行安全性、可靠性 , 请务必按规范接地且接地良好。

1. 请不要将电源线和信号线从同一管道内穿过,也不要将其捆扎在一起。配 线时,电源线与信号线应离开30cm以上,否则可能会导致误动作。

- 2. 信号线、编码器线请使用双绞屏蔽电缆。对于配线长度,编码器线最长为 20m。
- 3. 不能将输入电源线连到输出端U、V、W, 否则引起驱动器损坏。
- 4. 即使关闭电源,驱动器内也可能残留有高电压,5分钟之内不要接触电源端子。



5. 请勿频繁ON/OFF电源,在需要反复的连续ON/OFF电源时,请控制在1分钟1次以下。

由于在驱动器的电源部分带有电容,所以在ON电源时,会流过较大的充电电流(充电时间0.2秒)。因此,如果频繁地ON/OFF电源,则会造成驱动器内部的主电路元件性能下降。

6. 驱动器内存在漏电流,为保证安全驱动器和电机必须接地,接地电阻应小于10Ω。接地线要尽量短,驱动器和电机分别接地,编码器反馈线缆屏蔽层两端都要接大地。

### 2.3 驱动器接口定义

驱动器的外部接口分布在两端,一端是电源、通讯接口,另一端是电机接口。



图 2-2 GTD10-K015 单轴 15KW 电源通讯面接口图



图 2-3 GTD10-K028 单轴 28KW 电源通讯面接口图



图 2-4 GTD10-K028/K015 单轴 28KW/15KW 电机接口图



图 2-5 GTD20-K015 双轴 2x7.5KW 电源通讯面接口图



图 2-6 GTD20-K015 双轴 2x7.5KW 电机面接口图



图 2-7 GTD40-K008 四轴 2x2KW 电源通讯面接口图



图 2-8 GTD40-K008 四轴 2x2KW 电机面接口图

| 序号 | 接口标识           | 功能                                                            | 连接器插座类型          |  |  |
|----|----------------|---------------------------------------------------------------|------------------|--|--|
| 1  | DC-BUS         | 直流母线电源接口(单轴 15KW 及双轴 2x7.5KW有2路短接的接口,可以1路用于输入,另1路输出连接到另1个驱动器) | M23 - 5+PE 公插座   |  |  |
| 2  | STO            | 安全链接口,用于急停信号菊花链连接 STO 联动                                      | M23 – 8+1 公插座    |  |  |
| 3  | LED 灯板         | 电源、等环网、报警指示灯                                                  |                  |  |  |
| 4  | gLink-II A/B   | gLink-II 等环网通讯                                                | M12-X 母插座        |  |  |
| 5  | DI             | 限位开关接口,每个插座包含2个轴的限位,<br>4轴驱动器有2个插座                            | M23-17P 母插座      |  |  |
| 6  | MOTOR1/2/3/4   | 双轴及四轴电机动力接口                                                   | M23 - 4+3+PE 母插座 |  |  |
| 7  | MOTOR          | 单轴电机动力接口                                                      | M40 - 4+3+PE 母插座 |  |  |
| 8  | POS.FB 1/2/3/4 | 电机编码器接口                                                       | M23-12P 母插座      |  |  |

表 2-1 GTD 驱动器接口表

### 2.3.1 DC-BUS 母线电源接口

单轴 15KW 及双轴 2x7.5KW 驱动器有 2 路 DC-BUS 母线电源接口,这 2 路接口是直接连通的,用于母线电源的传递转接。使用时其中一个 DC-BUS 接口做为母线电源输出,如果还有其它的驱动器共母线电源,则从空余的另一个 DC-BUS 接口接出母线电源到其它共母线驱动器。



图 2-9 DC-BUS 插座 M23 - 5+PE 公插座

表 2-2 DC-BUS 接口定义

| 引脚 | 信号定义 | 信号描述   | 引脚 | 信号定义 | 信号描述   |
|----|------|--------|----|------|--------|
| 1  | DC+  | 母线电源正极 | 4  | DC-  | 母线电源负极 |
| 2  | DC+  | 母线电源正极 | 5  | DC-  | 母线电源负极 |
| 3  | NC   | 保留     |    | PE   | 接地     |

## 2.3.2 STO 安全链接口



图 2-10 STO 插座 M23-9P 公插座

表 2-3 STO 安全链接口定义

| 引脚 | 信号       | 说明                            | 引脚 | 信号      | 说明     |
|----|----------|-------------------------------|----|---------|--------|
| 1  | EMG_IN1C | 急停开关输入(不用时 IN1C 与<br>IN1B 短接) | 6  | EMG_R1B | 急停控制输出 |
| 2  | EMG_IN1B | 急停开关输入                        | 7  | EMG_R2A | 急停控制输出 |
| 3  | EMG_IN2C | 急停开关输入(不用时 IN2C 与<br>IN2B 短接) | 8  | EMG_R2B | 急停控制输出 |
| 4  | EMG_IN2B | 急停开关输入                        | 9  | NC      | 保留     |
| 5  | EMG_R1A  | 急停控制输出                        |    |         |        |

# 2.3.3 glink-II 等环网接口



图 2-11 glink-II 等环网插座 M12-X 8P 母插座

表 2-4 glink-II 等环网接口定义

| 引脚 | 信号定义 | 信号描述   | 引脚 | 信号定义 | 信号描述   |
|----|------|--------|----|------|--------|
| 1  | TX0+ | 千兆通讯信号 | 5  | TX3+ | 千兆通讯信号 |
| 2  | TX0- | 千兆通讯信号 | 6  | TX3- | 千兆通讯信号 |
| 3  | TX1+ | 千兆通讯信号 | 7  | TX2- | 千兆通讯信号 |
| 4  | TX1- | 千兆通讯信号 | 8  | TX2+ | 千兆通讯信号 |

# 2.3.4 DI 限位开关接口



图 2-12 DI 限位开关接口 M23-17P 母插座

表 2-5 DI 限位开关接口定义:

| 引脚 | 信号    | 说明      | 引脚 | 信号      | 说明      |
|----|-------|---------|----|---------|---------|
| 1  | IO24V | IO 电源正极 | 10 | IO0V    | IO 电源负极 |
| 2  | IO24V | IO 电源正极 | 11 | IO0V    | IO 电源负极 |
| 3  | IO24V | IO 电源正极 | 12 | NC      | 保留      |
| 4  | IO24V | IO 电源正极 | 13 | LIMIT1+ | 正限位     |
| 5  | IO24V | IO 电源正极 | 14 | LIMIT1- | 负限位     |
| 6  | PE    | 接地      | 15 | LIMIT2- | 负限位     |
| 7  | IO0V  | IO 电源负极 | 16 | LIMIT2+ | 正限位     |
| 8  | IO0V  | IO 电源负极 | 17 | NC      | 保留      |
| 9  | IO0V  | IO 电源负极 |    |         |         |

表 2-6 限位数字量输入电气参数

| 项目        | 符号                              | 标称值                                                |
|-----------|---------------------------------|----------------------------------------------------|
| 逻辑"1"输入电压 | $V_{{\scriptscriptstyle I\!H}}$ | >19V                                               |
| 逻辑"0"输入电压 | $V_{I\!L}$                      | <9V                                                |
| 逻辑"1"输入电流 | $I_{I\!H}$                      | <1.18mA                                            |
| 逻辑"0"输入电流 | $I_{I\!L}$                      | >4.18mA                                            |
| 隔离电压      | BV                              | 3750 Vrms@AC,1min                                  |
| 隔离电阻      | $R_{I-O}$                       | min=1E6MOhm,typ=1E8MOhm@VS=500V                    |
| 最大采样频率    |                                 | 250us                                              |
| 等效原理图     |                                 | DIO~3  Optoisolator 1  VCC  R1  R2  Optoisolator 1 |

## 2.3.5 MOTOR1/2/3/4 双轴四轴电机动力接口



图 2-13 双轴电机动力插座 M23 - 4+3+PE 母插座

表 2-7 双轴电机动力接口定义:

| 引脚 | 信号 | 说明     | 引脚 | 信号  | 说明   |
|----|----|--------|----|-----|------|
| 1  | U  | 电机 U 相 | A  | BK+ | 抱闸正极 |
| 3  | V  | 电机 V 相 | В  | BK- | 抱闸负极 |
| 4  | W  | 电机 W 相 |    | PE  | 电机接地 |

## 2.3.6 MOTOR 单轴电机动力接口



图 2-14 单轴电机动力插座 M40 - 4+3+PE 母插座

表 2-8 单轴电机动力接口定义:

| 引脚 | 信号 | 说明     | 引脚 | 信号  | 说明   |
|----|----|--------|----|-----|------|
| U  | U  | 电机 U 相 |    | PE  | 电机接地 |
| V  | V  | 电机 V 相 | +  | BK+ | 抱闸正极 |
| W  | W  | 电机 W 相 | -  | BK- | 抱闸负极 |

### 2.3.7 POS.FB 电机编码器接口



图 2-15 电机编码器接口插座 M23-12P 母插座

表 2-9 电机编码器接口定义:

| 引脚 | 信号    | 说明       | 引脚 | 信号    |            |
|----|-------|----------|----|-------|------------|
| 1  | COS+  | 正余弦编码器信号 | 7  | +8V   | 8V 编码器电源正极 |
| 2  | COS-  | 正余弦编码器信号 | 8  | GND   | 编码器电源负极    |
| 3  | SIN+  | 正余弦编码器信号 | 9  | TEMP- | 电机温度信号负极   |
| 4  | SIN-  | 正余弦编码器信号 | 10 | TEMP+ | 电机温度信号正极   |
| 5  | DATA+ | 绝对值编码器信号 | 11 | +5V   | 5V 编码器电源正极 |
| 6  | DATA- | 绝对值编码器信号 | 12 | PE    | 屏蔽接地       |

# 2.4 运行状态指示

GTD 驱动器配备了四个 LED 指示灯, 其状态表征如下表所示。

表 2-10 LED 状态指示

| 引脚     | 常亮      | 常暗              | 闪烁                 |
|--------|---------|-----------------|--------------------|
| 绿色 LED | 供电正常    | 没有通电或电源故障       | NC                 |
| 黄色 LED | NC      | glink-IIA/B 无连接 | glink-IIA/B 正在传输数据 |
| 红色 LED | 驱动器发生报警 | 驱动器无报警          | NC                 |

# 第3章 系统试运行

驱动器正式应用于系统之前,需要做两大项目的调试: 无负载单机调试和带载调试。**为安全起见,用户务必在带负载测试之前,进行无负载单机调试。** 

请用户参考《GTSD 多轴驱控一体 PC 调试软件用户手册》,利用 PC 调试软件完成对驱动器伺服的调试。

### 3.1 空载运行调试

将电机负载移除,用户请按照图 3-1 所示的步骤进行电机的空载试运行,以确认各个配线的正确性,包括电源电路配线、伺服电机配线、编码器配线、伺服电机的旋转速度和方向,待空载运行完成后,进行装机带载调试。



图 3-1 伺服电机空载试运行调试步骤

### 3.1.1 配线、接线与检查

依据本手册介绍的驱动器接线方法和接线要求,完成驱动器的接线。

#### 在接通电源之前, 务必做以下检查:





- ▶ DCBUS 母线电源端子满足规定的规格,并保证可靠连接;
- ▶ 驱动器的动力输出端子(U、V、W)和伺服电机电源输入端子(U、V、W)可靠连接,对相位不做要求;
- 编码器线缆信号定义与端子一致,屏蔽层通过连接器引脚及外壳与驱动器相连;
- 驱动器安装位置须便于散热。

### 3.1.2 电源的接通/断开方法

在工业现场,驱动器的供电为 540VDC 直流母线输入,请确认输入电压和接线定义。



用户要进行配线等操作时,请务必在断电 10 分钟后进行,以免造成触电事故!

电源接通后,在电机调试运行前,要对以下几项进行确认:

- ◆ 上电瞬间,驱动器内部有继电器吸合的声音,风扇随后开启,为正常,否则立即断电, 排查原因;
- ◆ 驱动器端子面板上绿灯常亮,表明驱动器供电稳定,否则请立即断电,确认原因;
- ◆ 通过 PC 调试软件观测当前的状态是否为初始状态,伺服状态是否为 off, 母线电压是否正常,是否有报警信息。如有报警信息,如果为可恢复报警,可通过点击"清除"按钮进行清除,如有不可恢复报警,需要重新启动驱动器并查找问题来源(参考第4章)。

### 3.1.3 伺服电机调试运行

依据《GTSD 多轴驱控一体 PC 调试软件用户手册》的相关介绍,对伺服电机依次进行电流开环调试、电流闭环调试、速度闭环调试,测试无异常情况发生即可进入装机带载调试阶段。

### 3.2 电机装机带载运行调试

用户请按照图 3-2 所示,进行带载运行调试。



图 3-2 伺服电机带载试运行调试步骤

调试各步骤请参照《GTSD 多轴驱控一体 PC 调试软件用户手册》相关内容。

## 4.1 故障诊断与处理

### 4.1.1 警告与故障

当系统运行出现异常或故障时,为避免驱动器、电机、机械设备损坏,驱动器有自动保护的功能。系统有多种保护和报警的方式,系统报警界面如图 4.1 所示,用户可根据界面中的提示判断出现故障的类型和原因。



图 4.1 报警界面

### 4.1.2 报警标志寄存器说明

gSevDrv.sev\_obj.cur.pro.alm\_code.all(Uint32),驱动器发生故障时,对应位置 1。伺服驱动报警时,机器人系统中会显示报警代码,代码对应关系如下。

|    | 位号 | 代码    | 代码含义     |    | 位号 | 代码  | 代码含义 |
|----|----|-------|----------|----|----|-----|------|
|    | 0  | OC    | 过流       |    | 16 | rsv | 保留   |
|    | 1  | OV    | 过压       |    | 17 | rsv | 保留   |
|    | 2  | UV    | 欠压       |    | 18 | rsv | 保留   |
| 低  | 3  | BRKPH | RST 输入缺相 | 高  | 19 | rsv | 保留   |
| 16 | 4  | RES   | 编码器故障    | 16 | 20 | rsv | 保留   |
| 位  | 5  | OL    | 过载       | 位  | 21 | rsv | 保留   |
|    | 6  | OT    | 过温       |    | 22 | rsv | 保留   |
|    | 7  | rsv   | 保留       |    | 23 | rsv | 保留   |
|    | 8  | rsv   | 保留       |    | 24 | rsv | 保留   |

表 4-1 系统报警代码对应关系表

第4章 故障与维护

| 9  | PS   | 功率模块故障   | 25 | rsv | 保留 |
|----|------|----------|----|-----|----|
| 10 | OS   | 过速       | 26 | rsv | 保留 |
| 11 | rsv  | 保留       | 27 | rsv | 保留 |
| 12 | rsv  | 保留       | 28 | rsv | 保留 |
| 13 | SOC  | 瞬时过流     | 29 | rsv | 保留 |
| 14 | OBPH | 电流跟踪误差超限 | 30 | rsv | 保留 |
| 15 | rsv  | 保留       | 31 | rsv | 保留 |

# 4.2 故障详细信息说明

在设置好伺服电机参数并完成调试后,即可进行系统测试。

表 4-2 过流

| 报警名称 |                                                                                                            |
|------|------------------------------------------------------------------------------------------------------------|
| 类 型  | 故障                                                                                                         |
| 伺服关闭 | 是                                                                                                          |
| 可能原因 | <ol> <li>负载过大</li> <li>各环路参数不合理引起电流环震荡</li> <li>电机极对数参数错误</li> <li>初始相位不对</li> <li>电机抱闸未打开或机械卡死</li> </ol> |
| 应对措施 | <ol> <li>减小系统负载</li> <li>重新调整各环路参数</li> <li>检查电机参数</li> <li>重新进行初始相位校正</li> <li>检查电机抱闸线路,以及机械关节</li> </ol> |

表 4-3 过压

| 报警名称 | 过压                          |
|------|-----------------------------|
| 类 型  | 故障                          |
| 伺服关闭 | 是                           |
|      | 1. 输入电源电压过高                 |
| 可能原因 | 2. 电机减速时间太短,再生能量过大          |
|      | 3. 刹车电阻容量不足                 |
|      | 1. 检查三相AC电源输入电压是否正常         |
| 应对措施 | 2. 减小加速度                    |
|      | 3. 检查刹车电阻是否正常连接,电阻阻值、容量是否合适 |

### 表 4-4 欠压

| 报警名称 | 大压                  |
|------|---------------------|
| 类 型  | 故障                  |
| 伺服关闭 | 是                   |
|      | 1. 输入电源电压过低         |
| 可能原因 | 2. 瞬时负载过重           |
|      | 3. 硬件设备故障, 软启动开关未吸合 |
|      | 1. 检查三相AC电源输入电压是否正常 |
| 应对措施 | 2. 减小负载             |
|      | 3. 联系固高技术支持         |

### 表 4-5 编码器故障

| 报警名称         | ————————————————————————————————————— |
|--------------|---------------------------------------|
| 类型           | 故障                                    |
| 伺服关闭         | 是                                     |
|              | 1. 编码器信号接线松动                          |
| 可处居田         | 2. 编码器线缆屏蔽编织层未连接或未按照查分接线              |
| 可能原因         | 3. 编码器线缆过长且阻抗过大,导致电机编码器电源电压过低         |
|              | 4. 绝对值编码器未接电池或电池电压过低                  |
|              | 1. 检查驱动器侧及电机侧编码器插头是否插紧,插针是否弯曲损坏松动     |
| 应对措施         | 2. 重新检查接线                             |
| /元 7.1.1目 NG | 3. 选择阻抗较小的线材,且尽量缩短编码器线缆长度。            |
|              | 4. 接上电池或换新电池。                         |

#### 表 4-6 过载

| 报警名称 |                       |
|------|-----------------------|
| 类型   | 故障                    |
| 伺服关闭 | 是                     |
|      | 1. 系统负载过大,            |
| 可能原因 | 2. 机械安装有问题,机械摩擦太大     |
| 可形尽囚 | 3. 初始相位不准确,导致电流比正常值偏大 |
|      | 4. 电机额定电流参数设置错误       |
|      | 1. 减小系统负载             |
| 应对措施 | 2. 检查机械安装             |
|      | 3. 重新寻找相位             |
|      | 4. 检查电机额定电流值是否填对      |

### 表 4-7 过温

| 报警名称 | 过温                                                                                |
|------|-----------------------------------------------------------------------------------|
| 类 型  | 故障                                                                                |
| 伺服关闭 | 是                                                                                 |
| 可能原因 | 驱动器IGBT过热                                                                         |
| 应对措施 | <ol> <li>检查系统负载是否过大</li> <li>检查驱动器、电机容量是否足够</li> <li>检查系统散热环境、风扇工作是否正常</li> </ol> |

#### 表 4-8 IO 故障

| 报警名称 | IO故障          |
|------|---------------|
| 类型   | 故障            |
| 伺服关闭 | 是             |
| 可能原因 | 驱动器IO异常       |
| 应对措施 | 检查IO接线和电源是否完好 |

#### 表 4-9 寄存器故障

| 报警名称 | 寄存器故障      |
|------|------------|
| 类 型  | 故障         |
| 伺服关闭 | 是          |
| 可能原因 | 驱动器内部寄存器故障 |
| 应对措施 | 联系技术支持     |

#### 表 4-10 功率模块故障

| 报警名称 | · · · · · · · · · · · · · · · · · · · |
|------|---------------------------------------|
| 类型   | 故障                                    |
| 伺服关闭 | 是                                     |
|      | 1. 电机损坏或驱动器UVW接线短路                    |
| 可能原因 | 2. 现场配电将零线和PE线短接                      |
|      | 3. 功率模块损坏                             |
|      | 1. 检查 UVW 接线是否正常                      |
| 应对措施 | 2. 检查现场电源接线                           |
|      | 3. 联系技术支持                             |

### 表 4-11 过速

| 报警名称 | ····································· |
|------|---------------------------------------|
| 类 型  | 故障                                    |
| 伺服关闭 | 是                                     |
|      | 1. 编码器信号异常                            |
| 可能原因 | 2. 过速比参数设置错误                          |
| り 配  | 3. 速度响应超调过大                           |
|      | 4. 电机转子初始相位不准确                        |
|      | 1. 检查旋转编码器接线是否完好                      |
| 应对措施 | 2. 检查过速比参数                            |
|      | 3. 调整速度环参数,减小积分时间常数                   |
|      | 4. 重新寻相                               |

### 表 4-12 方向错误

| 报警名科 | 方向错误。<br>···································· |
|------|-----------------------------------------------|
| 类 彗  | 故障                                            |
| 伺服关闭 | 是                                             |
| 可能原因 | 电机旋转方向错误                                      |
| 应对措施 | 检查驱动器位置、速度指令或编码器反馈方向参数设置是否正确                  |

#### 表 4-13 瞬时过流

| 报警名称 | mana mana mana mana mana mana mana mana |
|------|-----------------------------------------|
| 类 型  | 故障                                      |
| 伺服关闭 | 是                                       |
|      | 1. 系统瞬时负载过大                             |
| 可能原因 | 2. 驱动器UVW输出发生短路、接地                      |
| 可形灰凸 | 3. 电机转子初始相位不准确                          |
|      | 4. 编码器线数或分辨率不对                          |
|      | 1. 检查系统负载是否正常                           |
| 应对措施 | 2. 检查驱动器UVW连线是否完好                       |
|      | 3. 重新寻相                                 |
|      | 4. 检查编码器配置参数                            |

### 表 4-14 电流跟踪误差超限

| 报警名称 | 电流跟踪误差超限                                                                                                               |
|------|------------------------------------------------------------------------------------------------------------------------|
| 类 型  | 故障                                                                                                                     |
| 伺服关闭 | 是                                                                                                                      |
| 可能原因 | <ol> <li>驱动器 UVW 接线异常</li> <li>驱动器电机参数设置错误</li> <li>电机编码器信号异常</li> <li>机械结构在某些位置有卡顿现象</li> </ol>                       |
| 应对措施 | <ol> <li>检查驱动器 UVW 插头是否插好,插针等有无接触不良甚至断线</li> <li>检查电机参数设置是否正确</li> <li>检查电机编码器接线是否良好,插头是否插紧</li> <li>检查机械结构</li> </ol> |

#### 表 4-15 电机过温

| 报警名称 | 电机过温            |
|------|-----------------|
| 类 型  | 故障              |
| 伺服关闭 | 是               |
|      | 1. 电机长时间过载运行    |
| 可能原因 | 2. 电机散热不好       |
|      | 3. 电机堵转         |
|      | 1. 电机是否超长时间过载运行 |
| 应对措施 | 2. 检查电机散热机构是否良好 |
|      | 3. 电机是否堵转       |

#### 表 4-16 位置跟随误差超限

| 报警名称 | 位置跟随误差超限                                                   |  |  |  |  |
|------|------------------------------------------------------------|--|--|--|--|
| 类型   | 故障                                                         |  |  |  |  |
| 伺服关闭 | 是                                                          |  |  |  |  |
| 可能原因 | 1. 控制器规划加速度过大                                              |  |  |  |  |
|      | 2. 驱动器各环路参数不合适                                             |  |  |  |  |
|      | 3. 编码器丢包严重                                                 |  |  |  |  |
|      | 4. 电机堵转                                                    |  |  |  |  |
|      | 5. 位置跟踪误差上限设置有误                                            |  |  |  |  |
|      | 1. 减小规划加速度                                                 |  |  |  |  |
|      | 2. 重新调整个环路参数                                               |  |  |  |  |
| 应对措施 | 3. 检查编码器线材是否是屏蔽双绞线,屏蔽层是否接地,信号线是否差分接线                       |  |  |  |  |
|      | 4. 检查电机极对数参数是否正确,电机抱闸是否打开                                  |  |  |  |  |
|      | 5. 检查位置跟踪误差设置参数gSevDrv.sev_obj.cur.pro.prm.pos_err_lim(编码器 |  |  |  |  |
|      | 线速*2)                                                      |  |  |  |  |

### 表 4-17 STO

| 报警名称 | STO              |  |  |  |
|------|------------------|--|--|--|
| 类 型  | 故障               |  |  |  |
| 伺服关闭 | 是                |  |  |  |
| 可能原因 | 1. STO急停按钮拍下     |  |  |  |
|      | 2. 安全链插头损坏或未插好   |  |  |  |
| 应对措施 | 1. 检查STO急停按钮是否松开 |  |  |  |
|      | 2. 检查安全链插头       |  |  |  |

#### 表 4-18 电机抱闸故障

| 报警名称 | 电机抱闸故障                |  |  |  |  |
|------|-----------------------|--|--|--|--|
| 类 型  | 故障                    |  |  |  |  |
| 伺服关闭 | 是                     |  |  |  |  |
| 可能原因 | 1. 驱动器抱闸输出端短路或与UVW线短路 |  |  |  |  |
|      | 2. 驱动器抱闸检查电路异常        |  |  |  |  |
| 应对措施 | 1. 检查驱动器抱闸输出接线是否正常    |  |  |  |  |
|      | 2. 联系固高技术支持           |  |  |  |  |

#### 表 4-19 风扇故障

| 报警名称 | 风扇故障                                                        |
|------|-------------------------------------------------------------|
| 类型   | 故障                                                          |
| 伺服关闭 | 是                                                           |
| 可能原因 | <ol> <li>风扇损坏</li> <li>风扇电源异常</li> <li>风扇驱动器信号异常</li> </ol> |
| 应对措施 | 联系技术支持                                                      |

#### 表 4-20 安全继电器故障

| 报警名称 | 安全继电器故障    |
|------|------------|
| 类 型  | 故障         |
| 伺服关闭 | 是          |
| 可能原因 | 驱动器安全继电器异常 |
| 应对措施 | 联系固高技术支持   |

#### 表 4-21 电机抱闸电源故障

| 报警名称 | 电机抱闸电源故障           |  |  |  |
|------|--------------------|--|--|--|
| 类型   | 故障                 |  |  |  |
| 伺服关闭 | 是                  |  |  |  |
| 可能原因 | 驱动器抱闸输出端短路或与UVW线短路 |  |  |  |
|      | 驱动器抱闸电源电路异常        |  |  |  |
| 应对措施 | 检查驱动器抱闸输出接线是否正常    |  |  |  |
|      | 联系固高技术支持           |  |  |  |

表 4-22 总线通信异常

| 报警名称 | 。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。<br>。 |
|------|--------------------------------------------------------------------|
| 类 型  | 故障                                                                 |
| 伺服关闭 | 是                                                                  |
| 可能原因 | 总线通信线缆接触不良                                                         |
| 应对措施 | 检查通信线缆连接是否正常                                                       |

### 4.3 维护与检测

为保证伺服系统的长时间稳定可靠运行,需定期做必要的维护和检测。受环境的温度、湿度、粉尘或者机械系统震动等不利因素的影响,机器人系统的性能有变差的可能,建议对系统进行定期(例如一个月)的检查、保养与维护。



在检查及维护前,请首先确认以下几项,否则有触电危险。

- 1) 驱动器已切断电源;
- 2) 驱动器电源指示灯灭;

表 4-23 驱动器检测事项

| 报警名称                        | 驱动器输出断线 | 检查周期 | 检测方法      | 检查标准       |
|-----------------------------|---------|------|-----------|------------|
|                             | 温度、湿度   | 随时   | 温度计、湿度计   | −10°C~50°C |
| 运行环境                        | 尘埃      | 随时   | 目视        | 不影响系统正常运行  |
|                             | 气体      | 随时   | 嗅觉        | 无异味        |
| <i>(</i> =1 00 7 00 − 1, 00 | 震动、发热   | 随时   | 触摸外壳      | 无剧烈震动、风温合理 |
| 伺服驱动器                       | 噪声      | 随时   | 听觉        | 无异常响声      |
| 电机                          | 发热      | 随时   | 触摸外壳      | 发热无异常      |
|                             | 噪声      | 随时   | 听觉        | 无剧烈噪声      |
|                             | 输出电流    | 随时   | 电流表       | 在额定值范围     |
| 运行状态、参数                     | 输出电压    | 随时   | 电压表       | 在额定值范围     |
|                             | 内部温度    | 随时   | 温度计、红外测温仪 | 温度小于 40℃   |



定期维护注意:

- 1) 只有受过专业训练的人才能拆卸部件、进行维护及器件更换;
- 2) 不要将螺丝及垫圈等金属件遗留在机器内,否则有损坏设备危险。

### 主要的维护事项如下:

- (1) 检查系统电气接线是否完好,包括电源、地线、旋转编码器接线驱动器接线和电机接线,如有松动或断落的迹象,则需立即修正。
- (2) 检查系统机械本体与连接是否完好,包括电机本体、机械本体及其连轴器是否完整, 螺栓是否松动、脱落,电机法兰与机械本体法兰是否固定牢靠等等,如发现有部件异 常或损坏需及时修正与更换。