INTRODUCTION TO COMPUTER 3D GAME DEVELOPMENT

Physics Engine and Collision Detect

潘茂林,panml@mail.sysu.edu.cn 中山大学·软件学院

游戏引擎架构

目录

- ○物理引擎基础
 - 运动建模
 - 碰撞与几何
- o Unity物理引擎实现
 - 刚体组件
 - 碰撞器组件
 - 课堂实验(一、二)
- 离散物理引擎
 - 常见问题
 - 物理引擎编程
- 力与场
- 面向对象设计思考
 - GoF设计模式: Adapter模式

物理引擎基础 (1) 物体运动类型

o 运动学 (Kinematics)

- 不考虑外部力作用的运动
- 仅考虑物体位置、速度、角度 ...
- 将一个物体作为几何部件
- 实现: 使用变换

o 动力学 (Dynamics)

- 考虑外部力对物体运动的影响
- 包括重力、阻力、摩擦力等,以及物体的重量和形状, 甚至弹性物体
- 通常模拟物体在现实世界中的运动
- 通常将一个物体当作刚体

物理引擎基础

- (2) 物理引擎的职责与重要性
- 物理引擎 (Physics Engine)
 - 物理引擎是一种软件组件,用于仿真物理世界运动。这种仿真包括刚体力学、流体力学以及碰撞检测。
 - 物理引擎通过为刚性物体赋予真实的物理属性,在外部力的作用下,计算运动、旋转和碰撞。
- 物理引擎与加速
 - PhysX
 - > NVIDIA GPU
 - Havok
 - > Intel CPU
 - > AMD CPU+GPU

物理引擎基础

- (3) 物理计算的学习问题
- 物理仿真是复杂的
 - 原理与计算,这不是几节课能解决的问题
 - 您可能不解足够运动学知识, 高深的数学
 - 计算复杂, CPU、GPU大厂出手收购说明一切
- 最简单的方式 使用物理引擎, 你还需要:
 - 了解物理运动的基本知识
 - 物理引擎常用的 API
 - 物理引擎使用问题与场景
 - 有效使用物理引擎

物理引擎基础 (4)运动与物体建模

- ○通常认为物体为刚体
 - 刚体在运动中,物体内部任意两点几何关系保持不变
 - 现实世界中不存在严格的刚体!
 - 齿轮、绳索、滑轮不属于刚体,但属于该引擎
 - 因此: 物理引擎不只是刚体
- 物体运动是点模型,仅考虑
 - 质量 (重量)
 - 中心
 - 质心(不需要考虑形状)
 - ▶假设1:物体是均质的
 - ▶ 假设2: 中心与质心重合
 - 力(Force)与力矩(Torque)

物理引擎基础 (5) 碰撞与几何

- 当物体发生碰撞
 - 质点模型不能用?
 - 必须解决在那点相撞
- ○可计算的模型
 - 凸 (Convex) 物体
 - 如何判断凸多边形?
- 获取可计算的形状
 - 分解为多个凸物体组合
 - 2D: 物体分解为若干三角形
 - 3D: 凸物体表面用三角形,分解为四面体表示

UNITY 物理引擎实现 (1) 常用物理组件

- 内置支持引擎
 - physX 引擎
- o Rigidbody 刚体组件
 - 物体运动控制属性
- o Collider 碰撞器
 - 物体碰撞与碰撞检测属性
- o Mesh 网格
 - 物体形状属性
- o Joint 连接器(自学)
- 其他
 - 衣服、常力、用户定义的力场等等

UNITY 物理引擎实现 (1) 刚体(RIGIDBODY)组件

- 为游戏对象添加刚体

 - 刚体属性
 - > 质量 mass
 - 阻力 Drag
 - > 角阻力
 - > 使用重力

- 是运动学控制。表示该物体是静态的,不受力影响
- ▶ 插值。 官网说法当运动抖动时需要插值
- 碰撞检测。默认是离散检查。高速物体需要连续检测
- > 控制运动自由度。

UNITY 物理引擎实现 (1) 力与运动基础

- 系统默认的力作用在刚体重心
 - 力矩,产生旋转
- 力与运动
 - $\vec{f} = m * \vec{a}$
- 为物体添加力
 - 菜单 component → physics → constant force

- 力(Force)是一个作用在重心的向量
- 力矩(Torque)是产生角加速度的力

课堂实验(一)验证力与刚体运动

o 新建项目 physics

- 自由落体
 - 1. 添加一个 cube
 - 2. 为 cube 添加刚体,使用 重力
 - 3. 运行(观察物体自由落体)
- 与静态物体碰撞
 - 1. 添加 plane 使得 y=0; 并使 cube 的 y=3
 - 2. 运行(观察到 cube 落在 plane 上)
- 力的作用
 - 1. Cube 添加 Force 组件
 - 2. 设置力 y=9.8 或 y=10
 - 3. 运行(请问系统默认 g=9.8 或 10)
 - 4. 设置力 f=(10,0,0)
 - 5. 运行(观察由于碰撞产生的旋转)

- (2) 碰撞(COLLIDER)组件
- ○有形物体的属性
 - 一个 mesh 组件
 - 一个或多个 Collider 组件
- Collider 常见类型
 - 基本碰撞器
 - ▶ Box Collider
 - > Sphere Collider
 - Capsule Collider
 - 复杂碰撞器
 - > Mesh Collider
 - > Wheel Collider
 - > Terrain Collider

- (2) 复合碰撞器(COMPOUND COLLIDER)
- Mesh 碰撞器是万能的?
 - Too young! 能做碰撞计算的只能是凸的!!
 - 处于性能的考虑,基本碰撞器是最有效的
 - 但是:
- 复合(组合)物体
 - 复杂形状分解
 - 用变换组合
 - 组合1: ?
 - > 仅 Root 对象拥有刚体,并拥有多个基本碰撞器
 - 组合2: ?
 - » Root对象拥有刚体,每个对象拥有基本碰撞器

(2) 碰撞交互(COLLIDER INTERACTIONS)

○一些概念

• 静态碰撞器: 没有刚体属性物体的碰撞器

• 刚体碰撞器: 有刚体属性物体的碰撞器, 且是凸的

• 运行学刚体碰撞器

• 发生碰撞的条件

	静态碰撞器	刚体碰撞器	运动学刚体碰撞器
Static Collider 静态碰撞器		Υ	
Rigidbody Collider 刚体碰撞器	Y	Y	Y
Kinematic Rigidbody Collider 运动学刚体碰撞器		Y	

- (2) 碰撞事件(COLLISION EVENTS)
- 碰撞消息与事件
 - 消息
 - > OnCollisionEnter, OnCollisionExit, OnCollisionStay
 - 事件与碰撞结构
 - ▶ 处理消息的行为(脚本)接收该物体上刚体/碰撞器发出的消息
 - > 例如:

课堂实验(二) 碰撞与碰撞事件接收

- 碰撞与事件
 - 实验对象: plane, cube (刚体),事件接收程序
 - plane + 接收程序的输出? cube + 接收程序的输出?
- 组合碰撞器
 - 实验对象: plane, cube1(0,0,0), cube2(1,1,0)(red), root(0,3,0) 是 cube 的容器,事件接收程序
 - 组合1
 - > root 是刚体, cube 有碰撞器
 - 组合2
 - ▶ root 是刚体,且有两个碰撞器, cube 碰撞器
 - 组合3
 - > root 不是刚体, cube各自拥有刚体和碰撞器
 - 事件接收器挂载不同物体,并观察现象

(1) 离散计算与轨迹

- 线性动态: 以简单抛物线为例
 - 力: F(p,t)
 - p: 当前位置
 - t: 当时时间
- o Update 的公式

$$a_{i} = F(p_{i}, i\Delta t)/m$$

$$v_{i+1} = v_{i} + a_{i}\Delta t$$

$$p_{i+1} = p_{i} + v_{i}\Delta t$$

○结果

- 一组不太平滑的点
- 近似算法, Δt 越大则偏差越大(求解器内部做插值)
- Δt 要尽可能相等,否则就会感到跳跃

- (2) 线性动态计算问题
- o 动画综合症 Flipbook Syndrome
 - 当你用慢动作播放运动...
 - ?

- (2) 线性动态计算问题
- o 动画综合症 Flipbook Syndrome
 - 当你用慢动作播放运动...
 - 当旋转运动比较快...
 - 都是积累误差惹的祸!!!
- 常用解决方案
 - 在每个计算帧做内插值(p0,p01,p02,p03...p1)
 - 做旋转误差补偿,但会使物体抖动哦。
 - ▶ Rigidbody.Interpolate 刚体的插值参数(外插值,预测下一个位置消除抖动)

- (3) 碰撞计算问题
- o Tunneling(穿越效应)
 - 当物体运动足够快
 - 或物体又小又快
 - 》射击的子弹
 - ▶ 快速转动臂膀
 - > 不了解这些问题
 - ▶后果很严重

(3) 碰撞计算问题

• 解决方案

- 刚体碰撞检测属性
- 1. 连续检测(a)
- 2. 连续动态检测(b)
- 3. Wheel动态碰撞(c)

UNTIY物理引擎使用 (1) 基本注意事项

- Fixed-update
 - 修改物理引擎相关组件属性,请使用Fixed-Update
 - 确保物理引擎计算
- ○根据场景需要设置刚体属性
 - 内插值、外插值的使用
 - 连续检测
 - 特殊情况,用射线碰撞+定时销毁子弹替代碰撞
- 复合物体
 - 父子对象不能同时拥有刚体
- 其他
 - 不要逐帧移动一个静态碰撞器
 - 不要同时使用物理运动与运动学移动物体

UNTIY物理引擎使用 (2) 刚体组件属性与方法

- 刚体运动常用属性
 - 速度(velocity)角速度(angular velocity)
 - 质心 (center of mass)
 - > 物体中心(坐标原点)与质心一致是特例
 - > 特别是组合物体,设置质心会使运动效果更真实
 - 自定义内插值步数(solver iteration count)
 - · 提高/降低计算轨迹精度
 - 刚体休眠 (sleep)
 - > 设置最低速度,减少引擎计算量
 - 限制运动自由度

(2) 刚体组件属性与方法

- 对刚体施力或力矩
 - RigidBody.AddForce(Vector3 force, ForceMode mode);
 - 2. RigidBody.AddForceAtPosition(Vector3 force, Vector3 position, ForceMode mode);
 - 3.
- 力的模式(ForceMode)

Force	Add a continuous force to the rigidbody, using its mass. 添加一个可持续力到刚体,使用它的质量。			
Acceleration	Add a continuous acceleration to the rigidbody, ignoring its mass. 添加一个可持续加速度到刚体,忽略它的质量。			
Impulse	Add an instant force impulse to the rigidbody, using its mass. 添加一个瞬间冲击力到刚体,使用它的质量。			
VelocityChange	Add an instant velocity change to the rigidbody, ignoring its mass. 添加一个瞬间速度变化给刚体,忽略它的质量。			

(2) 刚体运动属性与方法

• 代码替代重力

```
5 public class Gravity : MonoBehaviour {
6
7    void FixedUpdate () {
8        Rigidbody rigid = this.gameObject.GetComponent<Rigidbody> ();
9        if (rigid) {
10            rigid.AddForce (Vector3.down * 9.8f);
11        }
12    }
13 }
```

• 移动刚体

- 尽管不能使用transfrom移动刚体,刚体提供
- 1. MovePosition (position : Vector3)
- 2. MoveRotation (rot : Quaternion)
- 它们会在本帧物理引擎计算结束后执行

- (3) 碰撞盒-作为触发器
- 触发器 (Trigger)
 - 一种碰撞盒,产生与运动无关的碰撞,并触发事件
 - 用 Is Trigger 属性表示
- 刚体碰撞器的代价
 - 刚体的碰撞盒是近似形状(运动计算性能与效果折中)
 - ▶ 普通游戏角色的碰撞器仅是胶囊模型
 - > 除了部分物理仿真应用,并不需要精确模型
 - 不同刚体的碰撞盒不能相交(不能穿透)
- 触发器的优势
 - 碰撞计算是高效的
 - 很多应用的碰撞不需要物理影响运动
 - > 子弹"爆头"的实现
 - 触发器可以放在任意物体,任意位置

- (3) 碰撞盒一作为触发器
- 触发器事件(Trigger Event)触发条件

Trigger messages are sent upon collision 碰撞后有触发信息

	Static Collider 静态碰撞器	Rigidbody Collider 刚体碰撞器	Kinematic Rigidbody Collider 运动学刚体碰撞器	Static Trigger Collider 静态触发碰撞器	Rigidbody Trigger Collider 刚体触发碰撞器	Kinematic Rigidbody Trigger Collider 运动学刚体触发碰撞 器
Static Collider 静态碰撞器					Υ	Υ
Rigidbody Collider 刚体碰撞器				Y	Υ	Υ
Kinematic Rigidbody Collider 运动学刚体碰撞器				Υ	Υ	Υ
Static Trigger Collider 静态触发碰撞器		Υ	Υ		Υ	Υ
Rigidbody Trigger Collider 刚体触发碰撞器	Υ	Υ	Υ	Υ	Υ	Υ
Kinematic Rigidbody Trigger Collider 运动学刚体触发碰撞器	Y	Υ	Y	Y	Y	Υ

(3) 触发器应用案例

- 触发器与碰撞器的选择
 - 飞碟游戏中飞碟
 - > 触发器, 胶囊体, 如果碰撞后飞碟立即回收
 - ▶ 碰撞器, 胶囊体, 期望物体落地后弹跳一会
 - 《反恐精英CS》玩家角色
 - ▶碰撞器,胶囊
 - 》触发器,头部球/或长方体
 - 天空飞行的鸟
 - ○碰撞器,矩形体(可变,展翅与死后不展翅不一样)
 - 炮塔
 - > 碰撞器, 胶囊体用于物体主体子对象
 - ▶ 触发器,胶囊体用于攻击范围子对象
 - 子弹
 - ▶触发器,方体。条件,遇到任何物体立即回收

UNTIY物理引擎使用 (3)应用案例分析

○打靶游戏

- 靶标对象
 - > Root
 - ▶ Target (显示网格)
 - ▶ Objective1..5 (一圈一个, 计分用)
- 箭对象
 - » Root (射中后,变为运动学刚体)
 - » 箭头(射中后,箭头会inactive)
 - 》箭身(射中后,箭身插在靶标上)
- 课堂问题与课后作业
 - 请回答每个对象子物体的刚体、碰撞器的设定?
 - 课后请完成该第一人称游戏(使用物理)!
 - 添加一个风向和强度标志,提高游戏难度

UNTIY物理引擎使用 (4) 碰撞计算原理与过程

- Axis-Aligned Bound Box(AABB)
 - 计算简单, 高效
 - 与事实差异大
- 物理碰撞计算过程
 - 1. AABB碰撞
 - 2. 物体碰撞
- o Collider的重要属性与方法
 - bound
 - ClosestPointOnBounds 用来计算受到爆炸伤害点数
 - Raycast 用来加速计算碰撞

(5) 物理材料与碰撞效果

• 作用

- 物理材质用来调节碰撞物体的摩擦力和弹力效果。
- 创建物理材质:菜单 Assets → Create → Physic Material。然后从项目视图拖拽物理材质到场景的一个碰撞器上

UNTIY物理引擎使用 (6) 关节与弹簧

- o Hinge Joint 铰链关节
 - 用于连接两个刚体
- Spring Joint 弹簧关节

UNTIY物理引擎使用 (7) 其他注意事项

◦ Mesh Collider 网格碰撞器

- 能不用就不用(性能考虑)
- 只有凸的网格能与网格碰撞
- 任意网格可以与基本碰撞盒碰撞

• 注意物体设计大小

- Unity 空间单位 1 大约 1米, 所以人高大约2
- 物体缩小、放大会影响性能

物理引擎中级技术

(1) 势能与场 (POTENTIAL FIELDS)

- 现实世界的场
 - 引力
 - 电磁力场
 - •
- 社会中的场
 - 吸引力
 - (食物)诱惑力
- 场与运动
 - 场使运动更真实与智能
 - 常见力场

物理引擎中级技术

(2) 势能与场应用

• 爆炸效果

```
void OnCollisionEnter(Collision col)
   //如果碰撞物是上方落下的小球,进行爆炸处理
   if (col.transform.name == "Sphere")
       //定义爆炸半径
      float radius = 3.0f;
      //定义爆炸位置为炸弹位置
      Vector3 explosionPos = transform.position;
      //这个方法用来反回球型半径之内(包括半径)的所有碰撞体collider[]
      Collider[] colliders = Physics.OverlapSphere(explosionPos, radius);
       //遍历返回的碰撞体,如果是刚体,则给刚体添加力
       foreach (Collider hit in colliders)
          if (hit.rigidbody)
              hit.rigidbody.AddExplosionForce(600, explosionPos, radius);
          //销毁炸弹和小球
          Destroy(col.gameObject);
          Destroy(gameObject);
```

爆炸效果: http://blog.csdn.net/jukaiblog/article/details/10343211

物理引擎中级技术 (2) 势能与场应用

课堂实验(三) 力场与爆炸效果

- 完成爆炸效果
 - 设计四个物体在 plane 上
 - 从高空掉落一物体,在地面发生爆炸
 - 产生炸飞的效果
- 巡航与感应攻击
 - A程序员开发一个巡航带自动攻击机器人
 - 巡航设计:
 - ▶ 机器人使用巡航行为(FixedUpdate)
 - > 巡航行为包含一组目标点
 - > 当前目标点产生指向目标的恒速力。到达则使用下一个目标
 - 攻击设计:
 - ▶ 机器人附加带触发器的攻击子对象
 - > 当触发对象名为 boss* 时发起攻击行动

面向对象设计思考(1)业务需求

- 我们学完物理运动,现在的需求是:
 - 不想放弃 CCActionManager
 - 新建 PhysisActionManager
 - 新的设计如下图:

面向对象设计思考

- (2) ADAPTER 模式的价值
- o 什么是 Adapter 模式?
- o Adapter 模式使用场景
 - 你设计了电商网站,它有一个实用简单同一的支付接口,现在这个接口要对接工行、农行、...、微信、支付宝、财付通、...的接口。你明白设计如何应对业务变化的吗?
 - 在游戏中有哪些场景会用到 Adapter 呢?
 - > . . . ?

课程小结

- ○物理引擎基础
 - 力与运动、物体碰撞的抽象
 - Unity 物理系统的刚体、碰撞组件使用
 - 离散系统动画综合症、穿越效应
 - 产生条件、原理、解决方案
- ○物理引擎编程
 - 重心、力的使用
 - 触发器的作用
 - 碰撞器、触发器的综合应用
 - 力场与智能
- ○面向对象设计技巧
 - Adapter 模式

作业:

- 修改飞碟游戏:
 - 按设计图修改飞碟游戏
 - 使它同时支持物理运动与运动学(变换)运动

○ 打靶游戏:

- 靶对象为 5 环, 按环计分;
- 箭对象,射中后要插在靶上;
- 游戏仅一轮, 无限 trials;
- 增强要求:
- > 添加一个风向和强度标志,提高难度

