Φ_{M} ЗТ $_{\mathsf{E}}$ Х Ж $_{\mathsf{M}}$ К

Задача №2

В координатном представлении $\hat{x}=x$ и $\hat{p}_x=-i\hbar\partial_x$, тогда $\hat{p}_x^2=-\hbar^2\partial_x^2$.

0) Начнём с нулевого примера, чтобы убедиться, что правильно смотрим на мир:

$$[\hat{x}, \, \hat{p}]\psi(x) = x(-i\hbar)\partial_x\psi - (-i\hbar)\partial_x(x\psi) = i\hbar\psi + i\hbar x\partial_x\psi - i\hbar x\partial_x\psi = i\hbar\psi,$$

$$\Rightarrow \quad [\hat{x}, \, \hat{p}] = i\hbar.$$

а) Аналогично, в смысле операторного равенства,

$$\begin{split} [\hat{x},\,\hat{p}^2]\psi(x) &= x(-i\hbar)^2\partial_x^2\psi - (-i\hbar)^2\partial_x^2(x\psi) = -\hbar^2x\partial_x^2\psi + \hbar^2\partial_x(\psi + x\partial_x\psi) = \\ &= -\hbar^2x\partial_x^2\psi + \hbar^2\partial_x\psi + \hbar^2\partial_x\psi + \hbar^2x\partial_x^2\psi = 2i\hbar\hat{p}\psi, \\ \Rightarrow [\hat{x},\,\hat{p}^2] &= 2i\hbar\hat{p}. \end{split}$$

б) Теперь найдём коммутатор с некоторой функцией U(x):

$$\begin{split} &[U(\hat{x}),\,\hat{p}]\psi(x) = U(x)(-i\hbar\partial_x\psi) + i\hbar\partial_x(U\psi) = U(-i\hbar\partial_x\psi) + i\hbar(\psi\partial_xU + U\partial_x\psi) = i\hbar(\partial_xU)\psi,\\ \Rightarrow &[U(\hat{x}),\,\hat{p}] = 2i\hbar\hat{p}. \end{split}$$

в) Наконец,

$$\begin{split} [U(\hat{x}),\,\hat{p}^2]\psi(x) &= U(-\hbar^2)\partial_x^2\psi + \hbar^2\partial_x^2U\psi = U(-\hbar^2)\psi'' + \hbar^2(\psi U'' + 2U'\psi' + \psi''U) = \\ &= \hbar^2(\psi U'' + 2U'\psi') = (\hbar^2U'' + \hbar 2iU'\hat{p})\psi, \\ \Rightarrow [U(\hat{x}),\,\hat{p}^2] &= \hbar^2U'' + 2i\hbar U'\hat{p}. \end{split}$$

Задача №3

Докажем соотношение Фейнмана-Гелмана:

$$\partial_{\lambda} f_n(\lambda) = \langle n | \partial_{\lambda} \hat{f}(\lambda) | n \rangle,$$

где f_n – собственное значение $\hat{f}|n\rangle = f_n|n\rangle$, то есть $f_n = \langle n|\hat{f}|n\rangle$.

По формуле Лейбница:

$$\begin{split} \partial_{\lambda}f_{n} &= \langle n|\partial_{\lambda}\hat{f}|n\rangle + \langle \partial_{\lambda}n|\hat{f}|n\rangle + \langle n|\hat{f}|\partial_{\lambda}n\rangle = \langle n|\partial_{\lambda}\hat{f}|n\rangle + \langle \partial_{\lambda}n|n\rangle f_{n} + \langle n|\partial_{\lambda}n\rangle f_{n} = \\ &= \langle n|\partial_{\lambda}\hat{f}|n\rangle + f_{n}\partial_{\lambda}\langle n|n\rangle = \langle n|\partial_{\lambda}\hat{f}|n\rangle, \end{split}$$

что и требовалось доказать.

Задача №4

Найдём операторы рождения и уничтожения для гармонического осцилляора в представлении Гейзенберга.

I. Запишем уравнение Гейзенберга

$$i\hbar\frac{\hat{d}\hat{f}}{dt} = i\hbar\frac{\partial\hat{f}}{\partial t} + \left[\hat{f},\,\hat{H}\right].$$

Запищем гамильтониан системы

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right),$$

тогда можем найти

$$i\hbar\frac{\hat{d}a}{dt} = \hbar\omega\left[\hat{a},\,\hat{a}^{\dagger}\hat{a}\right] = \hbar\omega\left(\hat{a}\hat{a}^{\dagger}\hat{a} - \hat{a}^{\dagger}\hat{a}\hat{a}\right) = \hbar\omega\left(\left[\hat{a},\,\hat{a}^{\dagger}\right]\hat{a}\right) = \hbar\omega\hat{a},$$

и, решая диффур, находим

$$i\hbar \frac{\hat{d}a}{dt} = \hbar\omega \hat{a}, \quad \Rightarrow \quad \begin{cases} \hat{a}(t) = e^{-i\omega t}\hat{a}, \\ \hat{a}^{\dagger}(t) = e^{i\omega t}\hat{a}^{\dagger}. \end{cases}$$

II. Можно было напрямую, воспользоваться

$$\hat{U}(t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right), \quad \Rightarrow \quad \hat{a}(t) = \hat{a} + (i\omega t)[\hat{a}^{\dagger}\hat{a}, \, \hat{a}] + (i\omega t)^{2}[\hat{a}^{\dagger}\hat{a}, \, -\hat{a}] + \dots = \exp(-i\omega t)\hat{a},$$

где мы воспользовались равенством, доказанным в У6:

$$e^{\xi A}Be^{-\xi A} = B + \xi[A, B] + \frac{1}{2!}\xi^{2}[A, [A, B]] + \dots$$