

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 326 331
A2

⑫

EUROPEAN PATENT APPLICATION

㉑ Application number: 89300659.3

㉒ Date of filing: 25.01.89

㉓ Int. Cl.⁴: C 07 D 237/28

C 07 D 215/42,
C 07 D 409/12,
C 07 D 401/12,
C 07 D 215/22,
C 07 D 215/18,
C 07 D 215/36,
C 07 D 417/12, A 01 N 43/42

㉔ Priority: 29.01.88 US 150366

㉕ Applicant: ELI LILLY AND COMPANY
Lilly Corporate Center
Indianapolis Indiana 46285 (US)

㉖ Date of publication of application:

02.08.89 Bulletin 89/31

㉗ Inventor: Dreikorn, Barry Allen
9731 Trilobi Drive
Indianapolis Indiana 46236 (US)

㉘ Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

Jourdan, Glen Phil
R.R. Nr. 1 Box 74B
Morrstown Indiana 46161 (US)

Suhr, Robert George
1522 Bruner Drive
Greenfield Indiana 46140 (US)

㉙ Representative: Tapping, Kenneth George et al
Erl Wood Manor
Windlesham Surrey, GU20 6PH (GB)

Claims for the following Contracting State: ES.

㉚ Substituted quinolines and cinnolines.

㉛ Compounds of the formula (1):

R⁵ is H, CH₃, Cl, O-Y-Ar, or -NR⁷-Y-Ar;

R⁶ is H, CH₃, Cl or Br;

A is -O-Alk or -X-Y-Ar;

Alk is a C₂-C₁₈ saturated or unsaturated hydrocarbon chain, straight chain or branched, optionally substituted with halo, halo (C₁-C₄) alkoxy, (C₃-C₆) cycloalkyl, hydroxy, or acetyl; X is O, NR⁷, or CR⁸R⁹, provided that if one of R² to R⁵ is NR⁷-Y-Ar or O-Y-Ar, then X-Y-Ar is an identical group;

R⁷ is H, (C₁-C₄) alkyl, or acetyl;

R⁸ and R⁹ are independently H, (C₁-C₄) alkyl, (C₁-C₄) acyl, halo, or OH, or R⁸ and R⁹ combine to form a saturated or unsaturated carbocyclic ring comprising three to seven carbon atoms;

Y is an alkyne chain 2 to 8 carbon atoms long, optionally including an O, S, SO, SO₂, or NR⁷ group or a saturated or unsaturated carbocyclic ring comprising three to seven carbon atoms, or substituted with (C₁-C₃) alkyl, (C₂-C₄) alkenyl, phenyl, (C₃-C₆) cycloalkyl, hydroxy, halo, or (C₁-C₄) acyl; and

Ar is 1,3-benzodioxolyl

fluorenyl,

pyridyl,

imidazolyl,

indolyl,

wherein:

R¹ to R⁴ are independently

H, halo, (C₁-C₄) alkyl, branched (C₃-C₄) alkyl, halo (C₁-C₄) alkyl, (C₁-C₄) alkoxy, NO₂, or NH₂, at least two of R¹ to R⁴ being H, or one of R² to R⁴ is -NR⁷-Y-Ar or O-Y-Ar and the rest of R¹ to R⁴ are H;

W is N, or CR⁵;

EP 0 326 331 A2

Description**Substituted Quinolines and Cinnolines**

5

Background of the InventionField of the Invention

This invention provides new compounds that have excellent plant fungicide activity. Some of the 10 compounds have also demonstrated insecticidal and miticidal activity. The invention also provides compositions and combination products that contain a compound of the invention as active ingredient. The invention also provides fungicidal, miticidal, and insecticidal methods.

There is an acute need for new fungicides, insecticides, and miticides, because target pathogens are rapidly 15 developing resistance to currently used pesticides. Widespread failure of N-substituted azole fungicides to control barley mildew was observed in 1983, and has been attributed to the development of resistance. At least 50 species of fungi have developed resistance to the benzimidazole fungicides. The field performance of DMI (demethylation inhibitor) fungicides, which are now widely relied on to protect cereal crops from powdery 20 mildew, has declined since they were introduced in the 1970's. Even recent fungicides, like the acylalanines, which initially exhibited excellent control of potato late blight and grape downy mildew in the field, have become less effective because of widespread resistance. Similarly, mites and insects are developing resistance to the miticides and insecticides in current use. Resistance to insecticides in arthropods is widespread, with at least 400 species resistant to one or more insecticides. The development of resistance to some of the older insecticides, such as DDT, the carbamates, and the organophosphates, is well known. But 25 resistance has even developed to some of the newer pyrethroid insecticides and miticides. Therefore a need exists for new fungicides, insecticides, and miticides.

Summary of the Invention

30 This invention provides compounds of the formula (1):

45 wherein:

R¹ to R⁴ are independently H, halo, (C₁-C₄) alkyl, branched (C₃-C₄) alkyl, halo (C₁-C₄) alkoxy, (C₁-C₄) alkoxy, NO₂, or NH₂, at least two of R¹ to R⁴ being H, or one of R² to R⁴ is -NR⁷-Y-Ar or O-Y-Ar and the rest of R¹ to R⁴ are H; W is N, or CR⁵; R⁵ is H, CH₃, Cl, O-Y-Ar, or -NR⁷-Y-Ar; R⁶ is H, CH₃, Cl or Br; A is -O-Alk or -X-Y-Ar; Alk is a C₂-C₁₈ saturated or unsaturated hydrocarbon chain, straight chain or branched, optionally substituted with halo, halo (C₁-C₄) alkoxy, (C₃-C₈) cycloalkyl, hydroxy, or acetyl; X is O, NR⁷, or CR⁸R⁹, provided that if one of R² to R⁵ is NR⁷-Y-Ar or O-Y-Ar, then X-Y-Ar is an identical group; R⁷ is H, (C₁-C₄) alkyl, or acetyl; R⁸ and R⁹ are independently H, (C₁-C₄) alkyl, (C₁-C₄) acyl, halo, or OH, or R⁸ and R⁹ combine to form a saturated or unsaturated carbocyclic ring comprising three to seven carbon atoms; Y is an alkylene chain 2 to 8 carbon atoms long, optionally including an O, S, SO, SO₂, or NR⁷ group or a saturated or unsaturated carbocyclic ring comprising three to seven carbon atoms, or substituted with (C₁-C₃) alkyl, (C₂-C₄) alkenyl, phenyl, (C₃-C₈) cycloalkyl, hydroxy, halo, or (C₁-C₄) acyl; and Ar is

15 to provide a compound of formula (1) wherein A is $-CR^8R^9Y-Ar$; or
 (e) halogenating a compound of formula (1) wherein R^6 is H with $POCl_3/PCl_5$ to provide a compound of formula (1) wherein R^6 is Cl ; or
 20 (f) reacting a compound of formula (1) wherein R^6 is H with Br_2 in acetic acid to provide a compound of formula (1) wherein R^6 is Br ; or
 (g) oxidizing a compound of formula (1) wherein W is CR^5 to provide the corresponding N-oxide.

Preparation of Quinoline Starting Materials

25 Quinoline starting materials can be synthesized using a variety of known procedures. *Organic Syntheses*, collective volume 3, 1955, pp. 272-75, gives a procedure for preparing 4,7-dichloroquinoline, and other polysubstituted quinolines. Another general procedure is described in *Tetrahedron*, vol. 41, pp. 3033-36 (1985).

Many of the quinoline starting materials used in the following examples were prepared by the protocol shown in the following reaction scheme

50 In cases where mixtures of isomeric products were obtained, the mixture of substituted 4-quinolones was chlorinated under standard conditions, and the 4-chloroquinolines were separated by liquid chromatography.

Preparation of Cinnoline Starting Materials

Preparation of Cinnoline Starting Materials
Cinnoline analogs are prepared via published methods. (C. M. Atkinson and J. C. Simpson - J. Chem. Soc. London, 1947, 232). The substituted 2-amino-acetophenone is diazotized at 0-5°C in water using sodium nitrite and mineral acid, and the intermediate diazonium salt is trapped by the enolic component of the ketone to provide the requisite 4-hydroxycinnoline. Routine chlorination provides the desired intermediates.

60

EXAMPLES 1 TO 295

Tables 1-12 identify compounds actually prepared by the above described general procedures, and give each compound's melting point. Specific illustrative preparations of the compounds of Examples 4, 10, 25, 69, 97, 154, 159, 173, 181, 186, 209, 212, 221, 238, 251, and 261 follow the table.

TABLE 1
N-(2-phenylethyl)-4-quinolinamines

<u>EXAMPLE NUMBER</u>	<u>COMPOUND</u>	<u>M.P.</u>
97	8-fluoro-N-[2-[2-(trifluoromethyl)phenyl]ethyl]-4-quinolinamine	157-158°C
98	2-chloro-N-[2-(2,4-dichlorophenyl)ethyl]-8-fluoro-4-quinolinamine	199-200°C
99	N-(2-phenylethyl)-8-(trifluoromethyl)-4-quinolinamine	151-152°C
100	7-chloro-N-[2-(2-methoxyphenyl)ethyl]-4-quinolinamine	140-142°
101	7-chloro-N-[2-(3,4-dichlorophenyl)ethyl]-4-quinolinamine	128-130°C
102	N-[2-(4-chlorophenyl)ethyl]-2-methyl-4-quinolinamine	176-178°C
103	N-[2-(2-chloro-6-fluorophenyl)ethyl]-8-fluoro-4-quinolinamine	198-201°C
104	N-[2-(2,4-dichlorophenyl)ethyl]-7-(trifluoromethyl)-4-quinolinamine	175-177°C
105	N-[2-(4-chlorophenyl)ethyl]-N-ethyl-8-fluoro-4-quinolinamine	oil
106	7-chloro-N-(4-fluorophenyl)-N-methyl-4-quinolinamine	83-85°C
107	7-chloro-N-[2-[3-(trifluoromethyl)phenyl]ethyl]-4-quinolinamine	184-186°C

