house_price_predictor

September 25, 2024

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.ensemble import RandomForestRegressor
import itertools
import shap
```

```
[2]: def load_and_describe_data(data_file):
         df = pd.read_csv(data_file)
         df.rename(columns={'MEDV': 'median_price'}, inplace=True)
         print(f'Num rows : {df.shape[0]}')
         print(f'Num features : {df.shape[1] - 1}')
         print(f'Meaning of features')
         feature_names = '''
     CRIM
               per capita crime rate by town
     7.N
               proportion of residential land zoned for lots over ,000 sq.ft.
     TNDUS
               proportion of non-retail business acres per town
     CHAS
               Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
     NOX
               nitric oxides concentration (parts per 10 million)
     R.M
               average number of rooms per dwelling
     AGE
               proportion of owner-occupied units built prior to 1940
               weighted distances to five Boston employment centres
     DIS
     RAD
               index of accessibility to radial highways
     TAX
              full-value property-tax rate per $10,000
     PTRATIO
              pupil-teacher ratio by town
              1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
     LSTAT
              % lower status of the population
         print(feature_names)
         print(df.describe())
         print(f'\nCorrelation of features to median price')
         correlation = df.corr()['median_price'].sort_values(ascending=False)
         print(correlation)
```

return df

[3]: df = load_and_describe_data('housing.csv')

Num rows: 506 Num features: 13 Meaning of features

CRIM

per capita crime rate by town ZNproportion of residential land zoned for lots over ,000 sq.ft. INDUS proportion of non-retail business acres per town CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) nitric oxides concentration (parts per 10 million) NOX RMaverage number of rooms per dwelling AGE proportion of owner-occupied units built prior to 1940 weighted distances to five Boston employment centres DIS index of accessibility to radial highways RAD full-value property-tax rate per \$10,000 TAX pupil-teacher ratio by town PTRATIO 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town В LSTAT % lower status of the population CRIM CHAS NOX ZN**INDUS** RMcount 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 3.613524 11.363636 11.136779 0.069170 mean 0.554695 6.284634 std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 0.000000 min 0.006320 0.460000 0.000000 0.385000 3.561000 25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 max AGE DIS RAD TAX PTRATIO В 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 count 3.795043 408.237154 mean 68.574901 9.549407 18.455534 356.674032 std 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864 min 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 25% 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 50% 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000 75% 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000 12.126500 711.000000 max 100.000000 24.000000 22.000000 396.900000 LSTAT median_price 506.000000 506.000000 count mean 12.653063 22.532806 std 7.141062 9.197104 1.730000 min 5.000000 25% 6.950000 17.025000

```
50%
             11.360000
                           21,200000
    75%
             16.955000
                           25.000000
            37.970000
                           50,000000
    max
    Correlation of features to median price
    median price
                     1.000000
    RM
                     0.695360
    ZN
                     0.360445
    В
                     0.333461
    DIS
                     0.249929
                     0.175260
    CHAS
                    -0.376955
    AGE
    RAD
                    -0.381626
                    -0.388305
    CRIM
    NOX
                    -0.427321
    TAX
                    -0.468536
    INDUS
                    -0.483725
    PTRATIO
                    -0.507787
    LSTAT
                    -0.737663
    Name: median_price, dtype: float64
[4]: def get_training_test_data(df):
         result = {}
         X = df.drop('median_price', axis=1)
         y = df['median_price']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
         result['X train'] = X train
         result['y_train'] = y_train
         result['X_test'] = X_test
         result['y_test'] = y_test
         return result
[5]: def plot_predictions(y_pred, y_test, model_name):
         Plots the difference between the predictions y_p pred vs the actual values u
      \hookrightarrow y\_test
         plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred, color='blue', label='Predicted Price vs Actual_u
         plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', __
      ⇔label='Perfect Prediction')
         plt.xlabel('Actual Values')
         plt.ylabel('Predicted Values')
```

```
plt.title('Predicted vs Actual Values')
plt.legend()
plt.grid()
plt.savefig(f'{model_name}_predictions.png')
plt.show()
```

```
[6]: def fit_linear_regression_model(X_train, y_train, X_test, y_test):
         model = LinearRegression()
         model.fit(X train, y train)
         coefficients = model.coef_
         intercept = model.intercept_
         y_pred = model.predict(X_test)
         mse = mean_squared_error(y_test, y_pred)
         mae = mean_absolute_error(y_test, y_pred)
         print(f'Plain linear regression model')
         print(f'Mean squared error : {mse:.3f}')
         rmse = np.sqrt(mse)
         print(f'Root mean squared error : {rmse:.3f}')
         print(f'Mean absolute error : {mae:.3f}')
         plot_predictions(y_pred, y_test, 'simple_linear_regression')
         coef_df = pd.DataFrame({
         'Feature': X_train.columns,
         'Coefficient': coefficients
         })
         print(f'{coef_df}')
         print(f'Model intercept : {intercept}')
```

```
param_combinations = list(itertools.product(*lists))
         total_param_combinations = len(param_combinations)
         # iterate through param combinations
         for i, params in enumerate(param_combinations, 1):
             # fill param dict with params
             param_dict = {}
             for param_index, param_name in enumerate(hyperparams):
                 param_dict[param_name] = params[param_index]
             # create estimator with specified params
             estimator = clf(**param_dict, **fixed_hyperparams)
             # fit estimator
             estimator.fit(Xtrain, ytrain)
             # get predictions on the test
             y_preds = estimator.predict(Xtest)
             mse = mean_squared_error(ytest, y_preds)
             print(f'[{i}/{total_param_combinations}] {param_dict}')
             print(f'Val MSE: {mse}\n')
             if mse >= best_score:
                 best score = mse
                 best_estimator = estimator
                 best_hyperparams = param_dict
         best hyperparams.update(fixed hyperparams)
         return best_estimator, best_hyperparams
[8]: def explain_model(classifier, X_importance):
         Generates SHAP plots for the given classifier.
         explainer = shap.TreeExplainer(classifier)
         shap_values = explainer.shap_values(X_importance)
         shap.summary_plot(shap_values, X_importance)
[9]: def fit_random_forest_regression_model(X_train, y_train, X_test, y_test):
         X_dev, X_val, y_dev, y_val = train_test_split(X_train, y_train, test_size=0.
      →2, random_state=42)
         hyperparams = {
             'n_estimators': [25, 50, 75, 100, 125, 150],
             'max_depth': [3,4,5,6,7,8,9,10],
             'min_samples_leaf': [5,6,7,8,9,10]
         }
```

```
fixed_hyperparams = {
              'random state': 21
         }
         clf = RandomForestRegressor
          clf.fit(X_dev, y_dev)
          print(f'Criteria : {clf.criterion}')
         best_clf = clf
         best_clf, best_hyperparams = holdout_grid_search(clf, X_dev, y_dev, X_val,_u
       print(f"Best hyperparameters:\n{best_hyperparams}")
         y_pred = best_clf.predict(X_test)
         mse = mean_squared_error(y_test, y_pred)
         mae = mean_absolute_error(y_test, y_pred)
         print(f'Random Forest Regressor model')
         print(f'Mean squared error : {mse:.3f}')
         rmse = np.sqrt(mse)
         print(f'Root mean squared error : {rmse:.3f}')
         print(f'Mean absolute error : {mae:.3f}')
         plot_predictions(y_pred, y_test, 'random_forest_regression')
         explain_model(best_clf, X_test)
[10]: def analyze_data(df):
         result = get_training_test_data(df)
         X_train = result['X_train']
         y_train = result['y_train']
         X_test = result['X_test']
         y_test = result['y_test']
         print(f'Shape of training set : {X_train.shape}')
         print(X_train.describe())
         print()
         print(f'Shape of test set : {X_test.shape}')
         print(X_test.describe())
         fit_linear_regression_model(X_train, y_train, X_test, y_test)
         fit_random_forest_regression_model(X_train, y_train, X_test, y_test)
[11]: analyze_data(df)
     Shape of training set : (404, 13)
                 CRIM
                               7.N
                                        INDUS
                                                     CHAS
                                                                 NUX
                                                                              RM \
     count 404.000000 404.000000 404.000000 404.000000 404.000000 404.000000
             3.378976 10.992574 11.000545
                                                0.074257
                                                            0.550923
                                                                        6.273290
     mean
             7.791667
                      22.597046 6.824072
                                                0.262514
                                                            0.113065
                                                                        0.697196
     std
```

min	0.006320	0.000000	0.740000	0.000000	0.389000	4.138000			
25%	0.082973	0.000000	5.190000	0.000000	0.449000	5.874750			
50%	0.253715	0.000000	8.560000	0.000000	0.532000	6.179000			
75%	3.202962	12.500000	18.100000	0.000000	0.624000	6.619750			
max	73.534100	95.000000	27.740000	1.000000	0.871000	8.780000			
				_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0.2000				
	AGE	DIS	RAD	TAX	PTRATIO	В	\		
count	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	`		
mean	68.081931	3.795402	9.445545	404.695545	18.436634	363.378812			
std	28.213249	2.040935	8.638279	168.574078	2.144528	80.218789			
min	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000			
25%	44.675000	2.100525	4.000000	277.000000	17.375000	376.667500			
50%	75.700000	3.317500	5.000000	329.000000	18.850000	391.705000			
75%	94.100000	5.118000	24.000000	666.000000	20.200000	396.250000			
max	100.000000	12.126500	24.000000	711.000000	21.200000	396.900000			
	LSTAT								
count	404.000000								
mean	12.720421								
std	7.296091								
min	1.730000								
25%	6.840000								
50%	11.300000								
75%	17.210000								
max	37.970000								
Shape	of test set	: (102, 13)							
1	CRIM	ZN	INDUS	CHAS	NOX	RM	\		
count	102.000000	102.000000	102.000000	102.000000	102.000000	102.000000	•		
mean	4.542514	12.833333	11.676373	0.049020	0.569636	6.329569			
std	11.251758	26.067252	7.010220	0.216975	0.125888	0.725454			
min	0.013810	0.000000	0.460000	0.000000	0.385000	3.561000			
25%	0.062240	0.000000	5.145000	0.000000	0.455750	5.935250			
50%	0.302500	0.000000	10.410000	0.000000	0.548500	6.250000			
75%	4.703245	18.125000	18.100000	0.000000	0.671000	6.626500			
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.375000			
	4.00	DIG	242	m 4 37	DED 4 ET C	.	,		
	AGE	DIS	RAD	TAX	PTRATIO	В	\		
count	102.000000	102.000000	102.000000	102.000000	102.000000	102.000000			
mean	70.527451	3.793619	9.960784	422.264706	18.530392	330.117843			
std	27.944606	2.355769	9.007062	168.485562	2.253305	122.903329			
min	6.200000	1.285200	1.000000	188.000000	13.000000	2.600000			
25%	46.625000	2.073525	4.000000	281.750000	17.400000	358.600000			
50%	81.400000	2.756800	5.000000	384.000000	19.200000	389.545000			
75%									
	93.875000	5.287300	24.000000	666.000000	20.200000	395.617500			
max	93.875000	5.287300 10.585700	24.000000 24.000000	711.000000	20.200000	395.617500 396.900000			

LSTAT

102.000000 count mean 12.386275 std 6.517594 min 2.470000 25% 7.465000 50% 11.835000 75% 16.372500 34.020000 max

Plain linear regression model Mean squared error : 21.066 Root mean squared error : 4.590 Mean absolute error : 3.488

Predicted vs Actual Values

	Feature	Coefficient
0	CRIM	-0.075957
1	ZN	0.042377
2	INDUS	0.016432
3	CHAS	2.838339
4	NOX	-18.276177
5	RM	4.332665
6	AGE	-0.002793
7	DIS	-1.474854
8	RAD	0.294135
9	TAX	-0.012942
10	PTRATIO	-0.861111

11 B 0.008856 12 LSTAT -0.482091

Model intercept : 31.970665539362567

Best hyperparameters:

{'n_estimators': 75, 'max_depth': 3, 'min_samples_leaf': 7, 'random_state': 21}

Random Forest Regressor model Mean squared error : 13.678 Root mean squared error : 3.698 Mean absolute error : 2.704

The SHAP plot for the Random Forest classifier shows that house prices increase as the number of rooms increase. Moreover, house price decrease as LSTAT (% of the lower status of the population) and CRIM (per capita crime rate) increase. Moreover, the house price is inversely proportional to DIS (the distance from emoloyment).

Intuitively, these make sense.