

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

VIGILADA MINEDUCACIÓN - SNIES 1732

Faculty: systems engineer

Course: Deep Learning

Topic: CNN-visión por computadora (ftlite and testing)

Professor: Luis Fernando Castellanos Guarin

Email: Luis.castellanosg@usantoto.edu.co

Phone: 3214582098

Proceso Global

CONTENIDO

- 1. Instalar AnaConda en windows.
- 2. Creando un ambiente para tensorflow 1.15
- 3. Creando tflite (grafo inferencial liviano).
- 4. Ejecutando grafo inferencial
 - 1. Instalando OpenCV (Windows/Linux)
 - 2. en Windows.
 - 3. en Linux
 - 4. en Android

Instalando Anaconda en Windows

Instalar software Anaconda, pueden usar el "paso a paso"
 https://programarfacil.com/blog/vision-artificial/instalar-opencv-python-anaconda/

- Verificar versiones instaladas de Python y de pip
 - python –V
 - pip –V

Si quieres comprobar si existe una versión nueva del gestor de paquetes Pip -> python -m pip install -U pip

Creando ambiente Conda en Windows

Abrir "Anaconda navigator" / environments:

Creamos un nuevo ambiente al que llamaremos tensorflow1_15

Este proceso puede durar varios minutos, dependiendo de la velocidad de internet y si la maquina tiene CPU o GPU.

Creando ambiente Conda en Windows

Por CMD ejecutar el comando

C:\> conda activate **tensorflow1_15**

La ruta de CMD, cambiara quedando así:

(tensorflow1_15) C:\>

Ahora instalaremos la versión de tensorflow 1.15

(tensorflow1_15) C:\>pip install tensorflow==1.15

Tenga un poco de paciencia, se demora unos minutos dependiendo de su conexión a internet y de su CPU.

Creando grafo inferencial liviano (tflite)

Un grafo inferencial requiere computadores con un hardware de alto rendimiento (mínimo un Intel 15 o un ADM A12) y aun así su proceso es lento....pero en un dispositivo como una Raspberry o un teléfono que tiene menor capacidad de hardware simplemente No se puede ejecutar por eso es necesario convertir el grafo en una versión liviana (tflite)

Creando grafo inferencial liviano (tflite)

Descargue los dos archivos que están en la carpeta de Google drive:

..\deteccion_objectos\models\research\tflite

- tflite_graph.pb
- tflite_graph.pbtxt

Desde la carpeta donde guardo los archivos descargados, ejecute desde CMD y estando activado el environment de tensorflow1 15:

(tensorflow1_15) E:\> tflite_convert --input_shape=1,300,300,3 --input_arrays=normalized_input_image_tensor --output_arrays=TFLite_Detection_PostProcess;7FLite_Detection_PostProcess:2,TFLite_Detection_PostProcess:2,TFLite_Detection_PostProcess:3 --allow_custom_ops --graph_def_file=tflite_graph.pb --output_file=detect.tflite

El proceso le debe crear un archivo llamado:

Detect.tflite

Conociendo el grafo inferencial

El software NETRON, que esta disponible desde GITHUB

https://github.com/lutzroeder/netron/

Nos permite visualizar los grafos resultantes del entrenamiento de una red neuronal, en este caso de detect.tflite

Instalando OpenCv

Necesitaremos tener instalado en nuestro S.O (Windows/Linux) la librería OpenCV, quien nos permitirá tener acceso a imágenes obtenidas desde un solo archivo o desde videos, cámaras de vigilancia y a aplicarles el grafo de inferencia que

construimos:

Windows:

- Ingresar a anaconda navigator
- seleccionar el ambiente de tensorflow1_15
- 3. Clic en Not installed
- 4. Buscar la librería opency
- 5. Selectionar los tres componente
- 6. Dar clic en aplicar.

Para Instalar OpenCV en Linux requiere un poco más de esfuerzo que en Windows (es un poco más complejo):

En la carpeta compartida esta unos archivos tipo bash que nos automatizan los procesos .

\USTA-202001_7°_DEEP_LEARNING\Install_opencv_optimizacion_Linux

1. necesitaremos actualizar el SO y borrar algunas software (P1_linux_Optimization.sh)

```
sudo apt-get update --assume-yes
sudo apt-get upgrade --assume-yes
sudo apt-get clean --assume-yes
sudo apt-get autoclean --assume-yes
sudo apt-get install libatlas-base-dev --assume-yes
sudo shutdown -r now
```


2. Instalaremos las dependencias que se requieren para python3: P2_instalar_dependecias_openCV.sh

echo "P1: Instalando herramientas de desarrollador, incluido CMake" sudo apt-get install build-essential cmake pkg-config --assume-yes echo "P2: Instalando paquetes de E/S para manejar imagenes JPEG, PNG, TIFF, etc" sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng-dev --assume-yes echo "P3: Instalando paquetes de E/S de video" sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev --assume-yes sudo apt-get install libxvidcore-dev libx264-dev --assume-yes echo "P4: Instalando la biblioteca de desarrollo GTK, necesaria para OpenCV" sudo apt-get install libfontconfig1-dev libcairo2-dev --assume-yes sudo apt-get install libgdk-pixbuf2.0-dev libpango1.0-dev --assume-yes sudo apt-get install libgtk2.0-dev libgtk-3-dev --assume-yes echo "P5:Instalando dependencias adicionales para trabajar matrices en OpenCV" sudo apt-get install libatlas-base-dev gfortran --assume-yes echo "P6: Instalando librerias para manejar datos HDF5 y GUI Qt" sudo apt-get install libhdf5-dev libhdf5-serial-dev libhdf5-103 --assume-yes sudo apt-get install libqtgui4 libqtwebkit4 libqt4-test python3-pyqt5 --assume-yes echo "P7: Instalando archivos de encabezado de Python 3 " sudo apt-get install python3-dev --assume-yes sudo shutdown -r now

3. Instalaremos el modulo PIP y un software para crear ambientes de trabajo. P3_instalar_entorno virtual_openCV.sh

```
echo "-----Creando entorno virtual de Python3 e instalar libreria NumPy------"
ls -lah
echo "------P1: Instalando herramienta PIP en python3------"
wget https://bootstrap.pypa.io/get-pip.py
sudo python3 get-pip.py
sudo rm -rf ~/.cache/pip
echo "-------P1: Instalando entorno virtual llamado virtualenvwrapper------"
sudo pip install virtualenv virtualenvwrapper
```

Agregamos variables del sistema sobre el nuevo entorno virtual

```
nano ~/.bashrc
```

y agregue las siguientes líneas al final del archivo

```
# virtualenv and virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
source /usr/local/bin/virtualenvwrapper.sh
```

Aplique los cambios a la sesión actual

4. Creando ambiente de virtual

mkvirtualenv IA_opencv -p python3

5. Instalamos OpenCV en el ambiente

(IA_opencv) root:~\$ pip install opencv-contrib-python==4.1.0.25

No solo descarga OpenCV también descarga Numpy

Una vez termine reinicie su SO para evidenciar los cambios

Recuerde que todo de acá en adelante se hará desde el ambiente

Listo ya tenemos todo para ejecutar nuestro grafo inferencial

Ejecutando grafo inferencial (Windows/linux)

Crearemos una carpeta en c:/ a la que llamaremos IA_tflite, dentro de ella vamos a crear dos carpetas:

• Model, dentro de ella colocaremos nuestro grafo inferencial liviano (detect.tflite) al que le cambiaremos el nombre a model.tflite...adicional crearemos un archivo que llamaremos labelmap.txt, donde tendremos las

etiquetas

• Multimedia, dentro de ella tendremos los videos e imágenes con el que deseamos poner a prueba nuestro grafo inferencial, para este ejercicio crearemos dos (video1.mp4 y video2.mp4).

Ejecutando grafo inferencial (Windows/linux)

En la carpeta compartida de drive

USTA-202001_7°_DEEP_LEARNING\Computer_vision\IA_tflite

Estan los archivos para ejecutar

Python (archivos base):

- TFLite_detection_image.py
- TFLite detection video.py

Windows:

windows_video.bat

Linux:

- linux video.sh
- linux_webcam.sh

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL TUNJA

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre, hacia lo alto!

USTATUNJA.EDU.CO

