

## Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-1

[Análisis Convexo - CM3E2] [Prof: Jonathan Munguia]

UNI, 28 de mayo de 2021

## Práctica Calificada 3

1. Sea  $f: \mathbb{R}^n \to \overline{\mathbb{R}}$  una función convexa propia. Demuestre que f es scs en  $\operatorname{int}(\operatorname{dom}(f))$ . [5ptos]

## Solución:

- a) Sea  $x_0 \in \operatorname{int}(\operatorname{dom} f)$ , entonces existe r > 0 tal que  $B(x_0, r) \subset \operatorname{dom} f$ .
- b) Como f es convexa, entonces las n-funciones  $\theta_i : \mathbb{R} \to \overline{\mathbb{R}}$  definidas como  $\theta_i(t) = f(x_0 + te_i)$  son convexas (Ver Lema 1 de la Sesión 10).
- c) Dado |t| < r, se tiene que  $\theta_i(t) = f(x_0 + te_i) < \infty$  ya que por la parte (a), se tiene que  $||(x_0 + te_i) x_0|| = |t| < r$ . Por tanto, existe  $B(0, r) \subset \operatorname{int}(\operatorname{dom} \theta_i)$ , y como las funciones de 1 variable son continuas en el interior de su dominio, entonces  $\theta_i$  es continua en 0 para todo  $i = 1, \dots, n$ .
- d) Por la parte (c), se tiene en particular que  $\theta_i$  es scs en 0. Por tanto, para  $\theta_i(0) = f(x_0) < \lambda$ , existe  $\delta_i > 0$  tal que para todo  $t \in [-\delta_i, \delta_i]$  se tiene que  $f(x_0 + te_i) = \theta_i(t) < \lambda$ .
- e) Por la convexidad de  $\tilde{S}_{\lambda}(f)$  se deduce que  $\operatorname{\mathbf{co}}\left(\bigcup_{i=1}^{n}\left\{x_{0}\pm\delta_{i}e_{i}\right\}\right)\subset\tilde{S}_{\lambda}(f)$ . Por tanto, existe una vecindad abierta  $V\ni x_{0}$  tal que  $V\subset\operatorname{\mathbf{co}}\left(\bigcup_{i=1}^{n}\left\{x_{0}\pm\delta_{i}e_{i}\right\}\right)$ . Así,  $V\subset f^{-1}(]-\infty,\lambda[)$ .
- f) En conclusión, para cada  $x_0 \in \operatorname{int}(\operatorname{dom} f)$  y para cada  $\lambda > f(x_0)$  existe una vecindad abierta  $V \ni x_0$  tal que para todo  $x \in V$  se tiene que  $\lambda > f(x)$ . Por tanto f es scs en  $\operatorname{int}(\operatorname{dom}(f))$ .
- 2. Sean  $C \subset \mathbb{R}^n$  convexo abierto no vacío y  $f: C \to \mathbb{R}$  diferenciable. Pruebe que las siguientes afirmaciones son equivalentes: [5ptos]
  - a) f es estrictamente convexa.
  - b)  $\langle \nabla f(x) \nabla f(y), x y \rangle > 0$  para todo  $x, y \in C, x \neq y$ .
  - c)  $f(y) > f(x) + \langle \nabla f(x), y x \rangle$  para todo  $x, y \in C, x \neq y$ .

## Solución:

a)  $\Rightarrow$  b) Sean  $x, y \in C$  distintos cualesquiera y  $\theta_{xy}: I \to \mathbb{R}$  definida como  $\theta_{xy}(t) = f(x + t(y - x))$  estrictamente convexa (similar al Lema 1 de la Sesión 10) y por el Teorema 1, se tiene que

$$\begin{aligned} &\theta'_{xy}(1) - \theta'_{xy}(0) > 0 \\ &\langle \nabla f(y), y - x \rangle - \langle \nabla f(x), y - x \rangle > 0, \end{aligned}$$

donde usamos el hecho que  $\theta'_{xy}(t) = \langle \nabla f(x + t(y - x)), y - x \rangle$ .

b)  $\Rightarrow$  c) Ahora no se puede suponer que  $\theta'$  sea estrictamente creciente. Pero por la hipótesis de los gradientes, se tiene

$$\forall x, z(x \neq z) \in C : \theta'_{xz}(1) - \theta'_{xz}(0) = \langle \nabla f(z) - \nabla f(x), z - x \rangle > 0. \tag{1}$$

Luego, por el teorema de valor medio.

$$\exists \alpha \in (0,1) \text{ tal que } f(y) - f(x) = \theta_{xy}(1) - \theta_{xy}(0) = \theta'_{xy}(\alpha) = \langle \nabla f(x + \alpha(y - x)), y - x \rangle. \quad (2)$$

Considerando  $z = x + \alpha(y - x)$ , se tiene por (1):

$$\theta'_{xz}(1) > \theta'_{xz}(0) \iff \langle \nabla f(x + \alpha(y - x)), y - x \rangle > \langle \nabla f(x), y - x \rangle.$$
 (3)

Se concluye de (2) y (3).

c)  $\Rightarrow$  a) Para cada  $\alpha \in (0,1), x \neq y$  cualesquiera y tomando  $z = \alpha x + (1-\alpha)y$ .

$$f(y) - f(z) > \langle \nabla f(z), y - z \rangle$$
  
 $f(x) - f(z) > \langle \nabla f(z), x - z \rangle$ 

multiplicando la primera desigualdad por  $1-\alpha$ , la segunda por  $\alpha$  y sumando se tiene:

$$\alpha f(x) + (1 - \alpha)f(y) - f(z) > \langle \nabla f(z), \alpha x + (1 - \alpha)y - z \rangle = 0.$$

Por lo tanto

$$\alpha f(x) + (1 - \alpha)f(y) > f(z).$$

**Teorema 1** Si  $f: I \to \mathbb{R}$  estrictamente convexa, entonces  $f'_{-}(x)$  y  $f'_{+}(x)$  existen y son estrictamente crecientes en el interior de I.

Ver Hermann Weyl - Convex Functions on the Real Line.

3. Sea  $C \subset \mathbb{R}^n$  convexo abierto no vacío y  $f: C \to \mathbb{R}$  dos veces diferenciable. Si para todo  $x \in C$  la matriz  $\nabla^2 f(x)$  es definida positiva entonces f es estrictamente convexa. [5ptos]

**Solución:** Suponga que  $\nabla^2 f(x)$  es semidefinida positiva en cada punto  $x \in C$ . Para cualquier par de puntos  $x, y \in C(x \neq y)$ , la función  $\theta_{xy} : I \to \mathbb{R}$  está definida en un intervalo abierto que contiene a [0,1] (porque C es convexo y abierto) y es dos veces derivable. Por el teorema de valor medio, se tiene:

$$\exists \alpha(0,1) \text{ t.q. } \theta'_{xy}(1) - \theta'_{xy}(0) = \theta''(\alpha) = \left\langle \nabla^2 f(x + \alpha(y - x))(y - x), y - x \right\rangle > 0.$$

Esto implica que  $\langle \nabla f(x) - \nabla f(y), x - y \rangle > 0$ . Por lo tanto, por el Problema 2, f es estrictamente convexa.

4. Probar que la función  $f: \mathbb{R}^n \to \mathbb{R}$ , definida como  $f(x) = \ln\left(\frac{1}{1 - \|x\|^2}\right)$  es estrictamente convexa sobre el conjunto  $\{x \in \mathbb{R}^n : \|x\| < 1\}$ . [5ptos]

**Solución:** Como el gradiente de  $1 - ||x||^2$  es igual a -2x, se tiene que

$$\nabla f(x) = \frac{2x}{1 - \|x\|^2},$$

Luego, el gradiente de cada componente  $\frac{2x_i}{1-\|x\|^2}$  es igual a  $\frac{2e_i}{1-\|x\|^2}+\frac{4x_ix}{(1-\|x\|^2)^2}$ . Por tanto su hessiana es

$$\nabla^2 f(x) = \frac{2}{1 - \|x\|^2} I_n + \frac{4}{(1 - \|x\|^2)^2} x x^t,$$

donde x es un vector columna no nulo y  $xx^t$  es una matriz de  $n \times n$ . Ahora multiplicamos por otro vector columna no nulo u:

$$\langle \nabla^2 f(x) \, u, u \rangle = \frac{2}{1 - \|x\|^2} \langle I_n u, u \rangle + \frac{4}{(1 - \|x\|^2)^2} \langle x x^t u, u \rangle$$
$$= \frac{2}{1 - \|x\|^2} \|u\|^2 + (x^t u)^2 > 0,$$

donde hemos usado el hecho  $\langle Au, u \rangle = u^t Au$ , que  $x^t u$  es un número y que ||x|| < 1. Por tanto, por el problema anterior se tiene que f es estrictamente convexa.