Solutions of Question on linear Equations

$$\frac{112 \times 3}{5} \Rightarrow \frac{9-3 \times 4}{8} + \frac{3}{4}, \quad \times 6 \times 1$$

$$\Rightarrow \frac{112 \times 5}{5} \Rightarrow \frac{9-3 \times 46}{8}$$

$$\frac{112 \times 5}{5} \Rightarrow \frac{9-3 \times 46}{8}$$

$$\frac{112 \times 5}{5} \Rightarrow \frac{9-3 \times 46}{8}$$

$$\Rightarrow \frac{112 \times 7}{5} \Rightarrow \frac{15-3 \times 4}{8}$$

$$\Rightarrow \frac{112 \times 7}{5} \Rightarrow \frac{15-3 \times 4}{9}$$

$$\Rightarrow \frac{112 \times 7}{5} \Rightarrow \frac{15-3 \times 4}{1$$

$$\frac{2}{3} \leq \frac{3x-8}{6} < 1\frac{1}{6}, x \in \mathbb{R}$$

$$\Rightarrow -\frac{1}{3} \leq \frac{3\varkappa - 8}{6} < \frac{7}{6}$$

3. Let no. of nows = x and no. of seats in each now = y, then { n= y, initially? no. of total seats in auditorium = 20% Now, Later no. of nows = 2x and no. of seats in each Tow = (y-5) No. of total seats in auditorium = 2x(y-5) According to question, 2x(4-5) = 244 + 375 => 2ny - 10x = xxy + 375

$$\frac{4}{3}$$
 $\frac{1}{3}$ $\frac{2}{4}$ $\frac{2}{1}$ $\frac{1}{3}$ $\frac{1}{6}$, $26R$

$$\Rightarrow \frac{-1}{3} \leq \frac{2}{2} - \frac{4}{3} < \frac{1}{6}$$

$$\Rightarrow \frac{1}{3} + \frac{4}{3} \le \frac{2}{2} - \frac{4}{3} + \frac{4}{3} < \frac{1}{6} + \frac{4}{3}$$

$$\Rightarrow \frac{3}{3} \leq \frac{z}{2} \leq \frac{9}{6}$$

Let shoplesper buys 'z' no. of books and price per book be 'y'
$$\neq$$
, then $xy = 80 - 1$

Letter, $(x+4)(y-1) = 80 - 2$
 $\Rightarrow xy - x + 4y - 4 = 80$
 $\Rightarrow 80^2 - x + 4y - 4 = 80^7$

$$\Rightarrow 2x - 4y + 4 = 0$$

$$\Rightarrow 2x - 4\left(\frac{60}{2}\right) + 4 = 0$$

$$\Rightarrow x^{2} - 320 + 4x = 0$$

$$\Rightarrow x^{2} + 4x - 320 = 0$$

$$\Rightarrow x^{2} + 20x - 16x - 320 = 0$$

$$\Rightarrow (x+20)(x-16) = 0$$

$$\Rightarrow x = -20, x = 16$$
(Not possible)
$$\therefore 2 = 16$$
Thus, he beggs 16 books.

$$\Rightarrow$$
 $2x-3 < 2+2$ and $2+2 \le 32+5$

$$\Rightarrow$$
 $2x-x<2+3$ and $2-5 \leq 3x-x$

$$\Rightarrow$$
 $2<5$ and $-1 \leq 2x$

2x 7 -1

· · · x & W (Whole Numbers)

-5 < X < L

2 7 - 5

$$M = \left\{ x : 5 < 2x - 1 \leq 11, x \in T \right\}$$

$$\Rightarrow \frac{6}{2} < \frac{2x}{2} < \frac{12}{2}$$

$$\Rightarrow$$
 $3 < x \le 6$

$$N = \begin{cases} x: -1 \leq 3 + 4x < 23, x \in I \end{cases}$$

$$\Rightarrow$$
 -1-3 $\leq 3+4x-3 < 23-3$

$$\Rightarrow \frac{-4}{4} \leq \frac{4\pi}{4} < \frac{20}{4}$$

$$\Rightarrow$$
 $x = -1, 0, 1, 2, 3, 4$

$$N = \{-1, 6, 1, 2, 3, 4\}$$

gritially, no. of children = x Amount to be divided = ₹ 480

Share of each Children = (480) =

Then,

no. of children = (2+20) Share of each children = (480 x+20) =

According to question,

$$\frac{480}{x+20} = \frac{480}{x} - 12$$

$$\Rightarrow \frac{480}{12+20} = \frac{480-122}{12}$$

$$\Rightarrow 480 \times = (2+20)(480-12x)$$

$$\Rightarrow 480x = 480x - 12x^2 + 9600 - 240x$$

$$\Rightarrow$$
 $12x^2 + 240 x - 9600 = 0$

$$\Rightarrow 2^2 + 40x - 20x - 8\pi = 0$$

$$\Rightarrow (x+40)(x-20)=0$$

$$\Rightarrow$$
 $\chi = -40$, $\chi = -20$

(Not possible) : [se=20]

Given eq. is
$$x^2 - \rho x - 4 = 0$$
,

$$(-4)^2 - \rho(-4) - 4 = 0$$

$$\Rightarrow$$
 $4\rho = -12$

$$\Rightarrow p = -3$$

Another eg. is

$$2^2 + px - k = 0$$

$$\Rightarrow \chi^2 - 3\chi - k = 0$$

for equal nots,

$$D = 0$$
 (Discriminant =0)

$$\Rightarrow (-3)^2 - 4x1x(-k) = 0$$

$$\Rightarrow$$
 4k= -9