КУРС "ДИЗАЙН И АНАЛИЗ НА АЛГОРИТМИ" летен семестър 2018

Домашно 5

1D Game

Ели се запали по програмирането и скоро написа първата си игра. E, не e 3D shooter, или 2D стратегия... Тя е 1D!

Играта представлява човече, което се движи наляво и надясно по хоризонтална отсечка, разграфена в N полета. От дадено поле човечето може да се придвижи само в съседното ляво или дясно (където има такива) полета. В началото човечето се намира в най-лявото поле. То прави ход (определен брой стъпки надясно); после втори ход (определен брой стъпки наляво); после прави трети ход (пак надясно) и т.н., докато реши да се откаже (което може да направи по всяко време - включително още в самото начало, стъпвайки само на началното поле). С времето човечето се изморява: ако на предходния ход е направило S стъпки в дадена посока, на следващия ход то прави най-много S-1 в обратната.

Във всяко поле има записано цяло число \mathbf{A}_i . Всеки път, когато човечето стъпи в дадено поле, към точките му се прибавя числото в него. Крайният резултат на играча са текущите му точки, в момента, в който е решил да се отакже.

Ели се пита колко най-много точки може да се спечелят в дадено ниво на играта при оптимална игра?

Ограничения

 $1 \le N \le 500$

 $-10,000 \le A_i \le 10,000$

Вход

На първия ред на стандартния вход ще бъде зададено едно цяло число **N** - броят полета върху хоризонталната отсечка на даденото ниво. На втория

ред ще бъдат зададени **N** на брой цели числа \mathbf{A}_{i} – числата, записани във всяко от полетата.

Изход

На стандартния изход изведете едно цяло число — максималния брой точки, които могат да бъдат постигнати за даденото ниво.

Примерен вход	Примерен изход
5	60
-1 -5 17 -13 42	
3	-42
-42 0 -13	
22	817
-97 75 99 81 7 -85 77 -94 31 61 -52 -99	
-96 0 -36 25 10 -17 -56 -20 79 0	

В първия пример оптималната стратегия е 4 надясно, 3 наляво, 2 надясно, 1 наляво.