Recall:
$$A\vec{v} = \lambda \vec{v}$$
 and $A\vec{v} - \lambda \vec{v} = \vec{o}$ (A- λ Iu) $\vec{v} = \vec{o}$
the eigenvectors live in the knowl of A- λ In.

The eigensprie of A, denoted Ex, is the kernel of A-LIn.

Example:
$$A = \begin{bmatrix} 2/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 \\ -1/3 & 1/3 & 2/3 \end{bmatrix}$$
, find its eigenspaces. $\lambda = 0$ $\lambda = 1$

eigenvalues of A

To find to use have to find $\ker(A)$, so we have to solve $A\vec{x} = \vec{0}$.

$$\vec{x} = \begin{bmatrix} + \\ -+ \\ + \end{bmatrix} = + \cdot \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 so Eo = Span $\left(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right)$.

To find E, we have to find $\ker(A-I_3)$, so we have to solve $(A-I_3)\stackrel{\sim}{\times}=\stackrel{\sim}{\circ}$.

$$\vec{x} = \begin{bmatrix} + \\ + \\ 5 \end{bmatrix} = + \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 5 \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \quad \text{so } \quad E_1 = \text{span}\left(\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}\right).$$

The geometric multiplicity of λ , denoted gemn(λ), is the dimension of E_{λ} .

genu(
$$\lambda$$
) = dim(ker($4-\lambda In$)) = unlity ($4-\lambda In$) = n - rank ($A-\lambda In$).

Let & be an uxu matrix, an eigenbasis of A is a basis of 12" consisting of

eigenvectors of A.

Example:

1.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 lus eigenbreis $G = \{\bar{e}_1, \bar{e}_2\}$. $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

2.
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 has eigenbasis $H = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$

3. $A = \begin{bmatrix} 2/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 \end{bmatrix}$ has eigenbasis $H = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

4. $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ does not have an eigenbasis.

Remark: Let A be an use matrix.

(a) Find a books of each Ex, put all these vectors must to each other:

vi, ..., vis with s the sum of the geometric unthiplicities of A.

- (b) The vectors $\vec{v}_1,...,\vec{v}_s$ are linearly independent.
- (c) The vectors $\vec{\tau}_{1,...}$, $\vec{\tau}_{5}$ are an eigenbase of A if and only if s=n.

Theorem: Let A be an uxu matrix with a distinct eigenvalues. Them there is

an eigenbosis of A, to construct it we find are eigenvector for each eigenvalue.

Theorem: Let & be similar to B, them:

(a)
$$f_{\bullet}(\lambda) = f_{\bullet}(\lambda)$$

- (b) Gmk(d) = Gmk(B) and ml(d) = ml(B)
- (c) The eigenvalues, algebraic and geometric unstiplicities of A and B coincide.
- (d) det(A) = det(B) and tr(A) = tr(B).

Example: The algebraic and geometric unltiplications of &= | 8 - 9 | are

different.

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

$$\int_{A} (\lambda) = (8-\lambda)(-4-\lambda) - (-9).4 = (\lambda-2)^{2} \qquad \lambda = 2 \quad \text{alum}(2) = 2$$

Theorem: $generall (\lambda) \leq alum(\lambda)$.