TEMA 01: SISTEMAS INFORMÁTICOS. HARDWARE Y SOFTWARE

Introducción a los sistemas informáticos

- Introducción a los sistemas informáticos
 - o Formado por un conjunto de elementos
 - o Elemento central: ordenador
 - Hardware: parte física (componentes electrónicos y mecánicos, circuitos, carcasa, etc.)
 - Software: SO, programas y datos (tmb documentación del SO)
 - o Firmware: relacionado con los dos anteriores
 - Software que está integrado en un componente hardware
 - Ejemplo: BIOS (software de la placa base)
 - Componente humano (instalación, configuración, mantenimiento, uso)
- Introducción histórica
 - o Informática: información automática (procesa- automatizado información)
 - Marcada por una serie de generaciones de ordenadores
 - Gran miniaturización, mayor velocidad y mayor capacidad
 - Antecedentes
 - Ábacos, dedos y manos como punto de partida
 - Posteriormente, máquinas mecánicas
 - Muchas solo en proyecto
 - 1623: Calculadora de Willhelm Schickard
 - 1642: Pascalina de Blaise Pascal
 - Calculadora mecánica de Gottfried Leibniz (desarrolló y perfeccionó la de Pascal para * y /)
 - Inicios sXX: telar programable de Jacquard (concepto de programa y uso de tarjetas perforadas para introducir datos)
 - Máquina analítica de Charles Babbage (operaciones matemáticas, memoria, nunca funcionó adecuadamente por falta de tecnología)
 - Siglo XIX: tarjetas perforadas (Herman Hollerith)
 - Máquina tabuladora: leía esas tarjetas. Censo USA
 - o Primera generación
 - **1940-1955**
 - Cuando surgen los conceptos de programa interno y procesa-
 - Pasan a recibir datos de entrada, los procesan y arrojan resulta
 - Fines científicos y militares
 - Ordenadores comerciales
 - Ejemplos: Colossus, Harvard Mark I, ENIAC, Univac I y II
 - Primeros SO y lenguajes programación (ensamblador, Fortran o LISP)
 - Son todos lenguajes máquina
 - Segunda generación
 - 1956-1964
 - Característica principal: transistor (sustituye válvula de vacío)
 - Más pequeños y económicos, generan menos calor
 - Aparecen los periféricos
 - Programas alto nivel (FORTRAN)
 - Aparece el lenguaje COBOL (aún sobre todo en el sector financiero)

- o Tercera generación
 - **1**965-1971
 - Característica principal: circuitos integrados o chips
 - Integran varios transistores
 - Miniaturización, reducción tamaño y costes
 - Aparecen lenguajes BASIC, PL/1, C y Pascal
- Cuarta generación
 - **1972-1982**
 - Característica principal: microprocesador
 - Continúa miniaturización y reducción costes
 - Primeras memorias de chip de silicio
 - Empieza a utilizarse uso personal o doméstico
 - Surgen SO CP/M y Unix
 - Aparecen las aplicaciones de uso general y de gestión
- Quinta generación
 - 1983-hoy
 - Característica principal: comercialización del PC por parte de IBM
 - VLSI (Very Large Scale Integration)
 - Ordenador portátil
 - Surgen los SO MS-DOS, Windows, posterior- Linux, Mac OS
 - Se desarrolla la POO y surgen lenguajes como Java, C++, C# y Delphi
 - Sigue hasta nuestros días
 - Puede que hasta ordenadores cuánticos (no IA o Big Data)
- Clasificación de los sistemas informáticos
 - Según propósito:
 - Propósito general:
 - Almacena diferentes programas
 - Puede ser usado en incontables aplicaciones
 - Permite ampliar su potencial
 - Flexibilidad: prácticamente ilimitada
 - Propósito específico
 - Tarea específica
 - Programas en el interior o almacenados permanente-
 - Velocidad (no requieren de procesos de descodificación
 - Reducida flexibilidad
 - Superordenadores
 - Desde 1980
 - Fines científicos, militares, tecnológicos...
 - Fabricados por grandes corporaciones
 - Construidos especialmente para un fin
 - Gran rendi- (petaflops), potencia y capacidad
 - Costosos
 - Puede ejecutar diferentes operaciones simultánea-
 - Nombre propio (Tirant)

- Macroordenadores/mainframes
 - Ocupan grandes espacios y dan servicio a muchos usuarios que pueden acceder a ellos a través de la red
 - Gran tamaño, capacidad de almacena- y grandes prestaciones
 - En habitaciones preparadas (T^a, humedad, etc.)
- Servidores y estaciones de trabajo (workstations)
 - Para prestar servicios a distintos usuarios y a otros equipos de una red
 - Alta capacidad de procesa-
- Ordenadores personales
 - Ámbito doméstico y profesional
 - Tipos
 - Sobremesa
 - Portátiles
 - Convertible 2 en 1
 - Tabletas
 - Teléfonos inteligentes
 - Ordenador de una sola placa (SBC) (Raspeberry)
 - Clientes ligeros (thin clients): para conectarse a un servidor, poca capacidad y poca necesidad de almacena- y procesa-
- Arquitectura de un ordenador y elementos funcionales
 - o Antecedentes: máquina de Turing
 - Concepto matemático teórico o modelo abstracto
 - Define conceptos como entrada, salida y algoritmo
 - Arquitectura
 - Von Neumann: por John von Neumann en 1945

- Harvard: desarollada para el ordenador Harvard Mark I
 - Diferencias: se separan las memorias de datos y de instrucciones
 - El bus de datos se divide en bus de datos y bus de instrucciones

- Elementos funcionales
 - Unidad central de proceso (CPU):
 - Componente principal del ordenador
 - Controla qué elemento debe entrar en funciona- y realiza las operaciones que se realizan en el ordenador
 - Unidad aritmético-lógica (ALU):
 - o Realiza todas las operaciones aritméticas y lógicas
 - o Esquema:
 - Registro de datos (RD): datos de entrada u operandos
 - Registro acumulador (RA): almacena el resultado de la última operación realizada
 - Registro de estado (RE): almacena las condiciones de la última operación
 - Z: resultado fue 0
 - S: resultado fue negativo
 - C: hubo acarreo
 - 0: hubo desbordamiento
 - Etcétera
 - Circuito operacional: realiza las operaciones

Unidad de control (CU)

- Envía señales al resto de los elementos para indicar cuál es el que se debe poner en funciona- en cada mom
- Las señales las envía a través del bus de control
- Registro de instrucción (RI): contiene la instrucción que se está ejecutando
- Registro contador de programa (CP): almacena la dirección de memoria donde está la siguiente instrucción que se ha de ejecutar
- Decodificador: interpreta la operación del RI
- Generador de señales o secuenciador: sincronizado por el reloj, genera microórdenes (órdenes elementales) para que se ejecute la instrucción almacenada en el RI
- Reloj: genera las señales para controlar y sincronizar el resto del sistema

• Memoria principal

- o Denominada memoria RAM
- Almacena instrucciones y datos necesarios para ejecutar los programas
- Registro de direcciones (RD): almacena la dirección de memoria sobre la que se va a realizar una operación de lectura o escritura
- Registro de intercambio (RI): contiene el dato que va a ser escrito o leído de la memoria
- Selector de memoria (SM): selecciona la dirección de memoria que se encuentra en el RD
- Según sea lectura o escritura, lee el dato de la memoria y lo almacena en el RI
- O lee el dato del RI y lo almacena en la memoria, respectivamente

- Unidad de E/S: se encarga de la comunicación entre la CPU y los componentes externos
- Bus del sistema: lleva la información entre los diferentes elementos
 - Bus de datos: transporta la información (datos e instrucciones)
 - Bus de direcciones: lleva la dirección de la memoria donde se va a almacenar o leer su contenido
 - Bus de control: envía desde la UC señales a todos los elementos del ordenador para indicar cuál de ellos es el que tiene que entrar en funciona-
- Periféricos: entrada, salida y entrada/salida
- Memorias auxiliares o dispositivos de almacena- externo:
 - Mayor capacidad que la memoria interna
 - Almacenan información de forma permanente
 - Mayor tiempo de acceso

- Unidades de medida
 - o Almacena-
 - Bit (binary digit): 0 o 1
 - Byte: 8 bits (también llamado octeto)
 - La capacidad de la memoria principal se mide en múltiplos del byte

Prefijo	Unidad	Simbolo	Valor	
kilo-	Kilobyte	kB	10° bytes	1.000 bytes
mega-	Megabyte	MB	10° kB	1.000 kB
giga-	Gigabye	GB	103 MB	1.000 MB
tera-	Terabyte	TB	10 ³ GB	1.000 GB
peta-	Petabyte	PB	10°TB	1.000 TB
exa-	Exabyte	EB	10 ³ PB	1.000 PB
zetta-	Zettabyte	ZB	10° EB	1.000 EB
yotta-	Yottabyte	YB	10° ZB	1.000 ZB

o Frecuencia

- Hercios (Hz)
- Medida inversa al tiempo

Unidad	Simbolo	Val	or
Hercio	Hz	1/	s
Kilohercio	kHz	102	Hz
Megahercio	MHz	10° kHz	10s Hz
Gigahercio	GHz	10° MHz	10° Hz

o Rendi-

- FLOPS (Floating Point Operations per Second) (operadores de coma flotante)
- Para medir el rendimiento en grandes ordenadores y en tarjetas gráficas
 - También en las GPU y videoconsolas
- Son aquellas operaciones que se realizan sobre números muy grandes o pequeñas, que se expresan en notación científica o exponencial en el sistema deciman y en coma flotante en el sistema binario
- El rendi- de los ordenadores más potentes o superordenadores se mide en petaglops

Unidad	Simbolo	Valor		
Kiloflops	kFL0PS	10 ³ flops	10 ³ flops	
Megaflops	MFLOPS	10 ³ kiloflops	10° flops	
Gigaflops	GFLOPS	10 ³ megaflops	10° flops	
Teraflops	TFLOPS	10 ³ gigaflops	10 ¹² flops	
Petaflops	PFLOPS	10° teraflops	1015 flops	

N = ± mantisa · base^{oquoem}

Donde *±* es el signo e indica si el número es positivo o negativo, *base* es el número del sistema de numeración utilizado, que será 10 en caso de utilizar el sistema decimal o 2 si se trata del sistema binario, y *mantisa* es un número que cuando se multiplica por la base elevada al *exponente* se obtiene el valor del número. Ejemplos de números expresados con esta notación serían: la masa del planeta Tierra (+5,972 · 10²⁴ kg) o el diámetro de un electrón (+2,81 · 10⁻²⁵ m).

- o Transferencia de la información
 - Bits por segundo (bps)

Unidad	Simbolo	Valor	
Kilobits por segundo	kbps	10° bits por s	egundo (bps)
Megabits por segundo	Mbps	10 ³ kbps	10 ⁶ bps
Gigabits por segundo	Gbps	103 Mbps	10° bps
Terabits por segundo	Tops	103 Gbps	10 ¹² bps

- No confundir con bytes por segundo (Bps)
- En bytes se utiliza sobre todo en transmisiones en internet
- o De electricidad
 - Vatio (W)
 - Medida de potencia
 - A la hora de adquirir una fuente de alimentación para ver capacidad y cantidad de dispositivos que podrá mantener
 - Voltio (V)
 - Medida de tensión o corriente eléctrica
 - Alterna (AC, Alternating Current)
 - Continua (DC, Direct Current)
 - Ordenador internamente (por eso se necesita la fuente de alimentación)
 - Las fuentes de alimentación de un ordenador tienen salidas de 12V (CPU, GPU y ventiladores), 5V (discos duros) y 3,3V (RAM o SSD)

- Amperio (A)
 - Medida de intensidad de la corriente eléctrica
 - Amperio hora (Ah) o miliamperio hora (MAh) de utiliza para medir la cantidad de energía que puede suministrar una batería durante una hora
 - Para medir capacidad de baterías
- Ohmio (Ohm, Ω)
 - Medida de la resistencia eléctrica
 - Se utiliza dentro de un circuito para modificar el paso de la corriente eléctrica

Sistemas de numeración. Operaciones lógicas y aritméticas binarias

- Sistemas de numeración
 - Formado por un conjunto de símbolos utilizados para representar valores numéricos
 - o Tiene definido un conjunto de reglas para realizar operaciones
 - o Pueden ser posicionales o no posicionales
 - Posicionales: cada símbolo tiene un valor dependiendo de la posición que ocupe dentro del número
 - Sistemas intermedios: se pueden traducir directamente desde el binario (octal y hexadecimal)
 - o Decimal
 - Base 10
 - 0 al 9
 - Origen: 10 dedos en las manos
 - Para saber el valor: teorema fundamental de la numeración
 - El valor del nº se consigue con la suma resultado de multiplicar cada dígito por la potencia de la base elevada a la posición que ocupa dentro del número
 - La posición 0 es el primer dígito de la parte entera
 - o Binario
 - 0 o 1
 - Un número binario es lo que se denomina bit
 - Hexadecimal
 - 16 símbolos
 - 0 al 9
 - A, B, C, D, E, F (10 al 15)
 - Utilidad: 4 binarios representan un número hexadecimal y un byte se representa con 2 números hexadecimales
 - Usado en: direcciones de memoria, MAC de las GPU, direcciones IPv6...
 - Porqué: para seres humanos es más fácil leer o escribirlos que binarios
 - Octal
 - 0 al 7
 - Cada símbolo octal se representa con 3 binarios
- Cambios de base
 - o Binario a decimal
 - 2.8. Converteix el binari 0100111,01101 a decimal

0100111 01101

$$2' \times 1 = 1$$
 32 $2^{-1} \times 0 = 0$ 0'03125
 $2' \times 1 = 2$ 4 $2^{-2} \times 1 = 0'25$ 0'125
 $2' \times 1 = 5$ 2 $2^{-3} \times 1 = 0'125$ $+ 0'25$
 $2' \times 0 = 0$ $+ 1$ $2^{-1} \times 0 = 0$
 $2' \times 0 = 0$ $2^{-5} \times 1 = 0'03125$
 $2' \times 1 = 32$ $39' 4062560$

o Decimal a binario

2.6. Converteix a binari el número 12,125

Octal a binario

2.15. Passa a binari l'octal 527

o Binario a octal

2.16. Passa a octal el binari 10101100

o Hexadecimal a binario

2.13. Passa a binari l'hexadecimal 73B,F1

o Binario a hexadecimal

2.14. Passa a hexadecimal el binari 101011011

- Operaciones lógicas binarias

o Básicas

A B AND
0 0 0 0
0 1 0
1 0 0
1 1 1 1

Figura 1.30. Función lógica básica OR.

Figura 1.31. Función lógica básica AND.

Figura 1.32. Función lógica básica NOT.

Actividad resuelta 1.12

Para los siguientes pares de números en binario, realiza las operaciones lógicas OR y AND aplicando los valores de las tablas lógicas de las Figuras 1.30 y 1.31, respectivamente:

	01111100	01111100
R	10001001	AND 10001001

Solución

01111100 01111100 OR 10001001 AND 10001001 11111101 00001000

Derivadas

A	В.	NOR	
0	0	1	
0	1	0	NOR O
1	0	0	1
1	1	0	

1	A	В	NAND	
ſ	0	0	1	
Ī	0	1	1	NANO D
Í	1	0	1	
Ī	1	1	0	

Figura 1.33. Función lógica derivada NOR.

Figura 1.34. Función lógica derivada NAND.

Figura 1.35. Función lógica derivada XOR.

- XOR: A XOR B = (NOT A AND B) OR (A AND (NOT B))
 - 0 cuando ambos valores sean iguales
 - 1 cuando ambos valores sean diferentes

- Operaciones aritméticas binarias
 - o Suma

A	В	Suma	Acarreo
0	0	0	0
0	1	1.	0
1	0	1	0
1	1	1	1

1.2. Realitza la següent suma: 1010111+100001

Resta

1.4. Realitza la següent resta: 1110101-111010

Multiplicación

- Almacena- de la información
 - o Mediante sistema binario (nº enteros, reales y caracteres)
 - Números enteros:
 - Representación de entero sin signo (positivo)
 - Entero con signo y magnitud:
 - Bit a la izquierda es el signo (0 positivo, 1 negativo)
 - Complemento a 1 y complemento a 2
 - El almacena- en coma flotante se realiza siguiente el estándar IEEE 754
 - Igual que en notación científica
 - Signo (1 bit), mantisa y exponente

- o Los nº se pueden almacenar en varios bytes
 - Precisión simple: 4 bytes
 - Signo: 1 bit
 - Exponente: 8 bits
 - Mantisa: 23 bits
 - Precisión doble: 8 bytes
 - Signo: 1 bit
 - Exponente: 11 bitsMantisa: 52 bits
 - Otros formatos
- Caracteres
 - ASCII
 - 7 bits
 - 32 primeros caracteres de control
 - El resto representan números, letras y caracteres especiales
 - ASCII extendido
 - 8 bits
 - Añadió caracteres del idioma inglés
 - ISO-8859-1 o Latin-1
 - 8 bits
 - 128 primeros caracteres coinciden con la codificación ASCII
 - ISO-8889-15 o Latin 9
 - Anterior al que se añadieron algunos caracteres especiales (ejemplo: €)
 - Unicode
 - Estándar muy utilizado
 - UTF-8, UTF16, UTF-32

Hardware de un sistema informático

- Esquema físico:

- Chipset (o conjunto de chips):
 - Se encarga de las comunicaciones entre los distintos componentes de la placa base con el microprocesador
 - Antes la placa base incluía northbridge y southbridge
 - Ahora northbridge se integra dentro de la CPU (evita colapsos)
 - Northbridge tiene asociadas la RAM y la GPU, que son las que necesitan más velocidad y mayor cantidad de datos
- Carcasa o caja del ordenador
 - Se diferencian por su tamaño o factor de forma
 - o El tamaño de la carcasa incidirá en el tamaño de la placa base y viceversa
 - Principales tipos (mayor a menor: torre, semitorre, sobremesa, Slim, barebone, all in one
- Fuente de alimentación
 - Transforma la corriente alterna de la red en corriente continua
 - o En sobremesa es interna y varios tipos según tamaño
 - ATX
 - SFX
 - TFX
 - o Ordenadores pequeños puede ser externa
 - o Ídem portátiles, alimentando batería
 - Modulares:
 - No tienen cables inicialmente conectados
 - Se van añadiendo conforme se van necesitando
 - Comodidad de no tener cables dentro sin usar, evitar cortos o derivaciones no deseadas

- Se elije tipo según carcasa (factor de forma) y placa base (potencia)
- o Potencia indica en tener más dispositivos internos y/o que consuman más
- Conectores
 - Conector de alimentación ATX de 24 pines: placa base
 - Conector del procesador ATX de 4 pines o EPS de 8 pines
 - Conector de alimentación molex de 4 pines: discos duros y unidades ópticas de tipo IDE (desuso)
 - Conector para tarjeta gráfica de 6 u 8 pines
 - Conector de alimentación SATA: ha sustituido al molex

Placa base

- Se encuentran las conexiones para los elementos necesarios del equipo
- Factores de forma
 - Indican tamaño y características
 - Estos estándares son necesarios para coincidir con la carcasa
 - AT: primer estándar (práctica- no utilizado ya)
 - ATX: 30.5x24.4cm Micro-ATX: 24.4cm
 - Pico-ITX: 10x7.2cm

 - E-ATX: 30.x33cm (servidores, sobre todo)
- Conectores de alimentación
 - Suministra energía a la placa base
 - ATX de 24 pines
 - Otro de 4 u 8 para suministrar corriente a la CPU
- Conectores internos en la placa base y cables
 - Interfaz para transmitir datos entre la placa base y ciertos dispositivos
 - SATA (Serial Advanced Technology Attachment)
 - Para los externos: e-SATA
 - En desuso
 - IDE (Integrated Drive Electronics)
 - ATA (Advanced Technology Attachment)
 - PATA (Parallel ATA)

Memoria

- RAM (Random Access Memory)
 - Volátil
 - Memoria principal donde se almacenan los datos y programas en ejecución
 - Tiempo de acceso rápido
 - ECC (Error Correcting Code): servidores y workstations
 - No ECC: doméstico y personales
 - DRAM (dinámica): necesita ciclos de refresco para no perder información
 - SRAM (estática): más rápida y cara que la DRAM (caché y registros)
 - DIMM sobremesa y SODIMM portátiles
 - DDR (Double Data Rate): doble transferencia de datos por cada ciclo
 - Otras características: latencia, ¿dual/quad channel soportado?

Tipo de slot	Pines	Ancho de banda	Velocidad
DDR5 DIMM	288	38,4 - 57,6 G8/s	2400 – 3600 MHz (frecuencia base)
DDR5 SODIMM	262		4800 – 7200 MT/s (transferencia de datos
DDR4 DIMM	288	12,8 - 25,6 GB/s	800 – 1600 MHz (frecuencia base)
DDR4 SODIMM	260		1600 – 3200 MT/s (transferencia de datos
DDR3 DIMM	240	6,4 - 19,2 GB/s	400 – 1200 MHz (frecuencia base)
DDR3 SODIMM	204		800 – 2400 MT/s (transferencia de datos)

- ROM (Read Only Memory)
 - También Random, pero se ha mantenido esa nomenclatura
 - No volátil
 - Se suele utilizar para almacenar el firmware
 - Tipos:
 - PROM (Programmable ROM)
 - EPROM (Electrically Programmable ROM)
 - EEPROM (Electrically Erasable Programmable ROM)
 - Memorias flash o SSD
- CPU
 - Insertado en zócalo (tiene que ser compatible)
 - Matriz de pines de contacto o PGA
 - Matriz de rejilla de contactos o LGA
 - Necesita ventilador y disipador (genera bastante calor)
 - Refrigeración líquida si genera mucho calor
 - Más eficiente, más caro y mayor mantenimiento
 - o x86_64: Intel (Intel64) o AMD (AMD64)
 - o ARM: Apple, Qualcomm, MediaTek, Samsung...
 - o Frecuencia
 - Hz (mayor frecuencia, mayor velocidad)
 - Overclocking
 - Técnica para aumentar frecuencia
 - Reduce vida útil
 - Underclocking: opuesto
 - Cores/núcleos
 - Como cada microprocesador independiente en el mismo chip
 - Cada uno carga y procesa sus propias instrucciones
 - Dos núcleos: dos cosas simultáneamente (y así sucesiva-)
 - Threads/hilos
 - Subprocesamiento dentro del mismo procesador
 - Cada hilo dentro de un núcleo puede realizar una tarea diferente en paralelo a otro hilo
 - Memoria caché
 - Integrada en el chip
 - Muy rápida y muy poca capacidad
 - Función: cuando se van a pedir datos o instrucciones a la RAM, se almacenan en la caché para que si son requeridos nueva- no sea necesario volver a acudir a la RAM

- Niveles
 - L1: más cerca del microprocesador y puede tener un nivel para datos y otro para instrucciones
 - o A más cerca, más rápido y más pequeño
 - L2
 - L3
- o RISC (conjunto de instrucciones reducido): ARM
- o CISC (amplio conjunto de instrucciones): x86 64
- Velocidad de transferencia (MB/s) = Frecuencia (MHz) x 8
 - Velocidad de transferencia PC3
 - Frecuencia: DDR3
- Memorias auxiliares y dispositivos de almacena
 - o Pendrives y tarjetas de memoria
 - Chip de memoria flash
 - Tipos:
 - SD (Secure Digital)
 - microSD
 - MMC (Multimedia Card)
 - Móviles, cámaras y algunos ordenadores que incorporal tarjeta
 - Pendrives para ordenadores a través de USB (Universal Serial Bus)
 - o Unidades de almacenamiento principal
 - Discos duros HDD
 - Grabación magnética
 - Varios discos que giran a determinada velocidad (rpm)
 - Cabezal graba o lee
 - SSD
 - Almacenamiento de estado sólido
 - Chips de memoria flash para guardar la información
 - Tipos:
 - o SATA: aprovechan conectores HDD
 - o NVMe M.2
 - Si no, tarjeta adaptadora NVMe M.2 a PCIe
 - o RAID (Redundant Array of Independent Disks)
 - Los dispositivos de almacena- se pueden agrupar en volúmenes
 - Para no perder datos (por redundancia)
 - Inconveniente: aumento €€€
 - Se puede configurar por hardware o por software
 - Más utilizados:
 - RAID 0 (o volumen distribuido o striping)
 - o Objetivo: mejorar rendi-
 - Aumentando velocidad de transmisión de las unidades de disco
 - Lo hace distribuyendo los bloques de datos entre todas las unidades
 - o Redundancia -> Tolerancia a fallos
 - Mínimo 2 discos físicos

- RAID 1 (o reflejado o mirroring)
 - o Objetivo: tolerancia a fallor
 - Mínimo 2 discos físicos

• RAID 5

- Utiliza striping con un bloque de paridad
- o Objetivo: mejorar rendi- y tolerancia a fallos
- Divide los bloques de datos y los datos de la paridad entre los discos
- o Si falla un disco, se puede recuperar la info
- Se suele implementar a través de hardware y utiliza como mínimo 3 discos físicos

• RAID 6

- o Parecido a RAID 5
- o Utiliza un bloque adicional de paridad en cada disco
- o Si fallan dos discos, se puede recuperar la info
- Mínimo 4 discos

RAID anidados

- RAID 10 y RAID 01 son combinaciones de los volúmenes RAID 0 y RAID 1
- o RAID 50 combina RAID 0 con RAID 5
- o RAID 100 y 101 combina volúmenes de RAID 10

Figura 1.49. Niveles RAID 0, RAID 1 y RAID 5. En el RAID 0 se distribuyen los bloques de datos, en el RAID 1 se duplican y en el RAID 5 se distribuyen y además se añade un bloque de paridad.

- o Tarjeta gráfica (GPU, Graphics Processing Unit)
 - Envía toda la información que se necesita visualizar al monitor
 - Puede ser: integrada o dedicada
 - Rendi- se mide en FLOPS y sus múltiplos
 - Puede tener varios tipos de puertos de salida (VGA, DVI, HDMI...)
 - También puede incorporar un puerto USB-C

- o Tarjeta de red
 - También NIC (Network Interface Card)
 - Conectar ordenador a red informática y a internet
 - Mediante cable de red o inalámbrica-
 - Integradas, ranuras de expansión o USB
 - Cada una tiene una dirección MAC (Media Access Control)
 - 48 bits
 - 12 dígitos hexadecimales
 - Única
 - Independiente de la dirección IP
- o Ranuras y puertos de expansión diversos
 - Destaca el PCIe (Peripheral Component Interconnect express)
 - Interconexión de componentes periféricos rápidos
 - Tipos:
 - PCle X1
 - PCIe X4
 - PCle X8
 - PCIe X16
 - Diferencias: número de carriles, pines y tamaño
 - Para: puertos USB, SSD NVMe, controlador RAID...
 - Desuso: AGP para vídeo y PCI
- Periféricos
 - o Medios a través de los que se produce la comunicación usuario-sistema
 - o Entrada, salida, ambas
 - Se necesitan conectores externos y cables para conectarlos
 - o También por Bluetooth
 - Conectores externos
 - USB 1.0: blanco
 - USB 2.0: negro
 - USB 3.0: azul
 - USB 3.1: azul claro o verde turquesa
 - Rojo: más velocidad o mayor voltaje (dependiendo de la placa donde se encuentre)
 - Se diferencian por el número de pines y la mayor velocidad
 - USB 2.0 se siguen usando para teclado y ratón por PS/2 (desuso)
 - MIC: micrófono
 - LINE IN: externa
 - Salidas de audio:
 - LINE OUT, REAR y C/SUB
 - S/PDIF: transmitir audio digital

Cables de conexión

Figura 1.54. Conectores y puertos con el cable correspondiente.

- o Periféricos de entrada: joystick, teclado, ratón, micrófono, webcam, escáner
- o Periféricos de salida
 - Pantalla o monitor
 - Tamaño en pulgadas (2.54cm/inch)
 - Profundidad del color (cantidad de info sobre el color en cada píxel)
 - Resolución en píxeles
 - o VGA: 640x480
 - o FullHD: 1920x1080
 - o 4K: 3840x2160
 - Densidad de puntos o píxeles (ppp, pixels per inch)
 - Tasa de refresco (Hz/s): a mayor, más suave
 - Impresora o impresora 3D
 - Velocidad en páginas por minuto (ppm)
 - Por USB, Bluetooth o propia tarjeta de red
 - Otros: altavoces o auriculares
- Periféricos de entrada y salida: pantalla táctil, dispositivo multifunción (impresora + escáner), auricular con micro, gafas RV
- Hardware de dispositivos móviles
 - o Batería interna
 - Hardware que consume menos energía
 - o Menos espacio
 - o Menos calor
 - o Chips ARM
- Mantenimiento y reparación del hardware de los equipos
 - Mantenimiento
 - Manteni- preventivo: limpieza exterior, protección polvo y suciedad, preservar habitación en buenas condiciones de humedad y T^a
 - SAI (Sistema de alimentación Ininterrumpida) o UPS (Uninterruptible Power Supply)
 - Suministra corriente en caso de corte en el suministro
 - También corrige la tensión eléctrica
 - Manteni- activo
 - Limpieza interior
 - Renovar pasta térmica

- o Reparación
 - Destornillador y pinzas
 - Multímetro/tester (tensión, corriente y resistencia)
 - Medidor o probador de la fuente de alimentación
 - Soldador de estaño
 - Estaño
- Proceso de arranque del sistema operativo
 - Se denomica boostrapping, boot o booting
 - Se carga la UEFI (Unified Extensible Firmware Interface) o BIOS
 - La configuración se guarda en la CMOS (Complementary Metal Oxide Semiconductor)
 - Necesita una batería CR2032 de 3V
 - La UEFI se encarga de iniciar el POST (Power On Self Test)
 - Sistema de pitidos:
 - 1 pitido corto: todo correcto
 - 2 pitidos cortos: error en la CMOS
 - 1 pitido largo: error en la RAM
 - Errores, carga el bootloader
 - Está en el MRB (Master Boot Record) (sector 0 partición de arranque)
 - El código en el MRB examina la tabla de particiones, identifica la partición activa, lee el sector de arranque de la participación y ejecuta el código almacenado
 - Para los sistemas UEFI, el MBR se puede sustituir por el sistema de particiones
 GPT (GUID Partition Table)
 - Más fiable
 - Límite del tamaño de particiones de 2TB
 - Corrige número máximo de particiones primarias (>4), etc.
 - El bootloader carga el SO
 - Se inicia la comprobación del sistema de archivos
 - Se crean las estructuras de datos internas necesarias para el funcionadel SO
 - Comienzan a cargarse los procesos del sistema
- Entrar en la BIOS UEFI
 - o Destacan American Megatrends (AMI) y Phoenix Technologies
 - o Teclas suelen ser Supr, F2, F1, F10 o F12
 - En portátiles puede que haya que apretar Fn también
 - Una vez dentro, el diseño y la posición de las propiedades puede variar
 - Principales funciones:
 - Ver información del hardware del equipo
 - Cambiar la unidad de arranque predeterminada
 - Activar la virtualización por hardware
 - Establecer una contraseña

Software de un sistema informático

- Tipos de software
 - o Software de base o de sistema: SO y Drivers
 - o Software de programación: cualquiera que permita crear programas y apps
 - Software de aplicación: aplicaciones (propósito general y especializado)
- Licencias de software
 - Software propietario o privativo
 - Software libre: la licencia GPL es la más extendida

Normas y recomendaciones de seguridad

- Cuidado de espalda

Vista ante la pantalla

- Carga de peso: SQ y no flexión de columna
- Conexiones eléctricas
 - Evitar sobrecalentamientos o cortocircuitos
 - Con regleta, no conectando ladrones a ladrones *n* veces
- Manipulación en el interior de un equipo
 - o Herramientas adecuadas
 - Desconectado de la red eléctrica
- Residuos de aparatos eléctricos y electrónicos
 - RD 110/2015, de 20 de febrero, sobre residuos de aparatos eléctricos y electrónicos
 - Incorpora la Directiva europea 2012/19/UE del Parlamento Europeo y del Consejo, de 4 de julio de 2012, sobre los residuos de aparatos eléctricos y electrónicos
 - o Objetivo: proteger medio ambiente y salud humana
 - o Existen puntos autorizados de recogida y reciclaje de este material