Final Project - Analyzing Sales Data

Date: 11 December 2022

Author: Suppanut A.

Course: Pandas Foundation

```
# import data
import pandas as pd
df = pd.read_csv("final project pandas sample-store.csv")
```

```
# preview top 5 rows
df.head()
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City
0	1	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
1	2	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
2	3	CA- 2019- 138688	6/12/2019	6/16/2019	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles
3	4	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdal
4	5	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdal

5 rows × 21 columns

```
# shape of dataframe df.shape
```

(9994, 21)

see data frame information using .info()
df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 21 columns):
```

		, .	
#	Column	Non-Null Count	Dtype
0	Row ID	9994 non-null	int64
1	Order ID	9994 non-null	object
2	Order Date	9994 non-null	object
3	Ship Date	9994 non-null	object
4	Ship Mode	9994 non-null	object
5	Customer ID	9994 non-null	object

```
9994 non-null
                                  object
6
   Customer Name
7
   Segment
                   9994 non-null
                                  object
   Country/Region 9994 non-null
                                  object
8
9
   City
                   9994 non-null
                                   object
10 State
                   9994 non-null
                                  object
                   9983 non-null
                                  float64
11 Postal Code
12 Region
                   9994 non-null
                                   object
13 Product ID
                   9994 non-null
                                   object
14 Category
                   9994 non-null
                                   object
```

We can use pd.to_datetime() function to convert columns 'Order Date' and 'Ship Date' to datetime.

```
# example of pd.to_datetime() function
pd.to_datetime(df['Order Date'].head(), format='%m/%d/%Y')
0 2019-11-08
```

```
1 2019-11-08

2 2019-06-12

3 2018-10-11

4 2018-10-11

Name: Order Date, dtype: datetime64[ns]
```

```
# TODO - convert order date and ship date to datetime in the original dataframe
df['Order Date'] = pd.to_datetime(df['Order Date'], format='%m/%d/%Y')
df['Ship Date'] = pd.to_datetime(df['Ship Date'], format='%m/%d/%Y')
df.head()
```

	Row	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City	 P C
0	1	CA- 2019- 152156		2019- 11-11	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	 4
1	2	CA- 2019- 152156	2019- 11-08		Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	 4
2	3	CA- 2019- 138688	2019- 06-12	2019- 06-16	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles	 9
3	4	US- 2018- 108966	2018- 10-11	2018- 10-18	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	 3
4	5	US- 2018- 108966	2018- 10-11		Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	 3

5 rows × 21 columns

```
# TODO - count nan in postal code column
df['Postal Code'].isna().sum()
```

11

```
# T0D0 - filter rows with missing values df[df['Postal\ Code'].isna()]
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City	
2234	2235	CA- 2020- 104066	2020- 12-05	2020- 12-10	Standard Class	QJ-19255	Quincy Jones	Corporate	United States	Burlington	
5274	5275	CA- 2018- 162887	2018- 11-07	2018- 11-09	Second Class	SV-20785	Stewart Visinsky	Consumer	United States	Burlington	
8798	8799	US- 2019- 150140	2019- 04-06		Standard Class	VM- 21685	Valerie Mitchum	Home Office	United States	Burlington	
9146	9147	US- 2019- 165505	2019- 01-23	2019- 01-27	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlington	
9147	9148	US- 2019- 165505	2019- 01-23	2019- 01-27	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlington	
9148	9149	US- 2019- 165505		2019- 01-27	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlington	
9386	9387	US- 2020- 127292	2020- 01-19	2020- 01-23	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlington	
9387	9388	US- 2020- 127292	2020- 01-19	2020- 01-23	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlington	
9388	9389	US- 2020- 127292		2020- 01-23	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlington	
9389	9390	US- 2020- 127292		2020- 01-23		RM- 19375	Raymond Messe	Consumer	United States	Burlington	
9741	9742	CA- 2018- 117086		2018- 11-12	Standard Class	QJ-19255	Quincy Jones	Corporate	United States	Burlington	

11 rows × 21 columns

```
array(['Kentucky', 'California', 'Florida', 'North Carolina',
    'Washington', 'Texas', 'Wisconsin', 'Utah', 'Nebraska',
    'Pennsylvania', 'Illinois', 'Minnesota', 'Michigan', 'Delaware',
    'Indiana', 'New York', 'Arizona', 'Virginia', 'Tennessee',
    'Alabama', 'South Carolina', 'Oregon', 'Colorado', 'Iowa', 'Ohio',
    'Missouri', 'Oklahoma', 'New Mexico', 'Louisiana', 'Connecticut',
    'New Jersey', 'Massachusetts', 'Georgia', 'Nevada', 'Rhode Island',
    'Mississippi', 'Arkansas', 'Montana', 'New Hampshire', 'Maryland',
    'District of Columbia', 'Kansas', 'Vermont', 'Maine',
    'South Dakota', 'Idaho', 'North Dakota', 'Wyoming',
    'West Virginia'], dtype=object)
```

Data Analysis Part

Answer 10 below questions to get credit from this course. Write pandas code to find answers.

```
# TODO 01 – how many columns, rows in this dataset df.shape

(9994, 21)
```

Ans: 9994 rows, 21 columns

```
# TODO 02 - is there any missing values?, if there is, which column? how many nan
df.isna().sum()
```

```
Row ID
Order ID
Order Date
                  0
                  0
Ship Date
Ship Mode
                  0
Customer ID
                  0
Customer Name
                  0
                  0
Segment
Country/Region
                  0
City
State
                  0
Postal Code
                 11
Region
                  0
Product ID
Category
                  0
Sub-Category
                  0
Product Name
                  0
Sales
Quantity
                  0
                  0
Discount
Profit
                  0
dtype: int64
```

Ans: There's 11 missing value in column Postal Code

```
# TODO 03 - your friend ask for `California` data, filter it and export csv for h
store_california = df.query('State == "California" ')
store_california.to_csv("store_california.csv")
```

```
# TODO 04 - your friend ask for all order data in `California` and `Texas` in 201
store_cal_tex_2007 = df[ ((df['Order Date'] > '2017-01-01') & (df['Order Date'] <
        & ((df['State'] == 'California') | (df['State'] == 'Texas')) ]
store_cal_tex_2007.to_csv("store_cal_tex_2007.csv")</pre>
```

sum 478994.228100 mean 242.038518 std 755.254933

Name: Sales, dtype: float64

	Profit
Segment	
Consumer	28352.4385
Corporate	20357.5646
Home Office	12470.1124

	Sales
State	
New Hampshire	49.05
New Mexico	64.08
District of Columbia	117.07
Louisiana	249.80
South Carolina	502.48

```
# TODO 07 - เปลี่ยนวิธีเซียนโค้ดจาก Agg -> sum()

df[ (df['Order Date'] > '2019-04-15') & (df['Order Date'] < '2019-12-31') ][['Sta .groupby('State').sum()\
.sort_values('Sales').head()
```

	Sales
State	
New Hampshire	49.05
New Mexico	64.08
District of Columbia	117.07
Louisiana	249.80
South Carolina	502.48

```
# TODO 08 - what is the proportion of total sales (%) in West + Central in 2019 e

df[ (df['Order Date'] > '2019-01-01') & (df['Order Date'] < '2019-12-31') ]\
    .query('Region == "West" | Region == "Central"')['Sales'].sum()\
    / df[ (df['Order Date'] > '2019-01-01') & (df['Order Date'] < '2019-12-31') ]</pre>
```

0.5495805670064725

ANS: 54.96%

	Sales
Product ID	
TEC-CO-10004722	61599.824
TEC-CO-10001449	16079.732
TEC-MA-10001047	14299.890
OFF-BI-10000545	13621.542
OFF-BI-10001359	12737.258
OFF-BI-10004995	12521.108
TEC-PH-10001459	12263.708
FUR-CH-10002024	11846.562
OFF-SU-10002881	11825.902
FUR-CH-10001215	10169.894

```
# TODO 09
##Part 1 Top Sales : join table เพื่อดูชื่อ product

id_name = df[['Product ID', 'Product Name']].value_counts().reset_index()

top_sales = pd.merge(top_sales, id_name, on='Product ID')
```

```
# TODO 09
##Part 1 Top Sales : ลบคอลั่ม 0 ทิ้ง

top_sales = top_sales.drop(0, axis=1)

top_sales
```

	Product ID	Sales	Product Name
0	TEC-CO-10004722	61599.824	Canon imageCLASS 2200 Advanced Copier
1	TEC-CO-10001449	16079.732	Hewlett Packard LaserJet 3310 Copier
2	TEC-MA-10001047	14299.890	3D Systems Cube Printer, 2nd Generation, Magenta
3	OFF-BI-10000545	13621.542	GBC Ibimaster 500 Manual ProClick Binding System
4	OFF-BI-10001359	12737.258	GBC DocuBind TL300 Electric Binding System
5	OFF-BI-10004995	12521.108	GBC DocuBind P400 Electric Binding System
6	TEC-PH-10001459	12263.708	Samsung Galaxy Mega 6.3
7	FUR-CH-10002024	11846.562	HON 5400 Series Task Chairs for Big and Tall
8	OFF-SU-10002881	11825.902	Martin Yale Chadless Opener Electric Letter Op
9	FUR-CH-10001215	10169.894	Global Troy Executive Leather Low-Back Tilter

```
# TODO 09

##Part 2 Top Orders

top_orders = df[ (df['Order Date'] > '2019-01-01') & (df['Order Date'] < '2020-12
    [['Product ID','Order ID']]\
    .groupby('Product ID').count()\
    .sort_values('Order ID', ascending=False)\
    .head(10)

top_orders</pre>
```

Order ID
15
13
12
12
11
10
10
10
10
9

```
# TODO 09
##Part 2 Top Orders : join table เพื่อดูชื่อ product
top_orders = pd.merge(top_orders, id_name, on='Product ID')
```

```
# TODO 09
##Part 2 Top Orders : ลบคอลั่ม 0 ทั้ง
top_orders = top_orders.drop(0, axis=1)
top_orders
```

	Product ID	Order ID	Product Name
0	TEC-AC-10003832	15	Imation 16GB Mini TravelDrive USB 2.0 Flash Drive
1	TEC-AC-10003832	15	Logitech P710e Mobile Speakerphone
2	OFF-PA-10001970	13	Xerox 1881
3	OFF-PA-10001970	13	Xerox 1908
4	FUR-TA-10001095	12	Chromcraft Round Conference Tables
5	FUR-FU-10004864	12	Howard Miller 14-1/2" Diameter Chrome Round Wa
6	FUR-FU-10004864	12	Eldon 500 Class Desk Accessories
7	FUR-CH-10003774	11	Global Wood Trimmed Manager's Task Chair, Khaki
8	OFF-BI-10000301	10	GBC Instant Report Kit
9	FUR-FU-10004848	10	Howard Miller 13-3/4" Diameter Brushed Chrome
10	FUR-FU-10004848	10	DAX Solid Wood Frames
11	FUR-CH-10001146	10	Global Value Mid-Back Manager's Chair, Gray
12	FUR-CH-10001146	10	Global Task Chair, Black
13	OFF-ST-10001325	10	Sterilite Officeware Hinged File Box
14	FUR-TA-10003473	9	Bretford Rectangular Conference Table Tops

```
# TODO 09 ลองเช็คว่า TEC-AC-10003832 ไม่ได้เป็น Top 10 Sales จริงๆ

df[ (df['Order Date'] > '2019-01-01') & (df['Order Date'] < '2020-12-31') ] \
    [df['Product ID'] == "TEC-AC-10003832" ] \
    ['Sales'].sum()

9733.798000000003
```

```
<ipython-input-25-894ec036fbdb>:3: UserWarning: Boolean Series key will be rein
df[ (df['Order Date'] > '2019-01-01') & (df['Order Date'] < '2020-12-31') ] \</pre>
```

```
# TODO 09 ឥត្ស
display(top_sales)
display(top_orders)
```

	Product ID	Sales	Product Name
0	TEC-CO-10004722	61599.824	Canon imageCLASS 2200 Advanced Copier
1	TEC-CO-10001449	16079.732	Hewlett Packard LaserJet 3310 Copier
2	TEC-MA-10001047	14299.890	3D Systems Cube Printer, 2nd Generation, Magenta
3	OFF-BI-10000545	13621.542	GBC Ibimaster 500 Manual ProClick Binding System
4	OFF-BI-10001359	12737.258	GBC DocuBind TL300 Electric Binding System
5	OFF-BI-10004995	12521.108	GBC DocuBind P400 Electric Binding System
6	TEC-PH-10001459	12263.708	Samsung Galaxy Mega 6.3
7	FUR-CH-10002024	11846.562	HON 5400 Series Task Chairs for Big and Tall
8	OFF-SU-10002881	11825.902	Martin Yale Chadless Opener Electric Letter Op
9	FUR-CH-10001215	10169.894	Global Troy Executive Leather Low-Back Tilter
	Product ID	Order ID	Product Name
0	TEC-AC-10003832	15	Imation 16GB Mini TravelDrive USB 2.0 Flash Drive
1	TEC-AC-10003832	15	Logitech P710e Mobile Speakerphone
2	OFF-PA-10001970	13	Xerox 1881
3	OFF-PA-10001970	13	Xerox 1908
4	FUR-TA-10001095	12	Chromcraft Round Conference Tables
5	FUR-FU-10004864	12	Howard Miller 14-1/2" Diameter Chrome Round Wa
6	FUR-FU-10004864	12	Eldon 500 Class Desk Accessories
7	FUR-CH-10003774	. 11	Global Wood Trimmed Manager's Task Chair, Khaki
8	OFF-BI-10000301	10	GBC Instant Report Kit
9	FUR-FU-10004848	10	Howard Miller 13-3/4" Diameter Brushed Chrome
10	FUR-FU-10004848	10	DAX Solid Wood Frames
11	FUR-CH-10001146	10	Global Value Mid-Back Manager's Chair, Gray
12	FUR-CH-10001146	10	Global Task Chair, Black
13	OFF-ST-10001325	10	Sterilite Officeware Hinged File Box
14	FUR-TA-10003473	9	Bretford Rectangular Conference Table Tops

```
# TODO 10 - plot at least 2 plots, any plot you think interesting :)
## plot 1

df_region_sales_bar = df.groupby('Region')['Sales'].sum().sort_values(ascending=F
```

♣ Download

TODO 10

plot 2

df_category_sales = df.groupby('Sub-Category')['Sales'].sum().sort_values(ascendi

◆ Download


```
# TODO Bonus - use np.where() to create new column in dataframe to help you answe
import numpy as np

df['Profit'].mean()

df['good_business?'] = np.where(df['Profit']>=29 , "Good Business", "Bad Performa

df.head()
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City	 R
0	1	CA- 2019- 152156		2019- 11-11	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	 S
1	2	CA- 2019- 152156	2019- 11-08		Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	 S
2	3	CA- 2019- 138688	2019- 06-12	2019- 06-16	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles	 V
3	4	US- 2018- 108966	2018- 10-11		Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	 S
4	5	US- 2018- 108966	2018- 10-11		Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	 S

5 rows × 22 columns