Obliczenia naukowe Lista1

Stanisław Woźniak

1 Zadanie 1

- 1.1 Macheps Epsilon Maszynowy
- 1.2 Eta
- 1.3 Max Float Najwieksza wartość
- 2 Zadanie 2 Wzór na macheps

2.1 Problem

Należało stwierdzić eksperymentalnie prawdziwość wzoru Kahana na epsilon maszynowy (macheps), który jest według niego opisany wzorem:

$$3*(\frac{4}{3}-1)-1$$

2.2 Wyniki

Porównanie wyników z poprawnym epsilonem maszynowym:

	Wyliczony według wzoru	poprawny
Float16	-0.000977	0.000977
Float32	1.1920929e-7	1.1920929e-7
Float64	-2.220446049250313e-16	2.220446049250313e-16

2.3 Wnioski

3 Zadanie 3 - Rozmieszczenie liczb zmiennopozycyjnych

3.1 Problem

Należało sprawdzić eksperymentalnie własność liczb w arytmetyce Float64 w przedziale [1, 2], że każda z nich może być przedstawiona wzorem:

$$x = 1 + k * \delta$$

gdzie $k = 1, 2, \dots 2^{52} - 1$ oraz $\delta = 2^{-52}$

3.2 Wynik

Wyniki wychodza zgodne dla podanego wzoru porównywanego z funkcja nextfloat. Przy porównaniu liczb w bitach możemy również zauwazyc, że wyniki sa takie same w obu przypadkach.

3.3 Wnioski

Podany wzór jest poprawny, gdyż liczba δ jest reprezentowana jako jeden najmniej znaczacy bit w arytmetyce Float64. Mnożac po kolei przez każda liczbe k uzyskujemy każda możliwa reprezentacje 52 najmniej znaczacych bitów, czyli mantysy.

Natomiast liczby w przedzale $[\frac{1}{2},\ 1]$ sa rozmieszczone z różnica $\delta=2^{-53},$ a w przedziale $[2,\ 4]$ sa rozmieszczone z różnica $\delta=2^{-51},$ ponieważ liczba ostateczna jest w reprezentacji $mantysa*2^{cecha}.$

- 4 Zadanie 4
- 5 Zadanie 5
- 6 Zadanie 6
- 7 Zadanie 7