FBSP: Point Processing

Nick Yao Larsen nylarsen@cfin.au.dk

Image as a function

- The spatial coordinates of an image are x and y.
- f(x,y) is the intensity postion of (x,y)

What is Point (pixel) processing

- Point processing is now defined as an operation which calculates the new value of a pixel in g(x, y) based on the value of the pixel in the same position in f (x, y)
- **Simplest** type of operation because the pixel value itself is independent on the location of other pixel.
- Examples: Changing brightness, contrast, thresholding, histogram stretching

Gray level enhancement

Correct

Too high brightness

Too low brightness

Too high contrast

Too low contrast

Brightness

- The brightness is the intensity
- Change brightness: g(x,y) = f(x,y)+b
 - To each pixel is added the value of b
 - f(x,y) is the input image
 - g(x,y) is the (enhanced) output image
- If b>0 => brighter image
- If b<0 => darker image
- Be aware of image saturation (image bleaching)
 - At some point the pixels cannot exceed its maximum or minimum values

b < 0

Decreased brightness

b > 0

Increased brightness

Contrast

- Contrast describes the level of detail we can see, or the difference between pixel values
- Change contrast: g(x,y) = a*f(x,y)
 - Each pixel is multiplied by a
 - f(x,y) is the input image
 - g(x,y) is the output image
- If a>1 => more contrast
- If a<1 => less contrast
- Be aware of image satuation

Gray level intensity transformation

g(x,y), b = 75

Gray level intensity transformation

Gray level intensity transformation

Apply gray level transformation in "sections"

• The slope of T(r):

- If Slope > 1 —> Contrast increases

If Slope < 1 —> Contrast decrease

If Slope = 1 -> no change

Image histograms

- How can we tell if an image is too dark or too bright?
- A histogram is a graphical representation of the frequency of events
 - The horizontal axis represents the possible numbers in a matrix /could be a picture
 - The vertical axis represents the count of the different numbers in the matrix /could be a picture
- Each column is denoted a **bin** and the height of a **bin** corresponds to the number of the numerical value on x-axis.

0	2	6	6	3	3
1	4	3	4	4	4
3	2	5	1	5	2
1	4	2	1	3	1
2	5	3	0	2	0
4	2	5	6	3	1

Count

Image histograms

- A histogram is a discreate function $p(k) = \frac{n_k}{n}$
- n_k is the number of pixel with the k-th gray level
- *n* is the total number of pixels
- Histogram entry p(k) gives the probability of k appearing in the image

Dark image

Bright image

High contrast image

Low contrast image

Improving contrast

- Humans cannot tell the difference between graylevel values too close to each other
- So, spread out graylevel values
- This is called histogram stretching

Histogram stretching - Examples

Histogram stretching - Examples

Histogram summary

- Histograms tell us about the intensity/color distributions of a (part of a) picture
- Histograms can act as a sort of fingerprint of a picture
 - ... but beware, two completely different pictures may have the same histogram

Segmentation

- Segmentation is about image analysis
- Not image manipulation

- The task:
 - Information versus noise
 - Foreground (object) vs.
 background

Thresholding

- Use graylevel mapping and the histogram
- When two peaks/nodes of a histogram correspond to object and noise
- Find a threshold value, T, that separates the two peaks. This process is called thresholding.
- Algorithm
 - If f(x,y) > T then g(x,y) = 1, else g(x,y) = 0
 - (or reverse)
- Results: a binary image where object pixels = 1 and noise/backgroun =

Thresholding

Input f(x,y)

Segmentation

• Often obtained a bi-model histogram is the "sole" purpose of the image acquisition:

Ideal

- Lighting
- Setup
- Camera
- Lense

Thresholding

- Bimodal histogram
 - Single global threshold

- Histogram with 3 or more "tops" (often seen in medical applications)
 - Two or more global threshold
 - Region growing

Thresholding

Global threshold

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$

Multiple thresholds

$$g(x,y) = \begin{cases} a & \text{if } f(x,y) > T_2 \\ b & \text{if } T_1 < f(x,y) \le T_2 \\ c & \text{if } f(x,y) \le T_1 \end{cases}$$

Thresholding — example Original Figure

• The intensity histogram of an x-ray image of the spine (lower trace).

 Setting a threshold between the two peaks separates the image from the background.

Threshold: 0.32

Thresholding

Noise is a problem in signal processing but also true in images

Global Thresholding

- Automatic (basic for Bimodal histogram)
- Assumption: A separation of the histogram peaks —> separation of the background and object(S)

Global Thresholding

- Automatic (basic for Bimodal histogram)
- Assumption: A separation of the histogram peaks —> separation of the background and object(s)

Approach:

- 1. Select an initial estimate for T
- 2. Segment the image using $T \rightarrow \text{image}$ is divided into two groups G1 and G2.
- 3. Compute the average gray level value m1 and m2 for the pixels in regions G1 and G2.
- 4. Compute a new threshold: $T = \frac{1}{2}(m_1 + m_2)$
- 5. Repeat step 2 4 until the difference in T is smaller than a predefined parameter T0

Variance minimization: Otsu' method

- Aim: Find a global threshold by minimizing the overall within-class variance
- One threshold strategy is based on the concept of minimizing the variance between presumed foreground and background elements.
- Although the method assumes two different gray levels, it works well even when the distribution is not bimodal.
- The approach uses an iterative process to find a threshold that minimizes the variance between the intensity values on either side of the threshold level (Otsu's method).
 - => It makes it calculations for every intensity value

Otsu example

a b c d

FIGURE 10.39

- (a) Original image.
- (b) Histogram (high peaks were clipped to highlight details in the lower values).
- (c) Segmentation result using the basic global algorithm from Section 10.3.2.
- (d) Result obtained using Otsu's method.

Otsu's method

Basic automatic thresholding

Segmentation recap

- About splitting the image into parts:
 - Interesting
 - Not interesting
- Thresholding is one way of solve this
 - If a sufficient nice bimodal histogram is present

Image arithmetic

- Arithmetic +, -, x, /
 - Perform simple math on pixel level
 - Apply the operation as point processing
- Example: Subtraction (-)
 - Subtract two images of the same scene at different time instances
 - => find the change over time
 - Help you to judge the nature of noise in your setup

Image arithmetic – Apply mask

What will the next image look like if we multiply (*) these 2 images?

Image arithmetic – Apply mask

Image arithmetic

- Undesired effects may happen, when computing with images: Overflow / Underflow
- Example: Two grey value images A and B with pixel ranges: [0,255]. Their pixel sum may be larger than 255!
- For example: 124+202=326
- Subtraction results may be smaller than 0! For example: 124-202=-78

Image arithmetic – solution

- Use an intermediate image:
- Pixel values are float values (32 bits / 4 bytes)
- Can store almost any number
- Write computation results into intermediate image
- Rescale intermediate image to values [0,255] and write results into 8 bit image
- For subtraction you may be interested only in the absolute difference

$$Normalized_{image} = \frac{image - min_{val}}{max_{val} - min_{val}}$$

Summary

- Point operation is when we only take one pixel at the time to do this operation.
- It doesn't matter the order of it + no information about the neighbours pixel is required. That is why it is a simple and fast operation