1. Mostre que

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

2. Note a sequência de identidades:

$$1 = 1$$

$$1 - 4 = -(1 + 2)$$

$$1 - 4 + 9 = 1 + 2 + 3$$

infira uma lei geral e a demonstre por indução.

- **3.** Seja $\mathbf{v} = (1, 5, -2)$ e $\mathbf{w} = (0, t, 2t)$, onde $t \in \mathbb{R}$, achar a norma $\|\mathbf{v} 2\mathbf{w}\|$. Para que valor de t esta norma atinge o máximo. E o mínimo.
- **4.** Achar a projeção ortogonal do vetor $\mathbf{v}=(1,2,0)$ na direção do vetor (0,1,1)
- **5.** Vamos considerar $\mathbb{N}^2 = \{(i,j) : i,j \in \mathbb{N}\}$ como um subconjunto de V_2 (são os vetores com coordenadas naturais). Além disso defino um conjunto $I = \{(x,y) \in \mathbb{N}^2 \text{ tal que } 10 \leq x \leq 15 \text{ e } 10 \leq y \leq 15\}$ e $K = \{(x,y) \in \mathbb{N}^2 \text{ tal que } 40 \leq y\}$ A região de \mathbb{N}^2 fora de I e fora de K vamos chamar de **mar**. Um circuito em torno de I é uma sequência de vetores não nulos $\mathbf{v}_1, \ldots, \mathbf{v}_k$ tal que
 - $\sum_{i=1}^{k} \mathbf{v}_i = (0,0)$
 - $\sum_{i=1}^{l} \mathbf{v}_i$ está no mar para l < k
 - $\|\mathbf{v}_{i+1} \mathbf{v}_i\| \le 1.5$

Exiba um circuito neste caso. Tente fazer com que k seja o menor possível.