

Học viện Công nghệ Bưu chính Viễn thông Khoa Công nghệ thông tin 1

Toán rời rạc 2

Đồ thị Euler và Đồ thị Hamilton

Bộ môn KHMT, Khoa CNTT1

Nội dung

- ▶ Đồ thị Euler
- ▶ Đồ thị Hamilton

Khái niệm và ví dụ

Dinh nghĩa

- Chu trình đơn trong đồ thị G đi qua tất cả các cạnh của nó được gọi là chu trình Euler
- Đường đi đơn trong đồ thị G đi qua tất cả các cạnh của nó được gọi là đường đi Euler
- Đồ thị được gọi là đồ thị Euler nếu nó có chu trình Euler
- Đồ thị được gọi là đồ thị nửa Euler nếu nó có đường đi Euler

Ví du 1

Khái niệm đồ thị Euler, đồ thị nửa Euler

▶ Ví dụ 2

(Phương ND, 2013)

Điều kiện cần và đủ để đồ thị là Euler

Với đồ thị vô hướng

 \circ Đồ thị vô hướng liên thông $G = \langle V, E \rangle$ là đồ thị Euler khi và chỉ khi mọi đỉnh của G đều có bậc chẵn

Với đồ thị có hướng

 \circ Đồ thị có hướng liên thông yếu G=< V, E> là đồ thị Euler khi và chỉ khi tất cả các đỉnh của nó đều có bán bậc ra bằng bán bậc vào (điều này làm cho đồ thị là liên thông mạnh)

Chứng minh đồ thị là Euler

Với đồ thị vô hướng

- Kiểm tra đồ thị có liên thông hay không?
 - Kiểm tra DFS(u) = V hoặc BFS(u) = V?
- Kiểm tra bậc của tất cả cả đỉnh có phải số chẵn hay không?
 - Với ma trận kề, tổng các phần tử của hàng u (cột u) là bậc của đỉnh u

Với đồ thị có hướng

- Kiểm tra đồ thị có liên thông yếu hay không?
 - Kiểm tra đô thị vô hướng tương ứng là liên thông, hoặc
 - Kiểm tra nếu tồn tại đỉnh $u \in V$ để DFS(u) = V hoặc BFS(u) = V?
- Kiểm tra tất cả các đỉnh có thỏa mãn bán bậc ra bằng bán bậc vào hay không?
 - Với ma trận kề, bán bậc ra của đỉnh u là $deg^+(u)$ là số các số 1 của hàng u, bán bậc vào của đỉnh u là $deg^-(u)$ là số các số 1 của cột u

Bài tập 1

Cho đồ thị vô hướng G được biểu diễn dưới dạng ma trận kề như hình bên. Chứng minh G là đồ thị Euler.

0	1	0	0	0	1	0	0	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	1	0	0
0	0	1	0	0	0	1	1	0	0	1	0	0
0	1	1	0	0	1	1	0	0	0	0	0	0
1	1	0	0	1	0	1	0	0	0	0	0	0
0	0	0	1	1	1	0	1	0	0	0	0	0
0	0	0	1	0	0	1	0	1	1	0	0	0
0	0	0	0	0	0	0	1	0	1	0	1	1
0	0	0	0	0	0	0	1	1	0	1	1	0
0	0	1	1	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	1	1	1	0	1
0	0	0	0	0	0	0	0	1	0	0	1	0

(Phương ND, 2013)

Bài tập 2

Cho đồ thị có hướng G được biểu diễn dưới dạng ma trận kề như hình bên. Chứng minh G là đồ thị Euler.

0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	1	0	0	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0

(Phương ND, 2013)

Thuật toán tìm chu trình Euler

```
Euler-Cycle(u){
           Bước 1: Khởi tạo
           stack = \emptyset; //khởi tạo stack là \emptyset
           CE = \emptyset; //khởi tạo mảng CE là \emptyset
           push(stack, u); //đưa đỉnh u vào ngăn xếp
           Bước 2: Lặp
           while(stack \neq \emptyset){
                      s = get(stack); //lấy đỉnh ở đầu ngăn xếp
                      if(Ke(s) \neq \emptyset){
                                  t = < dinh dau tien trong Ke(s)>;
                                  push(stack, t); //đưa đỉnh t vào ngăn xếp
                                 E = E \setminus \{(s, t)\}; //loại bỏ cạnh (s, t)
                      else{
                                  s = pop(stack); //loại bỏ s khỏi ngăn xếp
                                  s \Rightarrow CE; //dua s sang CE
           Bước 3: Trả lại kết quả
           <lât ngược lại các đỉnh trong CE ta được chu trình Euler>;
```


Kiểm nghiệm thuật toán (1/3)

Áp dụng thuật toán tìm chu trình Euler cho đồ thị vô hướng được biểu diễn bằng ma trận kề như hình bên.

0	1	0	0	0	1	0	0	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	1	0	0
0	0	1	0	0	0	1	1	0	0	1	0	0
0	1	1	0	0	1	1	0	0	0	0	0	0
1	1	0	0	1	0	1	0	0	0	0	0	0
0	0	0	1	1	1	0	1	0	0	0	0	0
0	0	0	1	0	0	1	0	1	1	0	0	0
0	0	0	0	0	0	0	1	0	1	0	1	1
0	0	0	0	0	0	0	1	1	0	1	1	0
0	0	1	1	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	1	1	1	0	1
0	0	0	0	0	0	0	0	1	0	0	1	0

Kiểm nghiệm thuật toán (2/3)

#	Trạng thái Stack	CE	#	Trạng thái Stack	CE
1	1	Ø	14	1,2,3,4,7,5,2,6,5,3,11,4	1
2	1,2	Ø	15	1,2,3,4,7,5,2,6,5,3,11,4,8	1
3	1,2,3	Ø	16	1,2,3,4,7,5,2,6,5,3,11,4,8,7	1
4	1,2,3,4	Ø	17	1,2,3,4,7,5,2,6,5,3,11,4,8,7,6	1
5	1,2,3,4,7	Ø	18	1,2,3,4,7,5,2,6,5,3,11,4,8,7	1,6
6	1,2,3,4,7,5	Ø	19	1,2,3,4,7,5,2,6,5,3,11,4,8	1,6,7
7	1,2,3,4,7,5,2	Ø	20	1,2,3,4,7,5,2,6,5,3,11,4,8,9	1,6,7
8	1,2,3,4,7,5,2,6	Ø	21	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10	1,6,7
9	1,2,3,4,7,5,2,6,1	Ø	22	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10,8	1,6,7
10	1,2,3,4,7,5,2,6	1	23	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10	1,6,7,8
11	1,2,3,4,7,5,2,6,5	1	24	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10,11	1,6,7,8
12	1,2,3,4,7,5,2,6,5,3	1	25	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10,11,12	1,6,7,8
13	1,2,3,4,7,5,2,6,5,3,11	1	26	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10,11,12,9	1,6,7,8

http://www.ptit.edu.vn

Kiểm nghiệm thuật toán (3/3)

Bước	Trạng thái Stack	CE							
27	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10,11,12,9,13	1,6,7,8							
28	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10,11,12,9,13,12	1,6,7,8							
29	1,2,3,4,7,5,2,6,5,3,11,4,8,9,10,11,12,9,13,12,10	1,6,7,8							
3	Đưa lần lượt các đỉnh trong $Stack$ sang CE cho tới khi $Stack = \emptyset$								
30	CE = 1,6,7,8,10,12,13,9,12,11,10,9,8,4,11,3,5,6,2,5,7,4,3,2,1								
	Lật ngược lại các đỉnh trong CE ta được chu trình Euler								
	1-2-3-4-7-5-2-6-5-3-11-4-8-9-10-11-12-9-13-12-10-8-7-6-1								

Địểu kiện cần và đủ để đồ thị là nửa Euler

Với đồ thị vô hướng

- \circ Đồ thị vô hướng liên thông G=< V,E> là đồ thị nửa Euler khi và chỉ khi G có \circ hoặc \circ đỉnh bậc lẻ
 - G có 2 đỉnh bậc lẻ: đường đi Euler xuất phát tại một đỉnh bậc lẻ và kết thúc tai đỉnh bâc lẻ còn lai
 - G có 0 đỉnh bậc lẻ: G chính là đồ thị Euler

Với đồ thị có hướng

- Dồ thị có hướng liên thông yếu $G = \langle V, E \rangle$ là đồ thị nửa Euler khi và chỉ khi:
 - Tồn tại đúng hai đỉnh $u, v \in V$ sao cho $deg^+(u) deg^-(u) = deg^-(v) deg^+(v) = 1$
 - Các đỉnh $s \neq u, s \neq v$ còn lại có $deg^+(s) = deg^-(s)$
 - Đường đi Euler sẽ xuất phát tại đỉnh u và kết thúc tại đỉnh v

Chứng minh đồ thị là nửa Euler

Với đồ thị vô hướng

- Chứng tỏ đồ thị đã cho liên thông
 - Sử dụng hai thủ tục DFS(u) hoặc BFS(u)
- Có 0 hoặc 2 đỉnh bậc lẻ
 - Sử dụng tính chất của các phương pháp biểu diễn đồ thị để tìm ra bậc của mỗi đỉnh

Với đồ thị có hướng

- Chứng tỏ đồ thị đã cho liên thông yếu
 - Sử dụng hai thủ tục DFS(u) hoặc BFS(u)
- o Có hai đỉnh $u,v\in V$ thỏa mãn $deg^+(u)-deg^-(u)=deg^-(v)-deg^+(v)=1$
- Các đỉnh $s \neq u, s \neq v$ còn lại có $deg^+(s) = deg^-(s)$

Bài tập 3

Cho đồ thị vô hướng G = < V, E > được biểu diễn bằng ma trận kề như hình bên. Chứng minh rằng G là đồ thị nửa Euler?

0	1	0	0	1	1	0	0	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	1	0	0
0	0	1	0	1	0	1	1	0	1	1	0	0
1	1	1	1	0	1	1	0	0	0	0	0	0
1	1	0	0	1	0	1	0	0	0	0	0	0
0	0	0	1	1	1	0	1	0	0	0	0	0
0	0	0	1	0	0	1	0	1	1	0	0	0
0	0	0	0	0	0	0	1	0	1	0	1	1
0	0	0	1	0	0	0	1	1	0	1	1	1
0	0	1	1	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	1	1	1	0	1
0	0	0	0	0	0	0	0	1	1	0	1	0

(Phương ND, 2013)

Bài tập 4

Cho đồ thị có hướng G = < V, E > được biểu diễn bằng ma trận kề như hình bên. Chứng minh rằng G là đồ thị nửa Euler?

0	1	0	0	1	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0

(Phương ND, 2013)

Thuật toán tìm đường đi Euler

- Thuật toán tìm đường đi Euler gần giống hệt thuật toán tìm chu trình Euler
- Tim chu trình Euler
 - \circ Đầu vào thuật toán là đỉnh $u \in V$ bất kỳ
- Tìm đường đi Euler
 - Đồ thị vô hướng
 - Đầu vào thuật toán là đỉnh $u \in V$ có bậc lẻ đầu tiên (trường hợp có 0 bậc lẻ thì dùng đỉnh bất kỳ)
 - Đồ thị có hướng
 - Đầu vào thuật toán là đỉnh $u \in V$ thỏa mãn $deg^+(u) deg^-(u) = 1$

Kiểm nghiệm thuật toán

Áp dụng thuật toán tìm đường đi Euler cho đồ thị vô hướng, nửa Euler sau?

0	1	0	0	1	1	0	0	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	0	0	0	0	0	1	0	0
0	0	1	0	1	0	1	1	0	1	1	0	0
1	1	1	1	0	1	1	0	0	0	0	0	0
1	1	0	0	1	0	1	0	0	0	0	0	0
0	0	0	1	1	1	0	1	0	0	0	0	0
0	0	0	1	0	0	1	0	1	1	0	0	0
0	0	0	0	0	0	0	1	0	1	0	1	1
0	0	0	1	0	0	0	1	1	0	1	1	1
0	0	1	1	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	1	1	1	0	1
0	0	0	0	0	0	0	0	1	1	0	1	0

Nội dung

- ▶ Đồ thị Euler
- ▶ Đồ thị Hamilton

Khái niệm và ví dụ

Định nghĩa

- Đường đi qua tất cả các đỉnh của đồ thị, mỗi đỉnh đúng một lần được gọi là đường đi Hamilton
- Chu trình bắt đầu tại một đỉnh v nào đó, qua tất cả các đỉnh còn lại mỗi đỉnh đúng một lần, sau đó quay trở lại v, được gọi là chu trình Hamilton
- Đồ thị được gọi là đồ thị Hamilton nếu có chu trình Hamilton
- Đồ thị được gọi là đồ thị nửa Hamilton nếu có đường đi Hamilton

Tiêu chuẩn nhận biết đồ thị Hamilton?

- Cho đến nay, chưa tìm ra được một tiêu chuẩn để nhận biết một đồ thị có phải là đồ thị Hamilton hay không
- Cho đến nay, cũng vẫn chưa có thuật toán hiệu quả để kiểm tra một đồ thị có phải là đồ thị Hamilton hay không

Thuật toán tìm chu trình Hamilton (1/3)

Thuật toán liệt kê tất cả các chu trình Hamilton bắt đầu tại đỉnh thứ k

Thuật toán tìm chu trình Hamilton (2/3)

Thuật toán liệt kê tất cả các chu trình Hamilton bắt đầu tại đỉnh thứ k

```
Hamilton(int k){
\mathbf{for}(\ y \in Ke(X[k-1]))\{
\mathbf{if}((k==n+1) \&\& \ (y==v_0))
\mathrm{Ghinhan}(X[1],X[2],...,X[n],v_0);
\mathbf{else}\ \mathbf{if}(chuaxet[y]==true)\{
X[k]=y;
chuaxet[y]=\mathbf{false};
\mathrm{Hamilton}(k+1);
chuaxet[y]=\mathbf{true};
}
chuaxet[y]=\mathbf{true};
}
```


Thuật toán tìm chu trình Hamilton (3/3)

 Khi đó, việc liệt kê các chu trình Hamilton được thực hiện như sau

```
Hamilton-Cycle(v_0){

//Khởi tạo các đỉnh là chưa xét for(v \in V)

chuaxet[v] = true;

X[1] = v_0; //v_0 là một đỉnh nào đó của đồ thị chuaxet[v_0] = false; //Đánh dấu v_0 đã xét

Hamilton(2); //Gọi thủ tục duyệt
}
```


Kiểm nghiệm thuật toán (1/2)

Áp dụng thuật toán tìm chu trình Hamilton cho đồ thị vô hướng dưới đây

Kiểm nghiệm thuật toán (2/2)

Tóm tắt

- Khái niệm đường đi Euler, chu trình Euler, đô thị nửa Euler, đô thị Euler
- Điều kiện và cách chứng minh đồ thị là Euler, nửa Euler
- Khái niệm đường đi Hamilton, chu trình Hamilton, đồ thị nửa Hamilton, đồ thị Hamilton
- Nắm được các thuật toán và cách kiểm nghiệm thuật toán
- Viết chương trình cài đặt các thuật toán cho phép thực hiện trên máy tính

Bài tập

Làm một số bài tập trong giáo trình