# 英語論文#3

2023/07/31 M1 建元 了

### 論文の概要

- タイトル
  - 「DARN: Distance Attention Residual Network for Lightweight Remote-Sensing Image Superresolution」
- 執筆者
  - Qingjian Wang, SenWang, Mingfang Chen, and Yang Zhu
- 掲載
  - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Volume: 16)
- 選択理由
  - リモートセンシングにおいて解像度に関わる改善方法の調査

#### 背景

- リモートセンシング(RS)における単一画像超解像(SISR)の応用 は非常に重要
  - 低解像度画像を高解像度画像に復元する手法
- 単一画像超解像(SISR)は、最も代表的な低レベル視覚タスクとして集中的に研究されており、SISRアルゴリズムは高解像度の画像を得ることができるため、様々な分野で大きな貢献をしている

#### 背景

• リモートセンシング画像の解像度が大きいという特性から、一般的なSISRアルゴリズムでは推論速度が極端に遅くなることが 多い

• 速度、精度を向上した場合、モデルパラメータの割合が大きく なってしまう

#### 導入

•特徴表現を強化するために多段階特徴集約を使用する**距離注意 残差接続(DARCB**)コンポーネントを設計することで、単純 なCNN連結モジュールよち優れた進歩を達成

・距離注意ブロック(DAB)モジュールは、浅い特徴量の損失現象を抑制

・精度と効率の良い妥協点を達成する**軽量画像SR再構築モデル** DARNを提案

#### DARN

- 入力された低画質の衛星リモートセンシング画像ILRに対して、我々の手法は、地上真実IGTに近い高画質画像IHRを再構成する
- 浅い特徴抽出モジュール、深い特徴抽出モジュール、多段階特徴結合ブロック、再構築モジュール



• Hmapで低次元画像を高次元空間にマッピング

• 複数のDARCBで構成される深層特徴抽出モジュールが、抽出 された特徴を徐々に洗練

$$F_0 = H_{ ext{map}}(I_{ ext{LR}}) \ F_K = H_{ ext{DARCB}_K}(F_{K-1}), K = 1, \dots N$$

- 軽量モデルの最適化とは、より小さなモデルパラメータ制約の 下でモデルの性能と速度を向上させること
  - モデルの異なる深さからの特徴を融合することは、軽量モデルの性能 を向上させる効果的な方法
- ・融合モジュールは多段階の特徴量を融合することで特徴量の再 利用率を向上させる

• 合された特徴量Ffinalを用いて、再構成モジュールHupにより 高品質なリモートセンシング画像を復元

$$F_{ ext{final}} = H_{ ext{Fusion}} \left( f(F_0, F_1, \dots, F_N) \right) + F_0$$
 $I_{ ext{HR}} = H_{ ext{up}}(F_{ ext{final}}) + I_{ ext{LR}}$ 

• DARNはL 1一般化損失関数を用いて最適化

$$L_1 = ||I_{\rm GT} - I_{\rm HR}||_{1.}$$



Fig. 3. (a) Simple baseline composed of three convolutions. (b) Feature distillation splicing (FDC) block formed by the simple model baseline transformation. (c) Distance attention residual connection block (DARCB). (d) Enhanced spatial attention (ESA). (e) Conv Groups. (f) Shallow residual block (SRB). (g) Distance attention block (DAB) for guiding CNN depth feature extraction. (a) Basic. (b) FDC. (c) DARCB. (d) ESA. (e) Conv Groups. (f) SRB. (g) DAB.

- ・軽量構造の考え方
  - 単純な連結によって形成される特徴量の冗長性と蓄積されたランダム 誤差は、現在のCNNモデルに共通する問題
  - DABモジュールを設計

• 浅い特徴量には元の画像情報がすべて含まれているが、CNNは深い特徴量を抽出する際に、特徴量の損失、特徴量の冗長性、誤差の蓄積などの問題がある

#### ・DABモジュール

• 入力された精緻な特徴量を用いて、メインブランチCNNモジュール全体の詳細特徴量の損失を抑制

• 浅い特徴に教師されたCNNは、抽出プロセスにおける誤差の蓄積を効果的に減らすことができる

#### SRB

- メインブランチの主要な構成ブロックとして導入することで、ネットワークの軽量化を図る
- 残存情報を柔軟に学習し、モデルをよりロバストにすることができる

• 入力特徴量F(K-1)をメインブランチと特徴量抽出のためのブランチの2つの経路に分け、ブランチでは入力特徴量の元の情報を保持するために特徴量の精密化畳み込みを採用

$$F_{LB} = H_{R1}(F_{K-1}).$$

• 2つのRSBモジュールが深い特徴を抽出するために使われ、2つのDABモジュールが深い特徴抽出の効率を高めるために使われる。最後に、深さ特徴F(DAB2)を洗練するために畳み込み層を採用

$$egin{aligned} F_{S1} = & H_{S1}(F_{K-1}) \ F_{\mathrm{DAB1}} = & H_{\mathrm{Att1}}\left(f(F_{\mathrm{LB}}, H_{R2}(F_{S1}))
ight) * F_{S1} + F_{S1} \ F_{S2} = & H_{S2}(F_{\mathrm{DAB1}}) \ F_{\mathrm{DAB2}} = & g\left(H_{\mathrm{Att2}}(f(F_{\mathrm{LB}}, H_{R3}(F_{S2}))) * F_{S2} + F_{S2}
ight). \end{aligned}$$

• DARCBの多段階特徴量を結合

$$F_f = g(F_{LB}, H_{S2}(F_{S1}), H_{S3}(F_{S2}), F_{DAB2})).$$

・最終的に、出力は

$$F_K = H_{\rm ESA}(F_f) + F_f$$
.

#### DIV2K

- 広範なSRデータセット
- train:800, validation:100, test:100

モデルの再構成性能は、FeNet に よって提案された2つのリモートセ ンシングデータRS-T1とRS-T2を用 いてテスト



- 追加ベンチマーク
  - Set5
  - Set14
  - BSD100
  - Urban100
  - Manga109

#### • 平均特徴マップ



Fig. 4. Average feature maps at various stages of the DARCB.

• Basic、FDC、DARCBをコアコンポーネントとするモデルの性能

TABLE I

QUANTITATIVE COMPARISON OF DIFFERENT CORE COMPONENTS

| Methods Param | Params         | Set5  |        | Set10 |        | BSD100 |        | Urban100 |        | Manga109 |        |
|---------------|----------------|-------|--------|-------|--------|--------|--------|----------|--------|----------|--------|
| Memous        | Alemons Larams | PSNR  | SSIM   | PSNR  | SSIM   | PSNR   | SSIM   | PSNR     | SSIM   | PSNR     | SSIM   |
| Basic         | 550K           | 32.10 | 0.8944 | 28.53 | 0.7802 | 27.54  | 0.7363 | 25.96    | 0.7818 | 30.27    | 0.9053 |
| FDC           | 590K           | 32.15 | 0.8950 | 28.57 | 0.7814 | 27.56  | 0.7369 | 26.04    | 0.7840 | 30.36    | 0.9068 |
| DARCB         | 606K           | 32.19 | 0.8952 | 28.58 | 0.7814 | 27.58  | 0.7373 | 26.07    | 0.7851 | 30.44    | 0.9078 |

DARCB is the core component proposed in this article.

The bold values represents the optimal performance under the corresponding indicator.

- アブレーション研究
  - DABとESAモジュールの有効性を実証するため、アブレーション実験

TABLE II ABLATION STUDY OF ESA AND DAB

| Methods    | Params | Set5  |        | Set10 |        | BSD100 |        | Urban100 |        | Manga109 |        |
|------------|--------|-------|--------|-------|--------|--------|--------|----------|--------|----------|--------|
| Memous     |        | PSNR  | SSIM   | PSNR  | SSIM   | PSNR   | SSIM   | PSNR     | SSIM   | PSNR     | SSIM   |
| DARN-woESA | 559K   | 32.06 | 0.8943 | 28.51 | 0.7804 | 27.53  | 0.7357 | 25.94    | 0.7807 | 30.27    | 0.9056 |
| DARN-woDAB | 590K   | 32.14 | 0.8952 | 28.56 | 0.7814 | 27.56  | 0.7368 | 26.02    | 0.7837 | 30.40    | 0.9073 |
| DARN       | 606K   | 32.19 | 0.8952 | 28.58 | 0.7814 | 27.58  | 0.7373 | 26.07    | 0.7851 | 30.44    | 0.9078 |

The bold values represents the optimal performance under the corresponding indicator.

- 特徴絞り込み率
  - 最適な絞り込み率を得るため、比較実験

TABLE III FEATURE REFINEMENT RATE OPTIMAL SOLUTION IS INVESTIGATED ON THE BENCHMARK DATASET WITH A SCALE FACTOR OF  $4\times$ 

| Refinement rate | Parame    | Params Set5 |        | Set10 |        | BSD100 |        | Urban100 |        | Manga109 |        |
|-----------------|-----------|-------------|--------|-------|--------|--------|--------|----------|--------|----------|--------|
| Keimement rate  | 1 at atms | PSNR        | SSIM   | PSNR  | SSIM   | PSNR   | SSIM   | PSNR     | SSIM   | PSNR     | SSIM   |
| 0.25            | 606K      | 32.19       | 0.8952 | 28.58 | 0.7814 | 27.58  | 0.7373 | 26.07    | 0.7851 | 30.44    | 0.9078 |
| 0.5             | 646K      | 32.12       | 0.8946 | 28.57 | 0.7813 | 27.58  | 0.7370 | 26.05    | 0.7839 | 30.41    | 0.9072 |
| 0.75            | 686K      | 32.19       | 0.8951 | 28.59 | 0.7817 | 27.58  | 0.7375 | 26.10    | 0.7858 | 30.48    | 0.9082 |

The bold values represents the optimal performance under the corresponding indicator.

• モデルの効率

TABLE IV QUANTIFY HOW LIGHTWEIGHT THE MODEL IS ON A BENCHMARK DATASET WITH A SCALING FACTOR OF  $4\times$ 

| Methods      | Params       | Mutil-adds | Times   | Manga109 |        |  |
|--------------|--------------|------------|---------|----------|--------|--|
| Wichiods     | 1 arams      | Width-adds | 111105  | PSNR     | SSIM   |  |
| LESRCNN [20] | 774K         | 241.6G     | 33.27ms | 29.94    | 0.9002 |  |
| FeNet [22]   | 352K         | 20.4G      | 13.49ms | 29.85    | 0.8992 |  |
| DARN-S       | 350K         | 19.7G      | 9.86ms  | 30.48    | 0.9084 |  |
| DARN         | 605 <b>K</b> | 32.9G      | 10.70ms | 30.65    | 0.9105 |  |

The best and next best results are red and blue, respectively. Computing multiple addition and inference speed corresponds to a 1280 × 720 HR image.

• RSモデルでの検証

TABLE V

QUANTITATIVE COMPARISON RESULTS OF REMOTE SENSING TEST IMAGES RS-T1 AND RS-T2

| Methods      | Scale      | Params      | RS-T1        | RS-T2        |  |
|--------------|------------|-------------|--------------|--------------|--|
| Mediods      | Scare      | ratanis     | PSNR/SSIM    | PSNR/SSIM    |  |
| Bicubic      |            | -           | 33.25/0.8934 | 30.64/0.8837 |  |
| SRCNN [5]    |            | 57K         | 35.18/0.9243 | 32.87/0.9209 |  |
| VDSR [8]     |            | 666K        | 35.85/0.9312 | 33.86/0.9312 |  |
| LGCNet [33]  |            | 193K        | 35.65/0.9298 | 33.47/0.9281 |  |
| LapSRN [30]  |            | 251K        | 35.69/0.9304 | 33.57/0.9286 |  |
| IDN [19]     | $\times 2$ | 553K        | 36.13/0.9339 | 34.07/0.9329 |  |
| LESRCNN [20] |            | 626K        | 36.04/0.9328 | 34.00/0.9320 |  |
| CARN-M [42]  |            | 412K        | 35.77/0.9314 | 33.84/0.9315 |  |
| FeNet [22]   |            | 351K        | 36.23/0.9341 | 34.22/0.9337 |  |
| DARN-S       |            | 350K        | 36.31/0.9347 | 34.35/0.9348 |  |
| DARN         |            | 589K        | 36.38/0.9348 | 34.42/0.9357 |  |
| Bicubic      |            | -           | 29.73/0.7818 | 27.23/0.7697 |  |
| SRCNN [5]    |            | 57 <b>K</b> | 30.95/0.8228 | 28.59/0.8180 |  |
| VDSR [8]     | ×3         | 666K        | 31.55/0.9352 | 29.40/0.8391 |  |
| LGCNet [33]  |            | 193K        | 31.30/0.8314 | 29.03/0.8312 |  |
| LapSRN [30]  |            | 290K        | 31.47/0.8338 | 29.22/0.8352 |  |
| IDN [19]     |            | 553K        | 31.73/0.8430 | 29.59/0.8450 |  |
| LESRCNN [20] |            | 810K        | 31.68/0.8398 | 29.65/0.8444 |  |
| CARN-M [42]  |            | 412K        | 31.72/0.8426 | 29.62/0.8452 |  |
| FeNet [22]   |            | 357K        | 31.89/0.8432 | 29.80/0.8481 |  |
| DARN-S       |            | 350K        | 32.00/0.8483 | 29.98/0.8518 |  |
| DARN         |            | 589K        | 32.08/0.8470 | 30.05/0.8537 |  |
| Bicubic      |            | -           | 27.91/0.6968 | 25.40/0.6770 |  |
| SRCNN [5]    |            | 57K         | 28.87/0.7382 | 26.46/0.7296 |  |
| VDSR [8]     |            | 666K        | 29.33/0.7546 | 27.03/0.7525 |  |
| LGCNet [33]  |            | 193K        | 29.13/0.7481 | 26.76/0.7426 |  |
| LapSRN [30]  |            | 543K        | 29.51/0.7614 | 27.24/0.7600 |  |
| IDN [19]     | $\times 4$ | 553K        | 29.56/0.7623 | 27.31/0.7627 |  |
| LESRCNN [20] |            | 774K        | 29.62/0.7625 | 27.41/0.7646 |  |
| CARN-M [42]  |            | 412K        | 29.57/0.7624 | 27.37/0.7647 |  |
| FeNet [22]   |            | 366K        | 29.70/0.7688 | 27.45/0.7672 |  |
| DARN-S       |            | 350K        | 29.78/0.7682 | 27.59/0.7732 |  |
| DARN         |            | 589K        | 29.85/0.7710 | 27.67/0.7758 |  |

<sup>&</sup>quot;-" indicates that the result is unknown. The best and next best results are red and blue, respectively.



TABLE VI QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON SR BENCHMARK DATASETS

検証

| Mothods      | Scale      | Params  | Multi-Adds | Set5         | Set14        | BSD100       | Urban100     | Manga109     |
|--------------|------------|---------|------------|--------------|--------------|--------------|--------------|--------------|
|              | Boule      |         |            | PSNR/SSIM    | PSNR/SSIM    | PSNR/SSIM    | PSNR/SSIM    | PSNR/SSIM    |
| Bicubic      |            | -       | -          | 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88/0.8403 | 30.80/0.9339 |
| SRCNN [5]    |            | 8K      | 52.7G      | 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 | 35.60/0.9663 |
| FSRCNN [6]   |            | 13K     | 6.0G       | 37.00/0.9558 | 32.63/0.9088 | 31.53/0.8920 | 29.88/0.9020 | 36.67/0.9710 |
| VDSR [8]     |            | 666K    | 612.6G     | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 | 37.22/0.9750 |
| LGCNet [33]  |            | 193K    | 178.1G     | 37.31/0.9580 | 32.94/0.9120 | 31.74/0.8939 | 30.53/0.9112 | -            |
| DRCN [16]    |            | 1774K   | -          | 37.63/0.9588 | 33.04/0.9118 | 31.85/0.8942 | 30.75/0.9133 | 37.55/0.9732 |
| LapSRN [30]  |            | 251K    | 29.9G      | 37.52/0.9591 | 32.99/0.9124 | 31.80/0.8952 | 30.41/0.9103 | 37.27/0.9740 |
| DRRN [17]    | ×2         | 298K    | 6796.9G    | 37.74/0.9591 | 33.23/0.9136 | 32.05/0.8973 | 31.23/0.9188 | 37.88/0.9749 |
| MenNet [43]  | ^4         | 678K    | 2662.4G    | 37.78/0.9597 | 33.28/0.9142 | 32.08/0.8978 | 31.31/0.9195 | 37.72/0.9740 |
| IDN [19]     |            | 553K    | 124.6G     | 37.83/0.9600 | 33.30/0.9148 | 32.08/0.8985 | 31.27/0.9196 | 38.01/0.9749 |
| LESRCNN [20] |            | 626K    | 281.5G     | 37.65/0.9586 | 33.32/0.9148 | 31.95/0.8964 | 31.45/0.9206 | 37.89/0.9740 |
| MADNet [21]  |            | 878K    | 187.1G     | 37.85/0.9600 | 33.39/0.9161 | 32.05/0.8981 | 31.59/0.9234 |              |
| CARN-M [42]  |            | 412K    | 91.2G      | 37.53/0.9583 | 33.26/0.9141 | 31.92/0.8960 | 31.23/0.9193 | 37.58/0.974  |
| FeNet [22]   |            | 351K    | 77.9G      | 37.90/0.9602 | 33.45/0.9162 | 32.09/0.8985 | 31.75/0.9245 | 38.18/0.9752 |
| DARN-S       |            | 350K    | 78.9G      | 37.97/0.9609 | 33.54/0.9172 | 32.19/0.9005 | 32.14/0.9284 | 38.74/0.977  |
| DARN         |            | 589K    | 131.6G     | 38.04/0.9610 | 33.63/0.9186 | 32.25/0.9012 | 32.40/0.9305 | 38.87/0.977  |
| Bicubic      |            | -       | -          | 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 | 26.95/0.855  |
| SRCNN [5]    |            | 8K      | 52.7G      | 32.75/0.9090 | 29.30/0.8215 | 28.41/0.7863 | 26.43/0.7989 | 30.48/0.911  |
| FSRCNN [6]   |            | 13K     | 5.0G       | 33.18/0.9140 | 29.37/0.8240 | 28.53/0.7910 | 26.43/0.8080 | 31.10/0.921  |
| VDSR [8]     |            | 666K    | 612.6G     | 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 | 32.01/0.934  |
| LGCNet [33]  |            | 193K    | 79.0G      | 33.32/0.9172 | 29.67/0.8289 | 28.63/0.7923 | 26.77/0.8180 | -            |
| DRCN [16]    |            | 1774K   | -          | 33.82/0.9226 | 29.76/0.8311 | 28.80/0.7963 | 27.15/0.8276 | 32.24/0.934  |
| LapSRN [30]  |            | 502K    | 115.2G     | 33.81/0.9220 | 29.79/0.8325 | 28.82/0.7980 | 27.07/0.8275 | 32.21/0.935  |
| DRRN [17]    |            | 298K    | 6796.9G    | 34.03/0.9244 | 29.96/0.8349 | 28.95/0.8004 | 27.53/0.8378 | 32.71/0.937  |
| MenNet [43]  | $\times 3$ | 678K    | 2662.4G    | 34.09/0.9248 | 30.00/0.8350 | 28.96/0.8001 | 27.56/0.8376 | 32.51/0.936  |
| IDN [19]     |            | 553K    | 124.6G     | 34.11/0.9253 | 29.99/0.8354 | 28.95/0.8013 | 27.42/0.8359 | 32.71/0.938  |
| LESRCNN [20] |            | 810K    | 238.9G     | 33.93/0.9231 | 30.12/0.8380 | 28.91/0.8005 | 27.70/0.8415 | 32.76/0.938  |
| MADNet [21]  |            | 930K    | 88.4G      | 34.14/0.9251 | 30.20/0.8395 | 28.98/0.8023 | 27.78/0.8439 | -            |
| CARN-M [42]  |            | 412K    | 46.1G      | 33.99/0.9236 | 30.08/0.8367 | 28.91/0.8000 | 27.55/0.8385 | 32.78/0.938  |
| FeNet [22]   |            | 357K    | 35.2G      | 34.21/0.9256 | 30.15/0.8383 | 28.98/0.8020 | 27.82/0.8447 | 32.99/0.939  |
| DARN-S       |            | 355K    | 35.0       | 34.35/0.9274 | 30.34/0.8428 | 29.09/0.8065 | 28.17/0.8528 | 33.59/0.944  |
| DARN         |            | 596K    | 58.4G      | 34.48/0.9286 | 30.41/0.8443 | 29.15/0.8076 | 28.38/0.8570 | 33.76/0.945  |
| Bicubic      |            |         | 36.40      | 28.42/0.8104 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 | 24.89/0.786  |
| SRCNN [5]    |            | -<br>8K | 52.7G      | 30.48/0.8626 | 27.50/0.7513 | 26.90/0.7101 | 24.52/0.7221 | 27.58/0.855  |
|              |            |         |            |              |              |              |              |              |
| FSRCNN [6]   |            | 13K     | 4.6G       | 30.72/0.8660 | 27.61/0.7550 | 26.98/0.7150 | 24.62/0.7280 | 27.90/0.861  |
| VDSR [8]     |            | 666K    | 612.6      | 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 | 28.83/0.887  |
| LGCNet [33]  |            | 193K    | 44.5G      | 30.87/0.8746 | 27.82/0.7630 | 27.08/0.7186 | 24.82/0.7399 | -            |
| DRCN [16]    |            | 1774K   |            | 31.53/0.8854 | 28.02/0.7670 | 27.23/0.7233 | 25.14/0.7510 | 28.93/0.885  |
| LapSRN [30]  |            | 502K    | 149.4G     | 31.54/0.8852 | 28.09/0.7700 | 27.32/0.7275 | 25.21/0.7562 | 29.09/0.890  |
| DRRN [17]    | $\times 4$ | 298K    | 6796.9     | 31.68/0.8888 | 28.21/0.7720 | 27.38/0.7284 | 25.44/0.7638 | 29.45/0.894  |
| MenNet [43]  |            | 678K    | 2662.4G    | 31.74/0.8893 | 28.26/0.7723 | 27.40/0.7281 | 25.50/0.7630 | 29.42/0.894  |
| IDN [19]     |            | 553K    | 32.3G      | 31.82/0.8903 | 28.25/0.7730 | 27.41/0.7297 | 25.41/0.7632 | 29.41/0.894  |
| LESRCNN [20] |            | 774K    | 241.6G     | 31.88/0.8903 | 28.44/0.7772 | 27.45/0.7313 | 25.77/0.7732 | 29.94/0.900  |
| MADNet [21]  |            | 1002K   | 54.1G      | 32.01/0.8925 | 28.45/0.7781 | 27.47/0.7327 | 25.77/0.7751 | -            |
| CARN-M [42]  |            | 412K    | 32.5G      | 31.92/0.8903 | 28.42/0.7762 | 27.44/0.7304 | 25.63/0.7688 | 29.80/0.898  |
| FeNet [22]   |            | 366K    | 20.4G      | 32.02/0.8919 | 28.38/0.7764 | 27.47/0.7319 | 25.75/0.7747 | 29.85/0.899  |
| DARN-S       |            | 363K    | 19.7       | 32.16/0.8951 | 28.58/0.7817 | 27.57/0.7374 | 26.08/0.7859 | 30.48/0.908  |
| DARN         | I          | 606K    | 32.9G      | 32.24/0.8963 | 28.64/0.7830 | 27.61/0.7390 | 26.25/0.7913 | 30.65/0.910  |

<sup>&</sup>quot;-" indicates that the result is unknown. The best and next best results are red and blue, respectively. Computing multiple addition corresponds to a 1280 × 720 HR image.

#### 結果



Fig. 6. Visual comparison of the DARN with other SR methods on real remote sensing images. Please zoom in for better visualization.

#### 結果



Fig. 7. Visual comparisons of the DARN with other SR methods on Urban100(×4) datasets. Please zoom in for better visualization.

#### 結論

• 既存の軽量モデルと比較し最良の結果を出した

• DARNは主にコアコンポーネントDARNに依存して優れた成績 を出す

• DARCBの特徴可視化は、我々のDABにおける事前情報の利用が、深層CNNの詳細な特徴の損失を抑制できることをさらに証明