This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-161377

(43)公開日 平成7年(1995)6月23日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ	技術表示箇所
H01M 10)/28	Z			
2	2/18	Z			
4	1/24	Z			
. 10)/26				
10)/34				
				審查請求	未請求 請求項の数10 OL (全 7 頁)
(21)出願番号		特顧平5-306384		(71) 出頭人	000005821
					松下電器産業株式会社
(22)出顧日	;	平成5年(1993)12月7日			大阪府門真市大字門真1006番地
				(72)発明者	股部 洋平
					大阪府門真市大字門真1006番地 松下電器
			_		産業株式会社内
				(72)発明者	
					大阪府門真市大字門真1006番地 松下電器
				(20) 700 277 44	産業株式会社内
				(72)発明者	松田 宏夢
					大阪府門真市大字門真1006番地 松下電器
				(7.4) (b)0H I	産業株式会社内 弁理士 小鍜治 明 (外2名)
				(74)10座人	大陸工 小坂伯 明 UN2石/ 最終頁に続く
					東秋貝に就へ

(54) [発明の名称] 角形密閉式アルカリ蓄電池とその単位電池

(57)【要約】

【目的】 電気自動車等に使用される比較的大型の角形 密閉式アルカリ蓄電池において、充放電に伴う電極群の 変形を抑制する内部構造とすることにより、寿命特性の向上を図る。

【構成】 セパレータ3を介して正極板2と負極板1とを平面方向に交互に重ねて構成した電極群と、アルカリ電解液とを電槽内部に挿入し、安全弁8を備えた蓋板7で封口され、極柱5をこの蓋板7に固定することにより、電槽内部における極板群の位置を規制した構造とし、電極群短側面部と電槽内壁との間に一定の距離を設け、電槽外部長側面部を金属製平板によって拘束したものである。

【特許請求の範囲】

【請求項1】セパレータを介して正極板と負極板とを交 互に重ねて構成した電極群とアルカリ電解液とを内部に 収容し、安全弁を備えた蓋で封口された電槽をもつ角形 密閉式アルカリ蓄電池であって、

極板群の上部に取りつけた極柱部を蓋部に固定することにより極板群の電槽内部における位置を規制し、電極群の下部及び短側面部と電槽内壁との間に空間を設け、電槽内のアルカリ電解液の液量を1.5から2.0cm²/電池容量1Ahとしたことを特徴とする角形密閉式アルカリ蓄電池。

【請求項2】電極群下部と電槽内底面との距離 t_1 (mm)は、 $2 \le t_1 < 10$ の関係にあり、電極群短側面部とこれに対向する電槽内壁との距離 t_2 (mm)は、 $1 \le t_2 < 5$ の関係にある請求項1記載の角形密閉式アルカリ蓄電池。

【請求項3】正極板、負極板のうちのいずれか一方、も しくは両方の極板の下部はセパレータにより覆われてい る請求項1記載の角形密閉式アルカリ蓄電池。

【請求項4】極板下部はセパレータを折りまげることにより覆われている請求項3記載の角形密閉式アルカリ蓄電池。

【請求項5】セパレータが極板上部を覆う部分は、少なくとも一部分に未接続部を有する構造である請求項1記載の角形密閉式アルカリ蓄電池。

【請求項6】セパレータは極板下部よりも外方へ延出した構造を有し、このセパレータの縦方向長さをt。、極板の縦方向長さをt。とした時、 $101 \le t$ 。/ t。105 (%)の関係にある請求項1記載の角形密閉式アルカリ蓄電池。

【請求項7】ニッケル酸化物を主体とする正極板と、電 気化学的に水素の吸蔵放出が可能な水素吸蔵合金からな る負極板を備えた請求項1記載の角形密閉式アルカリ蓄 電池。

【請求項8】電極群はバンドにより縛られている請求項 1記載の角形密閉式アルカリ蓄電池。

【請求項9】安全弁の作動圧力が0.2~0.5MPa である請求項1記載の角形密閉式アルカリ蓄電池。

【請求項10】セパレータを介して正極板と負極板とを交互に重ねて構成した電極群とアルカリ電解液とが内部 40 に挿入され、安全弁を備えた蓋で封口された電槽をもち、極板群の上部に取りつけられた極柱部を蓋に固定することにより極板群の電槽内部における位置を規制して電極群の下部及び短側面部と電槽内壁との間に空間を設け、アルカリ電解液の量を1.5から2.0cm/軍池 容量1Ahとした構成の角形密閉式アルカリ蓄電池を単電池とし、この単電池を2~40個直列および/または並列に接続して単位電池とし、この単位電池は保持体によりその集合方向の両端の全面もしくは一部分が拘束されている単位電池。 50

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、比較的大型の角形密閉 式アルカリ蓄電池およびこれを集合した単位電池に関す る。

2

[0002]

【従来の技術】現在、大型蓄電池は自動車のSLI用バッテリーや掲置き用電池として鉛蓄電池が用いられている。また、小型民生機器用の電源としてはニッケルカドミウム蓄電池が用いられ、さらに近年ではエネルギー密度の点でより優れたニッケル水素蓄電池などのアルカリ蓄電池が普及してきている。

【0003】近年、地球規模の環境破壊が急速に進んでおり、その要因の一つとして自動車の排出ガスが取り上げられている。この問題に対処するため、電気自動車の開発が急速に進められているが、その開発においては電源の開発が鍵を握っている。

【0004】これらの駆動用電源としては、現在主として鉛蓄電池が使われている。しかしながら、この鉛蓄電池は単位重量当たりのエネルギー密度が低いため、1充電走行距離が非常に短い。さらに、この電池は開放形であるため補液等の煩雑なメンテナンスが必要である。また、エネルギー密度に優れ1充電走行距離の長いニッケルカドミウム蓄電池やニッケル鉄蓄電池も、電気自動車用電源として一部で用いられているが、これらの蓄電池も密閉形ではなく、鉛蓄電池と同様に補液等、煩雑なメンテナンスが必要である。

【0005】安全性の観点からも、電解液量を必要最小限とした密閉形電池が望まれている。

30 【0006】一方、密閉形アルカリ蓄電池は、充放電時 に発生するガスによって電池内圧が上昇する為、その密 閉容器には安全弁が設けられているが、この安全弁が作 動して、ガスとともに電解液器(ミスト)が外部に放出 されると、電解液量の減少により電池容量の低下を来す ことになる。

【0007】これらの課題を解決し、1充電走行距離の向上やメンテナンスフリー化を実現するために、高エネルギー密度で完全密閉式の新しい蓄電池の開発が重要である。

40 [0008]

【発明が解決しようとする課題】上記の蓄電池は、充放 電を施すと電極の膨脹収縮を伴う。そしてその構造が角 形密閉構造であると、電極群短側面部及び底面部と電槽 内壁との間に空間的余裕が無い場合、膨脹した電極群が 電槽壁によって圧迫されることにより極板群に変形が生 じ、向かい合う極板同士の距離が一定でなくなり、一部 では活物質の脱落等も発生した。

【0009】そのため電極反応が不均一となって活物質 の有効利用ができなくなり、放電容量の低下、充電時の 電池内圧力の上昇や内部短絡の恐れがあった。また電極 群を収容した電槽内部に全く空間が無い場合は、所定量 の電解液を迅速に注入することが困難であり、さらに注 入する電解液量がニッケル正極の反応容量に対して不足 する場合にはその利用率及びサイクル寿命は低下する。 反対に電解液量が多過ぎる場合には過充電時に正極から 発生する酸素ガスの負極での吸収反応が阻害され、安全 弁からガスとともに電解液器が漏れ出てサイクル寿命が 低下した。

【0010】通常、電極群は平板状極板を重ねて構成さ れるため、バンド等による拘束をしない場合、電槽へ挿 10 入する際の作業性が低かった。一方、電極群の膨脹は、 拘束されていないかまたは拘束の弱い極板下方向に顕著 である為、極板を覆う袋状セパレータの下部長さに余裕 が無く、さらにセパレータ下部を溶着等によって閉じた 構造とした場合、膨脹した極板によってセパレータ下部 が破断され、同様に活物質の電槽内底部への脱落、内部 短絡等が懸念された。

【0011】またセパレータによって極板上部までを完 全に覆った場合は、充放電時に発生するガスがセパレー タ内部に蓄積され、ガス圧力が高まって電池破裂の恐れ 20 があった。さらに合成樹脂製電槽を用いた場合、極板群 が電槽の長側面方向へと膨脹した際、電槽自体の変形を 引き起こし、結果的に電極群短側面部と電槽内壁との間 に設けられた空間的余裕を無くすことになる。

【0012】本発明は電池内部において、このような電 極群の短側面方向への変形を許容し、また電極群の電槽 長側面方向への膨脹を抑制する構造とすることによっ て、均一な電極反応の維持を図り、さらに適切な量の電 解液を迅速に電槽内へ注入することによって寿命特性及 び安全性に優れた密閉式アルカリ蓄電池を提供すること を目的とする。

[0013]

【課題を解決するための手段】上記の課題を解決するた めに、本発明の角形密閉式アルカリ蓄電池は、セパレー タを介して正極板と負極板とをその平面方向に交互に重 ね、さらに少なくとも一か所以上をバンドにより縛って 構成した電極群と、正極利用率を維持しつつ過充電時に おけるガス吸収反応を妨げないような適切な量のアルカ リ電解液とが電槽内部に挿入され、この電槽は安全弁を 備えた蓋で封口された角形密閉式アルカリ蓄電池であっ て、電極群上部に取りつけられた極柱部を蓋に固定する ことにより、電極群と電槽内側壁、及び底部との間に適 当な距離を設けることを可能にし、膨脹する電極群の変 形をこの空間部において吸収することを特徴とする。

【0014】さらに極板を包む袋状セパレータの下部の 長さに余裕をもたせ、またセパレータ下部を溶着せず単 に折りまげた構造とすることにより、極板の変形、及び 極板の下方向への膨脹によるセパレータ底部の破断を防 止して、蓄電池の寿命特性を向上させるものである。ま たこの極板を覆うセパレータの上部については、その少 50 なお電極群の厚みは、電槽内寸法に対して95%となる

なくとも一部分を未接続構造とすることによって充放電 時に発生するガスの抜け出し道を確保し、ガス圧上昇に よる電池破裂等の危険回避を図るものである。

【0015】また本発明では角形密閉式アルカリ蓄電池 からなる単電池の個々、あるいはその複数個を接続した 単位電池において、電槽外部長側面部の全面もしくは一 部分を、バンド例えば金属製平板を用いて電槽幅が変化 しない程度に拘束することにより、電極群の長側面方向 への膨脹による電槽の変形を抑制し、電極群短側面部と 電槽内壁との間に設けた空間を維持するものである。

[0016]

【作用】本発明の密閉式アルカリ電池では、セパレータ を介して正極板と負極板とがそれぞれ複数枚交互に並ん で構成された電極群の膨脹によるその短側面方向への変 形を許容し、電極群の長側面方向への膨脹は抑制する構 造をとり、またセパレータの下部破断および変形をも抑 制することにより、極板間の近接状態が維持されて電極 反応の均一性が保てる。さらに活物質の脱落および内部 短絡が抑えられることにより、充放電サイクル経過に伴 う正極利用率の低下および電池内圧力の上昇が抑制され る。また、極板間の空間が減少することにより、熱伝導 がよくなって充電時の蓄熱が押さえられるために発熱速 度が押さえられ、酸素過電圧に達する時間を遅らすこと ができ、電池内圧の上昇抑制、および充電効率の向上が 図られる。また電槽内に電解液量を過不足なく注入する ことにより、正極利用率の低下や安全弁作動による漏液 等も生じない。以上のことがあいまって活物質の利用率 が高く、寿命特性に優れた密閉式アルカリ蓄電池を提供 することができる。

[0017]

【実施例】以下、本発明の実施例を図面を参照にしなが ら説明する。

【0018】(実施例1)図1(A), (B), (C) に本発明で用いた角形密閉式アルカリ蓄電池の構造を示 す。図1において1はMmNi,を主成分とする水素吸 蔵合金を発泡状のニッケル多孔体からなる芯材内に充填 するか、あるいは平板状芯材の両面または片面に水素吸 蔵合金を主成分とするペーストを塗着した負極板、2は 水酸化ニッケルを主成分とする粉末を発泡状のニッケル 多孔体からなる芯材内に充填した正極板、3は親水化処 理を施したポリプロピレン製セパレータである。これら の正・負極板をそれぞれセパレータで包み、正極板12 枚と負極板13枚を交互に重ね合わせて電極群を構成し

【0019】セパレータ3は極板下部に当たる部分はU 字状に折りまげ、左右両側端部を溶着により閉じた袋状 のものを用い、上部については一部分のみを接着した。 また、極板縦長さをtaとし、セパレータの縦長さをta とした場合で、 $t_1/t_4=1$. 01の寸法関係とした。

ように作製した。この電池は正極で容量が規制され、電 池容量は100Ahである。4はニッケル製集電体、5 は極柱、6はポリプロピレン製の電槽、7はポリプロピ レン製の蓋、8は安全弁(作動圧力2~3kg/gm²)、 9は極柱を電槽蓋部に固定する部品である。電解液は水 酸化カリウムを主成分とするアルカリ水溶液を用い、1 70mmで注入した。電槽の外寸法は縦35×横120 ×高さ196mmであり、極板寸法は電槽の高さ方向に1 54mm、横方向に108mmのものを使用した。電槽内部 底面と極板群底部との距離を、 tıとし、 tı=2 (mm) であり、また電槽内部短側面部と極板群短側面部との距 離をtzとし、tz=1 (mm) とした。このようにして作 製した単電池を、電槽長側面部から厚さ8mmのアルミニ

ウム製補強用平板10と鉄製のパンド11を用いて、電

槽幅が変化しない程度に拘束し、充放電を行った。環境

温度は25℃とした。放電容量試験は、10Aで12時*

* 間充電を行い、1時間の休止後、20Aで端子電圧が1 Vとなるまで放電し、放電容量はその電圧に至るまでの 時間を用いて計算し、正極の利用率として表した。サイ クル寿命試験は、放電容量試験と同じ条件を繰り返すこ とにより行った。

【0020】比較例として t,から t.の値を個別に変化 させた単電池を試作した。その際、tiの値については 極板群上部極柱の電槽蓋部への固定位置を上下に移動さ せることにより変化させ、txについては極板横寸法の 変更により、t3/t4の値についてはセパレータ寸法は 一定とし、極板縦寸法の変更により変化させた。また袋 状セパレータの閉じ方、及び電槽の外部拘束の有無につ いても比較を行った。(表1)に比較例の一覧を示す。 [0021]

【表1】

	t.	t 2	t , / t ,	をイトーイトタ	セパシータ上版	電槽拘束
本発明	2	1	1.01	折り曲げ	- 御閉じ	有り
比較例1	1	1	1.01	折り曲げ	一部閉じ	有り
比較例 2	0	1	1.01	折り曲げ	一部閉じ	有り
比較何3	2	0	1.01	折り曲け		有り
比較例 4	2	1	1.00	折り曲げ	一部間じ	有り
比較例 5	2	1	1.00	海 着	一部閉じ	有り
比較例 6	2	1	1.01	折り曲げ	全部開じ	有り
比較例7	2 (1	1.01	折り曲げ	一部閉じ	無し

【0022】図2の(A), (B), (C)に、正極利 用率と充電時電池内圧力の充放電サイクル経過に伴う変 化を示す。電槽内壁と極板群短側面部との距離がサイク ル寿命特性に及ぼす影響について図2(A)に示す。こ の図から明らかなように、本発明の電池においては正極 40 利用率96%の値が得られ、100サイクルの充放電を 繰り返した後も同等の正極利用率を示した。これに対し 比較例1、2より、t₁の値を小さくするに従い、サイ クル経過に伴って正極利用率が低下した。充電時の電池 内圧力のサイクル変化においても、tiの値を小さくす ることによりサイクル経過とともに上昇した。また比較 例3から、t₂の値を1mmより小さくした場合にもサイ クル経過に伴う寿命特性の低下がみられた。いずれの場 合も、膨脹した極板が電槽内壁によって押し戻されたこ とにより極板群に歪みが生じ、円滑な電極反応が阻害さ

れ、充放電効率が低下したために正極利用率の低下、及 び電池内圧の上昇が起こったと考えられる。従って充放 電に伴う極板の膨脹を許容し、寿命特性を改善するに は、本発明の通り t₁≥2、 t₂≥1とすることが必要で ある。

【0023】次にセパレータ構造の違いがサイクル寿命 特性に及ぼす影響について、図2(B)に示す。比較例4 の極板下部のセパレータ長に余裕を無くした場合には、 充放電サイクルに伴い、正極利用率の低下、及び電池内 圧力の上昇が認められたが、t₃/t₄≥1.01とすれ ば正極利用率の低下を抑制するには十分であった。この 場合においても充放電を繰り返すことによる極板の膨脹 が起こるため、膨脹を許容するに十分な空間を、セパレ ータ下部にあらかじめ設けていない場合、膨脹した極板 50 短側面が袋状セパレータの下部に押し返され、その結

8

果、極板に折れ、曲がり等が生じる。よって極板間の近 接状態が維持されなくなり、均一な電極反応が阻害され たために放電容量の低下、電池内圧力の上昇がおきたと 考えられる。

【0024】一方、過剰な空間を設けた場合には、極板活物質の充填量が減少するため、公称容量を確保できなくなる。極板の伸びを考慮し、 t_1 の上限を10mm、 t_2 を5mm、 t_1/t_4 を1.05とした。

【0025】比較例5は、袋状セパレータの下部が溶着によって閉じられ、さらにt3/t4を1.00とした構 10 造である。図2(B)に示すように、サイクル寿命試験において大幅な正極利用率の低下が見られた。これは縦方向に膨脹した極板によってセパレータ下部が切断され、電池の内部短絡が生じたためと考えられる。

【0026】比較例6は、セパレータ上部をすべて閉じた構造とした場合であるが、サイクル経過とともに正極利用率の低下が認められた。これは充電時に極板で発生したガスが、セパレータ内部に蓄積されることによって極板群に歪みが生じ、充電効率が低下したと考えられ *

* る。

【0027】図2(C)に、比較例7の電槽を外部から 金属製平板により拘束することなく充放電を行った場合 について、そのサイクル寿命特性を示す。樹脂製電槽を 用いているため、この場合には充放電の繰り返しによ り、電槽は、その長側面方向へと大きく膨張した。その ため極板群が、その短側面方向から電槽内壁により圧迫 されることによって歪みを生じ、さらに正負極の芯材と 活物質との接触面積が低下したために電池の充放電効率 が低下した。従って電槽長側面部を、外部から電槽の膨 脹を抑制する程度に拘束することが必要である。

【0028】 (実施例2) 実施例1の密閉式アルカリ蓄電池の単電池を用い、電解液量を変化させて実施例1と同様な電池を作成し、これらの電池を用いて実施例1と同じ充放電条件においてサイクル寿命試験を行った結果を(表2) に示す。なおサイクル寿命試験は、正極利用率が初期値の60%となった時点で終了した。

[0029]

【表2】

■植No.	電解液量	初期利用率	サイクル寿命
1	1 3 0 cm²	87.7%	3 7 0 1194
2	140 caf	91.4%	6 3 0 1174
3	150 cm²	95.9%	8 1 0 1172
4	170 cal	96.1%	9 0 0 1174
5	200 cm²	96.8%	8 1 0 1194
6	2 1 0 cd	97.2%	5 7 0 1124

【0030】電解液量が130cm であるNo.1の電池は、初期利用率およびサイクル寿命とともに低い。これは充放電サイクルを繰り返すことによりニッケル正極が膨潤して電解液を吸収してしまい、負極に十分な電解液が行き渡らなくなったために負極の水素吸蔵合金の劣化を早めたものと考えられる。また電解液量が210cm であるNo.6の電池は、初期利用率の面では最も良好であるが、サイクル寿命が電解液量200cm の場合と比較して大きく低下している。これは電解液量が多量であるために過充電時に正極から発生する酸素ガスの負極での吸収反応が阻害されることにより電池内圧力の上昇を招き、送には安全弁からの電解液の漏液が発生したためにサイクル寿命が低下したと考えられる。No.3からNo.5

30 の電池のサイクル寿命試験の結果は良好である。電池容量は100Ahであるため、以上の結果、電解液量は1.5から2.0cm / Ah (電池容量) であることが望ましい。

【0031】(実施例3)実施例1の密閉式アルカリ蓄電池の単電池を用い、timmおよびtimmの値が異なる実施例1と同様な電池を作成し、これらの電池を用いて電解液の注液操作を一度ずつ行った結果を(表3)に示す。この場合、電解液量は170cm³および180cm³とした。

0 [0032]

【表3】

10

電池Ro.	注液量	t,	t "	注被残量
7	170 of	2	1	0 ਛਾਂ
8	į.	1	1	4 cal
9	1	O	1	6 ਛ ੇ
1 0	ŀ	2	0	2 caf
1 1	180 cd	2	1	0 car

【0033】本発明に従い、t₁を2mm、t₂を1mmと し、電槽内部に適度な空間を設けたNo.7および11の 電池では注液量に依存せず、一度の注液操作により所定 量の電解液を注液することが可能であった。一方、電極 群と電槽内壁との空間を小さくするに従い、電池に注液 されない量の増加することがわかる。電池は充放電を行 うことによって極板の膨脹が生じるため、その極板の膨 20 を行った結果を(表4)に示す。 脹分を見越し、初充電前の段階において若干過剰な量を 注液する必要がある。従って本発明の通り電槽内部に設*

* けた空間に一度電解液を保持しておき、次いで電極群に 電解液が浸透してゆく構造を採ることが必要である。

【0034】 (実施例4) 実施例1の密閉式アルカリ蓄 電池の単電池を用い、作動圧力の異なる安全弁を装着し た実施例1と同様な電池を作成し、これらの電池を用い て実施例1と同じ充放電条件においてサイクル寿命試験

[0035]

【表 4 】

電池No.	安全弁作動圧力	初期利用率	サイクル寿命
1 2	0. 05MPa	88.3%	2 6 0 1114
13	0.10MPa	91.2%	4 7 0 4194
14	0. 20MPa	96.2%	9 0 0 1112
15	0. 5 0 M P a	95.3%	8 2 0 1174
16	0.60MPa	90.7%	6 1 0 1134

【0036】安全弁作動圧力が0.05MPaであるN o.12および同0.1MPaであるNo.13の電池は、 過充電領域に入った途端に安全弁が作動するために十分 な充電を行うことが出来ず利用率は低い値を示し、また 電解液が頻繁に漏液するためにサイクル寿命も低下し た。安全弁作動圧力が 0. 6 M P a と高いNo.1 6 の電 池の場合には、充電時の電池内部圧力が通常より上昇し た場合にも弁作動を起こさないため、過度の圧力により 電極群に変形が生じる。そのため電極群内部に空間が生 40 じて充放電反応が不均一となり正極利用率が低下したと 考えられる。以上の結果より、安全弁作動圧力は0.2 から0.5MPaであることが望ましい。

[0037]

【発明の効果】以上のように、本発明によれば均一な電 極反応が維持され、活物質利用率が高く、寿命特性に優 れ、また安全性の高い密閉式アルカリ蓄電池を提供する ことができる。

【図面の簡単な説明】

【図1】(A) 本発明の実施例における角形密閉式ア 50 7 ポリプロピレン製蓋板

ルカリ蓄電池の内部正面図

- (B) 本発明の実施例における角形密閉式アルカリ蓄 電池の内部側面図
- (C) 本発明の実施例における角形密閉式アルカリ蓄 電池の外部側面図

【図2】(A) 電極群短側面部と電槽内壁との距離 が、充放電サイクル寿命特性に及ぼす影響を示す図

- (B) 袋状セパレータの接続方法及び極板との寸法比 が、充放電サイクル寿命特性に及ぼす影響を示す図
- (C) 電槽外部長側面部の金属製平板による拘束の有 無が、充放電サイクル寿命特性に及ぼす影響を示す図 【符号の説明】
 - 1 負極板
 - 2 正極板
 - 3 ポリプロピレン製セパレータ

 - 5 極柱
 - 6 ポリプロピレン製ケース

12

【図2】

- 8 安全弁
- 極柱固定部品

★ 10 金属製補強用平板 11 鉄製連結バンド

【図1】 ٠В۶ (A) 正疑利用幸 (%) (B) 正極利用率 tiz (C) (%) (C) 120

11

フロントページの続き

(72)発明者 生駒 宗久

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第1区分 【発行日】平成11年(1999)12月24日

【公開番号】特開平7-161377 【公開日】平成7年(1995)6月23日

【年通号数】公開特許公報7-1614 【出願番号】特願平5-306384

【国際特許分類第6版】

H01M 10/28 2/18 4/24 10/26 10/34

[FI]
HO1M 10/28 Z
2/18 Z
4/24 Z
10/26
10/34

【手続補正告】

【提出日】平成11年3月15日

【手続補正1】

【補正対象書類名】図面

【補正対象項目名】図2

【補正方法】変更

【補正内容】

【図2】

