

CURSO: Engenharia de Software

DISCIPLINA: Paradigmas de Solução de Problemas

SEMESTRE/ANO: 2025/1

CARGA HORÁRIA: 60 horas CRÉDITOS: 04

PROFESSOR: Edson Alves da Costa Júnior Código: FCTE0002

PLANO DE ENSINO

1 Objetivos da Disciplina

A disciplina Paradigmas de Solução de Problemas tem como objetivo preparar os alunos do curso de Engenharia de Software da FCTE para competições de programação, como a Maratona de Programação. Estes eventos ampliam o horizonte dos alunos e os estimulam a se aprofundarem nos tópicos de programação em geral. Além disso, a disciplina também constitui mais uma oportunidade para estudo e aprimoramento dos alunos em programação, tornando-os engenheiros mais preparados e capazes de atuar com competência no mercado de trabalho.

2 Ementa do Programa

- I. Introdução
 - i. Programação Competitiva
 - ii. Maratonas de Programação
 - iii. Juízes Eletrônicos
 - iv. Dicas para estudo e treinamento
 - v. Como começar

- II. Paradigmas de Solução de Problemas
 - i. Busca Completa
 - ii. Divisão e Conquista
 - iii. Algoritmos Gulosos
 - iv. Programação Dinâmica

3 Horário das aulas e atendimento

AULAS: terças e quintas, das 16:00 às 17:50 hrs.

ATENDIMENTO: segundas, das 12:30 às 14:30 hrs, via plataforma Teams.

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe. As comunicações do curso serão feitas exclusivamente através da plataforma SIGAA.

O curso também será focado na resolução de exercícios, envolvendo a análise e resolução de problemas oriundos de competições e de *online judges*. Ocasionalmente acontecerão contests ou na plataforma vJudge¹, ou na plataforma Codeforces², ou na plataforma AtCoder³, ou na plataforma MOJ⁴.

5 Critérios de Avaliação

A avaliação do curso se dará por meio de duas provas, individual, cujas datas estão previstas no cronograma.

5.1 Provas

Cada prova será composta por 10 problemas, e será aplicada em dois dias, com 5 problemas cada. É permitida a consulta a materiais impressos e é vedada a consulta aos colegas ou a recursos online. A prova terá inicio às 16:10 hrs, e **não serão admitidos estudantes no ambiente de provas após às 16:15 hrs**.

A solução proposta para um problema será corrigida de acordo com os seguintes critérios: após ser compilada de forma bem sucedida, uma série de testes unitários automatizados alimentarão o programa resultante com entradas válidas e comparará os resultados obtidos com as saídas corretas. Uma solução será considerada aceita se obtiver sucesso em todos os testes unitários.

Após a aplicação da prova, as soluções propostas pelos estudantes serão avaliadas por ferramentas de identificação de plágio, e caso duas ou mais soluções apresentem índices de similaridade que caracterizem cópia, todas elas serão anuladas, mesmo que tenha recebido o veredito "Aceito" durante a prova.

A prova será realizada, a menos de dificuldades técnicas ou de indisponibilidade de equipamentos, nas máquinas do laboratório e em ambiente Linux, por meio do Nutella Boot do professor Bruno Ribas. As soluções para os problemas devem ser escritas em C, C++ ou Python. Soluções em outras linguagens não serão aceitas.

A menção final do curso será dada pelo total N de problemas cujas soluções foram aceitas, e não anuladas, nas duas provas, de acordo com a tabela abaixo.

¹https://vjudge.net

²http://codeforces.com

³atcoder.jp

⁴https://moj.naquadah.com.br/cgi-bin/index.sh

\overline{N}	Menção	Descrição
0	SR	Sem rendimento
1 a 4	II	Inferior
5 a 9	MI	Médio inferior
10 a 13	MM	Médio
14 a 17	MS	Médio superior
18 a 20	SS	Superior

5.2 Listas de exercícios

A cada semana poderá será proposta uma lista de exercícios, com exercícios relacionados com o conteúdo ministrado. A resolução das listas não modifica a menção, mas é fortemente encorajada para a fixação dos conceitos apresentados no curso.

5.3 Critérios de aprovação

Obterá aprovação no curso o aluno que cumprir as duas exigências abaixo:

- 1. Ter presença em 75% ou mais das aulas;
- 2. Obter menção igual ou superior a MM.

IMPORTANTE: Atestados médicos e documentos comprobatórios de justificativas de faltas dão direito à realização de atividades avaliativas que você venha a perder, mas essas ausências justificadas também são levadas em consideração como ausências efetivas para o cômputo da frequência mínima obrigatória (*Graduação UnB – Manual para estudantes*, pág. 35).

6 Cronograma

Semana	Aula	Data	Conteúdo
01	1	25/03	Apresentação do curso. Introdução à Programação Competitiva
	2	27/03	Busca Completa: definição
02	3	01/04	Backtracking
	-	03/04	Contest 1
03	4	08/04	Meet in the Middle
	5	10/04	Algoritmos gulosos

Semana	Aula	Data	Conteúdo
04	6	15/04	Two pointers
	-	17/04	Contest 2
05	7	22/04	Divisão e Conquista: busca binária
	8	24/04	Divisão e Conquista: busca ternária
06	9	29/04	Divisão e Conquista: Mergesort
	-	01/05	Contest 3
07	-	06/05	Prova 1A
	-	08/05	Prova 1B
08	10	13/05	Transformada de Fourier
Vo	11	15/05	Transformada Rápida de Fourier
09	12	20/05	Square Root Decomposition
	-	22/05	Contest 4
10	13	27/05	Programação Dinâmica: definição
10	14	29/05	Prefix sum
11	15	03/06	Max range sum
	-	05/06	Contest 5
12	16	10/06	Problema do troco
	17	12/06	Problema da mochila
13	18	17/06	Maior subsequência crescente
	-	19/06	Ponto Facultativo: Corpus Christie
14	19	24/06	Problema do Caixeiro Viajante
	_	26/06	Contest 6
15	20	01/07	DP de dígitos
	21	03/07	SOS DP
16	22	08/07	Knuth Optimization
	-	10/07	Contest 7
17	-	15/07	Prova 2A
	_	17/07	Prova 2B
18	-	22/07	Prova Substitutiva
	-	24/07	Revisão de Notas. Menções Finais

7 Bibliografia

LIVRO TEXTO

HALIM, Steven S. and HALIM, Felix. Competitive Programming, 4^a ed, Lulu, 2010.

LAARKSONEN, A. Competitive Programmer's Handbook, Online, 2018.

ROUGHGARDEN, T. Algorithms Illuminated (Part 3): Greedy Algorithms and Dynamic Programming, Editora LLC, 2019.

LITERATURA COMPLEMENTAR

CORMEN, Thomas H. **LEISERSON** and Charles E. and **RIVEST**, Ronald L. and **STEIN**, Clifford. *Algoritmos: Teoria e Prática*, Editora Campus, 2ª ed, 2002.

DROZDEK, Adam. Estruturas de Dados e Algoritmos em C++, Thomsom, 2001.

KERNIGHAN, Brian and **RITCHIE**, Dennis M. *The C Programming Language*, Prentice Hall, 1988.

JOSUTTIS, Nicolai M. *The C++ Standard Library*, Addison-Wesley, 1999.

SOLTYS-KULINICZ, Michael. *Introduction to the Analysis of Algorithms*, World Scientific Publishing Co, 2012. (*eBrary*)

STEPHENS, Rod. Essential Algorithms: A Practical Approach to Computer Algorithms, John Wiley & Sons, 2013. (eBrary)

BALDWIN, Douglas; **SCRAGG,** Gregg. *Algorithms and Data Structures: The Science of Computing*, Charles River Media, 2004. (*eBrary*)