Parte I: Bases - Sección I: Variables y tipos de datos simples

Variables

Toda **variable** está conectada a un valor, que es la información asociada con ese valor. En este caso se agrega la variable message la cual contiene el valor de texto "Hello world!".

```
message = "Hello world!"
print(message)
>>> Hello world!
```

Añadir variables hace un poco más de trabajo para el interpretador de python. Cuando procesa la última línea asocia la variable message con el primer valor otorgado. Al continuar con la ejecución del texto este utiliza el último valor que se le dio a la variable.

```
message = "Hello world!"
print(message)

message = "Hello Python!"
print(message)

>>> Hello world!
```

Nombrar y utilizar variables

>>> Hello Python!

Cuando se utilizan variables se suele seguir algunas reglas que, al romperlas, puede causar errores o dificultades a la hora de leer y entender el código escrito:

- a) El nombre de la variable solo debe contener letras, números y guiones bajos. Puede comenzar con un guión bajo pero no con un número (puede ser message_1, pero no 1 message);
- b) No se permiten espacios;
- c) No se utilizan palabras clave de Python o nombre de funciones;
- d) Deben ser nombres cortos y descriptivos del valor que almacenan.
- e) De ser posible, las variables se escriben en minúsculas.

Strings

Un **string** es una serie de caracteres, Todo aquello que se encuentre dentro de unas comillas, dobles o simples, es considerado un string en Python.

```
texto_1 = "Esto es un string"
texto_2 = 'Esto también'
```

Esta flexibilidad permite que se utilizan comillas y apóstrofos dentro de un string:

>>> Y le dije "Messi es mejor que Cristiano"

Métodos de strings

Una de las tareas más simples es cambiar la mayúscula al principio del texto en la variable

>>> Joaquin lopez

El **método** title() aparece luego de la variable en el print. Un método es una acción que Python puede ejecutar en una pieza de información. El punto (.) luego del nombre_1 le dice a Python que aplique el método title() en nombre_1. Los métodos generalmente llevan paréntesis luego de ser utilizados porque necesitan información adicional la cual va dentro del paréntesis. En el caso de title() la función no necesita información adicional.

También se puede cambiar un sting para que sea todo mayuscula y todo minuscula:

```
print(nombre_1.upper())
print(nombre_1.lower())
>>> JOAQUIN LOPEZ
```

>>> joaquin lopez

El método lower() es particularmente útil para almacenar data ya que quita las mayúsculas del texto

Utilizar variables en strings

En muchas situaciones, se utilizaran valores de variables dentro de un string, para lograr esto se coloca una f antes de abrir comillas y se colocan llaves {} donde se incluirá el nombre de la variable. Estos strings se llaman f-strings donde la f significa formato

```
nombre = "joaquín"

apellido = "lopez"

nombre_completo = f" {nombre} {apellido}"

print(f"Buen dia {nombre_completo .title()}")

>>>> Joaquin Lopez

También se pueden almacenar f-strings en variables

saludos = f"Buen dia {nombre_completo .title()}"
```

Añadir espacios en blanco con tabulaciones

>>> 2 - Francia >>> 3 - C++

En programación, espacios en blanco se refiere a caracteres no imprimibles, como espacios, tabulaciones, etc. Permite generar salidas que sean fáciles de leer, para añadir una tabulación a tu texto, utiliza \t:

```
print("\tPython")

>>> Python

Para añadir una nueva línea utiliza \n:

print("Lenguajes:\n1 -Python\n2 - Francia\n3- C++")

>>> Lenguajes
>>> 1 - Python
```

Esto también se puede combinar:

```
print("Lenguajes:\n1 -Python\n\t2 - Francia\n3- C++")
```

```
>>> Lenguajes
>>> 1 - Python
>>> 2 - Francia
>>> 3 - C++
```

Eliminar espaciado

Los espaciados pueden generar problemas a la hora de leer strings en Python. "python" y "python" son considerados string diferentes. Python puede buscar por espacios extra tanto a la izquierda como a la derecha de un string utilizando el método rstrip():

```
espacio_derecho = "python "
print(espacio_derecho.rstrip())

>>> 'python'
```

Tambien se pued reutilizar Istrip para eliminar espaciado del lado izquierdo o strip si se quiere eliminar espaciado de ambos lados:

```
espacios = "python"

print(espacios.lstrip())

print(espacios.lstrip())

>>>'python'

>>>'python'
```

Quitar prefijos

Otra tarea común es remover prefijos. Cuando se trabaja con URL, un prefijo común es https://. Si se quiere remover esto para que se pueda utilizar la URL:

```
google_url= "https://google.com"
print(google_url.removeprefix("https://"))
```

Se ingresa el nombre de la variable seguido de un punto seguido por el método removeprefix(). Dentro del método se ingresa el prefijo que se quiere remover del string original. Al igual que cuando se quitan los espacios extras, este método deja a la variable intacta por si se quiere utilizar su forma inicial

Números

Python trata los números de maneras distintas, dependiendo de cómo estén siendo utilizados. En primer lugar se miran a los integers ya que son los más simples para trabajar.

Integers

Los **integers** son valores donde se puede sumar (+), restar (-), multiplicar (*) y dividir (/). Cuando se escribe en la terminal python simplemente devuelve el resultado. A su vez python utiliza dos símbolos de multiplicación para representar exponentes y acompaña la orden de la operación así que se puede modificar el orden de la operación con paréntesis:

El espaciado no afecta en como Python evalúa las expresiones, solamente ayudan para la lectura de la misma.

Floats

Python llama a cualquier decimal **float**. Se llama float en casi todos los lenguajes para referirse a los valores en donde puede aparecer un punto decimal en cualquier posición del número. Hay que tener en cuenta que a veces se puede obtener un número arbitrario de decimales:

0.2 + 0.2 0.2 - 0.2 2 * 0.1 0.2 + 0.1 >>> 0.4 >>> 0.0 >>> 0.2 >>> 0.2

Python intenta representar los valores con la mayor exactitud posible lo que a veces puede ser difícil dado como los computadores tienen que representar los valores de forma interna.

Integers a Floats

Cuando se dividen 2 números, aunque estos sean integers, el resultado ser aún float:

4 / 2

Si estos se mezclan, el resultado también será un float:

1 + 2.0

>>> 3.0

>>> 2.0

Guiones bajos en números

Cuando se escriben números largos, se puede utilizar guinness bajos en lugar de puntos para hacer esto más legible. Cuando este se imprime, Python imprime solamente los dígitos:

```
numero_largo = 10_000_000_000_000_000
print(numero_largo)
```

Python ignora los guiones bajos cuando se almacena este tipo de información, aunque este no se guarde en grupos de 3, el valor no se verá afectado.

Asignaciones múltiples

Se puede asignar valores a variables múltiples en una sola línea de código, ayudando a acortar la cantidad de código escrito y haciéndolo fácil de leer:

$$x, y, z = -1, 0, 1$$

Estos necesitan estar separados por comas, tanto las variables como los valores que se le otorgan a estas

Comentarios

Los comentarios son una parte fundamental de cualquier lenguaje de programación. A medida que los códigos se van tornando más largos y complicados, los comentarios facilitan la comprensión del mismo. Los comentarios son notas que describen lo que está sucediendo.

¿Cómo se escriben comentarios?

En Python,el numeral (#indica que es un comentario. Todo lo que se encuentre luego de un numeral es ignorado por el interpretado de Python:

```
# Tu nombre almacenado en una variable mas arriba print(nombre_1.title())
```

>>> Joaquin lopez

¿Qué tipo de comentarios deberías escribir?

La principal razón para escribir comentarios es explicar qué hace tu código y cómo funciona. Cuando estás trabajando en un proyecto, entiendes cada parte, pero con el tiempo puedes olvidar detalles. Los comentarios te ayudan a recordar tu enfoque sin tener que volver a analizar todo.

Si quieres ser un programador profesional o colaborar con otros, es fundamental escribir comentarios claros y útiles, ya que la mayoría del software se desarrolla en equipo. Los buenos programadores esperan ver comentarios que expliquen el código.

Cuando dudes si deberías comentar algo, pregúntate si te llevó pensar varias soluciones antes de llegar a la correcta. Si fue así, deja un comentario explicándolo. Siempre es más fácil eliminar comentarios innecesarios después que tener que agregarlos más tarde.

A partir de ahora, el autor usará comentarios en sus ejemplos para explicar mejor el código.

"The Zen of Python"

Es un conjunto de principios y filosofías que guían el diseño y la escritura de código en Python.

Fue escrito por Tim Peters y es una especie de "manifiesto" que describe cómo debería ser el código Python: claro, simple y elegante.

Puedes verlo directamente escribiendo en la consola de Python:

import this			

Algunos de los principios más destacados son:

- Lo bello es mejor que lo feo;
- Lo explícito es mejor que lo implícito;
- La simplicidad es mejor que la complejidad;
- La legibilidad cuenta;
- En caso de ambigüedad, rechaza la tentación de adivinar.

Anexo Parte I: Bases - Sección I: Variables y tipos de datos simples

Variables

En Python, **una variable** es un nombre que se usa para almacenar un valor que puede cambiar o reutilizarse a lo largo del programa. Se define escribiendo el nombre de la variable, un signo igual (=) y el valor que quieres asignarle.

Reglas para nombrar variables:

- No puede empezar con un número.
- No puede contener espacios (se usa *guion bajo*).
- Solo puede contener letras, números y guiones bajos (_).
- No debe ser una palabra reservada de Python (como if, class, etc.).

Strings

Python puede manipular texto (representado por el tipo str, conocido como «cadenas de caracteres») al igual que números. Esto incluye caracteres «!», palabras «conejo», nombres «París», oraciones «¡Te tengo a la vista!», etc. «Yay! :)». Se pueden encerrar en comillas simples ('...') o comillas dobles ("...") con el mismo resultado

Para citar una cita, debemos «escapar» la cita procediéndose con \. Alternativamente, podemos usar el otro tipo de comillas:

'dosen\'t' "doesn't"
>>> doesn't
>>> doesn't
Si no quieres que los caracteres precedidos por \setminus se interpreten como caractere especiales, puedes usar cadenas sin formato agregando una ${\bf r}$ antes de la primera comilla:
print(r'C:\some\name')
>>> C:\some\name

Las cadenas se pueden concatenar (pegar juntas) con el operador + y se pueden repetir con *:

3 * 'a' + 'las'

>>> aaalas

Dos o más cadenas literales (es decir, las encerradas entre comillas) una al lado de la otra se concatenan automáticamente.

'a' 'las'

>>> alas

Si quieres concatenar variables o una variable y un literal, usa +:

variable_de_texto = "a"
variable de texto + 'las'

>>> alas

Métodos de strings

Método	Método Descripción	
lower()	Convierte el texto a minúsculas	"Hola".lower() 🔂 "hola"
upper()	Convierte el texto a mayúsculas	"hola".upper() 🔁 "HOLA"
capitalize()	Convierte la primera letra a mayúscula	"python".capitalize() 🔁 "Python"
title()	Convierte la primera letra de cada palabra a mayúscula	"hola mundo".title() 🔂 "Hola Mundo"
strip()	Elimina espacios en blanco al inicio y final	" hola ".strip() ➡ "hola"
replace(a, b)	Reemplaza todas las apariciones de a por b	"hola mundo".replace("mundo", "Python") <mark>→</mark> "hola Python"
split(sep)	Divide el string en una lista usando el separador sep	"a,b,c".split(",")
join(lista)	Une una lista de strings con un separador	",".join(['a', 'b', 'c'])
find(sub)	Devuelve la posición de la primera aparición de sub	"hola mundo".find("m") 🔁 5
count(sub)	Cuenta cuántas veces aparece sub	"banana".count("a") 🔁 3
startswith(sub)	Devuelve True si empieza con sub	"hola mundo".startswith("hola") True
endswith(sub)	Devuelve True si termina con sub	"archivo.txt".endswith(".txt")
isalpha()	Devuelve True si solo contiene letras	"hola".isalpha() 🔁 True
isdigit()	Devuelve True si solo contiene dígitos	"123".isdigit() 🔁 True
islower()	True si todas las letras están en minúsculas	"hola".islower() 🔁 True
isupper()	True si todas las letras están en mayúsculas	"HOLA".isupper() 🔁 True
len()	(No es método, es función) Devuelve la longitud del string	len("hola") 🔁 4

Números

El intérprete funciona como una simple calculadora: puedes introducir una expresión en él y éste escribirá los valores. La sintaxis es sencilla: los operadores +, -, * y / se pueden usar para realizar operaciones aritméticas; los paréntesis (()) pueden ser usados para agrupar.

Los números enteros (ej. 2, 4, 20) tienen tipo int, los que tienen una parte fraccionaria (por ejemplo 5.0, 1.6) tiene el tipo float. Vamos a ver más acerca de los tipos numéricos más adelante en el tutorial.

En el modo interactivo, la última expresión impresa se asigna a la variable _. Esto significa que cuando se está utilizando Python como calculadora, es más fácil seguir calculando.

```
tax = 12.5 / 100

price = 100.50

price * tax

price + __

round(_, 2)

>>> 12.5625

>>> 113.0625

>>> 113.06
```

Esta variable debe ser tratada como de sólo lectura por el usuario. No le asignes explícitamente un valor; crearás una variable local independiente con el mismo nombre enmascarando la variable con el comportamiento mágico.

Además de int y float, Python admite otros tipos de números, como Decimal y Fracción. Python también tiene soporte incorporado para complejos números, y usa el sufijo j o J para indicar la parte imaginaria (por ejemplo, 3+5j).

Métodos de integers y floats

Función / Método	Descripción	Ejemplo	
int(x)	Convierte un valor a entero (si es posible)	int(5.9) → 5	
float(x)	Convierte un valor a decimal	float(5) 5.0	
abs(x)	Valor absoluto de un número	abs(-4) 🔁 4	
pow(x, y) o x**y	Eleva un número a la potencia de otro	pow(2, 3) → 8 / 2**3 → 8	
round(x, n)	Redondea el número x a n decimales	round(3.14159, 2) 🔂 3.14	
divmod(a, b)	Devuelve una tupla (cociente, resto) de la división entera	divmod(10, 3) → (3, 1)	
max(a, b,)	Devuelve el mayor valor	max(1, 4, 2) 🔂 4	
min(a, b,)	Devuelve el menor valor	min(1, 4, 2) 🔁 1	
sum(lista)	Suma todos los elementos de una lista	sum([1, 2, 3]) 🔁 6	
math.floor(x)	Redondea hacia abajo (requiere import math)	math.floor(3.7) 3	
math.ceil(x)	Redondea hacia arriba (requiere import math)	math.ceil(3.1) <mark>→</mark> 4	
math.sqrt(x)	Raíz cuadrada (requiere import math)	math.sqrt(16) 🔁 4.0	
is_integer() (método)	Para float, devuelve True si el valor es un número entero	(3.0).is_integer() ➡ True	

Bibliografía:

Matthes, E. (2015). *Python crash course: A hands-on, project-based introduction to programming*. No Starch Press. ISBN 978-1-59327-603-4

Python Software Foundation. (2024). *The Python Tutorial*. Retrieved from https://docs.python.org/3/tutorial/

Parte I: Bases - Sección II: Introducción a las listas

¿Que es una lista?

Una lista es una colección de items en un orden particular. Se puede hacer una lista que incluya las letras del alfabeto o de números del 0 al 9. Una lista está indicada por corchetes [] y los elementos individuales están separados por comas (es una buena idea nombrar a la lista segun la información que contiene):

```
autos = ["nissan","chevrolet","ford"]
print(autos)
>>> ["nissan","chevrolet","ford"]
```

Al imprimir, Python devuelve la representación de la lista incluyendo los corchetes.

Acceder a los elementos de la lista

Las listas tienen un orden, así se puede acceder a los elementos que están en ellas diciéndole a Python la posición, o índice, del dato que necesitamos. Para acceder a los elementos de las listas hay que incluir la posición del dato entre corchetes comenzando desde el 0:

```
autos = ["nissan","chevrolet","ford"]
print(autos[0])
>>> ["nissan"]
```

Al preguntar por un solo dato, Python devolverá ese dato sin los corchetes. A esto se le puede aplicar los métodos de la sección I:

```
print(autos[0].title())
>>> Nissan
```

Posiciones de índice

Las posiciones comienzan desde el 0 en adelante. Esta es una característica de la mayoría de los lenguajes de programación y se debe a como las listas están indexadas basadas en cero (zero-based indexing)

Python tiene una sintaxis especial para acceder al último elementos de una lista, que es utilizando el -1

```
print(autos[-1].upper())
```

>>> FORD

Usar valores individuales de una lista

Se pueden utilizar valores individuales de una lista justo como cualquier otra variable. Por ejemplo en un f-string para crear un mensaje basado en una lista.

```
message = f'Mi primer auto fue un {autos[1].title()}."
print(message)
```

>>> Mi primer auto fue un Chevrolet

Modificar, añadir y quitar datos

La mayoría de las listas que se crean son dinámicas, esto significa que luego de crearlas podrás añadir y quitar datos de la lista a medida que tu código se vaya ejecutando.

Modificar elementos de una lista

La sintaxis para modificar datos es similar a la sintaxis para acceder a ellos. Para esto se utiliza el nombre de la lista seguido por el índice del dato que se quiere modificar, y luego proveer un nuevo valor para ese dato:

```
autos_modificados = autos
autos_modificados [0] = "renault"
print(autos)
```

```
>>> ["renault","chevrolet","ford"]
```

¿Por qué los índices empiezan en 0?

Esto se debe a cómo los lenguajes como C (en el que Python está escrito) manejan la memoria. En términos de punteros, la dirección base de un array es la del primer elemento. Si el índice empezará en 1, habría que hacer un desplazamiento adicional en cada acceso, lo cual sería menos eficiente.

Por eso, la indexación basada en cero simplifica la aritmética de punteros y hace que los cálculos de posición sean más rápidos y consistentes.

Anteriormente este dato era "nissan" pero ahora es "renault" demostrando que la posición 0 de la lista fue modificada.

Añadir elementos a la lista

Existen muchos motivos por los cuales se querrán añadir métodos a una lista. Para esto Python posee varias maneras para lograr esto.

Añadir un elemento al final de la lista

La manera más simple de añadir un elemento es con el método append() el cual agrega un nuevo elemento al final de la lista.

```
agregar_auto = autos
agregar_auto.append("ferrari")
print(autos)

>>> ["renault","chevrolet","ford","ferrari"]
```

El método append hace fácil añadir elementos a las listas haciendo de estas listas más dinámicas. Por ejemplo, se puede iniciar con una lista vacía e ir añadiendo elementos a medida que el código se va ejecutando:

```
lista_de_autos_vacia = []

lista_de_autos_vacia.append("ford")

lista_de_autos_vacia .append("ferrari")

print(lista_de_autos_vacia)

>>> ["ford", "ferrari"]
```

Esta manera de escribir listas es muy común ya que generalmente no se sabe la información que se cargará en el programa hasta después de que el programa esté corriendo, para eso se crea una lista vacía que irá reteniendo los datos.

Insertar datos en una lista

Se pueden añadir elementos en cualquier posición con el método insert(). Con este método se puede especificar en donde se busca incluir un dato en la lista:

```
autos.insert(0, "toyota")
print(autos)

>>> ["toyota", "renault", "chevrolet", "ford"]
```

Este método desplaza a los demás elementos una posición a la derecha desde el lugar en el cual se agregó.

Quitar datos de una lista

De igual manera que se buscan agregar datos, se busca quitar datos ya sea porque no se necesitan o quedan obsoletos. Python provee varias maneras de hacerlo:

Quitar un elemento con del

Se se sabe la posición del dato que se quiere quitar, se puede utilizar del statement:

```
del autos[0]
print(autos)
>>> ["renault","chevrolet","ford","ferrari"]
```

Ya que anteriormente añadimos "toyota" a la lista, ahora lo podemos quitar utilizando este método. Cambiando la posición que se le dio a del se quitara otro elemento de la lista, por ejemplo:

```
del autos[-1]
print(autos)

>>> ["renault","chevrolet","ford"]
```

Quitar un elemento utilizando el método pop()

En algunas ocasiones se buscará utilizar algún valor de la lista luego de quitarlo. El método pop() permite hacer esto. El término pop proviene de pesar en la lista como una pila de datos en donde se está quitando el dato de arriba.

```
popped_autos = autos.pop()
print(popped_autos)
>>> ford
```

Quitar un elemento utilizando el método pop() de cualquier lugar en la lista

Se puede utilizar el método pop() para quitar elementos en cualquier posición en la lista solo con incluir el índice del dato entre los paréntesis del metoodo:

```
mi_primer_auto = autos.pop(1)
print(f''Mi primer auto fue un {mi_primer_auto.title()}.'')
```

>>> Mi primer auto fue un Chevrolet

Cabe recordar que cada vez que se utilice pop(), el elemento con el que se trabaja no se encontrará más en la lista.

Quitar un dato según el valor

Algunas veces no sabrás la posición del valor que se quiere quitar. Si solamente sabes el valor del elemento, puedes utilizar el método remove().

```
removed_autos = autos.remove("renault")
print(removed_autos)
```

>>> None

Organizar una lista

El hecho de ordenar o no una lista dependerá de para que será utilizada esta. Python provee de varias maneras distintas de organizar una lista, según cual sea el fin.

Organizar utilizando el método sort()

Es una manera sencilla de organizar una lista. Este método cambia el orden de la lista de manera permanente en orden alfabético, así que no podremos obtener en la lista original en caso de que la necesitemos.

El método remove() elimina solo la primera aparición del valor que especifiques. Si existe la posibilidad de que el valor aparezca más de una vez en la lista, necesitarás usar un bucle para asegurarte de que se eliminen todas las ocurrencias del valor.

```
autos.sort()
print(autos)
>>> ["chevrolet","ford","renault"]
       Si se quiere ordenar alfabéticamente pero al revés se puede utilizar el argumento
reverse=True:
autos.sort(reverse=True)
print(autos)
>>> ["renault","ford","chevrolet"]
Organizar una lista de forma temporal utilizando sorted()
Para mantener el orden de la lista original se utiliza el método sorted(), la cual te deja orden
la lista en un orden particular soon cambiar el orden original:
print(sorted(autos))
print(autos)
>>> ["chevrolet","ford","renault"]
>>> ["renault","ford","chevrolet"]
Invertir una lista
Si se desea invertir los valores dentro de una lista se puede utilizar el método reverse():
autos.reverse()
print(autos)
>>> ["chevrolet","ford","renault"]
```

Este método no ordena de manera alfabética, cambiando el orden de manera permanente, aunque se puede utilizar el mismo método de nuevo y obtener el valor original.

Ordenar una lista alfabéticamente es un poco más complicado cuando no todos los valores están en minúsculas. Existen varias formas de interpretar las letras mayúsculas al determinar un orden de clasificación, y especificar el orden exacto puede ser más complejo de lo que queremos abordar en este momento. Sin embargo, la mayoría de los métodos de ordenación se basarán directamente en lo que aprendiste en esta sección.

Largo de listas

Se puede saber la longitud (por longitud hablamos de la cantidad de datos) de las listas utilizando la función len().

```
print(len(autos))
>>> 3
```

Python cuenta los datos comenzando por 1 ya que así se evitan errores de faltantes cuando se revisa los largos de la lista.

Evitar errores de indexado en las listas

Hay un tipo de error que es común ver cuando trabajas con listas por primera vez.

Python intenta darte el elemento en el índice 3. Pero cuando busca en la lista, no encuentra ningún elemento en motorcycles con un índice de 3. Debido a la naturaleza de la indexación basada en cero, este error es común. Las personas suelen pensar que el tercer elemento tiene el número 3, porque comienzan a contar desde 1. Sin embargo, en Python, el

tercer elemento tiene el índice 2, ya que la indexación comienza en 0.

Un IndexError significa que Python no puede encontrar un elemento en el índice que solicitaste. Si este error ocurre en tu programa, intenta ajustar el índice restando uno y vuelve a ejecutar el programa para ver si los resultados son correctos.

Anexo Parte I: Bases - Sección II: Introducción a las listas

Python tiene varios tipos de datos compuestos, utilizados para agrupar otros valores. El más versátil es la lista, la cual puede ser escrita como una lista de valores separados por coma (ítems) entre corchetes. Las listas pueden contener ítems de diferentes tipos, pero usualmente los ítems son del mismo tipo.

```
squares = [1, 4, 9, 16, 25]
print(squares)
```

Al igual que las cadenas (y todas las demás tipos integrados sequence), las listas se pueden indexar y segmentar:

print(squares[-3:]) # La segmentación devuelve una nueva lista

Las listas también admiten operaciones como concatenación:

```
concatenado = squares + [36, 49, 64, 81, 100]
print(concatenado)
```

```
>>> [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

Todas las operaciones de rebanado retornan una nueva lista que contiene los elementos pedidos. Esto significa que la siguiente rebanada retorna una shallow copy de la lista:

```
squares + [36, 49, 64, 81, 100]
squares = squares [:]
```

>>> [9, 16, 25]

Una copia superficial (shallow copy) construye un nuevo objeto compuesto y luego (en la medida de lo posible) inserta una referencias en él a los objetos encontrados en el original.
 Una copia profunda (deep copy) construye un nuevo objeto compuesto y luego, recursivamente, inserta copias en él de los objetos encontrados en el original.

Es posible anidar listas (crear listas que contengan otras listas), por ejemplo:

```
a = ['a', 'b', 'c']

n = [1, 2, 3]

x = [a, n]

print(x)

print(x[0])

print(x[0][1])

>>> [['a', 'b', 'c'], [1, 2, 3]]

>>> ['a', 'b', 'c']

>>> 'b'
```

Métodos de listas

Método	Descripción	Ejemplo	
append(x)	Agrega un elemento al final de la lista.	lista.append(5)	
extend(iterable)	Agrega múltiples elementos al final de la lista.	lista.extend([6, 7, 8])	
insert(i, x)	Inserta un elemento en una posición específica.	lista.insert(1, 10)	
Elimina la primera aparición d remove(x) un elemento.		lista.remove(5)	
pop([i])	Elimina y devuelve el elemento en la posición i. Si no se especifica, elimina el último.	lista.pop(2)	
index(x, [start, end])	Devuelve la posición del primer elemento con el valor x.	lista.index(5)	
count(x)	Devuelve la cantidad de veces que x aparece en la lista.	lista.count(5)	
sort([key, reverse])	Ordena la lista en orden ascendente (o descendente si reverse=True).	lista.sort(reverse=True)	
reverse()	Invierte el orden de los elementos de la lista.	lista.reverse()	
copy()	Devuelve una copia superficial de la lista.	nueva_lista = lista.copy()	
clear()	Elimina todos los elementos de la lista.	lista.clear()	

Bibliografía:

Matthes, E. (2015). *Python crash course: A hands-on, project-based introduction to programming*. No Starch Press. ISBN 978-1-59327-603-4

Python Software Foundation. (2024). *The Python Tutorial*. Retrieved from https://docs.python.org/3/tutorial/

Python Cheat Sheet. (s.f.). *Lists and Tuples*. Recuperado el [fecha de acceso], de https://www.pythoncheatsheet.org/cheatsheet/lists-and-tuples

Parte I: Bases - Sección III: Trabajar con listas

Bucle entre la lista entera

A veces es necesario realizar un bucle que realice un determinado proceso sobre todos y cada uno los datos que contiene una lista. En una lista de números, digamos los precios históricos de una acción, se buscará aplicar la misma operación estadística en cada elemento, o quizás mostrar distintos encabezados de noticias almacenados en una lista. Cuando se quiere realizar la misma acción con cada dato se utiliza el método for de Python.

Digamos que queremos hacer una cuenta regresiva:

Esa línea le indica a Python que tome un valor de la lista de números y lo asocie a n, luego le decimos que imprima una vez por cada elemento de la lista, ayuda leer este código: "Por cada número en la lista, imprime cada uno de los números".

Una mirada más cercana

Hacer un bucle es la maneras más comunes en las que una computadora realiza automatiza tareas competitivas. En una lista, el bucle se repetirá por cada ítem que haya, si hay 10, 10_00, 10_000_000. También hay que tener en cuenta que Python nos permite asignar el nombre que queramos a la variable que se le asigna al valor del bucle.

for numero in numeros:

Es normal encontrar códigos que utilizan los nombres plurales y singulares de lo que se está realizando.

Evitar errores de tabulación

Python utiliza las tabulaciones para determinar la relación entre las líneas de código. Básicamente te exige utilizar tabulaciones para una estructura visual clara. En códigos de

Python más extensos, existen bloques de códigos que contienen varias tabulaciones. Estas tabulaciones ayudan a obtener un visualizaci general de la organización del programa

Hacer listas numéricas

En las visualizaciones de datos, casi siempre trabajarás con conjuntos de números, como temperaturas, distancias, tamaños de población o valores de latitud y longitud, entre otros tipos de conjuntos numéricos.

Las listas son ideales para almacenar conjuntos de números, y Python proporciona una variedad de herramientas para ayudarte a trabajar de manera eficiente con listas de números. Una vez que entiendas cómo utilizar estas herramientas de manera efectiva, tu código funcionará bien incluso cuando tus listas contienen millones de elementos.

Usar la función range()

La función range() hace fácil generar una serie de números. Por ejemplo se puede imprimir una serie de números:

for num in range(1,6):

>>> 1
>>> 2
>>> 3
>>> 4
>>> 5

Aunque parezca que el bucle imprimirá hasta el número 6, pero no es el caso. Esto se debe al comportamiento uno por uno (off-by-one) que se ve en los lenguajes de programación, lo que hace que Python cuente desde el primer valor otorgado, y frena antes del segundo valor otorgado.

Usar range() para hacer una lista

Si se quiere crear una lista de números, se puede convertir el resultado de range() en una utilizando la función list(). Cuando se coloca range() dentro de los paréntesis de list() el resultado será una lista:

```
numeros= list(range(1,6))
print(numeros)
```

También se puede utilizar range() para saltarse números en un determinado rango. Dándole un tercer argumento, python usa el valar como un espaciador entre los valores:

Se puede utilizar cualquiera de estos enfoques cuando crees listas más complejas. A veces, el uso de una variable temporal hace que tu código sea más fácil de leer; otras veces, lo hace innecesariamente largo.

Estadísticas simples con una lista numérica

>>> [1, 9, 25, 49, 81, 121, 169]

Algunas funciones de Python resultan útiles para trabajar con una lista de números:

```
numeros = [1,5,2,8,9]
min(numeros)
max(numeros)
sum(numeros)
```

>>> 1

>>> 9

>>> 26

Comprensión de listas

Hay maneras de realizar el código de los cuadrados anteriores de manera más sencilla utilizando una sola línea de código. Una comprensión de listas te permite generar esta misma lista en una sola línea de código. Una comprensión de listas combina el bucle for y la creación de nuevos elementos en una sola línea, y agrega automáticamente cada nuevo elemento.

Las comprensiones de listas no siempre se presentan a principiantes, pero las he incluido aquí porque es muy probable que las encuentres tan pronto como empieces a ver el código de otras personas.

```
cuadrados = [numero**2 for numero in range(1,15,2)]
print(cuadrados)
```

Trabajar con partes de lista

Se puede trabajar con un grupo de datos específicos dentro de una lista, en Python este método se llama slice (rebanar).

Slicing

Para hacer un slice (rebanada) en una lista, debes especificar el índice del primer y el último elemento con los que quieres trabajar. Al igual que con la función range(), Python se detiene un elemento antes del segundo índice que especifiques. Por ejemplo, para obtener los tres primeros elementos de una lista, debes solicitar los índices del 0 al 3, lo que devolverá los elementos en las posiciones 0, 1 y 2.

```
numeros = [1,2,3,4,5]
print(numeros[0:3])
>>> [1,2,3]
```

Este código imprime una parte de la lista, donde se incluyen los primeros 3 valores de la lista. Se puede generar cualquier subconjunto:

```
print(numeros[1:3])
>>> [2,3]
```

Si se omite el primer índice o el último, Python automáticamente comienza el slice con el primer dato de la lista o termina en el último dato de la lista:

```
numeros = [1,2,3,4,5]
print(numeros[:3])
>>> [1,2,3]
```

Tamiones d puede utilizar un índice negativo devolviendo valores desde el final de la

```
print(numeros[-3:])
```

>>> [3,4,5]

lista

Se puede incluir un tercer valor dentro de los corchetes al hacer un slice. Este tercer valor le indica a Python cuántos elementos debe saltar entre cada elemento dentro del rango especificado.

Copiar una lista

Para copiar una lista, puedes hacer un slice que incluya toda la lista original omitiendo el primer y el segundo índice ([:]). Esto le indica a Python que haga una rebanada que comience en el primer elemento y termine en el último, creando así una copia completa de la lista.

```
numeros = [1,2,3]
otros_numeros = numeros[:]
```

Tuplas

Las listas funcionan bien para almacenar colecciones de elementos que pueden cambiar a lo largo de la ejecución de un programa. La capacidad de modificar listas es especialmente importante cuando trabajas con una lista de usuarios en un sitio web o una lista de personajes en un juego. Sin embargo, en algunas ocasiones, querrás crear una lista de elementos que no puedan cambiar. Para esto, puedes usar tuplas. Python se refiere a los valores que no pueden cambiar como inmutables, y una lista inmutable se llama tupla.

Definir una tupla

Una tupla se ve como una lista, excepto que se utilizan paréntesis en lugar de corchetes. Una vez definida se puede acceder a los elementos individuales utilizando el índice justo como una lista.

Supongamos que tenemos un rectángulo al que no se le pueden cambiar la longitud de los lados, para ello definimos el rectángulo en una tupla:

```
dimensiones = (100,50)
print(dimensiones[0])
print(dimensiones[1])

>>> 100
>>> 50
```

Estos valores no se pueden cambiar ya que están definidos en una tupla lo que los hace inmutables.

Reescribir una tupla

Aunque no puedes modificar una tupla, sí puedes asignar un nuevo valor a una variable que representa una tupla. Por ejemplo, si quisieras cambiar las dimensiones de un rectángulo, podrías redefinir toda la tupla asignándole una nueva.

```
dimensiones = (100,50)
dimensiones = (200,50)
```

Anexo Parte I - Sección III: Trabajar con listas

for()

La sentencia for en Python difiere un poco de lo que uno puede estar acostumbrado en lenguajes como C o Pascal. En lugar de siempre iterar sobre una progresión aritmética de números (como en Pascal) o darle al usuario la posibilidad de definir tanto el paso de la iteración como la condición de fin (como en C), la sentencia for de Python itera sobre los ítems de cualquier secuencia (una lista o una cadena de texto), en el orden que aparecen en la secuencia

```
words = ['cat', 'window', 'defenestrate']
for w in words:
    print(w, len(w))

>>> cat 3
>>> window 6
>>> 'defenestrate' 12
```

range()

El valor final dado nunca es parte de la secuencia; range(10) genera 10 valores, los índices correspondientes para los ítems de una secuencia de longitud 10. Para iterar sobre los índices de una secuencia, puedes combinar range() y len() así:

```
a = ['Mary', 'had', 'a', 'little', 'lamb']
for i in range(len(a)):
    print(i, a[i])
```

```
>>> 0 Mary
```

>>>3 little

>>> 4 lamb

>>> 1 had

>>> 2 a

Técnicas de iteración

Cuando iteramos sobre diccionarios, se pueden obtener al mismo tiempo la clave y su valor correspondiente usando el método items().

```
knights = {'gallahad': 'the pure', 'robin': 'the brave'}
for k, v in knights.items():
    print(k, v)

>>> gallahad the pure
>>> robin the brave
```

Cuando se itera sobre una secuencia, se puede obtener el índice de posición junto a su valor correspondiente usando la función enumerate().

```
for i, v in enumerate(['tic', 'tac', 'toe']):
    print(i, v)

>>> 0 tic
>>> 1 tac
>>> 2 toe
```

Para iterar sobre dos o más secuencias al mismo tiempo, los valores pueden emparejarse con la función **zip()**.

```
questions = ['name', 'quest', 'favorite color']
answers = ['lancelot', 'the holy grail', 'blue']
for q, a in zip(questions, answers):
    print('What is your {0}? It is {1}.'.format(q, a))
```

- >>> What is your name? It is lancelot.
- >>> What is your quest? It is the holy grail.
- >>> What is your favorite color? It is blue.

Para iterar sobre una secuencia en orden inverso, se especifica primero la secuencia al derecho y luego se llama a la función **reversed().**

```
for i in reversed(range(1, 7, 2)):
    print(i)

>>> 5

>>> 3

>>> 1
```

Para iterar sobre una secuencia ordenada, se utiliza la función **sorted()** la cual retorna una nueva lista ordenada dejando a la original intacta.

```
basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
for i in sorted(basket):
    print(i)

>>> apple
>>> apple
>>> banana
>>> orange
>>> pear
```

El uso de **set()** en una secuencia elimina los elementos duplicados. El uso de **sorted()** en combinación con **set()** sobre una secuencia es una forma idiomática de recorrer elementos únicos de la secuencia ordenada.

```
basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
for f in sorted(set(basket)):
    print(f)

>>> apple
>>> banana
>>> orange
>>>pear
```

A veces uno intenta cambiar una lista mientras la está iterando; sin embargo, a menudo es más simple y seguro crear una nueva lista:

Métodos de iteraciones

Método	Descripción	Ejemplo	
Iteración sobre una lista	Recorre los elementos de una lista.	for item in lista:	
Iteración sobre un rango	Usa range() para generar una secuencia de números.	for i in range(5):	
Iteración con índice	Usa enumerate() para obtener índices y valores.	for i, item in enumerate(lista):	
Iteración sobre diccionarios	Recorre claves y valores de un diccionario.	for clave, valor in diccionario.items():	
Iteración con zip()	Recorre varias listas al mismo tiempo.	for a, b in zip(lista1, lista2):	
Iteración inversa	Usa reversed() para recorrer en orden inverso.	for item in reversed(lista):	
Iteración sobre un conjunto (set)	Recorre elementos únicos de un set.	for item in mi_set:	
Iteración sobre una cadena	Recorre cada carácter de un string.	for char in "Python":	
Bucle con else	Ejecuta código si el for no se interrumpe con break.	for item in lista: else:	

Bibliografía:

Matthes, E. (2015). *Python crash course: A hands-on, project-based introduction to programming*. No Starch Press. ISBN 978-1-59327-603-4

Python Software Foundation. (2024). *The Python Tutorial*. Retrieved from https://docs.python.org/3/tutorial/

Parte I - Sección V: Trabajar con diccionarios

En Python, los diccionarios te permiten conectar piezas de información relacionada. Aprenderás cómo acceder a la información una vez que esté dentro de un diccionario y cómo modificarla. Dado que los diccionarios pueden almacenar una cantidad casi ilimitada de información, también verás cómo recorrer los datos con un bucle. Además, aprenderás a anidar diccionarios dentro de listas, listas dentro de diccionarios e incluso diccionarios dentro de otros diccionarios. Permiten describir objetos de la realidad de manera más precisa.

Un diccionario simple

```
plantas = {"nombre":"albahaca","altura":"12 cm"}

print(plantas["nombre"])

print(plantas["altura"])

>>> albahaca

>>> 12 cm
```

El diccionario de plantas almacena el nombre de la planta y la altura que esta tiene.

Trabajar con diccionarios

Un diccionario en Python es una colección de pares clave-valor. Cada clave está asociada a un valor, y puedes usar la clave para acceder a su valor correspondiente. El valor de una clave puede ser un número, una cadena, una lista o incluso otro diccionario. De hecho, cualquier objeto que puedas crear en Python puede usarse como valor en un diccionario. En Python, un diccionario se define usando llaves {}, con una serie de pares clave-valor dentro de ellas. Un par clave-valor es un conjunto de valores asociados entre sí. Cuando proporcionas una clave, Python devuelve el valor correspondiente a esa clave. Cada clave está conectada a su valor mediante dos puntos :, y los pares clave-valor están separados por comas ,. Puedes almacenar tantos pares clave-valor como desees dentro de un diccionario.

Acceder a un valor

Para acceder a un valor asociado con un valor-clave, hay que llamar al diccionario y colocar el valor-clave dentro de los corchetes []:

print(plantas["nombre"])		

>>> albahaca

Añadir un nuevo valor clave

plantas["dias"] = 7

Modificar valores en un diccionario

Para modificar un valor en un diccionario, escribe el nombre del diccionario seguido de la clave entre corchetes [] y asigna el nuevo valor que deseas asociar a esa clave.

plantas["nombre"] = "romero"

>>> albahaca

Borrar valores en un diccionario

Cuando ya no necesitas una información almacenada en un diccionario, puedes usar la instrucción del para eliminar por completo un par clave-valor. Solo necesitas especificar el nombre del diccionario y la clave que deseas eliminar.

del plantas["dias"]

Usar get() para acceder a un valor

Para los diccionarios específicamente, puedes usar el método get() para establecer un valor predeterminado que se devolverá si la clave solicitada no existe. El método get() requiere una clave como primer argumento. Como segundo argumento opcional, puedes pasar el valor que se devolverá si la clave no existe.

altura = plantas.get('altura', 'No se tiene información de la altura.')

En caso de no existir la altura, ésta devuelve un valor predefinido especificando que no existe valor para esa clave.

Hacer un bucle en un diccionario

En valores clave

Para escribir un bucle for para un diccionario, creas nombres para las dos variables que contendrán la clave y el valor de cada par clave-valor. Puedes elegir los nombres que quieras para estas dos variables. Este código funcionaría igual de bien si hubieras utilizado abreviaciones para los nombres de las variables.

```
student = {
   "nombre": "Alice",
   "edad": 22,
   "carrera": "Computer Science"
}

# Usando un bucle for para recorrer el diccionario
for k, vin student.items():
   print(f"{k}: {v}")
```

La segunda parte de la declaración for incluye el nombre del diccionario seguido del método ítems(), que devuelve una secuencia de pares clave-valor. Luego, el bucle for asigna cada uno de estos pares a las dos variables proporcionadas.

Hacer un bucle entre todas las claves

El método keys() es útil cuando no necesitas trabajar con todos los valores de un diccionario, sino solo con sus claves.

```
for k student.keys():
    print(f"{k}")

>>> nombre

>>> edad

>>> carrera
```

Puedes optar por usar el método keys() explícitamente si hace que tu código sea más fácil de leer, o puedes omitir si lo prefieres.

Hacer un bucle entre todos los valores

Si estás principalmente interesado en los valores que contiene un diccionario, puedes usar el método values() para devolver una secuencia de valores sin las claves.

```
for k student.keys():
    print(f"{k}")

>>> Alice
>>> 22
>>> Computer Science
```

Anidar (Nesting)

A veces necesitarás almacenar múltiples diccionarios en una lista o una lista de elementos como valor en un diccionario. Esto se llama anidamiento (nesting).

Puedes anidar:

- Diccionarios dentro de una lista
- Listas dentro de un diccionario
- Diccionarios dentro de otros diccionarios

El anidamiento es una característica poderosa, como lo demostrarán los siguientes ejemplos.

Lista de diccionarios

Supongamos que tenemos los precios de cierre de 3 acciones distintas

```
accion_0 = {"ticker":"AAPL","close":100}
accion_1 = {"ticker":"MMM","close":90}
accion_2 = {"ticker":"TTT","close":80}
acciones = [accion_0, accion_1, accion_2]
```

Un diccionario dentro de un diccionario

Puedes anidar un diccionario dentro de otro diccionario, pero el código puede volverse complicado rápidamente al hacerlo.

```
users = {
        'aeinstein': {
                'first': 'albert',
                'last': 'einstein',
                'location': 'princeton',
                },
        'mcurie': {
                'first': 'marie',
                'last': 'curie',
                'location': 'paris',
                 },
        }
for username, user info in users.items():
        print(f"\nUsername: {username}")
        full_name = f" {user_info['first']} {user_info['last']}", location = user_info['location']
        print(f"\tFull name: {full_name.title()}")
        print(f"\tLocation: {location.title()}")
```

Anexo Parte I - Sección V: Trabajar con diccionarios

Los diccionarios, también llamados matrices asociativas, deben su nombre a que son colecciones que relacionan una clave y un valor.

El primer valor se trata de la clave y el segundo del valor asociado a la clave. Como clave podemos utilizar cualquier valor inmutable: podríamos usar números, cadenas, booleanos, tuplas, ... pero no listas o diccionarios, dado que son mutables. Esto es así porque los diccionarios se implementan como tablas hash, y a la hora de introducir un nuevo par clave-valor en el diccionario se calcula el hash de la clave para después poder encontrar la entrada correspondiente rápidamente. Si se modificara el objeto clave después de haber sido introducido en el diccionario, evidentemente, su hash también cambiaría y no podría ser encontrado. La diferencia principal entre los diccionarios y las listas o las tuplas es que a los valores almacenados en un diccionario se les accede no por su índice, porque de hecho no tienen orden, sino por su clave, utilizando de nuevo el operador [].

Al igual que en listas y tuplas también se puede utilizar este operador para reasignar valores.

Sin embargo en este caso no se puede utilizar slicing, entre otras cosas porque los diccionarios no son secuencias, si no mappings (mapeados, asociaciones).

En otros lenguajes, los diccionarios también se conocen como "memorias asociativas" o "arrays asociativos". A diferencia de las secuencias, que están indexadas por un rango de números, los diccionarios están indexados por claves, que pueden ser cualquier tipo inmutable (como cadenas y números).

Métodos de diccionarios

Método	Descripción	Ejemplo
dict.keys()	Devuelve una vista con todas las claves del diccionario.	d.keys() → dict_keys(['a', 'b', 'c'])
dict.values()	Devuelve una vista con todos los valores del diccionario.	d.values() → dict_values([1, 2, 3])
dict.items()	Devuelve una vista con pares (clave, valor).	d.items() → dict_items([('a',1),('b',2)])
dict.get(clave, valor_defecto)	Obtiene un valor dado su clave; si no existe, devuelve valor_defecto.	$d.get('x', 0) \rightarrow 0$
dict.pop(clave, valor_defecto)	Elimina y devuelve el valor de una clave; si no existe, devuelve valor_defecto.	d.pop('a') → 1
dict.popitem()	Elimina y devuelve un par clave-valor aleatorio.	d.popitem() → ('b', 2)
dict.update(otro_dict)	Agrega o actualiza pares clave-valor desde otro diccionario.	d.update({'c': 5})
dict.setdefault(clave, valor_defecto)	Obtiene un valor o lo crea si la clave no existe.	d.setdefault('x', 10) → 10
dict.clear()	Elimina todos los elementos del diccionario.	$d.clear() \rightarrow \{\}$
dict.copy()	Devuelve una copia superficial del diccionario.	d2 = d.copy()

Bibliografía:

Matthes, E. (2015). *Python crash course: A hands-on, project-based introduction to programming*. No Starch Press. ISBN 978-1-59327-603-4

Python Software Foundation. (2024). *The Python Tutorial*. Retrieved from https://docs.python.org/3/tutorial/

González Duque, R. (s.f.). *Python para todos*. Mundo Geek. Recuperado de http://mundogeek.net/tutorial-python/

Parte I - Sección IV: Condiciones If

Prueba condicionada

En el núcleo de cada declaración if hay una expresión que puede evaluarse como True o False, y se llama prueba condicional. Python usa estos valores para decidir si el código dentro de un if debe ejecutarse. Si la prueba condicional se evalúa como True, Python ejecuta el código dentro del if. Si se evalúa como False, Python ignora ese bloque de código.

Comprobar la igualdad

La mayoría de pruebas condicionales comparan el valor analizado con un valor de interés. El más simple de esto comprueba si el valor de la variable es igual al valor de interés.

```
auto = "bmw"
auto == "bmw"
>>> True
```

El operador de igualdad (==) devuelve True si los valores a la izquierda y a la derecha del operador coinciden, y False si no coinciden.

Ignorar mayúsculas cuando se prueba una igualdad

Dos valores con capitalizaciones diferentes se consideran distintas

```
auto == "Bmw"
>>> False
```

Si la diferencia entre mayúsculas y minúsculas es importante, este comportamiento es ventajoso. Pero si no importa y solo quieres comparar el valor de una variable, puedes convertir su valor a minúsculas antes de hacer la comparación.

Comprobar la desigualdad

Cuándo quieres determinar si dos valores no son iguales, puedes usar el operador de desigualdad (!=).

```
if auto != "bmw":
    print("No es una bemba")
else:
    print("Si es una bemba")
```

>>> Si es una bemba

Si estos dos valores no coinciden, Python devuelve True y ejecuta el código que sigue al if. Si los valores coinciden, Python devuelve False y no ejecuta el código dentro del if.

Comparaciones numéricas

La comparación numérica es muy similar, por no decir igual.

```
años = 18 # Escribir con ñ no esta mal pero no es lo habitual años == 18
```

>>> True

Se pueden influir varias maneras de comprar a la prueba condicional:

```
if años < 18:
    print("No tomes alcohol.")
else:
    print("Toma poquito.")
```

>>> Toma poquito.

También puedes incluir diversas comparaciones matemáticas en tus declaraciones condicionales, como:

- Menor que (<)
- Menor o igual que (<=)
- Mayor que (>)
- Mayor o igual que (>=)

Cada uno de estos se puede incluir como parte de las condiciones.

Comprobar condiciones múltiples

Usar and para comprobar condiciones múltiples

Para verificar si dos condiciones son verdaderas simultáneamente, usa la palabra clave and para combinar ambas pruebas condicionales.

- Si ambas pruebas son True, la expresión completa se evalúa como True.
- Si una o ambas pruebas son False, la expresión completa se evalúa como False.

```
año_0 = 18

año_1 = 22

año_0 => 18 and año_1 => 22

>>> True
```

Usar or para comprobar condiciones múltiples

La palabra clave or también permite verificar múltiples condiciones, pero la expresión será True si al menos una de las pruebas individuales es True. Una expresión con or solo será False cuando todas las pruebas individuales fallen (False).

```
año_0 => 18 or año_1 => 40
>>> True
```

Comprobar si un valor está en una lista

En Python, la palabra clave in se utiliza para verificar si un valor específico está presente en una lista antes de realizar una acción. Esto permite escribir código más eficiente y limpio, evitando operaciones innecesarias.

```
aderezos = ["mayonesa", "mostaza", "ketchup"]

"mayonesa" in aderezos

>>> True
```

La palabra clave in le dice a Python que busque el valor en la lista. En el caso de que queramos hacer lo contrario se utiliza not in:

```
aderezos = ["mayonesa","mostaza","ketchup"]
"bmw" not in aderezos
```

>>> True

Expresiones booleanas

A medida que aprendas más sobre programación, escucharás el término expresión booleana en algún momento. Una expresión booleana es simplemente otro nombre para una prueba condicional. Su resultado siempre es un valor booleano, que puede ser True (verdadero) o False (falso). Estas expresiones son fundamentales en la toma de decisiones dentro de un programa, ya que permiten ejecutar ciertas acciones en función de condiciones específicas. Los valores booleanos ofrecen una forma eficiente de rastrear el estado de un programa o una condición específica que sea importante en su funcionamiento.

Condición If

Cuando comprendes las pruebas condicionales, puedes comenzar a escribir sentencias if. Existen varios tipos de sentencias if, y la elección de cuál usar depende de la cantidad de condiciones que necesites evaluar. Ya has visto algunos ejemplos en la discusión sobre pruebas condicionales, pero ahora profundizaremos más en este tema.

La manera más simple de aplicar una condición if es:

if condición:
acción

Puedes colocar cualquier prueba condicional en la primera línea de una sentencia if y casi cualquier acción dentro del bloque indentado que la sigue. Si la prueba condicional se evalúa como True, Python ejecutará el código dentro del bloque if. Si la prueba se evalúa como False, Python ignorará ese bloque y continuará con el resto del programa.

Condiciones if - else

A menudo, querrás realizar una acción cuando una prueba condicional se cumple y una acción diferente en todos los demás casos. La sintaxis if-else de Python permite hacer esto. Un bloque if-else es similar a una sentencia if simple, pero la declaración else define una acción o un conjunto de acciones que se ejecutan cuando la prueba condicional falla.

```
if años < 18:
    print("No tomes alcohol.")
else:
    print("Toma poquito.")
```

>>> Toma poquito.

Cadena if - elif - else

A menudo, necesitarás evaluar más de dos situaciones posibles, y para ello puedes usar la sintaxis if-elif-else de Python. En una cadena if-elif-else, Python ejecuta solo un bloque de código. Evalúa cada prueba condicional en orden y, cuando una de ellas se cumple, ejecuta el código correspondiente y omite el resto de las pruebas.

```
años = 19

if años < 18:
    print("No tomes alcohol.")

elif años == 18:
    print("Desde ahora podes tomar".)

else
    print("Toma poquito.")
```

>>> Toma poquito.

Se pueden utilizar todos los bloques de elif como sea necesario. El bloque else actúa como una declaración de respaldo, ya que captura cualquier condición que no haya sido satisfecha por una prueba if o elif. Sin embargo, esto puede incluir datos no válidos o incluso maliciosos. Si tienes una condición específica que deseas evaluar al final, es recomendable usar un bloque elif en lugar de else. De esta manera, puedes asegurarte de que tu código solo se ejecutará bajo las condiciones correctas, evitando resultados inesperados.

Anexo Parte I - Sección IV: Condiciones If

Tal vez el tipo más conocido de sentencia sea el if. Por ejemplo:

```
if x < 0:
    x = 0
    print('Negative changed to zero')
elif x == 0:
    print('Zero')
elif x == 1:
    print('Single')
else:
    print('More')</pre>
```

Puede haber cero o más bloques elif, y el bloque else es opcional. La palabra reservada elif es una abreviación de "else if", y es útil para evitar un sangrado excesivo. Una secuencia if ... elif ... sustituye las sentencias switch o case encontradas en otros lenguajes.

Si necesitas comparar un mismo valor con muchas constantes, o comprobar que tenga un tipo o atributos específicos puede que encuentres útil la sentencia match.

Bibliografía:

Matthes, E. (2015). *Python crash course: A hands-on, project-based introduction to programming*. No Starch Press. ISBN 978-1-59327-603-4

Python Software Foundation. (2024). *The Python Tutorial*. Retrieved from https://docs.python.org/3/tutorial/

Parte I - Sección V: Inputs de usuario y bucles While

Funcionamiento la función input()

La función input() pausa tu programa y espera a que el usuario ingrese algún texto. Una vez que Python recibe la entrada del usuario, asigna ese valor a una variable, lo que facilita su manipulación.

```
message = input("¿Cómo te llamas?: ")
print(message)
```

La función input() toma un argumento: el mensaje que queremos mostrar al usuario para que sepa qué tipo de información debe ingresar.

Usar int() para aceptar inputs numéricos

Cuando usas la función input(), Python interpreta todo lo que el usuario ingresa como una cadena de texto (string). Sabemos que Python ha interpretado la entrada como un string porque el número aparece entre comillas. Si solo quieres imprimir la entrada, esto no es un problema. Sin embargo, si necesitas trabajar con valores numéricos, puedes usar la función int(), que convierte la cadena en un valor numérico.

```
message = int(input("¿Cuántos años tienes?: "))
print(message)
```

El operador Modulo

Una herramienta útil para trabajar con información numérica es el operador módulo (%), que divide un número entre otro y devuelve el residuo de la división. El operador módulo (%) no te dice cuántas veces cabe un número dentro de otro, solo te da el residuo de la división. Cuando un número es divisible por otro, el residuo es 0, por lo que el operador módulo devuelve 0. Puedes usar este hecho para determinar si un número es par o impar:

- Si numero % 2 == 0, el número es par.
- Si numero % 2 != 0, el número es impar.

Introducción a los bucles While

El bucle for toma una colección de elementos y ejecuta un bloque de código una vez por cada elemento de la colección. En contraste, el bucle while se ejecuta mientras una cierta condición sea verdadera.

Un bucle while permite ejecutar un bloque de código mientras se cumpla una condición. En el siguiente ejemplo, "número" comienza en 1 y el bucle se ejecuta mientras su valor sea menor o igual a 5. En cada iteración, se imprime el número actual y luego se incrementa en 1 con +=. Cuándo "número" supera 5, la condición deja de cumplirse y el bucle finaliza.

```
numero = 1
while numero <= 5:
    print(numero)
    numero += 1

>>> 1
>>> 2
>>> 3
>>> 3
>>> 4
>>> 5
```

Usar una bandera

En un programa que debe ejecutarse mientras varias condiciones sean verdaderas, se puede utilizar una variable llamada flag como señal de control. Este flag es una variable booleana que indica si el programa debe continuar (True) o detenerse (False). El bucle while verifica solo el estado del flag, y dentro del código se pueden realizar diferentes pruebas para cambiar su valor a False cuando ocurra un evento que deba detener la ejecución del programa. Esto permite organizar mejor las condiciones y mejorar la legibilidad del código.

```
prompt = "Di algo: "

activo = True
while active:
    message = input(prompt)

if message == 'salir':
    activo = False
else:
    print(message)
```

Usar la declaración break

La declaración break permite salir de un bucle while de inmediato, sin importar las condiciones establecidas, deteniendo la ejecución del resto del código dentro del bucle. Esto otorga mayor control sobre el flujo del programa, asegurando que solo se ejecuten las instrucciones deseadas en el momento adecuado.

```
prompt = "Hola: "

while True:
    message = input(prompt)

if message == 'salir':
    brake
    else:
        print(message)
```

Usar continue en un bucle

En lugar de salir completamente de un bucle sin ejecutar el resto de su código, puedes usar la declaración continue para regresar al inicio del bucle, según el resultado de una prueba condicional.

```
numero = 0
while numero < 0:
    numero += 1
    if numero % 2 == 0:
        continue

print(numero)
```

Usar bucles while en listas y diccionarios

Hasta ahora, hemos trabajado con una sola pieza de información del usuario a la vez, recibiendo la entrada y respondiendo a ella en cada iteración del bucle while. Sin embargo, para llevar un registro de múltiples usuarios y datos, es necesario usar listas y diccionarios junto con bucles while. Aunque un bucle for es útil para recorrer listas, no se recomienda modificar una lista dentro de uno, ya que Python podría tener dificultades para gestionar los elementos. En su lugar, los bucles while permiten modificar listas mientras se recorren, facilitando la recopilación, almacenamiento y organización de grandes cantidades de datos para analizarlos y reportarlos posteriormente.

Anexo Parte I - Sección V: Inputs de usuario y bucles While

Mientras que los condicionales nos permiten ejecutar distintos fragmentos de código dependiendo de ciertas condiciones, los bucles nos permiten ejecutar un mismo fragmento de código un cierto número de veces, mientras se cumpla una determinada condición.

```
edad = 0
while edad < 18:
edad = edad + 1
print("Felicidades, tienes " + str(edad))
```

La variable edad comienza con el valor 0. Como la condición edad < 18 es cierta (0 es menor que 18), se entra en el bucle.

Dentro del bucle, se incrementa edad en 1 y se imprime un mensaje informando que el usuario ha cumplido un año. Es importante recordar que el operador + para cadenas funciona concatenando ambas cadenas. Por esta razón, es necesario utilizar la función str() para convertir el número en una cadena, ya que no se pueden concatenar directamente números y cadenas.

A continuación, se vuelve a evaluar la condición. Como 1 < 18, el código se ejecuta nuevamente, aumentando la edad y mostrando el mensaje en pantalla. Este proceso continúa hasta que la edad sea igual a 18. En ese momento, la condición deja de cumplirse y el programa continúa con las instrucciones siguientes al bucle.

Ahora, imaginemos que olvidamos escribir la instrucción que aumenta la edad. En ese caso, la condición edad 18 siempre sería verdadera, porque la edad seguiría siendo 0. Esto provocaría que el bucle se ejecutará indefinidamente, escribiendo en pantalla "Has cumplido 0" sin detenerse

Este fenómeno se conoce como un bucle infinito.

Sin embargo, hay situaciones en las que un bucle infinito es útil. Por ejemplo, veamos un pequeño programa que repite todo lo que el usuario diga hasta que escriba "adios":

```
while True:
  entrada = input("> ")
  if entrada == "adios":
    break
  else:
    print(entrada)
```

Para obtener lo que el usuario escribe en pantalla, utilizamos la función input(). No es necesario conocer en detalle qué es una función ni cómo funciona exactamente, pero por ahora podemos aceptar que, en cada iteración del bucle, la variable entrada contendrá el texto ingresado por el usuario hasta que pulse Enter.

Luego, comprobamos si el usuario escribió "adios". Si es así, se ejecuta la instrucción break, que termina el bucle. En caso contrario, se imprime en pantalla lo que el usuario escribió.

La palabra clave break (romper) permite salir del bucle en el que nos encontramos. Este mismo bucle también se podría haber escrito de la siguiente manera:

```
salir = False
while not salir:
  entrada = input("> ")
  if entrada == "adios":
    salir = True
  else:
    print(entrada)
```

Sin embargo, el primer enfoque nos ha servido para entender cómo funciona break.

Otra palabra clave que podemos encontrar dentro de los bucles es continue (continuar). Como su nombre indica, esta instrucción permite saltar directamente a la siguiente iteración del bucle sin ejecutar el resto del código en la iteración actual.

```
edad = 0
while edad < 18:
edad = edad + 1
if edad % 2 == 0:
continue
print("Felicidades, tienes " + str(edad))
```

Esta es una pequeña modificación de nuestro programa de felicitaciones. En esta ocasión, hemos añadido un if que comprueba si la edad es un número par. Si lo es, se ejecuta continue, lo que provoca que el bucle pase inmediatamente a la siguiente iteración sin imprimir el mensaje.

Es decir, con esta modificación, el programa solo imprimirá felicitaciones cuando la edad sea impar.

Bibliografía:

Matthes, E. (2015). *Python crash course: A hands-on, project-based introduction to programming*. No Starch Press. ISBN 978-1-59327-603-4

González Duque, R. (s.f.). *Python para todos*. Mundo Geek. Recuperado de http://mundogeek.net/tutorial-python/