信息安全技术

近世代数基础

1 群论

- 群是一个集合 G, 连同一个运算 "·", 它结合任何两个元素 a 和 b 而形成另一个元素, 这个集合和运算 必须满足叫做四个要求:
 - 1.封闭性。对于所有 G 中 a, b, 运算 a · b 的结果也在 G 中。
 - 2.结合律。对于所有 G 中的 a, b 和 c, 等式 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ 成立。
 - 3.单位元。存在 G 中的一个元素 e,使得对于所有 G 中的元素 a,等式ae=ea=a成立。
 - 4.逆元。对于每个 G 中的 a,存在 G 中的一个元素 b 使得 $a \cdot b = b \cdot a = e$,这里的 e 是单位元,数 b 叫做整数 a 的逆元 $b=a^{-1}$ 。

交換群: G是群,若对任意a, $b \in G$ 都有 ab=ba 则称G是交换群

有限群 无限群 有限群的阶 循环群的生成元

群的性质

- 群中的单位元是唯一的
- 群中每一个元素的逆元是唯一的
- (消去律) 对任意的 $a,b,c \in G$, 如果 $a \cdot b = a \cdot c$, 或 $b \cdot a = c \cdot a$, 则 b = c

1.3 有限域理论

- 域的概念
 - 域是由一个非空集合F组成,在集合F中定义了两个二元运 算符: "+"和 "·",并满足:
 - 在加法和乘法上封闭。
 - 加法和乘法符合结合律

 - 非0元乘法构成群,单位元记作1
- 域记为{ F,+, · }

两个定义:

减法: a-b=a+(-b)

除法: a/b=a(b-1)

域的实质:

域是一个可以在其上进行加法、减法、乘法和除法运算而结果不会超出域的集合。如有理数集合、实数集合、复数集合都是域,但整数集合不是

有限域(Galois Field, 伽罗瓦域) 有限域的阶

有限域的两个定理

定理1:有限域的阶只能是素数幂。

定理2:对于素数p,与任意正整数n,存在 p^n 阶的域,记为 $GF(p^n)$,阶为p的域GF(p)称为素域。

密码学常用素域GF(p)或阶为2m的域GF(2m)

GF(5)有限域中的计算

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

(a)模5的加法

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

(b)模5的乘法

生成元与逆元

• 生成元

• 可证明: 在GF(p)中至少存在一个元素g, 使得GF(p)中任意非零元素可以表示成g的某次方幂的形式, g称为GF(p)的生成元

• 逆元

• GF(p)中任意元素a

$$a^{-1}=a^{p-2}$$

生成元的例子

• 有限域GF (23) , 5是GF (23) 的生成元

$5^0 = 1$	$5^1 = 5$	$5^2 = 2$	$5^3 = 10$	$5^4 = 4$
$5^5 = 20$	$5^6 = 8$	$5^7 = 17$	$5^8 = 16$	$5^9 = 11$
$5^{10} = 9$	$5^{11} = 22$	$5^{12} = 18$	$5^{13}=21$	$5^{14} = 13$
$5^{15} = 19$	$5^{16} = 3$	$5^{17} = 15$	$5^{18} = 6$	$5^{19} = 7$
$5^{20} = 12$	$5^{21} = 14$	$5^{22} = 1$		

GF(2^m)域

0,1系数的多项式

加法: 同次项系数异或

乘法: 单项式相乘, 系数相乘, 指数相加

多项式相乘, 两式的单项式相乘, 然后相加

0,1系数的多项式可以方便的用二进制数表示

不可约多项式

生成元与逆元

• 生成元: GF(2^m)有生成元

• 逆元 a ∈ GF(2^m), a≠0 则a⁻¹=a^{2^m-2} 例子: GF (2⁴)

• \mathfrak{P} : $f(x) = x^4 + x + 1$

GF (2⁴) 的元素:

(0000)	(0001)	(0010)	(0011)	(0100)	(0101)	(0110)	(0111)
(1000)	(1001)	(1010)	(1011)	(1100)	(1101)	(1110)	(1111)

例子 (续)

```
所以,(1011) + (1001) = (0010)

(1101) · (1001) = (x^2 + x^2 + 1) · (x^3 + 1)

= x^6 + x^5 + x^2 + 1

= (x^4 + x + 1) (x^2 + x)+(x^3 + x^2 + x + 1)

= (x^3 + x^2 + x + 1) mod f(x)

= (1111)
```

生成元为: a=x

$a^0 = (0001)$	$a^1 = (0010)$	$a^2 = (0100)$	$a^3 = (1000)$	$a^4 = (0011)$	$a^5 = (0110)$	
$a^6 = (1100)$	$a^7 = (1011)$	$a^{8} = (0101)$	$a^9 = (1010)$	$a^{10} = (0111)$	$a^{11} = (1110)$	
$a^{12} = (1111)$	$a^{13} = (1101)$	$a^{14} = (1001)$	$a^{15} = a^0 = (0001)$			

两个困难问题

- 大数的因数分解
 - 两个差不多大的素数的乘积,只要数大,按照目前的 计算技术,十年八年算是快的
- 离散对数的问题
 - 困难程度不在大数因数分解之下
- 这两大难题成了现代公钥密码技术的安全保障