C21 Nonlinear Systems

Mark Cannon

4 lectures

Michaelmas Term 2018

0 - 1

Lecture 1

Introduction and Concepts of Stability

Organisation

→ 4 lectures:	week 1	Monday Thursday			
	week 2	Monday Thursday		LR2 LR2	
▷ 1 class:		Thursday Friday	4-5 pm 2-3 pm	•	LR5 LR6

1 - 3

Course outline

- 1. Types of stability
- 2. Linearization
- 3. Lyapunov's direct method
- 4. Regions of attraction
- 5. Linear systems and passive systems

1 - 2

Books

- J.-J. Slotine & W. Li Applied Nonlinear Control, Prentice-Hall 1991.
 - * Stability
 - * Interconnected systems and passive systems
- H.K. Khalil Nonlinear Systems, Prentice-Hall 1996.
 - * Stability
 - ★ Passive systems
- M. Vidyasagar Nonlinear Systems Analysis, Prentice-Hall 1993.
 - * Stability & passivity (more technical detail)

1 - 5

Why use nonlinear control?

- Real systems are nonlinear
 - ★ friction, non-ideal components
 - ★ actuator saturation
 - * sensor nonlinearity
- Analysis via linearization
 - ★ accuracy of approximation?
 - ★ conservative?
- Account for nonlinearities in high performance applications
 - * Robotics, Aerospace, Petrochemical industries, Process control, Power generation . . .
- Account for nonlinearities if linear models inadequate
 - ★ large operating region
 - * model properties change at linearization point

Linear vs nonlinear system properties

Free response

Linear system

$$\dot{x} = Ax$$

• Unique equilibrium point: $Ax = 0 \iff x = 0$

Stability independent of initial conditions

Nonlinear system

$$\dot{x} = f(x)$$

• Multiple equilibrium points f(x) = 0

Stability dependent on initial conditions

1 - 7

Linear vs nonlinear system properties

Forced response

Linear system

$$\dot{x} = Ax + Bu$$

- $\|u\|$ finite $\Rightarrow \|x\|$ finite if open-loop stable
- Frequency response: $u = U \sin \omega t \Rightarrow x = X \sin(\omega t + \phi)$
- Superposition: $u = u_1 + u_2 \Rightarrow x = x_1 + x_2$

Nonlinear system

$$\dot{x} = f(x, u)$$

- $\bullet \ \|u\| \ \text{finite} \not \Rightarrow \|x\| \ \text{finite}$
- No frequency response $u = U \sin \omega t \implies x$ sinusoidal
- No linear superposition $u = u_1 + u_2 \implies x = x_1 + x_2$

Example: step response

Mass-spring-damper system

$c(\dot{x})$

Equation of motion:

$$\ddot{x} + c(\dot{x}) + k(x) = u$$
$$c(\dot{x}) = \dot{x}$$

k(x) nonlinear:

apparent damping ratio depends on size of input step

1 - 9

Example: multiple equilibria

First order system: $\dot{x} = f(x)$

- x_a , x_c are unstable equilibrium points
- x_b is a stable equilibrium point

Example: limit cycle

Van der Pol oscillator:

$$\ddot{x} + (x^2 - 1)\dot{x} + x = 0$$

- Response x(t) tends to a limit cycle (= trajectory forming a closed curve)
- Amplitude independent of initial conditions

Response with x(0) = 0.05, $\dot{x}(0) = 0.05$

1 - 11

Example: chaotic behaviour

Strange attractor

Example: chaotic behaviour

Lorenz attractor

• Simplified model of atmospheric convection:

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z$$

State variables

x(t): fluid velocity

y(t): difference in temperature of acsending and descending fluid

z(t): characterizes distortion of vertical temperature profile

• Parameters $\sigma=10$, $\beta=8/3$, $\rho=$ variable

1 - 13

Example: chaotic behaviour

Lorenz attractor

 $\rho = 28 \implies$ "strange attractor":

Example: chaotic behaviour

Lorenz attractor

sensitivity to initial conditions

Example: chaotic behaviour

Lorenz attractor

1 - 13

sensitivity to initial conditions blue: (x,y,z)=(0,1,1.05) red: (x,y,z)=(0,1,1.050001)

Example: chaotic behaviour

Lorenz attractor

 $\rho = 99.96 \implies \text{limit cycle}$:

Example: chaotic behaviour

Lorenz attractor

1 - 13

 $\rho = 14 \implies$ convergence to a stable equilibrium:

State space equations

$$\dot{x} = f(x, u, t)$$
 x : state u : input

e.g. nth order differential equation:

$$\frac{d^n y}{dt^n} = h\left(y, \dots, \frac{d^{n-1} y}{dt^{n-1}}, u, t\right)$$

has state vector (one possible choice)

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y \\ \dot{y} \\ \vdots \\ d^{n-1} y/dt^{n-1} \end{bmatrix}$$

and state space dynamics:

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ \vdots \\ h(x_1, x_2, \dots, x_n, u, t) \end{bmatrix} = f(x, u, t)$$

1 - 14

Equilibrium points

 x^* is an equilibrium point of system $\dot{x} = f(x)$ iff:

$$x(0) = x^*$$
 implies $x(t) = x^*$ $\forall t > 0$
i.e. $f(x^*) = 0$

Examples:

(a) $\ddot{y} + \alpha \dot{y}^2 + \beta \sin y = 0$ (damped pendulum)

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} n\pi \\ 0 \end{bmatrix}, \ n = 0, \pm 1$$

(b) $\ddot{y} + (y-1)^2 \dot{y} + y - \sin(\pi y/2) = 0$

$$x = \begin{bmatrix} y \\ \dot{y} \end{bmatrix}, \quad x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- * Consider local stability of individual equilibrium points
- \star Convention: define f so that x=0 is equilibrium point of interest
- * Autonomous system: $\dot{x} = f(x) \implies x^* = \text{constant}$

Stability definition

An equilibrium point x = 0 is stable iff:

 $\max_t \|x(t)\| \text{ can be made arbitrarily small}$ by making $\|x(0)\|$ small enough

1

for any R > 0, there exists r > 0 so that $||x(0)|| < r \implies ||x(t)|| < R \quad \forall t > 0$

- Is x=0 a stable equilibrium for the Van der Pol oscillator example?
- No guarantee of convergence to the equilibrium point

1 - 16

Asymptotic stability definition

An equilibrium point x = 0 is asymptotically stable iff:

$$\begin{array}{ll} \mbox{(i).} & x=0 \mbox{ is stable} \\ \mbox{(ii).} & \|x(0)\| < r \implies \|x(t)\| \to 0 \mbox{ as } t \to \infty \\ \end{array}$$

(ii) is equivalent to:

Exponential stability definition

An equilibrium point x = 0 is exponentially stable iff:

$$||x(0)|| < r \implies ||x(t)|| \le \beta e^{-\alpha t} \quad \forall t > 0$$

exponential stability is a special case of asymptotic stability

1 - 18

Region of attraction

The region of attraction of x=0 is the set of all initial conditions x(0) for which $x(t) \to 0$ as $t \to \infty$

- Every asymptotically stable equilibrium point has a region of attraction
- $\begin{array}{ccc} \bullet & r = \infty & \Longrightarrow & \text{entire state space is a region of attraction} \\ & \Longrightarrow & x = 0 \text{ is globally asymptotically stable} \end{array}$
- Are stable linear systems asymptotically stable?

Summary

- • Nonlinear state space equations: $\dot{x} = f(x,u)$ x = state vector, u = control input
- Equilibrium points: x^* is an equilibrium point of $\dot{x} = f(x)$ if $f(x^*) = 0$
- Stable equilibrium point: x^* is stable if state trajectories starting close to x^* remain near x^* at all times
- ullet Asymptotically stable equilibrium point: x^* must be stable and state trajectories starting near x^* must tend to x^* asymptotically
- ullet Region of attraction: the set of initial conditions from which state trajectories converge asymptotically to equilibrium x^*

1 - 20

Lecture 2

Linearization and Lyapunov's direct method

2 - 1

Linearization and Lyapunov's direct method

- Review of stability definitions
- Linearization method
- Direct method for stability
- Direct method for asymptotic stability
- Linearization method revisited

Review of stability definitions

System: $\dot{x} = f(x)$

- ★ unforced system (i.e. closed-loop)
- * consider stability of individual equilibrium points

0 is a stable equilibrium if:

Stability Asymptotic stability →

0 is asymptotically stable if:

$$||x(0)|| \le r \implies ||x(t)|| \to 0$$

as $t \to \infty$

local property global if $r=\infty$ allowed

2 - 3

Historical development of Stability Theory

• Potential energy in conservative mechanics (Lagrange 1788):

An equilibrium point of a conservative system is stable if it corresponds to a minimum of the potential energy stored in the system

- Energy storage analogy for general ODEs (Lyapunov 1892)
- Invariant sets (Lefschetz, La Salle 1960s)

J-L. Lagrange 1736-1813 A. M. Lyapunov 1857-1918

S. Lefschetz 1884-1972

Lyapunov's linearization method

- ullet Determine stability of equilibrium at x=0 by analyzing the stability of the linearized system at x = 0.
- Jacobian linearization:

$$\begin{split} \dot{x} &= f(x) & \text{original nonlinear dynamics} \\ &= f(0) + \frac{\partial f}{\partial x} \Big|_{x=0} x + R_1 & \text{Taylor's series expansion, } R_1 = O(\|x\|^2) \\ &\approx Ax & \text{since } f(0) = 0 \end{split}$$

where

$$A = \frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}, \qquad \frac{\partial f}{\partial x} \text{ assumed continuous at } x=0$$

2 - 5

Lyapunov's linearization method

Conditions on A for stability of original nonlinear system at x = 0:

stability of linearization	stability of nonlinear system at $\boldsymbol{x} = \boldsymbol{0}$
$\operatorname{Re} \bigl(\lambda(A) \bigr) < 0$	asymptotically stable (locally)
$\max Re\big(\lambda(A)\big) = 0$	stable or unstable
$\max Re \big(\lambda(A) \big) > 0$	unstable

Lyapunov's linearization method

Some examples

$$\begin{array}{lll} \text{(stable)} & & \dot{x} = -x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ \text{(unstable)} & & \dot{x} = x^3 & \xrightarrow{\text{linearize}} & \dot{x} = 0 & \text{(indeterminate)} \\ \end{array}$$

higher order terms determine stability

- Why does linear control work?
 - 1. Linearize the model:

$$\dot{x} = f(x, u)$$

 $\approx Ax + Bu,$ $A = \frac{\partial f}{\partial x}(0, 0), B = \frac{\partial f}{\partial u}(0, 0)$

2. Design a linear feedback controller using the linearized model:

$$u=-Kx, \quad \max \mathrm{Re} ig(\lambda (A-BK)ig) < 0$$
 closed-loop linear model strictly stable

nonlinear system $\dot{x}=f(x,-Kx)$ is locally asymptotically stable at x=0

2 - 7

Lyapunov's direct method: mass-spring-damper example

Equation of motion:

$$m\ddot{y} + c(\dot{y}) + k(y) = 0$$

$$V = \text{K.E.} + \text{P.E.}$$

$$\begin{cases}
\text{K.E.} = \frac{1}{2}m\dot{y}^2 \\
\text{P.E.} = \int_0^y k(y) \, dy
\end{cases}$$

Rate of energy dissipation

$$\dot{V} = \frac{1}{2}m\ddot{y}\frac{d}{d\dot{y}}\dot{y}^2 + \dot{y}\frac{d}{dy}\left[\int_0^y k(y)\,dy\right]$$
$$= m\ddot{y}\dot{y} + \dot{y}k(y)$$

but
$$m\ddot{y} + k(y) = -c(\dot{y})$$
, so $\dot{V} = -c(\dot{y})\dot{y}$

$$\leq 0 \qquad \leftarrow \operatorname{since } \operatorname{sign} \bigl(c(\dot{y}) \bigr) = \operatorname{sign} (\dot{y})$$

Mass-spring-damper example contd.

- System state: e.g. $x = \begin{bmatrix} y & \dot{y} \end{bmatrix}^T$
- $\bullet \ \dot{V}(x) \leq 0 \ \mathrm{implies} \ \mathrm{that} \ x = 0 \ \mathrm{is} \ \mathrm{stable}$

V(x(t)) must decrease over time but

V(x) increases with increasing ||x||

• Formal argument:

for any given R > 0:

$$\|x\| < R \qquad \text{ whenever } \qquad V(x) < \overline{V} \text{ for some } \overline{V}$$
 and $V(x) < \overline{V} \qquad \text{ whenever } \qquad \|x\| < r \quad \text{ for some } r$

$$\begin{aligned} \therefore \|x(0)\| < r & \implies V\left(x(0)\right) < \overline{V} \\ & \implies V\left(x(t)\right) < \overline{V} \quad \text{ for all } t > 0 \\ & \implies \|x(t)\| < R \quad \text{ for all } t > 0 \end{aligned}$$

2 - 9

Positive definite functions

- What if V(x) is not monotonically increasing in ||x||?
- ullet Same arguments apply if V(x) is continuous and positive definite, i.e.

for any given $\overline{V}>0$, can always find r so that

 $V(x) < \overline{V}$ whenever $\|x\| < r$

 $V(x) \geq \alpha \|x\|^n$ for some constants α , n, so

 $\|x\|<(\overline{V}/\alpha)^{1/n} \quad \text{ whenever } \quad V(x)<\overline{V}$

Lyapunov stability theorem

If there exists a continuous function $V(\boldsymbol{x})$ such that

V(x) is positive definite $\dot{V}(x) < 0$

then x = 0 is stable.

To show that this implies $\|x(t)\| < R$ for all t>0 whenever $\|x(0)\| < r$ for any R and some r:

- 1. choose \overline{V} as the minimum of V(x) for $\|x\|=R$
- 2. find r so that $V(x) < \overline{V}$ whenever $\|x\| < r$
- 3. then $\dot{V}(x) \leq 0$ ensures that

$$V(x(t)) < \overline{V} \quad \forall t > 0 \quad \text{if } ||x(0)|| < r$$

 $\therefore ||x(t)|| < R \quad \forall t > 0$

2 - 11

Lyapunov stability theorem

 \bullet Lyapunov's direct method also applies if V(x) is locally positive definite, i.e. if

(i).
$$V(0) = 0$$

(ii).
$$V(x) > 0$$
 for $x \neq 0$ and $||x|| < R_0$

then x = 0 is stable if $\dot{V}(x) \le 0$ whenever $||x|| < R_0$.

- Apply the theorem without determining R, r only need to find p.d. V(x) satisfying $\dot{V}(x) \leq 0$.
- Examples

(i).
$$\dot{x} = -a(t)x$$
, $a(t) > 0$

$$V = \frac{1}{2}x^2 \implies \dot{V} = x\dot{x}$$
$$= -a(t)x^2 \le 0$$

(ii).
$$\dot{x} = -a(x)$$
, $\operatorname{sign}(a(x)) = \operatorname{sign}(x)$

$$V = \frac{1}{2}x^2 \implies \dot{V} = x\dot{x}$$
$$= -a(x)x < 0$$

Lyapunov stability theorem

More examples

(iii).
$$\dot{x}=-a(x), \quad \int_0^x a(x)\,dx>0$$

$$V=\int_0^x a(x)\,dx \quad \Longrightarrow \quad \dot{V}=a(x)\dot{x}$$

$$=-a^2(x)\leq 0$$

(iv).
$$\ddot{\theta} + \sin \theta = 0$$

$$V = \frac{1}{2}\dot{\theta}^2 + \int_0^{\theta} \sin \theta \ d\theta \implies \dot{V} = \ddot{\theta}\dot{\theta} + \dot{\theta}\sin \theta$$
$$= 0$$

2 - 13

Asymptotic stability theorem

If there exists a continuous function V(x) such that

V(x) is positive definite $\dot{V}(x)$ is negative definite

then x = 0 is locally asymptotically stable.

 $(\dot{V} \ {\sf negative \ definite} \ \Longleftrightarrow \ -\dot{V} \ {\sf positive \ definite})$

Asymptotic convergence $x(t) \to 0$ as $t \to \infty$ can be shown by contradiction:

if ||x(t)|| > R' for all $t \ge 0$, then

$$\left. \begin{array}{c} \dot{V}(x) < -W \\ \\ V(x) \geq \underline{V} \end{array} \right\} \qquad \text{for all } t \geq 0$$

$$\uparrow$$

$$\text{contradiction}$$

Linearization method and asymptotic stability

- Asymptotic stability result also applies if $\dot{V}(x)$ is only locally negative definite.
- Why does the linearization method work?
 - * consider 1st order system: $\dot{x} = f(x)$ linearize about x = 0: = -ax + R $R = O(x^2)$
 - \star assume a>0 and try Lyapunov function V:

$$V(x) = \frac{1}{2}x^{2}$$

$$\dot{V}(x) = x\dot{x} = -ax^{2} + Rx = -x^{2}(a - R/x)$$

$$\leq -x^{2}(a - |R/x|)$$

 \star but $R = O(x^2)$ implies $|R| \leq \beta x^2$ for some constant β , so

$$\dot{V} \le -x^2(a - \beta|x|)$$

$$\le -\gamma x^2 \quad \text{if } |x| \le (a - \gamma)/\beta$$

 $\implies \dot{V}$ negative definite for |x| small enough

 $\implies x = 0$ locally asymptotically stable

Generalization to nth order systems is straightforward

2 - 15

Global asymptotic stability theorem

If there exists a continuous function V(x) such that

$$\begin{array}{ll} V(x) & \text{is positive definite} \\ \dot{V}(x) & \text{is negative definite} \\ V(x) \to \infty \text{ as } \|x\| \to \infty \end{array} \right\} \text{ for all } x$$

then x = 0 is globally asymptotically stable

- If $V(x) \to \infty$ as $||x|| \to \infty$, then V(x) is radially unbounded
- Test whether V(x) is radially unbounded by checking if $V(x) \to \infty$ as each individual element of x tends to infinity (necessary).

Global asymptotic stability theorem

Global asymptotic stability requires:

$$\|x(t)\| \text{ finite } \left\{ \begin{array}{c} \text{ for all } t>0 \\ \text{ for all } x(0) \end{array} \right.$$

not guaranteed by \dot{V} negative definite

in addition to asymptotic stability of x = 0

• Hence add extra condition: $V(x) \to \infty$ as $||x|| \to \infty$

level sets
$$\{x \ : \ V(x) \leq \overline{V}\}$$
 are finite
$$\label{eq:prop} \mbox{\updownarrow equiv. to}$$

||x|| is finite whenever V(x) is finite

 \uparrow

prevents x(t) drifting away from 0 despite $\dot{V} < 0$

2 - 17

Asymptotic stability example

System:
$$\dot{x}_1 = (x_2 - 1)x_1^3$$
 $\dot{x}_2 = -\frac{x_1^4}{(1 + x_1^2)^2} - \frac{x_2}{1 + x_2^2}$

• Trial Lyapunov function $V(x) = x_1^2 + x_2^2$:

$$\dot{V}(x) = 2x_1\dot{x}_1 + 2x_2\dot{x}_2$$

$$= -2x_1^4 + 2x_2x_1^4 - 2\frac{x_2x_1^4}{(1+x_1^2)^2} - 2\frac{x_2^2}{1+x_2^2} \not\leq 0$$

change V to make these terms cancel

Asymptotic stability example

• New trial Lyapunov function $V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2$:

$$\dot{V}(x) = 2\left[\frac{x_1}{1+x_1^2} - \frac{x_1^3}{(1+x_1^2)^2}\right]\dot{x_1} + 2x_2\dot{x_2}$$
$$= -2\frac{x_1^4}{(1+x_1^2)^2} - 2\frac{x_2^2}{1+x_2^2} \le 0$$

V(x) positive definite, $\dot{V}(x)$ negative definite $\implies x=0$ a.s. But V(x) not radially unbounded, so cannot conclude global asymptotic stability

State trajectories:

2 - 19

Summary

- Positive definite functions
- Derivative of V(x) along trajectories of $\dot{x} = f(x)$
- Lyapunov's direct method for: stability
 asymptotic stability
 global stability
- Lyapunov's linearization method

Lecture 3

Convergence and invariant sets

3 - 1

Convergence and invariant sets

- Review of Lyapunov's direct method
- Convergence analysis using Barbalat's Lemma
- Invariant sets
- Global and local invariant set theorem
- Example

2 - 20

Review of Lyapunov's direct method

Positive definite functions

If

$$\begin{split} V(0) &= 0 \\ V(x) &> 0 \quad \text{ for all } x \neq 0 \end{split}$$

then V(x) is positive definite

• If S is a set containing x=0 and

$$V(0) = 0$$

$$V(x) > 0 \quad \text{for all } x \neq 0, x \in \mathcal{S}$$

then V(x) is locally positive definite (within S)

e.g.

$$V(x) = x^T x$$

← positive definite

$$V(x) = x^T x (1 - x^T x)$$
 \leftarrow locally positive definite

within $S = \{x : x^T x < 1\}$

3 - 3

Review of Lyapunov's direct method

System: $\dot{x} = f(x), \quad f(0) = 0$

Storage function: V(x)

Time-derivative of
$$V$$
: $\dot{V}(x) = \frac{\partial V}{\partial x} \frac{dx}{dt} = \nabla V(x)^T \dot{x} = \nabla V(x)^T f(x)$

If

(i).
$$V(x)$$
 is positive definite
 (ii). $\dot{V}(x) \leq 0$ for all $x \in \mathcal{S}$

then the equilibrium x=0 is stable

If

(iii). $\dot{V}(x)$ is negative definite for all $x \in \mathcal{S}$ then the equilibrium x = 0 is asymptotically stable

If

(iv).
$$S=$$
 entire state space

(v).
$$V(x) \to \infty$$
 as $||x|| \to \infty$

then the equilibrium x = 0 is globally asymptotically stable

Convergence analysis

• What can be said about convergence of x(t) to 0if $\dot{V}(x) \leq 0$ but $\dot{V}(x)$ is not negative definite?

• Revisit m-s-d example:

Equation of motion: $m\ddot{y} + c(\dot{y}) + k(y) = 0$

Storage function:
$$V=$$
 K.E. $+$ P.E. $=\frac{1}{2}m\dot{y}^2+\int_0^y k(y)\,dy$ $\dot{V}=-c(\dot{y})\dot{y}$

3 - 5

Convergence analysis

• V is p.d. and $\dot{V} < 0$ so: $(y, \dot{y}) = (0, 0)$ is stable and $V(y, \dot{y})$ tends to a finite limit as $t \to \infty$

• but does (y, \dot{y}) converge to (0, 0)?

tequivalent to

can $V(y, \dot{y})$ "get stuck" at $V = V_0 \neq 0$ as $t \to \infty$?

need to consider motion at points (y, \dot{y}) for which $\dot{V} = 0$

Example

Equation of motion: $m\ddot{y} + c(\dot{y}) + k(y) = 0$

Storage function:

Storage function:
$$V = \frac{1}{2}\dot{y}^2 + \int_0^y 5\tan^{-1}(y/5)\,dy$$

$$\dot{V} = -c(\dot{y})\dot{y} \le 0 \qquad \qquad \downarrow$$

$$\dot{V} = 0 \text{ when } \dot{y} = 0$$
 but $k(y) \ne 0 \implies \ddot{y} \ne 0 \implies \ddot{V} \ne 0$
$$\downarrow$$

$$V \text{ continues to decrease until } y = \dot{y} = 0$$

3 - 7

Convergence analysis

Summary of method:

- 1. show that $\dot{V}(x) \to 0$ as $t \to \infty$
- 2. determine the set \mathcal{R} of points x for which $\dot{V}(x) = 0$
- 3. identify the subset $\mathcal M$ of $\mathcal R$ for which $\dot V(x)=0$ at all future times

then x(t) has to converge to \mathcal{M} as $t \to \infty$

This approach is the basis of the invariant set theorems

Barbalat's Lemma

Barbalat's lemma: For any function $\phi(t)$, if

(i). $\int_0^t \phi(\tau) d\tau$ converges to a finite limit as $t \to \infty$

(ii). $\dot{\phi}(t)$ is finite for all t

then $\lim_{t\to\infty}\phi(t)=0$

- Obvious for the case that $\phi(t) \geq 0$ for all t
- Condition (ii) is needed to ensure that $\phi(t)$ remains continuous for all t

Can construct discontinuous $\phi(t)$ for which $\int_0^t \phi(\tau) d\tau$ converges but $\phi(t) \not\to 0$ as $t \to \infty$

3 - 9

Barbalat's Lemma

Example: pulse train $\phi(t) = \sum_{k=0}^{\infty} e^{-4^k (t-k)^2}$:

From the plots it is clear that

$$\int_0^t \phi(s)\,ds$$
 tends to a finite limit

but $\phi(t) \not\to 0$ as $t \to \infty$ because $\dot{\phi}(t) \to \infty$ as $t \to \infty$

Barbalat's Lemma contd.

Apply Barbalat's Lemma to $\dot{V}(x(t)) = \phi(t) \leq 0$:

• Integrate:

$$\int_0^t \phi(s) \, ds = V(x(t)) - V(x(0))$$

 \leftarrow finite limit as $t \to \infty$

Differentiate:

$$\dot{\phi}(t) = \ddot{V}\big(x(t)\big) = f^T(x)\frac{\partial^2 V}{\partial x^2}(x)f(x) + \nabla V(x)\frac{\partial f}{\partial x}(x)f(x)$$

= finite for all t if f(x) continuous and V(x) continuously differentiable

$$\dot{V}(x)
ightarrow 0$$
 as $t
ightarrow \infty$

The above arguments rely on ||x(t)|| remaining finite for all t, which is implied by:

V(x) positive definite

$$\dot{V}(x) < 0$$

$$V(x) \rightarrow \infty$$
 as $\|x\| \rightarrow \infty$

3 - 11

Convergence analysis

Summary of method:

- 1. show that $\dot{V}(x) \to 0$ as $t \to \infty$
 - \rightarrow true whenever $\dot{V} \leq 0$ & V,f are smooth & $\|x(t)\|$ is bounded

[by Barbalat's Lemma]

- 2. determine the set $\mathcal R$ of points x for which $\dot V(x)=0$
 - $\rightarrow \text{ algebra!}$
- 3. identify the subset $\mathcal M$ of $\mathcal R$ for which $\dot V(x)=0$ at all future times
 - $ightarrow \mathcal{M}$ must be invariant

then x(t) has to converge to \mathcal{M} as $t\to\infty$

This approach is the basis of the invariant set theorems

Invariant sets

ullet A set of points ${\mathcal M}$ in state space is invariant if

$$x(t_0) \in \mathcal{M} \quad \Longrightarrow \quad x(t) \in \mathcal{M} \quad \text{ for all } t > t_0$$

Examples:

- * Equilibrium points
- * Limit cycles
- * Level sets of $V(x) \leftarrow \text{i.e. } \{x: V(x) \leq V_0\}$ for constant V_0 provided $\dot{V}(x) \leq 0$
- If $\dot{V}(x) \to 0$ as $t \to \infty$, then

x(t) must converge to an invariant set \mathcal{M} contained within the set of points on which $\dot{V}(x)=0$

as $t o \infty$

3 - 13

Global invariant set theorem

If there exists a continuously differentiable function V(x) such that

$$V(x)$$
 is positive definite $\dot{V}(x) \leq 0$
$$V(x) \rightarrow \infty \text{ as } \|x\| \rightarrow \infty$$

then: (i). $\dot{V}(x) \to 0$ as $t \to \infty$

(ii). $x(t) \to \mathcal{M} =$ the largest invariant set contained in \mathcal{R}

where
$$\mathcal{R} = \{x : \dot{V}(x) = 0\}$$

- $\dot{V}(x)$ negative definite $\Longrightarrow \mathcal{M}=0$ (c.f. Lyapunov's direct method)
- Determine \mathcal{M} by considering system dynamics within \mathcal{R}

Global invariant set theorem

Revisit m-s-d example (for the last time)

• V(x) is positive definite, $V(x) \to \infty$ as $||x|| \to \infty$, and

$$\dot{V}(y, \dot{y}) = -c(\dot{y})\dot{y} \le 0$$

- therefore $\dot{V} \to 0$, implying $\dot{y} \to 0$ as $t \to \infty$ i.e. $\mathcal{R} = \{(y,\dot{y}) : \dot{y} = 0\}$
- but $\dot{y} = 0$ implies $\ddot{y} = -k(y)/m$
- therefore $\ddot{y} \neq 0$ unless y=0, so $\dot{y}(t)=0$ for all t only if y(t)=0 i.e. $\mathcal{M}=\{(y,\dot{y})\ :\ (y,\dot{y})=(0,0)\}$

 \downarrow

 $(y,\dot{y})=(0,0)$ is a globally asymptotically stable equilibrium!

3 - 15

Local invariant set theorem

If there exists a continuously differentiable function V(x) such that

the level set $\Omega=\{x\ :\ V(x)\leq V_0\}$ is bounded for some V_0 and $\dot{V}(x)\leq 0$ whenever $x\in\Omega$

then:

- (i). Ω is an invariant set
- (ii). $x(0) \in \Omega \implies \dot{V}(x) \to 0 \text{ as } t \to \infty$
- (iii). $x(t) o \mathcal{M} = \text{largest invariant set contained in } \mathcal{R}$

where
$$\mathcal{R} = \{x : \dot{V}(x) = 0\}$$

Local invariant set theorem

- \bullet V(x) doesn't have to be positive definite or radially unbounded
- \bullet Result is based on Barbalat's Lemma applied to \dot{V}

1

applies here because finite Ω implies $\|x(t)\|$ finite for all t since $x(0)\in\Omega$ and $\dot{V}\leq0$

ullet Ω is a region of attraction for ${\mathcal M}$

3 - 17

Example: local invariant set theorem

- Second order system: $\dot{x}_1 = x_2$ $\dot{x}_2 = -(x_1 - 1)^2 x_2^3 - x_1 + \sin(\pi x_1/2)$
- Equilibrium points: $(x_1, x_2) = (0, 0), (1, 0), (-1, 0)$
- Trial storage function:

$$V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} (y - \sin(\pi y/2)) dy$$

V is not positive definite but $V(x) \to \infty$ if $x_1 \to \infty$ or $x_2 \to \infty$

level sets of ${\cal V}$ are finite

Example: local invariant set theorem contd.

- Differentiate: $\dot{V}(x)=-(x_1-1)^2x_2^4\leq 0$ $\dot{V}(x)=0 \iff x\in\mathcal{R}=\{x: x_1=1 \text{ or } x_2=0\}$
- From the system model, $x \in \mathcal{R}$ implies:

$$x_1=1 \quad \Longrightarrow \quad (\dot{x}_1,\dot{x}_2)=(x_2,0)$$
 and
$$x_2=0 \quad \Longrightarrow \quad (\dot{x}_1,\dot{x}_2)=(0,\sin(\pi x_1/2)-x_1)$$
 therefore
$$\left\{ \begin{array}{l} x(t) \text{ remains on line } x_1=1 \text{ only if } x_2=0 \\ x(t) \text{ remains on line } x_2=0 \text{ only if } x_1=0,\ 1 \text{ or } -1 \end{array} \right.$$

$$\Longrightarrow \mathcal{M}=\{(0,0),(1,0),(-1,0)\}$$

• Apply local invariant set theorem to any level set $\Omega = \{x : V(x) \leq V_0\}$:

$$\left. \begin{array}{l} \Omega \text{ is finite} \\ \dot{V} \leq 0 \end{array} \right\} \implies \quad x(t) \rightarrow \mathcal{M} = \{(0,0), (1,0), (-1,0)\} \text{ as } t \rightarrow \infty$$

3 - 19

Example: local invariant set theorem contd.

 \bullet From any initial condition, x(t) converges asymptotically to $(0,0),\,(1,0)$ or (-1,0)

but x=(0,0) is unstable (linearized system at (0,0) has poles $\pm \sqrt{\frac{\pi}{2}-1}$ so is unstable)

• Contours of V(x):

Use local invariant set theorem on level sets $\Omega = \{x : V(x) \le V_0\}$ for $V_0 < 0$

$$x = (1,0), x = (-1,0)$$
 are stable equilibrium points

Summary

- Convergence analysis using Barbalat's lemma
- Invariant sets
- Invariant set methods for convergence: local invariant set theorem global invariant set theorem

3 - 21

Lecture 4

Linear systems, passivity, and the circle criterion

4 - 1

Linear systems, passivity, and the circle criterion

- Summary of stability methods
- Lyapunov functions for linear systems
- Passive systems
- Passive linear systems
- The circle criterion
- Example

4 - 2

Summary of stability methods

Linearization method

• Lyapunov's direct method

Invariant set theorems

$$\begin{array}{l} V(x) \text{ p.d.} \\ \dot{V}(x) \leq 0 \\ V(x) \to \infty \text{ as } \|x\| \to \infty \end{array} \qquad \begin{array}{l} \Omega = \{x \ : \ V(x) \leq V_0\} \text{ bounded} \\ \dot{V}(x) \leq 0 \text{ for all } x \in \Omega \end{array}$$

x(t) converges to the union of invariant sets contained in $\{x: \dot{V}(x)=0\}$

4 - 3

Summary of stability methods

• Instability theorems analogous to Lyapunov's direct method, e.g.

$$\left. \begin{array}{c} V(x) \text{ p.d.} \\ \dot{V}(x) \text{ p.d.} \end{array} \right\} \quad \Longrightarrow \quad x = 0 \text{ unstable}$$

Lyapunov stability criteria are only sufficient, e.g.

$$egin{array}{ll} V(x) \ ext{p.d.} \\ \dot{V}(x)
eq 0 \end{array}
ight.
ightarrow x = 0 \ ext{unstable}$$
 (some other $V(x)$ demonstrating stability may exist)

Converse theorems

Linear systems

- Systematic method for constructing storage function $V(x) = x^T P x$
 - $\dot{x} = Ax$ strictly stable \implies can always find constant matrix ${\cal P}$ so that $\dot{V}(x)$ is negative definite
- Only need consider symmetric P

$$\boldsymbol{x}^T P \boldsymbol{x} = \tfrac{1}{2} \boldsymbol{x}^T P \boldsymbol{x} + \tfrac{1}{2} \boldsymbol{x}^T P^T \boldsymbol{x} = \tfrac{1}{2} \boldsymbol{x}^T \underbrace{(\boldsymbol{P} + \boldsymbol{P}^T)}_{\text{Symmetric}} \boldsymbol{x}$$

• Need $\lambda(P) > 0$ for positive definite $V(x) = x^T P x$

$$\begin{array}{cccc} P = U\Lambda U^T & & \text{eigenvector/value decomposition} \\ & & \downarrow & & \\ x^T P x = z^T \Lambda z & & z = U^T x \\ & & \downarrow & \\ x^T P x \text{ positive definite} & & \begin{cases} \text{notation: } P > 0 \\ \text{or "P is positive definite"} \end{cases} \end{array}$$

Linear systems

4 - 5

• How is P computed?

$$\begin{array}{c} \dot{x} = Ax \\ V(x) = x^T P x \end{array} \right\} \quad \Longrightarrow \quad \begin{array}{c} \dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x \\ = x^T (PA + A^T P) x \end{array}$$

 $\therefore x = 0$ is globally asymptotically stable if, for some Q:

$$PA + A^T P = -Q Q = Q^T > 0$$

Lyapunov matrix equation

• Pick Q > 0 and solve $PA + A^TP = -Q$ for P, then

$$\operatorname{Re} \big[\lambda(A) \big] < 0 \qquad \Longleftrightarrow \qquad \begin{array}{c} \text{unique solution for } P \\ \text{and } P = P^T > 0 \end{array}$$

Proof:

- \longleftarrow due to $\dot{V}(x) = -x^T Q x$ negative definite
- \Longrightarrow follows from integrating \dot{V} w.r.t. $t \colon P = \int_{0}^{\infty} e^{A^T t} Q e^{At} \; dt$

Example: Lyapunov matrix equation

Stable linear system
$$\dot{x}=Ax$$
: $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & -16 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \lambda(A) = -1 \pm i \sqrt{15}$

Solve $PA + A^TP = -Q$ for P:

$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow P_1 = \begin{bmatrix} 0.33 & -0.5 \\ -0.5 & 4.25 \end{bmatrix} \qquad Q_2 = \begin{bmatrix} 0.41 & -0.19 \\ -0.19 & 0.11 \end{bmatrix} \Rightarrow P_2 = \begin{bmatrix} 0.12 & -0.21 \\ -0.21 & 1.67 \end{bmatrix}$$

$$x^T P_2 x = \begin{bmatrix} 15 & 15 & 15 \\ 0 & 2 & 15 \\ 0 & 2 & 15 \\ 0 & 2 & 2$$

Here:

4 - 7

- * any choice of Q > 0 gives P > 0 (since A is strictly stable)
- * but not every P > 0 gives Q > 0

Passive systems

- Systematic method for constructing storage functions
- Input-output representation of system:

The system is passive if

$$\dot{V} = yu - g \quad \text{ for some } V(t) \geq 0, \quad g(t) \geq 0$$

also the system is dissipative if
$$\int_0^\infty yu\,dt \neq 0 \implies \int_0^\infty g\,dt > 0$$

• Motivated by electrical networks with no internal power generation

Passive systems

Passivity is useful for determining storage functions for feedback systems

• Closed-loop system with passive subsystems S_1 , S_2 :

$$\begin{aligned} V_1 + V_2 &\ge 0 \\ \dot{V}_1 + \dot{V}_2 &= y_1 u_1 + y_2 u_2 - g_1 - g_2 \\ &= y_1 (-y_2) + y_2 y_1 - g_1 - g_2 \\ &= -g_1 - g_2 \\ &\le 0 \end{aligned}$$

 $\implies V = V_1 + V_2$ is a Lyapunov function for the closed-loop system if V is a p.d. function of the system state

4 - 9

Interconnected passive systems

Parallel connection:

$$V_1 + V_2 \ge 0$$

$$\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$$

$$= (y_1 + y_2)u - g_1 - g_2$$

$$= yu - g_1 - g_2$$

Overall system from u to y is passive

• Feedback connection:

$$V_1 + V_2 \ge 0$$

 $\dot{V}_1 + \dot{V}_2 = y_1 u_1 + y_2 u_2 - g_1 - g_2$
 $= y(u - y_2) + y_2 y - g_1 - g_1$
 $= yu - g_1 - g_2$

Overall system from u to y is passive

Passive linear systems

ullet H is passive if and only if

- (i). $\operatorname{Re}(p_i) \leq 0$, where $\{p_i\}$ are the poles of H(s)
- (ii). $\operatorname{Re}[H(j\omega)] \geq 0$ for all $0 \leq \omega \leq \infty$
- $\star~H$ must be stable, otherwise $V(t)=\int_0^t yu\,dt$ is not defined for all u
- $\hbox{$\star$ From Parseval's theorem:} \qquad \operatorname{Re} \big[H(j\omega) \big] \geq 0 \qquad \Longleftrightarrow \qquad \int_0^t yu \ dt \geq 0 \text{ for all } u(t) \text{ and } t$

frequency domain criterion for passivity

• H is dissipative if and only if $\operatorname{Re}(p_i) \leq 0$ and

$$\operatorname{Re} ig[H(j\omega) ig] > 0 \text{ for all } 0 \leq \omega < \infty$$

4 - 11

Linear system + static nonlinearity

H linear: $\frac{Y(s)}{U(s)} = H(s)$

 ϕ static nonlinearity: $z = \phi(y)$

What are the conditions on H and ϕ for closed-loop stability?

- A common problem in practice, due to e.g.
 - ⋆ actuator saturation (valves, dc motors, etc.)
 - * sensor nonlinearity
- Determine closed-loop stability given: ϕ belongs to sector [a, b]

$$\updownarrow a \le \frac{\phi(y)}{y} \le b$$

"Absolute stability problem"

Linear system + static nonlinearity

- Aizerman's conjecture (1949): Closed-loop system is stable if stable for $\phi(y)=ky$, $a\leq k\leq b$
 - false (necessary but not sufficient)
- Sufficient conditions for closed-loop stability:

 Popov criterion (1960)
 Circle criterion
- The passivity approach:
 - (1). If H is dissipative (i.e. if $\mathrm{Re}\big[H(j\omega)\big]>0$ and H is stable), then:

$$\begin{array}{l} V = x^T P x \\ \dot{V} = y u - x^T Q x \end{array} \right\} \text{ for some } P > 0, \quad Q > 0 \\ = -y \phi(y) - x^T Q x \qquad \longleftarrow z$$

(2). If ϕ belongs to sector $[0,\infty)$, then:

or
$$[0,\infty)$$
, then: $y\phi(y)\geq 0$

(1) & (2)
$$\implies \dot{V} \leq -x^T Q x$$

 $\implies x = 0$ is globally asymptotically stable

4 - 13

Circle criterion

Use loop transformations to generalize the approach for $\left\{ \begin{array}{l} H \text{ not passiv} \\ \phi \not \in [0,\infty) \end{array} \right.$

←→ equiv. to

 $\phi \in [a,b]$ a,b arbitrary

$$\phi \in [a, b] \implies \phi' \in [0, \infty]$$

$$H'(j\omega) = \frac{H(j\omega)}{1 + aH(j\omega)} + \frac{1}{b - a}$$

Circle criterion

To make $H'(j\omega) = \frac{H(j\omega)}{1 + aH(j\omega)} + \frac{1}{b-a}$ dissipative, need:

(i).
$$H'$$
 stable $\iff \frac{H(j\omega)}{1+aH(j\omega)}$ stable \updownarrow

Nyquist plot of $H(j\omega)$ goes through ν anti-clockwise encirclements of -1/a as ω goes from $-\infty$ to ∞

(
$$\nu = \text{no. poles of } H(j\omega) \text{ in RHP}$$
)

(ii).
$$\operatorname{Re} \big[H'(j\omega) \big] > 0 \iff \left\{ \begin{array}{ll} H(j\omega) \text{ lies outside } \frac{D(a,b)}{D(a,b)} & \text{if } ab > 0 \\ H(j\omega) \text{ lies inside } \frac{D(a,b)}{D(a,b)} & \text{if } ab < 0 \end{array} \right.$$

4 - 15

Graphical interpretation of circle criterion

x = 0 is globally asymptotically stable if:

 $\star 0 < a < b$

 $H(j\omega)$ lies in shaded region and does ν anti-clockwise encirclements of D(a,b)

$$\star$$
 $b > a = 0$

 $H(j\omega)$ lies in shaded region and $\nu=0$ (can't encircle -1/a)

 $\star a < 0 < b$

 $H(j\omega)$ lies in shaded region and $\nu=0$ (can't encircle -1/a)

 $\star a < b < 0$

 $-H(j\omega)$ lies in shaded region and does ν anti-clockwise encirclements of D(-b,-a)

Circle criterion

• Circle criterion is equivalent to Nyquist criterion for a = b > 0

$$\uparrow \\ \mbox{then } D(a,b) = -\frac{1}{a} \label{eq:definition}$$
 (single point)

- ullet Circle criterion is only sufficient for closed-loop stability for general a,b
- Results apply to time-varying static nonlinearity: $\phi(y,t)$

4 - 17

Example: Active suspension system

• Active suspension system for high-speed train:

• Force exerted by suspension system on carriage body: F_{susp}

$$\begin{split} F_{\rm susp} &= k(x_a - x) + c(\dot{x}_a - \dot{x}) \\ &= \big(k \int^t Q \; dt + cQ\big)/A - kx - c\dot{x}, \qquad Q = \phi(u) \end{split}$$

• Design controller to compensate for the effects of (constant) unknown load on displacement x despite uncertain valve characteristics $\phi(u)$.

Active suspension system contd.

Dynamics:

$$F_{\rm susp} - F = m\ddot{x}$$

$$\Longrightarrow \quad m\ddot{x} + c\dot{x} + kx = \left(k \int^t Q \ dt + cQ\right)/A - F, \qquad Q = \phi(u)$$

F: unknown load on suspension unit m: effective carriage mass

Transfer function model:

$$X(s) = \frac{cs+k}{ms^2+cs+k} \cdot \frac{Q(s)}{As} - \frac{F}{ms^2+cs+k} \qquad Q = \phi(u)$$

• Try linear compensator C(s):

$$U(s) = C(s)E(s)$$
 $e = -x$, setpoint: $x = 0$

4 - 19

Active suspension system contd.

 \bullet For constant F, we need to stabilize the closed-loop system:

• P+D compensator (no integral term needed):

$$C(s) = K(1 + \alpha s)$$
 \Longrightarrow $H(s) = \frac{K(1 + \alpha s)(cs + k)}{As(ms^2 + cs + k)}$
 $H \text{ open-loop stable } (\nu = 0)$

• From the circle criterion, closed-loop (global asymptotic) stability is ensured if: $H(j\omega)$ lies outside D(0.005, 0.1)

$$\uparrow$$
 sufficient condition: $\mathrm{Re}\big[H(j\omega)\big] > -10$

4 - 18

Active suspension system contd.

• Nyquist plot of $H(j\omega)$ for K=1 and $\alpha=0,0.2,0.4,0.8$:

• To maximize gain margin:

choose
$$\alpha = 0.2$$
 $K \le 10/3.4 = 2.94$

 $\leftarrow \text{ allows for largest } K$

4 - 21

Summary

At the end of the course you should be able to do the following:

- Understand the basic Lyapunov stability definitions (lecture 1)
- Analyse stability using the linearization method (lecture 2)
- Analyse stability by Lyapunov's direct method (lecture 2)
- Determine convergence using Barbalat's Lemma (lecture 3)
- Understand how invariant sets can determine regions of attraction (lecture 3)
- Construct Lyapunov functions for linear systems and passive systems (lecture 4)
- Use the circle criterion to design controllers for systems with static nonlinearities (lecture 4)

Addendum – Limit cycle stability analysis

System has state $x = (x_1, x_2)$ and dynamics:

$$\dot{x}_1 = -x_2 - x_1 h(x)
\dot{x}_2 = x_1 - x_2 h(x)$$

where $h(x) = x_1^2 + x_2^2 - 1$.

Limit cycle

Differentiate h(x) w.r.t. t using system dynamics:

$$\dot{h} = 2x_1\dot{x}_1 + 2x_2\dot{x}_2 = -2(x_1^2 + x_2^2)h(x) = -2(h+1)h$$

hence $h=0 \Longrightarrow \dot{h}=0$, so $\{x: x_1^2+x_2^2=1\}$ must contain a limit cycle.

4 - 23

Addendum – Limit cycle stability analysis

System has state $x = (x_1, x_2)$ and dynamics:

$$\dot{x}_1 = -x_2 - x_1 h(x)
\dot{x}_2 = x_1 - x_2 h(x)$$

where $h(x) = x_1^2 + x_2^2 - 1$.

Limit cycle stability

Let
$$V(x)=h^2(x)$$
, then $\dot{V}=2h\dot{h}=-4h^2(h+1)$
$$=-4h^2(x)(x_1^2+x_2^2)\leq 0$$

• $\{x:V(x)\leq c\}$ is an invariant set for any constant c and $\{x:V(x)=0\}=\{x:x_1^2+x_2^2=1\}$ is stable

$$\begin{array}{ll} \dot{V}=0 & \Longrightarrow & h=0 \text{ (or } x_1=x_2=0)\\ h=0 & \Longrightarrow & \dot{h}=0\\ & \Longrightarrow & \text{the limit cycle } \{x:h=0\} \text{ is the largest invariant set}\\ & & \text{contained in } \{x:V(x)<1 \text{ and } \dot{V}(x)=0\}, \text{ so is asymptotically} \end{array}$$