Práctica 1

Análisis Empírico e Híbrido de Eficiencia de Algoritmos

Índice

- 1. Introducción
- 2. Complejidad O(n²)
 - Burbuja
 - Inserción
 - Selección
- 3. Complejidad O(nlog(n))
 - Heapsort
 - Mergesort
 - Quicksort
- 4. Floyd
- 5. Hanoi
- 6. Comparativa
- 7. Optimización

2. Complejidad o(n²)

H ajuste se realiza con $T(n) = a^*n^2 + b^*n + c$

Vamos a ver los siguientes algoritmos:

- Burbuja
- Inserción
- Selección

2.1. Burbuja

2.2 Inserción

2.3. Selección

3. Complejidad O(nlog(n))

日 ajuste se realiza con T(n) = a*n * log (n) + b

Estos algoritmos tienen una mayor complejidad pero son más eficientes

Vamos a ver los siguientes algoritmos:

- -Heapsort
- -Mergesort
- -Quicksort

3.1. Heapsort

3.2. Mergesort

3.3. Quicksort

4. Floyd

El ajuste se realiza con $T(n) = a^*n^3 + b^*n^2 + c^*n + d$

5. Hanoi El ajuste se realiza con T(n) = a * (2ⁿ)+b

6. Comparativa

6. Comparativa

8. Optimización

8. Optimización

8. Optimización

