3. Primjene diferencijalnog racuna funkcija vise varijabli

4. (9 bodova)

- (a) (2b) Dokažite Sylvesterov teorem za pozitivno definitnu kvadratnu formu u dvije varijable.
- (b) (7b) Nadite i ispitajte lokalne ekstreme funkcije

$$f(x,y) = x^2y + 2xy^2 + \frac{1}{2}xy.$$

(4.) (a) Neka je Q(b,k) = ah2 + 26hk + ck2. TVRDNA: ART je a>0 i ac-6>0, ovida je knodratna forma Q(Rik) poertimo definitra, 10192: Treba midjeti da je Q(h,te)>0, 2a (h,te) + (0,0). . Ato je k=0, ouda Q(h,k)=ah² >0 jet a>0 i a+0 u erom slučaju.

Q(h,k)= k2. (a. (h)2+26h+c)

Ue supstituciju t:= & inamo: f(t) = at2+2bt+c Diskriminanta ove kvadratre funkcije je 46-40c = 4 (62-00) <0 jur je po pretop. ac-62>0. Jer je a>0 radi se o feradratnoj furkciji cija slika je podskup (0, tre).

. Nota je sada f + 0.

(b) Potrovalue Arro stacionario tocks:
$$\nabla^{\frac{1}{2}}(\omega_{1}) = \begin{bmatrix} 2xy_{1} + 2y_{2}^{2} + \frac{1}{2}y_{3} & x^{2} + y_{1}xy_{1} + \frac{1}{2}x \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$\begin{cases}
u_{1} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
x \cdot (x + y_{1} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{2} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
x \cdot (x + y_{1} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{3} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
x \cdot (x + y_{2} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{3} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
y_{3} \cdot (2y_{2} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
y_{3} \cdot (2y_{2} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
y_{3} \cdot (2y_{2} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
y_{3} \cdot (2y_{2} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
y_{3} \cdot (2y_{2} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
y_{3} \cdot (2y_{2} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{2} + \frac{1}{2}) = 0 \\
y_{3} \cdot (2y_{2} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0 \\
y_{3} \cdot (2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0 \\
y_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0 \\
y_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2}) = 0
\end{cases}$$

$$\begin{cases}
u_{4} \cdot (2x + 2y_{4} + \frac{1}{2})$$

 $\det\left(0^{2}f\left(\tau_{0}\right)\right) = \begin{bmatrix} \frac{1}{6} & 0 & \frac{1}{6} \\ -\frac{1}{6} & \frac{3}{6} & \frac{1}{36} & \frac{3}{36} & \frac{1}{12} > 0 \end{bmatrix} \Rightarrow \tan \alpha \sin \alpha \alpha \sin \alpha \alpha \cos \alpha \cos \alpha \alpha \cos$

 $\det\left(\begin{smallmatrix}0^2 + (T_3)\end{smallmatrix}\right) = \begin{vmatrix}0 & -1/2\\ -1/2 & -2\end{vmatrix} = -1/4 < 0 \quad \text{sedlasta tocka}$

MIZI20

3. (9 bodova)

- (a) (1b) Definirajte negativno definitnu kvadratnu formu dvije varijable.
- (b) (2b) Dokažite Sylvesterov kriterij za negativno definitnu kvadratnu formu dvije varijable.
- (c) (6b) Odredite lokalne ekstreme funkcije $f(x,y) = x^3 + 3xy^2 15x 12y$.

3. a) Definicija iz skripte. b) Dokaz iz skripte. c) Nusan uget sa likalni ekstrem je Dix (x, x) = 0 = Dix (x, y) pa potrazimo pro takve toike. $\frac{21}{2x}(x, y) = 3x^2 + 3y^2 - 15 = 0$ (1) $\frac{\partial f}{\partial y}(x_1y) = 6xy - 12 = 0$ (2) Zbrajanjem (1); (2) dobivamo $3(x+y^{2})^{2}-27=0$, odnomo $x+y=\pm 3$. Unstavanjem x = -y ± 3 u (2) i nesavanjem kvadrahre jednadébe dobivamo četin kardidata: y=2 |y=1| |y=-2| |y=-1|

$$\frac{3^{2}f}{3x^{2}} = 6x \qquad \frac{3^{2}f}{3x^{3}y} = 6y \qquad \frac{3^{2}f}{3y^{2}} = 6x$$

$$=) H_{1}(x,y) = \begin{bmatrix} 6x & 6y \\ 6y & 6x \end{bmatrix}$$

$$H_{2}(1,2) = \begin{bmatrix} 6 & 12 \\ 12 & 6 \end{bmatrix} & 6 > 0 & findefinition from the form of the finition of the finition of the finition of the finition form of$$

3. (10 bodova)

(a) (3b) Definirajte usmjerenu derivaciju funkcije dviju varijabli $\frac{\partial f}{\partial \vec{v}}(T_0)$ te pokažite da vrijedi

$$\frac{\partial f}{\partial \vec{v}}(T_0) = \nabla f(T_0) \cdot \vec{v}_0, \quad \text{gdje je } \vec{v}_0 = \frac{\vec{v}}{\|\vec{v}\|}.$$

(b) (3b) Planinar šeće planinom koja je oblika plohe

$$f(x,y) = 3x^2y - 2xy + 5x - 3y,$$

- gdje je z = f(x, y) nadmorska visina. Ako se planinar nakon odmora u točki $T_1(2, 1, z_1)$ uputi u smjeru prema točki $T_2(5, -3, z_2)$, kojom brzinom mu se mijenja nadmorska visina?
- (c) (2b) U kojem smjeru planinar treba krenuti iz točke T₁ ako želi najbrže sići s planine? Koliko iznosi brzina promjene visine u tom smjeru?
- (d) (2b) U kojem se smjeru planinar treba kretati iz točke T₁ ako želi ostati na istoj nadmorskoj visini? Obrazložite svoj odgovor.

3.) (a) USMJERENA DERIVACIJA funkcije
$$f$$
 u točki $T_o \in \mathbb{R}^2$ u smjeru vektore $\vec{F} \in \mathbb{V}^2$ je broj

gdje je vo = 1 v jedinični velitor u smjeru velitora v.

5 druge strane, us To = (xo, yo) i to = vox i + voy i te stavljanjem

 $g'(0) = \frac{\partial f}{\partial x}(x(0), y(0)) \cdot \frac{dx}{dk}(0) + \frac{\partial f}{\partial y}(x(0), y(0)) \cdot \frac{dy}{dk}(0)$

$$\frac{\partial f}{\partial t}(T_0) = \lim_{t \to 0} \frac{f(T_0 + h \vec{v}_0) - f(T_0)}{f}$$

Definirajus funkciju

vidiuo da ne

g(&):= f(To+ BTo).

Tada iz definicije usnijetene derivacije slijedi

 $\frac{\partial f}{\partial x^2}(\tau_0) = \lim_{k \to 0} \frac{g(k) - g(0)}{k} = g'(0).$

g(k) = f(x(k), y(k))

 $= \frac{\partial f}{\partial x} (T_0) V_{0x} + \frac{\partial f}{\partial y} (T_0) V_{0y}$

=) of (To) = Vf(To). Fo

x(&):= x0+ & vox, y(&):= y0+ & voy,

pa g'(0) movieno raturali i horisteci larcano pravilo:

$$\frac{\partial f}{\partial x}(x_1 y) = 6xy - 2y + 5 = \frac{\partial f}{\partial x}(T_1) = 15,$$

$$\frac{\partial f}{\partial y}(x_1 y) = 3x^2 - 2x - 3 = \frac{\partial f}{\partial y}(T_1) = 5,$$

$$\vec{r} = \frac{1}{11} = 3\vec{z} - 4\vec{z}$$
 $\Rightarrow \vec{r}_0 = \frac{1}{||\vec{r}||} \vec{r} = \frac{3}{5}\vec{z} - \frac{4}{5}\vec{z}$

(C) Treba adrediti smjer u lujem f najbrže pada iz točke T1. To je u smjeru

te usmjerene derivacije u tom sunjeru iznosi

$$-\|\nabla f(T_1)\| = -\sqrt{15^2 + 5^2} = -5\sqrt{10}$$
.

$$\frac{\partial f}{\partial \vec{x}}(T_1) = \nabla f(T_1) \cdot \vec{v}_0 = 0$$

vidimo da je $\vec{v} \perp \nabla f(T_1)$ po je traženi smjer

12

4. (9 bodova)

- (a) (6b) Koristeći metodu Lagrangeovog multiplikatora, nadite uvjetne ekstreme funkcije $f(x,y) = e^{x^2 + xy + y^2}$ uz uvjet $x^2 + y^2 = 2$.
- (b) (3b) Odredite globalne esktreme funkcije $f(x,y) = e^{x^2 + xy + y^2}$ na skupu određenom nejednadžbom $x^2 + y^2 \le 2$.

(4.) (a) Lagrangeous funkcija:

$$L(x,y,\lambda) = e^{x^2 + xy + y^2} + \lambda(x^2 + y^2 - 2)$$

Trazimo mere stocionarne tocke:

 $\frac{\partial L}{\partial x}(x,y,x) = x^2 + y^2 - 2$

 $\left(\frac{\partial L}{\partial x}(x_1y_1\lambda) = e^{x^2+xy+y^2} \cdot (2x+y) + 2\lambda x = 0\right)$

2 (x,3,2)= ex2+xy+y2. (x+2y)+22y =0

 $e^{x^2+xy+y^2}$. 3(x+y) + 2x(x+y) = 0

Zbrajanjem prvih dviju jednadžbi slijedi

=) $(x+y)(3e^{x^2+xy+y^2}+2x)=0$

odalle dobivamo dua slučaja:

$$1^{\circ} \times + y = 0 \Rightarrow \times = -y$$

Uvrštavanjem u treću jednodzbu slijedi

 $y^{2} + y^{2} - 2 = 0$
 $y^{2} = 1$
 $y_{1} = 1$
 $y_{2} = -1$
 $y_{3} = 1$
 $y_{4} = 1$
 $y_{2} = -1$
 $y_{4} = 1$
 $y_{5} = 1$
 $y_{6} = 1$
 $y_{7} = 1$
 $y_{7} = 1$
 $y_{8} = 1$
 $y_{8} = 1$

 $2^{\circ} 3e^{x^2+xy+y^2}+2\lambda=0 =) 2\lambda=-3e^{x^2+xy+y^2}$

=) -x+y=0 =) x=y

Uvrstavanjem u npr. prvn jednadábu dobivamo

$$y_1 = 1$$
 $y_2 = 1$
 $y_2 = -1$
 $x_1 = -1$
 $x_2 = 1$
 $x_2 = 1$

=) n=-1e =) stacionarne tocke su $T_1(-1,1,-\frac{1}{2}e)$ i $T_2(1,-1,-\frac{1}{2}e)$

$$y_1 = 1$$
 $y_2 = -1$
 $x_1 = -1$
 $y_2 = -1$
 $x_2 = 1$
 $x_2 = 1$
 $x_2 = 1$
 $x_3 = 1$
 $x_4 = -1$
 $x_4 = -1$
 $x_4 = -1$
 $x_5 = 1$
 $x_5 = -1$
 $x_6 = 1$
 $x_7 = -1$
 $x_7 = -1$

=) 2= -1=e

 $e^{x^2+xy+y^2} \cdot (2x+y) - 3e^{x^2+xy+y^2} \times = 0 \quad |:e^{x^2+xy+y^2}>0$

Sada 17 trede jednadībe slijedi

$$y^2 + y^2 - 2 = 0$$

 $y^2 = 1$
 $y_4 = -1$
 $y_4 = -1$

 $\frac{\partial^{2} L}{\partial x \partial y}(x, y, \gamma) = e^{x^{2} + xy + y^{2}} (2x + y)(x + 2y) + e^{x^{2} + xy + y^{2}}$

 $\sqrt{2}(T) = \frac{3^2L}{(T)(dx)^2 + 2\frac{3^2L}{(T)}} (T) dxdy + \frac{3^2L}{(T)} (T) (dy)^2$

$$x_{3} = 1$$

$$e^{2+1} \cdot (2+1) + 2\lambda = 0$$

$$\lambda_{3} = -\frac{3}{2}e^{3}$$

$$\frac{3^{2}L}{9x^{2}}(x,y,\Lambda) = e^{x^{2}+xy+y^{2}}(2x+y)^{2} + e^{x^{2}+xy+y^{2}} \cdot 2 + 2\lambda$$

$$\frac{3^{2}L}{3x^{2}}(x,y,\Lambda) = e^{x^{2}+xy+y^{2}}(x+2y)^{2} + e^{x^{2}+xy+y^{2}} \cdot 2 + 2\lambda$$

$$\frac{3^{2}L}{3x^{2}}(x,y,\lambda) = e^{x^{2}+xy+y^{2}}(2x+y)^{2} + e^{x^{2}+xy+y^{2}} \cdot 2 + 2\lambda$$

$$\lambda_{4} = -\frac{3}{2}e^{3}$$

$$\lambda_{5} = -\frac{3}{2}e^{3}$$

$$\lambda_{6} = -\frac{3}{2}e^{3}$$

$$\lambda_{7} = -\frac{3}{2}e^{3}$$

$$\lambda_{7} = -\frac{3}{2}e^{3}$$

$$\lambda_{8} = -\frac{3}{2}e^{3}$$

$$\lambda_{7} = -\frac{3}{2}e^{3}$$

$$\lambda_{8} = -\frac{3}{2}e^{3}$$

Diferencijal uvjeta: $x^2 + y^2 = 2$ /d =) 2xdx + 2ydy = 0 =) xdx + ydy = 0U stacionarium tockama imamo: $d^{2}L(T_{1/2}) = (e^{2^{-1}} \cdot 1^{2} + e^{2^{-1}} \cdot 2 - e)(dx)^{2} + 2(e^{2^{-1}} \cdot (-1) + e^{2^{-1}}) dxdy$ $+(e^{2-1}\cdot 1^2 + e^{2-1}\cdot 2 - e)(dy)^2$

= $2e(dx)^2 + 2e(dy)^2 > 0$ za $(dx_1dy_1) \neq (0_10) \Rightarrow T_{1/2}$ uvjetni lokalni minimumi

f(T1)=f(T2)=e d2L(T3,4)= (e2+1.32+e2+1.2-3e3)(dx)2+2(e2+1.32+e2+1) dxdy

 $+(e^{2+1}\cdot 3^2+e^{2+1}\cdot 2-3e^3)(dy)^2$

 $= 16e^3 (dx)^2 - 20e^3 (dx)^2$

= -4e3 (dx)2 <0 7a (dx, dy) + (0,0)

=) T314 Mujetni lokalni

f(T3)=f(T4)=e3

malsimumi

2) stocionarne toche od f unutar slupa (ako postoje) Racunaimo:

 $\begin{cases} \frac{\partial^{2} f}{\partial x}(x,y) = e^{x^{2} + xy + y^{2}}(2x + y) = 0. & |: e^{x^{2} + xy + y^{2}} > 0 \\ \frac{\partial^{2} f}{\partial y}(x,y) = e^{x^{2} + xy + y^{2}}(x + 2y) = 0 & |: e^{x^{2} + xy + y^{2}} > 0 \end{cases}$

globalni maksimum na zadanom skupu.

Budući da je $f(T_5) = e^0 = 1$, $f(T_{1/2}) = e$ i $f(T_{3,4}) = e^3$, slijedi

da f u (0,0) postize globalni minimum, dok u (1,1) i (-1,-1) postize

 $T_{5}(0|0) \text{ je jedina stacionarna}$ $T_{5}(0|0) \text{ je jedina stacionarna}$ + totale ad f i nellazi se unutlar sleupa

4. (8 bodova)

- (a) (1b) Iskažite nužan uvjet za uvjetni lokalni ekstrem funkcije f(x,y,z) uz uvjet $\varphi(x,y,z)=0$.
- (b) (7b) Koristeći metodu Lagrangeovih multiplikatora, nadite točku na plohi $z = x^2 + y^2$ koja je najbliža točki T(1, 1, 0).

RJEŠENJE (a) TEOREM 3.6.1: Neka je U otvoren skup u \mathbb{R}^3 te neka je $f:U\to\mathbb{R}$ zadana neprekinuto diferencijabilna funkcija. Neka je S skup svih točaka $(x, y, z) \in U$ takvih da je $\varphi(x, y, z) = 0$. Ako je u točki (x_0, y_0, z_0) uvjetni lokalni ekstrem funkcije f na skupu S, tada postoji realan broj λ takav da je $\nabla f(x_0, y_0, z_0) + \lambda \nabla \varphi(x_0, y_0, z_0) = \vec{0}$

Zadatak 4.

(b) Udaljenost neke točke prostora (x, y, z) od točke T(1, 1, 0) je dana idučim izrazom:

$$d((x, y, z), (1, 1, 0)) = \sqrt{(x - 1)^2 + (y - 1)^2 + z^2}$$

Minimizirajući tu funkciju po (x, y, z) možemo naći traženo rješenje zadatka, no budući da je preslikavanje $x \mapsto \sqrt{x}$ strogorastuća funkcija, ekvivalentno nam je minimizirati izraz pod korjenom, odnosno ovu funkciju:

a to je računski puno jednostavnije. Dakle, minimiziramo vrijednosti dane funkcije f(x, y, z) i to po

$$f(x, y, z) = (x - 1)^{2} + (y - 1)^{2} + z^{2},$$

plohi $\varphi(x, y, z) = 0$, gdje je $\varphi(x, y, z) = x^2 + y^2 - z.$

U ovom slučaju, Lagrangeova funkcija nam je dana kao

$$L(x, y, z, \lambda) = (x - 1)^2 + (y - 1)^2 + z^2 + \lambda(x^2 + y^2 - z),$$

Za početak moramo pronaći stacionarne točke Lagrangeove funkcije, odnosno rješavamo idući sustav:

$$\begin{cases}
L_x = 0 \\
L_y = 0 \\
L_z = 0
\end{cases}
\Leftrightarrow
\begin{cases}
2(y - 1) + 2y\lambda = 0 \\
2(y - 1) + 2y\lambda = 0
\end{cases}$$

$$2 = x^2 + y^2$$

$$\Leftrightarrow
\begin{cases}
2x(\lambda + 1) = 2 \\
2y(\lambda + 1) = 2
\end{cases}$$

$$z = \frac{\lambda}{2}$$

$$z = x^2 + y^2$$

$$\Leftrightarrow
\begin{cases}
x = 1/(\lambda + 1) \\
y = 1/(\lambda + 1)
\end{cases}$$

$$z = \frac{\lambda}{2}$$

$$z = x^2 + y^2$$

$$\Leftrightarrow
\begin{cases}
x = 1/(\lambda + 1)
\end{cases}$$

$$z = \frac{\lambda}{2}$$

$$z = x^2 + y^2$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$z = x^2 + y^2$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
(x, y, z) = (\frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{\lambda}{2})
\end{cases}$$

Drugu jednadžbu ovog sustava ćemo sada posebno riješiti pa ćemo se kasnije vratiti raspisu sustava. Naime, odmah možemo primijetiti da vrijednost $\lambda = 1$ zadovoljava jednkost $\lambda(\lambda + 1)^2 = 4$. Sada $\lambda-1$ i time dobivamo jednadžbu $(\lambda-1)(\lambda^2+3\lambda+4)=0$. Kako je diskriminanta drugog polinoma negativna, zaključujemo da je jedino rješenje te jednadžbe upravo $\lambda=1$ - sada konačno nastavljamo s traženjem stacionarne točke: $\begin{cases} (x,y,z)=\left(\frac{1}{\lambda+1},\frac{1}{\lambda+1},\frac{\lambda}{2}\right)\\ \lambda=1 \end{cases}$

raspisivanjem te jednakosti dobivamo ekivalentnu jednadžbu $\lambda^3 + 2\lambda^2 + \lambda - 4 = 0$. Budući da znamo da je $\lambda = 1$ nultočka tog polinoma, zaključujemo da ga možemo faktorizirati tako da ga podijelimo s

$$\begin{array}{c} \lambda=1\\\\ \Longleftrightarrow \begin{cases} (x,y,z)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\\ \lambda=1 \end{array}. \end{array}$$
 Dakle $P=(x,y,z,\lambda)=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},1\right)$ je stacionarna točka Lagrangeove funkcije L . Idući nam je cilj

izračunati drugi diferencija Lagrangeove funkcije - u tu svrhu računamo druge parcijalne dervacije Lagrangeove funkcije: $L_{rr}(x,y,z,\lambda) = 2 + 2\lambda.$

$$L_{yy}(x, y, z, \lambda) = 2 + 2\lambda,$$

 $L_{zz}(x, y, z, \lambda) = 2,$
 $L_{xy}(x, y, z, \lambda) = 0,$
 $L_{yz}(x, y, z, \lambda) = 0,$
 $L_{xz}(x, y, z, \lambda) = 0.$

 $d^{2}L\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\right) = L_{xx}(P)dx^{2} + L_{yy}(P)dy^{2} + L_{zz}(P)dz^{2}$ $+ 2(L_{xy}(P)dxdy + L_{yz}(P)dydz + L_{xz}(P)dxdz)$

$$2x\,dx + 2y\,dy - dz = 0,$$

Sada možemo izračunati drugi diferencijal Lagrangeove funkcije L u točki $P = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1)$:

 $=4dx^2+4dy^2+2dz^2$.

Iduće, diferencirajmo uvjet $\varphi = 0$ otkuda dobivamo da je

 $d^{2}L(P) = 4dx^{2} + 4dy^{2} + 2\left(2 \cdot \frac{1}{2}dx + 2 \cdot \frac{1}{2}dy\right)^{2}$ $= 4dx^{2} + 4dy^{2} + 2(dx + dy)^{2}.$

odnosno slijedi
$$dz = 2x dx + 2y dy$$
. Sada uvrštavanjem tog izraza u $d^2L(P)$ dobivamo:

a ovdje nam je jasno da je $d^2L(P)$ strogo veći od nula za sve $(dx, dy) \neq (0, 0)$. Prema tome, točka $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ je najbliža točka plohe $z = x^2 + y^2$ točki T(1, 1, 0).

4. (9 bodova)

- (a) (2b) Neka je funkcija više varijabli f diferencijabilna u okolini točke T_0 . Dana je tvrdnja: Ako je $\nabla f(T_0) = \vec{0}$, tada je T_0 točka lokalnog ekstrema od f. Dokažite tvrdnju ukoliko je istinita ili obrazložite protuprimjerom ako je lažna.
- (b) (7b) Nađite lokalne ekstreme funkcije

$$u(x, y, z) = x^3 + 2y^3 + z^2 + 3x^2y + 3xy^2 - 3x - 6y - 4z.$$

Zadatak 4.

RJEŠENJE **a)** Tvrdnja nije istinita. Promotrimo na primjer funkciju $f(x,y) = x^2 - y^2$. Tada je $\nabla f(x,y) = (2x,-2y)$ pa je $\nabla f(0,0) = (0,0)$, a skicom grafa funkcije f(x,y) se vidi da u točki (0,0) funkcija ima sedlastu točku.

Oduzmemo li prvu jednadžbu od druge, dobivamo $y^2 = 1$, a treća jednadžba nam daje z = 2.

b) Najprije računamo stacionarne točke,

$$\frac{\partial u}{\partial x} = 3x^2 + 6xy + 3y^2 - 3 = 0,$$

$$\frac{\partial u}{\partial y} = 6y^2 + 3x^2 + 6xy - 6 = 0,$$

$$\frac{\partial u}{\partial x} = 2z - 4 = 0.$$

Dakle, $y=\pm 1$. S jedne strane, uvrstimo li y=1 u prvu jednadžbu dobivamo x(x+2)=0 odnosno točke $A(0,1,2),\quad B(-2,1,2).$

Uvrstimo li
$$y=-1$$
 u prvu jednadžbu dobivamo $x(x-2)=0$ odnosno točke

C(0,-1,2), D(2,-1,2).

Sada računamo druge derivacije,

$$\frac{\partial^2 u}{\partial x^2} = 6x + 6y, \quad \frac{\partial^2 u}{\partial y^2} = 6x + 12y, \quad \frac{\partial^2 u}{\partial z^2} = 2,$$

$$\frac{\partial^2 u}{\partial x \partial y} = 6x + 6y, \quad \frac{\partial^2 u}{\partial x \partial z} = 0, \quad \frac{\partial^2 u}{\partial y \partial z} = 0.$$

Hesseova matrica ima oblik

$$H_u(x,y,z) = \begin{bmatrix} 6x + 6y & 6x + 6y & 0\\ 6x + 6y & 6x + 12y & 0\\ 0 & 0 & 2 \end{bmatrix} = 6 \cdot \begin{bmatrix} x + y & x + y & 0\\ x + y & x + 2y & 0\\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

U nastavku ispitujemo Hesseovu matricu u stacionarnim točkama $A,\,B,\,C$ i D te primjenjujemo Teorem 3.4.6. Za točku A imamo

OREM 3.4.6. Za točku
$$A$$
 imamo
$$H_u(0,1,2) = \begin{bmatrix} 6 & 6 & 0 \\ 6 & 12 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

pa glavne minore redom imaju vrijednosti 6, 36 i 72 pa je točka A točka strogog lokalnog minimuma funkcije u. Za točku B imamo

$$H_u(-2,1,2) = \begin{bmatrix} -6 & -6 & 0 \\ -6 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

pa glavne minore redom imaju vrijednosti -6, -36 i -72 pa je točka B sedlasta točka funkcije u. Za točku C imamo

$$H_u(0, -1, 2) = \begin{bmatrix} -6 & -6 & 0 \\ -6 & -12 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

pa glavne minore redom imaju vrijednosti -6, 36 i 72 pa je točka C sedlasta točka funkcije u. Za točku B imamo

$$H_u(2, -1, 2) = \begin{bmatrix} 6 & 6 & 0 \\ 6 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

pa glavne minore redom imaju vrijednosti 6, -36 i -72 pa je točka D sedlasta točka funkcije u.

3. (8 bodova) Funkcija z = z(x, y) implicitno je zadana izrazom

$$2x + 3y + \sin(4x + 5y) + z^2 + \sin z = 0.$$

- (a) (3b) Odredite tangencijalnu ravninu na plohu z(x,y) u točki A(0,0,0).
- (b) (5b) Odredite drugi diferencijal funkcije z(x, y) u točki A(0, 0, 0).

$$2-0 = \frac{\partial^{2}}{\partial x}(0,0) \cdot (x-0) + \frac{\partial^{2}}{\partial y}(0,0) \cdot (y-0)$$
Definitions: $F(x_{1}y_{1}z) = 2x + 3x_{1} + 3x_{1}(4x + 5x_{2}) + 2^{2} + 3x_{1}z$

$$\frac{\partial^{2}}{\partial x} = \frac{\partial^{2}}{\partial x}(0,0) \cdot (x-0) + \frac{\partial^{2}}{\partial y}(0,0) \cdot (y-0)$$

Definitions:
$$F(x_1y_1z) = 2x + 3y_1 + 3y_1 + 3y_1 + 3y_1 + 2y_1 + 2y_1$$

$$= \frac{3x}{3x} (0^{1}0) = -6 + \frac{3x}{3x} = -8$$

$$= \frac{3x}{3x} (0^{1}0) = -6 + \frac{3x}{3x} = -8$$

$$\log \frac{3x^2}{3x^2} = \frac{3x}{3x} \left(-\frac{3x}{3x} \right) = -\frac{3x}{3x} \left(\frac{3x}{3x} \right) = -\frac{3x}{3x} \left(\frac{3x + \cos(4x + 5x)}{3x} \right) = \frac{-\sqrt{8}\sin(4x + 5x)(5x + \cos(5x) - (5x + \cos(4x + 5x))(5x - \sin(5x))}}{(5x + \cos(5x))(5x - \cos(5x))(5x - \cos(5x))} = \frac{-\sqrt{8}\sin(4x + 5x)(5x + \cos(5x))}{(5x + \cos(5x))(5x - \cos(5x))} = \frac{\cos(4x + 5x)(5x - \cos(5x))}{(5x + \cos(5x))(5x - \cos(5x))} = \frac{\cos(4x + 5x)(5x - \cos(5x))}{(5x + \cos(5x))(5x - \cos(5x))} = \frac{\cos(4x + 5x)(5x - \cos(5x))}{(5x + \cos(5x))(5x - \cos(5x))} = \frac{\cos(4x + 5x)(5x - \cos(5x))}{(5x + \cos(5x))(5x - \cos(5x))} = \frac{\cos(4x + 5x)(5x - \cos(5x))}{(5x + \cos(5x))(5x - \cos(5x))} = \frac{\cos(4x + 5x)(5x - \cos(5x))}{(5x + \cos(5x))(5x - \cos(5x))} = \frac{\cos(4x + 5x)(5x - \cos(5x))}{(5x + \cos(5x))(5x - \cos(5x))} = \frac{\cos(5x - \cos(5x))}{(5x + \cos(5x))} = \frac{\cos(5x$$

pa je
$$\frac{3^2+}{3x^2}(0_10_10) = -72$$
.
Slicho se ieracuna $\frac{3^2+}{3x^3y}(0_10_10) = -96$ i $\frac{3^2+}{3y^2}(0_10_10) = -128$ pa je $\frac{3^2+}{3y^2}(0_10_10) = -128$ (dy)².

2. (9 bodova)

- (a) (4b) Odredite točke na plohi $z=\frac{x^2}{y^3}$ u kojima je tangencijalna ravnina okomita na tangentu krivulje $\vec{\mathbf{r}}(t)=(4-t^2)\,\vec{\mathbf{i}}+e^{t^3-1}\,\vec{\mathbf{j}}+(t+3)\,\vec{\mathbf{k}}$ u točki T(3,1,4).
- (c) (2b) Odredite Taylorov polinom drugog stupnja funkcije $z = \frac{x^2}{y^3}$ oko točke (1, 1).

Zadatak 2.

RJEŠENJE (a) Označimo s
$$S$$
plohu zadanu jednadžbom $z=\frac{x^2}{y^3}$ - tangencijalna ravnina plohe S u točki

 $\vec{\mathbf{n}}(x_0, y_0, z_0) = (f_x(x_0, y_0), f_y(x_0, y_0), -1).$

$$T(x_0,y_0,z_0)$$
 je okomita na neki vektor $\vec{\mathbf{v}}$ ako i samo ako je vektor normale u toj točki, $\vec{\mathbf{n}}(x_0,y_0,z_0)$,

$$\Pi(x_0, y_0, z_0)$$
 je okolima na neki vektor v ako i samo ako je vektor horimate u oji točki, $\Pi(x_0, y_0, z_0)$, kolinearan s vektorom $\vec{\mathbf{v}}$. Po Propoziciji 3 iz Poglavlja 2 (stranica 26) znamo da je vektor normale $\vec{\mathbf{n}}(x_0, y_0, z_0)$ na tangnecijalnu ravnimu u točki $T(x_0, y_0, z_0)$ plohe $z = f(x, y)$ dan kao vektor

U našem slučaju imamo da je
$$f(x,y)=\frac{x^2}{y^3}$$
 pa je normala u nekoj točki $T(x_0,y_0,z_0)$ plohe S dana s
$$\vec{n}(x_0,y_0,z_0)=\begin{pmatrix}2x_0&-3x_0^2&-1\end{pmatrix}$$

$$(t_0) =$$

smjera
$$\vec{\mathbf{r}}'(t_0)$$
, gdje je t_0 parametar za koji se postiže $\vec{\mathbf{r}}(t_0)=(3,1,4)$ - (tangencijalna) ravnina je okomita na pravac ako i samo ako je okomita na njegov vektor smjera. Odredimo prvo parametar t_0

 $\vec{\mathbf{r}}(t_0) = (3, 1, 4) \iff (4 - t_0^2, e^{t_0^3 - 1}, t_0 + 3) = (3, 1, 4) \iff t_0 = 1.$

$$3, 1, 4) \Longleftrightarrow$$

$$\vec{\mathbf{n}}(x_0,y_0,z_0)\parallel\vec{\mathbf{v}}\Longleftrightarrow\vec{\mathbf{n}}(x_0,y_0,z_0)=\lambda\vec{\mathbf{v}},$$
za neki $\lambda\in\mathbb{R}$

 \iff $\left(\frac{2x_0}{x^3}, -\frac{3x_0^2}{x^4}, -1\right) = \lambda(-2, 3, 1)$, za neki $\lambda \in \mathbb{R}$.

Odavde vidimo da nam λ mora biti jednako -1 te da dobivamo dvije jednakosti koje dalje raspisujemo:

Sada je traženi vektor smjera dan kao $\vec{\mathbf{r}}'(t_0) = (-2t_0, 3t_0^2e^{t_0^2-1}, 1)$ odnosno uvrštavanjem $t_0 = 1$ dobivamo $\vec{\mathbf{v}} = \vec{\mathbf{r}}'(1) = (-2, 3, 1)$. Konačno, kao što smo najavili i na početku rješenja, potrebno je provjeriti

$$\begin{cases} 2\frac{x_0}{y_0^3} = 2\\ -3\frac{x_0^2}{y_0^4} = -1 \end{cases}$$

napraviti na ovaj način:

$$-3 \iff \begin{cases} x_0 = \\ x_0^2 = \end{cases}$$

u kojem krivulja **r** prolazi kroz točku (3, 1, 4):

$$\begin{cases} 2\frac{x_0}{y_0^3} = 2\\ -3\frac{x_0^2}{y_0^4} = -3 \end{cases} \iff \begin{cases} x_0 = y_0^3 \ , \ y_0 \neq 0\\ x_0^2 = y_0^4 \ , \ y_0 \neq 0 \end{cases} \iff \begin{cases} x_0 = y_0^3 \ , \ y_0 \neq 0\\ y_0^6 = y_0^4 \ , \ y_0 \neq 0 \end{cases}$$

 \Leftrightarrow $\begin{cases}
x_0 = y_0^3, & y_0 \neq 0 \\ y_0^2(y_0^2 - 1) = 0, & y_0 \neq 0
\end{cases}$ \Leftrightarrow $\begin{cases}
x_0 = y_0^3, & y_0 \neq 0 \\ y_0 = 1 \text{ ili } y_0 = -1
\end{cases}$ \iff $(x_0, y_0) = (1, 1)$ ili $(x_0, y_0) = (-1, -1)$, gdje smo u drugoj ekvivalenciji samo uvrstili x₀ iz prve jednakosti u drugu jednakost. Zaključujemo

- u prvom slučaju je $z_0 = \frac{x_0^2}{y_0^2} = 1$, dok je u drugom slučaju $z_0 = \frac{x_0^2}{y_0^2} = -1$. Dakle, tražene točke plohe S su (1,1,1) i (-1,-1,-1).(b) Prvo zapišimo traženi izraz u pogodnom funkcijskom obliku - u ovom slučaju to je najbolje

da je normala $\vec{\mathbf{n}}(x_0, y_0, z_0)$ kolinearna s vektorom $\vec{\mathbf{v}}$ ako i samo ako je (x_0, y_0) jednako (1, 1) ili (-1, -1)

 $f(x,y) = \frac{x^2}{x^3}$,

$$=\frac{x}{y^3}$$
,

otkuda vidimo da je naš traženi izraz sada jednak upravo f(1.01, 0.98). Odaberimo približnu točku

$$(x_0, y_0) = (1, 1)$$

te izračunajmo njenu udaljenost od tražene točke (x,y)=(1.01,0.98):

$$(\Delta x, \Delta y) = (x, y) - (x_0, y_0) = (0.01, -0.02).$$

Sada izračunajmo približnu vrijednost traženog izraza pomoću prvog diferencijala:

$$\begin{aligned} \frac{1.01^2}{0.98^3} &= f(1.01, 0.98) \\ &\approx f(x_0, y_0) + f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y \\ &= f(1, 1) + f_x(1, 1) \cdot 0.01 + f_y(1, 1) \cdot (-0.02) \\ &= \frac{1^2}{1^3} + 2\frac{1}{1^3} \cdot 0.01 + (-3)\frac{1^2}{1^4} \cdot (-0.02) \\ &= 1 + 2 \cdot 0.01 + (-3) \cdot (-0.02) \\ &= 1.08, \end{aligned}$$

gdje smo u četvrtom retku koristili da je $f_x(x,y)=2\frac{x}{y^3}$ te da je $f_y(x,y)=-3\frac{x^2}{y^3}$.

(c) Kako bismo raspisali Taylorov polinom drugog stupnja funkcije $z=\frac{x^2}{y^3}$ oko točke (1,1) potrebno je izračunati sve parcijalne dervacije prvog i drugog reda. Za parcijalne derivacije prvog reda smo u (b) dijelu zadatka vidjeli da je

$$z_x(x,y)=2\frac{x}{y^3}\quad {\rm i}\quad z_y(x,y)=-3\frac{x^2}{y^4},$$
dok za parcijalne derivacije drugog imamo:

1

$$z_{xx}(x,y) = \frac{2}{y^3}$$
 , $z_{xy}(x,y) = -6\frac{x}{y^4}$, $z_{yy}(x,y) = 12\frac{x^2}{y^5}$.

Budući da razvijamo Taylorov polinom oko točke (1,1), potrebno je ove parcijalne derivacije izvrijedniti u toj točki:

$$\begin{split} z(1,1) &= 1 \quad , \quad z_x(1,1) = 2 \quad , \quad z_y(1,1) = -3, \\ z_{xx}(1,1) &= 2 \quad , \quad z_{xy}(1,1) = -6 \quad , \quad z_{yy}(1,1) = 12. \end{split}$$

Sada smo konačno u poziciji raspisati traženi Taylorov polinom drugog stupnja:

$$T_2(x,y) = z(1,1)$$

$$+ z_x(1,1)(x-1) + z_y(1,1)(y-1)$$

$$+ \frac{1}{2} \left[z_{xx}(1,1)(x-1)^2 + 2z_{xy}(1,1)(x-1)(y-1) + z_{yy}(1,1)(y-1)^2 \right]$$

$$= 1 + 2(x-1) - 3(y-1)$$

$$+ \frac{1}{2} \left[2(x-1)^2 - 12(x-1)(y-1) + 12(y-1)^2 \right]$$

$$= 1 + 2(x-1) - 3(y-1) + (x-1)^2 - 6(x-1)(y-1) + 6(y-1)^2.$$

JIR23

1. (10 bodova)

(a) (4b) Koristeći prvi diferencijal, približno izračunajte vrijednost izraza

$$\frac{0.9^{1.2}}{1.2^{0.9}}.$$

- (b) (3b) Odredite Taylorov polinom trećeg stupnja $T_3(x, y)$ u okolini točke (0, 0) te pripadni Lagrangeov ostatak $R_3(x, y)$ za funkciju $f(x, y) = (1 x^2)(y 2)$.
- (c) (**3b**) Ako je

$$I(\alpha) = \int_{-\alpha^2}^{3\alpha} \frac{e^{\alpha x}}{x} dx,$$

odredite $\frac{dI}{d\alpha}(1)$.

(a)
$$f(x,y) = x^y \cdot y^{-x}$$
, $f(1,1) = 1$, $\Delta x = -0.1$, $\Delta y = 0.2$

$$\frac{0.9^{1.2}}{1.20.9} = f(1 + \Delta x, 1 + \Delta y) \approx f(1, 1) + f'_x(1, 1) \cdot \Delta x + f'_y(1, 1) \cdot \Delta y$$

(jer je zadana funkcija polinom 3. stupnja)

(c)

$$f(x,y) = x^{3} \cdot y$$
 , $f(1,1) = 1$, $\Delta x = -0.1$, $\Delta y = 0.2$

 $f'_{x}(x,y) = y \cdot x^{y-1} \cdot y^{-x} - x^{y} \cdot y^{-x} \cdot \ln y \Rightarrow f'_{x}(1,1) = 1$

 $f'_{y}(x,y) = x^{y} \cdot \ln x \cdot y^{-x} - x^{y} \cdot x \cdot y^{-x-1} \Rightarrow f'_{y}(1,1) = -1$

 $\frac{0.9^{1.2}}{1.20.9} \approx 1 + 1 \cdot \Delta x - 1 \cdot \Delta y = 1 - 0.1 - 0.2 = 0.7$

 $\frac{dI}{d\alpha} = \frac{e^{3\alpha^2}}{\alpha} \cdot 3 + \frac{e^{-\alpha^3}}{\alpha^2} \cdot (-2\alpha) + \int_{-\alpha}^{3\alpha} e^{\alpha x} dx = \frac{3e^{3\alpha^2} - 2e^{-\alpha^3}}{\alpha} + \frac{e^{\alpha x}}{\alpha} \Big|_{-\alpha}^{3\alpha}$

 $=\frac{4e^{3\alpha^2}-3e^{-\alpha^3}}{2}$ \Rightarrow $\frac{dI}{d\alpha}(1)=4e^3-3e^{-1}$

(b) $f(x,y) = (1-x^2)(y-2) = -2 + y + 2x^2 - x^2y = T_3(x,y) \Rightarrow R_3(x,y) = 0$

)
$$f(x,y) = x^y \cdot y^{-x}$$
, $f(1,1) = 1$, $\Delta x = -0.1$, $\Delta y = 0.2$

$$f(x,y) = x^y \cdot y^{-x}, \ f(1,1) = 1, \ \Delta x = -0.1, \ \Delta y = 0.2$$

$$f(x,y) = x^y \cdot y^{-x}, \ f(1,1) = 1, \ \Delta x = -0.1, \ \Delta y = 0.2$$

$$f(x,y) = x^y \cdot y^{-x}, \ f(1,1) = 1, \ \Delta x = -0.1, \ \Delta y = 0.2$$

- 1. (a) $f(x,y) = x^y \cdot y^{-x}$, f(1,1) = 1, $\Delta x = -0.1$, $\Delta y = 0.2$

JIR23

2. (10 bodova)

- (a) (4b) Neka je f funkcija dvije varijable klase C². Provjerite istinitost sljedećih tvrdnji. Istinite tvrdnje dokažite, a neistinite opovrgnite protuprimjerom:
 T1: Ako f ima lokalni ekstrem u točki T, tada je ∇f(T) = 0.
 T2: Ako je ∇f(T) = 0 i d²f(T) > 0, tada je T točka lokalnog minimuma.
- (b) (6b) Koristeći metodu Lagrangeovog multiplikatora, odredite uvjetne ekstreme funkcije $f(x,y) = \ln(x+y)$ uz uvjet $x^2 + 2y^2 = 4$.

T2: Istinita, Teorem 3.4.2 u skripti + dokaz. (b)

(b)
$$L(x,y,\lambda) = \ln(x+y) + \lambda(x^2 + 2y^2 - 2y^2) + 2\lambda x = 0$$

$$\frac{\partial L}{\partial x}(x,y,\lambda) = \frac{1}{x+y} + 2\lambda x = 0$$

(b)
$$L(x, y, \lambda) = \ln(x + y) + \lambda(x^2 + 2y^2 - 4)$$

 $\Rightarrow \lambda = 0$ je nemoguće pa $x - 2y = 0 \Rightarrow x = 2y$

Kako vrijedi x + y > 0 dolazimo do stacionarne točke: $T_1(\frac{2\sqrt{6}}{3}, \frac{\sqrt{6}}{3})$.

(b)
$$L(x, y, \lambda) = \ln(x + y) + \lambda$$

- (a) T1: Istinita, Teorem 3.4.1 u skripti + dokaz.

 $\frac{\partial L}{\partial y}(x, y, \lambda) = \frac{1}{x+y} + 4\lambda y = 0$

 $2\lambda x - 4\lambda y = 0$ $2\lambda(x-2y)=0$

 $4y^2 + 2y^2 - 4 = 0 \Rightarrow y^2 = \frac{2}{2} \Rightarrow y = \pm \frac{\sqrt{6}}{2} \Rightarrow x = \pm \frac{2\sqrt{6}}{2}$

 $\frac{1}{\frac{2\sqrt{6}}{4} + \frac{\sqrt{6}}{4}} + \frac{4\sqrt{6}}{3} \cdot \lambda = 0 \Rightarrow \lambda = -\frac{1}{8}$

 $L''_{xx} = -\frac{1}{(x+u)^2} + 2\lambda \Rightarrow L''_{xx}(\frac{2\sqrt{6}}{3}, \frac{\sqrt{6}}{3}) = -\frac{5}{12}$

 $L''_{xy} = -\frac{1}{(x+y)^2} \Rightarrow L''_{xy}(\frac{2\sqrt{6}}{3}, \frac{\sqrt{6}}{3}) = -\frac{1}{6}$

$$L''_{yy} = -\frac{1}{(x+y)^2} + 4\lambda \Rightarrow L''_{yy}(\frac{2\sqrt{6}}{3}, \frac{\sqrt{6}}{3}) = -\frac{2}{3}$$
$$2xdx + 4ydy = 0$$

 $\frac{4\sqrt{6}}{3}dx + \frac{4\sqrt{6}}{3}dy = 0$

dx + dy = 0

dx = -du

$$d^2L=-\frac{5}{12}(dx)^2-\frac{1}{3}dxdy-\frac{2}{3}(dy)^2=-\frac{5}{12}(dx)^2-\frac{1}{3}(dx)^2-\frac{2}{3}(dx)^2<0$$
što znači da je točka T_1 točka strogog lokalnog minimuma.

LJIR23

2. (10 bodova)

- (a) (3b) Odredite lokalne ekstreme funkcije $f(x,y) = x^2 + xy y^2 3x + 3y$.
- (b) (1b) Navedite gdje se sve mogu postići globalni ekstremi neprekinute funkcije $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ na omeđenom i zatvorenom skupu D.
- (c) (6b) Odredite globalne ekstreme funkcije iz (a) na trokutu omeđenog osima x i y te pravcem x + y = 3.

Zadatak 2.

RJEŠENJE a) Tražimo stacionarne točke, koji su jedini kandidati za lokalne ekstreme funkcije f. To

su
$$(x,y)$$
 za koje vrijedi
$$\nabla f(x,y)=(2x+y-3,\,x-2y+3)=(0,0)\iff x=\frac{3}{5},\,y=\frac{9}{5}.$$

Dakle, jedina stacionarna točka je T=(3/5,9/5). Hesseova matrica funkcije f u točki T je

$$H_f(T) = \begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix},$$

čija determinanta iznosi -5, pa je T sedlasta točka, prema Sylvesterovom kriteriju.

- b) Teorem 3.5.3: Globalni ekstremi se mogu postići u kritičnim točkama funkcije f (stacionarne točke i točke u kojima f nije diferencijabilna) te na rubu skupa D.
 - c) Kako f nema lokalnih ekstrema unutar trokuta, globalni ekstremi na danom trokutu se nužno postižu na rubu. Definirajmo funkcije

ostižu na rubu. Definirajmo funkcije
$$f_1(t) = f(t,0) = t^2 - 3t, \qquad t \in [0,3],$$

$$f_2(t) = f(0,t) = -t^2 + 3t, \qquad t \in [0,3],$$

$$f_3(t) = f(t,3-t) = -t^2 + 3t, \qquad t \in [0,3].$$
 To su restrikcije od f na rubove trokuta. Funkcija f može postignuti minimum ili maksimum unutar stranice trokuta, u čijem slučaju će x ili y komponenta te točke biti stacionarna točka neke od gornjih

funkcija, no može ih postignuti i na jednom od tri vrha. Funkcije f_1 , f_2 i f_3 sve imaju stacionarnu točku t=3/2. Dakle, kandidati za globalne ekstreme su

Na stranicama:
$$T_1(3/2,0), T_2(0,3/2), T_3(3/2,3/2).$$

Vrhovi: $T_4(0,0), T_5(3,0), T_6(0,3).$

Uvrštavanjem svih kandidata u funkciju f dobivamo da je T_1 globalni minimum, gdje f poprima vrijednost -9/4, dok su T₂ i T₃ globalni maksimumi, gdje funkcije poprima vrijednost 9/4.

JIR22

3. (7 bodova)

(a) (2b) Neka je $Q(h,k)=ah^2+2bhk+ck^2$ kvadratna forma dvije varijable. Dokažite ili protuprimjerom opovrgnite sljedeću tvrdnju:

Ako je ac < 0, tada je Q(h, k) indefinitna forma.

(b) (5b) Odredite lokalne ekstreme funkcije

$$f(x,y) = 3x^2 + 6y^2 + \frac{16}{(x-2y)^2}.$$

(a) Tvrdnja vrijedi. Koristimo dokaz Teorema 3.3.1 pod c).

3.

(b) Računamo $D_f = \{(x,y) : x \neq 2y\}, f'_x = 6x - 2\frac{16}{(x-2y)^3}, f'_y = 12y + 4\frac{16}{(x-2y)^3}$. Obzirom da je f diferencijabilna na cijeloj domeni (otvoren skup), stacionarne točke su jedini kandidati za lokalne ekstreme:

$$6x - 2\frac{16}{(x - 2y)^3} = 0/\cdot 2$$
$$12y + 4\frac{16}{(x - 2y)^3} = 0$$

Sumiranjem slijedi 12x+12y=0, tj. x=-y. Uvrštavanjem u prvu jednadžbu dobije se $6x-2\frac{16}{(3x)^3}$ odnosno $81x^4-16=0$. Sada je $x=\pm\frac{2}{3},y=\mp\frac{2}{3}$, pa su stacionarne točke $T_1(\frac{2}{3},-\frac{2}{3})$ i $T_2(-\frac{2}{3},\frac{2}{3})$. Računamo $f''_{xx}=6+6\frac{16}{(x-2y)^4}$, $f''_{yy}=12+24\frac{16}{(x-2y)^4}$, $f''_{xy}=-12\frac{16}{(x-2y)^4}$. Hesseova matrica glasi

$$H_f(x,y) = \begin{pmatrix} f''_{xx}(x,y) & f''_{xy}(x,y) \\ f''_{xy}(x,y) & f''_{yy}(x,y) \end{pmatrix}$$

$$\Rightarrow H_f(T_1) = H_f(T_2) = \begin{pmatrix} 12 & -12 \\ -12 & 36 \end{pmatrix}.$$

Obzirom da su obje minore strogo veće od 0, zaključujemo da su točke T_1 i T_2 lokalni minimumi.

3. (8 bodova)

- (a) (6b) Koristeći metodu Lagrangeovog multiplikatora, odredite uvjetne ekstreme funkcije f(x,y) = 2x 4y uz uvjet $x^2 + 2y^2 = 4$.
- (b) (2b) Odredite globalne ekstreme funkcije f(x,y)=2x-4y na skupu $x^2+2y^2\leqslant 4$.

3. (a)
$$L(x, y, \lambda) = 2x - 4y + \lambda(x^2 + 2y^2 - 4)$$

Nužni uvjet za ekstreme:

$$L_x = 2 - 2\lambda x = 0$$

$$L_y = -4 + 4\lambda y = 0$$

$$x^2 + 2y^2 = 4$$

Iz prve dvije jednadžbe slijedi $x = -\frac{1}{\lambda}$, $y = \frac{1}{\lambda}$, što uvrštavanjem u uvjet dobivamo $\lambda_{1,2} = \pm \frac{\sqrt{3}}{2}$. Stacionarne točke su $T_1(-\frac{2}{\zeta_1}, \frac{2}{\zeta_2})$ i $T_2(\frac{2}{\zeta_1}, -\frac{2}{\zeta_2})$. Računamo

vamo
$$\lambda_{1,2}=\pm\frac{\sqrt{3}}{2}$$
. Stacionarne točke su $T_1(-\frac{2}{\sqrt{3}},\frac{2}{\sqrt{3}})$ i $T_2(\frac{2}{\sqrt{3}},-\frac{2}{\sqrt{3}})$. Računamo diferencijal uvjeta:
$$d(x^2+2y^2-4)=0$$

$$2xdx+4ydy=0$$

 $dy = -\frac{x}{2a}dx$

. uvrštavamo ga u drugi diferen

$$L_{xy} = 0$$

$$L_{yy} = 4\lambda$$

$$d^{L} = 2\lambda (dx)^{2} + 4\lambda (dy)^{2}$$

$$d^{L} = 2\lambda \left((dx)^{2} + 2\left(\frac{x^{2}}{4y^{2}}\right) (dx)^{2} \right)$$

$$d^{2}L = 2\lambda \left(1 + \frac{x^{2}}{2y^{2}} \right) (dx)^{2}$$

 $L_{rr} = 2\lambda$

Za $\lambda_1 > 0$ vrijedi $d^2L(T_1) > 0$ pa je T_1 lokalni minimum. Za $\lambda_2 < 0$ vrijedi $d^2L(T_2) < 0$ pa je T_2 lokalni maksimum.

(b) Da bi točka bila globalni ekstrem na skupu, mora biti ili lokalni ekstrem na unutrašnjosti skupa ili se nalaziti na rubu skupa. Funkcija je linearna pa je $\nabla f \neq \vec{0}$, odnosno funkcija nema lokalnih ekstrema, a ekstreme na rubu smo pronašli u (a) dijelu zadatka. Dakle, globalni minimum iznosi $-4\sqrt{3}$ i postiže se u točki T_1 , a globalni maksimum je $4\sqrt{3}$ i postiže se u T_2 .

3. (7 bodova) Odredite lokalne ekstreme funkcije

$$u(x, y, z) = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z}.$$

3. Prvo tražimo stacionarne točke

$$\begin{aligned} \frac{\partial u}{\partial x} &= 1 - \frac{y^2}{4x^2} = \frac{4x^2 - y^2}{4x^2} = 0\\ \frac{\partial u}{\partial y} &= \frac{y}{2x} - \frac{z^2}{y^2} = \frac{y^3 - 2xz^2}{2xy^2} = 0\\ \frac{\partial u}{\partial z} &= \frac{2z}{y} - \frac{2}{z^2} = \frac{2z^3 - 2y}{yz^2} = 0 \end{aligned}$$

 $4x^2 - y^2 = 0$ $y^3 - 2xz^2 = 0$

Iz ovoga dobivamo

$$z^3-y=0$$

Iz treće jednadžbe imamo $y = z^3$ pa to uvrstimo u preostale dvije:

$$4x^2 - z^6 = 0$$

 $z^9 - 2rz^2 = 0$

Iz druge jednadžbe slijedi
$$x=\frac{z^7}{2}$$
pa uvrštavanjem u prvu imamo

$$z^{14} - z^6 = 0$$

 $z^6(z^8-1)=0$

Realna rješenja su
$$z=0, z=1$$
 i $z=-1.$ Stacionarne točke su zato $(0,0,0), (\frac{1}{2},1,1)$ i $(-\frac{1}{2},-1,-1).$ Funkcija u očito nije definirana u $(0,0,0),$ pa promatrajmo samo točke $(\frac{1}{2},1,1)$ i $(-\frac{1}{2},-1,-1).$ Kako je funkcija neparna, dovoljno je promotriti ekstremalnost točke $(\frac{1}{2},1,1),$ ukoliko je ona minimum, točka $(-\frac{1}{2},-1,-1)$ je maksimum i obrnuto. Isto tako, ako jedna nije lokalni

 $\frac{\partial^2 u}{\partial x^2} = \frac{y^2}{2x^3}$, $\frac{\partial^2 u}{\partial y^2} = \frac{y^3 + 4xz^2}{2xy^3}$, $\frac{\partial^2 u}{\partial y^2} = \frac{2z^3 + 4y}{yz^3}$

ekstrem, nije niti druga. Promotrimo Hesseovu matricu, druge derivacije su

$$\frac{\partial^2 u}{\partial x \partial y} = -\frac{y}{2x^2}, \quad \frac{\partial^2 u}{\partial x \partial z} = 0, \quad \frac{\partial^2 u}{\partial y \partial z} = -\frac{2z}{y^2}$$
 Hessian u točki $(\frac{1}{2},1,1)$ je

$$H\begin{pmatrix}1\\-1\\1\end{pmatrix}=\begin{bmatrix}4&-2&0\\-2&3&-2\end{bmatrix}$$

$$H_u\left(\frac{1}{2}, 1, 1\right) = \begin{bmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 6 \end{bmatrix}$$

Minore ove matrice su

$$\begin{aligned} u_{xx}(T_0) &= 4 > 0, \quad \begin{vmatrix} 4 & -2 \\ -2 & 3 \end{vmatrix} = 8 > 0, \quad \begin{vmatrix} 4 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 6 \end{vmatrix} = 32 > 0 \end{aligned}$$
 Sve minore su veće od 0, pa je $(\frac{1}{2},1,1)$ lokalni minimum, a zbog neparnosti je $(-\frac{1}{2},-1,-1)$ lokalni maksimum (ili se to provjeri pomoću minora).

JIR21

3. (8 bodova) Odredite lokalne ekstreme funkcije z=z(x,y) zadane implicitno jednadžbom

$$x^3 - y^2 - 3x + 4y + z^2 + z = 8.$$

Fad3. x3-72-3x+47+22+2-8=0, 2=2(x,7) Parcijalno deriviramo po X i poy · POX: 3x2-0-3+0+27:0x+02=0

• Po X:
$$3x^{2}-0-3+0+22\cdot\frac{1}{0x}+\frac{1}{0x}=0$$

$$\frac{0t}{0x}(2t+1)=3-3x^{2}\Rightarrow\frac{0t}{0x}=\frac{3(1-x^{2})}{1+2t}$$

· Po 7: 0-2y-0+4+22. 3 + 2 =0

$$\frac{C_{1}^{2}}{C_{1}^{2}}(2z+1) = 2y-1 \Rightarrow \frac{C_{2}^{2}}{C_{2}^{2}} = \frac{2(y-2)}{1+2z}$$

if $\frac{C_{2}^{2}}{C_{1}^{2}} = 0$ debijemo $X = \pm 1$, a iz $\frac{C_{2}^{2}}{C_{2}^{2}} = 0$

U jednadébi se javýa 2º sto znazi da imemo dvije plohe 2= 2(x, x)

it nx=0 dobijemo X=±1, a it ny=0 dobijemo Y=Z

Unistimo li (1,2) u plohu dobijemo 22+2-6=0 => 21=2

a uvrstimo li(-1,2) u plohu dobijemo 22+7-2=0 => 23=1

$$\frac{3^2 + 1}{1+2} = \frac{3}{3} \left(\frac{3(1-x^2)}{1+2} \right) = 3 \cdot \frac{-2 \times (1+2+) - (1-x^2)}{2} = \frac{3^2}{3} \cdot \frac{3(1-x^2)}{1+2} = \frac{3}{3} \cdot \frac{-2 \times (1+2+) - (1-x^2)}{2} = \frac{3^2}{3} \cdot \frac{-6 \times (1+2^2)}{2} = \frac{3}{3} \cdot \frac{-6 \times (1+2^2)}{$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{3(1-x^2)}{1+2z} \right) = 3. \frac{-2x(1+2z) - (1-x^2) \cdot 2 \cdot \frac{\partial^2 z}{\partial x}}{(1+2z)^2} = \frac{-6x(1+2z)^2}{(1+2z)^2}$$

$$\frac{3^{2} + 3^{2}}{0 \times 2} = \frac{3}{0 \times} \left(\frac{3(1 - x^{2})}{1 + 2 + 2} \right) = 3. \frac{-2 \times (1 + 2 + 2) - (1 - x^{2})}{(1 + 2 + 2)^{2}} = \frac{-6 \times (1 + 2 + 2)}{(1 + 2 + 2)^{2}}$$

$$= -\frac{6 \times}{1 + 2 + 2} \quad \text{jev u fochama notegy inferesu}$$

 $\frac{3^{2}t}{94^{2}} = \frac{9}{94}\left(2 \frac{4-2}{1+27}\right) = 2 \frac{4+27}{(1+27)^{2}} = \frac{9}{2}$ $\frac{1+27}{(1+27)^{2}} = \frac{2}{1+27}$

 $\frac{0.2}{0\times0.7} = \frac{0}{0\times}\left(2\frac{4-5}{1+56}\right) = 5(1-5)\cdot\frac{-1}{(1+56)}\cdot5\frac{5}{0} = 0$

 $H(x_1) = \begin{vmatrix} -6x \\ 1+22 \end{vmatrix}$

· u tochi (-1,2) to 23, they (-1,2)= 307

DIDO 8 2270 = LOKALNI MINIMUM

DICO & DESO = LOKALNI MAKSIMUM

2. (7 bodova)

- (a) (3b) Odredite prvi diferencijal funkcije $f(x,y) = e^{x^2} + \ln \frac{1}{xy}$ u točki T(1,1) te pomoću dobivenog diferencijala aproksimirajte vrijednost f(1.02,0.9).
- (b) (4b) Odredite Taylorov polinom drugog stupnja funkcije $f(x,y) = e^{x^2} + \ln \frac{1}{xy}$ oko točke T(1,1) te pomoću dobivenog polinoma aproksimirajte vrijednost f(1.02,0.9).

$$\frac{\partial f}{\partial y}(x_1 y) = 0 - \frac{1}{xy} \cdot x = -\frac{1}{y}$$

$$\Rightarrow \frac{\partial f}{\partial y}(1,1) = -1$$

$$\Rightarrow df(T) = (2e-1)dx - dy$$

$$f(1,02,0.9) = f(1+0.02,1-0.1)$$

$$\approx f(1,1) + \frac{\partial f}{\partial x}(1,1) \cdot 0.02 + \frac{\partial f}{\partial y}(1,1) \cdot (-0.1) = e+(2e-1) \cdot 0.02 + 0.1$$

$$= 1.04e + 0.08$$

(6) $\frac{\partial_{x} f}{\partial x^{2}} (x^{2} f) = 2 e^{x^{2}} + 2x \cdot 2x \cdot e^{x^{2}} + \frac{1}{x^{2}} = (2 + 4x^{2}) e^{x^{2}} + \frac{1}{x^{2}}$

(2.) (a) $f(x,y) = e^{x^2} + \ln \frac{1}{xy} = e^{x^2} - \ln(xy)$

$$\frac{\partial^2 f}{\partial x^2 f} (x^i A) = \frac{\partial^2 f}{\partial x^2 f} (x^i A) = 0$$

 $\frac{\partial f}{\partial x}(x_i y) = 2 \times e^{x^2} - \frac{1}{x y} \cdot y = 2 \times e^{x^2} - \frac{1}{x} \implies \frac{\partial f}{\partial x}(x_i y) = 2 \times e^{x^2} - \frac{1}{x}$

T(1,1)

$$\frac{\partial^{2}f}{\partial \times \partial y}(x,y) = \frac{\partial^{2}f}{\partial y \partial x}(x,y) = 0$$

$$= \sum_{\alpha = 1}^{2} \frac{\partial^{2}f}{\partial x^{2}}(x,y) = 6c + 1, \quad \frac{\partial^{2}f}{\partial y^{2}}(x,y) = 1, \quad \frac{\partial^{2}f}{\partial x \partial y}(x,y) = \frac{\partial^{2}f}{\partial y \partial x}(x,y) = 0$$

$$= \sum_{\alpha = 1}^{2} \frac{\partial^{2}f}{\partial x^{2}}(x,y) = f(x,y) + \frac{\partial^{2}f}{\partial y \partial x}(x,y) + \frac{\partial^{2}f}{\partial x \partial y}(x,y) = 0$$

= $e + (2e-1) \cdot 0.02 + 0.1 + \frac{1}{2} (6e+1) \cdot (0.02)^2 + \frac{1}{3} \cdot (-0.1)^2$

$$= \begin{cases} \frac{\partial^2 f}{\partial x^2} (\Lambda_1 \Lambda) = G + \Lambda, & \frac{\partial^2 f}{\partial y^2} (\Lambda_1 \Lambda) = \Lambda, & \frac{\partial^2 f}{\partial x \partial y} (\Lambda_1 \Lambda) = \frac{\partial^2 f}{\partial y \partial x} (\Lambda_1 \Lambda) = \frac{\partial^2 f}{\partial y \partial x} (\Lambda_1 \Lambda) + \frac{\partial^2 f}{\partial y \partial x} (\Lambda) + \frac{\partial^2 f}{\partial x} (\Lambda) + \frac{\partial^2 f}{\partial y \partial x} (\Lambda) + \frac{$$

$$T_{2}(x,y) = f(\Lambda_{1}\Lambda) + \left(\frac{\Im f}{\Im x}(\Lambda_{1}\Lambda)(x-\Lambda) + \frac{\Im f}{\Im y}(\Lambda_{1}\Lambda)(y-\Lambda)\right) + \frac{\Lambda}{2!} \left(\frac{\Im^{2} f}{\Im x^{2}}(\Lambda_{1}\Lambda)(x-\Lambda)^{2} + 2 \cdot \frac{\Im^{2} f}{\Im x \Im y}(\Lambda_{1}\Lambda)(x-\Lambda)(y-\Lambda) + \frac{\Im^{2} f}{\Im y^{2}}(\Lambda_{1}\Lambda)(y-\Lambda)^{2}\right)$$

$$+ \frac{1}{2!} \left(\frac{3^2 f}{0 \times 2} (1/1) (x-1)^2 + 2 \cdot \frac{3^2 f}{0 \times 0 y} (1/1) (x-1) (y-1)^2 + \frac{1}{2} (6e+1) (x-1)^2 + \frac{1}{2} (6e+1)^2 (x-1)^2 + \frac{1}{2} (6e+1$$

$$= e + (2e-1)(x-1) - (y-1) + \frac{1}{2}(6e+1)(x-1)^2 + \frac{1}{2}$$

$$= e + (2e-1)(x-1) - (y-1) + \frac{1}{2}(6e+1)(x-1)^2 + \frac{1}{2}(4e+1)(x-1)^2 + \frac{1}{2}(4e+1)(x$$

= 1.052e +0.0852

$$= e + (2e-1)(x-1) - (y-1) + \frac{1}{2}(6e+1)(x-1)^2 + \frac{1}{2}(y-1)^2$$

$$f(1.02, 0.9) \approx T_2(1.02, 0.9)$$

3. (8 bodova) Metodom Lagrangeovih multiplikatora nađite uvjetne ekstreme funkcije $f(x, y, z) = xy + y^3 - z^2$ uz uvjete y - z = 1 i y - x = 5.

$$f(x_1y_1,z) = xy_1 + y^3 - z^2$$
 $y_1 - z_1 = 1$, $y_1 - x_2 = 5$
Lagrangeove funccija:
 $L(x_1y_1,z_1,x_1,\mu) = xy_1 + y^3 - z^2 + \lambda(y_1-z_1) + \mu(y_1-x_2-z_1)$

Uvrstino sue u drugu jednoolįbu:

Drugi diferencijal Lagrangeove funkcije:

Diferencijali uvjeta:

mamo

=) d2 L(x,y,2) = 6y (dy)2-2 (d2)2+2dxdy

d2L(-4,1,0) = 6(dy)2>0 za (dx,dy,d2) + (0,0,0)

 $d^{2}L(-6,-1,-2) = -6 (dy)^{2} < 0 \approx (dx_{1}dy_{1}dy_{2}) \neq (0,0,0)$ =) (-6,-1,-2) localui uyetii mcksimum

=) (-4,1,0) lokalni uvjetni minimum

 $\begin{cases} L'_{2} = -2z - \lambda & = 0 \Rightarrow \lambda = -2z = -2y + 2 \\ L'_{3} = y - z - 1 & = 0 \Rightarrow z = y - 1 \end{cases}$ $L'_{1} = y - x - 5 = 0 \Rightarrow x = y - 5$

 $L_{xx}^{"}=0, \ L_{yy}^{"}=6v, \ L_{zz}^{"}=-2, \ L_{xy}^{"}=L_{yx}^{"}=1, \ L_{yz}^{"}=L_{zy}^{"}=0, \ L_{zx}^{"}=L_{xz}^{"}=0$

y-z = 1 /d =) dy = dz =) $dx = dy = dz =) <math>d^2L(x_1y_1z) = 6y(dy)^2$ y-x = 5 /d =) dy = dx

 $y_{3}-5+3y^{2}-2y+2+y_{3}=0$ $=) 3y^{2}-3=0 \Rightarrow y^{2}=1$ $y_{2}=-1, x_{1}=-6, z_{2}=-2, x_{2}=4, \mu_{2}=-1$

JIR201

3. (8 bodova)

- (a) (2b) Navedite primjer funkcije dvije varijable s lokalnim maksimumom u T(0,0) te primjer funkcije dvije varijable s lokalnim minimumom u T(1,1).
- (b) (6b) Odredite lokalne ekstreme funkcije:

$$f(x,y) = \frac{1}{2}\ln(x^2y^2) - x^2 - y^2 + xy.$$

$$q(x,y) = 0$$

 \rightarrow (1,1) je lokalii (i globalui) minimum

- $f(x_iy) = -x^2 y^2$

(3) (b)
$$f(x) = \frac{1}{2} e_{x}(x^{2}) + \frac{1}{2} f_{x}(x_{y}^{2}) - x^{2} - y^{2} + xy.$$

$$f_{x}^{2} = \frac{1}{2} \cdot \frac{1}{4} \cdot 2x - 2x + y = 0$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot 2x^{2} \cdot 2y - 2y + x = 0$$

$$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 2x^{2} \cdot 2y - 2y + x = 0$$

$$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 2x^{2} + xy = 0$$

$$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 2x^{2} + xy = 0$$

$$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 2x^{2} + xy = 0$$

$$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 2x^{2} + xy = 0$$

$$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 2x^{2} + xy = 0$$

$$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1$$

JIR202

3. (9 bodova)

- (a) (2b) Iskažite nužan uvjet koji mora zadovoljavati točka T da bi bila točka uvjetnog lokalnog ekstrema funkcije $f: \mathbb{R}^2 \to \mathbb{R}$ uz uvjet $\varphi(x, y) = 0$.
- (b) (7b) Metodom Lagrangeovih multiplikatora nađite uvjetne ekstreme funkcije $f(x,y) = x^2 + xy + y^2$ uz uvjet $4x^2 + 4xy + y^2 = 1$.

3.a)
$$\exists \lambda \in \mathbb{R} \ T, D$$

$$\forall (f(T) + \lambda \cdot f(T)) = \vec{\partial}$$
b) LAGRANGOVA FUNKCISH
$$L(\lambda, y, \lambda) = y^2 + \lambda y^2 + \lambda (4x^2 + 4xy + y^2 - 1)$$

$$L_{3}^{1} = 0 \qquad 2 \times + 3 + 82 \times + 42 = 0$$

$$L_{3}^{1} = 0 \qquad 2 \times + 29 + 42 \times + 22 = 0$$

$$Y = 0 \qquad 4 \times^{2} + 42 \times + 9^{2} = 1$$

$$Y = 0$$
 $4x^{2} + 4x6 + y^{2} = 1$
 $2 \times 76 + 82 \times 742 - 2(x + 29)$
 $-36 = 0 = 16 = 1$

L' = 2 + 82

L"49 = 2+22

L' 4 = 1 + 4 2

DIFERENCISAL UVSETA

(8x x4 4) dx + (4x+29) dy=0

 $dy = -\frac{8 x + 4y}{4x + 2y} dx$ dy = -2 dx

3.5) 12 L = (2+82)(dx) + 2 (1+42) dx dy + (2+22) (dy)2 112 L= (2+82) (dx)2 + 4 (1742) (dx)2 + 4 (2+22) (dx)2 112 L = [2+82-4-162 + 8+82] (18)2 12 L = 6 (dx) > 0 ZA (dx, dy) \ \((0, 0) \) To 1 To SU LOKALNI UVSETNI MINIMUMI

JIR19

3. (10 bodova)

- (a) **(2b)** Ako je T_0 točka lokalnog maksimuma funkcije z = f(x, y), dokažite da je tada T_0 stacionarna točka od f, tj. $\frac{\partial f}{\partial x}(T_0) = \frac{\partial f}{\partial y}(T_0) = 0$.
- (b) (2b) Ako je T_0 stacionarna točka funkcije f i ako je $d^2f(T_0)$ negativno definitna kvadratna forma, dokažite da je tada T_0 lokalni maksimum od f.
- (c) (6b) Odredite točke lokalnog maksimuma funkcija z = z(x, y) zadanih implicitno s

$$x^2 + y^2 + z^2 - 2x + 4y - 6z - 11 = 0.$$

 $g_1, g_2: \mathbb{R} \to \mathbb{R}, \quad g_1(x) = f(x, y_0), \quad g_2(y) = f(x_0, y),$

imoju lakalne maksimume u točkama x., y. redom pa mora vrijediti

 $+\frac{1}{21}\left[\ddagger_{xx}^{\parallel}\left(\top_{c}\right)\left(x-x_{o}\right)^{2}+2\ddagger_{xy}^{\parallel}\left(\top_{c}\right)\left(x-x_{o}\right)\left(y-y_{o}\right)\right.$

 $\sharp(x,y)=\sharp(\tau_{o})+\left[\underbrace{\sharp_{x}^{l}(\tau_{o})}_{=o}(x-x_{o})+\underbrace{\sharp_{y}^{l}(\tau_{o})}_{=o}(y-y_{o})\right]$

(6) Furkcija f možemo razviti u Tayloror polinom oko točke To:

0 = g'z(yo) = of (xo, yo), tj. To je stacionarna točka od f.

0 = g1(x0) = 3x (x0, y0),

+ fyy (Ta) (y-y0)2]

gdje je To reka točka na spojnici točaka (x,y) i To Za točke (x,y) u dovoljno maloj okolivi točke To vijedit će $d^2f(x,y)<0$ pa posebno i $d^2f(T_c)<0$ (zbog $d^2f(T_c)<0$

 $f(x,y) = f(T_0) + \frac{1}{2!} \frac{d^2 f(T_c)}{c_0} < f(T_0)$

odalte po definiciji slijedi da je To lokalni maksimim od f.

= f(To) + 1 d2f(Tc).

i nepreliduosti drugog diferencijale) Zabo za sve takve točke imamo

$$= 2y + 272y + 4 - 62y = 0$$

$$= (2-3)2y = -2-y$$

$$= 2y = \frac{-2-y}{2-3} = 0 \Rightarrow y = -2$$
U delivery stacionarios tradicionarios tradicionarios

(c) x2+y2+22-2x+4y-62-M=0 / 0x

=) 2x + 277x - 2 - 67 = 0

U dobivenoj stacionarnoj točki računamo vijednost funkcije 7: $1^{2} + (-2)^{2} + 2^{2} - 2 - 8 - 62 - 11 = 0$ 22-62-16=0 (2+2)(2-8)=0=) 21=-2, 22=8 (duje funkcije z=2(x,y) odratene sodanom implication jedradábon lege imoja stacionarmi

 $\frac{\partial^{2} \theta}{\partial y^{2}} = \frac{\partial}{\partial y} \left(\frac{-2 - y}{2 - 3} \right) = \frac{-1 \cdot (2 - 3) - (-2 - y) \cdot \frac{0}{2} y}{(2 - 3)^{2}} = -\frac{1}{2 - 3}$

toole (1,-2))

- $\frac{\sqrt[3]{2}}{\sqrt[3]{2}} = \frac{\sqrt[3]{2}}{\sqrt[3]{2}} = \frac{\sqrt[3]{2}}{\sqrt[3]{2}}$

Zato za Hessedu natricu od z imano
$$H_{2}(x,y) = \begin{bmatrix} -\frac{1}{2-3} & 0 \\ 0 & -\frac{1}{2-3} \end{bmatrix}$$

 $\Rightarrow H_{\frac{1}{5}}(1,-2) = \begin{bmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{5} \end{bmatrix} \qquad \Delta_{1} = \frac{1}{5} > 0$ $\Rightarrow \Delta_{2} = \frac{1}{25} > 0$ $\Rightarrow \Delta_{2} = \frac{1}{25} > 0$ $\Rightarrow \Delta_{1} = \frac{1}{5} > 0$ $\Rightarrow \Delta_{2} = \frac{1}{25} > 0$ $\Rightarrow \Delta_{1} = \frac{1}{5} > 0$ $=) \ \#_{2_{Z}}(1,-2) = \begin{bmatrix} -\frac{\Lambda}{5} & 0 \\ 0 & -\frac{\Lambda}{5} \end{bmatrix} \quad \Delta_{2} = \frac{\Lambda}{25} > 0$ $\Rightarrow \ \#_{2_{Z}}(1,-2) < 0$ $\Rightarrow \ (1,-2) \text{ je bladui}$ malisinum funkcije =2

> $(x^2-2x)+(y^2+4y)+(z^2-6z)=11$ $(x-1)^2 + (y+2)^2 + (z-3)^2 = 25$

Dobili smo jednadžbu sfere sa središtem (1,-2,3) Podijusa 5. Odavde slijedi da se mefsimalna vijednost z izwosi zmex=3+5=8

(i to je malsimum funkcije z = 3+1/25-(x-1)2-(4+2)2).

Stions, minimales unjednost and z iznosi zmin = 3-5 = -2 (i to je minimum funkcije = 3-1/25-(x-1)2-(y+2)2)

 $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{-2 - y}{2 - 2} \right) = -\frac{-2 - y}{(2 - 2)^2} \cdot \frac{\partial}{\partial x} = 0$

2. nacin Preuredius zadam implicitum jednostzbu:

- **2.** (8 bodova) Zadana je funkcija $f(x,y) = x^2 e^y$.
 - (a) (3b) Nađite usmjerenu derivaciju ove funkcije iz točke P(2,0) u smjeru vektora \overrightarrow{PQ} , gdje je $Q(\frac{1}{2},2)$.
 - (b) (2b) Odredite vrijednost usmjerene derivacije u smjeru najbržeg rasta ove funkcije iz točke P(2,0).
 - (c) (3b) Napišite 2. Taylorov polinom $T_2(x,y)$ ove funkcije u okolini točke (x_0,y_0) . Koristeći $T_2(x,y)$ izračunajte približnu vrijednost izraza $(2.1)^2 \cdot e^{-0.1}$.

Trokedno usujerenu derivaciju funkcije
$$f$$
 në toche ((4))

gdje je $Q(\frac{1}{2},2)$.

Usujerenu derivaciju računamo po formuli: $\frac{2f}{3\sqrt{7}}(P) = \nabla f(P) \cdot \vec{V_0}$ gdje je $\vec{V_0} = \frac{\vec{V_0}}{\|\vec{V_0}\|}$,

 $\sqrt{1} = PQ = (\frac{1}{2}, 2) - (2, 0)$

G=(-3/2)

1311= 19 +4 = 5

$$\Rightarrow \frac{3\zeta}{3\xi}(x') = (3x^{2}, \frac{3\zeta}{3\xi}) = (3x^{2}, \frac{3\zeta}{3\xi})$$

$$\Rightarrow \frac{3\zeta}{3\xi}(x') = (3x^{2}, \frac{3\zeta}{3\xi}) = (3x^{2}, \frac{3\zeta}{3\xi})$$

$$= \frac{35}{27}(2,0) - (4,4) \cdot (-\frac{2}{5}, \frac{4}{5}) = -\frac{12}{5} + \frac{16}{5} = \frac{4}{5}$$

$$\frac{\partial \mathcal{L}}{\partial x}(x) = \nabla \mathcal{L}(x) \cdot \frac{\partial x}{\partial x} = \|\nabla \mathcal{L}(x)\| \cdot \frac{\|\nabla \mathcal{L}(x)\|}{\|\nabla \mathcal{L}(x)\|} \cdot \cos x$$

(6) For se
$$\frac{\partial \mathcal{C}}{\partial \vec{v}}(\vec{x}) = \nabla + (\vec{x}) \cdot \frac{1}{\|\vec{v}\|} = \|\nabla + (\vec{x})\| \cdot \frac{\|\vec{v}\|}{\|\vec{v}\|} \cdot \cos(\frac{1}{4} \nabla + (\vec{x})) \cdot \nabla + (\vec{x})\| \cdot \|\nabla + (\vec{x})\| \cdot \|$$

(c)
$$f(x_{0}, y_{0}) = x_{0}^{2} \cdot e^{\frac{y_{0}}{2}}$$

$$=) T_{2}(x_{1}y_{0}) = f(x_{0}, y_{0}) + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \cdot (x_{0} - x_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \cdot (y_{0} - y_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \cdot (y_{0} - y_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \cdot (y_{0} - y_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \cdot (y_{0} - y_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \cdot (y_{0} - y_{0}) \cdot (y_{0} - y_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \cdot (y_{0} - y_{0}) \cdot (y_{0}$$

(xo, yo) = (2,0)

 $\tau \alpha \bar{c} U M \alpha U U \bar{c} = 4 + 4 \cdot 9.7 + 4 \cdot (-0.1) +$

 $\frac{1}{2}$. $(2.0.1^2 + 2.4.0.1.(-0.1)$

+24.0.12) =

3. (7 bodova)

- (a) (1b) Definirajte Hesseovu matricu funkcije $f: \mathbb{R}^2 \to \mathbb{R}$ u točki $T_0(x_0, y_0)$.
- (b) (1b) Iskažite dovoljan uvjet da bi stacionarna točka $T_0(x_0, y_0)$ bila lokalni minimum funkcije f koristeći Hesseovu matricu.
- (c) (5b) Odredite i ispitajte lokalne ekstreme funkcije $f(x,y) = x^2 + y^2 + \frac{2}{xy}$.

(a) Hesseava matrica funkcije
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 u toku $T_0(x_0, y_0): H_{\frac{1}{2}}(T_0) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(T_0) & \frac{\partial^2 f}{\partial y^2}(T_0) \\ \frac{\partial^2 f}{\partial x^2}(T_0) & \frac{\partial^2 f}{\partial y^2}(T_0) \end{bmatrix}$

(b) Dovoljni uvjeti da bi stociovarva toča $T_0(x_0, y_0)$ sta lokalni uvirismum:

 $\begin{cases} \frac{\partial t}{\partial x} = 2x - \frac{2}{4x^2} = 0 \Rightarrow \begin{cases} x^3 y = 1 \\ \frac{\partial t}{\partial y} = \frac{1}{2} = 0 \end{cases} \Rightarrow \begin{cases} x^3 y = 1 \\ xy^3 = 1 \Rightarrow x = \frac{1}{4^3} \end{cases} \Rightarrow \frac{y = \pm 1}{4^3}$

02 (To)>0 i det Hg (To)>0.

=> T1(1/1) i T2(-1/-1) su stacionarne toche.

=> T1 i T2 su tocke lokalnog minimuma

(c) $f(xy) = x^2 + y^2 + \frac{2}{xy}$

77 (x14) = 0