Autour des matrices de Frobenius - Corrigé

I. Préliminaires

- 1. Φ est linéaire par linéarité du produit scalaire.
 - Soit $x \in E$ tel que $\phi_x = 0$. Alors $\phi_x(x) = (x|x) = 0$, donc x = 0. Donc Φ est injective.
 - Soit $\phi \in E^*$. Comme Ker ϕ est de dimension n-1, on peut choisir $x' \in E$ tel que $E = \text{Ker}\phi \oplus \text{Vect}(x')$. Posons alors $x = \frac{\phi(x')}{(x'|x')}$. Pour tout $y = a + \lambda x \in E$, on a alors

$$\phi_x(y) = (x|y) = \lambda \frac{\phi(x')^2}{(x'|x')} = \phi(\lambda x) = \phi(y).$$

Ainsi,

 Φ est un isomorphisme, et dim $E^* = n$.

- 2. a. Si $x \in F \cap F \perp$, alors (x|x) = 0, donc x = 0.
 - Soit $x \in E$. Considérons l'application $\phi_{x|F} \in F^*$. La question 1. donne l'existence de $y \in F$ tel que $\phi_{x|F} = \phi_{y|F}$. Dès lors, $\phi_{x|F} \phi_{y|F} = \phi_{x-y|F} = 0$, donc $x y \in F^{\perp}$, et x = y + (x y).

Ainsi,

$$E = F \oplus F^{\perp}$$
.

b. Le théorème du rang donne donc

$$dim F^{\perp} = n - d.$$

3. a. Soit $x \in E$. On a

$$x \in A^{\circ} \Leftrightarrow \forall \phi \in A, \ \phi(x) = 0 \Leftrightarrow \forall y \in \Phi^{-1}(A), \ \phi_{y}(x) = 0 \Leftrightarrow x \in (\Phi^{-1}(A))^{\perp}.$$

Donc

$$A^{\circ} = \left(\Phi^{-1}(A)\right)^{\perp}.$$

b. Les questions **1**. et **2**.b. donnent successivement $\dim \Phi^{-1}(A) = \dim A = d$ puis $\dim (\Phi^{-1}(A))^{\perp} = n - d$. Ainsi,

$$dim A^{\circ} = n - d.$$

- 4. Soit $P \in \mathbf{K}[X]$.
 - Pour tout $x = x_F + x_G \in E$, $P(\varphi)(x) = P(\varphi)(x_F) + P(\varphi)(x_G) \in P(\varphi)(F) + P(\varphi)(G)$.
 - La stabilité de F et G par φ donne $\dim P(\varphi)(F) \leq \dim F$ et $\dim P(\varphi)(G) \leq \dim G$. Dès lors,

$$n = \dim(P(\varphi)(F) + P(\varphi)(G)) \le \dim P(\varphi)(F) + \dim P(\varphi)(G) \le \dim F + \dim G = n.$$

Dès lors, la formule de Grassmann donne $\dim(F \cap G) = 0$, donc $F \cap G = 0$. En définitive,

$$\forall P \in \mathbf{K}[X], \ P(\varphi)(E) = P(\varphi)(F) \oplus P(\varphi)(G).$$

- II. Endomorphismes et matrices cycliques
 - 5. Pour tout $P \in \mathbf{K}[X]$ unitaire, en développant $\chi_{C_P} = \det(XI_n C_P)$ selon sa dernière colonne, on obtient aisément

$$\chi_{C_P}=P.$$

6. a. Soit $P \in \mathbf{K}[X]$ tel que $M_{\mathscr{B}}(\varphi) = C_P$. En notant e_1, \dots, e_n les éléments de \mathscr{B} dans l'ordre, on obtient $e_{i+1} = \varphi(e_i)$ pour tout $1 \le i < n$. Ainsi

arphi est un endomorphisme cyclique.

b. i. Comme $\phi^n(x) \in E$, on peut noter $\phi^n(x) = -a_0x - \dots - a_{n-1}\phi^{n-1}(x)$. En posant $P = X^n + \sum_{k=0}^{n-1} a_k X^k$, on a donc $M_{\mathscr{B}}(\varphi) = C_P$. Donc

il existe
$$P \in \mathbf{K}[X]$$
 tel que $M_{\mathscr{B}}(\varphi) = C_P$.

ii. Toute matrice cyclique est de la forme $M_{\mathscr{B}'}(\varphi')$, où φ' est un endomorphisme cyclique de E. En choisissant \mathscr{B} une base comme celle donnée en énoncé et en posant Q la matrice de passage de \mathscr{B} vers \mathscr{B}' , on a $M_{\mathscr{B}}(\varphi') = QM_{\mathscr{B}'}(\varphi')Q^{-1}$, et la question i. permet de conclure :

toute matrice cyclique est semblable à une matrice compagnon.

- 7. a. Soit $x \in E$.
 - $I_{\varphi,x}$ est clairement un sous-groupe additif de K[X].
 - Si $P \in I_{\varphi,x}$, $Q \in \mathbf{K}[X]$, alors $QP(\varphi)(x) = Q(\varphi) \circ P(\varphi)(x) = 0$, donc $QP \in I_{\varphi,x}$. Ainsi.

pour tout
$$x \in E$$
, $I_{\varphi,x}$ est un idéal de $\mathbf{K}[X]$.

b. Considérons un élément P de $I_{\varphi,x}$ de degré minimal, et $Q \in I_{\varphi,x}$. En notant Q = PR + S la division euclidienne de Q par P, on a $S \in I_{\varphi,x}$ donc S = 0. Dès lors, $I_{\varphi,x} = P \cdot \mathbf{K}[X]$, d'une part, et tous les éléments de $I_{\varphi,x}$ de degré minimal sont égaux à une constante multiplicative près, d'autre part. Ainsi,

il existe un unique
$$\pi_{\varphi,x} \in \mathbf{K}[X]$$
 unitaire tel que $I_{\varphi,x} = \pi_{\varphi,x} \cdot \mathbf{K}[X]$.

c. i. Comme $\pi_{\varphi}(\varphi) = 0$ d'après le théorème de Cayley-Hamilton, il vient, à l'aide de la question **b.**,

$$\pi_{\varphi} \in I_{\varphi,x} \text{ et } \pi_{\varphi,x} | \pi_{\varphi}.$$

ii. Les $\pi_{\varphi,x}$ étant tous des diviseurs unitaires de π_{φ} , il sont en nombre fini. Notons-les $\pi_{\varphi,x_1},\cdots,\pi_{\varphi,x_k}$. Comme, de plus, tout $x \in E$ est dans $\operatorname{Ker} \left(\pi_{\varphi,x}(\varphi)\right)$, il vient

$$E = \bigcup_{i=1}^k \operatorname{Ker}(\pi_{\varphi,x_i}(\varphi)).$$

- iii. Notons $F_i = \text{Ker}(\pi_{\varphi,x_i}(\varphi))$, pour tout $1 \le i \le k$. Alors
 - ou bien $F_1 = E$.
 - ou bien $F_1 \neq E$, et on peut choisir $x \in E \setminus F_1 = F_2 \cup \cdots \cup F_k$. Soit alors $y \in F_1$. Pour tout $1 \leq i \leq k$, $y ix \in F_2 \cup \cdots \cup F_k$, car sinon, $x = \frac{1}{i}(y (y ix)) \in F_1$. Le principe des tiroirs assure l'existence de $i_1 \neq i_2$ et $2 \leq j \leq k$ tels que $y i_1 x$, $y i_2 x \in F_j$. Dès lors,

$$y = \frac{1}{i_2 - i_1} (i_2(y - i_1 x) - i_1(y - i_2 x)) \in F_j \subset F_2 \cup \dots \cup F_k.$$

Ainsi, $F_1 \subset F_2 \cup \cdots \cup F_k$ et $E = F_2 \cup \cdots \cup F_k$. On réitère le procédé, et on montre ainsi qu'

il existe
$$1 \le i \le k$$
 tel que $E = F_i$.

En particulier, π_{φ,x_i} est un polynôme annulateur de φ , donc

$$\pi_{\varphi}|\pi_{\varphi,x_i}.$$

iv. Les questions i. et iii. donnent $\pi_{\varphi,x_i}|\pi_{\varphi}$ et $\pi_{\varphi}|\pi_{\varphi,x_i}$. Comme π_{φ} π_{φ,x_i} sont tous deux unitaires,

$$\pi_{\varphi} = \pi_{\varphi, x_i}$$
.

8. a. Choisissons $x \in E$ tel que $\{x, \varphi(x), \cdots, \varphi^{n-1}(x)\}$ soit une base de E. Alors la liberté de cette famille montre que l'unique $P \in \mathbf{K}[X]$ de degré strictement inférieur à n tel que $P(\varphi)(x) = 0$ est le polynôme nul. Ainsi, π_{φ} est de degré au moins n. Comme, de plus, $\pi_{\varphi}|\chi_{\varphi}$, et que ces deux polynômes sont unitaires,

$$\pi_{\varphi}$$
 est de degré n et $\pi_{\varphi} = \chi_{\varphi}$.

b. i. La question 7. donne $x \in E$ tel que $\pi_{\varphi} = \pi_{\varphi,x}$. De plus, $\pi_{\varphi} = \chi_{\varphi}$ est de degré n et divise en particulier tout élément non nul de $I_{\varphi,x}$, qui est donc de degré au moins n. Ainsi,

il existe $x \in E$ tel que tout élément non nul de $I_{\varphi,x}$ soit de degré au moins n.

ii. Si $P \in \mathbf{K}[X]$ est de degré au plus n-1 et si $P(\varphi)(x)=0$, alors, d'après la question i., P est le polynôme nul. Autrement dit, \mathcal{B} est une famille libre. Comme elle possède n éléments,

$$\mathscr{B} = \{x, \varphi(x), \dots, \varphi^{n-1}(x)\}$$
 est une base de E , et φ est *a fortiori* cyclique.

c. C_P étant une matrice compagnon, on a $\pi_{C_P} = \chi_{C_P}$. La question 5. donne donc

$$\pi_{C_P} = P$$
.

III. Théorème de décomposition de Frobenius

- 9. E_{ν} est clairement un sous-espace vectoriel de E.
 - Pour tout $P \in \mathbf{K}[X]$, $\varphi \circ P(\varphi)(y) = (XP)(\varphi)(y)$, donc E_{γ} est stable par φ .
 - Pour P = 1, on a $P(\varphi) = \mathrm{id}_E$, donc $y \in E_V$.
 - Tout sous-espace vectoriel de E stable par φ et contenant y contient a fortiori tous les $\varphi^k(y)$, et donc, par linéarité, contient E_y .

Ainsi,

$$E_y$$
 est le plus petit sous-espace vectoriel de E stable par φ et contenant y .

10. La question **7**. donne $y \in E$ tel que $\pi_{\varphi} = \pi_{\varphi,y}$. Comme $\pi_{\varphi}(\varphi)(y) = 0$, la famille $\{y, \varphi(y), \cdots, \varphi^d(y)\}$ est liée, donc E_y est de dimension au plus d. De plus, la famille $\{y, \varphi(y), \cdots, \varphi^{d-1}(y)\}$ ne saurait être liée, car sinon il existerait $P \in I_{\varphi,y}$, non nul et de degré au plus d-1, tel que $P(\varphi)(y) = 0$, ce qui contredirait la définition de $\pi_{\varphi,y}$. Dès lors,

$$E_y$$
 est de dimension d et $\{y, \varphi(y), \dots, \varphi^{d-1}(y)\}$ en est une base.

11. a. Pour tout $x \in F$, $k \in \mathbb{N}$, $e_d^*(\varphi^k(\varphi(x))) = e_d^*(\varphi^{k+1}(x)) = 0$, donc

$$F$$
 est stable par φ .

b. Soit $x = x_1 e_1 + \dots + x_d e_d \in E_y \cap F$. Par définition des, e_k , pour tout $0 \le k < d$, $e_d^*(\varphi^k(x)) = x_{d-k} = 0$, donc x = 0. Ainsi,

$$E_y \cap F = \{0\}.$$

c. i. Soit $g = g_0 \mathrm{id}_E + \dots + g_p \varphi^p \in \mathbf{K}[\varphi]$ tel que $T_{\varphi}(g) = 0$. Comme $\pi_{\varphi}(\varphi) = 0$, on peut supposer que p < d (ce qui permet de montrer, au passage, en utilisant la définition du polynôme minimal comme polynôme annulateur de plus petit degré, que $\mathbf{K}[\varphi]$ est de dimension d). En évaluant en y, on obtient $e_d^*(g_0e_1 + \dots + g_pe_{p+1}) = 0$, donc $g_0e_1 + \dots + g_pe_{p+1} \in E_y \cap F = \{0\}$. Donc $g_0e_1 + \dots + g_pe_{p+1} = 0$, et par liberté de $\{e_1, \dots, e_{p+1}\}$, $g_0 = \dots = g_p = 0$. D'où g = 0. Finalement, on obtient, grâce au théorème du rang, que

$$T_{\varphi}$$
 est injectif et donc de rang d .

- ii. Soit $x \in E$.
 - Si $x \in (\operatorname{Im} T_{\varphi})^{\circ}$, alors, pour tout $g \in \mathbf{K}[\varphi]$, $e_d^* \circ g(x) = 0$. En particulier, pour tout $k \in \mathbf{N}$, $e_d^* \circ \varphi^k(x) = 0$, donc $x \in F$.
 - Si $x \in F$, alors, par linéarité de φ , pour tout $g \in \mathbf{K}[\varphi]$, $e_d^* \circ g(x) = 0$, donc $x \in (\operatorname{Im} T_{\varphi})^{\circ}$.

Par double inclusion, on a donc

$$\left(\operatorname{Im} T_{\varphi}\right)^{\circ} = F.$$

iii. Les questions i. et 3.b. donnent dim $(\operatorname{Im} T_{\varphi})^{\circ} = n - d$. Autrement dit,

$$\dim F = n - d.$$

d. Les questions b. d'une part puis 10. et c. d'autre part donnent, en définitive,

$$E = E_y \oplus F.$$

12. a. Les questions **9**. et **11**.a. montrent que E_y et F sont stables par φ , donc que $\varphi_{|E_y}$ et $\varphi_{|F}$ sont bien définis. Ainsi,

$$\pi_1$$
 et π_2 sont bien définis.

b. D'abord, $\pi_1 \in I_{\varphi,y}$, donc $\pi_{\varphi} = \pi_{\varphi,y} | \pi_1$. De plus, $\varphi_{|E_y}$ est cyclique par construction, donc, d'après la question **8.b.**, π_1 est de degré d. Comme π_1 et π_{φ} sont tous deux unitaires et de même degré, il vient

$$\pi_1 = \pi_{\varphi}$$
.

c. Comme F est stable par φ , $\pi_{\varphi}(\varphi_{|F}) = 0$, donc $\pi_{\varphi_{|F}}|\pi_{\varphi}$. En d'autres termes,

$$\pi_2|\pi_1$$
.

- 13. On raisonne par récurrence sur n.
 - L'initialisation est immédiate.
 - Supposons le résultat vrai pour tout k < n. Les questions 11. et 12. donnent $E = E_1 \oplus F$, avec $E_1 = E_y$, $\pi_2 | \pi_1$ et π_1 un endomorphisme cyclique. L'hypothèse de récurrence appliquée à F et $\varphi_{|F}$ donnent E_2, \dots, E_r des sous-espaces vectoriels de F, stables par φ , tels que $F = E_2 \oplus \dots \oplus E_r$ et $\pi_{i+1} | \pi_i$ pour $2 \le i < r$, avec π_i un endomorphisme cyclique. Dès lors, E_1, \dots, E_r vérifient les conditions de l'énoncé.

Ainsi,

il existe des sous-espaces vectoriels E_1, \dots, E_r de E qui satisfont aux conditions de l'énoncé.

14. a. La question 12.b. donne $\pi_1 = \psi_1 = \pi_{\varphi}$, donc

$$\pi_1 = \psi_1$$
.

b. i. Les G_i étant tous stables par φ , la question 4. donne

$$\pi_j(\varphi)(E) = \pi_j(\varphi)(G_1) \oplus \cdots \oplus \pi_j(\varphi)(G_s).$$

ii. Les F_i étant tous stables par φ , la question 4. donne

$$\pi_i(\varphi)(E) = \pi_i(\varphi)(F_1) \oplus \cdots \oplus \pi_i(\varphi)(F_r).$$

Comme, de plus, pour $j \le i \le r$, $\pi_i | \pi_j$, $\pi_j(\varphi)(F_i) = \{0\}$. Donc

$$\pi_j(\varphi)(E) = \pi_j(\varphi)(F_1) \oplus \cdots \oplus \pi_j(\varphi)(F_{j-1}).$$

iii. Soit $1 \le i < j$. Par construction, $\varphi_{|F_i}$ et $\varphi_{|G_i}$ sont cycliques. La question **6.b.** montre que $M_{\mathscr{B}}(\varphi_{|F_i})$ (resp. $M_{\mathscr{B}}(\varphi_{|G_i})$) est semblable à C_{π_i} (resp. C_{ψ_i}). Comme $\pi_i = \psi_i$, $\varphi_{|F_i}$ et $\varphi_{|G_i}$ sont semblables. Donc, pour tout $P \in \mathbf{K}[X]$, $P(\varphi_{|F_i})$ et $P(\varphi_{|G_i})$ sont semblables, donc dim $P(\varphi)(F_i) = \dim P(\varphi)(G_i)$. En particulier, cela montre que

$$\forall 1 \leq i < j$$
, $\dim \pi_j(\varphi)(F_i) = \dim \pi_j(\varphi)(G_i)$.

iv. Les questions i. à iii. donnent $\dim \pi_j(\varphi)(G_j) + \cdots + \dim \pi_j(\varphi)(G_s) = 0$, d'où

$$\forall j \leq i \leq s, \dim \pi_j(\varphi)(G_i) = 0.$$

En particulier, π_i est un polynôme annulateur de $\varphi_{|G_i}$, donc

$$\psi_j|\pi_j.$$

v. En échangeant les rôles des F_i et des G_i , on a $\pi_j | \psi_j$. Ces deux polynômes étant, de plus, unitaires, ils sont égaux,

d'où une contradiction.

c. Quitte à ajouter le sous-espace vectoriel nul, on peut supposer que r = s. La question **b**. montre alors que

$$\forall 1 \leq i \leq r, \ \pi_i = \psi_i.$$

IV. Quelques propriétés topologiques

15. Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $x \in E$ tel que $\mathscr{B} = \{x, Ax, \dots, A^{n-1}x\}$ soit une base de E. Considérons l'application

$$\varphi_x \colon M \in \mathcal{M}_n(\mathbb{C}) \mapsto \det_{\mathcal{B}} \left(x, Mx, \cdots, M^{n-1}x \right).$$

Par continuité de φ_x en A, et comme $\varphi_x(A) \neq 0$, il existe $\delta > 0$ tel que, pour tout $M \in B(A, \delta)$, $\varphi_x(M) \neq 0$. Pour ces mêmes M, $\{x, Mx, \dots, M^{n-1}x\}$ est donc une base de E, ce qui montre que $B(A, \delta) \subset \mathscr{C}_n$. Ainsi,

$$\mathscr{C}_n$$
 est un ouvert de $\mathscr{M}_n(\mathbf{C})$.

16. a. Soit $A = (a_{i,j}) \in GL_n(\mathbb{C})$. Notons $a_{i,i} = \rho_i e^{i\theta_i}$ pour $1 \le i \le n$. Quitte à trigonaliser A, sans perte de généralité, on peut la supposer triangulaire supérieure. Pour $t \in [0,1]$, posons

$$m_{i,j}(t) = \begin{cases} 0 & \text{si } i > j \\ t a_{i,j} & \text{si } i < j \\ \rho_i^t e^{it\theta_i} & \text{si } i = j \end{cases}$$

et définissons $M: t \in [0,1] \mapsto M(t) = (m_{i,j}(t))$. M est continue car polynomiale en les $a_{i,j}$ et à valeurs dans $GL_n(\mathbb{C})$, par construction. Enfin, $M(0) = I_n$ et M(1) = A. En définitive,

$$\operatorname{GL}_n(\mathbf{C})$$
 est connexe par arcs.

b. La question **6**. montre que, pour tout $A \in \mathcal{C}_n$, il existe un unique $a_A \in \mathbb{C}^n$ et $P_A \in GL_n(/C)$ tels que $A = P_A C_{a_A} P_A^{-1}$. On définit ainsi une application $\psi : (P, a) \in GL_n(\mathbb{C}) \times \mathbb{C}^n \mapsto PC_a P^{-1}$. ψ est clairement continue, d'image \mathcal{C}_n . Comme $GL_n(\mathbb{C}) \times \mathbb{C}^n$ est connexe par arc comme produit d'ensembles connexes par arcs,

$$\mathscr{C}_n$$
 est connexe par arcs.

17. a. Comme M possède n valeurs propres distinctes, on a $\pi_M = \chi_M$. Dès lors, les questions **8.b**. puis **6.b**. montrent que M est cyclique donc semblable à une matrice compagnon. Ainsi,

b. Soit $A \in \mathcal{M}_n(\mathbf{C})$, que l'on peut supposer triangulaire supérieure sans perte de généralité. Notons $\lambda_1, \cdots, \lambda_n$ ses valeurs propres, éventuellement égales. Choisissons $\theta_1, \cdots, \theta_n \in \mathbf{R}$ tels que, pour tout $t \in [0,1]$, $k \neq l$, $\lambda_k e^{it\theta_k} \neq \lambda_l e^{it\theta_l}$, et notons A_n la matrice triangulaire supérieure, de coefficients identiques à A, mis à part les coefficients diagonaux valant $\lambda_k e^{i\frac{\theta_k}{n}}$, pour tout $n \in \mathbf{N}^*$. Les A_n forment alors une suite de matrices de valeurs propres deux à deux distinctes, convergeant vers A. Ainsi,

l'ensemble des matrices de $\mathcal{M}_n(\mathbf{C})$ possédant n valeurs propres distinctes est dense dans $\mathcal{M}_n(\mathbf{C})$.

c. Notons \mathcal{D}_n 'ensemble des matrices de $\mathcal{M}_n(\mathbf{C})$ possédant n valeurs propres distinctes. On a les inclusions $\mathcal{D}_n \subset \mathscr{C}_n \subset \mathcal{M}_n(/C)$. Comme \mathcal{D}_n est dense dans $\mathcal{M}_n(\mathbf{C})$,

$$\mathscr{C}_n$$
 est dense dans $\mathscr{M}_n(\mathbf{C})$.

18. Considérons l'application $\psi: A \mapsto \chi_A$. ψ est continue sur $\mathcal{M}_n(\mathbf{C})$ car polynomiale. Dès lors, si φ est continue, alors $\varphi - \psi$ aussi. D'après la question 8. $\mathscr{C}_n = (\varphi - \psi)^{-1}(\{0\})$ donc est fermé dans $\mathcal{M}_n(\mathbf{C})$. Comme il est, de plus, ouvert d'après la question 15. et non vide, il est égal à $\mathcal{M}_n(\mathbf{C})$, ce qui est absurde pour $n \ge 2$. Ainsi,

$$\varphi$$
 n'est pas continue sur $\mathcal{M}_n(\mathbf{C})$.

V. Propriétés spectrales

19. Pour toute valeur propre λ de C_P , les n-1 premières colonnes de $C_P - \lambda I_n$ étant échelonnées, celle-ci est de rang au moins n-1. Donc $\text{Ker}(C_P - \lambda I_n)$ est de dimension au plus 1, donc exactement 1 par définition d'un sous-espace propre. Ainsi,

les sous-espaces propres de
$$C_P$$
 sont de dimension 1.

20. a. P étant scindé à racines simples, C_P est diagonalisable. Dès lors C_P et C_P^{\top} sont semblables, donc admettent les mêmes valeurs propres. Ainsi,

$$\lambda$$
 est une valeur propre de C_P^{\top} .

b. Étant donné que $P(\lambda) = 0$, on vérifie que

$$e_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix} \text{ est un vecteur propre de } C_{P}^{\top} \text{ associ\'e à } \lambda.$$

c. En notant G la matrice par colonnes $(e_{\lambda_1}|\cdots|e_{\lambda_n})$ où $\lambda_1,\cdots,\lambda_n$ désignent les valeurs propres de C_P , on a

$$G^{\top} = \begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^n \\ 1 & \lambda_2 & \cdots & \lambda_2^n \\ \vdots & & & \vdots \\ 1 & \lambda_n & \cdots & \lambda_n^n \end{pmatrix}.$$

Ainsi,

$$C_P^{\top} = GDG^{-1}$$
, avec $D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$ et G^{\top} est une matrice de Vandermonde.

21. Soit λ une racine de multiplicité $\alpha > 1$ de P, égal à π_{C_P} d'après la question **8.c.**. La question **19**. donne dim Ker $(C_P - \lambda I_n) = 1 < \alpha$, donc

$$C_P$$
 n'est pas diagonalisable.

FIN DU CORRIGÉ