14.6 Derivadas direccionales y el vector gradiente

En el mapa del clima de la figura 1, se muestra un mapa de contorno de la función temperatura T(x,y) para los estados de California y Nevada a las 3:00 pm, de un día de octubre. Las curvas de nivel o isotermas, unen localidades con la misma temperatura. La derivada parcial T_x en un lugar como Reno es la razón de cambio de la temperatura respecto a la distancia si viajamos hacia el este desde Reno; T_y es la razón de cambio de la temperatura si viajamos hacia el norte. Pero, ¿qué sucede si queremos saber la razón de cambio de la temperatura cuando viaja hacia el sureste; es decir, hacia Las Vegas, o en alguna otra dirección? En esta sección se estudia un tipo de derivada, que se denomina derivada direccional, que permite calcular la razón de cambio de una función de dos o más variables en cualquier dirección.

Derivadas direccionales

Recuerde que si z = f(x, y), entonces las derivadas parciales f_x y f_y se definen como

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$f_{y}(x_{0}, y_{0}) = \lim_{h \to 0} \frac{f(x_{0}, y_{0} + h) - f(x_{0}, y_{0})}{h}$$

y representan las razones de cambio de z en las direcciones x y y; es decir, en las direcciones de los vectores unitarios i y j.

Supongamos que ahora queremos encontrar la razón de cambio de z en (x_0, y_0) en la dirección de un vector unitario arbitrario $\mathbf{u} = \langle a, b \rangle$. (Véase figura 2.) Para hacer esto consideremos la superficie S cuya ecuación es z = f(x, y) (la gráfica de f), y sea $z_0 = (x_0, y_0)$. Entonces el punto $P(x_0, y_0, z_0)$ queda sobre S. El plano vertical que pasa por P en la dirección de \mathbf{u} interseca a S en una curva C (véase figura 3.) La pendiente de la recta tangente T a C en el punto P es la razón de cambio de z en la dirección de \mathbf{u} .

Si Q(x, y, z) es otro punto sobre C y P', Q' son las proyecciones de P, Q sobre el plano xy, entonces el vector es paralelo a \mathbf{u} y entonces

$$P'Q' = h\mathbf{u} = \langle ha, hb \rangle$$

para algún escalar h. Por tanto, $x - x_0 = ha$, $y - y_0 = hb$, por lo que $x = x_0 + ha$, $y = y_0 + hb$, y

$$T = \frac{\Delta z}{h} = \frac{z - z_0}{h} = \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

Si tomamos el límite cuando $h \to 0$, obtenemos la razón de cambio de z con respecto a la distancia en la dirección de u, la cual se denomina derivada direccional de f en la dirección de u.

2 Definición La derivada direccional de f en (x_0, y_0) en la dirección de un vector unitario $\mathbf{u} = \langle a, b \rangle$ es

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

si este límite existe.

Al comparar la definición 2 con las ecuaciones $\boxed{1}$, observamos que si $\mathbf{u} = \mathbf{i} = \langle 1, 0 \rangle$, entonces $D_{\mathbf{i}}f = f_x$ y si $\mathbf{u} = \mathbf{j} = \langle 0, 1 \rangle$, entonces $D_{\mathbf{j}}f = f_y$. En otras palabras, las derivadas parciales de f con respecto a x y y son justamente casos especiales de la derivada direccional

1

EJEMPLO 1 Con ayuda del mapa del clima ilustrado en la figura 1 estime el valor de la derivada direccional de la función de la temperatura en Reno en la dirección sureste.

$$D_u T \approx \frac{60^{\circ} - 50^{\circ}}{75 \text{ mi}} = 0.1333 \text{ F/mi}$$

Cuando calculamos la derivada direccional de una función que está definida por medio de una fórmula, en general aplicamos el teorema siguiente.

Teorema Si f es una función derivable de x y de y, entonces f tiene una derivada direccional en la dirección de cualquier vector unitario $\mathbf{u} = \langle a, b \rangle$ y

$$D_{\mathbf{u}}f(x,y) = f_x(x,y) a + f_y(x,y) b$$

EJEMPLO 2 Determine la derivada direccional $D_{\mathbf{u}} f(x, y)$ si

$$f(x, y) = x^3 - 3xy + 4y^2$$

y u es el vector unitario dado por el ángulo $\theta = \pi/6$. ¿Qué es $D_{\mathbf{u}}f(1,2)$?

$$D_{u}f(x,y) = f_{x}(x,y)a + f_{y}(x,y)b, \quad u = \langle a,b \rangle$$

$$u = \langle a,b \rangle = \langle \cos \theta, \sec \theta \rangle = \langle \cos \frac{\pi}{6}, \sec \frac{\pi}{6} \rangle$$

$$Duf(x,y) = f_{x}(x,y) + f_{y}(x,y)$$

$$= (3x^{2} - 3y) \cos \# + (-3x + 8y) \sin \#$$

$$= (3x^{2} - 3y) + (-3x + 8y) + (-3x + 8y)$$

La derivada direccional Du f(1, 2) del ejemplo 2 representa la razón de cambio de z en la dirección de \mathbf{u} . Es la pendiente de la recta tangente a la curva de intersección de la superficie $z = x^3 - 3xy + 4y^2$ y el plano vertical que pasa por (1, 2, 0) en la dirección de \mathbf{u} mostrada en la figura 5.

 $D_{4}f(1,2) = \frac{13-3\sqrt{3}}{2} = 3.9$

El vector gradiente

FIGURA 5

Observe que de acuerdo con el teorema 3, la derivada direccional de una función derivable se puede escribir como el producto punto de dos vectores:

$$D_{\mathbf{u}}f(x,y) = f_{x}(x,y) a + f_{y}(x,y) b'$$

$$= \langle f_{x}(x,y), f_{y}(x,y) \rangle \cdot \langle a,b \rangle$$

$$= \langle f_{x}(x,y), f_{y}(x,y) \rangle \cdot \mathbf{u}$$

El primer vector en este producto punto se presenta no sólo al calcular las derivadas direccionales, sino también en muchos otros contextos. Por eso se le da un nombre especial, *gradiente de f*, y una notación especial (grad f o ∇f , que se lee "nabla f").

8 Definición Si f es una función de dos variables x y y, entonces el gradiente de f es la función vectorial ∇f definida por

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

Calculated by gradien to de
$$\mathcal{L}$$

EJEMPLO 3 Si $f(x, y) = \operatorname{sen} x + e^{xy}$

$$\nabla f(x,y) = \underbrace{\exists f i}_{\exists x} + \underbrace{\exists f j}_{\exists x}$$

$$= (\cos x + y e^{xy}) i + x e^{xy} j$$

$$= \langle \cos x + y e^{xy}, x e^{xy} \rangle j$$

$$\nabla f(0,i) = \langle \cos (0) + 1 e^{0(i)}, (0) e^{0(i)} \rangle$$

$$= \langle 2, 0 \rangle j$$

Con esta notación para el vector gradiente, podemos escribir la expresión (7) para la derivada direccional como

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

EJEMPLO 4 Determine la derivada direccional de la función $f(x, y) = x^2y^3 - 4y$ en el punto (2, -1) en la dirección del vector $\mathbf{v} = 2\mathbf{i} + 5\mathbf{j}$.

$$|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$$
 ... If no es on vector on teris

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector on teris

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{2^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

 $|V| = \sqrt{29^2 + 5^2} = \sqrt{29}^{2} \neq 1$... In no es on vector

hacemos

$$\mathbf{U} = \frac{\mathbf{V}}{|\mathbf{V}|} = \frac{1}{|\mathbf{V}|} \mathbf{V} = \frac{1}{|\mathbf{Z}|^2} \langle 2,5 \rangle = \langle \frac{2}{|\mathbf{Z}|^2}, \frac{5}{|\mathbf{Z}|^2} \rangle$$

Ahara bien,

$$D_{u} f(x,y) = \nabla f(x,y) \cdot \mathbf{u} = \langle 2xy^{3}, 3x^{2}y^{2} - 4 \rangle \cdot \langle \frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \rangle$$

$$= 2xy^{3}(\frac{2}{\sqrt{29}}) + \frac{(3x^{2}y^{2} - 4)5}{\sqrt{29}}$$

$$= \frac{4xy^3 + 15x^2y^2 - 20}{\sqrt{29}}$$

$$\nabla f(x,y) = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} = \frac{\partial^2 f}{\partial y^2 - 4} \hat{j}$$

= $\langle 2xy^3, 3x^2y^2 - 4 \rangle$

Finalmente

Finalmente
$$D_{4}f(2,-1) = \frac{4(2)(-1)^{3}+15(2)(-1)^{2}-20}{\sqrt{29}} = \frac{32}{\sqrt{29}}$$

Funciones de tres variables

14

$$D_{\mathbf{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$$

con

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

EJEMPLO 5 Si f(x, y, z) = x sen yz, a) determine el gradiente de f y b) encuentre la derivada direccional de f en (1, 3, 0) en la dirección $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

$$u = \frac{V}{|V|} = \frac{1}{\sqrt{6}}(i+2j-4) = \langle \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}} \rangle$$

$$|v| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6}$$

$$Duf(x,y,z) = Pf(x,y,z) \cdot 4$$

V EJEMPLO 5 Si
$$f(x, y, z) = x$$
 sen yz , a) determine el gradiente de f y b) encuentre la derivada direccional de f en $(1, 3, 0)$ en la dirección $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

$$\frac{Sen yt}{\sqrt{6}} + \frac{2x + 2y - k}{\sqrt{6}}$$

$$D_{u}f(1,3,0) = \frac{5e_{u}(3(6)) + (2(1)(0) - 1(3)) \cos(3(0))}{\sqrt{6}}$$

$$=-\frac{3}{\sqrt{6}}$$

Calcula la velocidad media cuando $f\left(t\right)=e^{t}$ en el intervalo de tiempo [0,1].

$$v = e$$

$$v = e^2$$

$$v = e - 1$$

$$v = e^{(1)} - e^{(0)} = e - 1$$

$$Af(+) = 3+-2$$

$$f'(t) = 3$$

En general

$$f(x) = \sqrt[m]{x^n} \longrightarrow f(x) = \frac{n}{m\sqrt{x^n}}$$

, SI N7.1

$$f(x) = \frac{x_v}{1} \longrightarrow f(x) = \frac{x_{v+1}}{-v}$$

Ley de exporentes

$$f(x) = \frac{1}{x^n} = x^{-n}$$

$$f'(x) = -nX$$
 $= -nX$
 $-(n+1)$

$$=\frac{-N}{X^{n+1}}$$

$$f(x) = \sqrt[m]{x^n} = x^n - f(x) = \frac{n}{m} x^{\frac{n}{m}-1}$$

$$=\frac{n}{m}\times\frac{\left(\frac{n-m}{m}\right)}{m}=\frac{n}{m}\sqrt[m]{\times^{n-m}}$$

$$=\frac{n}{m}\sqrt{x^{n-n}}$$