Základní zapojení s OZ

1. INVERTUJÍCÍ ZESILOVAČ

přenáší vstupní signál u₁ na výstupní u₂ s konstantním, záporným, časově nezávislým přenosem.

Rce pro uzel invertujícího vstupu:

$$\frac{u_v - u_1}{R_1} + \frac{u_v - u_2}{R_2} + i_v = 0$$

Napětí u_v resp. proud i_v vstupního uzlu má ofsetovou klidovou složku U_0 resp. I_0 , potřebnou k vynulování ofsetu OZ a složku signálovou, potřebnou k vybuzení výstupního napětí u_2

$$u_v = U_o + \Delta u_v = U_o + \frac{u_2}{A_u}; \quad i_v = I_o + \Delta i_v = I_o + \frac{u_2}{A R_{vst}}$$

$$u_{2} = -\frac{R_{2}}{R_{1}}u_{1} + (\underbrace{\frac{R_{2}}{R_{1}} + 1})U_{o} + R_{2}I_{o} + \underbrace{\frac{u_{2}}{A_{u}}(1 + \frac{R_{2}}{R_{1}} + \frac{R_{2}}{R_{vst}})}_{(2)}$$

- (2) chyba způsobená ne nekonečným zesílením OZ, za předpokladu, že $A_{u0} >> R_2/R_1$ a $A_u >> R_2/R_{vst}$, lze složku zanedbat
- (1) chyba daná napěťovým ofsetem U_o a proudovým ofsetem I_o, lze ji vykompenzovat, ale vlivem změn teploty se projeví ještě chyba způsobená drifty
- ⇒ pro ideální přenos invertujícího zesilovače

$$u_2 = -\frac{R_2}{R_I}.u_1$$

Vstupní odpor invertujícího zesilovače je roven hodnotě \mathbf{R}_1 .

2. NEINVERTUJÍCÍ ZESILOVAČ

Neinvertující zesilovač

má velký vstupní odpor (desítky $M\Omega$), kladný přenos,

$$u_2 = \left(\frac{R_2}{R_1} + 1\right) u_1$$

Sledovač

pro
$$R_1 \rightarrow \infty$$
, $R_2 = 0$

tj. R₁ je vynechán, R₂ zkratován, používá se jako impedanční převodník

3. SOUČTOVÝ INVERTUJÍCÍ ZESILOVAČ

Dle zákona superpozice:

$$u_{21} = -\frac{R_2}{R_{11}}.u_{11}$$

$$u_{22} = -\frac{R_2}{R_{12}}.u_{12}$$

$$u_2 = u_{21} + u_{22} = -\left(\frac{R_2}{R_{11}}u_{11} + \frac{R_2}{R_{12}}u_{12}\right)$$

Pro volbu
$$R_{11} = R_{12} = R_1 = R_2$$

$$u_2 = -(u_{11} + u_{12})$$

4. KOMPARÁTOR

nelineární aplikace, OZ bez zpětné vazby \Rightarrow zesílení Au_0 , OZ zesiluje rozdílové napětí u_v mezi vstupy pro $u_1 < U_r$ je $u_2 > 0$, pro $u_1 > U_r$ je $u_2 < 0$, změnou U_r se převodní charakteristika posouvá ve směru osy u_1

Použití

pro porovnání velikosti dvou napětí, např. v dvoupolohových regulátorech, kde U_r – žádaná hodnota, u₁ řízená hodnota

5. INTEGRÁTOR

Pro uzel invertujícího vstupu platí:

$$\frac{-u_1}{R} + C\frac{d(-u_2)}{dt} = 0$$

$$u_2 = -\frac{1}{RC} \int_{0}^{t} u_1 dt + U_{20} + \delta$$

 U_{20} – napětí na C v čase t=0, δ – chyba způsobená ofsety a ne nekonečným zesílením samotného OZ.

Pro $A_{u0} \rightarrow \infty$, $R_{vst} \rightarrow \infty$ a kompenzace ofsetů lze δ zanedbat.

Použití integrátoru

pro porovnání velikosti dvou napětí, např. při převodu analogové hodnoty na digitální (A/D převodník s dvojí integrací).

6. ANALOGOVÁ PAMĚŤ

