# Digital Fundamentals

**ELEVENTH EDITION** 



## Rozdział 2

Systemy liczbowe, operacje i kody

>>> Jakie znamy systemy liczbowe?

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd 2-1

1

### Pozycyjno-wagowe systemy liczbowe



### System dziesiętny

Symbole: 0, 1, ..., 9

Podstawa: 10

Wagi: 10<sup>5</sup> 10<sup>4</sup> 10<sup>3</sup> 10<sup>2</sup> 10<sup>1</sup> 10<sup>0</sup>

Wagi dla ułamka dziesiętnego: 10<sup>2</sup> 10<sup>1</sup> 10<sup>0</sup>, 10<sup>-1</sup> 10<sup>-2</sup> 10<sup>-3</sup>

separator części ułamkowej (w Polsce: przecinek)

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

| TABLE 2-1         |   |               |   |   |  |  |  |  |  |  |
|-------------------|---|---------------|---|---|--|--|--|--|--|--|
| Decimal<br>Number |   | Binary Number |   |   |  |  |  |  |  |  |
| 0                 |   |               |   | 0 |  |  |  |  |  |  |
| 1                 |   |               |   | 1 |  |  |  |  |  |  |
| 2                 |   |               | 1 | 0 |  |  |  |  |  |  |
| 3                 |   |               | 1 |   |  |  |  |  |  |  |
| 4                 |   | 1             | 0 | 0 |  |  |  |  |  |  |
| 5                 |   | 1             | 0 | 1 |  |  |  |  |  |  |
| 6                 |   | 1             | 1 | 0 |  |  |  |  |  |  |
| 7                 |   | 1             | 1 | 1 |  |  |  |  |  |  |
| 8                 | 1 | 0             | 0 | 0 |  |  |  |  |  |  |
| 9                 | 1 | 0             | 0 | 1 |  |  |  |  |  |  |
| 10                | 1 | 0             | 1 | 0 |  |  |  |  |  |  |
| 11                | 1 | 0             | 1 | 1 |  |  |  |  |  |  |
| 12                | 1 | 1             | 0 | 0 |  |  |  |  |  |  |
| 13                | 1 | 1             | 0 | 1 |  |  |  |  |  |  |
| 14                | 1 | 1             | 1 | 0 |  |  |  |  |  |  |
| 15                | 1 | 1             | 1 | 1 |  |  |  |  |  |  |

Based on materials for *Digital Fundamentals*, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd 2-3

3

Rys 2-1 Ilustracja prostej aplikacji licznika binarnego





Symbole: 0, 1 Podstawa: 2

Wagi: 2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>

Wagi dla ułamka binarnego: 22 21 20, 2-1 2-2 2-3

separator części ułamkowej (w Polsce: przecinek)

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slaid 2-5

5

Tabela 2-2 Wagi w systemie binarnym

| December 1                                | E 2-2<br>weight | ts.                   |                |       |       |       |       |                                               |            |             |              |               |                 |                  |
|-------------------------------------------|-----------------|-----------------------|----------------|-------|-------|-------|-------|-----------------------------------------------|------------|-------------|--------------|---------------|-----------------|------------------|
| Positive Powers of Two<br>(Whole Numbers) |                 |                       |                |       |       |       |       | Negative Powers of Two<br>(Fractional Number) |            |             |              |               |                 |                  |
| 28                                        | 27              | <b>2</b> <sup>6</sup> | 2 <sup>5</sup> | $2^4$ | $2^3$ | $2^2$ | $2^1$ | $2^0$                                         | 2-1        | $2^{-2}$    | $2^{-3}$     | $2^{-4}$      | $2^{-5}$        | $2^{-6}$         |
| 256                                       | 128             | 64                    | 32             | 16    | 8     | 4     | 2     | 1                                             | 1/2<br>0.5 | 1/4<br>0.25 | 1/8<br>0.125 | 1/16<br>0.625 | 1/32<br>0.03125 | 1/64<br>0.015625 |

Konwersja liczby binarnej na dziesiętną

$$1101101_2 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0 = 64 + 32 + 8 + 4 + 1 = 109$$

$$0,1011_2 = 2^{-1} + 2^{-3} + 2^{-4} = 0,5 + 0,25 + 0,625 = 0,6875$$

### Konwersja liczby dziesiętnej na binarną

1. Przez rozbicie na sumę wag, np.:

$$9 = 8 + 1 = 2^{3} + 2^{0} = 1001_{2}$$
  
 $0,625 = 0,5 + 0,125 = 2^{-1} + 2^{-3} = 0,101_{2}$ 

2. Metodą dzielenia (z resztą) przez 2 (dla liczby całkowitej)



Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd 2-7

7

### Konwersja liczby dziesiętnej na binarną, cd.

3. Metodą mnożenie przez dwa (dla ułamka binarnego)



przeniesienie = ang. carry

>>> Operacje na bitach

slajd 2-8

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

### Operacje na liczbach binarnych

takie jak: dodawanie, odejmowanie, mnożenie, dzielenie są przeprowadzane w sposób analogiczny do operacji

#### w systemie dziesiętnym

$$0+0=?$$
  $0-0=?$   $0*0=?$   $0+1=?$   $0-1=?$   $0*1=?$   $1+0=?$   $1-0=?$   $1*0=?$   $1+1=?$   $1-1=?$   $1*1=?$   $1010+101=?$   $1010*101=?$   $1010/100=?$ 

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slaid 2-9

9

Rys 2-2 Przykład inwerterów używanych do uzyskania uzupełnienia do 1 dla liczby 8-bitowej.



Uzupełniem liczby binarnej do 1 nazywamy liczbę, której wszystkie bity mają wartości odwrotne.

(ang. 1's complement of the binary number)

Rys. 2-3 Przykład uzupełnienia liczby binarnej do 1 i do 2



Uzupełnieniem liczby binarnej do 2 nazywamy liczbę, która powstaje po zwiększeniu o jeden uzupełnienia liczby do 1.

(ang. 2's complement of the binary number)

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd **2-11** 

11

Formy kodowania liczb binarnych ze znakiem (ang. signed binary numbers)

Pierwszy bit liczby (MSB) przeznaczamy na znak – jest to tzw. bit znaku (po którym rozpoznajemy, czy liczba jest ujemna ( $b_z=1$ ), czy dodatnia ( $b_z=0$ ))

#### Kody znak-moduł (ZM)

- pierwszy bit liczby określa znak (0 dla liczb dodatnich,1 dla ujemnych), pozostałe to wartość liczby

#### Kod uzupełnień do 1 (U1)

- liczba ujemna jest uzupełnieniem do 1 liczby dodatniej

#### Kod uzupełnień do 2 (U2)

- liczba ujemna jest uzupełnieniem do 2 liczby dodatniej

### Wartości dziesiętne liczb binarnych ze znakiem

$$10010101_{7M} = -(16 + 4 + 1) = -21$$

U1 
$$-2^7$$
  $2^6$   $2^5$   $2^4$   $2^3$   $2^2$   $2^1$   $2^0$   
0 0 0 1 0 1 1 1  
0001\_0111<sub>U1</sub> = 16 + 4 + 2 + 1 = 23  
1110\_1000<sub>U1</sub> = (-128 + 64 + 32 + 8) + 1 = -23

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd **2-13** 

13

Wartości dziesiętne liczb binarnych ze znakiem, cd.

U2 
$$-2^{7}$$
  $2^{6}$   $2^{5}$   $2^{4}$   $2^{3}$   $2^{2}$   $2^{1}$   $2^{0}$   
0 0 0 1 0 1 1 1  
0001\_0111<sub>U2</sub> = 16 + 4 + 2 + 1 = 23  
1110\_1001<sub>U2</sub> = (-128 + 64 + 32 + 8 + 1) = -23

Zaleta U2: liczby dodanie i ujemne przelicza się na wartość dziesiętną w ten sam sposób

>>> Po co nam liczby rzeczywiste? Jak je kodować?

#### Liczby zmiennoprzecinkowe (ang. floating point numbers)

|                          | 32 bity                                   |                                                    |  |  |  |  |  |  |  |  |  |
|--------------------------|-------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Znak<br>(sign <b>S</b> ) | Wykładnik (cecha)<br>(exponent <b>E</b> ) | Mantysa (ułamek)<br>(mantissa, fraction <b>F</b> ) |  |  |  |  |  |  |  |  |  |
| 1 bit                    | 8 bitów                                   | 23 bity                                            |  |  |  |  |  |  |  |  |  |

- ➤ Wykładnik (cecha) jest spolaryzowany (zapisywany w kodzie z nadmiarem), tzn. zapisujemy wartość zwiększoną o 127 (bias = 127)
- ➤ Mantysa jest liczbą z zakresu [1,2), przy czym wiodącą jedynkę pomijamy dla liczby 32-bitowej mantysa ma więc efektywnie 24 bity

Obliczanie wartości 32-bitowej liczby zmiennoprzecinkowej

$$FP = (-1)^{S} (1+F)(2^{E-bias})$$

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd **2-15** 

15

|          | ;                 | 32 bity                | ED = (1)S(1 + E)(2E - bias)           |
|----------|-------------------|------------------------|---------------------------------------|
| Znak     | Wykładnik (cecha) | Mantysa (ułamek)       | $FP = (-1)^{S} (1+F)(2^{E-bias})$     |
| (sign S) | (exponent E)      | (mantissa, fraction F) | bias = 127                            |
| 1 hit    | 9 hitów           | 22 hitu                | · · · · · · · · · · · · · · · · · · · |

Przykład zadania: Zakoduj podaną liczbę dziesiętną do formatu 32-bitowej liczby zmiennoprzecinkowej

$$3,248 \times 10^{4} = 32'480 =$$
 $111 \ 1110 \ 1110 \ 0000_{2} =$ 
 $1,11 \ 1110 \ 1110 \ 0000_{2} \times 2^{14}$ 
 $S = 0$  (liczba jest dodatnia)

$$E = 14 + 127 = 1000 \ 1101_2$$

### 

Przykład zadania: oblicz wartość binarną i dziesiętną liczby zmienno przecinkowej: 0 1001\_1000 100\_0010\_0010\_0011\_1000\_0000

Przykład zadania: zapisz w postaci 32-bitowej liczby zmiennoprzecinkowej liczbę dziesiętną 132,6125.

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

#### Standard dla operacji na liczbach zmiennoprzecinkowych

#### IEEE Std 754<sup>™</sup>-2008 - IEEE Standard for Floating-Point Arithmetic

| parametr                                  | binary16 | binary32 | binary64 | binary128 |
|-------------------------------------------|----------|----------|----------|-----------|
| całkowita liczba<br>bitów                 | 16       | 32       | 64       | 128       |
| bit znaku (S)                             | 1        | 1        | 1        | 1         |
| liczba bitów<br>wykładnika ( <b>E</b> )   | 5        | 8        | 11       | 15        |
| liczba bitów<br>mantysy ( <b>F</b> )      | 10       | 23       | 52       | 112       |
| polaryzacja<br>wykładnika ( <b>bias</b> ) | 15       | 127      | 1023     | 16383     |

Prosto opisane: <a href="http://eduinf.waw.pl/inf/alg/006\_bin/0022.php">http://eduinf.waw.pl/inf/alg/006\_bin/0022.php</a>

Based on materials for *Digital Fundamentals*, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd **2-17** 

17

#### Kodowanie liczb zmiennoprzecinkowych wg IEEE Std. 754

|                          | 32 bi                                        | ty                                                 |                                                                                                         |
|--------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Znak<br>(sign <b>S</b> ) | Wykładnik<br>(cecha)<br>(exponent <b>E</b> ) | Mantysa (ułamek)<br>(mantissa, fraction <b>F</b> ) | Wartość / znaczenie                                                                                     |
| 1 bit                    | 8 bitów                                      | 23 bity                                            |                                                                                                         |
| S                        | 1111_1111                                    | F > 0                                              | qNaN   sNaN*                                                                                            |
| S                        | 1111_1111                                    | F = 0                                              | (-1) <sup>S</sup> × (+∞)                                                                                |
| S                        | $1 \le E \le 2^8 - 2$                        | F                                                  | $(-1)^{S} \times (1+F) \times 2^{(E-bias)}$                                                             |
| S                        | 0000_0000                                    | F > 0                                              | (-1) <sup>S</sup> × (0+F) × 2 <sup>(E-bias)</sup><br>liczba zdenormalizowana<br>(ang. subnormal number) |
| S                        | 0000_0000                                    | F = 0                                              | (-1) <sup>S</sup> × (+0)                                                                                |

<sup>\*</sup> quiet | signaling Not-A-Number

qNaN ma MSB mantysy równy 1, np. 0 1111\_1111 1010\_1000\_... sNaN ma MSB mantysy równy 0, np. 1 1111\_1111 0010\_0100\_... bit znaku jest ignorowany

>>> Jakie dodajemy liczby binarne ze znakiem?

slajd **2-18** 

Based on materials for *Digital Fundamentals*, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

#### Operacje arytmetyczne na liczbach ze znakiem

Dodawanie; suma = <u>dodajna</u> + <u>dodajnik</u> (składniki) Addition; sum = addend + augend

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd **2-19** 

19

Operacje arytmetyczne na liczbach ze znakiem, cd.

Przykładowe zadanie. Wykonaj działania na liczbach całkowitych ze znakiem:



Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

Operacje arytmetyczne na liczbach ze znakiem, cd.

Odejmowanie; różnica = odjemna – odjemnik Substraction; difference = minuend - substrahend

Odejmowanie liczb binarnych ze znakiem polega na dodaniu liczby przeciwnej w kodzie U2.

Dlatego tak lubimy U2.

Wykonaj działanie: 0100\_0111 – 0101\_1000 = ?

Kiedy przy odejmowaniu wystąpi przekroczenia zakresu?

UWAGA: znak podkreślenia jest stosowany wyłącznie w celu poprawienia czytelności liczb binarnych! Nie jest to żaden standard, choć niektóre języki opisu sprzętu HDL pozwalają na taki zapis (np. Verilog)

>>> Jakie znamy metody mnożenia?

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd **2-21** 

21

Operacje arytmetyczne na liczbach ze znakiem, cd.

Mnożenie; iloczyn = mnożna × mnożnik (czynniki)
Multiplication; product = multiplicand × multiplier

- Metoda bezpośredniego dodawania (ang. direct\_addition)
   Iloczyn powstaje poprzez dodanie pierwszego czynnika odpowiednią liczbę razy
- 2. Metoda iloczynów częściowych (ang. partial product)

Metoda iloczynów częściowych (U2)

 $\mathbf{x}$  01010011<sub>U2</sub>  $\mathbf{x}$  11000101<sub>U2</sub>

- 1. Określ znaki czynników i iloczynu
- 2. Liczby ujemne przekonwertuj na dodatnie
- 3. Wykonaj mnożenie
- 4. Jeżeli znak iloczynu ma być ujemny, przekonwertuj wynik na liczbę przeciwną (liczba bitów wyniku jest za zwyczaj dwa razy większa od liczby bitów czynników)

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd **2-23** 

23

```
01010011_{U2} x 11000101_{U2}
```

- 1. Znaki czynników różne 2. 11000101 -> 00111011 -> iloczyn ujemny
- 3. Obliczenia 1010011

  x 0111011
  1010011 #1 iloczyn częściowy
  + 1010011 #2 iloczyn częściowy
  11111001 suma #1 i #2
  + 0000000 #3 iloczyn częściowy
  11111001 suma #1,#2, #3
  + 1010011 #4 iloczyn częściowy

1001100100001 iloczyn

4. 0001 0011 0010 0001 -> 1110 1100 1101 1111

Podobne zadanie może być na sprawdzianie wstępnym do laboratorium i egzaminie.

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

#### Metoda mnożenia rosyjskich chłopów

| Wynik przepołowienia<br>pierwszego czynnika | Podwajane sumy<br>drugiego czynnika | Wielokrotności<br>drugiego czynnika |
|---------------------------------------------|-------------------------------------|-------------------------------------|
| 57                                          | 384                                 | = 1.384                             |
| 28                                          | <del>-768</del> -                   | = 2.384                             |
| 14                                          | <del>1536</del> -                   | = 4.384                             |
| 7                                           | 3072                                | = 8.384                             |
| 3                                           | 6144                                | = 16 · 384                          |
| 1                                           | 12288                               | = 32 · 384                          |
|                                             | 21888                               |                                     |

Opisany w tym punkcie algorytm mnożenia dwóch liczb jest znany pod nazwą metody rosyjskich chłopów, gdyż odwiedzający Rosję w XIX wieku spotykali się tam z jego powszechnym stosowaniem. Znany był już jednak egipskim matematykom 1800 lat p.n.e. Ciekawe jest to, że w działaniach w nim wykonywanych korzysta się (niejawnie jednak) z przedstawienia jednej z liczb w systemie binarnym. Zatem idea takiego rozkładu liczby w obliczeniach pojawiła się w sposób naturalny na długo przed wykorzystaniem jej w arytmetyce komputerowej.

http://mmsyslo.pl/Materialy/Ksiazki-i-podreczniki/Ksiazki/Ksiazka-Piramidy-szyszki-i

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd **2-25** 

25

Operacje arytmetyczne na liczbach ze znakiem, cd.

Dzielenie; iloraz = dzielna / dzielnik Division; quotient = dividend / divisor

Dzielenie może być w najprostszych algorytmach realizowane jako wielokrotne odejmowanie dzielnika o dzielnej (i sprawdzanie, czy wynik jest większy od zera) lub jako odejmowanie i przesuwanie dzielnika (jak w dzieleniu "pod kreskę").

Kroki przy dzieleniu liczb ze znakiem kodowanych w U2 są analogiczne do stosowych przy mnożeniu.

Dzielenie jest najbardziej złożonym z podstawowych działań arytmetycznych

>>> System szesnastkowy.

| TABLE 2-3 |        |             |
|-----------|--------|-------------|
| Decimal   | Binary | Hexadecimal |
| 0         | 0000   | 0           |
| 1         | 0001   | 1           |
| 2         | 0010   | 2           |
| 3         | 0011   | 3           |
| 4         | 0100   | 4           |
| 5         | 0101   | 5           |
| 6         | 0110   | 6           |
| 7         | 0111   | 7           |
| 8         | 1000   | 8           |
| 9         | 1001   | 9           |
| 10        | 1010   | A           |
| 11        | 1011   | В           |
| 12        | 1100   | C           |
| 13        | 1101   | D           |
| 14        | 1110   | E           |
| 15        | 1111   | F           |

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd **2-27** 

27

### System szesnastkowy (heksadecymalny)



Symbole: 0, 1, ..., 9, A, B, C, D, E, F

Podstawa: 16

Wagi: 16<sup>5</sup> 16<sup>4</sup> 16<sup>3</sup> 16<sup>2</sup> 16<sup>1</sup> 16<sup>0</sup>

Wagi dla ułamka: 16<sup>2</sup> 16<sup>1</sup> 16<sup>0</sup>, 16<sup>-1</sup> 16<sup>-2</sup> 16<sup>-3</sup>

separator części ułamkowej (w Polsce: przecinek)

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

Konwersja liczby binarnej na szesnastkową i odwrotnie

$$1100101001010111_{2} = CA57_{16}$$
C A 5 7

Tradycyjny zapis w językach programowania: 0xCA57

Uzupełnienie do dwóch liczby szesnastkowej: HEX -> BIN -> U2 -> HEX

#### Przykładowe zadania:

Przekształć liczbę szesnastkową 0xCA58 na system dziesiątkowy i binarny. Zapisz 16-bitową liczbę -124 w systemie szesnastkowym w kodzie uzupełnień do 2.

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slaid **2-29** 

29

Rys. 2-4 Uzupełnienie do 2 liczby szesnastkowej, metoda pierwsza.



Rys. 2-5 Uzupełnienie do 2 liczby szesnastkowej, metoda druga.



Based on materials for *Digital Fundamentals*, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd **2-31** 

31

Rys. 2-6 Uzupełnienie do 2 liczby szesnastkowej, metoda trzecia.



### System ósemkowy (oktalny)



Symbole: 0, 1, ..., 7

Podstawa: 8

Wagi: 85 84 83 82 81 80

Wagi dla ułamka ósemkowego: 82 81 80, 8-1 8-2 8-3

separator części ułamkowej

(w Polsce: przecinek)

>>> Gdzie jest używany system ósemkowy?

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd **2-33** 

33

| TABLE 2-4    |                          |     |     |     |     |     |     |     |  |  |  |
|--------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|--|--|--|
| Octal/binary | Octal/binary conversion. |     |     |     |     |     |     |     |  |  |  |
| Octal Digit  | 0                        | 1   | 2   | 3   | 4   | 5   | 6   | 7   |  |  |  |
| Binary       | 000                      | 001 | 010 | 011 | 100 | 101 | 110 | 111 |  |  |  |

#### Kod BCD – system dziesiętny zakodowany dwójkowo (ang. Binary Coded Decimal)

| TABLE 2-5     |       |        |      |      |      |      |      |      |      |      |
|---------------|-------|--------|------|------|------|------|------|------|------|------|
| Decimal/BCD   | conve | rsion. |      |      |      |      |      |      |      |      |
| Decimal Digit | 0     | 1      | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| BCD           | 0000  | 0001   | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 |

$$35 = 0011\_0101_{BCD}$$
  $98 = 1001\_1000_{BCD}$ 

Kody binarne od 1010 do 1111 - zabronione

Packed BCD – dwie cyfry w jednym bajcie (8 bitów)

Zadanie: zapisz w kodzie BCD liczbę dziesiętną 120

>>> Czy są kody inne niż pozycyjno-wagowe?

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd, PEARSONS 2015

slajd **2-35** 

35

### Kod Gray'a

#### TABLE 2-6

Four-bit Gray code.

| Decimal | Binary | <b>Gray Code</b> | Decimal | Binary | <b>Gray Code</b> |
|---------|--------|------------------|---------|--------|------------------|
| 0       | 0000   | 0000             | 8       | 1000   | 1100             |
| 1       | 0001   | 0001             | 9       | 1001   | 1101             |
| 2       | 0010   | 0011             | 10      | 1010   | 1111             |
| 3       | 0011   | 0010             | 11      | 1011   | 1110             |
| 4       | 0100   | 0110             | 12      | 1100   | 1010             |
| 5       | 0101   | 0111             | 13      | 1101   | 1011             |
| 6       | 0110   | 0101             | 14      | 1110   | 1001             |
| 7       | 0111   | 0100             | 15      | 1111   | 1000             |

Każda kolejna pozycja w kodzie Gray'a różni się od poprzedniej tylko jednym bitem

Kod Gray'a nie jest kodem ważonym, pozycje bitów nie mają odpowiadających im wag.

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

Konwersja liczby binarnej do kodu Gray'a



- 1. Przepisz MSB
- 2. Dodaj każdy bit liczby w postaci binarnej do swojego sąsiada. Zignoruj bity przeniesienia

Based on materials for *Digital Fundamentals*, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd **2-37** 

37

Konwersja liczby w kodzie Gray'a do postaci binarnej



- 1. Przepisz MSB
- 2. Dodaj kolejny bit liczby w kodzie Gray'a do otrzymanego wcześniej wyniku. Zignoruj przeniesienia. Powtórz dla kolejnych bitów.

**Rys. 2-7** Uproszczona ilustracja pokazująca, jak zastosowanie kodu Gray'a rozwiązuje problem błędów w enkoderach pozycyjnych. Koncepcja jest przedstawiona na przykładzie trzech bitów; większość enkoderów używa ponad 10 bitów w celu osiągnięcia lepszej rozdzielczości.



Based on materials for *Digital Fundamentals*, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd **2-39** 

39

#### American Standard Code for Information Interchange (ASCII).

|      | Control | Characters |     |        |     |         |     |        | Graphi | c Symbols |     |        |     |         |     |
|------|---------|------------|-----|--------|-----|---------|-----|--------|--------|-----------|-----|--------|-----|---------|-----|
| Name | Dec     | Binary     | Hex | Symbol | Dec | Binary  | Hex | Symbol | Dec    | Binary    | Hex | Symbol | Dec | Binary  | Hex |
| NUL  | 0       | 0000000    | 00  | space  | 32  | 0100000 | 20  | @      | 64     | 1000000   | 40  | ,      | 96  | 1100000 | 60  |
| SOH  | 1       | 0000001    | 01  | !      | 33  | 0100001 | 21  | A      | 65     | 1000001   | 41  | a      | 97  | 1100001 | 61  |
| STX  | 2       | 0000010    | 02  | ,,     | 34  | 0100010 | 22  | В      | 66     | 1000010   | 42  | ь      | 98  | 1100010 | 62  |
| ETX  | 3       | 0000011    | 03  | #      | 35  | 0100011 | 23  | C      | 67     | 1000011   | 43  | c      | 99  | 1100011 | 63  |
| EOT  | 4       | 0000100    | 04  | \$     | 36  | 0100100 | 24  | D      | 68     | 1000100   | 44  | d      | 100 | 1100100 | 64  |
| ENQ  | 5       | 0000101    | 05  | %      | 37  | 0100101 | 25  | E      | 69     | 1000101   | 45  | e      | 101 | 1100101 | 65  |
| ACK  | 6       | 0000110    | 06  | &      | 38  | 0100110 | 26  | F      | 70     | 1000110   | 46  | f      | 102 | 1100110 | 66  |
| BEL  | 7       | 0000111    | 07  |        | 39  | 0100111 | 27  | G      | 71     | 1000111   | 47  | g      | 103 | 1100111 | 67  |
| BS   | 8       | 0001000    | 08  | (      | 40  | 0101000 | 28  | Н      | 72     | 1001000   | 48  | h      | 104 | 1101000 | 68  |
| HT   | 9       | 0001001    | 09  | )      | 41  | 0101001 | 29  | I      | 73     | 1001001   | 49  | i      | 105 | 1101001 | 69  |
| LF   | 10      | 0001010    | 0A  | *      | 42  | 0101010 | 2A  | J      | 74     | 1001010   | 4A  | i      | 106 | 1101010 | 6A  |
| VT   | 11      | 0001011    | OB  | +      | 43  | 0101011 | 2B  | K      | 75     | 1001011   | 4B  | k      | 107 | 1101011 | 6B  |
| FF   | 12      | 0001100    | 0C  | ,      | 44  | 0101100 | 2C  | L      | 76     | 1001100   | 4C  | 1      | 108 | 1101100 | 6C  |
| CR   | 13      | 0001101    | 0D  | -      | 45  | 0101101 | 2D  | M      | 77     | 1001101   | 4D  | m      | 109 | 1101101 | 6D  |
| so   | 14      | 0001110    | 0E  | 8      | 46  | 0101110 | 2E  | N      | 78     | 1001110   | 4E  | n      | 110 | 1101110 | 6E  |
| SI   | 15      | 0001111    | 0F  | 1      | 47  | 0101111 | 2F  | 0      | 79     | 1001111   | 4F  | 0      | 111 | 1101111 | 6F  |
| DLE  | 16      | 0010000    | 10  | 0      | 48  | 0110000 | 30  | P      | 80     | 1010000   | 50  | p      | 112 | 1110000 | 70  |
| DC1  | 17      | 0010001    | 11  | 1      | 49  | 0110001 | 31  | Q      | 81     | 1010001   | 51  | q      | 113 | 1110001 | 71  |
| DC2  | 18      | 0010010    | 12  | 2      | 50  | 0110010 | 32  | R      | 82     | 1010010   | 52  | r      | 114 | 1110010 | 72  |
| DC3  | 19      | 0010011    | 13  | 3      | 51  | 0110011 | 33  | S      | 83     | 1010011   | 53  | s      | 115 | 1110011 | 73  |
| DC4  | 20      | 0010100    | 14  | 4      | 52  | 0110100 | 34  | T      | 84     | 1010100   | 54  | t      | 116 | 1110100 | 74  |
| NAK  | 21      | 0010101    | 15  | 5      | 53  | 0110101 | 35  | U      | 85     | 1010101   | 55  | u      | 117 | 1110101 | 75  |
| SYN  | 22      | 0010110    | 16  | 6      | 54  | 0110110 | 36  | V      | 86     | 1010110   | 56  | v      | 118 | 1110110 | 76  |
| ETB  | 23      | 0010111    | 17  | 7      | 55  | 0110111 | 37  | W      | 87     | 1010111   | 57  | w      | 119 | 1110111 | 77  |
| CAN  | 24      | 0011000    | 18  | 8      | 56  | 0111000 | 38  | X      | 88     | 1011000   | 58  | x      | 120 | 1111000 | 78  |
| EM   | 25      | 0011001    | 19  | 9      | 57  | 0111001 | 39  | Y      | 89     | 1011001   | 59  | У      | 121 | 1111001 | 79  |
| SUB  | 26      | 0011010    | 1A  | :      | 58  | 0111010 | 3A  | Z      | 90     | 1011010   | 5A  | z      | 122 | 1111010 | 7A  |
| ESC  | 27      | 0011011    | 1B  |        | 59  | 0111011 | 3B  | 1      | 91     | 1011011   | 5B  | - {    | 123 | 1111011 | 7B  |
| FS   | 28      | 0011100    | 1C  | <      | 60  | 0111100 | 3C  | Ň      | 92     | 1011100   | 5C  | l i    | 124 | 1111100 | 7C  |
| GS   | 29      | 0011101    | 1D  | =      | 61  | 0111101 | 3D  | 1      | 93     | 1011101   | 5D  | 1      | 125 | 1111101 | 7D  |
| RS   | 30      | 0011110    | 1E  | >      | 62  | 0111110 | 3E  | ^      | 94     | 1011110   | 5E  | 2      | 126 | 1111110 | 7E  |
| US   | 31      | 0011111    | 1F  | ?      | 63  | 0111111 | 3F  |        | 95     | 1011111   | 5F  | Del    | 127 | 1111111 | 7F  |

Based on materials for *Digital Fundamentals*, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

#### Kody detekcji błędów (ang. error codes)

#### TABLE 2-8

The BCD code with parity bits.

| Even Parity |      | <b>Odd Parity</b> |      |
|-------------|------|-------------------|------|
| P           | BCD  | P                 | BCD  |
| 0           | 0000 | 1                 | 0000 |
| 1           | 0001 | 0                 | 0001 |
| 1           | 0010 | 0                 | 0010 |
| 0           | 0011 | 1                 | 0011 |
| 1           | 0100 | 0                 | 0100 |
| 0           | 0101 | 1                 | 0101 |
| 0           | 0110 | 1                 | 0110 |
| 1           | 0111 | 0                 | 0111 |
| 1           | 1000 | 0                 | 1000 |
| 0           | 1001 | 1                 | 1001 |

Kod BCD z bitami parzystości

Dodanie bitu parzystości umożliwia wykrycie pojedynczego błędu w bajcie (np. w podczas transmisji danych)

Based on materials for *Digital Fundamentals*, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015

slajd **2-41** 

41

# CRC – cykliczny kod nadmiarowy (ang. Cyclic Redundancy Check)



Umożliwia detekcję błędów wielobitowych w transmisji danych



Kod Hamminga – detekcja i korekcja błędów

Based on materials for Digital Fundamentals, Eleventh Edition, Thomas L. Floyd , PEARSONS 2015