Университет ИТМО Факультет ПИиКТ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

I CEMECTP

Лектор: Екатерина Станиславовна Трифанова

осень 2023

Автор: Александр Калиев Проект на GitHub

Содержание

1	202	3-09-18	2
	1.1	Бином Ньютона	2
	1.2	Defining intervals on $\mathbb R$	2
	1.3	Absolute value	3
	1.4	Bounds of the set in $\mathbb R$	3
2	202	3-09-22	4
	2.1		4
	2.2	Archimed's axiom	5
	2.3	Canthor's theorem about line segments	6
3	2023-09-25		6
	3.1	Borrel-Lebeg lemma	6
	3.2	closedness of sets	7

1 2023-09-18

1.1 Бином Ньютона

Определение 1.1 (Binomial coefficients). $C_n^k = \frac{n!}{k!(n-k)!}, n \in \mathbb{N}, k \in \mathbb{N} \setminus \{0\}, k \leqslant n$ Упражнение. Busecmu.

Свойство 1.1.1.

1.
$$C_n^0 = C_n^n = 1$$
 (trivial)

2.
$$C_n^1 = C_n^{n-1} = n$$

$$3. \ C_n^k = C_n^{n-k}$$

4.
$$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$$

Упражнение. Proof using Pascal's triangle (trivial).

Доказательство.
$$C_n^k + C_n^{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{n!}{k!(n-k-1)!} \cdot \left(\frac{1}{n-k} + \frac{1}{k+1}\right) = \frac{(n+1)!}{(k+1)!\cdot(n-k)!} = C_{n+1}^{k+1}$$

Теорема 1.1 (Binomial theorem). $\forall a,b \in \mathbb{R}, \forall n \in \mathbb{N} : (a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$

Доказательство. Proving using induction.

$$> n = 1 : (a+b)^1 = C_1^0 a^1 + C_1^1 b^1 = a+b$$

$$\triangleright$$
 let $n = k : (a+b)^k = \sum_{m=0}^k C_k^m a^m b^{k-m}$

1.2 Defining intervals on $\mathbb R$

Определение 1.2. отрезок: $[a,b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\}$

interval:
$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

semi-interval:
$$(a, b], [a, b) = \{x \in \mathbb{R} : a < x \leqslant b\}, \{x \in \mathbb{R} : a \leqslant x < b\}$$

луч:
$$(-\infty, a), (-\infty, a], [b, +\infty), (b, +\infty)$$

Определение 1.3 (Окрестность точки x_0). $x_0 \in (a,b) = U(x_0)$ (including $(-\infty,a),(b,+\infty)$) ε -neighbourhood: $(x_0 - \varepsilon, x_0 + \varepsilon) = U_{\varepsilon}(x_0)$

Определение 1.4 (ε -neighbourhood for $\overline{\mathbb{R}}$). $\Rightarrow +\infty : (a; +\infty) = U(+\infty)$

$$\triangleright -\infty : (-\infty, a) = U(-\infty)$$

$$\triangleright \infty = U(+\infty) \cup U(-\infty)$$

$$\triangleright U_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}; +\infty); U_{\varepsilon}(-\infty) = (-\infty, -\frac{1}{\varepsilon})$$

1.3 Absolute value

Определение 1.5. $\forall x \in \mathbb{R} : |x| = \begin{cases} x, & \text{if } x > 0 \\ -x, & \text{if } x \leqslant 0 \end{cases}$

Свойство 1.3.1. 1. |x| = |-x|

2.
$$|x|^2 = x^2$$

3.
$$|x| \geqslant 0$$
; $|x| = 0 \Leftrightarrow x = 0$

4.
$$|xy| = |x||y|$$

$$5. \ \frac{|x|}{|y|} = \left| \frac{x}{y} \right|$$

6.
$$-|x| \leqslant x \leqslant |x|$$

$$7. |x+y| \leqslant |x| + |y|$$

Доказательство. $(x+y)^2 \leqslant x^2 + y^2 + 2|xy| \Leftrightarrow 2xy \leqslant |2xy|$

8.
$$|x| \leqslant a \Leftrightarrow -a \leqslant x \leqslant a$$

9.
$$|x| \geqslant b \Leftrightarrow x \leqslant -b \lor x \geqslant b$$

10.
$$|x - y| \ge ||x| - |y||$$

1.4 Bounds of the set in \mathbb{R}

Let $X \subset \mathbb{R}$

Определение 1.6. We say that X is bounded above, if $\exists M \in \mathbb{R} : x \leqslant M \forall x \in X$ (M is upper bound)

We say that X is bouded below, if $\exists m \in \mathbb{R} : m \leqslant x, \forall x \in X \ (m \text{ is lower bound})$

We assume that X is **bounded**, if its bounded both below and above.

Пример. Let X = [0, 1)

Определение 1.7 (min and max element). max. element: $x_{\text{max}} = \max X : x_{\text{max}} \in X, \forall x \in X : x \leqslant x_{\text{max}}$

Замечание. X doesn't have max. element.

Доказательство. Let $M = \max X$. Then, $\exists M_0 \in \frac{M+1}{2} > M!$?

Определение 1.8 (supremum and infremum of the set). $S \in \mathbb{R}$ is called an exact upper bound, (or a supremum of X), if S = lowest upper bound

We denote is as $\sup X = S = \min \{M : x \leq M \forall x \in X\}$

If X is not bounded above, then $\sup X = +\infty$

 $s \in \mathbb{R}$ is called an exact lower bound, (or an infremum of X), if S = highest lower bound. We denote it as $s = \inf X = \max \{m : x \ge m, \forall x \in X\}$

Замечание. $X = \{x \in \mathbb{Q} : x^2 < 2\} \Rightarrow \sup X$ is undefined.

Лемма 1.1. X is bounded $\Leftrightarrow \exists c \in \mathbb{R} : |x| \leqslant c, \forall x \in X$

Упражнение. Proof.

2 2023-09-22

2.1

Let $X \subset \mathbb{R}$

Замечание. If X is not bounded, then $\sup X = +\infty$ & $\inf X = -\infty$. Let i = [0; 1). We will proof that there is a supremum of i.

Лемма 2.1. If $\exists \max X$, then $\sup X = \max X$.

If $\exists \min X$, then $\inf X = \min X$.

Implication only!

Доказательство. \triangleright Obviously, let $M = \max X$. Then M is upper bound by definition of max. Let there be M' < M such that M' is an upper bound. Then it's not an upper bound by definition.

 \triangleright Same story for min X

Лемма 2.2 (different definition of supremum and infremum). $M = \sup X \Leftrightarrow M : \forall x \in X : x \leqslant M \& \forall \varepsilon > 0 \exists x \in X : x > M - \varepsilon$

 $m = \inf X \Leftrightarrow m : \forall x \in X : x \geqslant m \& \forall \varepsilon > 0 \exists x \in X : x > m + \varepsilon$

ИТМО, ФПИиКТ, осень 2023

Доказательство. By definition.

Теорема 2.1 (Exact bound principle). $\forall X: X \text{ is upper bounded} \Rightarrow \exists \sup X. \text{ Same for } \forall X: X \text{ is lower bounded} \Rightarrow \exists \inf X$

Доказательство. If the set is upper bounded, then \exists an upper bound. Let B be a set of upper bounds: $B = \{M \in \mathbb{R} : x \leq M, x \in X\}$. Then $\forall M, x : x \leq M$. By continuity axiom, $\exists c \in \mathbb{R} : x \leq c \leq M \forall x \in X, M \in B$. Let's proof that c is a supremum of X. c is an upper bound of X and it's lower that every other upper bounds in M. Then, $c = \sup X$

Замечание. Even if X is not upper bounded. Then $\forall X \neq \emptyset \exists c \in \mathbb{R} : c = \sup X$

2.2 Archimed's axiom

Лемма 2.3. Let $X \subset \mathbb{N}, X \neq \emptyset, X$ is bounded. Then, the maximum exists.

Доказательство. $\exists M = \sup X = k \in \mathbb{R} \text{ for } \varepsilon = 1.$ Then $\exists x \in X : k-1 < x \leqslant k.$ Then $x \in \mathbb{N}$. Proving that x = k. k < x+1 then $\forall y \in X : y \leqslant x$, because of $y \leqslant k < x+1 \Rightarrow y < x+1 \Rightarrow y \leqslant x \Rightarrow x = \max X$.

Следствие. 1. № is not bounded above.

- 2. \mathbb{Z} is bounded nor below and above.
- 3. $X \subset \mathbb{Z}$ if X is bounded below then $\exists \min X$; if X is bounded above the $\exists \max X$

Теорема 2.2 (Archimed's axiom). Let $x \in R, x > 0$. Then $\forall y \in \mathbb{R} \exists k \in \mathbb{Z} : (k-1)x \leqslant y \leqslant kx$.

Interpretation: we can fill a segment of length y with a segments of length x.

Доказательство. Consider $T = \{t \in \mathbb{Z} : \frac{y}{x} \leqslant t\}$. $T \neq \emptyset$ & is bounded below. Then $\exists k = \min T : \frac{y}{x} < k \Rightarrow y < kx \Rightarrow k-1 \leqslant \frac{y}{x}$, cuz if it's false then $k-1 \in T$ but $k-1 < k = \min T$!?

Следствие. 1. $\forall \varepsilon > 0 \exists n \in \mathbb{N} : 0 < \frac{1}{n} < \varepsilon$

Доказательство. $y = 1, x = \varepsilon \Rightarrow \exists n : 1 < n\varepsilon$

2. If $x \ge 0$ and $\forall \varepsilon > 0$ $x < \varepsilon \Rightarrow x = 0$

Доказательство. $0 \le x < \varepsilon$. Let there be $x > 0 \Rightarrow \varepsilon = \frac{x}{2}$ the statement is false.

3. $\forall x \in \mathbb{R} \exists ! k = [x] \in \mathbb{Z} : k \leqslant x < k+1$

Доказательство. $x=1, \varepsilon=x$

Лемма 2.4 (density of \mathbb{Q} and \mathbb{I} in \mathbb{R}). Let there be a < b. Then on $(a,b) \exists q \in \mathbb{Q}, j \in \mathbb{I}$

Доказательство. $\exists n \in \mathbb{N}: \frac{1}{n} < b-a, [na] \leqslant na < [na] + 1 \Rightarrow a < \frac{[na]+1}{n} = q \leqslant \frac{na+1}{n} < b$

 $\sqrt{2}\in\mathbb{I}$. Consider $q\in(a-\sqrt{2},b-\sqrt{2})$. Then, $q+\sqrt{2}\in(a,b)$. Из-за замкнутости $q+\sqrt{2}\in\mathbb{I}$. Let $q+\sqrt{2}\in\mathbb{Q}$. Then, $q+\sqrt{2}-q=\sqrt{2}\in\mathbb{Q}$!?

2.3 Canthor's theorem about line segments

Let $I_n = [a_n, b_n], a_n \leqslant b_n$

We assume that $\cdots \subset I_n \subset I_{n-1} \subset \cdots \subset I_2 \subset I_1$

Теорема 2.3. If there is this system of line segments, then:

$$\triangleright \bigcap_{n=1}^{\infty} I_n \neq \emptyset(i.e. \exists c \in \bigcap I_n$$

$$\triangleright If \forall \varepsilon > 0 \exists I_n : b_n - a_n < \varepsilon, then \bigcap I_n = \{c\}, i.e. \exists !c$$

Доказательство. $\triangleright A = \{a_n\}, B = \{b_n\}, a_n \leqslant b_m \Rightarrow_{\text{continuity A.}} \exists c : a_n \leqslant c \leqslant b_n \Rightarrow c \in I_n \forall n \in \mathbb{N}$

$$\triangleright$$
 Let $c_1, c_2 \in I_n \ \forall n$. Let $c_1 < c_2 \Rightarrow \text{ for } \varepsilon = c_2 - c_1 \exists (a_n b_n) : b_n - a_n < \varepsilon!$?

3 2023-09-25

3.1 Borrel-Lebeg lemma

Consider G_{α} as a sets.

 G_{α} is forming a cover of a set X if $X \subset \bigcup_{\alpha} G_{\alpha}$

Лемма 3.1 (Borrel-Lebeg lemma (GBL lemma)). From any coverage of a segment by interval we can choose a finite one.

Доказательство. Consider $[a_0,b_0]$. Let there be no option to choose a finite coverage from $\bigcup_{\alpha} G_{\alpha}$. Split the segment by half and we get $[a_1,b_1]$ - a cover where we cant choose a finite covering. ... $[a_2,b_2] \subset [a_1,b_1] \subset [a_0,b_0]$. $b_n - a_n = \frac{b_0-a_0}{2^n} < \frac{b_0-a_0}{n} < \frac{1}{\varepsilon} \Rightarrow \forall \varepsilon > 0 \exists n \Rightarrow \exists! c : c \in [a_i,b_i]$

$$\exists G = (k,l) : c \in G \Rightarrow \exists n_0 : [a_{n_0}, b_{n_0}] \subset (k,l)!?$$

Замечание. Basically proving Canthor's theorem and getting!? for this.

Лемма 3.2 (limit point).

Определение 3.1. A dot x_0 is called **limited** point of this set E if $\forall \overset{\circ}{U}(x_0) \cap E \neq \varnothing$, i.e. $U(x_0) \cap E$ is infinite.

Пример. Consider [0,1) A set of limit points E'=[0,1]

Пример. Consider $E = \left\{\frac{1}{n}, n \in \mathbb{N}\right\} E' = \{0\}$

Определение 3.2. If $x_0 \in E \& x_0$ is not a limit point, then x_0 is **isolated** point of E, i.e. $\exists U(x_0) : \overset{\circ}{U}(x_0) \cap E = \varnothing$.

(Lemma) Let E is an infinite and bounded $E \subset \mathbb{R}$. Then $\exists x_0 : x_0$ is limit point of E.

Доказательство. E is bounded $\Rightarrow \exists [a,b] : E \subset [a,b]$. Let there be no limit points in [a,b], i.e. $\forall x \in [a,b]$ is not limit point for E, i.e. there is a finite number of points in $E \in U(x)$

$$\{U(x)\}\$$
is cover of a segment by intervals $\Rightarrow_{BGL\ lemma} \exists \{U(x_1), \dots, U(x_n)\}$

$$E \subset \bigcup_{i=1}^n U(x_i)$$
, but a subset contains a finite number of points from E !?

Замечание. We can select limit points in $\overline{\mathbb{R}}$

e.g.
$$\mathbb{N}' = \{+\infty\}$$

3.2 closedness of sets

Определение 3.3. A set E is close d (in $\mathbb R$) if it contains every it's limit point, i.e. $E' \subset E$. An \varnothing is closed by definition.

Пример. E = [0,1) isn't closed

[0,1] is closed

$$E = \left\{\frac{1}{n}, n \in \mathbb{N}\right\} \cup \{0\}$$
 is closed.

Лемма 3.3. Let $E \subset \mathbb{R}$, E is closed and bounded above (below). Then $\exists \max E(\min E)$

Доказательство. By exact bound principle $\exists M = \sup E \in \mathbb{R}$. Proving that $M \in E$. Let $M \notin E$. Then, we consider any neighbourhood $(\alpha, \beta) \ni M$. For $\varepsilon_1 = M - \alpha > 0 : \exists x_1 \in E \cap (\alpha, M)$. For $\varepsilon_2 = M - x_1$, for $\varepsilon_3 = M - x_2, \dots \Rightarrow$ there is infinite amount of dots in E, i.e. M is a limit point of $E \Rightarrow M \in E$

Следствие. Any finite set has it's maximum and minimum. (it has no limit points).

Следствие. For any $(\alpha, \beta) \subset \mathbb{R}$: infinite number of numbers of \mathbb{Q} ,