Лабораторная работа №10 Метод наименьших квадратов

Цель работы: изучить теоретические сведения об аппроксимации данных и получить практические навыки применения метода наименьших квадратов.

Задания к работе

- 1. Составить таблицу значений заданной функции y(x) на отрезке [a, b] в точках $x_i = a + ih, i = 0, 1, ..., n; h = (b-a)/n$
- 2. Написать подпрограмму, выполняющую построение таблицы значений функции y(x) с произвольными параметрами a, b, n.
- 3. Выбрать базисные функции, например, $\varphi_i(x) = x^k$, k = 0, 1, 2, ...
- 4. Реализовать метод наименьших квадратов с произвольным числом базисных функций.
- 5. Записать аппроксимирующие функции $\Phi_1(x)$; $\Phi_2(x)$; $\Phi_3(x)$, полученные при использовании в качестве базисных соответствующих наборов:
 - 1) $\varphi_0(x)=1$, $\varphi_1(x)=x$;
 - 2) $\varphi_0(x)=1$, $\varphi_1(x)=x$; $\varphi_2(x)=x^2$;
 - 3) $\varphi_0(x)=1$, $\varphi_1(x)=x$; $\varphi_2(x)=x^2$; $\varphi_3(x)=x^3$;
- 6. Построить в одной системе координат графики функций точной и приближенных: $y(x), \Phi_1(x); \Phi_2(x); \Phi_3(x)$.
- 7. Оценить степень близости базисной и аппроксимирующих функций, используя графики.

Варианты заданий

Вариант	Функция $y=y(x)$
1	$y = 2\sin x + x$
2	$y = (\cos(x^2 + 2)) * x$
3	$y = x * \sin x + e^{0.4x}$
4	$y=e^{x} * (\sin(x^{2}-x))$
5	$y = (\sin(x+5)) / (x+0.1)$
6	$y=x^3*\cos x$
7	$y= x^3 * cosx$ $y= x^2 + x + 2 - e^{0.3x}$
8	$y = x * (sin(2x^2-1))$
9	$y=e^{x+\sin x} * \cos x$
10	$y=e^{\sin x+\cos x}$
11	$y=e^{x} * cosx^{2}$
12	$y=(\sin^2(x+2))/(x+0.1)$
13	$y = x * e^{-x}$
14	$y = x * e^{-x}$ $y = (x^{3}-1) * (\cos x^{2})$ $y = \sin x^{2} * e^{0.3x}$
15	$y = \sin x^2 * e^{0.3x}$
16	$y=e^{\cos x}$

17	$y = \sin x + \sin^2 x$
18	$y = (\cos^2 x + x) * e^{-x}$
19	$y=e^{x-\sin x}$
20	$y=e^{-\sin x}+e^{x\sin x}$
21	$y = 3 * \sin(-x)$
22	$y = \sin x + \cos x - x$
23	$y=x^3+\sin^2x$
24	$y=e^{x+2}+x$
25	$y = \sin x + x/2$

Контрольные вопросы

- 1. Постановка задачи аппроксимации данных.
- 2. Отличие интерполяции и аппроксимации.
- 3. Метод наименьших квадратов.