

Basics of Routing and Link-State Routing

Lecture given by Emmanuel Lochin

ISAE-SUPAERO

Original slides from A. Carzaniga (Univ. Lugano)
Extended/modified by E. Lochin (ISAE-SUPAERO) with author permission Textbook Chap. #3 Sections 4.5 to 4.5.1 and 4.7.1

tended/modified by E. Lochin (ISAE-SUPAERO) with author permission Textbook C

AE-SUPAERO 1 / 16 Lecture given by Er

Routing Problem

Routing problem

Broadcast routing

Link-state routing

Dijkstra's algorithm

• Classes of routing algorithms

• Graph model

asics of Routing andLink-State Routing

SAE-SUPAERO 2 / 16

Routing Problem

• Finding paths through a network

• Finding paths through a network

Lecture given by Emmanuel Loch

Basics of Routing andLink-State Routing

ISAE-SUPAER

3 / 16

Lecture given by Emmanu

Routing Problem

Basics of Routing and ink-State Routing

ISAE-SUPAERO 3 /

Routing Problem

• Finding paths through a network

• Example : $a \rightarrow j$?

• Finding paths through a network

• Example : $a \rightarrow j$?

Lecture given by Emmanuel Lochin

Graph Model

Basics of Routing andLink-State Routing

ISAE-SUPAERO

Lecture given by Emmanuel L

Basics of Routing andLink-State Routin

ISAE-SUPAERO

3/16

• The network is modeled as a graph

$$G = (V, E)$$

- ightharpoonup V is a set of vertices representing the routers
- ▶ $E \subseteq V \times V$ is a set of edges representing communication links
 - ★ e.g., $(u, v) \in E$ iff router u is on the same subnet as v
- ► *G* is assumed to be an undirected graph
 - ★ i.e., $(u, v) \in E \Leftrightarrow (v, u) \in E$ for all $u, v \in N$
- ► A cost function $c: E \to \mathbb{R}$
 - ★ costs are always positive : c(e) > 0 for all $e \in E$
 - ★ links are symmetric : c(u, v) = c(v, u) for all $u, v \in N$

- Routing in the Graph Model
 - For every router $u\in V$, for every other router $v\in V$, compute the path $P_{u\to v}=u,x_1,x_2,\ldots,x_n,v$ such that
 - ▶ $P_{u \to v}$ is completely contained in the network graph G. I.e., $(u, x_1) \in V, (x_1, x_2) \in V, \ldots, (x_n, v) \in V$
 - ▶ $P_{u \to v}$ is a **least-cost path**, where the cost of the path is $c(P_{u \to v}) = c(u, x_1) + c(x_1, x_2) + \ldots + c(x_n, v)$
 - \bullet Compile u 's forwarding table by adding the following entry :

$$A(v) \rightarrow I_u(x_1)$$

- A(v) is the address (or set of addresses) of router v
- ▶ $I_u(x_1)$ is the interface that connects u to the first next-hop router x_1 in $P_{u \to v} = u, x_1, x_2, \dots, x_n, v$

• Example : $a \rightarrow j$

- Example : $a \rightarrow j$
 - $\blacktriangleright \ \ \text{least-cost path is} \ P_{a \rightarrow j} = a, e, b, f, j$

Back To The Example

- Example : $a \rightarrow j$
 - ▶ least-cost path is $P_{a\rightarrow j} = a, e, b, f, j$
 - a's forwarding table will contain an entry $j \to 2$ since $l_a(e) = 2$

• There are two main strategies to implement a routing algorithm

Basics of Routing andLink-State Routing

• Link-state routing

Two General Strategies

- ► global view of the network
- ► local computation of least-cost paths
- Distance-vector routing
 - ► local view of the network
 - ► global computation of least-cost paths

Basics of Routing andLink-State Routing

ISAE-SUPAERO

6 / 16

Lecture given by Emmanuel Lochin

Basics of Routing andLink-State Routing

ISAE-SUPAERO

AE-SI

0 7/16

Link-State Routing

Link-State Advertisements

- Router *u* maintains a complete view of the network graph *G* (including all links and their costs)
 - every router v advertises its adjacent links (their costs) to every other router in the network; this information is called link state
 - link-state advertisements (LSAs) are broadcast through the entire network
 - ► routers collect link-state advertisements from other routers, and they use them to compile and maintain a complete view of *G*
- ullet Using its local representation of G, router u computes the least-cost paths from u to every other router in the network
 - ► the computation is local

Lecture given by Emmanuel Lochin

Basics of Routing andLink-State Routin

SAE-SUPAERO 8 / 1/

Lecture given by Emmanuel Le

asics of Routing andLink-State Routi

ISAE-SUPAERO

Link-State Advertisements

g h 14 j 1 1 4 2 d 3 e 9 f 1 1 1 2 1

 $LSA_a = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$

Link-State Advertisements

 $LSA_a = \{(a,b,3), (a,e,1), (a,d,1)\}$

Link-State Advertisements

$$LSA_a = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$$

$$LSA_h = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$$

$$LSA_d = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$$

$$\{d, d, 1\}$$

 $\{d, j, 14\}$
 $\{d, e, 3\}$

Link-State Advertisements

$$LSA_{a} = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$$

$$LSA_{h} = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$$

$$LSA_{d} = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$$

Lecture given by Emmanuel Lochin

Basics of Routing andLink-State Routing

Link-State Advertisements

Link-State Advertisements

$$LSA_f = \{(f,c,1), (f,b,1), (f,e,3), (f,h,4), (f,j,2)\}$$

$$LSA_{a} = \{(a, b, 3), (a, e, 1), (a, d, 1)\}$$

$$LSA_{h} = \{(h, e, 1), (h, f, 4), (h, j, 14)\}$$

$$LSA_{d} = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$$

$$LSA_{f} = \{(f, c, 1), (f, b, 1), (f, e, 3), (f, h, 4), (f, j, 2)\}$$

Link-State Advertisements

Link-State Routing Ingredients

 $LSA_d = \{(d, a, 1), (d, g, 1), (d, e, 3)\}$ $LSA_f = \{(f, c, 1), (f, b, 1), (f, e, 3), (f, h, 4), (f, j, 2)\}$

What do we need to implement link-state routing?

- Every router sends its LSA to every other router in the network, so we need a broadcast routing scheme
- Once we have all the LSAs from every router, and therefore we complete knowledge of G, we need an algorithm to compute least-cost paths in a graph

- Flooding
 - every router forwards a broadcast packet to every adjacent router, except the one that sent the packet
- Simple and elegant
- Correct w.r.t. the broadcast requirement : a broadcast packet will eventually reach every router
- Any problem with this solution?
 - cycles in the network create packet storms

• Reverse-path broadcast

- every router forwards a broadcast packet to every adjacent router, except the one where it received the packet router
- ► a router *u* accepts a broadcast packet *p* originating at router *s* only if *p* arrives on the link that is on the direct (unicast) path from u to s
- Correct w.r.t. the broadcast requirement : a broadcast packet will eventually reach every router
- ullet No packet storms even in the presence of cycles in G
- Any problem with this solution?
 - ▶ it requires (unicast) routing information
 - ▶ so it is obviously useless to implement a routing algorithm

Basics of Routing andLink-State Routing

Broadcast Routing (3)

Dijkstra's Algorithm

- Sequence-number controlled flooding
 - ► the originator s of a broadcast packet marks the packet with a
 - ightharpoonup every router u stores the most recent sequence number seen from each source router. Let's assume that u has seen sequence numbers from sup to ns
 - ightharpoonup a router accepts a broadcast packet p originating at s only if p carries a sequence number seq(p) that is higher than the most recent one seen from $s: seq(p) > n_s$
 - accepted packets are forwarded to every adjacent router, except the previous-hop router
 - u updates its table of sequence numbers $n_s \leftarrow seq(p)$

- Executing locally at node u
- Variables storing values known at each iteration
 - ▶ D[v], cost of the least-cost path from u to v
 - ightharpoonup p[v], node preceding v (neighbor of v) on the least-cost path from u to
 - ▶ N, nodes of G whose least-cost path from u is definitely known

Lecture given by Emmanuel Lochin

Dijkstra's Algorithm

Example

A B C D E

۲	ב	١	ט	┙	-	5	steps
0							1
X							2
X							3
X							4
X							2 3 4 5 6
х							6
Х							7

Example

Example

		$\overline{}$			•		
Α	В	С	D	Ε	F	G	steps
0	1-A	2-A					1
Х							2
Х							3
Х							4
Х							5
Х							6
Х							7

Α	В	С	D	Ε	F	G	steps
0	1-A	2-A					1
×	1-A						2
х	Х						3
х	Х						4
х	Х						5
х	Х						6
х	×						7

Example Example

Α	В	C	D	Е	F	G	steps
0	1-A	2-A					1
X	1-A		3-B		4-B		2
Х	Х						3
Х	Х						4
Х	Х						5
Х	Х						6
Х	Х						7

Α	В	C	D	Е	F	G	steps
0	1-A	2-A					1
X	1-A		3-B		4-B		2
×	Х	2-A					3
X	×	Х					4
X	Х	Х					5
×	Х	Х					6
×	Х	х					7

Example

Example

Α	В	C	D	Е	F	G	steps
0	1-A	2-A					1
Х	1-A		3-B		4-B		2
Х	Х	2-A	5-C	6-C			3
Х	Х	Х					4
Х	Х	Х					5
Х	Х	Х					6
Х	Х	Х					7

Α	В	C	D	Е	F	G	steps
0	1-A	2-A					1
Х	1-A		3-B		4-B		2
Х	Х	2-A	5-C	6-C			3
Х	Х	Х	3-B				4
Х	Х	Х	Х				5
Х	Х	Х	Х				6
X	Х	Х	Х				7

Lecture given by Emmanuel Lochin

Lecture given by Emmanuel Lochin

Basics of Routing andLink-State Routing

Example

Example

Α	В	C	D	Е	F	G	steps
0	1-A	2-A					1
х	1-A		3-B		4-B		2
х	Х	2-A	5-C	6-C			3
x	Х	х	3-B	5-D	6-D	6-D	4
х	Х	Х	Х				5
х	Х	Х	Х				6
Х	X	х	X				7

Α	В	C	D	E	F	G	steps
0	1-A	2-A					1
Х	1-A		3-B		4-B		2
Х	×	2-A	5-C	6-C			3
Х	×	Х	3-B	5-D	6-D	6-D	4
Х	×	Х	Х		4-B		5
х	Х	Х	Х		Х		6
х	х	х	Х		Х		7

Lecture given by Emmanuel Lochin

Example

Example

Α	В	C	D	Е	F	G	steps
0	1-A	2-A					1
Х	1-A		3-B		4-B		2
Х	Х	2-A	5-C	6-C			3
Х	Х	Х	3-B	5-D	6-D	6-D	4
Х	Х	Х	Х		4-B	8-F	5
Х	Х	Х	Х		Х		6
Х	Х	Х	Х		Х		7

Α	В	C	D	Ε	F	G	steps
0	1-A	2-A					1
х	1-A		3-B		4-B		2
x	Х	2-A	5-C	6-C			3
×	Х	Х	3-B	5-D	6-D	6-D	4
×	Х	Х	Х		4-B	8-F	5
x	Х	Х	Х	5-D	Х		6
х	×	×	×	×	×		7

Example Example

Α	В	C	D	E	F	G	steps
0	1-A	2-A					1
х	1-A		3-B		4-B		2
×	х	2-A	5-C	6-C			3
X	Х	Х	3-B	5-D	6-D	6-D	4
х	Х	Х	Х		4-B	8-F	5
х	Х	Х	Х	5-D	Х	10-E	6
х	Х	Х	Х	×	×		7

Α	В	C	D	Ε	F	G	steps
							1
	1-A						2
							3
			3-B				4
							5
							6
						6-D	7

Lecture given by Emmanuel Lochin Basics of Routing andLink-State Routing ISAE-SUPAERO 16/16 Lecture given by Emmanuel Lochin Basics of Routing andLink-State Routing ISAE-SUPAERO 16/16