

C2000 MDIA

通道隔离型

8路电流差分输入2路数字量输入智能模拟量数字量采集器

使用说明

目 录

第1章	产品概述	- 3 -
1.1	概述	- 3 -
1.2	2 技术参数	- 4 -
第2章	外观及引脚说明	- 5 -
2.1	产品外观	- 5 -
2.2	2 指示灯	- 5 -
2.3	3 引脚说明	- 6 -
第3章	外观尺寸	- 7 -
3.1	前视图	- 7 -
3.2	2 顶视图	- 7 -
3.3	3 后视图	- 8 -
3.4	1 侧视图	- 9 -
第4章	快速安装	10 -
4.1	单体安装	10 -
4.2	2 并列安装	11 -
4.3	3 堆叠安装	12 -
4.4	4 产品接线图	13 -
第5章	软件操作	14 -
5.1	し设置	14 -
5.2	2 查询状态	16 -

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

C2000 MDIA 使用说明

第6章 通信协议	17 -
6.1 功能码	17 -
6.2 寄存器列表及浮点值与原始值换算公式	20 -
6.3 错误代码表	22 -
6.4 协议应用范例	23 -
6.4.1 Modbus RTU 简介	23 -
6.4.2 MDIA 实际命令举例	25 -
6.5 浮点数、原始值与实际值的计算	28 -
第 7 章 装箱清单	30 -
第8章 附录:产品保修卡	31 -

第1章 产品概述

1.1 概述

C2000 MDIA 为通道隔离型智能模拟量数字量采集器,8 路电流型模拟量输入(量程为 0~20mA),采用满量程通道隔离、全差分输入设计。2 路数字量(干接点)输入,RS485 接口光电隔离和电源隔离技术,有效抑制闪电,雷击,ESD 和共地干扰。为系统集成商、工程商集成了标准的 Modbus RTU 协议。通过 RS-485 即可实现对远程模拟量和开/关设备的数据采集和控制。下层设备通常有接近开关、机械 开关、按钮、光传感器、LED 以及光电开关等数字量开关设备及 PH、电导计、温度计、湿度计、压力计、流量计、启动器和阀门等模拟量设备。

本产品具有良好的扩展性能,使用方便。还可以通过方便、灵活的级联方式,灵活地通过 M244, M244-A, M281, M281-A, M2IA, M2VA 等具有联网功能的采集设备低成本实现以太网接入,并实现各种数字量、模拟量的组合扩展采集。提供 5 年质保服务。

特点:

- →8 路模拟量(电流量)输入:
- →2 路数字量干接点输入;
- →I/O 与系统完全隔离:
- →AI 分辨率: 12 位;
- →AI 输入通道采取全差分输入;
- →模拟量输入通道之间满量程隔离,隔离度 5V DC;
- →AI 输入测量范围: 0~20mA;
- →采用 Modbus RTU 通信协议:
- →RS485 通信接口提供光电隔离及每线 600W 浪涌保护:
- →电源具有过流过压保护和防反接功能;
- →安装方便。

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

1.2 技术参数

	AI	8 路差分输入
	AI 分辨率	12bit
模拟量接口	AI 量程	0~20mA
	AI 通道隔离度	5 V DC
	AI 输入阻抗	240 Ω
粉字昙绘 \ 	DI	2 路干接点输入
数字量输入接口	DI 保护	过压小于 60V , 过流小于 100mA
	接口类型	RS-485
	波特率	1200~115200bps
	数据位	8
串口通讯参数	奇偶校验	None
	停止位	1
	流量控制	None
	通信协议	Modbus RTU
	串口 ESD 保护	1.5KV
串口保护	串口防雷	600W
	串口过流,过压	小于 240V,小于 80mA
	电源规格	9-24VDC (推荐 12VDC)
电源参数	电流	60mA@12VDC
电/尔多奴	浪涌保护	1.5kW
	电源过压, 过流	60V, 500mA
工作环境	工作温度、湿度	-25~85℃,5~95%RH,不凝露
上ドが免	储存温度、湿度	-60~125℃,5~95%RH,不凝露
其他	尺寸	72.1*121.5*33.6mm
共化	保修	5年质保

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

第2章 外观及引脚说明

2.1 产品外观

2.2 指示灯

PWR	电源指示灯
RXD	485 信号接收指示灯
TXD	485 信号发送指示灯
DIO、DI1	对应通道开关量输入状态指示灯

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

2.3 引脚说明

V _S +	电源正
GND	电源负
PE	大地
485+	RS485+
485-	RS485-
AI0-~AI7-	模拟量信号输入端负
AI0+~AI7+	模拟量信号输入端正
DI.COM	数字量信号输入公共端
DI0~1	数字量信号输入端
COM	保留

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

第3章 外观尺寸

3.1 前视图

3.2 顶视图

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

3.3 后视图

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

3.4 侧视图

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

第4章 快速安装

4.1 单体安装

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

4.2 并列安装

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

4.3 堆叠安装

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

4.4 产品接线图

第5章 软件操作

在进行软件操作设置之前需要安装《IO设备管理软件》程序。根据安装向导的提示就可以完成程序的安装。安装完成后会在开始菜单创建一个快捷方式,链接到安装目录中的相应的可执行程序。

- *注意 本软件仅用作对我司IO联网产品的配置和测试使用。
- *注意 在使用软件对IO设备进行操作时,请保证设备正常加电并连接好通讯线缆。

5.1 设置

打开IO设备管理软件,点击"搜索"图标,请选择搜索方式:使用串口方式还是网络方式搜索设备,如下图:

选择使用串口方式进行搜索,点击确定后,弹出"搜索参数设置"提示框,请选择

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

连接IO设备的串口,并填入搜索的地址范围,默认为1~255,可根据实际需要输入搜索地址范围。请选择搜索需要用到的波特率,默认为9600。如下图:

设置好搜索参数后,点击确定,开始搜索,会找到该串口下连接的所有IO设备(请勿将同样485地址的IO模块接到同一串口下,否则会因为地址冲突而出现部分设备搜索不到的问题)。如下图:

选中需要设置的MDIA,点击设置按钮(或双击该设备),弹出设置界面,可以设置设备使用的485地址和名称等。485地址的合法范围是1~255,名称可输入中文、英文、数字和下划线等构成的备注性文字,长度为二十个字节。设置完成点击确定。如下图:

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

MDA8参数设置				×
地址	8	名称	0123456789012345678	
型号	MDA8	软件版本号	2.0	
	确定	取消		

设置完成后如果需要对它的状态进行查询,需要重新对设备进行搜索。

*注意:每一次点击确定,设备都会有一个短暂的重新启动的过程。

5.2 查询状态

选中我们所搜索到的IO设备,点击查询状态按钮,可以很直观地看到它各路的状态。

AI状态为只读值,显示原始值和模拟值

DI状态为只读值,红色表示断开,灰色表示接通。

*注意:查询状态具有对IO值为读写值的各路具有设置的作用,在改变了配置的前提下点击确定和取消将产品不同的效果。

如下图:

第6章 通信协议

6.1 功能码

0x03: 读从设备寄存器数据

主站报文:

起始结构	4 字节长度的总线空闲时间
从设备地址	1 字节,内容为 0-0xff
功能码	1字节,内容为3
起始寄存器地址	2 字节, 高字节在前
寄存器个数	2 字节, 高字节在前
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

从站应答报文:

操作正常时

起始结构	4字节长度的总线空闲时间
从设备地址	1 字节,内容为 0-0xff
功能码	1字节,内容为3
数据长度	1字节,内容为寄存器个数×2
数据	寄存器个数×2字节,每个数据高字节在前
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

操作异常时

起始结构	4 字节长度的总线空闲时间
从设备地址	1 字节,内容为 0-0xff
功能码	1 字节,内容为 0x83
数据	错误代码,见表 8.3 错误代码表
CRC 校验码	2 字节, 低字节在前
结束结构	4 字节长度的总线空闲时间

0x10: 写从设备寄存器数据

主站报文:

起始结构	4字节长度的总线空闲时间
从设备地址	1 字节,内容为 0-0xff
功能码	1 字节,内容为 0x10
起始寄存器地址	2字节,高字节在前
寄存器个数	2字节,高字节在前
数据长度	1字节,内容为寄存器个数×2
数据	寄存器个数×2字节,每个数据高字节在前
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

从站应答报文:

操作正常时

起始结构	4 字节长度的总线空闲时间
从设备地址	1 字节,内容为 0-0xff
功能码	1 字节,内容为 0x10
起始寄存器地址	2 字节, 高字节在前
寄存器个数	2 字节, 高字节在前
CRC 校验码	2 字节, 低字节在前
结束结构	4 字节长度的总线空闲时间

操作异常时

起始结构	4字节长度的总线空闲时间
从设备地址	1 字节,内容为 0-0xff
功能码	1 字节,内容为 0x90
数据	错误代码, 见表 8.3 错误代码表
CRC 校验码	2 字节, 低字节在前
结束结构	4字节长度的总线空闲时间

6.2 寄存器列表及浮点值与原始值换算公式

寄存器地址	个数	寄存器内容	状态	数据范围
00000	1	模块型号	口净	按模块型号配置,例
0x0000	1	快 大空亏	只读	如: MDIA
				例如 5.2, 高字节为
0x0001	1	模块软件件版本	只读	主版本,低字节为次
				版本
0x0002	10	模块名称	读写	
0x000C	1	模块地址	读写	0x0000-0x00FF
0x0501	1	模拟通道0的值(浮点数高2字节)	只读	读时为模拟量的值,
0x0502	1	模拟通道0的值(浮点数低2字节)	只读	读时为模拟量的值,
0x0503	1	模拟通道1的值(浮点数高2字节)	只读	读时为模拟量的值,
0x0504	1	模拟通道1的值(浮点数低2字节)	只读	读时为模拟量的值,
0x0505	1	模拟通道2的值(浮点数高2字节)	只读	读时为模拟量的值,
0x0506	1	模拟通道2的值(浮点数低2字节)	只读	读时为模拟量的值,
0x0507	1	模拟通道3的值(浮点数高2字节)	只读	读时为模拟量的值,
0x0508	1	模拟通道3的值(浮点数低2字节)	只读	读时为模拟量的值,
0x0509	1	模拟通道 4 的值(浮点数高 2 字节)	只读	读时为模拟量的值,
0x050A	1	模拟通道 4 的值(浮点数低 2 字节)	只读	读时为模拟量的值,
0x050B	1	模拟通道 5 的值(浮点数高 2 字节)	只读	读时为模拟量的值,
0x050C	1	模拟通道 5 的值(浮点数低 2 字节)	只读	读时为模拟量的值,
0x050D	1	模拟通道 6 的值(浮点数高 2 字节)	只读	读时为模拟量的值,
0x050E	1	模拟通道 6 的值(浮点数低 2 字节)	只读	读时为模拟量的值,
0x050F	1	模拟通道7的值(浮点数高2字节)	只读	读时为模拟量的值,
0x0510	1	模拟通道7的值(浮点数低2字节)	只读	读时为模拟量的值,
0x0511	1	模拟通道 0 输入(原始值)	只读	0x0000-0xFFFF
0x0512	1	模拟通道 1 输入(原始值)	只读	0x0000-0xFFFF
0x0513	1	模拟通道 2 输入(原始值)	只读	0x0000-0xFFFF
0x0514	1	模拟通道 3 输入(原始值)	只读	0x0000-0xFFFF
0x0515	1	模拟通道 4 输入(原始值)	只读	0x0000-0xFFFF
0x0516	1	模拟通道 5 输入(原始值)	只读	0x0000-0xFFFF
0x0517	1	模拟通道 6 输入(原始值)	只读	0x0000-0xFFFF
0x0518	1	模拟通道 7 输入(原始值)	只读	0x0000-0xFFFF
0x0519	1	DI0 的值	只读	0x0000-0x0001
0x051A	1	DI1 的值	只读	0x0000-0x0001
0x051B	1	DI 的值	只读	0x0000-0x0003

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

DI 的状态 (寄存器 0x051B):

数据位	含义
1	输入通道1的状态,0为断开,1为闭合
0	输入通道0的状态,0为断开,1为闭合

MDIA 波特率定义:

波特率代码	波特率 (bps)
0	1200
1	2400
2	4800
3	9600
4	19200
5	38400
6	57600
7	115200

浮点数格式(FLOAT, 4字节)

浮点数数据格式与 IEEE-754 标准(32)有关,长度 32 位。四个字节的浮点数 传送顺序为先低字节后高字节。浮点数格式见表 A8:

表 A8 浮点数格式

D31	D30~D23	D22~D0		
浮点数符号位	阶码	尾数		

浮点数的数值= $((-1)^{\frac{\beta+\beta}{\alpha}}) \times 1.$ 尾数 $\times 2^{\frac{(\beta+\beta-127)}{\alpha}}$

MDIA 从原始值计算出电流的公式:

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

(1) 如果小于 0x8000 则公式如下:

Y=((X*refv)*1000.0/4080000.0)/240.0(单位: A)

(2) 大于 0x8000 公式如下:

Y=((65535 - X + 1) * refv) * 1000.0 / 4080000.0 / 240.0 (单位: A)

Y- 计算出来的电流值, 浮点数;

X-原始值,整数;

refv - 基准电压,一般为 5.0V,可以通过万用表测量出来。

6.3 错误代码表

错误代码	异常描述
0x80	寄存器地址错误(无效的寄存器地址)
0x81	企图写只读寄存器
0x82	写寄存器数据错误
0x83	企图读只写寄存器

设备级联串口 IO 模块使用时,寄存器的地址参照《IO 模块之 TCP 模块下的级联 RTU 设备寄存器协议》,请另行联系我司业务员索取。

6.4 协议应用范例

6.4.1 Modbus RTU 简介

RTU 传输模式

当设备使用 RTU (Remote Terminal Unit) 模式在 Modbus 串行链路通信,报文中每个 8 位字节含有两个 4 位十六进制字符。这种模式的主要优点是较高的数据密度,在相同的波特率下比 ASCII 模式有更高的吞吐率。每个报文必须以连续的字符流传送。

RTU 模式每个字节 (11 位) 的格式为:

编码系统: 8 - 位二进制

报文中每个8位字节含有两个4位十六进制字符(0-9, A-F)

Bits per Byte: 1 起始位

8 数据位,首先发送最低有效位

1 位作为奇偶校验

1 停止位

偶校验是要求的,其它模式 (奇校验,无校验)也可以使用。

注: 使用无校验要求 2 个停止位。

字符是如何串行传送的:

每个字符或字节均由此顺序发送(从左到右):

最低有效位 (LSB)... 最高有效位 (MSB)

	有奇偶校验										
起如	台 1	2	3	4	5	6	7	8	校验	停止	
	_										

设备配置为奇校验、偶校验或无校验都可以接受。如果无奇偶校验,将传送一个附加的停止位以填充字符帧:

	无奇偶校验										
起始	1	2	3	4	5	6	7	8	停止	停止	

帧描述:

子节点 地址	功能 代码	数据	CRC
1 字节	1字节	0 到 252 字节	2字节 CRC低 CRC高

Modbus RTU 帧最大为 256 字节。

Modbus 报文 RTU 帧

由发送设备将 Modbus 报文构造为带有已知起始和结束标记的帧。这使设备可以在报文的开始接收新帧,并且知道何时报文结束。不完整的报文必须能够被检测到而错误标志必须作为结果被设置。在 RTU 模式,报文帧由时长至少为 3.5 个字符时间的空闲间隔区分。在后续的部分,这个时间区间被称作 t3.5。

			MODBUS 报文		
起始	地址	功能代码	数据	CRC 校验	结束
≥ 3.5 字符	8 位	8位	N x 8 位	16 位	≥ 3.5 字符

整个报文帧必须以连续的字符流发送。

如果两个字符之间的空闲间隔大于 1.5 个字符时间,则报文帧被认为不完整应该被接收节点丢弃。

RTU 接收驱动程序的实现,由于 t1.5 和 t3.5 的定时,隐含着大量的对中断的管理。在高通信速率下,这导致 CPU 负担加重。因此,在通信速率等于或低于 19200 Bps 时,这两个定时必须严格遵守;对于波特率大于 19200 Bps 的情形,应该使用 2 个定时的固定值:建议的字符间超时时间(t1.5)为 750μs,帧间的超时时间 (t3.5) 为 1.750ms。

6.4.2 MDIA 实际命令举例

MDIA 的 AI 可以通过读取浮点数或者是原始量来获取,浮点数需要读取两个寄存器,原始量只需读取一个寄存器,浮点数和原始量有不同的计算方法(根据 6.2 节的计算公式进行计算)。

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

以同时采集 8 路 AI 浮点数为例进行说明, 假设 MDIA 的 485 地址已经设置为 1, 命令如下:

0x <mark>0103</mark>0501<mark>0008</mark>1500

命令解析:

静音	01	03	0501	0008	1500	静音
起始结构	从设备地址	功能码	起始寄存器 地址	寄存器个数	CRC 校验码	结束结构
≥3.5 个字符的 静止 时间	1 字节,设备的 485 地址	1 字节,固定为 03,读取保持寄 存器	2字节,要开始 读取的寄存器地 址	2字节,需要读 取的寄存器个数	2字节, CRC16	≥3.5 个字符的 静止 时间

说明:

- (1) 起始结构,结束结构:总线空闲时间,详细介绍可参考上小节。
- (2) 从设备地址:设备的485地址。
- (3) 功能码:读取寄存器时,对本公司产品固定为03,写寄存器时对本公司产品为10。
 - (4) 起始寄存器地址: 读取多个寄存器时的第一个寄存器的地址。
 - (5) 寄存器个数:需要一次读取的寄存器个数。
 - (6) 检验码: CRC16校验, 低字节在前。

假设加到AIO-AI3的电流为12.53mA, AI4-AI7的电流为9.85mA设备返回的数据为:

$0 \\ \times 0103 \\ 203 \\ C4D4AA1 \\ 3C4D4AA1 \\ 3C4D4AA1 \\ 3C4D4AA1 \\ 3C2161E5 \\ 3C$

静音	01	03	20	3C4D4AA13C4D4AA1 <mark>3C4D4AA1</mark> 3C4D4AA1 3C2161E5 <mark>3C2161E5</mark> 3C2161E5	9291	静音
起始结构	从设备地址	功能码	数据长度	数据	CRC 校验 码	结束结构
≥3.5 个字 符的静止 时间	1 字节,设备 的 485 地址	1 字节,固定 为 03,读取 保持寄存器	1 字节,高 字节在前	寄存器个数×2 字节,每个数据高字节在前	2 字节,低 字节在前	≥3.5 个字 符的静止 时间

在设备返回的数据中

<mark>3C4D4AA1</mark>3C4D4AA1<mark>3C4D4AA1</mark>3C4D4AA1<mark>3C2161E5</mark>3C2161E5<mark>3C2161E5</mark>3C2161E5

即为读取到的浮点数,每4个字节为一通道数据。

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

读取原始量和读取浮点数一样,只是寄存器地址和寄存器个数有所不同,命令如下:

01(从设备地址) 03(功能码) 05 11(起始寄存器地址) 00 08(要读取的寄存器个数) 14 C5(CRC 校验)

设备数据返回格式同浮点数一样,不同的是原始量的返回数据中每两个字节表示一个通道。

读 DI 状态同读取 AI 状态一样,只需更换寄存器地址和寄存器个数即可。下面是同时读取 DI0、DI1 的命令:

0x<mark>01</mark>03<mark>05</mark>190002<mark>1500</mark>

静音	01	03	05 19	0002	15 00	静音
起始结构	从设备地址	功能码	起始寄存器地址	寄存器个数	CRC 校验码	结束结构
≥3.5 个字符的 静止 时间	1 字节,设备的 485 地址			2字节,需要读 取的寄存器个数	2 字节,CRC16	≥3.5 个字符的 静止 时间

假设此时设备的DIO闭合, DI1断开设备返回的数据为:

0x<mark>0103 04<mark>0001</mark>0000<mark>ABF3</mark></mark>

静音	01	03	04	<mark>0001</mark> 0000	ABF3	静音
起始结构	从设备地址	功能码	数据长度	数据	CRC 校验码	结束结构
≥3.5 个字符的 静止 时间	1 字节,设备的 485 地址	1 字节,固定为 03,读取保持寄 存器	1 字节,高字节 在前	寄存器个数×2 字节,每个数据 高字节在前	2字节,低字节在 前	≥3.5 个字符的 静止 时间

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

6.5 浮点数、原始值与实际值的计算

AI 数值可以通过读取浮点数和原始量获得,下面详细介绍如何将读取到的浮点数、原始数据换算成实际值。

6.5.1 浮点数计算方法

浮点数数据格式与 IEEE-754 标准(32)有关,长度 32 位。四个字节的浮点数传送顺序为先低字节后高字节。浮点数格式见表 A8:

浮点数格式

D31	D30~D23	D22~D0
浮点数符号位	阶码	尾数

下面举例说明读取到的浮点数据如何换算成实际数值。

假设某次读取的某个通道 AI 的浮点数数值为: 3BA8F2AD

将其转换成二进制数:

0011 1011 1010 1000 1111 0010 1010 1101

按照 1 (符号位)、8 (阶码)、23 (尾数) 划分为 3 段:

0 (符号位) 01110111 (阶码) 010 1000 1111 0010 1010 1101 (尾数)

尾数前面加 1.为 1.010 1000 1111 0010 1010 1101

阶码: 01110111=119

因此浮点数的数值= $((-1)^{0}) \times 1.01010001111001010101101 \times 2^{(119-127)}$

119-127=-8 因此只需将 1. 010 1000 1111 0010 1010 1101 左移 8 位成为:

0.00000001010 1000 1111 0010 1010 1101 此为 2 进制小数,将其转换成 10 进制数为

000.0051558, 即浮点数 3B A8 F2 AD 的 10 进制数值为 0.0051558

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

6.5.2 原始量计算

原始量计算比较简单,只需根据说明书上面的公式换算即可,需要注意的是读取的数值为 16 进制数据,需要先将其换算成 10 进制后代入公式。

假设某次读取到 AIO 原始量值为: 0x4C8D, 计算方法如下:

0x4C8D的10进制为19597

Y = ((X * 256) * 10.0 / 8388607.5-10.0) / 240.0

=((19597*256)*10.0 / 8388607.5-10.0) / 240.0

=-0.01674779107656823058336360752763(单位: A)

所以实际的电流值约为 16.748mA

第7章 装箱清单

序号	名称	数量	单位	备注
1	主设备 MDIA	1	台	
2	产品简介	1	份	
3	合格证	1	张	
4	接线端子-2ERJK-3.81-13P	2	个	

公司地址:深圳市福田区彩田路中银大厦 A 座 16 层

第8章 附录:产品保修卡

尊敬的用户:

感谢您购买和使用本公司的产品!

您所购买的产品在正常使用产品的情况下,凡是由原材料或生产过程中造成的质量问题,自购买之日期提供免费换新与保修服务(具体参见产品保修、换新表格)。凡是由于用户不按本产品说明书要求,自行安装、拆卸或不正确使用而造成的损坏本公司提供维修,但收取适当维修费。

保修条例:

- 1、自购买产品之日起,在正常使用的情况下(由公司授权技术人员判定),对发生故障的产品进行免费维修或换新(具体时间参考保修、换新表格)。
- 2、在保修期內曾经由我公司以外的维修人员修理或更改过的产品、或安装不当、 输入电压不正确、使用不当、意外事件或自然灾害等原因引起的故障的产品不 属于换新、保修范围。
- 3、在接受保修服务前,需要客户出示保修卡或购买发票来证明产品购买日期。无 法确认日期的将不予保修。
- 4、经我公司换新或维修后的产品有90天保修期。
- 5、所有换新、保修或维修的产品,用户承担运费和运送时的风险。
- 6、超过保修期或不符合保修条件的产品,本公司提供收费维修。
- 7、和本保修条款发生冲突的其他口头承诺等,参照本保修条款执行。
- 8、我公司在产品制造、销售及使用上所担负的责任,均不应超过产品的原始成本。 本公司不承担任何连带责任。

本条款的解释权归本公司所拥有。

公司地址: 深圳市福田区彩田路中银大厦 A 座 16 层

保修、换新表格

	带外壳产品	不带外壳产品	电源
换新	3 个月内换新	1 个月内换新	
保修	5 年内保修	1年内保修	一年内保修

用户资料:

用户名称:	
地址:	联系电话:
邮编:	E-mail:
产品名称:	产品型号:
购买日期:	发票号:

经销商资料:

经销商名称:	
地址:	联系电话:
邮编:	E-mail: