Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019184

International filing date: 22 December 2004 (22.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-435074

Filing date: 26 December 2003 (26.12.2003)

Date of receipt at the International Bureau: 24 February 2005 (24.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

24.12.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月26日

出 願 番 号 Application Number:

特願2003-435074

[ST. 10/C]:

[JP2003-435074]

出 願 人 Applicant(s):

日本ゼオン株式会社

特許庁長官 Commissioner, Japan Patent Office

2005年 2月10日

16

【書類名】 特許願 【整理番号】 2003NZ-22 【あて先】 特許庁長官殿 【国際特許分類】 G02F 1/1335 B32B 7/02 G02B 5/30 【発明者】 【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【氏名】 奥出 修平 【発明者】 【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【氏名】 豊嶋 哲也 【発明者】 【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【氏名】 荒川 公平 【特許出願人】 【識別番号】 000229117 【氏名又は名称】 日本ゼオン株式会社 【代理人】 【識別番号】 100108419 【弁理士】 【氏名又は名称】 大石 治仁 【手数料の表示】 【予納台帳番号】 084000 【納付金額】 21,000円 【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 1 【物件名】 図面 1

【物件名】

【包括委任状番号】

要約書 1

0006473

【書類名】特許請求の範囲

【請求項1】

基材フィルムと、該基材フィルム上に形成された低屈折率層とを有する偏光板保護フィルムであって、

前記低屈折率層が、式(1):MXn(式中、Mは金属原子又は半金属原子を表し、Xはハロゲン原子、一価の炭化水素基、酸素原子、有機酸根、無機酸根、Tルコキシ基または水酸基を表し、nはMの原子価を表す。nが2以上のとき、Xは同一でも相異なっていてもよい。)で表される化合物、前記式(1)で表される化合物の少なくとも1種の部分加水分解生成物、および前記式(1)で表される化合物の少なくとも1種の完全加水分解生成物からなる群から選ばれる1種以上から形成された、分子中に、 $-(O-M)_m-O$ (式中、Mは前記と同じ意味を表し、mは自然数を表す。)結合を有する金属酸化物複合体と、無機微粒子とを含有し、屈折率が1.25~1.35の層であることを特徴とする偏光板保護フィルム。

【請求項2】

前記無機微粒子が、無機化合物の中空微粒子であることを特徴とする請求項1に記載の 偏光板保護フィルム。

【請求項3】

前記MがSiであることを特徴とする請求項1または2に記載の偏光板保護フィルム。

【請求項4】

前記基材フィルムが、脂環式構造含有重合体樹脂からなるものであることを特徴とする請求項1~3のいずれかに記載の偏光板保護フィルム。

【請求項5】

請求項1~4のいずれかに記載の偏光板保護フィルムを偏光板の保護フィルムの少なくとも一方に用いたことを特徴とする反射防止機能付偏光板。

【請求項6】

請求項5に記載の反射防止機能付偏光板を備えることを特徴とする光学製品。

【書類名】明細書

【発明の名称】偏光板保護フィルム、反射防止機能付偏光板および光学製品 【技術分野】

[0001]

本発明は、偏光板保護フィルム、反射防止機能付偏光板、およびこの反射防止機能付偏 光板を備える光学製品に関する。

【背景技術】

[0002]

近年、液晶ディスプレイなどのディスプレイにおいては、表面反射による視認性の低下を防ぐために、透明基板(基材フィルム)上に低屈折率材料を用いて低屈折率層を形成する方法が知られている。

[0003]

従来の低屈折率材料としては、MgF2、SiO2等の無機材料;パーフルオロ樹脂などの有機材料;等が知られている。高い反射防止性能を得るためには、高屈折率を有する層(高屈折率層)と低屈折率層との屈折率の差が大きいほど反射率の極小値が小さくなるため好ましいとされている。しかしながら、基材フィルムと低屈折率材料との屈折率の差が小さいため、基材フィルム表面に、より高い屈折率材料からなる層と低屈折率層とを積層させた多層膜を形成する必要があった。

[0004]

ところで、近年、低い屈折率を有する中空シリカ系微粒子を用いて低屈折率層を形成する方法がいくつか提案されている。例えば、特許文献1には、中空シリカ系微粒子をマトリクス形成材料中に分散させて得られるコーティング材組成物を塗布して乾燥することによって低屈折率の透明被膜を形成する方法が開示されている。また、特許文献2には、中空シリカ系微粒子をマトリクス形成材料中に分散させて得られるコーティング材組成物を塗布して乾燥することによって、低屈折率で、多孔質のマトリクスが形成された透明被膜を形成する方法が開示されている。これらの方法によれば、高屈折率層と低屈折率層を積層しなくとも、高い反射防止性能を得ることができる。

[0005]

しかしながら、上記文献に記載された方法は、中空微粒子を含有するマトリクスを形成するものであるが、得られるマトリクスの強度が弱く、凝集力に乏しいといった理由から、液晶表示装置などの偏光板保護フィルムとして求められる耐擦傷性が不十分な場合があり、問題となっていた。また、偏光板と貼り合わせて液晶表示装置に組み込む場合には高い寸法安定性が要求されるが、反り(変形)を生じる場合があった。

[0006]

【特許文献1】特開2001-233611号公報

【特許文献2】特開2003-201443号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明は上記した従来技術の実情に鑑みてなされたものであり、反射防止層として有効な低屈折率層を有し、かつ、偏光板の保護フィルムとして十分な耐擦傷性を有し、かつ、偏光板との貼り合わせの際に問題となるフィルムの変形(反り)が少ない偏光板保護フィルム、および反射防止機能付偏光板を提供することを課題とする。また本発明は、本発明の反射防止機能付偏光板を用いる光学製品を提供することを課題とする。

【課題を解決するための手段】

[0008]

本発明者らは、上記課題の解決を図るべく鋭意研究した結果、透明な基材フィルム上に、特定の金属化合物または該金属化合物の全部若しくは部分加水分解生成物から形成された金属酸化物複合体と無機中空微粒子とを有し、屈折率を一定範囲に調整した低屈折率層を有する偏光板保護フィルムは、優れた反射防止機能と耐擦傷性とを有することを見出し

た。また、基材フィルムとして、脂環式構造含有重合体樹脂からなるものを使用する場合には、偏光板との貼り合わせの際に問題となるフィルムの反り(変形)が少ない偏光板保護フィルムが得られることを見出し、本発明を完成するに至った。

[0009]

かくして本発明の第1によれば、基材フィルムと、該基材フィルム上に形成された低屈 折率層を有する偏光板保護フィルムであって、前記低屈折率層が、式(1): MX_n (式中、Mは金属原子又は半金属原子を表し、Xはハロゲン原子、一価の炭化水素基、酸素原子、有機酸根、無機酸根、X00年のとき、X1年のとき、X1年のとき、X1年のとき、X1年のとき、X1年のとき、X1年のとき、X1年のとき、X1年のでも相異なっていてもよい。)で表される化合物、前記式(1)で表される化合物の少なくとも1種の部分加水分解生成物、および前記式(1)で表される化合物の少なくとも1種の完全加水分解生成物からなる群から選ばれる1種以上から形成された、分子中に、X1年の一(X2年、X3年の一(X3年、X3年の層であることを特徴とする偏光板保護フィルムが提供される。

[0010]

本発明の偏光板保護フィルムは、前記無機微粒子が無機化合物の中空微粒子であり、前記MがSiであり、前記基材フィルムが脂環式構造含有重合体樹脂からなるものであるのがそれぞれ好ましい。

[0011]

本発明の第2によれば、本発明の偏光板保護フィルムを偏光板の保護フィルムの少なく とも一方に用いたことを特徴とする反射防止機能付偏光板が提供される。

本発明の第3によれば、本発明の反射防止機能付偏光板を備えることを特徴とする光学製品が提供される。

【発明の効果】

$[0\ 0\ 1\ 2]$

本発明の偏光板保護フィルムは、反射防止層として有効な低屈折率層を有し、かつ、偏 光板の保護フィルムとして十分な耐擦傷性を有している。また、偏光板との貼り合わせの 際に問題となるフィルムの反り(変形)が少ないフィルムである。

本発明の反射防止機能付偏光板は、本発明の保護フィルムを偏光膜の保護フィルムの少なくとも一方に用いているので、優れた反射防止機能と耐擦傷性を兼ね備えている。また、保護フィルムと偏光板との貼り合わせの際に問題となる反り(変形)が少ないものである。

本発明の反射防止機能付偏光板は、本発明の偏光板保護フィルムを用いているので、高温・高湿度の環境下に長時間置かれた場合であっても、全体に反りや変形、歪み等が生じ難い構造の偏光板となっている。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 3\]$

以下、本発明を、1)偏光板保護フィルム、2)反射防止機能付偏光板、及び3)光学製品に項分けして詳細に説明する。

[0014]

1) 偏光板保護フィルム

本発明の偏光板保護フィルムは、基材フィルムと、該基材フィルム上に形成された低屈 折率層とを有する。

[0015]

(基材フィルム)

本発明に用いる基材フィルムは、透明性に優れる合成樹脂からなるものであれば特に制限されないが、1mm厚で全光線透過率が80%以上の合成樹脂からなるものが好ましい。基材フィルムを構成する合成樹脂としては、例えば、脂環式構造含有重合体樹脂、ポリカーボネート系重合体樹脂、ポリエステル系重合体樹脂、ポリスルホン系重合体樹脂、ポリエーテルスルホン系重合体樹脂、ポリスチレン系重合体樹脂、ポリオレフィン系重合体

樹脂、ポリビニルアルコール系重合体樹脂、酢酸セルロース系重合体樹脂、ポリ塩化ビニル系重合体樹脂、ポリメタクリレート系重合体樹脂等が挙げられる。

[0016]

これらの中でも、複屈折が小さい点から、脂環式構造含有重合体樹脂、またはトリアセチルセルロースなどの酢酸セルロース系重合体樹脂が好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、脂環式構造含有重合体樹脂の1種又は2種以上の使用が特に好ましい。

[0017]

脂環式構造含有重合体樹脂は、重合体樹脂の繰り返し単位中に脂環式構造を有するものであり、主鎖中に脂環式構造を有する重合体樹脂及び側鎖に脂環式構造を有する重合体樹脂のいずれも用いることができる。

[0018]

脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。脂環式構造を構成する炭素数に特に制限はないが、通常 $4\sim30$ 個、好ましくは $5\sim20$ 個、より好ましくは $5\sim1$ 5 個である。脂環式構造を構成する炭素原子数がこの範囲にあると、耐熱性及び柔軟性に優れた基材フィルムを得ることができる。

[0019]

脂環式構造含有重合体樹脂中の脂環式構造を有する繰り返し単位の割合は、使用目的に応じて適宜選択されればよいが、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上である。脂環式構造を有する繰り返し単位が過度に少ないと耐熱性が低下し好ましくない。なお、脂環式構造含有重合体樹脂における脂環式構造を有する繰り返し単位以外の繰り返し単位は、使用目的に応じて適宜選択される。

[0020]

脂環式構造含有重合体樹脂の具体例としては、(i)ノルボルネン系重合体、(ii)単環の環状オレフィン系重合体、(iii)環状共役ジエン系重合体、(iv)ビニル脂環式炭化水素重合体、及びこれらの水素化物等が挙げられる。これらの中でも、透明性や成形性の観点から、ノルボルネン系重合体が好ましい。

[0021]

ノルボルネン系重合体としては、具体的には、ノルボルネン系単量体の開環重合体、ノルボルネン系単量体と開環共重合可能なその他の単量体との開環共重合体、及びそれらの水素化物、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体と共重合可能なその他の単量体との付加共重合体等が挙げられる。これらの中でも、透明性の観点から、ノルボルネン系単量体の開環(共)重合体水素化物が特に好ましい。

[0022]

ノルボルネン系単量体としては、例えば、ビシクロ [2.2.1] ヘプトー2ーエン(慣用名:ノルボルネン)、トリシクロ $[4.3.0.1^2, 5]$ デカー3,7ージエン(慣用名:ジシクロペンタジエン)、7,8ーベンゾトリシクロ $[4.3.0.1^2, 5]$ デカー3ーエン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ $[4.4.0.1^2, 5.1^7, 1^0]$ ドデカー3ーエン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)等を挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、アルコキシカルボニル基、カルボキシル基等を挙げることができる。また、これらの置換基は、同一又は相異なって複数個が環に結合していてもよい。ノルボルネン系単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。

[0023]

ノルボルネン系単量体と開環共重合可能なその他の単量体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテン等のモノ環状オレフィン類及びその誘導体;シクロヘキサジエン、シクロヘプタジエン等の環状共役ジエン及びその誘導体;等が挙げられる。

[0024]

ノルボルネン系単量体の開環重合体及びノルボルネン系単量体とこれと共重合可能なその他の単量体との開環共重合体は、単量体を開環重合触媒の存在下に重合することにより 得ることができる。

開環重合触媒としては、通常使用される公知のものを使用できる。

[0025]

ノルボルネン系単量体と付加共重合可能なその他の単量体としては、例えば、エチレン、プロピレン等の炭素数 $2\sim20$ の α - オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン等のシクロオレフィン及びこれらの誘導体;1 , 4 - ヘキサジエン等の非共役ジエン等が挙げられる。これらの単量体は1 種単独で、あるいは2 種以上を組み合わせて用いることができる。これらの中では、 α - オレフィンが好ましく、エチレンがより好ましい。

[0026]

ノルボルネン系単量体の付加重合体及びノルボルネン系単量体とこれと共重合可能な他の単量体との付加共重合体は、単量体を付加重合触媒の存在下に重合することにより得ることができる。付加重合触媒としては、通常使用される公知のものを使用できる。

[0027]

ノルボルネン系単量体の開環重合体、ノルボルネン系単量体とこれと開環共重合可能なその他の単量体との開環共重合体、ノルボルネン系単量体の付加重合体、及びノルボルネン系単量体とこれと共重合可能なその他の単量体との付加重合体の水素化物は、公知の水素化触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素化することによって得ることができる。

[0028]

単環の環状オレフィン系重合体としては、例えば、シクロヘキセン、シクロヘプテン、 シクロオクテン等の付加重合体を挙げることができる。

また、環状共役ジエン系重合体としては、例えば、シクロペンタジエン、シクロヘキサジエン等の環状共役ジエン系単量体を1, 2 —付加重合又は1, 4 —付加重合した重合体を挙げることができる。

[0029]

ビニル脂環式炭化水素重合体は、ビニルシクロアルカン又はビニルシクロアルケン由来の繰り返し単位を有する重合体である。ビニル脂環式炭化水素重合体としては、例えば、ビニルシクロヘキサン等のビニルシクロアルカン、ビニルシクロヘキセン等のビニルシクロアルケン等のビニル脂環式炭化水素化合物の重合体及びその水素化物;スチレン、αーメチルスチレン等のビニル芳香族炭化水素化合物の重合体の芳香族部分の水素化物等が挙げられる。

[0030]

また、ビニル脂環式炭化水素重合体は、ビニル脂環式炭化水素化合物やビニル芳香族炭化水素化合物と、これらの単量体と共重合可能な他の単量体とのランダム共重合体、ブロック共重合体等の共重合体及びその水素化物であってもよい。ブロック共重合としては、ジブロック、トリブロック、又はそれ以上のマルチブロックや傾斜ブロック共重合等が挙げられるが、特に制限はない。

[0031]

合成樹脂の分子量は、溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いたゲル・パーミエーション・クロマトグラフィーにより測定したポリイソプレン又はポリスチレン換算の重量平均分子量が、通常10,000~300,000、好ましくは15,000~250,000、より好ましくは20,000~200,000の範囲であるときに、基材フィルムの機械的強度及び成形加工性とが高度にバランスされ好適である。

[0032]

前記合成樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよいが、好まし 出証特2005-3009167

[0033]

前記合成樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に 制限されないが、通常 1. $0 \sim 10$. 0、好ましくは 1. $0 \sim 6$. 0、より好ましくは 1 - 1~4.0の範囲である。このような範囲に分子量分布を調整することによって、基材 フィルムの機械的強度と成形加工性が良好にバランスする。

$[0\ 0\ 3\ 4\]$

本発明に用いる基材フィルムは、上記合成樹脂材料を公知の成形方法によりフィルム状 に成形することにより得ることができる。

合成樹脂材料をフィルム状に成形する方法としては、溶液キャスティング法又は、溶融 押出成形法が挙げられる。なかでも、フィルム中の揮発性成分の含有量や厚さむらを少な くできる点から、溶融押出成形法が好ましい。さらに溶融押出成形法としては、Tダイな どのダイスを用いる方法やインフレーション法などが挙げられるが、生産性や厚さ精度に 優れる点でTダイを用いる方法が好ましい。

[0035]

フィルムを成形する方法として、Tダイを用いる方法を採用する場合、Tダイを有する 押出機における合成樹脂の溶融温度は、合成樹脂のガラス転移温度よりも80~180℃ 高い温度にすることが好ましく、100~150℃高い温度にすることがより好ましい。 押出機での溶融温度が過度に低いと合成樹脂の流動性が不足するおそれがあり、逆に溶融 温度が過度に高いと樹脂が劣化する可能性がある。さらに、フィルム状に成形する前に、 用いる合成樹脂を予備乾燥しておくことが好ましい。予備乾燥は、例えば原料をペレット などの形態にして、熱風乾燥機などを用いて行われる。乾燥温度は100℃以上が好まし く、乾燥時間は2時間以上が好ましい。予備乾燥を行うことにより、フィルム中の揮発性 成分量を低減させることができ、さらに押出す合成樹脂の発泡を防ぐことができる。

[0036]

本発明に用いる基材フィルムは、その飽和吸水率が0.05%未満であるものが好まし い。飽和吸水率が0.05%未満であるものを使用することにより、低屈折率層を形成す る際において、水分が放出されて品質が劣化したり、生産性が低下することがない。また 、長期間の使用により、吸湿により基材フィルムが伸縮して、低屈折率層が基材フィルム から剥離することがない。

基材フィルムの飽和吸水率は、JIS K7209に準拠して測定することができる。

[0037]

また基材フィルムとしては、片面又は両面に表面改質処理を施したものを使用すること ができる。表面改質処理を行うことにより、低屈折率層や後述するその他の層との密着性 を向上させることができる。表面改質処理としては、エネルギー線照射処理や薬品処理な どが挙げられる。

[0038]

エネルギー線照射処理としては、コロナ放電処理、プラズマ処理、電子線照射処理、紫 外線照射処理などが挙げられ、処理効率の点等から、コロナ放電処理、プラズマ処理が好 ましく、コロナ放電処理が特に好ましい。薬品処理としては、重クロム酸カリウム溶液、 濃硫酸などの酸化剤水溶液中に、浸漬し、その後充分に水で洗浄すればよい。浸漬した状 態で振盪すると効果的であるが、長期間処理すると表面が溶解したり、透明性が低下した りするといった問題があり、用いる薬品の反応性、濃度などに応じて、処理時間などを調 整する必要がある。

[0039]

基材フィルムの厚みは、通常10~1000μmであるが、透明性および機械的強度の 観点から、好ましくは30~300μm、より好ましくは40~200μmである。

[0040]

本発明の偏光板保護フィルムにおいては、基材フィルムと低屈折率層との間にその他の 層を介在させることができる。その他の層としては、ハードコート層やプライマー層が挙 げられる。

[0041]

ハードコート層は、基材フィルムの表面硬度、耐繰り返し疲労性及び耐擦傷性を補強す る目的で形成される。ハードコート層の形成材料としては、JIS K5400に規定さ れる鉛筆硬度試験で、「2 H」以上の硬度を示すものであれば特に制限されない。例えば 、有機シリコーン系、メラミン系、エポキシ系、アクリル系等の有機系ハードコート材料 二酸化ケイ素等の無機系ハードコート材料;等が挙げられる。なかでも、接着力が良好 であり、生産性に優れる観点から、多官能アクリレート系ハードコート材料の使用が好ま しい。

$[0\ 0\ 4\ 2]$

ハードコート層の形成方法は特に制限されず、例えば、ハードコート層形成用塗工液を 公知の塗工方法により基材フィルム上に塗工して、紫外線を照射し硬化させて形成する方 法が挙げられる。ハードコート層の厚みは特に限定されないが、通常 0.5~30 μm、 好ましくは3~15 μ mである。

[0043]

プライマー層は、基材フィルムと低屈折率層との接着性の付与及び向上を目的として形 成される。プライマー層を構成する材料としては、例えば、ポリエステルウレタン系樹脂 、ポリエーテルウレタン系樹脂、ポリイソシアネート系樹脂、ポリオレフィン系樹脂、主 鎖に炭化水素骨格を有する樹脂、ポリアミド樹脂、アクリル系樹脂、ポリエステル系樹脂 、塩化ビニル・酢酸ビニル共重合体、塩化ゴム、環化ゴム、これらの重合体に極性基を導 入した変性物等が挙げられる。これらの中で、主鎖に炭化水素骨格を有する樹脂の変性物 及び環化ゴムの変性物を好適に用いることができる。

[0044]

主鎖に炭化水素骨格を有する樹脂としては、ポリブタジエン骨格又は少なくともその一 部に水素添加したポリブタジエン骨格を有する樹脂が挙げられ、具体的には、ポリブタジ エン樹脂、水添ポリブタジエン樹脂、スチレン・ブタジエン・スチレンブロック共重合体 (SBS共重合体)、その水素添加物 (SEBS共重合体) 等が挙げられる。なかでも、 スチレン・ブタジエン・スチレンブロック共重合体の水素添加物の変性物を好適に用いる ことができる。

[0045]

重合体の変性物を得るために用いる極性基を導入するための化合物としては、カルボン 酸又はその誘導体が好ましい。例えば、アクリル酸、メタクリル酸、マレイン酸、フマー ル酸等の不飽和カルボン酸;塩化マレイル、マレイミド、無水マレイン酸、無水シトラコ ン酸等の不飽和カルボン酸のハロゲン化物、アミド、イミド、無水物、エステル等の誘導 体;等が挙げられる。これらの中でも、不飽和カルボン酸又は不飽和カルボン酸無水物に よる変性物は、密着性に優れるので、好適に用いることができる。不飽和カルボン酸又は その無水物の中では、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸がより好 ましく、マレイン酸、無水マレイン酸が特に好ましい。これらの不飽和カルボン酸等は、 2種以上を混合して用い、変性することもできる。

[0046]

プライマー層の形成方法は特に制限されず、例えば、プライマー層形成用塗工液を公知 の塗工方法により、基材フィルム上に塗工して形成する方法が挙げられる。プライマー層 の厚みは特に制限されないが、通常 $0.01 \sim 5 \mu m$ 、好ましくは $0.1 \sim 2 \mu m$ である

[0047]

また、前記基材フィルム、ハードコート層およびプライマー層を構成する樹脂材料には 、所望により各種配合剤を添加することができる。配合剤としては、熱可塑性樹脂材料で 通常用いられるものであれば格別な制限はなく、例えば、フェノール系酸化防止剤、リン

酸系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、アクリレート系紫外線吸収剤、金属錯体系紫外線吸収剤等の紫外線吸収剤;ヒンダードアミン系光安定剤等の光安定剤;染料や顔料等着色剤;脂肪族アルコールのエステル、多価アルコールのエステル、脂肪酸アミド、無機粒子等滑剤;トリエステル系可塑剤、フタル酸エステル系可塑剤、脂肪酸ー塩基酸エステル系可塑剤、オキシ酸エステル系可塑剤等の可塑剤;多価アルコールの脂肪酸エステル等の帯電防止剤;等が挙げられる。

[0048]

(低屈折率層)

本発明の偏光板保護フィルムの低屈折率層は、特定の金属酸化物複合体と無機微粒子と を含有し、屈折率が1.25~1.35であることを特徴とする。

[0049]

前記金属酸化物複合体は、下記(a)~(c)からなる群から選ばれる 1 種以上の化合物から形成されたものであって、分子中に、-(O-M) $_m-O-$ (式中、Mは前記と同じ意味を表し、mは自然数を表す。)結合を有するものである。

[0050]

- (a) 式(1): MXn で表される化合物。
- (b) 前記式(1) で表される化合物の少なくとも1種の部分加水分解生成物。
- (c) 前記式(1) で表される化合物の少なくとも1種の完全加水分解生成物。

[0051]

前記(a)の式(1)で表される化合物において、式(1)中、Mは金属原子又は半金属原子を表す。

金属原子又は半金属原子としては、リチウム、ナトリウム、カリウムなどのアルカリ金属;マグネシウム、カルシウム、バリウム、ストロンチウムなどのアルカリ土類金属;ホウ素、アルミニウム、ガリウム、インジウム、タリウムなどの周期律表第3B族元素;ケイ素、ゲルマニウム、スズ、鉛などの周期律表第4B族元素;リン、砒素、アンチモンなどの周期律表第5B族元素;スカンジウム、チタン、バナジウム、鉄、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、タンタル、タングステンなどの遷移金属元素;ランタン、セリウム、ネオジムなどのランタノイド;等が挙げられる。これらの中でも、周期律表第3B族元素、周期律表第4B族元素、遷移金属元素が好ましく、アルミニウム、ケイ素、チタン、ジルコニウムがより好ましく、ケイ素(Si)がさらに好ましい。

$[0\ 0\ 5\ 2]$

Xは、塩素原子、臭素原子などのハロゲン原子;置換基を有していてもよい一価の炭化水素基;酸素原子;酢酸根、硝酸根などの有機酸根;アセチルアセトナートなどの β – ジケトナート基;硝酸根、硫酸根などの無機酸根;メトキシ基、エトキシ基、n – プロポキシ基、n – ブトキシ基などのアルコキシ基;または水酸基を表す。

また、nは前記M(金属原子又は半金属原子)の原子価を表す。nが2以上のとき、Xは同一であっても相異なっていてもよい。

[0053]

これらの中でも、前記式(1)で表される化合物としては、式(2):RaSiY4-a 〔式中、Rは置換基を有していてもよい一価の炭化水素基を表し、aは0~2の整数を表し、aが2のとき、Rは同一であっても相異なっていてもよい。Yは加水分解性基を表し、Yは同一であっても相異なっていてもよい。〕で表されるケイ素化合物が特に好ましい。

[0054]

置換基を有していてもよい一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などのアルキル基;シクロペンチル基、シクロヘキシル基などのシクロアルキル基;フェニル基、4ーメチルフェニル基、1ーナフチル基、2ーナフチル基などの置換基を有していてもよいアリール基;ビニル基、アリル基などのアルケニル基;ベンジル基、フェネチル基、3ーフェニルプ

ロピル基などのアラルキル基;クロロメチル基、γークロロプロピル基、3,3,3ート リフルオロプロピル基などのハロアルキル基;γ-メタクリロキシプロピル基などのアル ケニルカルボニルオキシアルキル基;γ-グリシドキシプロピル基、3.4-エポキシシ クロヘキシルエチル基などのエポキシ基を有するアルキル基;γーメルカプトプロピル基 などのメルカプト基を有するアルキル基;3-アミノプロピル基などのアミノ基を有する アルキル基:などを例示することができる。これらの中でも、合成の容易性、入手容易性 から、炭素数1~4のアルキル基、フェニル基が好ましい。

[0055]

Yは加水分解性基を表す。ここで、加水分解性基は、所望により酸または塩基触媒の存 在下に加水分解して、- (O-Si) m-O-結合を生じせしめる基をいう。

[0056]

加水分解性基の具体例としては、メトキシ基、エトキシ基、プロポキシ基などのアルコ キシ基;アセトキシ基、プロピオニルオキシ基などのアシルオキシ基;オキシム基(-0 -N=C-R'(R"))、エノキシ基(-O-C(R')=C(R")R''')、アミ ノ基、アミノキシ基(-O-N (R') R")、アミド基(-N (R') -C (=O) -R") 等が挙げられる。これらの基において、R'、R"、R", R", それぞれ独立して 水素原子又は一価の炭化水素基を表す。これらの中でも、Yとしては、入手容易性などか らアルコキシ基が好ましい。

[0057]

前記式(2)で表されるケイ素化合物としては、式(2)中、aが0~2の整数である ケイ素化合物が好ましい。その具体例としては、アルコキシシラン類、アセトキシシラン 類、オキシムシラン類、エノキシシラン類、アミノシラン類、アミノキシシラン類、アミ ドシラン類等が挙げられる。これらの中でも、入手の容易さからアルコキシシラン類がよ り好ましい。

[0058]

前記式(2)中、aが0であるテトラアルコキシシランとしては、テトラメトキシシラ ン、テトラエトキシシラン等を例示でき、aが1であるオルガノトリアルコキシシランと しては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポ キシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン等を例示できる。また、aが2であるジオルガ ノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキ シシラン等を例示できる。

[0059]

前記式(1)で表される化合物の分子量は特に制限されないが、40~300であるの が好ましく、100~200であるのがより好ましい。

[0060]

前記(b)の式(1)で表される化合物の少なくとも1種の部分加水分解生成物(以下 、「化合物 (3)」という。)、および (c)の式 (1)で表される化合物の少なくとも 1種の完全加水分解生成物(以下、「化合物(4)」という。)は、前記式(1)で表さ れる化合物の1種またはそれ以上を、全部又は部分的に加水分解、縮合させることによっ て得ることができる。

[0061]

化合物(3)および化合物(4)は、例えば、M(Or)4 (Mは前記と同じ意味を表 し、rは1価の炭化水素基を表す。)で表される金属テトラアルコキシドを、モル比[H 20]/[0r]が1.0以上、例えば1.0~5.0、好ましくは1.0~3.0とな る量の水の存在下、加水分解して得ることができる。

加水分解は、 $5 \sim 100$ Cの温度で、 $2 \sim 100$ 時間、全容を撹拌することにより行う ことができる。

[0062]

前記式(1)で表される化合物を加水分解する場合、必要に応じて触媒を使用してよい。使用する触媒としては、特に限定されるものではないが、得られる部分加水分解物及び /あるいは加水分解物が2次元架橋構造になりやすく、その縮合化合物が多孔質化しやすい点、および加水分解に要する時間を短縮する点から、酸触媒が好ましい。

[0063]

用いる酸触媒としては、特に限定されないが、例えば、酢酸、クロロ酢酸、クエン酸、安息香酸、ジメチルマロン酸、蟻酸、プロピオン酸、グルタール酸、グリコール酸、マレイン酸、マロン酸、トルエンスルホン酸、シュウ酸等の有機酸;塩酸、硝酸、ハロゲン化シラン等の無機酸;酸性コロイダルシリカ、酸化チタニアゾル等の酸性ゾル状フィラー;を挙げることができる。これらの酸触媒は1種単独で、あるいは2種以上を組み合わせて使用することができる。

[0064]

また、前記酸触媒の代わりに、水酸化ナトリウム、水酸化カルシウム等のアルカリ金属あるいはアルカリ土類金属の水酸化物の水溶液、アンモニア水、アミン類の水溶液等の塩基触媒を用いてもよい。

[0065]

化合物 (3) および化合物 (4) の分子量は特に制限されないが、通常、その重量平均分子量が $200\sim5000$ の範囲である。

[0066]

(無機微粒子)

本発明に用いる無機微粒子は無機化合物の微粒子であれば、特に制限されないが、外殻の内部に空洞が形成された無機中空微粒子が好ましく、シリカ系中空微粒子の使用が特に好ましい。

[0067]

無機化合物としては、無機酸化物が一般的である。無機酸化物としては、 SiO_2 、 Al_2O_3 、 B_2O_3 、 TiO_2 、 ZrO_2 、 SnO_2 、 Ce_2O_3 、 P_2O_5 、 Sb_2O_3 、 MoO_3 、 ZnO_2 、 WO_3 等の1種又は2種以上を挙げることができる。2種以上の無機酸化物として、 $TiO_2-Al_2O_3$ 、 TiO_2-ZrO_2 、 $In_2O_3-SnO_2$ 、 $Sb_2O_3-SnO_2$ を例示することができる。これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。

[0068]

無機中空微粒子としては、(A)無機酸化物単一層、(B)種類の異なる無機酸化物からなる複合酸化物の単一層、及び(C)上記(A)と(B)との二重層を包含するものを用いることができる。

[0069]

外殻は細孔を有する多孔質なものであってもよく、あるいは細孔が閉塞されて空洞が外 殻の外側に対して密封されているものであってもよい。

外殻は、内側の第1無機酸化物被覆層及び外側の第2無機酸化物被覆層からなる複数の無機酸化物被覆層であることが好ましい。外側に第2無機酸化物被覆層を設けることにより、外殻の細孔を閉塞させて外殻を緻密化したり、さらには、内部の空洞を密封した無機中空微粒子を得ることができる。

[0070]

外殻の厚みは $1\sim50$ nm、特に $5\sim20$ nmの範囲であるのが好ましい。外殻の厚みが1 nm未満であると、無機中空微粒子が所定の粒子形状を保持していない場合がある。逆に、外殻の厚みが50 nmを超えると、無機中空微粒子中の空洞が小さく、その結果、空洞の割合が減少して屈折率の低下が不十分であるおそれがある。更に、外殻の厚みは、無機中空微粒子の平均粒子径の $1/50\sim1/5$ の範囲にあることが好ましい。

[0071]

上述のように第 1 無機酸化物被覆層および第 2 無機酸化物被覆層を外殻として設ける場合、これらの層の厚みの合計が、上記 $1\sim50$ n mの範囲となるようにすればよく、特に

[0072]

また、空洞には無機中空微粒子を調製するときに使用した溶媒及び/又は乾燥時に浸入する気体が存在してもよいし、後述する空洞を形成するための前駆体物質が空洞に残存していてもよい。

[0073]

前駆体物質は、外殻によって包囲された核粒子から核粒子の構成成分の一部を除去した後に残存する多孔質物質である。核粒子には、種類の異なる無機酸化物からなる多孔質の複合酸化物粒子を用いる。前駆体物質は、外殻に付着してわずかに残存していることもあるし、空洞内の大部分を占めることもある。

[0074]

なお、この多孔質物質の細孔内にも上記溶媒あるいは気体が存在してもよい。このときの核粒子の構成成分の除去量が多くなると空洞の容積が増大し、屈折率の低い無機中空微粒子が得られ、この無機中空微粒子を配合して得られる透明被膜は低屈折率で反射防止性能に優れる。

[0075]

無機中空微粒子の平均粒子径は特に制限されないが、 $5\sim2000$ nmの範囲が好ましく、 $20\sim100$ nmがより好ましい。5 nmよりも小さいと、中空によって低屈折率になる効果が小さく、逆に2000 nmよりも大きいと、透明性が極端に悪くなり、拡散反射による寄与が大きくなってしまう。ここで、平均粒子径は、透過型電子顕微鏡観察による数平均粒子径である。

[0076]

上述のような無機中空微粒子の製造方法は、例えば、特開2001-233611号公報に詳細に記載されており、本発明に使用できる無機中空微粒子は、そこに記載された方法に基づいて製造することができ、また一般に市販されている無機中空微粒子を用いることもできる。

[0077]

無機微粒子の配合量は、特に制限されないが、低屈折率層全体に対して、10~30重量%であるのが好ましい。無機微粒子の配合量がこの範囲であるときに、低屈折率性と耐擦傷性を兼ね備えた偏光板保護フィルムを得ることができる。

[0078]

前記無機微粒子は、分散液の形で用いることもできる。分散液に用いる有機溶媒の種類は、特に限定されるものではないが、例えば、メタノール、エタノール、イソプロパノール(IPA)、n ーブタノール、イソブタノール等の低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコール誘導体;ジアセトンアルコール;トルエン、キシレン等の芳香族炭化水素;n ーへキサン、n ーへプタン等の脂肪族炭化水素;酢酸エチル、酢酸ブチルなどのエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類;などが挙げられる。

これらの有機溶媒は1種単独で、あるいは2種以上を組み合わせて使用することができる。

[0079]

低屈折率層は、前記(a) \sim (c)からなる群から選ばれる1種以上の化合物の少なくとも一種、および無機微粒子の少なくとも一種を含有してなる組成物(以下、「コーティング用組成物」ということがある。)を、基材フィルム上に塗工し、必要に応じて乾燥・加熱処理を施すことにより形成することができる。

[0080]

前記コーティング用組成物は、基材フィルム表面に塗布して塗膜を形成すること、また出証特2005-3009167

[0081]

用いる有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール(IPA)、n-ブタノール、イソブタノール等の低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコール誘導体;ジアセトンアルコール;およびこれらの2種以上からなる組み合わせ;等の親水性有機溶剤が挙げられる。

[0082]

また、前記親水性有機溶剤と併用して、トルエン、キシレンなどの芳香族炭化水素類;n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素;酢酸エチル、酢酸ブチルなどのエステル類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;メチルエチルケトオキシム等のオキシム類;およびこれらの2種以上からなる組み合わせ;などを使用することができる。

[0083]

前記コーティング用組成物は、上記(a)および(b)の化合物を含む場合、硬化触媒を含むのが好ましい。これによって、コーティング用組成物を基材フィルム表面に塗布して塗膜を形成して乾燥する際に、縮合反応が促進されて被膜中の架橋密度が高くなり、被膜の耐水性及び耐アルカリ性を向上させることができる効果を得ることができる。

[0084]

用いる硬化触媒としては、Tiキレート化合物、Zrキレート化合物等の金属キレート化合物;有機酸等が挙げられる。

[0085]

前記コーティング用組成物は、公知のシランカップリング剤を更に含んでいてもよい。 シランカップリング剤を含むことによって、前記コーティング用組成物を用いて基材フィルム上に低屈折率層を形成する場合、基材フィルムと低屈折率層との間の密着性が向上する場合がある。

[0086]

基材フィルム上にコーティング用組成物を塗工する方法は特に制限されず、公知の塗工 法を採用することができる。塗工法としては、ワイヤバーコート法、ディップ法、スプレ ー法、スピンコート法、ロールコート法等が挙げられる。

[0087]

コーティング用組成物の塗膜を得た後は、乾燥し、必要に応じて加熱焼成することにより、低屈折率層を形成することができる。必要に応じて行われる加熱の温度は、通常 50 ~ 200 \mathbb{C} 、好ましくは $80 \sim 150$ \mathbb{C} である。

得られる低屈折率層の厚みは、通常10~1000nm、好ましくは50~500nmである。

[0088]

得られる低屈折率層の屈折率は、1. $25 \sim 1$. 35であり、好ましくは1. $25 \sim 1$. 33である。

低屈折率層の屈折率が1.25未満では、低屈折率層の強度が弱く、偏光板保護フィルムとして求められる所望の耐擦傷性が得られなくなるおそれがある。一方、1.35を越えると、所望の反射防止効果が得られなくなるおそれがある。

屈折率は、例えば、公知の分光エリプソメータを用いて測定して求めることができる。

[0089]

また、該低屈折率層の反射率は、通常 0.5%以下、好ましくは 0.3%である。反射率は、例えば、公知の分光光度計を用い、所定の入射角における反射スペクトルを測定し、波長 550 nmにおける反射率として求めることができる。

[0090]

[0091]

防汚層の形成材料としては、低屈折率層の機能が阻害されず、防汚層としての要求性能が満たされる限り特に制限はない。通常、疎水基を有する化合物を好ましく使用できる。具体的な例としてはパーフルオロアルキルシラン化合物、パーフルオロポリエーテルシラン化合物、フッ素含有シリコーン化合物を使用することができる。防汚層の形成方法は、形成する材料に応じて、例えば、蒸着、スパッタリング等の物理的気相成長法;CVD等の化学的気相成長法;湿式コーティング法;等を用いることができる。 防汚層の厚みは特に制限はないが、通常 20nm以下が好ましく、 $1\sim10nm$ であるのがより好ましい

[0092]

本発明の偏光板保護フィルムは、平均厚み 50μ m、大きさ100mm×100mmのフィルムに成形し、60C、湿度95%の雰囲気下に500時間放置したときの反り率が1%以下であるのが好ましい。このような偏光板保護フィルムを使用する場合には、高湿度・高温下に長時間放置した場合であっても、反り率が1%以下と小さいものとなるので、基材フィルムと低屈折率層との密着性、及び他のフィルムと貼り合わせるときの加工性に優れる。

[0093]

[0094]

また、本発明の偏光板保護フィルムは、耐擦傷性に優れており、特に耐擦傷性が要求される液晶表示装置の偏光板保護フィルムとして有用である。

本発明の偏光板保護フィルムは、スチールウールに 0.05 M P a の荷重をかけた状態で偏光板保護フィルムの表面を 10 回擦る試験(スチールウール試験)後であっても、目視観察において、フィルム表面には全く傷が認められない。

[0095]

本発明の偏光板保護フィルムは、前記スチールウール試験前後の全光線透過率およびへイズ値の変化は極めて小さい。ここで、全光線透過率の変化率(%)=(試験前後の全光線透過率の変化量)/(試験前の全光線透過率)×100で定義すると、本発明の偏光板保護フィルムの全光線透過率の変化率は1%以下であるのが好ましい。

[0096]

また、本発明の偏光板保護フィルムは、前記スチールウール試験前後のヘイズ値の変化は極めて小さい。ここで、ヘイズの変化率(%)=(試験前後のヘイズの変化量)/(試験前のヘイズ)×100で定義すると、本発明の偏光板保護フィルムのヘイズの変化率は15%以下であるのが好ましい。

[0097]

本発明の偏光板保護フィルムの層構成例を図2に示す。図2に示す偏光板保護フィルム20は、基材フィルム10上に形成されたハードコート層12を有し、該ハードコート層12上に中空微粒子14aを含有する低屈折率層14が積層された構造を有している。本

[0098]

本発明の偏光板保護フィルムは、例えば、携帯電話、デジタル情報端末、ポケットベル(登録商標)、ナビゲーション、車載用液晶ディスプレイ、液晶モニター、調光パネル、OA機器用ディスプレイ、AV機器用ディスプレイ等の各種液晶表示素子やエレクトロルミネッセンス表示素子あるいはタッチパネル等の偏光板の保護フィルムとして有用である

[0099]

3) 反射防止機能付偏光板

本発明の反射防止機能付偏光板は、本発明の偏光板保護フィルムを偏光板の保護フィルムの少なくとも一方に用いたことを特徴とする。

[0100]

偏光板としては、偏光板としての機能を有するものであれば、特に限定はされない。例 えば、ポリビニルアルコール(PVA)系やポリエン系の偏光板が挙げられる。

[0101]

偏光板の製造方法は特に限定されない。PVA系の偏光板を製造する方法としては、PVA系フィルムにヨウ素イオンを吸着させた後に一軸に延伸する方法、PVA系フィルムを一軸に延伸した後にヨウ素イオンを吸着させる方法、PVA系フィルムへのヨウ素イオン吸着と一軸延伸とを同時に行う方法、PVA系フィルムを二色性染料で染色した後に一軸に延伸する方法、PVA系フィルムを一軸に延伸した後に二色性染料で吸着する方法、PVA系フィルムへの二色性染料での染色と一軸延伸とを同時に行う方法が挙げられる。また、ポリエン系の偏光板を製造する方法としては、PVA系フィルムを一軸に延伸した後に脱水触媒存在下で加熱・脱水する方法、ポリ塩化ビニル系フィルムを一軸に延伸した後に脱塩酸触媒存在下で加熱・脱水する方法等の公知の方法が挙げられる。

[0102]

本発明の反射防止機能付偏光板は、本発明の偏光板保護フィルムの基材フィルムの低屈 折率層が設けられていない側の一面に、偏光板を積層することにより製造することができ る。

[0103]

偏光板保護フィルムと偏光板との積層は、接着剤や粘着剤等の適宜な接着手段を用いて 貼り合わせることができる。接着剤又は粘着剤としては、例えば、アクリル系、シリコー ン系、ポリエステル系、ポリウレタン系、ポリエーテル系、ゴム系等が挙げられる。これ らの中でも、耐熱性や透明性等の観点から、アクリル系のものの使用が好ましい。

[0104]

本発明の反射防止機能付偏光板においては、偏光板の本発明の偏光板保護フィルムが積層されていない方の面に、接着剤又は粘着剤層を介して、保護フィルムが積層されていてもよい。保護フィルムとしては、光学異方性が低い材料からなるものが好ましい。光学異方性が低い材料としては、特に制限されず、例えばトリアセチルセルロースなどのセルロースエステルや脂環式構造含有重合体などが挙げられるが、透明性、低複屈折性、寸法安定性などに優れる点から脂環式構造含有重合体が好ましい。脂環式構造含有重合体としては、前記基材フィルムの説明部分で記載したものと同様のものが挙げられる。接着剤又は粘着剤としては、偏光板保護フィルムと偏光板との積層に用いる接着剤又は粘着剤と同様のものが挙げられる。

[0105]

本発明の反射防止機能付偏光板の層構成断面図を図3に示す。図3に示す反射防止機能付偏光板30は、本発明の偏光板保護フィルム20の低屈折率層14が設けられていない面側に、接着剤又は粘着剤層16を介して、偏光板18が積層され、さらに偏光板18の他の面側には、接着剤又は粘着剤層16を介して、保護フィルム10aが積層された構造

を有している。

[0106]

本発明の反射防止機能付偏光板は、本発明の偏光板保護フィルムを用いているので、高温・高湿度の環境下に長時間置かれた場合であっても、全体に反りや変形、歪み等が生じ難い構造の偏光板となっている。また、層間密着性に優れており、高温、高湿度下に長時間置かれた場合であっても、層間剥離等が起こることがない。

[0107]

4) 光学製品

本発明の光学製品は、本発明の反射防止機能付偏光板を備えることを特徴とする。本発明の光学製品の好ましい具体例としては、液晶表示装置、タッチパネル、エレクトロルミネッセンス表示装置等が挙げられる。

[0108]

本発明の反射防止機能付偏光板を備える光学製品の一例として、本発明の反射防止機能付偏光板を備える液晶表示装置の層構成例を図4に示す。図4に示す液晶表示装置は、下から順に、偏光板40、位相差板50、液晶セル60、及び本発明の反射防止機能付偏光板30からなる。反射防止機能付偏光板30は、液晶セル60上に、図示を省略する接着剤又は粘着剤層を介して、偏光板面と貼り合わせて形成されている。液晶セル60は、例えば図5に示すように、透明電極70を備えた電極基板80の2枚をそれぞれ透明電極70が対向する状態で所定の間隔をあけて配置するとともに、その間隙に液晶90を封入することにより作製される。図5中、100はシールである。

[0109]

液晶 90 の液晶モードは特に限定されない。液晶モードとしては、例えば、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型、IPS(In-Plane Switching)型、VA(Vertical Alignment)型、MVA(Multi-Domain Vertical Alignment)型、HAN(Hybrid Aligned Nematic)型等が挙げられる。

[0110]

また、図4に示す液晶表示装置は、印加電圧が低い時に明表示、高い時に暗表示である ノーマリーホワイトモードでも、印加電圧が低い時に暗表示、高い時に明表示であるノー マリーブラックモードでも用いることができる。

[0111]

本発明の光学製品は、高温・高湿度下での使用における変形や応力が生じることがなく耐久性に優れる本発明の反射防止機能付偏光板を備える。従って、高温・高湿度下で長時間にわたって使用する場合であっても、表示パネル端部の色抜けや、表示パネル面内の色相のバラツキ等がないものである。

【実施例】

[0112]

次に、実施例により本発明をさらに詳細に説明する。本発明は以下の実施例に限定されるものではない。

[0113]

(1) 屈折率

高速分光エリプソメーター(J. A. Woollam社製、M-2000U)を用いて、測定波長 $245\sim1000$ nm、入射角 55 度、60 度及び 65 度で測定し、その測定値をもとに算出した。

[0114]

(2) 反射率

分光高度計(日本分光(株)製、紫外可視近赤外分光光度計 V-570)を用い、入射角5度にて反射スペクトルを測定し、波長550nmにおける反射率を求めた。

[0115]

(3) 耐擦傷性

スチールウール試験

スチールウール#0000に荷重0.05MPaをかけた状態で偏光板保護フィルムの表面を10回擦る操作を行った(以下、これを「スチール試験」という。)。そして以下の(i)および(ii)の評価を行った。

(i) スチール試験後のフィルムの外観

スチール試験後のフィルムの表面の傷つき具合を目視観察し、以下の評価基準で評価した。

- ◎:傷は認められない。
- ○:注意深く見るとわずかに弱い傷が見える。
- ×:傷が認められる。

[0116]

(ii)スチール試験前後の全光線透過率及びヘイズの変化(ASTM D1003準拠)

日本電色工業 (株) 製「濁度計 NDH-300A」を用いて、ASTM D1003 を準拠して行った。サンプル数5個について行った。

[0117]

(4) 偏光板保護フィルムの反り (変形)

図1に示すように、 $100 \, \text{mm} \times 100 \, \text{mm}$ の試験片を $60 \, \text{C}$ 、 $95 \, \text{R} \, \text{H}% \text{v} 500 \, \text{0}$ 時間放置した後に、下に凸の状態になる向きに水平な定盤上に置き、定盤面と定盤面から最も遠い部分の下側までの距離 $h \, (\text{mm}) \, \text{を} \, \text{J} \, \text{ギスで測定し、} \text{その距離のサンプルの長さに対する割合を反り量(%)とした。すなわち、} <math>h \, \text{/} \, 100 \times 100 = g \, (\%)$ となる。その際、成膜側に凸の反りの場合、反り量をプラス値とし、成膜側に凹の反りの場合、反り量をマイナス値として表した。

[0118]

ノルボルネン系重合体(ノルボルネン系単量体の開環重合体の水素化物、日本ゼオン(株)製、商品名:ZEONOR 1430、ガラス転移温度(Tg) = 145 $\mathbb C$)100 重量部に対して、0.2 重量部のフェノール系老化防止剤ペンタエリスリチルーテトラキス〔3-(3,5-ジーターシャリーブチルー4-ヒドロキシフェニル)プロピオネート〕とを混合し、二軸混練機で混練し、ストランド(棒状の溶融樹脂)をストランドカッターを通してペレット(粒状)状の成形材料を得た。

[0119]

上記で得たペレットを、空気を流通させた熱風乾燥機を用いて110℃で、4時間乾燥した。そしてこのペレットを、リーフディスク形状のポリマーフィルター(ろ過精度30 μ m)を設置した65 mm ϕ のスクリューを備えた樹脂溶融混練機を有するTダイ式フィルム溶融押出し成形機を使用し、内面に表面粗さ \mathbf{R} $\mathbf{a}=0$. 15 μ mのクロムメッキを施した350 mm幅のT型ダイスを用いて溶融樹脂温度260 ℃及びダイス温度260 ℃で押出し、押出されたシート状のノルボルネン系重合体を、第1 冷却ドラム(直径250 mm、温度:135 ℃、周速度 \mathbf{R}_1 :10.05 m/分)に密着させ、次いで第2 冷却ドラム(直径250 mm、温度:125 ℃、周速度 \mathbf{R}_2 :10.05 m/分)、次いで第3 冷却ドラム(直径250 mm、温度:100 ℃、周速度 \mathbf{R}_3 : $\mathbf{9}$ 0 $\mathbf{98}$ m/分)に順次密着させて移送し、長さ $\mathbf{300}$ m、膜厚 $\mathbf{40}$ μ mの基材フィルム $\mathbf{10}$ Aを押出成形した。得られた長尺の基材フィルム $\mathbf{10}$ Aは、ロール状に巻き取った。また、この基材フィルム $\mathbf{10}$ Aの揮発性成分の含有量は $\mathbf{10}$ 0 $\mathbf{10}$ 1 重量%以下、飽和吸水率は $\mathbf{10}$ 0 $\mathbf{10}$ 1 $\mathbf{10}$ 2 $\mathbf{10}$ 3 $\mathbf{10}$ 3 $\mathbf{10}$ 4 $\mathbf{10}$ 5 $\mathbf{10}$

[0120]

(ハードコート剤の調製)

6官能ウレタンアクリレートオリゴマー(新中村化学(株)製、商品名「NKオリゴ U-6HA」)30部、ブチルアクリレート40部、イソボロニルメタクリレート(新中村化学(株)製、商品名「NKエステル IB」)30部、2,2ージメトキシー1,2ージフェニルエタンー1ーオン10部をホモジナイザーで混合して紫外線硬化性樹脂組成

物からなるハードコート剤を調製した。

[0121]

(プライマー溶液の調製)

無水マレイン酸変性スチレン・ブタジエン・スチレンブロック共重合体の水素添加物(旭化成(株)製、タフテックM1913、メルトインデックス値は200℃、5kg荷重で4.0g/10分、スチレンブロック含量30重量%、水素添加率80%以上、無水マレイン酸付加量2%)2部を、キシレン8部とメチルイソブチルケトン40部の混合溶媒に溶解し、孔径1 μ mのポリテトラフルオロエチレン製フィルターをろ過して、完全な溶液のみをプライマー溶液として調製した。

[0122]

(製造例1) ハードコート層積層フィルム2Aの製造

上記で得た基材フィルム 1 Aの両面に、高周波発信機(コレナジェネレーター HV 0 5-2、 T a m e c 社製)を用いて、出力電圧 1 0 0%、出力 2 5 0 Wで、直径 1 . 2 m mのワイヤー電極で、電極長 2 4 0 mm、ワーク電極間 1 . 5 mmの条件で 3 秒間コロナ放電処理を行い、表面張力が 0 . 0 7 2 N/mとなるように表面改質した。この上にハードコート剤としてアクリル系紫外線硬化型樹脂組成物(日本化薬(株)製、商品名:KAYANOVAFOP-5000)を硬化後のハードコート層の膜厚が 5 μ mとなるように、ダイコーターを用いて連続的に塗布した。次いで、80 $\mathbb C$ で 5 分間乾燥させた後、紫外線照射(積算光量 300 m J/c m 2)を行い、ハードコート剤を硬化させ、ハードコート層積層フィルム 2Aを得た。

[0123]

(製造例2) ハードコート層積層フィルム2Bの製造

厚さ 40μ mのトリアセチルセルロース(TAC)フィルム(基材フィルム1B、コニカ・ミノルタ(株)製、KC4UX2M, Tg=120 \mathbb{C} 、飽和吸水率=4.5重量%、揮発成分の含有量=6.0重量%)を用いたほかは製造例1と同様にして、ハードコート層積層フィルム2Bを得た。

[0124]

(製造例3) ハードコート層積層フィルム2Cの製造

厚さ 40μ mのポリエチレンテレフタレートフィルム(基材フィルム1C、東レ(株)製、ルミラーT60)を用いたほかは、製造例1と同様にして、ハードコート層積層フィルム2Cを得た。

[0125]

(製造例4) コーティング用組成物1の調製

テトタメトキシシランのオリゴマー(コルコート(株)製、メチルシリケート51)と、メタノール、水、0.01Nの塩酸水溶液を質量比21:36:2:2で混合し、これを25 $\mathbb C$ の高湿槽中で2時間撹拌して、重量平均分子量を850に調整したシリコーンレジンを得た。次に、中空シリカ微粒子として中空シリカイソプロパノール分散ゾル(触媒化成(株)製、固形分20 重量%、平均一次粒子径約35 nm、外殼厚み約8 nm)を前記シリコーンレジンに加え、中空シリカ微粒子/シリコーンレジン(縮合化合物換算)が固形分基準で重量比が7:3 となるように配合し、その後、全固形分が1 重量%となるようにメタノールで希釈し、コーティング用組成物1 を得た。

[0126]

(製造例 5)コーティング用組成物 2 の調製

中空シリカ微粒子/シリコーンレジン(縮合化合物換算)が固形分基準で重量比が8:2となるように配合し、更に、外殻の内部に空洞が形成されていないシリカ微粒子としてシリカメタノール(日産化学工業(株)製、PMA-ST、平均粒子径10~20 nm)を用い、これをコーティング用組成物の全固形分に対してSiO2 換算固形分で5%添加するようにした以外は、コーティング用組成物1の調製と同様にしてコーティング用組成物2を調製した。

[0127]

(製造例6) シリコンアルコキシド溶液1の調製

テトラメトキシシランのオリゴマー(コルコート(株)製、メチルシリケート51)と、メタノールを質量比で47:71で混合してA液を調製した。また、水、アンモニア水(28重量%)、メタノールを重量比で60:1.2:97.2で混合してB液を調製した。そして、A液とB液を16:17の比で混合してシリコンアルコキシド溶液1を調製した。

[0128]

(製造例7) シリコンアルコキシド溶液2の調製

A液を調製する際、テトラメトキシシランのオリゴマーとメタノールを重量比47:79で混合するほかは、製造例6と同様にしてシリコンアルコキシド溶液2を調製した。

[0129]

(実施例1)

製造例 4 で得られたコーティング用組成物 1 を 1 時間放置した後に、この組成物 1 を、ハードコート層積層フィルム 2 A上にワイヤバーコーターによって塗工して厚さ約 1 0 0 n mの塗膜を形成し、さらに 1 時間放置して乾燥した後に、被膜を 1 2 0 $\mathbb C$ で 1 0 分間空気中で熱処理して、硬化被膜が形成された積層フィルム 3 A を得た。

[0130]

(実施例2)

製造例5で得られたコーティング用組成物2を用いたほかは実施例1と同様にして、硬化被膜が形成された積層フィルム3Bを得た。

[0131]

(実施例3)

製造例2のハードコート積層フィルム2Bを用いたほかは実施例2と同様にして、硬化被膜が形成された積層フィルム3Cを得た。

[0132]

(実施例4)

製造例3のハードコート積層フィルム2Cを用いたほかは実施例2と同様にして、硬化被膜が形成された積層フィルム3Dを得た。

[0133]

(比較例1)

製造例6で得られたシリコンアルコキシド溶液1を、混合開始後1分経過した時点で、製造例2のハードコート層積層フィルム2B上に滴下し、スピンコーティングした。スピンコーターの回転室はメタノール雰囲気になるようにしてあり、回転は700rpmで10秒行った。コーティングの後、1分15秒放置してシリコンアルコキシドがゲル化した薄膜を得た。

このゲル状薄膜を5分間、水と28%アンモニア水とメタノールを質量比で162:4 :640で混合した組成の養生溶液中に浸漬し、室温で一昼夜養生した。さらにこの薄膜をヘキサメチルジシラザンの10%イソプロパノール溶液中に浸漬し、疎水化処理を行った。

次に、この疎水化処理したゲル状化合物をイソプロパノール中に浸漬することにより洗浄し、高圧容器に入れ、液化炭酸ガスで満たし、80 $\mathbb C$ 、16 MPa、2 時間の条件で超臨界乾燥することによって、表面に膜厚100 nmのシリカエアロゲル薄膜が形成された積層フィルム3 E を得た。

$[0\ 1\ 3\ 4\]$

(比較例2)

低屈折率層を形成する際に、製造例7で得られたシリコンアルコキシド溶液2を用いる他は比較例1と同様にして積層フィルム3Fを得た。

[0135]

上記で得た実施例 $1 \sim 4$ の積層フィルム 3 A ~ 3 D、及び比較例 1 , 2 の積層フィルム 3 E , 3 F を使用して、低屈折率層の屈折率、反射率、スチール試験後のフィルムの外観

、スチールウール試験前後における全光線透過率およびヘイズ、並びに積層フィルムの反り (%) を測定した。積層フィルム 3 A ~ 3 F についての測定結果を第1表にまとめた。

[0136]

【表1】

第1表

72 / 30									
	偏光板保護	低屈折率層の		スチール試験後の フィルムの外観	スチールウール試験前		スチールウール試験後		フィルムの反り
	フィルム	屈折率			全光線透過率(%)	ヘイズ(%)	全光線透過率(%)	ヘイズ(%)	(%)
実施例1	2A	1.28	0.2	0	95.5	0.47	95.0	0.52	0.6
実施例2	28	1.25	0.2	0	96.2	0.51	95.3	0.55	0.5
実施例3	2C	1.25	0.3	0	94.9	0,55	94.4	0.58	0.9
実施例4	2D	1.25	0.2	0	95.7	0.49	94.9	0.53	1,0
比較例1	2E	1.23	0.2	×	94.6	0.38	93.3	5.38	0,6
比較例2	2F	1.40	1,5	0	94.4	0.32	94.3	0.40	0.7

[0137]

第1表より、実施例 $1\sim4$ の積層フィルム $3A\sim3$ Dは低屈折率層の屈折率が低く、反射率も小さいものであり、反射防止機能を有する光学フィルムとして有用であることが示唆される。

実施例 1~4の積層フィルム 3 A~3 Dは、スチールウール試験後の目視観察において 表面に傷が全く認められず、スチールウール試験前後における全光線透過率およびヘイズ 値の変化が小さいものであって、耐擦傷性に優れている。

また実施例1~4の積層フィルム3A~3Dは、フィルムの反りも小さいものである。

[0138]

一方,比較例1の積層フィルム3Eは低屈折率層の屈折率が低く、反射率も小さいものであり、反射防止機能を有する光学フィルムとして有用であることが示唆されるが、スチールウール試験後において、ヘイズ値が大きくなっており、耐擦傷性に劣る。

また、比較例2の積層フィルム3Fは、スチールウール試験前後における全光線透過率 およびヘイズ値の変化が小さく、耐擦傷性に優れているものの、低屈折率層の屈折率およ び反射率が大きく、反射防止機能に劣る。

[0139]

(実施例5~8、比較例3,4)液晶表示素子の作製

(1) 反射防止機能付偏光板の製造

重合度 2400、厚さ 75μ mのポリビニルアルコールフィルムを、ヨウ素とヨウ化カリウム配合の 40 Cの染色浴に浸漬して染色処理を行った後、ホウ酸とヨウ化カリウムを添加した 60 Cの酸性浴中で総延伸倍率が 5.3 倍となるように延伸処理と架橋処理を行った。水洗処理した後、40 Cで乾燥して、厚さ 28μ mの偏光板を得た。

[0140]

実施例1で得た積層フィルム3Aの基材フィルム1A面側に、アクリル系接着剤(住友スリーエム社製、「DP-8005クリア」)を介して、上記偏光板を貼り合わせ、また偏光板のもう片方の面側に、アクリル系接着剤を介して、表面改質した基材フィルム1Aを貼り合わせて、図3に示すものと同様の層構成を有する反射防止機能付偏光板4Aを作製した。また、積層フィルム3B~3Fを用いて同様の操作を行って、反射防止機能付偏光板4B~4Fをそれぞれ得た。

[0141]

(2)液晶表示素子の作製

 色相のばらつきを目視観察した。パネル端部付近での光漏れがなく、均一な黒表示が得られた場合を○、パネル端部付近で多少の光漏れが見られた場合を△、パネル端部から離れたところ(パネル面内)でも光漏れが見られ、色相のばらつきが見られた場合を×として評価した。評価結果を第2表に示す。

[0142]

【表2】

第 2 表

	反射防止機能付 偏光板	偏光板の下面に積層す る基材フィルム	表示性能
実施例5	4A	1A	0
実施例6	4B	1A	0
実施例7	4C	1B	0
実施例8	4D	1C	0
比較例3	4E	1B	Δ
比較例4	4F	1B	Δ

[0143]

第2表から、実施例5~8の液晶表示素子は、高温・高湿度の環境下に長時間置かれた場合であっても、表示性能の低下が認められない。一方、比較例3,4の液晶表示素子は、高温・高湿度の環境下に長時間置かれた後にあっては、表示性能の低下が認められる。 【図面の簡単な説明】

[0144]

- 【図1】基材フィルムを構成する合成樹脂の反り率を測定する方法を示す図である。
- 【図2】本発明の偏光板保護フィルムの層構成断面図である。
- 【図3】本発明の反射防止機能付偏光板の層構成断面図である。
- 【図4】本発明の反射防止機能付偏光板を液晶表示セルに貼り合せた層構成断面図である。
- 【図5】図4に示す液晶表示セルの層構成断面図である。

【符号の説明】

[0145]

1…フィルム成形物、2…定盤、10…基材フィルム、10a…保護フィルム、12…ハードコート層、14…低屈折率層、14a…無機中空微粒子、16…接着剤層、18…偏光膜、20…偏光板保護フィルム、30…反射防止機能付偏光板、40…偏光板、50…位相差板、60…液晶セル、70…透明電極、80…電極基板、90…液晶、100…シール

【書類名】要約書

【要約】

【課題】

反射防止効果を有する低屈折率層を有し、偏光板の保護フィルムとして十分な耐擦傷性を有し、かつ、偏光板との貼り合わせの際におけるフィルムの反りが少ない偏光板保護フィルム、反射防止機能付偏光板及び光学製品を提供する。

【解決手段】

基材フィルムと、該基材フィルム上に、式(1): MX_n (式中、Mは金属原子又は半金属原子を表し、Xはアルコキシ基等を表し、nはMの原子価を表す。)で表される化合物、又は前記式(1)で表される化合物の部分若しくは完全加水分解生成物から形成された、分子中に、-(O-M) $_m-O-$ (式中、Mは前記と同じ意味を表し、mは自然数を表す。)結合を有する金属酸化物複合体と無機微粒子とを含有し、屈折率が1.25~1.35の層である、低屈折率層とを有する偏光板保護フィルム、この偏光板保護フィルムを用いる反射防止機能付偏光板、並びにこの反射防止機能付偏光板を備える光学製品。

【選択図】なし。

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-435074

受付番号

50302152609

書類名

特許願

担当官

第二担当上席

0091

作成日

平成16年 1月 5日

<認定情報・付加情報>

【提出日】

平成15年12月26日

特願2003-435074

出願人履歴情報

識別番号

[0000229117]

1. 変更年月日 [変更理由]

1990年 8月22日

住所氏名

新規登録 東京都千代田区丸の内 2 丁目 6 番 1 号

日本ゼオン株式会社