Exercise 9

Sindre Hansen

April 26, 2016

1 Task 1

1.1 Why do we assign priorities to tasks?

We assign priorities to establish a hierarchy of importance. Processes that pertain to the OS, kernel, etc should have a higher priority than user-generated processes.

1.2 What features must a scheduler have for it to be usable for real-time systems?

For a scheduler to be useful in analysis of the system it needs to be predictable.

2 Task 2

2.1 Without priority inheritance

Task	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a					Ε							Q	V	Ε	
b			\mathbf{E}	V		V	\mathbf{E}	\mathbf{E}	\mathbf{E}						
\mathbf{c}	\mathbf{E}	Q								Q	Q				\mathbf{E}

2.2 With priority inheritance

Task	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a					Е			Q		V	Ε				
b			\mathbf{E}	V					V			\mathbf{E}	\mathbf{E}	\mathbf{E}	
$^{\mathrm{c}}$	\mathbf{E}	Q				Q	Q								\mathbf{E}

3 Task 3

3.1 Priority inversion

3.1.1 What is priority inversion?

If a high-priority task and a low-priority task shares the same resource, the high-priority task can end up waiting for the low-priority task, this is called priority inversion.

3.1.2 What is unbounded priority inversion?

Unbounded priority inversion is when another task is preventing the lowpriority task from releasing the resource, and the high-priority task ends up waiting forever.

3.2 Does priority inheritance avoid deadlocks?

Priority inheritance does not prevent deadlocks.

4 Task 4

4.1 The simple task model

Assumptions:

- Tasks that are periodic, and with known times.
- A fixed set of tasks
- No overhead
- Independent tasks

Most of these fairly realistic, but some require some workaround.

4.2 Utilization test

For the task set to be schedulable $U \leq n(2^{\frac{1}{n}}-1)$ needs to be true. Utilization test:

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} = \frac{5}{20} + \frac{10}{30} + \frac{15}{50} = \frac{53}{60} \approx 0.8833$$

$$n(2^{\frac{1}{n}} - 1) = 3(2^{\frac{1}{3}} - 1) \approx 0.7798$$
$$0.8833 \nleq 0.7798$$

The test fails, so we do not know if the task set is schedulable.

4.3 Response-time analysis

4.3.1 Task c

$$w_0 = 5$$

$$R_c = 5 \le 20 \tag{1}$$

4.3.2 Task b

$$w_{0} = 10$$

$$w_{1} = 10 + \left\lceil \frac{10}{20} \cdot 5 \right\rceil = 15$$

$$w_{2} = 10 + \left\lceil \frac{15}{20} \cdot 5 \right\rceil = 15$$

$$R_{b} = 15 \le 30$$
(2)

4.3.3 Task a

$$w_{0} = 15$$

$$w_{1} = 15 + \left\lceil \frac{15}{30} \cdot 10 \right\rceil + \left\lceil \frac{15}{20} \cdot 5 \right\rceil = 30$$

$$w_{2} = 15 + \left\lceil \frac{30}{30} \cdot 10 \right\rceil + \left\lceil \frac{30}{20} \cdot 5 \right\rceil = 35$$

$$w_{3} = 15 + \left\lceil \frac{35}{30} \cdot 10 \right\rceil + \left\lceil \frac{35}{20} \cdot 5 \right\rceil = 45$$

$$w_{4} = 15 + \left\lceil \frac{45}{30} \cdot 10 \right\rceil + \left\lceil \frac{45}{20} \cdot 5 \right\rceil = 50$$

$$w_{5} = 15 + \left\lceil \frac{50}{30} \cdot 10 \right\rceil + \left\lceil \frac{50}{20} \cdot 5 \right\rceil = 50$$

$$R_{a} = 50 \le 50$$
(3)

From (1), (2) and (3) we can conclude that the task set is schedulable. The reason that the results from task 2 and this one are in disagreement is because the utilization test is only sufficient, not necessary. However, the response-time analysis is both sufficient and necessary.