КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Разбор заданий: материал 6

Решение сравнений первой степени с одним неизвестным

Данный материал демонстрирует разбор задания, посвященного решению сравнений первой степени с одним неизвестным.

Сравнением первой степени с одним неизвестным называется сравнение вида $ax = b \pmod{m}$, где x является неизвестным.

Сравнения в кольце целых чисел равносильны уравнениям в кольце классов вычетов по соответствующему модулю.

Существует три возможных случая решения сравнения первой степени с одним неизвестным:

- если HOД(a, m) = 1, то множеством решений является класс вычетов $a^{-1} \cdot b \in \mathbb{Z}_m$;
- если HOД(a, m) = d > 1 и $d \nmid b$, то решений не существует;
- если $\mathrm{HOД}(a,m)=\mathrm{d}>1$ и d|b, то множеством решений являются d классов вычетов по модулю m, образующих один класс вычетов по модулю $d\colon \ \tilde{a}^{-1}\cdot \tilde{b}\in \mathbb{Z}_{\tilde{m}};$ $\left(\tilde{a}^{-1}\cdot \tilde{b}+\tilde{m}\right)\in \mathbb{Z}_{\tilde{m}};\ldots, \left(\tilde{a}^{-1}\cdot \tilde{b}+\tilde{m}(d-1)\right)\in \mathbb{Z}_{\tilde{m}}.$

В том случае, если сравнение первой степени с одним неизвестным имеет решение, для его нахождения необходимо вычислить $a^{-1} \pmod{m}$ (или же $\tilde{a}^{-1} \pmod{\tilde{m}}$). Для этого необходимо использовать расширенный алгоритм Евклида.

Пример.

Решить сравнение $112x \equiv 9 \pmod{423}$.

Решение.

Сначала необходимо определить, какому из трех возможных случаев соответствует данное сравнение первой степени с одним неизвестным. Для этого найдем наибольший общий делитель чисел 112 и 423. В общем случае для этого целесообразно воспользоваться расширенным алгоритмом Евклида. Можно ограничиться алгоритмом Евклида, однако если HOJ(112,423) окажется равным единице, то для дальнейшего решения понадобится $112^{-1} \pmod{423}$, поэтому лучше использовать расширенный алгоритм.

Соответствующие вычисления приведены в таблице ниже.

q	r	x	у	а	b	x_2	x_1	y_2	y_1
	_	_	_	423	112	1	0	0	1
3	87	1	-3	112	87	0	1	1	-3
1	25	-1	4	87	25	1	-1	-3	4
3	12	4	-15	25	12	-1	4	4	-15
2	1	-9	34	12	1	4	-9	-15	34
12	0	112	-423	1	0	-9	112	34	-423

Из таблицы следует, что HOД(112,423) = 1. Следовательно, данное сравнение относится к первому случаю, когда множеством решений является класс вычетов $a^{-1} \cdot b \in \mathbb{Z}_m$. Из этой же таблицы следует, что $112^{-1} \pmod{423} = 34$.

Тогда
$$x = 34 \cdot 9 \pmod{423} = 306$$
.

Если подставить полученное значение в исходное выражение, то можно убедиться, что оно действительно является решением данного сравнения первой степени с одним неизвестным:

$$112 \cdot 306 = 34272 = 9 \pmod{423}$$
.

Московский институт электроники и математики им. А.Н. Тихонова