Ahsanullah University of Science and Technology

Department of Computer Science and Engineering 4thYear, 1st Semester, Semester Final Examination (Spring-2017)

Course No: CSE 4125

Course Title: Distributed Database Systems

Time: 3 Hours

Full Marks: 70

- PART A contains 5 (Five) questions (no. 1 to 5). Answer any 3 (Three) of them.
- PART B contains 2 (Two) questions (no. 6 and 7). Answer ALL of them.
- Marks allotted are indicated in the right margin within '[]'.

PART - A

(a) Compare the features of distributed and centralized database.

[6]

(b) Provide descriptions with appropriate diagrams of -

 $[3 \times 2 = 6]$

- i. A distributed database on geographically dispersed locations.
- ii. A distributed database on a local network.
- iii. A database with multiprocessor system.
- (c) Provide a diagram showing all the components of a distributed database management system.

[2]

2. (a) Describe the ISO/ OSI reference architecture.

(b) Define relational schema, grade and tuple with proper examples.

[3]

[3]

(c) Consider the following relations.

ACCOUNT

ACC_ID	ACC_NAME	BRANCH_ID
111	Red	001
112	Green	002
113	Blue	001
114	Yellow	001
115	White	003

BRANCH

BRANCH_ID	LOCATION
001	dhk
002	dhk
003	ctg
004	ctg

Horizontal fragmentation is defined by the following fragmentation schema.

 $ACCOUNT_1 = SL_{BRANCH_ID="001"} ACCOUNT$

 $ACCOUNT_2 = SL_{BRANCH_ID="002"} ACCOUNT$

[5]

[5]

[4]

[4]

- i. Verify the completeness, reconstruction and disjointness conditions for the above fragmentation.
- ii. Write a fragmentation schema to derive the horizontal fragmentation of ACCOUNT from BRANCH (based on LOCATION).
- 3. (a) Consider the global relational schema *R* (*ID*, *NAME*, *GENDER*, *AGE*), given the following fragmentation schema:

$$R_1^1 = PJ_{ID. NAME} R$$

$$R_2^2 = PJ_{ID, GENDER, AGE} R$$

$$R_3^1 = SL_{GENDER=M}(PJ_{ID, GENDER, AGE}R)$$

$$R_4^2 = SL_{GENDER=F}(PJ_{ID, GENDER, AGE}R)$$

$$R_5^3 = PJ_{ID, AGE}(SL_{GENDER=M}(PJ_{ID, GENDER, AGE}R))$$

$$R_6^3 = SL_{AGE > 20}(PJ_{ID, AGE}(SL_{GENDER=M}(PJ_{ID, GENDER, AGE}R)))$$

$$R_7^4 = SL_{AGE \le 20}(PJ_{ID, AGE}(SL_{GENDER=F}(PJ_{ID, GENDER, AGE}R)))$$

$$R_8^3 = SL_{AGE > 20}(PJ_{ID, AGE}(SL_{GENDER=F}(PJ_{ID, GENDER, AGE}R)))$$

$$R_9^4 = SL_{AGE \le 20}(PJ_{ID, AGE}(SL_{GENDER=M}(PJ_{ID, GENDER, AGE}R)))$$

- i. Draw the fragmentation tree.
- ii. Show the allocation of the fragments to the physical images at different sites. How many of them are non-redundant allocation?
- (b) Explain two different ways to build mixed fragmentation with appropriate diagrams.
- 4. (a) Consider the following relation:

Product	Warranty (months)	Price (thousands)
Laptop	24	70
Phone	12	20
Watch	6	· 10
Tablet	12	30

The following min-term predicates for the above relation are given:

$$m_1: Product = Tablet \land Warranty < 12 \land Price \ge 20$$

$$m_2$$
: Product = Laptop \land Warranty ≥ 12 \land Price ≥ 20

$$m_3$$
: Product = Tablet \land Warranty < 12 \land Price < 20

$$m_4: Product \neq Laptop \land Warranty \geq 6 \land Price \geq 32$$

$$m_5$$
: Product \neq Tablet \land Warranty $< 6 \land$ Price < 20

[5]

[5]

Generate the set P of all possible simple predicates for m_1 to m_5 .

(b) Evaluate the following expression using the rules of qualified relation. Show the steps and indicate the rules applied.

$$[M:qm]$$
 DF $(([R:qr]UN[S:qs])JN_F([M:qm]CP[S:qs]))$

(c) Consider the following relational schema:

DEPT (DEPTNUM, NAME, AREA, MGRNUM)
SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)

Find the invalid operator trees from the following trees $(Q_1, Q_2 \text{ and } Q_3)$. State the reason behind your answer.

5. (a) Consider the following distributed database with the relations R, S and T over a network.

Let the system dependent constants be $C_0=0$ and $C_1=1$, and suppose, the following things are known.

$$size(R) = 50$$
; $card(R) = 100$; $val(a[R]) = 50$; $size(a) = 2$

$$size(S) = 20$$
; $card(S) = 50$; $val(b[S]) = 50$; $size(b) = 2$

$$size(T) = 10;$$
 $card(T) = 50;$ $val(c[T]) = 50;$ $size(c) = 2$

R
$$SJ_{a=b}$$
 S has selectivity $\rho = 0.1$

S
$$SJ_{b=a}$$
 R has selectivity $\rho = 0.9$

$$T SJ_{c=b} S$$
 has selectivity $\rho = 0.5$

$$S S I_{b=c} T$$
 has selectivity $\rho = 0.5$

The query we want to perform, $Q: (RJN_{a=b}S)UN(TJN_{c=b}S)$.

Give the total transmission cost of performing Q at site s using the semi-join program and without [5+5+1=11]the semi-join program. Which one is the best solution?

(b) Define transaction recovery, crash recovery and commitment.

[3]

PART - B

(a) Consider the following global query:

$$(((SL_{F1}R \ JN_{A=B} \ S) DF (SL_{F2}R \ JN_{A=B} \ S)) NJN ((R \ JN_{A=B} \ S) UN (SL_{F3}R \ JN_{A=B} \ S)))$$

$$UN (SL_{F1} \ AND \ NOT \ F2}(R \ JN_{A=B} \ S))$$

i. Draw the operator tree.

- [2]
- ii. Perform step-by-step transformations to simplify the operator tree, indicating which rule and criterion is applied at each step.
- iii. Write the query from the obtained simplified tree.

[2]

[3]

[5]

- Transform the simplified query into fragment query by applying canonical expression. Say, R iv. has three fragments, R_1 , R_2 , R_3 , and S has two fragments S_1 , S_2 .
 - [2]

(b) Prove the following rule of qualified relation:

$$[A:a]SJ_P[B:b] \Rightarrow [ASJ_PB:aANDbANDP]$$

(a) Four fragments R, S, M and T of a relation are given. We want to perform the following query.

Q:
$$(PJ_a(\mathbf{R}\ UN\ \mathbf{S})) M_{a=a} (SL_{m=value}(\mathbf{M}\ UN\ \mathbf{T}))$$

Database profiles are provided below.

e profiles are provided below.

$$card (R) = 300$$

$$site(R) = 1$$

$$a \quad b \quad c \quad d$$

$$size \quad 6 \quad 7 \quad 2 \quad 10$$

$$val \quad 300 \quad 1000 \quad 30 \quad 50$$

$$cord (S) = 1$$

$$site(S) = 4$$

$$a \quad b \quad c \quad d$$

$$size \quad 6 \quad 7 \quad 2 \quad 10$$

$$val \quad 100 \quad 10 \quad 20 \quad 15$$

$$card(T) = 2000$$
 $card(M) = 2000$
 $site(T) = 3$
 $site(M) = 2$
 a
 a
 a
 n
 $size$
 6
 5
 4
 a
 a
 a
 $size$
 6
 5
 4
 a
 a

Assume that, the result of (R UN S) has no duplicate values for the attribute a, and the same property stands for (M UN T).

Now answer the following questions.

i. If attribute a is the primary key of S, then card
$$(S) = ? \setminus 0$$

ii.
$$size(RSJ_{a=a}M) = ?$$

$$\bigcap$$
 For the simple selection $SL_{m} = value$ (M UN T), estimate the selectivity ρ .

- Estimate the cardinality of the result of Q. Indicate the formulas applied. iv.
- Estimate the total size of data in the result of Q. Indicate the formulas applied. ٧.
- (b) Write a reducer program for the query Q mentioned in 7(a) to optimize the corresponding operator [4] tree. Draw the obtained optimization graph.

cord (M UNT)
$$= \operatorname{cord}(M) + \operatorname{cord}(T)$$

$$= 4000$$

$$= 9x + 6000$$
Page 5 of 5
$$= \frac{1}{5}$$

[1]

[2]

[2]

[3]

[2]