Математический анализ

4. Ряды

Исследуйте на сходимость ряд $\sum_{n=1}^{\infty}(-1)nn\sum_{n=1}^{\infty}\{\inf y\}$ $\frac{(-1)^n}{n}\sum_{n=1}^{\infty}(-1)n$.

Решения

4. Ряды

Ряд $\sum_{n=1}^{\infty}(-1)$ nn\sum_{n=1}^{\infty} \frac{(-1)^n}{n} $\sum_{n=1}^{\infty}(-1)$ n сходится по признаку Лейбница (чередующийся ряд с убывающими по модулю членами).

объяснение

Для исследования на сходимость ряда $\Sigma n=1\infty(-1)$ nn\sum_{n=1}^{\infty} \frac{(-1)^n}{n}\sum_{1}n=1\infty n(-1)n применим признак Лейбница. Признак Лейбница гласит, что чередующийся ряд $\Sigma (-1)$ nan\sum (-1)^n a_n $\Sigma (-1)$ nan (где an>0a_n > 0an>0) сходится, если выполняются следующие условия:

- 1. Последовательность $\{an\}\setminus\{a_n\setminus\}\{an\}$ монотонно убывает, то есть $an+1\le ana_{n+1}\setminus ana_{n+1}$ \leq a $nan+1\le an$ для всех nnn.
- 2. $\lim_{n\to\infty} an=0 \lim_{n\to\infty} \{n \setminus \{n \in \{n\}\}\}$ a $n=0 \lim_{n\to\infty} an=0$.

В нашем случае an=1na $n = \frac{1}{n}an=n1$. Проверим эти условия:

1. Убывание последовательности {an}\{a n\}{an}

Последовательность an=1na_n = $\frac{1}{n}$ an=n1 является убывающей. Действительно, 1n+1<1n\frac{1}{n+1} < \frac{1}{n}n+11<n1 для всех n≥1n \geq 1n≥1. Это очевидно, поскольку при увеличении ппп знаменатель увеличивается, а дробь уменьшается.

2. Предел последовательности {an}\{a n\}{an}

Рассмотрим предел $\lim_{n\to\infty}1$ \lim_{n \to \infty} \frac{1}{n}\limn→∞n1:

$$limn \rightarrow \infty 1 \\ n = 0 \\ lim_{n \to \infty} \\ limn = 0 \\ limn = 0$$

Так как оба условия признака Лейбница выполнены, ряд $\sum n=1\infty(-1)$ nn\sum_{n=1}^{\infty}\frac{(-1)^n}{n} $\sum n=1\infty(-1)$ n сходится.

Итог

Pяд $\sum n=1\infty(-1)$ nn\sum_{n=1}^{\infty} \frac{(-1)^n}{n} $\sum n=1\infty n(-1)$ n сходится по признаку Лейбница, так как последовательность 1n\frac{1}{n}n1 является убывающей и стремится к нулю при $n\to\infty n$ \to \inftyn $\to\infty$.