Metodi Matematici per la Fisica

Riassunto del programma d'esame

Matteo Herz

Indice

1	Inte	egrali	2
	1.1	Integrali trigonometrici	2
	1.2	Integrali sulla retta reale	2
2	Equ	nazioni differenziali omogenee a paramentri non costanti	2
	2.1	Soluzione nell'intorno di un punto regolare	
	2.2	Soluzione nell'intorno di una singolarità fuchsiana	2
3	Fuo		2
	3.1	Serie di Fourier	2
	3.2	Trasformata di Fourier	2
	3.3	Antitrasformata di Fourier	2
4	Lap	place	2
	4.1	Trasformata di Laplace	2
	4.2	Antitraformata di Laplace	
		Equazioni differenziali - Metodo di Laplace	

1 Integrali

- 1.1 Integrali trigonometrici
- 1.2 Integrali sulla retta reale

2 Equazioni differenziali omogenee a paramentri non costanti

- 2.1 Soluzione nell'intorno di un punto regolare
- 2.2Soluzione nell'intorno di una singolarità fuchsiana

3 **Fuorier**

Data L in \mathbb{R} si definisce serie di Fourier di coefficienti $a_n \in \mathbb{C}$ la serie di funzioni

$$\sum_{n=-\infty}^{+\infty} a_n \frac{e^{ik_n x}}{\sqrt{L}} \quad k_n = \frac{2\pi}{L} nl$$

3.1 Serie di Fourier

3.2 Trasformata di Fourier

C.D.E. Affinché $\mathscr{F}[f(x)]$ esista finita è condizione sufficiente che f(x) sia sommabile. Inoltre il Teorema di Dirichlet assicura come nel caso della serie di Fourier, la convergenza puntuale della trasformata a $f(x_0)$ nei punti in cui f(x) è continua e a metà dei punti di discontinuità dove f(x)presenta dei salti.

Dunque affinché f(x) sia sommabile devono essere rispettate due condizioni:

$$\lim_{x \to x_0} (x - x_0) f(x) = 0 \qquad \forall x_0 \in]-\infty, +\infty[$$

$$\lim_{x \to x_0} x f(x) = 0$$
(2)

$$\lim_{x \to \pm \infty} x f(x) = 0 \tag{2}$$

Più in generale però esistono funzioni non sommabili che ammettono trasformata di Fourier. Un esempio molto importante è la funzione:

$$f(x) = \frac{\sin(x)}{x} \implies \mathscr{F}_k[f(x)] = \begin{cases} \sqrt{\frac{1}{2}} & |x| < 1\\ \frac{1}{2}\sqrt{\frac{1}{2}} & |x| = 1\\ 0 & |x| > 1 \end{cases}$$

Antitrasformata di Fourier 3.3

4 Laplace

Trasformata di Laplace 4.1

Prendiamo $f(t), t \in R$ e $f(t)e^{\alpha t}, \alpha \in R$

Se f(t) è un polinomio per $t \to +\infty \implies f(t)e^{\alpha t} \to 0$, ma se $t \to -\infty$ la funzione esplode. Si introduce allora la $\theta(t)$, detta **Theta di Heaviside**.

$$\theta(t) = \begin{cases} 1 & \text{se } t > 1 \\ 0 & \text{se } t < 0 \end{cases}$$

2

Antitraformata di Laplace 4.2

4.3 Equazioni differenziali - Metodo di Laplace