Fatores e Múltiplos

Por Sohel Hafiz Bangladesh*

Timelimit: 1

Serão fornecidos a você, dois conjuntos de valores de entrada. Vamos chamá-los de conjuntos \mathbf{A} e \mathbf{B} . O conjunto \mathbf{A} contém \mathbf{n} elementos e o conjunto \mathbf{B} contém \mathbf{m} elementos. Você deverá remover \mathbf{k}_1 elementos do conjunto \mathbf{A} e \mathbf{k}_2 elementos do conjunto \mathbf{B} de forma que nenhum dos valores inteiros que restarem no conjunto \mathbf{B} seja múltiplo de algum inteiro do conjunto \mathbf{A} . \mathbf{k}_1 deverá estar no intervalo [0,n] e \mathbf{k}_2 no intervalo [0,m].

Você deverá encontrar o valor de (k_1+k_2) tal que (k_1+k_2) seja tão baixo quanto possível.

P é um múltiplo de Q se houver algum inteiro K tal que P = K * Q.

Suponha que o conjunto $\bf A$ seja $\{2,3,4,5\}$ e o conjunto $\bf B$ seja $\{6,7,8,9\}$. Se forem removidos 2 e 3 do conjunto $\bf A$ e $\bf 8$ do conjunto $\bf B$, nós tempos os conjuntos $\{4,5\}$ e $\{6,7,9\}$. Aqui nenhum dos inteiros 6, 7 ou 9 é um múltiplo de 4 ou 5.

Portanto, para este caso a resposta é 3, que é a quantia de elementos eliminados (2 elementos do conjunto **A** e 1 elemento do conjunto **B**).

Entrada

O primeiro valor da entrada é um inteiro T (T < 50) que determina o número de casos de teste. Cada caso de teste consiste de duas linhas. A primeira linha inicia com n seguida pelos n inteiros. A segunda linha inicia com n seguido pelos n inteiros. Ambos, n e n estarão no intervalo [1,100]. Todos os elementos destes dois conjuntos devem caber em um inteiro com sinal de 32 bits.

Saída

Para cada caso, imprima o número do caso de teste, seguido pela resposta, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
2 4 2 3 4 5 4 6 7 8 9 3 100 200 300 1 150	Case 1: 3 Case 2: 0

Special Thanks: Jane Alam Jan

^{*} Working in University of Texas at San Antonio - USA