Course Code	Course Title						Core/Elective
PC223EC	Analog Electronics						Core
Prerequisite	Contact Hours per Week				CIE	SEE	Credits
	L	Т	D	P		SEE	Credits
-	3	-	-	-	30	70	3

Course Objectives

- > Study the characteristics of diode in forward and reverse bias and applications of diodes.
- > Describe the construction and working of Bipolar Junction Transistor in various modes and JFET.
- Familiarize with feedback concepts and identify various types of feedback amplifiers.
- > Study the importance of power amplifiers and Oscillators.
- Understand the operation and applications of op-amps.

Course Outcomes

At the end of the course students will be able to

- 1. Interpret the characteristics and apply diode models to analyse various applications of diodes
- 2. Discriminate the BJT configurations to recognize appropriate transistor configuration for anygiven application and design the biasing circuits with good stability
- 3. Analyse and compare feedback amplifiers.
- 4. Distinguish various classes of Power Amplifiers.
- 5. Analyse the operation of OPAMP and its applications

UNIT-I

P-N junction characteristics, V-I characteristics, Avalanche breakdown, Zener diode, Applications of Diodes as rectifiers. Filters (L, C), LED, photodiode. Basic Clipping and clamping circuits using diodes. (One level only)

UNIT-II

Bipolar Junction Transistor - V-I characteristics, JFET - I-V characteristics, and various configurations (such as CE/CS, CB/CG, CC/CD) and their features. Small signal models of BJT and JFET. Analysis of BJT as an amplifier, estimation of voltage gain, current gain, input resistance, output resistance.

Transistor Biasing: Fixed bias, collector to base bias, self-bias, thermal stability, heat sinks

UNIT-III

Concept of Feedback - positive and negative, Feedback topologies: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., and concept of stability. (Qualitative treatment only)

UNIT-IV

Oscillators: Barkhausen criterion, RC oscillators (phase shift, Wien bridge), LC oscillators (Hartley, Colpitts), CRYSTAL Oscillator. (Qualitative treatment only)

Power Amplifiers: Various classes of operation (Class A, B, and AB), their power efficiency and distortion (Qualitative treatment only)

UNIT-V

OP-AMP Block diagram, Ideal OP-AMP, DC and AC Characteristics, Inverting and Non-Inverting Amplifiers, Adder/Subtractor, Integrator, Differentiator, Comparator, Zero crossing detector, Square and Triangular wave generators, Peak detector, Sample and Hold circuit and Precision Rectifiers

Suggested Readings:

- 1. Jacob Millman, Christos C. Halkias, and Satyabrata Jit, Electronic Devices and Circuits, 3rd ed.,McGraw Hill Education, 2010.
- 2. S Salivahanan, N Kumar, and A Vallavaraj, Electronic Devices and Circuits, 2nd ed., McGraw HillEducation, 2007.
- 3. Jacob Milliman and Herbert Taub, "Pulse, Digital and Switching Waveforms", 3rd Edition.
- 4. A.Anand Kumar "Pulse and Digital circuits".
- 5. Ramakanth A. Gayakwad, "Op-Amps and Linear Integrated Circuits" Pearson, 2018, 4th edition