AIE6002 인공지능확률통계 기말시험

이름, 학번:

- 반드시 설명을 적으세요.
- 10 points each.
- (For problems 1 & 2) Given a Linear Gaussian System:

$$p(z) = \mathcal{N}(z|\mu_z, \Sigma_z) \tag{1}$$

$$p(y|z) = \mathcal{N}(y|Wz + b, \Sigma_y) \tag{2}$$

- 1. Derive the mean μ and covariance Σ of p(z,y).
- 2. Find the marginal distribution p(y) based on the result of Problem 2.
- 3. $Y \sim Bernoulli(\theta)$ and θ is a discrete random variable with its PMF $P(\theta=0.6)=0.5$ and $P(\theta=0.3)=0.5$. Through independent random experiments you obtained observations 1,1,0 of Y.
 - Compute the posterior PMF $P[\theta|Y=\{1,1,0\}]$.
- 4. You are given the observation $N_0=3$ and $N_1=7$ from 10 times independent experiments of Bernoulli distribution $Bernoulli(\theta)$ where θ denotes $P[Y=1|\theta]$ and the prior distribution is Beta(a=11,b=9).
 - 1. Find the MAP estimate of the posterior
 - 2. and Laplace approximation of the posterior distribution $p(\theta|N_0=3,N_1=7)$.
- 5. You have an observation y=3 from a Gaussian distribution $\mathcal{N}(\mu,\sigma^2=1)$; you know $\sigma^2=4$ but you do not know the value of μ . From our bureau of information, you are told that the prior for μ is $\mathcal{N}(0,4)$.
 - What is the posterior distribution $p_9(\mu|y)$ of μ given the data y?
- 6. You are going to apply ELBO maximization to obtain an approximation $q(\mu|\phi,\lambda^{-1})$ of the exact posterior $p_9(\mu|y)$; here ϕ is the mean of q() and λ is the precision of q().
 - Find ELBO which is a function of ϕ and λ .
- 7. Find the optimal values for ϕ and λ in Problem 10.
- 8. When $X \sim \mathcal{N}(0,4)$, what is p(y) when Y = 2X + 3?
- 9. Provided a 2D random vector $X=[X_1,X_2]^T$ with a 2D Gaussian distribution of mean μ and covariance Σ , find P[Y>2] where $Y=X_1+X_2$:

$$\mu = [2,0]^T$$

$$\Sigma = egin{pmatrix} 25 & 0 \ 0 & 25 \end{pmatrix}$$

10. Let $X \sim U(-1,1)$ and $Y = X^2$. Clearly Y is dependent on X. However, show that the correlation coefficient $\rho(X,Y)=0$. The general definition of ρ is given as follows:

$$ho(X,Y) = rac{\operatorname{Cov}[X,Y]}{\sqrt{Var[X]Var[Y]}}$$

· Good luck!