

6주차 광센서/RGB센서를 이용한 라인로봇

2015.10.05

기초로봇공학실험

광센서 (Light Sensor)

- ✓ 광센서 (빛센서)
 - : 빛의 특성을 활용한 센서 중 하나
 - 밝음과 어두움의 정도를 수치화하여 표현하는 입력장치
 - 모든 빛에 대한 밝기만 측정 가능

광센서 (Light Sensor)

Active Mode

• 색의 명암에 따른 밝기 정도를 측정하여 수치화

Inactive Mode

• 주변광에 따른 밝기 정도를 측정하여 수치화

바닥의 명암(Active)	주변광(Inactive)	센서 측정값 변화
검정	칠흙 같은 어두움	0으로 접근
진회색	어두움	↑
회색	약간 어두움	\
흰색	밝음	100으로 접근

광센서 연결 및 확인

광센서 - ROBOTC 연결 설정


```
#pragma config(Sensor, S1, light, sensorLightActive)
//*!!Code automatically generated by 'ROBOTC' configuration wizard !!*//
```

• Port S1 : 1번 포트 → 사용자 임의

• Name: 프로그램 상에서 사용될 센서 이름

• Type : ROBOTC에서 센서 종류에 맞게 라이브러리 지원

라인트레이서 로봇 제작

광센서 부착된 모바일 로봇

- ▶ 광센서 부착 위치
 - 바닥의 명암을 판별할 수 있도록
 바닥을 바라보는 형태로 설치
 - 로봇의 중앙에 부착 권장
 - 바닥과 5~10mm 정도의 간격 유지

광센서 실습

▶ 예제 1 : 센서값에 따라 속도가 변하는 로봇


```
#pragma config(Sensor, S1, light,
//*!!Code automatically generated by 'R

task main()
{
  int light_value;

  while(1)
  {
    light_value = SensorValue(light);

    motor[motorA] = light_value;
    motor[motorC] = light_value;
}
}
```


임계값

- 연속적으로 변화하는 명암을 특정한 값으로 결정하기 위해서는 그에 따른 특정한 기준이 필요
- 이와 같이, 명암의 판단의 기준이 되는 값을 임계값 혹은 문턱 값으로 정의하여 기준을 설정

광센서 실습

▶ 예제 2 : 검정 선 지나면 카운트

✓ 조건: 카운트함과 동시에 소리, 카운트 값은 LCD에 출력

광센서 실습

▶ 예제 3 : 라인트레이서

✓ 조건 : 한쪽 경계를 지그재그로 움직이며, 검정 선을 따라가는 로봇

RGB센서 (Red/Green/Blue 색감지센서)

- ✓ RGB센서 (컬러센서)
 - : 빛의 특성을 활용한 색 감지 센서
 - 각 작동 원리에 따라 R/G/B 색상의 강도를 측정
 - 세 가지 색의 강도에 따른 색조합

RGB LEDs (전구 역할)

Photo TR (빛 감지 역할)

RGB센서 (Color Sensor)

RGB센서 입력

• NXT에서는 6가지의 색깔을 인식하여 입력 받을 수 있다.

색 이름	SensorValue	
BLACKCOLOR	1	
BLUECOLOR	2	
GREENCOLOR	3	
YELLOWCOLOR	4	
REDCOLOR	5	
WHITECOLOR	6	

RGB센서 연결 및 확인

RGB센서 - ROBOTC 연결 설정

#pragma config(Sensor, S1, Color, sensorCOLORFULL)
//*!!Code automatically generated by 'ROBOTC' configuration wizard

• Port S1 : 1번 포트 → 사용자 임의

• Name: 프로그램 상에서 사용될 센서 이름

• Type : ROBOTC에서 센서 종류에 맞게 라이브러리 지원

RGB센서 실습

➤ 예제 4 : 인식된 컬러를 LCD에 출력

라인트레이서 로봇 제작

RGB센서 부착된 모바일 로봇

- ▶ 센서 부착 위치
 - 광센서 왼쪽에 RGB센서를 부착
 - 센서 간의 간격 : 블록 3개 두께
 - 바닥과의 간격: 5~10mm

< 6주차 미션 >

- ➤ 2센서 라인트레이서 (광센서+RGB센서 이용)
 - 매끄러운 라인트레이서 구현
 - 인식된 컬러를 모니터에 출력할 것

색깔 별 수행 기능				
R	정지	G	통과하면서 사운드 출력	
Y	3초 간 정지 후 정상속도 진행	В	가속 *출발 시 보다 빠르게 할 것 * 가속 정도는 자율선택	

< 6주차 미션 >

> Performance

항목	세부 내용	배점
라인트레이서	라인을 매끄럽게 따라가기	3
	색깔 인식 및 색깔 별 미션 구현 여부	4
	인식된 컬러를 모니터에 출력	2

> Algorithm & Programming

항목	세부 내용	배점
순서도	순서도	6
프로그램 능숙도	소스코드	4

과제(7주차 제출)

예비 레포트

- ✓ 보이스센서(소리)
 - 작동원리 / 센서종류 / 적용분야

금주 **일요일(10.11)**까지

hshhln5@gmail.com 에 제출

결과 레포트

- 로봇 구동 알고리즘 설명
 - 1 Source Code
 - ② 순서도

- Discussion
 - ① 기술적 문제점
 - ② 문제 해결 방안

