

# Computação Gráfica

## Fase 2

#### Trabalho Prático

## Grupo 9

João António Redondo Martins - a<br/>96215 João Pedro Antunes Gonçalves - a<br/>95019 Miguel de Sousa Braga - a<br/>97698







23 de abril de 2023

## Conteúdo

| 1       | Intr | rodução                                                   | 3        |
|---------|------|-----------------------------------------------------------|----------|
| 2       | Pro  | cesso de Desenvolvimento e decisões tomadas               | 4        |
|         | 2.1  | Implementação das transformações                          | 4        |
|         | 2.2  | Modelação do Sistema Solar                                | 5        |
|         |      | 2.2.1 Anéis de Saturno                                    | 8        |
|         |      | 2.2.2 Cintura de asteroides e Cintura de Kuiper           | 8        |
|         |      | 2.2.3 Desenho das órbitas                                 | Ö        |
|         | 2.3  | Extras                                                    | Ć        |
|         |      | 2.3.1 Câmara em modo FPS                                  | Ĝ        |
|         |      | 2.3.2 Câmara em modo explorador controlada pelo movimento |          |
|         |      | do rato                                                   | 11       |
|         |      | 2.3.3 Menus                                               | 13       |
|         |      | 2.3.4 VBOs e FPS                                          | 14       |
|         |      | 2.3.5 Teleports                                           | 14       |
| 3       | Res  | ultados obtidos                                           | 16       |
|         | 3.1  | Testes fornecidos                                         | 16       |
|         | 3.2  | Modelo do Sistema Solar                                   | 17       |
| 4<br>T. |      | de Figuras                                                | 20       |
| u       | 15ta |                                                           |          |
|         | 1    | Transformations                                           | Ę        |
|         | 2    | Caraterização da Câmara                                   | 10       |
|         | 3    | Vetores lefte right da câmara                             | 11       |
|         | 4    | Função de cálculo do ângulo alfa                          | 12       |
|         | 5    | Função de cálculo do ângulo beta                          | 12       |
|         | 6    | Menus e Informação de Debug                               | 13       |
|         | 7    | Slice do cone                                             | 14       |
|         | 8    | Câmara próxima do Sol                                     | 17       |
|         | 9    | Câmera porto de Saturno                                   | 17       |
|         |      | Câmara perto de Saturno                                   |          |
|         | 10   | Câmara nave espacial                                      |          |
|         | 11   | Câmara nave espacial                                      | 18<br>18 |
|         |      | Câmara nave espacial                                      |          |

### 1 Introdução

O objetivo principal da segunda fase do trabalho prático da cadeira de Computação Gráfica foi construir um modelo estático do Sistema Solar com base numa hierarquia de planetas e luas (modelos) e transformações geométricas descritas em ficheiro XML que se aplicam sobre estes. O conceito de grupo, presente no ficheiro, permite-nos agrupar objetos que são afetados pelas mesmas transformações. Pelo facto de os grupos estarem definidos de forma recursiva, é ainda possível definir subgrupos dentro de um grupo. Nesse caso, cada um dos subgrupos adiciona à sua própria lista de transformações as transformações dos grupos "pai".

Neste relatório, na secção 2, começamos por apresentar o processo de desenvolvimento que nos levou a conseguir os resultados que mais tarde apresentamos na secção 3. Para além das funcionalidades relativas aos objetivos mencionados acima (subsecções 2.1 e 2.2), são ainda expostas algumas funcionalidades extra definidas pelo grupo (subsecção 2.3).

## 2 Processo de Desenvolvimento e decisões tomadas

#### 2.1 Implementação das transformações

De modo a suportar as várias transformações pedidas (translações, escalas e rotações), começamos por atualizar o nosso parser do ficheiro XML para que siga a seguinte estrutura de um grupo:

```
<group>
    <transform>
        <translate x="1" y="0" z="0">
        <scale x="0.5" y="0.5" z="0.5">
        <rotate angle="30" x="0" y="1" z="0">
    </transform>
    <models>
        <model file="sphere_1_100_100.3d"/>
    </models>
    <!-- Subgroups -->
    <group>
        <transform>
            <translate x="0" y="1" z="0">
        </transform>
        <models>
            <model file="sphere_1_100_100.3d"/>
        </models>
    </group>
    <group>
        <transform>
            <translate x="0" y="0" z="1">
        </transform>
        <models>
            <model file="sphere_1_100_100.3d"/>
        </models>
    </group>
</group>
```

Assim, criamos uma nova classe, chamada Group, que contém, para cada grupo, em forma de vetor, as transformações, os modelos e os subgrupos que partilham as suas transformações de forma hierárquica. Esta classe exporta, na sua API, os métodos readXML, que faz parsing da tag group do ficheiro XML, e drawGroup, que percorre recursivamente a estrutura de grupos, aplicando as transformações pela ordem que estas aparecem no ficheiro XML, utilizando para isso as primitivas do glut.

Por exemplo, para o ficheiro definido acima, a sequência de operações seria a seguinte:

```
glPushMatrix()
glTranslatef(1, 0, 0)
glScale(0.5, 0.5, 0.5)
glRotate(30, 0, 1, 0)
drawSphere() // Importa o modelo .3d da esfera
glPushMatrix()
glTranslatef(0, 1, 0)
drawSphere()
glPopMatrix()
glPushMatrix()
glTranslatef(0, 0, 1)
drawSphere()
glPopMatrix()
glTranslatef(0, 0, 1)
drawSphere()
glPopMatrix()
glPopMatrix()
```

De modo a aumentar a abstração de dados, criamos, para as transformações, uma classe abstrata com o método applyTransformation, que deverá ser implementado por cada classe que implemente uma qualquer transformação. Este método deverá ser o responsável por chamar a função apropriada da interface do glut.



Figura 1: Transformations

#### 2.2 Modelação do Sistema Solar

Após algumas pesquisas sobre as distâncias relativas entre os objetos do Sistema Solar, elaboramos a tabela seguinte:

|          | Diâmetro | Distância    | Escala rela- |  |
|----------|----------|--------------|--------------|--|
|          | (km)     | Média do Sol | tivamente à  |  |
|          |          | (UA)         | Terra        |  |
| Mercúrio | 4879     | 0.39         | 0.38         |  |
| Vénus    | 12104    | 0.72         | 0.95         |  |
| Terra    | 12742    | 1            | 1            |  |
| Marte    | 6779     | 1.52         | 0.53         |  |
| Júpiter  | 139822   | 5.20         | 11.2         |  |
| Saturno  | 116460   | 9.58         | 9.4          |  |
| Úrano    | 50724    | 19.18        | 4            |  |
| Neptuno  | 49244    | 30.07        | 3.8          |  |

Tabela 1: Planetas presentes na cena

|           | Diâmetro<br>(km) | Planeta<br>Originário | Escala rela-<br>tiva ao pla-<br>neta Terra | Distância<br>ao Planeta<br>(UA) |
|-----------|------------------|-----------------------|--------------------------------------------|---------------------------------|
| Lua       | 3474.8           | Terra                 | 0.27                                       | 0.00257                         |
| Fobos     | 22.2             | Marte                 | 0.00054                                    | 0.0000626                       |
| Deimos    | 12.4             | Marte                 | 0.00015                                    | 0.000157                        |
| Europa    | 3122             | Júpiter               | 0.245                                      | 0.0045                          |
| Ganimedes | 5268             | Júpiter               | 0.4135                                     | 0.00716                         |
| Calisto   | 4821             | Júpiter               | 0.378                                      | 0.0126                          |
| Io        | 3642             | Júpiter               | 0.286                                      | 0.00282                         |
| Titã      | 5150             | Saturno               | 0.404                                      | 0.00818                         |
| Reia      | 1528             | Saturno               | 0.124                                      | 0.00353                         |
| Tetis     | 1062             | Saturno               | 0.124                                      | 0.00197                         |
| Titânia   | 1578             | Úrano                 | 0.124                                      | 0.00292                         |
| Oberon    | 1522             | Úrano                 | 0.12                                       | 0.00391                         |
| Tritão    | 2706             | Néptuno               | 0.223                                      | 0.00237                         |

Tabela 2: Luas presentes na cena

Assim, para manter alguma fidelidade das distâncias relativas reais, mas proporcionar uma réplica que permita a visualização de todo o espaço planetário, recorremos às seguintes escalas:

- $\bullet$  Distância ao Sol Distância (UA) \* 1000 = 1 unidade
- $\bullet$  Distância do planeta ao satélite natural Distância (UA) \* 10000 = 1 unidade
- $\bullet$  Tamanho dos planetas e dos satélites naturais Escala relativamente á terra \* 10 = 1 unidade

Para além dos planetas, foram desenhados também os satélites naturais principais dos mesmos. A posição destes deixa de ser relativa ao centro do Sistema Solar (Sol) e passa a ser relativa ao planeta que orbita, enquanto que, o seu tamanho é relativo à terra.

Foram ainda desenhados alguns objetos auxiliares como a cintura de Kuiper, cintura de asteroides e os anéis de Saturno, bem como as trajetórias (órbitas) de cada um dos planetas e luas. Abaixo, encontra-se um excerto do ficheiro XML que modela o Sistema Solar estático. Nele estão representados a Terra e Lua, juntamente com a sua órbita.

```
<group> <!-- Terra -->
    <transform>
        <translate x="2100" y="0" z="0"/>
    </transform>
    <group>
        <transform>
            <scale x="10" y="10" z="10"/>
        </transform>
        <models>
            <model label="Terra" file="sphere_1_100_100.3d"/>
        </models>
    </group>
        <group> <!-- Lua -->
            <transform>
                <translate x="0" y="0" z="35.7"/>
                <scale x="2.7" y="2.7" z="2.7"/>
            </transform>
            <models>
                <model label="Lua" file="sphere_1_100_100.3d"/>
            </models>
        </group>
        <group> <!-- Lua Órbita-->
            <models>
                <model file="lua_orbita.3d"/>
            </models>
        </group>
    </group>
```

Consultando a tabela 1, podemos ver que a Terra dista 1 Unidade Astronómica do Sol, pelo que irá sofrer uma translação de 1\*1000 unidades relativamente ao Sol. Devido ao Sol encontrar-se no centro do Sistema Solar e ter um tamanho de 1100 unidades (é cerca de 110 vezes maior que a Terra), acrescentamos 1100 unidades a essa translação, completando os 2100 do excerto acima. A escala do planeta Terra será de 1\*10 unidades uma vez que o seu tamanho relativamente a si próprio é de 1 unidade.

Consultando a tabela 2, reparamos que Lua tem um tamanho igual a 27% do tamanho da Terra, pelo que a escala a utilizar será 0.27\*10 = 2.7. Já a sua posição distará 0.00257\*10000 + 10 = 35.7 unidades (somamos ao raio da Terra a distância da Lua relativamente à Terra multiplicada por 10000). A órbita da Lua será colocada centrada na Terra, com um raio ajustado ao tamanho e posição da Lua.

#### 2.2.1 Anéis de Saturno

Os anéis de Saturno foram construídos à custa da primitiva gráfica torus, apresentada na primeira fase. A colocação deste modelo é feita no mesmo grupo que o modelo que representa o planeta Saturno. Os anéis podem sofrer sucessivas rotações em torno dos eixos principais, deixando o plano onde os anéis estão assentes oblíquo em relação ao plano xOz.

Para serem gerados, o *torus* sofreu uma ligeira alteração. Anteriormente, começávamos por gerar o *torus* pelos pontos com a menor coordenada y, o que nos impedia de obter um *torus* em formato de disco, se possuisse apenas duas *stacks*. Nesta fase, começamos por gerá-lo a partir de um dos pontos da superfície no plano xOz, permitindo assim obter o resultado esperado, demonstrado na figura 9.

#### 2.2.2 Cintura de asteroides e Cintura de Kuiper

A cintura de asteroides e a cintura de kuiper são duas zonas do sistema solar constituídas por formações rochosas de tamanho variável. A primeira, entre Marte e Júpiter estende-se por cerca de 1 U.A (2.2 U.A a 3.2 U.A). A segunda, mais afastada do centro, situa-se após Neptuno e estende-se por cerca de 20 U.A (30 U.A a 50 U.A do Sol)

Para desenhar este conjunto de objetos rochosos, adicionamos uma nova tag XML, a tag ring, com os seguintes parâmetros:

- file nome do ficheiro com o modelo;
- outer raio mais exterior do anel;
- inner raio mais interior do anel;
- n número de objetos a gerar;
- minScale escala mínima que cada objeto pode tomar;
- maxScale escala máxima que cada objeto pode tomar;
- minVAngle ângulo vertical míximo;
- maxVAngle ângulo vertical máximo.

Importa realçar que a localização de cada objeto gerada por esta instrução é pseudo-aleatória, dependendo de 4 valores gerados aleatoriamente: o ângulo em torno do eixo dos y, o ângulo em torno do eixo dos z (ângulo vertical), a distância ao centro e a escala. Os valores são gerados, semi-aleatoriamente através de uma determinada seed e deverão estar dentro dos limites pre-estabelecidos nos parâmetros lidos no XML. Por exemplo, o ângulo vertical deverá estar entre o minVAngle e o maxVAngle. A única exceção é o ângulo em torno do eixo dos y, que varia entre 0 e  $360^{\circ}$ .

De forma a dar a cada objeto uma caraterística única e realista decidimos, de forma provisória, adicionar 3 atributos quer à *tag ring* quer quer à *tag model*. Os atributos tem o nome 'red', 'green' e 'blue' e definem, cada um, numa escala de 0 a 1, a proporção dessa cor (vermelho, verde ou azul) na cor final (rgb).

#### 2.2.3 Desenho das órbitas

O desenho das órbitas de cada planeta foi feito recorrendo mais uma vez à primitiva torus, desenvolvida na fase anterior. Aproximando o raio interior ao raio exterior do torus, conseguimos que o raio da secção de corte do torus fosse bastante reduzido em comparação com as dimensões do planeta. Para além disso, teve que ser aumentado o número de slices (cortes verticais) devido ao perímetro elevado do anel.

Uma desvantagem deste método foi a necessidade de criar modelos diferentes para cada uma das órbitas dos diferentes planetas. Aqui não foi possível aplicar escalas, uma vez que assim não seria possível manter constante o raio da secção de corte do torus.

#### 2.3 Extras

Para além dos objetivos definidos para esta fase do projeto, o grupo procurou implementar ainda outras funcionalidades consideradas relevantes, como diferentes modos de câmara, menus e ainda extensões para o ficheiro XML.

Para a câmara, foi criado um módulo separado que encapsula as diferentes operações a que a mesma está sujeita, como mover-se, alterar a direção ou alternar entre os diferentes modos disponíveis.

#### 2.3.1 Câmara em modo FPS

Para além do modo explorador, implementado na primeira fase, é agora possível movimentar a câmara em modo primeira pessoa (FPS). Este modo carateriza-se por uma maior liberdade de movimentos, sendo possível movimentar a câmara para além da esfera que carateriza o modo explorador.

No modo FPS a câmara é caraterizada pelo vetor up, pela posição P e por um vetor que define a direção do olhar (na imagem, o vetor d). O vetor d é controlado, tal como no modo explorador, pelos ângulos alfa e beta que definem o ângulo horizontal (com o eixo do z) e o ângulo vertical (com o plano xOz).



Figura 2: Caraterização da Câmara

As teclas associadas à rotação da câmara são as setas (arrows). O movimento vertical (aumentar e diminuir o beta) é controlado com as setas up e down e o movimento horizontal (aumentar e diminuir o alfa) é controlado com as setas right e left.

O utilizador pode ainda movimentar a câmara para a esquerda, para a direita, para a frente e para trás, utilizando, para isso, respetivamente, as teclas 'a', 'd', 'w", 's'. O movimento para a frente e para trás resulta de somar o vetor d ou o seu simétrico à posição atual da câmara, resultando numa nova posição P'. Para movimentar a câmara para a esquerda e para a direita, é necessário calcular um outro vetor perpendicular aos dois da imagem.



Figura 3: Vetores *lefte right* da câmara

A imagem mostra-nos uma câmara orientada com o vetor d<br/> para 'dentro' do ecrã, o que fica evidenciado pela posição dos vetores <br/> lefte right. Para o cálculo destes vetores utilizamos o produto vetorial (<br/>  $cross\ product$ ) entre os vetores upe<br/> d. A ordem (<br/> upx dou dx up) tem importância uma vez que define qual o vetor resultado. Pela regra da mão direita, ao calcular<br/>mos dx upobtemos o vetor <br/> right. Já se a ordem for upx d, obtemos o vetor<br/> left.

Para além destes movimentos, o utilizador pode ainda mover a câmara para cima e para baixo, utilizando as teclas HOME e END. O vetor que controla o movimento vertical é o vetor up. Todos estes movimentos têm associados um fator de escala (step). Aumentando este fator, através das teclas '1' e '2', o utilizador consegue deslocar-se mais rapidamente pelo Sistema Solar.

## 2.3.2 Câmara em modo explorador controlada pelo movimento do rato

Para complementar os diferentes modos de câmara, foi adicionado ainda um modo de movimentação com recurso ao movimento do rato. É um modo semelhante ao modo explorador, com a diferença de que os ângulos alfa e beta são incrementados/decrementados tendo em conta a deslocação vertical e horizontal do rato pelo ecrã, quando pressionado o seu botão esquerdo. É possível também aumentar e diminuir o raio da esfera de movimento facilmente, utilizando o movimento do rato quando pressionado o seu botão direito.

Para alternar entre os modos da câmara basta premir a tecla 'm'. Neste momento estão presentes dois modos de câmara, o modo explorador (movimentado através do rato ou do teclado) e o modo primeira pessoa. Foi objetivo do grupo que as transições entre os diferentes modos fossem o mais suaves possíveis. Para mudar do modo exploradar para o modo FPS, é necessário fazer o cálculo do vetor d e dos ângulos alfa e beta de orientação do olhar da câmara, ou seja, os ângulos são medidos a partir do referencial da câmara. Já para voltar ao modo

explorador, é necessário cálcular o raio da esfera e os ângulos *alfa* e *beta* relativos ao espaço global, para assim posicionar a câmera corretamente na superfície esférica. Em seguida, apresentamos a forma como os ângulos são calculados:

Figura 4: Função de cálculo do ângulo alfa

No caso do ângulo alfa, para além da projeção sobre o plano horizontal, é necessário ter em conta o contradomínio da função arccos, que é de 0 a  $\pi$ . Logo, é preciso verificar o quadrante onde se encontra e ajustar o ângulo corretamente.

Figura 5: Função de cálculo do ângulo beta

No caso do ângulo beta, não é preciso ter em conta o quadrante, visto que o contradomínio da função arcsen é de  $-\pi/2$  a  $\pi/2$ , que são os únicos valores permitidos para este ângulo.

Por fim, é importante realçar que o que difere os dois modos é a forma como o ângulo é calculado, ou seja, a partir de qual referencial. Assim, basta alterar a forma como o vetor é calculado, alterando a seu sentido, que os restantes cálculos são feitos de igual forma.

#### 2.3.3 Menus

De forma a dar ao utilizador uma maior liberdade para costumizar o ambiente gráfico foram acrescentados menus, com recurso à função *glutCreateMenu*. Estes menus são ativados quando o botão do meio do rato é pressionado. É possível:

- ativar e desativar a visualização dos eixos coordenados;
- deslocar a câmara para cada um dos componentes do Sistema Solar;
- alterar o polygon mode;
- ativar e desativar a informação da câmara, que aparece em rodapé.

Na imagem abaixo podemos ver a aplicação de algumas das funcionalidades acima referidas. Faltou mencionar a informação de debug apresentada na zona inferior do ecrã que apresenta informações relacionadas com o posicionamento da câmara (posição, ângulos, *look at*, etc).



Figura 6: Menus e Informação de Debug

#### 2.3.4 VBOs e FPS

Para aumentar a performance da nosso engine, principalmente devido à elevada quantidade de primitivas gráficas que o Sistema Solar contém, utilizámos VBOs. Assim sendo, alteramos o programa generator de modo a criar os ficheiros das primitivas tendo em consideração a localidade no acesso à memória.

De formar a explicar como funciona o generator após esta atualização, vamos utilizar o cone como exemplo, recorrendo à seguinte figura:



Figura 7: Slice do cone

Para garantirmos localidade no acesso à memória, cada *slice* vai ter os seus vértices ordenados de forma a que os índices de cada triângulo sejam seguidos. Quando geramos o cone, para cada *slice*, começamos pelo triângulo da base e depois iteramos pelas stacks, com exceção da última, adicionando os pontos pela ordem indicada e criando os triângulos em função dos índices, sabendo que temos uma variável que nos guarda o índice atual. Por fim, na última stack adicionamos o último ponto e criámos o último triângulo. Nas próximas iterações iremos repetir o mesmo processo, repetindo alguns vértices para ganharmos em desempenho.

De modo a analisar o desempenho da nossa aplicação, calculamos, para cada segundo, o número de frames renderizados. O valor calculado é depois apresentado, em forma de *String* como título da janela.

#### 2.3.5 Teleports

Para uma melhor interação e navegação na cena, demos ao utilizador a possibilidade de se teletransportar para os modelos que desejar. Isto compensa o facto de o Sistema Solar ser bastante vasto, permitindo uma mais rápida navegação pelos seus elementos. Para isso, acrescentamos ao ficheiro XML um

atributo *label* à *tag model*. Essa label irá identificar, no menu dos teletransportes, cada um dos objetos presentes no nosso espaço. Deste modo, ao selecionar um determinado modelo nesse mesmo menu, a câmara é colocada em modo explorador e o seu *look at* é alterado para o centro do objeto selecionado. O raio de exploração é também alterado com base na escala a que objeto foi sujeito.

O cálculo do centro do objeto segue as normas da aplicação de transformações (translações, escalas e rotações) a pontos com o uso de matrizes. Por exemplo, para saber o resultado de aplicar uma translação segundo o vetor (1,2,3) a um ponto realizamos o seguinte cálculo.

$$\begin{bmatrix} p_x' \\ p_y' \\ p_z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$
 (1)

Para aplicar uma rotação (apenas está implementada em relação a um dos eixos coordenados), realizamos um cálculo semelhante. Muda apenas a matrix da transformação (que depende do ângulo alfa da rotação).

Por outro lado, as escalas têm o efeito de não afetar o centro do objeto. Apenas fazem alterar o raio da esfera de observação em torno desse objeto. Assumindo que os fatores x, y e z da escala são iguais, o novo raio é dado pela seguinte fórmula:

$$r' = s_{factor} * r \tag{2}$$

Importa ainda referir que a ordem de aplicação das matrizes aos pontos deve ser a ordem contrária à utilizada pelo glut.

## 3 Resultados obtidos

#### 3.1 Testes fornecidos

Quanto aos testes fornecidos, foram comparados os resultados obtidos com o programa engine com as imagens que mostram o resultado esperado. Todos os testes obtiveram sucesso.





#### 3.2 Modelo do Sistema Solar

Nesta secção expõe-se alguns resultados obtidos com os diferentes modos de câmara no Sistema Solar construído.



Figura 8: Câmara próxima do Sol

Nesta imagem podemos ver a totalidade do Sistema Solar, desde o Sol<br/> até à cintura de Kuiper, passando pelos planetas telúricos, pela cintura de Asteroides e pelos planetas gasosos. A imagem foi capturada com a câmara em modo FPS, localizada perto da superfície do Sol.



Figura 9: Câmara perto de Saturno

Na segunda imagem capturamos Saturno e as suas 3 principais Luas (Titã, Reia e Tetis), bem como os seus anéis e as órbitas dos satélites referidos.



Figura 10: Câmara nave espacial

Nesta imagem, mostramos o resultado da colocação de um objeto importado do blender (formato obj). Neste caso, a nave espacial mostrada foi colocada na posição (2000, 2000, 2000) do nosso espaço.



Figura 11: Câmara Terra

Podemos agora ver a Terra e a Lua, bem como a sua órbita. A captura foi realizada com a câmara em modo primeira pessoa.



Figura 12: Câmara Neptuno

Na imagem acima vemos Neptuno e a sua maior lua, Tritão. Ao fundo, podemos ver a cintura de Kuiper e os seus numerosos asteroides.



Figura 13: Câmara aérea

Por fim, é apresentada uma vista de cima do nosso Sistema Solar. As órbitas não se apresentam totalmente nítidas aqui devido à grande distância a que

esse objeto se encontra relativamente à câmara (e devido também ao tamanho reduzido do mesmo)

### 4 Conclusão e balanço da segunda fase

Em conclusão, nesta segunda fase aplicamos, no programa engine, transformações geométricas como translações, rotações e escalas com o objetivo de criar um modelo para o Sistema Solar. Para além dos objetivos principais, acrescentamos funcionalidades auxiliares que melhoram a forma como a aplicação pode ser manipulada, dando um maior poder de controlo ao utilizador. Com estes acrescentos, pudemos explorar ainda mais as funcionalidades que o glut oferece, aprofundando os conhecimentos adquiridos quer nas aulas teóricas, quer nas aulas práticas, pelo que fazemos um balanço bastante positivo desta etapa do projeto.