Capstone Three Presentation "Predicting Stock Returns"

Thanh Nguyen

1

Introduction

- Being able to predict stock returns means better trading decisions
- Goal: at the end of trading today to predict the return tomorrow
- Tools: traditional time series models (ARIMA), machine learning models
- Stocks: Zions bank (ZION, 4.4 billion market capitalization) and Fifth Third bank (FITB, 17.8 billion market capitalization)

Quick summary and agenda

- The process
 - Models: ARIMA, RandomForest, Gradient Boosting, Ridge, KNN
 - Cross-validation with TimeSeriesSplit()
- Outcomes
 - Achieved marginal improvement compared to naïve model
 - KNN models show potential to predict direction of price movement
- Agenda
 - Data source
 - Exploratory data analysis (EDA)
 - Target, features, correlation analysis
 - · Modeling and performance on unseen data
 - Conclusion
 - Future work

3

Data source

- Nasdaq Data Link, WIKI Prices database
 - 3000 US stocks (prices, dividends, splits)
 - Coverage ends March 2018.
- High-quality data, no need for data wrangling

	Open	High	Low	Close	Volume	Ex-Dividend	Split Ratio	Adj. Open	Adj. High	Adj. Low	Adj. Close	Adj. Volume
Date												
2000-01-03	59.03	59.12	53.44	55.50	1199600.0	0.0	1.0	46.614284	46.685355	42.200023	43.826745	1199600.0
2000-01-04	54.63	55.00	52.50	52.81	816100.0	0.0	1.0	43.139731	43.431910	41.457732	41.702530	816100.0
2000-01-05	52.75	53.25	51.06	53.06	1124700.0	0.0	1.0	41.655150	42.049985	40.320606	41.899948	1124700.0
2000-01-06	52.75	54.94	52.38	53.50	1112100.0	0.0	1.0	41.655150	43.384529	41.362971	42.247403	1112100.0
2000-01-07	53.75	54.25	53.31	53.63	782000.0	0.0	1.0	42.444821	42.839656	42.097366	42.350060	782000.0

EDA: Target (log returns) $log_rtn_t = log(\frac{P_t}{P_{t-1}})$ $\frac{2lON's \ stock \ returns \ (log) \ 2012 - 2017}{0.05}$ $\frac{0.00}{0.05}$ $\frac{0.0$

EDA: Target (log returns) Autocorrelation (ZION) 1.0 -0.5 0.0 -0.5 -1.0 Partial Autocorrelation (ZION) 1.0 0.5 0.0 -0.5 -1.0 10 25 30

EDA: Features

- Features are for machine learning models (4 groups of features)
- Lag0 to lag14 of returns
- · Features based on trading volume
 - Today's one-day change in trading volume
 - 10-day moving average of trading volume change
- · Technical analysis indicators
 - Moving average (14-day, 50-day, and 200-day)
 - Relative strength index (14-day, 50-day, and 200-day)
- Features based on time
 - Month of the year (sine and cosine transformation)

9

EDA: Correlation analysis

- High correlations among moving average features
- High correlations among relative strength index features
- For modeling, use only ma50 and rsi50

11

Modeling

- Performance measure: Mean Squared Error (MSE)
 - Mean Absolute Percentage Error (MAPE) not preferred
- 3-year and 5-year training period for all models
- ARIMA (p, d, q)
 - p and q: from 0 to 4
 - d: 0 or 1
- Machine learning models: tune corresponding hyperparameters

Modeling (Machine Learning models)

• Data: daily returns 2012-2017

• Test set: first 25 trading days of 2018

• Cross validation: TimeSeriesSplit()

• Train set: 1260 trading days (5 years) or 756 (3 years)

• Validation set: 25 trading days

13

Hyperparameter Tuning for ZION Prediction

Model Name	Best Parameters		Cross-Validation Score (mse)
Random Forest	'max_depth': 1 'n_estimators': 500	'max_features': 0.1	0.000172
Gradient Boosting	'learning_rate': 0.005 'max_features': 0.1 'n_estimators': 50	'max_depth': 6 'min_samples_split': 8 'subsample': 0.8	0.000171
Ridge	alpha: 7250		0.000172
KNN	n_neighbors: 14		0.000185
KNN (include month sine and cosine)	n_neighbors: 16		0.000177
ARIMA	(4, 1, 3)		0.000172

__

Hyperparameter Tuning for FITB Prediction

Model Name	Best Parameters		Cross-Validation Score (mse)
Random Forest	'max_depth': 20 'n_estimators': 100	'max_features': 0.1	0.000128
Gradient Boosting	'learning_rate': 0.08 'max_features': 0.1 'n_estimators': 50	'max_depth': 3 'min_samples_split': 6 'subsample': 1	0.000129
Ridge	alpha: 40000		0.000130
KNN	n_neighbors: 11		0.000132
KNN (include month sine and cosine)	n_neighbors: 6		0.000128
ARIMA	(1, 0, 2)		0.000131

Performance on unseen data (FITB)

	Best model	performance	Naïve model performance		
	MSE	R-square	MSE	R-square	
Predicting FITB returns	0.000147	1.28%	0.000152	-2.12%	

17

Conclusion

- Achieved marginal improvement compared to naïve model
- KNN models show potential to predict direction of price movement
 - Can develop trading strategy based on this signal and carry out back testing

Future Work

- Longer training period (longer than 5 years)
- ARIMA with seasonality and exogenous features
- Overfitting of Random Forest
- Neural network models (RNN)

19

References

• Lewinson, E. 2022. Python for Finance Cookbook. <packt>