

Fast Diodes, 460 A (SUPER MAGN-A-PAK™ Power Modules)

SUPER MAGN-A-PAK™

FEATURES

- High power FAST recovery diode series
- High current capability
- 3000 V_{RMS} isolating voltage with non-toxic substrate
- High surge capability
- High voltage ratings up to 2500 V
- Industrial standard package
- UL E78996 approved
- Lead (Pb)-free
- Designed and qualified for industrial level

RoHS
COMPLIANT

PRODUCT SUMMARY

I _{F(AV)}	460 A
--------------------	-------

TYPICAL APPLICATIONS

- Snubber for large GTO
- Snubber for large IGBT

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
I _{F(AV)}		460	A
	T _C	82	°C
I _{F(RMS)}		720	A
	T _C	82	°C
I _{FSM}	50 Hz	13 000	A
	60 Hz	13 800	
I ² t	50 Hz	845	kA ² s
	60 Hz	790	
I ² /t		8450	kA ² /s
V _{RRM}	Range	1600 to 2500	V
t _{rr}		4.0	μs
T _{Stg} , T _J	Range	- 40 to 150	°C

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS				
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J MAXIMUM mA
VSKDL450..S20	16	1600	1700	50
	20	2000	2100	
	25	2500	2600	

VSKDL450..S20 Series

Vishay High Power Products

Fast Diodes, 460 A
(SUPER MAGN-A-PAK™ Power Modules)

FORWARD CONDUCTION

PARAMETER	SYMBOL	TEST CONDITIONS				VALUES	UNITS			
Maximum average forward current at case temperature	$I_{F(AV)}$	180° conduction, half sine wave				460	A			
						82	°C			
Maximum RMS forward current	$I_{F(RMS)}$	180° conduction, half sine wave at $T_C = 82^\circ C$				720	A			
Maximum peak, one-cycle forward, non-repetitive surge current	I_{FSM}	$t = 10 \text{ ms}$	No voltage reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	13.0	kA				
		$t = 8.3 \text{ ms}$			13.8					
		$t = 10 \text{ ms}$	100 % V_{RRM} reapplied		11.1					
		$t = 8.3 \text{ ms}$			11.8					
Maximum I^2t for fusing	I^2t	$t = 10 \text{ ms}$	No voltage reapplied		845	kA²s				
		$t = 8.3 \text{ ms}$			790					
		$t = 10 \text{ ms}$	100 % V_{RRM} reapplied		616					
		$t = 8.3 \text{ ms}$			578					
Maximum $I^2\sqrt{t}$ for fusing	$I^2\sqrt{t}$	$t = 0.1 \text{ to } 10 \text{ ms}$, no voltage reapplied				8450	kA²√s			
Low level value of threshold voltage	$V_{F(TO)1}$	$(16.7 \% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)})$, $T_J = T_J$ maximum				1.16	V			
High level value of threshold voltage	$V_{F(TO)2}$	$(I > \pi \times I_{F(AV)})$, $T_J = T_J$ maximum				1.62				
Low level value of forward slope resistance	r_{f1}	$(16.7 \% \times \pi \times I_{F(AV)} < I < \pi \times I_{F(AV)})$, $T_J = T_J$ maximum				0.68	mΩ			
High level value of forward slope resistance	r_{f2}	$(I > \pi \times I_{F(AV)})$, $T_J = T_J$ maximum				0.41				
Maximum forward voltage drop	V_{FM}	$I_{pk} = 1800 \text{ A}$, $T_J = 25^\circ C$, $t_p = 10 \text{ ms}$ sine pulse				2.20	V			

RECOVERY CHARACTERISTICS

CODE	MAXIMUM VALUE AT $T_J = 25^\circ C$	TEST CONDITIONS			TYPICAL VALUES AT $T_J = 150^\circ C$				
		I_{pk} AT 25 % I_{RRM} (μs)	SQUARE PULSE (A)	dl/dt (A/μs)	V_r (V)	t_{rr} AT 25 % I_{RRM} (μs)	Q_{rr} (μC)	I_r (A)	
S20	2.0	1000	100	- 50	4	400	180	$I_{RM(REC)}$	

BLOCKING

PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
RMS insulation voltage	V_{INS}	$t = 1 \text{ s}$			3000	V
Maximum peak reverse and off-state leakage current	I_{RRM}	$T_J = T_J$ maximum, rated V_{RRM} applied			50	mA

THERMAL AND MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum operating junction and storage temperature range	T_J, T_{Stg}		- 40 to 150	°C
Maximum thermal resistance, junction to case per junction	R_{thJC}	DC operation	0.065	K/W
Maximum thermal resistance, case to heatsink	R_{thC-hs}		0.02	
Mounting torque $\pm 10\%$	SMAP to heatsink busbar to SMAP	A mounting compound is recommended and the torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	6 to 8	Nm
Approximate weight			12 to 15	
Case style		See dimensions - link at the end of datasheet	SUPER MAGN-A-PAK	

 ΔR_{thJC} CONDUCTION

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.009	0.006	$T_J = T_{J \text{ maximum}}$	K/W
120°	0.011	0.011		
90°	0.014	0.015		
60°	0.021	0.022		
30°	0.037	0.038		

Note

- The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

VSKDL450..S20 Series

Vishay High Power Products

Fast Diodes, 460 A

(SUPER MAGN-A-PAK™ Power Modules)

Fig. 1 - Current Ratings Characteristics

Fig. 4 - Forward Power Loss Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 3 - Forward Power Loss Characteristics

Fig. 6 - Maximum Non-Repetitive Surge Current

Fast Diodes, 460 A
(SUPER MAGN-A-PAK™ Power Modules)

Vishay High Power Products

Fig. 7 - Forward Power Loss Characteristics

Fig. 8 - Forward Power Loss Characteristics

Fig. 9 - Forward Power Loss Characteristics

VSKDL450..S20 Series

Vishay High Power Products

Fast Diodes, 460 A
(SUPER MAGN-A-PAK™ Power Modules)

Fig. 10 - Recovery Charge Characteristics

Fig. 12 - Forward Voltage Drop Characteristics

Fig. 11 - Recovery Current Characteristics

Fig. 13 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code	VSK	D	L	450	-	25	S20
	(1)	(2)	(3)	(4)		(5)	(6)

- [1]** - Module type
- [2]** - Circuit configuration D = 2 diodes in series
- [3]** - Fast recovery
- [4]** - Current rating
- [5]** - Voltage code x 100 = V_{RRM} (see Voltage Ratings table)
- [6]** - t_{rr} code (see Recovery Characteristics table)

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95088

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.