P and NP

Hengfeng Wei

hengxin0912@gmail.com

June 16, 2016

P and NP

- P and NP
- 2 Polynomial Time Reduction
- 3 NP-Complete

Computability theory first

Theorem

Halting problem is undecidable.

Proof.

Complexity theory to follow

Is a given Sodoku configuration solvable?

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Is $3 \times 3 \times 3$ Rubik's Cube solvable in 20 moves?

3 / 20

Decision problems

Definition (Decision problems.)

Decision problems are problems whose solution is "Yes/No".

Remarks.

- decision problem vs. optimization problem
- ▶ decision problem is "hard" ⇒ its optimization problem is "hard"

Decision problems vs. optimization problem

INDEPENDENT SET

Optimization problem.

Instance: Undirected graph G = (V, E).

Question: Find the maximal independent set in G.

Decision problem.

Instance: Undirected graph G = (V, E) and an integer k.

Question: Does G has an independent set of size (at least) k?

The class P

Definition (The class P)

P is the class of decision problems that are solvable in Polynomial time.

Examples for the class P

Euler path.

Maze problem.

Primality testing.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

The class NP

Definition (The class NP)

NP is the class of decision problems that are solvable in Polynomial time by Non-deterministic algorithm.

 $NP \neq Non-Polynomial$

 $NP \neq No Problem$

7 / 20

The class NP

Definition (The class NP)

NP is the class of decision problems that are solvable in Polynomial time by Non-deterministic algorithm.

$$NP \neq Non-Polynomial$$

$$NP \neq No Problem$$

Definition (Non-deterministic polynomial algorithm.)

Given an instance \mathcal{I} of a decision problem:

Guessing: generate a certificate c for \mathcal{I}

Verifying: $V(\mathcal{I}, c)$

$$O(\mathsf{Guessing}) + O(\mathsf{Verifying}) = O(n^c)$$

Proof of being in NP

Theorem

INDEPENDENT SET \in NP.

Proof.

Given G = (V, E) and k:

Guessing: Nondeterministically select a subset c of k vertices of G.

Verifying: Test whether G contains no edges for all vertices pairs in c.

Output: If the test passes, ouput "yes"; otherwise, output "no".

The complexity is $O(n^2)$.

The class NP

Examples for the class NP

Hamiltonian path.

Clique problem.

Knapsack problem.

P vs. NP

P vs. NP

P: polynomially solvable

NP: polynomially verifiable

P vs. NP

Theorem

$$P \subseteq NP$$
.

Proof.

To design a non-deterministic polynomial algorithm given a deterministic polynomial algorithm (PA).

Guessing: generate a certificate c for instance \mathcal{I} .

Verifying: ignore c; output $PA(\mathcal{I})$.

P and NP

- P and NP
- Polynomial Time Reduction
- NP-Complete

Reduction

Why reduction?

To relate complexities of individual problems.

Definition (Reduction.)

$\begin{array}{c|c} & \text{Algorithm for } A \\ \hline \text{Instance } f(I) & \hline & A \\ \hline Instance \ f(I) & \hline & Algorithm \\ \hline & for \ B & \hline & No \ solution \ to \ f(I) \\ \hline & No \ solution \ to \ f(I) \\ \hline \end{array} \\ \begin{array}{c} \text{No solution to } f(I) \\ \hline & No \ solution \ to \ f(I) \\ \hline \end{array}$

Polynomial reduction

Definition (Polynomial reduction.)

T(x) in polynomial time.

Remarks.

Theorem

Transitivity: $A \leq_P B, B \leq_P C \Rightarrow A \leq_p C.$

Theorem

 $A \leq_P B, B \in P \Rightarrow A \in P$.

P and NP

- P and NP
- 2 Polynomial Time Reduction
- NP-Complete

NP-hard

Definition (NP-hard)

B is NP-hard if

$$\forall A \in \mathsf{NP} : A \leq_P B.$$

Remark.

NP-hard problems are at least as hard as any problem in NP.

NP-complete

Definition (NP-complete)

B is NP-complete if:

- 1. $B \in NP$
- 2. B is NP-hard.

Remark.

NP-complete problems are the hardest problems in NP.

NP-complete

Theorem

If B is NP-complete and $B \in P$, then P = NP.

Theorem

If B is NP-complete and $B \leq_P C \in NP$, then C is NP-complete.

Proof of being in NP-complete

To prove ${\cal C}$ is NP-Complete.

- 1. $C \in NP$:
 - non-deterministic polynomial algorithm
- 2. C is NP-hard:
 - ightharpoonup choose a known NP-complete problem B
 - ▶ prove $B \leq_P C$

NP-complete problem

The first known NP-complete problem.

SAT (circuit satisfiablity) is NP-complete.

http://adriann.github.io/npc/npc.html

https://github.com/hengxin/algorithm-ta-tutorial.git