Stiffness reduction in UD and cross-ply laminates due to fiber/matrix interface cracks

Luca Di Stasio^a, Janis Varna^a

^aLuleå University of Technology, University Campus, SE-97187 Luleå, Sweden

Abstract

Keywords: Fiber Reinforced Polymer Composite (FRPC), Debonding, Finite element analysis (FEA)

1. Introduction

Main ref [1]

2. Derivation of constitutive relations

2.1. Reference frames

5 Local reference frame of k-th layer: index 1 is the in-plane longitudinal or fiber or 0°-direction; index 2 is the in-plane transverse or 90°-direction; index 3 is the out-of-plane or through-the-thickness direction.

Global reference frame of laminate: index x is the in-plane longitudinal or laminate 0° direction; index y is the in-plane transverse direction; index z is the out-of-plane or through-the-thickness direction.

2.2. Crack density

Principle 1. Normalized volume of cracks V_{an} is the ratio of cracked volume V_a to material volume V

$$V_{an} = \frac{V_a}{V} \tag{1}$$

 V_a is equal to the product of total crack surface S_C and average crack opening u_a

$$V_{an} = \frac{S_C u_a}{V} = \frac{S_C}{V} u_a = \rho_C u_a \tag{2}$$

The ratio $\frac{S_C}{V}$ has a size of $\frac{1}{length}$ and correspond to the crack density ρ_C . It means: product of crack density and average crack opening is equal to normalized volume of cracks.

Applying the previous Principle to debonds, we have:

$$\rho_{D} = \frac{\text{total area of debonds}}{\text{total layer volume}} = \frac{n_{D}wR_{f}\Delta\theta}{L_{lam}wt_{90^{\circ}}} = \frac{n_{D}w}{L_{lam}wt_{90^{\circ}}}R_{f}\Delta\theta = \frac{1}{n2L}\frac{1}{k2L}R_{f}\Delta\theta = \frac{1}{nk4L^{2}}R_{f}\Delta\theta = \frac{V_{f}}{nk\pi R_{f}^{2}}R_{f}\Delta\theta = \frac{V_{f}}{nkR_{f}}\frac{\Delta\theta}{\pi} \tag{3}$$

$2.3. \ Vakulenko-Kachanov \ tensor$

In the local reference frame of k-th layer, the outer normal at crack faces has components:

$$n_1 = 0 \quad n_2 \neq 0 \quad n_3 \neq 0$$
 (4)

while crack face displacement has components:

$$u_1 = 0 \quad u_2 \neq 0 \quad u_3 \neq 0 \tag{5}$$

Definition of Vakulenko-Kachanov tensor:

$$\beta_{ij} = \frac{1}{V_k} \int_{SC} \frac{1}{2} (u_i n_j + u_j n_i) dS$$
 (6)

Expand the expression for each component and simplify based on the fact that $u_1 = 0$:

$$\beta_{11} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_1 n_1 + u_1 n_1) dS = \frac{1}{V_k} \int_{S_C} y_1 n_1^0 dS = 0$$

$$\beta_{22} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_2 n_2 + u_2 n_2) dS = \frac{1}{V_k} \int_{S_C} u_2 n_2 dS$$

$$\beta_{33} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_3 n_3 + u_3 n_3) dS = \frac{1}{V_k} \int_{S_C} u_3 n_3 dS$$

$$\beta_{12} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_1 n_2^0 + u_2 p_1)^0 dS = 0$$

$$\beta_{13} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_1 n_3^0 + u_3 p_1)^0 dS = 0$$

$$\beta_{23} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_2 n_3 + u_3 n_2) dS$$

$$\beta_{21} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_2 p_1 + p_1 n_2^0) dS = 0$$

$$\beta_{31} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_3 p_1 + p_1 n_3^0) dS = 0$$

$$\beta_{32} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_3 n_2 + u_2 n_3) dS = \beta_{23}$$

Only 3 independent components of the tensor β_{ij} remain: β_{22} , β_{33} and β_{23} . Split total crack surface S_C into total matrix crack surface S_C^m and total fiber crack surface S_C^f and remember that $n_i^f = -n_i^m$ for i = 2, 3

$$\beta_{22} = \frac{1}{V_k} \int_{S_C} u_2 n_2 dS = \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_2^m dS + \int_{S_C^f} u_2^f n_2^f dS \right] =$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_2^m dS + \int_{S_C^f} u_2^f (-n_2^m) dS \right]$$

$$\beta_{33} = \frac{1}{V_k} \int_{S_C} u_3 n_3 dS = \frac{1}{V_k} \left[\int_{S_C^m} u_3^m n_3^m dS + \int_{S_C^f} u_3^f n_3^f dS \right] =$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_3^m n_3^m dS + \int_{S_C^f} u_3^f (-n_3^m) dS \right]$$

$$\beta_{23} = \frac{1}{V_k} \int_{S_C} (u_2 n_3 + u_3 n_2) dS =$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} (u_2^m n_3^m + u_3^m n_2^m) dS + \int_{S_C^f} \left(u_2^f n_3^f + u_3^f n_2^f \right) dS \right] =$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_3^m dS + \int_{S_C^f} u_2^f (-n_3^m) dS + \int_{S_C^m} u_3^m n_2^m dS + \int_{S_C^f} u_3^f (-n_2^m) dS \right]$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_3^m dS + \int_{S_C^f} u_2^f (-n_3^m) dS + \int_{S_C^m} u_3^m n_2^m dS + \int_{S_C^f} u_3^f (-n_2^m) dS \right]$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_3^m dS + \int_{S_C^f} u_2^f (-n_3^m) dS + \int_{S_C^m} u_3^m n_2^m dS + \int_{S_C^f} u_3^f (-n_2^m) dS \right]$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_3^m dS + \int_{S_C^f} u_2^f (-n_3^m) dS + \int_{S_C^m} u_3^m n_2^m dS + \int_{S_C^f} u_3^f (-n_2^m) dS \right]$$

The total matrix debonded surface S_C^m is equal to the total fiber debonded surface S_C^f and equal to:

$$S_C^m = S_C^f = n_D R_f \Delta \theta \tag{9}$$

With Eq. 9, we can recast Eq. 8 as

$$\beta_{22} = \frac{1}{V_k} \left[n_D R_f w \int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_2^m d\theta \right] =$$

$$= \frac{1}{L_{lam} w t_{90^{\circ}}} \left[n_D R_f w \int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_2^m d\theta \right] =$$

$$= \frac{1}{L_{lam}} \frac{n_D R_f}{t_{90^{\circ}}} \left[\int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_2^m d\theta \right] =$$

$$= \rho_D \left[\frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_2^m d\theta \right]$$

$$\beta_{33} = \rho_D \left[\frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left(u_3^m - u_3^f \right) n_3^m d\theta \right]$$

$$\beta_{23} = \rho_D \left[\frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_3^m d\theta + \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left(u_3^m - u_3^f \right) n_2^m d\theta \right]$$

We can express the displacement jumps at the interface as a function of the local Crack Opening Displacement (COD) and Crack Sliding Displacement (CSD) as

$$u_2^m - u_2^f = (u_r^m - u_r^f)\cos(\theta) - (u_\theta^m - u_\theta^f)\sin(\theta) =$$

$$= COD(\theta)\cos(\theta) - CSD(\theta)\sin(\theta)$$

$$u_3^m - u_3^f = (u_r^m - u_r^f)\sin(\theta) + (u_\theta^m - u_\theta^f)\cos(\theta) =$$

$$= COD(\theta)\sin(\theta) + CSD(\theta)\cos(\theta)$$
(11)

where θ is the local angular coordinate at the interface. We can similarly express n_2^m and n_3^m as a function of θ :

$$n_2^m = \cos(\theta) - \sin(\theta)$$

$$n_3^m = \sin(\theta) + \cos(\theta)$$
(12)

Thus, Eq. 10 becomes

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left[COD(\theta) \left(\cos^2(\theta) - \cos(\theta) \sin(\theta) \right) - CSD(\theta) \left(\sin(\theta) \cos(\theta) - \sin^2(\theta) \right) \right] d\theta =$$

$$= \rho_D \frac{1}{2\Delta \theta} \int_0^{\Delta \theta} \left[COD(\theta) \left(1 + \cos(2\theta) - \sin(2\theta) \right) + CSD(\theta) \left(1 - \cos(2\theta) - \sin(2\theta) \right) \right] d\theta =$$

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left[\frac{COD(\theta) + CSD(\theta)}{2} \left(1 - \sin(2\theta) \right) + \frac{COD(\theta) - CSD(\theta)}{2} \cos(2\theta) \right] d\theta$$

$$\beta_{33} =$$

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left[COD(\theta) \left(\sin(\theta) \cos(\theta) + \sin^2(\theta) \right) + CSD(\theta) \left(\cos^2(\theta) + \cos(\theta) \sin(\theta) \right) \right] d\theta =$$

$$= \rho_D \frac{1}{2\Delta \theta} \int_0^{\Delta \theta} \left[COD(\theta) \left(1 + \sin(2\theta) - \cos(2\theta) \right) + CSD(\theta) \left(1 + \sin(2\theta) + \cos(2\theta) \right) \right] d\theta =$$

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left[\frac{COD(\theta) + CSD(\theta)}{2} \left(1 + \sin(2\theta) \right) - \frac{COD(\theta) - CSD(\theta)}{2} \cos(2\theta) \right] d\theta$$

$$\beta_{23} =$$

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} COD(\theta) \left(2\sin(\theta) \cos(\theta) + \cos^2(\theta) - \sin^2(\theta) \right) +$$

$$- \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} CSD(\theta) \left(\sin^2(\theta) - \cos^2(\theta) + 2\cos(\theta) \sin(\theta) \right) d\theta =$$

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} 2 \left[\frac{COD(\theta) + CSD(\theta)}{2} \cos(2\theta) + \frac{COD(\theta) - CSD(\theta)}{2} \sin(2\theta) \right] d\theta$$

$$(13)$$

2.4. Analytical modeling of $COD(\theta)$ and $CSD(\theta)$

- The Crack Opening Displacement (COD) and Crack Sliding Displacement (CSD) are in general a function of θ , the angular coordinate along the crack which varies between 0 and $\Delta\theta$. Without making any approximation, the Crack Opening Displacement (COD) and Crack Sliding Displacement (CSD) can be expressed as the sum of their average value and a term, respectively $\delta COD(\theta)$
- and $\delta CSD(\theta)$, that represents the variation of the function from its average:

$$COD(\theta) = COD_{avg} + \delta COD(\theta)$$

$$CSD(\theta) = CSD_{avg} + \delta CSD(\theta).$$
(14)

We introduce at this point an approximation and assume that the functions $\delta COD(\theta)$ and $\delta CSD(\theta)$ can be expressed as the product of the maximum value and a function, respectively $f(\theta)$ and $g(\theta)$:

$$COD(\theta) = COD_{avg} + \delta COD(\theta) = COD_{avg} + COD_{max}f(\theta)$$

$$CSD(\theta) = CSD_{avg} + \delta CSD(\theta) = CSD_{avg} + CSD_{max}g(\theta),$$
(15)

where $f(\theta)$ and $g(\theta)$ are assumed to be odd functions over the integration domain $[0, \Delta\theta]$

$$\int_{0}^{\Delta \theta} f(\theta) d\theta = 0 \quad \int_{0}^{\Delta \theta} g(\theta) d\theta = 0.$$
 (16)

We assume the two functions $f\left(\theta\right)$ and $g\left(\theta\right)$ to two odd polynomials of degree 2k+1:

$$f(\theta) = \sum_{k=0}^{n-1} a_{2k+1} \theta^{2k+1} \quad g(\theta) = \sum_{k=0}^{n-1} b_{2k+1} \theta^{2k+1}. \tag{17}$$

 $\beta_{22} =$

$$= \rho_{D} \frac{1}{\Delta \theta} \int_{0}^{\Delta \theta} \left[\frac{COD(\theta) + CSD(\theta)}{2} \left(1 - \sin(2\theta) \right) + \frac{COD(\theta) - CSD(\theta)}{2} \cos(2\theta) \right] d\theta$$

$$\beta_{33} =$$

$$= \rho_{D} \frac{1}{\Delta \theta} \int_{0}^{\Delta \theta} \left[\frac{COD(\theta) + CSD(\theta)}{2} \left(1 + \sin(2\theta) \right) - \frac{COD(\theta) - CSD(\theta)}{2} \cos(2\theta) \right] d\theta$$

$$\beta_{23} =$$

$$= \rho_{D} \frac{1}{\Delta \theta} \int_{0}^{\Delta \theta} 2 \left[\frac{COD(\theta) + CSD(\theta)}{2} \cos(2\theta) + \frac{COD(\theta) - CSD(\theta)}{2} \sin(2\theta) \right] d\theta$$
(18)

$$\frac{1}{\Delta\theta} \int_{0}^{\min(\Delta\theta,\Delta\Phi)} COD(\theta) d\theta =$$

$$= \frac{1}{\Delta\theta} \int_{0}^{\Delta\theta} \left(COD_{avg} + COD_{max} \sum_{k=0}^{n-1} a_{2k+1} \theta^{2k+1} \right) d\theta =$$

$$= \frac{1}{\Delta\theta} \left[COD_{avg} \theta + COD_{max} \sum_{k=0}^{n-1} \frac{a_{2k+1}}{2(k+1)} \theta^{2(k+1)} \right]_{0}^{\min(\Delta\theta,\Delta\Phi)} =$$

$$= COD_{avg} + COD_{max} \sum_{k=0}^{n-1} \frac{a_{2k+1}}{2(k+1)} \frac{\min(\Delta\theta,\Delta\Phi)^{2(k+1)}}{\Delta\theta}$$
(19)

$$\frac{1}{\Delta\theta} \int_{0}^{\Delta\theta} CSD\left(\theta\right) d\theta = CSD_{avg} + CSD_{max} \sum_{k=0}^{n-1} \frac{b_{2k+1}}{2(k+1)} \Delta\theta^{2k+1}$$
 (20)

$$\begin{split} &\frac{1}{\Delta\theta} \int_{0}^{\min(\Delta\theta,\Delta\Phi)} COD\left(\theta\right) \sin\left(2\theta\right) d\theta = \\ &= \frac{1}{\Delta\theta} \int_{0}^{\Delta\theta} \left(COD_{avg} + COD_{max} \sum_{k=0}^{n-1} a_{2k+1} \theta^{2k+1} \right) \sin\left(2\theta\right) d\theta = \\ &= -\frac{1}{2\Delta\theta} COD_{avg} \left[\cos\left(2\theta\right) \right] \Big|_{0}^{\min(\Delta\theta,\Delta\Phi)} + \\ &+ \frac{1}{\Delta\theta} \left[COD_{max} \sum_{i=0}^{n-1} \left(-\frac{1}{2} \right)^{2i+1} \sin\left(\frac{1+mod\left(i,2\right)}{2} \pi - 2\theta \right) \left(\sum_{k=0}^{i} a_{2k+1} \left((n-1) - 2\left(k+1\right) \right) ! \theta^{2(k+1)} \right) \right] \Big|_{0}^{\min(\Delta\theta,\Delta\Phi)} = \\ &= \frac{1}{2\Delta\theta} COD_{avg} \left(1 - \cos\left(2\min\left(\Delta\theta,\Delta\Phi\right) \right) \right) + \\ &+ \frac{1}{\Delta\theta} COD_{max} \sum_{i=0}^{n-1} \left(-\frac{1}{2} \right)^{2i+1} \sin\left(\frac{1+mod\left(i,2\right)}{2} \pi - 2\min\left(\Delta\theta,\Delta\Phi\right) \right) \left(\sum_{k=0}^{i} a_{2k+1} \left((n-1) - 2\left(k+1\right) \right) ! \min\left(\Delta\theta,\Delta\Phi\right)^{2(k+1)} \right) \end{split}$$

References

J. Varna, 2.10 crack separation based models for microcracking, in: P. W.
 Beaumont, C. H. Zweben (Eds.), Comprehensive Composite Materials II,
 Elsevier, Oxford, 2018, pp. 192 - 220. doi:https://doi.org/10.1016/B978-0-12-803581-8.09910-0.

Appendix A. Explicit expressions for $f(\theta)$ and $g(\theta)$

n = 1

$$f(\theta) = \sum_{k=0}^{0} a_{2k+1} \theta^{2k+1} = a_1 \theta$$

$$g(\theta) = \sum_{k=0}^{0} b_{2k+1} \theta^{2k+1} = b_1 \theta$$
(A.1)

$$\int_{0}^{\Delta \theta} f(\theta) d\theta = \int_{0}^{\Delta \theta} a_{1} \theta d\theta = \left[\right] \Big|_{0}^{\Delta \theta}$$

$$\int_{0}^{\Delta \theta} g(\theta) d\theta = 0$$
(A.2)

$$\sum_{k=0}^{0} \frac{a_{2k+1}}{2(k+1)} \frac{\min\left(\Delta\theta, \Delta\Phi\right)^{2(k+1)}}{\Delta\theta} = \frac{a_1}{2} \frac{\min\left(\Delta\theta, \Delta\Phi\right)^2}{\Delta\theta}$$

$$\sum_{k=0}^{0} \frac{b_{2k+1}}{2(k+1)} \frac{\Delta\theta^{2(k+1)}}{\Delta\theta} = \frac{b_1}{2} \Delta\theta$$
(A.3)

n = 2

$$f(\theta) = \sum_{k=0}^{1} a_{2k+1} \theta^{2k+1} = a_1 \theta + a_3 \theta^3$$

$$g(\theta) = \sum_{k=0}^{1} b_{2k+1} \theta^{2k+1} = b_1 \theta + b_3 \theta^3$$
(A.4)

n = 3

$$f(\theta) = \sum_{k=0}^{2} a_{2k+1} \theta^{2k+1} = a_1 \theta + a_3 \theta^3 + a_5 \theta^5$$

$$g(\theta) = \sum_{k=0}^{1} b_{2k+1} \theta^{2k+1} = b_1 \theta + b_3 \theta^3 + b_5 \theta^5$$
(A.5)