Norton's Theorem

Norton's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N , where I_N is the short-circuit current through the terminals and R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

To Find R_N

- 1. Remove that portion of the network across which the Norton's equivalent circuit needs to be found.
- 2. Load resistor R_L is temporarily removed from the network.
- 3. Mark the terminals of the remaining two-terminal network (say \boldsymbol{A} and \boldsymbol{B}).
- 4. Identify all voltage and current sources and retain their internal resistances if any.
- 5. Replace the voltage sources by short circuits
- 6. Replace the current sources by open circuits
- 7. Find the resistance between terminal **A** and **B**

The process of finding R_{TH} and R_{N} is exactly same. Hence $R_{TH} = R_{N}$

To Find I_N

- 1. In the original circuit, short the load resistor (R_L) connected between the marked terminals (A and B).
- 3. Find the short-circuit current (I_N) through the marked terminals (A and B).
- 4. I_N is called as Norton's current source.
- 5. Draw the Norton's equivalent circuit by keeping I_N , R_N and the load resistor (R_L) in parallel.

Identify that V_{TH}, R_{TH} and I_N, R_N form a source transformation for the same equivalent circuit with R_{TH} = R_N

Problem1 Using Norton's theorem, find the voltage across and current through the 12 Ω resistor.

To Find R_N

Step 1: Find that portion of the network across which the Norton equivalent circuit needs to be found. (Identifying the load as 12 Ω resistor, marking the nodes **A** and **B**)

Step 2: Load resistor R_L is temporarily removed from the network.

Step 3: Mark the terminals of the remaining two-terminal network (say \boldsymbol{A} and \boldsymbol{B}).

Step 4: Identify all voltage and current sources and retain their internal resistances if any. There is only one voltage source 18 V, with zero internal resistance

Step 5: Replace the voltage sources are replaced by short circuits (as there is only one voltage source in this example, replace it with a short circuit)

Step 6: Replace the current sources by open circuits (as there are no current sources, we won't act on this step)

Step 7: Find the resistance between terminal **A** and **B**

$$R_N = 4 + (6 | | 3) = 6 \Omega$$

To Find I_N

Step 1: In the original circuit, short the load resistor (R_L) connected between the marked terminals (A and B).

Step 2: Find the short-circuit current (I_N) between the marked terminals (A and B). I_{AB} is Norton's current, denoted by symbol I_N .

- 1. Current through terminals A and B is given by the current through 4 Ω resistance.
- 2. Total current in the circuit is

$$I = \frac{V}{R} = \frac{18}{6\Omega + (3\Omega \parallel 4\Omega)} = \frac{18}{6\Omega + \frac{12}{7}\Omega} = \frac{7}{3}A$$

3. Current through 4 Ω is found by using current division formula.

$$I_{AB} = \frac{7}{3} \frac{3}{3+4} = 1 A = I_N$$

Step 3: Draw the Norton's equivalent circuit by keeping I_N , R_N and the load resistor (R_L) in parallel

1. Use current divider formula Current through the 12 Ω resistor.

$$I_{12\Omega} = 1 A \frac{6\Omega}{6\Omega + 12\Omega} = 0.33 A$$

2. Voltage across 12Ω resistor.

$$V_{12\Omega} = 0.33 \, A \times 12 \, \Omega = 4 \, V$$

Problem2 Using Norton's theorem, find the voltage across and current through the 7 k Ω resistor.

To Find R_N

Step 1: Find that portion of the network across which the Norton equivalent circuit needs to be found. (Identifying the load as 7 k Ω resistor, marking the nodes **A** and **B**)

Step 2: Load resistor R_1 is temporarily removed from the network.

Step 3: Mark the terminals of the remaining two-terminal network (say \boldsymbol{A} and \boldsymbol{B}).

Step 4: Identify all voltage and current sources and retain their internal resistances if any. There is only one voltage source 18 V, with zero internal resistance

Step 5: Replace the voltage sources are replaced by short circuits (as there is only one voltage source in this example, replace it with a short circuit)

Step 6: Replace the current sources by open circuits (as there are no current sources, we won't act on this step)

Step 7: Find the resistance between terminal A and B

$$R_{N} = 2 + 4 = 6 k\Omega$$

To Find I_N

Step 1: In the original circuit, short the load resistor (R_L) connected between the marked terminals (\boldsymbol{A} and \boldsymbol{B}).

Step 2: Find the short-circuit current (In) between the marked terminals (**A** and **B**). IAB is Norton's current, denoted by symbol In.

- 1. Current through 2 $k\Omega$ resistance passes through the nodes **A** and **B**
- 2. This is due to the fact that current entering into 2 $k\Omega$ should leave (KCL) and there are no other sources.
- 3. Current through 2 $k\Omega$ is found by using current division formula

$$I_{2k\Omega} = I \frac{R_2}{R_1 + R_2} = 18 \, mA \frac{4 \, k\Omega}{2 \, k\Omega + 4 \, k\Omega} = 12 \, mA$$

Step 3: Draw the Norton's equivalent circuit by keeping I_N , R_N and the load resistor (R_L) in parallel

1. Use current divider formula to get Current through the 7 k Ω resistor.

$$\begin{cases} R_{L} = 7 \text{ k}\Omega \\ I_{7k\Omega} = I \frac{R_{2}}{R_{1} + R_{2}} = 12 \frac{6 k\Omega}{6 k\Omega + 7 k\Omega} = 5.54 \text{ mA} \end{cases}$$

2. Voltage across the 7 $k\Omega$ resistor is given by (what was asked in the question)

$$V_{7k\Omega} = 5.54 \, \text{mA} \times 7 \, k\Omega = \frac{29.1 \, \text{V}}{7 \, k\Omega} = 38.77 \, \text{V}$$

Superposition Theorem

- Superposition theorem states that the current through, or voltage across, an element in a linear bilateral network is equal to the algebraic sum of the currents or voltages produced independently by each source.
- The superposition theorem is useful in finding solutions to the networks with two or more sources that are not in series or parallel.
- The superposition principle states that the voltage across (or the current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.
- We consider one independent source at a time while all other independent sources are turned off. This implies that we replace every voltage source by 0 V (or a short circuit), and every current source by 0 A (or an open circuit). This way we obtain a simpler and more manageable circuit.

Steps Required to Apply the Superposition Principle

- Turn off all independent sources except one. Find the output (voltage or current) due to the active source.
- Repeat step 1 for each of the other independent sources.
- Find the total output by adding algebraically all of the results found in steps 1 & 2 above.

Problem1 Using Superposition Theorem find the current through the 0.5 k Ω resistor.

To Find the effect of 5 V source alone, replace the 9 mA source with a open circuit

$$I_1 = \frac{5V}{2k\Omega + 0.5k\Omega} = 2mA$$

To Find the effect of 9 mA source alone, replace the 5 V source with a short circuit

$$I_2 = 9 \, mA \times \frac{2 \, k\Omega}{2 \, k\Omega + 0.5 \, k\Omega} = 7.2 \, mA$$

Total Current is given by $I = I_1 + I_2 = 2 \text{ mA} + 7.2 \text{ mA} = 9.2 \text{ mA}$

Maximum Power Transfer Theorem

- In all practical cases, energy sources have non-zero internal resistance. Thus, there are losses inherent in any real source.
- The aim of an energy source is to provide power to a load.
- Given a circuit with a known resistance, what is the resistance of the load that will result in the maximum power being delivered to the load?
- Consider the following circuit

Maximum Power Transfer Theorem

The power delivered to the load (absorbed by R_i) is

$$P = I^{2}R_{L} = \left(\frac{V}{R + R_{L}}\right)^{2}R_{L}$$

$$V = \begin{bmatrix} \frac{1}{R} & \frac{1}{R} & \frac{1}{R} \\ \frac{1}{R} & \frac{1}{R} \end{bmatrix}$$

The power delivered to load is maximum when

$$\frac{\partial P}{\partial R_L} = 0$$

$$\frac{\partial P}{\partial R_L} = V^2 \left[\frac{1}{\left(R + R_L\right)^2} - 2R_L \frac{1}{\left(R + R_L\right)^3} \right] = 0$$

Maximum Power Transfer Theorem

$$\frac{\partial P}{\partial R_L} = V^2 \left[\frac{1}{\left(R + R_L \right)^2} - 2R_L \frac{1}{\left(R + R_L \right)^3} \right] = 0$$

$$R+R_L=2R_L$$
 $R_L=R$

Thus, maximum power transfer takes place when the resistance of the load equals is equal
to the resistance of the circuit

$$P_{\text{max}} = \left(\frac{V}{R + R_L}\right)^2 R_L \big|_{R_L = R} = \frac{V^2}{4R}$$

■ The power dissipated by R_L is 50% of the power produced by the ideal source when $R_L = R$.