TUTORIAL 07

7CCMCS04 A. ANNIBALE AND G. SICURO

▶ Problem 7.1 Consider the chemical reaction

$$X \xrightarrow{c_1} X + X, \qquad X + X \xrightarrow{c_2} \varnothing$$

where c_1 and c_2 are rates of the reactions. Let us denote N_t the number of components X at time t.

a. Show that the master equation is

$$\dot{P}_n = c_2 \frac{(n+2)(n+1)}{2} P_{n+2} + c_1(n-1) P_{n-1} - c_1 n P_n - c_2 \frac{n(n-1)}{2} P_n.$$

- **b.** Derive the equation for the first moment $\mathbb{E}[N_t]$ and explain why this does not close.
- c. Show that closure of the equation is attained by assuming that fluctuations are negligible, i.e. $\mathbb{E}[N_t^2] \simeq \mathbb{E}[N_t]^2$.
- **d.** Find the fixed points of the dynamics and characterize their stability. Discuss your result in the limit $c_1 \ll c_2$ and $c_1 \gg c_2$. Explain why the behaviour of the system around the unstable fixed point resulting from the deterministic analysis is not accurate.
- **e.** Explain how you would close the equations assuming that fluctuations are Gaussian.

Problem 7.2 Consider a large population where offspring production occurs with rate λ and spontaneous death occurs at rate μ . Assume the initial size of the population at time t=0 is n_0 . Write the master equation governing the evolution of the probability density $P_n(t)$ to have $N_t=n$ individuals at time t. Use the master equation to write a dynamical equation for the generating function $F(z,t) = \sum_{n=0}^{\infty} z^n P_n(t)$ and solve it by using the method of characteristics, for $\mu \neq \lambda$ and $\mu = \lambda$. Show that the extinction probability $P_0(t)$ decays to its equilibrium value exponentially for $\mu \neq \lambda$ and as a power law for $\mu = \lambda$. This phenomenon is known as the "critical slowing down" taking place when a system is close to its critical point $\rho = \frac{\mu}{\lambda} = 1$.

Date: February 13, 2025.

1