

POWERED BY Dialog

Boundary light delimiting vehicle, has source illuminating central light entry surface of doubly-reflecting circular optical conductor

Patent Assignee: AUTOMOTIVE LIGHTING REUTLINGEN GMBH

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
DE 20206829	U1	20020905	DE 2002U2006829	U	20020430	200274	B

Priority Applications (Number Kind Date): DE 2002U2006829 U (20020430)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
DE 20206829	U1		12	F21S-008/10	

Abstract:

DE 20206829 U1

NOVELTY The source (10) illuminates the central light-entry surface (14) of a circular optical conductor (11). Its outer surfaces are made as reflectors (12, 16). The light leaves the conductor after reflection at each of these surfaces.

USE A light delimiting a vehicle.

ADVANTAGE The new design is particularly efficient and compact in form. It can be given stylistic appeal and further internal reflections may take place. Various regular geometric shapes are suitable. Total internal reflection may be exploited.

DESCRIPTION OF DRAWING(S) A schematic cross section of the lamp is presented, to illustrate the beam paths.

source (10)

circular optical conductor (11)

reflectors (12, 16)

central light-entry surface (14)

pp; 12 DwgNo 1/5

THIS PAGE BLANK (USPTO)

Derwent World Patents Index

© 2004 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 14863113

THIS PAGE BLANK (USPTO)

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Gebrauchsmusterschrift**
(10) DE 202 06 829 U 1

(51) Int. Cl. 7:

F 21 S 8/10

F 21.V 8/00

F 21.V 7/04

(73) Inhaber:

Automotive Lighting Reutlingen GmbH, 72762
Reutlingen, DE

(74) Vertreter:

Dreiss, Fuhlendorf, Steinle & Becker, 70188
Stuttgart

(54) Leuchte, insbesondere Begrenzungsleuchte

(57) Leuchte, insbesondere Begrenzungslichtleuchte für ein Kraftfahrzeug umfassend mindestens eine Lichtquelle (10), einen Lichtleiter (11), der der Lichtquelle (12) zugeordnet ist und deren Licht in den Lichtleiter (11) eingekoppelt ist, wobei Außenflächen des Lichtleiters (11) als Reflektoren (12, 16) ausgebildet sind, und der Lichtleiter (11) eine im wesentlichen kreisförmige Grundfläche besitzt, wobei das von der Lichtquelle (10) in den Lichtleiter (11) eingekoppelte Licht im Zentrum der Kreisfläche in den Lichtleiter eingeleitet wird und über einen ersten Reflektor (12), der der Lichtquelle (10) in Lichtabstrahlrichtung gegenüberliegt und auf der der Lichteinkoppelfläche (14) gegenüberliegenden Seite des Lichtleiters (11) angeordnet ist, mindestens auf einen zweiten radial vom ersten beabstandeten Reflektor (16) reflektiert wird, über den das Licht dann den Lichtleiter (11) verlässt.

DE 202 06 829 U 1

DE 202 06 829 U 1

30.04.02

EM 2001/022 AL01032

ALA/KSF

5 16.03.2002

Automotive Lighting
Reutlingen GmbH
Tübinger Str. 123

10 72762 Reutlingen

Leuchte, insbesondere Begrenzungslichtleuchte

15

Beschreibung

Die Erfindung betrifft eine Leuchte, insbesondere
20 Begrenzungslichtleuchte für ein Kraftfahrzeug, umfassend
mindestens eine Lichtquelle, einen Lichtleiter, der der
Lichtquelle zugeordnet ist und deren Licht in dem
Lichtleiter einkoppelbar ist.

Seither wird für ein Begrenzungslicht die Lichtquelle in
einen bereits vorhandenen Reflektor integriert und erzeugt
mit Hilfe des Reflektors, der für eine weitere Lichtquelle
beispielsweise für das Abblendlicht ausgelegt ist die
erforderlichen Lichtwerte. Die Leuchte ist daher nicht sehr
effizient und ein spezielles Styling ist auch nicht
möglich. Darüber hinaus kann es zu Abschattungen kommen, da
die Lichtquelle für das Begrenzungslicht bestimmte Teile
des Reflektors der Hauptlichtquelle für diese nicht weiter
nutzbar zur Verfügung lässt.

35

DE 2002 06 829 U1

Es ist daher Aufgabe der Erfindung, eine derartige Leuchtenfunktion möglichst effizient und platzsparend zu erfüllen.

5

Die Erfindung löst diese Aufgabe durch eine Leuchte, insbesondere Begrenzungslichtleuchte für ein Kraftfahrzeug, umfassend mindestens eine Lichtquelle, einen Lichtleiter, der der Lichtquelle zugeordnet ist und deren Licht in den Lichtleiter einkoppelbar ist, wobei die Außenflächen des Lichtleiters zumindest abschnittsweise als Reflektor ausgebildet sind und der Lichtleiter eine im Wesentlichen kreisförmige Grundfläche besitzt, wobei das von der

10 Lichtquelle in den Lichtleiter eingekoppelte Licht im Mittelpunkt der Kreisfläche in den Lichtleiter eingeleitet wird und über einen ersten Reflektor, der der Lichtquelle in Lichtabstrahlrichtung gegenüberliegt und auf der der Lichteinkoppelfläche gegenüberliegenden Seite des Lichtleiters angeordnet ist, mindestens auf einen zweiten Reflektor reflektiert wird, über den das Licht dann den Lichtleiter verlässt, wobei der zweite Reflektor radial weiter außen liegt, als der erste, der im wesentlichen im Zentrum angeordnet ist.

15 25 Grundsätzlich sind auch Anordnungen mit mehr als einer zweifachen Reflexion bspw. mit einer Dreifachreflektion denkbar.

Der Vorteil der Erfindung ist die effiziente und
30 platzsparende Verwendung eines Lichtleiters mit Mehrfachreflektion als Leuchte.

Der Lichtleiter besitzt dabei eine im Wesentlichen kreisförmige Grundfläche und kann somit bereits der Form

DE 300 06 829 U1

30.04.02

3

der Begrenzungslichtleuchte entsprechen.

Neben einer Begrenzungslichtleuchte kann prinzipiell auch
eine weitere Leuchtenfunktion auf diese Weise realisiert
5 werden bspw. kann eine solche Anordnung auch für
Rückleuchten für ein Kraftfahrzeug eingesetzt werden.

Es kann dabei vorgesehen sein, dass der erste Reflektor als
rotierte Parabel bzw. rotierte Ellipse oder rotierte
10 Bezierfläche ausgebildet ist. Dieser Reflektor soll
Lichtstrahlen auf den außenliegenden zweiten Reflektor, der
also radial vom ersten beabstandet ist, reflektieren, über
den das Licht dann den Lichtleiter verlässt.

15 Der zweite Reflektor kann dabei als rotierte Bezierfläche
oder rotierte Gerade ausgebildet sein. Denkbar ist jedoch
auch, dass der zweite Reflektor aus mehreren Facetten
besteht, wobei die Facetten versetzt zueinander in
Umfangsrichtung angeordnet sind und einen unterschiedlichen
20 radialen Abstand zum ersten Reflektor aufweisen. Auf diese
Weise kann eine besonders gute und gleichmäßige
Lichtabstrahlung erzielt werden. Der zweite Reflektor kann
dabei konkav oder konvex ausgebildet sein, je nach
erwünschter Lichtabstrahlung, wobei der erste Reflektor
25 konkav gestaltet ist.

Die Reflektoren arbeiten hierbei mit Totalreflektion.
Sofern dies notwendig oder erwünscht ist, können darüber
hinaus die Reflektoren auch zumindest abschnittsweise
30 verspiegelt sein, um die Lichtverluste möglichst gering zu
halten.

Schließlich kann es vorgesehen sein, dass im Bereich der
Lichteinkoppelfläche der Lichtleiter eine kugelförmige

DE 202 06 029 U1

27.07.02

4

Aussparung aufweist, damit das Licht von der Lichtquelle beim Eintritt in den Lichtleiter möglichst wenig gebrochen wird.

5 Die Erfindung soll anhand einer Zeichnung näher erläutert werden.

Dabei zeigen:

10 Figur 1 einen ersten Aufbau einer erfindungsgemäßen Leuchte im Schnitt;

Figur 2 eine alternative Ausgestaltung einer erfindungsgemäßen Leuchte im Schnitt;

15 Figur 3 eine weitere Ausgestaltung einer erfindungsgemäßen Leuchte im Schnitt;

20 Figur 4 eine vierte Ausgestaltung einer erfindungsgemäßen Leuchte im Schnitt;

Figur 5a eine Draufsicht auf eine erfindungsgemäße Leuchte;

25 Figur 5b eine dreidimensionale Darstellung einer erfindungsgemäßen Leuchte.

Figur 1 zeigt dabei eine erste Ausgestaltung einer erfindungsgemäßen Leuchte im Schnitt umfassend eine

30 Lichtquelle 10, die aus einer herkömmlichen Glühlampe, einer Gasentladungslampe oder insbesondere auch einer LED bestehen kann, die eine besonders platzsparende Einbauweise ermöglichen.

35 Der Lichtleiter 11 besitzt hierbei eine kreisförmige Grundfläche und ist in einer vertikal geschnittenen Ansicht dargestellt.

DE 2020 06 029 U1

Die Lichtquelle 10 befindet sich am Brennpunkt eines ersten Reflektors 12 der als rotierte Ellipse gestaltet ist.

5 Der erste Reflektor 12 ist hierbei rotationssymmetrisch im Zentrum des kreisförmigen Lichtleiters 11 angeordnet und befindet sich gegenüber der Lichtquelle 10 auf der der Lichteinkoppelfläche 14 des Lichtleiters gegenüberliegenden Seite des Lichtleiters 11.

10

Der erste Reflektor 12 kann dabei verspiegelt ausgebildet sein. Das von der Lichtquelle 10 ausgesandte Licht wird über die Lichteinkoppelfläche 14 in den Lichtleiter 11 eingekoppelt und durch den Reflektor 12 derart reflektiert, 15 dass es auf einen zweiten Reflektor 16 auftrifft, der konkav gekrümmt ist und das Licht aus dem Lichtleiter 11 auskoppelt. Die Lichtstrahlen sind hierbei mit 17 und 18 bezeichnet.

20

Der zweite Reflektor 16 kann dabei ebenfalls verspiegelt sein und befindet sich in der gezeigten Ausführungsform am äußeren Umfang des Lichtleiters 11.

25

Durch den ersten Reflektor 12 wird das Licht 17, 18 auf den radial weiter außen liegenden zweiten Reflektor 16 reflektiert. Beide Reflektoren sind hierbei Außenflächen eines Lichtleiters.

30

Figur 2 zeigt eine ähnliche Ausgestaltung, wobei der zweite Reflektor hier konkav gekrümmt ist und somit für eine andere Lichtablenkung sorgt.

Figur 3 entspricht der Gestaltung gemäß Figur 1, wobei der erste Reflektor 12 hierbei als rotierte Ellipse ausgebildet

DE 2020 06 829 U1

6

ist und der zweite Brennpunkt des ersten Reflektors auf dem zweiten Reflektor 16 liegt. Der zweite Brennpunkt des ersten Reflektors ist hierbei mit 13 bezeichnet. Im Unterschied dazu ist in Figur 4 der zweite Brennpunkt des ersten Reflektors 12, wobei der erste Brennpunkt wiederum in der Lichtquelle 10 liegt, vor dem zweiten Reflektor 16 angeordnet und ist hier wiederum mit 13 bezeichnet. Auf diese Weise wird anders als in Figur 3 die ganze Fläche des zweiten Reflektors 16 ausgeleuchtet.

10

Durch die kugelförmige konkave Aussparung der Lichteinkoppelfläche 14 im Lichtleiter 11 kann die Lichtbrechung beim Eintritt in den Lichtleiter 11 des Lichtes, das durch die Lichtquelle 10 in den Lichtleiter 11 eingekoppelt wird, möglichst wenig gebrochen werden. Auf diese Weise können die Lichtverluste minimiert werden.

Figur 5 zeigt nun eine weitere Aufgestaltung der erfindungsgemäßen Leuchte, wobei in Figur 5a ein beleuchteter Zustand und in Figur 5b eine dreidimensionale Darstellung des Lichtleiters 11 gezeigt ist. Es kann hierbei gut gesehen werden, dass die Flächen für den zweiten Reflektor 16 sowohl in Umfangsrichtung versetzt angeordnet sind aber auch einen unterschiedlichen radialen Abstand zum Zentrum des Lichtleiters 20 und damit zur Lichtquelle und zum ersten Reflektor 12 aufweisen. Auf diese Weise kann ein interessantes Design, das in Figur 5a gezeigt ist, erreicht werden, wenn die Lichtquelle angeschaltet wird.

30

Insgesamt kann durch die Verwendung eines Lichtleiters mit Zweifachreflektion als Leuchte besonders platzsparend eine effiziente Begrenzungsleuchte verwirklicht werden.

35

DE 2020 06 829 U1

30.04.02

7

EM 2001/022 AL01032

5 16.03.2002
Automotive Lighting
Reutlingen GmbH
Tübinger Str. 123

10 72762 Reutlingen

Ansprüche

1. Leuchte, insbesondere Begrenzungslichtleuchte für ein Kraftfahrzeug umfassend mindestens eine Lichtquelle (10), einen Lichtleiter (11), der der Lichtquelle (12) zugeordnet ist und deren Licht in den Lichtleiter (11) eingekoppelbar ist, wobei Außenflächen des Lichtleiters (11) als Reflektoren (12, 16) ausgebildet sind, und der Lichtleiter (11) eine im wesentlichen kreisförmige Grundfläche besitzt, wobei das von der Lichtquelle (10) in den Lichtleiter (11) eingekoppelte Licht im Zentrum der Kreisfläche in den Lichtleiter eingeleitet wird und über einen ersten Reflektor (12), der der Lichtquelle (10) in 20 Lichtabstrahlrichtung gegenüberliegt und auf der der Lichteinkoppelfläche (14) gegenüberliegenden Seite des Lichtleiters (11) angeordnet ist, mindestens auf einen zweiten radial vom ersten beabstandeten Reflektor (16) reflektiert wird, über den das Licht dann den Lichtleiter (11) verlässt.
2. Leuchte nach Anspruch 1, wobei der erste Reflektor (12) als rotierte Parabel, rotierte Ellipse oder rotierte Bezierfläche ausgebildet ist.

DE 202 06 629 U1

3. Leuchte nach Anspruch 1, wobei der zweite Reflektor (16) als rotierte Bezierfläche oder rotierte Gerade ausgebildet ist.

5

4. Leuchte nach einem der Ansprüche 1 bis 3, wobei der zweite Reflektor (16) aus mehreren in Umfangsrichtung versetzten Facetten besteht.

10 5. Leuchte nach Anspruch 4, wobei die Facetten einen unterschiedlichen radialen Abstand zum ersten Reflektor (12) aufweisen.

15 6. Leuchte nach einem der vorangehenden Ansprüche, wobei der erste Reflektor (12) konkav ausgebildet ist.

7. Leuchte nach einem der vorangehenden Ansprüche, wobei der zweite Reflektor (16) konkav oder konvex ausgebildet ist.

20

8. Leuchte nach einem der vorangehenden Ansprüche, wobei der Lichtleiter (11) im Bereich der Lichteinkoppelfläche (14) eine kugelförmige Aussparung aufweist, zur möglichst brechungsarmen Einkopplung des Lichtes in den Lichtleiter (11).

25 9. Leuchte nach einem der vorangehenden Ansprüche, wobei die Reflektoren (12, 16) zumindest abschnittsweise verspiegelt sind.

DE 20206829 U1

DE 101 08 029 U1

Fig. 1

Fig. 2

DE 101 08 029 U1

-263- 04-102

Fig. 3

Fig. 4

DE 20206829 U1

THIS PAGE BLANK (USPTO)

19.07.02

3 / 3

Fig. 5a

Fig. 5b

DE 2020 6 629 01

01530835

THIS PAGE BLANK (USPTO)