Assignment 9 of Math 5302

Due Date: April 27, 2022 at 11:59pm

- 1. a) Write down all possible σ -algebras on $X = \{1, 2, 3, 4\}$ which contains the element $\{1\}$.
 - b) Let $\mathcal{A} = \{\emptyset, \{1\}, \{2,3\}, X\}$ and $\mathcal{B} = \{\emptyset, \{2\}, \{1,3\}, X\}$.

Find $A \cup B$. Is $A \cup B$ a σ -algebra?

- c) Find $A \cap B$. Is $A \cup B$ a σ -algebra?
- 2. Prove that the intersection of any family of σ -algebras on X is a σ -algebra.
- 3. Prove that if N is a null set in \mathbb{R}^n , then there exists a Borel null set N' such that $N' \subseteq N$. Prove that N' may be chosen to be a " G_δ " set, a countable intersection of open sets.
- 4. Prove Property MF2: If $f: X \to \mathbb{R}$ is \mathcal{M} -measurable, and $f \neq 0$, then $\frac{1}{f}$ is \mathcal{M} -measurable.
- 5. Let $E \subseteq \mathbb{R}$ be a set which is not Lebesgue measurable. Let

$$f(x) = \begin{cases} e^x & \text{if } x \in E; \\ -e^x & \text{if } x \in E^c. \end{cases}$$

- (a) Prove that f is not Lebesgue measurable.
- (b) Prove that for all t, $f^{-1}(\{t\})$ is Lebesgue measurable.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Prove that the derivative f' is Borel measurable. (Be careful that f' may not be continuous.)