Escola SENAI Suíço-Brasileira "Paulo E. Tolle"

FPOO - Fundamentos de Programação Orientada a Objeto

Prof^o Atila Olivi prof.atila@gmail.com

```
class Program
    static void Main(string[] args)
        int num1, num2, soma;
        Console.Write("Digite o número 1: ");
        num1 = Convert.ToInt32(Console.ReadLine());
        Console.Write("Digite o número 2: ");
        num2 = Convert.ToInt32(Console.ReadLine());
        soma = num1 + num2;
        Console.WriteLine($"{num1} + {num2} = {soma}");
                             TERMINAL
Digite o número 2: 2
1 + 2 = 3
PS C:\Users\PC\Documents\@@@@@ 2S 2020\CFP115\FP00\Aula23 08 12 2020>
```

Até o momento as variáveis só armazenavam um e somente um valor

```
num1 = 1
num2 = 2
Soma = 3
```

Agora uma variável poderá armazenar mais de um valor ou seja, o agrupamento de várias informações dentro de uma variável com mesmo nome.

Exemplo:

numeros [0] = 5; numeros [1] = 3; numeros [2] = 7; numeros [3] = 1; numeros [4] = 0; numeros [5] = 4;

Quantos a valores a variável números está armazenando?

Como conseguimos isso?

Usando <mark>arrays</mark> ...

- Utilizada para a criação de estruturas;
- Caracteriza-se por ser definida uma única variável

dimensionada (com constantes inteiras e

positivas) com um determinado tamanho;

• Exemplo: próximo slide.

- Um array será representado por:
 - Seu nome;

		τ,∪
	50 - 3	

• Desta forma seria um array
$$\mathbf{mg}$$
 [0..7]; mg [1] = 6,5

- Isso significa que no array **mg** poderão ser armazenados até oito mg[2] =elementos;
- Vantagem: Pode-se manipular uma quantidade de informações com pouco trabalho de processamento;
- Observem que o nome é o mesmo o que muda é a informação dentro dos [] - colchetes;
- Essa informação chamamos de ÍNDICE. Exemplo:

E seu tamanho (dimensão) entre os colchetes []:

 $\mathbf{mg}[0] = 4.5$ 0 é o ÍNDICE, e 4.5 é o ELEMENTO.

$$mg[0] = 4,5$$

$$mg[2] = 8,0$$

$$mg[3] = 3,5$$

$$mg[4] = 6,0$$

$$mg[5] = 7,0$$

$$mg [6] = 6,5$$

$$mg [7] = 6,0$$

Array de uma dimensão ou vetor

Aluno	Nota1	Nota2	Nota3	Nota4	Média
1	4	6	5	3	4,5
2	6	7	5	8	6,5
3	9	8	9	6	8,0
4	3	5	4	2	3,5
5	4	6	6	8	6,0
6	7	7	7	7	7,0
7	8	7	6	5	6,5
8	6	7	2	9	6,0

Para pensar ...

Como você calcularia a média geral da turma?

✓ Para declarar um array, defina o tipo de variável com colchetes:

String[] carros; //declaramos uma variável que contém um array de strings

✓ Para inserir valores nele, coloque os valores em uma lista separada por vírgulas, entre chaves:

```
string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
```

✓ Para criar uma matriz de inteiros, você pode escrever:

- ✓ Para acessar um elemento do array referindo-se ao número do índice;
- ✓ Esta declaração acessa o valor do primeiro elemento em carros:

```
string[] carros = {"Volvo", "BMW", "Ford", "Mazda"};
Console.WriteLine(carros[0]);
// Saída: Volvo
```

Nota: Os **indices** de matriz começam com **ZERO**:

```
carros [0] = "Volvo";
carros [1] = "BMW";
carros [2] = "Ford";
carros [3] = "Mazda";
}
for(int i = 0; i <= 3; i++)
{
Console.WriteLine(carros[i]);
}
```


✓ Para alterar o valor de um elemento específico, consulte o número do índice:

```
string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
cars[0] = "Opel";
Console.WriteLine(cars[0]);
```


✓ Para descobrir quantos elementos uma matriz possui, use a propriedade Length:

```
string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
Console.WriteLine(cars.Length);
```


✓ Você pode percorrer os elementos do array com o loop for e usar a propriedade Length para especificar quantas vezes o loop deve ser executado.

```
Lembrando:
valor inicial: int i = 0;
valor final : i < carros. Length;
passo : i++
```

Estrutura de repetição foreach

Também existe um loop foreach, que é usado exclusivamente para percorrer os elementos de um array.

SINTAXE:

```
foreach (tipo nomeVariável in nomeArray)
```

foreach = para cada

```
// Bloco de instruções a serem executados
```

Onde:

tipo: pode ser string, int, float, etc.

nomeVariável: nome da variável que armazena/guarda os elementos do array;

nomeArray: nome do array que contém os elementos a serem percorridos.

Usando foreach(){}

```
string[] carros = {"Volvo", "BMW", "Ford", "Mazda"}; //array carros

//Exibindo os elementos do array carros

foreach (string i in carros)
{
    Console.WriteLine(i);
}
```

O exemplo acima pode ser lido assim:

Para cada elemento do tipo string (chamado old i) em carros , imprimir o valor de old i

 Existem outras formas para criar um array. Um deles, é usando a palavrachave new

```
// Cria um array com quatro elementos e adiciona valores depois
string[] carros = new string[4];
// Cria um array com quatro elementos e adicione valores imediatamente
string[] carros = new string[4] {"Volvo", "BMW", "Ford", "Mazda"};
// Cria um array com quatro elementos sem especificar o tamanho
string[] carros = new string[] {"Volvo", "BMW", "Ford", "Mazda"};
// Cria um array com quatro elementos, omitindo a palavra-chave new e sem especificar o
tamanho
string[] carros = {"Volvo", "BMW", "Ford", "Mazda"};
```

string[] **car** = new string[4];

Elemento	"Volvo"	"BMW"	"Ford"	"Mazda"
Índice	car [0]	car[1]	car[2]	car[3]

int[] **num** = new int[4];

Elemento	15	42	60	50
Índice	num [0]	num [1]	num [2]	num [3]

Lendo e exibindo arrays ...

```
static void Main(string[] args)
   //declarar variável
   string[] carros = new string[4];
   //lendo os elementos/valores para o array
   for(int i = 0; i \le 3; i++)
        Console.Write("Digite o nome de um carro: ");
        carros[i] = Console.ReadLine();
   //exibindo os elementos do array
   foreach(string i in carros)
       Console.WriteLine(i);
```

i	carros[i]
0	"Volvo"
1	"BMW"
2	"Ford"
3	"Mazda"
4	

Volvo BMW Ford Mazda

O exemplo acima pode ser lido assim:

Para cada elemento do tipo string (chamado old i) em carros , imprimir o valor de old i

Usando for(){}

```
string[] carros = {"Volvo", "BMW", "Ford", "Mazda"};
for (int i = 0; i < carros.Length; i++)
{
    Console.WriteLine(carros[i]);
}</pre>
```

Usando foreach(){}

```
string[] carros = {"Volvo", "BMW", "Ford", "Mazda"};
foreach (string i in carros)
{
   Console.WriteLine(i);
}
```

Existem muitos métodos de array disponíveis, por exemplo Sort(), que classifica um array em ordem alfabética ou em ordem crescente:

```
string[] carros = {"Volvo", "BMW", "Ford", "Mazda"};
Array.Sort(carros);
foreach (string i in carros)
{
    Console.WriteLine(i);
}
```

Leitura dos Dados de um array

- A leitura de um array é processada passo a passo, um elemento por vez;
- A instrução de leitura é o LEIA seguida da variável mais o Indice.

Aluno	Nota1	Nota2	Nota3	Nota4	Média
1	4	6	5	3	4,5
2	6	7	5	8	6,5
3	9	8	9	6	8,0
4	3	5	4	2	3,5
5	4	6	6	8	6,0
6	7	7	7	7	7,0
7	8	7	6	5	6,5
8	6	7	2	9	6,0

Dada a tabela ao lado elaborar um fluxograma que calcule a **média geral** da turma.

Média Geral =
$$(4.5 + 6.5 + 8.0 + 3.5 + 6.0 + 7.0 + 6.5 + 6.0) / 8$$

Média Geral = 6.0

Teste de Mesa

Ι	MD[I]	SOMA	MG
0	0	0	0

Só para lembrar!

- 1) Índice é o endereço de alocação de uma unidade no Vetor;
- 2) Elemento é o conteúdo armazenado em um determinado endereço. EX: MD[4]

Array de duas Dimensões ou Matriz

Aluno	Nota1	Nota2	Nota3	Nota4	Média
L1	L1C1	L1C2	L1C3	L1C4	L1C5
L2	L2C1	L2C2	L2C3	L2C4	L2C5
L3	L3C1	L3C2	L3C3	L3C4	L3C5
L4	L4C1	L4C2	L4C3	L4C4	L4C5
L5	L5C1	L5C2	L5C3	L5C4	L5C5
L6	L6C1	L6C2	L6C3	L6C4	L6C5
L7	L7C1	L7C2	L7C3	L7C4	L7C5
L8	L8C1	L8C2	L8C3	L8C4	L8C5

Legenda:

L – Linha

C - Coluna

Quantas estruturas de repetição você identifica neste problema?

Conceitos de Matrizes

 Uma matriz na verdade é uma tabela contendo elementos. Exemplos:

5	3
6	9

	5	3	1
5.1545.155.255.2	0	9	5

Matriz 2 x 2

Matriz 2 x 3

5	3	1	8
0	9	5	6
2	3	6	9
1	2	0	2

Matriz 4 x 4

Quando o número de linhas for igual ao número de colunas temos uma matriz QUADRADA.

		Coluna		
		0	1	
nha	0	5	3	
Lir	1	6	9	

Endereços

Linha0, Coluna0	Linha0, Coluna1
Linha1, Coluna0	Linha1, Coluna1

Endereço	Elemento
Linha 0, Coluna 0	5
Linha 0, Coluna 1	3
Linha 1, Coluna 0	6
Linha 1, Coluna 1	9

Matriz 2 x 2

		Coluna			
		0	1	2	
ıha	0	5	3	1	
Lin	1	0	9	5	

Linha0, Coluna0 Linha0, Coluna1 Linha0, Coluna2
Linha1, Coluna0 Linha1, Coluna1 Linha1, Coluna2

Matriz 2 x 3

Endereço	Elemento
Linha 0, Coluna 0	5
Linha 0, Coluna 1	3
Linha 0, Coluna 2	1
Linha 1, Coluna 0	0
Linha 1, Coluna 1	9
Linha 1, Coluna 2	5

Diagonal Principal

Os elementos 5, 9, 6 e 2 formam a Diagonal Principal

Os elementos 8, 5, 3 e 1 formam a Diagonal Secundária

Triângulo Superior

Os elementos 3, 1, 8, 5, 6 e 9 formam o Triângulo Superior da Diagonal Principal

Triângulo Inferior

Os elementos 0, 2, 3, 1, 2, 0 formam o Triângulo Inferior da Diagonal Principal

Matrizes Bidimensionais

 Como fazer a leitura de uma Matriz Bidimensional?

Por exemplo, uma Matriz de 4 linhas por 4

colunas;

Linhaı,	Linhaı,	Linhaı,	Linhaı,
Colunaı	Coluna2	Coluna3	Coluna4
Linha2,	Linha2,	Linha2,	Linha2,
Coluna1	Coluna2	Coluna3	Coluna4
Linha3,	Linha3,	Linha3,	Linha3,
Coluna1	Coluna2	Coluna3	Coluna4
Linha4,	Linha4,	Linha4,	Linha4,
Coluna1	Coluna2	Coluna3	Coluna4

Leitura dos Dados de uma Matriz

- A leitura de uma Matriz é processada passo a passo, um elemento por vez;
- A instrução de leitura é o LEIA seguida da variável mais os índices.

MD[**I**, **J**]

5	3	1	8
0	9	5	6
2	3	6	9
1	2	0	2

L	C	A [L, C]
1	1	5
	2	3
	3	1
	4	8
	5	-
2	1	0
	2	9
	3	5
	4	6
	5	-
3	1	2
	2	3
	3	6
	4	9
	5	-

L	C	A[L,C]
4	1	1
	2	2
	3	0
	4	2
	5	-
5	-	-

Exercícios ...

Codificar os exercícios abaixo em:

- √ C#;
- ✓ JS e;
- ✓ Python.

Página 105 do material de apoio; Itens a, b, c e d.

Desafio ...

		0	1	2	3	4
	Nome	Notai	Nota2	Nota ₃	Nota4	Média Final
o						
1						
2						
3						
4						
5						
6						
7						