Part I: Moving towards a sustainable fisheries framework for BC herring: data, models & alternative assumptions.

Part II: Stock assessment and management advice for BC Herring stocks (2011/2012)

Steven Martell, Jake Schweigert, Jaclyn Cleary, Vivian Haist

University of British Columbia martell.steve@gmail.com

August 24, 2011



- Sustainable Fisheries Framework
  - HCAM Review
  - Harvest Control Rule

- Methods



# Terms of Reference (paraphrased)

- Herring spawn index, is q = 1 assumption appropriate?
- HCR, should CUTOFF change in concert with B<sub>0</sub> updates?
- What is the best way to parameterize natural mortality?
- Are the priors appropriate and is uncertainty appropriately reflected in assessments?
- Preference for selectivity/availability parameterization.
- Should stock assessments be conducted on a risk-neutral or risk-averse basis?
- Appropriate assumptions for an operating model (MSE).



### Terms of Reference (paraphrased)

- Herring spawn index, is q = 1 assumption appropriate?
- HCR, should CUTOFF change in concert with  $B_0$  updates?
- What is the best way to parameterize natural mortality?
- Are the priors appropriate and is uncertainty appropriately reflected in assessments?
- Preference for selectivity/availability parameterization.
- Should stock assessments be conducted on a risk-neutral or risk-averse basis?
- Appropriate assumptions for an operating model (MSE).



- **①** Assumption that q = 1 was inappropriate.
- OUTOFFS can be fixed or updated annually.
- ③ A model based approach to estimating  $B_0$  and  $B_{MSY}$  is appropriate.
- **a** Recruitment variation  $\sigma_R$  should be estimated within the model.
- Solution | State |
- Science advice should be risk neutral.

The model parameterization of q could potentially have the single greatest effect on estimation of management parameters, and as such further investigation is recommended.



- ① Assumption that q = 1 was inappropriate.
- CUTOFFS can be fixed or updated annually.
- ② A model based approach to estimating  $B_0$  and  $B_{MSY}$  is appropriate.
- **a** Recruitment variation  $\sigma_R$  should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral.

If the intention is that the CUTOFF represents  $25\%~B_0$  then it should be updated in conjunction with stock assessment updates.



- ① Assumption that q = 1 was inappropriate.
- 2 CUTOFFS can be fixed or updated annually.
- **3** A model based approach to estimating  $B_0$  and  $B_{MSY}$  is appropriate.
- ⓐ Recruitment variation  $\sigma_R$  should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral.

Estimates of MSY based reference points are sensitive to the assumed form of the recruitment model and allocation to gears with different selectivities.



- ① Assumption that q = 1 was inappropriate.
- OUTOFFS can be fixed or updated annually.
- ③ A model based approach to estimating  $B_0$  and  $B_{MSY}$  is appropriate.
- **3** Recruitment variation  $\sigma_R$  should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral.

Note that MLE estimates of  $\sigma_R$  are biased; values from the joint posterior distribution are unbiased.



- ① Assumption that q = 1 was inappropriate
- OUTOFFS can be fixed or updated annually.
- ③ A model based approach to estimating  $B_0$  and  $B_{MSY}$  is appropriate.
- **a** Recruitment variation  $\sigma_R$  should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral.



- ① Assumption that q = 1 was inappropriate.
- ② CUTOFFS can be fixed or updated annually.
- ③ A model based approach to estimating  $B_0$  and  $B_{MSY}$  is appropriate.
- **a** Recruitment variation  $\sigma_R$  should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral.



### Current Harvest Control Rule

- CUTOFF set at 0.25  $B_0$  (last updated in 1996).
- 20% exploitation rate.
- Forecast based on poor, average, good recruitment.



### Contents

- Sustainable Fisheries Framework
  - HCAM Review
  - Harvest Control Rule
- 2 Introduction
- Input Data
- 4 Methods



#### Introduction

- Current harvest control rule for BC herring:
  - Cuttoffs set at 0.25 B<sub>0</sub>
  - 20% exploitation rate
  - Estimates of  $B_0$  were last updated in 1996.
- HCAM model assumed q = 1 for the dive survey data.
- Natural mortality is modelled as a random-walk.
- Gill net selectivity is a function of weight-at-age.



### Harvest Strategy Compliant with Precautionary Approach



Figure: Fisheries management framework consistent with a precautionary approach.

### Key elements for the new framework I

#### Reference points

- Limit Reference Point (LRP) & Upper Stock Reference (USR) requires knowledge of stock productivity and population scale.
- Removal Rate requires knowledge of stock productivity.
- MSY-based reference points require a priori allocation to different gears.

#### Risk & Decision making

• Onus on being able to reliably determine stock status (informative data).



# Herring Stock Assessment Model Review I



### Herring Stock Assessment Model Review II

#### Summary of Panel Recommendations

- Panel concluded that  $q_2 = 1$  was inappropriate.
- CUTOFFS can be fixed or annually estimated (should be updated if management objective is  $25\% B_0$ )
- A model based approach to estimating  $B_0$  and  $B_{MSY}$  is appropriate.
- Recruitment variation should be estimated within the model rather than fixing it at a pre-specified level.
- Issues regarding estimating selectivity vs. availability should be explored (data is limited to estimate availability).
- Science advice should be risk neutral.
- MSE should explore elements of the Sustainable Fisheries Framework (i.e., ensure that  $B_t > 0.4 B_{MSY}$  with 95% certainty over two generations.)





### Contents

- Sustainable Fisheries Framework
  - HCAM Review
  - Harvest Control Rule
- 2 Introduction
- Input Data
- 4 Methods



### Input data

The input data for  ${}^{i}SCA_{M}$  is the same as HCAM:

- Catch by gear,
- Spawn survey index,
- Age-composition data for all gears,
- Empirical weight-at-age data.



### Contents

- Sustainable Fisheries Framework
  - HCAM Review
  - Harvest Control Rule
- 2 Introduction
- Input Data
- Methods



### Analytical methods

### Integrated Statistical Catch Age Model ( <sup>i</sup>SC <sub>M</sub>)

- The model is based on a statistical catch-age framework first developed by Fournier and Archibald (1982).
- Flexible options for modelling selectivity, natural mortality, & survey catchability.
- Integrated framework: joint estimation of policy parameters (e.g., reference pionts).
- Model is implemented in AD Model Builder ADMB Project (2009), and the source code is maintained at: http://code.google.com/p/iscam-project/



### Assumptions I

#### Error distributions

- Observation errors in catch are lognormal &  $\sigma$  is known.
- ullet Errors in spawn survey are lognormal &  $\sigma$  is unknown.
- Recruitment deviations are lognormal &  $\sigma$  is unknown.
- Age-composition residuals follow a multivariate-logistic distribution.

#### Selectivity

- Seine gears: asymptotic and time invariant.
- Gillnet gear: parametric logistic function with weight anomalies as a covariate.



### Assumptions II

#### Structural assumptions

- Age-2 recruitment with a Beverton-Holt model.
- Fishing & natural mortality occur simultaneously (Baranov catch equation).
- Natural mortality is age-independent.
- Natural mortality can vary over time (random walk,  $\sigma = 0.1$ ).
- 100% of the total mortality occurs before spawning.
- Fecundity is proportional to mature biomass.

#### Equilibrium & MSY-based reference points

- ullet  $B_o$  is based on average M and average fecundity-at-age.
- $B_{MSY}$  is based on average (M) and fecundity in terminal year.



### Objective function I

### Major components of the objective function

- Likelihoods for data.
- Likelihoods for structural assumptions.
- Phased penalties to ensure regular solution.
- Prior densities for model parameters.



### Objective function II

#### Likelihoods for data

- Normal density functions for:
  - catch residuals (log-scale) with fixed  $\sigma^2$ ,
  - spawn survey residuals (log-scale) with estimated  $\sigma^2$ .
- Multivariate logistic function for age-composition evaluated at the conditional MLE of  $\sigma^2$ .
  - age-proportions < 2% are pooled into adjacent age class.



#### Likelihoods for structural assumptions

Stock-recruitment

$$\ln \ell = n \ln(\tau) + \frac{\sum_{t} \delta_{t}^{2}}{2\tau^{2}},$$
  
$$\delta_{t} = \ln(N_{2,t}) - \ln(f(SB_{t}))$$

Natural mortality (random walk)

$$M_{t+1} = M_t \exp(\varphi_t)$$

$$\ln \ell = n \ln(\sigma) + \frac{\sum_{t=2}^{T} (\varphi_t - \varphi_{t-1})^2}{2\sigma^2}$$



### Objective function IV

#### Phased penalties to ensure regular solution

• Mean fishing mortality rate:

$$\ln(\sigma_{\bar{F}}) + \frac{(\ln(\bar{F}) - \ln(0.2))^2}{2\sigma_{\bar{F}}^2}, \quad \sigma_{\bar{F}}^{(1-3)} = 0.05, \quad \sigma_{\bar{F}}^{(4)} = 2.0$$

Deviations in average recruitment:

$$\ln(\sigma_{\omega}) + \frac{\sum_{t} \omega_{t}^{2}}{2\sigma_{\omega}^{2}}, \quad \sigma_{\omega}^{(1-3)} = 0.0707, \quad \sigma_{\omega}^{(4)} = 2.0$$

$$\ln(\sigma_{\ddot{\omega}}) + \frac{\sum_{t} \ddot{\omega}_{t}^{2}}{2\sigma_{\ddot{\omega}}^{2}}, \quad \sigma_{\ddot{\omega}}^{(1-3)} = 0.0707, \quad \sigma_{\ddot{\omega}}^{(4)} = 2.0$$

### Objective function V

| Prior densities for model parameters |              |            |          |
|--------------------------------------|--------------|------------|----------|
| Parameter                            | Distribution | P1         | P2       |
| ${}$ In( $R_0$ )                     | Uniform      | -5.0       | 15       |
| Steepness                            | Beta         | 10.0       | 4.925373 |
| Natural mortality $(ln(M))$          | Normal       | -0.7985077 | 0.2      |
| Rbar                                 | Uniform      | -5.0       | 15       |
| Rinit                                | Uniform      | -5.0       | 15       |
| Variance ratio $( ho)$               | Beta         | 17.08696   | 39.0559  |
| Precision                            | Gamma        | 25.0       | 28.75    |
| Survey $ln(q)$                       | Normal       | -0.569     | 0.274    |



### Objective function VI



Figure: Prior densities for leading model parameters.



### Bibliography

ADMB Project (2009). 2009 AD Model Builder: Automatic Differentiation Model Builder. Developed by David Fournier and freely available from admb-project.org.

Fournier, D. and Archibald, C. (1982). A general theory for analyzing catch at age data. *Canadian Journal of Fisheries and Aquatic Sciences*, 39(8):1195–1207.

