LC 16 – Évolution et équilibre chimique

La quantité $\Delta_{\Gamma}G$ (ξ) est la valeur de la pente de $G(\xi)$ au point d'abscisse ξ :

La quantité $\Delta_{r}G$ (ξ) est la valeur de la pente de $G(\xi)$ au point d'abscisse ξ :

La composition évolue par réaction chimique jusqu'à atteindre un équilibre :

La quantité $\Delta_r G$ (ξ) est la valeur de la pente de $G(\xi)$ au point d'abscisse ξ :

La composition évolue par réaction chimique jusqu'à atteindre un équilibre :

À l'équilibre, G est minimale, cela correspond à $\xi = \xi_{eq}$ et : $\Delta_r G(\xi) = 0$.

 $\Delta_{\Gamma}G(\xi) = 0$ est la condition pour avoir un équilibre chimique

$$dG = \Delta_r G d \xi \leq 0$$

$$\Delta_r G = RT \ln \left(\frac{Q_R}{K^o(T)} \right)$$

$$dG = \Delta_r G d \xi \leq 0$$

$$\Delta_r G = RT \ln \left(\frac{Q_R}{K^o(T)} \right)$$

$$dG = \Delta_r G d \xi \leq 0$$

$$\Delta_r G = RT \ln \left(\frac{Q_R}{K^o(T)} \right)$$

$$dG = \Delta_r G d \xi \leq 0$$

$$\Delta_r G = RT \ln \left(\frac{Q_R}{K^o(T)} \right)$$

$$dG = \Delta_r G d \xi \leq 0$$

$$\Delta_r G = RT \ln \left(\frac{Q_R}{K^o(T)} \right)$$

$$dG = \Delta_r G d \xi \leq 0$$

$$\Delta_r G = RT \ln \left(\frac{Q_R}{K^o(T)} \right)$$

$$Q_{R} < K^{\circ}(T) \qquad K^{\circ}(T) \qquad Q_{R} > K^{\circ}(T)$$

$$dG = \Delta_r G d \xi \leq 0$$

$$\Delta_r G = RT \ln \left(\frac{Q_R}{K^o(T)} \right)$$

$$dG = \Delta_r G d \xi \leq 0$$

$$\Delta_r G = RT \ln \left(\frac{Q_R}{K^o(T)} \right)$$

Les bornes ξ_{min} et ξ_{max} sont fonction des quantités de matière initiales.

Les bornes ξ_{min} et ξ_{max} sont fonction des quantités de matière initiales.

Les bornes ξ_{\min} et ξ_{\max} sont fonction des quantités de matière initiales.

Même si une réaction admet un équilibre en théorie,

il ne peut être atteint que s'il y a suffisamment de réactifs.

En résumé :

- Le signe de Δ_{Γ} G nous informe sur le sens d'évolution de la réaction.

En résumé :

- Le signe de Δ_G nous informe sur le sens d'évolution de la réaction.

- Le signe de $\Delta_{_{\! f}}G^{\circ}$ nous informe sur son caractère favorable (K° > 1) ou non (K° < 1).

En résumé:

- Le signe de Δ_C nous informe sur le sens d'évolution de la réaction.

- Le signe de $\Delta_{r}G^{\circ}$ nous informe sur son caractère favorable (K° > 1) ou non (K° < 1).

- La valeur de Δ_rG° nous informe sur la « position » de l'équilibre ...

... mais ne suffit pas pour dire si cet équilibre peut être atteint.

En résumé:

- Le signe de Δ_C nous informe sur le sens d'évolution de la réaction.

- Le signe de $\Delta_{\mathcal{G}}^{\circ}$ nous informe sur son caractère favorable (K° > 1) ou non (K° < 1).

- La valeur de Δ_rG° nous informe sur la « position » de l'équilibre ...

... mais ne suffit pas pour dire si cet équilibre peut être atteint.

La question du nombre de degrés de liberté du système est posée!