Lista 2 - Topologia 2022

Definicja. Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Powiemy, że $\mathcal{B} \subseteq \mathcal{T}$ jest bazą tej przestrzeni, jeżeli każdy zbiór otwarty (czyli element \mathcal{T}) jest sumą pewnej podrodziny rodziny \mathcal{B} . (Np. w przestrzeniach metrycznych rodziny kul stanowią bazy.).

Definicja. Przestrzeń topologiczna X jest metryzowalna, jeżeli istnieje metryka d na X, w której rodzina zbiorów otwartych jest topologią X.

- **Zad. 1** Znajdź podprzestrzeń X przestrzeni euklidesowej $\mathbb R$ zawierającą zbiór A=[0,1) taką, że A jest w X otwarty, ale nie jest domknięty.
- **Zad. 2** Pokaż, że podprzesteń $X=\{\frac{1}{n}\colon n\in\{1,2,\ldots\}\}$ przestrzeni euklidesowej $\mathbb R$ jest dyskretna (tzn. każdy podzbiór jest otwarty). A $Y=\{\frac{1}{n}+\frac{1}{m}:n,m\in\{1,2,\ldots\}\}$?
- **Zad. 3** Niech Y będzie poprzestrzenią przestrzeni X i niech $A \subseteq Y$. Czy:
- a) jeśli A jest otwarty w Y, to A otwarty w X?
- b) jeśli A jest otwarty w X, to A otwarty w Y?
- c) jeśli A jest gęsty w Y i Y jest gęsty w X, to A jest gęsty w X?
- **Zad. 4** Niech X, Y będą przestrzeniami topologicznymi i niech \mathcal{B} będzie bazą przestrzeniY. Pokaż, że następujące warunki są równoważne ciągłości funkcji $f: X \to Y$:
 - $f^{-1}[F]$ jest domknięty dla każdego domkniętego $F \subseteq Y$,
 - $f^{-1}[B]$ jest otwarty dla każdego $B \in \mathcal{B}$.
- **Zad. 5** Pokaż, że okrąg bez punktu jest homeomorficzny z prostą euklidesową. Uogólnij ten wynik na wyższe wymiary.
- Zad. 6 Które przekształcenia liniowe są homeomorfizmami? Które są funkcjami ciągłymi?
- Zad. 7 Pokaż, że trójkąt jest homeomorficzny z kwadratem.
- **Zad. 8** Pokaż, że w przestrzeni Hausdorffa punkty są domknięte, a ciągi zbieżne mają tylko jedną granicę.
- Zad. 9 Czy podprzestrzeń przestrzeni Hausdorffa jest przestrzenia Hausdorffa?
- **Zad. 10** Rozważmy przestrzeń $C_p[0,1]$ funkcji ciągłych z topologią rozważaną na wykładzie (tzn. z bazą składającą się ze wszystkich skończonych przekrojów zbiorów postaci $A_x^I = \{f \in C[0,1]: f(x) \in I\}$, gdzie $x \in [0,1]$, a $I \subseteq \mathbb{R}$ jest otwarty.
 - a) Pokaż, że $C_p[0,1]$ jest przestrzenią Hausdorffa.
 - b) Pokaż, że (f_n) jest zbieżny do f (w tej przestrzeni) wtedy i tylko wtedy, gdy (f_n) jest zbieżny do f punktowo (tzn. $\lim_n f_n(x) = f(x)$ dla każdego $x \in [0,1]$).
- **Zad. 11** Pokaż, że jeżeli X jest przestrzenią metryzowalną, to spełnia następującą własność: dla każdego $x \in X$ istnieje rodzina $\{U_n \colon n \in \omega\}$ otwartych otoczeń x takich, że dla każdego V, otwartego otoczenia x, istnieje n, że $U_n \subseteq V$. (Wskazówka: pomyśl o kulach.) Wywnioskuj, że przestrzeń $C_p([0,1])$ nie jest metryzowalna.