Конспект по теории категорий по книге Tom Leinster, "Basic Category Theory".

Тотьмянин Данил

08.07.25

Оглавление

Оглавление		1
1	Введение	2
2	Категории, функторы и естественные преобразования	6

Глава 1

Введение

Основным концептом в этом конспекте является понятие *универ*сального свойства. Приведём несколько примеров.

Пример 1.1. Обозначим множество из одного (неважно какого) элемента за 1. Тогда 1 имеет следующее свойство:

 $\forall X$ существует единственное отображение из X в 1

Доказательство. Пусть X — множество. Тогда существует отображение $f: X \to 1$, т.к. его мы можем определить так:

 $\forall x: f(x)$ равно элементу множества 1

Такое отображение единственно, т.к. любое отображение $f: X \to 1$ для каждого $x \in X$ ставит в соответствие единственный элемент из множества 1.

В данном конспекте под словом кольцо будем подразумевать кольцо с нейтральным элементом по умножению. Так же все гомоморфизмы подразумевают не только сохранение операций сложения и умножения, но и сохранение нейтрального элемента (то есть если f — гомоморфизм, то для любых колец R,Q выполняется: $f(1_R)=1_Q)$

Пример 1.2. Пусть R — кольцо. Тогда существует единственный гомоморфизм $f: \mathbb{Z} \to R$

Доказательство. Существование Положим функцию:

$$f(n) = \begin{cases} \underbrace{1 + \dots + 1}_{n} & n > 0 \\ 0 & n = 0 \\ -f(-n) & n < 0 \end{cases}$$

Очевидно это является гомоморфизмом.

<u>Единственность</u> Пусть f, g — гомоморфизмы из \mathbb{Z} в R. Тогда по свойству сохранения нейтрального элемента:

$$g(n) = g(\underbrace{1 + \dots + 1}_{n}) = \underbrace{g(1) + \dots + g(1)}_{n} = \underbrace{1 + \dots + 1}_{n} = f(n)$$

для всех n > 0

Так же гомоморфизм сохраняет нейтральный элемент по сложению: g(0) = f(0)

A так же имеем для n < 0:

$$g(n) = -g(-n) = -f(-n) - f(n)$$

По сути, может существовать только один объект удовлетворяющий универсальному свойству. Здесь "по сути" означает с точностью до изоморфизма. То есть если два объекта удовлетворяют одному универсальному свойству, то они обязательно изоморфны. Например:

Лемма 1.1. Пусть A — кольцо со свойством: для всех колец R существует единственный гомоморфизм $f: A \to R$. Тогда $A \cong \mathbb{Z}$

Из определения имеем, что существуют единственные гомоморфизмы $\varphi:A\to \mathbb{Z}$ и $\varphi':\mathbb{Z}\to A$ Композиции из гомоморфизмов:

$$\varphi' \circ \varphi : A \to A, \qquad \varphi \circ \varphi' : \mathbb{Z} \to \mathbb{Z}$$

сами являются гомоморфизмами, и по прошлому утверждению получаем, что они единственны, а значит:

$$\varphi' \circ \varphi = \mathrm{id}_A \qquad \varphi \circ \varphi' = \mathrm{id}_{\mathbb{Z}}$$

Поэтому гомоморфизмы φ, φ' являются взаимообратными, то есть изоморфизмами. \square

Перейдём к векторным и топологическим пространствам.

Пример 1.3. Для любого множества S существуют векторное пространство V и функция (являющаяся индексацией базиса): $i: S \to V$ обладающие универсальным свойством:

Для любого векторного пространства W и для любой функции $f:S \to W$ существует единственная линейная функция $\bar{f}:V \to W,$ такая что $f=\bar{f}\circ i$

Перепишем это в виде диаграммы:

$$S \xrightarrow{i} V$$
 \downarrow \exists ! линейная \bar{f} \forall W

Доказательство. Это потому что любая функция определённая на базисных векторах однозначно расширяется до линейной функции.

Пример 1.4. Пусть S множество. Положим функцию

$$i: S \to D(S) \quad (i(s) = s)$$

где D(S) — топологическое пространство с дискретной топологией, построенное на S. Тогда функция i и пространство D(S) имеют универсальное свойство:

Для любого топологического пространства X и для любой функции $f:S\to X$ существует единственная непрерывная функция $\bar f:D(S)\to X,$ такая что $f=\bar f\circ i$

Доказательство. Перепишем утверждение в виде диаграммы:

$$S \xrightarrow{i} D(S)$$
 $\exists !$ непрерывная \bar{f} $\forall X$

Непрерывность любой функции $D(S) \to X$ является очевидной, в силу дискретной топологии.

Существование Положим $\bar{f}(s)=f(s)$, тогда необходимо проверить условие, что $\bar{f}\circ i=f$:

$$(\bar{f} \circ i)(s) = \bar{f}(i(s)) = \bar{f}(s) = f(s)$$

Единственность Из-за условия $\bar{f} \circ i = f$ имеем, что:

$$\forall s \in S : (\bar{f} \circ i)(s) = \bar{f}(s) = f(s)$$

T.к. f зафиксировано, \bar{f} обязан быть единственным

Г

Пример 1.5. Пусть U, V — любые векторные пространства. Тогда существуют такое векторное пространство T и соответствующее ему билинейное отображение $b: U \times V \to T$, обладающие универсальным свойством:

Для любого векторного пространства W и для любого билинейного отображения $f: U \times V \to W$ существует единственное линейное отображение $\bar{f}: T \to W$, такое что $f = \bar{f} \circ b$

Можно представить в виде диаграммы:

$$U \times V \xrightarrow{b} T$$
 \exists ! непрерывная \bar{f} \forall W

Лемма 1.2. Пусть U, V — векторные пространства. Положим $b: U \times V \to T, \ b': U \times V \to T'$ — билинейные отображения с универсальным свойством. Тогда $T \cong T'$.

Доказательство. Покажем связи в виде диаграммы:

Тогда по универсальному свойству для b, T подставляя b', T' имеем единственное линейное отображение $j: T \to T'$

Аналогично по универсальному свойству для b', T' подставляя b, T имеем единственное линейное отображение $j': T' \to T$

Тогда имеем $j' \circ j : T \to T$ линейное отображение, для которого выполнено: $(j' \circ j) \circ b = b$, тогда по универсальному свойству для b, T подставляя $j' \circ j, T$ имеем, что $j' \circ j = \mathrm{id}_T$. Аналогично $j \circ j' = \mathrm{id}_{T'}$. Получили что j — изоморфизм.

Это доказательство своего рода "шаблон", который применяется для доказательства изоморфности объектов, обладающих общим универсальным свойством.

Глава 2

Категории, функторы и естественные преобразования