

Hypothesis Testing II: *z* **tests**

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul

OCTOBER 6, 2016

- Suppose we have one observation from normal distribution with mean μ and variance σ^2
- Given an observation x we can compute the Z score as

$$Z = \frac{x - \mu}{\sigma} \tag{1}$$

- H_0 : Our observation came from the normal distribution with $\mu=\mu_0$
 - \circ Assume same known variance σ

- Suppose we have one observation from normal distribution with mean μ and variance σ^2
- Given an observation x we can compute the Z score as

$$Z = \frac{x - \mu}{\sigma} \tag{1}$$

- $extit{H}_0$: Our observation came from the normal distribution with $\mu=\mu_0$
 - \circ Assume same known variance σ
 - But we need to be more specific!

Two-tailed vs. one-tailed tests

- Two tail: Alternative $\mu \neq \mu_0$
- One tail: Alternative $\mu > \mu_0$

Multiple observations

If you observe $x_1...x_N$ from distribution with mean μ , test whether $\mu \neq \mu_0$

Compute test statistic

$$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{N}} \tag{2}$$

- If H_0 were true, $ar{x}$ would be normal distribution with μ_0 and variance $rac{\sigma^2}{N}$
- Now we can decide when to reject based on normal CDF

When to reject (two-tailed)

