# **IBM Data Science Capstone**

Guidance for pedestrians in Seattle

Jan Stroppel - 10/2020

#### **Current status**

- National Highway Traffic Safety Administration (NHTSA) sees an increase in the number of accidents
- Accidents with pedestrians often leads to severe injuries



### **Business Problem**

- Create a model to predict the probability of pedestrians involed in an accident
- Find parameters which indicates a high risk for pedestrians
- Enable authorities in Seattle to create a guidance for pedestrians



### **Data**

| ]: | SEVERITYCOD | E X           | Y         | OBJECTID | INCKEY | COLDETKEY | REPORTNO | STATUS  | ADDRTYPE     | INTKEY  | <br>ROADCOND | LIGHTCOND                  | PEDROWNOTGRNT | SDOTCOLNUM | SPEEDING | ST_COLCODE | ST_COLDESC                                                 |
|----|-------------|---------------|-----------|----------|--------|-----------|----------|---------|--------------|---------|--------------|----------------------------|---------------|------------|----------|------------|------------------------------------------------------------|
| 0  |             | 2 -122,323148 | 47.703140 | 1        | 1307   | 1307      | 3502005  | Matched | Intersection | 37475.0 | <br>Wet      | Daylight                   | NaN           | NaN        | NaN      | 10         | Entering at angle                                          |
| 1  |             | 1 -122.347294 | 47.647172 | 2        | 52200  | 52200     | 2607959  | Matched | Block        | NaN     | <br>Wet      | Dark - Street<br>Lights On | NaN           | 6354039.0  | NaN      | 11         | From same<br>direction -<br>both going<br>straight -<br>bo |
| 2  |             | 1 -122.334540 | 47.607871 | 3        | 26700  | 26700     | 1482393  | Matched | Block        | NaN     | <br>Dry      | Daylight                   | NaN           | 4323031.0  | NaN      | 32         | One parked-<br>-one moving                                 |
| 3  |             | 1 -122,334803 | 47.604803 | 4        | 1144   | 1144      | 3503937  | Matched | Block        | NaN     | <br>Dry      | Daylight                   | NaN           | NaN        | NaN      | 23         | From same<br>direction - all<br>others                     |
| 4  |             | 2 -122,306426 | 47.545739 | 5        | 17700  | 17700     | 1807429  | Matched | Intersection | 34387.0 | <br>Wet      | Daylight                   | NaN           | 4028032.0  | NaN      | 10         | Entering at angle                                          |

5 rows × 38 columns

The dataset "Collisions – All Years" for Seattle was used for creating, training and testing the model

### **Selected Columns**

- Speeding: Was the vehicle too fast?
- Weather: Was it raining?
- Road Condition: Was the road slippy?
- Light condition: Was the pedestrian visible?
- Date and Time: Are there differences for week days and the time?
- Inattention: Was the driver distracted?
- Drugs: Was the driver under influence of alkohol or drugs?
- Dependent variable was PEDESTRIANINVOLVED, which is a boolean derived from the collision type

# **Data Preparation**

- Unify entries for booleans (N,Y instead of 0,1)
- Setting meaningful default values (Unknown for missing data)
- Transforming categorical values into numerical values (0,1 instead of Dry, Wet)
- Balancing data set (same number of rows for involved/not involved pedestrians)

```
Attribute values count:
Clear
                             96391
Raining
                             28699
Overcast
                             23831
Unknown
                            13082
Snowing
                              776
Other
                              678
Fog/Smog/Smoke
                              521
Sleet/Hail/Freezing Rain
Blowing Sand/Dirt
Severe Crosswind
                               24
Partly Cloudy
Name: WEATHER, dtype: int64
```

```
cat_col = df_balanced.select_dtypes(['object'])
encoding_maps = []

for column in cat_col:
    df_balanced[column] = pd.Categorical(df_balanced[column]).codes
df_balanced.head()
```

### **Data visualization**





## Methodology

- As most variables are categorical, a classifier model was chosen
- It was decided to create a decision tree
- The dependent variable is binary, so ideal for a decision tree
- The dataset was split 30/70 in training/test set

### **Decision Tree**



### **Evaluation**

- Model performance low (50 to 60%)
- Reason could be not enough data to train and test the model (only 5891 entries for each value)
- Another reason could be that business problem can not be handled by the data set