TEMA 1. CARACTERIZACIÓN DE SISTEMAS OPERATIVOS

Implantación de Sistemas Operativos 1º ASIR

Profesora: Anabel Serradilla

CONTENIDOS

- Introducción
- 2. Sistemas Operativos
- 3. Funciones de los SS.OO.
- 4. Evolución histórica
- 5. Clasificación
- 6. Tipos de licencias
- 7. Ejemplos de SSOO
- 8. Gestión de procesos
- 9. Gestión de memoria
- 10. Gestión de E/S
- 11. Gestión del sistema de archivos
- 12. Gestión de la red
- 13. Protección y Seguridad
- 14. Gestores de arranque
- 15. Tendencias actuales

1. INTRODUCCIÓN **COMPONENTE HUMANO** SISTEMA INFORMÁTICO **FIRMWARE HARDWARE SOFTWARE CPU** Software integrado Memoria dentro de un E/S Controladores Aplicaciones hardware Buses

2. SISTEMAS OPERATIVOS

Definición

Programa que actúa como intermediario entre el usuario del sistema informático y el hardware.

Permite ocultar los detalles del hardware, gestionar los recursos del sistema y optimizar su uso

2. SISTEMAS OPERATIVOS

- Facilitar el uso al usuario, independizando los programas de aplicación del hardware
- Ejecutar programas de usuario
- Acceder a los dispositivos de entrada / salida (periféricos)
- Gestionar las comunicaciones en red
- Permitir a los usuarios compartir recursos

- Administrar la memoria
- Proporcionar una estructura y conjunto de operaciones para el sistema de archivos
- Proporcionar interfaces de usuario: en modo texto y gráficos
- Servicios soporte: actualizaciones de software, controladores para nuevos periféricos, etc.

- Gestión de procesos
- Gestión de memoria
- Gestión de E/S
- Gestión de ficheros
- Gestión de la red
- Protección y seguridad

¿Qué tareas nos evita un Sistema Operativo?

- Al guardar un fichero en disco duro, la localización en memoria no se hace por "Cilindros-Cabeza-Sector", sino por ficheros (sistemas de ficheros FAT, FAT32, NTFS, EXT)
- Para navegar por Internet no necesitamos dividir la información en paquetes y asignarles puertos, IP, MAC; el navegador y el S.O. nos evitan esa tarea
- Al conectar un USB al ordenador no debemos buscar un controlador para él. El S.O. gestiona los dispositivos de I/O

- ENIAC y primeros ordenadores: no disponen de S.O.
- 1970-1980: Primer S.O. de propósito general → UNIX
- A partir de 1980:
 - MS-DOS para el IBM-PC y MacOS para Apple Computer
 - Interfaz de ventanas → MS Windows
 - Linux
 - Otros dispositivos → Android, Windows Phone, Apple iOS

Usuarios con tiempo asignado

- Tareas sin terminar
- Tiempo de proceso desaprovechado

Operador

- Ejecutan rutinas de carga y descarga
- Agrupan trabajos

Monitor residente

- Programa en memoria
- Lenguaje de control de trabajos

Formas de trabajo

- Proceso en serie
 - Primeros ordenadores sin sistema operativo
 - Programador accede al hardware directamente
 - Controla el sistema con indicadores luminosos
 - Código máquina y salida por impresora
 - Error → indicadores luminosos
 - No error → salida por impresora
 - Serie: un trabajo detrás de otro
 - Problemas: planificación y tiempo de preparación

Formas de trabajo

- Sistemas por lotes (batch)
 - Se agrupan los trabajos por lotes
 - Monitor → software que controla la ejecución de los trabajos. Planifica su ejecución y los prepara.
 - El procesador ejecuta cada trabajo hasta que termina o detecta un error → control al monitor
 - Protección de memoria usada por el monitor
 - Uso de temporizador para repartir los tiempos
 - Instrucciones privilegiadas, solo para monitor
 - Tiempo de máquina para procesos y monitor

Formas de trabajo

Sistemas por lotes (batch)

Formas de trabajo

- Sistemas por lotes con multiprogramación
 - Operaciones de E/S lentas → el procesador está mucho tiempo desocupado.
 - Se aprovecha este tiempo cargando varios programas en memoria y alternando unos con otros
 - Proceso conocido como multiprogramación o multitarea

Formas de trabajo

Sistemas por lotes con multiprogramación

Formas de trabajo

- Sistemas de tiempo compartido
 - A veces es necesario que el usuario interactúe con el computador.
 - Se alternan tareas por lotes con tareas interactivas
 - El tiempo se comparte entre los distintos usuarios del sistema

Formas de trabajo

- Sistemas distribuidos
 - Procesamiento centralizado → todas las funciones están centralizadas en una CPU.
 - Procesamiento distribuido → los datos se ejecutan en distintos nodos dispersos geográficamente y conectados en red.
 - Fragmentación de los elementos que componen una aplicación
 - Recursos controlados de forma independiente
 - Diferentes formas: cliente/servidor o punto a punto

Formas de trabajo

Sistemas distribuidos

Cliente / Servidor

Punto a punto

Por su estructura

Sistemas operativo monolíticos

Sistemas operativos jerárquicos

Máquina virtual

Microkernel o Cliente - Servidor

Sistemas operativos monolíticos: es un único programa el que gestiona todo en modo supervisor: planificación de procesos, administración de memoria principal y ficheros y gestión de E/S.

Ventaja: rendimiento

Inconveniente: un cambio requiere recompilación y reinicio del sistema.

Sistemas operativos jerárquicos: el S.O. está organizado en capas diferenciadas por la función que realizan.

Ventaja: facilidad de construcción, independencia de las capas.

Ejemplo: Multics

- Máquina virtual: implementación por software de una máquina que ejecuta instrucciones como si fuera una máquina física.
- Microkernel o Cliente-Servidor: las distintas

tareas están distribuidas en porciones de código modulares y sencillas

Monolítica Jerárquica

Cliente-Servidor

Máquina virtual

Por los servicios ofrecidos

Por cómo se ofrecen los servicios

Sistemas centralizados

Sistemas distribuidos

Sistemas operativos en red

Sistemas operativos de escritorio

Por su forma de uso

Modo comando

```
▼ Terminal - administrador@Xubuntu160464bSP:~ - + ×

Archivo Editar Ver Terminal Pestañas Ayuda

administrador@Xubuntu160464bSP:~$ rm practica*.*
```

Interfaz gráfica

Por disponibilidad

Sistemas operativos propietarios

Sistemas operativos libres

El software propietario puede ser:

OEM: su venta está vinculada a la compra de un equipo nuevo. No se puede comprar de forma independiente.

Retail: venta de software. La propiedad del software es del comprador.

Licencias por volumen: software cuyas licencias se venden en paquetes a las empresas, p.e. 25 licencias

Otros conceptos

Código abierto (Open source): se distribuye el código fuente del software.

Software libre: software de código abierto que permite la copia, la distribución y la modificación sin restricciones.

FSF (Free Software Foundation): organización sin ánimo de lucro que promueve los ideales del software libre.

Licencias del software libre

Licencias GPL: el autor conserva los derechos de autor. Las modificaciones del software deben cumplir también con los requisitos GPL.

Licencias BSD: el autor solo conserva algunos derechos. Compatible con GPL.

Copyleft: los términos de distribución no permiten a los redistribuidores agregar ninguna restricción adicional cuando lo redistribuyen o modifican, o sea, la versión modificada debe ser también libre.

Coste para obtener la licencia.

Licencia EULA sistema operativo Windows XP	Licencia <u>GPL</u> sistema operativo Linux
Se prohíbe la copia.	Permite la copia, modificación y redistribución del software, ya que tiene el código fuente.
Es puede utilizar con un único ordenador con un máximo de dos procesadores.	Se puede vender y se pueden cobrar servicios sobre el software.
B	
No se puede utilizar como servidor web (web server) ni como file severo .	Cualquier patente sobre el software debe ser licenciada por el beneficio de todos.
Hay que registrarse en los treinta días de utilización.	El software modificado no debe tener coste para la licencia.
La licencia puede dejar de ser válida si se efectúan cambios en el hardware.	no
Si la compañía quiere, las actualizaciones del sistema pueden modificar la licencia.	no
Sólo se puede transferir una vez a otro usuario.	Se puede enviar a muchos usuarios.
Impone una limitación sobre la ingeniería inversa.	no
Da derecho a Microsoft para que en cualquier momento pueda recoger información sobre el sistema y su utilización y para que entregue esta información a terceros.	no
La garantía es para los primeros noventa días.	No ofrece garantía.
Las actualizaciones y los parches no tienen garantía.	Proporciona garantía de los derechos del usuario a la copia, modificación y redistribución del software.

Licencia gratuita.

Comparativa

7. EJEMPLOS DE SS.OO.

UNIX

- Nació en los años 70
- Sistema multiusuario y multitarea
- Procede del antiguo sistema MULTICS y se desarrolló en lenguaje C
- En su momento no se pudo comercializar y se ofreció de forma gratuita a las universidades para la investigación, lo que fomentó su desarrollo
- Fue la base para otros sistemas, tanto gratuitos como de pago

7. EJEMPLOS DE SS.OO.

LINUX

- Fue creado en 1991 por Linus Torvalds
- El objetivo era crear una versión de UNIX que funcionase sobre cualquier PC compatible
- Software libre desarrollado por un grupo de colaboradores que trabajan de forma desinteresada
- El kernel de Linux y las aplicaciones GNU se unieron dando lugar al SO GNU/Linux
- Se pueden descargar por separado (kernel, entorno gráfico, aplicaciones GNU, sistema de ventanas, ...) o en una distribución completa.

7. EJEMPLOS DE SS.OO.

LINUX - Distribuciones

Existen más de 500 distribuciones de Linux diferentes.

Las más importantes son:

- Debian: Ubuntu, Xubuntu, Linux Mint
- Red Hat: Fedora
- Slackware: SUSE, openSUSE

7. EJEMPLOS DE SS.OO.

WINDOWS

- Su primera versión (Windows 1.0) es del año 1985
- Versiones:

Windows 3.1 (1992)

Windows NT (1993)

Windows 95 (1995)

Windows 98 (1998)

Windows Me (2000)

Windows XP (2001)

Windows Vista (2006)

Windows 7 (2009)

Windows 8 (2012)

Windows 10 (2015)

Windows 11 (2021)

7. EJEMPLOS DE SS.OO.

Mac OS

- Creado por Apple para ordenadores Macintosh
- Primer S.O. con interfaz gráfica (1984)
- A partir de Mac OS X, el S.O. se deriva de UNIX pero manteniendo la interfaz gráfica
- Versiones: Mac OS 7

Mac OS 8

Mac OS 9

Mac OS X

7. EJEMPLOS DE SS.OO.

Otros sistemas operativos

Para otros dispositivos diferentes de PCs como smartphones, tablets, ...

- Android, versión modificada del kernel Linux
- iOs, para iPhones o iPads
- Windows Phone, desarrollado por Microsoft
- Google Chrome OS, basado en el kernel de Linux.
 Diseñado especialmente para los chromebooks.

Concepto de proceso

Un proceso es un programa en ejecución.

En un instante dado un proceso puede estar en uno de estos tres estados:

- Listo: son los que pueden pasar a estado de ejecución si el planificador del S.O. lo selecciona
- En ejecución: son los que están ejecutándose en el procesador en un momento dado
- Bloqueado: son los que están esperando respuesta de algún otro proceso para poder continuar

Concepto de proceso

Concepto de proceso

Un proceso tiene asociados los siguientes elementos:

- Identificador del proceso
- Estado
- Contador de programa
- Valores de los registros
- Espacio en memoria
- Prioridad
- Propietario
- ...

Planificación del procesador

En la planificación del procesador se decide cuánto tiempo de ejecución se le asigna a cada proceso y en qué momento

Una estrategia de planificación debe buscar que los procesos tengan sus turnos de ejecución de forma apropiada, con un buen rendimiento y sin sobrecargar el planificador

Planificación del procesador

- Planificación no apropiativa: cuando a un proceso le toca su turno de ejecución, ya no puede ser suspendido.
- Planificación apropiativa: el S.O. puede arrebatar el uso de la CPU a un proceso que esté ejecutándose. Hay un reloj generando interrupciones en las cuales el planificador toma el control y decide qué proceso debe ejecutarse.

Algoritmos: Round Robin, prioridades, el más corto, ...

Planificación del procesador

PROCESO A	PROCESO B	PROCESO C
1	1	1
2	2	2
3	3	3
4	4	
5	5	
6		
7		
8		

- Asignar memoria principal a los procesos que la soliciten.
- Controlar zonas de memoria libres y ocupadas.
- Evitar que un proceso acceda a una zona de memoria de otro proceso.
- Gestionar la memoria compartida: algunos procesos pueden necesitar compartir información → acceden a la misma sección de memoria.

Registros

Caché Nivel1

Caché Nivel2

Memoria Principal (DRAM)

Memoria Secundaria (Discos Duros)

Almacenamiento Terciario (Sistemas de almacenamiento distribuidos)

- Gestionar el intercambio entre memoria principal y memoria secundaria. Se produce un intercambio entre la memoria principal y el disco cuando la memoria principal no tiene capacidad para todos los procesos que tienen necesidad de ella.
- Memoria virtual: permite simular una RAM de mayor tamaño.

Funcionamiento

- Para que un programa se ejecute su código y sus datos deben estar cargados en memoria.
- En un sistema multitarea la memoria debe repartirse entre los distintos procesos.
- Algunos de esos procesos corresponden al S.O.
- Los retos de la gestión de memoria son: dar servicio a todos los procesos, evitar la fragmentación y no perjudicar el rendimiento (tiempos de acceso)

Técnicas utilizadas por el administrador de memoria

- Partición fija: se asignan franjas de memoria de tamaño fijo a cada proceso.
- Partición dinámica: se asigna a cada proceso el tamaño en memoria que necesite.

Partición fija

Partición variable

Técnicas utilizadas por el administrador de memoria

Paginación: la memoria se divide en marcos y los procesos en páginas del tamaño de esos marcos. Tabla de páginas.

Técnicas utilizadas por el administrador de memoria

Segmentación: cada proceso se divide en segmentos de longitud variable. Tabla de segmentos.

Técnicas utilizadas por el administrador de memoria

Memoria virtual: técnica que permite al software utilizar más memoria principal de la que realmente existe

Memoria virtual

- Si los programas se pueden ejecutar por partes, la memoria lógica puede ser mayor que la real disponible.
- Al ejecutar un programa se carga solo la parte de instrucciones y datos necesarios en la memoria, dejando el resto en el disco.
- Cuando necesite las partes que están en disco las traerá a la memoria y devolverá al disco lo anterior que ya no es necesario.

Una de las funciones del S.O. es procesar la información que proviene o que muestra en los periféricos.

Con el término E/S se designa cualquier transferencia de información desde el exterior y hacia la memoria o el procesador. También la transferencia en sentido contrario.

Un periférico tiene dos partes:

- Un controlador, que es el software que se encarga de la comunicación con la CPU
- Un dispositivo mecánico, electromecánico o electromagnético

Controlador

Es un módulo que implementa la interfaz de los periféricos con el procesador y la memoria. Oculta los detalles físicos, de formato, temporización, ...

Las operaciones de E/S pueden ser de varios tipos

E/S programada: es la CPU la que se encarga de todo, por lo que dicho elemento puede estar sobrecargado.

El procesador envía una orden y espera a que la operación termine comprobando periódicamente el estado del controlador hasta que vea que la operación ha terminado.

E/S por interrupciones: la CPU ejecuta las transferencias cuando así lo requiere el periférico pero no está pendiente de forma continua.

El procesador da la orden y sigue ejecutando otras instrucciones hasta que el controlador de E/S le interrumpe para comunicarle que la operación ha concluido.

Acceso directo a memoria (DMA): la memoria y el controlador de E/S intercambian datos directamente sin la intervención del procesador.

El procesador da la orden y sigue ejecutando otras instrucciones hasta que el controlador de E/S le interrumpe para comunicarle que la operación ha concluido, pero los datos no pasan a través de él.

Gestiona el almacenamiento de la información. Permite crear, modificar y borrar archivos y directorios.

Maneja el nivel lógico del sistema de archivos ocultando el nivel físico al usuario (pistas, sectores, cilindros, ...)

Archivos o ficheros → Estructuras de datos donde se almacenan la información y los programas. Estas estructuras dependen del sistema de archivos del S.O. y del tipo de fichero (extensión)

Características de los ficheros y directorios

- Nombre
- Extensión
- Permisos
- Propietario
- Fecha de creación
- Fecha del último acceso
- Fecha de la última modificación
- Tamaño

Operaciones con archivos

- Crear
- Borrar
- Abrir
- Cerrar
- Leer
- Escribir
- Renombrar
- Enlaces

Operaciones con directorios

- Crear
- Borrar
- Abrir
- Cerrar
- Leer
- Renombrar
- Enlaces

Rutas de acceso

La ruta de acceso a un archivo o directorio se indica nombrando todos los directorios y subdirectorios que tienen que atravesar hasta llegar al elemento concreto.

La forma de expresarlo depende del S.O.:

- Windows: se utiliza la barra \
 C:\Windows\system32\drivers\acpi.sys
- Linux: se utiliza la barra / /var/www/html/index.html

Rutas de acceso

Ruta de acceso absoluta

Comienza desde el directorio raíz y va descendiendo en la estructura de directorios hasta llegar al archivo o directorio buscado.

Ruta de acceso relativa

Se escribe la ruta a partir del directorio activo, lo que se indica con punto (.)

Al elemento padre o directorio de nivel superior se le referencia con dos puntos seguidos (..)

Rutas de acceso

12. GESTIÓN DE LA RED

Tareas fundamentales

- Gestión de los drivers de las tarjetas de red
- Gestión de los protocolos de comunicación
- Gestión de las aplicaciones en red
 - Programas de aplicación
 - Acceso a recursos remotos

13. PROTECCIÓN Y SEGURIDAD

Requisitos de seguridad de un S.O.

- Confidencialidad: los elementos del sistema solo serán visibles a los usuarios o grupos autorizados.
- Integridad: los elementos del sistema sólo serán modificados por los usuarios o grupos autorizados.
- Disponibilidad: los elementos del sistema estarán disponibles solo para usuarios o grupos autorizados.
- Autenticación: dar acceso al sistema solo a los usuarios o grupos autorizados.

13. PROTECCIÓN Y SEGURIDAD

Mecanismos de seguridad de un S.O.

- Control de acceso
- Uso limitado del usuario administrador / root
- Uso de contraseñas seguras
- Actualizaciones
- Antivirus
- Copias de seguridad
- Sistemas RAID
- Archivos LOG

14. GESTORES DE ARRANQUE

En un mismo ordenador se pueden instalar varios sistemas operativos.

Gestor de arranque: programa que permite seleccionar un sistema operativo en caso de arranque múltiple (varios sistemas operativos).

Se ejecuta después del inicio normal de la BIOS.

14. GESTORES DE ARRANQUE

- > NTLDR (NT Loader): utilizado en el arranque de algunos sistemas Windows hasta Windows XP / Windows 2003 Server
- Bootmgr: utilizado también en sistemas Windows desde Windows Vista / Windows 2008 Server
- Lilo (Linux Loader)
- > Grub: similar a Lilo pero más moderno y flexible

14. GESTORES DE ARRANQUE

Secuencia de arranque

15. TENDENCIAS ACTUALES

- Paralelismo: incremento de procesadores
- > Sistemas distribuidos: incremento del uso de las redes
- Sistemas tolerantes a fallos
- ➤ Interfaces de usuario más amigables: interfaces gráficas, elementos multimedia, reconocimiento de voz, realidad virtual
- Sistemas abiertos: estandarización para que productos de distintos fabricantes sean compatibles
- Sistemas orientados a objetos
- Manejo de múltiples sistemas operativos