Lecture 2. 다중회귀분석(Multiple Linear Regression)

Example: Advertising

- TV광고 외에 라디오와 신문광고에 대한 지출도 활용하여 sales를 설명하고 싶음
- 설명변수 각각을 사용하여 3개의 단순회귀분석 사용?? (No!) ⇒ 여 바이 하다 바이 찬 명하고 **
 - 서로 다른 광고매체의 예산은 다른 회귀방정식과 연관

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \epsilon_i$$

2.1 회귀계수의 추정

• 추정된 회귀식

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} + \dots + \hat{\beta}_p x_{pi}$$

= LSE = OLS

• RSS를 최소화 하는 최소제곱법사용 $RSS = \sum_{\text{restidual sum of squares}} (y_i - \hat{y})^2 = \sum_{\text{restidual sum of squares}} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip})^2$


```
In [3]:
             model2 = smf.ols('Sales ~ Radio + Newspaper + TV', data = ad).fit()
             model2.summary()
             OLS Regression Results
Out[3]:
              Dep. Variable:
                                                R-squared:
                                                                0.897
                               Sales
              Model:
                               OLS
                                                Adj. R-squared:
                                                                0.896
              Method:
                               Least Squares
                                                F-statistic:
                                                                570.3
                                                                            F新学 Pulle > 叶华野 神恒 性 > 新學 和
                                                               1.58e-96
                               Mon, 08 Mar 2021
                                               Prob (F-statistic):
              Date:
              Time:
                               13:59:25
                                                Log-Likelihood:
                                                                -386.18
              No. Observations:
                              200
                                                AIC:
                                                                780.4
                               196 恕以能 (N+1)
              Df Residuals:
                                               BIC:
                                                                793.6
                               3 热料 米拉(P)
              Df Model:
                                                             상란관리가 있다군안 파눅썅 (인리왕계×)
              Covariance Type:
                               nonrobust
                                                       [0.025
                                                              0.975]
                                  std err t
                                                P>|t|
                          coef
                                         9.422
                          2.9389
                                  0.312
                                                0.000
                                                       2.324
                                                              3.554
              Intercept
              Radio
                         0.1885
                                 0.009
                                         21.893
                                                (0.000)
                                                       0.172
                                                              0.206
                         (-0.0010)
                                 0.006
                                                0.860
                                                       -0.013
                                                              0.011
                                         -0.177
              Newspaper
                         0.0458
                                 0.001
                                         32.809 0.000
                                                       0.043
                                                              0.049
              TV
  Raction
              Omnibus:
                                    Durbin-Watson:
                                                    2.084
                             60.414
 Salps 17
                                                    151.241
              Prob(Omnibus):
                             0.000
                                     Jarque-Bera (JB):
  0.1885 罗皓
                                                    1.44e-33
              Skew:
                             -1.327
                                    Prob(JB):
              Kurtosis:
                             6.332
                                    Cond. No.
                                                    454.
   건성이 되어있어야 인과란데라고 해적이가능
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.2 모델의 유의성 평가: F 검정

• *Y*와 *X*들 사이에 상관관계가 있는가?

$$H_0: eta_1=eta_2=\cdots=eta_p=0$$
 $H_1:$ 적어도 하나의 eta_j 는 0 이 아니다. $ightarrow$ 작년 하나는 의미가 했다.

F통계량

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

- H_0 가 사실이면 F=1
- F=570에 대한 p-value가 0에 가까움: 광고매채 중 적어도 하나는 판매량 증가와 상관 관계가 있다는 아주 강한 증거

$$T = \frac{\overline{x} - M_0}{S/5\overline{u}} \sim t_{n-1}$$

2.3 회귀계수의 검정: T 검정

$$T = \frac{\widehat{G}_1 - 1 \text{ YK}}{\widehat{S}_2(\widehat{G}_1)}$$
 To $\frac{\widehat{G}_1 - D}{S_2(\widehat{G}_1)}$ Ho

• 다른 설명변수의 효과를 조정했을 때 X_i 가 Y와 상관관계가 있는가?

$$H_0: \beta_i = 0$$

$$H_1: \beta_i \neq 0$$

• t 통계량

t-value =
$$\frac{\hat{\beta}_i \cdot 0}{SE(\hat{\beta}_i)} \sim t_{n-p-1}$$

⇒七翻倒 如烟 型 刊的15↑

- TV와 radio의 p-value<0.05: sales를 설명하는데 유의하다.
- Newspaper의 p-value>0.05: sales를 설명하는데 유의하지 않다. (tlp) 커제팅 P-메니스가 하셔져서 위)
 - **TV와 라디오 광고가 모형에 포함되어 있을 경우** 신문 광고는 sales와 <mark>상관성이 있</mark>다는 증거가 없다고 결론
 - 왜? 라디오 광고에 지출을 많이 하는 마켓일 수록 신문 광고에도 더 많이 지출하는 경향이 있음
 - 그렇다면 Newspaper와 Sale의 단순 회귀모형의 결과는 어떨까?

coef std err t [0.025 0.975] P>|t| Out[5]: 12.3514 0.621 19.876 0.000 11.126 13.577 Intercept 0.001 0.022 Newspaper 0.0547 0.017 3.300 0.087

- Newspaper와 sales의 단순회귀모형에서는 회귀계수가 유의하다는 결과가 나온다.
- 신문광고에 의한 판매량이라고 보이는 것이 실제로는 라디오 광고에 의한 것

哪里 不知 平等 一端 (:回如 平等)

회귀계수의 해석

- 다른 매체에 대한 광고지출액이 일정할 때 TV광고에 1000달러 지출을 증가시키면 판매량은 45.8 unit 증가할 것이다.
- 다른 매체에 대한 광고지출액이 일정할 때 Radio광고에 1000달러 지출을 증가시키면 판매량은 188.5 unit 증가할 것이다.

2.4 예측

• 추정된 회귀식에 의해 예측 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \cdots + \hat{\beta}_p X_p$

```
In [6]: model4 = smf.ols('Sales ~ Radio + TV', data = ad).fit()
    model4.summary().tables[1]
```

Out[6]:

	coet	std err	t	P> t	[0.025	0.975]
Intercept	2.9211	0.294	9.919	0.000	2.340	3.502
Radio	0.1880	0.008	23.382	0.000	0.172	0.204
TV	0.0458	0.001	32.909	0.000	0.043	0.048

```
In [6]: pred = model4.get_prediction(exog = dict(TV=100, Radio=20))
    pred.summary_frame(alpha = 0.05)
```

Out[6]:

	mean	mean_se	mean_ci_lower	mean_ci_upper	obs_ci_lower	obs_ci_upper
0	11.256466	0.137526	10.985254	11.527677	7.929616	14.583316

- 신뢰구간
 - 수많은 도시에 대한 평균 판매량을 둘러싼 불확실성을 수량화
 - TV광고에 10만달러, Radio광고에 2만달러를 지출한다면 판매량의 평균은 10985개와 11528개사이일 것으로 95%확신함
- 예측구간
 - 특정 도시의 판매량에 대한 불확실성을 수량화
 - TV광고에 10만달러, Radio광고에 2만달러를 지출한 도시에서 판매량은 7930개와 14583개 사이일 것으로 95% 확신함

LSE로국정) 비료하는 국정 가능, BLUE (Best) Linear Unbiased Estimator) 〈변함에 대한 가장 1. 선명 및 가장 4. 함께 나 기업 2. 됩니 4. 항報

$$E(\hat{b}) = \hat{b}$$

$$Var(\hat{b}) = \hat{b}^2 (X'X)^{-1}$$

2.5 회귀모형의 잠재적 문제: 회귀진단

2.5.1 데이터의 비선형성

- 잔차그래프의 확인
 - \bullet $e_i = y_i \hat{y}_i$ vs. x_i 의 그래프를 확인
 - 모델이 이상적이라면 인지할만한 패턴이 존재하지 않는다.
 - 잔차 그래프가 비선형 상관성이 있다면 $\log X$, \sqrt{X} , X^2 과 같이 설명변수들을 비선형적으로 변환하여 회귀모델에 적용하는 것이 간단한 접근법

```
In [8]: auto = pd.read_csv(data_path +"Auto.csv")
auto.head()
```

Out[8]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

```
In [9]: model_auto = smf.ols('mpg~horsepower', data = auto).fit()
  model_auto.summary().tables[1]
```

Out[9]:

	coet	std err	t	P> t	[0.025	0.975]
Intercept	39.9359	0.717	55.660	0.000	38.525	41.347
horsepower	-0.1578	0.006	-24,489	0.000	-0.171	-0.145

```
In [17]: plt.scatter(auto.horsepower,model_auto.resid)
   plt.xlabel('Horsepower')
   plt.ylabel('Residuals')
   plt.show()
```


可气心生? 安义女 气气心芒? Xet Yet 20时间 取时间之 , 对你可明显 部

기 2차하는 화한 PolynowTal 카메워 목도에서는 황만 축는데서는 만약

In [10]:

model_auto2 = smf.ols('mpg~horsepower+np.square(horsepower)', data = auto).fit()
model_auto2.summary().tables[1]

Out[10]:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	56.9001	1.800	31.604	0.000	53.360	60.440
horsepower	-0.4662	0.031	-14.978	0.000	-0.527	-0.405
np.square(horsepower)	0.0012	0.000	10.080	0.000	0.001	0.001

```
In [19]: plt.figure(figsize=(10, 3))

plt.title('mpg~horsepower')
plt.subplot(1,2,1)
plt.scatter(model_auto.fittedvalues, model_auto.resid)
plt.xlabel('Fitted values')
plt.ylabel('Residuals')
plt.title('mpg~horsepower')

plt.subplot(1,2,2)
plt.scatter(model_auto2.fittedvalues, model_auto2.resid)
plt.xlabel('Fitted values')
plt.ylabel('Residuals')
plt.ylabel('Residuals')
plt.title('mpg~horsepower+np.square(horsepower)')
plt.show()
```


$$y_{\bar{i}} = g_0 + g_1 \chi_{\bar{i}} + g_2 \chi_{\bar{i}}^2 + \varepsilon_7$$

> 다당한 지도 전쟁하게이다. (Bon 대해서 전쟁이라서)

2.5.2 오차항의 상관성 및 웹에 위해일때 뱅

$$\hat{b}$$
 $Se(\hat{b})$ $t-stat = \frac{\hat{b}}{Se(\hat{b})}$

- ullet 선형모델의 가정: 오차항 $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ 이 서로 상관되어 있지 않다는 것
- 오차항 사이에 상관성이 있으면 추정된 표준오차는 실제 표준오차를 과소추정하는 경향이 발생한다.

H: A = 0 > 刑子小型 日至地起去

- 계산된 95% 신뢰구간과 예측구간이 실제 모수를 포함할 가능성이 95%보다 낮을 수 있다. 위해 點 병원 위에 예약되었다.
- 모수가 통계적으로 유의하다 잘못된 결론을 내릴 수 있다.
- 시계열 데이터에서 자주 발생

■ 잔차를 시간의 함수로 그렸을 때 인지할 만한 패턴이 없어야 한다.

일이면도등이 성ዲ 안전비 일명하면 그냥 사람한 두드 있지만, 그러도 각 170m 독는 상당한제가 일자한 기능사용 ↑

Observation

Durbin-Watson 통계량

$$D = \frac{\sum_{t} (e_{t} - e_{t-1})^{2}}{\sum_{t} e_{t}^{2}} \approx 2(1 - r)$$

자기상반FUF

- *r*: sample autocorrelation
- 0 < D < 4

In [21]:

Out[21]:

• $D \approx 2$: no autocorrelation

durbin watson(model auto2.resid)

1.078213938713291 一路 場場

- $D \approx 0$: positive serial correlation
- $D \approx 4$: negative serial correlation

Durbin-Watson statistics for x_t: 1.7323082682521673 Durbin-Watson statistics for y t: 0.00787017868187549

2.5.3 오차항의 이분산성(heteroscedasticity)

- 선형모델의 가정: $Var(\epsilon_i) = \sigma^2$
- 잔차그래프에 깔때기 형태가 있는지 보고 식별

종속변수의 변환

• 예를 들면, log(y)한 뒤 회귀식을 적합

光刻 智物作 新.

叫他 批 wx

四世 可恐恐期 湖巴野湖

```
In [22]:
         model auto3 = smf.ols('np.log(mpg)~horsepower+np.square(horsepower)', data = auto)
          .fit()
          # print(model auto3.summary())
         plt.figure(figsize=(10, 3))
         plt.subplot(1,2,1)
         plt.scatter(model auto2.fittedvalues, model auto2.resid)
         plt.xlabel('Fitted values')
         plt.ylabel('Residuals')
         plt.title('mpg~horsepower+np.square(horsepower)')
         plt.subplot(1,2,2)
         plt.scatter(model auto3.fittedvalues, model auto3.resid)
         plt.xlabel('Fitted values')
         plt.ylabel('Residuals')
         plt.title('np.log(mpg)~horsepower+np.square(horsepower)')
         plt.show()
                                               > 부산이 을 날아 건다.
```


4 Financial doinoun 80 1 48

가중최소제곱(weighted least squares; WLS) 방법

$$Y_i = \beta_0 + \beta_1 \dot{X}_i + \dot{\epsilon}_i, \quad Var(\epsilon_i) = \sigma_i^2, i = 1, 2, \dots, n$$

- $1/\sigma_i^2$ 을 가중치로 하는 WLS 모형을 적합한다.
- σ_i^2 을 어떻게 계산하는가?
 - 이론에 의해 알고 있는 경우
 - 특정 변수에 따라 잔차의 분산이 커지는 경우 해당 변수의 역수(혹은 역수의 제곱)을 weight로 사용
 - 잔차의 절대값을 종속변수로, fitted value를 설명변수로 하는 선형모형을 적합하여 그 모형의 적합값을 활용하여 weight로 설정

$$\frac{Y_{\bar{1}}}{6_{\bar{1}}} = \theta_0^* + \theta_1^* \frac{X_{\bar{1}}}{6_{\bar{1}}} + \frac{\varepsilon_{\bar{1}}}{6_{\bar{1}}}$$

$$Var\left(\frac{\varepsilon_{\bar{1}}}{6_{\bar{1}}}\right) = \frac{Var(\varepsilon_{\bar{1}})}{6_{\bar{1}}^2} = \frac{6_{\bar{1}}^2}{6_{\bar{1}}^2} = 1$$

2.5.4 이상치(outlier)

모델이 예측한 값과 y_i가 크게 다른 점

- 이 경우 이상치를 제거하는 것이 최소제곱선에 거의 영향을 주지 않음
- 얼마나 커야 이상치라고 결정?
 - **스튜던트화 잔차(studentized residual)**: 잔차/추정표준오차
 - |스튜던트화 잔차| > 3이면 이상치라고 판정

```
In [24]: inf3 = OLSInfluence(model_auto3)
# inf3.summary_frame()
fig, ax = plt.subplots(1,2, figsize=(10, 3))
ax[0].scatter(auto.index,model_auto3.resid)
ax[0].set_xlabel('Observation')
ax[0].set_ylabel('Residuals')
inf3.plot_index('resid',threshold=3, ax = ax[1])
plt.show()
```


- 이상치 처리?
 - 이상치가 수집 또는 기록에 의한 오류에 의해 발생하였다면 관측치를 제외
 - 필요 설명변수가 없는 것과 같은 모델의 결함을 나타낼 수 있으므로 주의

2.5.5 영향점 (Influential points)

- 이상치: 주어진 x_i 값에 대해 y_i 값이 보통 수준과 다른 관측치 영향점: 추정회귀선에 영향을 많이 주는 관측치

레버리지(leverage) 통계량

• 단순회귀분석의 경우

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'} (x_{i'} - \bar{x})^2}$$

- x_i 값이 \bar{x} 에서 멀리 떨어져 있을 수록 레버리지 값이 크다.
- h_i 의 평균은 (p+1)/n
- 레버리지와 residual이 동시에 크면 추정회귀선에 큰 영향을 준다.

OTOSTO

```
In [26]: inf3.plot_influence()
  plt.show()
```


া পুচন্ধার মুশ্র

Cook's distance

$$D_{i} = \frac{(y_{i} - \hat{y}_{i})^{2}}{p \cdot MSE} \frac{h_{i}}{(1 - h_{ii})^{2}}$$

उन्धा मार्थिय है में मिल्टिंग

$$\hat{\beta} = (\chi'\chi)^{-1}\chi'y$$

$$E(\hat{\beta}) = \beta$$

$$Cov(\hat{\beta}) = 6^{2}(\chi'\chi)^{-1}$$

X'X: स्ट्रिसिंग्ट -> TWEEREN प्रसिट्ट 6 म पर उमाउम्बर्धिः इ.स्ट्रिंग मि सर्वेषः

2.5.6 다중공선성(multicollinearity)

- 두개 또는 그 이상의 설명변수들이 서로 밀접하게 상관되어 있는 경우
- Credit 데이터

Out[12]:

	Income	Limit	Rating	Cards	Age	Education	Gender	Student	Married	Ethnicity	Balance
1	14.891	3606	283	2	34	11	Male	No	Yes	Caucasian	333
2	106.025	6645	483	3	82	15	Female	Yes	Yes	Asian	903
3	104.593	7075	514	4	71	11	Male	No	No	Asian	580
4	148.924	9504	681	3	36	11	Female	No	No	Asian	964
5	55.882	4897	357	2	68	16	Male	No	Yes	Caucasian	331

- 공선성의 존재가 일으키는 문제
 - 각 변수들의 개별효과를 분리하기 어려움
 - 계수 추정치의 불확실성 증가: \hat{eta}_j 의 표준오차 증가, 가설검정 능력의 저하

0.2


```
In [13]: model_credit = smf.ols('Balance~Age+Limit', data = credit).fit()
    model_credit.summary().tables[1]
```

Out[13]:

		coef	std err	t	P> t	[0.025	0.975]
	Intercept	-173.4109	43.828	-3.957	0.000	-259.576	-87.246
	Age	-2.2915	0.672	-3.407	0.001	-3.614	-0.969
	Limit	0.1734	0.005	34.496	0.000	0.163	0.183

```
In [14]: model_credit2 = smf.ols('Balance~Rating+Limit', data = credit).fit()
    model_credit2.summary().tables[1]
```

Out[14]:

		coef	std err	t	P> t	[0.025	0.975]
	Intercept	-377.5368	45.254	-8.343	0.000	-466.505	-288.569
	Rating	2.2017	0.952	2.312	0.021	0.330	4.074
	Limit	0.0245	0.064	0.384	0.701	-0.101	0.150

4어지 변수에 의해서 시가 잘말병됨

ラXH 型能野

- 공선성 검출 방법
 - 설명변수들의 상관계수 행렬 관찰
 - 상관계수의 절대값이 크면 공선성 발생 가능
 - 모든 공선성 문제가 상관계수 행렬에 의해 발견 가능하지 않음
 - <mark>다중공선성(</mark>multicollinearity): 세 개 또는 그 이상의 변수들 사이에 공선성 존재 가능
 - 분산팽창인수(VIF; variance inflation factor) 계산

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

- $\circ R^2_{X_j|X_{-j}}:X_j$ 를 다른 모든 설명변수들에 적합한 회귀모델의 R^2
- 가능한 가장 작은 값=1: 공선성이 전혀 없음

- > Onl 카메리 X과 YUNG V VIF는 1이용
- VIF가 5 또는 10을 초과하면 공선성 존재한다고 경험적으로 판단

```
In [31]: model_credit3 = smf.ols('Balance~Age+Rating+Limit', data = credit).fit()
import patsy
y, X = patsy.dmatrices('Balance~Age+Rating+Limit', credit, return_type='matrix')

from statsmodels.stats.outliers_influence import variance_inflation_factor
for i, x in enumerate(X.design_info.column_names):
    print('VIF of', x, ':', variance_inflation_factor(X, i))

VIF of Intercept : 23.80295451367821
VIF of Age : 1.0113846860681328
```

• 공선성의 해결 키 목제 약 해결제를 전혀해야 함

VIF of Rating: 160.66830095856935 VIF of Limit: 160.59287978597942

- 문제가 있는 변수들 중의 하나를 제거 → ''메나울바로 '''''''''
 - 회귀적합에 별로 나쁜 영향을 주지 않음
- 변수선택 방법 사용 (Forward Selection, Packward Selection) ⇒ 현 웨덴 憗×
- 공선성 변수들을 단일 설명변수로 결합

嗎 熟吧 智

Random Forest nikts CESSIDE CEFFIN SENS E

- ㅇ 새로운 변수 생성
- 주성분분석 활용

나 끊용에서는 얼마하기가 어떻다.