Analisando um dataset: Acidentes em POA

Gustavo J. Feller; William Lopes

INF/EA

Novembro de 2015

- Objetivo de negócio
- Objetivo de mineração
- Dataset escolhido
 - Pré-processamento
- Mineração de dados

Objetivo de negócio

Objetivo de negócio

- Posicionar-se como gestor na área de trânsito na cidade de Porto Alegre
- Através de técnicas de Descoberta de Conhecimento em Base de Dados extrair informações para auxiliar na gestão do trânsito
- Utilizar a decisão baseada em fatos para recomendar modificações ou açõ
- Buscar a melhoria na segurança do trânsito em Porto Alegre
- Analisar observações de comportamento de acidentes de trânsito para evitar futuros acidentes
- Com os resultados aplicar modificações no trânsito (Sinalização, conscientização, intervenção, etc...)

Objetivo de mineração

Objetivo de mineração

- Compreender a situação dos acidentes de trânsito na cidade de Porto Alegre
- Fornecer uma base para a tomada de decisões do objetivo de negócio
- Evidenciar informações relevantes para auxiliar na tomada de decisão

Dataset escolhido

Dataset escolhido

- A base de dados escolhida foi o dataset fornecido pelo governo municipal em relação aos acidentes de trânsito registrados em Porto Alegre
- A base escolhida conta com 14 datasets sendo que cada dataset representa um ano de registros, compreendendo o período de 2000 a 2014.
- Os dados são públicos e estão disponíveis para consulta juntamente com vários conjuntos de datasets de outros setores do governo.
- Outros dois datasets com a localização dos pardais e a localização das lombadas eletrônicas foram utilizados.

Dataset escolhido

Tabela: Estrutura do dataset

Campo	Descritivo					
Id	Sequencial					
Log1	Logradouro					
Log2	Logradouro 2					
Predial1	Número próximo					
Local	Tipo de logradouro					
Tipo_Acid	Tipo de acidente					
Local_Via	Endereço acidente					
Data hora	Data e hora do ac.					
Dia_sem	Dia da semana					
Feridos	Num. feridos					
Morte	Num. Mortes					
Morte_post	Num. Mortes posterior					
Fatais	Acidentes fatais					
Auto	Automóveis envolvidos					
Taxi	Taxis envolvidos					
Lotacao	Lotações envolvidas					
Onibus_urb	Ônibus urb. envolvidos					
Onibus_int	Ônibus int. envolvidos					
Caminhão	Caminhões envolvidos					

_						
Campo	Descritivo					
Moto	Motos envolvidas					
Carroca	Carroças envolvidas					
Bicicleta	Bicicletas envolvidas					
Outro	Outros veículos envolvidos					
Tempo	Cond. Meteorológica					
Noite_Dia	Momento do acidente					
Fonte	Fonte da ocorrencia					
Boletim	Num. Boletim ocorrencia					
Regiao	Região da cidade					
Dia	Dia do acidente					
Mes	Mês do acidente					
Ano	Ano do acidente					
Fx hora	Faixa de hora do acidente					
Cont_acid	Núm. de carros envolvidos					
Cont Vit	Núm. de vítimas no momento					
UPS	Núm. de atendidos por UPS					
Latitude	Latitude					
Longitude	Longitude					

Pré-processamento

Pré-processamento

- Retirada de campos não considerados:
 - **Id:** Sequencial do arquivo, considerado como não relevante, visto informações de data e hora do acidente.
 - Boletim: Boletim de ocorrência, sequencial sem relação com outros campos.
 - Data_Hora: Data e hora do acidente, campo duplicado, considerado que o campo "FX_hora" é mais relevante para classificação.
 - Data: Duplicado de "Data_Hora" e campos "Dia", "Mes" e "Ano" contém as informações a um nível mais detalhado
 - Fonte: O campo fonte do registro do acidente não se enquadrou nos objetivos do presente trabalho

Pré-processamento

- \bullet Análise de campos vazios (Ex: Log2 , Hora < 1%) Linhas com colunas relevantes que estavam vazias foram retiradas (3 linhas no total)
- Coluna de fatalidade (S para sim ou N para não), existe a coluna com quantidade de fatalidades e de mortes pós acidente.
- Criação de um dataset auxiliar apenas com as linhas ao qual houveram acidentes fatais (LOG1, LOCAL, TIPO ACID, DIA SEM, TEMPO, NOITE DIA e REGIAO).
- Datasets auxiliares (lombadas e pardais) foram designados latitude e longitude pois tinham apenas uma coluna, o endereço, sendo retirado dados duplicados.
- Ajustes necessários em latitude e longitude, mesmo sendo um dataset preparado para kdd

Mineração de dados

Mineração de dados - Análise dos dados

- Analisados os últimos 4 anos, sendo que foram trabalhados:
 - Histogramas para conhecimento da estrutura (horários acidentes, dias acidentes, meses acidentes)
 - "Ranges"por dataset
 - Algoritmo apriori em características de acidentes fatais
 - Tentativa de k-nn
 - Visualização de densidade de acidentes (heatmap) em mapa (latitude/longitude) com localização de lombadas e pardais

Mineração de dados - Análise dos dados

Tabela: Número de acidentes por ano e número de acidentes fatais por ano

Ano	Acid.	Fatais	% Fatais	†	Máx. †	Máx. † pós	Máx tot. †
2011	23.579	135	0, 57	141	3	2	3
2012	20.202	97	0, 48	100	1	2	2
2013	20.799	117	0, 56	124	4	1	5
2014	17.203	135	0,78	135	1	1	1
Total	81.703	484	0, 59	500	-	-	-

Mineração de dados - Histogramas

Figura: Histogramas dos horários dos acidentes entre 2011 e 2014

Mineração de dados - Correlação

Tabela: Correlação entre acidentes com tipo de condução em 2014

Tipo	Auto	Taxi	Lot.	O.U.	O.M.	0.1.	Cam.	Mot.	Car.	Bic.	Out.
†	-0.054	-0.018	-0.001	0.022	0.011	0.003	0.018	0.025	-0.001	0.037	-0.003
F.G.	-0.163	-0.031	-0.017	0.005	0.010	-0.004	-0.038	0.187	0.014	0.024	0.001

Algoritmo apriori

- Aplicado ao dataset completo, sem relevância para acidentes do tipo fatal
- Dataset auxiliar apenas com os acidentes fatais foi utilizado
 - Atropelamentos ocorrem principalmente no centro e de dia
 - Av. Baltazar de Oliveira Garcia tem forte relação com acidentes fatais à noite

Mineração dos dados - Densidade de acidentes

- Adicionado densidade ao mapa por tipo de acidente, pela latitude e longitude
- Interatividade via Google Maps
- Utilizado os datasets das lombadas eletronicas e pardais

Mineração dos dados - Densidade de acidentes

Figura: Heatmap com os acidentes no ano de 2014

Mineração dos dados - Densidade de acidentes

Figura: Heatmap com os acidentes fatais no ano de 2014

Conclusões

- Os histogramas de densidade no horário de acidente inicia-se às 6 horas da manhã e tem seu pico às 3 horas da tarde, diminuindo consideravelmente após esse horário.
- Também, o mapa com a densidade dos acidentes comprovou que locais com controladores de velocidade e pardais os acidentes fatais são bem raros, mostrando-se um sistema eficiente para diminuição dos acidentes. Outro ponto importante que pode ser visto no mapa são os locais com maiores quantidades de acidentes.
- Também notou-se que os acidentes mais graves ocorrem em entradas de vias principais, como, por exemplo, a Av. Bento Gonçalves. Nas próprias avenidas não há registros de acidentes graves, porém, logo após as entradas secundárias destas avenidas pode-se verificar registros com densidades consideráveis de serem avaliadas.

Sugestões

- Melhorar sinalização nas esquinas, principalmente nas vias de entrada das principais avenidas por conterem o maior número de acidentes do tipo fatais (no heatmap fica claro).
- Em vias com um grande número de acidentes fatais diminuir a velocidade máxima, como, por exemplo, a Estrada João de Oliveira Remião.
- Aumentar a sinalização onde as densidades dos acidentes ocorrem mais
- Refazer o KDD anualmente, na medida que as informações dos datasets estão disponíveis para verificar o comportamento do trânsito e inferir novas ações;
- Sugestão de estudos futuros: Dataset de blitz X acidentes fatais à noite.

Obrigado!

Gustavo J. Feller; William Lopes INF/EA