Science of Living System

BS20001 (2-0-0)

Dibyendu Samanta

School of Bio Science

Email: dibyendu.samanta@iitkgp.ac.in

Tel: 03222-260295

C	Class	Date	Schedule
	1	20/7/16	L-1 (Nucleic acids: How is information stored and maintained)
	2	27/7/16	L-2 (Transcription & Translation: How stored information get processed)
	3	3/8/16	L-3 (Protein structure: Making sense of processed information)
	4	10/8/16	L-4 (Enzymes: Working principles & concept of enzyme technology)
	5	17/8/16	L-5 (Photosynthesis and Respiration: Making and breaking of sugars)

Overview of Transcription and Translation

(How stored information get processed)

DNA: Contains the Instruction for Life

Plant-X
Completely terrestrial

Plant-Y
Partially submerged

Plant-Z
Completely submerged

The phenotype (visible configuration) of the marsh plant Sagittaria sagittifolia depends on its environment Flow of Genetic Information: The Central Dogma of Molecular Biology

Polymer of nucleotides

Polymer of nucleotides

Polymer of amino acids

Flow of Genetic Information: Updates

Ideas on Protein Synthesis (Oct. 1956) Francis Crick

The Central Dogma: "Once information has got into a protein it can't get out again". Information here means the sequence of the amino acid residues, or other sequences related to it.

That is, we may be able to have

but never

Correlations Between DNA Content and Its Downstream Product

"Human Genome Project" Dramatically Enhanced Our Understanding on Gene Expression

~21,000 human genes (appeared to be significantly fewer than previous estimates)

Genome Size, Gene Number, and Complexity of an Organism

	Organism	Genome size (bp)	Protein coding genes
Eleg 2	E. coli	4,600,000	4,250
	S. cerevisiae	12,160,000	5,616
	C. elegans	100,000,000	19,735
TABLE TO SHARK AND FARMATCHAS, AND THE CHARK CHARKSHAR.	Human	3,200,000,000	19,042
	Marbled lungfish	139,000,000,000	NA

Transcription

Genome size (bp)

Total DNA content vs transcribable content

4,600,000

► Protein coding sequences is ~1.5% of total DNA content (human)

3,200,000,000

Messenger RNA (mRNA)

► Besides protein coding region, DNA can be transcribed into:

Ribosomal RNA (rRNA)
Transfer RNA (tRNA)
Small nuclear RNA (snRNA)
Regulatory RNA

► Most of the DNA sequences are not transcribed

What is a Machine?

A piece of <u>equipment</u> with several <u>moving parts</u> that uses <u>power</u> to do a particular type of <u>work</u>.

- Cambridge dictionary

Biological machines:

- DNA polymerase
- RNA polymerase
- Ribosome

Transcription: Involved Machineries and Processes

RNA Polymerase
5'

Initiation Elongation Termination

Key points to be discussed

- 1. Promoter
- 2. RNA Polymerase
- 3. RNA synthesis
- 4. Termination

Promoter for Transcription

Promoter is just like a "start button" of an assembly line that starts the conveyor belt moving

► Transcription can start from both directions

RNA Polymerase

Subunits of RNA Polymerase: α , α , β , β and σ

Holoenzyme: α , α , β , β and σ

Coreenzyme: α , α , β and β '

Roger Kornberg Nobel Prize in 2006

- ► RNA polymerase is completely Processive: A transcript is synthesized from start to end by a single RNA polymerase molecule.
- ► RNA polymerase can initiate the synthesis of RNA *de-novo* (No primer required)

mRNA 5% tRNA 15%

80%

rRNA

Who transcribes this huge pool of rRNA and tRNA?

In bacteria same RNA polymerase transcribe all these three types of RNA

In eukaryotes different RNA polymerases are involved in transcription of mRNA, rRNA and tRNA

RNA Polymerase in Eukaryotes

In contrast to bacteria, the nucleus of a eukaryote contains 3 types of RNA polymerase

	Template specificity	Location in the nucleus	Susceptibility to inhibitors (α –amanitin)
RNA Pol- I	18S, 5.8S, and 28S r RNA	Nucleoli	Insensitive
RNA Pol- II	mRNA	Nucleoplasm	Highly susceptible
RNA Pol- III	5S rRNA, and tRNA	Nucleoplasm	Susceptible
	How rRNA and tRNA a	,	
	16S tRNA 23 rRNA ↓ rR	S 5S NA rRNA	

RNA Synthesis

Ribonucleotide

Termination of Transcription in Prokaryotes

An RNA hairpin followed by several uracil residues terminates transcription

Hairpin
(Stem-loop structure)

UCCC

Hairpin
(Stem-loop structure)

Rho binds the nascent RNA chain and pulls it away from RNA polymerase and the DNA template.

Eukaryotic Transcripts Need to be Processed

► Ends of a nascent mRNA acquire a 5' cap and a 3' poly A tail

- Increase stability of mRNA
- More effective template for translation

Eukaryotic Transcripts Need to be Processed

► Splicing (mediated by specialized enzymatic machineries consisting of snRNAs and proteins) removes introns from nascent mRNA

**Splicing generates more variation

Membrane bound vs soluble form of a protein

ELONGATION

Polymerase advances 3' →5' down template strand, melting duplex DNA and adding rNTPs to growing RNA.

TERMINATION

At transcription stop site, polymerase releases completed RNA and dissociates from DNA.

INITIATION

Polymerase binds to promoter sequence in duplex DNA. "Closed complex"

Polymerase melts duplex DNA near transcription start site, forming a transcription bubble. "Open complex"

Polymerase catalyzes phosphodiester linkage of two initial rNTPs.

ELONGATION

Polymerase advances 3'→5' down template strand, melting duplex DNA and adding rNTPs to growing RNA.

TERMINATION

At transcription stop site, polymerase releases completed RNA and dissociates from DNA.

Transcription: At a Glance

Regulation of Gene Expression (Biological circuits)

Regulation of Gene Expression

Each cell contains all the genetic material for growth and development

Some of these genes are expressed all the time

Other genes are not expressed all the time. They are switched on an off at need

Lac Operon: A Classic Example of Bacterial Gene Expression Control

Operon: Cluster of genes, related by function, regulated by a single promoter and transcribed into one mRNA (polycistronic).

lacZ	β-galactosidase	Breaks lactose into galactose and glucose.
lacY	lactose permease	Imports lactose into the bacterial cell.
lacA	thiogalactoside transacetylase	Cell detoxification.

Functional Outcome of Lac Operon

Lac repressor is a negative regulator of the Lac operon

RNA Polymerase

Lac operator

Lac Operon

lacZ	β-galactosidase	Breaks lactose into galactose and glucose.
lacY	lactose permease	Imports lactose into the bacterial cell.
lacA	thiogalactoside transacetylase	Cell detoxification.

Lactose (Allolactose) Can Displace Lac Repressor From the Operator Site

RNA Polymerase

Lac operator

Lac Operon

Four Possible Situations

Glucose	Lactose	Lac repressor bound	Lac operon
1	0	YES	OFF (0)
1	1	YES	OFF (0)
0	1	NO	ON (1)
0	0	YES	OFF (0)

Translation

How Amino Acids are Linked Together

Translation

Template for protein synthesis

5' — 3' mRNA

5'UAAGGAGAAUCGUCAUGAAGAGGCCC......UAAUUA 3'
(RBS)
Start
codon
codon

Met—Lys—Arg—Pro......
Polypeptide

► In Eukaryotes, 5' 7mG cap is recognized by ribosome

How Correct Amino Acids are Selected During Protein Synthesis

Genetic code

Genetic code is the relation between the sequence of bases in DNA (or its RNA transcripts) and the sequence of amino acids in proteins

A codon is a set of 3 nucleotides that specifies a particular amino acid

Why three nucleotides?

64 Codons present. Three of them (UAA, UAG, UGA) can't code any amino acids, called STOP codons

AUG serves as the "initiator" or "start codon, which starts the synthesis of a protein

We have 61 codons that code for amino acids, and we have 20 amino acids. So, one codon may specify more than one amino acids

Khorana, Nirenberg, Holley Nobel Prize in 1968

Genetic code

Second Letter

		υ	С	A	G	
1st	ט	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	U	CUU Leu CUA CUG	CCU Pro CCA CCG	CAU His CAC GIN CAG GIN	CGU CGC Arg CGA CGG	U C A G
letter	A	AUU IIe AUA Met	ACU ACC Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg	U letter C A G
	G	GUU Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA GIU GAG	GGU GGC GGA GGG	U C A G

Translation: Involved Machineries and Processes

Translation - Initiation

Translation: At a Glance

Which Came First? Nucleic acids or Proteins

► RNA has enzymatic activity

What Happens Inside the Ribosome? Chemical and Physical Consideration of Protein Synthesis

Time, Space and Correlation between Transcription and Translation

Time, Space and Correlation between Transcription and Translation

Time, Space and Correlation between Transcription and Translation

Jonathan Warner

Translation Machineries: Attractive Targets For Therapeutics

Tetracycline

Binds to the 30S ribosome, and blocks binding of aminoacyl-tRNA to the A-site

Chloramphenicol

Blocks the peptidyl transferase reaction on 50S ribosomes

Streptomycin Binds to the 30S ribosome, prevents the transition from initiation to chain-elongation

Erythromycin Binds to the 50S ribosome, and blocks the translocation

Why ribosome is an attractive target for the development of antibiotics?

Suggested Textbook...

Stryer...

Baltimore, Lodish...

Extra Resources

Further Reading...

James Darnell

Videos...

mRNA synthesis (Transcription)

https://www.youtube.com/watch?v=_C9Un
4dlpR4

Protein synthesis (Translation)

https://www.youtube.com/watch?v=lkq9AcBcohA

Overview

https://www.youtube.com/watch?v=gG7uCskUOrA