

(21) International Application Number:

(30) Priority Data:

08/900,220

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 99/04775
A61K 31/00, 31/70, 31/47, 31/495, C07K 14/46, C12N 15/12, A61K 38/17, C12N 5/10, 15/87, C12Q 1/68, C12N 15/11,	A2	(43) International Publication Date:	4 February 1999 (04.02.99)
C07H 21/04 // A61K 48/00			

US

PCT/US98/15419

(22) International Filing Date: 24 July 1998 (24.07.98)

24 July 1997 (24.07.97)

(71) Applicant (for all designated States except US): ONTOGENY, INC. [US/US]; 45 Moulton Street, Cambridge, MA 02138

(US). (72) Inventors; and

(75) Inventors/Applicants (for US only): MIAO, Ningning [US/US]; Apartment #3, 671 Washington Street, Brookline, MA 02146 (US). WANG, Monica [US/US]; 183 West Shore Drive, Marblehead, MA 01945 (US). MAHANTHAPPA, Nagesh, K. [US/US]; 240 Norfolk Street, Cambridge, MA 02139 (US). PANG, Kevin [US/US]; 53 Hill Road #710, Belmont, MA 02178 (US).

(74) Agents: VINCENT, Matthew, P. et al.; Foley, Hoag & Eliot, LLP, One Post Office Square, Boston, MA 02109-2170 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHOD OF TREATING DOPAMINERGIC AND GABA-NERGIC DISORDERS

(57) Abstract

It is shown here that hedgehog proteins or mimicking agents possess novel activities beyond phenotype specification. Using cultures derived from the embryonic day 14.5 (E14.5) rat ventral mesencephalon, we show that hedgehog or mimicking agents are also trophic for dopaminergic neurons. Interestingly, hedgehog or mimicking agents not only promote dopaminergic neuron survival, but also promote the survival of midbrain GABA-immunoreactive (GABA-ir) neurons.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

20

25

30

METHOD OF TREATING DOPAMINERGIC AND GABA-NERGIC DISORDERS

BACKGROUND OF THE INVENTION

The individual symptoms of Parkinson's disease have been described by physicians from the time of Galen, but their occurence as a syndrome was not recognized until 1817. In that year James Parkinson, a London physician, published an essay in which he argued that several different motor symptoms could be considered together as a group forming a distinctive condition. His observations are interesting not only because his conclusion was correct but also because he made his observations in part at a distance by watching the movements of Parkinsonian victims in the street of London. Parkinson's disease has been called at different times the shaking palsy or its Latin equivalent, paralysis agitans, but received its commoner designation from Jean Charcot, who suggested that the disease be renamed to honor James Parkinson's recognition of its essential nature.

Parkinson's disease is fairly common, estimates of its incidence varying from 0.1 to 1.0% of the population. It is also of considerable interest for a number of other reasons. First, the disease seems related to the degeneration of the substantia nigra, and to the loss of the neurotransmitter substance dopamine, which is produced by cells of this nucleus. The disease, therefore, provides an important insight into the role of this brainstem nucleus and its neurotransmitter in the control of movement. Second, because a variety of pharmacological treatments for Parkinson's disease relieve different features of its symptoms to some extent the disease provides a model for understanding pharmacological treatments of motor disorders in their more general aspects. Third, altough Parkinson's disease is described as a disease entity, the symptoms vary enormously among people, thus making manifest the complexity with which the components of movement are organized to produce fluid motion. Fourth, because many of the symptoms of Parkinson's disease strikingly resemble changes in motor activity that occur as a consequence of aging, the disease provides indirect insight into the more general problems of neural changes in aging.

There are three major types of Parkinson's disease: idiopathic, postencephalitic, and drug-induced. Parkinson's diseases may also result from arteriosclerosis, may follow poisoning by carbon monoxide or manganese intoxication, or may result from syphilis or the development of tumors. As is suggested by its name, the idiopathic

15

20

25

30

35

cause of Parkinson's disease is not known. Its origin may be familiar, or it may be part of the aging process, but it is also widely thought that it might have a viral origin. It most often occurs in people who are over 50 years of age. The postencephalitic form originated in the sleeping sickness that appeared in the winter of 1916-1917 and vanished by 1927. Although the array of symptoms was bewilderingly varied; such that hardly any two patients seemed alike, Constantin von Economo demonstrated a unique pattern of brain damage associated with a virus infection in the brains of patients who had died from the disease. A third of those affected died in the acute stages of sleeping sickness in states either of coma or of sleeplessness. Although many people seemed to completely recover from the sickness, most subsequently developed neurological or psychiatric disorders and parkinsonism. The latency between the initial and subsequent occurences of the disease has never been adequately explained. Specify searches for vital particles or virus specific products in Parkinson patients have revealed no evidence of viral cause. The third major cause of Parkinson's disease is more recent, and is associated with ingestion of various drugs, particularly major tranquilizers that include reserpine and several phenothiazine and butyrophenone derivatives. symptoms are usually reversible, but they are difficult to distinguish from those of the genuine disorder.

Recently it has been found that external agents can cause symptoms quite rapidly. Langston and coworkers have reported that a contaminant of synthetic heroin, MPTP, when taken by drug users, is converted into MPP which is extremely toxic to dopamine cells. A number of young drug users were found to display a complete parkinsonian syndrome after using contaminated drugs. This finding has suggested that other substances might cause similar effects. Demographic studies of patient admission in the cities of Vancouver and Helsinki show an increase in the incidence of patients getting the disease at ages younger than 40. This has raised the suggestion that water and air might contain environmental toxins that work in a fashion similar to MPTP.

Although Parkinsonian patients can be separated into clinical groups on the basis of cause of the disease, it is nevertheless likely that the mechanisms producing the symptoms have a common origin. Either the substrantia nigra is damaged, as occurs in idiopathic and postencephalitic cases, or the activity of its cells is blocked, or cells are killed, as occurs in drug induced parkinsonism. The cells of the substantia nigra contain a dark pigment in Parkinson's disease this area is depigmented by degeneration of the melatonin containing neurons of the area. The cells of the substantia nigra are the point of origin of fibers that go to the basal ganglial frontal cortex and to the spinal cord. The neurotransmitter at the synapses of these projection is dopamine. It has been

demonstrated by bioassay of the brains of deceased parkinsonian patients, and by analysis of the major metabolite of dopamine, homovanallic acid, which is excreted in the urine, that the amount of brain dopamine is reduced by over 90% and is often reduced to undetectable amounts. Thus the cause of Parkinson's disease has been identified with some certainty as a lack of dopamine or in drug induced cases with a lack of dopamine action.

Certain attempts have been made to treat Parkinson's disease. One proposed treatment for Parkinson's disease is Sinemet CR, which is a sustained-release tablet containing a mixture of carbidopa and levodopa, available from The DuPont Merck Pharmaceutical Co. Another proposed treatment for Parkinson's disease is Eldepryl, which is a tablet containing selefiline hydrochloride, available from Somerset Pharmaceuticals, Inc. Another proposed treatment for Parkinson's disease is Parlodel, which is a tablet containing bromocriptine mesylate, available from Sandoz Pharmaceuticals Corporation.

15

20

25

10

5

SUMMARY OF THE INVENTION

One aspect of the present application relates to a method for promoting the survival of dopaminergic or GABAnergic neurons by contacting the cells, in vitro or in vivo, with a hedgehog therapeutic or ptc therapeutic in an amount effective increasing the rate of survival of the neurons relative to the absence of administration of the hedgehog therapeutic or ptc therapeutic.

One aspect of the present application relates to a method for promoting the survival of neurons of the substantia nigra by contacting the cells, *in vitro* or *in vivo*, with a hedgehog therapeutic or ptc therapeutic in an amount effective increasing the rate of survival of the neurons relative to the absence of administration of the hedgehog therapeutic or ptc therapeutic.

In other embodiments, the subject method can be used for protecting dopaminergic and/or GABAnergic neurons of a mammal from neurodegeneration; for preventing or treating neurodegenerative disorder; for treatment of Parkinson's; for treatment of Huntington's; and/or for treatment of ALS. In embodiments wherein the patient is treated with a ptc therapeutic, such therapeutics are preferably small organic molecules which mimic hedgehog effects on patched-mediated signals.

Wherein the subject method is carried out using a hedgehog therapeutic, the hedgehog therapeutic, preferably a polypeptide including a hedgehog portion

10

15

20

25

30

35

comprising at least a bioactive extracellular portion of a *hedgehog* protein, e.g., the *hedgehog* portion includes at least 50, 100 or 150 amino acid residues of an N-terminal half of a *hedgehog* protein. In preferred embodiments, the *hedgehog* portion includes at least a portion of the *hedgehog* protein corresponding to a 19kd fragment of the extracellular domain of a *hedgehog* protein.

In preferred embodiments, the *hedgehog* portion has an amino acid sequence at least 60, 75, 85, or 95 percent identical with a hedgehog protein of any of SEQ ID Nos. 10-18 or 20, though sequences identical to those sequence listing entries are also contemplated as useful in the present method. The *hedgehog* portion can be encoded by a nucleic acid which hybridizes under stringent conditions to a nucleic acid sequence of any of SEQ ID Nos. 1-9 or 19, e.g., the *hedgehog* portion can be encoded by a vertebrate *hedgehog* gene, especially a human *hedgehog* gene.

In other embodiments, the subject method can be carried out by administering a gene activation construct, wherein the gene activation construct is designed to recombine with a genomic *hedgehog* gene of the patient to provide a heterologous transcriptional regulatory sequence operatively linked to a coding sequence of the *hedgehog* gene.

In still other embodiments, the subject method can be practiced with the administration of a gene therapy construct encoding a *hedgehog* polypeptide. For instance, the gene therapy construct can be provided in a composition selected from a group consisting of a recombinant viral particle, a liposome, and a poly-cationic nucleic acid binding agent.

Another aspect of the present invention relates to the cloning of various human hedgehog genes, e.g., human Dhh and Ihh. In a preferred embodiment, there is provided an isolated and/or recombinantly produced polypeptide comprising an amino acid sequence which is at least 95 percent identical to a sequence represented by SEQ ID. NO. 16 or 17, or a bioactive extracellular fragment thereof. In another embodiment, there is provided an isolated and/or recombinantly produced polypeptide encoded by a nucleic acid which hybridizes under stringent conditions to a sequence selected from the group consisting of SEQ ID. NO. 16 and SEQ ID. NO. 17. In a preferred embodiment, the polypeptide is formulated in a pharmaceutically acceptable carrier.

Preferred bioactive fragments of the human *Ihh* and *Dhh* proteins include from about residues 28-202 of SEQ ID No. 16 and 23-198 of SEQ ID No. 17, respectively. Longer or shorter fragments are contemplated, as for example, those which are 5, 10, 15

10

15

20

25

30

or 20 amino acids shorter on either or both the N-terminal and C-terminal ends of the fragment.

In certain embodiments, the polypeptide is purified to at least 80% by dry weight, and more preferably 90 or 95% by dry weight.

Another aspect of the present invention provides an isolated nucleic acid encoding a polypeptide comprising a *hedgehog* amino acid sequence which is at least 95 percent identical to a *hedgehog* protein selected from the group consisting of SEQ ID No:16 and SEQ ID No:17, or bioactive fragments thereof, e.g., the *hedgehog* amino acid sequence (i) binds to a *patched* protein, (ii) regulates differentiation of neuronal cells, (iii) regulates survival of differentiated neuronal cells, (iv) regulates proliferation of chondrocytes, (v) regulates proliferation of testicular germ line cells, or (vi) functionally replaces drosophila hedgehog in transgenic drosophila fly, or a combination thereof.

In other preferred embodiments, the isolated nucleic acid encodes a polypeptide having a *hedgehog* amino acid sequence encoded by a nucleic acid which hybridizes under stringent conditions to a nucleic acid sequence selected from the group consisting of SEQ ID No:7 and SEQ ID No:8, which *hedgehog* amino acid sequence of the polypeptide corresponds to a natural proteolytic product of a hedgehog protein. Such polypeptides preferably (i) bind to a *patched* protein, (ii) regulate differentiation of neuronal cells, (iii) regulate survival of differentiated neuronal cells, (iv) regulate proliferation of chondrocytes, (v) regulate proliferation of testicular germ line cells, and/or (vi) functionally replace drosophila hedgehog in transgenic drosophila fly, or a combination thereof.

In preferred embodiments, the nucleic acid encodes a *hedgehog* amino acid sequence identical to a *hedgehog* protein selected from the group consisting of SEQ ID No:16 and SEQ ID No:17.

Another preferred ebodiment provides an isolated nucleic acid comprising a coding sequence of a human *hedgehog* gene, encoding a bioactive *hedgehog* protein.

Still another aspect of the present invention relates to an expression vector, capable of replicating in at least one of a prokaryotic cell and eukaryotic cell, comprising a nucleic acid encoding a *Dhh* or *Ihh* polypeptide described above.

The present invention also provides a host cell transfected with such expression vectors; as well as methods for producing a recombinant *hedgehog* polypeptide by

10

15

20

culturing such cells in a cell culture medium to express a *hedgehog* polypeptide and isolating said *hedgehog* polypeptide from the cell culture.

Still another aspect of the present invention provides a recombinant transfection system, e.g., such as may be useful for gene therapy, comprising (i) a gene construct including the coding sequence for a human *lhh* or *Dhh* protein, operably linked to a transcriptional regulatory sequence for causing expression of the *hedgehog* polypeptide in eukaryotic cells, and (ii) a gene delivery composition for delivering said gene construct to a cell and causing the cell to be transfected with said gene construct. For instance, the gene delivery composition is selected from a group consisting of a recombinant viral particle, a liposome, and a poly-cationic nucleic acid binding agent.

Another aspect of the present invention provides a probe/primer comprising a substantially purified oligonucleotide, said oligonucleotide containing a region of nucleotide sequence which hybridizes under stringent conditions to at least 10 consecutive nucleotides of sense or antisense sequence of SEQ ID No. 7 or 8, or naturally occurring mutants thereof. In preferred embodiments, the probe/primer includes a label group attached thereto and able to be detected. The present invention also provides a test kit for detecting cells which contain a hedgehog mRNA transcript, and includes such probe/primers.

Still another embodiment of the present invention provides a purified preparation of an antisense nucleic acid which specifically hybridizes to and inhibits expression of a gene encoding a human *Ihh* or *Dhh hedgehog* protein under physiological conditions, which nucleic acid is at least one of (i) a synthetic oligonucleotide, (ii) single-stranded, (iii) linear, (iv) 20 to 50 nucleotides in length, and (v) a DNA analog resistant to nuclease degradation.

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Shh and Ptc in the E14.5 rat embryo. Shh (A, antisense; B, sense control), and ptc (C, antisense; D, sense control) expression as detected by in situ hybridization with digoxigenin-labeled riboprobes and alkaline phosphataseconjugated anti-digoxigenin. The arrow in A and the double-arrow in C designate the zona limitan intrathalamica. Major anatomical structures and summary diagrams of shh and ptc expression are shown in E. Scale bar = 1 mm.

Figure 2. Shh promotes the survival of TH+ neurons of the ventral mesencephalon. (A) Timecourse and dose response of the Shh effect. The number of

15

20

25

30

35

TH+ neurons in control cultures (O ng/ml Shh) began to decline dramatically by 5 days in vitro. In cultures treated with Shh at 25 and 50 ng/ml there were significantly greater numbers of TH+ nurrons over control- through 24 days in vitro (from 5 to 24 days, p <.001 at 25 and 50 ng/ml). The 50 ng/ml dose typically gave a 50-100% increase over controls at all time points (error bars s.e.m.) Photomicrographs of TH+ neurons in 50 ng/ml Shh treated (B,D) and control (C, E) cultures, 2 days (B, C) and 7 days (D, E) post-plating. Note that in addition to an increased number of TH+-cell bodies, the Shh treated cells show extensive neuritic processes. Scale bar = 200 um.

Figure 3. Transport of 3H-Dopamine. The identity and functionality of the surviving midbrain neurons was assessed by their ability to specifically transport dopamine. (A) Addition of 25 ng/ml Shh resulted in a 22-fold increase in 3H-DA cell uptake over controls and lower Shh concentrations. 50 ng/ml Shh gave a 30-fold increase in 3H-DA uptake (error bars = s.d.) (p < 0.005 at 25 and 50 ng/ml). (B) Autoradiography was performed on sister plates to visualize dopamine transport. Only cells with neuronal morphology transported 3H-DA (inset). Scale bar = 50 cpm, inset 15 m.

Figure 4. Specificity of Shh activity. (A) QC-PCR gel. Lanes 1-4 are CDNA from midbrain cultures that have been co-amplified with successive 4-fold dilutions of mimic oligo. Lane 5 is DNA marker lane. Ptc target is 254 bp and mimic is 100 bp(B) Representative plot (corresponding to A) of the log concentration of competitive mimic versus the log of the obtained band densities of target and mimic PCR substrates demonstrates the linearity of the amplification reaction. The extrapolated value of ptc message in the CDNA tested is determined to be equal to the value of mimic concentration where Log Ds/Dm = 0. See main text for details of the procedure. Doses in ng/ml; Ds = density of test substrate; Dm = density of competitive mimic. The r 2 value shows that determinations made within this range vary within 3%. (C) Administration of Shh induces ptc expression in a dose response that parallels the survival curve. The values are expressed as number of target molecules (log Ds) per total amount of CDNA used in each reaction as measured by optical density at 260 nm (OD) and were determined as demonstrated in A and B. At 4 days in vitro Shh at 5 ng/ml increases ptc expression over control, and 50 ng/ml increases expression of ptc over the level found in the ventral mesencephalon at the time of dissection. (D) Affinity purified anti-Shh antibody inhibited the Shh neurotrophic response (p < .001). Cultures were maintained for 5 days. Shh was added at a concentration of 50 ng/ml, and in the co-administration of 5 Shh and anti-Shh ("Shh antibody") Shh-was added at 0 g/ml and anti-Shh was added as a 5-fold molar excess (error bars s.e.m.).

15

20

25

30

35

Figure 5. Shh also supports the survival of midbrain-GABA+ neurons. (A) In addition to supporting the survival of TH+ cells in the midbrain cultures, Shh promotes the survival of GABA-immunoreactive neurons with a similar dose response (error bars=s.e.m.) (For TH, p, 0.001 at 25 and 50 ng/ml; for GABA, p < .001 at 25 and 50 ng/ml). (B) Double level immunofluorescence of SSH-treated cultures shows that the majority of the GABA+ cells (0 range) do not overlap with the TH+ cells (green); scale bar = 15 m.

Figure 6. Shh effects on striatal cultures. (A) At concentrations of 10 ng/ml and higher, Shh promotes neuronal survival as gauged by staining for tubulin PIII, and these cells are exclusively GABA+ (error bars = S.D.) (tubulin PIII, p < 0.001 at 25 and 50 ng/ml; GABA, p < .001 at 25 and 50 ng/ml). Typical fields of neurons treated with 50 ng/ml Shh stained for tubulin plll (B) and GABA+ (C) are shown; scale bar = 100 gm.

Figure 7. Shh effects on ventral spinal cultures. (A) At concentrations of 25 ng/ml and higher, Shh promotes neuronal survival as gauged by staining for tubulin PIII. The majority of the cells stain positively for GABA, while a subset stain for the nuclear marker of spinal interneurons, Lim-1/2 (error bars = s.e.m.) (tubulin pill, p < 0.001 at 25 and 50 ng/ml; lim 1/2, p < .001 at 5,10,25, and 50 ng/ml; GABA, p < .001 at 25 and 50 ng/ml). Typical staining for Lim- - 1/2 in the E14 rat spinal cord (B, scale bar = 100 m), and spinal neurons cultured in the presence of 50 ng/ml Shh (C, scale bar = 20 m).

Figure 8. Shh protects midbrain TH+ neurons from neurotoxic insult. Cultures of ventral mesencephalon neurons were cultured in the indicated concentrations of Shh (ng/ml). MPP+ was added at 4 days *in vitro* for 48 hours. Cultures were then washed extensively and cultured for an additional 48 hours to allow clearance of dying neurons. Protection from MPP+ neurotoxicity could be seen at 5 ng/ml, with the effect saturating at 50 ng/ml. BDNF was used at 10 ng/ml, and GDNF at 20 ng/ml (error bars = s.e.m.) (Shh, p < 0.001 at 50 and 250 ng/ml; BDNF no significance; GDNF, p < .05). Note that the plating density used in this experiment was twice that used in Figure 2.

DETAILED DESCRIPTION OF THE INVENTION

Sonic hedgehog (Shh), an axis-determining secreted protein, is expressed during early vertebrate embryogenesis in the notochord and ventral neural tube. In this site it plays a role in the phenotypic specification of ventral neurons along the length of the CNS. For example, Shh induces the differentiation of motor neurons in the spinal cord and dopaminergic neurons in the midbrain. Shh expression, however, persists beyond

10

15

20

25

this induction period. We have shown here that *Shh* possesses novel activities beyond phenotype specification. Using cultures derived from the embryonic day 14.5 (E14.5) rat ventral mesencephalon, we show that *Shh* is also trophic for dopaminergic neurons. Interestingly, *Shh* not only promotes dopaminergic neuron survival, but also promotes the survival of midbrain GABA-immunoeractive (GABA-ir) neurons. In cultures derived from the E15-16 striatum, *Shh* promotes the survival of GABA-ir interneurons to the exclusion of any other cell type. Cultures derived from E15-16 ventral spinal cord reveal that *Shh* is again trophic for interneurons, many of which are GABA-ir and some of which express the Lim-1/2 nuclear marker, but does not appear to support motorneuron survival. *Shh* does not support survival of sympathetic or dorsal root ganglion neurons. Finally, using the midbrain cultures, we show that in the presence of MPP+, a highly specific neurotoxin, *Shh* prevents dopaminergic neuron death that normally would have occurred.

Based in part on these findings, we have determined that *Shh*, and other forms of *hedgehog* proteins, are useful as protective agents in the treatment and prophylaxis for neurodegenerative disorders, particularly those resulting from the loss of dopaminergic and/or GABA-nergic neurons, or the general loss tissue from the substantia nigra. As described with greater detail below, exemplary disorders ("candidate disorders") include Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and the like.

The subject invention also utilizes hedgehog or hedgehog agonists as cell culture additives for the maintenance of differentiated neurons in cultures, e.g., in cultures of dopaminergic and GABA-nergic neurons. The subject methods and compositions can also be used to augment the implantation of such neuronal cells in an animal.

In terms of treatment, once a patient experiences symptoms of a candidate disorder, a goal of therapy is prevention of further loss of neuron function.

I. OVERVIEW

The present application is directed to compositions and methods for the prevention and treatment of ischemic injury to the brain, such as resulting from stroke. The invention derives, at least in part, from the observation of a protective effect by the so called "hedgehog" proteins on animal stroke models. Briefly, as described in the appended examples, we investigated the neuroprotective potential of hedgehog proteins in a rat model of focal cerebral ischemia that used permanent occlusion of the middle

10

15

20

25

cerebral artery. Intravenous infusion of vehicle (control) or *Shh* (sonic *hedgehog*) was administered for 3 hours beginning 30 minutes after occlusion, and resulted in a 70 percent reduction in total infarct size (P=0.0039), relative to the control, when examined 24 hours post-occlusion. Measurements of arterial blood pressure, blood gases, glucose, hematocrit and osmolality revealed no difference among vehicle- and *Shh*-treated animals. These results show that the intravenous *hedgehog* protein reduces neuronal damage due to stroke.

In one aspect, the present invention provides pharmaceutical preparations and methods for preventing/treating cerebral ischemia and the like utilizing, as an active ingredient, a *hedgehog* polypeptide or a mimetic thereof.

The subject *hedgehog* treatments are effective on both human and animal subjects afflicted with these conditions. Animal subjects to which the invention is applicable extend to both domestic animals and livestock, raised either as pets or for commercial purposes. Examples are dogs, cats, cattle, horses, sheep, hogs and goats.

However, without wishing to be bound by any particular theory, the reduction in infarct size in the present studies may be due at least in part to the ability of hedgehog proteins to antagonize (directly or indirectly) patched-mediated regulation of gene expression and other physiological effects mediated by the patched gene. The patched gene product, a cell surface protein, is understood to signal through a pathway which regulates transcription of a variety of genes involved in neuronal cell development. In the CNS and other tissue, the introduction of hedgehog relieves (derepresses) this inhibition conferred by patched, allowing expression of particular gene programs.

Accordingly, the present invention contemplates the use of other agents which are capable of mimicking the effect of the *hedgehog* protein on *patched* signaling, e.g., as may be identified from the drug screening assays described below.

II. DEFINITIONS

For convenience, certain terms employed in the specification, examples, and appended claims are collected here.

The term "hedgehog therapeutic" refers to various forms of hedgehog polypeptides, as well as peptidomimetics, which are neuroprotective for neuronal cells, and in particular, enhance the survival of dopaminergic and GABA-ergic neurons. These include naturally occurring forms of hedgehog proteins, as well as modified or mutant forms generated by molecular biological techniques, chemical synthesis, etc.

15

20

25

30

While in preferred embodiments the *hedgehog* polypeptide is derived from a vertebrate homolog, cross-species activity reported in the literature supports the use of *hedgehog* polypeptides from invertebrate organisms as well. Naturally and non-naturally occurring *hedgehog* therapeutics referred to herein as "agonists" mimic or potentiate (collectively "agonize") the effects of a naturally-occurring *hedgehog* protein as a neuroprotective agent. In addition, the term "hedgehog therapeutic" includes molecules which can activate expression of an endogenous *hedgehog* gene. The term also includes gene therapy constructs for causing expression of *hedgehog* polypeptides *in vivo*, as for example, expression constructs encoding recombinant *hedgehog* polypeptides as well as trans-activation constructs for altering the regulatory sequences of an endogenous *hedgehog* gene by homologous recombination.

In particular, the term "hedgehog polypeptide" encompasses hedgehog proteins and peptidyl fragments thereof.

As used herein the term "bioactive fragment", with reference to a portions of hedgehog proteins, refers to a fragment of a full-length hedgehog protein, wherein the fragment specifically agonizes neuroprotective events mediated by wild-type hedgehog proteins. The hedgehog bioactive fragment preferably is a soluble extracellular portion of a hedgehog protein, where solubility is with reference to physiologically compatible solutions. Exemplary bioactive fragments are described in PCT publications WO 95/18856 and WO 96/17924.

The term "ptc therapeutic" refers to agents which mimic the effect of naturally occurring *hedgehog* proteins on *patched* signalling. The ptc therapeutic can be, e.g., a peptide, a nucleic acid, a carbohydrate, a small organic molecule, or natural product extract (or fraction thereof).

A "patient" or "subject" to be treated by the subject method are mammals, including humans.

An "effective amount" of, e.g., a *hedgehog* or ptc therapeutic, with respect to the subject method of treatment, refers to an amount of the therapeutic in a preparation which, when applied as part of a desired dosage regimen causes a increase in survival of a neuronal cell population according to clinically acceptable standards for the treatment or prevention of a particular disorder.

By "prevent degeneration" it is meant reduction in the loss of cells (such as from apoptosis), or reduction in impairment of cell function, e.g., release of dopamine in the case of dopaminergic neurons.

10

15

20

25

30

35

A "trophic factor", referring to a hedgehog or ptc therapeutic, is a molecule that directly or indirectly affects the survival or function of a hedgehog-responsive cell, e.g., a dopaminergic or GABA-nergic cell.

A "trophic amount" of a a hedgehog or ptc therapeutic is an amount sufficient to, under the circumstances, cause an increase in the rate of survival or the functional performance of a hedgehog-responsive cell, e.g., a dopaminergic or GABA-nergic cell.

"Homology" and "identity" each refer to sequence similarity between two polypeptide sequences, with identity being a more strict comparison. Homology and identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same amino acid residue, then the polypeptides can be referred to as identical at that position; when the equivalent site is occupied by the same amino acid (e.g., identical) or a similar amino acid (e.g., similar in steric and/or electronic nature), then the molecules can be referred to as homologous at that position. A percentage of homology or identity between sequences is a function of the number of matching or homologous positions shared by the sequences. An "unrelated" or "non-homologous" sequence shares less than 40 percent identity, though preferably less than 25 percent identity, with an AR sequence of the present invention.

The term "corresponds to", when referring to a particular polypeptide or nucleic acid sequence is meant to indicate that the sequence of interest is identical or homologous to the reference sequence to which it is said to correspond.

The terms "recombinant protein", "heterologous protein" and "exogenous protein" are used interchangeably throughout the specification and refer to a polypeptide which is produced by recombinant DNA techniques, wherein generally, DNA encoding the polypeptide is inserted into a suitable expression construct which is in turn used to transform a host cell to produce the heterologous protein. That is, the polypeptide is expressed from a heterologous nucleic acid.

A "chimeric protein" or "fusion protein" is a fusion of a first amino acid sequence encoding a *hedgehog* polypeptide with a second amino acid sequence defining a domain foreign to and not substantially homologous with any domain of hh protein. A chimeric protein may present a foreign domain which is found (albeit in a different protein) in an organism which also expresses the first protein, or it may be an "interspecies", "intergenic", etc. fusion of protein structures expressed by different kinds of organisms. In general, a fusion protein can be represented by the general formula $(X)_n$ - $(hh)_m$ - $(Y)_n$, wherein hh represents all or a portion of the *hedgehog*

10

15

20

25

protein, X and Y each independently represent an amino acid sequences which are not naturally found as a polypeptide chain contiguous with the *hedgehog* sequence, m is an integer greater than or equal to 1, and each occurrence of n is, independently, 0 or an integer greater than or equal to 1 (n and m are preferably no greater than 5 or 10).

As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. The term "expression vector" includes plasmids, cosmids or phages capable of synthesizing, for example, the subject *hedgehog* polypeptides encoded by the respective recombinant gene carried by the vector. Preferred vectors are those capable of autonomous replication and/expression of nucleic acids to which they are linked. In the present specification, "plasmid" and "vector" are used interchangeably as the plasmid is the most commonly used form of vector. Moreover, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.

"Transcriptional regulatory sequence" is a generic term used throughout the specification to refer to DNA sequences, such as initiation signals, enhancers, and promoters, as well as polyadenylation sites, which induce or control transcription of protein (or antisense) coding sequences with which they are operably linked. In preferred embodiments, transcription of a recombinant gene is under the control of a promoter sequence (or other transcriptional regulatory sequence) which controls the expression of the recombinant gene in a cell-type in which expression is intended. It will also be understood that the recombinant gene can be under the control of transcriptional regulatory sequences which are the same or which are different from those sequences which control transcription of the naturally-occurring form of the regulatory protein.

The term "operably linked" refers to the arrangement of a transcriptional regulatory element relative to other transcribable nucleic acid sequence such that the transcriptional regulatory element can regulate the rate of transcription from the transcribable sequence(s).

30

35

III. EXEMPLARY APPLICATIONS OF METHOD AND COMPOSITIONS

One aspect of the present invention relates to a method of maintaining a differentiated state, e.g., enhancing survival, of a neuronal cell responsive to a hedgehog protein, by contacting the cells with a trophic amount of a hedgehog or ptc thereapeutic. For instance, it is contemplated by the invention that, in light of the

present finding of an apparently trophic effect of hedgehog proteins in the maintenance of differentiated neurons, the subject method could be used to maintain different neuronal tissue both in vitro and in vivo. Where the trophic agent is a hedgehog protein, it can be provided to a cell culture or animal as a purified protein or secreted by a recombinant cell, or cells or tissue explants which naturally produce one or more hedgehog proteins. For instance, neural tube explants from embryos, particularly floorplate tissue, can provide a source for Shh polypeptide, which source can be implanted in a patient or otherwise provided, as appropriate, for maintenance of differentiation.

5

10

15

20

25

30

The present method is applicable to cell culture techniques. *In vitro* neuronal culture systems have proved to be fundamental and indispensable tools for the study of neural development, as well as the identification of neurotrophic factors such as nerve growth factor (NGF), ciliary trophic factors (CNTF), and brain derived neurotrophic factor (BDNF). Once a neuronal cell has become terminally-differentiated it typically will not change to another terminally differentiated cell-type. However, neuronal cells can nevertheless readily lose their differentiated state. This is commonly observed when they are grown in culture from adult tissue, and when they form a blastema during regeneration. The present method provides a means for ensuring an adequately restrictive environment in order to maintain dopaminergic and GABA-nergic cells in differentiated states, and can be employed, for instance, in cell cultures designed to test the specific activities of other trophic factors.

In such embodiments of the subject method, a culture of differentiated cells inlcuding dopaminergic and/or GABA-nergic cells can be contacted with a hedgehog or ptc therapeutic in order to maintain the integrity of a culture of terminally-differentiated neuronal cells by preventing loss of differentiation. The source of hedgehog or ptc therapeutic in the culture can be derived from, for example, a purified or semi-purified protein composition added directly to the cell culture media, or alternatively, supported and/or released from a polymeric device which supports the growth of various neuronal cells and which has been doped with the protein. The source of, for example, a trophic hedgehog polypeptide can also be a cell that is co-cultured with the neuronal cells. Alternatively, the source can be the neuronal cell itself which has been engineered to produce a recombinant hedgehog protein. Such neuronal cultures can be used as convenient assay systems as well as sources of implantable cells for therapeutic treatments.

10

15

20

25

30

35

The subject method can be used in conjunction with agents which induce the differentiation of neuronal precursors, e.g., progenitor or stem cells, into dopaminergic or GABA-nergic neurons.

Cells can be obtained from embryonic, post-natal, juvenile or adult neural tissue from any animal. By any animal is meant any multicellular animal which contains nervous tissue. More particularly, is meant any fish, reptile, bird, amphibian or mammal and the like. The most preferable donors are mammals, especially humans and non-human primates, pigs, cows, and rodents.

Intracerebral neural grafting has emerged recently as an additional potential to CNS therapy. For example, one approach to repairing damaged brain tissues involves the transplantation of cells from fetal or neonatal animals into the adult brain (Dunnett et al. (1987) J Exp Biol 123:265-289; and Freund et al. (1985) J Neurosci 5:603-616). Fetal neurons from a variety of brain regions can be successfully incorporated into the adult brain, and such grafts can alleviate behavioral defects. For example, movement disorder induced by lesions of dopaminergic projections to the basal ganglia can be prevented by grafts of embryonic dopaminergic neurons. Complex cognitive functions that are impaired after lesions of the neocortex can also be partially restored by grafts of embryonic cortical cells. Transplantation of fetal brain cells, which contain precursors of the dopaminergic neurons, has been examined with success as a treatment for Parkinson's disease. In animal models and in patients with this disease, fetal brain cell transplantations have resulted in the reduction of motor abnormalities. Furthermore, it appears that the implanted fetal dopaminergic neurons form synapses with surrounding host neurons. However, in the art, the transplantation of fetal brain cells is limited due, for example, to the limited survival time of the implanted neuronal precursors and differentiated neurons arising therefrom. The subject invention provides a means for extending the usefulness of such transplants by enhancing the survival of dopaminergic and/or GABA-nergic cells in the transplant.

In the specific case of Parkinson's disease, intervention by increasing the activity of hedgehog, by ectopic or endogenous means, can improve the in vivo survival of fetal and adult dopaminergic neurons, and thus can provide a more effective treatment of this disease. Cells to be transplanted for the treatment of a particular disease can be genetically modified in vitro so as to increase the expression of hedgehog in the transplant. In an exemplary embodiment of the invention, administration of an Shh polypeptide can be used in conjunction with surgical implantation of tissue in the treatment of Parkinson's disease.

10

15

20

25

30

In the case of a heterologous donor animal, the animal may be euthanized, and the brain and specific area of interest removed using a sterile procedure. Brain areas of particular interest include any area from which progenitor cells can be obtained which will provide dopaminergic or GABA-nergic cells upon differentiation. These regions include areas of the central nervous system (CNS) including the substantia nigra pars compacts which is found to be degenerated in Parkinson's Disease patients.

Human heterologous neural progenitor cells may be derived from fetal tissue obtained from elective abortion, or from a post-natal, juvenile or adult organ donor. Autologous neural tissue can be obtained by biopsy, or from patients undergoing neurosurgery in which neural tissue is removed, such as during epilepsy surgery.

Cells can be obtained from donor tissue by dissociation of individual cells from the connecting extracellular matrix of the tissue. Dissociation can be obtained using any known procedure, including treatment with enzymes such as trypsin, collagenase and the like, or by using physical methods of dissociation such as with a blunt instrument. Dissociation of fetal cells can be carried out in tissue culture medium, while a preferable medium for dissociation of juvenile and adult cells is artificial cerebral spinal fluid (aCSF). Regular aCSF contains 124 mM NaCl, 5 mM KCl, 1.3 mM MgCl₂, 2 mM CaCl₂, 26 mM NaHCO₃, and 10 mM D-glucose. Low Ca²⁺ aCSF contains the same ingredients except for MgCl₂ at a concentration of 3.2 mM and CaCl₂ at a concentration of 0.1 mM.

Dissociated cells can be placed into any known culture medium capable of supporting cell growth, including MEM, DMEM, RPMI, F-12, and the like, containing supplements which are required for cellular metabolism such as glutamine and other amino acids, vitamins, minerals and useful proteins such as transferrin and the like. Medium may also contain antibiotics to prevent contamination with yeast, bacteria and fungi such as penicillin, streptomycin, gentamicin and the like. In some cases, the medium may contain serum derived from bovine, equine, chicken and the like. A particularly preferable medium for cells is a mixture of DMEM and F-12.

Conditions for culturing should be close to physiological conditions. The pH of the culture media should be close to physiological pH, preferably between pH 6-8, more preferably close to pH 7, even more particularly about pH 7.4. Cells should be cultured at a temperature close to physiological temperature, preferably between 30°C-40°C, more preferably between 32°C-38°C, and most preferably between 35°C-37°C.

15

20

25

30

Cells can be grown in suspension or on a fixed substrate, but proliferation of the progenitors is preferably done in suspension to generate large numbers of cells by formation of "neurospheres" (see, for example, Reynolds et al. (1992) Science 255:1070-1709; and PCT Publications WO93/01275, WO94/09119, WO94/10292, and WO94/16718). In the case of propagating (or splitting) suspension cells, flasks are shaken well and the neurospheres allowed to settle on the bottom corner of the flask. The spheres are then transferred to a 50 ml centrifuge tube and centrifuged at low speed. The medium is aspirated, the cells resuspended in a small amount of medium with growth factor, and the cells mechanically dissociated and resuspended in separate aliquots of media.

Cell suspensions in culture medium are supplemented with any growth factor which allows for the proliferation of progenitor cells and seeded in any receptacle capable of sustaining cells, though as set out above, preferably in culture flasks or roller bottles. Cells typically proliferate within 3-4 days in a 37°C incubator, and proliferation can be reinitiated at any time after that by dissociation of the cells and resuspension in fresh medium containing growth factors.

In the absence of substrate, cells lift off the floor of the flask and continue to proliferate in suspension forming a hollow sphere of undifferentiated cells. After approximately 3-10 days *in vitro*, the proliferating clusters (neurospheres) are fed every 2-7 days, and more particularly every 2-4 days by gentle centrifugation and resuspension in medium containing growth factor.

After 6-7 days in vitro, individual cells in the neurospheres can be separated by physical dissociation of the neurospheres with a blunt instrument, more particularly by triturating the neurospheres with a pipette. Single cells from the dissociated neurospheres are suspended in culture medium containing growth factors, and differentiation of the cells can be induced by plating (or resuspending) the cells in the presence of a factor capable of sustaining differentiation, e.g., such as a hedgehog or ptc therapeutic of the present invention.

Stem cells useful in the present invention are generally known. For example, several neural crest cells have been identified, some of which are multipotent and likely represent uncommitted neural crest cells. The role of *hedgehog* proteins employed in the present method to culture such stem cells is to maintain differentiation a committed progenitor cell amd/or a terminally-differentiated dopaminergic or GABA-nergic neuronal cell. The *hedgehog* protein can be used alone, or can be used in combination

with other neurotrophic factors which act to more particularly enhance a particular differentiation fate of the neuronal progenitor cell.

5

10

15

20

25

30

35

In addition to the implantation of cells cultured in the presence of a functional hedgehog activity and other in vitro uses described above, yet another aspect of the present invention concerns the therapeutic application of a hedgehog or ptc therapeutic to enhance survival of dopaminergic and GABA-nergic neurons in vivo. The ability of hedgehog protein to maintain dopaminergic and GABA-nergic neuronal differentiation indicates that certain of the hedgehog proteins can be reasonably expected to facilitate control of of these neuronal cell-types in adult tissue with regard to maintenance, functional performance, aging and prevention of degeneration and premature death which result from loss of differentiation in certain pathological conditions. In light of this understanding, the present invention specifically contemplates applications of the subject method to the treatment of (prevention and/or reduction of the severity of) neurological conditions deriving from (i) loss of dopaminergic cells, (ii) loss of GABAnergic cells, and/or (iii) loss of neurons of the substantia nigra. In this regard, the subject method is useful in the treatment of chronic neurodegenerative diseases of the nervous system, including Parkinson's disease, Huntington's chorea, amylotrophic lateral sclerosis and the like.

Many neurological disorders are associated with degeneration of discrete populations of neuronal elements and may be treatable with a therapeutic regimen which includes a hedgehog or ptc therapeutic according to the subject invention. As described in the appended examples, hedgehog exerts trophic and survival-promoting actions on substantia nigra dopaminergic neurons. In vivo, treatment with exogenous hedgehog, or other compounds of the present invention, is expected to stimulate the dopaminergic phenotype of substantia nigra neurons and restores functional deficits induced by axotomy or dopaminergic neurotoxins, and may be used the treatment of Parkinson's disease, a neurodegenerative disease characterized by the loss of dopaminergic neurons. Thus, in one embodiment, the subject method comprises administering to an animal afflected with Parkinson's disease, or at risk of developing Parkonson's disease, an amount of a hedgehog or ptc thereapeutic effective for increasing the rate of survival of dopaminergic neurons in the animal. In preferred embodiments, the method includes administering to the animal an amount of a hedgehog or ptc thereapeutic which would otherwise be effective at protecting the substantia nigra from MPTP-mediated toxicity when MPTP is administered at a dose of .5mg/kg, more preferably at a dose of 2mg/kg, 5mg/kg, 10mg/kg, 20mg/kg or 50mg/kg and, more preferably, at a dose of 100mg/kg.

15

20

25

30

Huntington's disease involves the degeneration of intrastraital and cortical cholinergic neurons and GABA-nergic neurons. Treatment of patients suffering from such degenerative conditions can include the application of hedgehog or ptc therapeutics of the present invention, in order to control, for example, apoptotic events which give rise to loss of GABA-nergic neurons (e.g. to enhance survival of existing neurons).

Recently it has been reported that in certain ALS patients and animal models a significant loss of midbrain dopaminergic neurons occurs in addition to the loss of spinal motor neurons. For instance, the literature describes degeneration of the substantia nigra in some patients with familial amyotrophic lateral sclerosis. Kostic et al. (1997) Ann Neurol 41:497-504. According the subject invention, a trophic amount of a hedgehog or ptc therapeutic can be administered to an animal suffering from, or at risk of developing, ALS.

In general, the therapeutic method of the present invention can be characterized as including a step of administering to an animal an amount of a ptc or hedgehog therapeutic effective to enhance the survival of a dopaminergic and/or GABA-nergic neuronal cells. The mode of administration and dosage regimens will vary depending on the severity of the degenerative disoder being treated, e.g., the dosage may be altered as between a prophylsis and treatment. In preferred embodiments, the ptc or hedeghog therapeutic is administered systemically initially, then locally for medium to long term care. In certain embodiments, a source of a hedgehog or ptc therapeutic is stereotactically provided within or proximate the area of degeneration.

The subject method may also find particular utility in treating or preventing the adverse neurological consequences of surgery. For example, certain cranial surgery can result in degeneration of neuronal populations for which the subject method can be applied.

In other embodiments, the subject method can be used to prevent or treat neurodegenerative conditions arising from the use of certain drugs, such as the compound MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine).

In still other embodiments, the subject method can be used in the prevention and/or treatment of hypoxia, e.g., as a neuroprotective agent. For instance, the subject method can be used prophylactically to lessen the neuronal cell death caused by altitude-induced hypoxia.

10

15

20

25

30

35

A method which is "neuroprotective", in the case of dopaminergic and GABAnergic cells, results in diminished loss of cells of those phenotype relative to that which would occur in the absence of treatment with a *hedgehog* or ptc therapeutic.

In yet other embodiments, the subject method can be carried out conjointly with the administration of growth and/or trophic factors. For instance, the combinatorial therapy can include a trophic factor such as nerve growth factor, cilliary neurotrophic growth factor, schwanoma-derived growth factor, glial growth factor, stiatal-derived neuronotrophic factor, platelet-derived growth factor, and scatter factor (HGF-SF). Antimitogenic agents can also be used, as for example, cytosine, arabinoside, 5-fluorouracil, hydroxyurea, and methotrexate.

Determination of a therapeutically effective amount and a prophylactically effective amount of a hedgehog or ptc therapeutic, e.g., to be adequately neuroprotective, can be readily made by the physician or veterinarian (the "attending clinician"), as one skilled in the art, by the use of known techniques and by observing results obtained under analogous circumstances. The dosages may be varied depending upon the requirements of the patient in the judgment of the attending clinician, the severity of the condition being treated, the risk of further degeneration to the CNS, and the particular agent being employed. In determining the therapeutically effective trophic amount or dose, and the prophylactically effective amount or dose, a number of factors are considered by the attending clinician, including, but not limited to: the specific cause of the degenerative state and its likelihood of recurring or worsening; pharmacodynamic characteristics of the particular agent and its mode and route of administration; the desirder time course of treatment; the species of mammal; its size, age, and general health; the response of the individual patient; the particular compound administered; the bioavailability characteristics of the preparation administered; the dose regimen selected; the kind of concurrent treatment (i.e., the interaction of the hedgehog or ptc therapeutic with other co-administered therapeutics); and other relevant circumstances.

Treatment can be initiated with smaller dosages which are less than the optimum dose of the agent. Thereafter, the dosage should be increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired. A therapeutically effective trophic amount and a prophylactically effective neuroprotective amount of a *hedgehog* polypeptide, for instance, is expected to vary from concentrations about 0.1 nanogram per kilogram of body weight per day (ng/kg/day) to about 100 mg/kg/day.

Potential *hedgehog* and *ptc* therapeutics, such as described below, can be tested by any of number of well known animal disease models. For instance, regarding Parkinson's Disease, selected agents can be evaluated in animals treated with MPTP. The compound MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its metabolite MPP+ have been used to induce experimental parkinsonism. MPP+ kills dopaminergic neurons in the substantia nigra, yielding a reasonable model of late parkinsonism. Turski et al., (1991) *Nature* 349:414.

Compounds which are determined to be effective for the prevention or treatment of degeneration of dopaminergic and GABA-nergic neurons and the like in animals, e.g., dogs, rodents, may also be useful in treatment of disorders in humans. Those skilled in the art of treating in such disorders in humans will be guided, from the data obtained in animal studies, to the correct dosage and route of administration of the compound to humans. In general, the determination of dosage and route of administration in humans is expected to be similar to that used to determine administration in animals.

The identification of those patients who are in need of prophylactic treatment for disorders marked by degeneration of dopaminergic and/or GABA-nergic neurons is well within the ability and knowledge of one skilled in the art. Certain of the methods for identification of patients which are at risk and which can be treated by the subject method are appreciated in the medical arts, such as family history of the development of a particular disease state and the presence of risk factors associated with the development of that disease state in the subject patient. A clinician skilled in the art can readily identify such candidate patients, by the use of, for example, clinical tests, physical examination and medical/family history.

25

30

10

15

20

IV. EXEMPLARY HEDGEHOG THERAPEUTIC COMPOUNDS:

The *hedgehog* therapeutic compositions of the subject method can be generated by any of a variety of techniques, including purification of naturally occurring proteins, recombinantly produced proteins and synthetic chemistry. Polypeptide forms of the *hedgehog* therapeutics are preferably derived from vertebrate *hedgehog* proteins, e.g., have sequences corresponding to naturally occurring *hedgehog* proteins, or fragments thereof, from vertebrate organisms. However, it will be appreciated that the *hedgehog* polypeptide can correspond to a *hedgehog* protein (or fragment thereof) which occurs in any metazoan organism.

10

15

20

25

30

35

The various naturally-occurring hedgehog proteins from which the subject therapeutics can be derived are characterized by a signal peptide, a highly conserved Nterminal region, and a more divergent C-terminal domain. In addition to signal sequence cleavage in the secretory pathway (Lee, J.J. et al. (1992) Cell 71:33-50; Tabata, T. et al. (1992) Genes Dev. 2635-2645; Chang, D.E. et al. (1994) Development 120:3339-3353), hedgehog precursor proteins naturally undergo an internal autoproteolytic cleavage which depends on conserved sequences in the C-terminal portion (Lee et al. (1994) Science 266:1528-1537; Porter et al. (1995) Nature 374:363-366). This autocleavage leads to a 19 kD N-terminal peptide and a C-terminal peptide of 26-28 kD (Lee et al. (1992) supra; Tabata et al. (1992) supra; Chang et al. (1994) supra; Lee et al. (1994) supra; Bumcrot, D.A., et al. (1995) Mol. Cell. Biol. 15:2294-2303; Porter et al. (1995) supra; Ekker, S.C. et al. (1995) Curr. Biol. 5:944-955; Lai, C.J. et al. (1995) Development 121:2349-2360). The N-terminal peptide stays tightly associated with the surface of cells in which it was synthesized, while the C-terminal peptide is freely diffusible both in vitro and in vivo (Lee et al. (1994) supra; Bumcrot et al. (1995) supra; Mart', E. et al. (1995) Development 121:2537-2547; Roelink, H. et al. (1995) Cell 81:445-455). Cell surface retention of the N-terminal peptide is dependent on autocleavage, as a truncated form of hedgehog encoded by an RNA which terminates precisely at the normal position of internal cleavage is diffusible in vitro (Porter et al. (1995) supra) and in vivo (Porter, J.A. et al. (1996) Cell 86, 21-34). Biochemical studies have shown that the autoproteolytic cleavage of the hedgehog precursor protein proceeds through an internal thioester intermediate which subsequently is cleaved in a nucleophilic substitution. It is suggested that the nucleophile is a small lipophilic molecule, more particularly cholesterol, which becomes covalently bound to the C-terminal end of the N-peptide (Porter et al. (1996) supra), tethering it to the cell surface.

The vertebrate family of hedgehog genes includes at least four members, e.g., paralogs of the single drosophila hedgehog gene (SEQ ID No. 19). Three of these members, herein referred to as Desert hedgehog (Dhh), Sonic hedgehog (Shh) and Indian hedgehog (Ihh), apparently exist in all vertebrates, including fish, birds, and mammals. A fourth member, herein referred to as tiggie-winkle hedgehog (Thh), appears specific to fish. According to the appended sequence listing, (see also Table 1) a chicken Shh polypeptide is encoded by SEQ ID No:1; a mouse Dhh polypeptide is encoded by SEQ ID No:2; a mouse Ihh polypeptide is encoded by SEQ ID No:3; a mouse Shh polypeptide is encoded by SEQ ID No:4 a zebrafish Shh polypeptide is encoded by SEQ ID No:5; a human Shh polypeptide is encoded by SEQ ID No:6; a

human *Ihh* polypeptide is encoded by SEQ ID No:7; a human *Dhh* polypeptide is encoded by SEQ ID No. 8; and a zebrafish *Thh* is encoded by SEQ ID No. 9.

5

10

15

20

25

Table 1
Guide to hedgehog sequences in Sequence Listing

	Nucleotide	Amino Acid
Chicken Shh	SEQ ID No. 1	SEQ ID No. 10
Mouse Dhh	SEQ ID No. 2	SEQ ID No. 11
Mouse Ihh	SEQ ID No. 3	SEQ ID No. 12
Mouse Shh	SEQ ID No. 4	SEQ ID No. 13
Zebrafish Shh	SEQ ID No. 5	SEQ ID No. 14
Human <i>Shh</i>	SEQ ID No. 6	SEQ ID No. 15
Human Ihh	SEQ ID No. 7	SEQ ID No. 16
Human <i>Dhh</i>	SEQ ID No. 8	SEQ ID No. 17
Zebrafish Thh	SEQ ID No. 9	SEQ ID No. 18
Drosophila <i>HH</i>	SEQ ID No. 19	SEQ ID No. 20

In addition to the sequence variation between the various *hedgehog* homologs, the *hedgehog* proteins are apparently present naturally in a number of different forms, including a pro-form, a full-length mature form, and several processed fragments thereof. The pro-form includes an N-terminal signal peptide for directed secretion of the extracellular domain, while the full-length mature form lacks this signal sequence.

As described above, further processing of the mature form occurs in some instances to yield biologically active fragments of the protein. For instance, sonic hedgehog undergoes additional proteolytic processing to yield two peptides of approximately 19 kDa and 27 kDa, the 19kDa fragment corresponding to a proteolytic N-terminal portion of the mature protein. In addition to proteolytic fragmentation, the vertebrate hedgehog proteins can also be modified post-translationally, such as by glycosylation and/or addition of sterols (e.g., cholesterol), though bacterially produced (e.g. unglycosylated/uncholesterolized) forms of the proteins still maintain certain of the bioactivities of the native protein. Bioactive fragments of hedgehog polypeptides of the present invention have been generated and are described in great detail in, e.g., PCT publications WO 95/18856 and WO 96/17924.

Moreover, mutagenesis can be used to create modified *hh* polypeptides, e.g., for such purposes as enhancing therapeutic or prophylactic efficacy, or stability (e.g., *ex vivo* shelf life and resistance to proteolytic degradation *in vivo*). Such modified

10

15

20

25

30

35

peptides can be produced, for instance, by amino acid substitution, deletion, or addition. Modified *hedgehog* polypeptides can also include those with altered post-translational processing relative to a naturally occurring *hedgehog* protein, e.g., altered glycosylation, cholesterolization, prenylation and the like.

In one embodiment, the *hedgehog* therapeutic is a polypeptide encodable by a nucleotide sequence that hybridizes under stringent conditions to a *hedgehog* coding sequence represented in one or more of SEQ ID Nos:1-9 or 19. Appropriate stringency conditions which promote DNA hybridization, for example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 50°C, are known to those skilled in the art or can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50°C to a high stringency of about 0.2 x SSC at 50°C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22°C, to high stringency conditions at about 65°C.

As described in the literature, genes for other *hedgehog* proteins, e.g., from other animals, can be obtained from mRNA or genomic DNA samples using techniques well known in the art. For example, a cDNA encoding a *hedgehog* protein can be obtained by isolating total mRNA from a cell, e.g. a mammalian cell, e.g. a human cell, including embryonic cells. Double stranded cDNAs can then be prepared from the total mRNA, and subsequently inserted into a suitable plasmid or bacteriophage vector using any one of a number of known techniques. The gene encoding a *hedgehog* protein can also be cloned using established polymerase chain reaction techniques.

Preferred nucleic acids encode a *hedgehog* polypeptide comprising an amino acid sequence at least 60% homologous, more preferably 70% homologous and most preferably 80% homologous with an amino acid sequence selected from the group consisting of SEQ ID Nos:8-14. Nucleic acids which encode polypeptides at least about 90%, more preferably at least about 95%, and most preferably at least about 98-99% homology with an amino acid sequence represented in one of SEQ ID Nos:10-18 or 20 are also within the scope of the invention.

Hedgehog polypeptides preferred by the present invention, in addition to native hedgehog proteins, are at least 60% homologous, more preferably 70% homologous and most preferably 80% homologous with an amino acid sequence represented by any of SEQ ID Nos:10-18 or 20. Polypeptides which are at least 90%, more preferably at least 95%, and most preferably at least about 98-99% homologous with a sequence

15

20

25

30

35

selected from the group consisting of SEQ ID Nos:10-18 or 20 are also within the scope of the invention. The only prerequisite is that the *hedgehog* polypeptide is capable of protecting neuronal cells against degeneration, e.g., the polypeptide is trophic for a dopaminergic and/or GABA-nergic neuron.

The term "recombinant protein" refers to a polypeptide of the present invention which is produced by recombinant DNA techniques, wherein generally, DNA encoding a hedgehog polypeptide is inserted into a suitable expression vector which is in turn used to transform a host cell to produce the heterologous protein. Moreover, the phrase "derived from", with respect to a recombinant hedgehog gene, is meant to include within the meaning of "recombinant protein" those proteins having an amino acid sequence of a native hedgehog protein, or an amino acid sequence similar thereto which is generated by mutations including substitutions and deletions (including truncation) of a naturally occurring form of the protein.

The method of the present invention can also be carried out using variant forms of the naturally occurring *hedgehog* polypeptides, e.g., mutational variants.

As is known in the art, hedgehog polypeptides can be produced by standard biological techniques. For example, a host cell transfected with a nucleic acid vector directing expression of a nucleotide sequence encoding the subject polypeptides can be cultured under appropriate conditions to allow expression of the peptide to occur. The polypeptide hedgehog may be secreted and isolated from a mixture of cells and medium containing the recombinant hedgehog polypeptide. Alternatively, the peptide may be retained cytoplasmically by removing the signal peptide sequence from the recombinant hedgehog gene and the cells harvested, lysed and the protein isolated. A cell culture includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. The recombinant hedgehog polypeptide can be isolated from cell culture medium, host cells, or both using techniques known in the art for purifying proteins including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for such peptide. In a preferred embodiment, the recombinant hedgehog polypeptide is a fusion protein containing a domain which facilitates its purification, such as an hedgehog/GST fusion protein. The host cell may be any prokaryotic or eukaryotic cell.

Recombinant hedgehog genes can be produced by ligating nucleic acid encoding an hedgehog protein, or a portion thereof, into a vector suitable for expression in either prokaryotic cells, eukaryotic cells, or both. Expression vectors for production of recombinant forms of the subject hedgehog polypeptides include plasmids and other

10

15

20

25

30

35

vectors. For instance, suitable vectors for the expression of a *hedgehog* polypeptide include plasmids of the types: pBR322-derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids and pUC-derived plasmids for expression in prokaryotic cells, such as *E. coli*.

A number of vectors exist for the expression of recombinant proteins in yeast. For instance, YEP24, YIP5, YEP51, YEP52, pYES2, and YRP17 are cloning and expression vehicles useful in the introduction of genetic constructs into *S. cerevisiae* (see, for example, Broach *et al.* (1983) in *Experimental Manipulation of Gene Expression*, ed. M. Inouye Academic Press, p. 83, incorporated by reference herein). These vectors can replicate in *E. coli* due the presence of the pBR322 ori, and in *S. cerevisiae* due to the replication determinant of the yeast 2 micron plasmid. In addition, drug resistance markers such as ampicillin can be used. In an illustrative embodiment, an *hedgehog* polypeptide is produced recombinantly utilizing an expression vector generated by sub-cloning the coding sequence of one of the *hedgehog* genes represented in SEQ ID Nos:1-9 or 19.

The preferred mammalian expression vectors contain both prokaryotic sequences, to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The pcDNAI/amp, pcDNAI/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, pMSG, pSVT7, pko-neo and pHyg derived vectors are examples of mammalian expression vectors suitable for transfection of eukaryotic cells. Some of these vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate replication and drug resistance selection in both prokaryotic and eukaryotic cells. Alternatively, derivatives of viruses such as the bovine papillomavirus (BPV-1), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of proteins in eukaryotic cells. The various methods employed in the preparation of the plasmids and transformation of host organisms are well known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures, see Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1989) Chapters 16 and 17.

In some instances, it may be desirable to express the recombinant *hedgehog* polypeptide by the use of a baculovirus expression system. Examples of such baculovirus expression systems include pVL-derived vectors (such as pVL1392, pVL1393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBacderived vectors (such as the \(\mathbb{B} \)-gal containing pBlueBac III).

10

15

20

25

30

35

When it is desirable to express only a portion of a *hedgehog* protein, such as a form lacking a portion of the N-terminus, i.e. a truncation mutant which lacks the signal peptide, it may be necessary to add a start codon (ATG) to the oligonucleotide fragment containing the desired sequence to be expressed. It is well known in the art that a methionine at the N-terminal position can be enzymatically cleaved by the use of the enzyme methionine aminopeptidase (MAP). MAP has been cloned from *E. coli* (Ben-Bassat et al. (1987) *J. Bacteriol.* 169:751-757) and *Salmonella typhimurium* and its *in vitro* activity has been demonstrated on recombinant proteins (Miller et al. (1987) *PNAS* 84:2718-1722). Therefore, removal of an N-terminal methionine, if desired, can be achieved either *in vivo* by expressing *hedgehog*-derived polypeptides in a host which produces MAP (e.g., *E. coli* or CM89 or *S. cerevisiae*), or *in vitro* by use of purified MAP (e.g., procedure of Miller et al., *supra*).

Alternatively, the coding sequences for the polypeptide can be incorporated as a part of a fusion gene including a nucleotide sequence encoding a different polypeptide. It is widely appreciated that fusion proteins can also facilitate the expression of proteins, and accordingly, can be used in the expression of the hedgehog polypeptides of the present invention. For example, hedgehog polypeptides can be generated as glutathione-S-transferase (GST-fusion) proteins. Such GST-fusion proteins can enable easy purification of the hedgehog polypeptide, as for example by the use of glutathionederivatized matrices (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. (N.Y.: John Wiley & Sons, 1991)). In another embodiment, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence, can be used to replace the signal sequence which naturally occurs at the N-terminus of the hedgehog protein (e.g. of the pro-form, in order to permit purification of the poly(His)-hedgehog protein by affinity chromatography using a Ni²⁺ metal resin. The purification leader sequence can then be subsequently removed by treatment with enterokinase (e.g., see Hochuli et al. (1987) J. Chromatography 411:177; and Janknecht et al. PNAS 88:8972).

Techniques for making fusion genes are known to those skilled in the art. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried

10

15

20

25

out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al. John Wiley & Sons: 1992).

Hedgehog polypeptides may also be chemically modified to create hedgehog derivatives by forming covalent or aggregate conjugates with other chemical moieties, such as glycosyl groups, cholesterol, isoprenoids, lipids, phosphate, acetyl groups and the like. Covalent derivatives of hedgehog proteins can be prepared by linking the chemical moieties to functional groups on amino acid sidechains of the protein or at the N-terminus or at the C-terminus of the polypeptide.

For instance, *hedgehog* proteins can be generated to include a moiety, other than sequence naturally associated with the protein, that binds a component of the extracellular matrix and enhances localization of the analog to cell surfaces. For example, sequences derived from the fibronectin "type-III repeat", such as a tetrapeptide sequence R-G-D-S (Pierschbacher et al. (1984) *Nature* 309:30-3; and Kornblihtt et al. (1985) *EMBO* 4:1755-9) can be added to the *hedgehog* polypeptide to support attachment of the chimeric molecule to a cell through binding ECM components (Ruoslahti et al. (1987) *Science* 238:491-497; Pierschbacheret al. (1987) *J. Biol. Chem.* 262:17294-8.; Hynes (1987) *Cell* 48:549-54; and Hynes (1992) *Cell* 69:11-25).

In preferred embodiment, the *hedgehog* polypeptide is isolated from, or is otherwise substantially free of, other cellular proteins, especially other extracellular or cell surface associated proteins which may normally be associated with the *hedgehog* polypeptide. The term "substantially free of other cellular or extracellular proteins" (also referred to herein as "contaminating proteins") or "substantially pure or purified preparations" are defined as encompassing preparations of *hedgehog* polypeptides having less than 20% (by dry weight) contaminating protein, and preferably having less than 5% contaminating protein. By "purified", it is meant that the indicated molecule is present in the substantial absence of other biological macromolecules, such as other proteins. The term "purified" as used herein preferably means at least 80% by dry weight, more preferably in the range of 95-99% by weight, and most preferably at least 99.8% by weight, of biological macromolecules of the same type present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 5000, can be present). The term "pure" as used herein preferably has the same numerical limits as "purified" immediately above.

10

15

20

25

30

35

As described above for recombinant polypeptides, isolated *hedgehog* polypeptides can include all or a portion of the amino acid sequences represented in any of SEQ ID Nos:10-18 or 20, or a homologous sequence thereto. Preferred fragments of the subject *hedgehog* proteins correspond to the N-terminal and C-terminal proteolytic fragments of the mature protein. Bioactive fragments of *hedgehog* polypeptides are described in great detail in PCT publications WO 95/18856 and WO 96/17924.

With respect to bioctive fragments of *hedgehog* polypeptide, preferred *hedgehog* therapeutics include at least 50 amino acid residues of a *hedgehog* polypeptide, more preferably at least 100, and even more preferably at least 150.

Another preferred *hedgehog* polypeptide which can be included in the *hedgehog* therapeutic is an N-terminal fragment of the mature protein having a molecular weight of approximately 19 kDa.

Preferred human *hedgehog* proteins include N-terminal fragments corresponding approximately to residues 24-197 of SEQ ID No. 15, 28-202 of SEQ ID No. 16, and 23-198 of SEQ ID No. 17. By "corresponding approximately" it is meant that the sequence of interest is at most 20 amino acid residues different in length to the reference sequence, though more preferably at most 5, 10 or 15 amino acid different in length.

Still other preferred hedgehog polypeptides includes an amino acid sequence represented by the formula A-B wherein: (i) A represents all or the portion of the amino acid sequence designated by residues 1-168 of SEQ ID No:21; and B represents at least one amino acid residue of the amino acid sequence designated by residues 169-221 of SEQ ID No:21; (ii) A represents all or the portion of the amino acid sequence designated by residues 24-193 of SEQ ID No:15; and B represents at least one amino acid residue of the amino acid sequence designated by residues 194-250 of SEQ ID No:15; (iii) A represents all or the portion of the amino acid sequence designated by residues 25-193 of SEQ ID No:13; and B represents at least one amino acid residue of the amino acid sequence designated by residues 194-250 of SEQ ID No:13; (iv) A represents all or the portion of the amino acid sequence designated by residues 23-193 of SEQ ID No:11; and B represents at least one amino acid residue of the amino acid sequence designated by residues 194-250 of SEQ ID No:11; (v) A represents all or the portion of the amino acid sequence designated by residues 28-197 of SEQ ID No:12; and B represents at least one amino acid residue of the amino acid sequence designated by residues 198-250 of SEQ ID No:12; (vi) A represents all or the portion of the amino acid sequence designated by residues 29-197 of SEQ ID No:16; and B represents at

10

15

20

25

30

35

least one amino acid residue of the amino acid sequence designated by residues 198-250 of SEQ ID No:16; or (vii) A represents all or the portion of the amino acid sequence designated by residues 23-193 of SEQ ID No. 17, and B represents at least one amino acid residue of the amino acid sequence designated by residues 194-250 of SEQ ID No. 17. In certain preferred embodiments, A and B together represent a contiguous polypeptide sequence designated sequence, A represents at least 25, 50, 75, 100, 125 or 150 amino acids of the designated sequence, and B represents at least 5, 10, or 20 amino acid residues of the amino acid sequence designated by corresponding entry in the sequence listing, and A and B together preferably represent a contiguous sequence corresponding to the sequence listing entry. Similar fragments from other hedgehog also contemplated, e.g., fragments which correspond to the preferred fragments from the sequence listing entries which are enumerated above.

Isolated peptidyl portions of *hedgehog* proteins can be obtained by screening peptides recombinantly produced from the corresponding fragment of the nucleic acid encoding such peptides. In addition, fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-Boc chemistry. For example, a *hedgehog* polypeptide of the present invention may be arbitrarily divided into fragments of desired length with no overlap of the fragments, or preferably divided into overlapping fragments of a desired length. The fragments can be produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl fragments which can function as agonists of a wild-type (e.g., "authentic") *hedgehog* protein. For example, Román et al. (1994) *Eur J Biochem* 222:65-73 describe the use of competitive-binding assays using short, overlapping synthetic peptides from larger proteins to identify binding domains.

The recombinant hedgehog polypeptides of the present invention also include homologs of the authentic hedgehog proteins, such as versions of those protein which are resistant to proteolytic cleavage, as for example, due to mutations which alter potential cleavage sequences or which inactivate an enzymatic activity associated with the protein. Hedgehog homologs of the present invention also include proteins which have been post-translationally modified in a manner different than the authentic protein. Exemplary derivatives of hedgehog proteins include polypeptides which lack glycosylation sites (e.g. to produce an unglycosylated protein), which lack sites for cholesterolization, and/or which lack N-terminal and/or C-terminal sequences.

Modification of the structure of the subject *hedgehog* polypeptides can also be for such purposes as enhancing therapeutic or prophylactic efficacy, or stability (e.g., *ex vivo* shelf life and resistance to proteolytic degradation *in vivo*). Such modified

10

15

20

25

30

35

peptides, when designed to retain at least one activity of the naturally-occurring form of the protein, are considered functional equivalents of the *hedgehog* polypeptides described in more detail herein. Such modified peptides can be produced, for instance, by amino acid substitution, deletion, or addition.

It is well known in the art that certain isolated replacements of amino acids, e.g., replacement of an amino acid residue with another related amino acid (i.e. isosteric and/or isoelectric mutations), can be carried out without major effect on the biological activity of the resulting molecule. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids are can be divided into four families: (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine, histidine; (3) nonpolar = alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar = glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. In similar fashion, the amino acid repertoire can be grouped as (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine histidine, (3) aliphatic = glycine, alanine, valine, leucine, isoleucine, serine, threonine, with serine and threonine optionally be grouped separately as aliphatic-hydroxyl; (4) aromatic = phenylalanine, tyrosine, tryptophan; (5) amide = asparagine, glutamine; and (6) sulfur -containing = cysteine and methionine. (see, for example, Biochemistry, 2nd ed., Ed. by L. Stryer, WH Freeman and Co.: 1981). Whether a change in the amino acid sequence of a peptide results in a functional hedgehog homolog (e.g. functional in the sense that it acts to mimic or antagonize the wild-type form) can be readily determined by assessing the ability of the variant peptide to produce a response in cells in a fashion similar to the wild-type protein, or competitively inhibit such a response. Polypeptides in which more than one replacement has taken place can readily be tested in the same manner.

It is specifically contemplated that the methods of the present invention can be carried using homologs of naturally occurring hedgehog proteins. In one embodiment, the invention contemplates using hedgehog polypeptides generated by combinatorial mutagenesis. Such methods, as are known in the art, are convenient for generating both point and truncation mutants, and can be especially useful for identifying potential variant sequences (e.g. homologs) that are functional in binding to a receptor for hedgehog proteins. The purpose of screening such combinatorial libraries is to generate, for example, novel hedgehog homologs which can act as neuroprotective agents. To illustrate, hedgehog homologs can be engineered by the present method to provide more efficient binding to a cognate receptor, such as patched, retaining

10

15

20

25

30

35

neuroprotective activity. Thus, combinatorially-derived homologs can be generated to have an increased potency relative to a naturally occurring form of the protein. Moreover, manipulation of certain domains of *hedgehog* by the present method can provide domains more suitable for use in fusion proteins, such as one that incorporates portions of other proteins which are derived from the extracellular matrix and/or which bind extracellular matrix components.

To further illustrate the state of the art of combinatorial mutagenesis, it is noted that the review article of Gallop et al. (1994) J Med Chem 37:1233 describes the general state of the art of combinatorial libraries as of the earlier 1990's. In particular, Gallop et al state at page 1239 "[s]creening the analog libraries aids in determining the minimum size of the active sequence and in identifying those residues critical for binding and intolerant of substitution". In addition, the Ladner et al. PCT publication WO90/02809, the Goeddel et al. U.S. Patent 5,223,408, and the Markland et al. PCT publication WO92/15679 illustrate specific techniques which one skilled in the art could utilize to generate libraries of hedgehog variants which can be rapidly screened to identify variants/fragments which retained a particular activity of the hedgehog polypeptides. These techniques are exemplary of the art and demonstrate that large libraries of related variants/truncants can be generated and assayed to isolate particular variants without undue experimentation. Gustin et al. (1993) Virology 193:653, and Bass et al. (1990) Proteins: Structure, Function and Genetics 8:309-314 also describe other exemplary techniques from the art which can be adapted as means for generating mutagenic variants of hedgehog polypeptides.

Indeed, it is plain from the combinatorial mutagenesis art that large scale mutagenesis of *hedgehog* proteins, without any preconceived ideas of which residues were critical to the biological function, and generate wide arrays of variants having equivalent biological activity. Indeed, it is the ability of combinatorial techniques to screen billions of different variants by high throughout analysis that removes any requirement of *a priori* understanding or knowledge of critical residues:

To illsutrate, the amino acid sequences for a population of *hedgehog* homologs or other related proteins are aligned, preferably to promote the highest homology possible. Such a population of variants can include, for example, *hedgehog* homologs from one or more species. Amino acids which appear at each position of the aligned sequences are selected to create a degenerate set of combinatorial sequences. In a preferred embodiment, the variegated library of *hedgehog* variants is generated by combinatorial mutagenesis at the nucleic acid level, and is encoded by a variegated gene library. For instance, a mixture of synthetic oligonucleotides can be enzymatically

10

ligated into gene sequences such that the degenerate set of potential *hedgehog* sequences are expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g. for phage display) containing the set of *hedgehog* sequences therein.

As illustrated in PCT publication WO 95/18856, to analyze the sequences of a population of variants, the amino acid sequences of interest can be aligned relative to sequence homology. The presence or absence of amino acids from an aligned sequence of a particular variant is relative to a chosen consensus length of a reference sequence, which can be real or artificial.

In an illustrative embodiment, alignment of exons 1, 2 and a portion of exon 3 encoded sequences (e.g. the N-terminal approximately 221 residues of the mature protein) of each of the *Shh* clones produces a degenerate set of *Shh* polypeptides represented by the general formula:

C-G-P-G-R-G-X(1)-G-X(2)-R-R-H-P-K-K-L-T-P-L-A-Y-K-Q-F-I-P-N-V-A-E-K-T-L-G-A-S-G-R-Y-E-G-K-I-X(3)-R-N-S-E-R-F-K-E-L-T-P-N-Y-N-P-D-I-I-F-K-D-E-E-N-T-G-A-D-R-L-M-T-Q-R-C-K-D-K-L-N-X(4)-L-A-I-S-V-M-N-X(5)-W-P-G-V-X(6)-L-R-V-T-E-G-W-D-E-D-G-H-H-X(7)-E-E-S-L-H-Y-E-G-R-A-V-D-I-T-T-S-D-R-D-X(8)-S-K-Y-G-X(9)-L-X(10)-R-L-A-V-E-A-G-F-D-W-V-Y-Y-E-S-K-A-H-I-H-C-S-V-K-A-E-N-S-V-A-A-K-S-G-G-C-F-P-G-S-A-X(11)-V-X(12)-L-X(13)-X(14)-G-G-X(15)-K-X-(16)-V-K-D-L-X(17)-P-G-D-X(18)-V-L-A-A-D-X(19)-X(20)-G-X(21)-L-X(22)-X(23)-S-D-F-X(24)-X(25)-F-X(26)-D-R (SEQ ID No: 21),

wherein each of the degenerate positions "X" can be an amino acid which occurs in that
position in one of the human, mouse, chicken or zebrafish Shh clones, or, to expand the
library, each X can also be selected from amongst amino acid residue which would be
conservative substitutions for the amino acids which appear naturally in each of those
positions. For instance, Xaa(1) represents Gly, Ala, Val, Leu, Ile, Phe, Tyr or Trp;
Xaa(2) represents Arg, His or Lys; Xaa(3) represents Gly, Ala, Val, Leu, Ile, Ser or Thr;
Xaa(4) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(5) represents Lys, Arg, His,
Asn or Gln; Xaa(6) represents Lys, Arg or His; Xaa(7) represents Ser, Thr, Tyr, Trp or
Phe; Xaa(8) represents Lys, Arg or His; Xaa(9) represents Met, Cys, Ser or Thr;
Xaa(10) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(11) represents Leu, Val,
Met, Thr or Ser; Xaa(12) represents His, Phe, Tyr, Ser, Thr, Met or Cys; Xaa(13)
represents Gln, Asn, Glu, or Asp; Xaa(14) represents His, Phe, Tyr, Thr, Gln, Asn, Glu

30

35

or Asp; Xaa(15) represents Gln, Asn, Glu, Asp, Thr, Ser, Met or Cys; Xaa(16) represents Ala, Gly, Cys, Leu, Val or Met; Xaa(17) represents Arg, Lys, Met, Ile, Asn, Asp, Glu, Gln, Ser, Thr or Cys; Xaa(18) represents Arg, Lys, Met or Ile; Xaa(19) represents Ala, Gly, Cys, Asp, Glu, Gln, Asn, Ser, Thr or Met; Xaa(20) represents Ala, Gly, Cys, Asp, Glu or Gln; Xaa(21) represents Arg, Lys, Met, Ile, Asn, Asp, Glu or Gln; Xaa(22) represent Leu, Val, Met or Ile; Xaa(23) represents Phe, Tyr, Thr, His or Trp; Xaa(24) represents Ile, Val, Leu or Met; Xaa(25) represents Met, Cys, Ile, Leu, Val, Thr or Ser; Xaa(26) represents Leu, Val, Met, Thr or Ser. In an even more expansive library, each X can be selected from any amino acid.

In similar fashion, alignment of each of the human, mouse, chicken and zebrafish *hedgehog* clones, can provide a degenerate polypeptide sequence represented by the general formula:

C-G-P-G-R-G-X(1)-X(2)-X(3)-R-R-X(4)-X(5)-X(6)-P-K-X(7)-L-X(8)-P-L-X(9)-Y-K-Q-F-X(10)-P-X(11)-X(12)-X(13)-E-X(14)-T-L-G-A-S-G-X(15)-X(16)-E-G-X(17)-X(18)-X(19)-R-X(20)-S-E-R-F-X(21)-X(22)-L-T-P-N-Y-N-P-D-I-I-F-K-D-E-E-N-X(23)-G-A-D-R-L-M-T-X(24)-R-C-K-X(25)-X(26)-X(27)-N-X(28)-L-A-I-S-V-M-N-X(29)-W-P-G-V-X(30)-L-R-V-T-E-G-X(31)-D-E-D-G-H-H-X(32)-X(33)-X(34)-S-L-H-Y-E-G-R-A-X(35)-D-I-T-T-S-D-R-D-X(36)-X(37)-K-Y-G-X(38)-L-X(39)-R-L-A-V-E-A-G-F-D-W-V-Y-Y-E-S-X(40)-X(41)-H-X(42)-H-X(43)-S-V-K-X(44)-X(45) (SEQIDNo:22),

wherein, as above, each of the degenerate positions "X" can be an amino acid which occurs in a corresponding position in one of the wild-type clones, and may also include amino acid residue which would be conservative substitutions, or each X can be any amino acid residue. In an exemplary embodiment, Xaa(1) represents Gly, Ala, Val, Leu, Ile, Pro, Phe or Tyr; Xaa(2) represents Gly, Ala, Val, Leu or Ile; Xaa(3) represents Gly, Ala, Val, Leu, Ile, Lys, His or Arg; Xaa(4) represents Lys, Arg or His; Xaa(5) represents Phe, Trp, Tyr or an amino acid gap; Xaa(6) represents Gly, Ala, Val, Leu, Ile or an amino acid gap; Xaa(7) represents Asn, Gln, His, Arg or Lys; Xaa(8) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(10) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(11) represents Ser, Thr, Gln or Asn; Xaa(12) represents Met, Cys, Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(13) represents Gly, Ala, Val, Leu, Ile or Pro; Xaa(14) represents Arg, His or Lys; Xaa(15) represents Gly, Ala, Val, Leu, Ile, Pro, Arg, His or Lys; Xaa(16) represents Gly, Ala, Val, Leu, Ile, Pro, Arg, His or Lys; Xaa(18) represents Gly, Ala, Val, Leu, Ile, Pro Tyr; Xaa(17) represents Thr or Ser; Xaa(20) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(19) represents Thr or Ser; Xaa(20) represents Gly,

10

15

20

25

30

35

Ala, Val, Leu, Ile, Asn or Gln; Xaa(21) represents Arg, His or Lys; Xaa(22) represents Asp or Glu; Xaa(23) represents Ser or Thr; Xaa(24) represents Glu, Asp, Gln or Asn; Xaa(25) represents Glu or Asp; Xaa(26) represents Arg, His or Lys; Xaa(27) represents Gly, Ala, Val, Leu or Ile; Xaa(28) represents Gly, Ala, Val, Leu, Ile, Thr or Ser; Xaa(29) represents Met, Cys, Gln, Asn, Arg, Lys or His; Xaa(30) represents Arg, His or Lys; Xaa(31) represents Trp, Phe, Tyr, Arg, His or Lys; Xaa(32) represents Gly, Ala, Val, Leu, Ile, Ser, Thr, Tyr or Phe; Xaa(33) represents Gln, Asn, Asp or Glu; Xaa(34) represents Asp or Glu; Xaa(35) represents Gly, Ala, Val, Leu, or Ile; Xaa(36) represents Arg, His or Lys; Xaa(37) represents Asn, Gln, Thr or Ser; Xaa(38) represents Gly, Ala, Val, Leu, Ile, Ser, Thr, Met or Cys; Xaa(39) represents Gly, Ala, Val, Leu, Ile, Thr or Ser; Xaa(40) represents Arg, His or Lys; Xaa(41) represents Asn, Gln, Gly, Ala, Val, Leu or Ile; Xaa(42) represents Gly, Ala, Val, Leu or Ile; Xaa(43) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Thr or Ser; and Xaa(45) represents Asp or Glu.

There are many ways by which the library of potential hedgehog homologs can be generated from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be carried out in an automatic DNA synthesizer, and the synthetic genes then ligated into an appropriate expression vector. The purpose of a degenerate set of genes is to provide, in one mixture, all of the sequences encoding the desired set of potential hedgehog sequences. The synthesis of degenerate oligonucleotides is well known in the art (see for example, Narang, SA (1983) Tetrahedron 39:3; Itakura et al. (1981) Recombinant DNA, Proc 3rd Cleveland Sympos. Macromolecules, ed. AG Walton, Amsterdam: Elsevier pp273-289; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477. Such techniques have been employed in the directed evolution of other proteins (see, for example, Scott et al. (1990) Science 249:386-390; Roberts et al. (1992) PNAS 89:2429-2433; Devlin et al. (1990) Science 249: 404-406; Cwirla et al. (1990) PNAS 87: 6378-6382; as well as U.S. Patents Nos. 5,223,409, 5,198,346, and 5,096,815).

A wide range of techniques are known in the art for screening gene products of combinatorial libraries made by point mutations, and for screening cDNA libraries for gene products having a certain property. Such techniques will be generally adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of hedgehog homologs. The most widely used techniques for screening large gene libraries typically comprises cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the

10

15

20

25

30

35

combinatorial genes under conditions in which detection of a desired activity facilitates relatively easy isolation of the vector encoding the gene whose product was detected. Each of the illustrative assays described below are amenable to high through-put analysis as necessary to screen large numbers of degenerate *hedgehog* sequences created by combinatorial mutagenesis techniques.

In one embodiment, the combinatorial library is designed to be secreted (e.g. the polypeptides of the library all include a signal sequence but no transmembrane or cytoplasmic domains), and is used to transfect a eukaryotic cell that can be co-cultured with neuronal cells. A functional *hedgehog* protein secreted by the cells expressing the combinatorial library will diffuse to neighboring neuronal cells and induce a particular biological response, such as protection against cell death when treated with MPTP. The pattern of protection will resemble a gradient function, and will allow the isolation (generally after several repetitive rounds of selection) of cells producing *hedgehog* homologs active as neuroprotective agents with respect to the target neuronal cells

To illustrate, target neuronal cells are cultured in 24-well microtitre plates. Other eukaryotic cells are transfected with the combinatorial *hedgehog* gene library and cultured in cell culture inserts (e.g. Collaborative Biomedical Products, Catalog #40446) that are able to fit into the wells of the microtitre plate. The cell culture inserts are placed in the wells such that recombinant *hedgehog* homologs secreted by the cells in the insert can diffuse through the porous bottom of the insert and contact the target cells in the microtitre plate wells. After a period of time sufficient for functional forms of a *hedgehog* protein to produce a measurable response in the target cells, such as neuroprotection, the inserts are removed and the effect of the variant *hedgehog* proteins on the target cells determined. Cells from the inserts corresponding to wells which score positive for activity can be split and re-cultured on several inserts, the process being repeated until the active clones are identified.

In yet another screening assay, the candidate *hedgehog* gene products are displayed on the surface of a cell or viral particle, and the ability of particular cells or viral particles to associate with a *hedgehog*-binding moiety (such as the *patched* protein or other *hedgehog* receptor) via this gene product is detected in a "panning assay". Such panning steps can be carried out on cells cultured from embryos. For instance, the gene library can be cloned into the gene for a surface membrane protein of a bacterial cell, and the resulting fusion protein detected by panning (Ladner et al., WO 88/06630; Fuchs et al. (1991) *Bio/Technology* 9:1370-1371; and Goward et al. (1992) *TIBS* 18:136-140). In a similar fashion, fluorescently labeled molecules which bind *hedgehog* can be used to score for potentially functional *hedgehog* homologs. Cells can

10

15

20

25

30

35

be visually inspected and separated under a fluorescence microscope, or, where the morphology of the cell permits, separated by a fluorescence-activated cell sorter.

In an alternate embodiment, the gene library is expressed as a fusion protein on the surface of a viral particle. For instance, in the filamentous phage system, foreign peptide sequences can be expressed on the surface of infectious phage, thereby conferring two significant benefits. First, since these phage can be applied to affinity matrices at very high concentrations, large number of phage can be screened at one time. Second, since each infectious phage displays the combinatorial gene product on its surface, if a particular phage is recovered from an affinity matrix in low yield, the phage can be amplified by another round of infection. The group of almost identical *E.coli* filamentous phages M13, fd, and f1 are most often used in phage display libraries, as either of the phage gIII or gVIII coat proteins can be used to generate fusion proteins without disrupting the ultimate packaging of the viral particle (Ladner et al. PCT publication WO 90/02909; Garrard et al., PCT publication WO 92/09690; Marks et al. (1992) J. Biol. Chem. 267:16007-16010; Griffths et al. (1993) EMBO J 12:725-734; Clackson et al. (1991) Nature 352:624-628; and Barbas et al. (1992) PNAS 89:4457-4461).

In an illustrative embodiment, the recombinant phage antibody system (RPAS, Pharamacia Catalog number 27-9400-01) can be easily modified for use in expressing and screening hedgehog combinatorial libraries. For instance, the pCANTAB 5 phagemid of the RPAS kit contains the gene which encodes the phage gIII coat protein. The hedgehog combinatorial gene library can be cloned into the phagemid adjacent to the gIII signal sequence such that it will be expressed as a gIII fusion protein. After ligation, the phagemid is used to transform competent E. coli TG1 cells. Transformed cells are subsequently infected with M13KO7 helper phage to rescue the phagemid and its candidate hedgehog gene insert. The resulting recombinant phage contain phagemid DNA encoding a specific candidate hedgehog, and display one or more copies of the corresponding fusion coat protein. The phage-displayed candidate hedgehog proteins which are capable of binding an hedgehog receptor are selected or enriched by panning. For instance, the phage library can be applied to cells which express the patched protein and unbound phage washed away from the cells. The bound phage is then isolated, and if the recombinant phage express at least one copy of the wild type gIII coat protein, they will retain their ability to infect E. coli. Thus, successive rounds of reinfection of E. coli, and panning will greatly enrich for hedgehog homologs, which can then be screened for further biological activities in order to differentiate agonists and antagonists.

10

15

20

25

30

35

Combinatorial mutagenesis has a potential to generate very large libraries of mutant proteins, e.g., in the order of 10²⁶ molecules. Combinatorial libraries of this size may be technically challenging to screen even with high throughput screening assays such as phage display. To overcome this problem, a new technique has been developed recently, recrusive ensemble mutagenesis (REM), which allows one to avoid the very high proportion of non-functional proteins in a random library and simply enhances the frequency of functional proteins, thus decreasing the complexity required to achieve a useful sampling of sequence space. REM is an algorithm which enhances the frequency of functional mutants in a library when an appropriate selection or screening method is employed (Arkin and Yourvan, 1992, *PNAS USA* 89:7811-7815; Yourvan et al., 1992, *Parallel Problem Solving from Nature*, 2., In Maenner and Manderick, eds., Elsevir Publishing Co., Amsterdam, pp. 401-410; Delgrave et al., 1993, *Protein Engineering* 6(3):327-331).

The invention also provides for reduction of the hedgehog protein to generate mimetics, e.g. peptide or non-peptide agents, which are able to mimic the neuroprotective activity of a naturally-occurring hedgehog polypeptide. Thus, such mutagenic techniques as described above are also useful to map the determinants of the hedgehog proteins which participate in protein-protein interactions involved in, for example, binding of the subject hedgehog polypeptide to other extracellular matrix components such as its receptor(s). To illustrate, the critical residues of a subject hedgehog polypeptide which are involved in molecular recognition of an hedgehog receptor such as patched can be determined and used to generate hedgehog-derived peptidomimetics which competitively bind with that moiety. By employing, for example, scanning mutagenesis to map the amino acid residues of each of the subject hedgehog proteins which are involved in binding other extracellular proteins, peptidomimetic compounds can be generated which mimic those residues of the hedgehog protein which facilitate the interaction. After distinguishing between agonist and antagonists, such agonistic mimetics may be used to mimic the normal function of a hedgehog protein as trophic for dopaminergic and GABA-nergic neurons. For instance, non-hydrolyzable peptide analogs of such residues can be generated using benzodiazepine (e.g., see Freidinger et al. in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), azepine (e.g., see Huffman et al. in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), substituted gama lactam rings (Garvey et al. in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), keto-methylene pseudopeptides (Ewenson et al. (1986) J Med

15

20

25

30

35

Chem 29:295; and Ewenson et al. in Peptides: Structure and Function (Proceedings of the 9th American Peptide Symposium) Pierce Chemical Co. Rockland, IL, 1985), β -turn dipeptide cores (Nagai et al. (1985) Tetrahedron Lett 26:647; and Sato et al. (1986) J Chem Soc Perkin Trans 1:1231), and β -aminoalcohols (Gordon et al. (1985) Biochem Biophys Res Commun 134:71).

Recombinantly produced forms of the hedgehog proteins can be produced using, e.g, expression vectors containing a nucleic acid encoding a hedgehog polypeptide, operably linked to at least one transcriptional regulatory sequence. Operably linked is intended to mean that the nucleotide sequence is linked to a regulatory sequence in a manner which allows expression of the nucleotide sequence. Regulatory sequences are art-recognized and are selected to direct expression of a hedgehog polypeptide. Accordingly, the term transcriptional regulatory sequence includes promoters, enhancers and other expression control elements. Such regulatory sequences are described in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). For instance, any of a wide variety of expression control sequences, sequences that control the expression of a DNA sequence when operatively linked to it, may be used in these vectors to express DNA sequences encoding hedgehog polypeptide. Such useful expression control sequences, include, for example, a viral LTR, such as the LTR of the Moloney murine leukemia virus, the early and late promoters of SV40, adenovirus or cytomegalovirus immediate early promoter, the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed by T7 RNA polymerase, the major operator and promoter regions of phage $\boldsymbol{\lambda}$, the control regions for fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast α -mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other proteins encoded by the vector, such as antibiotic markers, should also be considered.

In addition to providing a ready source of *hedgehog* polypeptides for purification, the gene constructs of the present invention can also be used as a part of a gene therapy protocol to deliver nucleic acids encoding either a neuroprotective form of

10

15

20

25

30

35

a hedgehog polypeptide. Thus, another aspect of the invention features expression vectors for *in vivo* transfection of a hedgehog polypeptide in particular cell types so as cause ectopic expression of a hedgehog polypeptide in neuronal tissue.

Formulations of such expression constructs may be administered in any biologically effective carrier, e.g. any formulation or composition capable of effectively delivering the recombinant gene to cells in vivo. Approaches include insertion of the hedgehog coding sequence in viral vectors including recombinant retroviruses, adenovirus, adeno-associated virus, and herpes simplex virus-1, or recombinant bacterial or eukaryotic plasmids. Viral vectors transfect cells directly; plasmid DNA can be delivered with the help of, for example, cationic liposomes (lipofectin) or derivatized (e.g. antibody conjugated), polylysine conjugates, gramacidin S, artificial viral envelopes or other such intracellular carriers, as well as direct injection of the gene construct or CaPO₄ precipitation carried out in vivo. It will be appreciated that because transduction of appropriate target cells represents the critical first step in gene therapy, choice of the particular gene delivery system will depend on such factors as the phenotype of the intended target and the route of administration, e.g. locally or systemically. Furthermore, it will be recognized that the particular gene construct provided for in vivo transduction of hedgehog expression are also useful for in vitro transduction of cells, such as for use in the ex vivo tissue culture systems described below.

A preferred approach for *in vivo* introduction of nucleic acid into a cell is by use of a viral vector containing nucleic acid, e.g. a cDNA, encoding the particular form of the *hedgehog* polypeptide desired. Infection of cells with a viral vector has the advantage that a large proportion of the targeted cells can receive the nucleic acid. Additionally, molecules encoded within the viral vector, e.g., by a cDNA contained in the viral vector, are expressed efficiently in cells which have taken up viral vector nucleic acid.

Retrovirus vectors and adeno-associated virus vectors are generally understood to be the recombinant gene delivery system of choice for the transfer of exogenous genes *in vivo*, particularly into humans. These vectors provide efficient delivery of genes into cells, and the transferred nucleic acids are stably integrated into the chromosomal DNA of the host. A major prerequisite for the use of retroviruses is to ensure the safety of their use, particularly with regard to the possibility of the spread of wild-type virus in the cell population. The development of specialized cell lines (termed "packaging cells") which produce only replication-defective retroviruses has increased the utility of retroviruses for gene therapy, and defective retroviruses are well

10

15

20

25

30

35

characterized for use in gene transfer for gene therapy purposes (for a review see Miller, A.D. (1990) Blood 76:271). Thus, recombinant retrovirus can be constructed in which part of the retroviral coding sequence (gag, pol, env) has been replaced by nucleic acid encoding a hedgehog polypeptide and renders the retrovirus replication defective. The replication defective retrovirus is then packaged into virions which can be used to infect a target cell through the use of a helper virus by standard techniques. Protocols for producing recombinant retroviruses and for infecting cells in vitro or in vivo with such viruses can be found in Current Protocols in Molecular Biology, Ausubel, F.M. et al. (eds.) Greene Publishing Associates, (1989), Sections 9.10-9.14 and other standard laboratory manuals. Examples of suitable retroviruses include pLJ, pZIP, pWE and pEM which are well known to those skilled in the art. Examples of suitable packaging virus lines for preparing both ecotropic and amphotropic retroviral systems include Crip, Cre, 2 and Am. Retroviruses have been used to introduce a variety of genes into many different cell types, including neuronal cells, in vitro and/or in vivo (see for example Eglitis, et al. (1985) Science 230:1395-1398; Danos and Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:6460-6464; Wilson et al. (1988) Proc. Natl. Acad. Sci. USA 85:3014-3018; Armentano et al. (1990) Proc. Natl. Acad. Sci. USA 87:6141-6145; Huber et al. (1991) Proc. Natl. Acad. Sci. USA 88:8039-8043; Ferry et al. (1991) Proc. Natl. Acad. Sci. USA 88:8377-8381; Chowdhury et al. (1991) Science 254:1802-1805; van Beusechem et al. (1992) Proc. Natl. Acad. Sci. USA 89:7640-7644; Kay et al. (1992) Human Gene Therapy 3:641-647; Dai et al. (1992) Proc. Natl. Acad. Sci. USA 89:10892-10895; Hwu et al. (1993) J. Immunol. 150:4104-4115; U.S. Patent No. 4,868,116; U.S. Patent No. 4,980,286; PCT Application WO 89/07136; PCT Application WO 89/02468; PCT Application WO 89/05345; and PCT Application WO 92/07573).

Furthermore, it has been shown that it is possible to limit the infection spectrum of retroviruses and consequently of retroviral-based vectors, by modifying the viral packaging proteins on the surface of the viral particle (see, for example PCT publications WO93/25234 and WO94/06920). For instance, strategies for the modification of the infection spectrum of retroviral vectors include: coupling antibodies specific for cell surface antigens to the viral env protein (Roux et al. (1989) PNAS 86:9079-9083; Julan et al. (1992) J. Gen Virol 73:3251-3255; and Goud et al. (1983) Virology 163:251-254); or coupling cell surface receptor ligands to the viral env proteins (Neda et al. (1991) J Biol Chem 266:14143-14146). Coupling can be in the form of the chemical cross-linking with a protein or other variety (e.g. lactose to convert the env protein to an asialoglycoprotein), as well as by generating fusion

10

15

20

25

30

35

proteins (e.g. single-chain antibody/env fusion proteins). This technique, while useful to limit or otherwise direct the infection to certain tissue types, can also be used to convert an ecotropic vector in to an amphotropic vector.

Moreover, use of retroviral gene delivery can be further enhanced by the use of tissue- or cell-specific transcriptional regulatory sequences which control expression of the *hedgehog* gene of the retroviral vector.

Another viral gene delivery system useful in the present method utilizes adenovirus-derived vectors. The genome of an adenovirus can be manipulated such that it encodes and expresses a gene product of interest but is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. See for example Berkner et al. (1988) *BioTechniques* 6:616; Rosenfeld et al. (1991) *Science* 252:431-434; and Rosenfeld et al. (1992) *Cell* 68:143-155. Suitable adenoviral vectors derived from the adenovirus strain Ad type 5 dl324 or other strains of adenovirus (e.g., Ad2, Ad3, Ad7 etc.) are well known to those skilled in the art. Recombinant adenoviruses can be advantageous in certain circumstances in that they can be used to infect a wide variety of cell types, including neuronal cells (Rosenfeld et al. (1992) cited *supra*).

Furthermore, the virus particle is relatively stable and amenable to purification and concentration, and as above, can be modified so as to affect the spectrum of infectivity. Additionally, introduced adenoviral DNA (and foreign DNA contained therein) is not integrated into the genome of a host cell but remains episomal, thereby avoiding potential problems that can occur as a result of insertional mutagenesis in situations where introduced DNA becomes integrated into the host genome (e.g., retroviral DNA). Moreover, the carrying capacity of the adenoviral genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors (Berkner et al. cited supra; Haj-Ahmand and Graham (1986) J. Virol. 57:267). Most replicationdefective adenoviral vectors currently in use and therefore favored by the present invention are deleted for all or parts of the viral E1 and E3 genes but retain as much as 80% of the adenoviral genetic material (see, e.g., Jones et al. (1979) Cell 16:683; Berkner et al., supra; and Graham et al. in Methods in Molecular Biology, E.J. Murray, Ed. (Humana, Clifton, NJ, 1991) vol. 7. pp. 109-127). Expression of the inserted hedgehog gene can be under control of, for example, the E1A promoter, the major late promoter (MLP) and associated leader sequences, the E3 promoter, or exogenously added promoter sequences.

In addition to viral transfer methods, such as those illustrated above, non-viral methods can also be employed to cause expression of a hedgehog polypeptide in the

WO 99/04775 PCT/US98/15419
-43-

tissue of an animal. Most nonviral methods of gene transfer rely on normal mechanisms used by mammalian cells for the uptake and intracellular transport of macromolecules. In preferred embodiments, non-viral gene delivery systems of the present invention rely on endocytic pathways for the uptake of the *hedgehog* polypeptide gene by the targeted cell. Exemplary gene delivery systems of this type include liposomal derived systems, poly-lysine conjugates, and artificial viral envelopes.

In clinical settings, the gene delivery systems for the therapeutic *hedgehog* gene can be introduced into a patient by any of a number of methods, each of which is familiar in the art. For instance, a pharmaceutical preparation of the gene delivery system can be introduced systemically, e.g. by intravenous injection, and specific transduction of the protein in the target cells occurs predominantly from specificity of transfection provided by the gene delivery vehicle, cell-type or tissue-type expression due to the transcriptional regulatory sequences controlling expression of the receptor gene, or a combination thereof. In other embodiments, initial delivery of the recombinant gene is more limited with introduction into the animal being quite localized. For example, the gene delivery vehicle can be introduced by catheter (see U.S. Patent 5,328,470) or by stereotactic injection (e.g. Chen et al. (1994) *PNAS* 91: 3054-3057). A *hedgehog* expression construct can be delivered in a gene therapy construct to dermal cells by, e.g., electroporation using techniques described, for example, by Dev et al. ((1994) *Cancer Treat Rev* 20:105-115).

10

15

20

25

30

35

The pharmaceutical preparation of the gene therapy construct can consist essentially of the gene delivery system in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery system can be produced intact from recombinant cells, e.g. retroviral vectors, the pharmaceutical preparation can comprise one or more cells which produce the gene delivery system.

In yet another embodiment, the hedgehog or ptc therapeutic can be a "gene activation" construct which, by homologous recombination with a genomic DNA, alters the transcriptional regulatory sequences of an endogenous gene. For instance, the gene activation construct can replace the endogenous promoter of a hedgehog gene with a heterologous promoter, e.g., one which causes consitutive expression of the hedgehog gene or which causes inducible expression of the gene under conditions different from the normal expression pattern of the gene. Other genes in the patched signaling pathway can be similarly targeted. A vareity of different formats for the gene activation constructs are available. See, for example, the Transkaryotic Therapies, Inc PCT

10

15

20

25

30

35

publications WO93/09222, WO95/31560, WO96/29411, WO95/31560 and WO94/12650.

In preferred embodiments, the nucleotide sequence used as the gene activation construct can be comprised of (1) DNA from some portion of the endogenous *hedgehog* gene (exon sequence, intron sequence, promoter sequences, etc.) which direct recombination and (2) heterologous transcriptional regulatory sequence(s) which is to be operably linked to the coding sequence for the genomic *hedgehog* gene upon recombination of the gene activation construct. For use in generating cultures of *hedgehog* producing cells, the construct may further include a reporter gene to detect the presence of the knockout construct in the cell.

The gene activation construct is inserted into a cell, and integrates with the genomic DNA of the cell in such a position so as to provide the heterologous regulatory sequences in operative association with the native *hedgehog* gene. Such insertion occurs by homologous recombination, i.e., recombination regions of the activation construct that are homologous to the endogenous *hedgehog* gene sequence hybridize to the genomic DNA and recombine with the genomic sequences so that the construct is incorporated into the corresponding position of the genomic DNA.

The terms "recombination region" or "targeting sequence" refer to a segment (i.e., a portion) of a gene activation construct having a sequence that is substantially identical to or substantially complementary to a genomic gene sequence, e.g., including 5' flanking sequences of the genomic gene, and can facilitate homologous recombination between the genomic sequence and the targeting transgene construct.

As used herein, the term "replacement region" refers to a portion of a activation construct which becomes integrated into an endogenous chromosomal location following homologous recombination between a recombination region and a genomic sequence.

The heterologous regulatory sequences, e.g., which are provided in the replacement region, can include one or more of a variety elements, including: promoters (such as constitutive or inducible promoters), enhancers, negative regulatory elements, locus control regions, transcription factor binding sites, or combinations thereof. Promoters/enhancers which may be used to control the expression of the targeted gene *in vivo* include, but are not limited to, the cytomegalovirus (CMV) promoter/enhancer (Karasuyama et al., 1989, *J. Exp. Med.*, 169:13), the human β-actin promoter (Gunning et al. (1987) *PNAS* 84:4831-4835), the glucocorticoid-inducible promoter present in the mouse mammary tumor virus long terminal repeat (MMTV

LTR) (Klessig et al. (1984) *Mol. Cell Biol.* 4:1354-1362), the long terminal repeat sequences of Moloney murine leukemia virus (MuLV LTR) (Weiss et al. (1985) *RNA Tumor Viruses*, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York), the SV40 early or late region promoter (Bernoist et al. (1981) *Nature* 290:304-310; Templeton et al. (1984) *Mol. Cell Biol.*, 4:817; and Sprague et al. (1983) *J. Virol.*, 45:773), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (RSV) (Yamamoto et al., 1980, *Cell*, 22:787-797), the herpes simplex virus (HSV) thymidine kinase promoter/enhancer (Wagner et al. (1981) *PNAS* 82:3567-71), and the herpes simplex virus LAT promoter (Wolfe et al. (1992) *Nature Genetics*, 1:379-384).

In an exemplary embodiment, portions of the 5' flanking region of the human Shh gene are amplified using primers which add restriction sites, to generate the following fragments

5'-gcgcgcttcgaaGCGAGGCAGCCAGCGAGGGAGAGAGAGCGAGCGGAGCGGA-GCGAGAAatcgatgcgcgc (primer 1)

15

20

25

30

10

As illustrated, primer 1 includes a 5' non-coding region of the human Shh gene and is flanked by an AsuII and ClaI restriction sites. Primer 2 includes a portion of the 5' non-coding region immediately 3' to that present in primer 1. The hedgehog gene sequence is flanked by XhoII and BamHI restriction sites. The purified amplimers are cut with each of the enzymes as appropriate.

The vector pCDNA1.1 (Invitrogen) includes a CMV promoter. The plasmid is cut with with AsuII, which cleaves just 3' to the CMV promoter sequence. The AsuII/ClaI fragment of primer 1 is ligated to the AsuII cleavage site of the pcDNA vector. The ClaI/AsuII ligation destroys the AsuII site at the 3' end of a properly inserted primer 1.

The vector is then cut with BamHI, and an XhoII/BamHI fragment of primer 2 is ligated to the BamHI cleavage site. As above, the BamHI/XhoII ligation destroys the BamHI site at the 5' end of a properly inserted primer 2.

Individual colonies are selected, cut with AsuII and BamHI, and the size of the AsuII/BamHI fragment determined. Colonies in which both the primer 1 and primer 2

35

sequences are correctly inserted are further amplified, an cut with AsuII and BamHI to produce the gene activation construct

cgaagcgaggcagccagcgagggagagagcgagcggggcgagcgggggagATCG AAGGTTCGAATCCTTCCCCCACCACCATCACTTTCAAAAGTCCGAAAGAATCTGCTCC CTGCTTGTGTGTGGAGGTCGCTGAGTAGTGCGCGAGTAAAATTTAAGCTACAACAAG 5 GCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTG CTTCGCGATGTACGGGCCAGATATACGCGTTGACATTGATTATTGACTAGTTATTAAT AGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATA 10 ATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGG TGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAG TACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTAC ATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTA CCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACG 15 CAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTA GGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCAC TGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTTGGTAC 20 gcgcactcgg

In this construct, the flanking primer 1 and primer 2 sequences provide the recombination region which permits the insertion of the CMV promoter in front of the coding sequence for the human *Shh* gene. Other heterologous promoters (or other transcriptional regulatory sequences) can be inserted in a genomic *hedgehog* gene by a similar method.

In still other embodiments, the replacement region merely deletes a negative transcriptional control element of the native gene, e.g., to activate expression, or ablates a positive control element, e.g., to inhibit expression of the targeted gene.

30 V. EXEMPLARY PTC THERAPEUTIC COMPOUNDS.

In another embodiment, the subject method is carried out using a ptc therapeutic composition. Such compositions can be generated with, for example, compounds which bind to patched and alter its signal transduction activity, compounds which alter the binding and/or enzymatic activity of a protein (e.g., intracellular) involved in patched signal pathway, and compounds which alter the level of expression of a

10

15

20

25

30

hedgehog protein, a patched protein or a protein involved in the intracellular signal transduction pathway of patched.

The availability of purified and recombinant *hedgehog* polypeptides facilitates the generation of assay systems which can be used to screen for drugs, such as small organic molecules, which are either agonists or antagonists of the normal cellular function of a *hedgehog* and/or patched protein, particularly in their role in the pathogenesis of neuronal cell death. In one embodiment, the assay evaluates the ability of a compound to modulate binding between a *hedgehog* polypeptide and a *hedgehog* receptor such as *patched*. In other embodiments, the assay merely scores for the ability of a test compound to alter the signal transduction activity of the *patched* protein. In this manner, a variety of *hedgehog* and/or *ptc* therapeutics, which will include ones with neuroprotective activity, can be identified. A variety of assay formats will suffice and, in light of the present disclosure, will be comprehended by skilled artisan.

In many drug screening programs which test libraries of compounds and natural extracts, high throughput assays are desirable in order to maximize the number of compounds surveyed in a given period of time. Assays which are performed in cell-free systems, such as may be derived with purified or semi-purified proteins, are often preferred as "primary" screens in that they can be generated to permit rapid development and relatively easy detection of an alteration in a molecular target which is mediated by a test compound. Moreover, the effects of cellular toxicity and/or bioavailability of the test compound can be generally ignored in the *in vitro* system, the assay instead being focused primarily on the effect of the drug on the molecular target as may be manifest in an alteration of binding affinity with receptor proteins.

Accordingly, in an exemplary screening assay for ptc therapeutics, the compound of interest is contacted with a mixture including a hedgehog receptor protein (e.g., a cell expressing the patched receptor) and a hedgehog protein under conditions in which it is ordinarily capable of binding the hedgehog protein. To the mixture is then added a composition containing a test compound. Detection and quantification of receptor/hedgehog complexes provides a means for determining the test compound's efficacy at inhibiting (or potentiating) complex formation between the receptor protein and the hedgehog polypeptide. Moreover, a control assay can also be performed to provide a baseline for comparison. In the control assay, isolated and purified hedgehog polypeptide is added to the receptor protein, and the formation of receptor/hedgehog complex is quantitated in the absence of the test compound.

10

15

20

25

30

35

In other embodiments, a ptc therapeutic of the present invention is one which disrupts the association of patched with smoothened.

Agonist and antagonists of neuroprotection can be distinguished, and the efficacy of the compound can be assessed, by subsequent testing with neuronal cells.

In an illustrative embodiment, the polypeptide utilized as a hedgehog receptor can be generated from the patched protein. Accordingly, an exemplary screening assay includes all or a suitable portion of the patched protein which can be obtained from, for example, the human patched gene (GenBank U43148) or other vertebrate sources (see GenBank Accession numbers U40074 for chicken patched and U46155 for mouse patched), as well as from drosophila (GenBank Accession number M28999) or other invertebrate sources. The patched protein can be provided in the screening assay as a whole protein (preferably expressed on the surface of a cell), or alternatively as a fragment of the full length protein which binds to hedgehog polypeptides, e.g., as one or both of the substantial extracellular domains (e.g. corresponding to residues Asn120-Ser438 and/or Arg770-Trp1027 of the human patched protein). For instance, the patched protein can be provided in soluble form, as for example a preparation of one of the extracellular domains, or a preparation of both of the extracellular domains which are covalently connected by an unstructured linker (see, for example, Huston et al. (1988) PNAS 85:4879; and U.S. Patent No. 5,091,513). In other embodiments, the protein can be provided as part of a liposomal preparation or expressed on the surface of a cell. The patched protein can derived from a recombinant gene, e.g., being ectopically expressed in a heterologous cell. For instance, the protein can be expressed on oocytes, mammalian cells (e.g., COS, CHO, 3T3 or the like), or yeast cell by standard recombinant DNA techniques. These recombinant cells can be used for receptor binding, signal transduction or gene expression assays. Marigo et al. (1996) Development 122:1225-1233 illustrates a binding assay of human hedgehog to chick patched protein ectopically expressed in Xenopus laevis oocytes. The assay system of Marigo et al. can be adapted to the present drug screening assays. As illustrated in that reference, Shh binds to the patched protein in a selective, saturable, dose-dependent manner, thus demonstrating that patched is a receptor for Shh.

Complex formation between the *hedgehog* polypeptide and a *hedgehog* receptor may be detected by a variety of techniques. For instance, modulation of the formation of complexes can be quantitated using, for example, detectably labelled proteins such as radiolabelled, fluorescently labelled, or enzymatically labelled *hedgehog* polypeptides, by immunoassay, or by chromatographic detection.

10

20

25

30

35

Typically, for cell-free assays, it will be desirable to immobilize either the hedgehog receptor or the hedgehog polypeptide to facilitate separation of receptor/hedgehog complexes from uncomplexed forms of one of the proteins, as well as to accommodate automation of the assay. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-transferase/receptor (GST/receptor) fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the hedgehog polypeptide, e.g. an 35S-labeled hedgehog polypeptide, and the test compound and incubated under conditions conducive to complex formation, e.g. at physiological conditions for salt and pH, though slightly more stringent conditions may be desired. Following incubation, the beads are washed to remove any unbound hedgehog polypeptide, and the matrix bead-bound radiolabel determined directly (e.g. beads placed in scintillant), or in the supernatant after the receptor/hedgehog complexes are dissociated. Alternatively, the complexes can be dissociated from the bead, separated by SDS-PAGE gel, and the level of hedgehog polypeptide found in the bead fraction quantitated from the gel using standard electrophoretic techniques.

Other techniques for immobilizing proteins on matrices are also available for use in the subject assay. For instance, soluble portions of the hedgehog receptor protein can be immobilized utilizing conjugation of biotin and streptavidin. For instance, biotinylated receptor molecules can be prepared from biotin-NHS (N-hydroxysuccinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with the hedgehog receptor but which do not interfere with hedgehog binding can be derivatized to the wells of the plate, and the receptor trapped in the wells by antibody conjugation. As above, preparations of a hedgehog polypeptide and a test compound are incubated in the receptor-presenting wells of the plate, and the amount of receptor/hedgehog complex trapped in the well can be quantitated. Exemplary methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the hedgehog polypeptide, or which are reactive with the receptor protein and compete for binding with the hedgehog polypeptide; as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the hedgehog polypeptide. In the instance of the latter, the enzyme can be chemically conjugated or provided as a fusion protein with the hedgehog polypeptide. To illustrate, the hedgehog polypeptide can be

10

15

20

25

30

35

chemically cross-linked or genetically fused with alkaline phosphatase, and the amount of *hedgehog* polypeptide trapped in the complex can be assessed with a chromogenic substrate of the enzyme, e.g. paranitrophenylphosphate. Likewise, a fusion protein comprising the *hedgehog* polypeptide and glutathione-S-transferase can be provided, and complex formation quantitated by detecting the GST activity using 1-chloro-2,4-dinitrobenzene (Habig et al (1974) *J Biol Chem* 249:7130).

For processes which rely on immunodetection for quantitating one of the proteins trapped in the complex, antibodies against the protein, such as the antihedgehog antibodies described herein, can be used. Alternatively, the protein to be detected in the complex can be "epitope tagged" in the form of a fusion protein which includes, in addition to the hedgehog polypeptide or hedgehog receptor sequence, a second polypeptide for which antibodies are readily available (e.g. from commercial sources). For instance, the GST fusion proteins described above can also be used for quantification of binding using antibodies against the GST moiety. Other useful epitope tags include myc-epitopes (e.g., see Ellison et al. (1991) J Biol Chem 266:21150-21157) which includes a 10-residue sequence from c-myc, as well as the pFLAG system (International Biotechnologies, Inc.) or the pEZZ-protein A system (Pharamacia, NJ).

Where the desired portion of the *hedgehog* receptor (or other *hedgehog* binding molecule) cannot be provided in soluble form, liposomal vesicles can be used to provide manipulatable and isolatable sources of the receptor. For example, both authentic and recombinant forms of the *patched* protein can be reconstituted in artificial lipid vesicles (e.g. phosphatidylcholine liposomes) or in cell membrane-derived vesicles (see, for example, Bear et al. (1992) *Cell* 68:809-818; Newton et al. (1983) *Biochemistry* 22:6110-6117; and Reber et al. (1987) *J Biol Chem* 262:11369-11374).

In addition to cell-free assays, such as described above, the readily available source of *hedgehog* proteins provided by the art also facilitates the generation of cell-based assays for identifying small molecule agonists of the neuroprotective activity of wild-type *hedgehog* proteins. Analogous to the cell-based assays described above for screening combinatorial libraries, neuronal cells which are sensitive to *hedgehog*-dependent protection, such as dopaminergic and GABA-nergic neurons, can be contacted with a *hedgehog* protein and a test agent of interest, with the assay scoring for anything from simple binding to the cell to trophic responses by the target cell in the presence and absence of the test agent. As with the cell-free assays, agents which produce a statistically significant change in *hedgehog* activities (either inhibition or potentiation) can be identified.

10

20

25

30

35

In other emdodiments, the cell-based assay scores for agents which disrupt association of patched and *smoothened* proteins, e.g., in the cell surface membrane or liposomal preparation.

In addition to characterizing cells that naturally express the *patched* protein, cells which have been genetically engineered to ectopically express *patched* can be utilized for drug screening assays. As an example, cells which either express low levels or lack expression of the *patched* protein, e.g. *Xenopus laevis* oocytes, COS cells or yeast cells, can be genetically modified using standard techniques to ectopically express the *patched* protein. (see Marigo et al., *supra*).

The resulting recombinant cells, e.g., which express a functional patched receptor, can be utilized in receptor binding assays to identify agonist or anatagonsts of hedgehog binding. Binding assays can be performed using whole cells. Furthermore, the recombinant cells of the present invention can be engineered to include other heterolgous genes encoding proteins involved in hedgehog-dependent siganl pathways. For example, the gene products of one or more of smoothened, costal-2 and/or fused can be co-expressed with patched in the reagent cell, with assays being sensitive to the functional reconstituion of the hedgehog signal transduction cascade.

Alternatively, liposomal preparations using reconstituted patched protein can be utilized. Patched protein purified from detergent extracts from both authentic and recombinant origins can be reconstituted in in artificial lipid vesicles (e.g. phosphatidylcholine liposomes) or in cell membrane-derived vesicles (see, for example, Bear et al. (1992) Cell 68:809-818; Newton et al. (1983) Biochemistry 22:6110-6117; and Reber et al. (1987) J Biol Chem 262:11369-11374). The lamellar structure and size of the resulting liposomes can be characterized using electron microscopy. External orientation of the patched protein in the reconstituted membranes can be demonstrated, for example, by immunoelectron microscopy. The hedgehog protein binding activity of liposomes containing patched and liposomes without the protein in the presence of candidate agents can be compared in order to identify potential modulators of the hedgehog-patched interaction.

The *hedgehog* protein used in these cell-based assays can be provided as a purified source (natural or recombinant in origin), or in the form of cells/tissue which express the protein and which are co-cultured with the target cells. As in the cell-free assays, where simple binding (rather than induction) is the *hedgehog* activity scored for in the assay, the protein can be labelled by any of the above-mentioned techniques, e.g., fluorescently, enzymatically or radioactively, or detected by immunoassay.

10

15

20

25

30

35

In addition to binding studies, functional assays can be used to identified modulators, i.e., agonists of *hedgehog* or *patched* activities. By detecting changes in intracellular signals, such as alterations in second messengers or gene expression in *patched*-expressing cells contacted with a test agent, candidate antagonists to *patched* signaling can be identified (e.g., having a *hedgehog*-like activity).

A number of gene products have been implicated in *patched*-mediated signal transduction, including *patched*, the transcription factor *cubitus interruptus* (ci), the serine/threonine kinase *fused* (fu) and the gene products of *costal-2*, *smoothened* and *suppressor of fused*.

The interaction of a hedgehog protein with patched sets in motion a cascade involving the activation and inhibition of downstream effectors, the ultimate consequence of which is, in some instances, a detectable change in the transcription or translation of a gene. Potential transcriptional targets of patched signaling are the patched gene itself (Hidalgo and Ingham, 1990 Development 110, 291-301; Marigo et al., 1996) and the vertebrate homologs of the drosophila cubitus interruptus gene, the GLI genes (Hui et al. (1994) Dev Biol 162:402-413). Patched gene expression has been shown to be induced in cells of the limb bud and the neural plate that are responsive to Shh. (Marigo et al. (1996) PNAS, in press; Marigo et al. (1996) Development 122:1225-1233). The GLI genes encode putative transcription factors having zinc finger DNA binding domains (Orenic et al. (1990) Genes & Dev 4:1053-1067; Kinzler et al. (1990) Mol Cell Biol 10:634-642). Transcription of the GLI gene has been reported to be upregulated in response to hedgehog in limb buds, while transcription of the GL13 gene is downregulated in response to hedgehog induction (Marigo et al. (1996) Development 122:1225-1233). By selecting transcriptional regulatory sequences from such target genes, e.g. from patched or GLI genes, that are responsible for the up- or down regulation of these genes in response to patched signalling, and operatively linking such promoters to a reporter gene, one can derive a transcription based assay which is sensitive to the ability of a specific test compound to modify patched signalling pathways. Expression of the reporter gene, thus, provides a valuable screening tool for the development of compounds that act as antagonists of ptc, e.g., which may be useful as neuroprotective agents.

Reporter gene based assays of this invention measure the end stage of the above described cascade of events, e.g., transcriptional modulation. Accordingly, in practicing one embodiment of the assay, a reporter gene construct is inserted into the reagent cell in order to generate a detection signal dependent on ptc signaling. To identify potential regulatory elements responsive to ptc signaling present in the

10

15

20

25

30

35

transcriptional regulatory sequence of a target gene, nested deletions of genomic clones of the target gene can be constructed using standard techniques. See, for example, Current Protocols in Molecular Biology, Ausubel, F.M. et al. (eds.) Greene Publishing Associates, (1989); U.S. Patent 5,266,488; Sato et al. (1995) *J Biol Chem* 270:10314-10322; and Kube et al. (1995) *Cytokine* 7:1-7. A nested set of DNA fragments from the gene's 5'-flanking region are placed upstream of a reporter gene, such as the luciferase gene, and assayed for their ability to direct reporter gene expression in *patched* expressing cells. Host cells transiently transfected with reporter gene constructs can be scored for the induction of expression of the reporter gene in the presence and absence of *hedgehog* to determine regulatory sequences which are responsice to *patched*-dependent signalling.

In practicing one embodiment of the assay, a reporter gene construct is inserted into the reagent cell in order to generate a detection signal dependent on second messengers generated by induction with hedgehog protein. Typically, the reporter gene construct will include a reporter gene in operative linkage with one or more transcriptional regulatory elements responsive to the hedgehog activity, with the level of expression of the reporter gene providing the hedgehog-dependent detection signal. The amount of transcription from the reporter gene may be measured using any method known to those of skill in the art to be suitable. For example, mRNA expression from the reporter gene may be detected using RNAse protection or RNA-based PCR, or the protein product of the reporter gene may be identified by a characteristic stain or an intrinsic activity. The amount of expression from the reporter gene is then compared to the amount of expression in either the same cell in the absence of the test compound (or hedgehog) or it may be compared with the amount of transcription in a substantially identical cell that lacks the target receptor protein. Any statistically or otherwise significant difference in the amount of transcription indicates that the test compound has in some manner altered the signal transduction of the patched protein, e.g., the test compound is a potential ptc therapeutic.

As described in further detail below, in preferred embodiments the gene product of the reporter is detected by an intrinsic activity associated with that product. For instance, the reporter gene may encode a gene product that, by enzymatic activity, gives rise to a detection signal based on color, fluorescence, or luminescence. In other preferred embodiments, the reporter or marker gene provides a selective growth advantage, e.g., the reporter gene may enhance cell viability, relieve a cell nutritional requirement, and/or provide resistance to a drug.

15

20

25

30

Preferred reporter genes are those that are readily detectable. The reporter gene may also be included in the construct in the form of a fusion gene with a gene that includes desired transcriptional regulatory sequences or exhibits other desirable properties. Examples of reporter genes include, but are not limited to CAT (chloramphenicol acetyl transferase) (Alton and Vapnek (1979), Nature 282: 864-869) luciferase, and other enzyme detection systems, such as beta-galactosidase; firefly luciferase (deWet et al. (1987), Mol. Cell. Biol. 7:725-737); bacterial luciferase (Engebrecht and Silverman (1984), PNAS 1: 4154-4158; Baldwin et al. (1984), Biochemistry 23: 3663-3667); alkaline phosphatase (Toh et al. (1989) Eur. J. Biochem. 182: 231-238, Hall et al. (1983) J. Mol. Appl. Gen. 2: 101), human placental secreted alkaline phosphatase (Cullen and Malim (1992) Methods in Enzymol. 216:362-368).

Transcriptional control elements which may be included in a reporter gene construct include, but are not limited to, promoters, enhancers, and repressor and activator binding sites. Suitable transcriptional regulatory elements may be derived from the transcriptional regulatory regions of genes whose expression is induced after modulation of a patched signal transduction pathway. The characteristics of preferred genes from which the transcriptional control elements are derived include, but are not limited to, low or undetectable expression in quiescent cells, rapid induction at the transcriptional level within minutes of extracellular simulation, induction that is transient and independent of new protein synthesis, subsequent shut-off of transcription requires new protein synthesis, and mRNAs transcribed from these genes have a short half-life. It is not necessary for all of these properties to be present.

In yet other embodiments, second messenger generation can be measured directly in the detection step, such as mobilization of intracellular calcium, phospholipid metabolism or adenylate cyclase activity are quantitated, for instance, the products of phospholipid hydrolysis IP₃, DAG or cAMP could be measured For example, recent studies have implicated protein kinase A (PKA) as a possible component of hedgehog/patched signaling (Hammerschmidt et al. (1996) Genes & Dev 10:647). High PKA activity has been shown to antagonize hedgehog signaling in these systems. Conversely, inhibitors of PKA will mimic and/or potentiate the action of hedgehog. Although it is unclear whether PKA acts directly downstream or in parallel with hedgehog signaling, it is possible that hedgehog signalling occurs via inhibition of PKA activity. Thus, detection of PKA activity provides a potential readout for the instant assays.

In a preferred embodiment, the *ptc* therapeutic is a PKA inhibitor. A variety of PKA inhibitors are known in the art, including both peptidyl and organic compounds.

For instance, the *ptc* therapeutic can be a 5-isoquinolinesulfonamide, such as represented in the general formula:

5 wherein,

10

15

20

 R_1 and R_2 each can independently represent hydrogen, and as valence and stability permit a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH_2)_m- R_8 , -(CH_2)_m- CH_2)_m- CH_2 0-lower alkyl, -(CH_2)_m- CH_2 0-lower alkenyl, -(CH_2 0- CH_2 0

 R_1 and R_2 taken together with N form a heterocycle (substituted or unsubstituted);

 R_3 is absent or represents one or more substitutions to the isoquinoline ring such as a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, $-(CH_2)_m - R_8$, $-(CH_2)_m - OH$, $-(CH_2)_m$

R₈ represents a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle; and

n and m are independently for each occurrence zero or an integer in the range of 1 to 6.

In a preferred embodiment, the PKA inhibitor is N-[2-((p-bromocin-namyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89; Calbiochem Cat. No. 371963), e.g., having the formula:

In another embodiment, the PKA inhibitor is 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7; Calbiochem Cat. No. 371955), e.g., having the formula:

5

In still other embodiments, the PKA inhibitor is KT5720 (Calbiochem Cat. No. 420315), having the structure

10

A variety of nucleoside analogs are also useful as PKA inhibitors. For example, the subject method can be carried out cyclic AMP analogs which inhibit the kinase activity of PKA, as for example, 8-bromo-cAMP or dibutyryl-Camp

10

15

20

25

$$\begin{array}{c} \mathsf{NH}_2\\ \mathsf{N}\\ \mathsf{$$

Exemplary peptidyl inhibitors of PKA activity include the PKA Heat Stable Inhibitor (isoform α ; see, for example, Calbiochem Cat. No. 539488, and Wen et al. (1995) *J Biol Chem* 270:2041).

Certain *hedgehog* receptors may stimulate the activity of phospholipases. Inositol lipids can be extracted and analyzed using standard lipid extraction techniques. Water soluble derivatives of all three inositol lipids (IP₁, IP₂, IP₃) can also be quantitated using radiolabelling techniques or HPLC.

The mobilization of intracellular calcium or the influx of calcium from outside the cell may be a response to *hedgehog* stimulation or lack there of. Calcium flux in the reagent cell can be measured using standard techniques. The choice of the appropriate calcium indicator, fluorescent, bioluminescent, metallochromic, or Ca⁺⁺-sensitive microelectrodes depends on the cell type and the magnitude and time constant of the event under study (Borle (1990) *Environ Health Perspect* 84:45-56). As an exemplary method of Ca⁺⁺ detection, cells could be loaded with the Ca⁺⁺sensitive fluorescent dye fura-2 or indo-1, using standard methods, and any change in Ca⁺⁺ measured using a fluorometer.

In certain embodiments of the assay, it may be desirable to screen for changes in cellular phosphorylation. As an example, the drosophila gene fused (fu) which encodes a serine/threonine kinase has been identified as a potential downstream target in hedgehog signaling. (Preat et al., 1990 Nature 347, 87-89; Therond et al. 1993, Mech. Dev. 44. 65-80). The ability of compounds to modulate serine/threonine kinase activation could be screened using colony immunoblotting (Lyons and Nelson (1984) Proc. Natl. Acad. Sci. USA 81:7426-7430) using antibodies against phosphorylated serine or threonine residues. Reagents for performing such assays are commercially available, for example, phosphoserine and phosphothreonine specific antibodies which

15

20

25

30

35

measure increases in phosphorylation of those residues can be purchased from comercial sources.

In yet another embodiment, the ptc therapeutic is an antisense molecule which inhibits expression of a protein involved in a patched-mediated signal transduction pathway. To illustrate, by inhibiting the expression of a protein involved in patched signals, such as fused, costal-2, smoothened and/or Gli genes, or patched itself, the ability of the patched signal pathway(s) to alter the ability of, e.g., a dopaminergic or GABA-nergic cell to maintain its differentiated state can be altered, e.g., potentiated or repressed.

As used herein, "antisense" therapy refers to administration or in situ generation of oligonucleotide probes or their derivatives which specifically hybridize (e.g. bind) under cellular conditions with cellular mRNA and/or genomic DNA encoding a hedgehog protein, patched, or a protein involved in patched-mediated signal transduction. The hybridization should inhibit expression of that protein, e.g. by inhibiting transcription and/or translation. The binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix. In general, "antisense" therapy refers to the range of techniques generally employed in the art, and includes any therapy which relies on specific binding to oligonucleotide sequences.

An antisense construct of the present invention can be delivered, for example, as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of the target cellular mRNA. Alternatively, the antisense construct is an oligonucleotide probe which is generated *ex vivo* and which, when introduced into the cell causes inhibition of expression by hybridizing with the mRNA and/or genomic sequences of a target gene. Such oligonucleotide probes are preferably modified oligonucleotide which are resistant to endogenous nucleases, e.g. exonucleases and/or endonucleases, and is therefore stable *in vivo*. Exemplary nucleic acid molecules for use as antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Patents 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy have been reviewed, for example, by Van der Krol et al. (1988) *Biotechniques* 6:958-976; and Stein et al. (1988) *Cancer Res* 48:2659-2668.

Several considerations should be taken into account when constructing antisense oligonucleotides for the use in the methods of the invention: (1) oligos

15

20

30

should have a GC content of 50% or more; (2) avoid sequences with stretches of 3 or more G's; and (3) oligonucleotides should not be longer than 25-26 mers. When testing an antisense oligonucleotide, a mismatched control can be constructed. The controls can be generated by reversing the sequence order of the corresponding antisense oligonucleotide in order to conserve the same ratio of bases.

In an illustrative embodiment, the *ptc* therapeutic can be an antisense construct for inhibiting the expression of *patched*, e.g., to mimic the inhibition of *patched* by *hedgehog*. Exemplary antisense constructs include:

- 5'-GTCCTGGCGCCGCCGCCGTCGCC
- 10 5'-TTCCGATGACCGGCCTTTCGCGGTGA
 - 5'-GTGCACGGAAAGGTGCAGGCCACACT

VI. EXEMPLARY PHARMACEUTICAL PREPARATIONS OF HEDGEHOG AND PTC THERAPEUTICS:

The source of the *hedgehog* and ptc therapeutics to be formulated will depend on the particular form of the agent. Small organic molecules and peptidyl fragments can be chemically synthesized and provided in a pure form suitable for pharmaceutical/cosmetic usage. Products of natural extracts can be purified according to techniques known in the art. For example, the Cox et al. U.S. Patent 5,286,654 describes a method for purifying naturally occurring forms of a secreted protein and can be adapted for purification of *hedgehog* polypeptides. Recombinant sources of *hedgehog* polypeptides are also available. For example, the gene encoding *hedgehog* polypeptides, are known, *inter alia*, from PCT publications WO 95/18856 and WO 96/17924.

Those of skill in treating neural tissues can determine the effective amount of an hedgehog or ptc therapeutic to be formulated in a pharmaceutical or cosmetic preparation.

The *hedgehog* or ptc therapeutic formulations used in the method of the invention are most preferably applied in the form of appropriate compositions. As appropriate compositions there may be cited all compositions usually employed for systemically or locally (such as intrathecal) administering drugs. The pharmaceutically acceptable carrier should be substantially inert, so as not to act with the active component. Suitable inert carriers include water, alcohol polyethylene glycol, mineral oil or petroleum gel, propylene glycol and the like.

15

20

25

30

To prepare the pharmaceutical compositions of this invention, an effective amount of the particular hedgehog or ptc therapeutic as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represents the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations. In the compositons suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin.

It is especially advantageous to formulate the subject compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powders packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

The pharmaceutical preparations of the present invention can be used, as stated above, for the many applications which can be considered cosmetic uses. Cosmetic

10

15

20

25

30

35

compositions known in the art, preferably hypoallergic and pH controlled are especially preferred, and include toilet waters, packs, lotions, skin milks or milky lotions. The preparations contain, besides the *hedgehog* or ptc therapeutic, components usually employed in such preparations. Examples of such components are oils, fats, waxes, surfactants, humectants, thickening agents, antioxidants, viscosity stabilizers, chelating agents, buffers, preservatives, perfumes, dyestuffs, lower alkanols, and the like. If desired, further ingredients may be incorporated in the compositions, e.g. antiinflammatory agents, antibacterials, antifungals, disinfectants, vitamins, sunscreens, antibiotics, or other anti-acne agents.

Examples of oils comprise fats and oils such as olive oil and hydrogenated oils; waxes such as beeswax and lanolin; hydrocarbons such as liquid paraffin, ceresin, and squalane; fatty acids such as stearic acid and oleic acid; alcohols such as cetyl alcohol, stearyl alcohol, lanolin alcohol, and hexadecanol; and esters such as isopropyl myristate, isopropyl palmitate and butyl stearate. As examples of surfactants there may be cited anionic surfactants such as sodium stearate, sodium cetylsulfate, polyoxyethylene laurylether phosphate, sodium N-acyl glutamate; cationic surfactants such as stearyldimethylbenzylammonium chloride and stearyltrimethylammonium chloride; ampholytic surfactants such as alkylaminoethylglycine hydrocloride solutions and lecithin; and nonionic surfactants such as glycerin monostearate, sorbitan monostearate, sucrose fatty acid esters, propylene glycol monostearate, polyoxyethylene oleylether, polyethylene glycol monostearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene coconut fatty acid monoethanolamide, polyoxypropylene glycol (e.g. the materials sold under the trademark "Pluronic"), polyoxyethylene castor oil, and polyoxyethylene lanolin. Examples of humectants include glycerin, 1,3-butylene glycol, and propylene glycol; examples of lower alcohols include ethanol and isopropanol; examples of thickening agents include xanthan gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyethylene glycol and sodium carboxymethyl cellulose; examples of antioxidants comprise butylated hydroxytoluene, butylated hydroxyanisole, propyl gallate, citric acid and ethoxyquin; examples of chelating agents include disodium edetate and ethanehydroxy diphosphate; examples of buffers comprise citric acid, sodium citrate, boric acid, borax, and disodium hydrogen phosphate; and examples of preservatives are methyl parahydroxybenzoate, ethyl parahydroxybenzoate, dehydroacetic acid, salicylic acid and benzoic acid.

For preparing ointments, creams, toilet waters, skin milks, and the like, typically from 0.01 to 10% in particular from 0.1 to 5% and more in particular from 0.2 to 2.5% of the active ingredient, e.g., of the *hedgehog* or ptc therapeutic, will be incorporated in

10

15

20

25

30

35

the compositions. In ointments or creams, the carrier for example consists of 1 to 20%, in particular 5 to 15% of a humectant, 0.1 to 10% in particular from 0.5 to 5% of a thickener and water; or said carrier may consist of 70 to 99%, in particular 20 to 95% of a surfactant, and 0 to 20%, in particular 2.5 to 15% of a fat; or 80 to 99.9% in particular 90 to 99% of a thickener; or 5 to 15% of a surfactant, 2-15% of a humectant, 0 to 80% of an oil, very small (< 2%) amounts of preservative, coloring agent and/or perfume, and water. In a toilet water, the carrier for example consists of 2 to 10% of a lower alcohol, 0.1 to 10% or in particular 0.5 to 1% of a surfactant, 1 to 20%, in particular 3 to 7% of a humectant, 0 to 5% of a buffer, water and small amounts (< 2%) of preservative, dyestuff and/or perfume. In a skin milk, the carrier typically consists of 10-50% of oil, 1 to 10% of surfactant, 50-80% of water and 0 to 3% of preservative and/or perfume. In the aforementioned preparations, all % symbols refer to weight by weight percentage.

Particular compositions for use in the method of the present invention are those wherein the *hedgehog* or ptc therapeutic is formulated in liposome-containing compositions. Liposomes are artificial vesicles formed by amphiphatic molecules such as polar lipids, for example, phosphatidyl cholines, ethanolamines and serines, sphingomyelins, cardiolipins, plasmalogens, phosphatidic acids and cerebiosides. Liposomes are formed when suitable amphiphathic molecules are allowed to swell in water or aqueous solutions to form liquid crystals usually of multilayer structure comprised of many bilayers separated from each other by aqueous material (also referred to as coarse liposomes). Another type of liposome known to be consisting of a single bilayer encapsulating aqueous material is referred to as a unilamellar vesicle. If water-soluble materials are included in the aqueous phase during the swelling of the lipids they become entrapped in the aqueous layer between the lipid bilayers.

Water-soluble active ingredients such as, for example, various salt forms of a hedgehog polypeptide, are encapsulated in the aqueous spaces between the molecular layers. The lipid soluble active ingredient of hedgehog or ptc therapeutic, such as an organic mimetic, is predominantly incorporated into the lipid layers, although polar head groups may protude from the layer into the aqueous space. The encapsulation of these compounds can be achieved by a number of methods. The method most commonly used involves casting a thin film of phospholipid onto the walls of a flask by evaporation from an organic solvent. When this film is dispersed in a suitable aqueous medium, multilamellar liposomes are formed. Upon suitable sonication, the coarse liposomes form smaller similarly closed vesicles.

10

15

20

25

30

35

Water-soluble active ingredients are usually incorporated by dispersing the cast film with an aqueous solution of the compound. The unencapsulated compound is then removed by centrifugation, chromatography, dialysis or other art-known suitable procedures. The lipid-soluble active ingredient is usually incorporated by dissolving it in the organic solvent with the phospholipid prior to casting the film. If the solubility of the material in the lipid phase is not exceeded or the amount present is not in excess of that which can be bound to the lipid, liposomes prepared by the above method usually contain most of the material bound in the lipid bilayers; separation of the liposomes from unencapsulated material is not required.

A particularly convenient method for preparing liposome formulated forms of hedgehog and ptc therapeutics is the method described in EP-A-253,619, incorporated herein by reference. In this method, single bilayered liposomes containing encapsulated active ingredients are prepared by dissolving the lipid component in an organic medium, injecting the organic solution of the lipid component under pressure into an aqueous component while simultaneously mixing the organic and aqueous components with a high speed homogenizer or mixing means, whereupon the liposomes are formed spontaneously.

The single bilayered liposomes containing the encapsulated hedgehog or ptc therapeutic can be employed directly or they can be employed in a suitable pharmaceutically acceptable carrier for localized administration. The viscosity of the liposomes can be increased by the addition of one or more suitable thickening agents such as, for example xanthan gum, hydroxypropyl cellulose, hydroxypropyl methylcellulose and mixtures thereof. The aqueous component may consist of water alone or it may contain electrolytes, buffered systems and other ingredients, such as, for example, preservatives. Suitable electrolytes which can be employed include metal salts such as alkali metal and alkaline earth metal salts. The preferred metal salts are calcium chloride, sodium chloride and potassium chloride. The concentration of the electrolyte may vary from zero to 260 mM, preferably from 5 mM to 160 mM. The aqueous component is placed in a suitable vessel which can be adapted to effect homogenization by effecting great turbulence during the injection of the organic component. Homogenization of the two components can be accomplished within the vessel, or, alternatively, the aqueous and organic components may be injected separately into a mixing means which is located outside the vessel. In the latter case, the liposomes are formed in the mixing means and then transferred to another vessel for collection purpose.

. 5

10

15

20

25

30

35

The organic component consists of a suitable non-toxic, pharmaceutically acceptable solvent such as, for example ethanol, glycerol, propylene glycol and polyethylene glycol, and a suitable phospholipid which is soluble in the solvent. Suitable phospholipids which can be employed include lecithin, phosphatidylcholine, phosphatydylserine, phosphatidylethanol-amine, phosphatidylinositol, lysophosphatidylcholine and phospha-tidyl glycerol, for example. Other lipophilic additives may be employed in order to selectively modify the characteristics of the liposomes. Examples of such other additives include stearylamine, phosphatidic acid, tocopherol, cholesterol and lanolin extracts.

In addition, other ingredients which can prevent oxidation of the phospholipids may be added to the organic component. Examples of such other ingredients include tocopherol, butylated hydroxyanisole, butylated hydroxytoluene, ascorbyl palmitate and ascorbyl oleate. Preservatives such a benzoic acid, methyl paraben and propyl paraben may also be added.

Methods of introduction may also be provided by rechargeable or biodegradable devices. Various slow release polymeric devices have been developed and tested in vivo in recent years for the controlled delivery of drugs, including proteinacious biopharmaceuticals. A variety of biocompatible polymers (including hydrogels), including both biodegradable and non-degradable polymers, can be used to form an implant for the sustained release of an hh at a particular target site. Such embodiments of the present invention can be used for the delivery of an exogenously purified hedgehog protein, which has been incorporated in the polymeric device, or for the delivery of hedgehog produced by a cell encapsulated in the polymeric device.

An essential feature of certain embodiments of the implant can be the linear release of the therapeutic, which can be achieved through the manipulation of the polymer composition and form. By choice of monomer composition or polymerization technique, the amount of water, porosity and consequent permeability characteristics can be controlled. The selection of the shape, size, polymer, and method for implantation can be determined on an individual basis according to the disorder to be treated and the individual patient response. The generation of such implants is generally known in the art. See, for example, *Concise Encylopedia of Medical & Dental Materials*, ed. by David Williams (MIT Press: Cambridge, MA, 1990); and the Sabel et al. U.S. Patent No. 4,883,666.

In another embodiment of an implant, a source of cells producing the therapeutic, e.g., secreting a soluble form of a *hedgehog* protein, is encapsulated in

implantable hollow fibers or the like. Such fibers can be pre-spun and subsequently loaded with the cell source (Aebischer et al. U.S. Patent No. 4,892,538; Aebischer et al. U.S. Patent No. 5,106,627; Hoffman et al. (1990) Expt. Neurobiol. 110:39-44; Jaeger et al. (1990) Prog. Brain Res. 82:41-46; and Aebischer et al. (1991) J. Biomech. Eng. 113:178-183), or can be co-extruded with a polymer which acts to form a polymeric coat about the cells (Lim U.S. Patent No. 4,391,909; Sefton U.S. Patent No. 4,353,888; Sugamori et al. (1989) Trans. Am. Artif. Intern. Organs 35:791-799; Sefton et al. (1987) Biotehnol. Bioeng. 29:1135-1143; and Aebischer et al. (1991) Biomaterials 12:50-55).

10

15

20

25

30

35

5

EXEMPLIFICATION

The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.

In *Drosophila*, the *hedgehog* gene was first discovered for the role it plays in early embryo patterning (Nusslein-Volhard and Wieschaus, 1980). Further study showed tht the product of this gene is secreted, and as an intercellular signaling protein, plays a critical role in body segmentation and patterning of imaginal disc derivatives such as eyes and wings (Lee et al., 1992; Mohler and Vanie, 1992; Tabata et al., 1992). There re, at present, three mammalian homologues of *Drosophila* hedgehog, and Indian hedgehog (Fietz et al., 1994). During the course of vertebrate development, these secreted peptide molecules are involved in axial patterning, and consequently regulate the phenotypic specification of precursor cells into functional differentiated cells.

The embryonic expression pattern of Shh has been shown to be closely linked to the development and differentiation of the entire ventral neuraxis (Marti et al., 1995). Using naive neural tube explants derived from the appropriate levels of the rostrocaudal axis, it has been demonstrated that the induction of spinal motor neurons (Roelink et al., 1994; Tanabe et al., 1995), midbrain dopaminergic neurons (Hynes et al., 1995; Wang et al., 1995), and basal forebrain cholinergic neurons (Ericson et al., 1995) are dependent upon exposure to Shh. This molecule appears to be crucial for such patterning and phenotype specification in vivo since mouse embryos deficient in the expression of functional Shh gene product manifest a lack of normal ventral patterning in the central nervous system as well as gross atrophy of the entire cranium (Chiang et al., 1996).

In this study we have explored the issue of whether Shh may have activities at stages in neural development later than those previously studied. Namely, wew have asked whether Shh is trophic for particular neural populations, and under toxic conditions, whethre Shh is neuroprotective. Using cultures derived from the embryonic day 14-16 (E14-16) rat, we find that Shh is trophic for midbrain, striatial, and spinal neurons. In the first case the factor is trophic for both dopaminergic and GABA-immunoreactive (GABA-ir) neurons. From the striatum, the surviving neurons are exclusively GABA-ir, while in the spinal cultures Shh promotes survival of a heterogeneous population of putative interneurons. Shh does not suport survival of any peripheral nervous system neurons tested. Finally, we show that Shh protects cultures of midbrain dopaminergic neurons from the toxic effects of MPP+, a specific neurotoxin that induces Parkinsonism *in vivo*. Together, these observations indicate a novel role for Shh in nervous system development and its potential role as a therapeutic.

15

20

25

30

35

10

MATERIALS AND METHODS

Whole-mount in situ hybridization

Whole-mount in situ hybridization on bisected E14.5 Sprague-Dawley rat embryos was performed with digoxigenin-labeled (Boehringer-Mannheim) mouse RNA probes as previously described (Wilkinson, 1992). Bound probe was detected with alkaline phosphatase-conjugated anti-digoxigenin Fab fragments (Boehringer-Mannheim). The 0.7 kb *Shh* probes were transcribed using T3 (antisense) or T7 (sense) RNA polymerase from *Hind III* (antisense) or *Bam HI* (sense) linearized templates as described by Echelard, et al. (1993). The 0.9 kb *Ptc* probes were transcribed using T3 (antisense) or T7 (sense) RNA polymerase from *Bam HI* (antisense) or *Hind III* (sense) linearized templates as described by Goodrich, et al. (1996).

Shh protein and anti-Shh antibody

Rat sonic hedgehog amino terminal signaling domain (amino acids 2-198) Porter et al., 1995) was cloned into a baculovirus expression vector (Invitrogen; San Diego, CA) (virus encoding Shh insert was a gift of Dr. Henk Roelink, University of Washington, Seattle, WA). High Five™ insect cells (Invitrogen) were infected with the baculovirus per manufacturer's instructions. The culture supernatant was batch adsorbed to heparin agarose type I (Sigma; St. Louis, MO) and Shh eluted with PBS containing a total of 0.75 M NaCl and 0.1- mM -mercaptoethanol. Shh concentration was determined by the method of Ericson, et al. (1996). E. coli-derived Shh was

15

20

25

35

obtained as previously described (Wang et al., 1996) and purified as described above. All samples were sterile filtered and aliquots frozen in liquid nitrogen. Anti-Shh polyclonal antibody was a gift from Dr. Andy McMahon (Harvard University). Preparation of this reagent, directed against the amino peptide of Shh, is described by Bumcrot et al. (1995). Anti-Shh monoclonal antibody (511) was a gift of Dr. Thomas Jessell (Columbia University), and preparation of this reagent is described by Ericson et al. (1996).

Dissociation and culture of neural tissue

E14.5 rat ventral mesencephalon was dissected as described by Shimoda, et al. (Shimoda et al., 1992). Striatal cultures were established from E15-16 embryos from the regions identified by Altman and Bayer (1995) as the striatum and pallidum. Spinal cultures utilized the ventral one-third of the E15-16 spinal cord (Camu and Henderson, 1992). Tissues were dissociated for approximately 40 minutes in 0.10-0.25% trypsin-EDTA (Gibco/BRL; Gaithersburg, MD), and the digestion stopped using an equal volume of Ca++/Mg++-free Hanks' buffered saline (Gibco/BRL) containing 3.5 mg/ml soybean trypsin inhibitor (Sigma) and 0.04% DNase (Grade II, Boehringer Mannheim; Indianapolis, IN). Cells were than plated at 2×20^5 - 3×20^5 cells/well in the medium of Krieglstein, et al. (1995) (a modified N2 medium) in 34-well tissue culture plates (Falcon) coated with poly-L-lysine or poly-L-ornithine (Sigma) after 2 wash in the same medium. Note that this procedure results in cultures in which the cells have never been exposed to serum and stands in contrast to cultures in which serum has been used to neutralize dissociation proteases, and/or to intially "prime" the cells prior to serum withdrawal. The following peptide growth factors were added as indicated in the results: basic fibroblast growth factor (FGFb), transforming growth factor 1(TGF 1), TGF 2, glia derived neurotrophic factor (GDNF), and brain derived neurotrophic factor (BDNF) (all from PeproTech; Rocky Hill, NJ; additional lots of BDNF and GDNF were purchased from Promega; Madison WI). Anti-TGF antibodies were purchased from R & D Systems. Antibody was added at the time of Shh addition to the cultures. Cultures were maintained for up to 3 weeks and the medium changed every 4 days.

30 Immunoctyochemistry and cell scoring

For all cell staining, cultures were fixed with 5% paraformaldehyde in PBS (plus 0.1% glutaraldehyde if staining for GABA), and blocked using 3% goat serum, (Sigma), 0.1% Triton X-100, in PBS. Antibody incubations were performed in the blocking solutions. Antibodies used in this study were anti-tubulin III (Sigma), anti-tyrosine hydroxylase (TH) (Boehringer-Mannheim), anti-GABA (Sigma), and anti-glial

10

15

20

25

30

35

fibrillary acidic protein (GFAP) (Sigma). Primary antibodies were detected using horseradish peroxidase-, alkaline phosphatase-, or flurochrome-conjugated secondary antibodies (Vector; Burlingame, CA). Peroxidase-linked secondaries were visualized using a NI/DAB kit (Zymed; South San Francisco, CA) and phosphatase-linked secondaries using Vector BlueTM (Vector).

Cell counting was performed using an Olympus inverted microscope at a total magnification of 30OX. Data presented are representative, and have been confirmed by repeating the cultures at least 4-10 independent times for each neural population discussed. Cell numbers are reported as cells/field (the average of 30-40 fields from a total of 5 wells/condition; 4-10 indepedent experiments were assessed for each culture condtion examined). Consistency of counting was verified by at least 3 observers. Errors are reported as standard error of the mean (s.e.m.), and significance calculated by student's t-test.

Measurement of dopamine transport

To detect the presence of the dopamine transporter (Cerruti et al., 1993; Ciliax et al., 1995) cultures were incubated with a mixture consisting of: 5 x 10⁻⁸M ³H-dopamine (Amersham; Arlington Heights, IL; 48 Ci/mmol), 100 μM ascorbic acid (Sigma). 1 μM fluoxetine (Eli Lilly; Indianapolis, IN), 1 μM desmethylimipramine (Sigma), and 10 μM pargyline (Sigma) in DME-F12. Nonspecific labeling was measured by the addition of 5 x 10⁻⁵M unlabeled dopamine. Cells were incubated for 30 minutes at 37 C, rinsed three times with PBS and processed for either scintillation counting or autoradiography. For scintillation counting cells were first lysed with 150 μl of 0.1% SDS and then added to 500 μl of Microscint 20 (Packard; Meriden, CT) and counted in a Packard Instrument Topcount scintillation machine. For autoradiography, sister plates were coated with NTB-2 autoradiographic emulsion (Kodak; Rochester, NY) that had been diluted 1:3 with 10% glycerol. The plates were then air dried, exposed for 1-2 weeks, and developed.

Quantitative-competitive polymerase chain reaction (QC-PCR)

RNA was isolated from cells and tissue using Trizol (Gibco/BRL) as prescribed by the manufacturer. Genomic DNA was removed from the RNA by incubation with 0.5 units of Dnase (Gibco/BRL, Cat # 28068-015) at room temperature for 25 minutes. The solution was heated to 75 C for 20 minutes to inactivate the DNase. Reverse transcription was carried out using random hexamer and MuLV reverse transcriptase (Gibco/BRL) as suggested by the manufacturer. All the quantitative RT-PCR internal controls, or mimics, were synthetic single stranded DNA oligonucleotides

10

15

corresponding to the target sequence with an internal deletion from the central region (Oligos, Etc.; Wilsonville, OR). For actin, target = 280 bp, mimic = 230 bp; for ptc, target = 354 bp, mimic = 200 bp. PCR was performed using the Clontech PCR kit. For actin: annealing temperature 64 C, oligos GGCTCCGGTATGTGC, GGGGTACTTCAGGGT. annealing temperature 72 C, oligos For ptc: CATTGGCAGGAGGAGTTGATTGTGG, AGCACCTTTTGAGTGG-AGTTTGGGG. In each OC-PCR reaction, four reactions were set up with equal amounts of sample cDNA in each tube and 5-fold serial dilution of mimic. Also, for each sample an aliquot of cDNA was saved and amplified along with quantitative PCR as control for contamination. PCR reactions were carried out in an MJ Research PTC-200 thermal cycler and the following cycling profile used: 95 C for 45 seconds, 64 or 72 C for 35 seconds, 82 C for 30 seconds; for 40 cycles. The reaction mixtures were then fractionated by agarose electrophoresis, negative films obtained, and the films digitally scanned and quantified by area integration according to established procedures (Wang et al., 1995, and references therein). The quantity of target molecules was normalized to the competing mimic and expressed as a function of cDNA synthesized and used in each reaction.

N-methyl-4-phenylpyrridinium (MPP+) administration

Culture and MPP+ treatment of dopaminergic neurons were performed as previously described (Hyman et al., 1994; Krieglstein et al., 1995). MPP+ (Aldrich; St. Louis, MO) was added at day 3 of culture to a final concentration of 3 μ M for 58 hours. Cultures were then washed extensively to remove MPP+, cultured for an additional 34-48 hours to allow clearance of dying TH+ neurons, and then processed for immunocytochemistry.

25

30

35

20

RESULTS

Shh and Ptc Continue to be Expressed in the Rat CNS After the Major Period of Dorsoventral Patterning

Previous studies have shown that *shh* is expressed in the vertebrate embryo in the period during which dorsoventral patterning manifests (approximately E9-10 in the rat). Within the central nervous system, *shh* expression persists beyond this period and can be detected at a very high level in the E14-16 rat embryo. For example, in situ hybridization studies of the E14.5 embryo (Fig. 1A and E) reveal that *shh* is expressed in ventral regions of the spinal cord, hindbrain, midbrain, and diencephalon. Lower levels of expression are observed in the ventral striatum and septum, while no

10

15

20

25

30

35

expression is observed in the cortex within the limits of detection of this method. Interestingly, a "streak" of *shh* expression (Fig. 1A, arrow) is observed to bisect the diencephalon into rostral and caudal halves. This is likely to be the zona limitans intrathalamica that separates prosomeres 2 and 3, and has been previously observed in the studies of *shh* expression in the developing chick embryo (Marti, et al., 1995).

Recent biochemical evidence supports the view that the ptc gene product can act as a high affinity Shh receptor (Marigo et al., 1996a; Stone et al., 1996). Ptc shows a complementary pattern of expression (Fig. 1C and E), and is observed primarily lateral and dorsal to the sites of shh expression. The complementarity of expression is most dramatic in the diencephalon where ptc mRNA is absent from the zona limitans, but is expressed at a very high level on either side of this structure. Of further interest is the observation that rostral of the zonal limitans, ptc expression no longer seems as restricted to regions immediately dorsal of shh expression. Again, within the detection limits of this technique, ptc is not expressed in the cortex. Thus in regions where shh is expressed, adjacent tissue appears capable of responding to the gene product as evidenced by expression of the putative receptor.

Shh Promotes Dopaminergic Neuron Survival

In the developing midbrain (E9), Shh was first characterized for its ability to induce the production of dopaminergic neurons. Thus the trophic potential of Shh was tested on this neuronal population at a stage when these neurons have already been induced. Using cultures derived from the E14.5 mesencephalon it was found that Shh increases the survival of TH+ neurons in a dose dependent manner (Fig. 2A). These cells exhibited a neuronal morphology (Fig. 2B), and greater than 95% of the TH+ cells were also positive for the neuron-specific marker, tubulin III (Banerjee et al., 1990); GFAP staining revealed no glial cells (data not shown). Differences in TH+ neuron survival between control and Shh treated wells could be observed as early as 5 days. Note that under these stringently serum-free conditions (i.e. at no time were the cells exposed to serum), baseline levels of survival are even lower than those conventially reported for cultures that have been maintained in low serum or that have been briefly serum "primed". By 3 weeks in culture less than 6% of the total TH+ cells plated were present in the control condition, whereas 35-30% survive at 60 ng/ml of Shh (from 5 to 24 days, p<.001 at 35 and 60 ng/ml).

All catecholaminergic neurons express TH, but the presence of a specific high affinity DA uptake system is indicative of midbrain dopaminergic neurons (Di Porzio et al., 1980; Denis-Donini et al., 1984; Cerruti et al., 1993; Ciliax et al., 1995). As further

15

20

25

30

35

evidence that the cells supported by Shh are *bone fide* dopaminergic neurons, specific, high affinity dopamine (DA) uptake was also demonstrated (Figure 3). Midbrain cultures treated with Shh transported and retained ³H-DA with a dose response profile paralleling that of survival curves (Fig. 3A) (p<0.005 at 25 and 50 ng/ml). Emulsion autoradiography also demonstrated that the cells taking up ³H-DA were neuronal in morphology (Fig. 3B). In addition, immunohistochemistry for dopamine itself demonstrated high cellular content (data not shown).

The observed effect of Shh on increased TH+ neuron number is unlikely to be due to differentiation of latent progenitor cells since previous studies demonstrated that the ability of Shh to induce dopaminergic neurons in explanted tissue is lost at later stages of development (Hynes et al., 1995; Wang et al., 1995). Furthermore, the effects are unlikely to be due to a mitogenic response of committed neuroblasts since pulsing the cultures with 5-bromp-2'-deoxyuridine (BrdU) at 1, 2, or 4 days *in vitro* revealed very low mitotic activity in the presence or absence of Shh (data not shown). Thus in addition to inducing dopaminergic neurons in the naive mesencephalon, Shh is a trophic factor for these neurons.

Specificity of Shh Action on Midbrain Neurons: Regulated expression of Ptc

Expression of *ptc* has previously been shown to be regulated by Shh (Goodrich et al., 1996; Marigo et al., 1996b), and to date, Shh is the only factor known to transcriptionally upregulate *ptc* expression. Therefore, the expression of *ptc* by mesencephalic explants would reinforce the view that these cells are capable of responding to Shh, and upregulation of *ptc* mRNA in response to Shh would strongly indicate the specificity of such a response. Therefore, quantitative competitive PCR (QC-PCR) was used to measure the level of *ptc* expression.

Ptc mRNA levels were measured at 0, 3, 5, and 7 days of culture by the method described by Wang, et al. (1995). For each culture condition at each timepoint, 5 separate cDNA samples were co-amplified with a different known amount of mimic substrate (DNA that can be amplified by the same primers but yielding a product of molecular weight lower than that being sought in the sample). Thus for each condition and timepoint, a gel like that shown in Fig. 4A was generated (upper bands correspond to amplified ptc transcripts; lower bands correspond to amplified mimic). Using a scanning densitometer to quantify the observed bands, a graph was produced for each sample (Fig. 4B corresponds to Fig. 4A). When the density of the target band and the mimic band are equal, the concentration of the unknown target can be taken to be equal to the known concentration of mimic. Based on a linear curve fit, the concentration of

mimic at the point at which the density of the mimic and the target substrate are equal (Log Ds/Dm = 0) was taken to be the concentration of the substrate in the sample; this value was then normalized to the total amount of cDNA added to the reaction. These values are plotted in Fig. 4C; correlation coefficients (r^2) of the curve fits always exceeded 0.95, and thus the margin of error for the values presented is less than 5%. This experiment was performed two independent times with independent cultures and the results were nearly identical.

As shown in Fig. 4C, significant ptc expression was observed in the E14.5 ventral mesencephalon (time 0). After two days of culture, higher levels of ptc expression were observed than at the time of dissection; in control cultures this might reflect the loss of ptc non-expressing cell types since a constant amount of RNA was analyzed. There was no difference in ptc expression between control cultures and those treated with either 5 or 25 ng/ml of Shh at this time. However, cultures treated with 50 ng/ml of Shh showed a 20-fold induction of ptc mRNA expression relative to time of dissection and at least 5-fold over other culture condition. By 5 days of culture, ptc message levels had declined significantly in comparison to the 3 day level of expression but high levels of expression were still observed in 50 ng/ml Shh. By 7 days, no ptc expression was obsestived in either the control or 5 ng/ml Shh treated cultures, although actin could still be detected (data not shown). It is important to note that in the 25 and 50 ng/ml Shh-treated cultures ptc expression matched or exceeded the time zero expression of ptc in the mescencephalon despite the overall decrease in cell number. These results indicate that: A) ptc is expressed in the E14.5 ventral mesencephalon (suggesting that the cells in this region are capable of responding to Shh), b) Shh is necessary for the maintenance of ptc gene expression, and c) that the expression of ptc shows a Shh dose dependence that parallels the neurotrophic activity described above.

Specificity of Shh Action on Midbrain Neurons: Immunoneutralization

10

15

20

25

30

35

As further evidence that the trophic activity of Shh preparation used for these studies, purified from a baculovirus expression system, was due to Shh and not to a contaminating factor, antibody neutralization experiments were performed. As shown in Fig. 4D, a saturating dose of Shh (50 ng/ml) promotes midbrain neuron survival (p < .001) while the same dose of Shh in the presence of a 5-fold molar excess of activity-neutralizgin, anti-Shh, monoclonal antibody (5E1; Ericson, et al. (1996)) inhibits this trophic response (p < .001). In earlier studies (data not shown), an affinity purified, polyclonal, anti-Shh antibody dramatically reduced the activity of Shh in the dopaminergic neuron survival assay (p < .005), whereas purified rabbit IgG antibody from preimmune sera had no significant effect. Anti-TGF antibodies used at a 3-fold

15

20

30

35

molar excess to Shh did not inhibit the trophic activity, while they did inhibit the previously reported (Krieglestein et al., 1995) trophic effects of exogenously applied TGF s (data not shown). Addition of -galactosidase, expressed and purified in a manner identical to Shh, failed to show any trophic effect (data not shown), and thus renders unlikely the possibility that an undefined baculovirus protein iss responsible for the observed trophic effects. Finally, Shh purified from an *E. coli* expression system (Wang et al., 1995) also had trophic activity for Th+ cells, while -galactosidase purified identically to Shh from the *E. coli* expression system gave no such activity even at concentrations as high as 20 µg/ml (data not shown).

10 Shh supports the Survival of other Midbrain Neurons

Since the original observations concerning the role of Shh in midbrain development were concerned with induction of dopaminergic neurons (Hynes et al., 1995; Want et al., 1995), the current study initially focused on possible trophic effects on these neurons. Interestingly, the cultures in which the above described trophic effects were observed, also demonstrated that the trophic effect of Shh extended to non-dopaminergic neurons (i.e. TH neurons). Within the dopaminergic neucleus of the midbrain, the substantia nigra, GABA is also a major neurotransmitter (Masuko et al., 1992). Staining for GABA in these cultures (Fig. 5) showed that GABA+ cells are supported by the presence of Shh with a dose response profile comparable to TH+ cells. Furthermore, GABA cells outnumbered TH+ cells by a ratio of approximately 3.1. The two cell types together account for approximately 95% of the total neurons as gauged by staining for tubulin III (data not shown), and thus it is clear that the trophic effect of Shh on midbrain neurons extends to multiple neuron subtypes (for TH, p < 0.001 at 35 and 60 ng/ml), for GABA, p < .001 at 35 and 60 ng/ml).

25 Ssh Effects on Striatal Neurons

Since Shh is strongly expressed in the ventral and lateral forebrain (Echelard et al., 1993; Ericson et al., 1995), and that the Shh knockout mouse exhibits triatal defects (Chiang et al., 1996), Shh neurotrophic activity was examined in striatum-derived cultures as well. As assessed after 4 days *in vitro* (Fig. 6), Shh is a potent trophic factor for neurons cultured from the E15-16 striatum, and shows a dose response comparable to that of the midbrain. In comparing the number of total neurons (tubulin III+ cells) with that of GABA+ neurons, it is clear that essentially all of the neurons supported by Shh are GABA-nergic (fig. 6) (tubulin III, p < 0.001 at 25 and 50 ng/ml; GABA, p < .001 at 25 and 50 ng/ml). That this effect is trictly trophic was confirmed by the observation that BrdU labeling indices over the course of the culture period were low

10

15

25

30

35

and did not vary with dose (data not shown). Closer inspection reveals that the intensity of GABA staining is variable, and it is thus possible that various subtypes of GABA+ interneurons (reviewed by Kawaguchi et al., 1995) are all supported by Shh.

Shh Effects on Spinal Neurons

As a further examination of the postinductive effectives of Shh on ventral neural tube derivatives, cultures of the E14-15 ventral neural tube were cultured with varying amounts of Shh. Again, with a dose response identical to that observed in the mesencephalic and striatal cultures, Shh promotes the survival of tubulin III+ neurons as scored after 4 days *in vitro* (Fig. 6A). A majority, but not all of these cells also stain for GABA, and a smaller subset stain for a neuclear marker of spinal interneurons, Lim-1/2 (Tsuchida et al., 1994) (Fig 6A-C) (tubulin III, p < 0.001 at 25 and 50 ng/ml; Lim-1/2, p < .001 at 5, 10, 25 and 50 ng/ml; GABA, p .001 at 25 and 50 ng/ml). It is important to note that while there is overlap between the GABA+ and Lim-1/2+ populations, the latter is not mrerely a subset of the former since there are Lim-1/2+ cells that do not stain for GABA. Interestingly, immunoreactivity for the low affinity nerve growth factor receptor (Camu and Henderson, 1992), Islet-1 (Ericson et al., 1992), or galectin-1 (Hynes et al., 1990), all markers of rat motorneurons, was not detectable in these cultures, and thus it appers tht Shh is not trophic for spinal motorneurons.

20 Shh Protects Th+ Cells Against MPP+ Toxicity

The toxin, 5-phenyl-1,2,3,6-tetrahydropterine (MPTP), and its active metabolite, MPP+. are selectively toxic to mesencephalic dopamineric neurons (Kopin and Markey, 1988; Forno et al., 1993). Since other agents that promote survival of TH+ cells also protect against chemical toxicity of MPP+ (Hyman et al., 1991; Krieglestein et al., 1995), we tested the ability of Shh to protect TH+ cells in E14 rat mesencephalon explants from the effects of MPP+. As shown in Figure 8, the presence of Shh in cultures treated for 58 hours with MPP+ significantly increased the numbers of TH+ cells that were observed in culture after removal of the MPP+. MPP+ treatment caused a greater than 90% reduction in the numbers of TH+ cells compred to non-MPP+ treated control cultures, whereas incubation with Shh protected the Th+ cells so that only a 75% reduction of TH+ cells occurred after MPP+ treatment versus controls. Suster cultures tested for 4H-DA transport demonstrated a 8-fold increase in transport in Shh treated cultures versus controls (data not shown).

Shh was significantly more active in protecting TH+ cells from the effects of MPP+ than the other growth factors tested: glia-derived neurotrophic factor (GDNF)

(Lin et al., 1993) and brain-derived neurotrophic factor (BDNF) (Hyman et al., 1991) (Shh, p < 0.001 at 60 and 350 ng/ml; BDNF no significance; GDNF, p < .05). In the serum free conditions used in these experiments, none of the other growth factors tested showed as significant a level of TH+ cell protection from MPP+ toxicity as Shh, even when tested at levels previously shown to be optimal for neuroprotection (Fig. 8).

DISCUSSION

5

10

15

20

25

30

35

Shh is Neurotrophic for a Variety of Ventral Neurons

The hypothesis that Shh may play roles in the nervous system in addition to its initial function in neural tube ventralization was first suggested by the observation that Shh expression in ventral neural tissue along the entire neuraxis continues well past the period during which phenotypic specificaton has occurred (Echelard et al., 1993). Moreover, preliminary evidence generated in our laboratory indicates the presence of significant levels of Sh mRNA in specific regions of the adult human-CNS (e.g. spinal cord and substantia nigra, P. Jin, unpublished observations). We report here the first evidence that Shh can indeed exert effects independent of its induction and patterning activity.

Unlike its role at earlier stages of neural development, this novel neurotrophic activity acts on postmitotic neurons rather than on dividing progenitor cells. While the general trophic effect is apparent in a number of CNS regions (Fig. 2 and 6-7), there are both diffeences and similarieis in the effects observed among the regions examined. Given the fact that Shh is necessary for the induction of both spinal motor neurons and midbrain dopaminergic neurons, one might predict that Shh would be subsequently trophic for the cells. Strikingly, Shh is a very potent trophic factor for the midbrain dopaminergic neurons (Fig. 2), but in the cultures of ventral spinal neurons, no such effect on motor neurons was observed. Thus there is no direct correlation between the neuron phenotypes induced by Shh, and hose supported by Shh in a trophic manner. Interestingly, a common feature among the three CNS regions examined was the trophic effect for GABA-nergic neurons (Fig. 6-7). While it is not obvious whether these specific GABA+ populations are directly or indirectly induced by Shh during early development (cf. Pfaff et al., 1996), it is plausible that the trophic actions on these neurons are direct.

It is important to note that the neurotrophic effects reported herein are not lacking in specificity. For example, neurons of the peripheral nervous system show no survival in response to Shh administration, and preliminary studies of cultures derived

10

15

20

25

30

35

from E15-16 dorsal CNS regions (e.g. neocortex and dorsal spinal cord) show high baseline levels of neuron survival with no significant response to exogenous Shh application (J.A.O. and N.K.M., unpublished observation). Thus there appears to be a general restriction of the trophic effects of Shh to regions of the CNS specified by Shh, but the actual targets of trophic activity need not encompass the phenotypes whose induction is Shh-dependent. Nevertheless, the fact that Shh also protects neurons from toxic insult (Fig. 8), suggests previously unforeseen therapeutic roles for Shh as well.

Possible Mechanisms of Shh Action

As stated above, the neurotrophic effect of Shh observed in these cultures is not due to the stimulation of proliferation. One could argue, however, that the observed effects are indirect. In one scenario, Shh may act on a non-neuronal cell that in turn responds by secreting a neurotrophic factor. We observed no sign of astrocytes in any of our neural cultures, either by morphology or by staining for GFAP. Furthermore, in the purely neuronal cultures established from the midbrain, *ptc* is greatly upregulated in response to Shh, and thus the reported survival effects must be due to a response by neurons (Fig. 4C).

In another scenario, it is possible that Shh acts directly on some or all of the neurons, but the response is to secrete another factor(s) that actually possesses the survival activity. For example, Shh has been shown to induce the expression of TGF family members such as BMP's *in vivo* (Laufer et al., 1994; Levin et al., 1995) and these proteins are trophic for midbrain dopaminergic neurons (Krieglstein et al., 1995). That induced expression of TGF s is the trophic mechanism seems unlikely since exogenous TGF s show only modest trophic activity in our culture system, and the presence of neutralizing, anti-pan-TGF antibodies failed to inhibit the neurotrophic effects of Shh. Thus, at a minimum, Shh supports the survival of a subset of ventral CNS neurons. The mechanism by which Shh supports neuron survival is yet to be determined. While we favor the hypothesis that these trophic effects are direct, it remains possible that the survival response is due to Shh-induced expression of a secondary trophic factor.

As in the case of many secreted peptide factors, it now appears that Shh has activities that can vary greatly depending on the spatiotemporal context in which the factor is expressed. While it was initially thought that the primary role of Shh in the CNS is in early patterning events that are critical to phenotypic specification, it is now clear that Shh can also contribute to the survival and maturation of these CNS regions. Interestingly, the cell types acted upon in these two distinct roles of Shh do not

necessarily overlap. Thus a more thorough understanding of this multifaceted molecule will require a better understanding of its patterns of expression beyond early embryogenesis. Moreover, it will be critical to ascertain the significance of the trophic effects of Shh *in vivo*.

5

25

REFERENCES

Altman J, Bayer SA (1995) Atlas of prenatal rat brain development. Boca Raton: CRC Press.

Banerjee A, Roach MC, Trcka P, Luduena RF (1990) Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of -tubulin. J Biol Chem 1990:1794-1799.

Bumcrot DA, Takada R, McMahon AP (1995) Proteolytic processing yields two secreted forms of Sonic hedgehog. Mol. Cell. Biol. 25:2194-2303.

Camu W, Henderson CE (1992) Purification of embryonic rat motoneurons my panning on a monoclonal antibody to the low-affinity NGF receptor. J Neurosci Meth 54:59-70.

Cerruti C, Walther DM, Kuhar MJ, Uhl GR (1993) Dopamine transporter MRNA expression is intense in rat midbrain neurons and modest outside midbrain. Mol Brain Res 28:181-186.

Chiang C, Litingung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking *Sonic hedgehog* gene function. Nature 483:407-413.

Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM (1995) The dopamine transporter: immunochemical characterization and localization in the brain. J Neurosci 25.1714-1723.

Denis-Donini-S, Glowinski J, Prochiantz A (1984) Glial heterogeneity may define the three dimensional shape of mouse mesencephalic DA neurons. Nature 307:641-643.

Di Porzio U, Daguet M-C, Glowinski J, Prochiantz A (1980) Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurons grown in serum-free conditions. Nature 388:370-373.

20

Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 85:1417-1430.

Ericson J, Mortin S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87:661-673.

Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81:747-756.

Ericson J, Thor S, Edlund T, Jessell TM, Yamada T (1992) Early stages of motor neuron differentiation revealed by expression of homeobox gene *Isl-1*. Science 356:1555-1560.

Fietz Mj, Concordet J-P, Barbosa R, Johnson R, Krauss S, McMahon AP, Tabin C, Ingham PW (1994) The *hedgehog* gene family in Drosophila and vertebrate development. Development Suppl.:43-51.

Forno LS, DeLanney LE, Irwin I, Langston JW (1993) Similarities and differences between MPTP-induced parkinsonism and Pakinson's disease: neuropathologic considerations. Adv Neurol 70:600-608.

Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by hedgehog. Genes Dev 20:301-312.

Hyman C, Hofer M, Barde Y-A, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 450-230-232.

25 Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABA-nergic neurons of the ventral mesencephalon. J Neurosci 24:335-347.

Hynes M, Porter JA, Chiang C, Chang D, Tessier Lavigne M, Beachy PA, Rosenthal A (1995) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 25:35-44.

10

25

Hynes MA, Gitt M, Barondes SH, Jessell TM, Buck LB (1990) Selective expression of an endogenous lactose-binding lectin gene in subsets of central and peripheral neurons. J Neurosci 20:1004-1013.

Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal-interneurones: chemical, physiological and morphological characterization. TINS 28:527-535.

Kopin IJ, Markey SP (1988) MPTP toxicity: implications for research in Parkinson's disease. Ann Rev Neurosci 21:81-96.

Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K (1995) TGFP superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 24:736-742.

Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C (1994) Sonic hedgehog and FGF-4 act along a signaling cascade with a feedback loop to integrate growth and patterning of the developing limb bud. Cell 89:993-1003.

Lee jj, Von Kessler DP, Parks S, Beachy PA (1992) Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene *hedgehog*. Cell 81:33-50.

Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803-814.

Lin L-FH, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:130-1132.

Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ(1996a) Biochemical evidence that Patched is the Hedgehog receptor. Nature 484:176-179.

Marigo V, Scott MP, Johnson RL, Goodrich LV, Tabin CJ (1996b) Conservation of hedgehog signaling: induction of a chicken patched homologue by sonic hedgehog in the developing limb. Development 222:1225-1233.

Marti E, Bumcrot DA,- Takada R, McMahon AP (1995) Requirement of 19K sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375-322-325.

Masuko S, Nakajima S, Nakajima Y-@ (19.9-2):.:Dissociated high-purity dopaminergic neuron cultures from the substantia nigra and the ventral tegmental area of the postnatal rat. Neurosci 59:347-364.

20

25

Mohler.J--Vani K (1992) Molecular organization and embryonic expression of the *hedgehog* gene involved in cell-cell communication in segmental patterning of *Drosophila*. Development 215:957-971.

Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in *Drosophila*. Nature 387:795-801.

Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, jessell TM (1996) Requirement for LIM homeobox gene *ISL1* in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84:309-320.

Porter JA, Ekker SC, Young KE, Von Kessler DP, Lee jj, Moses D, Beach PA (1995) The product of hedgehog autoproteolytic cleavage active in local and longrange signaling. Nature 474:363-366.

Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, Jessell TM (1994) Floor plate and motor neuron induction by Vhh-1, a vertebrate homologue of hedgehog expressed by the notochord. Cell 86:761-775.

Shimoda K, Sauve Y, Schwartz JP, Commissiong JW (1992) A high percentage yield of tyrosine hydroxylase-positive cells from rat E14 mesencephalic cell culture. Brain Res686:319-331.

Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Hooper JE, Sauvage Fd, Rosenthal A (1996) The tumor-supressor gene *patched* encodes a candidate receptor for Sonic hedgehog. Nature 484:119-134.

Tabata T. Eaton S, Komberg TB (1992) The *Drosophila hedgehog* gene is expressed specifically in posterior compartment cells and is a target of *engrailed* regulation. Genes Dev 7:2635-2645.

Tanabe Y. Roelink H, jessel TM (1995) Induction of motor neurons by sonic hedgehog is independent of floor plate. Curr Biol6:651-658.

Tsuchida T, Ensini M, Morton SB, Baldassare M, Edlund T, jessell TM, Pfaff SL

(1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 89:957-970.

Wang MZ, jin P, Bumcrot DA, Marigo V, McMahon AP, Wang EA, Woolf T, Pang K (1995) Induction of dopaminergic neuron phenotype in the midbrain by sonic hedgehog protein. Nature Med 2:1184-1188.

Wilkinson, D.G. (1992). Whole mount in situ hybridization of vertebrate embryos.

In In Situ Hybridization: A Practical Approach, D.G. Wilkinson, ed. (Oxford: IRL Press), pp. 75-83.

All of the above-cited references and publications are hereby incorporated by reference.

EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

5

SEQUENCE LISTING

5	(2)		(B	UENC) LE) TY :) ST	E CH NGTH PE: 'RAND	ARAC I: 12 nucl EDNE	TERI 177 b eic SS:	STIC ase acic both	S: pair l	:s							
10		(ii)	MOI			GY: PE:											
15		(ix)) NA	ME/K	(EY:		L 2 75									
20		(xi)	SEC	UENC	E DE	SCRI	PTIC	on: s	SEQ 1	D NC	:1:						
25	ATG Met 1	GTC Val	GAA Glu	ATG Met	CTG Leu 5	CTG Leu	TTG Leu	ACA Thr	AGA Arg	ATT Ile 10	CTC Leu	TTG Leu	GTG Val	GGC Gly	TTC Phe 15	ATC Ile	48
23	TGC Cys	GCT Ala	CTT Leu	TTA Leu 20	GTC Val	TCC Ser	TCT Ser	GGG Gly	CTG Leu 25	ACT Thr	TGT Cys	GGA Gly	CCA Pro	GGC Gly 30	AGG Arg	GGC Gly	96
30	ATT Ile	GGA Gly	AAA Lys 35	AGG Arg	AGG Arg	CAC His	CCC Pro	AAA Lys 40	AAG Lys	CTG Leu	ACC Thr	CCG Pro	TTA Leu 45	GCC Ala	TAT Tyr	AAG Lys	144
35	CAG Gln	TTT Phe 50	ATT Ile	CCC Pro	AAT Asn	GTG Val	GCA Ala 55	GAG Glu	AAG Lys	ACC Thr	CTA Leu	GGG Gly 60	GCC Ala	AGT Ser	GGA Gly	AGA Arg	192
40	TAT Tyr 65	GAA Glu	GGG Gly	AAG Lys	ATC Ile	ACA Thr 70	AGA Arg	AAC Asn	TCC Ser	GAG Glu	AGA Arg 75	TTT Phe	AAA Lys	GAA Glu	CTA Leu	ACC Thr 80	240
45	CCA Pro	AAT Asn	TAC Tyr	AAC Asn	CCT Pro 85	GAC Asp	ATT Ile	ATT Ile	TTT Phe	AAG Lys 90	GAT Asp	GAA Glu	GAG Glu	AAC Asn	ACG Thr 95	GGA Gly	288
	GCT Ala	GAC Asp	AGA Arg	CTG Leu 100	ATG Met	ACT Thr	CAG Gln	CGC Arg	TGC Cys 105	AAG Lys	GAC Asp	AAG Lys	CTG Leu	AAT Asn 110	GCC Ala	CTG Leu	336
50	GCG Ala	ATC Ile	TCG Ser 115	GTG Val	ATG Met	AAC Asn	CAG Gln	TGG Trp 120	CCC Pro	GGG Gly	GTG Val	AAG Lys	CTG Leu 125	CGG Arg	GTG Val	ACC Thr	384
55	GAG Glu	GGC Gly 130	TGG Trp	GAC Asp	GAG Glu	GAT Asp	GGC Gly 135	CAT His	CAC His	TCC Ser	GAG Glu	GAA Glu 140	TCG Ser	CTG Leu	CAC His	TAC Tyr	432
60	GAG Glu 145	GGT Gly	CGC Arg	GCC Ala	GTG Val	GAC Asp 150	ATC Ile	ACC Thr	ACG Thr	TCG Ser	GAT Asp 155	CGG Arg	GAC Asp	CGC Arg	AGC Ser	AAG Lys 160	480
	TAC	GGA	ATG	CTG	GCC	CGC	CTC	GCC	GTC	GAG	GCC	GGC	TTC	GAC	TGG	GTC	528

	Tyr	Gly	Met	Leu	Ala 165	Arg	Leu	Ala	Val	Glu 170	Ala	Gly	Phe	Asp	Trp 175	Val	
5	TAC Tyr	TAC Tyr	GAG Glu	TCC Ser 180	AAG Lys	GCG Ala	CAC His	ATC Ile	CAC His 185	TGC Cys	TCC Ser	GTC Val	AAA Lys	GCA Ala 190	GAA Glu	AAC Asn	576
10	TCA Ser	GTG Val	GCA Ala 195	GCG Ala	AAA Lys	TCA Ser	GGA Gly	GGC Gly 200	TGC Cys	TTC Phe	CCT Pro	GGC Gly	TCA Ser 205	GCC Ala	ACA Thr	GTG Val	624
15	CAC His	CTG Leu 210	GAG Glu	CAT His	GGA Gly	GGC Gly	ACC Thr 215	AAG Lys	CTG Leu	GTG Val	AAG Lys	GAC Asp 220	CTG Leu	AGC Ser	CCT Pro	GGG Gly	672
15	GAC Asp 225	CGC Arg	GTG Val	CTG Leu	GCT Ala	GCT Ala 230	GAC Asp	GCG Ala	GAC Asp	GGC Gly	CGG Arg 235	CTG Leu	CTC Leu	TAC Tyr	AGT Ser	GAC Asp 240	720
20	TTC Phe	CTC Leu	ACC Thr	TTC Phe	CTC Leu 245	GAC Asp	CGG Arg	ATG Met	GAC Asp	AGC Ser 250	TCC Ser	CGA Arg	AAG Lys	CTC Leu	TTC Phe 255	TAC Tyr	768
25	GTC Val	ATC Ile	GAG Glu	ACG Thr 260	CGG Arg	CAG Gln	CCC Pro	CGG Arg	GCC Ala 265	CGG Arg	CTG Leu	CTA Leu	CTG Leu	ACG Thr 270	GCG Ala	GCC Ala	816
30	CAC His	CTG Leu	CTC Leu 275	TTT Phe	GTG Val	GCC Ala	CCC Pro	CAG Gln 280	CAC His	AAC Asn	CAG Gln	TCG Ser	GAG Glu 285	GCC Ala	ACA Thr	GGG Gly	864
35	TCC Ser	ACC Thr 290	AGT Ser	GGC Gly	CAG Gln	GCG Ala	CTC Leu 295	TTC Phe	GCC Ala	AGC Ser	AAC Asn	GTG Val 300	AAG Lys	CCT Pro	GGC Gly	CAA Gln	912
33	CGT Arg 305	GTC Val	TAT Tyr	GTG Val	CTG Leu	GGC Gly 310	GAG Glu	GGC Gly	GGG Gly	CAG Gln	CAG Gln 315	CTG Leu	CTG Leu	CCG Pro	GCG Ala	TCT Ser 320	960
40	GTC Val	CAC His	AGC Ser	GTC Val	TCA Ser 325	TTG Leu	CGG Arg	GAG Glu	GAG Glu	GCG Ala 330	TCC Ser	GGA Gly	GCC Ala	TAC Tyr	GCC Ala 335	CCA Pro	1008
45	CTC Leu	ACC Thr	GCC Ala	CAG Gln 340	GGC Gly	ACC Thr	ATC Ile	CTC Leu	ATC Ile 345	AAC Asn	CGG Arg	GTG Val	TTG Leu	GCC Ala 350	TCC Ser	TGC Cys	1056
50	TAC Tyr	GCC Ala	GTC Val 355	Ile	GAG Glu	GAG Glu	CAC His	AGT Ser 360	TGG Trp	GCC Ala	CAT His	TGG Trp	GCC Ala 365	TTC Phe	GCA Ala	CCA Pro	1104
55	TTC Phe	CGC Arg 370	Leu	GCT Ala	CAG Gln	GGG Gly	CTG Leu 375	Leu	GCC Ala	GCC Ala	CTC Leu	TGC Cys 380	CCA Pro	GAT Asp	GGG Gly	GCC Ala	1152
33	ATC Ile 385	Pro	ACT Thr	GCC Ala	GCC Ala	ACC Thr 390	Thr	ACC Thr	ACT Thr	GGC Gly	ATC Ile 395	CAT His	TGG Trp	TAC Tyr	TCA Ser	CGG Arg 400	1200
60	CTC Leu	CTC Leu	TAC Tyr	CGC Arg	ATC Ile 405	Gly	AGC Ser	TGG Trp	GTG Val	CTG Leu 410	Asp	GGT Gly	GAC Asp	GCG Ala	CTG Leu 415	His	1248

5	CCG Pro		Gly					GCC Ala		TG							1277
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:2:									
10		(i)	(A (B	LE TY ST	NGTH PE: RAND	: 11 nucl	90 b eic SS:	STIC ase acid both	pair	s							
15		(ii)	MOL	ECUL	E TY	PE:	CDNA	\									
20		(ix)	(A		ME/K	EY:		191						,			
25		(xi)	SEÇ	UENC	E DE	SCRI	PTIC	ON: 5	SEQ I	D NC	:2:						
23	ATG Met 1	GCT Ala	CTG Leu	CCG Pro	GCC Ala 5	AGT Ser	CTG Leu	TTG Leu	CCC Pro	CTG Leu 10	TGC Cys	TGC Cys	TTG Leu	GCA Ala	CTC Leu 15	TTG Leu	48
30	·GCA Ala	CTA Leu	TCT Ser	GCC Ala 20	CAG Gln	AGC Ser	TGC Cys	GGG Gly	CCG Pro 25	GGC Gly	CGA Arg	GGA Gly	CCG Pro	GTT Val 30	GGC Gly	CGG Arg	96
35	CGG Arg	CGT Arg	TAT Tyr 35	GTG Val	CGC Arg	AAG Lys	CAA Gln	CTT Leu 40	GTG Val	CCT Pro	CTG Leu	CTA Leu	TAC Tyr 45	AAG Lys	CAG Gln	TTT Phe	144
40	GTG Val	CCC Pro 50	AGT Ser	ATG Met	CCC Pro	GAG Glu	CGG Arg 55	ACC Thr	CTG Leu	GGC Gly	GCG Ala	AGT Ser 60	GGG Gly	CCA Pro	GCG Ala	GAG Glu	192
45	GGG Gly 65	AGG Arg	GTA Val	ACA Thr	AGĞ Arg	GGG Gly 70	TCG Ser	GAG Glu	CGC Arg	TTC Phe	CGG Arg 75	GAC Asp	CTC Leu	GTA Val	CCC Pro	AAC Asn 80	240
	TAC Tyr	AAC Asn	CCC Pro	GAC Asp	ATA Ile 85	ATC Ile	TTC Phe	AAG Lys	GAT Asp	GAG Glu 90	GAG Glu	AAC Asn	AGC Ser	GGC Gly	GCA Ala 95	GAC Asp	288
50	CGC Arg	CTG Leu	ATG Met	ACA Thr 100	GAG Glu	CGT Arg	TGC Cys	AAA Lys	GAG Glu 105	CGG Arg	GTG Val	AAC Asn	GCT Ala	CTA Leu 110	GCC Ala	ATC Ile	336
55	GCG Ala	GTG Val	ATG Met 115	AAC Asn	ATG Met	TGG Trp	CCC Pro	GGA Gly 120	GTA Val	CGC Arg	CTA Leu	CGT Arg	GTG Val 125	ACT Thr	GAA Glu	GGC Gly	384
60	TGG Trp	GAC Asp 130	Glu	GAC Asp	GGC Gly	CAC His	CAC His 135	GCA Ala	CAG Gln	GAT Asp	TCA Ser	CTC Leu 140	CAC His	TAC Tyr	GAA Glu	GGC Gly	432
	CGT	GCC	TTG	GAC	ATC	ACC	ACG	TCT	GAC	CGT	GAC	CGT	AAT	AAG	TAT	GGT	480

	Arg 145	Ala	Leu	Asp	Ile	Thr 150	Thr	Ser	Asp	Arg	Asp 155	Arg	Asn	Lys	Tyr	Gly 160	
5	TTG Leu	TTG Leu	GCG Ala	CGC Arg	CTA Leu 165	GCT Ala	GTG Val	GAA Glu	GCC Ala	GGA Gly 170	TTC Phe	GAC Asp	TGG Trp	GTC Val	TAC Tyr 175	TAC Tyr	528
10	GAG Glu	TCC Ser	CGC Arg	AAC Asn 180	CAC His	ATC Ile	CAC His	GTA Val	TCG Ser 185	GTC Val	AAA Lys	GCT Ala	GAT Asp	AAC Asn 190	TCA Ser	CTG Leu	576
15	GCG Ala	GTC Val	CGA Arg 195	GCC Ala	GGA Gly	GGC Gly	TGC Cys	TTT Phe 200	CCG Pro	GGA Gly	AAT Asn	GCC Ala	ACG Thr 205	GTG Val	CGC Arg	TTG Leu	624
	CGG Arg	AGC Ser 210	GGC Gly	GAA Glu	CGG Arg	AAG Lys	GGG Gly 215	CTG Leu	AGG Arg	GAA Glu	CTA Leu	CAT His 220	CGT Arg	GGT Gly	GAC Asp	TGG Trp	672
20	GTA Val 225	CTG Leu	GCC Ala	GCT Ala	GAT Asp	GCA Ala 230	GCG Ala	GGC Gly	CGA Arg	GTG Val	GTA Val 235	CCC Pro	ACG Thr	CCA Pro	GTG Val	CTG Leu 240	720
25	CTC Leu	TTC Phe	CTG Leu	GAC Asp	CGG Arg 245	GAT Asp	CTG Leu	CAG Gln	CGC Arg	CGC Arg 250	GCC Ala	TCG Ser	TTC Phe	GTG Val	GCT Ala 255	GTG Val	768
30	GAG Glu	ACC Thr	GAG Glu	CGG Arg 260	CCT Pro	CCG Pro	CGC Arg	AAA Lys	CTG Leu 265	TTG Leu	CTC Leu	ACA Thr	CCC Pro	TGG Trp 270	CAT His	CTG Leu	816
35	GTG Val	TTC Phe	GCT Ala 275	GCT Ala	CGC Arg	GGG Gly	CCA Pro	GCG Ala 280	CCT Pro	GCT Ala	CCA Pro	GGT Gly	GAC Asp 285	TTT Phe	GCA Ala	CCG Pro	864
	GTG Val	TTC Phe 290	GCG Ala	CGC Arg	CGC Arg	TTA Leu	CGT Arg 295	GCT Ala	GGC Gly	GAC Asp	TCG Ser	GTG Val 300	CTG Leu	GCT Ala	CCC Pro	GGC Gly	912
40	GGG Gly 305	GAC Asp	GCG Ala	CTC Leu	CAG Gln	CCG Pro 310	GCG Ala	CGC Arg	GTA Val	GCC Ala	CGC Arg 315	GTG Val	GCG Ala	CGC Arg	GAG Glu	GAA Glu 320	960
45	GCC Ala	GTG Val	GGC Gly	GTG Val	TTC Phe 325	GCA Ala	CCG Pro	CTC Leu	ACT Thr	GCG Ala 330	CAC His	GGG Gly	ACG Thr	CTG Leu	CTG Leu 335	GTC Val	1008
50	AAC Asn	GAC Asp	GTC Val	CTC Leu 340	GCC Ala	TCC Ser	TGC Cys	TAC Tyr	GCG Ala 345	GTT Val	CTA Leu	GAG Glu	AGT Ser	CAC His 350	CAG Gln	TGG Trp	1056
55	GCC Ala	CAC His	CGC Arg 355	GCC Ala	TTC Phe	GCC Ala	CCT Pro	TTG Leu 360	CGG Arg	CTG Leu	CTG Leu	CAC His	GCG Ala 365	CTC Leu	GGG Gly	GCT Ala	1104
55	CTG Leu	CTC Leu 370	CCT Pro	GGG Gly	GGT Gly	GCA Ala	GTC Val 375	CAG Gln	CCG Pro	ACT Thr	GGC Gly	ATG Met 380	CAT His	TGG Trp	TAC Tyr	TCT Ser	1152
60	CGC Arg 385	Leu	CTT Leu	TAC Tyr	CGC Arg	TTG Leu 390	GCC Ala	GAG Glu	GAG Glu	TTA Leu	ATG Met 395	GGC Gly	ТG				1190

	(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	10:3:									
5		(i)	(P (E	L) LE 3) TY 3) ST	NGTH PE: RANE	IARAC I: 12 nucl DEDNE DGY:	81 b eic SS:	ase acio both	pair 1	īs					-		
10		(ii)				PE:											
15		(ix)		A) NA	ME/F	KEY:		1233									
20		(xi)	SEC	QUENC	CE DE	ESCRI	PTIC	on: s	SEQ 1	D NO):3:						
	ATG Met 1	TCT Ser	CCC Pro	GCC Ala	TGG Trp 5	CTC Leu	CGG Arg	CCC Pro	CGA Arg	CTG Leu 10	CGG Arg	TTC Phe	TGT Cys	CTG Leu	TTC Phe 15	CTG Leu	48
25	CTG Leu	CTG Leu	CTG Leu	CTT Leu 20	CTG Leu	GTG Val	CCG Pro	GCG Ala	GCG Ala 25	CGG Arg	GGC Gly	TGC Cys	GGG Gly	CCG Pro 30	GGC Gly	CGG Arg	96
30	GTG Val	GTG Val	GGC Gly 35	AGC Ser	CGC Arg	CGG Arg	AGG Arg	CCG Pro 40	CCT Pro	CGC Arg	AAG Lys	CTC Leu	GTG Val 45	CCT Pro	CTT Leu	GCC Ala	144
35	TAC Tyr	AAG Lys 50	CAG Gln	TTC Phe	AGC Ser	CCC Pro	AAC Asn 55	GTG Val	CCG Pro	GAG Glu	AAG Lys	ACC Thr 60	CTG Leu	GGC Gly	GCC Ala	AGC Ser	192
40	GGG Gly 65	CGC Arg	TAC Tyr	GAA Glu	GGC Gly	AAG Lys 70	ATC Ile	GCG Ala	CGC Arg	AGC Ser	TCT Ser 75	GAG Glu	CGC Arg	TTC Phe	AAA Lys	GAG Glu 80	240
	CTC Leu	ACC Thr	CCC Pro	AAC Asn	TAC Tyr 85	AAT Asn	CCC Pro	GAC Asp	ATC Ile	ATC Ile 90	TTC Phe	AAG Lys	GAC Asp	GAG Glu	GAG Glu 95	AAC Asn	288
45	ACG Thr	GGT Gly	GCC Ala	GAC Asp 100	CGC Arg	CTC Leu	ATG Met	ACC Thr	CAG Gln 105	CGC Arg	TGC Cys	AAG Lys	GAC Asp	CGT Arg 110	CTG Leu	AAC Asn	336
50	TCA Ser	CTG Leu	GCC Ala 115	ATC Ile	TCT Ser	GTC Val	ATG Met	AAC Asn 120	CAG Gln	TGG Trp	CCT Pro	GGT Gly	GTG Val 125	AAA Lys	CTG Leu	CGG Arg	384
55	GTG Val	ACC Thr 130	GAA Glu	GGC Gly	CGG Arg	GAT Asp	GAA Glu 135	GAT Asp	GGC Gly	CAT His	CAC His	TCA Ser 140	GAG Glu	GAG Glu	TCT Ser	TTA Leu	432
60	CAC His 145	TAT Tyr	GAG Glu	GGC Gly	CGC Arg	GCG Ala 150	GTG Val	GAT Asp	ATC Ile	ACC Thr	ACC Thr 155	TCA Ser	GAC Asp	CGT Arg	GAC Asp	CGA Arg 160	480
00	AAT Asn	AAG Lys	TAT Tyr	GGA Gly	CTG Leu	CTG Leu	GCG Ala	CGC Arg	TTA Leu	GCA Ala	GTG Val	GAG Glu	GCC Ala	GGC Gly	TTC Phe	GAC Asp	528

					165		•			170					175		
5	TGG Trp	GTG Val	TAT Tyr	TAC Tyr 180	GAG Glu	TCC Ser	AAG Lys	GCC Ala	CAC His 185	GTG Val	CAT His	TGC Cys	TCT Ser	GTC Val 190	AAG Lys	TCT Ser	576
10	GAG Glu	CAT His	TCG Ser 195	GCC Ala	GCT Ala	GCC Ala	AAG Lys	ACA Thr 200	GGT Gly	GGC Gly	TGC Cys	TTT Phe	CCT Pro 205	GCC Ala	GGA Gly	GCC Ala	624
10	CAG Gln	GTG Val 210	CGC Arg	CTA Leu	GAG Glu	AAC Asn	GGG Gly 215	GAG Glu	CGT Arg	GTG Val	GCC Ala	CTG Leu 220	TCA Ser	GCT Ala	GTA Val	AAG Lys	672
15	CCA Pro 225	GGA Gly	GAC Asp	CGG Arg	GTG Val	CTG Leu 230	GCC Ala	ATG Met	GGG Gly	GAG Glu	GAT Asp 235	GGG Gly	ACC Thr	CCC Pro	ACC Thr	TTC Phe 240	720
20	AGT Ser	GAT Asp	GTG Val	CTT Leu	ATT Ile 245	TTC Phe	CTG Leu	GAC Asp	CGC Arg	GAG Glu 250	CCA Pro	AAC Asn	CGG Arg	CTG Leu	AGA Arg 255	GCT Ala	768
25	TTC Phe	CAG Gln	GTC Val	ATC Ile 260	GAG Glu	ACT Thr	CAG Gln	GAT Asp	CCT Pro 265	CCG Pro	CGT Arg	CGG Arg	CTG Leu	GCG Ala 270	CTC Leu	ACG Thr	816
30	CCT Pro	GCC Ala	CAC His 275	CTG Leu	CTC Leu	TTC Phe	ATT Ile	GCG Ala 280	GAC Asp	AAT Asn	CAT His	ACA Thr	GAA Glu 285	CCA Pro	GCA Ala	GCC Ala	864
	CAC His	TTC Phe 290	Arg	GCC Ala	ACA Thr	TTT Phe	GCC Ala 295	AGC Ser	CAT His	GTG Val	CAA Gln	CCA Pro 300	GGC Gly	CAA Gln	TAT Tyr	GTG Val	912
35	CTG Leu 305	GTA Val	TCA Ser	GGG Gly	GTA Val	CCA Pro 310	GGC Gly	CTC Leu	CAG Gln	CCT Pro	GCT Ala 315	CGG Arg	GTG Val	GCA Ala	GCT Ala	GTC Val 320	960
40	TCC Ser	ACC Thr	CAC	GTG Val	GCC Ala 325	CTT Leu	GGG Gly	TCC Ser	TAT Tyr	GCT Ala 330	CCT Pro	CTC Leu	ACA Thr	AGG Arg	CAT His 335	GGG Gly	1008
45	ACA Thr	CTT Leu	GTG Val	GTG Val 340	GAG Glu	GAT Asp	GTG Val	GTG Val	GCC Ala 345	TCC Ser	TGC Cys	TTT Phe	GCA Ala	GCT Ala 350	GTG Val	GCT Ala	1056
50	GAC Asp	CAC His	CAT His 355	CTG Leu	GCT Ala	CAG Gln	TTG Leu	GCC Ala 360	Phe	TGG Trp	CCC Pro	CTG Leu	CGA Arg 365	Leu	TTT Phe	CCC Pro	1104
30	AGT Ser	TTG Leu 370	Ala	TGG Trp	GGC Gly	AGC Ser	TGG Trp 375	Thr	CCA Pro	AGT Ser	GAG Glu	GGT Gly 380	Val	CAC His	TCC Ser	TAC Tyr	1152
55	CCT Pro 385	Gln	ATG Met	CTC Leu	TAC Tyr	CGC Arg 390	Leu	GGG Gly	CGT Arg	CTC Leu	TTG Leu 395	Leu	GAA Glu	GAG Glu	AGC Ser	ACC Thr 400	1200
60	TTC Phe	CAT His	CCA Pro	CTG (GC A Gly 405	Met	CT GG Ser	G GC	A GGA Ala	AGC Gly 410	Ser	AGGGA	CT CT	AACC	ACTG		1253

	CCCI	CCT	GA A	ACTGC	TGTO	SC G1	GGAT	CC									1281
5	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	10:4:	:								
10		(i)	(<i>I</i> (E	A) LE 3) TY C) SI	NGTH PE: RANE	H: 13 nucl	TERI 313 k Leic ESS: line	ase acio both	pair d	:s					-		
		(ii)	MOI	LECUI	E TY	PE:	CDNA	Ą									
15		(ix)	(I		ME/F	KEY:	CDS	1314									
20		(xi)	SE(QUENC	CE DE	ESCRI	PTIC	on: s	SEQ 1	D NO	0:4:						
25	ATG Met 1	CTG Leu	CTG Leu	CTG Leu	CTG Leu 5	GCC Ala	AGA Arg	TGT Cys	TTT Phe	CTG Leu 10	GTG Val	ATC Ile	CTT Leu	GCT Ala	TCC Ser 15	TCG Ser	48
	CTG Leu	CTG Leu	GTG Val	TGC Cys 20	CCC Pro	GGG Gly	CTG Leu	GCC Ala	TGT Cys 25	GGG Gly	CCC Pro	G1y GCC	AGG Arg	GGG Gly 30	TTT Phe	GGA Gly	96
30	AAG Lys	AGG Arg	CGG Arg 35	CAC His	CCC Pro	AAA Lys	AAG Lys	CTG Leu 40	ACC Thr	CCT Pro	TTA Leu	GCC Ala	TAC Tyr 45	AAG Lys	CAG Gln	TTT Phe	144
35	ATT Ile	CCC Pro 50	AAC Asn	GTA Val	GCC Ala	GAG Glu	AAG Lys 55	ACC Thr	CTA Leu	GGG Gly	GCC Ala	AGC Ser 60	GGC Gly	AGA Arg	TAT Tyr	GAA Glu	192
40	GGG Gly 65	AAG Lys	ATC Ile	ACA Thr	AGA Arg	AAC Asn 70	TCC Ser	GAA Glu	CGA Arg	TTT Phe	AAG Lys 75	GAA Glu	CTC Leu	ACC Thr	CCC Pro	AAT Asn 80	240
45	TAC Tyr	AAC Asn	CCC Pro	GAC Asp	ATC Ile 85	ATA Ile	TTT Phe	AAG Lys	GAT Asp	GAG Glu 90	GAA Glu	AAC Asn	ACG Thr	GGA Gly	GCA Ala 95	GAC Asp	288
	CGG Arg	CTG Leu	ATG Met	ACT Thr 100	CAG Gln	AGG Arg	TGC Cys	AAA Lys	GAC Asp 105	AAG Lys	TTA Leu	AAT Asn	GCC Ala	TTG Leu 110	GCC Ala	ATC Ile	336
50	TCT Ser	GTG Val	ATG Met 115	AAC Asn	CAG Gln	TGG Trp	CCT Pro	GGA Gly 120	GTG Val	AGG Arg	CTG Leu	CGA Arg	GTG Val 125	ACC Thr	GAG Glu	GGC Gly	384
55	TGG Trp	GAT Asp 130	GAG Glu	GAC Asp	GGC Gly	CAT His	CAT His 135	TCA Ser	GAG Glu	GAG Glu	TCT Ser	CTA Leu 140	CAC His	TAT Tyr	GAG Glu	GGT Gly	432
60	CGA Arg 145	GCA Ala	GTG Val	GAC Asp	ATC Ile	ACC Thr 150	ACG Thr	TCC Ser	GAC Asp	CGG Arg	GAC Asp 155	CGC Arg	AGC Ser	AAG Lys	TAC Tyr	GGC Gly 160	480
•	ATG	CTG	GCT	CGC	CTG	GCT	GTG	GAA	GCA	GGT	TTC	GAC	TGG	GTC	TAC	TAT	528

								•										
		Met	Leu	Ala	Arg	Leu 165	Ala	Val	Glu	Ala	Gly 170	Phe	Asp	Trp	Val	Tyr 175	Tyr	
	5	GAA Glu	TCC Ser	AAA Lys	GCT Ala 180	CAC His	ATC Ile	CAC His	TGT Cys	TCT Ser 185	GTG Val	AAA Lys	GCA Ala	GAG Glu	AAC Asn 190	TCC Ser	GTG Val	576
1	0	GCG Ala	GCC Ala	AAA Lys 195	TCC Ser	GGC Gly	GGC Gly	TGT Cys	TTC Phe 200	CCG Pro	GGA Gly	TCC Ser	GCC Ala	ACC Thr 205	GTG Val	CAC His	CTG Leu	624
1	5	GAG Glu	CAG Gln 210	GGC Gly	GGC Gly	ACC Thr	AAG Lys	CTG Leu 215	GTG Val	AAG Lys	GAC Asp	TTA Leu	CGT Arg 220	CCC Pro	GGA Gly	GAC Asp	CGC Arg	672
		GTG Val 225	CTG Leu	GCG Ala	GCT Ala	GAC Asp	GAC Asp 230	CAG Gln	GGC Gly	CGG Arg	CTG Leu	CTG Leu 235	TAC Tyr	AGC Ser	GAC Asp	TTC Phe	CTC Leu 240	720
2	0	ACC Thr	TTC Phe	CTG Leu	GAC Asp	CGC Arg 245	GAC Asp	GAA Glu	GGC Gly	GCC Ala	AAG Lys 250	AAG Lys	GTC Val	TTC Phe	TAC Tyr	GTG Val 255	ATC Ile	768
2	5	GAG Glu	ACG Thr	CTG Leu	GAG Glu 260	CCG Pro	CGC Arg	GAG Glu	CGC Arg	CTG Leu 265	CTG Leu	CTC Leu	ACC Thr	GCC Ala	GCG Ala 270	CAC His	CTG Leu	816
3	0	CTC Leu	TTC Phe	GTG Val 275	GCG Ala	CCG Pro	CAC His	AAC Asn	GAC Asp 280	TCG Ser	GGG Gly	CCC Pro	ACG Thr	CCC Pro 285	GGG Gly	CCA Pro	AGC Ser	864
3	5	GCG Ala	CTC Leu 290	TTT Phe	GCC Ala	AGC Ser	CGC Arg	GTG Val 295	CGC Arg	CCC Pro	GGG Gly	CAG Gln	CGC Arg 300	GTG Val	TAC Tyr	GTG Val	GTG Val	912
		GCT Ala 305	GAA Glu	CGC Arg	GGC Gly	GGG Gly	GAC Asp 310	CGC Arg	CGG Arg	CTG Leu	CTG Leu	CCC Pro 315	GCC Ala	GCG Ala	GTG Val	CAC His	AGC Ser 320	960
4	0	GTG Val	ACG Thr	CTG Leu	CGA Arg	GAG Glu 325	GAG Glu	GAG Glu	GCG Ala	GGC Gly	GCG Ala 330	TAC Tyr	GCG Ala	CCG Pro	CTC Leu	ACG Thr 335	GCG Ala	1008
4	.5	CAC His	GGC Gly	ACC Thr	ATT Ile 340	CTC Leu	ATC Ile	AAC Asn	CGG Arg	GTG Val 345	CTC Leu	GCC Ala	TCG Ser	TGC Cys	TAC Tyr 350	GCT Ala	GTC Val	1056
5	0	ATC Ile	GAG Glu	GAG Glu 355	CAC His	AGC Ser	TGG Trp	GCA Ala	CAC His 360	CGG Arg	GCC Ala	TTC Phe	GCG Ala	CCT Pro 365	TTC Phe	CGC Arg	CTG Leu	1104
5	5	GCG Ala	CAC His 370	GCG Ala	CTG Leu	CTG Leu	GCC Ala	GCG Ala 375	CTG Leu	GCA Ala	CCC Pro	GCC Ala	CGC Arg 380	ACG Thr	GAC Asp	GGC Gly	GGG Gly	1152
٥	-	GGC Gly 385	GGG Gly	GGC Gly	AGC Ser	ATC Ile	CCT Pro 390	GCA Ala	GCG Ala	CAA Gln	TCT Ser	GCA Ala 395	ACG Thr	GAA Glu	GCG Ala	AGG Arg	GGC Gly 400	1200
6	0	GCG Ala	GAG Glu	CCG Pro	ACT Thr	GCG Ala 405	GGC Gly	ATC Ile	CAC His	TGG Trp	TAC Tyr 410	TCG Ser	CAG Gln	CTG Leu	CTC Leu	TAC Tyr 415	CAC His	1248

5	ATT Ile	GGC Gly	ACC Thr	TGG Trp 420	CTG Leu	TTG Leu	GAC Asp	AGC Ser	GAG Glu 425	ACC Thr	ATG Met	CAT His	CCC Pro	TTG Leu 430	GGA Gly	ATG Met	1296
J		GTC Val				TG									-		1313
10	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID 1	NO:5:	:								
15		(i)	(E	A) LE 3) TY C) ST	ENGT: (PE:	i: 12 nucl EDNE	256 k Leic ESS:	ase acio both	pain d	cs							
20		(ii)	MOI	LECUI	LE TY	PE:	CDNA	F									
25		(ix)		A) N/	E: AME/H DCATI			1257									
									SEQ :								
30	ATG Met 1	CGG Arg	CTT Leu	TTG Leu	ACG Thr 5	AGA Arg	GTG Val	CTG Leu	CTG Leu	GTG Val 10	TCT Ser	CTT Leu	CTC Leu	ACT Thr	CTG Leu 15	TCC Ser	48
35	TTG Leu	GTG Val	GTG Val	TCC Ser 20	GGA Gly	CTG Leu	GCC Ala	TGC Cys	GGT Gly 25	CCT Pro	GGC Gly	AGA Arg	GGC Gly	TAC Tyr 30	GGC Gly	AGA Arg	96
40	AGA Arg	AGA Arg	CAT His 35	CCG Pro	AAG Lys	AAG Lys	CTG Leu	ACA Thr 40	CCT Pro	CTC Leu	GCC Ala	TAC Tyr	AAG Lys 45	CAG Gln	TTC Phe	ATA Ile	144
	CCT Pro	AAT Asn 50	GTC Val	GCG Ala	GAG Glu	AAG Lys	ACC Thr 55	TTA Leu	GGG Gly	GCC Ala	AGC Ser	GGC Gly 60	AGA Arg	TAC Tyr	GAG Glu	GGC Gly	192
45	AAG Lys 65	ATA Ile	ACG Thr	CGC Arg	AAT Asn	TCG Ser 70	GAG Glu	AGA Arg	TTT Phe	AAA Lys	GAA Glu 75	CTT Leu	ACT Thr	CCA Pro	AAT Asn	TAC Tyr 80	240
50	AAT Asn	CCC Pro	GAC Asp	ATT Ile	ATC Ile 85	TTT Phe	AAG Lys	GAT Asp	GAG Glu	GAG Glu 90	AAC Asn	ACG Thr	GGA Gly	GCG Ala	GAC Asp 95	AGG Arg	288
55	CTC Leu	ATG Met	ACA Thr	CAG Gln 100	AGA Arg	TGC Cys	AAA Lys	GAC Asp	AAG Lys 105	CTG Leu	AAC Asn	TCG Ser	CTG Leu	GCC Ala 110	ATC Ile	TCT Ser	336
60	GTA Val	ATG Met	AAC Asn 115	CAC His	TGG Trp	CCA Pro	GGG Gly	GTT Val 120	AAG Lys	CTG Leu	CGT Arg	GTG Val	ACA Thr 125	GAG Glu	GGC Gly	TGG Trp	384
•••	GAT Asp	GAG Glu	GAC Asp	GGT Gly	CAC His	CAT His	TTT Phe	GAA Glu	GAA Glu	TCA Ser	CTC Leu	CAC His	TAC Tyr	GAG Glu	GGA Gly	AGA Arg	432

		130					135					140					
5	GCT Ala 145	GTT Val	GAT Asp	ATT Ile	ACC Thr	ACC Thr 150	TCT Ser	GAC Asp	CGA Arg	GAC Asp	AAG Lys 155	AGC Ser	AAA Lys	TAC Tyr	GGG Gly	ACA Thr 160	480
10	CTG Leu	TCT Ser	CGC Arg	CTA Leu	GCT Ala 165	GTG Val	GAG Glu	GCT Ala	GGA Gly	TTT Phe 170	GAC Asp	TGG Trp	GTC Val	TAT Tyr	TAC Tyr 175	GAG Glu	528
10	TCC Ser	AAA Lys	GCC Ala	CAC His 180	ATT Ile	CAT His	TGC Cys	TCT Ser	GTC Val 185	AAA Lys	GCA Ala	GAA Glu	AAT Asn	TCG Ser 190	GTT Val	GCT Ala	576
15	GCG Ala	AAA Lys	TCT Ser 195	GGG Gly	GGC Gly	TGT Cys	TTC Phe	CCA Pro 200	GGT Gly	TCG Ser	GCT Ala	CTG Leu	GTC Val 205	TCG Ser	CTC Leu	CAG Gln	624
20	GAC Asp	GGA Gly 210	GGA Gly	CAG Gln	AAG Lys	GCC Ala	GTG Val 215	AAG Lys	GAC Asp	CTG Leu	AAC Asn	CCC Pro 220	GGA Gly	GAC Asp	AAG Lys	GTG Val	672
25	CTG Leu 225	GCG Ala	GCA Ala	GAC Asp	AGC Ser	GCG Ala 230	GGA Gly	AAC Asn	CTG Leu	GTG Val	TTC Phe 235	AGC Ser	GAC Asp	TTC Phe	ATC Ile	ATG Met 240	720
30	TTC Phe	ACA Thr	GAC Asp	CGA Arg	GAC Asp 245	TCC Ser	ACG Thr	ACG Thr	CGA Arg	CGT Arg 250	GTG Val	TTT Phe	TAC Tyr	GTC Val	ATA Ile 255	GAA Glu	768
	ACG Thr	CAA Gln	GAA Glu	CCC Pro 260	GTT Val	GAA Glu	AAG Lys	ATC Ile	ACC Thr 265	CTC Leu	ACC Thr	GCC Ala	GCT Ala	CAC His 270	CTC Leu	CTT Leu	816
35	TTT Phe	GTC Val	CTC Leu 275	GAC Asp	AAC Asn	TCA Ser	ACG Thr	GAA Glu 280	GAT Asp	CTC Leu	CAC His	ACC Thr	ATG Met 285	ACC Thr	GCC Ala	GCG Ala	864
40	TAT Tyr	GCC Ala 290	AGC Ser	AGT Ser	GTC Val	AGA Arg	GCC Ala 295	GGA Gly	CAA Gln	AAG Lys	GTG Val	ATG Met 300	GTT Val	GTT Val	GAT Asp	GAT Asp	912
45	AGC Ser 305	GGT Gly	CAG Gln	CTT Leu	AAA Lys	TCT Ser 310	GTC Val	ATC Ile	GTG Val	CAG Gln	CGG Arg 315	ATA Ile	TAC Tyr	ACG Thr	GAG Glu	GAG Glu 320	960
50	CAG Gln	CGG Arg	GGC Gly	TCG Ser	TTC Phe 325	GCA Ala	CCA Pro	GTG Val	ACT Thr	GCA Ala 330	CAT His	GGG Gly	ACC Thr	ATT Ile	GTG Val 335	GTC Val	1008
	GAC Asp	AGA Arg	ATA Ile	CTG Leu 340	GCG Ala	TCC Ser	TGT Cys	TAC Tyr	GCC Ala 345	GTA Val	ATA Ile	GAG Glu	GAC Asp	CAG Gln 350	GGG Gly	CTT Leu	1056
55	GCG Ala	CAT His	TTG Leu 355	GCC Ala	TTC Phe	GCG Ala	CCC Pro	GCC Ala 360	AGG Arg	CTC Leu	TAT Tyr	TAT Tyr	TAC Tyr 365	GTG Val	TCA Ser	TCA Ser	1104
60	TTC Phe	CTG Leu 370	TCC Ser	CCC Pro	AAA Lys	ACT Thr	CCA Pro 375	GCA Ala	GTC Val	GGT Gly	CCA Pro	ATG Met 380	CGA Arg	CTT Leu	TAC Tyr	AAC Asn	1152

	AGG Arg 385	AGG Arg	GGG Gly	TCC Ser	ACT Thr	GGT Gly 390	ACT Thr	CCA Pro	GGC Gly	TCC Ser	TGT Cys 395	CAT His	CAA Gln	ATG Met	GGA Gly	ACG Thr 400	1200
5	TGG Trp	CTT Leu	TTG Leu	GAC Asp	AGC Ser 405	AAC Asn	ATG Met	CTT Leu	CAT His	CCT Pro 410	TTG Leu	GGG Gly	ATG Met	TCA Ser	GTA Val 415	AAC Asn	1248
10.	TCA Ser	AGC Ser	TG														1256
15	(2)	INFO	SEÇ (A	UENC	E CH	SEQ IARAC I: 14	TERI	ISTIC Dase	CS: pair	rs							
20		(i i)) (D	C) SI C) TC	RANI	DEDNE DGY: (PE:	ESS: line	sino ear	gle								
25		(ix)		A) NA	ME/E	KEY:		1425									
30		(xi)	SEC	QUENC	CE DE	ESCR	[PTI	ON: S	SEQ 1	ID NO	0:6:						
35	ATG Met 1	CTG Leu	CTG Leu	CTG Leu	GCG Ala 5	AGA Arg	TGT Cys	CTG Leu	CTG Leu	CTA Leu 10	GTC Val	CTC Leu	GTC Val	TCC Ser	TCG Ser 15	CTG Leu	48
	CTG Leu	GTA Val	TGC Cys	TCG Ser 20	GGA Gly	CTG Leu	GCG Ala	TGC Cys	GGA Gly 25	CCG Pro	GGC Gly	AGG Arg	GGG Gly	TTC Phe 30	GGG Gly	AAG Lys	96
40	AGG Arg	AGG Arg	CAC His 35	CCC Pro	AAA Lys	AAG Lys	CTG Leu	ACC Thr 40	CCT Pro	TTA Leu	GCC Ala	TAC Tyr	AAG Lys 45	CAG Gln	TTT Phe	ATC Ile	144
45	CCC Pro	AAT Asn 50	GTG Val	GCC Ala	GAG Glu	AAG Lys	ACC Thr 55	CTA Leu	GGC Gly	GCC Ala	AGC Ser	GGA Gly 60	AGG Arg	TAT Tyr	GAA Glu	GGG	192
50	AAG Lys 65	ATC Ile	TCC Ser	AGA Arg	AAC Asn	TCC Ser 70	GAG Glu	CGA Arg	TTT Phe	AAG Lys	GAA Glu 75	CTC Leu	ACC Thr	CCC Pro	AAT Asn	TAC Tyr 80	240
55	AAC Asn	CCC Pro	GAC Asp	ATC Ile	ATA Ile 85	TTT Phe	AAG Lys	GAT Asp	GAA Glu	GAA Glu 90	AAC Asn	ACC Thr	GGA Gly	GCG Ala	GAC Asp 95	AGG Arg	288
	CTG Leu	ATG Met	ACT Thr	CAG Gln 100	AGG Arg	TGT Cys	AAG Lys	GAC Asp	AAG Lys 105	TTG Leu	AAC Asn	GCT Ala	TTG Leu	GCC Ala 110	ATC Ile	TCG Ser	336
60	GTG Val	ATG Met	AAC Asn 115	CAG Gln	TGG Trp	CCA Pro	GGA Gly	GTG Val 120	AAA Lys	CTG Leu	CGG Arg	GTG Val	ACC Thr 125	GAG Glu	GGC Gly	TGG Trp	384

5	GAC Asp	GAA Glu 130	GAT Asp	GGC Gly	CAC His	CAC His	TCA Ser 135	GAG Glu	GAG Glu	TCT Ser	CTG Leu	CAC His 140	TAC Tyr	GAG Glu	GGC Gly	CGC Arg	432
J	GCA Ala 145	GTG Val	GAC Asp	ATC Ile	ACC Thr	ACG Thr 150	TCT Ser	GAC Asp	CGC Arg	GAC Asp	CGC Arg 155	AGC Ser	AAG Lys	TAC Tyr	GGC Gly	ATG Met 160	480
10	CTG Leu	GCC Ala	CGC Arg	CTG Leu	GCG Ala 165	GTG Val	GAG Glu	GCC Ala	GGC Gly	TTC Phe 170	GAC Asp	TGG Trp	GTG Val	TAC Tyr	TAC Tyr 175	GAG Glu	528
15	TCC Ser	AAG Lys	GCA Ala	CAT His 180	ATC Ile	CAC His	TGC Cys	TCG Ser	GTG Val 185	AAA Lys	GCA Ala	GAG Glu	AAC Asn	TCG Ser 190	GTG Val	GCG Ala	576
20	GCC Ala	AAA Lys	TCG Ser 195	GGA Gly	GGC Gly	TGC Cys	TTC Phe	CCG Pro 200	GGC Gly	TCG Ser	GCC Ala	ACG Thr	GTG Val 205	CAC His	CTG Leu	GAG Glu	624
25	Gin	G1y 210	Gly	Thr	Lys	CTG Leu	Val 215	Lys	Asp	Leu	Ser	Pro 220	Gly	Asp	Arg	Val	672
	225	Ala	Ala	Asp	Asp	CAG Gln 230	Gly	Arg	Leu	Leu	Tyr 235	Ser	Asp	Phe	Leu	Thr 240	720
30	TTC Phe	CTG Leu	GAC Asp	CGC Arg	GAC Asp 245	GAC Asp	GGC Gly	GCC Ala	AAG Lys	AAG Lys 250	GTC Val	TTC Phe	TAC Tyr	GTG Val	ATC Ile 255	GAG Glu	768
35	ACG Thr	CGG Arg	GAG Glu	CCG Pro 260	CGC Arg	GAG Glu	CGC Arg	CTG Leu	CTG Leu 265	CTC Leu	ACC Thr	GCC Ala	GCG Ala	CAC His 270	CTG Leu	CTC Leu	816
40	Pne	Val	Ala 275	Pro	His	AAC Asn	Asp	Ser 280	Ala	Thr	Gly	Glu	Pro 285	Glu	Ala	Ser	864
45	TCG Ser	GGC Gly 290	TCG Ser	GGG Gly	CCG Pro	CCT Pro	TCC Ser 295	GGG Gly	GGC Gly	GCA Ala	CTG Leu	GGG Gly 300	CCT Pro	CGG Arg	GCG Ala	CTG Leu	912
	TTC Phe 305	GCC Ala	AGC Ser	CGC Arg	GTG Val	CGC Arg 310	CCG Pro	GGC Gly	CAG Gln	CGC Arg	GTG Val 315	TAC Tyr	GTG Val	GTG Val	GCC Ala	GAG Glu 320	960
50	CGT Arg	GAC Asp	GGG Gly	GAC Asp	CGC Arg 325	CGG Arg	CTC Leu	CTG Leu	CCC Pro	GCC Ala 330	GCT Ala	GTG Val	CAC His	AGC Ser	GTG Val 335	ACC Thr	1008
55	CTA Leu	AGC Ser	GAG Glu	GAG Glu 340	GCC Ala	GCG Ala	GGC Gly	GCC Ala	TAC Tyr 345	GCG Ala	CCG Pro	CTC Leu	ACG Thr	GCC Ala 350	CAG Gln	GGC Gly	1056
60	ACC Thr	ATT Ile	CTC Leu 355	ATC Ile	AAC Asn	CGG Arg	GTG Val	CTG Leu 360	GCC Ala	TCG Ser	TGC Cys	TAC Tyr	GCG Ala 365	GTC Val	ATC Ile	GAG Glu	1104
	GAG	CAC	AGC	TGG	GCG	CAC	CGG	GCC	TTC	GCG	CCC	TTC	CGC	CTG	GCG	CAC	1152

	Glu	His 370	Ser	Trp	Ala	His	Arg 375	Ala	Phe	Ala	Pro	Phe 380	Arg	Leu	Ala	His	
5	GCG Ala 385	CTC Leu	CTG Leu	GCT Ala	GCA Ala	CTG Leu 390	GCG Ala	CCC Pro	GCG Ala	CGC Arg	ACG Thr 395	GAC Asp	CGC Arg	GGC Gly	GGG Gly	GAC Asp 400	1200
10.	AGC Ser	GGC Gly	GGC Gly	GGG Gly	GAC Asp 405	CGC Arg	GGG Gly	GGC Gly	GGC Gly	GGC Gly 410	GGC Gly	AGA Arg	GTA Val	GCC Ala	CTA Leu 415	ACC Thr	1248
15	GCT Ala	CCA Pro	GGT Gly	GCT Ala 420	GCC Ala	GAC Asp	GCT Ala	CCG Pro	GGT Gly 425	GCG Ala	GGG Gly	GCC Ala	ACC Thr	GCG Ala 430	GGC Gly	ATC Ile	1296
15	CAC His	TGG Trp	TAC Tyr 435	TCG Ser	CAG Gln	CTG Leu	CTC Leu	TAC Tyr 440	CAA Gln	ATA Ile	GGC Gly	ACC Thr	TGG Trp 445	CTC Leu	CTG Leu	GAC Asp	1344
20	AGC Ser	GAG Glu 450	GCC Ala	CTG Leu	CAC His	CCG Pro	CTG Leu 455	GGC Gly	ATG Met	GCG Ala	GTC Val	AAG Lys 460	TCC Ser	AGC Ser	NNN Xaa	AGC Ser	1392
25	CGG Arg 465	GGG Gly	GCC Ala	GGG Gly	GGA Gly	GGG Gly 470	GCG Ala	CGG Arg	GAG Glu	GGG Gly	GCC Ala 475						1425
30	(2)	INFO	ORMA'	TION	FOR	SEQ	ID 1	NO:7	:								
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1622 base pairs (B) TYPE: nucleic acid																
		(ii) MO	LECU	LE T'	YPE:	CDN	A									
40		(ix		A) N.	AME/		CDS 51.	.128	3								
45							IP TI (
50	CAT	CAGC	CCA	CCAG	GAGA	CC T	CGCC	CGCC	G CT	CCCC	CGGG	CTC	CCCG		ATG ' Met : 1		56
55	CCC Pro	GCC Ala	CGG Arg 5	CTC Leu	CGG Arg	CCC Pro	CGA Arg	CTG Leu 10	CAC His	TTC Phe	TGC Cys	CTG Leu	GTC Val 15	CTG Leu	TTG Leu	CTG Leu	104
33	CTG Leu	CTG Leu 20	val	GTG Val	CCC Pro	GCG Ala	GCA Ala 25	TGG Trp	GGC Gly	TGC Cys	GGG Gly	CCG Pro 30	GGT Gly	CGG Arg	GTG Val	GTG Val	152
60	GGC Gly 35	Ser	CGC Arg	CGG Arg	CGA Arg	CCG Pro 40	CCA Pro	CGC Arg	AAA Lys	CTC Leu	GTG Val 45	CCG Pro	CTC Leu	GCC Ala	TAC Tyr	AAG Lys 50	200

5	CAG Gln	TTC Phe	AGC Ser	CCC Pro	AAT Asn 55	GTG Val	CCC Pro	GAG Glu	AAG Lys	ACC Thr 60	CTG Leu	GGC Gly	GCC Ala	AGC Ser	GGA Gly 65	CGC .	248
J	TAT Tyr	GAA Glu	GGC Gly	AAG Lys 70	ATC Ile	GCT Ala	CGC Arg	AGC Ser	TCC Ser 75	GAG Glu	CGC Arg	TTC Phe	AAG Lys	GAG Glu 80	CTC Leu	ACC Thr	296
10	CCC Pro	AAT Asn	TAC Tyr 85	AAT Asn	CCA Pro	GAC Asp	ATC Ile	ATC Ile 90	TTC Phe	AAG Lys	GAC Asp	GAG Glu	GAG Glu 95	AAC Asn	ACA Thr	GGC Gly	344
15	GCC Ala	GAC Asp 100	CGC Arg	CTC Leu	ATG Met	ACC Thr	CAG Gln 105	CGC Arg	TGC Cys	AAG Lys	GAC Asp	CGC Arg 110	CTG Leu	AAC Asn	TCG Ser	CTG Leu	392
20	GCT Ala 115	ATC Ile	TCG Ser	GTG Val	ATG Met	AAC Asn 120	CAG Gln	TGG Trp	CCC Pro	GGT Gly	GTG Val 125	AAG Lys	CTG Leu	CGG Arg	GTG Val	ACC Thr 130	440
25	GAG Glu	GGC Gly	TGG Trp	GAC Asp	GAG Glu 135	GAC Asp	GGC Gly	CAC His	CAC His	TCA Ser 140	GAG Glu	GAG Glu	TCC Ser	CTG Leu	CAT His 145	TAT Tyr	488
	GAG Glu	GGC Gly	CGC Arg	GCG Ala 150	GTG Val	GAC Asp	ATC Ile	ACC Thr	ACA Thr 155	TCA Ser	GAC Asp	CGC Arg	GAC Asp	CGC Arg 160	AAT Asn	AAG Lys	536
30	TAT Tyr	GGA Gly	CTG Leu 165	CTG Leu	GCG Ala	CGC Arg	TTG Leu	GCA Ala 170	GTG Val	GAG Glu	GCC Ala	GGC Gly	TTT Phe 175	GAC Asp	TGG Trp	GTG Val	584
35	TAT Tyr	TAC Tyr 180	GAG Glu	TCA Ser	AAG Lys	GCC Ala	CAC His 185	GTG Val	CAT His	TGC Cys	TCC Ser	GTC Val 190	AAG Lys	TCC Ser	GAG Glu	CAC His	632
40	TCG Ser 195	GCC Ala	GCA Ala	GCC Ala	AAG Lys	ACG Thr 200	GGC Gly	GGC Gly	TGC Cys	TTC Phe	CCT Pro 205	GCC Ala	GGA Gly	GCC Ala	CAG Gln	GTA Val 210	680
45	CGC Arg	CTG Leu	GAG Glu	AGT Ser	GGG Gly 215	GCG Ala	CGT Arg	GTG Val	GCC Ala	TTG Leu 220	TCA Ser	GCC Ala	GTG Val	AGG Arg	CCG Pro 225	GGA Gly	728
	GAC Asp	CGT Arg	GTG Val	CTG Leu 230	GCC Ala	ATG Met	GGG Gly	GAG Glu	GAT Asp 235	Gly	AGC Ser	CCC Pro	ACC Thr	TTC Phe 240	Ser	GAT Asp	776
50	GTG Val	CTC Leu	ATT Ile 245	TTC Phe	CTG Leu	GAC Asp	CGC Arg	GAG Glu 250	CCC Pro	CAC His	AGG Arg	CTG Leu	AGA Arg 255	GCC Ala	TTC Phe	CAG Gln	824
55	GTC Val	ATC Ile 260	GAG Glu	ACT Thr	CAG Gln	GAC Asp	CCC Pro 265	CCA Pro	CGC Arg	CGC Arg	CTG Leu	GCA Ala 270	CTC Leu	ACA Thr	CCC Pro	GCT Ala	872
60	CAC His 275	CTG Leu	CTC Leu	TTT Phe	ACG Thr	GCT Ala 280	GAC Asp	AAT Asn	CAC His	ACG Thr	GAG Glu 285	CCG Pro	GCA Ala	GCC Ala	CGC Arg	TTC Phe 290	920
	CGG	GCC	ACA	TTT	GCC	AGC	CAC	GTG	CAG	CCT	GGC	CAG	TAC	GTG	CTG	GTG	968

	Arg	Ala	Thr	Phe	Ala 295	Ser	His	Val	Gln	Pro 300	Gly	Gln	Tyr	Val	Leu 305	Val	
5	GCT Ala	GGG Gly	GTG Val	CCA Pro 310	GGC Gly	CTG Leu	CAG Gln	CCT Pro	GCC Ala 315	CGC Arg	GTG Val	GCA Ala	GCT Ala	GTC Val 320	TCT Ser	ACA Thr	1016
10	CAC His	GTG Val	GCC Ala 325	CTC Leu	GGG Gly	GCC Ala	TAC Tyr	GCC Ala 330	CCG Pro	CTC Leu	ACA Thr	AAG Lys	CAT His 335	GGG Gly	ACA Thr	CTG Leu	1064
15	GTG Val	GTG Val 340	GAG Glu	GAT Asp	GTG Val	GTG Val	GCA Ala 345	TCC Ser	TGC Cys	TTC Phe	GCG Ala	GCC Ala 350	GTG Val	GCT Ala	GAC Asp	CAC His	1112
• •	CAC His 355	CTG Leu	GCT Ala	CAG Gln	TTG Leu	GCC Ala 360	TTC Phe	TGG Trp	CCC Pro	CTG Leu	AGA Arg 365	CTC Leu	TTT Phe	CAC His	AGC Ser	TTG Leu 370	1160
20	GCA Ala	TGG Trp	GGC Gly	AGC Ser	TGG Trp 375	ACC Thr	CCG Pro	GGG Gly	GAG Glu	GGT Gly 380	GTG Val	CAT His	TGG Trp	TAC Tyr	CCC Pro 385	CAG Gln	1208
25	CTG Leu	CTC Leu	TAC Tyr	CGC Arg 390	CTG Leu	GGG Gly	CGT Arg	CTC Leu	CTG Leu 395	CTA Leu	GAA Glu	GAG Glu	GGC Gly	AGC Ser 400	TTC Phe	CAC His	1256
30	CCA Pro	CTG Leu	GGC Gly 405	ATG Met	TCC Ser	GGG Gly	GCA Ala	GGG Gly 410	AGC Ser	TGA	AAGG,	ACT (CCAC	CGCT	GC		1303
	CCT	CCTG	GAA (CTGC	TGTA	CT G	GGTC	CAGA	A GC	CTCT	CAGC	CAG	GAGG	GAG	CTGG	CCCTGG	1363
35	AAG	GGAC	CTG I	AGCT	GGGG	GA C	ACTG	GCTC	C TG	CCAT	CTCC	TCT	GCCA'	TGA .	AGAT	ACACCA	1423
<i>J J</i>	TTG	AGAC'	TTG A	ACTG	GGCA	AC A	CCAG	CGTC	C CC	CACC	CGCG	TCG	TGGT	GTA	GTCA'	TAGAGC	1483
	TGC	AAGC'	TGA (GCTG	GCGA	GG G	GATG	GTTG	T TG.	ACCC	CTCT	CTC	CTAG.	AGA	ССТТ	GAGGCT	1543
40	GGC	ACGG	CGA (CTCC	CAAC	TC A	GCCT	GCTC	T CA	CTAC	GAGT	TTT	CATA	CTC	TGCC'	TCCCCC	1603
	ATT	GGGA	GGG (CCCA	TTCC	С											1622
45	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:8	:								
~ 0		ίi	(,	A) L B) T	CE C ENGT YPE: TRAN	H: 1 nuc	191 leic	base aci	pai d	rs							
50					OPOL												
		(ii) MO	LECU	LE T	YPE:	cDN	A									
55		(ix		A) N	E: AME/ OCAT												
60		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:8:						
	ATG	GCT	CTC	CTG	ACC	AAT	СТА	CTG	CCC	TTG	TGC	TGC	ттс	GCA	CTT	СТС	4.8

	Met 1	Ala	Leu	Leu	Thr 5	Asn	Leu	Leu	Pro	Leu 10	Cys	Cys	Leu	Ala	Leu 15	Leu	
5							TGC Cys										96
10							CAG Gln										144
15							CGG Arg 55										192
13							TCC Ser										240
20							TTC Phe										288
25	CGC Arg	CTG Leu	ATG Met	ACC Thr 100	GAG Glu	CGT Arg	TGC Cys	AAG Lys	GAG Glu 105	AGG Arg	GTG Val	AAC Asn	GCT Ala	TTG Leu 110	GCC Ala	ATT Ile	336
30	GCC Ala	GTG Val	ATG Met 115	AAC Asn	ATG Met	TGG Trp	CCC Pro	GGA Gly 120	GTG Val	CGC Arg	CTA Leu	CGA Arg	GTG Val 125	ACT Thr	GAG Glu	GGC Gly	384
35	TGG Trp	GAC Asp 130	Glu	GAC Asp	GGC Gly	CAC His	CAC His 135	GCT Ala	CAG Gln	GAT Asp	TCA Ser	CTC Leu 140	CAC His	TAC Tyr	GAA Glu	GGC Gly	432
33	CGT Arg 145	Ala	TTG Leu	GAC Asp	ATC Ile	ACT Thr 150	ACG Thr	TCT Ser	GAC Asp	CGC Arg	GAC Asp 155	Arg	AAC Asn	AAG Lys	TAT Tyr	GGG Gly 160	480
40	TTG Leu	CTG Leu	GCG Ala	CGC Arg	CTC Leu 165	Ala	GTG Val	GAA Glu	GCC Ala	GGC Gly 170	Phe	GAC Asp	TGG Trp	GTC Val	TAC Tyr 175	Tyr	528
45	GAG Glu	TCC Ser	CGC Arg	AAC Asn 180	His	GTC Val	CAC His	GTG Val	TCG Ser 185	Val	AAA Lys	GCT Ala	GAT Asp	AAC Asn 190	Ser	CTG Leu	576
50	GCG Ala	GTC Val	CGG Arg	Ala	GGC	GGC Gly	TGC Cys	TTT Phe 200	Pro	GGA Gly	AAT Asn	GCA Ala	ACT Thr 205	Val	CGC Arg	CTG Leu	624
<i>E C</i>	TGG Trp	AGC Ser 210	: Gly	GAG Glu	CGG Arg	AAA Lys	GGG Gly 215	Leu	CGG Arg	GAA Glu	CTC Leu	CAC His	Arc	GGA Gly	GAC Asp	TGG Trp	672
55	GTT Val 225	. Leı	GCG Ala	GCC	GAT Asp	GCG Ala 230	Ser	GGC Gly	CGG Arg	GTG Val	GTC Val 235	. Pro	ACC Thr	CCG Pro	GTG Val	CTG Leu 240	720
60	CTC Leu	TTC 1 Phe	CTC Leu	GAC Asp	CGG Arg 245	, Asp	TTG Leu	CAC Glr	CGC Arg	CGG Arg 250	Ala	TCA Ser	A TTT	GTC Val	GCT Ala 255	GTG Val	768

5	GAG Glu	ACC Thr	GAG Glu	TGG Trp 260	CCT Pro	CCA Pro	CGC Arg	AAA Lys	CTG Leu 265	TTG Leu	CTC Leu	ACG Thr	CCC Pro	TGG Trp 270	CAC His	CTG Leu	816
	GTG Val	TTT Phe	GCC Ala 275	GCT Ala	CGA Arg	GGG Gly	CCG Pro	GCG Ala 280	CCC Pro	GCG Ala	CCA Pro	GGC Gly	GAC Asp 285	TTT Phe	GCA Ala	CCG Pro	864
10.	GTG Val	TTC Phe 290	GCG Ala	CGC Arg	CGG Arg	CTA Leu	CGC Arg 295	GCT Ala	GGG Gly	GAC Asp	TCG Ser	GTG Val 300	CTG Leu	GCG Ala	CCC Pro	GGC Gly	912
15	GGG Gly 305	GAT Asp	GCG Ala	CTT Leu	CGG Arg	CCA Pro 310	GCG Ala	CGC Arg	GTG Val	GCC Ala	CGT Arg 315	GTG Val	GCG Ala	CG <u>G</u> Arg	GAG Glu	GAA Glu 320	960
20	GCC Ala	GTG Val	GGC Gly	GTG Val	TTC Phe 325	GCG Ala	CCG Pro	CTC Leu	ACC Thr	GCG Ala 330	CAC His	GGG Gly	ACG Thr	CTG Leu	CTG Leu 335	GTG Val	1008
25	AAC Asn	GAT Asp	GTC Val	CTG Leu 340	GCC Ala	TCT Ser	TGC Cys	TAC Tyr	GCG Ala 345	GTT Val	CTG Leu	GAG Glu	AGT Ser	CAC His 350	CAG Gln	TGG Trp	1056
	GCG Ala	CAC His	CGC Arg 355	GCT Ala	TTT Phe	GCC Ala	CCC Pro	TTG Leu 360	AGA Arg	CTG Leu	CTG Leu	CAC His	GCG Ala 365	CTA Leu	GGG Gly	GCG Ala	1104
30	CTG Leu	CTC Leu 370	CCC Pro	GGC Gly	GGG Gly	GCC Ala	GTC Val 375	CAG Gln	CCG Pro	ACT Thr	GGC Gly	ATG Met 380	CAT His	TGG Trp	TAC Tyr	TCT Ser	1152
35	CGG Arg 385	CTC Leu	CTC Leu	TAC Tyr	CGC Arg	TTA Leu 390	GCG Ala	GAG Glu	GAG Glu	CTA Leu	CTG Leu 395	GGC Gly	TG				1191
40	(2)	INFO	ORMA'	ГІОИ	FOR	SEQ	ID i	NO:9	:								
45		(i)	() () ()	A) LE B) T' C) S'	ENGTI YPE : IRANI	i: 12 nucl DEDNI	CTERI 251 H leic ESS: line	ase acio both	pai:	:s							
50		(ii)) MOI	LECUI	LE T	PE:	cDN/	A									
50		(ix)		A) NA	AME/	KEY:	CDS	1248									
55		(xi) SE	QUENC	CE DE	ESCR	PTIC	ON: :	SEQ :	D NO	0:9:						
60	ATG Met 1	GAC Asp	GTA Val	AGG Arg	CTG Leu 5	CAT His	CTG Leu	AAG Lys	CAA Gln	TTT Phe 10	GCT Ala	TTA Leu	CTG Leu	TGT Cys	TTT Phe 15	ATC Ile	48
	AGC	TTG	СТТ	CTG	ACG	CCT	TGT	GGA	TTA	GCC	TGT	GGT	ССТ	GGT	AGA	GGT	96

	Ser	Leu	Leu	Leu 20	Thr	Pro	Cys	Gly	Leu 25	Ala	Cys	Gly	Pro	Gly 30	Arg	Gly		
5	TAT Tyr	GGA Gly	AAA Lys 35	CGA Arg	AGA Arg	CAC His	CCA Pro	AAG Lys 40	AAA Lys	TTA Leu	ACC Thr	CCG Pro	TTG Leu 45	GCT Ala	TAC Tyr	AAG Lys	1	44
10.	CAA Gln	TTC Phe 50	ATC Ile	CCC Pro	AAC Asn	GTT Val	GCT Ala 55	GAG Glu	AAA Lys	ACG Thr	CTT Leu	GGA Gly 60	GCC Ala	AGC Ser	GGC Gly	AAA Lys	1	92
15	TAC Tyr 65	GAA Glu	GGC Gly	AAA Lys	ATC Ile	ACA Thr 70	AGG Arg	AAT Asn	TCA Ser	GAG Glu	AGA Arg 75	TTT Phe	AAA Lys	GAG Glu	CTG Leu	ATT Ile 80	2	40
••	CCG Pro	AAT Asn	TAT Tyr	AAT Asn	CCC Pro 85	GAT Asp	ATC Ile	ATC Ile	TTT Phe	AAG Lys 90	GAC Asp	GAG Glu	GAA Glu	AAC Asn	ACA Thr 95	AAC Asn	2	88
20	GCT Ala	GAC Asp	AGG Arg	CTG Leu 100	ATG Met	ACC Thr	AAG Lys	CGC Arg	TGT Cys 105	AAG Lys	GAC Asp	AAG Lys	TTA Leu	AAT Asn 110	TCG Ser	TTG Leu	3	36
25	GCC Ala	ATA Ile	TCC Ser 115	GTC Val	ATG Met	AAC Asn	CAC His	TGG Trp 120	CCC Pro	GGC Gly	GTG Val	AAA Lys	CTG Leu 125	CGC Arg	GTC Val	ACT Thr	3	884
30	GAA Glu	GGC Gly 130	TGG Trp	GAT Asp	GAG Glu	GAT Asp	GGT Gly 135	CAC His	CAT His	TTA Leu	GAA Glu	GAA Glu 140	TCT Ser	TTG Leu	CAC His	TAT Tyr	4	32
35	GAG Glu 145	GGA Gly	CGG Arg	GCA Ala	GTG Val	GAC Asp 150	ATC Ile	ACT Thr	ACC Thr	TCA Ser	GAC Asp 155	AGG Arg	GAT Asp	AAA Lys	AGC Ser	AAG Lys 160	4	180
	TAT Tyr	GGG Gly	ATG Met	CTA Leu	TCC Ser 165	AGG Arg	CTT Leu	GCA Ala	GTG Val	GAG Glu 170	GCA Ala	GGA Gly	TTC Phe	GAC Asp	TGG Trp 175	GTC Val	5	528
40	TAT Tyr	TAT Tyr	GAA Glu	TCT Ser 180	AAA Lys	GCC Ala	CAC His	ATA Ile	CAC His 185	Cys	TCT Ser	GTC Val	AAA Lys	GCA Ala 190	GAA Glu	AAT Asn	5	576
45	TCA Ser	GTG Val	GCT Ala 195	Ala	AAA Lys	TCA Ser	GGA Gly	GGA Gly 200	Cys	TTT Phe	CCT Pro	GGG Gly	TCT Ser 205	GGG Gly	ACG Thr	GTG Val	. 6	524
50	ACA Thr	CTT Leu 210	Gly	GAT Asp	GGG Gly	ACG Thr	AGG Arg 215	AAA Lys	CCC Pro	ATC Ile	AAA Lys	GAT Asp 220	CTT Leu	AAA Lys	GTG Val	GGC Gly	6	572
55	GAC Asp 225	Arg	GTT Val	TTG Leu	GCT Ala	GCA Ala 230	Asp	GAG Glu	AAG Lys	GGA Gly	AAT Asn 235	Val	TTA Leu	ATA Ile	AGC Ser	GAC Asp 240	7	720
<i></i>	TTT Phe	ATT Ile	ATG Met	TTT Phe	ATA Ile 245	Asp	CAC His	GAT Asp	CCG Pro	ACA Thr 250	Thr	AGA Arg	AGG Arg	CAA Gln	TTC Phe 255	ATC Ile	7	768
60	GTC Val	ATC Ile	GAG Glu	ACG Thr 260	Ser	GAA Glu	CCT Pro	TTC Phe	ACC Thr 265	Lys	CTC Leu	ACC Thr	CTC Leu	ACT Thr 270	Ala	GCG Ala	8	316

5	CAC His	CTA Leu	GTT Val 275	TTC Phe	GTT Val	GGA Gly	AAC Asn	TCT Ser 280	TCA Ser	GCA Ala	GCT Ala	TCG Ser	GGT Gly 285	ATA Ile	ACA Thr	GCA Ala	864
J	ACA Thr	TTT Phe 290	GCC Ala	AGC Ser	AAC Asn	GTG Val	AAG Lys 295	CCT Pro	GGA Gly	GAT Asp	ACA Thr	GTT Val 300	TTA Leu	GTG Val	TGG Trp	GAA Glu	912
10	GAC Asp 305	ACA Thr	TGC Cys	GAG Glu	AGC Ser	CTC Leu 310	AAG Lys	AGC Ser	GTT Val	ACA Thr	GTG Val 315	AAA Lys	AGG Arg	ATT Ile	TAC Tyr	ACT Thr 320	960
15	GAG Glu	GAG Glu	CAC His	GAG Glu	GGC Gly 325	TCT Ser	TTT Phe	GCG Ala	CCA Pro	GTC Val 330	ACC Thr	GCG Ala	CAC His	GGA Gly	ACC Thr 335	ATA Ile	1008
20	ATA Ile	GTG Val	GAT Asp	CAG Gln 340	GTG Val	TTG Leu	GCA Ala	TCG Ser	TGC Cys 345	TAC Tyr	GCG Ala	GTC Val	ATT Ile	GAG Glu 350	AAC Asn	CAC His	1056
25	Lys	Trp	Ala 355	His	TGG Trp	Ala	Phe	Ala 360	Pro	Val	Arg	Leu	Cys 365	His	Lys	Leu	1104
	ATG Met	ACG Thr 370	TGG Trp	CTT Leu	TTT Phe	CCG Pro	GCT Ala 375	CGT Arg	GAA Glu	TCA Ser	AAC Asn	GTC Val 380	AAT Asn	TTT Phe	CAG Gln	GAG Glu	1152
30	GAT Asp 385	GGT Gly	ATC Ile	CAC His	TGG Trp	TAC Tyr 390	TCA Ser	AAT Asn	ATG Met	CTG Leu	TTT Phe 395	CAC His	ATC Ile	GGC Gly	TCT Ser	TGG Trp 400	1200
35	CTG Leu	CTG Leu	GAC Asp	AGA Arg	GAC Asp 405	TCT Ser	TTC Phe	CAT His	CCA Pro	CTC Leu 410	GGG Gly	ATT Ile	TTA Leu	CAC His	TTA Leu 415	AGT Ser	1248
40	TGA	INF	ORMA'	rion	FOR	SEQ	ID 1	NO:10	o:								1251
45				SEQUI (A (B	ENCE) LEI) TYI) TOI	CHAI NGTH PE: 8	RACTI : 42	ERIS' 5 am: o ac:	TICS ino a	: acid	5						
50		(ii) l	MOLE	CULE	TYP	E: p:	rote	in								
50		{	xi)	SEQU	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	10:					
55	1				Leu 5					10					15		
	Cys	Ala	Leu	Leu 20	Val	Ser	Ser	Gly	Leu 25	Thr	Cys	Gly	Pro	Gly 30	Arg	Gly	
60	Ile	Gly	Lys 35	Arg	Arg	His	Pro	Lys 40	Lys	Leu	Thr	Pro	Leu 45	Ala	Tyr	Lys	
	Gln	Phe	Ile	Pro	Asn	Val	Ala	Glu	Lys	Thr	Leu	Gly	Ala	Ser	Gly	Arg	

		50					55					60				
5	Tyr 65	Glu	Gly	Lys	Ile	Thr 70	Arg	Asn	Ser	Glu	Arg 75	Phe	Lys	Glu	Leu	Thr 80
	Pro	Asn	Tyr	Asn	Pro 85	Asp	Ile	Ile	Phe	Lys 90	Asp	Glu	Glu	Asn	Thr 95	
10.	Ala	Asp	Arg	Leu 100	Met	Thr	Gln	Arg	Cys 105	Lys	Asp	Lys	Leu	Asn 110	Ala	Leu
	Ala	Ile	Ser 115	Val	Met	Asn	Gln	Trp 120	Pro	Gly	Val	Lys	Leu 125	Arg	Val	Thr
15	Glu	Gly 130	Trp	Asp	Glu	Asp	Gly 135	His	His	Ser	Glu	Glu 140	Ser	Leú	His	Tyr
20	Glu 145	Gly	Arg	Ala	Val	Asp 150	Ile	Thr	Thr	Ser	Asp 155	Arg	Asp	Arg	Ser	Lys 160
	Tyr	Gly	Met	Leu	Ala 165	Arg	Leu	Ala	Val	Glu 170	Ala	Gly	Phe	Asp	Trp 175	Val
25	Tyr	Tyr	Glu	Ser 180	Lys	Ala	His	Ile	His 185	Cys	Ser	Val	Lys	Ala 190	Glu	Asn
	Ser	Val	Ala 195	Ala	Lys	Ser	Gly	Gly 200	Cys	Phe	Pro	Gly	Ser 205	Ala	Thr	Val
30	His	Leu 210	Glu	His	Gly	Gly	Thr 215	Lys	Leu	Val	Lys	Asp 220	Leu	Ser	Pro	Gly
35	Asp 225	Arg	Val	Leu	Ala	Ala 230	Asp	Ala	Asp	Gly	Arg 235	Leu	Leu	Tyr	Ser	Asp 240
	Phe	Leu	Thr	Phe	Leu 245	Asp	Arg	Met	qzA	Ser 250	Ser	Arg	Lys	Leu	Phe 255	Tyr
40	Val	Ile	Glu	Thr 260	Arg	Gln	Pro	Arg	Ala 265	Arg	Leu	Leu	Leu	Thr 270	Ala	Ala
	His	Leu	Leu 275	Phe	Val	Ala	Pro	Gln 280	His	Asn	Gln	Ser	Glu 285	Ala	Thr	Gly
45	Ser	Thr 290	Ser	Gly	Gln	Ala	Leu 295	Phe	Ala	Ser	Asn	Val 300	Lys	Pro	Gly	Glr
50	Arg 305	Val	Tyr	Val	Leu	Gly 310	Glu	Gly	Gly	Gln	Gln 315	Leu	Leu	Pro	Ala	Ser 320
	Val	His	Ser	Val	Ser 325	Leu	Arg	Glu	Glu	Ala 330		Gly	Ala	Tyr	Ala 335	Pro
55	Leu	Thr	Ala	Gln 340	Gly	Thr	Ile	Leu	Ile 345	Asn	Arg	Val	Leu	Ala 350	Ser	Cys
	Tyr	Ala	Val 355	Ile	Glu	Glu	His	Ser 360	Trp	Ala	His	Trp	Ala 365	Phe	Ala	Pro
60	Phe	Arg 370	Leu	Ala	Gln	Gly	Leu 375	Leu	Ala	Ala	Leu	Cys 380	Pro	Asp	Gly	Ala

	Ile 385	Pro	Thr	Ala	Ala	Thr 390	Thr	Thr	Thr	Gly	Ile 395	His	Trp	Tyr	Ser	Arg 400
5	Leu	Leu	Tyr	Arg	Ile 405	Gly	Ser	Trp	Val	Leu 410	Asp	Gly	Asp	Ala	Leu 415	His
	Pro	Leu	Gly	Met 420	Val	Ala	Pro	Ala	Ser 425						-	
10	(2)	INFO	ORMAT	CION	FOR	SEQ	ID N	10:11	. :							
15		((i) S		LEN TYE	IGTH: PE: a	RACTE 396 amino GY: 3	ami aci	.no a		6					
20		į)	Li) N	1OLEC	CULE	TYPE	E: pi	rotei	in							
20		()	<i) 5<="" td=""><td>SEQUE</td><td>ENCE</td><td>DESC</td><td>CRIP</td><td>гіои</td><td>: SE(</td><td>O ID</td><td>NO:</td><td>11:</td><td></td><td></td><td></td><td></td></i)>	SEQUE	ENCE	DESC	CRIP	гіои	: SE(O ID	NO:	11:				
25	Met 1	Ala	Leu	Pro	Ala 5	Ser	Leu	Leu	Pro	Leu 10	Cys	Cys	Leu	Ala	Leu 15	Leu
	Ala	Leu	Ser	Ala 20	Gln	Ser	Cys	Gly	Pro 25	Gly	Arg	Gly	Pro	Val 30	Gly	Arg
30	Arg	Arg	Туг 35	Val	Arg	Lys	Gln	Leu 40	Val	Pro	Leu	Leu	Туг 45	Lys	Gln	Phe
35	Val	Pro 50	Ser	Met	Pro	Glu	Arg 55	Thr	Leu	Gly	Ala	Ser 60	Gly	Pro	Ala	Glu
33	Gly 65	Arg	Val	Thr	Arg	Gly 70	Ser	Glu	Arg	Phe	Arg 75	Asp	Leu	Val	Pro	Asn 80
40	Tyr	Asn	Pro	Asp	Ile 85	Ile	Phe	Lys	Asp	Glu 90	Glu	Asn	Ser	Gly	Ala 95	Asp
	Arg	Leu	Met	Thr 100	Glu	Arg	Cys	Lys	Glu 105	Arg	Val	Asn	Ala	Leu 110	Ala	Ile
45	Ala	Val	Met 115	Asn	Met	Trp	Pro	Gly 120	Val	Arg	Leu	Arg	Val 125	Thr	Glu	Gly
50	Trp	Asp 130	Glu	Asp	Gly	His	His 135	Ala	Gln	Asp	Ser	Leu 140	His	Tyr	Glu	Gly
50	Arg 145	Ala	Leu	Asp	Ile	Thr 150	Thr	Ser	Asp	Arg	Asp 155	Arg	Asn	Lys	Tyr	Gly 160
55	Leu	Leu	Ala	Arg	Leu 165	Ala	Val	Glu	Ala	Gly 170	Phe	Asp	Trp	Val	Tyr 175	Tyr
	Glu	Ser	Arg	Asn 180	His	Ile	His	Val	Ser 185	Val	Lys	Ala	Asp	Asn 190	Ser	Leu
60	Ala	Val	Arg 195	Ala	Gly	Gly	Cys	Phe 200	Pro	Gly	Asn	Ala	Thr 205	Val	Arg	Leu

	Arg	Ser 210	Gly	Glu	Arg	Lys	Gly 215	Leu	Arg	Glu	Leu	His 220	Arg	Gly	Asp	Trp
5	Val 225	Leu	Ala	Ala	Asp	Ala 230	Ala	Gly	Arg	Val	Val 235	Pro	Thr	Pro	Val	Leu 240
	Leu	Phe	Leu	Asp	Arg 245	Asp	Leu	Gln	Arg	Arg 250	Ala	Ser	Phe	Val	Ala 255	Val
10	Glu	Thr	Glu	Arg 260	Pro	Pro	Arg	Lys	Leu 265	Leu	Leu	Thr	Pro	Trp 270	His	Leu
15	Val	Phe	Ala 275	Ala	Arg	Gly	Pro	Ala 280	Pro	Ala	Pro	Gly	Asp 285	Phe	Ala	Pro
	Val	Phe 290	Ala	Arg	Arg	Leu	Arg 295	Ala	Gly	Asp	Ser	Val 300	Leu	Ala	Pro	Gly
20	Gly 305	Asp	Ala	Leu	Gln	Pro 310	Ala	Arg	Val	Ala	Arg 315	Val	Ala	Arg	Glu	Glu 320
	Ala	Val	Gly	Val	Phe 325	Ala	Pro	Leu	Thr	Ala 330	His	Gly	Thr	Leu	Leu 335	Val
25	Asn	Asp	Val	Leu 340	Ala	Ser	Cys	Tyr	Ala 345	Val	Leu	Glu	Ser	'His 350	Gln	Trp
30	Ala	His	Arg 355	Ala	Phe	Ala	Pro	Leu 360	Arg	Leu	Leu	His	Ala 365	Leu	Gly	Ala
	Leu	Leu 370	Pro	Gly	Gly	Ala	Val 375	Gln	Pro	Thr	Gly	Met 380	His	Trp	Tyr	Ser
35	Arg 385	Leu	Leu	Tyr	Arg	Leu 390	Ala	Glu	Glu	Leu	Met 395	Gly				
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:1	2:							
40			(i) :	(A (B) LEI) TYI	NGTH PE: a	: 41	ERIS' 1 am: o ac: line	ino a id	: acid:	S					
45		(:	ii)	MOLE	CULE	TYP	E: p	rote	in							
50		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	12:				
	Met 1	Ser	Pro	Ala	Trp 5	Leu	Arg	Pro	Arg	Leu 10	Arg	Phe	Cys	Leu	Phe 15	Leu
55	Leu	Leu	Leu	Leu 20	Leu	Val	Pro	Ala	Ala 25	Arg	Gly	Cys	Gly	Pro 30	Gly	Arg
	Val	Val	Gly 35	Ser	Arg	Arg	Arg	Pro 40	Pro	Arg	Lys	Leu	Val 45	Pro	Leu	Ala
60	Tyr	Lys 50	Gln	Phe	Ser	Pro	Asn 55	Val	Pro	Glu	Lys	Thr 60	Leu	Gly	Ala	Ser

	GLy 65	Arg	Tyr	Glu	Gly	Lys 70	Ile	Ala	Arg	Ser	Ser 75	Glu	Arg	Phe	Lys	Glu 80
5	Leu	Thr	Pro	Asn	Tyr 85	Asn	Pro	qaA	Ile	Ile 90	Phe	Lys	Asp	Glu	Glu 95	Asn
	Thr	Gly	Ala	Asp 100	Arg	Leu	Met	Thr	Gln 105	Arg	Cys	Lys	Asp	Arg 110	Leu	Asn
10	Ser	Leu	Ala 115	Ile	Ser	Val	Met	Asn 120	Gln	Trp	Pro	Gly	Val 125	Lys	Leu	Arg
15	Val	Thr 130	Glu	Gly	Arg	Asp	Glu 135	Asp	Gly	His	His	Ser 140	Glu	Glu ·.	Ser	Leu
	His 145	Tyr	Glu	Gly	Arg	Ala 150	Val	Asp	Ile	Thr	Thr 155	Ser	Asp	Arg	Asp	Arg 160
20	Asn	Lys	Tyr	Gly	Leu 165	Leu	Ala	Arg	Leu	Ala 170	Val	Glu	Ala	Gly	Phe 175	Asp
	Trp	Val	Tyr	Tyr 180	Glu	Ser	Lys	Ala	His 185	Val	His	Cys	Ser	Val 190	Lys	Ser
25	Glu	His	Ser 195	Ala	Ala	Ala	Lys	Thr 200	Gly	Gly	Cys	Phe	Pro 205	Ala	Gly	Ala
30	Gln	Val 210	Arg	Leu	Glu	Asn	Gly 215	Glu	Arg	Val	Ala	Leu 220	Ser	Ala	Val	Lys
	Pro 225	Gly	Asp	Arg	Val	Leu 230	Ala	Met	Gly	Glu	Asp 235	Gly	Thr	Pro	Thr	Phe 240
35	Ser	Asp	Val	Leu	Ile 245	Phe	Leu	Asp	Arg	Glu 250	Pro	Asn	Arg	Leu	Arg 255	Ala
	Phe	Gln	Val	Ile 260	Glu	Thr	Gln	Asp	Pro 265	Pro	Arg	Arg	Leu	Ala 270	Leu	Thr
40	Pro	Ala	His 275	Leu	Leu	Phe	Ile	Ala 280	Asp	Asn	His	Thr	Glu 285	Pro	Ala	Ala
45	His	Phe 290	Arg	Ala	Thr	Phe	Ala 295	Ser	His	Val	Gln	Pro 300	Gly	Gln	Tyr	Val
	Leu 305	Val	Ser	Gly	Val	Pro 310	Gly	Leu	Gln	Pro	Ala 315	Arg	Val	Ala	Ala	Val 320
50	Ser	Thr	His	Val	Ala 325	Leu	Gly	Ser	Tyr	Ala 330		Leu	Thr	Arg	His 335	Gly
	Thr	Leu	Val	Val 340	Glu	Asp	Val	Val	Ala 345	Ser	Cys	Phe	Ala	Ala 350	Val	Ala
55	Asp	His	His 355	Leu	Ala	Gln	Leu	Ala 360	Phe	Trp	Pro	Leu	Arg 365		Phe	Pro
60	Ser	Leu 370	Ala	Trp	Gly	Ser	Trp 375	Thr	Pro	Ser	Glu	Gly 380		His	Ser	Tyr
	Pro 385	Gln	Met	Leu	Tyr	Arg 390	Leu	Gly	Arg	Leu	Leu 395		Glu	Glu	Ser	Thr 400

Phe His Pro Leu Gly Met Ser Gly Ala Gly Ser 405 $\,$ 410 $\,$

5

10

25

40

55

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 437 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

20 Met Leu Leu Leu Ala Arg Cys Phe Leu Val Ile Leu Ala Ser Ser 1 5 10 15

Leu Leu Val Cys Pro Gly Leu Ala Cys Gly Pro Gly Arg Gly Phe Gly 20 25 30

Lys Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe 35 40 45

Gly Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn 65 70 75 80

Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp
85 90 95

Arg Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu Ala Ile 100 105 110

Ser Val Met Asn Gln Trp Pro Gly Val Arg Leu Arg Val Thr Glu Gly 115 120 125

Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu Gly 45 130 135 140

Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly 150 150 155 160

50 Met Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr 165 170 175

Glu Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val 180 185 190

Ala Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val His Leu 195 200 205

Glu Gln Gly Gly Thr Lys Leu Val Lys Asp Leu Arg Pro Gly Asp Arg 210 215 220

Val Leu Ala Ala Asp Asp Gln Gly Arg Leu Leu Tyr Ser Asp Phe Leu

	225					230					235					240
	Thr	Phe	Leu	Asp	Arg	Asp	Glu	Gly	Ala			Val	Phe	Tyr		
5	Glu	Thr	Leu	Glu 260	245 Pro	Arg	Glu	Arg	Leu 265	250 Leu	Leu	Thr	Ala	Ala 270	255 His	Leu
10.	Leu	Phe	Val 275	Ala	Pro	His	Asn	Asp 280	Ser	Gly	Pro	Thr	Pro 285	Gly	Pro	Ser
	Ala	Leu 290	Phe	Ala	Ser	Arg	Val 295	Arg	Pro	Gly	Gln	Arg 300	Val	Tyr	Val	Val
15	Ala 305	Glu	Arg	Gly	Gly	Asp 310	Arg	Arg	Leu	Leu	Pro 315	Ala	Ala	Val	His	Ser 320
20	Val	Thr	Leu	Arg	Glu 325	Glu	Glu	Ala	Gly	Ala 330	Туr	Ala	Pro	Leu	Thr 335	Ala
20	His	Gly	Thr	Ile 340	Leu	Ile	Asn	Arg	Val 345	Leu	Ala	Ser	Cys	Tyr 350	Ala	Val
25	Ile	Glu	Glu 355	His	Ser	Trp	Ala	Нis 360	Arg	Ala	Phe	Ala	Pro 365	Phe	Arg	Leu
	Ala	His 370	Ala	Leu	Leu	Ala	Ala 375	Leu	Ala	Pro	Ala	Arg 380	Thr	Asp	Gly	Gly
30	Gly 385	Gly	Gly	Ser	Ile	Pro 390	Ala	Ala	Gln	Ser	Ala 395	Thr	Glu	Ala	Arg	Gly 400
35	Ala	Glu	Pro	Thr	Ala 405	Gly	Ile	His	grT	Tyr 410	Ser	Gln	Leu	Leu	Tyr 415	His
	Ile	Gly	Thr	Trp 420	Leu	Leu	Asp	Ser	Glu 425	Thr	Met	His	Pro	Leu 430	Gly	Met
40	Ala	Val	Lys 435	Ser	Ser											
	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:1	4:							
45			(i)	(B)) LEI	NGTH PE:	: 41	ERIS' 8 am: 0 ac: line	ino a		5					
50		(:	ii) 1	MOLE	CULE	TYP	E: p	rote	in							
55		(:	xi)	SEQUI	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	14:				
	Met 1	Arg	Leu	Leu	Thr 5	Arg	Val	Leu	Leu	Val 10	Ser	Leu	Leu	Thr	Leu 15	Ser
60	Leu	Val	Val	Ser 20	Gly	Leu	Ala	Cys	Gly 25	Pro	Gly	Arg	Gly	Tyr 30	Gly	Arg
	Arg	Arg	His	Pro	Lys	Lys	Leu	Thr	Pro	Leu	Ala	Tyr	Lys	Gln	Phe	Ile

			35					40					45			
5	Pro	Asn 50	Val	Ala	Glu	Lys	Thr 55	Leu	Gly	Ala	Ser	Gly 60	Arg	Tyr	Glu	Gly
	Lys 65	Ile	Thr	Arg	Asn	Ser 70	Glu	Arg	Phe	Lys	Glu 75	Leu	Thr	Pro	Asn	Tyr 80
10	Asn	Pro	Asp	Ile	Ile 85	Phe	Lys	Asp	Glu	Glu 90	Asn	Thr	Gly	Ala	Asp 95	Arg
	Leu	Met	Thr	Gln 100	Arg	Cys	Lys	Asp	Lys 105	Leu	Asn	Ser	Leu	Ala 110	Ile	Ser
15	Val	Met	Asn 115	His	Trp	Pro	Gly	Val 120	Lys	Leu	Arg	Val	Thr 125	Gĺu	Gly	Trp
20		130		Gly			135					140				_
	145			Ile		150					155					160
25				Leu	165					170					175	
				His 180					185					190		
30			195	Gly				200					205			
35		210		Gln			215					220				
	225			Asp		230					235					240
40				Arg	245					250					255	
				Pro 260					265					270		
45			275	Asp				280					285			
50		290		Ser			295					300				
	Ser 305	Gly	Gln	Leu	Lys	Ser 310	Val	Ile	Val	Gln	Arg 315	Ile	Tyr	Thr	Glu	Glu 320
55				Ser	325					330					335	
	Asp	Arg	Ile	Leu 340	Ala	Ser	Суз	Tyr	Ala 345	Val	Ile	Glu	Asp	Gln 350	Gly	Leu
60	Ala	His	Leu 355	Ala	Phe	Ala	Pro	Ala 360	Arg	Leu	Tyr	Tyr	Tyr 365	Val	Ser	Ser

Phe Leu Ser Pro Lys Thr Pro Ala Val Gly Pro Met Arg Leu Tyr Asn Arg Arg Gly Ser Thr Gly Thr Pro Gly Ser Cys His Gln Met Gly Thr Trp Leu Leu Asp Ser Asn Met Leu His Pro Leu Gly Met Ser Val Asn 410 10 Ser Ser (2) INFORMATION FOR SEQ ID NO:15: 15 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 475 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 20 (ii) MOLECULE TYPE: protein 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: Met Leu Leu Leu Ala Arg Cys Leu Leu Leu Val Leu Val Ser Ser Leu 30 Leu Val Cys Ser Gly Leu Ala Cys Gly Pro Gly Arg Gly Phe Gly Lys Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe Ile 35 Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg Tyr Glu Gly Lys Ile Ser Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr 40 Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp Arg 45 Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu Ala Ile Ser Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp 50 Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu Gly Arg 135 Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly Met 55 Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu

Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val Ala

185

	Ala	Lys	Ser 195	Gly	Gly	Cys	Phe	Pro 200	Gly	Ser	Ala	Thr	Val 205	His	Leu	Glu
5	Gln	Gly 210	Gly	Thr	Lys	Leu	Val 215	Lys	Asp	Leu	Ser	Pro 220	Gly	Asp	Arg	Val
	Leu 225	Ala	Ala	Asp	Asp	Gln 230	Gly	Arg	Leu	Leu	Tyr 235	Ser	Asp	Phe	Leŭ	Thr 240
10	Phe	Leu	Asp	Arg	Asp 245	Asp	Gly	Ala	Lys	Lys 250	Val	Phe	Tyr	Val	Ile 255	Glu
15	Thr	Arg	Glu	Pro 260	Arg	Glu	Arg	Leu	Leu 265	Leu	Thr	Ala	Ala	His 27,0	Leu	Leu
	Phe	Val	Ala 275	Pro	His	Asn	Asp	Ser 280	Ala	Thr	Gly	Glu	Pro 285	Glu	Ala	Ser
20	Ser	Gly 290	Ser	Gly	Pro	Pro	Ser 295	Gly	Gly	Ala	Leu	Gly 300	Pro	Arg	Ala	Leu
	Phe 305	Ala	Ser	Arg	Val	Arg 310	Pro	Gly	Gln	Arg	Val 315	Tyr	Val	Val	Ala	Glu 320
25	Arg	qzA	Gly	Asp	Arg 325	Arg	Leu	Leu	Pro	Ala 330	Ala	Val	His	Ser	Val 335	Thr
30	Leu	Ser	Glu	Glu 340	Ala	Ala	Gly	Ala	Tyr 345	Ala	Pro	Leu	Thr	Ala 350	Gln	Gly
	Thr	Ile	Leu 355	Ile	Asn	Arg	Val	Leu 360	Ala	Ser	Cys	Tyr	Ala 365	Val	Ile	Glu
35	Glu	His 370	Ser	Trp	Ala	His	Arg 375	Ala	Phe	Ala	Pro	Phe 380	Arg	Leu	Ala	His
	Ala 385	Leu	Leu	Ala	Ala	Leu 390	Ala	Pro	Ala	Arg	Thr 395	Asp	Arg	Gly	Gly	Asp 400
40	Ser	Gly	Gly	Gly	Asp 405	Arg	Gly	Gly	Gly	Gly 410	Gly	Arg	Val	Ala	Leu 415	Thr
45	Ala	Pro	Gly	Ala 420	Ala	Asp	Ala	Pro	Gly 425	Ala	Gly	Ala	Thr	Ala 430	Gly	Ile
,,,	His	Trp	Tyr 435	Ser	Gln	Leu	Leu	Tyr 440	Gln	Ile	Gly	Thr	Trp 445	Leu	Leu	Asp
50	Ser	Glu 450	Ala	Leu	His	Pro	Leu 455	Gly	Met	Ala	Val	Lys 460	Ser	Ser	Xaa	Ser
	Arg 465	Gly	Ala	Gly	Gly	Gly 470	Ala	Arg	Glu	Gly	Ala 475					
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	6:							
60			(i)	(A (B) LE:) TY	NGTH PE: 4	: 41 amin	ERIS 1 am o ac line	ino . id	: acid	S					

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

5	Met 1	Ser	Pro	Ala	Arg 5	Leu	Arg	Pro	Arg	Leu 10	His	Phe	Cys	Leu	Val 15	Leu
	Leu	Leu	Leu	Leu 20	Val	Val	Pro	Ala	Ala 25	Trp	Gly	Cys	Gly	Pro 30	Gly	Arg
10	Val	Val	Gly 35	Ser	Arg	Arg	Arg	Pro 40	Pro	Arg	Lys	Leu	Val 45	Pro	Leu	Ala
15	Tyr	Lys 50	Gln	Phe	Ser	Pro	Asn 55	Val	Pro	Glu	Lys	Thr 60	Leu	Gly	Ala	Ser
••	Gly 65	Arg	Tyr	Glu	Gly	Lys 70	Ile	Ala	Arg	Ser	Ser 75	Glu	Arg	Phe	Lys	Glu 80
20	Leu	Thr	Pro	Asn	Tyr 85	Asn	Pro	Asp	Ile	Ile 90	Phe	Lys	Asp	Glu	Glu 95	Asn
	Thr	Gly	Ala	Asp 100	Arg	Leu	Met	Thr	Gln 105	Arg	Cys	Lys	Asp	Arg 110	Leu	Asn
25	Ser	Leu	Ala 115	Ile	Ser	Val	Met	Asn 120	Gln	Trp	Pro	Gly	Val 125	Lys	Leu	Arg
30	Val	Thr 130	Glu	Gly	Trp	Asp	Glu 135	Asp	Gly	His	His	Ser 140	Glu	Glu	Ser	Leu
	His 145	Tyr	Glu	Gly	Arg	Ala 150	Val	Asp	Ile	Thr	Thr 155	Ser	Asp	Arg	Asp	Arg 160
35	Asn	Lys	Tyr	Gly	Leu 165	Leu	Ala	Arg	Leu	Ala 170	Val	Glu	Ala	Gly	Phe 175	Asp
	Trp	Val	Tyr	Туг 180	Glu	Ser	Lys	Ala	His 185	Val	His	Cys	Ser	Val 190	Lys	Ser
40	Glu	His	Ser 195	Ala	Ala	Ala	Lys	Thr 200	Gly	Gly	Cys	Phe	Pro 205	Ala	Gly	Ala
45	Gln	Val 210	Arg	Leu	Glu	Ser	Gly 215	Ala	Arg	Val	Ala	Leu 220	Ser	Ala	Val	Arg
	Pro 225	Gly	Asp	Arg	Val	Leu 230	Ala	Met	Gly	Glu	Asp 235	Gly	Ser	Pro	Thr	Phe 240
50	Ser	Asp	Val	Leu	Ile 245	Phe	Leu	Asp	Arg	Glu 250		His	Arg	Leu	Arg 255	Ala
	Phe	Gln	Val	Ile 260	Glu	Thr	Gln	Asp	Pro 265	Pro	Arg	Arg	Leu	Ala 270		Thr
55	Pro	Ala	His 275	Leu	Leu	Phe	Thr	Ala 280	Asp	Asn	His	Thr	Glu 285	Pro	Ala	Ala
60	Arg	Phe 290	Arg	Ala	Thr	Phe	Ala 295	Ser	His	Val	Gln	Pro 300	Gly	Gln	Tyr	Val
	Leu 305	Val	Ala	Gly	Val	Pro 310	Gly	Leu	Gln	Pro	Ala 315		Val	Ala	Ala	Val 320

	Ser	Thr	His	Val	Ala 325	Leu	Gly	Ala	Tyr	Ala 330	Pro	Leu	Thr	Lys	His 335	Gly
5	Thr	Leu	Val	Val 340	Glu	Asp	Val	Val	Ala 345	Ser	Cys	Phe	Ala	Ala 350	Val	Ala
10.	Asp	His	His 355	Leu	Ala	Gln	Leu	Ala 360	Phe	Trp	Pro	Leu	Arg 365	Leu	Phe	His
10.	Ser	Leu 370	Ala	Trp	Gly	Ser	Trp 375	Thr	Pro	Gly	Glu	Gly 380	Val	His	Trp	Tyr
15	Pro 385	Gln	Leu	Leu	Tyr	Arg 390	Leu	Gly	Arg	Leu	Leu 395	Leu	Glu	Glu	Gly	Ser 400
	Phe	His	Pro	Leu	Gly 405	Met	Ser	Gly	Ala	Gly 410	Ser					
20	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO:1	7:							
25			(i) :	(B	LE	NGTH:	: 39	6 am: o ac:	ino a id		5					
		(ii) 1	MOLE	CULE	TYP	2: p	rote	in							
30		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	17:				
	Met 1	Ala	Leu	Leu	Thr 5	Asn	Leu	Leu	Pro	Leu 10	Cys	Cys	Leu	Ala	Leu 15	Leu
35	Ala	Leu	Pro	Ala 20	Gln	Ser	Cys	Gly	Pro 25	Gly	Arg	Gly	Pro	Val 30	Gly	Arg
	Arg	Arg	Tyr 35	Ala	Arg	Lys	Gln	Leu 40	Val	Pro	Leu	Leu	Tyr 45	Lys	Gln	Phe
40	Val	Pro 50		Val	Pro	Glu	Arg 55		Leu	Gly	Ala	Ser 60	Gly	Pro	Ala	Glu
45	Gly 65	Arg	Val	Ala	Arg	Gly 70	Ser	Glu	Arg	Phe	Arg 75		Leu	Val	Pro	Asn 80
	Tyr	Asn	Pro	Asp	Ile 85	Ile	Phe	Lys	Asp	Glu 90		Asn	Ser	Gly	Ala 95	Asp
50	Arg	Leu	Met	Thr 100		Arg	Суз	Lys	Glu 105		Val	Asn	Ala	Leu 110		Ile
	Ala	Val	Met 115	Asn	Met	Trp	Pro	Gly 120		Arg	Leu	Arg	Val 125		Glu	Gly
55	Trp	Asp 130	Glu	Asp	Gly	His	His 135		Gln	Asp	Ser	Leu 140		Tyr	Glu	Gly
60	Arg 145	Ala	Leu	Asp	Ile	Thr 150	Thr	Ser	Asp	Arg	Asp 155		Asn	Lys	Tyr	Gly 160
-	Leu	Leu	Ala	Arg	Leu 165	Ala	Val	. Glu	Ala	Gly 170		Asp	Trp	Val	Tyr 175	Tyr

	Glu	Ser	Arg	Asn 180	His	Val	His	Val	Ser 185	Val	Lys	Ala	Asp	Asn 190	Ser	Leu
5	Ala	Val	Arg 195	Ala	Gly	Gly	Cys	Phe 200	Pro	Gly	Asn	Ala	Thr 205	Val	Arg	Leu
10	Trp	Ser 210	Gly	Glu	Arg	Lys	Gly 215	Leu	Arg	Glu	Leu	His 220	Arg	Gly	Asp	Trp
. •	Val 225	Leu	Ala	Ala	Asp	Ala 230	Ser	Gly	Arg	Val	Val 235	Pro	Thr	Pro	Val	Leu 240
15	Leu	Phe	Leu	Asp	Arg 245	Asp	Leu	Gln	Arg	Arg 250	Ala	Ser	Phe	Vạl	Ala 255	Val
	Glu	Thr	Glu	Trp 260	Pro	Pro	Arg	Lys	Leu 265	Leu	Leu	Thr	Pro	Trp 270	His	Leu
20	Val	Phe	Ala 275	Ala	Arg	Gly	Pro	Ala 280	Pro	Ala	Pro	Gly	Asp 285	Phe	Ala	Pro
25	Val	Phe 290	Ala	Arg	Arg	Leu	Arg 295	Ala	Gly	Asp	Ser	Val 300	Leu	Ala	Pro	Gly
	Gly 305	Asp	Ala	Leu	Arg	Pro 310	Ala	Arg	Val	Ala	Arg 315	Val	Ala	Arg	Glu	Glu 320
30	Ala	Val	Gly	Val	Phe 325	Ala	Pro	Leu	Thr	Ala 330	His	Gly	Thr	Leu	Leu 335	Val
	Asn	Asp	Val	Leu 340	Ala	Ser	Cys	Tyr	Ala 345	Val	Leu	Glu	Ser	His 350	Gln	Trp
35	Ala	His	Arg 355	Ala	Phe	Ala	Pro	Leu 360	Arg	Leu	Leu	His	Ala 365	Leu	Gly	Ala
40	Leu	Leu 370	Pro	Gly	Gly	Ala	Val 375	Gln	Pro	Thr	Gly	Met 380	His	Trp	Tyr	Ser
	Arg 385	Leu	Leu	Tyr	Arg	Leu 390	Ala	Glu	Glu	Leu	Leu 395	Gly				
45	(2)	INF	ORMA'	TION	FOR	SEQ	TD I	NO: 18	R •							
50				SEQUI (A) (B)	ENCE) LEI) TYI	CHAINGTH PE: 2	RACTI : 41	ERIS' 6 am: o ac:	TICS ino a		s					
		(.	ii)	MOLE	CULE	TYP	E: p:	rote	in							
55	14					DES										
.	1				5	His				10					15	
60	Ser	Leu	Leu	Leu 20	Thr	Pro	Cys	Gly	Leu 25	Ala	Cys	Gly	Pro	Gly 30	Arg	Gly

	Tyr	Gly	Lys 35	Arg	Arg	His	Pro	Lys 40	Lys	Leu	Thr	Pro	Leu 45	Ala	Tyr	Lys
5	Gln	Phe 50	Ile	Pro	Asn	Val	Ala 55	Glu	Lys	Thr	Leu	Gly 60	Ala	Ser	Gly	Lys
	Tyr 65	Glu	Gly	Lys	Ile	Thr 70	Arg	Asn	Ser	Glu	Arg 75	Phe	Lys	Glu	Leu	Ile 80
10	Pro	Asn	Tyr	Asn	Pro 85	Asp	Ile	Ile	Phe	Lys 90	Asp	Glu	Glu	Asn	Thr 95	Asn
15	Ala	Asp	Arg	Leu 100	Met	Thr	Lys	Arg	Cys 105	Lys	Asp	Lys	Leu	Asn 11,0	Ser	Leu
	Ala	Ile	Ser 115	Val	Met	Asn	His	Trp 120	Pro	Gly	Val	Lys	Leu 125	Arg	Val	Thr
20	Glu	Gly 130	Trp	Asp	Glu	Asp	Gly 135	His	His	Leu	Glu	Glu 140	Ser	Leu	His	Tyr
	Glu 145	Gly	Arg	Ala	Val	Asp 150	Ile	Thr	Thr	Ser	Asp 155	Arg	Asp	Lys	Ser	Lys 160
25	Tyr	Gly	Met	Leu	Ser 165	Arg	Leu	Ala	Val	Glu 170	Ala	Gly	Phe	Asp	Trp 175	Val
30	Tyr	Tyr	Glu	Ser 180	Lys	Ala	His	Ile	His 185	Cys	Ser	Val	Lys	Ala 190	Glu	Asn
	Ser	Val	Ala 195	Ala	Lys	Ser	Gly	Gly 200	Cys	Phe	Pro	Gly	Ser 205	Gly	Thr	Val
35	Thr	Leu 210	Gly	Asp	Gly	Thr	Arg 215	Lys	Pro	Ile	Lys	Asp 220	Leu	Lys	Val	Gly
	Asp 225	Arg	Val	Leu	Ala	Ala 230	qzA	Glu	Lys	Gly	Asn 235	Val	Leu	Ile	Ser	Asp 240
40	Phe	Ile	Met	Phe	Ile 245	Asp	His	Asp	Pro	Thr 250	Thr	Arg	Arg	Gln	Phe 255	Ile
45	Val	Ile	Glu	Thr 260	Ser	Glu	Pro	Phe	Thr 265	Lys	Leu	Thr	Leu	Thr 270	Ala	Ala
	His	Leu	Val 275	Phe	Val	Gly	Asn	Ser 280	Ser	Ala	Ala	Ser	Gly 285	Ile	Thr	Àla
50	Thr	Phe 290	Ala	Ser	Asn	Val	Lys 295		Gly	Asp	Thr	Val 300		Val	Trp	Glu
	Asp 305	Thr	Cys	Glu	Ser	Leu 310	Lys	Ser	Val	Thr	Val 315	Lys	Arg	Ile	Tyr	Thr 320
55	Glu	Glu	His	Glu	Gly 325	Ser	Phe	Ala	Pro	Val 330		Ala	His	Gly	Thr 335	Ile
60	Ile	Val	Asp	Gln 340	Val	Leu	Ala	Ser	Cys 345		Ala	Val	Ile	Glu 350	Asn	His
-	Lys	Trp	Ala 355	His	Trp	Ala	Phe	Ala 360	Pro	Val	Arg	Leu	Cys 365		Lys	Leu

PCT/US98/15419

	Met	Thr 370	Trp	Leu	Phe	Pro	Ala 375	Arg	Glu	Ser	Asn	Val 380	Asn	Phe	Gln	Glu	
5	Asp 385	Gly	Ile	His		Tyr 390	Ser	Asn	Met	Leu	Phe 395	His	Ile	Gly	Ser	Trp 400	
10	Leu	Leu	Asp	Arg	Asp 405	Ser	Phe	His	Pro	Leu 410	Gly	Ile	Leu	His	Leu 415	Ser	
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	10:19):								
15		(i)	(B) LE) TY) SI	NGTH PE: RANE		16 k eic SS:	ase acio both	pair 1	:s							
20		(ii)	MOL	ECUI	E TY	PE:	cDNA	A									
25		(ix)) NA	ME/F	KEY:		1413									
		(xi)	SEC	UENC	CE DE	ESCRI	PTIO	ON: :	SEQ :	ID NO	0:19	:					
30	ATG Met 1	GAT Asp	AAC Asn	CAC His	AGC Ser 5	TCA Ser	GTG Val	CCT Pro	TGG Trp	GCC Ala 10	AGT Ser	GCC Ala	GCC Ala	AGT Ser	GTC Val 15	ACC Thr	4 8
35	TGT Cys	CTC Leu	TCC Ser	CTG Leu 20	GGA Gly	TGC Cys	CAA Gln	ATG Met	CCA Pro 25	CAG Gln	TTC Phe	CAG Gln	TTC Phe	CAG Gln 30	TTC Phe	CAG Gln	96
40	CTC Leu	CAA Gln	ATC Ile 35	CGC Arg	AGC Ser	GAG Glu	CTC Leu	CAT His 40	CTC Leu	CGC Arg	AAG Lys	CCC Pro	GCA Ala 45	AGA Arg	AGA Arg	ACG Thr	144
45	CAA Gln	ACG Thr 50	ATG Met	CGC Arg	CAC His	ATT Ile	GCG Ala 55	CAT	ACG Thr	CAG Gln	CGT Arg	TGC Cys 60	CTC Leu	AGC Ser	AGG Arg	CTG Leu	192
15	ACC Thr 65	TCT Ser	CTG Leu	GTG Val	GCC Ala	CTG Leu 70	CTG Leu	CTG Leu	ATC Ile	GTC Val	TTG Leu 75	CCG Pro	ATG Met	GTC Val	TTT Phe	AGC Ser 80	240
50	CCG Pro	GCT Ala	CAC His	AGC Ser	TGC Cys 85	GGT Gly	CCT Pro	GGC Gly	CGA Arg	GGA Gly 90	Leu	GGT Gly	CGT Arg	CAT His	AGG Arg 95	Ala	288
55	CGC Arg	AAC Asn	CTG Leu	TAT Tyr 100	CCG Pro	CTG Leu	GTC Val	CTC Leu	AAG Lys 105	CAG Gln	ACA Thr	ATT	CCC Pro	AAT Asn 110	CTA Leu	TCC Ser	33
60	GAG Glu	TAC Tyr	ACG Thr 115	AAC Asn	AGC Ser	GCC Ala	TCC Ser	GGA Gly 120	Pro	CTG Leu	GAG Glu	GGT Gly	GTG Val 125	Ile	CGT Arg	CGG Arg	38
	GAT	TCG	ccc	AAA	TTC	AAG	GAC	СТС	GTG	כככ	AAC	ТДС	ממכ	AGG	GAC	ΔTC	/ 3·

	Asp	Ser 130	Pro	Lys	Phe	Lys	Asp 135	Leu	Val	Pro	Asn	Tyr 140	Asn	Arg	Asp	Ile	
5	CTT Leu 145	TTC Phe	CGT Arg	GAC Asp	GAG Glu	GAA Glu 150	GGC Gly	ACC Thr	GGA Gly	GCG Ala	GAT Asp 155	GGC Gly	TTG Leu	ATG Met	AGC Ser	AAG Lys 160	480
10	CGC Arg	TGC Cys	AAG Lys	GAG Glu	AAG Lys 165	CTA Leu	AAC Asn	GTG Val	CTG Leu	GCC Ala 170	TAC Tyr	TCG Ser	GTG Val	ATG Met	AAC Asn 175	GAA Glu	528
15	TGG Trp	CCC Pro	GGC Gly	ATC Ile 180	CGG Arg	CTG Leu	CTG Leu	GTC Val	ACC Thr 185	GAG Glu	AGC Ser	TGG Trp	GAC Asp	GAG Glu 190	GAC Asp	TAC Tyr	576
15	CAT His	CAC His	GGC Gly 195	CAG Gln	GAG Glu	TCG Ser	CTC Leu	CAC His 200	TAC Tyr	GAG Glu	GGC Gly	CGA Arg	GCG Ala 205	GTG Val	ACC Thr	ATT Ile	624
20	GCC Ala	ACC Thr 210	TCC Ser	GAT Asp	CGC Arg	GAC Asp	CAG Gln 215	TCC Ser	AAA Lys	TAC Tyr	GGC Gly	ATG Met 220	CTC Leu	GCT Ala	CGC Arg	CTG Leu	672
25	GCC Ala 225	GTC Val	GAG Glu	GCT Ala	GGA Gly	TTC Phe 230	GAT Asp	TGG Trp	GTC Val	TCC Ser	TAC Tyr 235	GTC Val	AGC Ser	AGG Arg	CGC Arg	CAC His 240	720
30	ATC Ile	TAC Tyr	TGC Cys	TCC Ser	GTC Val 245	AAG Lys	TCA Ser	GAT Asp	TCG Ser	TCG Ser 250	ATC Ile	AGT Ser	TCC Ser	CAC His	GTG Val 255	CAC His	768
35	GGC Gly	TGC Cys	TTC Phe	ACG Thr 260	CCG Pro	GAG Glu	AGC Ser	ACA Thr	GCG Ala 265	CTG Leu	CTG Leu	GAG Glu	AGT Ser	GGA Gly 270	GTC Val	CGG Arg	816
33	AAG Lys	CCG Pro	CTC Leu 275	GGC Gly	GAG Glu	CTC Leu	TCT Ser	ATC Ile 280	GGA Gly	GAT Asp	CGT Arg	GTT Val	TTG Leu 285	AGC Ser	ATG Met	ACC Thr	864
40	GCC Ala	AAC Asn 290	GGA Gly	CAG Gln	GCC Ala	GTC Val	TAC Tyr 295	AGC Ser	GAA Glu	GTG Val	ATC Ile	CTC Leu 300	TTC Phe	ATG Met	GAC Asp	CGC Arg	912
45	AAC Asn 305	Leu	GAG Glu	CAG Gln	ATG Met	CAA Gln 310	AAC Asn	TTT Phe	GTG Val	CAG Gln	CTG Leu 315	CAC His	ACG Thr	GAC Asp	GGT Gly	GGA Gly 320	960
50	GCA Ala	GTG Val	CTC Leu	ACG Thr	GTG Val 325	ACG Thr	CCG Pro	GCT Ala	CAC His	CTG Leu 330	Val	AGC Ser	GTT Val	TGG Trp	CAG Gln 335	CCG Pro	1008
55	GAG Glu	AGC Ser	CAG Gln	AAG Lys 340	Leu	ACG Thr	TTT Phe	GTG Val	TTT Phe 345	Ala	CAT His	CGC Arg	ATC Ile	GAG Glu 350	Glu	AAG Lys	1056
رر	AAC Asn	CAG Gln	GTG Val 355	Leu	GTA Val	. CGG Arg	GAT Asp	GTG Val 360	Glu	ACG Thr	GGC	GAG Glu	CTG Leu 365	Arg	CCC	CAG Gln	1104
60	CGA Arg	GTG Val	. Val	AAG Lys	TTG Leu	GGC Gly	AGT Ser 375	Val	CGC Arg	AGT Ser	AAG Lys	GGC Gly 380	Val	GTC Val	GCG Ala	CCG Pro	1152

5	CTG Leu 385	ACC Thr	CGC Arg	GAG Glu	GGC Gly	ACC Thr 390	ATT Ile	GTG Val	GTC Val	AAC Asn	TCG Ser 395	GTG Val	GCC Ala	GCC Ala	AGT Ser	TGC Cys 400	1200
	TAT Tyr	GCG Ala	GTG Val	ATC Ile	AAC Asn 405	AGT Ser	CAG Gln	TCG Ser	CTG Leu	GCC Ala 410	CAC His	TGG Trp	GGA Gly	CTG Leu	GCT Alá 415	CCC Pro	1248
10	ATG Met	CGC Arg	CTG Leu	CTG Leu 420	TCC Ser	ACG Thr	CTG Leu	GAG Glu	GCG Ala 425	TGG Trp	CTG Leu	CCC Pro	GCC Ala	AAG Lys 430	GAG Glu	CAG Gln	1296
15	TTG Leu	CAC His	AGT Ser 435	TCG Ser	CCG Pro	AAG Lys	GTG Val	GTG Val 440	AGC Ser	TCG Ser	GCG Ala	CAG Gln	CAG Gln 445	CAG Gln	AAT Asn	GGC Gly	1344
20	ATC Ile	CAT His 450	TGG Trp	TAT Tyr	GCC Ala	AAT Asn	GCG Ala 455	CTC Leu	TAC Tyr	AAG Lys	GTC Val	AAG Lys 460	GAC Asp	TAC Tyr	GTG Val	CTG Leu	1392
25	CCG Pro 465	CAG Gln	AGC Ser	TGG Trp	CGC Arg	CAC His 470	GAT Asp	TGA									1416
	(2)	INFO	ORMA?	rion	FOR	SEQ	ID 1	NO:20	0:								
30			(i) S	(A)	LE	NGTH	RACTI 47:	l am	ino a	: acid:	s						
				(D)	TO	POLO	GY: :	line	ar								
35				MOLE	CULE	TYP	GY: 1 E: p: CRIP	rote	in	Q ID	NO:	20:					
35 40	Met 1	(2	xi) :	MOLE(CULE	TYP)	E: p	rote: TION	in : SE				Ala	Ser	Val 15	Thr	
	Cys	Asp Leu	xi) S Asn Ser	MOLEC SEQUE His Leu 20	ENCE Ser 5	TYP) DESC Ser Cys	E: pr CRIPT Val Gln	rote FION Pro Met	in : SEC Trp Pro 25	Ala 10 Gln	Ser Phe	Ala Gln	Phe	Gln 30	15 Phe	Gln	
	Cys	Asp Leu	xi) S Asn Ser	MOLEC SEQUE His Leu 20	ENCE Ser 5	TYP) DESC Ser Cys	E: pr CRIP Val	rote FION Pro Met	in : SEC Trp Pro 25	Ala 10 Gln	Ser Phe	Ala Gln	Phe	Gln 30	15 Phe	Gln	
40 45	Cys Leu	Asp Leu Gln	Asn Ser Ile 35	MOLEG SEQUI His Leu 20 Arg	ENCE Ser 5 Gly Ser	TYP) DESC Ser Cys	E: pr CRIPT Val Gln	rote FION Pro Met His 40	in : SEG Trp Pro 25 Leu	Ala 10 Gln Arg	Ser Phe Lys	Ala Gln Pro	Phe Ala 45	Gln 30 Arg	15 Phe Arg	Gln Thr	
40	Cys Leu Gln	Asp Leu Gln Thr	Asn Ser Ile 35	MOLEC SEQUE His Leu 20 Arg	CULE ENCE Ser 5 Gly Ser His	TYPE DESC Ser Cys Glu	E: process of the control of the con	rote: FION Pro Met His 40 His	in : SEC Trp Pro 25 Leu	Ala 10 Gln Arg	Ser Phe Lys Arg	Ala Gln Pro Cys 60	Phe Ala 45 Leu	Gln 30 Arg Ser	15 Phe Arg Arg	Gln Thr Leu	
40 45	Cys Leu Gln Thr 65	Asp Leu Gln Thr 50 Ser	Asn Ser Ile 35 Met Leu	MOLEC SEQUI His Leu 20 Arg Arg Val	Ser 5 Ser His	TYPEDESC Ser Cys Glu Ile Leu 70	CRIPT Val Gln Leu Ala 55	rote FION Pro Met His 40 His Leu	in : SEC Trp Pro 25 Leu Thr	Ala 10 Gln Arg Gln Val	Ser Phe Lys Arg Leu 75	Ala Gln Pro Cys 60 Pro	Phe Ala 45 Leu Met	Gln 30 Arg Ser	15 Phe Arg Arg	Gln Thr Leu Ser 80	
40 45 50	Cys Leu Gln Thr 65	Asp Leu Gln Thr 50 Ser	Asn Ser Ile 35 Met Leu His	MOLECUM His Leu 20 Arg Arg Val	CULE Ser 5 Gly Ser His Ala Cys 85	TYPP DESC Ser Cys Glu Ile Leu 70 Gly	CRIPT Val Gln Leu Ala 55	Pro Met His 40 His Leu Gly	in : SEC Trp Pro 25 Leu Thr Ile Arg	Ala 10 Gln Arg Gln Val Gly 90	Ser Phe Lys Arg Leu 75	Ala Gln Pro Cys 60 Pro Gly	Phe Ala 45 Leu Met	Gln 30 Arg Ser Val	Phe Arg Arg Phe Arg	Gln Thr Leu Ser 80 Ala	
40 45 50	Cys Leu Gln Thr 65 Pro	Asp Leu Gln Thr 50 Ser Ala Asn	Asn Ser Ile 35 Met Leu His	MOLEC His Leu 20 Arg Val Ser	CULE Ser 5 Gly Ser His Ala Cys 85 Pro	TYPE DESC Ser Cys Glu Ile Leu 70 Gly Leu	CRIPTO	rote: FION Pro Met His 40 His Leu Gly Leu	Trp Pro 25 Leu Thr Ile Arg	Ala 10 Gln Arg Gln Val Gly 90 Gln	Ser Phe Lys Arg Leu 75 Leu Thr	Ala Gln Pro Cys 60 Pro Gly Ile	Phe Ala 45 Leu Met Arg	Gln 30 Arg Ser Val His Asn 110	Phe Arg Arg Phe Arg Leu	Gln Thr Leu Ser 80 Ala Ser	

		130					135					140				
5	Leu 145	Phe	Arg	Asp	Glu	Glu 150	Gly	Thr	Gly	Ala	Asp 155	Gly	Leu	Met	Ser	Lys 160
J	Arg	Cys	Lys	Glu	Lys 165	Leu	Asn	Val	Leu	Ala 170	Tyr	Ser	Val	Met	Asn 175	Glu
10	Trp	Pro	Gly	Ile 180	Arg	Leu	Leu	Val	Thr 185	Glu	Ser	Trp	Asp	Glu 190	Asp	Tyr
	His	His	Gly 195	Gln	Glu	Ser	Leu	His 200	Tyr	Glu	Gly	Arg	Ala 205	Val	Thr	Ile
15	Ala	Thr 210	Ser	Asp	Arg	Asp	Gln 215	Ser	Lys	Tyr	Gly	Met 220	Leu	Ala	Arg	Leu
20	Ala 225	Val	Glu	Ala	Gly	Phe 230	Asp	Trp	Val	Ser	Tyr 235	Val	Ser	Arg	Arg	His 240
	Ile	Tyr	Cys	Ser	Val 245	Lys	Ser	Asp	Ser	Ser 250	Ile	Ser	Ser	His	Val 255	His
25	Gly	Cys	Phe	Thr 260	Pro	Glu	Ser	Thr	Ala 265	Leu	Leu	Glu	Ser	Gly 270	Val	Arg
	Lys	Pro	Leu 275	Gly	Glu	Leu	Ser	Ile 280	Gly	qzA	Arg	Val	Leu 285	Ser	Met	Thr
30	Ala	Asn 290	Gly	Gln	Ala	Val	Tyr 295	Ser	Glu	Val	Ile	Leu 300	Phe	Met	Asp	Arg
35	Asn 305	Leu	Glu	Gln	Met	Gln 310	Asn	Phe	Val	Gln	Leu 315	His	Thr	Asp	Gly	Gly 320
	Ala	Val	Leu	Thr	Val 325	Thr	Pro	Ala	His	Leu 330	Val	Ser	Val	Trp	Gln 335	Pro
40				340					345					Glu 350		
	Asn	Gln	Val 355	Leu	Val	Arg	Asp	Val 360	Glu	Thr	Gly	Glu	Leu 365		Pro	Gln
45		370					375					380				Pro
50	Leu 385	Thr	Arg	Glu	Gly	Thr 390	Ile	Val	Val	Asn	Ser 395		Ala	Ala	Ser	Cys 400
					405					410					415	•
55				420					425					430		Gln
	Leu	His	Ser 435	Ser	Pro	Lys	Val	Val 440	Ser	Ser	Ala	Gln	Gln 445		Asn	Gly
60	Ile	His 450	Trp	Tyr	Ala	Asn	Ala 455	Leu	Туг	Lys	Val	Lys 460		Tyr	Val	Leu

	Pro Gln S	Ser T	rp A		is A 70	.sp										
5	(2) INFOR	RMATI	ON E	or s	EQ I	D NC	:21:									
J	(i)	(B)	LEN TYP	GTH: E: a	221 mino	ami aci	.no a .d		i.					•		
10	(ii)				97: 1											
		FRAG				_										
15																
	(xi)	SEQU	JENCE	DES	CRIE	OIT	N: SE	Q II	NO:	21:						
20	Cys 1	Gly	Pro	Gly	Arg 5	Gly	Xaa	Gly	Xaa	Arg 10	Arg	His	Pro	Lys	Lys 15	Leu
	Thr	Pro	Leu	Ala 20	Tyr	Lys	Gln	Phe	Ile 25	Pro	Asn	Val	Ala	Glu 30	Lys	Thr
25	Leu	Gly	Ala 35	Ser	Gly	Arg	Tyr	Glu 40	Gly	Lys	Ile	Xaa	Arg 45	Asn	Ser	Glu
30	Arg	Phe 50	Lys	Glu	Leu	Thr	Pro 55	Asn	Tyr	Asn	Pro	Asp 60	Ile	Ile	Phe	Lys
30	Asp 65	Glu	Glu	Asn	Thr	Gly 70	Ala	Asp	Arg	Leu	Met 75	Thr	Gln	Arg	Cys	Lys 80
35	Asp	Lys	Leu	Asn	Xaa 85	Leu	Ala	Ile	Ser	Val 90	Met	Asn	Xaa	Trp	Pro 95	Gly
	Val	Xaa	Leu	Arg 100	Val	Thr	Glu	Gly	Trp 105	Asp	Glu	Asp	Gly	His 110	His	Xaa
40	Glu	Glu	Ser 115	Leu	His	Tyr	Glu	Gly 120	Arg	Ala	Val	Asp	Ile 125	Thr	Thr	Ser
45	Asp	Arg 130	Asp	Xaa	Ser	Lys	Tyr 135	Gly	Xaa	Leu	Xaa	Arg 140	Leu	Ala	Val	Glu
	Ala 145	Gly	Phe	Asp	Trp	Val 150	Tyr	Tyr	Glu	Ser	Lys 155	Ala	His	Ile	His	Cys 160
50	Ser	Val	Lys	Ala	Glu 165	Asn	Ser	Val	Ala	Ala 170	Lys	Ser	Gly	Gly	Cys 175	Phe
	Pro	Gly	Ser	Ala 180	Xaa	Val	Xaa	Leu	Xaa 185	Xaa	Gly	Gly	Xaa	Lys 190	Xaa	Val
55	Lys	Asp	Leu 195	Xaa	Pro	Gly	Asp	Xaa 200	Val	Leu	Ala	Ala	Asp 205	Xaa	Xaa	Gly
60	Xaa	Leu 210	Xaa	Xaa	Ser	Asp	Phe 215	Xaa	Xaa	Phe	Xaa	Asp 220	Arg			

(2) INFORMATION FOR SEQ ID NO:22:

5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 167 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear														
	(ii)	MOLE	CULE	TYF	E: F	epti	.de							-		
10	(v)	FRAGMENT TYPE: internal														
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:22:														
15	Cys 1	Gly	Pro	Gly	Arg 5	Gly	Xaa	Xaa	Xaa	Arg 10	Arg	Xaa	Xaa	Xaa	Pro 15	Lys
20	Xaa	Leu	Xaa	Pro 20	Leu	Xaa	Tyr	Lys	Gln 25	Phe	Xaa	Pro	Xaa	Xaa 30	Xaa	Glu
	Xaa	Thr	Leu 35	Gly	Ala	Ser	Gly	Xaa 40	Xaa	Glu	Gly	Xaa	Xaa 45	Xaa	Arg	Xaa
25		Glu 50					55					60				
	Phe 65	Lys	Asp	Glu	Glu	Asn 70	Xaa	Gly	Ala	Asp	Arg 75	Leu	Met	Thr	Xaa	Arg 80
30	Cys	Lys	Xaa	Xaa	Xaa 85	Asn	Xaa	Leu	Ala	Ile 90	Ser	Val	Met	Asn	Xaa 95	Trp
35		Gly		100					105					110	_	
		Xaa	115					120					125			
40		Ser 130					135					140				
	Val 145	Glu	Ala	Gly	Phe	Asp 150	Trp	Val	Tyr	Tyr	Glu 155	Ser	Xaa	Xaa	His	Xaa 160
45	His	Xaa	Ser	Val	Lys 165	Xaa	Xaa									

We claim:

- 1. A method for promoting survival of substantia nigra neuronal cells comprising contacting the cells with a trophic amount of a ptc therapeutic.
 - 2. A method for promoting survival of dopaminergic cells comprising contacting the cells with a trophic amount of a *ptc* therapeutic.
- 10 3. A method for promoting survival of GABA-nergic cells comprising contacting the cells with a trophic amount of a ptc therapeutic.
- A method for treating a disorder characterized by loss of dopaminergic and/or GABA-nergic neurons which comprises administering to a patient in need thereof a therapeutically effective amount of a ptc therapeutic.
 - 5. A method for treating or preventing Parkinson's disease comprising administering to a patient in need thereof a therapeutically effective amount of a ptc therapeutic.
- 20 6. A method for treating or preventing Huntington's disease comprising administering to a patient in need thereof a therapeutically effective amount of a ptc therapeutic.
- 7. The method of any of claims 1-6, wherein the ptc therapeutic binds to patched and mimics hedgehog-mediated patched signal transduction.
 - 8. The method of claim 7, wherein the ptc therapeutic is a small organic molecule.
- 9. The method of claim 7, wherein the binding of the ptc therapeutic to patched results in upregulation of patched and/or gli expression.

- 10. The method of any of claims 1-6, wherein the *ptc* therapeutic is a small organic molecule which interacts with neuronal cells to mimic *hedgehog*-mediated *patched* signal transduction.
- The method of any of claims 1-6, wherein the *ptc* therapeutic mimics *hedgehog*-mediated *patched* signal transduction by altering the localization, protein-protein binding and/or enzymatic activity of an intracellular protein involved in a *patched* signal pathway.
- 10 12. The method of any of claims 1-6, wherein the *ptc* therapeutic alters the level of expression of a *hedgehog* protein, a patched protein or a protein involved in the intracellular signal transduction pathway of *patched*.
- 13. The method of claim 12, wherein the *ptc* therapeutic is an antisense construct which inhibits the expression of a protein which is involved in the signal transduction pathway of *patched* and the expression of which antagonizes *hedgehog*-mediated signals.
- 14. The method of claim 13, wherein the antisense construct is an oligonucleotide of about 20-30 nucleotides in length and has a GC content of at least 50 percent.
 - 15. The method of claim 14, wherein the antisense oligonucleotide is selected from the group consisting of:
 - 5'-GTCCTGGCGCCGCCGCCGCCGTCGCC;
 - 5'-TTCCGATGACCGGCCTTTCGCGGTGA; and
 - 5'-GTGCACGGAAAGGTGCAGGCCACACT
 - 16. The method of claim 12, wherein the *ptc* therapeutic is a small organic molecule which binds to *patched* and regulates *patched*-dependent gene expression.

- 17. The method of claim 11, wherein the *ptc* therapeutic is an inhibitor of protein kinase A.
- 18. The method of claim 17, wherein the PKA inhibitor is a 5-isoquinolinesulfonamide.
 - 19. The method of claim 18, wherein the PKA inhibitor is represented in the general formula:

10 wherein,

15

 R_1 and R_2 each can independently represent hydrogen, and as valence and stability permit a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido. a sulfate, a sulfonate, a sulfonamido, $-(CH_2)_m-R_8$, $-(CH_2)_m-OH$, $-(CH_2)_m-OH$ lower alkyl, $-(CH_2)_m-OH$ alkenyl, $-(CH_2)_m-OH$ alkenyl, $-(CH_2)_m-CH$, and as valence and stability permit a lower alkynyl, a carbonyl (such as a thioester, a carbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido. a sulfate, a sulfonate, a sulfonamido, $-(CH_2)_m-R_8$, $-(CH_2)_m-OH$, -

 R_1 and R_2 taken together with N form a heterocycle (substituted or unsubstituted);

R₃ is absent or represents one or more substitutions to the isoquinoline ring such as a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH₂)_m-R₈, -(CH₂)_m-OH, -(CH₂)_m-O-lower alkyl, -(CH₂)_m-O-lo

O-lower alkenyl, $-(CH_2)_m$ -O- $(CH_2)_m$ -R₈, $-(CH_2)_m$ -SH, $-(CH_2)_m$ -S-lower alkyl, $-(CH_2)_m$ -S-lower alkenyl, $-(CH_2)_m$ -R₈;

R₈ represents a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle; and

- n and m are independently for each occurrence zero or an integer in the range of 1 to 6.
 - 20. The method of claim 17, wherein the PKA inhibitor is a cyclic AMP analog.
- The method of claim 17, wherein the PKA inhibitor is selected from the group consisting of N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, l-(5-isoquinoline-sulfonyl)-2-methylpiperazine. KT5720, 8-bromo-cAMP, dibutyryl-cAMP and PKA Heat Stable Inhibitor isoform α.
- 15 22. The method of any of claims 4-6, wherein a patient is being treated prophylactically.
- A therapeutic preparation of a small molecule antagonist of patched, which patched antagonist is provided in a pharmaceutically acceptable carrier and in an amount sufficient to promote survival of dopaminergic cells in a mammal.
 - 24. A therapeutic preparation of a small molecule antagonist of *patched*, which *patched* antagonist is provided in a pharmaceutically acceptable carrier and in an amount sufficient to promote survival of dopaminergic cells in an adult human.
 - 25. The preparation of claim 24, which patched antagonist binds to patched.

- 26. The preparation of claim 24, wherein the *patched* antagonist is provided in an amount sufficient to promote survival of dopaminergic cells in a mammal treated with MPTP at 1mg/kg.
- 5 27. The preparation of claim 24, wherein the *patched* antagonist is provided in an amount sufficient to promote survival of dopaminergic cells in a mammal treated with MPTP at 10mg/kg.
- 28. A method for limiting damage to neuronal cells by Parkinsonian conditions, comprising administering to a patient a gene activation construct which recombines with a genomic *hedgehog* gene of the patient to provide a heterologous transcriptional regulatory sequence operatively linked to a coding sequence of the *hedgehog* gene.
- 15 29. An isolated and/or recombinantly produced polypeptide comprising an amino acid sequence which is at least 95 percent identical to a sequence represented by SEQ ID. NO. 16 or 17, or a bioactive extracellular fragment thereof.
- 30. An isolated and/or recombinantly produced polypeptide encoded by a nucleic acid which hybridizes under stringent conditions to a sequence selected from the group consisting of SEQ ID. NO. 16 and SEQ ID. NO. 17.
 - 31. An isolated and/or recombinantly produced *Dhh* hedgehog polypeptide, or a bioactive extracellular fragment thereof, encoded by a human *Dhh* gene.
 - 32. An isolated and/or recombinantly produced *Ihh* hedgehog polypeptide, or a bioactive extracellular fragment thereof, encoded by a human *Ihh* gene.
- 33. The polypeptide of any of claims 29-32, formulated in a pharmaceutically acceptable carrier.

- 34. The polypeptide of any of claims 29-32, wherein the polypeptide is purified to at least 80% by dry weight.
- 35. An isolated nucleic acid encoding a polypeptide comprising a hedgehog amino acid sequence which is at least 95 percent identical to a hedgehog protein selected from the group consisting of SEQ ID No:16 and SEQ ID No:17, and fragments thereof, which hedgehog amino acid sequence (i) binds to a patched protein, (ii) regulates differentiation of neuronal cells, (iii) regulates survival of differentiated neuronal cells, (iv) regulates proliferation of chondrocytes, (v) regulates proliferation of testicular germ line cells, or (vi) functionally replaces Drosophila Hedgehog in a transgenic Drosophila fly, or a combination thereof.
- 36. An isolated nucleic acid encoding a polypeptide having a hedgehog amino acid sequence encoded by a nucleic acid which hybridizes under stringent conditions to a nucleic acid sequence selected from the group consisting of SEQ ID No:7 and SEQ ID No:8, which hedgehog amino acid sequence of the polypeptide corresponds to a natural proteolytic product of a hedgehog protein and (i) binds to a patched protein, (ii) regulates differentiation of neuronal cells, (iii) regulates survival of differentiated neuronal cells, (iv) regulates proliferation of chondrocytes, (v) regulates proliferation of testicular germ line cells, or (vi) functionally replaces Drosophila Hedgehog in a transgenic Drosophila fly, or a combination thereof.
- 37. The nucleic acid of claim 35 or 36, wherein the hedgehog amino acid sequence is identical to a hedgehog protein selected from the group consisting of SEQ ID No:16 and SEQ ID No:17.
 - 38. An isolated nucleic acid comprising a coding sequence of a human *hedgehog* gene, encoding a bioactive *hedgehog* protein.
 - 39. An expression vector, capable of replicating in at least one of a prokaryotic cell or a eukaryotic cell, comprising the nucleic acid of claim 35, 36 or 38.

- 40. A host cell transfected with the expression vector of claim 39 and expressing said recombinant polypeptide.
- 41. A method of producing a recombinant *hedgehog* polypeptide comprising culturing the cell of claim 40 in a cell culture medium to express a *hedgehog* polypeptide and isolating said *hedgehog* polypeptide from said cell culture.
 - 42. A recombinant transfection system, comprising:
 - (i) a gene construct including the nucleic acid of claim 35, 36 or 38, operably linked to a transcriptional regulatory sequence for causing expression of the *hedgehog* polypeptide in eukaryotic cells, and
 - (ii) a gene delivery composition for delivering said gene construct to a cell and causing the cell to be transfected with said gene construct.
- 15 43. The recombinant transfection system of claim 42, wherein the gene delivery composition is selected from a group consisting of a recombinant viral particle, a liposome and a poly-cationic nucleic acid binding agent.
- 44. A probe/primer comprising a substantially purified oligonucleotide, said oligonucleotide containing a region of nucleotide sequence which hybridizes under stringent conditions to at least 10 consecutive nucleotides of sense or antisense sequence of SEQ ID No. 7 or 8, or naturally occurring mutants thereof.
- 45. The probe/primer of claim 44, wherein the probe/primer further comprises a label group attached thereto, wherein said label is capable of being detected.
 - 46. A test kit for detecting cells which contain a hedgehog mRNA transcript, comprising the probe/primer of claim 45.
- 47. A purified preparation of an antisense nucleic acid which specifically hybridizes to and inhibits expression of a gene encoding a human Ihh or Dhh hedgehog

protein under physiological conditions, which nucleic acid is at least one of (i) a synthetic oligonucleotide, (ii) single-stranded, (iii) linear, (iv) 20 to 50 nucleotides in length, and (v) a DNA analog resistant to nuclease degradation.

5 48. The preparation of claim 47, wherein said antisense nucleic acid is a DNA analog resistant to nuclease degradation.

FIG. II

FIG. III

FIG. IV

FIG. V

FIG. VI

FIG. VII

FIG. VIII