Review: Logistic Regression

CS114B Lab 4

Kenneth Lai

February 26, 2021

Suppose we observe a movie review d = "predictable with no fun". Is the review positive or negative?

Documents are characterized by features

- Documents are characterized by features
 - ► No independence assumptions

- Documents are characterized by features
 - No independence assumptions
- ► For each feature *j*:
 - ▶ Value x_j
 - ▶ Weight *w_j*

- Documents are characterized by features
 - ► No independence assumptions
- ► For each feature *j*:
 - ▶ Value x_j
 - ▶ Weight *w_j*
- ▶ Bias term b

- Documents are characterized by features
 - No independence assumptions
- ► For each feature *j*:
 - Value x_j
 - ▶ Weight w_j
- ▶ Bias term b

• "Score" (log-odds)
$$z = \left(\sum_{j=1}^{n} w_j x_j\right) + b = \mathbf{w} \cdot \mathbf{x} + b$$

▶ Logistic function $\sigma(z) = \frac{1}{1 + e^{-z}}$

▶ Logistic function
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x} + b) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

$$p(y = 0|\mathbf{x}) = 1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b) = \frac{e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

▶ Let $\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$ be the classifier output for some \mathbf{x}

- Let $\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$ be the classifier output for some \mathbf{x}
- ▶ What is the probability that the classifier is correct?

- Let $\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$ be the classifier output for some \mathbf{x}
- What is the probability that the classifier is correct?
 - If y = 1, then $P(y = 1 | \mathbf{x}) = \hat{y}$
 - If y = 0, then $P(y = 0 | \mathbf{x}) = 1 \hat{y}$

▶ In general, $P(y|\mathbf{x}) = \hat{y}^y (1 - \hat{y})^{1-y}$

- ▶ In general, $P(y|\mathbf{x}) = \hat{y}^y (1 \hat{y})^{1-y}$
- ► Take the log of both sides: $\log P(y|\mathbf{x}) = y \log \hat{y} + (1 - y) \log(1 - \hat{y})$

- ▶ In general, $P(y|\mathbf{x}) = \hat{y}^y (1 \hat{y})^{1-y}$
- ► Take the log of both sides: $\log P(y|\mathbf{x}) = y \log \hat{y} + (1 - y) \log(1 - \hat{y})$
- ► Turn this into a loss function: $L_{CE}(\hat{y}, y) = -\log P(y|\mathbf{x}) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$

▶ Minimize average loss for each example *i*:

$$Cost(\hat{y}, y) = \frac{1}{m} \sum_{i=1}^{m} L_{CE}(\hat{y}^{(i)}, y^{(i)})$$

▶ Minimize average loss for each example *i*:

$$Cost(\hat{y}, y) = \frac{1}{m} \sum_{i=1}^{m} L_{CE}(\hat{y}^{(i)}, y^{(i)})$$

► How?

Figure 5.3 The first step in iteratively finding the minimum of this loss function, by moving w in the reverse direction from the slope of the function. Since the slope is negative, we need to move w in a positive direction, to the right. Here superscripts are used for learning steps, so w^1 means the initial value of w (which is 0), w^2 at the second step, and so on.

▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ▶ At each time step *t*:

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ▶ At each time step *t*:
 - lacktriangle Compute gradient abla L

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ightharpoonup Compute gradient ∇L

$$\nabla L = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_n} \\ \frac{\partial L}{\partial b} \end{bmatrix}$$

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ▶ Compute gradient ∇L

 $ightharpoonup pprox {
m slope}$ of loss function L

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ▶ At each time step *t*:
 - ightharpoonup Compute gradient ∇L
 - ▶ Move in direction of negative gradient

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ▶ Compute gradient ∇L
 - Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ▶ At each time step *t*:
 - ightharpoonup Compute gradient ∇L
 - Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - $\blacktriangleright \ \eta = \text{learning rate}$

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ightharpoonup Compute gradient ∇L
 - Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - $\qquad \qquad \mathbf{\eta} = \mathsf{learning} \ \mathsf{rate} \\$
 - "Hyperparameter": parameter set before training

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ► At each time step *t*:
 - ▶ Compute gradient ∇L
 - Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - $ightharpoonup \eta =$ learning rate
 - "Hyperparameter": parameter set before training
 - Trade-off between speed of convergence and "zig-zag" behavior

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ightharpoonup Compute gradient ∇L
 - Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - $ightharpoonup \eta =$ learning rate
 - "Hyperparameter": parameter set before training
 - Trade-off between speed of convergence and "zig-zag" behavior
 - ▶ Often a function of t

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ▶ Compute gradient ∇L
 - Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - ho η = learning rate
 - "Hyperparameter": parameter set before training
 - Trade-off between speed of convergence and "zig-zag" behavior
 - Often a function of t
- ▶ Because *L* is convex, we eventually reach a global minimum

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

- ► (calculus)
- **.**..

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

$$\vdots$$

$$\vdots$$

$$(calculus)$$

$$\vdots$$

$$\vdots$$

$$\frac{\partial L}{\partial w_j} = [\sigma(\mathbf{w} \cdot \mathbf{x} + b) - y]x_j$$

$$\frac{\partial L}{\partial b} = \sigma(\mathbf{w} \cdot \mathbf{x} + b) - y$$

ightharpoonup Stochastic gradient descent: update heta after every training example

- Stochastic gradient descent: update θ after every training example
 - Can result in very choppy movements

- Stochastic gradient descent: update θ after every training example
 - Can result in very choppy movements
- ▶ Batch gradient descent: update θ after processing the entire training set

Gradient Descent

- Stochastic gradient descent: update θ after every training example
 - Can result in very choppy movements
- ▶ Batch gradient descent: update θ after processing the entire training set
- Minibatch gradient descent: update θ after m training examples

Gradient Descent

- Stochastic gradient descent: update θ after every training example
 - Can result in very choppy movements
- ▶ Batch gradient descent: update θ after processing the entire training set
- Minibatch gradient descent: update θ after m training examples
 - ► Gradient = average of individual gradients

Gradient Descent

- Stochastic gradient descent: update θ after every training example
 - Can result in very choppy movements
- ightharpoonup Batch gradient descent: update heta after processing the entire training set
- Minibatch gradient descent: update θ after m training examples
 - Gradient = average of individual gradients

$$\frac{\partial Cost}{\partial w_j} = \frac{1}{m} \sum_{i=1}^{m} [\sigma(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) - y^{(i)}] x_j^{(i)}$$

Problem of overfitting

- Problem of overfitting
 - ▶ Models can fit the training data too well

- Problem of overfitting
 - ▶ Models can fit the training data too well
 - Accidental correlations get high weights

- Problem of overfitting
 - Models can fit the training data too well
 - Accidental correlations get high weights
 - Poor generalization performance

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left(\sum_{i=1}^{m} \log P(y^{(i)}|\mathbf{x}^{(i)}) \right) - \alpha R(\theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left(\sum_{i=1}^{m} \log P(y^{(i)} | \mathbf{x}^{(i)}) \right) - \alpha R(\theta)$$

- $ightharpoonup R(\theta) = \text{regularization term}$
- $ightharpoonup lpha = ext{amount of regularization}$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left(\sum_{i=1}^{m} \log P(y^{(i)}|\mathbf{x}^{(i)}) \right) - \alpha R(\theta)$$

- $ightharpoonup R(\theta) = \text{regularization term}$
- $\alpha = \text{amount of regularization}$
 - Another hyperparameter

$$R(\theta) = ||\theta||_1 = \sum_{j=1}^n |\theta_j|$$

$$R(\theta) = ||\theta||_1 = \sum_{j=1}^n |\theta_j|$$

- = sum of absolute values of weights
- Manhattan distance
- Lasso regression
- ► Some large weights, many zero weights

$$R(\theta) = ||\theta||_2^2 = \sum_{j=1}^n \theta_j^2$$

$$R(\theta) = ||\theta||_2^2 = \sum_{j=1}^n \theta_j^2$$

- = sum of squares of weights
- Euclidean distance
- Ridge regression
- Many small weights

(aka maximum entropy classifier)

- (aka maximum entropy classifier)
- Logistic regression with more than two classes

Logistic Regression

Suppose we observe a movie review d = "predictable with no fun". Is the review positive, negative, or neutral?

Separate weights and bias terms for each class c

Separate weights and bias terms for each class c

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

Separate weights and bias terms for each class c

$$z_c = \left(\sum_{j=1}^n w_{jc} x_j\right) + b_c = \mathbf{w}_c \cdot \mathbf{x} + b_c$$

► Cross-entropy loss $L_{CE}(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{k=1}^{K} y_k \log \hat{y}_k$

- ► Cross-entropy loss $L_{CE}(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{k=1}^{K} y_k \log \hat{y}_k$
- Gradient ∇L becomes a matrix, where

- ► Cross-entropy loss $L_{CE}(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{k=0}^{n} y_k \log \hat{y}_k$
- Gradient ∇L becomes a matrix, where

$$\frac{\partial L}{\partial w_{jk}} = (\hat{y}_k - y_k)x_j$$

$$\frac{\partial L}{\partial b_k} = \hat{y}_k - y_k$$

$$\frac{\partial \hat{L}}{\partial b_k} = \hat{y}_k - y_k$$