Higher-Order DGFEM Transport Calculations on Polytope Meshes for Massively-Parallel Architectures

Michael W. Hackemack

Chair: Jean C. Ragusa

Committee Members: Marvin L. Adams, Jim E. Morel, Nancy M. Amato

External Advisor: Troy Becker

Department of Nuclear Engineering Texas A&M University College Station, TX, USA 77843 mike_hack@tamu.edu

Outline

- Overview
 - The DGFEM S_N Transport Equation
 - Motivation for this Work
- Polytope Finite Element Basis Functions
 - Linear Basis Functions on 2D Polygons
 - Quadratic Serendipity Basis Functions on 2D Polygons
 - Linear Basis Functions on 3D Polyhedra
- Oiffusion Synthetic Acceleration on Polytopes
 - Theory
 - MIP Diffusion Form
- Proposed Work and Current Status
- Work Summary

The Continuous-Energy Transport Equation

Transport Equation

$$\left[\mathbf{\Omega}\cdot\nabla+\sigma_t(\mathbf{r},E)\right]\psi(\mathbf{r},E,\mathbf{\Omega})=\int\limits_{4\pi}\int\limits_0^\infty\sigma_s(\mathbf{r},E',E,\mathbf{\Omega}',\mathbf{\Omega})\psi(\mathbf{r},E',\mathbf{\Omega}')dE'd\Omega'+Q(\mathbf{r},E,\mathbf{\Omega})$$

Boundary Conditions

$$\psi(\mathbf{r}, E, \mathbf{\Omega}) = \psi^{inc}(\mathbf{r}, E, \mathbf{\Omega}) + \int_{\mathbf{\Omega}' \cdot \mathbf{n} < 0} \int_{0}^{\infty} \beta(\mathbf{r}, E', E, \mathbf{\Omega}', \mathbf{\Omega}) \psi(\mathbf{r}, E', \mathbf{\Omega}') dE' d\Omega'$$

Term Definitions

r - neutron position

E - neutron energy

 Ω - neutron solid angle

 $\psi(\mathbf{r}, E, \mathbf{\Omega})$ - angular flux

 $Q(\mathbf{r}, E, \Omega)$ - distributed neutron source

 $\sigma_t(\mathbf{r}, E)$ - total macroscopic cross section

 $\sigma_s(\mathbf{r}, E', E, \Omega', \Omega)$ - total macroscopic scattering cross section

 $\beta(\mathbf{r}, E', E, \Omega', \Omega)$ - boundary albedo

The multigroup S_N equations

Overview 0000000

$$\left(\mathbf{\Omega}_{m}\cdot
abla+\sigma_{t,g}
ight)\psi_{m,g}=\sum_{g'=1}^{G}\sum_{k=0}^{N_{k}}rac{2
ho+1}{4\pi}\sigma_{\mathsf{s},k}^{g'
ightarrow g}\sum_{n=-k}^{k}\phi_{k,n,g'}Y_{k,n}(\mathbf{\Omega}_{m})+Q_{m,g}$$

Multigroup Method

$$\psi_{g} = \int_{\Delta E_{g}} \psi(E) dE, \qquad \Delta E_{g} \in [E_{g}, E_{g-1}]$$

$$\sigma_{t,g} = \frac{\int_{\Delta E_{g}} \sigma_{t}(E) \psi(E)}{\int_{\Delta F_{e}} \psi(E)}$$

Spherical Harmonics

$$\phi_{k,n} \equiv \int_{4\pi} d\Omega \, \psi(\Omega) \, Y_{k,n}(\Omega),$$
 $\sigma_{s,k} \equiv \int_{-1}^{1} d\mu \, \sigma_s(\mu_0) P_k(\mu_0)$

$$egin{aligned} \mu_0 &\equiv \mathbf{\Omega}' \cdot \mathbf{\Omega} \ & \sigma_s(\mathbf{\Omega}' \cdot \mathbf{\Omega}) \equiv rac{1}{2\pi} \sigma_s(\mu_0) \ & P_k(\mathbf{\Omega}' \cdot \mathbf{\Omega}) \equiv rac{1}{2\pi} P_k(\mu_0) \end{aligned}$$

Multiply element K by basis functions and apply Gauss theorem

$$-\left(\mathbf{\Omega}_{m}\cdot
abla b_{m},\psi_{m}
ight)_{K}+\sum_{\epsilon=1}^{N_{f}^{K}}\left\langle \left(\mathbf{\Omega}_{m}\cdot\mathbf{n}_{f}
ight)b_{m}, ilde{\psi}_{m}
ight
angle _{f}+\left(\sigma_{t}b_{m},\psi_{m}
ight) _{K}=\left(b_{m},Q_{m}
ight) _{K}$$

The upwind scheme

$$\tilde{\psi}_{m}(\mathbf{r}) = \begin{cases} \psi_{m}^{-}, & \partial K^{+} \\ \psi_{m}^{+}, & \partial K^{-} \setminus \partial \mathcal{D} \\ \psi_{m}^{inc}, & \partial K^{-} \cap \partial \mathcal{D}^{d} \\ \psi_{-}^{-}, & \partial K^{-} \cap \partial \mathcal{D}^{r} \end{cases} \qquad \psi_{m}^{\pm}(\mathbf{r}) \equiv \lim_{s \to 0^{\pm}} \psi_{m}(\mathbf{r} + s(\mathbf{\Omega}_{m} \cdot \mathbf{n})\mathbf{n})$$

Full set of equations for element *K*

$$\begin{split} -\left(\boldsymbol{\Omega}_{m}\cdot\nabla b_{m},\psi_{m}\right)_{K} + \left(\sigma_{t}b_{m},\psi_{m}\right)_{K} + \left\langle\left(\boldsymbol{\Omega}_{m}\cdot\mathbf{n}\right)b_{m},\psi_{m}^{-}\right\rangle_{\partial K^{+}} \\ + \left\langle\left(\boldsymbol{\Omega}_{m}\cdot\mathbf{n}\right)b_{m},\psi_{m}^{+}\right\rangle_{\partial K^{-}\setminus\partial\mathcal{D}} + \left\langle\left(\boldsymbol{\Omega}_{m}\cdot\mathbf{n}\right)b_{m},\psi_{m'}^{-}\right\rangle_{\partial K^{-}\cap\partial\mathcal{D}} \\ = \left(b_{m},Q_{m}\right)_{K} + \left\langle\left(\boldsymbol{\Omega}_{m}\cdot\mathbf{n}\right)b_{m},\psi_{m}^{inc}\right\rangle_{\partial K^{-}\cap\partial\mathcal{D}} \end{split}$$

Spatial Discretization - 1 group/direction and general source

Multiply element K by basis functions and apply Gauss theorem

$$-\left(\mathbf{\Omega}_{m}\cdot
abla b_{m},\psi_{m}
ight)_{\mathcal{K}}+\sum_{f=1}^{N_{f}^{\mathcal{K}}}\left\langle \left(\mathbf{\Omega}_{m}\cdot\mathbf{n}_{f}
ight)b_{m}, ilde{\psi}_{m}
ight
angle _{f}+\left(\sigma_{t}b_{m},\psi_{m}
ight)_{\mathcal{K}}=\left(b_{m},Q_{m}
ight)_{\mathcal{K}}$$

The upwind scheme

$$\tilde{\psi}_{m}(\mathbf{r}) = \begin{cases} \psi_{m}^{-}, & \partial K^{+} \\ \psi_{m}^{+}, & \partial K^{-} \backslash \partial \mathcal{D} \\ \psi_{m}^{inc}, & \partial K^{-} \cap \partial \mathcal{D}^{d} \\ \psi_{-}^{-}, & \partial K^{-} \cap \partial \mathcal{D}^{r} \end{cases} \qquad \psi_{m}^{\pm}(\mathbf{r}) \equiv \lim_{s \to 0^{\pm}} \psi_{m}(\mathbf{r} + s(\mathbf{\Omega}_{m} \cdot \mathbf{n})\mathbf{n})$$

Full set of equations for element K

$$-\left(\Omega_{m}\cdot\nabla b_{m},\psi_{m}\right)_{K}+\left(\sigma_{t}b_{m},\psi_{m}\right)_{K}+\left\langle\left(\Omega_{m}\cdot\mathbf{n}\right)b_{m},\psi_{m}^{-}\right\rangle_{\partial K^{+}}$$

$$+\left\langle\left(\Omega_{m}\cdot\mathbf{n}\right)b_{m},\psi_{m}^{+}\right\rangle_{\partial K^{-}\setminus\partial\mathcal{D}}+\left\langle\left(\Omega_{m}\cdot\mathbf{n}\right)b_{m},\psi_{m'}^{-}\right\rangle_{\partial K^{-}\cap\partial\mathcal{D}}$$

$$=\left(b_{m},Q_{m}\right)_{K}+\left\langle\left(\Omega_{m}\cdot\mathbf{n}\right)b_{m},\psi_{m}^{inc}\right\rangle_{\partial K^{-}\cap\partial\mathcal{D}}$$

Spatial Discretization - 1 group/direction and general source

Multiply element K by basis functions and apply Gauss theorem

$$-\left(\mathbf{\Omega}_{m}\cdot
abla b_{m},\psi_{m}
ight)_{\mathcal{K}}+\sum_{f=1}^{N_{f}^{\mathcal{K}}}\left\langle \left(\mathbf{\Omega}_{m}\cdot\mathbf{n}_{f}
ight)b_{m}, ilde{\psi}_{m}
ight
angle _{f}+\left(\sigma_{t}b_{m},\psi_{m}
ight)_{\mathcal{K}}=\left(b_{m},Q_{m}
ight)_{\mathcal{K}}$$

The upwind scheme

$$\tilde{\psi}_{m}(\mathbf{r}) = \begin{cases} \psi_{m}^{-}, & \partial K^{+} \\ \psi_{m}^{+}, & \partial K^{-} \backslash \partial \mathcal{D} \\ \psi_{m}^{inc}, & \partial K^{-} \cap \partial \mathcal{D}^{d} \\ \psi_{m}^{-}, & \partial K^{-} \cap \partial \mathcal{D}^{r} \end{cases} \qquad \psi_{m}^{\pm}(\mathbf{r}) \equiv \lim_{s \to 0^{\pm}} \psi_{m}(\mathbf{r} + s(\mathbf{\Omega}_{m} \cdot \mathbf{n})\mathbf{n})$$

Full set of equations for element K

$$\begin{split} - \left(\boldsymbol{\Omega}_{m} \cdot \nabla b_{m}, \psi_{m} \right)_{\mathcal{K}} + \left(\sigma_{t} b_{m}, \psi_{m} \right)_{\mathcal{K}} + \left\langle \left(\boldsymbol{\Omega}_{m} \cdot \mathbf{n} \right) b_{m}, \psi_{m}^{-} \right\rangle_{\partial \mathcal{K}^{+}} \\ + \left\langle \left(\boldsymbol{\Omega}_{m} \cdot \mathbf{n} \right) b_{m}, \psi_{m}^{+} \right\rangle_{\partial \mathcal{K}^{-} \setminus \partial \mathcal{D}} + \left\langle \left(\boldsymbol{\Omega}_{m} \cdot \mathbf{n} \right) b_{m}, \psi_{m'}^{-} \right\rangle_{\partial \mathcal{K}^{-} \cap \partial \mathcal{D}^{d}} \\ = \left(b_{m}, Q_{m} \right)_{\mathcal{K}} + \left\langle \left(\boldsymbol{\Omega}_{m} \cdot \mathbf{n} \right) b_{m}, \psi_{m}^{inc} \right\rangle_{\partial \mathcal{K}^{-} \cap \partial \mathcal{D}^{d}} \end{split}$$

Classic Source Iteration

$$egin{aligned} \psi^{(\ell+1)} &= \mathbf{L}^{-1} \left(\mathsf{M} \mathbf{\Sigma} \phi^{(\ell)} + \mathbf{Q}
ight) \ \phi^{(\ell+1)} &= \mathbf{D} \mathbf{L}^{-1} \left(\mathsf{M} \mathbf{\Sigma} \phi^{(\ell)} + \mathbf{Q}
ight) \ \phi &= \mathbf{D} \psi \end{aligned}$$

Operator Terms

L - streaming + collision operator

M - moment-to-discrete operator

D - discrete-to-moment operator

Σ - scattering operator

Transport Sweep

The operation L^{-1} can be performed in different ways. For this work, we will use the matrix-free, full-domain transport sweep.

Optically thick problems can cause slow convergence rates

Source Iteration Approximate Spectral Radius

$$\rho^{(k+1)} \approx \frac{||\phi^{(k+1)} - \phi^{(k)}||}{||\phi^{(k)} - \phi^{(k-1)}||}$$

Optically Thick Cases - leakage/absorption does not dominate

- 1-group sense: $\sigma_s/\sigma_t \approx 1$ and $(\sigma_t \cdot \text{diam}(\mathcal{D})) \gg 1$
- MG sense:
 - Thermal upscattering into higher energy groups is significant
 - Single group iteration, g, with $\sigma_s^{g \to g}/\sigma_{t,g} \approx 1$ and $(\sigma_{t,g} \cdot \text{diam}(\mathcal{D})) \gg 1$

Source Iteration Approximate Spectral Radius

$$\rho^{(k+1)} \approx \frac{||\phi^{(k+1)} - \phi^{(k)}||}{||\phi^{(k)} - \phi^{(k-1)}||}$$

Optically Thick Cases - leakage/absorption does not dominate

- 1-group sense: $\sigma_s/\sigma_t \approx 1$ and $(\sigma_t \cdot \mathsf{diam}(\mathcal{D})) \gg 1$
- MG sense:
 - Thermal upscattering into higher energy groups is significant
 - Single group iteration, g, with $\sigma_s^{g \to g}/\sigma_{t,g} \approx 1$ and $(\sigma_{t,g} \cdot \text{diam}(\mathcal{D})) \gg 1$

Answer - Precondition the transport sweep

- Diffusion Synthetic Acceleration (DSA)
- Transport Synthetic Acceleration (TSA)
- Boundary Projection Acceleration (BPA)
- etc.

Higher-Order FEM Motivation

FEM convergence rate - no solution irregularity

$$||u - u_h||_{L_2} = C h^{p+1}, \qquad ||u - u_h||_{L_2} = C N_{dof}^{-\frac{p+1}{d}}$$

C - error constant dependent on mesh, basis function, and polynomial order

h - maximum diameter for an element

p - polynomial order of the finite element basis

 N_{dof} - total degrees of freedom: $N_{dof} \propto h^{-d}$

d - dimensionality of the problem (i.e., 1,2,3)

Overview 000000

- Other physics communities are now employing polytope grids due to decreased cell/face counts (CFD in particular)

- Other physics communities are now employing polytope grids due to decreased cell/face counts (CFD in particular)
- They allow for transition elements between different domain regions

- Other physics communities are now employing polytope grids due to decreased cell/face counts (CFD in particular)
- They allow for transition elements between different domain regions
- Hanging nodes from non-conforming meshes are not necessary
- Independently-generated simplicial grids (i.e. created in parallel) can be stitched together

- Other physics communities are now employing polytope grids due to decreased cell/face counts (CFD in particular)
- They allow for transition elements between different domain regions
- Hanging nodes from non-conforming meshes are not necessary
- Independently-generated simplicial grids (i.e. created in parallel) can be stitched together with polytopes without communicating the whole mesh across processors

Polytope Finite Elements

2D arbitrary convex/concave polygons

3D convex polyhedra

A common class of linear finite elements - the \mathbb{P}_1 space

$2D \mathbb{P}_1$ space - reference element

$$\lambda_1(r,s) = 1 - r - s$$
$$\lambda_2(r,s) = r$$
$$\lambda_3(r,s) = s$$

3D \mathbb{P}_1 space - reference element

$$\lambda_1(r,s,t) = 1 - r - s - t$$
 $\lambda_2(r,s,t) = r$
 $\lambda_3(r,s,t) = s$
 $\lambda_4(r,s,t) = t$

November 24, 2015

Linear Basis Functions on 2D Polygons

Basis Function Properties - Barycentric Coordinates

 λ_i - linear basis function located at vertex i

- $0 \lambda_i > 0$

- $\lambda_i(\mathbf{x}_i) = \delta_{ii}$

ENGINEERING

Linear basis functions that we consider

- Wachspress rational coordinates*
- Piecewise linear (PWL) coordinates*
- Mean value coordinates
- Maximum entropy coordinates
- *have been previously analyzed for transport problems

Wachspress Rational Functions

$$\lambda_i^W(\mathbf{x}) = \frac{w_i(\mathbf{x})}{\sum_i w_j(\mathbf{x})}, \qquad w_j(\mathbf{x}) = \frac{A(\mathbf{x}_{j-1}, \mathbf{x}_j, \mathbf{x}_{j+1})}{A(\mathbf{x}, \mathbf{x}_{j-1}, \mathbf{x}_j) A(\mathbf{x}, \mathbf{x}_j, \mathbf{x}_{j+1})}$$

$$A(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

Piecewise Linear (PWL) Functions

$$\lambda_i^{PWL}(\mathbf{x}) = t_i(\mathbf{x}) + \alpha_i t_c(\mathbf{x})$$

 t_i - standard 2D linear function for a triangle $(i, i+1, K_c)$; 1 at vertex i that linearly decreases to 0 to the cell center and the adjoining vertices

 t_c - 2D tent function; 1 at cell center and linearly decreases to 0 to each cell vertex

 $\alpha_i = \frac{1}{N_V}$ - weight parameter for vertex i

 N_V - number of cell vertices

Mean Value Coordinates

$$\lambda_i^{MV}(\mathbf{x}) = \frac{w_i(\mathbf{x})}{\sum_j w_j(\mathbf{x})}, \qquad w_j(\mathbf{x}) = \frac{\tan(\alpha_{j-1}/2) + \tan(\alpha_j/2)}{|\mathbf{x}_j - \mathbf{x}|}$$

Limit as $\mathbf{x} \to \mathbf{x}_i$

$$\lim_{\mathbf{x}\to\mathbf{x}_j}\tan(\alpha_{j-1}/2)+\tan(\alpha_j/2)=0 \qquad \longrightarrow \qquad \lim_{\mathbf{x}\to\mathbf{x}_j}w_j(\mathbf{x})=1$$

Maximum Entropy Coordinates

$$\lambda_i^{ME}(\mathbf{x}) = \frac{w_i(\mathbf{x})}{\sum_i w_i(\mathbf{x})}, \qquad w_j(\mathbf{x}) = m_j(\mathbf{x}) \exp(-\omega^* \cdot (\mathbf{x}_j - \mathbf{x}))$$

$$\omega^* = \operatorname{argmin} F(\omega, \mathbf{x}) \qquad F(\omega, \mathbf{x}) = \operatorname{In} \left(\sum_j w_j(\mathbf{x}) \right)$$

Summary of the 2D Linear Basis Functions

POLYFEM

Basis Function	Dimension	Polytope Types	Analytical/Numerical	Direct/Iterative
Wachspress	2D/3D	Convex*	Numerical	Direct
PWL	1D/2D/3D	Convex/Concave	Analytical	Direct
Mean Value	2D**	Convex/Concave	Numerical	Direct
Max Entropy	1D/2D/3D	Convex/Concave	Numerical	Iterative***

- * weak convexity for Wachspress coordinates does not cause blow up
- ** mean value 3D analogue only applicable to tetrahedron
- *** maximum entropy minimization solved via Newton's Method

Quadratic Serendipity Basis Functions on 2D Polygons

- **①** Form the linear barycentric functions $\{\lambda_i\}$
- 2 Construct the pairwise products $\{\mu_{ab}\}$
- **3** Eliminate the interior nodes to form a serendipity basis $\{\xi_{ij}\}$

Quadratic Serendipity Basis Functions on 2D Polygons

- **①** Form the linear barycentric functions $\{\lambda_i\}$
- **②** Construct the pairwise products $\{\mu_{ab}\}$
- **1** Eliminate the interior nodes to form a serendipity basis $\{\xi_{ij}\}$

Quadratic Serendipity Basis Functions on 2D Polygons

- **①** Form the linear barycentric functions $\{\lambda_i\}$
- **②** Construct the pairwise products $\{\mu_{ab}\}$
- **3** Eliminate the interior nodes to form a serendipity basis $\{\xi_{ij}\}$

Necessary Precision Properties

Overview

$$\sum_{\mathsf{a}\mathsf{a}\in V}\mu_{\mathsf{a}\mathsf{a}} + \sum_{\mathsf{a}\mathsf{b}\in E\cup D} 2\mu_{\mathsf{a}\mathsf{b}} = 1$$

$$\sum_{\mathsf{aa} \in V} \mathbf{x}_{\mathsf{aa}} \mu_{\mathsf{aa}} + \sum_{\mathsf{ab} \in E \cup D} 2\mathbf{x}_{\mathsf{ab}} \mu_{\mathsf{ab}} = \mathbf{x}$$

$$\sum_{aa \in V} \mathbf{x}_a \mathbf{x}_a^T \mu_{aa} + \sum_{ab \in F \cup D} \left(\mathbf{x}_a \mathbf{x}_b^T + \mathbf{x}_b \mathbf{x}_a^T \right) \mu_{ab} = \mathbf{x} \mathbf{x}^T$$

V - vertex nodes

E - face midpoint nodes

D - interior diagonal nodes

Further Notation/Notes

$$\mathbf{x}_{ab} = \frac{\mathbf{x}_a + \mathbf{x}_b}{2}, \qquad \mu_{ab} = \lambda_a \lambda_b$$

$$\mu_{ab}^{K}(\mathbf{r}) = 0, \quad \{ab \in D, \, \mathbf{r} \in \partial K\}$$

Eliminate interior nodes to form serendipity basis

Reduction Problem - $[\xi] := \mathbb{A}[\mu]$

$$\mathbb{A} = \left[\begin{array}{cccc} c_{11}^{11} & \dots & c_{ab}^{11} & \dots & c_{(n-2)n}^{11} \\ \dots & \ddots & \vdots & \ddots & \vdots \\ c_{11}^{ij} & \dots & c_{ab}^{ij} & \dots & c_{(n-2)n}^{ij} \\ \dots & \ddots & \vdots & \ddots & \vdots \\ c_{11}^{n(n+1)} & \dots & c_{ab}^{n(n+1)} & \dots & c_{(n-2)n}^{n(n+1)} \end{array} \right]$$

Serendipity Precision Properties

$$\sum_{ii \in V} \xi_{ii} + \sum_{i(i+1) \in E} 2\xi_{i(i+1)} = 1$$

$$\sum_{ii \in V} \mathbf{x}_{ii} \xi_{ii} + \sum_{i(i+1) \in E} 2\mathbf{x}_{i(i+1)} \xi_{i(i+1)} = \mathbf{x}$$

$$\sum_{ii \in V} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \xi_{ii} + \sum_{i(i+1) \in E} \left(\mathbf{x}_{i} \mathbf{x}_{i+1}^{T} + \mathbf{x}_{i+1} \mathbf{x}_{i}^{T}\right) \xi_{i(i+1)} = \mathbf{x} \mathbf{x}^{T}$$

 ξ_{ii} - basis function at vertex i $\xi_{i(i+1)}$ - basis function at face midpoint between vertices (i, i + 1)

Special case - bilinear coordinates on the unit square

Bilinear coordinates and quadratic extension

$$\lambda_{1} = (1-x)(1-y)$$

$$\lambda_{2} = x(1-y)$$

$$\lambda_{3} = xy$$

$$\lambda_{4} = (1-x)y$$

$$\mu_{11} = (1-x)^{2}(1-y)^{2}$$

$$\mu_{12} = (1-x)x(1-y)^{2}$$

$$\mu_{23} = x^{2}y(1-y)$$

$$\mu_{33} = x^{2}y^{2}$$

$$\mu_{44} = (1-x)^{2}y^{2}$$

$$\mu_{41} = (1-x)^{2}y(1-y)$$

$$\mu_{13} = (1-x)x(1-y)y$$

$$\mu_{24} = (1-x)x(1-y)y$$

Reduction matrix

Serendipity coordinates

$$\xi_{11} = (1 - x)(1 - y)(1 - x - y)$$

$$\xi_{22} = x(1 - y)(x - y)$$

$$\xi_{33} = xy(-1 + x + y)$$

$$\xi_{44} = (1 - x)y(y - x)$$

$$\xi_{12} = (1 - x)x(1 - y)$$

$$\xi_{23} = xy(1 - y)$$

$$\xi_{34} = (1 - x)xy$$

$$\xi_{41} = (1 - x)y(1 - y)$$

November 24, 2015

Linear Basis Functions on 3D Polyhedra

Linear basis functions and convex polyhedra only for 3D

- The 2D quadratic serendipity formulation is more arduous in 3D
- Intercell coupling is not straightforward for concave polyhedra
- Focus on 3D PWL functions MAXENT only other function for arbitrary polyhedra
- Focus on 3D parallelepipeds and extruded convex polygons (convex prisms)

3D PWL basis functions

$$b_i(\mathbf{x}) = t_i(\mathbf{x}) + \sum_{f=1}^{F_i} \beta_f^i t_f(\mathbf{x}) + \alpha_i t_c(\mathbf{x})$$

 t_i - standard 3D linear function for a tet $(i, i+1, f_c, K_c)$; 1 at vertex i, linearly decreases to 0 to the cell center, each adjoining face center, and each adjoining vertex

 t_c - 3D tent function; 1 at cell center, linearly decreases to 0 at all vertices and face centers t_f - face tent function; 1 at face center, linearly decreases to 0 at each face vertex and cell center $\alpha_i = \frac{1}{M_{tc}}$ - weight parameter for vertex i

 $\beta_f^i = \frac{1}{N_c}$ - weight parameter for face f touching vertex i

•00000

Diffusion Synthetic Acceleration

Transport iteration and error

$$\mathbf{L}\psi = \mathbf{B}\phi + \mathbf{C}\phi + \mathbf{Q}$$

Overview

$$\mathbf{L}\psi^{(\ell+1/2)} = \mathbf{B}\phi^{(\ell+1/2)} + \mathbf{C}\phi^{(\ell)} + \mathbf{Q}$$

$$\mathsf{L}\delta\psi^{(\ell+1/2)} - \mathsf{B}'\delta\phi^{(\ell+1/2)} = \mathsf{R}^{(\ell+1/2)}$$

$$\delta\psi^{(\ell+1/2)} \equiv \psi - \psi^{(\ell+1/2)}$$

$$\delta\phi^{(\ell+1/2)} \equiv \mathbf{D}\delta\psi^{(\ell+1/2)}$$

Error approximation and update

If we could exactly solve for the error, then the solution could be obtained immediately:

$$\phi^{(\ell+1)} = \phi^{(\ell+1/2)} + \delta\phi^{(\ell+1/2)}$$

However, this is just as difficult as the full transport problem. Instead, we estimate:

$$L\delta\psi^{(\ell+1/2)} - B'\delta\phi^{(\ell+1/2)} = R^{(\ell+1/2)}$$

DSA on Polytopes O●○○○○

Two-Grid Acceleration

The diffusion equation is used as our low-order operator

The Diffusion Equation

$$-\nabla \cdot D \nabla \Phi(\mathbf{r}) + \sigma \Phi(\mathbf{r}) = q(\mathbf{r}), \qquad \mathbf{r} \in \mathcal{D}$$

General Boundary Conditions

$$\begin{split} \Phi(\mathbf{r}) &= \Phi_0(\mathbf{r}), \qquad \mathbf{r} \in \partial \mathcal{D}^d \\ &- D \partial_n \Phi(\mathbf{r}) = J_0(\mathbf{r}), \qquad \mathbf{r} \in \partial \mathcal{D}^n \\ \frac{1}{4} \Phi(\mathbf{r}) + \frac{1}{2} D \partial_n \Phi(\mathbf{r}) = J^{inc}(\mathbf{r}), \qquad \mathbf{r} \in \partial \mathcal{D}^r \end{split}$$

Desirable diffusion form properties

- Can handle concave and degenerate polytope cells
- Symmetric Positive-Definite (SPD)
- Availability of suitable preconditioners
- Agnostic of directionality of interior faces

Symmetric Interior Penalty (SIP) Form

Bilinear Form

$$\begin{split} \textbf{a}(\Phi,b) &= \left\langle D\nabla\Phi,\nabla b\right\rangle_{\mathcal{D}} + \left\langle \sigma\Phi,b\right\rangle_{\mathcal{D}} \\ &+ \left\{\kappa_e^{\textit{SIP}}\llbracket\Phi\rrbracket,\llbracket b\rrbracket\right\}_{E_h^i} - \left\{\llbracket\Phi\rrbracket,\{\{D\partial_nb\}\}\right\}_{E_h^i} - \left\{\{\{D\partial_n\Phi\}\},\llbracket b\rrbracket\right\}_{E_h^i} \\ &+ \left\{\kappa_e^{\textit{SIP}}\Phi,b\right\}_{\partial\mathcal{D}^d} - \left\{\Phi,D\partial_nb\right\}_{\partial\mathcal{D}^d} - \left\{D\partial_n\Phi,b\right\}_{\partial\mathcal{D}^d} + \frac{1}{2}\Big\{\Phi,b\Big\}_{\partial\mathcal{D}^r} \end{split}$$

DSA on Polytopes

000000

Linear Form

$$\begin{split} \ell(\textit{b}) &= \left\langle \textit{q}, \textit{b} \right\rangle_{\mathcal{D}} - \left\{ \textit{J}_{0}, \textit{b} \right\}_{\partial \mathcal{D}^{n}} + 2 \Big\{ \textit{J}_{\textit{inc}}, \textit{b} \Big\}_{\partial \mathcal{D}^{l}} \\ &+ \Big\{ \kappa_{e}^{\textit{SIP}} \Phi_{0}, \textit{b} \Big\}_{\partial \mathcal{D}^{d}} - \Big\{ \Phi_{0}, \textit{D} \partial_{n} \textit{b} \Big\}_{\partial \mathcal{D}^{d}} \end{split}$$

$$\kappa_{\rm e}^{SIP} \equiv \begin{cases} \frac{C_B}{2} \left(\frac{D^+}{h^+} + \frac{D^-}{h^-} \right) &, {\rm e} \in E_h^i \\ C_B \frac{D^-}{h^-} &, {\rm e} \in \partial \mathcal{D} \end{cases}$$

$$C_B = cp(p+1)$$

c - user defined constant $(c \ge 1)$ p - polynomial order of the finite element basis (1, 2, 3, ...) $D^{(+/-)}$ - diffusion coefficient defined on the positive/negative side of a face $h^{(+/-)}$ - orthogonal projection defined on the positive/negative side of a face

$$u^{\pm} = \lim_{s \to 0^{\pm}} u(\mathbf{r} + s\mathbf{n})$$

Modified Interior Penalty (MIP) Form

Diffusion Form

$$\begin{split} \left\langle D\nabla\delta\Phi,\nabla b\right\rangle_{\mathcal{D}} + \left\langle \sigma\delta\Phi,b\right\rangle_{\mathcal{D}} \\ + \left\{\kappa_{e}^{MIP}\llbracket\delta\Phi\rrbracket,\llbracket b\rrbracket\right\}_{E_{h}^{i}} - \left\{\llbracket\delta\Phi\rrbracket,\{\{D\partial_{n}b\}\}\right\}_{E_{h}^{i}} - \left\{\{\{D\partial_{n}\delta\Phi\}\},\llbracket b\rrbracket\right\}_{E_{h}^{i}} \\ + \left\{\kappa_{e}^{MIP}\delta\Phi,b\right\}_{\partial\mathcal{D}^{vac}} - \frac{1}{2}\left\{\delta\Phi,D\partial_{n}b\right\}_{\partial\mathcal{D}^{vac}} - \frac{1}{2}\left\{D\partial_{n}\delta\Phi,b\right\}_{\partial\mathcal{D}^{vac}} \\ = \left\langle R,b\right\rangle_{\mathcal{D}} + \left\{\delta J_{inc},b\right\}_{\partial\mathcal{D}^{ref}} \end{split}$$

MIP Penalty Term

$$\kappa_e^{MIP} = \max(rac{1}{4}, \kappa_e^{SIP})$$

Proposed Work

POLYFEM

- Analyze the 2D linear polygonal basis functions for use in DGFEM transport calculations
- Perform the same analysis with the quadratic serendipity basis functions
- Determine the effects of numerical integration on highly-distorted polygonal elements
- Perform analysis on benchmark cases using polygonal meshes (including AMR)

MIP DSA

- Analyze the 2D polygonal basis functions with DSA preconditioning through Fourier/numerical analysis
- 2 Analyze the effects of AMR with polygonal basis functions on the MIP DSA PCG iteration counts (with and without bootstrapping)
- Extend the analysis of MIP DSA to arbitrary convex 3D polyhedra
- Implement MIP DSA in PDT using HYPRE
 - Analyze the scalability of the method to high process counts
 - 2 Implement and perform analysis of two-grid acceleration
 - Perform parametric studies on aggregation/partitioning factors generate a performance model of MIP DSA with HYPRE
 - Q Run realistic numerical experiments IM1 and reactor geometries

2D Exactly-Linear Transport Solutions - mean value coordinates

$$\mu \frac{\partial \psi}{\partial x} + \eta \frac{\partial \psi}{\partial y} + \sigma_t \psi = Q(x, y, \mu, \eta)$$

$$\psi(x, y, \mu, \eta) = ax + by + c\mu + d\eta + e, \qquad \phi(x, y) = 2\pi (ax + by + e)$$

$$\psi(x,y) = \sin(\nu \frac{\pi x}{L_x}) \sin(\nu \frac{\pi y}{L_y})$$
$$\phi(x,y) = 2\pi \sin(\nu \frac{\pi x}{L_x}) \sin(\nu \frac{\pi y}{L_y})$$

Proposed Work and Current Status 0000000000

Convergence rates using MMS for the 2D polygonal basis functions

$$\psi(x,y) = \sin(\nu \frac{\pi x}{L_x}) \sin(\nu \frac{\pi y}{L_y})$$
$$\phi(x,y) = 2\pi \sin(\nu \frac{\pi x}{L_x}) \sin(\nu \frac{\pi y}{L_y})$$

Convergence rates using MMS for the 2D polygonal basis functions

$$\psi(x,y) = \sin(\nu \frac{\pi x}{L_x}) \sin(\nu \frac{\pi y}{L_y})$$
$$\phi(x,y) = 2\pi \sin(\nu \frac{\pi x}{L_x}) \sin(\nu \frac{\pi y}{L_y})$$

November 24, 2015

Convergence rates using MMS and AMR for the 2D polygonal basis functions

$$\psi(x,y) = x(L_x - x)y(L_y - y) \exp(-\frac{(x - x_0)^2 + (y - y_0)^2}{\gamma}),$$

$$\phi(x,y) = 2\pi x(L_x - x)y(L_y - y) \exp(-\frac{(x - x_0)^2 + (y - y_0)^2}{\gamma})$$

iew POLYFEM DSA on Polytopes **Proposed Work and Current Status** Work Summa 0000 00000000000 00000 000000000 00

Linear ME cycle 15 (left) and quadratic ME cycle 08 (right)

SIP exactly linear solutions on 3D polyhedral meshes using the PWL basis functions

SIP convergence study - quadratic solution on 3D cube using the PWL basis functions

$$\Phi(x, y, z) = xyz(L_x - x)(L_y - y)(L_z - z)$$

$$L_x = L_x = L_x = 1.0$$

SIP convergence study - gaussian solution on 3D cube using the PWL basis functions

$$\Phi(x, y, z) = xyz(L_x - x)(L_y - y)(L_z - z) \exp(-(\mathbf{r} - \mathbf{r}_0) \cdot (\mathbf{r} - \mathbf{r}_0))$$

$$L_x = L_x = L_x = 1.0, \qquad \mathbf{r}_0 = (3/4, 3/4, 3/4)$$

Fourier analysis - 3D PWL basis functions

November 24, 2015

MIP DSA Timing Data with PDT on Vulcan using HYPRE

Problem Description

Overview

- Modified Zerr problem used optimal sweep aggregation parameters
 - homogeneous cube about 500 mfp and c=0.9999
 - 58 level-symmetric quadrature
- pointwise convergence tolerance of 1e-8
- SI precondition with MIP DSA using HYPRE PCG and AMG

Two-grid acceleration implementation in PDT

- Successfully implemented and deugged
 - Includes non-orthogonal mesh configurations
 - Includes multi-material configurations
- Have tested the two-grid methodology on a homogeneous graphite block as well as a block with an air duct
- Iteration counts for a very large configuration (very optically thick) are similar to simple infinite medium calculations

Materials	Unaccelerated Iterations	Accelerated Iterations
Graphite Only	2027	21
Graphite + Air Duct	2138	23

Work Summary and Status - completed (blue), in-progress (orange), and not-started (red)

POLYFEM

- Analyze the 2D linear polygonal basis functions for use in DGFEM transport calculations
- Perform the same analysis with the quadratic serendipity basis functions
- Determine the effects of numerical integration on highly-distorted polygonal elements
- Perform analysis on benchmark cases using polygonal meshes (including AMR)

MIP DSA

- Analyze the 2D polygonal basis functions with DSA preconditioning through Fourier/numerical analysis
- 2 Extend the analysis of MIP DSA to arbitrary convex 3D polyhedra
- 3 Analyze the effects of AMR with polygonal basis functions on the MIP DSA PCG iteration counts (with and without bootstrapping)
- Implement MIP DSA in PDT using HYPRE
 - Analyze the scalability of the method to high process counts
 - 2 Implement and perform analysis of two-grid acceleration
 - Perform parametric studies on aggregation/partitioning factors generate a performance model of MIP DSA with HYPRE
 - Question Run realistic numerical experiments IM1 and reactor geometries

Questions?

A special acknowledgment to the Department of Energy Rickover Fellowship Program in Nuclear Engineering, which provides strong support to its fellows and their professional development.

