Homework 20

1.

Because $2|E|=\sum\limits_{}deg(R)\geq 5r$, $r\leq rac{2}{5}|E|$. By Euler's law, r=|E|-|V|+2, so $|E|\leq rac{5}{3}|V|-rac{10}{3}$.

2.

7. It's a planar graph.

- 8. It isn't a planar graph, for it has a subgraph G'=(V',E') $V'=\{a,b,d,e,f,h,i\}$, which is homeomorphic to $K_{3,3}$. (We can divide these seven vertices into three parts $\{a,e,f\},\{b,d,i\},\{h\}$, and the vertex h is used in the path connects e and i. We can easily find that there is a edge connects a vertex in $\{a,e,f\}$ and a vertex in $\{b,d,i\}$ in G except the pair of e and e.)
- 9. It's a planar graph.

25. It isn't a planar graph, for it has a subgraph G'=(V',E') $V'=\{a,b,c,d,e,g\}$, which is homeomorphic to K_5 . (We can divide these six vertices into two parts $\{a,b,c,d,g\}$ and $\{e\}$, and the vertex e is used in the path connects a and d. We can easily find that there is a edge connects a vertex in $\{a,b,c,d,g\}$ and another in G except the pair of a and d.)

(4be has no choice because b and e are not in a region in the graph in step 4.)