Physics-Informed Neural Networks to Predict Drug Absorption Kinetics

Tobias Meng Saccoccio

Background

Goal: design PINN to model human pharmacokinetics of broad-spectrum antibiotic tetracycline HCI

$$egin{aligned} rac{dB}{dt} &= k_g G - k_b B, \quad B(0) = 0 \ rac{dG}{dt} &= -k_g G, \quad G(0) = G_0 \ rac{dU}{dt} &= k_b B, \quad U(0) = 0 \end{aligned}$$

Basic Forward Problem

Training Performance 0.10 -0.08 Tetracycline (ng)
0.
0.
90. GI Tract (Exact) Bloodstream (Exact) Urinary Tract (Exact) GI Tract (PINN) Bloodstream (PINN) Urinary Tract (PINN) 0.02 0.00 20 10 30 40 50 Time (hr)

PINN Features: 1 input (t), 2 HLs of 32 neurons, 3 outputs (G, B, U), σ = tanh, 10000 iterations, Adam (Ir = 0.001)

Basic Forward Problem

Forward Problem + Locally Adaptive tanh

Basic Inverse Problem

PINN Features: 1 input (t), 2 HLs of 32 neurons, 3 outputs (G, B, U), σ = tanh, 10000 iterations, Adam (lr = 0.001)

Basic Inverse Problem

Number of Training Points

 $\sigma = 0.0025$

--- σ =0.005 --- σ =0.01

Number of Training Points

Inverse Problem + Locally Adaptive tanh

