# STAT 88: Lecture 31

### Contents

Section 10.2: Expectation and Variance Section 10.3: Exponential Distribution

Warm up: Let V have density

$$f(v) = \begin{cases} 1 & \text{if } 0 < v < 1 \\ 0 & \text{otherwise} \end{cases}$$





- (a) Find the cdf of V.
- (b) Find E(V) and Var(V).

#### Last time

#### Density:

For discrete random variables, such as  $X \sim \text{Binom}(n, p)$ , the probability mass function  $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ , or the cdf  $F(k) = P(X \le k)$ , describes the distribution.

For <u>continuous</u> random variables, such as  $Z \sim \mathcal{N}(0,1)$ , the density  $\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$ , or the cdf  $P(Z \leq z) = \Phi(z)$ , describe the distribution.

A function f is called density if it is always nonnegative and integrates to 1.

If X is a continuous random variable, then f is a density of X if

$$P(a < X \le b) = \int_{a}^{b} f(x)dx.$$

#### Expectation and Variance:

If a continuous random variable X has density f,

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

For any function g, we have

$$E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx.$$

In particular, this shows

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx.$$

The variance and SD are then given by

$$\operatorname{Var}(X) = E(X^2) - (EX)^2 \text{ and } \operatorname{SD}(X) = \sqrt{\operatorname{Var}(X)}.$$

# 10.2. Expectation and Variance

## $\mathbf{Uniform}(0,1)$ $\mathbf{Distribution}$

A random variable U has the uniform distribution on the unit interval (0,1) if

$$f(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$



For  $0 < u_1 < u_2 < 1$ , what is  $P(u_1 < U < u_2)$ ?

Find and sketch the cdf of f, F(x):

Find E(U) and Var(U).

### Uniform(a, b) Distribution

For a < b, the random variable X has the uniform distribution on the interval (a,b) if

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$



For  $a < x_1 < x_2 < b$ , what is  $P(x_1 < X < x_2)$ ?

What function X = g(U) stretches and shifts?



Find E(X) and Var(X).

Example: (Exercise 10.5.2) A class starts at 3:10 p.m. Seven students in the class arrive at random times  $T_1, T_2, \ldots, T_7$  that are i.i.d. with the uniform distribution on the interval 3:07 to 3:12.

- (a) Find  $E(T_1)$ .
- (b) What is the chance that all seven students arrive before 3:10?
- (c) Let  $X = \max(T_1, T_2, \dots, T_7)$  be the time when the last of the seven students arrives. Find the cdf of X.

# 10.3. Expectation and Variance

For  $\lambda > 0$ , a random variable T has the exponential distribution with rate  $\lambda$  (written  $T \sim \text{Exp}(\lambda)$ ), if the density of T is  $f(t) = \lambda e^{-\lambda t}$  for  $t \geq 0$ .



The exponential distribution is often used as a model for random lifetimes.

Example: Think of T as the lifetime of an object like a lightbulb and  $\lambda$  as a rate that a lightbulb burns out, e.g.  $\lambda = 2$  bulbs/decade. Then the chance a bulb dies in 3 years is

$$P(T \le 0.3) = \int_0^{0.3} 2e^{-2t} dt = -e^{-2t}|_{t=0}^3$$

$$= -e^{-0.6} + 1$$
 $pprox 0.45$ 

**CDF** and Survival Function The cdf  $P(T \le t)$  indicates the chance that the light-bulb dies before time t:

$$F(t) = P(T \le t) = \int_0^t \lambda e^{-\lambda s} ds$$
$$= -e^{-\lambda s}|_{s=0}^t$$
$$= 1 - e^{-\lambda t}.$$

The survival function S(t) is the chance that the lightbulb survives past time t:

$$S(t) = P(T > t) = 1 - F(t) = e^{-\lambda t}$$
.

**Memoryless Property** Lets find the chance that T survives time t + s, given that it survives time t:

$$P(T > t + s \mid T > t) =$$

The exponential distribution is the continuous analog to the geometric distribution. Both have the *memoryless* property.

**Mean and SD** Let  $T \sim \text{Exp}(\lambda)$ . Then

$$E(T) = \int_0^\infty t\lambda e^{-\lambda t} dt =$$

The bigger  $\lambda$  is the sooner the bulb dies.

$$E(T^2) = \int_0^\infty t^2 \lambda e^{-\lambda t} dt =$$
 
$$\operatorname{Var}(T) = E(T^2) - (ET)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}, \quad \operatorname{SD}(T) = \sqrt{\operatorname{Var}(T)} = \frac{1}{\lambda}.$$

Example: Let  $X \sim \text{Exp}(\lambda)$  with E(X) = 10. Find P(X > 25 | X > 10).