AD-A280 161

NASA TECHNICAL Memorandum

NASA TM X-71978 COPY NO.

NASA TM X-71978

A SHUTTLE DEVELOPMENT-FLIGHT-TEST VEHICLE STUDY

Robert W. Rainey, John J. Rehder, and Phillip J. Klich

June 1974

94-15914

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665

94 5 26 084

DITO WOMEN A ADVANCABLE TO

1. Report No. NASA TM X-71978	2. Government Accession No.		3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Dete June 1974	,
A Shuttle Development-Fli	ght-Test Vehicle St	udy	6. Performing Organiz	
7. Author(s) Robert W. Rainey, Phillip J. Klic	John J. Rehder, an	ıd	8. Performing Organiz	ation Report No.
9. Performing Organization Name and Address			10. Work Unit No.	
NASA Langley Research Cen Hampton, VA 23665	ter	}	11. Contract or Grant	No.
			13. Type of Report an	nd Period Covered
12. Sponsoring Agency Name and Address		L	Technical Me	
NASA			14. Sponsoring Agency	Code
15. Supplementary Notes				
several propulsion system engines following air lau orbiter equipped with J-2 potential for early shutt appeared attainable using issues were identified th	nch. Of the approa rocket engines app le development flic 45.5K kg (100K lb)	iches consid peared to ha phts. With of interna	ered, the air ve the highes this approach l propellant.	r-launched it , Mach 4 Several
17. Key Words (Suggested by Author(s)) (STA 31 Space Vehicles 01 Aerodynamics 28 Propulsion Systems		stribution Statement Jnclassified	- Unlimited	
19. Security Classif, (of this report)	20. Security Classif. (of this p	nge)	21. No. of Pages	22. Price*
Unclassified	Unclassified			\$3.25

A SHUTTLE DEVELOPMENT-FLIGHT-TEST VEHICLE STUDY

Robert W. Rainey, John J. Rehder, and Phillip J. Klich

SUMMARY

A study has been completed that identifies the potential performance capability of the production shuttle orbiter for powered flight tests using several propulsion systems following vertical takeoff and using J-2 rocket engines following air launch. Of the approaches considered, the air-launched orbiter equipped with J-2 rocket engines appeared to have the highest potential for early shuttle development flights. With this approach, Mach 4 appeared attainable using 45.5K kg (100K lb) of internal propellant. Several issues were identified that require resolution to prove feasibility.

INTRODUCTION

A study has been recently completed at the Langley Research Center to identify the performance potential of a production shuttle orbiter retrofitted for development flights. To avoid delays in shuttle development tests which might result from waiting for space shuttle main engine (SSME) delivery, the J-2 liquid rocket engine and a modified 1205 solid rocket were considered as alternate propulsion systems. These were the only available propulsion systems that appeared to have potential compatibility with the orbiter to meet a development-flight-test objective of obtaining aerodynamic flight data into the supersonic regime. Emphasis was given to providing gradual penetration of the high-angle-of-attack regime and to taking at least an initial step in the demonstration of the angle-of-attack transition maneuver. Pilot familiarization and training as well as onboard system verification tests would also be accomplished inflight rather than by ground simulations. This approach to orbiter development flight testing encompasses the subsonic program presently envisioned; and, although more complex and costly than that program, it increases mission reliability in preparation for the first orbital flight following vertical launches. A detailed econometric and safety analysis will be required to identify the cost increase and shuttle schedule impact of this approach as well as the reduction in risk.

Two operational modes were investigated during this study: vertical takeoff (VTO) and air launched, the latter (suggested by Flight Research Center personnel) requiring a mothership to tow or carry the shuttle orbiter to altitude. Within the scope of this limited study, the primary emphasis was given to the ascent performance capability, vehicle weight, and systems layouts. Brief consideration was given to the launch site and test range requirements for the VTO mode of operation. It was assumed that the aerodynamic and maneuver capability and the thermal protection system of the orbiting version will accommodate the requirements for development and research flights. The Rockwell International shuttle orbiter with a dry weight of about 68K kg (150K lb) and a reference length, &, of 33.73 m (1,328 in) was used as the baseline vehicle. Where appropriate, all systems that were necessary for orbiting missions but had no function for shuttle development flight testing were removed; for several systems, such as the environmental control and reaction control systems still necessary for the development flights, the consumable weights were reduced to reflect the shorter time of operation. Although the baseline orbiter weights, subsystems, etc., are continually changing, it is believed that the results obtained herein are representative of the development flight test performance of the final shuttle orbiter, barring major changes in the orbiter configuration, its weight, or mode of operation.

Acces	sion For	
MTIS DTIC	GRA&I TAB	
	numeed fication	
By	ibution/	
	lability	
Dist A-I	Aveil and Special	~

RESULTS AND DISCUSSION

In order to evaluate the potential of retrofitting the production orbiter for development flight tests and to calculate performance, the weights and center-of-gravity (c.g.) locations had to be estimated for the altered versions. This was accomplished utilizing the three primary modes of propulsion considered in the study: the $3.05\,\mathrm{m}$ (120-in.) diameter, five-segment solid rocket motor (1205 SRM), the J-2 liquid rocket engine, and the space shuttle main engines (SSME). In considering the weights and systems layouts using each of these propulsion modes, it was necessary to adapt the propulsion systems to the orbiter; and, in all cases (including the three SSMEs), some alteration of the aft part of the orbiter was necessary. This will be elaborated upon subsequently. Figure 1 summarizes the weights and c.g. locations of the development-flight-test versions in comparison with values for a baseline Rockwell International orbiter. For the 1205 SRM. the words "External" and "Internal" refer to the SRM mounted below the orbiter and within the interior of the orbiter, respectively. For the J-2 and SSME installations, "External" and "Internal" refer to the LOX/LH propellant tanks installed below the orbiter and within the payload bay. respectively. Because of the installation and operational complexities identified during the initial considerations of the 1205 SRM for the VTO mode, no trajectories were calculated, and no consideration was given to the use of the 1205 SRM in the air-launched mode.

Vertical Takeoff (VTO)

Using the weights from figure 1 and Table I for each of the propulsion systems considered, the Program for Optimized Shuttle Trajectories (POST) (reference 1) was used to obtain the maximum burnout velocities at specified altitudes. Both maximum relative and ideal velocities are summarized in figure 2; the velocity increment between the two is approximately 1830 m/sec (6,000 ft/sec) for each system and is predominantly representative of gravity and aerodynamic-drag losses. For the trajectories calculated, the maximum total acceleration was 3.09; the maximum dynamic pressure (q) was 31.1K N/m² (650 lb/ft²); and the maximum dynamic pressure times angle of attack (q α) was 134K N/m²-deg (2,800 lb/ft²-deg). The maximum values of acceleration and q were limited to those of the orbiting version, and the value of q α was approximately 2/3 of that used for ascent in gusty air and wind-shear conditions along the baseline ascent trajectory.

Details of each VTO concept follow:

Solid Rocket Powered. Two installations of the United Technology 1205 SRM (used on the Titan IIIC launch vehicle) were considered. On the externally-mounted version (figure 3(a)), with a 10° nozzle cant angle, the thrust is directed between the liftoff and burnout c.g. locations; approximately $\pm 4-1/2^{\circ}$ of thrust vectoring are required to track the center-ofgravity location from liftoff to burnout. The present 1205 SRM has $\pm 6^{\circ}$ thrust vector control available through liquid injection, and it is

questionable whether this would be sufficient to provide ascent trajectory and flight control for all wind conditions. Early thrust termination may be provided through blowout patches. Relatively large negative angles of attack would result during ascent. Following staging, the center of gravity is at approximately 0.60% (figure 1(a)); thus, about 11.3% kg (25% lbs) of ballast aft of the orbiter thrust structure would be required to shift the c.g. to 0.65% (the forward limit of the baseline orbiter). For the internally-mounted SRM (figure 3(b)), major thrust structure alteration is necessary. No thrust termination is believed feasible, and the orbiter entry weight is about 18% kg (40% lbs) greater than for the baseline (figure 1(a)). No ascent trajectories were calculated for either of these solid rocket motor configurations, and they are not recommended for further consideration.

J-2 Powered. - Because of the smaller overall dimensions of the J-2 engines relative to those of the SSME, modifications to the baseline engine mounts are necessary to move the exit planes of the J-2s aft (figure 4). With the J-2 installation, thrust termination is potentially available for 1, 2, or 3 engines. In addition, about 20 percent thrust reduction can be achieved by reducing the mixture ratio from 5.5 to 4.5 with an increase in specific impulse, Isp. Therefore, a considerable variation of total thrust may be achieved by combinations of mixture control and engine shutoff. The estimated center-of-gravity at liftoff is at approximately 0.50L with a gross liftoff weight of 156K kg (344K lb). weight is about 67K kg (147K lb) with the c.g. at 0.64L; some ballast is necessary to shift the center of gravity back to about 65 or 66 percent & for compatibility with the orbiting version. For the three J-2-powered, VTO concept, the available sea-level thrust was 219K kg (483K lb). ascent propellant weight was based on providing a liftoff thrust-to-weight ratio (T/W) of 1.40. The maximum relative velocity predicted for this J-2 installation was about 1675 m/sec (5500 ft/sec) at a burnout altitude of about 45.7 km (150K feet) (figure 5). Basic trajectory parameters for this burnout altitude are presented in figure 6. For the three trajectories calculated, the maximum angle of attack never exceeded ±10 resulting in $q\alpha < 2400 \text{ N/m}^2 - \text{deg}$ (50 lb/ft²-deg). During the ascent when the acceleration reached 3, one engine was shut down; although no thrust modulation via mixture-ratio variation was used, this approach could provide fine-tuning of the trajectories. For all trajectories calculated, the flight path angle at burnout increased with altitude reaching a value of 390 at a burnout altitude of 61K m (200K feet); this parameter, along with several others, is important in establishing the initial conditions for the glide flight. Rocket burn time was approximately 135 seconds; the range at burnout for the three trajectories varied between 46 and 63 km (25 and 34 n.mi.).

The J-2 engines were designed for high-altitude start and operation with the S-II and S-IV stages of the Saturn V launch vehicle. In considering their use at low altitudes, transient lateral loads resulting from asymmetric flow separation in the nozzle during thrust buildup and termination must be considered. Personnel of Rocketdyne Division of Rockwell International have stated through private communications that these transients are significant and damage can result to the actuation and gimbal

mechanisms. For starting, a nozzle support structure attached to the launch pad, similar to the present ground-testing arrangement, could be used. After the full chamber pressure of $4.7 \times 10^6 \text{ N/m}^2$ (680 lb/in²) is reached, this support structure may be released, and no further separation problems during start is anticipated. The transient shutdown loads must be reckoned with, however. Rocketdyne personnel have also warned of the problem of excessive LOX head at the pump inlets which, for this installation, would very likely require suppression valves. The ability to start and operate the J-2, including the impact of accelerations to 3 g's, requires study.

SSME Powered. - With two SSMEs and internal propellant tanks (figure 7), the gross liftoff and the propellant weights were slightly higher than for the J-2 installation because the SSMEs operate at a mixture ratio of 6.0 (compared to 5.5 for the J-2s). A maximum relative velocity of about 2225 m/sec (7300 ft/sec) was achieved at a burnout altitude of 61K m (200K ft) without exceeding the afore-mentioned maximum values of acceleration, q, and qa (see figure 8). Ninety-one percent of maximum sea level thrust was used at liftoff; at an altitude of 1220 m (4000 ft), both engines were throttled to 80 percent with subsequent throttling to 50 percent to constrain acceleration to < 3. Burnout flight-path angle increased with burnout altitude, reaching 330 at 61 km (200K ft).

With SSME installations (2 or 3 engines) and with internal propellant tanks, the engine gimbal points were shifted upward so that with the thrust directed through the center of gravity and with full gimbal capability, the lower portion of the exit plane of the nozzle cleared the body flap. No additional weight to account for this modification was included. With the removal of the upper SSME, the center of gravity moved forward resulting in the entry and landing c.g. locations at about 0.64£ (figure 1(a)); again, use of ballast would be anticipated to shift the c.g. aft. The entry and landing weights of 66.7K kg (147K lb) and 64.9K kg (143K lb), respectively, were about 4.5K kg (10K lb) below those of the baseline orbiter without payload.

Using three SSMEs at liftoff with full sea level thrust and a slightly lower liftoff T/W (~1-1/4), the allowable GLOW was 401.4K kg (885K lb). The majority of the GLOW increase went into ascent propellant. Since the payload-bay volume of approximately 283 m³ (~10K ft³) accommodated only about 90.7K kg (260K lb) of propellant, all of the ~318K kg (~700K lb) of LOX-hydrogen was contained in an external tank 43.3 m (142 ft) long (figure 9); an off-loaded baseline external tank could also be considered. With this propellant loading, a relative velocity at burnout in excess of 4875 m/sec (16K ft/sec) was achieved (figure 5). The burnout weight (including external tank) was 85.3K kg (188K lb). Burn time was approximately 266 seconds, and burnout occurred approximately 445 km (240 n.mi.) downrange for the three burnout altitudes. Because of the low c.g. location, angles of attack were positive throughout the ascents and never exceeded 15°; the maximum $q\alpha$ was constrained to 120K N/m²-deg (2500 lb/ft²-deg). The flight-path angle at burnout never exceeded 3°, and

the maximum dynamic pressure was less than 24K N/m^2 (500 lb/ft²; trajectory details for burnout at 76.2 km are presented in figure 10. The landing weight of 65.8K kg (145K lb) was approximately the same as for the two-SSME, internal-tank version (figure 1(a)). With the third SSME installed, the center-of-gravity location of 0.67 ℓ was the same as for the baseline orbiter.

In considering the use of a smaller external tank (in lieu of an offloaded baseline tank), the cost advantage resulting from easier recovery, inspection, and reuse for the tank must be balanced against the requirement for separate design, construction, and man-rating. Obviously, a trade study would be required prior to making a decision on tank size.

Air Launched

The performance capability of the air-launched orbiter retrofitted with a single J-2 rocket engine and propellant tanks within the payload bay (figure 11) is summarized in figure 12 and Table II with the trajectory details presented in figures 13 to 15. This mode of operation was believed to be the prime candidate for an early, supersonic flight-test program using the production orbiter. Air launch and rocket-engine ignition was assumed at an altitude of 9145 km (30K ft), a velocity of 122 m/sec (400 ft/sec), and a flight path angle of 00. Using POST, trajectories were calculated using 22.7K, 45.4K, and 68.0K kg (50K, 100K, and 150K lb) of propellant with burnout altitudes of 22.9, 30.5, and 38.1 km (75K, 100K, and 125K ft), respectively. Relative velocities at burnout of about 610, 1220, and 1650 m/sec (1950, 3950, and 5360 ft/sec) were obtained for the three propellant loadings. The maximum dynamic pressure was 12,690 N/m 2 (265 lb/ft 2), and maximum q α was about 124,500 N/m 2 -deg (2600 lb/ft 2 -deg). The maximum flight path angle decreased as the propellant loading increased and never exceeded 57° with a maximum value at burnout of -8°. Using one J-2, the accelerations were < 2 g's. If two J-2s were used, the increase in T/W would reduce the drag and gravity losses which constituted a significant portion of the ideal velocity increment (figure 12). A higher burnout velocity would probably be obtained at the same burnout altitude; however, the maximum acceleration of three g's would be exceeded unless thrust modulation was utilized.

The same limitations and concerns expressed previously with regard to the start, operation, and shutdown of the J-2 apply to the air-launched version; the starting and shutdown loads must be taken by the orbiter structure and would be less than for sea-level starts because of reduced back pressure.

FLIGHT-TEST RANGE CONSIDERATIONS

A preliminary analysis of the use of the Flight Research Center test range was conducted. For the vertical takeoff case, a launch complex was assumed at Rogers Lake; and, because of potentially high flight velocities and long distances, flights up the test range toward Bonneville were

assumed. An indication of the extent of the focused sonic-boom footprint during the pitchover maneuver following VTO is presented in figure 16 for the J-2 ascent. Overpressures (excluding plume effects) in excess of 100 N/m^2 (2.1 lb/ft²) occur about 55 km (30 miles) downrange, and care would have to be exercised to avoid the populated areas by use of trajectory and/or azimuth adjustments.

Because of the operational complexity and installation cost and time to provide facilities, the vertical takeoff concept may be impractical for shuttle development. The air-launched concept requires a "mother" aircraft; prior programs at FRC have demonstrated the versatility of this approach in utilizing the test range for both nominal and aborted missions. Launch location and altitude can be selected dependent upon mission requirements (range, abort landing site locations, etc.). Gradual maximum performance buildup is possible with this approach, and higher relative velocities are reached for a given propellant weight; also, the focused sonic boom issue is avoided since no pitchover is required. This mode is preferred over the vertical takeoff.

ISSUES IDENTIFIED

Several issues have been identified that were beyond the scope of this study but warrant attention in a detailed feasibility evaluation. Because internal tanks in the payload bay contain large amounts of cryogenic propellant well in excess of the maximum payload weight for which the orbiter was designed, a complete structural analysis would have to be made. For the air-launch mode, normal accelerations during pitchup following engine ignition result in load distributions and moments in the orbiter structure unlike the baseline shuttle ascent. The safety aspects of internally-located cryogenic propellants would have to be carefully considered, also.

The mounting and installation of J-2 engines upon a thrust structure designed for SSMEs requires modification. Because the length of the J-2 is less than the SSME, extensions are envisioned for J-2 installation to retain the nozzle exit planes in locations similar to that for the SSMEs. For SSME operation with internal propellant, raising the SSMEs to clear the body flap appears desirable, dependent upon gimbal requirements.

The starting and operational capability of the liquid rockets (J-2 and SSME) in these off-design conditions must be considered for the installations envisioned. Of particular significance are the J-2 low-altitude starting and shutdown transient loads resulting from asymmetric flow separation within the J-2 nozzles.

Ascent flight-control requirements and the magnitude of thrust vectoring would have to be determined. The use of aerodynamic control during ascent should be considered to alleviate the thrust vector requirements.

CONCLUDING REMARKS

A study has been completed that identifies the potential performance capability of the production shuttle orbiter for powered flight tests using several propulsion systems following vertical takeoff and using J-2 rocket engines following air launch. Of the approaches considered, it was concluded that the air-launched orbiter equipped with J-2 rocket engines has the highest potential to provide a capability of early shuttle development flight tests. A potential of Mach 4 using 45.4K kg (100K lb) of internal propellant was shown. Several issues were identified that require resolution to prove feasibility.

REFERENCE

1. Cornick, Douglas E.; Stevenson, Robert; Brauer, Garry L.; and Steinhoff, R. Terry: POST - Program to Optimize Shuttle Trajectories. NASA CR-125584, 1971.

TABLE I
WEIGHT SUMMARY
(a) S.I. Units (kg)

			V.T.0.		Y	AIR LAUNCHED, 3 J-2'	
	R.I. ORBITIER	3 J-2'8	2 SSME's	3 53466's	22.7K kg PROP	45.4K kg PROP	68.0K kg PROP
WING	508th	¥805	5084	±80₹	5084	₹80\$	₹805
TAIL	1210	1210	7210	1210	0121	1210	ाटा
BODY	16125	16397	16125	16125	16338	16398	16397
INDUCKO KNVIR PROT	11414	11414	11417	11414	11414	11411	11414
LED, DOCK, REC.	4310	4310	4310	4310	1,310	#310	0164
PROP ASCERT	11994	9755	10943	11994	7370 **	8147 ***	8963 ***
PROP AUXILLARY	2369	1689	1689	1689	1689	1689	1689
PRIDE FOWER	1540	877	877	877	222	9TT	877
RIBOT CONVER & DISTR HYBR CONVER & DISTR	2840	2433	2433	2433	2433	2433	2433
SURPACE CONTROLS	833	833	248	847	833	833	833
AVIONICS	2051	1369	1369	1369	136)	1369	1369
ENVIR CONTROL	1940	1134	1].34	1134	1134	1134	1134
	612	टा9	टा ⁹	टा९	टा9	टा९	612
PATIDAD ACCOM.	83	0	0	0	0	0	0
MARGIN	2696	5221	2172	±875	38 6₁	5059	5142
DRY WEIGHT	68040	62338	63219	63973	59715	69509	61467
PERSONNEL		553	553	553	553	553	553
ACPS RESERVES		16	91	91	76	91	5
RESIDUALS		2280	1134	6 L IT	2280	2280	2280
LANDING WEIGHT	70217	65262	64997	96259	65639	63493	64391
ACPS PROP (ENTRY)	1270	1635	1635	1635	1635	1635	1635
ENTRY WEIGHT	71487	26899	66632	67431	64274	65128	92099
INFLIGHT LOSSES		454	454	089	911	231	340
ASCEINT PROP		88892	₹986	333273*	22680	45360	04089
GROSS WEIGHT		156243	160720	401384	87070	110719	134406
			-	1			

^{*} Includes Weight of External Tank 17730 kg.

^{**} Includes Weight of 3 J-2's or 1 J-2 + 3133 kg Ballast.

TABLE I
WEIGHT SUMMARY
(b) U.S. Customary Units (lb)

, CHILDRA	R.I.		V = 0.		AIR	LAUNCHED, 3 J-2	8.
SISIES	150K ORBITER	3 J-2's	S SSIMI's	्र अशक्त	50K LB. PROP.	100K LB. PROF.	150K LB PROP
WING	11208	30211	11200	11200	11200	20211	11203
TAIL	5992	5669	_ 5992	5069	5993	5069	266.5
BODY	35540	36140	3554	35548	36148	36146	36148
INDUCED ENVIR PROT	25164	25164	25164	25164	25164	2516;	25164
IND, DOCK, REC.	9501	950ī	9501	9501	1050	2056	9501
PROP ASCENT	26441	21505	24125	14508	10247**	17960	19760**
PROP AUXILIARY	5223	3723	3723	ţ., ,	5723	3723	3723
PRIME FOWER	3395	1934	1934	+100	700	1934	1934
HYDR CONVER & DISTR	959	5364	1000 N	5364	400%	5364	(763
SURFACE CONTROLS	1:37	16.37			(E)	2.37	(N) 24
AVIONICS	4522	3019	301.	3015	OX Ci	3019	3019
ENVIR CONTROL	757	2500	2500	2500	000	2500	5500
PERSONNEL PROV.	1350	1350	1350	1350	<u>C</u> ,	1350	1350
MARGIN	1055	11507	عارفي عارفي	97201	\ \ \ ; -		
NPV WEIGHT	ISONO	137.420	130371	MIN3A	1216.46	122520	ISECIO
DRI WEIGHI	333	171 427	116761	141074	121340	טככננו	UICCCI
PERSONNEL		1220	1220	1220	00	1230	. 25.
ACPS RESERVES		SOC (20c	200	ن ان ان	500	() ()
RESIDUALS		5026	2500	2000	5026	5026	7.226
LANDING WEIGHT	154800	143875	143291	145054	138092	9266	141956
ACPS PROP (ENTRY)	2800	3605	3005	3605	3605	3605	3605
ENTRY WEIGHT	157600	147 480	146896	148659	141697	143581	145561
INFLIGHT LOSSES		105070	1000	1500	255	510	750
TOWN TWOODS		727210	4.0040.4	1.041£C1	50.50	acació.	700001
GROSS WEIGHT		344450	354320	884887	191952	244091	118962
		— ———————————————————————————————————	-				

* Includes Weight of External Tank 39088 lb.

^{**} Includes Weight of 3 J-2's or 1 J-2 + 6908 lb Ballast.

TABLE 11

BURNOUT CONDITIONS FOLLOWING AIR LAUNCH ONE J-2 ROCKET, INTERNAL TANKS

BURNOUT CONDITIONS

PROPELLANT	ALTITUDE	RELATIVE	FLIGHT-PATH
WEIGHT		VELOCITY	ANGLE, DEG.
22.68K kg	22.9 km	594 m/sec	-0.2
50K lb	75K ft	1948 ft/sec	
45.36K kg	30.5 km	1240 m/sec	- 8 -3
100K lb	100K ft	3952 ft/sec	
68.04K kg	38.1 km	1635 m/sec	-7.2
150K lb	125K ft	5363 ft/sec	

	R. I. Orbiter	1205 SRM External	1205 SRM Internal	3 J-2's Internal Tanks	2 SSME's Internal Tanks	3 SSME's External Tanks
GLOW, kg		287.5K	287.9K	156.2K	160.7K	401.4K
GLOW, lbs.		633.8K	634.6K	344.5K	354.3K	884.9K
Entry wt., kg	71.5K	56. 1K	89.3K	66.9K	66.6K	67.4K
Entry wt., lbs.	157.6K	123.7K	196.8K	147.5K	146.9K	148.7K
Entry c.g., x/l	0.670	0.604	0.683	0.641*	0 643*	0.667
Landing wt., kg	70, 2K	54.5K	87.6K	65.3K	65.0K	65.8K
Landing wt., lbs.	154. 8K	120.1K	193.2K	143.9K	113.3K	145.1K
Landing c.g., x/l	0, 669	0.598	0.681	0.64I*	0.639*	0.670

*Approximately 15K lb. at rear of vehicle will shift c.g. aft about $0.03 \ \text{x/L}$

(a) Vertical takeoff.

Figure 1. - Development flight-test vehicle weight/c.g. summary.

	R. I.	50K lb	100K lb	150K 1b
	Orbiter	Propellant	Propellant	Propellant
GLOW, kg		87.1K	110.7K	134.4K
GLOW, lb		192.0K	244.1K	296.3K
Entry wt., kg	71.5K	64.3K	65.1K	66.0K
Entry wt., lb	157.6K	141.7K	143.6K	145.4K
Entry c.g., x/l:	0.670	.64	0.64	0.64
Landing wt., kg.	70. 2K	62. 6K	63.5K	64. 4K
Landing wt., lb	154. 8K	138. 1K	146.0K	142. ∂K
Landing c.g., x/l:	. 669	0. 64	0.64	6. 64

(b) Airlaunched, J-2 powered. Figure 1. - Concluded.

Figure 2. - Vertical takeoff performance.

(a) Externally -mounted.

Figure 3. - Vertical takeoff, 1205 SRM pov

(b) Internally-mounted.
Figure 3. - Concluded.

Figure 4. - Vertical takeoff, J-2 powered.

Figure 5. - Burnout conditions following vertical takeoff.

(a) Altitude, velocity, flight path angle, and total acceleration.

Figure 6. - Vertical takeoff with J2 engines.

(b) Angle of attack, dynamic pressure, q-alpha, and downrange.

Figure 6. - Concluded.

Figure 7. - Vertical takeoff, two SSME powered, internal tanks.

(a) Altitude, velocity, flight path angle, and total acceleration. Figure 8.- Vertical takeoff with 2 SSME.

Downrange, n mi

(b) Angle of attack, dynamic pressure, q-alpha, and downrange. Figure 8. - Concluded.

Figure 9. - Vertical takeoff, three SSME, external tanks.

(a) Altitude, velocity, flight path angle, and total acceleration.

Figure 10. - Vertical takeoff with 3 SSME and external tanks.

(b) Angle of attack, dynamic pressure, q-alpha, and downrange. Figure 10. - Concluded.

Figure 11. Air-launched, J-2 powered.

Figure 12. - Air-launched performance, one J-2 powered, internal tanks.

(a) Altitude, velocity, flight path angle, and total acceleration.

Figu: e 13.- Airlaunched with 22,680 kg (50,000 lb) of propellant, J-2 powered.

(b) Angle of attack, dynamic pressure, q-alpha, and downrange.

Figure 13. - Concluded.

(a) Altitude, velocity, flight path angle, and total acceleration.

Figure 14. - Airlaunched with 45,360 kg (100,000 lb) of propellant, J-2 powered.

(b) Angle of attack, dynamic pressure, q-alpha, and downrange.

Figure 14. - Concluded.

(a) Altitude, velocity, flight path angle, and total acceleration.

Figure 15.- Airlaunched with 68,040 kg (150,000 lb) of propellant, J-2 powered.

(b) Angle of attack, dynamic pressure, q-aipha, and downrange.

Figure 15. - Concluded.

Downrange:

Figure 16. - Focused sonic-boom footprint.