UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN CIENCIAS DE LA COMPUTACIÓN

VISIÓN POR COMPUTADOR

Evaluación Práctica UNIDAD 2

ENUNCIADO 1. Dada una imagen original, debe generar una segunda imagen donde se copien los vecinos del pixel que sea múltiplo de un valor dado, sea menor a un valor dado en un canal dado y con un tamaño de vecindario dado. Para ello debe tomar en cuenta la siguiente información:

- La imagen que se le proporciona en su nombre tiene la siguiente estructura: APELLIDOS_NOMBRES_AÑO_MES_DÍA_CANAL_VECINDARIO_MÍNIMO.png
- Con los datos contenidos en la estructura debe realizar las siguientes operaciones y condiciones que se indican en la Ilustración 1:

Primera condición: Se tomarán en cuenta todos los pixeles para los cuales 2041 sea divisible del canal **2**. Por ejemplo: **2041%3** = **0**. Por ello se copia el vecindario de tamaño **5**. Se deben copiar los 3 canales, pero solo se analiza el canal **2**, que en este caso es el rojo.

IMAGE	\sim		1 / 1
IIVIAUTE	พเห	ハコル	JAI

89	80	62	55	6	50	252	100	58	144
2	237	232	36	41	172	58	38	0	29
206	72	3	196	75	213	232	72	50	171
141	0	142	69	224	32	92	43	28	0
217	26	64	41	78	14	107	103	189	127
166	207	125	154	60	225	212	183	34	73
78	57	105	26	186	83	4	252	42	167
203	255	234	59	117	190	157	174	247	97
196	70	140	236	254	41	32	73	164	125
231	69	242	19	52	125	82	62	59	28
0	255	243	62	196	220	234	39	214	124
77	246	23	54	193	166	173	152	43	229
110	211	22	48	189	55	81	237	98	189
235	229	86	74	44	105	190	75	200	143
161	199	203	191	69	88	201	77	71	241
58	206	29	187	131	231	13	133	17	45
96	238	169	22	154	207	127	222	250	83

Segunda condición: También se tomarán en cuenta todos los pixeles del canal **2** que sean menores o iguales a **64**. Por ejemplo, en este caso, los píxeles **2, 62, 55, 6, 2, 36, 41,** etc.

Ilustración 1. Explicación de las condiciones que deben cumplir los pixeles para ser copiados de la imagen original a la imagen destino.

→ Debe generar una nueva imagen, donde se debe copiar el pixel que cumple con una de las dos condiciones y sus vecinos, como se observa en la Ilustración 2:

Ilustración 2. Resultado de aplicar la operación. Como se aprecia, dada la imagen original (a), se copian los pixeles de los 3 canales a la imagen resultante (b). Se deben copiar solo los pixeles que cumplen con una de las dos condiciones y sus vecinos.

Es importante tomar en cuenta lo siguiente:

- No se requiere ningún método especial para resolver el ejercicio, únicamente lo visto en el tema de "manipulación de pixeles".
- No necesita aplicar máscaras, ni *bitwise operations*, ni ninguna otra función especial, únicamente analizar los pixeles como se solicita.
- Pueden haber resultados donde haya más o menos pixeles que se cumplan una de las dos condiciones.
- Debe subir el código y la imagen resultante que ha obtenido en el AVAC.