PCIe测试平台应用指南

(2021.11.22)

深圳市紫光同创电子有限公司 版权所有 侵权必究

文档版本修订记录

版本号	发布日期	修订记录
V1.0	2021-11-22	初始版本

名词术语解释

Abbreviations 缩略语	Full Spelling 英文全拼	Chinese Explanation 中文解释
PCIe	Peripheral component interconnect	高速串行计算机扩展总线标准
DMA	Direct Memory Access	直接存储器访问
Bar	Base Address Registers	基地址寄存器

目录

1.	概述		1
	1.1.	介绍	1
2.	测试界	面功能描述	2
	2.1.	DMA Auto界面	2
	2.2.	Performance Test界面	5
	2.3.	Config Operation界面	5
	2.4.	Endpoint Status界面	8
	2.5.	Print Info界面	9
	2.6.	DMA Manual界面	10
	2.7.	PIO Test界面	11
3.	2.8. 运行测	Tandem界面	
<i>.</i> .	3.1.	配套硬件	
	3.2.	运行环境	13
	3.3.	运行脚本	13
	3.4.	关闭调试信息	14
	3.5.	版本兼容	14
	3.6.	修改ID	15
附件:			. 15

图表目录

ß	1 1 测试王界田	2
图	2DMA AUTO界面	3
图	3PACKET STEP选择	3
图	4测试文件选择界面	4
图	5DMA Auto测试流程	4
图	6PERFORMANCE TEST界面	5
图	7DMA读写选择界面	5
图	8Config Operation界面	6
图	9读写切换选择	6
图	10配置空间寄存器列表	8
图	11Endpoint Status界面	9
图	12Print Info界面	9
图	13DMA MANUAL界面	. 10
图	14测试文件选择界面	. 10
图	15PIO TEST界面	11
图	16BAR选择	11
图	17TANDEM 界面	12
图	18TANDEM加载位流选择界面	12
图	19进入管理员权限	13
图	20进入PANGO_PCIE_DMA_ALLOC文件夹	. 14
图	21修改RUN.SH脚本文件权限	. 14
图	22脚本执行文件	. 14
图	23脚本提示信息	. 14
图	24ROOT_NAME变量	. 14
图	25关键宏定义开关	. 14
图	26ID宏定义	15
图	27错误信息自查	15

1. 概述

1.1. 介绍

公司FPGA器件支持PCIE接口,负责PCIE接口数据交互的DMA模块跟PC机通信,需要驱动代码,在此背景下,需要开发基于Linux环境的PCIe驱动。并且编写人机交互界面,调用驱动代码,和PCIE板卡进行DMA读写测试、PIO读写测试、配置空间读写测试、Tandem加载测试以及PCIe的DMA性能测试。

基于Windows的PCIe测试工具驱动需要付费(30天试用期),通过在Linux环境下开发PCIE驱动可以节约成本,并且自主研发,能够提供给客户一套完整的PCIE DMA验证测试方案。

当前PCIe测试方法比较简单,需要用PCI Scope工具查看建链情况,以及使用自研的DMA测试工具,需要手动单步操作工具,手动对比确认验证结果是否正常,测试效率很低,投入的人力成本高,。

开发自动化测试平台,既提升测试效率,降低人力成本,还有利于产品演示和推广应用。

2. 测试界面功能描述

测试界面我们使用GTK(GIMP Toolkit),是一套图形界面工具包,开放源码,在Linux下具有广泛的应用,下面对测试界面的部件进行讲解。主界面如下图所示:

图 1测试主界面

2.1. DMA Auto 界面

主界面编号1-9表示DMA Auto测试,测试界面如下图所示:

图 2DMA Auto界面

编号分别代表的含义如下:

编号1—DMA Auto: DMA自动测试选择界面。

编号2—Test Num: DMA自动测试的次数,当测试次数为0的时候,表示循环测试,直到测试手动停止。

编号3—Start Packet Size(bytes): 起始包的大小,即: DMA第一次读写测试的数据长度,单位为字节(最小4字节)。

编号4—End Packet Size(bytes): 结束包的大小,即:包步进值不等于0的时候,按照步进值累加的数据包的最大长度(不超过4096字节)。

编号5—Packet Step(bytes): 包步进值选择,即:完成一次DMA读写后,下一次的读写数据包长度会在上一次数据包长度上加上步进值,最终数据包长度不超过End Packet Size,步进可选值为: 0、4、8、16、32、64、128、256、512、1024,如下图所示:

图 3Packet Step选择

编号6—Write Packet Count: DMA写计数。

编号7—Read Packet Count: DMA读计数。

编号8—Error Packet Count: DMA读写错误计数。

编号9—Operation Button: DMA自动测试开始按钮,点击开始按钮会弹出测试文件选择界面,如下图所示:

图 4测试文件选择界面

DMA Auto测试的测试文件用户需要自己定义,并且填充文件内容,文件里面包含的字节数最好大于End Packet Size,不然会在不够的字节数填充0到9的ACIIA码,填充的数据只在DDR缓存,不会写入到测试文件里面。在app_pcie文件夹里面提供了测试文件,文件名为test.txt,用户可以直接使用这个文件进行测试。DMA Auto测试的流程如下图所示:

- ①:DDR写,CPU往DDR写入数据文件。
- ②:CPU读DDR的数据,确认DDR写入和输出的数据是否一致。
- ③:CPU向FPGA发起命令,触发FPGA做DMA读操作。
- ④:FPGA做DMA读操作。
- ⑤:CPU清空DDR的数据。
- ⑥:CPU向FPGA发起命令,触发FPGA做DMA写操作。
- ⑦:FPGA做DMA写操作。
- ⑧:DDR读, CPU读DDR的数据, 并和①步骤写的数据比对。

图 5DMA Auto测试流程

2.2. Performance Test 界面

主界面编号10-16表示PCIe性能测试界面,测试界面如下图所示:

图 6Performance Test界面

编号分别代表的含义如下:

编号10—DMA Read/Write Mode: DMA读写模式选取,分别是: Write、 Read和W&R三种模式,如下图所示:

图 7DMA读写选择界面

编号11—Test Packet Size(bytes): DMA一次传输的数据包长度,默认长度128字节, Performance Test对应的FPGA硬件工程里面为128字节, 保持默认值即可。

编号12—Write Throughput(MB/s): DMA写带宽。

编号13—Read Throughput(MB/s): DMA读带宽。

编号14—Write Bandwidth Utilization(%): DMA写带宽利用率。

编号15—Read Bandwidth Utilization(%): DMA读带宽利用率。

编号16—Operation Button: 性能测试启动按钮,按钮按下后,会每隔1s测试一次,直到手动停止。

2.3. Config Operation 界面

主界面17-20表示PCIe配置寄存器操作界面,界面如下图所示:

图 8Config Operation界面

编号17—Mode Swtich: 配置寄存器读写操作切换, Write和Read, 如下图所示:

图 9读写切换选择

编号18—Addr Offset(hex): 读写偏移地址,十六进制,在能配置的地址范围内。

编号19—Data(hex): 写操作时,表示写入的数据;读操作时,表示读取寄存器的数据。

编号20—Write/Read: 根据Mode Switch的选择,显示不同的按钮操作。

配置空间寄存器列表如下图所示,可根据下图偏移地址进行读写操作:

工间하仔語列表如下图所小,可依据下图偏移地址进行误与探下: PCI Express Configuration Space				
31	16	15	0	Address
Device ID		Vendor ID		000h
Status		Command		004h
	Class Co	ode	RevID	008h
BIST	Header	Lat Timer	Cache Ln	00Ch
Base Address Register 0				010h
Base Address Register 1				014h
Base Address Register 2			018h	
Base Address Register 3			01Ch	
Base Address Register 4			020h	
Base Address Register 5				024h
Cardbus CIS Pointer				028h
Subsystem ID		Subsystem Vendor ID		02Ch
Expansion ROM Base Address			030h	
	Reserve	ed	CapPtr	034h
Reserved			038h	

Max Lat	Min Gnt	Intr Pin	Intr Line	03Ch	
	040h				
	Reserved				
	048h				
				04Ch	
MSI Control		Next Cap Pointer	Cap ID	050h	
	054h				
Message Address [63:32]				058h	
Rese	erved	Message Data		05Ch	
Mask Bits				060h	
Pending Bits				064h	
Reserved				068h	
Reserved				06Ch	
PE Cap		Next Cap Pointer	Cap ID	070h	

Device	074h		
Device Status	Device Control		078h
Link	07Ch		
Link Status	Link Con	trol	080h
	084h		
,	Reserved		088h
	Reserved		08Ch
			090h
Device	Device Capabilities 2		
Device Status 2	Device Con	trol 2	098h
Link	Capabilities 2		09Ch
Link Status 2	Link Status 2 Link Control 2		
			0A4h
1	Reserved		0A8h
			0ACh
Message Control	Next Pointer	Capability ID	0B0h
Table Of	0B4h		
PBA Offset BIR			0B8h
1			
Advanced Error Capabilities and Control Register			118h

图 10配置空间寄存器列表

2.4. Endpoint Status 界面

主界面21-40表示PCIe状态信息显示界面,如下图所示:

图 11Endpoint Status界面

编号21—Vendor ID: 厂商ID。

编号22—Device ID:设备ID。

编号23—Link Status:设备链接状态,Up(建链成功);Down(建链失败)。

编号24—Link Speed: 设备链接速度。

编号25—Link Width: 设备链接宽度。

编号26—Interrupts: 是否支持中断(默认都不支持)。

编号27—Bar0:分配给EP的Bar0基地址。

编号28—Bar1:分配给EP的Bar1基地址。

编号29—Bar2:分配给EP的Bar2基地址。

编号30—Bar3:分配给EP的Bar3基地址。

编号31—Bar4:分配给EP的Bar4基地址。

编号32—Bar5:分配给EP的Bar5基地址。

编号33—Size0: Bar0的空间大小。

编号34—Size1: Bar1的空间大小。

编号35—Size2: Bar2的空间大小。

编号36—Size3: Bar3的空间大小。

编号37—Size4: Bar4的空间大小。

编号38—Size5: Bar5的空间大小。

编号39—MPS(bytes): Max Payload Size。

编号40—MRRS(bytes): Max Read Request Size。

2.5. Print Info 界面

Print Info界面打印一些很必要的信息,如下图所示:

图 12Print Info界面

测试过程中的大部分打印信息将通过printf函数在控制台上面打印,Clean按钮没有实际的功能,保留使用。

2.6. DMA Manual 界面

主界面42-51表示DMA手动测试界面,如下图所示:

图 13DMA Manual界面

编号42—DMA Manual: DMA手动测试选择界面按钮。

编号43—Allocate Mem Size(bytes): 需要申请的DDR缓存大小,单位为字节(最小4字节)。

编号44—Offset Addr(hex):测试基地址偏移量。

编号45—Data Length(bytes): DMA测试一包数据的长度,单位为字节(最小4字节)。

编号46—Start DMA: 启动DMA手动测试按钮,会弹出测试文件选择界面,如下图所示:

图 14测试文件选择界面

打开文本成功后,Start DMA按钮会变成灰色,不可操作,Close DMA按钮会从灰色变成黑色,可操作。

DMA Manual测试的测试文件用户需要自己定义,并且填充文件内容,文件里面包含的字节数最好大于Allocate Mem Size,不然会在不够的字节数填充0到9的ACIIA码,填充的数据只在DDR缓存,不会写入到测试文件里面。

编号47—Write DDR:将数据写入DDR缓存。

编号48—DMA Read: 执行DMA读操作。

编号49—Close DMA: DMA写操。

编号50—Read DDR:将数据读取到DDR缓存中。

编号51—DMA Write: 作关闭DMA手动测试按钮,关闭手动测试后,Close DMA按钮会变成灰色,不可操作,Start DMA按钮从灰色变成黑色。

正确的DMA手动测试操作流程编号46-51: Start DMA→Write DDR→DMA Read→DMA Write→Read DDR→Close DMA。

2.7. PIO Test 界面

编号52-59表示PIO测试界面,如下图所示:

	Test Tandem
Bar Addr Switch:	Bar0 \$ 53
Read/Write Mode:	Write ‡ 54
Addr Offset(hex):	0 55
Data(hex):	12345678 56
Repeat Cnt:	1 57
Operation Delay(ns):	1000 58
Operation Button:	Start Test 59

图 15PIO Test界面

编号52—PIO Test: PIO测试界面选择按钮。

编号53—Bar Addr Switch: Bar基地址选取界面,包含Bar0、Bar1、Bar2、Bar3、Bar4、Bar5 六个选项,如下图所示:

图 16Bar选择

编号54—Read/Write Mode: 读写操作切换选项,包含Write、Read、W&R、W&R Step,W&R Step表示再进行读写操作时地址会依次加4递增,但不会超过Bar空间大小。

编号55—Addr Offset(hex): Bar读写操作偏移地址。

编号56—Data(hex): 写操作时表示需要写入的数据(多次写操作, Data会在初始值的基础上加1递增); 读操作时表示读取出的数据。

编号57—Repeat Cnt:操作次数,为0时表示一直循环读写,直到手动停止。

编号58—Operation Delay(ns): 完成一次(读、写或先写后读)操作的延时,以ns为单位,默认1000ns。

编号59—Operation Button: PIO测试启动按钮,配置完以上参数,点击Start Test按钮即可。

2.8. Tandem 界面

主界面60-62表示Tandem加载界面,如下图所示:

图 17Tandem 界面

编号60—Tandem: Tandem加载界面选择按钮。

编号61-Import Button: 位流文件选择按钮,会弹出文件选择界面,如下图所示:

图 18Tandem加载位流选择界面

加载位流在PG2L100H_PCIe_Tandem文件夹里面,具体操作请参考《快速加载说明》文档。编号62—Load Button:加载位流按钮。

Tandem加载流程,首先点击File To Import按钮,导入需要加载位流文件,然后点击Load The File按钮,开始加载位流文件。

3. 运行测试界面

进入工程文件,里面包含两个文件夹和一个文件,分别是: app_pcie、driver文件夹以及run.sh脚本文件。

3.1. 配套硬件

硬件测试环境: PG2L100h测试板(P04I100KF01 A2)

PDS版本: Pango Design Suite 2021.1-SP6.2

需要先下载FPGA位流,在pango_pcie_dma_alloc/pcie_test_rtl目录下,不同测试项目对应的硬件工程文件名如下:

DMA Auto、DMA Manual、PIO Test: PG2L100H_PCle DMA (用IP生成的example)

Tandem: PG2L100H_PCle_Tandem (里面包含三个位流文件以及快速加载说明文档)

Performance test: PG2L100H PCle performance

Config Operation不依赖硬件工程,都可以操作。

3.2. 运行环境

安装Linux系统的电脑(不是虚拟机),并且要安装GTK包,如果编译提示GTK编译错误,请百度搜索安装GTK安装教程,GTK版本gtk+-2.0。

该测试代码在Fedora 16以及ubuntu 16.04上均测试通过。

3.3. 运行脚本

提供的光盘为Fedora 16,打开控制台方式与ubuntu 16.04不一样,下面分别介绍:

第一步:系统启动过后,首先将pango_pcie_dma_alloc文件夹拷贝到系统桌面(Desktop文件夹下)

第二步: 启动控制台

Fedora 16: 鼠标放置在左上角Applications上面,选择System Tools下面的Terminal

ubuntu 16.04: Ctrl+Alt+T

进入控制台后,操作都是一样的,以ubuntu 16.04为例。

第三步: 进入管理员权限

Fedora 16: 控制台输入su,点击Enter按钮,直接进入,不需要密码

ubuntu 16.04: 控制台输入su,点击Enter按钮,输入root权限密码,如下图所示:

图 19进入管理员权限

第四步: 进入pango_pcie_dma_alloc文件夹, cd Desktop/pango_pcie_dma_alloc/, 点击Enter 按钮, 如下图所示:

root@ubuntu:/home/pango# cd Desktop/pango_pcie_dma_alloc/

图 20进入pango_pcie_dma_alloc文件夹

第五步: 修改run.sh脚本文件权限, chmod—R 777 run.sh, 点击Enter按钮, 如下图所示: root@ubuntu:/home/pango/Desktop/pango_pcie_dma_alloc# chmod—R 777 run.sh

图 21修改run.sh脚本文件权限

第六步: 执行run.sh脚本, ./run.sh, 点击Enter按钮, 如下图所示:

图 22脚本执行文件

如果控制台当前操作用户不是管理员, 脚本运行会提示, 如下图所示:

```
pango@ubuntu:~/Desktop/pango_pcie_dma_alloc$ ./run.sh
该脚本默认管理 员 名:root
控制台当前操作用户名:pango
请将操作用户切换为root(管理员)
pango@ubuntu:~/Desktop/pango_pcie_dma_alloc$
```

图 23脚本提示信息

脚本默认的管理员名称为root,如果用户的Linux系统管理员名不为root,那么就需要修改run.sh脚本文件里面的root_name变量,如下图所示:

```
3: driver="pango_pci_driver
4: target="app"
```

5: root name="root"

#默认管理员名: root

图 24root name变量

将root name="root"修改为root name="xxx", xxx为用户Linux系统的管理员名字。

3.4. 关闭调试信息

在测试界面运行的时候,有很多打印信息,调试信息为绿色、常规打印信息为蓝色、警告信息为黄色、错误信息为红色,如果想关闭调试信息,需要注释掉DEBUG宏定义,在app_pcie/includes/config_gui.h文件中,如下图所示第20行,注释掉宏后,重新运行run.sh脚本。

3.5. 版本兼容

在低版本的GTK中存在和高版本部件大小不兼容,可尝试打开WIDGET_SPACE宏定义,在app_pcie/includes/config_gui.h文件中,如下图所示,第22行:

```
19: #define NO_TEST /* 代码功能测试是打开注释 */
20: #define DEBUG
```

21: /* 宽间距为了兼容低版本,部件尺寸标准不一致 */ **22:** //#define WIDGET SPACE

/* 部件间距,宏定义打开表示为宽松; 注释掉表示间距紧凑 */

图 25关键宏定义开关

3.6. 修改 ID

在PCIe驱动装载的时候厂商ID和设备ID必须和FPGA硬件工程里面的厂商ID和设备ID相匹配,可在driver/id_config.h里面修改,如下图所示:

图 26ID宏定义

附件:

下图列出了所有错误信息描述,方便错误信息自查:

```
ERROR ] Write data is not equal to read data !!! DMA Auto或DMA Manual写数据和读数据不一致
ERROR ] Data Length greater than Allocate Mem Size !!! DMA Manual测试时,数据长度大于申请的缓存大小,建议减小数据长度
ERROR ] Offset Addr greater than Allocate Mem Size subtract Data Length !!! DMA Manual测试时,偏移地址超过申请缓存的大小,建议
                                                                        减小地址偏移量
      | DMA Write data is not equal to DMA read data !!! Performance测试时, DMA读写操作, 读写数据不相等
ERROR ] DMA Read data is not equal to DDR Memory data ,error data cnt = 0!!! Performance测试时,DMA 读操作,读数据和DDR缓存数
:RROR ] nanosleep failed !!! 延时承数失效
       open '/dev/mem' failed !!! 虚拟地址映射失败 mmap '/dev/mem' failed !!!
     ] Reading and writing data is not the same !!!
] Write Data = 0;Read Data 0 !!! PIO测试时,写数据和读数据不一致
       CRC Failed !!!
CRC Status ERROR !!! Tandem测试时,加载位流CRC校验失败
```

图 27错误信息自查