FFA Rasch Modelling

AUTHOR
Sebastian Sauer

1 Setup

```
library(easystats) # convinient stats
library(here) # path hell
library(eRm) # Rasch models
library(mirt) # more IRT
library(MASS) # stats
library(lordif) # DIF
library(tidyverse) # data wrangling
library(psych) # factor analysis
library(lavaan) # CFAs
library(semPlot) # SEM plots
```

1.1 Import FFA data

```
d_filename <- "Achtsamkeit_Daten_FFAEichung_rekodiert_2.sav"

d <- data_read(here("raw-data", d_filename))</pre>
```

1.2 Median split

Yes, only two cases of sex "divers".

1.3 Check

24.01.23, 15:43 FFA Rasch Modelling

Can we drop "diverse" sex without loosing much data?

```
d %>%
count(Geschlecht)
```

```
Geschlecht n
männlich 495
weiblich 515
divers 2
```

2 Prepare data

2.1 Select FFA items

```
ffa_items <-
  d2 %>%
  dplyr::select(starts_with("FFA_"))
```

2.2 Recode

2.3 Check

```
ffa_items2 %>%
  describe_distribution()
```

```
Variable | Mean | SD | IQR | Range | Skewness | Kurtosis | n | n_Missing _______
```

```
1 | [0.00, 3.00] |
FFA 1
           | 1.91 | 0.85 |
                                                    -0.52 |
                                                                 -0.24
| 1010 |
FFA_2
           | 1.51 | 0.89 |
                              1 | [0.00, 3.00] | -7.47e-03 |
                                                                 -0.73
| 1010 |
FFA 3
                              1 | [0.00, 3.00] |
           | 1.42 | 0.86 |
                                                      0.02 |
                                                                 -0.66
| 1010 |
                              2 | [0.00, 3.00] |
           | 1.89 | 0.85 |
                                                     -0.40
                                                                 -0.48
FFA_4
| 1010 |
                              1 | [0.00, 3.00] |
FFA_5
                                                     -0.44
           | 1.84 | 0.83 |
                                                                 -0.28
| 1010 |
FFA 6
           | 1.80 | 0.82 |
                              1 | [0.00, 3.00] |
                                                     -0.29 |
                                                                 -0.43
| 1010 |
FFA_7
           | 1.78 | 0.84 |
                              1 | [0.00, 3.00] |
                                                     -0.39
                                                                 -0.36
| 1010 |
           | 1.84 | 0.77 |
                              1 | [0.00, 3.00] |
                                                     -0.29 |
FFA_8
                                                                 -0.27
| 1010 |
FFA_9
                              1 | [0.00, 3.00] |
                                                     -0.26 |
           | 1.71 | 0.84 |
                                                                 -0.47
| 1010 |
                              1 | [0.00, 3.00] |
FFA_10
           | 1.72 | 0.85 |
                                                     -0.29
                                                                 -0.49
| 1010 |
                              1 | [0.00, 3.00] |
FFA_11
           | 1.74 | 0.84 |
                                                     -0.28 |
                                                                 -0.47
| 1010 |
                              1 | [0.00, 3.00] |
                                                     -0.07
FFA_12
           | 1.54 | 0.86 |
                                                                 -0.65
| 1010 |
                              1 | [0.00, 3.00] |
FFA_13_rek | 1.67 | 0.90 |
                                                     -0.15
                                                                 -0.76
| 1010 |
                 0
                             1 | [0.00, 3.00] |
FFA 14
           | 1.60 | 0.84 |
                                                     -0.14
                                                                 -0.54
| 1010 |
```

2.4 FFA-13

```
ffa13_items <-
  ffa_items2 %>%
  dplyr::select(-FFA_13_rek)

dim(ffa13_items)
```

[1] 1010 13

3 IRT Models FFA13 - one factor model

3.1 Rating Scale Model (RSM)

```
ffa_rsm1 <- RSM(ffa_items2, se = FALSE)
ffa_rsm1_ppar <- person.parameter(ffa_rsm1)</pre>
```

This model does not run, throws error due to singularity in matrix.

3.2 Partial Credit Model (PCM)

3.2.1 Estimate parameters

3.2.1.1 FFA-14: 14 items

```
ffa_pcm1 <- PCM(ffa_items2)
thresholds(ffa_pcm1)</pre>
```

Design Matrix Block 1:

```
Location Threshold 1 Threshold 2 Threshold 3
                       -0.94317
                                   -0.22598
FFA_1
            0.26067
                                                 1.95115
FFA 2
            0.91626
                       -0.67573
                                    0.88345
                                                 2.54106
FFA 3
           1.12831
                       -0.57636
                                    0.99342
                                                 2,96786
                                                 1.86234
FFA_4
            0.22817
                       -1.21454
                                    0.03671
FFA 5
            0.36060
                       -1.02959
                                   -0.07687
                                                 2.18827
FFA 6
            0.34979
                       -1.37675
                                    0.17527
                                                 2.25084
FFA 7
            0.48002
                       -0.93762
                                    0.05186
                                                 2.32582
FFA 8
                       -1.71550
            0.22446
                                    0.02947
                                                 2.35943
FFA_9
            0.58029
                       -1.04322
                                    0.30623
                                                 2.47786
FFA_10
            0.58014
                       -0.92527
                                    0.26003
                                                 2.40568
FFA 11
                                    0.25214
            0.50785
                       -1.09032
                                                 2.36172
FFA_12
            0.88470
                       -0.77655
                                    0.76261
                                                 2.66804
FFA_13_rek 0.62526
                       -0.85574
                                    0.59710
                                                 2.13443
FFA 14
            0.76323
                       -0.99528
                                    0.59661
                                                 2.68836
```

```
ffa_pcm1_ppar <- person.parameter(ffa_pcm1)
ffa_pcm1_ppar</pre>
```

Person Parameters:

```
Raw Score
             Estimate Std.Error
        3 - 2.47563019 0.6110641
        4 -2.14746247 0.5393721
        5 -1.88288301 0.4918666
        6 -1.65803307 0.4580168
        7 -1.46010308 0.4327927
        8 -1.28138631 0.4134650
        9 -1.11680549 0.3984023
       10 -0.96292147 0.3865766
       11 -0.81719887 0.3772888
       12 -0.67766802 0.3700483
       13 -0.54286015 0.3645077
       14 -0.41157499 0.3604056
       15 -0.28277307 0.3575391
       16 -0.15562456 0.3557542
       17 -0.02941778 0.3549217
          0.09649900 0.3549390
       18
       19
           0.22270913 0.3557148
       20
          0.34973478 0.3571744
       21
          0.47802889 0.3592494
       22
           0.60799865 0.3618793
       23
           0.74004711 0.3650126
           0.87456811 0.3686113
       24
       25
           1.01192106 0.3726488
           1.15244051 0.3771211
       26
       27
           1.29648521 0.3820526
       28
           1.44448274 0.3875043
       29
           1.59695652 0.3935906
       30
           1.75455113 0.4004877
       31
           1.91808584 0.4084536
       32
           2.08866648 0.4178543
       33
           2.26786312 0.4292056
       34
          2.45792067 0.4432464
       35
           2.66204174 0.4610582
       36
           2.88497992 0.4843112
       37
           3.13422277 0.5157722
           3,42238345 0,5604822
       38
       39
           3.77318878 0.6289827
           4.23992101 0.7486760
       40
           4.99249392 1.0290806
       41
```

5.81436949

NA

42

```
ffa_pcm1_itemfit <- eRm::itemfit(ffa_pcm1_ppar)
ffa_pcm1_itemfit</pre>
```

Itemfit Statistics:

	Chisq	df	p-value	Outfit MSQ	Infit MSQ	Outfit t	Infit
t Discr	im						
FFA_1	1012.904	1002	0.398	1.010	0.979	0.231	
-0.458	0.522						
FFA_2	1074.782	1002	0.054	1.072	1.051	1.684	
1.226	0.492						
FFA_3	1066.561	1002	0.077	1.063	1.064	1.504	
1.535							
FFA_4	849.198	1002	1.000	0.847	0.850	-3.647	
	0.614						
FFA_5	758.503	1002	1.000	0.756	0.767	-5.965	
	0.667						
FFA_6	784.800	1002	1.000	0.782	0.798	-5.439	
-5.081	0.646						
	746.182	1002	1.000	0.744	0.762	-6.368	
	0.677						
FFA_8	959.878	1002	0.826	0.957	0.952	-0.985	
	0.517						
_	796.610	1002	1.000	0.794	0.799	-5.140	
	0.648						
FFA_10	770.208	1002	1.000	0.768	0.777	-5.836	
	0.665						
	749.025	1002	1.000	0.747	0.756	-6.436	
	0.676						
_	795.992	1002	1.000	0.794	0.799	-5 . 295	
-5.210							
	rek 2651.416	1002	0.000	2.643	1.855	27.010	
16.750	-0.021						
FFA_14	979.859	1002	0.686	0.977	0.951	-0.536	
-1.184	0.538						

This model shows a bad fit.

3.2.1.2 FFA-13: 13 item

```
ffa_pcm2 <- PCM(ffa13_items)
ffa_pcm2_ppar <- person.parameter(ffa_pcm2)</pre>
```

```
ffa_pcm2_itemfit2 <- eRm::itemfit(ffa_pcm2_ppar)
ffa_pcm2_itemfit2</pre>
```

24.01.23, 15:43

Itemfi	t Statist:	ics:					
	Chisq	df	p-value	Outfit MSQ	${\tt Infit\ MSQ}$	Outfit t	Infit t
Discri	m						
FFA_1	1128.015	985	0.001	1.144	1.062	3.009	1.371
0.492							
FFA_2	1147.431	985	0.000	1.164	1.111	3.635	2.568
0.472							
FFA_3	1134.305	985	0.001	1.150	1.129	3.355	2.973
0.446							
FFA_4	952.263	985	0.768	0.966	0.935	-0.761	-1.540
0.579							
_	805.340	985	1.000	0.817	0.822	-4.313	-4.279
0.644							
_	837.713	985	1.000	0.850	0.859	-3.613	-3.399
0.619							
_	776.805	985	1.000	0.788	0.800	-5.089	-4.886
0.662							
FFA_8	1041.978	985	0.101	1.057	1.030	1.280	0.687
0.482							
_	868.430	985	0.997	0.881	0.878	-2.820	-2.931
0.611							
_	804.569	985	1.000	0.816	0.829	-4.447	-4.193
0.643							
_	822.820	985	1.000	0.835	0.833	-3.987	-4.085
0.638	000 400		4 000			2 665	2
	838.186	985	1.000	0.850	0.856	-3.665	-3.579
0.625							
_	1042.183	985	0.100	1.057	1.019	1.309	0.457
0.509							

3.2.2 Overall Goodness of Fit

#gofIRT(ffa_pcm2_ppar) # not implemented for polytomuous models yet #item_info(ffa_pcm2)

3.2.3 Andersen test

Significant results indicate that the exercise parameter differ significantly between the two groups.

```
LRtest(ffa_pcm2) # nicht so gut
```

Andersen LR-test: LR-value: 168.57 Chi-square df: 35

p-value: 0

```
LRtest(ffa_pcm2, d2$Evang) # ok
```

Andersen LR-test: LR-value: 57.32 Chi-square df: 38 p-value: 0.023

```
LRtest(ffa_pcm2, d2$Theorie) # nicht so gut
```

Andersen LR-test: LR-value: 119.295 Chi-square df: 38

p-value: 0

```
LRtest(ffa_pcm2, d2$PHQ_medsplit) # nicht so gut
```

Andersen LR-test: LR-value: 253.068 Chi-square df: 38

p-value: 0

3.2.4 Wald Test

```
Waldtest(ffa_pcm2)
```

Wald test on item level (z-values):

		z-statistic	p-value
beta	FFA_1.c1	4.506	0.000
beta	FFA_1.c2	3.313	0.001
beta	FFA_1.c3	1.406	0.160
beta	FFA_2.c1	1.703	0.089
beta	FFA_2.c2	-0.342	0.732
beta	FFA_2.c3	0.099	0.921
beta	FFA_3.c1	3.435	0.001
beta	FFA_3.c2	2.098	0.036
beta	FFA_3.c3	0.842	0.400
beta	FFA_4.c1	-0.097	0.922
beta	FFA_4.c2	-0.894	0.371
beta	FFA_4.c3	-1.318	0.187
beta	FFA_5.c1	0.021	0.984
beta	FFA_5.c2	-1.239	0.215
beta	FFA_5.c3	-2.135	0.033
beta	FFA_7.c1	-0.063	
beta	FFA_7.c2	-1.739	0.082
beta	FFA_7.c3	-2.886	
beta	FFA_8.c1	4.104	
beta	FFA_8.c2	2.937	0.003
	FFA_8.c3	2.192	
	FFA_9.c1	1.163	
	FFA_9.c2	-0.938	
	FFA_9.c3	-1 . 972	
beta	FFA_10.c1	2.395	
	FFA_10.c2	0.048	
	FFA_10.c3	-0.583	
	FFA_11.c1	1.771	
	FFA_11.c2		0.478
	FFA_11.c3	-1.462	
	FFA_12.c1	-1.497	
	FFA_12.c2	-3.005	
	FFA_12.c3		
	FFA_14.c1		0.011
	FFA_14.c2		0.284
beta	FFA_14.c3	0.952	0.341

```
Waldtest(ffa_pcm2, d2$PHQ_medsplit)
```

Wald test on item level (z-values):

		z-statistic	p-value
beta	FFA_1.c1	0.280	0.779
	_ FFA_1.c2	1.678	0.093
	FFA 1.c3	2.732	
	FFA_2.c1	-4.512	
	FFA_2.c2	-5.186	
	FFA_2.c3	-6.045	
	FFA_3.c1	-5.622	0.000
	FFA_3.c2	-7 . 385	0.000
	FFA_3.c3	-6.354	0.000
	FFA_4.c1	0.652	0.514
beta	FFA_4.c2	2.637	0.008
beta	FFA_4.c3	3.856	0.000
beta	FFA_5.c1	-1.845	0.065
beta	FFA_5.c2	-1.191	0.234
beta	FFA_5.c3	-1.043	0.297
beta	FFA_6.c1	0.561	0.575
beta	FFA_6.c2	1.790	0.074
beta	FFA_6.c3	1.669	0.095
beta	FFA_7.c1	-2.465	0.014
beta	FFA_7.c2	-1.011	0.312
beta	FFA_7.c3	0.112	0.911
beta	FFA_8.c1	0.129	0.897
beta	FFA_8.c2	-0.393	0.694
beta	FFA_8.c3	0.431	0.667
beta	FFA_9.c1	0.605	0.545
beta	FFA_9.c2	3.150	0.002
beta	FFA_9.c3	4.208	0.000
beta	FFA_10.c1	-2.569	0.010
beta	FFA_10.c2	-1.876	0.061
beta	FFA_10.c3	-1.783	0.075
beta	FFA_11.c1	0.270	0.787
beta	FFA_11.c2	2.763	0.006
beta	FFA_11.c3	3.017	0.003
beta	FFA_12.c1	1.119	0.263
beta	FFA_12.c2	2.903	0.004
beta	FFA_12.c3	2.149	0.032
beta	FFA_14.c1	1.156	0.248
beta	FFA_14.c2	2.015	0.044
beta	FFA_14.c3	0.817	0.414

3.2.5 MLoef Test

```
MLoef(ffa_pcm2) # good
```

Martin-Loef-Test (split criterion: median)

LR-value: 378.543 Chi-square df: 377 p-value: 0.468

3.2.6 Item information

```
plotINFO(ffa_pcm2, legpos = FALSE)
```

Error in plot.new(): figure margins too large

```
plotPImap(ffa_pcm2)
```

Person-Item Map

4 Two factor model

4.1 Devise factors

24.01.23, 15:43 FFA Rasch Modelling

Items were assigned according to Sauer et al., 2013.

```
presence_factor <- c(1, 2, 3, 5, 7)
acceptance_factor <- c(4, 6, 8, 9, 10, 11, 12, 14)
```

```
ffa13_pres <-
  ffa_items2 %>%
  dplyr::select(any_of(presence_factor))

ffa13_acc <-
  ffa_items2 %>%
  dplyr::select(any_of(acceptance_factor))
```

4.2 Check distributions

```
ffa13_acc %>%
  describe_distribution()
```

```
Variable | Mean | SD | IQR | Range | Skewness | Kurtosis | n | n_Missing
```

```
| 1.89 | 0.85 | 2 | [0.00, 3.00] |
FFA 4
                                                 -0.40 |
                                                            -0.48
1010 |
                          1 | [0.00, 3.00] |
FFA 6
         | 1.80 | 0.82 |
                                                 -0.29
                                                            -0.43 l
1010 |
                           1 | [0.00, 3.00] |
FFA 8
                                                 -0.29
                                                            -0.27 |
         | 1.84 | 0.77 |
1010 |
FFA_9
         | 1.71 | 0.84 |
                           1 | [0.00, 3.00] |
                                                 -0.26
                                                            -0.47
1010 |
FFA 10
         | 1.72 | 0.85 |
                           1 | [0.00, 3.00] |
                                                 -0.29
                                                            -0.49 |
1010 |
         | 1.74 | 0.84 |
                           1 | [0.00, 3.00] |
                                                 -0.28 |
FFA_11
                                                            -0.47
1010 |
               0
                           1 | [0.00, 3.00] |
FFA 12
         | 1.54 | 0.86 |
                                                 -0.07
                                                            -0.65
1010 |
                           1 | [0.00, 3.00] |
FFA_14
         | 1.60 | 0.84 |
                                                 -0.14 |
                                                            -0.54
1010 |
```

4.3 Any categories not chosen?

Let's check if any category was not chosen at all, which may cause the model to fail <u>according to this source</u>.

```
ffa13_acc %>%
  pivot_longer(everything(), names_to = "item", values_to = "category
  count(item, category, sort = TRUE)
```

```
# A tibble: 32 \times 3
   item
           category
              <dbl> <int>
   <chr>
 1 FFA 8
                   2
                       514
                   2
 2 FFA_6
                       477
 3 FFA 11
                   2
                       469
                   2
 4 FFA_9
                       469
 5 FFA 10
                   2
                       467
 6 FFA_4
                   2
                       453
 7 FFA_14
                   2
                       436
 8 FFA 12
                   2
                       401
 9 FFA 12
                   1
                       357
10 FFA_14
                       341
                   1
# ... with 22 more rows
```

24.01.23, 15:43 FFA Rasch Modelling

However, there appear to be no category with zero count.

5 RSM

5.1 Presence

5.1.1 Parameter estimation

```
ffa_rsm1_pres <- RSM(ffa13_pres, se = TRUE)
ffa_rsm1_pres</pre>
```

```
Results of RSM estimation:
```

```
Call: RSM(X = ffa13_pres, se = TRUE)
```

```
Conditional log-likelihood: -3195.759
```

Number of iterations: 18 Number of parameters: 6

```
Item (Category) Difficulty Parameters (eta):
```

```
FFA 2 FFA_3 FFA_5 FFA_7 Cat 2
```

Cat 3

Estimate 0.39599666 0.58536426 -0.32090754 -0.18635947 1.41513967 5.0277889

Std.Err 0.04180639 0.04274221 0.04263715 0.04196558 0.08641274 0.1740857

```
ffa_rsm1_pres_ppar <- person.parameter(ffa_rsm1_pres)</pre>
```

5.1.2 Itemfit

```
eRm::itemfit(ffa_rsm1_pres_ppar)
```

```
Itemfit Statistics:
```

```
Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t
Discrim
```

FFA 1 883.502 971 0.979 0.909 0.927 -2.093 -1.697

0.477							
FFA_2	819.184	971	1.000	0.843	0.823	-3.866	-4.429
0.538							
FFA_3	847.283	971	0.998	0.872	0.859	-3.123	-3.500
0.472							
FFA_5	771.695	971	1.000	0.794	0.793	-5.018	-5.082
0.550							
FFA_7	735.241	971	1.000	0.756	0.751	-6.071	-6.260
0.589							

5.1.3 Andersen test

Looks good.

A significant results indicates that the item parameters differ between groups, which indicates a violation of the Rasch model's assumption.

```
LRtest(ffa_rsm1_pres) # sign.
```

Andersen LR-test: LR-value: 25.923 Chi-square df: 6 p-value: 0

•

```
LRtest(ffa_rsm1_pres, d2$Evang) # sign
```

Andersen LR-test: LR-value: 15.57 Chi-square df: 6 p-value: 0.016

```
LRtest(ffa_rsm1_pres, d2$Theorie) # sign
```

Andersen LR-test: LR-value: 42.911 Chi-square df: 6

p-value: 0

```
\#PHQ\_medsplit <- ifelse(d$PHQ\_Sum >= median(d$PHQ\_Sum), "+", "-")
```

```
LRtest(ffa_rsm1_pres, d2$PHQ_medsplit) # sign
```

Andersen LR-test: LR-value: 113.556 Chi-square df: 6

p-value: 0

5.1.4 Wald Test

The Wald Tests computes the difference in item difficulty normalized to their SE between two groups.

A significant results indicates that the item parameters differ between groups, which indicates a violation of the Rasch model's assumption.

```
Waldtest(ffa_rsm1_pres) # sign mostly
```

Wald test on item level (z-values):

```
z-statistic p-value
beta FFA_1.c1
                   -0.507
                             0.612
                   -4.207
beta FFA 1.c2
                             0.000
beta FFA 1.c3
                   -4.032
                             0.000
beta FFA_2.c1
                   -1.989
                             0.047
beta FFA 2.c2
                   -4.861
                             0.000
beta FFA 2.c3
                   -4.421
                             0.000
                             0.379
beta FFA_3.c1
                     0.879
beta FFA 3.c2
                   -3.266
                             0.001
beta FFA_3.c3
                    -3.070
                             0.002
beta FFA 5.c1
                     0.538
                             0.591
beta FFA_5.c2
                             0.000
                    -3.687
beta FFA_5.c3
                    -3.551
                             0.000
beta FFA_7.c1
                             0.289
                     1.061
beta FFA_7.c2
                    -3.432
                             0.001
beta FFA_7.c3
                    -3.306
                             0.001
```

```
Waldtest(ffa_rsm1_pres, d2$PHQ_medsplit) # signif mostly
```

Wald test on item level (z-values):

		z-statistic	p-value
beta	FFA_1.c1	5.445	0.000
beta	FFA_1.c2	6.955	0.000
beta	FFA_1.c3	6.557	0.000
beta	FFA_2.c1	-4.458	0.000
beta	FFA_2.c2	-0.527	0.598
beta	FFA_2.c3	-0.139	0.889
beta	FFA_3.c1	-5.848	0.000
beta	FFA_3.c2	-1.506	0.132
beta	FFA_3.c3	-0.951	0.342
beta	FFA_5.c1	1.324	0.185
beta	FFA_5.c2	3.671	0.000
beta	FFA_5.c3	3.509	0.000
beta	FFA_7.c1	3.341	0.001
beta	FFA_7.c2	5.111	0.000
beta	FFA_7.c3	4.704	0.000

5.1.5 MLOEF Test

The M Loef tests checks whether the person parameter differ between items. According to the assumptions of the Rasch models, we expect invariance, i.e., there should be not subset of items for which the person parameters differ from the rest of the items.

```
MLoef(ffa_rsm1_pres) # signif
```

```
Martin-Loef-Test (split criterion: median)
```

LR-value: 124.152 Chi-square df: 53

p-value: 0

5.1.6 Item information

```
plotINFO(ffa_rsm1_pres, legpos = FALSE)
```

Error in plot.new(): figure margins too large

```
plotPImap(ffa_rsm1_pres)
```

Person-Item Map

5.2 Acceptance

5.2.1 Parameter estimation

This does NOT Run:

```
ffa_rsm1_acc <- RSM(ffa13_acc, se = TRUE)
ffa_rsm1_acc
ffa_rsm1_acc_ppar <- person.parameter(ffa_rsm1_acc)</pre>
```

Oh no: NaNs have been produced. There must be some edge cases in the data.

5.2.2 Itemfit

```
eRm::itemfit(ffa_rsm1_acc_ppar)
```

5.2.3 Itemfit

```
eRm::itemfit(ffa_rsm1_pres_ppar)
```

Itemfit Statistics:

Chisq	df	p-value	Outfit MSQ	Infit MSQ	$0 \\ \text{utfit t}$	Infit t
Discrim						
FFA_1 883.502	971	0.979	0.909	0.927	-2.093	-1.697
0.477						
FFA_2 819.184	971	1.000	0.843	0.823	-3.866	-4.429
0.538						
FFA_3 847.283	971	0.998	0.872	0.859	-3.123	-3.500
0.472						
FFA_5 771.695	971	1.000	0.794	0.793	-5.018	-5.082
0.550						
FFA_7 735.241	971	1.000	0.756	0.751	-6.071	-6.260
0.589						

5.2.4 Andersen test

A significant results indicates that the item parameters differ between groups, which indicates a violation of the Rasch model's assumption.

```
LRtest(ffa_rsm1_acc) # does not run
```

Error in LRtest(ffa_rsm1_acc): object 'ffa_rsm1_acc' not found

```
LRtest(ffa_rsm1_acc, d2$Evang) # sign
```

Error in LRtest(ffa_rsm1_acc, d2\$Evang): object 'ffa_rsm1_acc' not
found

```
LRtest(ffa_rsm1_acc, d2$Theorie) # sign
```

Error in LRtest(ffa_rsm1_acc, d2\$Theorie): object 'ffa_rsm1_acc' not
found

```
#PHQ_medsplit <- ifelse(d$PHQ_Sum >= median(d$PHQ_Sum), "+", "-")
LRtest(ffa_rsm1_acc, d2$PHQ_medsplit) # sign
```

Error in LRtest(ffa_rsm1_acc, d2\$PHQ_medsplit): object 'ffa_rsm1_acc'
not found

5.2.5 Wald Test

The Wald Tests computes the difference in item difficulty normalized to their SE between two groups.

A significant results indicates that the item parameters differ between groups, which indicates a violation of the Rasch model's assumption.

This function yields error (singular matrix).

```
#Waldtest(ffa_rsm1_acc) # sign mostly
#Waldtest(ffa_rsm1_acc, d2$PHQ_medsplit) # signif mostly
```

5.2.6 MLOEF Test

The M Loef tests checks whether the person parameter differ between items. According to the assumptions of the Rasch models, we expect invariance, i.e., there should be not subset of items for which the person parameters differ from the rest of the items.

```
MLoef(ffa_rsm1_acc) # signif
```

Error in MLoef(ffa_rsm1_acc): object 'ffa_rsm1_acc' not found

5.2.7 Item information

```
plotINFO(ffa_rsm1_acc, legpos = FALSE)
```

Error in get_item_cats(X = ermobject\$X, nitems = dim(ermobject\$X)[2],
: object 'ffa_rsm1_acc' not found

```
plotPImap(ffa_rsm1_acc)
```

Error in plotPImap(ffa_rsm1_acc): object 'ffa_rsm1_acc' not found

5.3 Conclusion

The RSM is not appropriate for the data for some reason that is not entirely clear.

6 PCM

6.1 Presence

6.1.1 Parameter estimation

```
ffa_pcm1_pres <- PCM(ffa13_pres, se = TRUE)
ffa_pcm1_pres</pre>
```

```
Results of PCM estimation:
Call: PCM(X = ffa13_pres, se = TRUE)
Conditional log-likelihood: -3183.913
Number of iterations: 31
Number of parameters: 14
Item (Category) Difficulty Parameters (eta):
          FFA 1.c2 FFA 1.c3 FFA 2.c1 FFA 2.c2 FFA 2.c3
FFA 3.c1
Estimate -1.4679274 0.5501084 -0.8282963 0.04465034 2.7220750
-0.7154672
Std.Err 0.1357334 0.1471584 0.1050176 0.11326886 0.1570351
0.1001023
          FFA_3.c2 FFA_3.c3 FFA_5.c1 FFA_5.c2 FFA_5.c3
FFA 7.c1
Estimate 0.2742468 3.4297143 -1.2716971 -1.3931592 0.8767761
-1.1587477
Std.Err 0.1108744 0.1704769 0.1424045 0.1338912 0.1498455
0.1334806
          FFA 7.c2 FFA 7.c3
Estimate -1.1452605 1.2737425
```

```
ffa_pcm1_pres_ppar <- person.parameter(ffa_pcm1_pres)</pre>
```

6.1.2 Itemfit

Std.Err 0.1275336 0.1494924

```
eRm::itemfit(ffa_pcm1_pres_ppar)
```

$T + \triangle m + i + i$	$C+\gamma+ic+i$	
TICIIIITI	Statist:	LCS.

Cł	nisq df	p-value	Outfit MSQ	Infit MSQ	Outfit t	Infit t
Discrim						
FFA_1 856	206 971	0.997	0.881	0.890	-2.719	-2.540
0.477						
FFA_2 801	639 971	1.000	0.825	0.806	-4.375	-4.907
0.538						
FFA_3 874	078 971	0.988	0.899	0.894	-2.444	-2.585
0.472						
FFA_5 773	795 971	1.000	0.796	0.795	-4.903	-4.965
0.550						
FFA_7 738	222 971	1.000	0.759	0.755	-5.917	-6.092
0.589						

Quite good.

6.1.3 Andersen test

A significant results indicates that the item parameters differ between groups, which indicates a violation of the Rasch model's assumption.

```
LRtest(ffa_pcm1_pres) # sign.
```

Andersen LR-test: LR-value: 34.352 Chi-square df: 14 p-value: 0.002

```
LRtest(ffa_pcm1_pres, d2$Evang) # NOT sign
```

Andersen LR-test: LR-value: 20.603 Chi-square df: 14 p-value: 0.112

```
LRtest(ffa_pcm1_pres, d2$Theorie) # sign
```

Andersen LR-test: LR-value: 54.516

Chi-square df: 14

p-value: 0

```
#PHQ_medsplit <- ifelse(d$PHQ_Sum >= median(d$PHQ_Sum), "+", "-")
LRtest(ffa_pcm1_pres, d2$PHQ_medsplit) # sign
```

Andersen LR-test: LR-value: 123.54 Chi-square df: 14

p-value: 0

6.1.4 Wald Test

The Wald Tests computes the difference in item difficulty normalized to their SE between two groups.

A significant results indicates that the item parameters differ between groups, which indicates a violation of the Rasch model's assumption.

```
Waldtest(ffa_pcm1_pres) # mostly NOT signif
```

Wald test on item level (z-values):

```
z-statistic p-value
beta FFA 1.c1
                     3.305
                             0.001
beta FFA 1.c2
                             0.063
                     1.858
beta FFA_1.c3
                     0.835
                             0.404
beta FFA 2.c1
                     1.971
                             0.049
beta FFA 2.c2
                    -0.530
                             0.596
beta FFA_2.c3
                    -1.313
                             0.189
beta FFA 3.c1
                     0.471
                             0.638
beta FFA 3.c2
                    -1.470
                             0.141
beta FFA_3.c3
                    -1.077
                             0.282
beta FFA_5.c1
                             0.624
                     0.490
beta FFA_5.c2
                    -0.395
                             0.693
beta FFA_5.c3
                    -0.988
                             0.323
beta FFA 7.c1
                             0.917
                     0.105
beta FFA_7.c2
                             0.388
                    -0.864
beta FFA 7.c3
                    -1.239
                             0.215
```

Waldtest(ffa_pcm1_pres, d2\$PHQ_medsplit) # mixed picture as to signi

Wald test on item level (z-values):

		z-statistic	p-value
beta	$FFA_1.c1$	1.193	0.233
beta	FFA_1.c2	4.028	0.000
beta	FFA_1.c3	6.154	0.000
beta	FFA_2.c1	-2.984	0.003
beta	FFA_2.c2	-2.408	0.016
beta	FFA_2.c3	-2.998	0.003
beta	FFA_3.c1	-4.059	0.000
beta	FFA_3.c2	-4.572	0.000
beta	FFA_3.c3	-3.494	0.000
beta	FFA_5.c1	-0.800	0.424
beta	FFA_5.c2	1.207	0.227
beta	FFA_5.c3	2.082	0.037
beta	FFA_7.c1	-1.333	0.182
beta	FFA_7.c2	1.568	0.117
beta	FFA_7.c3	3.391	0.001

6.1.5 MLOEF Test

The M Loef tests checks whether the person parameter differ between items. According to the assumptions of the Rasch models, we expect invariance, i.e., there should be not subset of items for which the person parameters differ from the rest of the items.

```
MLoef(ffa_pcm1_pres) # signif
```

```
Martin-Loef-Test (split criterion: median)
```

LR-value: 100.46 Chi-square df: 53

p-value: 0

6.1.6 Item information

```
plotINFO(ffa_pcm1_pres, legpos = FALSE)
```

Error in plot.new(): figure margins too large

plotPImap(ffa_pcm1_pres)
plotICC(ffa_pcm1_pres,mplot=TRUE,legpos=FALSE,ask=FALSE)

Person-Item Map

6.2 Acceptance

6.2.1 Parameter estimation

```
ffa_pcm1_acc <- PCM(ffa13_acc, se = TRUE)
ffa_pcm1_acc</pre>
```

Results of PCM estimation:

Call: PCM(X = ffa13_acc, se = TRUE)

Conditional log-likelihood: -5665.854

Number of iterations: 27 Number of parameters: 23

Item (Category) Difficulty Parameters (eta):

FFA_4.c2 FFA_4.c3 FFA_6.c1 FFA_6.c2 FFA_6.c3

FFA_8.c1

Estimate -1.198001 1.0485305 -1.5537148 -1.208498 1.4719554

-1.9861856

Std.Err 0.151804 0.1662774 0.1553209 0.153429 0.1730271

0.1832482

FFA_8.c2 FFA_8.c3 FFA_9.c1 FFA_9.c2 FFA_9.c3 FFA_10.c1

Estimate -1.7975028 0.9951131 -1.1475755 -0.6528500 2.2922089 -1.0194943

Std.Err 0.1774485 0.1913627 0.1339019 0.1355878 0.1659322 0.1308545

FFA_10.c2 FFA_10.c3 FFA_11.c1 FFA_11.c2 FFA_11.c3 FFA_12.c1

Estimate -0.5725264 2.2895048 -1.2088360 -0.7746536 2.0360393 -0.8061815

Std.Err 0.1326501 0.1625221 0.1379859 0.1387522 0.1654349 0.1132583

FFA_12.c2 FFA_12.c3 FFA_14.c1 FFA_14.c2 FFA_14.c3 Estimate 0.178661 3.376419 -1.0632220 -0.2573247 2.9479657 Std.Err 0.122176 0.167022 0.1238444 0.1292577 0.1692504

ffa pcm1 acc ppar <- person.parameter(ffa pcm1 acc)</pre>

6.2.2 Itemfit

eRm::itemfit(ffa_pcm1_acc_ppar)

Itemfit Statistics:

Chisq df p-value Outfit MSQ Infit MSQ Outfit t Infit t Discrim FFA 4 935.975 977 0.823 0.957 0.916 -0.941 - 1.9740.569 FFA 6 820.706 977 1.000 0.839 0.837 -3.827 - 3.9430.614 1.075 FFA 8 1051.808 977 0.048 1.081 1.669 1.795 0.426 FFA 9 767.624 977 0.785 0.779 -5.238 -5.4741.000 0.655 FFA 10 855.842 977 0.998 0.875 0.863 -2.915 -3.2840.601 FFA 11 780.714 977 1.000 0.798 0.791 -4.876 -5.1420.647 FFA 12 814.717 977 1.000 0.833 0.826 -4.075 - 4.3050.627

FFA 14 1029.331 977 0.119 1.052 1.029 1.199 0.682

0.483

Quite good.

6.2.3 Andersen test

A significant results indicates that the item parameters differ between groups, which indicates a violation of the Rasch model's assumption.

```
LRtest(ffa_pcm1_acc) # signif
```

Andersen LR-test: LR-value: 112.123 Chi-square df: 20

p-value: 0

```
LRtest(ffa_pcm1_acc, d2$Evang) # NOT sign
```

Andersen LR-test: LR-value: 31.755 Chi-square df: 23 p-value: 0.105

```
LRtest(ffa_pcm1_acc, d2$Theorie) # sign
```

Andersen LR-test: LR-value: 52.22 Chi-square df: 23

p-value: 0

```
#PHQ_medsplit <- ifelse(d$PHQ_Sum >= median(d$PHQ_Sum), "+", "-")
LRtest(ffa_pcm1_acc, d2$PHQ_medsplit) # sign
```

Andersen LR-test: LR-value: 71.234 Chi-square df: 23

p-value: 0

6.2.4 Wald Test

The Wald Tests computes the difference in item difficulty normalized to their SE between two groups.

A significant results indicates that the item parameters differ between groups, which indicates a violation of the Rasch model's assumption.

```
Waldtest(ffa_pcm1_acc) # mostly not signif
```

Wald test on item level (z-values):

```
z-statistic p-value
beta FFA 4.c1
                     -0.321
                              0.748
beta FFA 4.c2
                     -1.191
                              0.234
beta FFA_4.c3
                     -1.436
                              0.151
beta FFA_8.c1
                     4.036
                              0.000
                              0.004
beta FFA 8.c2
                     2.920
beta FFA_8.c3
                      3.021
                              0.003
beta FFA 9.c1
                      1.289
                              0.197
beta FFA 9.c2
                     -0.901
                              0.367
beta FFA_9.c3
                     -2.024
                              0.043
beta FFA 10.c1
                      3.723
                              0.000
beta FFA 10.c2
                      0.964
                              0.335
beta FFA 10.c3
                              0.742
                      0.330
beta FFA 11.c1
                      0.880
                              0.379
                     -1.155
beta FFA 11.c2
                              0.248
beta FFA_11.c3
                     -1.388
                              0.165
beta FFA 12.c1
                     -1.429
                              0.153
beta FFA 12.c2
                     -3.112
                              0.002
beta FFA 12.c3
                     -2.438
                              0.015
beta FFA 14.c1
                              0.012
                     2.509
beta FFA_14.c2
                      0.706
                              0.480
beta FFA 14.c3
                              0.139
                      1.481
```

```
Waldtest(ffa_pcm1_acc, d2$PHQ_medsplit) # NOT signif
```

```
Wald test on item level (z-values):
```

```
z-statistic p-value
```

25, 15.75			
beta	FFA_4.c1	0.269	0.788
beta	FFA_4.c2	1.564	0.118
beta	FFA_4.c3	2.220	0.026
beta	FFA_6.c1	0.120	0.904
beta	FFA_6.c2	0.687	0.492
beta	FFA_6.c3	-0.026	0.979
beta	FFA_8.c1	-0.225	0.822
beta	FFA_8.c2	-1.323	0.186
beta	FFA_8.c3	-1.100	0.271
beta	FFA_9.c1	0.027	0.978
beta	FFA_9.c2	1.841	0.066
beta	FFA_9.c3	2.322	0.020
beta	FFA_10.c1	-3.520	0.000
beta	FFA_10.c2	-3.552	0.000
beta	FFA_10.c3	-3.887	0.000
beta	FFA_11.c1	-0.305	0.761
beta	FFA_11.c2	1.453	0.146
beta	FFA_11.c3	1.122	0.262
beta	FFA_12.c1	0.279	0.780
beta	FFA_12.c2	1.315	0.189
beta	FFA_12.c3	0.042	0.967
beta	FFA_14.c1	0.408	0.683
beta	FFA_14.c2	0.551	0.582
beta	FFA_14.c3	-1.188	0.235

6.2.5 MLOEF Test

The M Loef tests checks whether the person parameter differ between items. According to the assumptions of the Rasch models, we expect invariance, i.e., there should be not subset of items for which the person parameters differ from the rest of the items.

```
MLoef(ffa_pcm1_acc) # NOT signif
```

```
Martin-Loef-Test (split criterion: median)
```

LR-value: 152.265 Chi-square df: 143 p-value: 0.282

6.2.6 Item information

24.01.23, 15:43 FFA Rasch Modelling

```
plotINFO(ffa_pcm1_acc, legpos = FALSE)
```

Error in plot.new(): figure margins too large

```
plotPImap(ffa_pcm1_acc)
```

Person-Item Map

7 Model comparison

7.1 Presence

```
anova(ffa_rsm1_pres, ffa_pcm1_pres)
```

Analysis of Deviances Table

```
Model 1: PCM(X = ffa13_pres, se = TRUE)
Model 2: RSM(X = ffa13_pres, se = TRUE)
```

cond. LL Deviance npar LR df p-value

```
Model 1 -3183.9 6367.8 14
Model 2 -3195.8 6391.5 6 11.846 8 0.1582
```

```
eRm::IC(ffa_rsm1_pres_ppar)
```

Information Criteria:

```
value npar AIC BIC cAIC joint log-lik -4494.832 20 9029.663 9127.250 9147.250 marginal log-lik -5705.088 6 11422.175 11451.681 11457.681 conditional log-lik -3195.759 6 6403.518 6433.024 6439.024
```

```
eRm::IC(ffa_pcm1_pres_ppar)
```

Information Criteria:

```
value npar AIC BIC cAIC joint log-lik -4483.367 28 9022.735 9159.357 9187.357 marginal log-lik -5693.242 14 11414.483 11483.331 11497.331 conditional log-lik -3183.913 14 6395.826 6464.674 6478.674
```

Small values are better.

That means the PCM models is to be preferred.

8 DIF Analysis using ordinal logistic regression

8.1 Presence

8.1.1 Gender

```
ffa13_pres_dif_geschlecht <- lordif(ffa13_pres, group = d2$Geschlecht
```

```
Iteration: 1, Log-Lik: -5824.319, Max-Change: 0.42764 Iteration: 2, Log-Lik: -5726.643, Max-Change: 0.31012 Iteration: 3, Log-Lik: -5698.280, Max-Change: 0.16853 Iteration: 4, Log-Lik: -5689.386, Max-Change: 0.08465
```

```
Iteration: 6, Log-Lik: -5685.830, Max-Change: 0.04014
Iteration: 7, Log-Lik: -5685.104, Max-Change: 0.01591
Iteration: 8, Log-Lik: -5685.026, Max-Change: 0.01001
Iteration: 9, Log-Lik: -5684.997, Max-Change: 0.00626
Iteration: 10, Log-Lik: -5684.980, Max-Change: 0.00258
Iteration: 11, Log-Lik: -5684.976, Max-Change: 0.00296
Iteration: 12, Log-Lik: -5684.974, Max-Change: 0.00188
Iteration: 13. Log-Lik: -5684.974. Max-Change: 0.00152
Iteration: 14, Log-Lik: -5684.973, Max-Change: 0.00067
Iteration: 15, Log-Lik: -5684.973, Max-Change: 0.00046
Iteration: 16, Log-Lik: -5684.973, Max-Change: 0.00034
Iteration: 17, Log-Lik: -5684.973, Max-Change: 0.00028
Iteration: 18, Log-Lik: -5684.973, Max-Change: 0.00023
Iteration: 19, Log-Lik: -5684.973, Max-Change: 0.00022
Iteration: 20, Log-Lik: -5684.973, Max-Change: 0.00023
Iteration: 21, Log-Lik: -5684.973, Max-Change: 0.00024
Iteration: 22, Log-Lik: -5684.973, Max-Change: 0.00012
Iteration: 23, Log-Lik: -5684.973, Max-Change: 0.00010
Iteration: 24, Log-Lik: -5684.973, Max-Change: 0.00012
Iteration: 25, Log-Lik: -5684.973, Max-Change: 0.00006
 (mirt) | Iteration: 1, 2 items flagged for DIF (1,4)
Iteration: 1, Log-Lik: -6482.438, Max-Change: 1.84095
Iteration: 2, Log-Lik: -5768.069, Max-Change: 0.32301
Iteration: 3, Log-Lik: -5711.589, Max-Change: 0.28219
Iteration: 4, Log-Lik: -5693.283, Max-Change: 0.16033
Iteration: 5, Log-Lik: -5683.322, Max-Change: 0.11414
Iteration: 6, Log-Lik: -5678.856, Max-Change: 0.07636
Iteration: 7, Log-Lik: -5676.935, Max-Change: 0.03782
Iteration: 8, Log-Lik: -5676.204, Max-Change: 0.02734
Iteration: 9, Log-Lik: -5675.814, Max-Change: 0.01969
Iteration: 10, Log-Lik: -5675.464, Max-Change: 0.01083
Iteration: 11, Log-Lik: -5675.409, Max-Change: 0.00743
Iteration: 12, Log-Lik: -5675.377, Max-Change: 0.00532
Iteration: 13, Log-Lik: -5675.336, Max-Change: 0.00214
Iteration: 14, Log-Lik: -5675.334, Max-Change: 0.00129
Iteration: 15, Log-Lik: -5675.333, Max-Change: 0.00105
Iteration: 16, Log-Lik: -5675.332, Max-Change: 0.00110
Iteration: 17, Log-Lik: -5675.332, Max-Change: 0.00101
Iteration: 18, Log-Lik: -5675.332, Max-Change: 0.00099
Iteration: 19, Log-Lik: -5675.331, Max-Change: 0.00017
Iteration: 20, Log-Lik: -5675.331, Max-Change: 0.00016
Iteration: 21, Log-Lik: -5675.331, Max-Change: 0.00015
```

Iteration: 5, Log-Lik: -5686.866, Max-Change: 0.05223

Iteration: 22, Log-Lik: -5675.331, Max-Change: 0.00025

```
Iteration: 23, Log-Lik: -5675.331, Max-Change: 0.00021
Iteration: 24, Log-Lik: -5675.331, Max-Change: 0.00024
Iteration: 25, Log-Lik: -5675.331, Max-Change: 0.00010
Iteration: 26, Log-Lik: -5675.331, Max-Change: 0.00010
 (mirt) | Iteration: 2, 2 items flagged for DIF (1,4)
print(ffa13_pres_dif_geschlecht)
Call:
lordif(resp.data = ffa13 pres, group = d2$Geschlecht, pseudo.R2 =
"McFadden",
   minCell = 5)
 Number of DIF groups: 2
 Number of items flagged for DIF: 2 of 5
  Items flagged: 1, 4
 Number of iterations for purification: 2 of 10
  Detection criterion: Chisqr
  Threshold: alpha = 0.01
  item ncat chi12 chi13 chi23
1
     1
         4 0.7875 0.0071 0.0017
2
     2
         4 0.0656 0.1659 0.6522
3
    3
         4 0.1233 0.2164 0.4075
4
         4 0.0039 0.0001 0.0016
    4
         4 0.0355 0.0566 0.2494
5
    5
summary(ffa13 pres dif geschlecht)
Call:
lordif(resp.data = ffa13_pres, group = d2$Geschlecht, pseudo.R2 =
"McFadden",
   minCell = 5)
$criterion
[1] "Chisqr"
```

```
$alpha
```

[1] 0.01

\$pseudo.R2

[1] "McFadden"

\$R2.change

[1] 0.02

\$beta.change

[1] 0.1

\$maxIter

[1] 10

\$minCell

[1] 5

\$stats

item ncat chi12 chi13 chi23 beta12 pseudo12.McFadden
pseudo13.McFadden

1	1	4 0.7875	0.0071	0.0017	0.0004	0.0000
		4 0 1 7 0 7 3	0.00/1	0.001/	0 • 000 1	0.000

0.0041

0.0014

3 4 0.1233 0.2164 0.4075 0.0005 0.0009

0.0012

4 4 4 0.0039 0.0001 0.0016 0.0096 0.0034

0.0076

5 5 4 0.0355 0.0566 0.2494 0.0048 0.0018

0.0023

pseudo23.McFadden pseudo12.Nagelkerke pseudo13.Nagelkerke pseudo23.Nagelkerke

1	0.0040	0.0000	0.0059
0 0050			

0.0058

2 0.0001 0.0018 0.0019

0.0001

3 0.0003 0.0015 0.0019

0.0004

4 0.0041 0.0040 0.0088

0.0048

5 0.0005 0.0019 0.0025

0.0006

pseudo12.CoxSnell pseudo13.CoxSnell pseudo23.CoxSnell df12 df13

```
df23
1
              0.0000
                                  0.0054
                                                     0.0053
                                                                1
                                                                      2
1
2
              0.0016
                                  0.0017
                                                     0.0001
                                                                      2
1
3
              0.0013
                                                                      2
                                  0.0017
                                                     0.0004
                                                                1
1
              0.0036
                                                                      2
4
                                  0.0080
                                                     0.0043
                                                                1
1
5
              0.0017
                                  0.0023
                                                     0.0005
                                                                      2
                                                                1
1
$flag
[1]
     TRUE FALSE FALSE TRUE FALSE
$flag.raw
[1]
     TRUE FALSE FALSE TRUE FALSE
```

```
plot(ffa13_pres_dif_geschlecht, labels = c("Frauen", "Männer"))
```

Small DIF only, according to the R squeared value.

8.1.2 Age

```
ffa13_pres_dif_age <- lordif(ffa13_pres, group = d2$Alter_medsplit, p</pre>
```

```
Iteration: 1, Log-Lik: -5824.319, Max-Change: 0.42764
Iteration: 2, Log-Lik: -5726.643, Max-Change: 0.31012
Iteration: 3, Log-Lik: -5698.280, Max-Change: 0.16853
Iteration: 4, Log-Lik: -5689.386, Max-Change: 0.08465
Iteration: 5, Log-Lik: -5686.866, Max-Change: 0.05223
Iteration: 6, Log-Lik: -5685.830, Max-Change: 0.04014
Iteration: 7, Log-Lik: -5685.104, Max-Change: 0.01591
Iteration: 8, Log-Lik: -5685.026, Max-Change: 0.01001
Iteration: 9, Log-Lik: -5684.997, Max-Change: 0.00626
Iteration: 10, Log-Lik: -5684.980, Max-Change: 0.00258
Iteration: 11, Log-Lik: -5684.976, Max-Change: 0.00296
Iteration: 12, Log-Lik: -5684.974, Max-Change: 0.00188
Iteration: 13, Log-Lik: -5684.974, Max-Change: 0.00152
Iteration: 14, Log-Lik: -5684.973, Max-Change: 0.00067
Iteration: 15, Log-Lik: -5684.973, Max-Change: 0.00046
```

```
Iteration: 16, Log-Lik: -5684.973, Max-Change: 0.00034
Iteration: 17, Log-Lik: -5684.973, Max-Change: 0.00028
Iteration: 18, Log-Lik: -5684.973, Max-Change: 0.00023
Iteration: 19, Log-Lik: -5684.973, Max-Change: 0.00022
Iteration: 20, Log-Lik: -5684.973, Max-Change: 0.00023
Iteration: 21, Log-Lik: -5684.973, Max-Change: 0.00024
Iteration: 22, Log-Lik: -5684.973, Max-Change: 0.00012
Iteration: 23, Log-Lik: -5684.973, Max-Change: 0.00010
Iteration: 24, Log-Lik: -5684.973, Max-Change: 0.00012
Iteration: 25, Log-Lik: -5684.973, Max-Change: 0.00006
 (mirt) | Iteration: 1, 3 items flagged for DIF (1,2,3)
Iteration: 1, Log-Lik: -6903.604, Max-Change: 2.34723
Iteration: 2, Log-Lik: -5805.344, Max-Change: 0.44722
Iteration: 3, Log-Lik: -5738.895, Max-Change: 0.30599
Iteration: 4, Log-Lik: -5691.169, Max-Change: 0.17286
Iteration: 5, Log-Lik: -5671.489, Max-Change: 0.13734
Iteration: 6, Log-Lik: -5663.006, Max-Change: 0.06553
Iteration: 7, Log-Lik: -5658.182, Max-Change: 0.10543
Iteration: 8, Log-Lik: -5655.064, Max-Change: 0.05100
Iteration: 9, Log-Lik: -5653.288, Max-Change: 0.03652
Iteration: 10, Log-Lik: -5651.528, Max-Change: 0.02980
Iteration: 11, Log-Lik: -5651.169, Max-Change: 0.01739
Iteration: 12, Log-Lik: -5650.976, Max-Change: 0.01236
Iteration: 13, Log-Lik: -5650.713, Max-Change: 0.00528
Iteration: 14, Log-Lik: -5650.699, Max-Change: 0.00327
Iteration: 15, Log-Lik: -5650.692, Max-Change: 0.00276
Iteration: 16, Log-Lik: -5650.682, Max-Change: 0.00180
Iteration: 17, Log-Lik: -5650.681, Max-Change: 0.00145
Iteration: 18, Log-Lik: -5650.681, Max-Change: 0.00111
Iteration: 19, Log-Lik: -5650.681, Max-Change: 0.00022
Iteration: 20, Log-Lik: -5650.681, Max-Change: 0.00018
Iteration: 21, Log-Lik: -5650.681, Max-Change: 0.00017
Iteration: 22, Log-Lik: -5650.681, Max-Change: 0.00018
Iteration: 23, Log-Lik: -5650.681, Max-Change: 0.00015
Iteration: 24, Log-Lik: -5650.681, Max-Change: 0.00014
Iteration: 25, Log-Lik: -5650.681, Max-Change: 0.00013
Iteration: 26, Log-Lik: -5650.681, Max-Change: 0.00012
Iteration: 27, Log-Lik: -5650.681, Max-Change: 0.00012
Iteration: 28, Log-Lik: -5650.681, Max-Change: 0.00011
Iteration: 29, Log-Lik: -5650.681, Max-Change: 0.00010
Iteration: 30, Log-Lik: -5650.681, Max-Change: 0.00010
 (mirt) | Iteration: 2, 3 items flagged for DIF (1,2,3)
```

```
print(ffa13_pres_dif_age)
```

```
Call:
lordif(resp.data = ffa13 pres, group = d2$Alter medsplit, pseudo.R2 =
"McFadden",
    minCell = 5)
 Number of DIF groups: 2
 Number of items flagged for DIF: 3 of 5
  Items flagged: 1, 2, 3
 Number of iterations for purification: 2 of 10
  Detection criterion: Chisqr
  Threshold: alpha = 0.01
  item ncat chi12 chi13 chi23
1
     1
          4 0.0000 0.0000 0.0028
2
     2
          4 0.0015 0.0056 0.5810
3
          4 0.0000 0.0000 0.0608
4
          4 0.6726 0.8789 0.7779
5
     5
          4 0.2395 0.4419 0.6171
summary(ffa13_pres_dif_age)
Call:
lordif(resp.data = ffa13_pres, group = d2$Alter_medsplit, pseudo.R2 =
"McFadden",
    minCell = 5)
$criterion
[1] "Chisqr"
$alpha
[1] 0.01
$pseudo.R2
[1] "McFadden"
$R2.change
```

[1] 0.02

```
$beta.change
```

[1] 0.1

\$maxIter

[1] 10

\$minCell

[1] 5

\$stats

0.0007

1

df23

0.0037

item ncat chi12 chi13 chi23 beta12 pseudo12.McFadden
pseudo13.McFadden

pscuuc	13.1161	adden				
1 1	. 4	0.0000	0.0000	0.0028	0.0188	0.0157
0.0194	•					
2 2	4	0.0015	0.0056	0.5810	0.0114	0.0039
0.0040)					
3 3	4	0.0000	0.0000	0.0608	0.0183	0.0075
0.0089)					
4 4	4	0.6726	0.8789	0.7779	0.0005	0.0001
0.0001						
5 5	4	0.2395	0.4419	0.6171	0.0004	0.0006

pseudo23.McFadden pseudo12.Nagelkerke pseudo13.Nagelkerke pseudo23.Nagelkerke

0.0220

0.0270

_	010057	010220	010270
0.0050			
2	0.0001	0.0052	0.0054
0.0002			
3	0.0014	0.0113	0.0134
0.0021			
4	0.0000	0.0001	0.0001
0.0000			
5	0.0001	0.0006	0.0007

0.0001
 pseudo12.CoxSnell pseudo13.CoxSnell pseudo23.CoxSnell df12 df13

1	0.0200	0.0246	0.0046	1	2
1					
2	0.0048	0.0050	0.0001	1	2
1					
3	0.0104	0.0123	0.0019	1	2
1					

```
4
             0.0001
                                0.0001
                                                  0.0000
                                                                  2
1
5
             0.0005
                                0.0006
                                                  0.0001
                                                             1
                                                                  2
1
$flag
[1]
    TRUE TRUE TRUE FALSE FALSE
$flag.raw
[1]
   TRUE
           TRUE TRUE FALSE FALSE
plot(ffa13_pres_dif_age, labels = c("Frauen", "Männer"))
```

Small DIF only, according to the R squeared value.

8.2 Acceptance

8.2.1 Gender

Small DIF only, according to the R squeared value.

```
ffa13_acc_dif_geschlecht <- lordif(ffa13_acc, group = d2$Geschlecht,</pre>
```

```
Iteration: 1, Log-Lik: -8872.140, Max-Change: 0.70854
Iteration: 2, Log-Lik: -8637.150, Max-Change: 0.29476
Iteration: 3, Log-Lik: -8584.463, Max-Change: 0.16797
Iteration: 4, Log-Lik: -8564.003, Max-Change: 0.09840
Iteration: 5, Log-Lik: -8555.357, Max-Change: 0.06883
Iteration: 6, Log-Lik: -8550.847, Max-Change: 0.04964
Iteration: 7, Log-Lik: -8546.419, Max-Change: 0.02507
Iteration: 8, Log-Lik: -8546.008, Max-Change: 0.01598
Iteration: 9, Log-Lik: -8545.777, Max-Change: 0.01082
Iteration: 10, Log-Lik: -8545.592, Max-Change: 0.00642
Iteration: 11, Log-Lik: -8545.553, Max-Change: 0.00470
Iteration: 12, Log-Lik: -8545.531, Max-Change: 0.00346
Iteration: 13, Log-Lik: -8545.508, Max-Change: 0.00191
Iteration: 14, Log-Lik: -8545.505, Max-Change: 0.00271
Iteration: 15, Log-Lik: -8545.504, Max-Change: 0.00145
Iteration: 16, Log-Lik: -8545.503, Max-Change: 0.00073
Iteration: 17, Log-Lik: -8545.502, Max-Change: 0.00045
```

```
Iteration: 18, Log-Lik: -8545.502, Max-Change: 0.00035
Iteration: 19, Log-Lik: -8545.502, Max-Change: 0.00040
Iteration: 20, Log-Lik: -8545.502, Max-Change: 0.00038
Iteration: 21, Log-Lik: -8545.502, Max-Change: 0.00049
Iteration: 22, Log-Lik: -8545.502, Max-Change: 0.00034
Iteration: 23, Log-Lik: -8545.501, Max-Change: 0.00045
Iteration: 24, Log-Lik: -8545.501, Max-Change: 0.00052
Iteration: 25, Log-Lik: -8545.501, Max-Change: 0.00029
Iteration: 26, Log-Lik: -8545.501, Max-Change: 0.00033
Iteration: 27, Log-Lik: -8545.501, Max-Change: 0.00041
Iteration: 28, Log-Lik: -8545.501, Max-Change: 0.00022
Iteration: 29, Log-Lik: -8545.501, Max-Change: 0.00027
Iteration: 30, Log-Lik: -8545.501, Max-Change: 0.00033
Iteration: 31, Log-Lik: -8545.501, Max-Change: 0.00018
Iteration: 32, Log-Lik: -8545.501, Max-Change: 0.00021
Iteration: 33, Log-Lik: -8545.501, Max-Change: 0.00025
Iteration: 34, Log-Lik: -8545.501, Max-Change: 0.00014
Iteration: 35, Log-Lik: -8545.501, Max-Change: 0.00016
Iteration: 36, Log-Lik: -8545.501, Max-Change: 0.00020
Iteration: 37, Log-Lik: -8545.501, Max-Change: 0.00011
Iteration: 38, Log-Lik: -8545.501, Max-Change: 0.00013
Iteration: 39, Log-Lik: -8545.501, Max-Change: 0.00016
Iteration: 40, Log-Lik: -8545.501, Max-Change: 0.00009
(mirt) | Iteration: 1, 1 items flagged for DIF (3)
Iteration: 1, Log-Lik: -9286.267, Max-Change: 2.52636
Iteration: 2, Log-Lik: -8625.737, Max-Change: 0.44941
Iteration: 3, Log-Lik: -8573.205, Max-Change: 0.20548
Iteration: 4, Log-Lik: -8556.243, Max-Change: 0.09924
Iteration: 5, Log-Lik: -8548.733, Max-Change: 0.07911
Iteration: 6, Log-Lik: -8544.225, Max-Change: 0.04588
Iteration: 7, Log-Lik: -8542.665, Max-Change: 0.03566
Iteration: 8, Log-Lik: -8541.171, Max-Change: 0.02853
Iteration: 9, Log-Lik: -8540.204, Max-Change: 0.02383
Iteration: 10, Log-Lik: -8539.038, Max-Change: 0.02855
Iteration: 11, Log-Lik: -8538.820, Max-Change: 0.03268
Iteration: 12, Log-Lik: -8538.672, Max-Change: 0.00695
Iteration: 13, Log-Lik: -8538.591, Max-Change: 0.00567
Iteration: 14, Log-Lik: -8538.530, Max-Change: 0.00472
Iteration: 15, Log-Lik: -8538.487, Max-Change: 0.00450
Iteration: 16, Log-Lik: -8538.404, Max-Change: 0.00582
Iteration: 17, Log-Lik: -8538.395, Max-Change: 0.00223
```

Iteration: 18, Log-Lik: -8538.391, Max-Change: 0.00159 Iteration: 19, Log-Lik: -8538.383, Max-Change: 0.00089

```
Iteration: 20, Log-Lik: -8538.382, Max-Change: 0.00072
Iteration: 21, Log-Lik: -8538.382, Max-Change: 0.00064
Iteration: 22, Log-Lik: -8538.380, Max-Change: 0.00029
Iteration: 23, Log-Lik: -8538.380, Max-Change: 0.00018
Iteration: 24, Log-Lik: -8538.380, Max-Change: 0.00015
Iteration: 25, Log-Lik: -8538.380, Max-Change: 0.00009
 (mirt) | Iteration: 2, 1 items flagged for DIF (3)
print(ffa13 acc dif geschlecht)
Call:
lordif(resp.data = ffa13_acc, group = d2$Geschlecht, pseudo.R2 =
"McFadden".
   minCell = 5)
 Number of DIF groups: 2
 Number of items flagged for DIF: 1 of 8
  Items flagged: 3
 Number of iterations for purification: 2 of 10
  Detection criterion: Chisgr
  Threshold: alpha = 0.01
  item ncat chi12 chi13 chi23
1
     1
          4 0.0307 0.0622 0.3468
2
     2
          4 0.4105 0.2641 0.1588
3
     3
          4 0.0162 0.0003 0.0014
          4 0.0676 0.1625 0.5880
4
    4
5
    5
         4 0.0723 0.1014 0.2456
6
    6
          4 0.9911 0.9530 0.7566
7
     7
         4 0.0585 0.1525 0.6691
8
     8
         4 0.0710 0.0983 0.2402
summary(ffa13 acc dif geschlecht)
Call:
lordif(resp.data = ffa13_acc, group = d2$Geschlecht, pseudo.R2 =
"McFadden",
    minCell = 5)
```

```
$criterion
[1] "Chisqr"
$alpha
[1] 0.01
$pseudo.R2
[1] "McFadden"
$R2.change
[1] 0.02
$beta.change
[1] 0.1
$maxIter
[1] 10
$minCell
[1] 5
$stats
  item ncat chi12 chi13 chi23 beta12 pseudo12.McFadden
pseudo13.McFadden
          4 0.0307 0.0622 0.3468 0.0006
                                                    0.0019
0.0022
2
     2
         4 0.4105 0.2641 0.1588 0.0003
                                                    0.0003
0.0011
          4 0.0162 0.0003 0.0014 0.0064
                                                    0.0025
0.0069
          4 0.0676 0.1625 0.5880 0.0039
                                                    0.0014
0.0015
          4 0.0723 0.1014 0.2456 0.0050
     5
                                                    0.0013
0.0018
         4 0.9911 0.9530 0.7566 0.0000
                                                    0.0000
0.0000
7
     7
          4 0.0585 0.1525 0.6691 0.0008
                                                    0.0014
0.0015
     8
          4 0.0710 0.0983 0.2402 0.0044
                                                    0.0013
0.0019
  pseudo23.McFadden pseudo12.Nagelkerke pseudo13.Nagelkerke
pseudo23.Nagelkerke
```

0.0027

0.0004

0.0033

.23, 13.43		1171 Rasen Wodening			
0.0005					
2	0.0008	0.0004	0.0	014	
0.0011					
3	0.0044	0.0042	0.0	115	
0.0073					
4	0.0001	0.0015	0.0	016	
0.0001					
5	0.0005	0.0017	0.0	024	
0.0007					
6	0.0000	0.0000	0.0	000	
0.0000					
7	0.0001	0.0017	0.0	018	
0.0001					
8	0.0006	0.0022	0.0	031	
0.0009					
pseudo12.	.CoxSnell ps	eudo13.CoxSnell pseudo23.	CoxSnell	df12	df13
df23					
1	0.0025	0.0030	0.0005	1	2
1					
2	0.0003	0.0013	0.0010	1	2
1					
3	0.0038	0.0103	0.0066	1	2
1					
4	0.0014	0.0015	0.0001	1	2
1					
5	0.0015	0.0022	0.0006	1	2
1					
6	0.0000	0.0000	0.0000	1	2
1				_	_
7	0.0016	0.0016	0.0001	1	2
1	0.0000	0.0000	0 0000		2
8	0.0020	0.0028	0.0008	1	2
1					
\$flag					

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE

\$flag.raw

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE

```
plot(ffa13_acc_dif_geschlecht, labels = c("Frauen", "Männer"))
```

Small DIF only, according to the R squared value.

8.2.2 Age

```
ffa13_acc_dif_age <- lordif(ffa13_pres, group = d2$Alter_medsplit, ps</pre>
```

```
Iteration: 2, Log-Lik: -5726.643, Max-Change: 0.31012
Iteration: 3, Log-Lik: -5698.280, Max-Change: 0.16853
Iteration: 4, Log-Lik: -5689.386, Max-Change: 0.08465
Iteration: 5, Log-Lik: -5686.866, Max-Change: 0.05223
Iteration: 6, Log-Lik: -5685.830, Max-Change: 0.04014
Iteration: 7, Log-Lik: -5685.104, Max-Change: 0.01591
Iteration: 8, Log-Lik: -5685.026, Max-Change: 0.01001
Iteration: 9, Log-Lik: -5684.997, Max-Change: 0.00626
Iteration: 10, Log-Lik: -5684.980, Max-Change: 0.00258
Iteration: 11, Log-Lik: -5684.976, Max-Change: 0.00296
Iteration: 12, Log-Lik: -5684.974, Max-Change: 0.00188
Iteration: 13, Log-Lik: -5684.974, Max-Change: 0.00152
Iteration: 14, Log-Lik: -5684.973, Max-Change: 0.00067
Iteration: 15, Log-Lik: -5684.973, Max-Change: 0.00046
Iteration: 16, Log-Lik: -5684.973, Max-Change: 0.00034
Iteration: 17, Log-Lik: -5684.973, Max-Change: 0.00028
Iteration: 18, Log-Lik: -5684.973, Max-Change: 0.00023
Iteration: 19, Log-Lik: -5684.973, Max-Change: 0.00022
Iteration: 20, Log-Lik: -5684.973, Max-Change: 0.00023
Iteration: 21, Log-Lik: -5684.973, Max-Change: 0.00024
Iteration: 22, Log-Lik: -5684.973, Max-Change: 0.00012
Iteration: 23, Log-Lik: -5684.973, Max-Change: 0.00010
Iteration: 24, Log-Lik: -5684.973, Max-Change: 0.00012
Iteration: 25, Log-Lik: -5684.973, Max-Change: 0.00006
 (mirt) | Iteration: 1, 3 items flagged for DIF (1,2,3)
Iteration: 1, Log-Lik: -6903.604, Max-Change: 2.34723
Iteration: 2, Log-Lik: -5805.344, Max-Change: 0.44722
Iteration: 3, Log-Lik: -5738.895, Max-Change: 0.30599
Iteration: 4, Log-Lik: -5691.169, Max-Change: 0.17286
Iteration: 5, Log-Lik: -5671.489, Max-Change: 0.13734
Iteration: 6, Log-Lik: -5663.006, Max-Change: 0.06553
Iteration: 7, Log-Lik: -5658.182, Max-Change: 0.10543
Iteration: 8, Log-Lik: -5655.064, Max-Change: 0.05100
Iteration: 9, Log-Lik: -5653.288, Max-Change: 0.03652
```

Iteration: 1, Log-Lik: -5824.319, Max-Change: 0.42764

```
Iteration: 10, Log-Lik: -5651.528, Max-Change: 0.02980
Iteration: 11, Log-Lik: -5651.169, Max-Change: 0.01739
Iteration: 12, Log-Lik: -5650.976, Max-Change: 0.01236
Iteration: 13, Log-Lik: -5650.713, Max-Change: 0.00528
Iteration: 14, Log-Lik: -5650.699, Max-Change: 0.00327
Iteration: 15, Log-Lik: -5650.692, Max-Change: 0.00276
Iteration: 16, Log-Lik: -5650.682, Max-Change: 0.00180
Iteration: 17, Log-Lik: -5650.681, Max-Change: 0.00145
Iteration: 18, Log-Lik: -5650.681, Max-Change: 0.00111
Iteration: 19, Log-Lik: -5650.681, Max-Change: 0.00022
Iteration: 20, Log-Lik: -5650.681, Max-Change: 0.00018
Iteration: 21, Log-Lik: -5650.681, Max-Change: 0.00017
Iteration: 22, Log-Lik: -5650.681, Max-Change: 0.00018
Iteration: 23, Log-Lik: -5650.681, Max-Change: 0.00015
Iteration: 24, Log-Lik: -5650.681, Max-Change: 0.00014
Iteration: 25, Log-Lik: -5650.681, Max-Change: 0.00013
Iteration: 26, Log-Lik: -5650.681, Max-Change: 0.00012
Iteration: 27, Log-Lik: -5650.681, Max-Change: 0.00012
Iteration: 28, Log-Lik: -5650.681, Max-Change: 0.00011
Iteration: 29, Log-Lik: -5650.681, Max-Change: 0.00010
Iteration: 30, Log-Lik: -5650.681, Max-Change: 0.00010
 (mirt) | Iteration: 2, 3 items flagged for DIF (1,2,3)
```

```
print(ffa13 acc dif age)
```

```
Call:
lordif(resp.data = ffa13 pres, group = d2$Alter medsplit, pseudo.R2 =
"McFadden".
   minCell = 5)
 Number of DIF groups: 2
 Number of items flagged for DIF: 3 of 5
 Items flagged: 1, 2, 3
 Number of iterations for purification: 2 of 10
 Detection criterion: Chisgr
 Threshold: alpha = 0.01
                          chi23
```

item ncat chi12 chi13

1

2

1

2

4 0.0000 0.0000 0.0028

4 0.0015 0.0056 0.5810

```
3
     3
         4 0.0000 0.0000 0.0608
4
         4 0.6726 0.8789 0.7779
5
     5
          4 0.2395 0.4419 0.6171
summary(ffa13_acc_dif_age)
Call:
lordif(resp.data = ffa13_pres, group = d2$Alter_medsplit, pseudo.R2 =
"McFadden",
    minCell = 5)
$criterion
[1] "Chisqr"
$alpha
[1] 0.01
$pseudo.R2
[1] "McFadden"
$R2.change
[1] 0.02
$beta.change
[1] 0.1
$maxIter
[1] 10
$minCell
[1] 5
$stats
  item ncat chi12 chi13 chi23 beta12 pseudo12.McFadden
pseudo13.McFadden
          4 0.0000 0.0000 0.0028 0.0188
                                                    0.0157
0.0194
     2
          4 0.0015 0.0056 0.5810 0.0114
2
                                                    0.0039
0.0040
3
          4 0.0000 0.0000 0.0608 0.0183
     3
                                                    0.0075
0.0089
```

```
4 0.6726 0.8789 0.7779 0.0005
4
                                                      0.0001
0.0001
     5
          4 0.2395 0.4419 0.6171 0.0004
                                                      0.0006
0.0007
  pseudo23.McFadden pseudo12.Nagelkerke pseudo13.Nagelkerke
pseudo23.Nagelkerke
1
             0.0037
                                   0.0220
                                                        0.0270
0.0050
2
             0.0001
                                   0.0052
                                                        0.0054
0.0002
                                   0.0113
3
             0.0014
                                                        0.0134
0.0021
             0.0000
                                   0.0001
                                                        0.0001
0.0000
             0.0001
                                   0.0006
                                                        0.0007
0.0001
  pseudo12.CoxSnell pseudo13.CoxSnell pseudo23.CoxSnell df12 df13
df23
             0.0200
                                 0.0246
1
                                                    0.0046
                                                              1
                                                                    2
1
2
             0.0048
                                 0.0050
                                                    0.0001
                                                                    2
                                                              1
1
3
             0.0104
                                 0.0123
                                                                    2
                                                    0.0019
1
4
             0.0001
                                 0.0001
                                                    0.0000
                                                                    2
                                                              1
1
5
             0.0005
                                 0.0006
                                                    0.0001
                                                              1
                                                                    2
1
$flag
[1]
    TRUE TRUE TRUE FALSE FALSE
$flag.raw
     TRUE
                 TRUE FALSE FALSE
[1]
           TRUE
```

```
plot(ffa13_acc_dif_age, labels = c("Frauen", "Männer"))
```

Small DIF only, according to the R squeared value.

9 Dimensionality

9.1 EFA

9.2 Determine number of factors

2 factors, oblimin rotation, ML factor scores:

```
ffa fa <- psych::fa(ffa13 items, nfactors = 2, rotate = "oblimin", fm
print(ffa fa)
Factor Analysis using method = ml
Call: psych::fa(r = ffa13_items, nfactors = 2, rotate = "oblimin",
    fm = "ml")
Standardized loadings (pattern matrix) based upon correlation matrix
        ML1
             ML2
                    h2
                         u2 com
FFA_1 0.31 0.29 0.30 0.70 2.0
FFA 2 0.02 0.68 0.48 0.52 1.0
FFA 3 0.10 0.54 0.37 0.63 1.1
FFA 4 0.68 -0.07 0.41 0.59 1.0
FFA 5 0.53 0.20 0.45 0.55 1.3
FFA 6 0.72 -0.07 0.47 0.53 1.0
FFA 7 0.54 0.20 0.47 0.53 1.3
FFA 8 0.44 0.14 0.28 0.72 1.2
FFA 9 0.76 -0.13 0.48 0.52 1.1
FFA 10 0.56 0.16 0.45 0.55 1.2
FFA 11 0.69 0.00 0.47 0.53 1.0
FFA 12 0.60 0.10 0.43 0.57 1.1
FFA_14 0.46 0.13 0.31 0.69 1.2
                      ML1 ML2
SS loadings
                      4.07 1.29
Proportion Var
                      0.31 0.10
Cumulative Var
                      0.31 0.41
Proportion Explained 0.76 0.24
Cumulative Proportion 0.76 1.00
With factor correlations of
    ML1 ML2
ML1 1.00 0.61
ML2 0.61 1.00
```

Test of the hypothesis that 2 factors are sufficient.

Mean item complexity = 1.2

The degrees of freedom for the null model are 78 and the objective function was 4.32 with Chi Square of 4341.12

The degrees of freedom for the model are 53 and the objective function was 0.19

The root mean square of the residuals (RMSR) is 0.03 The df corrected root mean square of the residuals is 0.03

The harmonic number of observations is 1010 with the empirical chi square 130.4 with prob < 1.8e-08

The total number of observations was 1010 with Likelihood Chi Square = 186.49 with prob < 9.3e-17

Tucker Lewis Index of factoring reliability = 0.954 RMSEA index = 0.05 and the 90 % confidence intervals are 0.042 0.058

BIC = -180.15

Fit based upon off diagonal values = 0.99

Measures of factor score adequacy

Correlation of (regression) scores with factors 0.94 0.84 Multiple R square of scores with factors 0.88 0.70 Minimum correlation of possible factor scores 0.76 0.41

print(ffa_fa\$loadings, cutoff = 0.2)

Loadings:

	ML1	ML2
FFA_1	0.314	0.292
FFA_2		0.678
FFA_3		0.543
FFA_4	0.683	
FFA_5	0.532	
FFA_6	0.722	
FFA_7	0.540	0.202
FFA_8	0.437	
FFA_9	0.762	
FFA_10	0.559	
FFA_11	0.685	
FFA_12	0.596	
FFA_14	0.465	

ML1 ML2

SS loadings 3.795 1.018

Proportion Var 0.292 0.078

Cumulative Var 0.292 0.370

Try different number of factors:

```
ffa_div_fa <- nfactors(ffa13_items, n = 5, fm = "ml")
ffa_div_fa</pre>
```

Number of factors

Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm,

n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
VSS complexity 1 achieves a maximimum of 0.84 with 1 factors
VSS complexity 2 achieves a maximimum of 0.87 with 2 factors
The Velicer MAP achieves a minimum of 0.01 with 1 factors
Empirical BIC achieves a minimum of -236.24 with 2 factors
Sample Size adjusted BIC achieves a minimum of -62.5 with 5 factors

Statistics by number of factors

vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex

```
1 0.84 0.00 0.012 65 326 1.8e-36 5.5 0.84 0.0631 -123 83 1.0
```

1.0

1.5

2.2

2.3

2.6

eChisq SRMR eCRMS eBIC

- 1 288 0.0428 0.047 -161
- 2 130 0.0288 0.035 -236
- 3 81 0.0227 0.031 -210
- 4 44 0.0166 0.026 -178
- 5 14 0.0093 0.017 -146

This analyses both supports the 1- and the 2-F solution.

Screeplot (in combination with Kaiser criterion) suggests a unidimensional solution.

```
vss(ffa13_items, fm = "ml", n = 3, plot = FALSE)
```

```
Very Simple Structure
Call: vss(x = ffa13_items, n = 3, fm = "ml", plot = FALSE)
VSS complexity 1 achieves a maximimum of 0.84 with 1 factors
VSS complexity 2 achieves a maximimum of 0.87 with 2 factors
```

The Velicer MAP achieves a minimum of 0.01 with 1 factors BIC achieves a minimum of -180.15 with 2 factors Sample Size adjusted BIC achieves a minimum of -38.62 with 3 factors

Statistics by number of factors

vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex

```
1 0.84 0.00 0.012 65 326 1.8e-36 5.5 0.84 0.063 -123 83 1.0 2 0.63 0.87 0.020 53 186 9.3e-17 4.7 0.87 0.050 -180 -12 1.5 3 0.37 0.73 0.030 42 119 3.2e-09 4.3 0.88 0.042 -172 -39
```

3 0.37 0.73 0.030 42 119 3.2e-09 4.3 0.88 0.042 -172 -39

eChisq SRMR eCRMS eBIC

- 1 288 0.043 0.047 -161
- 2 130 0.029 0.035 -236
- 3 81 0.023 0.031 -210

VSS seems to suggest a 1 factor solution too.

MAP favors the 1 factor solution too.

9.2.1 Goodness of fit

```
summary(ffa_fa)
```

```
Factor analysis with Call: psych::fa(r = ffa13_items, nfactors = 2,
rotate = "oblimin",
    fm = "ml")
```

Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the model is 53 and the objective

function was 0.19The number of observations was 1010 with Chi Square = 186.49 with prob < 9.3e-17

The root mean square of the residuals (RMSA) is 0.03 The df corrected root mean square of the residuals is 0.03

Tucker Lewis Index of factoring reliability = 0.954 RMSEA index = 0.05 and the 10 % confidence intervals are 0.042 0.058

BIC = -180.15

With factor correlations of

ML1 ML2

ML1 1.00 0.61

ML2 0.61 1.00

9.3 CFA

9.3.1 2F model

```
ffa_mod <- '
pres =~ FFA_1 + FFA_2 + FFA_3 + FFA_5 + FFA_7
acc =~ FFA_4 + FFA_6 + FFA_8 + FFA_9 + FFA_10 + FFA_11 + FFA_12 + FFA

ffa_cfa <- lavaan::cfa(ffa_mod, data = ffa_items2, ordered = TRUE)
#ffa_cfa <- lavaan::cfa(ffa_mod, data = ffa_items2)

ffa_cfa</pre>
```

lavaan 0.6-12 ended normally after 32 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	53

Number of observations 1010

Model Test User Model:

Test Statistic Standard Robust 235.356 432.002

Degrees of freedom	64	64
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.555
Shift parameter		8.057
simple second-order correction		

summary(ffa_cfa, standardized = TRUE, fit.measures = TRUE)

lavaan 0.6-12 ended normally after 32 iterations

Optimization method NLI	MINB
Number of model parameters	53

Number of observations 1010

Model Test User Model:

Test Statistic Standard Robust 235.356 432.002

	_	
Degrees of freedom	64	64
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.555
Shift parameter		8.057
simple second-order correction		
adal Tast Dagalina Madal.		

Model Test Baseline Model:

Test statistic	23657.526	8990.511
Degrees of freedom	78	78
P-value	0.000	0.000
Scaling correction factor		2.646

User Model versus Baseline Model:

Comparative Fit Index (CFI)	0.993	0.959
Tucker-Lewis Index (TLI)	0.991	0.950

Robust Comparative Fit Index (CFI)	NA
Robust Tucker-Lewis Index (TLI)	NA

Root Mean Square Error of Approximation:

RMSEA	0.052	0.075
90 Percent confidence interval – lower	0.045	0.069
90 Percent confidence interval – upper	0.059	0.082
P-value RMSEA <= 0.05	0.350	0.000

Robust RMSEA	NA
90 Percent confidence interval – lower	NA
90 Percent confidence interval – upper	NA

Standardized Root Mean Square Residual:

SRMR	0.041	0.041

Parameter Estimates:

Standard errors

Information

Expected

Information saturated (h1) model

Unstructured

Latent Variables:

Estimate Std.Err z-value P(>|z|) Std.lv

Std.all					
pres =∼					
FFA_1	1.000				0.597
0.597					
FFA_2	0.964	0.049	19.674	0.000	0.576
0.576					
FFA_3	0.934	0.046	20.172	0.000	0.558
0.558					
FFA_5	1.259	0.053	23.871	0.000	0.752
0 . 752					
FFA_7	1.289	0.051	25.172	0.000	0.770
0.770					
acc =~					
FFA_4	1.000				0.677
0.677	4 0-0		24 224		. 747
FFA_6	1.059	0.031	34.081	0.000	0.717
0.717	0.074		00.400		
FFA_8	0.8/1	0.038	23.190	0.000	0.590
0.590	1 040	0 022	24 070	0.000	0 711
FFA_9	1.049	0.033	31.978	0.000	0.711
0.711	1 077	0 024	21 626	0 000	0 720
FFA_10 0.730	1.077	0.034	31.030	0.000	0.730
FFA_11	1 000	0.035	20 524	0.000	0.731
0.731	1.000	0.033	30.334	0.000	0.731
FFA_12	1.058	0.035	30.596	0.000	0.717
0.717	1.030	0.033	30.390	0.000	0.717
FFA_14	0.889	0 037	23.840	0.000	0.602
0.602	0.009	0.037	23:040	0.000	0.002
01002					
Covariances:					
covar famces:	Estimate	Std.Frr	z-value	P(> z)	Std.lv
Std.all	23 0 2 1 1 1 1 2 2	0 (0.12.)		. (* 1-17	5 2 4 7 2 7
pres ~~					
acc	0.373	0.020	18.824	0.000	0.922
0.922					
Intercepts:					
·	Estimate	Std.Err	z-value	P(> z)	Std.lv
Std.all					
.FFA_1	0.000				0.000
0.000					
.FFA_2	0.000				0.000
0.000					

01.23, 13.43		117	A Rascii Modelling		
.FFA_3	0.000				0.000
0.000	0 000				0 000
.FFA_5 0.000	0.000				0.000
.FFA_7	0.000				0.000
0.000					
.FFA_4	0.000				0.000
0.000					
.FFA_6 0.000	0.000				0.000
.FFA_8	0.000				0.000
0.000					
.FFA_9	0.000				0.000
0.000					
.FFA_10 0.000	0.000				0.000
.FFA_11	0.000				0.000
0.000	01000				
.FFA_12	0.000				0.000
0.000					
.FFA_14 0.000	0.000				0.000
pres	0.000				0.000
0.000					
acc	0.000				0.000
0.000					
Thresholds:					
····· csilo cusi	Estimate	Std.Err	z-value	P(> z)	Std.lv
Std.all					
FFA_1 t1	-1.474	0.060	-24.664	0.000	-1.474
-1.474	0.631	0 042	-14.662	0 000	0 621
FFA_1 t2 -0.621	-0.621	0.042	-14.002	0.000	-0.621
FFA_1 t3	0.679	0.043	15.814	0.000	0.679
0.679					
FFA_2 t1	-1.118	0.050	-22.425	0.000	-1.118
-1.118	0 012	0 020	0 215	0 752	0 012
FFA_2 t2 -0.012	-0.012	0.039	-0.315	0.753	-0.012
FFA_2 t3	1.091	0.049	22.132	0.000	1.091
1.091					
FFA_3 t1	-1.047	0.048	-21.626	0.000	-1.047
-1.047					

24.01.23, 15:43		FFA	A Rasch Modelling		
FFA_3 t2	0.082	0.040	2.076	0.038	0.082
0.082					
FFA_3 t3	1.282	0.054	23.814	0.000	1.282
1.282					
FFA_5 t1	-1.466	0.059	-24.647	0.000	-1.466
-1.466					
FFA_5 t2	-0.536	0.042	-12.885	0.000	-0.536
-0.536					
FFA_5 t3	0.803	0.044	18.073	0.000	0.803
0.803					
FFA_7 t1	-1.397	0.057	-24.427	0.000	-1.397
-1.397					
FFA_7 t2	-0.454	0.041	-11.091	0.000	-0.454
-0 . 454					
FFA_7 t3	0.881	0.046	19.341	0.000	0.881
0.881					
FFA_4 t1	-1.527	0.062	-24.752	0.000	-1.527
-1 . 527					
FFA_4 t2	-0.530	0.042	-12.762	0.000	-0.530
-0 . 530					
FFA_4 t3	0.664	0.043	15.512	0.000	0.664
0.664					
FFA_6 t1	-1.551	0.063	-24.771	0.000	-1.551
-1 . 551					
FFA_6 t2	-0.435	0.041	-10.657	0.000	-0.435
-0.435					
FFA_6 t3	0.856	0.045	18.941	0.000	0.856
0.856					
FFA 8 t1	-1.711	0.070	-24.583	0.000	-1.711
-1.711					
FFA_8 t2	-0.516	0.041	-12.453	0.000	-0.516
-0 . 516					
FFA_8 t3	0.885	0.046	19.397	0.000	0.885
0.885					
FFA_9 t1	-1.384	0.057	-24.373	0.000	-1.384
-1 . 384					
FFA_9 t2	-0.328	0.040	-8.162	0.000	-0.328
-0.328					
FFA_9 t3	0.977	0.047	20.728	0.000	0.977
0 . 977					
FFA_10 t1	-1.346	0.056	-24.195	0.000	-1.346
-1 . 346					
FFA_10 t2	-0.347	0.040	-8.600	0.000	-0.347
-0.347					

.FFA_11	0.465				0.465
0.465 .FFA_12	0.486				0.486
0.486	01400				0.400
.FFA_14	0.637				0.637
0.637					
pres	0.357	0.027	13.130	0.000	1.000
1.000	0.450	0.026	17 740	0 000	1 000
acc 1.000	0.459	0.026	1/./43	0.000	1.000
1.000					
Scales y*:					
	Estimate	Std.Err	z-value	P(> z)	Std.lv
Std.all					
FFA_1	1.000				1.000
1.000 FFA_2	1.000				1.000
1.000	1.000				1.000
FFA_3	1.000				1.000
1.000					
FFA_5	1.000				1.000
1.000					
FFA_7	1.000				1.000
1.000 FFA_4	1.000				1.000
1.000	11000				11000
FFA_6	1.000				1.000
1.000					
FFA_8	1.000				1.000
1.000	1 000				1 000
FFA_9 1.000	1.000				1.000
FFA_10	1.000				1.000
1.000					
FFA_11	1.000				1.000
1.000					
FFA_12	1.000				1.000
1.000 EEA 14	1 000				1.000
FFA_14 1.000	1.000				T • 000

9.3.2 1F model

```
ffa_mod_1F <- 'm =~ FFA_1 + FFA_2 + FFA_3 + FFA_5 + FFA_7 + FFA_4 + F

ffa_cfa_1F <- lavaan::cfa(ffa_mod_1F, data = ffa_items2, ordered = TR
#ffa_cfa <- lavaan::cfa(ffa_mod, data = ffa_items2)

ffa_cfa_1F</pre>
```

lavaan 0.6-12 ended normally after 23 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	52

Model Test User Model:

Number of observations

	Standard	Robust
Test Statistic	265.438	482.961
Degrees of freedom	65	65
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.559
Shift parameter		8.327
simple second-order correction		

1010

summary(ffa_cfa_1F, standardized = TRUE, fit.measures = TRUE)

lavaan 0.6-12 ended normally after 23 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	52
Number of observations	1010

Model Test User Model:

	Standard	Robust
Test Statistic	265.438	482.961
Degrees of freedom	65	65
P-value (Chi-square)	0.000	0.000
Scaling correction factor		0.559
Shift parameter		8.327
simple second-order correction		

Model Test Baseline Model:

Test statistic	23657.526	8990.511
Degrees of freedom	78	78
P-value	0.000	0.000

Scaling correct	ion factor				2.646
User Model versus	Baseline Mo	del:			
Comparative Fit	: Index (CFI)			0.991	0.953
Tucker-Lewis Ir				0.990	0.944
Robust Comparat	ive Fit Inde	x (CFI)			NA
Robust Tucker-L					NA
Root Mean Square	Error of App	roximati	on:		
RMSEA				0.055	0.080
90 Percent conf	idence inter	val – lo	wer	0.048	0.073
90 Percent conf	idence inter	val – up	per	0.062	0.087
P-value RMSEA <	<= 0.05			0.100	0.000
Robust RMSEA					NA
90 Percent conf	idence inter	val – lo	wer		NA
90 Percent conf	idence inter	val – up	per		NA
Standardized Root	Mean Square	Residua	l:		
SRMR				0.044	0.044
Parameter Estimat	ies:				
Standard errors	5		Ro	bust.sem	
Information Expected					
Information sat	curated (h1)	model	Unst	ructured	
Latent Variables:					
	Estimate	Std.Err	z-value	P(> z)	Std.lv
Std.all					
m =~					
FFA_1	1.000				0. 577
0.577	2 224		10 007		
FFA_2	0.961	0.049	19.627	0.000	0.555
0.555 FFA_3	0.932	0.046	20.112	0.000	0.538
0.538	0.332	0.040	20:112	0.000	0.770
FFA_5	1.253	0.052	24.005	0.000	0.724
0.724	1.233	2.002		3.000	
FFA_7	1.281	0.051	25.358	0.000	0.740

0.740					
FFA_4	1.162	0.053	22.115	0.000	0.671
0.671					
FFA_6	1.230	0.052	23.441	0.000	0.710
0.710					
FFA_8	1.013	0.050	20.431	0.000	0.585
0.585					
FFA_9	1.220	0.052	23.583	0.000	0.704
0.704					
FFA_10	1.251	0.050	24.817	0.000	0.722
0.722					
FFA_11	1.255	0.053	23.683	0.000	0.725
0.725					
FFA_12	1.231	0.050	24.444	0.000	0.711
0.711				01000	V 1.7_2
FFA_14	1.035	0.051	20.441	0.000	0.597
0.597	11033	0.031	201112	01000	01337
01337					
Intercepts:					
intercepts:	Ectimate	Std Err	z_v2]u6	P(> z)	C+d 1v
C+d all	ESTIMATE	StuiEII	z-va tue	P(> 2)	Stu. tv
Std.all	0.000				0 000
.FFA_1	0.000				0.000
0.000	0.000				
.FFA_2	0.000				0.000
0.000					
.FFA_3	0.000				0.000
0.000					
.FFA_5	0.000				0.000
0.000					
.FFA_7	0.000				0.000
0.000					
.FFA_4	0.000				0.000
0.000					
.FFA_6	0.000				0.000
0.000					
.FFA 8	0.000				0.000
0.000					
.FFA 9	0.000				0.000
0.000	0.000				01000
.FFA_10	0.000				0.000
0.000	0.000				01000
	0 000				0 000
.FFA_11	0.000				0.000
0.000	2 222				0.000
.FFA_12	0.000				0.000

71.23, 13.43		117	Kascii Wodening		
0.000					
.FFA_14	0.000				0.000
0.000					
m	0.000				0.000
0.000					
Thurshalds.					
Thresholds:	Ectimata	C+d Err	7 valua	D/> I=1)	C+d 1v
Std.all	ESTIMATE	StuiEII	z-va tue	P(> z)	Stu. tv
FFA_1 t1	-1.474	0 060	-24.664	0.000	-1.474
-1.474	-1.4/4	0.000	-24:004	0.000	-1.4/4
FFA_1 t2	-0.621	0 042	-14.662	0.000	-0.621
-0.621	01021	01042	141002	01000	0.021
FFA_1 t3	0.679	0.043	15.814	0.000	0.679
0.679	0.073	01015	13.011	01000	01075
FFA_2 t1	-1.118	0.050	-22.425	0.000	-1.118
-1 . 118					
FFA_2 t2	-0.012	0.039	-0.315	0.753	-0.012
-0.012					
FFA_2 t3	1.091	0.049	22.132	0.000	1.091
1.091					
FFA_3 t1	-1.047	0.048	-21.626	0.000	-1.047
-1.047					
FFA_3 t2	0.082	0.040	2.076	0.038	0.082
0.082					
FFA_3 t3	1.282	0.054	23.814	0.000	1.282
1.282					
FFA_5 t1	-1.466	0.059	-24.647	0.000	-1.466
-1.466					
FFA_5 t2	-0.536	0.042	-12.885	0.000	-0.536
-0.536					
FFA_5 t3	0.803	0.044	18.073	0.000	0.803
0.803					
FFA_7 t1	-1.397	0.057	-24.427	0.000	-1.397
-1.397					
FFA_7 t2	-0.454	0.041	-11.091	0.000	-0.454
-0.454	0.004	0 046	40 244	0.000	0.004
FFA_7 t3	0.881	0.046	19.341	0.000	0.881
0.881	1 527	0.000	24 752	0 000	1 527
FFA_4 t1	-1.527	0.002	-24 . 752	0.000	-1 . 527
-1.527	Q F3Q	0 042	10 760	0 000	0 520
FFA_4 t2	-0.530	v.04Z	-12.762	0.000	-0.530
-0.530	0.664	0.043	15 510	0.000	0.664
FFA_4 t3	v • 004	0. 043	15.512	טשט . ט	v.004

0.664					
FFA_6 t1	-1.551	0.063	-24.771	0.000	-1.551
-1.551					
FFA_6 t2	-0.435	0.041	-10.657	0.000	-0.435
-0.435					
FFA_6 t3	0.856	0.045	18.941	0.000	0.856
0.856					
FFA_8 t1	-1.711	0.070	-24.583	0.000	-1.711
-1.711					
FFA_8 t2	-0.516	0.041	-12.453	0.000	-0.516
-0.516					
FFA_8 t3	0.885	0.046	19.397	0.000	0.885
0.885	4 204	0 057	24 272	0.000	4 204
FFA_9 t1	-1.384	0.05/	-24.373	0.000	-1.384
-1.384	a 220	0 040	0 162	0 000	a 220
FFA_9 t2 -0.328	-0.328	0.040	-8.162	0.000	-0.328
-0.326 FFA_9 t3	0.977	0.047	20.728	0.000	0.977
0.977	0.977	0.047	20.720	0.000	0.977
FFA_10 t1	-1.346	0.056	-24.195	0.000	-1.346
-1.346	11540	01030	241133	01000	11540
FFA_10 t2	-0.347	0.040	-8.600	0.000	-0.347
-0.347					
FFA 10 t3	0.941	0.047	20.237	0.000	0.941
0.941					
FFA_11 t1	-1.417	0.058	-24.502	0.000	-1.417
-1.417					
FFA_11 t2	-0.368	0.040	-9.099	0.000	-0.368
-0.368					
FFA_11 t3	0.918	0.046	19.904	0.000	0.918
0.918					
FFA_12 t1	-1.181	0.051	-23.029	0.000	-1.181
-1.181					
FFA_12 t2	-0.070	0.039	-1.761	0.078	-0.070
-0.070					
FFA_12 t3	1.123	0.050	22.473	0.000	1.123
1.123	1 204	0 054	22.000	0 000	1 204
FFA_14 t1	-1.304	ש. ש54	-23.960	0.000	-1.304
-1.304	a 167	0 040	-4.213	0.000	-0.167
FFA_14 t2 -0.167	-0.10/	⊍. ⊍4⊍	-4.213	שששוש	-0.10/
-0.107 FFA_14 t3	1 105	0 050	22.279	0.000	1.105
1.105	1.103	0.000	LL L J	0.000	1.103
11100					

24.01	1.23, 15:43		FFA	A Rasch Modelling		
	Variances:					
		Estimate	Std.Err	z-value	P(> z)	Std.lv
	Std.all					
	.FFA_1	0.667				0.667
	0.667					
	.FFA_2	0.692				0.692
	0.692					
	.FFA_3	0.710				0.710
	0.710					
	.FFA_5	0.476				0.476
	0.476					
	.FFA_7	0.453				0.453
	0.453					
	FFA 4	0 550				0 550

:	L.000		
	FFA_4	1.000	1.000
-	L.000		
	FFA_6	1.000	1.000
-	L.000		
	FFA_8	1.000	1.000
2	L.000		
	FFA_9	1.000	1.000
2	L.000		
	FFA_10	1.000	1.000
-	L.000		
	FFA_11	1.000	1.000
2	L.000		
	FFA_12	1.000	1.000
-	L.000		
	FFA_14	1.000	1.000
1	L.000		

9.3.3 Conclusion

The CFA seems to speaks in favor of the 2F solution.