Assignment 8

CSCI 411

1.

$$S \rightarrow SS$$

$$S \rightarrow (S)$$

$$S \to \epsilon$$

$$S \rightarrow (S)$$

$$\rightarrow$$
 ((SS))

$$\rightarrow$$
 (($(\epsilon)(\epsilon)$))

$$\rightarrow \qquad ((\ 00\)) \qquad \qquad \rightarrow \qquad ((00))$$

b. ()(())

$$S \rightarrow SS$$

$$\rightarrow$$
 (S)(S)

$$\rightarrow$$
 (S)((S))

$$\rightarrow$$
 (ϵ)((ϵ))

$$\rightarrow \qquad 0(0) \qquad \rightarrow \qquad 0(0)$$

$$S \rightarrow 0A \mid 1B \mid \epsilon$$

$$A \rightarrow 0S \mid 1C$$

$$B \rightarrow 1S \mid 0C$$

$$C \rightarrow 0B \mid 1A$$

a. 000110

$$S \rightarrow 0A$$

- → 00S
- → 000A
- → 0001C
- → 00011A
- → 000110S
- \rightarrow 000110 ϵ \rightarrow 000110

b. 11001001

- $S \rightarrow 1B$
 - → 11S
 - → 110A
 - → 1100S
 - → 11001B
 - → 110010C
 - → 1100100B
 - → 11001001S
 - → 11001001ε → 11001001

$$S \rightarrow S + S | S * S | (S) | N$$

 $N \rightarrow 0.FD | PD.FD | PD$
 $D \rightarrow 0D | 1D | 2D | 3D | 4D | 5D | 6D | 7D | 8D | 9D | \epsilon$
 $F \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$
 $P \rightarrow 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

a. 12.3 + 3 * 0.22

$$S \rightarrow S + S$$

$$\rightarrow$$
 S+S*S

$$\rightarrow$$
 N + N * N

$$\rightarrow$$
 12.3 ϵ + 3 ϵ * 0.22D

$$\rightarrow$$
 12.3 ϵ + 3 ϵ * 0.22 ϵ \rightarrow 12.3 + 3 * 0.22

b.
$$4 * (9 + 13.0) * 75.89$$

$$S \rightarrow S * S * S$$

$$\rightarrow$$
 PD * (S + S) * PD.FD

$$\rightarrow$$
 4 ϵ * (N + N) * 75D.89D

$$\rightarrow$$
 4 ϵ * (9 ϵ + 13D.0 ϵ) * 75 ϵ .89 ϵ

$$\rightarrow$$
 4 ϵ * (9 ϵ + 13 ϵ .0 ϵ) * 75 ϵ .89 ϵ

a.

 $S \rightarrow 0S | 1S | 11$

b.

 $S \rightarrow A11A$

 $A \hspace{0.5cm} \rightarrow \hspace{0.5cm} 0A \hspace{0.1cm}|\hspace{0.1cm} 1A \hspace{0.1cm}|\hspace{0.1cm} 0\hspace{0.1cm}|\hspace{0.1cm} 1\hspace{0.1cm}|\hspace{0.1cm} \epsilon$

c.

S \rightarrow aSa | bSb | cSc | a | b | c | ϵ

d.

Case 1: i = j,

 $S_1 \quad \rightarrow \quad AB$

A \rightarrow aAb | ab | ϵ

 $B \rightarrow cB|c|\epsilon$

Case 2: i = k,

 $S_2 \rightarrow aS_2c \mid C$

 $C \rightarrow bC | b | \epsilon$

Using Case 1 & 2,

 $S \rightarrow S_1 | S_2$

- $S_1 \quad \rightarrow \quad AB$
- A \rightarrow aAb | ab | ϵ
- $B \rightarrow cB|c|\epsilon$
- $C \rightarrow bC | b | \epsilon$

- e.
- $S \rightarrow AB$
- A \rightarrow aC | aCaC
- B \rightarrow CaCaCaCA | ϵ
- $C \rightarrow bC \mid cC$
- f.
- $S \rightarrow aSc \mid A$
- A \rightarrow bAc | ϵ
- g.
- $S \rightarrow A$
- $\mathsf{A} \qquad \rightarrow \qquad (\mathsf{A})\ (\mathsf{A})\ |\ \mathsf{A} + \mathsf{A}\ |\ \mathsf{A}\ |\ \mathsf{B}$

a.

$$B \rightarrow A \mid Bbb$$

$$C \rightarrow C |a|b|\epsilon$$

Step 1: Remove NULL productions

$$S \rightarrow aAc \mid bbB \mid aa$$

$$A \rightarrow cSc \mid C \mid \epsilon$$

$$B \rightarrow A \mid Bbb$$

$$C \rightarrow a \mid b$$

$$S \rightarrow aAc \mid ac \mid bbB \mid aa$$

$$A \rightarrow cSc \mid C$$

$$B \rightarrow \epsilon \mid Bbb$$

$$C \rightarrow a \mid b$$

$$S \rightarrow aAc \mid ac \mid bb \mid bbB \mid aa$$

$$A \rightarrow cSc \mid C$$

$$C \rightarrow a \mid b$$

Step 2: Eliminate unit rules

$$S \rightarrow aAc \mid ac \mid bb \mid bbB \mid aa$$

$$A \rightarrow cSc | a | b$$

$$C \rightarrow a \mid b$$

Step 3: Simplify grammar, remove C

$$S \rightarrow aAc \mid ac \mid bb \mid bbB \mid aa$$

$$A \rightarrow cSc | a | b$$

b.

$$S \rightarrow 0AB0 \mid 1C1 \mid C0A \mid \epsilon$$

$$A \rightarrow C \mid AB \mid 1 \mid 001$$

$$B \rightarrow SB1 \mid 0$$

$$C \rightarrow SAC \mid C1SSC$$

Step 1: Removal of ϵ us not possible in initial variable. Hence, we skip removal of null production.

Step 2: Eliminate unit rules

Step 3: Simplify grammar, C is not terminating(removal necessary from all productions)