UNIVERSITY OF GHANA

(All rights reserved)

DEPARTMENT OF MATHEMATICS

MATH 223: CALCULUS II (3 credits)

EXERCISE 6 (Applications of Integration)

- 1. Find the area of the region between the graphs of $y = x^2 + 2$ and y = x 1 and the vertical lines x = -1 and x = 2.
- 2. Find the area bounded by the graphs of $y = 2 x^2$ and y = -x.
- 3. Find the area of the region bounded by the graphs of $x = y^2$ and y = x 2
 - (a) by integrating with respect x
 - (b) by integrating with respect y
- 4. Find the area of the region S bounded by the graph of $y = \cos x$ and $y = \left(\frac{2}{\pi}\right)x 1$ and the vertical lines x = 0 and $x = \pi$.
- 5. Find the volume of the solid obtained by revolving the region under the graph of $y = \sqrt{x}$ on [0,2] about the x-axis.
- 6. By revolving the region under the graph $y = \sqrt{r^2 x^2}$ on [-r, r], show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.
- 7. Find the volume of the solid obtained by revolving the region bounded by the graph of $y = x^3$, y = 8 and x = 0 about the y-axis
- 8. Find the volume of the solid obtained by revolving the region bounded by $y = \sqrt{x}$ and y = x about
 - (a) the x-axis; the y-axis
 - (b) the line y=2
- 9. Find the length of the graph $f(x) = \frac{1}{3}x^3 + \frac{1}{4x}$ on the interval [1, 3].
- 10. Find the arc length of the graph of $f(x) = \ln(2\cos x)$ between the adjacent points of the intersection of the graph with the x-axis.
- 11. Find the length of graph of $x = \frac{1}{3}y^3 + \frac{1}{4y}$ from $P\left(\frac{7}{12}, 1\right)$ to $Q\left(\frac{67}{24}, 2\right)$.
- 12. Use the differentials to obtain an approximation of the arc length of graph of $y = 2x^2 + x$ from P(1,3) to Q(1.1,3.52)
- 13. Find the area of the surface obtained by revolving the graph of $f(x) = \sqrt{x}$ on the interval [0, 2] about the x-axis.
- 14. Find the area of the surface obtained by revolving the graph of $x = y^3$ on the interval [0, 1] about the y-axis.

LFK