## СЕКЦИЯ 6 ОБЕСПЕЧЕНИЕ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

К. В. Вознюк, М. А. Яковлев, А. А. Оленников

Тюменский государственный университет, г. Тюмень

УДК 004.9

## РАЗРАБОТКА ЗАЩИЩЕННОГО ОБЛАЧНОГО КЛАСТЕРА ДЛЯ ПУБЛИКАЦИИ В ГЛОБАЛЬНУЮ СЕТЬ ПРОГРАММНОГО КОМПЛЕКСА, ВЫПОЛНЯЮЩЕГО СЛОЖНЫЕ ИНЖЕНЕРНЫЕ РАСЧЕТЫ

**Аннотация.** В работе представлена реализация защищенного облачного сервиса для публикации программного комплекса в глобальную сеть, выполняющего сложные инженерные расчеты на основе которых заводом-изготовителем будут создаваться теплообменные аппараты различного назначения.

**Ключевые слова:** веб-сервис, Django, Kubernetes, MinIO, база данных, кластер, программный комплекс, отказоустойчивость, масштабируемость, безопасность, проектирование, расчеты, конфиденциальность, целостность, доступность.

Введение. В современном мире информационные технологии играют все более важную роль в различных сферах деятельности человека. Одной из таких сфер является инженерное проектирование, где информационные технологии помогают ускорить и упростить процесс разработки и анализа проекта. Однако, при работе со сложными инженерными данными возникает ряд проблем связанный с конфиденциальностью, целостностью и доступностью таких данных. Речь идет о сложном программном комплексе, предназначенный для проектирования теплообменных аппаратов различной сложности, который содержит в своем составе множество математических моделей и готовых проектных решений. Попытки выпустить это решение на рынок в виде коробочного исполнения с традиционными системами защиты [1], скорее всего через некоторое время приведет к его утрате, продукт будет подвержен несанкционированным воздействиям и в последующем использован третьими лицами. В настоящий момент особый интерес представляет способ защиты программного обеспечения посредством размещения его в облаке [2]. С одной стороны программный комплекс будет размещен на защищенном внутреннем сегменте облака, а пользователям будет доступен только пользовательский интерфейс, с другой стороны исчезнет необходимость в приобретении мощностей компаниям, которые нуждаются в данных расчетах.

**Проблема исследования.** Проблематика работы определяется тем, что для вычисления проектных инженерных работ необходимо большое количество ресурсов для обработки большого объема данных. Помимо этого, нередко инженеры работают в группе и им необходимо получить видимый, для каждого члена группы, результат. При этом необходимо, чтобы данные и результат вычислений видели только авторизованные пользователи, относящиеся к одной группе или компании для того, чтобы избежать раскрытие информации для других пользователей или конкурентных организаций. На данный момент на территории Российской Федерации таковых аналогов нет. В связи с этим, в этой работе предлагается одно из решений,

которое позволит обеспечить безопасное хранение и обработку данных, связанных с проектированием теплообменных аппаратов различной сложности, а также разграничить доступ к информации только для авторизованных пользователей, обеспечить конфиденциальность, высокую доступность, отказоустойчивость и безопасность [3, 4].

В связи с этим были поставлены следующие задачи:

- 1. Изучить и проанализировать существующие решения.
- 2. Проработать архитектуру кластера.
- 3. Проработать архитектуру расширяемых баз данных.
- 4. Разработать защищенный веб-сервис.
- 5. Разработать защищенный вычислительный кластер и подключить метрики для отказоустойчивости системы.

Материалы и методы. Для публикации в облаке был выбран существующий локальный программный комплекс Radiator (рис. 1), который позволяет проектировать теплообменные аппараты по различным технология с возможностью выбора материалов и оребрений, а также вид нагреваемых и охлаждаемых сред. Данный программный комплекс включается в себя базу экспериментальных значений теплообменных элементов, физические характеристик сред, модели сложного теплообмена, аэро- и гидродинамики, и готовых проектных решений. При этом, сама база, насчитывает свыше 2150 моделей, а расчеты производятся с использованием помощью более 800 математических выражений, что делает данную программный комплекс мощным инструментом для реализации поставленных целей, например для завода-изготовителя.



Puc. 1. Программный комплекс Radiator

Для реализация данной задачи была разработана архитектура кластера Kubernetes (рис. 2), состоящий из следующих компонентов [5-7]:

- 3 управляющих узлов, отказоустойчивость которых достигается при помощи сервиса типа балансировщик нагрузки под управлением MetalLB;
- 2 рабочих узла на которых будут запускаться веб-сервис и приложения для расчетов;
- 3 узла хранения данных, для обеспечение высокодоступного постоянного хранилища под управлением Longhorn.

Веб-сервис реализован с помощью языка программирования Python с использованием библиотеки Django. В нем находится API для обращения к локальному программному комплексу Radiator. Веб-сервис и программный комплекс располагаются в разных контейнерах. Такой подход позволяет изолировать программный комплекс от пользователей тем самым уберегая его от взлома и последующего использования сторонними лицами.



Puc. 2. Архитектура кластера Kubernetes

Помимо вышесказанного, на каждом узле находится Prometheus node exporter, который работает в связки с Grafana и служит для сбора метрик с каждого из серверов кластера. Внутри Prometheus и Grafana предусмотрены встроенные сообщения об ошибках, что позволяет администраторам быстро реагировать на инциденты, которые происходят в системе, и своевременно их устранять, обеспечивая работоспособность системы.

Также на каждом узле установлен антивирус Kaspersky Endpoint Security, который управляется централизованно через Kaspersky Security Center (см. рис. 3).



Рис. 3. Список управляемых устройств в Kaspersky Security Center

Для хранения образа контейнеров используется локальный реестр с открытым исходным кодом — Harbor, развернутый внутри кластера.

Архитектура баз данных (рис. 4) была построена в соответствии с Федеральным законом 152 «О персональных данных» статья 5 часть 2, 3, в котором говорится, что обработка персональных данных должна ограничиваться достижением конкретных, заранее определенных и законных целей. Помимо этого, не допускается обработка персональных данных, несовместимых с целями сбора персональных данных.



Рис. 4. Архитектура базы данных

В связи с этим было принято решение разделить базу данных на две отдельные сущности, а именно база данных для пользователей и для администраторов. База данных администраторов содержит в себе информацию, связанную с администраторами системы и хранит в

себе такую информацию как идентификатор администратора, почта, пароль, логин, дата создания и дата последнего входа в систему.

База данных пользователей содержит в себе информацию, которая прямо или косвенно относится к определенному лицу. А именно это такие данные, как идентификатор пользователя, ФИО, почта, пароль, ИНН организации, можно ли отправлять рассылку на почту и так далее. Важно отметить то, что такие данные как ФИО, почта и пароль шифруются на стороне веб-сервиса и только в последующем сохраняются в базу данных. Таким образом обеспечивается сохранность данных пользователей от возможной компрометации данных.

В базе данных пользователей основополагающей является таблица заявок. Так как именно там хранятся основные атрибуты, такие как идентификатор заявки, идентификатор используемого шаблона, идентификатор пользователя, который делает запрос на расчет данных [8]. Помимо этого, там также хранится идентификатор организации и дата начала и завершения расчетов.

После, полученные результаты на стороне веб сервиса, а именно отчет, сохраняется на сервере хранения данных MinIO (рис. 5) с использованием библиотеки MinIO. Подключение к серверу хранение данных со стороны веб-сервиса происходит с помощью хранящихся константных данных в переменных окружения. Ссылка для доступа до данного отчета сохраняется в таблице online\_calculcate\_documents в двух удобных форматах для пользователей. А именно в docx и pdf форматах. Помимо этого, за данными отчетами там так же прикрепляется номер заявки, по которой происходили расчеты и дата генерации отчета.



Puc. 5. Хранение файлов контрактов в MinIO

Веб-сервис реализован посредством разделения приложения на два отдельных сервиса. А именно сервис пользователей (users) и администраторов (admins).

Сервис пользователей предоставляет им доступ к основным ресурсам сайта, а точкой входа выступает основной домен https://riotsolvers.ru. Он включает в себя регистрацию, аутентификацию, создание и просмотр созданных заявок с возможностью сохранения отчета локально, взаимодействие с другими специалистами из одной и той же компании и управление профилем.

Таким образом после регистрации (см. рис. 6) и одобрением регистрации администратором, пользователю открывается доступ к ресурсам сайта.

## ФИО Номер телефона Компания ИНН Адрес электронной почты Пароль Повторите пароль Сгенерировать и скачать контракт Выберите файл Файл не выбран Файл контракта Я согласен со всеми положениями Условий обслуживания Получать уведомления по электронной почте Зарегестрироваться Уже есть аккаунт? Вход

Рис. 6. Регистрация пользователей

Основное, с чем предстоит работать пользователю, это заявки. Сайт предлагает ему возможность либо просмотреть уже существующие заявки, либо создать новую по выбранному шаблону. После чего пользователь должен заполнить исходные данные и нажать на кнопку расчета (рис. 7).

В последующем данные поступают в брокер сообщений RabbitMQ, который складывает их в очередь [9]. RabbitMQ отправляет эти данные по API в локально развернутый в кластере программный комплекс. Однако стоит отметить, что расчет и подготовка итогового файла может занимать продолжительное время, так как это напрямую зависит от внесенных пользователем данных и выбранного им шаблона.

| Охлаждаемая среда ▼                                              |  |  |  |
|------------------------------------------------------------------|--|--|--|
| Давление охлаждаемой среды на входе в радиатор, кПа              |  |  |  |
| Температура охлаждаемой среды на входе в радиатор, °C            |  |  |  |
| Температура охлаждаемой среды на выходе в радиатор, °C           |  |  |  |
| Средняя температура охлаждаемой среды, °С                        |  |  |  |
| Средняя плотность охлаждаемой среды, кт/м3 (расчет)              |  |  |  |
| Средняя теплоемкость охлаждаемой среды, Дж/(кг * °C) (расчет)    |  |  |  |
| Средняя кинематическая вязкость охлаждаемой среды, м2/с (расчет) |  |  |  |
| Охлаждаемая среда 🔻                                              |  |  |  |
| Температура охлаждаемой среды до радиатора, °C                   |  |  |  |
| Температура охлаждаемой среды после радиатора, °C                |  |  |  |
| Средняя плотность охлаждаемой среды, кт/м3 (расчет)              |  |  |  |
| Средняя теплоемкость охлаждаемой среды, Дж/(кг * °С) (расчет)    |  |  |  |
| Средняя кинематическая вязкость охлаждаемой среды, м2/с (расчет) |  |  |  |
| Pacuēt                                                           |  |  |  |

Рис. 7. Создание новой заявки и заполнение исходных данных

В конечном итоге пользователь получает отчет в виде pdf файла (рис. 8), который он может использовать для реализации поставленных им целей.

Сервис администраторов, у которого в качестве точки входа выступает https://admins.riotsolver.ru/, позволяет просматривать заявки всех пользователей, а также подтверждать их регистрацию для доступа к ресурсам сайта.

Такой шаг, как разделение сервиса на две отдельные сущности, был принят в связи с эффективностью организованности функциональности веб-приложения, которая, в свою очередь, обеспечивает удобство использования как для обычных пользователей, так и для администраторов. Каждый сервис имеет свой набор функций и прав доступа, что обеспечивает безопасность системы и ее управление.

| RADIATOR - | Введите название проекта | 30 04 2024 | 16.42.46 |
|------------|--------------------------|------------|----------|
| KADIAIOK - | оведите название проекта | 30.04.2024 | 10.42.40 |

| №   | Наименование                                            | Значение                       | Ед.изм.    | Параметр  |
|-----|---------------------------------------------------------|--------------------------------|------------|-----------|
| п/п |                                                         |                                |            |           |
| 1   | RADIATOR - Введите название проекта 30.04.2024 16:42:46 |                                |            | Вводный   |
| 2   | Выберите                                                |                                |            | Вводный   |
| 3   | Выделяемая тепловая энергия агрегатом                   | 50                             | кВт        | Вводный   |
| 4   | Охлаждаемая среда                                       | Необходимо<br>выбрать среду    |            | Вводный   |
| 5   | Температура охлаждаемой среды на входе<br>в радиатор    | 90                             | 0C         | Вводный   |
| 6   | Температура охлаждаемой среды на<br>выходе из радиатора | 80                             | 0C         | Вводный   |
| 7   | Средняя температура охлаждаемой среды                   | 85,00                          | 0C         | Расчетный |
| 8   | Средняя плотность охлаждаемой среды                     | 0,000                          | кг/м3      | Расчетный |
| 9   | Средняя теплоемкость охлаждаемой среды                  | 0,00                           | Дж/(кг*0С) | Расчетный |
| 10  | Средняя кинематическая вязкость<br>охлаждаемой среды    | 0,000000000                    | м2/с       | Расчетный |
| 11  | Охлаждающая среда                                       | Воздух                         |            | Вводный   |
| 12  | Температура охлаждающей среды до<br>радиатора           | 40                             | 0C         | Вводный   |
| 13  | Температура охлаждающей среды после<br>радиатора        | 60                             | 0C         | Вводный   |
| 14  | Средняя температура охлаждающей среды                   | 50,00                          | 0C         | Расчетный |
| 15  | Средняя плотность охлаждающей среды                     | 1,093                          | кг/м3      | Расчетный |
| 16  | Средняя теплоемкость охлаждающей среды                  | 1005,29                        | Дж/(кг*0С) | Расчетный |
| 17  | Средняя кинематическая вязкость охлаждающей среды       | 0,000014725                    | м2/с       | Расчетный |
| 18  | Технология изготовления трубок                          | Круглооребренная<br>труба +    |            | Вводный   |
|     |                                                         | намотанное<br>оребрение (Медь) |            |           |
| 19  | Материал трубки                                         | Трубка 13х0,8<br>материал 03м  |            | Вводный   |

Рис. 8. Готовый отчет

Помимо этого, разделение веб сервиса на составляющие позволяет значительно оптимизировать систему, что положительно повлияет на производительность в целом и обеспечить гибкость и легкость масштабируемости системы. Все разворачиваемые в системе сервисы работают и масштабируются независимо друг от друга. Такой подход положительно сказывается на их управлении и, в случае необходимости, позволяет оперативно масштабировать систему под нужды пользователей.

**Результаты.** Для выполнения работы была проделана теоретическая и практическая работа, которая рассматривалась выше. Подробно изучены и проанализированы текущие существующие решения на рынке и проработана архитектура высокодоступного и отказоустойчивого кластера Kubernetes. Помимо этого спроектированы и реализованы расширяемые базы данных в соответствии с Федеральным законом 152 «О персональных данных».

Кроме этого, был разработан веб-сервис на языке программирования Python с использованием библиотеки Django. Данный сервис вместе с программным комплексом Radiator находится внутри кластера и позволят производить сложные инженерные расчеты.

Для отказоустойчивости системы были подключены брокер сообщений RabbitMQ, который складывает и распределяет запросы внутри системы, а также Prometheus в связи с Grafana, которые служат для отображения метрик не только всего кластера, но и каждого узла в частности.

Заключение. В конечном итоге был разработан облачный отказоустойчивый кластер с высокой доступностью в Kubernetes, который позволяет специалистам производить сложные инженерные расчеты при проектировании теплообменных агрегатов различного назначения. Данный кластер легко масштабируется, путем добавления новых рабочих узлов в кластер, что позволит увеличить вычислительную мощность при увеличивающимся количестве пользователей. Предложенный подход и способы защиты облачной инфраструктуры позволят защитить программный комплекс, обеспечить отказоустойчивость, а компании смогут пользоваться сервисом и не вкладывать средства в собственные вычислительные мощности и администрирование.

Предложенное решение может быть адаптировано и для других программных комплексов выполняющих сложные вычисления в любых сферах деятельности, которые будут освещаться в последующих публикациях.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Защита программного обеспечения от несанкционированного использования / Е.М. Курсков // Международная научно-практическая конференция по компьютерной и информационной безопасности (INFSEC 2023): сборник статей. ООО «Институт цифровой экономики и права». Екатеринбург. 2023. С. 51-56.
- 2. Безопасный ключ к «облаку» / В. Ткаченко // Защита информации. Инсайд. 2012. № 2 (44). С. 46-50.
- 3. ITELON: Вычислительный кластер, Россия. 2018. URL: https://itelon.ru/blog/vychislitelnyy-klaster/ (дата обращения: 10.05.2024).
- 4. ITELON: Высокопроизводительные кластерные решения, Россия. 2018. URL: https://itelon.ru/solution/Cluster-servers (дата обращения: 11.05.2024).
- 5. Хабр: Внутреннее устройство Kubernetes-кластера простым языком, Россия. 2021. URL: https://habr.com/ru/companies/flant/articles/583660/ (дата обращения 11.05.2024).
- 6. Git in Sky: Kubernetes для начинающих, Россия. 2021. URL: https://gitinsky.com/kubernetesarticle (дата обращения: 11.05.2024).
- 7. Kubernetes: Основы Kubernetes, США. 2008. URL: https://kubernetes.io/ru/docs/tutorials/ kubernetes-basics/ (дата обращения: 11.05.2024).
- 8. PostgreSQL: PostgreSQL, США. 2024. URL: https://www.postgresql.org/ (дата обращения 11.05.2024).
- 9. RabbitMQ: One broker to queue them all, США [Электронный ресурс] 2024. URL: https://www.rabbitmq.com/ (дата обращения: 11.05.2024).