Dạng chuẩn và Chuẩn hóa CSDL

TS.Nguyễn Quốc Tuấn Bm. Mạng & HTTT

Chuẩn hóa dữ liệu

- □ Các dạng chuẩn
- □ Chuẩn hóa dữ liệu

Các dạng chuẩn

- Dang 1 (1 Normal Form 1NF)
- Dang 2 (2 Normal Form 2NF)
- Dạng 3 (3 Normal Form 3NF).
- Dang Boyce Codd (Boyce Codd Normal Form - BCNF)

Dạng chuẩn 1 (1)

Định nghĩa

Lược đồ quan hệ R được gọi là thuộc dạng chuẩn 1 khi và chỉ khi mọi thuộc tính của R là thuộc tính đơn.

■ Ví dụ

PHONGBAN

TENPB	MAPB	TrPhong	CacTruso
Hành chính	5	22221	Đống Đa,
			Hoàng Mai
Nghiên cứu	2	21113	Ba Đình

Không thuộc dạng chuẩn 1

PHONGBAN

TENPB	MAPB	TrPhong	CacTruso
Hành chính	5	22221	Đống Đa
Hành chính	5	22221	Hoàng Mai
Nghiên cứu	2	21113	Ba Đình

∃ Thuộc dạng chuẩn 1

Dạng chuẩn 2 (1)

Định nghĩa

- □ Lược đồ quan hệ R được gọi là thuộc dạng chuẩn 2 khi và chỉ khi:
 - R ở dạng chuẩn 1
 - Mọi thuộc tính không khóa đều phụ thuộc hàm đầy đủ vào khóa chính.
- \square R(U), K \subseteq U là khóa chính của R
 - $A \in U$ là thuộc tính không khóa nếu $A \notin K$.
 - $X \rightarrow Y$ là PTH đầy đủ nếu $\forall A \in X$ thì $(X \{A\}) \rightarrow Y$ không đúng trên R.

Ngược lại $X \rightarrow Y$ là PTH bộ phận.

Dạng chuẩn 2 (2)

■ Ví dụ 1:

Dạng chuẩn 2 (3)

■ Ví dụ 2:

Dạng chuẩn 3 (1)

Định nghĩa

- □ Lược đồ quan hệ R được gọi là thuộc dạng chuẩn 3 khi và chỉ khi:
 - R ở dạng chuẩn 2
 - Mọi thuộc tính không khóa đều không phụ thuộc hàm bắc cầu vào khóa chính.
- \square R(U)
 - X → Y là PTH bắc cầu nếu ∃Z ⊆ U, Z không là khóa và cũng không là tập con của khóa của R mà X → Z và Z → Y đúng trên R.

Dạng chuẩn 3 (2)

- Ví dụ:
 - □ FD3 là PTH bắc cầu

Dạng chuẩn Boyce Codd (1)

- Dịnh nghĩa
 - □ Lược đồ quan hệ R được gọi là thuộc dạng chuẩn BCNF khi và chỉ khi:
 - PTH không hiển nhiên X → Y đúng trên R thì X là siêu khóa của R.
- Ví dụ
 - □ Cho lược đồ quan hệ R(ABCD)

R ở dạng chuẩn nào?

Dạng chuẩn Boyce Codd (2)

<u>A</u>	В	С	D
1	а	а	1
2	а	b	1
3	b	а	2
4	b	b	2

<u>A</u>	O	D
1	а	1
2	b	1
3	а	2
4	b	2

<u>D</u>	В
1	а
2	b

<u>A</u>	С	D
FD1	^	

В	<u>D</u>
FD5 ♠	

Dạng chuẩn Boyce Codd (3)

Nhận xét:

- Mọi quan hệ thuộc dạng chuẩn BCNF cũng thuộc dạng chuẩn 3
- □ Dạng chuẩn BCNF đơn giản và chặt chẽ hơn chuẩn 3
- Mục tiêu của quá trình chuẩn hóa là đưa lược đồ quan hệ về dạng chuẩn 3 hoặc chuẩn BCNF.

Mục đích của chuẩn hóa dữ liệu

Xác định được 1 tập các lược đồ quan hệ cho phép tìm kiếm thông tin một cách dễ dàng, đồng thời tránh được dư thừa dữ liệu

Giải pháp:

Tách các lược đồ quan hệ "có vấn đề" thành những lược đồ quan hệ "chuẩn hơn"

Nội dung

Phép tách các lược đồ quan hệ

Các dạng chuẩn

Phép tách các lược đồ quan hệ

Mục đích

Thay thế một sơ đồ quan hệ $R(A_1, A_2, ..., A_n)$ bằng một tập các sơ đồ con $\{R_1, R_2, ..., R_k\}$ trong đó $R_i \subseteq R$ và $R = R_1 \cup R_2 \cup ... \cup R_k$

Yêu cầu của phép tách

- Bảo toàn thuộc tính, ràng buộc
- Bảo toàn dữ liệu

Phép tách không mất mát thông tin (Lossless join)

Định nghĩa: Cho lược đồ quan hệ R(U) phép tách R thành các sơ đồ con {R₁, R₂, ..., R_k} được gọi là phép tách không mất mát thông tin đối với một tập phụ thuộc hàm F nếu với mọi quan hệ r xác định trên R thỏa mãn F thì:

$$r = \Pi_{R1}(r) \bowtie \Pi_{R2}(r) \bowtie \dots \bowtie \Pi_{Rk}(r)$$

Ví dụ:

Supplier(sid, sname, pname, city, colour, quantity)

S1(sid, sname, city) SP1(sid,pname,colour,quantity)

Kiểm tra tính không mất mát thông tin

```
Vào: R(A_1, A_2, ..., A_n), F, phép tách \{R_1, R_2, ..., R_k\}
Ra: phép tách là mất mát thông tin hay không
Thuật toán
B.1. Thiết lập một bảng k hàng, n cột
     Nếu A<sub>j</sub> là thuộc tính của R<sub>i</sub> thì điền a<sub>i</sub> vào ô (i,j).
     Nếu không thì điền b<sub>ii</sub>
B.i. Xét f = X \rightarrow Y \in F.
     Nếu \exists 2 hàng t1, t2 thuộc bảng : t1[X] = t2[X]
              t1[Y] = t2[Y], ưu tiên đồng nhất về giá trị a
     Lặp cho tới khi không thể thay đổi được giá trị nào trong bảng
                       bảng có 1 hàng gồm các kí hiệu a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>
B.n. Nếu
              phép tách là không mất mát thông tin.
     thì
     ngược lại, phép tách không bảo toàn thông tin.
```

Ví dụ

R(MONHOC, SOTIET, LOP, GV, HOCVI, DC)

Kiểm tra: R₁(MONHOC, SOTIET, LOP, GV), R₂(GV, HOCVI, DC)

 $F = \{MONHOC \rightarrow SOTIET; MONHOC, LOP \rightarrow GV; GV \rightarrow HOCVI, DC\}$

	MONHOC	SOTIET	LOP	GV	HOCVI	DC
R ₁	a_1	a_2	a_3	a_4	b ₁₅	b ₁₆
R ₂	b_{21}	b ₂₂	b 23	a ₄	a ₅	a ₆

$GV \rightarrow HOCVI, DC$

	MONHOC	SOTIET	LOP	GV	HOCVI	DC
R1	a_1	a_2	a_3	a_4	a_5	a_6
R ₂	b ₂₁	b. 2 2	b ₂₃	a_4	\mathbf{a}_5	a_6

Tách bảo toàn tập phụ thuộc hàm về 3NF

Vào: R(U), F (giả thiết F là phủ tối thiểu)

Ra: Phép tách bảo toàn tập phụ thuộc hàm về 3NF

Thuật toán

- B1. Với các A_i ∈ U, A_i ∉ F thì loại A_i khỏi R và lập 1 quan hệ mới cho các A_i
- **B2**. Nếu ∃ f ∈ F, f chứa tất cả các thuộc tính của R thì kết quả là R
- B3. Ngược lại, với mỗi X→ A ∈F, xác định một quan hệ R_i(XA).
 - Nếu ∃ X→A_i, X→A_j thì tạo một quan hệ chung R'(XA_iA_j)

Ví dụ

Cho R = {A,B,C,D,E,F,G}

$$F = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G\}$$

- Xác định phép tách bảo toàn tập phụ thuộc hàm về 3NF
 - B1. không lập được quan hệ nào mới.
 - B2.!∃ f ∈ F: f chứa tất cả các thuộc tính của R
 - B3. A→B \Rightarrow R1(AB) ACD→E \Rightarrow R2(ACDE)
 - $EF \rightarrow G$ \Rightarrow R3(EFG)

Cho R = {A,B,C,D,E,F,G}

$$F = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G\}$$

R1(AB) R2(ACDE) R3(EFG)

Tách không mất mát thông tin và bảo toàn tập phụ thuộc hàm về 3NF

Yêu cầu:

- Bảo toàn tập phụ thuộc hàm (như thuật toán trên)
- Đảm bảo là có một lược đồ con chứa khóa của lược đồ được tách

Các bước tiến hành

- B1. Tìm một khóa tối thiểu của lược đồ quan hệ R đã cho
- B2. Tách lược đồ quan hệ R theo phép tách bảo toàn tập phụ thuộc hàm
- B3. Nếu 1 trong các sơ đồ con có chứa khóa tối thiểu thì kết quả của
 B2 là kết quả cuối cùng.
 - Ngược lại, thêm vào kết quả đó một sơ đồ quan hệ được tạo bởi khóa tối thiểu tìm được ở 1.

Ví dụ

Cho R(A,B,C,D,E,F,G). $F = \{A->B, ACD->E, EF->G\}$

- B1. Khóa tối thiểu cần tìm là ACDF
- **B2**. Phép tách bảo toàn tập phụ thuộc hàm R cho 3 sơ đồ con $R_1(AB)$, $R_2(ACDE)$, $R_3(EFG)$
- **B3**. Dố khốa ACDF khồng nằm trong bất kỳ một sơ đồ con nào trong 3 sơ đồ con trên, ta lập một sơ đồ con mới R₄(ACDF)

Kết quả cuối cùng ta có phép tách R thành 4 sơ đồ con $\{R_1, R_2, R_3, R_4\}$ là một phép tách không mất mát thông tin và bảo toàn tập phụ thuộc hàm

Tách không mất mát thông tin về BCNF

Vào: Sơ đồ quan hệ R, tập phụ thuộc hàm F.

Ra: phép tách không mất mát thông tin bao gồm một tập các sơ đồ con ở BCNF với các phụ thuộc hàm là hình chiếu của F lên sơ đồ đó.

Cách tiến hành

- **B1**. $KQ = \{R\},\$
- B2. Với mỗi S ∈ KQ, S không ở BCNF, xét X→A ∈ S, với điều kiện X không chứa khóa của S và A ∉ X. Thay thế S bởi S1, S2 với S1=A ∪{X}, S2 = {S} \ A.
- B3. Lặp (B2) cho đến khi ∀S ∈KQ đều ở BCNF KQ gồm các sơ đồ con của phép tách yêu cầu