

数据挖掘算法与机器学习库

张敏

18/1/2

引例

男、女?

引例

请分别讨论下列各组数据的内部关系,并填空。

X_1	3	1	7	2	4
\mathcal{Y}_1	4.5	2.5	8.5	3.5	?

$$x_1$$
 2.0
 6.0
 5.0
 1.0
 4.0
 x_2
 7.0
 9.0
 3.0
 2.0
 5.0
 y
 52.8
 96.7
 21.2
 6.0
 $?$

$$y_1 = x_1 + 1.5$$

$$y_2 = x_2^2 + 1.5$$

$$y = x_1^{3/2} + x_2^2 + 1$$

输入:发型、喉结、胡须,已知数据对

输出/响应:男/女,对应y值

$$y = f(x_1, x_2, x_3, x_4, x_5, \dots)$$

数据挖掘企业项目

- 广播电视系统大数据营销推荐
- 网络舆情分析
- 电商产品评论数据情感分析
- 电力窃漏电用户自动识别
- 基于水色图像的水质评价
- 家用电器用户行为分析及事件识别
- 应用系统负载分析与容量预测
- 中医证型的关联规则挖掘

历届赛题

- 航空客运信息挖掘(2013年)
- ▶ 道路缺陷自动识别(2013年)
- ▶ 小车压双黄线自动检测(2014年)
- 面向网络舆情的关联度分析(2014年)
- ▶ 基于数据挖掘技术的市财政收入分析预测模型(2015年)
- ▶ 电商平台图片中文字的识别(2016年)
- > 铁路旅客流量预测(2016年)
- 中央空调系统的数据分析与控制策略(2017年)

电力窃漏电用户自动识别

背景

- ▶ 全国每年因窃电造成的损失在200亿元左右,被查获的不足30%
- ▶ 深圳龙岗工业区一家只有两条生产线的小塑料包装厂,一年窃电折价就30-40万元
- ▶ 某市06年因窃电损失达4亿元
- ▶ 传统打击手段:突击检查

目标

如何通过监测数据自动识别偷漏电行为?

电子商务网站用户行为分析及服务推荐

背景

- 某法律网站是一家大型的法律资讯信息网站,它一直致力于为用户提供丰富的法律资讯信息与专业法律咨询服务,并为律师与律师事务所提供卓有成效的互联网整合营销解决方案。
- 大量的访问用户,每天上千万次的点击量,为其带来发展也带来瓶颈。
- 如何留住需要帮助的用户,快速找到其感兴趣的页面?并进一步为其推荐律师?

目标

- > 客户行为分析
- 用户精准画像
- > 智能推荐

数据挖掘常见任务 [R语言与数据挖掘]

- > 分类与回归
- > 聚类分析
- > 智能推荐
- 自然语言处理 / 文本挖掘
- > 关联规则
- ▶ 时间序列

有监督与无监督

分类:学习/训练过程

有监督,训练样本有明

确标签

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	T-class
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6	2.5	virginica
5.8	2.7	5.1	1.9	virginica
6.5	3	5.8	2.2	?
6.2	2.9	4.3	1.3	?

有监督与无监督

聚类:学习/训练过程

无监督,样本无明确标签

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
7	3.2	4.7	1.4
6.4	3.2	4.5	1.5
6.3	3.3	6	2.5
5.8	2.7	5.1	1.9
6.5	3	5.8	2.2
6.2	2.9	4.3	1.3

数据挖掘与机器学习算法

数据挖掘算法 [数据挖掘十大算法]

> C4.5、K-means、SVM、Apriori、EM、PageRank、AdaBoost、kNN、Naive Bayes、CART

机器学习算法 [机器学习]

线性回归、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习、特征 选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习、强化学习

机器学习算法库scikit-learn简介

scikit-learn是在NumPy, SciPy和matplotlib三个模块上编写的,是数据挖掘和数据分析的一个简单而有效的工具。

- 在其官方网站上我们可以看到scikit-learn有6大功能:
- 学习问题主要可以归为2类:

有监督学习

分类:样本属于两个或多个类别

回归:输出是一个或多个连续的变量

无监督学习

无监督学习的训练数据包括了输入 向量X的集合,但没有相应的目标变量

安装和使用

- pip3 install sklearn
- from sklearn import ...

API文档:

http://scikit-learn.org/stable/modules/classes.html

主要函数库

- sklearn.datasets: Datasets(数据集)
- sklearn.tree: Decision Trees(决策树)
- sklearn.neural_network: Neural network models (神经网络)
- sklearn.svm: Support Vector Machines (支持向量机)
- sklearn.cluster: Clustering(聚类分析)
- sklearn.naive_bayes: Naive Bayes(朴素贝叶斯)
- sklearn.neighbors: KNeighborsClassifier (KNN)
- sklearn.covariance: Covariance Estimators (协方差估计)
- sklearn.model_selection: Model Selection(模型选择)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	class
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6	2.5	virginica
5.8	2.7	5.1	1.9	virginica
6.5	3	5.8	2.2	?
6.2	2.9	4.3	1.3	?

任务一:实现对鸢尾花样本聚类、分类操作

神经网络

代码实现 (sklearn)

- from sklearn.neural_network import MLPClassifier #导入神经网络包
- Net = MLPClassifier(hidden_layer_sizes=10,max_iter=1000).fit(tr_data.ix[:,0:6],tr_data.ix[:,6])
- res = Net.predict(te_data.ix[:,0:6])

决策树

代码实现 (sklearn)

- from sklearn.tree import DecisionTreeClassifier
- modle = DecisionTreeClassifier(criterion='gini').fit(tr_data.ix[:,0:6],tr_data.ix[:,6]) #模型训练
- res = modle.predict(te_data.ix[:,0:6])

支持向量机

代码实现 (sklearn)

- from sklearn.svm import LinearSVC #导入支持向量机函数
- clf = LinearSVC(random_state=1).fit(tr_data.ix[:,:9],tr_data.ix[:,9]) #构建模型
- res = clf.predict(te_data.ix[:,:9]) #模型预测

Thank you!

泰迪科技:www.tipdm.com

热线电话:40068-40020

