

## 第七讲 相似三角形的应用

**例1.** 如图,在 $\triangle ABC$ 中, AB = AC, AD 是中线,  $P \in AD$  上一点,过 C 作  $CF \parallel BA$ ,延长 BP 交 AC 于 E,交 CF + F. 求证:  $BP^2 = PE \cdot PF$ .

证: 延长 AD、FC 交于 Q, 连结 BQ.

因为 CF//AB, BD = CD ,所以 AD = QD ,四边形 ABQC 为平行四边形.

因为 CF//AB,所以  $\frac{PB}{PF} = \frac{PA}{PQ}$  . 因为 AC//BQ,所以  $\frac{PE}{PB} = \frac{PA}{PQ}$  . 于是  $\frac{PB}{PF} = \frac{PE}{PB}$  ,即  $BP^2 = PE \cdot PF$  .



**例2.** 在 $\triangle ABC$  的高线 BD 和 CE 上分别取点 P、Q,使得 $\angle APC = \angle AQB = 90^{\circ}$ . 求证: AP = AQ.

证: 因为 $\angle APC = 90^{\circ}$ ,  $PD \perp AC$ , 所以 $AP^2 = AD \cdot AC$ .

同理可得 $AQ^2 = AE \cdot AB$ .

而 Rt $\triangle ADB$  $\backsim$ Rt $\triangle AEC$ ,故  $\frac{AD}{AE} = \frac{AB}{AC}$ ,即  $AD \cdot AC = AE \cdot AB$ .

于是AP = AQ.



**例3.** 如图,在线段 MN 的同侧取点  $A \setminus B \setminus C$ ,使得 $\triangle AMN \hookrightarrow \triangle NBM \hookrightarrow \triangle MNC$ .

求证:  $\triangle ABC$  与上述 3 个三角形也相似.

证:  $\oplus \triangle AMN \hookrightarrow \triangle NBM \hookrightarrow \triangle MNC$  可得

$$\angle AMB = \angle AMN - \angle BMN = \angle MNC - \angle MNA = \angle ANC$$

$$rac{AM}{MN} = rac{MN}{NC}$$
 ,  $rac{BM}{MN} = rac{MN}{NA}$  , 于是  $rac{AM}{AN} = rac{BM}{CN}$  从而得到 $\triangle AMB$  $\hookrightarrow$  $\triangle ANC$ .

于是
$$\frac{AM}{AB} = \frac{AN}{AC}$$
,所以 $\triangle ABC \hookrightarrow \triangle AMN$ .





**例4.** 已知 $\triangle ABC$ 中,AD、BE、CF 是角平分线,M、N 在 BC 上,且 FM//AD//EN.

求证: AD 平分∠MAN.



设三角形的三边长分别为a、b、c.

由内角平分线定理, 
$$AF = \frac{bc}{a+b}$$
 ,  $BF = \frac{ac}{a+b}$  ,  $AE = \frac{bc}{a+c}$  ,  $EC = \frac{ac}{a+c}$  .   
于是  $\frac{FM}{EN} = \frac{FM}{AD} \cdot \frac{AD}{EN} = \frac{BF}{BA} \cdot \frac{AC}{EC} = \frac{a}{a+b} \cdot \frac{a+c}{a} = \frac{a+c}{a+b} = \frac{AF}{AE}$ 

故 $\triangle AFM \hookrightarrow \triangle AEN$ .



**例5.** 如图,已知四边形 ABCD 为圆内接四边形。求证: $AB \cdot CD + AD \cdot BC = AC \cdot BD$ .

证: 在 BD 上取点 E 使得  $\angle BAE = \angle CAD$ ,

于是 $\angle MAD = \angle AMF = \angle ANE = \angle NAD$ .

则可得 $\triangle BAE \hookrightarrow \triangle CAD$ , 从而  $AB \cdot CD = BE \cdot AC$ .

此时有 $\triangle EAD \hookrightarrow \triangle BAC$ , 从而  $AD \cdot BC = AC \cdot ED$ .

两式相加得  $AB \cdot CD + AD \cdot BC = AC \cdot BD$ .



**例6.** 如图,已知 $\triangle ABC$  的内切圆分别与三边切于点  $D \times E \times F \cdot M$  为 EF 中点.

求证:  $\angle FDM = \angle ADE$ ...

证:设AD与内切圆交于点P.

于是 $\triangle AEP \hookrightarrow \triangle ADE$ ,  $\triangle AFP \hookrightarrow \triangle ADF$ .

可得 
$$\frac{PE}{DE} = \frac{AE}{AD} = \frac{AF}{AD} = \frac{PF}{DF}$$
 ,于是  $PE \cdot DF = PF \cdot DE$  .  
由托勒密定理,  $PE \cdot DF + PF \cdot DE = EF \cdot PD = FM \cdot PD$ 

故  $PE \cdot DF = \frac{1}{2}EF \cdot PD = FM \cdot PD$  ,从而 $\triangle FDM \hookrightarrow \triangle PDE$ .

所以 $\angle FDM = \angle ADE$ .

