Exercise Session 1

Joint Probability Distribution 1

a) Normalize such that the table represents the joint probability table of P(a,b) (with a binary variable with domain $\{1,2\}$ and b a discrete variable with domain $\{true, false, maybe\}$?

b) Normalize such that the table represents the joint probability table of P(a, b, c) (with a, b and c binary variables with domain $\{true, false\}$?

$$\begin{array}{c|cc} P(a,b,c=true) & b \\ true & false \\ \hline a & true & 0.3 & 0.5 \\ false & 0.2 & 0.3 \\ \end{array}$$

$$\begin{array}{c|c} P(a,b,c=false) & b \\ \text{true} & \text{false} \\ \hline a & \text{false} \\ & \text{false} & 0.2 & 0.1 \\ \end{array}$$

$\mathbf{2}$ Continuous Probability Distribution

- a) Draw a rectangular continuous probability distribution.
- b) Draw a triangular continuous probability distribution.

3 Conditional Probability Distribution

a) Normalize such that the table represents the conditional probability table of P(a|b) (with a binary variable with domain $\{1,2\}$ and b a discrete variable with domain $\{true, false, maybe\}$?

b) Normalize such that the table represents the conditional probability table of P(a,b|c) (with a, b and c binary variables with domain $\{true, false\}$?

$$\begin{array}{c|c} P(a,b|c=true) & \begin{array}{c} b \\ true & false \end{array} \\ \\ a & \begin{array}{c} true \\ false \end{array} & \begin{array}{c} 0.3 \\ 0.5 \\ 0.2 \end{array} & \begin{array}{c} 0.3 \\ 0.3 \end{array} \end{array}$$

Marginal Probability Distribution from Joint Probability Distri-4 bution

a) Calculate the marginal probability distribution p(b) from the normalized probability distribution calculated in question 1.a.

1

b) Calculate the marginal probability distribution p(a, c) from the normalized probability distribution calculated in question 1.b.

5 Conditional Probability Distribution from Joint Probability Distribution

- a) Calculate the conditional probability distribution p(a|b) from the normalized probability distribution calculated in question 1.a.
- b) Calculate the conditional probability distribution p(b|a,c) from the normalized probability distribution calculated in question 1.b.

6 Independence

a) Fill in the question marks such that a and b are independent in the following probability distribution table.

$$P(a,b)$$
 true false maybe 0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.3

b) Fill in the question marks such that a and b are independent in the following probability distribution table.

$$P(a,b) egin{array}{ccccc} & b & & & & \\ true & false & maybe & & \\ \hline & 1 & 0.05 & 0.1 & 0.15 \\ a & 2 & ? & ? & ? & ? & \\ \end{array}$$

7 Conditional Independence

a) Fill in the question marks such that a and b are conditionally independent given c in the following probability distribution table.

P(a, b, c = true)		b			D(a, b)	$f_{\alpha}l_{\alpha\alpha}$	b	
		true	false	_	P(a, b, c = false)		true	false
	X	0.056	0.084			X	0.072	0.008
a	y	0.008	?		a	У	0.432	?
	${f z}$	0.016	?			${f Z}$	0.216	?

b) Fill in the question marks such that a and b are conditionally independent given c in the following probability distribution table.

D(a	b a - tmus)	b			D(a, b)	a = falaa	b	
$\Gamma(a)$	c, b, c = true	true	false		P(a, b, c = false)	c = faise	true	false
	X	0.056	0.084	-		X	0.072	?
a	y	0.008	0.012		a	У	0.432	?
	${f z}$	0.016	0.024			${f Z}$	0.216	?