Introduction to Machine Learning SS20	0/1 loss	Kernelized linear regression (KLR)	Backpropagation
Fundamental Assumption	$l_{0/1}(w;y_i,x_i) = 1$ if $y_i \neq \text{sign}(w^T x_i)$ else 0	Ansatz: $w^* = \sum_{i=1}^n \alpha_i x$	Output layer:
Data is iid for unknown $P: (x_i, y_i) \sim P(X, Y)$	Perceptron algorithm	$\alpha^* = \operatorname{argmin}_{\alpha} \alpha^T K - y _2^2 + \lambda \alpha^T K \alpha$	Error: $\delta^{(L)} = \mathbf{l}'(\mathbf{f}) = [l'(f_1),, l'(f_p)]$
True risk and estimated error	Use $l_P(w; y_i, x_i) = \max(0, -y_i w^T x_i)$ and SGD	$=(K+\lambda I)^{-1}y$, Prediction: $\hat{y}=\sum_{i=1}^{n}\alpha_{i}k(x_{i},\hat{x})$	Gradient: $\nabla_{\mathbf{W}^{(L)}} \ell(\mathbf{W}; \mathbf{y}, \mathbf{x}) = \delta^{(L)} \mathbf{v}^{(L-1)T}$ Hidden layers:
True risk: $R(w) = \int P(x, y)(y - w^T x)^2 \partial x \partial y =$ $\mathbb{F} [(y - w^T x)^2]$	$\nabla_{w} l_{P}(w; y_{i}, x_{i}) = \begin{cases} 0 & \text{if } y_{i} w^{T} x_{i} \geq 0 \\ y_{i} x_{i} & \text{otherwise} \end{cases}$	<i>i</i> =1 k-NN	Error: $\boldsymbol{\delta}^{(\ell)} = \boldsymbol{\phi}'(\mathbf{z}^{(\ell)}) \odot \mathbf{W}^{(\ell+1)T} \boldsymbol{\delta}^{(\ell+1)}$
$\square x, y[(y N X)]$	Data lin. separable \Leftrightarrow obtains a lin. separator (not	$y = \text{sign } \left(\sum_{i=1}^{n} y_i [x_i \text{ among } k \text{ nearest neigh-} \right)$	Gradient: $\nabla_{\mathbf{v},\mathbf{v}} \ell(\mathbf{W};\mathbf{v},\mathbf{x}) = \delta^{(\ell)} \mathbf{v}^{(\ell-1)T}$
Est. error: $\hat{R}_D(w) = \frac{1}{ D } \sum_{(x,y) \in D} (y - w^T x)^2$	necessarily optimal)	bours of x]) – No weights \Rightarrow no training! But	
Standardization	Support Vector Machine (SVM)	depends on all data.	$a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W_{t+1} \leftarrow W_t - a$
Centered data with unit variance: $\tilde{x}_i = \frac{x_i - \hat{\mu}}{\hat{\sigma}}$	Hinge loss: $l_H(w;x_i,y_i) = \max(0,1-y_iw^Tx_i)$	Imbalance	Clustering
$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$	$\nabla_{w} l_{H}(w; y, x) = \begin{cases} 0 & \text{if } y_{i} w^{T} x_{i} \ge 1 \\ -y_{i} x_{i} & \text{otherwise} \end{cases}$	up-/downsampling	
Cross-Validation	$w^* = \operatorname{argmin}_{w} l_H(w; x_i, y_i) + \lambda w _2^2$	Cost-Sensitive Classification	k-mean $\hat{P}(\mu) - \nabla^n$ min $ x - \mu ^2$
For all models m , for all $i \in \{1,,k\}$ do:	Kernels	Scale loss by cost: $l_{CS}(w;x,y) = c_{\pm}l(w;x,y)$	$\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \dots k\}} x_i - \mu_j _2^2$
1. Split data: $D = D_{train}^{(i)} \uplus D_{test}^{(i)}$ (Monte-Carlo or	efficient, implicit inner products	Metrics $n = n_+ + n, n_+ = TP + FN, n = TN + FP$	$\hat{\mu} = \operatorname{argmin}_{\mu} \hat{R}(\mu) \dots \text{non-convex}, \text{NP-hard}$
k-Fold) 2. Train model: $\hat{w}_{i,m} = \operatorname{argmin}_{w} \hat{R}_{train}^{(i)}(w)$	Properties of kernel	$\Delta_{COURACY}$: $\frac{TP+TN}{TP+TN}$ Precision: $\frac{TP}{TP-TP}$	Lloyd's Heuristic:
3. Estimate error: $\hat{R}_{m}^{(i)} = \hat{R}_{test}^{(i)}(\hat{w}_{i,m})$	$k: X \times X \to \mathbb{R}$, k must be some inner product	Recall/TPR $\cdot \frac{TP}{}$ FPR $\cdot \frac{FP}{}$	• Initialize cluster centers $\mu^{(0)} = [\mu_1^{(0)},, \mu_k^{(0)}]$
Select best model: $\hat{m} = \operatorname{argmin}_{m} \frac{1}{k} \sum_{i=1}^{k} \hat{R}_{m}^{(i)}$	(symmetric, positive-definite, inicar) for some space	2TP 2	While not converged
Gradient Descent		ROC Curve: $y=TPR$, $x=FPR$	- Assign points $z_i^{(t)} \leftarrow \operatorname{argmin}_i \mathbf{x}_i - \boldsymbol{\mu}_i^{(t-1)} _2^2$
1. Pick arbitrary $w_0 \in \mathbb{R}^d$	and $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$	Multi-class	- Update centers $\mu_j^{(t)} \leftarrow \frac{1}{n_i} \sum_{i:z^{(t)}=i} \mathbf{x}_i$
$2. \ w_{t+1} = w_t - \eta_t \nabla \hat{R}(w_t)$	Kernel matrix	(1)	, , , , ,
Stochastic Gradient Descent (SGD)	$K = \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \end{bmatrix}$	one-vs-all (c) , one-vs-one $(\frac{c(c-1)}{2})$, encoding	k-Means++: Start with random data point as center and add centers randomly, proportionally to the
1. Pick arbitrary $w_0 \in \mathbb{R}^d$	$K = \begin{bmatrix} \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix}$	Multi-class Hinge loss	squared distance to closest center.
2. $w_{t+1} = w_t - \eta_t \nabla_w l(w_t; x', y')$, with u.a.r.	Positive semi-definite matrices \Leftrightarrow kernels k	$l_{MC-H}(w^{(1)},,w^{(c)};x,y) = $	Dimension reduction
data point $(x',y') \in D$	Important kernels	$\max(0,1+\max_{j\in\{1,\cdots,y-1,y+1,\cdots,c\}}w^{(j)T}x-w^{(y)T}x)$	PCA
Regression	Linear: $k(x,y) = x^T y$		$D=x_1,,x_n\subset\mathbb{R}^d, \Sigma=\frac{1}{n}\sum_{i=1}^nx_ix_i^T, \mu=0$
Solve $w^* = \operatorname{argmin}_w \hat{R}(w) + \lambda C(w)$	Polynomial: $k(x,y) = (x^Ty+1)^d$	Parameterize feature map with θ : $\phi(x, \theta) =$	$(W,z_1,,z_n) = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^n Wz_i - x_i _2^2,$
Linear Regression	Gaussian: $k(x,y) = exp(- x-y _2^2/(2h^2))$	$\varphi(\theta^T x) = \varphi(z)$ (activation function φ)	$W = (v_1 v_k) \in \mathbb{R}^{d \times k}$, orthogonal; $z_i = W^T x_i$
$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 = Xw - y _2^2$	Laplacian: $k(x,y) = exp(- x-y _1/h)$ Composition rules	$\Rightarrow w^* = \operatorname{argmin}_{w,\theta} \sum_{i=1}^n l(y_i; \sum_{j=1}^m w_j \phi(x_i, \theta_j))$	v_i are the eigenvectors of Σ
$\nabla_{w}\hat{R}(w) = -2\sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i$	Valid kernels k_1, k_2 , also valid kernels: $k_1 + k_2$; $k_1 \cdot k_2$;	$f(x; w, \theta_{1:d}) = \sum_{j=1}^{m} w_j \varphi(\theta_j^T x) = w^T \varphi(\Theta x)$	Kernel PCA
$w^* = (X^T X)^{-1} X^T y,$	$c \cdot k_1, c > 0$; $f(k_1)$ if f polynomial with pos. coeffs.	Activation functions	Kernel PC: $\alpha_{-}^{(1)},, \alpha_{-}^{(k)} \in \mathbb{R}^n, \ \alpha_{-}^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i$
$\mathbf{E}[w^*] = w, \mathbf{V}[w^*] = (X^T X)^{-1} \sigma^2$	or exponential	Sigmoid: $\frac{1}{1+exp(-z)}$, $\varphi'(z) = (1-\varphi(z)) \cdot \varphi(z)$	$K = \sum_{i=1}^{n} \lambda_i v_i v_i^T, \lambda_1 \ge \ge \lambda_d \ge 0$
Ridge regression	Reformulating the perceptron	tanh: $\varphi(z) = tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$	New point: $\hat{z} = f(\hat{x}) = \sum_{j=1}^{n} \alpha_j^{(i)} k(\hat{x}, x_j)$
$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda w _2^2$	Ansatz: $w^* \in \operatorname{span}(X) \Rightarrow w = \sum_{j=1}^n \alpha_j y_j x_j$	ReLU: $\varphi(z) = \max(z,0)$	Autoencoders
$\nabla_{w} \hat{R}(w) = -2\sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i + 2\lambda w$	$\alpha^* = \underset{\alpha \in \mathbb{D}^n}{\operatorname{argmin}} \sum_{i=1}^n \max(0, -\sum_{j=1}^n \alpha_j y_i y_j x_i^T x_j)$	Forward Propagation	Find identity function: $x \approx f(x; \theta)$
$w^* = (X^T X + \lambda I)^{-1} X^T y$ $\mathbf{E}[w^*] = (X^T X + \lambda I)^{-1} (X^T X) w$	κernelized perceptron and SVM	Input layer: $\mathbf{v}^{(0)} = \mathbf{x}$	$f(x;\theta) = f_{decode}(f_{encode}(x;\theta_{encode});\theta_{decode})$
$\mathbf{V}[w^*] = \sigma^2 (X^T X + \lambda I)^{-1} (X^T X)[(X^T X + \lambda I)^{-1}]^{\top}$	Use $\alpha^T k_i$ instead of $w^T x_i$,	Hidden layers: $\mathbf{z}^{(\ell)} = \mathbf{W}^{(\ell)} \mathbf{v}^{(\ell-1)}, \ \mathbf{v}^{(\ell)} = \phi(\mathbf{z}^{(\ell)})$	Probabilistic modeling
L1-regularized regression (Lasso)	use $\alpha^T D_v K D_v \alpha$ instead of $ w _2^2$	Output layer: $f = \mathbf{W}^{(L)} \mathbf{v}^{(L-1)}$	Find $h: X \to Y$ that min. pred. error: $P(h) = \int P(x,y) I(y,h(x)) dy dy = \mathbb{E} \left[I(y,h(x))\right]$
$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda w _1$	$k_i = [y_1 k(x_i, x_1),, y_n k(x_i, x_n)], D_v = \text{diag}(y)$	SGD for ANNs	$R(h) = \int P(x,y)l(y;h(x))\partial yx\partial y = \mathbb{E}_{x,y}[l(y;h(x))]$ For least squares regression
$K(w) - \sum_{i=1}^{n} (y_i - w x_i) + \mathcal{K} w 1$ Classification	Prediction: $\hat{y} = \text{sign}(\sum_{i=1}^{n} \alpha_i y_i k(x_i, \hat{x}))$ SGD update:	$\mathbf{W} = \operatorname{argmin}_{\mathbf{W}} \sum_{i=1}^{n} \ell(\mathbf{W}; \mathbf{x}_{i}, y_{i})$	
Solve $w^* = \operatorname{argmin}_{w} l(w; x_i, y_i)$; loss function l	$\alpha_{t+1} = \alpha_t$, if mispredicted: $\alpha_{t+1,i} = \alpha_{t,i} + \eta_t$ (c.f. updating weights towards mispredicted point)	$\ell(\mathbf{W}; \mathbf{x}, \mathbf{y}) = \ell(\mathbf{y} - f(\mathbf{x}, \mathbf{W}))$ For random (\mathbf{x}, \mathbf{y}) , $\mathbf{W}_{t+1} = \mathbf{W}_t - \eta_t \nabla_{\mathbf{W}} \ell(\mathbf{W}; \mathbf{x}, \mathbf{y})$	Best h : $h^*(x) = \mathbb{E}[Y X=x]$ Pred.: $\hat{y} = \hat{\mathbb{E}}[Y X=\hat{x}] = \int \hat{P}(y X=\hat{x})y\partial y$
Solve $w = \operatorname{argmin}_{w} \iota(w, x_i, y_i)$, loss function t	updating weights towards inispredicted point)	For random (\mathbf{x},\mathbf{y}) , $\mathbf{v}\mathbf{v}_{t+1} = \mathbf{v}\mathbf{v}_t - \mathbf{i}\mathbf{v}_t \mathbf{v}\mathbf{v}(\mathbf{v}\mathbf{v},\mathbf{x},\mathbf{y})$	1 I.u., $y - \mathbb{E}[I \mid A - \lambda] - J F(y \mid A = \lambda)y \sigma y$

Maximum Likelihood Estimation (MLE)	Examples	Hard-EM algorithm	e.g. $\nabla_w \log(1 + \exp(-y\mathbf{w}^T\mathbf{x})) =$
$\theta^* = \operatorname{argmax}_{\theta} \hat{P}(y_1,, y_n x_1,, x_n, \theta)$ E.g. lin. + Gauss: $y_i = w^T x_i + \varepsilon_i, \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ i.e. $y_i \sim N(w^T x_i, \sigma^2)$, With MLE (use argmin $-\log$): $w^* = \operatorname{argmin}_w \sum (y_i - w^T x_i)^2$	MLE for $P(y) = p = \frac{n_+}{n}$ MLE for $P(x_i y) = N(x_i; \mu_{i,y}, \sigma_{i,y}^2)$: $\hat{\mu}_{i,y} = \frac{1}{n_y} \sum_{x \in D_{x_i y}} x$ $\hat{\sigma}_{i,y}^2 = \frac{1}{n_y} \sum_{x \in D_{x_i y}} (x - \hat{\mu}_{i,y})^2$	Initialize parameters $\theta^{(0)}$ E-step: Predict most likely class for each point: $z_i^{(t)} = \operatorname{argmax}_z P(z x_i, \theta^{(t-1)})$ = $\operatorname{argmax}_z P(z \theta^{(t-1)})P(x_i z, \theta^{(t-1)})$; M-step: Compute the MLE:	$\frac{1}{1+\exp(-yw^Tx)} \cdot \exp(-yw^Tx) \cdot (-yx) =$ $\frac{1}{1+\exp(yw^Tx)} \cdot (-yx)$ Invertible/nonsingular Matrices $A^{m \times m} : A^{-1}A = I_d = AA^{-1} \text{ only if } \det(A) \neq 0$
Bias/Variance/Noise	MLE for Poi.: $\lambda = \operatorname{avg}(x_i)$	$\theta^{(t)} = \operatorname{argmax}_{\theta} P(D^{(t)} \theta)$, i.e. $\mu_j^{(t)} = \frac{1}{n_i} \sum_{i:z_i = jx_j}$	Ax=0 has only trivial solution $x=0$.
Prediction error = $Bias^2 + Variance + Noise$	\mathbb{R}^d : $P(X = x Y = y) = \prod_{i=1}^d Pois(\lambda_y^{(i)}, x^{(i)})$	Soft-EM algorithm	Orthogonal Matrices
Maximum a posteriori estimate (MAP)	Deriving decision rule	(1)	$A^{m \times m}: A^{\top}A = I_d = AA^{\top} \Leftrightarrow A^{\top} = A^{-1}$ Symmetric Positive Definite Matrices
Assume bias on parameters, e.g. $w_i \in \mathcal{N}(0, \beta^2)$ Bay.: $P(w x,y) = \frac{P(w x)P(y x,w)}{P(y x)} = \frac{P(w)P(y x,w)}{P(y x)}$	$P(y x) = \frac{1}{Z}P(y)P(x y), Z = \sum_{y}P(y)P(x y)$ $y^* = \max_{y} P(y x) = \max_{y} P(y)\prod_{i=1}^{d} P(x_i y)$	E-step: Calc p for each point and cls.: $\gamma_j^{(t)}(x_i)$ M-step: Fit clusters to weighted data points: $w_j^{(t)} = \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i); \ \mu_j^{(t)} = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)x_i}{\sum_{i=1}^n \gamma_i^{(t)}(x_i)}$	Symmetric: $A^{n \times n} : A^{\top} = A$, symmetric positive definite if: $\forall x \setminus \{0\} \in \mathbb{R}^n : x^{\top}Ax > 0$ (semi-definite
Logistic regression	Gaussian Bayes Classifier	$\sum_{i=1}^{n} \gamma_{i}^{(t)}(x_{i}) \sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})$	if: ≥ 0) \Leftrightarrow all eigenvalues of A are positive. Eigendecomposition
Link func.: $\sigma(w^T x) = \frac{1}{1 + exp(-w^T x)}$ (Sigmoid) $P(y x,w) = Ber(y;\sigma(w^T x)) = \frac{1}{1 + exp(-yw^T x)}$ Classification: Use $P(y x,w)$, predict most likely class label. MLE: $argmax_w P(y_{1:n} w_xx_{1:n})$	$\hat{\boldsymbol{n}} = \hat{\boldsymbol{n}} - \frac{1}{2} \hat{\boldsymbol{\nabla}} \cdot \hat{\boldsymbol{r}} \cdot \hat{\boldsymbol{r}$	$\sigma_j^{(t)} = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)(x_i - \mu_j^{(t)})^T (x_i - \mu_j^{(t)})}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$ Soft-EM for semi-supervised learning	$AP = PD \Leftrightarrow A = PDP^{-1}$ iff eigenvectors of A form a basis in \mathbb{R}^n . D diagonal matrix of eigenvalues. Eigenvectors in P . $Ap = \lambda p$
MLE: $\operatorname{argmax}_{w} P(y_{1:n} w,x_{1:n})$		labeled y_i : $\gamma_j^{(t)}(x_i) = [j = y_i]$, unlabeled:	Cholesky decomposition
$\Rightarrow w^* = \operatorname{argmin}_w \sum_{i=1}^n log(1 + exp(-y_i w^T x_i))$	Fisher's LDA (c=2)	$\gamma_j^{(t)}(x_i) = P(Z = j x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$	$A^{n \times n}$: $A = LL^{\top}$, symmetric and positive definite. Singular value decomposition
SGD update: $w = w + \eta_t yx \hat{P}(Y = -y w,x)$ $\hat{P}(Y = -y w,x) = \frac{1}{1 + exp(yw^Tx)}$ MAP: Gauss. prior $\Rightarrow w _2^2$, Lap. p. $\Rightarrow w _1$ SGD: $w = w(1 - 2\lambda \eta_t) + \eta_t yx \hat{P}(Y = -y w,x)$	Assume: $p=0.5$; $\hat{\Sigma}_{-}=\hat{\Sigma}_{+}=\hat{\Sigma}$ discriminant function: $f(x)=\log\frac{p}{1-p}+\frac{1}{2}[\log\frac{ \hat{\Sigma}_{-} }{ \hat{\Sigma}_{+} }+((x-\hat{\mu}_{-})^{T}\hat{\Sigma}_{-}^{-1}(x-\hat{\mu}_{-}))-$	Useful Math Probabilities $\mathbb{E}_{x}[X] = \begin{cases} \int x \cdot p(x) \partial x & \text{if continuous} \\ \sum_{x} x \cdot p(x) & \text{otherwise} \end{cases}$	and $\Sigma^{m \times n}$ diagonal with singular values $\sigma = \sqrt{\lambda(A^{\top}A)}$ $Av = \sigma u$
Bayesian decision theory	$\begin{cases} ((x - \hat{\mu}_+)^T \hat{\Sigma}_+^{-1} (x - \hat{\mu}_+)) \\ \text{Predict: } y = \text{sign}(f(x)) = \text{sign}(w^T x + w_0) \end{cases}$	$\operatorname{Var}[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ $P(A B) = \frac{P(B A) \cdot P(A)}{P(B)}; \ p(Z X,\theta) = \frac{P(X,Z \theta)}{p(X \theta)}$	
- Conditional distribution over labels $P(y x)$ - Set of actions A - Cost function $C: Y \times A \to \mathbb{R}$	$w = \hat{\Sigma}^{-1}(\hat{\mu}_{+} - \hat{\mu}_{-}); w_{0} = \frac{1}{2}(\hat{\mu}_{-}^{T}\hat{\Sigma}^{-1}\hat{\mu}_{-} - \hat{\mu}_{+}^{T}\hat{\Sigma}^{-1}\hat{\mu}_{+})$	$P(x,y) = P(y x) \cdot P(x) = P(x y) \cdot P(y)$ $\mathbb{E}_{x}[b+cX] = b+c \cdot \mathbb{E}_{x}[X]$	
$a^* = \operatorname{argmin}_{a \in A} \mathbb{E}[C(y,a) x]$	Outlier Detection	$\mathbb{E}_{x}[b+CX] = b+C \cdot \mathbb{E}_{x}[X], C \in \mathbb{R}^{n \times n}$	
Calculate \mathbb{E} via sum/integral. Classification : $C(y,a) = [y \neq a]$; asymmetric:	$P(x) \le \tau$	$\mathbb{V}_x[b+cX] = c^2 \mathbb{V}_x[X]$	
Classification: $C(y,a) = [y \neq a]$, asymmetric: $C(y,a) = \begin{cases} c_{FP} \text{, if } y = -1, a = +1 \\ c_{FN} \text{, if } y = +1, a = -1 \\ 0 \text{, otherwise} \end{cases}$ Regression: $C(y,a) = (y - a)^2$; asymmetric	Categorical Naive Bayes Classifier MLE for feature distr.: $\hat{P}(X_i = c Y = y) = \theta_{c y}^{(i)}$ $\theta_{c y}^{(i)} = Count(X_i = c, Y = y)$	$\begin{array}{lll} \mathbb{V}_{X}[b+CX] = C\mathbb{V}_{X}[X]C^{\top}, & C \in \mathbb{R}^{n \times n} \\ \operatorname{Cov}[X, Y] &= \mathbb{E}[(X - \mathbb{E}(X)(Y - \mathbb{E}(Y))] &= \\ \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \\ \mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\operatorname{Cov}[X,Y] \end{array}$	
$C(y,a) = c_1 \max(y-a,0) + c_2 \max(a-y,0)$ E.g. $y \in \{-1,+1\}$, predict + if $c_+ < c$, $c_+ =$	Prediction: $y^* = \operatorname{argmax}_y \hat{P}(y x)$	Distributions	
$\mathbb{E}(C(y,+1) x) = P(y=1 x) \cdot 0 + P(y=-1 x) \cdot c_{FP}$ c_ likewise	, Missing data	Normal (Gauss): $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	
Discriminative / generative modeling	Mixture modeling	Bayes Rule	
· · · · · · · · · · · · · · · · · · ·	Model each c. as probability distr. $P(x \theta_j)$	$P(A B) = \frac{P(B A)P(A)}{P(B)} = \frac{P(B A)P(A)}{\sum_{A} P(B A)P(A)}$	
Discr. estimate $P(y x)$, generative $P(y,x)$ Approach (generative): $P(x,y) = P(x y) \cdot P(y)$ Estimate prior on labels $P(y)$	$P(D \theta) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_{j} P(x_{i} \theta_{j})$ $F(w,\theta) = -\sum_{i=1}^{n} \log \sum_{j=1}^{k} w_{j} P(x_{i} \theta_{j})$	P-Norm $ x _p = (\sum_{i=1}^n x_i ^p)^{\frac{1}{p}}, 1 \le p < \infty$	
- Estimate cond. distr. $P(x y)$ for each class y	Gaussian-Mixture Bayes classifiers	Some gradients	
- Pred. using Bayes: $P(y x) = \frac{P(y)P(x y)}{P(x)}$	Estimate prior $P(y)$; Est. cond. distr. for each class	$\nabla_x x _2^2 = 2x$	
$P(x) = \sum_{y} P(x, y)$	$P(x y) = \sum_{j=1}^{k_{y}} w_{j}^{(y)} N(x; \mu_{j}^{(y)}, \Sigma_{j}^{(y)})$	$-f(x) = x^T A x; \nabla_x f(x) = (A + A^T) x$	