

Genetics = the study of *heredity*

Genes = the "matter" of heredity

Pythagoras (580-500 B.C.):

Hereditary material present as a cocktail in semen -fluids collected from every organ as it travels through body.

But, how to account for obvious shared physical traits between mother and offspring?!

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Empedocles (490-430 B.C.):

Hereditary material in *both* semen *and* female sexual fluid -- embryo results from mixture of the two.

'They were poured in pure places; some met with cold and became women' 'For the male was warmer . . . this is the reason why men are dark, more powerfully built, and hairier'.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Aristotle (384-322 B.C.):

Inheritance = physical substance coming from both parents

Semen = man's purified blood -engenders child when comingled with woman's menstrual blood

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

William Harvey (1578-1657):

Blood does NOT contribute to formation of fetus -- questioned direct role of semen in inheritance.

Egg fertilized inside female by some kind of infection begun by sexual act!

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Antonie van Leeuwenhoek (1632-1723):

Living things generated by cellular interactions.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Pierre-Louis Moreau de Maupertuis (1698-1759):

First to study inheritance pattern of human disorder in single family -- anticipated modern idea of dominant/recessive genes.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Charles Darwin (1809-1882):

Pangenesis: small particles produced throughout body flow through bloodstream.

Gregor Mendel (1822-1884)

Experiments in Plant Hybridization 1865

"differentiating characters"

Friedrich Miescher

1869:
nuclein (DNA) from pus

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Thomas Hunt Morgan (1866-1945)

Heredity is based on genes carried on chromosomes.

1933 Nobel Prize:

Discovery of hereditary transmission mechanics in *Drosophila*

"The fittest family"

Eugenics Record Office: "breeding" better humans

Oswald Avery, Colin Macleod, Maclyn McCarty

1940's

gene = DNA

Watson & Crick, 1953

Traits: Overall F_2 ratio = 3A: 1a

Traits: Overall F_2 ratio = 3A: 1a

Traits: Overall F_2 ratio = 3A: 1a

Autosomal Recessive Inheritance

DNA bases

PURINES

PYRIMIDINES

Thymine (T)

DNA base pairing

DNA polymer (nucleotide polymer)

QuickTime™ and a Cinepak decompressor are needed to see this picture.

The Central Dogma

Second letter

	U	С	А	G	
U	UUU } Phe UUC } Leu UUG } Leu	UCU UCC UCA UCG	UAU Tyr UAA Stop UAG Stop	UGU Cys UGA Stop UGG Trp	U C A G
С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAA GIn CAG	CGU CGC CGA CGG	U C A G
Α	AUU AUC AUA IIIe AUG Met	ACU ACC ACA ACG	AAU ASN AAA AAG Lys	AGU Ser AGA AGA AGG	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA GAG Glu	GGU GGC GGA GGG	U C A G

the Genetic Code

First letter

defective gene: mutant hemoglobin

sickle cell normal rbc rbc

normal DNA GTG CAC CTG ACT CCT GAG GAG AAG TCT sickle cell DNA GTG CAC CTG ACT CCT GTG GAG AAG TCT

normal Hb VAL HIS LEU THR PRO GLU GLU LYS SER sickle cell Hb VAL HIS LEU THR PRO VAL GLU LYS SER

Genetic Diagnosis

Functional/structural assays of proteins (genetic endproducts)

e.g.:

- newborn screening for inherited metobolic diseases [phenylketonuria: phenylalanine hydroxylase]
- •detection of variant hemoglobin form: sickle cell anemia

Direct analysis of DNA

DNA sequence analysis

postimplantation genetic diagnosis

chorionic villus sampling (CVS)

amniocentesis

preimplantation genetic diagnosis (PGD)

in vitro fertilization (IVF) followed by biopsy

oogenesis & fertilization

polar body diagnosis

- infer embryo's genetic condition without risk of damage, BUT
- cannot learn about paternal contribution

zygote

preimplantation development

0 through 6 days post fertilization

cleavage stage diagnosis

- assess BOTH maternal & paternal genetic contributions
- direct assessment = more reliable, BUT some risk of damage to embryo

Gene Therapy

= the treatment of disease by genetic modification of patient's cells

Gene Therapy "needs"

- appropriate target cell with long half-life or good replicative potential in vivo
- technical strategy to carry/transfer corrective gene into target

Target Cells

• appropriate tissue type

- easily accessible
- long life span
- proliferating, if delivery vector needs to integrate into replicating DNA

stem cells: totipotent embryonic vs. multipotent/restricted adult

Strategies for introducing genes into cells:

- cell fusion
- calcium phosphate coprecipitation
- microinjection
- electroporation
- liposome fusion
- direct introduction of "naked" DNA
- viruses

With many unanswered questions, how should we use gene therapies and how much are we willing to risk?

Jesse Gelsinger

