Simple harmonic motion

1 Amplitude Xmax = A meterim (max magnitude of displacement from equilibrium position)

O Period, 7 7=| second, s (time taken for one oscillation)

3 Frequency, f f = +Hertz, Hz, 5" (num of oscillations in one second)

Angular fequency rads-1 Angular Velocity (rate of change of angular displacement) W= 2 Tf

General SHM equation

K = 0 K=0 Kmax Umax

Umax U=0 amax amax a=0

Ą 2 Asinut Start from 0

X/cm (something)

telation	ynax	with t	with or
*	Ą	x=Asin (wt)	
V= A	Aw	V= d (Acin (wt)) = A cos w wt V= Aw cos (wt)	=WM ² -X ²
a= N	t= -4w2 =4w2	a= d (Aw cos(wt)) = Aw-sin wwt) a= - Aw ² sin (wt)	0=- M2 x
(= - 2mV	ZmA2n2	$K = \frac{1}{2}m(Aw \cos(wt))^{2}$ $X = \frac{1}{2}mA^{2}w^{2}\cos^{2}(wt)$	K=3 ^{3ω} Λ ₅ (V ₅ -χ ₅
Vγ	in Rw	N=2mA2N2sin2(wt) N=12 m W2 x2
=K+V	3mw2A2	E = 12 m N2	E=2 mw2A2

Period of SHM

T= 1 W= 2t T= T

K-spring constant

$$V = \frac{2\pi}{K}, W = \frac{K}{M}$$

$$W = \frac{2\pi}{T}$$

$$= \frac{2\pi}{2\pi M}$$

$$W = \frac{2\pi}{K}$$

