Asset Pricing

Prof. Marliese Uhrig-Homburg

Sommersemester 2017

Karlsruher Institut für Technologie

Contents

Ι	Einf	Einführung			
	I.1	Kernprinzipien der Finanzwirtschaft	3		
	I.2	Relative vs. absolute Bewertung	4		
	I.3	Bewertungsprinzip	4		
II	Stochastischer Diskont-Faktor Ansatz				
	II.1	Präferenzen der Investoren	6		
	II.2	Beispiele für Nutzenfunktionen	7		
	II.3	Zentrale Bewertungsbeziegung	7		
	II.4	Stochastischer Diskontfaktor	8		
	II.5	Beispiele für Preise und Zahlungen	9		
II	I Klas	ssische Theorien	10		
	III.1	Ökonomie der Zinsen	10		
	III.2	Risikoanpassung	13		
	III.3	Unsystematisches Risiko	16		
	III.4	Beta als Risikomaß	17		
A	Übu	ngen	18		

Chapter I

Einführung

Es werden verschiedene Preise bzw. Renditen an Wertpapiermärkten betrachtet, unter anderem:

- Aktienkurse
- Anleiherenditen
- Derivatenpreise

Warum stellen sich beobachtete Marktpreise bzw. Renditen ein? A priori bedeuten niedrige Price eine höhere Rendite. Man kann also die obige Frage auch umformulieren zu: warum einige Asset einen höheren erwarteten Return auszahlen als andere.

Asset Pricing Theorie

Es gibt zwei Aspekte die entscheidend in den Wert eines Assets einfließen. Einmal ist es die Verzögerung der Auszahlen, also wie lange man auf die Auszahlung des z.B. Wertpapiers warten muss und anderer Seits beeinflusst auch das zugrunde liegende Risiko den Wert des Assets. Auch wenn die Korrektur für die Verzögerung weniger problematisch ist, ist die Anpassung für das Risiko ein sehr viel wichtigerer Faktor für die Bewertung des Wertes eines Assets. Asset Pricing, wie viele anderer ökonomische Disziplinen, teilt den Zwiespalt in normativer zu deskriptiver Theorie. Asset Pricing liefert sowohl

- Bewertungstheorien zur Erklärung der Preisbildung. Damit ist es möglich zu verstehen, warum sich Preise oder Returns so eingestellt haben, wie sie sind; als auch
- Schlussfolgerungen, falls Vorhersagen der Theorie ≠ Beobachtung. Was ein Verständnis dafür gibt, warum und wo Bewertungen sich falsch eingestellt haben und ggf. diese Schwächen ausnutzen.

Gerade der letzte Aspekt ist ein Grund für die Beliebtheit und vielzahligen praktischen Anwendung von Asset-Pricing. Denn eine **Fehlbewertung am Markt** ermöglicht eine **Handelsstrategie** (Normative Theorie).

Diese auftrentede Fehleinschätzung von Wertpapieren stammt unter anderem aus der oftmals vorherrschenden Asymmetrie von Informationen an einem Markt. Häufig sind keine Marktpreise für Ansprüche auf zukünftige Zahlungen vorhanden

- geplante Investitionsprojekte
- Neuemissionen von Wertpapieren
- Finanzinnovationen
- . . .

Man findet demnach die Asset Pricing Theorie oft für zwei Grundlegende Aspekte:

- zur Begründung, wie hoch fairer Preis sein sollte, und
- als wichtige Entscheidungsgrundlage

I.1 Kernprinzipien der Finanzwirtschaft

Bewertung fußt auf den Kernprinzipien der Finanzwirtschaft:

- **Primat der Zahlungen**: für eine Entscheidung sind allein Zahlung (oder Zahlungsäquivalente) relevant; dies wird manchmal auch *Dominance* genannt.
- Zeitwert des Geldes: der Wert einer Zahlung hängt davon ab, wann sie erfolgt
- Ertrag vs. Risiko: bei vielen Entscheidungen ist eine Abwägung zwischen Ertrag und Risiko zu treffen.
- Aggregation durch Märkte: Wertpapiermärkte aggregieren Präferenzen und Informationen
- Arbitragefreiheit: Preise an kompetativen Wertpapiermärkten zeichnen sich durch die Abwesenheit von Arbitrage aus

I.2 Relative vs. absolute Bewertung

Es gibt zwei teilweise gegenläufige Ansätze zur Bewertung von Assets

absolut: mit Bezug zu grundlegenden makroökonomischen Faktoren.

- Konsum-basierte oder allgemeine Gleichgewichtsmodelle
- Beispiel: capital Asset Pricing Model

relativ: zu gegebenen anderen Wertpapieren (Basiswertpapieren)

- Duplikatopn und Gesetz des einen Preises
- Beispiel: Optionspreistheorie nach Black/Scholes

Typische Anwendungen enthalten beide Aspekte und der Anteil zu welchem man den einen oder anderen Ansatz wählt, hängt für gewöhnlich vom betrachteten Asset und Grund für die Bewertung ab.

I.3 Bewertungsprinzip

Asset Pricing liegt eine einfach Grundidee zugrunde:

Preise entsprechen erwarteten diskontierten Zahlungen

Zahlungsstrom: Zukünftige unsichere Zahlungen

• Zeit- und Risikodimension

Bewertungsprinzip berücksichtigt Dimension durch geeignete

- Diskontierung
- Erwartungsbildung

Chapter II

Stochastischer Diskont-Faktor Ansatz

"Asset pricing theory all stems from one simple concept, presented in the first page of the first chapter of this book: **price equals expected dicounted payoff**. The rest is elaboration, special cases, and a closet full of tricks that make the central equation useful from one or another application."

Quelle: John H. Cochrane, Asset Pricing, S. xiii

Fragestellung: Gegebener Zahlungsstrom (z.B. Dividenden, Zinsen, Auszahlungen von Derivaten, Rückflüsse aus Investitionen, ...)

- Welchen Wert besitzt der Zahlungsstrom?
- Wie wirken Zeit und Risiko
- Wie ändert sich Wert, wenn sich Ökonomie verändert? (Risikomanagement)

Einfacher formaler Rahmen:

- zukünftige (unsichere) Zahlung x_{t+1}
- gesucht: Heutiger Wert p_t

II.1 Präferenzen der Investoren

Idee: Investor trifft wirtschaftliche Entscheidungen mit dem Ziel, möglichst günstigen Konsumstrom zu erreichen.

Formal über Nutzenfunktionen:

$$U(c_t, c_{t+1}) = u(c_t) + \beta \cdot \mathbb{E}_t \left[u(c_{t+1}) \right]$$

 $c_t = \text{Konsum in } t$

 $c_{t+1} = \text{Konsum in } t+1$

Plausible Annahmen bezüglich Eigenschaften von Nutzenfunktionen

positiver Grenznutzen: Nutzen wächst, wenn Konsum in beliebigem Zeitpunkt wächst, d.h. "mehr ist besser als weniger" (nicht gesättigte Investoren)

abnehmender Grenznutzen: Je höher der Konsum in einem Zeitpunkt, desto geringer ist der durch zusätzliche Konsumeinheit erzeugte Nutzenzuwachs

Nutzenfunktion bildet Ungeduld und Risikoaversion der Investoren ab:

Ungeduld: $\beta < 1$ erfasst Präferenz für frühere Zahlungen subjektive Diskontierung

Risikoaversion: zukünftiger Konsum c_{t+1} unsicher, daher $\mathbb{E}_t[u(c_{t+1})]$. Krümmung der Nutzenfunktion u zentral.

Beispiel: 50/50 Wetter

$$\mathbb{E}\big[u(c)\big] = 0.5 \cdot u(\overline{c} + x) + 0.5 \cdot u(\overline{c} - x)$$

 $u \text{ konkav} \Rightarrow \text{Wette vermeiden}$

Gesamtnutzenfunktion $U(c_t, c_{t+1})$ am einfachsten über Nutzenindifferenzkurven darstellbar:

- Alle Punkte auf einer Kurve weisen denselben Nutzen auf.
- \bullet Je weiter entfernt vom Ursprung, desto höher der Nutzen \to folgt aus positivem Grenznutzen
- Iso-Nutzenlinien verlaufen (streng) konvex. \rightarrow folgt aus abnehmendem Grenznutzen
- Aversion gegen intertemporale Substitution

II.2 Beispiele für Nutzenfunktionen

Power-Nutzenfunktion

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}$$

- $-c\frac{u''(c)}{u'(c)} = \gamma$: Konstante relative Risikoaversion
- $\bullet\,$ strebt für $\gamma \to 1$ gegen Log-Nutzenfunktion

$$u(c) = \ln(c)$$

Quadratische Nutzenfunktion

$$u(c) = -\frac{1}{2} (\overline{c} - c)^2, \quad c < \overline{c}$$

II.3 Zentrale Bewertungsbeziegung

- Investor konsumiert c_t, c_{t+1} und kann beliebigen Anteil ξ der Zahlung x_{t+1} kaufen oder verkaufen
- Kalkül des Investors:

$$\max_{\xi} u(c_t) + \beta \mathbb{E}_t \big[u(c_{t+1}) \big] \text{ u.d.N.}$$

$$c_t = e_t - p_t \xi$$
$$c_{t+1} = e_{t+1} + x_{t+1} \xi$$

• Bedingung erster Ordnung:

$$p_t u'(c_t) = \mathbb{E}_t \Big[\beta u'(c_{t+1}) x_{t+1} \Big]$$

• Investor kauft/verkauft solange bis Grenzosten = Grenzertrag

Aus der first-order Bedingung folgt

• zentrale Bewertungsgleichung

$$p_t = \mathbb{E}_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} x_{t+1} \right]$$

in vielen Fällen hilfreich, obgleich sowohl
 Preis als auch Konsum endogene Größen!

II.4 Stochastischer Diskontfaktor

Hilfreiche Separation:

• Mit stochastischem Diskontfaktor

$$m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}$$

• vereinfacht sich zentrale Bewertungsbeziehung zu

$$p_t = \mathbb{E}_t \big[m_{t+1} x_{t+1} \big]$$

Stochastische Diskontfaktor verallgemeinert übliches Verständnis von Diskontfaktoren:

- Sichere Zahlung x_{t+1} : $p_t = \frac{1}{R^f} x_{t+1} = \frac{1}{1+r^f} x_{t+1}$
- Risikoadjustierte Diskontierung: $p_t = \frac{1}{ER^i} \mathbb{E}_t \left[x_{t+1} \right]$

Beachte

- stochastischer Diskontfaktor m_{t+1}
 - ist zufällig
 - für alle Assets (bzw. Cash Flows x_{t+1}) identisch
- Wie passt das mit der üblichen Vorstellung zusammen, dass riskantere Titel eine höhere Diskontierung erfordern?

Interpretationen und alternative Bezeichnungen von m_{t+1}

- Grenzrate der Substitution: $m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}$
- Pricing Kernel, Dichte der Zustandspreise

II.5 Beispiele für Preise und Zahlungen

- 1. **Aktieninvestment**: p_t : Preis in t, $x_{t+1} = p_{t+1} + d_{t+1}$: Zahlung in t+1 mit Dividendenzahlung d_{t+1} in t+1; dann gilt $p_t = \mathbb{E}_t \left[m(p_{t+1} + d_{t+1}) \right]$
- 2. **Brutto-Return**: Interpretiere $R_{t+1} = \frac{x_{t+1}}{p_t}$ als Payoff in t+1 mit Preis 1 dann gilt $1 = \mathbb{E}_t[mR]$
- 3. Überschuss-Return: als Zahlung $R_{t+1}^e = R_{t+1}^a R_{t+1}^b$ in t+1 eines Portfolios ohne Kapitaleinsatz, d.h. $p_t = 0$ dann gilt $0 = \mathbb{E}_t \left[mR^e \right]$
- 4. Einperiodige Anleihe: p_t : Anleihepreis in t, Rückzahlung $x_{t+1} = 1$, dann gilt $p_t = \mathbb{E}_t[m]$
- 5. **Geldmarktkonto**: $p_t = 1$, Rückfluss in t+1: $R^f = (1+r^f)$ dann gilt $1 = \mathbb{E}_t [mR^f]$
- 6. **Kaufoption**: $p_t = C$, $x_{t+1} = \max(S_{t+1} K, 0)$, dann gilt $C = \mathbb{E}_t \left[m \left(\max(S_{t+1} K, 0) \right) \right]$

Chapter III

Klassische Theorien

Durch einfache Umformungen der zentralen Bewertungsbeziehung

$$p = \mathbb{E}[mx]$$

lassen sich viele finanzwirtschaftliche Theorien und Konzepte leicht ableiten:

- 1. Ökonomie der Zinsen: Wann und warum sind Zinsen hoch oder niedrig?
- 2. Risikoanpassung: Wovon hängt die Risikoanpassung ab?
- 3. Unsystematisches Risiko: Warum wird unsystematisches Risiko nicht vergütet?
- 4. **Beta als Risikomaß**: Welche Beziehung besteht zwischen erwarteten Renditen und Beta?
- 5. μ - σ -Rand: Welche Rendite/Risiko-Kombinationen sind erreichbar?
- 6. Equity Premium Puzzle: Warum sind Risikoprämien von Aktien so hoch?

III.1 Ökonomie der Zinsen

Interpretation der risikolosen Verzinsung $\mathbb{R}^f=1+r^f.$

• Aus zentraler Bewertungsbeziehung folgt für das Geldmarktkonto:

$$1 = \mathbb{E}\left[mR^f\right] \Rightarrow R^f = \frac{1}{\mathbb{E}[m]}$$

• Bei Sicherheit folgt für eine isoelastische Nutzenfunktion

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma} : m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)} = \beta \left(\frac{c_{t+1}}{c_t}\right)^{-\gamma}$$
$$\Rightarrow R^f = \frac{1}{\beta} \left(\frac{c_{t+1}}{c_t}\right)^{\gamma}$$

- Somit gilt:
 - Realzinsen sind hoch, wenn Investoren ungeduldig sind (niedriges β)
 - Realzinsen sind hoch, wenn das Konsumwachstum hoch ist.
 - Realzinsen reagieren sensitiver auf Änderungen des Konsumwachstums bei hoher Riskoaversion (hohes γ).

Unter Annahme von Unsicherheit:

• Mit $\beta = e^{-\delta}$ und $\Delta c_{t+1} = \ln\left(\frac{c_{t+1}}{c_t}\right)$ folgt $m_{t+1} = e^{-\delta}e^{-\gamma\Delta c_{t+1}} \approx 1 - \delta - \gamma\Delta c_{t+1}$

• Somit $R^f = \frac{1}{\mathbb{E}[m_{t+1}]} \approx \frac{1}{1 - \delta - \gamma \mathbb{E}_t[\Delta c_{t+1}]} \approx 1 + \delta + \gamma \mathbb{E}[\Delta c_{t+1}]$

• Grundsätzlich identische Implikationen wie im deterministischen Fall:

$$R^f \approx 1 + \delta + \gamma \mathbb{E}[\Delta c_{t+1}]$$

Wie schon zuvor sind Zinsen hoch

- bei sehr ungeduldigen Investoren (niedriges β bzw. hohes δ)
- bei hohem erwarteten Konsumwachstum $\mathbb{E}_t[\Delta c_{t+1}]$
 - wer weiß, dass er in Zukunft reicher sein wird, braucht hohe Zinsen, damit er bereit ist, heute auf Konsum zu verzichten und dafür zu sparen
 - Zinsen sind höher in Aufschwungphasen als in Rezessionen

Wie schon zuvor

- \bullet Sensitivität bzgl. Konsumwachstum nimmt mit Risikoaversion γ zu
 - Beachte: Hohes $\mathbb{E}_t[\Delta c_{t+1}]$ (Aufschwung), hohes R^f ; niedriges $\mathbb{E}_t[\Delta c_{t+1}]$ (Abschwung), niedriges R^f ;
 - Stärke der Veränderung (ob positiv oder negativ) steigt mit γ

Nun zu Aspekt des Risikos.

Betrachte hierzu Approximation zweiter Ordnung:

$$R^f \approx 1 + \delta + \gamma \mathbb{E}_t[\Delta c_{t+1}] - \frac{1}{2} \gamma^2 \sigma_t^2(\Delta c_{t+1})$$

Höhere Volatilität des Konsumwachstums (hohes σ)

- führt zu niedrigeren Zinsen
 - in unsicheren Zeiten spart man lieber vorsorglich
 - hohe Sparnachfrage reduziert Zinsen

Umgekehrt

- ist Konsumwachstum hoch, falls Zinsen hoch sind (bei hohen Zinsen wird mehr gespart)
- ist Konsum weniger sensitiv bzgl. Zinsänderungen, wenn γ hoch ist (hohes $\gamma \Rightarrow$ starker Wunsch nach gleichmäßigem Konsumstrom)

Was determiniert wen?

- Konsum determiniert Zinsen
- Zinsen determinieren Konsum

Beachte:

Bei der Power-Nutzenfunktion gilt: Krümmungsparameter γ steuert gleichzeitig

- intertemporale Substitution: Aversion gegenüber zeitlich schwankenden Konsummöglichkeiten
- Risikoaversion: Aversion gegenüber Veränderungen der Konsummöglichkeiten durch unterschiedliche Zustände
- vorsorgliche Ersparnis: abhängig von der dritten Ableitung der Nutzenfunktion

Allgemeinere Nutzenfunktionen entkoppeln die drei Einflüsse. Beispiel: Rekursive Nutzenfunktion (Epstein-Zin Nutzenfunktion)

III.2 Risikoanpassung

• Aus der Definition $cov(m, x) = \mathbb{E}[mx] - \mathbb{E}[m]\mathbb{E}[x]$ folgt

$$p = \mathbb{E}[mx] = \mathbb{E}[m]\mathbb{E}[x] - \text{cov}(m, x)$$

• Mit $R^f = \frac{1}{\mathbb{E}[m]}$ folgt

$$p = \frac{\mathbb{E}[x]}{R^f} + \text{cov}(m, x)$$

Preis ergibt sich aus

- Diskontierung des erwarteten Payoffs mit risikolosem Zinssatz
 - Standardbarwert-Kalkül bei Sicherheit bzw. Risikoneutralität
 - Aspekt "Zeit"
- Risikokorrektur über Kovarianzterm
 - je stärker Kovarianz mit Diskontfaktor m, desto höher der Preis
 - Aspekt "Risiko"

Wirkungsweise der Risikoanpassung

Mit
$$m = \beta \frac{u'(c_{t+1})}{u'(c_t)}$$
 folgt

$$p = \frac{\mathbb{E}[x]}{R^f} + \frac{\text{cov}(\beta u'(c_{t+1}), x_{t+1})}{u'(c_t)}$$

Risikoanpassung

- \bullet verringert Preis bei positiver Kovarianz mit Konsum (u'(c) sinkt in c)
- erhöht Preis bei negativer Kovarianz mit Konsum

Warum?

Beispiel: Betrachte zwei Wertpapiere mit

Für welches Wertpapier sind Sie bereit mehr zu bezahlen?

Ergebnis:

	gute Zeiten (0.5)	schlechte Zeiten (0.5)
WP_1	100	0
WP_2	0	100

- Für Assets, die mehr zur Konsumglättung beitrag, werden höhere Preise bezahlt.
- Bei unsicherem Payoff mit gegebenem Erwartungswert $\mathbb{E}[x]$
 - wird Preis nach unten korrigiert, falls Payoff in schlechten Zeiten niedrig ist
 - wird Preis nach oben korrigiert, falls Payoff in schlechten Zeiten hoch ist (Versicherungsidee)

Rolle der Risikoaversion

- Betrachte wieder isoelastische Nutzenfunktion $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$
- Höheres $\gamma \Rightarrow$ stärkere Risikokorrektur
- Formal: Aus Approximation $m_{t+1} \approx 1 \delta \gamma \Delta c_{t+1}$ folgt

$$cov(m_{t+1}, x_{t+1}) \approx -\gamma cov(\Delta c_{t+1}, x_{t+1})$$

und damit

$$p_t \approx \frac{\mathbb{E}_t[x_{t+1}]}{R^f} - \gamma \operatorname{cov}(\Delta c_{t+1}, x_{t+1})$$

Warum zählt die Kovarianz und nicht Varianz der Zahlung?

Die eigentliche Frage ist nämlich, die Schwankung im resultierenden Nutzenstorms und nicht eines einzelnen Preises.

- Investor interessiert sich nicht für Volatilität eines einzelnen Wertpapiers sondern für resultierenden Konsum und ggf. dessen Varianz
- $\sigma^2(c + \xi x) = \sigma^2(c) + 2\xi \cos(cx) + \xi^2 \sigma^2(x)$

Hier ist der mittlerer Term von erster Ordnung; da wird beim hinteren Term ξ^2 haben, können wir bei marginalen Betrachtungen diesen Fallen lassen (fordert: ex-post Betrachtung), das Kalkül gilt hier also immer!. Ex-ante können wir das analoge Argument aufbringen, falls man in marginale Beiträge (ξ) investieren kann und keine z.B. all-or-nothing Situation hat.

- \bullet Vorstellung: Portfolios und damit auch c und m bereits angepasst
- Welchen Beitrag hat letzte marginale Einheit (sehr kleines ξ) von x?

Betrachte nun Returns verschiedener Wertpapiere i, j

$$R^{i} = \frac{x_{t+1}^{i}}{p_{t}^{i}}, \ R^{j} = \frac{x_{t+1}^{j}}{p_{t}^{j}}$$

Dann gilt

$$1 = \mathbb{E}\left[mR^i\right] = \mathbb{E}\left[mR^j\right]$$

- Obgleich erwartete Returns i.d.R. verschieden, sind erwartete diskontierte Returns immer 1!
- Weiter gilt $1 = \mathbb{E}[m]\mathbb{E}[R^i] + \text{cov}(m, R^i)$

$$\iff R^f = \frac{1}{E(m)} = \mathbb{E}(R^i) + \frac{\operatorname{cov}(m, R^i)}{\mathbb{E}(m)}$$
$$\Rightarrow \mathbb{E}[R^i] - R^f = -R^f \operatorname{cov}(m, R^i)$$

• $m = \beta u'(c_{t+1})/u'(c_t)$ eingesetzt liefert

$$\mathbb{E}[R^{i}] - R^{f} = -\frac{\text{cov}(u'(c_{t+1}), R^{i})}{\mathbb{E}[u'(c_{t+1})]}$$

Aus Überrenditendarstellung

$$\mathbb{E}[R^{i}] - R^{f} = -\frac{\text{cov}(u'(c_{t+1}), R^{i})}{\mathbb{E}[u'(c_{t+1})]}$$

folgt:

- die erwartete Rendite jedes Wertpapiers entspricht der risikolosen Verzinsung zuzüglich einer Risikokorrektur
- Wertpapiere, deren Returns positiv mit Konsum variieren führen zu volatilerem Konsum und müssen daher höhere erwartete Returns liefern. $\Rightarrow \mathbb{E}(R^i) > R^f$

• Umgekehrt können Wertpapiere, deren Returns negativ mit dem Konsum variieren und damit Konsum glätten (z.B. Versicherungen) niedrigere erwartete Returns bieten. $\mathbb{E}(R^i) < R^F$ (vgl. Wertpapiere von letzter Woche denen Preise höher als 50 gegeben wurden).

Beachte nochmal

• Übliche Vorstellung

$$p^i = \frac{\mathbb{E}[x_{t+1}^i]}{ER^i}$$

mit Diskontfaktor $\frac{1}{ER^i}$ etwa aus CAPM, der wertpapierspezifisch ist!

• Hier

$$p^i = \mathbb{E}[mx_{t+1}^i]$$

mit stochastischemm Diskontfaktor M (innerhalb des Erwartungswertes!), der für alle Wertpapiere identisch ist!

• Wie passt das zusammen? Der Dikontfaktor ist auch wertpapierspezifisch. Dies sieht man, falls man den stochastischen Diskontfaktor aus dem Erwartungswert rausziehen, denn dann taucht dieser in der Kovarianz auf.

III.3 Unsystematisches Risiko

Aus

$$p = \mathbb{E}[mx] = \mathbb{E}[m]\mathbb{E}[x] + \text{cov}(m, x)$$

foolgt unmittelbar

$$p = \frac{\mathbb{E}[x]}{R^f}$$
 für $cov(m, x) = 0$

- \bullet mit dem Diskontfaktor m unkorrelierte Zahlungen erfordern keine Risikokorrektur im Preis
- solches unsystematisches Risiko wird folglich nicht vergütet
- erwartete Rendite entspricht der riskolosen Rendite

Beachte: Ergebnis gilt unabhängig

- von $\sigma^2(x)$, d.h. wie volatil die Zahlung ist
- vom Ausmaß der Risikoaversion

Idee: Zerlege x in

systematische komponente: Mit Diskontfaktor m perfekt korrelierte Komponente $\operatorname{proj}(x|m)$

unsystematiscehe Komponente: Zu Diskontfaktor orthogonale Komponente ϵe

$$x = \operatorname{proj}(x|m) + \epsilon \Rightarrow b = \frac{\mathbb{E}(mx)}{\mathbb{E}(m^2)}$$

Intuitiv:

- Lineare Regression ohne Konstante $x=bm+\epsilon$ führt auf mit m perfekt korrelierte Komponente bm und Restgröße ϵ mit $E[m\epsilon]=0$
- Opffensichtlich gilt
 - Preis von ϵ : $p(\epsilon) = \mathbb{E}[m\epsilon] = 0$
 - Preis von $\operatorname{proj}(x,m) \colon p(\operatorname{proj}(x,m)) = \mathbb{E}[xm] = p(x)$

$$= p(bm) = \mathbb{E}[mbm] = \mathbb{E}\left[\frac{\mathbb{E}(mx)}{\mathbb{E}[m^2]}m^2\right] = \mathbb{E}(mx)$$

III.4 Beta als Risikomaß

 β_i : Sensitivität der Rendite von Wertpapier i gegenüber der Rendite des ganzen Marktes

- das klassische Risikomaß der Finanzwirtschaft
- typischerweise anhand des CAPM bestimmt
- Anwendung als Maß für systematisches Risiko

formal: $\beta_i = \frac{\text{cov}(R^i, R^M)}{\text{var}(R^M)}$ mit R^M als Marktrendite.

Umformung der Return-Beziehung $\mathbb{E}[R^i])R^f-R^f\operatorname{cov}(m,R^i)$ führt zu

Appendix A

Übungen

Aufgabe 7

- a) Es gilt (vgl. letzte Übung): $m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}$.
 - Im schlechten Zustand nimmt der stochastische Diskontfaktor relativ große Werte an (Grenzwert des Konsums ist hoch).
 - Im guten Zustand relativ geringe Werte.

Damit ist:

 $m_{t+1} = 0.97$: ungünstiger Zustand

 $m_{t+1} = 0.85$: günstiger Zustand

Beachte: "Im schlechten Zustand" bezieht sich eigentlich relativ auf den Vergleich zu vorhergehenden Periode.

b) Eine Power-Nutzenfunktion hat bei uns die allgemeine Form:

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}$$

Daraus folgt $u'(c) = c^{-\gamma}$ und damit:

$$m_{t+1} = \beta \frac{c_{t+1}^{\gamma}}{c_t^{-\gamma}} = \beta \left(\frac{c_t}{c_{t+1}}\right)^{\gamma}$$

Ist $\gamma > 0 \Rightarrow$ je größer der Konsum in einem Zustand in t+1 ist, desto kleiner m_{t+1} und umgekehrt

c) $p_A > p_B$ da Wertpapier A im ökonomisch schlechteren Zustand mehr auszahlt und der Erwartungswert der Auszahlung beider Wertpapiere gleich ist.

d) Es ist

$$p_t^A = \mathbb{E}(m_{t+1}x_{t+1}^A) = 0.5 \cdot 0.85 \cdot 5 + 0.5 \cdot 0.97 \cdot 8 = 6.01$$

 $p_t^B = analog = 5.83$

$$\mathbb{E}[R_{t+1}^B] > \mathbb{E}[R_{t+1}^A], p_A > p_B$$

e) Es ist

$$p_{t} = \mathbb{E}[m_{t+1}X_{t+1}]$$

$$= \mathbb{E}[m_{t+1}] \cdot \mathbb{E}[x_{t+1}] + \operatorname{cov}(m_{t+1}, x_{t+1})$$

$$= \frac{\mathbb{E}[x_{t+1}]}{R^{t}} + \operatorname{cov}(m_{t+1}, x_{t+1})$$

$$\Rightarrow \mathbb{E}(x_{t+1}\hat{A}) = \mathbb{E}(x_{t+1}^B) = 6.5$$

$$R^f = \frac{1}{\mathbb{E}(m_{t+1})} = \frac{1}{0.91} = 1.10$$

$$\Rightarrow \frac{\mathbb{E}(x_{t+1}^A)}{R^f} = \frac{\mathbb{E}(x_{t+1}^B)}{R^f} = 5.91$$

$$cov(m_{t+1}, x_{t+1}) = 0.5 (0.85 - 0.91) (5 - 6.5) + 0.5 (0.97 - 0.91) (8 - 6.5) = 0.09$$
$$cov(m_{t+1}, x_{t+1}^B) = analog = -0.09$$

wobei
$$cov(a, b) = \mathbb{E}[(a - \overline{a})(b - \overline{b})], \text{ mit } \overline{x} = \mathbb{E}[x],$$

$$\Rightarrow p^A > p^B$$

f) Da die $cov(\cdot, \cdot)$ negative sowie positive Werte annehmen kann, ergibt sich bei geeiegneten Werten für $\mathbb{E}(x_{t+1})$ und R^f für manche Wertpapiere auch bei $\mathbb{E}(x_{t+1}) < 0$ ein positiven Preis. Beispiel: Versicherung

Aufgabe 8 (Der μ - σ -Rand)

Betrachten Sie ein Ökonomie mit zwei Zeitpunkten (t und t+1) und einem risikolosen Zinssatz von 10%.

- a) Unterstellen Sie für den SDF, das $m_{t+1} = a + bR^{mv}$, wobei a und b Parameterwerte und R^{mv} die Rendite eines Wertpapiers darstellt.
 - (i) Welche Voraussetzung muss erfüllt sein, damit dieser Zusammenhang gelten kann? Welche Implikation für die Bewertung von Wertpapieren enthält diese Annahme.

Proof: Damit der Zusammenhang $m_{t+1} = a + bR^{mv}$ gilt, muss die Rendite des Wertpapiers, R^{mv} perfekt mit m_{t+1} korreliert sein.

Das impliziert, dass in R^{mv} alle bewertungsrelevanten Informationen enthalten sein müssen.

(ii) Maximale Sharpratio und

Proof:
$$p_{t+1} = \mathbb{E}(m_{t+1}x_{t+1}) \iff 1 = \mathbb{E}(m_{t+1}R_{t+1})$$

 $\iff 1 = \mathbb{E}(m_{t+1})\mathbb{E}(R_{t+1}) + \operatorname{cov}(m_{t+1}, R_{t+1})$
 $\iff \mathbb{E}(R_{t+1}) = R^f - \frac{\operatorname{cov}(m_{t+1}, R_{t+1})}{\mathbb{E}(m_{t+1})}$
 $\iff \mathbb{E}(R_{t+1}) - R^f = -\rho_{m_{t+1}, R_{t+1}}\sigma_{R_{t+1}}\frac{\sigma_{m_{t+1}}}{\mathbb{E}(m_{t+1})}$
 $\iff \frac{\mathbb{E}(R_{t+1}) - R^f}{\sigma_{R_{t+1}}} = -\rho_{m_{t+1}, R_{t+1}}\frac{\sigma_{m_{t+1}}}{\mathbb{E}(m_{t+1})}$

Mit $|\rho| \leq 1$ gilt:

$$\left| \frac{\mathbb{E}(R_{t+1}) - R^f}{\sigma_{R_{t+1}}} \right| \le \frac{\sigma_{m_{t+1}}}{\mathbb{E}(m_{t+1})}$$

Aus $m_{t+1} = a + b \cdot R_{t+1}^{mv}$ folgt:

Aufgabe 9 (Der μ - σ -Rand und die Beta-Darstellung)

Gegeben ist eine Ökonomie mit zwei Zeitpunkten (t und t+1) mit einem risikolosen Zinssatz in Höhe von R^f , sowie ein effizienter Rand-Return R^{mv} . Nehmen Sie an

a) Es gilt $m_{t+1} = a + b \cdot R^{mv}$

$$p_{t} = \mathbb{E}(m_{t+1}x_{t+1}) = \mathbb{E}(m_{t+1})\mathbb{E}(x_{t+1}) + \operatorname{cov}(m_{t+1}, x_{t+1})$$

$$\iff p_{t} = \frac{\mathbb{E}(x_{t+1})}{R^{f}} + \operatorname{cov}(m_{t+1}, x_{t+1})$$

$$\iff p_{t} = \frac{\mathbb{E}(x_{t+1})}{R^{f}} + \operatorname{cov}(a + bR^{mv}, x_{t+1})$$

$$\iff p_{t} = \frac{\mathbb{E}(x_{t+1})}{R^{f}} + b\operatorname{cov}(R^{mv}, x_{t+1})$$

 \Rightarrow falls b bekannt können mit Hilfe von R^{mv} alle Wertpapiere bewertet werden.

- b) Gilt für alle Wertpapiere auf dem μ - σ -Rand außer dem risikolosen Instrument.
- c) Es gilt die folgenden Möglichkeiten
 - 1. Möglichkeit:

$$1 = \mathbb{E}(m_{t+1}R^{mv}) = \mathbb{E}\left((a+bR^{mv})R^{mv}\right)$$

$$= \mathbb{E}\left(aR^{mv} + b\left(R^{mv}\right)^{2}\right) \tag{*}$$

$$1 = \mathbb{E}(m_{t+1}R^{f}) = \mathbb{E}\left((a+bR^{mv})R^{f}\right)$$

$$= \mathbb{E}\left(aR^{f} + bR^{mv}R^{f}\right) \tag{**}$$

Aus (*):
$$\Rightarrow 1 = a \cdot \mathbb{E}(R^{mv}) + b\mathbb{E}\left((R^{mv})^2\right)$$

Aus (**): $\Rightarrow 1 = a \cdot \mathbb{E}(R^f) + b\mathbb{E}\left(\left(R^f\right)^2\right)$

• 2. Möglichkeit: aus $|\rho| = 1$ folgt $(\mathbb{E}(m_{t+1}) = a + b\mathbb{E}(R^{mv}))$

$$m_{t+1} = \mathbb{E}(m_{t+1}) + b \left(R^{mv} - \mathbb{E}(R^{mv}) \right) \tag{+}$$

$$\iff m_{t+1} = \frac{1}{R^f} + b \left(R^{mv} - \mathbb{E}(R^{mv}) \right) \tag{***}$$

Außerdem: $1 = \mathbb{E}(m_{t+1}E^{mv})$. Daraus folgt indem wir (* * *) einsetzen:

$$1 = \mathbb{E}\left[\left(\frac{1}{R^f} + b\left(R^{mv} - \mathbb{E}_t\left(R^{mv}\right)\right)\right)R^{mv}\right]$$

$$\iff 1 = \frac{1}{R^f}\mathbb{E}(R^{mv}) + b\mathbb{E}\left(\left(\left(R^{mv}\right)^2\right) - b\mathbb{E}\left(R^{mv}\right)^2\right)$$

$$\iff 1 = \frac{1}{R^f}\mathbb{E}(R^{mv}) + b\operatorname{var}(R^{mv})$$

$$\iff b = -\frac{\mathbb{E}(R^{mv}) - R^f}{R^f\operatorname{var}(R^{mv})}$$

In (+) einsetzen:

$$m_{t+1} = \mathbb{E}(m_{t+1}) + \left(-\frac{\mathbb{E}(R^{mv}) - R^f}{R^f \operatorname{var}(R^{mv})}\right) (R^{mv} - \mathbb{E}(R^{mv}))$$

$$\iff m_{t+1} = \underbrace{\frac{1}{R^f} + \mathbb{E}(R^{mv}) \frac{\mathbb{E}(R^{mv} - R^f)}{R^f \operatorname{var}(R^{mv})}}_{=:a} \underbrace{-\frac{\mathbb{E}(R^{mv}) - R^f}{R^f \operatorname{var}(R^{mv})}}_{=:b} R^{mv} \quad (++)$$

$$\iff m_{t+1} = a + bR^{mv}$$

d) Beta Darstellung

$$p_{t} = \mathbb{E}(m_{t+1}x_{t+1}) \iff 1 = \mathbb{E}(m_{t+1})\mathbb{E}(R_{t+1}^{i}) + \operatorname{cov}(m_{t+1}, R_{t+1}^{i})$$
$$\mathbb{E}(R_{t+1}^{i}) = R^{f} - \frac{\operatorname{cov}(m_{t+1}, R_{t+1}^{i})}{\mathbb{E}(m_{t+1})}$$

Aus (++) folgt

$$\mathbb{E}(R_{t+1}^{i}) = R^{f} + \frac{\mathbb{E}(R^{mv} - R^{f})}{R^{f} \operatorname{var}(R^{mv})} \operatorname{cov}(R^{mv}, R_{t+1}^{i}) \frac{1}{\mathbb{E}(m_{t+1})}$$

$$\iff \mathbb{E}(R_{t+1}^{i}) = \mathbb{R}^{f} + \frac{\mathbb{E}(R^{mv} - R^{f})}{\operatorname{var}(R^{mv})} \operatorname{cov}(R^{mv}, R^{i})$$

$$\iff \mathbb{E}(R_{t+1}^{i}) = R^{f} + \underbrace{\frac{\operatorname{cov}(R^{mv}, R_{t+1}^{i})}{\operatorname{var}(R^{mv})}}_{=:\beta_{i,mv}} \underbrace{\left(\mathbb{E}(R^{mv} - R^{f})\right)}_{=:\lambda_{mv}}$$

$$\iff \mathbb{E}(R_{t+1}^{i}) = R^{f} + \beta_{i,mv}\lambda_{mv}$$

e) Welche Annahme trift man oft in der parktischen Umsetzung dieser Bewertungsbeziehung

Proof:
$$R^{mv}$$
 = Rendite des Marktportfolios (z.B. Dax 30)

Sonderübung

Aufgabe 1

Nehmen Sie Stellung zu folgenden Aussagen:

a) Wertpapiere, deren Auszahlung positiv mit dem stochastischem Diskontfaktor korrelieren, besitzen im Gleichgewicht höhere erwartete Renditen, die für das höhere Risiko solcher Wertpapiere kompensieren.

Proof: Die Aussage ist falsch. Wertpapiere deren erwarteten. Renditen positiv mit dem stoch. Diskontfaktor korrelieren, zahlen in Zuständen mit hohem stoch. Diskontfaktor wenig und in Zuständen mit niedrigem stoch. Diskontfaktor viel (es ist ja: SDF hoch = schlechter Zustand und vice versa). Solch ein Wertpapier besitzt einen Versicherungscharakter. Wichtig ist, dass die Renditen-Preisbeziehung invers ist. Im Gleichgewicht beizten sie also niedrige erwartete Renditen, da sie ein geringeres Risiko besitzen.

b) Wertpapiere, die nicht auf dem μ - σ -Rand liegen, sind nicht effizient und werden deshalb von den Investoren nicht nachgefragt.

Proof: Die Aussage ist falsch. Diese Wertpapiere sind nicht effizient, allerdings sind sie auch nicht perfekt mit stochastischen Diskontfaktor korreliert und weisen unsystematisches Risiko auf. Damit können diese Wertpapiere nachgefragt werden, jedoch nicht alleine.

c) Das CAPM kann nicht stimmen, da tatsächlich die Korrelation von zukünftigen Zahlung mit dem Konsumwachstum entscheidend für den Preis eines Wertpapiers ist nachgefragt.

Proof: Diese Aussage ist falsch. CAMP ist ein Spezialfall des konsumbasierten Asset Pricing Modells. Als Faktormodell nutzt das CAMP eine Approximation des aggregieren Nutzenwacstums

$$m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)} = a + b' f_{t+1}.$$

Das CAMP-Modell approximiert also diesen Faktor linear und stellt damit (vereinfacht) die Korrelation dar. \Box

d) Existiert in einer Ökonomie mindestens für jeden Zustand ein Wertpapier, das 24 im entsprechenden Zustand und 0 in allen anderen Zuständen auszahlt, so ist auch die Verteilung des stochastischen Diskontfaktors bekannt und alle anderen Wertpapiere können basierend darauf bewertet werden.

Proof: Diese Aussage ist falsch. Obwohl die Auszahlungsmatrix linear unabhängig ist, reicht diese nicht zur Bestimmung der Verteilung des stoch. Diskontfaktors aus und somit können nicht nicht alle weiteren Wertpapiere darauf bewertet werden. Vgl.

$$p(x) = \sum_{s \in S} \pi(s) m(s) x(s)$$

Somit ist der Preis und Eintrittswahrscheinlichkeit müssen gegeben sein.

e) Da die Zentralbank den Zinssatz festlegt, muss bei der empirischen Anwendung des konsumbasierten Ansatzes stets davon ausgegangen werden, dass der Preis des risikolosen Instruments exogen festgelegt wird. Die Diskussion inwiefern sich die Zinsen z.B. in Folge von geänderter Risikoaversion der Investoren ändern, ist deshalb lediglich exemplarischer Natur und nicht mit der Empirie vereinbar.

 $\textit{Proof:}\ \text{Nur}\ \text{teilweise}$ richtig. Wechselwirkung zwischen Konsum % Zinsen

 \Rightarrow Makro-Sicht \Rightarrow Perspektive einer Einzelperson

Zentralbank setzt zwar Leitzins fest und kauft Anleihen, allerdings gibt es noch andere Einflüsse.

 \Rightarrow Preis für risikoloses Instrument kann empirisch nicht als exogen gegeben angenommen werden.

Aufgabe 2

Gehen Sie von einer Ökonomie mit den Zeitpunkten t=0, t=1 und t=2 (t in Jahren) aus. Die Zustandsübergänge und die Entwicklung des Konsums des repräsentativen Investors sind gemäß dem Baumdiagramm in der Aufgabe zu entnehmen. Der Nutzen des repräsentativen Investors zum jeweiligen Zeitpunkt t lässt sich mit Hilfe der folgenden Powernutzenfunktion mit $\gamma=1.5$ quantifizieren:

$$u(c_t) = \frac{c_t^{1-\gamma}}{1-\gamma}$$

Nehmen Sie für die zeitliche Diskontierung $\beta = 0.95$ an.

a) Für die Zustandsübergangswahrscheinlichkeiten gilt zunächst $p_1 = p_{21} = p_{22} = 0.5$. Bestimmen Sie die beiden fairen risikolosen Zinssätze (annualisiert) für die Zeiträume t=0 bis t=1 und t=0 bis t=2. Berechnen Sie außerdem den erwarteten Gesamtnutzen des repräsentativen Investors zum Zeitpunkt t=0.

Proof: Es ist $u'(c_t) = c_t^{-\gamma}$ und damit (vgl. Cochrane, S. 24f)

$$R_{t+1}^{f} = \frac{1}{\mathbb{E}\left[\beta \frac{u'(c_{t+1})}{u'(c_{t})}\right]} = \frac{1}{\mathbb{E}\left[\beta \left(\frac{c_{t}}{c_{t+1}}\right)^{\gamma}\right]}$$

Damit ist

$$R_{t+1}^{f} = \frac{1}{\mathbb{E}\left[\beta\left(\frac{c_{t}}{c_{t+1}}\right)^{\gamma}\right]}$$

$$= \frac{1}{0.5 \cdot 0.95\left(\frac{20}{25}\right)^{1.5} + 0.5 \cdot 0.95\left(\frac{20}{21}\right)^{1.5}}$$

$$= 1.2798 \triangleq 27.98\%$$

$$R_{t+2}^{f} = \frac{1}{\mathbb{E}[m_{0,2}]} = \frac{1}{\mathbb{E}[m_{0,1} \cdot m_{1,2}]}$$

$$= \frac{1}{\mathbb{E}\left[\beta \cdot \frac{u'(c_1)}{u'(c_0)} \cdot \beta \cdot \frac{u'(c_2)}{u'(c_1)}\right]}$$

$$= \frac{1}{\mathbb{E}\left[\beta^2 \left(\frac{c_t}{c_{t+2}}\right)^{\gamma}\right]}$$

$$= \frac{1}{0.25 \cdot 0.95^2 \left(\left(\frac{20}{30}\right)^{1.5} + \left(\frac{20}{26}\right)^{1.5} + \left(\frac{20}{26}\right)^{1.5} + \left(\frac{20}{22}\right)^{1.5}\right)}$$

$$= 1.6056 \triangleq 60.56\%$$

Damit liegt das Annulalisierte bei $r^f=\sqrt{R_{t+2}^f}=\sqrt{60.56}=26.61\%$. Der erwartete Nutzen ergibt sich zu

$$U_{t}(c_{t}, c_{t+1}, c_{t+2}) = u(c_{t}) + \beta \mathbb{E}[u(c_{t+1})] + \beta^{2} \mathbb{E}_{t} \left[u(c_{t+2})\right]$$

$$= -2\left(\frac{1}{\sqrt{20}} + 0.95\left(0.5 \cdot \frac{1}{\sqrt{25}} + 0.5 \cdot \frac{1}{\sqrt{21}}\right)\right)$$

$$-2\left(0.95^{2}\left(0.25 \cdot \frac{1}{\sqrt{30}} + 0.25 \cdot \frac{1}{\sqrt{26}} + 0.25 \cdot \frac{1}{\sqrt{26}} + 0.25 \cdot \frac{1}{\sqrt{22}}\right)\right)$$

$$= -1.2001$$

b) Nehmen Sie nun an, dass für die Zustandsübergangswahrscheinlichkeiten $p_1 = 0.5$, $p_{21} = 0.7$ und $p_{22} = 0.3$ gilt. Würde der repräsentative Investor diese Situation der Situation aus Aufgabenteil a) vorziehen? Antworten Sie sowohl mit einer ökonomischen Argumentation als auch mit einer Rechnung.

Proof: Vergleiche den Gesamtnutzen des Investors zwischen a) und b)

$$U_{t}(c_{t}, c_{t+1}, c_{t+2}) = u(c_{t}) + \beta \mathbb{E}[u(c_{t+1})] + \beta^{2} \mathbb{E}_{t} [u(c_{t+2})]$$

$$= -2 \left(\frac{1}{\sqrt{20}} + 0.95 \left(0.5 \cdot \frac{1}{\sqrt{25}} + 0.5 \cdot \frac{1}{\sqrt{21}} \right) \right)$$

$$-2 \left(0.95^{2} \left(0.5 \cdot 0.7 \cdot \frac{1}{\sqrt{30}} + 0.5 \cdot 0.3 \cdot \frac{1}{\sqrt{26}} + 0.5 \cdot 0.3 \cdot \frac{1}{\sqrt{26}} + 0.5 \cdot 0.7 \cdot \frac{1}{\sqrt{22}} \right) \right)$$

$$= -1.2007 < -1.2001$$

Vergleicht man noch die Varianzen so ergibt sich :

$$var_{neu} = (30 - 26)^2 \cdot 0.7 \cdot 0.5 + (22 - 26)^2 \cdot 0.7 \cdot 0.5 = 11.2$$

$$var_{alt} = (30 - 26)^2 \cdot 0.5 \cdot 0.5 + (22 - 26)^2 \cdot 0.5 \cdot 0.5 = 8$$

d.h. $var_{alt} < var_{neu}$. Der repräsentative Investor zieht die Situation aus Aufgabenteil a) vor, da dort die Volatilität des Konsums geringer ist, und der Gesamtnutzen höher. Des Weiteren wird die Situation aus b) durch die höhere Volatilität als "schlechter" betrachtet, da der Investor mit der hier gegebenen Nutzenfunktion die höhere Wahrscheinlichkeit des Zustandes mit hohem und niedrigerem Konsum in t=2 nicht linear bewertet, sondern das ihm das wahrscheinlichere Eintreten des Zustandes mit niedrigerem Konsum stärker "missfällt", als ihm das wahrscheinlichere Eintreten des Zustandes mit höherem Konsum "gefällt".