Global Exercise - 12

Tuan Vo

12th January 2022

1 A remark about the derivation from coupled to decoupled form of linear hyperbolic systems

1. Case 1: $W := R^{-1}U$ as the scheme shown in exercise

$$U_t + AU_x = 0$$

$$U_t + R\Lambda R^{-1}U_x = 0$$

$$R^{-1}U_t + \Lambda R^{-1}U_x = 0$$

$$W_t + \Lambda W_x = 0$$

where the matrix A is diagonalizable with a transformation matrix $R \in \mathbb{R}^{N \times N}$ in the form

$$A = R\Lambda R^{-1}.$$

2. Case 2: W := TU as the scheme shown in lecture note

$$U_t + AU_x = 0$$

$$U_t + T^{-1}\Lambda T U_x = 0$$

$$TU_t + \Lambda T U_x = 0$$

$$W_t + \Lambda W_x = 0$$

where the matrix A is diagonalizable with a transformation matrix $T \in \mathbb{R}^{N \times N}$ in the form

$$A = T^{-1}\Lambda T.$$

Both schemes result in the same solution. We have just to be consistent with which scheme to follow.

2 Linearity - Oder of consistency - Stability

3 Time step methods: Comparison

- 1. Upwind left One-sided method
- 2. Upwind right One-sided method
- 3. Lax-Friedrichs
- 4. Lax-Wendroff
- 5. Leapfrog
- 6.

4 Correlation between Domain of dependence (DoD) and Courant-Friedrichs-Lewy (CFL) condition

4.1 Numerical DoD and Analytical DoD

Example 1. Examine the numerical domain of dependence of the One-sided method.

Figure 1: Numerical domain of dependence for One-sided method.

As it can be seen from Figure 1, the numerical value computed at point A depends essentially on computed initial conditions laying between point D and E.

1. Perspective of index

Line (l_1) passing point A(j,n) and B(j-1,n-1) has the following form

$$(l_1): \quad \tau = \tau_A + \frac{\tau_B - \tau_A}{\xi_B - \xi_A} (\xi - \xi_A)$$

$$\Leftrightarrow \tau = n + \frac{(n-1) - n}{(j-1) - j} (\xi - j)$$

$$\Leftrightarrow \tau = n + \frac{-1}{-1} (\xi - j), \qquad (1)$$

where τ is the indical variable corresponding to t, and x the indical variable to x. Hence, line (l_1) passing line x with index $\tau = 0$ at point D leads to the following relation

$$\xi = j - n \Leftrightarrow x_{\xi} = x_{j-n} \Leftrightarrow x_{\xi} = x_j - n\Delta x \Leftrightarrow x_{\xi} - x_j = -n\Delta x. \tag{2}$$

Likewise, line (l_2) passing line x with index $\tau = 0$ at point E leads to the following relation

$$x_{\xi} - x_{j} = 0. \tag{3}$$

Therefore, by combining (2) and (3) we arrive at the numerical domain of dependence for the One-sided method in terms of indical perspective

$$\mathcal{D}_{\Delta t}(x_j, t_n) = \left\{ x_{\xi} \middle| -n\Delta x \le x_{\xi} - x_j \le 0 \right\}. \tag{4}$$

Next, by using the CFL number $\nu := a\Delta t/\Delta x$ we obtain the following equality

$$-n\Delta x = -n\Delta t \frac{a\Delta x}{a\Delta t} \stackrel{(CFL)}{=} -n\Delta t \frac{a}{\nu} = -\frac{at_n}{\nu}.$$
 (5)

Then, by substituting (5) into (4) and then taking the limit $\Delta t \to 0$ we obtain the entire set, as follows

$$\lim_{\Delta t \to 0} \mathcal{D}_{\Delta t} \left(x_j, t_n \right) = \left\{ x \left| -\frac{at_n}{\nu} \le x - x_j \le 0 \right. \right\}. \tag{6}$$

2. Perspective of fixed-point value Line (l_1) passing point $A(x_j, t_n)$ and $B(x_{j-1}, t_{n-1})$ has the following form

$$(l_1): \quad t = t_A + \frac{t_B - t_A}{x_B - x_A} (x - x_A) \Leftrightarrow t = t_n + \frac{t_{n-1} - t_n}{x_{j-1} - x_j} (x - x_j)$$
$$\Leftrightarrow t = t_n + \frac{-\Delta t}{-\Delta x} (x - x_j). \tag{7}$$

Hence, line (l_1) passing line t=0 at point D leads to the relation

$$x = x_j - \frac{t_n \Delta x}{\Delta t} \Leftrightarrow x - x_j = -\frac{t_n \Delta x}{\Delta t}.$$
 (8)

Likewise, line (l_2) passing line t=0 at point E leads to the relation

$$x - x_j = 0. (9)$$

Therefore, combination of (8) and (9) leads to the numerical domain of dependence for the One-sided method in terms of fixed-point value

$$\mathcal{D}_{\Delta t}\left(x_{j}, t_{n}\right) = \left\{x \left| -\frac{t_{n} \Delta x}{\Delta t} \leq x - x_{j} \leq 0\right\}.$$
 (10)

- 4.2 CFL Condition
- 5 von Neumann stability
- 6 Conservative form
- 7 Comparison: Order of consistency
- 8 Godunov
- 9 TVD

10 Fourier transformation

11 Remark about Rarefaction wave solution

Example 2. Show that for a general convex scalar problem

$$u_t + f(u)_x = 0$$

with initial condition in form of Riemann's problem

$$u(x, t = 0) = \begin{cases} u_L, & x < 0, \\ u_R, & x > 0, \end{cases} \quad where \quad u_L < u_R,$$

the rarefaction wave solution is given by

$$u(x,t) = \begin{cases} u_L, & x/t < f'(u_L), \\ v(x/t), & f'(u_L) \le x/t \le f'(u_R), \\ u_R, & x/t > f'(u_R), \end{cases}$$

where $v(\xi)$ is the solution to $f'(v(\xi)) = \xi$.

Example 3. Consider

$$u_t + Au_x = 0$$
 for $(x, t) \in \mathbb{R} \times \mathbb{R}^+$,

where the unknown vector u(x,t) is defined, and the matrix A is given as follows

$$u(x,t) := \begin{pmatrix} u_1(x,t) \\ u_2(x,t) \end{pmatrix}, \quad and \quad A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix},$$

and the initial conditions are given by

$$\begin{cases} u_1(x,0) &= 1, \\ u_2(x,0) &= \begin{cases} 1, & x < 0, \\ -1, & x > 0. \end{cases} \end{cases}$$

Approach: Eigenvalue decomposition of matrix A is given as follows

$$A = R\Lambda R^{-1}, \quad R = \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \quad R^{-1} = \frac{1}{2}R, \quad \Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}.$$

Hence, we can now change variable u to a new variable w as follows

$$w := R^{-1}u = \frac{1}{2}Ru$$
, so $u = Rw$.

Then, the initial problem can be rewritten as

$$w_t + \Lambda w_x = 0 \Leftrightarrow \begin{cases} (w_1)_t + \lambda_1(w_1)_x = 0, \\ (w_2)_t + \lambda_2(w_2)_x = 0, \end{cases}$$

with the diagonal matrix Λ . This step simply means that variables w_1 and w_2 are independent of each other, i.e. the original system has been fully decoupled. Next, let us find the initial condition in terms of w as follows

$$w(x,0) = \frac{1}{2}Ru(x,0) = \frac{1}{2}\begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} u_1(x,0) \\ u_2(x,0) \end{pmatrix} = \begin{pmatrix} -\left(u_1(x,0) + u_2(x,0)\right)/2 \\ -\left(u_1(x,0) - u_2(x,0)\right)/2 \end{pmatrix},$$

which yields the following relation

$$\begin{pmatrix} w_1(x,0) \\ w_2(x,0) \end{pmatrix} = \begin{pmatrix} -(u_1(x,0) + u_2(x,0))/2 \\ -(u_1(x,0) - u_2(x,0))/2 \end{pmatrix}.$$

Therefore, the initial conditions for the transformed variable w_1 read

$$w_1(x,0) = \begin{cases} -(1+1)/2 = -1, & x < 0, \\ -(1-1)/2 = 0, & x > 0, \end{cases}$$

and for the variable w_2 read

$$w_2(x,0) = \begin{cases} -(1-1)/2 = 0, & x < 0, \\ -(1-(-1))/2 = -1, & x > 0. \end{cases}$$

Since we have the advection problem with speeds $a_1 = 1$ and $a_2 = 3$, which are the diagonal values of the diagonal matrix Λ , for both w_1 and w_2 , we can derive explicit solution to each equation. The explicit solution w_1 reads

$$w_1(x,t) = w_1(x-t,0) = \begin{cases} -1, & x-t < 0, \\ 0, & x-t > 0, \end{cases} \Leftrightarrow w_1(x,t) = \begin{cases} -1, & x < t, \\ 0, & x > t, \end{cases}$$

and, likewise, the explicit solution w_2 reads

$$w_2(x,t) = w_2(x-3t,0) = \begin{cases} 0, & x-3t < 0, \\ -1, & x-3t > 0, \end{cases} \Leftrightarrow w_2(x,t) = \begin{cases} 0, & x < 3t, \\ -1, & x > 3t. \end{cases}$$

Now we trace back to variable u from variable w by taking into the consideration of the relation

$$u(x,t) = Rw(x,t) = \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} w_1(x,t) \\ w_2(x,t) \end{pmatrix} = \begin{pmatrix} -\left(w_1(x,t) + w_2(x,t)\right) \\ -\left(w_1(x,t) - w_2(x,t)\right) \end{pmatrix},$$

which means the following relation holds

$$\begin{pmatrix} u_1(x,t) \\ u_2(x,t) \end{pmatrix} = \begin{pmatrix} -(w_1(x,t) + w_2(x,t)) \\ -(w_1(x,t) - w_2(x,t)) \end{pmatrix}.$$

Therefore, the solution for $u_1(x,t)$ is computed as follows

$$u_1(x,t) = \begin{cases} -(-1+0) = 1, & x < t, \\ -(0+0) = 0, & t < x < 3t, \\ -(0+(-1)) = 1, & x > 3t, \end{cases}$$

and, likewise, the solution for $u_2(x,t)$ is

$$u_2(x,t) = \begin{cases} -(-1-0) = 1, & x < t, \\ -(0-0) = 0, & t < x < 3t, \\ -(0-(-1)) = -1, & x > 3t. \end{cases}$$

Finally, the solution to $u_1(x,t)$ and $u_2(x,t)$ read

$$\therefore \begin{cases} u_1(x,t) = \begin{cases} 1, & x < t, \\ 0, & t < x < 3t, \\ 1, & x > 3t, \end{cases} \\ u_2(x,t) = \begin{cases} 1, & x < t, \\ 0, & t < x < 3t, \\ -1, & x > 3t. \end{cases} \end{cases}$$

12 Remark on step-by-step derivation: Weak formulation of conservation laws

Example 4. Consider the conservation law

$$u_t + f(u)_x = 0 \quad for \quad (x, t) \in \mathbb{R} \times \mathbb{R}^+,$$
 (11)

with initial condition given by

$$u(x,0) = u_0(x).$$

Find the weak solution.

Approach: The weak formulation is obtained by multiplying both sides of (11) with a test function $\varphi \in C_0^1(\mathbb{R} \times \mathbb{R})$, and, then, integrating both sides over $\mathbb{R} \times \mathbb{R}^+$

$$\int_{\mathbb{R}^+ \times \mathbb{R}} \varphi \left(u_t + f(u)_x \right) dx dt = 0. \tag{12}$$

The derivation goes as follows

$$\begin{aligned} &(\mathbf{12}) \Leftrightarrow \int_{0}^{\mathcal{I}} \int_{\mathcal{Q}} \varphi\left(u_{t} + f(u)_{x}\right) dx dt = 0 \\ &\Leftrightarrow \int_{0}^{\mathcal{I}} \int_{\mathcal{Q}} \varphi\left(u_{t}\right) dx dt + \int_{0}^{\mathcal{I}} \int_{\mathcal{Q}} \varphi\left(f(u)_{x}\right) dx dt = 0 \\ &\Leftrightarrow \int_{\mathcal{Q}} \int_{0}^{\mathcal{I}} \varphi\left(u_{t}\right) dt dx + \int_{0}^{\mathcal{I}} \int_{\mathcal{Q}} \varphi\left(f(u)_{x}\right) dx dt = 0 \\ &\Leftrightarrow \left[\int_{\mathcal{Q}} \varphi\left(u_{t}\right) dt dx + \int_{0}^{\mathcal{I}} \int_{\mathcal{Q}} \varphi_{t} u dt dx\right] \\ &+ \left[\int_{0}^{\mathcal{I}} \varphi\left(u\right) \Big|_{x=-\infty}^{x=+\infty} dx dt - \int_{0}^{\mathcal{I}} \int_{\mathcal{Q}} \varphi_{x} f(u) dx dt\right] = 0 \\ &\Leftrightarrow \left[\int_{\mathcal{Q}} \left(\varphi\left(x, \stackrel{t\to +\infty}{\mathcal{D}}\right) u\left(x, \stackrel{t\to +\infty}{\mathcal{D}}\right) - \varphi(x, 0) u(x, 0)\right) dx - \int_{\mathcal{Q}} \int_{0}^{\mathcal{I}} \varphi_{t} u dt dx\right] \\ &+ \left[\int_{0}^{\mathcal{I}} \left(\varphi\left(\stackrel{x\to +\infty}{\mathcal{D}}\right) t\right) f\left(u\left(\stackrel{x\to +\infty}{\mathcal{D}}\right) - \varphi(x, 0) u(x, 0)\right) dx - \int_{\mathcal{Q}} \int_{0}^{\mathcal{I}} \varphi_{t} u dt dx\right] \\ &+ \left[\int_{0}^{\mathcal{I}} \left(\varphi\left(\stackrel{x\to +\infty}{\mathcal{D}}\right) t\right) f\left(u\left(\stackrel{x\to +\infty}{\mathcal{D}}\right) - \varphi(x, 0) u(x, 0)\right) dx - \int_{\mathcal{Q}} \int_{0}^{\mathcal{I}} \varphi_{t} u dt dx\right] \\ &+ \left[\int_{0}^{\mathcal{I}} \left(\varphi\left(\stackrel{x\to +\infty}{\mathcal{D}}\right) t\right) f\left(u\left(\stackrel{x\to +\infty}{\mathcal{D}}\right) - \varphi(x, 0) u(x, 0)\right) dx - \int_{\mathcal{Q}} \int_{0}^{\mathcal{I}} \varphi_{t} u dt dx\right] \\ &+ \left[\int_{0}^{\mathcal{I}} \left(\varphi\left(\stackrel{x\to +\infty}{\mathcal{D}}\right) t\right) f\left(u\left(\stackrel{x\to +\infty}{\mathcal{D}}\right) - \varphi(x, 0) u(x, 0)\right) dx - \int_{\mathcal{Q}} \int_{0}^{\mathcal{I}} \varphi_{t} u dt dx\right] \\ &- \int_{\mathcal{Q}} \varphi(x, 0) u(x, 0) dx - \int_{\mathcal{Q}} \int_{0}^{\mathcal{I}} \varphi_{t} u dx dt - \int_{0}^{\mathcal{I}} \int_{\mathcal{Q}} \varphi_{x} f(u) dx dt = 0 \\ \Leftrightarrow &- \int_{\mathcal{Q}} \varphi(x, 0) u_{0}(x) dx - \int_{0}^{\mathcal{I}} \int_{\mathcal{Q}} \varphi_{t} u dx dt - \int_{0}^{\mathcal{I}} \varphi_{x} f(u) dx dt = 0. \end{aligned}$$

Therefore, the weak formulation reads

$$\therefore \int_0^{\mathscr{T}} \int_{\mathscr{D}} (u\varphi_t + f(u)\varphi_x) \, dx dt + \int_{\mathscr{D}} \varphi(x,0)u_0(x) dx = 0.$$

Note in passing that the derivation above has taken into consideration the swapping order of integral limits between time $t \in [0, +\infty]$ and space $x \in [-\infty, +\infty]$, which results in indifference as shown in Figure 2.

Figure 2: In difference of limits when swapping order of integrals, i.e. $I_1 = I_2$.

13 Remark on step-by-step derivation: Weak solution of inviscid Burgers' equation in Riemann's problem

Figure 3: Difference of limits when swapping order of integrals is observed, i.e. the corresponding limits have to be adjusted in order to guarantee $I_1 = I_2$.

Example 5. Given Burgers' equation with initial condition

$$u_0(x) = \begin{cases} u_L, & x < 0, \\ u_R, & x > 0. \end{cases}$$

Figure 4: Difference of limits when swapping order of integrals is observed, i.e. the corresponding limits have to be adjusted in order to guarantee $I_1 = I_2$.

Then

$$u(x,t) = \begin{cases} u_L, & x < st, \\ u_R, & x > st, \end{cases}$$

is the weak solution to Burgers' equation.

Proof. RHS term

$$RHS = -\int_{\mathscr{D}} \varphi(x,0)u_0(x)dx$$
$$= -u_L \int_{-\infty}^0 \varphi(x,0)dx - u_R \int_0^{+\infty} \varphi(x,0)dx$$

LHS term

$$\begin{split} LHS &= \int_0^{\mathcal{T}} \int_{-\infty}^{st} \varphi_t u \, dx dt + \int_0^{\mathcal{T}} \int_{st}^{+\infty} \varphi_t u \, dx dt \\ &+ \int_0^{\mathcal{T}} \int_{-\infty}^{st} \varphi_x f(u) \, dx dt + \int_0^{\mathcal{T}} \int_{st}^{+\infty} \varphi_x f(u) \, dx dt \\ &= u_L \int_0^{\mathcal{T}} \int_{-\infty}^{st} \varphi_t \, dx dt + u_R \int_0^{\mathcal{T}} \int_{st}^{+\infty} \varphi_t \, dx dt \\ &+ \frac{u_L^2}{2} \int_0^{\mathcal{T}} \int_{-\infty}^{st} \varphi_x \, dx dt + \frac{u_R^2}{2} \int_0^{\mathcal{T}} \int_{st}^{+\infty} \varphi_x \, dx dt \\ &= \left(u_L \int_{-\infty}^0 \int_0^{+\infty} \varphi_t \, dt dx + u_L \int_0^{+\infty} \int_{x/s}^{+\infty} \varphi_t \, dt dx \right) \\ &+ u_R \int_0^{+\infty} \int_0^{st} \varphi_x \, dx dt + \frac{u_R^2}{2} \int_0^{\mathcal{T}} \int_{st}^{+\infty} \varphi_x \, dx dt \\ &= u_L \int_{-\infty}^0 \varphi \Big|_{t=0}^{t=+\infty} \, dx + u_L \int_0^{+\infty} \varphi \Big|_{t=x/s}^{t=+\infty} \, dx + u_R \int_0^{+\infty} \varphi \Big|_{t=0}^{t=x/s} \, dx \\ &+ \frac{u_L^2}{2} \int_0^{+\infty} \varphi \Big|_{x=-\infty}^{x=st} \, dt + \frac{u_R^2}{2} \int_0^{+\infty} \varphi \Big|_{x=st}^{x=+\infty} \, dt \\ &= u_L \int_{-\infty}^0 \left(-\varphi(x,0) \right) \, dx + u_L \int_0^{+\infty} \left(-\varphi(x,x/s) \right) \, dx \\ &+ u_R \int_0^{+\infty} \left(\varphi(x,x/s) - \varphi(x,0) \right) \, dx \\ &+ \frac{u_L^2}{2} \int_0^{+\infty} \varphi(st,t) \, dt + \frac{u_R^2}{2} \int_0^{+\infty} \left(-\varphi(st,t) \right) \, dt \\ &= -u_L \int_{-\infty}^0 \varphi(x,0) \, dx - u_R \int_0^{+\infty} \varphi(x,0) \, dx \\ &- \left(u_L - u_R \right) \int_0^{+\infty} \varphi(x,x/s) \, dx + \left(u_L - u_R \right) \int_0^{+\infty} \varphi(w,w/s) \, dw \\ &= -u_L \int_0^0 \varphi(x,0) \, dx - u_R \int_0^{+\infty} \varphi(x,0) \, dx = RHS \end{split}$$

Note in passing that we have used the following relation

$$\frac{u_L^2}{2} \int_0^{+\infty} \varphi(st, t) dt + \frac{u_R^2}{2} \int_0^{+\infty} (-\varphi(st, t)) dt = \frac{u_L^2 - u_R^2}{2} \int_0^{+\infty} \varphi(st, t) dt
= \frac{u_L^2 - u_R^2}{2s} \int_0^{+\infty} \varphi(w, w/s) dw
= (u_L - u_R) \int_0^{+\infty} \varphi(w, w/s) dw$$

where w := st and dw = sdt, and the RH condition for Burgers' equation $s = 1/2(u_L + u_R)$.

14 Consistency order

Example 6. Leapfrog scheme for the linear advection equation reads

$$u_j^{n+1} = u_j^{n-1} + \frac{a\Delta t}{\Delta x} \left(u_{j-1}^n - u_{j+1}^n \right).$$

Show that the local consistency error $L_{\Delta t}$

$$||L_{\Delta t}(\cdot,t)|| \le C(\Delta t)^2$$
 for $\Delta t \to 0$,

hold for a linear solution and $\Delta t/\Delta x = const.$

Figure 5: Leapfrog.

Consider the local truncation error

$$L_{\Delta t}(x,t) = \frac{1}{\Delta t} \left[u(x,t+\Delta t) - H_{\Delta t}(u(\cdot,t),x) \right],$$

which reads for the considered problem

$$L_{\Delta t}(x,t) = \frac{1}{\Delta t} \left[u(x,t+\Delta t) - \left(u(x,t-\Delta t) + \frac{a\Delta t}{\Delta x} \left(u(x-\Delta x,t) - u(x+\Delta x,t) \right) \right) \right].$$

Applying Taylor's expansion for $u(x, t + \Delta t)$

$$u(x, t + \Delta t) = u(x, t) + u_t(x, t)\Delta t + u_{tt}(x, t)\frac{(\Delta t)^2}{2} + \mathcal{O}((\Delta t)^3)$$

= $u(x, t) - au_x(x, t)\Delta t + a^2u_{xx}(x, t)\frac{(\Delta t)^2}{2} + \mathcal{O}((\Delta t)^3).$

Applying Taylor's expansion for $u(x, t - \Delta t)$

$$u(x, t - \Delta t) = u(x, t) - u_t(x, t)\Delta t + u_{tt}(x, t)\frac{(\Delta t)^2}{2} + \mathcal{O}((\Delta t)^3)$$

= $u(x, t) + au_x(x, t)\Delta t + a^2u_{xx}(x, t)\frac{(\Delta t)^2}{2} + \mathcal{O}((\Delta t)^3).$

Furthermore, applying Taylor's expansion for $u(x + \Delta x, t)$ and $u(x - \Delta x, t)$

$$u(x + \Delta x, t) = u(x, t) + u_x(x, t) \Delta x + u_{xx}(x, t) \frac{(\Delta x)^2}{2} + \mathcal{O}((\Delta x)^3)$$
$$u(x - \Delta x, t) = u(x, t) - u_x(x, t) \Delta x + u_{xx}(x, t) \frac{(\Delta x)^2}{2} + \mathcal{O}((\Delta x)^3).$$

Local truncation error

$$L_{\Delta t}(x,t) = \frac{1}{\Delta t} \left[u(x,t) - au_x(x,t)\Delta t + a^2 u_{xx}(x,t) \frac{(\Delta t)^2}{2} + \mathcal{O}((\Delta t)^3) \right.$$

$$- \left(u(x,t) + au_x(x,t)\Delta t + a^2 u_{xx}(x,t) \frac{(\Delta t)^2}{2} + \mathcal{O}((\Delta t)^3) \right.$$

$$+ \frac{a\Delta t}{\Delta x} \left(\left(u(x,t) - u_x(x,t)\Delta x + u_{xx}(x,t) \frac{(\Delta x)^2}{2} + \mathcal{O}((\Delta x)^3) \right) \right.$$

$$- \left(u(x,t) + u_x(x,t)\Delta x + u_{xx}(x,t) \frac{(\Delta x)^2}{2} + \mathcal{O}((\Delta x)^3) \right) \right) \right]$$

$$= \frac{1}{\Delta t} \left[-2au_x(x,t)\Delta t + \mathcal{O}((\Delta t)^3) - \frac{a\Delta t}{\Delta x} \left(-2u_x(x,t)\Delta x + \mathcal{O}((\Delta x)^3) \right) \right]$$

$$= \frac{1}{\Delta t} \mathcal{O}((\Delta t)^3)$$

$$= \mathcal{O}((\Delta t)^2).$$

Therefore, order of consistency for Leapfrog scheme is of order 2

$$||L_{\Delta t}(\cdot,t)|| \le C(\Delta t)^2$$
 for $\Delta t \to 0$.

Note in passing that $u_t = -au_x$ and $u_{tt} = a^2u_{xx}$ are from the linear advection equation.