

CSCI-3753: Operating Systems Fall 2018

Anh Nguyen

Department of Computer Science
University of Colorado Boulder

Announcements

PS5 will be available by the end of today.

- Final exam format
 - Total duration: 1 hour 15 minutes
 - Method:
 - Write on paper for the first 1 hour
 - → Proof of submission/attendance
 - Transfer the results achieved on paper to Moodle opened for the last 15 minutes
- → Bring your LAPTOP !!!

Problem Set #3

Solution of Question 3

- Suppose on-demand paging is employed in addition to TLB caching.
 - The time for a TLB hit **T** = **1** ns
 - A memory read **M** = **10** ns
 - A disk read **D** = **10 ms**
 - The probability of a TLB hit P_TLB = 90%
 - The probability of a page fault given a TLB miss P = 0.001
- What is the probability of a TLB miss?

$$1 - P_{TLB} = 1 - 0.9 = 0.1$$

Solution of Question 3

- Suppose on-demand paging is employed in addition to TLB caching.
 - The time for a TLB hit **T** = **1** ns
 - A memory read **M** = **10** ns
 - A disk read **D** = **10 ms**
 - The probability of a TLB hit P_TLB = 90%
 - The probability of a page fault given a TLB miss P = 0.001
- What is the probability of a NO page fault?

$$P_{TLB} + (1 - P_{TLB})(1 - P)$$

= 0.9 + (1 - 0.9)(1 - 0.001)
= 0.9 + 0.0999 = 0.9999

Solution of Question 3

- Suppose on-demand paging is employed in addition to TLB caching.
 - The time for a TLB hit **T** = **1** ns
 - A memory read M = 10 ns
 - A disk read **D** = **10 ms**
 - The probability of a TLB hit P_TLB = 90%
 - The probability of a page fault given a TLB miss P = 0.001
- What is the calculated average memory access time in Nano seconds?

$$P_{TLB}(T+M) + (1-P_{TLB})(1-P)(2M) + (1-P_{TLB})(P)(2M+D) = 1011.9 \text{ ns}$$

CSCI 3753 Fall 2018

Week 14: Security

6 Main Areas of Security

- Authentication proving you are who you say you are, e.g. passwords (most common!), biometrics
- Authorization managing access to resources, e.g. files
- Confidentiality only allow authorized viewing of data - encrypting files and communication
- Data Integrity detecting tampering with digital data
- Non-repudiation proving an event happened
- Availability ensuring a service is available (despite denial of service attacks)

CSCI 3753 Fall 2018

Authentication

- User authentication
 - Password authentication
 - Biometrics
 - Token-based authentication
 - Challenge-response authentication protocols

- Single sign-on, Microsoft Passport
- Trusted Intermediaries

CSCI 3753 Fall 2018

Authorization

- First authenticate a user with a login password
- Then, OS must determine what files/services the user/process is authorized to access
- → Object and access rights are stored in an access matrix.
 - Access control list (ACL)
 - All access permissions to a file are stored in the file header, forming an ACL for the file
 - Capability list
 - All access permissions for a user are stored with D4's account information, forming a list of capabilities for the user

Confidentiality

- Encrypt
 - Files to protect the confidentiality of the data
 - Communication messages to protect the confidentiality of the messages
- Only designated decryptors can view the data

CSCI 3753 Fall 2018

Confidentiality

- Symmetric key cryptography: $K_A = K_B$
 - Use the same key for encryption & decryption
 - Has been used since the times of the Romans
 - Also called secret key or private key cryptography
 - AES (Advanced Encryption Standard) uses symmetric key cryptography
 - Encrypted file systems use symmetric key cryptography
 - EFS (Encrypting File System for Windows)
 - and EncFS (for Linux, uses FUSE)
 - Stored in plaintext in a file in an encrypted form

CSCI 3753 Fall 2018 12

Confidentiality

- Public key cryptography
 - Emerged in the 1970s, invented by Diffie and Hellman (and Merkle)
 - Endpoints exchange public quantities with each other
 - Each endpoint then calculates its symmetric key from these publicly exchanged quantities
 - The symmetric keys calculated are the same
 - Even though an attacker could eavesdrop on all the public communications, it cannot calculate the symmetric key!
 - This solves the classic symmetric key distribution problem (with a caveat explained later), and was the foundation for public key cryptography

CSCI 3753 Fall 2018 13

Week 14 – Checklist

- Announcements
- ☐ Review PS3 and Security
- ☐ Do FCQ & the quiz