09/914463

PCT/ SE 00 / 0 0 4 8 3

REC'D 0 9 MAY 2030

WIPO PCT

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

- (71) Sökande Spectronic AB, Helsingborg SE Applicant (s)
- (21) Patentansökningsnummer 9900908-6 Patent application number
- (86) Ingivningsdatum
 Date of filing

1999-03-12

Stockholm, 2000-04-27

För Patent- och registreringsverket For the Patent- and Registration Office

Emma Högberg

Avgift Fee

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

SEST AVAILABLE CODY

ink. t. Patent- och reg.verket

5

1999 -03- 12

Helsingborg/S Giver Huwdimen Kosson

Ansökningsni

Referens 2990312

1

HAND- ELLER FICKBUREN ELEKTRONIKAPPARAT SAMT HANDSTYRD INMATNINGSENHET

Tekniskt område

Föreliggande uppfinning avser en hand- eller fickburen elektronikapparat, såsom en mobiltelefon, en handdator, etc., innefattande en displayenhet samt en i två riktningar positionskänslig pekyta för styrning av apparaten. Uppfinningen avser också en handstyrd inmatningsenhet av typ touchpad som är användbar i en sådan handburen elektronikapparat för realisering av pekytan.

Uppfinningen har framtagits särskilt för och kommer beskrivas i anslutning till en kombinerad mobiltelefon och 10 webbläsare, men är generellt användbar för alla typer av handburna elektronikapparater där det är föredraget att eliminera eller reducera antalet konventionella alfanumeriska tangentbord, enskilda fysiska funktionstangenter, en mus, en handhållen pekpenna, etc. för textinmatning, 15 markörstyrning, aktivering av funktioner, etc.

Teknikens bakgrund

Det är känt att styra en handburen elektronikapparat eller -terminal, såsom en mobiltelefon eller en handdator, med ett konventionellt fysiskt tangentbord, individuella 20 fysiska alfanumeriska tangenter och funktionstangenter, ett tumhjul eller en mus. Att använda tangentbord och individuella knappar som är integrerade med själva apparaten har nackdelen att de är skrymmande i sig och att det 25

Ink. t. Patent- och reg.verket

1999 -68- 12

Huyudfaxen Kassan

2

uppstår utrymmesproblem när antalet funktioner ökar. Ett separat alfanumeriskt tangentbord och en mus har båda nackdelen att de utgör en extra komponent för användaren samt kräver en separat arbetsyta.

För att avhjälpa dessa nackdelar har elektronikapparater 5 framtagits som är åtminstone delvis styrbara med en pekskärm (touchscreen) och/eller en pekplatta (touchpanel/touchpad). Dessa inmatningsenheter finns i analogt eller digitalt utförande. Med hjälp av sitt finger och/eller ett separat, handburet instrument - ofta be-10 nämnt "penna" - kan användaren välja en punkt på pekskärmens eller pekplattans pekyta i syfte att välja en motsvarande punkt på displayenhetens bildyta. Härigenom kan användaren aktivera olika funktioner, såsom aktivering av "virtuella" knappar för textinmatning, nummertagning, 15 funktionsaktivering, etc. En fingerrörelse över pekytan kan medföra en motsvarande rörelse hos en markör över displayenhetens bildyta. Någon markör behöver dock inte finnas, utan virtuella funktionstangenter kan exempelvis bringas att lysa upp när motsvarande områden på pekytan 20 aktiveras.

En pekskärm kännetecknas av att den är genomskinlig och helt eller delvis täcker displayenhetens bildyta. Användaren trycker eller klickar med sitt finger eller med en penna direkt på pekytan, vid de virtuella knapparna eller fälten som displayenheten visar, varför någon rörlig markör inte behöver finnas. En pekplatta kännetecknas av att den ej sammanfaller med bildytan och används ofta för styrning av någon form av markör över bildytan.

Vidare är det känt att göra pekskärmar och pekplattor känsliga för tryckets storlek, så att en användare genom att trycka tillräckligt hårt på pekytan kan aktivera, dvs. "klicka på", en vald knapp eller funktion.

Ink. t. Patent- och reg.verkat

1999 -03- 12

Huvudfaxen Kassan

3

Kända pekskärmar och pekplattor kan till viss del avhjälpa ovannämnda nackdelar hos alfanumeriska tangentbord, fysiska tangenter, mus och tumhjul, men medför dock flera andra problem:

- En pekskärm försämrar bildens kontrast och upplösning eftersom den är anbringad framför bildytan.
 Detta problem är särskilt påtagligt för reflektiva displayenheter, där ljuset passerar två gånger genom pekskärmen. Speciellt är det svårt att förse glas eller plast med de för pekskärmens funktion erforderliga ledande skikten utan att pekskärmens genomskinlighet försämras.
 - En annan nackdel med pekskärmar är att användaren med sitt eget finger skymmer en del av bildytan.
- 3. En ytterligare nackdel med pekskärmar och pekplattor är att positioneringsnogrannheten blir begränsad till följd av fingrets stora dimension relativt pekytan, något som är särskilt påtagligt för mindre pekytor. Detta problem kan delvis avhjälpas med separata, tunna pekpennor som ersätter fingret, men dessa har dock nackdelen att de utgör en extra komponent som användaren måste hålla reda på. Nackdelen med dålig kontrast avhjälps dock inte, och även en penna skymmer bildytan delvis.
- 4. Ännu en väsentlig nackdel hos pekskärmar är att de blir nedsmutsade och/eller repade av fingret som förs över ytan, vilket ytterligare försämrar bilden. Att lägga på ett separat repskydd utanpå pekskärmen är ingen lösning, eftersom det skulle försämra kontrasten ytterligare.

1999 -03- 12

Huvudfaxen Kassan

4

- 5. En generell nackdel med tryckkänsliga pekskärmar är att pekytan måste vara eftergivlig i djupled, vilket medför att bildytan som helhet blir känslig för yttre påverkan.
- 5 6. En pekskärm eller pekplatta är normalt uppbyggd av två skikt som hålls på inbördes avstånd med kantdistanser. Ett problem är att ytterskiktet, som utgör pekytan, spänns och därmed sträcks vid intryckning. Detta problem är särskilt framträdande när avståndet mellan kantdistanserna är litet, och speciellt nära dessa. Detta innebär även nackdelen att tryckkänsligheten varierar över pekytan.

US-A-5 729 219 (Motorola Inc.) beskriver en handburen sökare som har ett hus, en displayenhet anordnad på husets
framsida och en med displayenhetens bildyta parallell,
plan pekyta på husets motstående baksida. Avståndet mellan bildskärmen och den parallella pekytan är lika med
husets tjocklek. Bildskärmen och pekytan är lika stora,
och en förflyttning av en användares finger över panelen
i riktning vänster-höger medför en motsvarande rörelse
vänster-höger hos en markör eller pekare på skärmen, och
vice versa. En fingerrörelse på pekytan medför en lika
stor markörrörelse på skärmen.

Sammanfattning av uppfinningen

25 Föreliggande uppfinning har som ändamål att eliminera eller åtminstone reducera en eller flera av de ovan beskrivna nackdelarna hos kända pekskärmar och pekpaneler.

För uppnående av detta ändamål anvisas enligt en första aspekt av uppfinningen en hand- eller fickburen elektronikapparat, såsom en mobiltelefon, innefattande en displayenhet och en pekyta, som är positionskänslig i en första och en andra riktning för styrning av elektronikapparaten, vilken apparat kännetecknas av att pekytan är

1999 -03- 1 2 Huyudfaxen Kassan

5

anordnad vid sidan om displayenheten och är krökt i den första riktningen till konvex form.

Med pekyta avses här en yta hos en pekpanel (typ touchpad) över vilken en användare kan föra sitt finger till
önskad position för att styra exempelvis en markör över
displayenhetens bildyta och/eller för att aktivera virtuella tangenter som visas på bildytan, etc. Dessa grundläggande funktioner hos en pekpanel är i sig kända för
fackmannen och behöver därför ej beskrivas närmare här.

I normalfallet svarar fingerrörelse i pekytans två riktningar mot en positionering på displayenhetens bildyta i två inbördes vinkelräta riktningar, företrädesvis parallella med respektive fingerrörelseriktning på pekytan.

En fördel med att pekytan enligt uppfinningen är krökt i en första riktning till konvex form illustreras schematiskt i fig 10a och 10b. Kontaktområdet 50 mellan fingerspetsen 51 och den krökta pekytan 52 (fig 10b) kommer enligt uppfinningen att vara bildad av två konvexa ytor, istället för som i den kända tekniken (fig 10a) av en

20 konvex yta (fingerspetsen) och en plan, icke krökt pekyta. Uppfinningen reducerar kontaktarean väsentligt mellan fingerspetsen och pekytan, vilket gör det möjligt att
även med en relativt smal, långsträckt pekyta uppnå en
hög positioneringsnoggrannhet i pekytans breddriktning.

Detta i sin tur gör det möjligt att placera pekytan helt utanför bildytan, på lämplig plats på apparaten. Därmed blir det möjligt att med uppfinningen lösa de ovan beskrivna problemen hos kända pekskärmar avseende dålig upplösning och kontrast, nedsmutsning. Det blir också möjligt att lösa problemet att bildytan delvis döljs av användarens finger eller en penna. Displayenheten kan göras hård och mindre känslig för yttre påverkan.

En annan fördel med att reducera kontaktarean mellan finger och pekyta är att det krävs en lägre kraft från

1999 -02- 12 Huvudiaxen Kassan

42 160942

användaren för att uppnå samma kraft per ytenhet för aktivering av pekytan. Detta framgår också av fig 10b.

En annan fördel hos uppfinningen är att pekytan kan utformas på ett sådant sätt att användaren inte behöver flytta sitt finger så mycket i den riktning i vilken ytan är krökt (krökningsriktningen). I vissa fall är det tänkbart att fingret inte ens behöver föras eller glida över den välvda ytan i krökningsriktningen, utan istället endast "rulla" över den välvda ytan.

- En väsentlig fördel hos uppfinningen, vad gäller utfö-10 ringsformer av membrantyp, är att en krökt pekyta för ett givet membran ger mindre motstånd mot intryckning, eftersom membranet som bildar pekytan inte behöver sträckas. Erforderlig aktiveringskraft minskas således jämfört med kända pekytor. Hos kända pekytor ökar erforderlig aktive-15 ringskraft ju närmare kanten man kommer, och detta gör att noggrannheten blir väsentligt lägre pga deformation av fingerspetsen (se fig llb). Att minska aktiveringskraften är också föredraget eftersom den folie eller motsvarande som bildar pekytan utsätts för mindre påfrest-20 ning. Dessa problem innebär att man inte kan realisera en smal långsträckt pekyta med känd teknik, vilket dock är möjligt med uppfinningen tack vare det lägre kontakttrycket.
- Ytterligare en fördel med en krökt pekyta är att kontakt-25 trycket blir mer linjärt, dvs enhetligt, jämfört med kända plana pekytor. Hos kända pekytor av membrantyp ökar kontakttrycket ju närmare kanten man kommer, varemot kontakttrycket hos den krökta pekytan enligt uppfinningen är väsentligen konstant i krökningsriktningen. Denna fördel 30 hos uppfinningen framgår av en jämförelse mellan fig 11a och 11b, som visar en inmatningsenhet enligt uppfinningen respektive en känd pekplatta av membrantyp.

15

ink. t. Patent- och reg.verket

1999 -03- 12

Huyudfaxen Kassan

7

I en föredragen utföringsform gäller att pekytan är längre i den andra riktningen än i den första riktningen (krökningsriktningen), och speciellt kan pekytan vara enkelkrökt kring en med den andra riktningen parallell, rätlinjig geometriaxel. I detta fall bestäms positioneringsnoggrannheten i pekytans längdrikting av pekytans fysiska utsträckning i längdriktningen. Därmed blir positioneringsnoggrannheten i längdriktningen egentligen oförändrad jämfört med kända plana, oböjda pekytor, men eftersom displayen är oskymd kan man genom en visuell återkoppling via displayen, t ex med en markörrörelse, ändå i praktiken öka noggrannheten i längdriktningen.

Enligt en ur ergonomiskt hänseende föredragen utföringsform av uppfinningen gäller att displayenheten är anordnad på en framsida hos apparaten och den krökta pekytan
är anordnad helt eller delvis på en kantsida hos apparaten. Om den krökta pekytan exempelvis löper utmed apparatens högra kantsida, och användaren håller apparaten i
sin högra hand med handflatan vänd mot apparatens baksida, så kan användaren manövrera apparaten genom att föra
sin tumme längs med och tvärs den krökta pekytan på den
högra kantsidan.

Enligt en särskilt föredragen utföringsform gäller att hela den krökta pekytan är anordnad på apparatens kantsida. Pekytan har i detta utförande två parallella längskanter mellan vilka den krökta pekytan löper och vilka längskanter ansluter till var sin kant hos apparatens framsida respektive baksida. Denna utföringsform har fördelen att i stort sett hela framsidan kan användas för displayenheten, varvid displayenheten kan sträcka sig maximalt ut till framsidans längskanter.

Enligt en annan utföringsform kan den krökta pekytan helt eller delvis vara anordnad på en framsida hos apparaten vid sidan om displayenheten. Denna utföringsform kan vara

1999 -63- 12

Huvudiooen Kassan

8

fördelaktig om man önskar möjlighet att "klicka" på pekytan åt "rätt håll" i apparatens tjockleksriktning.

Pekytan har företrädesvis en större utsträckning i sin längdriktning än tvärs denna. Speciellt kan pekytans

5 bredd i krökningsriktningen göras väsentligt mindre än motsvarande dimension hos displayenhetens bildyta. Önskad utväxling mellan en fingerrörelse på pekytan och en resulterande rörelse på bildytan kan åstadkommas på för fackmannen kända sätt. Speciellt kan en sådan utväxling vara väsentligt större för rörelse i pekytans tvärriktning. Utväxlingen i längdriktningen kan exempelvis vara 1:1, så att en vald position i pekytans längdriktning motsvarar en position i bildytans längdriktning som ligger mitt för positionen på pekytan, vilket ger en god visuell återkoppling för användaren.

Pekytan behöver inte, men kan vara ungefär lika lång som motsvarande dimension hos displayens bildyta. Pekytan kan även vara något längre än motsvarande dimension hos bildytan.

20 Pekytan kan vara uppdelad i den andra riktningen i två eller flera områden eller fält. Uppdelningen kan vara konstruktionsmässig och/eller logisk, dvs. enbart programstyrd. En konstruktionsmässig uppdelning kan exempelvis åstadkommas med elektriskt separerade fält, vilka kan vara framställda i en och samma inmatningsenhet med gemensam pekyta. Två närliggande, konstruktionsmässigt uppdelade fält kan dock vid behov användas som ett enda, logiskt sammanhängande fält. En logisk uppdelning kan åstadkommas med programvara som via displayenheten anvisar olika tryckytor eller fält på pekytan.

Generellt gäller att endast en position åt gången skall vara aktiverad på en pekyta, eller på varje fält för det fall pekytan är konstruktionsmässigt uppdelad i fält enligt ovan.

35

46 42 160942

TEL: 46 42

1999 4/8 12

Huvudfaxen Kassan

9

I en utföringsform omfattar pekytan en övre del och en undre del, av vilka endast den övre delen – som normalt styrs av tummen – är aktiv när användaren håller apparaten i handen. Därmed undviks att användarens handflata oavsiktligt aktiverar den undre delen av pekytan. Den undre delen av pekytan kan exempelvis användas för snabbstyrning av funktionsknappar i en lista, genom ett tryck vid rätt längdposition på den undre delen av pekytan. Med andra ord kan pekytans övre del användas för tvådimensionell styrning, medan pekytans nedre del kan användas för endimensionell styrning.

På känt sätt kan pekytan göras känslig även i den mot pekytan vinkelräta riktningen, för att medge aktivering av olika funktioner, exempelvis möjlighet att klicka på olika knappar på displayen. Ett sätt att realisera detta är att införa en tredje folie innanför ovannämnda innerfolie. Positioneringsstyrning sker genom hoptryckning av ytterfolie och innerfolie enligt ovan. Klickfunktionen åstadkommes med ett ökat tryck, så att innerfolien bringas i kontakt med den tredje folien. Sistnämnda kontakt kan registreras elektrisk som en galvanisk kontaktslutning. Denna lösning ger en mekanisk återkoppling till användaren. Folierna kan göras olika styva för att åstadkomma rätt tryckkänsla för användaren.

Det finns flera kända sätt att åstadkomma en detektering/bestämning av koordinaterna hos en nedtryckt position på pekytan. Kända tekniker innefattar exempelvis resistiva metoder, kapacitiva metoder samt metoder som bygger på ytvågor. Mest föredraget torde vara tekniker som
utnyttjar ett membran eller en folie för bildande av pekytan.

Enligt en andra aspekt av uppfinningen anvisas en handstyrd inmatningsenhet av typ touchpad, innefattande en pekyta som är positionskänslig i en första och en andra riktning och över vilken pekyta en användare är avsedd

1999 -03- 12

Huvudfaxen Kassan

10

42 160942

att föra ett finger, och organ för avkänning av fingrets position på pekytan, vilken inmatningsenhet kännetecknas av att pekytan är krökt i den första riktningen till konvex form.

Pekytan är företrädesvis längre i den andra riktningen än i den första riktningen. Den är företrädesvis enkelkrökt kring en med den andra riktningen parallell, rätlinjig geometriaxel. Pekytan kan vara bildad av en konvex utsida hos en ytterfolie som är fjädrande inspänd vid motstående sidokanter till konvex form. Inmatningsenheten kan vidare 10 innefatta en krökt innerfolie som är anordnad innanför och på avstånd från ytterfolien. Innerfolien kan vara anordnad över en välvd bas, företrädesvis fäst vid denna bas. För åstadkommande av erforderlig distans kan ytterfolien ha en kraftigare krökning än den yta mot vilken 15 ytterfolien skall tryckas ned, exempelvis utsidan hos en krökt innerfolie. Detta kan exempelvis åstadkommas om ytterfolien görs något bredare i tvärriktningen och foliernas längskanter spänns in tillsammans vid pekytans längskanter. Ytterfolien reser sig då fjädrande från innerfo-20 lien för upprätthållande av ett avstånd mellan folierna, vilket avstånd kan reduceras genom tryck från användarens finger på pekytan. Naturligtvis kan man även påverka avståndet mellan folierna medelst lämpliga distanselement, särskilt vid kanterna. 25

Ytter- och innerfolien kan tillverkas utifrån en och samma folie som förses med erforderliga skikt och ledare och därefter viks kring en viklinje för att genom vikningen bilda både innerfolien och ytterfolien.

Med den uppfinningsenliga inmatningsenheten med krökt pekyta kan man realisera en smal pekyta på en begränsad yta. Detta är inte möjligt med traditionella, flata pekpaneler. En traditionell flat pekpanel har distanselement som kräver att panelen skyddas från beröring över ett avstånd av ca 2 mm från distanselementen eftersom en tradi-

Huvudfaxen Kassan

tionell pekpanel bygger på att ytterfolien sträcks ner till innerfolien vid aktivering. Utan detta säkerhetsavstånd finns risk för att ytterfolien deformeras och/eller släpper från distansen. Av den tillgängliga ytan går således förlorat dels ytan som upptas av distanselementen (i en riktning minium 2 + 2 mm), dels säkerhetsavståndet på 2+ 2 mm (se fig 11b). En inaktiv yta på 8 mm är naturligtvis oacceptabelt om panelen skall göras exempelvis så smal som 10 mm. Eftersom någon sträckning inte uppstår hos den uppfinningsenliga inmatningsenheten elimineras detta problem.

Vidare kan traditionella pekpaneler inte böjas till konvex form med bibehållen funktion pga. att det blir fel distans mot ytterfolien.

Enligt uppfinningen anvisas sälunda möjligheten att rea-15 lisera en kompakt, handburen elektronikapparat, såsom en mobiltelefon, med en bildyta som täcker väsentligen hela framsidan hos apparaten. Detta är möjligt tack vare att inmatning av data ej kräver någon manövrering av separata tangentbord eller fysiska knappar på apparatens framsida. 20 Istället är apparaten enligt uppfinningen försedd med en eller flera tryckkänsliga pekytor på och/eller intill apparatens kantsidor, vid sidan om bildytan. Det tillgängliga utrymmet vid sidan om en så pass stor bildyta är emellertid begränsat. Om pekytan i sin helhet skall vara 25 anordnad på apparatens kantsida får pekytan inte vara bredare än apparatens tjocklek, vilket kan röra sig om mått i storleksordningen 10 mm eller mindre. Pekytans längd är normalt inte kritisk, eftersom hela apparatens längd är disponibel. Att trycka med ett finger, särskilt 30 en tumme, på en smal och plan avlång yta med en bredd på endast 10 mm ger inte någon acceptabel noggrannhet, och det krävs även för hög kraft. Detta problem löses emellertid enligt uppfinningen genom att pekytan ges en konvex form i sin tvärriktning. 35

Ink. L. Patent- och reg.verket

1999 -03- 12

Huvudiacen Kassan

12

Figurbeskrivning

- är en perspektivvy av framsidan av en mobiltele-Fig 1 fon, som utgör ett utförande av en handburen elektronikapparat enligt uppfinningen.
- visar baksidan av mobiltelefonen i fig 1. 5 Fig 2

42 160942

- är en sidovy av ett inre chassi eller stomme hos Fig 3 mobiltelefonen i fig 1.
- är än toppvy av chassit i fig 3. Fig 4
- är en tvärsektion av en inmatningsenhet visad i Fig 5 fig 4. 10
 - är en utbruten detaljförstoring av inmatningsen-Fig 6 heten i fig 5.
 - illustrerar en metod för framställning av en in-Fig 7 matningsenhet enligt uppfinningen.
- illustrerar en metod för framställning av en an-Fig 8 15 nan inmatningsenhet enligt uppfinningen.
 - Fig 9 är en schematisk, icke skalenlig tvärsektionsvy av inmatningsenhetetna i fig 8 och 9.
- Fig 10 illustrerar schematiskt en aspekt av uppfinningens funktion. 20
 - illustrerar schematiskt en andra aspekt av upp-Fig 11 finningens funktion

Beskrivning av föredragna utföringsformer

En i fig l och 2 visad kombinerad mobiltelefon/webbläsare 1 har en framsida 2, en baksida 3, två motstående kantsi-25 dor 4, 5, en bottensida 6 och en toppsida 7. Mobiltelefonen 1 är försedd med kommunikationsorgan, innefattande en antenn 8, en mikrofon 9, en högtalare 10 samt i apparatens inre anordnade, ej visade elektroniska sändtagark-

10

15

20

4.2

Ink. t. Patent- och reg.verket

1999 -03- 12

Huyudfaxen Kassan

13

retsar. De sistnämnda kan vara av konventionellt slag och beskrivs därför ej närmare i detalj. En displayenhet med en rektangulär bildyta 12 är anordnad på framsidan 2, och ett batterifack 13 är anordnat på baksidan 3. Till skillnad mot traditionella mobil telefoner upptar displayenhetens bildyta 12 nästan hela framsidan 2. Endast små områden ovanför och nedanför bildytan 12 är fria för högtalaren 10 respektive mikrofonen 9. Mobiltelefonen/webbläsaren 1 innefattar vidare (ej visad) nödvändiga elektronikkretsar för apparatens olika funktioner, såsom processorer, displaydrivenheter, minneskretsar, etc., vilkas realisering är känt för fackmannen och därför ej kommer att beskrivas i detalj. I fig 2 visas även en kamera 14 på baksidan 3 som ej på något sätt är erforderlig för uppfinningen och därför inte beskrivs närmare i detalj.

Mobiltelefonen 1 är försedd med två långsträckta, fingerstyrda inmatningsenheter 20. 21 av typ "touchpad", vilka är utsträckta utmed var sin av kantsidorna 4 respektive 5 för styrning av mobiltelefonen 1 och dennas displayenhet. I detta utförande föreligger det två inmatningsenheter, men 1 ett enklare utförande kan det finnas endast en inmatningsenhet, lämpligen då inmatningsenheten 20 på den högra kantsidan 4 för manövrering med högerhandens tumme.

Utmärkande för mobiltelefonen 1 enligt detta utförande är att den saknar andra inmatningsenheter i form av fysiska tangenter, tumhjul, etc. All manövrering och styrning från användarens sida kan utföras med hjälp av inmatningsenheterna 20, 21.

Baskonstruktionen för den högra inmatningsenheten 20
30 skall nu beskrivas. Konstruktionen är väsentligen densamma hos den vänstra inmatningsenheten 21. Såsom visas i fig 5 och 6 innefattar imatningsenheten 20, räknat inifrån, följande tre grundkomponenter: (i) en långsträckt bas 22 med en välvd yta 23 och en baksida 24, (ii) en innerfolie 25 och (iii) en ytterfolie 26. Ytterfoliens 26

15

atent- och reg.verket

1999 -03- 12

Huvudfacen Kassan

14

utsida kan bilda den krökta pekytan, men är i det föredragna utförandet täckt av en elastisk ytterkåpa såsom beskrivs längre fram nedan. I fig 3 och 4 visas mobiltelefonens linre chassi ll med påmonterad inmatningsenhet, men utan ytterkåpa och batteri.

Basen 22 är i det visade ut förandet ca 127 mm lång och 13,5 mm bred, vilka mått är anpassade till måtten hos apparatens kantsida 4. Den välvda ytan 23 har en krökningsradie på ca 1 cm. Innerfolien 25 och ytterfolien 26 är i detta utförande tillverkade av 0,05 mm tjock PET-plastfolie, men andra material och tjocklekar kan naturligtvis användas. Innerfoliens 25 yta överensstämmer med storleken på basens 22 välvda yta 23 och är medelst ett bindemedelsskikt 27, såsom en självhäftande tejp, fast förbunden med basens välvda yta 23. Basens 22 plana baksida 24 är på lämpligt sätt fäst vid kantsidan 4. I ett alternativt utförande kan basen 23 istället vara integrerad med, dvs. utformad i ett stycke med det i fig 3 och 4 visade chassit 11.

Ytterfolien 26 är vid sina påda längskanter 26 medelst 20 remsliknande skikt av isolationslack 28 och adhesiv elektriskt isolerad från inherfolien 25. Ytterfolien 26 är något bredare (här ca 18 9 mm) än innerfolien 25, så att den genom inspänningen vid sina längskanter vid hänvisningsbeteckningar 29 bringas att inta en skarpare 25 krökning än innerfolien 25. Resultatet blir att ytterfolien 26 står upp från innerfolien 25 och att ett litet avstånd A bildas mellan inher- och ytterfolien på i storleksordningen 0,25 mm vid mittpositionen Pl och i storleksordningen 0,05 mm vid kantpositionerna P2. Detta av-30 stånd & uppnås sålunda utan användning av några separata distanselement. Eftersom ytterfolien 26 är fjädrande, kan avståndet Δ elimineras temporärt vid en punkt där användaren tillfälligt trycker med sitt finger. Ytterfolien 26 behöver inte sträckas för att få kontakt med innerfolien 35 25. Pekytans enda inaktiva områden är områdena ovanför

46 42 160942

isolationslacken 28. När användaren släpper fingertrycket, àterställs avståndet Δ genom ytterfoliens 26 fjädrande egenskaper.

För resistiv registrering av koordinaterna för en intryckt position på inmatningsenhetens pekyta är innerfo-5 lien 25 och ytterfolien 26 på i sig känt sätt i detta utförande försedda med resistiva, elektrodförsedda skikt på sina mot varandra vända ytor, exempelvis av en grafikblandning.

En metod för framställning av inmatningsenheterna 20 och 10 21 skall nu beskrivas. Först hänvisas till fig 7 och 9 i kombination, som schematiskt illustrerar framställningen av mobiltelefonens vänstra inmatningsenhet 21. Tvärsektionen i fig 9 är kraftigt förminskad i horisontell led och är förstorad i vertikal led. Den vänstra inmatnings-15 enheten 20 är framförallt avsedd för användning när apparaten 1 är i liggande, horisontellt läge, exempelvis vid användning som webbläsare. Av denna anledning räcker det att den vänstra inmatningsenheten 20 är enkel och inte som den högra inmatningsenheten 21 uppdelad i två fält i 20. sin längdriktning, såsom kommer att beskrivas närmare nedan.

Den övre delen av fig 7 visar en sammanhängande folie avsedd att vikas kring en längsgående viklinje L för att 25 bilda innerfolien 25 och ytterfolien 26. Hos den färdiga inmatningsenheten 21 hänger inner- och ytterfolien sålunda samman vid viklinjen L (se fig 6), medan ytterfolien 26 skjuter något utanför innerfolien 25 vid den motsatta kanten. Den undre delen av fig 7 visar ett tryckt led-30 nings- och elektrodmönster 30 av exempelvis silver som appliceras direkt på den ovikta folien 25, 26. Mönstret 30 innefattar dels två relativt långa, inbördes parallella x-elektroder 31 på ytterfoliesidan 26, dels två relativt korta inbördes parallella y-elektroder 32 på inner-35

1999 -03- 12

Huvudfaxen Kassan

16

42 160942

foliesidan 25, för bestämming av x- respektive y-position hos en punkt där användaren trycker med sitt finger. Elektroderna 31 och 32 är via ledare förbundna med anslutningsterminaler 33. På mönstret 30 appliceras två skikt 34, 35 med isolationslack av Dupont 5018G. På dessa skikt appliceras sedan två resistiva grafikskikt 36 respektive 37. De sistnämnda är elektriskt anslutna till elektroderna 31 respektive 32 såsom visas i fig 9, och är isolerade från varandra. Deras bredd är väsentligt större än vad som indikeras i fig 9 och motsvarar pekytans ut-10 sträckning i tvärriktningen. När grafikskikten 36, 37 appliceras, kommer de i direkt elektrisk kontakt med respektive elektroder 31 och 32, vilket är schematiskt visat i fig 9 med tunna linjer. Slutligen appliceras isolationsskikten 28 på grafikskikten 36 och 37 så att dessa 15 hålls isolerade från varandra vid sina längskanter när folien viks.

Folien 25, 26 med de applicerade skikten och ledningsmönstret viks sedan kring viklinjen L, så att den ena foliedelen 26 läggs ovanpå den andra foliedelen 25 för att
bilda den färdiga inmatningsenheten 20, klar att anslutas
till drivelektroniken via anslutningsterminalerna 33. I
det visade utförandet är folien utmed viklinjen L försedd
med ett antal genomgående slitsar 60 och mellanliggande
förbindelser 61 som fungerar som "gångjärn" vid vikningen
och som håller samman de två folierna. Vid de yttre förbindelserna 62 löper ledningsmönstret 30.

En fördel hos den ovan beskrivna konstruktionen är att de resistiva skikten 36, 37 anordnas likt en motorväg på avstånd ovanför elektroderna och ledarna, vilket ger en väsentlig besparing av utrymme. Några separata distanser krävs inte, och konstruktionen är som helhet kostnadseffektiv och fördelaktig ur produktionshänseende.

Den högra inmatningsenheten 21 tillverkas på väsentligen 35 samma sätt, förutom att dess yta är uppdelad i sin längd-

15

Ink. t. Patent- och reg.verket

1999 - 43- 12

Huvudfaxen Kassan

17

46 42 160942

riktning i en övre del 21-1 och en undre del 21-2, såsom indikerat i fig 8. Varje del har två x-elektroder 31 och två v-elektroder 32. I övrigt är framställningssättet detsamma. Denna uppdelming gör det möjligt att med programvara inaktivera dem undre delen 21-2 om man vill undvika ofrivillig aktive ing med högerhandens handflata, medan den övre delen 21-1 styrs av högerhandens tumme.

Realiseringen av posit oneringsfunktionen hos inmatningsenheterna 20, 21 är i sig känd och behöver inte beskrivas i detalj. De resistiva skikten 36, 37 kan spänningssättas medelst erforderliga divkretsar växelvis med en lämplig frekvens. När användaren trycker ihop grafikskikten 36, 37 vid en viss punkt, fastställs punktens läge i två riktningar genom högohmig mätning på det för tillfället ej spänningssatta skiktet. Denna positionsbestämning används sedan för styrning av displayenheten 11, exempelvis för styrning av en markör, för val av virtuella knappar, etc. som visas på disp ayenheten 11. Speciellt kan inmatningsenheternas 20, 21 funktion vara applikationsstyrd.

Arrangemanget görs företrädesvis också känsligt för 20 tryckets storlek, vilket kan åstadkommas genom att på resistiv väg bestämma sterleken hos den nertryckta effektiva kontaktytan mellan de resistiva skikten 36, 37. När kontakttrycket ökar, ökar kontaktytan eftersom fingret deformeras. Därmed sjumker övergångsresistansen och ett 25 mått erhålls på hur hå t man trycker. Detta kan användas för aktivering av olika funktioner, när rätt position har valts i x- och y-led. Alickfunktion kan också såsom beskrivits ovan åstadkommas med en tredje folie innanför innerfolien (ej visat) 30

Som alternativ till det ovan beskrivna utförandet kan inmatningsenheterna 20, 21 realiseras med ett matrissystem innefattande en uppsät#ning korsande ledare, exempelvis kolumner på den ena follien och rader på den andra. Med

.2-MAR. '99 (FRE) 15:18

5

10

15

L Patent- och reg.verket

1999 -08- 12

Huvudfaxen Kassan

18

ett scanningförförande kan nedtryckt position enkelt bestämmas.

Såsom nämnts ovan kan displayenheten göras relativt okänslig för stötar, eftersom det inte behöver finnas någon böjlig pekyta som täcker bildytan 12. För att göra apparaten ännu täligare mot omgivningspåverkan, såsom fukt och slag, kan apparatens 1 chassi 11, med undantag för bildytan 12 och batterilocket 13, omslutas av ett lämpligt vattentätt och/eller stötdämpande material, såsom ett skal av ett elastomermaterial. Speciellt kan detta skal täcka även inmatningsenheterna 20, 21, och måste då vara böjligt för att inte påverka funktionen hos dessa. Ytan hos detta skal kan över inmatningsenheternas 20, 21 pekyta förses med fysikt kännbara mönster, såsom de längsgående ribbor som visas i fig 1 och 2. Ett sådant mönster skulle också kunna vara anordnat direkt på ytterfoliens 26 utsida. Detta skal kan även vara integrerat med en genomskinlig skyddsfolie eller -platta som täcker bildytan 12. Om denna genomskinliga yta blir repig kan den sålunda enkelt utbytas genom utbyte av skal med inte-20 grerad, genomskinlig skyddsfolie eller -platta.

Ink. t. Patent- och reg.verket

1999 46 12

Huvudfaxen Kassan

19

PATENTKRAV

- 1. Hand- eller fickburen elektronikapparat (1), såsom en mobiltelefon, innefattande en displayenhet och en pekyta (20; 21), som är positionskänslig i en första och en andra riktning för styrning av elektronikapparaten, kännetecknad av att pekytan (20; 21) är anordnad vid sidan om displayenheten och är krökt i den första riktningen till konvex form.
- 10 2. Apparat enligt krav 1, varvid pekytan (20; 21) är längre i den andra riktningen än i den första riktningen.
 - 3. Apparat enligt krav 1 eller 2, varvid pekytan (20; 21) är enkelkrökt kring en med den andra riktningen parallell, rätlinjig geometriaxel.
- 4. Apparat enligt något av de föregående kraven, varvid displayenheten är anordnad på en framsida (2) hos apparaten (1) och den krökta pekytan (20; 21) är anordnad helt eller delvis på en kantsida (4; 5) hos apparaten (1).
- 5. Apparat enligt krav 4, varvid pekytan (21; 20) är an20 ordnad i sin helhet på apparatens (1) kantsida (4; 5) och har två parallella längskanter mellan vilka den krökta pekytan löper och vilka längskanter ansluter till apparatens (1) framsida (2) respektive baksida (3).
- 6. Apparat enligt något av kraven 1-3, varvid displayen25 heten är anordnad på en framsida (2) hos apparaten (1)
 och den krökta pekytan (20; 21) är anordnad helt eller
 delvis på apparatens (1) framsida (29) vid sidan om displayenheten (11).
- 7. Apparat enligt något av de föregående kraven, varvid 30 displayenheten har en bildyta (12) som upptar en huvuddel av apparatens (1) framsida (2).

10

1999 -83- 12 Huvudfaxen Kassan

20

- 8. Apparat enligt något av de föregående kraven, varvid displayenheten har en bildyta vars utsträckning i den riktning som motsvaras av positionering i pekytans första riktning är större än pekytans utsträckning i den första riktningen.
- 9. Apparat enligt något av de föregående kraven, varvid displayenheten har en bildyta (12) vars utsträckning i den riktning som motsvards av positionering i pekytans andra riktning är väsentligen lika stor som pekytans utsträckning i den andra riktningen.
- 10. Apparat enligt något av de föregående kraven, varvid pekytan (21) är uppdelad i den andra riktningen i två eller fler delytor (21-1, 21-2) med separat positionsbestämning.
- 15 11. Apparat enligt något av de föregående kraven, varvid den krökta pekytan (20) utgör en första av två (20, 21) dylika krökta pekytor, vilka pekytor (20, 21) är anordnade på motsatta sidor av displayenheten.
- 12. Handstyrd inmatningsenhet (20; 21), innefattande en pekyta, som är positionskänslig i en första och en andra riktning och över vilken pekyta en användare är avsedd att föra ett finger, och organ (25, 26, 30, 36, 37) för avkänning av fingrets position i nämnda två riktningar på pekytan, kännetecknad av att pekytan är krökt i den första riktningen till konvex form.
 - 13. Apparat enligt krav 12. varvid pekytan (20; 21) är längre i den andra riktningen än i den första riktningen.
- 14. Apparat enligt krav 1 eller 2, varvid pekytan (20; 21) är enkelkrökt kring en med den andra riktningen pa-30 rallell, rätlinjig geometriaxel.

2-MAR. 99 (FRE) 15:19

Ink. t. Patent- och reg.verket

1999 -68- 12

Huvudiaxen Kassan

21

- 15. Inmatningsenhet enligt något av kraven 12-14, varvid pekytan är bildad av en konvex utsida hos en fjädrande, vid sina längskanter inspänd ytterfolie (26).
- 16. Inmatningsenhet enligt krav 15, vidare innefattande 5 en krökt innerfolie (25) scm är anordnad innanför och på avstånd från ytterfolien (26).
 - 17. Inmatningsenhet enligt krav 16, varvid ytterfolien (26) har en kraftigare krökning än innerfolien (25).
- 18. Imatningsenhet enligt krav 17, varvid ytterfolien

 (26) har en större utsträckning 1 sin tvärriktning än innerfolien (25), så att den bringas på ett inbördes avstånd från innerfolien (25) när folierna (25, 26) är inspända till den konvexa formen utmed sina motstående
 längskanter.

c. L. Patent- och reg.verket

1999 -03- 12

Huvudfaxen Kassan

22

42 160942

SAMMANDRAG

Uppfinningen avser en hand- eller fickburen elektronikapparat (1), såsom en mobiltelefon, innefattande en
displayenhet (12) och en pekyta (20; 21), som är positionskänslig i en första och en andra riktning för styrning av elektronikapparaten. Pekytan (20; 21) är anordnad
vid sidan om displayenheten (12) och är krökt i den första riktningen till konvex form. Uppfinningen avser också
en inmatningsenhet med en dylik krökt pekyta. Uppfinningen möjliggör att placera en relativt smal pekyta vid sidan om en displayenhet och att samtidigt uppnå en god positioneringsnoggrannhet.

15

10

Publiceringsfigur: Fig 1

20

TEL:46 42 942

Ink. t. Patent- och reg.verket 1999 -08- 12

Huvudfoxen Kassan

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
	□ BLACK BORDERS .
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)