Amendments to the Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

Listing of Claims:

1. (Currently Amended) A compound of formula (I),

$$\begin{array}{c} R^{1} \\ Q = X \\ Y \\ P^{2} \end{array} \\ L = N \\ \begin{array}{c} R^{4} \\ (CH_{2})_{n} \\ Z \\ \end{array} \\ (C(R^{3})_{2})_{T} \\ \end{array} \\ A \qquad (I)$$

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

t is 0, 1, 2, 3 or 4 and when t is 0 then a direct bond is intended;

each Q is −c≤;

each X is nitrogen;

each Y is nitrogen:

each Z is nitrogen;

 $R^{1} \ is - C(O)NR^{7}R^{8}, -NHC(O)R^{9}, -C(O)-C_{1.6}alkanediylSR^{9}, -NR^{10}C(O)N(OH)R^{9}, \\ -NR^{10}C(O)C_{1.6}alkanediylSR^{9}, -NR^{10}C(O)C=N(OH)R^{9} \ or -another-Zn--chelating--group wherein R^{7} and R^{8} \ are each independently selected from hydrogen, hydroxy, \\ C_{1.6}alkyl, hydroxyC_{1.6}alkyl, aminoC_{1.6}alkyl or aminoaryl; \\ R^{9} \ is independently selected from hydrogen, C_{1.6}alkyl, C_{1.6}alkylcarbonyl, \\ arylC_{1.6}alkyl, C_{1.6}alkylpyrazinyl, pyridinone, pyrrolidinone or methylimidazolyl; \\ R^{10} \ is independently selected from hydrogen or C_{1.6}alkyl; \\$

- R² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;
- -L- is a direct bond or a bivalent radical selected from C₁₋₆alkanediyl, C₁₋₆alkanediyloxy, amino, carbonyl or aminocarbonyl;
- each R³ independently represents a hydrogen atom and one hydrogen atom can be replaced by a substituent selected from aryl:
- R⁴ is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
- is a radical selected from

$$(a-1) \qquad (a-2) \qquad (a-3) \qquad (a-4)$$

$$(a-6) \qquad (a-7) \qquad (a-8)$$

$$(a-9) \qquad (a-10) \qquad (a-11) \qquad (a-11)$$

$$(R^{6})_{s} \qquad (A-4) \qquad (A-4)$$

$$(A-4) \qquad (A-4) \qquad (A-4)$$

$$(A-6) \qquad (A-7) \qquad (A-8)$$

$$(A-8) \qquad (A-8) \qquad (A-8)$$

$$(a-13) \qquad (a-14) \qquad (a-15) \qquad (a-16)$$

$$(a-13) \qquad (a-14) \qquad (a-15) \qquad (a-16)$$

$$(a-17) \qquad (a-18) \qquad (a-19) \qquad (a-19) \qquad (a-20)$$

$$(a-21) \qquad (a-22) \qquad (a-23) \qquad (a-24)$$

$$(a-24) \qquad (a-28)$$

$$(a-25) \qquad (a-26) \qquad (a-27) \qquad (a-28)$$

$$(a-29) \qquad (a-30) \qquad (a-31) \qquad (a-32)$$

$$(R^{6})_{8} \qquad (a-31) \qquad (a-32)$$

$$(R^{6})_{8} \qquad (a-36)$$

wherein each s is independently 0, 1, 2, 3, 4 or 5;

each R^5 and R^6 are independently selected from hydrogen; halo; hydroxy; amino; nitro; trihalo C_{1-6} alkyl; trihalo C_{1-6} alkyloxy; C_{1-6} alkyl; C_{1-6} alkyl substituted with aryl and C_{3-6}

10cycloalkyl; C1-6alkyloxy; C1-6alkyloxyC1-6alkyloxy; C1-6alkylcarbonyl;

 C_{1-6} alkyloxycarbonyl; C_{1-6} alkylsulfonyl; cyano C_{1-6} alkyl; hydroxy C_{1-6} alkyloxy; hydroxy C_{1-6} alkyloxy; hydroxy C_{1-6} alkyloxy;

di(C1-6alkyl)aminocarbonyl; di(hydroxyC1-6alkyl)amino; (aryl)(C1-6alkyl)amino;

di(C1-6alkyl)aminoC1-6alkyloxy; di(C1-6alkyl)aminoC1-6alkylamino;

 $di(C_{1-6}alkyl)aminoC_{1-6}alkylaminoC_{1-6}alkyl;$ arylsulfonyl; arylsulfonylamino; aryloxy; aryloxyC_{1-6}alkyl; arylC_{2-6}alkenediyl; $di(C_{1-6}alkyl)amino;$

di(C1-6alkyl)aminoC1-6alkyl; di(C1-6alkyl)amino(C1-6alkyl)amino;

di(C1-6alkyl)amino(C1-6alkyl)aminoC1-6alkyl;

```
di(C1_6alkyl)aminoC1_6alkyl(C1_6alkyl)amino;
di(C1-6alkyl)aminoC1-6alkyl(C1-6alkyl)aminoC1-6alkyl;
aminosulfonylamino(C1-6alkyl)amino;
aminosulfonylamino(C1_6alkyl)aminoC1_6alkyl;
di(C1_6alkyl)aminosulfonylamino(C1_6alkyl)amino;
di(C<sub>1-6</sub>alkyl)aminosulfonylamino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl; cyano; thiophenyl; thiophenyl
substituted with di(C1_6alkyl)aminoC1_6alkyl(C1_6alkyl)aminoC1_6alkyl, di(C1_
6alkyl)aminoC1_6alkyl, C1_6alkylpiperazinylC1_6alkyl,
hydroxyC1-6alkylpiperazinylC1-6alkyl,
hydroxyC1_6alkyloxyC1_6alkylpiperazinylC1_6alkyl,
di(C1-6alkyl)aminosulfonylpiperazinylC1-6alkyl,
C1-6alkyloxypiperidinyl, C1-6alkyloxypiperidinylC1-6alkyl, morpholinylC1-6alkyl,
hydroxyC1_6alkyl(C1_6alkyl)aminoC1_6alkyl, or di(hydroxyC1_6alkyl)aminoC1_6alkyl;
furanyl; furanyl substituted with hydroxyC<sub>1-6</sub>alkyl; benzofuranyl; imidazolyl; oxazolyl;
oxazolyl substituted with aryl and C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyltriazolyl; tetrazolyl; pyrrolidinyl;
pyrrolyl; piperidinylC<sub>1</sub>-6alkyloxy; morpholinyl; C<sub>1</sub>-6alkylmorpholinyl; morpholinylC<sub>1</sub>-
6alkyloxy;
morpholinylC1_6alkyl; morpholinylC1_6alkylamino;
morpholinylC<sub>1</sub>-6alkylaminoC<sub>1</sub>-6alkyl; piperazinyl; C<sub>1</sub>-6alkylpiperazinyl;
C1-6alkylpiperazinylC1-6alkyloxy; piperazinylC1-6alkyl; naphtalenylsulfonylpiperazinyl;
naphtalenvlsulfonvlpiperidinvl; naphtalenvlsulfonvl;
C1_6alkylpiperazinylC1_6alkyl; C1_6alkylpiperazinylC1_6alkylamino;
C1-6alkylpiperazinylC1-6alkylaminoC1-6alkyl; C1-6alkylpiperazinylsulfonyl;
aminosulfonylpiperazinylC<sub>1</sub>-6alkyloxy; aminosulfonylpiperazinyl;
aminosulfonylpiperazinylC<sub>1</sub>-6alkyl; di(C<sub>1</sub>-6alkyl)aminosulfonylpiperazinyl;
di(C1-6alkyl)aminosulfonylpiperazinylC1-6alkyl; hydroxyC1-6alkylpiperazinyl; hydroxyC1-
6alkylpiperazinylC<sub>1</sub>-6alkyl; C<sub>1</sub>-6alkyloxypiperidinyl;
C1-6alkyloxypiperidinylC1-6alkyl; piperidinylaminoC1-6alkylamino; piperidinylaminoC1-
6alkylaminoC1_6alkyl;
(C1_6alkylpiperidinyl)(hydroxyC1_6alkyl)aminoC1_6alkylamino;
(C1-6alkylpiperidinyl)(hydroxyC1-6alkyl)aminoC1-6alkylaminoC1-6alkyl;
hydroxyC<sub>1</sub>-6alkyloxyC<sub>1</sub>-6alkylpiperazinyl;
hydroxyC1_6alkyloxyC1_6alkylpiperazinylC1_6alkyl;
(hydroxyC1_6alkyl)(C1_6alkyl)amino; (hydroxyC1_6alkyl)(C1_6alkyl)aminoC1_6alkyl;
hydroxyC<sub>1</sub>-6alkylaminoC<sub>1</sub>-6alkyl; di(hydroxyC<sub>1</sub>-6alkyl)aminoC<sub>1</sub>-6alkyl;
```

```
pyrrolidinylC<sub>1-6</sub>alkyl; pyrrolidinylC<sub>1-6</sub>alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl
substituted with two substituents selected from C1_6alkyl or trihaloC1_6alkyl; pyridinyl;
pyridinyl substituted with C1-6alkyloxy, aryloxy or aryl; pyrimidinyl;
tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC<sub>1-6</sub>alkyl; quinolinyl;
indole; phenyl; phenyl substituted with one, two or three substituents independently selected
from halo, amino, nitro, C1-6alkyl, C1-6alkyloxy,
hydroxyC<sub>1-4</sub>alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC<sub>1-4</sub>alkyloxy,
C1_4alkylsulfonyl, C1_4alkyloxyC1_4alkyloxy, C1_4alkyloxycarbonyl,
aminoC1-4alkyloxy, di(C1-4alkyl)aminoC1-4alkyloxy, di(C1-4alkyl)amino,
di(C1-4alkyl)aminocarbonyl, di(C1-4alkyl)aminoC1-4alkyl,
di(C1-4alkyl)aminoC1-4alkylaminoC1-4alkyl,
di(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)
di(C1-4alkyl)aminoC1-4alkyl(C1-4alkyl)amino,
di(C1_4alkyl)aminoC1_4alkyl(C1_4alkyl)aminoC1_4alkyl,
aminosulfonylamino(C1-4alkyl)amino,
aminosulfonylamino(C1_4alkyl)aminoC1_4alkyl,
di(C1-4alkyl)aminosulfonylamino(C1-4alkyl)amino,
di(C1-4alkyl)aminosulfonylamino(C1-4alkyl)aminoC1-6alkyl, cyano,
piperidinylC1_4alkyloxy, pyrrolidinylC1_4alkyloxy, aminosulfonylpiperazinyl,
aminosulfonylpiperazinylC1-4alkyl, di(C1-4alkyl)aminosulfonylpiperazinyl,
di(C1_4alkyl)aminosulfonylpiperazinylC1_4alkyl, hydroxyC1_4alkylpiperazinyl, hydroxyC1_
4alkylpiperazinylC1-4alkyl, C1-4alkyloxypiperidinyl,
C1_4alkyloxypiperidinylC1_4alkyl, hydroxyC1_4alkyloxyC1_4alkylpiperazinyl,
hydroxyC1_4alkyloxyC1_4alkylpiperazinylC1_4alkyl,
(hydroxyC1-4alkyl)(C1-4alkyl)amino, (hydroxyC1-4alkyl)(C1-4alkyl)aminoC1-4alkyl,
di(hydroxyC1_4alkyl)amino, di(hydroxyC1_4alkyl)aminoC1_4alkyl, furanyl, furanyl
substituted with -CH=CH-CH=CH-, pyrrolidinylC<sub>1-4</sub>alkyl, pyrrolidinylC<sub>1-4</sub>alkyloxy,
morpholinyl, morpholinylC1_4alkyloxy, morpholinylC1_4alkyl,
morpholinylC<sub>1-4</sub>alkylamino, morpholinylC<sub>1-4</sub>alkylaminoC<sub>1-4</sub>alkyl, piperazinyl,
C1_4alkylpiperazinyl, C1_4alkylpiperazinylC1_4alkyloxy, piperazinylC1_4alkyl,
C1_4alkylpiperazinylC1_4alkyl, C1_4alkylpiperazinylC1_4alkylamino,
C1_4alkylpiperazinylC1_4alkylaminoC1_6alkyl, tetrahydropyrimidinylpiperazinyl,
tetrahydropyrimidinylpiperazinylC<sub>1-4</sub>alkyl, piperidinylaminoC<sub>1-4</sub>alkylamino,
piperidinylaminoC1_4alkylaminoC1_4alkyl,
(C1_4alkylpiperidinyl)(hydroxyC1_4alkyl)aminoC1_4alkylamino,
```

 $(C_1$ _4alkylpiperidinyl)(hydroxy C_1 _4alkyl)amino C_1 _4alkylamino C_1 _4alkyl, pyridinyl C_1 _4alkyloxy, hydroxy C_1 _4alkylamino, hydroxy C_1 _4alkylamino C_1 _4alkyl, di $(C_1$ _4alkyl)amino C_1 _4alkylamino, aminothiadiazolyl, aminosulfonylpiperazinyl C_1 _4alkyloxy, or thiophenyl C_1 _4alkylamino; each R^5 and R^6 can be placed on the nitrogen in replacement of the hydrogen:

- aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C_{1.6}alkyl, C_{1.6}alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.
- 2. (Original) A compound as claimed in claim 1 wherein n is 1 or 2; t is 0, 1, 2 or 4; each Q is Coriginal) A compound as claimed in claim 1 wherein n is 1 or 2; t is 0, 1, 2 or 4; each Q is Coriginal (Coriginal) Reference (Coriginal) Ref
- 3. (Currently Amended) A compound as claimed in claim 1 wherein t is 1, 2, 3, or 4;
- $$\begin{split} R^1 & \text{ is } \text{C(O)NR}^7 R^8, \text{C(O)} \text{C}_{1.6} \text{alkanediylSR}^9, \text{NR}^{10} \text{C(O)N(OH)} R^9, \\ & \text{NR}^{10} \text{C(O)C}_{1.6} \text{alkanediylSR}^9, \text{NR}^{10} \text{C(O)C} = \text{N(OH)} R^9 \\ & \text{or another Zn-chelating-group-wherein} \\ & R^7 \text{ and } R^8 \text{ are each independently selected from hydrogen, hydroxy, hydroxyC}_{1.6} \text{alkyl} \text{ or aminoC}_{1.6} \text{alkyl}; \end{split}$$
- R² is hydrogen, halo, hydroxy, amino, nitro, C_{1.6}alkyl, C_{1.6}alkyloxy, trifluoromethyl or di(C_{1.6}alkyl)amino;
- -L- is a direct bond or a bivalent radical selected from C₁₋₆alkanediyl, C₁₋₆alkanediyloxy, amino or carbonyl;
- R⁴ is hydrogen, hydroxy, amino, hydroxyC₁-6alkyl, C₁-6alkyl, C₁-6alkyloxy, arylC₁-6alkyl, aminocarbonyl, aminoC₁-6alkyl, C₁-6alkylaminoC₁-6alkyl or di(C₁-6alkyl)aminoC₁-6alkyl:

each s is independently 0, 1, 2, 3 or 4;		
R ⁵ is hydrogen; halo; hydroxy; amino; nitro; trihaloC ₁₋₆ alkyl; trihaloC ₁₋₆ alkyloxy;		
C ₁ -6alkyl; C ₁ -6alkyloxy; C ₁ -6alkylcarbonyl; C ₁ -6alkyloxycarbonyl;		
C1-6alkylsulfonyl; hydroxyC1-6alkyl; aryloxy; di(C1-6alkyl)amino; cyano; thiophenyl;		
furanyl; furanyl substituted with hydroxyC1-6alkyl; benzofuranyl; imidazolyl; oxazolyl;		
oxazolyl substituted with aryl and C1-6alkyl;		
C ₁₋₆ alkyltriazolyl; tetrazolyl; pyrrolidinyl; pyrrolyl; morpholinyl;		
C ₁₋₆ alkylmorpholinyl; piperazinyl;		
C ₁₋₆ alkylpiperazinyl; hydroxyC ₁₋₆ alkylpiperazinyl;		
C1-6alkyloxypiperidinyl; pyrazoly; pyrazolyl substituted with one or two substituents		
selected from C1-6alkyl or trihaloC1-6alkyl; pyridinyl; pyridinyl substituted with C1-		
6alkyloxy, aryloxy or aryl; pyrimidinyl; quinolinyl; indole; phenyl; or phenyl substituted		
with one or two substituents independently selected from halo, C1-6alkyl, C1-6alkyloxy or		
trifluoromethyl;		
R ⁶ is hydrogen; halo; hydroxy; amino; nitro; trihaloC ₁₋₆ alkyl; trihaloC ₁₋₆ alkyloxy;		
C ₁ -6alkyl; C ₁ -6alkyloxy; C ₁ -6alkylcarbonyl; C ₁ -6alkyloxycarbonyl;		
C1-6alkylsulfonyl; hydroxyC1-6alkyl; aryloxy; di(C1-6alkyl)amino; cyano; pyridinyl;		
phenyl; or phenyl substituted with one or two substituents independently selected from halo, C ₁₋₆ alkyl, C ₁₋₆ alkyloxy or trifluoromethyl.		
4. (Previously Presented) A compound as claimed in claim 1 wherein n is 1; t is 0 or 1; each Q		
is $-C \leqslant$; each X is nitrogen; each Y is nitrogen; R^1 is		
-C(O)NH(OH); R ² is hydrogen; -L- is a direct bond; each R ³ independently represents a		
hydrogen atom; R ⁴ is hydrogen; —(A) is a radical selected from		
(a-6), (a-11), (a-20), (a-47) or (a-51); each s is independently 0, 1, or 4; and each R ⁵ and R ⁶		
are independently selected from hydrogen; C1-6alkyl; C1-6alkyloxy; naphtalenylsulfonyl; or		
phenyl substituted with hydroxyC ₁ -4alkyl or		
morpholinylC1-4alkyl.		
morphomistic 1-quast.		

(a-10), (a-11), (a-12), (a-13), (a-14), (a-15), (a-6), (a-6), (a-7), (a-8), (a-9), (a-10), (a-11), (a-12), (a-13), (a-14), (a-15), (a-16), (a-17), (a-18), (a-19), (a-20), (a-21), (a-22), (a-23), (a-24), (a-25), (a-26), (a-28), (a-29), (a-30), (a-31), (a-31), (a-32), (a-34), (a-35), (a-36), (a-37), (a-38), (a-39), (a-40), (a-41), (a-42), (a-44), (a-

(a-45), (a-46), (a-47), (a-48) and (a-51);

5. (Previously Presented) A compound selected from the group consisting of:

HO H C N	HOT HAT STATE OF THE STATE OF T
	HO, III OH;
HO, II	HO, H
HO, H	

- (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound according to claim 1.
- (Previously Presented) A process of preparing a pharmaceutical composition as claimed in claim 6 wherein the pharmaceutically acceptable carriers and the compound according to claim 1 are intimately mixed.
- 8. (Cancelled)

- 9. (Cancelled)
- (Previously Presented) A process for preparing a compound as claimed in claim 1, said method comprising: reacting an intermediate of formula (II) with an acid yielding a hydroxamic acid of formula (I-a), wherein R¹ is -C(O)NH(OH)

$$\begin{array}{c} CF_{5}COOH \\ CF_{5}COOH \\ CF_{7}COOH \\ CF_{7}COOH$$

- (Currently Amended) A method of detecting or identifying a HDAC in a biological sample comprising detecting or measuring the formation of a complex between a labelled compound as defined in claim 1 and a HDAC.
- 12. (Cancelled)