

R5.A.12 Modélisations mathématiques

Thibault Godin, Lucie Naert

IUT de Vannes

6 novembre 2023

Chaque année $\approx 800~000$ élèves de terminal formulent des vœux dans le supérieur, comment les satisfaire au mieux?

Chaque année $\approx 800~000$ élèves de terminal formulent des vœux dans le supérieur, comment les satisfaire au mieux?

élève 1 : classement des formation f_3, f_5, f_1

élève 2 : classement des formation f_1, f_4, f_2

Chaque année $\approx 800~000$ élèves de terminal formulent des vœux dans le supérieur, comment les satisfaire au mieux?

élève 1 : classement des formation f_3, f_5, f_1

élève 2 : classement des formation f_1, f_4, f_2

les formations classent aussi les élèves

Chaque année $\approx 800~000$ élèves de terminal formulent des vœux dans le supérieur, comment les satisfaire au mieux?

élève 1 : classement des formation f_3, f_5, f_1

élève 2 : classement des formation f_1, f_4, f_2

les formations classent aussi les élèves

hypothèse simplificatrice : tous les élèves classent toutes les formations et inversement

a,b,c,e,d 1

a,c,b,e,d (2)

c,a,e,b,d (3)

a,b,c,d,e (4)

a,b,c,d,e (5)

(A) 1,3,5,4,2

(B) 2,1,5,4,3

() 5,2,3,4,1

D 1,2,3,4,5

E) 1,2,3,4,5

a,b,c,e,d 1

a,c,b,e,d (2)

c,a,e,b,d (3)

a,b,c,d,e (4)

a,b,c,d,e (5)

(A) 1,3,5,4,2

(B) 2,1,5,4,3

() 5,2,3,4,1

D 1,2,3,4,5

E) 1,2,3,4,5

a,b,c,e,d	(1)————————————————————————————————————	1,3,5,4,2
a,c,b,e,d	(2) (B)	2,1,5,4,3
c,a,e,b,d	3 (1) (C)	5,2,3,4,1
a,b,c,d,e	(4)	1,2,3,4,5
a,b,c,d,e	(5)	1,2,3,4,5

pas satisfaisant, on utilise pas les préférences

Plan

Parcoursup

Mariages stables

Algorithme de Gale-Shapley

proposition de mariages :

a,b,c,e,d 1

(A) 1,3,5,4,2

a,c,b,e,d (2)

B 2,1,5,4,3

c,a,e,b,d (3)

(c) 5,2,3,4,1

a,b,c,d,e (4)

D) 1,2,3,4,5

a,b,c,d,e (5)

E) 1,2,3,4,5

couple instable $\{2,C\}$ (pas une arête) car

▶ 2 préfère *C* à *B*

couple instable $\{2, C\}$ (pas une arête) car

- 2 préfère C à B
- C préfère 2 à 3

on améliorerait en prenant l'arête (2, C) mariage stable si pas de (n,l) tq n

et / se préfèrent à leurs partenaires

Plan

Parcoursup

Mariages stables

Algorithme de Gale-Shapley

- b,a,c,e,d 1
- a,c,b,e,d (2)
- c,a,e,b,d 3
- c,b,e,d,a (4)
- a,b,c,d,e (5)

- (A) 3,1,5,4,2
 - (B) 2,1,5,4,3
 - C) 5,2,3,4,1
 - D 2,1,5,4,3
 - (E) 3,2,5,4,1

- si élève non marié :
 - k=1
 - Si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

b,a,c,e,d (1

A 3,1,5,4,2

a,c,b,e,d (2)

(B) 2,1,5,4,3

c,a,e,b,d (3)

C 5,2,3,4,1

c,b,e,d,a 4

D 2,1,5,4,3

a,b,c,d,e **(**5)

(E) 3,2,5,4,1

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon
 - $k \leftarrow k+1$

- b,a,c,e,d (1) a,c,b,e,d (2)
- c,a,e,b,d (3)
- c,b,e,d,a (4)
- a,b,c,d,e (5)

- 3,1,5,4,2
 - B) 2,1,5,4,3
 - (C) 5,2,3,4,1
 - D) 2,1,5,4,3
 - 3,2,5,4,1

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande au k-ieme choix son avis
 - si couple instable → mariage
 - sinon

$$k \leftarrow k + 1$$

a,b,c,d,e (5)

c,b,e,d,a (4)

- 3,2,5,4,1

2,1,5,4,3

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande au k-ieme choix son avis
 - si couple instable → mariage
 - sinon

$$k \leftarrow k+1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k+1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k+1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k+1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon $k \leftarrow k+1$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon $k \leftarrow k+1$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon $k \leftarrow k+1$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k+1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k+1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k + 1$$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k+1$$

optimal pour les élèves mais pas pour les formations!

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon

$$k \leftarrow k+1$$

optimal pour les élèves mais pas pour les formations ! ${\rm complexit} \acute{e} \approx |S|^2$

- si élève non marié :
 - k=1
 - si k-ème choix non marié → mariage
 - sinon on demande
 au k-ieme choix
 son avis
 - si couple instable ↔ mariage
 - sinon $k \leftarrow k + 1$

Une solution stable existe toujours \dots

Une solution stable existe toujours ... mais ne satisfait pas forcément les même personnes

A : YXZ	B : ZYX	C : XZY
X : BAC	Y : CBA	Z : ACB

Une solution stable existe toujours ... mais ne satisfait pas forcément les même personnes

A : YXZ	B : ZYX	C : XZY
X : BAC	Y : CBA	Z : ACB

3 solutions stables

Une solution stable existe toujours ... mais ne satisfait pas forcément les même personnes

3 solutions stables

- "optimale pour les étudiants" : AY, BZ, CX (les étudiants proposent)
- "second choix": AX, BY, CZ (sex-equal stable matching, NP-dur)
- ▶ "optimale pour les universités" AZ, BX, CY (les universités proposent)

Une solution stable existe toujours ... mais ne satisfait pas forcément les même personnes

3 solutions stables

- "optimale pour les étudiants" : AY, BZ, CX (les étudiants proposent)
- "second choix": AX, BY, CZ (sex-equal stable matching, NP-dur)
- ▶ "optimale pour les universités" AZ, BX, CY (les universités proposent)

(ref : D. F. Manlove, Algorithmics of Matching Under Preferences)