Project Title: Network Connectivity Testing Using ping Utility

Objective

To explore, analyze, and document real-world use cases of the ping command for diagnosing and validating network connectivity. This project replicates key troubleshooting scenarios relevant to IT support, network engineering, and SOC analysis roles.

Tools Used

- Operating System: Kali Linux (or any Linux distro)
- Primary Utility: ping
- Text Editors: nano, vim (for logging and note keeping)
- Optional: tee, grep, awk for output parsing

Skills Learned

- Network diagnostics and troubleshooting fundamentals
- Understanding ICMP protocol and TTL values
- MTU (Maximum Transmission Unit) and packet fragmentation
- Packet loss analysis and reliability metrics
- Interface-based pinging and DNS-less connectivity checks
- Logging and scripting network checks for automation

Test Scenarios Covered

Level	Description	Command Example
Basic	Ping a domain and interpret round-trip time, packet loss	ping google.com -c 4
O Intermediate	Continuous ping (until stopped manually) and user interrupt techniques	ping $8.8.8.8 \rightarrow Ctrl + C$
•	Ping with specific count and delay	ping -c 10 -i 0.5 hostname.com
Advanced	Test MTU limits by sending 1500-byte payloads	ping -s 1500 google.com
Q5	Check machine status without DNS	ping <local-ip> or ping -n <ip></ip></local-ip>
Q6	Ping using specific network interface	ping -I eth0 google.com
Q7	Test TTL effect to observe hops or detect loops	ping -t 5 google.com
Q8	Log ping output for review or automation	<pre>ping google.com -c 5 > ping_log.txt</pre>
Q9	Measure reliability and packet loss over long durations	ping -c 100 google.com → Analyze stats

Level	Description	Command Example
Q10	Detect jitter/intermittent loss over time	Use scripts + ping + grep time= every few seconds
Q11	Detect if a domain is firewall-blocked (e.g., dropped ICMP)	ping blockedsite.com VS traceroute behavior

Real-World Impact & Use Case

Understanding ping at this depth is vital for:

- IT Helpdesk agents identifying user connectivity issues
- SOC analysts detecting DDoS anomalies (e.g., ping flood)
- Network engineers validating link stability and latency
- Diagnosing DNS resolution vs. network path issues

```
| Latin | Lati
```


