Harvard CS 121 and CSCI E-207 Lecture 11: CFL Closure Properties and Non-Context-Free Languages

Harry Lewis

October 7, 2010

Reading: Sipser, pp. 119-128.

Closure Properties of CFLs

 Thm (last time): The CFLs are the languages accepted by PDAs

- Thm: The CFLs are closed under
 - Union
 - Concatenation
 - Kleene *
 - Intersection with a regular set

The intersection of a CFL and a regular set is a CFL

Pf sketch: Let L_1 be CF and L_2 be regular

$$L_1 = L(M_1)$$
, M_1 a PDA

$$L_2 = L(M_2), M_2$$
 a DFA

$$Q_1 = \text{state set of } M_1$$

$$Q_2 = \text{state set of } M_2$$

Construct a PDA with state set $Q_1 \times Q_2$ which keeps track of computation of both M_1 and M_2 on input.

Q: Why doesn't this argument work if M_1 and M_2 are both PDAs?

In fact, the intersection of two CFLs is not necessarily CF.

And the complement of a CFL is not necessarily CF

Q: How to prove that languages are not context free?

Pumping Lemma for CFLs

Lemma: If L is context-free, then there is a number p (the pumping length) such that any $s \in L$ of length at least p can be divided into s = uvxyz, where

- 1. $uv^ixy^iz \in L$ for every $i \geq 0$,
- 2. $v \neq \varepsilon$ or $y \neq \varepsilon$, and
- 3. $|vxy| \leq p$.

Pumping Lemma for CFLs (aka Yuvecksy'sTheorem;)

Lemma: If L is context-free, then there is a number p (the pumping length) such that any $s \in L$ of length at least p can be divided into s = uvxyz, where

- 1. $uv^ixy^iz \in L$ for every $i \geq 0$,
- 2. $v \neq \varepsilon$ or $y \neq \varepsilon$, and
- 3. $|vxy| \leq p$.

Using the Pumping Lemma to Prove Non-Context-Freeness

 $\{a^nb^nc^n:n\geq 0\}$ is not CF.

What are v, y?

- Contain 2 kinds of symbols
- Contain only one kind of symbol
- ⇒ Corollary: CFLs not closed under intersection (why?)
- ⇒ Corollary: CFLs not closed under complement (why?)
 - Is the the intersection of 2 CFLs or the complement of a CFL sometimes a CFL?

What about $\{a, b\}^* - \{a^n b^n : n \ge 0\}$?

Recall: Parse Trees

 $\underline{\text{Height}} = \max \text{ length path from } S \text{ to a terminal symbol} = 6 \text{ in above example.}$

Proof of Pumping Theorem

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:

Proof of Pumping Theorem

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:

Finding "Repetition" in a big parse tree

- Since RHS of rules have bounded length, long strings must have tall parse trees.
- A tall parse tree must have a path with a repeated nonterminal.
- Let $p = b^m + 1$, where:

 $b = \max \text{ length of RHS of a rule}$

m = # of variables

• Suppose T is the smallest parse tree for a string $s \in L$ of length at least p. Then

Let h = height of T. Then $b^h \ge p = b^m + 1$,

 $\Rightarrow h > m$,

 \Rightarrow Path of length h in T has a repeated variable.

Final annoying details

• **Q:** Why is *v* or *y* nonempty?

• **Q:** How to ensure $|vxy| \le p$?

The converse of the CF Pumping Lemma is False

Some <u>non-context-free</u> languages satisfy conclusion of Pumping Lemma, e.g. ?

Some Other CF Closure Properties

Let $L_1/L_2 = \{w : wx \in L_1 \text{ for some } x \in L_2\}$. Then

• If L is CF and R is regular then L/R is CF