

Bird Detection and Classification based on Flow Guided Feature Aggregation

Left: Flow estimator aligns features

across frames using learned 2D

flow and a spatial transformer. [3]

Right: Attention module computes

query, key, value via conv lavers.

Attention weights guide temporal

Final output is a single fused feature

enhancement of features.

map for the reference frame.

Allan Dong, School of AMME, the University of Sydney

Introduction

Frame by frame bird detection is difficult as birds can fly with fast and erratic motion.

They can appear blurred or only partially individual visible

Flow Guided Feature Aggregation [1] (FGFA) temporal combines features helping the model retain spatial consistency and detect small or distant birds more reliably

Figure 1: Common Aus species

Results - Training

Figure 4: Training and validation loss

Learning rate: 2e-4 → 1e-6 (cosine decay)

The graph shows training and validation loss over 60 epochs. Both losses decrease steadily, indicating effective learning. The two losses converge, suggesting good

Methods

Figure 3: Flow and attention + aggregation diagram Figure 2: YOLO_FGFA architecture diagram

- The base architecture is adapted from YOLO
- It consists of three main components:
- Backbone: A convolutional feature extractor that captures spatial hierarchies from the input image.
- Neck: A feature fusion module that combines multi-scale features to enhance object representation across different resolutions.
- Head: Responsible for object classification and bounding box regression.

Literature cited

[1] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei. "Flow-Guided Feature and Y. Wei, "Flow-Guided Feature Aggregation for Video Object Detection," arXiv.org, 2017. [2] Y. Tian, O. Ye, and D. Doermann, "VOLOv12: Attention-Centric Real-Time Object Detectors," arXiv.org, 2025. [3] T. Asanomi, K. Nishimura, and R. Bise, "Multi-Frame Attention with Feature-Level Warping for Drone Crowd Tracking," 2023

Acknowledgments

I would like to express my sincere gratitude to Dr Zi Wang, my project supervisor, for providing me with this opportunity. I also wish to acknowledge Jianqian for their guidance, support and insightful feedback throughout this

Further information

Results – Feature Aggregation

Figure 5: Frames n-1, n and n+1

Figure 6: P3 feature maps (256x256)

Figure 7: Flow guided, aggregated feature maps

Results - Detection

YOLO-FGFA

YOLO v12

- Real Setting (Bankstown Airport)
- 9 Ibis detected, 1

- 6 Ibis detected
- Sometimes higher confidence for individual detection.

Figure 8: Method Comparison

Conclusion

generalisation.

Training Parameters: Epochs: 60 Batch size: 8

> Optimiser: Adam Input size: 640 × 640

- Training was effective and the random initialised weights were trained for feature aggregation.
- Flow-guided and attention-weighted feature fusion produces more informative feature maps.
- Overall, FGFA improves occluded object detection, especially in cluttered and low visibility frames.

Future Work

- The four most common bird species found around Sydney airports are the Cockatoo, Crow, Magpie and Ibis. Training the model on the first three is an imperative next step.
- Implementation of Optical flow such as RAFT can improve warping accuracy and therefore a sharper final feature map.
- Integration with Pan-Tilt-Zoom (PTZ) cameras would be necessary for field implementation.