Функциональный анализ

Полные метрические пространства

Опр: (X, ρ) — метрическое пространство, если X — множество, $\rho: X \times X \to \mathbb{R}$ — метрика, и выполняются следующие условия:

- $\rho(x,y) \ge 0$, $\forall x,y \in X$
- $\rho(x,y) = 0 \Leftrightarrow x = y, \quad \forall x, y \in X$
- $\rho(x,y) = \rho(y,x), \quad \forall x,y \in X$
- $\rho(x,y) \le \rho(x,z) + \rho(z,y), \quad \forall x,y,z \in X$

Опр: $\{B_r(x)\}_{r>0}$ — *база топологии* (т.е. семейство открытых подмножеств, через которые любой элемент представим в виде их объединения), где $B_r(x) = \{y \in X : \rho(x,y) < r\}$ — *открытый шар*, r > 0, $x \in X$

Опр: $U-\mathit{открытоe}$ множество, если $\forall x \in U \ \exists r > 0 : B_r(x) \subset U$

Опр: $\{B_{r_n}(x)\}_{r_n\in\mathbb{Q}}-c$ чётная база в X

Опр: $A \subset X$, $A - замкнутое \Leftrightarrow X \setminus A$ — открытое (или $\forall \{x_n\}_{n=1}^{\infty} : x_n \in A \ \exists \lim_{n \to \infty} x_n = x_0 \Rightarrow x_0 \in A$)

Опр: $D_r(x) = \{y \in X : \rho(x,y) \le r\}$ — замкнутый круг

$$\lim_{n \to \infty} x_n = x_0 \iff \lim_{n \to \infty} \rho(x_n, x_0) = 0$$

Опр: $\{x_n\}_{n=1}^{\infty} - \phi$ ундаментальная последовательность в X, если $\forall \epsilon > 0 \ \exists N \in \mathbb{N} : n,m > N \Rightarrow \rho(x_n,x_m) < \epsilon$

Свойство: (x, ρ) — метрическое пр-во, $\{x_n\}_{n=1}^{\infty}$, $x_n \in X$ $\exists \lim_{n \to \infty} x_n = a \Rightarrow \{x_n\}_{n=1}^{\infty}$ — фундаментальная последовательность

Опр: (X,ρ) — метр. пр-во, X — *полное*, если $\forall \{x_n\}$ — фунд. $\Rightarrow \exists \lim_{n\to\infty} x_n = a \in X$

Опр: $A \in X, (X, \rho), A$ — ограниченное, если $\exists x_0 \in X, R > 0 : A \subset B_R(x_0)$

Теорема (св-ва фунд. посл-ти):

 (X, ρ) — метрическое пр-во, $\{x_n\}_{n=1}^{\infty}$ — фунд. пос-ть \Rightarrow

- 1. $\{x_n\}_{n=1}^{\infty}$ ограниченная, т. е. $\exists a \in X, R > 0 : x_n \in B_R(a) \ \forall n \in \mathbb{N}$
- 2. $\exists \{x_{n_k}\}_{k=1}^{\infty}$ подп-ть $\{x_n\}_{n=1}^{\infty} : \exists \lim_{k \to \infty} x_{n_k} = a \Rightarrow \lim_{n \to \infty} x_n = a$
- 3. $\{\epsilon_k\}_{k=0}^{\infty}, \epsilon > 0 \implies \exists$ подпос-ть $\{x_{n_k}\}: \forall j > k \in \mathbb{N} \ \rho(x_{n_k}, x_{n_j}) < \epsilon$

Банаховы пространства

Опр: X — линейное пр-во над полем k ($k = \mathbb{R} \mid \mid k = \mathbb{C}$); $p: X \to \mathbb{R}$, p - nолунорма, если:

- 1. $p(x+y) \le p(x) + p(y)$, $\forall x, y \in X$
- 2. $p(\lambda x) = |\lambda| p(x)$, $\forall x \in X, \lambda \in k$

Свойство (полунормы):

X — лин. пр-во, p — полунорма $\Rightarrow p(\mathbb{O}) = 0, p(x) = p(-x), p(x) >$ $0 \ \forall x \in X$

Опр: X — лин. пр-во над k, p — норма, если $p(x) = 0 \Leftrightarrow x = \mathbb{O} \in X$

Опр: $(X, ||\cdot||)$ — нормированное пр-во; $\rho(x, y) := ||x - y||$; (аксиомы нормы \Rightarrow аксиомы метрики)

Опр: $(X, ||\cdot||) -$ банахово пр-во, если $(X, \rho) -$ полное

Опр:

- 1. X лин. пр-во над k ($k = \mathbb{R} \mid\mid k = \mathbb{C}$); $L \subset X, L$ подпространство в алгебраическом смысле, если L — лин. подпр-во над k, т.е. $\forall \alpha, \beta \in$ $k, x, y \in L \implies \alpha x + \beta y \in L$
- 2. $(X, ||\cdot||)$ лин. нормир. пр-во, $L \subset X, L$ nodnpocmpancmeo, если L — подпр-во в алгебр. смысле и замкнуто

Onp: $(X, ||\cdot||), \{x_k\}_{k=1}^{\infty}, x_k \in X, S_n = \sum_{k=1}^n x_k$

- 1. $\sum_{k=1}^{\infty} x_k cxo\partial umc$ я, если $\exists \lim_{n \to \infty} S_n = S, \ S \in X, S = \sum_{k=1}^{\infty} x_k$ 2. $\sum_{k=1}^{\infty} x_k cxo\partial umc$ я абсолютно, если $\sum_{k=1}^{\infty} ||x_k||$ сходится

Теорема (Критерий полноты нормированного пространства): $(X, ||\cdot||), X$ — полное \Leftrightarrow из абсолютной сходимости \Rightarrow сходимость

Пространство ограниченных функций

Опр: A — мн-во, $m(A)=\{f:A\to\mathbb{R}(||\mathbb{C})\mid f$ — огр. (т.е. $\sup_{x\in A}|f(x)|\le +\infty)\}$ — мн-во всех ограниченных ф-ий на A; $||f||_{\infty}=\sup_{x\in A}|f(x)|$

Теорема: m(A) — банахово пр-во