

Unpredictable Vancouver Weather Predicted with Data Science.

Why is it so hot or cold without warning?

How can we better predict high and low temperatures?

Based solely on the weather statistics already available, can Machine Learning be used to predict a day with very hot or very cold weather?

Solution: Use LSTM to train a model on the weather statistics and predict the temperature.

Potential Impact:

- Help people be more prepared
- Help businesses sell seasonal products

Dataset and Preprocessing

Data Overview:

Hourly Vancouver Weather Statistics (July 1st, 2013 - June 30, 2023)

- 1. Filling null values
- 2. Feature Engineering for EDA
- 3. Feature Selection through EDA

		pressure_station	pressure_sea	wind_dir	wind_speed	wind_gust	relative_humidity	dew_point	temperature	windchill	humidex	visibility
	date_time_local											
	2013-07-01 00:00:00	101.18	101.16	SSE	7	0.0	91	18.2	19.7	0.0	0.0	32200.0
	2013-07-01 01:00:00	101.22	101.21	SE	6	0.0	89	17.8	19.6	0.0	0.0	32200.0
	2013-07-01 02:00:00	101.26	101.24	Е	11	0.0	88	16.7	18.7	0.0	0.0	32200.0
	2013-07-01 03:00:00	101.26	101.25	Е	4	0.0	84	16.5	19.2	0.0	0.0	32200.0
	2013-07-01 04:00:00	101.30	101.28	NNW	5	0.0	87	15.7	17.9	0.0	0.0	32200.0

Highest and Lowest Air Temperaturés

Lowest temperature in the past 10 years:

--15.3°C(not -14.5°C) December 27, 2021, at 05:00

Highest temperature in the past 10 years:

32.6°C (not 32.1°C)

June 29, 2021, at 15:00

Little to no Correlation to Temperature

Models Fitted to Data

Linear Regression

 $R^2 = 99.64\%$ MAPE = 7.22%

FB Prophet

 $R^2 = 99.53\%$ MAPE = 8.33%

 $R^2 = 99.96\%$ RMSE = 7.22%

Linear Regression

Prophet

LSTM

Next Iterations: Applying the Model

Next Steps:

- Adjust model before deploying to ensure it can take unscaled weather stats for predictions.
- Create application to enter weather stats and provide a live prediction.
- Feed additional data to model, possibly finding a way to automate this.

Thanks!

Pedro A. Montano

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik Please keep this slide for attribution