Programozási módszertan

EGYETEMI JEGYZET

© Ez a másolat egy készülő egyetemi jegyzet munkapéldánya. A teljes jegyzetről, vagy annak bármely részéről további egy vagy több másolat készítéséhez a szerzők előzetes írásbeli hozzájárulására van szükség. A másolatnak tartalmaznia kell a sokszorosításra vonatkozó korlátozó kitételt is. A jegyzet kizárólag egyetemi oktatási vagy tanulmányi célra használható.

A szerzők hozzájárulásukat adják ahhoz, hogy az ELTE-n az 2000-2001-es tanévben elsőéves programozó-matematikus hallgatók bármelyike saját maga részére, tanulmányaihoz egy példány másolatot készítsen a jegyzetből.

Minden észrevételt, amely valamilyen hibára vonatkozik örömmel fogadunk. Budapest, 2000. szeptember 27.

A SZERZŐK

ELTE PROG-MAT. 2000-2001

Tartalomjegyzék

I.	Be	vezetés a programozáshoz	7		
1.	Alapfogalmak				
	1.1.		9		
	1.2.	Sorozatok	10		
	1.3.	Direktszorzat	10		
	1.4.	Relációk	11		
		1.4.1. Logikai relációk	12		
	1.5.	Példák	13		
	1.6.	Feladatok	17		
2.	A programozás alapfogalmai				
	2.1.	Az állapottér fogalma	19		
	2.2.	A feladat	20		
	2.3.	A program	20		
	2.4.	A programfüggvény	21		
	2.5.	Megoldás	22		
	2.6.	Példák	22		
	2.7.	Feladatok	25		
3.	Kite	rjesztések	27		
	3.1.	A feladat kiterjesztése	27		
	3.2.	A program kiterjesztése	28		
	3.3.	Kiterjesztési tételek	29		
	3.4.	Példák	34		
	3.5.	Feladatok	35		

2000-2001 TARTALOMJEGYZÉK

4.	A típus	37
	4.1. A típusspecifikáció	. 37
	4.2. A típus	
	4.3. Példák	
	4.4. Feladatok	
5.	Specifikáció	45
	5.1. A leggyengébb előfeltétel	. 45
	5.2. A feladat specifikációja	. 47
	5.3. A változó fogalma	
	5.4. A típusspecifikáció tétele	
	5.5. Példák	
	5.6. Feladatok	. 53
_		
6.	Elemi programok	57
	6.1. Feladatok	. 60
7.	Programkonstrukciók	63
	7.1. Megengedett konstrukciók	
	7.2. A programkonstrukciók programfüggvénye	
	7.3. Levezetési szabályok	
	7.4. A programkonstrukciók és a kiszámíthatóság	
	7.4.1. Parciális rekurzív függvények	
	7.4.2. A parciális rekurzív függvények kiszámítása	
	7.4.3. Következmény	
	7.4.4. Relációk	
o	Time also we should still	85
0.	Típuskonstrukciók 8.1. A megengedett konstrukciók	
	8. 8	
	8.2. Szelektorfüggvények	
	8.4. A függvénytípus	
	8.5. A típuskonstrukciók típusműveletei	. 92
II.	Programozási módszertan	95
9.	Alapvető programozási tételek	97
	9.1. Összegzés	. 97
	9.2. Számlálás	
	9.3. Maximumkeresés	
	9.4. Feltételes maximumkeresés	
	9.5. Lineáris keresés	
	9.6. Logaritmikus keresés	

 TARTALOMJEGYZÉK
 2000-2001
 5

10. Függvényérték kiszámítása	10	9
10.1. Függvénykompozícióval adott függvény		
kiszámítása	10	9
10.2. Esetszétválasztással adott függvény kiszámítása		0
10.3. Rekurzív formulával adott függvény kiszámítása		0
10.4. Elemenként feldolgozható függvény		
10.4.1. Egyváltozós-egyértékű eset		3
10.4.2. Kétváltozós-egyértékű eset	11	4
10.4.3. Egyváltozós kétértékű eset		
10.4.4. Általános változat	11	6
11. Visszalépéses keresés	11	7
12. Programtranszformációk	12	1
12.1. Koordináta transzformációk	12	1
12.1.1. Típustranszformációk	12	1
12.2. Állapottér transzformáció	12	5
12.3. Egyszerű programtranszformációk		7
13. Szekvenciális megfelelő	13	1
14. Programinverzió	13	5
14.1. Egyváltozós eset	13	5
14.2. Kétváltozós eset	13	7
15. Időszerűsítés	13	9
15.1. Az időszerűsítés definíciója	13	9
15.2. Időszerűsítés egyértelmű módosítófile-lal		1
15.2.1. Visszavezetés halmazok uniójára		1
15.2.2. Visszavezetés egyváltozós elemenkénti feldolgozásra		4
15.2.3. Visszavezetés kétváltozós elemenkénti feldolgozásra		6
15.3. Időszerűsítés nem egyértelmű módosítófile-lal		6
15.3.1. Megoldás adatabsztrakcióval		6
15.3.2. Kulcsok egyértelműsítése		
15.3.3. Megoldás függvényabsztrakcióval		0

2000-2001 TARTALOMJEGYZÉK

I. rész Bevezetés a programozáshoz

ELTE PROG-MAT. 2000-2001

1.

Alapfogalmak

Ahhoz, hogy bármiről érdemben beszélhessünk, meg kell állapodnunk egy jelölésrendszerben. Az alábbiakban bevezetjük azokat a jelöléseket és alapvető definíciókat amelyeket a továbbiakban gyakran fogunk használni.

1.1. Alaphalmazok

Először bevezetjük a matematikában gyakran használt számhalmazok jelöléseit.

N − a természetes számok halmaza,

 \mathbb{N}_0 – a nemnegatív egészek halmaza,

Z − az egész számok halmaza,

a racionális számok halmaza,

R − a valós számok halmaza,

C − a komplex számok halmaza,

L – a logikai értékek halmaza,

 $\mathbb{L} = \{igaz, hamis\},\$

∅ – az üres halmaz.

Vegyük észre, hogy a természetes számok halmazát (\mathbb{N}) és a nemnegatív egészek halmazát (\mathbb{N}_0) külön jelöljük. Ennek az az oka, hogy az általunk használt jelölésrendszerben a természetes számok hamaza nem tartalmazza a nullát.

Megjegyezzük továbbá, hogy [a..b]-vel fogjuk jelölni, a valós [a,b] intervallum egész elemeinek halmazát, azaz

$$[a..b] = [a,b] \cap \mathbb{Z}$$
.

10 **2000-2001** 1. ALAPFOGALMAK

Természetesen használni fogjuk a matematikában megszokott halmazelméleti műveleteket:

és relációkat:

∈ − eleme,⊆ − részhalmaza,⊂ − valódi része.

1.2. Sorozatok

Ha A egy adott halmaz, akkor az $\alpha = <\alpha_1, \alpha_2, \cdots>, \alpha_i \in A$ egy A-beli véges, vagy végtelen sorozatot jelöl.

Az A-beli véges sorozatokat $\alpha = <\alpha_1, \alpha_2, \dots, \alpha_n>, \alpha_i \in A$ alakban írhatjuk le. A véges sorozat hosszát $|\alpha|$ jelöli.

Az A-beli véges sorozatok halmazát A^* -gal, a végtelen sorozatok halmazát A^∞ -nel jelöljük. Az előző két halmaz uniójaként előálló A-beli véges, vagy végtelen sorozatok halmazát A^{**} -gal jelöljük.

Egy $\alpha \in A^{**}$ sorozatat értelmezési tartományát \mathcal{D}_{α} -val jelöljük, és a következő halmazt értjük rajta:

$$\mathcal{D}_{\alpha} = \left\{ \begin{array}{ll} [1..|\alpha|], & \text{ha } \alpha \in A^* \\ \mathbb{N}, & \text{ha } \alpha \in A^{\infty} \end{array} \right.$$

Legyenek $\alpha^1,\alpha^2,\ldots,\alpha^{n-1}\in A^*$ és $\alpha^n\in A^{**}$. Ekkor azt a sorozatot, amit az $\alpha^1,\alpha^2,\ldots,\alpha^{n-1},\alpha^n$ sorozatok egymás után írásával kapunk, a fenti sorozatok konkatenációjának nevezzük, és $kon(\alpha^1,\alpha^2,\ldots,\alpha^{n-1},\alpha^n)$ -nel jelöljük.

Egy A^{**} -beli sorozat redukáltjának nevezzük azt a sorozatot, amit úgy kapunk, hogy az eredeti sorozat minden azonos elemekből álló véges részsorozatát a részsorozat egyetlen elemével helyettesítjük. Egy $\alpha \in A^{**}$ sorozat redukáltját $red(\alpha)$ -ával jelöliük.

Bevezetjük még a τ függvényt, ami egy véges sorozathoz hozzárendeli annak utolsó elemét: $\tau:A^*\to A, \, \forall \alpha\in A^*$:

$$\tau(\alpha) = \alpha_{|\alpha|}.$$

1.3. Direktszorzat

Legyenek A_1, A_2, \ldots, A_n tetszőleges halmazok. Ekkor az

$$\mathop{\times}_{i=1}^{n} A_{i} = \{ (a_{1}, \dots, a_{n}) \mid a_{i} \in A_{i}, i \in [1..n] \}$$

halmazt a fenti halmazok direktszorzatának nevezzük.

Legyen $m, n \in \mathbb{N}, m \le n, \{i_j \mid j \in [1..m]\} \subset [1..n],$

$$A = \underset{i=1}{\overset{n}{\times}} A_i$$
 és $B = \underset{i=1}{\overset{m}{\times}} A_{i_j}$.

Ekkor a $pr_B:A\to B$ függvényt projekciónak nevezzük, ha

$$\forall a = (a_1, a_2, \dots, a_n) \in A : pr_B(a) = (a_{i_1}, \dots, a_{i_m}).$$

A fenti esetben a B-t az A alterének nevezzük. Ha m < n, akkor valódi altérről beszélünk. Vegyük észre, hogy az m=0 esetet nem engedjük meg, tehát az üres halmaz nem altere egyetlen direktszorzatnak sem. A projekciót az alábbi módon kiterjesztjük terek direkt szorzatára, és sorozatterekre is: legyen A és B mint fent, $(a_1,a_2) \in A \times A$, illetve $\alpha \in A^{**}$. Ekkor

$$pr_B((a_1, a_2)) = (pr_B(a_1), pr_B(a_2)) \in B \times B$$

 $pr_B(\alpha) = \beta \in B^{**}, \text{ahol } \mathcal{D}_{\beta} = \mathcal{D}_{\alpha} \text{ és}$
 $\forall i \in \mathcal{D}_{\beta} : \beta_i = pr_B(\alpha_i)$

1.4. Relációk

Relációnak nevezzük egy tetszőleges direktszorzat tetszőleges részhalmazát. A továbbiakban csak olyan relációkkal foglalkozunk, amelyek kétkomponensű direktszorzat részei. Ezeket a relációkat *bináris relációknak* nevezzük.

Legyenek A és B tetszőleges halmazok, $R\subseteq A\times B$ pedig egy tetszőleges reláció. Ekkor a reláció értelmezési tartománya:

$$\mathcal{D}_R = \{ a \in A \mid \exists b \in B : (a, b) \in R \},\$$

a reláció értékkészlete:

$$\mathcal{R}_R = \{ b \in B \mid \exists a \in A : (a, b) \in R \},\$$

a reláció értéke egy adott helyen:

$$R(a) = \{ b \in B \mid (a, b) \in R \},\$$

egy $H \subseteq A$ halmaz R szerinti $k\acute{e}pe$

$$R(H) = \{ b \in B \mid \exists a \in H : (a, b) \in R \},\$$

Azt mondjuk, hogy egy reláció determinisztikus, vagy parciális függvény, ha

$$\forall a \in A : |R(a)| \le 1.$$

Függvénynek nevezünk egy relációt akkor, ha

$$\forall a \in A : |R(a)| = 1.$$

12 **2000-2001** 1. ALAPFOGALMAK

Legyen $R \subseteq A \times B$. Ekkor az $R^{(-1)}$ reláció az R inverze, ha

$$R^{(-1)} = \{ (b, a) \in B \times A \mid (a, b) \in R \}.$$

Legyen $H \subseteq B$ tetszőleges halmaz. Ekkor az

$$R^{(-1)}(H) = \{ a \in A \mid R(a) \cap H \neq \emptyset \}$$

halmazt a H halmaz R reláció szerinti inverz képének nevezzük. Vegyük észre, hogy az inverz kép fogalma megegyezik az inverz reláció szerinti kép fogalmával. Ugyanekkor az

$$R^{-1}(H) = \{ a \in \mathcal{D}_R \mid R(a) \subseteq H \}$$

halmazt a H halmaz R reláció szerinti ősképének nevezzük. Vegyük észre, hogy az őskép mindig része inverz képnek. A két kép kapcsolatát mutatja az alábbi ábra:

1.1. ábra. Inverz kép és őskép

A relációk között értelmezünk műveleteket is. Legyen $P\subseteq A\times B$ és $Q\subseteq B\times C$. Ekkor az $R\subseteq A\times C$ relációt a P és Q relációk kompozíciójának nevezzük, ha

$$R = Q \circ P = \{(a,c) \in A \times C \mid \exists b \in B : (a,b) \in P \land (b,c) \in Q\}.$$

Az $S \subseteq A \times C$ relációt a P és Q relációk szigorú kompozíciójának nevezzük, ha

$$S = Q \odot P = \{(a,c) \in A \times C \mid \exists b \in B : (a,b) \in P \land (b,c) \in Q \land P(a) \subseteq \mathcal{D}_Q\}.$$

1.4.1. Logikai relációk

Az $R \subseteq A \times \mathbb{L}$ típusú relációkat – ahol A tetszőleges halmaz –, logikai relációknak nevezzük. A logikai relációkra bevezetünk néhány jelölést:

1.2. ábra. Kompozíció és szigorú kompozíció

Legyen $R \subseteq A \times \mathbb{L}$. Ekkor az R gyenge igazsághalmaza:

$$|R| = R^{(-1)}(\{igaz\}),$$

erős igazsághalmaza:

$$\lceil R \rceil = R^{-1}(\{igaz\}).$$

Vegyük észre, hogy ha R függvény, akkor az erős és gyenge igazsághalmaz megegyezik. A függvényekre alkalmazott igazsághalmaz-képzésnek van egy inverz művelete, a karakterisztikus függvény megadása: legyen $H\subseteq A$. Ekkor a $\mathcal{P}(H):A\to\mathbb{L}$ függvény a H halmaz karakterisztikus függvénye, ha

$$\lceil \mathcal{P}(H) \rceil = H.$$

A fenti definíciókból következik, hogy tulajdonképpen mindegy, hogy egy halmaz részhalmazairól, vagy a halmazon értelmezett logikai függvényekről (állításokról) beszélünk, hiszen ezen fogalmak kölcsönösen egyértelműen megfelelnek egymásnak.

1.5. Példák

1. példa: Írjuk fel az $A\times B,\, A\times C,\, (A\times B)\times C,$ és $A\times B\times C$ halmazok elemeit, ha $A=\{0,1\},B=\{1,2,3\},C=\{p,q\}!$

1/1 2000-2001

Megoldás:

$$\begin{array}{c} A\times B {=} \{(0,1),(0,2),(0,3),(1,1),(1,2),(1,3)\}, \\ A\times C {=} \{(0,p),(0,q),(1,p),(1,q)\}, \\ (A\times B)\times C {=} \{((0,1),p),((0,2),p),((0,3),p),((1,1),p),((1,2),p),((1,3),p),\\ & \qquad \qquad ((0,1),q),((0,2),q),((0,3),q),((1,1),q),((1,2),q),((1,3),q)\}, \\ A\times B\times C {=} \{(0,1,p),(0,2,p),(0,3,p),(1,1,p),(1,2,p),(1,3,p),\\ & \qquad \qquad (0,1,q),(0,2,q),(0,3,q),(1,1,q),(1,2,q),(1,3,q)\}. \end{array}$$

2. példa: Legyen $R \subseteq \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$.

$$R = \{(1,2), (1,4), (2,1), (3,4), (3,3), (3,5), (4,5)\}.$$

- a) Mi a reláció értelmezési tartománya és értékkészlete?
- b) Determinisztikus-e, ill. függvény-e a reláció?
- c) Mi R 0., 2., (-1). hatványa?
- d) Mi a {4,5} halmaz inverz képe, ill. ősképe?

Megoldás:

a)
$$\mathcal{D}_R = \{1, 2, 3, 4\},\$$

 $\mathcal{R}_R = \{1, 2, 3, 4, 5\}.$

- b) A reláció nem determinisztikus, ugyanis pl. |R(1)|=2! Mivel a reláció nem determinisztikus, függvény sem lehet.
- c) A reláció 0. hatványa az identikus leképezés, azaz:

$$R^0 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}.$$

Mivel $R^2 = R \circ R$, azt kell megvizsgálnunk, hogy mely pontokból hogyan lehet a relációt egymás után kétszer alkalmazni:

$$(1,2) \quad \longrightarrow \quad (2,1)$$

$$(1,4) \longrightarrow (4,5)$$

$$(2,1) \quad \longrightarrow \quad (1,2)$$

$$(2,1) \longrightarrow (1,4)$$

$$(3,4) \longrightarrow (4,5)$$

$$(3,3) \longrightarrow (3,4)$$

$$(3,3) \longrightarrow (3,3)$$

$$(3,3) \longrightarrow (3,5)$$

A fenti táblázat alapján:

$$R^2 = \{(1,1), (1,5), (2,2), (2,4), (3,5), (3,4), (3,3)\}.$$

 $R^{(-1)}$ a reláció inverzének definíciója alapján:

$$R = \{(2,1), (4,1), (1,2), (4,3), (3,3), (5,3), (5,4)\}.$$

d) Írjuk fel, hogy mit rendel a reláció az értelmezési tartomány egyes pontjaihoz:

$$R(1) = \{2, 4\}$$

 $R(2) = \{1\}$
 $R(3) = \{3, 4, 5\}$
 $R(4) = \{5\}$

Az inverz kép definíciója alapján:

$$R^{(-1)}(\{4,5\} = \{1,3,4\}.$$

Az őskép definíciója alapján:

$$R^{-1}({4,5} = {4}.$$

3. példa: Megadható-e valamilyen összefüggés egy H halmaz inverz képének képe, és a H halmaz között?

Megoldás: Legyen $R \subseteq A \times B$, $H \subseteq B$. Ekkor

$$R(R^{(-1)}(H)) = R(\{a \in A \mid R(a) \cap H \neq \emptyset\}) =$$

$$= \bigcup_{R(a) \cap H \neq \emptyset} R(a).$$

Vegyük észre, hogy általános esetben nem tudunk mondani semmit a két halmaz viszonyáról, ugyanis

- i.) ha $H \not\subseteq \mathcal{R}_R$, akkor $H \not\subseteq R(R^{(-1)}(H))$ és
- ii.) ha $\exists a \in R^{(-1)}(H) : R(a) \not\subset H$, akkor $R(R^{(-1)}(H)) \not\subset H$.

Tekintsük e fenti esetet egy egyszerű számpéldán: Legyen $A=B=\{1,2,3\},$ $R=\{(1,1),(1,2)\}.$ Ekkor $H=\{2,3\}$ esetén $R(R^{(-1)}(H))=\{1,2\}$, azaz egyik irányú tartalmazkodás sem áll fenn.

4. példa: Legyen $R\subseteq A\times B,\,P,Q\subseteq B.$ Hogyan lehetne jellemezni az $R^{-1}(P\cup Q)$ és az $R^{-1}(P\cap Q)$ halmazt az $R^{-1}(P)$ és $R^{-1}(Q)$ halmaz segítségével? **Megoldás:**

$$R^{-1}(P \cup Q) = \{ a \in \mathcal{D}_R \mid R(a) \subseteq (P \cup Q) \} =$$

$$\supseteq \{ a \in \mathcal{D}_R \mid R(a) \subseteq P \} \cup \{ a \in \mathcal{D}_R \mid R(a) \subseteq Q \}.$$

A másik irányú tartalmazkodás sajnos nem áll fenn, ugyanis lehet olyan $a \in \mathcal{D}_R$ amelyre

$$R(a) \not\subset P$$
, és $R(a) \not\subset Q$, de $R(a) \subset P \cup Q$.

Nézzük ezt egy számpéldán: Legyen $A=B=\{1,2\}, R=\{(1,1),(1,2)\}, P=\{1\}, Q=\{2\}.$ Ekkor $R^{-1}(P)$ és $R^{-1}(Q)$ üres, de $R^{-1}(P\cup Q)=\{1\}.$

Vizsgáljuk most meg a metszetet!

$$R^{-1}(P \cap Q) = \{ a \in \mathcal{D}_R \mid R(a) \subseteq (P \cap Q) \} =$$

$$= \{ a \in \mathcal{D}_R \mid R(a) \subseteq P \} \cap \{ a \in \mathcal{D}_R \mid R(a) \subseteq Q \} =$$

$$= R^{-1}(P) \cap R^{-1}(Q).$$

Tehát bebizonyítottuk, hogy két tetszőleges halmaz metszetének ősképe egyenlő a két halmaz ősképének metszetével.

5. példa: Legyenek $F \subseteq A \times B, G \subseteq B \times C$. Igaz-e, hogy

$$(G \circ F)^{(-1)} = F^{(-1)} \circ G^{(-1)}$$
?

Megoldás:

$$(G \circ F)^{(-1)} = \{(c, a) \in C \times A \mid \exists b \in B : (a, b) \in F \land (b, c) \in G\} =$$

$$= \{(c, a) \in C \times A \mid \exists b \in B : (b, a) \in F^{(-1)} \land (c, b) \in G^{(-1)}\} =$$

$$= F^{(-1)} \circ G^{(-1)}.$$

6. példa: Legyenek $F \subseteq A \times B, G \subseteq B \times C$. Igaz-e, hogy

$$(G \odot F)^{(-1)} = F^{(-1)} \odot G^{(-1)}$$
?

Megoldás:

$$(G \odot F)^{(-1)} = \{(c, a) \in C \times A \mid \exists b \in B : (a, b) \in F \land (b, c) \in G \land \\ \land F(a) \subseteq \mathcal{D}_G\} =$$

$$= \{(c, a) \in C \times A \mid \exists b \in B : (b, a) \in F^{(-1)} \land (c, b) \in G^{(-1)} \land \\ \land F(a) \subseteq \mathcal{D}_G\} =$$

$$\neq \{(c, a) \in C \times A \mid \exists b \in B : (b, a) \in F^{(-1)} \land (c, b) \in G^{(-1)} \land \\ \land G^{(-1)}(c) \subseteq \mathcal{D}_{F^{(-1)}}\} =$$

$$= F^{(-1)} \odot G^{(-1)}.$$

Számpéldán szemléltetve: legyen $A=B=C=\{1,2\}, F=G=\{(1,1),(1,2)\}.$ Ekkor

$$(G \odot F)^{(-1)} = \emptyset,$$

 $F^{(-1)} \odot G^{(-1)} = \{(1,1), (2,1)\}.$

7. példa: $W=N_1\times N_2\times N_3$. $\alpha\in W^{**}$, ahol $N_i=\mathbb{N}$ (i=1,2,3). $\alpha_1=(1,1,1)$. Az α sorozat további elemeit úgy kapjuk meg, hogy a pontok koordinátáit az első koordinátával kezdve ciklikusan 1-gyel növeljük. $red(pr_{N_1\times N_3}(\alpha))=?$ Megoldás: Írjuk fel először a sorozat első néhány tagját:

$$\alpha = \langle (1,1,1), (2,1,1), (2,2,1), (2,2,2), (3,2,2), (3,3,2) \dots \rangle$$

Az α sorozat projekciója $N_1 \times N_3$ -ra:

$$pr_{N_1 \times N_3}(\alpha) = <(1,1),(2,1),(2,1),(2,2),(3,2),(3,2)\cdots>$$

A fenti sorozat redukáltja:

$$red(pr_{N_1 \times N_3}(\alpha)) = <(1,1),(2,1),(2,2),(3,2)\cdots>$$

A fentiekből jól látható, hogy a redukció pontosan azokat az elemeket hagyja ki a sorozatból, amelyekben a növelés a második komponensben történt, így az eredménysorozat elemeit is a koordináták ciklikus eggyel növelésével kapjuk meg, az (1,1) pontból kiindulva.

1.6. Feladatok

- 1. Milyen összefüggés van egy H halmaz R relációra vonatkozó inverz képe és ősképe között? És ha R függvény?
- 2. $R = \{((x, y), (x + y, y)) \mid x, y \in \mathbb{N}\}$. Mi a $H = \{(a, b) \mid a, b \in \mathbb{N} \land a + b < 5\}$ halmaz inverz képe, ill. ősképe?
- 3. $R = \{((x,y),(x+y,y)) \mid x,y \in \mathbb{N}\} \cup \{((x,y),(x-y,y)) \mid x,y \in \mathbb{N}\}$. Mi a $H = \{(a,b) \mid a,b \in \mathbb{N} \land a+b < 5\}$ halmaz inverz képe, ill. ősképe?
- 4. $R=\{((x,y),(f(x,y),y))\mid x,y\in\mathbb{N}\}, \text{ ahol } f:\mathbb{N}\times\mathbb{N}\to\mathbb{N}.$ Mi a $H=\{(a,b)\mid a,b\in\mathbb{N}\land a+b<5\}$ halmaz ősképe ill. inverz képe?
- 5. $R\subseteq A\times B,Q\subseteq B$. Van-e valamilyen összefüggés az $R^{-1}(B\setminus Q)$ halmaz és az $A\setminus (R^{-1}(Q))$ halmaz között?
- 6. Készíts olyan nem üres relációt, amelyre igaz, hogy értékkészlete minden valódi részhalmazának ősképe üres halmaz!
- 7. Legyen $A = \{1, 2, 3, 4, 5\}$, $R \subseteq A \times A$, $R = \{(1, 2), (1, 4), (2, 1), (3, 4), (3, 3), (3, 5), (4, 5)\}$, $f \subseteq A \times \mathbb{L}$ és $f = \{(1, i), (2, i), (3, i), (4, h), (5, i)\}$. Mi f, ill. $(f \circ R)$ igazsághalmaza?
- 8. $R, Q \subseteq A \times A$. Igaz-e, hogy $(R \odot Q)^{(-1)} = Q^{(-1)} \circ R^{(-1)}$?
- 9. $R \subseteq A \times A$. Igaz-e, hogy $(R^{(-1)})^2 = (R^2)^{(-1)}$?
- 10. $R \subseteq A \times A$. Igaz-e, hogy $\forall H \subseteq A : R^{-1}(R^{-1}(H)) = (R^2)^{-1}(H)$?
- 11. $P, Q \subset \mathbb{N} \times \mathbb{N}$. $Q = \{(a,b) \mid 2|a \wedge b|a \wedge prim(b)\}$.
 - a) $P = \{(a, b) | b | a \land b \neq 1 \land b \neq a\}$
 - b) $P = \{(a, b) \mid b \mid a\}$

Add meg a $Q^{(-1)}$, $Q \circ P$ és $Q \odot P$ -t relációt!

12. Legyen $Q,R,S\subseteq A\times A$, és vezessük be az alábbi jelölést: ha $X\subseteq A\times A$ tetszőleges reláció, akkor X komplementere:

$$\widehat{X} = \{(a, b) \in A \times A \mid (a, b) \notin X\}.$$

Igaz-e, hogy

$$Q \odot R \subset S \iff Q^{(-1)} \odot \widehat{S} \subset \widehat{R}$$
?

Igaz-e a fenti állítás nem-szigorú kompozíció esetén?

13. Legyen $Q, R, S \subseteq A \times A$. Igaz-e, hogy

$$\begin{split} R \subseteq S & \Rightarrow & R \odot Q \subseteq S \odot Q, \\ R \subseteq S & \Rightarrow & Q \odot R \subseteq Q \odot S? \end{split}$$

- 14. Legyen R és Q két reláció a természetes számok halmazán! R egy természetes számhoz rendeli önmagát és a kétszeresét, Q egy páros természetes számhoz a felét.
 - a) Írd fel a két relációt, és add meg az értelmezési tartományukat!
 - b) Írd fel az R reláció k. hatványát (k > 1) és ennek az értelmezési tartományát!
 - c) Írd fel a $Q \circ R$ relációt és az értelmezési tartományát!
 - d) $F = Q \odot R!$ Írd fel az F relációt és az értelmezési tartományát!
- 15. Legfeljebb ill. legalább milyen hosszú egy m és egy n hosszúságú sorozat redukáltjának konkatenációja, ill. konkatenációjának redukáltja?
- 16. Igaz-e, hogy egy α sorozat redukáltjának projekciója ugyanolyan hosszú, mint az α sorozat redukáltja?
- 17. Igaz-e, hogy egy α sorozat projekciójának redukáltja ugyanolyan hosszú, mint az α sorozat redukáltja?
- 18. Legyen $A = N_1 \times N_2 \times N_3 \times N_4$, $B = N_4 \times N_1$, ahol $N_i = \mathbb{N}$ (i = 1..4).

$$\begin{array}{rcl} \alpha & = & <(1,1,1,1), (1,2,1,1), (1,2,3,1), (1,2,3,4), \\ & & (5,2,3,4), (5,7,3,4), (5,7,10,4), \cdots> \end{array}$$

- a) $pr_B(\alpha) = ?$
- b) $red(pr_B(\alpha)) = ?$