Tables

Table 1 Units with special names and symbols¹

ALL VALUES DECIMAL

Unit Catagory		Dimension		The Universal Unit Systems					
	Unit Category			Rydberg constant(u)	Harmoni	Harmonic System (h)			
	base units	length	m _u	272.102883 mm	m _{h or} hm ²	272.352206	5 mm		
	that are not	time	Su	390.267520 ms	Sh or nc	390.625115	5 ms		
	natural units	energy	J_{u}	64.143274 mJ	J_h	64.084555	5 mJ		
		temperature ³	Ku	58.441061 μΚ	K _h	58.387561	μK		
	base units	plane angle	rad	$(2/\pi)$ arc sin(1)					
	that are	logarithm	neper	log(e)					
	natural units	amount of	mol _n or	mol / 6.022140857×10. ^{23.}					
ent		substance	$N_{ m A}^{-1}$						
Coherent		impedance	$\Omega_{ m n}, Z_{ m P}$	29.9792458 Ω (=1sr/(ϵ_0 c ₀) strict ⁴ , is called 'nohm')					
Č			or nh						
	derived units of	charge	Cu	28.896578 mC					
	electromagnetic	electric current	A_{u}	74.043000 mA	A_h	73.975218	mA		
	quantities	field strength	E _u 5	272.113986 mA/m	E _h	271.616004	mA/m		
		flux density	G _u ⁵	390.283444 mC/m ²	G_h	389.569207	mC/m ²		
	derived units of	mass	gu	131.950080 g	g _{h or} 11	131.829287	g		
	dynamical	power	\mathbf{W}_{u}	164.357194 mW	\mathbf{W}_{h}	164.056412	mW		
	quantities	force	Nu	235.731697 mN	N _h	235.300297	mN		

 $^{^1}$ Please see also http://www.asahi-net.or.jp/~dd6t-sg/univunit-e/units.pdf and http://z13.invisionfree.com/DozensOnline/index.php?showtopic=371&st=6 for details. A web-based unit converter is available at http://hosi.org:8080/cgi-bin/conv.cgi .

² 'harmon(hm)', 'nic(nc)', 'looloh(ll)', and 'nohm(nh)' constitutes a quartet. These are the alias for common use.

³ The unit of thermodynamic temperature has been changed. The new unit is one-1,0000;th of the old unit in the paper http://dozenal.com along with the introduction of the Earth local extension.

 $^{^4}$ If we adopt the elementary charge as one of the definition constants, Ω_u is used in substitution for Ω_n .

⁵ The unit symbol E(Ørsted) and G(Gauß) are associated with the units of CGS unit system. In this paper, we adopt the metric unit names named after the scientists' name as it is. However, an alternative proposal to replace them with the names of the goddesses with the same initials have (i.e., Joule→Juno, Watt→ Walküre, Newton→Nereide, Pascal→Polymnia, Coulomb→Clio, Ampere→Aoide, Ørsted→Erato, Gauß →Gaea, Kelvin→Korē) also been proposed.

		Pressure	Pu	3.183843 Pa	Ph	3.172	2201 Pa		
ent	defining constants	wave number	R_{∞}	10,973,731.568508/m (is called 'Rydberg')					
here		velocity	<i>c</i> ₀	299,792,458 m/s (defined, and is called 'light')					
Non-coherent		action	ħ	1.054571800×1034-Js(is called 'quantum')					
Nc		heat capacity	$k_{ m B}$	1.38064852×1023.J/K (is called 'Boltzmann')					
	supplementary	the total solid	Ω_k	$2\pi^{\frac{k+1}{2}}$	k=0,1, 2				
	constants	angle of a		$\frac{2\pi}{\Gamma(\frac{k+1}{2})} \operatorname{rac}$	\mathbf{d}^k	$\Omega_0=2$ $\Omega_1=2\pi \text{ rad}$	(circle, cycl	(ما	
t		hypershere		I'(-2)		$\Omega_2=4\pi \text{ sr}$	(sphere, tur		
Non-coherent		logalithm of an	\mathbf{f}_k	$\log(2^k)$	k=1(bit),	d(figure), 4(ni	bble), 8(byte)),	
-coh		integer				d=log ₂ (12.)			
Non-		amount of	mol_u	132.007618 mc	ol	$(=12.^{24}/N_{\rm A})$	1		
		substance							
		elementary	e	$1.6021766208 \times 10^{-2}$	0. ⁻¹⁹ .C	$\left(-\frac{\alpha h}{\alpha}\right)$			
		charge				$(=\sqrt{\Omega_n})$			

Table 2 Physical, material and astronomical constants 6

ALL VALUES DOZENAL

Constant Symbols and Name (UNDERLINE INDICATES CONSTANT MAINTAINS SAME VALUE BETWEEN		Constant Valu	Expone	Unit	
		the Universa	nt N	Symbol	
		with the	Harmonic	of×	(u and h
	SYSTEMS u AND h)	Rydberg	System (h)	10; ^N	suffixes
	,	constant (u)			omitted)
R_{∞}	Rydberg constant	1	1;00170000	6;	Ω_{l}/m
c_0	the speed of light in vacuum	1		8;	m/s
\hbar	quantum of action	1		-26;	J s
k _B Boltzmann constant		1	-20;	J/K	
N _A Avogadro constant		1		20;	mol ⁻¹
R	gas constant	1		0;	J/(mol K)
и	unified atomic mass unit	1;0009061	1;0024073	-20;	g ⁷
a_{B}	Bohr Radius	1;005E85686	1;00447X740	-9;	m
α fine structure constant		1;07399405		-2;	-
e	elementary charge	1;0374439E		-14;	C
<i>m</i> e	electron mass	0;E469222	0;E48324X	-23;	g

 $^{^6\,}$ If CODATA (2014) values are required, see http://physics.nist.gov/cuu/Constants/index.html .

 $^{^7}$ Because g_u is approximately 100; $^{10;}$ u, I add alias name 'looloh'(lú:lov/əv) to $g_h.$

σ	Stefan-Boltzmann constant	1;E82E28		-1E;	$W/(m^2K^4)$
m_{G}	gravitic meter $(\sqrt{2E}; l_P)$	1;0018	1;0001	-27;	m
$l_{ m P}$	Planck length	2;0445	2;0413	-28;	m
F_{P}	Planck force $(\hbar c_0/l_P^2)$	2;XE23	2;XEE5(≑ 2;E) ⁸	35;	N
G	Newtonian constant of gravitation (c_0^4/F_P)	4;1574	4;1463	-X;	$(m^4/s^4)/N$
$ heta_{ m W}$	weak mixing angle	E;304		-2;	Ω_1
$V_{ m m}$	molar volume of an ideal gas	1;02X468	1;025664	2;	m ³ /mol
	under standard conditions				
	black-body radiation at the ice point	0;EX2462	0;EX8780	2;	W/m^2
	maximum density of water	1;088184	1;092X47 (\(\disp 15;\text{/14;}\)	2;	g/m ³
	density of ice at the ice point	0;E7E9	0;E85E	2;	g/m ³
	specific heat of water ⁹	0;6052	0;6045 (\(\disp 1/2\))	0;	J/(g K)
	surface tension of water at 25°C	0;EE68	0;EEE4	-1;	N/m
atm	standard atmosphere	1;65008E	1;659967 (\$\div 1;66)	4;	P
g _n	standard gravitational acceleration	5;5X54XE9	5;5E21264 (≑ E;/2)	0;	m/s ²
$r_{ m E}$	gravitational radius of Earth	2;41E8982X13	2;4180306534	-2;	m
011	astronomical unit	8;X67575537	8;X55509X33	X;	m
au	astronomical unit	9;E91731X53		-3;	$c_0 s_{\rm E} {\rm day}$

Table 3 Power prefixes

				-			
name	symbol	Plain text	value	name symbol Plain tex		Plain text	value
dirac 10		D					
super		S	10;4	sub		S	10;-4
cosmic	+	_+	10;8(=U)	atomic	-	_•	U ·1
di-cosmic	2+	_2+	U ²	di-atomic	2-	_2-	U -2
ter-cosmic	3+	_3+	U ³	ter-atomic	3-	_3-	U -3
tetra-cosmic	4+	_4+	U ⁴	tetra-atomic	4-	_4-	U -4
penta-cosmic	5+	_5+	U 5	penta-atomic	5-	_5-	U -5
hexa-cosmic	6+	_6+	U ⁶	hexa-atomic	6-	_6-	U -6
hepta-cosmic	7+	_7+	U ⁷	hepta-atomic	7-	_7-	U ⁻⁷

 $^{^{8}}$ If this is expressed as 2;E, the error from CODATA (2014) becomes -2;53(-2.44) times standard deviation.

⁹ This corresponds to the definition of the thermodynamic calorie.

¹⁰ 'dirac' is only used when expressing the unit of the Gravitic System with the Harmonic System. (i.e., gravitic meter = tetra-atomic dirac harmon, gravitic second = penta-atomic dirac nic, gravitic gram = atomic dirac looloh)

Table 4 Examples of natural scale quantity representation 11

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
quantity	symbol	value	refer to			
2E; penta-cosmic Newton	2E; ₅₊ N	2E;×U ⁵ [harmonic] Newton	the Planck force			
6;di-cosmic nic	6; ₂₊ nic	6;×U ² [harmo]nic[second]	the age of the universe			
cosmic super bit [Boltzmann]	$_{+}\mathrm{Sf}_{1}[k_{\mathrm{B}}]$	U ^{1@4} log2 ¹ [Boltzmann]	1.01 Tera Byte(=2 ⁴³ .bit)			
cosmic harmon	₊ hm	U ¹ harmon[ic meter]	the speed of light in vacuum			
unino atomic harmon	0;1.hm	U-1@1 harmon[ic meter]	the Bohr radius			
di-atomic Coulomb	2-C	U-2 [universal] Coulomb	the elementary charge			
di-atomic effective Watt 12	_{2-e} W	U ⁻² [harmonic]effective Watt	a photon power (540.THz)			
ter-atomic looloh	3-11	U-3 looloh	the unified atomic mass unit			
2; tetra-atomic harmon	2; ₄₋ hm	2;×U ⁻⁴ harmon[ic meter]	the Planck length			

Table 5 The Earth local extension for the Harmonic Universal Unit System

cate	gory	name / description	symbol	plain text	value	
Non-	units	nic-angle	na		$10^{-3} \times 2^{-7}$ day	
coherent calendar		day	day		$1 \Omega_1$ 'day' corresponds to 86,400. s at the beginning of year 1900.	
time		year	у	or a	(365.+ 31./128.)days	
		span or octal century	S	pan	64. years	
Non-		difference between	°S	deg S	1,0000; K_h ($\pm 1.210724 \text{ K} \pm 23./19. \text{ K}$)	
coherent		thermodynamic temperature and			100; 0000°S is 99.9839 °C	
unit and		118,2354; $K_h (\doteqdot -74.36^{\circ}C)$			78;0000°S is 37.0262°C	
constants		approximate formula			61;0000°S is 14.0224°C	
		$C = \frac{1E}{17}$, °S-62;4			51;5026°S is 0.0000°C	
					99.9839 °C is the boiling point of	
					water at the standard atmosphere.	
	supple- mentary constants	the gravitational acceleration of the Earth (is called 'gee [of Earth] ')	$g_{ m E}$	g_E or gee	5;611X615 harmon/nic ² g_E is defined as $c_0^2 r_E (m_E \text{ rad})^{-2}$	
		the rotation period of the Earth (is called '[Earth] solar') at the beginning of year 1900.	SE	s_E or solar	0;EEEEE153565 nic/nic-angle (This should be 'coordinated'.)	
		the meridian length of the Earth (is called '[Earth] meridian')	$m_{ m E}$	m_E or meridian	4124,216E; harmon/ Ω_1	

 W_e corresponds to 1;di-cosmic photon energy(540.THz) / nic and 115.667210 lumen.

¹¹ The part enclosed with '[]' can be omitted in Table 4 and Table 5.

¹² Units for quantity weighted by dimensionless human sensitivity are indicated by 'effective'.