Business Case: Target SQL

-- Data type of columns in a table

Snapshot:

-- Time preriod of which data is given

Snapshot:

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPI
Row	First_Order		Last_Order		
1	2016-09-04 21:1	5:19 UTC	2018-10-17 1	7:30:18 UTC	

- Cities and States of customers ordered during the given period

```
SELECT DISTINCT
    customer_city,
    customer_state
FROM `TargetSQL.orders` o
JOIN `TargetSQL.customers` c
ON o.customer_id = c.customer_id
```

Snapshot:

Quei	Query results					
JOB II	NFORMATION	RESULTS	JSON	EXECUTION DE	TAILS	EXECUTION GRAPH PREVIEW
Row	customer_city		customer_state			
1	acu		RN			
2	ico		CE			
3	ipe		RS			
4	ipu		CE			
5	ita		SC			
6	itu		SP			
7	jau		SP			
8	luz		MG			
9	poa		SP			
10	uba		MG			
11	una		BA			

-- Is there a growing trend on e-commerce in Brazil? How can we describe a comple te scenario? Can we see some seasonality with pe aks at specific months?

There is a growing trend in number of transaction each year. It seems target started its business in Brazil in the last few months of 2016(hence less number in 2016).

It is also visible that there was huge demand in the months of 5th, 7th and 8th. It may be because of the seasonality.

There is a festival called "Festival de Cachaça- Drink, Dance & Be Merry" that occurs in mid Aug, would have impacted the sales in July & August Months.

Yearly Trends:

```
SELECT DISTINCT
    EXTRACT(year FROM order_purchase_timestamp) yr,
    COUNT(order_id) AS TOTAL_orders
FROM
`TargetSQL.orders`
GROUP BY yr
ORDER BY yr
```

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	yr	TOTAL_orders	•	
1	2016	329	1	
2	2017	45101		
3	2018	54011		
			$\setminus \!$	

Monthly Trends:

```
SELECT DISTINCT
    EXTRACT(month FROM order_purchase_timestamp) mnth,
    COUNT(order_id) AS TOTAL_orders
FROM
`TargetSQL.orders`
GROUP BY mnth
ORDER BY mnth
```

Snapshot: Monthly trends

JOB II	JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS
Row	mnth		TOTAL_orders		
2		2	8508		
3		3	9893		
4		4	9343		
5		5	10573		
6		6	9412		
7		7	10318		
8		8	10843		

- What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
WITH CTE AS (SELECT

CASE WHEN EXTRACT(hour FROM order_purchase_timestamp) BETWEEN 1 AND 4 THEN "Dawn"

WHEN EXTRACT(hour FROM order_purchase_timestamp) BETWEEN 5 AND 12 THEN "Morning"

ELSE "Afternoon or Night"

END AS tend_to_buy

FROM `TargetSQL.orders`)

SELECT

tend_to_buy,

COUNT(*) AS Number_of_purchase

FROM CTE

GROUP BY tend_to_buy

ORDER BY Number_of_purchase
```

Brazilian customers tend to buy in evening or night (after 12PM).

Note: I have considered dawn (from 1 to 4), Morning (from 5 to 12) and rest Evening or Night

Snapshot:

Que	ry results				
JOB I	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
W	tend_to_buy		Number_of_pure	:	
1	Dawn		2158		
2	Morning		28423		
3	Afternoon or Nigh	nt	68860		

-- Get month on month orders by states

```
SELECT DISTINCT
    geolocation_state,
    EXTRACT(month FROM order_purchase_timestamp) AS mnth,
    COUNT(order_id) OVER(PARTITION BY geolocation_state ORDER BY EXTRACT(month FROM or
der_purchase_timestamp)) AS sles
FROM `TargetSQL.orders`o
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation` g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
```

Snapshot:

JOB II	NFORMATION	RESULTS	JSON	EX	ECUTION DET
DW	geolocation_stat	e	mnth	sle	!S
1	AM			1	392
2	AM			2	944
3	AM			3	1369
4	AM			4	2145
5	AM			5	2882
6	AM			6	3314
7	AM			7	4326
8	AM			8	4722
9	AM			9	5055
10	AM		1	10	5104
11	AM		1	11	5463

- Distribution of customers across the states in Brazil

```
SELECT DISTINCT
    geolocation_state,
    COUNT(c.customer_id) OVER(PARTITION BY geolocation_state) AS total_cust_cnt
FROM `TargetSQL.orders`o
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation` g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
ORDER BY total_cust_cnt
```

Snapshot:

JOB INFORMATION RESULTS			JSON
ow	geolocation_state		total_cust_cnt
1	RR		2087
2	AP		4912
3	AM		5587
4	AC		7688
5	ТО		17509
6	RN		20595
7	RO		21244
8	PI		23913
9	SE		24584
10	РВ		27714
11	ΛI		2/1061

Get % increase in cost of orders from 2017 to 20 18 (include months between Jan to Aug only) - Yo u can use "payment_value" column in payments tab le

```
WITH CTE1 AS (SELECT
EXTRACT(month FROM order_purchase_timestamp) AS mnth_17,
SUM(payment_value) AS payment_value_17
FROM `TargetSQL.payments` p
JOIN `TargetSQL.orders` o
ON p.order_id = o.order_id
WHERE order_purchase_timestamp BETWEEN "2017-01-01" AND "2017-08-31"
GROUP BY mnth_17
ORDER BY mnth_17),
CTE2 AS (SELECT
EXTRACT(month FROM order_purchase_timestamp) AS mnth_18,
SUM(payment_value) AS payment_value_18
FROM `TargetSQL.payments` p
JOIN `TargetSQL.orders` o
ON p.order_id = o.order_id
WHERE order_purchase_timestamp BETWEEN "2018-01-01" AND "2018-08-31"
GROUP BY mnth_18
ORDER BY mnth_18)
SELECT
   mnth_17 AS mnth,
    (payment_value_17-payment_value_18)/payment_value_17 AS percentage_change
FROM CTE1 AS CTE1
JOIN CTE2 AS CTE2
ON CTE1.mnth_17=CTE2.mnth_18
ORDER BY mnth
```

Snapshot:

JOB II	NFORMAT	RESULTS	
Row	mnth		percentage_chai
1		1	-7.05126695
2		2	-2.39991814
3		3	-1.57778606
4		4	-1.77840770
5		5	-0.94627343
6		6	-1.00259691
7		7	-0.80042454
8		8	-0.57169954

- Mean & Sum of price and freight value by custo mer state

Snapshot:

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DE	TAILS E	XECUTION GRAPH
low	customer_state		mean_price	mean_freight	total_price	total_freight
1	AM		203.24	33.08	34753.3	5656.54
2	RS		176.89	21.83	1147277.0	141579.69
3	MT		228.27	28.97	256804.62	32592.32
4	RO		230.37	40.97	65886.0	11717.47
5	GO		211.47	22.73	513879.0	55237.53
6	PE		199.25	32.78	376377.27	61923.56
7	PB		283.23	43.26	180984.19	27641.72
8	BA		196.99	26.32	797410.36	106538.62
9	ТО		213.22	39.68	72281.17	13450.6
10	MG		170.56	20.63	2326151.64	281301.31
11	RR		239.66	42 98	12462 21	2235 19

- 5.1 Calculate days between purchasing, deliver ing and estimated delivery

```
SELECT
    DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, day) AS
    pur_vs_delivery,

DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date, day) AS
    delivery_vs_Estimated
FROM `TargetSQL.orders`
```

Snapshot:

JOB INFORMATION	RESULTS
-----------------	---------

Row	pur_vs_delivery	delivery_vs_Estii
1	30	-12
2	30	28
3	35	16
4	30	1
5	32	0
6	29	1
7	43	-4
8	40	-4
9	37	-1
10	33	-5

Recommendations: 6.5% deliveries are getting delayed, Target can work on that to reduce the missed deleveries.

2965 customers order_delivered_customer_date is missing in the table

- 5.2 Find time_to_delivery & diff_estimated_del ivery

SELECT

DATE_DIFF(order_purchase_timestamp, order_delivered_customer_date, day) AS time_to
_delivery,

FROM `TargetSQL.orders`

Snapshot:

Row	time_to_delivery	diff_estimated_c
1	-30	-12
2	-30	28
3	-35	16
4	-30	1
5	-32	0
6	-29	1
7	-43	-4
8	-40	-4
9	-37	-1
10	-33	-5
11	-38	-6

- 5.3 Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT
    geolocation_state,
    ROUND(AVG(freight_value) OVER(PARTITION BY geolocation_state),2) AS mean_of_freigh
t_value,
    DATE_DIFF(order_purchase_timestamp, order_delivered_customer_date, day) AS time_to
_delivery,
    DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS di
ff_estimated_delivery
FROM `TargetSQL.orders` o
JOIN `TargetSQL.order_items`oi
ON o.order_id = oi.order_id
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation`g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
```

Snapshot:

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE
low	geolocation_state		mean_of_freight	time_to_delivery	diff_estimated_c
1	RS		21.52	-41	-13
2	RS		21.52	-41	-13
3	RS		21.52	-41	-13
4	RS		21.52	-41	-13
5	RS		21.52	-41	-13
6	RS		21.52	-41	-13
7	RS		21.52	-41	-13
8	RS		21.52	-41	-13
9	RS		21.52	-41	-13
10	RS		21.52	-36	-13
11	RS		21.52	-36	-13

- Top 5 states with highest average freight value

```
WITH CTE AS(
   SELECT
    geolocation_state,
    freight_value,
    DATE_DIFF(order_purchase_timestamp, order_delivered_customer_date, day) AS time_to
_delivery,
    DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS di
ff_estimated_delivery
FROM `TargetSQL.orders` o
JOIN `TargetSQL.order_items`oi
ON o.order_id = oi.order_id
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation`g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix)
SELECT
    geolocation_state
FROM CTE
GROUP BY geolocation_state
ORDER BY AVG(freight_value) DESC
LIMIT 5
```

Snapshot:

JOB INFORMATION RESULTS		
Row	geolocation_state	
1	PB	
2	RR	
3	PI	
4	AC	
5	MA	

- Top 5 states with lowest average freight value

```
WITH CTE AS(
   SELECT
    geolocation_state,
    freight_value,
    DATE_DIFF(order_purchase_timestamp, order_delivered_customer_date, day) AS time_to
_delivery,
    DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS di
ff_estimated_delivery
FROM `TargetSQL.orders` o
JOIN `TargetSQL.order_items`oi
ON o.order_id = oi.order_id
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation`g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix)
SELECT
   geolocation_state
FROM CTE
GROUP BY geolocation_state
ORDER BY AVG(freight_value) ASC
LIMIT 5
```

Snapshot:

JOB IN	NFORMATION	RESULTS
Row	geolocation_state	
1	SP	
2	PR	
3	MG	
4	RJ	
5	DF	

- Top 5 states with highest average time to deli very

```
WITH CTE AS(
   SELECT
    geolocation_state,
    freight_value,
   DATE_DIFF(order_purchase_timestamp, order_delivered_customer_date, day) AS time_to
_delivery,
    DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS di
ff_estimated_delivery
FROM `TargetSQL.orders` o
JOIN `TargetSQL.order_items`oi
ON o.order_id = oi.order_id
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation`g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix)
SELECT
   geolocation_state
FROM CTE
GROUP BY geolocation_state
ORDER BY AVG(time_to_delivery) ASC
LIMIT 5
```

Snapshot:

Query results JOB INFORMATION RESULTS Row geolocation_state 1 AP 2 AM 3 RR 4 AL 5 PA

- Top 5 states with Lowest average time to delivery

```
WITH CTE AS(
    SELECT
    geolocation_state,
    freight_value,
    DATE_DIFF(order_purchase_timestamp, order_delivered_customer_date, day) AS time_to
_delivery,
    DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS di
ff_estimated_delivery
FROM `TargetSQL.orders` o
JOIN `TargetSQL.order_items`oi
ON o.order_id = oi.order_id
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation`g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix)
SELECT
   geolocation_state
FROM CTE
GROUP BY geolocation_state
ORDER BY AVG(time_to_delivery) DESC
```

Snapshot:

JOB INFORMATION RESULTS		
Row	geolocation_state	
1	SP	
2	PR	
3	MG	
4	DF	
5	RJ	

- Top 5 states where delivery is really fast

```
WITH CTE AS(
   SELECT
    geolocation_state,
    freight_value,
   DATE_DIFF(order_purchase_timestamp, order_delivered_customer_date, day) AS time_to
_delivery,
   DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS di
ff_estimated_delivery
FROM `TargetSQL.orders` o
JOIN `TargetSQL.order_items`oi
ON o.order_id = oi.order_id
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation`g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix)
SELECT
   geolocation_state
    -- AVG(freight_value) AS mean_of_freight_value,
    -- AVG(time_to_delivery) AS mean_time_to_delivery,
    -- AVG(diff_estimated_delivery) AS mean_diff_estimated_delivery
FROM CTE
GROUP BY geolocation_state
ORDER BY AVG(diff_estimated_delivery) DESC
```

Snapshot:

JOB I	NFORMATION	RESULTS
Row	geolocation_state	
1	RR	
2	AM	
3	RO	
4	AC	
5	AP	

- Top 5 states where delivery is not so fast compared to estimated date

```
WITH CTE AS(
   SELECT
    geolocation_state,
    freight_value,
    DATE_DIFF(order_purchase_timestamp, order_delivered_customer_date, day) AS time_to
_delivery,
    DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) AS di
ff_estimated_delivery
FROM `TargetSQL.orders` o
JOIN `TargetSQL.order_items`oi
ON o.order_id = oi.order_id
JOIN `TargetSQL.customers`c
ON o.customer_id = c.customer_id
JOIN `TargetSQL.geolocation`g
ON c.customer_zip_code_prefix = g.geolocation_zip_code_prefix)
SELECT
   geolocation_state
   -- AVG(freight_value) AS mean_of_freight_value,
    -- AVG(time_to_delivery) AS mean_time_to_delivery,
    -- AVG(diff_estimated_delivery) AS mean_diff_estimated_delivery
FROM CTE
GROUP BY geolocation_state
ORDER BY AVG(diff_estimated_delivery) ASC
LIMIT 5
```

Snapshot:

Query results

JOB INFORMATION

00011	_	REGOLIO
Row	geolocation_state	
1	AL	
2	SE	
3	MA	
4	CE	
5	ES	

RESULTS

- Month over Month count of orders for different payment types

```
WITH CTE AS (SELECT DISTINCT
    EXTRACT(MONTH FROM order_purchase_timestamp) AS mnth,
    EXTRACT(YEAR FROM order_purchase_timestamp) yr,
    payment_type,
    COUNT(*) OVER(PARTITION BY EXTRACT(YEAR FROM order_purchase_timestamp), EXTRACT(MON
TH FROM order_purchase_timestamp), payment_type) AS total_orders
FROM `TargetSQL.payments` p
JOIN `TargetSQL.orders` o
ON p.order_id = o.order_id)

SELECT CONCAT(mnth, "'", yr) AS MOM,
payment_type,
total_orders
FROM CTE
ORDER BY yr, mnth
```

Snapshot:

JOB II	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXE
Row	MOM		payment_type	total_o	rders
1	9'2016		credit_card		3
2	10'2016		UPI		63
3	10'2016		debit_card		2
4	10'2016		voucher		23
5	10'2016		credit_card		254
6	12'2016		credit_card		1
7	1'2017		UPI		197
8	1'2017		debit_card		9
9	1'2017		voucher		61
10	1'2017		credit_card		583
11	2'2017		debit_card		13

- Count of orders based on the no. of payment in stalments