

UE 5 Bioinformatique en sciences omiques 2

matière: Analyse et annotation en génomique et transcriptomique 2 – HD

Enrichment Analysis (EA): toward the comprehensive functional analysis of large gene lists

Hélène Dauchel

Computer science, information processing and systems laboratory EA 4108

Team TIBS Information Processing in Health and Biology

C Copyright Univ. Rouen - Hélène Dauchel Conformément au code sur la propriété intellectuelle, toute reproduction ou transmission de tout ou partie de ce cours est strictement interdite, sauf accord formel de l'auteur.

☐ Differential analysis in high throughput experiments: a common procedure to go

insight molecular profile associated to two phenotypes

Normalization Models and differential analysis (Cf UE4)

- ✓ RNA-seq: Differential Expression of Gene (DEG)
- ✓ ChIP seq and Hi-C : Peak calling and interaction matrix
- ✓ Comparative Metagenomics
- ✓ But also other omics...Proteomics...Interactomics

- Molecular profile data: The final stage of many genetic, proteomic, or metabolic analyses is the production of a list of 'interesting' biomolecules.
- ✓ lists of genes ranked by differential or co-expression investigated in transcriptomics experiments
- ✓ lists of single nucleotide polymorphism (SNP)-containing genes ranked by p-values determined by genetic association to a phenotype of interest through a genome-wide association study (GWAS)
- ✓ lists of putative transcription factor or miRNA targets ordered by probability.
- ✓ Lists of proteins
- ✓ Etc.

The case of RNA-seq : often thousands of genes which are used for the analysis

The case of RNA-seq

> Differential analysis

Calcul of a Fold-Change for each gene

Count Condition A
Count Condition B

Expression in Log 2

Log 2 Fold Change

Statistical tests: calcul of a Probability P = **Test of the significativity** of the observed Fold-Change then Pval adj : FDR, FWER

List of DEG
between
condition A
and B
associated
with a p- value
2 and pval adj

Optional step

Filtering: Genes having a padj-value inferior to a threehold (usually 0,01 or 0,05) can be only retained.

List of significantly differentially expressed genes for a given padj value

	baseMean	baseMeanA	baseMeanB	foldChange	log2FoldChange	pval	padj	
10	12.18904394370	23.7377255562253	0.640362331186405	0.0269765664646	-5.21214945378257	0.000352602716413288	0.008731028	0548894
ID	13.4562757526	26,1859644092797	0.726587095931825	0.02774719634440	-5,17151418495594	0.000365853472796627	0.008997221	1864535
	120,7327260214	205.053458307232	36.4119937356143	0.177573175484112	-2.49351443278781	0.000368138897676588	0.009032022	4115546
	1087.704212228	2015.32624783994	160.0821766133	0.07943238807358	-3.65412881230948	0.000370057264029156	0.009057675	203053
	30.2547976154	55.0291204595349	5.48047477141162	0.09959226543411	-3.32782248616755	0.000372464357077757	0.0090951414	1064775
	253.525048423	54.623538440241	452.426558405952	8.2826300039297	3.05008894298517	0.000381894942802932	0.009303534	545560
	24.64373901719	45.8800750971259	3.40740293726723	0.07426759720976	-3.75112328642914	0.000383221124129706	0.009313978	5157332
	1868.64553374	3495.38682105273	241.904246437232	0.06920671697342	-3.8529441219421	0.000391858924802309	0.009486793	623700
	47.91835812697	15.8389190159735	79.9977972379775	5.0507106676472	2.33648639866749	0.000392159805797596	0.009486793	623700
	502.1345963153	889.784608306999	114.484584323675	0.128665503150815	-2.95830279427682	0.000405404290715818	0.009755580	528283
	94.5231260976	32.651240112349	156.39501208304	4.78986438324868	2.25998480911711	0.000404492662578144	0.009755580	528283
	102.202888453	174.399265074172	30.0065118322796	0.172056412161587	-2.5390464357602	0.000406090844885181	0.009755580	528283
	477.9738199104	804.777215184255	151.170424636643	0.187841332712224	-2.41241354553835	0.000409409466376248	0.0098125893	935456
	354.665214372	596.030609185225	113.299819559504	0.19009060577339	-2.39524085874006	0.000411867322171289	0.009848753	616344
	1395.741389473	2606.9853227829			04	0.00041346012957271	0.0098641131	602427
	1476.565717936	199.046083660297	DEG resu	Its: list of	gene IDs 🔼	0.000414493483606259	0.009866085	717582
	484.676376330	868.712364723123		•	8	0.000416409891934221	0.009889020	2711518
	118.4885137784	210.129556526221	rank	ed by <i>p</i> -val	ues 8	0.000422059737354687	0.0100003103	397869
	147.2398418053	33.1080878275052	(marked threehold at 0,01)		0.000430246905943441	0.0101710760	589545	
	80.6746048924	143.769232485127	(marke	a threehold al	(0,01)	0.000432059871147548	0.0101907212	335665
	472.6168309918	855.613986319722	89.6196756639412	0.104743116752248	-3.25507265529385	0.000441555909427073	0.0103910821	497373
	77.4250043924	140.019865701284	14.8301430835683	0.10591456440335	-3.23902710567285	0.00044478257067235	0.010443333	7521214
	16.94306771803	31.4434276899411	2.44270774623912	0.07768579718236	-3.6862053261162	0.000447001472507941	0.010458522	734502
	453.443307838	785.891890799193	120.994724877205	0.15395848499488	-2.69938671517785	0.000447444988833996	0.010458522	734502
	76.5823507628	18.9451464148729	134.219555110785	7.0846406869368	2.82469468556116	0.000454112351967445	0.010572733	1117153
	44.3768868394	8.45756213782498	80.2962115410742	9.49401378701828	3.24701814482195	0.000454368757739931	0.010572733	1117153
	744.6242011482	138.947961092578	1350.30044120388	9.71802990548531	3.28066387209596	0.000459003234557312	0.010656679	12357
	100.3048054246	24.3565454295428	176.253065419693	7.23637372670717	2.85526691870319	0.000460207072570688	0.010660779	015934
	11633.31584648	22261.7938096746	1004.83788328807	0.04513732774092	-4.46953518039521	0.000466266834240085	0.0107531493	346096
	192.850365427	328.326366713301	57.3743641422887	0.17474796409631	-2.51665244732822	0.000466180116755962	0.0107531493	346096
	733.0432176618	1317.95964958839	148.126785735325	0.112390986917989	-3.15340175016565	0.000479914387007424	0.0110433514	
	2820 501806940	5354 14087193725	286 862741944265	0.05357773521571	-4 22222259146343	0.00048354880791145	0.0111023662	135067

> Gene expression profiling: whole data inspection, replicats, representation

Pearson correlation matrix for all replicates

Dispersion estimation

Different threeholds to reduce data before functional analysis

Gene expression profiling : one list or many lists

- ✓ Without classification : leads to only one list of genes > threeholds or top genes
- ✓ With classification of genes, representation with heatmap: leads to many list of genes.
 - Clustering performed across samples (raw) and genes (rows)
 - Numerical expression value for each significantly and differentially gene are replaced by a color-coded expression value. (threeholds or top genes)
 - Genes are classified on the basis of their expression profil : group of coregulated gene

Venn diagram

Transcriptome analysis (RNA) of ESC-MSC (EM), BM-MSC (BM) and ESC (E) by RNA-seq.

(a) Volcano plots for BM-MSC vs ESC (left panel), ESC-MSC vs ESC (middle panel) and BM-MSC vs ESC-MSC (right panel). Numbers are given for the total of differentially expressed genes as well as for the upregulated per cell type. (b) Venn diagram of SDEs per comparisons (BM-MSC vs ESC, ESC-MSC vs ESC and BM-MSC vs ESC-MSC). (c) Pearson correlation matrix for all replicates. (d) PCA analysis based on FPKM values; principal components 1 to 3 were plotted against each other. (e) GO-term enrichment analysis for biological process (GOBP) and cellular component (GOCC). Bar charts represent the most significant top 20 terms of each category for each cell type sorted by mean -log₁₀ p values.

From: Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers

Proteome analysis (PROT) of ESC-MSC (EM), BM-MSC (BM) and ESC (E) by nano LC-MS/MS.

- Enrichment analysis: a set of statistical approaches to identify significantly enriched or depleted groups of genes .. supposing to be able to provide valuable insight into the collective biological function underlying a list of genes.
 - First step: functional annotation by mapping genes and proteins to their associated biological annotations: gene ontology [GO] terms or pathway membership etc.

- Enrichment analysis: a set of statistical approaches to identify significantly enriched or depleted groups of genes .. supposing to be able to provide valuable insight into the collective biological function underlying a list of genes.
 - First step: functional annotation by mapping genes and proteins to their associated biological annotations: gene ontology [GO] terms or pathway membership etc.
 - > Second step: comparing the distribution of the terms within a gene set of interest with the background distribution of these terms
 - enrichment analysis can identify terms which are <u>statistically over-or</u> <u>under-represented</u> within the list of interest, significantly function over or under represented.
 - ➤ It is inferred that such enriched terms describe some important underlying biological process or behaviour.
 - > Evidence of biomarkers for the biological system studied

For example: if 10 % of the genes on the 'interesting' list are kinases, compared with 1 % of the genes in the human genome (the population background), by using **statistical methods**, it is possible to determine that kinases are enriched in the gene list and therefore have important functions in the biological study undertaken (from Hum Genomics. 2010 Feb;4(3):202-6.)

☐ Statistical Methods : tests

Enrichment p-value (and adj p-value) calculated by comparing the observed frequency of annotation term with the frequency expected by chance (from the reference background). Null hypothesis is : genes of the list are picked at random from the total gene population (background)

- ✓ χ 2-test
- ✓ Fisher's exact test
- ✓ binomial probability
- √ hypergeometric test

■ Three classes of enrichment algorithms

- ✓ Singular enrichment analysis (SEA) : preselected interesting genes
- √ Gene set enrichment analysis (GSEA) : all genes
- ✓ Modular enrichment analysis (MEA) : consider relationship between annotation terms

Exemple for GO terms

Category	♦ Term	Genes	Coun	t \$	
GOTERM_BP_ALL	response to chemical stimulus		14	8.2%	6.1E-5
GOTERM_BP_ALL	response to abiotic stimulus		15	8.8%	6.5E-5
GOTERM_MF_ALL	protein binding		55	32.2%	8.8E-5
GOTERM_BP_ALL	response to bacteria		7	4.1%	1.7E-4
GOTERM_MF_ALL	iron ion binding		10	5.8%	2.6E-4
GOTERM_BP_ALL	cell-cell signaling		15	8.8%	4.0E-4
GOTERM_BP_ALL	defense response to bacteria		6	3.5%	5.4E-4
GOTERM_BP_ALL	regulation of hydrolase activity		6	3.5%	6.1E-4
GOTERM_BP_ALL	regulation of GTPase activity		5	2.9%	9.8E-4
GOTERM_BP_ALL	response to stress		22	12.9%	9.9E-4
GOTERM_BP_ALL	response to other organism		15	8.8%	1.2E-3
GOTERM_MF_ALL	heme binding		6	3.5%	1.3E-3
GOTERM_MF_ALL	tetrapyrrole binding		6	3.5%	1.3E-3
GOTERM_BP_ALL	response to stimulus		40	23.4%	1.4E-3
GOTERM_MF_ALL	receptor binding		14	8.2%	1.6E-3
GOTERM_BP_ALL	response to pest, pathogen or parasite		14	8.2%	2.0E-3
GOTERM_BP_ALL	behavior		8	4.7%	2.2E-3
GOTERM_BP_ALL	defense response		23	13.5%	2.2E-3
GOTERM_MF_ALL	oxygen binding	i contract	4	2.3%	2.7E-3
GOTERM_BP_ALL	inflammatory response		8	4.7%	3.3E-3
GOTERM_MF_ALL	sodium ion binding	1	5	2.9%	3.6E-3
GOTERM_BP_ALL	response to biotic stimulus		23	13.5%	3.8E-3
GOTERM_MF_ALL	carbohydrate binding		8	4.7%	3.9E-3
GOTERM_BP_ALL	sodium ion transport		6	3.5%	4.0E-3

From DAVID

☐ Visualization

- ✓ Bar plots
- ✓ Pie charts
- ✓ Bloc charts
- √ <u>Semantic spaces (dotplot)</u>
- ✓ GO graphs
- ✓ <u>Pathways maps</u> with fold-changes on regulated genes

■ Annotation enrichment Tools

- ✓ R Packages : clusterProfiler, Pathview, biomaRt (for ensembl BioMart.)
- ✓ Dedicated softwares :
 - ✓ most GO terms : DAVID, GSEA, GO consortium, GOStat, FatiGO, GOrilla, gProfiler, PANTHER, ReviGO...
 - ✓ few for pathways : DAVID, GSEA, KEGG (KO), Reactome, PANTHER.
 - ✓ Domains: Blast2GO, other?
- ✓ The special place of blast2GO : for not well annotated genomes (background problem)

Pour les génomes mal ou peu annotés

Gene Ontology, KEGG maps, **InterPro and Enzyme Codes**

Score Distribution [Biological Process]

Score Distribution [Molecular Function]

Résumé du contexte scientifique

Les traitements bioinformatiques et biostatistiques des données de séquençages à haut débit en transcriptomique à visée DEG (Differential Expression of Genes) fournissent en sortie de longues listes de gènes différentiellement (significativement) exprimés entre plusieurs conditions d'études ou phénotypes. Pour permettre aux biologistes une interprétation biologique des processus cellulaires en cause dans le mécanisme étudié, ces listes de gènes doivent encore être annotées fonctionnellement. Cette phase consiste non seulement à assigner des annotations aux gènes (Cf projet scripting d'agrégation d'annotations en M1S2) mais surtout dans une seconde étape à établir si des fonctions biologiques sont significativement sur- ou sous- représentées parmi ces gènes. Cette étape est nommée « Enrichment Analysis » (EA), elle fait appel à des méthodes statistiques pour effectuer des tests d'enrichissement [1-8]. Les ressources en annotations fonctionnelles au cours de l'EA peuvent être au moins de trois types : termes de la Gene Ontology, voies métaboliques et domaines protéiques.

* Références

- [1] Subramanian A, Tamayo P, Mootha VK, et al. **Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles**. Proc Natl Acad Sci USA. 2005;102(43):15545–50. [PubMed]
- [2] Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics. 2007 Feb 15;23(4):401-7. Epub 2006 Dec 20. PMID: 17182697.
- [3] Huang da W, Sherman BT, Lempicki RA. **Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists**. Nucleic Acids Res. 2009 Jan;37(1):1-13. PubMed <a href="https://pmid.ncbi.nlm.nc
- [4] Tipney H, Hunter L. **An introduction to effective use of enrichment analysis software**. Hum Genomics. 2010 Feb;4(3):202-6. PubMed PMID: 20368141
- [5]_Hung JH, Yang TH, Hu Z, Weng Z, DeLisi C. **Gene set enrichment analysis:performance evaluation and usage guidelines**. Brief Bioinform. 2012 May;13(3):281-91. Review. PubMed PMID: 21900207
- [6] Khatri P, Sirota M, Butte AJ. **Ten years of pathway analysis: current approaches and outstanding challenges**. PLoS Comput Biol. 2012;8(2):e1002375. Epub 2012 Feb 23. Review. PubMed PMID: 22383865
- [7] Luo, Weijun, Brouwer and Cory (2013). "Pathview: an R/Bioconductor package for pathway-based data integration and visualization." *Bioinformatics*, **29**(14), pp. 1830-1831. doi: 10.1093/bioinformatics/btt285.
- [8] Yu G, Wang L, Han Y and He Q (2012). "clusterProfiler: an R package for comparing biological themes among gene clusters." *OMICS: A Journal of Integrative Biology*, **16**(5), pp. 284-287. doi: 10.1089/omi.2011.0118.

A Shiny application for enrichment analysis

« Développement d'une chaîne de traitement et d'une application web en R pour l'analyse d'enrichissement fonctionnel en RNA-seq »

Le pipeline AEA que vous développerez devra à partir d'une liste de gènes issus d'une expérience RNA-seq (DEG) en entrée fournir au biologiste en sortie les résultats d'enrichissement et représentations graphiques associées. Vous créerez une interface web sous la forme d'une application Shiny afin de permettre l'utilisation aisée par un non programmeur.

Cahier des charges

>	Input : un jeu de données GeneID, baseMean, Log2F	• •	TSV) et entête imposées (GeneName,				
>	Whole data inspection : Vo	• • • • • • • • • • • • • • • • • • • •	ons R existantes pour générer une optionnel); avec représentation				
>	Procédure EA : Vous mettrez en œu	vre les packages R suivants : bio	maRt , <u>ClusterProfiler</u> et <u>Pathview</u> pour				
	réaliser les deux types d'annotations (GO et voies métaboliques) pour les méthodes SEA et GSEA.						
		lêmes un script permettant l'analyse d'enrichissement en domaines ues mettant en œuvre l'approche SEA uniquement.					
	Output : Tableaux de données		·				
>	Interfaçage de votre pipel	ine grâce à <mark>Shiny</mark> , un package R d	éveloppé par <u>RStudio</u> .				
Ong	lets du menu ☐ Whole data inspection ☐ GO term enrichment ☐ Pathway enrichemnt	Choix des paramètres input origine gene IDs: Gene NCBI Ensembl	Choix des méthodes statistiques SEA GSEA				
	☐ Protein enrichemnt	Nom de l'organismebiomaRtautre	Choix de paramètres statistiques Seuil de p-Value Méthode et seuil de p-value adj				

Travail préparatoire

- 1. Comprendre les modèles et tests statistiques utilisées pour la mise en évidence des enrichissements fonctionnels : SEA, GSEA, MEA
- 2. Tester les outils disponibles en ligne identifier les méthodes utilisées
- Trouver un jeu de données tests dans le bon format à partir d'un article qui permettra la comparaison de vos résultats
- 4. Vers la mise en oeuvre
 - ✓ Comprendre le fonctionnement de Shiny
 - ✓ Rechercher les sources des packages
 - ✓ Identifier les spécifications techniques et installations nécessaires
- 5. Modéliser votre solution (vue biologiste et vue développeur)

Modalités		Le travail se réalise en équipe : 2 quatuors et un trinome
-----------	--	--

- Aide au cahier des charges ➤ Voir le fichier .XLS
- **☐** Durée- Calendrier 2018-2019

Basis/sousines	Hrs	-	Travail à rendre – à présenter			
Mois/semaines	Edt	Туре	Interface	Traitement		
Oct S42/ S43	7	- Présentiel : 1h intro (HD) - Présentiel : 6h TD/TP Shiny (MS)				
	3, 5 2	- Autonomie URN en équipe - Présentiel collectif (bilan 1 HD)	Diaporama outils existantsInterface v1 : visuel graphique	- Jeu de données (par équipe)		
1,5 - F		- Autonomie URN en équipe - Présentiel par équipe (bilan 2 HD) 25 min x 3 par équipe	- Interface v2 : développée mais non fonctionnelle (non connectée aux traitements)	 Traitement v1 : modèle + preuve de fonctionnement partiel Traitement v2 : modèle v2 si nécessaire 		
Jan S2/S3	~5 1,5	- Autonomie URN en équipe- Présentiel par équipe (bilan 3 HD + MS);25 min x 3 par équipe	- Interface v3 connectée au traitement v2	- Traitement v2 quasi-complet - Traitement SEA domaine : proposition de codage R		
Mars S10/11/12	~5	Autonomie URN en équipe	 Interface v4 connectée au traitement v3 complet Documentation 			
	1,5	Livraison finale par équipe (bilan 4 HD); 25 min x 3 par équipe	 Solution complète : Démonstration et présentation orale Livraison sources + documentation + diaporama 			
Total	32 Edt	 Présentiel collectif : 7h (1h HD/6h MS) Autonomie en équipe URN : 18,5h Bilan [1-4] : 3,5 h (etu); 6,5h (6,5h HD/2h 	n MS)			