ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: «Компьютерные сети»

ОТЧЕТ ПО ДОМАШНЕМУ ЗАДАНИЮ Часть 1

Выполнил:

Студент гр. Р33151 Соловьев Артемий Александрович

Проверил:

Тропченко Андрей Александрович

Цель работы

- Изучение методов физического кодирования;
- Изучение методов логического кодирования;
- Проведение сравнительного анализа используемых способов кодирования;
- Определение наилучшего способа кодирования для передачи исходного сообщения.

Этап 1. Формирование сообщения

Исходное сообщение: Соловьев А. А.

В шестнадцатеричном формате: D1 EE EB EE E2 FC E5 E2 20 C0 2E 20 C0 2E

В двоичном коде:

 $11010001\ 11101110\ 11101011\ 11101110\ 11100010\ 11111100\ 11100101\ 11100010\ 00100000$

11000000 00101110 00100000 11000000 00101110

Длина сообщения: 14 байт (112 бита) Пропускная способность: 1 Гбит/с

Этап 2. Физическое кодирование исходного формата

М2 – манчестерский код

Частота сигнала = $\frac{ Пропускная способность}{ Количество бит в одном сигнале}$

Частота
$$=\frac{10^9}{2}=5\cdot 10^8\ \Gamma \text{Ц}=500\ \text{М}\Gamma \text{ц}$$

Верхняя граница частот $(f_{\mathrm{B}})=rac{1}{2T}=2\cdot \mathrm{Частотa}=1000\ \mathrm{M}\Gamma\mathrm{ц}$

Нижняя граница частот $(f_{\rm H}) = \frac{\overline{\rm Bepxhss} \ {\rm граница} \ {\rm частот}}{2} = 500 \ {\rm M} {\rm \Gamma} {\rm ц}$

Середина спекрта: $\frac{f_{\rm H} + f_{\rm B}}{2} = 750~{\rm M}$ Гц

Средняя частота: $f_{\rm cp} = \frac{(126f_{\rm B} + 114f_{\rm H})}{240} = 762.5$

Ширина спектра: $S = f_{\text{\tiny B}} - f_{\text{\tiny H}} = 500 \ \text{М}$ Гц

Спектр сигнала: 500 МГц Полоса пропускания: 500 МГц

DIF_M2 – дифференциальный манчестерский код

Частота сигнала = $\frac{ Пропускная способность}{ Количество бит в одном сигнале}$

Частота
$$=\frac{10^9}{2}=5\cdot 10^8\ \Gamma \text{Ц}=500\ \text{М}\Gamma \text{ц}$$

Верхняя граница частот $(f_{\rm B}) = \frac{1}{2T} = 2 \cdot {\rm Частота} = 1000 {\rm МГц}$

Нижняя граница частот $(f_{\rm H}) = \frac{\tilde{\rm Be}$ рхняя граница частот $2 = 500 \ {\rm M}$ Гц

Середина спекрта: $\frac{f_{\text{H}} + f_{\text{B}}}{2} = 750 \; \text{М} \Gamma \text{ц}$

Средняя частота: $f_{\rm cp} = \frac{(112f_{\rm B} + 128f_{\rm H})}{240} = 733. (3)$

Ширина спектра: $S=f_{\scriptscriptstyle \mathrm{B}}-f_{\scriptscriptstyle \mathrm{H}}=500~\mathrm{M}$ Гц

Полоса пропускания 500 МГц

АМІ – биполярное кодирование с чередующейся инверсией

Верхняя граница частот $(f_{\rm B})$: T=2t, $t=\frac{1}{c} \to f_{\rm B}=\frac{1}{T}=500$ М Γ ц

Нижняя граница частот $(f_{\rm H})$: $T=9t \to f_{\rm H}=\frac{c}{9}=111.$ (1)М Γ ц

Середина спектра: $f_{\frac{1}{2}} = \frac{f_{\text{H}} + f_{\text{B}}}{2} = 305.$ (5) МГц

Средняя частота: $f_{\rm cp} = \frac{82f_{\rm B} + \frac{4f_{\rm B}}{2} + \frac{21f_{\rm B}}{3} + \frac{8f_{\rm B}}{4} + \frac{5f_{\rm B}}{5}}{120} = 391.$ (6) МГц Ширина спектра: $S = f_{\rm B} - f_{\rm H} = 388.$ (8) МГц Полоса пропускания: = 389 МГц

NRZ – потенциальный код без возврата к нулю

Верхняя граница частот (f_{B}) : T=2t, $t=\frac{1}{c} o f_{\mathrm{B}}=\frac{1}{T}=500$ М Γ ц

Нижняя граница частот $(f_{\rm H})$: $T=10t \to f_{\rm H}=\frac{c}{10}=100$ МГц

Середина спектра: $f_{\frac{1}{2}} = \frac{f_{\text{H}} + f_{\text{B}}}{2} = 300 \text{ M}$ Гц

Средняя частота:
$$f_{\rm cp} = \frac{28f_B + \frac{12f_B}{2} + \frac{51f_B}{3} + \frac{24f_B}{4} + \frac{5f_B}{5}}{120} = 241.$$
 (6) МГц

Ширина спектра: $S=f_{\scriptscriptstyle \rm B}-f_{\scriptscriptstyle \rm H}=375~{\rm M}\bar{\Gamma}\bar{\rm u}$

Полоса пропускания: = 375 МГц

RZ – биполярный импульсный код

Верхняя граница частот $(f_{\rm B})$: T=t, $t=\frac{1}{c} \to f_{\rm B}=\frac{1}{T}=1000$ М Γ ц

Нижняя граница частот $(f_{\scriptscriptstyle \rm H})$: $T=2t \to f_{\scriptscriptstyle \rm H}=\frac{c}{10}=500$ МГц

Середина спектра: $f_{\frac{1}{2}} = \frac{f_{\text{H}} + f_{\text{B}}}{2} = 750 \text{ M}$ Гц

Средняя частота:
$$f_{\rm cp} = \frac{185 f_B + \frac{11 f_B}{2.5}}{196} = 966.3265~{\rm M}$$
Гц

Ширина спектра: $S=f_{\scriptscriptstyle \rm B}-f_{\scriptscriptstyle \rm H}=500~{\rm M}\Gamma$ ц

Полоса пропускания: = 500 МГц

Сравнительный анализ

Метод	Спектр	Само-	Постоянная	Обнаружение	Стоимость
кодирования	сигнала	синхронизация	составляющая	ошибок	реализации
	(МГц)				
M2	500	+	-	+	2
DIF_M2	500	+	-	+	2
AMI	375	-	+	-	1
NRZ	500	+	-	+	3
RZ	388.8	-	+	+	3

Вывод

На основе анализа выбранных методов можно сделать вывод, что лучшими являются методы M2 и DIF_M2, так как они обеспечивают более качественный сигнал по средствам: самосинхронизация и обнаружения ошибок. А также в нем отсутствует постоянная составляющая, что сказывается на преобладании высоких частот. А также помимо перечисленных выше пюсов для них требуется всего 2 уровня сигнала.

Этап 3. Логическое (избыточное) кодирование исходного сообщения – (4В/5В)

В двоичном коде:

В шестнадцатеричном коде: da79ce5f9ce53bae2f94a7b5ea729ed7a9c

Длина сообщения: 14 байт = 112 бит

Избыточность: 25%

Для кодирования AMI

Пропускная способность: 1 Гбит/с

Верхняя граница частот: T=2t, $t=\frac{1}{c} \to f_{\rm B}=\frac{1}{T}=\frac{C}{2}=500$ МГц

Нижняя граница частот: $T=4t \rightarrow f_{\mathrm{H}}=\frac{\mathcal{C}}{4}=250~\mathrm{M}$ Гц

Середина спектра: $\frac{f_B+f_{\scriptscriptstyle \rm H}}{2}=375~{\rm M}$ Гц

Средняя частота: $\frac{28f_B + \frac{4f_B}{2}}{32} = 468.75 \ \mathrm{M}\Gamma$ ц

Ширина спектра: $f_B - f_{\rm H} = 250 \ {\rm M}$ Гц

Полоса пропускания: 250 МГц

Этап 4. Скремблирование исходного сообщения

Выбранный полином скремблирования: $B_i = A_i \oplus B_{i-3} \oplus B_{i-5}$

Исходное сообщение: 11010001 11101110 11101011 11101110

$$\begin{split} B_1 &= A_1 = 1 \\ B_2 &= A_2 = 1 \\ B_3 &= A_3 = 0 \\ B_4 &= A_4 \oplus B_1 = 1 \oplus 1 = 0 \\ B_5 &= A_5 \oplus B_2 = 1 \oplus 1 = 0 \\ B_6 &= A_6 \oplus B_3 \oplus B_1 = 1 \oplus 0 \oplus 1 = 0 \\ B_7 &= A_7 \oplus B_4 \oplus B_2 = 1 \oplus 1 \oplus 1 = 1 \\ \dots \\ B_{32} &= A_{32} \oplus B_{29} \oplus B_{27} = 0 \end{split}$$

Полученное сообщение: 11001110 01010110 10001110 01010110

В шестнадцатеричном: се568е56

Длина сообщения: 4 байт (32 бита)

Максимальное количество повторяющихся символов подряд: 3

Для кодирования AMI

Верхняя граница частот: T=2t, $t=\frac{1}{c} \rightarrow f_{\mathrm{B}}=\frac{1}{T}=\frac{C}{2}=500$ МГц

Нижняя граница частот: $T=6t \to f_{\rm H}=\frac{C}{6}=166$. (6) МГц

Середина спектра: $\frac{f_B + f_H}{2} = 333.$ (3) МГц

Средняя частота: $\frac{25f_B + \frac{4f_B}{2} + \frac{3f_B}{3}}{32} = 473.5 \ \mathrm{M}\Gamma$ ц

Ширина спектра: $f_B - f_H = 333$. (3) МГц

Полоса пропускания: 333 МГц

Сравнительный анализ (логическое кодирование)

Метод кодирования	Полезная пропускная способность	Спектр	Синхронизация	Обнаружение ошибок	Реализация	Дополнительно Временные затраты
4B/5B	Уменьшается	Сужается	Есть	Есть	Простая	Есть
Скремблирование	Сохраняется	По-разному	Нет	Нет	Средней сложности	Есть

В сравнении мы можем увидеть, что использование метода 4В/5В лучше скремблирования, хоть мы и жертвуем полезной пропускной способностью, зато в

большинстве случаев избавляемся от постоянной составляющей, что гарантирует сужение спектра. Также в методе 4В/5В имеется обнаружение ошибок (за счет наличия запрещенных символов) и синхронизация. В случае скремблирования нам нужно подобрать наиболее подходящий полином, что может быть довольно сложной задачей. К минусам обоих методов относятся дополнительные временные затраты на преобразование исходного сообщения.

Вывод

В ходе выполнения лабораторной работы я познакомился с методами физического и логического кодирования, а также произвел анализ различных методов таких кодирований. Из анализа стало понятно, что идеального метода кодирования не существует. У каждого метода есть свои достоинства и недостатки. В моем случае лучшими методами физического кодирования являются М2 и DIF_M2 за счет отсутствия в них постоянной составляющей, а лучшим методам логического кодирования был признан 4В/5В, так как в нем нижняя граница частоты увеличилась в два раза, а метод скремблирования оказался неэффективным (показания изменились незначительно), возможно это из-за того, что был неправильно выбран полином скремблирования.