Варианты экзаменов по ОДУ

Лектор И. Н. Сергеев

III-IV семестры, 2003-2012 г.

Данное издание подготовлено в рамках Программы по Борьбе с Обыкновенными Дифференциальными Уравнениями. Если у читателя есть вариант экзамена, которого здесь нет, пришлите его нам. Только такие методы позволят собрать полную коллекцию вариантов.

Убедительная просьба собрать ещё немного вариантов 2005, 2007 и последующих лет, если таковые вообще в природе имеются! Хотя общая тематика и типы задач уже становится примерно понятными, чёткой программы сопротивления до сих пор не выработано, и дифференциальные уравнения остаются сложным и непонятным предметом (главным образом, с нашей точки зрения, по причине отсутствия сколь-нибудь вменяемой литературы по курсу, написанной современным языком — две брошюрки, изданные лектором, конечно, можно считать литературой по курсу, но адекватной её назвать всё-таки сложно).

Нумерация вариантов и задач внутри вариантов может не совпадать с исходной. Мы не можем гарантировать абсолютную правильность решений и условий, но стараемся сделать всё для того, чтобы количество ошибок в данном издании было строго убывающей функцией.

Набор, вёрстка: DMVN, П. В. Бибиков.

Решения: DMVN, Д. С. Котенко, В. Осокин, П. В. Бибиков.

Коллекцию пополняли: Д. С. Котенко, В. Осокин, Вагоп, К. С. Коршунов, П. В. Бибиков, А. Богданова, С. Антонов

Последняя компиляция: 6 июня 2012 г. Обновления документа— на сайтах http://dmvn.mexmat.net, http://dmvn.mexmat.ru.
Об опечатках и неточностях пишите на dmvn@mccme.ru.

1. Экзамен 02.06.2004 (Основной экзамен)

Правила проведения экзамена

На решение задач отводилось 1 час 15 минут. Пусть x — количество баллов, набранное на экзамене. Пусть y — количество баллов, полученное за контрольную работу. Имеем $0 \leqslant x \leqslant 10$ и $0 \leqslant y \leqslant 5$. Пусть z = x + y. Если $x \neq 0$, то

Баллы	Оценка
$z \geqslant 3$	«3»
$z \geqslant 6$	«4»
$z \geqslant 9$	«5»

В течение первых 20 минут экзамена можно попросить поставить оценку исходя только из баллов за контрольную работу. В этом случае z:=y, и смотрим в табличку. Очевидно, что при этом оценка не превысит трёх баллов.

1.1. Вариант 1

Задача 1 (3 балла). Известно, что $y_1 = 9 \sin t \ u \ y_2 = 3t^2 - pешения уравнения$

$$y'' + p(t)y' + q(t)y = f(t), \quad p, q, f \in \mathbf{C}^1(\mathbb{R}). \tag{1}$$

Найти хотя бы одно решение y_3 уравнения (1), удовлетворяющее условию $y_3(\pi) = -\frac{1}{2}$. Сколько существует таких решений?

Задача 2 (2 балла). Может ли уравнение (1) иметь ещё и решение $y_4 = t^2 - 1$?

Задача 3 (2 балла). Нарисовать характеристики уравнения

$$xu_x' - (2y - 3x)u_y' = 0 (2)$$

на плоскости с координатами (x,y) и определить тип особой точки (0,0).

Задача 4 (3 балла). При каких $a \in \mathbb{R}$ для любой функции $\varphi \in \mathbf{C}^1(\mathbb{R})$ в достаточно малой окрестности точки (2,1) уравнение (2) имеет решение, удовлетворяющее условию $u(x+2,ax+1)=\varphi(x)$?

1.2. Вариант 2

Задача 1 (3 балла). Известно, что $y_1 = 4\cos t \ u \ y_2 = 2t^2 - p$ ешения уравнения

$$y'' + p(t)y' + q(t)y = f(t), \quad p, q, f \in \mathbf{C}^1(\mathbb{R}). \tag{3}$$

Найти хотя бы одно решение y_3 уравнения (3), удовлетворяющее условию $y_3\left(-\frac{\pi}{2}\right)=1$. Сколько существует таких решений?

Задача 2 (2 балла). Может ли уравнение (3) иметь ещё и решение $y_4 = t^2 - 1$?

Задача 3 (2 балла). Нарисовать характеристики уравнения

$$4xu_x' + (y - 3x)u_y' = 0 (4)$$

на плоскости с координатами (x,y) и определить тип особой точки (0,0).

Задача 4 (3 балла). При каких $a \in \mathbb{R}$ для любой функции $\varphi \in \mathbf{C}^1(\mathbb{R})$ в достаточно малой окрестности точки (1,2) уравнение (4) имеет решение, удовлетворяющее условию $u(x+1,ax+2) = \varphi(x)$?

1.3. Вариант 3

Задача 1 (3 балла). Известно, что $y_1 = t^2 - 3$ и $y_2 = 6\cos t$ — решения уравнения

$$y'' + p(t)y' + q(t)y = f(t), \quad p, q, f \in \mathbf{C}^1(\mathbb{R}).$$

$$\tag{5}$$

Найти хотя бы одно решение y_3 уравнения (5), удовлетворяющее условию $y_3\left(-\sqrt{3}\right)=1$. Сколько существует таких решений?

Решение. Функция $v := y_2 - y_1$ является решением соответствующего однородного уравнения

$$y'' + p(t)y' + q(t)y = 0.$$
 (6)

Поскольку решения однородного уравнения образуют линейное пространство, λv также является решением (6) при всяком $\lambda \in \mathbb{R}$. Отсюда следует, что функция $y_3 = y_1 + \lambda v$ будет решением исходного уравнения. Найдём значение λ , при котором будет выполнено условие задачи:

$$y_1(-\sqrt{3}) + \lambda \cdot v(-\sqrt{3}) = 1,$$

 $3 - 3 + \lambda \cdot (6\cos\sqrt{3} - 3 + 3) = 1.$

откуда $\lambda = \frac{1}{6\cos\sqrt{3}}$. Итак, искомым решением будет функция $y_3 = t^2 - 3 + \frac{1}{6\cos\sqrt{3}} \left(6\cos t - t^2 + 3\right)$.

Теперь покажем, что таких решений существует бесконечно много. Действительно, мы зафиксировали значение функции в точке $-\sqrt{3}$, но значение первой производной можно брать любым. Таким образом, существует бесконечно много разных задач Коши, удовлетворяющих условию, а каждая такая задача Коши имеет (единственное) решение по теореме существования и единственности. \blacksquare

Задача 2 (2 балла). Может ли уравнение (5) иметь ещё и решение $y_4 = 3t^2$?

Решение. Допустим, что y_4 является решением этого уравнения. Тогда функции $u := y_4 - y_1$ и $v := y_1 - y_2$ будут решениями соответствующего однородного уравнения (6). Имеем

$$\begin{cases} u(t) = 2t^2 + 3, \\ v(t) = t^2 - 6\cos t - 3. \end{cases}$$
 (7)

Покажем, что u и v линейно независимы. Действительно, пусть нашлась их нетривиальная линейная комбинация $\lambda u(t) + \mu v(t)$, равная тождественно нулевой функции, т. е. $t^2(2\lambda + \mu) + 3(\lambda - \mu) - 6\mu\cos t \equiv 0$. В выражении слева второе и третье слагаемые ограничены, а первое можно сделать сколь угодно большим за счёт выбора подходящего t. Отсюда следует, что коэффициент при нём должен быть нулевым: $2\lambda + \mu = 0$. Выражая μ , приходим к следующему выражению: $9\lambda + 12\lambda\cos t \equiv 0$. Ясно, что такое равенство возможно только если $\lambda = 0$, но тогда и $\mu = -2\lambda = 0$, что противоречит нетривиальности линейной комбинации.

Поскольку исходное уравнение имеет вторую степень, его пространство решений двумерно. Отсюда следует, что u и v образуют базис в пространстве решений однородного уравнения, т. е. составляют его фундаментальную систему решений. Из теории линейных систем следует, что определитель Вронского $W_{u,v}(t)$ не обращается в нуль на \mathbb{R} . Вычислим его:

$$W_{u,v}(t) = \begin{vmatrix} 2t^2 + 3 & t^2 - 6\cos t - 3 \\ 4t & 2t + 6\sin t \end{vmatrix} = 6(3t + 2t^2\sin t + 3\sin t + 4t\cos t).$$
 (8)

Однако при t=0 он равен нулю. Противоречие.

Замечание. В других вариантах этой задачи решение может оказаться несколько сложнее. Дело в том, что там невозможно явно указать значения t, при которых $W_{u,v}(t)=0$. Выход из положения — найти две точки, в которых определитель имеет значения разных знаков, и сослаться на непрерывность.

Замечание. Авторское решение этой задачи предполагало использование оценки колеблемости для этого уравнения, что не очень естественно. Кроме того, додуматься до этого на экзамене можно только при идеальном знании теории.

Задача 3 (2 балла). Нарисовать характеристики уравнения

$$3xu_x' - (x - 2y)u_y' = 0 (9)$$

на плоскости с координатами (x,y) и определить тип особой точки (0,0).

Решение. Запишем систему для характеристик этого уравнения:

$$\begin{cases} \dot{x} = 3x; \\ \dot{y} = 2y - x. \end{cases} \tag{10}$$

Матрица этой системы есть $A = \begin{pmatrix} 3 & 0 \\ -1 & 2 \end{pmatrix}$. Вычислим характеристический многочлен: $\det(A - \lambda E) = (\lambda - 2)(\lambda - 3)$. Корни различны и одного знака, следовательно, особая точка — узел. Найдём собственный базис: при $\lambda = 2$ имеем $A - 2E = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$, собственный вектор $h_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. При $\lambda = 3$ имеем $A - 3E = \begin{pmatrix} 0 & 0 \\ -1 & -1 \end{pmatrix}$, собственный вектор $h_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. В базисе $\{h_1, h_2\}$ матрица системы имеет вид $\mathrm{diag}(2, 3)$. Как мы знаем, кривые прижимаются к тому собственному вектору, чьё собственное значение меньше по модулю,

что и подтверждает построенный компьютером рисунок.

Задача 4 (3 балла). При каких $a \in \mathbb{R}$ для любой функции $\varphi \in \mathbf{C}^1(\mathbb{R})$ в достаточно малой окрестности точки (1,2) уравнение (9) имеет решение, удовлетворяющее условию $u(x+1,ax+2) = \varphi(x)$?

1.4. Вариант 4

Задача 1 (3 балла). Известно, что $y_1 = 8 \sin t \, u \, y_2 = 2t^2 - p$ ешения уравнения

$$y'' + p(t)y' + q(t)y = f(t), \quad p, q, f \in \mathbf{C}^{1}(\mathbb{R}).$$
 (11)

Найти хотя бы одно решение y_3 уравнения (11), удовлетворяющее условию $y_3(\pi) = -\frac{1}{2}$. Сколько существует таких решений?

Задача 2 (2 балла). Может ли уравнение (11) иметь ещё и решение $y_4 = t^2 - 1$?

Задача 3 (2 балла). Нарисовать характеристики уравнения

$$2xu_x' - (y - 3x)u_y' = 0 (12)$$

на плоскости с координатами (x,y) и определить тип особой точки (0,0).

Задача 4 (3 балла). При каких $a \in \mathbb{R}$ для любой функции $\varphi \in \mathbf{C}^1(\mathbb{R})$ в достаточно малой окрестности точки (2,1) уравнение (12) имеет решение, удовлетворяющее условию $u(x+2,ax+1)=\varphi(x)$?

2. Экзамен 28.06.2004 (Пересдача №1)

2.1. Вариант 1

Задача 1 (2 балла). При каждом $\mu \in \mathbb{R}$ найти все решения уравнения

$$y' = (x^2 + y^5)\cos\ln y,\tag{1}$$

удовлетворяющие условиям

$$y(2) = e^{\frac{\pi}{2}}, \quad y'(2) = \mu.$$
 (2)

Задача 2 (2). Выбрав при $\mu = 0$ любое решение y_1 из найденных, записать уравнение в вариациях и найти производную решения по начальным условиям вдоль y_1 .

Задача 3 (3 балла). Исследовать решение y_1 из предыдущей задачи на устойчивость.

Задача 4 (2 балла). Существует ли определенное на \mathbb{R} решение y_2 уравнения из первой задачи, удовлетворяющее условию $y_2(2) = 30$?

2.2. Вариант 2

Задача 1 (2 балла). При каждом $\mu \in \mathbb{R}$ найти все решения уравнения

$$y' = (x^3 + y^4)\sin e^y, (3)$$

удовлетворяющие условиям

$$y(3) = \ln \pi, \quad y'(3) = \mu.$$
 (4)

Задача 2 (2). Выбрав при $\mu = 0$ любое решение y_1 из найденных, записать уравнение в вариациях и найти производную решения по начальным условиям вдоль y_1 .

Задача 3 (3 балла). Исследовать решение y_1 из предыдущей задачи на устойчивость.

Задача 4 (2 балла). Существует ли определенное на \mathbb{R} решение y_2 уравнения из первой задачи, удовлетворяющее условию $y_2(3) = 5$?

3. Экзамен 30.08.2004 (Пересдача №2)

3.1. Вариант 1

Дано уравнение

$$y''' + a(x)y'' + b(x)y' + c(x)y = 0, \quad a, b, c \in \mathbf{C}(\mathbb{R}).$$
 (1)

Известно, что x + 3 и tg 2x - 1 — решения.

Задача 1 (2 балла). Найти какое-нибудь решение y_3 , для которого $y_3(0) = 0$, а $y_3'(0) = -7$.

Решение. Используя соображения, аналогичные первой задаче основного варианта этого года, ищем подходящие c_1 и c_2 для решения $c_1(x+3)+c_2(\lg 2x-1)$. Получаем $-x-3\lg 2x$.

Задача 2 (2 балла). Сколько существует таких решений?

Решение. По теореме существования и единственности условия $y_3(0) = 0$, $y_3'(0) = -7$, $y_3''(0) = c$ дают единственное решение при каждом c, но c можно выбирать произвольно, поэтому получаем ответ: бесконечно много решений.

Задача 3 (4 балла). В какой максимальной окрестности точки 0 может быть определено данное уравнение с данными решениями?

Решение. По теореме продолжаемости для линейных уравнений при $a,b,c\in \mathbf{C}(I)$ для любой начальной точки существует единственное решение задачи Коши, и оно определено на всем интервале I. Отсюда из-за некоторых проблем с определённостью у функции $\operatorname{tg} 2x-1$ в точках $\pm \frac{\pi}{4}$ видим, что оно никак не может быть решением линейного уравнения на каком-нибудь интервале более $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$. Это и есть ответ.

Дополнение к решению от П. Бибикова:

Уже доказано, что решение не может быть определено на интервале, большем, чем $\left(-\frac{\pi}{4}; \frac{\pi}{4}\right)$. Не доказано лишь, что *существуют* такие функции a,b и c, что функции $y_1=x+3$ и $y_2=\lg 2x-1$ — решения. Их необходимо предъявить непосредственно, подставив y_1 и y_2 в уравнение и решив полученную систему. Например, можно взять $b(x)=c(x)=0,\ a(x)=-4\frac{1+2\sin^22x}{\sin4x}$ (проверьте!).

P.S. Скорее всего, в условии этой задачи допущена ошибка: функции a, b и c должны быть непрерывны в окрестности точки 0, а не на всей числовой прямой. \blacksquare

3.2. Вариант 2

Дано уравнение

$$y''' + a(x)y'' + b(x)y' + c(x)y = 0, \quad a, b, c \in \mathbf{C}(U(0)).$$
(2)

Известно, что x + 2 и $1 - \operatorname{tg} 3x$ — решения.

Задача 1 (2 балла). Найти какое-нибудь решение y_3 , для которого $y_3(0) = 7$, а $y_3'(0) = 0$.

Задача 2 (2 балла). Сколько существует таких решений?

Задача 3 (4 балла). В какой максимальной окрестности точки 0 может быть определено данное уравнение с данными решениями?

Замечание. Чтобы получить «5», надо набрать 9 баллов, откуда следует, что оценку «5» на этой пересдаче получить нельзя.

4. Экзамен 2005

4.1. Вариант 1

Задача 1 (4 балла). Какие из функций

$$y_1(t) = \cos 8t - 1$$
, $y_2(t) = \tan 4t$, $y_3(t) = \cos(8t - 5)$

не могут быть решениями уравнения

$$\ddot{y} + p(t)\dot{y} + q(t)y = 0, \quad p, g \in C^1(\mathbb{R}),$$

одним из решений которого служит функция $y(t) = \cos 4t$?

Решение. Согласно следствию из теоремы Штурма, нули линейно независимых решений линейного однородного уравнения второго порядка должны перемежаться. Очевидно, что решения y(t) и $y_i(t)$ (i=1,2,3) линейно независимы. Значит, их корни должны перемежаться. Однако, как легко проверить, это условие выполняется только для функции $y_2(t)$. Однако, согласно теореме о продолжаемости, решение должно быть определено на всей прямой (поскольку $p,q\in C^1(\mathbb{R})$), что для функции $y_2(t)$ неверно. По этой причине ни одна из предложенных функций не может быть решением.

Ответ: никакие. ■

Задача 2 (2 балла). В зависимости от параметра $a \in [0;3)$ определить точный тип и устойчивость особой точки системы

$$\begin{cases} \dot{x} = 3x, \\ \dot{y} = ax + 3y. \end{cases}$$
 (1)

Решение. Для начала найдем собственные вектора матрицы $A = \begin{pmatrix} 3 & 0 \\ a & 3 \end{pmatrix}$:

$$|A - \lambda E| = (\lambda - 3)^2 = 0 \Leftrightarrow \lambda_{1,2} = \lambda = 3 > 0.$$

Отсюда сразу следует, что особая точка неустойчива. При $a \neq 0$ rk $(A - \lambda E) = 1 \Rightarrow$ это вырожденный узел; при a = 0 rk $(A - \lambda E) = 0 \Rightarrow$ это дикритический узел.

Ответ: при $a \neq 0$ особая точка — неустойчивый вырожденный узел;

при a=0 особая точка — неустойчивый дикритический узел.

Задача 3 (1 балл). Существует ли и единственен ли локально вблизи точки $(1,0) \in G \subset \mathbb{R}^2$ первый интеграл φ этой системы, удовлетворяющий условию

$$\varphi(x,y) = 1 + 2y$$
 npu $x = 1$.

Задача 4 (3 балла). Существует ли и единственен ли целиком в области $G = \{(x,y) \mid x>0, y>0\}$ первый интеграл φ этой системы, удовлетворяющий условию

$$\varphi(x,y) = 1 + 2y$$
 npu $x = 1$.

Экзамен 2007

5.1. Вариант 1

Задача 1 (1 балл). Пусть $e^{At}=\left(\begin{smallmatrix} e^{-2t}\cos 5t & -e^{-2t}\sin 5t \\ e^{-2t}\sin 5t & e^{-2t}\cos 5t\end{smallmatrix}\right)$ и $x_{\mu}(t)$ — решение системы $\dot{x}=Ax+\left(\begin{smallmatrix} \mu t^2 \\ \sinh \mu\end{smallmatrix}\right)$ с начальным условием $x_{\mu}(0) = \binom{\mu-1}{1}$. Найти нулевой решение $x_0(t)$.

Решение. Подставим $\mu = 0$ и решим задачу Коши

$$\begin{cases} \dot{x} = Ax \\ x(0) = \begin{pmatrix} -1 \\ 1 \end{pmatrix}. \end{cases}$$

Согласно теореме из теории линейных систем, общее решение имеет вид $x(t) = e^{At}C$. Найдем C. При t=0имеем: $x(0) = C = {\binom{-1}{1}}$. Отсюда получаем **Ответ:** $x_0(t) = e^{-2t} {\binom{-\cos 5t - \sin 5t}{\cos 5t - \sin 5t}}$.

Задача 2 (2 балла). Исследовать решение $x_0(t)$ задачи 1 на устойчивость.

Решение. Согласно теореме из теории устойчивости линейных систем, достаточно исследовать на устойчивость нулевое решение. Для этого найдем собственные числа матрицы A (см. задачу 4):

$$|A - \lambda E| = \begin{vmatrix} -2 - \lambda & -5 \\ 5 & -2 - \lambda \end{vmatrix} = (\lambda + 2)^2 + 25 = 0 \Leftrightarrow \lambda_{1,2} = -2 \pm 5i.$$

Поскольку $\operatorname{Re} \lambda_{1,2} = -2 < 0$, то по критерию устойчивости нулевое решение асимптотически устойчиво, а значит, и решение $x_0(t)$ асимптотически (и просто) устойчиво.

Ответ: решение $x_0(t)$ устойчиво и асимптотически устойчиво.

Задача 3 (3 балла). Найти все первые интегралы системы из задачи 1, определенные на всей плоскости.

Решение. Пока отсутствует.

Otbet: $\varphi \equiv \text{const.} \blacksquare$

Задача 4 (2 балла). Найти матрицу А из задачи 1.

Решение. Согласно свойству экспоненты от матрицы, $\frac{d}{dt}e^{At} = Ae^{At}$, откуда находим $A = \frac{d}{dt}\big|_{t=0}e^{At}$.

Ответ: $A = \begin{pmatrix} -2 & -5 \\ 5 & -2 \end{pmatrix}$.

Задача 5 (3 балла). Существует ли, и если существует то чему равен

$$\lim_{\mu \longrightarrow 0} \sup_t |\dot{x}_\mu(t) - \dot{x}_0(t)|, \quad \operatorname{ede} |x| = \max\{|x_1|, \, |x_2|\}.$$

Решение. Пока отсутствует.

Ответ: предел существует и равен 0. \blacksquare

6. Экзамен 04.06.2011 (Основной экзамен)

6.1. Вариант 5

Задача 1 (3 балла). Про некоторую фиксированную линейную комбинацию функции у и её производных \dot{y}, \ddot{y}, \dots известно, что она обнуляет ровно две из четырёх функций

$$y_1 = \cos 2t, \qquad y_2 = \cos^2 t, \qquad y_3 = t^2 \sin t, \qquad y_4 = \sin t^2.$$
 (1)

Какие из них она заведомо обнуляет, а какие — заведомо не обнуляет?

Задача 2 (2+5 баллов). Для системы

$$\begin{cases} \dot{x}_1 = \sin ax_1 - a \operatorname{tg} x_2, \\ \dot{x}_2 = 2\left(\sqrt{1 + bx_2} - 1\right) \end{cases}$$
 (2)

a) при a=b=4 изобразите проекции графиков решений $X(t)=(x_1(t),x_2(t))$ на фазовую плоскость вблизи

б) найдите все пары $(a,b) \in \mathbb{R}^2$, при которых для любого $\varepsilon > 0$ существует такое $\delta > 0$, что если $X(0) < \varepsilon$, mo $X(t) < \delta$ npu $\sec x \ t \ge 0$.

7. Экзамен 28.06.2011 (Пересдача)

7.1. Вариант 3

Рассматривается уравнение

$$y' = y^2 - \sqrt[8]{|y|}. (1)$$

Задача 1 (1+2 балла). *Какие точки* $(x_0, y_0) \in \mathbb{R}^2$ *являются*:

- а) точками существования,
- б) точками единственности?

Задача 2 (2 балла). Исследуйте на устойчивость (в том числе асимптотическую) решение y(t)=1, $t\geqslant 0.$

Задача 3 (1+1+2 балла).

- а) Сколько существует непродолжаемых решений, для которых y(7) = 0?
- б) Сколько среди них локально различных?
- в) Все ли такие решения определены на \mathbb{R} ?

8. Экзамен 02.06.2012 (Основной экзамен)

8.1. Вариант 1

Функция $y_1(t) = 6t^5 \cdot \operatorname{ch} 3t \cdot \sin 4t$ — решение уравнения

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = 0 \quad (a_1, \ldots, a_n \in \mathbb{R}).$$

Задача 1 (2+2 балла).

- а) При каком наименьшем $n \in \mathbb{N}$ это возможно?
- б) Обязательно ли это уравнение имеет решение

$$y_2(t) = (t-2)^5 \cdot \operatorname{ch}(3t-6) \cdot \sin(4t-8)$$
?

Задача 2 (2+1+3 балла). Рассматриваются непродолжаемые решения задачи

$$\begin{cases} \dot{x} = 2x - 4y - e^{-t}, \\ \dot{y} = 3x - 6y + 5\sqrt[4]{t^{-2}}, \end{cases} \begin{cases} x(1) = 3, \\ \dot{x}(1) = -2. \end{cases}$$

- a) Сколько ux?
- б) На каких интервалах они определены?
- в) Устойчивы ли они: по Ляпунову, асимптотически?

8.2. Вариант 2

Функция $y_1(t) = 4t^7 \cdot \sin 2t \cdot \cos 5t$ — решение уравнения

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = 0 \quad (a_1, \ldots, a_n \in \mathbb{R}).$$

Задача 3 (2+2 балла).

- а) При каком наименьшем $n \in \mathbb{N}$ это возможно?
- б) Обязательно ли это уравнение имеет решение

$$y_2(t) = (t+3)^6 \cdot \sinh(2t+6) \cdot \cos(5t+15)$$
?

Задача 4 (2+1+3 балла). Рассматриваются непродолжаемые решения задачи

$$\begin{cases} \dot{x} = 3x - 9y - 3\sqrt[7]{t^{-1}}, & \begin{cases} x(1) = -1, \\ \dot{y} = 2x - 6y + t^{-4}, \end{cases} & \dot{x}(1) = 4.$$

- а) Сколько их?
- б) На каких интервалах они определены?
- в) Устойчивы ли они: по Ляпунову, асимптотически?

8.3. Вариант 3

Функция $y_1(t) = 5t^6 \cdot \operatorname{ch} 2t \cdot \sin 3t$ — решение уравнения

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = 0 \quad (a_1, \ldots, a_n \in \mathbb{R}).$$

Задача 5 (2+2 балла).

- а) При каком наименьшем $n \in \mathbb{N}$ это возможно?
- б) Обязательно ли это уравнение имеет решение

$$y_2(t) = (t-4)^7 \cdot \operatorname{ch}(2t-8) \cdot \sin(3t-12)$$
?

Задача 6 (2+1+3 балла). Рассматриваются непродолжаемые решения задачи

$$\begin{cases} \dot{x} = 3x - 6y - e^{-t}, \\ \dot{y} = 4x - 8y + 2/\sqrt[3]{t}, \end{cases} \begin{cases} x(1) = 2, \\ \dot{x}(1) = -5. \end{cases}$$

- а) Сколько их?
- б) На каких интервалах они определены?
- в) Устойчивы ли они: по Ляпунову, асимптотически?

8.4. Вариант 4

Функция $y_1(t) = 7t^5 \cdot \sin 4t \cdot \cos 3t$ — решение уравнения

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = 0 \quad (a_1, \ldots, a_n \in \mathbb{R}).$$

Задача 7 (2+2 балла).

- а) При каком наименьшем $n \in \mathbb{N}$ это возможно?
- б) Обязательно ли это уравнение имеет решение

$$y_2(t) = (t+2)^7 \cdot \sinh(4t+8) \cdot \cos(3t+6)$$
?

Задача 8 (2+1+3 балла). Рассматриваются непродолжаемые решения задачи

$$\begin{cases} \dot{x} = 2x - 3y - \sqrt{t^{-4}}, \\ \dot{y} = 4x - 6y + 3t^{-5}, \end{cases} \begin{cases} x(1) = -2, \\ \dot{x}(1) = 3. \end{cases}$$

- а) Сколько их?
- б) На каких интервалах они определены?
- в) Устойчивы ли они: по Ляпунову, асимптотически?

8.5. Вариант 5

Функция $y_1(t) = 3t^7 \cdot \operatorname{ch} 5t \cdot \sin 2t$ — решение уравнения

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = 0 \quad (a_1, \ldots, a_n \in \mathbb{R}).$$

Задача 9 (2+2 балла).

- а) При каком наименьшем $n \in \mathbb{N}$ это возможно?
- б) Обязательно ли это уравнение имеет решение

$$y_2(t) = (t-3)^6 \cdot \text{ch}(5t-15) \cdot \sin(2t-6)$$
?

Задача 10 (2+1+3 балла). Рассматриваются непродолжаемые решения задачи

$$\begin{cases} \dot{x} = 3x - 2y - 5t^{-1}, \\ \dot{y} = 9x - 6y + e^{-3t}, \end{cases} \begin{cases} x(1) = 4, \\ \dot{x}(1) = -1. \end{cases}$$

- а) Сколько их?
- б) На каких интервалах они определены?
- в) Устойчивы ли они: по Ляпунову, асимптотически?

8.6. Вариант 6

Функция $y_1(t) = 8t^6 \cdot \sh 3t \cdot \cos 2t$ — решение уравнения

$$y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = 0 \quad (a_1, \ldots, a_n \in \mathbb{R}).$$

Задача 11 (2+2 балла).

- а) При каком наименьшем $n \in \mathbb{N}$ это возможно?
- б) Обязательно ли это уравнение имеет решение

$$y_2(t) = (t+4)^7 \cdot \text{sh}(3t+12) \cdot \cos(2t+8)$$
?

Задача 12 (2+1+3 балла). Рассматриваются непродолжаемые решения задачи

$$\begin{cases} \dot{x} = 3x - 4y - 3/\sqrt[5]{t}, \\ \dot{y} = 6x - 8y + t^{-6}, \end{cases} \begin{cases} x(1) = -5, \\ \dot{x}(1) = 2. \end{cases}$$

- а) Сколько их?
- б) На каких интервалах они определены?
- в) Устойчивы ли они: по Ляпунову, асимптотически?

Последняя компиляция: 6 июня 2012 г. Обновления документа— на сайтах http://dmvn.mexmat.net, http://dmvn.mexmat.ru.
Об опечатках и неточностях пишите на dmvn@mccme.ru.