Título en español (definido en Cascaras\cover.tex)
Title in English (defined in Cascaras\cover.tex)

Trabajo de Fin de Máster Curso 2019–2020

Autor Nombre Apellido1 Apellido2

Director

Director 1 Director 2

Colaborador

Colaborador 1 Colaborador 2

Máster en Ingeniería Informática Facultad de Informática Universidad Complutense de Madrid

Título en español (definido en Cascaras\cover.tex) Title in English (defined in Cascaras\cover.tex)

Autor Nombre Apellido1 Apellido2

Director 1
Director 2

Colaborador 1 Colaborador 2

Convocatoria: Febrero/Junio/Septiembre 2020 Calificación: Nota

Máster en Ingeniería Informática Facultad de Informática Universidad Complutense de Madrid

DIA de MES de AÑO

Dedicatoria

Agradecimientos

A Guillermo, por el tiempo empleado en hacer estas plantillas. A Adrián, Enrique y Nacho, por sus comentarios para mejorar lo que hicimos. Y a Narciso, a quien no le ha hecho falta el Anillo Único para coordinarnos a todos.

Resumen

Título en español (definido en Cascaras\cover.tex)

Nuestro sistema inmune es esencial para nuestra supervivencia. Sin el, estaríamos expuestos a ataques de bacterias, virus, parásitos, entre otros.

Este sistema se extiende por todo el cuerpo e involucra a muchos tipos de células, órganos, proteínas y tejidos. Su misión principal es reconocer patógenos y reaccionar frente a ellos, provocando un proceso que llamaremos respuesta inmune.

En lo que sigue nos centraremos en la dinámica de población de un tipo de célula inmune concreto: las células T, estas participan de manera fundamental en la respuesta inmune. A pesar de lo complicado que pueda parecer, veremos que la decisión entre división o muerte de estas células sigue un patrón sumamente sencillo y propondremos un modelo matemático para estas variaciones. Así mismo, se presentarán simulaciones de ejemplo de dicho modelo.

Palabras clave

Máximo 10 palabras clave separadas por comas

Abstract

Title in English (defined in Cascaras\cover.tex)

An abstract in English, half a page long, including the title in English. Below, a list with no more than 10 keywords.

Keywords

10 keywords max., separated by commas.

Índice

1.	Intr	oducci	lón	1
	1.1.	Objeti	vos	2
	1.2.	Plan d	le trabajo	2
	1.3.	Estruc	tura del documento	2
2.	Esta	ado de	la Cuestión	5
	2.1.	Cuesti	ones básicas de inmunología	Ę
		2.1.1.	El sistema inmune innato	6
		2.1.2.	El sistema inmune adaptativo	7
	2.2.	Coope	ración entre dos ciencias: Matemáticas y Biología	10
		2.2.1.	Modelos matemáticos $versus$ inmunología experimental	11
3.	Alge	oritmo	de decisión de las células T durante la respuesta inmune	15
	3.1.	Hipóte	esis biológicas	16
		3.1.1.	La competición entre dos moléculas inhibidoras determina la decisión	
			y la duración de la vida de una célula T	16
		3.1.2.	Los receptores de membrana regulan las dinámicas de Rb y Bcl- 2	17
		3.1.3.	Las células T $\it na\"ive$ se dividen de manera asimétrica después de su	
			activación	17
	3.2.	Model	o microscópico	17
	3.3.	Dinám	nica del <i>patógeno</i> durante la respuesta inmune	19
4.	Sim	ulacio	nes del modelo microscópico	21
	4.1.	Model	o simplificado	21
	4.2.	Detall	es de implementación y pseudocódigo	22
	4.3.	Result	ados y análisis	24
		4.3.1.	Intolerancia al patógeno	24
		4.3.2.	Tolerancia al patógeno	26
		4.3.3.	Simulaciones con distintas poblaciones de células T	27
5.	Mod	delo M	[acroscópico	29
	5.1.	Tolera	ncia y tasa de crecimiento	29
	5.2.	Inercia	a y elasticidad en las células T	30
	5.3.	Simula	aciones del modelo macroscópico	31

	$5.3.1.$ Intolerancia al $pat\'ogeno$	31
	5.3.2. Tolerancia al patógeno	31
	5.3.3. Regiones de tolerancia e intolerancia	32
6.	Correspondencia de parámetros entre los modelos microscópico y ma-	
	croscópico	35
	6.1. Conjunto de datos y entrenamiento de la red neuronal	36
	6.2. Resultados obtenidos por la red neuronal	37
7.	Conclusiones y Trabajo Futuro	39
8.	Introduction	41
9.	Conclusions and Future Work	43
Bi	bliografía	45
Α.	Código de las simulaciones	47
	A.1. Código referente al Capítulo 4	47
	A.2. Código referente al Capítulo 5	52
В.	Título del Apéndice B	57

Índice de figuras

2.1.	Fagocitosis.	6
2.2.	Macrófago reconociendo una bacteria gracias a la acción anticuerpo-antígeno.	8
2.3.	Proceso de activación de una célula T	9
3.1.	Representación del ciclo celular	16
4.1.	Simulaciones del modelo microscópico. Casos de tolerancia e intolerancia al	
		26
4.2.	Simulaciones del modelo microscópico. Casos de tolerancia e intolerancia al	20
	$pat\'ogeno$	28
5.1.	Ejemplo con simulaciones del modelo macroscópico. Casos de intolerancia y	
	tolerancia al patógeno	32
5.2.	Simulación: variación de los parámetros α^* y β^* para dar lugar a regiones	
	de tolerancia e intolerancia	33
6.1.	Representación gráfica de los valores de loss y accuracy para cada epoch	
		37
6.2.	Ejemplo con simulaciones del modelo microscópico y macroscópico con los valores de los parámetros predichos por la red neuronal. Casos de intoleran-	
	cia al patógeno	38

Índice de tablas

4.1.	Tabla de variables	v parámetros.	 2!
	Idola do fallables	, paramono.	

Introducción

El año 2018 fue proclamado el Año Internacional de la Biología Matemática por dos sociedades científicas: la European Mathematical Society (EMS) y la European Society for Mathematical and Theoretical Biology (ESMTB). Con esta celebración se pretende señalar el incremento e importancia de las aplicaciones de las matemáticas a la biología y a las ciencias de la vida y fomentar esta interacción¹. En la actualidad, las ciencias de la vida tienen, cada vez más, aportaciones matemáticas, que van desde el uso de los sistemas dinámicos y la estadística, a los modelos de población y de propagación de enfermedades. En este contexto, los modelos cobran un papel relevante, puesto que son representaciones simplificadas de la estructura y del funcionamiento de un determinado sistema o proceso biológico, utilizando el lengua je matemático para expresar las relaciones entre variables². Lo que permite avanzar más allá de donde la intuición puede llevarnos y pudiendo obtener información útil que, de otra manera es imposible, ya bien sea por el elevado coste económico de los experimentos, por el tiempo que lleva realizarlos, o por la cantidad de datos a examinar, entre otras razones. No debemos olvidar que los modelos matemáticos que realizan en este ámbito no se limitan a un conjunto de ecuaciones, sino que estos están determinados por el problema biológico que se quiere resolver.

NO SÉ SI EMPEZAR CON ESTO, ME PARECIÓ INTERESANTE.

A lo largo de este documento nos centraremos en el campo de la inmunología. El sistema inmune es un sistema complejo. A diferencia de otros sistemas, las células que lo componen no están reguladas por un órgano, al menos aún no se ha encontrado (Arias y Herrero, 2016). Las células inmunes se mueven libremente por el organismo y llevan una vida independiente. Sin embargo, son capaces de llevar a cabo comportamientos colectivos, como es el caso de la respuesta ante agentes infecciosos. En esta función defensiva, las células T toman un papel importante, pues son las encargadas de coordinar la respuesta y de eliminar las células del organismo que han sido infectadas. Cuando se detecta una infección, la población de este tipo de células crece en pocos días y, una vez desaparecido el agente infeccioso, los niveles de población vuelven a restaurarse (en caso contrario se acumularían millones de células que no son necesarias para el organismo) (Fernández Arias, 2012). El mecanismo de decisión entre división o apoptosis que toman las células T durante la respuesta inmune aún se desconoce. En los capítulos que siguen expondremos dos modelos matemáticos, basados en ecuaciones diferenciales, que intentan dar una explicación a este fenómeno. El primero de ellos, que puede verse en el Capítulo 3, aborda este asunto desde un punto

https://www.icmat.es/divulgacion/Material_Divulgacion/miradas_matematicas/06.pdf

²http://www.blogsanidadanimal.com/2018-el-ano-internacional-de-la-biologia-matematica/

de vista microscópico. Es decir, se propone un algoritmo para cada célula. Este modelo se contrapone a la rigidez de algunos modelos anteriores, basados en una cantidad fija de divisiones celulares o en la competición de relojes estocásticos, basando la decisión en la concentración de ciertas moléculas inhibidoras (de la división o del suicidio celular) en el medio ámbito extracelular que rodea a la célula. Por su parte, el segundo modelo, expuesto en el Capítulo 5, da un algoritmo de decisión para toda la población de células T, basándose en dos características principales de la población: la elasticidad y la inercia.

Además, se realizan simulaciones numéricas de ambos modelos. Estas simulaciones representan distintas situaciones que pueden darse durante una infección, entre ellas hacemos distinción entre la situación de intolerancia al *patógeno*, en cuyo caso las células inmunes consiguen controlar la infección y eliminar al agente infeccioso, o la situación de tolerancia al *patógeno*, en la que es este último quien acaba tomando el control del organismo. También se analiza qué ocurre cuando tenemos poblaciones de células T con distintas afinidades al *patógeno*. ESTE ÚLTIMO PÁRRAFO ES DEMASIADO TÉCNICO PARA LA INTRODUCCIÓN?

1.1. Objetivos

- Estudiar el ámbito biológico sobre el que se sustenta este Trabajo de Fin de Grado.
- Estudiar y entender el modelo propuesto y sus aplicaciones.
- Desarrollar simulaciones de dicho modelo que complementen la teoría vista.

1.2. Plan de trabajo

Aquí se describe el plan de trabajo a seguir para la consecución de los objetivos descritos en el apartado anterior.

1.3. Estructura del documento

Este trabajo está dividido en tres partes bien diferenciadas pero con la misma finalidad, el estudio de las células T.

- 1. En el Capítulo 2 se cubre el contexto del documento. En concreto, en la Sección 2.1 se tratan unas nociones básicas sobre inmunología, que permiten al lector continuar por los capítulos siguientes sin ningún impedimento terminológico, en cuanto a cuestiones biológicas se refiere. Más en detalle se exponen los aspectos de la respuesta inmune que involucran a las células T, como son su activación y actuación o la memoria inmune. Por su parte, la Sección 2.2 nos habla de los modelos matemáticos en biología y, al final de la sección, nos centramos en el caso de nuestro estudio, los modelos matemáticos formulados para la dinámica de las células T durante una infección aguda.
- 2. En el Capítulo 3 se expone el modelo microscópico propuesto para el problema de decisión entre división y apóptosis de las células T. En la Sección 3.1 se detallan las hipótesis biológicas sobre las que se sustenta el modelo, que constituyen hechos contrastados y observados en el campo de la biología. El marco teórico matemático del modelo puede verse en la Sección 3.2, donde se detalla la notación que seguirá

el resto del documento y las ecuaciones diferenciales de primer orden que dan lugar al modelo. La última sección de este capítulo, la Sección 3.3, introduce una ecuación diferencial para las células del *patógeno*, que se relaciona con la cantidad de células T disponibles, estableciendo la interacción entre ambas poblaciones. En el Capítulo 4 se presentan las simulaciones correspondientes a una simplificación del número de parámetros del modelo anterior y se explican los detalles básicos de la implementación del mismo.

3. El modelo macroscópico se estudia en el Capítulo 5. Además de proponerse el marco teórico, basado en un sistema de ecuaciones diferenciales de segundo grado, una representando a la población de células T y otra al *patógeno*, también se proponen las simulaciones numéricas correspondientes.

A fin de complementar el trabajo, se ha incluido el código principal de las simulaciones (tanto las del Capítulo 4 como las del 5) en el Apéndice A.

Estado de la Cuestión

En este capítulo revisaremos los aspectos necesarios para la comprensión de los modelos que se exponen en los capítulos que siguen. La Sección 2.1 brinda unas nociones básicas sobre inmunología, en las que se trata brevemente el estudio de los mecanismos y agentes del sistema inmune necesarios para la respuesta ante una infección, destacando el papel de las células T. Esta sección constituye una parte fundamental del trabajo, pues los modelos que se presentan a continuación deben ser mirados y entendidos a través del problema inmunológico que se intenta explicar. Por su parte, la Sección 2.2 habla sobre los modelos matemáticos en el campo de la biología y, más concretamente, sobre algunos de los que han intentado dar explicación al problema de decisión entre división o apoptosis de las células T durante una infección aguda. El desarrollo detallado del modelo de nuestro estudio puede verse en el Capítulo 3.

2.1. Cuestiones básicas de inmunología

Antes de comenzar es conveniente introducir una serie de definiciones y explicaciones básicas referentes al sistema inmune y a los procesos que este lleva a cabo. De esta manera, los conceptos y modelos que se expondrán más adelante serán entendidos en su contexto y sin ningún impedimento terminológico. Recordemos que, este trabajo se centra en el estudio de un modelo matemático que representa un aspecto concreto de la respuesta inmune. Es por ello que una noción, básica, como la que aquí se expone, sobre el sistema inmune es necesaria para su comprensión y posterior análisis.

En la Sección 1 de Introducción ya decíamos que el sistema inmune funciona de manera colectiva, a pesar de las decisiones individuales que toman sus células. Este sistema está compuesto por diversos agentes de distinto tipo que trabajan de forma coordinada para dar una respuesta eficaz y proporcional al ataque recibido. Este último adjetivo es muy importante: necesitamos que la actuación de nuestro sistema inmune no sea insuficiente, lo que podría acarrear alguna inmunodeficiencia, ni tampoco excesiva, que es lo que ocurre, por ejemplo, con las alergias: el sistema inmune reacciona de manera exagerada a ciertos antígenos que son, en la mayoría de casos, inofensivos. Otro de los requisitos que debe tener un buen sistema inmune es la capacidad para discriminar a quién hay que atacar y a quien no, evitando que las células del propio organismo sean blanco de su acción. Esto último es lo que sucede en el caso de las enfermedades autoinmunes, que pueden llegar a ser trastornos muy graves.

Describiremos brevemente a continuación los mecanismos de los que dispone el sistema

Figura 2.1: Fagocitosis.

inmune y cómo los utiliza. Haremos un recorrido desde lo más básico, comenzando por el sistema inmune innato, hasta conceptos más avanzados referentes al sistema inmune adaptativo. Dedicaremos buena parte de esta sección a entender qué son las células T y cual es su papel en el desarrollo de una respuesta ante una infección aguda. Como veremos, este tipo de células inmunes juega un papel primordial y, además, serán las grandes protagonistas de este trabajo de fin de grado (Arias et al., 2014).

2.1.1. El sistema inmune innato

Comencemos por lo más simple: las barreras físicas. La piel y la mucosa de nuestro sistema respiratorio, digestivo y reproductivo intentan que virus, bacterias, hongos o parásitos no entren en nuestro organismo. Es la primera defensa que tenemos y es bastante efectiva en muchos casos pero, ¿qué pasa si estos agentes logran atravesar esta barrera?

Aquí entra en juego lo que se denomina sistema inmune innato que, desde el punto de vista evolutivo, es el más antiguo de los sistemas inmunes de los seres vivos. De hecho, muchos mecanismos de este sistema inmune innato aparecieron hace más de 500 millones de años (Sompayrac, 2016). A pesar de que dispone de mecanismos mucho más sencillos que el adaptativo, el papel que tiene es fundamental, pues permite dar una primera respuesta rápida ante una infección.

Entre las armas de las que dispone encontramos proteínas, fagocitos y células NK (Natural Killer), que son un tipo de linfocito producido en la médula ósea y que se distribuye por la piel, el intestino, el hígado, los pulmones y el útero, entre otros tejidos (Taborda et al., 2014). Pero centrémonos en uno de sus componentes más relevantes: los macrófagos. Su nombre compuesto por dos palabras griegas: macro, que significa grande y fago, que significa comer, lo dice todo. En efecto, los macrófagos son células que se comen invasores mediante un proceso llamado fagocitosis, que ilustra la Figura 2.1. El mecanismo es muy similar al utilizado por una ameba. Los macrófagos rodean a una partícula sólida con su membrana, formando pequeños "brazos" conocidos como pseudópodos. Una vez que el macrófago tiene en un interior a la bacteria, la degrada en una vesícula llamada lisosoma. Esta contiene sustancias que podrían degradar hasta el propio macrófago si salieran de esta vesícula.

Durante la batalla con las bacterias, los macrófagos producen y secretan unas proteí-

nas llamadas citoquinas, que facilitan la comunicación entre células del sistema inmune y que cobrarán un papel muy relevante en los capítulos que siguen. Podríamos decir que los macrófagos hacen el papel de centinelas, que cuando ven al enemigo mandan señales (citoquinas) para reclutar a más defensores. A continuación, veremos otros tipos de células, en este caso referentes al sistema inmune adaptativo.

2.1.2. El sistema inmune adaptativo

El nombre es bastante descriptivo y es que gracias a este sistema somos capaces de adaptar nuestras defensas a nuevos invasores. Pero no fue hasta la década de 1790 cuando tuvimos constancia de esta habilidad adaptativa. Por aquel entonces Edward Jenner, conocido como *el padre de la inmunología*¹, comenzó a vacunar a la población inglesa contra la viruela, que hasta entonces era una enfermedad temible. Lo que Jenner observó es que los ganaderos que se dedicaban a ordeñar vacas y que contraían el virus de la viruela bovina (cowpox, en inglés) raramente contraían la viruela. Así que Jenner decidió llevar a cabo un experimento, poniendo en práctica el método conocido como variolización² que aprendió en el hospital de San Jorge de Londres: para ello, guardó pus de uno de los ganaderos con viruela bovina y lo usó para inocular a un niño sano, James Phillips. El resultado fue una fiebre leve que desapareció a los pocos días, después Phillips fue reinoculado con pus proveniente de una persona con viruela, pero no contrajo la enfermedad. De esta manera, Jenner demostró que el sistema inmune humano podía proporcionar armas para protegernos de un intruso que no había visto antes, ¡había inventado la vacuna!. Es importante observar que la vacuna contra la viruela solo protegía contra esta enfermedad o algunas causadas por virus similares, como en el caso de la viruela bovina. Es decir, el sistema inmune adaptativo se adapta para defendernos de invasores específicos.

Veamos ahora en qué consiste la acción del sistema adaptativo. Para ello necesitamos hacer uso de los conceptos de antígeno y anticuerpo. Los anticuerpos son proteínas específicas que el cuerpo humano es capaz de producir y que pueden adherirse a otras sustancias, externas o internas, llamadas antígenos. La misión principal de los anticuerpos es identificar a los antígenos generados por un agente patógeno, marcándolos así para su eliminación. Las encargadas de la producción de anticuerpos son las células B. Estas son un tipo de linfocito blanco producido en la médula que, gracias a su receptor de membrana, son capaces de identificar a los antígenos. Cuando las células B nacen no están especializadas en la fabricación de un anticuerpo concreto, una vez que maduran, su ADN se recombina especializando así a la célula. Una vez que la célula B se encuentra con su antígeno desencadenante, ésta produce muchas células grandes conocidas como células plasmáticas. Cada célula plasmática es esencialmente una fábrica para producir anticuerpos.

Es decir, gracias a la presencia de anticuerpos, otras células, como los ya conocidos macrófagos son capaces de identificar a los elementos que hay que destruir cuando aún se encuentran en el medio extracelular como muestra la Figura 2.2. Pero... ¿qué ocurre cuando un virus ya ha entrado en una célula de nuestro cuerpo? Los anticuerpos no pueden alcanzarlo y el virus puede dedicarse a replicarse cuanto quiera. En este momento llega el turno de las protagonistas de este trabajo, las células T.

¹https://historia.nationalgeographic.com.es/a/edward-jenner-probablemente-cientifico-que-mas-vidas-ha-sal 4242

²Este proceso consistía en inocular material infectado a una persona sana y fue introducido en Londres en 1721 por Lady Montagu, esposa del embajador inglés en Turquía.

Figura 2.2: Macrófago reconociendo una bacteria gracias a la acción anticuerpo-antígeno.

2.1.2.1. Las células T

Al igual que las células B, las células T se producen en la médula y ambas son muy similares en cuanto a su apariencia, de hecho, con un microscopio ordinario, un inmunólogo no sería capaz de diferenciarlas (Sompayrac, 2016). La superficie de las células T también consta de unas moléculas que permiten la interacción con los antígenos llamados receptores (TCR, T Cell Receptors). Estos receptores permiten a estas células obtener información de su entorno y tomar decisiones en base a esa información. Por ejemplo, cuando los receptores de una célula T enlazan con un antígeno compatible, las células proliferan para dar lugar a otras con la misma especificidad, es decir, que enlacen con el mismo antígeno. Esta decisión de reproducción, que discutiremos con más detalle en los capítulos que siguen, es específica y lenta, tarda alrededor de una semana en completarse (Sompayrac, 2016), lo que contrasta con la respuesta rápida que nos ofrecía el sistema inmune innato.

Hemos visto algunas de las similitudes que tienen las células B y T. Veamos algunas de sus diferencias: las células T maduran en el timo, de ahí la T de su nombre, mientras que las B maduran en la médula ósea. Además, las células B producen anticuerpos que pueden reconocer cualquier molécula orgánica, las células T, por su parte, están especializadas en el reconocimiento de un antígeno específico y sus receptores permanecen siempre adheridos a la membrana celular y no pueden ser expulsados en forma de anticuerpo como en el caso de las células B. Pero, quizá, su diferencia más importante sea que las células T no pueden reconocer al antígeno "por sí mismas", necesitan que otra célula se lo presente (Sompayrac, 2016). Las células que se encargan de ello se conocen como células presentadoras de antíqeno³. Las proteínas del microorganismo causante de la infección, una vez fagocitadas, son fragmentadas (formando los conocidos antíquenos) y transportadas hasta la superficie celular, donde quedan unidas a una estructura llamada complejo mayor de histocompatibilidad (MHC) que se encuentra en la membrana de las células presentadoras de antígeno. Gracias a su TCR las células T pueden reconocer aquellas células que han sido infectadas, puesto que el TCR y el MHC-péptido⁴ encajan, la Figura 2.3 ilustra este proceso. Esta unión, si es perfecta, dura varias horas y se conoce como sinapsis inmunológica (Fernández Arias, 2012).

Hay distintos tipos de células T atendiendo al papel que desempeñan, los tres más importantes son:

• Killer o Cytotoxic T-Cells: su misión es la de reconocer las células que han sido infectadas y, tras este proceso de reconocimiento, las inducen al suicidio. De esta manera

³Son macrófagos, células dendríticas, células B, entre otras.

⁴Estructura formada por el MHC y el antígeno.

Figura 2.3: Proceso de activación de una célula T.

muere el virus pero también la célula que había sido infectada por él. Constituyen una de las armas más potentes del sistema inmune.

- Helper T-Cells: se encargan de regular la respuesta inmune. Una de sus tareas principales es secretar citoquinas para controlar que la respuesta inmune sea proporcional y las células T no reaccionen de manera descontrolada.
- Regulatory T-Cells: estas mantienen la tolerancia a antígenos propios, previniendo la aparición de enfermedades autoinmunes.

Cuando las células T salen del timo se encuentran desactivadas, en un estado naïve y se dedican a circular por los órganos linfoides secundarios, cuyo máximos representantes son los nodos linfáticos. Allí pueden encontrarse con células presentadoras de antígeno provenientes del foco de una infección. Si las células T reconocen al antígeno como extraño por medio de la sinapsis inmune, se activan, convirtiéndose así en células efectoras, capaces de secretar citoquinas o de ir a la zona afectada a combatir la infección activamente. Una vez que las células han sido activadas, estas comienzan a proliferar masivamente, incrementando la población de células T activadas hasta en un factor de 10^6 veces, en pocos días, las células pueden pasar por unos 15-20 ciclos de reproducción (Arias et al., 2014). Este proceso se conoce como expansión clonal. Una vez que las células helper han sido activadas pueden quedarse en los gánglios linfáticos, activando a otras células inmunitarias, o migrar al tejido infectado para secretar citoquinas y propiciar un ambiente adecuado para controlar la infección. Por su parte, las células killer abandonan los gánglios linfáticos para identificar aquellas células infectadas en el organismo. Cuando el patógeno ha sido vencido, la mayoría de células T mueren, restaurando así los niveles de población iniciales. Este proceso se conoce como contracción clonal. Sin embargo, es de gran utilidad conservar alguna de estas células experimentadas para poder reaccionar con rapidez en caso de que el mismo invasor vuelva a aparecer. Lo que hace nuestro sistema inmune es mantener un pequeño porcentaje de la población (5-10%) como células de memoria (Arias et al., 2014). Se llaman así porque guardan información del antíque contra el que combatieron, son más fáciles de activar y nuestro cuerpo puede así generar una respuesta inmune más rápidamente.

A lo largo de este trabajo nos centraremos en el proceso de decisión entre división o suicidio celular de una célula T durante la respuesta inmune. En la sección y los capítulos que siguen veremos cómo se ha abordado este problema desde el punto de vista matemático y las conclusiones que su estudio ha permitido obtener.

2.2. Cooperación entre dos ciencias: Matemáticas y Biología

En esta sección trataremos brevemente la interacción entre dos ciencias muy distintas: las matemáticas y la biología, y daremos algunos ejemplos de colaboraciones y modelos matemáticos creados para reproducir e investigar distintos procesos biológicos. Nos centraremos en aquellos referidos a las células T, sobre todo al caso que nos ocupa: la dinámica de población de las mismas durante la respuesta inmune.

Después de haber seguido un desarrollo independiente durante siglos, las matemáticas y la biología han comenzado a interaccionar activamente durante los últimos años. De hecho, los modelos matemáticos pueden llegar a ser una potente herramienta en el área de la biología. Como se puede leer en Gunawardena (2014), un modelo matemático es una máquina lógica que convierte hipótesis en conclusiones. Si el modelo es correcto y las hipótesis son ciertas entonces debemos, por lógica, creer sus conclusiones. Esta garantía lógica permite al matemático que desarrolla el modelo navegar con confianza lejos de las hipótesis y, probablemente, más lejos del lugar al que la mera intuición permite llegar. Sin embargo, no debemos confundirnos, los modelos no dan respuestas seguras. Esas respuestas son siempre consecuencia lógica de las hipótesis. En palabras de James Black⁵, los modelos matemáticos son descripciones precisas de nuestro patético pensamiento («accurate descriptions of our pathetic thinking»).

Así pues, los modelos matemáticos son herramientas en las que un biólogo se puede apoyar, pero estos modelos deben tener ciertas características para poder considerarse de utilidad por la comunidad de biólogos. A continuación se presentan las guías que sugiere Gunawardena (2014) para elaborar un buen modelo matemático:

- 1. Formula una pregunta. En ocasiones los modelos matemáticos no son diseñados para el avance del conocimiento de la biología, solo responden a investigaciones matemáticas que se basan, aparentemente, en problemas biológicos. Como ya se ha comentado en alguna ocasión, los modelos deben centrarse en aportar información que el biólogo desconocía. Intentar responder con un modelo a una pregunta puede ser clave a la hora de desarrollarlo con criterio, para que pueda ser juzgado por profesionales fuera del ámbito matemático.
- 2. Hazlo simple. Incluir todos los procesos bioquímicos puede tranquilizar a los biólogos pero no hará que el modelo sea mejor, de hecho se convertirá en un modelo repleto de parámetros, poco flexible, difícil de estudiar y simular. Es mejor tener hipótesis simples y claras, intentando buscar una abstracción del problema.
- 3. Si el modelo no puede ser refutado, entonces no está diciendo nada interesante. No es suficiente con que el modelo reproduzca hechos observados. En muchas ocasiones el ajustar demasiado el modelo provoca que lo seleccionemos para que se ajuste a lo que queremos explicar dejando un modelo poco flexible, que apenas aporta nuevo conocimiento.

 $^{^5}$ Biografía de este famoso farmacólogo: https://www.britannica.com/biography/James-Black

Podemos distinguir dos tipos de estrategia en cuanto a los modelos se refiere: Modelado hacia adelante (forward modeling) o inverso (reverse modeling). El modelado inverso empieza con los datos experimentales, construye correlaciones entre ellos y les da estructura con un modelo matemático. Por su parte, el modelado hacia adelante empieza desde lo conocido, o sospechado, expresado en la forma de un modelo, a partir del cual se hacen predicciones.

El modelado inverso se ha utilizado con el fin de analizar grandes volúmenes de datos genómicos y postgenómicos y, a veces, se equipara erróneamente con la biología de sistemas. Ocasionalmente ha sugerido nuevas ideas conceptuales, pero se ha utilizado con mayor frecuencia para sugerir nuevos componentes o interacciones moleculares, que luego han sido confirmados por enfoques biológicos convencionales. Los modelos en sí mismos han tenido menos importancia para comprender el comportamiento del sistema que como contexto matemático en el que la inferencia estadística se vuelve factible. En contraste, las mayores aportaciones a nuestra comprensión del comportamiento de problemas biológicos como la homeostasis o la retroalimentación, han surgido del modelado hacia adelante. Puesto que los modelos actuales (cimentados en ecuaciones diferenciales o teoría de procesos estocásticos, por ejemplo) derivan, normalmente, de fenómenos y conocimiento conocidos. El primer beneficio que se obtiene de esto es que fuerzan al modelo a establecer unas hipótesis claras (Castro et al., 2016). Esto no implica que el modelado inverso no sea interesante. Hay muchas situaciones, especialmente cuando se tratan datos clínicos, donde la estructura de los datos se desconoce o es muy compleja, y las estrategias del modelado inverso cobran sentido (Gunawardena, 2014).

El descubrimiento del microscopio a finales del siglo XVII provocó una revolución en la biología al revelar mundos invisibles y anteriormente desconocidos. Las matemáticas pueden ser interpretadas en la actualidad como un microscopio más general, ya que, pueden revelar mundos invisibles en todo tipo de datos, no solo ópticos. Por ejemplo, la tomografía computarizada puede revelar una sección transversal de una cabeza humana a partir de la densidad de los rayos X sin necesidad de abrir la cabeza. Charles Darwin tenía razón cuando escribió que las personas con una comprensión «de los grandes principios principales de las matemáticas ... parecen tener un sentido adicional» (Darwin, 1887). Los biólogos de hoy reconocen cada vez más que las matemáticas pueden ayudar a interpretar cualquier tipo de datos. En este sentido, las matemáticas son el próximo microscopio de la biología ⁶.

2.2.1. Modelos matemáticos versus inmunología experimental

Como ocurre en otras ciencias, las áreas de la biología se han especializado en gran medida. Esto provoca que una mayor cantidad de detalles sea necesaria para entender los conceptos o sistemas que se estudian y que, por tanto, los modelos matemáticos, que tienden a simplificar y a hablar en términos de fórmulas y ecuaciones y, en muchos casos son difíciles de explicar, hayan sido considerados irrelevantes. En el área de la inmunología esto no es muy diferente, en Castro et al. (2016) se exponen algunas de las razones por las cuales los modelos matemáticos y las inmunología experimental se han mantenido separados:

- El descubrimiento de nuevos agentes y fenómenos del sistema inmune, acompañados de nueva jerga.
- 2. El avance rápido de la tecnología y la producción de cada vez más datos.
- 3. El contraste del entorno académico, cultura y terminología de ambas ciencias.

 $^{^6 \}mathtt{https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535574/}$

Puede parecer que las dos primeras sugieren precisamente un acercamiento entre las dos ciencias. En muchos procesos biológicos, como los dinámicos, la intuición es insuficiente. Por ejemplo, las dinámicas de poblaciones son bastante complicadas de imaginar, mientras que con un modelo podemos obtener conclusiones muy precisas que nos aporten información sobre aspectos conocidos del comportamiento de la población pero también sobre aspectos desconocidos que el modelo predice y que pueden ser probados o refutados experimentalmente. No obstante, bien es cierto que mientras que la biología sustenta su conocimiento en la experimentación, las matemáticas lo hacen sobre las pruebas rigurosas. Sin embargo, en la mayoría de los artículos relacionados con las matemáticas aplicadas a la biología las demostraciones son escasas, prevalecen las simulaciones numéricas de los modelos. Para muchos matemáticos, la calidad de un trabajo se mide en la simplicidad de formulación del problema, la dificultad de análisis y el rigor de la solución, pero estas no son siempre bien recibidas por los biólogos. Se podría decir que las colaboraciones matemático-biólogo contienen demasiadas matemáticas para este último y muy pocas para los matemáticos más teóricos (Herrero). AÑO DE LA PUBLICACIÓN?

A continuación mencionaremos algunos ejemplos en los que los modelos matemáticos han aportado nuevo conocimiento al campo de la inmunología, concretamente en el estudio de las conocidas células T.

2.2.1.1. Dinámica de las células T. Decisión entre división o apoptosis

Antes de revisar los distintos trabajos que se han realizado en este ámbito, recordemos brevemente el marco conceptual en el que nos movemos. En 2.1.2.1 decíamos que cuando las células T se activan en presencia de un antígeno estas comienzan a reproducirse rápidamente para combatir la infección y, una vez superada, muchas de ellas se suicidan restaurando los valores de población iniciales. Es lo que denominábamos respectivamente como expansión clonal y contracción clonal. Más aún, los experimentos realizados ponen de manifiesto que la presencia del antíque no no es suficiente para desencadenar la decisión de división o apoptosis, ya que las células T activadas continúan reproduciéndose incluso cuando el estímulo (antígeno) está ausente y algunas se suicidan aún cuando la infección persiste (Arias et al., 2014). Estos son hechos observados; lo que se desconoce es el mecanismo de decisión por el cual una célula decide dividirse o morir. Varios modelos matemáticos, desarrollados bajo diferentes hipótesis, han sido propuestos para abordar este problema. Por una parte, se ha sugerido que el proceso de activación de las células T en estado naïve desencadena un programa que solo depende de la estimulación por antíqeno inicial. Así las cosas, una célula T efectora, por tanto, ya activada, comienza una serie de divisiones, desde un mínimo entre 7 y 10 y un máximo variable (relacionado con la estimulación por antígeno que recibió cada célula de manera individual durante su activación). Después de estas divisiones, la célula se suicida. Bajo esta suposición, la cantidad de antígeno que percibe una célula T en estado naïve durante su activación determina las divisiones de todas sus células hijas. Para precisar más este modelo, se propuso que este programa pudiera estar regulado también mediante citoquinas y no solo por la presencia de antígeno, aunque los detalles concretos de esta regulación no son conocidos (Arias et al., 2014). Por otro lado, se han propuesto alternativas a este modelo basadas en procesos estocásticos. En este caso la decisión entre división o apoptosis de una célula T vendría determinada por la competición de dos relojes estocásticos. Como ocurría en el caso anterior, los procesos celulares y moleculares específicos para dilucidar este algoritmo de decisión aún están en el aire.

A continuación presentamos otro modelo, expuesto en Arias et al. (2014), cuyas hipóte-

sis biológicas, ecuaciones y simulaciones se desarrollan durante los dos capítulos siguientes. Es un modelo que basa la decisión de cada célula T en la concentración de antígeno y de dos proteínas inhibidoras, Retinoblastoma (Rb) y linfoma de célula B-2 (Bcl-2), que la célula encuentran en el medio extracelular que la rodea. De esta manera, este algoritmo determinista rompe con la rigidez de los modelos mencionados anteriormente y permite que cada célula decida, en función de la información que obtiene de su alrededor, la duración de su vida y si debe dividirse o no.

Capítulo 3

Algoritmo de decisión de las células T durante la respuesta inmune

El modelo matemático que se presenta a continuación pretende proporcionar una explicación para entender alguno de los procesos que tienen lugar durante la respuesta del sistema inmune ante una infección aguda (Sección 2.2.1.1). Para formularlo, hemos seguido la siguiente estrategia. A partir de unas hipótesis bien establecidas (que corresponden a hechos experimentales conocidos) se formulan ecuaciones diferenciales muy simples que, de hecho, pueden resolverse de manera explícita. Esta simplicidad es una de las principales características del modelo. Entre otras cosas, se consigue así reducir el número de parámetros al mínimo, con lo que las simulaciones del mismo son más fáciles de interpretar.

Las ecuaciones propuestas modelizan tanto la dinámica de las células T efectoras, sin olvidar las de memoria, como la dinámica del patógeno. Nuestro modelo difiere sustancialmente de muchos otros propuestos hasta la fecha. Por ejemplo, prescindimos de la hipótesis de que las células se dividen un número fijo de veces después de ser activadas (Arias et al., 2014) o de que la decisión entre dividirse o suicidarse sea en cada célula el resultado de una competencia entre relojes estocásticos internos de vida o suicidio celular (Arias et al., 2014). En su lugar, asumiremos en nuestro modelo que estas decisiones (división o apoptosis) vienen determinadas por la competición de dos moléculas inhibidoras: Retinoblastoma (Rb), que previene la expresión de genes necesarios para que la célula pueda continuar el ciclo celular y dividirse, y linfoma de célula B-2 (Bcl-2), que bloqueará la muerte celular. La presencia en las células de tales inhibidores es bien conocida (Fernández Arias, 2012). También tendremos en cuenta que la las células T se comunican con el exterior gracias a sus receptores TCR (ver 2.1.2.1) y, por tanto, sus decisiones se ven afectadas por la cantidad de receptores que presenten (cuantos más receptores, más estímulos serán capaces de percibir), así como por la presencia externa de ligandos capaces de interaccionar con dichos receptores.

Los fenómenos de expansión y contracción clonal pueden ser considerados desde una perspectiva global como la manifestación de muchas decisiones individuales. Cada célula T basa sus decisiones únicamente en la información que recoge de su entorno inmediato. Por ello, presentamos en primer lugar un modelo microscópico, en el que se modeliza la decisión de cada célula. En el Capítulo 5 se propone un modelo macroscópico, que consiste en un sistema de ecuaciones para el comportamiento de la población de células T sin tener en cuenta las decisiones individuales de cada una de ellas. Compararemos finalmente ambos modelos, macro y micro, y veremos que ambos proporcionan resultados compatibles.

Figura 3.1: Representación del ciclo celular.

En particular, ambos permiten explicar la aparición de un retraso característico en la contracción clonal, sin recurrir para ello a la intervención de ningún centro externo de control.

3.1. Hipótesis biológicas

En lo que sigue explicaremos con detalle las tres hipótesis biológicas en las que se basa nuestro modelo. Cabe recordar que estas se basan en hechos contrastados y observados en el campo de la biología y que no constituyen, en ningún caso, la explicación al problema que se modeliza. Es decir, no son las hipótesis las que se ajustan al modelo, sino el modelo el que se basa en estos hechos. Bien es cierto que estas hipótesis no son los únicos hechos que se conocen, pero son suficientes para la formulación de un modelo sencillo y con resultados relevantes. Como veíamos en la Sección 2.2 es importante que el modelo tenga flexibilidad suficiente para que pueda amoldarse a mayor cantidad de situaciones. En nuestro caso, a patógenos con distintas tasas de reproducción o células T con distintas afinidades al antígeno, por ejemplo.

3.1.1. La competición entre dos moléculas inhibidoras determina la decisión y la duración de la vida de una célula T

La división celular, así como, el programa de apoptosis están bloqueados al comienzo de la formación de las células T. Como ya avanzábamos en la introducción de este capítulo, dos moléculas inhibidoras, Retinoblastoma (Rb) y linfoma de célula B-2 (Bcl-2), van a tener un papel clave no solo en la decisión entre apoptosis o división de las células T, sino también en la determinación del momento en el que deben hacerlo. Por una parte, Rb frena el inicio del ciclo celular. Para desactivar esta función y que la célula pueda dividirse, es necesario que un número suficiente de estas moléculas sea fosforilado¹. Por otra parte, las proteínas Bcl-2 bloquean el camino hacia la muerte celular durante infecciones agudas, mediante la contención de la acción de otras proteínas como Bax o Bim.

¹Fosforilación: adición de un grupo fosfato a cualquier otra molécula.

Para nuestro modelo estableceremos que la célula pasa el punto de restricción² (ver Figura 3.1) si la concentración de Bcl-2 o de Rb de su entorno cae por debajo de cierto límite. Esto es, cuando el número de moléculas de Rb activas disminuye hasta un valor crítico, la célula abandona G_1 para iniciar la división celular y, cuando la cantidad de moléculas de Bcl-2 alcanza un umbral, la célula abandona G_1 para poner en marcha los mecanismos que llevan a la muerte celular. La variación temporal de las concentraciones de Rb y Bcl-2 permite explicar la variabilidad observada en la duración de la fase G_1 de las células y, consecuentemente, en la duración de sus vidas.

3.1.2. Los receptores de membrana regulan las dinámicas de Rb y Bcl-2

La fluctuación en la cantidad de Rb y Bcl-2 depende de unas proteínas llamadas citoquinas, que ya fueron mencionadas en la Sección 2.1. Estas pueden inducir tanto la fosforilación de Rb, en cuyo caso se denominan citoquinas de proliferación, como tener un efecto positivo o negativo en cuanto a la cantidad de Bcl-2 se refiere, en ese caso nos referiremos a ellas como citoquinas de supervivencia o muerte, respectivamente.

La acción que las citoquinas llevan a cabo se produce gracias sus interacciones con receptores de membrana específicos. De esta manera, el efecto que percibe una célula T depende, no solo de la cantidad de citoquinas del ambiente, sino también del número de receptores de membrana de la célula. Si, por ejemplo, tenemos una concentración muy alta de cierta citoquina, podríamos asumir que el efecto que esta va a tener en una célula T vendrá determinado por la cantidad de receptores de membrana específicos para ella que posea la célula en cuestión. También sabemos que el número de receptores de membrana de una célula varía a lo largo de su vida, haciendo así que células adyacentes que compartan un entorno similar (en el que la concentración de citoquinas sea la misma, por ejemplo) presenten comportamientos distintos si expresan diferentes receptores de membrana.

3.1.3. Las células T *naïve* se dividen de manera asimétrica después de su activación.

Postulamos que tanto los fenotipos de las células T efectoras como los de las células T con memoria se determinan durante la sinapsis inmune. Esto es, una célula T en estado naïve puede diferenciarse en una célula T efectora o en una célula T de memoria. Por su parte, tras esta primera división, las células T efectoras y de memoria, se dividen de manera simétrica, es decir, las células hijas heredarán el tipo de la madre, y ambos tipos se comportan de forma similar durante la respuesta inmune.

3.2. Modelo microscópico

Basándonos en las hipótesis anteriormente formuladas proponemos a continuación una serie de ecuaciones, con variables continuas y discretas, que darán forma al algoritmo de decisión de nuestro estudio. Como ya habíamos avanzado, se trata de un modelo simple, en el que los sistemas de ecuaciones diferenciales de primer orden propuestos tienen solución explícita. Sin embargo, es esta simplicidad la que hace de él un modelo tan potente, pues, como veremos en el capítulo siguiente, obtendremos resultados que no solo se ajustan a los hechos observados, sino que sacan a la luz comportamientos poblacionales difícilmente observables desde un laboratorio.

 $^{^{2}}$ El punto de restricción es el punto entre las fases G_1 y S, donde pasamos del crecimiento celular a la división (o apoptosis).

Antes de expresar en términos matemáticos las condiciones del modelo, estableceremos la notación a seguir y haremos algunas aclaraciones previas:

- Denotaremos por c(t) y a(t) la cantidad de Rb y Bcl-2 activa en tiempo t, respectivamente.
- Establecemos, sin pérdida de generalidad, que los límites que determinan la decisión entre división o apoptosis (ver hipótesis 3.1.1) estarán en c(t) = 0 y a(t) = 0, respectivamente. De acuerdo a esta hipótesis definimos:
 - Decisión: Fase que parte desde el nacimiento de la célula hasta que una de las células inhibidoras alcanza el límite establecido.
 - Ciclo: Fase que se extiende desde la punto de restricción hasta la división celular.
 - Apoptosis: Tiempo de vida de la célula que comprende desde la desactivación de Bcl-2 y la finalización del programa de muerte celular ACAD (Activated T Cell Autonomous Death).
 - División: Estado final después de que la célula haya entrado en la fase de ciclo.
 - Muerte: Estado final después de haberse completado la fase de apoptosis.
- R_i será el receptor de la i-ésima citoquina y $r_i(t)$ será la cantidad de ese receptor en tiempo t.
- \blacksquare r_T es el número de señales TCR/antíeno percibidas por la célula T correspondiente.
- Los parámetros μ_{Tc} y μ_{Ta} denotan la tasa de cambio de las moléculas inhibidoras por cada señal del TCR. A su vez los parámetros μ_{ic} y μ_{ia} representan la tasas de cambio de las moléculas inhibidoras por cada señal R_i .
- λ_{Tj} es la tasa de cambio del receptor R_j por cada señal del TCR. Por su parte λ_{ij} es la tasa de cambio del receptor R_j por cada señal R_i .
- k es el número de receptores de membrana.

Así las cosas, ya estamos en condiciones de presentar las ecuaciones del modelo. Como ya hemos visto en la Sección 3.1, la dinámica de los inhibidores está controlada por las señales que recibe la célula de sus receptores de membrana durante la fase de decisión. Además, este número de señales depende del número de receptores de la célula. De acuerdo con estas observaciones, proponemos las siguientes ecuaciones:

$$\begin{cases} \dot{c}(t) = \mu_{Tc} r_T(t) + \sum_{j=1}^k \mu_{jc} r_j(t) \\ \dot{a}(t) = \mu_{Ta} r_T(t) + \sum_{j=1}^k \mu_{ja} r_j(t) \end{cases}$$
(3.1)

Con el Sistema 3.1 ponemos de manifiesto que las concentraciones de Rb y Bcl-2, representadas por c(t) y a(t), respectivamente, dependen del número de señales TCR/antígeno (r_T) y, del número de receptores de membrana que posea la célula en cuestión.

Asumimos que los receptores de membrana involucrados en el algoritmo de decisión de las células T son independientes y tienen efectos aditivos. Según la hipótesis 3.1.2, asumimos que las células son capaces de "contar" el número de señales que llegan. De acuerdo con estas relaciones lineales obtenemos un modelo robusto, puesto que configuraciones similares de receptores de membrana provocarán decisiones celulares similares. Teniendo en cuenta lo anterior proponemos la siguiente ecuación para los receptores de membrana:

$$\dot{r}_i(t) = \lambda_{Ti} r_T(t) + \sum_{j=1}^k \lambda_{ji} r_j(t) \text{ para } i = 1, ..., k$$
 (3.2)

3.2.0.1. Aspectos técnicos del modelo

En esta breve sección presentamos algunos aspectos técnicos del algoritmo propuesto, entre los que se incluyen las condiciones que marcaran en cambio de fase de una célula T, es decir, la condición que propiciará el paso de la fase de *decisión* a *ciclo*, por ejemplo, o los parámetros asignados a las células hijas al nacer .

- Las condiciones $a(t) \ge 0$, $c(t) \ge 0$ y $r_i(t) \ge 0$, para i = 1, ..., k definen el domino de las ecuaciones 3.1 y 3.2 durante la fase de decisión.
- Cualquier receptor con valor negarivo $r_i(t) < 0$ es reseteado a 0 sin cambiar la fase de decisión en la que está la célula.
- Por su parte, las condiciones a(t) = 0, c(t) = 0 desencadenan el inicio de la fase de apoptosis y ciclo, respectivamente. Estas fases son excluyentes y no se pueden revertir mediante estimulación por *citoquinas*. Además, tienen longitud constante que denotaremos por t_{apo} y t_{cycle} , respectivamente.
- Si la célula progresa en la fase de ciclo los valores de a(t) y c(t) deben ser reiniciados para que las células hijas puedan comenzar la fase de decisión otra vez.
- Una vez que la célula termina la fase de apoptosis es retirada de la población.
- Los parámetros λ_{ji} , μ_{ic} , μ_{ia} , μ_{Tc} , μ_{Ta} , c(0) y a(0) se consideran parámetros estructurales, es decir, se refieren a procesos biológicos que permanecen constantes durante la simulación. Por su parte, los parámetros referentes a la composición de receptores de membrana para una célula concreta r_{i0} dependen de la historia de encuentros con el antígeno que ha tenido su madre y diferirán entre las células hijas cuando esta se divida (veremos cómo en la sección siguiente).

3.3. Dinámica del patógeno durante la respuesta inmune

Ahora que ya tenemos un algoritmo para la dinámica de población de las células T, modelizamos la interacción del *patógeno* con estas células. Debemos recordar que la dinámica de un *patógeno* depende en gran cantidad de las características de este. Sin embargo, en esta sección daremos unas ecuaciones muy generales para que sean aplicables a la mayor cantidad posible de situaciones. En concreto, la dinámica del *patógeno* vendrá dada por:

$$\dot{y}(t) = \alpha y(t) - \beta n(t)y(t) \tag{3.3}$$

Donde y(t) y n(t) denotan el número de células del patógeno y el número de células T, respectivamente. Los parámetros α y β son positivos y dependen del antígeno: α representa la tasa de proliferación del patógeno, mientras que β corresponde a la tasa de eliminación del mismo a causa de las células T.

De acuerdo con este modelo, la Ecuación 3.3 sugiere que el patógeno aumenta su población hasta que el número de células T alcanza cierto valor, en ese momento $\dot{y}(t)$ se hace negativa y, en consecuencia, y(t) comienza a decrecer. A su vez, en ausencia de células T, el el patógeno crece de manera exponencial. Asumiremos que las señales captadas por el TCR de una célula T son proporcionales al número de encuentros que tenga con el antígeno. Si llamamos al número de señales TCR de una célula x en tiempo t, $r_x^x(t)$, tenemos:

$$r_T^x(t) = \gamma \rho_n^x y(t) \tag{3.4}$$

Donde γ es un parámetro que depende del antígeno y denota la probabilidad de que haya una activación del TCR debido a un encuentro con el antígeno. Por otro lado, ρ_n^x representa la cantidad de antígeno que está disponible para una célula T, x, en porcentaje. Luego:

$$\sum_{x=1}^{n} \rho_n^x \le 1 \tag{3.5}$$

Según la Hipótesis 3.1.3, las células T que ya se han diferenciado se dividen de manera simétrica y reparten sus receptores de membrana entre sus dos células hijas. De esta manera, la experiencia con el antígeno, propia de cada célula puede ser transmitida a la siguiente generación.

$$\begin{cases} r_{i0}^{1} = \delta_{i}^{x} r_{i}^{x} \\ r_{i0}^{2} = (1 - \delta_{i}^{x}) r_{i}^{x} \end{cases}$$
(3.6)

Donde δ_i^x representa el ratio de receptores de membrana de tipo R_i entre las células hijas, r_{i0}^1 y r_{i0}^2 denotan los valores iniciales de receptor R_i en las células hijas 1 y 2, respectivamente, y r_i^x denota el número de receptores R_i en la célula T x en el momento de la división celular.

Ahora que hemos descrito los conceptos matemáticos que representan las hipótesis biológicas que sustentan este modelo, estamos en condiciones de estudiar las soluciones de las ecuaciones correspondientes y de interpretar en términos biológicos los resultados obtenidos. En el capítulo siguiente presentaremos simulaciones numéricas de este mismo modelo en un caso simplificado, en el que se supone que el número de receptores de membrana es dos (k=2). En ese capítulo se discutirán diferentes situaciones: tolerancia e intolerancia al patógeno o respuesta inmune en el caso de poblaciones de células T con distintas afinidades al patógeno. Todas estas situaciones han sido reproducidas a partir del mismo modelo, con el simple cambio del valor de sus parámetros, poniendo de manifiesto la capacidad del mismo para reproducir con facilidad situaciones diversas.

Simulaciones del modelo microscópico

A lo largo de este capítulo se expone en detalle cómo se han realizado las simulaciones del modelo descrito en la Sección 3.2. En este caso, se han realizado algunas simplificaciones para facilitar tanto la exposición como la implementación. En lo que sigue, estudiaremos el comportamiento individual de cada célula y describiremos el resultado global de las decisiones individuales de cada una de ellas. Como ya se ha comentado en el capítulo anterior, es posible ajustar los parámetros del modelo de manera que se pongan de manifiesto distintos comportamientos poblacionales. Concretamente se presentarán situaciones de tolerancia al patógeno, correspondientes al caso en el que las células T no consiguen controlar la infección y el agente que la produce se hace con el control del organismo, situaciones de intolerancia, aquellas en las que las células T terminan con la población de patógeno, acabando así con la infección y se discutirá también qué ocurre cuando poblaciones de células T con distinta afinidad a un patógeno se enfrentan a él.

Además, en este capítulo se exponen algunas puntualizaciones básicas sobre la implementación de los algoritmos utilizados para las simulaciones. Entre estas explicaciones incluyen un pseudocódigo y aclaraciones sobre aspectos concretos. La versión completa del código principal de este capítulo, realizado en Matlab, puede verse en el Apéndice A.

4.1. Modelo simplificado

Para las simulaciones hemos optado por una versión simplificada del modelo propuesto en la Sección 3.2, de tal manera que el número de parámetros sea suficiente para no perder la esencia del argumento pero no muy elevado para evitar distraer al lector con notación engorrosa. Siguiendo con la notación de 3.2, asumiremos k=2. Es decir, suponemos que hay dos tipos de receptores en la membrana de nuestras células T: p (de proliferación) y d (de muerte) que controlan la evolución de los inhibidores de ciclo (Rb) y apoptosis (Bcl-2), respectivamente.

Distinguiremos dos tipos de células T: las efectoras, que son las que combaten activamente al pat'ogeno, y las de memoria, que guardan información sobre el agente infeccioso con la finalidad de dar una respuesta inmune más rápida en caso de reaparición de este agente. Cada tipo de células constituye una población distinta, pues las ecuaciones que determinan su comportamiento son distintas. Para las células T efectoras asumimos que los receptores de proliferación (p) se expresan a partir de las señales que reciben gracias a su TCR y que, simultáneamente, autorregulan su expresión induciendo la producción de

receptores tipo muerte 1 (d). Así las cosas, las ecuaciones 3.1 y 3.2 pueden escribirse como:

$$\begin{cases} \dot{c}(t) = -\mu_{pc}p(t) \\ \dot{a}(t) = -\mu_{da}d(t) \\ \dot{p}(t) = \lambda_{Tp}r_{T}(t) - \lambda_{pp}p(t) \\ \dot{d}(t) = \lambda_{pd}p(t) \end{cases}$$

$$c(0) = c_{0}$$

$$a(0) = a_{0}$$

$$p(0) = p_{0}$$

$$d(0) = d_{0}$$

$$(4.1)$$

Para el caso de las células T de memoria hay que tener en cuenta que este tipo de células no muere durante la contracción clonal, es por ello que las ecuaciones que regulan esta población difieren ligeramente de las vistas en el Sistema 4.1. La dinámica de las células T de memoria viene dada por el mismo Sistema 4.1, en el que se ha tenido en cuenta que d=0, puesto que nos centramos solamente en el inhibidor del ciclo celular y no en el de muerte. De esta manera, las ecuaciones que rigen el algoritmo de decisión para células T de memoria viene dado por:

$$\begin{cases}
\dot{c}(t) = -\mu_{pc}p(t) \\
\dot{p}(t) = \lambda_{Tp}r_{T}(t) - \lambda_{pp}p(t)
\end{cases}$$

$$c(0) = c_{0}$$

$$p(0) = p_{0}$$

$$(4.2)$$

Con estos tres sistemas de ecuaciones (Sistemas 3.3, 4.1 y 4.2) queda definido el marco teórico del modelo. Sin embargo, antes de poder simular numéricamente estas ecuaciones debemos elegir los valores concretos que tomarán los parámetros. Esta no es una tarea sencilla, puesto que nadie sabe cuánto pueden valer estos parámetros en la realidad. La elección de los parámetros que hemos hecho para la primera simulación (Sección 4.3.1) se recoge en la Tabla 4.1. En base a esta elección y a las variantes que se exponen a lo largo de esa sección, obtenemos unos resultados que nos permiten identificar distintos tipos de respuesta inmune, sin necesidad de invocar ningún mecanismo distinto a las hipótesis detalladas en la Sección 3.1. A continuación se presentan algunos detalles de la implementación.

4.2. Detalles de implementación y pseudocódigo

Con ánimo de aclarar algunos aspectos técnicos, se especifican, paso por paso, las instrucciones seguidas para la realización de las simulaciones. El Algoritmo 1 contiene un pseudocódigo muy sencillo con los detalles claves y prácticamente independientes del lenguaje de programación que se utilice. El código completo, realizado en Matlab, puede verse en el Apéndice A.

La clave principal de la implementación es cómo se guarda la población de células disponibles en cada momento. Esta información se guarda en una matriz, donde se especifica el tipo de la célula (efectora, de memoria, si está en fase de ciclo, apoptosis o decisión)²,

¹Esto no se produce en sentido contrario, los receptores tipo d no activan receptores de tipo p.

²Cada una de estas fases constituye un tipo distinto. Por ejemplo, una célula T efectora puede ser de tipo 1 si está en fase de decisión, 3 si está en fase de división o 4 si está en fase de apoptosis.

la cantidad de Rb y Bcl-2 que tiene disponible a su alrededor, el número de receptores de membrana que tiene y el tiempo que le queda para finalizar la fase correspondiente. Como se trata de un modelo microscópico, en el que cada célula toma su decisión de manera independiente, el hilo conductor de la implementación se basa en recorrer la matriz de células y ejecutar la decisión tomada por la célula que se esté tratando. Cada vez que se recorre la población de células T asumimos que pasa un tiempo t_{next} que actualiza el tiempo actual de la simulación al final de la iteración y que permite determinar cuándo una célula ha acabado la fase de división o apoptosis. Una vez establecidas las estructuras necesarias para guardar la información, veamos las instrucciones concretas del modelo.

- 1. Comenzamos la simulación en un tiempo inicial t=0 y acabamos en un tiempo final T_{final} configurable.
- 2. Para cada tiempo t, se calcula la cantidad de patógeno disponible, Y.
- 3. En función de Y, y para cada célula T de la población, se calcula la cantidad de patógeno que está a su alcance y se resuelve el sistema de ecuaciones correspondiente para conocer la cantidad de Rb (c) y Bcl-2 (a) activa en ese instante. En función de esto se desencadenará la división celular, si c=0, o el suicidio de la célula, si a=0. En otro caso la célula seguirá en fase de decisión y volverá a calcular a y c en la siguiente iteración en base a la cantidad obtenida en la actual.
- 4. Si la célula va a dividirse se generan dos células hijas con los parámetros correspondientes al TCR, recordemos que la cantidad de receptores de la célula madre se divide entre las dos hijas de manera asimétrica, y los parámetros iniciales, para que pueda comenzar su fase de decisión. Se sigue en el paso 6.
- 5. Si por el contrario la célula comete suicidio, se eliminará de la población.
- 6. Se contempla la siguiente célula de la población y se vuelve a 3.
- 7. Se actualiza el tiempo para la siguiente iteración y se vuelve a 1.

En este pseudocódigo se ha detallado cuáles son las ecuaciones involucradas en cada paso. A continuación, exponemos algunas particularidades de la simulación: hemos omitido que cuando las condiciones son a > 0 y c > 0, en el caso de las células T efectoras y c > 0, en el caso de las células T de memoria, la célula permanece en la fase de decisión pero actualiza sus condiciones para la siguiente iteración según los resultados que ha obtenido en la iteración actual. También hay que tener en cuenta que la división celular y el proceso de apoptosis no se llevan a cabo de manera inmediata, conllevan un tiempo t_{cucle} y t_{apo} , respectivamente, por lo que el número total de células en la población debe actualizarse una vez que estos procesos hayan finalizado y no instantáneamente, como pueden sugerir las líneas 10, 12 y 17 del pseudocódigo. Otro aspecto que hemos supuesto es que el parámetro γ que aparecía en la Ecuación 3.4 es $\gamma = 1$. Es decir, suponemos que todo encuentro del TCR de la célula T con el antígeno va a desencadenar una activación. El parámetro ρ debe ser calculado de tal manera que todas las células T tengan las mismas posibilidades a la hora de obtener su parte de patógeno, en la implementación real se usó un vector de números aleatorios entre 0 y 1 normalizado por el número total de células T. Buena parte de la notación usada en el Algoritmo 1 ya ha sido introducida a lo largo de este trabajo, pero volvemos a insistir en que Y representa el número de moléculas del pat'ogeno, mientras que N la cantidad total de células T, incluyendo las efectoras y las de memoria. Sin embargo,

Algorithm 1 Algoritmo de la decisión. Células T.

```
1: Inicialización de parámetros según 4.1
 2: t = 0;
                                              ⊳ t será el tiempo por el que vamos simulando
 3: while t < T_{final} do
       Y = Y_{init} * e^{t*(\alpha - N*\beta)};
                                             ▶ Calculamos Y con la solución explícita de 3.3
       for nCell; nCell + +; N do
                                                        ⊳ Para cada célula T de la población
 5:
           r_T = \rho * Y;
                                                                                ⊳ Ecuación 3.4
 6:
           if efectora(nCell) then
                                                                 ⊳ Si es una célula T efectora
 7:
               Se resuelve 4.1
 8:
               if a \leq 0 then
 9:
                  La célula nCell se elimina de la población
10:
               else if c \leq 0 then
11:
                  La célula nCell se divide
12:
                  Las condiciones iniciales de las células hijas vienen determinadas por
13:
   a_0, c_0 \text{ y } 3.6
           else if memoria(nCell) then
                                                             ⊳ Si es una célula T de memoria
14:
               Se resuelve 4.2
15:
              if c \leq 0 then
16.
                  La célula nCell se divide siguiendo el mismo procedimiento que la divi-
17:
   sión de una célula T efectora.
       t = t + t_{next};
18:
       Se actualiza el número de células de la población.
19:
```

en la implementación real, en la línea 4 del pseudocódigo, el N utilizado es solamente el número total de células T efectoras, sin contar las de memoria³.

4.3. Resultados y análisis

En esta sección expondremos los resultados de las simulaciones realizadas. Comenzaremos discutiendo dos situaciones básicas que se pueden dar en una infección: que las células inmunes logren controlar la infección o que, por el contrario, sea el agente infeccioso el que acabe tomando el control de nuestro organismo, y acabaremos mostrando el resultado de diversas simulaciones cuando la afinidad por el *patógeno* de las células T va variando.

4.3.1. Intolerancia al patógeno

Se entiende como situación de intolerancia al patógeno aquella en la que las células T son capaces de controlar la infección y eliminar por completo al agente infeccioso. La simulación correspondiente a este caso puede verse en la Figura 4.1a. En la figura se puede observar que el patógeno, representado con un línea roja, crece rápidamente, debido a la elección de una tasa de crecimiento, α , elevada. Una vez que las células T son conscientes de la rápida proliferación de un agente no deseado, su número comienza a crecer. Sin embargo, como ya habíamos comentado anteriormente, esto se produce con cierto retraso tras la aparición del patógeno. Lo que estamos describiendo es la conocida $expansión \ clonal$. Este crecimiento de

³Esto se ha hecho así porque el proceso que siguen las células T de memoria es más complejo que lo que se recoge en el modelo. Estas células al cabo de un tiempo se desactivan y para que tengan un efecto sobre el patógeno deben volver a activarse. Para intentar hacer el modelo lo más sencillo posible se ha optado por hacer que las únicas células que combaten al patógeno sean las T efectoras.

	$t_{cycle} = 0.15$	Duración de la fase de ciclo.		
	$t_{apo} = 0, 2$	Duración de la fase de apoptosis.		
	$t_{next} = 0, 3$	Duración del paso en la simulación.		
	a = 0.2	Cantidad inicial de Bcl-2 para células T		
	$a_0 = 0, 3$	efectoras.		
Variables	0.00	Cantidad inicial de Rb para células T efec-		
variables	$c_0 = 0,08$	toras.		
		Cantidad inicial de Rb para células T de		
	$c_0^{mem} = 0,04$	memoria.		
	$N_{ini} = 25$	Número inicial de células T naïve.		
	$Y_{ini} = 5$	Número inicial de moléculas del patógeno.		
	<i>m m</i> – 0	Número inicial de receptores de membrana		
	$r_p, r_d = 0$	p y d.		
Datágana	$\alpha = 6$	Tasa de proliferación.		
Patógeno	$\beta = 0.04$	Tasa de muerte por linfocito.		
	\ . = 0.05	Tasa de cambio del receptor R_d por cada		
	$\lambda_{pd} = 0,05$	señal R_p .		
	$\lambda_{Tp} = 6 * 10^{-5}$	Tasa de cambio del receptor R_p por cada		
	$\lambda T_p = 0 * 10$	señal del TCR.		
Células T	$\lambda_{pp} = 0,5 * 10^{-4}$	Tasa de cambio del receptor R_p por cada		
${\it efectoras}$	$\lambda_{pp} = 0, 5 * 10$	señal R_p .		
		Tasa de cambio de Rb por cada señal del		
	$\mu_{pc} = 15$	TCR.		
	$\mu_{da} = 10$	Tasa de cambio de Bcl-2 por cada señal del		
	•	TCR.		
	$\lambda_{Tp}^{mem} = 10^{-5}$	Igual que λ_{Tp} , para células T de memoria.		
Células T	$\lambda_{pp}^{mem} = 2 * 10^{-2}$	Igual que la para cálulas T de memoria		
de memoria		Igual que λ_{pp} , para células T de memoria.		
	$\mu_{pc}^{mem} = 13$	Igual que μ_{pc} , para células T de memoria.		

Tabla 4.1: Tabla de variables y parámetros.

células T provoca que el término que acompaña a β en la Ecuación 3.3 comience a ser más grande que el acompañado por α en esta misma ecuación, causando así que la derivada de y se haga negativa y, por tanto, el número de células del patógeno comience a decrecer. Debemos mencionar que el número de células T necesarias para eliminar al patógeno viene regulado por el parámetro β (siempre que el resto de parámetros permanezcan inalterados), si este fuera más grande, es decir, las células T fueran más dañinas con el patógeno, el número de células T necesarias para controlar la infección sería menor (y viceversa).

Prestemos atención ahora al comportamiento de las células T de memoria: por la sección anterior, ya sabíamos que las células T efectoras y las de memoria iban a constituir poblaciones distintas, puesto que las ecuaciones que rigen sus dinámicas son distintas. La principal diferencia es que las células T de memoria no se suicidan una vez el patógeno ha desaparecido, permanecen con la información necesaria para atacar al patógeno más rápidamente en caso de reaparición. En la Figura 4.1a vemos cómo estas células de memoria aumentan su población tras la aparición del patógeno, aunque se produce un crecimiento tan rápido ni elevado como en el caso de las T efectoras. Su población queda reducida a un 5-10% de la población de células T.

- (a) Simulación: caso de intolerancia al patógeno. Los parámetros son los expuestos en la Tabla 4.1.
- (b) Simulación: caso de tolerancia al patógeno. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\alpha=1,\ \beta=0.01,\ \mu_{pc}=3,\ \mu_{da}=2,\ \mu_{pc}^{mem}=2.$

Figura 4.1: Simulaciones del modelo microscópico. Casos de tolerancia e intolerancia al patógeno

4.3.2. Tolerancia al patógeno

Hemos visto en la sección anterior una simulación de intolerancia al patógeno. Esto es, las células inmunes consiguen controlar la infección y erradicar por completo al agente infeccioso. Sin embargo, esto no es siempre así. Existen patógenos, como la bacteria Mycobacterium Tuberculosis⁴, que han desarrollado una estrategia que consiste en crecer a un ritmo muy lento. De esta manera sigilosa engañan a las células T, haciéndolas creer que su población ha sido erradicada y provocando que estas células inmunes se suiciden (Leggett et al., 2017).

Como se puede ver en la Figura 4.1b, las células T comienzan la expansión clonal como respuesta a la presencia de patógeno, al igual que en el caso anterior. Este aumento de población inmune hace que la población del patógeno se vea afectada rápidamente (recordemos que su factor de crecimiento, α, es pequeño en este caso) y caiga hasta niveles muy bajos. Es entonces cuando las células inmunes perciben que el patógeno ha sido eliminado con éxito y comienzan la contracción clonal, haciendo que su población baje hasta desaparecer. Sin embargo, debido a que el patógeno no ha sido erradicado por completo y, ahora que la población de células T ha iniciado su fase de apoptosis, puede reproducirse sin problema, dando lugar al crecimiento exponencial que vemos en la Figura 4.1b. En poco tiempo estos patógenos astutos pueden tomar el control del organismo.

En cuanto a las células T de memoria, vemos como crecen con la presencia del patógeno. Una vez que la población de células T efectoras llega a cero el número de estas células se estabiliza, puesto que las células T de memoria no continúan reproduciéndose en ausencia de células T efectoras, a pesar de la presencia de patógeno. Esto se debe a que las células T de memoria necesitan señales de proliferación para reproducirse y estas son generadas por las células T efectoras.

 $^{^4} https://www.omicsonline.org/open-access/why-is-mycobacterium-tuberculosis-hard-to-grow-the-principle-of-1000176.php?aid=26260$

4.3.3. Simulaciones con distintas poblaciones de células T

En esta sección veremos cómo se comportan distintas poblaciones de células T efectoras frente a un mismo patógeno. Estas poblaciones están diseñadas para que tengan afinidades distintas con el patógeno. Además veremos cómo se comportan estas poblaciones cuando la población inmunodominante desaparece.

Comencemos mirando la Figura 4.2a. En esta simulación hemos considerado tres poblaciones con distinta afinidad, λ_{Tp} , al patógeno. Tenemos el clon 0 con la afinidad más alta y el clon 2 con la más baja. La diferencia en cuanto a expansión es considerable, la población más afín al patógeno es la que se reproduce a mayor velocidad y se denomina población inmunodominante. Este hecho es consecuencia de las ecuaciones del Sistema 4.1: la ecuación $\dot{p}(t) = \lambda_{Tp}r_T(t) - \lambda_{pp}p(t)$ propicia un mayor crecimiento cuanto más alto es el valor λ_{Tp} , puesto que provoca que la derivada de c se haga más negativa y se llegue antes al límite c = 0 que desencadena la división celular.

Pero... ¿qué pasaría si esta población inmunodominante desapareciera? Una posible explicación nos la da la Figura 4.2b. En ella, podemos ver que el modelo sugiere que las poblaciones subdominantes se expanden más que antes para suplir la ausencia de la inmunodominante y controlar la infección. No debemos olvidar que la afinidad que tienen estas poblaciones al patógeno es menor y esto hace que este pueda crecer más en el mismo periodo de tiempo.

Para finalizar veamos el comportamiento del clon 2 cuando el resto de clones han desaparecido. Como es de esperar, ocurre algo similar a lo que veíamos en la Figura 4.2b. En este caso el clon 2 debe hacer un esfuerzo mayor (reproducirse más) para mantener la infección controlada. Comportamiento ilustrado en la Figura 4.2c.

Estas simulaciones ponen de manifiesto la importancia de las células T de memoria. En una situación donde las células T efectoras no presentan una afinidad al patógeno muy elevada las consecuencias pueden ser muy graves, pues la infección se alarga y las células T no son suficientemente dañinas para el agente externo. Sin embargo, si contamos con células T de memoria que guardan información relevante para combatir a ese agente, nuestro organismo se encontrará en una situación más segura, ya que se podrá actuar más rápidamente con células que disponen de alta afinidad con el patógeno y desencadenarán, por tanto, un ataque mucho más efectivo.

(a) Simulación: distintas poblaciones de células T con distintas afinidades al patógeno. Clones subdominantes. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\lambda_{Tp}^{clon_1} = 6*10^{-5}, \lambda_{Tp}^{clon_2} = 10^{-5}$.

(b) Simulación: distintas poblaciones de células T con distintas afinidades al pat'ogeno. Clones subdominantes. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\lambda_{Tp}^{clon_1}=6*10^{-5},\,\lambda_{Tp}^{clon_2}=10^{-5}.$

(c) Simulación: distintas poblaciones de células T con distintas afinidades al patógeno. Clon subdominante. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\lambda_{Tp}^{clon_2}=10^{-5}$.

Figura 4.2: Simulaciones del modelo microscópico. Casos de tolerancia e intolerancia al pat'ogeno

Modelo Macroscópico

En este capítulo se expone otro modelo matemático propuesto para determinar el algoritmo de decisión entre división o apoptosis de las células T durante una respuesta inmune (ver Sección 2.2.1.1). En este área aún son muchas las cuestiones que quedan por resolver: una vez que las células se activan, ¿hasta cuándo continúan dividiéndose?, ¿es esta decisión totalmente dependiente de las condiciones que hayan tenido las células en el momento de su activación?, ¿por qué hay un retraso respecto a la desaparición del patógeno en la contracción clonal?... Estas cuestiones se atajaron en el Capítulo 3, donde se establece la base teórica de un modelo matemático a nivel microscópico. Es decir, este modelo proporciona el algoritmo de decisión para cada célula, pues las decisiones de las células inmunes son, a priori, independientes unas de otras (no se ha encontrado un órgano que regule estos mecanismos (Arias y Herrero, 2016)).

En este capítulo lo que haremos será volver sobre este mismo problema pero desde una perspectiva un poco distinta, desde un punto de vista macroscópico. Esto quiere decir que las ecuaciones diferenciales sobre las que se basa el modelo determinan el comportamiento de toda la población de células. Para entender esto podemos poner como ejemplo los movimientos de un equipo de fútbol: la estrategia de contraataque del equipo vista desde el punto de vista «macroscópico» sería recuperar el balón y avanzar rápidamente al campo del adversario para marcar gol. Sin embargo, si nos fijamos ahora en el mundo «microscópico» de cada jugador, vemos que cada uno tiene su papel, defender y recuperar la posesión, pasar a los centrales o a los delanteros, etc. Además, se realizan simulaciones de este modelo y se comparan sus resultados con los del modelo microscópico.

5.1. Tolerancia y tasa de crecimiento

La respuesta inmune adaptativa se basa en la capacidad que tienen las células T para identificar diferentes antígenos pero ¿cómo saber cuáles de ellos son amigos y cuáles enemigos? En esta sección asumiremos que las células T toleran células cuyas tasas de crecimiento permanezcan por debajo de cierto límite, es decir, aquellas que no crezcan con mucha rapidez (las células que crecen muy rápidamente se asocian con toxinas o células tumorales, por ejemplo (Arias et al., 2015)). Además, nos centraremos en dos características de la dinámica de población de las células T: la elasticidad (la población se expande y se contrae, lo conocemos como expansión y contracción clonal) y la inercia (la contracción clonal se presenta con retraso tras la desaparición del patógeno) (Arias et al., 2015). Este resultado permite dar una posible explicación al hecho paradójico de que aquellos pató-

genos que se reproducen más lentamente en un organismo sean tolerados por las células inmunes.

5.2. Inercia y elasticidad en las células T

Como ya hemos visto en la sección anterior, la inercia y elasticidad en la población de células T será el eje fundamental sobre el que se desarrolla el modelo macroscópico que se expone a continuación. Para empezar, nuestro modelo consta de un sistema de ecuaciones diferenciales de segundo orden. Este tipo de ecuaciones constituye la manera más simple de representar la inercia de la población (Arias et al., 2015). Además, las ecuaciones de segundo grado son el marco general para las dinámicas newtonianas. Esto nos lleva a modelar de manera natural la dinámica de las células T efectoras como el balance entre dos fuerzas opuestas actuando sobre la población: una fuerza por parte del antígeno causada por la presencia del patógeno y una fuerza intrínseca elástica que devuelve a la población a su estado inicial. En concreto, asumiremos que la fuerza que ejerce el antígeno es proporcional al número de células del *patógeno* y modelaremos la elasticidad mediante la Ley de Hooke, que establece que la fuerza necesaria para restablecer el equilibrio una vez que la población ha llegado a cierto valor es proporcional a dicho valor (Arias et al., 2015). También asumiremos que el patógeno prolifera con un ratio constante y que serán eliminados por la acción de las células T de manera proporcional a sus encuentros mutuos. De esta manera, presentamos el siguiente modelo:

$$\begin{cases} T''(t) = -kT(t) + \lambda P(t) \\ P'(t) = \alpha P(t) - \beta T(t) P(t) \end{cases}$$

$$T(0) = 0 \qquad , para T \ge 0, P \ge P_m$$

$$T'(0) = 0 \qquad P(0) = P_0 \ge P_m$$

$$(5.1)$$

Donde T(t) y P(t) son el número de células T efectoras y el número de células de patógeno, respectivamente. La primera ecuación diferencial que nos encontramos nos dice que, en ausencia de patógeno, la población de células T se puede caracterizar por una respuesta elástica en forma de soluciones oscilatorias. Así mismo, la presencia de patógeno tendría el efecto de una fuerza externa. Siguiendo con la segunda ecuación, observamos que, en ausencia de células T, la población de patógeno crece de manera exponencial. Sin embargo, una vez que las células T entran en acción empiezan a eliminar al patógeno de acuerdo a posibles encuentros entre T(t) y P(t) (Arias y Herrero, 2016). La eficiencia de cada proceso se mide en base a cuatro parámetros y las condiciones iniciales del sistema. Estos parámetros son α , β , k y λ . Los dos primeros representan la tasa de crecimiento del patógeno y la tasa de eliminación del mismo a causa de las células T, respectivamente. Por su parte k y λ representan las constantes de elasticidad e inercia de la población, respectivamente.

El Sistema 5.1 también puede expresarse de manera no dimensional, reduciendo el

número de parámetros a dos:

$$\begin{cases}
T''(t) = -T(t) + P(t) \\
P'(t) = \alpha^* P(t) - \beta^* T(t) P(t)
\end{cases}$$

$$T(0) = 0 \qquad , para T \ge 0, P \ge P_m^*$$

$$T'(0) = 0$$

$$P(0) = 1$$

$$(5.2)$$

Donde
$$\alpha^* = \frac{\alpha}{\sqrt{k}}, \, \beta^* = \frac{\beta \lambda P_0}{k \sqrt{k}} \, \text{y} \, P_m^* = \frac{P_m}{P_0}$$

Donde $\alpha^* = \frac{\alpha}{\sqrt{k}}$, $\beta^* = \frac{\beta \lambda P_0}{k \sqrt{k}}$ y $P_m^* = \frac{P_m}{P_0}$. En lo que sigue veremos el comportamiento de estos dos sistemas mediante una serie de simulaciones numéricas, pues en este caso las ecuaciones no tienen una solución explícita.

Simulaciones del modelo macroscópico 5.3.

A continuación presentaremos distintas situaciones que se pueden dar con la simple variación de los parámetros del modelo macroscópico visto en la sección anterior. Para poder comparar estos resultados, se simulan las situaciones de tolerancia e intolerancia vistas en el Capítulo 4 y veremos cómo los parámetros α^* y β^* del Sistema 5.2 nos revelan la dependencia crucial que tienen sobre el modelo en estas dos situaciones.

El código referente a esa sección puede verse en el Apéndice A.

5.3.1.Intolerancia al patógeno

Como vimos en la Sección 4.3.1, el caso de tolerancia al patógeno se da cuando las células inmunes consiguen eliminar al agente que causa la infección. En este tipo de simulaciones vemos como el patógeno aumenta su población seguido de una rápida proliferación de las células T (expansión clonal), cuya acción erradica al patógeno. Posteriormente a la desaparición del patógeno, y con cierto retraso, tiene lugar la contracción clonal, que restaura los niveles de población de células T. En la Figura 5.1a, correspondiente a a simulación del Sistema 5.1, podemos ver esta situación gráficamente.

Queda, por tanto, de manifiesto la característica de inercia, pues se ve cómo las células T comienzan a disminuir en número tiempo después de que el patógeno haya desaparecido, y de elasticidad, pues la población de células T acaba recuperando sus niveles iniciales. Como vemos, el parecido de esta figura con la Figura 4.1a es notable, ambos modelos, macroscópico y microscópico, simulan el mismo comportamiento desde dos puntos de vista distintos.

5.3.2. Tolerancia al patógeno

Veamos ahora al caso análogo a la Sección 4.3.2, donde vimos como un patógeno con una tasa de reproducción pequeña conseguía zafarse de las células T. En la Figura 5.1b vemos que las células T comienzan la contracción clonal, haciendo que su población desaparezca irremediablemente, y provocando que el patógeno pueda reproducirse sin ningún tipo de impedimento, ya que no desaparece, simplemente se reproduce más lento. En este caso la simulación corresponde al Sistema 5.2.

- (a) Simulación: caso de intolerancia al patógeno en el modelo macroscópico. Parámetros: $\alpha=1,5,\ \beta=0,1,\ k=4,\ \lambda=0,5,\ P_m=0.$
- (b) Simulación: caso de tolerancia al patógeno en el modelo macroscópico. Parámetros: $\alpha^*=1,1,\ \beta^*=0,01,\ P_m^*=0.$

Figura 5.1: Ejemplo con simulaciones del modelo macroscópico. Casos de intolerancia y tolerancia al patógeno

5.3.3. Regiones de tolerancia e intolerancia

Un análisis interesante que se puede hacer es qué parámetros determinan estar en una región de tolerancia y cuáles en su complementaria (intolerancia). Este asunto se ha abordado para el modelo macroscópico no dimensional (ver Sistema 5.2). Se ha implementado un programa que recorre los valores de α^* y β^* entre 0.1 y 2.5 con un paso de 0.1, y, para cada valor, simula el Sistema 5.2. Una vez hecha la simulación se observa el número de células T y de patógeno para obtener el resultado de tolerancia, en caso de que las células T no consiguen acabar con el patógeno o intolerancia en caso contrario. La Figura 5.2 recoge el resultado de todas estas simulaciones, arrojando datos importantes: si dejamos uno de los dos parámetros fijos, es posible cambiar de una región a otra con tan solo modificar el otro parámetro. De hecho, de acuerdo con este modelo, patógenos y tumores pueden escapar de la acción de las células T por dos métodos: reduciendo el efecto de las células T, el parámetro β^* , o reduciendo su tasa de proliferación, el parámetro α^* , (Arias y Herrero, 2016). Una consecuencia que se puede extraer de esto es que mecanismos como la fiebre, que incrementa la tasa de proliferación del patógeno, o la inflamación, que aumenta la acción de las células T, favorecen que el patógeno sea vencido.

Figura 5.2: Simulación: variación de los parámetros α^* y β^* para dar lugar a regiones de tolerancia e intolerancia.

Correspondencia de parámetros entre los modelos microscópico y macroscópico

En los Capítulos 3 y 5 se establece el marco teórico de dos modelos matemáticos que dan una posible explicación del mecanismo que rige la dinámica de población de las células T durante una infección aguda. Como se puede ver en las simulaciones correspondientes de estos modelos (ver Capítulos 4 y 5) ambos pueden reproducir comportamientos similares, como son el de tolerancia e intolerancia al *patógeno*. Sin embargo, ambos modelos son notablemente distintos por varias razones:

- 1. Mientras que el modelo microscópico determina el algoritmo de comportamiento de cada célula de manera individual, el macroscópico presenta unas ecuaciones que gobiernan sobre toda la población de células.
- 2. Las ecuaciones diferenciales que conforman el modelo microscópico son de primer orden y su significado, desde el punto de vista biológico está bien definido. Esto es, los parámetros de este modelo, tales como la tasa de proliferación del patógeno (α) o la tasa de cambio de los receptores (λ_{xy}) (ver Tabla 4.1), son conceptos biológicos claros. Por su parte, el modelo macroscópico utiliza un sistema de ecuaciones de segundo grado, basado en las dinámicas newtonianas y en dos propiedades de la población: la inercia y la elasticidad. Los parámetros k y λ representan estas dos últimas propiedades en las ecuaciones, respectivamente. Sin embargo, desde el punto de vista biológico, el valor de estos parámetros tiene un significado difuso, pues no se conocen mecanismos que rijan estas dos propiedades.

A pesar de que el número de parámetros del modelo macroscópico es considerablemente menor, la elección de los parámetros k y λ es más compleja que la de los parámetros del modelo microscópico por la razón 2. Así las cosas, lo ideal sería poder establecer una correspondencia entre los parámetros de ambos modelos. De esta manera se podrían establecer los valores de los parámetros del modelo microscópico, que tienen un significado biológico claro, e inferir el valor de los parámetros del modelo macroscópico o viceversa. A lo largo de este capítulo se detalla cómo se a abordado este problema mediante el uso de técnicas de inteligencia artificial y se interpretan los resultados obtenidos.

Conjunto de datos y entrenamiento de la red neuronal

6.1.

Como ya se avanzaba en la introducción, este problema se ha atajado mediante el uso de inteligencia artificial, más concretamente de una red neuronal. El propósito de esta red es poder establecer el valor de los parámetros que se le deben asignar al modelo macroscópico teniendo como entrada aspectos característicos de una simulación. En otros términos, se podría decir que se busca hacer la función inversa a la simulación. De esta manera, podemos hacer una simulación con unos parámetros concretos del modelo microscópico y obtener

el valor de los parámetros del modelo macroscópico que se deberían usar para lograr un resultado similar.

Antes de poder entrenar la red es necesario determinar con qué datos se va a trabajar.

Más concretamente se deben establecer las entradas y las salidas que tendrá la red. En

- Las simulaciones que se realizan para obtener los datos pertinentes se corresponden con situaciones de intolerancia al patógeno.
- La red neuronal consta de diez datos de entrada y cuatro de salida. Los seis primeros datos de entrada se corresponden con seis puntos de interés de cada simulación. Estos puntos son: el máximo número de células de patógeno alcanzado, el máximo número de células T alcanzado, el tiempo en el que se alcanzaron ambos y el tiempo en el que desaparecieron ambas poblaciones (en la Figura 6.2a pueden verse destacados los puntos mencionados), que denominaremos como: max_P, max_T, t_max_P, t_max_T, t_min_P, t_min_T, respectivamente. Los cuatro restantes datos de entrada son los parámetros α, β, k y λ del modelo macroscópico con los cuales se han obtenido los seis valores anteriores. Por último, los cuatro parámetros de salida de la red se corresponden con los valores α, β, k y λ predichos por la misma.
- El rango de valores para α , β , k y λ se estableció con ayuda del modelo macroscópico adimensional (ver Figura 5.2), para ajustarnos lo más posible a una situación de intolerancia, y de tal manera que el número de simulaciones resultantes no fuera demasiado elevado pero permitiendo suficiente variabilidad para abarcar el mayor número de situaciones. En concreto se establecieron los siguientes rangos:
 - $\alpha \in [0, 75; 7]$

nuestro caso se tomaron las siguientes decisiones:

- $\beta \in [0, 1; 5]$
- $k, \lambda \in [0, 1; 2]$

Con estos rangos y a un paso de 0,5 se obtienen unas 2080 simulaciones, de las cuales 1587 fueron casos de intolerancia. Los valores correspondientes a los puntos de interés de la simulación y sus parámetros se guardaron en un archivo $data_neural_network_csv$ por filas y en el mismo orden que han sido mencionados $(max_P, max_T, t_max_P, t_max_T, t_min_P, t_min_T, \alpha, \beta, k y \lambda)$. Este documento da lugar al conjunto de datos de la red.

Como es habitual para el entrenamiento de una red neuronal, el 70% del conjunto de los datos, tomado de forma aleatoria, se utilizó para el entrenamiento y el 30% restante para testear la red. La implementación de la red está realizada en Python PONER REFERENCIA AL ARCHIVO. Esta cuenta con cinco capas densas y activaciones ReLu. Esto es importante en la última capa, puesto que los parámetros no pueden tomar valores negativos.

6.2. Resultados obtenidos por la red neuronal

En esta sección se exponen los resultados obtenidos tras el entrenamiento de la red, prestando atención a los valores de *loss* y *accuracy* alcanzados. Además, veremos un ejemplo real de la inferencia de parámetros dada por la red tras establecer como entrada una simulación del modelo microscópico.

Comencemos definiendo los conceptos de epoch, loss y accuracy para una red neuronal, de esta manera las gráficas y resultados que vienen a continuación no presentarán ningún impedimento terminológico: Se entiende por epoch cada pasada completa por todo el conjunto de datos de entrenamiento. Las redes neuronales, cuando entrenan, hacen varias pasadas por los datos y, en cada una de ellas, intentan minimizar una función de error. El concepto de loss está asociado a esto último, pues este es el valor que intentamos minimizar. Cuanto más pequeño es más precisas son las predicciones de la red. En nuestro caso, el valor de loss se corresponde con el error cuadrático medio. Por su parte, el valor de accuracy es una métrica utilizada para medir el rendimiento del algoritmo. Este valor se calcula una vez la red se ha entrenado y ha fijado todos sus parámetros. El valor de accuracy mide cómo de preciso es el modelo comparado con los datos reales. Por ejemplo, supongamos que tenemos 1000 muestras y nuestro modelo es capaz de clasificar bien 990 de ellas entonces, el valor de accuracy es del 99 %.

En la Figura 6.1 podemos ver las gráficas correspondientes a los valores de *loss* y accuracy durante el entrenamiento de la red. Como se puede observar en la Figura 6.1b, el valor de accuracy continúa incrementándose para el conjunto de entrenamiento hasta prácticamente la última iteración, lo que indica que el modelo no está sobreentrenando, a pesar de que en el conjunto de prueba se estabilice una vez pasada la iteración 100 aproximadamente. Sin embargo, el valor de *loss* consigue estabilizarse al mínimo en el conjunto de prueba una vez pasada la iteración 230 (ver Figura 6.1a). Todos estos datos nos sugieren que el número de *epoch* utilizados para entrenar la red es el óptimo.

- (a) Valores de *loss* calculados para la red neuronal durante el entrenamiento.
- (b) Valores de accuracy calculados para la red neuronal durante el entrenamiento.

Figura 6.1: Representación gráfica de los valores de *loss* y *accuracy* para cada *epoch* durante el entrenamiento de la red.

En el archivo resultados.txt se pueden ver algunos de los resultados obtenidos por la red, correspondientes a distintos valores de accuracy. En el caso que nos ocupa ahora, detallaremos un ejemplo concreto obtenido a partir de los datos de una simulación del modelo microscópico, cumpliendo así con el propósito de esta red. En la Figura 6.2a podemos

macroscópico

ver el resultado de la simulación del modelo microscópico, con los seis puntos de interés destacados. Concretamente el valor de esos parámetros es: max P = 74, 4, max T = 88, $t_max_P = 3,15, t_max_T = 4,8, t_min_P = 3,9 \text{ y } t_min_T = 6,3.$ Una vez la red estaba entrenada se introdujeron estos valores como entrada para obtener la predicción de los valores del modelo macroscópico. El resultado obtenido fue: $\alpha = 3, 5, \beta = 0, 29,$ k=0,3 y $\lambda=0,9$. En la Figura 6.2b puede verse la simulación del modelo macroscópico correspondiente a esos parámetros. Si comparamos ambas figuras observamos a simple vista que ambas presentan dos situaciones muy similares, si bien es cierto que los valores difieren ligeramente. En particular, la simulación del modelo macroscópico tiene como puntos de interés los siguientes valores: $max_P = 68,94, max_T = 98,82, t_max_P = 1,27,$ $t_max_T = 4$, $t_min_P = 2$, 45 y $t_min_T = 6$, 87. Si comparamos estos valores con los obtenidos con el modelo microscópico vemos el valor max_P es menor en el modelo microscópico pero que los tiempos asociados a este (t max P y t min P) también lo son. Lo que nos dice que, a pesar de que los valores no han sido exactos, la forma de la gráfica sí se preserva. Prestando atención ahora a los valores referentes a las células T, vemos que el patrón ha cambiado, pues se alcanza un número mayor de células T en el modelo macroscópico y, sin embargo, este valor se alcanza antes que en el modelo microscópico. Esto nos indica que que los parámetros de elasticidad e inercia no se han ajustado completamente, lo que hace que observemos ese pequeño desfase.

(a) Simulación: caso de intolerancia al patógeno. Los parámetros son los expuestos en la Tabla 4.1.

(b) Simulación: caso de tolerancia al patógeno. Los parámetros son los mismos que se exponen en la Tabla 4.1, excepto: $\alpha = 1$, $\beta = 0.01$, $\mu_{pc} = 3$, $\mu_{da} = 2$, $\mu_{pc}^{mem} = 2.$

Figura 6.2: Ejemplo con simulaciones del modelo microscópico y macroscópico con los valores de los parámetros predichos por la red neuronal. Casos de intolerancia al patógeno

Conclusiones y Trabajo Futuro

Como hemos podido observar a lo largo de este documento, son muchas las preguntas para las cuales la biología aún no tiene respuesta. Es por ello que las matemáticas toman un papel relevante como herramienta investigadora. En el caso que nos ocupa hemos visto dos modelos matemáticos que intentan dar una explicación al mecanismo que rige la dinámica de la población de células T durante una infección aguda. Ambos modelos están basados en hechos biológicos conocidos y contrastados y, presentan ecuaciones simples y un número de parámetros reducido, pero suficiente para poder reproducir distintas situaciones sin necesidad de otros elementos. Pero no solo podemos reproducir hechos observados con estos modelos, también podemos predecir, mediante el ajuste de los parámetros correspondientes, cómo se comporta la población ante determinadas tesituras. Como el caso de que la población presente una afinidad baja con el patógeno o que la cantidad de activaciones sea menor a la cantidad de encuentros de la célula T con el antígeno. Esto hace que el estudio pueda avanzar sin necesidad de un laboratorio ni experimentos físicos. Otro de los puntos a remarcar de estos modelos es que no son cerrados. Es decir, proporcionan un entorno abierto en el que incluir nuevo conocimiento biológico.

- Resultados generales de los dos modelos: ambos reproducen hechos observados y hacen predicciones sobre el comportamiento de las poblaciones.
- Se pueden reproducir situaciones diversas con los modelos mediante el ajuste adecuado de los parámetros. Lo que permite el estudio de las poblaciones sin necesidad de un laboratorio.
- En el caso de que se incluya el trabajo de la red neuronal: poner las conclusiones e insistir ahí con el trabajo futuro.

Introduction

Introduction to the subject area. This chapter contains the translation of Chapter 1.

Conclusions and Future Work

Conclusions and future lines of work. This chapter contains the translation of Chapter 7.

Bibliografía

Y así, del mucho leer y del poco dormir, se le secó el celebro de manera que vino a perder el juicio.

(modificar en Cascaras\bibliografia.tex)

Miguel de Cervantes Saavedra

- Arias, C. F. y Herrero, M. A. Emergent behaviour in t cell immune response. En European Consortium for Mathematics in Industry, páginas 17–23. Springer, 2016.
- Arias, C. F., Herrero, M. A., Acosta, F. J. y Fernandez-Arias, C. A mathematical model for a t cell fate decision algorithm during immune response. *Journal of Theoretical Biology*, vol. 349, páginas 109 120, 2014. ISSN 0022-5193.
- Arias, C. F., Herrero, M. A., Cuesta, J. A., Acosta, F. J. y Fernández-Arias, C. The growth threshold conjecture: a theoretical framework for understanding t-cell tolerance. *Royal Society open science*, vol. 2(7), página 150016, 2015.
- Castro, M., Lythe, G., Molina-París, C. y Ribeiro, R. M. Mathematics in modern immunology. 2016.
- Darwin, F. The life and letters of Charles Darwin. 1887.
- ESTEBAN, S., GONZALEZ, M. P. y TEJEROM, L. Mendel: Biology, mathematics and history of science. En The Mathematics Education into the 21st Century Project, Proceedings of the International Conference The Decidable and the Undecidable in Mathematics Education. Brno, Czech Republic. 2003.
- Fernández Arias, C. Mecánica de poblaciones celulares elásticas: ecología de la respuesta inmunitaria. Tesis Doctoral, Universidad Complutense de Madrid, 2012.
- Gunawardena, J. Models in biology: 'accurate descriptions of our pathetic thinking'. *BMC Biology*, vol. 12, 2014. ISSN 1741-7007.
- HERRERO, M. A. On the role of mathematics in biology. ????
- LEGGETT, H. C., CORNWALLIS, C. K., BUCKLING, A. y WEST, S. A. Growth rate, transmission mode and virulence in human pathogens. *Philosophical Transactions of the Royal Society B: Biological Sciences*, vol. 372(1719), página 20160094, 2017.
- Sompayrac, L. How The Inmune System Works. Versión electrónica, 2016.

46 BIBLIOGRAFÍA

Taborda, N. A., Hernández, J. C., Montoya, C. J. y Rugeles, M. T. Las células natural killer y su papel en la respuesta inmunitaria durante la infección por el virus de la inmunodeficiencia humana tipo-1. 2014.

Código de las simulaciones

En este apéndice se expone el código utilizado para las simulaciones de los dos modelos vistos en este trabajo, el microscópico y el macroscópico, correspondientes al Capítulo 4 y Capítulo 5, respectivamente. El código, realizado en Matlab, sigue la misma notación que se establece en los capítulos correspondientes.

A.1. Código referente al Capítulo 4

En esta sección se expone el código principal de las simulaciones vistas en el Capítulo 4. El código que sigue corresponde a la Figura 4.1a donde puede verse el caso de intolerancia al *patógeno*. Para la simulación del caso de tolerancia, que aparece en la Figura 4.1b, el código es exactamente el mismo aunque varía el valor de los parámetros, como ya se expuso en la correspondiente figura.

Para el caso de las figuras correspondientes a varias poblaciones de células T (Figura 4.2a - Figura 4.2c) la idea que subyace es similar, simplemente se añadieron los correspondientes parámetros y estructuras para guardar la acción de cada una de las poblaciones de células T.

Las funciones $sys_4_1_sol$ y $sys_4_2_sol$ dan el resultado de la solución explícita de los sistemas 4.1 y 4.2, respectivamente, evaluada en los parámetros que se pasan a la función. La estructura t_cell_matrix es una matriz que almacena en cada fila una célula de la población y cuyas columnas guardan los parámetros correspondientes a esa célula (su tipo, condiciones iniciales y el tiempo que le queda para completar la fase de ciclo o apoptosis, en caso de que se encuentre en alguna de ellas).

```
%This code is desgined to simulate system 4.1. Intolerance case.
    %By Belen Serrano Anton
    %Created 25/02/2020
3
4
    %Last Modified 31/03/2020
6
    %Variable definition
    t cycle = 0.15; %Time lap between the restriction point and cell division
7
    t apo = 0.2; %Time lap between the deactivation of Bcl-2 and cell death
8
    t next = 0.3; %Time step in this simulation
9
10
    %Parameters: Pathogen
11
    alpha = 6; %Pathogen proliferation rate
    beta = 0.04; %Pathogen death rate
13
14
```

```
%Parameters: Effector T cells
    lambda pd = 0.05; %Change rate in membrane receptor Rd, due to Rp signals
16
    lambda taup = 6*10^(-5); %Change rate in membrane receptor Rd, due to TCR signals
17
    lambda pp = 0.5*10^{(-4)}; %Change rate in membrane receptor Rp, due to Rp signals
18
    mu pc = 15; %Change rate in inhibitor molecule Rb, due to receptor Rc
    mu da = 10; %Change rate in inhibitor molecule Bcl-2, due to receptor Rc
20
21
    %Parameters: Memory T cells
22
    lambda pd mem = 0; %Change in membrane receptor Rd, due to Rp signals
23
    lambda taup mem = 10^{(-5)}; %Change rate in membrane receptor Rd, due to TCR
        signals
    lambda pp mem = 2*10^{(-2)}; %Change rate in membrane receptor Rp, due to Rp signals
25
    mu pc mem = 13; %Change rate in inhibitor molecule Rb, due to receptor Rc
27
    %Define the final time we will simulate to
28
    T final = 25;
29
30
    %Define the initial number of particles
31
32
    N init = 25; \%N will represent T cells
33
    Y init = 5; %Y will represent pathogen
34
35
    %Define how long the recording vectors should be
    num rec steps = round(T final/t next);
36
37
38
    %Initialise the index which will tell us where to write the current values
    rec ind=1;
39
40
    %Define the maximum number of t cells
41
    num max cells=10^7;
42
43
44
    %Instantiate a vector which will hold the time varying values of T cells
45
    %and pathogen
    rec\_vector\_N\_eff = -ones(1,num rec steps); %For effector T cells
46
    rec vector N mem = -ones(1,num rec steps); %For memory T cells
47
48
    rec vector \mathbf{Y} = -\mathbf{ones}(1, \mathbf{num} \text{ rec steps}); %For the pathogen
49
    %Write the initial condition to these vectors
50
    rec vector N eff(rec ind) = N init; %Asymmetric division of naive T cells
51
    \overline{rec} \overline{vector} \overline{N} \overline{mem(\overline{rec} ind)} = \overline{N} init; %Asymmetric division of naive T cells
52
    \mathbf{rec} \mathbf{vector} \mathbf{Y}(\mathbf{rec} \mathbf{ind}) = \mathbf{Y} \mathbf{init};
53
54
55
    %Instantiate a vector which will hold the t cells
    t cell matrix=zeros(num max cells,6);
56
57
    Write the initial condition to this vector
58
59
    a0 = 0.3;
    c0 = 0.08;
60
    c0 mem = 0.04;
61
62
    t cell matrix(1:2:2*N init,1)=1; %type 1: Effector T cell
63
64
    t cell matrix(1:2:2*N init,2)=a0;
65
    t cell matrix(1:2:2*N init,3)=c0;
66
    t cell matrix(2:2:2*N init,1)=2; %type 2: Memory T cell
67
    t cell matrix(2:2:2*N init,3)=c0 mem;
68
69
```

```
70
 71
      %Initialise a vector which will hold the times when reactions occur
 72
      time vec=zeros(1,num rec steps);
 73
 74
      %Initialise the number of particles for this repeat
      N 	ext{ eff} = N 	ext{ init};
 75
      N mem = N init;
 76
      egin{aligned} \mathbf{N} &= \mathbf{N} \_ \mathbf{eff} + \mathbf{\overline{N}} \_ \mathbf{mem}; \\ \mathbf{Y} &= \mathbf{Y} \_ \mathbf{init}; \end{aligned}
 77
 78
 79
 80
      %Initialise index for t cell matrix
      rec ind tcell matrix = N+1;
 81
      %Define the initial time to be zero
 83
      \mathbf{t}=0;
 84
 85
      %Gone is true if the pathogen is dead and false otherwise
 86
      \mathbf{gone} = 0;
 87
 88
 89
      90
 91
           %Increase the recording index
           rec ind = rec ind + 1;
 92
 93
 94
           if(gone = = 0)
                %Calculate Y
 95
                Y = Y \quad init*exp(t*(alpha - N \quad eff*beta));
 96
 97
                \mathbf{Y} = \max(\mathbf{Y},0);
                if (\mathbf{Y} < 10^{\circ}(-6)) % condition that states when the pathogen is defeated
 98
                     \mathbf{Y} = 0;
 99
100
                     gone = 1;
101
                end
102
           end
103
104
           %Fate decision for each T cell
105
           %Initialise indexes
           nCell=1;
106
           ind N = 1;
107
108
109
           \mathbf{v} \quad \mathbf{rand} = \mathbf{rand}(\mathbf{N}, 1)/\mathbf{N}; \ \overline{\%} \text{vector of N random numbers}
110
111
                if(t cell matrix(nCell,1) == 1 || t cell matrix(nCell,1) == 2)
112
                    \mathbf{rho} = \mathbf{v} \quad \mathbf{rand}(\mathbf{ind} \quad \mathbf{N});
113
                     r tau=rho*Y;
114
                     \overline{\mathbf{ind}} \mathbf{N} = \mathbf{ind} \mathbf{N} + 1;
115
116
                end
117
                %Killer T cell
118
                if(t cell matrix(nCell,1) == 1 || t cell matrix(nCell,1) == 3)
119
120
                     if (t \text{ cell } \text{matrix}(nCell, 6) > 0)
121
                          %In division phase
                          t cell matrix(nCell,6) = max(t cell matrix(nCell,6)-t next,0);
122
123
124
                          %Division phase completed
                          if(t cell matrix(nCell,6) == 0 \&\& t cell matrix(nCell,1) == 3)
125
```

```
N 	ext{ eff} = N 	ext{ eff} + 1;
126
                            t cell matrix(nCell,1) = 1;
127
128
                       end
                   else
129
130
                        %Initial conditions
                       p0 	ext{ sys} = t 	ext{ cell } 	ext{matrix}(nCell,4);
131
                       d0 sys = t cell matrix(nCell,5);
132
                       c0 sys = t cell matrix(nCell,3);
133
                       a0 sys = t cell matrix(nCell,2);
134
135
136
                        %Explicit solutions for system 4.1
                        [c,a,p,d] = sys + 4 + 1 - sol(t,lambda - taup,lambda - pp, r - tau, p0 - sys,
137
                            lambda pd, d0 sys, mu pc, c0 sys, mu da, a0 sys);
138
                        %Desision state
139
                        if (\mathbf{a} > 0 \&\& \mathbf{c} > 0)
140
                            \mathbf{d} = \max(\mathbf{d}, 0);
141
142
                            \mathbf{p} = \max(\mathbf{p}, 0);
                            t cell matrix(nCell,4) = p;
143
144
                            t cell matrix(nCell,5) = d;
                            t cell matrix(nCell,3) = c;
145
146
                            t cell matrix(nCell,2) = a;
                       else
147
                            if (\mathbf{a} \le 0) % Initiate apoptosis
148
                                \mathbf{t} \mathbf{cell} \mathbf{matrix}(\mathbf{nCell},6) = \mathbf{t} \mathbf{apo};
149
                                t cell matrix(nCell,1) = 4;
150
151
                            elseif(\mathbf{c} \leq 0) %Initiate division
152
                                 %Membrane receptors are divided between 2 daughter
153
                                 %cells
154
                                 delta P child 1 = 0.4 + (0.6 - 0.4) * rand();
155
                                 delta P child 2 = 1 - delta P child 1;
156
                                 \mathbf{delta}_{\mathbf{D}}_{\mathbf{child}_{\mathbf{1}}} = 0.4 + (0.6 - 0.4) * \mathbf{rand}();
157
                                 delta D child 2 = 1 - delta D child 1;
158
159
                                r p child 1 = delta P child 1 * p;
160
                                \mathbf{r} \quad \mathbf{p} \quad \mathbf{child} \quad \mathbf{2} = \mathbf{delta} \quad \mathbf{P} \quad \mathbf{child} \quad \mathbf{2} * \mathbf{p};
161
162
                                 r d child 1 = delta D child 1 * d;
163
                                {f r} d child {f 2}={f delta} D child {f 2}*{f d};
164
165
                                 %Actualization for daughter cells
166
167
                                 t cell matrix(nCell,4) = r p child 1;
                                 t \text{ cell } matrix(nCell,5) = r d child 1;
168
                                 t cell matrix(nCell,6) = t cycle;
169
170
                                 t cell matrix(nCell,3) = c0;
171
                                 t cell matrix(nCell,2) = a0;
172
173
                                 \%type 3 -> new effector cell that has not
174
175
                                 %completed division phase
176
                                 t cell matrix(rec ind tcell matrix,1) = 3;
                                 t cell matrix(rec ind tcell matrix,4) = r p child 2;
177
                                 t cell matrix(rec ind tcell matrix,5) = r d child 2;
178
179
                                 t cell matrix(rec ind tcell matrix,6) = t cycle;
180
```

```
t cell matrix(rec ind tcell matrix,3) = c0;
181
182
                                t cell matrix(rec ind tcell matrix, 2) = a0;
183
                                %Increase index for the next new cell
184
                                rec ind tcell matrix = rec ind tcell matrix + 1;
185
186
                           end
                       end
187
188
                  end
189
                   %Next cell in population
190
                  nCell = nCell + 1;
191
              %Memory T cell
192
              elseif(t cell matrix(nCell,1) == 2 || t cell matrix(nCell,1) == 5)
193
194
                  if (t \text{ cell } \text{matrix}(nCell,6) > 0)
                       %In division phase
195
                       t cell matrix(nCell,6) = max(t cell matrix(nCell,6)-t next,0);
196
197
                       %Division phase completed
198
                       if(t cell matrix(nCell,6) == 0 \&\& t cell matrix(nCell,1) == 5)
199
200
                           N mem=N mem+1;
                           t cell matrix(nCell,1) =2;
201
202
                       end
203
                  else
                       \%Initial conditions
204
205
                       c0 	ext{ solsys} = t 	ext{ cell } 	ext{matrix}(nCell,3);
                       p0 	ext{ solsys} = t 	ext{ cell } 	ext{ matrix}(nCell,4);
206
207
                       %Explicit solutions for system 4.2
208
                       [\mathbf{c},\mathbf{p}] = \mathbf{sys} 4 2 \mathbf{sol}(\mathbf{t},\mathbf{mu} \ \mathbf{pc} \ \mathbf{mem},\ \mathbf{p0} \ \mathbf{solsys},\ \mathbf{lambda} \ \mathbf{taup} \ \mathbf{mem},
209
                            lambda pp mem, r tau, c0 solsys);
210
                       %Division phase
211
212
                       if(\mathbf{c} <= 0)
                           delta P child 1 = 0.4 + (0.6 - 0.4) * rand();
213
214
                           delta P child 2 = 1 - delta P child 1;
215
                           r p child 1 = delta P child 1 * p;
216
                           \mathbf{r}^{\mathbf{p}}\mathbf{p}^{\mathbf{child}}\mathbf{2} = \mathbf{delta}^{\mathbf{p}}\mathbf{p}^{\mathbf{child}}\mathbf{2} * \mathbf{p};
217
218
219
                           t cell matrix(nCell,4)=r p child 1;
220
                           t cell matrix(nCell,6)=t cycle;
221
222
                           t cell matrix(nCell,3) = c0 mem;
223
                           t cell matrix(rec ind tcell matrix,1)=5;
224
                           t cell matrix(rec ind tcell matrix,4)=r p child 2;
225
                           t cell matrix(rec ind tcell matrix,6)=t cycle;
226
227
                           t cell matrix(rec ind tcell matrix,3)=c0 mem;
228
229
230
                           rec ind tcell matrix = rec ind tcell matrix +1;
231
                       else
                           t cell matrix(nCell,4) = p;
232
                           t cell matrix(nCell,3)=c;
233
234
235
                       end
```

```
236
                  end
237
                  nCell = nCell + 1;
238
239
240
              elseif(t cell matrix(nCell,1) == 4) %Effector T cell is dead
241
242
                  if(t cell matrix(nCell,6) > 0)
243
                       \overline{\mathbf{t}} \mathbf{cell} \mathbf{matrix}(\mathbf{nCell},6) = \mathbf{max}(\mathbf{t} \mathbf{cell} \mathbf{matrix}(\mathbf{nCell},6) - \mathbf{t} \mathbf{next},0);
244
245
                       if(t cell matrix(nCell,6)==0)
                           N \text{ eff}=N \text{ eff}-1;
246
247
                       end
248
                  end
                  nCell=nCell+1;
249
              else
250
251
                   break;
              end
252
253
254
          end
255
256
          %Update the time
257
          t=t+t next;
258
          %Record the time and the numbers of molecules
259
260
          time \ vec(rec \ ind) = t;
          N = N \text{ eff} + N \text{ mem};
261
          rec \ vector \ N \ eff(rec \ ind) = N \ eff;
262
          rec \ vector \ N \ mem(rec \ ind) = N \ mem;
263
          rec vector Y(rec ind) = Y;
264
     end
265
266
267
      %Plot results
268
     f1=figure;
269
270
     figure(f1)
     [hA1]=plot(time vec,rec vector N eff/max(rec vector N eff),'b','LineWidth', 1);
272
273
     hold on
274
     [hA2]=plot(time vec,rec vector Y/max(rec vector Y),'r','LineWidth', 1);
275
276
     hold on
     [hA3] = plot(time vec,rec vector N mem/max(rec vector N eff),'g','LineWidth',
277
278
279
      set(gca,'YTickLabel',[]);
280
     set(gca,'XTickLabel',[]);
281
282
     legend([hA1,hA3,hA2],'Celulas T efectoras','Celulas T de memoria','Patogeno');
283
     xlabel('Tiempo'); ylabel('Numero de celulas');
```

A.2. Código referente al Capítulo 5

Es el turno de ver el código correspondiente al modelo macroscópico. En esta ocasión no disponíamos de un sistema de ecuaciones diferenciales con solución explícita, por lo que tenemos una simulación numérica mediante el uso de la función ode_45^1 de Matlab. A continuación podemos ver el código referente a la Figura 5.1a. En la línea 33 se incluye la condición $T \ge 0$.

Para simular la Figura 5.1b, correspondiente al caso de tolerancia, se tomó el Sistema 5.2, el código sigue la misma estructura aunque las ecuaciones que vemos en las líneas 24 y 25 sufren una ligera modificación: los parámetros k y λ desaparecen y se sustituyen a (α) y b (β) por los correspondientes a_star (α^*) y b_star (β^*) del Sistema 5.2.

```
%This code is desgined to simulate system 5.1.
    %By Belen Serrano Anton
 2
3
    %Created 03/03/2020
 4
    %Last Modified 31/03/2020
    syms t cell(t) p(t)
6
7
    %Constants
8
9
    a = 1.5;
10
    b = 0.1;
11
12
    k = 0.4;
    lambda = 0.5;
13
14
    t0 = 0;
15
16
    tf = 10;
    dt cell = diff(t cell, t);
17
18
    %Initial Conditions
19
20
    c1 = 3; \%P(0)
    \mathbf{c2} = 0; \ \% \mathbf{T}(0)
21
    \mathbf{c3} = 0; \%T'(0)
22
    y0 = [c1 \ c2 \ c3];
23
    eq1 = diff(t cell,t,2) == -k*t cell + lambda*p;
24
25
    eq2 = diff(p,t) == a*p - b*t cell*p;
26
27
    \mathbf{vars} = [\mathbf{t} \ \mathbf{cell}(\mathbf{t}); \ \mathbf{p}(\mathbf{t})];
    [V,S] = odeToVectorField([eq1,eq2]);
28
29
    M = matlabFunction(V,'vars', {'t','Y'});
30
    interval = [t0 tf]; %Time interval
31
    %Impose a nonnegativity constraint
32
    option2 = odeset('NonNegative', 2); \%T >= 0
33
34
35
36
    ySol = ode45(M,interval,y0, option2);
37
    tValues = linspace(interval(1), interval(2), 1000);
38
    yValues = deval(ySol, tValues, 1);
39
40
41
    %Plot results
42
    [hA2] = plot(tValues, yValues/max(yValues), 'r', 'LineWidth', 1); %Pathogen
43
44
45
    \mathbf{hold} on
    yValues = deval(ySol, tValues, 2);
```

¹ https://www.mathworks.com/help/matlab/ref/ode45.html

Veamos ahora el código de la Figura 5.2: En este caso queríamos hacer simulaciones variando el valor de los parámetros α^* y β^* . Para ello tenemos un código que va recorriendo valores en el intervalo [0,2'5] y llamando con cada par de valores α^* y β^* a la función $macro_nond_toler_into$ que realiza la simulación del Sistema 5.2 y devuelve si hay tolerancia o intolerancia midiendo la cantidad de patógeno que queda al final de la simulación. Teniendo en cuenta el resultado, se pinta un rombo rojo si estamos ante un caso de tolerancia o verde en caso de intolerancia al patógeno.

```
%This code is desgined to simulate figure 5.3.
1
    %By Belen Serrano Anton
    %Created 03/03/2020
3
    %Last Modified 31/03/2020
4
 5
6
    a = 0.1;
7
    b = 0.1;
8
9
    \mathbf{f1} = \mathbf{figure}
10
    xlabel('\beta^{*}'); ylabel('\alpha^{*}');
11
    ylim([0,2.5]);
12
    xlim([0,2.5]);
13
14
    while (a <= 2.5)
15
         b = 0.1;
16
17
         while (\mathbf{b} \leq 2.5)
             %Result of system 5.2
18
             res = macro nond toler into(a, b);
19
             figure(f1)
20
21
             hold on
22
             if (res == 1) %Intolerance
23
                 plot(b,a,'d','MarkerFaceColor','green', 'MarkerEdgeColor', 'green');
             else %Tolerance
24
                 plot(b,a,'d','MarkerFaceColor','red', 'MarkerEdgeColor', 'red');
25
26
             end
27
             hold on
             b = b + 0.1;
28
29
30
         a = a + 0.1;
    end
31
```

```
%This code is desgined to simulate figure 5.3.

%By Belen Serrano Anton

%Created 03/03/2020

%Last Modified 31/03/2020

function res = macro_nond_toler_into(a_star, b_star)

syms t_cell(t) p(t)
```

```
9
      t0 = 0;
10
      tf = 9.5;
11
      \mathbf{dt} \quad \mathbf{cell} \! = \! \! \mathbf{diff}(\mathbf{t} \_\mathbf{cell}, \! \mathbf{t});
12
13
14
      %Initial Conditions
     \mathbf{c1} = 1; \ \%P(0)
15
      \mathbf{c2} = 0; \ \% \mathbf{T}(0)
16
      \mathbf{c3} = 0; \ \% \mathbf{T}'(0)
17
18
      y0 = [c1 \ c2 \ c3];
19
      \mathbf{eq1} = \mathbf{diff}(\mathbf{t} \ \mathbf{cell}, \mathbf{t}, 2) == -\mathbf{t} \ \mathbf{cell} + \mathbf{p};
      \mathbf{eq2} = \mathbf{diff}(\mathbf{p}, \mathbf{t}) == \mathbf{a} \quad \mathbf{star*p} - \mathbf{b} \quad \mathbf{star*t} \quad \mathbf{cell*p};
20
21
      \mathbf{vars} = [\mathbf{t} \ \mathbf{cell}(\mathbf{t}); \ \mathbf{p}(\mathbf{t})];
22
23
      [V,S] = odeToVectorField([eq1,eq2]);
24
25
26
      M = matlabFunction(V, 'vars', \{'t', 'Y'\});
      \mathbf{interval} = [\mathbf{t0} \ \mathbf{tf}]; \ \% \mathbf{Time} \ \mathbf{interval}
27
28
29
      % Impose a nonnegativity constraint
      option2 = odeset('NonNegative',2); \%T >= 0
30
31
      ySol = ode45(M,interval,y0, option2);
32
33
      tValues = linspace(interval(1), interval(2), 1000);
34
      yValuesP = deval(ySol, tValues, 1);
35
      %If pathogen molecules are least than 0.01 we consider that pathogen has
36
37
      %been totally defeated
      if(min(yValuesP) \le 0.01)
38
            res = 1; %Intolerance
39
40
      else
41
            res = 0; %Tolerance
42
      \quad \text{end} \quad
```

1	
1	
1	
1	
م الم من مُ م	
Apéndice	

Título del Apéndice B

Este texto se puede encontrar en el fichero Cascaras/fin.tex. Si deseas eliminarlo, basta con comentar la línea correspondiente al final del fichero TFMTeXiS.tex.

-¿Qué te parece desto, Sancho? - Dijo Don Quijote - Bien podrán los encantadores quitarme la ventura, pero el esfuerzo y el ánimo, será imposible.

Segunda parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes

-Buena está - dijo Sancho -; fírmela vuestra merced. -No es menester firmarla - dijo Don Quijote-, sino solamente poner mi rúbrica.

> Primera parte del Ingenioso Caballero Don Quijote de la Mancha Miguel de Cervantes