Name:	Admission No:
1 1 WITTO:	1101111001011 110

ABES Institute of Technology, Ghaziabad

Subject Code: BAS103

Subject Name: Engineering Mathematics-I Year - 1st, Branch-All

1st ASSIGNMENT (ODD SEMESTER 2024-25)

[Time: 1 Hours] [Total Marks: 10]

COURSE OUTCOMES

CO	Statements	
2	Remember the concept of differentiation to <i>find</i> successive differentiation, Leibnitz Theorem,	
4	and <i>create</i> curve tracing, and <i>find</i> partial and total derivatives.	

(SET-A)

SECTION-A

Q.1	Attempt one Questions. $(1\times1=1)$	CO
a.	$Find D^n \log (2x^2 + x^3).$	2
b.	Evaluate y_n if $y = e^{2x} \cos^2 2x$.	2

SECTION-B

Q.2	Attempt two Questions. (2x3=6)	CO
a.	If $y = \sin \log(x^2 + 2x + 1)$, <i>calculate</i> the value of the relation $(1+x)^2 y_{n+2} + (2n+1)(1+x)y_{n+1} + (n^2+4)y_n$.	2
b.	If $y = a\cos(\log x) + b\sin(\log x)$ then show that $x^2 y_{n+2} + (2n+1)x y_{n+1} + (n^2+1)y_n = 0$.	2
c.	If $y = [x + \sqrt{1 + x^2}]^m$ then find $y_n(0)$ by Leibnitz Theorem.	2

SECTION-C

Q.3	Attempt one Questions.	(1x3=3)	CO
a.	If $y = \tan^{-1}\left(\frac{x}{a}\right)$ then show that $y_n = (-1)^{n-1} (n-1)! \ a^{-n} \sin n\theta \text{ where } \theta = \tan^{-1}\left(\frac{a}{x}\right).$		2
b.	Obtain nth order derivative y_n , for the function $y = \sin^3 x \cos^2 x$.		2

(SET-B) SECTION-A

Q.1	Attempt one Questions. (1×1=1)	CO
a.	Find $D^n \log (x^2 + 3x + 2)$.	2
b.	Evaluate y_n if $y = e^x \sin^2 2x$.	2

SECTION-B

Q.2	Attempt two Questions.	(2x3=6)	CO
a.	If $\cos^{-1}\frac{y}{b} = \log\left(\frac{x}{m}\right)^m$, then <i>apply</i> Leibnitz Theorem to <i>obtain</i> the relation $x^2y_{n+2} + (2n+1)x \ y_{n+1} + (n^2 + m^2)y_n = 0$.		2
b.	If $y = (x^2 - 1)^n$ then prove that $(x^2 - 1)y_{n+2} + 2x y_{n+1} - n(n+1)y_n = 0$	= 0.	2
c.	If $y = \left[\log\left(x + \sqrt{1 + x^2}\right)\right]^2$ then find y_n at x=0 by Leibnitz Theorem.		2

SECTION-C

Q.3	Attempt one Questions. (1x3=3)	CO
a.	If $y = \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$ then show that $y_n = 2 (-1)^{n-1} (n-1)! \sin^n \theta \sin n\theta$ where $\theta = \tan^{-1} \left(\frac{1}{x} \right)$.	2
b.	Obtain nth order derivative y_n , for the function $y = \sin^2 x \cos^3 x$.	2