01VIXSM Deep Natural Language Processing

Prof. Luca Cagliero
Dipartimento di Automatica e Informatica
Politecnico di Torino

Who we are

- 4 Full Professors
- 2 Associate Professors
- 3 Researchers with Tenure Track
- 2 Researchers with Non-Tenure Track
- Around 20 PhD/Post Doc

NLP, Multimodal Learning and related areas

- Luca Cagliero, Associate Professor
- Jacopo Fior, Post Doc
 Time series Analysis, Financial Data
- Lorenzo Vaiani, PhD Student
 Multimodal Learning, NLP
- Giuseppe Gallipoli, PhD Student
 NLP, Conversational Agents
- Davide Napolitano, PhD Student
 Multimodal Learning, Explainable Al
- Irene Benedetto, PhD Student
 - O Apprenticeship PhD with Jakala
 - O Manager: Dr. Francesco Tarasconi
 - O Legal Al
- Simone Papicchio, PhD Student
 - O Joint program with EURECOM (Sophia Antipolis, France)
 - O Co-supervised by Prof. Paolo Papotti
 - O Table Representation Learning, Large Language Models

Current research interests - NLP

- Summarization
 - News, Scientific Articles, Patents, Social Posts, etc.
- Text Style Transfer
 - From informal to formal, from negative sentiment to positive
- Entity Recognition and Disambiguation
 - Legal Terms, Financial Parties, Figurative Language
- Large Language Models
 - Few-Shot Learning, NLU model evaluation

Current research interests - Multimodal Learning

- Hate Speech Detection in Social Media Contents
- Multimodal Fake News detection
- Multimodal Machine Translation
- Multimodal Word Sense Disambiguation
- Emotion Recognition from Video Clips
- Automatic Slide Generation
- Audio Podcast and Video Meeting Summarization
- Explainable AI
- Modality-Agnostic Architectures

Current research interests – Table Representation Learning

Semantic Parsing

Question Answering

Current research interests – Time Series Analysis

- Contrastive representation of time series
 - Augmentation techniques for self-supervised learning
 - Time series segmentation
 - Time series forecasting
 - Anomaly detection

Calendar

- 8 CFU -> 80 hours of frontal lecture/practice
 - 41 hours of frontal lecture
 - 18 hours of in-class practice
 - In presence, except for
 - Catch-up lessons
 - We will use BBB Virtual Classroom if necessary
 - 21 hours of laboratory practices (3 hours each)
 - All in presence

Calendar

- Planning
 - 14 weeks
 - 7 labs -> half of the weeks
 - 59 hours of in-class lectures/practices
 - Ideally
 - 4.5 hours per week
 - In practice
 - 6 hours per week for the first half of the semester
 - 3 hours in the last weeks
 - O Why?
 - We need to introduce NLP fundamentals asap to start the project work earlier

Timetable

- Available on the Didactic Portal
- Lectures
 - Tuesday from 4pm to 7pm Room 29
 - Friday from 1pm to 4pm Room R1
 - Friday 20/10 NO LECTURE
 - (Further changes to be announced)
- Practices
 - Thursday from 4pm to 7pm at LADISPE
 - NO LAB IN THE FIRST WEEK

Videorecordings

- In-class lectures will be recorded using the Virtual Classroom (BBB)
- Video recordings will be made available to enrolled students only
 - The publication delay is unpredictable (typically, few days)
- Lab practices will <u>not</u> be recorded
 - We will share all the necessary materials (text, solutions, etc) through the Didactic Portal in advance

Videorecordings

- No interactions with remote students
 - We foster students' participation to in-presence lectures
 - Dual-channel communication (both remote and in-presence) degrades the quality of in-presence lectures
 - o If you have specific questions, please send an email
- Students' microphones and cameras we will disabled

Prerequisites

- Fundamentals of Data Sciences, Machine Learning, and Deep Learning
- Basic knowledge of the Python language

Content outline

- Fundamentals of Natural Language Processing
- Main Deep Learning solutions for learning word, sentence, and contextualized embeddings
- Fundamentals of recommender systems
- Main NLP applications

Content outline

- Fundamentals of Natural Language Processing
- Main Deep Learning solutions for learning word, sentence, and contextualized embeddings
- Fundamentals of recommender systems
- Main NLP applications

Main topics

- Natural Language Processing fundamentals
 - text characteristics, text preparation, topic modelling, main NLP applications
- Vector representations of text
 - word embedding architectures and shallow sentence embedding architectures
- Contextualized embedding, the attention mechanism
- Entity Recognition, Intent Detection, Question Answering
- Text summarization
- Machine Translation
- Recommender Systems
- Application of NO SQL Databases for Information Retrieval: Elastic Search
- Text Categorization and Sentiment Analysis
- NLP pipeline design
 - requirement analysis, methodology design and implementation, empirical assessment, outcome presentation

Main topics

More details available at

https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=0 1VIXSM&p_a_acc=2024&p_header=S&p_lang=EN

Laboratories

- 1. Text preprocessing and topic modelling
- 2. Word and sentence embeddings
- 3. Entity Recognition and intent detection
- 4. Information Retrieval and recommender systems
- 5. Summarization
- 6. Machine translation
- 7. Al Chatbots

LABS START IN THE 2ND WEEK

(schedule of the next labs to be announced)

Laboratories

- We use Google Colab
 - https://colab.research.google.com/
- You need a Google account
- Practice text and solutions will be shared through the didactic portal to all enrolled students

Teaching materials

- Handouts will be uploaded on the didactic portals
 - They will be made available throughout the course
- Additional materials
 - Scientific papers used to deepen the knowledge on specific topics covered by the slides
 - Not mandatory to pass the exam

Teaching materials

- Books / additional readings
 - Embeddings in Natural Language Processing: Theory and Advances in Vector Representations of Meaning. Mohammad Taher Pilehvar, Jose Camacho-Collados. Morgan & Claypool. ISBN: 9781636390215
 - Neural Network Methods for Natural Language Processing. Yoav Goldberg. Morgan & Claypool. ISBN: 9781627052955
 - Deep Learning in Natural Language Processing. Li Deng and Yang Liu Editors. Springer. ISBN: 9789811052088

Exam rules

- The exam consists of
 - a written test (max. 22 points)
 - Covering theoretical aspects introduced during the course
 - Closed and/or open-ended questions
 - A group project (max. 10 points)
 - A team project is assigned during the course
 - The project must be submitted through the Didactic Portal (section "Elaborati")
 - The evaluation comprises an oral discussion
 - The final score is given by the sum of the points achieved in the written part and in the evaluation of the final report

Exam rules

- The written test is scheduled during the official exam session
 - All marks will be recorded by the end of the session
 - Exam bookings are mandatory
 - The exam is <u>closed-books</u>
- The group project will be assigned well before the end of the course
 - Teams consist of 3-4 students
 - The assignment of the specific topic is <u>at the discretion of the teachers</u>

Exam rules

- The project score is valid until the end of the academic year (until September 2024)
- When you pass the written test we automatically assign the final grade by summing the achieved project score (if any)
- If you want to improve the mark of the written test you can reject it and redo the test at the next available exam
- If you want to improve the score of the project you have to redo it from scratch
 - No supplementary oral part is allowed

Project rules

- Each team has to
 - Submit a project report (including references to project code, data, and models for reproducibility reasons)
 - Orally present the work (in group)
 - Whether using presentation slides or not
- To sum up the achieved project score within a exam session, you have to deliver the project report and code <u>1</u> week before the end of the session
 - We will revise report and code and set up an appointment for the discussion by the end of the session
- All grades of the written part (possibly including the project score) MUST be recorded within the official exam session

Project rules: examples

I plan to give the written exam in the winter examination session (January-

February 2024)

Tuesday, 19/12/2023

Deadline to complete the enrollment (candidates from ot

Wednesday, 27/12/2023 to Friday, 05/01/2024

Closure of the Office of the University Registrar and all Offices

Monday, 22/01/2024 to Saturday, 02/03/2024

WINTER EXAMINATION SESSION - a.y. 2023/24

To get the extra points my team has to deliver the project at most 1 week before the end, i.e., by 24/2/2023

niversity closure)

Sunday, 03/03/2024

Credit Transfer - Master's degree programmes - second semester (recognition of credits earned at another university)

Deadline for submitting your Apply@polito application

Monday, 04/03/2024

Application deadline for admissions to Master's degree programmes in second semester

Monday, 04/03/2024

Application deadline for credit transfer for Master's Degree programmes - second semester

Project rules: examples

 I plan to give the written exam in the winter examination session (January-February 2024)

Tuesday, 19/12/2023

Deadline to complete the enrollment (candidates from ot

Wednesday, 27/12/2023 to Friday, 05/01/2024

Closure of the Office of the University Registrar and all Offices

Monday, 22/01/2024 to Saturday, 02/03/2024

WINTER EXAMINATION SESSION – a.y. 2023/24

If you deliver the project on time, we will set up a 20/30min call/meeting to discuss about the project during the last week of the session, i.e., between 24/2 and 2/3

niversity closure)

Sunday, 03/03/2024

Credit Transfer - Master's degree programmes - second semester (recognition of credits earned at another university)

Deadline for submitting your Apply@polito application

Monday, 04/03/2024

Application deadline for admissions to Master's degree programmes in second semester

Monday, 04/03/2024

Application deadline for credit transfer for Master's Degree programmes - second semester

Consulting

- At the end of the lecture or by setting up an appointment
 - Send an email
- Practical questions about code and libraries
 - Mainly during the laboratory activities and in-class practices
- Theoretical/methodological questions
 - Mainly during frontal lectures

Consulting

- A couple of in-class lectures will be devoted to the help desk for the final project
 - Mainly for methodological questions and answers
 - No real-time code debugging!
- We recommend students to start the project work as soon as possible to take advantage of the help desk sessions

Acknowlegdements and copyright license

- Copyright licence
 - Attribution + Noncommercial + NoDerivatives

- Acknowledgements
 - I would like to thank Dr. Moreno La Quatra, who collaborated to the writing and revision of the teaching content.
- Affiliation
 - The author and his staff are currently members of the Database and Data Mining Group at Dipartimento di Automatica e Informatica (Politecnico di Torino) and of the SmartData interdepartmental centre
 - https://dbdmg.polito.it
 - https://smartdata.polito.it

Thank you!