Regrese znečištění v Pekingu MAD 3 projekt

Bc. Moravec Vojtěch

ZS 2019/2020

Vysoká škola báňská – Technická univerzita Ostrava

Cíl

- Provést explorační analýzu
- Připravit datasety pro regresi
- Provést a ohodnotit regresi

Informace ohledně datasetu

- 1 Transakce = Záznam o měření koncentrace pevných části PM_{2.5} ve vzduchu (μg/m³)
- Data od 1.1.2010 až do 31.12.2014
- 43 824 záznamů a 12 atributů
 - 6 numerických atributů + 1 cílový
 - zbylé atributy reprezentují datum a čas
 - z data (den, měsíc, rok) jsme vytvořili nový atribut "den v týdnu"

Časové atributy

- Jak pracovat s atributy dne, měsíce, roku, hodiny, dne v týdnu?
- Zpracovat jako numerický nebo kategoriální atribut?
- Podíváme se na závilost cílového atributu, vzhledem k těmto atributům
 - Nalezneme-li závislost (např. koncentrace roste s měsícem) numerický
 - Jinak kategoriální a provedeme jejich binarizaci

Koncentrace vzhledem k měsíci

Nevidíme žádnou závislost, že koncentrace klesá nebo roste spolu s měsícem.

Koncentrace vzhledem k dnu týdne

Koncentrace $PM_{2.5}$ je nezávislá na dnu týdne.

Odlehlé pozorování

Odlehlé pozorování nalezené pro:

- Rychlost větru (4 893) ¹
- Doba deště (1 739) ¹
- Doba sněžení (368) ¹
- Koncentrace $PM_{2.5}$ (1 773) všechny odstraněny

¹Odlehlé pozorování byly ponechýny v některých datasetech

Datasety pro regresi

 Ve všech datasetech byla provedena normalizace hodnot do rozmezí 0,0 až 1,0

Dataset	Počet transakcí	Počet attributů
df_binAll	39984	89
df_binNoDay	39984	58
df_noOut_binNoDay	33512	58
df_noOut_binNoDay_20attr	33512	20
df_noOut_binNoDay_10attr	33512	10

Regrese pomocí SVR

Regrese pomocí DecisionTreeRegressor

Regrese pomocí MLPRegressor

Sourhn výsledků

Algoritmus	Čas učení (s)	R^2	MSE
SVR	27,209	0,305	3326,722
DecisionTreeRegressor	0,078	0,229	3731,770
MLPRegressor	18,880	0,336	3172,276

Ansámbl metody

- RandomForestRegressor vedl pouze k minimálnímu zlepšení
- Nejlepší boostovací metody seřazeny podle zlepšení (od nejlepšího):
 - 1. HistGradientBoostingRegressor
 - 2. GradientBoostingRegressor
 - 3. AdaBoostRegressor

Boostovací metody - HistGradientBoostingRegressor

Souhrn všech regresorů

Závěr

- Provedli jsme explorační analýzu
- Vytvořili jsme datasety
- Otestovali jsme regresory a zhodnotili jsme je
- Výsledky regresorů jsou podprůměrné
- ullet Koncentrace $PM_{2.5}$ je těžko předpovidatelná

Děkuji za pozornost

Otázky?