Exercice 11. Factoriser en produit de polynômes irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$:

1.
$$P = X^5 + 32$$

3.
$$P = X^3 + 2X^2 + 2X + 1$$

5.
$$P = X^{2n} - 2X^n \cos t + 1$$

2.
$$P = X^4 + X^3 + X^2 + X + 1$$
 4. $P = X^6 + 2X^4 + 2X^2 + 1$

$$P = X^6 + 2X^4 + 2X^2 + 1$$

Solution.

1. On résout dans $\mathbb{C}: z^5 = -32 = (-2)^5$. On trouve 5 racines : $-2e^{i\frac{2k\pi}{5}}$ avec k = 0, 1, 2, 3, 4. Factorisation dans $\mathbb{C}[X]: X^5 + 32 = (X+2)(X+2e^{i\frac{2\pi}{5}})(X+2e^{i\frac{4\pi}{5}})(X+2e^{-i\frac{4\pi}{5}})(X+2e^{-i\frac{2\pi}{5}})$. Pour la factorisation dans \mathbb{R} , on met les racines conjuguées ensemble. On obtient : $X^{5} + 32 = (X+2)(X^{2} + 4\cos(2\pi/5)X + 4)(X^{2} + 4\cos(4\pi/5)X + 4).$

D'un autre côté, on a l'identité remarquable

$$X^5 + 32 = X^5 - (-2)^5 = (X+2)(X^4 - 2X^3 + 4X^2 - 8X + 16)$$

Donc en posant $X^4 - 2X^3 + 4X^2 - 8X + 16 = (X^2 + 4aX + 4)(X^2 + 4bX + 4)$, en développant et en identifiant les coefficients, on trouve

$$\begin{cases} a+b &= -\frac{1}{2} \\ ab &= -\frac{1}{4} \end{cases}$$
 i.e. a et b sont racines de $X^2 + \frac{1}{2}X - \frac{1}{4}$.

On calcule alors les valeurs possibles pour a et b et puisque $\cos\left(\frac{2\pi}{5}\right) > 0$ et $\cos\left(\frac{4\pi}{5}\right) < 0$, on en déduit leurs valeurs par unicité de la décomposition en produit d'irréductibles dans $\mathbb{R}[X]$:

$$\cos\left(\frac{2\pi}{5}\right) = \frac{-1+\sqrt{5}}{4} \quad \text{et} \quad \cos\left(\frac{4\pi}{5}\right) = -\frac{1+\sqrt{5}}{4}.$$

2. On constate : $X^5 - 1 = (X - 1)(X^4 + X^3 + X^2 + X + 1)$.

On factorise $X^5 - 1$: on résout $z^5 = 1$ dans \mathbb{C} . Les racines sont $e^{2i\pi k/5}$ avec $k \in [0, 4]$. Factorisation dans $\mathbb{C}: X^5 - 1 = (X - 1)(X - e^{2i\pi/5})(X - e^{4i\pi/5})(X - e^{6i\pi/5})(X - e^{8i\pi/5}).$

Pour la factorisation dans \mathbb{R} , on met les racines conjuguées ensemble : $e^{2i\pi/5}$, $e^{8i\pi/5}$ et $e^{4i\pi/5}$, $e^{6i\pi/5}$. On obtient: $X^5 - 1 = (X - 1)(X - 2\operatorname{Re}(e^{2i\pi/5})X + 1)(X - 2\operatorname{Re}(e^{4i\pi/5})X + 1)$.

$$P = (X - e^{2i\pi/5})(X - e^{4i\pi/5})(X - e^{6i\pi/5})(X - e^{8i\pi/5}).$$

$$P = (X^2 - 2\cos\left(\frac{2\pi}{5}\right)X + 1)(X^2 - 2\cos\left(\frac{4\pi}{5}\right)X + 1).$$

3. -1 est racine évidente de P.

Factorisation dans $\mathbb{R}: P = (X+1)(X^2+X+1)$.

Factorisation dans $\mathbb{C}: P = (X+1)(X-e^{2i\pi/3})(X-e^{-2i\pi/3})$

4. On pose $Y=X^2$. Alors $X^6+2X^4+2X^2+1=Y^3+2Y^2+2Y+1$ qu'on a déjà factorisé à la question précédente donc $X^6 + 2X^4 + 2X^2 + 1 = (X^2 + 1)(X^2 - e^{2i\pi/3})(X^2 - e^{-2i\pi/3})$.

Factorisation dans $\mathbb{C}: X^6 + 2X^4 + 2X^2 + 1 = (X - i)(X + i)(X - e^{i\pi/3})(X + e^{i\pi/3})(X - e^{-i\pi/3})(X + e^{-i\pi/3})$.

Pour la factorisation dans \mathbb{R} , on associe les racines conjuguées.

Factorisation dans $\mathbb{R}: X^6 + 2X^4 + 2X^2 + 1 = (X^2 + 1)(X^2 - X + 1)(X^2 + X + 1)$.

5. On pose $Y = X^n$. On a $Y^2 - 2\cos(t)Y + 1 = (Y - e^{it})(Y - e^{-it})$. On revient à X donc on cherche les racines de $X^n - e^{it}$ et $X^n - e^{-it}$.

On trouve
$$z=e^{i\frac{(2k\pi+t)}{n}}$$
 ou $z=e^{i\frac{(2k\pi-t)}{n}}$ avec $k\in \llbracket 0,n-1 \rrbracket$.
Factorisation dans $\mathbb{C}: X^{2n}-2X^n\cos t+1=\prod_{k=0}^{n-1}\left(X-e^{i\frac{(2k\pi+t)}{n}}\right)\left(X-e^{i\frac{(2k\pi+t)}{n}}\right)$.
Pour la factorisation dans \mathbb{R} , on associe les racines conjuguées. Or, $e^{-i\frac{(2k\pi+t)}{n}}=e^{i\frac{(2(n-k)\pi-t)}{n}}$.
Factorisation dans $\mathbb{R}: X^{2n}-2X^n\cos t+1=\prod_{k=0}^{n-1}\left(X^2-2\cos\left(\frac{(2k\pi+t)}{n}\right)X+1\right)$.

Exercice 12. Soit $P = X^3 - X^2 + \lambda$, où $\lambda \in \mathbb{C}$.

Déterminer λ pour que P ait une racine double; factoriser alors P.

Solution. Soit a une racine double de P.

$$0 = P'(a) = 3a^2 - 2a$$
 donc $a = 0$ ou $a = 2/3$.

Si
$$a=0:0=P(0)=\lambda$$
. Dans ce cas $\lambda=0$ et $P=X^2(X-1)$.

Si
$$a = \frac{2}{3}$$
: $P(2/3) = 0$ alors $\lambda = 4/27$ et $P = (X - 2/3)^2(X + 1/3)$.

Exercice 13. Déterminer $\lambda \in \mathbb{C}$ pour que le polynôme $P = X^3 - 6X^2 + 11X + \lambda$ ait deux racines dont la différence est 2; factoriser alors P.

Solution. On note a et a-2 deux racines de P et b la troisième. Donc P=(X-a)(X-a+2)(X-b). On développe $P=X^3+(-2a+2-b)X^2+(a^2+2ab-2a-2b)X+ab(-a+2)$. Par identification : (-2a+2-b)=-6 et $(a^2+2ab-2a-2b)=11$ et $ab(-a+2)=\lambda$. $a^2-6a+9=0$ donc a=3 et b=2 et $\lambda=-6$. P=(X-3)(X-1)(X-2)

Exercice 18.

- 3. Déterminer tous les polynômes P de $\mathbb{C}[X]$ tels que (X+4)P(X)=XP(X+1).
- 4. Déterminer tous les polynômes P de $\mathbb{C}[X]$ tels que P' divise P.

Solution.

3. Analyse : soit P tel que (X + 4)P(X) = XP(X + 1).

Si P est constant (disons égal à λ) alors $\lambda(X+4)=\lambda X$ donc $\lambda=0$ i.e. P est nul.

Sinon, considérons une racine $\alpha \in \mathbb{C}$ de P (théorème de d'Alembert-Gauss).

On a $\alpha P(\alpha+1)=(\alpha+4)P(\alpha)=0$ donc $\alpha=0$ ou $\alpha+1$ est racine de P. Si α n'est pas un entier négatif on montre alors par récurrence que $\alpha+n$ est racine de P pour tout $n\in\mathbb{N}$. P aurait alors une infinité de racine donc serait nul, ce qui est exclu. Ainsi α est un entier négatif.

De la même manière, on a $(\alpha - 1 + 4)P(\alpha - 1) = (\alpha + 3)P(\alpha) = 0$ donc $\alpha = -3$ ou $\alpha - 1$ est racine de P. Si α n'est pas un entier ≥ -3 alors $\alpha - n$ est racine de P pour tout $n \in \mathbb{N}$. On aurait encore une infinité de racine donc P = 0, ce qui est exclu. Ainsi, α est un entier supérieur ou égal à -3.

Finalement $\alpha \in \{-3, -2, -1, 0\}$. Or, en évaluant (X + 4)P(X) = XP(X + 1) en -4 et 0 on trouve que -3 et 0 sont racines de P et donc -2 et -1 aussi d'après ce qui précède. L'ensemble des racines de P est donc exactement $\{-3, -2, -1, 0\}$ autrement dit le polynôme est de la forme

$$P = \lambda X^{p} (X+1)^{q} (X+2)^{r} (X+3)^{s}$$

où $p,q,r,s\in\mathbb{N}^*$ sont les multiplicités des racines et $\lambda\in\mathbb{C}^*$. En injectant cela dans la relation sur P on obtient

$$\lambda X^{p}(X+1)^{q}(X+2)^{r}(X+3)^{s}(X+4) = \lambda X(X+1)^{p}(X+2)^{q}(X+3)^{r}(X+4)^{s}.$$

Par unicité de la décomposition en facteurs irréductibles, cette relation impose que p=q=r=s=1 i.e.

$$P = \lambda X(X+1)(X+2)(X+3).$$

Synthèse : si $P = \lambda X(X+1)(X+2)(X+3)$ (avec éventuellement $\lambda = 0$) alors on a bien

$$(X+4)P(X) = XP(X+1).$$

4. Analyse : soit P tel que P' divise P i.e. il existe un polynôme Q tel que P = QP'.

Si P est constant alors $P = Q \times 0 = 0$.

Sinon, considérons une racine $\alpha \in \mathbb{C}$ de P (théorème de d'Alembert-Gauss). Soit $m \in \mathbb{N}^*$ la multiplicité de cette racine. On a donc $P(\alpha) = P'(\alpha) = \ldots = P^{(m-1)}(\alpha) = 0$ et $P^{(m)}(\alpha) \neq 0$. Cela signifie aussi que α est racine d'ordre m-1 de P' (éventuellement m=1 et α n'est pas racine de P'). Ainsi on a $P = (X - \alpha)^m R_1$ et $P' = (X - \alpha)^{m-1} R_2$ avec $R_1(\alpha) \neq 0$ et $R_2(\alpha) \neq 0$. En injectant cela dans la relation P = QP' on trouve

$$(X - \alpha)R_1 = QR_2$$

et en évaluant en α , on obtient $Q(\alpha) = 0$. Or, $\deg Q = \deg P - \deg P' = 1$ donc il n'a qu'une racine. Cela signifie que α est unique et donc que P est de la forme $P = \lambda (X - \alpha)^n$ avec $\lambda \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$.

Synthèse : le polynôme nul est solution du problème et pour tous $\lambda \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$, le polynôme $P = \lambda (X - \alpha)^n$ vérifie bien

$$P' = n\lambda(X - \alpha)^{n-1}$$
 divise P .

Exercice 19. On définit par récurrence la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ par : $\begin{cases} P_0 = 1 \; ; \; P_1 = X \\ \forall n \in \mathbb{N}^*, \quad P_{n+1} = 2XP_n - P_{n-1} \end{cases}$

- 1. Calculer P_2 et P_3 .
- 2. Déterminer le degré et le coefficient dominant de P_n pour $n \in \mathbb{N}^*$.
- 3. Montrer que $\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \quad P_n(\cos x) = \cos(nx).$
- 4. Montrer que P_n est scindé sur $\mathbb{R}[X]$ et donner ses racines.

Solution.

- 1. $P_2 = 2X^2 1$, $P_3 = 4X^3 3X$.
- 2. Monôme de plus haut degré : $2^{n-1}X^n$ (à montrer par récurrence).
- 3. Par récurrence. La clé de l'hérédité est :

$$P_{n+1}(\cos x) = 2\cos x P_n(\cos x) - P_{n-1}(\cos x) = 2\cos x \cos(nx) - \cos(n-1)x.$$

Or:
$$\cos(nx) = \cos((n-1)x + x) = \cos((n-1)x)\cos x - \sin((n-1)x)\sin x$$
.

$$P_{n+1}(\cos x) = \cos((n-1)x)(2\cos^2 x - 1) - 2\cos x \sin x \sin((n-1)x)$$

= \cos((n-1)x)\cos(2x) - \sin(2x)\sin((n-1)x)
= \cos((n+1)x).

4. On cherche quand est-ce que $\cos(nx)$ s'annule : $\cos(nx) = 0 \Leftrightarrow nx \equiv \frac{\pi}{2}[\pi] \Leftrightarrow x \equiv \frac{\pi}{2n}[\frac{\pi}{n}].$

Donc $x = \frac{\pi}{2n} + \frac{k\pi}{n}$ avec $k \in \mathbb{Z}$. On obtient 2n représentants de x sur le cercle trigonométrique qui ont deux à deux le même cosinus.

Donc $P(\cos x) = \cos(nx) = 0 \Leftrightarrow \cos x = \cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right)$ avec $k \in [0, n-1]$. On obtient n racnies disctinctes. Comme P est de degré n, on en déduit qu'il est scindé dans \mathbb{R} .

Exercice 20. Soit $A = \begin{pmatrix} 7 & 5 \\ -6 & -4 \end{pmatrix}$.

- 1. Calculer $A^2 3A + 2I_2$.
- 2. Déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 3. En déduire A^n .

Solution.

1.
$$A^2 = \begin{pmatrix} 19 & 15 \\ -18 & -14 \end{pmatrix}$$
 donc $A^2 - 3A + 2I_2 = 0_2$.

2.
$$X^2 - 3X + 2 = (X - 1)(X - 2)$$
. Donc $X^n = (X - 1)(X - 2)Q(X) + R(X)$ avec $R(X) = aX + b$. En $X = 1 : 1 = a + b$. En $X = 2 : 2^n = 2a + b$. On résout et on trouve : $X^n = (X - 1)(X - 2)Q(X) + (2^n - 1)X + 2 - 2^n$.

3. On prend X = A. On obtient : $A^n = (2^n - 1)A + (2 - 2^n)I_2$