COL215 HW Assignment 2 - 4-Digit 7-Segment Display

Submission By:

Yash Rawat Priyanshi Gupta 2023CS50334 2023CS10106

Department of Computer Science and Engineering Indian Institute of Technology, Delhi

August 24, 2024

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

1 Task

Design a combinational circuit that takes a single 4-bit hexadecimal or decimal digit input from the switches and produces a 7-bit output for the seven-segment display of Basys 3 FPGA board. Extend the design to create a circuit that drives all 4 displays for displaying 4 digits together.

2 Overview

- 2.1 Seven-segment Decoder
- 2.2 Driving all four LEDs together

3 Design Decisions

3.1 Digits

Since we are implementing a hexadecimal system, we require 16 digits to represent the output. We use the following symbols.

Figure 1: Caption

3.2 Truth Table

Digits & Input Bits					7 Segment Display							Min-Terms: $f(A, B, C, D)$		
Digit	A	В	С	D	a	b	c	d	е	f	g	Min-Term Index		
0	0	0	0	0	1	1	1	1	1	1	0	m_0		
1	0	0	0	1	0	1	1	0	0	0	0	m_1		
2	0	0	1	0	1	1	0	1	1	0	1	m_2		
3	0	0	1	1	1	1	1	1	0	0	1	m_3		
4	0	1	0	0	0	1	1	0	0	1	1	m_4		
5	0	1	0	1	1	0	1	1	0	1	1	m_5		
6	0	1	1	0	1	0	1	1	1	1	1	m_6		
7	0	1	1	1	1	1	1	0	0	0	0	m_7		
8	1	0	0	0	1	1	1	1	1	1	1	m_8		
9	1	0	0	1	1	1	1	0	0	1	1	m_9		
A	1	0	1	0	1	1	1	0	1	1	1	m_{10}		
b	1	0	1	1	0	0	1	1	1	1	1	m_{11}		
C	1	1	0	0	1	0	0	1	1	1	0	m_{12}		
d	1	1	0	1	0	1	1	1	1	0	1	m_{13}		
E	1	1	1	0	1	0	0	1	1	1	1	m_{14}		
F	1	1	1	1	1	0	0	0	1	1	1	m_{15}		

3.3 Minimizing the Combinational Logic using K-Maps

3.3.1 Segment a

The reduced formula for segment a using the mentioned K-Map reduction is as following:

$$f(A, B, C, D) = A'B'D' + A'BD + AC'D'$$
$$+AB'C' + A'C + BC + CD'$$

3.3.2 Segment b

The reduced formula for segment b using the mentioned K-Map reduction is as following:

$$f(A, B, C, D) = A'C'D' + A'CD +$$
$$AC'D + AB'C' + A'B'$$

3.3.3 Segment c

The reduced formula for segment c using the mentioned K-Map reduction is as following:

$$f(A, B, C, D) = A'CD + A'C' +$$
$$A'B + C'D + AB'$$

3.3.4 Segment d

f(A, B, C, D)				
	C, D			
A, B	00	01	11	10
00	⁰ 1	10	⁵ 1	⁴ 1
01	² 0	³ 1	⁷ 0	⁶ 1
11	101	¹¹ 1	0	¹⁴ 1
10	⁸ 1	90	13	0

The reduced formula for segment d using the mentioned K-Map reduction is as following :

$$f(A, B, C, D) = A'B'D' + B'CD +$$
$$BC'D + BCD' + A'C'D'$$

3.3.5 Segment e

The reduced formula for segment e using the mentioned K-Map reduction is as following :

$$f(A, B, C, D) = B'C'D' + AB +$$

$$CD' + AC$$

3.3.6 Segment f

The reduced formula for segment f using the mentioned K-Map reduction is as following :

$$f(A, B, C, D) = A'BC' + BCD' +$$

$$AB' + AC + C'D'$$

3.3.7 Segment g

The reduced formula for segment g using the mentioned K-Map reduction is as following :

$$f(A, B, C, D) = A'B'C + A'BC'$$
$$CD' + AB' + AD$$