Toh Zhen Yu, Nicholas CS3243 Introduction to Artificial Intelligence Assignment 2:

Prove that *any deterministic search algorithm* will, in the worst case, search the entire state space. More formally, prove the following theorem

Theorem 1. Let A be some complete, deterministic search algorithm. Then for any search problem defined by a finite connected graph $G = \langle V, E \rangle$ (where V is the set of possible states and E are the transition edges between them), there exists a choice of start node s_0 and goal node g so that A searches through the entire graph G.

Since the number of vertices are finite, and the search algorithm is deterministic, then if t

Inductive approach: set the start node to some arbitrary node s and the goal node to some arbitrary node g_1 . Then run A on G with s and g_1 . Let U_1 be the set of unvisited nodes. A will have searched through the entire graph of G if and only if U_1 is empty. If so, we are done. Otherwise, choose an arbitrary node g_2 in U_1 and repeat this process. In general, when we run A with starting node s and goal g_n , we construct U_n . Then, if $|U_n| = 0$ we are done, otherwise we choose $g_n + 1$ from U_n . Since A is complete, all nodes are reachable. Since A is deterministic, $U_n \supseteq U_n + 1$. Since $g_n + 1 \subseteq U_n + 1$ and $g_n + 1 \subseteq U_n$, then $U_n \supseteq U_n + 1$ and $|U_n| > |U_n + 1$. Let the number of nodes in G be c, which must be finite. Then, inductively, there must be some $t \le c$ such that $|U_n| > |U_n| > |U$