Conjuntos

Conceitos Fundamentais e Operações

Aula 1
Gregory Moro Puppi Wanderley

Pontifícia Universidade Católica do Paraná (PUCPR) Bacharelado em Ciência da Computação – 3º Período

Apresentação do Professor

- Prof. Gregory Moro Puppi Wanderley
 - Graduação
 - Curso: Engenharia de Computação
 - Instituição: PUCPR
 - Mestrado
 - Dissertação: "FolksDialogue: Um Método para o Aprendizado Automático de Folksonomias a partir de Diálogo Orientado à Tarefa em Português do Brasil"
 - Instituição: PUCPR
 - Doutorado
 - Tese: "A Framework for Facilitating the Development of Systems of Systems"
 - Instituição: Université de Technologie de Compiègne France

Disciplina

Resolução de Problemas de Natureza Discreta

Plano de Ensino

Disponível no Blackboard

Objetivos

- Modelar problemas estruturados do mundo real, criando representações e utilizando estruturas discretas.
- Resolver tais problemas, selecionando métodos adequados.
- Utilizar preceitos éticos, com autorregulação e atitude cooperativa.

Temas de Estudo

- Conjuntos
- Funções
- Técnicas de Demonstração
- Indução Matemática
- Recursão Matemática
- Contagem
- Combinatória
- Álgebra de Boole
- Estruturas Algébricas

 Material didático de apoio e orientações serão constantemente disponibilizados no Blackboard.

- Material didático de apoio e orientações serão constantemente disponibilizados no Blackboard.
- Aulas com exposições e uso de recursos de metodologias ativas.

- Material didático de apoio e orientações serão constantemente disponibilizados no Blackboard.
- Aulas com exposições e uso de recursos de metodologias ativas.
- Listas de exercícios como parte integrante da avaliação.

- Material didático de apoio e orientações serão constantemente disponibilizados no Blackboard.
- Aulas com exposições e uso de recursos de metodologias ativas.
- Listas de exercícios como parte integrante da avaliação.
- Desenvolvimento de trabalhos a serem especificados para avaliação do rendimento do estudante.

- Material didático de apoio e orientações serão constantemente disponibilizados no Blackboard.
- Aulas com exposições e uso de recursos de metodologias ativas.
- Listas de exercícios como parte integrante da avaliação.
- Desenvolvimento de trabalhos a serem especificados para avaliação do rendimento do estudante.
- Avaliações individuais de caráter teórico ao longo do semestre.

Metodologias Ativas

- Utilização de diferentes metodologias ativas:
 - Flipped Classroom (Aula Invertida)
 - Problem-Based Learning (PBL)
 - Peer Instruction

Resultados de Aprendizagem

Resultado de Aprendizagem

Temas de Estudo

RA1. Efetuar operações associadas a conjuntos, relações e funções com autorregulação, ética e atitude cooperativa.

Conjuntos Funções

RA2. Construir provas de demonstração; construir o paralelo entre indução matemática e recursão, e aplicá-lo em estruturas recursivas com autorregulação, ética e atitude cooperativa.

Técnicas de Demonstração Indução Matemática Recursão Matemática

RA3. Efetuar operações de contagem e de combinatória, e demonstrar propriedades da álgebra de Boole e de estruturas algébricas com autorregulação, ética e atitude cooperativa.

Contagem Combinatória Álgebra de Boole Estruturas Algébricas

Avaliação

Atividade	Datas	RA
Trabalho 1	15/03/2019 (durante a aula)	
Lista de Exercícios I	22/03/2019 (entrega)	RA1
Prova I	22/03/2019	
Trabalho 2	26/04/2019 (durante a aula)	
Lista de Exercícios II	03/05/2019 (entrega)	RA2
Prova II	03/05/2019	
Trabalho 3	31/05/2019 (durante a aula)	
Lista de Exercícios III	07/06/2019 (entrega)	RA3
Prova III	14/06/2019	

Avaliação (cont.)

	Resultados de Aprendizagem(RA)		
Item de avaliação	RA1	RA2	RA3
Trabalho 1	0,20		
Lista de Exercícios I	0,20		
Prova I	0,40		
Trabalho 2		0,20	
Lista de Exercícios II		0,20	
Prova II	0,10	0,50	
Trabalho 3			0,20
Lista de Exercícios III			0,20
Prova III	0,10	0,10	0,60
nota do RA	1,00	1,00	1,00
peso do RA na média	0,30	0,35	0,35
média	1,00		

Avaliação (cont.)

 A nota semestral mínima para a aprovação do estudante na disciplina é 7,0 (sete) com uma frequência mínima de 75% de presença nas aulas.

Semana Estendida de Recuperação

- Atenção:
 - Semana Estendida de Recuperação (Prova): 28/06/2019

Bibliografia

Disponível na biblioteca da PUCPR

Bibliografia

- Bibliografia básica:
 - ABE, Jair Minoro; PAPAVERO, Nelson. Teoria intuitiva dos conjuntos. São Paulo: Makron Books.
 - GERSTING, Judith L. Fundamentos matemáticos para a ciência da computação. Ed. LTC.
 - SCHEINERMAN, Edward R. Matemática discreta Uma introdução. Ed. Cengage Learning ou Ed. Thomson

Bibliografia

- Bibliografia complementar:
 - ROSEN, Kenneth H. Discrete mathematics and its applications. Ed. McGraw-Hill.
 - MENEZES, Paulo Blauth. Teoria da computação: máquinas universais e computabilidade. Ed. Sagra Luzzatto
 - MATTSON, H. F. Discrete mathematics with applications.
 Jonh Wiley & Sons Pub.
 - ALENCAR FILHO, Edgard de. Iniciação à lógica matemática.
 Ed. Nobel
 - MENDELSON, Elliott. Álgebra booleana e circuitos de chaveamento. Ed. McGraw-Hill

Horário e Local

- Horário: sextas-feiras das 9h40 às 12h40
- Local
 - Sala Jacarandá 003 (Bloco 2)

Atrasos

- Serão permitidos atrasos de 15 minutos nas primeiras semanas de aula.
- Atenção aos horários da disciplina.

Listas de Exercícios e Trabalhos

- Listas de exercícios e trabalhos serão especificados ao longo do semestre.
- Detalhes e orientações específicas serão fornecidos nos mesmos.

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

Aulas

Não é permitido filmar, fotografar ou gravar em qualquer tipo de mídia as aulas, as avaliações e as atividades realizadas ou distribuir o material fornecido sem a autorização escrita do professor.

Gregory Moro Puppi Wanderley (gregory.puppi@pucpr.br)

Política de Direitos Autorais

- Todo e qualquer artefato produzido pelos alunos poderá ser disponibilizado para acesso aberto.
- A produção de cada aluno será corrigida e, na indicação de cópia de material de terceiros, sem a devida referência de autoria, levará a atribuição da nota zero.
- Atenção: cópia é crime e não será tolerada nesta disciplina.

Orientações Gerais

- Comprometimento e responsabilidade do aluno.
- Fazer as listas de exercícios e os trabalhos estipulados.
- Se preparar para as provas.
- Se organizar com o cronograma (datas) ao longo do semestre.

Contato

- Todo o contato deve ser feito preferencialmente via email:
 - gregory.puppi@pucpr.br

Plano de Aula

- Discreto vs. Contínuo
- Conceitos fundamentais de Conjuntos
- Operações em conjuntos
- Diagramas de Venn

O que são problemas de natureza discreta

(Código: #N069)

Matemática

- Discreto: Ideia de contável, enumerável, ou discreto.
 - Ex.: Número de livros de cada aluno.
 - Ex.: Conjunto dos números naturais {0, 1, 2, 3, ...}

Matemática

- Discreto: Ideia de contável, enumerável, ou discreto.
 - Ex.: Número de livros de cada aluno.
 - Ex.: Conjunto dos números naturais {0, 1, 2, 3, ...}

- Matemática
 - Contínuo: Ideia de não contável, não enumerável, ou não discreto.
 - Continuidade infinitesimal entre elementos.
 - Ex.: conjunto dos números reais {..., 2,36541, ..., 2,36542, ...}

- Matemática
 - Contínuo: Ideia de não contável, não enumerável, ou não discreto.
 - Continuidade infinitesimal entre elementos.
 - Ex.: conjunto dos números reais {..., 2,36541, ..., 2,36542, ...}

 Na disciplina estamos interessados apenas em problemas com elementos:

Computação

- Qualquer sistema computacional:
 - Possui limitações discretas ou finitas.

- Qualquer sistema computacional:
 - Possui limitações discretas ou finitas.

Memória (3 pentes, **128mb** cada)

- Qualquer sistema computacional:
 - Possui limitações discretas ou finitas.

128mb cada)

(defUn draw-message (message) "draw a message from an agent to another one as a co 25 Checks that the window is there and active. Called from the display process. blue :request green :answer Arguments: message: message to be drawn." (declare (special *spy-window* *spy-width* *message-;(format t "~%;== draw-message / *package*: ~S" *pac ;(format t "~%;== draw-message / message ~S" (omas:: (omas::%window? *spy-window*) (return-from draw-message :no-drawing-window)) (let ((sender-key (or (omas::from! message) (omas::1 (receiver-key (or (omas::to! message) (omas::1

Algoritmo (**número** de linhas, variáveis, etc.)

- Qualquer sistema computacional:
 - Possui limitações discretas ou finitas.

128mb cada)

Algoritmo (**número** de linhas, variáveis, etc.)

1000 0010 1111 Código binário de máquina (2 elementos, 0 ou 1)

Plano de Aula

- Discreto vs. Contínuo
- Conceitos fundamentais de Conjuntos
- Operações em conjuntos
- Diagramas de Venn

Contexto

- A startup que você trabalha está projetando uma rede social para ser lançada. Neste momento, o projeto está na fase de modelagem dos elementos que comporão a rede e seu contexto.
 - Defina um domínio no qual você estará modelando sua rede através do uso das estruturas discretas, e dos conceitos que serão vistos durante a aula.

- Estrutura discreta mais fundamental.
 - Estruturas discretas são utilizadas para representar objetos discretos.

- Estrutura discreta mais fundamental.
 - Estruturas discretas s\u00e3o utilizadas para representar objetos discretos.
- São usados para agrupar objetos, normalmente com alguma propriedade semelhante.

- Estrutura discreta mais fundamental.
 - Estruturas discretas são utilizadas para representar objetos discretos.
- São usados para agrupar objetos, normalmente com alguma propriedade semelhante.
 - Ex.: Os estudantes de Ciência da Computação formam um conjunto.
 - Ex.: O conjunto formado pelas cidades do Brasil que são capitais.
 - Ex.: Os jogos de RPG (Role-Playing Game) formam um conjunto.

Definição:

- "Um conjunto é uma coleção, sem repetições e sem qualquer ordenação, de zero ou mais objetos denominados elementos".
 - Elemento: objeto concreto ou abstrato.

- Notação por extensão (enumerando todos os elementos):
 - $A = \{0, 1, 2, 3\}$
 - representa o conjunto A com seus quatro elementos 0, 1, 2 e 3.

- Notação por extensão (enumerando todos os elementos):
 - $A = \{0, 1, 2, 3\}$
 - representa o conjunto A com seus quatro elementos 0, 1, 2 e 3.
 - $B = \{0, 1\}$
 - representa o conjunto B composto pelos algarismos que formam os números binários.

Notação por extensão (enumerando todos os elementos):

- $A = \{0, 1, 2, 3\}$
 - representa o conjunto A com seus quatro elementos 0, 1, 2 e 3.
- $B = \{0, 1\}$
 - representa o conjunto B composto pelos algarismos que formam os números binários.
- Vogais = {a, e, i, o, u}
 - representa o conjunto Vogais com seus elementos sendo todas as vogais.

- Notação pela(s) propriedade(s) dos elementos:
 - $S = \{x \mid P(x)\}$
 - todo o elemento de S tem a propriedade P e tudo o que tem a propriedade P é um elemento de S.

Notação pela(s) propriedade(s) dos elementos:

- $S = \{x \mid P(x)\}$
 - todo o elemento de S tem a propriedade P e tudo o que tem a propriedade P é um elemento de S.
 - Ex.: Ímpares = {x | x é um número ímpar}

Notação pela(s) propriedade(s) dos elementos:

- $S = \{x \mid P(x)\}$
 - todo o elemento de S tem a propriedade P e tudo o que tem a propriedade P é um elemento de S.
 - Ex.: Ímpares = {x | x é um número ímpar}
 - Ex.: $A = \{x \mid x \text{ é par e } x < 6\}$

Pertinência

Se x é um elemento do conjunto A, então x pertence a A.

Notação: x ∈ A

• Ex.: $A = \{0, 1, 2, 3\}, 0 \in A$

Pertinência

- Se x é um elemento do conjunto A, então x pertence a A.
 - Notação: x ∈ A
 - Ex.: $A = \{0, 1, 2, 3\}, 0 \in A$

- Se x não é um elemento de A, então x não pertence a A.
 - Notação: x ∉ A
 - Ex.: $A = \{0, 1, 2, 3\}, 8 \notin A$

- Conjuntos importantes ("padrões")
 - Conjunto Vazio: ∅ ou { }
 - Não possui elementos.

- Conjuntos importantes ("padrões")
 - Conjunto Vazio: ∅ ou { }
 - Não possui elementos.
 - Conjunto Unitário:
 - Conjunto constituído por um único elemento.
 - Ex.: $A = \{x \mid x > 0 \text{ e } x < 2\}$

- Conjuntos numéricos ("padrões")
 - N (Conjunto dos números naturais, {0, 1, 2, 3, ...})
 - Z (Conjunto dos números inteiros {..., -2, -1, 0, 1, 2, ...})
 - Q (Conjunto dos números racionais {..., -7/11, ..., 1/3, ...})
 - I (Conjunto dos números irracionais $\{..., 1+i\sqrt{3}, ...\}$)
 - R (Conjuntos dos números reais {..., -1,33, ..., 9,41, ...})

- Conjuntos finitos e infinitos
 - Conjunto finito: pode ser denotado enumerando todos os seus elementos (extensão).
 - Ex.: ∅
 - Ex.: $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Ex.: S = {x | x é cachorro}

- Conjuntos finitos e infinitos
 - Conjunto infinito: não é possível enumerar todos os seus elementos por extensão.
 - Ex.: R, Z
 - Ex.: $N = \{x \mid x \ge 0\}$
 - Ex.: Ímpares = $\{y \mid y = 2x + 1 \text{ e } x \in \mathbf{Z}\}$

Cardinalidade

- A cardinalidade de um conjunto A (i.e., |A|) é o número de elementos de A.
 - Ex.: Se A = {1,8, 91, 15}, então |A| = 4.
 - Ex.: Se A = Ø, então |A| = 0.
 - Ex.: $|N| = \infty$

Subconjuntos

 A é dito um subconjunto de B se todo elemento de A é também elemento de B.

- Subconjuntos
 - A é dito um subconjunto de B se todo elemento de A é também elemento de B.
 - Notação: A⊆B (A é um subconjunto de B, ou A está contido em B)

Subconjuntos

- A é dito um subconjunto de B se todo elemento de A é também elemento de B.
- Notação: A⊆B (A é um subconjunto de B, ou A está contido em B)
 - Ou, B⊇A (B contém A)
 - Ex.: A = {3, 7} e B = {1, 2, 3, 5, 7, 8}

Subconjuntos

- A é dito um subconjunto de B se todo elemento de A é também elemento de B.
- **Notação**: $A \subseteq B$ (A é um subconjunto de B, ou A está **contido** em *B*)
 - Ou, B⊇A (B contém A)
 - Ex.: A = {3, 7} e B = {1, 2, 3, 5, 7, 8}
 - Analogamente, A ⊄ B (A não está contido em B)
 - Ex.: A = {a, b, c} e B = {a, b, j, l, m}

- Subconjunto próprio
 - $A \in \mathbf{subconjunto}$ próprio de B, se $A \subseteq B$ e existe $b \in B$ tal que $b \notin A$.

- Subconjunto próprio
 - $A \in \mathbf{subconjunto} \ \mathsf{pr\acute{o}prio} \ \mathsf{de} \ B$, se $A \subseteq B$ e existe $b \in B$ tal que $b \notin A$.
 - Ex.: Se A = {2, 5} e B = {2, 5, 7}, então A é subconjunto próprio de B.

Subconjuntos (exemplos)

- {a, b}⊆ {b, a}
- $\{1, 2, 3\} \subseteq \mathbb{N}$
- $N \subseteq Z$
- Ø ⊆ {a, b, c}
- \bullet $\varnothing \subseteq \mathbb{N}$
- $\{a, b, d\} \not\subset \{b, d, f\}$

Conjunto Potência

- Seja A um conjunto, o conjunto potência ou conjunto das partes de A, P(A), é o conjunto cujos elementos são todas as partes de A.
 - Ex.: $A = \{1, 2\}$
 - $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

Conjunto Potência

- Seja A um conjunto, o conjunto potência ou conjunto das partes de A, P(A), é o conjunto cujos elementos são todas as partes de A.
 - Ex.: $A = \{1, 2\}$
 - $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$
 - Se A é finito, então P(A) é finito contendo 2ⁿ elementos.
 - Ex.: $A = \{1\}$
 - $P(A) = 2^1$ elementos = $\{\emptyset, \{1\}\}$

Conjunto Potência

- Ex.: A = {a, b, c}
 - $P(A) = 2^3 = 8$ elementos
 - {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
- Conjunto potência: Propriedades
 - $P(A) = \{x \mid x \subseteq A\}$
 - $x \subseteq A \Leftrightarrow x \in P(A)$
 - $\varnothing \in P(A)$
 - A ∈ P(A)

- Conjunto universo (U)
 - Contém todos os conjuntos considerados no contexto em questão.

- Conjunto universo (U)
 - Contém todos os conjuntos considerados no contexto em questão.
 - Definido U, para qualquer outro conjunto A:
 - A ⊆ U

- Conjunto universo (U)
 - Contém todos os conjuntos considerados no contexto em questão.
 - Definido U, para qualquer outro conjunto A:
 - A ⊆ U
 - Ex.: Conjunto N como base num dado contexto, U = N

- Conjunto universo (U)
 - Contém todos os conjuntos considerados no contexto em questão.
 - Definido U, para qualquer outro conjunto A:
 - A ⊆ U
 - Ex.: Conjunto N como base num dado contexto, U = N
 - Então, outros conjuntos podem ser derivados:
 - ex.: conjunto dos Pares = $\{y \mid y = 2x \in X \in \mathbb{N}\}$

- Igualdade de conjuntos
 - Dois conjuntos A e B são iguais (A = B) se, e somente se, todo o elemento de A pertencer a B e todo o elemento de B pertencer a A.

- Igualdade de conjuntos
 - Dois conjuntos A e B são iguais (A = B) se, e somente se, todo o elemento de A pertencer a B e todo o elemento de B pertencer a A.
 - $A \subseteq B$ e $B \subseteq A$

- Igualdade de conjuntos
 - Dois conjuntos A e B são iguais (A = B) se, e somente se, todo o elemento de A pertencer a B e todo o elemento de B pertencer a A.
 - $A \subseteq B \in B \subseteq A$
 - Ex.: Se A = {1, 2, 4, 7} e B = {4, 7, 2, 1}, então A = B
 - Ex.: Se A = {1, 5, 3} e B = {1, 3, 5}, então A = B

- Subconjunto vs. Pertinência
 - Distinguir entre subconjunto (contido) e pertinência.

Subconjunto vs. Pertinência

- Distinguir entre subconjunto (contido) e pertinência.
- Dado o conjunto A = {3, 4, 5, ∅, {a}, {b, c}}
 - {4}∉A
 - \circ $\varnothing \in A$
 - {a}∈A
 - {b, c}∈A
 - {1, 2, 3} ∉A
 - Ø⊆A
 - {3}⊆A
 - {3, 4, 5}⊆A

Plano de Aula

- Discreto vs. Contínuo
- Conceitos fundamentais de Conjuntos
- Operações em conjuntos
- Diagramas de Venn

União

- A união de dois conjuntos A e B é o conjunto de todos os elementos x, tais que x∈A ou x∈B.
 - $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$

União

- A união de dois conjuntos A e B é o conjunto de todos os elementos x, tais que x∈A ou x∈B.
 - $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$
 - Ex.: A = {a, b, e}, B = {b, c, d}
 - $A \cup B = \{a, b, c, d, e\}$
 - Ex.: A = $\{x \in \mathbb{N} \mid x \in \mathbb{N}\}$, B = $\{x \in \mathbb{N} \mid x \in \mathbb{N}\}$
 - $A \cup B = N$

Interseção

- A interseção de dois conjuntos A e B é o conjunto de todos os elementos x, tais que x∈A e x∈B.
 - $A \cap B = \{x \mid x \in A \in x \in B\}$

Interseção

- A interseção de dois conjuntos A e B é o conjunto de todos os elementos x, tais que x∈A e x∈B.
 - $A \cap B = \{x \mid x \in A \in x \in B\}$
 - Ex.: A = {1, 2}, B = {2, 3, 4, 5}, C = {4, 5}
 - $A \cap B = \{2\}$
 - A ∩ C = Ø (A e C são ditos disjuntos)
 - B \cap C = {4, 5}
 - $A \cap A = \{1, 2\} = A$

Complemento

- Seja A uma parte de U (conjunto universo).
 - O complemento de A em relação a U, dito U \ A ou A^c, é formado por todos os elementos x de U, tais que x ∉ A.
 - $U \setminus A = A^C = \{x \in U \mid x \notin A\}$

Complemento

- Seja A uma parte de U (conjunto universo).
 - O complemento de A em relação a U, dito U \ A ou A^c, é formado por todos os elementos x de U, tais que x ∉ A.
 - $U \setminus A = A^C = \{x \in U \mid x \notin A\}$
 - Ex.: U = {1, 2, 3, 4, 5}, A = {2, 3}
 - $A^c = \{1, 4, 5\}$
 - Ex.: U = N, A = {x ∈ N | x é ímpar}
 - $A^c = \{x \in \mathbb{N} \mid x \text{ \'e par}\}$

Diferença

- Sejam A e B duas partes de U (conjunto universo).
 - A diferença entre A e B, dito A B, é o conjunto dos elementos x tais que x ∈ A e x ∉ B.
 - $A B = \{x \in U \mid x \in A \in x \notin B\}$

Diferença

- Sejam A e B duas partes de U (conjunto universo).
 - A diferença entre A e B, dito A B, é o conjunto dos elementos x tais que x ∈ A e x ∉ B.
 - $A B = \{x \in U \mid x \in A \in x \notin B\}$
 - Ex.: A = {1, 2, 3}, B = {3, 9}
 - $A B = \{1, 2\}$
 - $B A = \{9\}$
 - $\bullet \quad \mathsf{A} \mathsf{A} = \varnothing$

Identidades de Conjuntos

Identidades de Conjuntos.	
Identidade	Nome
$A \cup \emptyset = A$	Propriedades dos elementos neutros.
$A \cap \mathbf{U} = A$	
$A \cup \mathbf{U} = \mathbf{U}$	Propriedades de dominação.
$A \cap \emptyset = \emptyset$	
$A \cup A = A$	Propriedades idempotentes.
$A \cap A = A$	
$A \cup B = B \cup A$	Propriedades comutativas.
$A \cap B = B \cap A$	
$A \cup (B \cup C) = (A \cup B) \cup C$	Propriedades associativas.
$A \cap (B \cap C) = (A \cap B) \cap C$	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Propriedades distributivas.
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
$A \cup (A \cap B) = A$	Propriedades de absorção.
$A\cap (A\cup B)=A$	
$A \cup A^c = \mathbf{U}$	Propriedades dos complementares.
$A \cap A^c = \emptyset$	
$\mathbf{U}^c = \emptyset$	
$\emptyset^c = \mathbf{U}$	

Produto cartesiano

- O produto cartesiano de dois conjuntos A e B, denotado por A×B:
 - É o conjunto de pares ordenados formados por um elemento de A e por um elemento de B de todas as maneiras possíveis.
 - $A \times B = \{(a, b) \mid a \in A \in b \in B\}$

Produto cartesiano

- O produto cartesiano de dois conjuntos A e B, denotado por A×B:
 - É o conjunto de pares ordenados formados por um elemento de A e por um elemento de B de todas as maneiras possíveis.
 - $A \times B = \{(a, b) \mid a \in A \in b \in B\}$
 - Ex.: A = {1, 2, 3}, B = {a, b}
 - $A \times B = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$
 - $B \times A = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}$
 - $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
 - $B \times B = \{(a,a), (a,b), (b,a), (b,b)\}$

Produto cartesiano

- Quadrado cartesiano: A × A = A²
- $A \times B = \emptyset$ se, e somente se $A = \emptyset$ e $B = \emptyset$
- $A \times B = B \times A$ se, e somente se, $A = \emptyset$ e $B = \emptyset$ ou A = B
- Distributividade:
- $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- $A \times (B C) = (A \times B) (A \times C)$

Plano de Aula

- Discreto vs. Contínuo
- Conceitos fundamentais de Conjuntos
- Operações em conjuntos
- Diagramas de Venn

Diagramas de Venn

- Representação gráfica de conjuntos finitos.
 - Exemplo
 - U = {a, b, c, ..., n}, A = {b, c, d, e, f}, B = {e, f, g, h}, C = {I, m}

Diagramas de Venn

Diagramas de Venn

Dúvidas?

Síntese da Aula

- Estrutura discreta (representar objetos discretos)
- Pertinência
- Conjuntos "padrões"
- Conjuntos finitos e infinitos
- Subconjuntos
- Conjunto Potência
- Subconjuntos vs. Pertinência
- Operações
 - União, interseção, complemento, diferença, produto cartesiano
- Diagramas de Venn

Próxima Aula

Relações em conjuntos.