

Unihockey détection de tir et passe

QUANTIFIED SELF — MINI-PROJECT

CÉDRIC CAMPOS CARVALHO, HENRI JATON ET THOMAS FRANTZEN

Table des matières

- 1. Introduction
- 2. Description des données
- 3. Pre-processing
- 4. Techniques et paramètres utilisés
- 5. Expérience et résultats
- 6. Conclusion

1. Introduction

- Utiliser un capteur sur une canne.
- Données temporelles d'un match.
- Statistiques sur les joueurs (entraîneur, personnel).
- Détecter les passes et tirs
 - Bachend, forward
- Obtenir une visualisation des résultats via application web.

2. Description des données

- Capteurs au plus simple et non encombrants
 - Polar Sensor
 - 1 unique capteur
 - Accroché sur la canne
- Données d'accélération
 - X,Y,Z en milli-G

3. Pre-processing

- Enregistrement:
 - Séparé par tir/passe
 - Séparé backend/forward
 - Séparé par mouvement/pas de mouvement
- Données sans mouvements labellisées pour entraînement
- Concaténation de plusieurs enregistrements.

4. Technique et paramètres utilisés

- Séparation en bloc des données temporelles
 - Fréquence d'échantillonnage de l'appareil : 50Hz
 - Réduction de la taille max de 55%
- Détection de la plus grande durée d'une action
- Windows Slide pour extraire des fonctionnalités
 - Range | max min |
 - Max
 - 1er quartile
- Normalisation des données entre [-1;1]

5. Expérience et résultats (1)

MODÈLES SIMPLES/STATISTIQUES

- Entraîné sur 2/3 des données.
- Deux modèles car très bons résultats
- Utilisation des trois fonctionnalités extraites par blocs

RÉSEAU DE NEURONES

- Entraîné sur 2/3 des données avec 20% pour la validation.
- Réseau convolutif pour capter la forme du signal
- Simple réseau MLP à la suite
- Utilisation de la norme du signal en entier

	Logistic Regression	K Neighbors Classifier	Réseau convolutif
% précision entraînement	94.29	95.24	87.50
% précision test	94.34	94.34	72.73

5. Expérience et résultats (2)

MODÈLE À LA MAIN

- Rapide à entraîner
- Convergence rapide (50 epochs)
- Résultats non stables
- Over-sampling de la classe sans action
 - Changement des poids des classes

MODÈLE AUTOMATIQUE

- Keras Tuner optimisation des modèles
 - Recherche aléatoire (150 modèles)

Structure

- Conv1D + MaxPooling1D (1-2x) : Filtres, taille kernels et pools.
- Dense (2-5x) : Nombre d'unités
- Dropout : Ratio différents

5. Expérience et résultats (3)

5. Expérience et résultats (4)

6. Conclusion

- Ordre d'idée sur les statistiques d'un joueur
- Capture des données au plus simple
- Modèles rapides et légers
 - Modèle kNN (k-Nearest Neighbors) : 94% de précision
- Optimisation du modèle avec réseau de neurones
 - Convolutif 1D: 72% de précision
- Affichage des résultats via une application web
 - Nombre de passes et tirs