МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Классификация методов распознавания челюстно— лицевых костей по КТ или MPT снимкам головы человека

Студент: Кононенко Сергей, ИУ7–73Б

Научный руководитель: Филиппов М.В., к.т.н., доцент

Консультант: Гаврилова Ю.М.

<u>Цель:</u> проанализировать существующие методы распознавания челюстнолицевых костей черепа по КТ или МРТ снимкам головы человека.

Для достижения поставленной цели потребуется решить ряд задач:

- 1) Описать термины предметной области и обозначить проблему
- 2) Описать технологии, с помощью которых можно реализовать метод распознавания костей
- 3) Описать и проанализировать существующие методы распознавания костей по КТ и MPT снимкам головы человека

Актуальность работы

- Разрабатываемые метод распознавания и способ хранения могут быть применены при моделировании челюстно—лицевых операций для упрощения процесса хирургического вмешательства
- Предоперационное моделирование позволяет сократить время операции и исключить ошибки во время операции
- Предоперационное моделирование может использоваться в образовательных целях при обучении на медицинских специальностях

Термины предметной области

- Компьютерная томография метод неразрушающего послойного исследования внутренней структуры объекта посредством сканирующего просвечивания его рентгеновским излучением.
- Магнитно-резонансная томография способ получения томографических медицинских изображений для исследования внутренних органов и тканей с использованием явления ядерного магнитного резонанса.
- Классификация предсказание категории объекта и разделение объектов согласно определенным и заданным заранее признакам.
- Классификатор аналитическая модель, используемая при решении задачи классификации.

Задача классификации

- Статистические методы
 - Логистическая регрессия
 - Дискриминантный анализ
- Методы машинного обучения
 - Нейронные сети
 - о Деревья решений
 - о Метод k-ближайших соседей
 - Машины опорных векторов

Нейронные сети

- Самообучаемые модели, работа которых не требует вмешательства пользователя
- Универсальные аппроксиматоры, позволяющие аппроксимировать любую непрерывную функцию с приемлемой точностью
- Нелинейные модели, позволяющие решать задачи классификации даже при отсутствии линейной разделимости классов

Линейно разделимые классы

Линейно неразделимые классы

Методы распознавания образов

- R–CNN
- Fast R-CNN
- Faster R–CNN

- Mask R–CNN (сегментация)
- Mesh R–CNN (фокус на генерации 3D–модели)

R–CNN (Region–based Convolutional Neural Networks) (с англ. региональные сверточные нейронные сети) — семейство моделей машинного обучения для компьютерного зрения и, в частности, для обнаружения объектов.

R-CNN

Fast R-CNN

Faster R-CNN

Анализ существующих решений

Критерий	R-CNN	Fast R–CNN	Faster R–CNN
Время распознавания, сек*	~49	2.32	0.2
Время вычисления	Высокое	Высокое	Низкое
mAP** на датасете Pascal VOC 2007, %	58.5	66.9	69.9
mAP** на датасете Pascal VOC 2012, %	53.3	65.7	67.0

^{* –} меньше — лучше

^{** –} mAP (от англ. *mean average precision*) — метрика измерения точности обнаруживаемых объектов. Больше — лучше