END-OF-STUDY INTERNSHIP

GROUP KEY MANAGEMENT AND IOT SECURITY

RAMY CHEMAK

INSA CENTRE VAL DE LOIRE HEUDIASYC UMR CNRS 7253

AUGUST 31ST 2021

OVERVIEW

- Stage 1: Election-based Key Management Protocol for IoT
 - 1. Literature Review
 - 2. Election-based protocol
 - 3. Future works
- Stage 2: IoT Security engineering
- Conclusion & Feedback

STAGE 1: ELECTION-BASED KEY MANAGEMENT PROTOCOL FOR IOT

STAGE 1

- 1. Literature Review
 - 1.1 Group Key Management
 - 1.2 Multi Group Key Management Protocol
 - 1.3 Cluster Head schemes
- 2. Election-based protocol
 - 2.1 Technical Eligibility Criteria
 - 2.2 Election process
 - 2.3 Failure recovery
 - 2.4 Simulation
- 3. Future works

GROUP KEY MANAGEMENT: SUM UP

- Network subdivided into several groups
- Each network node belong to a group
- The Key Manager (KM) manages different cryptographic keys
- Security considerations:
 - √ Forward secrecy
 - √ Backward secrecy
 - √ Collusion attack recovery

GROUP KEY MANAGEMENT: PROBLEMATIC

The KM is responsible for:

- rekeying the group when needed
- generating keys for joining nodes
- revoking keys for leaving nodes

GROUP KEY MANAGEMENT: PROBLEMATIC

The KM is responsible for:

- rekeying the group when needed
- generating keys for joining nodes
- · revoking keys for leaving nodes

Single point of failure

The Key Manager is responsible for the network's security infrastructure. Hence, its breakdown or compromise can jeopardize the overall network's security.

MULTI GROUP KEY MANAGEMENT PROTOCOL

- Subdivided into 3 layers
- Considerate multi services and heterogeneous networks

Figure: Source [2]: Example of a network partitioning

MGKMP: WORKING TRACKS AND PROPOSALS

• Analysis of an n-tier architecture

MGKMP: WORKING TRACKS AND PROPOSALS

- Analysis of an n-tier architecture
- Re-order algorithm upon leave

- Analysis of an n-tier architecture
- Re-order algorithm upon leave
- Sub-grouping sequences

Figure: Source [2]: Example of a group partitioned using powers of 2 sequence

- Analysis of an n-tier architecture
- Re-order algorithm upon leave
- Sub-grouping sequences
- Refresh key generation

- Analysis of an n-tier architecture
- Re-order algorithm upon leave
- Sub-grouping sequences
- Refresh key generation
- Node's join authorization & pre-secure channel

- Analysis of an n-tier architecture
- Re-order algorithm upon leave
- Sub-grouping sequences
- Refresh key generation
- Node's join authorization & pre-secure channel
- Key Manager's single point of failure

CLUSTER HEAD SCHEMES

- First considered for network routing purposes
- Network nodes are grouped in several groups or clusters
- Each group has its own Cluster Head, which is no more than one of its nodes

RETAINED PROPOSAL

Proposed solution

By applying Cluster Head schemes to Group Key Management (GKM), we are able to achieve a decentralized GKM architecture which solves the single point of failure's issue.

ELECTION-BASED PROTOCOL

WORKFLOW OVERVIEW

- New decentralized solution for GKM
 - √ Capacity Evaluation Function
 - √ Election process
 - √ Failure recovery
- Simulations
- International conference paper

- Ensure the KM's reliability
- Considerate the nodes capacities:
 - √ Storage
 - ✓ Networking
 - ✓ Processing
- Also considerate energy

Capacity Evaluation Function score

$$c_k = e_k$$
 . $(w_s s_k + w_n n_k + w_p p_k)$

 $\text{where} \left\{ \begin{array}{l} c_k : \text{capacity score of a node } u_k \\ e_k : \text{energy attribute of a node } u_k \\ s_k : \text{storage capacity of a node } u_k \\ p_k : \text{processing capacity of a node } u_k \\ n_k : \text{networking capacity of a node } u_k \\ w_i : \text{capacities weights} \end{array} \right.$

ELECTION PROCESS

- All nodes are voters, but not all are eligibles candidates
- Eligible nodes broadcast their CEF score
- Nodes vote for best two candidates
- Elected Key Manager & Deputy KM claim their roles

ELECTION PROCESS

FAILURE RECOVERY

- Security enforcement
- Maintain Integrity & Availability

FAILURE RECOVERY

- Security enforcement
- Maintain Integrity & Availability
- Two check-over routines
 - 1. Simple check-over
 - 2. Double check-over
- Performance-security compromise

FAILURE RECOVERY

- Double check-over
- Challenge-response procedure
- Requires fast & correct answer
- Ensures both integrity & availability

21

SIMULATION

We are able to quickly reach a satisfactory performance-security compromise.

INTERNATIONAL PUBLICATION

- Conference paper in the proceedings of the *International* Conference on Communications Software (SoftCOM 2021)
- Acceptance notification received on July 23rd 2021

29th International Conference on Software, Telecommunications and Computer Networks

• More advanced simulations

- More advanced simulations
- Real-environment experiments

- More advanced simulations
- Real-environment experiments
- Revision of the current protocol

_

STAGE 2: IOT SECURITY ENGINEERING

Threats landscape IoT
 √ IoT Malwares

- Threats landscape IoT
 - √ IoT Malwares
- Common IoT vulnerabilities
 - √ Default passwords
 - ✓ Irregular updates
 - √ IoT fleet management
 - √ ... etc

CONCLUSION & FEEDBACK

THANKS FOR YOUR ATTENTION!

REFERENCES

WENDI RABINER HEINZELMAN, ANANTHA CHANDRAKASAN, AND HARI BALAKRISHNAN.

ENERGY-EFFICIENT COMMUNICATION PROTOCOL FOR WIRELESS MICROSENSOR NETWORKS. page 10, 2000.

MOHAMED ALI KANDI, HICHAM LAKHLEF, ABDELMADJID BOUABDALLAH, AND YACINE CHALLAL.

A VERSATILE KEY MANAGEMENT PROTOCOL FOR SECURE GROUP AND DEVICE-TO-DEVICE COMMUNICATION IN THE INTERNET OF THINGS.

Journal of Network and Computer Applications, 150:102480, January 2020.

MARCO TILOCA AND GIANLUCA DINI.

GREP: A GROUP REKEYING PROTOCOL BASED ON MEMBER JOIN HISTORY. In 2016 IEEE Symposium on Computers and Communication (ISCC), pages 326–333, Messina, Italy, June 2016. IEEE.

Storage Capacity Evaluation Function

$$s_k = pm \cdot \frac{sc_k}{ks}$$

 $\text{where} \left\{ \begin{array}{l} s_k : \text{storage capacity of a node } u_k \\ sc_k : \text{storage capability of a node } u_k \\ pm : \text{usable percentage of memory by protocol} \\ ks : \text{size of a key} \end{array} \right.$

Processing Capacity Evaluation Function

$$p_k = pp \cdot \frac{cc_k}{cs \cdot (p + m_j)}$$

 $\label{eq:where} \text{where} \left\{ \begin{array}{l} p_k: \text{processing capacity of a node } u_k \\ cc_k: \text{computation capability of a node } u_k \\ pp: \text{usable percentage of processor by protocol} \\ cs: \text{overhead of crypto system} \\ p: \text{number of subgroups of the group } G \\ m_j: \text{number of nodes in subgroup } S_j \end{array} \right.$

Networking Capacity Evaluation Function

$$n_k = bw_k \cdot \frac{rr_k}{(p+m_j) \cdot \max(ms)}$$

 $\text{where} \left\{ \begin{array}{l} n_k : \text{networking capacity of a node } u_k \\ bw_k : \text{bandwidth of } u_k \text{ usable by the protocol} \\ rr_k : \text{radio range of } u_k \\ ms : \text{size of a message} \\ p : \text{number of subgroups of the group G} \\ m_j : \text{number of nodes in subgroup S}_j \end{array} \right.$

Energy correlation

$$e_k = \frac{re_k}{ed_k \cdot pu_k}$$

 $\text{where} \left\{ \begin{array}{l} e_k : \text{energy attribute of a node } u_k \\ re_k : \text{residual energy of a node } u_k \\ ed_k : \text{energy drainage of } u_k \\ pu_k : \text{percentage of processor in use for } u_k \end{array} \right.$

PROTOCOL REVISION

Energy correlation (plain)

$$e_k = \frac{re_k}{ed_k \cdot pu_k}$$

OR

Energy correlation (configurable)

$$e_k = rac{\mathit{re}_k^lpha}{\mathit{ed}_k^eta \cdot \mathit{pu}_k^\gamma}$$