

Contenidos ■ Parte 1 (Conceptos básicos): □ Técnica Básica: Partición en Clases de Equivalencia □ Técnica Complementaria: Análisis de Valores Límite ☐ Estrategia de combinación de clases – Jerarquía Parte 2 (Diseño, implementación y automatización) ☐ Unitarias: Sin interfaz de usuario ni base de datos ☐ Unitarias: Con base de datos □ Integración con el interfaz de usuario ☐ (+Automatización Java/Swing y Spring Boot) □ Resumen Parte 3 (Otras): □ Otras técnicas. Explosión combinatoria ■ Tablas de Decisión Árbol de Clasificación ■ Técnicas Combinatorias □ Validaciones de Datos CV&V - Basadas en Clases de Equivalencia (1) J. Tuya, (2025)

Partición en Clases de Equivalencia

Problema 1: un sistema determina el tipo de interés aplicable a un crédito en función del importe del principal. Para valores menores de 10.000 euros se aplica el 4%, para valores mayores de 50.000 euros se aplica el 1%, en el resto de casos se aplica el 2%

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

.

Partición en Clases de Equivalencia (Equivalence Partitioning)

- Condición de entrada: importe del principal
 - □ Clases de equivalencia
 - Hasta 10.000
 - Entre 10.000 y 50.000
 - Más de 50.000
 - □ Inclusión de clases inválidas
 - Importe negativo
- Discusión:
 - □ Comportamientos no especificados explícitamente
 - □ Recomendable otras situaciones singulares: valor cero ≠ negativo
 - □ Habilidad del tester:
 - Identificar las condiciones de entrada
 - Pensar en lo que no está explícito en la especificación

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

Partición en Clases de Equivalencia

Problema 2: un sistema determina el tipo de interés aplicable a una inversión en función del saldo en la cuenta corriente. Para valores menores de 10.000 euros se aplica el 1%, para valores mayores de 50.000 euros se aplica el 4%, en el resto de casos se aplica el 2%

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

.

Partición en Clases de Equivalencia

- Condición de entrada: saldo en cuenta
- Clases de equivalencia
 - □ Hasta 10.000
 - □ Entre 10.000 y 50.000
 - ☐ Más de 50.000
- ¿Inclusión de clases inválidas?
 - □ Saldo negativo
- Discusión:
 - $\hfill\Box$ ¿Saldo negativo es realmente una clase inválida?

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

Partición en Clases de Equivalencia

■ Problema 1b: un sistema determina el tipo de interés aplicable a un crédito en función del importe del principal. Para valores menores de 10.000 euros se aplica el 4%, para valores mayores de 50.000 euros se aplica el 1%, en el resto de casos se aplica el 2%. Si el titular de la inversión es menor de 21 años se le añade medio punto porcentual adicional.

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

.

Partición en Clases de Equivalencia

- Condiciones de entrada: importe del principal y edad
- Clases de equivalencia (para cada condición de entrada)
 - □ Importe del principal
 - Hasta 10.000
 - Entre 10.000 y 50.000
 - Más de 50.000
 - Importe negativo (inválida)
 - □ Edad
 - Menor de 21
 - Mayor de 21
 - Negativa (inválida)
- ¿Cuántos casos de prueba derivamos de estas clases?
 - □ Diversas formas de hacerlo

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

Partición en Clases de Equivalencia Derivación de casos de prueba

- Estrategia típica: minimizada (minimized approach):
 - □ Crear el menor número de casos que cubran las clases válidas
 - ☐ Habitualmente uno por cada una de las inválidas (para evitar enmascaramiento de defectos) (one-to-one approach)
- En el ejercicio anterior, los casos de prueba son:

	Entradas		Salidas
	Importe	Edad	Tipo interés
Clases	Hasta 10.000	Menor de 21	4.5%
Válidas	Entre 10.000 y 50.000	Mayor de 21	2%
	Más de 50.000	Cualquiera (p.e. Mayor 21)	1%
Clases	Negativo	Cualquiera válido	error
inválidas	Cualquiera válido	Negativo	error

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

11

Clases de equivalencia de las salidas

Complementan el análisis respecto de las entradas

Problema 1 (interés crédito- importe ppal.)			Problema 1b (interés crédito-importe ppal.+edad)	
	1%, 2%, 4%, error	1%, 2%, 4%, 0%	1%, 1.5%, 2%, 2.5%, 4%, 4.5%, error	

- En problema 1b, casos de prueba anteriores, no se han contemplado los valores de salida 4%, 2.5% y 1.5%. Añadirlas
- Discusión
 - ☐ Las pruebas pueden realizarse con diferente intensidad
 - □ Habilidad del tester: determinar la técnica/intensidad más adecuada al contexto del problema (coste/beneficio)
 - □ ¿Cómo lo haríamos para el problema del triángulo?

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

Las condiciones de entrada no son necesariamente los parámetros de un programa

- Las condiciones de entrada y, por tanto, las clases de equivalencia vienen muchas veces determinadas por situaciones derivadas de relaciones entre variables o parámetros
- Ejemplo: Determinar si la posición de un objeto (dado por sus coordenadas) está dentro de un círculo determinado por su radio y centro (coordenadas)
 - □ Condiciones de entrada (para clases válidas):
 - ..
 - □ Clases de equivalencia:
 - ...

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

13

Las condiciones de entrada no son necesariamente los parámetros de un programa

- Las condiciones de entrada, y por tanto, las clases de equivalencia vienen muchas veces determinadas por situaciones derivadas de relaciones entre variables o parámetros
- Ejemplo: Determinar si la posición de un objeto (dado por sus coordenadas) está dentro de un círculo determinado por su radio y centro (coordenadas)
 - □ Condiciones de entrada (para clases válidas):
 - Distancia del objeto al centro del círculo
 - □ Clases de equivalencia (para esta cond. ent.):
 - Menor que el radio (interior)
 - Mayor que el radio (exterior)

Las condiciones de entrada no son necesariamente los parámetros de un programa

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

Clases equivalencia
Hasta 10.000
Entre 10.000 y 50.000
Más de 50.000
Importe negativo o cero

- En los problemas anteriores:
 - □ ¿Qué significa hasta 10.000?
 - ¿El 10.000 está incluido en la primera clase o en la segunda?
 - □ ¿La tercera significa más de 50.000 o 50.000 o más?
- Debemos probar valores correspondientes a estos puntos en la frontera de las clases para verificar si la implementación clasifica estos valores correctamente

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

16

Análisis de Valores Límite (Boundary Value Analysis)

 Utilizando valores límite se sitúan las pruebas en los extremos de las clases de equivalencia (2-way/2-value)

Clases equivalencia	Valores límite (2 way)	
Hasta 10.000	9.999,99; 10.000.00	
Entre 10.000 y 50.000	10.000,00; 49.999,99	
Más de 50.000/50.000 o más?	50.000,00	
Importe negativo o cero	0.00: -0.01	

- Opcional (3-way/3-value): establece tres valores (el que marca la frontera, uno más y uno menos)
 - Ejemplo: 49.999,99; 10.000,00; 10.000.01
- Se pueden incluir además valores típicos (no en los extremos)

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

Estrategia de Combinaciones de Clases

- Ejemplo:
 - □ En Office 2013 y posteriores, además de tener en cuenta el modo (Toque, Mouse), se tiene en cuenta el tipo de dispositivo de entrada. Si tiene panel táctil por defecto se usa modo toque, y si no, modo mouse:
- Condiciones de entrada y clases de equivalencia:
 - □ Modo
 - Toque
 - Mouse
 - □ Tipo de dispositivo de entrada
 - Con panel táctil
 - Sin panel táctil
- ¿Sería suficiente probar con dos casos de prueba utilizando la estrategia minimizada (minimized approach)?

J. Tuya, (2025)

CV&V - Basadas en Clases de Equivalencia (1)

Más		
□ cuando ha	diseña e implementa: ny base de datos? ny un interfaz de usuario?	
□ manualme	ejecutan los casos de prueba: ente? automática?	
J. Tuya, (2025)	CV&V - Basadas en Clases de Equivalencia (1)	22