CNN 모델 보고서

제출일: 25.06.30

제출인: 서윤철

개요

- 서론
- 본론
- 결론

서론

내용

- CIFAR-10 데이터셋을 불러온 후 CNN 모델로 분류 문제 성능을 검토
- 하이퍼 파라미터의 여러 가능성을 점검해 보시고 최적의 설정을 찾아보기

목표

- CNN 모델 성능 확인하기
- 이전 실습했던 모델의 성능과 비교하기
- CNN 모델에서 하이퍼 파라미터의 여러 가능성을 점검해보고 최적의 설정 찾아보기

실습한 CNN 모델

• Layer

layer	목적	
Conv2D	특징 추출 (로우레벨 → 하이레벨)	
ReLU	비선형성 추가	
MaxPool	차원 축소, 불변성	
Flatten	CNN → MLP 연결용	
Dense	분류 결정 로직 학습	
Softmax	다중 클래스 확률 출력	

구조

layer	특징	Output	역할
Input		(32, 32, 3)	
Conv2D	(32, (3, 3), relu')	(30, 30, 32)	경계, 모서리 등의 로우레벨 특징 추출
MaxPooling2D	pool_size=(2×2)	(15, 15, 32)	다운샘플링 (공간 차원 축소)
Conv2D	(64, (3×3), relu)	(13, 13, 64)	더 복잡한 특징 감지
MaxPooling2D	pool_size=(2×2)	(6, 6, 64)	정보 압축
Conv2D	(64, (3×3), relu)	(4, 4, 64)	하이레벨 추상적 특징 추출
Flatten		$(4 \times 4 \times 64 = 1024)$	Fully Connected 입력 변환
Dense	(64, relu)	(64,)	분류 의사 결정
Dense	(10, softmax)	(10,)	클래스별 확률 출력
Output		클래스별(10개) 확률	

- OptimizerRMSprop
- batch_size, learning_rate, epoch20, 256, 0.2

본론

CNN 모델 성능 확인하기

CIFAR-10
32×32 크기의 RGB 컬러 이미지 60,000장 (10개 클래스)

결과

MLP와 성능 비교

파란색 라인: CNN, other: MLP

• 동일한 epoch(30), batch_size(64), validation(0.2)

val_accuracy: CNN(69.22%) > MLP(47.16%)

val_loss: CNN(2.1742) > MLP(1.5019)

: val_accuracy 측면에서 20%이상의 차이를 보인다. CIFAR-10을 처리하기 위해서 CNN이 MLP보다 더 적합함.

하이퍼 파라미터의 여러 가능성 점검

• 성능 향상 방법

범주	하이퍼파라미터	설명
모델 구조	Conv2D filter 수	필터 수를 늘리면 더 복잡한 패턴을 학습
	kernel_size	일반적으로 (3, 3), (5, 5) 실험
	layer 수	Conv 레이어 3~5개까지 실험
	Dense layer 수 및 units 수	64 대신 128, 256 등 실험
Regularization	Dropout	과적합 방지를 위해 Dropout 추가 (예: 0.3~0.5)
Optimizer	Adam, RMSprop, SGD 등	학습 속도, 수렴 여부에 영향
Learning rate	optimizer=Adam(learning_rate=0.001	학습률 변화가 성능에 큰 영향
Training	Epoch 수	20보다 더 늘려서 학습 가능
	Batch size	64, 128, 256 등 실험

- 전략
- 1. Dropout 추가
- 2. 필터 수, 레이어 수 증가
- 3. Learning rate 튜닝
- 4. Epoch 늘려 시각화 성능 확인 with EarlyStopping(검증 손실이 더 이상 줄어들지 않으면 자동으로 학습 중단)

성능 개선 과정

• Dropout 2개 추가

위치: Conv2D 뒤(비율:0.3), Dense 뒤(비율: 0.5)

• Dropout 2개 추가

위치: Conv2D 뒤(비율:0.2), Dense 뒤(비율: 0.4)

• 필터 수, 레이어 수 증가

layer	역할	
Conv2D 64	가장 낮은 수준의 특징 추출	
Conv2D 128 2개	더 복잡한 패턴 인식	
Conv2D 256	추상화된 고차원 특징 추출	
Dropout	과적합 방지	
Dense 128	분류기 전 중간 표현 학습	
Dense 10	CIFAR-10 클래스 분류	

• Learning rate 튜닝 (0.001 → 0.0005)

• Epoch 조정 with EarlyStopping (epoch: 20 → 50)

-EarlyStopping에 의해 32에서 stop!!

결론

기존 CNN 모델의 성능을 향상시키기 위해 세운 전략은 Dropout 추가, 필터 수, 레이어 수 증가, Learning rate 튜닝, Epoch 늘려 시각화 성능 확인 with EarlyStopping이 있었다. 이 중 $val_accuracy$, $val_accuracy$,

Layer	Output	설명
Input	(32, 32, 3)	CIFAR-10 이미지 (RGB)
Conv2D (64)	(30, 30, 64)	커널 (3x3), 필터 64개, ReLU
MaxPool2D	(15, 15, 64)	풀링 크기 (2x2), 다운샘플링
Dropout(0.2)	same	20% 확률로 뉴런 비활성화
Conv2D (128)	(13, 13, 128)	커널 (3x3), 필터 128개
MaxPool2D	(6, 6, 128)	다운샘플링
Dropout(0.3)	same	30% Dropout
Conv2D (128)	(4, 4, 128)	추가 Conv 레이어
Conv2D (256)	(2, 2, 256)	필터 수 증가
MaxPool2D	(1, 1, 256)	거의 정보 요약 완료
Dropout(0.4)	same	강한 정규화
Flatten	(256,)	3D → 1D로 변환
Dense(128)	(128,)	완전연결층, ReLU
Dropout(0.5)	same	강한 Dropout
Dense(10)	(10,)	softmax 출력 (클래스 확률)

위 모델을 통해 CIFAR-10을 처리한 결과, 선형모델이나 MLP로 이미지를 처리한 성능보다 확연히 향상된 것을 확인할 수 있었다. 하지만 위 모델의 val_accuracy는 75.05 %로 인간의 이미지 처리 능력보다 좋다고 볼 수는 없다. 그러므로 성능을 더 개선하기 위해 Optimizer를 변경하거나, 데이터를 증강(data augmentation)하거나 batchnorm을 추가하거나 학습률 스케줄러 등을 통해 더 좋은 성능을 구현할 수 있을 것이다.