

데이터 과학 기반의 파이썬 빅데이터 분석

Chapter 11 분류 분석

목차

01 [로지스틱 회귀 분석] 특징 데이터로 유방암 진단하기

02 [결정 트리 분석 + 산점도/선형 회귀 그래프] 센서 데이터로 움직임 분류하기

학습목표

- 로지스틱 회귀의 이진 분류를 이해한다.
- 로지스틱 회귀 분석을 이용하여 질병 진단을 할 수 있다.
- 결정 트리의 다중 분류를 이해한다.
- 결정 트리 분석을 이용하여 움직임을 분류할 수 있다.

■ 분석 미리보기

	특징 데이터로 유방암 진단하기
목표	로지스틱 회귀 분석을 이용해 유방암에 영향을 미치는 특징 데이터를 분석하고 유방암 여부를 진단하는 예측 모델을 생성한다.
핵심 개념	로지스틱 회귀, 시그모이드 함수, 성능 평가 지표, 오차 행렬, 정밀도, 재현율, F1 스코어, ROC 기반 AUC 스코어
데이터 준비	유방암 진단 데이터: 사이킷런 내장 데이터셋
데이터 탐색	1. 사이킷런 데이터셋에서 제공하는 설명 확인: b_cancer.DESCR 2. 사이킷런 데이터셋에 지정된 X 피처와 타깃 피처 결합 3. 로지스틱 회귀 분석을 위해 X 피처 값을 정규 분포 형태로 스케일링: b_cancer_scaled = scaler.fit_transform(b_cancer.data)
분석 모델 구축	사이킷런의 로지스틱 회귀 모델 구축
결과 분석	성능 평가 지표 계산: confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score

1 목표 설정

• 목표: 유방암 특징을 측정한 데이터에 로지스틱 회귀 분석을 수행하여 유방암 발생을 예측

2 핵심 개념 이해

- 로지스틱 회귀
 - 분류에 사용하는 기법으로 선형 회귀와 달리 S자 함수를 사용하여 참(True, 1)과 거짓(False, 0)을 분류
- 시그모이드 함수
 - 로지스틱 회귀에서 사용하는 S자 함수
 - x의 값이 커지면 y의 값은 1에 근사하게 되고 x의 값이 작아지면 y의 값은 0에 근사하게 되어

S자 형태의 그래프가 됨

두 개의 값을 분류하는 이진 분류에사용

• 방정식 $y = \frac{1}{1 + e^{ax + b}}$

(a) 선형 회귀와 선형 함수

그림 11-1 선형 회귀와 로지스틱 회귀 비교

불합격 불합격 불합격 합격 합격

(b) 로지스틱 회귀와 S자 함수

공부 시간

점수

2 핵심 개념 이해

- 로지스틱 회귀 모델의 성능 평가 지표
 - 선형 회귀 모델은 실제값과 예측값의 오차에 기반한 지표(MAE, MSE, RMSE, R²)를 사용
 - 로지스틱 회귀 모델은 이진 분류 결과를 평가하기 위해 오차 행렬에 기반한 성능 지표인 정밀도,
 재현율, F1 스코어, ROC_AUC를 사용
- 오차 행렬
 - 행렬을 사용해 이진 분류의 예측 오류를 나타내는 지표
 - 행은 실제 클래스의 Negative/Positive 값, 열은 예측 클래스의 Negative/ Positive

TN: Negative가 참인 경우 TP: Positive가 참인 경우

FN: Negative가 거짓인 경우 FP: Positive가 거짓인 경우

- 사이킷런에서는 오차 행렬을 구하기 위해 confusion_matrix 함수를 제공

2 핵심 개념 이해

- ■정밀도
 - 예측이 Positive인 것(FP+TP) 중에서, 참인 것(TP)의 비율을 의미
 - 정밀도는 Positive 예측 성능을 더 정밀하게 평가하기 위한 지표로 사용
 - 사이킷런에서는 정밀도를 구하기 위해 precision_score 함수를 제공

• 정밀도=
$$\frac{\text{TP}}{(\text{FP+TP})}$$

■ 재현율

- 실제값이 Positive인 것(FN+TP) 중에서 참인 것(TP)의 비율을 의미
- 실제 Positive인 데이터를 정확히 예측했는지 평가하는 지표 (민감도 또는 TPR)
- 사이킷런에서는 재현율을 구하기 위해 recall score 함수를 제공

• 재현율 =
$$\frac{TP}{(FN+TP)}$$

■ F1 스코어

- 정밀도와 재현율을 결합한 평가 지표
- 정밀도와 재현율이 서로 트레이드 오프 관계(상충 관계)인 문제점을 고려하여 정확한 평가를 위해 많이 사용
- 사이킷런에서는 F1 스코어를 구하기 위해 **f1_score 함수**를 제공

• F1 스코어 =
$$\frac{2}{\frac{1}{\text{NTRMS}} + \frac{1}{\text{NTRMS}}} = 2 \times \frac{\text{정밀도} \times \text{NTRMS}}{\text{정밀도} + \text{NTRMS}}$$

2 핵심 개념 이해

- ROCReceiver Operation characteristic Curve 기반 AUCArea Under Curve 스코어
 - 오차 행렬의 $FPR_{FP Rate}$ 이 변할 때 $TPR_{TP Rate}$ 이 어떻게 변하는지를 나타내는 곡선
 - » FPR: 실제 Negative인 데이터를 **P**ositive로 거짓_{False} 예측한 비율
 - » TPR: 실제 Positive인 데이터를 **P**ositive로 참_{True} 예측한 비율(재현율,민감도)

•
$$FPR = \frac{FP}{(FP+TN)}$$

• TPR =
$$\frac{\text{TP}}{(\text{FN+TP})}$$

예측 클래스

(Predicted Class)

그림 11-2 오차 행렬

- ROC 기반의 AUC 값은 ROC 곡선 밑의 면적을 구한 것으로 1에 가까울수록 좋은 성능을 의미
- 사이킷런에서는 ROC 기반의 AUC를 구하기 위해 roc_auc_score 함수를 제공

3 데이터 준비 및 탐색

1. 사이킷런에서 제공하는 데이터셋

표 11-1 사이킷런에서 제공하는 주요 데이터셋

데이터셋	샘플 갯수	독립 변수	종속 변수	데이터 로드 함수	
보스톤 주택 가격 데이터	506	13 7	주택 가격	load_boston()	
붓꽃(아이리스) 데이터	150	4개	붓꽃 종류: setosa, versicolor, virginica	load_iris()	
당뇨병 환자 데이터	442	10개	당뇨병 수치	load_diabetes()	
숫자 0~9를 손으로 쓴 흑백 데이터	1797	64개	숫자: 0~9	load_digits()	
와인의 화학 성분 데이터	178	13개	와인 종류: 0, 1, 2	load_wine()	
체력 검사 데이터	20	3711	체력 검사 점수	load_linnerud()	
유방암 진단 데이터	569	30개	악성(malignant), 양성 (benign): 1, 0	load_breast_ cancer()	

3 데이터 준비 및 탐색

- 2. 사이킷런의 유방암 진단 데이터셋 사용하기
 - 1. 데이터 준비하기

In [1]: 사이킷런에서 제공하는 데이터셋sklearn.datasets중에서 유방암진단 데이터셋을 사용하기 위해 load_breast_cancer 를 임포트

In [2]: 데이터셋을 로드하여 객체b_cancer를 생성

```
In [1]: import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer
In [2]: b_cancer = load_breast_cancer()
```

③ 데이터 준비 및 탐색

- 2. 사이킷런의 유방암 진단 데이터셋 사용하기
 - 2. 데이터 탐색하기

In [3]: 데이터셋에 대한 설명을 확인

```
In [3]: print(b_cancer.DESCR)
        .. _breast_cancer_dataset:
        Breast cancer wisconsin (diagnostic) dataset
        **Data Set Characteristics: **
            :Number of Instances: 569
            :Number of Attributes: 30 numeric, predictive attributes and the class
            :Attribute Information:
                 - radius (mean of distances from center to points on the perimeter)
                 - texture (standard deviation of gray-scale values)
                 - perimeter
                 - area
                 - smoothness (local variation in radius lengths)
                 - compactness (perimeter^2 / area - 1.0)
                 - concavity (severity of concave portions of the contour)
                 - concave points (number of concave portions of the contour)
                 - symmetry
                 - fractal dimension ("coastline approximation" - 1)
                 The mean, standard error, and "worst" or largest (mean of the three
                 worst/largest values) of these features were computed for each image.
                 resulting in 30 features. For instance, field 0 is Mean Radius, field
                 10 is Radius SE, field 20 is Worst Radius.
```

- class:
 - WDBC-Malignant - WDBC-Benign
- :Summary Statistics:

	Min 	Max =====
adius (mean):	6.981	28.11
exture (mean):	9.71	39.28
perimeter (mean):	43.79	188.5
area (mean):	143.5	2501.0
smoothness (mean):	0.053	0.163
compactness (mean):	0.019	0.345
concavity (mean):	0.0	0.427
concave points (mean):	0.0	0.201
symmetry (mean):	0.106	0.304
ractal dimension (mean):	0.05	0.097
radius (standard error):	0.112	2.873
exture (standard error):	0.36	4.885
perimeter (standard error):	0.757	21.98
area (standard error):	6.802	542.2
smoothness (standard error):	0.002	0.031
compactness (standard error):	0.002	0.135
concavity (standard error):	0.0	0.396
concave points (standard error):	0.0	0.053
symmetry (standard error):	0.008	0.079
ractal dimension (standard error):	0.001	0.03
radius (worst):	7.93	36.04
exture (worst):	12.02	49.54
perimeter (worst):	50.41	251.2
area (worst):	185.2	4254.0
smoothness (worst):	0.071	0.223
compactness (worst):	0.027	1.058

③ 데이터 준비 및 탐색

- 2. 사이킷런의 유방암 진단 데이터셋 사용하기
 - 2. 데이터 탐색하기
- In [4]: **데이터셋 객체의 data 배열**b_cancer.data, 즉 독립 변수 X가 되는 피처를 DataFrame 자료형으로 변환하여 b_cancer_df를 생성
- In [5]: 유방암 유무 class로 사용할 diagnosis 컬럼을 b_cancer_df에 추가하고 **데이터셋 객체의 target 컬럼**b_cancer.target 을 저장
- In [6]: b_cancer_df의 데이터 샘플 5개를 출력b_cancer_df.head()하여 확인

```
In [4]: b_cancer_df = pd.DataFrame(b_cancer.data, columns = b_cancer.feature_names)
In [5]: b_cancer_df['diagnosis']= b_cancer.target
In [6]: b_cancer_df.head()
Out[6]:
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	c
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	

5 rows × 31 columns

③ 데이터 준비 및 탐색

- 2. 사이킷런의 유방암 진단 데이터셋 사용하기
 - 3. 데이터셋의 크기와 독립 변수 X가 되는 피처에 대한 정보를 확인
- In [7]: b_cancer_df.shape를 사용하여 데이터셋의 행의 개수(데이터 샘플 개수)와 열의 개수(변수 개수)를 확인 행의 개수가 569이므로 데이터 샘플이 569개, 열의 개수가 31이므로 변수가 31개 있음
- In [8]: b_cancer_df에 대한 정보를 확인b_cancer_df.info() / 30개의 피처(독립 변수 X) 이름과 1개의 종속 변수 이름을 확인 가능 diagnosis는 악성이면 1, 양성이면 0의 값이므로 유방암 여부에 대한 이진 분류의 class로 사용할 종속 변수가 됨

In [7]:	nrin	 nt('유방암 진단 데이터셋 3	=====================================	ur df chana)				
111 [11]	ргп	III #88 22 4104 X -		1 _u1 .311apc)				
	유빗	'암 진단 데이터셋 크기 :	(569, 31)					
			, , ,		10	radius error	569 non-null	float64
Lm [0]:	h	man df lmfa()			11	texture error	569 non-null	float64
In [8]:	D_C3	ancer_df.info()		12	perimeter error	569 non-null	float64	
					13	area error	569 non-null	float64
		ass 'pandas.core.frame.Dat			14	smoothness error	569 non-null	float64
	Rang	gelndex: 569 entries, O to	568		15	compactness error	569 non-null	float64
	Data	a columns (total 31 column	ns):		16	concavity error	569 non-null	float64
	#	Column		Dtype	17	concave points error	569 non-null	float64
	11	COTAIIII	Holl Hall Coult	Бтурс	18	symmetry error	569 non-null	float64
					19	fractal dimension error	569 non-null	float64
	0	mean radius	569 non-null	float64	20	worst radius	569 non-null	float64
	1	mean texture	569 non-null	float64	21	worst texture	569 non-null	float64
	2	mean perimeter	569 non-null	float64	22	worst perimeter	569 non-null	float64
	3	mean area	569 non-null	float64	23	worst area	569 non-null	float64
					24	worst smoothness	569 non-null	float64 float64
	4	mean smoothness	569 non-null	float64	25 26	worst compactness	569 non-null 569 non-null	float64
	5	mean compactness	569 non-null	float64		worst concavity		
	6	mean concavity	569 non-null	float64	27 28	worst concave points worst symmetry	569 non-null 569 non-null	float64 float64
	7	mean concave points	569 non-null	float64	20 29	worst fractal dimension	569 non-null	float64
	8	mean symmetry	569 non-null	float64		diagnosis	569 non-null	int32
						es: float64(30), int32(1)		IIICOL
	9	mean fractal dimension	569 non-null	float64		ry usage: 135.7 KB		
					IIIellio	ry usaye, 130.7 NB		

③ 데이터 준비 및 탐색

- 2. 사이킷런의 유방암 진단 데이터셋 사용하기
 - 4. 로지스틱 회귀 분석에 피처로 사용할 데이터를 평균이 0, 분산이 1이 되는 **정규 분포 형태로 맞추기**

```
In [9]: 사이킷런의 전처리 패키지에 있는 정규 분포 스케일러StandardScaler를 임포트하고 사용할 객체scaler를 생성 In [10]: 피처로 사용할 데이터b_cancer.data에 대해 정규 분포 스케일링을 수행scaler.fit_ transform()하여 b_cancer_scaled에 저장 In [11]~[12]: 정규 분포 스케일링 후에 값이 조정된 것을 확인
```

```
In [9]: from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
In [10]: b cancer scaled = scaler.fit transform(b cancer.data)
In [11]: print(b cancer.data[0])
         [1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
          1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
          6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
          1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
          4.601e-01 1.189e-011
In [12]: print(b cancer scaled[0])
         1.09706398 -2.07333501 1.26993369 0.9843749
                                                          1.56846633
           2.65287398 2.53247522 2.21751501 2.25574689 2.48973393 -0.56526506
           2.83303087 2.48757756 -0.21400165 1.31686157 0.72402616 0.66081994
           1.14875667 0.90708308 1.88668963 -1.35929347
                                                          2.30360062 2.00123749
           1.30768627 2.61666502 2.10952635 2.29607613 2.75062224 1.93701461]
```

4 분석 모델 구축 및 결과 분석

1. 로지스틱 회귀를 이용하여 분석 모델 구축하기

```
In [13]: 필요한 모듈을 임포트
In [14]: diagnosis를 Y, 정규 분포로 스케일링한 b cancer scaled를 X로 설정
In [15]: 전체 데이터 샘플 569개를 학습 데이터:평가 데이터=7:3으로 분할test size=0.3함
In [16]: 로지스틱 회귀 분석 모델 객체 r b cancer를 생성
In [17]: 학습 데이터 X train, Y train로 모델 학습을 수행fit()함
In [18]: 학습이 끝난 모델에 대해 평가 데이터 XX test를 가지고 예측을 수행predict()하여 예측값 YY predict를 구함
In [13]: from sklearn.linear model import LogisticRegression
       from sklearn.model_selection import train_test_split
In [14]: # X, Y 설정하기
       Y = b cancer df['diagnosis']
       X = b cancer scaled
In [15]: # 훈련용 데이터와 평가용 데이터 분할하기
       X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=0)
In [16]: # 로지스틱 회귀 분석 : (1)모델 생성
       Ir b cancer = LogisticRegression()
In [17]: # 로지스틱 회귀 분석 : (2)모델 훈련
        Ir_b_cancer.fit(X_train, Y_train)
Out[17]: LogisticRegression()
In [18]: # 로지스틱 회귀 분석 : (3)평가 데이터에 대한 예측 수행 →> 예측 결과 Y predict 구하기
       Y predict = Ir b cancer.predict(X test)
```

4 분석 모델 구축 및 결과 분석

- 1. 로지스틱 회귀를 이용하여 분석 모델 구축하기
 - ※ 주피터 노트북 버전 확인
 - 실습하는 아나콘다의 주피터 노트북 버전에 따라 실행 결과가 조금 다르게 나타날 수 있음
 - 노트북 화면 상단의 [Help]- [About] 메뉴에서 확인

그림 11-3 주피터 노트북 버전 확인

4 분석 모델 구축 및 결과 분석

In [19]: 필요한 모듈 임포트

2. 생성한 모델의 성능 확인하기

```
실행 결과를 보면 TN이 60개, FP가 3개, FN이 1개, TP가 107개인 오차 행렬이 구해짐
In [21]: 성능 평가 지표인 정확도, 정밀도, 재현율, F1 스코어, ROC-AUC 스코어를 구함
In [22]~[23]: 성능 평가 지표를 출력하여 확인
In [19]: from sklearn.metrics import confusion matrix, accuracy score
        from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score
In [20]: # 오차 행렬
        confusion_matrix(Y_test, Y_predict)
Out[20]: array([[ 60, 3],
              [ 1, 107]], dtype=int64)
In [21]: accouracy = accuracy_score(Y_test, Y_predict)
        precision = precision score(Y test, Y predict)
        recall = recall_score(Y_test, Y_predict)
        f1 = f1 score(Y test, Y predict)
        roc_auc = roc_auc_score(Y_test, Y_predict)
In [22]: print('정확도: {0:.3f}, 정밀도: {1:.3f}, 재현율: {2:.3f}, F1: {3:.3f}', format(acccuracy, precision, recall, f1))
        정확도: 0.977, 정밀도: 0.973, 재현율: 0.991, F1: 0.982
In [23]: print('ROC_AUC: {0:.3f}'.format(roc_auc))
        ROC AUC: 0.972
```

In [20]: 평가를 위해 7:3으로 분할한 171개의 test 데이터에 대해 이진 분류의 성능 평가 기본이 되는 오차 행렬을 구함

■ 분석 미리보기

센서 데이터로 움직임 분류하기								
목표	스마트폰으로 수집한 센서 데이터를 분석하여 사람의 움직임에 대한 분류 모델을 생성하고 새로운 데이터에 대한 움직임 유형을 예측하여 분류한다.							
핵심 개념	결정 트리, 정보 이득 지수, 지니 계수, Graphviz 패키지							
데이터 준비	센서 데이터: UCI Machine Learning Repository에서 다운로드							
데이터 탐색	1. 피처 이름 파일을 로드하여 객체로 저장 2. 훈련 데이터셋을 파일에서 로드하여 객체로 저장 3. 평가 데이터셋을 파일에서 로드하여 객체로 저장 4. 레이블 이름 파일을 로드하여 객체로 저장							
분석 모델 구축	사이킷런의 결정 트리 모델 구축: 결정 트리 모델의 생성, 훈련, 예측							
결과 분석	1. 성능 평가 지표 계산: accuracy_score 2. 결정 트리의 하이퍼 매개변수 변경에 대한 정확도 분석 3. 최적 결정 트리 모델 생성: GridSearchCV 4. 중요 피처 분석: feature_importances_							
	결과 시각화							

Graphviz 패키지를 사용한 트리 시각화

1 목표 설정

• 목표: 스마트폰에서 수집한 센서 데이터를 분석하여 사람의 움직임을 분류 하는 모델을 생성 새로운 데이터에 대해 움직임 유형을 예측해서 분류

2 핵심 개념 이해

- 결정 트리
 - 머신러닝 알고리즘 중에서 직관적으로 이해하기 쉬워서 다중 분류에 많이 사용
 - 데이터 안에서 if/else 기반으로 규칙을 찾아 학습하여 트리 구조의 분류 규칙을 만듬
 - 결정 트리의 구조는 규칙 조건(if)을 나타내는 규칙 노드와 분류가 결정된 클래스 값이 표시된 리프 노드로 구성
 - 데이터의 균일도를 계산하는 대표적인 방법으로 정보 이득 지수와 지니 계수가 있음

그림 11-4 {개구리, 펭귄, 까치, 나무늘보, 다람쥐}를 분류하기 위한 결정 트리

2 핵심 개념 이해

- 정보 이득 지수
 - 정보 이득은 엔트로피 개념을 기반으로 함
 - » 엔트로피: 데이터 집합의 혼잡도를 의미
 - » 데이터 집합에 **다른** 데이터 추가 ☞ 균일도가 떨어짐 → 혼잡도가 높아지므로 엔트로피가 높아짐
 - » 데이터 집합에 **같은** 데이터 추가 ☞ 균일도가 높아짐 → 혼잡도가 떨어지므로 엔트로피가 낮아짐
 - 정보 이득 지수: 혼잡도가 줄어들어 얻게 되는 이득을 의미하는 것으로, (1-엔트로피)로 계산
 - 결정 트리: 정보 이득 지수가 높은 피처를 분할 기준으로 사용

■ 지니 계수

- 경제학에서 소득의 불균형 정도를 나타내는 지니계수를 머신러닝에서는 데이터의 순도를 나타내기 위해 사용
- 결정 트리에서는 지니 계수가 높을수록 순도가 낮은 데이터 집합을 의미
- 지니 계수가 0이면 완전 순수한 데이터 집합을 의미
- _ 결정 트리: 지니 계수가 낮은 피처를 분할 기준으로 사용

2 핵심 개념 이해

DecisionTreeClassifier

- 사이킷런에서 제공하는 결정 트리 분류 모델

표 11-2 DecisionTreeClassifier의 주요 매개변수

매개변수	설명
min_samples_split	노드를 분할하기 위한 최소 샘플 데이터 개수(default: 2)
min_samples_leaf	리프 노드가 되기 위한 최소 샘플 데이터 개수
max_features	최적의 분할을 위해 고려할 최대 피처 개수 • None: 모든 피처 사용 • int: 사용할 피처 개수를 설정 • float: 사용할 피처 개수를 퍼센트로 설정 • sqrt: √(전체 피치 개수)를 계산하여 설정 • auto: sqrt와 동일 • log: log₂(전체 피처 개수)를 계산하여 설정
max_depth	트리의 최대 깊이
max_leaf_nodes	리프 노드에 들어가는 샘플 데이터의 최대 개수

Graphviz

- 패키지 결정 트리 시각화에 사용하는 패키지
- 다이어그램을 그리기 위해 AT&T에서 개발한 그래프 시각화 오픈 소스 프로그램

- 1. 센서 데이터 다운로드하기
 - 1. UCI Machine Learning Repository (https://archive.ics.uci.edu)에 접속하여 'human activity recognition'을 검색

- 1. 센서 데이터 다운로드하기
 - 2. 검색 결과 목록에서 'Human Activity Recognition Using Smartphones' 클릭

- 1. 센서 데이터 다운로드하기
 - 3. 'Human Activity Recognition Using Smartphones' 페이지에서 "DOWNLOAD" 클릭하여 'human+activity+recognition+using+smartphones.zip'을 다운로드

- 1. 센서 데이터 다운로드하기
 - 4. 'human+activity+recognition+using+smartphones.zip'을 압축을 풀고 'UCI HAR Dataset.zip' 파일을 'My_Python' 폴더 안에 11장_data 폴더를 만든 뒤, 11장_data 폴더로 옮기고 압축 풀기. 압축을 푼 후에 **폴더 이름을 'UCI HAR Dataset'으로 변경** (하위 폴더의 이름도 함께 변경)

4 데이터 탐색

- 훈련용과 테스트용 데이터셋 확인하기
 - 다운로드한 데이터에 대한 설명은 README.txt 파일에 있음
 - Feature 목록은 features.txt. 파일에 있음

4 데이터 탐색

- 훈련용과 테스트용 데이터셋 확인하기
 - activity_labels.txt를 보면 WALKING, WALKING_UPSTAIRS, WALKING_ DOWNSTAIRS, SITTING, STANDING,
 LAYING과 같은 6가지 움직임이 있는 것을 확인
 - 결정 트리 모델을 사용해서 6가지 움직임 분류하고자 함

4 데이터 탐색

- 훈련용과 테스트용 데이터셋 확인하기
 - 1. 주피터 노트북에서 '11장 결정트리분석'으로 노트북 페이지를 추가하고 입력

In [1]: 필요한 모듈을 임포트하고 설치되어 있는 pandas 버전을 확인

```
In [1]: import numpy as np import pandas as pd pd.__version__
```

4 데이터 탐색

- 훈련용과 테스트용 데이터셋 확인하기
 - 1. 주피터 노트북에서 '11장 결정트리분석'으로 노트북 페이지를 추가하고 입력
 - In [2]~[5]: 피처 이름이 있는 features.txt 파일을 열어서 내용을 확인. 561개 피처가 있는데 **feature name만 추출해서 리스트로 저장**

```
In [2]: # 피처 이름 파일 읽어오기
         feature_name_df = pd.read_csv('./11장_data/UCI_HAR_Dataset/UCI_HAR_Dataset/features.txt',₩
                                      sep='\st', header=None, names=['index', 'feature name'], engine='python'
In [3]: feature_name_df.head()
Out[3]:
            index
                      feature_name
               1 tBodyAcc-mean()-X
               2 tBodyAcc-mean()-Y
               3 tBodyAcc-mean()-Z
                   tBodyAcc-std()-X
                   tBodyAcc-std()-Y
In [4]: feature name df.shape
Out [4]: (561, 2)
In [5]: # index 제거하고, feature name만 리스트로 저장
        feature name = feature name df.iloc[:, 1].values.tolist()
In [6]: feature_name[:5]
Out[6]: ['tBodyAcc-mean()-X',
          'tBodyAcc-mean()-Y'.
          'tBodyAcc-mean()-Z',
          'tBodyAcc-std()-X'
          'tBodyAcc-std()-Y']
```

4 데이터 탐색

- 훈련용과 테스트용 데이터셋 확인하기
 - 2. X train, X test, Y train, Y test 데이터 파일도 분석에 사용할 수 있도록 준비

In [7]~[8]: train 폴더와 test 폴더에는 훈련용 X/Y 데이터와 테스트용 X/Y 데이터가 txt 파일로 들어 있음 파일을 읽어서 저장하고 크기를 확인하면X_train.shape, Y_train.shape, X_test. shape, Y_test.shape 훈련용 데이터는 7,352개 테스트용 데이터는 2,947개로 구성되 있음

In [8]: X_train.shape, Y_train.shape, X_test.shape, Y_test.shape

Out[8]: ((7352, 561), (7352, 1), (2947, 561), (2947, 1))

코드 복사용

```
X_train = pd.read_csv('./11장_data/UCI_HAR_Dataset/UCI_HAR_Dataset/train/X_train.txt', delim_whitespace=True, header=None, encoding='latin-1')
X_train.columns = feature_name

X_test = pd.read_csv('./11장_data/UCI_HAR_Dataset/UCI_HAR_Dataset/test/X_test.txt', delim_whitespace=True, header=None, encoding='latin-1')
X_test.columns = feature_name

Y_train = pd.read_csv('./11장_data/UCI_HAR_Dataset/UCI_HAR_Dataset/train/y_train.txt', sep='\subset*s+', header=None, names=['action'], engine='python')
Y_test = pd.read_csv('./11장_data/UCI_HAR_Dataset/UCI_HAR_Dataset/test/y_test.txt', sep='\subset*s+', header=None, names=['action'], engine='python')
```

4 데이터 탐색

- 훈련용과 테스트용 데이터셋 확인하기
 - 2. X_train, X_test, Y_train, Y_test 데이터 파일도 분석에 사용할 수 있도록 준비

In [9]: 훈련용 X 데이터는 feature_name에서 확인했던 561개 피처로 구성되어 있음

In [9]: X_train.info()

X_train.head()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7352 entries, 0 to 7351

Columns: 561 entries, tBodyAcc-mean()-X to angle(Z,gravityMean)

dtypes: float64(561) memory usage: 31.5 MB

Out [9]:

	tBodyAcc- mean()-X	tBodyAcc- mean()-Y	tBodyAcc- mean()-Z	tBodyAcc- std()-X	tBodyAcc- std()-Y	tBodyAcc- std()-Z	tBodyAcc- mad()-X	tBodyAcc- mad()-Y	tBodyAcc- mad()-Z	tBodyAcc- max()-X		fBodyBodyGyroJerkMag- meanFreq()	fBodyBo
0	0.288585	-0.020294	-0.132905	-0.995279	-0.983111	-0.913526	-0.995112	-0.983185	-0.923527	-0.934724	444	-0.074323	
1	0.278419	-0.016411	-0.123520	-0.998245	-0.975300	-0.960322	-0.998807	-0.974914	-0.957686	-0.943068		0.158075	
2	0.279653	-0.019467	-0.113462	-0.995380	-0.967187	-0.978944	-0.996520	-0.963668	-0.977469	-0.938692	2720	0.414503	
3	0.279174	-0.026201	-0.123283	-0.996091	-0.983403	-0.990675	-0.997099	-0.982750	-0.989302	-0.938692		0.404573	
4	0.276629	-0.016570	-0.115362	-0.998139	-0.980817	-0.990482	-0.998321	-0.979672	-0.990441	-0.942469	***	0.087753	

5 rows x 561 columns

4 데이터 탐색

- 훈련용과 테스트용 데이터셋 확인하기
 - 2. X_train, X_test, Y_train, Y_test 데이터 파일도 분석에 사용할 수 있도록 준비

In [10]: Y 데이터는 6가지 움직임에 대한 레이블(분류할 class)값으로 되어있으므로, 각 레이블의 데이터 개수value_counts() 를 확인

4 데이터 탐색

- 훈련용과 테스트용 데이터셋 확인하기
 - 2. X_train, X_test, Y_train, Y_test 데이터 파일도 분석에 사용할 수 있도록 준비

In [11]~[13]: 레이블 이름이 있는 파일인 activity_labels.txt에서 label_name만 추출해 리스트로 저장

5 분석 모델 구축 및 결과 분석

1. 결정 트리 분류 분석 모델 구축하기

- 6개 움직임을 분류하기 위한 결정 트리 모델 구축

In [14]: 사이킷런을 사용하여 결정 트리 분류 분석을 하기 위해 sklearn.tree패키지에 있는 DecisionTreeClassifier 모듈을 임포트

In [15]: 훈련용 데이터와 테스트용 데이터는 이미 준비되어 있으므로 모델 생성 작업을 수행

In [16]: 모델 훈련을 수행, 훈련이 끝나고 출력된 결정 트리 모델의 매개변수에서 riterion = 'gini'는 분할 기준으로 지니계수를 사용한다는 의미 (Jupyter Notebook 버전에 따라 생성된 결정트리 모델의 매개변수가 출력되지 않을 수도 있음)

In [17]: 평가 데이터로 예측을 수행하고 예측값을 Y_predict에 저장

```
In [14]: from sklearn.tree import DecisionTreeClassifier

In [15]: # 결정 트리 분류 분석 : 1) 모델 생성
dt_HAR = DecisionTreeClassifier(random_state=156)

In [16]: # 결정 트리 분류 분석 : 2) 모델 훈련
dt_HAR.fit(X_train, Y_train)

Out [16]: DecisionTreeClassifier

DecisionTreeClassifier(random_state=156)
```

In [17]: # 결정 트리 분류 분석 : 3) 평가 데이터에 대한 예측 수행 -> 예측 결과 Y_predict 구하기 Y_predict = dt_HAR.predict(X_test)

5 분석 모델 구축 및 결과 분석

- 2. 생성한 모델의 분류정확도 높이기
 - 1. 결과 분석하기 생성된 결정 트리 모델의 분류 정확도 성능을 확인
- In [18]: 정확도 측정을 위해 accuracy score 모듈을 임포트
- In [19]: 테스트용 데이터의 Y_test 값과 결정 트리 모델에서 예측한 Y_predict의 오차를 기반으로 계산한 정확도 점수를 확인
- In [20]: 결정 트리 모델 학습을 통해 자동 설정되어 있는 하이퍼 매개변수를 확인
 - » 결정 트리 모델의 하이퍼 매개변수를 수정하면 정확도를 높일 수 있음

raction_leaf': 0.0, 'random_state': 156, 'splitter': 'best'}

```
In [18]: from sklearn.metrics import accuracy_score

In [19]: accuracy = accuracy_score(Y_test, Y_predict)
print('결정 트리 예측 정확도 : {0:.4f}',format(accuracy))

결정 트리 예측 정확도 : 0.8548

** 성능 개선을 위해 최적 파라미터 값 찾기

In [20]: print('결정 트리의 현재 하이퍼 파라미터 : \m', dt_HAR.get_params())
결정 트리의 현재 하이퍼 파라미터 :
```

{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_f

5 분석 모델 구축 및 결과 분석

2. 생성한 모델의 분류정확도 높이기

2. 최적의 하이퍼 매개변수를 찾기 : GridSearchCV 모듈 사용

In [21]: GridSearchCV 모듈을 임포트

In [22]: GridSearchCV를 사용하여 결정 트리의 하이퍼 매개변수 중에서 **트리의 깊이를 6, 8, 10, 12, 16, 20, 24로 변경하면서** 결정 트리 모델 7개를 생성하여 모델 학습grid cv.fit()을 수행

```
In [21]: from sklearn.model selection import GridSearchCV
In [22]: params = {
             'max_depth' : [ 6, 8, 10, 12, 16, 20, 24]
         grid_cv = GridSearchCV(dt_HAR, param_grid=params, scoring='accuracy',
                                cv=5, return_train_score=True)
         grid cv.fit(X train , Y train)
Out [22]:
                                       GridSearchCV
          GridSearchCV(cv=5. estimator=DecisionTreeClassifier(random state=156).
                       param_grid={'max_depth': [6, 8, 10, 12, 16, 20, 24]},
                        return_train_score=True, scoring='accuracy')
                         estimator: DecisionTreeClassifier
                         DecisionTreeClassifier(random_state=156)
                                   DecisionTreeClassifier
                         DecisionTreeClassifier(random_state=156)
```

5 분석 모델 구축 및 결과 분석

2. 생성한 모델의 분류정확도 높이기

2. 최적의 하이퍼 매개변수를 찾기 : GridSearchCV 모듈 사용

In [23]: GridSearchCV를 사용하여 생성한 7개 모델의 param_max_depth, mean_test_ score, mean_train_score를 확인 In [24]: 7개 모델 중에서 최고 평균 정확도와 그때의 최적 max depth를 출력하여 확인

In [23]: cv_results_df = pd.DataFrame(grid_cv.cv_results_)
 cv_results_df[['param_max_depth', 'mean_test_score', 'mean_train_score']]

Out [23]:

	param_max_depth	mean_test_score	mean_train_score
0	6	0.850791	0.944879
1	8	0.851069	0.982692
2	10	0.851209	0.993403
3	12	0.844135	0.997212
4	16	0.851344	0.999660
5	20	0.850800	0.999966
6	24	0.849440	1.000000

In [24]: print('최고 평균 정확도 : {0:.4f}, 최적 하이퍼 파라미터 :{1}'.format(grid_cv.best_score_ , grid_cv.best_params.

◆

최고 평균 정확도 : 0.8513. 최적 하이퍼 파라미터 :{'max depth': 16}

5 분석 모델 구축 및 결과 분석

2. 생성한 모델의 분류정확도 높이기

3. 최적의 하이퍼 매개변수를 찾기 : max_depth와 함께 min_samples_split을 조정

In [25]: max_depth를 8, 16, 20으로, min_samples_split를 8, 16, 24로 변경하면서 결정 트리 모델을 생성하여 모델 학습grid_cv.fit()을 수행

```
In [25]:
         params = {
             'max_depth' : [ 8, 16, 20 ],
             'min_samples_split' : [ 8, 16, 24 ]
         grid_cv = GridSearchCV(dt_HAR, param_grid=params, scoring='accuracy',
                                cv=5, return train score=True)
         grid cv.fit(X train , Y train)
Out [25]:
                                        GridSearchCV
          GridSearchCV(cv=5, estimator=DecisionTreeClassifier(random_state=156),
                        param_grid={'max_depth': [8, 16, 20],
                                    'min_samples_split': [8, 16, 24]},
                        return_train_score=True, scoring='accuracy')
                         estimator: DecisionTreeClassifier
                         DecisionTreeClassifier(random_state=156)
                                   DecisionTreeClassifier
                          DecisionTreeClassifier(random_state=156)
```

5 분석 모델 구축 및 결과 분석

2. 생성한 모델의 분류정확도 높이기

3. 최적의 하이퍼 매개변수를 찾기 : max_depth와 함께 min_samples_split을 조정

In [26]: GridSearchCV를 사용하여 생성한 9개 모델의 param_max_depth, min_ samples_split, mean_test_score, mean_train_score를 확인

In [27]: GridSearchCV를 사용하여 생성한 모델 중에서 최고 평균 정확도와 최적 하이퍼 매개변수를 출력하여 확인

Out [26]:

pa	ram_max_depth	param_min_samples_split	mean_test_score	mean_train_score
0	8	8	0.852023	0.981468
1	8	16	0.854879	0.979836
2	8	24	0.851342	0. <mark>9</mark> 78237
3	16	8	0.844136	0.994457
4	16	16	0.847127	0.990479
5	16	24	0.849439	0.986772
6	20	8	0.846040	0.994491
7	20	16	0.848624	0.990479
8	20	24	0.849167	0.986772

```
In [27]: print('최고 평균 정확도 : {0:.4f}, 최적 하이퍼 파라미터 :{1}'.format(grid_cv.best_score_ , grid_cv.best_params.

◆
```

최고 평균 정확도 : 0.8549, 최적 하이퍼 파라미터 :{'max_depth': 8, 'min_samples_split': 16}

5 분석 모델 구축 및 결과 분석

2. 생성한 모델의 분류정확도 높이기

4. 최적 모델grid_cv.best_estimator_을 사용하여 테스트 데이터에 대한 예측 수행

In [28]: GridSearchCV의 객체인 grid_cv의 best_estimator_ 속성에 저장되어 있는 최적 모델best_dt_HAR에 대하여 테스트 데이터x_test에 대한 예측predict()을 수행하고 정확도를 출력하여 확인

```
In [28]: best_dt_HAR = grid_cv.best_estimator_
best_Y_predict = best_dt_HAR.predict(X_test)
best_accuracy = accuracy_score(Y_test, best_Y_predict)

print('best 결정 트리 예측 정확도 : {0:.4f}'.format(best_accuracy))

best 결정 트리 예측 정확도 : 0.8717
```

5 분석 모델 구축 및 결과 분석

2. 생성한 모델의 분류정확도 높이기

5. feature_importances_ 속성을 사용하여 각 피처의 중요도를 알아내기

```
In [29]: 중요 피처를 그래프로 나타내기 위한 모듈을 임포트
```

In [30]: 최적 결정 트리 모델best_dt_HAR의 feature_importances_를 객체에 저장하고 막대 그래프로 그리기 위해 Series 자료형으로 변환하여 저장

In [31]: 중요도 값을 오름차순 정렬하여 상위 10개만 feature_top10에 저장

```
In [29]: import seaborn as sns import matplotlib.pyplot as plt

In [30]: feature_importance_values = best_dt_HAR.feature_importances_ feature_importance_values_s = pd.Series(feature_importance_values, index=X_train.columns)

In [31]: feature_top10 = feature_importance_values_s.sort_values(ascending=False)[:10]
```

5 분석 모델 구축 및 결과 분석

2. 생성한 모델의 분류정확도 높이기

5. feature_importances_ 속성을 사용하여 각 피처의 중요도를 알아내기

In [32]: 중요 피처 10개를 막대 그래프로 나타냄

```
In [32]: plt.figure(figsize = (10, 5))
   plt.title('Feature Top 10')
   sns.barplot(x=feature_top10, y=feature_top10.index)
   plt.show()
```


6 결과 시각화

- 1. 결정 트리 모델의 트리 구조를 그림으로 시각화하기
 - 1. 결정 트리 시각화를 제공하는 Graphviz 패키지는 별도의 설치 작업이 필요

https://graphviz.org/download/ 에서

graphviz-2.49.3(64-bit)EXE installer 를 다운로드하고 실행하여 설치

43 그림 **11-11** Graphviz 패키지 다운로드 후 설치

6 결과 시각화

- 1. 결정 트리 모델의 트리 구조를 그림으로 시각화하기
 - 2. 설치 경로를 환경 변수에 직접 설정하고,
 - 3. Graphviz 패키지를 파이썬으로 사용하기 위해 파이썬 래퍼 모듈인 graphviz를 설치

In [33]: !pip install graphviz

6 결과 시각화

- 1. 결정 트리 모델의 트리 구조를 그림으로 시각화하기
 - 4. 인터페이스 모듈 export_graphviz를 임포트하고 결정트리 파일(dot파일) 생성

In [34]: Graphviz 인터페이스 모듈인 export_graphviz를 임포트, 결정 트리 모델best_dt_HAR의 트리 구조 정보를 dot 파일로 생성

from sklearn.tree import export_graphviz

export_graphviz()의 호출 결과로 out_file로 지정된 tree.dot 파일을 생성.
export_graphviz(best_dt_HAR, out_file="./11장_data/tree.dot", class_names=label_name, feature_names = feature_name, impurity=True, filled=True)

6 결과 시각화

- 1. 결정 트리 모델의 트리 구조를 그림으로 시각화하기
 - 5. 결정트리 파일을 읽어서 시각화하기

In [35]: dot 파일을 읽어서 트리 구조를 그림으로 나타냄

```
import graphviz
# 위에서 생성된 tree.dot 파일을 Graphviz 읽어서 Jupyter Notebook상에서 시각화
with open("./11장_data/tree.dot") as f:
    dot_graph = f.read()
graphviz.Source(dot_graph)
```


6 결과 시각화

- 1. 결정 트리 모델의 트리 구조를 그림으로 시각화하기
 - 시각화된 트리 그래프를 보면 561개 피처를 사용하여 depth가 8인 결정 트리를 작성한 것을 확인

감사합니다.