

Prof. Vadhiraj K P P

Department of Electrical & Electronics Engineering

Numerical Examples on Thevenin's Theorem

Prof. Vadhiraj K P P

Department of Electrical & Electronics Engineering

Numerical Example 1

PES UNIVERSITY CELEBRATING 50 YEARS

Question:

Using Thevenin's Theorem, determine the range of current through $R_{\rm I}$ as it varies from 10Ω to 100Ω .

Numerical Example 1

PES UNIVERSITY CELEBRATING 50 YEARS

Solution:

Finding V_{TH}:

By Mesh Analysis,

Mesh 1 (Current Equation) : $I_1 = -4$ ----- (1)

Mesh 2 (KVL): $-1*I_1 + 3*I_2 = -2$ -----(2)

Solving (1) & (2), $I_1 = -4A$; $I_2 = -2A$

Numerical Example 1

PES UNIVERSITY CELEBRATING 50 YEARS

Solution (Continued)

By writing KVL in the path ABCDA,

$$-V_{TH} + 2*I_2 + 2 - 3 = 0$$

Hence,
$$V_{TH} = -5V$$

Numerical Example 1

Solution (Continued)

Finding R_{TH}:

It can be observed that 1Ω and 2Ω are in parallel.

Hence,
$$R_{TH} = 1\Omega \parallel 2\Omega = 0.67\Omega$$

Numerical Example 1

PES UNIVERSITY CELEBRATING 50 YEARS

Solution (Continued) Thevenin's Equivalent Circuit:

$$I_L = \frac{V_{TH}}{R_{TH} + R_L}$$

When R_L is = 100Ω , I_L = 49.67mA

When R_1 is = 10Ω , I_1 = 0.468A

Range of current through R_L is 49.67mA to 0.468A

Numerical Example 2

PES UNIVERSITY CELEBRATING 50 YEARS

Question:

Obtain the Thevenin's Equivalent of the given network between the terminals A & B

Numerical Example 2

PES UNIVERSITY

Solution:

By Mesh Analysis,

Mesh 1 (KVL):
$$5*I_1 - 5*I_2 = 100$$
 ----- (1)

Mesh 2 (KVL):
$$-5*I_1 + 55*I_2 - 40*I_3 = 0$$
 ----- (2)

Mesh 3 (Current Equation) :
$$I_3 = 20 \text{ A}$$
 ----- (3)

Solving (1), (2) & (3),
$$I_1 = 38 \text{ A}$$
; $I_2 = 18 \text{ A}$; $I_3 = 20 \text{ A}$

Numerical Example 2

PES UNIVERSITY CELEBRATING 50 YEARS

Solution (Continued)

By writing KVL in the path ABCDA,

$$-V_{TH} - 40* (I_3 - I_2) + 30 = 0$$

Hence,
$$V_{TH} = -50 \text{ V}$$

Numerical Example 2

PES UNIVERSITY CELEBRATING 50 YEARS

Solution (Continued)

Finding R_{TH}:

It can be observed that 5Ω resistor is shorted.

Hence,
$$R_{TH} = (10 \Omega \parallel 40 \Omega) + 8\Omega = 16 \Omega$$

Numerical Example 2

PES UNIVERSITY CELEBRATING 50 YEARS

Solution (Continued) Thevenin's Equivalent Circuit:

Thevenin's Equivalent circuit for the given network is as follows:

Text Book & References

Text Book:

Reference Books:

- 1. "Engineering Circuit Analysis" William Hayt, Jack Kemmerly, Jamie Phillips and Steven Durbin, 10th Edition McGraw Hill, 2023
- 2. "Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley,
- K. Brown & I.M Smith), 12th Edition, Pearson Education, 2016.

THANK YOU

Prof. Vadhiraj K P P

Department of Electrical & Electronics Engineering