Exercícios Sistemas Operacionais II Gerencia de Memória

Universidade Estadual do Centro-Oeste (UNICENTRO)
Departamento de Ciência da Computação (DECOMP)
Sistemas Operacionais II
Professor Diego Marczal
Paulo R. Urio
Eduardo T. Feliczaki

15 de março de 2012

1. Quais as funções básicas da gerência de memória?

A função básica do gerenciador de memória é alocar dinamicamente porções de memória para programas, quando requisitadas, e liberar para reuso quando não for mais necessária [1]. Também deve gerenciar toda a memória disponível (memória principal e secundária) de forma transparente aos programas do *userspace* [2].

2. Considere um sistema computacional com 40Kb de memória principal e que utilize um sistema operacional de 10Kb que implemente alocação contígua de memória. Qual a taxa de subutilização da memória principal para um programa que ocupe 20Kb de memória?

10 KB.

- 3. Suponha um sistema computacional com 64Kb de memória principal e que utilize um sistema operacional de 14Kb que implemente alocação contígua de memória. Considere também um programade 90Kb, formado por um módulo principal de 20Kb e três módulos independentes, cada um com 10Kb,20Kb e 30Kb. Como o programa poderia ser executado utilizando-se apenas a técnica de overlay?
- 4. Considerando o exercício anterior, se o módulo de 30Kb tivesse seu tamanho aumentado para 40Kb, seria possível executar o programa? Caso não possa, como o problema poderia ser contornado?
- 5. Qual a diferença entre fragmentação interna e externa da memória principal?

- 6. Suponha um sistema computacional com 128Kb de memória principal e que utilize um sistema operacional de 64Kb que implementa alocação particionada estática relocável. Considere também que osistema foi inicializado com três partições: P1 (8Kb), P2 (24Kb) e P3 (32Kb). Calcule a fragmentação interna da memória principal após a carga de três programas: PA, PB e PC.
- a) P1 <- PA (6Kb); P2 <- PB (20Kb); P3 <- PC (28Kb)
- b) P1 <- PA (4Kb); P2 <- PB (16Kb); P3 <- PC (26Kb)
- c) P1 <- PA (8Kb); P2 <- PB (24Kb); P3 <- PC (32Kb)
- 7. Considerando o exercício anterior, seria possível executar quatro programas concorrentemente utlizandoapenas a técnica de alocação particionada estática relocável? Se for possível, como? Considerando aindao mesmo exercício, seria possível executar um programa de 36Kb? Se for possível como?
- 8. Qual a limitação da alocação particionada estática absoluta em relação a alocação estática relocável?
- 9. Considere que os processos da tabela a seguir estão aguardando para serem executados e que cada umpermanecerá na memória durante o tempo especificado. O sistema operacional ocupa uma área de 20Kbno início da memória e gerencia a memória utilizando um algoritmo de particionamento dinâmicomodificado. A memória total disponível no sistema é de 64Kb e é alocada em blocos múltiplos de 4Kb.Os processos são alocados de acordo com sua identificação (em ordem crescente) e irão aguardar atéobter a memória que necessitam. Calcule a perda de memória por fragmentação interna e externa sempreque um processo é colocado ou retirado da memória. O sistema operacional compacta a memória apenasquanto existem duas ou mais partições livres adjacentes.

Processo Memória Tempo 1 30KB 5 2 6KB 10 3 36KB 5

- 10. Considerando as estratégias para escolha da partição dinamicamente, conceitue as estratégias best-fit eworst-fit especificando prós e contras de cada uma.
- 11. Considere um sistema que possua as seguintes área livres na memória principal, ordenadascrescentemente: 10Kb, 4Kb, 20Kb, 18Kb, 7Kb, 9Kb, 12Kb e 15Kb. Para cada programa abaixo, qualseria a partição alocada utilizando-se as estratégias first-fit, best-fit e worst-fit (Tanenbaum, 1992)?
- a) 12KB
- **b) 10KB**
- c) 9KB

Referências

- [1] Jonathan Bartlett. Inside memory management. developerWorks, nov. 2004.
- [2] David A Rusling. *Memory Management*, volume 1. 3 Foxglove Close, Wokingham, Berkshire RG41 3NF, UK, 1999.