Derangement Problem

Yize Wang

August 3, 2024

1 Problem Statement

Assume there are N birds and N nests both indexed from 1 to N. How many unique permutations are there if each bird wants to live in a nest with a different index from its own. In other words, the k^{th} bird does not want to live in the k^{th} nest.

2 Solutions

An algebraic solution and a brute-force backtrace solution are offered in this section.

2.1 Algebraic Solution

Let D_N denote the number of permutations when there are N birds and N nests.

N=1, the bird has to stay in its own nest, and no permutation qualifies, i.e., $D_1=0$;

N=2, the only permutation is that the two birds uses the other nest, i.e., $D_2=1$;

N>2, we consider two steps: Let Bird 1 decide first and it has N-1 options. Without loss of generality, assume Bird 1 picks Nest 2; Next step, Bird 2 can either pick Nest 1 (case A) or Nest $\{3,\ldots,N\}$ (case B). In case A, Bird $\{3,\ldots,N\}$ should pick their nests from Nest $\{3,\ldots,N\}$, which results in D_{N-2} permutations (sub-problem of N-2 birds and nests). In case B, Bird 2 cannot pick Nest 1 which would belong to case A. Then Bird 2 has to pick a nest from Nest $\{3,\ldots,N\}$, and Bird $\{3,\ldots,N\}$ has to choose from $\{1,3,\ldots,N\}$. If we rename Nest 1 to Nest 2, nothing will be changed for this sub-problem, which is equivalent to solving D_{N-1} .

The permutations in step 1 and step 2 should be multiplied, and thus we obtain the recursive formula:

$$D_1 = 0$$

 $D_2 = 1$
 $D_N = (N-1)(D_{N-1} + D_{N-2}), \forall N > 2, N \in \mathbb{Z}$

We list below some results for small Ns.

ſ	N	1	2	3	4	5	6	7	8	9	10	11	12
	D_N	0	1	2	9	44	265	1854	14833	133496	1334961	14684570	176214841

Math masters also derived general formula for D_N . Interested readers are referred to Wikipedia by keyword Derangement for more details. Programmers may also want to check-out $Leetcode\ 634\ Find\ the\ Derangement\ of\ an\ Array$ for more insights.

2.2 Backtrace Solution

We can also utilize modern computer's super power to iterate all possible permutations. The implementation can be found in main.cpp. The algorithm's space and time complexity are $\mathcal{O}(n^2)$ and $\mathcal{O}(n \times n!)$ respectively.

3 Acknowledgment

Thank Chengzhi Qi brought up this problem and offered insights.