

Adaptive Stain Normalization for Cross-Domain Medical Histology

Tianyue Xu, Yanlin Wu, Abhai K. Tripathi, Matthew M. Ippolito, Benjamin D. Haeffele

haeffele@upenn.edu

Background

Digital pathology is critical for disease diagnosis, but stain color variability creates major domain shifts.

Causes:

- Dye chemistry and reaction time differences
- Slide/sample preparation variability
- Scanner and imaging hardware differences

Impact:

- Pathologists adapt easily → AI models fail
- Reduced generalization → limits clinical use

Limitations of existing methods:

- Template-based (Reinhard, Macenko, Vahadane) sensitive & unstable, template-dependent
- GAN-based— hallucinate structures, unreliable
- Generic DL approaches not physics-informed

Our Method: BeerLaNet

Core Idea: BeerLaNet embeds the physics of histological staining, Beer-Lambert law, into a trainable network by unrolling matrix factorization, adaptively separating stain spectra and density without a template.

 $\mathbf{x_0} \in \mathbb{R}^c$: Background color. $\mathbf{X} \in \mathbb{R}^{c \times p}$: Observed image. $\mathbf{S} \in \mathbb{R}^{c \times r}$: Color spectra. $\mathbf{D} \in \mathbb{R}^{p \times r}$: Optical density.

 $r \in \mathbb{R}$: Rank of factorization (number of stains).

 $\gamma, \lambda \in \mathbb{R}$: Regularization parameters.

Beer-Lambert physics:
$$\overline{\mathbf{X}} = (\overline{\mathbf{x}}_0 \mathbf{1}^{\mathsf{T}}) \odot e^{-\mathbf{S}\mathbf{D}^{\mathsf{T}}}$$

$$\min_{\mathbf{x}_0, \ \mathbf{S}, \ \mathbf{D}} \frac{1}{2} \left| |\mathbf{x}_0 \mathbf{1}^{\mathsf{T}} - \mathbf{X} - \mathbf{S}\mathbf{D}^{\mathsf{T}}| \right|_F^2 + \lambda \sum_{i=1}^r \left| |s_i| \right|_2 \left(\gamma \left| |d_i| \right|_1 + \left| |d_i| \right|_2 \right), s. t. \mathbf{S}, \mathbf{D} \ge \mathbf{0}$$

Key Contributions:

- Adaptive stain separation → generalizes beyond H&E
- Algorithmic unrolling of NMF → interpretable, trainable
- Physics-informed (Beer–Lambert law) → models stain absorption
- Plug-and-play → works with YOLO, ResNet, etc, template-free

Dataset

Malaria blood smears (Detection):

 MGG-stained thin smears → RBC, WBC, platelets, parasites

Malaria parasite classification:

- Giemsa-stained single-cell images
- 2 different microscopes, 6 classes

Camelyon17-WILDS:

- H&E-stained tumor/normal patches
- 5 hospitals

Whole blood cell detection:

RBC, WBC, platelets

(a) Lifestages & Domains of Malaria Dataset

Middle Ring

Trophozoite

Schizont

Gametocyte

1 Nanozoomer ② Olympus 3 Zeiss

4 Morphle

(b) Domains of Camelyon17-wilds Dataset

(c) Domains of Blood Cell Dataset

BCCD

1 Train ② Validation ③ Test

BCDD

Pipeline

Input pathology image → Unrolled layers (stain decomposition) → Stain-invariant representation → Backbone network

Algorithm (BeerLaNet)

Input: Image X, iterations K, stains r Learnable parameters: γ , λ , S_{init} Output: Stain density map D

- **1.** Initialize $S = S_{init}$, D = 0, $x_0 = 0$
- **2.** For k = 1, ..., K:
 - Update background x_0
 - Update **D** by proximal gradient descent
 - Enforces sparsity
 - Applies non-negativity constraint
 - Update S by proximal gradient descent
 - Applies non-negativity constraint
- 3. Return D

Results

Table 1. Comparison of Stain Normalization Techniques. The best and the second-best results are **boldfaced** or starred (*), respectively. (C17 denotes Camelyon17-WILDS)

Task	Detection (YOLOv8)					Classification (ResNet18)				
Dataset	Malaria		Whole Blood Cells			Malaria		$C17_{test}$ $C17_{val}$,
Metrics (%)	mAP_{50}	mAP_{50-95}	mAP_{50}	mAP_{50-95}	APU	Acc	RAcc	Acc	Acc	APU
Baseline	91.03	52.00	65.20	36.70	18.10	21.32	45.59	85.21	83.38	31.70
Reinhard	90.17	51.47	79.53	44.03	11.17	$\bar{29.34}$	62.30	$-94.\overline{5}5$	91.36*	18.36
Macenko	72.03	39.27	65.43	35.27	29.27	29.59	73.54	95.92	85.77	16.27
Vahadane	92.10*	55.87*	57.57	31.30	20.76	38.81*	81.04*	95.85*	86.43	9.31*
StainGAN	81.67	37.70	89.60	$\overline{53.97}$	12.02	$\overline{3}\overline{1.46}$	70.94	$94.\overline{28}$	90.77	15.12
LStainNorm	91.80	53.67	85.83	50.00	5.25*	21.17	61.82	93.23	92.56	22.72
BeerLaNet	95.07	57.10	86.80*	51.33*	2.00	48.66	90.33	91.36	90.09	1.86

Consistency & Generalizability

- APU (Average Percent Underperformance): measures how far a method is from the best in each task, then averages across tasks.
- BeerLaNet achieves the **lowest APU**, meaning its performance is consistently close to the best across all benchmarks.

Acknowledgments & Codebase

Supported by:

- NIH NIAID grant R21AI16936
- Bloomberg Philanthropies through the Johns Hopkins Malaria Research Institute and Parasitology Core Laboratory
 - Johns Hopkins Institute for Data-Intensive Engineering and Science

