Coupling from the Past: Introduction

Aidan Jameson

University of Utah

May 26, 2024

CTFP

Recall. Given an ergodic Markov chain on Ω with transition matrix \mathcal{P} and stationary distribution π . A coupling from the past (CTFP) is the process (F_{-t}^0) with coalescing time T_0 where:

- $F_{-t}^0 = f_{-1} \circ f_{-2} \circ \cdots \circ f_{-t}$
 - where f_{-1}, f_{-2}, \ldots are i.i.d. random variables taking values in the space of functions from Ω to itself (Ω^{Ω})
 - and such that $\mathbb{P}\{f_{-i}(x) = y\} = \mathcal{P}(x,y) \ \forall x,y \in \Omega$
 - If there exists partial order \leq on Ω with unique maximum and minimum elements, then a monotone CTFP holds if $f_i(x) \leq f_i(y) \ \forall i$ whenever $x \leq y$
- $T_0 = \min \{ t > 0 : |F_{-t}^0(\Omega)| = 1 \}$ with $T_0 < \infty$ a.s.

Then $F_{T_0}^0(x) \stackrel{d}{=} \pi \ \forall x \in \Omega$. Thus, sampling $F_{T_0}^0(x)$ samples π .

Coupling via Random Mapping Representation

Counter Example

Let $\Omega = \{1, 2, 3, 4\}$. Define an ergodic Markov chain by transition matrix

$$\mathcal{P} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Then the random mapping representation of \mathcal{P} will not couple if the coupling is started from 1 and 2 (or 3 and 4) given the ordering in the representation preserves the ordering of Ω .

Notation

- (Ω, \preceq) denotes a partially ordered state space where it is assumed that there exists unique maximum and minimum elements $\hat{1}$ and $\hat{0}$ resp.
 - We also let L denote the length of the longest ordered sequence under \preceq of elements in Ω
 - ullet If Ω is partially ordered we will usually assume any CFTP is a monotone CTFP
- The notation surrounding any CTFP will be the same as in the previous slide

Theorem

Given (Ω, \preceq) and a Markov chain $\mathcal P$ with stationary distribution $\pi.$ If there exists a Monotone CFTP then

$$\frac{\mathbb{P}\left\{T_{0} > t\right\}}{L} \leq \max_{x,y \in \Omega} \left\| \mathcal{P}^{t}(x,\cdot) - \mathcal{P}^{t}(y,\cdot) \right\|_{TV} \leq \mathbb{P}\left\{T_{0} > t\right\}$$

Theorem

If K_1 and K_2 are integer-valued random variables, then for any CTFP

$$\mathbb{P}\{\, T_0 > K_1 + K_2\} \leq \mathbb{P}\{\, T_0 > K_1\} \cdot \mathbb{P}\{\, T_0 > K_2\}$$

Lemma

$$t\mathbb{P}\lbrace T_0 > t \rbrace \leq \mathbb{E}T_0 \leq \frac{t}{\mathbb{P}\lbrace T_0 \leq t \rbrace}$$

Lemma

If there is a monotone CFTP on (Ω, \preceq)

$$\mathbb{E} T_0 \leq 2t_{mix} \left(e^{-1} \right) \left(1 + \log(L) \right)$$

Theorem

Let T_1, \ldots, T_k, T_0 be independent samples of the coupling time. Then

$$\mathbb{P}\{T_0 > j \max(T_1, \dots, T_k)\} \leq \frac{j! \, k!}{(j+k)!}$$

Efficient Implementation

Proposition

If we take test coupling times T'_0, T'_1, \ldots where $T'_n = rT'_{n-1}$. Then

- \bullet r=2 minimizes the worst-case number of computation steps
- ullet r=e minimizes the expected number of computation steps

Efficient Implementation

Remark

The benefits of running with exponential growth r=e is minimal compared to r=2. As such, r=2 is often used instead to slightly simplify computations but also potentially reduce impatience bias.

We are given (Ω, \preceq) (which possesses unique maximum and minimum elements) and an ergodic markov chain on Ω with transition matrix $\mathcal P$ and stationary distribution π

Recall. The time reversal of \mathcal{P} is the markov chain governed by the transition matrix $\tilde{\mathcal{P}}(x,y) = \frac{\pi(y)\mathcal{P}(y,x)}{\pi(x)}$

Definition. μ and ν probability measures on Ω , then $\mu \leq \nu$ stochastically if $\mu(I) \geq \nu(I)$ for all order ideals I (i.e. $y \leq x \in I \implies y \in I$).

Definition. A transition matrix \mathcal{P} is monotone if $\mathcal{P}(x,\cdot) \leq \mathcal{P}(y,\cdot)$ (stochastically) whenever $x \leq y$.

Definition. μ and ν probability measures on Ω , then $\mu \leq \nu$ stochastically if $\mu(I) \geq \nu(I)$ for all order ideals I (i.e. $y \leq x \in I \implies y \in I$).

Definition. A transition matrix \mathcal{P} is monotone if $\mathcal{P}(x,\cdot) \leq \mathcal{P}(y,\cdot)$ (stochastically) whenever $x \leq y$.

Lemma

 $\mu \leq \nu$ stochastically if and only if there exists an upward kernel K such that $\nu = \mu K$.

In this case, K is a transition matrix such that for all $x \in \Omega$, the measures $K(x,\cdot)$ are supported on $\{y \in \Omega : y \succeq x\}$

It is assumed that \mathcal{P} is ergodic and $\tilde{\mathcal{P}}$ is monotone on (Ω, \preceq) (where there is a unique maximum and minimum element). We let $K_{x,y}$ denote the upward kernel between $\mathcal{P}(x,\cdot)=\mathcal{P}(y,\cdot)K_{x,y}$ where $x\preceq y$.

Independently for $T=1,2,4,8,\ldots$, let $(X_t)\cong \mathcal{P}$ be the chain beginning at $X_0=\hat{0}$. If we let $X_T=z$, consider the time reversal $(\tilde{X}_0,\ldots,\tilde{X}_T)=(X_0,\ldots,X_T)$. Build (\tilde{Y}_t) such that $\tilde{Y}_0=\hat{1}$ and where if $\tilde{X}_{t+1}=x',\;\tilde{X}_t=x$, then transition from $\tilde{Y}_t=y$ to $\tilde{Y}_{t+1}=y'$ with probability $K_{x,y}(x',y')$. If $\tilde{Y}_T=\hat{0}$ accept z, else reject the sample.

Lemma

$$\mathbb{P}\{\tilde{Y}_{T} = \hat{0} | \tilde{X}_{0} = z, \tilde{X}_{T} = \hat{0}, \tilde{Y}_{0} = \hat{1}\} = \frac{\tilde{\mathcal{P}}^{T}(\hat{1}, \hat{0})}{\tilde{\mathcal{P}}^{T}(z, \hat{0})}$$

What we are doing is rejection sampling on $\tilde{\mathcal{P}}^T(\hat{0},\cdot)$ with $c=\frac{\pi(\hat{0})}{\tilde{\mathcal{P}}^T(\hat{1},\hat{0})}$ (which is a bound since the chain is monotone).