

Data Advanced

Hoofdstuk 2

Kansrekenen

DE HOGESCHOOL MET HET NETWERK

Hogeschool PXL – Elfde-Liniestraat 24 – B-3500 Hasselt www.pxl.be - www.pxl.be/facebook

Inhoud

- Inleiding
- 2. Experimenten en hun uitkomsten
- Gebeurtenissen
- 4. Kansen toekennen aan gebeurtenissen
- 5. Basiseigenschappen uit de kansrekening
- 6. Voorwaardelijke kans
- 7. Onafhankelijke gebeurtenissen
- 8. Wet van de totale kans
- 9. Regel van Bayes
- 10. Oefeningen

1. Inleiding

2. Experimenten en hun uitkomsten

Kansexperiment

Universum

Kans: P

3. Gebeurtenissen

- Gebeurtenis
 - Complement
 - Unie
 - Doorsnede
- Disjuncte gebeurtenissen

4. Kansen toekennen aan Gebeurtenissen

- Eerste methode + vb 8 en 9 pg 22
- Tweede methode
- Basiseigenschappen uit de kansrekening

$$0 \le P(\omega_i) \le 1$$

$$P(\omega_1) + P(\omega_2) + \dots = 1$$

$$P(\mathsf{U}) = 1 \ \ \text{en} \ \ P(\phi) = 0$$

$$P(A) = \sum_{\omega_i \in A} P(\omega_i)$$
 $0 \le P(A) \le 1$

5. Basiseigenschappen van de kansrekening

- Somregel + vb 11 pg 25
 - Disjuncte gebeurtenissen
 - Algemeen + vb 12 pg 25
- Complementregel
- Verschilregel + vb 13 (1,3) pg 27
- Basiseigenschappen uit de kansrekening

6. Voorwaardelijke kans

De voorwaardelijke kans van een gebeurtenis A, gegeven dat een gebeurtenis B zich voorgedaan heeft, wordt genoteerd als P(A|B) en wordt berekend als volgt:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 met $P(B) > 0$

analoog

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 met $P(A) > 0$

Vb 15 pg 30

7. Onafhankelijke gebeurtenissen

Definitie

Een gebeurtenis A heet onafhankelijk van een gebeurtenis B indien P(A|B) = P(A)

De voorwaardelijke kans is gelijk aan de onvoorwaardelijke kans.

Eigenschap (Productregel voor onafhankelijke gebeurtenissen)

Twee gebeurtenissen A en B zijn onafhankelijk $\Leftrightarrow P(A \cap B) = P(A) * P(B)$

Vb 16 pg 31

8. Wet van de totale kans

Eigenschap

$$\mathsf{Als}\ U = A_1 \cup A_2 \cup \cdots \cup A_n \ \mathsf{met}\ A_i \cap A_j = \emptyset \quad \ \forall \ i,j \quad (i \neq j)$$

Dan geldt voor elke gebeurtenis B:

$$P(B) = \sum_{i=1}^{n} P(B|A_i) * P(A_i)$$

Vb 17, 18, 19, 20 pg 32 - 35

9. Regel van Bayes

Eigenschap (De regel van Bayes)

$$\mathsf{Als}\ U = A_1 \cup A_2 \cup \dots \cup A_n \ \mathsf{met} \ A_i \cap A_j = \ \varphi \qquad \forall\ i,j \quad (i \neq j)$$

Dan geldt voor elke gebeurtenis B met P(B) > 0:

$$P(A_i|B) = \frac{P(B|A_i) * P(A_i)}{P(B|A_1) * P(A_1) + \dots + P(B|A_n) * P(A_n)}$$

Vb 21, 22, 23 pg 36 - 38

10. Oefeningen

Oneven oefeningen