1(Currently amended). A compound represented by formula II

wherein at least one of $R^{2'}$, $R^{3'}$ or $R^{5'}$ is H, R^{20} -(W)_x-CO-, R^{20} -(W)_x-CS- or R^{20} -(W)_x-PO(OH) -; and wherein at least one of $R^{2'}$, $R^{3'}$, $R^{3'}$ or $R^{5'}$ is not H; wherein R^{20} is R^{20} is alkyl, H, alkanoyl, cycloalkyl, aryl, heterocyclic, $NR^{21}R^{22}$, alkenyl, or alkynyl; or is alkyl, alkanoyl alkenyl or alkynyl substituted by halo, phenyl, cycloalkyl, $NR^{21}R^{22}$, hydroxy, alkoxy;

or is aryl substituted by phenyl halo, CN, NO₂, OH, R²⁸, O R²⁸, CF₃, SH SR^{21} , SOR^{21} , SO_2R^{21} ; $NR^{21}R^{22}$ CO_2H , CO_2 , OR^{21} , O^*M^+ or S^*M^+ ; wherein M^+ is an alkali metal cation;

or
$$R^{20}$$
 is- -(CHR²¹)_e-(CH₂)_f-CO-OR²²,

$$-(CHR^{21})_e-(CH_2)_f-OR^{22}$$
, or $-(CHR^{21})_e-(CH_2)_f-NR^{21}R^{22}$

W is O, NR²⁸ or S;

 R^{21} is H, alkyl, alkanoyl,Y or aryl or is alkyl, alkanoyl or aryl suabstituted <u>substituted</u> by halo, phenyl, CN, NO₂ OH, CO₂H or alkoxy; and R^{22} is H, alkyl or aryl or is alkyl or aryl substituted by phenyl; halo, CN, NO₂, OH, CO₂H or alkoxy;

or R^{21} and R^{22} taken together with N and one of CHR²¹, NR²¹, O, S, SO or SO₂ form a five-, six- or seven- membered ring; R^{27} is H, OR^{21} , $NR^{21}R^{22}$, R^{20} -(W)_x-CO-, R^{20} -(W)_x-CS-, (HO)₂PO- or R^{20} -(W)_x-PO(OH) - or HO-SO₂-; R^{28} is H, alkanoyl, aryl, alkyl or alkyl substituted by OH, halo or $NR^{21}R^{22}$;

e= 0 to 6, f= 0 to 10, t = 0 to 100; s = 0 to 6000; r = 1 to 5000; and x = 0 or 1; or a pharmaceutically acceptable salt thereof.

2(Original). A pharmaceutical composition of a compound of claim 1 or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier.

3(Currently amended).. A method of using a compound represented by formula II of claim 1 for treating a susceptible viral infection, wherein the method comprises <u>administering</u> a therapeutically effective amount of a ribavirin derivative of formula II of claim 1 or a pharmaceutically acceptable salt thereof.

4(Currently amended).. A method of using a compound represented by formula II of claim 1 in association with interferon alpha for treating a chronic hepatitis C <u>viral("HCV")</u> infection, wherein the method comprises <u>administering</u> a therapeutically effective amount of a ribavirin derivative of formula II of claim 1 or a pharmaceutically acceptable salt thereof and a therapeutically effective amount of an interferon alpha.

5(Currently amended).. The method of claim 4, wherein the interferon-alpha is selected from interferon alpha-2a, interferon alpha-2b, a consensus interferon, a purified interferon alpha product or a pegylated interferon-alpha-2a, pegylated interferon-alpha-2b, and pegylated consensus interferon.

Conta

6(Currently amended).. The method of claim 4, wherein the interferonalpha administered is a pegylated interferon alpha-2b and the amount of pegylated interferon-alpha-2b administered is from 0.5 to 2.0 micrograms/kilogram per week on a weekly, TIW three times a week("TIW"), QOD every other day("QOD") or daily basis,

7(Original). The method of claim 4, wherein the interferon-alpha administered is a pegylated interferon alpha-2a and the amount of pegylated interferon alpha-2a administered is from 20 to 250 micrograms per week on a weekly, TIW, QOD or daily basis.

9(Original). The compound of formula II of claim 1, wherein $R^{2'} = R^{3'} = H$.

10(Original). The compound of formula II of claim 1 wherein $R^{2'} = R^{5'} = H$,

11(Original). The compound of formula II of claim 1 wherein $R^{3'} = R^{5'} = H$.

12(Original). The compound of formula II of claim 1, wherein R^{5'} is one of

wherein X is independently OH, alkanoyl, amino, alkylamino, dialkylamino, alkanoylamino, hydroxyalkyl, alkoxy, alkyl, CN, NO_2 , halo, or alkyl substituted by OH, alkanoyl, amino, alkylamino, dialkylamino, alkanoylamino, hydroxyalkyl, alkoxy, CN, NO_2 , or halo.

13 The compound of formula II of claim 1, wherein R⁵ is

wherein X is OH, COCH₃, OCOCH₃, NO₂, NH₂, $[CH_3]_2N$, NHCOCH₃, CH_2OH , CH_3 , OCH₃, F, Br or Cl.

14 The compound of claim 1, wherein R^{5'} is

15(Original). A method of treating patients having chronic hepatitis C infection comprising administering a therapeutically effective amount of a ribavirin derivative of formula I and a therapeutically effective amount of interferon-alpha for a time period sufficient to eradicate detectable HCV-RNA at the end of said period of administering and to have no detectable HCV-RNA for at least 24 weeks after the end of said period of administrating, and wherein the ribavirin derivative is represented by formula I:

wherein at least one of R^2 , R^3 or R^5 is H, R^6 -(W)_x-CO-, R^6 -(W)_x-CS-(HO)₂PO- , R^6 -(W)_x-PO(OH)- or HO-SO₂- and wherein at least one of R^2 , R^3 or R^5 is not H; wherein R^6 is H, alkyl, alkanoyl, cycloalkyl, heterocylic, aryl, $NR^{7a}R^{7b}$, alkenyl, or alkynyl;

or is alkyl, alkanoyl, alkenyl or alkynyl substituted by halo, phenyl, cycloalkyl, NR^{7a}R^{7b}, hydroxy or alkoxy;

or R⁶ is aryl substituted by phenyl, halo, CN, NO₂, OH, R¹⁸, OR¹⁸, CF₃, SH SR^{7a},SOR^{7a},SO₂R^{7a}; NR^{7a}R^{7b} CO₂H, CO₂⁻ M⁺⁻, O⁻M⁺ OR^{7a} or S⁻M⁺; wherein M⁺ is an alkali metal cation;

or
$$R^6$$
 is - -(CHR^{7a})_e-(CH₂)_f-CO-OR^{7b},
-(CHR^{7a})_e-(CH₂)_f- OR^{7b}, or -(CHR^{7a})_e-(CH₂)_f-NR^{7a}R^{7b}

W is O, NR¹⁸ or S;

 R^{7a} is H, alkyl, alkanoyl, aryl or is alkyl, alkanoyl or aryl substituted by halo phenyl CN, NO₂, OH, CO₂H or alkoxy; and R^{7b} is H, alkyl or aryl or is alkyl or aryl substituted by halo, CN, NO₂, CO₂H, OH or alkoxy;

or R^{7a} and R^{7b} taken together with N and one of CHR 7a , NR 7a , O, S, SO or SO $_2$ form a five-, six- or seven- membered ring;

 R^{17} is H , OR^{7a} , $NR^{7a}R^{7b}$, R^{6} -(W)_x-CO-, R^{6} -(W)_x-CS-, (HO) $_{2}$ PO- ,

 R^6 -(W)_x-PO(OH) - , or HO-SO₂- ;

R¹⁸ is H, aryl, alkyl, or alkyl substituted by OH, halo , NR^{7a}R^{7b}, or alkanoyl;

e = 0 to 6, f = 0 to 10, and x = 0 or 1; or a pharmaceutically acceptable salt thereof.

16(Original). The method of claim 15 wherein R^5 is R^6CO wherein R^6 is aryl

substituted by phenyl, halo, CN, NO₂, OH, R¹⁸, OR¹⁸, CF₃, SH SR^{7a}, SOR^{7a}, SO₂R^{7a}; NR^{7a}R^{7b} CO₂H, CO₂ $^-$ M⁺⁻, O $^-$ M⁺ OR^{7a} or S $^-$ M⁺ and wherein M⁺ is an alkali metal cation.

17(Original). The method of claim 15 wherein R^5 is R^6CO wherein R^6 is phenyl substituted by, halo, CN, NO_2 , OH, R^{18} , OR^{18} , CF_3 , SH SR^{7a} , SO_2R^{7a} ; $NR^{7a}R^{7b}$ CO_2H , $CO_2^-M^{+-}$, $O^-M^+OR^{7a}$ or S^-M^+ . and wherein M^+ is an alkali metal cation.