Homework 5

Lev Kozlov

September 2022

Source code

Task 1

Too lazy to draw in tikz, so here you are.

Part 1: find the angle to shoot the officer

- 1. RO: particle planar motion
- 2. Condition:

	initial	final
t	0	?
x	0	L
x'	$v_0 \cdot \cos(\alpha)$	$v_0 \cdot \cos(\alpha)$
x''	0	0
y	0	0
y'	$v_0 \cdot \sin(\alpha)$?
y''	-g	-g

- 3. Force analysis: \vec{G}
- 4. Solution:
 - (a) Equations by axis:

$$\begin{cases}
mx'' = 0 \\
my'' = -mg
\end{cases}$$
(1)

Integration yields:

$$\begin{cases} x' = c_1 \\ y' = -gt + c_3 \end{cases}$$
 (2)

Another integration:

$$\begin{cases} x = c_1 t + c_2 \\ y = -\frac{1}{2}gt^2 + c_3 t + c_4 \end{cases}$$
 (3)

(b) Substitution of initial values:

$$\begin{cases}
c_1 = v_0 \cdot \cos(\alpha) \\
c_2 = 0 \\
c_3 = v_0 \cdot \sin(\alpha) \\
c_4 = 0
\end{cases}$$
(4)

(c) Combining:

$$\begin{cases}
L = v_0 \cdot \cos(\alpha)t \\
0 = -\frac{1}{2}gt^2 + v_0 \cdot \sin(\alpha)t
\end{cases}$$
(5)

(d) Result: Python says there are two solutions: $\alpha=0.0097$ and $\alpha=1.561$. And I have no doubts to not trust Python.

Part 2: find the max height of the cargo ship can be to make this shot

- 1. As there are two angles that satisfy the first part, we need to find the max height for each of them.
- 2. Analysis of equation for y-axis:

$$y = -\frac{1}{2}gt^2 + v_0 \cdot \sin(\alpha)t\tag{6}$$

3. As y is parabola, we can simply find its maximum height by finding extrema: $\frac{1}{2}$

$$t_{max} = \frac{v_0 \cdot \sin(\alpha)}{g} \tag{7}$$

$$y_{max} = y(t_{max}) (8)$$

4. Result:

For the first case: $y_{max} = 3.64555853045729$ For the second case: $y_{max} = 38574.3360928457$

Part 3: find an angle α , if you take into consideration the air resistance

- 1. RO: particle planar motion
- 2. Condition:

	initial	final
t	0	?
x	0	L
x'	$v_0 \cdot \cos(\alpha)$?
x''	0	0
y	0	0
y'	$v_0 \cdot \sin(\alpha)$?
y''	-g	-g

- 3. Force analysis: \vec{G} , $\vec{F_c}$
- 4. Solution:
 - (a) Equations by axis:

$$\begin{cases}
mx'' = -k\sqrt{x'^2 + y'^2}x' \\
my'' = -mg - k\sqrt{x'^2 + y'^2}y'
\end{cases}$$
(9)

(b) Too hard to integrate by hands, so I'll use Python. Everthing is the same as in part 1, but with different result.

(c) Result:

An angle to shoot officer is ≈ 0.0324

5. Air resistance force:

6. Trajectory with resistance:

- 1. $\alpha = 0.0097$, $\alpha = 1.561$
- 2. $y_{max} = 38574.336$
- 3. $\alpha = 0.0324$

Task 2

simulation

- 1. RO: particle M translatory motion, disk A rotation
- 2. Condition:

	initial	final
t	0	?
x	0	r
x'	0.4	?
x''	0	0

- 3. Force analysis: \vec{G} , \vec{N}
- 4. Solution:
 - (a) Equation on $x(not\ static)$ axis:

$$mx'' = \sum F_x + \Phi_{trx} + \Phi_{corx} \tag{10}$$

$$mx'' = mg\sin(\omega t) + m\omega^2 x \tag{11}$$

As coriolis acceleration is $\vec{a}_{cor} = 2(\vec{w}_{tr} \times \vec{v}_{rel})$, we see that its projection on x axis is 0.

(b) I will not directly solve this equation here, because it just a matter of math (wolfphram) solution

(c) At next point we will find t until which we have to simulate everything:

$$x(t) = r (12)$$

(d) Equation on y(not static) axis:

$$ma_{cor} + N - mg\sin(\omega t) = 0 \tag{13}$$

(14)

This equation is enough to find N for each moment of time.

Answer:

 $t_{final} \approx 0.38s$

Task 3

- 1. I will solve the task as it was supposed by "Meshcherskiy", so mass of ABCD will be 100.
- 2. RO system of 4 bodies, ABCD, body 1, body 2, body 3 translatory motion.
- 3. Method: CoM
- 4. Conditions:

I will write only for x axis as it is enough to complete this task

	initial	final
x_{ABCD}	x_0	$x_0 + s$
x_{body1}	x_1	$x_1 + s$
x_{body2}	x_2	$x_2 + s + d$
x_{body3}	x_3	$x_3 + s + d\cos(\pi/3)$
x'	0	0
x''	0	0

- 5. Forces analysis: $\vec{G}_{ABCD},$ $\vec{G}_{body1},$ $\vec{G}_{body2},$ $\vec{G}_{body3},$ \vec{N} (of the whole system)
- 6. Solution:

(a) Writing this equation for x axis:

$$Mx''_c = 0$$
 (15)
 $Mx'_c = 0$ (16)
 $Mx_c = 0$ (17)

$$Mx_c' = 0 (16)$$

$$Mx_c = 0 (17)$$

(18)

Which means that between initial and final position center of mass did not move.

(b) Equation connecting initial and final position:

$$Mx_c^{init} = Mx_c^{final} (19)$$

(c) Using CoM:

$$\sum m_i x_i^{init} = \sum m_i x_i^{final} \qquad (20)$$

$$m_1 s + m_2 d + m_2 s + m_3 d \cos(\pi/3) + m_3 s + m_{ABCD} s = 0$$
 (21)

Answer:

$$s = -\frac{4}{29}$$