

Amendments to the Claims: This listing of claims will replace all prior versions, and listings, of claims in the application

Listing of Claims:

1. (Currently Amended) A method for forming a pattern in a film carried on a substrate, said method comprising:[;]

obtaining a mold of a material, which mold is hard relative to the film,

the film comprising a polymeric composition capable of being deformed by said mold at a temperature of less than 200°C.;

the mold having first and second protruding features spaced apart from each other and a recess formed thereby, the first and second features and the recess having a shape forming a mold pattern and providing at least one mold pattern lateral dimension which is less than 200 nm;

urging the mold into the film under a molding pressure;

the thickness of the film under the protruding features of the mold being reduced to form areas of reduced thickness, thereby forming the mold pattern in the film;

removing the mold from the film; and

removing from the film the areas of reduced thickness, thereby forming exposed exposing portions of the surface of the substrate which underlie the areas of reduced thickness-thin region such that the exposed portions of the surface of the substrate substantially replicate the mold pattern and have at least one lateral dimension which is less than 200 nm.

2. (Original) The method of claim 1, wherein the polymeric composition comprises a homopolymer, a copolymer, a random polymer, a block polymer, a grafted polymer, a telechelic polymer, a star polymer, a dendrimer, or any combination thereof.

3. (Currently Amended) The method of claim 1, wherein the polymeric composition comprises: poly(methyl methacrylate), poly(bisphenol-A carbonate),

poly(methylhexadecylsiloxane), poly(methylacrylate), poly(n-butyl acrylate), poly(octadecyl methacrylate), poly(isobutyl methacrylate), poly(butyl methacrylate), poly(vinylacetate), poly(vinyl stearate), poly(ethylene oxide), polycaprolactone, poly(α -methylstyrene), poly(vinyl stearate)/poly(methyl methacrylate), poly(methylhexadecylsiloxane
methylhexadecylsilox—ane)/poly(methyl methacrylate), poly(octadecyl methacrylate)/poly(methyl methacrylate), poly(butyl methacrylate-co-isobutylmethacrylate), poly(butyl methacrylate-co-methyl methacrylate), poly(dimethylsiloxane-co- α -methylstyrene), poly(ethylene-co-vinylacetate)-graft(t-maleic anhydride), poly(vinyl chloride-co-vinylacetate), poly(vinyl chloride-co-isobutylvinylether), poly(chlorotrifluorethylene- co-vinyldiene co-vinyldiene fluoride), or any combination thereof.

4. (Original) The method of claim 1, wherein the polymeric composition comprises an oligomer, said oligomer comprising an epoxy resin, an acrylic (methylacrylic) oligomer, a reactive polysiloxane oligomer, or any combination thereof.

5. (Original) The method of claim 1, wherein the polymeric composition further comprises a monomer, said monomer comprising a C₈-C₂₀ alkyl methacrylate, a fluorinated alkyl (meth)acrylate monomer, or any combination thereof.

6. (Currently Amended) The method of claim 1, wherein the polymeric composition further comprises a crosslinker, said crosslinker comprising DVB divinyl benzene, TMPTA trimethylopropane triacrylate, or any combination thereof.

7. Canceled

8. (Currently Amended) The method of claim 730, wherein said polymeric composition is capable of being deformed at a temperature of less than about 100°C.

9. Canceled

10. (Currently Amended) The method of claim 931, wherein said photocurable polymeric composition is capable of curing in less than about 2 seconds on exposure to radiation.

11. (Currently Amended) The method of claim-9_31, wherein said photocurable polymeric composition has a viscosity of greater than about 2 poise at 25°C.

12. (Original) The method of claim 11, wherein said photocurable polymeric composition has a viscosity in the range of about 10 poise to about 30 poise.

13. (Currently Amended) The method of claim-9_30, wherein said photocurable polymeric composition comprises an oligomer, said oligomer comprising silicon atoms.

14. (Currently Amended) The method of claim-9_30, wherein said photocurable polymeric composition is capable of crosslinking in less than about 2 seconds on exposure to radiation.

15. (Currently Amended) The method of claim-9_31, wherein said photocurable polymeric composition comprises up to about 90 weight percent monomer.

16. (Currently Amended) The method of claim-7_30, wherein said nanoimprint resist further comprises a plasticizer, a mold release agent, a monomer, a crosslinker, an additive, or any combination thereof.

17. (Currently Amended) The method of claim-7_30, wherein said nanoimprint resist comprises from about 20 weight percent to 100 weight percent of said polymeric composition, up to about 80 weight percent of a plasticizer, and up to about 30 weight percent of a mold release agent.

18. Canceled

19. (Currently Amended) The method of claim-7_30, wherein sub-50 nanometer structures are formed.

20-29. Canceled

30. (New) A method for forming a plurality of structures having at least one dimension less than 200 nm, said method comprising:

obtaining a mold of a material, which mold is hard relative to a nanoimprint resist,

the nanoimprint resist comprising a polymeric composition capable of being deformed by said mold at a temperature of less than 200°C., wherein the polymeric composition comprises an added composition selected from the group consisting of thermosettable polymeric compositions, photocurable polymeric compositions, and combinations thereof;

the mold having first and second protruding features spaced apart from each other and a recess formed thereby, the first and second features and the recess having a shape forming a mold pattern and providing at least one mold pattern lateral dimension which is less than 200 nm;

urging the mold into the nanoimprint resist under a molding pressure;

the thickness of the nanoimprint resist under the protruding features of the mold being reduced to form areas of reduced thickness, thereby forming the mold pattern in the nanoimprint resist, the mold pattern comprising a plurality of structures having at least one dimension less than 200 nm;

removing the mold from the film, the polymeric composition retaining said plurality of structures; and

removing from the nanoimprint resist the areas of reduced thickness, thereby forming exposed portions of the surface of the substrate which underlie the areas of reduced thickness such that the exposed portions of the surface of the substrate substantially replicate the mold pattern and have at least one lateral dimension which is less than 200 nm.

31. (New) The method of claim 30 in which the added composition is a photocurable polymeric composition.

32. (New) The method of claim 30 in which the added composition is a thermosettable polymeric composition.

33. (New) The method of claim 30 in which the added composition is a mixture of a photocurable composition and a thermosettable polymeric composition.

34. (New) The method of claim 30 additionally comprising the step of hardening the added composition.

35. (New) The method of claim 34 in which the added composition is a photocurable polymeric composition, and the photocurable polymeric composition is hardened by ultraviolet exposure.

36. (New) The method of claim 34 in which the added composition is a thermosettable polymeric composition, and the thermosettable polymeric composition is hardened by a thermal treatment.

37. (New) The method of claim 34 in which the added composition is a mixture of a photocurable composition and a thermosettable polymeric composition and the mixture is hardened by ultraviolet exposure and thermal treatment.