实验二 触发器及其应用

一、 实验目的

- (一) 熟悉常用的 TTL 及 CMOS 触发器的基本结构及逻辑
- (二) 掌握触发器的正确使用方法

二、 实验设备

- (一) 电子技术实验箱
- (二) 组件 74 LS00 74LS20 74LS74 74LS75 74LS112

三、实验原理

触发器是具有记忆功能、能存储数字信号的最常用的一种基本单元电路。是组成时序逻辑电路的主要元件。在数字系统和计算机中有着广泛的应用。触发器按逻辑功能可分为 RS 触发器、D 触发器、JK 触发器和 T 触发器。按电路结构可分为钟控式、维持阻塞式、主从式和边沿触发式。

RS 触发器具有置 0、置 1 及保持的功能,但存在 RS=0 的约束条件。JK 触发器是最主要的触发器之一,它的特性方程为 $Q^{n+1}=J$ $\overline{Q}^n+\overline{K}$ Q^n ,它具有置 0、置 1 和翻转的功能。D 触发器是一种边沿触发器,它广泛应用与数据锁存、控制电路中,是组成移位、计数和分频电路的基本逻辑单元,它的特性方程是 $Q^{n+1}=D$ 。

钟控式触发器属于电平触发方式,因此存在空翻现象,不能用计数器或移位寄存器,它用于 CP=1 期间输入信号不变化的那些场合。维持阻塞型和边沿触发器能避免空翻,实现"一次操作"的触发器,是目前广泛使用的触发器类型。主从触发器属于下降沿触发的触发器,在使用主从型触发器时需注意得失,在 CP=1 期间,如果输入信号发生了变化(如干扰引起的),主触发器也发生类似空翻现象,从而使触发发生误动作。因此规定输入信号只允许在 CP=0 期间变化,而不允许在 CP=1 期间变化,这给使用带来一些限制。

四、 实验内容与步骤

1. JK 触发器的功能测试

由 JK 触发器的异步置位和复位端分别将触发器的初始状态 Q^n 预置为 0 态和 1 态,当 J、k 端为表所示的状态时,在 CK 端加上单次脉冲,用发光二极管 0-1 显示电路分别测量触发器 Q 端所对应的状态 Q^{n-1} ,将测量结果记录于表 5-3 中。

输入端		触发器状态		
J	K	初态(Q ⁿ)	次态 (Q ⁿ⁼¹)	
0	0	$0(\overline{R}_{D}=0)$		
		$1(\overline{S}_{D}=0)$		
0	1	0		

		1	
1	0	0	
		1	
1	1	0	
		1	

表 5-3

2. D触发器(74LS74)的功能测试

将任一 D 触发器 D 端处于 0 态,触发器预置 1 态(初态 Qⁿ=1),在 CP 端接上单次脉冲,测量触发器 Q 端和 \overline{Q} 所对应的状态 Qⁿ⁼¹,将测量结果纪录与表5-6 中;

再将任一D 触发器 D 端处于 1 态,触发器预置 0 态(初态 $Q^{n=0}$),在 CP 端接上单次脉冲,测量触发器 Q 端和 \overline{Q} 所对应的状态 $Q^{n=1}$,将测量结果纪录与表 5-6 中。

D端	0 态		1 态	
初态 Q ⁿ	Qn=1(PR=0)		Q ⁿ =0(CLR=0)	
CP 端	Q	$\overline{\mathcal{Q}}$	Q	$\overline{\mathcal{Q}}$
次态 Q ⁿ⁺¹				

表 5-6

3. 串行数值比较器

用 JK 触发器 74LS112 和一片或非门 74LS02 组成串行数值比较器电路。数据输入为 A_i 和 B_i ,输出为比较结果。若 A_i = B_i , Q_2 =1,数据可逐位串行比较下去,直至 A_i \neq B_i 时为止。此时,若 A_i \rangle B_i ,则 Q_1 =1,若 A_i \langle B_i ,则 Q_3 =1。通过清零后再进行比较。时钟用单次脉冲,比较结果 Q_1 、 Q_2 、 Q_3 用 LED 显示灯显示。将实验结果用真值表表示,并分析说明电路工作原理。

4. 抢答器

图 5-3 使用 4D 锁存器 74LS75 和门电路构成的四人抢答器。当主持人将按钮按下时,四指示灯全灭,开始抢答,四人中只有最先抢答者的指示灯亮。分析电路的工作原理。

图5-3四路抢答器

五、 思考题

- 1、 在串行数值比较器中,当一次比较结束后,为什么要清零后再继 续进行比较,可否不清零就进行比较,为什么?
- 2、 你试用其它器件设计出抢答器。