Handbook of Optical Constants of Solids, Volumes I, II, and III

SUBJECT INDEX AND CONTRIBUTOR INDEX

Indexed by

EDWARD J. PRUCHA

FOREWORD TO THE SET

IVAN P. KAMINOW

This book is printed on acid-free paper.

Copyright © 1998 by Academic Press

An Imprint of Elsevier

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science and Technology Rights Department in Oxford, UK. Phone: (44) 1865 843830, Fax: (44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage: http://www.elsevier.com by selecting "Customer Support" and then "Obtaining Permissions"

ACADEMIC PRESS

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 1300 Boylston Street, Chestnut Hill, MA 02167, USA http://www.apnet.com

Academic Press Limited 24–28 Oval Road, London NW1 7DX, UK http://www.hbuk.co.uk/ap/

Library of Congress Cataloging-in-Publication Data

Library of Congress CIP data pending.

ISBN 0-12-544424-9

Printed in the United States of America

05 06 07 08 IC 9 8 7 6 5 4 3 2

Contents

Foreword Ivan P. Kaminow	vii
Contributor Index	1
Subject Index	3

v

Foreword

IVAN P. KAMINOW

INTRODUCTION

This set of five volumes (three volumes edited by Edward D. Palik, and accompanying index, and a volume by Gorachand Ghosh) is a unique resource for any science and technology library. It provides materials researchers and optical device designers with reference facts in a context not available elsewhere. The singular functionality of the set derives from the unique format for the three core volumes that comprise the *Handbook of Optical Constants of Solids (HOC)*. The *Handbook* satisfies several essential needs: First, it affords the most comprehensive database of the refractive index and extinction (or loss) coefficient of technically important and scientifically interesting materials. This data has been critically selected and evaluated by authorities on each material. Second, the dielectric constant database is supplemented by tutorial chapters covering the basics of dielectric theory and reviews of experimental techniques for each wavelength region and material characteristic. As an additional resource, two of the tutorial chapters summarize the relevant characteristics of each of the materials in the database.

The data in the core volumes have been collected and analyzed over a period of 12 years with the most recent completed in 1997. The volumes systematically define the dielectric properties of 143 of the most engaging materials, including metals, semiconductors, and insulators. Together, the three Palik books contain nearly 3000 pages, with about two-thirds devoted to the dielectric-constant data. The tutorial chapters in the remaining one-third of the pages contain a wealth of information, including some dielectric data. Hence, the separate volume, Subject Index and Contributor Index, which is included as part of the set, substantially enhances the utility of the Handbook and in essence, joins all the Palik volumes into one unit. This is of great importance to the users of the set.

A final volume rounds out the set. The *Handbook of Thermo-Optic Coefficients of Optical Materials with Applications* collects refractive-index measurements and their temperature dependence for a large number of crystals and glasses. Mathematical models represent these data, and in turn, are used in the design of nonlinear optical devices.

As I outline in more detail below, the community of materials researchers, spectroscopists, and optical device designers has reason to welcome this

viii Foreword

five-volume reference tool. The selected materials include all those of technical importance for the design of classical and photonic components. Every technical library will want this unique resource on its shelves.

HANDBOOK OF OPTICAL CONSTANTS OF SOLIDS

The optical constants referred to in the title above are the components of the complex dielectric constant

$$\epsilon = \epsilon_1 + i\epsilon_2 = (n + ik)^2$$
.

To be specific, the refractive index (n) and the extinction (or loss) coefficient (k) are tabulated against wavelength. The defined optical range comprises wavelengths from millimeters (10^{-3}m) to angstroms (10^{-10}m) , a potential seven-order span, although few materials have been measured over the full range. The solids include elemental metals and semiconductors, compound semiconductors, oxides and other insulators, even two liquids, mercury and water. For the most part, the solids are single crystals or polycrystalline thin films. Since thin films are sensitive to deposition conditions, the Handbook values are best taken only as a guide. Ideally, the films actually employed in an application should be measured directly. Glasses, which can vary widely in composition, are not included. An exception is the technologically important and chemically simple silica (SiO_2) glass.

Since the resonant modes or band structure of the medium define the spectral variation of dielectric constant, the dielectric constant is fundamental to other optical properties as well. In addition, the dielectric behavior is key to any device design. Hence, the constants in this *Handbook* are of interest to both condensed-matter scientists and optical-device designers in academics and industry. The wide spectral range covered by the databases for each material is essential for designing nonlinear optical interactions. Electro-optic modulation, second-harmonic generation, and four-wave mixing comprise as many as four widely-spaced discrete wavelengths.

Edward D. Palik edited the series, Handbook of Optical Constants of Solids. He spent most of his career as a materials researcher and spectroscopist at the Naval Research Laboratory in Washington, D.C. Since his retirement in 1988, he has been associated with the Institute for Physical Science and Technology of the University of Maryland at College Park. The format and goals set for HOC differ from traditional handbooks that tabulate measurements from the literature in narrow ranges of wavelength. Compilers of such tables tend to take the most recent data as most reliable, with the tacit assumption that the ultimate user will eventually check the original sources for reliability. It certainly is a good idea for the user to confirm the original

Foreword

source, especially if accuracy is essential to his purpose. However, many users are not sufficiently expert in the measurement and materials fields to make a valid judgment, and those who are qualified may not have the time or resources to gather and evaluate data from the widespread literature. The plan of HOC is to select experts in the experimental techniques peculiar to each spectral range and class of materials, and have them review those methods. Other experts summarize the relevant theory of dielectrics. Finally, a group of materials experts each survey, or critique, the literature for a particular material, selecting the best data in the widest possible spectral range for the tables.

HOC I

The format of the first volume (832 pages) in the set, HOC I, follows this plan with 11 tutorial chapters on basic theory and measurement methods, and 28 critiques covering 37 specific materials. Examples of measurement methods include vacuum ultraviolet reflectivity, ellipsometry, thin-film techniques, and techniques for the millimeter range. The critiques evaluate, combine, and present measurements from diverse sources. They cover 13 metals, including aluminum, platinum, gold, silver, copper, and tungsten; 14 semiconductors, including silicon (both crystalline and amorphous, used in solar cells and imaging tubes), germanium, gallium arsenide and indium phosphide (employed in lasers and photodiodes), and cadmium telluride; and 12 insulators, including diamond, lithium fluoride, lithium niobate (used in electro-optic modulators and harmonic generators), silicon dioxide (both crystalline and glass, used in optical fiber and planar waveguides), silicon nitride, and sodium chloride. The measurements are generally at a nominal "room temperature." The "critiquers" are careful to account for their choices of data and to explain the limitations in precision and accuracy. The tabulated values of n and k may have been measured directly or may have been derived from Kramers-Kronig relations or from Sellmeier models or other representations of the wavelength dispersion in the dielectric material. The measurements are given in both graphical and tabular forms, along with the mathematical representations. Each format has its own uses: The graphs show at a glance where the resonances, or band edges, and loss peaks occur, and where the transmission windows can be found. The tables allow precise numbers to be read off or interpolated. And the mathematical models allow the materials to be represented in computer simulations. The positions and shapes of resonance peaks may also be compared with spectroscopic measurements, such as infrared absorption, and Raman and Brillouin scattering.

X Foreword

HOC II

The second volume (1120 pages), HOC II, continues the original format. The 14 tutorial chapters elucidate "convention confusions" and basics in dielectrics. as well as review the attenuated-total-reflection method, measurements in the ultraviolet and x-ray regions, and calculations of n and k in semiconductors. A tabulation of handy parameters characterizing the materials in HOC I and HOC II is also included among the tutorials. These parameters comprise crystal structure, symmetry class, irreducible representations for acoustic and optic modes plus their resonance frequencies, plasma frequency for metals, band-gap energy for semiconductors, and dc dielectric constant. The 41 critiques cover 13 metals, including the alkalis, chromium, iron, niobium, tantalum, beryllium, graphite, and mercury; 14 semiconductors, including aluminum gallium arsenide (used in lasers and photodiodes), silicon-germanium alloys, lead tin telluride (used in infrared imaging), selenium, tellurium, and B-silicon carbide; and 19 insulators, including aluminum oxide (a popular coating in optical devices), barium titanate, beryllium oxide (an electrical insulator and good thermal conductor), magnesium fluoride, potassium dihydrogen phosphate plus isomorphs (used as electro-optic switches and harmonic generators in high-power applications), strontium titanate, polyethylene (a common infrared window material and the only polymer in the Handbook), and water. The water tabulation takes the prize for widest spectral range, spanning nine orders from 10⁻⁸m (100Å) to 10m (30MHz).

HOC III

A new volume (1024 pages), HOC III, includes materials missing from the earlier volumes and updates measurements included in those volumes. The tutorial chapters also fill some gaps, including discussions of far-infrared measurements by Fourier transform spectroscopy, photothermal techniques to determine the extinction coefficient, the application of Brillouin scattering to determine optical constants in otherwise difficult circumstances, and theory and measurements of doped n-silicon. A chapter on handy optical parameters for the materials in HOC I, II, and III supplements the corresponding tabulation in HOC II. The 39 critiques cover 19 metals, including titanium, indium, tin, and cesium; 8 rare earths, including erbium; 23 semiconductors (loosely defined), including updates for undoped silicon and silicon-germanium alloys, numerous nitrides, bismuth germanium oxide (a popular nonlinear crystal), chalcopyrites like cadmium germanium arsenide and silver gallium selenide, silver halides (used in photographic film), zinc

Foreword xi

phosphide, and zinc arsenide; and 17 insulators, including an extensive update of aluminum oxide, barium fluoride, strontium fluoride, calcite (a natural birefringent crystal used for waveplates and polarizers), cesium halides, lead fluoride, lithium tantalate (an efficient electro-optic and acousto-optic crystal), potassium niobate (a nonlinear optics crystal), sulfur, thallium halides, yttrium aluminum garnet (the host for Nd:YAG lasers), and zircon (a gemstone).

HANDBOOK OF THERMO-OPTIC COEFFICIENTS OF OPTICAL MATERIALS WITH APPLICATIONS

The Handbook of Thermo-Optic Coefficients by Gorachand Ghosh of the Electrotechnical Laboratory of MITI in Tskuba, Japan is an excellent companion to the HOC. The Ghosh tables are a bonus for those in need of additional and/or corroborating (real) refractive index numbers. He has determined Sellmeier coefficients for some 70 technologically interesting crystals, some that are found in HOC, and others found in commercial glasses by fitting to published experimental results. He tabulates the results over a wide range of wavelengths, comparing theory and experiment. In addition, he presents tables of the thermo-optic coefficient (dn/dT) for these materials. Finally, he presents mathematical expressions for n as a function of wavelength and temperature. With these representations, he is able to define design criteria for a number of temperature-dependent nonlinear components. They include phase-matched parametric mixing devices, a thermo-optic switch, and an optical-fiber temperature sensor.

CONCLUSION

The three volumes of *HOC* distill measurements of the optical constants of some 143 materials, including 43 elements. By self-selection, most of the materials of industrial or academic importance are included. These materials are employed as gemstones; as classical optics components, such as windows, lenses, waveplates, and polarizers; and in photonic devices such as lasers, modulators, and nonlinear media. If a material has useful or exceptional optical properties, and if it can be produced in a robust and pure form, its optical constants will surely be thoroughly measured. Most of them are scrutinized in *HOC*. Those materials not yet included in *HOC* only await qualified critiquers willing to devote the effort to analyze them for a chapter to be included in a possible *HOC IV*.

For the convenience of libraries and researchers, all three volumes of HOC

xii Foreword

are offered as a set. In addition, two valuable supporting volumes are included in the set: the Handbook of Optical Constants of Solids, Volume I, II, and III: Subject Index and Contributor Index and the Handbook of Thermo-Optic Coefficients of Optical Materials with Applications. These five books will be an invaluable addition to any researcher's library.

April, 1997

IVAN P. KAMINOW

CONTRIBUTOR INDEX

<u>Index Terms</u> <u>Links</u>

Roman numerals indicate volume number.

\mathbf{A}			
Addamiano, A.	I:597		
Alterovitz, Samuel A.	II:705	837	
Amirtharaj, P. M.	II:655		
Apell, P.	II:97		
Arakawa, E. T.	II:421	461	III:341
Artús, Luis	III:573		
Ashok, J.	II:789	957	
Aspnes, D. E.	I:89		
Auslender, Mark	III:155		
В			
Barth, J.	II:213		
Bauer, G.	I:517	535	
Bezuidenhout, D. F.	II:815		
Biaggio, Ivan	III:821		
Birch, J. R.	II:957		
Birken, H. G.	II:279		
Blessing, C	II:279		
Bloomer, I.	II:151		

Index Terms	<u>Links</u>		
Borghesi, A.	I:445	525	II:449
	469		
Boukari, Hacène	III:121		
Briggs, Matthew E.	III:99		
\mathbf{c}			
Callcott, T. A.	II:421		
Cardona, M.	II:213		
Chang, Yun-Ching	II:421		
Choyke, W. J.	I:587		
Cotter, T. M.	II:899		
D			
Damião, Alvaro J.	III:761		
Destro, Márcia A. F.	III:761		
Doll, Gary L.	III:425		
Downing, Harry D.	III:899		
E			
Edwards, David F.	I:547	665	II:501
	597	805	1005
	III:473	489	531
	753		
Eldridge, John E.	I:775	II:853	III:731
	743		
F			
Fink, J.	II:293		
Fonseca, Vicente	III:777		

<u>Index Terms</u>	<u>Links</u>		
Forouhi, A. R.	II:151		
Franta, Daniel	III:857		
French, R. H.	III:373		
Fuller, Kirk A.	III:899		
G			
Geist, Jon	III:519		
Gervais, François	II:761	1035	III:777
Glembocki, O. J.	I:503	II:489	513
Guizzetti, G.	I:445	525	II:449
	513		
Н			
Hadni, Armand	III:553		
Hava, Shlomo	III:155		
Holm, R.T.	I:479	491	II:21
Huffman, Donald R.	II:921		
Humlíček, J.	II:607	III:537	
Hunderi, O.	II:97		
Hunter, W. R.	I:69	275	675
	II:341	III:233	
I			
Inagaki, T.	II:341	461	III:341
Inokuti, Mitio	I:369		
J			
Jensen, B.	I:169	II:124	
Jezierski, K.	III:595	609	

<u>Index Terms</u>	<u>Links</u>		
Johnson, R. L.	II:213		
K			
Khanna, R.	III:871	987	
Krenn, H.	I:517	535	
Kunz, C.	II:279		
L			
Lagakos, Nicholas	III:121		
Loughin, S.	III:373		
Lukeš, F.	II:279		
Lynch, David W.	I:189	275	II:341
	III:233		
M			
Mandelis, Andreas	III:59		
Maslin, K. A.	III:13		
Mirjalili, G.	III:13		
Misiewicz, J.	III:595	609	
Mitra, Shashanka S.	I:213		
Moore, W. J.	III:717		
N			
Navrátil, K.	II:1021	1049	
0			
Ohlídal, Ivan	II:1021	1049	III:845
	857		
Ohlídal, Miloslav	III:845		

Index Terms	<u>Links</u>		
P			
Palik, Edward D.	I:3	409	429
	479	587	597
	675	695	703
	775	II:3	313
	489	691	709
	989	III:3	187
	403	507	871
	987		
Parker, T. J.	III:13		
Pelletier, E.	II:57		
Pflüger, J.	II:293		
Philipp, H. R.	I:665	719	749
	765	771	
Piaggi, A.	II:469	477	
Piller, H.	I:503	571	II:559
	637	725	
Potter, Roy F.	I:11	465	
Q			
Querry, Marvin R.	II:1059	III:899	
R			
Ribarsky, M. W.	I:795		
Ribbing, Carl G.	II:875	III:351	
Rife, J. C.	III:445	459	637

II:921

II:875

III:351

Roessler, David M.

Roos, Arne

<u>Index Terms</u>	<u>Links</u>		
S			
Savvides, N.	II:837		
Schmidt, E.	II:607		
Scott, Marion L.	II:203		
Segelstein, David J.	II:1059		
Shamir, Joseph	I:113		
Shiles, E.	I:369		
Simonis, George J.	I:155		
Smith, D. Y.	I:35	369	
Smith, F. W.	II:837		
Sprokel, G. J.	II:75		
Swalen, J. D.	II:75		
T			
Takarabe, Kenichi	II:489	513	
Tatchyn, Roman	II:247		
Tazawa, Masato	III:553		
Temple, P. A.	I:135		
Teng, Ye Yung	II:789		
Thomas, Michael E.	II:177	777	883
	899	1079	III:653
	683	807	883
Treacy, D. J.	I:623	641	
Tropf, William J.	II:777	883	899
	1079	III:653	683
	701	923	963

<u>Index Terms</u>	<u>Links</u>		
V	V 500		
Varaprasad, P. L. H.	II:789		
\mathbf{W}			
Ward, L.	II:435	579	737
	III:287		
White, Richard H.	II:501	597	805
	1005		
Wieliczka, David M.	II:1059		
Wong, Chuen	II:789		

II:705

837

Woollam, John A.

SUBJECT INDEX

Index Terms

Links

Page locator key:

Roman numerals indicate volume number.

Bold page numbers indicate a table.

Italic page numbers indicate a figure or caption.

A

a-As ₂ S ₃ . See Arsenic Sulfide, amorphous		
a-As ₂ Se ₃ . See Arsenic Selenide, amorphous		
Abelès method		
and reflection phase changes	II:43	
and thin films	II:58	
Absolute reflection spectra		
Lead Fluoride and	III:762	
Absorbing materials		
scattering in	III:127	
Absorptance		
defined	II:51	
of lamelliform, described	I:22	
laser calorimetry and	I:135	142
in layered slab	I:25	
measurement of	I:140	
optical-properties measurement and	I:18	
Ruthenium and	III:254	
temperature dependence and	I:382	

<u>Index Terms</u>	<u>Links</u>	
Absorptance (Cont.)		
wedged-film laser calorimetry and	I:139	
Absorptance measurements		
Aluminum	I:204	206
wedged-film laser calorimetry and	I:141	
Absorption		
Aluminum and	I:376	381
Aluminum Antimonide and	II:501	
Aluminum Nitride and	III:376	
Aluminum Oxide and	II:761	
Aluminum Oxynitride and	II:778	
Barium Titanate and	II:790	
Bismuth Germanium Oxide and	III:404	
Bismuth Silicon Oxide and	III:404	
Cadmium Germanium Arsenide and	III:446	
Cadmium Selenide and	II:559	
Cadmium Sulphide and	II:580	582
Cesium Bromide and	III:719	
Cesium Chloride and	III:732	
Cesium Iodide and	II:853	
Copper Gallium Sulfide and	III:461	
defined	II:51	
f sum rules and	I:61	
index of refraction and	II:181	
of infrared radiation by crystal	I:254	
interferometry and	I:129	
Iron Pyrite and	III:509	
Lithium Tantalate and	III:778	

<u>Index Terms</u>	<u>Links</u>	
Absorption (Cont.)		
Magnesium Aluminum Spinel and	II:885	
Magnesium Fluoride and	II:900	
Mercury Cadmium Telluride and	II:662	
multiphonon	I:232	
Polyethylene and	II:959	
quantum-mechanical theory of	II:152	
reflectance and	II:204	
reststrahlen region and	I:219	
Rubidium Bromide and	III:846	
Rubidium Iodide and	III:857	
Sodium Fluoride and	II:1021	1023
Sodium Nitrate and	III:872	
sum rules and	I:38	
Tellurium and	II:711	
Thallium Bromide and	III:926	
Thallium Chloride and	III:923	
Thallous Halides and	III:930	
Tin Telluride and	II:725	
transparency and	II:185	
values of n and k and	I:69	
Water and	II:1060	1061
Yttrium Aluminum Garnet and	III:963	
Yttrium Oxide and	II:1080	
Zinc Selenide and	II:737	
Zinc Telluride and	II:737	
See also Burstein-Moss effect		

<u>Index Terms</u>	<u>Links</u>		
Absorption bands			
Calcium Fluoride and	II:823		
insulator transparencies and	I:47		
Orthorhombic Sulfur and	III:904		
Potassium Bromide and	II:990		
Absorption coefficients	III:122		
Aluminum and	I:378		
Aluminum Arsenide and	II:490		
Aluminum Gallium Arsenide and	II:514		
Aluminum Nitride and	III:374	376	
Aluminum Oxide and	II:762	III:654	655
	656	657	
amorphous Silicon and	II:168		
Barium Fluoride and	III:684	685	686
Barium Titanate and	II:791		
Beryllium and	II:422		
Bismuth Germanium Oxide and	III:404	406	
Bismuth Silicon Oxide and	III:404		
Cadmium Germanium Arsenide and	III:446		
Cadmium Selenide and	II:560		
Cadmium Sulphide and	II:580	584	
Calcium Carbonate and	III:701		
Calcium Fluoride and	II:817	820	821
Cerium and	III:292		
Cesium Chloride and	III:733		
Cesium Fluoride and	III:744		
Cesium Iodide and	II:856		
Chromium and	I:135		

<u>Index Terms</u>	<u>Links</u>		
Absorption coefficients (Cont.)			
Cobalt and	II:437		
Copper Gallium Sulfide and	III:460		
determination of	I:163	229	
Drude theory and	I:175		
electron-hole interaction and	I:202		
equation for	II:186		
and extinction coefficient	II:154		
in far-infrared region	II:188		
frequency dependence of	I:244		
Gallium Antimonide and	II:598		
Gallium Telluride and	III:490		
index-of-refraction measurements and	I:156		
Indium and	III:262		
Iron Pyrite and	III:508		
Kramers-Krönig analysis and	I:229		
lattice disorder and	II:119		
Lead Fluoride and	III:763	764	
Lead Tin Telluride and	II:637		
Lithium Tantalate and	III:778		
Magnesium Fluoride and	II:900	902	
Magnesium Oxide and	II:920	926	934
	936		
Manganese and	III:249		
Mercury Cadmium Telluride and	II:656	659	660
for multilayer samples	II:110		
for multiphonon events	I:235		
one-electron model and	I:192		

<u>Index Terms</u>	<u>Links</u>		
Absorption coefficients (Cont.)			
optical conductivity and	I:173		
Orthorhombic Sulfur and	III:900	904	
in polar crystalline insulators	II:178		
polar crystals and	I:214		
Polyethylene and	II:960	961	965
Potassium Bromide and	II:990		
Potassium Iodide and	III:807		
Potassium Niobate and	III:822		
rare-earth metals and	III:290		
Samarium and	III:293		
Silicon, doped n-type and	III:157		
Silicon and	I:209		
Silicon-Germanium alloys and	II:608	III:538	
Silver Chloride and	III:554		
Silver Gallium Selenide and	III:575		
Silver Iodide and	III:555		
spectroscopic measurement of	III:59		
Strontium Fluoride and	III:883	886	
Tellurium and	II:711	712	
Thallium Chloride and	III:924		
Thallous Halides and	III:928	930	
Thorium Fluoride and	II:1051		
Tin and	III:269		
Tin Telluride and	II:726		
Titanium and	III:240		
in transparent regime	I:230		
Urbach rule and, explained	II:152		

Index Terms	Links	
Absorption coefficients (Cont.)		
Vanadium and	II:478	
Water and	II:1059	
wavelength dependence and	II:127	
wedged-film laser calorimetry and	I:140	
Yttrium Aluminum Garnet and	III:964	965
Yttrium Oxide and	II:1083	
Zinc Arsenide and	III:595	
Zinc Germanium Phosphide and	III:638	
Zinc Phosphide and	III:610	
Zinc Selenide and	II:738	741
Zinc Telluride and	II:744	
Zircon and	III:988	
Absorption constants		
introduced	I:8	
Absorption curves		
Magnesium Fluoride and	II:900	
Absorption edges		
Cadmium Sulphide and	II:581	584
Dysprosium and	III:298	
Lead Fluoride and	III:762	
rare-earth metals and	III:290	
Samarium and	III:293	
Terbium and	III:297	
Thallous Halides and	III:928	
Thulium and	III:301	
Zinc Selenide and	II:742	

<u>Index Terms</u>	<u>Links</u>	
Absorption measurements		
of crystal quartz	I:167	
for metallic Aluminum	I:369	
optical-properties measurement and	I:375	
Potassium Niobate and	III:824	
Silver Gallium Selenide and	III:574	
Silver Gallium Sulfide and	III:576	
Ytterbium and	III:302	
Absorption mechanisms		
optical-properties measurement and	I:17	
Absorption peaks		
Aluminum Oxide and	III:654	
Cadmium Sulphide and	II:580	586
Cesium and	III:341	
Cesium Chloride and	III:732	
Erbium and	III:300	
Gadolinium and	III:294	296
rare-earth metals and	III:290	
Rubidium Iodide and	III:861	
Terbium and	III:297	
Ytterbium and	III:302	
Absorption processes		
above fundamental band gap	I:4	
sum rules for	I:36	45
Absorption spectra		
Cadmium Selenide and	II:560	
for metallic Aluminum	I:388	
of superlattices	II:102	

<u>Index Terms</u>	<u>Links</u>	
Absorption spectra (Cont.)		
superlattices and	II:107	
Zircon and	III:987	988
Absorptive loss		
measurement of	I:135	
Absorptivity		
defined	II:51	
Palladium and	II:470	
Accuracy of measurements		
index of refraction and	I:155	
Accuracy versus precision		
introduced	I:5	
a-C:H. See Carbon films (Diamond-like)		
Acoustic damping		
Bismuth Germanium Oxide and	III:403	
Bismuth Silicon Oxide and	III:403	
Acoustic devices		
low-loss material for	III:963	
Acoustic modes		
Iron Pyrite and	III:507	
Potassium Niobate and	III:824	
Acoustic-phonon energy		
Barium Fluoride and	III:684	
Potassium Iodide and	III:808	
Strontium Fluoride and	III:884	
Acousto-optical methods		
and measurement of absorption in thin		
layers	II:70	

<u>Index Terms</u>	<u>Links</u>	
Acousto-optical methods (Cont.)		
Actinides	III:289	
ADP. See Ammonium Dihydrogen Phosphate		
Adsorption process		
Calcium Fluoride and	II:815	
one-phonon	I:214	
Ag. See Silver		
AgBr. See Silver Bromide		
AgCl. See Silver Chloride		
a-Ge:H. See Germanium, amorphous hydroge	nated	
AgGaS ₂ . See Silver Gallium Sulfide		
AgGaSe ₂ . See Silver Gallium Selenide		
Agl. See Silver Iodide		
Ahrenkel algorithm		
Kramers-Krönig analysis and	I:109	
AIOTER method. See Angles of incidence,		
total-external-reflectance		
Airy formula, function		
Fizeau method and	I:117	
Airy function		
interferometry and	III:128	131
AL See Aluminum; Metallic Aluminum		
AlAs. See Aluminum Arsenide		
AlGaAs. See Aluminum Gallium Arsenide		
Alkali halides		
absorption and	I:251	
absorption versus photon energy for	I:243	
excitons in	I:208	

<u>Index Terms</u>	<u>Links</u>	
Alkali halides (Cont.)		
impurities in	I:257	
index of refraction and	II:180	
optical-phonon spectra of	I:777	
reflection measurements of	III:20	
vibrational modes in	I:255	
Alkali metals	III:303	
critique	II:342	
Cesium and	III:341	
Lithium and	III:342	
Allotropes	III:899	
See also Orthorhombic Sulfur		
Al ₂ MgO ₄ . See Aluminum Magnesium Oxide		
AlN. See Aluminum Nitride		
Al ₂ O ₃ . See Aluminum Oxide		
ALON. See Aluminum Oxynitride		
α-S. See Orthorhombic Sulfur		
AlSb. See Aluminum Antimonide		
Alumina	III:653	
See also Aluminum Oxide		
Aluminum, metallic. See Metallic Aluminum		
Aluminum (A1)		
critique	I:369	
absorption and	I: 63	
chemical etching of	I:104	
complex index of refraction for	I:390	
dispersion analysis of	I:60	
evaporated layer measurement of	I:80	80

<u>Index Terms</u>	<u>Links</u>		
Aluminum (A1) (Cont.)			
finite energy sum rule and	I:50		
interband absorption and	I:204	206	
interdiffusion with Gold	I:86		
optical constants of	I:5		
optical parameters determination of	II:204	208	
optical parameters for	II:318		
oxygen adsorption by	I:83		
reflectance in UHV and	II:206	207	
thin films, reflectivity of	II:81		
unbacked film measurement of	I:82		
values of n and k for	I:74	388	395
	II: 211		
See also Metallic Aluminum			
Aluminum Antimonide (AlSb)			
critique	II:501		
absorption process and	I:238	239	
dispersion analysis of	II:502		
optical parameters for	I:221	II:320	
transparency frequency of	I:231		
two-phonon combination bands in	I: 240		
values of n and k for	II:507	508	
Aluminum Arsenide (AlAs)			
critique	II:489		
values of n and k for	II:493	494	
Aluminum Gallium Arsenide (AlGaAs)			
superlattices and	II:102	118	

<u>Index Terms</u>	<u>Links</u>		
Aluminum Gallium Arsenide (AlGaAs)			
alloy			
optical parameters for	II:323		
Aluminum Gallium Arsenide (Al _x Ga _{1-x} As)			
critique	II:513		
index of refraction and	II:138	143	144
	148		
values of n and k for	II:517	518	
Aluminum Magnesium Oxide (Al ₂ MgO ₄)			
optical parameters for	II:320	324	III: 198
See also Magnesium Aluminum Spinel			
Aluminum Nitride (A1N)			
critique	III:373		
values of n and k for	III:380	381	
Aluminum Oxide (AlO ₂). See Sapphire			
Aluminum Oxide (Al ₂ O ₃)			
critique	II:761	III:653	
absorption coefficient of	I:253		
absorption coefficients of	III: 681		
far-infrared absorption and	I:251	252	
index of refraction and	II: 187		
LO phonon frequencies for	III: 682		
multiphonon absorption and	II:193		
optical parameters for	II:322	329	III:204
TO phonon frequencies for	III:682		
photothermal deflection and	III:107		
in polycrystalline samples	I:374		
Sellmeier dispersion equations for	III: 681		

<u>Index Terms</u>	Links		
Aluminum Oxide (Al ₂ O ₃) (Cont.)			
static dielectric constant of	II:186		
superlattices and	II:118		
temperature dependence and	II:189		
thermo-optical coefficients of	III: 681		
values of n and k for	II:765	766	III:660
	662		
Aluminum Oxynitride (ALON) Spinel			
critique	II:777		
hemispherical emissivity for	II: 787		
lattice-vibration parameters of	II: 782		
optical parameters for $(Al_{23}O_{27}N_5)$	II:321	III: 198	
values of n and k for	II:781	783	
Alumma	995	I:160	
Al _x Ga _{1-x} As. See Aluminum Gallium Arsenide			
Ammonium Dihydrogen Phosphate (ADP)			
$(NH_4H_2PO_4)$			
critique	II:1005		
Hertzberger-type dispersion formula			
coefficients for	II:1018		
optical parameters for	II:322	328	III:213
values of n and k for	II:1010	1014	1017
Amorphous dielectrics			
Kramers-Krönig analysis and	II:166	301	
optical-constants calculation and	II:163		
quantum-mechanical absorption theory and	II:153		

<u>Index Terms</u>	<u>Links</u>	
Amorphous materials		
absorption coefficients and	I:251	
Cadmium Germanium Arsenide and	III:445	
effective-medium theory and	I:105	
infrared absorption and	I:259	
interferometry and	I:132	
Orthorhombic Sulfur and	III:900	903
photothermal deflection and	III:109	112
Silicon Dioxide	III:987	989
Thorium Fluoride and	II:1049	
Zirconium Oxide and	III:987	989
See also Individual elements		
Amorphous semiconductors		
Kramers-Krönig analysis and	II:166	
optical-constants calculation and	II:163	
quantum-mechanical absorption theory and	II:153	
Urbach tail in	I:202	
Amorphous superlattices		
versus crystalline superlattices	II:110	
optical properties of	II:109	
Ampere's law		
expanded, and optical constants	I:17	
Maxwell's extension of	I:11	
optical-properties measurement and	I:17	
Analysis chambers		
reflectometers and	II:205	
Analytic functions		
sum rules and	I:42	51

<u>Index Terms</u>	<u>Links</u>
Analyzers	
ellipsometry and	I:95
Anderson localization	
in random potential	II:120
Angle evaporation	
SiO_x experiments with	II:92
Angles of incidence	
Aluminum Gallium Arsenide and	II:515
Aluminum Nitride and	III:375
attenuated total reflection and	II:76
Bismuth Germanium Oxide and	III:406
Bismuth Silicon Oxide and	III:406
Cadmium Selenide and	II:560
Calcium Fluoride and	II:817
Cesium and	III:342
Cobalt and	II:438
correction term determination and	I:101
Cubic Silicon Carbide and	II:705
defeating laser coherence effects and	I:137
and electric-field vectors	II:46
and evanescent waves	II:79
formulas for	I:30
Fresnel coefficients and	I:24
Gallium Telluride and	III:490
Graphite and	II:450
interferometry and	I:116
isoreflectance curves and	I:74

<u>Index Terms</u>	<u>Links</u>		
Angles of incidence (Cont.)			
in lamelliform	I:18	20	22
	24	30	
Lead Fluoride and	III:763		
Liquid Mercury and	II:462		
Magnesium Oxide and	II:921		
measurement of	II:62		
optical-properties measurement and	I:18		
overlayers and	I:99		
Palladium and	II:472		
Polyethylene and	II:958	966	
Potassium and	II:366		
Potassium Bromide and	II:992		
and prism experiments	II:81		
reflectance and	I:71	75	76
	85		
Ruthenium and	III:254		
Selenium and	II:692		
in Silicon Dioxide superlattice	II:117		
Silicon-Oxide reflectance and	I:375		
Sodium Nitrate and	III:871	873	
in superlattice systems	II:99	119	121
total-external-reflectance (AIOTER)			
method	II:206		
values of n and k and	I:75	76	79
	II:203		
Vanadium and	II:478		
Water and	II:1061		

Index Terms	<u>Links</u>		
Angles of incidence (Cont.)			
Zinc Selenide and	II:741		
See also Critical angle of incidence;			
Brewster's angle; Pseudo-Brewster			
angle			
See also Individual critiques			
Angles of refraction			
discussed	II:203		
Angles of rotation			
Bismuth Germanium Oxide and	III:403		
Bismuth Silicon Oxide and	III:403		
Anions and cations			
Silver Gallium Selenide and	III:573		
Silver Gallium Sulfide and	III:573		
Anisotropic dyes			
attenuated-total-reflection experiments with	II:89		
Anisotropic films			
attenuated-total-reflection experiments and	II:88		
Anisotropy			
Aluminum Nitride and	III:375		
Aluminum Oxide and	II:761	III:653	655
Antimony and	III:274		
Beta-Gallium Oxide and	III:754		
Boron Nitride and	III:425		
calculation of	II:70		
Chromium and	II:374		
Chromium and index determination and	II:374 II:65		

<u>Index Terms</u>	<u>Links</u>		
Anisotropy (Cont.)			
Iron and	II:385		
Lithium Tantalate and	III:777		
loss of	I:193		
Magnesium and	III:235		
Manganese and	III:249		
metals and	III:234		
Polyethylene and	II:958		
Potassium Niobate and	III:822		
rare-earth elements and	III:287		
Rhenium and	III:278		
Ruthenium and	III:253		
in superlattiee systems	II:99	105	107
Tin and	III:268		
Titanium and	III:240		
Ytterbium and	III:302		
Zinc Arsenide and	III:596		
Zinc Phosphide and	III:610		
Anisotropy measurement			
of Tantalum Pentoxide	II: 70		
of Titanium Dioxide	II: 70		
of Zinc Sulfide	II: 70		
Annihilation operators			
absorption and	I:234		
Anomalous skin effect			
discussed	I:276	277	
Antibonding states			
photon energies and	II:153	156	

<u>Index Terms</u>	<u>Links</u>	
Antiferromagnetism		
Chromium and	II:374	
Dysprosium and	III:299	
Erbium and	III:300	
rare-earth elements and	III:288	
Antimony (Sb)		
critique	III:274	
values of n and k for	III:275	276
Antireflection coatings		
birefringence and	I:165	
film on a substrate samples of	I:5	
Antiresonances		
Barium Titanate and	II:793	
APL model		
absorption coefficient and	II:189	
Arachidic acid		
attenuated-total-reflection experiments and	II:88	
ARL model EMX-SM electron-probe		
microanalyzer		
Aluminum Gallium Arsenide and	II:515	
Ar-O ₂ plasma		
saline oxidation and	II:90	
Arsenic Selenide, amorphous (a-As ₂ Se ₃)		
optical parameters for	II:323	330
Arsenic Selenide, crystalline (As ₂ Se ₃)		
optical properties of	II:10	
values of n and k for	I:626	627

<u>Index Terms</u>	Links		
Arsenic Selenide (As ₂ Se ₃)			
critique	I:623		
interferometry and	I:132		
optical parameters for	II:323		
values of n and k for	I:626	627	
Arsenic Sulfide, amorphous (a-As ₂ S ₃)			
optical parameters for	II:323		
Arsenic Sulfide, crystalline (As ₂ S ₃)			
values of n and k for	I:645	647	
Arsenic Sulfide (As ₂ S ₃)			
critique	I:641		
dispersion analysis of	I:643		
optical parameters for	II:322	III:219	
spectroscopic measurements of	III:82	83	
values of n and k for	I:645	647	
a-Se. See Selenium, amorphous			
Ashcroft-Sturm model			
of interband spectrum	I:370	381	383
a-Si. See Silicon, amorphous			
a-Si:H. See Silicon, hydrogenated			
a-SiH ₄ . See Silicon, hydrogenated			
amorphous			
a-Si ₃ N ₄ . See Silicon Nitride, amorphous			
a-SiO. See Silicon Oxide, amorphous			
a-SiO ₂ . See Silicon Dioxide, amorphous			
As ₂ S ₃ . See Arsenic Sulfide; Arsenic			
Sulfide, crystalline; Vitreous Arsenic			
Sulfide			

<u>Index Terms</u>	<u>Links</u>
As ₂ Se ₃ . See Arsenic Selenide; Arsenic	
Selenide, crystalline; Vitreous	
Arsenic Selenide	
Athermal materials	
Barium Fluoride and	III:684
a-ThF ₄ . See Thorium Fluoride, amorphous	
a-TiO ₂ . See Titanium Dioxide, amorphous	
Atomic absorption edges	
Aluminum Arsenide and	II:489
Aluminum Gallium Arsenide and	II:514
Chromium and	II:375
Hafnium Nitride and	III:357
Potassium and	II:366
Zirconium Nitride and	III:357
Atomic arrangement	
Barium Fluoride and	III:683
Strontium Fluoride and	III:883
Atomic coordinates	
Aluminum Oxide	III:653
Atomic energy levels	
and f sum rules	I:63
Atomic motions	
determination of	I:218
Atomic-scale measurements	
electric-dipole excitations and	I:16
macroscopic optical constants and	I:16
Atomic-scattering coefficients	
Bromine and	III:719

Index Terms	<u>Links</u>	
Atomic-scattering coefficients (Cont,)		
Cesium Bromide and	III:717	719
Cesium Chloride and	III:733	
Cesium Fluoride and	III:744	
Polyethylene and	II:958	
Atomic-scattering factors. See Henke UV		
and X-ray optical constants		
Atomic systems		
resonance excitations in	II:155	
Atomic-vibration region		
Lithium Tanatalate and	III:779	
Atoms		
optical absorption spectrum of	I:190	
ATR. See Attenuated total reflection (ATR)		
Attenuated total reflection (ATR)		
absorption and	I:32	
defined	II:75	
formulas for	I:32	
and Gold films	II:90	
on liquid crystal cells	II:92	
optical analysis of	II:81	
Palladium and	II:472	
physical optics of	II:76	
Sodium and	II:356	
for thick Silicon Oxide films on Gold	II:91	
Attenuation		
in dielectric response function	I:221	
index of refraction and	I:158	

<u>Index Terms</u>	<u>Links</u>	
Attenuation (Cont.)		
interferometry and	I:163	
Au. See Gold		
Auger-electron-spectroscopy		
Palladium and	II:469	
Autocollimation technique		
Silicon and	I:547	
Avogadro's constant		
Beta-Gallium Oxide and	III:754	
В		
B. See Boron		
Backscattering	III:126	128
external	III:140	141
BaF ₂ . See Barium Fluoride		
Balanced-bridge techniques		
versus Mach-Zehnder interferometer	I:163	
Ballantyne's permittivity		
Barium Titanate and	II:792	
Balzer BA-500 chamber		
Lead Fluoride and	III:765	
Band-edge-shift calorimetry		
absorption-coefficient measurement and	I:231	
Lithium Tantalate and	III:778	
Band-gap absorption		
Aluminum Nitride and	III:374	
Barium Fluoride and	III:683	
critical points and	I:196	

<u>Index Terms</u>	<u>Links</u>
Band-gap absorption (Cont.)	
Cuprous Oxide and	II:875
Drude theory and	I:173
impurities and	I:257
introduced	I:4
Iron Pyrite and	III:509
Potassium Iodide and	III:807
Thallous Halides and	III:928
Band-gap (edge) absorption	
Aluminum Antimonide and	II:503
Aluminum Arsenide and	II:490
Aluminum Gallium Arsenide and	II:513
Aluminum Nitride and	III:374
Aluminum Oxynitride and	II:778
Cadmium Germanium Arsenide and	III:446
Cadmium Selenide and	II:559
Cadmium Telluride and	I:410
Calcium Fluoride and	II:816
Copper Gallium Sulfide and	III:460
Cubic Silicon Carbide and	II:706
direct interband transitions and	II:128
Gallium Antimonide and	II:599
Gallium Arsenide and	I:431
Gallium Phosphide and	I:447
Germanium and	I:467
Indium Antimonide and	I:493
Iron Pyrite and	III:510
Lead Selenide and	I:518

<u>Index Terms</u>	<u>Links</u>		
Band-gap (edge) absorption (Cont.)			
Lead Telluride and	I:537		
Lead Tin Telluride and	II:637		
Lithium Fluoride and	I:676		
Lithium Niobate and	I:695		
Magnesium Aluminum spinel and	II:884		
Magnesium Oxide and	II:920		
Mercury Cadmium Telluride and	II:655	659	665
Orthorhombic Sulfur and	III:904		
Potassium Bromide and	II:991		
Potassium Chloride and	I:704		
Potassium Niobate and	III:821		
quantum-density-matrix formulation and	II:132	138	
Silicon and	I:551		
Silicon Carbide and	I:587		
Silicon Dioxide (type α , Crystalline) and	I:721		
Silicon-Germanium alloys and	II:607	609	III:538
Silicon layer thickness and	II:111		
Sodium Chloride and	I:778		
Strontium Fluoride and	III:883		
superlattices and	II:98	110	
Tellurium and	II:709	711	
Thallium Bromide and	III:924	925	
Thallium Chloride and	III:923		
Titanium Dioxide and	II:169		
Zinc Germanium Phosphide and	III:637	638	
Zinc Sulfide and	I:598		
Zircon and	III:988		

<u>Index Terms</u>	<u>Links</u>	
Band-gap energy		
Barium Fluoride and	III:684	
versus photon energy	II:127	
Potassium Iodide and	III:807	
quantum-density-matrix formulation and	II:147	
Silver Gallium Sulfide and	III:576	
Urbach tail and	II:179	
Band gaps		
Bismuth Germanium Oxide and	III:404	
Bismuth Silicon Oxide and	III:404	
Calcium Fluoride and	II:816	
Copper Gallium Sulfide and	III:459	
Magnesium Fluoride and	II:900	
Polyethylene and	II:958	
Thallium Iodide and	III:927	
Yttrium Oxide and	II:1079	
Zinc Germanium Phosphide and	III:639	
Bands of attenuation		
Orthorhombic Sulfur and	III:901	
Band structures		
electron-hole interaction and	I:199	201
interband transitions and	I:372	
Lithium Tantalate and	III:777	
methods of studying	II:725	
one-electron model and	I:190	
in polar crystalline insulators	II:178	
Tellurium and	II:709	
Zinc Germanium Phosphide and	III:637	

<u>Index Terms</u>	<u>Links</u>		
Band-to-band transitions			
finite-energy sum rules and	I:53		
Barium (Ba)	III:302		
Barium Fluoride (BaF ₂)			
critique	III:683		
multiphonon absorption and	II:195		
oscillator-model parameters and	III: 699		
Sellmeier-model parameters for	III: 698		
thermo-optical coefficients of	III: 699		
transparency frequency of	I:231		
values of n and k for	III:688	689	
Barium Titanate (BaTiO ₃)			
critique	II:789		
damping constants for	II: 796		
optical parameters for	II: 322	327	III:215
values of mode frequencies for	II: 796		
values of n and k for	II:795	797	
Barriers			
parallel light and	II:107		
perpendicular light and	II:107		
BaTiO ₃ . See Barium Titanate			
Be. See Beryllium			
Beam splitters			
interferometry and	I:123	127	129
	130	164	
Mylar	I:156		
polarizing interferometers and	I:157		
See also Interferometers; Kösters prisms			

<u>Index Terms</u>	<u>Links</u>	
Beckman spectrometer		
Zinc Phosphide and	III:610	
Beckman spectrophotometer		
Zinc Phosphide and	III:610	
Beckman UV 5270 interferometer		
Lead Fluoride and	III:766	
Beer-Lambert law		
attenuation and	I:221	
BeF ₂ . See Beryllium Fluoride		
Bell-jar evaporation technique		
Lead Fluoride and	III:765	
BeO. See Beryllium Oxide		
Berreman effect		
in metal-insulator superlattice	II:118	
thin-film study and	II:115	
Berreman modes		
Gallium Arsenide and	II:118	
Berreman thickness		
described	II:116	
Beryllium (Be)		
critique	II:421	
Henke model and	II: 432	
interband absorption and	I:204	
optical parameters for	II: 321	
summary of experimental information for	II: 427	
values of n and k for	II:427	428
Beryllium Fluoride (BeF ₂)		
absorption coefficient of	I:245	247

<u>Index Terms</u>	<u>Links</u>	
Beryllium Oxide (BeO)	I:160	
critique	II:805	
dispersion parameters for	II: 808	
optical parameters for	II: 321	
in samples	II:422	
values of n and k for	II:808	809
See also Ceramic Beryllium Oxide		
Beta-Gallium Oxide (β-Ga ₂ O ₃)		
critique	III:753	
values of n and k for	III:756	757
β-magnesia. See Magnesium Oxide		
β-Sic. See Cubic Silicon Carbide		
BGO. See Bismuth Germanium Oxide		
Biaxial crystals		
Gallium Telluride and	III:490	
Bi ₁₂ GeO ₂₀ . See Bismuth Germanium		
Oxide		
Bimetallic junction		
interface plasmon frequency and	II:114	
Biological material		
dielectric properties of	I:165	
Birefringence		
Aluminum Nitride and	III:374	
Aluminum Oxide and	III:655	
Barium Titanate and	II:791	
Beta-Gallium Oxide and	III:753	
Cadmium Germanium Arsenide and	III:445	
Cadmium Selenide and	II:561	

<u>Index Terms</u>	<u>Links</u>		
Birefringence (Cont.)			
Calcium Carbonate and	III:701		
Copper Gallium Sulfide and	III:459		
Magnesium Fluoride and	II:899		
near-millimeter wavelength and	I:164	167	
Orthorhombic Sulfur and	III:899	901	903
Polyethylene and	II:967		
Selenium and	II:691		
Silver Gallium Sulfide and	III:577		
Sodium Nitrate and	III:871		
Thorium Fluoride and	II:1050		
Zinc Germanium Phosphide and	III:637		
Zinc Phosphide and	III:611		
Bi ₁₂ SiO ₂₀ . See Bismuth Silicon Oxide			
Bismuth Germanium Oxide ($Bi_{12}GeO_{20}$)			
critique	III:403		
optical parameters for	III:200		
values of n and k for	III:410	416	
Bismuth Silicon Oxide (Bi ₁₂ SiO ₂₀)			
critique	III:403		
values of n and k for	III:409	411	
BK7 Schott glass substrate			
Lead Fluoride and	III:764		
Blackbody sources			
overmoded nonresident cavities and	I:165		
Black Oxide. See Cupric Oxide			

<u>Index Terms</u>	Links	<u> 1</u>
Bloch functions		
electron-hole interactions and	I:199	
free-carrier absorption and	I:173	
one-electron model and	I:190	193
quantum-density-matrix formulation		
and	II:129	
BN. See Boron Nitride		
Bohr radius		
in bulk material	II:97	
Boltzmann constant		
absorption coefficients and	II:187	
Aluminum Oxide and	III:654	
Barium Fluoride and	III:684	
Potassium Iodide and	III:808	
Silicon-Germanium alloys and	II:608	
Strontium Fluoride and	III:884	
Thallous Halides and	III:928	
Yttrium Aluminum Garnet and	III:964	
Boltzmann equation		
discussed	I:278	
in free-carrier absorption experiment	I:173	
for free-electron gas	II:121	
frequency-independent electron		
scattering and	II:127	
photon energies and	I:171	
scattering and	III:159	
See also Drude theory		

<u>Index Terms</u>	<u>Links</u>	
Bonding-dependent redistribution		
Zinc Germanium Phosphide and	III:638	
Bonding states		
photon energies and	II:153	156
Polyethylene and	II:957	
Born approximation	III:160	
optical-properties determination and	II:297	
Born-Mayer functions	I:244	245
Boron (B)		
absorption spectrum from	I:258	
Boron Nitride (BN)		
critique	III:425	
values of n and k for	III:430	
values of n and k for (cubic)	III: 431	
values of n and k for (hexagonal)	III: 438	
Bose-Einstein expression		
Aluminum Nitride and	III:374	
Boules		
Lithium Tantalate and	III:778	
Boundary conditions		
Brillouin scattering and	III:145	
laser calorimetry and	I:144	
Bound electrons		
electron-hole interaction and	I:200	
quantum-mechanical treatment of	I:17	
rare-earth metals and	III:289	
semiclassical quantum-mechanical		
treatment of	I:17	

<u>Index Terms</u>	<u>Links</u>		
Bragg equation			
Brillouin scattering and	III:126		
layer thickness and	II:101		
Raman scattering and	II:108		
in wave guides	II:86		
Bravais cell			
ionic mass and	I:216		
Bremsstrahlung radiation			
Magnesium Oxide and	II:920		
Brewster's angle			
ellipsometry and	I:101		
and phase changes	II:46	47	48
	50		
reflectance and	I:71	76	
Tellurium and	II:712		
Bridgeman technique			
Mercury Cadmium Telluride and	II:659		
Sodium Nitrate and	III:873		
Zinc Selenide and	II:741		
Brillouin scattering			
optical-constants determination and	III:121		
Brillouin zone	I:371		
Boron Nitride and	III:426		
Cadmium Selenide and	II:563		
Cadmium Sulphide and	II:581		
Cesium Iodide and	II:856		
Cobalt and	II:439		
Copper and		I:205	

<u>Index Terms</u>	<u>Links</u>	
Brillouin zone (Cont.)		
index of refraction and	II:106	
interband absorption and	I:191	207
lead salts and	I:535	
Lead Telluride and	I:535	
Lead Tin Telluride and	II:637	
liquid Aluminum and	I:376	
Molybdenum and	I:205	
one-electron model and	I:190	
optical-property measurement and	II:152	
phonons and	I:238	253
point-by-point analyses, discussed	II:152	
pressure considerations and	I:382	
Raman scattering and	II:108	
rare-earth metals and	III:290	
semiconductors and	III:32	
Silicon and	III:531	
Silver Gallium Selenide and	III:573	
Silver Gallium Sulfide and	III:573	
superlattices and	II:102	
Tin Telluride and	II:725	
Zinc Selenide and	II:739	
Zinc Telluride and	II:745	
Bromellite. See Beryllium Oxide		
Bromine (Br)		
atomic scattering coefficients and	III:719	
Bruggeman effective-medium approximation		
ellipsometry and	I:97	106

<u>Index Terms</u>	<u>Links</u>		
Bruggeman formula			
Thorium Fluoride and	II:1050		
BSO. See Bismuth Silicon Oxide			
Bulk absorption coefficient materials			
measurement of	I:135	139	143
	153		
Bulk modulus			
transparency and	I:248		
Burstein-Moss effect			
Indium Antimonide and	I:492		
Indium Arsenide and	I:479		
Lead Sulfide and	I:527		
Mercury Cadmium Telluride and	II:663		
quantum-density-matrix formulation and	II:148		
Silicon and	I:551		
C			
C. See Carbon; Cubic Carbon; Graphite			
CaCO ₃ . See Calcium Carbonate			
Cadmium Arachidate (Cd-arachidate)			
index calculations of	II:88		
optical constants of	II:89		
Cadmium (Cd)			
interband absorption and	I:204		
Cadmium Germanium Arsenide (CdGeAs ₂)			
critique	III:445		
values of n and k for	III:450	451	

<u>Index Terms</u>	<u>Links</u>	
Cadmium Selenide (CdSe)		
critique	II:559	
index of refraction and	II:148	
optical parameters for	II: 321	
spectroscopic measurements of	III:82	
values of n and k for	II:564	565
Cadmium Selenide Sulphide ($CdSe_xS_{1-x}$)		
index of refraction and	II:148	
Cadmium Sulphide, cubic (CdS)	II:585	
Cadmium Sulphide, hexagonal (CdS)	II:579	
values of n and k for	II: 591	
Cadmium Sulphide (CdS)		
critique	II:579	
corrected information for	III:6	7
index of refraction and	II:148	
optical parameters for	II: 321	
spectroscopic measurements of	III:81	81
values of n and k for	II:589	590
Cadmium Telluride		
spectroscopic measurements of	III:73	
Cadmium Telluride (CdTe)		
critique	I:409	III:33
dispersion analysis of	I:410	
free-carrier absorption and	I:171	
index of refraction and	II:148	
optical parameters for	II: 320	
reststrahlen region and	I:249	250
Urbach rule and	I:202	

<u>Index Terms</u>	<u>Links</u>		
Cadmium Telluride (CdTe) (Cont.)			
values of n and k for	I:414	415	II:656
	657	III:34	35
Cadmium Zinc Sulfide ($Cd_xZn_{1-x}Te$)			
index of refraction and	II:148		
CaF ₂ . See Calcium Fluoride			
Cahan-Spanier design			
photometric ellipsometers and	I:93		
Calcite	III:657		
See also Calcium Carbonate			
Calcite crystal polarization			
introduced	II:27		
Calcium (Ca)			
interband absorption and	I:207		
Calcium Carbonate (CaC03)	III:701		
critique	III:701		
LO phonon frequencies for	III:715		
TO phonon frequencies for	III: 715		
Sellmeier dispersion equation constants for	III: 714		
Sodium Nitrate and	III:871		
thermo-optical constants of	III: 714		
values of n and k for	III:704	706	
Calcium Fluoride (CaF2)			
critique	II:815		
absorption coefficient of	I:245	247	
dispersion equation constants for	II: 829		
multiphonon absorption and	II:196		
optical parameters for	II: 319		

<u>Index Terms</u>	<u>Links</u>	
Calcium Fluoride (CaF2) (Cont.)		
substrate absorptance and	I:142	143
transparency frequency of	I:231	
values of n and k for	II:828	830
Calcspar. See Calcium Carbonate		
Calorimetry	I:135	
absorption-coefficient measurement and	I:231	232
Cobalt and	II:440	
Gallium Arsenide and	I:430	
Iridium and	I:296	
Lead Fluoride and	III:764	
Molybdenum and	I:303	
Nickel and	I:314	
Palladium and	II:471	
Potassium Chloride and	I:704	
Rhodium and	I:342	
Tungsten and	I:357	
Vanadium and	II:477	
See also Laser calorimetry		
Capacitance bridges		
Barium Fluoride and	III:686	
Potassium Iodide and	III:810	
Strontium Fluoride and	III:886	
Capacitance techniques		
Thallium Bromide and	III:927	
Thallium Chloride and	III:924	
Yttrium Aluminum Garnet and	III:965	

<u>Index Terms</u>	<u>Links</u>	
Carbon (C)		
optical parameters for	II:320	
superlattices and	II:108	
See also Cubic Carbon (Diamond)		
Carbon Films (Arc-evaporated)		
critique	II:837	
values of n and k for	II:841	852
Carbon films (Diamond-like)		
critique	II:837	
versus Diamond films	II:837	
dispersion relation parameters for	II: 843	
values of n and k for	II:841	844
Carbon Films (Diamond-like), amorphous (a-	-C:H)	
optical parameters for	II: 323	
Carbon films (Diamond-like), amorphous (a-	C:H)	
photothermal deflection and	III:109	
Carbon Tetrachloride (CCl ₄)		
correction term determination of	I:101	
Carcinotron system		
Barium Titanate and	II:792	
Carl-Zeiss GDM-1000 monochromator		
Zinc Arsenide and	III:596	
Zinc Phosphide and	III:610	
Carrier concentrations		
Aluminum Gallium Arsenide and	II:515	
Drude theory and	I:175	
index of refraction and	II:148	
infrared dispersion and	I:264	

<u>Index Terms</u>	<u>Links</u>	
Carrier concentrations (Cont.)		
Lead Tin Telluride and	II:638	
optical-properties determination and	II:177	
quantum-density-matrix formulation and	II:134	146
Tin Telluride and	II:726	
Cartesian coordinate system		
and polarization	II:28	
for wave equations	II:23	
Casting techniques		
Polyethylene and	II:966	
Cauchy dispersion equations		
electron-energy-loss spectroscopy and	II:299	
Lead Fluoride and	III:765	
and wavelength measurement	II:65	
Cauchy's principle-value integral		
index of refraction and	II:161	
Cauchy theorem integration		
finite-energy sum rules and	I:45	
Causality principle	I:228	
described	II:152	160
Cavity degradation		
index of refraction and	I:163	
Cavity-resonance technique		
Selenium and	II:691	
Cavity technique		
Tantalum and	II:409	
CCl ₄ . See Carbon Tetrachloride		
Cd. See Cadmium		

<u>Index Terms</u>	<u>Links</u>	
Cd-arachidate. See Cadmium Arachidate		
CdGeAs ₂ . See Cadmium Germanium Arsenide		
CdS. See Cadmium Sulphide		
CdSe. See Cadmium Selenide		
CdTe. See Cadmium Telluride		
Ce. See Cerium		
Central-cell corrections		
electron-hole interactions and	I:199	
Central-limit theorem		
multiphonon absorption and	II:190	196
Ceramic beryllia. See Beryllium Oxide		
Ceramic Beryllium Oxide		
values of n and k for	II: 811	
See also Beryllium Oxide		
Ceramic materials		
Aluminum Nitride and	III:373	
Hafnium Nitride and	III:351	
photothermal deflection and	III:112	
Zirconium Nitride and	III:351	
Cerenkov radiation		
phase velocity of light and	II:298	
Cerium (Ce)	III:287	
critique	III:292	
values of n and k for	III:306	314
Cesium Bromide (CsBr)		
critique	III:717	
transparency frequency of	I:231	
values of n and k for	III:720	721

<u>Index Terms</u>	<u>Links</u>	
Cesium Chloride (CsCl)		
critique	III:731	
interband absorption and	I:208	
Thallium Iodide and	III:927	
values of n and k for	III:734	735
Cesium (Cs)		
critique	III:341	
interband absorption and	I:208	
values of n and k for	III:345	346
Cesium Fluoride (CsF)		
critique	III:743	
values of n and k for	III:745	746
Cesium Iodide (CsI)		
critique	II:853	
optical parameters for	II:320	
transparency frequency of	I:231	
values of n and k for	II:858	859
Cgs units		
formula development and	I:215	
optical-properties measurement and	I:13	
Chalcogens		
Gallium Selenide and	III:473	
Gallium Telluride and	III:489	
Chalcopyrite structures		
Cadmium Germanium Arsenide and	III:445	
Copper Gallium Sulfide and	III:459	
Silver Gallium Selenide and	III:573	
Silver Gallium Sulfide and	III:573	

<u>Index Terms</u>	<u>Links</u>
Chalcopyrite structures (Cont.)	
Zinc Germanium Phosphide and	III:637
Chamber technique	
Lead Fluoride and	III:765
Potassium Bromide and	II:991
Channel-spectrum analysis	
Beta-Gallium Oxide and	III:754
Cadmium Sulphide and	II:585
Cubic Carbon and	I:666
Lead Fluoride and	III:765
Polyethylene and	II:964
Silicon and	I:547
Silicon Dioxide (crystalline) and	I:720
Titanium Dioxide and	I:795
Characteristic matrix	
described	II:82
parallel-sided slabs and	I:15
Chemical etching	
on semiconductor surfaces	I:104
Chemical polishing solutions	
CP-4 (HNO ₃ :HF:CH ₃ COOH 5:3:3)	I:104
See also Polishing techniques	
Chemical transport method	
Beta-Gallium Oxide and	III:753
Chemical-vapor-deposition technique (CVD)	
Cadmium Telluride and	I:412
Zinc Selenide and	II:737
Zinc Telluride and	II:737

<u>Index Terms</u>	<u>Links</u>	
Chemical-vapor-transport technique		
IronPyrite and	III:510	
C ¹³ H ₃ F. See Methyl Fluoride		
(CH ₂) _n . See Polyethylene		
$(C_2H_4)_n$. See Polyethylene		
Chromatic abberation		
Calcium Fluoride and	II:818	
Chromium (Cr)		
critique	II:374	
absorption measurement of, and calorimetry	I:135	
optical parameters for	II:319	
values of n and k for	II:377	378
Circuit theory		
and temporal phenomena	II:24	
Circular polarization	II:34	
discussed	II:30	
momentum of	II:35	
spatial representation of	II:33	
terminology used to classify	II:35	
Clamped dielectric permittivity values		
Potassium Niobate and	III:824	
Clausius-Mossotti equation	III:114	
Beta-Gallium Oxide and	III:754	
Clebsch-Gordon coefficients		
critical points and	I:233	
Closed resonant cavity		
near-millimeter wavelength		
measurement and	I:161	

<u>Index Terms</u>	<u>Links</u>	
Co. See Cobalt		
Coated materials		
wedged-film laser calorimetry and	I:140	
Coating-materials characterizations		
equations for	I:138	
Cobalt (Co)		
critique	II:435	
values of n and k for	II:422	443
Coherent combinations		
thin-film absorbtance and	I:147	
Collective excitations		
optical properties and	II:112	
Collimated monochromatic light		
measurement of polarization states of	II:62	
Color centers		
Calcium Fluoride and	II:816	
Color standard		
Nitrides and	III:351	
Columnar structures		
Thorium Fluoride and	II:1049	
Common-path interferometers		
described	I:120	
Compensators		
ellipsometry and	I:93	
Complex amplitude reflectance		
interferometry and	I:115	
Complex dielectric constants		
Aluminum Oxide and	III:653	

<u>Index Terms</u>	<u>Links</u>
Complex dielectric constants (Cont.)	
Antimony and	III:274
Beryllium Oxide and	II:806
Cadmium Selenide and	II:560
Calcium Fluoride and	II:820
in compound semiconductors	II:125
Drude model for	I:169
ellipsometry and	I:91
Fresnel coefficients and	I:24
Gallium Selenide and	III:474
Indium and	III:261
Magnesium and	III:235
metals and	III:233
quantum-density-matrix formulation of	II:128
Rhenium and	III:278
Ruthenium and	III:253
scattering rates and	I:176
of semiconductor model	I:169
Silicon and	III:531
sum rules and	I:36
superconvergence sum rules and	I:38
Thallium Bromide and	III:926
Tin and	III:268
Titanium and	III:240
Yttrium Aluminum Garnet and	III:963
Complex dielectric response function	
Polyethylene and	II:958

<u>Index Terms</u>	<u>Links</u>
Complex field coefficients	
electromagnetic waves and	I:89
Complex functions	
optical-properties measurement and	I:13
Complex index of refraction	III:122
Aluminum Nitride and	III:376
Aluminum Oxide and	III:654
Cadmium Selenide and	II:560
Calcium Carbonate and	III:702
Cesium Chloride and	III:733
Cesium Fluoride and	III:744
derivation of	II:160
Drude-Zener theory and	I:169
electronic transitions and	II:177
Gallium Selenide and	III:473
Gallium Telluride and	III:490
Hafnium Nitride and	III:353
Lead Fluoride and	III:764
measurement of	I:155
metals and	III:233
one-electron model and	I:192
overlayers and	I:100
reflectance and	II:204
Rhenium and	III:278
Silicon and	III:533
Strontium Titanate and	II:1035
sum rules and	I:37
Thallium Bromide and	III:926

<u>Index Terms</u>	<u>Links</u>		
Complex index of refraction (Cont.)			
Thallium Chloride and	III:925		
Yttrium Oxide and	II:1083		
Zirconium Nitride and	III:353		
See also Index of refraction temperature	;		
dependence			
Complex numbers			
discussed	II:25		
Complex reflectance ratio			
electromagnetic waves and	I:90		
ellipsometry and	I:91		
Complex refractive index			
dielectric constants and	II:125	127	
See also Index of refraction			
Computer modeling			
infrared reflectivity and	II:762		
laser calorimetry and	I:136		
Lead Fluoride and	III:765		
Mercury Cadmium Telluride and	II:660		
reflectometers and	II:470		
steepest-descent method and	I:221		
Computer software			
accuracy of	II:26		
and complex numbers	II:26		
equation fit and	II:164	166	170
Henke UV and X-ray optical constants	III:8		
optical constants	III:12		
optical-properties measurement and	II:62		

<u>Index Terms</u>	<u>Links</u>		
Computer software (Cont.)			
Optimatr	III:6		
rare-earth metals and	III:288		
and thin films	II:58		
values of n and k and	II:207		
Condensation			
Thorium Fluoride and	II:1049		
Condensed materials			
electronic states of	I:11		
vibrational states of	I:11		
Condensed matter			
optical-properties measurement and	I:17		
Condensed-state physics			
constitutive equations and	I:24		
intrinsic microscopic parameters of	I:24		
Conduction absorption			
f sum rules and	I:62		
Conduction bands	III:160		
Cadmium Sulphide and	II:579	582	
Cesium Iodide and	II:856		
Iron Pyrite and	III:509		
Magnesium Fluoride and	II:900		
Mercury Cadmium Telluride and	II:662		
photon energies and	II:153	156	
quantum-density-matrix formulation and	II:130	132	137
Thallium Bromide and	III:925		
Thallium Chloride and	III:924		
Yttrium Aluminum Garnet and	III:963		

<u>Index Terms</u>	<u>Links</u>	
Conduction bands (Cont.)		
Yttrium Oxide and	II:1080	
Zinc Germanium Phosphide and	III:637	
Zinc Selenide and	II:738	
See also Valence bands		
Conduction electrons		
sum rules and	I:50	57
Conductivity		
Aluminum Oxynitride and	II:779	
Cadmium Selenide and	II:561	
Cesium and	III:342	
discussed	II:23	
Erbium and	III:300	
Gadolinium and	III:294	
Kubo formula for	III:160	
Lead Fluoride and	III:761	
rare-earth metals and	III:290	
Terbium and	III:297	
Conductivity effective mass		
described	III:159	
Conductors		
Beta-Gallium Oxide and	III:753	
Lead Fluoride and	III:762	
sum rules and	I:41	
Confinement effect		
superlattices and	II:104	
Consistency		
importance of	II:52	

<u>Index Terms</u>	<u>Links</u>
Continued-fraction approach	
superlattice optical properties and	II:112
Contrast	
Brillouin scattering and	III:129
Conventions	
discussed	II:51
Convergence	
sum rules and	I:42
See also Superconvergence	
Conversion factors	
Potassium Niobate and	III:824
Coordinate systems	
choice of	II:38
and incident waves	II:46
and reflected waves	II:46
Copper Bromide (CuBr)	
transparency frequency of	I: 231
Copper Chloride (CuCl)	
transparency frequency of	I: 231
Copper (Cu)	
critique	I:280
band structure of	I:206
interband transitions in	I:204 205
optical parameters for	II:318
optical-properties calculations of	I:205
photothermal deflection and	III:109
temperature dependence of reflectance	I:382

<u>Index Terms</u>	<u>Links</u>		
Copper (Cu) (Cont.)			
values of n and k for	I:282	283	II:173
	174	174	
Copper Gallium Sulfide (CuGaS2)			
critique	III:459		
values of n and k for	III:463	464	
Copper Oxides. See Cupric Oxide; Cuprous O	xide		
Core-electron excitation			
interband absorption and	I:201		
Core-level absorption process	I:4		
metallic Aluminum and	I:370		
Corning 7059			
amorphous Silicon and	I:573		
Corning 7940 (fused silica)	I:159	160	
Corning 9606 (glass ceramic)	I:160		
Corning 7971 (titanium silicate)	I:159	160	
Correction terms			
ellipsometry and	I:101		
local-field effects and	I:203		
Potassium Niobate and	III:823		
Corundum	III:653		
See also Aluminum Oxide			
Coulomb guage	I:172		
quantum-density-matrix formulation and	II:129		
Coulombic field			
Lithium Tantalate and	III:779		
Coulomb interactions			
sum rules and	I:50		

<u>Index Terms</u>	<u>Links</u>		
Coulomb potential			
Silicon, doped n-type and	III:168		
Coulomb states			
interband absorption and	I:200	201	
Coulomb wave functions	III:160		
Coupling			
rare-earth elements and	III:288		
Covalent bonding			
Hafnium Nitride and	III:351		
Zinc Germanium Phosphide and	III:637		
Zirconium Nitride and	III:351		
Cr. See Chromium			
Critical angle			
defined	II:204		
Critical-angle measurements			
Polyethylene and	II:958		
Potassium and	II:366		
values of n and k for	I:79		
Critical angle of incidence			
Aluminum and	I:80		
formulas for	I:30		
in lamelliform	I:30		
See also Angles of incidence			
Critical points			
identification of	I:207		
introduced	I:194	196	
in phonon branches	I:233	253	
in two-dimensional crystals	I:200		

<u>Index Terms</u>	<u>Links</u>		
Critical-point states			
photon energies and	II:153	156	
Critical-point transition energy			
for Silicon	II:169		
Cryptocrystalline materials			
Orthorhombic Sulfur and	III:900	903	
Crystal lattices			
Bloch functions in	II:129		
Chromium and	II:374		
Crystalline dielectrics			
Kramers-Krönig analysis and	II:169		
optical-constants calculation and	II:163		
quantum-mechanical absorption theory and	II:153		
Crystalline materials			
Aluminum Oxide and	III:653		
Beta-Gallium Oxide and	III:753		
Cadmium Germanium Arsenide and	III:445		
Cesium Bromide and	III:719		
Copper Gallium Sulfide and	III:459		
frequency-distribution function and	I:215		
Gallium Phosphide and	I:448		
Gallium Selenide and	III:473		
index of refraction of	I:102	167	II:164
Lead Fluoride and	III:761		
Polyethylene and	II:957	960	
Silicon-Germanium	II:607		
Zircon and	III:989		
See also Individual elements			

<u>Index Terms</u>	Links	
Crystalline quartz		
near-millimeter wavelength and	I:165	166
Crystalline semiconductors		
Kramers-Krönig analysis and	II:169	
optical-constants calculation and	II:163	
quantum-mechanical absorption theory and	II:153	
Crystalline semiconductor superlattices		
optical properties of	II:109	
Crystalline solids		
Brillouin zone and	I:191	
Crystalline superlattices		
versus amorphous superlattices	II:110	
Crystallinity		
Aluminum and	I:376	
Boron Nitride and	III:425	
deposited films and	I:8	
Crystals		
described	I:215	
impurities and	I:257	
with substitutional impurities	I:255	
Crystals, optical interactions in		
one-phonon processes and	I:215	
Cs. See Cesium		
CsBr. See Cesium Bromide		
CsCl. See Cesium Chloride		
CsR See Cesium Fluoride		
Csl. See Cesium Iodide		
Cu. See Copper		

<u>Index Terms</u>	<u>Links</u>		
Cubic Carbon (Diamond)			
critique	I:665		
critical points and	I:196	208	233
dispersion analysis of	I:666		
index of refraction of	I:382	393	
transparency frequency of	I:231		
values of n and k for	I:669	670	II:169
Cubic crystals			
Barium Fluoride and	III:683		
Bismuth Germanium Oxide and	III:403		
Bismuth Silicon Oxide and	III:403		
Boron Nitride and	III:425	426	
Cesium Fluoride and	III:743		
Cobalt and	II:435	439	
interband absorption and	I:192		
local-field effects and	I:203		
Potassium Iodide and	III:807		
Rubidium Bromide and	III:845		
Rubidium Iodide and	III:857		
Silver Bromide and	III:554		
Silver Chloride and	III:553		
Silver Iodide and	III:556		
Strontium Fluoride and	III:883		
Taylor series and	II:136		
Thallium Iodide and	III:927		
unpolarized radiation and	II:130		
Yttrium Oxide and	II:1079		
Zinc Telluride and	II:745		

<u>Index Terms</u>	<u>Links</u>	<u> </u>
Cubic lattices		
Calcium Fluoride and	II:815	
Cubic materials		
Cerium and	III:288	
Cesium and	III:341	
rare-earth elements and	III:287	
Tin and	III:268	
Ytterbium and	III:302	
Cubic perovsite structure		
Lithium Tantalate and	III:777	
Cubic semiconductors		
Iron Pyrite and	III:507	
Cubic Silicon Carbide (β-SiC)		
critique	II:705	
index of refraction and	II: 707	
optical parameters for	II: 320	
Cubic Silicon Dioxide (SiO ₂)		
optical-constants calculation of	II:169	
Cubic Thallium(I) Halides		
critique	III:923	
Cubic Thallium Iodide (TII)		
values of n and k for	III: 951	
See also Thallium Iodide		
Cubic Zinc Selenide (ZnSe)		
optical parameters for	II: 320	
Cubic Zinc Sulfide (ZnS)		
critique	I:598	
values of n and k for	I:605	606

<u>Index Terms</u>	<u>Links</u>	
Cubic Zinc Sulfide (ZnS) (Cont.)		
See also Hexagonal Zinc Sulfide; Zinc S	ulfide	
CuBr. See Copper Bromide		
CuCl. See Copper Chloride		
CuGaS ₂ . See Copper Gallium Sulfide		
CuO. See Cupric Oxide		
Cu ₂ O. See Cuprous Oxide		
Cupric Oxide (CuO)		
critique	II:875	
optical parameters for	II:323	331
spectroscopic measurements of	III:82	
values of n and k for	II:879	882
Cuprous Oxide (Cu20)		
critique	II:875	
optical parameters for	II:321	
values of n and k for	II:879	880
Curie temperature		
Ammonium Dihydrogen Phosphate and	II:1007	
Barium Titanate and	II:789	793
Erbium and	III:300	
Lithium Tantalate and	III:777	
Potassium Dihydrogen Phosphate and	II:1007	
rare-earth elements and	III:288	
Strontium Titanate and	II:1035	
Terbium and	III:297	
Thulium and	III:301	
CVD. See Chemical vapor deposition		
Cyclo-octasulfur	III:899	

<u>Index Terms</u>	<u>Links</u>	
CVD. See Chemical vapor deposition (Cont.)		
See also Orthorhombic Sulfur		
Cyclotron resonance	II:36	36
Cylindrical lens		
attenuated-total-reflection experiments with	II:93	
Czochralski technique		
Aluminum Oxide and	III:653	655
Bismuth Germanium Oxide and	III:404	406
Bismuth Silicon Oxide and	III:404	406
Gallium Phosphide and	I:445	448
Lead Tin Telluride and	II:637	
Lithium Niobate and	I:696	
Lithium Tantalate and	III:777	
Magnesium Aluminum spinel and	II:884	
D		
Damped harmonic oscillators		
Gallium Selenide and	III:474	476
Silicon and	III:532	
Damped oscillators		
absorption coefficients and	I:244	
dielectric response function and	I:223	
reflection spectra of	I:218	229
reststrahlen spectrum of	I:221	223
and surface-plasmon waves	II:79	
Damped phonons	I:222	
Damping		
Aluminum Oxide and	II:763	

<u>Index Terms</u>	<u>Links</u>	
Damping (Cont.)		
Beryllium Oxide and	II:805	
Cadmium Germanium Arsenide and	III:448	
Cesium Iodide and	II:854	
Lithium Tantalate and	III:779	
metals and	III:233	
Potassium Niobate and	III:824	
Silicon, doped n-type and	III:169	
Damping coefficients		
Lithium Tantalate and	III:779	
Damping constants		
acoustic phonons and	III:122	
Aluminum Gallium Arsenide and	II:515	
Barium Titanate and	II:792	
Boron Nitride and	III:426	
Calcium Fluoride and	II:820	
Sodium Nitrate and	III:872	
Tellurium and	II:710	
Damping factors		
dielectric response function and	I:220	
infrared spectra and	I:224	
oscillator models and	I:245	
pseudoharmonic approximations and	I:226	
in superlattices	II:113	118
Damping in time	II:24	
Damping parameters		
Iron Pyrite and	III:508	
Zinc Phosphide and	III:610	

<u>Index Terms</u>	<u>Links</u>		
Dc conductivity			
index of refraction and	II:180		
Silver Iodide and	III:556		
Dc conductivity rule	I:40	41	61
Dc conductivity sum rule			
tests for	I:61		
Dc mobility			
as function of carrier concentration	I:171	173	185
DeBell method			
laser calorimetry and	I:143	145	
Debye frequency			
for polyatomic crystals	I:249		
Debye relaxation effects			
frequency level and	I:156		
Debye temperature			
of Beryllium	II:421		
Debye-Thomas-Fermi model			
Silicon, doped n-type and	III:170		
Decimal place reliability			
introduced	I:5		
Defect absorptions			
incident radiation intensity and	II:178		
Magnesium Aluminum spinel and	II:887		
Smakula's equation and	I:47		
spectral region and	II:178		
temperature considerations and	II:178		
Yttrium Oxide and	II:1081	1084	

<u>Index Terms</u>	Links
Defect analysis	
of Cuprous Oxide	II:875
Magnesium Aluminum Spinel and	II:884
Potassium Dihydrogen Phosphate and	II:1006
Sodium Fluoride and	II:1022
See also Error analysis	
Defects	
Potassium Iodide and	III:809
Rubidium Iodide and	III:859
Strontium Fluoride and	III:886
Zinc Arsenide and	III:595
Zinc Germanium Phosphide and	III:637
Defects and disorders	
infrared absorption by	I:254
Defects and impurities	
transparency and	I:213
Degenerate <i>n</i> -type material	
quantum-density-matrix formulation and	II:135
Degenerate <i>p</i> -type material	
quantum-density-matrix formulation and	II:133
Degenerate semiconductors	
exclusion principle and	II:133
Degrees of freedom	
of crystals	I:215
Gallium Telluride and	III:491
Silicon-Germanium alloys and	II:607

<u>Index Terms</u>	<u>Links</u>
de Haas-van Alphen measurements	I:371
Density considerations	III:122
Aluminum Gallium Arsenide and	II:513
Barium Fluoride and	III:683
Lead Fluoride and	III:763
Yttrium Aluminum Garnet and	III:963
Density of states	
as normal distribution function	I:245
superlattices and	II:108
Zirconium Nitride and	III:352
See also Joint density of states	
Deoxyribonucleic acid. See DNA	
Deposition rates	
Lead Fluoride and	III:765
wedged-film laser calorimetry and	I:141
DESY accelerator. See Deutsches	
Electronen-Synchrotron	
Deuterated crystals. See Ammonium	
Dihydrogen Phosphate; Potassium	
Dihydrogen Phosphate	
Deutsches Electronen-Synchrotron	II:761
Potassium Bromide and	II:992
Vanadium and	II:478
DFTS. See Dispersive Fourier-transform	
spectroscopy; Fourier-transform spectroscopy	,
Diamond. See Cubic Carbon	
Diamond films	
versus Carbon films	II:837

<u>Index Terms</u>	<u>Links</u>	
Diamond-like Carbon films. See Carbon films		
(Diamond-like)		
Diamond structures		
Tin and	III:268	
Diatomic crystals		
infrared radiation of	I:216	
optic branches of	I:215	
reststrahlen band in	I:219	
Diatomic lattices		
impurities and	I:255	
optical-branch vibrations of	I:215	
Dichroism		
Polyethylene and	II:967	
Dielectric constants		
Aluminum and	I:392	402
Aluminum Antimonide and	II:501	
Aluminum Arsenide and	II:490	
Aluminum Oxide and	II:762	III:657
Aluminum Oxynitride (ALON) Spinel and	II:782	
Barium Titanate and	II:792	
Beta-Gallium Oxide and	III:754	
Boron Nitride and	III:426	
Cadmium Germanium Arsenide and	III:448	
Cadmium Selenide and	II:559	562
Cadmium Sulphide and	II:584	
Calcium Carbonate and	III:702	
Calcium Fluoride and	II:820	

<u>Index Terms</u>	<u>Links</u>		
Dielectric constants (Cont.)			
Cesium Chloride and	III:732		
Cesium Fluoride and	III:743	744	
complex numbers and	II:26		
Copper Gallium Sulfide and	III:462		
described	II:294		
Drude damping and	II:113	118	
in Drude model	I:369		
Drude theory and	I:172	174	
effective-medium theory and	I:105		
effect of nonlocal	II:120		
electron-energy-loss spectroscopy and	II:294		
electron-hole interactions and	I:199		
ellipsometry and	I:97		
Erbium and	III:300		
finite-energy sum rules and	I:45		
free-carrier effects and	I:18		
Gallium Antimonide and	II:597	600	
Gallium Selenide and	III:474		
Gallium Telluride and	III:490		
Hafnium Nitride and	III:352		
imaginary component of	I:163	II:113	
imaginary component of, in superlattices	II:100		
Iron Pyrite and	III:510		
Kramers-Krönig analysis and	I:203	380	402
Kramers-Krönig integral and	I:192		
Lead Fluoride and	III:762		
Lead Tin Telluride and	II:638		

<u>Index Terms</u>	<u>Links</u>	
Dielectric constants (Cont.)		
Lithium Tantalate and	III:779	
Magnesium Aluminum Spinel and	II:886	
Magnesium Oxide and	II:922	
Manganese and	III:249	
Mercury Cadmium Telluride and	II:655	656
for metal-insulator system	II:114	
metals and	III:233	235
for noble metals	I:205	
optical-constants calculations and	I:187	
optical-properties measurement and	I:17	
optical responses of superlattices and	II:98	105
Palladium and	II:472	
photon energies and	I:216	
Polyethylene and	II:958	
Potassium Bromide and	II:991	
Potassium Iodide and	III:809	
Potassium Niobate and	III:824	831
radiation absorption and	I:218	
resonance frequency and	I:235	
Rhenium and	III:278	
room temperature and	I:380	
Ruthenium and	III:254	
Selenium and	II:691	
semiconductors and	III:32	
Silicon, doped n-type and	III:156	
Silicon and	III:531	
Silver Iodide and	III:555	

<u>Index Terms</u>	<u>Links</u>	
Dielectric constants (Cont.)		
Sodium Nitrate and	III:873	
Strontium Fluoride and	III:886	
Strontium Titanate and	II:1035	1036
sum rules and	I:44	
superlattice systems and	II:98	119
Tellurium and	II:709	
Thallium Bromide and	III:926	
Thallium Chloride and	III:924	925
Thallium Iodide and	III:927	
Thallous Halides and	III:930	
Water and	II:1059	1063
wavelength measurement and	I:160	162
Yttrium Aluminum Garnet and	III:963	965
Yttrium Oxide and	II:1082	
Zinc Germanium Phosphide and	III:640	
Zinc Phosphide and	III:610	
Zinc Selenide and	II:742	
Zinc Telluride and	II:744	
Zircon and	III:987	
Zirconium Nitride and	III:352	
See also Individual critiques; Complex		
dielectric constants; Static dielectric		
constants		
Dielectric constants, dc		
Cesium and	III:343	
Graphite and	II:449	452
imaginary versus real component of	II:125	

<u>Index Terms</u>	<u>Links</u>
Dielectric constants, dc (Cont.)	
Indium Arsenide and	I:480
Indium Phosphide and	I:506
Lithium Fluoride and	I:677
Lithium Niobate and	I:697
Potassium Bromide and	II:989
Silicon Carbide and	I:589
Sodium Chloride and	I:775
Tellurium and	II:711
Zircon and	III:988
Dielectric ellipsoid	
Sodium Nitrate and	III:872
Dielectric films	
attenuated total reflection and	II:90
Dielectric-function models	
Aluminum Oxide and	II:763
Dielectric interface	
laser calorimetry and	I:143
Dielectric interference filters	
Magnesium Fluoride and	II:900
Dielectric loss functions	
Lead Fluoride and	III:762
Dielectric materials	
optical anisotropy induced by	II:69
Dielectric optical waveguides	
discussed	II:84
Dielectric parameters	
Magnesium Oxide and	II:919

<u>Index Terms</u>	<u>Links</u>	
Dielectric polarization		
in crystals	I:216	
Dielectric response function		
damping factor and	I:220	
dispersion theory and	I:226	
infrared dispersion and	I:264	
ion interaction and	I:217	
Lithium Tantalate and	III:778	
Dielectrics		
optical-property calculation of	II:151	153
Dielectrics, amorphous. See Amorphous diele	ectrics	
Dielectrics, crystalline. See Crystalline dielec	trics	
Dielectric slab, parallel sided		
lamelliform and	I:19	
Dielectric strength		
Aluminum Oxide and	III:653	
Dielectric susceptibility		
optical-properties measurement and	I:12	
in rationalized system of units	I:12	
Dielectric theory		
optical-properties determination and	II:297	
Differential spectrophotometry		
absorption-coefficient measurement and	I:231	
Diffraction		
measurement accuracy and	I:157	
Diffraction analysis		
Magnesium Aluminum spinel and	II:883	
Magnesium Oxide and	II:920	

Diffraction analysis (Cont.) measurement accuracy and II:155 Yttrium Oxide and II:1079 Diffuse-reflection technique Lead Fluoride and III:761 Dipole matrix element extinction coefficient and optical-constants calculation and II:154 Optical-constants calculation and II:164 Dipole matrix elements Bloch states and density of states and i:261 interpolation scheme for superlattices and II:108 I20 Dipole measurements temperature dependence and II:183 I87 I98 Dirac theory electron density of states and II:654 Copper Gallium Sulfide and III:459 Cuprous Oxide Thallium Bromide and III:924
Yttrium Oxide and II:1079 Diffuse-reflection technique Lead Fluoride and III:761 Dipole matrix element extinction coefficient and II:154 156 optical-constants calculation and II:164 Dipole matrix elements Bloch states and I:193 density of states and I:261 interpolation scheme for I:194 205 superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and II:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Diffuse-reflection technique Lead Fluoride and III:761 Dipole matrix element extinction coefficient and II:154 156 optical-constants calculation and II:164 Dipole matrix elements Bloch states and I:193 density of states and I:261 interpolation scheme for I:194 205 superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and II:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Lead Fluoride and III:761 Dipole matrix element extinction coefficient and optical-constants calculation and II:154 optical-constants calculation and II:164 Dipole matrix elements Bloch states and I:193 density of states and I:261 interpolation scheme for I:194 205 superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Dipole matrix element extinction coefficient and optical-constants calculation and II:154 Dipole matrix elements Bloch states and density of states and interpolation scheme for superlattices and II:194 Dipole measurements II:198 I20 Dipole measurements temperature dependence and II:183 Dirac theory electron density of states and II:175 Direct band gaps Aluminum Oxide and Copper Gallium Sulfide and II:459 Cuprous Oxide II:875
extinction coefficient and II:154 156 optical-constants calculation and II:164 Dipole matrix elements Bloch states and I:193 density of states and I:261 interpolation scheme for I:194 205 superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
optical-constants calculation and II:164 Dipole matrix elements Bloch states and I:193 density of states and I:261 interpolation scheme for I:194 205 superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Dipole matrix elements Bloch states and I:193 density of states and I:261 interpolation scheme for Superlattices and II:194 Dipole measurements temperature dependence and II:183 II:183 III:183 III:
Bloch states and I:193 density of states and I:261 interpolation scheme for I:194 205 superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
density of states and I:261 interpolation scheme for I:194 205 superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
interpolation scheme for I:194 205 superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
superlattices and II:108 120 Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Dipole measurements temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
temperature dependence and II:183 187 198 Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Dirac theory electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
electron density of states and I:175 Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Direct band gaps Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Aluminum Oxide and III:654 Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Copper Gallium Sulfide and III:459 Cuprous Oxide II:875
Cuprous Oxide II:875
-
Thallium Bromide and III:924
Thallium Chloride and III:923
Yttrium Aluminum Garnet and III:963
Zinc Germanium Phosphide and III:637
Disordered lattices
described I:254

<u>Index Terms</u>	<u>Links</u>	
Dispersion analysis		
Aluminum Oxide and	III:655	
Ammonium Dihydrogen Phosphate and	II:1006	
Brillouin scattering and	III:125	
Cadmium Germanium Arsenide and	III:448	
Calcium Carbonate and	III:702	
Calcium Fluoride and	II:818	820
Cesium Bromide and	III:717	
Cesium Chloride and	III:732	
Cesium Fluoride and	III:743	
Cesium Iodide and	II:855	
Copper Gallium Sulfide and	III:461	
Gallium Selenide and	III: 487	
Lead Fluoride and	III:762	
Magnesium Fluoride and	II:902	
Magnesium Oxide and	II:929	937
metals and	III:234	
Orthorhombic Sulfur and	III:902	
Polyethylene and	II:962	
Potassium Bromide and	II:990	
Potassium Dihydrogen Phosphate and	II:1006	
Potassium Niobate and	III:823	
Rubidium Bromide and	III:845	
Rubidium Iodide and	III:857	859
Silver Gallium Selenide and	III:575	
Silver Gallium Sulfide and	III:577	
Sodium Fluoride and	II:1022	
Strontium Fluoride and	III:883	

<u>Index Terms</u>	<u>Links</u>	
Dispersion analysis (Cont.)		
Thallium Bromide and	III:926	
Thallium Chloride and	III:924	
Thallous Halides and	III:929	
Thorium Fluoride and	II:1049	1051
Yttrium Aluminum Garnet and	III:964	
Yttrium Oxide and	II:1080	1083
Dispersion curves		
Calcium Fluoride and	II:817	820
Zinc Selenide and	II:740	
Dispersion equations		
Thallium Chloride and	III:924	
Dispersion formulas		
Aluminum Gallium Arsenide and	II:515	
Cadmium Selenide and	II:563	
Gallium Antimonide and	II:599	
Zinc Selenide and	II:741	
Dispersion relations		
high-frequency limits and	I:40	
Kramers-Krönig analysis and	I:227	
sum rules and	I:55	
surface polaritons and	II:113	
Dispersion theory		
Aluminum Antimonide and	II:502	
dielectric response function and	I:226	
optical-constants calculation and	II:164	
optical-constants measurement and	I:377	
Silicon Dioxide (crystalline) and	I:720	

<u>Index Terms</u>	<u>Links</u>		
Dispersion theory (Cont.)			
Silver Gallium Selenide and	III:575		
sum rules and	I:55		
Dispersive Fourier-transform spectroscopy (D	FTS)		
far-infrared region and	III:13		
See also Fourier-transform spectroscopy			
Dispersive processes			
Fourier transform spectroscopy and	I:157		
sum rules for	I:36		
Distillation			
Liquid Mercury and	II:462		
Vanadium and	II:478		
DLC See Carbon films (Diamond-like)			
DNA (deoxyribonucleic acid)			
index of refraction of	III:143		
Doping			
Aluminum Oxide and	III:653		
Bismuth Germanium Oxide and	III:404		
Bismuth Silicon Oxide and	III:404		
Cadmium Germanium Arsenide and	III:447		
Copper Gallium Sulfide and	III:459		
Strontium Titanate and	II:1035		
Yttrium Oxide and	II:1079	1081	1082
Zinc Germanium Phosphide and	III:639		
Doppler shift line			
Brillouin scattering and	III:124		
DPNA dye	II:88		

<u>Index Terms</u>	<u>Links</u>		
Drude absorption			
Cesium and	III:341		
Drude approximation			
Silicon, doped n-type and	III:158		
Drude damping			
superlattices and	II:113	118	
Drude dielectric functions			
metal-metal superlattices and	II:114		
Drude equations			
rare-earth metals and	III:289		
Drude metal			
superlattices and	II:99	101	
Drude models	II:26		
Aluminum and	I:376	380	389
	390	394	II:211
Cobalt and	II:435		
for complex dielectric constants	I:169	177	185
damping-coefficient conductivity in	I:370		
dielectric response function and	I:264		
Dysprosium and	III:299		
finite-energy sum rules and	I:49	50	
free-carrier density of semiconductors and	II:126		
Gadolinium and	III:296		
Hafnium Nitride and	III:352	356	
Indium Antimonide and	I:492		
intraband spectrum and	I:369		
Lead Selenide and	I:517		
Lead Sulfide and	I:526		

<u>Index Terms</u>	<u>Links</u>		
Drude models (Cont.)			
Lead Telluride and	I:536		
Liquid Mercury and	II:461		
Lithium and	II:345	347	350
Palladium and	II:471		
Potassium and	II:365	369	
Rhenium and	III:278		
Rhodium and	I:342		
Ruthenium and	III:254		
Silicon, doped n-type and	III:162		
Silicon-Germanium alloys and	II:610		
Sodium and	II:355	359	
sum rules and	I:40		
superlattices and	II:119		
Tantalum and	II:408		
Titanium and	III:240		
Titanium Nitride and	II:309		
Tungsten and	I:358		
Vanadium and	II:478		
Vanadium Nitride and	II:309		
Zirconium Nitride and	III:352	356	
Drude theory			
electron scattering and	I:381		
index of refraction and	II:143		
lattice dielectric constants and	II:148		
quantum-density-matrix formulation and	II:132		
quantum result for k and	II:127		
values of n and k and	I:171		

<u>Index Terms</u>	<u>Links</u>		
Drude theory (Cont.)			
See also Individual critiques			
Drude values			
Cesium and	III:343		
Drude-Zener theory	III:159		
quantum extension of	I:169		
Dy. See Dysprosium			
Dyes			
attenuated-total-reflection experiments and	II:88		
Dynasil. See Fused silica			
Dysprosium (Dy)	III:287		
critique	III:298		
values of n and k for	III:310	327	
${f E}$			
Edge-defined, film-fed growth techniques (EFG)			
Aluminum Oxide	III:653	656	
EELS. See Electron-energy-loss spectroscopy			
Effective-mass model			
electron-hole interactions and	I:199		
Effective-medium theory			
bulk and thin-film effects and	I:104		
Sodium and	II:355		
for superlattices	II:98	110	118
Thorium Fluoride and	II:1050		
EFG. See Edge-defined, film-fed growth technique	ies		
Eigenmodes			
surface polaritons and	II:113		

<u>Index Terms</u>	<u>Links</u>	
Eigenstates		
one-electron model and	I:190	193
in perturbing electromagnetic fields	I:173	
quantum-density-matrix formulation and	II:129	
Eigenvalues		
multiphonon absorption and	II:190	
Elastic-restoring forces		
atomic motions and	I:218	
Elastic-solid theory	II:37	
Electrical conductivity		
Cobalt and	II:439	
described	I:12	
introduced	I:12	
Electrical fields		
impact on optical constants of	I:16	
Electrical measurements		
Zinc Phosphide and	III:610	
Electric-dipole approximation		
interband transitions and	I:191	
Electric-dipole exciations model,	I:16	
Electric-dipole matrix element		
superposition and	I:201	
Electric-dipole selection rule		
infrared absorption and	I:254	
optical phonons and	I:232	
Electric fields		
deformation of liquid crystal in	II:91	
distribution, and temperature	I:137	

<u>Index Terms</u>	<u>Links</u>	
Electric fields (Cont.)		
local-field effects and	I:203	
and reflected waves	II:42	
in single-layer films	I:138	147
Electric permittivity		
described	I:12	
Electric polarization		
Beta-Gallium Oxide and	III:754	
Electrolyte electroreflectance		
Zinc Selenide and	II:739	
Electrolyte immersion		
ellipsometry and	I:104	
Electromagnetic interactions		
quantum-mechanical treatment of	II:152	
Electromagnetic radiation		
interaction of, with matter	I:11	
lattice vibrations and	I:214	
optical-properties measurement and	I:18	
propagation through matter and	I:17	
source of, and lamelliform	I:18	
values of n and k and	II:166	
Electromagnetic theory		
optical-properties determination and	I:89	
Electromagnetic wave equation		
plane-wave solutions to	II:22	
Electromagnetic waves		
field vectors of	II:26	
one-electron model and	I:190	

<u>Index Terms</u>	Links
Electromagnetic waves (Cont.)	
parallel-sided slabs and	I:14
as polaritons	I:217
Polyethylene and	II:961
Electron analysis	
Thorium Fluoride and	II:1049
Electron-band structure	
Mercury Cadmium Telluride and	II:655
Silicon-Germanium alloys and	II:607
Electron density	
Drude theory and	I:174
f sum rules and	I:61
Electron-energy-loss spectroscopy (EELS)	
Aluminum Nitride and	III:375
Aluminum Oxide and	III:654
Copper Oxides and	II:877
Graphite and	II:450
Hafnium Nitride and	III:355
Magnesium Oxide and	II:925
metals and	III:234
optical-constants determination by	II:293
Potassium Bromide and	II:991
Vanadium and	II:477
Zirconium Nitride and	III:355
Electron-hole interactions	
critical-points metamorphosis and	I:202
interband absorption and	I:198

<u>Index Terms</u>	<u>Links</u>
Electronic absorption	
Thallium Bromide and	III:926
Thallium Chloride and	III:924
Thallous Halides and	III:930
Yttrium Aluminum Garnet and	III:963
Electronic band transitions	
in polar crystalline insulators	II:178
Electronic energy-band structure	
Gallium Selenide and	III:474
Electronic excitations	
Lithium Tantalate and	III:778
Electronic structure	
Aluminum Nitride and	III:373
Electronic transitions	
absorption in solids and	I:213
index of refraction and	II:180
optical-properties determination and	II:177
Yttrium Oxide and	II:1080
Zinc Germanium Phosphide and	III:638
Electronic well-well coupling	
superlattices and	II:102 105
Electron-impurity scattering	
Silicon, doped n-type and	III:168
Electron-phonon scattering	
Silicon, doped n-type and	III:167
Electron-plasma oscillation	
Thallium Bromide and	III:925
Thallium Chloride and	III:924

<u>Index Terms</u>	<u>Links</u>	
Electron-plasma resonance		
Thallium Bromide and	III:925	
Thallium Chloride and	III:924	
Electron relaxation frequencies		
rare-earth metals and	III:290	
Electron relaxation time		
Drude theory and	I:174	
Electrons		
local-field effects and	I:203	
oscillators for	I:17	
quantum-mechanical treatment of	II:152	
rare-earth metals and	III:289	
scattering mechanism and	II:128	138
Electrons and holes		
and circular polarization	II:36	
Electron scattering		
Drude theory and	I:381	II:126
superlattices and	II:101	
Electron transitions		
Cadmium Sulphide and	II:580	584
Cobalt and	II:439	
Graphite and	II:452	
Electro-optics		
Aluminum Gallium Arsenide and	II:513	
index of refraction and	II:148	
Lithium Tantalate and	III:777	
Mercury Cadmium Telluride and	II:666	

<u>Index Terms</u>	<u>Links</u>		
Electrostatic interactions			
dielectric polarization and	I:216		
Electrostatic regime			
superlattices and	II:114		
Ellipsometers			
discussed	I:93	II:213	
types of	I:93	99	102
Ellipsometric interferometry	I:124		
Ellipsometric measurements			
Aluminum and	I:377	395	
Copper and	I:280		
dispersion analysis and	I:59		
pseudodielectric function and	I:96		
Silicon and	III:519		
Silicon-Germanium alloys and	III:538		
Ellipsometric methods			
and index measurement	II:67	69	
Ellipsometry			
Aluminum Antimonide and	II:501	504	
Aluminum Arsenide and	II:489		
Aluminum Gallium Arsenide and	II:514		
Aluminum Nitride and	III:376		
versus attenuated total reflection	II:75		
benefits of, described	II:559		
Beryllium and	II:423		
Cadmium Selenide and	II:559	561	
Cadmium Sulphide and	II:583		
Carbon films and	II:839		

<u>Index Terms</u>	<u>Links</u>	
Ellipsometry (Cont.)		
Cerium and	III:292	
Cesium and	III:342	
Chromium and	II:375	
Cobalt and	II:438	440
Copper and	I:280	
described	I:18	
discussed	I:276	
Dysprosium and	III:299	
and electromagnetic wave propagation	II:51	
Erbium and	III:300	
Gadolinium and	III:294	296
Gallium Antimonide and	II:597	
Gallium Arsenide and	I:431	
Gallium Phosphide and	I:448	
Gallium Selenide and	III:473	
Germanium and	I:467	
Gold and	I:106	287
Graphite and	II:452	
Hafnium Nitride and	III:355	357
Indium Antimonide and	I:491	
Indium Arsenide and	I:479	
Indium Phosphide and	I:503	
Lead Fluoride and	III:765	
Liquid Mercury and	II:461	462
Lithium and	II:345	
Manganese and	III:249	
Mercury Cadmium Telluride and	II:655	657

<u>Index Terms</u>	<u>Links</u>		
Ellipsometry (Cont.)			
Mercury Telluride and	II:657		
metals and	III:234		
optical-properties determination and	I:89		
Potassium and	II:364		
reflectance and sum rules and	I:55		
Ruthenium and	III:254		
Silicon and	I:100	550	III:521
	531		
Silicon-Germanium alloys and	II:609		
Silicon Nitride (noncrystalline) and	I:772		
Sodium and	II:354		
Tantalum and	II:408		
temperature dependence and	I:381		
Terbium and	III:297		
Thorium Fluoride and	II:1050	1052	
Tin and	III:269		
Tin Telluride and	II:726		
Titanium Dioxide and	II:168		
Vanadium and	II:477		
Ytterbium and	III:303		
Yttrium Oxide and	II:1081		
Zirconium Nitride and	III:355	357	
Ellipsometry principle			
phase changes and	II:48		
Elliptical polarizer			
described	I:93		

146

<u>Index Terms</u>	<u>Links</u>	<u> </u>
Energy gaps (Cont.)		
Gallium Selenide and	III:477	
Gallium Telluride and	III:490	
Lead Tin Telluride and	II:638	
Zinc Selenide and	II:738	741
Zinc Telluride and	II:738	
Energy-loss measurements		
Aluminum and	I:378	
dispersion analysis and	I:60	
Graphite and	II:451	
Polyethylene and	II:958	
sum rules and	I:37	
Energy-loss spectra		
Thallium Bromide and	III:925	
Thallium Chloride and	III:923	
Thallium Iodide and	III:927	
Entrance surface films		
calorimetry and	I:147	
Envelope technique		
Lead Fluoride and	III:765	
Epitaxial films	I:5	
Aluminum Arsenide and	II:491	
Cubic Cadmium Sulphide and	II:586	
Cubic Silicon Carbide and	II:705	
Lead Tin Telluride and	II:637	
Mercury Cadmium Telluride and	II:655	
Tin Telluride and	II:725	

<u>Index Terms</u>	<u>Links</u>	
Epitaxial structures		
Silicon-Germanium alloys and	III:537	
Equilibrium density matrix		
in compound semiconductors	II:128	
in perturbing electromagnetic fields	I:172	
Equilibrium deviation		
in compound semiconductors	II:128	
Er. See Erbium		
Erbium (Er)	III:287	
critique	III:300	
values of n and k for	III:311	332
Error analysis		
Magnesium Fluoride and	II:902	
Sodium Fluoride and	II:1022	
See also Defect analysis		
Error determination		
Cadmium Selenide and	II:561	
Cubic Silicon Carbide and	II:706	
Graphite and	II:451	
Liquid Mercury and	II:462	
Mercury Cadmium Telluride and	II:657	661
values of n and k measurement and	II:206	
Zinc Selenide and	II:741	
Error locations		
f sum rules and	I:62	
Errors		
Beta-Gallium Oxide and	III:754	
Cesium Bromide and	III:719	

<u>Index Terms</u>	<u>Links</u>	
Errors (Cont.)		
Cesium Chloride and	III:731	
Iron Pyrite and	III:510	
Potassium Niobate and	III:822	823
Rubidium Bromide and	III:847	
See also Uncertainty		
Europium (Eu)	III:287	302
Eutectic compositions		
Thallous Halides and	III:928	
Evanescent waves		
decay of	II:75	
generation of	II:76	
SiO_x experiments with	II:92	
and surface-plasmon waves	II:79	
and waveguides	II:84	
Evaporated films		
Lead Fluoride and	III:763	
polarimetric studies of	I:374	
and prism experiments	II:81	
Sodium and	II:354	
Evaporated metal films		
optical-properties determination of	I:96	
sputtered Aluminum and	I:373	
Evaporated thin films		
Cadmium Sulphide and	II:580	
Evaporation methods		
Iron Pyrite and	III:511	

<u>Index Terms</u>	<u>Links</u>	
Evaporation-rate dependence		
Vanadium and	II:478	
Evaporation rates		
Lead Fluoride and	III:764	
Exchange coupling		
rare-earth elements and	III:288	
Exchange interactions		
sum rules and	I:50	
Excitation energy		
Cadmium Selenide and	II:560	
Excitation levels		
Cadmium Sulphide and	II:581	
Excitations		
Rubidium Iodide and	III:858	
Exciton absorption process		
Calcium Fluoride and	II:816	
Cesium Bromide and	III:719	
electron-hole interaction and	I:200	202
Gallium Antimonide and	II:598	
introduced	I:4	
one-electron model and	I:196	198
Exciton effect		
Potassium Chloride and	I:704	
Exciton energy		
Gallium Selenide and	III:477	
Exciton formation		
Thallium Bromide and	III:925	
Thallium Chloride and	III:924	

<u>Index Terms</u>	<u>Links</u>
Excitonic absorption	
Aluminum Oxide and	III:654
Exciton peaks	
Magnesium Fluoride and	II:900
Magnesium Oxide and	II:921
Yttrium Oxide and	II:1079
Exciton-phonon coupling model	I:203
Excitons	
Cadmium Selenide and	II:562
Cadmium Sulphide and	II:585
Liquid Mercury and	II:462
Magnesium Oxide and	II:921
semiconductor superlattices and	II:102
Silver Gallium Sulfide and	III:576
Sodium Fluoride and	II:1021
Zinc Selenide and	II:742
Zinc Telluride and	II:747
Exciton surface polaritons	
described	II:89
Exclusion principle	
n-type materials and	II:132
Exit surface films	
calorimetry and	I:147
Exponential absorption edges	I:203
Extinction coefficients	III:122
Aluminum Antimonide and	II:501
Aluminum Nitride and	III:376
Barium Titanate and	II:790

<u>Index Terms</u>	<u>Links</u>	
Extinction coefficients (Cont.)		
Beryllium Oxide and	II:805	
Calcium Carbonate and	III:704	
Calcium Fluoride and	II:817	820
Carbon films and	II:838	
Cesium Bromide and	III:717	
Cesium Chloride and	III:731	
Cesium Fluoride and	III:743	
Cubic Silicon Carbide and	II:706	
defined	II:152	
derivation of	II:154	
in dielectric response function	I:220	
of dielectrics, determination of	II:69	
Drude model and	I:170	
Gallium Antimonide and	II:590	
Gallium Selenide and	III:474	
Gallium Telluride and	III:490	
and index of refraction	II:127	
infrared reflectivity and	I:226	
introduced	I:7	
Lead Fluoride and	III:764	766
Lithium Tantalate and	III:777	
measurement of	I:81	
for metallic Aluminum	I:388	
Nickel and	I:313	
photothermal deflection of	III:99	
Polyethylene and	II:961	
Potassium Iodide and	III:810	

<u>Index Terms</u>	<u>Links</u>		
Extinction coefficients (Cont.)			
Rubidium Bromide and	III:845	847	
Rubidium Iodide and	III:857		
Selenium and	II:691		
Silicon, doped n-type and	III:156		
Silicon and	III:520	525	528
	533		
Silicon-Germanium alloys and	II:608	611	
Silver Chloride and	III:554		
Silver Gallium Selenide and	III:575		
Silver Gallium Sulfide and	III:576		
Sodium Fluoride and	II:1023		
sum rules and	I:44		
of thin film layers	II:57		
Thorium Fluoride and	II:1050		
Water and	II:1060		
wedged-film laser calorimetry and	I:140		
Yttrium Oxide and	II:1081		
Zinc Arsenide and	III:595		
Zinc Phosphide and	III:609		
Zinc Selenide and	II:737		
Zinc Telluride and	II:737		
See also Individual critiques			
Extinction values			
Silicon-Germanium alloys and	III:538		
Extreme ultraviolet region (XUV)			
Magnesium Fluoride and	II:900		
optical-constants determination and	II:203		

<u>Index Terms</u>	<u>Links</u>		
Extreme ultraviolet region (XUV) (Cont.)			
Yttrium Oxide and	II:1079		
Extrinsic absorption			
Yttrium Aluminum Garnet and	III:964		
Extrinsic scattering			
in polar crystalline insulators	II:178		
versus Rayleigh scattering	II:178		
F			
Fabrication techniques			
wavelength measurement and	I:155		
Fabry-Perot cavities			
wavelength measurement and	I:161	162	166
Fabry-Perot interferences			
of Gallium Arsenide	II:118		
Fabry-Perot interferometers			
Brillouin scattering and	III:123	128	130
Fano line shapes			
described	I:201		
Faraday's law of induction			
electromagnetic-wave propagation and	I:11		
optical-properties measurement and	I:11		
Far-infrared region (FIR)			
Beryllium and	II:422	424	
Bismuth Germanium Oxide and	III:406		
Bismuth Silicon Oxide and	III:406		
Cesium Chloride and	III:731		
Cesium Fluoride and	III:743		

<u>Index Terms</u>	<u>Links</u>		
Far-infrared region (FIR) (Cont.)			
Cesium Iodide and	II:853		
dispersive Fourier-transform spectro	oscopy and III:13		
Gallium Telluride and	III:491		
Iron Pyrite and	III:507		
Lead Tin Telluride and	II:638		
Mercury Cadmium Telluride and	II:663		
Orthorhombic Sulfur and	III:901	904	
Polyethylene and	II:960	966	
Potassium Bromide and	II:989		
Potassium Iodide and	III:808		
Silicon-Germanium alloys and	III:537		
Silver Chloride and	III:554		
Silver Iodide and	III:556		
Sodium Nitrate and	III:873		
Strontium Titanate and	II:1035		
Tellurium and	II:710		
Thallium Iodide and	III:927		
Thallous Halides and	III:930		
Thorium Fluoride and	II:1053		
Zinc Phosphide and	III:609		
Far-ultraviolet region (FUV)			
Orthorhombic Sulfur and	III:903		
Fe. See Iron			
FE axis. See Ferroelectric properties			
FECO method			
optical measurement and	I:118	126	131

<u>Index Terms</u>	<u>Links</u>		
Fermi-Dirac distribution function			
interband absorption and	I:191	196	198
Fermi-energy measurement			
conduction-band edge and	II:133		
discussed	I:278		
Drude theory and	I:171		
Fermi integrals			
Silicon, doped n-type and	III:167		
Fermi level			
Cesium and	III:343		
Cobalt and	II:436		
conduction-band edge and	II:127		
extinction coefficients and	II:157		
Gadolinium and	III:295		
Hafnium Nitride and	III:352		
rare-earth elements and	III:287	290	
in refractory compounds	II:303		
Zirconium Nitride and	III:352		
Fermi surface			
for Copper	I:205		
Kane theory and	I:176		
Fermi velocity			
superlattices and	II:120		
Fermion commutator			
absorption rules and	I:38		
Ferroelectric properties			
discussed	II:1035		
Lithium Tantalate and	III:777		

<u>Index Terms</u>	<u>Links</u>
Ferroelectric properties (Cont.)	
Potassium Niobate and	III:821
Ferromagnetism	
Dysprosium and	III:299
Gadolinium and	III:295
rare-earth elements and	III:288
FeS ₂ . See Iron Pyrite	
FSi ₂ . See Iron Disilicide	
Field-independent scalar quantities	
optical constants and	I:12
Film deposition	
Lead Fluoride and	III:765
Film morphology	
optical-properties measurement and	I:375
Film on substrate	
Carbon films and	II:839
Lithium and	II:346
reflectance experiment on	I:23
samples	I:5
small absorption constants determination of	I:4
Film thickness	
interferometers and	I:119
Palladium and	II:469
for Silver films deposited on a prism	II:84
of surface films	I:148
Vanadium and	II:478
See also Thickness considerations	

<u>Index Terms</u>	<u>Links</u>		
Finesse			
Brillouin scattering and	III:129		
reflective	III:122		
Finite-energy dispersion relations			
sum rules and	I:54		
Finite-energy rules			
f sum rules and	I:61		
Finite-energy sum rules	I:45		
FIR. See Far-infrared region			
Fizeau method			
optical measurement and	I:117	126	131
Sodium Fluoride and	II:1022		
Flame-fusion technique			
Aluminum Oxide	III:653		
Magnesium Aluminum Spinel and	II:884		
Yttrium Oxide and	II:1079		
See also Verneuil method			
Flame photometry			
Silver Iodide and	III:555		
Floating-zone technique			
Gallium Phosphide and	I:445		
Fluorescence			
Magnesium Fluoride and	II:901		
Fluorides			
index of refraction and	II:180		
Fuorite structures			
selection rules for	I:234		

<u>Index Terms</u>	<u>Links</u>
Flux-growth technique	
Barium Titanate and	II:789
Potassium Niobate and	III:821
Fool's gold. See Iron Pyrite	
Forbidden energy band gap	
Calcium Fluoride and	II:816
Forbidden-frequency bands. See Stopgaps	
Forbidden transitions	
Iron Pyrite and	III:508
Formulas	
for absorbing layers	I:25
for Fresnel coefficients	I:24
for layered slabs	I:25
for nonabsorbing layers with symmetry	I:26
Formvar (polyvinyl formal resin)	
Silver Chloride and	III:554
Fourier components	
of electron distribution functions	I:173
in free-carrier absorption experiment	I:173
in metallic Aluminum	I:371
Fourier integrals	
dispersion analysis and	I:56
Fourier series	
dispersion analysis and	I:56
Fourier spectrophotometry	
Silver Iodide and	III:556
Fourier spectrum	
ellipsometry and	I:94

<u>Index Terms</u>	<u>Links</u>	
Fourier-transform infrared		
spectrophotometer		
Magnesium Oxide and	II:938	
Fourier-transform interferometry		
Barium Titanate and	II:792	
Zinc Phosphide and	III:609	
Fourier-transform spectroscopy (FTS)		
Bismuth Germanium Oxide and	III:407	
Bismuth Silicon Oxide and	III:407	
Cadmium Telluride and	I:411	
Cesium Bromide and	III:717	
Cesium Iodide and	II:854	
dispersive measurements and	I:157	167
Gallium Telluride and	III:491	
Germanium and	I:467	
index-of-refraction measurements and	I:156	
Indium Arsenide and	I:480	
Indium Phosphide and	I:506	
Iron Pyrite and	III:508	
Lead Selenide and	I:517	
Lithium Tantalate and	III:779	
nondispersive measurements and	I:157	167
Polyethylene and	II:961	
Potassium Bromide and	II:990	
Potassium Chloride and	I:703	
Potassium Iodide and	III:809	
Rubidium Bromide and	III:847	
Rubidium Iodide and	III:860	

<u>Index Terms</u>	<u>Links</u>	
Fourier-transform spectroscopy (FTS) (Cont.)	
Silicon, doped n-type and	III:169	
Silicon and	I:550	
Sodium Fluoride and	II:1022	
Strontium Titanate and	II:1036	
sum rules and	I:41	
See also Dispersive Fourier-transform		
spectroscopy		
Frank-Oseen theory		
attenuated-total-reflection curves and	II:92	
Free-carrier absorption		
Aluminum Antimonide and	II:501	
Aluminum Oxynitride and	II:779	
below fundamental band gap	I:4	
Calcium Fluoride and	II:819	
Gallium Antimonide and	II:598	
Graphite and	II:452	
Iron Pyrite and	III:509	510
Mercury Cadmium Telluride and	II:663	
in narrow-gap semiconductors	I:263	
quantum theory of	I:172	
of radiation	II:126	
in semiconducting compounds	I:171	
Strontium Titanate and	II:1035	
sum rules and	I:40	
Tellurium and	II:709	
two-phonon process and	I:239	
in wide-gap semiconductors	I:45	

<u>Index Terms</u>	<u>Links</u>
Free-carrier absorption (Cont.)	
Zinc Germanium Phosphide and	III:640
See also Individual critiques	
Free-carrier concentrations	
in samples	I: 179
Selenium and	II:691
of semiconductors	III:32
Tellurium and	II:710
Free-carrier contributions	
quantum absorption and	III:159
values of n and k for	I:4
Free-carrier density	
Gallium Arsenide and	I:184
Indium Arsenide and	I:186
Indium Phosphide and	I:181
in polar semiconductors	I:169
Free-carrier effects	
Gallium Antimonide and	II:600
Yttrium Oxide and	II:1082
Free-carrier impurities	
Cadmium Sulphide and	II:581
Free-carrier plasma edge	
Aluminum Gallium Arsenide and	II:515
Free-carrier response	
superlattices and	II:118
Free carriers	
classical-oscillator case for electron and	I:17
near-millimeter index-of-refraction	

<u>Index Terms</u>	Links
Free carriers (Cont.)	
measurement and	I:165
optical-properties determination and	II:177
optical-properties measurement and	I:17
quantum-density-matrix formulation and	II:148
semiconductor crystals and	III:33
Free-electron absorption	
rare-earth metals and	III:289
Free-electron gas	
interband absorption and	I:190
Free electrons	
Cesium and	III:341
Hafnium Nitride and	III:352
optical-constants calculation and	II:153
rare-earth metals and	III:289
Ytterbium and	III:303
Zirconium Nitride and	III:352
Free-electron theory	
Cobalt and	II:439
Free-space impedance	
optical-properties measurement and	I:13
Free-space permeability	
described	I:12
Free-space permittivity	
described	I:12
optical-properties measurement and	I:13

<u>Index Terms</u>	<u>Links</u>	
Free-space resonant cavities		
near-millimeter wavelength		
measurement and	I:161	
Free-space wavelengths		
optical-properties measurement and	I:13	
Free-space wave velocity		
optical-properties measurement and	I:13	
Frenkel exciton model		
electron-hole interactions and	I:199	
Frequency considerations		
Drude theory and	I:175	
temperature dependence and	I:248	
Frequency dependence		
absorption coefficients and	II:187	
Cesium Iodide and	II:854	
index of refraction and	II:179	182
Lead Fluoride and	III:762	
wire-grating beam splitters and	I:163	
Frequency-dependent conductivity		
optical-properties measurement and	I:13	
Frequency-dependent damping constants		
Sodium Nitrate and	III:872	
Frequency-dependent electron scattering rate		
Drude theory and	I:185	
Frequency-dependent relaxation rate		
Boltzmann equation and	II:127	
free-carrier absorption and	I:173	

<u>Index Terms</u>	Links		
Frequency-distribution function			
crystalline samples and	I:215		
Frequency ranges			
Fourier transform spectroscopy and	I:156	167	
Fresnel amplitude reflection coefficients			
discussed	II:37		
Fresnel coefficients	I:18	II:39	
in attenuated-total-reflection structures	II:82		
basic formulas for	I:24		
optical-properties measurement and	I:18	379	
parallel-sided slabs and	I:16		
and prism evaporation	II:81		
reflectivity and	I:12		
transmittivity and	I:12		
in waveguides	II:86		
Fresnel convention			
and phase changes	II:48		
Fresnel equations			
discussed	I:278		
dispersion analysis and	I:59		
dispersion relations and	I:56		
Graphite and	II:450		
Magnesium Oxide and	II:921	931	935
Palladium and	II:470		
Polyethylene and	II:961		
radiation reflection and	I:219		
Sodium and	II:356		
Vanadium and	II:477		

Index Terms	<u>Links</u>		
Fresnel equations (Cont.)			
Water and	II:1061		
Fresnel reflection			
complex index of refraction and	I:70		
Germanium and	I:467		
sign conventions used in	II:22		
Fresnel relations			
metals and	III:234		
reflectance experiment and	I:23		
Fresnel terms			
in matrix multiplication of layers model	I:16		
Fringe patterns			
Fizeau method and	I:118		
Frustrated total reflectance			
absorption and	I:30		
formulas for	I:30		
<i>f</i> -sum rule	I:36	44	46
and dielectric function	I:381		
for dipole matrix elements	I:51		
loss-function determination and	II:300		
tests for	I:61		
See also Sum rules			
FTS. See Fourier-transform spectroscopy			
Fundamental absorption band			
Calcium Fluoride and	II:816		
Fundamental absorption edge			
Cadmium Selenide and	II:561		
Calcium Fluoride and	II:816		

<u>Index Terms</u>	<u>Links</u>	
Fundamental absorption edge (Cont.)		
electronic transitions and	I:214	
Gallium Selenide and	III:474	
Gallium Telluride and	III:489	
Lead Fluoride and	III:762	
optical-constants calculation and	II:163	
quantum effects near	II:127	
Thallous Halides and	III:928	
Zinc Arsenide and	III:595	
Zinc Phosphide and	III:610	
Fundamental band gaps		
absorption processes of	I:4	172
Aluminum Gallium Arsenide and	II:514	
interband absorption and	I:197	
Iron Pyrite and	III:508	
Mercury Cadmium Telluride and	II:663	
Potassium Bromide and	II:991	
Selenium and	II:692	
Silver Gallium Selenide and	III:574	
Silver Gallium Sulfide and	III:574	576
Sodium Nitrate and	III:872	
Thallium Bromide and	III:925	
Tin Telluride and	II:725	
See also Individual critiques		
Fundamental electronic absorption		
Thallium Bromide and	III:924	
Thallium Chloride and	III:923	

<u>Index Terms</u>	<u>Links</u>
Fundamental electronic transitions	
Zinc Germanium Phosphide and	III:638
Fundamental energy gap	
Zinc Telluride and	II:744
Fundamental lattice vibrations	
Aluminum Oxide and	III:656
Aluminum Oxynitride and	II:778
Barium Fluoride and	III:685
Gallium Selenide and	III:475
Magnesium Fluoride and	II:901
Potassium Iodide and	III:809
Yttrium Aluminum Garnet and	III:964
Yttrium Oxide and	II:1081
See also One-phonon region	
Fused quartz	
interferometry and	I:131
Fused-quartz heat method	
Iron Pyrite and	III:511
Fused silica	
Brillouin scattering and	III:142
correction term determination of	I:101
Dynasil	II:58
index of refraction for	I:159
interdiffusion probability and	I:86
photothermal deflection and	III:107
Rubidium Iodide and	III:858
sample preparation and	II:1053

<u>Index Terms</u>	<u>Links</u>		
Fusion-casting method			
Magnesium Aluminum Spinel and	II:884		
G			
Ga. See Gallium			
GaAlAs. See Gallium Aluminum			
Arsenide			
GaAs. See Gallium Arsenide			
	III:287		
Gadolinium (Gd)			
critique	III:294	210	
values of n and k for	III:308	318	
Gaertner L117 ellipsometer	*** = <=		
Lead Fluoride and	III:765		
Gaertner spectrometer			
Calcium Fluoride and	II:818		
Gallium Aluminum Arsenide (GaAlAs)			
absorption spectrum of	II:103	105	108
band structure of	II:102		
spectroscopic measurements of	III:84	85	
superlattices and	II:97	101	105
	108		
Gallium Antimonide (GaSb)			
critique	II:597	III:44	
optical-constants calculation of	II:169		
optical parameters for	II:320		
optical-properties determination of	I:101		
values of n and k for	II:602	603	III: 45
	46		

<u>Index Terms</u>	<u>Links</u>		
Gallium Arsenide (GaAs)			
critique	I:429	III:40	
absorption coefficient and	I:249		
absorption spectrum of	II:103	105	108
band structure of	II:102		
critical-point phonons and	I:239	240	
dispersion analysis of	I:60	430	
ellipsometric measurement of	I:101		
free-carrier absorption and	I:171		
free-carrier concentrations and	I: 182	183	
index of refraction and	II:148		
infrared absorption spectrum of	I:238		
infrared reflection spectrum of	I:266		
multiphonon absorption in	I:6		
optical-constants calculations of	I: 177	II:169	
optical constants of	I: 184		
optical parameters for	II:320		
oxide effect on	I:98		
photothermal deflection and	III:109		
quantum effects in	II:127		
reflectance measurements on	I:109		
reflectivity curves of	I:185		
reststrahlen region and	I:187		
in samples	II:489		
selection rules for	I:233		
spectroscopic measurements of	III:74		
superlattices and	II:97	101	105
three-phonon processes in	I: 242		

<u>Index Terms</u>	<u>Links</u>		
Gallium Arsenide (GaAs) (Cont.)			
transparency frequency of	I:231		
two-phonon processes in	I: 241		
values of n and k for	I:4	176	184
	433	434	III: 42
	44		
wavevector dependence and	I:267		
Gallium (Ga)			
interband absorption and	I:204		
Gallium Oxide, beta. See Beta-Gallium			
Oxide			
Gallium Phosphide (GaP)			
critique	I:445	III:38	
dielectric parameters for	I:450		
optical-constants calculation of	II:169		
optical parameters for	II: 320		
photothermal deflection and	III:110		
spectroscopic measurements of	III:75		
transparency frequency of	I:231		
values of n and k for	I:450	451	III:39
	41		
Gallium Selenide (GaSe)			
critique	III:473		
index of refraction and	III:487		
optical parameters for	III: 201	205	
parameters used for	III: 487		
spectroscopic measurements of	III:79	80	
values of n and k for	III:479	481	

<u>Index Terms</u>	<u>Links</u>	
Gallium Telluride (GaTe)		
critique	III:489	
optical parameters for	III: 220	
values of n and k for	III:493	497
β -Ga ₂ O ₃ . See Beta-Gallium Oxide		
GaP. See Gallium Phosphide		
GaSb. See Gallium Antimonide		
Gas-cell-microphone photoacoustics	III:60	
GaSe. See Gallium Selenide		
Gas-transport method		
Zinc Arsenide and	III:596	
GaTe. See Gallium Telluride		
Gaussian form		
multiphonon absorption and	II:190	198
Gaussian function		
Brillouin scattering and	III:131	
Gaussian units		
electron-hole interaction and	I:202	
one-electron model and	I:190	192
optical-properties measurement and	I:13	
Gd. See Gadolinium		
GDA. See Generalized Drude approximation		
Ge. See Germanium		
Generalized Drude approximation (GDA)		
described	III:161	
See also Drude theory		

<u>Index Terms</u>	<u>Links</u>	
GeO ₂ . See Germanium Dioxide		
Germanium, amorphous hydrogenated (a-GE:H)		
photothermal deflection and	III:110	
Germanium Dioxide (GeO ₂)		
reststrahlen spectrum of	I:223	
Germanium (Ge)		
critique	I:465	
atomic motions determination of	I:218	
Brillouin scattering and	III:133	
chemical etching of	I:104	
dispersion analysis of	I:466	468
infrared absorption and	I:254	260
multiphonon interactions and	I:236	
one-electron calculation and	I:207	
optical-constants calculation of	II:169	
optical parameters for	II:320	
selection rules for	I:234	
transparency frequency of	I:231	
values of n and k for	I:470	471
Germanium Diselenide (GeSe ₂)		
spectroscopic measurements of	III:94	
Germanium Selenide (GeSe)		
photothermal deflection and	III:110	
Germanium-Silicon (Ge-Si) alloy		
optical parameters for	II:323	
Germanium Sulphide (GeS)		
phonons and	I:203	

<u>Index Terms</u>	<u>Links</u>		
GeS. See Germanium Sulphide			
GeSe ₂ . See Gallium Diselenide			
Glass			
absorption coefficients and	I:251		
effective-medium theory and	I:105		
interdiffusion probability and	I:86		
reflectance and	II:204		
See also Silicon Dioxide			
Glass prisms			
Liquid Mercury and	II:463		
Glow-discharge decomposition			
optical-constants calculation and	II:168		
Glow-discharge lamps			
Zinc Arsenide and	III:595		
Golay cell detector			
interferometry and	I:164		
Gold (Au)			
critique	I:286		
effective-medium theory and	I:106	107	
layer thickness, attenuated total reflection and	II:88		
optical parameters for	II:318		
permittivity of	II:81		
values of n and k for	I:289	290	III:7
Gold (Au) film			
Cadmium Arachidate on	II:88		
and liquid crystals	II:90		
photothermal deflection and	III:111		

<u>Index Terms</u>	<u>Links</u>		
Gradation			
forms of	II:66		
Gradient-furnace technique			
Magnesium Aluminum spinel and	II:884		
Grain boundaries			
effective-medium theory and	I:105		
film morphology and	I:376		
Graphite (C)			
critique	II:449		
Boron Nitride and	III:425		
optical parameters for	II:321	326	III:201
values of n and k for	II:454	455	
Graphs and tables			
introduced	I:6		
Grating interferometers			
Silver Iodide and	III:556		
Grating spectrometers			
Aluminum Oxide and	II:762		
Bismuth Germanium Oxide and	III:404	406	
Bismuth Silicon Oxide and	III:404	406	
Potassium Bromide and	II:991		
Grating-spectrometer techniques			
beam splitters and	I:157	158	159
	163		
Cadmium Telluride and	I:412		
versus Fourier transform spectroscopy	I:156		
Potassium Bromide and	II:989		

<u>Index Terms</u>	<u>Links</u>
Green's-function technique	
dynamical behavior of impurities and	I:257
Group theory	
Barium Fluoride and	III:686
Bismuth Germanium Oxide and	III:406
Bismuth Silicon Oxide and	III:406
dipole matrix elements and	I:193
infrared spectra of crystal and	I:233
Magnesium Fluoride and	II:901
Potassium Iodide and	III:809
Yttrium Oxide and	II:1081
Growth parameters	
Calcium Fluoride and	II:815
Guided-modes technique	
introduced	II:76
Lead Fluoride and	III:765
Guided-wave techniques	
for transparent layers	II:69
Gyratron sources	
optical-constants determination of	I:4
Н	
H. See Hydrogen	
de Haas-van Alphen measurements	I:371
Hafnium Dioxide (HfO ₂)	
protective coatings of	I:375

<u>Index Terms</u>	<u>Links</u>	
Hafnium Nitride (HfN)		
critique	III:351	
values of n and k for	III:361	367
Hagen-Rubens law		
Lead Selenide and	I:517	
Halides		
absorption and	III:719	
Rubidium Bromide and	III:845	
Rubidium Iodide and	III:857	
Thallium(I)	III:923	
Hamamatsu photomultiplier		
Zinc Arsenide and	III:596	
Zinc Phosphide and	III:610	
Hamiltonians	I:51	172
in compound semiconductors	II:128	
electron-hole interactions and	I:199	
in Kubo formula	III:161	
one-electron model and	I:190	193
in perturbing electromagnetic fields	I:172	
polar scattering and	I:174	
Harmonic approximations		
electric-dipole selection rules and	I:232	
reststrahlen band in	I:219	
Harmonic-oscillator models		
dispersion analysis and	I:58	
optical-property measurement and	II:152	164
Zinc Germanium Phosphide and	III:639	

<u>Index Terms</u>	<u>Links</u>	
Harmonics		
Cadmium Germanium Arsenide and	III:445	447
Copper Gallium Sulfide and	III:459	
Zinc Germanium Phosphide and	III:638	
Hartree-Fock-Slater (HFS) model		
f sum rules and	I:63	
HDPE (High-density Polyethylene). See		
Polyethylene		
Heat-exchanger method (HEM)		
Aluminum Oxide	III:653	656
Heat treatment		
Lead Fluoride and	III:762	
Helium-Neon (HeNe) laser		
ellipsometric measurement and	I:93	
Helix		
rotation of	II:35	
temporal behavior of	II:33	
HEM. See Heat-exchanger method		
Henke UV and X-ray optical constants		
access via computer and	III:8	
for Aluminum Arsenide	II:489	
for Aluminum Gallium Arsenide	II:514	
for Antimony	III:275	
for Beryllium	II:422	425
for Cadmium Germanium Arsenide	III:446	
for Cadmium Sulphide	II:579	
for Cerium	III:292	
for Cesium	III:343	

<u>Index Terms</u>	<u>Links</u>	
Henke UV and X-ray optical constants (Co.	nt.)	
for Cesium Bromide	III:717	
for Cesium Chloride	III:731	733
for Cesium Iodide	II:853	857
for Chromium	II:375	
for Cobalt	II:438	
for Copper Gallium Sulfide	III:460	
for Dysprosium	III:298	300
for Erbium	III:300	301
for Cesium Fluoride	III:744	
for Gadolinium	III:294	296
for Hafnium Nitride	III:356	357
for Indium	III:262	
for Iridium	I:296	
for Iron	II:386	
for Lithium Fluoride	I:675	
for Manganese	III:249	
for Molybdenum	I:303	
for Nickel	I:313	
for Niobium	II:397	
for Orthorhombic Sulfur	III:903	
for Osmium	I:324	
for Platinum	I:335	
for rare-earth metals	III:290	
for Rhenium	III:278	
for Rhodium	I:342	
for Ruthenium	III:254	
for Samarium	III:293	

Index Terms	<u>Links</u>
Henke UV and X-ray optical constants (Cont.)	
for Selenium	II:692
for Silicon	I:552
for Silicon-Germanium alloys	III:537
for Silver	I:350
for Terbium	III:297
for Thulium	III:301
for Titanium	III:241
for Tungsten	I:357
for Ytterbium	III:302
for Zinc Germanium Phosphide	III:638
for Zinc Selenide	II:738
for Zinc Sulfide	I:552
for Zinc Telluride	II:743
for Zirconium Nitride	III:356
Herzberger-type equations	
Aluminum Antimonide and	II:504
Beryllium Oxide and	II:806
Bismuth Germanium Oxide and	III:406
Cadmium Telluride and	I:412
Cubic Carbon and	I:666
Gallium Antimonide and	II:590
Potassium Dihydrogen Phosphate and	II:1006
Silicon and	I:548
Heterogeneous systems	
optical properties measurement of	I:105

Index Terms	<u>Links</u>	
Heterostructure		
Aluminum Arsenide and	II:491	
Gallium Arsenide and	II:491	
Hexagonal Cadmium Sulphide (CdS)	II:579	
values of n and k for	II: 591	
Hexagonal Lithium (Li)	II:345	
Hexagonal materials		
Aluminum Oxide and	III:653	
Beryllium and	II:421	
Boron Nitride and	III:425	428
Cadmium Selenide and	II:559	
Cadmium Sulphide and	II:579	
Cobalt and	II:435	
Gadolinium and	III:295	
Gallium Telluride and	III:489	
Iridium	I:296	
Magnesium and	III:235	
rare-earth elements and	III:287	
Rhenium and	III:278	
Silver Iodide and	III:555	
Yttrium Oxide and	II:1079	
Hexagonal Zinc Sulfide (ZnS)		
critique	I:600	
optical parameters for	II:321	
values of n and k for	I:605	617
See also Cubic Zinc Sulfide; Zinc Sulfide		

<u>Index Terms</u>	<u>Links</u>	
HfN. See Hafnium Nitride		
HfO ₂ . See Hafnium Dioxide		
Hg. See Liquid Mercury; Mercury		
HgTe. See Mercury Telluride		
Hg _{1-x} Cd _x Te. See Mercury Cadmium Telluride		
High vacuum		
evaporated films in	I:373	379
Hilbert transformation		
explained	II:152	
index of refraction and	II:160	
Potassium Iodide and	III:807	
sum rules and	I:43	
Hilger UV grating monochromator		
Bismuth Germanium Oxide and	III:404	
Hilger-Watts E580		
Silver Chloride and	III:554	
HIP treatment. See Hot isostatic pressing method	d	
H ₂ O. See Water		
Homogeneity		
Boron Nitride and	III:425	
and index determination	II:65	
interferometry and	I:116	
See also Inhomogeneity		
Homopolar crystals		
atomic-motions determination of	I:218	
defects and	I:254	
multiphonon absorption and	I:232	
one-phonon absorption in	I:236	

<u>Index Terms</u>	<u>Links</u>
Hot-forge process	
Calcium Fluoride and	II:823
Hot isostatic pressing method (HIP)	
Calcium Fluoride and	II:823
Hot-pressed technique	
Cadmium Telluride and	I:412
Magnesium Aluminum Spinel and	II:884
Zinc Sulfide and	I:601
Hot-wall technique	
substrates and	I:535
Humphreys-Owen reflectance methods	I:71 75
Hydrogen-cyanide laser measurements	
Polyethylene and	II:964
Hydrogen (H)	
unbound continuum states of	I:199
water-vapor reduction and	I:375
Hyperbolic excitons	
defined	I:201
I	
IAD. See Ion-assisted deposition	
Iceland spar. See Calcium Carbonate	
Image displacement method	
Barium Titanate and	II:790
Immersion method	
Cesium Fluoride and	III:743

<u>Index Terms</u>	<u>Links</u>	
Impurities		
Aluminum Nitride and	III:373	
Iron Pyrite and	III:511	
Potassium Iodide and	III:809	
Silver Iodide and	III:555	
spectral-behavior results and	I:17	
Strontium Fluoride and	III:886	
Zinc Germanium Phosphide and	III:637	
Zircon and	III:988	
See also Defects and disorders		
Impurity absorption		
below fundamental band gap	I:4	
incident radiation intensity and	II:178	
spectral region and	II:178	
temperature considerations and	II:178	
Impurity atoms		
lattice potential energy function and	I:255	
Impurity dominated plateau		
polar crystals and	I:214	
Impurity molecules		
Potassium Bromide and	II:990	
Impurity scattering		
Drude theory and	I:175	177
In. See Indium		
In As. See Indium Arsenide		
Incidence		
reflectance and sum rules and	I:55	

<u>Index Terms</u>	<u>Links</u>	<u>i</u>	
Incidence of light			
Rubidium Iodide and	III:858		
Incident beam polarization			
Orthorhombic Sulfur and	III:902		
Incident dielectric functions			
Fresnel coefficients and	I:24		
Incident photon intensity			
extinction coefficient and	II:154		
Incident radiant flux			
Orthorhombic Sulfur and	III:900		
Incident radiation			
polarization state and	I:80		
Incident waves			
rare-earth metals and	III:289		
Incipient ferroelectric property			
discussed	II:1035		
Index determination			
of Titanium Oxide (TiO ₂)	II:65		
Index of extinction			
temperature dependence and	II:179		
Index of reflection			
Orthorhombic Sulfur and	III:902		
Index of refraction	III:122		
Aluminum and	I:378	388	395
	II:209		
Aluminum Antimonide and	II:501	502	
Aluminum Gallium Arsenide and	II:138	143	144
Aluminum Nitride and	III:373	376	

<u>Index Terms</u>	<u>Links</u>	
Index of refraction (Cont.)		
Aluminum Oxide and	II:761	III:654
Aluminum Oxynitride and	II:778	
Ammonium Dihydrogen Phosphate and	II:1006	
Barium Fluoride and	III:684	
Barium Titanate and	II:791	
Beryllium Oxide and	II:805	
Beta-Gallium Oxide and	III:753	
Bismuth Germanium Oxide and	III:403	
Bismuth Silicon Oxide and	III:403	
Cadmium Germanium Arsenide and	III:447	
Cadmium Selenide and	II:560	
Cadmium Sulphide and	II:585	
Calcium Carbonate and	III:702	704
Calcium Fluoride and	II:817	823
Carbon films and	II:838	
Cesium Bromide and	III:717	
Cesium Chloride and	III:731	
Cesium Fluoride and	III:743	
Cesium Iodide and	II:855	
compound semiconductors and	II:125	
Copper Gallium Sulfide and	III:461	
Copper Oxides and	II:877	
crystal quartz and	I:165	
Cubic Silicon Carbide	II: 707	
Cubic Silicon Carbide and	II:705	
defect absorption and	I:48	
defined	II:151	

<u>Index Terms</u>	<u>Links</u>		
Index of refraction (Cont.)			
derivation of	II:160		
Diamond and	I:382		
in dielectric response function	I:220		
DNA (deoxyribonucleic acid) and	III:143		
fused silica and	III:142		
Gallium Antimonide and	II:590	598	600
Gallium Arsenide and	II:138	141	
Gallium Selenide and	III:473	487	
Gallium Telluride and	III:490		
Hafnium Nitride and	III:353		
and index of the dielectric	II:80		
Indium and	III:262		
Indium Gallium Arsenic Phosphide and	II:138	139	140
	142	143	
Indium Phosphide and	II:138	139	140
infrared reflectivity and	I:226		
interferometers and	I:119		
interferometry and	I:114		
Iron Pyrite and	III:508		
Kramers-Krönig analysis and	II:153	300	
Lead Fluoride and	III:761	764	
Lithium Tantalate and	III:777		
Magnesium Aluminum Spinel and	II:884	889	
Magnesium Fluoride and	II:899		
Magnesium Oxide and	II:925	929	930
	933		
Manganese and	III:249		

<u>Index Terms</u>	<u>Links</u>		
Index of refraction (Cont.)			
measurement of	I:155	III:125	140
measurement of, introduced	I:5		
Mercury Cadmium Telluride	II:138	146	
Mercury Cadmium Telluride and	II:656	660	
metals and	III:233		
Nickel and	I:313		
one-electron model and	I:192		
optical-property measurement and	II:151		
Orthorhombic Sulfur and	III:900	902	
overlayers and	I:99	102	
versus photon energy	II:144		
versus photon energy in GaAs samples	I:183		
Polyethylene and	II:957	961	963
	965	968	
Potassium Dihydrogen Phosphate and	II:1006		
Potassium Iodide and	III:808	810	
Potassium Niobate and	III:821	823	830
refractory compounds and	II:303		
Rhenium and	III:278		
Rhodium films and	II:60		
Rubidium Bromide and	III:845	848	
Rubidium Iodide and	III:857		
Scandium Oxide films and	II:60		
Sellmeier dispersion equations explained	II:152		
sensitivity and accuracy of	II:64		
Silicon, doped n-type and	III:156		
Silicon and	I:99	547	569

<u>Index Terms</u>	<u>Links</u>		
Index of refraction (Cont.)			
	III:519	522	528
	531		
Silicon-Germanium alloys and	II:608	610	III:538
Silver Bromide and	III:555		
Silver Chloride and	III:553		
Silver Gallium Selenide and	III:574		
Silver Gallium Sulfide and	III:577		
Silver Iodide and	III:555		
Sodium Fluoride and	II:1022		
Sodium Nitrate and	III:872		
Strontium Fluoride and	III:884	886	
Strontium Titanate and	II:1035		
sum rules and	I:36	44	
superlattice absorption and	II:106		
Tellurium and	II:709	711	
Thallium Bromide and	III:926		
Thallium Chloride and	III:924		
Thallium Iodide and	III:927		
Thallous Halides and	III:929	930	
of thin dielectric film	II:84		
of thin film layers	II:57		
of thin layers, discussed	II:58	71	
Thorium Fluoride and	II:1049		
Tin and	III:269		
Tin Telluride and	II:726		
Water and	II:1059		
Yttrium Aluminum Garnet and	III:964		

<u>Index Terms</u>	<u>Links</u>	
Index of refraction (Cont.)		
Yttrium Oxide and	II:1079	1082
Zinc Germanium Phosphide and	III:639	
Zinc Phosphide and	III:609	
Zinc Selenide and	II:737	739
Zinc Telluride and	II:737	745
Zircon and	III:988	
Zirconium Nitride and	III:353	
See also Individual critiques; Complex		
index of refraction		
See also Values of n		
Index of refraction, temperature dependence		
Aluminum and	I:381	
Aluminum Oxide and	II: 187	
Aluminum Oxynitride and	II: 187	
Germanium and	I:466	
Indium Antimonide and	I:493	
Lead Sulfide and	I:526	
Magnesium Aluminum Spinel and	II: 187	
Magnesium Oxide and	II: 187	
Niobium and	II:396	
Potassium and	II:364	
Potassium Chloride and	I:705	
Silicon and	I:548	569
Silicon Dioxide and	II: 187	
Sodium and	II:345	
Sodium Chloride and	II: 187	
Tantalum and	II:409	

<u>Index Terms</u>	<u>Links</u>		
Index of refraction, temperature dependence (<i>Cont.</i>)			
Yttrium Oxide and	II: 187		
Zinc Sulfide and	II: 187		
See also Individual critiques; Complex			
index of refraction			
Indium Antimonide (InSb)			
critique	I:491	III:53	
index of refraction and	II:148		
optical-constants calculation of	II:169		
optical parameters for	II:320		
Rollin detector for	I:158	159	
spectra in sample of	I:103		
spectroscopic measurements of	III:76	77	
transparency frequency of	I:231		
values of n and k for	I:9	494	495
	III:53	54	
Indium Arsenide (InAs)			
critique	I:479	III:50	
dispersion analysis of	I:479		
free-carrier absorption and	I:171		
free-carrier concentration in samples of	I:185		
optical-constants calculations of	I: 177	II:169	
optical constants of	I: 186		
optical parameters for	II:320		
reflectance measurements on	I:109		
reststrahlen region and	I:187		
values of n and k for	I:4	481	482
	III:50	51	

<u>Index Terms</u>	<u>Links</u>		
Indium Gallium Arsenide Phosphide			
$(In_{1-x}Ga_xAs_yP_{1-y})$			
index of refraction and	II:138	139	
Indium (In)			
critique	III:261		
doping with	II:638		
interband absorption and	I:204		
values of n and k for	III:263	264	
Indium Phosphide (InP)			
critique	I:503	III:47	
dispersion analysis of	I:504		
free-carrier absorption and	I:171		
free-carrier concentration of	I: 179		
index of refraction and	II:138		
optical-constants calculation of	I: 177	II:169	
optical constants of	I: 181		
optical parameters for	II:320		
photothermal deflection and	III:111		
quantum effects in	II:127		
relaxation rate for impurity scattering	I:178		
relaxation rate for polar scattering	I:179		
reststrahlen region and	I:187		
spectroscopic measurements of	III:78		
values of n and k for	I:4	507	508
	III:47	48	
wave vector dependence and	I:267		
Indium Selenide (InSe)			
spectroscopic measurements of	III:94		

<u>Index Terms</u>	Links	
Inertial sum rules	I:41	43
tests for	I:60	
See also Sum rules		
Inference method		
Cadmium Selenide and	II:561	
Infrared absorption		
defects and	I:263	
by defects and disorders	I:254	
optical-constants calculation and	II:153	
Infrared absorption peaks		
Rubidium Bromide and	III:846	
Rubidium Iodide and	III:861	
Infrared band edge		
Calcium Fluoride and	II:819	
Infrared dispersions		
by plasmons	I:263	
Infrared lattice absorption		
Silicon-Germanium alloys and	II:610	
Infrared measurements		
index of refraction and	I:155	167
interband absorption and	I:371	
photolithography and	I:162	
Infrared propagation		
of surface-plasmon waves	II:79	
Infrared radiation		
dispersion of	I:216	263
Infrared reflection measurements		
Lithium Tantalate and	III:778	

<u>Index Terms</u>	<u>Links</u>	
Infrared region (IR)		
Aluminum Antimonide and	II:501	
Aluminum Arsenide and	II:492	
Aluminum Nitride and	III:376	
Aluminum Oxide and	II:761	
Antimony and	III:274	
Cadmium Germanium Arsenide and	III:448	
Cadmium Selenide and	II:560	
Cadmium Sulphide and	II:579	584
Calcium Carbonate and	III:702	
Carbon films and	II:839	
Chromium and	II:375	
Cobalt and	II:435	
Copper Gallium Sulfide and	III:461	
Cubic Silicon Carbide and	II:706	
Cupric Oxide and	II:878	
Cuprous Oxide and	II:875	
electromagnetic radiation propagation and	I:14	
electronic absorption edge and	I:214	
Indium and	III:261	
Iron Pyrite and	III:507	
Lead Fluoride and	III:761	
Lithium Tantalate and	III:779	
Magnesium Aluminum Spinel and	II:884	
Magnesium Fluoride and	II:899	
Magnesium Oxide and	II:919	934
Manganese and	III:249	
Niobium and	II:397	

<u>Index Terms</u>	<u>Links</u>	
Infrared region (IR) (Cont.)		
optical properties of solids in	I:214	
Orthorhombic Sulfur and	III:900	
phonon absorption and	I:234	
Potassium and	II:366	
Potassium Iodide and	III:808	
Rubidium Bromide and	III:846	
Rubidium Iodide and	III:857	
semiconductor absorption and	I:22	
Silver Bromide and	III:555	
Silver Gallium Selenide and	III:575	
Sodium and	II:356	
Strontium Fluoride and	III:883	
Strontium Titanate and	II:1035	
Thallium Bromide and	III:926	
Thallium Chloride and	III:924	
Thallium Iodide and	III:927	
Thallous Halides and	III:930	
Thorium Fluoride and	II:1049	1051
Zinc Arsenide and	III:595	
Zinc Germanium Phosphide and	III:639	
Infrared windows		
in polar crystalline insulators	II:178	
Inhomogeneity		
effective-medium theory and	I:104	
See also Homogeneity		

<u>Index Terms</u>	<u>Links</u>	
Inhomogeneous layers		
and index measurement	II:67	
InP. See Indium Phosphide		
In phase		
defined	II:46	
InSb. See Indium Antimonide		
InSe. See Indium Selenide		
In situ evaporation technique		
Cesium Chloride and	III:733	
Cesium Fluoride and	III:744	
Potassium Bromide and	II:992	
In situ reflectance measurement		
Cesium Iodide and	II:856	
Palladium and	II:470	
Tin Telluride and	II:727	
vacuum deposition and	II:205	
Instrumentation use		
calorimetry and	I:135	
collinear-photothermal-deflection-		
apparatus and	III:100	
error determination and	II:206	
interferometers and	III:101	
optical-properties determination and	I:92	
photothermal-deflection apparatus and	III:105	108
synchrotron radiation and	I:277	
See also Calorimetry; Ellipsometry;		
Laser calorimetry;		
Monochromators;		

<u>Index Terms</u>	<u>Links</u>	
Instrumentation use (Cont.)		
Reflectometers; Spectrometers		
Insulating films		
Berreman effects and	II:115	
Insulating systems		
sum rules and	I:42	
Insulator films on substrates	I:5	
Insulators		
Beta-Gallium Oxide and	III:753	
dispersion analysis and	I:59	
infrared dispersion and	I:263	
large band gap, models for	I:199	
lattice vibrations and	II:178	
Lead Fluoride and	III:761	
loss-function determination and	II:300	
phonons and	II:178	
sum rules and	I:39	
temperature-dependence of optical ph	onons in II:179	
Insulators, optical properties of		
superlattices and	II:99	
Intensity		
described	I:90	
Intensity ratio measurement		
reflectivity	I:18	
Interband absorption		
Cesium and	III:342	
introduced	I:4	6
Manganese and	III:249	

<u>Index Terms</u>	<u>Links</u>		
Interband absorption (Cont.)			
metallic Aluminum and	I:369	380	389
metals and	III:233		
one-electron model and	I:190		
optical properties of solids and	I:189		
rare-earth metals and	III:289		
Rhenium and	III:278		
Ruthenium and	III:254		
temperature dependence and	I:381		
Titanium and	III:240		
Interband electronic transitions	I:18		
Interband hole absorption			
Tellurium and	II:711		
Interband peaks			
Lithium and	II:346		
Potassium and	II:365		
Interband region			
Aluminum and	I:376		
Aluminum Antimonide and	II:504		
amorphous materials and	II:169		
Ashcroft-Sturm model of	I:370	381	383
Cobalt and	II:439		
discussed	II:151	153	
free-electron contributions in	II:158		
parallel-band effect and	I:371		
Silicon-Germanium alloys and	II:609		
Sodium and	II:355		

<u>Index Terms</u>	<u>Links</u>	
Interband transitions		
absorption and	I:197	
Aluminum Nitride and	III:375	
Aluminum Oxide and	III:654	
Beryllium and	II:422	
of bound electrons	II:154	
Cadmium Selenide and	II:560	
Cesium and	III:342	343
Cesium Iodide and	II:856	
Chromium and	II:375	
Cobalt and	II:436	439
in Copper	I: 205	
electron excitation and	I:189	
Erbium and	III:300	
Graphite and	II:451	453
Hafnium Nitride and	III:352	
Iron and	II:386	
Iron Pyrite and	III:511	
joint densities of states and	II:304	
Lithium and	II:347	
Magnesium Fluoride and	II:900	
Mercury Cadmium Telluride and	II:662	664
Niobium and	II:397	
Potassium Bromide and	II:989	
pressure considerations and	I:382	
rare-earth metals and	III:290	
Silicon and	III:531	
superlattices and	II:107	

<u>Index Terms</u>	<u>Links</u>	
Interband transitions (Cont.)		
Terbium and	III:297	
Thallium Bromide and	III:925	
Thallium Chloride and	III:924	
Titanium and	III:240	
Yttrium Aluminum Garnet and	III:963	
Yttrium Oxide and	II:1080	
Zirconium Nitride and	III:352	
Interferograms	I:159	
Sodium Chloride and	I:776	
Interferometers		
Brillouin scattering and	III:123	128
Calcium Fluoride and	II:818	
development of	I:373	
Gallium Phosphide and	I:448	
index-of-refraction measurements and	I:156	157
Lead Fluoride and	III:763	766
parameter definitions on	I:128	
Polyethylene and	II:966	
Silver Iodide and	III:556	
thermal effects and	I:125	
thin-film parameters determination and	I:113	
Zinc Phosphide and	III:610	
Interferometry		
Barium Titanate and	II:792	
Cadmium Selenide and	II:562	
Cesium Bromide and	III:718	
Cesium Iodide and	II:854	

<u>Index Terms</u>	<u>Links</u>
Interferometry (Cont.)	
and index determination	II:63
Lead Fluoride and	III:764
Liquid Mercury and	II:464
Lithium Fluoride and	I:675
Lithium Tantalate and	III:778
Magnesium Oxide and	II:929
Palladium and	II:470
Silicon Dioxide (glass) and	I:750
Sodium Fluoride and	II:1022
Thallium Chloride and	III:924
Thorium Fluoride and	II:1051
Yttrium Aluminum Garnet and	III:964
Zinc Selenide and	II:741
Zircon and	III:987
Internal-reflection spectroscopy (IRS)	
and prism geometry	II:76
International System of Units (SI units)	
discussed	II:22
Intraband absorption	
of Metallic Aluminum	I: 394
Intraband transitions	
Calcium Fluoride and	II:816
Graphite and,	II:453
plasma frequency for	I:370
Zinc Arsenide and	III:595

<u>Index Terms</u>	<u>Links</u>
Intrinsic material parameters	
index of refraction and	II:181
optical-properties measurement and	I:16
Inversions	
quantum-density-matrix formulation and	II:135
and sum rules	I:43
Inversion wavelength	
Cadmium Sulphide and	II:582
$In_{1-x}Ga_xAs_yP_{1-y}$. See Indium Gallium	
Arsenide Phosphide	
Ion-assisted deposition (IAD)	
Thorium Fluoride and	II:1053
See also Sample preparation	
Ionic conductivity	
Lead Fluoride and	III:761
Ionic crystals	
reststrahlen band for	I:219
Ionic motions in a solid	
frequency spectrum of	I:215
Ionic solids	
absorption coefficients and	I:249
absorption spectrum in	I:243
electromagnetic radiation and	I:218
photon-phonon coupling in	I:216
Ionization	
Yttrium Oxide and	П:1080

<u>Index Terms</u>	<u>Links</u>	
Ionized impurity scattering		
quantum density matrix and	I:171	
Ir. See Iridium		
IR determinations		
values of n and k for	I:8	377
Iridium (Ir)		
critique	I:296	
optical parameters for	II:318	
values of n and k for	I:297	298
Iron Disilicide (FeSi ₂)		
photothermal deflection and	III:111	
Iron (Fe)		
critique	II:385	
optical parameters for	II:319	
values of n and k for	II:388	389
Iron Pyrite (FeS ₂)		
critique	III:507	
optical parameters for	III: 199	
oscillator models and	III:512	
values of n and k for	III:513	514
IRS. See Internal-reflection spectroscopy		
Irtran 1	II:899	
See also Magnesium Fluoride		
Irtran 4	II:743	
See also Zinc Selenide		
Irtran 5	II:931	935
See also Magnesium Oxide		

<u>Index Terms</u>	<u>Links</u>	<u> </u>
Isoreflectance curves		
oblique incidence and	I:73	
parallel components and	I:85	
values of n and k and	I:73	78
Isotropic free carriers		
optical-properties measurement and	I:18	
Isotropic intensity transmission		
Bismuth Germanium Oxide and	III:403	
Bismuth Silicon Oxide and	III:403	
Isotropic materials		
Antimony and	III:274	
Gadolinium and	III:295	
Indium and	III:261	
local-field effects and	I:203	
Magnesium and	III:235	
Manganese and	III:249	
optical constants of, explained	I:69	
Ruthenium and	III:253	
Tin and	III:268	
Titanium and	III:240	
J		
Jahoda's proof		
dispersion relations and	I:56	
Joint density of states		
absorption coefficients and	I:235	
Hafnium Nitride and	III:352	
interband absorption and	I:209	II:309

<u>Index Terms</u>	<u>Links</u>	
Joint density of states (Cont.)		
interband transitions and	II:304	309
optical-properties measurement and	I:17	
rare-earth metals and	III:290	
in transparent regime	I:248	
Zirconium Nitride and	III:352	
See also Density of states		
Jones 2×2 matrix		
attenuated-total-reflection structures and	II:82	
K		
K. See Potassium		
Kane model		
Lead Tin Telluride and	II:638	
Mercury Cadmium Telluride and	II:662	
Kane theory		
band structure of	I:171	176
electron density of states and	I:175	
free-carrier absorption and	I:173	
in free-carrier absorption experiment	I:173	176
quantum-density-matrix formulation and	II:130	
KBr. See Potassium Bromide		
KC1. See Potassium Chloride		
KDP. See Potassium Dihydrogen Phosphate		
K-edge		
Potassium Bromide and	II:992	
K-edge spectra		
dielectric function and	I:380	

<u>Index Terms</u>	<u>Links</u>		
KH ₂ PO ₄ . See Potassium Dihydrogen Phosphate			
KI. See Potassium Iodide			
Kinetic energy			
and wave equations	II:24		
Kirchhoffs law			
emittance and	I:22		
See also Absorptance			
optical-properties measurement and	I:22		
KK analysis. See Kramers-Krönig analysis			
KNbO ₃ . See Potassium Niobate			
Known incidence method			
Potassium Dihydrogen Phosphate and	II:1005		
KO-1	II:899		
See also Magnesium Fluoride			
Kösters prisms			
interferometers and	I:120	122	123
Kramers-Krönig analysis			
of Aluminum	I:378		
of Aluminum Oxide	II:761	III:654	
of Arsenic Selenide	I:623		
of Barium Fluoride	III:683		
of Barium Titanate	II:789	792	
of Beryllium	II:424	426	
of Beryllium Oxide	II:807		
of Bismuth Germanium Oxide	III:404	408	
of Bismuth Silicon Oxide	III:407		
of Boron Nitride	III:427		
of Cadmium Germanium Arsenide	III:446		

<u>Index Terms</u>	<u>Links</u>	
Kramers-Krönig analysis (Cont.)		
of Cadmium Selenide	II:559	561
of Cadmium Sulphide	II:580	
of Cadmium Telluride	I:410	
of Calcium Carbonate	III:701	
of Calcium Fluoride	II:821	
calculations and	II:128	
of Carbon films	II:839	
of Cesium	III:342	
of Cesium Chloride	III:731	
of Cesium Iodide	II:854	
of Chromium	II:374	
of Cobalt	II:437	
of Copper Gallium Sulfide	III:460	
of Copper Oxides	II:877	
correction technique for	II:925	
dielectric functions and	I:203	
discussed	I:276	
dispersion analysis and	I:59	
dispersion relations and	I:227	
dispersion-relations sum rules and	I:36	52
of Gallium Arsenide	I:431	
of Gallium Phosphide	I:445	
of Gallium Selenide	III:474	476
of Gallium Telluride	III:490	
of Germanium	I:467	
of Gold	I:286	
of Graphite	II:450	

<u>Index Terms</u>	<u>Links</u>		
Kramers-Krönig analysis (Cont.)			
of Hafnium Nitride	III:353	356	
of hydrogenated amorphous Silicon	II:167		
of Indium Antimonide	I:491		
of Indium Phosphide	I:503		
introduced	I:5		
inversions and sum rules	I:43		
of Iridium	I:296		
of Iron	II:386		
of Iron Pyrite	III:507	510	
of Lead Fluoride	III:763		
of Lead Selenide	I:517		
of Lead Sulfide	I:527		
of Lead Telluride	I:537		
of Lead Tin Telluride	II:637		
of Liquid Mercury	II:461	464	
of Lithium	II:346		
of Lithium Fluoride	I:675		
of Lithium Niobate	I:695		
of Lithium Tantalate	III:778		
of Magnesium	III:235		
of Magnesium Oxide	II:921	927	931
	935	937	
of Mercury Cadmium Telluride	II:658	664	
of metals	III:234		
of Molybdenum	I:205	304	
of Nickel	I:313		
one-electron model and	I:192		

<u>Index Terms</u>	<u>Links</u>		
Kramers-Krönig analysis (Cont.)			
one-phonon temperature dependence and	II:182		
optical constants and	II:152		
optical-constants measurement and	I:378		
optical data and	I:56		
optical-properties determination and	II:299		
of Orthorhombic Sulfur	III:901	904	
of Osmium	I:324		
of Palladium	II:470		
of Platinum	I:334		
of Polyethylene	II:958		
of Potassium Bromide	II:990		
of Potassium Chloride	I:704		
of Potassium Iodide	III:807		
of Potassium Niobate	III:822		
for reflection	I:8	108	III:221
of Rhodium	I:342		
of Ruthenium	III:254		
of Selenium	II:692	693	
of Silicon	I:551	III:522	531
of Silicon, doped n-type	III:157	163	
of Silicon (type a)	I:571		
of Silicon Carbide	I:587		
of Silicon Dioxide (type a)	I:750		
of Silicon Dioxide (type-x)	I:720		
of Silicon-Germanium alloys	II:609	III:538	
of Silicon Monoxide	I:776		
of Silicon Nitride	I:771		

<u>Index Terms</u>	<u>Links</u>	
Kramers-Krönig analysis (Cont.)		
of Silver	I:350	
of Silver Bromide	III:555	
of Silver Chloride	III:553	
of Silver Gallium Selenide	III:574	
of Silver Gallium Sulfide	III:576	
of Silver Iodide	III:555	
of Sodium Chloride	I:778	
of Sodium Nitrate	III:871	872
of Strontium Fluoride	III:883	
of Strontium Titanate	II:1036	
superconvergence sum rules and	I:38	
of Tantalum	II:409	
of Tellurium	II:712	
of Thallium Bromide	III:925	
of Thallium Chloride	III:923	
of Thallium Iodide	III:927	
of Tin Telluride	II:725	726
of Titanium	III:240	
of Titanium Carbide	II:309	
of Titanium Dioxide	I:797	
of Titanium Nitride	II:309	
of Tungsten	I:358	
of Vanadium	II:477	478
of Vanadium Carbide	II:309	
of Vanadium Nitride	II:309	
of Water	II:1061	
of Ytterbium	III:302	

<u>Index Terms</u>	<u>Links</u>	
Kramers-Krönig analysis (Cont.)		
of Yttrium Aluminum Garnet	III:963	965
of Zinc Arsenide	III:595	
of Zinc Germanium Phosphide	III:638	
of Zinc Phosphide	III:610	
of Zinc Selenide	II:738	
of Zinc Sulfide	I:598	
of Zinc Telluride	II:744	746
of Zircon	III:987	988
of Zirconium Nitride	III:353	
Kramers-Krönig dispersion relations		
index of refraction and	II:160	
Titanium Dioxide and	II:169	
Kramers-Krönig transform procedure		
(transformation)		
sum-rule tests and	I:60	
Kretschmann prism		
attenuated-total-reflection experiments and	II:92	
Kronecker products		
of space-group irreducible		
representations	I:233	
Kroneker delta		
quantum-density-matrix formulation and	II:132	
KRS-5. See Thallous Halide (KRS-5)		
KRS-6. See Thallous Halide (KRS-6)		
K-shell absorption		
f sum rules and	I:62	

Previous Page

<u>Index Terms</u>	<u>Links</u>	
Kubo formula		
for conductivity	III:160	
т		
L		
Lambert absorption coefficients		
Water and	II:1063	
Lambert's law		
absorptance and	I:139	
extinction-coefficient measurement and	I:81	
Lamellae		
in experimental determination of		
optical parameters	I:19	
Lamellar systems		
formulas for	I:24	
Lamelliform	I:14	
described	I:18	
formulas and	I:14	
optical-properties measurement and	I:19	
radiation absorption and	I:22	
Langmuir-Blodgett films		
optics of	II:76	
Langmuir-Blodgett technique		
and molecular films	II:87	
and prism experiments	II:82	
Langmuir-Blodgett wedge		
attenuated-total-reflection experiments with	II:93	
Lanthanides	III:287	289

<u>Index Terms</u>	<u>Links</u>	
Lanthanum Oxide		
Yttrium Oxide and	II:1079	
LA phonons		
Gallium Arsenide and	II:108	
Laser analysis		
Gallium Antimonide and	II:598	
Lead Fluoride and	III:763	766
low-loss material for	III:963	
Polyethylene and	II:964	
Potassium Dihydrogen Phosphate and	II:1005	
Yttrium Oxide and	II:1079	
Zinc Germanium Phosphide and	III:637	
Laser applications		
Calcium Fluoride and	II:815	822
Cesium Iodide and	II:853	
Copper and	II:876	
Magnesium Fluoride and	II:899	
Laser beams and Xenon lamps		
Liquid Mercury and	II:465	
Laser calorimetry		
absorption-coefficient measurement and	I:231	
Aluminum Oxide and	III:655	
Arsenic Selenide and	I:625	
Arsenic Sulfide and	I:643	
Barium Fluoride and	III:685	
Calcium Fluoride and	II:823	
Cesium Iodide and	II:856	
electric-field considerations in	I:143	

<u>Index Terms</u>	<u>Links</u>	
Laser calorimetry (Cont.)		
Magnesium Aluminum spinel and	II:886	
Magnesium Oxide and	II:928	933
Sodium Chloride and	I:778	
Strontium Fluoride and	III:884	
Thallous Halides and	III:928	930
thin-film absorptance measurements and	I:135	
typical	I:136	
wedged film and	I:139	
Laser coherence effects		
defeating	I:137	
in substrates	I:137	
Laser interferometers		
Calcium Fluoride and	II:818	
film on substrate values of n and k	I:4	
response linearization and	I:126	
thin-film parameters determination and	I:114	116
Laser-window materials		
introduced	I:9	
Lattice band parameters		
Gallium Antimonide and	II:600	
Lattice constants		
Aluminum Gallium Arsenide and	II:513	
Barium Fluoride and	III:683	
Calcium Fluoride and	II:815	
degenerate semiconductors and	II:132	138
Drude theory and	II:148	
index of refraction and	II: 143	

<u>Index Terms</u>	<u>Links</u>		
Lattice constants (Cont.)			
Indium Gallium Arsenide Phosphide and	II:143		
Lead Fluoride and	III:762		
Lead Tin Telluride and	II:637		
Mercury Cadmium Telluride and	II:138		
Potassium Iodide and	III:807		
quantum-density-matrix formulation and	II:133	136	
Strontium Fluoride and	III:883		
Lattice dielectric constants			
Drude theory and	I:174	187	II:126
reststrahlen contribution to	I:187		
Lattice dimensions			
Calcium Carbonate and	III:701		
Lattice disorder			
effect of	II:118		
Lattice modes			
Gallium Telluride and	III:491		
Lattice oscillators			
Mercury Cadmium Telluride and	II:665		
Lattice parameters			
Aluminum Nitride and	III:373		
Beta-Gallium Oxide and	III:753		
Potassium Niobate and	III:821		
Lattice-parameter variations			
Potassium Dihydrogen Phosphate and	II:1006		
Lattice properties			
Lithium Tantalate and	III:777		

<u>Index Terms</u>	<u>Links</u>
Lattice reflection bands	
Gallium Antimonide and	II:598
Lattice resonance	
semiconductor crystals and	III:33
Lattice symmetry	I:17
defects and	I:254
selection rules for	I:17
Lattice tail	
polar crystals and	I:214
Lattice vibration absorption	
Thallium Chloride and	III:924
Lattice vibration modes	
Bismuth Germanium Oxide and	III:406
Bismuth Silicon Oxide and	III:406
Lattice vibration region	
Iron Pyrite and	III:507
Lattice vibrations	
absorption in solids and	I:213
Aluminum Arsenide and	II:491
Aluminum Oxide and	III:656
Aluminum Oxynitride and	II:778
Cadmium Sulphide and	II:579
Calcium Fluoride and	II:820
Cubic Silicon Carbide and	II:706
electromagnetic radiation and	I:214
Gallium Selenide and	III:475
impurities and	I:255
Magnesium Aluminum Spinel and	II:886

<u>Index Terms</u>	<u>Links</u>	
Lattice vibrations (Cont.)		
Magnesium Fluoride and	II:901	
optical-properties determination and	II:177	
as phonons	I:215	
in polar crystalline insulators	II:178	
pole-fit model and	II:185	
Potassium Iodide and	III:808	
Silicon-Germanium alloys and	III:538	
Strontium Fluoride and	III:885	
Tellurium and	II:710	
Yttrium Aluminum Garnet and	III:964	
Yttrium Oxide and	II:1080	1082
Zinc Telluride and	II:747	
See also Multiphonon absorption process	ses;	
Superlattices		
Lattice vibrations, oscillator models		
Cadmium Telluride and	I:411	
Gallium Arsenide and	I:429	
Gallium Phosphide and	I:446	
index of refraction and	II:179	182
Indium Antimonide and	I:492	
Indium Phosphide and	I:504	
Lead Telluride and	I:536	
Lithium Fluoride and	I:677	
Silicon Carbide and	I:588	
temperature dependence and	II:190	
Titanium Dioxide and	I:796	
Yttrium Oxide and	II:184	

<u>Index Terms</u>	<u>Links</u>		
Lattice vibrations, oscillator models (<i>Cont.</i>)			
Zinc Sulfide and	I:600		
Lattice waves			
as polaritons	I:217		
Law of index dispersion			
by a limited equation	II:65		
Law of motion	I:41		
sum rules and	I:36	40	
See also Motion equation			
Layer characteristics			
of thin films	II:57		
Layered crystals			
Gallium Telluride and	III:489		
Layered structures	I:18		
absorptance of	I:18		
collective modes in	II:112		
optical-properties measurement and	I:18		
reflectance of	I:18		
transmittance of	I:18		
Layer-labeling system			
laser calorimetry and	I:143	144	
Layer thickness			
calorimetry and	I:148		
of evanescent wavelengths	II:82		
superlattices and	II:98	109	119
values of n and k and	I:78	81	83
See also Thickness considerations			

<u>Index Terms</u>	<u>Links</u>	
Layer uniformity		
reflectance measurement and	I:86	
Layer width factor		
material engineering and	II:97	
LB. See Langmuir-Blodgett technique		
LDPE (Low-density Polyethylene). See		
Polyethylene		
Lead Fluoride (PbF ₂)		
critique	III:761	
values of n and k for	III:767	768
Lead Lanthanum Zirconate Titanate		
Ceramics (PLZT)		
photothermal deflection and	III:112	
Lead (Pb)		
interband absorption and	I:204	
Lead Selenide (PbSe)		
critique	I:517	
index of refraction and	II:148	
optical parameters for	II:318	
values of n and k for	I:519	520
Lead Sulfide (PbS)		
critique	I:525	
index of refraction and	II:148	
optical parameters for	II: 318	
values of n and k for	I:529	530
Lead Telluride (PbTe)		
critique	I:535	
index of refraction and	II:148	

<u>Index Terms</u>	<u>Links</u>		
Lead Telluride (PbTe) (Cont.)			
infrared reflection spectrum of	I:265		
optical parameters for	II:318		
values of n and k for	I:540	541	
Lead Tin Telluride (PbSnTe)			
critique	II:637		
optical parameters for	II:323		
values of n and k for	II:640	641	
Least-squares fitting			
Aluminum Antimonide and	II:502		
Ammonium Dihydrogen Phosphate and	II:1006		
Beryllium Oxide and	II:806		
Beta-Gallium Oxide and	III:754		
crystalline material and	II:164	165	166
	169	171	
Gallium Selenide and	III:477		
Graphite and	II:450		
Magnesium Oxide and	II:921	931	
Palladium and	II:470		
Potassium Dihydrogen Phosphate and	II:1006		
Silver Chloride and	III:553		
LEC. See Liquid encapsulation			
Czochralski technique			
L-edge structure			
dielectric function and	I:380		
Potassium Bromide and	II:992		
Leiss monochromator			
Lead Fluoride and	III:762		

<u>Index Terms</u>	<u>Link</u>	<u>Links</u>		
Leiss monochromator (Cont.)				
Tellurium and	II:712			
Leurgans method				
laser calorimetry and	I:143	145		
Li. See Lithium				
LiF. See Lithium Fluoride				
Light				
Rubidium Iodide and	III:858			
Light, free-space velocity of				
described	I:12			
Light polarizations				
Potassium Niobate and	III:822			
Light scattering				
Copper Oxides and	II:876			
elastic	II:112			
inelastic	II:112			
Polyethylene and	II:957			
Sodium Fluoride and	II:1022			
Light-source emissions				
Magnesium Oxide and	II:923			
Light sources				
calorimetry and	I:138	140		
coherence of	I:116			
reflectance and	II:204			
spectroscopy and	I:158			
stability of	I:116			
wedged-film laser calorimetry and	I:141			

<u>Index Terms</u>	<u>Links</u>	<u>Links</u>		
Light waves				
linear momentum of	II:35			
LiNbO ₃ . See Lithium Niobate				
Lindhard function				
Silicon, doped n-type and	III:169			
Linear polarization	II:29			
discussed	II:28			
phase shifting and	I:160			
reflection of	II:47			
Zinc Arsenide and	III:596			
Zinc Phosphide and	III:610			
Linear portion of plots				
extrapolation of	II:163			
Linear response theory				
sum rules and	I:40			
Line-tuned HF cw gas laser				
calorimetry and	I:143			
Lin-Okubo weighting function	I:44			
Liquid encapsulation Czochralski				
technique (LEC)				
Gallium Phosphide and	I:445			
See also Czochralski technique				
Liquid Mercury (Hg)				
critique	II:461			
optical parameters for	II:323			
values of n and k for	II:466	467		
Liquid Sulfur (S)	III:900			
See also Orthorhombic Sulfur				

<u>Index Terms</u>	<u>Links</u>		
LiTaO ₃ . See Lithium Tantalate			
Lithium cells			
Gallium Selenide and	III:473		
Lithium Fluoride (LiF)			
critique	I:675		
absorption versus photon energy for	I:243		
dispersion analysis of	I:676		
optical constants of	II:12		
optical parameters for	II:318		
protective coatings of	I:375		
and surface-plasmon oscillation (SPO)			
resonance curves	II:85		
transparency frequency of	I:231		
values of n and k for	I:679	680	
Lithium (Li)			
critique	II:345		
absorption spectrum from	I:258		
Drude-model parameters	II:350		
index of refraction and	II:180		
optical parameters for	II:319		
values of n and k for	II:349	351	
See also Hexagonal Lithium			
Lithium Niobate (LiNbO ₃)			
critique	I:695		
versus Lithium Tantalate	III:777		
optical parameters for	II:322	328	III:205
values of n and k for	I:698	699	

<u>Index Terms</u>	<u>Links</u>	
Lithium Tantalate (LiTaO ₃)		
critique	III:777	
values of n and k for	III:781	783
Littrow mirror		
Silver Chloride and	III:554	
Littrow-type mount monoehromator		
Potassium Dihydrogen Phosphate and	II:1005	
Lloyd's mirror experiment		
and phase changes	II:48	
Local-field effects		
ellipsometry and	I:105	
Localization		
in superlattices	II:120	
Longitudinal optical damping (LO)		
Aluminum Gallium Arsenide and	II:515	
Lithium Tantalate and	III:779	
Longitudinal optical frequencies (LO)		
Aluminum Oxide and	III:656	
Magnesium Fluoride and	II:901	
Thallium Bromide and	III:926	
Thallium Chloride and	III:925	
Yttrium Oxide and	II:1082	
Longitudinal optical modes (LO)		
Aluminum Gallium Arsenide and	II:515	
Aluminum Oxide and	II:762	
Boron Nitride and	III:425	
Cadmium Selenide and	II:562	
Gallium Selenide and	III:476	

<u>Index Terms</u>	<u>Links</u>
Longitudinal optical modes (LO) (Cont.)	
Yttrium Aluminum Garnet and	III:965
Longitudinal optical phonon energy (LO)	
Aluminum Gallium Arsenide and	II:513
Longitudinal optical phonon frequency (LO)	
Yttrium Aluminum Garnet and	III: 986
Zinc Selenide and	II:741
Longitudinal optical phonons (LO)	
Brillouin scattering and	III:141
Gallium Arsenide and	II:108
Zinc Phosphide and	III:610
Longitudinal optical resonance (LO)	
normal incidence reflectance and	II:115
Longitudinal optical vibrational modes (LO)	
Potassium Niobate and	III:824
Longitudinal polar lattice mode (LO)	
Sodium Nitrate and	III:873
Lorentzian energy dependence	
extinction coefficient and	II:155
Lorentzians	
Brillouin scattering and	III:127
electron-hole interaction and	I:201
Lorentz-Lorenz equation	
attenuated-total-reflection experiments with	II:89
ellipsometry and	I:106
Orthorhombic Sulfur and	III:902
Thallous Halides and	III:929
values of n and k and	II:179

<u>Index Terms</u>	<u>Links</u>		
Lorentz-oscillator models	II:26		
Aluminum Arsenide and	II:491		
Arsenic Selenide and	I:623		
Cadmium Telluride and	I:410		
Cesium Chloride and	III:731		
Cesium Iodide and	II:854		
formula for lattice vibrations, introduced	I:7		
Indium Antimonide and	I:493		
Iron Pyrite and	III:507	510	512
optical constants and	I:187		
Potassium Bromide and	II:990		
Selenium and	II:692		
Silver Bromide and	III:555	560	
Silver Chloride and	III:554	560	
Silver Iodide and	III:556	560	
Sodium Nitrate and	III:873		
superconvergence sum rules and	I:38		
Tellurium and	II:710		
values of n and k and	II:179		
Yttrium Aluminum Garnet and	III:965		
Zinc Selenide and	II:738	741	
Zinc Telluride and	II:738	746	
See also Oscillator models			
Lorentz-type equations			
Cadmium Sulphide and	II:584		
Loss function			
described	II:294		
determination of	II:298		

<u>Index Terms</u>	<u>Links</u>	
Loss function (Cont.)		
Titanium Carbide and	II:304	
Titanium Nitride and	II:304	
Vanadium Carbide and	II:304	
Vanadium Nitride and	II:304	
Loss tangent		
determination of	I:163	
Lossy material		
and complex numbers	II:25	
L-shell absorption		
f sum rules and	I:62	
LST. See Lyddane-Sachs-Teller relation		
Lucite (methyl methacrylate resin)		
Silver Chloride and	III:554	
Luminescence		
Aluminum Nitride and	III:373	375
Calcium Fluoride and	II:816	
Magnesium Oxide and	II:926	
Luminescence spectrum		
superlattices and	II:108	
Luminiferous ether concept	II:37	
Lyddane-Sachs-Teller relation (LST)		
Boron Nitride and	III:427	
Copper Oxides and	II:877	
described	I:218	
one-phonon temperature dependence and	II:183	
phonon symmetry and	I:222	
reststrahlen spectrum and	I:221	

Index Terms	<u>Links</u>	
Lyddane-Sachs-Teller relation (LST) (Cont.)		
Silicon Carbide and	I:589	
M		
Mach-Zehnder interferometer		
near-millimeter wavelength		
measurement and	I:163	164
Macroscopic dielectric functions		
superlattices and	II:118	
Macroscopic measurements of optical constants	I:16	
Macroscopic optical properties of matter		
describing of	I:12	
Macroscopic response		
in superlattice	II:101	
Magnesium Aluminum Spinel (MgAl ₂ O ₄)		
critique	II:883	
hemispherical emissivity for	II: 897	
index of refraction and	II: 187	
index of refraction of	II:889	
infrared lattice vibration frequencies for	II: 891	892
values of dn/dT for	II: 897	
values of n and k for	II:890	893
Magnesium Fluoride (MgF ₂)		
critique	II:899	
infrared lattice vibration parameters for	II: 907	
optical parameters for	II:322	
protective coatings of	I:375	
values of dn_e/dT for	II: 918	

<u>Index Terms</u>	<u>Links</u>		
Magnesium Fluoride (MgF ₂) (Cont.)			
values of dn_o/dT for	II: 918		
values of n and k for	I:85	87	II:906
	908		
Magnesium (Mg)			
critique	III:235		
evaporated layer measurement of	I:80		
values of n and k for	I:74	III:236	237
Magnesium Oxide (MgO)			
critique	II:919		
extinction coefficients of	I:228		
far-infrared absorption and	I:251		
index of refraction and	II:187		
infrared reflectivity of	I:224	225	226
	227		
optical parameters for	II:319		
transparency frequency of	I:231		
values of n and k for	II:942	943	
Magnetic fields			
impact on optical constants of	I:16		
interband absorption and	I:190		
Magnetic permeability			
described	I:12		
introduced	I:12		
Malus' plane of polarization			
defined	II:29		
Mandel' shtam-Brillouin scattering			
Cesium Iodide and	II:856		

<u>Index Terms</u>	<u>Links</u>	
Manganese (Mn)		
critique	III:249	
values of n and k for	III:250	251
Many-body effects		
described	I:190	
Maser material		
Beta-Gallium Oxide and	III:753	
Material engineering		
superlattices and	II:97	
Material equations		
described	I:12	
Matrix multiplication model		
reflectance experiment and	I:23	
Matrix multiplication of layers model	I:15	
Matter dynamics		
interaction with light and	I:36	
Maxwell-Garnett theory		
ellipsometry and	I:105	
Palladium and	II:471	
Maxwell's equations		
attenuated-total-reflection structures and	II:82	
Brillouin scattering and	III:124	
effective-medium theory and	I:105	
electromagnetic wave propagation and	I:11	
introduced	I:7	
ion interaction and	I:217	
material equations and	I:13	
metals and	III:234	

<u>Index Terms</u>	<u>Links</u>
Maxwell's equations (Cont.)	
optical constants and	I:12
optical properties and	II:62
optical-property measurement and	I:13
parallel-sided slabs and	I:14
plane-wave solution in	I:170
for propagation through material	I:24
propagation velocities and	I:12
and surface-plasmon waves	II:77
MBE technology	
superlattices and	II:97
McDonald function	
Silicon, doped n-type and	III:167
Measurement accuracy	
requirements for	I:155
Measurement redundancy	
errors and	I:72
Measurement techniques	
of Scandium Oxide (ScO ₂)	II: 59
Mechanical properties	
of Potassium Iodide	III:807
Mechanical strength	
Aluminum Oxide and	III:653
Mechanical stylus	
and index determination	II:63
Melt-growth method	
Barium Titanate and	II:789

<u>Index Terms</u>	<u>Links</u>	
Melting point		
of Aluminum Oxide	III:653	
of Barium Fluoride	III:683	
Cesium and	III:341	
Hafnium Nitride and	III:351	
of Indium	III:261	
of Lead Fluoride	III:761	762
of Potassium Iodide	III:807	
of Sodium Nitrate	III:872	
of Strontium Fluoride	III:883	
of Thallium Bromide	III: 938	
of Thallium Chloride	III: 938	
of Thallium Fluoride	III: 938	
of Thallium Iodide	III: 938	
Zirconium Nitride and	III:351	
Mercury Cadmium Telluride (HgCdTe) alloy		
optical parameters for	II:323	
Mercury Cadmium Telluride ($Hg_{1-x}Cd_xTe$)		
critique	II:655	
values of n and k for	II:668	669
Mercury Cadmium Telluride ($Hg_xCd_{1-x}Te$)		
index of refraction and	II:138	146
Mercury (Hg)		
optical parameters for	II:323	
Mercury Telluride (HgTe)		
optical parameters for	II: 320	
values of n and k for	II:657	

<u>Index Terms</u>	<u>Links</u>	
Metal gratings		
anomalies in the diffraction spectra of	II:76	
Metallic Aluminum (Al)		
critique	I:369	
absolute values and	I:392	
dielectric function for	I: 402	
Drude parameters for intraband		
absorption of	I: 394	
extinction coefficient for	I:388	
f sum rules and	I:61	62
optical functions of	I:60	
optical-properties measurement of	I:369	
reflectance of	I:389	391
temperature dependence of	I:382	388
values of n and k for	I:395	
See also Aluminum		
Metals		
carrier concentration in	II:178	
critical points in	I:196	
free-carrier effects and	II:177	
Kramers-Krönig analysis and	II:171	
loss-function determination and	II:300	
optical-constants calculation and	II:163	
optical constants of	II:153	
optical-property calculation of	II:151	
photon absorption and	II:153	
Metals, optical properties of		
discussed	I:40	

<u>Index Terms</u>	<u>Links</u>	
Metals, optical properties of (Cont.)		
interband absorption and	I:192	
superlattices and	II:99	
Metastable phases		
Beta-Gallium Oxide and	III:753	
Methyl Fluoride (C ¹³ H ₃ F) laser		
index of refraction and	I:162	
Mg. See Magnesium		
MgAl ₂ O ₄ . See Magnesium Aluminum Spinel		
MgF ₂ . See Magnesium Fluoride		
MgO. See Magnesium Oxide		
Michelson interferometers	I:126	
Cadmium Sulphide and	II:585	
Cesium Bromide and	III:718	
Cesium Iodide and	II:854	
Lithium Tantalate and	III:778	
with Mylar beam splitters	I:155	157
Polyethylene and	II:966	
Titanium Dioxide and	I:795	
Zircon and	III:987	
Microwave closed resonant cavity		
near-millimeter wavelength		
measurement and	I:161	
Microwave dielectric determination		
overmoded nonresident cavities and	I:165	
Microwave dielectrometer		
Barium Titanate and	II:793	

<u>Index Terms</u>	<u>Links</u>
Microwave frequencies	
Yttrium Oxide and	II:1083
Microwave region	
Barium Titanate and	II:793
static dielectric constant and	II:185
Microwaves	
measurement accuracy and	I:155
Microwave techniques	
Potassium Iodide and	III:810
Millimeter-wave region	
Lithium Tantalate and	III:777
Minimum angle-of-deviation method	
Tellurium and	II:711
Minimum-deviation measurements	
Aluminum Arsenide and	II:490
Aluminum Oxide and	III:655
Barium Fluoride and	III:684
Barium Titanate and	II:790
Bismuth Germanium Oxide and	III:404
Bismuth Silicon Oxide and	III:404
Cadmium Germanium Arsenide and	III:447
Cadmium Sulphide and	II:581
Calcium Fluoride and	II:823
Cesium Bromide and	III:718
Cesium Chloride and	III:732
Cesium Iodide and	II:855
Copper Gallium Sulfide and	III:461
Gallium Antimonide and	II:598

Index Terms	<u>Links</u>	
Minimum-deviation measurements (Cont.)		
Lead Fluoride and	III:762	
Magnesium Oxide and	II:929	
Potassium Dihydrogen Phosphate and	II:1006	
Silicon and	III:523	
Silver Chloride and	III:554	
Silver Gallium Selenide and	III:575	
Silver Gallium Sulfide and	III:576	577
Strontium Titanate and	II:1036	
Tellurium and	II:711	
Thallium Chloride and	III:924	
Thallous Halides and	III:929	
Yttrium Aluminum Garnet and	III:964	
Zinc Germanium Phosphide and	III:639	
Zinc Selenide and	II:740	
Zinc Telluride and	II:745	
Mirrors		
Cesium and	III:341	
Cesium Bromide and	III:718	
development of	I:373	
Fourier transform spectroscopy and	I:157	
interferometry and	I:126	
Iron Pyrite and	III:507	
Lead Tin Telluride and	II:638	
Lithium Fluoride and	I:676	
Magnesium Fluoride and	II:900	
Palladium and	II:470	
Potassium Dihydrogen Phosphate and	II:1005	

<u>Index Terms</u>	Links	
Mirrors (Cont.)		
reflection measurements and	III: 15	
Silver Chloride and	III:554	
Sodium Chloride and	I:776	
Thorium Fluoride and	II:1049	1051
See also Reflectance; Reflection		
MKSA (meter, kilogram, second, ampere)		
system of units		
described	II:22	
Mks units conversions		
optical-properties measurement and	I:13	
Mn. See Manganese		
Mo. See Molybdenum		
Mobility		
Silicon, doped n-type and	III:165	167
Mode-stirring devices		
overmoded nonresident cavities and	I:165	
Molecular films		
attenuated-total-reflection experiments with	II:87	
Mole ratio		
Lithium Niobate and	I:695	
Molten Sulfur	III:901	
See also Orthorhombic Sulfur		
Molybdenum (Mo)		
critique	I:303	
interband absorption and	I:205	207
optical parameters for	II:319	
values of n and k	II:87	

<u>Index Terms</u>	<u>Links</u>	
Molybdenum (Mo) (Cont.)		
values of n and k for	I:305	306
Momentum conservation	III:125	
Momentum transfer		
free-carrier absorption and	I:172	
interband transitions and	I:191	
optical-properties determination and	II:296	298
Monochromatic-beam transmittance	I:230	
Monochromatic measurements		
Polyethylene and	II:966	
Monochromatic radiation		
Zinc Selenide and	II:739	
Monochromatic shearing interferometers		
discussed	I:122	
Monochromators		
Arsenic Sulfide and	I:644	
Barium Titanate and	II:790	792
Bismuth Germanium Oxide and	III:404	
Calcium Fluoride and	II:815	
extreme ulraviolet measurements and	II:206	
Gallium Arsenide and	I:431	
Iron Pyrite and	III:509	
Lead Fluoride and	III:762	
Magnesium Oxide and	II:936	
Polyethylene and	II:958	
Potassium Bromide and	II:992	
Potassium Chloride and	I:703	
Potassium Dihydrogen Phosphate and	II:1005	

<u>Index Terms</u>	<u>Links</u>	
Monochromators (Cont.)		
Selenium and	II:692	
Silver Chloride and	III:553	
Strontium Titanate and	II:1036	
Tellurium and	II:712	
Titanium Dioxide and	I:796	
use of	I:94	
Wadsworth mount for	II:992	
Zinc Arsenide and	III:596	
Zinc Phosphide and	III:610	
Monoclinic structures		
Gallium Telluride and	III:489	492
Mori projection ansatz	III:161	
Morphology		
optical-properties measurement and	I:375	
Morse interatomic potential		
temperature dependence and	II:190	
Morse potentials	I:244	
Motion equation		
dielectric constants and	II:128	
infrared dispersion and	I:264	
lattice waves and	I:220	
quantum density matrix of	I:171	
Motion of atoms		
optical-branch vibrations and	I:215	
MQW material. See		
Multiple-quantum-well material		

<u>Index Terms</u>	<u>Links</u>
MSFTI. See Multiple-slit	
Fourier-transform interferometry	
Multibounce effects	
of substrates	I:147
Multilayer systems	
optical response of	II:98
Multiphonon absorption processes	I:232
Aluminum Oxide and	III:656
Aluminum Oxynitride and	II:778
Arsenic Selenide and	I:624
Arsenic Sulfide and	I:642
Barium Fluoride and	III:685
below fundamental band gap	I:4
Bismuth Germanium Oxide and	III:406
Bismuth Silicon Oxide and	III:406
Boron Nitride and	III:428
Cadmium Sulphide and	II:584
Cadmium Telluride and	I:412
Calcium Fluoride and	II:819
Cesium Iodide and	II:856
Cubic Carbon (Diamond) and	I:667
Gallium Arsenide and	I:430
Gallium Phosphide and	I:446
Germanium and	I:465
Indium Arsenide and	I:480
Indium Phosphide and	I:505
Lithium Fluoride and	I:676
Magnesium Aluminum Spinel and	II:885

<u>Index Terms</u>	<u>Links</u>	
Multiphonon absorption processes (Cont.)		
Magnesium Fluoride and	II:901	
Magnesium Oxide and	II:935	
in polar crystalline insulators	II:178	
pole-fit model and	II:185	
Potassium Bromide and	II:989	
Potassium Chloride and	I:703	
Potassium Iodide and	III:808	809
Rubidium Bromide and	III:847	
Selenium and	II:692	
Silicon and	I:550	
Silicon-Germanium alloys and	III:538	
Sodium Chloride and	I:777	
Sodium Fluoride and	II:1023	
Strontium Fluoride and	III:885	
Tellurium and	II:711	
transparency and	I:213	
Yttrium Oxide and	II:1082	
Zinc Selenide and	II:742	
Zinc Sulfide and	I:601	
See also Phonon absorption		
Multiphonon difference bands		
pole-fit model and	II:185	
Multiphonon electronic transitions		
transparency and	I:213	
Multiphonon model		
quantum-mechanical Morse potential	II:190	

<u>Index Terms</u>	Links
Multiphonon sum-band model	
temperature dependence and	II:198
Multiphonon sum bands	
pole-fit model and	II:185
Multiphonon transitions	
Zinc Phosphide and	III:610
Multiple-beam interferometers	
Lead Fluoride and	III:764
Multiple-quantum-well material (MQW)	
superlattices and	II:102
Multiple-slit Fourier-transform	
interferometry (MSFTI)	II:247
See also Fourier-transform interferometry	
Murmann's formulae	
Silver Gallium Selenide and	III:575

N

N2. See Nitrogen gas

Na. See Sodium

NaBr. See Sodium Bromide

NaCl. See Sodium Chloride

NaF. See Sodium Fluoride

NaNO₃. See Sodium Nitrate

Nb. See Niobium

NbC. See Niobium Carbide

NbN. See Niobium Nitride

Ne. See Neon

<u>Index Terms</u>	Links
Near-infrared region (NIR)	
Aluminum Oxynitride and	II:778
Barium Fluoride and	III:684
Barium Titanate and	II:791
Calcium Fluoride and	II:816
Cuprous Oxide and	II:876
Lead Fluoride and	III:762
Magnesium Aluminum Spinel and	II:884
Magnesium Oxide and	II:926
Mercury Cadmium Telluride and	II:656
Orthorhombic Sulfur and	III:901
Polyethylene and	II:959
Potassium Iodide and	III:808
Selenium and	II:692
Silicon and	III:519
Silicon-Germanium alloys and	III:537
Sodium Nitrate and	III:872
Tellurium and	II:711
Water and	II:1060
Yttrium Aluminum Garnet and	III:964
Zinc Selenide and	II:739
Zircon and	III:988
Near-millimeter wave analysis	
Polyethylene and	II:968
Near-millimeter wave properties (NMMW)	
introduced	I:155

<u>Index Terms</u>	<u>Links</u>	
Near-normal-incidence reflectivity		
Bismuth Germanium Oxide and	III:404	
Iron Pyrite and	III:509	
Lead Fluoride and	III:762	
Orthorhombic Sulfur and	III:900	902
Near-ultraviolet region (NUV)		
Aluminum Oxide and	III:655	
Cesium Bromide and	III:719	
Magnesium Oxide and	II:926	
Thorium Fluoride and	II:1053	
Zinc Selenide and	II:737	
Zinc Telluride and	II:737	
Nebraska conventions		
described	II:22	
Néel temperature		
Erbium .and	III:300	
rare-earth metals and	III:288	
Samarium and	III:293	
Nematic liquid crystals		
surface tilt angle of	II:90	
Neon (Ne)		
excitons and	I:199	
Neutron-diffraction studies		
Aluminum Oxynitride and	II:777	
NH ₄ H ₂ PO ₄ . See Ammonium Dihydrogen I	Phosphate	
Ni. See Nickel		

<u>Index Terms</u>	<u>Links</u>	
Nickel (Ni)		
critique	I:313	
attenuated-total-reflection experiments with	II:87	
optical parameters for	II:318	
values of n and k for	I:316	317
NINA		
Lead Fluoride and	III:763	
Niobium Carbide (NbC)		
dielectric properties of	II:303	
Niobium (Nb)		
critique	II:396	
optical parameters for	II:319	
values of n and k for	II:399	II: 400
Niobium Nitride (NbN)		
dielectric properties of	II:303	
Nitrogen gas (N ₂)		
overlayer thickness and	I:102	
NMMW properties. See Near-millimeter wave		
properties		
Noise interference		
and ellipsometry	I:123	
Noise reduction		
Potassium Iodide and	III:810	
Nondispersive measurements		
Fourier transform spectroscopy and	I:157	
Nonlaser coherence		
interferometry and	I:116	

<u>Index Terms</u>	<u>Links</u>	
Nonlaser interferometers		
described	I:117	
Nonlinear crystals		
Potassium Dihydrogen Phosphate and	II:1005	
Nonlinear regression technique		
Cadmium Sulphide and	II:581	
Non-polarized radiation		
reflection and	I:70	
Normal distribution functions		
density of states and	I:245	
Normal incidence		
Sodium Nitrate and	III:872	
Normal-incidence illumination		
calorimetry and	I:149	
Normal-incidence reflection		
Beryllium and	II:424	
Cadmium Sulphide and	II:583	
Cesium and	III:343	
Cubic Cadmium Sulphide and	II:586	
Graphite and	II:449	451
Liquid Mercury and	II:465	
Magnesium Oxide and	II:922	
optical-properties determination and	I:93	
optical-properties studies and	II:110	120
Palladium and	II:470	471
refractive-index measurement and	I:70	
Water and	II:1060	

<u>Index Terms</u>	<u>Links</u>	
NOTS absolute reflectometer		
Lead Fluoride and	III:764	
n-Si. See Silicon, doped n-type		
<i>n</i> -type crystals		
Cadmium Germanium Arsenide and	III:447	
Copper Gallium Sulfide and	III:459	
Nuclear resonance		
water in Silicon films and	I:138	
Null ellipsometers		
discussed	I:93	102
overlayers and	I:99	
Null method		
Liquid Mercury and	II:463	
O		
Oblique-incidence reflection		
refractive-index measurement and	I:71	
use of	II:69	
Ohm's law	I:12	
optical constants and	I:17	
optical-properties measurement and	I:17	
One-electron effects		
described	I:190	
One-electron model		
hyperbolic exciton and	I:201	
interband absorption and	I:190	

<u>Index Terms</u>	<u>Links</u>	
One-phonon absorption processes		
defects and	I:254	
structurally disorders solids and	I:214	
One-phonon red wing difference bands		
pole-fit model and	II:185	187
One-phonon region		
Barium Fluoride and	III:685	
Cadmium Germanium Arsenide and	III:448	
Potassium Iodide and	III:809	
Strontium Fluoride and	III:885	
See also Fundamental lattice vibrations		
One-phonon transition		
Silver Chloride and	III:554	
Opacity		
Barium Fluoride and	III:685	
Cesium Bromide and	III:719	
introduced	I:8	
Strontium Fluoride and	III:885	
See also Transparency		
Optical characteristics		
superlattices and	II:98	
Optical conductivity		
versus de conductivity	I:17	
free-carrier absorption and	I:173	
Metallic Aluminum and	I:394	
perturbation theory and	I:175	

<u>Index Terms</u>	<u>Links</u>		
Optical-constants determination			
access via computer and	III:12		
angles of incidence and	I:72		
Brillouin scattering and	III:121		
causality principles and	I:228		
experimental techniques, introduced	I:4		
explained	II:151		
far-IR technique of	I:4		
interferometry and	II:247		
macroscopic equations and	I:24		
measurement of, discussed	I:276		
photoemmision and	II:279		
sample preparation, introduced	I:4		
submillimeter-wave region technique of	I:4		
in superlattice systems	II:99		
See also Values of n and k			
Optical data analysis			
of sum rules	I:55		
Optical-density measurements			
Cesium Bromide and	III:719		
Optical energy band gap			
discussed	II:152	166	169
extinction coefficients and	II:158		
Optical fibers			
Brillouin scattering in	III:146	148	152
Optical functions			
dispersion analysis and	I:56		

<u>Index Terms</u>	Links
Optical modes	
of crystals	I:216
Optical phonons	
versus acoustical phonons	I:253
occupation probability, Drude theory and	I:174
reflection spectrum and	I:227
Optical profilometer	
Palladium and	II:469
Optical propagation	
stopgaps and	II:101
Optical properties	
calculation, categories for	II:152
determination of, overlayer effects and	I:96
importance of	II:293
measurement of, and calorimetry	I:135
measurement of, formulas for interpreting	I:24
measurement of, introduced	I:11
measurement of, oxide formation and	I:375
of metals, discussed	III:233
one-electron model and	I:190
of rare-earth metals	III:288
of solids, limitations of	I:36
See also Individual critiques	
Optical-properties determination	
physical processes of	II:177
of superlattices	II:122

<u>Index Terms</u>	<u>Links</u>		
Optical sum rules			
physical interpretation of	I:36		
Optical thickness film index	I:150		
Optical transition modes			
direct	II:163		
forbidden	II:163		
indirect	II:163		
Optics nomenclature			
explained	I:8		
Optovac			
Strontium Fluoride and	III:884		
Organic thin films			
optics of	II:76		
Orthorhombic crystals			
Polyethylene and	II:959		
Orthorhombic structures			
Lead Fluoride and	III:761		
Potassium Niobate and	III:821		
Orthorhombic Sulfur (α-S)			
critique	III:899		
values of n and k for	III:908	909	
Orthorhombic Thallium Iodide (T1I)			
critique	III:927		
values of n and k for	III: 951		
Os. See Osmium			
Oscillator dispersion analysis			
Beryllium Oxide and	II:805		
Calcium Carbonate and	III:702		

<u>Index Terms</u>	<u>Links</u>	
Oscillator models		
absorption coefficients and	I:244	
Aluminum Antimonide and	II:503	
Aluminum Arsenide and	II:490	
Arsenic Sulfide and	I:641	643
Barium Fluoride and	III:685	
Barium Titanate and	II:792	
Bismuth Germanium Oxide and	III:407	
Bismuth Silicon Oxide and	III:407	
Boron Nitride and	III:428	
Cadmium Germanium Arsenide and	III:448	
Cadmium Selenide and	II:561	563
Cadmium Telluride and	I:410	
Cesium Fluoride and	III:744	
Copper Gallium Sulfide and	III:461	
Copper Oxides and	II:877	
Cubic Silicon Carbide and	II:706	
Gadolinium and	III:296	
Gallium Antimonide and	II:598	
Gallium Arsenide and	I:429	
Gallium Phosphide and	I:446	
Gallium Selenide and	III:476	
Graphite and	II:452	
Indium Phosphide and	I:505	
Iron Pyrite and	III:507	512
Lead Selenide and	I:517	
Lead Telluride and	I:536	
Lead Tin Telluride and	II:638	

<u>Index Terms</u>	<u>Links</u>	
Oscillator models (Cont.)		
Lithium Fluoride and	I:676	
Lithium Niobate and	I:696	
Magnesium Oxide and	II:935	937
Potassium Iodide and	III:809	
Potassium Niobate and	III:823	
Selenium and	II:692	
semiconductors and	III:32	34
Silicon and	III:532	
Silicon Carbide and	I:588	
Sodium Chloride and	I:777	
Sodium Nitrate and	III:872	
Strontium Fluoride and	III:885	
superlattices and	II:99	
Tellurium and	II:710	
Thallium Bromide and	III:925	
Thallium Chloride and	III:924	
Thallium Iodide and	III:927	
Titanium Dioxide and	I:796	
Yttrium Aluminum Garnet and	III:965	
Zinc Germanium Phosphide and	III:639	
Zinc Phosphide and	III:609	
Zircon and	III:988	
See also Lorentz-oscillator models		
Oscillators		
optical-properties measurement and	I:17	229
See also Damped oscillators; Lattice		
vibrations, oscillator models		

<u>Index Terms</u>	<u>Links</u>	
Oscillator strength		
Aluminum Oxide and	II:763	
crystal potential energy and	I:245	
f sum rules and	I:61	
Lithium Tantalate and	III:779	
optical definition of (equation)	I:37	
sum rules and	I:37	
superlattices. and	II:108	
temperature and	I:381	
Osmium (Os)		
critique	I:324	
optical parameters for	II: 321	
values of n and k for	I:325	326
Out of phase		
defined	II:46	
Overflow method		
Liquid Mercury and	II:462	
Overlayer effects		
in optical-properties determination	I:96	
Overmoded nonresonant cavities		
near-millimeter wavelength and	I:165	
Oxidation		
Aluminum	I:373	
Aluminum Nitride and	III:373	
ellipsometry and	I:97	101
Hafnium Nitride and	III:355	
metals and	III:234	
optical constants of	I:85	

<u>Index Terms</u>	<u>Links</u>	
Oxidation (Cont.)		
in polarized nonnormal-incidence		
reflection techniques	I:4	
rare-earth metals and	III:290	
Titanium and	III:240	
Zirconium Nitride and	III:355	
P		
Packing density		
Lead Fluoride and	III:764	
Thorium Fluoride and	II:1053	
Palladium (Pd)		
critique	II:469	
attenuated-total-reflection experiments with	II:87	
optical parameters for	II:318	
values of n and k for	II:473	474
Parabolic dispersion relation		
quantum-density-matrix formulation and	II:134	
Parallel alignment		
Cadmium Sulphide and	II:580	
Graphite and	II:449	
in liquid crystals	II:90	
Polyethylene and	II:961	
Parallel-band effect		
interband spectrum and	I:371	
Parallel beams		
defeating laser-coherence effects and	I:137	

<u>Index Terms</u>	<u>Links</u>	
Parallel measurements		
Lithium Tantalate and	III:778	
reflection and	I:70	
Parallelopipeds		
isoreflectance curves and	I:74	
Parallel polarization		
Lithium Tantalate and	III:779	
Maxwell's equations and	I:14	
optical-properties measurement and	I:14	
Parallel polarized light		
Boron Nitride and	III:425	
Potassium Niobate and	III:824	
Parallel-sided slabs		
formulas for	I:25	28
lamelliform and	I:19	25
Parametric oscillation		
Zinc Germanium Phosphide and	III:637	
Particle-physics conventions	II:36	
Partition function		
absorption coefficients and	II:187	
Pauli principle		
f sum rules and	I:63	
sum rules and	I:51	
Pb. See Lead		
PbF ₂ . See Lead Fluoride		
PbS. See Lead Sulfide		
PbSe. See Lead Selenide		
PbSnTe. See Lead Tin Telluride		

<u>Index Terms</u>	<u>Links</u>	
PbTe. See Lead Telluride		
Pd. See Palladium		
Periclase. See Magnesium Oxide		
Perkin-Elmer grating spectrometer		
Tellurium and	II:710	
Perkin-Elmer infrared spectrometer		
Silver Chloride and	III:554	
Perkin-Elmer Model 301		
spectrophotometer		
Iron Pyrite and	III:507	
Perkin-Elmer 112 monochromator		
Iron Pyrite and	III:509	
Perkin-Elmer PE 350 Spectrophotometer		
Silver Iodide and	III:556	
Perkin-Elmer spectrometer		
Lead Fluoride and	III:763	766
Permeability of free space	II:23	
Permittivity		
Barium Fluoride and	III:685	
Barium Titanate and	II:792	
and evanescent waves	II:79	
of free space	II:23	
Potassium Iodide and	III:807	809
Potassium Niobate and	III:824	
Strontium Fluoride and	III:885	
in wave guides	II:85	
Perovskite structures		
Potassium Niobate and	III:821	

<u>Index Terms</u>	<u>Links</u>	
Perpendicular polarization		
Boron Nitride and	III:425	
Maxwell's equations and	I:14	
optical-properties measurement and	I:14	
See also TM modes		
Perturbation, oscillatory external		
sum rules and	I:53	
Perturbation energy		
dielectric constants and	II:128	
Perturbation technique		
Arsenic Sulfide and	I:643	
Perturbation theory	III:160	
in free-carrier absorption experiment	I:172	
interband absorption and	I:197	
time-dependent	I:171	II:154
PES. See Photoacoustic spectroscopy		
PET. See Polyethylene terephalate films		
Phase changes		
Cobalt and	II:438	
and Fresnel coefficient	II:41	
and p polarization	II:45	
for steel	II:44	
Phase coefficient	III:122	
Phase conjugation		
interferometry and	I:116	
Phase differences		
dispersion relations and	I:229	

<u>Index Terms</u>	<u>Links</u>		
Phase incoherence			
insufficient resolution of	I:21		
optical-properties measurement and	I:21		
Phase modulation			
signal-to-noise ratio and	I:157	158	159
Phase shifts			
dispersion analysis and	I:59		
interferometry and	I:115	123	126
	131	163	
Polyethylene and	II:961		
in wave guides	II:86		
Phase transformations			
Lead Fluoride and	III:762		
Yttrium Aluminum Garnet and	III:963		
Phase transitions			
Cerium and	III:292		
Gadolinium and	III:295		
Gallium Selenide and	III:477		
Lithium Tantalate and	III:779		
metals and	III:234		
Potassium Niobate and	III:821		
Silver Iodide and	III:556		
Sodium Nitrate and	III:871		
Phonon absorption			
Aluminum and	I:381		
interband absorption and	I:197	201	
introduced	I:6		
in polar insulators	I:45		

<u>Index Terms</u>	<u>Links</u>		
Phonon absorption (Cont.)			
scattering and	I:196		
Silicon and	I:209		
Phonon-assisted electronic transitions			
transparency and	I:213		
Phonon energy			
Silicon-Germanium alloys and	II:608		
Phonon frequencies			
Aluminum Gallium Arsenide and	II:513		
Cadmium Selenide and	II:561		
Tellurium and	II:710		
Zinc Phosphide and	III:610		
Phonon frequency			
Magnesium Aluminum Spinel and	II:885		
Phonon processes			
interaction with infrared radiation and	I:215	233	255
Phonon resonances			
in infrared spectrum	I:232		
Phonons			
absorption probability and	I:234		
Aluminum Gallium Arsenide and	II:515		
Cadmium Sulphide and	II:579		
denned	I:215		
Erbium and	III:301		
Mercury Cadmium Telluride and	II:665		
scattering and	II:128		
semiconductor superlattices and	II:108		
Terbium and	III:298		

<u>Index Terms</u>	<u>Links</u>
Phonon scattering	
Drude theory and	I:171
Phonon self-energy functions	
Lithium Tantalate and	III:779
Phonon sidebands	
electron-hole interaction and	I:202
Photoabsorption	
Aluminum Oxide and	III:654
Photoacoustic measurements	
Calcium Fluoride and	II:823
Magnesium Oxide and	II:928
in semiconductors	III:59
Silicon and	I:549
Photoacoustic spectroscopy (PES)	III:60
Photoconductivity measurements	
Orthorhombic Sulfur and	III:901
Zinc Phosphide and	III:609
Photodiodes	
ellipsometers and	I:94
Photoelastic modulators	
optical-properties determination and	I:94
Photoemission technique	II:279
Photolithography	
crossed-wire meshes and	I:162
Photoluminescence	
Calcium Fluoride and	II:816
Photometers	I:126
Magnesium Oxide and	II:927

<u>Index Terms</u>	<u>Links</u>	
Photometric measurements		
development of	I:92	
Mercury Cadmium Telluride and	II:655	
metals and	III:234	
overlayers and	I:103	
Vanadium and	II:478	
Photomultipliers		
ellipsometers and	I:94	
interferometry and	III:129	
Magnesium Oxide and	II:922	
Zinc Arsenide and	III:596	
Zinc Phosphide and	III:610	
Photon absorption		
extinction coefficients and	II:157	
quantum-mechanical absorption theory and	II:152	154
temperature dependence and	II:198	
Photon density matrix		
Drude theory and	I:173	
Photon energies		
Drude theory and	I:171	
fundamental band gap and	I:213	
Hafnium Nitride and	III:357	
interband absorption and	I:196	
metals and	III:234	
rare-earth metals and	III:289	
Zirconium Nitride and	III:357	

<u>Index Terms</u>	<u>Links</u>	
Photon energy		
bound-electron transitions and	II:152	
Carbon films and	II:838	
in compound semiconductors	II:127	
versus index of refraction	II:144	
interband region and	II:152	
perturbation theory and	II:154	
Photon-energy region		
Cadmium Selenide and	II:560	
Gallium Antimonide and	II:598	
Lead Fluoride and	III:763	
Potassium Niobate and	III:822	
Silicon-Germanium alloys and	II:608	III:537
Zinc Arsenide and	III:595	
Zinc Phosphide and	III:609	
Photonic band structure		
concept of	II:101	
Photon interactions		
quantum-mechanical treatment of	II:152	
Photon-phonon interaction		
plasma effects and	I:215	
Photons		
scattering mechanism and	II:128	131
Photopyroelectric spectroscopy (PPES)	III:67	
Photothermal measurements		
of absorption in thin layers	II:70	
extinction coefficients measurements and	III:99	
in semiconductors	III:59	

<u>Index Terms</u>	<u>Links</u>
Photovoltaic devices	
Gallium Selenide and	III:473
Physics, solid-state	
Anderson localization and	II:120
Physics of condensed state	
introduced	I:12
Piezoelectric photoacoustics	III:64
Piezoelectric transducers	I:122
interferometry and	I:126
Piezo-modulation experiments	
parallel-band transition and	I:372
Planar carbon chains	II:957
Planck's constant	
absorption coefficients and	II:187
optical-properties determination and	II:296
Thallous Halides and	III:928
Plane of incidence (POI)	I:14
electromagnetic waves and	I:90
optical-properties measurement and	I:14
reflection and	I:70
Sodium Nitrate and	III:872
Plane of polarization	
defined	II:29
Faraday-cell modulation of	I:93
Plane-parallel samples	
defeating laser-coherence effects and	I:137
interferometry and	I:160 162

<u>Index Terms</u>	<u>Links</u>		
Plane-polarized waves			
described	II:29		
Plane-wave solutions			
for wave equations	II:23		
Plasma absorption process	I:4		
ellipsometry and	I:107	378	
finite-energy sum rules and	I:45	49	54
Plasma frequency			
Aluminum and	I:370		
Aluminum Gallium Arsenide and	II:515		
Beryllium and	II:423		
Cadmium Sulphide and	II:581		
Carbon films and	II:837		
Cobalt and	II:439		
Drude theory and	II:126		
Erbium and	III:301		
Gadolinium and	III:296		
Graphite and	II:452		
Indium Antimonide and	I:492		
Lead Selenide and	I:517		
Lead Tin Telluride and	II:638		
Magnesium Oxide and	II:925		
rare-earth metals and	III:290		
Samarium and	III:294		
semiconductors and	III:32		
Silicon, doped n-type and	III:163	164	
Silicon and	I:552		
Silicon Carbide and	I:588		
Cobalt and Drude theory and Erbium and Gadolinium and Graphite and Indium Antimonide and Lead Selenide and Lead Tin Telluride and Magnesium Oxide and rare-earth metals and Samarium and semiconductors and Silicon, doped n-type and Silicon and	II:439 II:126 III:301 III:296 II:452 I:492 I:517 II:638 II:925 III:290 III:294 III:32 III:163 I:552	164	

<u>Index Terms</u>	<u>Links</u>
Plasma frequency (Cont.)	
superlattice reflective properties and	II:113
Tellurium and	II:710
Tin Telluride and	II:725
Ytterbium and	III:303
Zinc Sulfide and	I:599
Plasma oscillations	
Aluminum Oxide and	III:654
Yttrium Aluminum Garnet and	III:963
Plasma resonances	
Hafnium Nitride and	III:353
rare-earth metals and	III:289
Thulium and	III:302
Zirconium Nitride and	III:353
Plasmon energy	
Zinc Telluride and	II:744
Plasmon resonance	
attenuation of	II:93
Plasmons	
described	II:294
Dysprosium and	III:299
exciting of	I:189
infrared dispersion by	I:263
rare-earth metals and	III:290
superlattices and	II:98
Terbium and	III:298
Ytterbium and	III:303

<u>Index Terms</u>	<u>Links</u>	
Plasmon surface polaritons		
described	II:89	
Plasmon waves on smooth surfaces		
excitation methods for	II:79	
Platinum (Pt)		
critique	I:333	
attenuated-total-reflection experiments with	II:87	
optical parameters for	II:318	
superlattices and	II:118	
values of n and k for	I:335	336
PLZT. See Lead Lanthanum Zirconate		
Titanate Ceramics		
PMMA dye		
attenuated-total-reflection experiments with	II:88	
Pockels cells		
optical-properties determination and	I:94	95
Pockels coefficient	III:122	
POL See Plane of incidence		
Poisson's ratio	III:122	
Polar crystals		
absorption gap in	I:214	
anharmonic radiation and	I:232	
infrared dispersion by	I:215	
optical properties of	II:178	
Strontium Titanate and	II:1036	
Polarimetric technique		
Cobalt and	II:439	
Orthorhombic Sulfur and	III:900	

<u>Index Terms</u>	<u>Links</u>	
Polarimetry		
Aluminum and	I:374	
Erbium and	III:300	
Gadolinium and	III:295	
optical-properties determination and	I:90	
Orthorhombic Sulfur and	III:901	
Terbium and	III:297	
Polar insulators		
finite-energy sum rules and	I:53	
Polaritons		
described	I:217	
superlattices and	II:98	
Polarizabilities on atomic scale		
introduced	I:12	
Polarization		
Barium Titanate and	II:789	
Beta-Gallium Oxide and	III:754	
birefringence and	I:164	
Boron Nitride and	III:425	428
Cadmium Germanium Arsenide and	III:446	
Cadmium Selenide and	II:562	
Cadmium Sulphide and	II:580	
Calcium Carbonate and	III:701	
Copper Gallium Sulfide and	III:460	
discussed	II:26	
ellipsometry and	I:90	
Gadolinium and	III:294	
Gallium Telluride and	III:490	

<u>Index Terms</u>	<u>Links</u>	
Polarization (Cont.)		
Graphite and	II:450	
index of refraction and	II:180	
interferometry and	I:115	124
interferometers and	I:157	158
Lithium Tantalate and	III:777	
Mach-Zehnder interferometers and	I:163	
Magnesium Fluoride and	II:899	
Orthorhombic Sulfur and	III:900	902
Potassium Niobate and	III:821	822
reflectance and	I:70	
Sodium Nitrate and	III:871	
Tellurium and	II:711	
Zinc Germanium Phosphide and	III:640	
Zinc Phosphide and	III:609	
Zircon and	III:987	988
See also Parallel polarization;		
Perpendicular polarization		
Polarization by reflection		
discovery of	II:27	
Polarization ellipse		
attributes of	I:90	
reflectometry and	I:90	
Polarization solutions		
models for	I:14	
Polarization states		
Dysprosium and	III:299	
of electromagnetic waves	II:27	

<u>Index Terms</u>	<u>Links</u>	
Polarization states (Cont.)		
reflectance and	I:72	
reflectometry and	I:93	
Polarization techniques		
Terbium and	III:297	
Polarization terminology		
discussed	II:27	
Polarized light		
Bismuth Germanium Oxide and	III:403	
Bismuth Silicon Oxide and	III:403	
Cadmium Selenide and	II:559	563
Gallium Selenide and	III:474	
Hafnium Nitride and	III:355	
Selenium and	II:692	
Zirconium Nitride and	III:355	
See also Unpolarized light		
Polarized light measurements		
Cadmium Selenide and	II:559	563
Polyethylene and	II:959	
Potassium Bromide and	II:992	
Selenium and	II:692	
Polarized non-normal-incidence reflection		
techniques		
in ultraviolet-visible spectral region	I:4	
Polarized radiation measurements		
Copper Gallium Sulfide and	III:460	
Polarized synchrotron light measurements		
Strontium Titanate and	II:1036	

<u>Index Terms</u>	<u>Links</u>	
Polarized synchrotron radiation		
Cadmium Selenide and	II:562	
Polarizers		
described	I:93	
Polar-optical-mode scattering		
Drude theory and	I:176	
Polar phonons		
superlattice excitons and	II:104	
Polar scattering		
Drude theory and	I:171	174
free-carrier absorption and	I:176	
Polar semiconductors		
Drude-Zener theory in	I:169	
infrared dielectric function for	II:24	
optical properties of	II:26	
Polar transitions		
Lithium Tantalate and	III:779	
Pole-fit model		
index of refraction and	II:181	185
Polish-abolishment opinion	I:8	
Polishing techniques	I:104	
Aluminum Nitride and	III:373	
Aluminum Oxide and	II:762	
Barium Titanate and	II:790	
Bismuth Germanium Oxide and	III:406	
Bismuth Silicon Oxide and	III:406	
Boron Nitride and	III:426	
Cadmium Selenide and	II:559	

<u>Index Terms</u>	<u>Links</u>	
Polishing techniques (Cont.)		
Calcium Fluoride and	II:817	824
Cesium Chloride and	III:731	
Cesium Iodide and	II:854	
Cobalt and	II:436	439
Graphite and	II:451	
Indium and	III:261	
Iron Pyrite and	III:510	
Lead Fluoride and	III:762	
Manganese and	III:249	
Mercury Cadmium Telluride and	II:657	
Orthorhombic Sulfur and	III:900	
Palladium and	II:469	471
Potassium Bromide and	II:990	
Potassium Niobate and	III:822	
Rubidium Bromide and	III:845	
Rubidium Iodide and	III:857	
Sodium Nitrate and	III:871	873
Strontium Titanate and	II:1035	
Tellurium and	II:710	
Vanadium and	II:478	
Zinc Phosphide and	III:610	
See also Sample preparation		
Polycrystalline materials		
Aluminum, metallic	I:370	
Aluminum, polished	I:372	
Aluminum, thin-film,	I:373	
Aluminum Oxynitride and	II:778	

<u>Index Terms</u>	<u>Links</u>	
Polycrystalline materials (Cont.)		
Antimony and	III:274	
Beryllium and	II:422	
Beryllium Oxide and	II:807	
Boron Nitride and	III:425	
Cadmium Selenide and	II:563	
Cadmium Sulphide and	II:582	
Cadmium Telluride and	I:409	
Cerium and	III:292	
Cobalt and	II:435	438
Cuprous Oxide and	II:875	
effective-medium theory and	I:105	
Erbium and	III:300	
Indium and	III:261	
Indium Antimonide and	I:491	
interband absorption and	I:192	
Iridium and	I:296	
Iron Pyrite and	III:508	511
Magnesium Fluoride and	II:899	
metals and	III:235	
Orthorhombic Sulfur and	III:901	904
reactive sputtering and	II:303	
Rhenium and	III:278	
Rubidium Iodide and	III:859	
Ruthenium and	III:253	
scattering and	II:179	
Silicon-Germanium alloys and	II:609	
Silver Iodide and	III:555	

<u>Index Terms</u>	Links		
Polycrystalline materials (Cont.)			
Sodium Nitrate and	III:872		
Spinel and	II:885		
Thallium Iodide	III:927		
Thorium Fluoride and	II:1049		
Tin and	III:268		
Tin Telluride and	II:726		
Titanium and	III:240		
Vanadium and	II:478		
Yttrium Oxide and	II:1079		
Zinc Arsenide and	III:595		
Zinc Germanium Phosphide and	III:638		
Polyethylene $(CH_2)_n$			
optical parameters for	II:323	331	III: 216
Polyethylene $(C_2H_4)_n$			
critique	II:957		
low-frequency vibration mode dispersion of	II:971		
values of n and k for	II:970	972	
Polyethylene terephalate films (PET)			
Brillouin scattering and	III:143	143	
Polyfluorocarbon film			
from tetrafluoroethylene in RF plasma	II:90		
Polymers			
absorption coefficients and	I:251		
binding states in	II:301		
Polyethylene and	II:960	962	
Polystyrene			
dispersion analysis of	I:60		

<u>Index Terms</u>	<u>Links</u>		
Polyvinylidene Fluoride films (PVF2)			
Brillouin scattering and	III:143		
Pores and voids			
Thorium Fluoride and	II:1049		
Potassium Bromide (KBr)			
critique	II:989	III:25	
absorption versus photon energy for	I:243		
impurities and absorption in	I:256		
optical parameters for	II:319		
phonon processes for	I:245	246	
transparency frequency of	I:231		
values of n and k for	II:993	994	III:25
	26		
Potassium Chloride (KC1)			
critique	I:703	III:23	
absorption versus photon energy for	I:243		
dispersion analysis of	I:704		
ellipsometry and	I:100		
impurities and absorption in	I:256	257	
laser-window-material measurement of	I:9		
optical parameters for	II:318		
transparency frequency of	I:231		
values of n and k for	I:707	707	III:22
	24		
Potassium Dihydrogen Phosphate			
(KH_2PO_4) (KDP)			
critique	II:1005		
Hertzberger-type dispersion formula			

<u>Index Terms</u>	<u>Links</u>		
Potassium Dihydrogen Phosphate (Cont.)			
coefficients for	II: 1018		
index of refraction for	II: 1020		
lattice-vibration modes of	II: 1020		
optical parameters for	II:322	327	III:211
values of n and k for	II:1010	1012	1016
Potassium Iodide (KI)			
critique	III:27	807	
impurities and absorption in	I:256		
oscillator model parameters for	III: 820		
Sellmeier model parameters for	III: 820		
thermo-optical coefficients of	III: 820		
values of n and k for	III:27	28	812
	813		
Potassium (K)			
critique	II:364		
Drude-model parameters for	II:369		
optical parameters for	II: 319		
values of n and k for	II:368	370	
Potassium Niobate (KNbO ₃)			
critique	III:821		
dielectric constants and	III: 831		
index of refraction and	III:830		
optical parameters for	III: 217		
values of n and k for	III:827	832	
Power attenuation coefficient			
Silicon, doped n-type and	III:157		

<u>Index Terms</u>	<u>Links</u>		
Poynting vector			
optical-properties measurement and	I:18		
PPES. See Photopyroelectric spectroscopy			
<i>p</i> -polarization			
Cesium and	III:343		
ellipsometry and	I:90	97	
and Fresnel coefficients	II:40		
and prism evaporation	II:81		
Sodium Nitrate and	III:871		
superlattices and	II:100	113	119
	121		
and surface-plasmon waves	II:78		
transmission measurements on thin films	I:223		
Practical cgs units conversions			
optical-properties measurement and	I:13		
Press-forging method			
Magnesium Aluminum spinel and	II:884		
Pressure coefficients			
Gallium Selenide and	III:477		
Pressure considerations			
Aluminum Antimonide and	II:505		
Gallium Antimonide and	II:600		
Tin Telluride and	II:727		
Pressure dependence			
Ammonium Dihydrogen Phosphate and	II:1008		
Copper Oxides and	II:875		
Lead Fluoride and	III:762	764	
Magnesium Aluminum Spinel and	II:884		

<u>Index Terms</u>	<u>Links</u>	
Pressure dependence (Cont.)		
Magnesium Fluoride and	II:902	
optical-constants measurements and	I:382	393
Potassium Dihydrogen Phosphate and	II:1008	
Silver Gallium Selenide and	III:574	
Silver Gallium Sulfide and	III:576	
Yttrium Oxide and	II:1081	
Zinc Germanium Phosphide and	III:639	
Prism, minimum deviation		
Aluminum Oxide and	III:655	
Arsenic Selenide and	I:625	
Arsenic Sulfide and	I:643	
Barium Fluoride and	III:684	
Bismuth Germanium Oxide and	III:404	
Bismuth Silicon Oxide and	III:404	
Brillouin scattering and	III:131	
Cadmium Telluride and	I:410	
Calcium Carbonate and	III:702	
Cesium Bromide and	III:718	
Cesium Chloride and	III:732	
Gallium Arsenide and	I:430	
Gallium Phosphide and	I:446	
Germanium and	I:466	
Indium Phosphide and	I:504	
Lead Fluoride and	III:762	
Lithium Fluoride and	I:676	
Lithium Niobate and	I:695	
Magnesium Oxide and	II:929	

<u>Index Terms</u>	<u>Links</u>
Prism, minimum deviation (<i>Cont.</i>)	
Potassium Bromide and	II:990
Potassium Chloride and	I:704
Potassium Dihydrogen Phosphate and	II:1005
Rubidium Bromide and	III:846
Rubidium Iodide and	III:859
Rutile and	I:796
Silicon and	I:547
Silicon Dioxide (glass) and	I:749
Silicon Dioxide (type a)	I:750
Silicon Dioxide (type x)	I:720
Silver Chloride and	III:554
Silver Gallium Selenide and	III:575
Silver Gallium Sulfide and	III:576
Sodium Fluoride and	II:1022
Strontium Fluoride and	III:884
Strontium Titanate and	II:1036
Titanium Dioxide and	I:796
Yttrium Aluminum Garnet and	III:964
Zinc Selenide and	II:741
Zircon and	III:988
Prism coupling	
Liquid Mercury and	II:462
metal/dielectric (air) interface and	II:80
Palladium and	II:472
Prism experiments	
attenuated total reflection and	II:81

Index Terms	<u>Links</u>	
Prism geometry		
and internal-reflection spectroscopy	II:76	
Prism monochromators		
Strontium Titanate and	II:1036	
Prism refraction analysis		
Thallium Chloride and	III:924	
Prisms		
attenuated-total-reflection experiments with	II:93	
Barium Titanate and	II:792	
Bismuth Germanium Oxide and	III:404	
Cadmium Selenide and	II:561	
Cadmium Sulphide and	II:581	
Cesium Iodide and	II:855	
evanescent waves and	II:79	
Gadolinium and	III:295	
Gallium Antimonide and	II:598	
index measurement and	II:69	
interferometry and	I:163	
Lead Fluoride and	III:762	765
liquid crystals and	II:90	
Lithium Tantalate and	III:778	
photometric ellipsometry and	I:94	
Polyethylene and	II:966	
Potassium Niobate and	III:823	
Selenium and	II:692	
Silicon and	I:547	
Silicon Dioxide (type a)	I:750	
Silver Iodide and	III:556	

<u>Index Terms</u>	<u>Links</u>	
Prisms (Cont.)		
Tellurium and	II:711	
Zinc Selenide and	II:740	
Zinc Telluride and	II:745	
See also Kosters prisms; Wollaston prisms		
Prism spectrometers		
Aluminum Oxide and	II:762	
Lithium Tantalate and	III:778	
Propagating transverse waves		
as polaritons	I:217	
Propagation attenuation		
measurements of	II:69	
Propagation distances		
and surface-plasmon waves	II:79	
Propagation vectors		
superlattices and	II:107	
Propagation velocities	I:12	
Pseudo-Brewster angle		
Germanium and	I:467	
values of n and k and	I:71	77
See also Brewster's angle		
Pseudodielectric function		
ellipsometric measurement and	I:96	
Pseudo-dielectric functions		
Aluminum Antimonide and	II:501	
discussed	II:597	
Gallium Antimonide and	II:597	
Pseudopotential band calculation model	I:204	206

<u>Index Terms</u>	<u>Links</u>	
Pseudo-unit-cell model		
mixed-crystal behavior and	I:259	
Pt. See Platinum		
p-terphenyl	II:957	
p-type crystals		
Cadmium Germanium Arsenide and	III:447	
Copper Gallium Sulfide and	III:459	
Purity		
Boron Nitride and	III:425	
PVF ₂ . See Polyvinylidene Fluoride		
Pyrex glass		
Brillouin scattering and	III:151	
Pyrolysis		
Silicon Nitride (noncrystalline) and	I:772	
Pyrolytic Graphite. See Graphite (C)		
PZT. See Piezoelectric		
Q		
Quantum band theory		
Silicon and	III:520	
Quantum density matrix		
formulas for	II:128	
Quantum density-matrix equation of motion		
Drude theory and	I:176	
equilibrium radiation field and	I:172	
Quantum infrared detectors		
Mercury Cadmium Telluride and	II:655	

<u>Index Terms</u>	<u>Links</u>		
Quantum-mechanical description			
of free-carrier absorption	I:171		
Quantum-mechanical Morse-potential			
multiphonon model	II:190		
Quantum-mechanical treatments			
optical-property measurement and	II:152		
Quantum-mechanical wells			
in Gallium Arsenide layers	II:101		
Quantum mechanics			
development of	I:37		
and electromagnetic theory	II:23		
Quantum size effects			
amorphous superlattices and	II:110	112	122
in compound semiconductors	II:127		
Quantum theory of free-carrier			
absorption	I:171		
Quantum transitions			
Gadolinium and	III:296		
rare-earth elements and	III:287		
Quantum-well confinement			
Silicon layer thickness and	II:111		
Quantum-well structures			
Aluminum Gallium Arsenide and	II:513		
index of refraction and	II:148		
Quartz monitor			
Lead Fluoride and	III:765		

<u>Index Terms</u>	<u>Links</u>
Quartz prisms	
Liquid Mercury and	II:463
See also Prism, minimum deviation; Prisms	;
Quasi-classical Boltzmann equation	I:171
See also Drude theory	
Quasistatic theory	
ellipsometry and	I:105
Quench-anneal process	
Mercury Cadmium Telluride and	II:662
R	
Radar	
Water and	II:1063
Radiation	
absorption of	I:218
reflectance and	I:193
reflection of	I:218
Radiation analysis	
Polyethylene and	II:967
Potassium Bromide and	II:991
Radiation effects	
Magnesium Fluoride and	II:901
Radiation intensity	
absorption and	II:178
Radiation transmission	
lamelliform and	I:19
Radioactive materials	
Thorium Fluoride and	II:1054

<u>Index Terms</u>	<u>Links</u>
Radio-wave propagation	
attenuated total reflection and	II:76
RAE. See Rotating-analyzer ellipsometers	
Raman activity	
Aluminum Oxide and	III:657
Barium Fluoride and	III:686
Boron Nitride and	III:425
Strontium Fluoride and	III:885
Yttrium Aluminum Garnet and	III:965
Raman frequencies	
Calcium Carbonate and	III:702
Raman region	
Iron Pyrite and	III:507
Raman-scattering measurements	
Cadmium Selenide and	II:561
Calcium Fluoride and	II:821
Cuprous Oxide and	II:875
discussed	II:76
Indium Arsenide and	I:480
Indium Phosphide and	I:505
integrated optics and	II:76
Lead Fluoride and	III:762
Magnesium Fluoride and	II:901
plasmon-phonon interaction and	I:267
Potassium Dihydrogen Phosphate and	II:1008
superlattices and	II:108
Thorium Fluoride and	II:1053
Yttrium Oxide and	II:1081

<u>Index Terms</u>	<u>Links</u>
Raman-scattering measurements (Cont.)	
Zinc Germanium Phosphide and	III:639
Zinc Phosphide and	III:610
Raman spectroscopy	
Aluminum Nitride and	III:376
attenuated total reflection and	II:84
Copper Gallium Sulfide and	III:461
Raman spectrum	
Aluminum Arsenide and	II:491
Barium Titanate and	II:792
Selenium and	II:691
Terbium and	III:298
Raman techniques	
Erbium and	III:301
Random-element isodisplacement model (REI)	
mixed-crystal behavior and	I:259
Rare-earth elements	III:287
Rationalized systems	
optical-properties measurement and	I:12
Rayleigh scattering	
density fluctuations and	III:124
importance of, in long-path optical fibers	II:178
importance of, in UV transparent materials	II:178
in polar crystalline insulators	II:178
Rb. See Rubidium	
RbBr. See Rubidium Bromide	
RbCl. See Rubidium Chloride	
RbL See Rubidium Iodide	

<u>Index Terms</u>	<u>Links</u>		
RCE. See Rotating-compensator ellipsometers			
Re. See Rhenium			
ReAs ₂ Se ₃ . See Rhenium Arsenic Selenide			
Recursion relation			
laser calorimetry and	I:145		
Red Oxide. See Cuprous Oxide			
Reduction coefficients			
critical points and	I:233		
Red-wing shifting			
Aluminum Oxide and	III:657		
Brillouin scattering and	III:125		
pole-fit model and	II:185	187	
Strontium Fluoride and	III:886		
Yttrium Oxide and	II:1082		
Reflectance			
Aluminum and	I:373	379	393
	395	II:206	
Aluminum Antimonide and	II:501		
Aluminum Oxynitride and	II:778		
Beryllium and	II:422		
Beryllium Oxide and	II:807		
Bismuth Germanium Oxide and	III:406		
Bismuth Silicon Oxide and	III:405		
Boron Nitride and	III:427		
Cadmium Germanium Arsenide and	III:448		
Cadmium Sulphide and	II:580	584	
Calcium Fluoride and	II:817		
Chromium and	II:375		

<u>Index Terms</u>	<u>Links</u>		
Reflectance (Cont.)			
Cobalt and	II:438		
Copper Gallium Sulfide and	III:462		
Copper Oxides and	II:877		
Cubic Cadmium Sulphide and	II:586		
Cubic Silicon Carbide and	II:706		
defined	II:51		
ellipsometry and	I:101		
evaporated films and	I:373		
extreme ultraviolet region and	II:203		
of film on substrate	I:23		
Gallium Antimonide and	II:597		
Gallium Telluride and	III:490		
interferometry and	I:115		
Iron and	II:386		
in layered slab	I:26		
layered structures of	I:18	26	
Lead Fluoride and	III:766		
Liquid Mercury and	II:461	464	
Magnesium Oxide and	II:919	921	931
measurement of	II:62		
measurement of, and dispersion analysis	I:58		
optical-properties measurement and	I:18		
Orthorhombic Sulfur and	III:900		
overlayers and	I:103		
Palladium and	II:469	472	
Potassium and	II:365		
Potassium Iodide and	III:807		

<u>Index Terms</u>	<u>Links</u>		
Reflectance (Cont.)			
rare-earth metals and	III:290		
Rubidium Iodide and	III:858		
Silicon, doped n-type and	III:157		
Silicon-Germanium alloys and	II:609		
Sodium Fluoride and	II:1021		
Sodium Nitrate and	III:872		
Strontium Fluoride and	III:883		
temperature dependence and	I:382	II:183	
Thallous Halides and	III:928		
Thorium Fluoride and	II:1050		
values of n and k and	I:69	79	87
Vanadium and	II:477		
Water and	II:1060		
Zinc Selenide and	II:738	740	
Zinc Telluride and	II:744		
Reflectance curves			
Cadmium Sulphide and	II:581		
roughness and	I:376	389	
two-media measurements and	I:86		
Reflectance formulas			
nonabsorbance and	I:26		
for single layer on slab	I:26	28	
Reflectance measurements			
Aluminum Oxide and	III:654		
Barium Fluoride and	III:683	685	
Bismuth Silicon Oxide and	III:405		
Boron Nitride and	III:428		

<u>Index Terms</u>	<u>Links</u>
Reflectance measurements (Cont.)	
Cesium and	III:342
Copper Gallium Sulfide and	III:460
dispersion analysis and	I:59
Dysprosium and	III:298
Gadolinium and	III:294
Gallium Selenide and	III:475
Gallium Telluride and	III:489
Hafnium Nitride and	III:353
Lead Fluoride and	III:764
Magnesium Oxide and	II:936
Ruthenium and	III:254
on Silicon	I:109
Silicon and	III:523
Silicon-Germanium alloys and	III:537
Strontium Fluoride and	III:885
Terbium and	III:297
Thallous Halides and	III:930
Zinc Germanium Phosphide and	III:639
Zirconium Nitride and	III:353
Reflectance methods	
discussed	I:276
optical-properties determination and	I:92
refractive-index measurement and	I:70
single-medium	I:85
two-medium	I:85
Reflectance spectra	
Cadmium Selenide and	II:562

<u>Index Terms</u>	<u>Links</u>	
Reflectance spectra (Cont.)		
Hafnium Nitride and	III:355	
Orthorhombic Sulfur and	III:901	903
Potassium Iodide and	III:809	
Strontium Fluoride and	III:886	
Zinc Selenide and	II:739	
Zirconium Nitride and	III:355	
Reflection		
absorption coefficients and	I:229	
Aluminum Gallium Arsenide and	II:514	
Calcium Carbonate and	III:701	
Calcium Fluoride and	II:820	
Cesium Bromide and	III:718	
Cesium Iodide and	II:856	
defined	II:51	
free-carrier density of semiconductors and	I II:126	
introduced	I:8	
redistribution of electric fields and	I:139	
Thallium Bromide and	III:925	
Thallium Chloride and	III:923	
Reflection coatings		
film on substrate samples of	I:5	
Reflection coefficients		
and electric fields	II:38	
laser calorimetry and	I:144	
parameters of	II:50	
Polyethylene and	II:961	
and p -polarization	II:40	

<u>Index Terms</u>	<u>Links</u>
Reflection coefficients (Cont.)	
and s-polarization	II:40
superlattices and	II:113
See also Fresnel coefficients	II:38
Reflection electron scattering	
overlayers and	I:100
Reflection measurements	
Cadmium Germanium Arsenide and	III:446
f sum rules and	I:62
Lithium Tantalate and	III:777
multi-oscillator fit and	I:222
optical-constants determination and	II:184
Rubidium Bromide and	III:847
Silicon, doped n-type and	III:162
Silver Iodide and	III:555
Thallium Bromide and	III:926
Thallium Iodide and	III:927
Yttria and	II:185
Reflection peaks	
Iron Pyrite and	III:510
Reflection phase	
measurement of	I:124
Reflection phase change. See Phase changes	
Reflection spectroscopy	
plasmon-phonon interaction and	I:267
sum rules and	I:51
Reflection spectrum	
Lead Fluoride and	III:763

<u>Index Terms</u>	<u>Links</u>		
Reflection techniques			
electromagnetic theory and	I:89		
model dependency and	I:96		
Reflectivity			
Aluminum Arsenide and	II:491		
Aluminum Gallium Arsenide and	II:514	515	
Aluminum Oxide and	II:762		
attenuated-total-reflection experiments and	II:88		
Barium Titanate and	II:789	791	793
Bismuth Germanium Oxide and	III:403		
Cesium Chloride and	III:731	733	
Cesium Iodide and	II:854		
defined	II:51		
of evanescent waves	II:75		
Gallium Arsenide and	II:491		
Graphite and	II:450	452	
of ionic diatomic crystals	I:219		
Iron Pyrite and	III:511		
Lead Tin Telluride and	II:637	638	
Lithium Tantalate and	III:779		
Mercury Cadmium Telluride and	II:656	658	
of Metallic Aluminum	I:395		
optical constants and	I:228		
optical-constants determination and	II:302		
Potassium Niobate and	III:822	824	
and prism experiments	II:81		
Selenium and	II:691		
Silicon, doped <i>n</i> -type and	III:166		

Index Terms	<u>Links</u>		
Reflectivity (Cont.)			
Silver Gallium Selenide and	III:574		
Silver Iodide and	III:556		
Sodium Nitrate and	III:872		
superlattices and	II:99	100	119
	119		
and surface-plasmon resonance	II:94		
Tellurium and	II:710		
Tin Telluride and	II:725		
values of n and k and	I:176	185	
Yttrium Aluminum Garnet and	III:965		
Reflectivity curves			
in Gallium Arsenide samples	I:185		
Reflectivity measurements			
Boron Nitride and	III:426		
complex dielectric constants and	I:169		
Drude theory and	I:171		
Iron Pyrite and	III:507		
Lead Fluoride and	III:763		
Potassium Bromide and	II:991		
Silver Chloride and	III:553		
Silver Gallium Sulfide and	III:576		
Sodium Nitrate and	III:871		
Strontium Titanate and	II:1035		
Zinc Phosphide and	III:609		
Reflectivity spectra			
Zircon and	III:987		

<u>Index Terms</u>	Links	<u>3</u>
Reflectometers		
Cadmium Selenide and	II:562	
Cadmium Sulphide and	II:580	
Cesium Iodide and	II:856	
Lead Fluoride and	III:764	
Magnesium Oxide and	II:922	
Mercury Cadmium Telluride and	II:658	
optical-properties determination and	I:92	
Osmium and	I:324	
Palladium and	II:470	
Silicon Carbide and	I:587	
Silver Chloride and	III:553	
in situ measurements and	II:205	
Tungsten and	I:357	
Reflectometry		
versus attenuated total reflection	II:75	
versus ellipsometry	I:91	
optical-properties determination and	I:90	
Reflectors		
metal mesh	I:162	
Refraction		
in dielectric response function	I:221	
interferometers and	I:120	
Refractive index. See Index of refraction		
Refractory compounds		
optical properties of	II:295	303

Index Terms	<u>Links</u>		
REI. See Random-element isodisplac	ement model		
Relaxation frequencies			
Gadolinium and	III:296		
Hafnium Nitride and	III:353		
Zirconium Nitride and	III:353		
Relaxation modes			
Sodium Nitrate and	III:873		
Relaxation rates			
Boltzmann equation and	I:171	173	II:127
Drude theory and	I:171	177	III:161
frequency dependent	I:182		
Hafnium Nitride and	III:356		
for impurity scattering	I:178	180	
for polar scattering	I: <i>179</i>		
Potassium and	II:366		
Silicon, doped n-type and	III:166		
Zirconium Nitride and	III:356		
Residual gas			
bulk inclusion of	I:375		
Resins			
Silver Chloride and	III:554		
Resolution			
Calcium Fluoride and	II:818		
Resonance			
Boron Nitride and	III:426		
Carbon films and	II:838		
Cesium Iodide and	II:853		
Copper Oxides and	II:877		

<u>Index Terms</u>	<u>Links</u>	
Resonance (Cont.)		
dielectric response function and	I:222	
Iron Pyrite and	III:508	
Magnesium Fluoride and	II:900	
Polyethylene and	II:960	
Thallium Bromide and	III:925	
Thallium Chloride and	III:924	
Resonance absorption peaks		
Gadolinium and	III:296	
Resonance frequency		
Beryllium Oxide and	II:805	
dielectric constants and	I:235	
optical properties of crystals and	I:216	226
Selenium and	II:691	
Resonance location		
introduced	I:8	
Resonance minimum shifts		
attenuated total reflection and	II:84	
Resonance structure		
Potassium Niobate and	III:824	
Resonant absorption		
of infrared radiation	I:257	
Resonant cavity interferometry		
index-of-refraction measurement and	I:163	
Resonant conditions		
extinction coefficients and	II:155	

Index Terms	<u>Links</u>		
Resonant frequencies			
near-millimeter-wavelength			
measurement and	I:161	163	
Resonant modes			
frequency spectrum and	I:255		
Response linearization			
interferometry and	I:126		
Reststrahlen phenomenon			
described	I:219		
Reststrahlen region			
absorption and,	I:243		
alkali halides and	I:259		
Aluminum Arsenide and	II:491		
Aluminum Oxide and	III:657		
Arsenic Selenide and	I:624		
Beryllium Oxide and	II:807		
Beta-Gallium Oxide and	III:754		
Bismuth Germanium Oxide and	III:406		
Bismuth Silicon Oxide and	III:406		
Cadmium Telluride and	I:410		
Calcium Fluoride and	II:819		
Cesium Bromide and	III:718		
Cesium Chloride and	III:731		
Cesium Iodide and	II:853		
Cubic Silicon Carbide and	II:706		
Gallium Arsenide and	I:429	431	II:118
Gallium Selenide and	III:475		
Gallium Telluride and	III:491		

Index Terms	<u>Links</u>	
Reststrahlen region (Cont.)		
Indium Antimonide and	I:493	
Indium Arsenide and	I:480	
Indium Phosphide and	I:505	
infrared absorption and	I:249	
Magnesium Oxide and	II:935	
Mercury Cadmium Telluride and	II:663	
optical-constants calculations and	I:187	221
Potassium Bromide and	II:990	
Potassium Chloride and	I:703	
Potassium Dihydrogen Phosphate and	II:1008	
Selenium and	II:692	
semiconductors and	III:32	
Silicon Carbide and	I:588	
Silver Gallium Selenide and	III:575	
Sodium Chloride and	I:776	
Sodium Nitrate and	III:872	
spectral regions and	I:214	
superlattices and	II:118	
Tellurium and	II:710	
Zinc Sulfide and	I:600	
RF plasma		
tetrafluoroethylene in	II:90	
Rh. See Rhodium		
Rhenium Arsenic Selenide (ReAs ₂ Se ₃)		
optical properties of	II:10	
See also Arsenic Selenide, crystalline		

<u>Index Terms</u>	<u>Links</u>	
Rhenium (Re)		
critique	III:278	
values of n and k for	III:279	280
Rhodium (Rh)		
critique	I:342	
experiments with	II:58	
index measurements of	II: 61	
optical parameters for	II:318	
thickness measurements of	II: 61	
values of n and k for	I:343	344
Rhombohedral structures		
Antimony and	III:274	
Rigaku's Bragg-Brentano x-ray diffractometer		
Lead Fluoride and	III:765	
RMS deviation		
Silver Gallium Selenide and	III:575	
Silver Gallium Sulfide and	III:577	
RMS errors		
Aluminum Antimonide and	II:504	
Beryllium Oxide and	II:806	
Copper Oxides and	II:876	
Gallium Antimonide and	II:598	600
Potassium Dihydrogen Phosphate and	II:1006	
Rock salt		
optic branches of	I:215	
Rotating-polarizer method		
Liquid Mercury and	II:462	

<u>Index Terms</u>	<u>Links</u>		
Rotating-analyzer ellipsometers (RAE)			
described	I:94		
Rotating-compensator ellipsometers (RCE)			
described	I:95		
Rotating-polarizer ellipsometers (RPE)			
described	I:94		
Liquid Mercury and	II:462		
Roughness			
Aluminum and	I:373	376	
Cadmium Selenide and	II:560		
Cesium and	III:341		
Cuprous Oxide as	II:876		
effective-medium theory and	I:105		
ellipsometry and	I:91		
Gallium Antimonide and	II:597		
interferometry and	I:131		
Lithium and	II:347		
metals and	III:234		
models of	I:97	98	
optical-properties measurement and	I:8	375	II:205
Palladium and	II:469		
Rubidium Bromide and	III:845		
Rubidium Iodide and	III:857		
Silicon and	I:104		
Sodium and	II:354		
Sodium Fluoride and	II:1021		
Thorium Fluoride and	II:1050		
Vanadium and	II:478		

<u>Index Terms</u>	<u>Links</u>	
RPE. See Rotating-polarizer ellipsometers		
Ru. See Ruthenium		
Rubidium Bromide (RbBr)		
critique	III:845	
discussed	III:29	
values of n and k for	III:849	850
Rubidium Chloride (RbCl)		
critique	III:29	
values of n and k for	III:29	30
Rubidium Iodide (Rbl)		
critique	III:857	
discussed	III:29	
values of n and k for	III:862	863
Rubidium (Rb)		
halides, absorption and	III:719	
Ruby	III:653	656
See also Aluminum Oxide		
Ruthenium (Ru)		
critique	III:253	
values of n and k for	III:255	256
Rutile (TiO ₂)		
critique	I:795	
See also Titanium Dioxide		
S		
Samarium (Sm)	III:287	
critique	III:293	
values of n and k for	III:307	315

<u>Index Terms</u>	<u>Links</u>	
Sample preparation		
Beta-Gallium Oxide and	III:753	
Bismuth Germanium Oxide and	III:406	
Bismuth Silicon Oxide and	III:406	
Carbon films and	II:838	
Cesium Chloride and	III:731	
Cesium Fluoride and	III:743	
Cesium Iodide and	II:854	
Cubic Thallium(I) Halides and	III:923	
Iron Pyrite and	III:508	
Lead Fluoride and	III:761	
Magnesium Fluoride and	II:901	
Magnesium Oxide and	II:936	
optical-properties determination and	II:295	
Orthorhombic Sulfur and	III:901	
Polyethylene and	II:958	966
Potassium Bromide and	II:990	
Potassium Niobate and	III:821	
Rubidium Bromide and	III:845	
Rubidium Iodide and	III:857	
Silicon-Germanium alloys and	III:538	
Sodium Fluoride and	II:1021	
Sodium Nitrate and	III:871	873
Strontium Titanate and	II:1035	
of surface, importance of	I:8	
Thorium Fluoride and	II:1051	
Yttrium Oxide and	II:1079	
Zinc Phosphide and	III:610	

<u>Index Terms</u>	<u>Links</u>		
Sample preparation (Cont.)			
Zircon and	III:987		
See also Polishing techniques;			
Individual critiques			
Sapphire	II:761	III:653	
Beryllium and	II:423		
Cadmium Sulphide and	II:583		
ellipsometry and	II:355		
Liquid Mercury and	II:465		
multiphonon absorption and	II:192	196	198
sample preparation and	II:1053		
as substrate	III:766		
Zinc Telluride and	II:745		
See also Aluminum Oxide			
Sb. See Antimony			
Scandium Oxide (ScO ₂)			
experiments with	II:58		
index measurements of	II: 59		
Scattering			
acoustical-mode phonons and	II:128		
Aluminum Oxide and	III:655		
Cadmium Germanium Arsenide and	III:446		
Cadmium Selenide and,	II:561		
Calcium Fluoride and	II:823		
Cesium Iodide and	II:856		
Copper Gallium Sulfide and	III:460		
dependence for ionized impurity	I:171		
electron-energy-loss spectroscopy and	II:294	295	298

<u>Index Terms</u>	<u>Links</u>	
Scattering (Cont.)		
electrons and	I:196	
Graphite and	II:450	
Liquid Mercury and	II:461	
Magnesium Oxide and	II:920	
Mercury Cadmium Telluride and	II:665	
metals and	III:233	
optical-constants determination and	III:121	
optical-mode phonons and	II:128	
Orthorhombic Sulfur and	III:901	
Palladium and	II:470	
phonons and	I:197	
Polyethylene and	II:957	
Rubidium Iodide and	III:857	
Selenium and	II:692	
Silicon, doped n-type and	III:163	167
Sodium and	II:355	357
Sodium Fluoride and	II:1022	
Thorium Fluoride and	II:1051	
Vanadium and	II:478	
Zinc Germanium Phosphide and	III:638	
See also Raman-scattering measurements		
Scattering angle	III:122	
Scattering mechanism		
free-carrier absorption and	I:172	
inelastic	I:174	
wavelength dependence and	II:127	

<u>Index Terms</u>	<u>Links</u>		
Scattering rates			
Drude theory and	I:175		
optical-constants calculations and	I:177	177	179
Scattering theory			
Cesium Chloride and	III:733		
Cesium Fluoride and	III:744		
Schering bridge circuits			
Lead Fluoride and	III:763		
Schrodinger equations	II:24		
absorption rules and	I:38		
multiphonon absorption and	II:190		
one-electron model and	I:190		
sum rules and	I:41		
time dependent	I:41		
ScO ₂ . See Scandium Oxide			
Screening effect			
ellipsometry and	I:106		
Se. See Selenium			
Selection rules			
defects and	I:254		
electron-hole interaction and	I:199		
one-electron model and	I:193		
optical phonons and	I:232		
Selenium, amorphous (a-Se)			
photothermal deflection and	III:110		
Selenium (Se)			
critique	II:691		
optical parameters for	II: 322	329	III:207

<u>Index Terms</u>	<u>Links</u>	
Selenium (Se) (Cont.)		
oscillator parameters for	II: 696	
spectroscopic measurements of	III:84	
values of n and k for	II:695	697
Self-shadowing crystallites		
Aluminum and	I:376	
Sellmeier-type dispersion equations		
Aluminum Antimonide and	II:504	
Aluminum Oxide and	III:655	
Ammonium Dihydrogen Phosphate and	II:1006	
Arsenic Sulfide and	I:643	
Barium Fluoride and	III:684	
Barium Titanate and	II:790	
Beryllium Oxide and	II:806	
Bismuth Germanium Oxide and	III:404	
Bismuth Silicon Oxide and	III:404	
Boron Nitride and	III:427	
Cadmium Germanium Arsenide and	III:447	
Cadmium Sulphide and	II:581	583
Cadmium Telluride and	I:410	412
Calcium Carbonate and	III:702	
Calcium Fluoride and	II:818	823
Cesium Bromide and	III:718	
Cesium Chloride and	III:732	
Cesium Fluoride and	III:743	
Cesium Iodide and	II:855	
Copper Gallium Sulfide and	III:461	
Cubic Carbon and	I:666	

<u>Index Terms</u>	<u>Links</u>	
Sellmeier-type dispersion equations (<i>Cont.</i>)		
discussed	II:152	
Gallium Antimonide and	II:599	
Gallium Arsenide and	I:430	
Germanium and	I:466	468
Indium Arsenide and	I:479	
Indium Phosphide and	I:504	
Lead Fluoride and	III:762	
Lithium Fluoride and	I:676	
Magnesium Aluminum Spinel and	II:884	
Magnesium Fluoride and	II:900	902
Mercury Cadmium Telluride and	II:660	
optical-property measurement and	II:152	
Potassium Bromide and	II:990	
Potassium Chloride and	I:704	
Potassium Dihydrogen Phosphate and	II:1006	
Potassium Iodide and	III:808	
Potassium Niobate and	III:823	
Rubidium Bromide and	III:846	
Rubidium Iodide and	III:859	
Silicon, doped n-type and	III:166	
Silicon and	I:548	
Silicon Carbide and	I:588	
Silicon Dioxide (glass) and	I:750	
Silver Gallium Selenide and	III:575	
Silver Gallium Sulfide and	III:577	
Sodium Chloride and	I:777	
Sodium Nitrate and	III:872	

Index Terms	<u>Links</u>		
Sellmeier-type dispersion equations (<i>Cont.</i>)			
Strontium Fluoride and	III:884	886	896
Thallous Halides and	III:929		
Yttrium Aluminum Garnet and	III:964		
Yttrium Oxide and	II:1080	1083	
Zinc Germanium Phosphide and	III:639		
Zinc Selenide and	II:738	740	
Zinc Sulfide and	I:599		
Zinc Telluride and	II:738	745	
Semiconductor diode laser			
double-heterostructure	II:127		
Semiconductors			
Cadmium Germanium Arsenide and	III:445		
complex dielectric constants of	I:169		
Copper Gallium Sulfide and	III:459		
covalently bonded	I:207		
Cuprous Oxide	II:875		
direct band-gap	II:691		
direct band gap energy of	I:172		
free-carrier absorption in	I:172		
free-carrier concentration in	I:8		
free-carrier effects and	II:177		
Gallium Antimonide and	II:597		
Gallium Selenide and	III:473		
heavily doped	I:198		
highly doped	I:202		
hyperbolic exciton in	I:201		
infrared dispersion and	I:263		

<u>Index Terms</u>	<u>Links</u>	
Semiconductors (Cont.)		
infrared properties study of	I:22	
interband absorption and	I:196	
lattice vibrations and	II:178	
loss-function determination and	II:300	
narrow transitions regions on	I:104	
optical properties of	I:18	
optical-property calculation of	II:151	
oxide-thickness measurement on	I:94	
phonons and	II:178	
quantum free-carrier-absorption theory of	I:4	172
reflection measurements of	III:32	
small band gap	I:198	
Tin Telluride and	II:725	
Zinc Arsenide and	III:595	
Zinc Germanium Phosphide and	III:637	
Zinc Selenide and	II:737	
Zinc Telluride and	II:737	
Semiconductors, amorphous. See		
Amorphous semiconductors		
Semiconductors, compound		
complex dielectric constant and	II:125	
Semiconductors, crystalline. See		
Crystalline semiconductors		
Semiconductor slab		
lamelliform and	I:19	
Semiconductor slab, parallel sided		
lamelliform and	I:19	

<u>Index Terms</u>	<u>Links</u>		
Semiconductor superlattices			
excitons and	II:102		
introduced	II:101		
optical properties of	II:100	122	
phonons and	II:108		
single-particle excitations and	II:102		
Semiconfocal cavity configuration			
index-of-refraction measurement and	I: <i>161</i>	162	166
	167		
Seya-Namioka monochromator			
Iron Pyrite and	III:510		
s-f exchange coupling			
rare-earth elements and	III:288		
Shearing interferometers			
optical measurement and	I:119	121	126
Si. See Silicon			
SiC. See Silicon Carbide			
Signal-to-noise ratio			
spectroscopy and	I:156	159	161
Silane (SiH ₄)			
preparation of	II:168		
Silicon, amorphous (a-Si)			
critique	I:571		
index of refraction for	I:102		
optical parameters for	II:167	323	
photothermal deflection and	III:112		
spectroscopic measurements of	III:85	86	
values of n and k for	I:574	575	II: 167

<u>Index Terms</u>	<u>Links</u>		
Silicon, doped n-type (n-Si)			
critique	III:155		
values of n and k for	III:173	174	
Silicon, hydrogenated amorphous (SiH ₄)			
Kramers-Krönig analysis and	II:167		
Silicon, hydrogenated (a-Si:H)			
photothermal deflection and	III:112		
Silicon Carbide (SiC)			
critique	I:587		
dispersion analysis of	I:588		
infrared absorption and	I:261		
optical parameters for	II: 321		
values of n and k for	I:590	590	II:170
	172	172	
See also Cubic Silicon Carbide			
Silicon Dioxide, amorphous (a-SiO ₂)			
optical parameters for	II: 323	330	
Silicon Dioxide, crystalline (SiO ₂)			
dispersion analysis of	I:720		
values of n and k for	II:170	171	
Silicon Dioxide (glass) (SiO ₂)			
critique	I:749		
Brillouin scattering and	III:131		
dispersion analysis of	I:750		
photothermal deflection and	III:107		
values of n and k for	I:753	753	

<u>Index Terms</u>	<u>Links</u>		
Silicon Dioxide (SiO ₂)			
absorption dependence of	II:117		
attenuated-total-reflection experiments and	II:92		
Berreman effect and	II:116		
ellipsometry and	I:100	102	
film, saline oxidation and	II:90		
index of refraction and	II: 187		
optical parameters for	II:322	III:207	
optical properties of	II: 12		
reflectance of	II:117		
Silver (Ag) film on	II:93		
Silicon Dioxide (SiO ₂) (type-α, Crystalline)			
critique	I:719		
values of n and k for	I:723	724	
Silicon-Germanium alloys (Si_xGe_{1-x})			
critique	II:607	III:537	
values of n and k for	II:612	613	III:539
	542		
Silicon Monoxide (SiO) (noncrystalline)			
critique	I:765		
values of n and k for	I:767	767	
Silicon Nitride, amorphous (a-Si ₃ N ₄)			
optical parameters for	II:167	323	
Silicon Nitride (Si ₃ N ₄)			
optical parameters for	III:203	206	
Silicon Nitride (Si ₃ N ₄) (noncrystalline)			
critique	I:771		
values of n and k for	I:773	774	

<u>Index Terms</u>	<u>Links</u>		
Silicon Oxide, amorphous (a-SiO)			
optical parameters for	II:323		
Silicon Oxide (SiO)			
reflectance and	I:102		
superlattices and	II:110		
surface oxide layers and	I:375		
Silicon (Si)			
critique	I:547	III:519	531
absorption coefficients for	I:209		
absorption spectrum from	I:258		
atomic-motions determination of	I:218		
Brillouin scattering and	III:133		
chemical etching of	I:104		
critical-point analysis of	I:237		
dispersion analysis of	I:60	548	
evaporated-layer measurement of	I:80		
extinction coefficients of	III:525		
index of refraction of	I: 569		
infrared absorption and	I:254	260	261
multiphonon absorption in	I:6		
multiphonon absorption spectrum of	I:244		
one-electron calculation and	I:207	208	
optical-constants calculation of	II:169		
optical parameters for	II: 319		
overlayers and	I:109		
overlayers in ellipsometry and	I:99		
oxide on	I:101		
photothermal deflection and	III:112		

<u>Index Terms</u>	<u>Links</u>		
Silicon (Si) (Cont.)			
reflectance measurements on	I:109		
reflectance on slabs of	I:22		
selection rules for	I:234		
spectroscopic measurements of	III:70		
superlattices and	II:110		
transparency frequency of	I: 231		
values of n and k for	I:554	555	II:164
	165	166	III:526
	529	534	535
Silicon Tetrahedron (SiO ₄)			
infrared absorption and	I:262		
Silicon-wafer thermometry			
Silicon, doped n-type and	III:157		
Silver (Ag)			
critique	I:350		
attenuated-total-reflection prisms and	II:87		
complex index of refraction of	I:108		
films, and evanescent waves	II:88		
films, and surface-plasmon oscillation			
(SPO) resonance curves	II:85		
optical constants of	II:87		
optical parameters for	II:318		
permittivity of	II:81		
prism, attenuated-total-reflection			
resonance and	II:93		
and prism experiments	II:84		
temperature dependence of	I:382		

<u>Index Terms</u>	Links		
Silver (Ag) (Cont.)			
values of n and k for	I:352	353	III:7
Silver Bromide (AgBr)			
critique	III:554		
values of n and k for	III:558	566	
Silver Chloride (AgCl)			
critique	III:553		
spectroscopic measurements of	III:72		
transparency frequency of	I:231		
values of n and k for	III:557	561	
Silver Gallium Selenide (AgGaSe ₂)			
critique	III:573		
values of n and k for	III:579	583	
Silver Gallium Sulfide (AgGaS ₂)			
critique	III:573	576	
optical parameters for	III:212		
values of n and k for	III:581	588	
Silver Iodide (Agl)			
critique	III:555		
values of n and k for	III:559	569	
Simon-Robinson-Price method			
phase dispersion relations and	I:56		
Si ₃ N ₄ . See Silicon Nitride			
Single-barrier device structures			
Aluminum Gallium Arsenide and	II:513		
Single layer films			
laser calorimetry and	I:138		

<u>Index Terms</u>	<u>Links</u>	
Single layer on substrate		
formulas for	I:26	
Single-particle excitations		
semiconductor superlattices and	II:102	
Single phonon processes		
below fundamental band gap	I:4	
Sinusoidal variance		
wedged-film laser calorimetry and	I:139	
SiO. See Silicon Monoxide		
SiO ₂ . See Silicon Dioxide		
SiO ₄ . See Silicon Tetrahedron		
SI units. See International System of Units	(SI units)	
Si _x Ge _{1-x} . See Silicon-Germanium alloys		
Skin effect		
discussed	I:276	277
SL. See Superlattices		
Slope changes		
dielectric function and	I:380	
Slope parameters		
Aluminum Oxide and	III:654	
Thallous Halides and	III:928	
Yttrium Aluminum Garnet and	III:964	
Sm. See Samarium		
Smakula's equation		
condensed-phase concentrations of		
defects and	I:37	
defect absorptions and	I:47	

<u>Index Terms</u>	<u>Links</u>		
Small absorption constants			
determination of	I:4		
Smith chart			
laser calorimetry and	I:143		
Sn. See Tin			
Snell's law	II:38		
Fresnel coefficients and	I:24		
SnS. See Tin Sulfide			
SnTe. See Tin Telluride			
Sodium Bromide (NaBr)			
impurities and absorption in	I:256		
Sodium Chloride (NaCl)			
critique	I:775	III:20	
absorption versus photon energy for	I:243		
conductivity of	I:236		
dispersion analysis of	I:777		
index of refraction and	II: 187		
interferometry and	I:132		
laser-window material measurement of	I:9		
multiphonon absorption and	II:194		
optical parameters for	II:318		
reflectance of crystalline	I:54		
reststrahlen absorption of	I:53	55	
temperature dependence and	I: 248		
transparency frequency of	I:231		
values of n and k for	I:781	781	III:21
	22		

<u>Index Terms</u>	<u>Links</u>	
Sodium Fluoride (NaF)		
critique	II:1021	
discussed	III:29	
optical parameters for	II:319	
transparency frequency of	I: 231	
values of n and k for	II:1025	1026
Sodium (Na)		
critique	II:354	
Drude-model parameters for	II:359	
optical parameters for	II: 319	
values of n and k for	II:358	360
Sodium Nitrate (NaN0 ₃)		
critique	III:871	
optical parameters for	III: 204	
oscillator model parameters for	III: 881	
values of n and k for	III:875	876
Software. See Computer software		
Soft X-ray region (SXR)		
Antimony and	III:275	
Beryllium and	II:422	
Cesium Chloride and	III:733	
Cesium Fluoride and	III:744	
Cesium Iodide and	II:857	
discussed	I:277	
Indium and	III:262	
Magnesium and	III:235	
Manganese and	III:249	
Multiple-slit Fourier-transform		

<u>Index Terms</u>	<u>Links</u>	
Soft X-ray region (SXR) (Cont.)		
interferometry and	II:247	
Palladium and	II:470	
Rhenium and	III:278	
Ruthenium and	III:254	
Tin and	III:269	
Titanium and	III:241	
Solar collector		
Cuprous Oxide as	II:876	
Solar-energy materials		
Iron Pyrite and	III:511	
Solid rare gases		
excitons in	I:208	
Solid-state batteries		
Silver Iodide and	III:556	
Sound attenuation constant	III:122	
Spatial phenomena		
and steady-state effects	II:24	
Spatial visualization	II:31	
discussed	II:32	
Speckle patterns		
in rough-object reflections	II:120	
Spectral dependencies		
Rubidium Bromide and	III:847	
Rubidium Iodide and	III:858	861
Spectral measurements		
Lead Fluoride and	III:765	
optical constants and	II:163	

Index Terms	<u>Links</u>	
Spectral measurements (Cont.)		
overlayer correction and	I:101	
Strontium Fluoride and	III:884	
Spectrochemical analysis		
Silver Iodide and	III:555	
Spectroellipsometric studies		
Silicon-Germanium alloys and	III:537	
Spectrographic analysis		
Magnesium Oxide and	II:926	
Spectrometers		
Aluminum Oxide and	II:762	
Barium Titanate and	II:792	
Bismuth Silicon Oxide and	III:405	407
Calcium Fluoride and	II:818	
discussed	I:276	
FECO method and	I:119	
Gallium Antimonide and	II:598	
Gallium Arsenide and	I:429	
Iron Pyrite and	III:508	510
Lead Fluoride and	III:763	
Lithium Tanatalate and	III:778	
loss-function determination and	II:299	
Magnesium Oxide and	II:920	
Potassium Bromide and	II:989	
Potassium Chloride and	I:705	
Potassium Iodide and	III:809	
Rubidium Bromide and	III:847	
Silicon-Germanium alloys and	II:608	

<u>Index Terms</u>	<u>Links</u>	
Spectrometers (Cont.)		
Silver Chloride and	III:554	
Sodium Chloride and	I:778	
Sodium Nitrate and	III:871	
Strontium Titanate and	II:1036	
Tellurium and	II:710	
Titanium Dioxide and	I:796	
Zinc Phosphide and	III:610	
Zircon and	III:987	
Spectrophotometers		
absorption-coefficient measurement and	I:231	
Gallium Phosphide and	I:448	
Iron Pyrite and	III:507	
Lead Fluoride and	III:765	
Magnesium Oxide and	II:933	938
optical properties and	II:62	
Palladium and	II:471	
Polyethylene and	II:967	
Silver Chloride and	III:554	
Silver Iodide and	III:555	
Tellurium and	II:711	
Zinc Phosphide and	III:610	
Zinc Telluride and	II:745	
Spectrophotometry		
and index measurement	II:69	
Thallous Halides and	III:930	
Thorium Fluoride and	II:1053	

Index Terms	<u>Links</u>	
Spectroscopic ellipsometry	II:213	
Aluminum Antimonide and	II:501	
Aluminum Arsenide and	II:489	
Aluminum Gallium Arsenide and	II:514	
Cadmium Selenide and	II:559	
Carbon films and	II:839	
Gallium Antimonide and	II:597	
Gallium Selenide and	III:473	
Hafnium Nitride and	III:355	357
Liquid Mercury and	II:461	
Silicon and	III:531	
Zirconium Nitride and	III:355	357
See also Ellipsometry		
Spectroscopic ellipsometry, variable-angle		
(VASE)		
Cubic Silicon Carbide and	II:705	
Spectroscopy		
Cesium Iodide and	II:853	
Copper Oxides and	II:877	
development of	I:37	
energy bands and	I:196	
Gallium Telluride and	III:491	
Hafnium Nitride and	III:352	
index-of-refraction measurements and	I:156	
Magnesium Oxide and	II:928	
Mercury Cadmium Telluride and	II:655	658
optical-constants determination by	II:293	
Palladium and	II:469	

Index Terms	Links	
Spectroscopy (Cont.)		
photometric ellipsometry and	I:93	
Polyethylene and	II:959	961
Raman scattering and	II:109	
reflection measurements and	III:13	
reflection spectrum values		
determination and	II:198	
Rubidium Iodide and	III:858	
Sodium Chloride and	I:776	
of solids, discussed	I:38	
sum rules and	I:51	
TP-DGF method of	III:858	
wavelength modulation and	I:537	
Zirconium Nitride and	III:352	
Speed of light		
Brillouin scattering and	III:128	
Thallous Halides and	III:928	
in vacuum	III:122	
Spin effects		
one-electron model and	I:193	
Spinel		
Beta-Gallium Oxide and	III:753	
See also Aluminum Oxynitride;		
Magnesium Aluminum Spinel		
Spin-orbit bands		
Liquid Mercury and	II:462	

<u>Index Terms</u>	<u>Links</u>		
Spin-orbit interactions			
Silver Gallium Selenide and	III:573		
Silver Gallium Sulfide and	III:573		
Zinc Telluride and	II:744		
Spin-orbit splitting			
Cadmium Sulphide and	II:580		
quantum-density-matrix formulation and	II:131	134	137
Split exciton peaks			
in Gallium Arsenide	II:106		
Splitting			
Iron Pyrite and	III:509		
SPO. See Surface-plasmon oscillation (SPO)			
s-polarization	II:38		
ellipsometry and	I:90	97	
and Fresnel coefficients	II:38		
Sodium Nitrate and	III:871		
superlattices and	II:100	113	
and surface-plasmon waves	II:78		
Sputtered Aluminum	I:373		
Sputtering			
Aluminum Nitride and	III:375		
Beryllium and	II:424		
Hafnium Nitride and	III:355		
superlattices and	II:118		
Zirconium Nitride and	III:355		
Square-wave modulation			
layer thickness and	II:112		

<u>Index Terms</u>	<u>Links</u>		
SrF ₂ . See Strontium Fluoride			
SrTiO ₃ . See Strontium Titanate			
Stacking			
superlattices and	II:106	114	121
Standard-deviation technique			
Gallium Selenide and	III:476		
Silicon and	III:522		
Standard interferometric techniques			
for transparent samples	I:4		
Standing wave pattern			
and Fresnel convention	II:48	49	
Static dielectric constants			
Aluminum Oxide and	III:657		
Barium Fluoride and	III:686		
Beryllium Oxide and	II:805		
Boron Nitride and	III:426		
Calcium Fluoride and	II:821		
Cesium Chloride and	III:732		
Cesium Fluoride and	III:743		
Potassium Iodide and	III:809		
semiconductors and	III:32		
Strontium Fluoride and	III:886		
temperature dependence and	II:183		
Water and	II:1063		
See also Complex dielectric constants;			
Dielectric constants			

<u>Index Terms</u>	Links
Stoichiometry	
absorption and	I:138
Aluminum Oxynitride and	II:777
Boron Nitride and	III:425
Copper Gallium Sulfide and	III:460
Copper Oxides and	II:875
Hafnium Nitride and	III:351
Iron Pyrite and	III:508
Lead Tin Telluride and	II:638
Lithium Niobate and	I:695
Magnesium Aluminum Spinel and	II:883
Silicon Nitride (noncrystalline) and	I:771
Silver Gallium Sulfide and	III:576
Zirconium Nitride and	III:351
Stopgaps	
optical-filter design and	II:101
Strain-polarizability parameters	
Lead Fluoride and	III:763
Stratified multilayer structures	
attenuated-total-reflection structures and	II:82
Stress fields	
impact on optical constants of	I:16
Stress measurements	
Calcium Fluoride and	II:825
Thorium Fluoride and	II:1050
Strip chart recorders	
laser calorimetry and	I:136

<u>Index Terms</u>	<u>Links</u>	
Strontium Fluoride (SrF ₂)		
critique	III:883	
absorption coefficient of	I:245	247
multiphonon absorption and	II:197	
oscillator model parameters for	III: 897	
Sellmeier model parameters for	III: 896	
thermo-optical coefficients of	III: 897	
transparency frequency of	I:231	
values of n and k for	III: 889	
Strontium (Sr)	III:302	
Strontium Titanate (SrTiO ₃)		
critique	II:1035	
optical parameters for	II: 321	324
values of n and k for	II:1037	1038
Styrofoam		
index of refraction and	I:158	
Submillimeter region		
Calcium Carbonate and	III:702	
Substrate materials		
Lithium Fluoride and	II:922	
Magnesium Oxide and	II:919	
multiple films on	I:4	
prevalent samples of	I:4	
Substrate phase-change averaging need for	I:21	
Substrates		
calorimetry and	I:138	
evaporation in high vacuum and	I:380	
inteference effects and	I:137	

<u>Index Terms</u>	<u>Links</u>
Substrates (Cont.)	
overlayers and	I:99
vacuum evaporation and	I:78
Sulfur (S)	
optical parameters for	III: 216
sources of	III:900
transition of	II:580
See also Orthorhombic Sulfur	
Sum phonon absorption bands	
Potassium Bromide and	II:990
Sum rules	
analysis of	I:4
finite energy and	I:45
integral equations and	I:42
introduced	I:36
optical-data analysis of	I:55
for reflection spectroscopy	I:51
as superconvergence relations	I:40n
Water and	II:1062
See also f sum rule; Optical sum rules	
Superconductors	
binding states in	II:301
rare-earth metals and	III:288
Superconductors, optical properties of	
discussed	I:40
Superconvergence	
described	I:40 <i>n</i>
sum rules and	I:38

<u>Index Terms</u>	<u>Links</u>	
Superconvergence (Cont.)		
weighting functions and	I:44	
Superconvergence relations		
sum rules and	I:36	
Superconvergence theorem		
sum rules and	I:40	
Superionic conductivity		
Lead Fluoride and	III:761	
Superlattice materials		
Aluminum Arsenide and	II:489	
Aluminum Gallium Arsenide and	II:513	
Superlattices		
effective-medium theory for	II:98	110
electron-density measurement in	II:114	
introduced	II:97	
optical properties of	II:112	
Surface-acoustic-wave calorimetry		
absorption-coefficient measurement and	I:231	
Surface electromagnetic waves		
described	II:76	
Surface films		
entrance versus exit	I:146	147
rules for	I:40	
superlattices and	II:112	120
Surface loss function		
described	II:297	

<u>Index Terms</u>	<u>Links</u>	
Surface-plasmon effect		
described	II:114	
and index measurements	II:69	
interferometry and	I:131	
Palladium and	II:472	
Surface plasmon gratings		
Silicon Oxide (SiO_x) experiments with	II:92	
Surface-plasmon oscillation (SPO)		
attenuated total reflection and	II:88	
introduced	II:76	
Surface-plasmon propagation		
attenuated total reflection and	II:78	
Surface-plasmon resonance		
reflectivity and	II:93	
Surface plasmons		
described	II:297	
Liquid Mercury and	II:462	
radiative	II:79	
Surface-plasmon waves		
attenuated total reflection and	II:76	77
experiments with	II:93	
and prisms	II:79	
Surface polariton dispersion relation		
for metal-insulator supperlattice	II:116	
for metal-metal superlattice	II:115	
Surface polaritrons		
Calcium Fluoride and	II:822	
described	II:113	

<u>Index Terms</u>	<u>Links</u>		
Susceptibility terms			
optical-properties measurement and	I:12		
SXR. See Soft X-ray region; X-ray			
absorption edge			
Symmetry			
Barium Fluoride and	III:683		
Beta-Gallium Oxide and	III:753		
Bloch states and	I:193		
Boron Nitride and	III:425		
Brillouin scattering and	III:127		
Calcium Carbonate and	III:701		
Calcium Fluoride and	II:822		
Cesium Chloride and	III:731		
Cesium Fluoride and	III:743		
Gallium Selenide and	III:473		
Graphite and	II:452		
Iron Pyrite and	III:507		
phonons and	I:198		
rare-earth metals and	III:290		
Silver Gallium Selenide and	III:573		
Silver Gallium Sulfide and	III:573		
Strontium Fluoride and	III:883		
in superlattices	II:101	102	104
	112	119	
Thallium Iodide and	III:927		
Yttrium Aluminum Garnet and	III:963		
Yttrium Oxide and	II:1079		
Zinc Arsenide and	III:595		

<u>Index Terms</u>	<u>Links</u>	
Symmetry (Cont.)		
Zinc Phosphide and	III:609	
Zircon and	III:987	
Synchrotron analysis		
Magnesium Oxide and	II:923	
Synchrotron radiation		
Aluminum and	I:381	
Aluminum Nitride and	III:375	
Barium Titanate and	II:790	
Cadmium Selenide and	II:562	
Cadmium Sulphide and	II:580	
Calcium Fluoride and	II:816	
Cerium and	III:292	
Cesium and	III:343	
discussed	I:277	
Gallium Arsenide and	I:429	431
Germanium and	I:468	
Graphite and	II:450	
Indium Antimonide and	I:491	
introduced	I:9	
Lead Fluoride and	III:763	
Lead Sulfide and	I:528	
Lead Telluride and	I:538	
Lithium Tantalate and	III:777	
optical-properties determination and	I:93	
Potassium Chloride and	I:705	
rare-earth metals and	III:290	
Samarium and	III:293	

<u>Index Terms</u>	<u>Links</u>	
Synchrotron radiation (Cont.)		
Silicon and	I:551	
Silver and	I:350	
Silver Chloride and	III:554	
Sodium Chloride and	I:779	
Zinc Arsenide and	III:595	
Zinc Selenide and	II:738	
Zinc Telluride and	II:744	
Synchrotrons		
Aluminum Oxide and	II:761	
analysis chamber and	II:205	
extreme ulraviolet measurements and	II:206	
Potassium Bromide and	II:992	
Strontium Titanate and	II:1036	
Tellurium and	II:712	
Tin Telluride and	II:726	
Vanadium and	II:478	
T		
Ta. See Tantalum		
Tables, format of		
explained	I:6	
Tantalum Pentoxide (Ta ₂ O ₅)	II:70	93
Tantalum (Ta)		
critique	II:408	
optical parameters for	II:319	
values of n and k for	II:410	411

<u>Index Terms</u>	<u>Links</u>	
Ta ₂ O ₅ . See Tantalum Pentoxide		
Tauc plots		
Carbon films and	II:837	
of Silicon layer thickness	II:111	
Taylor series		
for cubic crystal	II:136	
Tb. See Terbium		
TCNQ dyes		
attenuated-total-reflection experiments with	II:89	
Te. See Tellurium		
Technique types		
optical, photoemmision, EELS	II:450	
Technology, materials		
Mercury Cadmium Telluride and	II:655	
Telescope mirrors		
development of	I:373	
Tellurium (Te)		
critique	II:709	
optical parameters for	II:322	
oscillator model and	II:715	
values of n and k for	II:714	716
TEM micrographs		
effective-medium theory and	I:108	
Temperature coefficients		
Silver Gallium Sulfide and	III:576	
Temperature considerations		
Aluminum Antimonide and	II:501	504
Aluminum Oxide and	II:762	

<u>Index Terms</u>	<u>Links</u>	
Temperature considerations (Cont.)		
Barium Fluoride and	III:683	685
Barium Titanate and	II:789	793
Beryllium Oxide and	II:807	
Cadmium Selenide and	II:559	
Cadmium Sulphide and	II:580	582
Calcium Fluoride and	II:817	825
Carbon films and	II:838	
Cesium and	III:343	
Cesium Bromide and	III:717	
Cesium Chloride and	III:731	
Cesium Fluoride and	III:743	
Cesium Iodide and	II:853	855
Chromium measurement and	I:135	
Copper Gallium Sulfide and	III:460	
for critiques, explained	I:275	
Drude theory and	I:174	
Dysprosium and	III:299	
Erbium and	III:300	
extinction coefficients and	II:157	
fused-silica substrate and	II:168	
Gallium Antimonide and	II:590	598
Gallium Selenide and	III:476	
Graphite and	II:449	
hot-wall technique and	I:535	
impact on optical constants of	I:16	
importance of	I:8	
index of refraction and	II:147	

<u>Index Terms</u>	<u>Links</u>		
Temperature considerations (Cont.)			
Indium and	III:262		
infrared absorption and	I:234		
infrared reflectivity and	I:224	225	227
interband absorption and	I:197	208	371
laser calorimetry and	I:135	136	
Lead Fluoride and	III:761	764	766
Liquid Mercury and	II:461	464	
Lithium Tantalate and	III:779		
Magnesium Oxide and	II:921	923	929
	934		
Mercury Cadmium Telluride and	II:658		
optical constants and	I:377	380	389
Orthorhombic Sulfur and	III:899	902	
Palladium and	II:469		
Polyethylene and	II:959	961	963
	966		
Potassium Dihydrogen Phosphate and	II:1006		
Potassium Iodide and	III:807		
Potassium Niobate and	III:821	823	
Rubidium Bromide and	III:847		
Rubidium Iodide and	III:857		
Samarium and	III:293		
Selenium and	II:691		
Silicon and	III:520	523	
Silicon-Germanium alloys and	II:608		
Silver Bromide and	III:554		
Sodium Fluoride and	II:1021		

<u>Index Terms</u>	<u>Links</u>	
Temperature considerations (Cont.)		
Sodium Nitrate and	III:871	
Strontium Fluoride and	III:883	
superlattice excitons and	II:104	107
Tellurium and	II:709	
Thallium Bromide and	III:925	
Thorium Fluoride and	II:1051	
and time variances	I:140	
Tin and	III:269	
Tin Telluride and	II:725	
Vanadium and	II:477	478
Water and	II:1063	
Yttrium Oxide and	II:1080	
Zinc Selenide and	II:742	
Zircon and	III:988	
See also Curie temperature; Néel		
temperature; Thermal expansion		
Temperature dependence		
absorption and	I:249	
absorption processes and	I:234	
Aluminum Nitride and	III:374	
Aluminum Oxide and	III:654	656
Aluminum Oxynitride and	II:779	
Ammonium Dihydrogen Phosphate and	II:1007	
Barium Fluoride and	III:685	
Cadmium Selenide and	II:560	
Calcium Carbonate and	III:702	
Calcium Fluoride and	II:817	822

<u>Index Terms</u>	<u>Links</u>	
Temperature dependence (Cont.)		
Cerium and	III:288	292
Cuprous Oxide	II:875	
equations and	II:183	
Gadolinium and	III:295	
Gallium Selenide and	III: 487	
Iron Pyrite and	III:511	
Lead Fluoride and	III:762	
Lead Tin Telluride and	II:639	
Lithium Tantalate and	III:779	
Magnesium Aluminum Spinel and	II:884	
Magnesium Fluoride and	II:901	903
one-phonon	II:181	
of oscillator strength	I:248	
Potassium Bromide and	II:991	
Potassium Dihydrogen Phosphate and	II:1007	
Potassium Iodide and	III:809	810
Rhenium and	III:278	
Silicon and	I: 569	
Sodium Nitrate and	III:873	
Strontium Fluoride and	III:884	
Strontium Titanate and	II:1035	
Thallium Chloride and	III:924	
Titanium and	III:240	
in transparent regime	I:248	
values of n and k and	II:179	
Yttrium Oxide and	II:1082	
See also Index of refraction, temperature		

<u>Index Terms</u>	<u>Links</u>	
Temperature dependence (Cont.)		
dependence; Individual critiqes		
Temperature versus time curves		
laser calorimetry and	I:136	
Tensor treatments information	I:12	
Terbium (Tb)	III:287	
critique	III:297	
values of n and k for	III:309	324
Tetragonal crystals		
Zinc Germanium Phosphide and	III:637	
Zinc Phosphide and	III:609	
Zircon and	III:987	
Tetragonal materials		
Manganese and	III:249	
Tetrahedal distortion		
Silver Gallium Selenide and	III:573	
Silver Gallium Sulfide and	III:573	
TE waves. See Transverse-electric waves		
Thallium Bromide (TIBr)		
critique	III:925	
values of n and k for	III:934	944
Thallium Chloride (T1C1)		
critique	III:923	
values of n and k for	III:933	938
Thallium Iodide (TlI)		
critique	III:927	
optical parameters for	III:216	
values of n and k for	III:935	951

<u>Index Terms</u>	<u>Links</u>	
Thallium (Tl)		
interband absorption and	I:204	
See also Cubic Thallium(I) Halides		
Thallous Halide (KRS-5)		
critique	III:928	
values of n and k for	III:936	955
Thallous Halide (KRS-6)		
critique	III:928	
values of n and k for	III:937	958
Thermal broadening		
LO phonons and	II:104	
Thermal coefficients		
Gallium Selenide and	III:476	
Thermal conductivity		
Aluminum Nitride and	III:373	
Aluminum Oxynitride and	II:780	
Magnesium Aluminum Spinel and	II:887	
Yttrium Oxide and	II:1084	
Zinc Germanium Phosphide and	III:637	
Thermal equilibrium		
laser calorimetry and	I:136	
Thermal expansion		
Calcium Fluoride and	II:818	
coefficients, interferometry and	I:126	
interferometry and	I:125	
ionic solids and	I:249	
Lead Fluoride and	III:763	

<u>Index Terms</u>	<u>Links</u>	
Thermal expansion (Cont.)		
linear coefficient of	II:136	
Orthorhombic Sulfur and	III:903	
of solids	I:232	
values of n and k and	II:180	
Thermal index variation		
of optical materials	I:125	
Thermal properties		
Lead Fluoride and	III:762	
Potassium Iodide and	III:808	
Thermal shift rate		
Calcium Fluoride and	II:817	
Thermal stability		
Aluminum Nitride and	III:373	
Thermal vacuum evaporation technique		
Zinc Phosphide and	III:610	
Thermocouples		
Cadmium Sulphide and	II:581	
Thermodynamic properties		
Orthorhombic Sulfur and	III:900	
Thermoluminescence		
Calcium Fluoride and	II:816	
Thermomodulation studies		
optical-constants measurements and	I:381	
Thermo-optical coefficients		
Barium Fluoride and	III:684	
Potassium Iodide and	III:808	820
Silver Gallium Sulfide and	III:577	

<u>Index Terms</u>	<u>Links</u>	
Thermo-optical coefficients (Cont.)		
Strontium Fluoride and	III:884	897
Yttrium Aluminum Garnet and	III: 986	
ThF ₄ . See Thorium Fluoride		
Thickness considerations	III:122	
beam splitters and	I:157	
Beta-Gallium Oxide and	III:754	
Bismuth Silicon Oxide and	III:405	
Cadmium Selenide and	II:560	
Cadmium Sulphide and	II:583	
Cesium and	III:341	343
Cesium Bromide and	III:717	
Cesium Iodide and	II:854	
Copper Oxides and	II:877	
ionic-solids measurements and	I:230	
Iron Pyrite and	III:510	
Lead Fluoride and	III:764	
Lead Tin Telluride and	II:637	
Magnesium Aluminum Spinel and	II:887	
Magnesium Oxide and	II:920	933
Manganese and	III:249	
Mercury Cadmium Telluride and	II:657	662
Polyethylene and	II:959	963
Potassium Bromide and	II:992	
Potassium Niobate and	III:822	
Rubidium Iodide and	III:858	
Silicon and	III:521	
Silicon-Germanium alloys and	II:609	III:537

<u>Index Terms</u>	<u>Links</u>	
Thickness considerations (Cont.)		
Sodium Fluoride and	II:1021	
Sodium Nitrate and	III:872	
in superlattices	II:98	119
of surface films	I:148	
wedged-film laser calorimetry and	I:141	142
Ytterbium and	III:303	
Yttrium Oxide and	II:1084	
See also Thin films		
Thickness measurements		
and optical properties	II:62	
of thin film layers	II:57	
Thin-film absorption		
f sum rules and	I:63	
wedged-film laser calorimetry and	I:140	
Thin-film optical parameters		
versus bulk material	I:113	
interferometry and	I:113	123
Thin films		
Aluminum Nitride and	III:375	
Barium Fluoride and	III:683	
Cadmium Sulphide and	II:582	
Calcium Fluoride and	II:825	
Cobalt and	II:435	
defects in	III:859	
ellipsometry and	I:100	
infrared radiation by	I:216	
Iron Pyrite and	III:509	

<u>Index Terms</u>	<u>Links</u>	
Thin films (Cont.)		
Lead Fluoride and	III:761	764
Magnesium Fluoride and	II:900	
Magnesium Oxide and	II:919	931
normal-incidence reflectance and	II:115	
optical-constants determination and	II:294	
optical parameters and	II:208	
optical-parameters measurements of	I:113	
optical parameters of	II:57	
optical properties of	II:112	
Rubidium Iodide and	III:858	
Silicon-Germanium alloys and	III:537	
Silver Gallium Selenide and	III:574	
Silver Iodide and	III:555	
Sodium Fluoride and	II:1021	
superlattices and	II:107	
Thallium Iodide and	III:927	
Thorium Fluoride and	II:1049	
values of n and k and	I:83	
wave-guiding properties of	I:132	
Yttrium Oxide and	II:1081	
Zinc Arsenide and	III:595	
Zinc Phosphide and	III:610	
Thin-film stack		
layer-labeling system for	I:143	
Thin-film theory		
attenuated total reflection and	II:81	

<u>Index Terms</u>	<u>Links</u>	
Thin-film values		
Cesium Iodide and	II:856	
Thin-film waveguides		
introduced	II:84	
Thorium Fluoride, amorphous (a-ThF ₄)		
optical parameters for	II:323	
Thorium Fluoride (ThF ₄)		
critique	II:1049	
optical parameters for	II:323	III:218
values of n and k for	II:1055	1056
Three-dimensional systems		
layered structures and	II:112	
Three-phonon absorption		
Zircon and	III:988	
Three-phonon processes		
absorption and	I:236	251
Three-photon difference-frequency		
generation spectroscopy (TP-DFG)	III:858	
Thulium (Tm)	III:287	
critique	III:301	
values of n and k for	III:312	335
Ti. See Titanium		
TiC. See Titanium Carbide		
Tilt angles		
attenuated-total-reflection curves and	II:92	
Time dependence		
ellipsometers and	I:93	

<u>Index Terms</u>	<u>Links</u>	
Time-dependent perturbation theory	III:160	
Drude theory and	I:171	173
extinction coefficient and	II:155	
one-electron model and	I:190	
transition probability rate and	II:154	
Time factor		
and polarization	II:29	31
Time-independent scalar quantities		
optical constants and	I:12	
TiN. See Titanium Nitride		
Tin (Sn)		
critique	III:268	
values of n and k for	III:270	271
Tin Sulfide (SnS)		
spectroscopic measurements of	III:93	
Tin Telluride (SnTe)		
critique	II:725	
optical parameters for	II:318	
values of n and k for	II:727	728
TiO ₂ . See Titanium Dioxide		
Titanium Carbide (TiC)		
loss-function determination of	II:302	
optical properties of	II:303	
values of n and k for	II:305	
Titanium Dioxide, amorphous (a-TiO ₂)		
values of n and k for	II: 167	168

<u>Index Terms</u>	<u>Links</u>		
Titanium Dioxide (TiO ₂)			
critique	I:795		
film	II:93		
optical parameters for	II: 321	326	III: 211
photothermal deflection and	III:113		
reflectance and transmittance measure	ements of II:66		
values of n and k for	I:798	799	
wavelength measurements of	II:64	68	
Titanium Nitride (TiN)			
loss-function determination of	II:301		
optical properties of	II:303		
uses for	III:351		
values of n and k for	II:307		
Titanium Silicate (Corning 1971)			
index of refraction for	I:159		
Titanium (Ti)			
critique	III:240		
chemical etching of	I:104		
values of n and k for	III:242	243	
Tl. See Thallium			
Tm. See Thulium			
TM modes	I:18		
optical-properties measurement and	I:18		
Tolansky inference method			

II:725

Tin Telluride and

<u>Index Terms</u>	<u>Links</u>		
Tolansky interferometer			
Gallium Phosphide and	I:448		
Lead Sulfide and	I:528		
Lead Telluride and	I:538		
Lithium Fluoride and	I:675		
Toll's general theory			
dispersion relations and	I:56		
TO phonons. See Transverse optical phonons			
Top-seeded-solution technique			
Potassium Niobate and	III:823		
Total-external-reflectance method			
values of n and k and	II:203		
TP-DFG. See Three-photon			
difference-frequency generation			
spectroscopy			
Transfer matrices			
superlattice systems and	II:98	112	120
Transfer-matrix formulation			
superlattice optical properties and	II:112		
Transition measurements			
Calcium Carbonate and	III:701		
Silver Gallium Selenide and	III:574		
Silver Gallium Sulfide and	III:576		
Transition metals	II:341	III:233	
rare-earth elements and	III:287		
Transition probability rate			
photon energy and	II:154		

<u>Index Terms</u>	<u>Links</u>	
Transitions		
Cadmium Germanium Arsenide and	III:446	
critical-point	II:153	
electron-hole interaction and	I:199	
extinction coefficients and	II:157	
Gallium Selenide and	III:474	475
interband absorption and	I:197	
optical-constants calculation and	II:164	
radiation and,	I:191	
Yttrium Aluminum Garnet and	III:963	
Zinc Germanium Phosphide and	III:638	
See also Electronic transitions		
See also Electronic transitions		
Interband transitions		
See also Phase transitions		
Transition strength	I:17	
Transition temperatures		
Lead Fluoride and	III:761	
Transmission		
absorption coefficients and	I:229	
Cesium Bromide and	III:718	
defined	II:51	
free-carrier density of semiconductors and	II:126	
Lead Fluoride and	III:762	
Potassium and	II:365	
reflectance and sum rules and	I:55	
Silver Chloride and	III:554	
Tantalum and	II:408	

<u>Index Terms</u>	<u>Links</u>	
Transmission (Cont.)		
Thallous Halides and	III:928	
Transmission bands		
Calcium Fluoride and	II:815	
Transmission coefficients		
Polyethylene and	II:961	
Transmission interferometry		
Zinc Selenide and	II:741	
Transmission measurements		
Aluminum Nitride and	III:376	
Aluminum Oxide and	III:655	
Barium Fluoride and	III:684	
Cesium Iodide and	II:856	
interferometry and	I:132	
Lead Fluoride and	III:763	
Lithium Tantalate and	III:778	
Magnesium Fluoride and	II:900	
Magnesium Oxide and	II:935	
optical-properties studies and	II:110	
Polyethylene and	II:957 964	
Potassium Bromide and	II:990	
Potassium Iodide and	III:807	
Potassium Niobate and	III:824	
Silicon, doped n-type and	III:162	
Silicon and	III:521	
Silver Iodide and	III:555 556	
Sodium Nitrate and	III:873	
Strontium Fluoride and	III:883	

Index Terms	<u>Links</u>	
Transmission measurements (Cont.)		
Thallium Chloride and	III:923	
Yttrium Aluminum Garnet and	III:964	
Zinc Arsenide and	III:595	
Zinc Phosphide and	III:610	
Transmission process		
introduced	I:8	
measurement of	I:123	
Transmission spectra		
Orthorhombic Sulfur and	III:900	
Transmissivity		
defined	II:51	
Transmittance		
Aluminum Antimonide and	II:501	
Beryllium Oxide and	II:805	
Bismuth Germanium Oxide and	III:404	406
Bismuth Silicon Oxide and	III:404	
Boron Nitride and	III:427	
Cadmium Germanium Arsenide and	III:448	
Cadmium Sulphide and	II:581	584
Calcium Fluoride and	II:817	820
Chromium and	II:375	
Cobalt and	II:438	
Cubic Silicon Carbide and	II:706	
defined	II:51	
entrance surface films and	I:148	
Gallium Telluride and	III:490	
interferometry and	I:115	

<u>Index Terms</u>	Links	
Transmittance (Cont.)		
Iron Pyrite and	III:508	
layered structures and	I:18	
Lead Fluoride and	III:766	
lossless filmed surface and	I:146	147
measurement of	II:62	
optical-properties measurement and	I:18	
Orthorhombic Sulfur and	III:901	
Polyethylene and	II:959	
Rubidium Bromide and	III:845	
Rubidium Iodide and	III:857	
Sodium Fluoride and	II:1021	
Thorium Fluoride and	II:1050	
uncertainty and	I:137	
Zinc Selenide and	II:740	
Zinc Telluride and	II:745	
Zircon and	III:988	
Transmittance measurements		
Cesium and	III:343	
complex dielectric constants and	I:169	
Lead Fluoride and	III:764	
rare-earth metals and	III:290	
Rubidium Bromide and	III:847	
Zinc Germanium Phosphide and	III:639	
Transmittance minimums		
wedged-film laser calorimetry and	I:141	
Transmittance-reflectance measurements		
ellipsometry and	I:106	

<u>Index Terms</u>	Links	
Transmittance-reflection measurements		
versus Brillouin-scattering technique	III:131	
Transmittivity		
Potassium Niobate and	III:822	
Transparency		
absorption and	I:213	II:185
Aluminum Oxynitride and	II:778	
Calcium Fluoride and	II:819	
Carbon films and	II:838	
defined	I:230	
dispersion analysis and	I:59	
insulators and	II:178	
Magnesium Fluoride and	II:899	
Magnesium Oxide and	II:926	
Orthorhombic Sulfur and	III:904	
overlayers and	I:99	
in polar crystalline insulators	II:178	
Potassium Iodide and	III:807	
Rubidium Iodide and	III:857	
Silicon-Germanium alloys and	II:610	
Strontium Fluoride and	III:883	
Thallium Bromide and	III:926	
and thin films	II:58	
Thorium Fluoride and	II:1049	
Yttrium Oxide and	II:1082	
Transparent layers		
inhomogeneity in	II:66	

<u>Index Terms</u>	<u>Links</u>	
Transparent materials		
absorptive-loss measurement of	I:135	
calorimetry and	I:137	140
scattering in	III:126	
Transparent media		
reflectance and	I:71	
Transparent region		
Aluminum Oxide and	III:654	
Barium Fluoride and	III:685	
Bismuth Silicon Oxide and	III:405	
Cadmium Germanium Arsenide and	III:447	
Cesium Chloride and	III:731	
Cesium Fluoride and	III:743	
Cesium Iodide and	II:853	855
Copper Gallium Sulfide and	III:461	
finite-energy sum rules and	I:53	
Potassium Bromide and	II:990	
Rubidium Bromide and	III:845	
Rubidium Iodide and	III:859	
Strontium Fluoride and	III:884	
Thallous Halides and	III:928	930
Thorium Fluoride and	II:1050	
Yttrium Aluminum Garnet and	III:964	
Yttrium Oxide and	II:1080	1083
Zinc Germanium Phosphide and	III:637	639
Transparent substrates		
absorptance equation and	I:140	

<u>Index Terms</u>	Links
Transverse-electric modes (TE)	
optical-properties measurement and	I:18
Transverse-electric waves (TE)	II:38
See also .s-polarization	
Transverse function	
discussed	II:294
Transverse optical damping (TO)	
Aluminum Gallium Arsenide and	II:515
Lithium Tantalate and	III:779
Transverse optical frequencies (TO)	
Aluminum Gallium Arsenide and	II:515
Magnesium Fluoride and	II:901
Thallium Bromide and	III:926
Thallium Chloride and	III:925
Yttrium Oxide and	II:1082
Transverse optical modes (TO)	
Aluminum Oxide and	II:763
Barium Fluoride and	III:685
Boron Nitride and	III:425
Cesium Iodide and	II:854
Gallium Selenide and,	III:476
Potassium Niobate and	III:824
Silver Chloride and	III:554
Silver Iodide and	III:556
Strontium Fluoride and	III:885
Strontium Titanate and	II:1036
Yttrium Aluminum Garnet and	III:965
Zinc Phosphide and	III:609

<u>Index Terms</u>	<u>Links</u>	
Transverse optical phonon modes (TO)		
Calcium Fluoride and	II:820	822
Potassium Bromide and	II:990	
Sodium Fluoride and	II:1023	
Transverse optical phonons (TO)		
Aluminum Gallium Arsenide and	II:513	
Boron Nitride and	III:428	
Brillouin scattering and	III:141	
Cesium Chloride and	III:732	
Cesium Fluoride and	III:743	
Gallium Arsenide and	II:108	
Lead Tin Telluride and	II:639	
Potassium Iodide and	III:809	
Rubidium Bromide and	III:847	
Yttrium Aluminum Garnet and	III: 986	
Zinc Selenide and	II:741	
Zinc Telluride and	II:746	
Transverse optical resonance (TO)		
normal-incidence reflectance and	II:115	
Transverse polar lattice mode		
Sodium Nitrate and	III:873	
Tungsten (W)		
critique	I:357	
optical parameters for	II: 319	
values of n and k	II:87	
values of n and k for	I:359	360
22-tricosenoic acid		
described as biaxial birefringement film	II:88	

<u>Index Terms</u>	<u>Links</u>		
Twinning			
Graphite and	II:449		
Two-dimensional electron gases			
absorption and	II:108		
Two-dimensional systems			
layered structures and	II:112		
Two-phonon absorption			
Zircon and	III:988		
Two-phonon addition process			
Silver Chloride and	III:554		
Two-phonon contributions			
Strontium Fluoride and	III:886		
Two-phonon difference process			
absorption in	I:214	236	253
alkali halides and	I:259		
Potassium Bromide and	II:989		
Two-phonon lattice absorption			
Cadmium Germanium Arsenide and	III:447	448	
Zinc Germanium Phosphide and	III:639		
Two-phonon region			
Barium Fluoride and	III:685		
Potassium Iodide and	III:809		
2×2 matrices			
parallel-sided slabs and	I:15		
Type I SL			
quantum-mechanical wells and	II:101		
See also Gallium Aluminum Arsenide			

<u>Index Terms</u>	<u>Links</u>	
U		
Ultra-high vacuum (UHV)		
adsorbed-layers studies and	I:5	
Aluminum and	I:373	379
Beryllium and	II:423	
Cobalt and	II:436	
evaporated films in	I:373	
Lithium and	II:346	
Niobium and	II:396	
preparation of surfaces in	I:104	106
reflectance data and	I:371	
reflectometers and	II:205	
Sodium and	II:354	
Tantalum and	II:408	
Ultraviolet absorption		
Calcium Fluoride and	II:816	
Ultraviolet absorption peaks		
Rubidium Bromide and	III:846	
Rubidium Iodide and	III:858	
Ultraviolet region (UV)		
Aluminum Antimonide and	II:501	
Aluminum Nitride and	III:376	
Barium Fluoride and	III:683	
Beryllium Oxide and	II:805	
Beta-Gallium Oxide and	III:754	
Calcium Carbonate and	III:701	
Calcium Fluoride and	II:816	817

<u>Index Terms</u>	<u>Links</u>	
Ultraviolet region (UV) (Cont.)		
Cesium Fluoride and	III:744	
electromagnetic radiation propagation and	I:14	
Gallium Antimonide and	II:597	
Indium and	III:261	
irradiation, and Potassium Chloride		
ellipsometry	I:100	
Lead Fluoride and	III:762	
Magnesium Fluoride and	II:899	900
Magnesium Oxide and	II:919	931
Mercury Cadmium Telluride and	II:656	
Orthorhombic Sulfur and	III:901	903
Polyethylene and	II:957	
Potassium Iodide and	III:807	
Potassium Niobate and	III:821	
reflectance and	I:376	
Rubidium Bromide and	III:846	
Silicon-Germanium alloys and	III:537	
Sodium Nitrate and	III:871	
Strontium Fluoride and	III:883	
Strontium Titanate and	II:1035	
surface oxide layers and	I:374	
Thallium Bromide and	III:926	
Thorium Fluoride and	II:1049	
Vanadium and	II:478	
Water and	II:1060	
Yttrium Oxide and	II:1079	
Zinc Phosphide and	III:610	

<u>Index Terms</u>	<u>Links</u>	
Ultraviolet region (UV) (Cont.)		
Zinc Telluride and	II:744	
Uncertainty		
Bismuth Germanium Oxide and	III:406	
Cesium and	III:343	
Cesium Bromide and	III:717	
Lithium Tantalate and	III:778	
Orthorhombic Sulfur and	III:904	
Polyethylene and	II:961	
Potassium Bromide and	II:991	
Silicon, doped n-type and	III:164	
Silicon and	III:521	523
Zircon and	III:988	
See also Errors		
Uniaxial birefringent liquid layer	II:90	
Uniaxial crystals		
Aluminum Oxide	III:653	
Copper Gallium Sulfide and	III:459	
Uniaxial materials		
Lithium Tantalate and	III:777	
metals and	III:234	
superlattices and	II:98	112
Unit conversions		
electric displacement	I:13	
electric intensity	I:13	
free-space impedance	I:13	
free-space permeability	I:13	
free-space permittivity	I:13	

<u>Index Terms</u>	Links
Unit conversions (Cont.)	
magnetic density	I:13
magnetic induction	I:13
speed of light	I:13
Unpolarized light	
Cadmium Germanium Arsenide and	III:448
Gallium Telluride and	III:490
Orthorhombic Sulfur and	III:904
Silver Gallium Selenide and	III:574
Silver Gallium Sulfide and	III:576
Zinc Germanium Phosphide and	III:639
Zinc Phosphide and	III:609
See also Polarized light	
Unrationalized systems	
optical-properties measurement and	I:12
Urbach rule	
absorption coefficients and	II:152
Aluminum Oxide and	III:654
Bismuth Germanium Oxide and	III:404
Bismuth Silicon Oxide and	III:404
described	I:202
Mercury Cadmium Telluride and	II:661
Potassium Bromide and	II:991
Potassium Niobate and	III:822
Thallous Halides and	III:928
Yttrium Aluminum Garnet and	III:964
Yttrium Oxide and	II:1080

<u>Index Terms</u>	<u>Links</u>	
Urbach tail		
absorption process	I:4	
Barium Fluoride and	III:683	
in polar crystalline insulators	II:178	
polar crystals and,	I:214	
Potassium Chloride and	I:704	
Potassium Iodide and	III:807	
Sodium Chloride and	I:779	
Strontium Fluoride and	III:883	
transparency and	II:179	
V		
V. See Vanadium		
Vacuum		
Cesium and	III:342	
Cesium Bromide and	III:718	
Lead Tin Telluride and	II:637	
Liquid Mercury and	II:461	463
Manganese and	III:249	
Palladium and	II:469	
reflectance and	II:203	
speed of light in	II:152	160
Vanadium and	II:478	
water vapor in	II:365	
Vacuum chambers		
Rubidium Iodide and	III:858	
Vacuum evaporation method		
Lead Fluoride and	III:766	

Silver Iodide and Sodium Fluoride and Thorium Fluoride and values of <i>n</i> and <i>k</i> and	III:555 II:1021	
Thorium Fluoride and	II:1021	
values of n and k and	II:1051	
	I:78	
Zinc Phosphide and	III:610	
See also Individual elements		
Vacuum-melt technique		
Polyethylene and	II:966	
Vacuum spectrometers		
Sodium Nitrate and	III:871	
Vacuum-ultraviolet reflectometry		
overlayers and	I:102	
Vacuum-ultraviolet region (VUV)		
Aluminum Nitride and	III:375	
Beryllium and	II:422	
Beryllium Oxide and	II:805	
Beta-Gallium Oxide and	III:754	
Calcium Fluoride and	II:816	
Cesium Chloride and	III:732	
Cesium Iodide and	II:853	855
Chromium and	II:375	
Indium and	III:262	
Iron Pyrite and	III:510	
Multiple-slit Fourier-transform		
interferometry and	II:247	
optical-properties measurement and	I:376	379
Palladium and	II:470	
Potassium Niobate and	III:822	

<u>Index Terms</u>	<u>Links</u>		
Vacuum-ultraviolet region (VUV) (Cont.)			
values of n and k and	I:69		
Vacuum wavelengths			
Silicon and	III:520		
Valence bands			
Cadmium Sulphide and	II:579	582	586
Calcium Fluoride and	II:816		
Cesium Iodide and	II:856		
Copper Oxides and	II:877		
Gallium Selenide and	III:474		
Iron Pyrite and	III:509		
Liquid Mercury and	II:462		
Magnesium Fluoride and	II:900		
Mercury Cadmium Telluride and	II:662		
photon energies and	II:153	156	
quantum-density-matrix formlation and	II:135	147	
Silicon-Germanium alloys and	III:537		
Tellurium and	II:709		
Thallium Bromide and	III:925		
Thallium Chloride and	III:924		
Yttrium Aluminum Garnet and	III:963		
Yttrium Oxide and	II:1080		
See also Conduction bands			
Valence electrons			
dielectric function and	I:380		
Fermi level and	II:303		
of solids	I:45	49	
sum rules and	I:57		

<u>Index Terms</u>	<u>Links</u>	
Valence-to-conduction-band transitions		
electron-hole interaction and	I:200	
Validations		
by optical-constants measurements	I:17	
Values of n and k		
angles-of-incidence,		
total-external-reflectance		
(AOITER) method for	II:203	
angles of incidence and	I:75	79
calculation of, explained	I:69	II:151
derivation of	I:4	
determination of	II:126	
Drude theory and	I:169	
harmonic-oscillator models and	II:152	
and index determination	II:63	
indirect determinations of	I:8	
introduced	I:3	
lattice dielectric constant and	I:187	
measurement of	II:203	
overlap of, introduced	I:5	
reflectance and	I:70	
reflectance methods and	I:85	
reststrahlen bands and	I:221	
for Rhodium films	II:60	
Rubidium Iodide and	III:857	
for Scandium Oxide films	II:60	
tabulation of, introduced	I:7	
temperature dependence of	II:179	

<u>Index Terms</u>	<u>Links</u>	
Values of n and k (<i>Cont.</i>)		
for transparent layers	II:69	
See also Individual critiques; Index of		
refraction; Extinction coefficients;		
Optical constants		
Vanadium Carbide (VC)		
optical properties of	II:303	
values of n and k for	II: 306	
Vanadium Nitride (VN)		
optical properties of	II:303	
values of n and k for	II:308	
Vanadium (V)		
critique	II:477	
optical parameters for	II: 319	
values of n and k for	II:481	482
Vapor-phase reaction method		
Beta-Gallium Oxide and	III:753	
Vapor-transport technique		
Gallium Phosphide and	I:445	
Variable-angle spectroscopic ellipsometry (VASE)	
Carbon films and	II:839	
Varian bell-jar evaporation technique		
Lead Fluoride and	III:765	
Varshni equation		
Aluminum Nitride and	III:374	
VASE. See Spectroscopic ellipsometry,		
variable-angle; Variable-angle		
spectroscopic ellipsometry		

<u>Index Terms</u>	<u>Links</u>	
VC. See Vanadium Carbide		
Velocity of sound	III:122	
Verdet convention	II:39	
and Fresnel coefficient	II:41	
and phase changes	II:48	
and p polarization	II:45	
Verneuil method		
Beta-Gallium Oxide and	III:753	
Magnesium Aluminum Spinel and	II:884	
See also Flame-fusion technique		
Vibration		
Aluminum Oxide and	II:762	
Boron Nitride and	III:425	428
Cadmium Sulphide and	II:585	
Calcium Fluoride and	II:819	822
Cesium Iodide and	II:854	
Lead Tin Telluride and	II:638	
and plane of polarization	II:37	
Potassium Dihydrogen Phosphate and	II:1008	
Yttrium Oxide and	II:1082	
Vibrational absorption bands		
Polyethylene and	II:959	
Vibrational oscillators		
Selenium and	II:692	
Vibrational potential energy of solid	I:235	
Vibrational transitions		
index of refraction and	II:180	

<u>Index Terms</u>	<u>Links</u>	
Vibration frequency measurements		
Bismuth Germanium Oxide and	III:407	
Bismuth Silicon Oxide and	III:407	
theoretical discovery of	I:255	
wavevectors and	I:215	
Vibration modes		
Lithium Tantalate and	III:779	
Sodium Nitrate and	III:872	
Strontium Fluoride and	III:885	
Zircon and	III:987	
Vibration spectrum		
Aluminum Nitride and	III:376	
Visible region (VIS)		
Aluminum Nitride and	III:376	
Aluminum Oxide and	III:655	
Aluminum Oxynitride and	II:778	
Barium Titanate and	II:790	
Beta-Gallium Oxide and	III:754	
Calcium Carbonate and	III:702	
Calcium Fluoride and	II:816	
Cupric Oxide and	II:877	
Cuprous Oxide and	II:876	
electromagnetic radiation propagation and	I:14	
Indium and	III:261	
Lead Fluoride and	III:761	
Lithium Tantalate and	III:777	
Magnesium Aluminum Spinel and	II:884	
Magnesium Oxide and	II:919	929

<u>Index Terms</u>	<u>Links</u>		
Visible region (Cont.)			
Mercury Cadmium Telluride and	II:656		
Orthorhombic Sulfur and	III:901		
Potassium Dihydrogen Phosphate and	II:1006		
Potassium Niobate and	III:821		
Silicon and	III:519		
Sodium Nitrate and	III:872		
Strontium Fluoride and	III:883		
Thallous Halides and	III:929		
Thorium Fluoride and	II:1049	1051	1053
Water and	II:1060		
Yttrium Aluminum Garnet and	III:964		
Zinc Selenide and	II:739		
Zircon and	III:988		
Visible transparent region			
Thallium Bromide and	III:926		
Thallium Chloride and	III:924		
Thallous Halides and	III:928		
Visible windows			
in polar crystalline insulators	II:178		
Vitreous Arsenic Selenide (As ₂ Se ₃)			
values of n and k for	I:627	633	
Vitreous Arsenic Sulfide (As ₂ S ₃)			
values of n and k for	I:646	657	
VN. See Vanadium Nitride			
Voids and pores			
Thorium Fluoride and	II:1049		

<u>Index Terms</u>	<u>Links</u>		
Voigt function			
Brillouin scattering and	III:131		
VUV. See Vacuum ultraviolet region			
W			
van der Waals forces			
Gallium Selenide and	III:473		
Orthorhombic Sulfur and	III:900		
Wannier-Mott model			
electron-hole and	I:198		
Water (H ₂ O)			
critique	II:1059		
migration of, in samples	I:138	143	779
optical parameters for	II:323		
values of n and k for	II:1066	1067	
Watts E766 grating monochromator			
Bismuth Germanium Oxide and	III:404		
Wave equations			
discussed	II:22		
for electric fields	II:22		
for magnetic fields	II:22		
Wave equation solutions			
complex numbers and	II: 24		
propagation direction and	II: 24		
Waveguides			
attenuated-total-reflection experiments with	II:93		
discussed	II:84		
interferometry and	I:132		

<u>Index Terms</u>	<u>Links</u>		
Waveguides (Cont.)			
superlattices and	II:107		
Wavelength dependence			
of absorption coefficients	I:171		
of high-frequency absorption coefficients	II:127		
Wavelength ellipsometry			
film on substrate and	I:4		
sum rules and	I:55		
surface preparation of	I:4		
See also Ellipsometry			
Wavelength measurements			
calorimetry and	I:143		
conventional millimeter	I:155		
Fused Silica and	I:159		
interferometry and	I:116		
near-millimeter, introduced	I:155		
reflectance and	I:72	108	373
spectroscopy and	II:76		
Titanium Silicate and	I:159		
values of n and k and	II:208		
Wavelength modulation			
Lead Telluride and	I:537		
sum rules and	I:53		
Wavelength of light			
in superlattice systems	II:99		

<u>Index Terms</u>	<u>Links</u>	
Wave propagation		
discussed	II:23	
and electrical engineers	II:24	
in a light guide	II:85	
and spatial damping	II:25	
Wave theory of light		
beginnings of	II:21	
Wavevectors	III:121	
Brillouin scattering and	III:134	146
infrared photons and	I:215	
quantum-density-matrix formulation and	II:130	
Wedged-film laser calorimetry	I:139	149
Weighted oscillators		
absorption and	II:193	
Weighting functions		
superconvergence in sum rules and	I:44	
Wells		
superlattice excitons and	II:104	108
See also Multiple-quantum-well		
material; Quantum-mechanical wells		
Well-well coupling		
superlattices and	II:104	106
See also Electronic well-well coupling		
Wet-chemical etching method		
Aluminum Antimonide and	II:501	
Cupric Oxide and	II:875	
Wideband-gap semiconductors		
finite-energy sum rules and	I:53	

<u>Index Terms</u>	<u>Links</u>		
Wiener bounds			
in superlattice systems	II:99		
Windows			
Barium Fluoride and	III:683	685	
Magnesium Oxide and	II:919		
Strontium Fluoride and	III:885		
Wire-grating beam splitters	I:157	158	159
	163		
Wire-grid polarizers			
Zircon and	III:987		
Wolfram. See Tungsten			
Wollaston prisms			
interferometers and	I:120		
See also Prisms			
Wood's anomalies			
defined	II:76		
Wurzite structures			
Aluminum Nitride and	III:373		
W (Wolfram). See Tungsten			
X			
XPS spectrum			
Lead Fluoride and	III:763		
X-ray absorption edge			
Aluminum and	I:380		
Aluminum Gallium Arsenide and	II:515		
Beryllium and	II:422		
Calcium Carbonate and	III:701		

<u>Index Terms</u>	<u>Links</u>	
X-ray absorption edge (Cont.)		
Cobalt and	II:437	439
Niobium and	II:396	
Potassium and	II:366	
Potassium Chloride and	I:705	
Silicon and	I:552	
Sodium Chloride and	I:779	
Tantalum and	II:409	
Vanadium and	II:478	
Zinc Sulfide and	I:598	
X-ray diffraction analysis		
Cadmium Selenide and	II:559	561
Calcium Fluoride and	II:815	825
Magnesium Aluminum Spinel and	II:883	
Magnesium Fluoride and	II:899	
Raman scattering and	II:109	
Silicon-Germanium alloys and	II:609	
Thorium Fluoride and	II:1049	
Tin Telluride and	II:725	
X-ray diffractometer		
Lead Fluoride and	III:765	
X-ray measurements		
Zinc Arsenide and	III:596	
X-ray radiation		
Beryllium Oxide and	II:805	
Magnesium Oxide and	II:926	

<u>Index Terms</u>	Links
X-ray region	
Cadmium Germanium Arsenide and,	III:446
Cesium Chloride and	III:731
Cesium Iodide and	II:853
Copper Gallium Sulfide and	III:460
Magnesium Oxide and	II:919
Water and	II:1059
Zinc Telluride and	II:743
X-ray scattering	
Cadmium Sulphide and	II:579
Potassium Niobate and	III:823
Selenium and	II:692
Tellurium and	II:712
Zinc Selenide and	II:738
X-ray spectrometer	
Magnesium Oxide and	II:920
X-ray wavelengths	
Cadmium Sulphide and	II:579
XUV. See Extreme ultraviolet region	
Y	
YAG. See Yttrium Aluminum Garnet	
Y ₃ A1 ₂ (A1O ₄) ₃ . See Yttrium Aluminum Garnet	
Y ₃ A1 ₅ O ₁₂ . See Yttrium Aluminum Garnet	
Yb. See Ytterbium	
Yittrium Oxide (Y ₂ O ₃)	
protective coatings of	I:375
Y ₂ O ₃ . See Yittrium Oxide	

<u>Index Terms</u>	<u>Links</u>		
Young's modulus	III:122		
Beryllium and	II:421		
Hafnium Nitride and	III:351		
Zirconium Nitride and	III:351		
Ytterbium (Yb)	III:287		
critique	III:302		
values of n and k for	III:313	339	
Yttria. See Yttrium Sesquioxide			
Yttrium Aluminum Garnet (Y ₃ A1 ₅ O ₁₂)			
critique	III:963		
optical parameters for	III:198		
values of n and k for	III:968	969	
Yttrium Oxide (Y ₂ O ₃)			
critique	II:1079		
analysis of	II:67		
hemispherical emissivity for	II: 1096		
index of refraction and	II: 187		
infrared lattice-vibration parameters for	II: 1087		
optical constants of	II: 184		
optical parameters for	II:319	324	III: 199
values of dn/dT for	II: 1096		
values of n and k for	II:1086	1088	
wavelength measurements of	II:68		
Yttrium Sesquioxide (yttria)	II:1079		
reflection spectra of	II:185		
Yttrogarnet. See Yttrium Aluminum			
~			

Garnet

<u>Index Terms</u>	<u>Links</u>	
Z		
Zeiss SPM-2 prism monochromator		
Bismuth Germanium Oxide and	III:404	
Zigzag carbon chains		
Polyethlylene and	II:957	959
Zinc Arsenide (Zn ₃ As ₂)		
critique	III:595	
optical parameters for	III: 214	
values of n and k for	III:597	600
Zincblende structures		
Boron Nitride and	III:425	
Cadmium Sulphide and	II:579	
Copper Gallium Sulfide and	III:459	
critical points and	I:196	233
Gallium Antimonide and	II:600	
impurities in	I:257	
Mercury Cadmium Telluride and	II:655	
reststrahlen spectra of	I:260	
Silver Gallium Selenide and	III:573	
Silver Gallium Sulfide and	III:573	
Zinc Selenide and	II:737	
Zinc Telluride and	II:737	
Zinc Germanium Phosphide (ZnGeP ₂)		
critique	III:637	
values of n and k for	III:642	643
Zinc Oxide (ZnO)		
spectroscopic measurements of	III:93	

<u>Index Terms</u>	<u>Links</u>		
Zinc Phosphide (Zn ₃ P ₂)			
critique	III:609		
optical parameters for	III: 209		
oscillator parameters for	III: 616		
reststrahlen region of	III: 616		
values of n and k for	III:613	617	
Zinc Selenide (ZnSe)			
critique	II:737	III:36	
absorption process and	I:238	243	
dispersion analysis of	II:740		
free-carrier absorption and	I:171		
index of refraction and	II:148		
spectroscopic measurements of	III:73		
thin-film transmittance and	III:765		
values of n and k for	II:749	751	III:36
Zinc Sulfide (ZnS)			
critique	I:597		
dispersion analysis of	I:599		
index of refraction and	II: 187		
optical parameters for	II:320	325	III:202
optical properties of	II: 12		
photothermal deflection and	III:113		
spectroscopic measurements of	III:73		
transparency frequency of	I:231		
values of n and k for	I:605	606	
See also Cubic Zinc Sulfide;			
Hexagonal Zinc Sulfide			

<u>Index Terms</u>	<u>Links</u>	
Zinc Telluride (ZnTe)		
critique	II:743	
index of refraction and	II:148	
optical parameters for	II: 320	
values of n and k for	II:750	755
Zinc (Zn)		
interband absorption and	I:204	
Zirconium Nitride (ZrN)		
critique	III:351	
dielectric properties of	II:303	
Drude parameters for	III:363	
values of n and k for	III:359	363
Zircon (ZrSiO ₄)		
critique	III:987	
optical parameters for	III:208	
oscillator model parameters for	III: 999	
values of n and k for	III:990	992
Zn. See Zinc		
Zn ₃ As ₂ . See Zinc Arsenide		
ZnGeP ₂ . See Zinc Germanium Phosphide		
Zn ₃ P ₂ . See Zinc Phosphide		
ZnS. See Cubic Zinc Sulfide; Hexagonal		
Zinc Sulfide; Zinc Sulfide		
ZnSe. See Zinc Selenide		
ZnTe. See Zinc Telluride		
Zone-boundary phonons		
prediction of	I:259	
See also Brillouin zone		

<u>Index Terms</u> <u>Links</u>

Zone-folded optic phonons dielectric susceptibility of

ZrN. See Zirconium Nitride

ZrSiO₄. See Zircon

II:118