

Fusion Energy: General Fusion

Brenden Messmer, Ian Rankin, Jerin Roberts

robertsj@snolab.ca

March 31, 2015

Overview

- 1 General Overview
 - Purpose/Function
 - Problems
 - Chain Drive Design
- 2 Performance
 - Data
 - Implementation
- 3 Future Goals
 - Next Steps

URM Function

Controls the deployment and storage of the source umbilical for the $\mathsf{SNO}+$ detector

URM Problems

Sources of Slippage:

- LAB for Scintillation (low coefficient of friction)
- 2 LAB compatible umbilical
- 3 Pulley Design (collects LAB reducing friction)
- 4 Umbilical Storage System (Pneumatic Cylinder)

The Drive Pulley Design

Chain Drive Design

Chain Drive vs Non-chain drive

Chain Drive Consistency

Chain Drive Consistency

Statistics

0.2989

7.841 / 10

8.833 ± 1.943

48.24 ± 0.05

 0.28 ± 0.04

50.5

21

96.67

0.2982 ± 0.0463

Statistics

New URM Design

Flex Drive and Gear/Chain Drive

Future Goals

Next Steps:

- I Investigate the possible Improvements of driving small pulley
- Complete LAB application system
- 3 Investigate Implementing Drive System to new URM design

General Fusion

Future Goals

Next Steps

References

Lawrence Garcia (2014)

Umbilical Tests and Detector Data Analysis

Jose Maneira, Rui Alves (2013)

URM design for SNO+, LIP-Coimbra

General Fusion

Future Goals

Next Steps

Thank-you