EEE363

Electrical Machines

Lecture # 3

Dr Atiqur Rahman

Example 26.1. Draw a developed diagram of a simple 2-layer lap-winding for a 4-pole generator with 16 coils. Hence, point out the characteristics of a lap-winding.

Solution. The number of commutator segments = 16

Number of conductors or coil sides $16 \times 2 = 32$; pole pitch = 32/4 = 8

Now remembering that (i) Y_B and Y_F have to be odd and (ii) have to differ by 2, we get for a progressive winding $Y_B = 9$; $Y_F = -7$ (retrogressive winding will result if $Y_B = 7$ and $Y_F = -9$). Obviously, commutator pitch $Y_C = -1$.

[Otherwise, as shown in Art. 26.26, for progressive winding

$$Y_F = \frac{Z}{P} - 1 = \frac{32}{4} - 1 = 7 \text{ and } Y_B = \frac{Z}{P} - 1 = \frac{32}{4} + 1 = 9$$

The simple winding table is given as under:

Back Connections		Front Connections	
1 to (1+9) = 10	\longrightarrow	10 to (10-7) = 3	
3 to (3+9) = 12		12 to (12 - 7) = 5	
5 to (5+9) = 14		14 to (14-7) = 7	
7 to (7 + 9) = 16		16 to (16-7) = 9	
9 to (9+9) = 18		18 to $(18-7) = 11$	
11 to (11+9) = 20		20 to (20-7) = 13	
		22 to (22 - 7) = 15	
15 to $(15 + 9) = 24$	-	24 to (24 - 7) = 17	
17 to (17 + 9) = 26	implication, in	26 to (26-7) = 19	
19 to (19 + 9) = 28	\longrightarrow	28 to (28 - 7) = 21	

21 to
$$(21 + 9) = 30$$
 \longrightarrow 30 to $(20 - 7) = 23$
23 to $(23 + 9) = 32$ \longrightarrow 32 to $(32 - 7) = 25$
25 to $(25 + 9) = 34 = (34 - 32) = 2$ \longrightarrow 2 to $(34 - 7) = 27$
27 to $(27 + 9) = 36 = (36 - 32) = 4$ \longrightarrow 4 to $(36 - 7) = 29$
29 to $(29 + 9) = 38 = (38 - 32) = 6$ \longrightarrow 6 to $(38 - 7) = 31$
31 to $(31 + 9) = 40 = (40 - 32) = 8$ \longrightarrow 8 to $(40 - 7) = 33 = (33 - 32) = 1$

The winding ends here because we come back to the conductor from where we started.

Winding diagram

Two layer winding

One at the upper level, another at the lower

Parallel paths

EMF equation

 ϕ = flux/pole in Wb

Z = total number of armature conductors

P = number of poles

A = number of parallel paths = 2 ... for wave winding

= P ... for lap winding

N =speed of armature in r.p.m.

 $E_g = e.m.f.$ of the generator = e.m.f./parallel path

Flux cut by one conductor in one revolution of the armature,

$$d\phi = P\phi$$
 webers

Time taken to complete one revolution,

$$dt = 60/N$$
 second

e.m.f generated/conductor
$$=\frac{d\phi}{dt} = \frac{P\phi}{60/N} = \frac{P\phi N}{60}$$
 volts

e.m.f. of generator,

$$E_g = e.m.f.$$
 per parallel path

= (e.m.f/conductor) \times No. of conductors in series per parallel path

$$=\frac{P\phi N}{60} \times \frac{Z}{A}$$

$$E_g = \frac{P\phi ZN}{60 \text{ A}}$$

Types of Generator

- Separately excited
- Self excited

Separately excited

Self excited contd...

