PREDICTING ACCIDENT SEVERITY

PREDICTING ACCIDENT SEVERITY IS IMPORTANT FOR ALL PARTIES INVOLVED

- Car accidents cause more injuries and deaths than any other type of personal injury
- Value in having tools and means to provide drivers with a warning, given the weather and road conditions, about the possibility of getting into a car accident & severity
- Helps avoid accidents
- Allows transport, security, and emergency services to analyze crashes and dispatch appropriate response swiftly

DATA ACQUISITION AND CLEANING

- Collision <u>data</u> from Seattle Police Department and recorded by Traffic Records
- ▶ In total, 194,673 rows with 38 attributes in the raw dataset
- Helps avoid accidents
- Filled in missing/ambiguous values for columns of interest and converted all qualitative values into quantitative ones
- Rows containing NaN values were dropped

COLLISION TYPE AND NUMBER OF COLLISIONS

- ► Injury Collisions → Most accidents due to cars getting hit on the rear end/at an angle
- ▶ Property Damage → Majority involve hitting a parked car

LOCATION TYPE AND NUMBER OF COLLISIONS

- Most block-related collisions happen mid-block
- Very little collisions occur in an alley

DAY OF THE WEEK AND NUMBER OF COLLISIONS

Most accidents occur on a weekday as opposed to the weekend

WEATHER AND NUMBER OF COLLISIONS

- Most collisions occurred on a clear day
- Weather may not play an important factor when predicting collisions/collision severity

INFERENTIAL STATISTICAL TESTING

	SEVERITYCODE	Intersection	Alley	Block
SEVERITYCODE	1.000	0.199	-0.026	-0.185
Intersection	0.199	1.000	-0.044	-0.970
Alley	-0.026	-0.044	1.000	-0.085
Block	-0.185	-0.970	- 0.085	1.000

- Weather & Location had no strong correlation with collision severity
- Most severe injuries involved pedestrians and cyclists

	SEVERITYCODE	PERSONCOUNT	PEDCOUNT	PEDCYLCOUNT	VEHCOUNT
SEVERITYCODE	1.000	0.131	0.246	0.214	-0.055
PERSONCOUNT	0.131	1.000	-0.023	-0.039	0.381
PEDCOUNT	0.246	-0.023	1.000	-0.017	-0.261
PEDCYLCOUNT	0.214	-0.039	-0.017	1.000	-0.254
VEHCOUNT	-0.055	0.381	-0.261	-0.254	1.000

DECISION TREE AND LOGISTIC REGRESSION MODELING

Evaluation	Decision Tree	Logistic Regression
Jaccard Index	0.73	0.73
Precision	0.71	0.72
Recall	0.99	0.97
F1 Score	0.66	0.68

- Needed to normalize due to values not being in the same range
- > Split the data set into a train set and test set
 - > Test Size = 20%
 - ➤ Random State = 3

DISCUSSION

- ▶ Based on our analysis of the data, we have some key observations:
 - Most accidents occur during weekdays at intersections
 - Weather conditions do not play a significant role in accidents
 - Road and lighting conditions have a weak correlation with accidents
 - ▶ Between blocks, maximum accidents occur at mid-blocks
 - In collision accidents, maximum damage is done to parked cars
- Analyzed different machine learning classification methods to classify accidents as injury or collision accidents
 - Logistic Regression model offered maximum accuracy
 - ▶ It correctly predicted 72% as injury collisions.
- Data could be used by enable transport, security, and emergency agencies to better understand car accidents and take preventative measures to prevent them.
- Also aimed at every-day commuters, whether they are pedestrians, cyclists or vehicle owners to be more careful at intersections to prevent an accident.

CONCLUSION

- ➤ Able to achieve an accuracy of 72% using Logistic Regression Classifier
- Utilization of this work could narrow down to the location where maximum accidents occur and most affected
- There is very less importance of human and weather factors in causing an accident
- Prediction could be improved by capturing real-time data during traffic incidents