StuDocu.com

Guiao-tp - Guião com exercícios

Introdução à Inteligência Artificial (Universidade de Aveiro)

Guião Teórico-Prático Tópicos de Inteligência Artificial

Ano Lectivo de 2015/2016

©Luís Seabra Lopes

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro

Última actualização: 2015-12-15

Ι **Objectivos**

O presente guião centra-se em exercícios que através dos quais o aluno pode testar a sua compreensão das matérias teóricas (conceitos, algoritmos). A maior parte destes exercícios podem ser realizados sem recurso a computadores.

Este guião é usado nas disciplinas de Inteligência Artificial, da Licenciatura em Engenharia Informática, e Introdução à Inteligência Artificial, do Mestrado Integrado em Engenharia de Computadores e Telemática.

\mathbf{II} Agentes Reactivos

- 1. Está a ser desenvolvido um robô para pesca submarina, o Nautilus, pedindo-se a sua colaboração no desenvolvimento do módulo de controlo. Este robô transporta um máximo de 10 arpões e um depósito com capacidade para 20 peixes. Quando sente um peixe em frente lança imediatamente um arpão (acção Disparar). Se o arpão atingir um peixe, o robô guarda o peixe no depósito (acção Agarrar), podendo neste caso recuperar o arpão. Caso contrário, o arpão perde-se. Quando perder todos os arpões, o Nautilus pode reabastecer-se (acção Reabastecer), ficando novamente com 10 arpões. Quando o depósito de peixes estiver cheio, estes devem ser descarregados (acção Descarregar), ficando o depósito novamente vazio. Quando não tem mais nada para fazer, limita-se a vaguear (acção Vaquear).
 - (a) Identifique as variáveis de estado, se necessárias.
 - (b) Identifique e caracterize um conjunto de predicados que possam ser usados para descrever situações em que se encontre o Nautilus.
 - (c) Especifique o conjunto de regras situação-acção que regem o comportamento do Nautilus. Pode fazê-lo na forma de uma tabela com as serguintes colunas:
 - Situação uma conjunção de condições em lógica de primeira ordem

- Actualização actualização das variáveis de estado, caso existam
- Acção acção a executar pelo agente na situação indicada
- 2. Considere o comportamento das formigas na sua tarefa de arrumar provisões no formigueiro. A formiga procura provisões (acção Procurar_provisão). Quando encontra uma provisão, agarra-a (acção Agarrar_provisão) e vai procurar o local (acção Procurar_local) de arrumação das provisões. A formiga tem sempre uma noção da distância percorrida desde que começou a procurar a arrumação. Se a formiga acha que já percorreu mais de 5 metros sem ter encontrado a arrumação, e vê outra formiga, vai atrás dela (acção Seguir_formiga). Quando encontra o local onde estão as outras provisões, liberta a provisão que trás consigo (acção Libertar_provisão). Cabe-lhe a si implementar um conjunto de regras situação-acção com base nas quais a formiga simulada se irá comportar. Com vista ao desenvolvimento de um programa de simulação do comportamento das formigas, realize os seguintes passos de análise e especificação:
 - (a) Identifique as variáveis de estado, se necessárias.
 - (b) Identifique e caracterize um conjunto de predicados que possam ser usados para descrever as situações em que uma formiga se pode encontrar.
 - (c) Especifique o conjunto de regras situação-acção que regem o comportamento de uma formiga. Pode fazê-lo na forma de uma tabela como no exercício anterior.

III Representação do Conhecimento

- 1. Represente as seguintes frases em lógica de primeira ordem:
 - (a) Todos em Oxford são espertos.
 - (b) Alguém em Oxford é esperto.
 - (c) Existe uma pessoa que gosta de toda a gente.
 - (d) Só um aluno chumbou a História.
 - (e) Nem todos os estudantes se inscreveram simultaneamente a Introdução à Inteligência Artificial e Sistemas de Operação.
 - (f) Só um aluno chumbou a História e a Biologia.
 - (g) A melhor nota a História foi mais elevada do que a melhor nota a Biologia.
 - (h) Todos os Portistas gostam do Pinto da Costa.
 - (i) Existe um Sportinguista que gosta de todos os Benfiquistas que não são espertos
 - (j) Existe um Barbeiro que barbeia toda a gente menos ele próprio.
- 2. Considere o mundo dos blocos com n blocos representados pelas constantes (B_1, B_2, \ldots, B_n) , predicado On(x, y) que indica que o bloco x está em cima do objecto y e predicado Clear(x) que indica que o bloco x não tem nenhum bloco em cima. Indique qual o número mínimo de blocos para que cada uma das fórmulas seguintes seja verdadeira:
 - (a) $\neg Clear(B_1) \land \neg Clear(B_2) \land On(B_3, x) \land x \neq Floor$
 - (b) $Clear(B_1) \Rightarrow Clear(B_2)$

- 3. Considere o seguinte mundo composto por uma torneira, dois tanques (T1 e T2) e um recipiente (R). A torneira pode estar aberta para um dos dois tanques mas nunca para os dois ao mesmo tempo. O recipiente pode ser colocado dentro de um tanque, desde que este esteja sem água. Se a torneira estiver aberta, então o tanque respectivo ou o recipiente (se estiver dentro do tanque) ficam com água. Se o recipiente estiver dentro de um tanque, e a torneira estiver aberta para esse tanque, então o recipiente fica com água, mas o tanque não. Um tanque pode ter água mesmo que a torneira não esteja aberta para esse tanque.
 - Water(x) indica que x (recipiente ou tanque) tem água;
 - Open(x) que indica que a torneira está aberta para o tanque x;
 - Over(x, y) que indica que o recipiente x está colocado sobre o tanque y.
 - (a) Para cada uma das observações seguintes, apresente os valores lógicos possíveis para Water(T1), Water(T2) e Water(R).

```
i. Open(T2) \wedge Over(R, T2)
```

Considere os seguintes predicados:

ii.
$$Open(T2) \wedge Over(R, T1)$$

iii.
$$\neg Open(T2) \wedge Over(R, T1)$$

iv.
$$\neg Open(T1) \wedge \neg Open(T2) \wedge Over(R, T1)$$

(b) Diga se cada uma das seguintes fórmulas é satisfatível, e caso seja, se é uma tautologia:

i.
$$\forall x (\neg(\neg Open(x) \Rightarrow Water(x)))$$

iii.
$$\forall x \ Open(x) \Rightarrow \exists y \ Water(y)$$

ii.
$$\forall x (\neg(Open(x) \Rightarrow Water(x)))$$

iv.
$$\exists x, y \ Open(x) \land Open(y) \land x \neq y$$

- 4. Considere o mapa apresentado na figura 1. Neste mapa estão representados algumas ruas, edifícios e o estado de algumas ruas. A rua descanso tem um comprimento de 6. Do mesmo modo a rua sul encontra-se com a rua descanso a 2 unidades do edifício casa. Tanto a rua norte como a sul têm um comprimento de 8. A rua artes intersecta as duas anteriores no ponto médio. A rua norte está fechada nos ponto 5, 6 e 7.
 - (a) Proponha um conjunto de predicados que permita representar conhecimento deste tipo.
 - (b) Usando os predicados que propôs, represente o conhecimento acima descrito.

Figura 1: Mapa de uma cidade.

Figura 2: Exemplo de circuito electrónico.

- 5. Enquadre a linguagem KIF no contexto da engenharia do conhecimento, comparando-a com outros formalismos seus conhecidos e comentando a sua relevância para a construção de agentes.
- 6. Represente o seguinte conhecimento através de uma rede semântica:

"Os robôs são máquinas. Há robôs com pernas, que podem ou não ser humanóides, e robôs que se movem sobre rodas ou até usando lagartas. O Nautilus é um robô com 3 rodas que obtém energia de 4 baterias de $12\mathrm{V}$ / 7Ah. Os robôs humanóides têm 2 pernas e 2 braços."

- 7. Considere o circuito electrónico apresentado na Figura 2, no qual pode encontrar uma porta AND (a1), uma porta OR (o1) e uma porta XOR (x1). O circuito tem três entradas (e1, e2, e3) e uma saída (s1). Para se poder calcular a saída em função das entradas, é necessário levar em conta o seguinte conhecimento geral sobre circuitos electrónicos:
 - O sinal em cada terminal é On ou Off
 - Dois terminais que estejam ligados um ao outro têm o mesmo sinal
 - A relação de ligação entre terminais é comutativa
 - A saída de uma porta OR é On se pelo menos uma das entradas for On
 - A saída de uma porta AND é On se todas as entradas forem On
 - A saída de uma porta XOR é On se as suas entradas forem diferentes
 - A saída de uma porta NOT é diferente da sua entrada
 - (a) Identifique os tipos de objectos presentes no domínio dos circuitos electrónicos, bem como as funções e relações relevantes
 - (b) Represente em lógica de primeira ordem o conhecimento geral do domínio
 - (c) Represente em lógica de primeira ordem o circuito da Figura 2.
- 8. Considere a rede de Bayes identificada pela seguinte atribuição de probabilidades: $p(a) = 0.2, \ p(b|a) = 0.3, \ p(b|\neg a) = 0.2, \ p(c|b) = 0.2, \ p(c|\neg b) = 0.9, \ p(d|b) = 0.1, \ p(d|\neg b) = 0.2.$ Calcule a probabilidade conjunta $p(a \land b \land \neg c \land \neg d)$.

 Downloaded by Bruno Aguiar (bruno.f.o.águiar@gmail.com)

9. Considere o cenário em que um alarme de uma casa pode disparar por causa de um assaltante, mas também por ocorrência de um terramoto. Se o alarme dispara, os ocupantes da casa podem efectuar uma chamada de telefone. Este cenário é exemplificado pela seguinte Rede Bayesana:

Os eventos Burglary e Earthquake não dependem de nenhum outro evento: são independentes de todos os outros. Assim, só é necessário especificar as suas probabilidades:

$$P(Burglary) = 0.001$$

 $P(Earthquake) = 0.02$

O evento Alarm depende da ocorrência dos eventos Burglary e Earthquake: os eventos Alarm e Burglary não são independentes (tal como os eventos Alarm e Earthquake). É necessário especificar a probabilidade condicional de Alarm dado as várias combinações de Burglary e Earthquake:

$$P(Alarm|(Burglary \land Earthquake)) = 0.9$$

$$P(Alarm|(Burglary \land \neg Earthquake)) = 0.9$$

$$P(Alarm|(\neg Burglary \land Earthquake)) = 0.1$$

$$P(Alarm|(\neg Burglary \land \neg Earthquake)) = 0.001$$

Quanto aos eventos MaryCalls e JohnCalls são ambos dependentes do evento Alarm. As suas probabilidades condicionais são:

$$P(MaryCalls|Alarm) = 0.95$$

 $P(MaryCalls|\neg Alarm) = 0.001$

е

$$P(JohnCalls|Alarm) = 0.9$$

 $P(JohnCalls|\neg Alarm) = 0.0$

Calcule as seguintes probabilidades:

(a)
$$P(A)$$

- (b) P(M)
- (c) P(J)
- 10. Considere um domínio composto por animais, espécies e intervalos de tempo, no qual o conhecimento pode ser descrito através dos seguintes predicados:
 - Animal(a): $a \in um animal$
 - Espécie(a,e): o animal a é da espécie e
 - Vivo(a,t): o animal a está vivo no intervalo t
 - Extinta(e,t): a expécie e está extinta no intervalo t
 - Progenitor(p,a): o animal p é progenitor do animal a

- (a) Represente as seguintes frases em lógica de primeira ordem:
 - Qualquer animal tem um progenitor
 - Qualquer animal pertence a uma espécie
 - Apenas os animais pertencem a espécies
 - $\bullet\,$ Se p é o progenitor de a e a pertence a uma espécie e, então p também pertence a e
 - Uma espécie e está extinta no intervalo t se nenhum animal dessa espécie está vivo nesse intervalo
 - Não existiam mamutes vivos no ano de 1918
- (b) Demonstre que os mamutes estavam extintos em 1918 a partir das fórmulas que escreveu.
- 11. A nova empresa "SOF Sistemas Operativos do Futuro", sedeada na Costa Nova, comercializa actualmente o sistema operativo SOF2013h, mas este sistema ainda tem alguns problemas. A empresa pretende desenvolver um assistente que determina automaticamente se o utilizador precisa de ajuda, e, quando tal acontece, toma a iniciativa de fazer alguns sugestões ao utilizador. Após análise exaustiva dos problemas sentidos pelos utilizadores, verificou-se que há essencialmente dois sintomas da necessidade de ajuda. Um deles é o utilizador fazer uma "cara preocupada", o que pode ser detectado por um sistema de reconhecimento de expressões faciais previamente desenvolvido. O outro sintoma é o utilizador aumentar a frequência de utilização do rato, por estar a navegar através de diferentes menus à procura da solução para algum problema.

Entretanto, após análise, sabe-se que 60% dos utilizadores têm sobrecarga de trabalho, o que pode também causar uma cara preocupada. Cerca de 1% dos utilizadores sobrecarregados mostram cara preocupada, caso não precisem de ajuda. Já no caso de precisarem de ajuda, essa percentagem sobe para 2%. Os utilizadores não sobrecarregados, que não precisam de ajuda, apenas em 0.1% dos casos mostram cara preocupada. Este valor sobe para 1.1% caso precisem de ajuda.

Sabe-se também que utilizadores com sobrecarga de trabalho tendem a acumular correio electrónico não lido. Apenas 0.1% dos utilizadores sem sobrecarga de trabalho acumulam correio não lido. Pelo contrário, 90% dos utilizadores com sobrecarga de trabalho acumulam correio electrónico não lido.

Há uma aplicação no SOF2013h especialmente causadora de problemas, o processador de texto SOF2013h Pal, no qual os utilizadores passam 5% do seu tempo de utilização do

SOF2013h. Na verdade, quando o utilizador está a usar esta aplicação, tenderá a precisar de mais ajuda, o que acontece em 25% dos casos. Já quando não usa o processador de texto, a probabilidade de precisar de ajuda é 0.4%. Se o utilizador não está a usar o SOF2013h Pal, a existirá uma frequência exagerada de utilização do rato em 10% dos casos em que o utilizador precisa de ajuda e em 1% dos restantes casos. Quando o utilizador está a usar o SOF2013h Pal, ele fará uma utilização exagerada do rato em 90% dos casos, independentemente de precisare de ajuda ou não.

Com vista ao desenvolvimento do assistente de ajuda, pretende-se representar este conhecimento através uma rede de Bayes, tarefa que acaba de lhe cair em cima!... Identifique as variáveis da rede, desenhe a rede e apresente a tabela de probabilidades condicionadas.

IV Técnicas de resolução automática de problemas

1. Considere o espaço de estados apresentado na Figura 4, em que os valores nas ligações correspondem ao respectivo custo e os valores nos nós são os da função heurística. Nos exercícios, considere os nós A e I como soluções possíveis.

- (a) A heurística apresentada é admissível? Justifique a sua resposta e, em caso negativo, faça as alterações necessárias por forma a que passe a sê-lo.
- (b) Desenhe a árvore de pesquisa gerada pela estratégia A* tomando com estado inicial o estado F. Indique o valor da função de avaliação em cada nó e numere os nós pela ordem em que são criados. Considere que a pesquisa em árvore se faz sem repetição de estados. Em caso de empate no valor da função de avaliação, o nó escolhido para expansão será o que vem antes na ordem alfabética dos estados. Use os valores originais da heurística.
- (c) Calcule o factor de ramificação médio da árvore gerada.
- (d) Calcule o factor de ramificação efectivo da árvore gerada.
- 2. Considere uma árvore de pesquisa com factor de ramificação r. Suponha que a solução mais próxima da raiz se encontra a uma profundidade g. Qual o número mínimo e máximo de nós visitados numa pesquisa em profundidade, com limite d?
- 3. Que heurística admissível sugere que seja usada com a pesquisa A^* para planeamento de caminhos óptimos em redes viárias? Justifique.
- 4. Pretende-se colorir os seguintes mapas de forma a que regiões adjacentes fiquem com cores diferentes. Apresente o grafo de restrições para cada um dos mapas e indique o número mínimo de cores necessário para cada um deles.

5. Considere o seguinte problema:

André, Bernardo e Cláudio dão um passeio de bicicleta. Cada um anda na bicicleta de um dos amigos e leva o chapéu de um dos outros. O que leva o chapéu de Cláudio anda na bicicleta de Bernardo. Que bicicleta e que chapéu levam cada um dos amigos? (Retirado de Pierre Berloquin. 100 Jogos Lógicos. Gradiva, 1990.)

- (a) Represente o problema através de um grafo de restrições.
- (b) Utilize o módulo constraintsearch para resolver o problema.
- 6. Considere o seguinte puzzle Su Doku em que cada linha, coluna e quadrado de 3 por 3 deve ser preenchido com os números de 1 a 9 e sem repetições. Apresente uma abordagem à resolução deste puzzle utilizando Pesquisa por Propagação de Restrições. Indique quais as variáveis, o seu domínio e as restrições a considerar.

		5		7		3
	5				8	2
4			6			
7	6	3		2	5	
8						
3	9	1		8	2	
6			3			
	1				6	7
		8		6		9

Retirado de Yukio Suzuki. Su Doku para especialistas e outros puzzles japoneses. Editorial Estampa, 2005.

- 7. O caso particular da pesquisa por recozimento simulado (simulated annealing) com temperatura T=0 tem semelhanças significativas com alguma outra técnica de pesquisa sua conhecida? Nesse caso, identifique as principais semelhanças e diferenças.
- 8. Com vista à sua resolução através de pesquisa com propagação de restrições, formule e resolva o problema de escalonar quatro tarefas $(A, B, C \in D)$ nas seguintes condições:
 - As tarefas começam às horas certas, a partir das 8h de um dia, terminam o mais tardar às 19h desse mesmo dia.
 - A duração das tarefas é a seguinte: A 1h, B 2h, C 3h, D 4h.
 - ullet A tarefa A deverá terminar antes das tarefas B e C começarem.
 - A tarefa D deverá começar depois de terminarem as tarefas B e C.
 - As tarefas não podem ser realizadas simultâneamente.
- 9. Um macaco está numa sala. Na mesma sala, mas fora do alcance do macaco, está também um cacho de bananas. Se o macaco subir para cima de uma caixa, conseguirá alcançar as bananas. Inicialmente, o macaco está na posição A, as bananas na posição B e a caixa na posição C. As acções que o macaco pode executar são: deslocar-se de uma posição para outra; empurrar um dado objecto de uma posição para outra; subir para cima de um dado objecto; agarrar o cacho de bananas.

(a) Identifique um conjunto de condições com as quais seja possível descrever os vários estados do mundo neste problema.

- (b) Descreva o estado inicial do problema usando as condições que propôs.
- (c) Identifique e descreva as acções possíveis de acordo com o formato STRIPS.
- (d) Que sequência de acções deverá o macaco executar?
- (e) Apresente uma estimativa para o tamanho aproximado que a árvore de pesquisa poderá atingir. Justifique.
- 10. O robô VG-10 deixado recentemente em Marte pela Agência Espacial Portuguesa (AEP) precisa de planear as suas expedições entre várias estações anteriormente construídas pela AEP nesse planeta do sistema solar. Para cada estação, o VG-10 sabe quais as estações adjacentes, ou seja, aquelas para as quais se pode deslocar com o equivalente a um depósito de combustível. Além de encher o depósito, o VG-10 pode transportar dois bidões de combustível para recarga.

Os tipos de acções que o VG-10 pode executar são:

- $ir(E_1, E_2)$ ir da estação E_1 para a estação adjacente E_2 .
- \bullet carregar(E,B,X) carregar o bidão B da estação E para o espaço X no robô.
- encher(B,X) encher o depósito com o combustível do bidão B que está carregado no robô na posição X.
- descarregar(E,B,X) descarregar o bidão B do espaço X para a estação E.

Realize os seguintes exercícios:

- (a) Proponha um conjunto de condições que permitam descrever os estados de planeamento das expedições do VG-10. Explique o seu significado.
- (b) Especifique os operadores de planeamento necessários para representar as acções do VG-10.
- (c) Se pretender que um planeador das missões do VG-10, baseado na estratégia A*, encontre uma solução óptima quando ela existe, que função de avaliação/estimação de custos sugere que seja utilizada? Justifique.
- (d) Considere agora que uma estação adjacente é uma estação para a qual existe uma ligação (trilho ou caminho) que o robô pode seguir. As distâncias entre todos os pares de estações adjacentes são conhecidas. Além disso, sabe-se que distância o VG-10 pode percorrer com o combustível de um depósito. Que adapações à representação das acções seria necessário introduzir para levar em consideração estas restrições. Ilustre para o caso do operador ir(E1, E2). Assuma que o combustível do depósito dá para chegar a qualquer estação adjacente, embora possa sobrar.
- 11. No contexto da resolução automática de problemas usando técnicas de pesquisa, defina os seguintes termos por palavras suas: estado, espaço de estados, acção, árvore de pesquisa, restrição.
- 12. Considere o problema de descobrir um caminho óptimo que passe por determinadas cidades $A_1,...,A_n$, partindo, por exemplo, de A_1 , passando por todas as outras apenas uma vez, e regressando a A_1 . Como formularia este problema para o resolver através de pesquisa A^* ? Indique em particular em que consistiriam os estados, qual seria o estado inicial, qual o método para gerar as transições de estados, qual a função de avaliação dos custos das transições e qual a função heurística. Considere os seguintes casos:
 - (a) Não está disponível informação sobre a localização (coordenadas) das cidades.

13. Considere um jogo em que as 8 primeiras letras do alfabeto (A a H) são colocadas de forma aleatória numa matriz de 3x3, ficando portanto uma posição por preencher. Uma letra (verticalmente ou horizontalmente) adjacente à posição livre pode ser deslocada para essa posição. O objectivo é determinar uma sequência de movimentos para gerar uma outra configuração da matriz. No exemplo da figura incluida abaixo, são necessários 6 movimentos, mas em média são precisos muitos mais.

A	E	
C	В	D
F	G	Н

- (a) No caso de ser utilizada pesquisa em árvore, indique uma estimativa para o factor de ramificação médio das árvores de pesquisa neste domínio.
- (b) Tendo em vista a possível resolução de problemas deste tipo através de A*, considere as seguintes heurísticas:
 - (h_1) Número de letras fora da sua posição final. (4 no exemplo acima)
 - (h_2) Soma das distâncias horizontais e verticais das várias letras às respectivas posições finais. (6 no exemplo acima)

Estas heurísticas são admissíveis? Qual delas espera que funcione melhor?

14. Considere o problema de construir automaticamente passatempos de "palavras cruzadas". Como entrada, o processo recebe uma lista de palavras que podem ser utilizadas, e uma matriz, com informação de quais as posições a preencher (brancas) e quais as posições a não preencher (pretas). Qualquer sequência não interrompida de letras, seja na horizontal, seja na vertical, deve corresponder a uma palavra válida. O resultado é uma selecção das palavras a incluir na matriz e respectivas posições na matriz. Note que o problema aqui colocado é o da geração de uma matriz de palavras cruzadas, e não o da resolução do passatempo com base em sinónimos fornecidos como pistas.

(a) No pressuposto de utilizar pesquisa em árvore, como representaria os estados e o que seriam as transições de estados? Indique uma estratégia de pesquisa em árvore adequada ao problema bem como, se necessário, uma heurística.

(b) No pressuposto de utilizar pesquisa com propagação de restrições, que variáveis utilizaria, e quais os seus valores?

(c) Qual das duas aproximações, pesquisa em árvore ou pesquisa com propagação de restrições, seria mais adequada?

Page 11