A) Write a Python NumPy program to compute the weighted average along the specified axis of a given flattened array.

```
In [1]: import numpy as np

x = np.array([1, 2, 3, 4, 5])
w = np.array([0.1, 0.2, 0.3, 0.2, 0.2])

wa = np.average(x, weights=w)

print("Weighted average:", wa)
```

Weighted average: 3.2

Write a Python program to view basic statistical details of the data (Use advertising.csv)

	טו	IV	Kadio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

1 of 1 10/12/24, 11:18 PM