Autor: Pedro I. López

Contacto: dreilopz@gmail.com | www.dreilopz.me

Licencia: Creative Commons Attribution 3.0 Unported (CC BY 3.0

http://creativecommons.org/licenses/by/3.0/)

Fecha: Febrero 2012.

En ninguna circunstancia el autor se hace responsable de cualquier daño a cualquier persona o hardware causado por realizar lo descrito en este documento.

Práctica 2

Filtrado y amplificación de señales

Objetivo

Que el alumno conozca las diferentes formas de filtrado, reconozca cuando es necesario filtrar una señal y conozca las diferentes configuraciones de un amplificador operacional para amplificar las señales.

Desarrollo

Sección 1 – Filtrado de señales - Filtro pasa baja

Se busca implementar el siguiente circuito

f2- 1. Esquemático de circuito sección 1

Se debe poner especial atención a la frecuencia y amplitud de la señal de salida, se tomaron 10 lecturas dentro de la frecuencia de corte, 1 en la frecuencia de corte y 10 fuera de la frecuencia de corte.

El diseño corresponde a un filtro pasivo pasa baja, que tiene como frecuencia de corte 8.842 kHz. Inicialmente se pide un filtro pasa baja con frecuencia de corte 9 kHz, con un margen de error de 5 % en la banda pasante. El error del circuito es 1.76 %. Los datos recabados se encuentran en la tabla *t2-1* de la sección *Reporte*.

Nota: La función de transferencia del sistema descrito en el circuito se obtiene en la sección *Reporte*.

Ejecutando el software NI ELVIS, se abren los instrumentos virtuales de osciloscopio y generador de funciones. El generador de funciones se ajusta para obtener una onda senoidal de 2 V de amplitud como entrada para el circuito. El osciloscopio servirá para visualizar el voltaje en el capacitor respecto al tiempo, siendo esta onda la resultante después de aplicar el filtro en el circuito.

f2- 2. Implementación

f2- 3. Osciloscopio mostrando las señales

Se realizó una gráfica de ganancia contra frecuencia con los valores obtenidos, la cual se muestra en la sección *Reporte*, *f*2-9.

Sección 1 – Filtrado de señales - Diseño de un filtro pasa banda

Como ejercicio se diseña un filtro pasa banda. Se desea tomar lecturas de frecuencias dentro de 2 kHz, y 7 kHz, pero es admisible un 10 % de error en la banda pasante.

En la página anterior, en la figura f2-5 se aprecia el sistema que se diseñó como respuesta al ejercicio. El procedimiento de diseño así como otros pasos del experimento se pueden revisar en la sección *Reporte*.

f2- 6. Implementación

f2- 7. Imagen de osciloscopio al realizar pruebas

Sección 2 – Eliminación de ruido y amplificación

Nos enfrentamos con el siguiente problema:

Se tiene un sistema que nos entrega como respuesta una onda senoidal de 2 kHz y 2.5 V de amplitud de pico, en el proceso de comunicación con nuestro sistema de adquisición se suma un ruido de 10 kHz con una amplitud de pico de 1.5 V. Diseñar un sistema de filtrado para que la lectura en el sistema DAQ sea lo más fiel posible a la original y la entrada al sistema DAQ esté en un rango de entre $\pm 8 \text{ V} \text{ y} \pm 10 \text{ V}$.

Se diseñará un acondicionador de señal con ayuda de la tarjeta DAQ1, que contiene un amplificador sumador de señales y está acondicionado para anexar componentes de un filtro de nuestra elección. Posteriormente, la señal filtrada resultante tendrá que ser amplificada de nuevo para alcanzar los niveles de amplitud que se requieren. Los detalles se encuentran en *Reporte*. En esta sección se incluye una imagen de la implementación.

f2-8. Implementación utilizando la DAQ1

Reporte

Sección 1 – Filtrado de señales - Filtro pasa baja

Filtro pasa baja

Calcular la función de transferencia para cada lectura tomada con el filtro pasa baja, una vez calculados los valores registrarlos en una tabla y realizar una grafica de Ganancia vs frecuencia y explicar sus resultados y anexar los cálculos.

A continuación se presenta el modelo matemático del circuito en f2-1 expresado en función de transferencia, partiendo de la segunda ley de Kirchhoff

$$V_i = V_R + V_C = i(Z_R + Z_C)$$

Ya que

$$V_o = V_C = iZ_C$$

Entonces

$$\frac{V_o}{V_i} = \frac{iZ_C}{i(Z_R + Z_C)} = \frac{Z_C}{Z_R + Z_C} = \frac{1}{1 + \frac{Z_R}{Z_C}} = \frac{1}{1 - \frac{jR}{2\pi fC}} \quad \text{Función de transferencia}$$

La anterior ecuación es la **función de transferencia** que describe la respuesta del sistema circuito RC para cada valor de entrada. *t2-1* contiene los valores, y *f2-9* la gráfica de ganancia contra frecuencia.

	Entrada		Salida		
Lectura	Frecuencia (Hz)	Amplitud (V)	Frecuencia (Hz)	Amplitud (V)	Ganancia
1	501	2,003	501	1,951	0,974
2	1009	1,955	1009	1,883	0,963
3	2020	1,833	2020	1,691	0,922
4	3005	1,708	3005	1,487	0,870
5	4013	1,605	4013	1,298	0,809
6	5002	1,521	5002	1,140	0,749
7	6009	1,466	6009	1,011	0,689
8	7013	1,410	7013	0,912	0,647
9	8021	1,417	8021	0,851	0,601
10	9008	1,386	9008	0,778	0,561
11	10094	1,368	10094	0,710	0,519
12	10997	1,348	10997	0,659	0,489
13	12019	1,335	12019	0,613	0,459
14	13035	1,324	13035	0,570	0,431
15	14010	1,313	14010	0,536	0,408
16	14999	1,304	14999	0,506	0,388
17	16011	1,296	16011	0,476	0,368
18	17012	1,288	17012	0,452	0,351
19	18006	1,283	18006	0,430	0,336
20	19001	1,276	19001	0,410	0,321
21	20009	1,245	20009	0,391	0,314

t2- 1. Tabla de resultados filtro pasa bajas

f2- 9. Gráfica de ganancia contra frecuencia

Sección 1 – Filtrado de señales - Diseño de un filtro pasa banda

Filtro pasa banda.

Explicar el diseño del filtro pasa banda, enlistar los materiales utilizados y justificar el diseño. Calcular la función de transferencia para cada lectura tomada con el filtro pasa banda, una vez calculados los valores registrarlos en una tabla realizar una grafica de Ganancia vs frecuencia, calcular la calidad del filtro, banda pasante y la calidad del filtro, anexar los cálculos.

Como ejercicio se diseña un filtro pasa banda. Se desea tomar lecturas de frecuencias dentro de 2 kHz y 7 kHz, pero es admisible un 10 % de error en la banda pasante.

Pasos y explicación de diseño

Se utiliza el enfoque de encadenar un filtro pasa bajas con una frecuencia de corte determinada y conectando a su salida otro filtro pasa altos con otra frecuencia de corte, obteniendo un filtro pasa banda en el cual la respuesta sólo permitirá el paso de un determinado rango de frecuencias cercanas a una frecuencia central. Entonces el problema se divide en dos diseños de filtro pasa bajas y pasa altas. Antes de buscar valores de diseño, se procede a modelar matemáticamente el circuito expresando su respuesta en función de transferencia.

Los elementos eléctricos de la malla de la izquierda se identifican con el número 1, y los de la malla de la derecha con el número 2 (resistencia, capacitores, corrientes). Para la malla de la izquierda se tiene

$$V_i = V_{C1} + V_{R1} = i_1 Z_{C1} + Z_{R1} (i_1 - i_2) = i_1 Z_{C1} + Z_{R1} i_1 - Z_{R1} i_2 = i_1 (Z_{C1} + Z_{R1}) - i_2 Z_{R1}$$
 (A)

Para la malla de la derecha

$$0 = V_{R1} + V_{R2} + V_{C2} = (i_2 - i_1)Z_{R1} + i_2(Z_{R2} + Z_{C2}) = i_2Z_{R1} - i_1Z_{R1} + i_2Z_{R2} + i_2Z_{C2}$$

$$i_1Z_{R1} = i_2(Z_{R1} + Z_{R2} + Z_{C2})$$

$$i_1 = \frac{i_2(Z_{R1} + Z_{R2} + Z_{C2})}{Z_{R1}}$$
 (B)

Combinando (B) en (A)

$$V_{i} = \frac{i_{2}(Z_{R1} + Z_{R2} + Z_{C2})(Z_{C1} + Z_{R1})}{Z_{R1}} - i_{2}Z_{R1}$$

$$V_{i} = \frac{i_{2} \big(Z_{R1} Z_{C1} + {Z_{R1}}^{2} + {Z_{R2}} Z_{C1} + Z_{R2} Z_{R1} + Z_{C2} Z_{C1} + Z_{C2} Z_{R1} \big) - i_{2} {Z_{R1}}^{2}}{Z_{R1}}$$

$$V_i = \frac{i_2(Z_{R1}Z_{C1} + Z_{R2}Z_{C1} + Z_{R1}Z_{R2} + Z_{C1}Z_{C2} + Z_{R1}Z_{C2})}{Z_{R1}}$$

Ya que

$$V_0 = V_{C2} = i_2 Z_{C2}$$

Entonces

$$\frac{V_o}{V_i} = i_2 Z_{C2} \left[\frac{Z_{R1}}{i_2 (Z_{R1} Z_{C1} + Z_{R2} Z_{C1} + Z_{R1} Z_{R2} + Z_{C1} Z_{C2} + Z_{R1} Z_{C2})} \right]$$

$$\frac{V_o}{V_i} = \frac{Z_{R1}Z_{C2}}{Z_{R1}Z_{C1} + Z_{R2}Z_{C1} + Z_{R1}Z_{R2} + Z_{C1}Z_{C2} + Z_{R1}Z_{C2}} = \frac{1}{\frac{Z_{C1}}{Z_{C2}} + \frac{Z_{R2}}{Z_{R1}} + \frac{Z_{R2}}{Z_{C2}} + \frac{Z_{C1}}{Z_{R1}} + 1}$$

$$\frac{V_o}{V_i} = \frac{1}{\frac{\left(\frac{-j}{2\pi f C_1}\right)}{\left(\frac{-j}{2\pi f C_2}\right)} + \frac{R_2}{R_1} + \frac{R_2}{\left(\frac{-j}{2\pi f C_2}\right)} + \frac{\left(\frac{-j}{2\pi f C_1}\right)}{R_1} + 1}$$

$$\frac{V_{o}}{V_{i}} = \frac{1}{1 + \left[\frac{R_{2}}{R_{1}} + \frac{C_{2}}{C_{1}} - \left(\frac{2\pi f R_{2}C_{2}}{j} + \frac{j}{2\pi f R_{1}C_{1}}\right)\right]}$$

La anterior ecuación es la función de transferencia que describe la respuesta del sistema para cada valor de entrada. Para poder utilizar valores definidos de resistencias y no tener que acudir a

usar varias resistencias o potenciómetros, se realizaron cálculos en hoja de datos para obtener los valores.

	Para ejercicio paso bandas								
C paso alta pF	C paso baja pF	R paso alta ohms	R paso baja ohms	R paso alta real	R paso baja real	f min	f max	error f min	error f max
100,000	1,000,000	795.7728546	22.73636727	820	22	1940.909 401	7234.298 678	2.954529 927	3.347123 974
10,000	10,000	7957.728546	2273.636727	8200	2200	1940.909 401	7234.298 678	2.954529 927	3.347123 974
4,700	4,700	16931.33733	4837.524952	18000	4700	1881.259 704	7204.824 397	5.937014 823	- 2.926062 808

t2- 2. Tabla de búsqueda de valores para componentes de filtro pasa bandas

Los valores de capacitancias se escogieron arbitrariamente, y así, en base a las frecuencias de corte que se desean obtener, se calcularon los resistores. También se calcula el nivel de error para comprobar que se encuentra dentro del rango 10 % de la banda pasante especificada en el ejercicio.

La fórmula que se utiliza en la hoja de cálculo para obtener las resistencias es:

$$R = 1/(2\pi f_C C)$$

Para el caso de la resistencia del filtro pasa altas tenemos

$$R = 1/(2 \times 3.1416 \times 7000 \text{ Hz} \times 4700 \text{ pF}) = 16931.33733 \Omega \approx 18 \text{ k}\Omega$$

Para el caso de la resistencia del filtro pasa bajas se calcula

$$R = 1/(2 \times 3.1416 \times Hz \times 4700 pF) = 4837.524952 \Omega \approx 4.7 k\Omega$$

Como se puede observar, en los mismos cálculos se aproximaron los valores resultantes de las resistencias a valores estándar. Las frecuencias se vuelven a calcular para posteriormente obtener el porcentaje de error y juzgar si nuestro diseño puede ser útil para el ejercicio. La fórmula para calcular las frecuencias son:

$$f = 1/(2\pi RC)$$

Y para las dos frecuencias tenemos los resultados

$$f_{\text{mímina}} = 1/(2 \text{ x } 3.1416 \text{ x } 18 \text{ k}\Omega \text{ x } 4700 \text{ pF}) = 1881.259704 \text{ Hz}$$

$$f_{\text{máxima}} = 1/(2 \text{ x } 3.1416 \text{ x } 4.7 \text{ k}\Omega \text{ x } 4700 \text{ pF}) = 7204.824397 \text{ Hz}$$

Para el porcentaje de error, la hoja de cálculo usa la fórmula

Error = (Frecuencia corte min – Frecuencia corte min diseño)/(Frecuencia corte min) x 100

Y así calculamos los errores de cada diseño de filtro

```
Error f_{ci} = (2000 Hz - 1881.259704 Hz)/(2000 Hz) x 100 = 5.937014823 % Error f_{cs} = (7000 Hz - 7204.824397 Hz)/(7000 Hz) x 100 = -2.926062808 %
```

Los errores de nuestros diseños se encuentran dentro del rango de 10 % de error.

Ahora que se ha diseñado el filtro, se procede a implementar el circuito.

f2- 10. Esquemático de filtro diseñado

Como se observa en el diagrama esquemático, los elementos utilizados fueron

- 2 capacitores 4700 pF
- 1 resistencia ½ W de 4.7 kΩ
- 1 resistencia ½ W de 18 kΩ

Se deben tomar 10 lecturas en la primera banda rechazada, 1 en la primera frecuencia de corte, 10 en la banda pasante, 1 en la segunda frecuencia de corte,

y 10 en la segunda banda rechazada. Se debe encontrar la frecuencia para la ganancia máxima y la amplitud de su voltaje de salida y al menos 5 puntos de simetría, su frecuencia y su amplitud. Los datos recabados se encuentran en la tabla *t2-3*.

Los datos obtenidos se utilizaron para realizar una gráfica de ganancia contra frecuencia (f2-11). Esto servirá para visualizar el comportamiento no ideal del filtro diseñado. Se anexó una línea de tendencia polinomial que indica el comportamiento que se esperaría de un filtro pasa bandas ideal.

f2-11. Gráfica de comportamiento ganancia-frecuencia

La ganancia máxima del filtro fue de 0.227019704, obtenida con la frecuencia 3013 Hz.

	Entrada		Salid		
		Amplitud	Amplitud		
Lectura	Frecuencia (Hz)	(V)	Frecuencia (Hz)	(V)	Ganancia
1	400.542	2.035	400.540	0.175	0.086
2	605.295	2.036	605.296	0.195	0.096
3	800.493	2.045	800.499	0.216	0.106
4	1002.000	2.038	1002.000	0.236	0.116
5	1203.000	2.037	1203.000	0.257	0.126
6	1299.000	2.003	1299.000	0.264	0.132
7	1401.000	2.043	1401.000	0.268	0.131
8	1504.000	2.044	1504.000	0.283	0.138
9	1602.000	2.040	1602.000	0.278	0.136
10	1708.000	2.041	1708.000	0.286	0.140
11	1881.000	2.032	1881.000	0.297	0.146
12	2002.000	2.038	2002.000	0.295	0.145
13	2510.000	2.003	2510.000	0.315	0.157
14	3013.000	2.030	3013.000	0.461	0.227
15	3504.000	2.024	3504.000	0.433	0.214
16	4008.000	2.023	4008.000	0.417	0.206
17	4504.000	2.015	4504.000	0.401	0.199
18	5017.000	2.009	5017.000	0.387	0.192
19	5506.000	2.008	5506.000	0.412	0.205
20	6001.000	2.001	6001.000	0.380	0.190
21	6516.000	2.015	6516.000	0.370	0.184
22	7207.000	2.011	7207.000	0.408	0.203
23	9010.000	1.991	9010.000	0.371	0.186
24	11022.000	1.992	11022.000	0.326	0.164
25	13097.000	1.982	13097.000	0.290	0.147
26	15043.000	1.973	15043.000	0.290	0.147
27	17011.000	1.965	17011.000	0.232	0.118
28	19004.000	1.960	19004.000	0.231	0.118
29	21037.000	1.952	21037.000	0.204	0.105
30	23009.000	1.943	23009.000	0.207	0.107
31	25058.000	1.940	25058.000	0.204	0.105
32	27020.000	1.925	27020.000	0.180	0.094

t2-3. Tabla de valores del experimento

El ancho de banda del filtro se obtiene calculando:

$$BW = f_{CS} - f_{CI} = 7204.824397 \; Hz - 1881.259704 \; Hz = \textbf{5323.564693} \; \textbf{Hz} = \textbf{BW}$$

Calculemos la frecuencia resonante f_o

$$\rm f_o = \sqrt{f_{CS}f_{CI}} = \sqrt{(7204.824397~Hz)(1881.259704~Hz~)} = 3{,}681.596~Hz$$

Para después obtener la calidad del filtro

$$Q = \frac{f_o}{BW} = \frac{3,681.596 \text{ Hz}}{5323.564693 \text{ Hz}} = 0.69157$$

Al menos 5 puntos de simetría se identificaron en los datos adquiridos. Estos se presentan en la siguiente tabla. Cada par de puntos con sus respectivos se identifican por un color en común para poder visualizarlos mejor.

 $Ganancia\ m\'axima = 0.227019704$

Frecuencia crítica = 3013 Hz.

Amplitud de señal en ganancia máxima = 0.461 V

Calidad = 0.69157

También se buscaron puntos de simetría, y se presentan en la tabla t2-4.

	Entrada		Salid		
Lectura	Frecuencia (Hz)	Amplitud (V)	Frecuencia (Hz)	Amplitud (V)	Ganancia
12	2002.000	2.038	2002.000	0.295	0.145
25	13097.000	1.982	13097.000	0.290	0.147
11	1881.000	2.032	1881.000	0.297	0.146
26	15043.000	1.973	15043.000	0.290	0.147
4	1002.000	2.038	1002.000	0.236	0.116
27	17011.000	1.965	17011.000	0.232	0.118
3	800.493	2.045	800.499	0.216	0.106
30	23009.000	1.943	23009.000	0.207	0.107
2	605.295	2.036	605.296	0.195	0.096
32	27020.000	1.925	27020.000	0.180	0.094

t2- 4. Tabla con puntos de simetría

Sección 2 – Eliminación de ruido y amplificación

1. Explicar y justificar el diseño realizado

Explicación de diseño

Ya que se requiere que la señal resultante se parezca a la de entrada (onda senoidal de 2 kHz y 2.5 V de amplitud), se optó por utilizar un filtro pasa bajas con una frecuencia de corte cercana a la frecuencia de nuestra señal, y así las frecuencias mayores a esta serán filtradas, incluyendo la señal de ruido (10 kHz).

El filtro pasivo utilizará 1 resistor y 1 capacitor. De nuevo se utilizó una hoja de cálculo para obtener los valores y calcular el error. Las fórmulas utilizadas se pueden consultar en la Sección 1 – Filtrado de señales – Diseño de un filtro pasa bandas.

Diseño de filtro pasivo pasa bajas							
Resistencia (ohms)	Resistencia estándar (ohms)	Capacitor (pF)	frecuencia corte (Hz)	Error (%)			
79577.28546	82000	1000	1940.909401	2.95452992			
36171.49339	39000	2200	1854.948379	7.25258104			
16931.33733	18000	4700	1881.259704	5.93701482			
24114.32893	27000	3300	1786.246587	10.6876706			

t2-5. Tabla de apoyo para diseño

El renglón en color negro es el que utilizó para el diseño del filtro.

2. Enlistar los materiales arrojados por el proceso de diseño

El material para el filtro pasa bajas será:

- 1 resistencia de 82 k Ω
- 1 capacitor de 1000 pF
- 3. Experimentar y reportar detalladamente los resultados obtenidos con el diseño realizado

Se recabaron datos experimentales para concentrarlos en la tabla *t2-6*.

Frecuencia (Hz)	Amplitud suma (V)	Amplitud suma filtrada (V)	Amplitud suma filtrada amplificada (V)
198,694	1,319	0,908	10,5235
400,9	1,3065	0,891	10,5235
600,58	1,3115	0,8675	10,5235
802,502	1,3185	0,839	10,5235
1001	1,3175	0,802	10,5235
1201	1,3125	0,7775	10,5235
1401	1,316	0,7445	10,544
1600	1,315	0,7115	10,565
1801	1,3165	0,6815	10,4435
2001	1,3145	0,645	9,976
2500	1,279	0,576	8,9965
3003	1,321	0,528	8,1995
3501	1,319	0,48087	7,451
4002	1,314	0,441515	6,813
4505	1,3135	0,40962	6,335
5003	1,3075	0,34788	5,3355
5508	1,304	0,358225	5,5345
6002	1,3145	0,339445	5,2355
6502	1,2955	0,320635	4,9535
7005	1,301	0,3058	4,717

t2- 6. Tabla de resultados de diseño sección 2

En tal tabla se incluyeron valores de amplitudes de 3 etapas del experimento. *Amplitud suma* se refiere a la salida del op. amp. justo después de realizar la suma entre las señales que representan a la onda de datos y la onda de ruido. *Amplitud suma filtrada* muestra las amplitudes de la señal suma al aplicar el filtro diseñado. *Amplitud suma filtrada y amplificada* representa la etapa final de la señal al aplicársele la amplificación correspondiente para que la naturaleza de la onda sea la que pide el requisito del problema. Esto podemos comprobarlo al observar las amplitudes que son arriba de 10 V dentro del rango de frecuencias de la señal de datos. Se incluyen imágenes del osciloscopio con las señales ya descritas (*f2-12*, *f2-13*, *f2-14*).

f2- 12. Suma

 En caso de que no se cumpla con los requerimientos pedidos repetir el proceso de diseño y lo restante.
No aplica.

Contestar las siguientes preguntas

¿Que tipo de filtro es? Filtro pasa bajas pasivo.

¿Porqué?

Es pasivo porque está compuesto solo por componentes pasivos y no tiene amplificación. Es pasa bajas porque deja pasar las frecuencias que sean menores a la frecuencia de corte.

¿ Qué frecuencia de corte tiene? 1940.909401 Hz.

f2- 13. Suma filtrada

f2- 14. Suma filtrada y suma filtrada amplificada

¿Cómo se calcula?

$$f_c = \frac{1}{2\pi RC} = \frac{1}{2\pi (82 \text{ k}\Omega)(1,000 \text{ pF})} = 1,940.913 \text{ Hz}$$

En caso de que fuese un filtro pasa banda o rechaza banda, calcular su banda pasante, banda rechazada, frecuencia critica y 5 puntos de simetría, anexar una tabla con los datos necesarios para su comprensión.

Se utilizó un filtro pasa bajas, entonces este paso no aplica.

¿Qué amplificación se le agregó?

Se utilizó un amplificador no inversor con ganancia 15.24. Antes la señal pasó por un seguidor de voltaje. El esquemático siguiente muestra el circuito correspondiente.

f2- 15. Circuito de etapa de amplificación

¿Cómo se calculó?

Como se puede apreciar en la tabla *t2-6*, las amplitudes de la señal filtrada (en las frecuencias de nuestro interés) se encuentran en el rango de 0.6 y 0.9 V. Como la señal de salida debe estar entre 8 y 10 V de amplitud, las ganancias máxima y mínima posibles se obtienen

Frecuencia (Hz)	Amplitud suma (V)	Amplitud suma filtrada (V)	Ganancia filtro
198,694	1,319	0,908	0,6884
400,9	1,3065	0,891	0,681975
600,58	1,3115	0,8675	0,661456
802,502	1,3185	0,839	0,636329
1001	1,3175	0,802	0,608729
1201	1,3125	0,7775	0,592381
1401	1,316	0,7445	0,565729
1600	1,315	0,7115	0,541065
1801	1,3165	0,6815	0,51766
2001	1,3145	0,645	0,490681
2500	1,279	0,576	0,450352
3003	1,321	0,528	0,399697
3501	1,319	0,48087	0,364572
4002	1,314	0,441515	0,336008
4505	1,3135	0,40962	0,311854
5003	1,3075	0,34788	0,266065
5508	1,304	0,358225	0,274712
6002	1,3145	0,339445	0,258231
6502	1,2955	0,320635	0,247499
7005	1,301	0,3058	0,23505

t2- 7. Tabla para calcular ganancias

Para utilizar valores de resistores estándar, se utiliza 47 k Ω para la resistencia de realimentación y 3.3 k Ω para la resistencia de entrada, así:

$$\frac{V_o}{V_i} = \left(\frac{R_f}{R_i} + 1\right) = \left(\frac{47 \text{ k}\Omega}{3.3 \text{ k}\Omega} + 1\right) = 15.24$$

Realizar una gráfica de ganancia contra frecuencia para el filtro realizado y observe los efectos del ruido.

Para poder realizar tal gráfica, completemos la tabla anterior con el cálculo de la ganancia del filtro (*t2-7*, página anterior).

Y así se elabora la gráfica correspondiente.

f2- 16. Gráfica de ganancia contra frecuencia

El ruido ocasiona que la señal final no sea exactamente una onda senoidal simple. Además afecta evidentemente la ganancia del circuito, como se pude observar en la gráfica en *f2-16*.

Conclusión

En general, los filtros electrónicos son circuitos que realizan funciones útiles en procesamiento de señales. Su objetivo primordial es remover o mejorar componentes de la señales arbitrariamente. En esta práctica de laboratorio utilizamos los filtros para aminorar las amplitudes de las señales de prueba para ciertas frecuencias. Así, tendremos diferentes tipos de filtro dependiendo del tipo de bloqueo/filtrado de frecuencias.

Un circuito que tome como entrada una señal que varía en el tiempo y la deje intacta en su salida desde frecuencias de 0 a z Hz, es un filtro pasa bajas con frecuencia de corte z. Una descripción similar en analogía es la que le corresponde a un filtro pasa altas. Un filtro pasa bandas deja pasar un conjunto de frecuencias consecutivas. Existen varios enfoques para diseñar un filtro, ya sea hacerlo con componentes pasivos o activos y pasivos.

Es frecuente que las señales requieran una adaptación en cuanto a la magnitud de su amplitud, para esto podemos utilizar un circuito amplificador. Un amplificador se puede realizar con un amplificador operacional, y su función básica es multiplicar la amplitud de la señal a procesar por una constante controlada por la realimentación negativa del mismo. En esta práctica utilizamos las configuraciones amplificador inversor, amplificador sumador y amplificador no inversor.

Bibliografía

<u>Ingeniería de Control</u>

W. Bolton 2da edición Alfaomega

• Electronics Tutorials

http://www.electronics-tutorials.ws/filter/filter 1.html

Design and characterization of a Band-pass filter
Department of Electrical and Systems Engineering
University of Pennsylvania
http://www.seas.upenn.edu/~ese206/labs/Filterlab.html

Electrónica: teoría de circuitos y dispositivos electrónicos

Boylestad; Nashelsky Pearson – Prentice Hall Octava edición