第一回課題解説.

1. 数列 $\{a_n\}_{n=1}^\infty$ が $\alpha\in\mathbb{R}$ に収束するとは, α 中心のどんな長さ $\varepsilon>0$ の区間をとっても,その外側にある数列の点の個数が有限個であることを言う.数列 $\{a_n\}_{n=1}^\infty$ が如何なる実数にも収束しないことは,任意の実数 α に対しその否定が成り立つことである.論理式で書くと

$$(\forall \alpha \in \mathbb{R})(\exists \delta > 0)(\forall N)(\exists n)(n > N \land |a_n - \alpha| > \delta)$$

である. これは日本語で表現すると, 例えば次のようになる:

- どんな実数 α をとっても, $a_n-\alpha|>\delta$ となる n が無限個存在するような $\delta>0$ がとれる.次のように言えば,無限個という言葉を避けられる:
- どんな実数 α をとっても,それに応じて次の性質をもつ $\delta>0$ がとれる:どんなに大きい N に対しても n>N かつ $|a_n-\alpha|>\delta$ であるような n がある.
- どんな実数 α をとっても,それに応じて $\delta>0$ があって,どんなに大きい N に対しても,n>N かつ $a_n-\alpha|>\delta$ であるような n がある.

注意. $(\forall \alpha \in \mathbb{R})$ と $(\exists \delta > 0)$ の順序を反対にすると意味が全く変わってしまう. 「どんな α に対してもそれに応じた $\delta > 0$ でこれこれしかじかのものがとれる」が, 「ある $\delta > 0$ をとると,全ての α に対してこれこれしかじか」の意味になってしまう.

- **2.** $a\sqrt{n}+b\sqrt{n+1}+c\sqrt{n+2}=\sqrt{n}(a+b\sqrt{\frac{n+1}{n}}+c\sqrt{\frac{n+2}{n}}=\sqrt{n}(a+b\sqrt{1+\frac{1}{n}}+c\sqrt{1+\frac{2}{n}})$ であるが, $n\to\infty$ のときにこれが 0 に収束するためには $a+b\sqrt{1+\frac{1}{n}}+c\sqrt{1+\frac{2}{n}}\to 0$ $(n\to\infty)$ であることが必要条件である.よって a+b+c=0 であることが必要条件である.未知数 3 個に対し条件は 1 個だけなので,a,b,c の値は不定のはずである.そこで a=-b-c のもとで問題の極限がどうなるかを調べると, $-(b+c)\sqrt{n}+b\sqrt{n+1}+c\sqrt{n+2}=b(\sqrt{n+1}-\sqrt{n})+c(\sqrt{n+2}-\sqrt{n})=\frac{b}{\sqrt{n+1}+\sqrt{n}}+\frac{2c}{\sqrt{n+2}+\sqrt{n}}\to 0$ $(n\to\infty)$ である.よって,a+b+c=0 は問題の極限が 0 になるための十分条件でもあることがわかった.答:a+b+c=0 を満たす全ての (a,b,c).
- 3. 教科書の 1.1. $\varepsilon > 0$ を勝手にとってくる. (i) $N = \varepsilon^{-2}$ とおくと n > N なら $0 < n^{-\frac{1}{2}} < N^{-\frac{1}{2}} = \varepsilon$ である. よって $\lim_{n \to \infty} n^{-\frac{1}{2}} = 0$ である. (ii) $N = 10^{\frac{1}{\varepsilon}}$ とおくと n > N なら $0 < \frac{1}{\log_{10} n} < \frac{1}{\log_{10} N} = \varepsilon$ である. よって $\lim_{n \to \infty} \frac{1}{\log_{10} n} = 0$ である.

教科書の 1.2. (i) $\lim_{n\to\infty}\{\frac{(n+1)^2}{n-1}-\frac{(n-1)^2}{n+1}\}=\lim_{n\to\infty}\frac{(n+1)^3-(n-1)^3}{n^2-1}=\lim_{n\to\infty}\frac{6n^2+2}{n^2-1}=\lim_{n\to\infty}\frac{6+\frac{2}{n^2}}{1-\frac{1}{n^2}}=6.$ (ii) $\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=\lim_{n\to\infty}\frac{1}{\sqrt{n+1}+\sqrt{n}}=0.$ (iii) $\lim_{n\to\infty}\frac{1^2+2^2+\cdots+n^2}{n^3}=\lim_{n\to\infty}\frac{1}{6}\frac{n(n+1)(2n+1)}{n^3}=\frac{(1+\frac{1}{n})(2+\frac{1}{n})}{6}=\frac{1}{3}.$ 別解:区分求積法より $\lim_{n\to\infty}\frac{1}{n}\{(\frac{1}{n})^2+(\frac{2}{n})^2+\cdots+\frac{n^2}{n^2}\}=\int_0^1x^2dx=\frac{1}{3}.$

教科書の 1.3. (i) c=1+h (h>0) とおくと $c^n=(1+h)^n\geq \binom{n}{2}h^2=\frac{n(n-1)}{2}h^2$. よって $0<\frac{n}{c^n}<\frac{n}{n(n-1)}h^2=\frac{2}{(n-1)h^2}\to 0$ $(n\to\infty)$. はさみうち原理より $\lim_{n\to\infty}\frac{n}{c^n}=0$ である. (ii) $0<\frac{2^n}{n!}=\frac{2}{1}\frac{2}{2}\frac{2}{3}\dots\frac{2}{n}<\frac{2}{1}\frac{2}{2}(\frac{2}{3})^{n-2}\to 0$ $(n\to\infty)$. はさみうち原理より $\lim_{n\to\infty}\frac{2^n}{n!}=0$ である. (iii) も (ii) と同様. $\frac{c}{1},\frac{c}{2},\dots,\frac{c}{k},\frac{c}{k+1},\dots$ と並べる と, $\frac{c}{k}\to 0$ $(k\to\infty)$ だから,必ずどこかで $\frac{c}{k+1}<1$ となる.このような k を一つとって固定すると $\frac{c}{k+1}<1$ だから n>k なら $0<\frac{c^n}{n!}<\frac{c^k}{k!}(\frac{c}{k+1})^{n-k}\to 0$ $(n\to\infty)$ である.はさみうち原理より $\lim_{n\to\infty}\frac{c^n}{n!}=0$ である.