XOR Cipher Challenge

Introduction

For the new semester, the TUM security office sends new login credentials to each student and staff member. Since these credentials are very sensitive, they are encrypted using a 24-byte-long pre-shared key. Your key is (hex encoded):

5a6935554b655a4a4b37696e353379584a397a32657071

The message that contains your credentials is 48 bytes long. To decrypt it, you need to split it into two 24-byte halves and apply the bitwise XOR operator to each byte of the message and the key. The message you got from the TUM security office is (hex encoded):

 $030640276b09352d2259490d47561d3d244d135309034b\\3d060c62331c20651f5f001d7c403a37384b1f51114a58$

To make the conversion of hex to ASCII and the calculation of XOR more convenient, you can use this website:

https://set-xor-challenge.dorian.im

With this website, copy and paste is enough to solve both challenges.

Challenge 1 (2 points)

To decrypt this message, you need to use the bitwise XOR operator to combine the ciphertext and key byte-by-byte. For more information about the XOR cipher, see: https://en.wikipedia.org/wiki/XOR_cipher

Decrypt the message to find out your login credentials!

Challenge 2 (8 points + 3 bonus points)

A mail server security flaw allowed you to read your professor's emails! You were able to find his email from the TUM security office which contained his encrypted credentials (hex encoded):

3d061001451f3c1e1a1a450e3b161036071701041e2777 0306514111063e562a1b102e3b1217380c07211153756c

However, you don't have access to their decryption key.

Can you still find out their login credentials?

Hints

Properties of bitwise XOR:

- commutative: $A \oplus B = B \oplus A$ associative: $A \oplus (B \oplus C) = (A \oplus B) \oplus C$
- identity element: $A \oplus 0 = A$ self-inverse: $A \oplus A = 0$

Definition of XOR cipher:

- Encryption: $Plaintext \oplus Key = Ciphertext$
- Decryption: $Ciphertext \oplus Key = (Plaintext \oplus Key) \oplus Key = Plaintext \oplus (Key \oplus Key) = Plaintext$

If you get stuck and don't know how to proceed, you can ask your tutor for more hints in exchange for some points.