Solving parabolic PDEs in parallel via time discretization using Laplace transforms

Kyle Geyser and Dylan Denning
December 6, 2012

Abstract

For this project, we will outline a method to solve inhomogeneous parabolic partial differential equations in parallel. This will be accomplished by removing the time dependence of the equations by transforming the problem into a differential equation in the space-frequency setting through a Laplace transformation. For each discrete frequency, an independent spatial problem exists which can be solved with a finite difference method for numerically approximating solutions to differential equations. Due to the independence of the spatial problems, many problems can be solved at the same time in a parallel environment. This paper will further explain the details required to produce accurate results for such problems.

Problem Description

The problems we will consider are of the form

$$u_t + Au = f(t)$$
, for $t > 0$, with $u(0) = u_0$

where A is the second-order differential operator (∇^2) with Dirichlet boundary conditions and u_0 and f(t) are given. Note: all functions above have implied spatial terms based on the dimensionality of the problem

Approach

To remove the time dependece of the problem, we transform the equation with a Laplace transform defined by

$$w(z) := \mathcal{L}\{u\} = \hat{u}(z) = \int_0^\infty e^{-zt} u(t) dt$$

To get a solution for u, we must take an inverse Laplace transform of w defined by

$$u(t) = \frac{1}{2\pi i} \int_{\Gamma} e^{zt} w(z) dz$$

where Γ is a deformed contour in the complex plane, assuming w(z) can be continued analytically.

$$\Gamma = \{z: z = \varphi(y) + \mathrm{i}\sigma y, y \in \mathbb{R}, y \text{ increasing}\} \subset S, \\ S = \{z \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi) \in \mathbb{C}: |\arg z| < \delta, z \neq 0\}, \\ \delta \in (\pi/2, \pi)$$

Approach and Methodology

We will begin our studies with producing a working serial version of the algorithm for ordinary differential equations with known solutions, with which we can then compare computed results. Following successful completion of said serial algorithm, we will make the necessary adjustments as to allow for partial differential equation computations, still performing all computations in serial. Once a fully working serial version of the code is completed, we will proceed to parallelize the algorithm to produce our intended final result. By approaching the problem with this methodology, we can work in steps in which we feel comfortable. Between each step, should we need outside guidance, we can approach Dr. Ganesh with any problems we are having, while still showing that we are making progress toward a final production. Throughout the time spent working through these milestones, we can further our knowledge on the subject matter by continuing to digest more of the material in the provided article[1] as well as learn new material in the field of numerical solutions to PDEs through Dr. Ganesh's private lectures.

Expected Outcome

Since we are replicating the process in the article by Sheen, Sloan, and Thomée, we expect to get the same results the authors show in section 6 (Numerical examples) in their paper.[1]

Tables and Plots

Table 1 $Error \ and \ apparent \ order \ of \ convergence \ for \ Example \ 1 \ with \ N=10,20,40, \\ and \ 80 \ for \ \tau=0.5$

$t \mid$	ϵ_{10}	ϵ_{20}	$ ho_{20}$	ϵ_{40}	$ ho_{40}$	ϵ_{80}	$ ho_{80}$
0.2	3.715E-04	2.018E-04	0.88	3.574E-04	-0.82	3.451E-04	0.05
0.4	4.808E-04	1.654E-04	1.54	3.972 E-05	2.06	1.710E-06	4.54
0.6	1.704E-05	2.586E-05	-0.60	9.553E-06	1.44	1.705 E-06	2.49
0.8	1.441E-05	1.837E-07	6.29	1.175E-06	-2.68	3.131E-07	1.91
1.0	9.086E-06	1.158E-06	2.97	4.299E-08	4.75	4.452E-08	-0.05
1.2	1.480E-06	2.628E-07	2.49	2.781E-08	3.24	5.071E-09	2.46
1.4	5.214E-06	2.419E-08	7.75	9.365E-09	1.37	2.872E-10	5.03
1.6	9.582E-06	2.534E-08	8.56	1.248E-09	4.34	6.188E-11	4.33
1.8	1.545E-05	7.777E-09	10.96	1.674E-10	5.54	2.650E-11	2.66
2.0	2.305E-05	7.890E-09	11.51	1.221E-10	6.01	5.444E-12	4.49
3.0	9.117E-05	2.193E-08	12.02	1.247E-13	17.42	6.523E-16	7.58
4.0	2.640E-04	6.540E-08	11.98	5.787E-15	23.43	6.939E-18	9.70

Table 2 $Errors \ and \ apparent \ orders \ of \ convergence \ for \ Example \ 1 \ with \ N=40 \\ and \ 80 \ for \ \tau=0.25 \ and \ 1.0$

		$\tau = 0.25$			$\tau = 1.0$	
t	ϵ_{40}	ϵ_{80}	$ ho_{80}$	ϵ_{40}	ϵ_{80}	$ ho_{80}$
0.2	1.954E-05	6.513E-07	4.91	4.940E-03	2.792E-03	0.82
0.4	4.151E-07	1.258E-07	1.72	1.344E-03	1.060E-03	0.34
0.6	9.456E-09	1.612E-09	2.55	7.211E-04	3.211E-04	1.17
0.8	7.712E-10	2.510E-11	4.94	6.373E-05	2.477E-05	1.36
1.0	4.394E-10	1.504E-12	8.19	6.359E-05	3.183E-05	1.00
1.2	4.342E-10	2.195E-14	14.27	2.678E-05	3.323E-06	3.01
1.4	1.454E-09	1.832E-15	19.60	8.530E-07	2.766E-06	-1.70
1.6	2.700E-09	4.163E-16	22.63	4.399E-06	8.962 E-07	2.30
1.8	4.220E-09	4.441E-16	23.18	1.281E-06	1.798E-07	2.83
2.0	6.075E-09	5.829E-16	23.31	3.676E-07	1.596E-07	1.20
3.0	2.355E-08	2.318E-15	23.28	3.466E-09	1.814E-09	0.93
4.0	7.010E-08	6.994E-15	23.26	6.142E-10	3.219E-11	4.25

Table 3

Error and apparent order of convergence for Example 2 with N=20 and m=10,20,40, and 80 for $\tau=0.5$

$t \mid$	ϵ_{10}	ϵ_{20}	$ ho_{20}$	ϵ_{40}	$ ho_{40}$	ϵ_{80}	$ ho_{80}$
0.2	1.269E-02	2.102E-02	-0.73	2.381E-02	-0.18	2.450E-02	-0.04
0.4	2.140E-02	8.455E-03	1.34	5.226E-03	0.69	4.416E-03	0.24
0.6	1.522E-02	3.802E-03	2.00	9.256E-04	2.04	2.070E-04	2.16
0.8	1.212E-02	2.912E-03	2.06	6.515E-04	2.16	8.384E-05	2.96
1.0	9.506E-03	2.351E-03	2.02	6.009E-04	1.97	1.661E-04	1.86
1.2	7.370E-03	1.811E-03	2.02	4.520E-04	2.00	1.141E-04	1.99
1.4	5.859E-03	1.470E-03	2.00	3.650E-04	2.01	8.993E- 05	2.02
1.6	5.148E-03	1.276E-03	2.01	3.186E-04	2.00	7.977E-05	2.00
1.8	4.663E-03	1.176E-03	1.99	2.937E-04	2.00	7.348E-05	2.00
2.0	4.468E-03	1.114E-03	2.00	2.783E-04	2.00	6.958E-05	2.00
3.0	3.091E-03	7.691E-04	2.01	1.927E-04	2.00	4.823E-05	2.00
4.0	1.825E-03	4.533E-04	2.01	1.133E-04	2.00	2.854E-05	1.99

Table 4 $\label{eq:Number of cores vs. runtime} \textit{(in seconds) for } N = 50,000$ and m = 250,000

Cores	Sayers Lab	Mio
1.0	3661.0877999999998	2245.8103000000001
2.0	1918.26960000000001	1182.63359999999999
4.0	1021.9571	636.83158000000003
8.0	474.322600000000002	348.26038
16.0	264.32758000000001	164.24718999999999
32.0	153.50402	80.234003999999999
64.0	84.893333999999996	43.834428000000003
128.0	N/A	21.2930099999999999
256.0	N/A	16.5030800000000001
512.0	N/A	23.1667820000000001

Plot 1 Plot of Table 4 data $(lg(cores) \ vs. \ lg(runtime))$

Table 5 $Number\ of\ cores\ vs.\ speedup\ for\ N=50,000\ and\ m=250,000$

Cores	Sayers Lab	Mio
1.0	1.0	1.0
2.0	1.9085366311388137	1.898990777870678
4.0	3.5824280686537624	3.5265372675142777
8.0	7.718560743257858	6.4486528728878092
16.0	13.850570568534692	13.673355994705298
32.0	23.850110244669814	27.990754393860239
64.0	43.125739413179367	51.233936484810521
128.0	N/A	105.47171583538449
256.0	N/A	136.08431274646915
512.0	N/A	96.940969185966352

 $\begin{tabular}{ll} \textbf{Plot 2} \\ Plot of Table 5 \ data \ (lg(cores) \ vs. \ lg(speedup)) \\ \end{tabular}$

Table 6 $\label{eq:Number of cores vs. efficiency for N = 50,000 and m = 250,000} Number of cores vs. efficiency for N = 50,000 and m = 250,000 and m = 250,0$

Cores	Sayers Lab	Mio
1.0	1.0	1.0
2.0	0.95426831556940683	0.94949538893533902
4.0	0.8956070171634406	0.88163431687856941
8.0	0.96482009290723225	0.80608160911097615
16.0	0.86566066053341828	0.85458474966908116
32.0	0.74531594514593169	0.87471107480813248
64.0	0.67383967833092762	0.80053025757516438
128.0	N/A	0.8239977799639413
256.0	N/A	0.53157934666589512
512.0	N/A	0.18933783044134053

Plot 3

Plot of Table 6 data (lg(cores) vs. efficiency)

Table 7 $Number\ of\ cores\ vs.\ experimental\ serial\ fraction\ of\ the\ code\ for$ $N=50,000\ and\ m=250,000$

Cores	Sayers Lab	Mio
2.0	0.047923297551072164	0.053191001929236759
4.0	0.03885371628253953	0.044752372896321647
8.0	0.0052089514409975812	0.034367025567564609
16.0	0.010345804508339492	0.011343930518085162
32.0	0.01102299598743091	0.0046204722317963586
64.0	0.0076830559693734967	0.0039551114498611187
128.0	N/A	0.0016818543519778373
256.0	N/A	0.0034556341402023306
512.0	N/A	0.0083787958735268026

Plot 4

Plot of Table 7 data (la(comes) as commissiontal conial fraction of the code)

References

[1] Dongwoo Sheen, Ian H. Sloan, and Vidar Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA Journal of Numerical Analysis (2003) 23, 269-299

$$U_{N,\tau}(t) = 2\operatorname{Re}\left(\frac{1}{N\tau} \sum_{j=0}^{N-1} {'}\tilde{\mu_j} \mathrm{e}^{z_j t} w(z_j)\right)$$

$$(zI + A)w(z) = u_0 + \hat{f}(z)$$

$$u_t + Au = f(t), \quad \text{for } t > 0, \quad \text{with } u(0) = u_0$$

$$u_t - u_{xx} = f(x,t), \quad \text{for } 0 < x < \pi, \ t > 0,$$

$$u(x,t) = 0 \quad \text{for } x = 0 \text{ and } \pi, \ t > 0, \quad \text{with } u(x,0) = u_0(x), \quad \text{for } 0 < x < \pi$$

$$u(x,t) = (1+t)\mathrm{e}^{-t}\sin(x) + \cos(t)\mathrm{e}^{-2t}\sin(2x)$$

$$u_0(x) = \sin(x) + \sin(2x)$$

$$\hat{f}(x,z) = \frac{1}{1+z}\sin(x) + \frac{2z+3}{(z+2)^2+1}\sin(2x)$$