Approximating waveforms via additive synthesis

Additive synthesis is the process of approximating waveforms by adding sine waves together. In this article, I provide some examples of how specific waveforms can be composed using this method.

Sawtooth

Equation

A sawtooth waveform can be represented by the following equation:

$$x_{
m sawtooth}(t) = -rac{A}{\pi} \sum_{k=1}^{\infty} rac{\sin(2\pi k f t)}{k}$$

Where A is the amplitude, f is the frequency of the desired waveform, k is the *order*, or number of harmonics to use for the approximation, and t is time.

Code

Using $\underline{\text{NumPy}}$ we can perform a relatively straightforward translation of the above equation into the following Python code:

```
>>> from numpy import pi, sin, linspace

>>> order = 30

>>> t = linspace(0, pi, 500)

>>> waveform = -(2/pi) * sum([

... sin(2 * pi * k * t)/k

... for k in range(1, (order+2))

... ])

>>>
```

Result

The above code results in:

Steps

The following figure shows the result of each successive step as k iterates from 1 to 10.

Square

Equation

$$x_{ ext{square}}(t) = rac{4}{\pi} \sum_{k=1}^{\infty} rac{\sin\left(2\pi(2k-1)ft
ight)}{(2k-1)}$$

Code

```
>>> from numpy import pi, sin, linspace

>>> order = 30

>>> t = linspace(0, pi, 500)

>>> waveform = (4/pi) * sum([

... sin(2 * pi * (2 * k - 1) * t)/(2 * k - 1)

... for k in range(1, (order+2))

... ])

>>>
```

Result

Steps

Triangle

Equation

$$x_{ ext{triangle}}(t) = rac{8}{\pi^2} \sum_{k=0}^{\infty} (-1)^k \, rac{\sin(2\pi(2k+1)ft)}{(2k+1)^2}$$

Code

```
>>> from numpy import pi, sin, linspace

>>> order = 30

>>> t = linspace(0, pi, 500)

>>> waveform = (8/pi**2) * sum([

... (-1)**k *

... sin(2 * pi * (2 * k + 1) * t)/(2 * k + 1)**2

... for k in range(0, (order+1))

... ])

>>>
```

Result

Steps

