

Presentation Overview

- 1 Introduction
- 2 Literature Review
- 3 Methodology
- 4 Experimental Setup
- 5 Results
- **6** Recommender System
- 7 Discussion
- **References & Appendices**

Introduction 01

Background and Motivation

Problem Statement

Objectives and Scope

Background and Motivation

Objectives and Scope

Analysis and Implementation of Results-

Data Collection and Processing Sample X 72238 Simple Imputation (Median) **KNN Imputation** 3 Imputations Collected Dataset **Iterative Imputation** Feature X 29 Model Development and Application **Linear Regression XGBoost MLP Ridge Regression** baseline predictive models advanced models **Random Forest Feature Token Transformers Lasso Regression Performance Evaluation and Comparison** 3 Imputations & different regression and machine learning models

predict university fit and potential income

Literature Review 02

- Study 1: "Developing and Evaluating a University Recommender System"
- Study 3: Systematic Review of Recommendation Systems for Course Selection

Utilizes diverse metrics such as Diversity, User Satisfaction, and Novelty to evaluate recommendation quality, reflecting the complex preferences of users in university selection.

- Study 2: "A Recommendation System for Selecting the Appropriate Undergraduate Program at Higher Education Institutions Using Graduate Student Data"
- Study 4: A Comprehensive Survey of Recommender Systems Based on Deep Learning:

Focuses on the critical role of data preprocessing and hyperparameter tuning in improving the accuracy of machine learning models, optimizing recommendations for undergraduate programs.

Methodology 03

Datasets

Data clean

Algorithms and Techniques

Tools and Technologies

Justification for the Approach

Datasets

2012 to 2022 = 10 years data

Collected Dataset

Feature X 29

Data clean

- 1. Delete null
- 2. Avoid Data Bias
- 3. Increase Data Size
- 4. Fill Other Nulls
- 5. Output a Cleaned Sub-dataset

Sample X 9197

Cleaned SubDataset

Feature X 29

INSTMM 0
PREDDEG 0
SATVR25 0
SATVR25 0
SATVR25 0
SATVR25 0
SATWIT5 0
SATWIT5 0
ACTCRV5 0
ACTCRV5 0
MD_EARN_MHE_P10 0
STUFACR 0
UGDS_HITF 0
UGDS_BLACK 0
UGDS_HITF 0
UGDS_ATAN 0
UGDS_BLACK 0
UGDS_HISP 0
UGDS_ATAN 0
UGDS_ATAN 0
UGDS_ATAN 0
UGDS_ATAN 0
UGDS_BLACK 0
UGDS_ATAN 0
UGDS_BLACK 0
UGDS_ATAN 0
UGDS_BLACK 0
UGDS_BLACK

Algorithms and Techniques

baseline predictive models
Advanced Machine Learning Models
Feature Token Transformer
Clustering and Data Preprocessing

Tools and Technologies

Python Jupyter Notebooks Scikit-Learn, TensorFlow, and XGBoost Libraries

Justification for the Approach

Diverse Algorithms
Comprehensive Dataset
Feature Token Transformer

Experimental Setup 04

- Experimental Design & Objectives:
 - Focused on predicting university suitability and future income using a dataset of 29 features.
 - Aimed to forecast annual incomes based on SAT/ACT scores, race, and college data.
- Data Preprocessing:
 - Cleaning: Removed records with high nulls in academic performance and racial categories.
 - Encoding: Applied one-hot encoding to categorical variables.
 - Imputation: Tested various techniques like SimpleImputer and KNNImputer for filling missing values.
- Model Setup & Tuning:
 - Utilized models like linear regression, XGBoost, and MLP.
 - Optimized parameters using cross-validation for balance and accuracy.
- Clustering & Ensembles:
 - Employed K-means for clustering and adjusted Random Forest settings based on performance metrics.
- **Evaluation & Validation:**
 - Used MSE and R² to evaluate model performance.
 - Ensured robustness through k-fold cross-validation.
- Recommender System:
 - Employed ECLAT algorithm, treating each record as a transaction to predict earnings based on academic and institutional data.

Regressions (Benchmark) 04.1

Tasks:

- College Application Prediction.
- Post-Graduation Outcome Prediction (ie. Annual Income).

Models & Parameters:

- Linear Regression.
- Ridge Regression (alpha = 1.0). [alpha controls the magnitude of the L2 penalty term]
- Lasso Regression (alpha = 0.1, max_itr = 1000). [alpha controls the magnitude of the L1 penalty term]

Significance:

- It serves as base model for future exploration and analysis.
- It offers intuitive guidance to the more robust and complex models.

Regressions (Benchmark) cont.

Result for Task 1: College Prediction

Model	MSE	R ²
Linear	175042.66 0.0485	
Ridge	174723.56	0.0502

Result for Task 2: Outcome Prediction (more on next slide)

Model	MSE	R ²
Linear	63243.56	0.24
Ridge	63248.81	0.24
Lasso	63262.79	0.24

Interpretation: The relatively **high MSE** and **low R**² indicate that the Regression models **may not be** fitting the data very well, we need more powerful and robust models.

Regressions (Benchmark) cont.

Below are the comprehensive visualizations of the actual versus predicted median earnings using Regressions.

Regression Cont: More Model, More Data

Model:

- XGBoost
- MLP (3 layers, Adam with Ir 1e-3, 400 epochs)
- Feature Token Transformer

Regression on manually cleaned data

Model	RMSE	R2
XGBoost	8170.32	0.2
MLP	8652.67	-0.89
Feature Token Transformer	7275.65	-0.18

Regression on Simple Imputation

Model	RMSE (MIN)	R2 (MAX)
XGBoost	13728.89	0.03
MLP	13380.84	-45.90
Feature Token Transformer	13577.16	-0.01

Regression on KNN Imputation

Model	RMSE	R2
XGBoost	13649.53	0.55
MLP	19325.81	-16.51
Feature Token Transformer	16153.31	-0.33

Regression on Iterative Imputation

Model	RMSE	R2
XGBoost	15808.79	0.29
MLP	17404.64	-23.36
Feature Token Transformer	16550.83	-0.01

Manual Cleaning V.S. Imputation

Data	RMSE	R2
Manual	7275.65 (FT Transformer)	0.2 (XGBoost)
Simple	13380.84(MLP)	0.3 (XGBoost)
KNN	13649.53 (XGBoost)	0.55 (XGBoost)
Iterative	15808.79 (XGBoost)	0.29 (XGBoost)

XGboost

FT Transformer

Cluster and Classify

MODEL:

- Random Forest
- XGBoost
- MLP

Data:

- Use KNN to cluster the universities by the income
- Find the number of clusters to cluster
- Relabel the instances with cluster index and classify

Cluster: Manual Data

Model	Accuracy	Precision	Recall
XGBoost	0.99	1	1
MLP	0.98	0.98	0.98
Random Forest	0.99	1	1

Cluster: Imputed Data

Model	Accuracy	Precision	Recall
XGBoost	0.99	1	1
MLP	0.98	0.98	0.98
Random Forest	0.99	1	1

Recommender System 06

Discussion and Future Work

Discussion:

Current Dataset is hard for training:

- Fairly large loss on Income Prediction
- Almost accurate prediction after clustering
- Either the task is too difficult or too easy

By Model:

SAT is one of the main factor:

 If SAT is larger, then higher income in the future

Future Work:

- More robust dataset for this task
- Drop features to train on models
- Add more clusters to get more explainable information
- Investigate on table understanding tasks

References:

[1] Frontiers in Education. "Developing and Evaluating a University Recommender System." Accessed [04/7/2024]. https://www.frontiersin.org/articles/10.3389/feduc.2020.00135/full.

[2]MDPI. "A Recommendation System for Selecting the Appropriate Undergraduate Program at Higher Education Institutions Using Graduate Student Data." Accessed [04/07/2024].

https://www.mdpi.com/2076-3417/11/4/1445

[3]Sharma, C. "University Recommender." GitHub repository. Accessed [04/07/2024].

https://github.com/chinmaysharmacs10/University_Recommender/tree/master.

[4] Shrooq Algarni, Frederick Sheldon, "Systematic Review of Recommendation Systems for Course Selection", Mach. Learn. Knowl. Extr., 2023, vol. 5, no. 2, pp. 560-596. Available online:

https://doi.org/10.3390/make5020033

[5] Hongde Zhou, Fei Xiong, Hongshu Chen, "A Comprehensive Survey of Recommender Systems Based on Deep Learning", Applied Sciences, 2023, vol. 13, no. 20, 11378. Available online:

https://doi.org/10.3390/app132011378