Anomaly/Outlier Detection

- What are anomalies/outliers?
 - The set of data points that are considerably different than the remainder of the data
- Variants of Anomaly/Outlier Detection Problems
 - Given a database D, find all the data points $\mathbf{x} \in D$ with anomaly scores greater than some threshold t
 - Given a database D, find all the data points x ∈ D having the top-n largest anomaly scores f(x)
 - Given a database D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D

Applications:

 Credit card fraud detection, telecommunication fraud detection, network intrusion detection, fault detection

Anomaly Detection

- Challenges
 - How many outliers are there in the data?
 - Method is unsupervised

- Working assumption:
 - There are considerably more "normal" observations than "abnormal" observations (outliers/anomalies) in the data

Anomaly Detection Schemes

- General Steps
 - Build a profile of the "normal" behavior
 - Profile can be patterns or summary statistics for the overall population
 - Use the "normal" profile to detect anomalies
 - Anomalies are observations whose characteristics differ significantly from the normal profile
- Types of anomaly detection schemes
 - Graphical & Statistical-based
 - Distance-based
 - Model-based

Graphical Approaches

■ Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)

- Limitations
 - Time consuming
 - Subjective

Convex Hull Method

- Extreme points are assumed to be outliers
- Use convex hull method to detect extreme values

□ What if the outlier occurs in the middle of the data?

Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)

Grubbs' Test

- Detect outliers in univariate data
- Assume data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
 - H_0 : There is no outlier in data
 - H_A: There is at least one outlier
- ☐ Grubbs' test statistic:

$$G = \frac{\max |X - \overline{X}|}{S}$$

 \square Reject H_0 if:

$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/N,N-2)}^2}{N-2+t_{(\alpha/N,N-2)}^2}}$$

Statistical-based – Likelihood Approach

- Assume the data set D contains samples from a mixture of two probability distributions:
 - M (majority distribution)
 - A (anomalous distribution)
- General Approach:
 - Initially, assume all the data points belong to M
 - Let L₁(D) be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, $\Delta = L_t(D) L_{t+1}(D)$
 - If Δ > c (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Statistical-based – Likelihood Approach

- □ Data distribution, D = (1λ) M + λ A
- M is a probability distribution estimated from data
 - Can be based on any modeling method (naïve Bayes, maximum entropy, etc)
- A is initially assumed to be uniform distribution
- Likelihood at time t:

$$\begin{split} L_{t}(D) &= \prod_{i=1}^{N} P_{D}(x_{i}) = \left((1 - \lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left(\lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right) \\ LL_{t}(D) &= \left| M_{t} \middle| \log(1 - \lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + \middle| A_{t} \middle| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i}) \right. \end{split}$$

Limitations of Statistical Approaches

- Most of the tests are for a single attribute
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution

Distance-based Approaches

- Data is represented as a vector of features
- Three major approaches
 - Nearest-neighbor based
 - Density based
 - Clustering based

Nearest-Neighbor Based Approach

- Approach:
 - Compute the distance between every pair of data points
 - There are various ways to define outliers:
 - ◆ Data points for which there are fewer than *p* neighboring points within a distance *D*
 - The top n data points whose distance to the kth nearest neighbor is greatest
 - The top n data points whose average distance to the k nearest neighbors is greatest

Outliers in Lower Dimensional Projection

- \square Divide each attribute into ϕ equal-depth intervals
 - Each interval contains a fraction $f = 1/\phi$ of the records
- Consider a k-dimensional cube created by picking grid ranges from k different dimensions
 - If attributes are independent, we expect region to contain a fraction f^k of the records
 - If there are N points, we can measure sparsity of a cube D as:

$$S(\mathcal{D}) = \frac{n(D) - N \cdot f^k}{\sqrt{N \cdot f^k \cdot (1 - f^k)}}$$

 Negative sparsity indicates cube contains smaller number of points than expected

Example

 \square N=100, ϕ = 5, f = 1/5 = 0.2, N × f² = 4

Density-based: LOF approach

- For each point, compute the density of its local neighborhood
- Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
- Outliers are points with largest LOF value

In the NN approach, p_2 is not considered as outlier, while LOF approach find both p_1 and p_2 as outliers

Clustering-Based

Basic idea:

- Cluster the data into groups of different density
- Choose points in small cluster as candidate outliers
- Compute the distance between candidate points and non-candidate clusters.
 - If candidate points are far from all other non-candidate points, they are outliers

Other approaches

- SVC methods: one-class SVM
- □ Data is unlabelled, unlike usual SVM setting.
- Goal: find hyperplane (in higher-dimensional kernel space) which encloses as much data as possible with minimum volume.
- Tradeoff between amount of data enclosed and tightness of enclosure; controlled by regularization of slack variables.

Lets do it with python