Thermodynamique (D'après Banque PT 2019)

A. Modélisation d'une machine réfrigérante ditherme

Système : Σ

1. Signes des échanges

Premier principe pour un cycle : $\Delta U = W + Q_f + Q_C = 0$

Second principe pour un cycle : $\frac{Q_C}{T_C} + \frac{Q_F}{T_F} \le 0$

On veut un transfert thermique Q_F >0 pour refroidir la source froide.

On a donc $Q_C \le -T_c \frac{Q_F}{T_F}$

Ainsi $Q_c < 0$ et comme $T_c > T_F$ on a $[Q_C] > Q_F$

Or W = $-Q_c - Q_F$

Avec les remarques précédentes W >0.

Ainsi W > 0, $Q_c < 0$ et $Q_F > 0$

2. Efficacité

Par définition $e_f = \frac{\text{grandeur valorisable}}{\text{grandeur couteuse}} \Leftrightarrow e_f = \frac{Q_f}{W}$

Efficacité maximale est obtenue pour un cycle réversible.

On a laors d'après 1 $Q_c = -\frac{T_C}{T_F}Q_F$ Et donc $W = (\frac{T_C}{T_F}-1)Q_F \Leftrightarrow \boxed{\mathbf{e_f}^{max} = \frac{T_F}{T_C-T_F}}$

B. Etude d'un cycle réfrigérant à compression de vapeur

3. Annotation

Cycle avec compression réversible

4. Diagramme

Voir à la fin

5. Tableau de valeurs

Point	1	2	2s	3	4
P(bar)	3,0	10,0	10,0	10,0	3,0
T(°C)	10	60,0	50	30	0,0
Etat du fluide	Gaz	Gaz	Gaz	Liquide	Equilibre liquide/gaz
h(kJ/kg)	405	438	430	242	242

6. Choix des températures

Cela permet d'avoir des plus grands échanges thermiques avec la source froide.

Cycle avec compression non réversible

7. Application numérique

D'après la formule $\underline{\mathbf{h}_2 - \mathbf{h}_1} = \frac{h_{2s} - h_1}{n} = \frac{4}{3} (430-405) = \underline{\mathbf{33 \ kJ.kg^{-1}}}$

On en déduit $h_2 = 438 \text{ kJ.kg}^{-1}$

8. Voir tableau

9. Valeurs des entropies

La transformation 1,2 est irréversible la variation d'entropie est augmentée de l'entropie créée.

Détermination de l'efficacité de la machine

10. Premier principe système ouvert

On a $\Delta h = q + w_u$ en notant w_u le travail utile

11. $e = f(h_i)$

On applique le premier principe système ouvert :

transformation 4-1; $h_1 - h_4 = q_f car w_u = 0J$

transformation 1-2; h₂-h₁ = w_u car le compresseur est calorifugé

d'où
$$e = \frac{h_1 - h_4}{h_2 - h_1}$$

12. Application numérique
$$\underline{\mathbf{e}} = \frac{405-242}{438-405} = \frac{163}{33} = \underline{4,9}$$

C. Utilisation d'un réfrigérateur

Evaluation des fuites thermiques

Système : L'intérieur du réfrigérateur

13. Signe de λ

On considère des pertes thermiques de la par du réfrigérateur donc P_{Th} < 0.

Or $T_c > T$ on a donc $\lambda < 0$

14. Equation en T

On s'intéresse à une transformation durant l'intervalle de temps dt.

Transformation monobare dQ = dH

Modèle des phases condensées : dH = CdT

Fuite thermique : $dQ = P_{th}dt = \lambda(T_c - T)dt$

d'où
$$\frac{dT}{dt} = \frac{\lambda}{c} (T_c - T)$$

15. La température au cours du temps

On intègre entre t = 0 et t

$$\ln \frac{T_C - T}{T_C - T_F} = \frac{\lambda}{C} t$$

Soit
$$T = T_c - (T_c - T_F) \exp(\frac{\lambda}{C}t)$$

16. Valeur de Tc et TF

On relève sur le graphe à t = 0 T = $T_F = 277K$

On relève sur le graphe à $t \rightarrow \infty$ T = T_c = 293K

17. Valeur de λ

$$\ln \frac{T_C - T}{T_C - T_F} = f(t)$$
 est une droite de pente $\frac{\lambda}{C}$

On relève sur le graphe
$$\frac{\lambda}{c} = \frac{-5}{52}$$

D'où
$$\underline{\lambda} = \frac{-5}{52} \times 3 \cdot 10^5 = -0.29 \cdot 10^5 \cdot J.K^{-1}.h^{-1}$$

Fonctionnement en régime stationnaire

18. Efficacité

On
$$\underline{\mathbf{e_f}} = \text{Ke_f}^{\text{max}} = \text{K} \frac{T_F}{T_C - T_F} = \frac{1}{4} \frac{277}{293 - 277} = \frac{277}{4x16} = \underline{\textbf{4.3}}$$

19. Puissance thermique

$$\underline{\mathbf{P}_{th}} = \lambda (\mathsf{T}_c - \mathsf{T}_F) = -0.29 \ 10^5 \ (293-277) = \underline{-1.2 \ 10^5 \ W.h}$$

20. Puissance motrice

$$\underline{\mathbf{e}_{f}} = \frac{Q_{f}}{W} = -\frac{P_{th}}{P_{c}} \Leftrightarrow P_{c} = -\frac{P_{th}}{e_{f}} = \frac{1,2 \ 10^{5}}{4,3} = \underline{\mathbf{0,28 \ 10^{5} \ W.h}}$$

