Heures (Hebdo)	4.0
Cours	2.0
Exercices	2.0
Pratique	0.0
Total	56.0

Langue	français
Semestre	Automne
Mode d'évaluation	Examen oral
Session	Janvier
Format de l'enseignment	Cours, exercices

Cursus	Туре	ECTS
Baccalauréat universitaire en mathématiques	N/A	6.0
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	6.0
Maîtrise universitaire en mathématiques	N/A	6.0
Maîtrise universitaire en mathématiques, informatique et sciences numériques	N/A	6.0

Théorie des noeuds

14M201 | David Cimasoni

Objectifs

Le but de ce cours est de donner une introduction à la théorie des noeuds, principalement au moyen desoutils de la topologie algébrique (groupe fondamental, revêtements, homologie), mais aussi avec quelquesoutils combinatoires.

Description

- I. Concepts et outils de base en théorie des noeuds
- I.1. Invariants de noeuds et dentrelacs. I.2. Diagrammes de noeuds et mouvements de Reidemeister. I.3. Opérations sur les noeuds. I.4. Théorie de lhomologie.II.
- II Invariants classiques
- II.1 Surfaces de Seifert. II.2 Invariants dAlexander. II.3 Polynôme dAlexander-Conway et signature de Levine-Tristram. II.4 Le groupe dun noeud.
- III. Invariants combinatoires
- III.1 Polynôme de Jones. III.2 Conjectures de Tait. III.3 Tresses et invariants quantiques.