Es02B: Circuito RC - Filtri passivi

Gruppo 1G.BT Lorenzo Cavuoti, Francesco Sacco

31 ottobre 2018

1 Filtro passa basso

1.1

Usando il multimetro digitale abbiamo misurato il valore di $R1 = 3.29 \pm 0.03 k\Omega$ e il valore di $C1 = 9.9 \pm 0.4 nF$, la frequenza di taglio teorica risulta quindi $F_{Tteorica} = 4.9 \pm 0.2$ con errore dominato dall'incertezza sulla misura della capacità del condensatore. Sempre dalla teoria sappiamo che il guadagno è dato da

$$A_f = \frac{1}{\sqrt{1 + (f/f_T)^2}}\tag{1}$$

Per $f\approx 0$ $A_f\approx 1$, ovvero a bassa frequenza il filtro non attenua il segnale, per f=2kHz $A_{Vteorica}=0.93\pm0.02$ invece per f=20kHz $A_{Vteorica}=0.238\pm0.006$

1.2

Dalla misura con l'oscilloscopio risulta $A_V(2kHz)_{mis}=0.92\pm0.05$ e $A_V(20kHz)_{mis}=0.241\pm0.013$ entrambi compatibili entro una barra di errore dalla misura teorica.

La frequenza di taglio misurata vedendo la frequenza a -3dB risulta $f_{Tmis} = 4.83 \pm 0.06 kHz$ con errore dominato dall'incertezza sulla scelta della frequenza, invece quella facendo il fit(absoute-sigma=False) risulta $f_{Tfit} = 4.90 \pm 0.09 kHz$. Anche in questi ultimi due casi il risultato è compatibile con il valore teorico atteso.

f[Hz]	$V_{in}[V]$	$\sigma[V]$	$V_{out}[V]$	$\sigma[V]$	A_V	σ
56	12.5	0.5	12.4	0.5	0.99	0.06
100	12.5	0.5	12.5	0.5	1.00	0.06
194	12.5	0.5	12.5	0.5	1.00	0.06
467	12.5	0.5	12.4	0.5	0.99	0.06
$2.08 \mathrm{\ k}$	12.5	0.5	11.7	0.5	0.94	0.06
$4.85~\mathrm{k}$	12.5	0.5	8.9	0.4	0.71	0.04
$8.56~\mathrm{k}$	12.5	0.5	6.2	0.3	0.50	0.03
20.0 k	12.5	0.5	3.01	0.13	0.241	0.015
$22.5 \mathrm{\ k}$	12.5	0.5	2.68	0.11	0.214	0.012
$76.1 \mathrm{\ k}$	12.5	0.5	0.80	0.04	64×10^{-3}	4×10^{-3}
$96.4 \mathrm{\ k}$	12.5	0.5	0.63	0.03	50×10^{-3}	3×10^{-3}
$294 \mathrm{\ k}$	12.5	0.5	0.21	0.01	16.7×10^{-3}	0.9×10^{-3}
$1.07~\mathrm{M}$	12.5	0.5	55×10^{-3}	2×10^{-3}	4.4×10^{-3}	0.3×10^{-3}

Tabella 1: Valori di tensione in entrata e in uscita in funzione della frequenza misurati per il filtro passa basso

1.3

La frequenza di taglio misurata dal gradino, ovvero dalla misura del tempo che impiega il segnale a passare dal 10% al 90% del massimo risulta $f_{Tgradino} = 4.73 \pm 0.12 kHz$. Il valore è ancora compatibile con la F_T attesa, tuttavia è quello che si discosta di più rispetto alle altre misure.

1.4

a) L'impedenza d'ingresso risulta

$$Z_{in} = R + \frac{1}{j\omega C} = R(1 - j\frac{\omega_T}{\omega})$$
 (2)

Figura 1: Plot di Bode passa basso

Quindi se

- $\omega >> \omega_T |Z_{in}| = R$
- $\omega = \omega_T |Z_{in}| = \sqrt{2R}$
- $\omega \ll \omega_T |Z_{in}| \to \infty$

b) Se si inserisce una resistenza di carico il guadagno risulta

$$A(\omega) = \frac{1}{\sqrt{(1 + R/R_c)^2 + (\omega RC)^2}}$$
 (3)

Ponendo l'espressione sopra uguale a $1/\sqrt{2}$ si può ottere una nuova frequenza di taglio

$$\omega_t^2 = \left[2 - \left(1 + \frac{R}{R_c}\right)^2\right] \frac{1}{(RC)^2} \tag{4}$$

Quindi per $R_c=100k\omega$ abbiamo che $R_c>>R$ e le espressioni sopra si semplificano al circuito passa basso, invece per $R_c=10k\omega$ non si può trascurare R_c $R_c\sim R$, di conseguenza alle stesse frequenze il guadagno risulta minore e in particolare si ha una diminuzione di ω_t

2 Filtro passa banda

2.1 Filtro RC passa alto

Per il filtro passa alto abbiamo $R2 = 3.30 \pm 0.03k$ $C2 = 112 \pm 5nF$, la frequenza di taglio risulta quindi $F_{Tteorica} = 430 \pm 20$, mentre con la misura all'oscilloscopio otteniamo $F_{Tmis} = 450 \pm 10$, con errore dato dall'incertezza sulla scelta della frequenza, considerando gli errori i due risultati sono compatibili.

2.2 Filtro passa banda

- a) $A_{0mis} = 0.48 \pm 0.03 \ f_{Lmis} = 215 \pm 7Hz \ f_{Hmis} = 10.2 \pm 0.2kH$, l'errore su A_0 è stato fatto propagando l'errore sul rapporto tra il segnale massimo in uscita e il segnale di ingresso, considerando i due errori scorrelati. L'errore sulle frequenze è stato determinato variando la frequenza di V_{in} in modo da apprezzare sull'oscilloscopio una variazione di ampiezza di $V_{o}ut$
- b) Per $f \ll f_L$ aumentando la frequenza si osserva un aumento del guadagno, pari a circa 20dB/decade, per f compresa tra circa $2f_L$ e $f_H/2$ il guadagno è costante, pari a circa 0.48, infine per $f \gg f_H$ si ha una diminuzione di ampiezza all'aumentare della frequenza pari a circa -20dB/decade. Il comportamento osservato

è compatibile con la teoria, infatti per frequenze basse domina il passa alto, per frequenze alte invece domina il passa basso, in mezzo entrambi i filtri attenuano il segnale che risulta quindi costante.

c) Per far si che $V_{out}=A_1A_2V_{in}$ l'impedenza di ingresso del passa alto deve essere molto maggiore dell'impedenza di uscita del passa basso, quindi si deve avere che $R_2>>R_1$