Física Geral I • FIS0703

Aula 19 28/11/2016

Processos adiabáticos para gases ideais

* Processos sem transferência de calor (com isolamento térmico, ou muito rápidos)

(é igual a $dE_{\rm int}$ dum processo isocórico Alteração infinitesimal de V e T: $dE_{\rm int} = nC_V dT$ porque $E_{\rm int}$ depende apenas de T)

Por outro lado $dE_{\rm int} = -PdV$ (porque Q=0)

 $\text{Ent\~ao} \qquad nC_V dT = -P dV \longrightarrow dT = -\frac{P \, dV}{nC_V}$ Diferencial total da equaç\~ao de estado $P \, dV + V dP = nR \, dT = -\frac{R}{C_V} P \, dV$

Substituir $R=C_P-C_V$ e dividir por PV: $\frac{dV}{V}+\frac{dP}{P}=-\left(\frac{C_P-C_V}{C_V}\right)\frac{dV}{V}=(1-\gamma)\frac{dV}{V}$

$$\frac{dP}{P} + \gamma \frac{dV}{V} = 0$$

$$\frac{dP}{P} + \gamma \frac{dV}{V} = 0$$
 Integração dá $\ln P + \gamma \ln V = \text{constante}$

$$PV^{\gamma} = \text{constante}$$

$$P_i V_i^{\gamma} = P_f V_f^{\gamma}$$

 $PV^{\gamma} = {
m constante}$ ou $P_iV_i^{\gamma} = P_fV_f^{\gamma}$ para processos adiabáticos

Podemos usar a equação de estado para deduzir a relação entre volume e temperatura dum processo adiabático:

$$P_i V_i V_i^{\gamma - 1} = P_f V_f V_f^{\gamma - 1} \qquad nRT_i V_i^{\gamma - 1} = nRT_f V_f^{\gamma - 1}$$

$$nRT_iV_i^{\gamma-1} = nRT_fV_f^{\gamma-1}$$

$$\left(T_i V_i^{\gamma - 1} = T_f V_f^{\gamma - 1}\right)$$

- As previsões da teoria cinética de C_V e C_P são muito próximas dos valores observados para gases monoatómicos, mas não para moléculas mais complexas.
- ► Moléculas poliatómicas têm graus de liberdade de rotação e vibração para além de translação.

Gás diatómico:

Graus de liberdade: 3

(Rotação em torno do eixo y não contribui, porque $I_y \ll I_x$, I_z)

(Energia cinética e energia potencial da vibração.)

Gás diatómico:

Graus de liberdade:

3

(Rotação em torno do eixo y não contribui, porque $I_y \ll I_x$, I_z)

(Energia cinética e energia potencial da vibração.)

Teorema de equipartição: em média, cada grau de liberdade contribui $\frac{1}{2}k_BT$ para $E_{\rm int}$.

Translação + rotação:
$$E_{\mathrm{int}} = 3N\left(\frac{1}{2}k_BT\right) + 2N\left(\frac{1}{2}k_BT\right) = \frac{5}{2}Nk_BT = \frac{5}{2}nRT$$

Calor específico molar
$$C_V = \frac{1}{n} \frac{dE_{\rm int}}{dT} = \frac{1}{n} \frac{d}{dT} \left(\frac{5}{2} nRT \right) = \frac{5}{2} R$$
 $C_P = C_V + R = \frac{7}{2} R$

$$C_P = C_V + R = \frac{7}{2}R$$

$$\gamma = \frac{C_P}{C_V} = \frac{7}{5} = 1.40$$

Translação + rotação + vibração:

$$E_{\text{int}} = 3N\left(\frac{1}{2}k_BT\right) + 2N\left(\frac{1}{2}k_BT\right) + 2N\left(\frac{1}{2}k_BT\right) = \frac{7}{2}Nk_BT = \frac{7}{2}nRT$$

$$1 dE_{\text{int}} = 1 d (7)$$

$$C_V = \frac{1}{n} \frac{dE_{\text{int}}}{dT} = \frac{1}{n} \frac{d}{dT} \left(\frac{7}{2} nRT \right) = \frac{7}{2} R$$
 $C_P = \frac{9}{2} R$ $\gamma = \frac{C_P}{C_V} = \frac{9}{7} = 1.29$

$$C_P = \frac{9}{2}R$$

$$\gamma = \frac{C_P}{C_V} = \frac{9}{7} = 1.29$$

Previsão da teoria cinética para gases ideais

$C\left[J/mol\cdot K ight]$:	C_P	C_V	C_{P} - C_{V}	γ
Gases monoatómicos (T)	20.8	12.5	8.31	1.67
Gases diatómicos (T+R)	29.1	20.8	8.31	1.40
Gases diatómicos (T+R+V)	37.4	29.1	8.31	1.29

Molar Specific Heats of Various Gases

Molar Specific Heat $(J/mol \cdot K)^a$

Os valores observados concordam com as previsões, mas sem vibração!

Gas	C_{P}	C_V	$C_P - C_V$	$\gamma = C_P/C_V$		
Monatomic gases						
Не	20.8	12.5	8.33	1.67	$R = 8.314 \text{ J/mol} \cdot \text{K}$	
Ar	20.8	12.5	8.33	1.67		
Ne	20.8	12.7	8.12	1.64		
Kr	20.8	12.3	8.49	1.69	3	
Distancia secon					$\frac{3}{2}R = 12.5 \text{ J/mol·K}$	
Diatomic gases	00.0	00.4	0.99	1 41	2	
H_2	28.8	20.4	8.33	1.41		
N_2	29.1	20.8	8.33	1.40	5	
O_2	29.4	21.1	8.33	1.40	$\frac{5}{2}R = 20.8 \text{ J/mol·K}$	
CO	29.3	21.0	8.33	1.40	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
Cl_2	34.7	25.7	8.96	1.35		
Polyatomic gases					\sim 7 \sim 20.1 \sim 1.17	
CO_9	37.0	28.5	8.50	1.30	$\frac{7}{2}R = 29.1 \text{ J/mol·K}$	
SO_9	40.4	31.4	9.00	1.29	\mathcal{L}	
H_2O	35.4	27.0	8.37	1.30	0	
$\widetilde{\mathrm{CH}}_{4}$	35.5	27.1	8.41	1.31	$\frac{9}{2}R = 37.4 \text{ J/mol} \cdot \text{K}$	
^a All values except that fo	or water were obtaine	ed at 300 K.			2^{10} 3.11 5/ 110^{11}	

- Parece que a teoria cinética dos gases não seja capaz de explicar os calores específicos molares dos gases diatómicos!
- ▶ Por outro lado: os valores da tabela eram para T=300 K. O que acontece quando um intervalo mais largo de temperaturas é considerado?

- ► A temperaturas baixas, o H₂ comporta-se como um gás monoatómico (apenas translação).
- ► A temperaturas intermédias corresponde à previsão dum gás diatómico com graus de liberdade de translação e rotação, mas não de vibração.
- ► A temperaturas muito elevadas todos os graus de liberdade contribuem.
- ► Como podemos entender este comportamento estranho? Apenas com a física quântica.

O calor específico molar dos sólidos

Se considerarmos variações grandes da temperatura, o C_V dos sólidos varia fortemente.

- * $T \rightarrow 0$: $C_V \rightarrow 0$
- * T maior (acima de 300 K):

$$C_V \rightarrow 3R \approx 25 \text{ J/mol} \cdot \text{K}$$

Lei empírica de DuLong-Petit

Modelo simples dum sólido

Lead Aluminum 25 Silicon $C_{V}^{(1)}(\text{mol}\cdot \textbf{K})$ Diamond 200 400 600 800 1000 1200 $T(\mathbf{K})$

Aplicação do teorema de equipartição:

Energia associada à vibração em direção x $E_x = \frac{1}{2} m v_x^2 + \frac{1}{2} k x^2$

$$E_x = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2$$

Energia média em equilíbrio $\frac{1}{2}k_BT + \frac{1}{2}k_BT$

$$\frac{1}{2}k_BT + \frac{1}{2}k_BT$$

Energias médias iguais para as direções y e z. Não há graus de liberdade de translação.

$$E_{\rm int} = 3Nk_BT = 3nRT$$
 \longrightarrow $C_V = \frac{1}{n}\frac{dE_{\rm int}}{dT} = 3R$

A distribuição de Boltzmann

As moléculas dum gás têm velocidades diferentes. Colisões entre elas (~109 s⁻¹ cada molécula) alteram o módulo e a direção das velocidades. O movimento resultante é muito caótico.

Distribuição das energias

 $n_V(E)dE$ o número de partículas por volume com energia entre E e E+dE

 $n_V(E)$ é uma função de distribuição

(neste caso a densidade do número de partículas em função da energia)

Ludwig Boltzmann:

(Mecânica estatística)

$$n_V(E) = n_0 e^{-E/k_B T}$$

 n_0 é um fator de normalização, escolhido de forma que o número de partículas com energia entre $0 e \infty$ é igual a N.

A distribuição das velocidades moleculares

- ► James Clerk Maxwell (1860) deduziu a distribuição das velocidades das moléculas dum gás em função da sua temperatura.
- ▶ Na altura, a existência de átomos e moléculas era especulativa e muito controversa.

$$N_v = 4\pi N \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-mv^2/2k_B T}$$

Distribuição de velocidades de Maxwell-Boltzmann

Número de moléculas com velocidades entre v e v+dv a velocidade mais provável (posição do máximo de N_v) a velocidade média

a raiz da velocidade quadrática média

Da distribuição obtém-se:

$$v_{\rm rms} = \sqrt{3k_BT/m} = 1.73\sqrt{k_BT/m}$$
 $\bar{v} = \sqrt{8k_BT/\pi m} = 1.60\sqrt{k_BT/m}$
 $v_{\rm mp} = \sqrt{2k_BT/m} = 1.41\sqrt{k_BT/m}$
 $v_{\rm rms} > \bar{v} > v_{\rm mp}$

