week14-springs

April 18, 2024

1 Modeling spring networks

Examples in "Structural modeling"

1.1 One-dimensional models

Let's consider a linear network of 3 springs and 2 masses:

Here are the variables:

- $f_j = \text{applied load or force to mass (in N = Newtons)}$, for j = 1, 2
- $\vec{k_i} = \text{spring constant (in N/m} = \text{Newtons per meter)}, \text{ for } i = 1, 2, 3$
- $e_i = \text{elongation of spring } i \text{ from equilibrium (in } \mathbf{m} = \mathbf{meters})$
- $x_j = \text{displasement of mass } j \text{ from equilibrium (in } m = meters)$
- $y_i = \text{restoring force on spring } i \text{ (in N} = \text{Newtons)}$

The "inputs" are the applied forces f_j which cause the masses to move, resulting in elongation of springs.

We'll take "movement to the right" to be positive, and a stretch as positive elongation.

Thus we have the equations:

$$e_1 = x_1, \quad e_2 = x_2 - x_1, \quad e_3 = -x_2.$$

(This third equation reflects the fact that spring 3 compresses when m_2 moves to the right.) Let's put this in matrix form:

$$\mathbf{e} = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = B\mathbf{x}.$$

Now, let's recall that according to Hooke's Law, the elongation of the spring causes a restoring force on the mass, determined by the spring constant $k_i > 0$. Thus we get equations

$$y_j = k_j e_j$$
 for $j = 1, 2, 3$.

In matrix form, these equations read:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} k_1 & 0 & 0 \\ 0 & k_2 & 0 \\ 0 & 0 & k_3 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = K\mathbf{e}.$$

Combining these eugations gives

$$y = Ke = KBx$$
.

Next, we assume that the system is at rest after the loads are applied (i.e. the forces f_i).

Looking at the diagram, we see that the following equations must hold:

(The first diagram gives:)

$$y_1 = y_2 + f_1 \implies y_1 - y_2 = f_1$$

(The second diagram gives:)

$$\begin{aligned} y_2 &= y_3 + f_2 \implies \\ y_2 - y_3 &= f_2 \end{aligned}$$

In matrix form this reads

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix},$$

i.e.

$$B^T \mathbf{y} = \mathbf{f}$$

Combined with our earlier equation

$$\mathbf{y} = K\mathbf{e} = KB\mathbf{x}$$

we now see

$$B^T K B \mathbf{x} = \mathbf{f}.$$

[26]: A=B.transpose() @ K @ B

Thus we have

$$A = B^T K B = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix}.$$

```
m = len(far)
n = len(kar)
B = makeB(m,n)
K = makeK(kar)
A = B.transpose() @ K @ B
f = np.array(far)
return np.linalg.solve(A,f)

# Let's find the displacements for spring constants `k = [1,1,1]`
# and forces `f = [3,-3]`

findDisplacements([1,1,1],[3,-3])
```

[32]: array([1., -1.])

[37]: findDisplacements([1,1,1],[3,-2])

[37]: array([1.33333333, -0.33333333])

1.2 Two dimensional models

Now let's allow the mass to move in two dimensions:

We see in this case that the elongation e satisfies

$$e=\sqrt{x_1^2+(L+x_2)^2}-L$$

Since this does not express a linear relationship between e and the displacements x_1, x_2 , we can't express this relationship using a matrix.

But we can *linearize*. Recall that the linearization (first-order Taylor polynomial) about t = 0 of the function $y = \sqrt{1+t}$ is given by

$$(\clubsuit) \quad \sqrt{1+t} \approx 1 + \frac{t}{2} + O(t^2).$$

Let's use this linearization to rewrite the expression for e given above.

We first rewrite

$$\begin{split} x_1^2 + (L + x_2)^2 &= x_1^2 + L^2 + 2Lx_2 + x_2^2 \\ &= L^2 \left(\frac{x_1^2}{L^2} + 1 + \frac{2x_2}{L} + \frac{x_2^2}{L^2} \right) \\ &= L^2 \left(1 + \frac{2x_2}{L} + \frac{x_1^2}{L^2} + \frac{x_2^2}{L^2} \right) \end{split}$$

so that

$$\begin{split} e &= \sqrt{x_1^2 + (L + x_2)^2} - L \\ &= \sqrt{L^2 \left(1 + \frac{2x_2}{L} + \frac{x_1^2}{L^2} + \frac{x_2^2}{L^2} \right)} - L \\ &= L\sqrt{1 + \frac{2x_2}{L} + \frac{x_1^2}{L^2} + \frac{x_2^2}{L^2}} - L \end{split}$$

Now taking $t = \frac{2x_2}{L} + \frac{x_1^2}{L^2} + \frac{x_2^2}{L^2}$ the approximation (4) gives

$$\begin{split} e &\approx L \left(1 + \frac{1}{2}t \right) - L \\ &= L \left(1 + \frac{1}{2}\frac{2x_2}{L} + \frac{x_1^2}{L^2} + \frac{x_2^2}{L^2} \right) - L \\ &= x_2 + \frac{x_1^2 + x_2^2}{2L} \end{split}$$

Now, this is of course still not a linear relationship between e and x_1, x_2 . Note that the approximation (\clubsuit) depends on the assumption that $t = \frac{2x_2}{L} + \frac{x_1^2}{L^2} + \frac{x_2^2}{L^2} \approx 0$.

If we suppose that the displacements x_1, x_2 are small compared to the resting length L of the spring, then $x_1^2 + x_2^2$ is even smaller compared to L, so making one more approximation, we eliminate the quadratic term and so we get

$$e \approx x_2$$
.

Remark The approximation $e \approx x_2$ is equivalent to a small-angle approximation. It essentially says that the horizontal displacements are negligible in the elongation, but vertical displacements are important.

Remark This assumption is of course "wrong", but can still be useful. Especially, it is now *linear*

1.3 Spring networks

Let's consider a network of springs in the two-dimensional setting.

The *linearization* discussed in the previous section says that the elongation is determined by the displacement in the "1 dimensional direction of the spring".

We get the matrix equation

$$\mathbf{e} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = B\mathbf{x}.$$

As before, Hooke's Law gives

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} k_1 & 0 & 0 \\ 0 & k_2 & 0 \\ 0 & 0 & k_3 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = K\mathbf{e}.$$

We balance the forces:

This gives

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{y} = \mathbf{f}$$

i.e.

$$B^T \mathbf{y} = \mathbf{f}.$$

[]: