Number Fields Revision

Abigail Tan April 2, 2023

Lecture 1

In this lecture, we motivate the study of number fields. The main theorem here is that if S is finitely generated over R, then S is integral over R. It follows quickly that \mathcal{O}_L is a ring in L.

The integers \mathbb{Z} have a particular structure inside of \mathbb{Q} . In this course, for more general fields L, we study the properties of subrings $\mathcal{O}_L \in L$ that behave in L as \mathbb{Z} behaves in \mathbb{Q} .

Definitions (Number field and \mathcal{O}_L). A number field is a finite extension of \mathbb{Q} . Let \mathcal{O}_L be the set of algebraic integers in L.

[Auxiliary definitions]

Theorem. Let $R \subseteq S$ as rings. If S is finitely generated over R, then S is integral over R. Proof sketch. Take generators $\alpha = 1, \alpha_2, \ldots, \alpha_n$ for S over R. Consider the map $m_s : S \to S$, $x \mapsto sx$, and write $m_s(\alpha_i) = s\alpha_i = \sum b_{ij}\alpha_j$ for some $(b_{ij}) = B$. Check that

$$(sI - B) \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = 0.$$

Then use $\operatorname{adj}(X)X = \det(X)I$ to get $\det(sI - B) = 0$, which gives a polynomial that s is a root of, so it is integral.

Lecture 2

This introduces a few results, working towards showing that any number field must have an integral basis.

Proposition. Let L/\mathbb{Q} be a number field. Then $\alpha \in \mathcal{O}_L$ if and only if $N_{L/\mathbb{Q}}(\alpha) \in \mathbb{Z}$ and $\mathrm{Tr}_{L/\mathbb{Q}}(\alpha) \in \mathbb{Z}$.

Proposition.

$$\mathcal{O}_L = \begin{cases} \mathbb{Z}[\sqrt{d}] & d \equiv 2 \text{ or } 3 \text{ mod } 4\\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & d \equiv 1 \text{ mod } 4 \end{cases}$$

Definition (Integral basis). A basis $\{\alpha_1, \ldots, \alpha_n\}$ of L as a \mathbb{Q} -vector space is an integral basis if

$$\mathcal{O}_L = \left\{ \sum_{i=1}^n m_i \alpha_i \middle| m_i \in \mathbb{Z} \right\}.$$

This basically corresponds to $\{\alpha_1, \ldots, \alpha_n\}$ being "a \mathbb{Q} -basis for L and a \mathbb{Z} -basis for \mathcal{O}_L ".

Lecture 3

Prove that any number field has an integral basis. Establish the basis-invariant property of the discriminant Δ .

Definition/Proposition (Gram matrix and discriminant). Let $\alpha_1, \ldots, \alpha_n$ be a basis for L/K. Then define

$$\Delta(\alpha_1,\ldots,\alpha_n) = \det(\operatorname{Tr}_{L/K}(\alpha_i\alpha_i)).$$

If $\sigma_i: L \to \bar{K}$ are the *n* distinct *K*-homomorphisms and *S* is a matrix with $S_{ij} = \sigma_i(\alpha_j)$, then

$$\Delta(\alpha_1, \dots, \alpha_n) = (\det S)^2.$$

Theorem. Every number field L/\mathbb{Q} has an integral basis.

Proof sketch. It's quick to check there exists a basis $\{\alpha_i\}$ in \mathcal{O}_L . Pick one with $|\Delta(\alpha_1,\ldots,\alpha_n)|$ minimal. Then write $x \in \mathcal{O}_L$ in terms of these, suppose a coefficient isn't an integer, then get a contradiction of minimality using $\Delta(\alpha'_1,\ldots,\alpha'_n) = (\det A)^2 \Delta(\alpha_1,\ldots,\alpha_n)$.

Remark. Note that Δ is effectively a function of a basis, and determined by L (L determines $\{\sigma_i\}$, which determines S and hence Δ). A basis corresponding to minimal Δ is integral (recall the idea of "algebraic" really meaning "finite", from lectures).

It follows quickly that $\Delta(\alpha_1, \ldots, \alpha_n)$ is independent of the choice of integral basis, so we define this as the discriminant D_L of L.

Lecture 4-5 (and end of lecture 3)

We want to measure the failure of unique factorisation by studying (products of) ideals. It turns out that in a number field, every ideal factors uniquely into a product of prime ideals.

Definition (Product of ideals). Let $\mathfrak{a}, \mathfrak{b} \triangleleft \mathcal{O}_L$. Define product $\mathfrak{ab} = \left\{ \sum_{i=1}^n a_i b_i \middle| a_i \in \mathfrak{a}, b_i \in \mathfrak{b} \right\}$.

Proposition. For K a number field, \mathcal{O}_K is a Dedekind domain, i.e.

- (i) \mathcal{O}_K is an integral domain
- (ii) \mathcal{O}_K is a Noetherian ring
- (iii) if $x \in K$ is integral over \mathcal{O}_K then $x \in \mathcal{O}_K$
- (iv) every nonzero prime ideal is maximal (Krull dimension of 1).

Proposition (Containment and division). Let $\mathfrak{a}, \mathfrak{b}$ be ideals. Then $\mathfrak{b}|\mathfrak{a}$ if and only if $\mathfrak{a} \subseteq \mathfrak{b}$.

Theorem. Let $\mathfrak{a} \subseteq \mathcal{O}_K$ be a nonzero ideal. Then \mathfrak{a} can be written uniquely as a product of prime ideals. Finish the proof.

Corollary. The nonzero fractional ideals form a group I_k under multiplication (a free abelian group generated by the prime ideals \mathfrak{p}). Observe that $K^* \to I_K$, $\alpha \mapsto \langle \alpha \rangle$ is a group homomorphism, with kernel \mathcal{O}_K^* . The image of this homomorphism is the principal ideals p_k .

Definition. The class group Cl_K of K is $Cl_K = I_k/p_k$.

Theorem. The following are equivalent: (i) \mathcal{O}_K is a PID, (ii) \mathcal{O}_K is a UFD, (iii) Cl_K is trivial.