Анализ погодных условий сцены

Описание задачи

Множество существующих моделей машинного обучения обучено с помощью датасетов, основанных на одном из видов погодных условий. Например, распознавание времени суток или уровня освещения может возвращать различные результаты для одной и той же сцены, запечатлённой зимой и летом, так как в данной ситуации белый цвет снега может повлиять на результат анализа сцены (например, *Grey-World* будет возвращать результаты с погрешностями, если на фотографии присутствует снег).

Также и для различных задач распознавания может быть полезно знать погодные условия, так как они могут прямым образом повлиять на параметры, от которых зависит точность распознавания. То есть для разных погодных условий можно настраивать параметры максимально выгодным образом, чтобы избежать или снизить влияние фактора погоды.

Также определение погодных условий является актуальной задачей для планирования и создания различных полуавтоматических и автоматических систем управления. Например, снежная или дождливая погода могут сигнализировать о повышении уровня опасности на дорогах из-за плохой видимости и скользкой поверхности дороги, в то время, как солнечная погода — наоборот способствует снижению уровня опасности.

Метеорология может помочь сделать какой-то прогноз и предсказание погоды для больших областей, но часто реальная погода в маленьких областях отличается от предсказанной погоды для всего большого региона, поэтому есть необходимость локального определения погодных условий с помощью компьютерного зрения. Также большим минусом использования метеологических станций является необходимость установки

дорогих метеорологических станций, для определения погоды с помощью которых всё ещё нужен человек.

Найденные решения WeatherNet[1]

Подход к решению

В данном решении предлагается технология, которая получает из изображений уличного уровня информацию, которая может использоваться для классификации этих изображений по разным погодным условиям.

Большой особенностью этого решения заключается его направленность на распознавание погоды именно на улице в городах.

Смысл этой технологии заключается в использовании глубокого обучения и компьютерного зрения, а именно — 4 свёрточные нейронные сети (WeatherNet) обучаются, основываясь на остаточном обучении с использованием архитектуры ResNet50 Данное решение предполагает использование классов типа:

- Снежная погода;
- Дождливая погода;
- Ясная погода;
- Туманная погода;
- День;
- Ночь;
- Рассвет;
- Закат;
- Изображение с бликами.

Наличие четырёх СНС обусловлено задумкой авторов о том, что на единственном изображении может быть не одна погода, а комбинация различных погодных условий (всевозможные комбинации — на фото ниже).

Датасет

Датасета, на котором обучался WeatherNet, в открытом доступе — нет, так как этот датасет собирался из различных изображений, публикация которых могла бы нарушить чьи-то авторские или другие смежные права.

Результат

Метрики для четырёх СНС, использующихся в решении:

CNN Model	Loss (Cross Entropy)	Accuracy (%)	Precision (a)	Recall/True-Positive Rate ^(a)	False-Positive Rate ^(a)	F1-Score
Model1—NightNet	0.098	91.6	0.885	0.825	0.045	0.854
Model2—GlareNet	0.040	94.8	0.883	0.895	0.035	0.889
Model3—PrecipitationNet (b)	0.077	93.2	0.959	0.932	0.068	0.947
Model4—FogNet	0.037	95.6	0.862	0.829	0.022	0.845

ResNet15[2]

Подход к решению

В данном решении предлагается использовать модель с архитектурой *ResNet*15 — улучшенной и упрощённой вариации *ResNet*50 для распознавания погодных условий.

Модель построена в *Keras*, использованный для обучения датасет — *WeatherDataset*-4[3]. Изображения из него были упакованы в *Image-DataGenerator* с применением случайных преобразований.

Основной задачей *ResNet*15 является определение погодных условий конкретно для трасс и дорог, так как это было изначальной целью создателей этой архитектуры. Поэтому и датасет в основном состоит из фотографий дорог и трасс

Датасет

Количество тестовых и тренировочных изображений для каждой категории

Category	Foggy	Rainy	Snowy	Sunny	Total
Number of train sets	1000	1000	1000	1000	4000
Number of test sets	221	255	243	264	983

Модель может определить на изображении один из следующих классов:

- Туманная погода;
- Дождливая погода;
- Снежная погода;
- Солнечная погода.

Результат

Средняя точность определения для датасета, на котором модель обучалась, — 96.03%.

Сравнение точности *ResNet15* с другими моделями для датасета *WeatherNet-4* (с упаковкой и случайным преобразованием изображений):

Method	Foggy (%)	Rainy (%)	Snowy (%)	Sunny (%)	Average accuracy (%)
AlexNet	94.12	82.75	92.18	76.52	86.47
VGG16	92.31	89.41	80.66	77.65	84.74
GoogLeNet	91.86	80.39	93.00	82.58	86.67
ResNet50	93.21	80.00	89.71	81.44	85.76
ResNet34	90.95	87.45	93.00	83.33	88.71
ResNet15	96.38	97.25	94.65	95.08	96.03

Сравнение производительности *ResNet*15 с другими моделями для датасета *WeatherNet*-4:

WyomingNet[4]

Подход к решению

В данном решении предлагается собственная архитектура, основанная на использовании свёрточной нейронной сети.

Основной целью данного решения является определение погодных условий на изображениях, снятых с дорожных камер.

Классы, определяемые моделью делятся на две группы:

- Погодные условия;
 - Ясная погода;
 - Немного снежная погода;
 - Сильно снежная погода;
- Состояние поверхности (дороги);
 - Сухая;
 - Снежная;
 - Влажная / Слякоть.

Датасет

Распределение тестовых и тренировочных данных по категориям:

	Total	Categories	Training and Validation	Testing
Weather Detection	15,000	Clear	4000	1000
		Light Snow	4000	1000
		Heavy Snow	4000	1000
		Total	12,000	3000
Surface Condition Detection	15,000	Dry	4000	1000
		Snowy	4000	1000
		Wet/Slushy	4000	1000
		Total	12,000	3000

Обучение модели происходило с помощью трансферного обучения и предварительно обученных моделей, среди которых: *AlexNet*, *GoogLeNet*, *ResNet*18.

Для обучения и тестирования моделей был использовано больше одного датасета. Подробнее — глава *Introduction* в [4-1]

Результат

Из всех предобученных моделей *ResNet*18 показал самые лучшие результаты в производительности и точности относительно других:

	Models	Precision (%)	Recall (%)	Specificity (%)	Accuracy (%
Weather Detection	CART	86.2	86.2	93.1	86.1
	K-NN	95.5	95.4	97.7	95.4
	SVM	93.0	93.0	96.5	93.0
	RF	94.9	94.9	97.4	94.9
	GB	90.8	90.8	95.4	90.7
	NB	68.4	68.1	84.0	67.9
	AlexNet	92.5	92.4	96.1	92.4
	GoogLeNet	97.2	97.2	98.6	97.2
	ResNet18	97.3	97.3	98.6	97.3
Surface Condition Detection	CART	77.9	77.9	88.9	77.8
	K-NN	92.6	92.7	96.3	92.6
	SVM	90.4	90.5	95.2	90.4
	RF	92.5	92.4	96.2	92.4
	GB	85.5	85.5	92.7	85.5
	NB	59.3	58.0	79.2	58.4
	AlexNet	94.7	94.7	97.3	94.7
	GoogLeNet	96.9	97.0	98.4	96.7
	ResNet18	99.2	99.6	99.2	99.1

SVM Classificator[5]

Подход к решению

В данном решении предлагается система определения погодных условий, основаннаю на методе опорных векторов. Использование SVM может увеличить количество классов погоды для обучения модели и выбрать лучшие из подходящих характеристик, которые лучше всего могут описать каждый конкретный класс.

Процесс обработки изображения

Из изображения извлекается следующая информация:

- Контраст;
- Уровень шума;
- Насыщенность;
- Уровень наклона спектра мощности (Power Spectrum Slope).

Данная система использует метод опорных векторов, основанный на древе решений.

Подробнее о том, как работает SVM — см. главу 4[5-1], подробнее о том, как работает SVM, основанный на древе решений — см. главу 4.1[5-2].

Настройка **SVM** классификатора

После построения древа решений, должно быть определено какие характеристики положительно влияют на классификацию. Их выбирают непрямым образом — веса для более влиятельных характеристик будут выше, а для менее влиятельных, сооветственно, меньше, вплоть до нуля.

Датасет

Для обучения классификатора использовался *WILD image dataset*. Изображения из этого датасета были разделены на хорошую и плохую погоду. Каждой картинке в датасете соответствует информация о погоде, небе и видимости.

Классы, с которыми работает классификатор:

- Ясная погода;
- Пасмурная погода;
- Туманная погода;
- Дождливая погода.

Результат

(a) Classification Result of WILD Images

	Clear	Overcast	Fog	Rain	Error Rate
Clear(70)	65	4	1	0	7.14%
Overcast(60)	3	55	0	2	8.3%
Fog (40)	0	5	34	1	15%
Rain (20)	0	1	4	15	25%

(b) Classification Result of Our Images

	Clear	Overcast	Fog	Rain	Error Rate
Clear(200)	189	10	0	1	5%
Overcast(200)	12	182	2	4	9%
Fog(60)	0	2	57	1	5%
Rain(150)	0	2	14	134	10.7%

Где первая таблица — изображения из датасета *WILD*, и вторая таблица — изображения, собранные авторами статьи.

berkgulay[6]

Подход к решению

В данном решении предлагается использовать следующие алгоритмы:

- свёрточная нейронная сеть;
- древо решений;
- случайный лес;
- метод опорных векторов.

CHC

Были использованы технологии *Keras* и *Tensorflow*. Использованная архитектура СНС выглядит следующим образом:

Древо решений

В данном решении предлагается использовать DT и RF алгоритмы на деревьях в силу их скорости и приемлемой точности.

Но, несмотря на большую скорость работы древа решений, авторы посчитали, что потеря точности не стоит выигрыша в скорости. (см. главу 3.4[6-1])

Случайный лес

Случайный лес показал очень хорошие результаты в смысле производительности и неплохую точность.

Эмпирически авторами статьи было обнаружено, что для их задачи количество деревьев от 100 до 200 давало наилучшие результаты, потому что после определённого точность практически не растёт, но сильно страдает производительность. (см. главу 3.5[6-2])

Метод опорных векторов

Для работы с *SVM* была использована библиотека *scikit-learn*. Несмотря на ожидания авторов статьи, *SVM* очень плохо справился с задачей классификации, несмотря на попытк изменять различные его параметры, несмотря на испольнование линейных и нелинейных ядер и.т.д.

Датасет

Ссылки на датасеты, использованные в данном решении, находятся в самом низу главной страницы гитхаба проекта [7].

Результат

Результат для лучшей подобранной архитектуры СНС:

Layers	Parameters	Size: 100x100
Conv2D	#filter = 32, kernel_size=(1,1),	General Accuracy: %64.63
	activation = "relu"	♣Cloudy : %44.54
MaxPooling2D	pool_size = (2,2)	₹Sunny: %73.34
Conv2D	#filter = 32, kernel_size=(5,5),	Rainy: %60.82
	activation = "relu"	Snowy: %69.33
MaxPooling2D	pool_size = (2,2)	■Foogy: %70.07
Flatten		Size: 50x50
Dense	#neuron=100, activation = relu	General Accuracy: %63.71
Dropout	0.5	Cloudy: %69.35
Dense	#class=5, activation = softmax	Sunny: %78.73
	-	Rainy: %50.00
		Snowy: %52.14

Foogy: %67.80

Результат для лучшей итерации древа выборов:

The best result for Decision Tree:

Parameters						
max_depth=None						
Max_leaf_node=50						
criterion='gini'						
class_weight=None						
min_samples_split=2						

Cloudy: %45.67 Sunny: %73.08 Rainy: %53.40 Snowy: %54.41 Foggy: %60.61

General Accuracy: %57.02

Результаты работы лучшего случайного леса:

Parameters					
Max_features=None					
Max_depth=None					
min_samples_leaf=None					
Max_leaf_node=None					
n_estimators=120					

Cloudy Class: %55.96 Sunny Class: %76.54 Rainy Class: %64.64 Snowy Class: %59.24 Foggy Class: %60.27 General Accuracy: %63.90

Результаты экспериментов над методом опорных векторов:

Parameters
gamma=0.01
C=1.2
max_iter=10
tol=0.001
cache_size=1000
probability=1000
probability=1000

Parameters
gamma=0.001
C=1.2
max_iter=10
to1=0.001
cache_size=1000
probability=1000

Cloudy: %30.12

Sunny: %63.90

Cloudy: %12.35 Sunny: %80.56 Rainy: %53.14 Snowy: %71.72 Foggy: %71.79

iny: %53.14 Rainy: %23.19 owy: %71.72 Snowy: %75.32 Foggy: %34.59

General Accuracy: %55.91 General Accuracy: %44.91

DCNNs[8]

Подход к решению

В данном решении предлагается использовать глубокие свёрточные нейронные сети (*DCNNs*/ГСНС) в качестве инструмента для определения погодных условий на изображениях.

Для обусения ГСНС в качестве архитектуры выбор стоял между:

Architecture	Accuracy	Consumption (GB)
NasNet-A-Large	0.83	1.4
SENet-154	0.81	1.4
Inception-v4	0.80	1
Xception	0.79	1.4
ResNet-152	0.78	1
DenseNet-121	0.74	0.7
MobileNet-v2	0.72	0.7

И исключив архитектуры, потребляющие много памяти и недостаточно точные, выбор пал на:

• Inceptions-v4;

- ResNet-152;
- DenseNet-121.

Датасет

В данном решении авторы упомянули, что существующие датасеты очень ограничены, поэтому выбору датасетов было уделено немело времени (см. главу 3.2[8-1])

Среди использованных:

- Cerema-AWH
- Image2Weather
- MWD

О разнице, преобразованиях и совмещении изображений из этих датасетов — см. главу 5.3[8-2].

Результат

Результат не уместить в одном изображении, так как в данном решении было проведено множество экспериментов, начиная с количества классов погоды на выходе (3-5), заканчивая комбинированием датасетов для обучения, теста и валидации.

Результат для 3 или 5 классов погоды при использовании *Cerema-AWH* датасета:

Nb. Classes —	Architectures		
	ResNet-152	DenseNet-121	Inception-v4
3	0.99	0.99	0.98
5	0.83	0.81	0.81

Результат для 5 классов погоды при использовании *Cerema-AWH* датасета со сменой сцены (выбор некоторой области исходного изображения):

	Architectures		
	ResNet-152	DenseNet-121	Inception-v4
Fixed scene	0.90	0.90	0.87
Random scene	0.82	0.80	0.70

Результаты при трансфере датасетов (см главу 6.3[8-3]):

	Architectures			
-	ResNet-152	DenseNet-121	Inception-v4	
MWD	0.76	0.77	0.75	
I2W	0.75	0.76	0.75	
Cerema-AWH	0.99	0.99	0.98	

Train	Test —	Architectures		
		ResNet-152	DenseNet-121	Inception-v4
AWH	MWD I2W	0.43 0.38	0.38 0.37	0.38 0.37

Train	Test -	Architectures		
		ResNet-152	DenseNet-121	Inception-v4
MWD		0.63	0.59	0.54
I2W AWH	AWH	0.33	0.36	0.42

Из этих результатов можно сделать вывод, что если сцена со временем не меняется и определить нужно лишь тип погоды, не учитывая её интенсивность, то точность может достигать 99%, что является очень хорошим результатом.

Jasonmils[9]

Подход к решению

Для решения задачи определения погодных условий были использованы уже существующие архитектуры свёрточных нейронных сетей, их результаты в дальнейшем сравниваются (см. Результат)

Датасет

Ссылка на датасет[10] приложена в гитхабе[9-1], но она находится на китайском файлообменнике baidu, поэтому единственная возможность её получить — написать <u>Jasonmils@whut.edu.cn</u> с просьбой прислать датасет.

Датасет состоит из 8890 изображений, из которых 7899 тренировочных и 991 тестовое.

Результат

- 1. Статья первого проекта (WeatherNet) ←
- 2. <u>Статья второго проекта (ResNet15)</u> ←
- 3. <u>WeatherDataset-4</u> ←
- 4. <u>Статья третьего проекта (WyomingNet)</u> ← ←
- 5. <u>Статья четвёртого проекта (SVM Classificator)</u> ↔ ↔
- 6. Статья пятого проекта (berkgulay) <> <> <
- 7. <u>Гитхаб пятого проекта (berkgulay)</u> ←
- 8. Статья шестого проекта (DCNN) $\leftrightarrow \leftrightarrow \leftrightarrow$
- 9. <u>Гитхаб восьмого проекта (Jasonmils)</u> ← ←
- 10. <u>Датасет восьмого проекта</u> ←