Step-1

Let λ be an eigenvalue of the matrix A and x be the respective eigenvector of A.

Then we have $Ax = \lambda x$ $\hat{a} \in \hat{a} \in \hat{a} \in (1)$

We have to show that $|\lambda| \le |A|$

Step-2

By the definition of the norm of a matrix whether symmetric or not, we have $\|A\| = \max \frac{\|Ax\|}{\|x\|}$

$$\Rightarrow \|A\| \ge \frac{\|Ax\|}{\|x\|}$$

$$\Rightarrow ||A|| \ge \frac{||\lambda x||}{||x||} \qquad \text{(Since by (1))}$$

Since λ is a scalar, we follow that $\|\lambda x\| = |\lambda| \|x\|$

Using this in the above inequality, we get $||A|| \ge \frac{|\lambda| ||x||}{||x||}$

$$\Rightarrow |\lambda| \le ||A||$$

Hence $\frac{\|\lambda\| \le \|A\|}{\|A\|}$, where λ is an eigenvalue of A.