#### POLARIZACIJA SVJETLOSTI

Svjetlost je transverzalni EM val, tj. smjer njegovog titranja je okomit na smjer širenja.

LINEARNO POLARIZIRANI VAL – val koji ima stalni smjer titranja okomit na smjer širenja.

Pri širenju svjetlosti najveći dio interakcije s prozirnim sredstvom otpada na električnu komponentu polja – polarizacija, odn. smjer titranja, je određena smjerom titranja električnog polja.

Slika: Širenje polariziranog vala, Henč-Bartolić-Kulišić, sl. 6.41., str. 287.

Npr. 
$$\vec{E}(t, x) = \vec{j}E_0 \cos(\omega t - kx)$$

- val se širi u smjeru +*x*-osi
- električno polje amplitude  $E_0$  titra u y-smjeru
- vrh električnog vektora u ravnini okomito na smjer širenja elektromagnetskog vala opisuje dužinu  $2E_0$

Postoje i eliptična i kružna polarizacija koje ovdje nećemo razmatrati.

Svjetlost, koju emitiraju izvori svjetlosti, nije polarizirana, tj. prirodna je.

Polariziranu svjetlost možemo dobiti na više načina:

- a) refleksija
- b) raspršenje
- c) dvolom
- d) dikroizam



### POLARIZACIJA REFLEKSIJOM

Slika: Polarizacija refleksijom, Horvat, sl. 9.15, str.9-23

Kad prirodna svjetlost padne na granicu prozirnog sredstva (staklo, voda), dio svjetlosti se reflektira, a dio se lomi.

Pri određenom upadnom kutu, koji je takav da lomljena i reflektirana zraka zatvaraju kut od 90°, reflektirana svjetlost je polarizirana okomito na ravninu refleksije.

Snellov zakon loma:

$$n = \frac{\sin \alpha}{\sin \beta}$$

Zakon refleksije: upadni kut = kutu refleksije.

$$\alpha + \beta = 90^{\circ}$$

$$\beta = 90^{\circ} - \alpha$$

$$n = \frac{\sin \alpha}{\sin \beta} = \frac{\sin \alpha}{\sin(90^{\circ} - \alpha)} = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$

$$n = \tan \alpha_R$$

Brewsterov zakon

 $\alpha_{\scriptscriptstyle B}$  - Brewsterov kut

- za staklo: 
$$n = 1,5$$
  $\alpha_B = 56^{\circ}$   
- za vodu:  $n = 1,33$   $\alpha_B = 53,1^{\circ}$ 

$$\alpha_{\scriptscriptstyle R} = 56^{\circ}$$

$$n = 1.33$$

$$\alpha_{R} = 53,1^{\circ}$$

## POLARIZACIJA RASPRŠENJEM

Kad prirodna svjetlost padne na molekulu, onda električno polje u EM valu pokrene električne naboje u molekuli na titranje.

Titranje naboja je prisilno titranje, a sila prisile je električna sila  $q\vec{E}$ , gdje je q naboj koji titra.

Naboj najradije titra vlastitom frekvencijom, a za molekule te frekvencije su u UV području frekvencija.

U vidljivoj svjetlosti će naboje na titranje pobuditi najbliža frekvencija vlastitoj, a to je područje ljubičaste i plave svjetlosti. Drugim riječima, pri raspršenju svjetlosti na molekulama zraka, vodenoj pari i prašini, jače se raspršuje svjetlost manjih valnih duljina (ljubičasta, plava).

Po danu nam nebo izgleda plavo: bijela svjetlost od Sunca se raspršuje i dolazi do nas – ona je linearno polarizirana. Kad je Sunce na zalasku, valovi svjetlosti moraju proći kroz debeli sloj atmosfere i do nas dolazi nepolarizirana i neraspršena crvena svjetlost (plava svjetlost je raspršena i polarizirana, ali dalje od smjera mi – Sunce).



Vertikalno polarizirana svjetlost raspršena od molekule



Nepolarizirana svjetlost raspršena od molekule

#### POLARIZACIJA DVOLOMOM

Prirodna svjetlost pada na granicu nekih kristala kao što su kalcit, kvarc, led... i lomi se tako da od jedne upadne zrake nastaju dvije: REDOVNA i IZVANREDNA.

Slika: Prolaz svjetla kroz kristal kalcita, islandski dvolomac, Henč-Bartolić-Kulišić, sl. 6.44, str. 289

Za redovnu zraku vrijedi Snellov zakon loma.

Pojava se zove DVOLOM, a posljedica je neizotropnosti kristala – u različitim smjerovima kristal ima različita svojstva (brzina svjetlosti u različitim smjerovima ima različite vrijednosti).

Indeksi loma za redovnu i izvanrednu zraku se razlikuju:

- kalcit:  $n_r = 1,66, n_i = 1,49$ - kvarc:  $n_r = 1,54, n_i = 1,55$ 

Redovna i izvanredna zraka su polarizirane tako da su im ravnine polarizacije međusobno okomite.

#### **DIKROIZAM (ILI SELEKTIVNA APSORPCIJA)**

Kad prirodna svjetlost padne na neke dvolomne kristale, onda oni mogu jednu zraku nastalu dvolomom apsorbirati, a drugu propustiti (ona je polarizirana) i to svojstvo kristala zovemo DIKROIZAM.

Turmalin je najpoznatiji dikroični kristal s indeksima loma  $n_r = 1,64$  i  $n_i = 1,62$ .

POLAROID – komercijalni naziv za materijale s dikroičnim svojstvima, a koji su izrađeni u obliku listova ili folija.

Oni od prirodne svjetlosti propuste samo komponente koje titraju u jednom smjeru – dobije se linearno polarizirana svjetlost.

# Slika: Polarizacija svjetlosti prolazom kroz polarizator i analizator, Horvat sl. 9.17, str. 9-25

Kad prirodna svjetlost padne na polaroid, ona se jednim dijelom apsorbira i smanji joj se intenzitet.

Svjetlost je polarizirana u smjeru određenom polarizatorom.

Ako tu svjetlost propustimo kroz drugi polarizator, čiji se pravac polarizacije ne poklapa s pravcem polarizacije prvog polarizatora, intenzitet izlazne svjetlosti iz drugog polarizatora će ovisiti o kutu između pravaca polarizacije 1. i 2. polarizatora (kut  $\theta$ ).

Malusov zakon daje ovisnost intenziteta svjetlosti o kutu:  $I(\theta) = I(0)\cos^2 \theta$ 

I(0) je intenzitet polarizirane svjetlosti koja pada na analizator.

Analizator je polarizator koji analizira svjetlost koja pada na njega.

Ako je kut između polarizatora i analizatora  $\theta = \pi/2$ , nema prolazne svjetlosti.





