Программа курса «Преобразования и перестановки», 8 класс

Б.А. Золотов, Поставы, 2018

- 1. Ассоциативность композиции функций.
- 2. Группа, подгруппа. Подгруппа то же, что замкнутое множество.
- 3. Группа Bij(X). Изоморфность таких групп в случае равномощных множеств.
- 4. Сопряжённость элементов отн. экв. Изоморфность сопряжённых подгрупп.
- 5. Сопряжение элементом из подгруппы оставляет подгруппу на месте. Нормальная подгруппа; $g^{-1}Hg = H \Leftrightarrow gH = Hg$.
- 6. Группа S_n . Поиск обратной, композиция перестановок, сопряжение. Теорема: сопряжение x посредством g то же самое, что подействовать g на запись x.
- 7. Ядро гомоморфизма. Пример, когда ядро нетривиально. Ядро гомоморфизма подгруппа; нормальная подгруппа.
- 8. Разложение перестановки на циклы. Различные записи циклов. Непересекающиеся циклы коммутируют, пересекающиеся циклы не коммутируют. Транспозиции, разложение цикла на транспозиции, разложение любой перестановки на транспозиции.
- 9. Количество цикл. типов с двумя циклами. Количество перестановок данного цикл. типа.
- 10. Обратная перестановка для цикла. С какими перестановками коммутирует $\sigma(x) = x + 1$.
- 11. Сколько циклов в разложении σ^m .
- 12. Сопряженность перестановок \iff один цикленный тип.
- 13. Инверсии, количество инверсий, знак перестановки. Определение знака перестановки через произведение знаков каких-то чисел. Знак транспозиции.
- 14. А-инверсии, π -инверсии, однозначное соответствие между ними и инверсиями. Эквивалентность разных определений знака.
- 15. Знак гомоморфизм $S_n \longrightarrow \{-1,1\}$.
- 16. Подгруппа $A_n \leqslant S_n$, её нормальность, её порядок. Разложение на транспозиции и чётность перестановки.
- 17. Теорема Кэли доказательство.
- 18. Группа преобразований множества X определение. Iso(\mathbb{R}^2) определение. Доказательство того, что изометрии биективны. Доказательство того, что Iso(\mathbb{R}^2) \leq Bij(\mathbb{R}^2). Коммутативна ли Iso(\mathbb{R}^2)?
- 19. Группа $V(\mathbb{R}^2)$. Нормальность $V(\mathbb{R}^2) \leq \mathrm{Iso}(\mathbb{R}^2)$ доказательство двумя способами.
- 20. Циклическая группа: количество элементов, коммутативность, порождающий элемент, изоморфность \mathbb{Z}_n , вложение в S_n явным образом.
- 21. Диэдральная группа: количество элементов, некоммутативность, образующие и соотношения, вложение в S_{2n} и S_n .
- 22. Реализация C_n и D_n как вращений пирамиды и диэдра.
- 23. Группа SO_2 , её элементы. Теорема о конечных подгруппах SO_2 .
- 24. Группа O_2 , её элементы. Группы $O_2^{(0,0)}$ и $O_2^{(x,y)}$ сопряжены.
- 25. Теорема о конечных подгруппах $Iso(\mathbb{R}^2)$.