Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3215	К работе допущен	
Студент	Федоров Е.В.	Работа выполнена	
Преподаватель	Хвастунов Н.Н.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.04 Исследование равноускоренного вращательного движения

1 Цель работы

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

2 Задачи

- 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

3 Объект исследования

Объект исследования - ускорение вращательного движения.

4 Метод экспериментального исследования

Многократное прямое измерение времени прохождения каретки заданного расстояния в зависимости от массы каретки и положении утяжелителей.

5 Рабочие формулы и исходные данные

- 1. Ускорение опускающегося груза $a=\frac{2h}{t^2},$ где h расстояние, пройденное грузом за время t от начала движения
- 2. Угловое ускорение крестовины $\varepsilon = \frac{2a}{d},$ где d диаметр ступицы
- 3. Момент силы натяжения нити $M=\frac{md}{2}(g-a)$
- 4. Расстояние между осью O вращения и центром C утяжелителя $R = l_1 + (n-1)l_0 + \frac{1}{2}b$
- 5. Стандартное отклонение $\sigma_t = \sqrt{\frac{\sum_{i=1}^n (t_i \langle t \rangle)^2}{n}}$
- 6. Погрешность измерений $\Delta t = \frac{\alpha_{0.95,n} \cdot \sigma_t}{\sqrt{n}}$

7. Погрешность ускорения

$$\Delta a = \sqrt{\left(\frac{\partial a}{\partial t}\right)^2 (\Delta t)^2 + \left(\frac{\partial a}{\partial h}\right)^2 (\Delta h)^2} = \sqrt{\left(-\frac{4h}{t^3}\Delta t\right)^2 + \left(\frac{2}{t^2}\Delta h\right)^2}$$

8. Погрешность углового ускорения ε :

$$\Delta\varepsilon = \sqrt{\left(\frac{\partial\varepsilon}{\partial a}\Delta a\right)^2 + \left(\frac{\partial\varepsilon}{\partial d}\Delta d\right)^2} = \sqrt{\left(\frac{2}{d}\Delta a\right)^2 + \left(\frac{2a}{d^2}\Delta d\right)^2}$$

9. Погрешность момента силы M:

$$\Delta M = \sqrt{\left(\frac{\partial M}{\partial m}\Delta m\right)^2 + \left(\frac{\partial M}{\partial d}\Delta d\right)^2 + \left(\frac{\partial M}{\partial a}\Delta a\right)^2} = \sqrt{\left(\frac{1}{2}d(g-a)\right)\Delta m)^2 + \left(\frac{1}{2}m(g-a)\Delta d\right)^2 + \left(-\frac{dm}{2}\Delta a\right)^2}$$

6 Измерительные приборы

$N_{\overline{0}}\Pi/\Pi$	Наименование	Тип прибора	Используемый диапазон	Погрешность
1	Секундомер	Цифровой	0-20 с	0.5 с

Таблица 1: Измерительные приборы

7 Схема установки

Рис. 1: Схема установки

8 Результаты прямых измерений и их обработки

Magaa ppyraa p	Положение утяжелителей					
Масса груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
267	5.81	6.83	7.29	8.75	10.69	12,20
	5.69	6,81	7.27	9.26	10.62	12.09
	5.74	6.79	7.59	9.43	10.68	12,14
	5.7466	6.81	7.3833	9.1466	10.6633	12.1433
487	3.90	4.39	5.34	6.11	6.27	8.04
	3.85	4,46	5.39	6.25	7.11	7.94
	3.92	4,41	5.53	6.12	7.06	8.01
	3.89	4.42	5.42	6.16	6.8133	7.9966
	3.09	3.33	3.92	4.64	5.46	6,23
707	3.13	3.36	4.33	4.73	5.34	6.35
	3.20	3.26	4.43	4.57	5.68	6.26
	3.14	3.1366	4.2266	4.6466	5.4933	6.28
	2.75	3,12	3.74	4.20	4.63	5.18
927	2.89	3.06	3.66	4.12	4.61	5.27
	2.76	2.95	3.64	4.23	4.79	5.34
	2.8	3.0433	3.68	4.1833	4.6766	5.2633

Таблица 2: Результаты прямых измерений

9 Расчет результатов косвенных измерений

Масса груза, г		Положение утяжелителей						
		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
	$\langle t \rangle$, c	5.75	6.81	7.38	9.15	10.66	12.14	
267	a , M/c^2	0.04	0.03	0.03	0.02	0.01	0.01	
207	ε , рад/ c^2	1.84	1.31	1.12	0.73	0.54	0.41	
	$M, H \cdot M$	0.06	0.06	0.06	0.06	0.06	0.06	
	$\langle t \rangle$, c	3.89	4.42	5.42	6.16	6.81	8.0	
487	a , M/c^2	0.09	0.07	0.05	0.04	0.03	0.02	
407	ε , рад/ c^2	4.02	3.12	2.07	1.6	1.31	0.95	
	$M, H \cdot M$	0.11	0.11	0.11	0.11	0.11	0.11	
	$\langle t \rangle$, c	3.14	3.32	4.23	4.65	5.49	6.28	
707	a , M/c^2	0.14	0.13	0.08	0.06	0.05	0.04	
101	ε , рад/ c^2	6.17	5.53	3.41	2.82	2.02	1.54	
	$M, H \cdot M$	0.16	0.16	0.16	0.16	0.16	0.16	
927	$\langle t \rangle$, c	2.8	3.04	3.68	4.18	4.68	5.26	
	a , M/c^2	0.18	0.15	0.1	0.08	0.06	0.05	
	ε , рад/ c^2	7.76	6.57	4.49	3.48	2.78	2.2	
	$M, H \cdot M$	0.21	0.21	0.21	0.21	0.21	0.21	

Таблица 3: Результаты расчетов a, ε, M

 \bullet Момент Iинерции крестовины с утяжелителями и момент силы трения $M_{\rm \tau p}$ для 1-й риски.

$$M = M_{\rm TP} + I\varepsilon = 0.013 + 0.024\varepsilon$$

Таким образом, $M_{\mbox{\tiny TP}}=0.013~\mbox{H}\cdot\mbox{m},\,I=0.024~\mbox{kg}\cdot\mbox{m}^2$

Номер риски	I	R	R^2
1	0.024	0.077	0.006
2	0.026	0.102	0.01
3	0.043	0.127	0.016
4	0.051	0.152	0.023
5	0.066	0.177	0.031
6	0.083	0.202	0.041

Таблица 4: Расчеты I, R, R^2

10 Расчет погрешности измерений

• Погрешность измерения времени Δt для 1-й риски и массы груза 267 г.:

$$\Delta t = \frac{\alpha_{0.95,n} \cdot \sigma_t}{\sqrt{n}} \approx \frac{4.30 \cdot 0.49}{\sqrt{3}} \approx 0.122 \,\mathrm{c}$$

• Погрешность измерения ускорения а для 1-й риски и массы 267 г.:

$$\Delta a = \sqrt{\left(-\frac{4h}{t^3}\Delta t\right)^2 + \left(\frac{2}{t^2}\Delta h\right)^2} \approx 0.00179 \frac{M}{c^2}$$

• Погрешность измерения углового ускроения ε для 1-й риски и массы 267 г.:

$$\Delta \varepsilon = \sqrt{\left(rac{2}{d}\Delta a
ight)^2 + \left(rac{2a}{d^2}\Delta d
ight)^2} pprox 0.1391 rac{\mathrm{рад}}{\mathrm{c}^2}$$

• Погрешность измерения момента силы M для 1-й риски массы 267 г.:

$$\Delta M = \sqrt{\left(\frac{1}{2}d(g-a)\Delta m\right)^2 + \left(\frac{1}{2}m(g-a)\Delta d\right)^2 + \left(-\frac{dm}{2}\Delta a\right)^2} \approx 0.00065\,\mathrm{H}\cdot\mathrm{M}$$

• Погрешность измерения $m_{\rm vr}$:

$$\Delta m_{
m yt} = rac{1}{4}\sqrt{rac{1}{n-2}\left(rac{D_x}{D_y}-k^2
ight)}pprox 0.021\,{
m kg}$$

• Погрешность измерения I_0 :

$$\Delta I_0 = \Delta m_{\text{yt}} \cdot \sqrt{\langle x^2 \rangle} = 5.17 \cdot 10^{-5} \, \text{kg} \cdot \text{m}^2$$

11 Графики

Рис. 2: График зависимости момента силы M от углового ускорения ε

Рис. 3: График зависимости I от \mathbb{R}^2

12 Окончательные результаты

1. Доверительные интервалы для ускорения груза

$$a \pm \Delta a = 0.04 \pm 0.0018 \frac{M}{c^2}$$

2. Доверительные интервалы для углового ускорения

$$\varepsilon \pm \Delta \varepsilon = 1.84 \pm 0.14 \frac{\text{рад}}{\text{c}^2}$$

3. Доверительные интервалы для момента силы натяжения нити

$$M \pm \Delta M = 0.06 \pm 0.0006 \mathrm{H} \cdot \mathrm{M}$$

4. Погрешность измерения I_0 :

$$\Delta I_0 = 5.17 \cdot 10^{-5} \,\mathrm{kg \cdot m^2}$$

5. Погрешность измерения $m_{\rm vr}$:

$$\Delta m_{
m yt} = \approx 0.021\,{
m kg}$$

6.
$$I_0 = 0.012 \pm 5.17 \cdot 10^{-5} \, \mathrm{kg \cdot m^2}, \, m_{\mathrm{yt}} = 0.432 \pm 0.021 \, \mathrm{kg}$$

13 Вывод и анализ результатов работы

В ходе выполнения данной лабораторной работы было изучено равноускоренное вращательное движение на примере маятника Обербека. Экспериментальным путем было получено значение массы грузов на крестовине $m_{\rm yr}=0.432\pm0.021$ кг, однако истинное значение $m_{\rm ист}=0.408\pm0.0005$ кг не пересекается с результатами работы. Причиной такого несоответствия скорее всего является достаточно высокая погрешность при измерении времени.