On the MDS Conjecture

Aiwei Liu

Shanghai Jiao Tong University

December 31, 2025

Table of Contents

- Introduction
- 2 MDS code
- Main proof
- 4 Consequences

MDS Conjecture

Conjecture 1 (MDS Conjecture)

A set S of vectors of the vector space \mathbb{F}_q^k such that every subset of S of size $k \leq q$ is a basis, has size at most q+1, unless q is even and k=3 or k=q-1, in which case it has size at most q+2.

Example 2

$$k = 4, q = 5$$

$$S = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 4 & 0 \\ 0 & 1 & 4 & 4 & 1 & 0 \\ 0 & 1 & 3 & 2 & 4 & 1 \end{pmatrix}$$

Main Theorem

Theorem 3 (Ball)

Let $q = p^h$. A set S of vectors of the vector space \mathbb{F}_q^k such that every subset of S of size $k \leq q$ is a basis, has size at most $q + k + 1 - \min(k, p)$.

This proves the MDS Conjecture in the case $k \le p$, which includes the entire prime case.

Table of Contents

- Introduction
- 2 MDS code
- Main proof
- 4 Consequences

MDS code

Theorem 4 (Singleton Bound)

Let $M_q(n,d)$ denote the maximum possible size such that there is an $(n,M_q(n,d))$ code. Then

$$M_q(n,d) \leq q^{n-d+1}$$
.

MDS code

Theorem 4 (Singleton Bound)

Let $M_q(n,d)$ denote the maximum possible size such that there is an $(n,M_q(n,d))$ code. Then

$$M_q(n,d) \leq q^{n-d+1}$$
.

Definition 5 (MDS code)

A code attaining this bound is called an MDS code.

The following definitions are equivalent.

- \mathfrak{C} is an MDS $[n, k, d = n k + 1]_a$ linear code.
 - Every k-columns of the generator matrix G are \mathbb{F}_q linearly independent.
 - Every n-k-columns of the parity check matrix H are \mathbb{F}_q linearly independent.
 - \mathfrak{C}^{\perp} is an MDS $[n, n-k, n-d=k+1]_q$ linear code.

Table of Contents

- Introduction
- 2 MDS code
- Main proof
- 4 Consequences

An easy bound

Let S be a set of vectors of \mathbb{F}_q^k such that every subset of S of size k is a basis.

Lemma 6

$$|S| \leq q + k - 1$$

An easy bound

Let S be a set of vectors of \mathbb{F}_q^k such that every subset of S of size k is a basis.

Lemma 6

$$|S| \leq q + k - 1$$

Consider the k-2-dimensional subspace U spanned by k-2 vectors of S. Each of the q+1 hyperplanes containing U contains at most one other vector of S. Thus, $|S| \leq k-2+q-1$.

Tangent Function

Given subset C of S with size k-2. Let t=q+k-1-|S|. It should be the number of hyperplanes Σ with $\Sigma \cap S = C$.

 $T_C(u) = \prod_{f(u)=0 \text{ defines } \Sigma} f(u)$ is called the *tangent function*. Note that this is defined up to scalar factor.

Example 7

$$k = 3, q = 5$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$T_{\{x\}}(a,b,c) = (2b-c)(3b-c)(4b-c)$$

$$T_{\{y\}}(a,b,c) = (2c-a)(3c-a)(4c-a)$$

$$T_{\{z\}}(a,b,c) = (2a-b)(3a-b)(4a-b)$$

Interpolation of Tangent Function

Lemma 8

If $|S| \ge k + t$ then for any disjoint subsets $Y = \{y_1, y_2, \cdots, y_{k-2}\}$ and $E = \{a_1, a_2, \cdots, a_{t+2}\}$ of S,

$$0 = \sum_{a \in E} T_Y(a) \prod_{z \in E \setminus \{a\}} \det(a, z, y_1, y_2, \cdots, y_{k-2})^{-1}.$$

Proof.

We consider this formula in $\mathbb{F}_q^k/\mathrm{span}(Y)/\sim$, where $x\sim y$ iff $x=\lambda y$.

$$T_Y(x) = \sum_{j=1}^{t+1} T_Y(a_j) \prod_{l=1, l \neq j}^{t+1} \frac{\det(x, a_l, y_1 \cdots, y_{k-2})}{\det(a_j, a_l, y_1 \cdots, y_{k-2})}.$$

Let $x = a_{t+2}$.

"Higher" Interpolation of Tangent Function

Exchange $b \in E$ and $y_1 \in Y$:

$$\begin{split} 0 &= \mathit{T}_{(\mathit{Y} \setminus \{y_1\}) \cup \{b\}}(y_1) \prod_{z \in \mathit{E} \setminus \{b\}} \det (y_1, z, b, y_2, \cdots, y_{k-2})^{-1} \\ &+ \sum_{a \in \mathit{E} \setminus \{b\}} \mathit{T}_{(\mathit{Y} \setminus \{y_1\}) \cup \{b\}}(a) \prod_{z \in (\mathit{E} \setminus \{a,b\}) \cup \{y_1\}} \det (a, z, b, y_2, \cdots, y_{k-2})^{-1} \end{split}$$

Multiply $\frac{T_{Y}(b)}{T_{(Y \setminus \{y_1\}) \cup \{b\}}(y_1)}$ and sum over $b \in E$:

$$0 = \sum_{a_1, a_2 \in E} \frac{T_{\theta_1}(a_1)}{T_{\theta_2}(y_1)} T_{\theta_2}(a_2) \prod_{z \in (E \cup Y) \setminus (\{a_2\} \cup \theta_2)} \det(a_2, z, \theta_2)^{-1}$$

. . .

Continue exchanging $b \in E$ and $y_r \in Y$, we'll get

"Higher" Interpolation of Tangent Function

Lemma 9

If $|S| \ge k + t$ then for any disjoint subsets $Y = \{y_1, \dots, y_{k-2}\}$ and E of S with |E| = t + 2 and $r \le \min(k - 1, t + 2)$,

$$0 = \sum_{a_1, \cdots, a_r \in E} (\prod_{i=1}^{r-1} \frac{T_{\theta_i}(a_i)}{T_{\theta_{i+1}}(y_i)}) T_{\theta_r}(a_r) \prod_{z \in (E \cup Y) \setminus (\theta_r \cup \{a_r\})} \det(a_r, z, \theta_r)^{-1},$$

where $\theta_i = (a_1, \dots, a_{i-1}, y_i, \dots, y_{k-2})$ is an ordered sequence.

"Higher" Interpolation of Tangent Function

Moreover, by transposing a_j and a_{j+1} , we can prove that the r! terms in the sum for a fixed r-element subset of E are the same.

Lemma 10

If $|S| \ge k + t$ then for any disjoint subsets $Y = \{y_1, \dots, y_{k-2}\}$ and E of S with |E| = t + 2 and E an ordered sequence, and $r \le \min(k - 1, t + 2)$,

$$0 = r! \sum_{a_1 < \dots < a_r \in E} (\prod_{i=1}^{r-1} \frac{T_{\theta_i}(a_i)}{T_{\theta_{i+1}}(y_i)}) T_{\theta_r}(a_r) \prod_{z \in (E \cup Y) \setminus (\theta_r \cup \{a_r\})} \det(a_r, z, \theta_r)^{-1}$$

Proof of Theorem 3

Remark 11

The following statements are equivalent:

- Every k-columns of the generator matrix G are \mathbb{F}_q linearly independent. [S, k, t]
- Every n-k-columns of the parity check matrix H are \mathbb{F}_q linearly independent. [S', k', t']

Proof of Theorem 3

Proof.

- $|S| \le k + t$ and $|S'| \le k' + t'$ $\Rightarrow k' \le t$ and $k \le t'$ $\Rightarrow |S| \le q - 1 + (t' - t)$ and $|S| = |S'| \le q - 1 + (t - t')$ $\Rightarrow |S| \le q - 1$
- $|S| \ge k + t$. Either $t \ge k 2$, or $t + 2 \le k 1$, then

$$0 = (t+2)! \left(\prod_{i=1}^{t+1} \frac{T_{\theta_i}(a_i)}{T_{\theta_{i+1}}(y_i)} \right) T_{\theta_{t+2}}(a_{t+2}) \prod_{z \in Y \setminus \theta_{t+2}} \det(a_{t+2}, z, \theta_{t+2})^{-1}$$

$$\Rightarrow (t+2)! \equiv 0 \pmod{p}$$

$$\Rightarrow t > p-2.$$

Therefore.

$$|S| \le k + q - 1 - \min(p - 2, k - 2) = k + q + 1 - \min(p, k).$$

•
$$k' + t' \le |S| \le k + t \Rightarrow k' \le k$$
.
 $|S'| \le k' + q + 1 - \min(p, k') \le k + q + 1 - \min(p, k)$.

Classification of the largest subsets

Theorem 12 (Ball)

If $p \ge k$ then a set S of q+1 vectors of \mathbb{F}_q^k such that every subset of S of size k is a basis, is equivalent to

$$S = \{(1, t, t^2, \dots, t^{k-1}) | t \in \mathbb{F}_q\} \cup \{(0, \dots, 0, 1)\}.$$

Table of Contents

- Introduction
- 2 MDS code
- Main proof
- 4 Consequences

Consequences

- MDS code
- Matroid

Corollary 13

If, for a matroid M=(E,F) and prime $p \geq r(E)$, there is a subset $S \subset E$ of size p+2 in which every subset of size r(E) is a basis, then M is not representable over \mathbb{F}_p .

Some thoughts about the main proof

t+2 might be more crucial rather than t:

Why considering $|S| \le k + t$ and $|S| \ge k + t$?

- t+2 might be the more crucial thing
- Let m:=t+2, consider $|S|\geq k+m$ and $|S'|\geq k'+m'$ in the first part of the proof $\Rightarrow |S|=q+1$

What is k + t (or k + m)?

• $k + m = k + \frac{1}{2}(q+1)$

References

[1] Simeon Ball, On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14 (2012), no. 3, pp. 733–748.