Cambridge (CIE) A Level Chemistry

Stability Constants, Kstab

Contents

- * Stability Constant, Kstab
- * Effect of Ligand Exchange on Stability Constant

Define & Write a Stability Constant for a **Complex**

- When transition element ions are in aqueous solutions, they will automatically become hydrated
 - Water molecules will surround the ion and act as **ligands** by forming dative covalent bonds to the central metal ion
- When there are other potential ligands present in the solution, there is a competing equilibrium in ligand exchange and the most stable complex will be formed
- For example, a Co(II) ion in solution will form a [Co(H₂O)₆]²⁺ complex
- Adding ammonia results in the stepwise substitution of the water ligands by ammonia ligands until a stable complex of $[Co(NH_3)_4(H_2O)_2]^{2+}$ is formed

$$[Cu(H_2O)_6]^{2+} + 4NH_3 = [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$$

• For the substitution reaction above, there are **four** stepwise constants:

$$[Cu(H_2O)_6]^{2+} + NH_3 \Rightarrow [Cu(NH_3)(H_2O)_5]^{2+} + H_2O \qquad K_1$$

$$[Cu(NH_3)(H_2O)_5]^{2+} + NH_3 \Rightarrow [Cu(NH_3)_2(H_2O)_4]^{2+} + H_2O \qquad K_2$$

$$[Cu(NH_3)_2(H_2O)_4]^{2+} + NH_3 \Rightarrow [Cu(NH_3)_3(H_2O)_3]^{2+} + H_2O \qquad K_3$$

$$[Cu(NH_3)_3(H_2O)_3]^{2+} + NH_3 \Rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + H_2O \qquad K_4$$

- These stepwise constants are summarised in the **overall stability constant**, K_{stab}
- The **stability constant** is the **equilibrium constant** for the formation of the complex ion in a solvent from its constituent ions or molecules

Expression of K_{stab}

- The expression for K_{stab} can be deduced in a similar way as the expression for the equilibrium constant (K_c)
- For example, the equilibrium expression for the substitution of water ligands by ammonia ligands in the Co(II) complex is:

$$[Cu(H_2O)_6]^{2+} + 4NH_3 \Rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$$

$$K_{\text{stab}} = \frac{\left[\text{Cu(NH}_3)_4(\text{H}_2\text{O})_2\right]^{2+}}{\left[\text{Cu(H}_2\text{O})_6\right]^{2+}\left[\text{NH}_3\right]^4}$$

- The concentration of water is not included in the expression as the water is in excess
- Therefore, any water **produced** in the reaction is **negligible** compared to the water that is already present

• The units of the K_{stab} can be deduced from the expression in a similar way to the units of K_{c}

- The stability constants can be used to **compare** the **stability** of ligands relative to the aqueous metal ion where the ligand is water
- The **larger** the K_{stab} value, the **more stable** the complex formed is

Calculations Involving Stability **Constants**

- If the concentrations of the transition element complex and the reacting ligands are known, the expression for the stability constant (K_{stab}) can be used to determine which complex is more stable
- The greater the value of K_{stab} the more stable the complex is

Worked Example

The addition of concentrated hydrochloric acid to copper(II) sulfate solution forms an aqueous solution containing [CuCl $_4$] $^{2-}$ and [Cu(H $_2$ O) $_6$] $^{2+}$ complex ions. The overall ligand exchange involved is a series of stepwise reactions as successive ligands are replaced.

The second step in exchanging water ligands with chloride ligands is:

$$[Cu(H_2O)_5Cl]^+(aq) + Cl^-(aq) = Cu(H_2O)_4Cl_2(aq) + H_2O(l)$$

When a 0.15 mol dm⁻³ solution of $[Cu(H_2O)_5CI]^+$ (aq) is mixed with 0.15 mol dm⁻³ hydrochloric acid, the equilibrium mixture of $Cu(H_2O)_4Cl_2$ (aq) was found to be 0.10 $mol dm^{-3}$.

- 1. Use this data to calculate K_{stab} for this step. Include the units for K_{stab} .
- 2. Use your answer to (1) to suggest the position of the equilibrium for this step. Explain your answer.

Answer 1

• **Step 1:** Calculate the equilibrium concentration of each ion:

	[Cu(H ₂ O) ₅ Cl] ⁺ (aq)	CI ⁻ (aq)	Cu(H ₂ O) ₄ Cl ₂ (aq)
Initial concentration / mol dm ⁻³	0.15	0.15	0
Change in concentration	- 0.1.0	-0.10	+ 0.10
Equilibrium concentration / mol	0.05	0.05	0.10

• **Step 2:** Write the K_{stab} expression for the reaction:

$$K_{stab} = \frac{\left[Cu(H_2O)_4Cl_2\right]}{\left[Cu(H_2O)_5Cl\right]^+\left[Cl^-\right]}$$

- **Step 3:** Substitute the equilibrium concentrations into the K_{stab} expression and evaluate:
 - $K_{stab} = \frac{[0.10]}{[0.05][0.0.5]}$
 - K_{stab} = 40
- Step 4: Determine the units:
 - $K_{stab} = \frac{\text{[mol dm}^{-3}]}{\text{[mol dm}^{-3}] \text{[mol dm}^{-3}]}$
 - $K_{stab} = dm^3 \, mol^{-1}$

Answer 2:

- The value of K_{stab} is 40 dm³ mol⁻¹
- This is a large value, which suggests:
 - The products are favoured
 - Therefore, the position of the equilibrium for this step is to the right / products

Effect of Ligand Exchange on Stability Constant

Effect of Ligand Exchange on Stability Constant

- The stability constants (K_{stab}) of ligands are often given on a log₁₀ scale so that it becomes easier to compare them with each other
- Ligand exchange in a complex occurs to form a **more stable** complex with a larger K_{stab}
- The stability constants can be used to explain the substitution of ligands in a copper complex

Ligand substitution in a Co(II) complex

• When excess ammonia is added to the $[CoCl_4]^{2-}$ complex a **brown** solution is obtained

Ligand exchange of the [CoCl₄]²⁻ complex by ammonia

The chloride ligands are substituted by the ammonia ligands to form the more stable ammonia complex

■ The formation of the ammonia complex could be explained by comparing the stability of the chloride and ammonia ligands

Stability of chloride and ammonia ligands table

Ligand	Stability (log ₁₀ K _{stab})
CI ⁻	5.6
NH ₃	13.1

- The stability constant of the ammonia ligand is greater than that of the chloride ligands
- The brown ammonia complex is therefore **more stable**
- As a result, the position of the equilibrium is shifted to the right

Worked Example

The numerical values for the stability constants, K_{stab} , of three silver(I) complexes are given.

Silver(I) complex	Numerical value of K _{stab}
[Ag(S ₂ O ₃) ₂] ³⁻	2.9 x 10 ¹³
[Ag(CN) ₂]-	5.3 x 10 ¹⁸
[Ag(NH ₃) ₂]+	1.6×10 ⁷

An aqueous solution of Ag+ is added to a solution containing equal concentrations of $S_2O_3^{2-}$ (aq), CN^- (aq) and NH_3 (aq). The mixture is left to reach equilibrium.

Deduce the relative concentrations of $[Ag(S_2O_3)_2]^{3-}$, $[Ag(CN)_2]^{-}$ and $[Ag(NH_3)_2]^{+}$ present in the equilibrium mixture. Explain your answer.

Answer

- The highest concentration will be [Ag(CN)₂]⁻
 - This is because the K_{stab} value for $[Ag(CN)_2]^-$ is the largest value OR
 - [Ag(CN)₂]⁻ is the most stable
- The lowest concentration will be [Ag(NH₃)₂]+
 - This is because the K_{stab} value for $[Ag(NH_3)_2]^+$ is the smallest value
 - [Ag(NH₃)₂]⁺ is the least stable
- An alternative explanation could be to state that higher K_{stab} values form a more stable complex