Sentiment Analysis on Yelp

Group23

Zheng Binfan 3035588324 u3558832@connect.hku.hk Xie Diangu 3035585803 u3558580@ connect.hku.hk Gao Peixin 3035585114 u3558511@ connect.hku.hk

Job Distribution

	Tasks	Group leader	Member	Member	
	Tasks	Zheng	Gao	Xie	
	Data collection	\checkmark	\checkmark	\checkmark	
Data	Data pre-processing	\checkmark	\checkmark	\checkmark	
	Database organization	\checkmark	\checkmark	\checkmark	
	Deploy the project to Spark cluster and	-/	-1	-1	
Spark	accomplish the training process	V	V	V	
Clustera	Cluster maintenance	\checkmark	\checkmark	\checkmark	
Ciustera	Performance Evaluation	\checkmark	\checkmark	\checkmark	
ما خان مین ا	Deep learning algorithm				
Algorith	Revise the algorithm to suit cluster	- /	. /	-1	
m	computation	V	V	V	
	Web UI Design		\checkmark		
Others	Prepare presentation PPT	\checkmark	\checkmark	\checkmark	
	Live demo	\checkmark	\checkmark	\checkmark	
	Demo video preparation	\checkmark	\checkmark	\checkmark	
	Write the final report	\checkmark	\checkmark	\checkmark	

Target of application

Client can use our application to know the sentiment behind a review, i.e., positive or negative.

What Clients can do

- L. Train the model by their own data(it may more suitable for their own region) and make sentiment analysis on text.
- 2. Use our data(Yelp's review) to make sentiment analysis on text.

PART Ol

System Design & Data Processing

The layered view of the overall system configuration and the data processing.

1.1.1 System Architecture[Some description from Wiki or Lecture of 7305]

Packages	Description				
Xen 4.9	Providing services that allow multiple computer operating systems to execute on the same computer hardware concurrently.				
Ubuntu	Free and open-source Linux distribution based on Debian.				
Hadoop-2.7.5	A collection of open-source software utilities that facilitate using a network of many computers to solve problems involving massive amounts of data and computation.				
Spark-2.4.0	A unified analytics engine for large-scale data processing.				
Spark-Mlib	A apache Spark's scalable machine learning library.				

1.1.2 System Design Graph

1.1.2 System Design Graph

1.1.3 Cluster Configuration

Physi	cal Machines		student68		student69		student70		student71				
CF	'U model	Intel® Core ¹	™ i5-8500 CP	U@3.00Ghz	Intel® Core™ i5-8500 CPU@3.00Ghz		Intel® Core™ i5-8500 CPU@3.00Ghz		Intel® Core™ i5-8500 CPU@3.00Ghz				
#	of cores		6		6		6		6				
R	AM(GB)		16		16			16		16			
Disk	sotrage(GB)		260			260			260			260	
≤ a	Name	Dom0	X1	X2	Dom0	X1	X2	Dom0	X1	X2	Dom0	X1	X2
u <u>a</u> Z	vCPU	6	1	1	6	1	1	6	1	1	6	1	1
lachi	Memory(GB)	7.5	4	4	7.5	4	4	7.5	4	4	7.5	4	4
nes	Swap(GB)	2	8	8	2	8	8	2	8	8	2	8	8
_	Ganglia	none	slave	slave	none	slave	slave	none	slave	slave	none	slave	slave
Role	HDFS	none	DN	DN	none	DN	DN	none	DN	DN	none	DN	DN
	Yarn	none	NM	NM	none	NM	NM	none	NM	NM	none	NM	NM

1.2. Processing Flow

1.Download the dataset Yelp from the official website:

https://www.yelp.com/dataset/download.

2.Extract needed attributes in tip.json and review.json and change their form to csv, and save them into HDFS.

speed.

- 3. Change their data form to RDD in spark and use tf-idf to change text to word vectors.
- 4.Use three ML algorithms we are interested to train models based on reviews, and get the best model.
- 5. Predict tip's texts' star and sentiment.

[PS:A more specific version is displayed in 3.3]

1.2. Processing Flow

1.2.2 Training and Predicting Data Processing Architecture

1.2. Processing Flow

1.2.2 Training and Predicting Data Processing Architecture

- 1. review.json is the sample set of our project, and client can use their own dataset to train the model. This dataset should contains text attributes and a binary attribute to state this text is positive or negative.
- 2. tips.json is the test set of our project, and client can use their own dataset using the model trained by their or our sample set. This dataset should have a text attribute.

P A R T 02

Installation Test & Ganglia Monitor

Some shots to prove the success of software installation and the resource usage using ganglia after running the most computation intensive task.

2.1. Installation Test

A timeline in spark of a test program of our own code.

We can find some separated tasks in this graph, and it cost 13min to get the result.

2.1. Installation Test

The information in Hadoop of a test program of our own code.

We can find some information in this Hadoop web interface.

2.2. Ganglia Monitor

The ganglia monitor after we finished the most computation intensive task.

Begin

End

At the beginning when we run the code, all screens about slaves are red.

After finished the whole process, machines become green gradually.

PART O3

Configuration Design & Key Features

1)Summary of the configurations of Hadoop and Spark; 2)Key features/functions/algorithm

3.1. Configuration Design

3.1.1 The configuration files of Hadoop

```
<configuration>
                                                                                                          mapred-site.xml
                                                                                                  property>
                                                                                                          <value>yarn</value>
                                                                                                  </property>
                                                                                                  property>
                                                                                                          <name>mapreduce.map.memory.mb</name>
<configuration>
                                                                                                          <value>200</value>
       cproperty>
                                                        core-site.xml
                                                                                                  </property>
                <name>fs.defaultFS</name>
                                                                                                 <value>hdfs://student71:9000</value>
                                                                                                          <name>mapreduce.reduce.memory.mb</name>
       </property>
                                                                                                          <value>300</value>
        property>
                                                                                                  </property>
                <name>hadoop.tmp.dir</name>
                                                                                          </configuration>
               <value>/var/hadoop/hadoop-${user.name}</value>
       </property>
</configuration>
            hdfs-site.xml
                                                             <name>yarn.resourcemanager.hostname</name>
                                                             <value>student71</value>
                                                                                                         yarn-site.xml
<configuration>
                                                             <name>yarn.nodemanager.aux-services</name>
      cproperty>
                                                             <value>mapreduce shuffle</value>
              <name>dfs.replication</name>
              <value>2</value>
      </property>
                                                             <name>yarn.nodemanager.vmem-check-enabled</name>
                                                             <value>false</value>
       property>
                                                             <description>Whether virtual memory limits will be enforced for containers/description>
       <name>dfs.blocksize</name>
                                                       <value>64m</value>
       </property>
                                                             <name>yarn.nodemanager.vmem-pmem-ratio</name>
                                                             <value>4</value>
</configuration>
                                                             <description>Ratio between virtual memory to physical memory when setting memory limits for containers
```

3.1. Configuration Design

3.1.2 The configuration files of spark

- 1. Since this algorithm need large memory, we change the driver memory and executor memory to 5G in configuration of Spark because of the memory error.
- 2. In order to use the resource efficiently, we change the number of executor to 10 in spark. [We do make a mistake here! Since we just assign each VM 4G memory, some memory are slopping over to disk, which slows our speed…]

```
# spark.serializer
# spark.driver.memory
# spark.executor.extraJavaOptions
spark.master spark://student71:7077
spark.serializer org.apache.spark.seriaSpark.executor.instances 8
spark.driver.memory 5g
spark.executor.ores 2
spark.executor.memory 5g
spark.executor.memory 5g
spark.eventLog.enabled true
spark.eventLog.dir hdfs://student71:9000/tmp/sparkLog
spark.history.fs.logDirectory hdfs://student71:9000/tmp/sparkLog
```

3.2.1 Key functions

Functions	Description
json-csv.py json2bigcsv.py	Change tip.json(review.json) file to csv file so Spark can read it directly.
Sentiment.py	1.Read csv file and change it to RDD form.2.Transform text to word-vectors by tf-idf.3.Train the model and make the prediction.

- 1. In json-csv.py and json2bigcsv.py, use library "json" and "csv" to write json and store data set as csv form.
- 2. In sentiment.py, use library "pyspark"'s "pyspark.mllib" & "pyspark.ml" and "jieba".
 - 2.1.Use library functions SparkConf, SparkContext, textFile to read csv files and change its form to RDD.
 - 2.2. Use function HashingTF to get the word vectors of text.
 - 2.3.Use NaïveBayes, SVMWithSGD and LogisticRegression to train the model and get prediction.

3.2.1 Key functions[Showing Part1:json-csv.py & json2bigcsv.py]

Original code

```
Our code
```

```
# -*- coding:utf-8 -*-
# /bin/python

import json
import csv

outfile = open("review.tsv", 'wb')

sfile = csv.writer(outfile, delimiter ="\t", quoting=csv.QUOTE_MINIMAL)

sfile.writerow(['stars', 'text'])

with open('yelp_academic_dataset_review.json') as f:

for line in f:
    row = json.loads(line)
    # some special char must be encoded in 'utf-8'
    sfile.writerow([row['stars'], (row['text']).encode('utf-8')])

outfile.close()
```

```
import json
import csv
outfile = open("tips.csv", 'w')
sfile = csv.writer(outfile, delimiter ="\t", quoting=csv.QUOTE_MINIMAL)
sfile.writerow(['compliment_count', 'text'])
with open('tip.json', encoding="utf8") as f:
    for line in f:
        row = json.loads(line)
        # some special char must be encoded in 'utf-8'
        sfile.writerow([row['compliment_count'], (row['text']).encode('utf-8')])
outfile.close()
~
```

```
import json
import csv
outfile = open("reviews.csv", 'w')
sfile = csv.writer(outfile, delimiter ="\t", quoting=csv.QUOTE_MINIMAL)
sfile.writerow(['stars', 'text'])
with open('review.json', encoding="utf8") as f:
    for line in f:
        row = json.loads(line)
        # some special char must be encoded in 'utf-8'
        sfile.writerow([row['stars'], (row['text']).encode('utf-8')])
outfile.close()
```

https://github.com/zhourunlai/sentiment/blob/master/classifier/sparkmllib.py

3.2.1 Key functions[Showing Part2:sentiment_test3.py]

```
mport jieba
from pyspark import SparkConf, SparkContext
 rom pyspark.mllib.feature import HashingTF, IDF
rom pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.classification import NaiveBayes, SVMWithSGD
rom pyspark.mllib.classification import LogisticRegressionWithSGD
 rom pyspark.mllib.feature import Word2Vec
from pyspark.mllib.tree import RandomForest
rom pyspark.mllib.tree import DecisionTree
APP NAME = "Sentiment"
if name == " main ":
   conf = SparkConf().setAppName(APP NAME)
                                                            filter and clean data & map star 4, 5
   conf = conf.setMaster("
   sc = SparkContext(conf=conf)
                                                                       as 1 and 1, 2, 3 as 0
   originData = sc.textFile(u'hdfs:///dft/reviews.csv')
                                                                                                                What we changed
   rateDocument = originData.map(lambda line: line.split('\t')).filter(lambda line: len(line) >= 2).filter(lambda line: line[0]!='stars')
   fiveRateDocument = rateDocument.filter(lambda line: int(float(line[0])) == 5).map(lambda line: (1, line[1]))
    fourRateDocument = rateDocument.filter(lambda line: int(float(line[0])) == 4).map(lambda line: (1, line[1]))
                                                                                                                       merge the data
   threeRateDocument = rateDocument.filter(lambda line: int(float(line[0])) == 3).map(lambda line: (0, line[1]))
                                                                                                                            together
   twoRateDocument = rateDocument.filter(lambda line: int(float(line[0])) == 2).map(lambda line: (0, line[1]))
   oneRateDocument = rateDocument.filter(lambda line: int(float(line[0])) == 1).map(lambda line: (0, line[1]))
   allRateDocument = oneRateDocument.union(twoRateDocument).union(threeRateDocument).union(fourRateDocument).union(fiveRateDocument)
   rate = allRateDocument.map(lambda s: s[0])
   document = allRateDocument.map(lambda s: s[1].split(" "))
```

3.2.1 Key functions[Showing Part2:sentiment_test3.py]

```
rate = allRateDocument.map(lambda s: s[0])
document = allRateDocument.map(lambda s: s[1].split(" "))
print 'lookherer~', document.take(3)
hashingTF = HashingTF()
tf=hashingTF.transform(document)
                                 using tf-idf to process text and
                                                                                          try to use different
tf.cache()
                                  transform text to word vector
                                                                                       algorithms like LR, NB and
idfModel = IDF().fit(tf)
tfidf = idfModel.transform(tf)
                                                                                         SVM to train the data
zipped = rate.zip(tfidf)
                                                                     What we changed
data = zipped.map(lambda line: LabeledPoint(line[0], line[1]))
training, test = data.randomSplit([0.6, 0.4], seed=0)
 LR = LogisticRegression(regParam=0.01)
SVMmodel = SVMWithSGD.train(training, iterations=100)
 predictionAndLabel = test.map(lambda p: (SVMmodel.predict(p.features), p.1abel))
RFmodel = RandomForest.trainClassifier(training, numClasses=5, categoricalFeaturesInfo={}, numTrees=5, featureSubsetS
predictionAndLabel = test.map(lambda p: (SVMmodel.predict(p.features), p.fabel))
accuracy = 1.0 * predictionAndLabel.filter(lambda x: 1.0 if x[0] == x[1] else 0.0).count() / test.count()
print accuracy
```

3.2.2 Key Algorithms [Description from Wiki].

Algorithm	Description				
SVM	Supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis				
Logistical Regression	A widely used statistical model. In its basic form it uses a logistic function to model a binary dependent variable,				
Naïve Bayes	A family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features.				

We use three different ML algorithms and make some adjustment of their parameters to find the best trained model.

According to the accuracy of results, we can find SVM with iteration 100 times is the best model whose accuracy is 89.78%[The comparison is displayed in the 5.2.1].

3.2.3 Attributes

Attributes	Description
text	The word text of a review, and it stored both in review.json and tip.json.
stars	In review.json, we have the stars of each text, so we can know this text is positive or negative. The star's range is [1,2,3,4,5]

- 1. Use text and star in tip.json to train the model and get the accuracy of each model.
- 2. Use the best model to predict the star or sentiment of tip.json.

P A R T 04

Application Execution(Test & Target Finish)

- 1. Different execution time of our application for different sizes of input data sets.
- 2. Some information about the largest data test case.

4.1.1:467.19M

Input Data size: 467.19MB

Execution time: 4 min and 42 sec

Spark Jobs (?)

User: hduser

Total Uptime: 4.7 min Scheduling Mode: FIFO Completed Jobs: 109

▶ Event Timeline

→ Completed Jobs (109)

Page: 1	2 >
Job Id ▼	Description
108	count at /home/hdu
107	count at /home/hdu

Permission	Owner	Group	Size	Last Modified	Replication	Block Size	Name
-rw-rr	hduser	supergroup	1.15 GB	2019/4/19 下午6:00:32	2	64 MB	normal_reviews.csv
-rw-rr	hduser	supergroup	3.85 GB	2019/4/13 下午5:21:33	2	64 MB	reviews.csv
-rw-rr	hduser	supergroup	467.19 MB	2019/4/19 下午6:00:59	2	64 MB	small_reviews.csv

About 35 seconds

About 2 minutes and 30 seconds

4.1.2: 1.15G

Input Data size: 1.15GB Execution time: 7 min and 18 sec

4.1.3: 3.9G[The largest data set]

Input Data size: 3.85GB(The whole dataset)

Execution time: 16 min

4.1.4: Summary

Data Size	TF-IDF	Train
467.19MB	35s	150s
1.15GB	50s	240s
3.85GB	150s	480s

4.2. The largest data test case

P A R T 05

Discussion & Analysis & Novelty

- 1. The key findings here.
- 2. Results Analysis (Comparison & Result Visualization).
- 3.Noverlty.

5.1. The key finding here

Q&A Part1

Total Uptime: 16 min

Completed Jobs: 109

▼ Event Timeline

□ Enable zooming

Added

Jobs

Succeeded

Running

Removed

1.ls the response time (from query submission till result shown) acceptable?

As for the biggest data set(3.9G), NB algorithm need 8min, while SVM(100) need 16min. Actually, their accuracy are very close. For client who want to get result faster, the response time of NB algorithm is more acceptable. Executor 8 added Executor 7 added Executor 6 added Executor 5 added This graph is the SVM(100)'s timeline. Executor 4 added Executor 3 added Executor 2 added Executor 1 added count at DataValidators.scala:40 treeAggregate at IDF.scala:54 (Job 1) count at /home/hduser/sentime 10:21 10:23 10:25 10:26 10:27 10:28 10:30 10:20 10:22 10:24 10:32 10:3

→ Completed Jobs (109)

Fri 19 April

5.1. The key finding here Q&A Part2

2. Which part of your system is the bottleneck?

As for the whole processing flow, I think the train part is still a little slowly, since we can find it may cost around 8 minutes to train this model while the iteration is 100. We ignore too many iterations to avoid the overfitted problems and the accuracy we get is from the outside the sample which is divided from the original dataset (40 percent).

As for some configurations, this problem will also be discussed in next question 3&4.

3. How did you improve the execution speed?

Increase the number of execution from 2 to 8 to 10(10 looks no speeding).[See the next slider]

5.1. The key finding here

The attachment for answer 3.1

5.1. The key finding here O&A Part3

- 4. Did you reconfigure the software system (Xen/Hadoop/Spark), rewrite some of the Spark code, or redesign the algorithms
- 4.1 We change some spark code, and add a LR algorithm.
- 4.2 Change the executor memory and driver memory to 5G.[As showed in 3.1 Configuration Design.]

5.2. Result Analysis

5.2.1 Comparison

Algorithm	Accuracy	Execution Time
SVM (100 iterations)	0.897803	16min
SVM (50 iterations)	0.891528	12min
SVM (20 iterations)	0.878525	9min and 48sec
Logistical Regression (100 iterations)	0.889385	17min
Logistical Regression (50 iterations)	0.883875	12min
Logistical Regression (20 iterations)	0.872767	10min
Naïve Bayes	0.859039	8min and 18sec

Best Accuracy: SVM (100 iterations)

Fastest: Naïve Bayes

```
2019-04-17 08:21:00 INFO TaskSetManager:54 - Finished task 303.0 in stage 209.0 (TID 34266) in 3719 ms on student71-x1 (executor 6) (307/310) 2019-04-17 08:21:01 INFO TaskSetManager:54 - Finished task 307.0 in stage 209.0 (TID 34268) in 3822 ms on student69-x2 (executor 7) (308/310) 2019-04-17 08:21:02 INFO TaskSetManager:54 - Finished task 308.0 in stage 209.0 (TID 34269) in 3860 ms on student69-x1 (executor 8) (309/310) 2019-04-17 08:21:03 INFO TaskSetManager:54 - Finished task 309.0 in stage 209.0 (TID 34270) in 2425 ms on student71-x1 (executor 6) (310/310) 2019-04-17 08:21:03 INFO TaskSetManager:54 - Removed TaskSet 209.0, whose tasks have all completed, from pool 2019-04-17 08:21:03 INFO DAGScheduler:54 - ResultStage 209 (count at /home/hduser/sentiment_test3.py:69) finished in 95.942 s DAGScheduler:54 - Job 108 finished: count at /home/hduser/sentiment_test3.py:69, took 95.945505 s 0.897803380559 2019-04-17 08:21:03 INFO SparkContext:54 - Invoking stop() from shutdown hook
```

5.2. Result Analysis

5.2.2 Result Visualization

This result is get by using SVM(100)

Now it's time to input a new data file[tips.json as showed in our processing] which has text content and we can predict it to get some result![This code is also finished in spark in the sentiment.py]

(It is stored in the tips.csv.)

Some Results

0 I hate it I hate it I hate it WOOOOORST place to rent your car!
1 Awesome Juice selections. Down to Farth peepsmy new close to the house Vape s
1 Free Comic Book Day!
1 Up there at the top of my list for great food and atmosphere in all of Arizona
1 The place is nice and close!
1 its all good! I always get the Brisket Sandwich, Creamed Corn, Peach Cobbler, and c
0 Get drinks at the bar vs from the waitstaff, much more efficient!
1 20 years in vegas best view, also top of cromwell and mandalay bay hotel dance clu
1 Bagels, spreads and cookies all good . I would rather go to paradise but the bf loved
0 Call ahead on weekends to put your name on waiting list.
1 Very nice place. Its very artistic and beautiful
0 My dirty 30 just got dirtier
0 Gettin the groove on
1 7

This result is according with our own views $\sim O(\cap_{-})O$

Word Cloud For Positive Response

5.2. Novelty

5.2.2 Result Visualization

1.who are the target users?

Firstly, the target users may be merchants in Yelp(of course) or the owner of Yelp who can get more scores for a store from reviews even with no scores. Secondly, any other regions caring about sentiment analysis can use this model to get more information based on text.

2. Why they like to use your applications?

Our goal is to build a sentiment analysis model that predicts whether a user liked a local business or not, based on their reviews on Yelp.Restaurant owners can use this model to interpret thousands of tweets, Facebook posts, blog posts or articles posts online, so they can understand the attitude of customers to them.

P A R T **06**

Problem Solving

Some problems we encountered and how we solve it

6.1. Schrodinger's 68-x2

Occur and disappear, it's a problem

Time: 6 April

Problem Introduction: At that day, I entered my own machine 68-x2 and wanted to continue my work, while I find I cannot enter 68-x2. Then I do some tests and restarted 68, stop and restart Hadoop under the help from our TA Miss.Wu(So thanks!), then I find some strange thing by "sudo xentop":

_	1 runnin					0 dying, 0 CPUs: 6 @											
NAME	STATE	CPU(sec) C	CPU (%)	MEM(k)	MEM(%)	MAXMEM(k)	MAXMEM(%)	VCPUS N	ETS N	ETTX(k)	NETRX(k)	VBDS	VBD OO	VBD RD	VBD WR	VBD RSECT	VBD WSECT SSID
Domain-0	r	2350	8.0	7921332	47.8	no limit	n/a	6	0	0	0	0	0	0	0	0	0 0
student68-	b	126	2.6	4194304	25.3	4195328	25.3	1	1	1040	2857	2	0	987	23982	98624	258736 0
student68-	p-	0	0.0	0	0.0	0	0.0	0	0	0	0	0	0	0	0	0	0 0
xenton = 0	7 00 00																
_	1 runnin		ed, 0 pa			0 dying, 0 CPUs: 6 @											
2 domains: Mem: 16568	1 runnin	ıg, 1 blocke	ed, 0 pa 8k used,	4229120k		CPUs: 6 @	3000MHz	VCPUS 1	NETS :	NETTX (k)	NETRX(k)	VBDS	VBD 00	VBD RD	VBD WR	VBD RSECT	VBD WSECT SSID
2 domains: Mem: 16568	1 runnin 628k tota STATE	ng, 1 blocke nl, 12339508	ed, 0 pa 8k used,	4229120k	free MEM(%)	CPUs: 6 @	3000MHz MAXMEM(%)		NETS :	NETTX(k)			VBD_00	VBD_RD	VBD_WR	VBD_RSECT	VBD_WSECT SSID

The result of "xentop" changed around every ten seconds. Sometimes 68-x2 occurred while the state is paused or blocked, while sometimes its disappeared and I can just saw 68-x1. Additionally, I cannot connect 68-x2.

Around five hours' struggle in some advice from google, I accepted the suggestion from TA that I should destroy and rebuilt x2. Then I solved some subproblems when rebuilt VM 68-x2.

6.1.1 Subproblem1

The know_hosts conflicts in 68-x2.

Time: 10 April

Problem Introduction: Cannot enter 68-x2 without password after finish steps of 'ssh-keygen –t rsa –P "" and copy it to VMs. So Hadoop cannot restart normally:

```
hduser@student68-x1:~$ ssh student68-x2
Warning: the ECDSA host key for 'student68-x2' differs from the key for the IP a
ddress '10.42.1.78'
Offending key for IP in /home/hduser/.ssh/known hosts:5
Matching host key in /home/hduser/.ssh/known hosts:7
Are you sure you want to continue connecting (yes/no)? yes
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-47-generic x86 64)
hduser@student68:~$ start-dfs.sh
Starting namenodes on [student68]
student68: starting namenode, logging to /opt/hadoop-2.7.5/logs/hadoop-hduser-na
menode-student68.out
Warning: the ECDSA host key for 'student68-x2' differs from the key for the IP a
ddress '10.42.1.78'
Offending key for IP in /home/hduser/.ssh/known hosts:5
Matching host key in /home/hduser/.ssh/known hosts:12
Are you sure you want to continue connecting (yes/no)? student68-x1: starting da
tanode, logging to /opt/hadoop-2.7.5/logs/hadoop-hduser-datanode-student68-x1.ou
student68-x2: Host key verification failed.
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /opt/hadoop-2.7.5/logs/hadoop-ho
     -secondarynamenode-student68.out
```

Process: 1. Check the IP address(it's right)

- 2. Check the nameserver(it's right)
- 3. Delete all know_hosts in all VMs and master, then repeat the 'ssh-keygen –t rsa -P's steps. Then format and restart Hadoop. The problem is solved finally.

Analysis: The know_hosts generated before make a conflict with the newly know_hosts(although there are no errors occurred when you rebuilt it). So you cannot enter the target without password until you delete all know hosts and redo it.

6.1.2 Unhealthy Nodes

Time: 11 April

Problem Introduction: We can run our code successfully, while we find the number of active nodes in the monitor is just 7, and there is an unhealthy node: the 68-x2!!! While in other parts(HDFS and monitored index), 68-x2 is right.

Apps	Apps	Apps	Apps	Container	rs Memory	Memory	Memory	VCores	VCores	VCores	Activ		nmissio	ned	Lost	Unhealthy	Rebooted				
Submitted	Pending	Running	Completed	Running	g Used	Total	Reserved	Used	Total	Reserved	Node	es N	lodes		Nodes	Nodes	Nodes				
2	0	1	1	1	2 GB 5	6 GB	0 B	1	56	0	7	0		9	0	1	0				
cheduler Me	etrics																				
	Scheduler Typ	e		Sche	eduling Resource Type				Minimum	Allocation			N	lode H	ITTP Ad	dress \$	Last	health-update	•	Health-report <	
Capacity Sche	duler		[MEMORY	1			<memo< td=""><td>ry:1024, vC</td><td>ores:1></td><td></td><td></td><td><mem< td=""><td>nor st</td><td colspan="2">student68-x2:8042</td><td>140</td><td colspan="3"></td><td colspan="2">ricalin-report ;</td></mem<></td></memo<>	ry:1024, vC	ores:1>			<mem< td=""><td>nor st</td><td colspan="2">student68-x2:8042</td><td>140</td><td colspan="3"></td><td colspan="2">ricalin-report ;</td></mem<>	nor st	student68-x2:8042		140				ricalin-report ;	
Show 20 ▼ €	entries												51	ducino	00-AZ.0U	142	Sat Apr 13 06	:55:19 +0000 2019		1/1 log-dirs are bad:	
Node Labels	Rack	> Node Sta	te Node Ad	ddress ≎	Node HTTP Address	\$	Last health-update	*	Health-re	eport \$ Co	ontainers	Mem Used	N							/opt/hadoop- 2.7.5/logs/userlogs	
	/default-rack	RUNNING	student70-	x2:42497	student70-x2:8042	Fri Ap	or 12 12:39:19 +0000	2019		0		0 B	8							=onogs/useriogs	
	/default-rack	RUNNING	student69-	x2:36403	student69-x2:8042	Fri Ap	or 12 12:39:19 +0000	2019		0		0 B	8			10)110000000000000000000000000000000000					
	/default-rack	RUNNING	student71-	x2:45931	student71-x2:8042	Fri Ap	or 12 12:39:19 +0000	2019		1		2 GB	6 GB		1	7	2.7.5				
	/default-rack	RUNNING	student70-	x1:39073	student70-x1:8042	Fri Ap	or 12 12:39:19 +0000	2019		0		0 B	8 GB		0	8	2.7.5				
	/default-rack	RUNNING	student68-	x1:36469	student68-x1:8042	Fri Ap	or 12 12:39:19 +0000	2019		0		0 B	8 GB		0	8	2.7.5				
	/default-rack	RUNNING	student69-	x1:36519	student69-x1:8042	Fri Ap	or 12 12:39:19 +0000	2019		0		0 B	8 GB		0	8	2.7.5				
	/default-rack	RUNNING	student71-	x1:43933	student71-x1:8042	Fri Ap	or 12 12:39:19 +0000	2019		0		0 B	8 GB		0	8	2.7.5				
Showing 1 to 7	of 7 entries															First Previou	is 1 Next Last				

Process: 1. repeat the chmod step for 68-x2(Still weak).

- 2. Delete all VMs Hadoop/..by 'rm -rf /var/hadoop/*', format and restarted(still weak).
- 3. Redeploy Hadoop's configuration files. Then repeat the step2.(Works)

Analysis: Something wrong in the configuration of Hadoop. Although it can run successfully but 68-x2 wasn't active and unhealthy.

/Cores	Active	Decommissioned	Lost	Unhealthy
eserved	Nodes	Nodes	Nodes	Nodes
eserveu	<u>8</u>	<u>0</u>	<u>0</u>	<u>0</u>

6.2. No monitored information in 4 vms.

69-x1, 69-x2, 71-x1, 71-x2's information cannot be monitored in our ganglia.

Time: 15 April

Problem Introduction: We have finished our code and run it successfully and get our result, while we find that 69-x1,

69-x2, 71-x1, 71-x2's information cannot be monitored in our ganglia website and 'gstat -a':

student70-x1											
1 (0/	223)	[0.02,	0.06,	0.05]	[0.3,	0.0,	0.6,	99.2,	0.0]
OFF student69											
	0.1		0.00	0.00	0 001						0.03
0 (0/	0)	L	0.00,	0.00,	0.00]	L	0.0,	0.0,	0.0,	0.0,	0.0]
OFF											
student69-x2											
0 (0/	0)	[0.00,	0.00,	0.00]]	0.0,	0.0,	0.0,	0.0,	0.0]
OFF											
student69-x1											
0 (0/	0)	[0.00,	0.00,	0.00]]	0.0,	0.0,	0.0,	0.0,	0.0]
OFF											
student71-x2											
0 (0/	0)	[0.00,	0.00,	0.00]	[0.0,	0.0,	0.0,	0.0,	0.0]
OFF											
student71-x1											
0 (0/	0)	[0.00,	0.00,	0.00]]	0.0,	0.0,	0.0,	0.0,	0.0]
OFF	,		,	,							

Process: 1. check configuration core-site.xml and other Hadoop in all VMs.(All right so it looks no problems in Hadoop).

2. restart ganglia and restart the monitor in this nodes by code:" sudo -S su - -c 'service ganglia-monitor restart'"(Workful!)

Analysis: Some nodes' monitor are not started or lose

efficacy.

6.3. SVM's invalid problems

SVM algorithm stopped in some places.

Time: 17 April

Problem Introduction: We want to use SVM to do another experience for sentiment analysis while the process showed some place are wrong here.

```
2019-04-18 13:11:50 INFO TaskSetManager:54 - Finished task 301.0 in stage 208.0
 (TID 33950) in 7900 ms on student68-x2 (executor 1) (300/310)
2019-04-18 13:11:50 INFO TaskSetManager:54 - Finished task 306.0 in stage 208.0
 (TID 33952) in 7762 ms on student68-x2 (executor 1) (301/310)
2019-04-18 13:11:52    INFO    TaskSetManager:54 - Finished task    303.0 in stage    208.0
 (TID 33954) in 8086 ms on student71-x1 (executor 7) (302/310)
2019-04-18 13:11:52    INFO    TaskSetManager:54 - Finished task    307.0 in stage    208.0
 (TID 33956) in 6028 ms on student71-x1 (executor 7) (303/310)
2019-04-18 13:11:53 INFO TaskSetManager:54 - Finished task 309.0 in stage 208.0
 (TID 33960) in 2529 ms on student68-x2 (executor 1) (304/310)
2019-04-18 13:11:53 INFO TaskSetManager:54 - Finished task 304.0 in stage 208.0
 (TID 33955) in 8082 ms on student69-x1 (executor 6) (305/310)
2019-04-18 13:11:53 INFO TaskSetManager:54 - Finished task 308.0 in stage 208.0
 (TID 33959) in 6492 ms on student69-x1 (executor 6) (306/310)
2019-04-18 13:11:54 INFO TaskSetManager:54 - Finished task 300.0 in stage 208.0
 (TID 33957) in 8155 ms on student69-x2 (executor 5) (307/310)
2019-04-18 13:11:55 INFO TaskSetManager:54 - Finished task 305.0 in stage 208.0
 (TID 33958) in 7743 ms on student69-x2 (executor 5) (308/310)
2019-04-18 13:11:57 INFO TaskSetManager:54 - Finished task 291.0 in stage 208.0
 (TID 33949) in 15219 ms on student68-x1 (executor 8) (309/310)
2019-04-18 13:11:57 INFO TaskSetManager:54 - Finished task 292.0 in stage 208.0
 (TID 33953) in 14982 ms on student68-x1 (executor 8) (310/310)
```

Process: Change the data to start from zero.

Analysis: SVM in Spark.Mlib can just recognize status begin with 0, and it will stop here without any errors or warnings.

PART **07**

Reference

Tiles and URLS of all the important references.

7 Reference

Spark Configuration:

http://spark.apache.org/docs/latest/configuration.html

Spark Mllib:

https://spark.apache.org/mllib/

Yelp Website:

https://www.yelp.com/dataset/documentation/main

Yelp Dataset:

https://www.yelp.com/dataset/download

Open-source code:

https://github.com/zhourunlai/sentiment/blob/master/classifier/sparkmllib.py https://github.com/haoopeng/CNN-yelp-challenge-2016-sentiment-classification/blob/master/json-csv.py