ELATE: Elastic tensor analysis

Welcome to ELATE, the online tool for analysis of elastic tensors, developed by **Romain Gaillac** and **François-Xavier Coudert** at <u>CNRS / Chimie ParisTech</u>.

If you use the software in published results (paper, conference, etc.), please cite the <u>corresponding paper</u> (*J. Phys. Condens. Matter*, 2016, 28, 275201) and give the website URL.

ELATE is open source software. Any queries or comments are welcome at fx.coudert@chimie-paristech.fr

Summary of the properties (3D material)

Input: stiffness matrix (coefficients in GPa) of

626.97	271.49	229.42	-0.0008	-1.4775	-0.0012
271.49	626.97	229.42	0.0009	1.4773	-0.0005
229.42	229.42	798.98	-0.0002	0.0009	-0.0002
-0.0008	0.0009	-0.0002	168.77	-0.0005	1.477
-1.4775	1.4773	0.0009	-0.0005	168.77	-0.0001
-0.0012	-0.0005	-0.0002	1.477	-0.0001	177.73

Average properties

Averaging scheme	Bulk modulus	Young's modulus	Shear modulus	Poisson's ratio
Voigt	K _V = 390.4 GPa	<i>E</i> _V = 493.16 GPa	G _V = 191.23 GPa	$v_{V} = 0.28946$
Reuss	K _R = 388.02 GPa	E _R = 480.4 GPa	G _R = 185.67 GPa	$v_{R} = 0.29365$
Hill	K _H = 389.21 GPa	E _H = 486.79 GPa	G _H = 188.45 GPa	v _H = 0.29155

Eigenvalues of the stiffness matrix

λ ₁	λ_2	λ_3 λ_4		λ ₅	λ ₆	
168.53 GPa	168.74 GPa	177.97 GPa	355.5 GPa	520.48 GPa	1177 GPa	

Variations of the elastic moduli

	Young's modulus		Linear compressibility		Shear modulus		Poisson's ratio		
	E _{min}	E _{max}	β_{min}	β_{max}	G _{min}	G _{max}	v _{min}	v _{max}	
Value	445.57 GPa	681.82 GPa	0.71764 TPa ⁻¹	0.92978 TPa ⁻¹	168.53 GPa	233.97 GPa	0.18171	0.37	Value
Anisotropy	1.9	53	1.2	956	1.3	888	2.0	362	Anisotropy
Axis	0.4132 0.7152 -0.5637	0.0000 -0.0000 1.0000	0.0000 -0.0000 1.0000	0.5309 0.8474 -0.0000	-0.1585 0.0000 0.9874	-0.7018 0.0056 0.7124	0.8642 0.5032 0.0001	-0.6235 -0.0000 0.7818	Axis

Elastic analysis of 13/09/2024, 16:34

> -0.7123 0.0002 0.0162 -0.7818 Second 1.0000 0.0054 -0.0001 -0.0280 axis 0.0000 -0.7018 0.9995 -0.6235

Spatial dependence of Young's modulus

Visualize in 3D

Young's modulus in (xy) plane

Young's modulus in (xz) plane

Young's modulus in (yz) plane

Spatial dependence of linear compressibility

Visualize in 3D

Spatial dependence of shear modulus

Visualize in 3D

Spatial dependence of Poisson's ratio

Visualize in 3D

Poisson's ratio in (yz) plane

Code version: 2024.03.15 (running on Python 3.11.2) Execution time: 0.896 seconds