Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Marcel Keller, Emmanuela Orsini, **Dragos Rotaru**, Peter Scholl, Eduardo Soria-Vazquez, and Srinivas Vivek

ACNS 2017

Meet Bob

Bob approach to our title: Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Bob approach to our title: Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Dragos Rotaru 64

Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables

Multi-Party Computation

has problems.

has problems.

has problems.

has problems?

Look-up tables are everywhere in MPC.

Floating Point

Oblivious RAM

Non-linear functions

has problems?

Look-up tables are everywhere in MPC.

Floating Point

Oblivious RAM

Non-linear functions

Non-linear? AES and 3-DES

Non-linear? AES and 3-DES

Non-linear? AES and 3-DES

Dragos Rotaru

74

Non-linear? AES and 3-DES Enc(42)

Fastest AES and 3-DES in MPC with malicious security

- Improve on previous AES TinyTable by at least 50 times.
- 3-DES has now 100 times faster online time.
- Apply side-channel countermeasures in the MPC land.

Concurrent Work

- [DNNR16] TinyTable. Improved version now at Crypto17.
- [DKS+17] Dessouky et al. in NDSS17. Semi-Honest setting based on 1-out-of-N OT. Also built a compiler which can be used with our protocol.

MPC with Secret Sharing 101

$$x = x_1 + \dots + x_n$$

Each P_i has $[x] \leftarrow x_i$

$$[x] \leftarrow x_1$$

$$[x] \leftarrow x_3$$

MPC Preprocessing Phase

Generate Triples. [c] = [a][b]

MPC Preprocessing Phase

Generate Triples. [c] = [a][b]

MPC Preprocessing Phase

Dragos Rotaru 82

MPC Online Phase

MPC Online Phase

Dragos Rotaru 84

Dragos Rotaru

3 triples.

2 rounds.

AES-128

10 rounds

How to Sbox

How to Sbox $[x] \Rightarrow [Sbox(x)]$

How to Sbox

Dragos Rotaru 93

Dragos Rotaru

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

1792 mults.

Take random [r].
Compute [Sbox(r)], ... [Sbox(r+255)]

Dragos Rotaru

Take random [r].

Compute [Sbox(r)], ... [Sbox(r+255)]

- Take random [r].
- Compute v = Bits(pow(2, [r])).
- Take every cyclic rotation of the Sbox row and compute <v, Sbox>

[Sbox(r+1)]

•••

How to pre-Sbox $[Sbox(r)] \qquad \qquad | \qquad |$ [2**r]

[r]

How to pre-Sbox [Sbox(r)] [Sbox(r+255)] [1] [1] [r] 7 mults in $GF(2^{256})$

University of BRISTOL

[r] 📄 [

[Sbox(r)]

•••

[Sbox(r+255)]

[KOS16]

7 mults. in $GF(2^{256})$

[r]

[Sbox(r)]

. . .

[Sbox(r+255)]

[KOS16]

7 mults. in $GF(2^{256})$

View ops. as polys in $GF(2^k)$

11 mults. in $GF(2^{40})$

TLDR;

\overline{N}	k = 1	8	40	64	128
64	62	9	5	5	5
128	126	17	7	6	6
256	254	33	11	8	7
512	510	65	16	12	9
1024	1022	129	31	20	13

Table 1. Number of $\mathbb{F}_2 \times \mathbb{F}_{2^k}$ multiplications for creating a masked lookup table of size N, for varying k.

- Write Sbox(x) as a poly with minimal non-linear multiplications, ie squares are for free.
- AES Sbox requires 4 non-linear mults.
- DES Sbox requires 3 non-linear mults.

- Write Sbox(x) as a poly with minimal non-linear multiplications, ie squares are for free.
- AES Sbox requires 4 non-linear mults.
- DES Sbox requires 3 non-linear mults.

Write Sbox(x) as a poly with minimal non-linear multiplication ie squares are for free.

AES State 4 non-linear mults.

DES S ox paire 3 non-linear mults.

- Write Sbox(x) as a poly with minimal non-linear multiplication ie squares are for fee
- AES \$\frac{1}{4} \text{ non-linear m\text{\text{\$\ext{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ext{\$\text{\$\exittin}\$}}}}}}}}} \ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\exititt{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitt{\$\exitt{\$\exitit{\$\ext{\$\ext{\$\exitt{\$\exititt{\$\exitt{\$\exititt{\$\exitt{\$\exititt{\$\exitit\exitit{\$\exitit{\$\exitit{\$\exititit{\$\exititt{\$\exititit{\$\exit
- DES S ox paire 3 non-linear muts

Protocol		Online	Comms.	Notes
	Latency (ms)	Throughput (/s)	(total)	
TinyTable (binary) [DNNR16] TinyTable (optim.) [DNNR16]	$4.18 \\ 1.02$	$24500 \\ 339000$	3.07 MB 786.4 MB	
Wang et al. [WRK17] Rindal-Rosulek [RR16] OP-LUT [DKS ⁺ 17]	0.93 1.0 5	$1075 \\ 1000 \\ 41670$	2.57 MB 1.6 MB 0.103 MB	10 Gbps 10 Gbps passive
SP-LUT [DKS ⁺ 17]	6	2208	$0.044~\mathrm{MB}$	passive
AES-LT AES-RP	$0.93 \\ 7.19$	236200 940	8.4 MB 2.9 MB	

Protocol		Online	Comms.	Notes
	Latency (ms)	Throughput (/s)	(total)	
TinyTable (binary) [DNNR16]	4.18	24500	$3.07~\mathrm{MB}$	
TinyTable (optim.) [DNNR16]	1.02	339000	$786.4~\mathrm{MB}$	
Wang et al. [WRK17]	0.93	1075	$2.57~\mathrm{MB}$	$10 \; \mathrm{Gbps}$
Rindal-Rosulek [RR16]	1.0	1000	$1.6~\mathrm{MB}$	10 Gbps
$OP-LUT [DKS^+17]$	5	41670	$0.103~\mathrm{MB}$	passive
SP-LUT [DKS+17]	6	2208	$0.044~\mathrm{MB}$	passive
AES-LT	0.93	236200	$8.4~\mathrm{MB}$	
AES-RP	7.19	940	$2.9 \mathrm{MB}$	

Protocol		Online	Comms.	Notes
	Latency (ms)	Throughput (/s)	(total)	
TinyTable (binary) [DNNR16]	4.18	24500	400kB	
TinyTable (optim.) [DNNR16]	1.02	339000	$786.4~\mathrm{MB}$	
Wang et al. [WRK17]	0.93	1075	2.57 MB	$10 \; \mathrm{Gbps}$
Rindal-Rosulek [RR16]	1.0	1000	$1.6~\mathrm{MB}$	10 Gbps
$OP-LUT [DKS^+17]$	5	41670	$0.103~\mathrm{MB}$	passive
SP-LUT [DKS+17]	6	2208	$0.044~\mathrm{MB}$	passive
AES-LT	0.93	236200	8.4 MB	
AES-RP	7.19	940	2.9 MB	

Table 6. Performance comparison with other 2-PC protocols for evaluating AES in a LAN setting.

Protocol		Online	Comms.	Notes
	Latency (ms)	Throughput (/s)	(total)	
TinyTable (binary) [DNNR16]	4.18	24500	$3.07~\mathrm{MB}$	
TinyTable (optim.) [DNNR16]	1.02	339000	$786.4~\mathrm{MB}$	
Wang et al. [WRK17]	0.93	1075	2.57 MB	$10 \; \mathrm{Gbps}$
Rindal-Rosulek [RR16]	1.0	1000	$1.6~\mathrm{MB}$	10 Gbps
OP-LUT [DKS ⁺ 17]	5	41670	$0.103~\mathrm{MB}$	passive
SP-LUT [DKS ⁺ 17]	6	2208	$0.044~\mathrm{MB}$	passive
AES-LT	0.93	236200	8.4 MB	
AES-RP	7.19	940	2.9 MB	

Protocol		Online	Comms.	Notes
	Latency (ms)	Throughput (/s)	(total)	
TinvTable (binary) [DNNR16]	4.18	24500	3.07 MB	
TinyTable (optim.) [DNNR16]	1.02	339000	50MB	
Wang et al. [WRK17]	0.93	1075	2.57 MB	$10 \; \mathrm{Gbps}$
Rindal-Rosulek [RR16]	1.0	1000	$1.6~\mathrm{MB}$	10 Gbps
$OP-LUT [DKS^+17]$	5	41670	$0.103~\mathrm{MB}$	passive
SP-LUT [DKS ⁺ 17]	6	2208	$0.044~\mathrm{MB}$	passive
AES-LT	0.93	236200	$8.4~\mathrm{MB}$	
AES-RP	7.19	940	2.9 MB	

Protocol		Online	Comms.	Notes
	Latency (ms)	Throughput (/s)	(total)	
TinyTable (binary) [DNNR16] TinyTable (optim.) [DNNR16]	$4.18 \\ 1.02$	$24500 \\ 339000$	3.07 MB 786.4 MB	
Wang et al. [WRK17] Rindal-Rosulek [RR16] OP-LUT [DKS ⁺ 17]	0.93 1.0 5	$1075 \\ 1000 \\ 41670$	2.57 MB 1.6 MB 0.103 MB	10 Gbps 10 Gbps passive
SP-LUT [DKS ⁺ 17]	6	2208	$0.044~\mathrm{MB}$	passive
AES-LT AES-RP	$0.93 \\ 7.19$	236200 940	8.4 MB 2.9 MB	

Thank you! #triples

Thank you! #triples

LAN results.

Cipher	Online (single-thread)			Onlin	ne (multi-tl	Preprocessing ^a	
	$\frac{-}{\mathrm{Latency}}$ (ms)	Batch size	ops/s	Batch size	ops/s	Threads	ops/s
AES-BD AES-RP AES-LT	5.20 7.19 0.928	64 1024 1024	758 940 51654	1024 64 512	3164 3872 236191	16 16 32	30.7 46.1 16.79
3DES-Raw 3DES-PV 3DES-LT	270 36.98 4.254	$512 \\ 512 \\ 1024$	130 86 10883	- 512 512	- 366 45869	32 16	1.24 25.6 15.3

Table 3. 1 Gbps LAN timings for evaluating AES and 3DES in MPC.

Dragos Rotaru

#party #party #party

