METHOD AND DEVICE FOR VAPOR-DEPOSITING THIN FILM LAYER FOR ELEMENT, AND ORGANIC ELECTROLUMINESCENCE ELEMENT

Patent number:

JP2000160328

Publication date:

2000-06-13

Inventor:

SHOJI HIROSHI; FUKUOKA KENICHI; NAGASAKI YOSHIKAZU

Applicant:

IDEMITSU KOSAN CO

Classification:

- international: C23C14/12; C23C14/26; H05B33/10; H05B33/14; H05B33/22;

C23C14/12; C23C14/26; H05B33/10; H05B33/14; H05B33/22; (IPC1-7): C23C14/26; C23C14/12; H05B33/10; H05B33/14;

H05B33/22

- european:

Application number: JP19980339925 19981130 Priority number(s): JP19980339925 19981130

Report a data error here

Abstract of JP2000160328

PROBLEM TO BE SOLVED: To provide a method and a device for vapor-depositing a thin film layer for a element by which an organic material can be continuously and uniformly laminated with excellent reproducibility on a substrate large in area, and to provide an organic EL element which is capable of unifying the composition ratio of an electroncarrying organic matter to an electron injection material in a film of an electric charge injection layer. SOLUTION: A cell type deposition source including a crucible 21 storing a deposition material, a heater arranged outside the crucible 21 through a soaking material 22, and heat reflection members 24A, 24B arranged outside the heater 23 is used for deposition sources 2A-2F, and deposition is achieved while cooling an opening part of the deposition source by a base plate 5 (a shroud) in which a refrigerant carrier is circulated.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-160328 (P2000-160328A)

(43)公開日 平成12年6月13日(2000.6.13)

(51) Int.Cl.'		微別 記号	FI			テーマコード(参考)
C 2 3 C			C 2 3 C 1	4/26	1	\ 3K007
0200	14/12			4/12		4K029
H05B	•		H05B 3			
	33/14			3/14	Y 2	۸
	33/22		33/22		Λ	
	33/ ZE				-	OL (全 18 頁)
(21)出顧番号		特願平10-339925	(71)出顧人	0001836	000183646	
				出光興	连株式会社	
(22)出顧日		平成10年11月30日(1998.11.30)	東京都千代田区丸の内3 J		3 5目1番1号	
			(72)発明者	東海林	弘	
				千葉県神	由ケ浦市上泉128	10番地
			(72)発明者	福岡	% —	•
				千葉県村	由ケ浦市上泉128	0番地
			(72)発明者	長崎	養和	
				千葉県	由ケ浦市上泉128	0番地
			(74)代理人	1000790)83	
				弁理士	木下 實三	(外1名)
		·				
						最終頁に続

(54) 【発明の名称】 素子用膵膜層の蒸着方法、蒸着装置および有機エレクトロルミネッセンス素子

(57)【要約】

【課題】 有機材料を、大面積の基板に連続的かつ再現性よく、均一に積層できる素子用薄膜層の蒸着方法、蒸着装置、および電荷注入層の膜面内における電子輸送性有機物と電子注入性材料との組成比の均一化を実現できる有機EL素子を提供する。

【解決手段】 蒸着源2A~2Fとして、蒸着材料を収納したるつぼ21と、このるつぼ21の外側に均熱部材22を介して配設されたヒータ23と、このヒータ23の外側に配設された熱反射部材24A,24Bとを含むセル型蒸着源を用い、かつ、蒸着源の開口部を内部に冷媒を循環させたベースプレート5(シュラウド)によって冷却しながら、蒸着を行う。

【特許請求の範囲】

【請求項1】 基板に対向して配置した1または複数の 蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄膜 層の蒸着方法であって、

前記蒸着源として、蒸着材料を収納した容器と、この容器の外側に配設されたヒータと、このヒータの外側に配設された断熱層とを含む蒸着源を用いて、蒸着を行うことを特徴とする素子用薄膜層の蒸着方法。

【請求項2】 請求項1に記載の素子用薄膜層の蒸着方法において、

前記断熱層は、前記ヒータの外側に配設された熱反射部 材を含むことを特徴とする素子用薄膜層の蒸着方法。

【請求項3】 請求項1に記載の素子用薄膜層の蒸着方法において、

前記断熱層は、前記ヒータの外側に配設された熱反射部材と、この熱反射部材の外側に設けられた真空層とを含むことを特徴とする素子用薄膜層の蒸着方法。

【請求項4】 請求項1ないし請求項3のいずれかに記載の素子用薄膜層の蒸着方法において、

前記容器とヒータとの間には、ヒータからの熱を容器に 対して均一に伝達する均熱部材が介在されていることを 特徴とする素子用薄膜層の蒸着方法。

【請求項5】 基板に対向して配置した1または複数の 蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄膜 層の蒸着方法であって、

前記蒸奢源の開口部を冷却しつつ、蒸着を行うことを特 徴とする素子用薄膜層の蒸着方法。

【請求項6】 請求項5に記載の素子用薄膜層の蒸着方法において、

前記素着源の開口部を、冷媒の循環によって冷却することを特徴とする素子用薄膜層の蒸着方法。

【請求項7】 基板に対向して配置した1または複数の 蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄膜 層の蒸着方法であって、

前記蒸着源として、蒸着材料を収納した容器と、この容器の外側に配設されたヒータと、このヒータの外側に配設された断熱層とを含む蒸着源を用い、かつ、その蒸着源の開口部を冷却しつつ、蒸着を行うことを特徴とする素子用薄膜層の蒸着方法。

【請求項8】 請求項1ないし請求項7のいずれかに記載の素子用薄膜層の蒸着方法において、

前記基板に、その基板を自転させるための回転軸線を設 定し、

前記蒸着源をそれぞれ前記基板の回転軸線から離れた位置に配設し、

前記基板を自転させながら蒸着を行うことを特徴とする 素子用薄膜層の蒸着方法。

【請求項9】 請求項1ないし請求項8のいずれかに記載の案子用薄膜層の蒸着方法において、

前記蒸着材料として、有機物と無機物とを用い、

有機エレクトロルミネッセンス素子の電荷注入層を成膜 することを特徴とする素子用薄膜層の蒸着方法。

【請求項10】 基板に対向して配置した1または複数 の蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄 膜層の蒸着装置であって、

前記蒸着源は、蒸着材料を収納した容器と、この容器の外側に配設されたヒータと、このヒータの外側に配設された断熱層とを含むことを特徴とする素子用薄膜層の蒸着装置。

【請求項11】 請求項10に記載の素子用薄膜層の蒸 着装置において、

前記断熱層は、前記ヒータの外側に配設された熱反射部 材を含むことを特徴とする素子用薄膜層の蒸着装置。

【請求項12】 請求項10に記載の素子用薄膜層の蒸 着装置において、

前記断熱層は、前記ヒータの外側に配設された熱反射部材と、この熱反射部材の外側に設けられた真空層とを含むことを特徴とする素子用薄膜層の蒸着装置。

【請求項13】 請求項10ないし請求項12のいずれかに記載の素子用薄膜層の蒸着装置において、

前記容器とヒータとの間には、ヒータからの熱を容器に 対して均一に伝達する均熱部材が介在されていることを 特徴とする素子用薄膜層の蒸着装置。

【請求項14】 基板に対向して配置した1または複数 の蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄 膜層の蒸着装置であって、

前記蒸着源の開口部を冷却する冷却手段を設けたことを 特徴とする素子用薄膜層の蒸着装置。

【請求項15】 請求項14に記載の素子用薄膜層の蒸 着装置において、

前記冷却手段は、所定位置に前記蒸着源の開口部を収納 する複数の収納部を有し、内部に冷媒を循環させるシュ ラウドによって構成されていることを特徴とする素子用 薄膜層の蒸着装置。

【請求項16】 基板に対向して配置した1または複数 の蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄 膜層の蒸着装置であって、

前記蒸着源は、蒸着材料を収納した容器と、この容器の 外側に配設されたヒータと、このヒータの外側に配設さ れた断熱層とを含み、かつ、その蒸着源の開口部を冷却 する冷却手段を設けたことを特徴とする素子用薄膜層の 蒸着装置。

【請求項17】 請求項10ないし請求項16のいずれかに記載の素子用薄膜層の蒸着装置において、

前記基板を自転させるための回転駆動源を設けるとともに

この回転駆動源による基板の回転軸線から離れた位置に 前記蒸着源を配置したことを特徴とする素子用薄膜層の 蒸着装置。

【請求項18】 請求項9に記載の素子用薄膜層の蒸着

方法により成膜された電荷注入層を備えたことを特徴とする有機エレクトロルミネッセンス素子。

【請求項19】 請求項18に記載の有機エレクトロルミネッセンス素子において、

前記電荷注入層は、前記蒸着材料として電子輸送性有機物と電子注入性材料とを用いて成膜された電子注入層であることを特徴とする有機エレクトロルミネッセンス素

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、素子用薄膜層の蒸着方法、蒸着装置および有機エレクトロルミネッセンス素子(以下、有機EL素子という)に関する。詳しくは、基板に対向して配置した1または複数の蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄膜層の蒸着方法、蒸着装置およびこの蒸着方法を用いて製造された有機EL素子に関する。

[0002]

【背景技術】近年、有機物を用いた発光デバイスである 有機E L素子が注目されており、ディスプレイ等への利 用に向けて研究が進められている。有機E L素子は、陽 極(透明電極)、有機物からなる発光層および陰極(対 向電極)を基板上に積層した構造で、陰極から発光層へ 注入された電子と、陽極から発光層へ注入された正孔と が発光層内で再結合することにより発光が生じる原理で ある。

【0003】このような発光原理に基づく有機EL素子の発光特性を向上させるために、近年では、発光層に電子注入層や正孔注入層等の有機物からなる電荷注入層を積層した多層構造の有機EL素子の開発が中心となってきている。具体的には、陰極からの電子の注入性を向上させるために、陰極と発光層との間に電子伝達機能を有する電子注入層を設けたり、陽極からの正孔の注入性を向上させるために、陽極と発光層との間に正孔伝達機能を有する正孔注入層を設けたり、あるいは、これらの電子注入層および正孔注入層の両方を設けたりすることで、発光効率を高めるようにしている。

【0004】一般に、電子注入層を構成する材料には、陰極から注入された電子を発光層に効率よく伝達しうる電子輸送性有機物が用いられ、正孔注入層を構成する材料には、陽極から注入されたの正孔を発光層に伝達しうる正孔注入性有機物が用いられる。また、陰極材料には通常金属が用いられるが、電子の注入効率を高めるために、陰極を二層構造とし、発光層側の一層をAlq(トリス(8-キノリノール)アルミニウム)に電子注入性材料を微量混入して成膜する方法が提案されている(特開平4-230997号公報)。

【0005】このような有機EL素子のように、薄膜層 を積層した構造の素子では、真空蒸着法により各層の成 膜が行われる場合が多い。例えば、蒸着法により、電子 輸送性有機物と金属とからなる薄膜層を成膜する場合、 基板の下方に蒸着源を二つ設け、電子輸送性有機物と金 属とを各々別の蒸着源から同時に蒸発させて共蒸着させ る方法が試みられている。

[0006]

【発明が解決しようとする課題】ところで、最近では、 上述したような有機薄膜素子の製造に際して、有機材料 を、大面積の基板に連続的、かつ、再現性よく、しか も、均一に蒸着できることが要求されてきたが、従来の 真空蒸着法では、これらの要求を充分に満足させること ができない。一般には、有機材料を、大面積の基板に連 続的、かつ、再現性よく積層するには、蒸着源を大容量 のボートなどを用いて蒸着することが考えられる。しか し、ボートを大容量にするに従い、そのボートからの熱 的影響によって満足できる品質の薄膜層が得られない。 【0007】すなわち、ボートを大容量にするに従い、 外部へ逃げる熱量も多くなるため、ボート内の蒸着材料 を均一に加熱できず、特に、ボート金属と接する部分が 局部的に過熱されるため、有機物の分解等、変質の可能 性が生じやすい。また、外部へ逃げた熱によって、隣接 する蒸着源間で熱干渉が生じやすい。すると、蒸着源の シャッタを閉じていても、蒸着材料中に微量に含まれる ガス不純物がシャッタの隙間から真空槽内に飛び出し、 基板に到達する可能性がある。また、シャッタを開いて 蒸着を行う際、蒸着ビームが広がってしまい、その結 果、広がったことにより基板までの経路が長くなること によって途中で酸化等を受けて反応し、その反応した有 機材料が基板へ到達する可能性があるため、品質のよい 薄膜層が得られないという問題がある。

【0008】また、蒸着法により、電子輸送性有機物と 金属とからなる薄膜層を成膜する場合、基板上の各点に 対して蒸着材料を均一に蒸発させることは困難であり、 電子輸送性有機物と金属との組成比がその膜面内で変化 しやすい。薄膜層の面内で金属の含有量にムラがある と、素子の面内において同一の輝度を得るための駆動電 圧にばらつきが生じて充分な低電圧化が図れない上、寿 命にもばらつきが生じるという問題がある。

【0009】本発明の目的は、1または複数の蒸着材料を蒸発させて素子用薄膜層を蒸着する素子用薄膜層の蒸着方法において、有機材料を、大面積の基板に連続的、かつ、再現性よく、しかも、均一に不純物の混入もなく蒸着できる素子用薄膜層の蒸着方法および蒸着装置を提供することにある。本発明の他の目的は、不純物の混入のない大面積の電荷注入層を得ることができるとともに、その電荷注入層の膜面内における電子輸送性有機物と電子注入性材料との組成比の均一化を実現でき、これにより、駆動電圧および素子の寿命の安定化を達成できる有機EL素子を提供することにある。

[0010]

【課題を解決するための手段】前記目的を達成するた

め、本発明の素子用薄膜層の蒸着方法、蒸着装置および 有機EL素子は、次の構成を備える。

【0011】 [素子用薄膜層の蒸着方法] 本発明の第1 の素子用薄膜層の蒸着方法は、基板に対向して配置した 1または複数の蒸着源から蒸着材料を蒸発させて成膜を 行う素子用薄膜層の蒸着方法であって、前記蒸着源とし て、蒸着材料を収納した容器と、この容器の外側に配設 されたヒータと、このヒータの外側に配設された断熱層 とを含む蒸着源を用いて、蒸着を行うことを特徴とす る。

【0012】このような構成によれば、蒸着源として、蒸着材料を収納した容器と、この容器の外側に配設された日熱層とを含む構成の蒸着源を用いて、蒸着を行っているから、有機材料を、大面積の基板に連続的、かつ、再現性よく本の大力の大力を表現を大容量化しても、断熱層によって外部へ逃げる熱量を少なくできる。そのため、容器を大容量化しても、断熱層によって外部へ逃げる熱量を少なくできる。そのため、容器内の蒸着材料を局部的に過熱することなく均一に加熱できるうえ、隣接する蒸着源間での熱干渉を極力少なくすることができるから、シャッタを閉じていても、蒸着材料中に含まれるガス不純物がシャッタの隙間から真空槽内に飛び出し、基板に到達するのを防止できる。よって、有機材料を、大面積の基板に連続的、かつ、再現性よく、不純物の混入もなく蒸着できる。

【0013】この場合、断熱層としては、ヒータからの熱が外部へ逃げるのを防止できる構造であればよいが、例えば、ヒータから外部へ発散される熱を内部の容器へ向けて反射するような熱反射部材が望ましい。このような構成であれば、ヒータからの熱を外部へ逃がすことなく、容器に効率的に伝達できる。あるいは、断熱層として、熱反射部材に加え、その熱反射部材の外側に設けられた真空層とを含む構成が望ましい。このようにすれば、真空層によって、ヒータから外部へ発散される熱をより確実に遮断できるから、外部への熱影響を極力低減できる。

【0014】さらに、前記構成において、容器とヒータとの間には、ヒータからの熱を容器に対して均一に伝達する均熱部材が介在されていることが望ましい。このような構成であれば、ヒータからの熱が、容器に対して局部的に伝達されることなく、均一に伝達されるから、容器内の蒸着材料をより均一に加熱できる利点がある。

【0015】本発明の第2の蒸着方法は、基板に対向して配置した1または複数の蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄膜層の蒸着方法であって、前記各蒸着源の開口部を冷却しつつ、蒸着を行うことを特徴とする。このような構成によれば、蒸着源の開口部が冷却されているから、隣接する蒸着源間の熱干渉を極力低減して、蒸着材料中に含まれるガス不純物がシャッタの隙間から真空槽内に飛び出し、基板に到達するのを防止できる。しかも、蒸着源から蒸発した蒸着材料が蒸着源

の開口部から拡散しながら蒸発しようとした場合でも、 外側に拡散した蒸着材料は開口部の冷却によってトラッ プされる。その結果、主に、中央部分から蒸発した蒸着 材料が基板に到達するから、不純物の少ない品質のよい 薄膜層を得ることができる。

【0016】この場合、蒸着源の開口部を冷却するには、特に問わないが、冷媒の循環によって冷却するのが望ましい。冷媒としては、約30℃以下の冷却水や液体窒素等を用いることができる。このようにすれば、蒸着源の開口部を精度よく効率的に冷却できる。

【0017】本発明の第3の蒸着方法は、基板に対向して配置した1または複数の蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄膜層の蒸着方法であって、前記蒸着源として、蒸着材料を収納した容器と、この容器の外側に配設されたヒータと、このヒータの外側に配設された断熱層とを含む蒸着源を用い、かつ、その蒸着源の開口部を冷却しつつ、蒸着を行うことを特徴とする。このような構成によれば、前記第1の蒸着方法と、第2の蒸着方法の作用、効果を奏することができる。

【0018】以上の第1,第2および第3の蒸着方法の いずれかにおいて、前記基板に、その基板を自転させる ための回転軸線を設定し、前記蒸着源をそれぞれ前記基 板の回転軸線から離れた位置に配設し、前記基板を自転 させながら蒸着を行う(これを、第4の蒸着方法とい う) ことが望ましい。この構成によれば、蒸着源を基板 の回転軸線からずれた位置に設けているので、基板の回 転により、基板と蒸着源との相対位置が変化し、蒸着材 料の基板への入射角度を変化させることができるから、 蒸着源から蒸着材料を基板全体に対して一様に蒸発させ ることができる。従って、複数の蒸着源から蒸着材料を 基板に付着させる場合でも、各蒸着源の蒸着材料を基板 に対して均一に付着させることができるので、膜面内で 蒸着材料の組成比が均一な薄膜層を成膜できる。また、 基板を公転させなくてもよいので、公転用のスペースが 不要になり、最小限のスペースで経済的に成膜を行え る。

【〇〇19】ところで、前述した基板の形状は、特に限定されないが、基板が矩形平板状に形成されたものである場合、この基板の回転軸線を中心とする円の円周上に複数の蒸着源を配設し、その円は、半径をM、前記基板の一辺の長さをしとしたときに、M>1/2×しを満足するように設定することが望ましい。ここで、基板の辺の長さが異なる場合、基板全体に薄膜層を蒸着するためには、最も長い辺の長さをしとして採用することが好ましい。このように、各蒸着源を基板の回転軸線を中心とする円周上に設ければ、各蒸着源からの基板に対する蒸着材料の入射角度を互いに同一にできるので、膜面内における蒸着材料の組成比を容易に制御できる。しかも、基板のうち蒸着源に垂直になる部分に蒸着材料が集中して付着しやすいことから、蒸着源を配設する円の半径Mを

M>1/2×Lとすることで、平面視で蒸着源は基板の外側に配置されることになるため、蒸着材料が基板に対して垂直に入射することがなくなり、基板に対して各蒸着材料を均一に蒸着できるから、膜面内における組成比の均一性を一層向上できる。

【0020】また、複数の蒸着源を、基板の回転軸線を中心とする円の円周上に配設した場合、これらの蒸着源の配設数をnとしたときに、各蒸着源を円の中心から360°/nの角度で配設してもよい。このように、複数の蒸着源を円周上において等間隔に配置すると、基板の各部分に対して複数の蒸着材料を順次重ねるように成膜できるので、膜の厚さ方向に組成比の異なる薄膜層を成膜できる。

【0021】以上において、前記蒸着材料として、有機物と無機物とを用い、有機エレクトロルミネッセンス素子の電荷注入層を成膜してもよい。電荷注入層としては、例えば、電子注入層、正孔注入層等が挙げられる。具体的には、蒸着材料として、電子輸送性有機物と電子注入性材料とを用い、第1、第2、第3の蒸着方法のいずれかによって有機EL素子の電子注入層を成膜すれば、不純物の少ない高品質な薄膜層を得ることができる。さらに、蒸着材料として、電子輸送性有機物と電子注入性材料とを用い、第4の蒸着方法によって有機EL素子の電子注入層を成膜すれば、不純物が少なく、しかも、電子輸送性有機物と電子注入性材料との組成比を電子注入層の膜面内で均一にできる。

【0022】特に、電子輸送性有機物として、トリス (8-キノリノール)アルミニウム(以下、Alqとい う)を採用し、電子注入性材料としてLiを採用して電 子注入層を成膜した場合、Liの組成比が大きくなる と、電子注入層の導電性が向上して所定の輝度を得るた めに必要な駆動電圧が低くなり、Liの組成比Li:A Iq=1:1が小さくなると導電性が低下して駆動電圧 が高くなる。しかしながら、Liが組成比2:1以上と なると、かえって駆動電圧が高くなる。このように、有 機EL素子の駆動電圧は、Liの組成比により変化す る。このため、本発明の第4の蒸着方法を採用して電子 注入層を成膜することで、膜面内におけるLiの組成比 の均一化を図ることができるので、駆動電圧のばらつき の発生を防止できるから、素子の面内における駆動電圧 を安定化させることができるとともに寿命の安定化を達 成できる。

【0023】 [素子用薄膜層の蒸着装置] 本発明の第1 の蒸着装置は、基板に対向して配置した1または複数の 蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄膜 層の蒸着装置であって、前記蒸着源は、蒸着材料を収納 した容器と、この容器の外側に配設されたヒータと、こ のヒータの外側に配設された断熱層とを含むことを特徴 とする。

【0024】ここで、断熱層は、前記ヒータの外側に配

設された熱反射部材を含む構成でもよく、あるいは、ヒ ータの外側に配設された熱反射部材と、この熱反射部材 の外側に設けられた真空層とを含む構成でもよい。さら に、容器とヒータとの間には、ヒータからの熱を容器に 対して均一に伝達する均熱部材が介在されていることが 望ましい。このような構成によれば、前記第1の蒸着方 法で述べた作用、効果と同等の作用効果が期待できる。 【0025】本発明の第2の蒸着装置は、基板に対向し て配置した1または複数の蒸着源から蒸着材料を蒸発さ せて成膜を行う素子用薄膜層の蒸着装置であって、前記 蒸着源の開口部を冷却する冷却手段を設けたことを特徴 とする。ここで、冷却手段は、所定位置に前記蒸着源の 開口部を収納する複数の収納部を有し、内部に冷媒を循 環させるシュラウドによって構成されているのが望まし い。このような構成によれば、前記第2の蒸着方法で述 べた作用、効果と同等の作用効果が期待できる。特に、 シュラウドによる冷却では、複数の蒸着源の開口部を一 括して冷却できる利点がある。

【0026】本発明の第3の蒸着装置は、基板に対向して配置した1または複数の蒸着源から蒸着材料を蒸発させて成膜を行う素子用薄膜層の蒸着装置であって、前記蒸着源は、蒸着材料を収納した容器と、この容器の外側に配設されたヒータと、このヒータの外側に配設された断熱層とを含み、かつ、その蒸着源の開口部を冷却する冷却手段を設けたことを特徴とする。このような構成によれば、前記第1および第2の蒸着方法で述べた作用、効果と同等の作用効果が期待できる。

【0027】以上の第1,第2および第3の蒸着装置の いずれかにおいて、前記基板を自転させるための回転駆 動源を設けるとともに、この回転駆動源による基板の回 転軸線から離れた位置に前記蒸着源を配置することが望 ましい。この構成によれば、上述した第1、第2、第3 の蒸着方法で述べた作用、効果に加えて、蒸着源を基板 の回転軸線からずれた位置に設けているので、基板の回 転により、基板と蒸着源との相対位置が変化し、蒸着材 料の基板への入射角度を変化させることができるから、 蒸着源から蒸着材料を基板全体に対して一様に蒸発させ ることができる。従って、複数の蒸着源から蒸着材料を 基板に付着させる場合でも、各蒸着源の蒸着材料を基板 に対して均一に付着させることができるので、膜面内で 蒸着材料の組成比が均一な薄膜層を成膜できる。また、 基板を公転させなくてもよいので、公転用のスペースが 不要になり、最小限のスペースで経済的に成膜を行え

【0028】〔有機EL素子〕本発明の有機EL素子は、基板に対向して配置した複数の蒸着源から異なる蒸着材料を同時に蒸発させて成膜された電荷注入層を備える。この電荷注入層は、蒸着源として、蒸着材料を収納した容器と、この容器の外側に配設されヒータと、このヒータの外側に配設された断熱層とを含む蒸着源を用い

て成膜されたもの、蒸着源の開口部を冷却しつつ成膜されたもの、この両者の組み合わせによって成膜されたもの、あるいは、これらに、基板にその基板を自転させるための回転軸線を設定し、蒸着源をそれぞれ基板の回転軸線から離れた位置に配設し、基板を自転させながら蒸着を行うことにより成膜されたものであることを特徴とする。

【0029】この場合、電荷注入層は、有機EL素子を構成する正孔注入層であってもよく、この際には蒸着材料として正孔注入性材料を用いてもよいが、蒸着材料として電子輸送性有機物と電子注入性材料とを用いて成膜された電子注入層であることが好ましい。これによれば、前述したように、不純物の混入のない大面積の電荷注入層を得ることができるとともに、電子輸送性有機物と電子注入性材料との組成比を電子注入層の膜面内で均一にでき、これにより、素子の駆動電圧を安定化させることができるとともに寿命の安定化を達成できる。

【0030】この場合、特に、電子注入層における電子 輸送性有機物および電子注入性材料の組成比の面内均一 性が±10%以下とされていることが望ましい。ここ で、組成比とは、モル比で規定されるものである。ま た、面内均一性が±10%以下とは、電子輸送性有機物 および電子注入性材料を所定の組成比で蒸着した場合 に、電子注入層の膜面内の任意の点における組成比が前 記所定組成比の±10%以内であることを意味する。面 内均一性をこの範囲とすれば、特に、電子輸送性有機物 としてAlgを採用し、電子注入材料としてLiを採用 した場合、有機EL素子を構成する電子注入層以外の層 の影響を受けるものの、駆動電圧のばらつきおよび寿命 のばらつきを確実に低減できる。この組成比の面内均一 性は、好ましくは±7%の範囲であり、この範囲とする ことで、駆動電圧のばらつきおよび寿命のばらつきを一 層確実に防止できる。さらに好ましくは、組成比の面内 均一性は±5%の範囲であり、これによると、電子注入 層のばらつきが有機EL素子の素子性能に影響すること がなくなり、駆動電圧や寿命等の素子性能のばらつき は、有機EL素子を構成する電子注入層以外の層の膜面 内における不均一さに支配されるようになる。

【0031】また、電子輸送性有機物と電子注入性材料との組成比は、電子注入層の厚さ方向で異なっていてもよい。すなわち、電気輸送性有機物としてAlqを採用し、電子注入材料としてLiを採用した場合、前述したように、Li組成がLi:Alq=3:1~1:3の範囲内で大きいほど電子注入層の導電性が向上し、その結果、初期性能の向上、特に駆動電圧の低下を図ることができる。一方、Li組成が大きくなるほど酸化等により劣化しやすくなるため、耐久性が低下して素子寿命が短くなる等の不具合が生じる。このような相反する現象に対し、本発明者らが鋭意検討した結果、AlqとLiとの組成比を膜厚方向に規則的に変化させることで、耐久

性の維持と初期性能の向上とを両立させることができる という知見が得られた。

【0032】ここで、有機EL素子の電荷注入層について具体的に説明する。

(電荷注入層の蒸着材料)有機EL素子の電荷注入層を 構成する蒸着材料としては、以下の材料を用いることが できる。

(1)電子注入層を構成する電子輸送性有機物

電子注入層の蒸着材料である電子輸送性有機物としては、有機E L 素子作製時に電子注入層として用いられる材料を広く用いることができ、陰極から注入された電子を発光層に伝達する機能を有しているものであればよい。一般には、電子親和力が有機発光材料の電子親和力に比して大きく、陰極の仕事関数(陰極が多成分の場合には最小のもの)に比して小さいものが望ましい。ただし、エネルギーレベルの差が極端に大きいところは、そこに大きな電子注入障壁が存在することになり、好ましくない。電子輸送性有機物の電子親和力は、陰極の仕事関数或いは有機発光材料の電子親和力と同程度の大きさであることが好ましい。なお、ここでいう同程度とは、±0.5eV以下の差であることをいう。

【0033】つまり、電子輸送性有機物としては、[©] 適当な電子親和力の値を持つ、[©] 適当な電荷移動度を持つ、[©] 真空蒸着法により薄膜形成が可能であるという[©] へ[©] の条件を満足すればよい。

の電子親和力の値は、好ましくは、2.7 e V以上であり、特に好ましくは、2.9 e V以上である。

② の電荷移動度は、好ましくは、電子移動度が 10^{-6} cm 2 / V \cdot s以上である。なお、後述の発光層を構成する材料も、上記 0 0 の条件を満たすものとすることが好ましい。

【0034】電子輸送性有機物の具体例としては、ニト ロ置換フルオレノン誘導体、アントラキノジメタン誘導 体、ジフェニルキノン誘導体、チオピランジオキシド誘 導体、ナフタレンペリレン等の複素環テトラカルボン酸 無水物、カルボジイミド、フレオレニリデンメタン誘導 体、アントロン誘導体、オキサジアゾール誘導体、特開 昭59-194393号公報において発光層の材料とし て開示されている一連の電子伝達性化合物、オキサジア ゾール環の酸素原子をイオウ原子に置換したチアゾール 誘導体、電子吸引基として知られているキノキサリン環 を有したキノキサリン誘導体、8-キノリノール誘導体 の金属錯体 (例えば、トリス(8-キノリノール)アル ミニウム、トリス(5,7-ジクロロ-8-キノリノー ル)アルミニウム、トリス(5,7-ジブロモ-8-キ ノリノール)アルミニウム、トリス(2-メチル-8-キノリノール) アルミニウム、トリス (5-メチル-8 -キノリノール) アルミニウムおよびピス(8-キノリ ノール) 亜鉛等や、これらの金属錯体の中心金属が I n. Mg, Cu, Ca, Sn, GaまたはPbに置き代 わった金属錯体等)、メタルフリーもしくはメタルフタロシアニンまたはこれらの末端がアルキル基、スルホン基等で置換されているもの、有機発光材料として示した前述のジスチリルピラジン誘導体が挙げられる。これらの材料は、単独で用いてもよく、或いは、異なる複数種類のものを同時に用いてもよい。但し、複数種類の材料を用いる場合には、それぞれ異なる蒸着源から蒸発させる必要がある。

【0035】(2)電子注入層を構成する電子注入性材料

電子注入層の蒸着材料である電子注入性材料としては、 有機EL素子の陰極の効率化に用いられるアルカリ金 属、アルカリ土類金属、または希土類金属を採用でき る。特に、電子を発光層に注入する観点からは、仕事関 数が4 e V以下の金属を用いることが好ましい。アルカ リ金属の具体例としては、リチウム(Li:仕事関数 2.9eV)、ナトリウム(Na:仕事関数2.75e V)、カリウム(K:仕事関数2.3 e V)、ルビジウ ム (Rb:仕事関数2.16eV)、およびセシウム (Cs:仕事関数2.14eV)が挙げられる。また、 アルカリ土類金属の具体例としては、カルシウム(C a: 仕事関数2.87eV)、ストロンチウム(Sr: 仕事関数2.59eV)、およびバリウム(Ba:仕事 関数2.7eV)等の仕事関数2.9eV以下のものが 挙げられる。 【0036】このようなアルカリ金属とアルカリ土類金

属とのうちで、アルカリ金属のみを一種または複数種組み合わせて用いてもよく、アルカリ土類金属のみを単独でまたは複数種類組み合わせて用いてもよく、或いは、アルカリ金属の一種または複数種とを組み合わせて用いてもよい。
【0037】好ましい、希土類金属の例としては、Yb,Sc,Er,Y等がある。電子注入性材料の他の好ましい例としては、LaB $_6$,YbB $_6$ 等のホウ化金属、TiN等の窒化金属、TiC等の炭素化物等があり、これらは、仕事関数4eV以下で電子注入性である。別の電子注入性材料の例としては、MgO,BaO,SrO等のアルカリ土類金属酸化物、Li $_2$ O,Na $_2$ O等のアルカリ金属酸化物、Li $_2$ O,Na $_2$ O等のアルカリ金属酸化物、LiF等のアルカリ金属のフッ化物、CaF $_2$ 等のアルカリ土類金属のフッ化物があり、これらは好ましく用いられる。

【0038】(3)正孔注入層を構成する有機物である 正孔注入性有機物

正孔注入層の蒸着材料である正孔注入性有機物としては、既存の正孔注入材料を広く用いることができ、正孔の注入性或いは電子の障壁性を有しているものであればよい。例えば、従来より、電子感光体の正孔注入材料として用いられているものを適宜選択して用いることができ、正孔の移動度が 10^{-5} cm² $/V \cdot s$ (電界強度 $10^{4} \sim 10^{5} V/cm$)以上であるものが好ましい。

【0039】具体例としては、トリアゾール誘導体、オ キサジアゾール誘導体、イミダゾール誘導体、ポリアリ ールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘 導体、フェニレンジアミン誘導体、アリールアミン誘導 体、アミノ置換カルコン誘導体、オキサゾール誘導体、 スチリルアントラセン誘導体、フルオレノン誘導体、ヒ ドラゾン誘導体、スチルベン誘導体、シラザン誘導体、 ポリシラン、アニリン系共重合体、導電性オリゴマー (特にチオフェンオリゴマー)、ポルフィリン化合物、 芳香族第三級アミン化合物、スチリルアミン化合物、後 述する有機発光材としても採用できる芳香族ジメチリデ ィン系化合物、p型Siやp型SiC等の無機半導体等 を挙げることができる。正孔注入材料としては、ポルフ ィリン化合物、芳香族第三級アミン化合物またはスチリ ルアミン化合物を用いることが好ましく、特に、芳香族 第三級アミン化合物を用いることが好ましい。

【0040】上記ポルフィリン化合物の具体例としては、ポルフィン、1,10,15,20-テトラフェニル-21H,23H-ポルフィン銅(II)、1,10,15,20-テトラフェニルー21H,23H-ポルフィン亜鉛(II)、5,10,15,20-テトラキス(ペンタフリオロフェニル)-21H,23H-ポルフィン、シリコンフタロシアニンオキシド、アルミニウムフタロシアニンクロリド、フタロシアニン(無金属)、ジリチウムフタロシアニン、銅フタロシアニン、チタニウムフタロシアニン、鍋フタロシアニン、チタニウムフタロシアニン、銅オクタメチルフタロシアニン等が挙げられる。

【0041】また、前記芳香族第三級アミン化合物およ びスチリルアミン化合物の具体例としては、N,N, N', N' - \mathcal{F} N' - \mathcal{F} ニル、N, N'ージフェニルーN, N'ービスー(3-**メチルフェニル)-[1,1'-ピフェニル]-4,** 4'ージアミン、2,2ービス(4ージーpートリルア ミノフェニル)プロパン、1,1-ビス(4-ジーp-トリルアミノフェニル)シクロヘキサン、N,N, N', N'- rh b-p-h y w-4, 4'- y r s yピフェニル、1,1-ピス(4-ジーp-トリルアミノ フェニル) -4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタ ン、ビス(4-ジーp-トリルアミノフェニル)フェニ ルメタン、N,N'-ジフェニル-N,N'-ジ(4-メトキシフェニル) -4,4'-ジアミノビフェニル、 N, N, N', N'-テトラフェニル-4, 4'-ジア ミノジフェニルエーテル、4,4'-ビス(ジフェニル アミノ) クオードリフェニル、N, N, N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4' - [4 (ジ-p-トリルアミノ) スチリル] スチルベ ン、4-N、N-ジフェニルアミノ-(2-ジフェニル ビニル)ベンゼン、3-メトキシー4 - N , N-ジフェニルアミノスチルベン、N-フェニルカルバゾール、4 , 4 - ビス [N-(1- ナフチル) - N-フェニルアミノ] ビフェニルのように 2 個の縮合芳香族環を分子内に有するもの、トリフェニルアミンユニットが3 つスターバースト型に連結された4 , 4 ' , 4 '' - トリス[N-(3- メチルフェニル) - N- フェニルアミノ]トリフェニルアミン等が挙げられる。

【0042】(4)正孔注入層を構成する無機物である 正孔注入性材料

正孔注入層の蒸着材料である正孔注入性金属材料としては、仕事関数が5eV付近以上の金属を採用することが望ましい。具体的な正孔注入性金属材料としては、金(An: 仕事関数5 4eV) ニッケル(Ni: 仕事

(Au:仕事関数5.4eV)、ニッケル(Ni:仕事関数4.41~5.0eV)、パラジウム(Pd:仕事関数4.90eV)、レニウム(Ra:仕事関数4.96eV)、白金(Pt:仕事関数5.35~5.8eV)が挙げられる。このうち、金、ニッケル、パラジウムおよび白金は、一般的なWバスケット式の蒸着源を用いての蒸着が可能であり、レニウムは、細線の直接通電で蒸発可能である。また、金属ではないが、CdS、CaSe、PbSe、PbTe、ZnS、ZnSe等の半導体材料も正孔注入性材料として使用することができる。これらの半導体材料は、Wバスケットを用いて蒸発させることができる。

【0043】〔電荷注入層の構成〕

(1)電子注入層の組成

電子輸送性有機物と電子注入性材料との組成比は、モル比で電子輸送性有機物:電子注入性材料=100:1~1:100、好ましくは、10:1~1:50である。より好ましくは、電子輸送性有機物:電子注入性材料=3:1~1:3であり、さらに好ましくは、1:1程度である。特に、電子輸送性有機物としてAlqを用いるともに電子注入性材料としてLiを用いた場合、Liの組成比が大きければ大きいほど電子注入層の導電性は向上するが、Liを酸化等を受けないように安定な状態で保持することが困難になる。このため、Alq:Liの組成比は、モル比で1:1とすることが好ましい。

【0044】A1qの分子量は459、Liの分子量が約7であるため、モル比が1:1の場合でも、重量比は65:1程度となる。従って、従来の方法では、A1qおよびLiをこの組成比で大面積の基板に対して均一に再現性よく蒸着するのは困難であるが、本発明の方法によれば、膜面内における均一性を確保できるとともに良好な再現性を得られる。

【0045】本発明により電子注入層を成膜するにあたって、電子輸送性有機物をAlq、電子注入性材料をLiとした場合、有機EL素子の素子性能を大きく左右するのは電子注入層の電子注入性能であることから、案子性能は、電子注入層における電子注入材料Liの組成比

(モル比)に大きく依存することになる。Liは、全元素の中で最も質量の小さい金属(原子量~7)であり、Alqは分子量が459の化合物であるため、モル比により電子注入層の組成を制御する場合、蒸着速度、特にLiの蒸着速度をいかにして制御するかがポイントとなる。

【0046】本発明の第4の蒸着方法では、基板を回転させるとともに、その回転軸線から偏心した位置に設けた蒸着源から二元共蒸着により電子注入層を成膜するので、特に、大面積の素子を形成する場合に、有機EL素子の面内における素子性能を確実に均一化できる。

【0047】(2)電子注入層の膜厚

電子注入層の電気伝導率は、電子注入性材料(電子注入性金属)の組成により変化するため、それに応じて電子注入層の最適な膜厚は変化するが、概ね、1 nm~1 μ m、好ましくは、3~300 nm、さらに好ましくは、5~50 nmである。膜厚10 nm以下では、膜の成長が不十分で蒸着膜が島状構造をとっていると考えられるが、5 nm程度の膜厚でも均一な発光が得られているため、充分な素子性能を発揮できる。

【0048】(3)正孔注入層の組成および膜厚 正孔注入層の正孔注入性有機物と正孔注入性材料との組 成比は、前記電子注入層の組成比と同様であり、その膜 厚も前記電子注入層の膜厚と同様である。

【0049】 [蒸着源] 有機化合物からなる有機EL素子の形成に用いる蒸着源としては、基板への熱等によるダメージが少ない蒸着源を採用することが好ましい。本発明では、蒸着材料を収納した容器と、この容器の外側に配設されたヒータと、このヒータの外側に配設された断熱層とを含む蒸着源を用い、この蒸着源を有機EL素子を構成する蒸着材料の数だけ用意して、冷却手段を有するシュラウド中に収納し、後述する素子構成に従って順次成膜を行う。

【0050】〔蒸着条件〕

(1)基板

形状や大きさに特に制限はないが、本発明は、大面積の基板、具体的には、矩形平板状の基板の場合、一辺の長さが10cmを越える基板に対して特に有効であり、小面積の基板に対しても膜面内の均一性の向上には有効である。また、大面積の基板に成膜した後に小面積の基板を多面取りする際にも有効である。

【0051】(2)基板と蒸着源との垂直距離Ts(図2参照)

基板と蒸着源との距離が大きいほど、基板の面内における膜厚の均一性が向上する。但し、基板と蒸着源との距離が大きいほど基板以外の部分に付着する蒸発物が増加するので、ロスが大きくなる。例えば、基板が100mm×200mmの矩形平板状である場合、基板と蒸着源との距離は、200mm~400mm程度とすることが好ましい。

【0052】(3)蒸着源の配置

基板の回転軸線を中心とする円の円周上に蒸着源を配設する場合、その円の半径Mは、基板の一辺の長さLと、基板および蒸着源の距離Tsとを定めた後に決定する。この際、蒸着材料の飛び方は蒸着源のタイプにより異なるため、円の半径Mは、蒸着材料の空間分布を考慮して決定する。この空間分布とは、所定の蒸着方位に対する単位時間当たりの蒸発量を測定して確定されるものである。空間分布は、蒸着源のタイプにより異なるが、一般に、余弦則に従う。つまり、蒸着分子の入射頻度 $\Phi=N$ $\cos^n\theta$ (N: 基板のうち蒸着源の蒸着面と垂直方向に対向する部分の膜厚, $\theta:$ 入射角度)となり、n の値を実際の計測値により求める。

【0053】本発明の第4の蒸着方法では、基板を回転させながら蒸着を行うので、基板における膜厚分布は、回転軸を中心とした同心円状となる。このため、回転軸線から径方向の一次元の長さである1/2×L(Lは、基板の一辺の長さや、基板の面内で膜の均一性が要求される部分の長さ)において、膜厚がある一定の範囲内で等しくなるようにシュミレーションの結果、蒸着源を配設する円の半径Mを決定する。

【0054】電荷注入層を形成する場合、上述のように して決定した半径Mの円周上に、電荷輸送性有機物の蒸 着源と、電子注入性材料または正孔注入性材料の蒸着源 とを配置する。このため、蒸着材料として用いる電荷輸 送性有機物の蒸着源と、電子注入性材料または正孔注入 性材料の蒸着源とは互いに同一タイプとし、蒸着材料の 飛び(空間分布)が同一となるようにする。この場合、 均一な電荷注入層を成膜するための好ましい方法として は、電荷注入層が電子注入層の場合、空間分布が同一の 電子輸送性有機物と電子注入性材料とを選定し、これら を蒸発させるための蒸着源をそれぞれ前述した半径Mの 円周上に配置する方法が挙げられる。また、別の方法と しては、空間分布を考慮して、電子輸送性有機物の蒸着 源を半径Mの円周上に配置するとともに、この円と異な る半径M'の円周上に電子注入性材料の蒸着源を配置す る方法がある。

【0055】さらに、電荷注入層の膜厚方向の組成を一定にする場合には、電荷輸送性有機物と電子注入性材料または正孔注入性材料との各蒸着源を互いに近接した位置に設けることが望ましい。一方、電荷輸送性有機物と電気注入性有機物との組成比を、電荷注入層の厚さ方向に異ならせる場合、電荷輸送性有機物の蒸着源と、電気注入性有機物との各蒸着源を意図的に離れた位置に配置する。

【0056】(4)基板の回転

回転速度等には特に制限はないが、概ね、3rpm~1 Orpm程度が適当である。また、前述したように、電 荷注入層の組成比を厚さ方向に異ならせる場合には、組 成比に基板の回転速度が関係してくる。

(5)蒸着真空度

蒸着開始前には、予め、10-3以下、好ましくは、10-4Paとすればよく、蒸着中においては、10-4Pa台の真空を維持することが望ましい。

【0057】(6)蒸着速度

電荷注入層を形成する場合を例に説明する。各蒸着材料の蒸着速度は、電荷輸送性有機物と電子注入性材料または正孔注入性材料との組成比が所望の組成比となるようにそれぞれ調整する。例えば、電子輸送性有機物としてAlqを用い、電子注入性材料としてLiを用いて電子注入層を成膜する場合、蒸着速度は、Alq:Li=3~4Å/s:0.1Å/sとすることが好ましい。

【0058】蒸着材料のうち電荷輸送性有機物の蒸着速度は、均一な成膜性が得られるとともに、蒸着源の温度が過度に昇温して電荷輸送性有機物が分解することがないような速度とすることが望ましい。このような電荷輸送性有機物の蒸着速度の好ましい範囲は、0.1Å/s~50Å/sであり、特に好ましくは、0.5Å/s~10Å/sである。

【0059】また、電子注入性材料の蒸着速度は、蒸着源が過度に高温になったとき電荷輸送性有機物が損傷を受けないように設定するとともに、電子注入性材料を均一に成膜できるように設定することが好ましい。電子注入性材料の蒸着速度の好ましい範囲は、0.001Å/s~50Å/sであり、特に好ましくは、0.01Å/s~1Å/sである。

【0060】〔有機E L素子への応用〕既述した通り、本発明は有機E L素子において、電荷注入層(正孔注入層、或いは電子注入層)を形成する際に非常に有効となる。この電荷注入層を含む有機E L素子としては、以下のようなものがある。すなわち、透明基板上に形成され、かつ、当該透明基板を光取り出し面とするタイプの有機E L素子の層構成の具体例としては、例えば、透明基板上の積層順が次のΦ ~ ® のものが挙げられる。なお、基板を光取り出し面としない場合には、基板上の積層順を次のΦ ~ ® の逆とすることもできる。

- ◎ 陽極/正孔注入層/発光層/陰極
- ◎ 陽極/発光層/電子注入層/陰極
- ◎ 陽極/正孔注入層/発光層/電子注入層/陰極

【0061】発光層は、通常1種または複数種の有機発光材料によって形成されるが、有機発光材料と電子注入性材料および/または正孔注入性材料との混合物や、当該混合物もしくは有機発光材料を分散させた高分子材料等によって形成される場合もある。また、上述した層構成の有機EL素子の外周に当該有機EL素子を覆うようにして、有機EL素子への水分や酸素の浸入を防止するための封止層が設けられる場合もある。

【0062】本発明の有機EL素子では、各層を構成する材料については特に限定されるものではなく、種々の材料を用いることができる。基板も含めて、前述した電

子注入層および正孔注入層以外の各層について以下記述 する。

【0063】(1)基板

基板を光取り出し面とする場合には、前述したように透 明基板を用いる。この透明基板は、発光層からの発光 (EL光) に対して高い透過性(概ね80%以上)を与 える物質からなっていればよく、その具体例としては、 アルカリガラス、無アルカリガラス等の透明ガラスや、 ポリエチレンテレフタレート、ポリカーボネート、ポリ エーテルスルホン、ポリエーテルケトン、ポリフッ化ビ ニル、ポリアクリレート、ポリプロピレン、ポリエチレ ン、非晶質ポリオレフィン、フッ素系樹脂等の透明樹 脂、または石英等からなる板状物やシート状物、あるい はフィルム状物が挙げられる。どのような透明基板を用 いるかは、目的とする有機EL素子の用途等に応じて適 宜選択可能である。一方、基板を光取り出し面としない 場合には、上述した透明基板以外のものについても、基 板として利用することができる。この場合の基板は無機 物であってもよいし有機物であってもよい。

【0064】(2)陽極

陽極の材料としては、仕事関数の大きい(例えば4 e V 以上)金属、合金、電気伝導性化合物またはこれらの混合物が好ましく用いられる。具体例としてはA u 等の金属、C u I 、 I T O、錫酸化物、亜鉛酸化物等の導電性透明材料が挙げられる。陽極は、蒸着法やスパッタ法等の方法で上記材料の薄膜を形成することにより作製することができる。発光層からの発光(E L 光)を陽極側から取り出す場合、陽極における前記E L 光の透過率は10%以上であることが好ましい。また、陽極のシート抵抗は数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10 n m ~ 1 μ m、好ましくは10~200 n m の範囲で選択される。

【0065】(3)発光層

発光層の材料として使用する有機発光材料は、(a)電荷 の注入機能、すなわち、電界印加時に陽極あるいは正孔 注入層から正孔を注入することができ、陰極あるいは電 子注入層から電子を注入することができる機能、(b)輸 送機能、すなわち、注入された正孔および電子を電界の 力で移動させる機能、および(c)発光機能、すなわち、 電子と正孔の再結合の場を提供し、これらを発光につな げる機能、の3つの機能を併せもつものであればよい が、上記(a)~(c)の各機能それぞれについて十分な性能 を併せもつことは必ずしも必要ではなく、例えば正孔の 注入輸送性が電子の注入輸送性よりも大きく優れている ものの中にも有機発光材料として好適なものがある。有 機発光材料としては、例えばベンゾチアゾール系、ベン ゾイミダゾール系、ベンゾオキサゾール系等の蛍光増白 剤や、スチリルベンゼン系化合物を用いることができ る。

【0066】上記の蛍光増白剤の具体例としては、ベン

ゾオキサゾール系では、2,5-ビス(5,7-ジーt -ペンチル-2-ベンゾオキサゾリル)-1,3,4-チアジアゾール、4,4'ービス(5,7ーtーペンチ ルー2-ベンゾオキサゾリル)スチルベン、4,4'-ビス[5,7-ジー(2-メチルー2-ブチル)-2-ベンゾオキサゾオリル]スチルベン、2,5-ビス (5, 7-ジーtーペンチルー2-ベンゾオキサゾリ μ) チオフェン、2、5ービス [5- α , α -ジメチル ベンジル-2-ベンゾオキサゾリル]チオフェン、2, 5-ビス[5,7-ジー(2-メチル-2-ブチル)-2-ベンゾオキサゾリル]-3,4-ジフェニルチオフ ェン、2、5ービス(5ーメチルー2ーベンゾオキサゾ リル).チオフェン、4、4'ービス(2ーベンゾオキサ ゾリル) ピフェニル、5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビ ニル] ベンゾオキサゾール、2-[2-(4-クロロフ ェニル) ビニル] ナフト[1,2-d] オキサゾール等 が挙げられる。ベンゾチアゾール系では、2,2'-(p-フェニレンジビニレン) - ビスベンゾチアゾール 等が挙げられ、ベンゾイミダゾール系では、2-[2-[4-(2-ベンゾイミダゾリル)フェニル] ビニル] ベンゾイミダゾール、2-[2-(4-カルボキシフェ ニル) ビニル] ベンゾイミダゾール等が挙げられる。さ らに、他の有用な化合物は、ケミストリー・オブ・シン セティック・ダイズ(1971),第628~637頁 および第640頁に列挙されている。

【0067】また、上記のスチリルベンゼン系化合物の具体例としては、1, 4-ビス(2-メチルスチリル)ベンゼン、1, 4-ビス(3-メチルスチリル)ベンゼン、1, 4-ビス(4-メチルスチリル)ベンゼン、ジスチリルベンゼン、1, 4-ビス(2-エチルスチリル)ベンゼン、1, 4-ビス(3-メチルスチリル)ベンゼン、1, 4-ビス(2-メチルスチリル)ー2-メチルベンゼン、1, 4-ビス(2-メチルスチリル)2-

【0068】さらに、上述した蛍光増白剤およびスチリルベンゼン系化合物以外にも、例えば、12-フタロペリノン、1,4-ジフェニル-1,3-ブタジエン、1,1,4,4-テトラフェニル-1,3-ブタジエン、ナフタルイミド誘導体、ペリレン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラジリン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、スチリルアミン誘導体、クマリン系化合物、国際公開公報W090/13148やAppl.Phys.Lett.,vol58,18,P1982(1991)に記載されているような高分子化合物、芳香族ジメチリディン系化合物、下記一般式(I)【0069】

(R-Q)₂-Al-O-L …(I) (式中、Lはフェニル部分を含んでなる炭素数6~24 の炭化水素を表し、O-Lはフェノラート配位子を表 し、Qは置換8-キノリノラート配位子を表し、Rはアルミニウム原子に置換8-キノリノラート配位子が2個を上回って結合するのを立体的に妨害するように選ばれた8-キノリノラート環置換基を表す。)で表される化合物等も、有機発光材料として用いることができる。

【0070】ここで、上記芳香族ジメチリディン系化合物の具体例としては、1, 4-フェニレンジメチリディン、4, 4'-フェニレンジメチリディン、2, 5-キシリレンジメチリディン、2, 6-ナフチレンジメチリディン、1, 4-ビフェニレンジメチリディン、1, 4-ビフェニレンジメチリディン、1, 4-ビス(2, 2-ジーt-ブチルフェニルビニル)ビフェニル、4, 4'-ビス(2, 2-ジフェニルビニル)ビフェニル、4, 4'-ビス(2, 2-ジフェニルビニル)ビフェニル等、およびこれらの誘導体が挙げられる。また、上記一般式(1) で表される化合物の具体例としては、ビス(1-メチル-10 で表される(111)、ビス(11 で表される(111)、ビス(12 で表チルー13 で表される(111)、ビス(12 で表

【0071】その他、上述した有機発光材料をホストと し、当該ホストに青色から緑色までの強い蛍光色素、例 えばクマリン系あるいは前記ホストと同様の蛍光色素を ドープした化合物も、有機発光材料として好適である。 有機発光材料として前記の化合物を用いた場合には、青 色から緑色の発光(発光色はドーパントの種類によって 異なる)を高効率で得ることができる。前記化合物の材 料であるホストの具体例としては、ジスチリルアリーレ ン骨格の有機発光材料 (特に好ましくは、例えば、4, 4'-ビス(2,2-ジフェニルビニル)ビフェニル) が挙げられ、前記化合物の材料であるドーパントの具体 例としては、ジフェニルアミノビニルアリレーン(特に 好ましくは、例えば、N, Nージフェニルアミノビフェ ニルベンゼン) や4,4'-ビス[2-[4-(N,N ージーpートリル)フェニル] ビニル] ビフェニル)が 挙げられる。

【0072】上述した有機発光材料を用いて発光層を形成する方法としては、例えば蒸着法、スピンコート法、キャスト法、LB法等の公知の方法を適用することができるが、スパッタリング法以外の方法を適用することが好ましい。また、発光層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から固体化されて形成された膜や、溶液状態または液相状態の材料化合物から固体化されて形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。さらには、樹脂等の結着剤と有機発光材料とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成時厚により薄膜化することによっても、発光層を形成時厚

については特に制限はなく、状況に応じて適宜選択することができるが、通常5nm~5μmの範囲が好ましい。

【0073】発光層も蒸着法で形成するのが好ましい。 特に、ホストードーパント系の場合、電荷注入層同様、 2元蒸着となり好適である。すなわち、発光層の成膜に 蒸着法を用いれば、この蒸着法のみで発光層および電荷 注入層を連続して成膜できるので、設備の簡略化や精算 時間の短縮を図るうえで有利である。その際、目的とす る有機EL素子が基板上に陽極、有機層および陰極をこ の順で順次形成したものである場合には少なくとも有機 物層を構成する各層(当該有機物層が単層構造である場 合を含む。)の形成から陰極の形成までを、また、目的 とする有機EL素子が基板上に陰極、有機物層および陽 極をこの順で順次形成したものである場合には陰極の形 成から陽極の形成までを、それぞれ連続的に行うことが 好ましい。すなわち、ある層A(陰極を構成する合金領 域または上部金属領域である場合を含む。)を形成する までの間に前記の層Aが空気に触れないようにして各層 の成膜を行うことが好ましい。

【0074】また、本発明の有機EL素子は、従来の有 機EL素子と同様に、素子への水分や酸素の浸入を防止 するための封止層を有していてもよい。封止層の材料の 具体例としては、テトラフルオロエチレンと少なくとも 1種のコモノマーとを含むモノマー混合物を共重合させ て得られる共重合体、共重合主鎖に環状構造を有する含 フッ素共重合体、ポリエチレン、ポリプロピレン、ポリ メチルメタクリレート、ポリイミド、ポリユリア、ポリ テトラフルオロエチレン、ポリクロロトリフルオロエチ レン、ポリジクロロジフルオロエチレン、クロロトリフ ルオロエチレンとジクロロジフルオロエチレンとの共重 合体、吸収率1%以上の吸水性物質および吸水率0.1 %以下の防湿性物質、In, Sn, Pb, Au, Cu, Ag, Al, Ti, Ni等の金属、MgO, SiO, S iO₂, Al₂O₃, GeO, NiO, CaO, BaO, Fe₂O₃, Y₂O₃, TiO₂等の金属酸化物、MgF₂, LiF, AlF₃, CaF₂等の金属フッ化物、パーフル オロアルカン、パーフルオロアミン、パーフルオロポリ エーテル等の液状フッ素化炭素および当該液状フッ素化 炭素に水分や酸素を吸着する吸着剤を分散させたもの等 が挙げられる。

【0075】封止層の形成にあたっては、真空蒸着法、スピンコート法、スパッタリング法、キャスト法、MBE(分子線エピタキシー)法、クラスターイオンビーム蒸着法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、反応性スパッタリング法、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法等を適宜適用することができる。封止層の材料として液状フッ案化炭索や当該液状フッ素化炭索に水分や酸素を吸着する吸着剤を分散させた

ものを用いる場合には、基板上に形成されている有機E L素子 (既に別の封止層があってもよい。)の外側に、当該有機E L素子との間に空隙を形成しつつ、前記基板と共同して有機E L素子を覆うハウジング材を設け、前記基板と前記ハウジング材とによって形成された空間に前記液状フッ素化炭素や当該液状フッ素化炭素に水分や酸素を吸着する吸着剤を分散させたものを充填することによって封止層を形成することが好ましい。前記のハウジング材としては、吸水率の小さいガラスまたはボリマー(例えば三フッ化塩化エチレン)からなるものが好っに用いられる。ハウジング材を使用する場合には、上で対止層を設けずに、当該ハウジング材のみを設けてもよいし、当該ハウジング材と前記基板とによって形成された空間に酸素や水を吸着する前記の吸着剤の層を設けるか当該吸着剤からなる粒子を分散させてもよい。

[0076]

【発明の実施の形態】以下、本発明の実施の一形態を図面に基づいて説明する。

(1)真空蒸着装置

図1および図2には、本実施形態で用いる真空蒸着装置 1が示されている。この真空蒸着装置 1 は、内部が図示しない排気手段により所定の減圧状態に維持できる真空 槽 1 0 と、この真空槽 1 0 内の上部に設置された基板ホルダ 1 1 と、この基板ホルダ 1 1 の下方に対向配置された複数の蒸着源 2 A, 2 B, 2 C, 2 D, 2 E, 2 F とを含んで構成されている。

【0077】基板ホルダ11は、基板3の周縁部を支持する保持部12を備え、真空槽10内で基板3を水平に保持する。この基板ホルダ11の上面中央部分には、基板3を回転させるための回転軸部13が垂直方向に立設されている。この回転軸部13には、回転駆動手段であるモータ14が接続され、このモータ14の回転駆動により、基板ホルダ11に保持された基板3が、その基板ホルダ11とともに回転軸部13を回転中心として自転するようになっている。つまり、基板ホルダ11の中央に設けられた回転軸部13が基板3の回転軸線13Aとして設定されている。

【0078】真空槽10は、シュラウドを構成するベースプレート5と、このベースプレート5の上に被せられた槽本体6とを備え、内部が図示しない排気手段により所定の減圧状態に維持できるようになっている。ベースプレート5には、回転軸線13Aを中心とする半径M(基板3の一辺の長さをしとしたときに、M>1/2×し)の円21の円周上において、60°の間隔毎に前記蒸着源2A~2Fの開口部外周を収納保持するための収納部7が形成され、かつ、内部が空洞8に形成されている。従って、蒸着源2A~2Fは、基板3の回転軸線13Aから離れた位置に配設されている。なお、蒸着源の数は、6つに限定されるものではなく、複数であれば、5つ以下であってもよく、あるいは、7つ以上であって

もよい。空洞8には、給水パイプ8Aおよび排水パイプ8Bが接続され、これらのパイプ8A,8Bを通じて室温以下の冷媒、例えば、15℃~30℃前後の冷却水または液体窒素が循環されるようになっている。これらによって、蒸着源2A~2Fの開口部を冷却する冷却手段9が構成されている。

【0079】蒸着源2A~2Fは、図3に示すように、蒸着材料を収納する容器としてのるつぼ21と、このるつぼ21の外側に均熱部材22を介して配設されたヒータ23と、このヒータ23の外側に設けられた断熱層24と、これらを収納した外筒25と、この外筒25の外側に旋回された水冷パイプ26と、前記るつぼ21の開口部21Aを含む外筒25の開口部を開閉するシャッタ装置27とを有するセル型蒸着源から構成されている。なお、28は熱電対である。

【0080】るつぼ21は、石英、グラファイト(カーボン)、グラシーカーボン(ガラス成分含有グラファイト)、BN(窒化硼素)、アルミナなどの材料によって、比較的大きな開口部21Aを有する筒状容器に形成され、その開口部21Aがベースプレート5の上面と同じか、それより僅か下方に位置するように保持されている。均熱部材22は、ビータ23からの熱をつるぼ21に対して均一にかつ効率的に伝達するためのもので、SUS、Cuなどの材料によって薄板筒状に形成されている。

【0081】断熱層24は、均熱部材22と同じ材料によって形成されかつ内外に積層された薄板筒状2つの熱反射部材24A,24Bと、この外側の熱反射部材24Bと前記外筒25との間に設けられた真空層24Cとを含んで構成されている。熱反射部材24A,24Bは、内面側が平滑面(好ましくは鏡面)に仕上げられ、厚みが少なくとも均熱部材22より厚く(約2倍以上)形成されている。真空層24Cは、真空槽1内に連通されている。

【0082】シャッタ装置27は、図4にも示すように、ベースプレート5に垂直にかつ回動可能に設けられた回動軸27Aと、この回動軸27Aにアーム27Bを介して取り付けられ前記外筒25の開口部より大きな円盤状のシャッタ板27Cと、前記回動軸27Aを回転させてシャッタ板27Cを回動変位させる駆動手段27Dとから構成されている。ジャッタ板27Cは、開閉動作時にベースプレート5の上面と接することがないように、ベースプレート5の上面に対して僅かな隙間をもって取り付けられている。

【0083】(2)電荷注入層の作製

本実施形態では、前述した真空蒸着装置1を用い、電荷 注入層である電子注入層または正孔注入層を基板3上に 成膜する場合について説明する。すなわち、正方形平板 状に形成された基板3を用意し、この基板3を基板ホル ダ11の保持部12に係止して水平な状態で保持させ る。ここで、電子注入層を成膜する場合、円21周上で 近接する二つの蒸着源2B,2Cに、電子輸送性有機物 と電子注入性材料とをそれぞれ供給し、図示しない排気 手段により、真空槽10内を所定の真空度になるまで減 圧する。

【0084】この後、蒸着源2B,2Cを加熱して、各蒸着源2B,2Cからそれぞれ電子輸送性有機物および電子注入性材料を同時に蒸発させるとともに、モータ14を回転駆動させて基板3を回転軸線13Aを軸に所定速度で回転させる。このようにして、基板3を自転させながら電子輸送性有機物および電子注入性材料を共蒸着して電子注入層を成膜する。

【0085】このとき、蒸着源2B、2Cのヒータ23 から外部へ逃げようとする熱は、断熱層24の熱反射部 材24A、24Bによってるつぼ21に向かって反射さ れるとともに、真空層240によって外部と遮断されて いるから、外部へ逃げる熱量を少なくできる。従って、 蒸着源2B,2Cから外部へ逃げる熱による熱影響(蒸 着源間の熱干渉や基板3への悪影響)を極力抑えること ができる。しかも、熱反射部材24A,24Bによって 反射された熱およびヒータ23からるつぼ21に向かっ て放射される熱は、均熱部材22によってるつぼ21に 対して均一に伝達されるから、るつぼ21内の蒸着材料 は局部的に加熱されることなく均一に加熱されて蒸発さ れる。このとき、蒸着源2B,2Cは、基板3の回転軸 線13Aから所定距離Mだけずれた位置に設けられてい るので、基板3の回転により、電子輸送性有機物および 電子注入性材料の基板3への入射角度が変化して、蒸着 材料が基板3に対して一様に付着するようになる。

【0086】また、正孔注入層を成膜する場合には、蒸着源2B,2Cにそれぞれ蒸着材料としての正孔注入性有機物および正孔注入性材料を供給し、電子注入層の場合と同様にして成膜を行う。

【0087】(3)有機EL素子の作製

本実施形態では、前述した真空蒸着装置1を用いて、陽極/正孔注入層/発光層/電子注入層/陰極という素子構成の有機EL素子を作製する場合について説明する。 先ず、ガラス製の基板3上に予め陽極となるITO透明電極(下部電極に相当)が形成されたもの(以下、下部電極付基材という)を用意する。この下部電極付基材を有機溶媒中で超音波洗浄した後、乾燥窒素ガスを吹き付けて、ITO透明電極の表面から有機溶媒を除去する。この後、UV/オゾン洗浄を行って、ITO透明電極の表面から有機物を除去する。

【0088】次に、洗浄した下部電極付基材を基板ホルダ11に装着するとともに、正孔注入層を構成する正孔注入性有機物を蒸着源2Aに、電子注入層および発光層を構成する電子輸送性有機物を蒸着源2Bに、電子注入層を構成する電子注入性金属を蒸着源2Cに、陰極を構成する金属を蒸着源2Dに、それぞれ供給する。そし

て、真空槽10内を所定の真空度になるまで減圧した 後、下部電極付基材のITO透明電極上に、正孔注入 層、有機発光層、電子注入層および陰極をこの順で順次 積層して有機Eし紫子を得る。このとき、正孔注入層の 形成から陰極の形成までの間は、一度も真空を破ること なく有機Eし紫子を作製する。

【0089】薄膜層の積層にあたっては、先ず、蒸着源2Aから正孔注入性有機物を蒸発させてITO透明電極上に正孔注入層を蒸着する。この蒸着時には、下部電極付基板は、特に加熱も冷却もしない。次いで、蒸着源2Bから、有機発光材料としての電子輸送性有機物を上述した正孔注入層の成膜時と同様の条件で蒸発させて、正孔注入層上に有機発光層を蒸着する。次に、前述した

「(2)電荷注入層の作製」と同様にして、蒸着源2B および蒸着源2Cからそれぞれ電子輸送性有機物および 電子注入性金属を同時に蒸発させて、有機発光層上に電 子注入層を成膜する。続いて、蒸着源2Dから陰極用の 金属を蒸発させて電子注入層上に陰極を蒸着する。ここ で、正孔注入層の形成から陰極の形成まで、基板ホルダ 11に保持させた下部電極付基材を回転させながら蒸着 を行う。

[0090]

【実施例】次に、本発明の効果を、具体的な実施例に基 づいて説明する。

〔蒸着源の構造について〕

(比較例1)一般的な高融点金属からなる蒸着ボートを 用いて、有機材料を蒸着させる。

- ボート :長さ100mm、幅20mmのMo製昇華金属用ボート
- ·有機材料:Alqを0.6g充填
- 蒸着温度:310℃~330℃(蒸着ボートの通電用金属バーへの固定時の接触抵抗の再現性がなく、熱電対のボートへの熱接触に再現性がないため)
- · 蒸着速度: 2 Å/s

このような条件で、500Åを連続的に10回蒸着した 後、ボート残留物を見たところ、黄色のA1qの上を、 茶色の弱蛍光性の部分(不純物)が表面を覆っていた。 【0091】(実施例1)実施例1は、前記実施形態の セル型蒸着源を用いて、有機材料を蒸着させた。

- · 蒸着源のるつぼ: 石英製、容量100cc
- ・有機材料および蒸着速度は、比較例1を同じ その結果は、蒸着温度は305℃で安定しており、るつ ばの残留物には比較例1のような茶色の部分が殆ど見ら れなかった。

【0092】〔シュラウド(冷却構造を有するベースプレート)の有無について〕

(実施例2)実施例2は、実施形態のように、シュラウド(冷却手段を備えたベースプレート)内にセル型蒸着源を収納し、そこにAlgを0.6g充填したのち、蒸着可能な温度(305℃)まで加熱し維持した。但し、

セル型蒸着源と基板との距離Tsは400mm、真空槽 の真空度が2.0×10-4Paである。また、シャッタ 装置は閉じたままとし、基板へAlaが付着しないよう にした。そこへ、ITO付ガラス基板を挿入して10分 間保持し、その前後(挿入前と10分後)の純水の接触 角を、シュラウドへ冷却水 (20℃)を通水したとき

と、通水しなかったときとの2条件で測定した。なお、 IT〇付ガラス基板は、真空槽へ挿入前に予めUV洗浄 装置にて、15分間洗浄していた。

[0093]

【表1】

	シュラウド通水	シュラウド非通水	*蒸着源加熱せず
挿人前 接触角(゜)	2 2	23	2 3
10 分後 接触角(**)	2 3	3 0	2 4

* A 1 q 蒸浴源を加熱せず、シュラウドにも通水しなかった。

【0094】この結果から、接触角の増加は基板表面へ の非親水性の不純物等の付着が原因と考えられる。シャ ッタ装置を閉じているにも拘わらず、シュラウド非通水 では、接触角が明らかに増加している。これは、蒸着材 料中に僅かに含まれる不純物、あるいは、Algがシャ ッタ装置のシャッタ板と蒸着源の開口部との隙間から飛 び出し、基板に付着したものと考えられる。シュラウド 通水では、接触角が殆ど変化していないことから、不純 物、あるいは、Algが水冷シュラウドにトラップさ

れ、基板への付着が抑えられているためと考察される。 【0095】〔基板と蒸着源との関係について〕 (実施例3)実施例3は、電子輸送性有機物としてA1 qを用いるとともに電子注入性金属としてLiを用い、 有機EL素子の電子注入層となるAlaとLiとの混合 膜を成膜する実験である。実施例3では、以下の具体的 な条件等を採用した。

[0096]

(1)蒸着装置

・基板

: ガラス基板 (200mm×200mm×1.1mm)

・蒸着源と基板との距離Ts

400mm

·回転軸線と蒸着源の距離M :

150mm (円の半径M) : 実施形態のセル型蒸着源

・Algの蒸着源 · Liの蒸着源

: 実施形態のセル型蒸着源

[0097]

(2)蒸着条件

・蒸着時の真空度

6. 5×10^{-5} Pa

・蒸着前の真空度

6. $4 \times 10^{-5} Pa$

・Alaの蒸着速度 (水晶振動子式膜厚計〔日本真空技術(株)製 CRTM-7000〕により測定)

3.5 Å/s

· Liの蒸着速度

O. 1 Å/s (A l qと同様に測定)

・基板の回転速度

5rpm

・Alqの成膜膜厚

1000Å (CRTM-7000により測定)

・Liの成膜膜厚

28Å

【0098】以上の条件を採用するとともに、図5に示 すように、基板3の表面を16等分して一辺の長さPが 50mmの正方形の区画を設定し、その区画線上の4A ~4 Mの13点に対してそれぞれ10 mm角のガラス基 板4を貼り付けて、この基板3上にAlqおよびLiを 共蒸着した。このようにして得たAlqおよびLiから なる薄膜層について、各ガラス基板4の中心の膜厚を測 定するとともに、当該中心におけるLiの組成比をX線 光電子分光装置(ESCA)を用いて求めた。その結果 を表2に示す。

[0099]

【表2】

加定点	版於(X)	Li.Al
4 A	1053	1.0
4 B	1035	1.0
1 C	1047	1.0
4 D	1088	1. 1
4 E	1091	1.0
4 F	1093	l. 1
4 G	1082	1.1
411	1075	1.0
41	1082	1.1
4 J	1065	1.1
* 4 K	1010	1.0
4 L	1008	1.0
4 M	1025	1.0

【0100】(比較例2)前記実施例3において、図6に示すように、A1qの蒸着源2BとLiの蒸着源2Cとを回転軸線13Aと直交する同一直線上に配置するとともに、回転軸線13Aと蒸着源2B,2Cとの各距離Mをそれぞれ30mmとし、基板3を回転させないで蒸着を行った以外は、前記実施例3と同様にしてA1qとLiとの混合膜の成膜を行い、得られた薄膜層の膜厚およびLiの組成比を測定した。その結果を表3に示す。

[0101]

【表3】

加定点	顺崖(人)	LiZAI
4 /	895	0.6
4 B	941	1.1
4 C	884	1.1
4 D	911	0. 7
4 E	922	1.1
4 F	1022	0.8
4 G	919	1.2
4 11	1015	1.3
41	1067	0.7
4.1	908	1.2
4 K	895	0.5
4 1.	920	1.0
1 M	950	t. l

·NPDの蒸着時の真空度

・NPDの蒸着速度

・NPDの膜厚

有機発光層の蒸着時の真空度

・有機発光層の蒸着速度

・有機発光層の膜厚

・A1の蒸着時の真空度

・A1の蒸着速度

・電子注入層の膜厚

· A I の膜厚 : 【0 1 0 6】以上の条件で作製した各位置4 A , 4 C ,

4G,4K,4Mの有機EL素子は、いずれも直流電圧

【0102】表2.3より、実施例3のように、基板を回転させながらAlqおよびLiを共蒸着するとともに、回転軸線と各蒸着源との距離Mを基板の辺の長さしより大きくなるように設定することで、膜面内において、膜厚およびLiの組成比の均一化を達成できることがわかる。

【0103】(実施例4)実施例4は、前記実施形態に基づいて、有機EL素子を作製する実験である。実施例4では、以下の具体的な条件等を採用した。

(1)蒸着材料

・正孔注入層 : 4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ] ビフェニル(以下、 NPDと略記する)

· 発光層 : Alq

·電子注入層 : Alq, Li

· 陰極 : A l

【0104】(2)蒸着装置

以下の条件を採用した以外は、前記実施例3の蒸着装置 と同様な条件を採用した。

- 基板 : 前記実施例1において示した 基板上の4A,4C,4G,4K,4Mの各位置に、ガラス基板(25㎜×75㎜×1.1㎜)上に膜厚100nmの ITO透明電極を形成した下部電極付基材を配置し、発光面積32mm²(4㎜×8㎜)の有機Eし素子を作製できるようにしたものを用いた。

・NPDの蒸着源 : 実施形態のセル型蒸着源・A1の蒸着源 : 実施形態のセル型蒸着源

【0105】(3)蒸着条件

前記実施例3と同様な蒸着条件を採用するとともに、以下の条件を採用した。

5.0×10-5Pa以下

 $0.1 \sim 0.3 \, \text{nm/s}$

60 n m

5.0×10⁻⁵Pa以下

 $0.1 \sim 0.3 \, \text{nm/s}$

60nm

 $20 \, \text{nm}$

1. 0×10⁻⁴Pa

1 nm/s

: 150 nm

4 Vから明瞭な発光が確認され、輝度計の視野では無発 光点が見あたらず、発光の均一性が良好であった。これ らの各有機EL素子の初期性能を表4に示す。

【0107】 【表4】

索子位置	電流密度 (mA/cm²)	輝度 (cd/m²)	電力変換効率 (la/f)	
				
1 A	50.5	2520	1.57	
1 C	51.0	2530	1.56	
4 G	50.3	2515	1.57	
4 K	50. 0	2513	1.58	
4 M	50. B	2520	1.56	

【0108】表4より、各位置4A,4C,4G,4 K,4Mの素子は、いずれも発光性能が同一であると認められ、基板上の200mm角の領域内で均一に有機物層(正孔注入層、有機発光層、電子注入層)および陰極が形成されていると考察される。特に、陰極からの発光層への電子注入の役割を果たして、有機EL素子性能を大きく左右する電子注入層Alq:Liが、各位置において均一な組成および均一な膜厚で形成されているためであると考えられる。

【0109】なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形なども本発明に含まれる。すなわち、前記実施形態では、電子輸送性有機物と電子注入性材料との蒸着源を近接させることで、厚さ方向における組成比の均一化を図るようにしていたが、蒸着源の配設数をnとしたときに、各蒸着源を円の中心から360°/nの角度で配設して、各蒸着源から蒸着材料を同時に蒸発させて成膜を行ってもよい。

【0110】この場合、基板の各部分において複数の蒸着材料が順次重なるように成膜されるので、膜の厚さ方向に組成比の異なる薄膜層を成膜できる。例えば、電子輸送性有機物および電子注入性材料の各蒸着源を、図1における蒸着源2A,2Dとすることで、厚さ方向において電子輸送性有機物と電子注入性材料との組成比が異なる電子注入層を成膜できる。

[0111]

【発明の効果】以上に述べたように、本発明の素子用薄膜層の蒸着方法および蒸着装置によれば、有機材料を、大面積の基板に連続的、かつ、再現性よく、しかも、均一に不純物の混入なく蒸着できる。本発明の有機EL素子によれば、不純物の混入がない大面積の電荷注入層を得ることができるとともに、その電荷注入層の膜面内における電子輸送性有機物と電子注入性材料との組成比の均一化を実現でき、これにより、駆動電圧および素子の寿命の安定化を達成できる。

【図面の簡単な説明】

- 【図1】本発明の一実施形態を示す斜視図。
- 【図2】前記実施形態の真空蒸着装置を示す断面図。
- 【図3】前記実施形態の蒸着源を示す断面図。
- 【図4】前記実施形態の蒸着源のシャッタ装置を示す平 面図。
- 【図5】本発明の実施例3で用いる基板を示す平面図。
- 【図6】比較例2で使用する真空蒸着装置を示す斜視図。

【符号の説明】

- 1 真空蒸着装置
- 2A, 2B, 2C, 2D, 2E, 2F 蒸着源
- 3 基板
- 5 ベースプレート(シュラウド)
- 7 収納部.
- 9 冷却手段
- 13A 回転軸線
- 14 モータ (回転駆動手段)
- 21 るつぼ(容器)
- 22 均熱部材
- 23 ヒータ
- 24 断熱層
- 24A, 24B 熱反射部材
- 24C 真空層

フロントページの続き

Fターム(参考) 3K007 AB00 AB03 AB04 AB06 AB12 AB13 BB01 CA01 CA02 CA05 CB01 DA00 DB03 EB00 FA01 FA03 4K029 AA09 BA02 BA03 BA62 BD00 CA01 DA12 DB14 DB18 DB24 JA03