Short-Time Fourier Transform Explained Easily

Valerio Velardo

Join the community!

thesoundofai.slack.com

Previously...

$$\hat{x}(k/N) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

Previously...

Fourier Transform Problem

WE KNOW WHAT

WE DON'T KNOW WHEN

Apply windowing function to signal

Apply windowing function to signal

$$x_w(k) = x(k) \cdot w(k)$$

window size = frame size

window size ≠ frame size

STFT

STFT

STFT

Overlapping frames

Overlapping frames

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+mH) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+mH) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(\overline{m}, k) = \sum_{n=0}^{N-1} x(n + mH) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+mH) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+mH) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+mH) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+\boxed{mH}) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$
 Starting sample of current frame

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+\boxed{mH}) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$
 Starting sample of current frame

From DFT to STFT

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+mH) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

From DFT to STFT

From DFT to STFT

$$\hat{x}(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

$$S(m,k) = \sum_{n=0}^{N-1} x(n+mH) \cdot w(n) \cdot e^{-i2\pi n \frac{k}{N}}$$

- DFT
 - Spectral vector (# frequency bins)
 - N complex Fourier coefficients

- DFT
 - Spectral vector (# frequency bins)
 - N complex Fourier coefficients
- STFT
 - Spectral matrix (# frequency bins, # frames)
 - Complex Fourier coefficients

$$\text{\# frequency bins = } \frac{framesize}{2} + 1$$

$$\text{\# frequency bins = } \frac{framesize}{2} + 1$$

$$\textit{\# frames = } \frac{samples - framesize}{hopsize} + 1$$

- Signal = 10K samples
- Frame size = 1000
- Hop size = 500

- Signal = 10K samples
- Frame size = 1000
- Hop size = 500

```
# frequency bins = 1000 / 2 + 1 = 501
```

- Signal = 10K samples
- Frame size = 1000
- Hop size = 500

```
# frequency bins = 1000 / 2 + 1 = 501 -> (0, sampling rate/2)
```

- Signal = 10K samples
- Frame size = 1000
- Hop size = 500

```
# frequency bins = 1000 / 2 + 1 = 501 -> (0, sampling rate/2)
```

frames =
$$(10000 - 1000) / 500 + 1 = 19$$

- Signal = 10K samples
- Frame size = 1000
- Hop size = 500

• Frame size

Frame size

512, 1024, 2048, 4096, 8192

- Frame size
- Hop size

- Frame size
- Hop size

256, 512, 1024, 2048, 4096

- Frame size
- Hop size

256, 512, 1024, 2048, 4096

1/2 K, 1/4 K, 1/8 K

- Frame size
- Hop size
- Windowing function

$$w(k) = 0.5 \cdot (1 - \cos(\frac{2\pi k}{K - 1})), k = 1...K$$

Visualising sound

Visualising sound

$$Y(m,k) = |S(m,k)|^2$$

Spectrogram

What's up next?

- Extract spectrograms with Librosa
- Discuss different flavours of spectrograms
- Examine different audio data