Assignment 3

Electric current causes heat generation in the bar shown. Calculate the temperature at the centre if the wall temperature (nodes 1 and 2) is \mathcal{G}° . Cross sectional area A, thermal conductivity k, and heat production rate per unit length s are constants.

Solution template

In a pure heat conduction problem, density expressions of the bar model are given by

$$\delta p_{\Omega}^{\text{int}} = -\frac{d\delta \theta}{dx} kA \frac{d\theta}{dx} \text{ and } \delta p_{\Omega}^{\text{ext}} = \delta \theta s$$

in which \mathcal{G} is the temperature, k the thermal conductivity, and s the rate of heat production (per unit length).

For bar 1, the nodal temperatures are $\mathcal{G}_1 = \mathcal{G}^{\circ}$ and \mathcal{G}_3 of which the latter is unknown. With a linear interpolation to temperature (notice that variation of \mathcal{G}° vanishes)

$$\mathcal{G} = \begin{cases} 1 - x/L \\ x/L \end{cases}^{T} \begin{cases} \mathcal{G}^{\circ} \\ \mathcal{G}_{3} \end{cases} = \underline{\qquad} \qquad \Rightarrow \frac{d\mathcal{G}}{dx} = \underline{\qquad},$$

$$\delta\theta = \underline{\hspace{1cm}} \Rightarrow \frac{d\delta\theta}{dx} = \underline{\hspace{1cm}}.$$

When the approximation is substituted there, density expression $\delta p_{\Omega} = \delta p_{\Omega}^{\rm int} + \delta p_{\Omega}^{\rm ext}$ simplifies to

$$\delta p_{\Omega} =$$

Virtual work expression is the integral of the density over the element domain

$$\delta P^1 = \int_0^L \delta p_{\Omega} dx = \underline{\qquad}.$$

The nodal temperatures of bar 2 are \mathcal{G}_3 and $\mathcal{G}_2 = \mathcal{G}^{\circ}$. Linear interpolation gives (variations of the given quantities like \mathcal{G}° vanish)

$$\mathcal{G} = \begin{cases} 1 - x/L \\ x/L \end{cases}^{T} \begin{cases} \mathcal{G}_{3} \\ \mathcal{G}^{\circ} \end{cases} = \underline{\qquad} \qquad \Rightarrow \frac{d\mathcal{G}}{dx} = \underline{\qquad},$$

$$\delta\theta = \underline{\hspace{1cm}} \Rightarrow \frac{d\delta\theta}{dx} = \underline{\hspace{1cm}}.$$

When the approximation is substituted there, density expression $\delta p_{\Omega} = \delta p_{\Omega}^{\rm int} + \delta p_{\Omega}^{\rm ext}$ simplifies to

$$\delta p_{\Omega} =$$

Element contribution to the variational expressions is the integral of density over the element domain

$$\delta P^2 = \int_0^L \delta p_{\Omega} dx = \underline{\qquad}.$$

Variational expression is sum of the element contributions

$$\delta P = \delta P^1 + \delta P^2 = \underline{\hspace{1cm}}.$$

Variation principle $\delta P = 0 \ \forall \delta \mathbf{a}$ and the fundamental lemma of variation calculus give

$$=0 \Leftrightarrow \theta_3 =$$
 ______.