Band Pass Filters

• Multistage Band Pass Filter

• Single Stage Band pass filter

➤ At Low frequencies, X_{C2} is so large that it can be eliminated from the low frequency equivalent circuit.

> As shown in the figure, the circuit is an inverting amplifier with voltage gain of

$$A_{v} = \frac{R_{2}}{Z_{1}} = \frac{R_{2}}{\sqrt{(R_{1}^{2} + X_{C1}^{2})}}$$

At signal frequencies in the pass band of the circuit, X_{C1} becomes much smaller than R1, so the circuit gain becomes

$$A_v \approx \frac{R_2}{R_1}$$

The above equations shows that for voltage gain to be down by 3dB, $X_{c1}=R_1$ at f_1 , Where f_1 is lower cutoff frequency.

 \triangleright At High frequencies, X_{C1} becomes so small compared to R1 that can be neglected from the high frequency equivalent circuit.

> Therefore again the circuit is inverting amplifier and its voltage gain is,

$$A_v = \frac{X_{C2} \parallel R_2}{R_1} = \frac{1}{R_1 \sqrt{[(1/R_2)^2 + (1/X_{C2})^2]}}$$

- \triangleright At frequencies in the pass-band, X_{C2} is much larger than R1.
- > So, the circuit voltage gain is once again,

$$A_{\rm e} \approx \frac{R_2}{R_1}$$

From the above equations, the voltage gain is down by 3dB from its mid-frequency value when,

$$X_{c2}=R_2$$
 at f_2 , Where f_2 is upper cutoff frequency.

- ➤ It is seen that the circuit behaves as an inverting amplifier when the signal frequency is in the pass band, as a high-pass filter for low frequencies and as a low pass filter for high frequencies.
- > Design Procedure:
 - C₂ is selected first (for both BIPOLAR and BIFET)
 - R₂ is obtained using X_{C2}=R₂ at f₂
 - ightharpoonup R₂=R₃
 - \triangleright For Av=1, R₁=R₂
 - C₁ is obtained using X_{C1}=R₁ at f₁

Problem

- 1. Design a single –stage bandpass filter to have a voltage gain of 1 and pass band from 300Hz to 30 kHz.
 - ➤ Select C₂=1000pF
 - Arr R₂ is obtained using **X**_{C2}=**R**₂ at **f**₂ R₂=1/2π**f**₂C₂ = 5.6kΩ
 - ightharpoonup R₂=R₃ = 5.6kΩ
 - ightharpoonup For Av=1, R₁= R₂ =5.6kΩ
 - C₁ is obtained using X_{C1}=R₁ at f₁

$$C_1=1/2\pi f_1C_1=0.1\mu F$$

• Wide-Band and Narrow-Band Bandpass Filters

> The bandwidth of the filter circuit is,

$$B = f_2 - f_1$$

 \triangleright The center frequency f_0 is,

$$f_0 = \sqrt{f \cdot 1 \cdot f \cdot 2}$$

> The circuit Q factor is

$$Q=f_0/B$$

- ➤ The Q factor is a figure of merit for a filter circuit. It defines the selectivity of the filter in passing the center frequency and rejecting other frequencies.
- ➤ Wideband filters will have Q less than 5, whereas Narrow band filter will have Q greater than 5.

• Narrow-Band Bandpass Filter

- ➤ If f₁ and f₂ are brought closer together, C₂ will affect low cutoff frequency and C₁ will interfere with high cutoff frequency. To avoid this resistor R₄ is included in the circuit, as shown below.
- ➤ This additional resistor makes the circuit analysis very complex, but it can be stated that R₄ attenuates the input signal at frequencies at which the impedance of C₁ is high. When the impedance of C₁ becomes very small compared to R₁, R₄ is in parallel with the opamp input terminals and in this position it has very little effect.

Design Equations:

$$C_1 = C_2 = C$$
,

$$R_1 = R_2/2$$
,

$$R_2=2 Q X_c$$
 at f_0 ,

$$R_4 = R_1/2Q^2 - 1$$

Problem

1. Design a band pass filter using 741 opamp with center frequency is to be 1 kHz and the pass band is to be approximately ±33Hz on each side of 1 kHz.

Soln.

$$B=33Hz + 33Hz = 66Hz$$

$$Q = f_0/B = 15.2$$

$$R_2 = R_3 = 0.1 V_{BE}/I_{Bmax} = 120 k\Omega$$

$$R_2=2 Q X_c$$
 at f_0 ,

$$C= 2 Q / 2\pi f_0 R_2 = 0.04 \mu F$$

$$C_1 = C_2 = C = 0.04 \mu F$$

$$R_1 = R_2/2 = 60k\Omega$$

$$R_4 = R_1/(2Q^2 - 1) = 130\Omega$$

