# Fields and Galois Theory

Lectures by Uzi Vishne Summary by Ari Feiglin (ari.feiglin@gmail.com)

# Contents

1 Field Extensions

1

# 1 Field Extensions

Suppose  $F \subseteq K$  are fields, then K is certainly also an F-vector space and therefore has a dimension and we denote it  $[K:F] := \dim_F K$ .

#### 1.0.1 Theorem

Suppose  $F \subseteq K$  and V is a K-vector space, then V is also a vector space over F as well, and  $\dim_F V =$  $[K:F]\dim_K V.$ 

**Proof:** Let  $B_1 \subseteq V$  be a basis for V over K and  $B_2 \subseteq K$  be a basis for K over F, then define B = V $\{\alpha v \mid \alpha \in B_2, v \in B_1\}$ . This is a basis for V in F, it is linearly independent since if  $\alpha_1 v_1, \ldots, \alpha_n v_n \in B$  and  $\beta_1, \ldots, \beta_n \in F$  then  $\sum_{i=1}^n \beta_i \alpha_i v_i = 0$  implies  $\beta_i \alpha_i = 0$  for all i since  $B_1$  is a basis, and this means that  $\beta_i$  or  $\alpha_i$  is zero, but  $\alpha_i v_i \in B$  so  $\beta_i = 0$  as required. B spans V since for  $v \in B$  there exist  $v_1, \ldots, v_n \in B_1$  and  $\alpha_1, \ldots, \alpha_n \in K$  such that  $v = \sum_{i=1}^n \alpha_i v_i$  and  $\alpha_i$  can be written as the linear combination of elements in  $B_2$ by elements of F which gives a linear combination of elements in B of F. So B is indeed a basis for V over F. Finally  $B \cong B_2 \times B_1$  since  $(\alpha, v) \mapsto \alpha v$  is a bijection: it is obviously surjective and  $\alpha_1 v_1 = \alpha_2 v_2$  implies  $\alpha_1 = \alpha_2, v_1 = v_2$  since  $v_1, v_2$  are independent. Thus we have

$$\dim_F V = |B| = |B_2 \times B_1| = [K : F] \dim_K V$$

In particular if  $F \subseteq K \subseteq E$  are fields then  $[E : F] = [E : K] \cdot [K : F]$ . The following are methods of constructing fields:

- (1) If R is a commutative ring and  $M \triangleleft R$  is a maximal ideal then R/M is a field. Specifically if R = F[x]and p is an irreducible polynomial,  $\langle p \rangle$  is maximal and  $F^{[x]}/\langle p \rangle$  is a field.
- If F is a field, then the set of rational functions is also a field:

$$F \subseteq F(x) := \left\{ \frac{f(x)}{g(x)} \mid f, g \in F[x] \right\}, g(x) \neq 0]$$

In general if R is an integral domain then its field of fractions/quotients  $q(R) := \left\{ \frac{a}{b} \mid a, b \in R, b \neq 0 \right\}$  is a field. And F(x) is the quotient field of F[x].

If  $F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots$  is a chain of fields then so is  $\bigcup F_n$  (the theory of fields is inductive, this holds for arbitrary chains, not just inductive ones). So for example  $F(\lambda_1, \lambda_2, ...)$  is a field since we can define  $F_n = F(\lambda_1, \dots, \lambda_n)$  (the quotient field of  $F[\lambda_1, \dots, \lambda_n]$ ) and the union of this chain is  $F(\lambda_1, \lambda_2, \dots)$ .

Let F be a field and  $F \subseteq K$  a ring with  $a \in K$ , we define a homomorphism  $F[\lambda] \xrightarrow{\psi_a} K$  defined by  $\alpha \mapsto \alpha$  for  $\alpha \in F$  and  $\lambda \mapsto a$ , meaning

$$\psi_a \left( \sum \alpha_i \lambda^i \right) = \sum \alpha_i a^i \qquad (\psi_a(f) = f(a))$$

In particular  $\psi_a$  is a linear transformation from F to K, and is called the evaluation homomorphism at a. The kernel of the homomorphism is

$$\ker \psi_a = \{ f \in F[\lambda] \mid f(a) = 0 \} \triangleleft F[\lambda]$$

#### 1.0.2 Definition

 $a \in K$  is algebraic if  $\ker \psi_a \neq 0$  and transcendental if the kernel is trivial.

If a is transcendental then  $\ker \psi_a$  and so  $\operatorname{Im} \psi_a = \{f(a) \mid f \in F[\lambda]\} = F[a] \cong F[\lambda]$ . In fact we get

$$F \subseteq F[a] \subseteq F(a) \subseteq K$$

$$\cong \qquad \cong$$

$$F[x] \qquad F(x)$$

Now if a is algebraic, since F[x] is a euclidean domain and therefore a PID, the kernel has a generator ker  $\psi_a =$  $\langle h \rangle = h \cdot F[\lambda]$ . So h(a) = 0 and  $f(a) = 0 \implies h|f$ , and h is called the minimal polynomial of a. And so

$$F[\lambda]/\langle h \rangle = F[\lambda]/\ker \psi_a \cong \operatorname{Im} \psi_a = \{f(a) \mid f \in F[\lambda]\} = F[a] = \operatorname{span}\{1, a, \dots, a^{n-1}\} \subseteq K$$

where  $n = \deg h$ , since f(x) = q(x)h(x) + r(x) where  $\deg r < \deg h = n$  and so f(a) = r(a).  $\{1, \ldots, a^{n-1}\}$  is a basis due to h being minimal, a zeroing linear combination would give a zeroing polynomial of a of degree less than h. This means that the dimension of F[a] as an F-vector space is n, ie. [F[a]:F] = n.

Since K is an integral domain and therefore so too is F[a] and this means that  $\langle h \rangle$  is a prime ideal (since  ${}^R/_I$  is an integral domain if and only if I is prime), this means that h is a prime (irreducible) polynomial. And since F[a] is a PID, prime and maximal ideals are one and the same, so  $\langle h \rangle$  is maximal and therefore  ${}^{F[\lambda]}/_{\langle h \rangle} \cong F[a]$  is a field. Let us summarize this:

# 1.0.3 Proposition

Let  $F \subseteq K$  where K is an integral domain and  $a \in K$  is algebraic in F, let  $h_a$  be its minimal polynomial. Then (1)  $h_a$  is irreducible, (2) F[a] is a field, (3)  $[F[a]:F] = \deg h_a$ .

So for example let  $a \in K \setminus F$  be algebraic then  $F \subseteq F[a] \subseteq K$  and suppose [K:F] = p is prime. Then  $p = [K:F] = [K:F[a]] \cdot [F[a]:F]$ , and since  $a \in F[a] \setminus F$  this means [F[a]:F] > 1 so [F[a]:F] = p and [K:F[a]] = 1 since p is prime so F[a] = K.

#### 1.0.4 Corollary

Suppose F is a field and  $F \subseteq K$  is an integral domain with finite dimension. Then every element of K is algebraic and K is a field.

**Proof:** Let  $a \in K$  then  $[K : F] = [K : F[a]] \cdot [F[a] : F]$  so [F[a] : F] is finite. If a were transcendental then  $F[a] \cong F[x]$  and F[x] has infinite dimension over F. K is a field since every  $a \in K$  must have a multiplicative inverse, since F[a] is a field.

Notice that  $[F[a,b]:F[a]] \leq [F[b]:F]$  since if  $h_b$  is b's minimal polynomial in F then it is also a zeroing polynomial in F[a]. This means that

$$[F[a,b]:F] = [F[a,b]:F[a]] \cdot [F[a]:F] \le [F[b]:F] \cdot [F[a]:F]$$

### 1.0.5 Corollary

Let F be a field and K a field extension, define

$$Alg_F(K) := \{a \in K \mid a \text{ is algebraic over } F\}.$$

This is a field. Furthermore  $F \subseteq \operatorname{Alg}_F(K)$  is an algebraic extension (all elements of  $\operatorname{Alg}_F(K)$  are algebraic in F), and  $\operatorname{Alg}_F(K) \subseteq K$  is a purely transcendental extension (all elements in  $K \setminus \operatorname{Alg}_F(K)$  are transcendental in  $\operatorname{Alg}_F(K)$ ).

**Proof:** Notice that  $F[a \cdot b]$ ,  $F[a + b] \subseteq F[a, b]$  and so  $[F[a, b] : F] \le [F[b] : F] \cdot [F[a] : F] < \infty$ , so  $\operatorname{Alg}_F(K)$  is closed under addition and multiplication (and obviously additive inverses). For a algebraic, F[a] is a field so  $a^{-1} \in F[a]$  and so  $F[a^{-1}] \subseteq F[a]$  and therefore  $[F[a^{-1}] : F] < \infty$  so  $a^{-1}$  is algebraic as well (and so by symmetry  $F[a] = F[a^{-1}]$ ). So  $\operatorname{Alg}_F(K)$  is indeed a field.

To show that  $Alg_F(K) \subseteq K$  is a pure transcendental extension, notice that if  $F_1 \subseteq F_2 \subseteq F_3$  where  $F_1 \subseteq F_2$  is algebraic, if  $a \in F_3$  is algebraic in  $F_2$  it is also algebraic in  $F_1$ . Indeed if  $f \in F_2[x]$  such that f(a) = 0, let its coefficients be  $b_i$  then a is algebraic in  $F_1[b_0, \ldots, b_n]$  and so

$$[F_1[b_0,\ldots,b_n,a]:F_1[b_0,\ldots,b_n]]=[F_1[b_0,\ldots,b_n,a]:F_1[b_0,\ldots,b_n]]\cdot [F_1[b_0,\ldots,b_n]:F_1]$$

and this is finite since  $b_0, \ldots, b_n$  are algebraic in  $F_1$  as they are in  $F_2$ , so both terms are finite. So if K had any algebraic numbers not in  $Alg_F(K)$ , they would be algebraic in F and thus in  $Alg_F(K)$  in contradiction.

#### 1.0.6 Proposition

Let F be a field and  $f \in F[\lambda]$  be irreducible, then there exists a field extension  $F \subseteq K$  such that f has a root in K, and  $[K:F] = \deg f$ .

**Proof:** since f is irreducible,  $\langle f \rangle$  is prime and  $F[\lambda]$  is a PID so it is maximal. So  $K := \frac{F[\lambda]}{\langle f \rangle}$  is a field, and its dimension is deg f, since it can be generated by  $\{1, x, \dots, x^{\deg f-1}\}$ . Now recall that by the second isomorphism theorem,  $F/_{F\cap\langle f\rangle}\cong F^{+\langle f\rangle}/_{\langle f\rangle}\subseteq F^{[\lambda]}/_{\langle f\rangle}=K$ . But since elements of  $\langle f\rangle$  are multiples of f, which is disjoint from F, so  $F\cap\langle f\rangle=(0)$  so  $F/_{F\cap\langle f\rangle}\cong F$ , and so F can be embedded into K and is thus for all intents and purposes, a subfield of K. Now define  $\alpha:=\lambda+\langle f\rangle$ , and suppose  $f(\lambda)=\sum_{i=0}^n a_i\lambda^i$  where  $a_i\in F$  (viewing f as a polynomial over K,  $a_i$  is actually  $a_i + \langle f \rangle$ ). Then

$$f(\alpha) = \sum_{i=0}^{n} a_i (\lambda + \langle f \rangle)^i = \sum_{i=0}^{n} a_i (\lambda^i + \langle f \rangle) = \sum_{i=0}^{n} a_i \lambda^i + \langle f \rangle = f + \langle f \rangle = \langle f \rangle = 0_K$$

so  $\alpha$  is indeed a root of  $f(\lambda)$ , as required.

#### 1.0.7 Corollary

Let F be a field and  $f \in F[\lambda]$  any polynomial. Then there exists a field extension  $F \subseteq K$  such that f has a root in K and  $[K:F] \leq \deg f$ .

**Proof:** find f's irreducible factorization  $f = f_1 \cdots f_t$ , then extend F to a field K such that  $f_1$  has a root in K, and by above  $[K:F] = \deg f_1 \leq \deg f$ .

#### 1.0.8 Definition

Let F be a field, and f a polynomial over F. A field  $F \subseteq K$  splits f if there exist  $\alpha_1, \ldots, \alpha_n \in K$  such that  $f(\lambda) = (\lambda - \alpha_1) \cdots (\lambda - \alpha_n)$ .

#### 1.0.9 Theorem

Every polynomial f over a field F has a field K which splits it, such that  $[K:F] \leq (\deg f)!$ .

**Proof:** by induction on  $n = \deg f$ . For n = 1 then f already has a root, and so take F = K and [K : F] = 1 $(\deg f)!$ . Now suppose  $\deg f = n+1$ , then by above there exists a field extension  $F \subseteq K_0$  such that there exists an  $\alpha_1 \in K_0$  such that  $f(\alpha_1) = 0$  and  $[K_0 : F] \leq \deg f = n + 1$ . And so  $(\lambda - \alpha_1)|f(\lambda)$ , so  $f(\lambda) = (\lambda - \alpha_1)g(\lambda)$ . Then  $\deg g=n$ , and g is a polynomial over  $K_0$ , so there exists a field extension  $F\subseteq K_0\subseteq K$  such that  $g(\lambda) = (\lambda - \alpha_2) \cdots (\lambda - \alpha_{n+1})$  for  $\alpha_i \in K$  and  $[K : K_0] \leq n!$ . Then  $f(\lambda) = (\lambda - \alpha_1) \cdots (\lambda - \alpha_{n+1})$  for  $\alpha_i \in K$ and  $[K:F] = [K:K_0][K_0:F] \le (n+1)n! = (n+1)!$ .

Notice the following

- (1) the split of a polynomial over any field into its roots is unique,
- the number of roots is  $\leq \deg f$ .

Recall that a field F is algebraically closed if it splits every polynomial in  $F[\lambda]$ .

## 1.0.10 Definition

Let F be a field, then  $F \subseteq \overline{F}$  is an algebraic closure of F if  $\overline{F}$  is algebraically closed.

Note

Every field has a unique (up to isomorphism) algebraic closure.

So let  $f(\lambda) \in F[\lambda]$ , then  $f(\lambda) \in \overline{F}[\lambda]$  and so  $f = (\lambda - \alpha_1) \cdots (\lambda - \alpha_n)$  for  $\alpha_i \in \overline{F}$ . Then take  $F \subseteq K = F[\alpha_1, \ldots, \alpha_n] \subseteq \overline{F}$ , it can be shown that  $[K : F] \leq (\deg f)!$ .

Now suppose  $F \subseteq K$  are fields, and E is a field which F is embeddable into, suppose  $\varphi \colon F \longrightarrow E$  is an embedding. An embedding  $\varphi' \colon K \longrightarrow E$  is an extension of  $\varphi$  if  $\varphi'|_F = \varphi$ . Denote

$$\eta_{F \subset K}^E := \#\{\varphi' \text{ is an extension of } \varphi\}$$

where  $\varphi$  is held constant and understood. Then

# 1.0.11 Proposition

Suppose  $K = F[\alpha]$ , then  $\eta_{F \subseteq K}^E$  is equal to the number of roots the minimal polynomial of  $\alpha$  in F has in E.

**Proof:** since  $\alpha$  generates K over F, every extension of  $\varphi$  is defined by its image on  $\alpha$ . Let h be the minimal polynomial of  $\alpha$  over F. Denote  $\hat{b} := \varphi(b)$  for all  $b \in F$ , and this definition extends to polynomials,  $\sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} \hat{b}_i x^i$ . Then if  $\varphi'$  is an extension of  $\varphi$ ,

$$\hat{h}(\varphi'(\alpha)) = \varphi'(h(\alpha)) = \varphi'(0) = 0$$

this is since if  $h(\lambda) = \sum_{i=0}^{n} a_i \lambda^i$ , then  $\hat{h}(\lambda) = \sum_{i=0}^{n} \hat{a}_i \lambda^i$ , so

$$\hat{h}(\varphi'(\alpha)) = \sum_{i=0}^{n} \hat{a}_i \varphi'(\alpha)^i = \sum_{i=0}^{n} \varphi(a_i) \varphi'(\alpha)^i = \sum_{i=0}^{n} \varphi'(a_i) \varphi'(\alpha)^i = \varphi'\left(\sum_{i=0}^{n} a_i \alpha^i\right) = \varphi'(h(\alpha))$$

so  $\varphi'(\alpha)$  must be one of  $\hat{h}$ 's roots, precisely as stated.

#### 1.0.12 Definition

A polynomial f which splits over E is called **separable** in E if its linear factors are distinct (ie. all of its roots in E are distinct).

#### 1.0.13 Theorem

Let  $F \subseteq K$  be a finite extension (meaning  $[K:F] < \infty$ ), and let  $\varphi: F \longrightarrow E$  be a given embedding. Then

- $(\mathbf{1}) \quad \eta^E_{F \subseteq K} \le [K:F],$
- (2) if K is generated by the roots of f, assuming that E splits f, then  $1 \leq \eta_{F \subseteq K}^E$ ,
- (3) if f is separable over E, then  $\eta_{F\subset K}^E = [K:F]$ .

**Proof:** suppose  $K = F[\alpha_1, \dots, \alpha_n]$  (the generators of K can be taken to be the basis of K as an F-vector space). We prove this by induction on n, for n = 1 this is given by the previous proposition, since  $\eta_{F \subseteq K}^E$  is the number of roots h has in E, and  $[K : F] = \deg h$  which is at least this. Define  $F_1 := F[\alpha_1]$ , then

$$\begin{split} \eta^E_{F \subseteq K} &= \# \{ \varphi'' \colon K \longrightarrow E \text{ is an extension of } \varphi \} \\ &= \# \bigcup \{ \varphi'' \colon F_1 \longrightarrow E \text{ is an extension of } \varphi' \mid \varphi' \colon F_1 \longrightarrow E \text{ is an extension of } \varphi \} \\ &= \sum_{\varphi'} \eta^E_{F_1 \subseteq K} = \eta^E_{F \subseteq F_1} \cdot \eta^E_{F_1 \subseteq K} \subseteq [F_1 \colon F] \cdot [K \colon F_1] = [K \colon F] \end{split}$$

For (2), by the assumption there is an extension of  $F \hookrightarrow E$  to  $F_1 \hookrightarrow E$ , and continue inductively. For (3), since f is separable, makes the bound an equality.

# 1.0.14 Definition

Let f be a polynomial over F, a field  $F \subseteq K$  is a **splitting field** if it is the smallest field in which the polynomial splits.