Lecture X Matrix Analysis of Differential and Difference Equations

Key points:

- Linear Differential Equations:
 - 1) Homogeneous and inhomogeneous cases;
 - 2) Solutions based on matrix exponential.
- Linear Difference Equations
- Extensions: Higher-Order Equations

Homogeneous Time-Varying Equations

• A linear homogeneous eq. is usually described by:

$$\frac{dx(t)}{dt} = A(t)x(t), \quad x(t) \in \mathbb{R}^n, \ t \ge 0.$$

• Fundamental solution:

It is composed of the solutions $x^i(t)$ with initial value $x^i(0) = e^i$, the *i*-th column of $I \in \mathbb{R}^{n \times n}$.

In compact notation, $X(t) \triangleq [x^1(t), \dots, x^n(t)]$ satisfies

$$\frac{d}{dt}X(t) = A(t)X(t), \quad X(0) \doteq \left[x^1(0), \dots, x^n(0)\right] = I.$$

Why X(t) Useful?

• Any solution x(t) with initial value x(0) = c can be written as: x(t) = X(t)c, or, $X(t)^{-1}x(t) = c$.

Derive solutions to inhomogeneous equations.
 (see next slide)

Fact: X(t) is invertible for all t

First, note that, if X(t)c = 0 for some $t = t^* > 0$ and $c \neq 0$,

then X(t)c = 0 for all t

because of the uniqueness of solutions.

Fact: X(t) is invertible for all t

Second, assume that $X(t^*)$ is singular for some $t^* > 0$. Then, the columns of X(t) are linearly dependent. So, there is some $a \neq 0$ satisfying $X(t^*)a = 0$. Thus, $\tilde{x}(t) = X(t)a$ is an identically zero solution, leading to a contradiction with the fact that $\tilde{x}(0) = X(0)a = a \neq 0.$

Extension to inhomogeneous equations

Consider the inhomogeneous eq.:

$$\frac{dy}{dt} = A(t)y + f(t).$$

Let us consider the new variable z(t):

$$z(t) = X^{-1}(t)y(t)$$
, or, $y(t) = X(t)z(t)$

Differentiating with respect to time yields:

$$\frac{dy}{dt} = \frac{dX}{dt}z + X\frac{dz}{dt}, \text{ or again,}$$

$$A(t)y + f(t) = A(t)Xz + X\frac{dz}{dt}$$

Reduction to homogeneous equations

$$X\frac{dz}{dt} = f(t) \implies \frac{dz}{dt} = X^{-1}(t)f(t)$$

$$\Rightarrow z(t) = z(0) + \int_0^t X^{-1}(s)f(s)ds$$

Finally, we arrive at the

"Variation of Parameters Formula":

$$y(t) = X(t)y(0) + X(t)\int_0^t X^{-1}(s)f(s)ds.$$

Comment

If the eq. is time-invariant, i.e., A(t) = A, then,

$$y(t) = X(t)y(0) + \int_0^t X(t-s)f(s)ds.$$

Indeed, in this case, by time-invariance and uniqueness of solutions,

$$X(t)X^{-1}(s) = X(t-s).$$

$$X(t)^{-1}x(t)=x(0).$$

Example

In order to solve

$$\frac{dy}{dt} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} y + \begin{vmatrix} 0 \\ e^{-t^2} \end{vmatrix},$$

let's first compute the fundamental solution:

$$X(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

$$\Rightarrow X^{-1}(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}.$$

Example (con'd)

The, it follows that

$$y(t) = X(t)y(0) + \int_0^t \left[\frac{\sin(t-s)}{\cos(t-s)} \right] e^{-s^2} ds.$$

Question

How to compute the fundamental matrix for a linear, homogeneous, time-invariant equation:

$$\dot{x}(t) = Ax(t)$$
, with $A \in \mathbb{R}^{n \times n}$

Solutions of Homogeneous Eqs.

The essential question is to find the fundamental solution X(t), i.e. solving

$$\frac{dX(t)}{dt} = AX(t), \quad X(0) = I.$$

First, define
$$e^{At} \doteq \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + \sum_{k=1}^{\infty} \frac{1}{k!} A^k t^k$$
.

If this infinite series of matrices converges, then $X(t) = e^{At}$, by direct term-by-term differentiation.

A Basic Result

For all t over any bounded interval, the infinite series of

matrices $\sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k$ converges uniformly and absolutely.

Proof:

Using the matrix-norm derived from the Euclidean

vector-norm, it holds:
$$|A^k| \le |A|^k$$
, $\forall k \in \mathbb{N}$.

Therefore,
$$\left| \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k \right| \le \sum_{k=0}^{\infty} \frac{1}{k!} |A|^k t^k$$

$$\leq e^{|A|t} < \infty$$
, as wished.

Properties of the Matrix Exponential

The matrix exponential $e^A \triangleq \sum_{k=0}^{\infty} \frac{1}{k!} A^k$

has the following properties:

1)
$$e^0 = I$$
.

- 2) For any matrix $A \in \mathbb{R}^{n \times n}$, $(e^A)^T = e^{A^T}$.
- 3) For all $A \in \mathbb{R}^{n \times n}$, and for all $t, \tau \in \mathbb{R}$,

$$e^{(t+\tau)A} = e^{tA}e^{\tau A} = e^{\tau A}e^{tA}.$$

Properties of the Matrix Exponential

4) For all $A, B \in \mathbb{R}^{n \times n}$, and for all $t \in \mathbb{R}$, $e^{t(A+B)} = e^{tA}e^{tB} = e^{tB}e^{tA}$ if and only if AB = BA.

5) For all $A \in \mathbb{R}^{n \times n}$, and for all $t \in \mathbb{R}$,

$$\left(e^{tA}\right)^{-1}=e^{-tA}.$$

Properties of the Matrix Exponential

6) For all $A \in \mathbb{R}^{n \times n}$, and for all $t \in \mathbb{R}$,

$$L\left\{e^{tA}\right\} = \left(sI - A\right)^{-1}$$

$$\Rightarrow e^{tA} = L^{-1}\left\{\left(sI - A\right)^{-1}\right\}.$$

Proof

$$L\left\{e^{tA}\right\} = \int_0^\infty e^{-st} e^{tA} dt$$

$$=\int_0^\infty e^{t(-sI)}e^{tA}dt=\int_0^\infty e^{t(A-sI)}dt$$

 $= (sI - A)^{-1}$, using Jordan canonical form of A, left as an exercise.

Note: $s \in ROC$ of $L\{e^{tA}\}$

More Remarks on Analytical Close-Form Solutions

Question:

Apart from Laplace transformation methods, what are other methods to find the close-form expression for e^{At} , for a given matrix $A \in \mathbb{R}^{n \times n}$?

Case 1: A has n linearly independent eigenvectors

Let $\{v^i\}_{i=1}^n$ be *n* linearly independent eigenvectors

associated with eigenvalues $\{\lambda^i\}_{i=1}^n$.

Then, $P = (v^1 \cdots v^n)$ transforms A into a canonical diagonal form:

$$P^{-1}AP = diag(\lambda_i) \doteq \Lambda.$$

Clearly, $e^{At} = Pe^{\Lambda t}P^{-1}$.

Case 1: using canonical diagonal form

$$e^{At} = Pe^{\Lambda t}P^{-1} = P\operatorname{diag}(e^{\lambda_i t})P^{-1}.$$

Therefore, noting
$$P = (v^1 \cdots v^n)$$
,

the solutions x(t) of $\dot{x} = Ax$ are in the form:

$$x(t) = e^{At}x(0) = P\operatorname{diag}\left(e^{\lambda_i t}\right)P^{-1}x(0)$$

$$=\alpha_1 e^{\lambda_1 t} v^1 + \dots + \alpha_n e^{\lambda_n t} v^n$$

where α_i 's are scalars, determined by x(0).

Comment

$$x(t) = e^{At}x(0) = \alpha_1 e^{\lambda_1 t} v^1 + \dots + \alpha_n e^{\lambda_n t} v^n.$$

- * The solutions of linear equations take an exponential form.
- When the eigenvalues are in the open left-half plane, all solutions x(t) go to 0, as $t \to \infty$.

(See "Application to stability of linear systems" for more details.)

Example

Solve the initial-value problem:

$$\dot{x} = \begin{pmatrix} -7 & 4 \\ -8 & 1 \end{pmatrix} x, \quad x(0) = \begin{bmatrix} 2 \\ -2 \end{bmatrix}.$$

First, compute the eigenvalues

$$\lambda_1 = -3 + 4i, \quad \lambda_2 = -3 - 4i$$

with two associated (linearly independent) eigenvectors:

$$v^{1} = col(1 \ 1+i), \quad v^{2} = col(1 \ 1-i).$$

Example (cont'd)

Therefore, using the formula, the solution is

$$x(t) = 2e^{-3t} \begin{bmatrix} \cos 4t - 2\sin 4t \\ -\cos 4t - 3\sin 4t \end{bmatrix}, \forall t \ge 0.$$

Case 2: using Jordan form

Consider $\dot{x} = Ax$, $x(0) = x_o \in \mathbb{R}^n$.

If *A* does not have *n* linearly independent eigenvectors, then it is transformed into a Jordan form:

$$P^{-1}AP = diag(\Lambda_i) \doteq J, \quad 1 \leq i \leq s.$$

So, the solutions x(t) = Py(t) where y(t) are solutions

to
$$\dot{y} = Jy$$
, $y(0) = P^{-1}x_o$.

Case 2: using Jordan form

$$\dot{y} = Jy, \quad y(0) = P^{-1}x_o$$

$$\frac{dy^{(i)}(t)}{dt} = \Lambda_i y^{(i)}(t), \quad y(t) = \begin{vmatrix} y^{(1)}(t) \\ \vdots \\ y^{(s)}(t) \end{vmatrix}$$

Decoupled differential equations!

Example

Solve the differential eq. in Jordan form:

$$\dot{y} = Jy, \ J = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 3 \end{pmatrix}.$$

By inspection,

$$\Lambda_1 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} 3 & 0 \\ 1 & 3 \end{pmatrix}.$$

Example (cont'd)

Then,
$$y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \end{bmatrix}$$
, $y^{(1)} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, $y^{(2)} = \begin{bmatrix} y_3 \\ y_4 \end{bmatrix}$.

So the original y-equation becomes two decoupled (!) systems:

$$\dot{y}_1 = 2y_1, \quad \dot{y}_2 = 2y_2$$

and

$$\dot{y}_3 = 3y_3, \quad \dot{y}_4 = y_3 + 3y_4.$$

Example (cont'd)

With initial value $y(0) = col[1\ 2\ 3\ 4]$, we have

$$y_1(t) = e^{2t}, \ y_2(t) = 2e^{2t},$$

$$y_3(t) = 3e^{3t}$$
, $y_4(t) = (4+3t)e^{3t}$. ("top down")

It is important to note that not every solution is in exponential form. That is very typical with Jordan form.

More on using Jordan form

Consider $\dot{x} = Ax$, $x(0) = x_o \in \mathbb{R}^n$.

Using Jordan form:

$$P^{-1}AP = diag(\Lambda_i) \doteq J, \quad 1 \leq i \leq s.$$

the solutions $x(t) = e^{At}x_o$ becomes

$$x(t) = e^{tPJP^{-1}} x_o = Pe^{tJ} P^{-1} x_o$$
$$= P \times \text{blockdiag} \left(e^{t\Lambda_i} \right) \times P^{-1} x_o$$

Question:

What is the close-form of $e^{t\Lambda_i}$?

More on using Jordan form

To compute the close-form of $e^{t\Lambda_i}$, notice that

$$\Lambda_{i} = \begin{pmatrix} \lambda_{i} & 1 & \dots & 0 \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \dots & \lambda_{i} & 1 \\ 0 & \dots & \dots & 0 & \lambda_{i} \end{pmatrix} = \lambda_{i} I + N$$

Clearly, $\lambda_i I$ and N commute, and N is an nilpotent matrix of degree p, i.e., $N^p = 0$, while $N^{p-1} \neq 0$.

More on using Jordan form

So,
$$e^{t\Lambda_i} = e^{\lambda_i t} e^{tN}$$
, with
$$e^{tN} = I + tN + \frac{t^2}{2!} N^2 + \dots + \frac{t^{p-1}}{(p-1)!} N^{p-1}$$

$$= \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \dots & \frac{t^{p-1}}{(p-1)!} \\ \vdots & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & t \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}.$$

Interpolation Method

Based on Cayley-Hamilton Theorem, all powers of a nxn matrix A greater than n-1 can be expressed as Linear combinations of A^k for k=0,1,..., n-1.

Define
$$f(\lambda) = e^{t\lambda}$$
, so $f(A) = e^{tA}$.

Also define
$$g(\lambda) = \alpha_0 + \alpha_1 \lambda + \dots + \alpha_{n-1} \lambda^{n-1}$$
.

Using the following linear equations to determine the values

of
$$\alpha_j$$
, for $j = 0, 1, ..., n-1$:

$$g^{(k)}(\lambda_i) = f^{(k)}(\lambda_i)$$
, for $k = 0, 1, ..., n_i - 1$

where each λ_i is an eigenvalue of $A \in \mathbb{R}^{n \times n}$ with algebraic multiplicity n_i .

Interpolation Method

Thus,
$$e^{tA} = f(A)$$

$$= g(A)$$

$$= \alpha_0 I + \alpha_1 A + \dots + \alpha_{n-1} A^{n-1}.$$

Exercise:

$$A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Linear Difference Equations

For a linear difference equation described by

$$x[k+1] = Ax[k], x[0] = x_0,$$

the solution $x[k], k \ge 0$, is given by:

$$x[k] = A^k x_0$$
.

Proof. It follows via direct substitution.

Linear Difference Equations

For an inhomogeneous linear difference equation:

$$x[k+1] = Ax[k] + Bu[k], x[0] = x_0,$$

the solution x[k], $k \ge 0$, is given by:

$$x[k] = A^k x_0 + \sum_{j=0}^{k-1} A^{k-j-1} Bu[j].$$

Again, the proof follows upon direct substitution.

Higher-Order Equations

$$\frac{d^{n}y(t)}{dt^{n}} + a_{1}(t)\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{n-1}(t)\frac{dy(t)}{dt} + a_{n}(t)y(t) + a_{n+1}(t) = 0$$

with initial conditions

$$y(0) = c_0, \ \dot{y}(0) = c_1, \ \cdots, \ y^{(n-1)}(0) = c_{n-1}.$$

Question:

How to transform it into a system of first-order equations:

$$\frac{dx(t)}{dt} = A(t)x(t) + f(t), x \in \mathbb{R}^n.$$

Transformation to First-Order Eqs

Define
$$x_1 = y$$
, $x_2 = \dot{y}$, ..., $x_n = y^{(n-1)}$. Then,

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = x_3, \\ \vdots \\ \dot{x}_{n-1} = x_n, \\ \dot{x}_n = y^{(n)} = -a_n x_1 - a_{n-1} x_2 - \dots - a_1 x_n - a_{n+1} \end{cases}$$

Example

A higher-order differential equation can be put into a system of first-order differential equations:

$$\ddot{y}(t) + (\sin \omega t) \dot{y}(t) + y(t) = 0$$

$$\dot{x}(t) \doteq \frac{dx(t)}{dt} = \begin{pmatrix} 0 & 1 \\ -1 & -\sin \omega t \end{pmatrix} x(t)$$

with
$$x(t) = col(y(t), \dot{y}(t))$$
.

Exercise

Try to put two (joint) higher-order differential eqs. into a system of first-order differential eqs.:

$$\ddot{y}_1 + 3\dot{y}_2 + 4y_1 + y_2 = 8t,$$

$$\ddot{y}_1 - \dot{y}_2 + y_1 + y_2 = \cos t.$$

Higher-Order Difference Equations

Can you transform a higher-order difference equation

$$y[k+n]+a_{n-1}y[k+n-1]+\cdots+a_1y[k+1]+a_0y[k]=\phi_k$$

into a family of first-order difference equations?

Homework 9

1. Solve the initial-value problem

$$\dot{x}_1 = x_2 + e^{-t},$$
 $x_1(0) = 1,$ $\dot{x}_2 = 6(t+1)^{-2} x_1 + \sqrt{t}, x_2(0) = 2.$

Homework 9

2. Solve the initial-value problem

$$\frac{dy(t)}{dt} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 3 & 0 \end{bmatrix} y(t), \ y(0) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}.$$