AD-A116 654

AIR FORCE WRIGHT AERONAUTICAL LABS WRIGHT-PATTERSON AFB OH F/6 11/4
INSTRUCTIONS FOR TI-59 COMBINED CARD/MODULE CALCULATIONS FOR IN-ETC(U)
MAR 82 S D 6ATES
UNCLASSIFIED

AFWAL-TR-81-4183

NL

1 or 1
AFWAL-TR-81-4183

OR-82
OR-82
OR-82

INSTRUCTIONS FOR TI-59 COMBINED CARD/MODULE CALCULATIONS FOR IN-PLANE PROPERTIES OF SYMMETRIC HYBRID LAMINATES

Stella D. Gates

MECHANICS & SURFACE INTERACTIONS BRANCH NONMETALLIC MATERIALS DIVISION

March 1982

Final Report for Period September 1981 - November 1981

Approved for public release; distribution unlimited.

Copy available to DTIC does not

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

82 07 07 010

THE FILE COPY

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

STELLA D. GATES, Project Engineer

Mechanics and Surface Interactions Branch

Nonmetallic Materials Division

STEPHEN W. TSAI, Chief

Mechanics and Surface Interactions Br Nonmetallic Materials Division

FOR THE COMMANDER

D. CHERRY,

Nonmetallic Material Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/MLBM , W-PAFB, Ohio 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/24 June 1982 - 500

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	REPORT DOCUMENTATION PAGE		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
AFWAL-TR-81-4183		<i>i</i>	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
INSTRUCTIONS FOR TI-59 COMBINED CA	ARD/MODULE	Final Technical Report	
CALCULATIONS FOR IN-PLANE PROPERT		September - November 1981	
SYMMETRIC HYBRID LAMINATES		S. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(e)		B. CONTRACT OR GRANT NUMBER(#)	
Stella D. Gates			
 PERFORMING ORGANIZATION NAME AND ADDRESS Materials Laboratory (AFWAL/MLBM) 		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Air Force Wright Aeronautical Lab	oratories	24190310	
Ai. Force Systems Command		24270320	
Wright-Patterson AFB, OH 45433 '' Materials Laboratory (AFWALTMLBM)		12. REPORT DATE	
Air Force Wright Aeronautical Laboration	oratories	March 1982	
Air Force Systems Command		13. NUMBER OF PAGES 40	
Wright-Patterson AFB OH 45/433 14. MONITORING AGENCY NAME & ADDRESS(II different	from Controlling Office)	15. SECURITY CLASS. (of this report)	
,		Unclassified	
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)		-	
Approved for public release; distr	ribution unlimit	ed.	
approved for public release, distr	IDUCTOR WITIMIC		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)	
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)	
Magnetic Card Programs	In-Plane Stiffn		
Composite Materials Module	Sandwich Core La		
Composite Materials	Hybrid Laminates	3	
Properties of Unidirectional			
& Laminated Composites 20. ABSTRACT (Continue on reverse side if necessary and	I Identify by block number		
lators. These programs contain th	ne key calculation	ons of the stiffness and	
This report contains the description composite materials module and magnature. These programs contain the strength of unidirectional and land	gnetic cards for ne key calculatio	TI-59 programmable calcu- ons of the stiffness and	

This report contains the description and instructions for the combined use of composite materials module and magnetic cards for TI-59 programmable calculators. These programs contain the key calculations of the stiffness and strength of unidirectional, and laminated hybrid composites under in-plane loading. This can include sandwich core laminates. With the combination of the module and magnetic cards, instant calculations can be made for practical use. With the use of a printer, these can be immediately outputted and recorded permanently. The formulas used in the cards and equation numbers have.

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT (Cont'd)

been derived in a book entitled, Introduction to Composite Materials, coauthored by S. W. Tsai and H. T. Hahn, published by Technomic Publishing Company, Westport, Connecticut, July 1980.

Acces	sion For	
NTIS	GR 43:I	
DITC		C)
	<u> च्याक्षकत्त्र</u>	71
Just.	tication	
By		
_Distr	itution/	
Avai	lability	Codes
ļ-	Avail a	nd/or
Dist	Specia	al
1	123.	
IT '	120 1	
	14	

DIII COPY NSPECTED

FOREWORD

This report was prepared in the Mechanics and Surface Interactions Branch (AFWAL/MLBM), Nonmetallic Materials Division, Materials Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio. The work was performed under the support of Project No. 2419, "Nonmetallic Structural Material", Task No. 241903, "Composite Materials and Mechanics Technology". The time period covered by this effort was from September to November 1981. Stella D. Gates (AFWAL/MLBM) was the laboratory project engineer.

The programs are written for Texas Instruments Calculators TI-59 to operate with or without a printer. However, the use of a printer is highly recommended. The specially designed "Composite Materials Module" must be installed in place of the standard "Master Module".

This report is meant to be used in conjunction with AFWAL-TR-81-4116, "Instructions for TI-59 Combined Card/Module Calculations for In-Plane and Flexural Properties of Symmetric Laminates", co-authored by S. W. Tsai and S. D. Gates; or with a revised expanded edition currently being published. In this report, the ideas previously presented are further developed to include the case of a symmetric hybrid laminate. Some of the previous information is repeated to facilitate the operation for a user.

Any references to equations and table numbers are the same as Introduction to Composite Materials, co-authored by S. W. Tsai and H. T. Hahn, published by Technomic Publishing Company, Westport, Connecticut, in July 1980.

The author wishes to acknowledge Stephen W. Tsai of the Materials Laboratory for his encouragement and helpful suggestions.

TABLE OF CONTENTS*

INTRODUCTION		PAGE
COMBO 1P	Ply Data, with Printer	1
COMBO 1**	Selected Ply Data	10
COMBO 4P	Hybrid: In-Plane Stiffness and Strength of Symmetric Laminates, with Printer	16
COMBO 4**	Hybrid: In-Plane Stiffness and Strength of Symmetric Laminates	28

^{*} Each Combo card description includes a flow chart, user instructions, register contents, and program listing.

^{**} Sample problems are not given in these cards. They are similar to those in the on-printer cards, Combo 1P and 4P, respectively.

		NOMENCLATURE	LABEL NAME
A _{ij}	=	<pre>in-plane modulus; i,j = 1,2,6</pre>	A
a _{ij}	=	<pre>in-plane compliance; i,j = 1,2,6</pre>	AI
A _{ij}	=	normalized in-plane modulus; i,j = 1,2,6	A*
a* ij	=	normalized in-plane compliance; $i,j = 1,2,6$	A*I
С	=	half depth of core in equivalent number of plies	CR
Ei	=	engineering constants; i = x,y,s	Ε
E°i	=	<pre>effective in-plane Young's and shear moduli; i = 1,2,6</pre>	E*
F _{ij} ,F _i	=	strength parameters in stress space; $i,j = 1,2,6$	F
F*xy	=	normalized interaction term	FXY
G _{ij} ,G _i	=	strength parameters in strain space; $i,j = 1,2,6$	G
h _o	=	unit ply thickness	Н
Ni	=	stress resultants; i = 1,2,6 (Prompter 6.1, 6.2, 6.6)	N
_n (1)	=	total number of plies, material l	NI
_n (2)	=	total number of plies, material 2; or material i	N2
Q _{ij}	*	on-axis modulus; i,j = x,y,s	Q
R_{t}, R_{t}'	=	tensile and compressive strength ratios	R
S	=	shear strength	-

		NOMENCLATURE	LABEL NAME
S _{ij}	=	on-axis compliance; i,j = x,y,s	S
Ui	=	linear combinations of moduli; i = 1 to 5	-
Х,Х'	=	longitudinal tensile and compressive strengths	X
Υ,Υ'	=	transverse tensile and compressive strengths	-
ε <mark>°</mark>	=	in-plane strain; i = 1,2,6	-
ν _x	=	longitudinal Poisson's ratio	-
ν ₂₁	=	major in-plane Poisson's ratio	-
σ <mark>t,</mark> σt	=	allowable stresses, in-plane loading	Σ
Θt	=	ply orientation (TI 2-digit alphanumeric code = 60 as prompter)) +

INTRODUCTION

Combos 4 and 4P are designed to allow the user to calculate the in-plane stiffness and strength of a symmetric, hybrid laminate. This laminate may be designed for two or more component materials and have a honeycomb core. The only difference between Combo 4 and 4P is the automatic print routine which occurs when Combo 4P is run while the TI-59 is attached to a printer.

A certain amount of caution must be used when working these programs because of the bookkeeping necessary when using two materials. Each material will have a different set of material properties and constants. Only one set can be kept in storage at any point in time. Therefore, it is necessary to keep track of the contents of certain data registers to maintain accuracy in calculation. More will be discussed in reference to this in the directions for each program.

AFWAL/MLBM CARD-MODULE COMBO FOR TI-59					
	PLY DATA CARD COMBO-I P				
Ex, X, SI-ENGLISH ENGLISH-SI					

Register locations are shown in parentheses. Equation and Table numbers are those in Introduction to Composite Materials, Tsai and Hahn.

COMBO #IP PLY DATA					
STEP	PROCEDURE	PRESS	PRINTER LABEL	PRINTOUT	CALCULATOR PROMPTER
la	Initialize program	Α	E	-	4
Ь	Enter E _x	R/S	-	E _x	3
•	Ey	R/S	-	E _y	2
	$^{ee}{x}$	R/S	-	v _x	1 1
	Es	R/S	-	E _s	0
į .	h _o	R/S	н	h _o	}
ļ			Q	q ₁₁ , q ₂₂ , q ₁₂ , q ₆₆	}
į			S	s ₁₁ , s ₂₂ , s ₁₂ , s ₆₆	} {
1			U	u ₁ , u ₂ , u ₃ , u ₄ , u ₅	
Ì			А	A ₁₁ , A ₂₂ , A ₁₂ , A ₆₆	
			AI	^a 11, ^a 22, ^a 12, ^a 66	^a 66
					1
1					!
-				 	
2a	Initialize program	В	х	-	5
b	Enter X	R/S	-	X	4
1	X'	R/S	-	χ'	3
1	Y	R/S	-	γ	2
1	γ,	R/S	-	γ'	1
1	S	R/S	-	S	
			FXY		0
1	Enter F [*] _{Xy}	R/S	}	F* xy	
1		F	}	F_{xx} , F_{yy} , F_{xy} , F_{ss} , F_{x} , F_{y}	{
j		G		G_{xx} , G_{yy} , G_{xy} , G_{ss} , G_{x} , G_{y}	$G_{\mathbf{y}}$
	}		1		
}			{		1

COMBO #IP CONTINUED

STEP	PROCEDURE	PRESS	PRINTER LABEL	PRINTOUT	CALCULATOR PROMPTER
3	Convert SI → English	С	U'	U1, U2, U3, U4, U5	1 1
			н'	h _o	hċ
4	Convert English → SI	D	U' H'	บ ₁ ่ ,บ ₂ ่ ,บ ₃ ่ ,บ ₄ ่ ,บ ₅ ่ ห _่	h'o

COMBO 1P PLY DATA (W/PRT) 28 JUL 81 'Y

EX	## OF THE PROPERTY OF THE PROP	O 0 0 2 M 1 P 7 L 1 T L 2 T L 2 T L 4 T V	## TV 99 1 3 2 4 T02M 1RT L6
----	--	---	------------------------------

COMBO IP PLY DATA (W/PRT) 28 JUL 81

	31 F		11		1			U¦
A Section 1 To The Control of the	Fig. 1	554 555 555 553	1000 000 000 000 000 000 000 000 000 00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Engl SI 100 -	1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、	1	h'o

	T300/52	08	B(4)/5505			
	SI	ENGLISH	SI	ENGLISH		
INPUT	E 181,000 09 10,300 09 280,000-03 7,170 09	E 26.251 06 1.494 06 280.000-03 1.040 06	E 204,000 09 18,500 09 230,000-03 5,590 09	E 29,587 06 29,583 06 2,683 06 230,600-07 810,732 03		
N.	н 125.000-06	₩ 4.925-03	H 125.000-06	н 4.925-03		
	181.511 09 10.346 09 2.397 09 7.170 09	0 26,369 06 1,501 06 420,149 03 1,040 06	0 204.983 09 18.589 09 4.276 09 5.590 09	0 29,729 06 2,496 06 620,899 03 810,732 09		
	5,525-12 97,525-12 -1,547-12 158,470-12	38, 184-09 869, 417-09 -10, 666-09 961, 546-09	9 4,900-12 54,954-12 -1,127-12 176,941-12	35,199-09 373,703-09 -7,774-09 1,333-06		
	76.065 09 95.701 09 15.710 09 10.607 09 26.330 09	11,006 06 12,434 06 2,854 06 1,109 06 3,599 06	97.704 99 87.197 09 84.083 09 28.358 09 88.573 09	0 13.720 06 13.517 06 3.493 05 4.115 06 4.304 06		
	# 32.72+ 04 1.293 0+ 5-2.11+ 07 app.150 01	24, 3+5 03 71,190 03 2,089 03 5,121 03	85.032 06 224 06 534.429 03 688.750 03	A (46,4)7 03 (2,178 03 (3,754 03 (3,493 03		
	A1 44.199-09 The 984-09 -12.176-09 1.116-06	4) 1,795-06 195,432-06 -3,166-06 195,358-06	#1 19.016-09 433.430-09 -1.020-09 (1.431-06	41 6,963-06 75,676-06 -,576-06 250,447-06		
INPUT	1.810 04 .800 08 41.100 08 348.100 08 #3.100 08	217,549 03 217,549 03 5,701 03 15,478 03 9,642 03	00,000 00 00,500 00 61,000 06 00,000 06 67,000 06	183, 741 03 861,532 03 813,47 03 19,67 03		
Z	-500.000-00	F 1: -500.000-03	F 1 -530,776-0:	F -500.000-03		
	F 444,444-3; 101,426-19 -3,160-18 216,263-18 0,000-00 20,935-09	F 31,139-13 4,831-08 -159, 733-12 10,381-09 0,000-00 144,347-06	F 317,460-21 81,156-18 -1,538-18 222,767-18 393,651-12 11,443-09	F 15.092-12 3.158-09 -120.654-12 10.591-09 2.714-06 78.299-06		
	12.104 03 10.681 03 -2.069 03 11.118 03 60.647 00 216.596 00	0 12.004 03 10.681 03 -3.069 03 11.118 03 -0.647 00 216,596 00	10.174 03 27.446 03 -2.869 03 -2.869 03 -6.861 03 129.616 00 214.398 00	0 10.774 03 37.646 03 -2.889 03 6.961 03 129.616 00 214,398 00		
	11,076,06 12,434,06 2,459,06 3,279,06 3,299,06	0.0 76.368 09 85.732 09 19.710 09 22.607 09 26.880 09	0° 12.720 06 13.517 06 3.493 06 4.112 06 4.304 06	0,1 87,704 09 93,197 09 24,083 09 28,358 09 29,673 09		
	H¹ 4.925÷03	н' 125.000-06	H* 4,925×03	н° 135,000-06		

AS/3501

SCOTCHPLY 1002

	SI	ENGLISH	SI	ENGLISH
INPUT	E 138,700 09 8,960 09 700,000-03 7,100 09	E 20,015 06 1,199 06 300,000-03 1,030 06	E 38.000 09 8.070 09 260.000-03 4.140 09	E 9.988 0e 1,199 0e 280.100-03 800.415 01
Z	н :25.000-05	н 4.925-03	125.100-06	⊬ 4.÷25-03
	1.80-11 04 3.111 09 1.104 04 7.100 04	0 20.132 06 11.707 06 332.139 03 1.030 06	6 39.167 09 8.162 09 2.182 09 4.140 09	0 5.e81 0e 1.317 0e 31e.432 03 e00.435 03
	0.24%-12 111.937-13 -2.074-12 140.845-12	39,354-09 754,531-09 -14,399-09 971,137-09	9 35,907-12 120,919-13 -6,738-12 241,548-13	178.e37-09 833.736-09 -46.443-09 1.e65-06
	50,749,04 04,744,04 14,750,04 16,750,04 00,750,04	0 1.551 06 2.412 06 1.159 06 1.459 06 1.97 06	20,450 09 15,480 09 3,389 09 5,511 08 5,549 09	0 3.866 06 2.112 06 432.372 03 799.74 03 1.135 06
		45.151.03 -1.438.03 -1.431.03 5.171.03	4,396,06 0,749,06 072,735,00 517,500,00	4 27.:77 03 5.354 00 1.558 03 2.957 03
	#1 5 1 3 1 1 4 4 5 1 2 5 7 4 4 1 7 1 2 7 6 5 1 1 1 7 7 6 5	A1 10,145-06 156,150-06 -31,443-06 147,133-06	91 000.254-09 967.052-09 -50.686-09 1.902-06	A1 3e.le9-0e 1e9.le7-0e -9.410-0e 339.1e4-06
INPUT		204, 762, 00 205, 42, 00 05, 48, 00 24, 77, 00 11, 48, 00	1,062,09 61,000,06 31,000,06 118,000,06 73,000,06	154, 125 0, 99, 400 00 4, 496 00 10, 114 00 11, 442 00
-	e[-]	# -51-1-0-07	₽ -500,00-03	F -500,√.0-03
	4 1 1 7 1 1 2 1 41 1 1 5 1 1 1 - 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F 1.756-11 4.264-04 -154.151-13 5.267-04 0.000-00 44.895-06	F 1, 544-18 273-18 -10,271-18 192-901-18 97,735-13 97,735-13	9 70.08-12 12.56-04 488.003-1 4.171-09 -4.01-06 163.467-06
	1 . THE 0.1 T. THE 0.1 T. THE 0.3 T. JAP 0.1 SALITS 0.0 LYOURTE 0.0	7. Te 00 7. Fe 00 7. Fe 00 5.028 00 (4.07) 00 (7.575 00	0 1, -14 03 11, -12 00 1, -12 01 3, -16 03 24, -43 00 142, -18 00	1,514 01 18,662 00 1,712 01 5,066 03 24,62 00 185,058 00
		54,5+0,04 -4,5+0,04 14,5=0,04 15,955,09 21,752,09	2.566 06 2.312 06 483.872 03 799.104 03 1.083 06	0. 20.450 09 15.768 04 2.729 09 5.511 09 7.469 09
	94. 4. 425.401	H* 125.100-05	H* 4.925-03	µ* 135.000-0e

	KEVLAR 4	49/EPOXY	ALUMINU	M
	SI	ENGLISH	SI	E NG LISH
INPUT	E 76,000 09 5,500 09 340,000-03 2,300 09	11,022,06 797,679,03 340,000-03 333,575,03	£ 69.000 09 69.000 09 300.000-03 26.538 09	E 10.007 06 10.007 06 300.000-03 3.849 06
1	H	H	и	H
	125,000-06	4.925-03	1.000 00	1.000 00
	0 76.641 09 5.546 09 1.886 09 2.300 09	0 11.115 06 804,409 03 273,499 03 333,575 03	75,824 09 75,824 09 22,747 09 26,538 09	0 10.997 06 10.997 06 0.299 06 3.349 06
	12, 158-12 181, 818-12 -4, 474-12 434, 183-12	9 90, 734-09 1,254-06 -30,846-09 2,998-06	14, 493-12 14, 493-12 -4, 348-12 37, 681-12	\$ 99,920-09 99,920-09 -29,970-09 259,812-09
	t	0	0	0
	32,442 09	4,705,06	75,824 09	10.397 06
	35,547 09	5,156,06	0,000 00	0.006 00
	8,652 09	1,355,06	40,000-03 ≈0	88.495-03 ≈0
	10,538 09	1,528,06	22,747 09	3.299 06
	10,952 09	1,588,06	26,538 09	3.849 06
	A	A	8	A
	9.580 06	54,744 03	75.824 09	10.997 06
	693,300 03	3,462 03	75.824 09	10.997 06
	235,722 03	1,347 03	22.747 09	3.299 06
	287,500 03	1,643 03	26.538 09	3.899 06
	81	81	AI	9:
	105,263-09	18, 421-06	14,493-12	94.023.004
	1,455-06	254, 545-06	14,493-12	94.023.009
	-35,789-09	-6, 263-06	-4,348-12	-29.078.009
	3,478-06	608, 696-06	07,681-12	250.078.009
INPUT	1,400 09	000,046 00	100.000 06	5%, 11, 03
	235,000 06	04,080 00	400.000 06	5%, 10, 03
	12,100 06	1,740 00	400.000 06	5%, 10, 03
	51,000 06	7,687 00	400.000 06	5%, 10, 03
	34,000 06	4,931 00	200.000 06	5%, 15%, 01
7	F::::	F37	F:01	F
	-500,000+03	-500,300-03	-500,000-03	-500, [00-0]
	F 3.040-13 1,572-13 -34,566-18 885.052-18 -1,541-09 64,465-09	144,702-12 74,750-09 -1,643-09 41,125-09 -24,415-06 444,489-06	F 6.250-18 6.250-18 -3.125-18 18.304-18 0.000-00 0.000-00	F 297, 131-12 297, 131-12 -148, 5ec-12 897, 596-12 0, 100-00 0, 700-00
	0 13,454 03 47,457 03 2,669 03 4,576 03 -144,922 00 350,873 00	13,454 03 47,657 03 2,669 03 4,776 03 149,822 00 350,873 00	0 28, 387 03 28, 387 03 1, 976 03 13, 314 03 0, 000 00 0, 000 00	0 38,780 03 38,780 03 1,704 03 1,704 03 1,000 00 0,000 00
	U*	0,42 09	10,	0.
	4,705 06	32,442 09	10, 997-06	75.334 09
	5,156 06	35,547 09	0, 000-00	76,600 00
	1,255 06	8,652 09	5, 801-06 € 0	804.990 00 ≈ 0
	1,528 06	10,538 09	3, 299-06	32,740 09
	1,538 06	10,952 09	3, 849-06	26.538 09
	н*	H*	н•	н•
	4.925-03	125.000-06	39,400 00	25.381-03

NOTES

AFWAL/MLBM CARD-MODULE COMBO FOR TI-59						
SELECTE	SELECTED PLY DATA CARD D COMBO -I					
AL SI+ENGL						
T-300 B AS SCOTCH KEVLAR						

Register locations are shown in parentheses. Equation and Table numbers are those in Introduction to Composite Materials, Tsai and Hahn.

COMBO #I SELECTED PLY DATA

STEP	PROCEDURE	PRESS	DISPLAY
1	Enter material properties		
a	T300/5208	Α	216.59641
Ь	B(4)/5505	В	214.39805
С	AS/3501	С	130.57541
d	Scotchply 1002	D	198.05771
e	Kevlar 49/Epoxy	E	350.87335
f	Aluminum	Α'	0
ļ			
<u></u>			
2	Convert SI → English	E'	39.4

A pre-recorded data card should be made for each material in order to facilitate using Combos 4 and 4P. This entails recording the data generated by Combo 1 into Bank #3 (30-59) of a magnetic card. To do this, enter the material properties of the material of interest by pushing the appropriate button. Push 3 2nd Write and feed a blank magnetic card through the card reader. This has recorded the necessary data. Label the card and save it. Two materials may be put on each card, one on each side. For more information, consult the manuel that came with your TI-59.

76 LBL 11 A 47 CMS 57 ENG 01 1 T300- 08 5 5208 52 EE 09 5 42 570 25 Ex 01 1 00 0 03 3 52 EE	060 71 SBR 764 98 ABV 764 98 ABV 764 98 ABV 764 98 ABV 764 98 98 98 98 98 98 98 98 98 98 98 98 98	:23	182 42 STD 183 26 26 184 04 4 185 01 1 186 04 4 187 52 EE 188 07 7 189 42 STD 190 27 27 191 93 .
140000000000000000000000000000000000000	1	7 CMS 062 36 PGM 77 ENG 063 08 08 01 1 T300- 064 71 SBR 08 8 5208 065 80 GPD Gij 09 5 068 42 STD 069 44 44 25 Ex 070 43 RCL	17 CMS 062 36 PGM 122 52 EE 17 ENG 063 08 08 123 06 6 11 1 T300- 064 71 SER 124 94 +/- 18 8 8 80 065 80 GFD Gij 125 42 STD 11 1 5208 06-4 43 PCL 126 59 59 16 16 16 127 71 SER 19 9 9 068 42 STD 128 35 1/K 42 STD 069 44 44 129 01 1 45 25 Ex 070 43 RCL 130 04 4

COMBO 1 PLY DATA (SELECTED) 28 JUL 81 1 THE	SI-gl. SI-gl.	-	28 28 27 38 47 21 25 27 26 47 57 58 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28
--	--	---	---

NOTES

EXAMPLE OF LAMINATE STACKING SEQUENCE

COMBO #4P (PRT) HYBRID: IN-PLANE STIFFNESS AND STRENGTH

COMBO	#4P	HYBRID.	IN-PLANE	STIFFNESS	AND	STRFNGTH
	17 -7 1	1110110.	1 14 1 1 1 1 1 1 1 1 1 1	J		J 11

A' core	B'	c'	D'	E'
A material 1 n(1), 0(1)	B material i n(i), o(i)	$C_{A_{ij},a_{ij},E_{i}^{\circ},A_{ij}^{\star}}$	$D_{N_i \rightarrow \varepsilon_i^{\circ}}$	E _{0t} + R _{t'} σ°
OO USED	15 A ₂₆ (i) 30	U ₁ (i) 45	5 _{Gyy} (i)
OI USED	Ι6 ΣΑ ₁₁ (i), a ₁₁	,G _{xx} (i) 31	U2 ⁽ⁱ⁾ 46	6
O2 _{USED}	17 EA ₂₂ (i),a ₂₂		u ₃ (i) 47	G _{ss} (i)
O3 USED	8		U ₄ (i) 48	3 G _x (i)
O4 USED	19 _{2A66} (i),a ₆₆		U ₅ (i) 49	9
05 _{n(i), c}	20 _{5A16} (i),a ₁₆	35 ₅ ,G _x (i)	Θ 50)
06 _{Rt}	2 ₁ (i),a ₂₆		_{V_o} (i) 5	
07 _{Rt'}	22 (A)	37	v ₁ ⁽ⁱ⁾ 52	2
08 _{1/h}	23 ε _i	38	v ₃ ⁽ⁱ⁾ 53	3 p
09 h	24 ε ₂ °	39 v	(i), USED 54	1 q
10 A ₁₁ (i)	25 ε ₆	40	_{V4} (i) 55	5 r
11 A ₂₂ (i)	26 N ₁ , (41	Θ 56	S USED
12 A ₁₂ (i)	27 N ₂ , (42	USED 57	USED
13 A ₆₆ (i)	28 N ₆ , (43	USED 58	3 USED
14 A ₁₆ (i)	29 USED	44	G _{xx} ⁽ⁱ⁾ 59	h _o

COMBO #4P HYBRID: IN-PLANE STIFFNESS AND STRENGTH

STEP	PROCEDURE	PRESS	PRINTER LABEL	PRINTOUT	CALCULATOR PROMPTER
0	Enter ply data #1	3	-	-	3
la	Enter n ⁽¹⁾	А	N1	_n (1)	n/2
ь	\circ_1	R/S		ϵ_1	n/2 - 1
c '	[©] 2	R/S	-	⁰ 2	n/2 - 2
				:	
	⁶ n/2 – 1	R/S	-	⁰ n/2 - 1	i
*	[⊙] n/2	R/S	-	[⊖] n/2	0
		,	SYM		
2	Enter ply data #2	3	-	-	3
3a	Enter n ⁽²⁾	В	N2	_n (2)	n/2
Ь	° ₁	R/S	-	Ol	n/2 - 1
С	[©] 2	R/S	_	⁹ 2	n/2 - 2
		:		:	
	⁰ n/2 - 1	R/S	-	⁹ n/2 − 1	i
	[⊖] n/2	R/S	-	[⊙] n/2	0
			SYM		
4	Print A _{ij} , a _{ij}	С	A	A ₁₁ , A ₂₂ , A ₁₂ , A ₆₆ , A ₁₆ , A ₂₆	1]
	E°, A*			^a ll, ^a 22, ^a l2, ^a 66, ^a l6, ^a 26	
	-		E*	E ₁ °, E ₂ °, ∨ ₂₁ °, E ₆ °] [
			A*	A_{11}^{*} , A_{22}^{*} , A_{12}^{*} , A_{66}^{*} , A_{16}^{*} , A_{26}^{*}	6.1
]]
<u> </u>					<u> </u>

COMBO #4P CONTINUED

STEP	PROCEDURE	PRESS	PRINTER LABEL	PRINTOUT	CALCULATOR PROMPTER
5a	Enter N _l	D	N	N ₁	6.2
ь	N ₂	R/S	- 1	N ₂	6.6
С	N ₆	R/S	-	N ₆	60
6	Enter ply data (see note 1)	3	-	<u>-</u>	3
7	Enter [©] t	E	† R + Σ	^Θ t ^R t, ^R t ^σ t, ^σ t'	σ°¹

OPTIONS

*	For sandwich construction (see note 2)	Α'	CR	when prompter = c	
			SYM		i i
	Continue with step 4				

Notes:

- 1. Only one set of material properties, for either material 1 or material 2 may be kept in the storage registers at any one point in time. Therefore, to calculate the strength ratios and allowable stresses for a particular ply Θ_{t} , it is necessary to insure that the material properties correspond to the material that ply Θ_{t} is made from. Step 6 has the user enter these numbers using the pre-recorded ply data card described in program 1. This step can be emitted if a whole series of strength ratio calculations are to be performed for plies in one particular material. But the user is cautioned not to emit this step, if there is any doubt, to avoid large errors.
- 2. The number of equivalent plies of core material should be entered with material 2.

COMBO 40 HYBRID: IN-PLANE (PRT)
01234457744547845478461884557896128455780128444444557896000000000000000000000000000000000000
94 +7- 0 . 42 STO 35 35 01 1
099012045676769011204 1001100110069011204
03 3 06 4 5 06 4 5 07 03 0 07 03 0 07 03 0 08 0 08 0 08 0 08 0 08 0 08 0 08 0
012315015013314565500
05 03 10 3 10 3 10 3 10 3 10 3 10 3 10 3
n ⁽²⁾
01004567886104597886648645967888888888888888888888888888888888888
A

COMBO 4p HYBRID: IN-PLANE (PRT)	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** **	NVV . 1 = SL	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i(Θt) in=σ Gii Rt Rt -Aii
	295 71 SBR	[57 42 STD	1 416 71 SBR -76 19 16 417 90 LST 477 95 # 418 43 RCL 478 99 FRT	

LAMINATE: [0⁽¹⁾/90⁽²⁾]_s MATERIAL I: 1300/5208 MATERIAL 2: Scotchply 1002

PROCEDURE	KEY	PRINT	PROCEDURE	KEY	PRINT
			ENTER N1	D	ta .
			N ₂		1.755 EA
			N ₆		
			ENTER 0 t	Ε	•
Enter n ⁽¹⁾	Α		PRINT R _t		,
	ľ	10-01	-		9 - 2 0 - 2 - 3 - 3 - 3 - 2 - 7 - 3 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 3
Enter 1	R/S	1. 4 ±	R't o°		
Enter n ⁽²⁾		<u>.</u>	σ° '		기(18) 1월 1 (18) 개발된 (유민 18)
Enter n'-/	В		ENTER Ot.	Ε	
Enter ∂₁	R/S		t		£0.40 II
·	-		PRINT R _t		F + 1
PRINT A _{ij}	С	e Processor Sugar	Rt		9 4 1 1 78 1 57 10 8 6 73 1 50 8 10 0
<u>.</u>		47 55: 36 13:178 36 3:278 36 3:327 36 3:327 36 1:170 30	σ °		357.314 06
		2.327 Ge 6.500 A6	σ°¹		1.357 09
			1		
PRINT a _{ij}		11. 68-44 84.119-48	each ma	teria	use pre-recorded data card for 1 to insure that the correct
		51 1 5 95 -1. 14 1 50 151 5 - 0 9	materia	ı pro	perties are in storage.
		000,000 000 0.000 00 0.000 00			
PRINT E;	-	ા. શાજુ થાજુ			
rkiki Li		E + 유수, 5 41 - 없연			
		24.689 09 102.578-05			
		5.555 09			
PRINT Atj		F+ ≒€ .01 00			
		35,701 00 24,755 00 24,756 04			
		3.539 09 5.655 09 000 00			
		6.000 00			

LAMINA	Γ Ε: [0	2 ⁽¹⁾ /90 ₁ ⁽²⁾] _s MATERIA	L 1: T300/520	8	MATERIAL 2: Scotchply 10
PROCEDURE	KEY	PRINT	PROCEDÙRE	KEY	PRINT
			ENTER N ₁	D	N
	1		N ₂		18 1.77% 4位 1.47% 4位 1.47% 4位
	1 1		N ₆		. <u></u> 11 fc
Enter n (1)	А	The second second	ENTER ⊙ _t 1	Ε	. 6.61
	1 1	**. ≠ 15 1.	PRINT R _t		
inter 0 ₁ 0 ₂	R/S R/S		· ·		# = 1 127
`2		1.1. 12 E 12 E 1.1. 1	R't o°		
nter n ⁽²⁾	В	4.]	ر» ۱ م		94004 <u>25</u> 66 14146 69
	}	Mark St. Mark	ENTER O, 1	E	
Enter 1	R/S				ri, üli E
PRINT A _{i,i}	c		PRINT R _t		F 1
rkini Aij		1 1 1 1	R't		350.030 03 1.19 0€
	1 1	4 1 1 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	σ°		467.383 0H 1.772 09
	1 1		σ°'		1.772 09
	\sqcup		1 _{Remember}	• to 1	use pre-recorded data card for
PRINT a _{ij}	1 1	14. 8.46. 57.114.60 6.407-04 21451-04 7.510-54 0.450-01	each mat	:erial	to insure that the correct perties are in storage.
	1 1	21. U 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		F1	in the second se
	} }	ને કેંદ્રે હો	1		
PRINT E;	I	\$ - 1 2 1 4 5 0 1 9 1			
•	1	141년 5월 1일 1일 1일 1	1		
		îfe.2+6 69 171.119+81 +.360 99	1		
PRINT A*j	H	é -	· ·		
· ····································		124. U5 69 19.753 09	1		
		교. 6등은 0분 87 16인 0분			
		6,166-06 6,690-06			
	1 1		1		ŧ

 LAMINATE:
 [90(1)/0(2)]_S
 MATERIAL I: T300/5208
 MATERIAL 2: Scotchply 1002

 PROCEDURE
 KEY
 PRINT
 PROCEDURE
 KEY
 PRINT

PROCEDURE	KEY	PRINT	PROCEDÛRE	KEY	PRINT
			ENTER N ₁	D	N . css ss
	}		N ₂		1.000 00 0.000 00
!	[[N ₆		0.660 00
			ENTER ⊕ _t 1	E	† 30.000 00
Enter n ⁽¹⁾	А	≈1 2.050 00	PRINT R _t		P÷I 48.000-03
Enter ⊙ ₁	R/S	80,200 6 7 5 7	R't o°		292.517 03
Enter n ⁽²⁾	В		σ° '		35.599 06 585.834 06
2.7561 17		n≧ 1ch ed	ENTER Ot	Ε	† 0,400 o c
Enter ្ ₁	R/S	6.830 0 0 874	PRINT R _t	-	F:+ T
PRINT Aij	С	er Tombo en L	R¦		230,498 00 360,094 03
		47,851 06 1,270 06	σ °		460.99 <u>6</u> 06
		6 (1.378 06 47.55: 06 (3.370 06 (1.337 06 (4.337 00 (4.338 00	σ°¹	<u></u>	720,187 06
PRINT a _{ij}	-	59, 708 - QH	l Remembe each ma	r to teria	use pre-recorded data card for I to insure that the correct
~		21,048-09			perties are in storage.
		-2,160-09 351.660-09 7.660-00 6.600-00			
PRINT E	T	Ē-	:		
İ		04.:39.09 94.641.09 36.702-03			
		5.655 09			
PRINT Atj		5+ 24.757 09			
		95.:01 09 1.539 09	1		
1		5.155 09 U. 600 00			
I	1	0.000 00	L		

LAMINATE: [04(1)/904(2)]s MATERIAL I: T300/5208 MATERIAL 2: Scotchply 1002

PROCEDURE	KEY	PRINT	PROCEDURE	KEY	PRINT
Enter n ⁽¹⁾	А	N1 8.000 00	ENTER N ₁ N ₂ N ₆	D	h 1,000 00 0,000 00 0,000 00
Enter 01 02 03 04	R/S R/S R/S	0,000 0 0 0,000 0 0 0,000 0 0	ENTER ⊖ _t 1	Е	1 0.160 00
	R/S	0.000 00 9014	PRINT R _t		6⊤1 1.418 06 1.890 06
Enter n ⁽²⁾	В	N2 8.000 C1	σ°		739.152 06 995.096 05
Enter 0 ₁ 0 ₂ 0 ₃ 0 ₄	R/S R/S R/S R/S	90.000 00 90.000 00 90.000 00 90.000 00	ENTER ⊕ _t 1	Ē	90.000 00
PRINT A _{ij}	С	178 8 190.188 06	PRINT R _t R¦		840 714,508 00 2.714 06
		49.513 Ob 5.079 Ob 11.310 Ob 0.000 OO	σ° '	 	257.114 06 1. 57 02
PRINT a _{ij}		0.000 00 5.272-09 20.052-09 -540.762-12 08.017-09 0.000 00 0.000 00	each ma	teria	use pre-recorded data card for il to insure that the correct operties are in storage.
PRINT E		8:4 94,747,094 24,439,094 102,570-003 5,555,099	,		
PRINT A _{ij}		9%, 101 09 24,157 09 3,579 09 5,655 09 0,000 00 0,000 00			

LAMINATE: [02(1)/902(2)/c2]s MATERIAL 1: T300/5208 MATERIAL 2: Scotchply 1002

PROCEDURE	KEY	PRINT	PROCEDURE	KEY	PRINT
			ENTER N ₁	D	**
			N ₂		# 1944 원 왕 전 왕
Enter n ⁽¹⁾	А	#41 4.10€ 0€	N ₆		
			ENTER ⊖ _t]	Ε	.e = ¹
Enter ⊖ ₁ Enter ⊃ ₂	R/S R/S		PRINT R _t		# + 2 # 1/2
1			Rt		en de la companya de La companya de la co
Enter n ⁽²⁾	В		τ σ°		, magazini engaga
]			σ°'		
Enter 0 ₁ 0 ₂	R, S R/S ∴ A'		ENTER Ot.	E	·
	Α.				- * ,
PRINT A _{ij}	С	- 1	PRINT R _t		9 - 1 957, 15 1 1, 15 95
rkini Ajj		95.101 66 24 757 84	R¦		1.1:7 0:
			σ°		330.309 Ok 904.679 Ok
		1	σ°'	<u> </u>	
			¹ Remembe	r to	use pre-recorded data card for
PRINT a _{ij}		10,544-09 40,564-09	each ma	teria	1 to insure that the correct perties are in storage.
İ		-1.082-09 176.335-09 0.000-00 0.000-00	1		
		0.300 01			
PRINT E'		Ε×			
		63.227 09 16.459 09			
		102, 570+07 3, 770-05			
PRINT A*ij	 	A÷			
13		69 401 09 16,504 09			
		1.693 09 3.770 09			
		0,000 00 0,000 00			
			<u> </u>		

NOTES

COMBO #4
HYBRID: IN-PLANE STIFFNESS AND STRENGTH

COMBO #4 HYBRID: IN-PLANE STIFFNESS AND STRENGTH

A' core	B' C'	a _{ij} D' A*	E' a*ij
A material 1 n(1), 0(1)	B material i C (i), O(i)	D N _i → ε _i	E ot + Rt,oo
OO USED	15 A ₂₆ (i)	30 _{U1} (i)	45 Gyy(i)
OI USED	Ι6 ΣΑ ₁₁ (i), a ₁₁ , G _{xx} (i	31 _{U2} (i)	46 $G_{xy}^{(i)}$
O2 USED	1 7 ΣA ₂₂ (i),a ₂₂ ,G _{yy} (i	32 _{U3} (i)	47 _{Gss} (i)
O3 USED	18 _{ΣA₁₂(i), a₁₂, G_{xy}(i}	1 / · \	48 G _x (i)
O4 USED	Ι 9 _{ΣÅ66} (i),a ₆₆ ,G _{ss} (i		49 Gy ⁽ⁱ⁾
05 n ⁽ⁱ⁾ , c	20 _{EA16} (i),a ₁₆ ,G _x (i)	35 Θ	50
06 R _t	21 _{ΣA₂₆(i),a₂₆,G_y(i)}		51
07 _{Rt'}	22 _A	37 v ₁ (i)	52
08 _{1/h}	23 ε _i	38 _{V3} (i)	53 p
09 h	24 ε ₂ °	39 V ₂ ⁽ⁱ⁾ , USED	54 q
10 A ₁₁ (i)	25 _{ε6}	40 V ₄ ⁽ⁱ⁾	55 r
11 A ₂₂ (i)	26 N ₁ , 0	41 ₀	56 USED
12 A ₁₂ (i)	27 N ₂ , 0	42 USED	57 USED
13 A ₆₆ (i)	28 N ₆ , 0	43 USED	58 USED
14 A ₁₆ (i)	29 USED	44 G _{xx} (i)	59 h _o

AFWAL-TR-81-4183

COMBO #4 HYBRID: IN-PLANE STIFFNESS AND STRENGTH

STEP	PROCEDURE	PRESS	DISPLAY/PROMPTER
0	Enter ply data #1	3	3
la	Enter n ⁽¹⁾	А	n/2
Ь	Θ ₁ .	R/S	n/2 - 1
С	^Θ 2	R/S	n/2 - 2
	÷		÷
	[⊖] n/2 - 1	R/S	i
}	[⊖] n/2	R/S	0
2	Enter ply data #2	3	3
3a	Enter n ⁽²⁾	В	n/2
b	⁹ 1	R/S	n/2 - 1
С	[©] 2	R/S	n/2 - 2
1:			
	[⊖] n/2 - 1	R/S	i
*	⁹ n/2	R/S	0
4 **	Compute E°i	C,R/S	E ₁ ,E ₂ ,v ₂₁ ,E ₆ ,6.1
5	Enter N ₁	D	6.2
	N ₂	R/S	6.6
	N ₆	R/S	60

COMBO #4 CONTI-NUED

STEP	PROCEDURE	PRESS	DISPLAY/PROMPTER
6	Enter ply data (see note 1)	3	3
7	Enter ⊙ _t	E	Rt
		R/S	R't
		R/S	$\sigma^{f \circ}_{f t}$
•	j	R/S	σ <mark>°</mark> '
		R/S	60
		1	
1	L	l	L

OPTIONS

*	For sandwich construction (see note 2) continue with step 4	- A'	when prompter = c 0
**	Calculate A _{ij}	В'	A ₁₁ , A ₂₂ , A ₁₂ , A ₆₆ , A ₁₆ , A ₂₆ , 6.1
	^a ij	C'	a ₁₁ , a ₂₂ , a ₁₂ , a ₆₆ , a ₁₆ , a ₂₆ , 6.1
	A [*] ij	D۱	$A_{11}^{*}, A_{22}^{*}, A_{12}^{*}, A_{66}^{*}, A_{16}^{*}, A_{26}^{*}, 6.1$
	a* ij	E'	a ₁₁ , a ₂₂ , a ₁₂ , a ₆₆ , a ₁₆ , a ₂₆ , 6.1

Notes:

- 1. Only one set of material properties, for either material 1 or material 2 may be kept in the storage registers at any one point in time. Therefore, to calculate the strength ratios and allowable stresses for a particular ply Θ_{\star} , it is necessary to insure that the material properties correspond to the material that ply Θ_{\star} is made from. Step 6 has the user enter these numbers using the pre-recorded ply data card described in program 1. This step can be emitted if a whole series of strength ratio calculations are to be performed for plies in one particular material. But the user is cautioned not to emit this step, if there is any doubt, to avoid large errors.
- 2. The number of equivalent plies of core material should be entered with material 2.

	COMBO 4	4	HYBRID: IN-PLANE	¥
070 g., 774 g.g. 20	125 225 157 158 158			
្រ ខាគាល់ ជា បានក្រាស់ ម៉ា ព្រះបញ្ជាប់ ប្រសាស់ បានប្រជាពី បានប្រាស់ ប្រែក្រាស់ បានប្រាស់ បានបានបានបានបានបានបា ប្រជាពី បានបានបានបានបានបានបានបានបានបានបានបានបានប	21 78 91 91 18	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Book of the first to the first form	
TO CREVE SERVO TRANSMORRIZED F C F F F F F S S F SSD S S F SSD	AB COTO		A B B B C B C B C B C B C B C B C B C B	400 con
h n/2= t				n ⁽¹⁾
100				
ស្ថិត្ត ព្រះប្រជាពលក្រមួយ ប្រជាពលក្រុម បានបានបានបានបានបានបានបានបានបានបានបានបានប		11 21 21		
PGM 280 BL LBL BC L6 BC	13 12M 138 FCL			
n ⁽²⁾			Vid Aij (i) ΣAij	C
100 1 2 3 1 1 2 3 1 1 2 3 3 2 3 3 3 3 3 3 3	124 147 143 143			
1	A Code to the Code			A section of the fact of the Box Box Box Box Box Box Box Box Box Box
FR 100100 LB 100100 LB 6.18 201	FOL			
V ,		Aij		
NO NO NOTE: CONTROL OF THE CONTROL O		1		
5-453430000040400				The second secon
10	된 급선 	F () (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
† ⊖ ⊖ _t	p, q, r,	Ε°	Aij	N² N ⁶

HYBRID: IN-PLANE COMBO 4

The second secon

FILMED Second S