Θεώρημα 0.0.1. Αν το $\mathbb N$ χρωματιστεί πεπερασμένα τότε υπάρχουν a και d τέτοιοι ώστε οι a και $a+d^2$ να έχουν το ίδιο χρώμα.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Ορισμός 0.0.2. Λέμε ότι ένα σημείο a_i είναι συσχετισμένο με το a αν $a_i - a = d_i^2$ για κάποιον d_i .

Ορισμός 0.0.3. Λέμε ότι ένα σημεία a_1, a_2, \ldots, a_r είναι χρωματικά συσχετισμένα με το a αν κάθε a_i είναι συσχετισμένο με το a και τα a_i έχουν ανά δύο διαγορετικό χρώμα.

Ισχυρισμός: Για κάθε $r\leqslant k$ υπάρχει $N=N(k,r)\in\mathbb{N}$ τέτοιος αν το [N] χρωματιστεί με k χρώματα θα ισχύει το εξής: Το [N] περιέχει σημεία a και $a+d^2$ που έχουν το ίδιο χρώμα ή το [N] περιέχει σημείο a και σημεία a_1,a_2,\ldots,a_r τα οποία είναι χρωματικά συσχετισμένα με το a.

Παρατήρούμε ότι αν ο ισχυρισμός είναι αληθής το Θεώρημα είναι μία άμεση συνέπεια του. Πράγματι θέτοντας r=k βρίσκουμε $N(k,k)\in\mathbb{N}$ τέτοιο ώστε να ισχύει μια εκ των δύο περιπτώσεων του ισχυρισμού. Στην πρώτη περίπτωση το συμπέρασμα είναι άμεσο και στην δεύτερη από την Αρχή του Περιστερώνα προκύπτει ότι το a έχει το ίδιο χρώμα με κάποιο a_i και έχουμε το ζητούμενο.

Απόδειξη Ισχυρισμού: Με επαγωγή στο r. Για r=1 μπορούμε να διαλέξουμε οποιονδήποτε $N\geq 2$. Τότε για a=1 και $a_1=2=a+1^2$ ο ισχυρισμός αληθεύει τετριμμένα. Υποθέτουμε ότι έχουμε βρει $N=N(k,r-1)\in\mathbb{N}$ που ικανοποιεί την υπόθεση μας για r-1. Θα δείξουμε ότι υπάρχει N' που ικανοποιεί την υπόθεση για το r.

Αρχικά χωρίζουμε το $\mathbb N$ σε μπλοχ μήχους N, έστω $B_s=\{(s-1)N+1,(s-1)N+2,\ldots,sN\}$ για $s=1,2,\ldots$ και θέτουμε $l=\lfloor 2\sqrt{N}\rfloor$. Παρατηρούμε ότι υπάρχουν μόνο k^N τρόποι να χρωματιστεί κάθε μπλοχ και συνεπώς μπορούμε να εφαρμόσουμε το γραμικό θεώρημα Van Der Waerden στα μπλοχ και να βρούμε άριθμητική πρόοδο΄ από μπλοχ $B_s, B_{s+t},\ldots, B_{s+lt}$ τα οποία έχουν χρωματιστεί όμοια. Διαλέγουμε τώρα N'=(s+lt)N, δηλαδή τέτοιο ώστε το [N'] να περιέχει όλα τα l το πλήθος μπλοχ. Μπορούμε να υποθέσουμε ότι το [N'] δεν περιέχει a και d τέτοιους ώστε οι a και $a+d^2$ να έχουν το ίδιο χρώμα καθώς τότε το συμπέρασμα θα ήταν άμεσο. Από την επιλογή του N προχύπτει ότι το μπλοχ B_s περιέχει σημείο a και r-1 χρωματικά συσχετισμένα με το a σημεία a_1,a_2,\ldots,a_{r-1} . Από την υπόθεση μας τα χρώματα των a,a_1,a_2,\ldots,a_{r-1} είναι διαφορετικά.

Ισχυρισμός 1: Τα σημεία a_i+2d_iNt για $1\leqslant i\leqslant r-1$ και το σημείο a είναι χρωματικά συσχετισμένα με το σημείο $a-(Nt)^2$.

Απόδειξη Ισχυρισμού 1: Αρχικά παρατηρούμε ότι

$$a_i + 2d_iNt - (a - (Nt)^2) = d_i^2 + 2d_iNt + (Nt)^2 = (d_i + Nt)^2$$

και

$$a - (a - (Nt)^2) = (Nt)^2$$
.

Έτσι τα σημεία ειναι συσχετισμένα με το $a - (Nt)^2$.

Στην συνέχεια παρατηρούμε ότι $a_i-a=d_i^2\leqslant N$ και άρα $2d_i\leqslant l$ συνεπώς το μπλοκ B_{s+2d_it} έχει χρωματιστεί όμοια με το μπλοκ B_s . Επίσης είναι εύκολο να δούμε ότι

$$B_{s+2d,it} = \{(s+2d,it-1)N+1, (s+2d,it-1)N+2, \dots, (s+2d,it)N\} = B_s + 2d,itN\}$$

και έτσι το σημείο a_i+2d_iNt έχει το ίδιο χρώμα με το στοιχείο a_i . Άρα τα σημεία a_i+2d_iNt για $1\leqslant i\leqslant r-1$ καθώς και το a έχουν διαφορετικά χρώματα. Έτσι δείξαμε ότι τα r σημεια a_i+2d_iNt και a είναι χρωματικά συσχετισμένα με το σημείο $a-(Nt)^2$ και η απόδειξη του Ισχυρισμού 1 ολοκληρώθηκε.

Παρατήρηση: Στην απόδειξη παραπάνω έχουμε υποθέσει ότι ο $a-(Nt)^2$ είναι θετικός. Στην περίπτωση που δεν είναι, υπάρχει θετικός M τέτοιος ώστε $a-(Nt)^2\geq -M$ και η παραπάνω κατασκευή μπορεί να γίνει για τα μπλοκ $B_s'=M+B_s$ εξασφαλίζοντας με αυτόν τον τρόπο ότι ο $a-(Nt)^2$ είναι θετικός .

 ${\rm A}$ πό τα παραπάνω έπεται άμεσα ο Ισχυρισμός και κατ΄ επέκταση και το Θεώρημα.