NOTAS DE PROCESSAMENTO DIGITAL DE SINAIS

EEL7522 Segundo Semestre Letivo de 2020

> Aluno: Leonardo José Held Professor: Dr. Joceli Mayer

Departamento de Engenharia Elétrica e Eletrônica Curso de Graduação em Engenharia Eletrônica Universidade Federal de Santa Catarina Brasil

Conteúdo

1	Mó	dulo 1
	1.1	Introdução
		1.1.1 Objetivos
		1.1.2 Exemplos e aplicações
		1.1.3 Classificação em dimensões 4
	1.2	Conceitos Básicos de Sinais Discretos
		1.2.1 Representação
	1.3	Operações em sequências
		1.3.1 Operações básicas
		1.3.2 Alteração de taxa de Amostragem 8
	1.4	
		1.4.1 Simetria
		1.4.2 Periodicidade
		1.4.3 Energia
		1.4.4 Delimitação
	1.5	Relações úteis
	1.6	Processo de Amostragem
	1.7	Alguns Sistemas
		1.7.1 Sistema Acumulador
		1.7.2 Sistema Média Móvel

	1.7.3	Sistema Média Móvel Exponenci-		
		almente Ponderado	13	
	1.7.4	Interpoladores	13	
	1.7.5	Filtro Mediana	14	
1.8	Classif	icação de Sistemas Discretos	14	
1.9	Soma o	de Convolução	15	
1.10	Interconexão de Sistemas			
1.11	Estabilidade de Sistemas LIT			
1.12	Causalidade em Sistemas LIT			
1.13	Classes de Sistemas LTI			
	1.13.1	Equação Linear de Diferenças a		
		coeficientes Constantes	17	
	1.13.2	Pelo Comprimento da Resposta		
		ao Impulso	17	
1.14	Correla	ação de Sinais	18	

Capítulo 1

Módulo 1

1.1 Introdução

1.1.1 Objetivos

• Estudo de sinais e como podem ser utilizados para transmitir, armazenar e processar informação na forma digital.

1.1.2 Exemplos e aplicações

- Exemplos de sinais: ECG, voz. Sinais geralmente dependem do tempo mas podem ter dependência em outras variáveis.
- Possibilidade de vários sensores, gerando informação multidimensional.
- Um exemplo de sinal multi(bi-)dimensinal é uma imagem monocromática, onde cada ponto tem duas coordenadas posicionais que servem de input para uma função que indica a luminosidade daquele ponto

específico.

Intensidade(x, y)

• Outro exemplo é uma foto colorida, que é um sinais bi-dimensional, só que com três canais de cores (como em RGB) sobrepostos.

$$R(x,y) + G(x,y) + B(x,y)$$

• Um vídeo é outro sinal mas com dependência temporal adicionada

$$R(x, y, t) + G(x, y, t) + B(x, y, t)$$

1.1.3 Classificação em dimensões

- Sinais, neste escopo, podem então ser classificados em dimensionalidade e número de canais (canais estes que dependem de variáveis).
- Sinais podem ser discretos ou contínuos.
- Sinais discretos são definidos apenas para certos pontos na variável dependente.
- Um sinal contínuo é definido para todos os pontos na variável dependente.
 - Sinal Amostrado vs. Sinal Digital:
- Sinal Amostrado: discreto no tempo **contínuo em amplitude**.

• Sinal Digital: discreto no tempo discreto em amplitude.

O sinal Digital é um sinal Amostrado e quantizado para apenas seletos possíveis valores de amplitude.

• Vale notar que o sinal digital pode ter n quantas de amplitude.

1.2 Conceitos Básicos de Sinais Discretos

1.2.1 Representação

• Sinais são representados por sequências de amostras (números).

$$Sinal = \{x[n]\}, n \in \mathbb{N}$$

• x[0], numa representação por sequência deve ser indicada por uma flecha.

$$x[n] = -1, -2.2, 2_{\uparrow}, 3, 56$$

• Um sinal contínuo pode ser amostrado no tempo, sendo representado por

$$x[n] = x_a(t)_{t=nT} = x_a(nT)$$

Onde T denota o período de amostragem. A frequência de amostragem F_t é o inverso do período.

• Sinal Complexo:

$$\{x[n]\} = \{x_{re}[n]\} + \{x_{im}[n]\}$$

A sequência conjugada é a conjugação de cada termo da sequência.

- Sequências podem ser finitas ou infinitas.
- Seja a sequência finita x[n] definida para o intervalo $N_1 \leq n \leq N_2$, então o comprimento do intervalo será $N_2 N_1 + 1$.
- O comprimento da sequência pode ser alterado adicionando zeros.

1.3 Operações em sequências

• Tamanho do sinal pode ser definido usando representação no espaço L_p :

$$|x|_p = \left(\sum_{n=-\infty}^{\infty} |x[n]|^p\right)^{\frac{1}{p}}$$

onde p=2 dá o RMS do sinal, p=1 é o valor médio absoluto e $p=\infty$ é o valor absoluto de pico da sequência.

1.3.1 Operações básicas

• Modulação em amplitude:

$$y[n] = x[n] \cdot w[n]$$

Essencialmente o uso da amplitude de um sinal para escalar ou modular a amplitude do outro.

• Adição:

$$y[n] = x[n] + w[n]$$

• Multiplicação:

$$y[n] = A \cdot x[n]$$

Um ganho no sinal.

• Deslocamento no tempo:

$$y[n] = x[n - N]$$

Para N>0, atraso Para N<0, avanço

• Reversão:

$$y[n] = x[-n]$$

Como algumas operações requerem um comprimento igual das sequências, pode-se encher a menor com zeros afim de aplicar as operações.

• Ensemble Average:

Seja d_i um vetor de ruído aditivo aleatório interferindo na i-ésima medida s de algum dado

$$x_i = s + d_i$$

$$\bar{x} = \frac{1}{K} \sum_{i=1}^{K} x_i = \frac{1}{K} \sum_{i=1}^{K} s + d_i = s + \frac{1}{K} \sum_{i=1}^{K} d_i$$

O termo s sai do somatório dado que

$$\sum_{i=1}^{K} s = K \cdot s$$

assumindo que seja um sinal totalmente reprodutível.

1.3.2 Alteração de taxa de Amostragem

- Adaptar a taxa para interconectar sistemas. Seja uma sequência x[n] com uma TA F. Quer-se adaptar essa taxa gerando um novo sinal y[n] com TA F'.
- Pode se definir uma Razão de Alteração

$$R = \frac{F'}{F}$$

Se R > 1, tem-se interpolação.

Se R > 1, tem-se decimação.

• Interpolação:

Por fator inteiro L>1: Inserção de L-1 amostras com valor zero entre cada ponto da sequência já estabelecido. Um upsampling.

• Decimação:

Por fator inteiro M>1: Remoção de M-1 amostras entre cada duas consecutivas da sequência já estabelecida.

Literalmente matar amostras de maneira periódica.

1.4 Classificação de sinais

1.4.1 Simetria

• Sequência conjugada-simétrica:

$$x[n] = x^{\star}[-n]$$

e se x[n] for real

$$x[n] = x^{\star}[-n] = x[-n]$$

o que implica em x[n] ser par.

• Sequência conjugada-antisimétrica:

$$x[n] = -x^{\star}[-n]$$

e se x[n] for real

$$x[n] = -x^{\star}[-n] = -x[-n]$$

o que implica em x[n] ser ímpar.

Qualquer soma pode ser escrita pela soma das suas partes conjugada-simétria e antisimétrica.

1.4.2 Periodicidade

• Se x[n] = x[n + kN] para N inteiro positivo, k inteiro, então é um sinal periódico. O menor N que satisfaça a equação é o período fundamental.

1.4.3 Energia

- Sinal com energia infinita e potência média finita
 → sinal de potência.
- Sinal com energia finita e potência média nula → sinal de energia.

1.4.4 Delimitação

- Limitação em amplitude se existe uma faixa delimitada de amplitudes.
- Uma sequência é absolutamente somável se

$$\sum_{n=-\infty} \infty$$

1.5 Relações úteis

$$\delta[n] = u[n] - u[n-1]$$

lacktriangle

$$u[n] = \sum_{m=-\infty}^{n}$$

•

$$x[n]\delta[n - n_0 = x[n_0]\delta[n - n_0]$$

• Para se ter um sinal **discreto** periódico, é necessário que

$$\omega_0 N = 2\pi r$$

Nem sempre existem N e r tal que essa relação será comtemplada.

1.6 Processo de Amostragem

• Sinal de tempo discreto é gerada a partir da amostra de um sinal de tempo contínuo da seguinte forma:

$$x[n] = x(nT)$$

Quando $t = t_n = nT$ implica em

$$t_n = \frac{n}{F} = \frac{2\pi n}{\Omega}$$

Onde F denota a frequência de amostragem.

 Duas sequências exponenciais podem gerar as mesmas amostras se

$$\Omega_1 = \Omega_0 + 2\pi k$$

- Aliasing: diferentes sinais contínuos geram o mesmo sinal discreto devido a baixa taxa de amostragem, gerando perda de informação. No espectro da frequência imbuí numa superposição de espectros.
- Para evitar aliasing, frequência de amostragem deve ser maior que a maior frequência do espectro do sinal a ser amostrado.

1.7 Alguns Sistemas

1.7.1 Sistema Acumulador

• Sistema análogo ao integrador no caso contínuo

$$y[n] = \sum_{l=-\infty}^{n} x[l] = \sum_{l=-\infty}^{n-1} x[l] = y[n-1] + x[n]$$

• Simplificação gera algoritmo rápido (basicamente mantendo uma cópia da soma realizada até o índice n-1).

1.7.2 Sistema Média Móvel

$$\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

Simplificando fica

$$y[n] = y[n-1] + \frac{1}{M}(x[n] - x[n-M])$$

1.7.3 Sistema Média Móvel Exponencialmente Ponderado

$$y[n] = \sum_{k=0}^{\infty} \alpha^k \cdot x[n-k]$$

$$y[n] = \alpha y[n-1] + x[n]$$

Uma versão generalizada do acumulador.

1.7.4 Interpoladores

Estimação de amostras entre duas amostras adjacentes.

A forma mais simples é um polinômio de ordem 1, aka uma reta.

Exemplo de interpolador de fator 2:

$$y[n] = x[n] + \frac{1}{2}(x[n-1] + x[n+1])$$

Claramente dá pra observar que é realizada a inserção da amostra n faltante pela média das amostras adjacentes.

1.7.5 Filtro Mediana

Definition 1. A mediana de um conjunto de 2K + 1 valores é o valor que fica entre K números maiores que ele mesmo e K números menores que ele mesmo.

Ou seja: ordenando os valores por amplitude, o valor do exato meio é a mediana.

O filtro mediana é utilizado pra retirar spikes do sinal. Os spikes (valores altos) vão pras extremidades e potencialmente podem ser retirados.

1.8 Classificação de Sistemas Discretos

Lineares, Invariantes, Causal, Estável, Passíveis e Sem Perdas.

• Linear: se a soma das saídas for a soma das entradas passadas pelo sistema. Acumulador é linear, mediana é não linear.

• Invariantes: indepente de quanto a entrada foi aplicada no sistema.

$$x[n] = x_1[n - n_o] \rightarrow y[n] = y_1[n - n_o]$$

Ou seja, não importa quando a entrada x_1 foi aplicada, a saída vai ser exatamente a mesma, só que deslocada.

• Causal: se chutou e gritou, é causal. Se gritou e chutou, não.

A saída do sistema em N só depende das entradas até N, e não de entradas futuras.

- Estável: BIBO, bounded input, bounded output.
- Passível: a saída possuí no máximo a mesma energia da entrada.
- Lossless: mesma coisa que o passível, mas a energia da saída é exatamente a mesma da entrada.

1.9 Soma de Convolução

$$x[n] = \sum_{k=\infty}^{\infty} x[k]d[n-k]$$

1.10 Interconexão de Sistemas

Se em cascata e $h_1[n]*h_2[n] = \delta[n]$, então $h_1[n]$ é sistema inverso de $h_2[n]$.

Em cascata convoluí, em paralelo soma.

1.11 Estabilidade de Sistemas LIT

Para verificar estabilidade (e outras propriedades) de um sistema LIT, basta verificar sua resposta ao impulso.

Estabilidade no sentido BIBO (bounded input, bounded output)

É estável nesse sentido se a soma das amostras geradas pela resposta ao impulso for finita (então, se for monotonamente decrescente ou alternadamente decrescente, uma sequência que não explode)

$$S = \sum_{n = -\infty}^{\infty} |h[n]| < \infty$$

1.12 Causalidade em Sistemas LIT

Definição de um Sistema Causal: SÓ GRITA SE CHUTAR.

No instante n não usa amostras anteriores a n para calcular a saída.

Matematicamente, é possível observar causalidade se

$$h[k] = 0$$
, para $k < 0$

O 0 do sistema também pode estar deslocado, então, generalizando

$$h[k-t_0] = 0 \text{ para } k < t_0$$

1.13 Classes de Sistemas LTI

1.13.1 Equação Linear de Diferenças a coeficientes Constantes

$$\sum_{k=0}^{N} d_k y[n-k] = \sum_{k=0}^{M} p_k x[n-k]$$

Com ordem do sistema dada por MAX(N,M) Se o Sistema for Causal e rearranjando os termos

$$y[n] = -\sum_{k=1}^{N} \frac{d_k}{d_0} y[n-k] + \sum_{k=0}^{M} \frac{p_k}{d_0} x[n-k]$$

1.13.2 Pelo Comprimento da Resposta ao Impulso

• FIR

$$h[n] = 0, N_1 < n < N_2$$

com soma de Convolução

$$y[n] = \sum_{n=N_1}^{N_2} h[k]x[n-k]$$

• IIR

Comprimento infinito.

• Sistemas Recursivos

Envolve amostras passadas, presente e amostras passadas da saída.

1.14 Correlação de Sinais

Comparação entre sinal de referência e sinal recebido. Ou pra detectar atraso de transmissão.

A métrica de similaridade é dada pela sequência de correlação cruzada

$$r_{xy}[l] = \sum_{n=-\infty}^{\infty} x[n]y[n-l]$$

l inteiro, denominado "lag".

Essa operação não é comutativa, e a saída vai ser revertida no tempo

$$r_{xy}[l] = r_{xy}[-l]$$

Possível também calcular a Sequência de Correlação

$$r_{xx} = \sum_{n=-\infty}^{\infty} x[n]x[n-l]$$

Essa soma é igual uma convolução com o sinal do termo invertido, invertido. Logo, é possível expressar como convolução se

$$r_{xy}[l] = x[l] * y[-l]$$

passando por um sistema com resposta ao impulso h[n] = y[-n]

Fazendo o determinante da matriz de correlação de dois sinais se obtém

$$r_{xx}[0] \cdot r_{yy} - r_{xy}^2[l] \ge 0$$

ou

$$|r_{xy}[l]| \le \sqrt{r_{xx}[0] \cdot r_{yy}[0]}$$

Onde $r_{yy}[0], r_{xx}[0]$ são as energias de cada sinal. Se y[n] = x[n]

$$|r_{yx}[l]| \le r_{xx}[0]$$

Pode ser utilizado pra detectar período em sinais com ruído aditivo, já que a combinação da correlação do ruído com os outros sinais vai ser pequena.