Homework 5

- 5.1.1) There can be 4 32-bit integers in a 16-byte cache line because $16*8 = 128 \rightarrow 128/32 = 4$
- 5.1.2) Variables I and J and B[I][O] are used consistently so they exhibit temporal locality.
- 5.1.3) A[J][I] and A[I][J] change with J so it exhibits spatial locality.

5.2.1)

Reference	Binary Word Address	Tag	Index	Hit or Miss
0x03	00000011	0	3	Miss
0xb4	10110100	В	3	Miss
0x2b	00101011	2	В	Miss
0x02	00000010	0	2	Miss
0xbf	10111111	В	F	Miss
0x58	01011000	5	8	Miss
0xbe	10111110	В	Е	Miss
0x0e	00001110	0	Е	Miss
0xb5	10110101	В	5	Miss
0x2c	00101100	2	С	Miss
0xba	10111010	В	A	Miss
0xfd	11111101	F	D	Miss

5.2.2)

Reference	Binary Word Address	Tag	Index	Offset	Hit or Miss
0x03	00000011	0	1	1	Miss
0xb4	10110100	В	2	0	Miss

0x2b	00101011	2	5	1	Miss
0x02	00000010	0	1	0	Hit
0xbf	10111111	В	7	1	Miss
0x58	01011000	5	8	0	Miss
0xbe	10111110	В	Е	0	Hit
0x0e	00001110	0	Е	0	Miss
0xb5	10110101	В	5	1	Hit
0x2c	00101100	2	С	0	Miss
0xba	10111010	В	5	0	Miss
0xfd	11111101	F	6	1	Miss

- 5.3.1) The block size in words is 32 because $2^5 = 32$
- 5.3.2) Cache has 32 entries because $2^5 = 32$ with 5 blocks
- 5.3.3) 704 bits because 32*22 = 704

$$5.6.1) P1 = 1/0.66 = 1.515 GHz$$

$$P2 = 1/0.9 = 1.11 \text{ GHz}$$

$$5.6.2$$
) P1 = $0.66 + (0.08 * 70) = 6.26$ ns

$$P2 = 0.9 + (0.06 * 70) = 5.1 \text{ ns}$$

$$5.6.3) P1 = 1 + ((0.08 * 70) / 0.66) * 0.36 = 4.054 CPI$$

$$P2 = 1 + ((0.06 * 70) / 0.9) * 0.36 = 2.68 \text{ CPI}$$

P2 is faster because it has less CPI

5.12.1) PTE's for a single level page table = $2^43/2^12 = 2^31$ PTE's

 2^3 3 bytes needed to store the page table because $2^31*2^2 = 2^3$ 3