Algorithm Family	Cryptosystems	Security Level (bit)			
		80	128	192	256
Integer factorization	RSA	1024 bit	3072 bit	7680 bit	15360 bit
Discrete logarithm	DH, DSA, Elgamal	1024 bit	3072 bit	7680 bit	15360 bit
Elliptic curves	ECDH, ECDSA	160 bit	256 bit	384 bit	512 bit
Symmetric-key	AES, 3DES	80 bit	128 bit	192 bit	256 bit

Elliptic Curves

General Eq. $y^2 + b_1 xy + b_2 y = x^3 + a_2 x^2 + a_2 x + a_3$

Elliptic curves on real no-

y² = x³ + az +b — 1

a 4 b are real constants

(1) us also called Weverstrass equation of characterstic zero

Discriminant et a Polynomial et degree n: Product et squares of difference of polynomial roots- $D_{\eta} = \frac{\pi}{(r_i - r_j)^2}$ r's are roots of the polynomial-In case of a polynomial of degree 5 $D_3 = (r_1 - r_2)^2 (r_1 - r_3)^2 (r_2 - r_3)^2, \quad r_1, r_2, r_3 \text{ are}$ roots of the poly If $\Omega_{n}=0$ then the poly. (P_{n}) is called singular and U $\Omega_{n}\neq 0$ " " " non-singular If Dn=0 > A polynomial P is non-sugular if all of its roots are distinct. whose RHS is a non-singular In Cryptography we use ECs polynomal Note: Let $P = x^3 + ax + b$ then $\mathfrak{D} = -15(4a^3 + 27b^2)$ \Rightarrow P 40 non-singular if $4a^3 + 27b^2 \neq 0$ EC are sym. about 2-axis-Defining a Group. Set ' Let E(a,b) denotes the set of all points on the curve y2= 23+9x+b 1.e. E(a,b) = {(x,y) \in RKR | y^2 = x^3 + ax + b}

$$R = \left(\lambda^2 - z_1 - z_2 \quad \lambda(z_1 - z_3) - y_1\right)$$

where
$$\lambda = \frac{y_2 - y_1}{z_2 - z_1}$$

$$R = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1)$$

$$\lambda = \frac{3z_1^2 + a}{2d_1}$$

(iii) If
$$P = (x_1, y_1)$$
, $Q = (x_1, -y_1)$

Then, we define
$$R = 0$$

An imaginary possit

at inf.

(IV) If the tangent a point P has the slope 11/2 and Q = P then

$$P+Q=P+P=2P=P$$

Let E(a,b) also includes '0'.

(1) doied

(iv) 'O' 15 the identity

(iv) Inverse of P=(21, -42) -P=(21, -42).

```
Elliptic curve over Up (P>3)
  ECs over Zp (P>3) is the set of all points 2,y & Zp
  st' y^2 = (x^3 + ax + b) \mod p
   together with an imaginary point o at inf
    where a, 66 Zp & 4a3+2762 $0 mod p.
        E_{p}(a,b) = \{(x,y) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p} | y^{2} = 2 + ax + b, a, b \in \mathbb{Z}_{p}\} \cup \{0\}
 (Ep(a,b), +) is a group where + is define as follows.
P, Q, RE Ep (a, b) where P = (x_1, y_1) Q = (x_2, y_2), R = (x_3, y_3)

Then P + Q = R = ((x^2 - x_1 - x_2) \text{ mod } P, R(x_1 - x_3) - y_1) \text{ mod } P)
   where \lambda = \begin{cases} \frac{y_2 - y_1}{v_2 - v_1} & \text{mod } p, \\ \frac{3v_1^2 + v_2}{v_2 - v_1} & \text{mod } p, \end{cases} p = Q
   and of Q = (x_1, -y_1) then
                       P+Q=0
 and of the slope of the tangent at P 15 1/2 then
             P+P = P.
Ex. E<sub>13</sub> (1, 1)
             4x1^3 + 27x1^2 = 31 \text{ mbd}^2 + 27
  Let p = (3,10), Q = (9,7) Then
         P + Q? \lambda = \frac{7-10}{9-3} \mod 23 = \frac{-3}{6} \mod 23 = \frac{-1}{2} \mod 23
                        = (-1) 2 mod 28
                        = 11

\chi_3 = (\lambda - \chi_1 - \chi_2) \mod 23 = (11^2 - 3 - 9) \mod 23 = 17

\chi_3 = (17, 20)
```

 $y^2 = x^3 + 2x + 2 \mod 17$ P = (5,4) P+P = (6,3)2P = (5,1) + (5,1) = (6,3)11P = (13, 10)3P = 2P + P = (10,6)12P = (0,11)4P = (3,1)13P = (16,4)5P = (9, 16)14P = (9,1)15P = (3, 16)6P = (16, 13)-7P = (0,6)16P = (10, 11)8P = (13,7)17P = (6, 14)9P = (7,6)18P = (5, 16)10P = (7,11) $19P = \mathcal{O}$ No. of points Nin Ep(a,b) is bounded by P+1 - 25p < N < P+1+25p Thus, | Ep(a,b) | 2 | Zp | Thus, Ep(a, b) has app p elements.

Lecture-16 MC407 2020-21 Page 5