Suites et séries de fonctions

Vallaeys Pascal

16 avril 2024

1 Références:

Exercices de la banque CCINP: 8,9,10,11,12,13,14,15,16,17,18,27,48,53,54

Méthodes de base :

- Montrer la convergence uniforme d'une suite de fonctions.
- Montrer la convergence normale ou uniforme d'une série de fonctions.
- Montrer la continuité d'une fonction somme d'une série de fonctions.
- Montrer la dérivabilité (C^1) d'une fonction somme d'une série de fonctions.
- Intégrer terme à terme une série de fonctions sur un segment.

2 Exercices incontournables:

Exercice 1 : (Mines télécom MP 2022)

On pose :
$$f(x) = \sum_{n=0}^{+\infty} \frac{e^{-nx}}{1+n^2}$$
.

- 1. Donner le domaine de définition de f.
- 2. Montrer que f est continue sur son domaine.
- 3. Montrer que f est de classe \mathcal{C}^{∞} .
- 4. Donner le tableau de variation de f.
- 5. Donner la limite de f en $+\infty$.

Exercice 2 : (Mines télécom MP 2022)

Pour $n \in \mathbb{N}^*$, soit $f_n : x \mapsto \min\left(n, \frac{x^2}{n}\right)$, définie sur \mathbb{R} . Étudier la convergence simple et la convergence uniforme de la suite $(f_n)_n$ sur des ensembles à préciser.

Exercice 3: (CCINP MP 2022)

Soit $(a_n)_{n\in\mathbb{N}}$ une suite décroissante de réels positifs. On pose : $\forall x\in[0,1], \forall n\in\mathbb{N}, u_n(x)=a_nx^n(1-x)$.

- 1) Montrer la convergence simple de $\sum u_n$ sur [0,1].
- 2) Montrer que $\sum u_n$ converge normalement sur [0,1] si et seulement si la série numérique $\sum \frac{a_n}{n}$ converge.
- 3) Montrer que $\sum u_n$ converge uniformément sur [0,1] si et seulement si $\lim_{n\to+\infty} a_n = 0$.

Exercice 4: (Mines télécom PC 2021)

Soit la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définie par : $\forall x\in\mathbb{N}, \ \forall x\in\mathbb{R}, \ f_n(x)=\left\{\begin{array}{cc} 1+x^2\sin\frac{1}{nx} & \text{si} & x\neq 0\\ 0 & \text{sinon} \end{array}\right.$

- 1. Soit $(\alpha, \beta) \in \mathbb{R}^2$ tel que $\alpha < \beta$. La suite $(f_n)_{n \in \mathbb{N}}$ converge-t-elle uniformément sur $[\alpha, \beta]$?
- 2. La suite $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur \mathbb{R} ?

Exercice 5: (Mines télécom MP 2021)

Soit $f \in C^0([a,b])$ telle que tous ses moments sont nuls i.e. $\forall k \in \mathbb{N}, \int_a^b x^k f(x) dx = 0$

- 1) Rappeler le théorème de Stone-Weierstrass
- 2) Montrer que f est nulle

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

Si P est un polynôme, comment s'écrit $\int_a^b P(x)f(x) dx$?

Commentaires divers :

Du modérateur : il s'agit du "simple" théorème d'approximations de Weierstrass

Exercice 6: (IMT MP 2019)

Soit f une fonction de classe C^1 de [0,1] dans \mathbb{R} . Montrer qu'il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes telle que (P_n) converge uniformément vers f sur [0,1] et (P'_n) converge uniformément vers f' sur [0,1].

Exercice 7:

Soit α un réel. Pour tout entier naturel n, on définit $f_n: (0,1] \to \mathbb{R}$ $x \to n^{\alpha} x^n (1-x)$.

- a) Etudier la convergence simple de cette suite de fonction.
- b) Pour quelles valeurs du paramètre α cette convergence est-elle uniforme?

Exercice 8:

- On pose $f_n(x) = \frac{2^n \cdot x}{1 + n \cdot 2^n \cdot x^2}$. a) Etudier le domaine de convergence simple de la suite $(f_n)_{n \in \mathbb{N}}$. On note f la limite.
- b) Comparer $\lim_{n\to+\infty} \int_0^1 f_n$ et $\int_0^1 f$.
- c) Qu'en déduisez-vous en termes de convergence uniforme?

Exercice 9:

Soient $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites de fonctions convergeant uniformément vers des fonctions f et g supposées bornées.

- a) Montrer que $(f_n + g_n)_{n \in \mathbb{N}}$ converge uniformément vers f + g.
- b) Montrer que $(f_n g_n)_{n \in \mathbb{N}}$ converge uniformément vers fg.

Exercice 10 : Fonction zéta de Riemann

Pour tout réel x, strictement supérieur à 1, on pose $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

- a) Montrer que $\lim_{x\to 1^+} \zeta(x) = +\infty$.
- b) Montrer que $\lim_{x \to +\infty} \zeta(x) = 1$.
- c) Montrer que ζ est de classe C^{∞} et calculer ses dérivées successives.
- d) Etudier les variations de ζ .
- e) Montrer que ζ est convexe.
- f) Montrer que $\ln(\zeta)$ est convexe.

Exercice 11:

On suppose qu'une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ de [a, b] vers \mathbb{R} converge uniformément vers f continue et on considère une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de [a, b] convergeant vers x. Montrer que $(f_n(x_n))_{n\in\mathbb{N}}$ converge vers f(x).

Exercice 12:

On note $D = \mathbb{R} - \mathbb{Z}$. Pour tout réel x de D, on pose $f(x) = \sum_{n \in \mathbb{Z}} \frac{1}{(n-x)^2}$.

- 1) Montrer que f est correctement définie, continue et 1-périodique sur D.
- 2) On pose pour tout réel x de D, $g(x) = f(x) \frac{\pi^2}{\sin^2(\pi x)}$. Montrer que g peut être prolongée en une fonction continue sur \mathbb{R} .
- 3) Montrer alors que pour tout réel x, $g\left(\frac{x}{2}\right) + g\left(\frac{x+1}{2}\right) = 4.g(x)$. En déduire que pour tout réel x de D, la
 - 4) Montrer alors que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercice 13: (Mines télécom MP 2022)

Pour $x \in [0, +\infty[$, on pose $f(x) = \sum_{n=1}^{+\infty} (-1)^n \ln(1+\frac{x}{n})$. Montrer que f est définie, continue et de classe \mathcal{C}^1 sur $[0, +\infty[$.

2

Exercice 14: (Mines MP 2023)

1. Soit c > 2. On considère une fonction $f : \mathbb{R} \to \mathbb{R}$ continue vérifiant

$$\forall x \in \mathbb{R}, \ f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) = cf(x).$$
 Montrer que $f = 0$.

2. Montrer que:

$$\forall x \in \mathbb{R} \setminus \mathbb{Z}, \ \sum_{n=-\infty}^{+\infty} (x-n)^{-2} = \frac{\pi^2}{\sin^2 \pi \ x}.$$

Indication(s) fournie(s) par l'examinateur pendant l'épreuve : Pour l'exercice 1 : Trouver un intervalle qui pour tout x dans cet intervalle contient $\frac{x}{2}$ et $\frac{x+1}{2}$ et considérer le sup de f sur cet intervalle.

Exercice 15 : (Mines télécom MP 2023)

Calculer:
$$\lim_{\alpha \to 0^+} \alpha \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}}$$

Exercice 16: (Magistère MP 2022)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de fonctions K-lipschitziennes de [0,1] dans \mathbb{R} , convergeant simplement vers une

Montrer que la convergence est uniforme.

Exercice 17: (Mines MP 2022)

On étudie
$$f(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{n+x}$$

- a) Donner le domaine de définition D de f.
- b) Montrer que f est continue sur D.
- c) Déterminer un équivalent de f en 0^+ et en $+\infty$.

Exercice 18 : Théorème de Weierstrass : preuve par convolution

Soit n un entier naturel. On pose $a_n = \int_{-1}^{1} (1-t^2)^n dt$, et on considère la fonction $\varphi_n : x \to \frac{1}{a_n} (1-x^2)^n$

- 1. Calculer $\int_{0}^{1} t(1-t^2)^n dt$ et en déduire que $a_n \ge \frac{1}{n+1}$
- 2. Soit]0, 1]. Montrer que (φ_n) converge uniformément vers la fonction nulle sur $[\ ,\ 1]$. 3. Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction continue nulle en dehors de $[-1/2,\ 1/2]$. Montrer que f est uniformément continue. On pose $f_n(x) = \int_{-1}^{1} f(x-t) \varphi_n(t) dt$ pour tout réel x.
- 4. Montrer que f_n est une fonction polynomiale sur [-1/2, 1/2].
- 5. Montrer que $f(x) f_n(x) = \int_1^1 (f(t) f(x-t)) \varphi_n(t) dt$.
- 6. En déduire que (f_n) converge uniformément vers f sur $\mathbb R$
- 7. Soit f une fonction réelle continue nulle en dehors de [-a, a]. Montrer que f est limite uniforme d'une suite de polynômes.
- 8. Soit f une fonction réelle continue sur [a, b]. Montrer que f est limite uniforme d'une suite de polynômes.

Exercice 19 : Polynômes de Bernstein. Pour tout entier nature n et tout $k \in [0, n]$, on note $B_{n,k}(x) =$ $\binom{n}{k} x^k (1-x)^{n-k}$.

- 1. Calculer $\sum_{k=0}^{n} B_{n,k}(x)$, $\sum_{k=0}^{n} k.B_{n,k}(x)$ et $\sum_{k=0}^{n} k^{2}.B_{n,k}(x)$.
- 2. En déduire $\sum_{k=0}^{n} \left(\frac{k}{n} x\right)^2 . B_{n,k}(x)$
- 3. Soit $\alpha > 0$ et $x \in [0,1]$. On note $A = \left\{k \in \llbracket 0,n \rrbracket / \left| \frac{k}{n} x \right| \geq \alpha \right\}$ et $B = \left\{k \in \llbracket 0,n \rrbracket / \left| \frac{k}{n} x \right| < \alpha \right\}$. Montrer que $\sum_{k \in A} B_{n,k}\left(x\right) \leq \frac{1}{4n\alpha^2}$.
- 4. Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. On note $f_n(x)=\sum_{k=0}^n f\left(\frac{k}{n}\right)B_{n,k}(x)$. Montrer que la suite (f_n) converge uniformément vers f sur [0,1].
- 5. Conclusion?

3 Exercices de niveau 1:

Exercice 20: (CCINP MP 2023)

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose $v_n(x) = n^x e^{-nx}$. Soit $S: x \longmapsto \sum_{n=0}^{+\infty} v_n(x)$.

- 1. Donner l'ensemble de définition de S.
- 2. Montrer que S est continue sur son ensemble de définition.
- 3. Donner la limite de S en $+\infty$ à l'aide du théorème de la double limite.
- 4. $\sum_{n\geqslant 0} v_n$ converge-t-elle uniformément sur $]0,+\infty[?]$
- 5. \overline{S} est-elle dérivable sur $]0, +\infty[?]$

Exercice 21: (CCINP MP 2023)

- On pose $f_n(t) = \frac{\exp(-nt^2)}{n^2 + t^2}$ 1. Montrer que la série des f_n est définie et continue sur \mathbb{R} . On notera f sa somme.
- 2. Montrer que f(0) = 1
- 3. Construire un tableau de variations de f'_n .
- 4. Montrer que f est C^1 sur \mathbb{R}^+

Exercice 22: (CCINP MP 2023)

Pour tout $(n,x) \in \mathbb{N} \times \mathbb{R} \setminus \{-1\}$, on pose $f_n(x) = \frac{1-x^{2n+2}}{1+x}$.

- 1. Étudier la convergence simple de (f_n) .
- 2. Étudier la convergence uniforme de (f_n) sur son intervalle de convergence simple.
- 3. Calculer $\lim_{n \to +\infty} \int_0^1 f_n(t) dt$.
- 4. Montrer que $\forall (n,x) \in \mathbb{N} \times]-1,1[, f_n(x) = \sum_{k=0}^n x^{2k} \sum_{k=0}^n x^{2k+1}.$
- 5. Montrer que $\sum \frac{(-1)^k}{k+1}$ converge et calculer sa somme à l'aide des questions précédentes.

Exercice 23: (CCINP MP 2023)

Pour tout $(n, x) \in \mathbb{N}^* \times \mathbb{R}$, on considère $f_n(x) = \frac{2x}{x^2 + n^2}$.

1. Montrer la convergence simple de $\sum f_n$ sur \mathbb{R} .

On note S sa somme.

- 2. Étudier la continuité de S sur \mathbb{R} .
- 3. Montrer que $\lim_{x \to +\infty} S(x) = \pi$.

Indication : on pourra considérer, pour $x \in \mathbb{R}_+^{\star}$, la fonction $t \mapsto \frac{2x}{x^2+t^2}$.

Exercice 24 : (Mines télécom MP 2023)

- 1. Montrer la relation : $\forall x \in \mathbb{R}_+^*$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$.
- 2. On pose $u_n(x) = \arctan(\sqrt{n+x}) \arctan(\sqrt{n})$ et $S(x) = \sum_{n=0}^{\infty} u_n(x)$.
- a) Étudier la convergence simple, puis la convergence normale de S.
- b) Montrer que S est de classe C^{∞} et calculer S'.

Exercice 25: (CCINP MP 2022)

On pose
$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$$
 pour tout $x > 0$.

- 1. Justifier l'existence et le caractère \mathcal{C}^1 de S, puis donner une expression de S'(x).
- 2. En déduire la monotonie de S.
- 3. Montrer que $S(x+1) S(x) = \frac{1}{x}$ pour tout x > 0 et en déduire un équivalent simple de S en 0^+ .

4

Exercice 26 : On pose $f_n(x) = th(x+n) - th(n)$.

- 1) Déterminer le mode de convergence de la série de fonctions associée.
- 2) On note $S = \sum_{n=0}^{+\infty} f_n$. Montrer que S est croissante et continue.
- 3) Montrer que pour tout réel x, on a S(x+1) = S(x) + 1 th(x).

Exercice 27: (TPE MP)

Montrer que $\psi(t) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n!)^2} e^{nt}$ est solution de $y'' + e^t y = 0$.

Exercices de niveau 2: 4

Exercice 28: (Centrale MP 2023)

Pour $\alpha \in \mathbb{N}$, avec $\alpha \geq 2$ et $\beta \in]1, +\infty[$, on pose :

$$f_{\alpha,\beta}(t) = \sum_{n \in \mathbb{N}} \frac{\cos(2\pi\alpha^n t)}{\beta^n}.$$

- 1. Donner les théorèmes de continuité et de dérivabilité des séries de fonctions.
- 2. On suppose que $\alpha < \beta$. Montrer que $f_{\alpha,\beta}$ est continue et dérivable sur \mathbb{R} .
- 3. On suppose que $\alpha \geqslant \beta$. Montrer que $f_{\alpha,\beta}$ n'est pas dérivable en 0. En déduire une condition pour que $f_{\alpha,\beta}$ soit de classe \mathcal{C}^k , mais non \mathcal{C}^{k+1} sur \mathbb{R} .

Exercice 29: (Centrale MP 2023)

Soit $T \in \mathbb{R}^+$. Soient f et g deux fonction à valeurs réelles :

 $f \in \mathcal{C}^0([0,T],\mathbb{R})$ et $g \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ T-périodique.

On considère $\omega(f,t) = \sup\{|f(x) - f(y)| \text{ avec } (x,y) \in \mathbb{R}^2, |x-y| \leqslant t\}$

- 1. a) Énoncer la définition de la continuité uniforme pour une fonction réelle et rappeler le théorème de Heine.
 - b) Montrer que $\lim_{t\to 0} \omega(f,t) = 0$.
 - 2. Montrer que $\lim_{n \to +\infty} \int_0^T f(x)g(nx) dx = \frac{1}{T} \left(\int_0^T f(x) dx \right) \left(\int_0^T g(x) dx \right)$
 - 3. Une intégrale très moche à calculer, que je n'ai pas pu aborder.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

2) L'idée est de réécrire l'intégrale de gauche en utilisant Chasles pour les intégrales, avec une expression de

la forme suivante : $\sum_{k=0}^{n-1} \int_{\frac{kT}{n}}^{\frac{(k+1)T}{n}} quelque_chose(x)dx + \sum_{k=0}^{n-1} \int_{\frac{kT}{n}}^{\frac{(k+1)T}{n}} autre_chose(x)dx.$ Ensuite, on montre que l'un des terme tend vers 0 quand n tend vers $+\infty$ en utilisant vraisemblablement la question précédente, et que le second correspond à $\frac{1}{T} \int_0^T f(x) dx \int_0^T g(x) dx$ en utilisant la T-périodicité de g. Commentaires divers : Il est possible que l'énoncé de la question 2 soit un poil erroné. Prudence donc!

Exercice 30: (Mines MP 2022)

avec préparation:

Pour $n \ge 1$ et x > 0, on pose

$$u_n(x) = x^{1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}}.$$

Étudier la convergence simple de la série $\sum u_n$, puis étudier la continuité de sa somme.

Exercice 31: (Mines-Ponts 2019)

- a) Donne le domaine de définition de $S: x \to \sum_{n=1}^{+\infty} e^{-x\sqrt{n}}$, et étudier sa continuité.
- b) Déterminer les limites et équivalents éventuels de S en 0^+ et $+\infty$.

Exercices de niveau 3: 5

Exercice 32 : (X MP 2023)

Soit $a \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}^*)$ telle que $\forall t \in \mathbb{R}, m \leq a(t) \leq M$.

On suppose m > 1/2 ou M < 2. Soit $q \in \mathbb{R} \setminus \{0, -1, 1\}$.

Montrer que $\exists ! \ \Sigma \in \mathcal{C}^o(\mathbb{R}, \mathbb{R}^*)$ telle que

$$\forall t \in \mathbb{R}, \Sigma(t) = 1 + \frac{\Sigma(tq)}{a(t)}$$

Exercice 33: (Mines MP 2023)

Soit S un segment non trivial de \mathbb{R} , f une fonction de classe C^2 de S dans \mathbb{R} . Montrer que f est convexe si, et seulement si, il existe une suite de polynômes convexes convergeant uniformément vers f.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve : Pour le sens direct, montrer l'existence d'une suite de polynômes positifs approchant f''

Exercice 34: (ENS MP 2022)

Soit a et b deux réels tels que 0 < a < 1, b > 1 et ab > 1. On pose

$$\forall x \in \mathbb{R} \quad f_{a,b}(x) = \sum_{n=1}^{\infty} a^n cos(b^n \pi x).$$

- 1. Montrer que $f_{a,b}$ est bien définie, qu'elle est continue sur $\mathbb R$ et qu'elle est bornée. 2. On pose $\alpha=-\frac{\ln(a)}{\ln(b)}$, montrer

$$\forall x \in \mathbb{R} \quad f_{a,b}(x) = \sum_{n=1}^{\infty} b^{-n\alpha} cos(b^n \pi x).$$

3. Montrer que $f_{a,b}$ est α -höldérienne, c'est-à-dire :

$$\exists C > 0 \quad \forall (x, y) \in \mathbb{R}^2 \quad |f_{a,b}(x) - f_{a,b}(y)| \le C|x - y|^{\alpha}.$$

4. Soit $x \in \mathbb{R}$ et N, m deux entiers naturels non nuls, on pose $h = \frac{N}{h^m}$, calculer $\int_{x-h}^{x+h} f_{a,b}(x) \cos(b^m \pi t) dt$.

5. Montrer que

$$\int_{x-h}^{x+h} f_{a,b}(t) cos(b^m \pi t) dt \le Ca^m.$$

6. Montrer qu'il existe x_m un réel tel qu'on ait $|f_{a,b}(x_m) - f_{a,b}(x)| \leq \frac{C}{2}a^m$.

7. Que peut-on dire d'une fonction α -höldérienne avec $\alpha > 1$.

8. Montrer que $f_{a,b}$ n'est dérivable nulle part.

Commentaires divers :

Les inégalités des questions 5 et 6 sont possiblement dans l'autre sens... Seules les questions 1, 2 et 3 étaient données sous format papier, les autres me furent dictées par l'examinateur.

Exercice 35: (ENS MP 2021)

Montrer que pour tout $(a_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$, il existe $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ telle que pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = a_n$. On cherchera f comme somme d'une série de fonctions $\sum_{n\in\mathbb{N}} f_n$ avec $\phi \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $(\lambda_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ telles

que :
$$\begin{cases} \forall x \in]-\infty; -1] \cup [1; +\infty[, \ \phi(x) = 0 \\ \forall x \in [-\frac{1}{2}; \frac{1}{2}], \ \phi(x) = 1 \\ \forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f_n(x) = \phi(\lambda_n x) \frac{a_n}{n!} x^n \end{cases}$$

Commentaires divers :

Epreuve de Maths ULCR

Il s'agit du théorème de réalisation de Borel

Exercice 36: (ENS MP 2021)

Soit f une fonction continue de [0,1] dans \mathbb{R}

On note
$$(P_n)$$
 la suite de polynôme : $P_n(X) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \cdot \binom{n}{k} \cdot X^k (1-X)^{n-k}$.

Montrez que (P_n) converge uniformément vers f sur [0,1].

Indication(s) fournie(s) par l'examinateur pendant l'épreuve :

Indication : essayez de voir le second terme (en $\binom{n}{k} \times X^k (1-X)^{n-k}$) comme une espérance.

L'examinateur m'a ensuite aidé à formaliser les intuitions de « qui est gros, qui est petit » dont je lui avais déjà fait part.