CÁLCULO AVANZADO Segundo Cuatrimestre — 2019

Práctica 3: Espacios métricos

El espacio métrico \mathbb{R}^n

- **1.** (a) Toda familia de abiertos disjuntos dos a dos de \mathbb{R}^n es a lo sumo numerable.
- (b) Muestre que la misma conclusión es falsa para familias de cerrados disjuntos dos a dos.

Solución. (a) Sea $\mathscr U$ una familia de abiertos disjuntos dos a dos de $\mathbb R^n$ y supongamos sin pérdida de generalidad que $\varnothing \notin \mathscr U$. Sea $\phi: \mathbb N \to \mathbb Q^n$ una biyección. Para cada $U \in \mathscr U$ el conjunto $S(U) := \{n \in \mathbb N : \phi(n) \in U\}$ es un subconjunto no vacío de $\mathbb N$, porque $U \cap \mathbb Q^n \neq \varnothing$ ya que U es no vacío y abierto y $\mathbb Q^n$ denso en $\mathbb R^n$, así que tiene sentido considerar la función $\Phi: U \in \mathscr U \mapsto \min S(U) \in \mathbb N$. Esta función es inyectiva: si U y V son dos elementos de $\mathscr U$ y $\Phi(U) = \Phi(V)$, entonces $U \ni \phi(\Phi(U)) = \phi(\Phi(V)) \in V$, de manera que $U \cap V \neq \varnothing$ y, como los elementos de $\mathscr U$ son disjuntos dos a dos, debe ser U = V. Es claro ahora que $\mathscr U \subseteq \mathscr U$ 0. (b) Los elementos de $\mathscr F = \{\{t\} : t \in \mathbb R\}$ son cerrados de $\mathbb R$ dos a dos disjuntos y $\mathscr F$ tiene evidentemente cardinal $\mathfrak c$.

2. Sea \mathcal{B} el conjunto de todas las bolas abiertas $B_r(x)$ de \mathbb{R}^n con $x \in \mathbb{Q}^n$ y $r \in \mathbb{Q}$. Si U es un abierto de \mathbb{R}^n y $x \in U$, entonces existe $B \in \mathcal{B}$ tal que $x \in B \subseteq U$.

Solución. Sea U un abierto de \mathbb{R}^n y sea $x \in U$. Como U es abierto, existe s > 0 tal que $B_s(x) \subseteq U$. Por otro lado, como el conjunto \mathbb{Q}^n es denso en \mathbb{R}^n , existe $y \in \mathbb{Q}^n$ tal que d(x,y) < s/4. Finalmente, como s > 0, es s/4 < s/2 y existe $r \in \mathbb{Q}$ tal que s/4 < r < s/2. Si $z \in B_r(y)$, entonces $d(x,z) \le d(x,y) + d(y,z) < s/4 + r < s$, así que $z \in B_s(x)$. Esto nos dice que $B_r(y) \subseteq B_s(x) \subseteq U$. Por otro lado, d(x,y) < s/4 < r, así que $x \in B_r(y)$. Basta tomar entonces $B = B_r(y)$, que es un elemento de \mathcal{B} , para probar el enunciado. \square

3. (*Teorema de Lindelöf*) Todo cubrimiento abierto de \mathbb{R}^n posee un subcubrimiento numerable.

Solución. Sea \mathcal{B} el conjunto de bolas con centro en \mathbb{Q}^n y radio racional, como en el Ejercicio $\mathbf{2}$, y sea \mathcal{U} un cubrimiento abierto de \mathbb{R}^n . Para cada $x \in \mathbb{R}^n$ existe $U_x \in \mathcal{U}$ tal que $x \in U_x$, porque \mathcal{U} cubre \mathbb{R}^n , y de acuerdo al Ejercicio $\mathbf{2}$ existe $B_x \in \mathcal{B}$ tal que $x \in B_x \subseteq U_x$. Como $C := \{B_x : x \in \mathbb{R}^n\}$ es un subconjunto de \mathcal{B} y \mathcal{B} es numerable, C es él mismo, contable. Esto implica que hay una función $\phi : \mathbb{N} \to \mathbb{R}^n$ tal que

$$C = \{B_{\phi(n)} : n \in \mathbb{N}\}. \tag{1}$$

Veamos que $\mathscr{U}' := \{U_{\phi(n)} : n \in \mathbb{N}\}$, que manifiestamente está contenido en \mathscr{U} , es un cubrimiento de \mathbb{R}^n . Sea $y \in \mathbb{R}^n$. Como $B_y \in C$, de (1) vemos que existe $n \in \mathbb{N}$ tal que

 $B_y = B_{\phi(n)}$ y, por lo tanto, que $y \in B_y = B_{\phi(n)} \subseteq U_{\phi(n)} \in \mathscr{U}'$. Así, \mathscr{U}' es un subcubrimiento de \mathscr{U} : como \mathscr{U}' es numerable, esto prueba la afirmación del ejercicio.

Otra solucion. Sea $\mathscr U$ un cubrimiento abierto de $\mathbb R^n$. Si $n\in\mathbb N$, entonces la bola cerrada $\overline{B}_n(0)$ es compacta y $\mathscr U$ la cubre, así que existe un subconjunto finito $\mathscr U_n$ de $\mathscr U$ que también cubre a $\overline{B}_n(0)$. Si ponemos $\mathscr U'\coloneqq\bigcup_{n\geq 1}\mathscr U_n$, tenemos que

$$\mathbb{R}^n = \bigcup_{n\geq 1} \overline{B}_n(0) \subseteq \bigcup_{n\geq 1} \bigcup_{U\in \mathcal{U}_n} U = \bigcup_{U\in \mathcal{U}'} U,$$

así que \mathscr{U}' es un subcubrimiento de \mathscr{U} . Como \mathscr{U}' es claramente numerable, esto prueba lo que queremos. \Box

4. Si $S \subseteq \mathbb{R}^n$ y $x \in S$, decimos que x es un punto de condensación de S si para todo $\varepsilon > 0$ la intersección $S \cap B_{\varepsilon}(x)$ es no numerable. Muestre que todo conjunto no numerable de \mathbb{R}^n posee al menos un punto de condensación. ¿Puede ser que posea uno solo?

Solución. Sea $S\subseteq\mathbb{R}^n$ un conjunto no numerable y supongamos que S no posee ningún punto de condensación, de manera que para cada $x\in\mathbb{R}^n$ existe $r_x>0$ tal que $S\cap B_{r_x}(x)$ es contable. Es claro que el conjunto $\mathscr{U}:=\{B_{r_x}(x):x\in\mathbb{R}^n\}$ es un cubrimiento abierto de \mathbb{R}^n , así que por el teorema de Lindelöf \mathscr{U} posee un subcubrimiento numerable. Esto implica que hay una función $\phi:\mathbb{N}\to\mathbb{R}^n$ tal que $\mathbb{R}^n=\bigcup_{i\geq 1}B_{r_{\phi(i)}}(\phi(i))$ y, por lo tanto, que

$$S = S \cap \mathbb{R}^n = S \cap \bigcup_{i > 1} B_{r_{\phi(i)}}(\phi(i)) = \bigcup_{i > 1} \left(S \cap B_{r_{\phi(i)}}(\phi(i)) \right).$$

Esto es absurdo, ya que esta última unión es una unión de numerables conjuntos numerables y S no es numerable. Esto prueba que S posee al menos un punto de condensación a.

Supongamos que a es el único punto de condensación de S. Si $n \in \mathbb{N}$, entonces el conjunto $S \cap (\mathbb{R}^n \setminus B_{1/n}(a))$ tiene que ser numerable. En efecto, si no lo fuera debería tener, como dijimos arriba, al menos un punto de condensación b y, como

$$b \in \overline{S \cap (\mathbb{R}^n \setminus B_{1/n}(a))} \subseteq \overline{\mathbb{R}^n \setminus B_{1/n}(a)} = \mathbb{R}^n \setminus B_{1/n}(a),$$

es necesariamente $b \neq a$: esto es imposible, porque claramente b es un punto de condensación de S y estamos suponiendo que el único punto de condensación de S es a.

Hemos probado que para todo $n \in \mathbb{N}$ el conjunto $S \cap (\mathbb{R}^n \setminus B_{1/n}(a))$ es numerable y, como

$$\bigcup_{n\geq 1} \left(S \cap (\mathbb{R}^n \setminus B_{1/n}(a)) \right) = S \cap \bigcup_{n\geq 1} (\mathbb{R}^n \setminus B_{1/n}(a)) = S \cap (\mathbb{R} \setminus \{a\}) = S \setminus \{a\},$$

que $S \setminus \{a\}$ también lo es. Esto es absurdo porque S no es numerable.

Una solución alternativa para la primera parte. Sea S un subconjunto no numerable de \mathbb{R} . Es $S = \bigcup_{k \in \mathbb{Z}} S \cap [k, k+1]$: como S es no numerable y la unión numerable, tiene que existir $k \in \mathbb{Z}$ tal que $S \cap [k, k+1]$ es no numerable.

Vamos a construir una sucesión $([a_n,b_n])_{n\geq 1}$ de intervalos cerrados de manera tal que para todo $n\in\mathbb{N}$ se tenga que $[a_n,b_n]\supseteq[a_{n+1},b_{n+1}]$, $\#([a_n,b_n]\cap S)>\aleph_0$ y $b_n-a_n=1/2^{n-1}$. Empezamos poniendo $a_1=k$ y $b_1=k+1$: es $b_1-a_1=1$ y la forma en que elegimos al entero k nos dice que $\#([a_1,b_1]\cap S)>\aleph_0$.

Supongamos ahora que $n \in \mathbb{N}$ y que ya construimos el intervalo $[a_n,b_n]$. Sea $c=(a_n+b_n)/2$. Es

$$[a_n, b_n] \cap S = ([a_n, c] \cap S) \cup ([c, b_n] \cap S)$$

y el lado izquierdo es un conjunto no numerable, así que alguno de los dos conjuntos que aparecen en el lado derecho tiene que ser numerable: si $[a_n,c] \cap S$ es no numerable, pongamos $a_{n+1}=a_n$ y $b_{n+1}=c$, y si no lo es, entonces pongamos $a_{n+1}=c$ y $b_{n+1}=b_n$. Es claro que en cualquiera de los dos casos tenemos que $[a_n,b_n] \supseteq [a_{n+1},b_{n+1}]$, $\#([a_{n+1},b_{n+1}] \cap S) > \aleph_0$ y $b_{n+1}-a_{n+1}=(b_n-a_n)/2=1/2^n$.

Sean $\alpha = \sup\{a_n : n \in \mathbb{N}\}$. Mostremos que α es un punto de condensación. Sea $\varepsilon > 0$. La definición de α y el hecho de que la sucesión $(a_n)_{n \geq 1}$ es creciente implican que existe $N \in \mathbb{N}$ tal que si $n \geq N$ entonces $\alpha - \varepsilon < a_n \leq \alpha$. Si ahora $m \in \mathbb{N}$ es tal que $m \geq N$ y $1/2^{m-1} < \varepsilon$, entonces $\alpha - \varepsilon < a_m \leq \alpha$, así que $b_m = a_m + 1/2^{m-1} \leq \alpha + 1/2^{m-1} < \alpha + \varepsilon$: vemos así que $[a_m, b_m] \subseteq (\alpha - \varepsilon, \alpha + \varepsilon)$ y, por lo tanto, que $(\alpha - \varepsilon, \alpha + \varepsilon) \cap S$ no es numerable, ya que contiene a $[a_m, b_m] \cap S$.

5. Todo subconjunto discreto de \mathbb{R}^n tiene cardinal a lo sumo numerable.

Solución. Sea A un subconjunto de \mathbb{R}^n que no es numerable. El Ejercicio **4** nos dice que hay un punto $a \in \mathbb{R}$ que es de condensación de A y, por lo tanto, para todo $\varepsilon > 0$ el conjunto $A \cap B_{\varepsilon}(a)$ es no numerable: esa intersección tiene por lo tanto al menos un punto distinto de a y entonces a no es un punto aislado de a. Vemos así que un subconjunto no numerable de \mathbb{R}^n no es discreto y esta es la afirmación contrarrecíproca de la que queríamos probar.

6. ¿De las funciones $d_i : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{>0}$ dadas por

$$\begin{split} d_1(x,y) &= (x-y)^2, \qquad d_2(x,y) = \sqrt{|x-y|}, \qquad d_3(x,y) = |x^2-y^2|, \\ d_4(x,y) &= |x-2y|, \qquad d_5(x,y) = \frac{|x-y|}{1+|x-y|}, \end{split}$$

cuáles son métricas?

Solución. Consideremos cada una de las funciones por separado:

- Es $d_1(-1,1) = 2^2 > 1 + 1 = d_1(-1,0) + d_1(0,1)$, así que d_1 no es una métrica.
- Si $x, y \in \mathbb{R}$ es claro que

$$d_2(x, y) = \sqrt{|x - y|} = 0 \iff x = y$$

y que $d_2(x, y) = d_2(y, x)$. Por otro lado, si $x, y, z \in \mathbb{R}$, entonces

$$\begin{aligned} d_2(x,z)^2 &= |x-z| \le |x-y| + |y-z| \\ &\le |x-y| + |y-z| + 2\sqrt{|x-y||y-z|} \\ &= (d_2(x,y) + d_2(x,y))^2 \end{aligned}$$

y como la función $t\in\mathbb{R}_{\geq 0}\mapsto t^2\in\mathbb{R}_{\geq 0}$ es estrictamente creciente, tenemos que

$$d_2(x,z) \le d_2(x,y) + d_2(y,z).$$

Vemos así que d_2 es una métrica.

- Es $d_3(1,-1) = 0$ y $1 \neq -1$, así que d_2 no es una métrica.
- Es $d_4(0,1) = 2 \neq 1 = d_4(1,2)$, así que d_4 no es una métrica.
- Es claro que para todo $x, y \in \mathbb{R}$ se tiene que

$$d_5(x, y) = 0 \iff x = y$$

y que $d_5(x,y)=d_5(y,x)$. Por otro lado, sean $x,y,z\in\mathbb{R}$. Consideremos la función $f:t\in\mathbb{R}_{\geq 0}\mapsto t/(1+t)\in\mathbb{R}_{\geq 0}$. Es $f'(t)=(1+t)^{-2}$ para todo $t\geq 0$, así que f es estrictamente creciente en $\mathbb{R}_{>0}$. Por otro lado, si $s,t\in\mathbb{R}$, entonces

$$f(s)+f(t)-f(s+t) = \frac{s^2t+st^2+2st}{(s+1)(t+1)(s+t+1)} \ge 0,$$

así que

$$f(s) + f(t) \ge f(s+t)$$
.

En particular, si ponemos s = |x - y| y t = |y - z|, vemos que

$$d_5(x,y) + d_5(y,z) = f(|x-y|) + f(|y-z|) \ge f(|x-y| + |y-z|)$$

$$\ge f(|x-z|) = d_5(x,z).$$

Vemos así que d_5 es una métrica.

7. Muestre que son métricas sobre \mathbb{R}^n las funciones $d_i : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ dadas por

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|,$$

$$d_2(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2},$$

$$d_{\infty}(x,y) = \sup_{1 \le i \le n} |x_i - y_i|.$$

En el caso particular en que n = 1, n = 2 o n = 3 dibuje las bolas correspondientes.

Solución. Es inmediato que las tres funciones se anulan exactamente en los puntos de la diagonal de $\mathbb{R}^n \times \mathbb{R}^n$ y que son simétricas y no negativas, así que es suficiente que probemos que las tres satisfacen la desigualdad triangular. Sean x, y y z tres elementos de \mathbb{R}^n .

• Para cada $i \in [n]$ tenemos que

$$|x_i - z_i| \le |x_i - y_i| + |y_i - z_i|,$$

así que

$$d_1(x,z) = \sum_{i=1}^n |x_i - z_i| \le \sum_{i=1}^n (|x_i - y_i| + |y_i - z_i|),$$

porque cada sumando de la primera suma está acotado por el correspondiente sumando de la segunda, y esto es

$$= \sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i - z_i| = d_1(x, y) + d_1(y, z).$$

De manera similar, para cada $j \in [n]$ tenemos que

$$|x_j-z_j|\leq |x_j-y_j|+|y_j-z_j|\leq \sup_{1\leq i\leq n}|x_i-y_i|+\sup_{1\leq i\leq n}|y_i-z_i|=d_{\infty}(x,y)+d_{\infty}(y,z),$$

así que

$$d_{\infty}(x,z) = \sup_{1 \le i \le n} |x_i - z_i| \le d_{\infty}(x,y) + d_{\infty}(y,z).$$

Sea ⟨-,-⟩ el producto interno usual en Rⁿ y sea ||-|| la correspondiente norma, de manera que para cada x e y en Rⁿ se tiene que d₂(x,y) = ||x - y||. Para ver que d₂ satisface la desigualdad triangular, entonces, es suficiente que mostremos que si x, y y z están en Rⁿ entonces

$$||x-z|| \le ||x-y|| + ||y-z||.$$

Equivalentemente, hay que mostrar que si u y v son elementos de \mathbb{R}^n entonces

$$||u + v|| \le ||u|| + ||v||,$$

ya que sabiendo eso basta poner u=x-y y v=y-z para obtener la desigualdad anterior. Probemos esta última desigualdad. Sea $f:t\in\mathbb{R}\mapsto\langle u+tv,u+tv\rangle\in\mathbb{R}$, de manera que, de hecho, para todo $t\in\mathbb{R}$ es

$$f(t) = \langle u, u \rangle + t2\langle u, v \rangle + t^2\langle v, v \rangle.$$

Así, f es una función polinomial. Como toma valores estrictamente positivos, el discriminante^a del correspondiente polinomio no es positivo, esto es,

$$4\langle u, v \rangle^2 - 4\langle u, u \rangle \langle v, v \rangle \le 0$$

y, por lo tanto, $\langle u,v\rangle^2 \leq \langle u,u\rangle\langle v,v\rangle$. Tomando raíces cuadradas a ambos lados de esta desigualdad vemos que

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||.$$

Ahora podemos calcular que

$$||u + v||^2 = \langle u + v, u + v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle$$

$$\leq ||u||^2 + 2|\langle u, v \rangle| + ||v||^2 \leq ||u||^2 + 2||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2,$$

así que tomando raíces cuadradas vemos que

$$||u + v|| \le ||u|| + ||v||,$$

como queríamos.

Las tres métricas coinciden cuando n=1, y la bola unidad centrada en 0 es simplemente el intervalo abierto (-1,1). Los siguientes dibujos ilustran las bolas centradas en el origen y de radio 1 para las tres métricas d_1 , d_2 y d_∞ cuando n=2.

Por otro lado, cuando n=3 las bolas unidad de d_1 , d_2 y d_∞ son, respectivamente, el octaedro de vértices $(\pm 1,0,0)$, $(0,\pm 1,0)$ y $(0,0,\pm 1)$, la esfera unidad, y el cubo de vértices $(\pm 1,\pm 1,\pm 1)$.

Espacios métricos

8. Sea p un número primo positivo y sea $d: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ la función tal que cada vez que x e y son elementos de \mathbb{Z} es $d(x,y) = 2^{-a}$, con a el máximo entero tal que $p^a \mid x - y$, si $x \neq y$, y d(x,y) = 0 si x = y. Muestre que d es una métrica en \mathbb{Z} . La llamamos la *métrica* p-ádica de \mathbb{Z} .

Solución. Para cada entero n no nulo escribamos v(n) al mayor $a \in \mathbb{N}$ tal que $p^a \mid n$. Es claro que si n es un entero no nulo, entonces

$$v(n) = v(-n). \tag{2}$$

Por otro lado, si n y m son dos enteros no nulos y $n+m\neq 0$, entonces

$$v(n+m) \ge \min\{v(n), v(m)\}. \tag{3}$$

La métrica d del enunciado es tal que si n y m están en \mathbb{Z} , entonces

$$d(n,m) = \begin{cases} 2^{-\nu(n-m)} & \text{si } n \neq m; \\ 0 & \text{si } n = m. \end{cases}$$

Veamos que d es una métrica:

- Es claro que d(n,n)=0 para todo $n\in\mathbb{Z}$. Más aún, si n y m son elementos de \mathbb{Z} tales que $n\neq m$, entonces $d(n,m)=2^{-\nu(n-m)}>0$.
- Si n y m son enteros, entonces o bien n = m y, por supuesto, d(n, m) = d(m, n), o bien $n \neq m$ y $d(n, m) = 2^{-\nu(n-m)} = 2^{-\nu(m-n)} = d(m, n)$ por la igualdad (2).
- Sean n, m y r tres enteros. Queremos ver que

$$d(n,r) \le d(n,m) + d(m,r).$$

Si n = r, entonces el miembro izquierdo de la desigualdad es nulo, así que la desigualdad es evidente. Supongamos entonces que $n \neq r$. Si ahora $m \in \{n, r\}$,

^aRecordemos que el discriminante de un polinomio $at^2 + bt + c$ es $\Delta = b^2 - 4ac$, y que si los coeficientes son reales y el polinomio sólo toma valores no negativos, entonces es $\Delta \le 0$.

entonces uno de los sumandos del lado de la derecha de la desigualdad se anula y el otro es igual al lado izquierdo: otra vez la desigualdad es clara. Nos queda entonces considerar el caso en que los tres enteros n, m y r son distintos dos a dos. En ese caso los números n-r=(n-m)+(m-r), n-m y m-r son no nulos, así que la desigualdad (3) nos dice que

$$v(n-r) = v((n-m) + (m-r)) \ge \min\{v(n-m), v(m-r)\},\$$

así que

$$\begin{split} d(n,r) &= 2^{-\nu(n-r)} \leq 2^{-\min\{\nu(n-m),\nu(m-r)\}} = \min\{2^{-\nu(n-m)},2^{-\nu(m-r)}\} \\ &= \min\{d(n,m),d(m,r)\} \leq d(n,m) + d(m,r). \end{split}$$

Esto completa la prueba.

9. Sea *X* un conjunto y sea $d: X \times X \to \mathbb{R}$ la función tal que si *x* e *y* son elementos de *X* se tiene que

$$d(x,y) = \begin{cases} 0 & \text{si } x = y; \\ 1 & \text{si } x \neq y. \end{cases}$$

Muestre que se trata de una métrica sobre X y determine sus conjuntos abiertos. Llamamos a δ la *métrica discreta* sobre X.

Solución. Es claro que d toma valores no negativos y que si x e y son elementos de X se tiene que $d(x,y)=0 \iff x=y$ y que d(x,y)=d(y,x). Por otro lado, si x,y,z son elementos de X, tenemos que ver que $d(x,y)+d(y,z) \geq d(x,z)$. Esta desigualdad es evidente si x=z, porque en ese caso el miembro derecho es nulo. Si en cambio $x\neq z$, entonces el miembro derecho de la desigualdad vale 1 y o bien $x\neq y$ o bien $y\neq z$, y alguno de los dos sumandos del miembro izquierdo es igual a 1: así, la desigualdad también vale en este caso. Esto prueba que d es una métrica.

Sea A un subconjunto de X. Si $a \in A$, entonces $B_{1/2}(a) = \{a\} \subseteq A$: esto muestra que A es abierto. En particular, el conjunto $X \setminus A$ también es abierto y, por lo tanto, A es cerrado. Vemos así que todo subconjunto de X es abierto y cerrado.

10. Sea ℓ^{∞} el espacio vectorial real de todas las sucesiones $(a_n)_{n\geq 1}$ de números reales que son acotadas y sea $d:\ell^{\infty}\times\ell^{\infty}\to\mathbb{R}$ la función tal que

$$d((a_n)_{n\geq 1}, (b_n)_{n\geq 1}) = \sup_{n\geq 1} |a_i - b_i|$$

cada vez que $(a_n)_{n\geq 1}$ y $(b_n)_{n\geq 1}$ son elementos de ℓ^{∞} . Muestre que d es una métrica.

Solución. Observemos antes que nada que si $a=(a_n)_{n\geq 1}$ y $b=(b_n)_{n\geq 1}$ son elementos de ℓ^∞ , de manera que existen $A,B\geq 0$ tales que $|a_n|\leq A$ y $|b_n|\leq B$ para todo $n\in\mathbb{N}$, entonces es $|a_n-b_n|\leq |a_n|+|b_n|\leq A+B$ y, en particular, tiene sentido considerar el supremo $\sup_{n\geq 1}|a_n-b_n|$ que usamos para definir d(a,b).

Es evidente que $d(a,b) \ge 0$ y que d(a,b) = d(b,a). Más aún, si d(a,b) = 0, entonces $|a_n - b_b| \le 0$ para todo $n \in \mathbb{N}$ y necesariamente a = b. Nos queda verificar la desigualdad

П

П

triangular. Sea $c=(c_n)_{n\geq 1}$ un tercer elemento de ℓ^∞ . Si $m\in\mathbb{N}$, entonces

$$|a_m - c_m| \le |a_m - b_m| + |b_m - c_m| \le \sup_{n \ge 1} |a_n - b_n| + \sup_{n \ge 1} |b_n - c_n| = d(a, b) + d(b, c),$$

así que

$$d(a,c) = \sup_{n>1} |a_n - c_n| \le d(a,b) + d(b,c).$$

Podemos concluir con todo esto que d es una métrica en ℓ^{∞} , como queremos.

11. Sean a y b dos números reales tales que a < b y sea C[a, b] el espacio vectorial real de todas las funciones $[a, b] \to \mathbb{R}$ que son continuas. Muestre que son métricas sobre C[a, b] las funciones $d_i : C[a, b] \times C[a, b] \to \mathbb{R}$ tales que

$$d_1(f,g) = \int_a^b |f(t) - g(t)| dt, \qquad d_{\infty}(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|$$

cada vez que f y g son elementos de C[a, b].

Solución. Observemos que la integral y el supremo que definen a d_1 y a d_∞ tienen sentido porque la función |f-g| es continua. Es claro que ambas funciones son simétricas, no negativas, y que se anulan si y solamente si sus dos argumentos son iguales. Mostremos que satisfacen la desigualdad triangular. Sean f, g y h tres elementos de C[a,b].

Para cada $t \in [a, b]$ es

$$|f(t) - h(t)| \le |f(t) - g(t)| + |g(t) - h(t)|. \tag{4}$$

Como la integración es monótona y aditiva, tenemos entonces que

$$d_1(f,h) = \int_a^b |f(t) - h(t)| \, \mathrm{d}t \le \int_a^b |f(t) - g(t)| \, \mathrm{d}t + \int_a^b |g(t) - h(t)| \, \mathrm{d}t = d_1(d,g) + d_1(g,h).$$

Por otro lado, de la desigualdad (4) se tiene que para todo $s \in [a, b]$ es

$$|f(s) - h(s)| \leq \sup_{t \in [a,b]} |f(t) - g(t)| + \sup_{t \in [a,b]} |g(t) - h(t)| = d_{\infty}(f,g) + d_{\infty}(g,h)$$

y, por lo tanto, que

$$d_{\infty}(f,h) = \sup_{t \in [a,b]} |f(s) - h(s)| \le d_{\infty}(f,g) + d_{\infty}(g,h).$$

Esto completa la prueba de las dos desigualdades.

12. Sean (X_1, d_1) y (X_2, d_2) dos espacios métricos. Si $d: (X_1 \times X_2) \times (X_1 \times X_2) \to \mathbb{R}$ es la función tal que

$$d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

cada vez que (x_1, x_2) e (y_1, y_2) son elementos de $X_1 \times X_2$, entonces $(X_1 \times X_2, d)$ es un espacio métrico. Construya otras métricas «naturales» sobre el conjunto $X_1 \times X_2$.

П

Solución. Sean $x = (x_1, x_2)$ e $y = (y_1, y_2)$ dos elementos de $X_1 \times X_2$. Es claro que

$$d(x, y) = d_1(x_1, y_1) + d_2(x_2, y_2) = d_1(y_1, x_1) + d_2(y_2, x_2) = d(y, x).$$

Por otro lado,

$$d(x, y) = d_1(x_1, y_1) + d_2(x_2, y_2) \ge 0$$

porque las funciones d_1 y d_2 toman valores no negativos y, más aún, si vale la igualdad debe ser $d_1(x_1,y_1)=d_2(x_2,y_2)=0$, así que $x_1=y_1$, $x_2=y_2$ y, en definitiva, x=y. Sea $z=(z_1,z_2)$ un tercer elemento de $X_1\times X_2$. Es

$$d(x,z) = d_1(x_1,z_1) + d_2(x_2,z_2) \le d_1(x_1,y_1) + d_1(y_1,z_1) + d_2(x_2,y_2) + d_2(y_2,z_2)$$

= $d(x,y) + d(y,z)$.

Concluimos así que la función d es una métrica sobre $X_1 \times X_2$.

13. Si (X,d) es un espacio métrico y $d': X \times X \to \mathbb{R}$ es la función tal que

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

cada vez que x e y son elementos de X, entonces (X, d') es un espacio métrico y d y d' son métricas topológicamente equivalentes. Observemos que $0 \le d'(x, y) < 1$ para todo $(x, y) \in X \times X$.

Solución. Sea $f: t \in [0, \infty) \mapsto t/(1+t) \in [0, \infty)$. En la solución del Ejercicio 6 vimos que f es estrictamente creciente y que si $s, t \ge 0$ se tiene que $f(s) + f(t) \ge f(s+t)$ y $f(s) \le s$. Observemos que d'(x,y) = f(d(x,y)) cada vez que $x, y \in X$.

Como d es simétrica, la función d' es claramente simétrica. Por otro lado, como f es estrictamente creciente, f(t)=0 si y solamente si t=0, y por lo tanto si x e y son elementos de X, se tiene que d'(x,y)=f(d(x,y))=0 si y solamente si d(x,y)=0, y esto ocurre si y solamente si x=y. Finalmente, sean x, y y z tres elementos de X. Como d es una métrica, $d(x,z) \leq d(x,y) + d(y,z)$ y entonces

$$d'(x,z) = f(d(x,z)) \le f(d(x,y) + d(y,z)) \le f(d(x,y)) + f(d(y,z))$$

= $d'(x,z) + d'(y,z)$.

Mostremos ahora que las métricas d y d' son topológicamente equivalentes. Sea $x \in X$ y sea r > 0. Si $y \in B_r(x,d)$, entonces $d'(x,y) = f(d(x,y)) \le d(x,y) < r$, así que $y \in B_r(x,d')$: vemos así que $B_r(x,d) \subseteq B_r(x,d')$.

Sea, por otro lado, $s = \min\{r, \frac{1}{2}\}$ y sea t = s/(1+s), que es un elemento de (0,1). Si $y \in B_t(x,d')$, entonces f(d(x,y)) = d'(x,y) < t y, como la función $g: u \in [0,1) \mapsto u/(1-u) \in \mathbb{R}$ es estrictamente creciente y g(f(t)) = t para todo $t \in [0,1)$, tenemos que $d(x,y) = g(f(d(x,y)) < g(t) = s \le r$. Concluimos de esta forma que $B_t(x,d') \subseteq B_r(x,d)$.

14. Sea $((X_n, d_n))_{n \ge 1}$ una sucesión de espacios métricos tales que para todo $n \in \mathbb{N}$ y todo $(x, y) \in X_n \times X_n$ se tiene que $d_n(x, y) \le 1$. Sea $X = \prod_{n \ge 1} X_n$ y sea

 $d: X \times X \to \mathbb{R}$ la función tal que

$$d(x,y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n}$$

cada vez que $x=(x_n)_{n\geq 1}$ e $y=(y_n)_{n\geq 1}$ son elementos de X. Muestre que (X,d) es un espacio métrico.

Solución. Observemos que la serie que define a d(x, y) converge absolutamente, ya que tiene términos no negativos y está acotada término a término por la serie $\sum_{n=1}^{\infty} 2^{-n}$, que converge.

Sean $x=(x_n)_{n\geq 1}$ e $y=(y_n)_{n\geq 1}$ dos elementos de X. Como para todo $n\geq 1$ es $d_n(x_n,y_n)=d_n(y_n,x_n)\geq 0$, tenemos que

$$d(x,y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n} = \sum_{n=1}^{\infty} \frac{d_n(y_n, x_n)}{2^n} = d(y, x)$$

y que

$$d(x,y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n} \ge 0.$$

Más aún, si vale la igualdad en esta última desigualdad, entonces todos los términos de la serie que ahí aparece tienen que ser nulos, porque son todos no negativos, y por lo tanto $d_n(x_n,y_n)=0$ para todo $n\geq 1$, de manera que $x_n=y_n$ para todo $n\geq 1$ y, en definitiva, x=y. Es claro, además, que d(x,x)=0.

Probemos, para terminar, que d satisface la desigualdad triangular. Sea $z=(z_n)_{n\geq 1}$ un tercer punto de X. Para cada $n\geq 1$ tenemos que $d_n(x_n,z_n)\leq d_n(x_n,y_n)+d_n(y_n,z_n)$, así que

$$d(x,z) = \sum_{n=1}^{\infty} \frac{d_n(x_n, z_n)}{2^n} \le \sum_{n=1}^{\infty} \left(\frac{d_n(x_n, y_n)}{2^n} + \frac{d_n(x_n, y_n)}{2^n} \right)$$

que es

$$= \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n} + \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n} = d(x, y) + d(y, z)$$

porque las dos series que aparecen aquí convergen.

15. Muestre que las métricas d_1 , d_2 y d_∞ del ejercicio **7** son equivalentes sobre \mathbb{R}^n .

Solución. Sean x e y dos puntos de \mathbb{R}^n . Es

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i| \le n \sup_{1 \le i \le n} |x_i - y_i| = n \cdot d_{\infty}(x,y).$$

Por otro lado, si $j \in [n]$ tenemos que

$$|x_j - y_j| = ((x_j - y_j)^2)^{1/2} \le \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2} = d_2(x, y),$$

así que

$$d_{\infty}(x,y) = \sup_{1 \le i \le n} |x_i - y_i| \le d_2(x,y).$$

Finalmente, para cada $j \in [n]$ es

$$(x_j - y_j)^2 = |x_j - y_j|^2 \le \sup_{1 \le i \le n} |x_i - y_i|^2 = \left(\sup_{1 \le i \le n} |x_i - y_i|\right)^2 = d_{\infty}(x, y)^2,$$

de manera que

$$d_2(x,y)^2 = \sum_{i=1}^n (x_i - y_i)^2 \le n \cdot d_{\infty}(x,y)^2$$

y, por lo tanto,

$$d_2(x,y) \le \sqrt{n} \cdot d_{\infty}(x,y).$$

Las tres desigualdad que hemos obtenido implican inmediatamente que las métricas d_1,d_2 y d_∞ son equivalentes. \Box

Propiedades topológicas

16. Sea (X, d) un espacio métrico.

(a) Si
$$A \subseteq X$$
, entonces se tiene que $A^{\circ} = \bigcup_{\substack{U \subseteq A \\ U \text{ abierto}}} U$.

(b) Es $\emptyset^{\circ} = \emptyset$, $X^{\circ} = X$ y cada vez que A y B son dos subconjuntos de X se tiene que

$$A \subseteq B \implies A^{\circ} \subseteq B^{\circ}, \qquad (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}, \qquad (A \cup B)^{\circ} \supseteq A^{\circ} \cup B^{\circ}.$$

¿Puede extenderse la segunda de estas afirmaciones al caso de intersecciones infinitas? ¿Vale siempre la igualdad en la tercera?

Solución. (a) Sea $A \subseteq X$. Si $x \in A^{\circ}$, entonces existe r > 0 tal que $B_r(x) \subseteq A$. Como $B_r(x)$ es un abierto contenido en A, tenemos entonces que

$$x \in B_r(x) \subseteq \bigcup_{\substack{U \subseteq A \\ U \text{ abierto}}} U.$$

Recíprocamente, supongamos que x es un elemento de está última unión, de manera que existe un abierto U de X tal que $x \in U$ y $U \subseteq A$. Como U es abierto, existe r > 0 tal que $B_r(x) \subseteq U$ y entonces tenemos que $B_r(x) \subseteq A$: vemos así que $x \in A^\circ$.

(b) Si x fuera un punto de \emptyset° , habría un r > 0 tal que $x \in B_r(x) \subseteq \emptyset$: esto es absurdo, así que $\emptyset^{\circ} = \emptyset$. Por otro lado, si $x \in X$, entonces $B_1(x) \subseteq X$, así que $x \in X^{\circ}$: esto muestra que $X^{\circ} = X$. Veamos ahora las últimas tres afirmaciones.

- Supongamos que $A \subseteq B$ y que $x \in A^\circ$, de manera que existe r > 0 tal que $B_r(x) \subseteq A$. En ese caso claramente tenemos que $B_r(x) \subseteq B$ y, por lo tanto, que $x \in B^\circ$.
- Sea $x \in (A \cap B)^{\circ}$, de manera que existe r > 0 tal que $B_r(x) \subseteq A \cap B$. En ese caso

tenemos que $B_r(x) \subseteq A$ y que $B_r(x) \subseteq B$, así que $x \in A^\circ$ y $x \in B^\circ$ y, por lo tanto, $x \in A^\circ \cap B^\circ$. Sea, por otro lado, $x \in A^\circ \cap B^\circ$. Como $x \in A^\circ$, existe r > 0 tal que $B_r(x) \subseteq A$, y como $x \in B^\circ$, existe s > 0 tal que $B_s(x) \subseteq B$. Sea $t = \min\{r, s\}$, que es un número positivo. Es $B_t(x) \subseteq B_r(x) \subseteq A$ y $B_t(x) \subseteq B_s(x) \subseteq B$, así que $B_t(x) \subseteq A \cap B$: esto nos dice que $t \in (A \cap B)^\circ$.

• Sea $x \in A^{\circ} \cup B^{\circ}$, de manera que $x \in A^{\circ}$ o $x \in B^{\circ}$, esto es, existe r > 0 tal que o $B_r(x) \subseteq A$ o $B_r(x) \subseteq B$. En cualquiera de los dos casos tenemos que $B_r(x) \subseteq A \cup B$ y, por lo tanto, que $x \in (A \cup B)^{\circ}$.

Para cada $n \in \mathbb{N}$ sea $A_n = (-1/n, 1/n) \subseteq \mathbb{R}$. Es $A_n^\circ = A_n$, así que

$$\bigcap_{n \ge 1} A_n^{\circ} = \bigcap_{n \ge 1} (-1/n, 1/n) = \{0\} \neq \emptyset = \{0\}^{\circ} = \left(\bigcap_{n \ge 1} A_n\right)^{\circ}.$$

Este ejemplo muestra que la segunda igualdad del enunciado no puede extenderse al caso de intersecciones infinitas. Por otro lado, si $A = \mathbb{Q}$ y $B = \mathbb{R} \setminus \mathbb{Q}$, entonces $A^{\circ} = B^{\circ} = \emptyset$, así que $A^{\circ} \cup B^{\circ} = \emptyset \neq \mathbb{R} = \mathbb{R}^{\circ} = (A \cup B)^{\circ}$: vemos que la tercera inclusión no es en general una igualdad.

- 17. Sea (X, d) un espacio métrico.
- (a) Si $A \subseteq X$, entonces se tiene que $\overline{A} = \bigcap_{\substack{F \supseteq A \\ E \text{ control}}} F$.
- (b) Es $\overline{\emptyset} = \emptyset$, $\overline{X} = X$ y cada vez que A y B son dos subconjuntos de X se tiene que

$$A \subseteq B \implies \overline{A} \subseteq \overline{B}, \qquad \overline{A \cup B} = \overline{A} \cup \overline{B}, \qquad \overline{A \cap B} \subseteq \overline{A} \cap \overline{B}.$$

¿Puede extenderse la segunda de estas afirmaciones al caso de uniones infinitas? ¿Vale siempre la igualdad en la tercera?

(c) Si $A \subseteq X$ y $x \in X$, entonces $x \in \overline{A}$ si y solamente si existe una sucesión convergente $(x_n)_{n \ge 1}$ tal que $x_n \in A$ para todo $n \in \mathbb{N}$ y $\lim_{n \to \infty} x_n \in A$.

Solución. (a) Sea $A \subseteq X$ y escribamos B a la intersección que aparece en el enunciado. Supongamos primero que $x \in \bar{A}$, que F es un cerrado de X que contiene a A y que $x \notin F$: esto significa que existe r > 0 tal que $B_r(x) \cap F = \emptyset$. Ahora bien, como $x \in \bar{A}$, es $B_r(x) \cap A \neq \emptyset$: esto es absurdo, ya que como $A \subseteq F$ tenemos que $B_r(x) \cap A \subseteq B_r(x) \cap F$. Esta contradicción nos dice que tiene que ser $x \in F$ y vemos así que todo punto de \bar{A} está contenido en todo cerrado de X que contiene a A y, en definitiva, que $\bar{A} \subseteq B$.

Supongamos ahora que x es un punto de B y sea r > 0. Si $B_r(x) \cap A$ fuese vacío, tendríamos que $A \subseteq X \setminus B_r(x)$ y, como este último conjunto es cerrado y x está contenido en todo cerrado que contiene a A, que $x \in X \setminus B_r(x)$: esto es absurdo.

(b) Si $x \in \overline{\emptyset}$, entonces $B_1(x) \cap \emptyset \neq \emptyset$: esto es claramente imposible, así que debe ser $\overline{\emptyset} = \emptyset$. Por otro lado, si $x \in X$ y r > 0, entonces $x \in B_r(x) \cap X$, así que $x \in \overline{X}$: vemos así que $\overline{X} = X$.

- Supongamos que $A \subseteq B$ y que $x \in \overline{A}$. Si r > 0, entonces $B_r(x) \cap B \supseteq B_r(x) \cap A \neq \emptyset$ porque $x \in \overline{A}$ y, por lo tanto, tenemos que $x \in \overline{B}$.
- Sea $x \in \overline{A \cup B}$ y supongamos para llegar a un absurdo que $x \notin \overline{A} \cup \overline{B}$, de manera

que $x \notin \overline{A}$ y $x \notin \overline{B}$: existen entonces r > 0 y s > 0 tales que $B_r(x) \cap A = \emptyset$ y $B_s(x) \cap B = \emptyset$. Sea $t = \min\{r, s\}$, que es un número positivo. Es

$$B_t(x) \cap (A \cup B) = (B_t(x) \cap A) \cup (B_t(x) \cap B) \subseteq (B_t(x) \cap A) \cup (B_s(x) \cap B) = \emptyset \cup \emptyset = \emptyset.$$

Esto es absurdo, ya que $x \in \overline{A \cup B}$, y esta contradicción provino de suponer que $x \notin \overline{A} \cup \overline{B}$. Vemos así que $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.

Por otro lado, es claro que A y B están contenidos en $\overline{A \cup B}$ y este último conjunto es cerrado, así que de acuerdo a la primera parte de este ejercicio tenemos que $\overline{A} \subseteq \overline{A \cup B}$ y que $\overline{B} \subseteq \overline{A \cup B}$. Se sigue de esto, por supuesto, que $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$.

• Sea $x \in \overline{A \cap B}$. Si r > 0, entonces $B_r(x) \cap A \supseteq B_r(x) \cap (A \cap B) \neq \emptyset$ y $B_r(x) \cap B \supseteq B_r(x) \cap (A \cap B) \neq \emptyset$: esto muestra que $x \in \overline{A}$ y que $x \in \overline{B}$ y, por lo tanto, que $x \in \overline{A} \cap \overline{B}$.

Para cada $n \in \mathbb{N}$ sea $A_n = \{\frac{1}{n}\} \subseteq \mathbb{R}$. Es $\overline{A_n} = A_n$, y

$$\bigcup_{n>1} \overline{A_n} = \bigcup_{n>1} \overline{A_n} = \{ \frac{1}{n} : n \in \mathbb{N} \} \not\ni 0 \in \overline{\{ \frac{1}{n} : n \in \mathbb{N} \}} = \overline{\bigcup_{n \neq 1} A_n},$$

así que

$$\bigcup_{n\geq 1} \overline{A_n} \neq \overline{\bigcup_{n\neq 1} A_n},$$

Esto muestra que la segunda igualdad del enunciado no puede extenderse en general al caso de uniones infinitas. Por otro lado, si ponemos $A=\mathbb{Q}$ y $B=\mathbb{R}\setminus\mathbb{Q}$, tenemos que $\overline{A}=\overline{B}=\mathbb{R}$ y entonces que

$$\overline{A \cap B} = \overline{\varnothing} = \varnothing \neq \mathbb{R} = \mathbb{R} \cap \mathbb{R} = \overline{A} \cap \overline{B}.$$

Vemos así que la tercera inclusión del enunciado no es en general una igualdad.

- (c) Sea A un subconjunto de X y sea $x \in X$. Supongamos primero que $x \in \overline{A}$. Para cada $n \in \mathbb{N}$, entonces, el conjunto $B_{1/n}(x) \cap A$ no es vacío, así que existe $a_n \in A$ tal que $d(x,a_n) < 1/n$. La sucesión $(a_n)_{n \geq 1}$ es por lo tanto una sucesión en A que converge a x. Recíprocamente, supongamos que $(a_n)_{n \geq 1}$ es una sucesión en A que converge a x. Si r > 0, la convergencia nos dice que existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ es $d(x,a_n) < r$ y, en particular, que $a_{n_0} \in B_r(x) \cap A$, de manera que esta última intersección no es vacía: vemos así que $x \in \overline{A}$.
- **18.** Sea (X, d) un espacio métrico. Si $A \subseteq X$, entonces

$$(X \setminus A)^{\circ} = X \setminus \overline{A}, \qquad \overline{X \setminus A} = X \setminus A^{\circ}.$$

¿Es cierto que $A = \overline{A^{\circ}}$ o que $A^{\circ} = (\overline{A})^{\circ}$?

Solución. Sea A un subconjunto de X. Probemos primero las dos igualdades:

• Es $A \subseteq \overline{A}$, así que $X \setminus A \supseteq X \setminus \overline{A}$. Como $X \setminus \overline{A}$ es un abierto, esto implica que $(X \setminus A)^{\circ} \supseteq X \setminus \overline{A}$. Por otro lado, supongamos que existe $x \in (X \setminus A)^{\circ} \cap \overline{A}$. Como x está en $(X \setminus A)^{\circ}$, existe r > 0 tal que $B_r(x) \subseteq X \setminus A$, y entonces $B_r(x) \cap A = \emptyset$: esto es absurdo, ya que $x \in \overline{A}$. Vemos de esta forma que debe ser $(X \setminus A)^{\circ} \cap \overline{A} = \emptyset$

o, equivalentemente, que $(X \setminus A)^{\circ} \subseteq X \setminus \overline{A}$.

• Sea $B = X \setminus A$. De acuerdo a lo que ya probamos, $A^{\circ} = (X \setminus B)^{\circ} = X \setminus \overline{B}$, así que tomando complementos vemos que $X \setminus A^{\circ} = \overline{B} = \overline{X \setminus A}$.

Si $A = \{0\}$ en \mathbb{R} , entonces $\overline{A^{\circ}} = \overline{\varnothing} = \varnothing \neq A$. Por otro lado, $\mathbb{Q}^{\circ} = \varnothing \neq \mathbb{R} = \mathbb{R}^{\circ} = (\overline{\mathbb{Q}})^{\circ}$. Esto muestra que ninguna de las dos igualdades de la pregunta final valen en general.

19. Sea (X, d) un espacio métrico. Si $A \subseteq X$, entonces la frontera ∂A es un cerrado de X y se tiene que $\partial A = \overline{A} \cap \overline{X \setminus A}$ y $\partial A = \partial (X \setminus A)$.

Solución. Sea *A* un subconjunto de *X*. Mostremos primero que $\partial A = \overline{A} \cap \overline{X \setminus A}$.

- Sea $x \in \partial A$. Si r > 0, entonces es $B_r(x) \cap A \neq \emptyset$ y $B_r(x) \cap (X \setminus A) \neq \emptyset$: esto muestra que $x \in \overline{A}$ y que $x \in \overline{X} \setminus \overline{A}$ y, en definitiva, que $x \in \overline{A} \cap \overline{X} \setminus \overline{A}$.
- Sea $x \in \overline{A} \cap \overline{X \setminus A}$. Si r > 0, entonces $B_r(x) \cap A \neq \emptyset$ porque $x \in \overline{A}$ y $B_r(x) \cap (X \setminus A) \neq \emptyset$ porque $x \in \overline{X \setminus A}$: vemos así que $x \in \partial A$.

Usando la igualdad que ya tenemos dos veces, vemos que

$$\partial A = \overline{A} \cap \overline{X \setminus A} = \overline{X \setminus (X \setminus A)} \cap \overline{X \setminus A} = \partial(X \setminus A).$$

Finalmente, como \overline{A} y $\overline{X \setminus A}$ son conjuntos cerrados, también lo es su intersección ∂A . \square

20. Sea (X,d) un espacio métrico. Si U y F son un abierto y un cerrado de X, entonces $F \setminus U$ y $U \setminus F$ son un cerrado y un abierto de X.

Solución. Si U y F son un abierto y un cerrado de X, entonces $X \setminus U$ y $X \setminus F$ son un cerrado y un abierto de X y por lo tanto $U \setminus F = U \cap (X \setminus F)$ es un abierto de X y $F \setminus U = F \cap (X \setminus U)$ es un cerrado de X.

21. Sea (X, d) un espacio métrico. Si $x \in X$ y r > 0, llamamos bola cerrada centrada en x de radio r al conjunto

$$\overline{B}(x,r) = \{ y \in X : d(x,y) \le r \}.$$

- (a) Para cada $x \in X$ y cada r > 0 el conjunto $\overline{B}(x,r)$ es cerrado y $\overline{B(x,r)} \subseteq \overline{B}(x,r)$.
- (b) Muestre que en general no vale la igualdad en la afirmación anterior.

Solución. Es claro que $B_r(x) \subseteq \overline{B}_r(x)$ así que para probar que $\overline{B}_r(x) \subseteq \overline{B}_r(x)$ es suficiente con mostrar que $\overline{B}_r(x)$ es un cerrado de X y para ello que $X \setminus \overline{B}_r(x)$ es un abierto. Sea entonces $y \in X \setminus \overline{B}_r(x)$, de manera que d(x,y) > r y, por lo tanto, el número $\varepsilon := d(x,y) - r$ es positivo. Si $z \in B_{\varepsilon}(y)$, entonces $d(z,x) + d(z,y) \ge d(x,y)$ y, en consecuencia,

$$d(z,x) \ge d(x,y) - d(z,y) > d(x,y) - \varepsilon = r$$

así que $z \in X \setminus \overline{B}_r(x)$. Esto nos dice que $B_{\varepsilon}(z) \subseteq X \setminus \overline{B}_r(x)$ y, en definitiva, que $X \setminus \overline{B}_r(x)$ es abierto, como queríamos.

Si $X = \{x,y\}$ es un conjunto de cardinal 2 dotado de su métrica discreta, entonces $\overline{B_1(x)} = \overline{\{x\}} = \{x\} \neq \{x,y\} = \overline{B}_1(x)$. Esto muestra que la inclusión que probamos arriba bien puede ser estricta.

22. Sean (X, d_1) e (Y, d_2) espacios métricos y sea $(X \times Y, d)$ el espacio métrico con la métrica tal que

$$d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2)$$

cada vez que (x_1, y_1) y (x_2, y_2) son elementos de $X \times Y$. Si $A \subseteq X$ y $B \subseteq Y$, entonces $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$ y $\overline{A \times B} = \overline{A} \times \overline{B}$.

Solución. Empecemos por mostrar que

si U y V son abiertos de X y de Y, respectivamente, entonces $U \times V$ es un abierto de $Y \times V$

Sean U y V abiertos de X y de Y y sea $(x,y) \in U \times V$. Como $x \in U$ y U es abierto en X, existe $r_1 > 0$ tal que $B_{r_1}(x) \subseteq X$; de manera similar, como $y \in V$ y V es abierto en Y, existe $r_2 > 0$ tal que $B_{r_2}(y) \subseteq V$. Sea $r := \min\{r_1, r_2\}$, que es un número positivo. Si $(x', y') \in B_r(x, y)$, entonces r > d((x,y),(x',y')) = d(x,x') + d(y,y') y, como d(x,x') y d(y,y') son no negativos, de esta desigualdad se deduce que $d(x,x') < r \le r_1$ y $d(y,y') < r \le r_2$, de manera que $x' \in B_{r_1}(x) \subseteq U$ e $y' \in B_{r_2}(x) \subseteq V$: así, es $(x',y') \in U \times V$, y esto muestra que $B_r((x,y)) \subseteq U \times V$. El conjunto $U \times V$ es, por lo tanto, abierto.

Volvamos ahora al ejercicio. Sean A y B subconjuntos de X y de Y, respectivamente. Como A° y B° son abiertos en X y en Y lo que acabamos de hacer muestra que $A^\circ \times B^\circ$ es un abierto de $X \times Y$. Como además se tiene claramente que $A^\circ \times B^\circ \subseteq A \times B$, podemos concluir que $A^\circ \times B^\circ \subseteq (A \times B)^\circ$.

Para probar la inclusión recíproca, supongamos que $(x,y) \in (A \times B)^\circ$, de manera que existe r>0 tal que $B_r((x,y))\subseteq A\times B$. Si $x'\in B_{r/2}(x)$ e $y'\in B_{r/2}(y)$, entonces $d((x',y'),(x,y))=d_1(x',x)+d(y',y)< r$, de manera que $(x',y')\in B_r((x,y))\subseteq A\times B$ y, en particular, $x'\in A$ e $y'\in B$. Vemos así que $B_{r/2}(x)\subseteq A$ y que $B_{r/2}(y)\subseteq Y$, con lo que $x\in A^\circ$, $y\in B^\circ$ y, finalmente, $(x,y)\in A^\circ\times B^\circ$. Con esto concluimos que $(A\times B)^\circ=A^\circ\times B^\circ$.

Mostremos ahora que

si F y G son cerrados de X y de Y, respectivamente, entonces $F \times G$ es un cerrado de $X \times Y$.

Sean para ello F y G cerrados de X y de Y. Como $X \setminus F$ y $Y \setminus G$ son abiertos de X y de Y, lo que hicimos arriba nos dice que $X \times Y \setminus F \times Y = (X \setminus F) \times Y$ y $X \times Y \setminus X \times G = X \times (Y \setminus G)$ son abiertos de $X \times Y$. En particular, $F \times Y$ y $X \times G$ son cerrados de $X \times Y$ y también lo es su intersección, que es precisamente $F \times G$.

Sean otra vez $A \subseteq X$ y $B \subseteq Y$ subconjuntos. Como \overline{A} y \overline{B} son cerrados de X y de Y, el conjunto $\overline{A} \times \overline{B}$ es un cerrado de $X \times Y$. Como además contiene evidentemente a $A \times B$, tenemos que $\overline{A \times B} \subseteq \overline{A} \times \overline{B}$.

Supongamos ahora que (x,y) es un punto de $X\times Y$ que no está en $\overline{A\times B}$, de manera que existe r>0 tal que $B_r((x,y))\cap (A\times B)=\emptyset$. Queremos ver que $(x,y)\notin \overline{A}\times \overline{B}$: si $x\notin \overline{A}$, esto es claro. Supongamos entonces que $x\in \overline{A}$, de manera que en particular existe $x'\in B_{r/2}(x)\cap A$. Si $y'\in B_{r/2}(y)$, entonces claramente $(x',y')\in B_r((x,y))$ y, por lo tanto, $(x',y')\notin A\times B$: como $x'\in A$, debe ser entonces $y'\notin B$. Vemos así que $B_{r/2}(y)\cap B=\emptyset$ y, como consecuencia de ellos, que $y\notin \overline{B}$. Esto prueba que $(x,y)\notin \overline{A}\times \overline{B}$ y, en definitiva, que $(X\times Y)\setminus \overline{A\times B}\subseteq (X\times B)\setminus (\overline{A}\times \overline{B})$.

- **23.** Sea (X, d) un espacio métrico.
- (a) Si $A \subseteq X$, entonces el conjunto derivado A' es un cerrado de X.
- (b) Si A y B son subconjuntos de X, entonces

$$A \subseteq B \implies A' \subseteq B', \qquad (A \cup B)' = A' \cup B', \qquad \overline{A} = A \cup A', \qquad (\overline{A})' = A'.$$

(c) Si $A \subseteq X$ y $x \in X$, entonces $x \in A'$ si y solamente si existe una sucesión $(x_n)_{n \in \mathbb{N}}$ de puntos de A que converge a x y que no es casi constante.

Solución. (a) Sea A un subconjunto de X y sea $x \in \overline{A}$. Para cada $n \in \mathbb{N}$ existe entonces un punto x_n en $B_{1/n}(x) \cap A'$. Por otro lado, como x_n está en A' la intersección $B_{1/n}(x_n) \cap A$ tiene algún punto distinto de x_n : llamémoslo a_n .

Sea ahora r > 0 y sea $m \in \mathbb{N}$ tal que 1/m < r/2. El punto a_m es distinto de x y $d(a_m, x) \le d(a_m, x_m) + d(x_m, x) < 2/n < r$, así que $B_r(x) \cap A$ tiene un elemento distinto de x. Vemos así que $x \in A'$: esto muestra que $\overline{A'} \subseteq A'$ y, por lo tanto, que el conjunto A' es cerrado.

Una forma alternativa de hacer (a), usando sucesiones. Sea $x \in \overline{A'}$, de manera que hay una sucesión $(x_n)_{n\geq 1}$ en A' tal que $\lim x_n = x$. Si $n \in \mathbb{N}$, entonces $x_n \in A'$ y, por lo tanto, hay una sucesión $(a_{n,m})_{m\geq 1}$ de puntos de A que converge a x_n y que no es casi constante. Mostremos que

si
$$(n,m) \in \mathbb{N} \times \mathbb{N}$$
 es tal que $a_{n,m} \neq x$, entonces existe $(n',m') \in \mathbb{N} \times \mathbb{N}$ tal que $0 < d(x,a_{n',m'}) < d(x,a_{n,m})/2$. (5)

Sea, para ello, $(n,m) \in \mathbb{N} \times \mathbb{N}$ y supongamos que $a_{n,m} \neq x$. Pongamos $\varepsilon := d(x,a_{n,m})/2$, que es un número positivo. Como la sucesión $(x_k)_{k\geq 1}$ converge a x, existe $n' \in \mathbb{N}$ tal que $d(x,x_{n'}) < \varepsilon/2$. Por otro lado, como la sucesión $(a_{n',m})_{m\geq 1}$ converge a $x_{n'}$ y no es casi constante, existe $m' \in \mathbb{N}$ tal que $a_{n',m'} \neq x$ y $d(x_{n'},a_{n',m'}) < \varepsilon/2$. Tenemos entonces que

$$0 < d(x, a_{n',m'}) \le d(x, x_{n'}) + d(x_{n'}, a_{n',m'}) < \varepsilon.$$

Como la sucesión $(a_{1,m})_{m\geq 1}$ no es casi constante, existe $m_1\in\mathbb{N}$ tal que $a_{1,m_1}\neq x$. Pongamos $n_1:=1$. Usando (5) es claro que hay una sucesión $(n_k,m_k)_{k\geq 1}$ de elementos de $\mathbb{N}\times\mathbb{N}$ tal que para todo $k\in\mathbb{N}$ es $0< d(x,a_{n_{k+1},m_{k+1}})< d(x,a_{n_k,m_k})/2$. Se sigue de que la sucesión $(d(x,a_{n_k,m_k}))_{k\geq 1}$ es estrictamente decreciente y que converge a 0, y esto implica que la sucesión $(a_{n_k,m_k})_{k\geq 1}$, que está en A, tiene todos sus componentes distintas dos a dos y que converge a x. Vemos así que $x\in A'$ y, en definitiva, que $\overline{A'}\subseteq A'$, es decir, que el conjunto deriva A' es cerrado.

- (b) Sean A y B dos subconjuntos de X.
- Supongamos que $A \subseteq B$ y que $x \in A'$. Si r > 0, entonces $B_r(x) \cap B \supseteq B_r(x) \cap A$ y este último conjunto contiene un punto distinto de x: esto nos dice que $x \in B'$.
- Sea $x \in (A \cup B)'$ y supongamos que $x \notin A'$, de manera que existe r > 0 tal que $B_r(x) \cap A \subseteq \{x\}$. Queremos mostrar que necesariamente es $x \in B'$. Sea s > 0 y sea $t := \min\{r, s\}$, que es un número positivo. Como $x \in (A \cup B)'$, el conjunto $B_t(x) \cap (A \cup B)$ tiene un elemento distinto de x: como además es igual a $(B_t(x) \cap A) \cup (B_t(x) \cap B)$ y $B_t(x) \cap A \subseteq B_r(x) \cap A \subseteq \{x\}$, vemos que $B_t(x) \cap B$ tiene un

elemento distinto de x. Ese punto también está en $B_s(x) \cap B$. Vemos así que $x \in B'$, como queríamos.

Por otro lado, como $A \subseteq A \cup B$ y $B \subseteq A \cup B$, la primera afirmación que probamos nos dice que $A' \subseteq (A \cup B)'$ y que $B' \subseteq (A \cup B)'$: vemos así que $A' \cup B' \subseteq (A \cup B)'$.

Sea x ∈ A∪A'. Si x ∈ A, entonces claramente x ∈ Ā. Si en cambio x ∈ A', para todo r > 0 el conjunto B_r(x) ∩ A tiene un elemento distinto de x así que, en particular, no es vacío: esto nos dice que también en este caso x ∈ Ā. Vemos de esta forma que A∪A' ⊆ Ā.

Por otro lado, supongamos que $x \in \overline{A}$ y que $x \notin A'$, de manera que existe r > 0 tal que $B_r(x) \cap A \subseteq \{x\}$. Ahora bien, como $x \in \overline{A}$ la intersección $B_r(x) \cap A$ no puede ser vacía, así que tiene que coincidir con $\{x\}$ y, en particular, tenemos que $x \in A$. Esto muestra que $\overline{A} \subseteq A' \cup A$.

- Como A' es cerrado, $A' = \overline{A'} = A' \cup A''$, así que $A'' \subseteq A'$. Por otro lado, es $\overline{A} = A \cup A'$, así que $(\overline{A})' = (A \cup A')' = A' \cup A'' \subseteq A'$.
- (c) Sea $A\subseteq X$ y sea $x\in X$. Supongamos primero que $x\in A'$. Para cada r>0 el conjunto $B_r(x)\cap A$ tiene un elemento distinto de x, que escribimos $\phi(r)$. Podemos entonces definir una sucesión $(a_n)_{n\geq 1}$ poniendo $a_1=x_1$ y $a_{n+1}=\phi(d(x,a_n)/2)$ para cada $n\in \mathbb{N}$. Mostremos que

para cada n, $m \in \mathbb{N}$ se tiene que $d(x, a_{n+m}) < d(x, a_n)/2^m$

fijando $n \in \mathbb{N}$ y haciendo inducción con respecto a m. Como

$$a_{n+1} = \phi(d(x, a_n)/2) \in B_{d(x, a_n)/2}(x),$$

es $d(x, a_{n+1}) < d(x, a_n)/2$. Por otro lado, si suponemos que $d(x, a_{n+m}) < d(x, a_n)/2^m$, entonces

$$a_{n+m+1} = \phi(d(x, a_{n+1})/2) \in B_{d(x, a_{n+1})/2}(x),$$

así que $d(x, a_{n+m+1}) < d(x, a_{n+1})/2 < d(x, a_n)/2^{m+1}$.

Como consecuencia de lo que acabamos de probar, podemos ver que la sucesión $(a_n)_{n\geq 1}$ tiene todos sus términos distintos dos a dos. En efecto, si n y m son dos elementos de $\mathbb N$ y n < m, tenemos que $d(x,a_m) < d(x,a_n)/2^{m-n} < d(x,a_n)$, así que, en particular, $a_m \neq a_n$, como queremos. Como claramente $\lim_{n\to\infty} a_n = x$, vemos que x es limite de una sucesión no casi constante de elementos de A.

Recíprocamente, supongamos que existe una sucesión $(a_n)_{n\geq 1}$ de elementos de A que no es casi constante y que converge a x. Si r>0, entonces existe $m\in \mathbb{N}$ tal que para todo $n\geq m$ es $a_n\in B_r(x)$. Más aún, como la sucesión no es casi constante esto muestra que hay al menos dos elementos de A en $B_r(x)$: esto nos dice que $x\in A'$.

24. Para cada uno de los siguientes conjuntos determine el interior, la clausura, la frontera y el conjunto derivado, y si se trata de abiertos o cerrados:

 $[0,1], (0,1), \mathbb{Q}, \mathbb{Q} \cap [0,1], \mathbb{Z}, [0,1) \cup \{2\}.$

Solución. Sean
$$X = \mathbb{Q} \cap [0,1]$$
 e $Y = [0,1) \cup \{2\}$. Tenemos que
$$[0,1]^{\circ} = (0,1), \qquad \overline{[0,1]} = [0,1], \qquad \partial [0,1] = \{0,1\}, \qquad [0,1]' = [0,1],$$

$$(0,1)^{\circ} = (0,1), \qquad \overline{(0,1)} = [0,1], \qquad \partial (0,1) = \{0,1\}, \qquad (0,1)' = [0,1],$$

$$\mathbb{Q}^{\circ} = \varnothing, \qquad \overline{\mathbb{Q}} = \mathbb{R}, \qquad \partial \mathbb{Q} = \mathbb{Q}, \qquad \mathbb{Q}' = \mathbb{R},$$

$$X^{\circ} = \varnothing, \qquad \overline{X} = [0,1], \qquad \partial X = X, \qquad X' = [0,1],$$

$$\mathbb{Z}^{\circ} = \varnothing, \qquad \overline{\mathbb{Z}} = \mathbb{Z}, \qquad \partial \mathbb{Z} = \mathbb{Z}, \qquad \mathbb{Z}' = \varnothing,$$

$$Y^{\circ} = (0,1), \qquad \overline{Y} = [0,1] \cup \{2\}, \qquad \partial Y = \{0,1,2\}, \qquad Y' = [0,1].$$

25. Describa los conjuntos abiertos y cerrados de \mathbb{Z} visto como subespacio de \mathbb{R} . Generalice esto a una descripción de los abiertos y cerrados de un subconjunto discreto de un espacio métrico arbitrario.

Solución. Sea (X,d) un espacio métrico y sea $D\subseteq X$ un subconjunto discreto de X, de manera que para cada $x\in D$ existe $r_x>0$ tal que $B_{r_x}(x)\cap D=\{x\}$. Afirmamos que todo subconjunto de D es abierto para la métrica inducida: si $A\subseteq D$ es un subconjunto de D y $x\in D$, es claro que $B_{r_x}(x)\subseteq A$. Por otro lado, como todo subconjunto de D es abierto, se sigue inmediatamente que todo subconjunto de D es cerrado.

26. Si S es un subconjunto no numerable de \mathbb{R} , entonces el conjunto P de los puntos de condensación de S es *perfecto* (es decir, es cerrado y P = P') y la diferencia $S \setminus P$ es a lo sumo numerable.

Solución. Sea $Q = S \setminus P$. Por definición, si $q \in Q$, existe un abierto U_q en $\mathbb R$ tal que $q \in U_q$ y $U_q \cap S$ es a lo sumo numerable. El conjunto $\{U_q : q \in Q\}$ es un cubrimiento abierto de Q y como subconjunto de $\mathbb R$ tiene la propieda de Lindelöf, existe un subconjunto numerable R de Q tal que $Q \subseteq \bigcup_{q \in R} U_q$. Tenemos entonces que $Q \subseteq (\bigcup_{q \in R} U_q) \cap S = \bigcup_{q \in R} (U_q \cap S)$, y esta última unión es una unión numerable de conjuntos a lo sumo numerables: vemos así que el conjunto Q, es decir $S \setminus P$, es numerable.

Sea x un punto de P'. Si $\varepsilon > 0$, entonces $B_{\varepsilon}(x) \cap P$ no es vacío, así que contiene un punto p de P distinto de x. Como $B_{\varepsilon}^*(x)$ es un entorno de p y p es un punto de condensación de S, hay en $B_{\varepsilon}^*(x)$ no numerables puntos de S: vemos así que todo entorno de x contiene no numerables puntos de S y, por lo tanto, que $x \in P$. Esto muestra que $P' \subseteq P$.

Sea ahora $x \in P$ y sea $\varepsilon > 0$. Como x es un punto de condensación de S, $B_{\varepsilon/2}(x) \cap S$ es no numerable. En particular, existe $m \in \mathbb{N}$ tal que $(B_{\varepsilon/2}(x) \setminus B_{\varepsilon/2m}(x)) \cap S$ no es numerable: si no fuese ese el caso, tendríamos que

$$B_{\varepsilon/2}^*(x) \cap S = \bigcap_{n \geq 1} (B_{\varepsilon}(x) \setminus B_{\varepsilon/2n}(x)) \cap S,$$

una unión numerable de conjuntos numerables, lo que es absurdo. Ahora bien, como $\left(B_{\varepsilon/2}(x)\setminus B_{\varepsilon/2m}(x)\right)\cap S$ es no numerable, posee un punto de condensación ξ . Ese punto claramente pertenece al cerrado $\overline{B}_{\varepsilon/2}(x)\setminus B_{\varepsilon/2m}(x)$, de manera que $\xi\in B_{\varepsilon}(x)$ y $\xi\neq x$. Concluimos así que todo entorno de x posee un punto de condensación de S distinto de X y, por lo tanto, que $X\in P'$. Vemos así que $Y\subseteq P'$ y, juntanto todo, que Y=P', como queremos.

27. Sea (X, d) un espacio métrico y sean $x = (x_n)_{n \ge 1}$ e $y = (y_n)_{n \ge 1}$ dos sucesiones en X.

- (a) Si x converge a x_0 e y a y_0 , entonces $\lim_{n\to\infty} d(x_n, y_n) = d(x_0, y_0)$.
- (*b*) Si *x* e *y* son sucesiones de Cauchy, entonces la sucesión de números reales $(d(x_n, y_n))_{n \ge 1}$ es convergente.

Solución. (a) Supongamos que x e y convergen a x_0 y a y_0 , respectivamente. Sea $\varepsilon > 0$. La convergencia de las dos sucesiones nos dice que existe $n_0 \in \mathbb{N}$ tal que si $n \ge n_0$ entonces $d(x_n, x_0) < \varepsilon$ y $d(y_n, y_0) < \varepsilon$. Para tales valores de n tenemos que

$$d(x_n, y_n) \le d(x_n, x_0) + d(x_0, y_0) + d(y_0, y_n),$$

de manera que

$$d(x_n, y_n) - d(x_0, y_0) \le d(x_n, x_0) + d(y_0, y_n) < 2\varepsilon.$$

De manera similar, tenemos que

$$d(x_0, y_0) \le d(x_0, x_n) + d(x_n, y_n) + d(y_n, y_0),$$

así que

$$-d(x_n, y_n) + d(x_0, y_0) \le d(x_0, x_n) + d(y_n, y_0) < 2\varepsilon.$$

En definitiva, tenemos que $|d(x_n,y_n)-d(x_0,y_0)|<2\varepsilon$ y, por lo tanto, podemos concluir que

$$\lim_{n\to\infty} d(x_n, y_n) = d(x_0, y_0).$$

(b) Supongamos ahora que x e y son sucesiones de Cauchy. Sea $\varepsilon > 0$. La hipótesis implica que existe $n_0 \in \mathbb{N}$ tal que si n, $m \ge n_0$ entonces $d(x_n, x_m) < \varepsilon$ y $d(y_n, y_m) < \varepsilon$. Si ahora n, $m \ge n_0$, tenemos que

$$d(x_n, y_n) \le d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n),$$

así que

$$d(x_n, y_n) - d(x_m, y_m) \le d(x_n, x_m) + d(y_m, y_n) < 2\varepsilon.$$

Intercambiando los roles de n y de m en este razonamiento vemos que también

$$-d(x_n, y_n) + d(x_m, y_m) < 2\varepsilon$$

y, juntando las dos desigualdad que obtuvimos, que

$$|d(x_n, y_n) - d(x_m, y_m)| < 2\varepsilon.$$

Esto nos dice que la sucesión de números reales $(d(x_n, y_n))_{n\geq 1}$ es de Cauchy y, por lo tanto, que converge.

28. Sea (X,d) un espacio métrico. Decimos que un subconjunto A de X es un G_{δ} si es intersección de una familia numerable de abiertos, y que es un F_{σ} si es unión de

una familia numerable de cerrados.

- (*a*) El complemento de un conjunto G_{δ} es un conjunto F_{σ} , y el complemento de un conjunto F_{σ} es un conjunto G_{δ} .
- (b) Todo abierto es un conjunto F_{σ} y todo cerrado es un conjunto G_{σ} .
- (c) Exhiba familias numerables de abiertos de \mathbb{R} cuya intersección sean los conjuntos [0,1] y [0,1), y una familia numerable de cerrados cuya unión sea [0,1). ¿Oué conclusión puede obtenerse de estos ejemplos?

Solución. (a) Sea U un conjunto G_{δ} (un conjunto F_{σ}), de manera que hay una sucesión $(U_n)_{n\geq 1}$ de abiertos (cerrados) de X tal que $U=\bigcap_{n\geq 1}U_n$ ($U=\bigcup_{n\geq 1}U_n$). Tenemos que

$$X \setminus U = X \setminus \bigcup_{n \ge 1} U_n = \bigcap_{n \ge 1} (X \setminus U_n) \qquad \qquad \left(X \setminus U = X \setminus \bigcap_{n \ge 1} U_n = \bigcup_{n \ge 1} (X \setminus U_n) \right)$$

y, como el conjunto $X\setminus U_n$ es cerrado (abierto) cualquiera sea $n\geq 1$, esto muestra que $X\setminus U$ es un conjunto F_σ (un conjunto G_δ).

(b) En vista de la primera parte del ejercicio, es suficiente con mostrar que todo abierto es un F_δ . Sea U un conjunto abierto de X y para cada $n \in \mathbb{N}$ sea

$$U_n = \bigcup_{x \in X \setminus U} B_{1/n}(x).$$

Es claro que U_n es abierto, así que $F_n = X \setminus U_n$ es cerrado. Para probar lo que queremos es suficiente que mostremos que

$$U=\bigcup_{n>1}F_n.$$

Llamemos V a la unión que aparece aquí. Sea $u \in U$. Como u es abierto, existe $m \in \mathbb{N}$ tal que $B_{1/m}(u) \subseteq U$. Si fuese $u \in U_m$, tendríamos que hay un punto $z \in X \setminus U$ tal que $u \in B_{1/m}(z)$: en ese caso es $X \setminus U \ni z \in B_{1/m}(u) \subset U$, lo que es absurdo. Vemos así que $u \in X \setminus U_m = F_m \subseteq V$.

Por otro lado, supongamos que $v \in V$, de manera que existe $n \ge 1$ tal que $v \in F_n$ y, por lo tanto, $v \notin U_n$. Esto significa que para todo $z \in X \setminus U$ se tiene que $d(z,v) \ge 1/n$ y, en particular, que $z \notin X \setminus U$, es decir, que $z \in U$.

(c) Es inmediato verificar que

$$[0,1] = \bigcap_{n \ge 1} \left(-\frac{1}{n}, 1 + \frac{1}{n}\right), \qquad [0,1] = \bigcap_{n \ge 1} \left(-\frac{1}{n}, 1\right), \qquad [0,1] = \bigcup_{n \ge 1} \left[0, 1 - \frac{1}{n}\right].$$

Distancias a conjuntos

29. Sea (X, d) un espacio métrico y sea A un subconjunto no vacío de X. Si $x \in X$, la *distancia de x a A* es el número

$$d(x,A) = \inf\{d(x,a) : a \in A\}.$$

Observemos que el ínfimo tiene sentido: es el ínfimo de un conjunto no vacío y acotado inferiormente.

- (a) Si $x \in y$ son puntos de X, entonces $|d(x,A) d(y,A)| \le d(x,y)$.
- (b) Si $x \in A$, entonces d(x,A) = 0.
- (c) Si $x \in X$, entonces $d(x,A) = 0 \iff x \in \overline{A}$.
- (*d*) Para todo r > 0 el conjunto $B_r(A) = \{x \in X : d(x,A) < r\}$ es abierto y el conjunto $\overline{B}_r(A) = \{x \in X : d(x,A) \le r\}$ es cerrado.

Solución. (a) Sean x e y dos puntos de X. Si $a \in A$, entonces

$$d(x,A) \le d(x,a) \le d(x,y) + d(y,a)$$

así que $d(x,A) - d(x,y) \le d(y,a)$ y, por lo tanto, $d(x,A) - d(x,y) \le d(y,A)$, de manera que

$$d(x,A)-d(y,A) \le d(x,y).$$

Intercambiando los roles de x y de y en esta desigualdad vemos que también

$$-d(x,A) + d(y,A) \le d(x,y)$$

y, en definitiva, que

$$|d(x,A) - d(y,A)| \le d(x,y),$$

como queremos.

(b) Si $x \in A$, entonces $0 \in \{d(x, a) : a \in A\} \subseteq [0, \infty)$, así que

$$d(x,A) = \inf\{d(x,a) : a \in A\} = 0.$$

(c) Sea $x \in X$ y supongamos primero que d(x,A) = 0, de manera que se tiene que inf $\{d(x,a) : a \in A\} = 0$. Si r > 0, entonces esto significa que existe $a \in A$ tal que d(x,a) < r y, por lo tanto, que $B_r(x) \cap A \neq \emptyset$: vemos así que $x \in \overline{A}$.

Supongamos ahora, para probar la recíproca, que $x \in \overline{A}$ y sea $D = \{d(x, a) : a \in A\}$. Si r > 0, entonces como $x \in \overline{A}$ existe $a \in B_r(x) \cap A$ y, por lo tanto, $D \ni d(x, a) < r$. Vemos así que ningún número positivo es cota inferior para D, así que debe ser $d(x, A) = \inf D = 0$.

(d) Sea r > 0 y sea $x \in B_r(A)$, de manera que d(x,A) < r. Si $y \in B_{r-d(x,A)}(x)$, entonces

$$d(y,A) - d(x,A) \le |d(y,A) - d(x,A)| \le d(y,x) < r - d(x,A),$$

así que d(y,A) < r: vemos así que $B_{r-d(x,A)}(x) \subseteq B_r(A)$ y, por lo tanto, que $B_r(A)$ es abierto. Supongamos ahora que $x \notin \overline{B}_r(A)$, de manera que d(x,A) > r. Si $y \in B_{d(x,A)-r}(x)$, entonces

$$d(x,A) - d(y,A) \le |d(x,A) - d(y,A)| \le d(x,y) < d(x,A) - r$$

y, por lo tanto, d(y,A) > r, es decir, $y \notin \overline{B}_r(A)$. Esto nos dice que $X \setminus \overline{B}_r(A)$ es un abierto de X y, como queremos, que $\overline{B}_r(A)$ un cerrado.

30. Sea (X, d) un espacio métrico. Si A y B son dos conjuntos no vacíos de X, la

distancia de A a B es el número

$$d(A,B) = \inf\{d(a,b) : a \in A, b \in B\}.$$

Observemos que el ínfimo tiene sentido: es el ínfimo de un conjunto no vacío y acotado inferiormente.

Sean *A*, *B* y *C* tres subconjuntos no vacíos de *X*. Determine si las siguientes afirmaciones son verdaderas o falsas:

- (a) d(A, B) = d(B, A).
- (b) $d(A,B) = 0 \iff A \cap B = \emptyset$.
- (c) $d(A, B) = 0 \iff \overline{A} \cap \overline{B} = \emptyset$.
- (d) $d(A, C) \le d(A, B) + d(B, C)$.

Solución. (a) Como $\{d(a,b): a \in A, b \in B\}$ y $\{d(b,a): b \in B, a \in A\}$ son el mismo conjunto, porque la métrica es simétrica, los ínfimos de esos dos conjuntos son iguales y d(A,B) = d(B,A).

(*b*) Si en \mathbb{R} consideramos los conjuntos A=(-1,0) y B=(0,1), tenemos que d(A,B)=0, porque para todo $n\in\mathbb{N}$ es $-1/n\in A$, $1/n\in B$ y, por lo tanto,

$$d(A,B) \le d(-1/n,1/n) = 2/n$$
.

Sin embargo, es $A \cap B = \emptyset$: esto muestra que la afirmación es falsa.

- (c) En \mathbb{R}^2 consideremos los conjuntos $A = \{(x,0) : x \in \mathbb{R}\}$ y $B = \{(x,e^x) : x \in \mathbb{R}\}$. Se trata de conjuntos cerrados:
 - Si (p_n)_{n≥1} es una sucesión convergente de puntos de A y p = (x,y) es su límite, entonces para cada n ∈ N existe x_n ∈ R tal que p_n = (x_n,0). Es d(p_n,p)² = (x x_n)² + y². Si fuese y ≠ 0, tendríamos que 0 < y² ≤ d(p_n,p)² y, tomando límites, que 0 < y² ≤ lim d(p_n,p)² = 0: como esto es absurdo, debe ser y = 0. Esto muestra que p ∈ A y, en definitiva, que A es cerrado.
 - Sea ahora $(p_n)_{n\geq 1}$ una sucesión convergente de puntos de B y p=(x,y) su límite. Como la sucesión está en B, para cada $n\in\mathbb{N}$ existe $x_n\in\mathbb{R}$ tal que $p_n=(x_n,e^{x_n})$. Si $n\in\mathbb{N}$, tenemos que $0\leq |x_n-x|\leq d(p_n,p)$: como la sucesión $(d(p_n,p))_{n\geq 1}$ converge a 0, podemos concluir entonces que la sucesión $(|x-x_n|)_{n\geq 1}$ también converge a 0, y esto significa que $\lim x_n=x$. Ahora bien, como la función $t\in\mathbb{R}\mapsto e^t\in\mathbb{R}$ es continua, de esto último podemos deducir que también $e^x=\lim e^{x_n}$.

Por otro lado, es $0 \le |e^{x_n} - y| \le d(p_n, p)$ para todo $n \in \mathbb{N}$, así que la sucesión $(|e^{x_n} - y|)_{n \ge 1}$ también converge a 0, es decir, $\lim e^{x_n} = y$. Vemos así que $y = e^x$ y, por lo tanto, que $p = (x, x^x) \in B$. El conjunto B es por ello cerrado.

Que A y B sean cerrados implica que $\overline{A} \cap \overline{B} = A \cap B = \emptyset$: en efecto, un punto (x, e^x) de B no pertenece a A porque la función exponencial no se anula. Ahora bien, si $\varepsilon > 0$, entonces existe $t \in \mathbb{R}$ tal que $0 < e^t < \varepsilon$, porque $\lim_{x \to -\infty} e^x = 0$, así que

$$d((t,0),(t,e^t))=e^t<\varepsilon.$$

Como $(t,0) \in A$ y $(t,e^t) \in B$, esto nos dice que $d(A,B) < \varepsilon$. Finamente, como esto pasa para todo número ε positivo, tenemos que d(A,B) = 0.

(d) Si
$$A = [0, 1]$$
, $B = [0, 3]$ y $C = [2, 3]$, tenemos que

$$d(A,C) = 1 > 0 + 0 = d(A,B) + d(B,C),$$

así que la desigualdad del enunciado no vale en general.