Expressions

Definition (Expression)

An **expression** is a finite combination of symbols which may be reduced (rewritten) to obtain a simpler expression or a result.

Example

$$\underbrace{1+2}_{\text{expression}} \xrightarrow{\text{Rewrite}} \underbrace{3}_{\text{also an expression}}$$

Expressions in Imperative and Functional Programming

Use of Expressions

- Primary building block of functional programs
- ► Imperative languages: some expressions and some statements/commands (not expressions)
- ► (Purely) Functional Languages: Everything is an expression

Example (C Expressions)

- **>** 2
- ▶ 1+2
- ▶ x ? 1 : 2

Counterexample (C Statements)

- ▶ if(x) { y=1; } else { y=2; }
- ▶ while(i) {i--;}

Syntax and Semantics

Expression Syntax

► Is the expression a valid combination of symbols?

C Syntax

- ► Valid: (1 + 2) * 3
- ► Invalid: (1 + 2 * 3

Expression Semantics

► Type-checking rules

(static semantics):

Produce a type or fail with an error

► Evaluation rules

(dynamic semantics):

Produce a value, exception, or infinite loop

We will precisely define syntax and semantics over this course.

Values

Definition (Value)

A value is an expression that does not need further evaluation.

If Expressions

aka Conditionals

Evaluation

- ▶ Notation: Write α evaluates to β as $\alpha \leadsto \beta$
- When e1 → true and e2 → v,
 if e1 then e2 else e3 → v
- ► When e1 \rightsquigarrow false and e3 \rightsquigarrow v, if e1 then e2 else e3 \rightsquigarrow v

Type checking

- ▶ Notation: Write α has type τ as α : τ
- ► When
 - ► e1 : bool,
 - ► e2 : *τ*,
 - ► e3 : *τ*,

(if e1 then e2 else e3) : au

Type inference and annotation

Type Inference

- ► We can infer the of an **if** expression from the types of its constituent expressions.
- ► *type inference* is generally possible in functional languages and is performed by compilers
- ► If types cannot be inferred, compilation fails with a type error
- ► May add annotations to test/diagnose: Replace e with e:t

If Expression Type

(if e1 then e2 else e3) : τ

where

- ► e1 : bool
- ▶ e2 : *τ*
- ▶ e3 : *τ*

Capability: "If it compiles, it (probably) works."

Definitions

Definition (definition)

A definition gives a name to a value.

Illustration

- ► Definitions are disjoint from expressions
- ▶ But syntactically, definitions contain expressions

Variables

Definition

- ► A **Variable** is a symbol representing an expression.
- ▶ **Bound** variables refer to some expression.
- Free variables DO NOT not refer to some expression (are unbound).
- ► Immutable variables CANNOT be changed (are constant).
- ► Mutable variables CAN be changed (reassigned).

Let Expression

Evaluation

- ightharpoonup Evaluate $e_1 \rightsquigarrow v_1$
- ► Substitute v_1 for x in e_2 , yielding new expression e'_2
- ► Implementation: there is a memory location named x that contains/references v
- ightharpoonup Evaluate: $e_2' \rightsquigarrow v_2$
- ► Result:

let $x \leftarrow e_1$ in $e_2 \rightarrow v_2$

Type checking

- ▶ $e_1 : \tau_1$
- \triangleright $x : \tau_1$
- $ightharpoonup e_2 : au_2$
- ▶ let $x \leftarrow e_1$ in e_2 : τ_2

Spring 2020

Example: Expression Evaluation

Exercise: Expression Evaluation

if let $x \leftarrow$ true in $\neg x$ then false else true

if if true then false else true then 1 else 2

Outline

Expressions

Functions

Lambda Expression

Anonymous Functions

Function Application function f y actual parameter

- ▶ Bind actual parameter *y* to the formal parameter of *f*.
- ightharpoonup Evaluate the body of f.

Contrasting Notations

Functions are values: Binding

Functions are values: Returning Functions

Lambda: Very Important!

- Lambda can perform any possible computation!
- ► Trivial with Lambda:
 - ► N-ary functions
 - ► Variable binding (let)
 - ► Statements (;)
 - Named functions
 - ▶ 00P
- ► Also possible with Lambda:
 - Recursion
 - ► Conditionals (if)
 - ▶ Lists
 - ► Structs
 - ► Arithmetic (+, −, etc.)

Function Call Associativity

Evaluate Left to Right

$$(a_0a_1a_2a_3)=((((a_0a_1)a_2)a_3)$$

Function Call Parenthesization

Exercise: Lambda Evaluation

$$\blacktriangleright \left((\lambda x.x) y \right)$$

$$\blacktriangleright \left((\lambda x . x) (\lambda y . y) \right)$$

$$\rightsquigarrow$$

$$\blacktriangleright \left((\lambda x . (\lambda y . xy)) z \right)$$

$$\rightsquigarrow$$

$$\blacktriangleright \left((\lambda x.xx) (\lambda x.xx) \right)$$

 $\sim \rightarrow$

Spring 2020

Binary Functions

Each function call creates new bindings of its arguments.

N-ary Functions

N-ary Functions

example, continued

"Currying"

Binary Curry

curry $\equiv \lambda f a. (\lambda b. f a b)$

Function curry(f, a)

- 1 function g(b) is
- 2 | f(a,b)
- **3** g

Haskell B. Curry

Historical Interlude 0: Mathematics of Lambda

Curry, Hilbert, Church, and Turing

Let to Lambda

- ► Identifier x becomes lambda parameter
- ▶ Body exp. e₂ becomes the lambda body
- ightharpoonup Binding exp. e_1 becomes the call argument

Sequential Definition to Let

Local Functions to Let and Lambda

Global Functions to Sequential Assignment

Example: Reduction to Lambda

x=true

let
$$x \leftarrow 2$$
 in $1+x$ let $x \leftarrow 2$ in $x + y$ let $x \leftarrow 1$ in (let $x \leftarrow 2$ in $x + y$)

let $x \leftarrow 1$ in (let $x \leftarrow 2$ in $x + y$)

let $x \leftarrow 1$ in (let $x \leftarrow 2$ in $x + y$)

let $x \leftarrow 1$ in (let $x \leftarrow 2$ in $x + y$)

let $x \leftarrow 1$ in (let $x \leftarrow 2$ in $x + y$)

let $x \leftarrow 1$ in (let $x \leftarrow 2$ in $x \leftarrow 2$ in $x \leftarrow 2$ in $x \leftarrow 3$ let x

if true then 1 else 0 $\stackrel{\text{if}}{\leadsto}$ 1

Exercise: Reduction to Lambda

- ▶ let $x \leftarrow 1$ in $\lambda a \cdot x + a$
- \blacktriangleright (let $x \leftarrow 1$ in $\lambda a \cdot x + a$) 2
- $\blacktriangleright \text{ flet } f(a\ b) \rightarrow a + b \text{ in } f \ 1 \ 2$

▶ flet $f(n) \rightarrow (\text{if } n = 0 \text{ then } 1 \text{ else } n * f(n-1)) \text{ in } f 2$

Spring 2020