Алгебра. Неофициальный конспект

Лекторы: Николай Александрович Вавилов Степанов Алексей Владимирович

Конспектировал Леонид Данилевич

III семестр, осень 2023 г.

Изначально предполагалось, что лекции будет читать Николай Александрович Вавилов.

13 сентября была прочитана третья лекция. Николай Александрович прекрасно выглядел, сообщил о пересдаче в следующем месяце, а после лекции как обычно остался, чтобы отвечать на вопросы. Я подошёл с вопросом о том, почему спин полуцелый (да, к лектору по алгебре — это было упомянуто на лекции с обоснованием того, что $\mathbb{R}P^2$ двулистно накрывает плоскость (может, я ошибаюсь)). Николай Александрович что-то говорил про специальный индийский танец с чашей, про привязывание греческого кратера резинками за обе ручки к стенкам с последующим закручиванием, и про спиноры. К сожалению, про это я так ничего и не понял — сложно описывать повороты трёхмерного тела в пространстве, а о спинорах я слышал в первый раз.

Уже выйдя на улицу, я потом в шутку предложил на следующий день принести греческую чашу и резинки, чтобы Николай Александрович сам всё показал — 14 сентября была запланирована очередная, четвёртая, лекция.

Я пришёл на неё за несколько минут до начала, и с удивлением увидел, что у аудитории стоит лишь несколько человек. Оказалось, лекцию отменили — Николай Алесандрович внезапно плохо себя почувствовал, и сообщил об этом администраторам. Нам написали, что 14 сентября лекции не будет, и её проведут в другой день.

А уже вечером того дня до нас сарафанной почтой дошло известие о смерти учителя. Мой одногруппник, Лев, поделился чьим-то сообщением с фотографией записи, приписав «Это правда?»

Сначала, кажется, никто не поверил. Я увидел текст, и подумал: «И ведь действительно, сегодня лекции не было. Но он заболел, а не умер, что за глупая шутка». Потом я проверил, что запись на стене поделившегося человека действительно существует, и в ту же секунду Лев написал, что, похоже, это не шутка.

Это была не шутка.

Николай Александрович Вавилов, наш учитель алгебры, прекрасный преподаватель, которого любили, кажется, все, скоропостижно скончался 14 сентября 2023 года.

Оглавление

1	Пол	илинейная алгебра 3
	1.1	Полилинейные отображение
	1.2	Определение тензорного произведения двух модулей
		1.2.1 Мотивация
		1.2.2 Симметричность
		1.2.3 Тензорное произведение двух модулей
		1.2.4 Базис тензорного произведения двух модулей
	1.3	Тензорное произведение нескольких модулей
		1.3.1 Базис тензорного произведения
	1.4	Изоморфизмы тензорного произведения
		1.4.1 Геометрическое определение тензорного произведения
		1.4.2 Определение ⊗ через Нот
		1.4.3 Двойственность для ⊗
		1.4.4 Сопряжённость ⊗ и Нот
	1.5	Тензорное произведение линейных отображений
		1.5.1 Матрица тензорного произведения линейных отображений 9
		1.5.2 Кронекеровское произведения и кронекеровская сумма многочленов
	1.6	Тензорные пространства
		1.6.1 Операции над тензорами
	1.7	Тензорная алгебра
	1.8	Градуированные алгебры
	1.9	Построение симметрической и внешней алгебр
	1.10	Другое определение симметрической и внешней алгебр
		Вычисления в алгебре Грассмана
		1.11.1 Внешняя степень матричного представления
	1.12	Грассманиан
2	Teop	рия представлений конечных групп 24
	2.1	Теорема Жордана — Гёльдера
	2.2	Немножко фактов про кольца
	2.3	Три с половиной языка
		2.3.1 Линейные представления группы G
		2.3.2 Линейные действия
		2.3.3 Структура $R[G]$ модуля над каким-то R -модулем
		2.3.4 Глоссарий терминов
	2.4	Сплетающие операторы
	2.5	Изоморфизм представлений
	2.6	Подпредставление
	2.7	Лемма Шура
	2.8	Факторпредставление
	2.9	Прямая сумма представлений. Неразложимые представления
	2.10	Усреднение по конечной группе
		2.10.1 Усреднение векторов
		2.10.2 Усреднение линейных отображений

	2.11	Теорем	Машке								 35
	2.12	Унитар	изуемость								 36
	2.13	Характ	еры Фробениуса								 37
	2.14	Предст	вления абелевых групп. Лемма Шура								 39
		2.14.1	Классификация циклических групп								 39
		2.14.2	Классификация представлений произвольных конеч	ных а	абел	евых	х гр	уп	п.		 39
		2.14.3	Одномерные представления любых конченых групп								 40
	2.15	Формул	ировка теоремы Бернсайда — Фробениуса, первые	прим	еры						 40
		2.15.1	Представления неабелевых групп								 41
	2.16	Соотно	цения ортогональности Шура (лемма Шура в матри	ичной	фор	ме)					 43
			соотношение ортогональности								
	2.18	Разлож	ение представление на неприводимые. Sum of square	es for	mul	a .					 45
			соотношение ортогональности (для столбцов)								
	2.20	Усредн	ние с весом (averaging with weight)								 47
	2.21	Количе	ство неприводимых представлений конечной группы	Ι							 47
			йшие конструкции над представлениями								
			вления прямого произведения групп								
			за целочисленности представлений								
	2.25	Индуци	рованные представления								 51
			Компактная индукция (compact induction)								
			Полная индукция (complete induction)								
	2.26		рованные характеры								
			а слияния (fusion formula)								
			заимности Фробениуса								
			•								
3			нные куски из теории представлений								56
	3.1		ии над представлениями								
	3.2		ы характеров								
		3.2.1	Вакон Φ робениуса без теории категорий								 62
1	Tank	оия кат	70mv ⁸								64
4	4.1		т ории сальные объекты								_
	4.1		ры и не только								
	4.2		ры и не только								
		4.2.1	Тротивоположная категория			• •			• •	•	 67
			цекартово произведение категории								
			чономорфизмы и эпиморфизмы								
			Рункторы								
		4.4.0	линграварианіный шункійр								 US

Глава 1

Полилинейная алгебра

Лекция I

5 сентября 2023 г.

1.1 Полилинейные отображение

Пусть R — коммутативное кольцо.

Определение 1.1.1 (Полилинейное отображение). Отображение $\phi: M_1, \times \cdots \times M_s \to M$, где $M_1, \ldots, M_s, M-R$ -модули, такое, что оно

- 1. Аддитивно по любому аргументу при фиксированных остальных.
- 2. Однородно степени 1 по каждому аргументу (выносится скаляр).

Примеры.

- Билинейные формы скалярные произведения.
- Умножение в алгебре $A \times A \to A$, где A алгебра над R.
- \bullet Определитель n-линейная форма.

 $\it Замечание.$ Если $\it M_1, \ldots, \it M_s$ свободны, то $\it \phi$ определён заданием значений на наборах базисных векторов.

Обозначим за $L(M_1,\ldots,M_s;M)$ множество всех s-линейных отображений $M_1\times\cdots\times M_s\to M$. На этом множестве можно ввести структуру R-модуля:

$$(\phi + \psi)(u_1, \dots, u_s) = \phi(u_1, \dots, u_s) + \psi(u_1, \dots, u_s)$$
$$(\lambda \phi)(u_1, \dots, u_s) = \lambda \cdot \phi(u_1, \dots, u_s)$$

Если R = K - поле, то $\dim(L(M_1, \dots, M_s; M)) = \dim(M_1) \cdot \dots \cdot \dim(M_s) \cdot \dim(M)$.

Тензорные произведения позволяют в некотором смысле сводить полилинейные отображения к линейным.

1.2 Определение тензорного произведения двух модулей

1.2.1 Мотивация

Рассмотрим X, Y — два множества. Хотим построить функцию $\phi: X \times Y \to K$, где K — поле.

Рассмотрим пару функций $f: X \to K, g: Y \to K$. Как их превратить в одну функцию? Надо взять их тензорное произведение!

$$f \otimes g : X \times Y \to K; (x, y) \mapsto f(x) \cdot g(y)$$

Это было бы произведение функций, если бы f и g были заданы на одном множестве X=Y.

Функция такого вида — функция с разделяющимися переменными.

К сожалению, не все функции имеют такой вид. Рассмотрим лучше суммы

$$f_1 \otimes g_1 + \cdots + f_m \otimes g_m : X \times Y \to K$$

Если $|X|, |Y| < \infty$, то (из сравнения размерностей) равенство $K^{X \times Y} = K^X \otimes K^Y$.

Получается, $\dim(U \oplus V) = \dim(U) + \dim(V)$, и $\dim(U \otimes V) = \dim(U) \cdot \dim(V)$.

Мы таким образом сможем отождествить $L(M_1, \ldots, M_s, M) = \operatorname{Hom}(M_1 \otimes \cdots \otimes M_s; M)$, действительно сведя полилинейные отображения к линейным.

1.2.2 Симметричность

Определение 1.2.1 (Полилинейное отображение $\phi: M \times \cdots \times M \to N$ симметрично). $\phi(\dots,u,\dots,v,\dots) = \phi(\dots,v,\dots,u,\dots)$

Определение 1.2.2 (Полилинейное отображение $\phi: M \times \cdots \times M \to N$ антисимметрично). $\phi(\dots, u, \dots, u, \dots) = 0$

Для таких полилинейных отображений возникнут особые конструкции — симметрической степени $S^m(M)$ и внешней степени $\bigwedge^m(M)$.

1.2.3 Тензорное произведение двух модулей

Пусть R — коммутативное кольцо.

Определение 1.2.3 (Тензорное произведение R-модулей L,M). R-модуль $L\otimes M$ вместе с билинейным отображением $\psi:L\times M\to L\otimes M$ таким, что

для любого R-модуля N, для любого полилинейного $\phi:L\times M\to N$: $\exists !\ R$ -линейное $\eta:L\otimes M\to N$, такое, что диаграмма ниже коммутативна.

Обозначим пару (x,y) за $x \otimes y$, назовём её разложимым тензором.

Должно выполняться

$$(x_1 + x_2) \otimes y = x_1 \otimes y + x_2 \otimes y$$
$$x \otimes (y_1 + y_2) = x \otimes y_1 + x \otimes y_2$$
$$x\lambda \otimes y = (x \otimes y)\lambda = x \otimes y\lambda$$

Последнее в случае L — левого модуля, M — правого модуля, обращается в $x\lambda\otimes y=x\otimes\lambda y$.

Теорема 1.2.1 (Существование тензорного произведения). Для любых R-модулей L, M существует $L \otimes M$.

Доказательство. Введём P — свободный модуль на множестве образующих — множестве пар $(x,y) \in L \times M$. Его элементы — формальные суммы

$$\sum_{x\in L,y\in M}(x,y)\lambda_{x,y},$$
 где $\lambda_{x,y}\in R,$ почти все 0

В P не выполнены соотношения, перечисленные выше, введём их и профакторизуем.

$$Q = \left\langle \begin{array}{c} (x_1 + x_2, y) - (x_1, y) - (x_2, y) \\ (x, y_1 + y_2) - (x, y_1) - (x, y_2) \\ (x\lambda, y) - (x, y)\lambda \\ (x, y\lambda) - (x, y)\lambda \end{array} \right\rangle$$

Теперь по определению обозначим $L\otimes M=P/Q$.

Докажем универсальное свойство.

1.2.4 Базис тензорного произведения двух модулей

Выберем два свободных модуля $L=R^l, M=R^m$. Пусть $L=\langle e_1,\ldots,e_l\rangle$, $M=\langle f_1,\ldots,f_m\rangle$.

Теорема 1.2.2. В качестве базиса $L\otimes M$ можно выбрать

$$e_1 \otimes f_1 \quad \dots \quad e_1 \otimes f_m$$

$$\vdots \qquad \ddots \qquad \vdots$$

$$e_l \otimes f_1 \quad \dots \quad e_l \otimes f_m$$

Доказательство. $L \times M \to L \otimes M$ — отображение, переводящее (e_i, f_j) в $e_i \otimes f_j$. Всякое полилинейное ϕ задаётся значениями на базисных элементах. Значит, надо знать $\phi(e_i, f_j)$. Введём η на базисных значениях, положив $\eta(e_i \otimes f_j) = \phi(e_i, f_j)$. Понятно, что эти условия необходимы, то есть η единственна.

Следствие 1.2.1. $\dim(L \otimes M) = \dim(L) \dim(M)$.

Лекция II

7 сентября 2023 г.

Можно определить $U\otimes V\otimes W$ как $(U\otimes V)\otimes W\stackrel{?}{=}U\otimes (V\otimes W).$

Почему (и можно ли?) считать, что тензорное произведение ассоциативно? Коммутативно ли оно? Коммутативным тензорное произведение считать не хочется.

Определим $M_1 \otimes \cdots \otimes M_s$ так, что $L(M_1, \ldots, M_s, M) = \operatorname{Hom}(M_1, \otimes \cdots \otimes M_s, M)$, а потом докажем существование всяких канонических изоморфизмов.

1.3 Тензорное произведение нескольких модулей

R — по-прежнему коммутативное кольцо.

Определение 1.3.1 (Тензорное произведение $M_1 \otimes \cdots \otimes M_s$). Модуль $M_1 \otimes \cdots \otimes M_s$ вместе с s-линейным отображением

$$\psi: M_1 imes \cdots imes M_s o M_1 \otimes \cdots \otimes M_s$$
 $(x_1, \dots, x_s) \mapsto \underbrace{x_1 \otimes \cdots \otimes x_s}_{ ext{разложимый тензор}}$

такой, что \forall R-модуля M, \forall полилинейного отображения $\phi: M_1 \times \cdots \times M_s \to M$: $\exists ! \theta: M_1 \otimes \cdots \otimes M_s \to M$, такая что диаграмма ниже коммутативна.

Доказательство существования. Универсальное свойство базиса и теорема о гомоморфизме опять.

Возьмём свободный модуль $P = \langle (x_1, \dots, x_s) \rangle_{x_i \in M_i}$, профакторизуем по подмодулю

$$Q = \left\langle \begin{array}{c} (x_1 + x'_1, x_2, \dots, x_s) - (x_1, x_2, \dots, x_s) - (x'_1, x_2, \dots, x_s) \\ \vdots \\ (x_1 \lambda, x_2, \dots, x_s) - (x_1, x_2, \dots, x_s) \lambda \\ \vdots \end{array} \right\rangle$$

Обозначим $M_1\otimes \cdots \otimes M_s=P/Q$, где $\psi:M_1\times \cdots \times M_s\to M_1\otimes \cdots \otimes M_s$ есть композиция отображения, переводящего элементы множества (x_1,\ldots,x_s) в соответствующие элементы, образующие свободный модуль P и канонической проекции.

heta построится единственным образом согласно универсальному свойству фактормодуля. \Box

Теорема 1.3.1. Тензорное произведение ассоциативно с точностью до изоморфизма.

Доказательство.

$$(L \otimes M) \otimes N \leftrightarrow L \otimes M \otimes N \leftrightarrow L \otimes (M \otimes N)$$
$$(x_1 \otimes x_2) \otimes x_3 \leftrightarrow x_1 \otimes x_2 \otimes x_3 \leftrightarrow x_1 \otimes (x_2 \otimes x_3)$$

Определение 1.3.2 (Тензор). Элемент тензорного произведения.

Замечание. Всякий тензор представим в виде конечной суммы разложимых тензоров

$$x_1 \otimes \cdots \otimes x_s + y_1 \otimes \cdots \otimes y_s + \cdots + z_1 \otimes \cdots \otimes z_s$$

и наименьшее количество слагаемых называется ранг тензора.

1.3.1 Базис тензорного произведения

Предположим, что M_1,\dots,M_s свободны, $(e_1^j,\dots,e_{n_j}^j)$ — базис $M_j.$

Теорема 1.3.2. Тогда $M_1\otimes \cdots \otimes M_s$ — свободный модуль с базисом $e^1_{i_1}\otimes e^2_{i_2}\otimes \cdots \otimes e^s_{i_s}$, где $1\leqslant i_j\leqslant n_j,\, 1\leqslant j\leqslant s.$

Доказательство. Аналогично случаю двух тензорных множителей.

1.4 Изоморфизмы тензорного произведения

1.4.1 Геометрическое определение тензорного произведения

«Берёте вы какую-нибудь книжку по дифференциальным уравнениям, и там на первых страницах написано»

$$U \otimes V = L(U^*, V^*; K)$$

1.4.2 Определение ⊗ через Нош

Пусть U, V, W — свободные модули над R конечного ранга.

Теорема 1.4.1. Имеет место канонический изоморфизм $U \otimes V = \text{Hom}(U^*, V) = \text{Hom}(V^*, U)$.

Доказательство. Рассмотрим $u \in U, v \in V$, сопоставим

$$(u,v) \mapsto (\eta_{u,v}: U^* \to V), \qquad \eta_{u,v}: \theta \mapsto \theta(u) \cdot v$$

Заметим, что $U \times V \to \mathrm{Hom}(U^*, V)$ билинейно, значит, пропускается через тензорное произведение:

$$U \otimes V \to \operatorname{Hom}(U^*, V)$$

 $(u, v) \mapsto \eta_{u, v}$

определено корректно и *R*-линейно.

Базис переходит в базис: $e_i \otimes f_j \mapsto \begin{cases} e_i^* \mapsto f_j \\ e_h^* \mapsto 0 \end{cases}$, значит, ранги $U \otimes V$ и $\operatorname{Hom}(U^*,V)$ равны, откуда отображение биективно (но только потому, что модули конечного ранга).

 $\mathit{Интересный\ }\phi \mathit{акт}.\ \mathrm{Hom}(U\otimes V, W\otimes Z) = \mathrm{Hom}(U,W)\otimes \mathrm{Hom}(V,Z)$ — докажем, определив тензорное произведение гомоморфизмов.

То, что пишется в этом и следующем подразделе — частные случаи данного факта.

1.4.3 Двойственность для ⊗

Теорема 1.4.2. $(U \otimes V)^* = U^* \otimes V^*$.

Доказательство. Пусть $\eta \in U^*, \theta \in V^*$. Сопоставим $(\eta, \theta) \mapsto (u \otimes v \mapsto \eta(u) \cdot \theta(v))$. Определение корректно, так как от η и от θ зависит линейно, то есть зависит билинейно от (η, θ) , значит, по определению тензорного произведения есть единственное отображение $U^* \otimes V^* \to (U \otimes V)^*$.

Это изоморфизм, так как отображение инъективно, и размеры базисов совпадают:

$$ullet$$
 $e_i^*\otimes f_j^*$ — базис $U^*\otimes V^*$

•
$$(e_i \otimes f_j)^*$$
 — базис $(U \otimes V)^*$.

Следствие 1.4.1 (Определение \otimes через Hom). $U \otimes V = (U^* \otimes V^*)^* = \operatorname{Hom}(U^* \otimes V^*, R) = L(U^*, V^*; R).$

В силу ассоциативности \otimes это верно для любого количества модулей.

1.4.4 Сопряжённость \otimes и Hom

Теорема 1.4.3. $\operatorname{Hom}(U \otimes V, W) = \operatorname{Hom}(U, \operatorname{Hom}(V, W)).$

1.5 Тензорное произведение линейных отображений

Докажем, что тензорное произведение является ковариантным $\phi y + \kappa m o p o m$ (4.2.3) двух аргументов.

 Φ унктор — это что-то, что берёт одну вещь, и сопоставляет ей другую вещь, сохраняя морфизмы — какие-то полезные стрелки.

Сопоставим двум линейным отображениям $\phi:U\to W, \psi:V\to Z$ отображение $\phi\otimes\psi:U\otimes V\to W\otimes Z.$

Определение 1.5.1 (Тензорное произведение линейных отображений). Такое отображение, определённое на разложимых тензорах

$$\phi \otimes \psi : U \otimes V \to W \otimes Z$$
$$u \otimes v \mapsto \phi(u) \otimes \psi(v)$$

Замечание. Определение корректно, и продолжается по линейности на все элементы $U\otimes V$

Теорема 1.5.1. Тензорное произведение билинейно (1-3) и функториально (4-5):

- 1. $(\phi_1 + \phi_2) \otimes \psi = \phi_1 \otimes \psi + \phi_2 \otimes \psi$.
- 2. $\phi \otimes (\psi_1 + \psi_2) = \phi \otimes \psi_1 + \phi \otimes \psi_2$.
- 3. $\phi \otimes (\lambda \psi) = (\lambda \phi) \otimes \psi = \lambda(\phi \otimes \psi)$.
- 4. $(\phi_2 \otimes \psi_2) \circ (\phi_1 \otimes \psi_1) = (\phi_2 \circ \phi_1) \otimes (\psi_2 \circ \psi_1)$.
- 5. $id_U \times id_V = id_{U \otimes V}$

Доказательство. Применить обе части к одному и тому же разложимому тензору $u \otimes v \in U \otimes V$. По билинейности совпадения на них будет достаточно.

Например,

$$((\phi_2 \otimes \psi_2) \circ (\phi_1 \otimes \psi_1))(u \otimes v) = (\phi_2 \otimes \psi_2)((\phi_1 \otimes \psi_1)(u \otimes v)) =$$

$$= (\phi_2 \otimes \psi_2)(\phi_1(u) \otimes \psi_1(v)) = \phi_2(\phi_1(u)) \otimes \psi_2(\psi_1(v)) =$$

$$= (\phi_2 \circ \phi_1 \otimes \psi_2 \circ \psi_1)(u \otimes v)$$

Таким образом, мы определили билинейное отображение $\mathrm{Hom}(U,W) \times \mathrm{Hom}(V,Z) \to \mathrm{Hom}(U \otimes V,W \otimes Z)$, ему соответствует отображение из тензорного произведения

$$\operatorname{Hom}(U,W) \otimes \operatorname{Hom}(V,Z) \to \operatorname{Hom}(U \otimes V,W \otimes Z)$$

Теорема 1.5.2. Выше написанное отображение — изоморфизм (для свободных модулей конечного ранга U,V,W,Z). При данном изоморфизме разложимому тензору $\phi\otimes\psi$ ставится в соответствие тензорное произведение линейных отображений $\phi\otimes\psi$.

Доказательство. Ранги модулей в левой и правой частях равны $\mathrm{rk}(U)\cdot\mathrm{rk}(V)\cdot\mathrm{rk}(W)\cdot\mathrm{rk}(Z)$. Обозначим маленькими пронумерованными буковками базис соответствующего кольца.

Рассмотрев базисные элементы $\phi_{i,h}:u_i\mapsto w_h;\;\psi_{j,k}:v_j\mapsto z_k$ видим, что они отправляются в базисные элементы

$$\phi_{i,h} \otimes \psi_{j,k} = \theta_{(i,j),(h,k)} : U \otimes V \to W \otimes Z$$
$$u_i \otimes v_j \mapsto w_n \otimes z_k \qquad \Box$$

Замечание. Этот изоморфизм обобщает все ранее написанные изоморфизмы, кроме сопряжённости тензорного произведения и Hom.

1.5.1 Матрица тензорного произведения линейных отображений

Пусть $(x_{i,j}) = x \in M(m, n, R), (y_{h,k}) = y \in M(p, q, R).$

Определение 1.5.2 (Тензорное произведение матриц). Блочная матрица

$$x \otimes y = \begin{pmatrix} x_{1,1}y & \cdots & x_{1,n}y \\ \vdots & \ddots & \vdots \\ x_{m,1}y & \cdots & x_{m,n}y \end{pmatrix}$$

Также данная матрица называется кронекеровским произведением x и y.

Замечание. Вот так, например, выглядит кронекеровское произведение столбцов:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \otimes \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 y_1 \\ \vdots \\ x_1 y_n \\ \vdots \\ \vdots \\ x_m y_1 \\ \vdots \\ x_m y_n \end{pmatrix}$$

Предложение 1.5.1.

1. $(x \otimes y) \otimes z = x \otimes (y \otimes z)$.

 $2. (x_1 + x_2) \otimes y = x_1 \otimes y + x_2 \otimes y.$

3. $x \otimes (y_1 + y_2) = x \otimes y_1 + x \otimes y_2$.

4. $\lambda x \otimes y = \lambda(x \otimes y) = x \otimes \lambda y$.

5. $(xz) \otimes (yw) = (x \otimes y) \cdot (z \otimes w)$.

6. $e_n \otimes e_m = e_{m \cdot n}$.

Доказательство. Пусть $\phi: U \to V, \psi: W \to Z$, причём матрица ϕ в базисе (e_i) равна x, матрица ψ в базисе (f_j) равна y.

Тогда матрица $\phi \otimes \psi$ в базисе $(e_i \otimes f_j)_{i,j}$, упорядоченном в виде

$$e_1 \otimes f_1, \dots, e_1 \otimes f_n, \dots, e_m \otimes f_1 \dots, e_m \otimes f_n$$

равна $x \otimes y$.

Все записанные свойства уже доказаны ранее про тензорное произведение линейных отображений.

1.5.2 Кронекеровское произведения и кронекеровская сумма многочленов

Пусть $\phi:U\to U, \psi:V\to V.$ Пусть u,v — собственные векторы ϕ и ψ с числами λ и μ соответственно.

$$(\phi \otimes \psi)(u \otimes v) = \phi(u) \otimes \psi(v) = \lambda u \otimes \mu v = \lambda \mu(u \otimes v)$$

Таким образом, если мультимножество собственных чисел $\phi - (\lambda_1, \dots, \lambda_m)$, а мультимножество собственных чисел $\psi - (\mu_1, \dots, \mu_n)$, то собственные числа $\lambda \mu$ равны $(\lambda_i \cdot \mu_j)_{i,j}$.

Всякому многочлену $f \in R[t]$ (со старшим коэффициентом 1) можно сопоставить сопровождающую матрицу

$$B(f) = (-1)^{n-1} \begin{pmatrix} 0 & \dots & \dots & a_0 \\ 1 & & & a_1 \\ & \ddots & & \vdots \\ 0 & & 1 & a_{n-1} \end{pmatrix}$$

Таким образом, $\chi(B(f) \otimes B(g))$ — многочлен, корни которого — попарные произведения корней f и g. Этот многочлен обозначается $f \boxtimes g$, и называется кронекеровским произведением многочленов.

Ещё Кронекер определил кронекеровскую сумму.

Определение 1.5.3 (Кронекеровская сумма многочленов f,g). $f \boxplus g = \chi(B(f) \otimes e_n + e_m \otimes B(g))$.

Это многочлен, корни которого — попарные суммы корней f и g.

Следствие 1.5.1. Множество алгебраических чисел образует кольцо.

1.6 Тензорные пространства

Пусть U — модуль (его элементы — векторы — $T^1(U)$). Можно построить U^* (его элементы — ковекторы — $T_1(U)$).

Дальше можно построить $\operatorname{Hom}(U,U) = U^* \otimes U = T_1^1(U)$.

Определение 1.6.1 (Тензорное пространство типа
$$(p,q)$$
). $T_q^p(U) = \underbrace{U \otimes \cdots \otimes U}_p \otimes \underbrace{U^* \otimes \cdots \otimes U^*}_q$.

Число p традиционно называется контравариантной валентностью, а q — ковариантной валентностью. (Инверсия «ко» и «контра» произошла из-за слежения не за базисами, а за координатами)

Координаты элемента тензора $x\in T^p_q(U)$ индексируется p верхними и q нижними индексами. Иногда ещё помнят, в каком порядке шли U и U^* в тензорном произведении (и возникают записи вида $x_{k\cdot h}^{\cdot j\cdot}$), но все перестановки канонически изоморфны.

Определение 1.6.2 (Чисто ковариантное тензорное пространство). $T_q^0(U)$.

Определение 1.6.3 (Чисто контравариантное тензорное пространство). $T_0^p(U)$.

Иначе $(p, q \neq 0)$ пространство называют *смещанным*

Сумму p+q называют полной валентностью тензора.

Перечислим некоторые тензоры маленькой полной размерности.

Примеры (Всё на свете — тензор).

- $T_0^0(U) = R \text{скаляры}.$
- $T_0^1(U) = U$ векторы.
- $T_1^0(U) = U^*$ ковекторы.
- $T^1_{\scriptscriptstyle 1}(U) = U \otimes U^* = \operatorname{Hom}(U,U)$ линейные операторы.
- $T_0^2(U) = U \otimes U = U^{\otimes 2} = L(U^*, U^*; R).$
- $T_2^0(U) = U^* \otimes U^* = (U \otimes U)^*$ билинейные отображения $U \times U \to R$, или просто отображения $U \otimes U \to R$ (также известные природе, как 2-формы).
- $T_3^0(U) = U^* \otimes U^* \otimes U^* = L(U, U, U; R).$
- $T_2^1(U) = U \otimes U^* \otimes U^* = \operatorname{Hom}((U^* \otimes U^*)^*, U) = \operatorname{Hom}(U \otimes U, U)$ задают на U структуру алгебры с билинейным умножением.

Замечание. Пусть A — алгебра над кольцом R, (e_1, \ldots, e_n) — базис группы по сложению A (если это свободный R-модуль). На алгебре задано умножение $\mathrm{mul}: A \times A \to A$.

$$\mathrm{mul}: e_i, e_j \mapsto e_i \cdot e_j = \sum_h x_{i,j}^h e_h$$

Эти коэффициенты $x_{i,j}^h-$ структурные константы алгебры. Тензор $(x_{i,j}^h)-$ структурный тензор алгебры A.

Структурный тензор зависит от выбора базиса, но зависит с точностью до чего-то вроде сопряжения.

- $T_1^2(U) = U \otimes U \otimes U^* = \operatorname{Hom}(U, U \otimes U)$. Операция $\Delta: U \to U \otimes U \kappa$ объекты снабжённые копроизведениями коалгебры.
- $T_0^3(U) = U \otimes U \otimes U = U^{\otimes 3} 3$ -формы на U^* .
- Дальше больше. Дальше идут объекты, с которыми мы ещё не сталкивались, но в науке они встречаются. Будут встречаться 4-формы $U \times U \times U \times U \to R$, тернарные алгебры $U \times U \times U \to U$, ещё какие-то структуры например, $U \otimes U \to U \otimes U$, что уже и не описать без тензорных произведений.

Лекция IV

19 сентября 2023 г.

Пусть V — свободный R-модуль над коммутативным кольцом.

Пусть $(e_1, \ldots, e_n) = e$ — базис V; пусть $V^* = \operatorname{Hom}(V, R)$ — двойственный модуль.

$$V^*$$
 — тоже свободный модуль, его базис — двойственный $e^*=egin{pmatrix} e^1 \ dots \ e^n \end{pmatrix}$. По определению $e^i(e_j)=\delta_{i,j}$.

Пусть $e=(e_1,\ldots,e_n)$ и $f=(f_1,\ldots,f_n)$ — два базиса V. Введём матрицу замена от базиса к базису $f=e\cdot (e\leadsto f)$.

В первом семестре мы показали, что матрица замены базиса для двойственного пространства — обратная κ данной.

Предложение 1.6.1. Матрица перехода от e^* κ f^* равна $(f^* \leadsto e^*) = (e \leadsto f)^{-1}$.

Доказательство. Равенство $e^i(e_j) = \delta_{i,j}$ в матричном виде выглядит в виде $\begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} \cdot \begin{pmatrix} e_1 & \cdots & e_n \end{pmatrix} = E.$

Аналогично
$$\begin{pmatrix} f^1 \\ \vdots \\ f^n \end{pmatrix} \cdot \begin{pmatrix} f_1 & \cdots & f_n \end{pmatrix} = E.$$

Домножая первое равенство справа на $(e \leadsto f)$ и слева на обратную матрицу, получаем

$$(e \leadsto f)^{-1} \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} (f_1 \quad \cdots \quad f_n) = E = \begin{pmatrix} f^1 \\ \vdots \\ f^n \end{pmatrix} (f_1 \quad \cdots \quad f_n)$$

Так как
$$f$$
 — базис, то есть векторы f_1, \ldots, f_n линейно независимы, то $(e \leadsto f)^{-1} \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} = \begin{pmatrix} f^1 \\ \vdots \\ f^n \end{pmatrix}$.

Теперь рассмотрим
$$T_q^p(V) = \underbrace{V \otimes \cdots \otimes V}_p \times \underbrace{V^* \otimes \cdots \otimes V^*}_q.$$

Пусть $x \in T_a^p(V)$.

$$x = \sum_{\substack{i_1, \dots, i_q \\ j_1, \dots, j_p}} \left(e_{j_1} \otimes \dots \otimes e_{j_p} \otimes e^{i_1} \otimes \dots \otimes e^{i_q} \right) \cdot \left([x]_e \right)_{\substack{i_1, \dots, i_q \\ i_1, \dots, i_q}}^{j_1, \dots, j_p}$$

где $[x]_e$ — координаты разложения x по базису e, которые индексируются p верхними и q нижними индексами.

Теорема 1.6.1. При замене координат базиса координаты разложения меняются следующим образом

$$([x]_f)_{i_1,\ldots,i_q}^{j_1,\ldots,j_p} = \sum_{\substack{k_1,\ldots,k_p\\m_1,\ldots,m_q}} (\widetilde{c})_{i_1,\ldots,i_q}^{m_1,\ldots,m_q} \cdot ([x]_e)_{m_1,\ldots,m_q}^{k_1,\ldots,k_p} \cdot (c)_{k_1\ldots k_p}^{j_1\ldots j_p}$$

где
$$(\widetilde{c})_{i_1,\ldots,i_q}^{m_1,\ldots,m_q} = \prod_{l=1}^q ((f\leadsto e)^{-1})_{i_l}^{m_l}$$
 и $(c)_{k_1\ldots k_p}^{j_1\ldots j_p} = \prod_{l=1}^p (f\leadsto e)_{k_l}^{j_l}$

Доказательство. Запишем преобразования базисов $\begin{pmatrix} e_1 & \cdots & e_n \end{pmatrix} = \begin{pmatrix} f_1 & \cdots & f_n \end{pmatrix} (f \leadsto e)$ и

$$\begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} = (f \leadsto e)^{-1} \begin{pmatrix} f^1 \\ \vdots \\ f^n \end{pmatrix}.$$

Отсюда извлекаем $e_r = \sum\limits_s f_s(f \leadsto e)^s_r = \sum\limits_s f_s \cdot (c)^s_r$ и $e^s = \sum\limits_r (e \leadsto f)^s_r \cdot f^r = \sum\limits_r (\widetilde{c})^s_r \cdot f^r$.

$$x = \sum_{\substack{k_1, \dots, k_p \\ m_1, \dots, m_q}} \left(e_{k_1} \otimes \dots \otimes e_{k_p} \otimes e^{m_1} \otimes \dots \otimes e^{m_q} \right) \cdot \left([x]_e \right)_{m_1, \dots, m_q}^{k_1, \dots, k_p}$$

Раскрывая e_i и e^i через суммы по базису f, действительно получаем

$$x = \sum_{\substack{i_1, \dots, i_q \\ j_1, \dots, j_p}} \left(\sum_{\substack{k_1, \dots, k_p \\ m_1, \dots, m_q}} (\widetilde{c})_{i_1, \dots, i_q}^{m_1, \dots, m_q} \left(f_{j_1} \otimes \dots \otimes f_{j_p} \otimes f^{i_1} \otimes \dots \otimes f^{i_q} \right) \cdot (c)_{k_1, \dots, k_p}^{j_1, \dots, j_p} \cdot ([x]_e)_{m_1, \dots, m_q}^{k_1, \dots, k_p} \right)$$

Лекция V

21 сентября 2023 г.

1.6.1 Операции над тензорами

- Как элементы R-модуля, тензоры, конечно, можно складывать. В координатах сложение происходит покомпонентно.
- Аналогично с умножением на скаляр.
- Можно определить умножение на тензорах

$$\otimes: T_q^p \times T_{q'}^{p'} \to T_{q+q'}^{p+p'}$$
$$(v_{1...p} \otimes f^{1...q}), (v'_{1...p'} \otimes f'^{1...q'}) \mapsto v_{q...p} \otimes v'_{1...p'} \otimes f^{1...q} \otimes f'^{q...q'}$$

Несложно проверить, что умножение билинейно (то есть дистрибутивно).

• Сворачивание (не путать со свёрткой) — от англ. contraction (а отнюдь не convolution). Зададим сворачивание на разложимых тензорах.

$$C_r^s: T_q^p(V) \to T_{q-1}^{p-1}(V)$$
$$(v_1 \otimes \cdots \otimes v_p \otimes f^1 \otimes \cdots \otimes f^q) \mapsto (v_1 \otimes \cdots \otimes \widehat{v_s} \otimes \cdots \otimes v_p \otimes f^1 \otimes \cdots \otimes \widehat{f^r} \otimes \cdots \otimes f^q) f^r(v_s)$$

В координатном виде сворачивание записывается в виде $([C_r^s(x)]_e)_{j_1,\dots,\widehat{j}_s,\dots j_q}^{i_1,\dots,\widehat{i}_r,\dots,i_r} = \sum_h ([x]_e)_{j_1,\dots,h,\dots j_q}^{i_1,\dots,h,\dots,i_p}$ где при суммировании h стоит сверху на месте r, снизу — на месте s. Примеры (Сворачивание).

- Пусть $A \in T_1^1(V)$ — эндоморфизм V. Если A — ранга 1, то есть $A = v \otimes \phi$, то $C_1^1(v \otimes \phi) = \phi(v)$. Это в точности взятие следа, что может быть записано в координатном виде:

$$v = (e_1 \dots e_n) \begin{pmatrix} v^1 \\ \vdots \\ v^n \end{pmatrix} \quad \phi = (\phi_1 \dots \phi_n) \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix}$$
$$C_1^1(v \otimes \phi) = C_1^1 \begin{pmatrix} \phi_1 v^1 \dots \phi_n v^1 \\ \vdots & \ddots & \vdots \\ \phi_n v^1 \dots \phi_n v^n \end{pmatrix} = \sum_{i=1}^n \phi_i v^i = \phi(v)$$

— Пусть $A, B \in T^1_1(V)$, то есть $\mathrm{End}(V)$. Тензорное произведение $A \otimes B \in T^2_2(V)$. Что такое $C^2_1(A \otimes B)$? Это элемент $T^1_1(V)$, то есть эндоморфизм пространства V. Пусть $A = (v \otimes \phi), B = (u \otimes \psi)$.

$$C_1^2(A \otimes B) = C_1^2(v \otimes \phi) \otimes (u \otimes \psi) = C_1^2(v \otimes u \otimes \phi \otimes \psi) = \phi(u)(v \otimes \psi)$$

Применение $C_1^2(A\otimes B)$ к некоторому $w\in V$ выдаст $\phi(u)(v\otimes\psi)(w)=v\cdot\phi(u)\psi(w),$ что в точности есть результат применения композиции AB к w. Таким образом, C_1^2 соответствует умножению матриц.

1.7 Тензорная алгебра

Заинтересуемся «наименьшей алгеброй (ассоциативной, с единицей), в которую можно вложить V». Умножение на алгебре зададим как выше, тензорно, валентность произведения равна сумме валентностей множителей.

В R-алгебре с единицей должны присутствовать все скаляры, выполнено вложение $R\hookrightarrow A$. Дальше просто по условию выполнено вложение $V\hookrightarrow A$. Так как произведение двух элементов V — контравариантный тензор валентности 2, то такие элементы тоже лежат в A. И так далее. Итого, зададим

$$T(V) := \bigoplus_{n=0}^{\infty} V^{\otimes n} = R \oplus V \oplus V^{\otimes 2} \oplus \dots$$

На однородных элементах $V^{\otimes n}$ для некоего $n \in \mathbb{N}$) умножение определено, как описано выше. Дальше, умножение продлевается по линейности на все элементы T(V).

Что означает, что алгебра должно быть наименьшей? Сформулируем универсальное свойство.

С точки зрения теории категорий отображения из модуля в алгебру рассматривать нельзя. Для этого обозначим за $\mathcal{F}(A)$ модуль, на котором построена данная алгебра (забыли про умножение). Этот $\mathcal{F}-$ забывающий функтор.

На самом деле, функторы переводят не только объекты из одной категории в другую, но и стрелки. Гомоморфизму алгебр $\phi: A \to B$ соответствует гомоморфизм модулей $\mathcal{F}(\phi): A \to B$.

Потребуем, чтобы для любой алгебры B и для любого гомоморфизма модулей $\psi:V\to \mathcal{F}(B)$ выполнялось условие: $\exists!\phi:A\to B$ — гомоморфизм алгебр, такой, что диаграмма коммутативна.

$$V \xrightarrow{\text{in}} \mathcal{F}(A)$$

$$\downarrow^{\mathcal{F}(\phi)}$$

$$\mathcal{F}(B)$$

Теорема 1.7.1. Для так построенной тензорной алгебры T(V) в качестве A выполняется выше описанное универсальное свойство.

Доказательство моего собственного приготовления, то есть не верьте. Если такое ψ найдётся, то $\forall v \in V : \psi(v) = \phi(v)$, а так как V — множество образующих $\mathcal{F}(T(V))$, как алгебры, то ψ единственно. Проверим, что ψ существует.

Пусть B — произвольная R-алгебра, $\psi: V \to \mathcal{F}(A)$ — гомоморфизм модулей.

Определим полилинейное

$$\theta_n: \underbrace{V \times \cdots \times V}_{n} \to \mathcal{F}(B)$$
$$(v_1 \otimes \cdots \otimes v_n) \mapsto \phi(v_1) \cdot \cdots \cdot \phi(v_n)$$

на разложимых тензорах. Согласно универсальному свойству тензорного произведения, для него найдётся единственное линейное отображение $\eta_n: V^{\otimes n} \to \mathcal{F}(B)$.

Зададим $\mathcal{F}(\psi): \mathcal{F}(T(V)) \to \mathcal{F}(B)$ на прямых слагаемых в соответствии с η_n , дальше оно продлевается по линейности.

Осталось проверить, что $\psi: T(V) \to B$ — гомоморфизм алгебр, то есть сохраняет умножение. Это достаточно проверять на разложимых тензорах, так как умножение билинейно. На разложимых же тензорах это очевидно:

$$\psi(v_1 \otimes \cdots \otimes v_n) \cdot \psi(u_1 \otimes \cdots \otimes u_m) = \phi(v_1) \cdot \ldots \cdot \phi(v_n) \cdot \phi(u_1) \cdot \ldots \cdot \phi(u_m) = \psi(v_1 \otimes \cdots \otimes v_n \otimes u_1 \otimes \cdots \otimes u_m)$$

1.8 Градуированные алгебры

Пусть (N,+) — аддитивный коммутативный моноид. Часто $N=\mathbb{N}_0$.

Определение 1.8.1 (Градуированная R-алгебра). Такая R-алгебра A, которая раскладывается в прямую сумму R-модулей A_n .

$$A = \bigoplus_{n \in N} A_n$$

причём умножение удовлетворяет свойствам $A_n \cdot A_m \leqslant A_{n+m}$.

Определение 1.8.2 (Однородный элемент $x \in A$). Элемент $x \in \bigcup_{n \in N} A_n$.

Рассмотрим произвольный элемент $a \in A$. Он разложим в сумму однородных элементов, которые называются однородными компонентами элемента a.

При построении базиса Грёбнера на кольце многочленов $\mathbb{F}[t_1,\dots,t_k]$ вводится градуировка \mathbb{N}_0^k , моному $t_1^{n_1}\cdot\dots\cdot t_k^{n_k}$ ставится в соответствие $(n_1,\dots,n_k)\in\mathbb{N}_0^k$.

Также часто встречаются $\mathbb{Z}/2\mathbb{Z}$ градуировки: $A=A_0\oplus A_1$, где A_0 — подалгебра, а A_1 — подмодуль, такой, что $A_1\cdot A_1\leqslant A_0$. Например, алгебры Клиффорда.

Лекция VI 26 сентября 2023 г.

Лемма 1.8.1. Пусть $A = \bigoplus_n \in NA_n - N$ -градуированная алгебра. Пусть $I \leq A - д$ вусторонний идеал. Следующие условия эквивалентны

1.
$$I = \bigoplus_{n \in N} (A_n \cap I)$$
.

- 2. $\forall a \in I$ однородные компоненты a лежат b I.
- 3. І порождён некоторым множеством однородных элементов.
- 4. Проекция $A \to A/I$ является гомоморфизмом N-градуированных алгебр (то есть в том числе утверждается, что A/I N-градуированная алгебра).

Доказательство.

- $(1)\iff (2)$ И (1), и (2) записываются в виде $\forall a\in I:\exists \{a_n\}:\,a_n\in I\cap A_n$ и $a=\sum_{n\in N}a_n.$
 - $(2)\Rightarrow (3)$ Для $a\in I$ обозначим за s_a набор однородных компонент a. Согласно (2) $s_a\subset I$, тогда $\left\langle\bigcup_{a\in I}s_a\right\rangle=I.$

Если I конечно порождён, то можно выбрать объединение s_a для всех образующих I, тогда найдётся и конечная система однородных образующих.

- $(3)\Rightarrow (2)$ Рассмотрим $\forall a\in I.$ Из условия на порождение получаем $a=x_1\lambda_1+\cdots+x_n\lambda_n$, где $x_i\in I$ однородные. Каждый λ_i является конечной суммой однородных координат, таким образом, а произведение однородных однородно.
- $(1)\Rightarrow (4)$ Для всяких модулей верно, что $A/I=\bigoplus_{\bigoplus I_n} A_n=\bigoplus_{I_n} A_n$. Проекция отображает $a\in A_n$ в $a+I_n$, действительно она уважает градуировку.
- $(4)\Rightarrow (2)$ Рассмотрим $a\in I$, пусть $a=\sum\limits_{n\in N}a_n$, почти все $a_n=0$.

Тогда для гомоморфизма редукции $\rho: \rho(a) = \sum_{n \in N} \rho(a_n)$, где $\rho(a_n) \in A_n/I_n$, но так как это 0, то $a_n \in I_n$.

Пусть $\phi: N \to N'$ — гомоморфизм моноидов, A - N-градуированная алгебра.

Тогда $A=\bigoplus_{n\in N}A_n=\bigoplus_{n'\in N'}\left(\bigoplus_{n\in\phi^{-1}(n')}A_n\right)$, то есть A можно превратить в N'-градуированную алгебру.

Пример. Построим «общую матрица с определителем 1»: $\begin{pmatrix} x_{1,1} & \cdots & x_{n,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{pmatrix}$.

Чтобы определитель был 1, мы рассматриваем эту матрицу над кольцом

$$A := \mathbb{Z}[x_{1,1}, \dots, x_{n,n}]/(\det(x) - 1)$$

Эта матрица обладает универсальным свойством: $\forall R, \forall a \in SL_n(R): \exists ! \phi: A \to R: SL_n(\phi)(x) = a.$ SL_n — функтор, который в частности сопоставляет стрелке $\phi: A \to R$ стрелку $SL_n(\phi): SL_n(A) \to SL_n(R)$ покомпонентным применением ϕ .

Так как $\mathbb{Z}[x_{1,1},\ldots,x_{n,n}]-\mathbb{N}_0$ -градуированная алгебра, а $\det(x)-1$ — многочлен с однородными компонентами степени n и 0, то $A-\mathbb{Z}/n\mathbb{Z}$ -градуированная алгебра.

Определение 1.8.3 (Антикоммутативная $\mathbb{Z}/2\mathbb{Z}$ -градуированная R-алгебра). Такая алгебра, что $\forall a \in A_n, b \in A_m : ab = (-1)^{mn} \cdot ba$. Дополнительно потребуем, чтобы $2 \in \operatorname{Reg} R$, тогда $\forall a \in A_1 : a^2 = 0$.

Также такие алгебры называют градуировано-коммутативными.

Определение 1.8.4 (Антисимметричное отображение $B: V \times V \to U$). Такое отображение, что B(x,y) = -B(y,x) и B(x,x) = 0. Если B — билинейно, то достаточно второго условия, а если $2 \in \operatorname{Reg} R$, то можно обойтись и первым.

1.9 Построение симметрической и внешней алгебр

Тензорное пространство (пусть полностью контравариантное) валентности n соответствует однородным многочленам степени n от некоммутирующих переменных.

В симметрической алгебре мы введём соотношения о коммутировании переменных. Для этого профакторизуем по соответствующему идеалу $I_S = \langle x \otimes x | x \otimes x \in V \rangle \leqslant T(V)$.

Определение 1.9.1 (Симметрическая алгебра). $S(V) := T(V)/I_S$

Если V — свободный R-модуль с базисом мощности n, то $S(V) \cong R[x_1, \dots, x_n]$ (1.9).

В пару к симметрической алгебре построим «антисимметрическую». Здесь переменные будут антикоммутировать, $x \otimes y = -y \otimes x$. В характеристике 2 это то же самое, что и $x \otimes x = 0$ для любого $x \in V$, а в общем случае условие равенства квадрата нулю сильнее.

Определим идеал $I_{\wedge} = \langle x \otimes y - y \otimes x | x, y \in V \rangle \leqslant T(V)$.

Определение 1.9.2 (Внешняя алгебра или алгебра Грассмана). $\Lambda(V) := T(V)/I_{\wedge}$

Если V — свободный R-модуль с базисом мощности n, то эта алгебра конечномерна над R. Всякий разложимый тензор, где какие-то два множителя совпадают, равен нулю, так как из условия следует $x \otimes y = -y \otimes x$. Если в разложимом тензоре какие-то две компоненты равны, то переставляя множители, их можно сделать соседними, после чего тензор оказывается равным нулю.

V вкладывается как в S(V), так и в $\bigwedge(V)$ — ядро композиции $V \hookrightarrow T(V) \to S(V)$ нулевое, так же как и у $V \hookrightarrow T(V) \to \bigwedge(W)$ (подмодуль, по которому происходит факторизация, содержит только элементы степени хотя бы 2).

Теорема 1.9.1. Для любой **коммутативной** алгебры A, для любого гомоморфизма R-модулей $\phi:V\to A$ найдётся единственный гомоморфизм R-алгебр $\eta:S(V)\to A$, такой, что диаграмма коммутирует.

$$V \xrightarrow{\phi} T(V) \xrightarrow{\rho} S(V)$$

Доказательство. По гомоморфизму $\phi:V\to A$ найдётся единственный гомоморфизм R-алгебр $\psi:T(V)\to A$ (универсальное свойство тензорного произведения).

Так как $\psi:T(V)\to A$ бьёт в коммутативную алгебру, то

$$\psi(x \otimes y) = \psi(x) \cdot \psi(y) = \psi(y) \cdot \psi(x) = \psi(y \otimes x)$$

поэтому образующие I_S лежат в $\mathrm{Ker}(\psi)$. Таким образом, ψ пропускается через фактор, а так как ρ — редукция по I_S — эпиморфизм, то η единственно.

Теорема 1.9.2. Для любой градуировано коммутативной $\mathbb{Z}/2\mathbb{Z}$ -градуированной R-алгебры A, и для любого гомоморфизма R-модулей $\phi:V\to A_1$ (A_1 — однородная компонента A с индексом 1) найдётся единственный гомоморфизм $\eta:\bigwedge(V)\to A$, такой, что диаграмма коммутирует.

$$V \xrightarrow{\phi} T(V) \xrightarrow{\rho} \bigwedge(V)$$

Доказательство. По гомоморфизму $\phi:V\to A$ найдётся единственный гомоморфизм R-алгебр $\psi:T(V)\to A$ (универсальное свойство тензорного произведения).

Так как $\psi: T(V) \to A$ бьёт в антикоммутативную $\mathbb{Z}/2\mathbb{Z}$ -градуированную R-алгебру, то $\forall x \in V$:

$$\psi(x \otimes x) = \psi(x) \cdot \psi(x) = -\psi(x) \cdot \psi(x) = -\psi(x \otimes x)$$

Так как $2 \in \operatorname{Reg} R$, то $\psi(x \otimes x) = 0$; поэтому образующие I_{\wedge} лежат в $\operatorname{Ker}(\psi)$. Таким образом, ψ пропускается через фактор, а так как ρ — редукция по I_{\wedge} — эпиморфизм, то η единственно.

Итак, $I_S = (x \otimes y - y \otimes x)$.

3амечание. $I_S \cap V^{\otimes n}$ — подмодуль в $V^{\otimes n}$, порождённый элементами вида

$$(x_1 \otimes \cdots \otimes y \otimes z \otimes \cdots \otimes x_{n-2}) - (x_1 \otimes \cdots \otimes z \otimes y \otimes \cdots \otimes x_{n-2})$$

где y и z на одном и том же месте в одном и том же кортеже $x_1 \otimes \cdots \otimes x_{n-2}$.

Определение 1.9.3 (n-я симметрическая степень V). Фактормодуль $V^{\otimes n}/(I_S \cap V^{\otimes n})$.

Умножение в симметрической алгебре традиционно обозначается точкой, что, как мы впоследствии увидим (1.9), неслучайно. Рассмотрим

$$\phi: \underbrace{V \times \cdots \times V}_{n} \to S^{n}(V)$$
$$(v_{1}, \dots, v_{n}) \mapsto \overline{v_{1} \otimes \cdots \otimes v_{n}} \equiv v_{1} \cdot \dots \cdot v_{n}$$

 ϕ полилинейно и симметрично.

Теорема 1.9.3 (Универсальное свойство n-й симметрической степени). $\forall R$ -модуля M и симметричного полилинейного отображения $\underbrace{V \times \cdots \times V}_{n} \to M: \exists ! \psi : S^{n}(V) \to V$, такое что диаграмма коммутативна.

Доказательство. Пусть іп : $V \times \cdots \times V \to V^{\otimes n}$ Согласно универсальному свойству тензорного произведения найдётся $\eta: V^{\otimes n} \to M$, такое, что $\phi = \eta \circ$ іп. Из симметричности ϕ

$$\forall a \in V^{\otimes k}, b \in V^{\otimes n-2-k} : \eta(a \otimes x \otimes y \otimes b) = \eta(a \otimes y \otimes x \otimes b)$$

то есть образующие лежат в ядре η , и η пропускается через фактор.

Аналогично определяется n-я внешняя степень

$$\bigwedge^{n}(V) \stackrel{def}{=} V^{\otimes n}/I_{n} = V^{\otimes n}/\left\langle a \otimes x \otimes x \otimes b \middle| x \in V, a \in V^{\otimes k}, b \in V^{\otimes n-2-k} \right\rangle$$

Теорема 1.9.4 (Универсальное свойство внешней n-й степени). $\forall R$ -модуля M и антисимметричного полилинейного отображения $\phi: V \times \cdots \times V \to M: \exists ! \psi: \bigwedge^n(V) \to V$, такое что диаграмма коммутативна.

$$V \xrightarrow{\phi} \bigwedge^{n}(V)$$

Доказательство. Пусть іп : $V \times \cdots \times V \to V^{\otimes n}$ Согласно универсальному свойству тензорного произведения найдётся $\eta: V^{\otimes n} \to M$, такое, что $\phi = \eta \circ$ іп. Из антисимметричности ϕ

$$\forall a \in V^{\otimes k}, b \in V^{\otimes n-2-k} : \eta(a \otimes x \otimes x \otimes b) = 0$$

то есть образующие лежат в ядре η , и η пропускается через фактор.

Лекция VII

28 сентября 2023 г.

 $I_{\wedge},I_{S} \leqslant T(V)$, где $I_{\wedge} = \langle x \otimes y - y \otimes x | x,y \in V \rangle$, $I_{s} = \langle x \otimes x | x \otimes x \in V \rangle$.

$$S(V) = T(V)/I_S \qquad \bigwedge(V) = T(V)/I_{\wedge}$$

$$S^n(V) = V^{\otimes n} / \langle a(x \otimes y - y \otimes x)b | x, y \in V, a \in V^{\otimes k}, b \in V^{\otimes n-k-2} \rangle$$

$$\bigwedge^n(V) = V^{\otimes n} / \langle a(x \otimes x)b | x \in V, a \in V^{\otimes k}, b \in V^{\otimes n-k-2} \rangle$$

Операция в S(V) пишется \cdot , как обычное умножение, операция в $\Lambda(V)$ пишется \wedge .

Пусть V — свободный модуль. Какие базисы у $S^n(V)$ и $\bigwedge^n(V)$?

Пусть (x_1,\ldots,x_m) — базис V.

Зададим отображение f из базиса в произвольную коммутативную алгебру.

$$\{x_1, \dots, x_n\} \longrightarrow V \longrightarrow S(V)$$

$$\downarrow \exists ! \phi \qquad \exists ! \psi$$

Тогда существует и единственно $\psi: S^n(V) \to A$ — гомоморфизм алгебр, а это универсальное свойство кольца многочленов.

Таким образом, $S^n(V) \cong R[x_1, \dots, x_m]_{\deg=n}$. Можно явно выписать базис. Кстати, отсюда видно, почему в S(V) умножение обозначают точкой — как и в случае обычных переменных.

Элементарная комбинаторика (так как $x_i \wedge x_j = -x_j \wedge x_i$, то соседние переменные в разложимом тензоре можно менять местами, меняя знак; если в одном разложимом тензоре две переменные x_i для какого-то i, то он равен нулю) показывает, что $\bigwedge^n(V) = \langle x_{i_1} \wedge \cdots \wedge x_{i_n} | 1 \leqslant i_1 < \cdots < i_n \leqslant m \rangle$.

Предложение 1.9.1. Это не просто система образующих, а базис $\bigwedge^n(V)$.

Доказательство. Надо проверить линейную независимость. Пусть $I = \{i_1, \dots, i_n\}$, где $i_1 < i_2 < \dots < i_n$. Обозначим $x_{i_1} \wedge \dots \wedge x_{i_n} =: x_I$. Обозначим $\{1, \dots, n\} =: [n]$.

Предположим наличие линейной зависимости:

$$\sum_{I\subset[m],|I|=n}x_I\alpha_I$$

Домножим равенство на $x_{\lceil m \rceil \setminus J}$, получим $\pm \alpha_J x_{\lceil m \rceil}$.

Отсюда хочется доказать, что $\alpha_J = 0$ (и мы получим, что всякая линейная зависимость тривиальна), но для этого надо показать, что $x_J \neq 0$. Как ни странно, это сделать не очень просто.

Одним из способов является воспользоваться универсальным свойством внешнего произведения. Найдём антисимметричное полилинейное отображение $\underbrace{V \times \dots \times V}_m \to R$. По счастливому стечению

обстоятельств $\dim V = m$, поэтому такое отображение мы знаем, это — определитель.

Так как базис V состоит из линейно независимых векторов, то $\det(e_1,\ldots,e_m) \neq 0$. Но согласно универсальному свойству внешнего произведения \det пропускается через фактор, а тогда из условия $\det(e_1 \wedge \cdots \wedge e_m) \neq 0$ следует и само условие $e_{[m]} = e_1 \wedge \ldots e_m \neq 0$.

Замечание. Обозначения из доказательства $x_{i_1} \wedge \cdots \wedge x_{i_n} =: x_I, \{1, \dots, n\} =: [n]$ будут повсеместно встречаться и далее.

1.10 Другое определение симметрической и внешней алгебр

Если кольцо R является \mathbb{Q} -алгеброй (то есть разрешается делить на все ненулевые целые), то можно дать другое определение симметрической и внешней алгебрам. Введём действие $S_n \curvearrowright V^{\otimes n}$:

$$S^{n} \times V^{\otimes n} \to V^{\otimes n}$$

$$\pi, (x_{1} \otimes \cdots \otimes x_{n}) \mapsto x_{\pi(1)} \otimes \cdots \otimes x_{\pi(n)}$$

продолженное так по линейности на все элементы $V^{\otimes n}.$

Тензор $x \in V^{\otimes n}$ назовём *симметрическим*, если $\forall \pi \in S_n : \pi(x) = x$. Все симметрические тензоры образуют подмодуль $\widetilde{S}^n(V) \leqslant V^{\otimes n}$, который изоморфен $S^n(V)$. Более того, если R-Q-алгебра, то можно ввести умножение данных симметрических тензоров.

Проблема в том, что по умолчанию произведение симметрических тензоров — необязательно симметрический тензор, переменные можно переставлять только «внутри множителей».

Для того, чтобы избежать этой проблемы, введём симметризацию $\mathrm{Sym}:V^{\otimes n}\to \widetilde{S}^n(V)$. Также хочется, чтобы симметризация была проектором на $\widetilde{S}^n(V)$, то есть $\forall x\in \widetilde{S}^n(V):\mathrm{Sym}(x)=x$. Для этого мы её определим так:

$$\mathrm{Sym}: V^{\otimes n} \to \widetilde{S}^n(V)$$

$$x \mapsto \frac{1}{n!} \sum_{\pi \in S_n} \pi(x)$$

Интересный факт. Sym является проектором на $\widetilde{S}^n(V)$. Умножение

$$\widetilde{S}^n(V), \widetilde{S}^k(V) \to \widetilde{S}^{n+k}(V)$$

 $x, y \mapsto \operatorname{Sym}(x \otimes y)$

коммутативно и ассоциативно. С данной операцией $\bigoplus_{n \geq 0} \widetilde{S}^n(V)$ становится алгеброй с единицей.

Для внешней алгебры можно действовать также, определив действие $S_n \curvearrowright V^{\otimes n}$:

$$S^{n} \times V^{\otimes n} \to V^{\otimes n}$$

$$\pi, (x_{1} \otimes \cdots \otimes x_{n}) \mapsto \operatorname{sgn}(\pi) \cdot x_{\pi(1)} \otimes \cdots \otimes x_{\pi(n)}$$

и положив $\widetilde{\bigwedge}^n(V)\leqslant V^{\otimes n}$, подмодулем, инвариантным относительно данного действия. Для умножения введём

$$\operatorname{Alt}: V^{\otimes n} \to \widetilde{\bigwedge}^n(V)$$
$$x \mapsto \frac{1}{n!} \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \cdot \pi(x)$$

Интересный факт. Alt является проектором на $\widetilde{\bigwedge}^n(V)$. Умножение

$$\widetilde{\bigwedge}^n(V), \widetilde{\bigwedge}^k(V) \to \widetilde{\bigwedge}^{n+k}(V)$$
$$x, y \mapsto \mathrm{Alt}(x \otimes y)$$

антикоммутативно и ассоциативно. С данной операцией $\bigoplus_{n\geqslant 0} \widetilde{\bigwedge}^n(V)$ становится антикоммутативной $\mathbb{Z}/2\mathbb{Z}$ -градуированной алгеброй с единицей.

Лекция VIII 3 октября 2023 г.

1.11 Вычисления в алгебре Грассмана

Пусть $A \in M(m,n,R)$. $I \subset [m], J \subset [m]$, Обозначим за

 A^I подматрицу, состоящую из строк с номерами из I

 A_J подматрицу, состоящую из столбцов с номерами из J

$$A_{I}^{I} = (A^{I})_{J} = (A_{J})^{I}$$

Замечание. Базисом внешней алгебры являются $e_I = e_{i_1} \wedge \cdots \wedge e_{i_k}$, где $I = \{i_1, \dots, i_k\}$, причём $i_1 < \cdots < i_k$.

$$e_{j_1}\wedge\cdots\wedge e_{j_n}=\pm e_J$$
, где знак — количество беспорядков (инверсий) в j_1,\ldots,j_n

Рассмотрим алгебру Грассмана $\bigwedge(V)$.

Лемма 1.11.1. Пусть $(u_1, \ldots, u_n)C = (v_1, \ldots, v_m)$, где $C \in M(n, m, R)$, $u_i, v_j \in V$. Интересным случаем является $m \leq n$, иначе в обеих частях равенства стоят нули. Утверждается, что

$$v_{[m]} \coloneqq v_1 \wedge \dots \wedge v_m = \sum_{|I|=m, I \subset [n]} u_I \det(C^I)$$

еде C^{I} — подматрица C, берутся строки с номерами из I.

Доказательство.

ullet Сначала предполагаем, что (u_i) являются базисом $\bigwedge^k(U)$, причём m=n.

Тогда $v_{[m]} \in \bigwedge^m(V) = \langle u_{[m]} \rangle$, то есть $v_{[m]} = u_{[m]} \cdot \alpha(C)$, где коэффициент α зависит от матрицы C. Таким образом, этот коэффициент можно рассматривать, как отображение $\alpha: M(n,R) \to R$.

Несложно видеть полилинейность, антисимметричность и нормированность α , то есть это определитель.

• Теперь пусть m < n, но (u_i) — всё ещё базис V. Тогда $\{u_I|I\subset [n], |I|=m\}$ — базис $\bigwedge^m(V)$ и $v_{[m]}=\sum_I u_I\alpha_I$.

Зафиксируем $J\subset [n], |J|=m.$ Определим $U\leqslant V,$ как подмодуль, натянутый на $\{u_j|j\in J\}.$

Определим проекцию на U: $\overline{\cdot}:V \to U, u_i \mapsto \begin{cases} u_i, & i \in J \\ 0, & i \notin J \end{cases}$. Чтобы найти коэффициент перед

 u_J , домножим выражение v_j через u_i на матрицу проекции на U (применим надчёркивание):

$$(\overline{u}_1, \dots, \overline{u}_n)C = (\overline{v}_1, \dots, \overline{v}_m) \qquad \iff \qquad (u_{j_1}, \dots, u_{j_m})C^J = (\overline{v}_1, \dots, \overline{v}_m)$$

Из предыдущего пункта находим $u_J \det(C^J) = v_{[m]}$.

• Теперь докажем общий случай. Пусть M — свободный модуль с базисом (e_1, \ldots, e_n) , пусть $(f_1, \ldots, f_m) \coloneqq (e_1, \ldots, e_n)C$. Согласно предыдущему пункту

$$f_{[m]} = f_1 \wedge \cdots \wedge f_m = \sum_{I \subset [n], |I| = m} e_I \det C^I$$

Согласно универсальному свойству базиса $\exists ! L : M \to V : L(e_i) = u_i$.

 $(v_1,\ldots,v_m)=(u_1,\ldots,u_n)C=(L(e_1),\ldots,L(e_n))C=(L(f_1),\ldots,L(f_m))$. Применяем $\bigwedge^k(L)$ к $f_1\wedge\cdots\wedge f_m$:

$$v_{[m]} = L(f_1) \wedge \cdots \wedge L(f_m) = \sum_I L(e)_I \det(C^I) = \sum_I u_I \det(C^I)$$

Следствие 1.11.1 (Теорема Бине-Коши). Пусть R — коммутативное кольцо, $A \in M(m,n,R), C \in M(n,m,R)$. Полезным случаем является $m \leqslant n$, иначе обе части будут точно нулями. Утверждается, что

$$\det(A \cdot C) = \sum_{I \subset [n], |I| = m} \det(A_I) \det(C^I)$$

Доказательство. Пусть V — свободный правый модуль ранга m с базисом $(e_1 \ldots e_m)$.

Положим $(u_1 \cdots u_n) = (e_1 \cdots e_m) A$; далее положим $(v_1 \cdots v_m) = (u_1 \cdots u_n) C$. Согласно (1.11.1): $v_1 \wedge \cdots \wedge v_m = \sum_{I \subset [n], |I| = m} u_I \det(C^I)$.

Дальше раскрывая $(u_{i_1} \cdots u_{i_m}) = (e_1 \cdots e_m) A_I$, получаем

$$v_{[m]} = \sum_{I \subset [n], |I| = m} u_I \det(C^I) = \sum_{I \subset [n], |I| = m} e_{[m]} \det(A_I) \det(C^I)$$

Сравнивая с тем, что $\begin{pmatrix} v_1 & \cdots & v_m \end{pmatrix} = \begin{pmatrix} e_1 & \cdots & e_m \end{pmatrix} \cdot (AC)$, получаем равенство определителей.

Теорема 1.11.1 (Разложение по нескольким столбцам). Рассмотрим блочную матрицу (B|C), где $B \in M(n,k,R), C \in M(n,n-k,R)$. Утверждается, что

$$\det(B|C) = \sum_{|I|=k} \varepsilon_I \cdot \det(B^I) \det\left(C^{[n]\setminus I}\right)$$

где ε_I — знак перестановки ниже (пусть $I=\{i_1<\dots< i_k\}; J\coloneqq [n]\setminus I=\{j_1<\dots< j_{n-k}\}$).

$$\varepsilon_I = \operatorname{sgn}\begin{pmatrix} 1 & \cdots & \cdots & n \\ i_1 & \cdots & i_k & j_1 & \cdots & j_{n-k} \end{pmatrix} = (-1)^{\sum_{i=1}^k (i_s - s)}$$

Доказательство. Пусть $B=(e_1,\ldots,e_n)B=(b_1,\ldots,b_k),\ C=(e_1,\ldots,e_n)C=(c_1,\ldots,c_{n-k}).$ Посчитаем $b_1\wedge\cdots\wedge b_k\wedge c_1\wedge\cdots\wedge c_{n-k}.$

C одной стороны, это равно $e_{[n]} \cdot \det(B|C)$.

С другой стороны, внешнее произведение ассоциативно:

$$(b_1 \wedge \dots b_k) \wedge (c_1 \wedge \dots \wedge c_{n-k}) = \left(\sum_{I \subset [n], |I| = k} e_I \det \left(B^I \right) \right) \wedge \left(\sum_{J \subset [n], |J| = n-k} e_J \det \left(C^J \right) \right)$$

Так как произведение $e_I \wedge e_J$ не обнуляется только если $I \sqcup J = [n]$, то

$$(b_1 \wedge \dots b_k) \wedge (c_1 \wedge \dots \wedge c_{n-k}) = \left(\sum_{I \subset [n], |I| = k} e_I \wedge e_{[n] \setminus I} \det \left(B^I \right) \det \left(C^{[n] \setminus I} \right) \right)$$

Теперь осталось вычислить $e_I \wedge e_{[n]\setminus I}$. Это равняется $\varepsilon_I \cdot e_{[n]}$, где ε_I — знак перестановки

$$\begin{pmatrix} 1 & \cdots & \cdots & n \\ i_1 & \cdots & i_k & j_1 & \cdots & j_{n-k} \end{pmatrix}$$

Нетрудно видеть, что индексы i упорядочены по возрастанию, j — тоже, инверсии в данной перестановки образуют только пары (i_l, j_m) . Индекс i_l образует инверсию с меньшими j, таких имеется

$$i_l - l$$
. B $\mathbb{Z}/2\mathbb{Z}$: $\sum_{l=1}^k (i_l - l) = \sum_{l=1}^k (i_l) + \sum_{l=1}^k i_l + \frac{l(l+1)}{2}$

1.11.1 Внешняя степень матричного представления

Замечание. Всякому отображению $L:U\to V$ соответствует единственное линейное

$$\bigwedge^{k}(L): \bigwedge^{k}(U) \to \bigwedge^{k}(V)$$
$$u_{1} \wedge \cdots \wedge u_{k} \mapsto L(u_{1}) \wedge \cdots \wedge L(u_{k})$$

Это является иллюстрацией того, что всякое хорошая конструкция, задающееся универсальным свойством, является функтором (действует и на морфизмах).

Доказательство.

$$U \times \cdots \times U \longrightarrow \bigwedge^{k}(U)$$

$$\downarrow \downarrow \qquad \qquad \downarrow \bigwedge^{k}(L)$$

$$V \times \cdots \times V \longrightarrow \bigwedge^{k}(V)$$

Композиция, бьющая $U \times \cdots \times U \to \bigwedge^k(V)$ антисимметрична и полилинейна, значит, согласно универсальному свойству внешней алгебры найдётся единственная стрелка $\bigwedge^k(L): \bigwedge^k(U) \to \bigwedge^k(V)$. Часто её обозначают просто L, в программировании это называется *полиморфизмом* — зависимость стрелки от передающихся ей аргументов.

Пусть $L:V\to V$ линейно, $V=\langle e_1,\dots,e_n\rangle$ — свободный модуль. Обозначим матрицу L в базисе e за $[L]_e$. Базису e модуля V соответствует базис $\bigwedge^k e=\{e_I|I\subset [n]\}$.

Изучим связь матрицы $[L]_e$ и матрицы $[\bigwedge^k(L)]_{\bigwedge^k(e)}$.

Замечание. Если L обратим, то $\bigwedge^k \left(L^{-1}\right) = (\bigwedge L)^{-1}$.

Пусть $J \subset [n], |J| = k$. $L(e_{j_1}) = (e_1, \ldots, e_n)([L]_e)_{*,j_1}$, таким образом $L(e_{j_1}, \cdots, e_{j_k}) = (e_1, \ldots, e_n)([L]_e)_J$.

$$L(e_{j_1}) \wedge \cdots \wedge L(e_{j_k}) = \sum_{I \subset [n], |I| = k} e_I \det([L]_e)_J^I$$

Таким образом, мы получили следующий результат:

Лемма 1.11.2. Элемент матрицы $(\bigwedge^k L)_{\bigwedge^k e}$ в строке I и столбце J равен минору $\det \left(([L]_e)_J^I\right)$.

Лекция IX 5 октября 2023 г.

Конечно, подобным образом можно записать некоторую формулу, выражающую элементы матрицы $\bigwedge^k(L)$.

Например, элементы обратной к любой матрице над коммутативным кольцом равны соответствующим алгебраическим дополнениям, поделённым на определитель. Сейчас будет найдено более короткое выражение для этих элементов.

Замечание. Всё, что мы собираемся доказать над полем — полиномиальные равенства, поэтому они верны для всех колец (полиномиальные равенства сохраняются при взятии подколец и факторов) — все кольца являются факторкольцом кольца многочленов (если кольцо очень большое, то и элементов очень много). Более того, можно доказать над \mathbb{R} , так как \mathbb{R} содержит $\mathbb{Z}[t_i|i\in\mathbb{N}]$ — всякое полиномиальное равенство содержит конечное число переменных.

Поэтому можно думать, что $L:V\to V$ — автоморфизм векторного пространства. Выберем базис $V=\langle e_1,\ldots,e_n\rangle$, в нём $A:=[L]_e$ — матрица L. Обозначим за $\bigwedge^k A$ матрицу оператора $\bigwedge^k L$ в базисе $\bigwedge^k e$.

Теорема 1.11.2. Пусть $I, J \subset [n]$. Тогда имеет место следующая формула для элементов матрицы $\bigwedge^k A^{-1}$:

$$\left(\bigwedge^k A^{-1}\right)_J^I = \det\left((A^{-1})_J^I\right) = (-1)^{\varepsilon_I + \varepsilon_J} \frac{1}{\det A} A_{[n]\backslash I}^{[n]\backslash J}$$

 ε_I и ε_J определены здесь (1.11.1)

Доказательство. Пусть B — матрица $\bigwedge A^{-1}$ в базисе $\bigwedge^k e$. Согласно (1.11.2), для $I,J\subset [n]; |I|=|J|=k$:

$$(B^{-1})_I^J = \det\left(\left(A^{-1}\right)_I^J\right)$$

. . .

1.12 Грассманиан

 $\mathbb{P}^n\stackrel{def}{=}\{(x_0,\ldots,x_n)\setminus(0,\ldots,0)|x_i\in F\}\ /\sim$, где $(x_0,\ldots,x_n)\sim(\lambda x_0,\ldots,\lambda x_n)$ для $\lambda\in F$. Множество прямых.

Определение 1.12.1 (Грассманиан). $\operatorname{Gr}_k(V)$ — множество k-мерных подпространств в пространстве V. $\operatorname{Gr}_k^n := \operatorname{Gr}_k(F^n)$.

$$\operatorname{Gr}_1^n = \mathbb{P}^{n-1}$$
.

Соотношения Плюккера, многообразие Грассмана — чтобы задать алгебраическую топологию, введём систему полиномиальных уравнений.

 $\dim V = n, U \leqslant V, \dim U = k$. Выберем базис (u_1, \dots, u_k) и другой базис (w_1, \dots, w_k) . $w = u(u \leadsto w)$.

 $u_1 \wedge \cdots \wedge u_k \cdot \det C = w_1 \wedge \cdots \wedge w_k \in \bigwedge(V).$

$$\gamma: \operatorname{Gr}_k(V) \to \mathbb{P}(\bigwedge^k(V))$$
$$\langle u_1, \dots, u_k \rangle \mapsto [u_1 \wedge \dots \wedge u_k]$$

Лемма 1.12.1. γ инъективно.

Чтобы задать полиномиальные уравнения, запишем однородные многочлены.

Соотношения Плюккера: $\forall L, M : L = (l_1, \dots, l_{k-1}) \subset [n], M = (m_1, \dots, m_{k+1}) \subset [n].$

$$\sum_{i=1}^{k+1} (-1)^{i+\phi(L,m_i)} x_{l \cup \{m_i\}} \cdot x_{M \setminus \{m_i\}} = 0$$

 $m_i \in L \Rightarrow x_{L \cup \{m_i\}} := 0.$

 $\phi(L, m_i)$ — количество тех l_j , которые больше m_i .

Точки x с такими однородными координатами лежат в $\mathrm{Im}(\gamma) \iff$ выполнены соотношения Плюккера

Глава 2

Теория представлений конечных групп

Лекция X 12 октября 2023 г.

2.1 Теорема Жордана — Гёльдера

Рассмотрим ряд подмодулей $\{0\} = M_0 \leqslant \ldots \leqslant M_m = M$.

Теорема Жордана — Гёльдера говорит о том, что такой ряд в некотором смысле единственный. Для начала, определим, в каком смысле понимать эту единственность. Для этого рассмотрим второй ряд $\{0\} = N_0 \leqslant \ldots \leqslant N_n = M$

Определение 2.1.1 (Ряды M_i и N_j эквивалентны). Равны наборы факторов соседних: n=m и $\exists \sigma \in S_n: M_i/M_{i-1} \cong N_{\sigma(i)}/N_{\sigma(i)-1}$

Определение 2.1.2 (Ряд без повторений). $\forall i: M_{i-1} \neq M_i$.

Определение 2.1.3 (Простой модуль). Модуль, в котором нет собственных подмодулей.

Определение 2.1.4 (Неуплотняемый ряд M_i). Все факторы простые: $M_i \leqslant K \leqslant M_{i+1} \iff K = M_i$, то есть M_{i+1}/M_i прост. $K = M_{i+1}$

Определение 2.1.5 (Композиционный ряд). Неуплотняемый ряд без повторений

Определение 2.1.6 (Артинов модуль). Модуль, удовлетворяющий условию обрыва убывающих цепей (для подмодулей), DCC.

Определение 2.1.7 (Нётеров модуль). Модуль, удовлетворяющий условию обрыва возрастающих цепей (для подмодулей), АСС.

Согласно лемме Цорна в любом непустом наборе подмодулей артинова модуля есть минимальный элемент, в нётеровом модуле — максимальный.

Предложение 2.1.1. В модуле M есть композиционный ряд \iff модуль M и артинов, и нётеров.

Доказательство.

 \Leftarrow . Построим композиционный ряд по индукции. $\{0\} = M_0 \leqslant M_1$, где M_1 выбирается, как минимальный элемент (существует из-за артиновости) в множестве $\{N \leqslant M | M_0 \leqslant N\}$. Таким

образом, строится цепочка $M_0\leqslant M_1\leqslant \cdots\leqslant M_n\leqslant \cdots$. Данная цепочка за счёт нётеровости обрывается, то есть $\exists n\in\mathbb{N}: M_n=M$

⇒. Пусть модуль не артинов или не нётеров. Тогда существует сколь угодно длинная цепочка из подмодулей. Но длина любого ряда не превосходит длины композиционного (2.1.1). □

Теорема 2.1.1. У любых двух рядов существует их общее уплотнение.

Доказательство. Пусть даны два ряда $\{0\} = M_0 \leqslant M_1 \leqslant \ldots \leqslant M_m = M$ и $\{0\} = N_0 \leqslant N_1 \leqslant \ldots \leqslant N_n = M$.

Определим $M'_{i,j} = (M_i + N_j) \cap M_{i+1}$ для $0 \leqslant i < m, 0 \leqslant j \leqslant n$.

Определим $N'_{j,i} = (N_j + M_i) \cap N_{j+1}$ для $0 \leqslant j < n, 0 \leqslant i \leqslant m$. Тогда

$$\frac{M'_{i,j+1}}{M'_{i,j}} = \frac{(M_i + N_{j+1}) \cap M_{i+1}}{(M_i + N_j) \cap M_{i+1}} \stackrel{?}{\cong} \frac{(N_j + M_{i+1}) \cap N_{j+1}}{(N_j + M_i) \cap N_{j+1}} = \frac{N'_{j,i+1}}{N'_{j,i}}$$

Лемма 2.1.1. *Если* $A \leq B$, то $(A + X) \cap B = A + X \cap B$.

Доказательство леммы.

Так как $A \leqslant (A+X) \cap B$, и $X \cap B \subset (A+X) \cap B$, то $(A+X \cap B) \leqslant (A+X) \cap B$.

В другую сторону, рассмотрим $a+x=b\in (A+X)\cap B.$ Тогда x=b-a, то есть $x\in X\cap B$, и $a+x\in A+X\cap B.$

Лемма 2.1.2 (О бабочке). Пусть $A\leqslant B\leqslant M$ и $C\leqslant D\leqslant M$. Тогда утверждается, что

$$\frac{(A+D)\cap B}{(A+C)\cap B}\cong \frac{B\cap D}{A\cap D+B\cap C}\cong \frac{(B+C)\cap D}{(A+C)\cap D}$$

Доказательство леммы.

При замене $B \leftrightarrow D, A \leftrightarrow C$ среднее не меняется, а левое изменяется на правое. Значит, достаточно доказать первый знак изоморфности.

$$\frac{A+D\cap B}{A+C\cap B} = \frac{(A+C\cap B)+D\cap B}{A+(C\cap B)} \underset{\text{теорема H\"etep of изоморфизме}}{\cong} \frac{D\cap B}{(A+C\cap B)\cap D\cap B}$$

Осталось показать, что $(A+C)\cap B\cap D=A\cap D+B\cap C$. Используя лемму (2.1.1), получаем $((A+C)\cap B)\cap D=(A+C\cap B)\cap D=A\cap D+C\cap B$.

Применяя лемму о бабочке, получаем, что искомая изоморфность фактормодулей (отмеченная вопросиком) действительно имеет место. \Box

Теорема 2.1.2 (Жордан — Гёльдер). Любые два композиционных ряда без повторений эквивалентны.

Доказательство. Построим общее уплотнение данных рядов. Так как ряды неуплотняемы, то уплотнение только добавляет нуль-факторы.

Следствие 2.1.1. Длина любого ряда без повторений не больше длины композиционного ряда.

Определение 2.1.8 (Длина модуля). Длина композиционного ряда данного модуля.

Следствие 2.1.2 (Теорема Ремака — Крулля — Шмидта). Если $M = \bigoplus_{i=1}^n M_i$, где M_i — простые, то $\{M_i\}$ определено однозначно с точностью до перестановки.

Замечание. Данная теорема также будет доказана в другой общности с использованием техники характеров: (2.17.4)

Предложение 2.1.2. Пусть M — артинов модуль. Тогда $M = \bigoplus_{i=1}^n M_i \iff \forall N \leqslant M: \exists N': N \oplus N' = M.$

Доказательство.

 \Leftarrow . Рассматриваем модуль M. Если он не простой, то $\exists N,N':N\oplus N'=M$. Дальше ветвимся относительно N,N' (если $L\leqslant N$, то $\exists L':L\oplus L'=M$, откуда $L\oplus (L'\cap N)=N$, то есть посылка теоремы верна и для N,N').

Из-за артиновости дерево ветвления конечно (в бесконечном дереве есть бесконечная ветвь).

 \Rightarrow . Выберем максимальное $k\leqslant n$, такое, что после перенумерации $igg(\bigoplus_{i=1}^k M_iigg)\cap N=\{0\}$. Положим $M'\coloneqq \bigoplus_{i=1}^k M_i$. Из максимальности $\forall j>k: (M'\oplus M_j)\cap N=\{0\}$.

Докажем, что $M=M'\oplus N$. Достаточно доказать, что $\forall j>k: M_j\leqslant M'\oplus N$.

В силу максимальности k: $N' := N \cap (M' \oplus M_j) \neq \{0\}$. Выберем $x \in N' \setminus \{0\}$. Он раскладывается в сумму x = m' + y, где $m' \in M', y \in M_j$.

 $y \neq 0$, так как $N \cap M' = \varnothing$. Устроим проекцию $\pi: M' \oplus M_j \to M_j$, заметим, что $\pi(x) = y \neq 0$, отсюда $\pi(N')$ нетривиально. Так как образ модуля — подмодуль, то $\pi(N') \leqslant M_j$. Из простоты $M_j: \pi(N') = M_j$.

Лекция XI 17 октября 2023 г.

2.2 Немножко фактов про кольца

Кольца, как и модули, тоже бывают артиновы и нётеровы, в них ACC и DCC — условия на цепочки идеалов.

Предоствережение. Артиновость слева и справа — разные вещи. Кольцо $\begin{pmatrix} \mathbb{Q} & \mathbb{R} \\ 0 & \mathbb{R} \end{pmatrix}$ справа артиново, слева — не артиново и даже не нётерово.

Так как идеал в кольце является подмодулем, то для поля F: F[G] является артиновым (хотя бы из соображений размерности).

Пусть R — некоммутативное кольцо. Радикал Джекобсона не выделить прямым слагаемым, но точную формулировку того, как и когда конкретно он мешает, я не уловил.

Определение 2.2.1 (Регулярный R-модуль). R как модуль над R.

Следует различать левый и правый регулярные R-модули.

Предложение 2.2.1. Пусть $r \in R$. Следующие условия эквивалентны.

- (1L) r лежит в любом максимальном левом идеале.
- (1R) r лежит в любом максимальном правом идеале.
- (2L) r можно исключить из любой системы образующих левого регулярного R-модуля.
- (2R) г можно исключить из любой системы образующих правого регулярного R-модуля.
- (3L) $\forall x \in R : 1 + xr$ обратимо слева.
- (3R) $\forall x \in R: 1+rx$ обратимо справа.

- (4L) $\forall x \in R : 1 + xr$ двусторонне обратим.
- $(4R) \ \forall x \in R : 1 + rx \ двусторонне обратим.$
 - (5) $\forall x, y \in R : 1 + xry$ обратим.

Доказательство. Как уверяет лектор, $3L\Rightarrow 4L$ — сложный трюк, остальное — более простые упражнения.

Определение 2.2.2 (Радикал Джекобсона). Множество $r \in R$, удовлетворяющих пунктам леммы выше. Обозначается $\operatorname{Rad}(R) = \operatorname{JRad}(R)$.

Rad(R) — двусторонний идеал, как пересечение левых идеалов, и как пересечение правых иделаов.

Предложение 2.2.2 (Радикальность радикала). $Rad(R/Rad(R)) = \{0\}.$

Теорема 2.2.1. Если R — артиново кольцо, то $\exists n \in \mathbb{N} : \operatorname{Rad}(R)^n = 0$. Таким образом, в артиновых кольцах $\operatorname{Rad}(R)$ — нильпотентный идеал.

Замечание. Напоминание:
$$A,B \leqslant R \Rightarrow AB \stackrel{def}{=} \left\{\sum_{i=1}^n x_i y_i \middle| n \in \mathbb{N}, x_i \in A, y_i \in B\right\} \leqslant R.$$

Так, если $A = B = (x, y) \leqslant \mathbb{F}_2[x, y]$, то $AB = (x^2, y^2, xy) \leqslant \mathbb{F}_2[x, y]$.

Можно заметить, что AB не совпадает с множеством произведений $xy, (x \in A, y \in B)$, ни тем более с множеством квадратов элементов A.

Если $Rad(R) \neq \{0\}$, то регулярный модуль не является вполне приводимым.

Предположим, что $R = \operatorname{Rad}(R) \oplus M$. Тогда R = M, так как все элементы радикала можно выкинуть из системы образующих.

Таким образом, радикал никогда не выделяется прямым слагаемым.

Определение 2.2.3 (Полупростое кольцо). $Rad(R) = \{0\}.$

Теорема 2.2.2 (Веддербарн — Артин). Если R — полупростое артиново кольцо (эквивалентно, классически полупростое), то $R = \bigoplus_{i=1}^n M_{k_i}(D_i)$, где D_i — тела.

Доказательство. Схема доказательства

- 1. I нильпотентный правый идеал $\exists a, x \in I : (a^2 a)x = 0, ax \neq 0$.
- 2. Любой правый идеал содержит идемпотент.
- 3. Любой двусторонний идеал содержит центральный идемпотент ⇒ выделяется прямым слагаемым.
- $4. \ R$ прямая сумма простых колец без двусторонних идеалов.
- 5. R простое, I минимальный правый идеал $\Rightarrow \exists n \in \mathbb{N} : R \cong I^{\oplus n}$, как R-модуль.
- 6. $R \cong \operatorname{End}_R(I^{\oplus n}) \cong M(n,D)$, где $D = \operatorname{End}_R(I)$.

Предложение 2.2.3. Если $R = \bigoplus_{i=1}^n R_i$, M — левый R-модуль, то $M = \bigoplus_{i=1}^n R_i \cdot M$. Если M — простой, то все слагаемые, кроме одного, равны нулю.

Таким образом, если R — полупростое артиново кольцо, то можно интересоваться только модулями над матричными кольцами над телами.

Никаких конечных тел над алгебраически замкнутым полем нет (представим в матричном виде, теорема Кэли — Гамильтона, минимальный многочлен $x-\alpha$).

Предложение 2.2.4. Пусть M — простой левый модуль над M(k,D), где D — тело. Тогда $M\cong D^k$.

Используя теорему Веддербарна — Артина $\sum_{i=1}^{n} k_i^2 = \dim F[G] = |G|$. Это мы также докажем впоследствии, используя технику характеров (2.18).

Лемма 2.2.1. Если D — конечномерная алгебра без делителей нуля (например, тело) над алгебраически замкнутым полем F, то $D \cong F$.

Доказательство. Пусть $a \in D$. Устроим

$$\psi: F[t] \to D$$
$$t \mapsto a$$

 $\operatorname{Ker}(\psi) \neq \{0\}$, так как $\dim_F(F[t]) = \infty$, но $\dim_F(D) < \infty$. Тогда $F[t]/\operatorname{Ker}(\psi) \cong \operatorname{Im}(\psi)$ без делителей нуля.

Таким образом, $\mathrm{Ker}(\psi)$ — простой идеал, но кольцо многочленов евклидово, поэтому это максимальный идеал.

 $\operatorname{Ker}(\psi) = p \cdot F[t]$, где p неприводим, тогда $p(t) = t - \alpha$ и $F[a] = F[t]/(p) \cong F$.

Тогда если $a \in 1_A \cdot F$, то $D = 1_D \cdot F = F$.

Лекция XII

7 сентября 2016 г.

Чаще всего у нас будут иметься предположения о конечности группы $|G| < \infty$ и алгебраической замкнутости базового поля $\overline{K} = K$.

Пусть $\mathrm{char}(K)=p$. Случай $p \not\mid |G|$ более простой, о нём говорит meopus обыкновенных $\mathit{npedcmas}$ -лений.

Другой случай $p \mid |G|$ изучает теория модулярных представлений.

2.3 Три с половиной языка

Есть несколько эквивалентных языков, чтобы говорить о представлениях групп.

- Линейные представления G над R.
- Линейные действия G на R-модулях.
- Модули над R[G], где R[G] групповая алгебра G над R.
- Частный случай линейных представлений матричные представления (на свободных R-модулях с фиксированным базисом).

Эквивалентность данных языков установлена Эмми Нётер в 1926 году.

2.3.1 Линейные представления группы G

Пусть R — коммутативное ассоциативное кольцо с единицей (обычно поле). Коммутативность нужна для того, чтобы работать с матрицами было приятно.

Пусть V-R-модуль (скоро станет векторным пространством, или по крайней мере свободным модулем конечного ранга).

Определение 2.3.1 (Линейное представление группы G над R с модулем представления V). Гомоморфизм $\pi:G\to GL(V)={\rm Aut}_R(V)$ — в полную линейную группу модуля.

Обычно образ g при действии π обозначается π_{g} , чтобы не плодить скобок.

Здесь π — представление (representation), и V — модуль представления (presentation module).

Свойствами гомоморфизма являются

• $\pi_h \cdot \pi_g = \pi_{hg}$. В частности, $\pi_e = \mathrm{id}$ и $\pi_{g^{-1}} = \pi_g^{-1}$.

2.3.2 Линейные действия

Если G действует просто на V, как на множестве, то задано отображение

$$G \times V \to V$$
$$g, x \mapsto gx$$

со свойством внешней ассоциативности (hg)x = h(gx).

Если дано представление, то действие можно определить так:

$$G \times V \to V$$

 $g, v \mapsto \pi_q(v) = gv$

Это действие, так как π — гомоморфизм. При этом, получилось не просто действие, а линейное действие: $\forall u,v\in V,\lambda\in R$:

- $\pi_g(u+v)=\pi_g(u)+\pi_g(v)$ или же g(u+v)=gu+gv
- $\pi_q(\lambda u) = \lambda \pi_q(u)$ или же $g(\lambda u) = \lambda gu$.

Обратно, если задано действие $G \curvearrowright V$ то ему можно сопоставить представление

$$\pi: G \to GL(V)$$
$$g \mapsto (v \mapsto gv)$$

Факт 2.3.1. Таким образом, линейные представления — то же самое, что и линейное действие.

2.3.3 Структура R[G] модуля над каким-то R-модулем

Здесь будет существенно, что группа конечна.

Помним, что групповая алгебра R[G] — это алгебра, элементы которой интерпретируются как $\sum_{g \in G} a_g g, \ a_g \in R.$

Предостережение. Не стоит путать групповую алгебру с алгеброй функций R^G — двойственной к групповой алгебре. Элементы алгебры функций — $\sum\limits_{g\in G}a_g\delta_g$, где функция

$$\delta_g(h) = \delta_{g,h} = \begin{cases} 1, & g = h \\ 0, & g \neq h \end{cases}$$

Сумма и произведение элементов R[G] определены в виде

$$\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g) g$$

$$\left(\sum_{g \in G} a_g g\right) \cdot \left(\sum_{h \in G} b_h h\right) = \sum_{h,g \in G} (a_g b_h) g = \sum_{f \in G} \left(\sum_{h \in G} a_h b_{h^{-1} f}\right) f$$

Линейному действию $G \curvearrowright V$ сопоставим действие $R[G] \curvearrowright V$, определённое в виде

$$\left(\sum_{g \in G} a_g g\right) v = \sum_{g \in G} a_g(g v)$$

Можно проверить, что данная формула задаёт на V структуру левого R[G]-модуля.

Поскольку $G \hookrightarrow R[G]$, то верно и обратное — R[G]-модуль определяет линейное действие G на V.

2.3.4 Глоссарий терминов

Представление	Модуль					
Факторпредставление	Фактормодуль					
Сплетающий оператор (intertwining operator)	Гомоморфизм					
Неприводимое представление	Простой модуль (у которого ровно два подмодуля)					
Неразложимое представление	Неразложимый (в прямую сумму) модуль					
Эквивалентность	Изоморфизм					
Инвариантное подпространство	Инвариантное подпространство					
Полная приводимость	Полупростота (прямая сумма конечного числа простых)					

В дальнейшем мы будем предполагать, что $V = R^n$ — свободный модуль конечного ранга. Над полем, очевидно, достаточно считать, что $\dim(V) < \infty$.

Определение 2.3.2 (Конечномерное линейное представление над K). Представление, в котором модуль представления конечномерен.

Если зафиксировать e_1, \ldots, e_n — базис V, то $V = \mathbb{R}^n$ и $GL(\mathbb{R}^n) = GL(n, \mathbb{R})$.

Здесь линейные операторы — матрицы.

В этом случае можно определять $\pi:G \to GL(n,R)$. Это матричное представление.

Матрица записывается $x=(x_{i,j})_{1\leqslant i,j\leqslant n}.$ В данной главе нас больше всего будет волновать след $\sum\limits_i x_{i,i}.$

Работая в матрицах, придётся не забывать, что мы используем их с точностью до сопряжения. С другой стороны, считать что-то в матрицах легче.

Определение 2.3.3 (Степень представления). Ранг модуля представления. Обозначают $\deg(\pi)$.

Пусть $n = \deg(\pi)$, где $\pi: G \to GL(n,R)$. Тогда $\pi_q = ((\pi_q)_{i,j})_{1 \leqslant i,j \leqslant n}$.

Коэффициенты матрицы π_g обозначают $\pi_{i,j}(g) \in R$, опять же чтобы не плодить скобок. $\pi_{i,j}$ здесь — матричный элемент представления π в позиции (i,j).

2.4 Сплетающие операторы

Пусть $\pi: G \to GL(U), \rho: G \to GL(V)$ — два представления.

Определение 2.4.1 (Сплетающий оператор (гомоморфизм) ϕ между π и ρ). Для любого $g \in G$ диаграмма коммутативна.

Иными словами (на языке действий, а не представлений) $\pi_g(u) \stackrel{def}{=} gu, \rho_g(v) \stackrel{def}{=} gv$ и коммутативность диаграммы значит G-эквивариантность

$$\phi(gu) = g\phi(u)$$

Таким образом, сплетающий оператор — в точности гомоморфизм R[G]-модулей:

$$\phi\left(\sum_{g\in G}a_gg\cdot u\right) = \sum_{g\in G}\phi(a_gg\cdot u) = \sum_{g\in G}a_g\phi(g\cdot u) = \sum_{g\in G}a_gg\phi(u) = \left(\sum_{g\in G}a_gg\right)\phi(u)$$

Мы определили то, что далее будет называться *категорией представлений* — объекты и морфизмы между ними.

В случае, когда ϕ — *изоморфизм* модулей оно называется *эквивалентностью*. Далее всюду будем смотреть на представления с точностью до эквивалентности.

2.5 Изоморфизм представлений

Пусть $\pi:G \to GL(U), \rho:G \to GL(V)$ — два представления.

Элементу g соответствует левый квадрат, но так как ϕ обратимо, то его коммутативность равносильна коммутативности правого квадрата

$$\begin{array}{cccc} U & \xrightarrow{\pi_g} & U & & U & \xrightarrow{\pi_g} & U \\ \downarrow^{\phi} & & \phi \downarrow & & \uparrow^{\phi^{-1}} & \phi \downarrow \\ V & \xrightarrow{\rho_g} & V & & V & \xrightarrow{\rho_g} & V \end{array}$$

Получаем соотношение сопряжения $\rho_g = \phi \circ \pi_g \circ \phi^{-1}$.

Выбрав базисы в U,V получаем два гомоморфизма $G \to GL(n,R)$, таких, что найдётся обратимая матрицы $x \in GL(n,R)$:

$$\forall g \in G : x\pi_g x^{-1} = \rho_g$$

Эти представления эквивалентны.

2.6 Подпредставление

Пусть $\pi: G \to GL(V)$, где V - R-модуль, $U \leqslant V$.

Определение 2.6.1 (U-G-подмодуль). R[G]-подмодуль в V, или же G-инвариантное подпространство.

Требование об отсутствии G-подмодулей в случае кольца R не выполняется практически никогда — в кольце много идеалов. Далее предполагаем, что R=K — поле.

Определение 2.6.2 (Неприводимое представление $\pi: G \to GL(V)$). $V \neq \{0\}$ и в V нет нетривиальных G-инвариантных подпространств. Иначе представление называется npuвoдumыm.

Если представление приводимо ($U \leqslant V - G$ -инвариантное подпространство), то в U найдётся базис e_1, \ldots, e_m , он дополняется до базиса V.

В этом базисе для любого g:

$$\pi_g = \left(\begin{array}{c|c} * & * \\ \hline 0 & * \end{array}\right)$$

Матрицы такого вида образуют стандартную параболическую подгруппу.

Определение 2.6.3 (m-я стандартная параболическая подгруппа $P_m \leqslant GL(n,K)$).

$$P_m \stackrel{def}{=} \left\{ \left(\begin{array}{c|c} a & b \\ \hline 0 & c \end{array} \right) \middle| a \in GL(m,K), c \in GL(n-m,K), M \in M(m,n-m,K) \right\}, \text{ где } 1 \leqslant m \leqslant n$$

Замечание. Неприводимость представления — свойство не самого представления, а свойство образа ${\rm Im}(\pi)=\pi(G)=\{\pi_g|g\in G\}.$

Пусть $\pi:G \to GL(V)$ — представление, $U \leqslant V$ — G-подмодуль.

Определение 2.6.4 (Подпредставления).

$$\pi_U: G \to GL(U)$$

$$g \mapsto (\pi_g)\Big|_U$$

Предостережение. Не путать с ограничением представления π на подгруппу $H\leqslant G$. Ограничение обозначается $\operatorname{res}_H^G(\pi)=\pi\Big|_H: H\to GL(V).$

2.7 Лемма Шура

Пока G — произвольная группа, K — любое поле.

Лемма 2.7.1 (Лемма Шура — 1). Пусть U, V — неприводимые G-модули, $\phi: U \to V$ — гомоморфизм G-модулей. Тогда $\phi = 0$, либо $\phi: U \cong V$.

Доказательство. $\operatorname{Ker}(\phi) - G$ -подмодуль в U. $\forall u \in U : \phi(u) = 0 \Rightarrow \forall g \in G : \phi(gu) = g\phi(u) = 0$, то есть $gu \in \operatorname{Ker}(\phi)$.

Но таких подмодулей только два.

- Если ${\rm Ker}(\phi)=\{0\}$, то ϕ мономорфизм (инъекция).
- Если $Ker(\phi) = U$, то $\phi \equiv 0$.

 $\operatorname{Im}(\phi) \leqslant V - G$ -подмодуль. В самом деле, $v \in \operatorname{Im}(\phi) \Rightarrow \exists u \in U : \phi(u) = v \Rightarrow \forall g \in G : g\phi(u) = \phi(gu) \in \operatorname{Im}(\phi)$.

Но таких подмодулей только два.

- Если $Im(\phi) = \{0\}$, то $\phi \equiv 0$.
- Если ${\rm Im}(\phi) = V$, то ϕ эпиморфизм (сюръекция).

Если $\phi \neq 0$, то ϕ — одновременно мономорфизм и эпиморфизм, то есть изоморфизм.

Следствие 2.7.1 (Лемма Шура - 2). Пусть K- поле, U,V- неприводимые G-модули над K. Тогда если $U\not\cong V$, то множество сплетающих операторов между U и V $\mathrm{Hom}_G(U,V)=\mathrm{Hom}_{K[G]}(U,V)=0$.

Иначе если $U \cong V$, то $\mathrm{Aut}_G(U)$ — тело (любой автоморфизм либо равен нулю, либо обратим).

Теперь дополнительно предположим, что K — алгебраически замкнутое поле, и что $\dim U, \dim V < \infty$.

Лемма 2.7.2 (Лемма Шура - 3). Если U, V — неприводимые конечномерные G-модули над K, $a \phi \in \operatorname{Hom}_{K[G]}(U, V)$, то

- Либо $\phi \equiv 0$.
- Либо $\phi: U \cong V$, и тогда $\phi = \lambda \operatorname{id}$ (где $\lambda \in K$) гомотетия.

Доказательство. Любому скаляру $\lambda \in K$ можно сопоставить сплетающий оператор

$$\lambda \operatorname{id}_U : U \to U$$

 $u \mapsto \lambda u$

Из G-линейности $g(\lambda u) = \lambda(gu)$. При $\lambda \neq 0$: $\lambda \operatorname{id}$ — автоморфизм.

Если $\phi:U\to U-G$ -эндоморфизм, то условие алгебраической замкнутости значит в точности то, что $\forall \phi:\exists \lambda\in K$ — собственное число:

$$\exists u \in U \setminus \{0\} : \phi(u) = \lambda u$$

Отсюда $(\phi - \lambda \operatorname{id}_U)(u) = 0$. Но тогда $\phi - \lambda \operatorname{id}_U - G$ -эндоморфизм U с ненулевым ядром. Тогда $\phi - \lambda \operatorname{id}_U = 0$.

2.8 Факторпредставление

Пусть $\pi:G \to GL(V)$ — представление, U-G-подмодуль. Тогда π_g в подходящем базисе имеют вид

$$\left(\begin{array}{c|c}
\pi_g |_{U} & * \\
\hline
0 & \pi_g |_{V/U}
\end{array}\right)$$

 $\pi_g\Big|_{V/U}:G o GL(V/U)$. Фактормодуль $V/U=\{v+U|v\in V\}$ состоит из смежных классов, параллельных U.

$$g(v+U)=gv+U$$
, так как $U\,-\,G$ -подмодуль.

Определение 2.8.1 (Факторпредставление π по инвариантному подпространству $U\leqslant V$). Выше полученное $\pi\Big|_{V/U}$.

Факт 2.8.1. Матрица факторпредставления — в точности правый нижний блок, натянутый на базисные векторы e_{m+1}, \ldots, e_n .

Рассмотрим группу $P_m = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a \in GL(m,R), c \in GL(n-m,R) \right\}$. Это группа:

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_2 \\ 0 & c_1 c_2 \end{pmatrix} \qquad \text{if} \qquad \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} a^{-1} & -a^{-1}bc^{-1} \\ 0 & c^{-1} \end{pmatrix}$$

$$L_m = \left\{egin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}\middle|a \in GL(m,R), c \in GL(n-m,R)
ight\}$$
 — подгруппа Ле́ви.

Здесь ещё полезно вспомнить $U_m = \left\{ \begin{pmatrix} e & b \\ 0 & e \end{pmatrix} \middle| b \in M(m, n-m, R) \right\}.$

Отображение

$$\begin{pmatrix}
a & b \\
0 & c
\end{pmatrix} \mapsto \begin{pmatrix}
a & 0 \\
0 & c
\end{pmatrix}$$

является гомоморфизмом!

2.9 Прямая сумма представлений. Неразложимые представления

Пусть $\pi:G\to GL(U), \rho:G\to GL(V)$ — два представления одной и той же группы на разных модулях.

Определение 2.9.1 (Прямая сумма представлений).

$$\pi \oplus \rho : G \to GL(U \oplus V)$$
$$g \mapsto (\pi \oplus \rho)_g$$

где
$$(\pi \oplus \rho)_q \stackrel{def}{=} ((u,v) \mapsto (\pi_q(u),\rho_q(v)))$$

Если U,V — свободные модули, то в качестве базиса прямой суммы можно взять объединение базисов U и V. В этом базисе матрица $\pi \oplus \rho$ — это прямая сумма матриц π и ρ .

Замечание. Если не только модули разные, но и группы разные, то двум представлениям $\pi: H \to GL(U), \rho: G \to GL(V)$ можно сопоставить наружную прямую сумму — представление группы $H \times G$ — прямого произведения групп.

$$\pi \boxplus \rho : H \times G \to GL(U \oplus V)$$
$$(h,g) \mapsto \underbrace{(\pi \boxplus \rho)_{(h,g)}}_{\pi_h \oplus \rho_g}$$

Обычная прямая сумма представлений $\pi\oplus\rho$ — это ограничение $\operatorname{res}_{\Delta(G)}^{G\times G}(\pi\boxplus\rho)$, где $\Delta(G)$ — диагональ.

Если U-G-инвариантное подпространство в V, то когда π раскладывается в прямую сумму?

Если R=K — поле, то у любого подпространства U найдётся дополняющее (необязательно G-инвариантное) подпространство $W:V=U\oplus W$.

Если W тоже G-инвариантно, то $\pi=\pi\Big|_U\oplus\pi\Big|_W.$

Лекция XIV 14 сентября 2016 г.

G — конечная группа, K — поле характеристики $p \not\mid |G|$. Позже даже будем предполагать p=0. И, конечно, все представления конечномерны.

2.10 Усреднение по конечной группе

2.10.1 Усреднение векторов

Пусть $\pi:G o GL(V),\ V=K^n.$ Найдём инвариантные элементы.

Определение 2.10.1 (Инвариантные элементы).

$$V^G = \{ v \in V | \forall g \in G : \pi_g(v) = v \} \leqslant V$$

Построим (сюръективную) проекцию $V \to V^G$.

Так как группа конечная, то по ней можно усреднять. Устроим

$$\phi: V \to V^G$$

$$v \mapsto \frac{1}{|G|} \sum_{g \in G} gv$$

Тогда $\forall v \in V : \phi(v) \in V^G$:

$$h\phi(v) = h \frac{1}{|G|} \sum_{g \in G} gv = \frac{1}{|G|} \sum_{g \in G} (hg)v = \phi(v)$$

Из-за усреднения, то есть деления на |G|, также верно, что $\forall v \in V^G : \phi(v) = v$.

2.10.2 Усреднение линейных отображений

Пусть $\pi: G \to GL(U), \rho: G \to GL(V)$ — представления.

Тогда утверждается, что ${\rm Hom}_K(U,V)$ несёт структуру линейного представления группы G. Иными словами, сопоставим $\pi, \rho \leadsto {\rm Hom}(\pi,\rho)$.

$$\operatorname{Hom}(\pi, \rho) : G \to GL(\operatorname{Hom}(U, V))$$

 $g \mapsto (\phi \mapsto \rho_g \phi \pi_g^{-1})$

Здесь $\mathrm{Hom}(\pi,\rho)_g$ получается из коммутативного квадрата

$$\begin{array}{ccc} U & \stackrel{\pi_g}{\longrightarrow} & U \\ \downarrow^{\phi} & & \downarrow^{\operatorname{Hom}(\pi,\rho)_g(\phi)} \\ V & \stackrel{\rho_g}{\longrightarrow} & V \end{array}$$

Таким образом, два представления дали новое представление, теперь уже на множестве не строк или столбцов, а на множестве матриц.

Так как Hom по отношению к U контравариантен, то π_g возводится в степень -1. По отношению к V же Hom ковариантен и для ρ_g не берётся обратный.

Теперь мы можем усреднять уже сами линейные отображения.

Определение 2.10.2 (Усреднение линейного отображение).

$$\operatorname{Hom}_K(U,V) \to \operatorname{Hom}_K(U,V)^G$$

$$\phi \mapsto \frac{1}{|G|} \sum_{g \in G} \rho_g \phi \pi_g^{-1}$$

Образ состоит из элементов $\{\phi\in \operatorname{Hom}_K(U,V)\big| \forall g\in G: \rho_g\phi\pi_g^{-1}=\phi\}=\operatorname{Hom}_{K[G]}(U,V).$ В дальнейшем вместо $\operatorname{Hom}_K(U,V)$ будем писать $\operatorname{Hom}(U,V),$ вместо $\operatorname{Hom}_{K[G]}(U,V)-\operatorname{Hom}_G(U,V).$

2.11 Теорема Машке

G — конечная группа, K — поле характеристики $p \nmid |G|$. Все представления конечномерны.

Определение 2.11.1 (Вполне приводимое представление). Для любого G-инвариантного подпространства $U \leqslant V \colon \exists G$ -инвариантное дополнение W. Иными словами, K[G] полупроста (что?).

Теорема 2.11.1. В данных условиях все представления вполне приводимы.

Доказательство. Для G-инвариантного подпространства $U \leqslant V : \exists W$ — какое-то (необязательно G-инвариантное) дополняющее подпространство: $U \oplus W = V$.

Мы не умеем усреднять подпространства, поэтому поступим так. Всякое подпространство — образ или ядро какого-то линейного отображения. А линейные отображения усреднять мы только что научились.

Положим в качестве $\phi: V \to V$ проектор V на U вдоль W. Усреднив ϕ :

$$\phi_0 = \frac{1}{|G|} \sum_{g \in G} \pi_g \phi \pi_g^{-1}$$

Утверждается, что ϕ_0 — проектор на U вдоль $W_0 := \mathrm{Ker}(\phi_0)$, причём W_0 G-инвариантно.

Проверим, что $\operatorname{Im}(\phi) \leqslant U$. $\forall v \in V$:

$$\phi_0(v) = \frac{1}{|G|} \sum_{g \in G} \pi_g \underbrace{\phi(\pi_g^{-1}(v))}_{\in U} \in U$$

Так как ϕ *U*-инвариантно, то $\forall u \in U$:

$$\phi_0(u) = \frac{1}{|G|} \sum_{g \in G} \pi_g \phi(\pi_g^{-1}(u)) = \pi_g \pi_g^{-1} u = u$$

Таким образом, ϕ — проектор на U.

Осталось проверить, что $W_0 := \operatorname{Ker}(\phi_0) - G$ -инвариантное подпространство. $\forall h \in G, v \in W_0$:

$$\phi_0(\pi_h(v)) = \pi_h \phi_0(v) = \pi_h(0) = 0$$
, то есть $\pi_h(v) \in \text{Ker}(\phi_0)$.

Применяя теорему о размерности ядра и образа, и тот факт, что $\mathrm{Ker}(\phi) \cap \mathrm{Im}(\phi) = \{0\}$ (используем, что $\phi^2 = \phi$) получаем $V = U \oplus W_0$.

Замечание (Относительно разницы между проекцией и проектором). Если $V = U \oplus W$, то $\phi: V \to U$ — проекция на U параллельно W, определена так: $\phi(u+w) = u$.

Проектор — это отображение $\phi: V \to V$, которое также переводит $\phi(u+w) = u$. Различие состоит в области значений.

Следствие 2.11.1. В условиях теоремы Машке имеет место полная приводимость: неприводимые представления совпадают с неразложимыми представлениями.

Любое конечномерное представление равняется прямой сумме неприводимых.

Таким образом,

- Задачи теории обыкновенных представлений свелись к классификации неприводимых представлений G над K, и
- К разложению любого представления в прямую сумму неприводимых.

2.12 Унитаризуемость

Пусть $K = \mathbb{C}, V = \mathbb{C}^n$.

Теорема 2.12.1 (Теорема Машке над \mathbb{C}). Для люого представления конечной группы G над \mathbb{C} : $\exists G$ -инвариантное положительно определённое эрмитово скалярное произведение.

Доказательство теоремы Машке над \mathbb{C} . Вспомним про эрмитово скалярное произведение $B:V\times V\to \mathbb{C}$ — полуторалинейное и эрмитовски симметричное $(B(u,v)=\overline{B(v,u)})$.

Дополнительно можно считать, что $\forall v \in V: B(v,v) \geqslant 0$, причём $B(v,v) = 0 \iff v = 0$. Это классическое эрмитово (унитарное) скалярное произведение, превращающее V в гильбертово пространство.

$$B\left(\begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \begin{pmatrix} v_1, \\ \vdots \\ v_n \end{pmatrix}\right) = \overline{u_1}v_1 + \dots + \overline{u_n}v_n$$

Пусть $\pi: G \to GL(\mathbb{C}^n) = GL(n,\mathbb{C})$. Научимся усреднять скалярное, чтобы действие элементов группы сохраняло скалярное произведение. Скалярное произведение B унитарно, если $\forall u,v \in V: B(qu,qv) = B(u,v)$.

Хотим, чтобы π било в $U(n,\mathbb{C})\stackrel{def}{=} \left\{x\in GL(n,\mathbb{C})\middle| \overline{x}^tx=e=x\overline{x}^t\right\}$ — классическую унитарную группу. Здесь \overline{x}^t обычно обозначается x^* — эрмитовски сопряжённая матрица к x. Кстати, $U(n,\mathbb{C})$ — компактная группа относительно комплексной топологии.

Переписав унитарность в терминах матрицы Грама (которая равна e), получаем именно, что образ π должен лежать в $U(n,\mathbb{C})$.

$$B_0(u,v) := \frac{1}{|G|} \sum_{g \in G} B(\pi_g(u), \pi_g(v))$$

 B_0 — полуторалинейная эрмитова положительно полуопределённая форма.

Теперь относительно B_0 все операторы π_h $(h \in G)$ унитарны.

$$B_0(\pi_h(u), \pi_h(v)) = \frac{1}{|G|} \sum_{g \in G} B(\pi_{gh}(u), \pi_{gh}(v)) = B_0(\pi_h(u), \pi_h(v))$$

Следствие 2.12.1. Любое представление конечной группы над $\mathbb C$ унитаризуемо, то есть эквивалентно унитарному: $\rho: G \to U(n,\mathbb C)$.

В унитарном представлении ортогональное дополнение к G-инвариантному подпространству само G-инвариантно. В частности, отсюда вытекает теорема Машке предыдущего параграфа над \mathbb{C} .

Доказательство. Если U-G-инвариантное подпространство в $V,\ B-G$ -инвариантное положительно определённое эрмитово скалярное произведение на $V,\$ то U^\perp тоже G-инвариантно и $U\oplus U^\perp=V.$ В самом деле $\forall u\in U,v\in U^\perp$:

$$B(u,\pi_g(v)) = B(\underbrace{\pi_g^{-1}(u)}_{\in U},v) = 0$$

Лекция XV 14 сентября 2016 г.

Всё, касающееся усреднения, можно обобщить на компактные группы с усреднением по мере Хаара— вместо суммирования и взятия среднего берётся интеграл. Это называется *гармонический анализ*.

2.13 Характеры Фробениуса

В дальнейшем все характеры будут именно характерами Фробениуса.

Пусть $\pi:G \to GL(V)$ — конечномерное представление конечной группы над полем K, которое вскоре будет характеристики 0.

Выберем базис e_1, \ldots, e_n . При фиксированном базисе представление на самом деле является матричным.

$$tr(x) = x_{1,1} + \dots + x_{n,n} = \lambda_1 + \dots + \lambda_n$$

где $\lambda_1, \dots, \lambda_n$ — собственные числа x. Они, вообще говоря, могут не лежать в базовом поле, но их сумма лежит.

Сопоставим представлению $\pi:G \to GL(n,K)$ характер Фробениуса представления $\pi.$

$$\chi_{\pi}: G \to K$$

 $g \mapsto \operatorname{tr}(\pi_q)$

- 1. Характер зависит только от класса эквивалентности π . Два эквивалентных представления имеют равные характеры.
- 2. Характер не обязательно является гомоморфизмом!
- 3. Для двух представлений $\pi:G\to GL(U);\quad \rho:G\to GL(V)$ можно определить $\pi\oplus\rho:G\to GL(U\oplus V).$

$$(\pi \oplus \rho)_q(u,v) = (\pi_q(u), \rho_q(v))$$

$$\chi_{\pi\oplus\rho}=\chi_{\pi}+\chi_{\rho}$$
, так как $\operatorname{tr}\left(\begin{array}{c|c}x&0\\\hline 0&y\end{array}\right)=\operatorname{tr}(x)+\operatorname{tr}(y).$

- 4. $\chi_{\pi\otimes\rho}=\chi_\pi\cdot\chi_\rho$, так как $\operatorname{tr}(x\otimes y)=\operatorname{tr}(x)\cdot\operatorname{tr}(y)$, об этом см (2.22).
- 5. Пусть $\pi \equiv 1$ главное представление. $\chi(\pi) = \dim(V) = \deg(\pi)$, так как $\operatorname{tr} \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix} = n$.
- 6. Характер является центральной функцией на G.

Определение 2.13.1 (Центральная функция (функция класса)). Функция, постоянная на классах сопряжённых элементов.

Иными словами, $h \sim_G g \Rightarrow \chi_\pi(h) = \chi_\pi(g)$. Тогда так как $\exists f \in G : h = f^{-1}gf$, то $\pi_h = \pi_f^{-1}\pi_g\pi_f$.

7. Пусть $g \in G, |G| = m < \infty$. Тогда $(\pi_g)^m = e$. Значит, все собственные числа любой матрицы π_g являются корнями m-й степени из единицы.

$$\chi_{\pi}(g)\in F\left(\sqrt[m]{1}\right)$$
, где F — простое подполе в K , то есть $\begin{cases} \mathbb{F}_p, & \operatorname{char}(K)=p>0\\ \mathbb{Q}, & \operatorname{char}(K)=0 \end{cases}$

Если $\operatorname{char}(K) = 0$, то $\chi_{\pi}(g) \in \mathbb{A}$, где \mathbb{A} — целые алгебраические числа (сумма корней из единицы лежит там, так как каждый корень из единицы лежит там, и \mathbb{A} — кольцо).

Над полем же комплексных чисел $\frac{1}{\omega}=\overline{\omega}$. Если $K\leqslant\mathbb{C}$, то $\chi_{\pi}(g^{-1})=\overline{\chi_{\pi}(g)}$.

С другой стороны, $\chi_{\pi}(g^{-1})$ — характер двойственного представления.

Определение 2.13.2 (Двойственное к $\pi: G \to GL(V)$ представление). Левое представление $\pi^*: G \to GL(V^*)$. Для $\eta \in V^*, v \in V$:

$$((\eta)\pi_q^*)(v) = \eta(\pi_q(v))$$

Чтобы писать операторы слева, то π сопоставляем

$$\pi^*: G \to GL(n,K)$$
$$g \mapsto \pi_g^{-t}$$

 $\operatorname{tr}(x^t) = \operatorname{tr}(x)$, поэтому $\chi_{\pi^*}(g) = \chi_{\pi}(g^{-1})$.

Следствие 2.13.1. $Ha\partial K \leqslant \mathbb{C} : \chi_{\pi^*} = \overline{\chi_{\pi}}.$

Таким образом, если построено над $\mathbb C$ представление, у которого не все характеры вещественные, сразу строится сопряжённое — другое неприводимое (двойственное и обычное представления неприводимы одновременно) — представление.

- 8. Пусть $K \leqslant \mathbb{C}$. Тогда $\forall g \in G : |\chi_{\pi}(g)| \leqslant n = \chi_{\pi}(1_G)$, так как характер сумма корней из единицы.
- 9. $\chi_{\operatorname{Hom}(\pi,\rho)} = ?$
- 10. $\chi_{\bigwedge^m(\pi)} = \dots$ В частности, $\chi_{\bigwedge^2}(\pi) = \frac{1}{2}(\chi_\pi(g)^2 \chi_\pi(g^2))$. Дискретная теория вероятностей применение теории представлений конечных групп, поэтому эта штука похожа на дисперсию.
- 11. $\chi_{S^m(\pi)}=$?. В частности, $\chi_{S^2}(\pi)=\frac{1}{2}(\chi_{\pi}(g)^2+\chi_{\pi}(g^2))$. Можно удостовериться, что так как $S^2(\pi)\oplus \bigwedge^2(V)=V\otimes V$, то $\chi_{\bigwedge^m(\pi)}+\chi_{S^m(\pi)}=\chi(\pi\otimes\pi)$.

Интересный факт (Теорема Фробениуса). Пусть $\mathrm{char}\, K=0.$ Тогда $\pi\sim \rho\iff \chi_\pi=\chi_\rho.$

Доказательство. Будет доказана с использованием соотношения Шура (соотношения ортогональности). \Box

Контрпример (В теореме Фробениуса важна нулевая характеристика). Пусть $\mathrm{char}(K)=p>0.$ Существует главное представление $1_G: \begin{array}{ccc} G & \to & K^* \\ g & \mapsto & 1 \end{array}$.

Ho если взять $\pi = \underbrace{1_G \oplus \cdots \oplus 1_G}_{p+1}$, то $\chi_\pi = \chi(1_G)$.

2.14 Представления абелевых групп. Лемма Шура

Пусть группа G — конечная абелева группа ($[G,G]=\{1\},|G|<\infty$).

Пусть K — алгебраически замкнутое поле, $\mathrm{char}(K)=0$. Так как все характеры лежат в \mathbb{A} , то достаточно считать, например, что $K=\mathbb{C}$.

Лемма 2.14.1 (Лемма Шура). Любое неприводимое представление конечной абелевой группы над алгебраически замкнутым полем одномерно.

Доказательство. Пусть $h,g\in G$. Тогда $\pi_h\cdot\pi_g=\pi_{gh}=\pi_{hg}=\pi_g\cdot\pi_h$. Таким образом, $\forall h\in G:\pi_h$ — сплетающий оператор для π .

Но π неприводимо, тогда $\forall h \in G : \pi_h$ — гомотетия. Но тогда все одномерные подпространства G-инвариантны, и из неприводимости $\deg(\pi) = 1$.

Следствие 2.14.1. Если π — неприводимое представление G над K, то одномерный характер — в точности само представление: $\pi = \chi_{\pi}: G \to K^* = GL(1,K)$.

Контример. Если поле не замкнуто, то лемма Шура, конечно, неверна. Не существует одномерного представления C_4 над $\mathbb R$, так как над $\mathbb R$ нет первообразного корня четвёртой степени из 1.

2.14.1 Классификация циклических групп

Пусть $C_n = \langle g \rangle = \{g^0, g^1, \dots, g^{n-1}\}$. Построим таблицу, где столбцы отвечают элементам группы, строки — характерам.

Рассмотрим для примера C_2, C_3, C_4 .

Так как в C_n : $g^n=1$, то для всякого представления π : $(\chi_\pi(g))^n=\pi(g)^n=\pi(g^n)=1$. Отсюда сразу восстанавливаются остальные элементы, и получается, что $\chi_i(g^j)=\omega^{ij}$, где ω — произвольный фиксированный первообразный корень n-й степени из единицы.

Полученная матрица — матрицы дискретного преобразования Фурье.

2.14.2 Классификация представлений произвольных конечных абелевых групп

Расклассифицировав таким образом представления всех циклических абелевых группы, мы, на самом деле, классифицировали вообще представления всех конечных абелевых групп.

Воспользуемся теоремой о классификации всех конечнопорождённых абелевых групп, всякая конечная абелева группа — прямая сумма циклических групп.

Ссылаясь на

Интересный факт. Групповая алгебра $K[H \times G]$ есть $K[H] \otimes_K K[G]$ (2.23).

мы можем получить следующее. Пусть

Таким образом, все характеры абелевой группы получаются перемножением всевозможных характеров циклических слагаемых из прямой суммы.

Пример.

Рассмотрим простейшую нециклическую группу $V=C_2\oplus C_2=\{1,h,g,hg\}$. Для неё таблица характеров

2.14.3 Одномерные представления любых конченых групп

Разумеется, все одномерные представления неприводимы.

Таким образом, описать одномерные представления — часть задачи.

Мы умеем описывать представления абелевых групп. Для произвольной группы $G \leadsto G^{\mathrm{ab}} \stackrel{def}{=} G/[G,G].$

Чтобы для группы получить представление, исходя из факторгруппы, надо воспользоваться un- фляцией: пусть $H \leqslant G$.

$$\pi: G/H \to GL(V)$$

$$\downarrow$$

$$\widetilde{\pi}: \ G \ \to \ GL(V)$$

$$g \ \mapsto \ \pi(g+H)$$

Поскольку приводимость зависит только от образа, то инфляция неприводимого представления неприводима.

Если абелианизация нетривиальна, то таким образом получаются какие-то нетривиальные представления

Теорема 2.14.1. Пусть K — алгебраически замкнутое поле, $\operatorname{char}(K) = 0$. Тогда у конечной группы G имеется |G/[G,G]| различных (не эквивалентных) одномерных представлений (и они являются инфляциями неприводимых одномерных представлений G/[G,G]).

Доказательство. Только что было предъявлено |G/[G,G]| таких представлений. Обратно, если $\widetilde{\pi}:G\to GL(1,K)=K^*$ — какое-то представление, то $[G,G]\leqslant \mathrm{Ker}(\widetilde{\pi})$ — это отображение в абелеву группу.

Тогда $\widetilde{\pi}$ соответствует его дефляция $\pi:G/H\to GL(1,K)=K^*.$

Лекция XVI 21 сентября 2016 г.

2.15 Формулировка теоремы Бернсайда — Фробениуса, первые примеры

G — конечная группа, K — алгебраически замкнутое поле, $\operatorname{char}(K)=0$. На самом деле, результаты верны для поля разложения группы G, такого, что $\operatorname{char}(K) \not\mid |G|$).

Пусть π_1, \dots, π_s — все различные (неэквивалентные) неприводимые представления G над K. Пусть n_1, \dots, n_s и χ_1, \dots, χ_s — степени и характеры π_1, \dots, π_s соответственно.

Интересный факт (Теорема Бернсайда — Фробениуса).

- 1. s количество классов сопряжённых элементов группы G.
- 2. $|G| = n_1^2 + \cdots + n_s^2$ (sum of squares formula)
- 3. $n_i \mid |G|$, что может быть усилено до $n_i \mid |G:C(G)|$, или даже до $n_i \mid |G:A|$, где $A \leqslant G$ произвольная нормальная подгруппа. Более того, $n_i \leqslant |G:A|$, где $A \leqslant G$ произвольная абелева подгруппа (но уже необязательно делит).

2.15.1 Представления неабелевых групп

Маленькими неабелевыми группами являются $S_3=D_3,\ D_4,\ Q_8.$

Все представления D_n одномерны или двумерны, а с представлениями S_n всё совсем не так просто, на сегодняшний день про них известно всё, но это очень большая непростая история.

Пусть имеется перестановочное действие $G \curvearrowright X$. Тогда ему соответствуют линейное действие на

функциях
$$X \to K$$
: $G \curvearrowright K^X = \left\{\sum_{x \in X} a_x \delta_x\right\}$, или на формальных комбинациях: $G \curvearrowright \left\{\sum_{\substack{x \in X \\ \text{почти все } a_x \text{ нули}}} a_x x\right\}$.

Несмотря на то, что эти записи вылядят идентичными (в случае конечного X), они различаются — различаются действием G.

На функции $f: X \to K$ элементы $g \in G$ действуют так: (fg)(x) = f(gx). Но так как речь о левых действиях, то $(g^{-1}f)(x) = f(gx)$.

Обозначим $\bigoplus_{x \in X} Kx = K[X]$ за множество формальных комбинаций X с коэффициентами из K.

Действие G переставляет базис данного векторного пространства над K, и перестановке базиса отвечает линейное действие на $\bigoplus_{x \in X} Kx$.

Оказывается, из примера действия группы самой на себе сдвигами (трансляциями) получаются все представления групп.

Рассмотрим левое регулярное представление $G \curvearrowright G$:

$$G\times G\to G$$

$$g,x\mapsto gx$$

Ему соответствует линейное действие $G \curvearrowright K[G]$.

Действие S_n , переставляющее базисные элементы V (dim V=n) не является неприводимым.

Примеры (Представления неабелевых групп).

• $S_n \curvearrowright [n]$. Если (e_1,\ldots,e_n) — базис K^n , то имеется естественное линейное действие $S_n \curvearrowright K^n$, $\sigma e_i = e_{\sigma(i)}$.

Действие не неприводимо: здесь есть одномерное инвариантное подпространство $U=K(e_1+\cdots+e_n)$. Согласно теореме Машке у данного подпространства есть инвариантное дополнение W. Если подумать, то окажется, что $W=K(e_1-e_2)+\cdots+K(e_{n-1}-e_n)=\{\sum a_ie_i|\sum a_i=0\}$.

 S_n действует на W, это стандартное представление σ .

Интересный факт. В характеристике нуль σ неприводимо.

• Конкретизируем: рассмотрим S_3 . $[S_3,S_3]=A_3$. $|S_3/[S_3,S_3]|=2$. Таким образом, у S_3 два одномерных представления — главное (единица 1_{S_3}) и ещё одно (знак ${
m sgn}:S_3\to K^*$).

Сопряжённых классов у S_3 три — тип единицы (1,1,1), тип транспозиции (1,2), тип 3-цикла (3). Порядка классов оттуда — 1, 3, 2 соответственно.

Неприводимых представлений будет столько же, сколько и классов — три. Используя sum of squares theorem, можно узнать степень третьего представления. $6=n_1^2+n_2^2+n_3^2=1^2+1^2+x^2\Rightarrow x=2$ (ещё можно использовать, что $x\in\mathbb{N}$ — число, делящее индекс центра).

 $K(e_1-e_2)+K(e_2-e_3)$ под действием $S_3=\langle (12),(23)\rangle$ преобразуется в себя под действием матриц $(12)\mapsto \begin{pmatrix} -1&1\\0&1\end{pmatrix};(23)\mapsto \begin{pmatrix} 1&0\\1&-1\end{pmatrix}$. Это ещё одно неприводимое представление

 S_3 . При нём 3-цикл (123) переходит в $\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$, и считая следы этих матриц, мы можем построить таблицу характеров.

У этой таблицы есть множество замечательных свойств, но они будут выведены позднее.

• Группа Q_8 задаётся копредставлением $\langle i,j,k | i^2=j^2=k^2=ijk=-1 \rangle = \{\pm 1,\pm i,\pm j,\pm k\}$ (при условии $(-1)^2=1$). $|Q|=8=2^3$, то есть Q-2-группа. $C(Q)=\{\pm 1\}$. Таким образом, у неё четыре одномерных представления. Классов сопряжённых элементов в данной группе пять: $Q_8=\{1\}\sqcup \{-1\}\sqcup \{\pm i\}\sqcup \{\pm j\}\sqcup \{\pm k\}$.

	1 (1)	-1 (1)	$\pm i$ (2)	$\pm j$ (2)	$\pm k$ (2)
		1	1	1	1
χ_1	1 1	1	-1	-1	1
χ_2	1	1	-1	1	-1
χ_3	1	1	1	-1	-1
χ_4	2	-2	0	0	0

В скобках в первой строке пишется количество элементов в соответствующем классе сопряжённых.

Последнему представлению соответствуют матрицы Паули, которые построил Кэли: $\mathbb{H}=\left\{\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}\middle|z,w\in\mathbb{C}\right\}$ при выборе базиса $\{1,i\}$ в \mathbb{C} получает базис

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

(Данное представление точное, поэтому неприводимое — у всех одномерных представлений -1 лежит в ядре). Это и есть образы 1, i, j, k при неком двумерном представлении Q_8 .

Определение 2.15.1 (Точное представление (faithful representation) $\pi: G \to GL(n,K)$). $Ker(\pi)=1$.

• Теперь посмотрим на диэдральную группу $D_n = \left\langle x,y \middle| x^2 = y^2 = (xy)^n = 1 \right\rangle$ при n=4.

 $D_4 = \{1, x, y, xy, yx, xyx, yxy, xyxy = yxyx\}$. Образующие отвечают симметриям квадрата относительно диагонали и серединного перпендикуляра к стороне.

 $C(D_4) = \{1, xyxy = yxyx\}$. Снова $D_4/C(D_4) = V$. Здесь таблица характеров такая

	1 (1)	$xyxy = yxyx \ (1)$	$\{x, yxy\}$ (2)	$\{y, xyx\}$ (2)	$\{xy, yx\}$ (2)
1	1	1	1	1	1
χ_1	1	1	-1	-1	1
χ_2	1	1	-1	1	-1
χ_3	1	1	1	-1	-1
χ_4	2	-2	0	0	0

Последняя строка получена, как точное представление — симметрии квадрата в \mathbb{R}^2 .

$$x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad y \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

W хотя таблицы характеров D_4 и Q_8 одинаковы, но группы неизоморфны, и различие заключается в том, что у D_4 есть двумерное представление над \mathbb{R} , а у Q_8 нет.

2.16 Соотношения ортогональности Шура (лемма Шура в матричной форме)

Пусть $\pi:G\to GL(U), \rho:G\to GL(V)$ — два неприводимых представления группы G над одним и тем же полем K.

Пусть $\phi:U\to V$ — произвольное K-линейное отображение. Сопоставим ему усреднение

$$\phi_0 = \frac{1}{|G|} \sum_{g \in G} \rho_g \phi \pi_g^{-1}$$

это уже K[G]-линейное отображение, или сплетающий оператор.

Пусть теперь K алгебраически замкнуто, char(K) = 0 (на самом деле достаточно, чтобы характеристика не делила порядок группы).

Лемма 2.16.1 (Лемма Шура).

- $Ecnu\ U\ncong V$, $mo\ \phi_0=0$.
- Если же $\pi=\rho$ (в частности, U=V), то тогда ϕ_0 гомотетия с коэффициентом $\frac{\operatorname{tr}(\phi_0)}{\dim V}=\frac{\operatorname{tr}(\phi)}{\dim V}.$

Доказательство. $\phi_0 = \begin{pmatrix} \lambda & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda \end{pmatrix}$, а при $\pi = \rho$ матрица сопрягается (и след не меняется). \square

Выберем в U базис u_1,\dots,u_m и в V базис v_1,\dots,v_n . Базисом линейных отображений $U\to V$

являются $\phi_{i,j}:$ $u_h \mapsto \begin{cases} v_i, & h=j \\ 0, & h \neq j \end{cases}$. Матрица $\phi_{i,j}$ в данных базисах равна $e_{i,j}$.

Лекция XVII 21 сентября 2016 г.

Подставим в качестве $\phi = e_{i,j} \in M(n,m,K)$.

Для представлений π и ρ в данных базисах определены матричные элементы

$$\pi_{i,j}: G \to K$$

 $g \mapsto \pi(g)_{i,j}$

и аналогично для ρ :

$$\rho_{k,l}: G \to K$$
 $q \mapsto \rho(q)_{k,l}$

Усредним $\phi = e_{i,j}$, получится некое ϕ_0 . Ранее записанная лемма Шура говорит о том, что либо $\phi_0 = 0$, либо там почти все элементы равны нулю, а остальные равные $\frac{\operatorname{tr}(\phi)}{\dim V}$.

Получается следующая теорема (для неприводимых представлений)

Теорема 2.16.1 (Соотношения ортогональности Шура).

1. Если
$$\pi \nsim \rho$$
, то $\forall i,j,k,l: rac{1}{|G|}\sum_{g \in G} \pi_{i,j}(g)
ho_{k,l}(g^{-1}) = 0.$

2. Если
$$\pi = \rho$$
, то $\frac{1}{|G|} \sum_{q \in G} \pi_{i,j}(g) \pi_{k,l}(g^{-1}) = \frac{1}{\deg(\pi)} \delta_{i,l} \delta_{j,k}$.

Для поля $\mathbb C$ можно устроить эрмитово скалярное произведение $C:K^G imes K^G o \mathbb C$

$$C(\chi, \theta) = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\theta(g)}$$

Чаще всего мы будем вычислять скалярное произведение от характеров.

Тогда теорема говорит о том, что все матричные элементы $\pi_{i,j}$ для всех неприводимых представлений π образуют ортогональный базис пространства \mathbb{C}^G относительно скалярного произведения C. Для компактных групп это называется теоремой Петера — Вейля.

Доказательство. Написано выше.

2.17 Первое соотношение ортогональности

Пусть $\chi, \theta \in K^G$. Определим уже не эрмитовское, а симметрическое скалярное произведение

$$B(\chi, \theta) = \frac{1}{|G|} \sum_{g \in G} \chi(g) \theta(g^{-1})$$

Лемма 2.17.1. Оказывается, что если χ, θ — **характеры** конечномерных представлений над \mathbb{C} , то $C(\chi, \theta) = B(\chi, \theta)$. Тем не менее, это разные скалярные произведения (одно эрмитово, другое симметрическое).

Доказательство. В самом деле, если π — унитарное представление, то $\pi_g^{-1} = \overline{\pi_g}^t$. Любое представление эквивалентно унитарному (теорема Машке над $\mathbb C$).

Пусть
$$\operatorname{Im}(\pi) \in U(n,\mathbb{C})$$
. Тогда $B(\pi_{i,j},\pi_{k,l}) = \frac{1}{|G|} \sum_{g \in G} \pi_{i,j}(g) \pi_{k,l}(g^{-1}) = \frac{1}{|G|} \sum_{g \in G} \pi_{i,j}(g) \overline{\pi_{l,k}(g)} = \frac{1}{|G|}$

 $C(\pi_{i,j},\pi_{l,k})$. В частности, пусть $(\pi^{(m)})_{1\leqslant m\leqslant s}$ — все неприводимые представления. Тогда набор

$$\left\{\pi_{i,j}^{(m)} \cdot \sqrt{\deg(\pi^{(m)})} \middle| 1 \leqslant m \leqslant s, 1 \leqslant i, j \leqslant \deg \pi^{(m)} \right\}$$

ортонормирован.

Осталось заметить, что характер — сумма собственных чисел (которые корни из единицы), стоящих на диагонали, а для корней из единицы $\omega: \overline{\omega} = \omega^{-1}$.

Теорема 2.17.1 (Первое соотношение ортогональности). Если χ, θ — характеры неприводимых представлений, то $B(\chi, \theta) = \delta_{\chi, \theta}$.

Доказательство. Используем (2.16.1). Положим $\chi = \pi_{1,1} + \cdots + \pi_{n,n}$ и $\theta = \rho_{1,1} + \cdots + \rho_{n,n}$.

Если $\pi \nsim \rho$, то всегда $B(\pi_{i,i}, \rho_{j,j}) = 0$.

Если же $\pi \sim \rho$, то можно сопрячь матрицу не меняя след, считаем, что $\pi = \rho$. Тогда $B(\chi, \theta) = \underbrace{\frac{1}{\deg(\pi)} + \dots + \frac{1}{\deg(\pi)}}_{\deg(\pi)} = 1$.

Вспомним, что характеры постоянны на классах сопряжённости, иначе говоря, uентральные функиии на G.

Следствие 2.17.1. Характеры неприводимых представлений линейно независимы.

Доказательство. Напишем линейную зависимость $\lambda_1 \chi_1 + \dots + \lambda_t \chi_t$. По очереди скалярно перемножая с χ_i , получаем $\lambda_i B(\chi_i, \chi_i) = 0$, откуда все коэффициенты в зависимости нулевые.

Следствие 2.17.2. Количество различных неприводимых характеров не превосходит количество классов сопряжённых элементов.

Доказательство. Прямо следует из линейной независимости.

Дальше уже $\operatorname{char}(K) = 0$, в последющих следствиях не подойдёт не делящая порядок группы.

Следствие 2.17.3. Пусть π — любое представление G. Тогда кратность вхождения неприводимого π_i в π равна $B(\chi_\pi, \chi_i)$ (где $\chi_i \stackrel{def}{=} \chi_{\pi_i}$).

Доказательство. По теореме Машке π есть сумма неприводимых представлений:

$$\pi = \pi_1^{\oplus m_1} \oplus \cdots \oplus \pi_t^{\oplus m_t}$$

Следовательно, $\chi_{\pi} = m_1 \chi_1 + \cdots + m_t \chi_t$.

Следствие 2.17.4 (Теорема Ремака — Крулля — Шмидта). *Разложение представления на неприводимые определено однозначно с точностью до изоморфизма*.

Замечание. Теорема доказывается в гораздо меньшей общности, чем она верна, и используются сильно более сильными средствами, чем те, которые нужны, но что поделать.

Следствие 2.17.5 (Теорема Фробениуса). $\pi \sim \rho$, если $\chi_{\pi} = \chi_{\rho}$. Ещё раз отметим, что это верно только в характеристике нуль.

Доказательство. Всякое неприводимое представление входит в π и ρ с равной кратностью. \square

Следствие 2.17.6. \forall представления $\pi: B(\chi_{\pi}, \chi_{\pi}) = 1 \iff \pi$ неприводимо.

Доказательство. Пусть $\pi=\pi_1^{\oplus m_1}\oplus\cdots\oplus\pi_t^{\oplus m_t}$. Отсюда следует, что $B(\chi_\pi,\chi_\pi)=m_1^2+\cdots+m_t^2$. \square

Следствие 2.17.7 (Ортогональность первой строке таблицы характеров). *Если* $\chi \neq 1$ — характер неприводимого представления, то $\sum\limits_{q \in G} \chi_q = 0$.

Предостережение. Основной ошибкой начинающих является то, что при подсчёте $B(\chi,\theta) = \sum\limits_{g \in G} \chi(g) \theta(g^{-1})$ взятие обратного забывается. Всякому классу сопряжённых элементов $C \subset G$ можно сопоставить другой класс $C^{-1} \subset G$, и в общем случае совсем необязательно, что $C = C^{-1}$.

2.18 Разложение представление на неприводимые. Sum of squares formula

Рассмотрим регулярное представление G — действие G слева на групповой алгебре.

$$\operatorname{reg}: G \curvearrowright K[G] \to K[G]$$

$$g, \sum_{h \in G} a_h h \mapsto a_h g h$$

Посчитаем характер данного представления.

Пусть $G \curvearrowright X$ — действие. С ним связано линейное представление на пространстве с базисом X $\pi:G \curvearrowright K[X]$.

Теорема 2.18.1 (Fixed points formula). $\chi_{\pi}(g) = |\operatorname{Fix}_X g|$ (где $\operatorname{Fix}_X g = \{x \in X | gx = x\}$).

Доказательство. Матрицы, в которые отправляются элементы G — матрицы-перестановки. След такой матрицы равен количеству единичек на диагонали, то есть количеству неподвижных точек.

Следствие 2.18.1. $\chi_{reg} = |G| \cdot \delta_{q,1_G}$.

Доказательство. Только единица оставляет какие-то элементы на месте, и для не $\ddot{\rm e}$ все точки неподвижны.

Пусть K — алгебраически замкнутое поле, char(K) = 0.

Теорема 2.18.2. Каждое неприводимое представление π_i группы G входит в разложение регулярного с кратностью $n_i = \deg(\pi_i)$.

$$reg = \pi_1^{\oplus n_1} \oplus \cdots \oplus \pi_s^{n_s}$$

Доказательство. Вычислим
$$B(\chi_{\mathrm{reg},\chi_i}) = \sum_{g \in G} \chi_{\mathrm{reg}}(g) \chi_i(g^{-1}) = \frac{1}{|G|} \cdot |G| \cdot \chi_i(1) = n_i.$$

Замечание. Это же следует и из теоремы Веддербарна — Артина, причём даже не в характеристике нуль. В матричном кольце M(n,K) ровно n неприводимых подмодулей — столбцы K^n (?)

Следствие 2.18.2.
$$|G| = n_1^2 + \cdots + n_t^2$$
.

Доказательство. Регулярное представление раскладывается в сумму n_1 неприводимых степени n_1, n_2 неприводимых степени n_2, \dots

Следствие 2.18.3. Функции $\pi_{i,k}^{(i)}$ образуют базис пространства K^G .

Доказательство. Они линейно независимы, и их количество равно $|G|=\dim_K(K^G)$.

2.19 Второе соотношение ортогональности (для столбцов)

Будем рассматривать представления G над \mathbb{C} .

Пусть χ_1, \ldots, χ_t — характеры неприводимых представлений.

В первой соотношении были фиксированы две строки таблицы характеров, и суммирование было по столбцам. Сейчас сделаем наоборот.

Теорема 2.19.1. Пусть $h, g \in G$, предположим, что нам уже известно, что s = t.

$$\sum_{i=1}^{t} \chi_i(h) \overline{\chi_i(g)} = \begin{cases} |C_G(g)|, & g \sim h \\ 0, & g \nsim h \end{cases}$$

Доказательство. Пусть $1, g_2, \dots, g_s$ — представители классов сопряжённых элементов, χ_1, \dots, χ_s — различные неприводимые характеры.

Составим матрицу $A=(a_{i,j})_{1\leqslant i,j\leqslant s},$ где $a_{i,j}=\sqrt{\left|g_j^G\right|}\cdot\chi_i(g_j).$

Обозначим $m_h\coloneqq |g_h^G|$. Первое соотношение ортогональности выглядит так: $\frac{1}{|G|}\sum_{h=1}^s m_h \chi_i(g_h)\overline{\chi_j(g_h)}=\delta_{i,j}$

Если для матрицы $A \in M(n,\mathbb{C})$ обозначить за A^* её эрмитовски сопряжённую $A^* \stackrel{def}{=} \overline{A}^t$, то видно, что из первого соотношения ортогональности $\frac{1}{|G|}A \cdot A^* = E$. Отсюда сразу получается $\frac{1}{|G|}AA^* = e$.

$$\frac{1}{|G|} \sum_{h=1}^s \sqrt{\left|g_i^G\right| \cdot \left|g_j^G\right|} \cdot \overline{\chi_h(g_i)} \chi_h(g_j) = \frac{1}{|G|} \sqrt{\left|g_i^G\right| \cdot \left|g_j^G\right|} \sum_{h=1}^s \overline{\chi_h(g_i)} \chi_h(g_j) = \delta_{i,j}$$

При $i \neq j$ получаем $\sum\limits_{h=1}^{s} \overline{\chi_h(g_i)} \chi_h(g_j) = 0$, иначе i=j, и так как $|g_i^G| = |G:C_G(g_i)|$, то $\frac{|g_i^G|}{|G|} = \frac{1}{|C_G(g^G)|}$, то получается искомая формула.

Лекция XVIII 28 сентября 2016 г.

2.20 Усреднение с весом (averaging with weight)

Раньше все усреднения использовали меру Хаара — все элементы группы имели одинаковый вес $\forall g \in G: \mu(g) = \frac{1}{|G|}.$

Оказывается, можно проделать то же самое для гораздо более широкого класса мер.

Пусть $\phi \in \text{Hom}(U,V)$. Усредним его с помощью f, получив G-инвариантное ϕ_f . В качестве f здесь могут выступать центральные функции, поясним это ниже.

Рассмотрим пространство центральных функций на $G: cf_K(G) \stackrel{def}{=} \big\{ f \in K^G \big| \forall g, h \in G: f(h^g) = g(h) \big\}.$

Также рассмотрим представление $\pi:G\to GL(V)$. Пусть $f\in cf_K(G)$.

Определим усреднение $\pi_{(f)} = \frac{1}{|G|} \sum_{g \in G} f(g) \pi_g$.

Замечание. Если f — необязательно центральная функция, то при отождествлении G^K и K[G] ($\delta_g \leftrightarrow g$) получаем, что $\pi_{(g)} = \pi_g$.

Лемма 2.20.1. Утверждается, что $\pi_{(f)} \in \operatorname{End}_{K[G]}(V)$, то есть $\pi_{(f)}$ коммутирует со всеми π_g .

Доказательство. Проверим, что $\forall g \in G : \pi_g \pi_{(f)} = \pi_{(f)} \pi_g$.

$$\forall x \in G, u \in V : \pi_{(f)}(xu) = \frac{1}{|G|} \sum_{g \in G} f(g) \underbrace{\sum_{xx^{-1}} g(xu)}_{xx^{-1}} = x \frac{1}{|G|} \sum_{g \in G} f(xgx^{-1})(x^{-1}gx)u = x \pi_{(f)}(u)$$

Замечание. Обратное тоже верно в таком смысле: если для любого представления усреднение по функции f - G-инвариантно, то усреднение производится по центральной функции.

Лемма 2.20.2. Пусть $f \in cf(G)$, пусть π — неприводимое представление G над алгебраически замкнутым полем K, $\operatorname{char} K = 0$. Положим $\deg \pi = n$.

Тогда $\pi_{(f)}$ — гомотетия c коэффициентом $\frac{1}{n}B(f,\chi_{\pi^*}).$

Доказательство. $\pi_{(f)}$ — гомотетия по лемме Шура. Посчитаем коэффициент $\lambda = \frac{\operatorname{tr}\left(\pi_{(f)}\right)}{n}$ гомотетии.

$$\lambda = \frac{1}{n} \frac{1}{|G|} \sum_{g \in G} f(g) \underbrace{\operatorname{tr}(\pi_g)}_{\chi_{\pi}(g)} = \frac{1}{n} \frac{1}{|G|} \sum_{g \in G} f(g) \cdot \chi_{\pi^*}(g^{-1})$$

2.21 Количество неприводимых представлений конечной группы

Как обычно, K алгебраически замкнуто, $\operatorname{char}(K)=0$ (на самом деле верно и для поля разложения, $\operatorname{char}(K) \not\mid |G|$).

Теорема 2.21.1. Количество неприводимых различных (неэквивалентных) представлений G над K равно количеству классов сопряжённых элементов в G.

Доказательство. Пусть c_1, \ldots, c_s — классы сопряжённых элементов, $\pi_1, \ldots, \pi_t, \chi_1, \ldots, \chi_t$ — неприводимые представления и их характеры соответственно. Характеры — ортонормированная система функций, по отношению к билинейной форме B, и они являются центральными функциями.

Базис $cf_K(G)$ — характеристические функции классов сопряжённости $\delta_{c_i}: x \mapsto \begin{cases} 1, & x \in c_i \\ 0, & x \notin c_i \end{cases}$

Так как χ_1,\ldots,χ_t линейно независимы, то $t\leqslant s.$

Чтобы доказать, что t=s, надо убедиться, что χ_1,\ldots,χ_t — полная ортонормированная система, то есть нет никакой ненулевой центральной функции, ортогональной всем χ_t .

$$\forall f \in cf_K(G) : B(f, \chi_i) = 0 \stackrel{?}{\Rightarrow} f = 0$$

Пусть $\forall i: B(f,\chi_i) = 0$. Тогда при усреднении получаем $\forall i: (\pi_i)_{(f)} = 0$.

Так как каждое представление раскладывается в прямую сумму неприводимых, то вообще любое представление усредняется в ноль, например, регулярное reg : $G \to GL(K[G])$. Пусть $(e_g)_{g \in G}$ — базис K[G]. Таким образом, $\operatorname{reg}_{(f)}(e_1) = \frac{1}{|G|} \sum_{g \in G} f(g)\operatorname{reg}_g(e_1) = \frac{1}{|G|} \sum_{g \in G} f(g)e_g$. Но так как e_g — базис, то все коэффициенты равны нулю.

Действительно, f оказалась равна нулю, откуда χ_i — полная система, и s=t.

Лекция XIX

19 октября 2016 г.

2.22 Дальнейшие конструкции над представлениями

• Тензорное произведение представлений

Пусть $\pi:G\to GL(U), \rho:G\to GL(V)$ — два представления одной группы.

$$(\pi, \rho) \leadsto \pi \otimes \rho : \begin{array}{ccc} G & \to & GL(U \otimes V) \\ g & \mapsto & \pi_q \otimes_K \rho_q \end{array}$$

Замечание. Это совсем не сермяжная истина, это эквивалентно тому, что диагональ определена так: $\Delta: \begin{tabular}{c} K[G] & \to & K[G] \\ g & \mapsto & g\otimes g \end{tabular}$. Для алгебр Ли будет всё совсем иначе.

Если ввести базис, то окажется, что $(\pi \otimes \rho)_g = \pi_g \otimes \rho_g$, где \otimes — кронекеровское произведение матриц. А мы знаем, что $\operatorname{tr}(x \otimes y) = \operatorname{tr}(x) \cdot \operatorname{tr}(y)$, то есть если перемножить характеры двух каких-то представлений, то получится тоже характер какого-то представления: $\chi_\pi \cdot \chi_\rho = \chi_{\pi \otimes \rho}$.

Конечно, $\pi \otimes \rho$ необязательно неприводимо, но если одно из π и ρ одномерно, а другое неприводимо, то результат — тоже неприводимое произведение (какое-то другое).

Именно так в общем случае строятся представления — берутся все представления, которые можно построить, дальше их тензорные произведения (например, степени), они снова раскладываются на неприводимые, и так теоретически может найтись всё, но это надо доказывать.

• Наружное тензорное произведение (outward tensor product).

Пусть $\pi: H \to GL(U), \rho: G \to GL(V)$ — два представления разных групп.

Сопоставим им представление $\pi\boxtimes \rho: egin{array}{cccc} H\times G & \to & GL(U\otimes V) \\ (h,g) & \mapsto & \pi_h\otimes \rho_g \end{array}$. В матрицах это опять же кронекеровское произведение матриц.

Замечание. В сравнении с предыдущим пунктом получаем $\pi\otimes \rho=\mathrm{res}_G^{G imes G}(\pi\boxtimes \rho).$

Их не надо путать, произведение неприводимых непременно неприводимо только если произведение наружное, а иначе — как правило приводимо.

п-я внешняя степень.

Пусть $\pi:G\to GL(V)$. Сопоставим ему $\bigwedge^m(\pi): G\to GL(\bigwedge^m(V))$. По линейности определяется

$$\bigwedge^{m}(\pi)(u_1 \wedge \cdots \wedge u_m) = \pi_g(u_1) \wedge \cdots \wedge \pi_g(u_m)$$

то есть $\bigwedge^m(\pi)_g = \bigwedge^m(\pi_g)$. Можно посчитать $\chi_{\bigwedge^2(\pi)}(g) = \frac{1}{2}(\chi_{\pi}(g)^2 - \chi_{\pi}(g^2))$.

• Точно так же определяется n-я симметрическая степень.

$$S^{m}(\pi)(u_1 \wedge \cdots \wedge u_m) = \pi_q(u_1) \cdot \ldots \cdot \pi_q(u_m)$$

то есть $S^{m}(\pi)_{g} = S^{m}(\pi_{g}).$

Полезно помнить формулу для симметрического квадрата $\chi_{\bigwedge^2(\pi)}(g) = \frac{1}{2}(\chi_{\pi}(g)^2 + \chi_{\pi}(g^2)).$

Видно, что $\bigwedge^2(\pi) \oplus S^2(\pi) = \pi \otimes \pi$, и действительно $\chi_{\bigwedge^2(\pi)} + \chi_{S^2(\pi)} = \chi_{\pi \otimes \pi}$.

2.23 Представления прямого произведения групп

На самом деле говорится, что $K[H \times G] = K[H] \otimes_K K[G]$.

Замечание. На модуле $A \otimes B$ умножение достаточно вводить на разложимых тензорах, и обычно его определеяют по формуле $(a_1 \otimes b_1)(a_2 \otimes b_2) = (a_1 a_2 \otimes b_1 b_2)$. Таким образом, тензорное произведение алгебр — алгебра. Но мы докажем не это.

Теорема 2.23.1. Любое неприводимое представление группы $H \times G$ над алгебраически замкнутым полем характеристики нуль K имеет вид $\pi \boxtimes \rho$, где π, ρ — неприводимые представления H и G соответственно. Обратно, любое такое $\pi \boxtimes \rho$ неприводимо.

Доказательство. Сначала докажем, что $\pi \boxtimes \rho$ неприводимо для неприводимых π, ρ .

Была определена билинейная форма $B_G: K^G \times K^G \to K, \ B(\chi,\theta) = \frac{1}{|G|} \sum_{g \in G} \chi(g) \theta(g^{-1}).$ Была доказана лемма, что характер χ — характер неприводимого представления, если $B(\chi,\chi) = 1.$

Посчитаем $B_{H\times G}(\chi_{\pi\boxtimes \rho},\chi_{\pi\boxtimes \rho})$. Так как $\chi_{\pi\boxtimes \rho}(h,g)=\chi_{\pi}(h)\otimes\chi_{\rho}(g)$, то

$$B_{H \times G}(\chi_{\pi \boxtimes \rho}, \chi_{\pi \boxtimes \rho}) = \frac{1}{|H \times G|} \sum_{h \in H, g \in G} \chi_{\pi}(h) \chi_{\rho}(g) \chi_{\pi}(h^{-1}) \chi_{\rho}(g^{-1}) =$$

$$= \frac{1}{|H|} \sum_{h \in H} \chi_{\pi}(h) \chi_{\pi}(h^{-1}) \cdot \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) \chi_{\rho}(g^{-1}) = B_{H}(\chi_{\pi}, \chi_{\pi}) B_{G}(\chi_{\rho}, \chi_{\rho}) = 1$$

Но так как получено ровно столько представлений, сколько и есть классов сопряжённых элементов, то из соображений количества больше представлений нет. Та же выкладка показывает, что получены неэквивалентные представления:

$$B_{H \times G}(\chi_{\pi \boxtimes \rho}, \chi_{\pi' \boxtimes \rho'}) = \frac{1}{|H \times G|} \sum_{h \in H, g \in G} \chi_{\pi}(h) \chi_{\rho'}(g) \chi_{\pi'}(h^{-1}) \chi_{\rho}(g^{-1}) =$$

$$= \frac{1}{|H|} \sum_{h \in H} \chi_{\pi}(h) \chi_{\pi'}(h^{-1}) \cdot \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) \chi_{\rho'}(g^{-1}) = B_{H}(\chi_{\pi}, \chi_{\pi'}) B_{G}(\chi_{\rho}, \chi_{\rho'}) = \delta_{\pi, \pi'} \cdot \delta_{\rho, \rho'}$$

Замечание. Теорема верна и при K — поле разложения, $\operatorname{char} K \not\mid |G|$.

Лекция XX 24 октября 2016 г.

2.24 Свойства целочисленности представлений

Пусть $\pi:G \to GL(n,\mathbb{C})$ — неприводимое представление ($\deg \pi=n$). Для любого $g \in G:g^m=1 \Rightarrow \pi_g^m=\pi_g=\pi_1=\mathrm{id}$, то есть все собственные числа π_g — корни степени m из едиинцы. В частности, $\chi_\pi(g) \in \mathbb{Z}\left[\sqrt[m]{1}\right] \leqslant \mathbb{A}$.

Пусть $C \subset G$ — класс сопряжённых элементов.

Лемма 2.24.1.
$$\sum_{g \in C} \frac{\chi_{\pi}(g)}{\deg(\pi)} \in \mathbb{A}.$$

Доказательство. $\sum\limits_{g\in C}\pi_g$ является центральным элементом:

$$\sum_{g \in C} \pi_g \cdot \pi_x = \pi_x \cdot \sum_{g \in C} \pi_g$$

Тем самым (лемма Шура), $\exists \lambda \in \mathbb{C} : \sum_{g \in C} \pi_g = \lambda \operatorname{id}$. Посчитаем след: $\operatorname{tr}\left(\sum_{g \in C} \pi_g\right) = n\lambda$, но на самом деле $\lambda \in \mathbb{A}$, например, так как это корень характеристического многочлена $\sum_{g \in C} \pi_g$.

Следствие 2.24.1. *Над* $\mathbb C$ *степень любого неприводимого представления делит порядок группы.*

Доказательство. Пусть π — неприводимое представление. Пусть $\chi = \chi_{\pi}$. Тогда $B(\chi,\chi) = 1 \iff \sum_{g \in G} \chi(g) \chi(G^{-1}) = |G|$. Теперь поделим обе части равенства на n.

$$\underbrace{\sum_{C \subset G} \chi(C)}_{\in \mathbb{A}} \underbrace{\sum_{h \in C} \frac{\chi(h)}{n}}_{\in \mathbb{A}} = \frac{|G|}{n}$$

Отсюда $\frac{|G|}{n} \in \mathbb{A}$, но по лемме Гаусса $\mathbb{A} \cap \mathbb{Q} = \mathbb{Z}.$

Теорема 2.24.1 (Следствие из предыдущей). Над $\mathbb C$ степень n любого неприводимого представления $\pi:G\to GL(V)$ делит индекс центра.

 \mathcal{A} оказательство. Рассмотрим $\pi^{\boxtimes m}: \underbrace{G \times \cdots \times G}_{m} \to GL(V^{\otimes m})$. Оно неприводимо, но точным не является. Пусть $H \coloneqq \{(h_1, \dots, h_m) | h_1 \cdot \dots \cdot h_m = 1\} \leqslant C(G) \times \dots \times C(G)$.

Можно рассмотреть дефляцию представления $\pi^{\boxtimes m}: G/H \to GL(V^{\otimes m})$. Она всё ещё неприводима — образ остался прежним.

Порядок факторгруппы равен $\frac{|G|^m}{|C(G)|^{m-1}} = |G| \cdot |G:C(G)|^{m-1}$, степень представления равна $\deg(\pi)^m$. Тогда

$$(\deg(\pi))^m \mid |G| \cdot |G| \cdot |G| \cdot |G|^{m-1}$$

и так как это верно для любого $m\in\mathbb{N},$ то $\deg(\pi)\ \Big|\ |G:C(G)|.$

Теорема 2.24.2. Пусть $K = \mathbb{C}$, $A \leqslant G$ — абелева подгруппа. Тогда степень неприводимого представления не больше |G:A|, а если $A \leqslant G$, то $\deg(\pi) \mid |G:A|$.

2.25 Индуцированные представления

Пусть $H \leqslant G$. Тогда можно построить инфляцию представления $\pi: G/H \to GL(V)$, это будет представление

$$\widetilde{\pi}: G \to GL(V)g \mapsto \pi_{gH}$$

Обратно, если $\pi: G \to GL(V)$ и $H \leqslant \mathrm{Ker}(\pi)$, то есть дефляция

$$\widetilde{\pi}: G/H \to GL(V)gH \mapsto \pi_q$$

Теперь пусть $H\leqslant G$ — просто подгруппа. По представлению $\pi:G\to GL(V)$ можно построить ограничение $\mathrm{res}_H^G(\pi)$. Однако совсем необязательно ограничение неприводимого представления неприводимо.

Чтобы пройти в обратную сторону, построим по представлению подгруппы представление группы. $\pi: H \to GL(V)$. Построим *индуцированное представление* $\operatorname{ind}_H^G(\pi): G \to ?$ В конструкции индуцированного представления участвует не только само представление π , но и децствие $G \curvearrowright G/H$.

2.25.1 Компактная индукция (compact induction)

Если дано представление $\pi: H \to V$, то V является K[H] модулем. Чтобы превратить его в K[G] модуль, можно взять тензорное произведение

$$K[G] \otimes_{K[H]} V$$

Тут стоит остановиться и пояснить, что есть тензорное произведение над некоммутативным кольцом.

Пусть R — необязательно коммутативное кольцо, U — правый R-модуль, V — левый R-модуль. Тогда $U\otimes_R V$ — абелева группа со сбалансированным биаддитивным отображением $\phi: U\times V\to U\otimes_R V$, удовлетворяющая следующему универсальному свойству:

Для любой абелевой группы A, любого сбалансированного биаддитивного $\psi:U\otimes_R V\to A$: $\exists !\eta:U\otimes_R V\to A$ — гомоморфизм абелевых групп.

Определение 2.25.1 (Сбалансированное отображение ϕ). $\phi(u\lambda, v) = \phi(u, \lambda v)$.

Определение 2.25.2 (Биадддитивное отображение ϕ). $\phi(u, v_1 + v_2) = \phi(u, v_1) + \phi(u, v_2)$ и $\phi(u_1 + u_2, v) = \phi(u_1, v) + \phi(u_2, v)$.

Далее сюда надо перенести конструкцию.

Если один из модулей был бимодулем, то тензорное произведение останется модулем.

Определение 2.25.3 (Индуцированное представление). $\operatorname{ind}_{H}^{G}(V) = K[G] \otimes_{K[H]} V$.

Заметим, что $K[G] \otimes_{K[H]} V$ — фактормодуль модуля $K[G] \otimes_K V$.

Если v_1, \ldots, v_n — базис V над K, то над K базисом $K[G] \otimes_K V$ является система $g \otimes v_i$. При появлении дополнительных соотношений стало возможным переносить элементы из H по другую сторону \otimes : $gh \otimes v = g \otimes hv$.

Пусть $T = \{x_1, \dots, x_t\}$ — правая трансверсаль к H в G, то есть $\forall g \in G : \exists ! i = 1..t, h \in H : g = x_i h$.

$$G = x_1 H \sqcup \dots \sqcup x_t H$$

Лемма 2.25.1. Базисом $K[G] \otimes_{K[H]} V$ при фиксированной трансверсали $T = (x_1, \dots, x_t)$ и базисе (v_1, \dots, v_n) являются $x_i \otimes v_i$.

B частности, $\dim_K(\operatorname{ind}_H^G(V)) = |G:H|\dim_K(V).$

Лекция XXI 26 октября 2016 г.

Построение индуцированного модуля выглядело так: строится G-модуль $V=\operatorname{ind}_H^G(U)$, такой, что

- 1. $U \leqslant V$.
- 2. $V = x_1 U \oplus \cdots \oplus x_t U$.

Без упоминания тензорного произведения весьма утомительно проверять, что данная конструкция не зависит от выбора представителей.

2.25.2 Полная индукция (complete induction)

В то время как компактная индукция является аналогом прямой суммы, полная индукция является аналогом прямого произведения, то есть для бесконечных групп конструкция — куда больше. Для конечных групп же конструкции изоморфны, что вскоре будет показано.

Рассмотрим множество H-инвариантных функций, покамест обозначим его с большой буквы

$$Ind_{H}^{G}(U) = \{ f : G \to U | \forall h \in H, x \in G : f(hx) = \pi_{h}(f(x)) \}$$

Теперь устроим действие $G \curvearrowright \operatorname{Ind}_H^G(U)$ следующим образом:

$$\forall x, g \in G, f \in \operatorname{Ind}_{H}^{G}(U) : (gf)(x) = f(xg)$$

Так как действия на x слева и справа независимы, то определение корректно. Это действительно действие:

$$g_1(g_2f(x)) = g_2f(xg_1) = f((xg_1)g_2) = f(x(g_1g_2))$$

 $\operatorname{Ind}_H^G(U)$ можно рассматривать, как K[G]-модуль, найдём базис данного пространства функций.

В отличие от компактной индукции, где элементы H действовали на G справа, здесь всё наоборот, поэтому нам пригодится левая трансверсаль к H в G. Чтобы всё было согласовано, построим её по правой трансверсали, взяв обратные: $T^{-1} = \{x_1^{-1}, \dots, x_t^{-1}\}$.

$$G = Hx_1^{-1} \sqcup \dots \sqcup Hx_t^{-1}$$

Введём функции

$$f_{x_i,u}: G \to U$$

$$g \mapsto \begin{cases} \pi_h(u), & g = hx_i^{-1} \in Hx_i^{-1} \\ 0, & g \notin Hx_i^{-1} \end{cases}$$

Если (u_1,\ldots,u_n) — базис U, то набор функций f_{x_i,u_j} является базисом $\operatorname{Ind}_H^G(U)$.

Видим, что базисы ind_H^G и Ind_H^G равномощны, и пишутся очень похоже. Векторные пространства $\operatorname{ind}_H^G(U)$ и $\operatorname{Ind}_H^G(U)$ изоморфны, но **для конечных групп** они ещё и являются эквивалентными представлениями.

Теорема 2.25.1. Если $|G|<\infty, H\leqslant G,\ U-H$ -модуль, то $\operatorname{ind}_H^G(U)\cong\operatorname{Ind}_H^G(U)$, как G-модули.

Доказательство. Изоморфизм можно устроить на базисе так: $x_i \otimes u_j \leftrightarrow f_{x_i,u_j}$. G действует на $x_i \otimes u$ так: пусть $gx_i = x_jh$ для $x_j \in T, h \in H$. Тогда

$$g(x_i \otimes u) = (gx_i) \otimes u = (x_j h) \otimes u = x_j \otimes \pi_h(u)$$

С другой стороны, если подействовать тем же элементом g на $f_{x_i,u}$, то получится вот что:

$$gf_{x_i,u}(x) = f_{x_i,u}(xg) = \begin{cases} \pi_b(u), & xg = bx_i^{-1} \in Hx_i^{-1} \\ 0, & \text{иначе} \end{cases}$$

Таким образом, $gf_{x_i,u}$ отправляет не в ноль элементы x, такие, что $x\in Hx_i^{-1}g^{-1}$. Мы уже ранее сказали, что $x_i^{-1}g^{-1}=h^{-1}x_j^{-1}$. Видим, что

$$gf_{x_i,u}(x) = egin{cases} \pi_b(u) = \pi_{bh^{-1}}(\pi_h(u)), & x = bh^{-1}x_j^{-1} \in Hx_j^{-1} \\ 0, & \text{иначе} \end{cases}$$

Действительно, это совпадает с определением $f_{x_i,\pi_h(u)}$, действия на базисах сошлись. \Box

Матрица индуцированного представления выглядит так

$$\pi_g = \begin{pmatrix} \pi_{x_1^{-1}gx_1} & \cdots & \pi_{x_1^{-1}gx_t} \\ \vdots & \ddots & \vdots \\ \pi_{x_r^{-1}gx_1} & \cdots & \pi_{x_r^{-1}gx_t} \end{pmatrix}$$

где запись означает ненулевое значение $\pi_{x_i^{-1}gx_j}$ только если $x_i^{-1}gx_j\in H.$

Таким образом, матрица индуцированного представления — блочно-мономиальная, и $\operatorname{ind}_H^G(U) = x_1U \oplus \cdots \oplus x_tU$. Операторы π_g сначала переставляют эти слагаемые, а потом на каждом действуют оператором π_h для некоторого h (для каждого U-h—своё).

2.26 Индуцированные характеры

Пусть $\pi: H \to GL(U)$ — представление, $\chi = \chi_{\pi}$. Мы построили $\operatorname{ind}_H^G(\pi) =: \pi^G: G \to GL(V = U^G)$. Посчитаем характер $\chi^G: G \to K$. Для этого сначала продолжим характер χ до функции на G:

$$\chi^0(G): G \to K$$

$$g \mapsto \begin{cases} \chi(g), & g \in H \\ 0, & g \notin H \end{cases}$$

 χ^0 — совсем необязательно центральная функция на G.

Теорема 2.26.1.
$$\chi^G(g) = \sum_{\substack{x_i \in T \\ x_i^{-1}gx_i \in H}} \chi(x_i^{-1}gx_i).$$

Доказательство. Характер — сумма диагональных элементов, и так как матрица π^G блочномономиальная, то суммировать надо характеры ровно тех $\pi_{x_i^{-1}qx_i}$, где $x_i^{-1}gx_i\in H$.

Следствие 2.26.1.
$$\chi^G(g) = \sum_{x \in T} \chi^0(x_i^{-1}gx_i)$$
.

Следствие 2.26.2. Чтобы суммировать не по $x_i \in T$, а по $y \in G$, надо просто заменить $y = x_i h$. χ — центральная на H функция, поэтому всё сойдётся:

$$\chi^{G}(g) = \frac{1}{|H|} \sum_{\substack{y \in G \\ y^{-1}gy \in H}} \chi(y^{-1}gy)$$

Следствие 2.26.3. Объединяя предыдущие два, получаем

$$\chi^{G}(g) = \frac{1}{|H|} \sum_{y \in G} \chi^{0}(y^{-1}gy)$$

2.27 Формула слияния (fusion formula)

Пусть $H \leqslant G, g \in G$. Посмотрим на $g^G \cap H$, это объединение некоторых классов сопряжённости в H:

$$g^G \cap H = h_1^H \sqcup \cdots \sqcup h_m^H$$

Эти элементы h_1, \ldots, h_m называются представителями классов сопряжённых с g в H.

Теорема 2.27.1. Если χ — характер $H \leqslant G, g \in G, h_1, \ldots, h_m$ — представители классов сопряжённых с g в H, то

$$\chi^{G}(g) = |C_{G}(g)| \sum_{i=1}^{m} \frac{\chi(h_{i})}{|C_{H}(h_{i})|}$$

Поскольку $g \sim_G h_i$, то $C_G(g) \sim C_G(h_i)$ и, значит, формулу можно переписать в виде

$$\chi^{G}(g) = \sum_{i=1}^{m} |C_{G}(h_{i}) : C_{H}(h_{i})| \cdot \chi(h_{i})$$

Доказательство. Введём $Y_i \coloneqq \{y \in G | y^{-1}gy \sim_H h_i\}$, причём $Y = Y_1 \sqcup \cdots \sqcup Y_m$. Запишем найденную ранее формулу и будем её преобразовывать:

$$\chi^G(g) = \frac{1}{|H|} \sum_{\substack{y \in G \\ y^{-1}gy \in H}} \chi(y^{-1}gy) = \frac{1}{|H|} \sum_{y \in Y} \chi(y^{-1}gy) = \frac{1}{|H|} \sum_{i=1}^m \sum_{y \in Y_i} \chi(y^{-1}gy) = \frac{1}{|H|} \sum_{i=1}^m |Y_i| \chi(h_i)$$

Осталось доказать, что $\frac{|Y_i|}{|H|} = \frac{|C_G(g)|}{|C_H(h_i)|}$.

Для этого заметим, что $Y_i = C_G(g)y_iH$: \subset очевидно, \supset показывается так:

$$y^{-1}gy\sim_H h_i\Rightarrow\exists h\in H: hy^{-1}gyh^{-1}=h_i,$$
 и далее
$$\begin{cases} y_i^{-1}gy_i=h_i\\hy^{-1}gyh^{-1}=h_i \end{cases}\Rightarrow y_ihy^{-1}\in C_G(g)\Rightarrow y\in C_G(g)y_ih \end{cases}$$

Далее для подсчёта количества элементов в двойном смежном классе можно воспользоваться формулой Фробениуса, учитывая, что $C_G(g) \cap H = C_H(h_i)$.

В нормальной подгруппе $H \leqslant G$ видно, что сумма пустая, то есть характеры, индуцированные с нормальной подгруппы, сконцентрированы на H.

Лекция XXII

26 октября 2023 г.

Интересный факт. Индуцирование транзитивно: пусть $F\leqslant H\leqslant G$. Тогда $\operatorname{ind}_F^G(\chi)=\operatorname{ind}_H^G(\operatorname{ind}_F^H(\chi))$.

2.28 Закон взаимности Фробениуса

Пусть $H \leqslant G$, $\pi: H \to GL(U).\rho: G \to GL(V)$ — неприводимые представления.

Рассмотрим $\pi^G \coloneqq \operatorname{ind}_H^G(\pi)$ и $\rho_H - \operatorname{res}_H^G(\rho)$. Закон взаимности Фробениуса говорит, что π^G содержит ρ с той же кратностью, что ρ_H содержит π .

Теорема 2.28.1. Пусть $\chi \in cf_K(H), \rho \in cf_K(G)$. Тогда $B_G(\chi^G, \rho) = B_H(\chi, \rho_H)$. Здесь χ^G — индуцирование центральной функции по формулам, полученным ранее (они все дадут одинаковый результат, так как выведены одна из другой), ρ_H — ограничение $\rho \Big|_{H}$.

Доказательство.

$$B_G(\chi^G, \rho) = \frac{1}{|G|} \sum_{g \in G} \chi^G(g) \rho(g^{-1}) = \frac{1}{|G|} \frac{1}{|H|} \sum_{g \in G} \sum_{y \in G} \chi(y^{-1}gy) \rho(g^{-1})$$

Заменим порядок суммирования: пусть $h = y^{-1}gy$.

$$\frac{1}{|G|} \frac{1}{|H|} \sum_{g \in G} \sum_{y \in G} \chi(y^{-1}gy) \rho(g^{-1}) = \frac{1}{|G|} \frac{1}{|H|} \sum_{h \in H} \sum_{y \in G} \chi(h) \rho(yh^{-1}y^{-1}) = \frac{1}{|G|} \sum_{g \in G} \underbrace{\sum_{h \in H} \chi(h) \rho(h^{-1})}_{B_H(\chi, \rho_H)}$$

Следствие 2.28.1. Если $A\leqslant G$ — абелева подгруппа, $\rho:G\to GL(U)$ неприводимо, то $\deg(\rho)\leqslant |G:A|$.

 $\begin{subarray}{ll} \mathcal{A} одномерны. $\rho \Big|_A$ — прямая сумма неприводимых представлений <math>A$.

Пусть π — какое-то из них. Тогда ρ входит в $\operatorname{ind}_A^G(\pi)$, но $\operatorname{deg}(\operatorname{ind}_A^G(\pi)) = |G:A|$.

Глава 3

Необработанные куски из теории представлений

Лекция XXIII

19 октября 2023 г.

Лемма 3.0.1 (Лемма Шура над замкнутым полем). Пусть R-F-алгебра, F- замкнутое поле. Рассмотрим простой R-модуль M, пусть $\dim_F M < \infty$.

Рассмотрим $\phi \in \operatorname{End}_R(M)$. Тогда ϕ — умножение на скаляр $\lambda \in F$.

Доказательство. Нам известно, что $\operatorname{End}_R(M)$ — тело, причём $\operatorname{End}_R(M) \subset \operatorname{End}_F(M)$. $\operatorname{End}_R(M)$ — F-подпространство; так как $\operatorname{End}_R(M)$ конечномерная алгебра с делением над замкнутым полем F, то $\operatorname{End}_R(M) \cong F$.

Пусть $\pi: G \to GL(V)$. Тогда степень представления $\deg(\pi) = \dim V$.

Следствие 3.0.1. Всякое неприводимое представление абелевой группы над замкнутым полем одномерно (имеет степень 1).

Доказательство. F[G] — коммутативная алгебра. Тогда $\forall g \in G, h \in F[G], v \in V: g \cdot hv = h \cdot gv,$ то есть умножение на g — автоморфизм F[G]-модуля V.

Используя лемму Шура, получаем, что $\exists \alpha_q \in F : \forall v \in V : g \cdot v = \alpha_q v.$

Любое одномерное F-подпространство F[G]-инвариантно. Так как представление неприводимо, то представление одномерно. \Box

3.1 Операции над представлениями

Определение 3.1.1 (Характер представления). След матрицы представления.

• Можно рассмотреть действие $G \curvearrowright U \otimes_F V$. $g(u \otimes v) = (gu) \otimes (gv)$.

Иными словами (так удобно писать, когда U=V, чтобы различать представления)

$$(\rho \otimes \pi)_q(u \otimes v) = \rho_q(u) \otimes \pi_q(v)$$

Пусть u_1,\ldots,u_n — базис $U,\,v_1,\ldots,v_m$ — базис V. Выберем в $U\otimes_F V$ базис $u_i\otimes v_j.$ Тогда

$$(\rho \otimes \pi)_g(u_i \otimes v_j) = \rho_g(u_i) \otimes \pi_g(v_j) = \sum_{k=1}^n u_k([\rho_g]_u)_{k,i} \otimes \sum_{l=1}^m v_l([\pi_g]_v)_{l,j} = \sum_{m,l} u_m \otimes v_l \cdot (\rho_{m,i}(g) \cdot \pi_{l,j}(g))$$

След представления $\rho\otimes\pi$ равен произведению характеров: $\sum_{i,j}\rho_{i,i}(g)\pi_{j,j}(g)=\mathrm{tr}(\rho_g)\cdot\mathrm{tr}(\pi_g).$

Определитель матрицы $(\pi \otimes \rho)_g = \prod_{i,j} \lambda_i \mu_j = (\det \rho_g)^k \cdot (\det \pi_g)^n$.

Лемма 3.1.1. Предположим, что M, N-R-модули, и $M \stackrel{\psi}{\to} N \stackrel{\phi}{\to} M-$ тождественная композиция. Тогда $N \cong M \oplus \operatorname{Ker} \phi$ (в случае групп полупрямое произведение).

Доказательство. Докажем, что $N = \operatorname{Im} \psi \oplus \operatorname{Ker} \phi$. Так как ψ инъективно, то $\operatorname{Im} \psi \cong M$. Рассмотрим $x \in \operatorname{Im} \psi \cap \operatorname{Ker} \phi$. $x = \psi(y)$, значит, $\phi(\psi(y)) = 0$, откуда x = 0.

Если
$$z \in N$$
, то $\psi(\phi(z)) =: t$ лежит в $\operatorname{Im}(\psi)$, причём $z - t \in \operatorname{Ker}(\phi): \phi(z - t) = \phi(z) - \phi(\psi(\phi(z))) = 0$.

Данная лемма позволяет выделять подмодуль прямым слагаемым, если найдена ретракция ϕ .

Теорема 3.1.1 (Машке). Пусть F — необязательно замкнутое поле, G — конечная группа, причём $\operatorname{char} F \not\mid |G|$. Тогда любое конечномерное представление G над F вполне приводимо.

Доказательство. Пусть $\{0\} \neq N \leqslant M$, где M — конечномерный. $M = N \oplus N'$, где N' - F-подпространство (не F[G] подмодуль). Заведём $p: M \to N, p(n+n') = n$, где $n \in N, n' \in N'$.

р — ретракция, подправим его так, чтобы оно стало G-эквивариантным отображением.

$$\widetilde{p}(v) = \frac{1}{|G|} \sum_{g \in G} gp(g^{-1}v)$$

 \widetilde{p} по-прежнему F-линейна, рассмотрим для $h \in G$:

$$\widetilde{p}(hv) = \frac{1}{|G|} \sum_{g \in G} gp(g^{-1}hv) = \frac{1}{|G|} \sum_{h^{-1}g \in G} h \cdot (h^{-1}g) \cdot p(g^{-1}hv) = h\widetilde{p}(v)$$

Таким образом, \widetilde{p} G-эквивариантно (и является ретракцией: $\forall n \in N : \widetilde{p}(n) = gp(g^{-1}n) = gg^{-1}n = n$), и N выделяется прямым слагаемым.

Следствие 3.1.1. По-прежнему $\operatorname{char} F \not\mid |G|$. Если все неприводимые представления одномерны, то группа абелева.

 \mathcal{A} оказательство. Рассмотрим регулярное представление F[G] как F[G]-модуля. $F[G] \cong \bigoplus_{k=1}^{|G|} V_k$, где V_k неприводимы: $\dim_F(V_k) = 1$. В матричном виде $\operatorname{Im} \operatorname{reg} \subset D(|G|, F)$.

Лекция XXIV 24 октября 2023 г.

Далее мы везде работаем над алгебраически замкнутым полем характеристики нуль. В частности, всякое такое поле содержит алгебраическое замыкание \mathbb{Q} — алгебраические числа \mathbb{A} .

 $\mathit{Интересный}\ \phi \mathit{акm}.$ Любое представление над полем характеристики нуль эквивалентно представлению над $\mathbb{C}.$

Будем считать, что базовое поле — \mathbb{C} .

Вспомним про эрмитовскую полуторалинейную форму

$$B(x,y\lambda) = B(x,y)\lambda$$
 $B(x,y) = \overline{B(y,x)}$ \Rightarrow $B(x\lambda,y) = \overline{\lambda}B(x,y)$

Будем считать, что форма положительно определена: $\forall x \neq 0 : B(x,x) > 0$.

Определение 3.1.2 (Унитарная группа). $U(B) \stackrel{def}{=} \{a \in GL(n,\mathbb{C}) | \forall x,y : B(ax,ay) = B(x,y) \}$

Теорема 3.1.2 (Унитаризуемость). Для любого представления $\pi: G \to GL(n,\mathbb{C}): \exists$ положительно определённая эрмитова форма $B: \operatorname{Im}(\pi) \subset U(B)$.

$$\square$$
 Оказательство. $(2.12.1)$

Дальше здесь идёт почти буквально лемма Шура в матричной форме.

Устроим билинейную форму на множестве функций K^G :

$$B(\eta, \theta) = \frac{1}{|G|} \sum_{g \in G} \eta(g) \theta(g^{-1})$$

Чаще всего мы будем вычислять скалярное произведение от характеров.

Пусть $\pi:G\to GL(n,K)$ — матричное представление, $\operatorname{char}(K)\not\mid |G|$ и K алгебраически замкнуто.

Теорема 3.1.3 (Соотношения ортогональности Шура). Пусть $\pi: G \to GL(n,K), \rho: G \to GL(m,K)$ — два матричных представления.

- 1. Если $\pi \nsim \rho$, то $\forall i, j, k, l : B(\pi_{i,j}, \rho_{k,l}) = 0$.
- 2. Если $\pi = \rho$, то $B(\pi_{i,j}, \pi_{k,l}) = \frac{1}{\deg(\pi)} \delta_{i,l} \delta_{j,k}$.

Доказательство. Подставим в качестве ϕ матричную единицу $e_{i,j}$. Её симметризация $\phi_0 = \frac{1}{|G|} \sum_{g \in G} \rho_g e_{i,j} \pi_g^{-1}$.

Посчитаем элемент ϕ_0 в позиции (k,l). Он равен $\frac{1}{|G|}\sum_{g\in G} \rho_{k,i}(g)\cdot \pi_{j,l}(g^{-1}).$

В случае $\pi \nsim \rho \ \phi_0$ равно нулю, откуда $B(\pi,\rho)=0$. Иначе, если $\pi=\rho$, то $\exists \lambda \in K: (\phi_0)_{k,l}=\lambda \delta_{k,l}$. Посчитаем λ : $\operatorname{tr}(\phi_0)=\frac{1}{|G|}\sum_{g\in G}\operatorname{tr}(\pi_g e_{i,j}\pi_g^{-1})=\frac{1}{|G|}\sum_{g\in G}\operatorname{tr}(e_{i,j})=\delta_{i,j}$.

Отсюда
$$\deg(\pi) \cdot \lambda = 1$$
.

Следствие 3.1.2. В невырождена на подпространстве функций K^G . При данной форме пространство — ортогональная прямая сумма n одномерных подпространств и $\frac{n^2-n}{2}$ гиперболических плоскостей.

Следствие 3.1.3. Пусть $\pi^{(1)}, \dots, \pi^{(m)}$ — все неэквивалентные неприводимые представления G. Тогда набор функций $\left\{\pi_{k,l}^{(i)}\middle|1\leqslant i\leqslant m, 1\leqslant k, l\leqslant \deg(\pi^{(i)})\right\}$ линейно независим.

 \mathcal{A} оказательство. Рассмотрим матрицу $B(\pi_{k,l}^{(i)},\pi_{k',l'}^{(j)})$, она невырождена.

Заметим, что $\dim F^G = |G|$. В этом пространстве нашлись $n_1^2 + \cdots + n_s^2$ линейно независимых функций (здесь $n_i = \deg(\pi^{(i)})$.

Из теоремы Веддербарна — Артина сразу следует, что они ещё и являются системой образующих (для замкнутого поля хорошей характеристики).

Мы же это докажем используя технику характеров для замкнутого поля характеристики нуль.

Лекция XXV

26 октября 2023 г.

Пусть $\phi \in F^G$. Устроим отображение

$$F^G \to F[G]$$
$$\phi \mapsto \sum_{g \in G} \phi(g) \cdot g$$

Заметим, что
$$h^{-1}(\sum\limits_{g\in G}\phi(g)\cdot g)h=\sum\limits_{g\in G}\phi(g)\cdot \underbrace{h^{-1}gh}_f=\sum\limits_{f\in G}\phi\left(hfh^{-1}\right)f\stackrel{?}{=}\sum\limits_{f\in G}\phi(f).$$

Если это верно для любого h, то ϕ — центральная функция, функция класса.

Обозначим C_1, \ldots, C_m — классы сопряжённости $G = C_1 \sqcup \cdots \sqcup C_m$.

Пусть
$$c \in \text{Cent}(K[G])$$
. $c = \sum_{i=1}^{n} \phi(C_i) \sum_{g \in C_i} g = \sum_{i=1}^{m} \phi(C_i) c_i$.

Пусть π неприводимо. Продлим по линейности $\pi: F[G] \to \operatorname{End}(V)$. Если $c \in \operatorname{Cent}(F[G])$, то $\pi_c \cdot \pi_g = \pi_{c \cdot g} = \pi_{g \cdot c} = \pi_g \cdot \pi_c$.

Таким образом, $\pi_c \in \operatorname{End}_{F[G]}(V)$. Согласно лемме Шура, π_c — гомотетия, λ id.

Чтобы посчитать λ , предположим, что $c = \sum_{i=1}^m \phi(C_i)c$. $\operatorname{tr}(\pi_c) = \sum_{i=1}^m \phi(C_i)\operatorname{tr}(c_i) = \sum_{i=1}^m \phi(C_i)\chi_\pi(C_i) \cdot |C_i|$.

Лекция XXVI

31 октября 2023 г.

Если модифицировать $c=rac{1}{|G|}\sum_{g\in G}\phi(g)g^{-1}$, то получится $\pi_c=\lambda\,\mathrm{id}$, где λ находится при подсчёте следа:

$$\operatorname{tr}(\pi(c)) = \frac{1}{|G|} \sum_{g \in G} \phi(g) \operatorname{tr}(\pi(g^{-1})) = \frac{1}{|G|} \sum_{g \in G} \phi(g) \chi_{\pi}(g^{-1}) = B(\phi, \chi_{\pi})$$

Теорема 3.1.4. Характеры неприводимых представлений образуют базис пространства функций классов

Доказательство. Пусть X — подпространство, порождённое неприводимыми характерами, тогда $cf_K(G) = X \oplus X^{\perp_B}$, так как B невырождена на X. Дальше аналогично проверяем, что если функция класса ортогональна всем характерам, то она равна нулю.

3.2 Таблицы характеров

Пусть χ_1, \dots, χ_t — хаарктеры неприводимых представлений, C_1, \dots, C_s — классы сопряжённых. Таблица характеров — таблица следующего вида, где в ячейке χ_i, C_j стоит значение $\chi_i(C_j)$.

$$\begin{array}{c|cccc} & C_1 = \{1\} & \cdots & C_s \\ \hline \chi_1 = 1 & 1 & \cdots & 1 \\ \chi_2 & \deg \pi_2 & \cdots & \chi_2(C_s) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_s & \deg \pi_s & \cdots & \chi_s(C_s) \end{array}$$

Пусть $\mathbb{Z} \subset F$.

Определение 3.2.1 (Целые алгебраические числа над F). $\mathbb{A}_F \stackrel{def}{=} \operatorname{Int}_F(\mathbb{Z}) \stackrel{def}{=} \{a \in F | \exists p \in \mathbb{Z}[t] : \operatorname{lc}(p) = 1, \operatorname{ev}_a(p) = 0\}.$

Пусть $R \subset A$ — коммутативные кольца с единицей.

Определение 3.2.2 (A целое над R). $\forall a \in A : a$ — целый над R.

Определение 3.2.3 (A — конечное над R). A — конечно порождено, как модуль над R.

Лемма 3.2.1. Пусть $A \subset B \subset R$ — цепочка конечных расширений. Тогда A конечно над R.

Лемма 3.2.2. Пусть $A = R[a_1, \ldots, a_n]$, где a_i — целые над R. Тогда A конечно над R.

Доказательство. $a_i^k \in \langle a_i^0, \dots, a_i^{k-1} \rangle$, если k — степень a_i . Индукция по n с применением предыдущей леммы.

Теорема 3.2.1. Если $R \subset A$ — конечное расширение, и $a \in A$, то a — целый над R.

Доказательство. Пусть $m_a:A\to A$ — гомоморфизм (R-модулей) умножения на $a.\ m_a\in \mathrm{End}_R(A)$.

Пусть
$$x_1,\ldots,x_n$$
 порождают A над $R.$ $x_i\cdot a\sum_{j=1}^n c_{i,j}x_j$ Обозначим $c=(c_{i,j})$, тогда $xa=Cx$.

 $\chi_C(C) = 0$ по теореме Гамильтона — Кэли (это, кстати, полиномиальное равенство, можно использовать, что оно было доказано над алгебраически замкнутым полем).

$$0=\chi_c(C)x=\chi_c(a\operatorname{id})x$$
. Так как $1\in\operatorname{Lin}(x_1,\ldots,x_n)$, то $\chi_c(a)\cdot 1=0$, откуда $\chi_c(a)=0,a\in\mathbb{A}_R$

Следствие 3.2.1. $R \subset A$ — конечно $\iff A$ порождено как R-алгебра конечным числом целых элементов.

Возвращаясь к таблице характеров, получаем, что $\chi(g) \in \mathbb{A}$.

Лекция XXVII

7 ноября 2023 г.

• Наружное произведение.

Пусть K/F — расширение полей ($F\leqslant K$). Пусть V — векторное пространство над K, его можно рассматривать, как векторное пространство над F — надо забыть про умножение на элементы K, не лежащие в F.

Можно сделать наоборот. Если U — векторное пространство над F, то можно сделать векторное пространство над K: о $K \otimes_F U$ можно мыслить, как о векторном пространстве над K: действие устроено так:

$$\alpha(\beta \otimes x) = (\alpha\beta) \otimes x$$
, при $\alpha, \beta \in K, x \in U$

 $\dim_K(K \otimes_F U) = \dim_F(U)$, конструкция называется расширением скаляров.

Пусть M — правый модуль над R, N — левый модуль над R, R — необязательно коммутативное кольцо. Тогда $M \otimes_R N$ — абелева группа, которую можно представить в виде

$$M \otimes_R N = M \otimes_{\mathbb{Z}} N / \langle m \otimes \alpha n - m\alpha \otimes n | m \in M, n \in N, \alpha \in R \rangle$$

Если M является A-R-бимодулем, то $M\otimes_R N$ является левым A-модулем (структура вводится естественным образом). Заметим, что надо всё-таки проверить корректность: например, модуль, по которому происходит факторизация, должен быть A-инвариантным.

Пусть $\phi:R\to A$ — гомоморфизм колец. Ему сопоставляется функтор $\phi^\#:A-\bmod\to R-\bmod$. A-модуль M превращается в R-модуль так: $r\cdot m=\phi(r)\cdot m$. Если ϕ — вложение колец, то это соответствует расширению полей выше.

Также можно сопоставить $\phi_\#: R\text{-}mo\text{-}d \to A\text{-}mo\text{-}d$ — расширение скаляров. Получаем левый A-модуль $\phi_\#(M) = A \otimes_R M$, где A рассматривается, как A - R-бимодуль.

Теперь пусть $\phi: H \to G$ — гомоморфизм групп. Тогда его можно продолжить до гомоморфизма групповых алгебр $\phi: F[H] \to F[G]$.

Если U-F[H]-модуль, соответствующий представлению π , то $\phi_\#(U)-F[G]$ -модуль. Если $H\leqslant G$ и ϕ — вложение, то соответствующее представление — uнdуцированное c представления π , обозначается $\mathrm{ind}_H^G(\pi)$.

Наоборот, если ρ — представление группы G, V — соответствующий F[G]-модуль, то $\phi^\#(V)$ — F[H]-модуль. Если $H\leqslant G$ и ϕ — вложение, то соответствующее представление — cyжение представления π , обозначается $\operatorname{res}_H^G(\pi)$.

В частности, если G — абелианизация H, то $\phi: H \twoheadrightarrow G$ сюръективно. Его можно продолжить до $\phi: F[G] \twoheadrightarrow F[G^{\mathrm{ab}}]$. Тогда ограничение представления $\phi^\#$ — инфляция, индуцированное представление $\phi_\#$ — дефляция.

Лекция XXVIII

9 ноября 2023 г.

В абстрактной ситуации пусть $\phi: R \to A$ – гомоморфизм необязательно коммутативных колец.

$$\phi_\#:R ext{-}mo ext{-}d o A ext{-}mo ext{-}d$$
 $M\mapsto A\otimes_R M$ — задали на M структуру $A ext{-}$ модуля

$$\phi^\#:A ext{-}mo ext{-}d o R ext{-}mo ext{-}d$$
 $M\mapsto M$ — забывающий функтор

Пусть M-R-модуль, N-A-модуль.

Предложение 3.2.1. Имеет место следующее универсальное свойство:

Для любого гомоморфизма R-модулей ϕ : \exists ! гомоморфизм A-модулей $\psi:A\otimes_R M\to N$.

Доказательство. Элементы $\{1\otimes m|m\in M\}$ порождают $A\otimes M$. Чтобы диаграмма была коммутативной, необходимо равенство $\psi(i(m))=\psi(1\otimes m)=\phi(m)$. Значит, ψ единственно, если уж существует.

Зададим на разложимых тензорах $\psi(a\otimes m)=a\cdot\phi(m).$ Оно билинейно и распространяется по линейности на $A\otimes_R M.$

Следствие 3.2.2. Имеет место естественный изоморфизм $\operatorname{Hom}_R(M,\phi^\#(N))\cong \operatorname{Hom}_A(\phi_\#(M),N).$

В теории категорий такие два функтора $\phi^{\#}$ и $\phi_{\#}$ называются сопряжёнными.

Теорема 3.2.2 (Закон взаимности Фробениуса). Предположим, что $H \leqslant G$, $\operatorname{char}(F) = 0$ (на самом деле достаточно $\operatorname{char}(F) \not\mid |G|$), F алгебраически замкнуто. Пусть даны два представления $\pi: H \to GL(V), \, \rho: G \to GL(U)$.

Тогда $\operatorname{Mor}(\operatorname{ind}_H^G(\pi), \rho) \cong \operatorname{Mor}(\pi, \operatorname{res}_H^G \rho).$

Отсюда следует $B_H(\chi_\pi, \chi_{\operatorname{res}_H^G \rho}) = B_G(\chi_{\operatorname{ind}_H^G \pi}, \chi_\rho)$. Обычно пишут $B_H(\chi_\pi, \operatorname{res}_H^G \chi_\rho) = B_G(\operatorname{ind}_H^G \pi_\chi, \chi_\rho)$

Доказательство закона взаимности Фробениуса. Рассмотрим следующую ситуацию.

Пусть $\phi: H \hookrightarrow G$ — вложение. Пусть V - F[H]-модуль, U - F[G]-модуль.

Тогда $\operatorname{Hom}_{F[G]}(\phi_{\#}(V), U) \cong \operatorname{Hom}_{F[H]}(V, \phi^{\#}(U)).$

Это F-линейный изоморфизм (проверить), то есть изоморфизм векторных пространств над F.

Пусть U,V — простые модули, поле алгебраически замкнуто и характеристики, не делящей порядок группы. Пусть $\phi^\#(U) = \bigoplus_{i=1}^k V_i$ — разложение в сумму простых F[H]-модулей.

$$\dim_F \operatorname{Hom} \left(V, \bigoplus_{i=1}^k V_i
ight) =$$
 количество $V_i \cong V$ (лемма Шура)

Аналогично пусть $\phi_{\#}(V) = \bigoplus_{i=1}^k U_i$ — разложение в сумму простых F[G]-модулей.

$$\dim_F \operatorname{Hom}(\phi_\#(V), U) =$$
 количество $U_i \cong U$

Но тогда получается, что количество вхождений V в $\phi^\#(U)$ равно количеству вхождений U в $\phi_\#(V)$

Теперь пусть $\pi = \bigoplus \pi_i$, $\rho = \bigoplus \rho_j$ — разложение в прямую сумму неприводимых. $\operatorname{ind}_H^G(\pi) = \bigoplus \operatorname{ind}_H^G(\pi_i)$ так как тензорное произведение дистрибутивно относительно прямого произведения: $F[G] \otimes (\bigoplus V_i) = \bigoplus (F[G] \otimes V_i)$.

Также $\operatorname{res}_H^G(\rho) = \bigoplus \operatorname{res} \rho_i$, так как $\operatorname{res} -$ просто сужение.

Из билинейности B и того, что $\chi_{\pi} = \sum \operatorname{ind}_{H}^{G} \chi_{\pi_{i}}, \chi_{\rho} = \sum \operatorname{res}_{H}^{G} \chi_{\rho_{j}}$ следует равенство скалярных произведений в общем случае.

3.2.1 Закон Фробениуса без теории категорий

Пусть $H \leqslant G$, $\pi: H \to GL(V)$ — представление, найдём матрицу $\operatorname{ind}_H^G(\pi)$.

Рассмотрим $F[G] \otimes_{F[H]} V$. Пусть (v_1, \dots, v_n) — базис V. Зафиксируем трансверсаль $T = \{1, g_2, \dots, g_m\}$ — представители левых смежных классов G/H:

$$G = \bigsqcup_{i=1}^{m} g_i H$$

Всякий разложимый тензор является линейной комбинацией векторов $g_i \otimes v_i$:

$$F[G]\otimes_{F[H]}V\cong (F[H])^{\oplus m}\otimes_{F[H]}V\cong V^{\oplus m}$$
 — изоморфизм $F[H]$ -модулей

Тогда как F-модули они изоморфны и подавно, $\dim_F(FG\otimes_{F[H]}V)=m\cdot\dim V$, откуда $g_i\otimes v_j$ — базис.

Пусть $gg_i = g_k h$ для некоторого $g_k \in T, h \in H$.

$$g \cdot (g_i \otimes v_j) = g_k h \otimes v_j = g_k \otimes h v_j = g_k \otimes \pi_h(v_j) = \sum_{l=1}^n (g_k \otimes v_l) \pi_{l,j}(h)$$

Отсюда можно выцепить матрицу $\operatorname{ind}_H^G \pi_h$. Матрица блочная, блоки соответствуют $g_i \otimes v_j$ для фиксированного j.

$$\operatorname{ind}_{H}^{G} \chi_{\pi}(g) = \sum_{i: g_{i}^{-1} g g_{i} \in H} \chi_{\pi}(g_{i}^{-1} g g_{i})$$

Характер — центральная функция на H, а не на G, поэтому избавиться от сопряжения легко не получится. Пусть $f=g_ih\in g_iH$. Тогда $\chi_\pi(f^{-1}gf)=\chi_\pi(h^{-1}g_i^{-1}gg_ih)=\chi_\pi(g_i^{-1}gg_i)$.

$$\operatorname{ind}_{H}^{G} \chi_{\pi}(g) = \sum_{i: g_{i}^{-1} g g_{i} \in H} \chi_{\pi}(g_{i}^{-1} g g_{i}) = \frac{1}{|H|} \sum_{f: f^{-1} g f \in H} \chi_{\pi}(f^{-1} g f)$$

$$B(\operatorname{ind}\chi_{\pi}, \rho) = \frac{1}{|G|} \sum_{g \in G} \operatorname{ind}\chi_{\pi}(g) \cdot \chi_{\rho}(g^{-1}) = \frac{1}{|G| \cdot |H|} \sum_{g, f \in G: f^{-1}gf \in H} \chi_{\pi}(f^{-1}gf) \chi_{\rho}(g^{-1}) =$$

$$\|f^{-1}gf = h, g^{-1} = fhf^{-1}\|$$

$$= \frac{1}{|G| \cdot |H|} \sum_{f \in G, h \in H} \chi_{\pi}(h) \cdot \chi_{\rho}(fh^{-1}f^{-1}) = \frac{1}{|H|} \sum_{h \in H} \chi_{\pi}(h) \chi_{\rho}(h^{-1})$$

В данном доказательстве мы не пользуемся тем, что характеристика нуль.

Глава 4

Теория категорий

Лекция XXIX

14 ноября 2023 г.

Определение 4.0.1 (Категория \mathscr{C}).

- Класс объектов Obj &
- Для каждых $A, B \in \mathrm{Obj}\,\mathscr{C}$ множество морфизмов (стрелок) $\mathrm{Mor}_{\mathscr{C}}(A,B)$. Если $(A,B) \neq (A',B')$ (где $A,B,A',B' \in \mathrm{Obj}\,\mathscr{C}$), то $\mathrm{Mor}_{\mathscr{C}}(A,B) \cap \mathrm{Mor}_{\mathscr{C}}(A',B') = \varnothing$. Таким образом, по морфизму $\alpha \in \mathrm{Mor}_{\mathscr{C}}(A,B)$ однозначно восстанаваливаются A,B, их обозначают $A \stackrel{def}{=} \mathrm{source}(\alpha), B = \mathrm{target}(\alpha)$
- Закон композиции морфизмов: $\forall A, B, C \in \mathrm{Obj}\,\mathscr{C}$ определено

$$\operatorname{Mor}_{\mathscr{C}}(B,C) \times \operatorname{Mor}_{\mathscr{C}}(A,B) \to \operatorname{Mor}_{\mathscr{C}}(A,C)$$

 $(\alpha,\beta) \mapsto \alpha\beta$

Замечание. Иногда композицию записывают в обратном порядке: $\mathrm{Mor}_{\mathscr{C}}(A,B) \times \mathrm{Mor}_{\mathscr{C}}(B,C) \to \mathrm{Mor}_{\mathscr{C}}(A,C)$.

• $\forall A \in \mathrm{Obj}\,\mathscr{C}$ определён тождественный морфизм $\mathrm{id}_A \in \mathrm{Mor}_{\mathscr{C}}(A,A)$, такой, что

$$\forall B, C \in \mathrm{Obj}\,\mathscr{C} : \forall \beta \in \mathrm{Mor}_{\mathscr{C}}(A,B), \gamma \in \mathrm{Mor}_{\mathscr{C}}(C,A) : \beta \operatorname{id}_A = \beta$$
 и $\operatorname{id}_A \gamma = \gamma$

• Композиция ассоциативна, как только определена:

$$\forall A, B, C, D \in \text{Obj} \mathscr{C} : \forall \alpha \in \text{Mor}_{\mathscr{C}}(A, B), \beta \in \text{Mor}_{\mathscr{C}}(B, C), \gamma \in \text{Mor}_{\mathscr{C}}(C, D) : (\gamma \beta) \alpha = \gamma(\beta \alpha)$$

Далее будем пользоваться сокращёнными обозначениями:

- Вместо $A \in \text{Obj} \mathscr{C}$ можно писать $A \in \mathscr{C}$.
- Вместо $\alpha \in \operatorname{Mor}_{\mathscr{C}}(A,B)$ можно писать $\alpha \in \operatorname{Mor}(A,B)$ или даже $\alpha : A \to B$, если категория ясна из контекста. В общем случае морфизм необязательно отображение, но в конкретных категориях это так, поэтому удобно мыслить о морфизмах, как о отображениях.
- Также определим класс всех морфизмов данной категории $\mathrm{Mor}\,\mathscr{C} = \bigsqcup_{A,B \in \mathscr{C}} \mathrm{Mor}(A,B).$

Примеры (Категории).

• $Obj \mathscr{C} = \{A\}, Mor(A, A)$ — моноид.

- Конкретные категории неформально говоря, объекты со структурой, где морфизмы сохраняют данную структуру).
 - Set. Объектами являются множества, морфизмами отображения.
 - Set_* . Объектами являются множества с отмеченной точкой (X,x), $x \in X$, морфизмами отображения, сохраняющие отмеченную точку.
 - Group категория групп с гомоморфизмами групп.
 - $\Re ing$ категория ассоциативных (необязательно коммутативных) колец с единицей с унитальными гомоморфизмами (сохраняющими единицу).
 - Япд категория ассоциативных (необязательно коммутативных) колец с гомоморфизмами колец.
 - \mathscr{CRing} коммутативные кольца с единицей и унитальными гомоморфизмами.
 - \mathscr{CRng} коммутативные кольца с гомоморфизмами колец.
 - $\mathscr{A} \mathscr{E}$ абелевы группы и аддитивные отображения.
 - R-mod -левые R-модули и R-линейные отображения.
 - -mod-R правые R-модули и R-линейные отображения.
 - $\mathscr{V}ect_F$ конечномерные векторные пространства и F-линейные отображения.
 - $\mathcal{F}op$ топологические пространства и непрерывные отображения.
 - $\mathcal{F} o p_*$ базированные топологические пространства (с отмеченной точкой) и непрерывные отображения, сохраняющие эту точку.

Определение 4.0.2 (Изоморфизм (изо) $\alpha: A \to B$). Двусторонне обратимый морфизм: $\exists \beta: B \to A: \alpha\beta = \mathrm{id}_B, \beta\alpha = \mathrm{id}_A.$

Замечание. Как и в теории групп, если $\exists \beta, \beta' : B \to A : \alpha\beta = \mathrm{id}_B, \beta'\alpha = \mathrm{id}_A$, то из ассоциативности $\beta = \beta'$.

Определение 4.0.3 (Малая категория \mathscr{C}). Obj \mathscr{C} — множество.

Примеры (Ещё категории).

- *Определение* **4.0.4** (Группоид). Малая категория, в которой всякий морфизм изоморфизм. Например, в топологическом пространстве можно ввести аналог фундаментальной группы фундаментальный группоид, в котором пути стрелки из начала пути в конец пути.
- Пусть $\Gamma = (V, E)$ ориентированный граф.
 - \mathscr{P}_{Γ} категория путей в Γ , для $x,y\in V:\mathrm{Mor}_{\mathscr{P}_{\Gamma}}(x,y)$ пути из x в y. Композиция путей конкатенация.
 - Категория достижимости \mathscr{C}_{Γ} . Для $x,y\in V:|\operatorname{Mor}_{\mathscr{C}_{\Gamma}}(x,y)|=\begin{cases} 1,&x\cdots\to y\\ 0,&y$ недостижим из x.
- Пусть (X,\leqslant) частично упорядоченное множество, poset. Определим индексирующую категорию \mathscr{C}_X . Obj $\mathscr{C}_X=X, |\operatorname{Mor}_{\mathscr{C}_X}(x,y)|=\begin{cases} 1, & x\leqslant y\\ 0, & \text{иначе} \end{cases}$
- Категория матриц \mathcal{M} (над кольцом R с единицей). Обј $\mathcal{M} = \mathbb{N}$. Мог $_{\mathcal{M}}(m,n) = M_{n \times m}(R)$. Композиция в данной категории умножение матриц:

$$\operatorname{Mor}(m, n) \times \operatorname{Mor}(k, m) \to \operatorname{Mor}(k, n)$$

 $M_{n \times m}(R) \times M_{m \times k}(R) \to M_{n \times k}(R)$
 $x, y \mapsto xy$

Как будет видно позже, эта категория эквивалентна категории конечномерных векторных пространств.

• Категория стрелок. Пусть $\mathscr C$ — категория, тогда $\mathscr{Arr}\mathscr C$ — тоже категория. Obj $\mathscr{Arr}\mathscr C$ = Mor $\mathscr C$. Пусть $\alpha:A\to B,\beta:C\to D$. Тогда $\mathrm{Mor}_{\mathscr{Arr}\mathscr C}(\alpha,\beta)=\{(\phi,\psi)|\phi:A\to C,\psi:B\to D,\psi\alpha=\beta\psi\}$

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & B \\
\downarrow^{\phi} & & \downarrow^{\psi} \\
C & \xrightarrow{\beta} & D
\end{array}$$

• Пусть $\Gamma = (V, E)$ — ориентированный граф, $\mathscr C$ — категория.

Определим категорию диаграмм в типе Γ в категории $\mathscr{C} \mathscr{D}^{\Gamma}_{\mathscr{C}}$.

Предыдущий пример — данный пример для графа Γ следующего вида: $\bullet \longrightarrow \bullet$

Формально $\mathrm{Obj}\,\mathscr{D}^{\Gamma}_{\mathscr{C}}=\{(f_o,f_m)|f_o:V\to\mathrm{Obj}\,\mathscr{C},f_m:E\to\mathrm{Mor}\,\mathscr{C}\},$ причём стрелки согласованы: $\forall x\in E:f_o(\mathrm{source}(x))=\mathrm{source}(f_m(x))$ и $f_o(\mathrm{target}(x))=\mathrm{target}(f_m(x)).$

 $\operatorname{Mor} \mathscr{D}^{\Gamma}_{\mathscr{C}} \Big((f_o, f_m), (g_o, g_m) \Big) = \{ \phi : V \to \operatorname{Mor} \mathscr{C} | \phi(x) \in \operatorname{Mor}_{\mathscr{C}} (f_o(x), g_o(x)) \},$ причём морфизмами являются только те ϕ , что $\forall (x, y) \in E$ диаграмма ниже коммутативна:

$$\begin{aligned}
f_o(x) & \xrightarrow{f_m((x,y))} f_o(y) \\
& \downarrow^{\phi(x)} & \downarrow^{\phi(y)} \\
q_o(x) & \xrightarrow{g_m((x,y))} q_o(y)
\end{aligned}$$

Например, для графа \downarrow \longrightarrow объекты — это диаграммы вида \uparrow \downarrow \downarrow β , а морфизмы \downarrow C \longrightarrow \downarrow D

— это диаграммы вида

Лекция XXX 16 ноября 2023 г.

4.1 Универсальные объекты

Пусть \mathscr{C} — категория, $I, F \in \mathscr{C}$.

Определение 4.1.1 (I- инициальный объект). Для любого $A \in \mathscr{C}: |\mathrm{Mor}(I,A)| = 1.$

Определение 4.1.2 (F — финальный (терминальный) объект). Для любого $A \in \mathscr{C}$: $|\mathrm{Mor}(A,F)| = 1$.

Примеры.

- В множествах инициальный пустое, финальный одноэлементное.
- В *Group* оба объекта тривиальная группа.

Определение 4.1.3 (Нулевой объект). Одновременно финальный и инициальный объект.

- В категории полей таких объектов нет (гомоморфизм полей сохраняет характеристику, и вообще всякий гомоморфизм полей инъективен).
- ullet В \mathscr{CRing} инициальный объект \mathbb{Z} , финальный объект нулевое кольцо.
- В категории F-алгебр с отмеченной точкой финальный объект $(\{0\},0)$, инициальный объект (F[x],x).

Вспомним универсальное свойство локализации:

$$R \xrightarrow{\phi} S^{-1}R$$

$$\downarrow_{\exists !\theta}$$

 $\forall \phi: R \to A$, такого, что $\forall s \in S: \phi(s) \in A^*: \exists ! \theta: R \to A$, такой, что диграмма комммутативна.

Этому соответствует ... объект в категории $\mathscr C$, такой, что $\mathrm{Obj}\mathscr C=\{\phi:R\to A|\phi(S)\subset A^*\}$ и $\mathrm{Mor}_\mathscr C(\phi,\psi)=\{\alpha|\alpha\psi=\phi\}.$

$$R \xrightarrow{\phi} A \\ \downarrow^{\alpha} \\ B$$

Вообще, всякий объект с универсальным свойством — инициальный или финальный в некоторой категории, но для этого именно нужна **уни**версальность — так, у алгебраического замыкания есть изоморфизм, оно единственно с точнотью до не единственного изоморфизма.

Будем говорить, что объект единственен, если он определён единственным образом с точностью до единственного изоморфизма.

Предложение 4.1.1. Инициальный объект единственен (если существует).

Доказательство. Пусть I, I' — два инициальных объекта. $Mor(I, I') = \{\alpha\}, Mor(I', I) = \{\beta\}, \alpha\beta \in Mor(I', I'),$ и из инициальности $I' : \alpha\beta = \mathrm{id}_{I'}.$

Аналогично
$$\beta \alpha = \mathrm{id}_A$$
.

4.2 Функторы и не только

4.2.1 Противоположная категория

Пусть \mathscr{C} — категория, тогда \mathscr{C}^{op} — противоположная категория:

$$\begin{split} \operatorname{Obj} \mathscr{C}^{\operatorname{op}} &= \operatorname{Obj} \mathscr{C} \qquad \forall A, B \in \mathscr{C}^{\operatorname{op}} : \operatorname{Mor}_{\mathscr{C}^{\operatorname{op}}}(A, B) = \operatorname{Mor}_{\mathscr{C}}(B, A) \\ \alpha \underset{\mathscr{C}}{\cdot} \beta &= \beta \underset{\mathscr{C}^{\operatorname{op}}}{\cdot} \alpha \end{split}$$

Неформально говоря, это категория с развёрнутыми стрелками.

Всякому утверждению соответствует двойственное, и, например, доказав, что инициальный объект единственен, мы автоматически доказали единственность и финального объекта.

4.2.2 Декартово произведение категорий

Пусть \mathscr{B},\mathscr{C} — категории.

Определение 4.2.1 (Декартово произведение категорий $\mathscr{B} \times \mathscr{C}$). $\mathrm{Obj}(\mathscr{B} \times \mathscr{C}) = \mathrm{Obj}(\mathscr{B}) \times \mathrm{Obj}(\mathscr{C})$, $\mathrm{Mor}_{\mathscr{B} \times \mathscr{C}}((B,C),(B',C')) = \mathrm{Mor}_{\mathscr{B}}(B,B') \times \mathrm{Mor}_{\mathscr{C}}(C,C')$. $(\alpha,\beta)(\alpha',\beta') = (\alpha\alpha',\beta\beta')$.

4.2.3Мономорфизмы и эпиморфизмы

Определим аналоги инъекции и сюръекции. Инъекция не склеивает точки, но в категориях у объектов нет точек, поэтому надо пойти другим путём.

Определение 4.2.2 (Мономорфизм (моно)). Морфизм α , такой, что его можно сокращать слева: $\forall \phi, \psi: \alpha\phi = \alpha\psi \Rightarrow \phi = \psi$. Имеется в виду, что данное свойство выполняется для всех ϕ, ψ , таких, что $\alpha\phi$ и $\alpha\psi$ определены.

Двойственно, морфизм называется эпиморфизмом (эпи), если на него можно сокращать справа.

В конкретных категориях совсем не обязательно мономорфизмы — инъективны (хотя это довольно часто), эпиморфимзы — сюръективны (и это совсем неправда).

Однако всегда инъекции — моно, сюръекции — эпи.

Примеры.

- В Set мономорфизмы и инъекции совпадают, также как и эпиморфизмы и сюръекции.
- В категории group мономорфизмы и эпиморфизмы совпадают:

Замечание. Диаграмма с кратными стрелками называется коммутативной, если композиция любых двух (или более) стрелок совпадает, но кратные стрелки не обязаны быть равны друг другу.

ullet В \mathscr{CRing} вложение $\mathbb{Z}\hookrightarrow\mathbb{Q}$ — очевидно, не сюръекция, хотя и эпиморфизм: в композиции $\mathbb{Z} \longleftrightarrow \mathbb{Q} \Longrightarrow R$ всякий морфизм из \mathbb{Z} или из \mathbb{Q} однозначно определяется образом единицы.

Любая локализация — эпиморфизм, и вообще бывают ещё эпиморфизмы, не являющиеся композицией сюръекции и локализации, но построить их непросто.

• В *Group* эпиморфизмы — сюръекции.

Доказательство. Всякий морфизм в Угоир разложим в комопзицию эпиморфизма и мономорфизма. Тогда если нашёлся несюръективный эпиморфизм, то найдётся вложение в $H \leqslant G$, являющаяся мономорфизмом.

Рассмотрим амальгамированное произведение $G_1 st_H G_2$, где $G_1 \cong G_2 \cong G$ и $G_1 \cap G_2 = H$, оно определено в следующем абзаце.

 $G_1 st G_2$ состоит из всевозможных слов $f_1g_1f_2g_2\dots f_ng_n$, где $f_i \in G_1, g_i \in g_2$. Ещё надо

$$G_1 st G_2$$
 состоит из всевозможных слов $f_1g_1f_2g_2\dots f_ng_n$, где $f_i \in G_1, g_i \in g_2$. Ещё надо добавить соотношения $\begin{cases} (fh)(h^{-1}g) \sim fg \\ f_11_{G_2}f_2 = f_1f_2 \end{cases}$, где $f \in G_1, h \in H, g \in G_2$ и отфакторизовать по $g_11_{G_1}g_2 = g_1g_2$ их нормальному замыканию. Если $H = \{1\}$, то $G_1 st G_2$ — свободное произведение.

их нормальному замыканию. Если $H=\{1\}$, то $G_1 st_H G_2$ — свободное произведение.

Далее надо доказать, что если $f\in G_1\setminus H, g\in G_2\setminus H$, то элементы $f,g\in G_1 *_HG_2$ не равны. Если это доказано, то далее видим, что при $H \leqslant G$ нарушается определение эпиморфизма:

$$H \hookrightarrow G \Longrightarrow G_1 * G_2$$

• В категории метрических пространств отображения с плотным образом — эпиморфизмы. В любом хаусдорфовом пространстве (возможно, даже только с первой аксиомой отделимости (да?)) это тоже так.

4.2.4 Функторы

Определение 4.2.3 ((Ковариантный) функтор между категориями \mathscr{B} и \mathscr{C} \mathcal{F} : $\mathscr{B} \to \mathscr{C}$). Класс отображений

- $\mathcal{F}: \mathrm{Obj}\,\mathscr{B} \to \mathrm{Obj}\,\mathscr{C}$.
- $\forall X, Y \in \mathcal{B}: \mathcal{F}_{X,Y}: \operatorname{Mor}_{\mathscr{B}}(X,Y) \to \operatorname{Mor}_{\mathscr{C}}(\mathcal{F}(x), \mathcal{F}(y)).$

причём отображения должны сохранять композицию и единицу (второе условие обязательно, например, категория — моноид — может сохранять композицию, но не единицу).

Определение 4.2.4 (Строгий функтор \mathcal{F}). $\forall X, Y \in \mathcal{B} : \mathcal{F}_{X,Y}$ инъективно.

Определение 4.2.5 (Полный функтор \mathcal{F}). $\forall X, Y \in \mathcal{B} : \mathcal{F}_{X,Y}$ сюръективно.

Замечание. Важно, как функторы ведут себя на морфизмах, изоморфные объекты могут склеиваться, или наоборот, у объекта может возникнуть изоморфная копия, и это не должно менять строгость или полноту функтора.

Примеры.

- Забывающие функторы забывают часть структуры.
 - Любая конкретная категория отображается в $\mathcal{S}et$. Например, $\mathcal{G}roup \to \mathcal{S}et$ строгий функтор.
 - $\Re ng o \mathscr{A} \ell$ сопоставляем кольцу его аддитивную группу, строгий функтор.
 - $\mathcal{R}ng \to \mathcal{M}on$ сопоставляем кольцу его мультипликативный моноид, строгий функтор.
- $GL_n: \mathcal{R}ing \to \mathcal{G}roup, R \mapsto GL_n(R)$. Это опять задание функтора на объектах, но морфизмах его надо продолжить интуитивным образом.

Формально, для $\phi: R \to S$ надо задать $(GL_n)_{R,S}(\phi): GL_n(R) \to GL_n(S)$. $\forall a \in GL_n(R): (GL_n)_{R,S}(a)_{i,j} = \phi(a_{i,j})$. Далее надо проверить, что $(GL_n)_{R,S}(\phi)$ (часто его обозначают той же буквой ϕ) — гомоморфизм групп.

4.2.5 Контравариантный функтор

Контравариантный функтор обращает стрелки. $\mathcal{F}: \mathscr{B} \to \mathscr{C}$ — это на самом деле функтор $\mathscr{B}^{op} \to \mathscr{C}$. Несложно проверить, что он совпадает с функтором $\mathscr{B} \to \mathscr{C}^{op}$.

В частности, $\forall X, Y \in \mathcal{B} : \mathcal{F}_{X,Y} : \operatorname{Mor}(Y,X) \to \operatorname{Mor}(\mathcal{F}(x),\mathcal{F}(y)).$

Согласно этому определению, контравариантный функтор не является функтором.

Пример. Пусть \mathscr{C} — категория с объектом $X \in \mathscr{C}$. Зададим функтор

$$\begin{split} \operatorname{Mor}(_,X):\mathscr{C}\to\mathscr{Set} \\ Y\mapsto\operatorname{Mor}(Y,X) \\ \forall\phi:Y\to Y':\operatorname{Mor}(\phi,X):\operatorname{Mor}(Y',X)\to\operatorname{Mor}(Y,X), & \alpha\mapsto\alpha\phi \end{split}$$

Функтор $Mor(_, X)$ особо опасен (например, он контравариантен), с ним стоит обращаться с чрезвычайной осторожностью.