Math 111B HW6

Zih-Yu Hsieh

February 23, 2025

1

Question 1 Let k be an infinite field and let $f(X), g(X) \in k[X]$ be such that a for all $a \in k^{\times}$. Prove or disprove that f(X) = g(X).

Pf:

We'll prove by contradiction, that f(X) = g(X).

Suppose $f(X) \neq g(X)$, then $(f-g)(X) \neq 0$, hence $\deg(f-g) = n$ for some nonnegative integer n.

However, since k is a field, a nonzero polynomial over a field has at most n distinct zeroes, hence (f - g) should have no more than n distinct zeroes.

Yet, since for the infinite field k, k^{\times} is also infinite, and all $a \in k^{\times}$ satisfies f(a) = g(a), or (f - g)(a) = 0, then a is a zero of (f - g), showing that (f - g) has infinite zeroes, which contradicts to the previous statement.

Hence, f(X) = g(X) is enforced.

 $\mathbf{2}$

Question 2 Let R be an integral domain such that the division algorithm holds in R[X]. Prove or disprove that R is a field.

Pf:

Suppose R is an integral domain such that the division algorithm holds in R[X]. Then, for all nonzero element $a \in R$, consider X^2 and aX in R[X]:

Because division algorithm works, there exists unique pair of polynomials $q(X), r(X) \in R[X]$, with $X^2 = q(X) \cdot aX + r(X)$, such that r(X) = 0 or $\deg(r) < \deg(aX) = 1$.

Since r(X) = 0 or $0 \le \deg(r) < 1$, then WLOG, can assume r(X) is a constant, or $r(X) = \lambda \in R$. Hence, the above equation becomes:

$$X^2 = q(X) \cdot aX + \lambda, \quad X^2 - \lambda = q(X) \cdot aX$$

Because $X^2 - \lambda \neq 0$, then $q(X) \neq 0$; hence, $2 = \deg(X^2) = \deg(q(X)) + \deg(aX) = \deg(q(X)) + 1$, showing that $\deg(q(X)) = 1$.

Hence, there exists $b, c \in R$ (with $b \neq 0$), such that q(X) = bX + c. So, the above equation becomes:

$$X^2 - \lambda = (bX + c)aX = abX^2 + acX$$

Because the two equations match up, then the leading coefficient also matches. Therefore, 1 = ab, showing that a is invertible.

Because all nonzero element $a \in R$ is invertible, with the fact that R is an integral domain (which is commutative), R is a field.

3

Question 3 Prove or disprove that $f(X) = x^7 - X^5 + 2X^4 - 3X^2 - X + 2 \in \mathbb{Q}[X]$ is irreducible.

Pf:

Since f(X) is a monic polynomial, then based on Rational Root Theorem, if there exists a rational root $q \in \mathbb{Q}$ of f(X), not only if q is an integer, but also q divides the constant term of f(X), namely 2.

So, consider the divisors of 2, the collection $\{\pm 1, \pm 2\}$:

Plug in X = 1, we get $f(1) = 1^7 - 1^5 + 2 \cdot 1^4 - 3 \cdot 1^2 - 1 + 2 = 1 - 1 + 2 - 3 - 1 + 2 = 0$, hence $1 \in \mathbb{Q}$ is a root of f(X).

Then, using the division algorithm, with the linear term (X-1), there exists unique polynomials $q(X), r(X) \in \mathbb{Q}[X]$, with f(X) = (X-1)q(X) + r(X), and either r(X) = 0 or $0 \le \deg(r) < \deg((X-1)) = 1$. Hence, r(X) is in fact a constant.

Also, since f(1) = (1-1)q(1) + r(1) = 0, then r(1) = 0, showing that r(X) = 0. Hence, f(X) = (X-1)q(X).

Finally, since $f(X) \neq 0$, then $q(X) \neq 0$; also, because $\deg(f) = 7$ and $\deg(f) = \deg((X - 1)) + \deg(q) = 1 + \deg(q)$, then $\deg(q) = 6$, showing that q is a nonconstant polynomial in $\mathbb{Q}[X]$ (where \mathbb{Q} is an Integral domain), hence nonconstant polynomials are not invertible.

Because (X-1), q(X) are both nonconstant polynomial, they're not invertible, hence f(X) is a reducible element in $\mathbb{Q}[X]$.

4 (Potentially need to change)

Question 4 Find all factors of $X^7 - X \in \mathbb{Z}_7[X]$.

Pf:

Recall that Fermat's Little Theorem states that given any prime p, all $n \in \mathbb{N}$ satisfies $n^p \equiv n \pmod{p}$.

Then, for all $n \in \mathbb{Z}_7$, it is also true that $n^7 \equiv n \pmod{7}$, showing that $n^7 - n \equiv 0 \pmod{7}$. Hence, n is a zero of the equation $X^7 - X \in \mathbb{Z}_7[X]$, which since \mathbb{Z}_7 is a field (due to the fact that 7 is prime), (X - n) is a factor of $X^7 - X$.

Also, since $\deg(X^7 - X) = 7$, then there are at most 7 zeroes (counting multiplicity) for this equation. Since all $n \in \mathbb{Z}_7$ is a zero, then each n has a multiplicity of 1, showing that $X^7 - X$ must be factored into distinct linear terms (X - n).

Hence, $X^7 - X = X(X-1)(X-2)(X-3)(X-4)(X-5)(X-6)$, and arbitrary product of these distinct linear terms would be factor of $X^7 - X$.

5

Question 5 Find a prime p > 5 such that $X^2 + 1 \in \mathbb{Z}_p[X]$ is irreducible.

Pf:

Consider p = 7:

Recall that for a degree 2 or 3 polynomial in a polynomial ring k[X] over a field k, it is reducible implies there is a zero in the field k. Hence,since \mathbb{Z}_7 is a field, to show that $X^2 - 1$ is irreducible in $\mathbb{Z}_7[X]$, it suffices to show that it has no zeroes in \mathbb{Z}_7 .

Which, plug in all elements of \mathbb{Z}_7 , we get:

$$0^2 + 1 = 1$$
, $1^2 + 1 = 2$, $2^2 + 1 = 5$, $3^2 + 1 = 10 \equiv 3 \pmod{7}$
 $4^2 + 1 = 17 \equiv 3 \pmod{7}$, $5^2 + 1 = 26 \equiv 5 \pmod{7}$, $6^2 + 1 = 37 \equiv 2 \pmod{7}$

Hence, $X^2 + 1$ has no zeroes in \mathbb{Z}_7 , showing that $X^2 + 1$ is irreducible in $\mathbb{Z}_7[X]$.

Question 6 Let $f(X) = a_0 + a_1X + ... + a_{n-1}X^{n-1} + a_nX^n \in k[X]$, where k is a field and $a_0 \neq 0$. Let $g(X) = a_n + a_{n-1}X + ... + a_1X^{n-1} + a_0X^n$. Suppose that f(X) has a linear factor in k[X]. Prove or disprove that g(X) has a linear factor in k[X].

Pf:

First, since f(X) has a linear factor, then there exists $a \in k$, where f(X) = (X - a)q(X) for some $q(X) \in k[X]$. Hence, f(a) = (a - a)q(a) = 0, showing that a is a zero of f.

Notice that since $f(0) = a_0$, where by assumption $a_0 \neq 0$, showing that 0 is not a zero of f, hence $a \neq 0$. Then, due to the fact that k is a field and $a \neq 0$, then $a^{-1} \in k$ exists.

Now, consider $g(a^{-1})$:

$$g(a^{-1}) = a_n + a_{n-1}a^{-1} + \dots + a_1(a^{-1})^{n-1} + a_0(a^{-1})^n = \sum_{i=0}^n a_{n-i}(a^{-1})^i$$

Which, multiply by a^n on both sides, we get:

$$a^{n}g(a^{-1}) = a^{n} \cdot \sum_{i=0}^{n} a_{n-i}(a^{-1})^{i} = \sum_{i=0}^{n} a_{n-i} \left((a^{-1})^{i} \cdot a^{i} \right) a^{n-i} = \sum_{i=0}^{n} a_{n-i} \left((a^{-1} \cdot a)^{i} \right) a^{n-i}$$
$$= \sum_{i=0}^{n} a_{n-i} a^{n-i} = \sum_{i=0}^{n} a_{j} a^{j}$$

(Note: the second line is the change of index j = n - i).

Which, the final expression is the same as f(a), which is 0. Hence, $g(a^{-1}) = f(a) = 0$, showing that a^{-1} is a zero of g.

Then, because it is a root, we can always factor out the term $(X - a^{-1})$ as a linear term of g(X). Hence, g(X) has a linear factor in k[X].

7

Question 7 Prove or disprove that $f(X) = X^3 + 4X^2 + X - 1 \in \mathbb{Q}[X]$ is irreducible.

Pf:

Notice that f is a degree 3 polynomial. Because \mathbb{Q} is a field, then a degree 3 polynomial is reducible implies there is a zero in the field. Hence, if there is no zeroes in \mathbb{Q} , it implies that the polynomial f is irreducible.

Now, by Rational Root Theorem, because f is a monic polynomial, if $q \in \mathbb{Q}$ is a root of f, not only q is an integer, and q divides the constant coefficient, namely -1.

Hence, the only possible rational roots are ± 1 . Yet, if plugin the values, we get:

$$f(1) = 1^3 + 4 \cdot 1^2 + 1 - 1 = 1 + 4 = 5$$
, $f(-1) = (-1)^3 + 4 \cdot (-1)^2 + (-1) - 1 = -1 + 4 - 1 - 1 = 1$

Because the only possible rational numbers are not the root of f, then f has no zeroes in \mathbb{Q} , showing that f is irreducible over \mathbb{Q} .

8

Question 8 Let $f(X) = a_0 + a_1X + ... + a_{n-1}X^{n-1} + a_nX^n \in \mathbb{Z}[X]$. Let $x, y \in \mathbb{Z}$ be such that (x, y) = 1 and f(x/y) = 0 when we consider f(X) as a polynomial over \mathbb{Q} . Show that $y \mid a_n$.

Pf:

If view f as a polynomial over \mathbb{Q} , then f(x/y) = 0 implies the following:

$$0 = f(x/y) = a_0 + a_1(x/y) + \dots + a_{n-1}(x/y)^{n-1} + a_n(x/y)^n = \sum_{i=0}^{n} a_i(x/y)^i$$

Which, multiply both sides by y^n , we get:

$$0 = y^{n} \cdot 0 = y^{n} \cdot \sum_{i=0}^{n} a_{i} (x/y)^{i} = \sum_{i=0}^{n} a_{i} \cdot x^{i} \cdot y^{n-i} = a_{n} x^{n} + \sum_{i=0}^{n-1} a_{i} \cdot x^{i} \cdot y^{n-i}$$
$$- \sum_{i=0}^{n-1} a_{i} \cdot x^{i} \cdot y^{n-i} = a_{n} x^{n}, \quad -y \cdot \sum_{i=0}^{n-1} a_{i} x^{i} \cdot y^{n-i-1} = a_{n} x^{n}$$

(Note: for $0 \le i \le n-1$, $n-i-1 \ge 0$, hence for the last equation we can factor out a y).

Since the left side is divisible by y, then the right side is also divisible by y; However, since x, y are coprime, then y cannot divide x, hence it cannot divide x^n . So, in case for $a_n x^n$ to be divisible by y, y must divide a_n .