VERSUCH

HOG

Theoretischer Teil

. . .

Experimenteller Teil

Versuchsaufbau

Abbildung 1: Versuchsaufbau zum Bestimmen der Ausdehnung x der Feder. Es wird eine Masse m angehakt, welche eine Kraft F_G erzeugt. Es gilt $F_G = F$.

Messwerte

Mit Kraft F = mg und $g = 10 \frac{m}{s^2}$

	Ausdehnung x (in cm)			
Kraft F (in N)	Feder 1	Feder 2	Feder 1 + 2	
1000	32.0	3.1	35.2	
2000	62.5	6.1	90.2	
3000	93.0	9.1	124.8	
4000	122.0	11.9	157.2	

Datendiagramm

Abbildung 2: Die Kraft x in Abhängigkeit von der Ausdehnung x. Die Steigung a der Linearen Funktionen beschreibt die Federkonstante D der Federn.

Berechnung der Federkonstanten D

$$F = xD$$

$$D = \frac{F}{x}$$

Mit F=mg und $g=10\frac{m}{s^2}$ können für die Federn 1, 2 und 1+2 die Federkonstanten $D_{1,2,1+2}$ bei der jeweiligen Kraft bestimmt werden.

Federkonstante D	

Kraft F (in N)	D ₁	D ₂	D ₁₊₂
1000	31.3	322.6	28.4
2000	32.0	327.9	22.2
3000	32.3	329.7	24.0
4000	32.8	336.1	25.4
Mittelwert x	32.1	329.1	25.0

Fehlerrechnung D₁

Standardabweichung s1:

$$D_1 = (\bar{x}_1 \pm s_1) = (32.1 \pm 0.6)$$

Fehler vom Mittelwert m₁:

$$D_1 = (\bar{x}_1 \pm m_1) = (32.1 \pm 0.28)$$

Relativer Fehler r₁:

$$D_1 = (\bar{x}_1 \pm r_1) = (32.1 \pm 0.9\%)$$

Fehlerrechnung D₂

Standardabweichung s2:

$$D_2 = (\bar{x}_2 \pm s_2) = (329.1 \pm 4.8)$$

Fehler vom Mittelwert m2:

$$D_2 = (\bar{x}_2 \pm m_2) = (329.1 \pm 2.4)$$

Relativer Fehler r₂:

$$D_2 = (\bar{x}_2 \pm r_2) = (329.1 \pm 0.7\%)$$

Fehlerrechnung D₁₊₂

Standardabweichung s₁₊₂:

$$D_{1+2} = (\bar{x}_{1+2} \pm s_{1+2}) = (25.0 \pm 2.3)$$

Fehler vom Mittelwert m₁₊₂:

$$D_{1+2} = (\bar{x}_{1+2} \pm m_{1+2}) = (25.0 \pm 1.1)$$

Relativer Fehler r₁₊₂:

$$D_{1+2} = (\bar{x}_{1+2} \pm r_{1+2}) = (25.0 \pm 4.6\%)$$

Überprüfung des Formalen Zusammenhangs

Formel: $\frac{1}{D_{1+2}} = \frac{1}{D_1} + \frac{1}{D_2}$

$$D_{1+2} = \left(\frac{1}{D_1} + \frac{1}{D_2}\right)^{-1}$$

Einsetzen von D₁ und D₂:

$$D = \left(\frac{1}{32.1} + \frac{1}{329.1}\right)^{-1} = 29.2$$

$$D_{1+2} = 25.0$$

Auswertung

. . .

Quellen

Abbildung 1: Versuchsaufbau; http://www.maschinenbauwissen.de/bilder/skripte/mechanik-kinetik/federkraft-02.PNG