Math 201 Fall 2019	Name (Print):
Midterm2 11/08/2019 Time Limit: 50 minutes	
This exam contains 10 pages (including this cover page) and 4 problems. Check to see if an pages are missing.	
Statement of Ethics	
I agree to complete this exam w device.	vithout unauthorized assistance from any person, materials, or
Signature	Date
1 Fuentes T 1:30 - 2:20 Bloombe 2 Quinan T 3:00 - 3:50 Hodson 3 3 Quinan T 4:30 - 5:20 Hodson 3 4 Luo Th 1:30 - 2:20 Bloomberg 5 Luo Th 3:00 - 3:50 Maryland 3	301 216 ; 278

You are required to show your work on each problem on this exam. The following rules apply:

- Organize your work, in a reasonably neat and coherent way, in the space provided.
- No partial credit for any 1 point problem. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this.
- Any answer or solution on scratch paper will receive no credit.

Do not write in the table to the right.

Your section number: _

Problem	Points	Score
1	4	
2	5	
3	6	
4	5	
Total:	20	

- 1. Determine which of the following transformations with domain P_2 , the space of all polynomials of degree at most 2, is a linear **transformation**. Remember to justify your answers.
 - (a) (1 point) $T_1: P_2 \to \mathbb{R}^4$ defined by $T_1(p) = (p(1), p(2), p(3), p(4))$.

(b) (1 point) $T_2: P_2 \to \mathbb{R}^3$ defined by $T_2(p) = (p(0), p'(0), p''(0))$.

(c) (1 point) $T_3: P_2 \to \mathbb{R}^3$ defined by $T_3(p) = (p(1) + 2, (p(0))^3, p'(0)).$

(d) (1 point) $T_4: P_2 \to P_2$ defined by $T_4(p)(x) = xp'(x)$.

2. (a) (3 points) Let $\mathbb{R}^{2\times 2}$ to be the space of 2×2 matrices and consider the ordered basis \mathcal{B} of $\mathbb{R}^{2\times 2}$,

$$\mathcal{B} = \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

For the linear transformation $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ defined by

$$T(A) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A - A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},$$

determine $[T]_{\mathcal{B}}$, the \mathcal{B} -matrix of T.

(b) (2 points) Find a basis of $\operatorname{im}(T) \subset \mathbb{R}^{2 \times 2}$.

3. (a) (3 points) Perform the Gram-Schmidt process to $v_1, v_2 \in \mathbb{R}^4$, $v_1 = (1, 2, 3, 4)$, $v_2 = (4, 3, 2, 1)$, and find the corresponding QR factorization of the matrix

$$M = \begin{bmatrix} 1 & 4 \\ 2 & 3 \\ 3 & 2 \\ 4 & 1 \end{bmatrix}$$

(b) (3 points) Compute the 4×4 matrix (with respect to the standard basis) for the orthogonal projection onto the plane spanned by the vectors \mathbf{v}_1 and \mathbf{v}_2 above.

4. (a) (3 points) Can you find a 2019×2019 matrix A such that $im(A^2) = ker(A^2)$? If so, please give an example; otherwise please explain why.

(b) (1 point) Can you find a 4×4 matrix A such that $\operatorname{im}(A^2) = \ker(A^2)$? If so, please give an example; otherwise please explain why.

(c) (1 point) Let $P_{=2}$ be the space of all polynomials of exactly degree 2. Prove or disprove: $P_{=2}$ is a linear space.

Please estimate your score. You can also provide your suggestion for the course here.