Análisis Estadístico con R

Regresión

true

18 de abril de 2018

Contents

RLM: Supuestos		1
Multicolinealidad		1
Heterocedasticidad		6
Autocorrelación	_	12

RLM: Supuestos

Multicolinealidad

El problema:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

- Se tiene un problema en cuanto a la transpuesta de la matriz (X'X)
 - Perfecta: Si se tiene este tipo, el modelo simplemente no toma en cuenta esta variable
 - Imperfecta: El cáclulo de la inversa es computacionalmente exigente

Posibles causas

- El método de recolección de información
- Restricciones en el modelo o en la población objeto de muestreo
- Especificación del modelo
- Un modelo sobredetermindado
- Series de tiempo

¿Cuál es la naturaleza de la multicolinealidad?

Causas - ¿Cuáles son sus consecuencias prácticas?

Incidencia en los errores estándar y sensibilidad

• ¿Cómo se detecta?

Pruebas

¿Qué medidas pueden tomarse para aliviar el problema de multicolinealidad?

- No hacer nada
- Eliminar variables
- Transformación de variables
- Añadir datos a la muestra
- Componentes principales, factores, entre otros

Figure 1:

¿Cómo se detecta?

- Un \mathbb{R}^2 elevado pero con pocas razones t significativas
- Regresiones auxiliares (Pruebas de Klein)
- Factor de inflación de la varianza

$$VIF = \frac{1}{(1 - R^2)}$$

Ejemplo 1

- Haremos uso del paquete AER
- Abrir la tabla 10.8
- Ajusta el modelo

donde

- X₁ índice implícito de deflación de precios para el PIB,
- X_2 es el PIB (en millones de dólares),
- X_3 número de desempleados (en miles),
- X_4 número de personas enlistadas en las fuerzas armadas,
- X_5 población no institucionalizada mayor de 14 años de edad
- X_6 año (igual a 1 para 1947, 2 para 1948 y 16 para 1962).

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + u_i$$

• Analice los resultados

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/tabla10_8.csv"
datos<- read.csv(url(uu),sep=";",header=TRUE)
attach(datos)</pre>
```

Agreguemos el tiempo: - Las correlaciones muy altas también suelen ser síntoma de multicolinealidad

```
ajuste.2 <- lm(Y~X1+X2+X3+X4+X5+TIME)
summary(ajuste.2)</pre>
```

```
##
## Call:
## lm(formula = Y \sim X1 + X2 + X3 + X4 + X5 + TIME)
##
## Residuals:
##
      Min
                             3Q
              1Q Median
                                   Max
   -381.7 -167.6
                   13.7
                         105.5
                                 488.9
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.727e+04
                           2.324e+04
                                        2.895
                                               0.02005 *
## X1
               -2.051e+00
                           8.710e+00
                                       -0.235
                                               0.81974
## X2
               -2.733e-02
                           3.317e-02
                                       -0.824
                                               0.43385
## X3
               -1.952e+00
                           4.767e-01
                                       -4.095
                                               0.00346 **
## X4
               -9.582e-01
                            2.162e-01
                                       -4.432
                                               0.00219 **
## X5
                5.134e-02
                            2.340e-01
                                        0.219
                                               0.83181
                1.585e+03
## TIME
                           4.827e+02
                                        3.284
                                               0.01112 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 295.6 on 8 degrees of freedom
```

```
## Multiple R-squared: 0.9955, Adjusted R-squared: 0.9921
## F-statistic: 295.8 on 6 and 8 DF, p-value: 6.041e-09
cor(cbind(X1,X2,X3,X4,X5,TIME))
##
              X1
                         X2
                                   ХЗ
                                               Х4
                                                         Х5
                                                                 TIME
        1.0000000 0.9936689
## X1
                                       0.4689737 0.9833160 0.9908435
                            0.5917342
## X2
       0.9936689 1.0000000
                            0.5752804
                                       0.4587780 0.9896976 0.9947890
       0.5917342 0.5752804 1.0000000 -0.2032852 0.6747642 0.6465669
## X3
        0.4689737 0.4587780 -0.2032852
                                       1.0000000 0.3712428 0.4222098
        0.9833160 0.9896976 0.6747642 0.3712428 1.0000000 0.9957420
## X5
## TIME 0.9908435 0.9947890 0.6465669 0.4222098 0.9957420 1.0000000
```

- Prueba de Klein: Se basa en realizar regresiones auxiliares de todas contra todas las variables regresoras.
- $\bullet\,$ Si el R^2 de la regresión aux es mayor que la global, esa variable regresora podría ser la que genera multicolinealidad
- ¿Cuántas regresiones auxiliares se tiene en un modelo en general?

Regresemos una de las variables

```
ajuste.3<- lm(X1~X2+X3+X4+X5+TIME)
summary(ajuste.3)
##
## lm(formula = X1 \sim X2 + X3 + X4 + X5 + TIME)
##
## Residuals:
                      Median
       Min
                  1Q
                                    3Q
                                            Max
## -18.8602 -4.3277 -0.3175
                                       14.8438
                               4.3726
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.529e+03 7.288e+02
                                       2.098
                                              0.0653
## X2
               2.543e-03 9.453e-04
                                       2.690
                                              0.0248 *
## X3
               3.056e-02 1.514e-02
                                       2.019
                                              0.0742 .
               1.011e-02 7.559e-03
## X4
                                       1.337
                                               0.2140
## X5
               -1.263e-02 7.903e-03
                                     -1.598
                                               0.1445
## TIME
              -1.621e+01 1.766e+01
                                               0.3826
                                     -0.918
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 11.31 on 9 degrees of freedom
## Multiple R-squared: 0.9923, Adjusted R-squared: 0.9881
## F-statistic: 232.5 on 5 and 9 DF, p-value: 3.127e-09
tolerancia <- 1-0.9923
```

Factor de inflación de la varianza

Si este valor es mucho mayor que 10 y se podría concluir que si hay multicolinealidad

```
vif <- 1/tolerancia
vif
```

```
## [1] 129.8701
```

Ahora vamos a usar el paquete AER:

```
library(AER)
vif1 <- vif(ajuste.2)</pre>
Raux <- (vif1-1)/vif1
Rglobal <- 0.9955
Rglobal-Raux
##
             X1
                          X2
                                        ХЗ
                                                     Х4
                                                                  Х5
## 0.003181137 -0.003829181 0.026533869 0.254649059 -0.001623122
##
           TIME
## -0.003160352
Se podría no hacer nada ante este problema. O se puede tratar con transformaciones. Deflactamos el PIB:
PIB_REAL <- X2/X1
# La variable X5 (población)
# esta correlacionada con el tiempo
PIB_REAL <- X2/X1
ajuste.4<-lm(Y~PIB_REAL+X3+X4)
summary(ajuste.4)
##
## Call:
## lm(formula = Y ~ PIB_REAL + X3 + X4)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
## -760.29 -197.71 -53.69 234.77 603.15
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42716.5646
                           710.1206 60.154 3.31e-15 ***
## PIB REAL
                  72.0074
                              3.3286 21.633 2.30e-10 ***
                              0.1693 -4.023 0.00201 **
## X3
                  -0.6810
## X4
                  -0.8392
                              0.2206 -3.805 0.00292 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 389 on 11 degrees of freedom
## Multiple R-squared: 0.9893, Adjusted R-squared: 0.9864
## F-statistic: 339.5 on 3 and 11 DF, p-value: 4.045e-11
vif(ajuste.4)
## PIB_REAL
                  ХЗ
                           X4
## 3.054580 2.346489 2.318500
ajuste.5<-lm(Y~PIB_REAL+X3+X4)
summary(ajuste.5)
##
## Call:
## lm(formula = Y ~ PIB_REAL + X3 + X4)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
```

```
## -760.29 -197.71 -53.69 234.77 603.15
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42716.5646 710.1206 60.154 3.31e-15 ***
## PIB REAL
                 72.0074
                             3.3286 21.633 2.30e-10 ***
## X3
                 -0.6810
                             0.1693 -4.023 0.00201 **
## X4
                 -0.8392
                             0.2206 -3.805 0.00292 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 389 on 11 degrees of freedom
## Multiple R-squared: 0.9893, Adjusted R-squared: 0.9864
## F-statistic: 339.5 on 3 and 11 DF, p-value: 4.045e-11
vif(ajuste.5)
## PIB_REAL
                 ХЗ
                          X4
## 3.054580 2.346489 2.318500
```

Heterocedasticidad

Ocurre cuando la varianza no es constante.

¿Cuál es la naturaleza de la heterocedasticidad?

- Modelos de aprendizaje de los errores: con el paso del tiempo, las personas cometen menos errores de comportamiento. Es decir que la varianza disminuye.
- Ingreso direccional: Es probable que la varianza aumente con el ingreso dado que el aumento del ingreso se tiene más opciones del cómo disponer de él.
- Técnicas de recolección de datos: si la técnica mejora, es probable que la varianza se reduzca.
- Datos atípicos o aberrantes: Sensibilidad en las estimaciones
- Especificaciones del modelo: Omisión de variables importantes en el modelo.
- Asimentría: Surge a partir de la distribución de una o más regresoras en el modelo. Ejemplo: Distribución del ingreso generalmente inequitativo

¿Cómo detectarla?

Método gráfico

Veamos las pruebas de detección en un ejemplo

• Abrir la base de datos wage1 de Wooldrigde

Figure 2:

Figure 3:

```
casadas = (female)*married
solteras = (female)*(1-married)
solteros = (1-female)*(1-married)
```

• Correr el modelo

 $lwage = \beta_0 + \beta_1 casados + \beta_2 casadas + \beta_3 solteras + \beta_4 educ + \beta_5 exper + \beta_6 expersq + \beta_7 tenure + \beta_8 tenure + quite + quit$

• Hacer un gráfico de los valores estimados y los residuos al cuadrado

Prueba de Breusch Pagan

- Correr un modelo de los residuos al cuadrado regresado en las variables explicativas del modelo global. $sqresid = \beta_0 + \beta_1 casados + \beta_2 casados + \beta_3 solteras + \beta_4 educ + \beta_5 exper + \beta_6 expersq + \beta_7 tenure + \beta_8 tenure + qui tenure$
- bptest(objeto): si el pvalor es inferior a 0.05, Ho: Homocedasticidad

El códgio en R sería:

```
ajuste1 <- lm(lwage~casados+casadas+solteras+educ+exper+
               expersq+tenure+tenursq)
summary(ajuste1)
##
## Call:
## lm(formula = lwage ~ casados + casadas + solteras + educ + exper +
##
      expersq + tenure + tenursq)
##
## Residuals:
##
      Min
               1Q
                  Median
                              30
## -1.89697 -0.24060 -0.02689 0.23144 1.09197
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.3213780 0.1000090 3.213 0.001393 **
## casados
             0.2126756 0.0553572
                                 3.842 0.000137 ***
## casadas
            ## solteras
            ## educ
             0.0268006 0.0052428 5.112 4.50e-07 ***
## exper
            ## expersq
            0.0290875 0.0067620
                                 4.302 2.03e-05 ***
## tenure
## tenursq
            -0.0005331 0.0002312 -2.306 0.021531 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3933 on 517 degrees of freedom
## Multiple R-squared: 0.4609, Adjusted R-squared: 0.4525
## F-statistic: 55.25 on 8 and 517 DF, p-value: < 2.2e-16
residuos <- resid(ajuste1)
sqresid <- residuos^2</pre>
y techo <- fitted(ajuste1)</pre>
plot(y_techo,sqresid)
```


plot(fitted(ajuste1),resid(ajuste1))

Usando el "default" de R:
par(mfrow=c(2,2))
plot(ajuste1)


```
## educ
            3.849e-03 4.614e-03 0.834 0.40462
            1.008e-02 3.614e-03
                             2.790 0.00546 **
## exper
           -2.071e-04 7.611e-05 -2.720 0.00674 **
## expersq
            4.763e-04 4.661e-03
## tenure
                              0.102 0.91864
## tenursq
            8.670e-05 1.594e-04
                              0.544 0.58672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2711 on 517 degrees of freedom
## Multiple R-squared: 0.02507,
                           Adjusted R-squared:
## F-statistic: 1.662 on 8 and 517 DF, p-value: 0.105
# F =1.662 y pvalue=0.105 NO EXISTE HETEROCEDASTICIDAD
#Breusch-Pagan test
'bptest es igual a hettest en STATA'
## [1] "bptest es igual a hettest en STATA"
bptest(ajuste1)
##
##
   studentized Breusch-Pagan test
##
## data: ajuste1
## BP = 13.189, df = 8, p-value = 0.1055
Para estimar errores robustos (como robust en stata):
coeftest(ajuste1, vcovHC(ajuste1,"HCO"))
##
## t test of coefficients:
##
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.32137805 0.10852844 2.9612 0.0032049 **
            ## casados
## casadas
           ## solteras
           -0.11035021 0.05662552 -1.9488 0.0518632 .
## educ
            ## exper
           ## expersq
           ## tenure
           ## tenursq
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Autocorrelación

- ¿Cuál es la naturaleza de la autocorrelación?
- ¿Cuáles son las consecuencias teóricas y prácticas de la autocorrelación?
- ¿Cómo remediar el problema de la autocorrelación?

Autocorrelación: correlación entre miembros de series de observaciones ordenadas en el tiempo [como en datos de series de tiempo] o en el espacio [como en datos de corte transversal]:

$$E(u_i, u_j) \neq 0 i \neq j$$

El supuesto es:

$$cov(u_i, u_j | x_i, x_j) = E(u_i, u_j) = 0i \neq j$$

- Datos atípicos o aberrantes: Sensibilidad en las estimaciones
- Especificaciones del modelo: Omisión de variables importantes en el modelo.
- Asimentría: Surge a partir de la distribución de una o más regresoras en el modelo. Ejemplo: Distribución del ingreso generalmente inequitativo

Cómo detectarla sesgos de especificación

Método gráfico

Veamos las pruebas de detección en un ejemplo

Ejemplo

Abrir la tabla 12.4. Veamos los datos en forma gráfica, y corramos el modelo:

- Y, índices de remuneración real por hora
- X, producción por hora X

```
uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/tabla12_4.csv"
datos1<- read.csv(url(uu), sep=";",dec=".", header=T)
attach(datos1)

#Indice de compensacion real (salario real)
plot(X,Y)</pre>
```

```
ajuste.indice<-lm(Y~X)
summary(ajuste.indice)

##
## Call:
## lm(formula = Y ~ X)
##
# Residuals:</pre>
```

```
## Min 1Q Median 3Q Max
## -5.138 -2.130 0.364 2.201 3.632
##
```

Coefficients:

##

```
## (Intercept) 29.5192   1.9424   15.20   <2e-16 ***
## X      0.7137   0.0241   29.61   <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##</pre>
```

Estimate Std. Error t value Pr(>|t|)

Residual standard error: 2.676 on 38 degrees of freedom ## Multiple R-squared: 0.9584, Adjusted R-squared: 0.9574

F-statistic: 876.5 on 1 and 38 DF, $\,$ p-value: < 2.2e-16

Revisemos si hay autocorelación:

```
residuos<- resid(ajuste.indice)
plot(residuos,t="l",xlab="Tiempo")</pre>
```


- Los datos NO DEBEN TENER UN PATRON (si tienen patron, algo anda mal)
- En este caso se tiene un curva cuadrática, el modelo podría estar mal especificado
- Podría ser que el modelo no se lineal o estar correlacionado

Veamos si se trata de una función cuadrática y cúbica

```
ajuste2 <- lm(Y~X+I(X^2))
summary(ajuste2)
##
## Call:
## lm(formula = Y \sim X + I(X^2))
##
## Residuals:
##
       Min
                  1Q
                     Median
## -1.58580 -0.76248 0.09209 0.68442 2.63570
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.622e+01 2.955e+00 -5.489 3.09e-06 ***
               1.949e+00 7.799e-02 24.987 < 2e-16 ***
## I(X^2)
              -7.917e-03 4.968e-04 -15.936 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9669 on 37 degrees of freedom
## Multiple R-squared: 0.9947, Adjusted R-squared: 0.9944
## F-statistic: 3483 on 2 and 37 DF, p-value: < 2.2e-16
ajuste3 \leftarrow lm(Y~X+I(X^2)+I(X^3))
summary(ajuste3)
##
## Call:
## lm(formula = Y \sim X + I(X^2) + I(X^3))
##
## Residuals:
##
       Min
                  1Q
                     Median
                                    3Q
                                            Max
## -1.63265 -0.79419 0.06568 0.66627 2.43810
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.222e+01 1.344e+01 -1.653 0.107060
## X
                2.196e+00 5.466e-01
                                      4.018 0.000286 ***
## I(X^2)
              -1.119e-02 7.178e-03 -1.559 0.127658
## I(X^3)
               1.398e-05 3.054e-05 0.458 0.649958
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9774 on 36 degrees of freedom
## Multiple R-squared: 0.9947, Adjusted R-squared: 0.9943
## F-statistic: 2272 on 3 and 36 DF, p-value: < 2.2e-16
Nos quedamos con el ajuste 2
El gráfico de los val ajustados, muestra que se ha eliminado el patron inicial
par(mfrow = c(2,2))
plot(ajuste2)
```


Cómo debe ser el gráfico

```
aleatorios=rnorm(40,0,1)
plot(aleatorios,t="l",xlab="Tiempo")
points(aleatorios)
abline(h=0,col="blue")
```


¿Se parece?

Ejemplo: Pruebas

Ho: No hay autocorrelación

dwtest(ajuste2)

```
##
## Durbin-Watson test
##
## data: ajuste2
## DW = 1.03, p-value = 0.0001178
## alternative hypothesis: true autocorrelation is greater than 0
¿Cuál es la conclusión?
```

Otra prueba:

```
# Ajuste Breuch Godfrey (Ho: No hay autocorrelación)
bgtest(ajuste2,order=4)
```

```
##
## Breusch-Godfrey test for serial correlation of order up to 4
##
## data: ajuste2
## LM test = 14.945, df = 4, p-value = 0.004817
```