Математический анализ. Теория

Александр Сергеев

1 Введение

1.1 Множества

Множество - совокупность уникальных элементов. (*Не является определением*)

Способы задания множества:

- 1. $A = \{1, 2, ...\}$ перечисление
- 2. $A = \{x \in B : \phi(x)\}$ через другое множество

Отношения множеств:

- 1. $A \subset B \Leftrightarrow \forall x \in A \quad x \in B$
- 2. $A = B \Leftrightarrow A \subset B \land B \subset A$

Операции над множествами:

- 1. $X \times Y = \{(x,y) : x \in X, y \in Y\}$ Декартово произведение
- 2. $\bigcup_{\alpha \in A} X_{\alpha} = \{x : \exists \ \alpha \quad x \in X_{\alpha}\}$ Объединение
- 3. $\bigcap_{\alpha \in A} X_{\alpha} = \{x : \forall \ \alpha \quad x \in X_{\alpha}\}$ Пересечение
- 4. $A^c = \{x \in U : x \notin A\}$ Дополнение
- 5. $A \setminus B = A \cap B^c$ Разность

6. $A\triangle B=(A\cup B)\backslash (A\cap B)$ - Исключающее объединение(симметричная разность)

Свойства объединения и пересечения:

- 1. Коммутативность: $X \cap Y = Y \cap X$; $X \cup Y = Y \cup X$
- 2. Нейтральный элемент: $X \cap U = X$; $X \cup \emptyset = X$
- 3. Ассоциативность: $X \cap (Y \cap Z) = (X \cap Y) \cap Z$; $X \cup (Y \cup Z) = (X \cup Y) \cup Z$
- 4. Дистрибутивность(законы де Моргана): $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z); \ X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$

Законы де Моргана для разности:

1.
$$X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z)$$

2.
$$X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z)$$

1.2 Логические операции

Правила отрицания:

1.
$$\exists x : \phi(x) \Leftrightarrow \forall x : \overline{\phi(x)}$$

2.
$$\forall x : \phi(x) \Leftrightarrow \exists x : \overline{\phi(x)}$$

Операции над логическими выражениями:

1. Имприкация

$$P\Rightarrow Q\quad\Leftrightarrow\quad Q\vee\overline{P}$$

2. Эквивалентность

$$P \Leftrightarrow Q \quad \Leftrightarrow \quad Q \wedge P \vee \overline{Q} \wedge \overline{P}$$

1.3 Семейства

Семейство - совокупность неупорядоченных элементов. (Не является определением)

Определение

 $\it Cемейство$ элементов $\it X$ - отображением множества индексов $\it A$ в множество $\it X$. Обозначения:

- 1. $(x_{\alpha})_{\alpha \in A}, x_{\alpha} \in X$
- $2. A \rightarrow X$
- 3. $\alpha \mapsto x_{\alpha}$

Частные случаи семейств:

- 1. Упорядоченный набор из n чисел $\{1...n\} \mapsto \mathbb{R}$
- 2. Упорядоченная пара $\{1,2\}\mapsto \mathbb{R}$
- 3. Последовательность

1.4 Счетные и несчетные множества

Определение

Назовем два множества эквивалентными, если существует биекция между ними

Классы эквивалентности по этому отношению называются *мощностью множества*

Если множество конечно, то его мощность - число его элементов

Определение

Теорема

Если множество бесконечно, то оно содержит счетное подмножество

Доказательство

Будем по одному выкидывать элементы из множества, нумеруя их Т.к. множество бесконечно, то для каждого номера такой элемент найдется

Теорема

Бесконечное подмножество в счетном множестве тоже счетно

Доказательство

Пусть A - счетное множество

B - бесконечное подмножество A

Пусть у каждого элемента A был номер

Перенумеруем элементы B в порядке возрастания номеров

Определение

Множество *не более чем счетное* - множество, являющееся конечным или счетным

Теорема

Не более чем счетное объединение не более чем счетных множеств не более чем счетно

Следствие

 $\mathbb{N} \times \mathbb{N}$ счетно

Теорема

Q счетно

Теорема

[0,1] несчетно

Определение

Если множество равномощно [0,1], то его мощность - континуум

Теорема

Пусть A - имеет мощность континуума, B не более чем счетно

Тогда $A \cup B$ имеет мощность континуума

Теорема

Множество всех бесконечных бинарных последовательностей имеет мощность континуума

Доказательство

Сопоставим каждой последовательности ($\epsilon_1, \epsilon_2, \ldots$) двоичную дробь $0, \epsilon_1 \epsilon_2 \ldots$ Заметим, что такое сопоставление не будет биективным из-за двойственности представления двоичных дробей

Пусть A - множество конечных двоичных дробей (целая часть 0)

Множество A счетно (можно сопоставить каждой дроби двоичное число из $\mathbb{N} \cup \{0\}$, полученное отражением числа относительно запятой)

Теперь мы можем построить биекцию между последовательностями и $[0,1]\cup A$, считая, что элементы A - это "другие" дроби, не содержащиеся в [0,1]

Тогда из предыдущей теоремы множество последовательностей равномощно [0,1]

Континуум-гипотеза

Пусть $A \subset [0,1]$ и не континуально

Утверждение "Тогда A счетно" невозможно ни доказать, ни опровергунть

Утверждение

 \mathbb{R}^m , \mathbb{R}^∞ - континуум

 $\{f:f:[a,b]\to\mathbb{R}\}$ - больше, чем континуум

Если X - множество, то 2^X - множество всех подмножество - имеет б**о**льшую мощность

2 Последовательности в метрическом пространстве

2.1 Предел вещественной последовательности

Определение

Пусть (x_n) - вещественная последовательность $(x_n) \to \alpha \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall n > N \ |x_n - \alpha| < \varepsilon$

Замечания:

- 1. $N = N(\varepsilon)$
- 2. Необязательно брать самый оптимальный N
- 3. $N(\varepsilon_0)$ подходит для $\varepsilon \geq \varepsilon_0$
- 4. " $< \varepsilon$ "можно заменить на " $< y\varepsilon$ "или " $< \varepsilon^y$ " $(y \in (0; +\infty)$

Определение

 ε -окружность α $U_{\varepsilon}(\alpha) = [\alpha - \varepsilon; \alpha + \varepsilon]$

Определение

$$(x_n) \to \alpha \quad \Leftrightarrow \quad \forall \, \varepsilon > 0 \, \, \exists \, N \in \mathbb{R} \, \, \forall \, n > N \, \, x_n \in U_{\varepsilon}(\alpha)$$

Определение

Mетрика на X - это отображение $\rho: X \times X \to \mathbb{R}$, удовлетворяющее свойствам(аксиомам метрики):

- 1. $\forall x,y \in X \ \rho(x,y) \ge 0$, причем $\rho(x,y) = 0 \Leftrightarrow x = y$
- $2. \ \rho(x,y) = \rho(y,x)$
- 3. $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$ неравенство треугольника

Определение

Пара (X, ρ) - метрическое пространство

Примеры:

- 1. Симплициальная метрика $\rho(x,y) = \begin{bmatrix} 1, & x \neq y \\ 0, & x = y \end{bmatrix}$.
- 2. Метрика Хемминга $X = \text{множество байтов} = \{(\varepsilon_1,...,\varepsilon_8): \forall i \ \varepsilon_i \in \{0,1\}\}$ $\rho(x,y) =$ число несовпадающих разрядов
- 3. Метрика городских кварталов $(\mathbb{R}^m,\rho): \rho(x,y) = |x_1-y_1| + |x_2-y_2| + \ldots + |x_m-y_m|$
- 4. Eвклидова метрика $(\mathbb{R}^m, \rho): \rho(x,y) = \sqrt{|x_1-y_1|^2 + |x_2-y_2|^2 + \ldots + |x_m-y_m|^2}$
- 5. $(\mathbb{R}^m, \rho) : \rho(x, y) = \max |x_1 y_1|, |x_2 y_2|, ..., |x_m y_m|$

Определение

 (X, ρ) - метрическое пространство $A \subset X$

$$\rho_A: A \times A \to \mathbb{R}: \forall a, b \in A \ \rho_A(a, b) = \rho(a, b)$$

 (A, ρ_A) - Подпространство метрического пространства

Определение

 (X, ρ) - метрическое пространство

$$a\in X, r>0$$

Открытый шар $B(a,r) = \{x \in X : \rho(a,x) < r\}$ Закрытый шар $\overline{B}(a,r) = \{x \in X : \rho(a,x) \le r\}$

$$C\phi$$
ера $S(a,r) = \{x \in X : \rho(a,x) = r\}$

Определение

arepsilon-окрестность точки a=B(a,arepsilon)

Проколотая ε -окрестность точки $a=B(a,\varepsilon)=B(a,\varepsilon)\setminus\{a\}$

Определение

 $A \subset X$ - Ограниченное

 \Leftrightarrow A содержится в каком-нибудь шаре(в том числе в шаре с фиксированным центром)

$$\Leftrightarrow \exists a \in X, r > 0 : A \subset B(a, r)$$

$$\Leftrightarrow \exists r > 0 : A \subset B(b,r)$$
 для фиксированного b

Определение

$$(x_n)$$
 - последовательность в (X, ρ)

$$x_n \to L$$

$$\Leftrightarrow \lim_{n \to +\infty} x_N = L$$

$$\Leftrightarrow \forall \varepsilon > 0 \exists N > 0 \forall n > N \ \rho(x_n, L) < \varepsilon$$

$$\Leftrightarrow \forall \, \varepsilon > 0 \,\exists \, N > 0 \,\forall \, n > N \, x_n \in U_{\varepsilon}(L)$$

$$\Leftrightarrow (x_n \to L \Leftrightarrow \rho(x_n, L) \to 0)$$

Теорема

Пусть (x_n) - последовательность в (X, ρ)

$$x_n \to L, x_n \to M$$

Тогда L=M.

Доказательство

Для любой окружности верно, что вне нее содержится конечное количество x_n .

Пусть $L \neq M$.

Возьмем $U_{\varepsilon}(L)$ и $U_{\varepsilon}(M)$ с $\varepsilon=\frac{\rho(L,M)}{2}$. Тогда из свойства для $U_{\varepsilon}(L)$ следует, что в $U_{\varepsilon}(M)$ конечное количество членов, что неверно. Отсюда L=M, ч.т.д.

Уточнение: $U_{\varepsilon}(M) \cap U_{\varepsilon}(L) = \emptyset$, т.к. окрестности - открытые окружности(доказательство очевидно).

Теорема

(об ограниченности сходящейся последовательности)

Пусть (x_n) - последовательность в (X, ρ)

$$x_n \to L$$

Тогда множество значений x_n ограничено.

$$(\exists B(a,r): \forall n \ x_n \in B(a,r))$$

Доказательство

$$\forall \, \varepsilon > 0 \, \exists \, N_{\epsilon} > 0 \, \forall \, n > N_{\epsilon} \, x_n \in U_{\varepsilon}(L)$$

Возьмем
$$\varepsilon$$
. $R = \epsilon + \max_{1 \le i \le N_{\epsilon}} \rho(x_i, L)$. Тогда $\forall n \ x_n \in B(L, R)$

2.2Порядковые свойства пределов последовательностей в ℝ

Теорема

(о предельном переходе в неравенствах)

 $(x_n),(y_n)$ - вещественные последовательности

 $x_n \leq y_n$ для бесконечного количества n.

Пусть: $x_n \to a, y_n \to b$, где $a, b \in \mathbb{R}$

Тогда a < b

Доказательство

Пусть a>b. Возьмем $\varepsilon=\frac{\rho(a,b)}{2}$. Для некоторого $N\forall\,n>N$ $x_n\in$ $U_{\varepsilon}(a), y_n \in U_{\varepsilon}(b)$. Отсюда $\forall n > N \ y_n \leq b + \varepsilon < a - \varepsilon \leq x_n \Leftrightarrow \forall n > 0$ $N y_n < x_n$, что неверно. Тогда $a \le b$, ч.т.д.

Теорема о двух городовых

 $(x_n), (y_n), (z_n)$ - вещественные последовательности.

 $\forall x_n \le y_n \le z_n$

Пусть $x_n \to a, z_n \to a$

Тогда $y_n \to a$

Доказательство

 $\forall \varepsilon > 0 \; \exists N \; \forall n > N \; a - \varepsilon < x_n$

Для того же $\varepsilon \exists K \ \forall n > K \ a + \varepsilon > z_n$

При $n > \max(N, K)$ $a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon$.

Отсюда $\forall \varepsilon > 0 \; \exists S > 0 \; \forall n > Sa - \varepsilon < y_n < a + \varepsilon \Leftrightarrow y_n \to a$

Следствие

 $(y_n), (z_n)$ - вещественные последовательности.

 $\forall n |y_n| \leq z_n$

 $z_n \to 0$

Тогда y_n сходится и $\lim_{n\to+\infty}y_n=0$

Определение

 (x_n) - бесконечно малая последовательность $\Leftrightarrow x_n \to 0$

Теорема

 (x_n) - бесконечно малая

 (y_n) - ограниченная последовательность

Тогда $(x_n \cdot y_n)$ - бесконечно малая

Доказательство

$$x_n \to 0 \Leftrightarrow |x_n| \to 0$$

 y_n - ограниченная $\Leftrightarrow \exists R \ \forall n \ |y_n| \leq R$

Отсюда $|x_n \cdot y_n| \leq R \cdot |x_n| \to 0$

Тогда по следствию из теоремы о двух городовых $x_n \cdot y_n \to 0$, ч.т.д.

2.3 Отображение

Omoбражение - тройка объектов (f,X,Y), где X - область определения, Y - область значений.

Обозначения:

- 1. $\forall x \in X \quad f(x) \in Y$
- 2. $f: X \to Y$
- $3. x \mapsto y$

Функция - отображение $X \to \mathbb{R}$

Векторнозначная функция - отображение $X \to \mathbb{R}^m$

Вещественная последовательность - отображение $\mathbb{N} \to \mathbb{R}$

Семейство - отображение

Определение

Пусть
$$f: X \to Y$$
. Образ $A \subset X$ $f(A) = \{y \in Y : \exists x \in A \mid y = f(x)\}$

Определение

Пусть
$$f: X \to Y$$
. Прообраз $B \subset Y$ $f^{-1}(B) = \{x \in X : f(x) \in B\}$ (Не является обратным отображением)

Инъекция (взаимно однозначное отображение): $x \neq y \Rightarrow f(x) \neq f(y)$

Сюръекция (отображение "на"): $\forall y \exists x : f(x) = y$

Биекция (взаимно однозначное соответствие) = Инъекция ∧ Сюръекция

Определение

 Γ рафик отображения $f: X \to Y$

$$\Gamma_f = \{(x, y) \in X \times Y : f(x) = y\}$$

Определение

Пусть $f: X \to Y$ - инъективное. Обратное отображение $f^{-1}: f(X) \subset Y \to X$ $\forall y \in f(X) \; \exists \, x \in X: f(x) = y.$ В силу инъективности $f^{-1}(y) = x$

Определение

Определение

f:X o Y $X\subset B$ Продолжение f на B - это отображение $F:B o Y: \forall\, x\in X\ F(x)=f(x)$

Определение

Тождественное отображение $id:X\to X$ - функция id(x)=x

Определение

f:X o Y g:Y o Z Композиция отображений - отображение $g \circ f:X o Z:(g \circ f)(x)=g(f(x))$

2.4 Вещественные числа

Определение

 \mathbb{R} - любое множество, которое удовлетворяет аксиомам 1-4

- 1. Аксиомы поля
 - (a) " + " : $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$: i. Коммутативность a+b=b+a

- ii. Ассоциативность (a+b)+c=a+(b+c)
- ііі. Нейтральный элемент $\exists \, \mathbb{O} : a + \mathbb{O} = a$
- iv. Обратный элемент $\exists b : a + b = 0$
- (b) " \cdot ": $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$:
 - i. Коммутативность $a \cdot b = b \cdot a$
 - іі. Ассоциативность $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - ііі. Нейтральный элемент $\exists \, \mathbb{1} \neq \mathbb{0} : a \cdot \mathbb{1} = a$
 - iv. Обратный элемент $\forall \, a \neq \mathbb{0} \, \exists \, b : a \cdot b = \mathbb{1}$
- (v) Дистрибутивность $a \cdot (b+c) = a \cdot b + a \cdot c$
- 2. Аксиомы порядка
 - (a) " \leq " $= \mathbb{R} \times \mathbb{R}$:
 - і. $\forall x, y \ x \leq y \lor y \leq x$ полнота
 - іі. $x \le y, y \le z \Rightarrow x \le z$ транзитивность
 - ііі. $x \le y, y \le x \Leftrightarrow x = y$ антисимметричность
 - iv. $x \le y \Rightarrow \forall z \ x + z \le y + z$
 - v. $0 \le x, y \Rightarrow 0 \le xy$
- 3. Аксиома Архимеда

 $\forall\, x,y>0\,\,\exists\, n\in\mathbb{N}\,\, nx>y$

Пояснение: не существует бесконечно больших чисел

4. Аксиома Кантора

 $[a_1,b_1]\supset [a_2,b_2]\supset\dots$ - бесконечное семейство вложенных отрезков в $\mathbb R$

Тогда $\bigcap_{k=1}^{\infty} [a_k, b_k] \neq \emptyset$

Замечание: отрезки не могут быть заменены на (полу)интервалы

Множество, удовлетворяющее аксиомам

- поля поле
- поля и порядка упорядоченное поле

$$[a,b] = x : a \le x \le b$$
 - отрезок $[a,b) = x : a \le x < b$ - полуинтервал $(a,b] = x : a < x \le b$ - полуинтервал $(a,b) = x : a < x < b$ - интервал

$$(a, b) = x : a < x < b$$
 - интервал

$$\langle a,b \rangle$$
 - любой из 4 промежутков

Определение

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$
$$\forall a \in \mathbb{R} - \infty < a < +\infty$$

Теорема

$$\frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2 = (\sum_{i=1}^n a_i^2) (\sum_{i=1}^n b_i^2) - (\sum_{i=1}^n a_i b_i)^2 \ge 0$$
 - Тож дество Лагранжа

$$(\sum_{i=1}^n a_i^2)(\sum_{i=1}^n b_i^2) \geq (\sum_{i=1}^n a_i b_i)^2$$
 - Неравенство Коши - Буняковского (КБШ)

2.5 Нормированное пространство

Определение

K - поле(поле скаляров) X - линейное(векторное) пространство над полем K, если заданы

" + " :
$$X \times X \to X$$
 и " · " : $K \times X \to X$, удволетворяющее аксиомам

1.
$$a + b = b + a$$

2.
$$(a+b) + c = a + (b+c)$$

3.
$$\exists 0 \in X : \forall a \ a + 0 = a$$

$$4. \ \forall a \ \exists -a \in X: \ a + (-a) = \mathbb{0}$$

5.
$$\forall \lambda, \mu \in K, a \in X \ (\lambda + \mu) \cdot a = \lambda \cdot a + \mu \cdot a$$

6.
$$\forall \lambda \in K, a, b \in X \ \lambda \cdot (a+b) = \lambda \cdot a + \lambda \cdot b$$

7.
$$\forall \lambda, \mu \in K, a \in X \ (\lambda \mu) \cdot a = \lambda(\mu \cdot a)$$

8.
$$1 \cdot a = a$$

Определение

Нормированное пространство - это линейное пространство, в котором задана норма.

Норма в линейном пространстве X над полем K - это отображение $\|\cdot\|$: $X \to \mathbb{R}$, удовлетворяющее аксиомам нормы:

- 1. Положительная неопределенность: $||x|| \ge 0$, причем $||x|| = 0 \Leftrightarrow x = 0$
- 2. Положительная однородность $\|\lambda x\| = |\lambda| \cdot \|x\|$
- 3. Неравенство треугольника $||x + y|| \le ||x|| + ||y||$

Свойства нормы:

1.
$$p(\sum_{k \in X, \lambda_k \in K} \lambda_k p(x_k))$$

2.
$$p(0) = 0$$

3.
$$p(-x) = p(x)$$

4.
$$|p(x) - p(y)| < p(x - y)$$

Определение

 Π олунорма - неотрицательная функция, удовлетворяющая 2 и 3 аксиомам нормы.

3 a me vanue: в нормированном пространстве $\|x-y\|$ является метрикой, но не всякая метрика может быть порождена нормой.

2.6 Арифметические свойства пределов

Теорема(арифметические свойства предела в нормированном пространстве)

 $(X,\|\cdot\|)$ - нормированное пространство

 $(x_n),(y_n)$ - последовательности в X

 (λ_n) - постедовательность скаляров.

Пусть $x_n \to a, y_n \to b, \lambda_n \to \mu$

Тогда:

1. $x_n \pm y_n \rightarrow a \pm b$

Доказательство

$$0 \le ||x_n \pm y_n - (a \pm b)|| \le ||x_n - a|| + ||y_n - b|| \to 0 \Rightarrow ||x_n \pm y_n - (a \pm b)|| \to 0$$

- 2. $x_n y_n \to ab$
- 3. $\lambda_n x_n \to \mu a$

Доказательство

$$\|\lambda_n x_n - \mu a\| = \|(\lambda_n x_n - \mu x_n) + (\mu x_n - \mu a)\| \le \|(\lambda_n - \mu) x_n\| + \|\mu(x_n - a)\| = |\lambda_n - \mu| \cdot \|x_n\| + |\mu| \cdot \|x_n - a\| = |\mathsf{б.м.}| \cdot \|\mathsf{orp.}\| + |\mathsf{orp.}| \cdot \|\mathsf{б.м.}\| = \mathsf{б.м.},$$
 ч.т.д.

- 4. $||x_n|| \to ||a||$
- 5. $y_n, b \neq 0$ начиная с некоторого места $\frac{x_n}{y_n} \rightarrow \frac{a}{b}$

Доказательство

Достаточно доказать, что $\frac{1}{y_n} \to \frac{1}{b}$

Докажем ограниченность $\frac{1}{y_n}$:

Из предела для $\varepsilon=\frac{|b|}{2}\exists N\ \forall n>N\ |y_n|>\frac{|b|}{2}.$ Тогда начиная с некоторого $N\ \frac{1}{|y_n|}<\frac{2}{b}$

 $|\frac{1}{y_n}-\frac{1}{b}|=\frac{1}{y_n}\cdot\frac{1}{b}\cdot|y_n-b|=$ ограниченная с некоторого места \cdot ограниченная \cdot бесконечно малая =0

2.7 Сходимость к ∞

 $B \mathbb{R}$:

Определение

 (x_n) - вещественная последовательность, $x_n \to +\infty$, если

$$\forall E > 0 \; \exists N \; \forall n > N \; x_n > E$$

или на языке окресностей

 $\forall U(+\infty) \; \exists N \; \forall n > N \; x_n \in U(+\infty),$ где $U(+\infty) = (a, +\infty]$ - окрестность $+\infty$

Аналогично $x_n \to -\infty$

$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

 x_n - бесконечно большая последовательность. При этом $\frac{1}{x_n}$ - бесконечно малая последовательность

Если $x_n \to +\infty$, то $x_n \nrightarrow -\infty$, $x_n \nrightarrow a \in \mathbb{R}$ - единственность предела. Другими словами если $x_n \to a \in \overline{\mathbb{R}}$, то он единственный.

Все утверждения о пределах актуальны для \mathbb{R}^m

Теоремы

Если $x_n \to +\infty$, то x_n не ограничена сверху, но ограничена снизу и имеет минимум

Если $x_n \to -\infty$, то x_n не ограничена снизу, но ограничена сверху и имеет максимум

Если $x_n \leq y_n, x_n \to a, y_n \to b, a, b \in \overline{\mathbb{R}}$, тогда $a \leq b$

Доказательство теоремы 1

Пусть для некоторого $E \ \exists \ k \ \forall \ n > k \ x_n > E$. Тогда минимум x_n - это $\min_{1 \leq n \leq k} x_n$

Доказательство теоремы 3

- $1. \ a,b \in \mathbb{R}$ доказано
- 2. $b=+\infty$ (включая $a=\pm\infty$). Тогда $a\leq b$
- 3. $a=+\infty$. Тогда возможно только $b=+\infty$

Теорема об арифметических свойствах предела в $\overline{\mathbb{R}}$

 $(x_n),(y_n)$ - последовательности в \mathbb{R} $x_n \to a, y_n \to b$, где $a,b \in \overline{\mathbb{R}}$ Тогда

- 1. $x_n + y_n \to a + b$
- 2. $x_n y_n \to ab$
- 3. Если $y_n \neq 0$ с некоторого места, $b \neq 0$, то $\frac{x_n}{y_n} \rightarrow \frac{a}{b}$

при условии, что правые части утверждений имеют смысл(т.е. нет операций вида $(-\infty)+(+\infty),\ 0\cdot(\pm\infty),\ \frac{\pm\infty}{\pm\infty},\ \frac{0}{0})$ Замечание $\frac{\pm X}{0}$ может быть интерпретирован как $\pm\infty$

2.8 Точные границы числовых множеств

Определение

Пусть непустое $E \subset \mathbb{R}$ и ограничено сверху. $Cynpeмym \ E \text{ - } \text{ наименьшая верхняя граница } E$ или $\sup E = \min\{M: \forall \, x \in E \, \, x \leq M\}$ или $\sup E = S \Leftrightarrow \left\{ \begin{array}{l} \forall \, x \in E \, \, x \leq S \\ \forall \, \varepsilon > 0 \, \, \exists \, x \in E \, \, S - \varepsilon < x \end{array} \right.$

 $\mathit{Инфимум}\ E$ - наибольшая нижняя граница E или inf $E = \max\{m: \forall\, x \in E \ m \leq x\}$ или inf $E = I \Leftrightarrow \left\{ egin{array}{l} \forall\, x \in E \ I \leq x \\ \forall\, \varepsilon > 0 \ \exists\, x \in E \ x < I + \varepsilon \end{array} \right.$

2.9 Точки и множества в метрическом пространстве

Далее считаем, что X - метрическое пространство, $D\subset X, a\in X$

Определение

- 1. a внутренняя точка множества $D \Leftrightarrow \exists \, U(a) \subset D$
- 2. D omкрытое множеество, если все его точки внутренние
- 3. $\operatorname{Int}(D)$ множество внуренних точек D $\operatorname{Int}(D) = \bigcup_{\substack{F \subset D \\ F \text{ открытое}}} F$

Замечания

- $1. \varnothing$ и X открытые множества
- 2. Открытый шар открытое множество Доказательство

Рассмотрим шар радиуса r с центом в точке a, а также точку x

$$R = r - \rho(a, x)$$

$$U(x) = B(x, R)$$

Докажем, что $U(x) \subset B(a,r)$:

Рассмотрим $y \in U(x)$:

$$\rho(y, a) \le \rho(y, x) + \rho(x, a) < R + (r - R) = r$$

Теорема о свойствах открытых множеств

1. Объединение любого семейства открытых множеств открыто

$$(G_{lpha})_{lpha \in A}$$
 - семейство открытых множеств

$$\bigcup G_{\alpha}$$
 - открытое множество

Доказательство

Пусть
$$x \in \bigcup G_{\alpha}$$

$$\alpha \in A$$

Тогда
$$\exists \alpha_0: x \in G_{\alpha_0}$$

Доказательство Пусть
$$x \in \bigcup_{\alpha \in A} G_{\alpha}$$
 Тогда $\exists \alpha_0: x \in G_{\alpha_0}$ Тогда $\exists U(x) \subset G_{\alpha_0} \subset \bigcup_{\alpha \in A} G_{\alpha}$, ч.т.д.

2. Пересечение конечного семейства открытых множеств открыто

$$(G_{\alpha})_{\alpha \in A}$$
 - семейство открытых множеств

$$\bigcap G_{\alpha}$$
 - открытое множество

Доказательство

Пусть
$$x \in \bigcap_{\alpha \in A} G_{\alpha}$$
Тогда $\forall \alpha_0 \ x \in G_{\alpha_0}$

$$\alpha \in A$$

Тогда
$$\forall \alpha_0 \ x \in G_{\alpha_0}$$

Тогда
$$\exists U(x) \subset G_{\alpha_0} \subset \bigcap_{x \in A} G_{\alpha}$$
, ч.т.д.

Контр-пример для бесконечного семейства

$$\bigcap_{k=1}^{\infty}(-rac{1}{k},rac{1}{k})=\{0\}$$
 - не открытое множество в $\mathbb R$

Определение

- 1. Проколотая окрестность $U(a) = B(a,r) \setminus \{a\}$
- 2. $D\subset X,$ a предельная точка $D\Leftrightarrow \forall\stackrel{ullet}{U}(a)\stackrel{ullet}{U}(a)\cap D\neq \varnothing$ $(a \in D \ unu \ a \notin D)$

Замечание

- 1. a предельная точка $D \Leftrightarrow \forall U(a) \mid \dot{U}(a) \cap D \mid = \infty$
- 2. a предельная точка $D \Leftrightarrow \exists (x_n) \neq a \subset D : x_n \to a$

Доказательство ⇒

Рассмотрим $U_{r_1}(a)$. Возьмем там d_1

Положим $d_2 = \min \rho(a, d_1), \frac{r_1}{2}$

Повторим для $d_2 \dots \infty$

Тогда (d_n) - искомая последовательность

Доказательство ←

В каждой окрестности есть какой-то x_n , а значит любая окрестность непустая

Определение

 $a \in D$ - изолированная точка, если $\exists U(a): U(a) \cap D = a$

Определение

D - $\mathit{замкнутое}$ множеество в X, если D содержит все свои предельные точки

Теорема

 $D \subset X$ - замкнутое $\Leftrightarrow D^c = X \setminus D$ - открытое

Доказательство \Rightarrow

Пусть правое утверждение ложно. Тогда $\exists x \in D^c: \forall U(x) \ U(x) \not\subset D^c.$ Тогда для такого x

 $\forall U(x)\ U(x)\cap D\neq\varnothing\Leftrightarrow U(x)\cap D\neq\varnothing\Leftrightarrow x$ - предельная точка $\Rightarrow x\in D$, т.к. D замкнутое. Отсюда противоречие Тогда $\exists\, U(x)\subset D^c$, ч.т.д.

 \mathbf{T}

Доказательство =

 D^c - открыто

Если D не замкнуто, то $\exists x$ - предельная точка $D, x \notin D$. Тогда $x \in D^c \Rightarrow \exists U(x) \subset D^c \Rightarrow x$, т.е. $U(x) \cap D = \varnothing$ - не предельная точка D. Тогда D - замкнуто, ч.т.д.

Теорема о свойствах замкнутых множеств

В произвольном метрическом пространстве X:

- 1. $(F_{\alpha})_{\alpha \in A}$ произвольное семейство замкнутых в X множеств. Тогда $\bigcap_{\alpha \in A} F_{\alpha}$ замкнутое
- 2. $(F_{\alpha})_{\alpha\in A}$ произвольное конечное семейство замкнутых в X множеств. Тогда $\bigcap_{\alpha\in A}F_{\alpha}$ замкнутое

Контр-пример для бесконечного семейства

В \mathbb{R} $\{x\}$ - замкнутое в \mathbb{R} . Рассмотрим $\bigcup_{k=1}^{\infty} \{\frac{1}{k}\}$. Тогда 0 - предельная точка, не содержащаяся в множестве. Тогда множество не замкнутое

Доказательство

Из свойств открытых множеств и теоремы о связи открытых и замкнутых множеств

Определение

 $D\subset X$ - произвольное множество. Тогда замыкание \overline{D} множества D - это $D\cup$ (все его предельные точки)

Замечание

Обратим внимание, что \overline{D} содержит все предельные точки D, а не свои. Но все жее \overline{D} - замкнуто

Замечание

1.
$$\overline{D} = \{ a \in X : \exists (x_n) : x_n \to a, x_n \in D \}$$

$$2. \ \overline{D} = \bigcap_{\substack{F: D \subset F \subset X \\ F \to 33 \text{ MMHVTO}}} F,$$

т.е. \overline{D} - наименьшее по включению замкнутое множество, содержащее D

3. D - замкнуто $\Leftrightarrow \overline{D} = D$

Определение

 $D \subset X$ - произвольное множество

$$a$$
 - граничная точка D , если $\forall \overset{\bullet}{U}(a) \overset{\bullet}{U}(a) \cap D \neq \varnothing$ $\overset{\bullet}{U}(a) \cap D^c \neq \varnothing$

Замечание

- 1. Граничная точка невнутренняя предельная точка
- 2. Граничная точка предельная точка D и D^c
- 3. Множество граничных точек замкнуто
- 4. Множество предельных точек замкнуто

2.10 Компактность и полнота

Лемма Гейне-Бореля

Рассмотрим ℝ

Пусть
$$[a,b] \subset \bigcup_{k=1}^{\infty} (a_k,b_k)$$

Тогда найдется конечное число отрезков $k_1 \dots k_n$ таких, что $[a,b] \subset \bigcup_{i=1}^n (a_{k_i},b_{k_i})$

Теоремы об открытых и замкнутых множествах в пространстве и подпространстве

Пусть $D\subset Y\subset X,\,X,Y$ - метрические пространства с общей метрикой Тогда

1. D - открытое в $Y\Leftrightarrow \exists\, G$ - открытое в $X:D=G\cap Y$ Доказательство \Leftarrow

G - открыто в $X,\,D=G\cap Y.$ Доказать, что D открыто в Y Берем $a\in D$

 $a\in D\Rightarrow a\in G,$ а G - открыто. Тогда $\exists r: B^x(a,r)\subset G\Rightarrow B^x(a,r)\cap Y=B^y(a,r)\subset G\cap Y=D.$ Отсюда a - внутренняя точка Доказательство \Rightarrow

D - открытое в Y

$$D = \bigcup_{x \in D} B^y(x, r_x)$$
, где r_x подбираем так, чтобы $B^y(x, r_x) \in D$

Возьмем $D = \bigcup_{x \in D} B^x(x, r_x)$. G - открытое множество. Тогда $D = G \cap Y$

2. D - замкнутое в $Y \Leftrightarrow \exists\, F$ - замкнутое в $X:D=F\cap Y$

Доказательство

D - замкнутое в $Y\Leftrightarrow (Y\setminus D)$ - открытое множество $\Leftrightarrow \exists\, G$ - открытое в $X:(Y\setminus D)=G\cap Y$

$$Y\setminus (Y\setminus D)=Y\setminus (G\cap Y)$$

$$D=(Y\setminus G)\cap Y$$

$$D=(X\setminus G)\cap Y.$$
 Отсюда $X\setminus G$ - замкнутое

Определение

X - метрическое пространство

$$K \subset X$$

Если
$$K \subset \bigcup_{\alpha \in A} G_{\alpha}$$
, то множества G_{α} образует *покрытие* K

Если все G_{α} - открытые, то *открытое покрытие*

$$K \subset \bigcup_{\alpha \in A' \subset A} G_{\alpha}$$
 - $nodno\kappa pumue$

Множество называется компактным, если

$$\forall (G_{\alpha})$$
 - открытые : $K \subset \bigcup_{\alpha \in A} G_{\alpha} \exists G_{\alpha_1} \dots G_{\alpha_n} : K \subset \bigcup_{i=1}^n G_{\alpha_i}$

Теорема

Пусть $K \subset Y \subset X$

Тогда K - компактно в $Y \Leftrightarrow K$ - компактно в X

Доказательство \Rightarrow

K - компактно в Y

Пусть $K \subset \bigcup_{\alpha \in A} \widetilde{G}_{\alpha}$ - открытые в X

Тогда
$$K \subset (\bigcup_{\alpha \in A} G_{\alpha}) \cap Y = \bigcup_{\alpha \in A} (G_{\alpha} \cap Y).$$
 $G_{\alpha} \cap Y$ - открыто в Y .

В силу компактности K в $Y \exists \alpha_1 \dots \alpha_n$

$$K \subset \bigcup_{i=1}^n (G_{\alpha_i} \cap Y) = \bigcup_{i=1}^n G_{\alpha_i}$$

Доказательство \Leftarrow

Пусть K компактно в X

$$\overset{\circ}{K}\subset \bigcup O_{\alpha}$$
, где O_{α} открыты Y

$$\forall\, O_{\alpha} = G_{\alpha} \cap Y$$
, где G_{α} открыты в X

$$K \subset \bigcup_{\alpha \in A} G_{\alpha}$$

Тогда
$$\exists \alpha_1 \dots \alpha_n : K \subset \bigcup_{i=1}^n G_{\alpha_i}$$

Отсюда
$$K \subset \bigcup_{i=1}^n (G_{\alpha_i} \cap Y) = \bigcup_{i=1}^n O_{\alpha_i}$$
, ч.т.д.

Теорема о простейших свойствах компактных множеств

 (X, ρ) - метрическое пространство $K \subset X$

1. X - компактно $\Rightarrow X$ замкнуто и ограничено

Доказательство

Докажем, что K^c - открытое

Пусть $x \in K^c$

$$K \subset \bigcup_{a \in K} B(a, \frac{\rho(a, x)}{2})$$

Т.к.
$$K$$
 - компактно, $K\subset \bigcup_{i=1}^n B(a_i,r_i)$, где $r_i=\frac{\rho(a_i,x)}{2}$

$$B(a_i, r_i) \cap B(x, r_i) = \emptyset$$

Отсюда $B(x, \min(r_1, \ldots, r_n))$ не пересекает ни одно $B(a_i, r_i)$. Тогда $B(x, \min(r_1, \dots, r_n)) \cap K = \emptyset \Leftrightarrow B(x, \min(r_1, \dots, r_n)) \subset K^c$

Т.о. $x \in K^c \Rightarrow B(x) \subset K^c$, а значит K^c открыто. Тогда K замкнуто, ч.т.д. Выберем $x_0 \in X$. $K \subset X \subset \bigcup B(x_0, n)$

$$K \subset \prod_{m=1}^{m} B(x_0, n_i)$$

Из компактности $\exists\, n_1,\ldots,n_m:\ K\subset \bigcup_{i=1}^m B(x_0,n_i)$

Тогда $K \subset B(x_0, \max(n_1, \dots, n_m))$

 $2. \ X$ - компактно, а K - замкнутно. Тогда K - компактно

$$K \subset \bigcup_{a \in K} G_a$$
. Тогда $X = \bigcup_{a \in K} G_a \cup K^c$, где K^c - открыто

$$K\subset\bigcup_{a\in K}G_a$$
. Тогда $X=\bigcup_{a\in K}G_a\cup K^c$, где K^c - открыто. Тогда $\exists\,a_1,\ldots,a_n:\ X=\bigcup_{i=1}^n(G_{a_i}\cup K^c)$. Отсюда $K\subset\bigcup_{a\in K}G_a$, ч.т.д.

Теорема о компактности в пространстве и в подпространстве

 $K \subset X \subset Y$ - компактно в $X \Leftrightarrow K$ компактно в Y

Определение

 $a, b \in \mathbb{R}^m$

Парамлелепипед $[a,b] = \{x \in \mathbb{R}^m : \forall i \in \{1 \dots m\} \ a_i \le x_i \le b_i\}$

Лемма о вложенных параллелепипедах

$$[a^{(1)}, b^{(1)}] \supset [a^{(2)}, b^{(2)}] \supset \dots$$
$$[a^{(1)}, b^{(1)}] \cap [a^{(2)}, b^{(2)}] \cap \dots \neq \varnothing$$

Доказательство

Покоординатно следует из теоремы Кантора

Лемма

Замкнутый параллелепипед компактен

Доказательство

$$[A^{(1)},B^{(1)}]\subset \bigcup_{a\in K}G_a$$
 - открытые. Воспользуемся половинным делением

Допустим, что нет конечного подпокрытия

По каждой координате разделим параллелепипед на две части. Тогда он будет разделен на 2^m частей

Если бы все части можно было накрыть конечным числом покрытий, то и весь параллелепипед можно

Тогда существует такой "кусочек который не покрывается конечным числом подпокрытий.

Назовем этот параллелепипед $[A^{(2)}, B^{(2)}]$. Применим к нему такую же логику

Тогда мы получаем бесконечную последовательность вложенных параллелепипедов, каждый из которых не покрывается конечным количеством подпокрытий. $\exists x \in [A^{(1)}, B^{(1)}] \cap [A^{(2)}, B^{(2)}] \cap \dots$ Тогда $\exists G_i : x \in G_i$. Вместе с x в G_i содержится некая окрестность B(x, R).

Линейные размеры параллелепипедов стремятся к 0, а значит с некоторого момента его размеры по всем координатам будут такими, что $\rho(A,B) < 2R$. Отсюда весь этот параллелепипед поместится в B(x,R). Тогда с некоторого места все параллелепипеды содержатся в некотором покрытии. Противоречие.

Отсюда параллелепипед компактен, ч.т.д.

Теорема о характеристике компактов в \mathbb{R}^m

Данные утверждения эквивалентны

- 1. $K \subset \mathbb{R}^m$ замкнуто и ограничено
- 2. $K \subset \mathbb{R}^m$ компактно
- 3. $K \subset \mathbb{R}^m$ секвенциально компактно

Доказательство

- $1\Rightarrow 2$: K ограничено \Rightarrow содержится в шаре \Rightarrow содержится в параллелепипеде ⇒ содержится в компактном множестве и замкнуто ⇒ компактно
- $2 \Rightarrow 3$: (a) Если некая последовательность (x_n) имеет конечное число значений, то какое-то значение повторяется бесконечное количество раз. Тогда оно является частным пределом
 - (b) Иначе: пусть D множество значений $(x_n), |D| = \infty$
 - i. если D не имеет предельных точек

Пусть
$$K\subset D$$
 Тогда $\forall\,x\in K$ $\exists\, \overset{ullet}{B}(x,r'):\,\overset{ullet}{B}(x,r')\cap D=\varnothing$ $K\subset\bigcup_{a\in K}B(x,r')$ Тогда каждая такая окрестность покрывает конечное мно-

жество точек, а значит K - не компактное - противоречие.

- іі. существует x_0 предельная точка DТогда из закрытости $D x_0 \in D$ и из определения предельной точки в D существует сходящаяся последовательность к x_0 . Выкинем из нее элементы, индексы которых меньше, чем у предыдущих и получим подпоследовательность (x_n) , сходящуюся к x_0 , ч.т.д.
- $3 \Rightarrow 1$: Пусть a предельная точка K

Проверим, что $a \in K$

$$x_n \in K$$

$$\exists (x_n): x_n \neq a$$

$$r_{\cdots} \rightarrow a$$

Выберем подпоследоватьность (x_{n_k}) . Из секвенциальной компактности $\exists n_k : x_{n_k} \to x_0 \in K$.

Из $x_n \to a \ (x_{n_k}) \to a$. Отсюда $x_0 = a$ и $a \in K$. Тогда K замкнуто

Пусть K не ограничено, то существуют сколь угодно большие числа. Выберем $(x_n) \to \infty$. Тогда $x_{n_k} \to \infty$, что противоречит секвенциальной компактности. Тогда K ограничено, ч.т.д.

Определение

 $K \subset X$ - секвенциально компактно, если $\forall (x_n) \subset K \exists (n_k) \in \mathbb{N}, x_0 \in K$: $(n_k) \uparrow, x_{n_k} \to x_0$

Замечания

- 1. В произвольном метрическом пространстве замкнутое + ограниченное

 ⇒ компактное
- 2. $2 \Leftrightarrow 3$ в любом метрическом пространстве
- 3. 2

 ⇔ 3 в произвольном топологическом пространстве

Следствие (принцип выбора Больцано-Вейерштрасса)

 (x_n) - ограниченная последовательность в \mathbb{R}^m

Тогда существует сходящаяся подпоследовательность

Доказательство

 x_n - ограниченная последовательность

Тогда существует замкнутый параллелепипед $K: \forall n \ x_n \in K$

Параллелепипед компактный. Тогда K - секвенциально компактный Тогда из свойств секвенциальной компактности, ч.т.д.

Замечание

$$x_n$$
 - не ограничено $\Rightarrow \exists (x_n): x_{n_k} \to \infty$

Определение

X - метрическое пространство

 (x_n) - фундаментальная последовательность (последовательность Коши, сходящаяся в себе)

$$\forall \varepsilon > 0 \; \exists N \; \forall n, m > N \; \rho(x_n, x_m) < \varepsilon$$

Лемма

1. (x_n) - фундаментальная последовательность $\Rightarrow (x_n)$ - ограничена Доказательство

Пусть $\varepsilon = 1$

$$\forall n_0, m > N(1) \ \rho(x_m, x_{n_0}) < 1$$

Тогда
$$x_m \in B(x_{n_0},1)$$
 начиная с $m>N(1)$

Тогда не в $B(x_{n_0},1)$ конечное число точек, а значит вся последовательность ограничена

2. (x_n) - фундаментальная последовательность, $x_{n_k} \to A$ Тогда $(x_n) \to A$

Доказательство

$$\forall \varepsilon > 0 \; \exists N \; \forall n, m > N \; \rho(x_m, x_n) < \frac{\varepsilon}{2}$$

$$x_{n_k} \to a \Leftrightarrow \forall \varepsilon > 0 \; \exists K \; \forall k > K \; \rho(x_{n_k}, a) < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \; \exists M = \max(N(\varepsilon), K(\varepsilon)) \; \forall m > M \; \rho(x_m, a) \leq \rho(x_m, x_{n_k}) + \rho(x_{n_k}, a) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

Теорема

1. X - метрическое пространство

 (x_n) - сходящаяся \Rightarrow (x_n) - фундаментальная

Доказательство

Доказательство
$$\forall \, \varepsilon > 0 \,\, \exists \, N \,\, \forall \, n > N \,\, \rho(x_n,a) < \frac{\varepsilon}{2}$$
 Тогда $\forall \, \varepsilon \, > \, 0 \,\, \exists \, N \,\, \forall \, n,m \, > \,\, N \,\, \rho(x_n,x_m) \,\, < \,\, \rho(x_n,a) \,+ \, \rho(x_m,a) \,\, < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$

2. в \mathbb{R}^m : (x_n) - фундаментальная $\Rightarrow (x_n)$ - сходится

Доказательство

$$(x_n)$$
 - фундаментальная \Rightarrow (x_n) - ограниченная \Rightarrow \exists $x_{n_k} \to a \Rightarrow x_n \to a$

Определение

Метрическое пространство полно, если в нем любая фундаментальная последовательность является сходящейся

Утверждение (критерий Больцано-Коши)

$$(x_n)$$
 - сходится в $\mathbb{R}^m \Leftrightarrow \forall \, \varepsilon > 0 \, \exists \, N \, \, \forall \, n,m > N \, \, \|x_n - x_m\| < \varepsilon$

3 Пределы и непрерывность отображений

3.1Всякие прикольные теоремы

Теорема Кантора

Пусть
$$[a_1,b_1]\supset [a_2,b_2]\supset\dots,|[a_n,b_n]|=b_n-a_n\to 0.$$
 Тогда $\exists!\,c:\bigcap_{k=1}^\infty[a_k,b_k]=\{c\}$

Доказательство

Т.к. пересечение не пусто, берем любую точку $c \in \bigcap^{\infty} [a_k, b_k].$

Тогда
$$\forall k \ a_k \leq c \leq b_k$$

$$|a_k - c| \le b_k - a_k \to 0$$
, T.e. $a_k \to c$

$$|b_k - c| \le b_k - a_k \to 0$$
, r.e. $b_k \to c$

Из единственности предела *с* единственный

Следствие

$$a_k, b_k \to c$$

Алгоритм перевода в двоичную дробь: делим наш промежуток пополам. Если число попало в левую половинку, дописываем 0 и переходим в влево, иначе дописываем 1 и переходим вправо.

Теорема

- 1. Пусть ε_i бесконечная последовательность из 0 и 1. Тогда $0, \varepsilon_1 \varepsilon_2 \varepsilon_3 \dots$ определяет некоторое число из [0, 1]
- 2. $\forall x \in [0,1]$ существует не более двух последовательностей ε_i , задающих x
 - (a) Если x двоичное рациональное число кроме 0, т.е. $x=\frac{a}{2^b}\neq 1$ две записи
 - (b) Иначе одна запись

Доказательство

$$x = \bigcap_{k=1}^{\infty} \left[0, \varepsilon_1 \dots \varepsilon_k; 0, \varepsilon_1 \dots \varepsilon_k + \frac{1}{2^k} \right]$$

3. Баг:

x может оказаться между половинками очередного отрезка, тогда он принадлежит обеим половинкам.

x окажется на стыке тогда и только тогда, когда он - двоичное рациональное число(на b-ом шаге)

В этом случае х имеет две записи

4. Отдельно: 1,00...=0,11...

В любом упорядоченном поле \mathbb{R} , $\mathbb{N} \subset \mathbb{R}$

Pассмотрим $A \subset \mathbb{R}$

A - индуктивное, если

- 1. $1 \in A$
- $2. \ \forall x \in A \ x + \mathbb{1} \in A$

Самое маленькое индуктивное множество:

$$\mathbb{N} = \bigcap_{\substack{A \subset R \\ A - \text{индуктивное}}} A$$

Неравенство Бернулли

 $\forall x \ge -1, n \in \mathbb{N} \quad (1+x)^n \ge 1 + nx$

Доказательство

- 1. Basa(n = 1): $1 + x \ge 1 + x$
- 2. Шаг индукции:

Пусть $(1+x)^n \ge 1+nx$ - верно Докажем $(1+x)^{n+1} \ge 1+(n+1)x$: $(1+x)^{n+1}=(1+x)(1+x)^n \ge (1+x)(1+nx)=1+nx+x+nx^2 \ge 1+(n+1)x$, ч.т.д.

Определение

Множество $A \subset \mathbb{R}$ ограничено сверху:

 $\exists M \in \mathbb{R}: \ \forall a \in A \ a \le M$

Множество $A \subset \mathbb{R}$ ограничено снизу:

 $\exists \, m \in \mathbb{R} : \, \forall \, a \in A \, \, a \ge m$

Множество $A \subset \mathbb{R}$ ограничено, если оно ограничено сверху и снизу

 $x \in A$ - максимум, если $\forall a \in A \ a \leq x$

 $x \in A$ - минимум, если $\forall a \in A \ a \ge x$

Теорема

В любом конечном множестве существует максимальный (минимальный) элемент

Доказательство

- 1. База: для n = 1 $A = \{x\}$, x максимум
- 2. Переход: рассмотрим множество из n+1 элементов A. Выберем элемент x. Множество $A\setminus \{x\}$ имеет максимум y. Тогда максимум множества A это $\max x, y$.

Определение

Множество $\mathbb Q$ *плотно* в $\mathbb R$, если $\forall a,b \subset \mathbb R \ \exists x \in \mathbb Q: \ x \in [a,b]$

Доказательство для рациональных чисел

Пусть $n \in \mathbb{N} > \frac{1}{b-a}$ (существует по теореме Архимеда)

$$\frac{1}{n} < b - a$$

Возьмем
$$x=\frac{[na]+1}{n}\in\mathbb{Q}$$

$$a=\frac{na-1+1}{n}<\frac{[na]+1}{n}\leq\frac{na+1}{n}=a+\frac{1}{n}< a+(b-a)=b$$
 Отсюда $a< x< b$, ч.т.д.

Теорема о существовании супремума

 $E \neq \emptyset \subset \mathbb{R}$, ограниченное сверху Тогда $\exists s \in \mathbb{R} : s = \sup E$

Доказательство

Пусть b_1 - верхняя граница $E, a_1 \in E$ $c_1 = \frac{a_1 + b_1}{2}$:

- 1. если c_1 верхняя граница, то рассмотрим промежуток $[a_2,b_2]:a_2=a_1;b_2=c_1$ b_2 верхняя граница
- 2. если c_1 не верхняя граница, то рассмотрим промежуток $[a_2,b_2]$: $a_2=c_1;b_2=b_1$ b_2 верхняя граница

$$|[a_n, b_n]| = b_n - a_n = \frac{b_1 - a_1}{2^n}$$

Повторяем аналогичные действия. Тогда по следствию из теоремы Кантора существует единственный $s=\bigcap_{k=1}^{\infty}[a_n,b_n]$

Проверим, что $s = \sup E$:

- 1. $\forall x \in E, n \ x \leq b_n$ $b_n \to s$ Отсюда $\forall x \in E \ x \leq s$
- 2. $\forall \varepsilon \exists n \ b_n a_n < \varepsilon$ $a_n \in E$
- 3. $\forall \varepsilon \exists n \ s < b_n < \varepsilon + a_n$

Дополнительная часть опеределения

1. E не ограничено сверху: $\sup E = +\infty$

- 2. E не ограничено снизу: inf $E=-\infty$
- 3. $E = \emptyset$: sup $E = -\infty$, inf $E = +\infty$

Лемма о свойствах супремума

1. $D \neq \emptyset \subset E \subset \mathbb{R}$

Тогда $\sup D \leq \sup E$

Доказательство

 $\sup E$ - верхняя точка D

2. $X \subset \mathbb{R}, \lambda \in \mathbb{R}$

 $\lambda X = \lambda \cdot x : x \in X$ Тогда $\forall \lambda > 0 \sup \lambda X = \lambda \sup X$

3. $\sup -X = -\inf X$

 $\sup kX = k \sup X, k > 0$

 $\inf kX = k \inf X, k > 0$

 $\sup X + Y = \sup X + \sup Y$

 $\inf X + Y = \inf X + \inf Y$

Определение

1. $f: X \to \mathbb{R}, D \subset X$

f - ограничена (сверху/снизу) на $D \Leftrightarrow f(D) \subset R$ - ограниченное множество (сверху/снизу)

2. $f:\langle a,b\rangle\to\mathbb{R}$

f - монотонна $\Leftrightarrow \forall x_1, x_2 \in \langle a, b \rangle : x_1 < x_2 \quad f(x_1) < f(x_2)$

Теорема о пределе монотонной последовательности

1. (x_n) - ограниченная сверху возрастающая вещественная последовательность

Тогда эта последовательность сходится к $s = \sup x_n$

2. (x_n) - ограниченная снизу убывающая вещественная последовательность

Тогда эта последовательность сходится к $i=\inf x_n$

3. (x_n) - ограниченная монотонная последовательность

Тогда эта последовательность сходится

Доказательство

$$orall arepsilon > 0 \; \exists \, N: \; s-arepsilon < x_n$$
 Из возрастания $\forall \, arepsilon > 0 \; \exists \, N \; \forall \, n > N \; s-arepsilon < x_n$ или $orall \, arepsilon > 0 \; \exists \, N \; orall \, n > N \; 0 \leq s-x_n < arepsilon$ Т.о. $s = \lim_{n \to +\infty} x_n$, ч.т.д.

Замечание

 x_n - возрастающая. Тогда $\exists \lim x_n = \sup x_n \in \overline{\mathbb{R}}$

Лемма (о сходимости к нулю быстро убывающей последовательности)

Пусть
$$x_n > 0$$
; $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} < 1$ Тогда $x_n \to 0$

Доказательство

Начиная с некоторого места, x_n убывает. $x_n > 0$. Тогда существует L: $x_n \to L$. $L \ge 0$

1.
$$L = 0$$
 - ч.т.д.

2.
$$L > 0$$
:

$$L>0$$
: Пусть $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}=l<1$ Тогда для $\varepsilon=\frac{1-l}{2}$: $\exists\,N:\;\forall\,n>N\;\frac{x_{n+1}}{x_n}<\frac{l+1}{2}<1$

(Из определения предела)

В то же время для $\varepsilon=L\frac{2}{l+1}-L$: $\exists\,N:\,\,\forall\,n>N\,\,x_n-L<\varepsilon$ Рассмотрим x_n для n>N: $x_n< L\frac{2}{l+1}$ По долже

$$x_n < L \frac{2}{l+1}$$

По лемме о пределе монотонной последовательности inf $x_n=L$

Тогда
$$x_{n+1} \ge L$$

Тогда
$$x_{n+1} \ge L$$

Тогда $\frac{x_{n+1}}{x_n} \ge \frac{l+1}{2}$. Противоречие

Отсюда L=0

Следствие

1.
$$a > 1, k \in \mathbb{N}$$
. Тогда $\lim_{n \to \infty} \frac{n^k}{a^n} = 0$

2.
$$a>0$$
. Тогда $\lim_{n\to\infty}\frac{a^n}{n!}=0$

$$3. \lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Предел отображений 3.2

Определение

X,Y - метрическое пространство

$$D \subset X, f: D \to Y$$

a - предельная точка D

Определим:

$$\lim_{x \to a} f(x) = A \Leftrightarrow f(x) \to A$$
, если:

- 1. Определение по Коши; на языке $\varepsilon \delta$: $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in D : 0 \neq \rho^x(x, a) < \delta \quad \rho^y(f(x), A) < \varepsilon$
- 2. На языке окрестностей:

$$\forall U(A) \exists V(a) \ \forall x \in D \cap \overset{\bullet}{V}(a) \quad f(x) \in U(A)$$

$$(U, V - o\kappa pecm noc mu)$$

$$\forall (x_n) : \begin{cases} x_n \in D \\ x_n \neq a \\ x_n \to a \end{cases} f(x_n) \to A$$

Теорема

Определения по Коши и по Гейне эквивалентны

Доказательство

x, y - метрические пространства

$$f:D\subset X\to Y$$

a - предельная точчка D

 $A \in Y$

$$\lim_{x \to a} f(x) = A$$

Тогда по Коши:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D : 0 \neq \rho^x(x, a) < \delta \quad \rho^y(f(x), A) < \varepsilon$$

По Гейне:

$$\forall (x_n) : \begin{cases} x_n \in D \\ x_n \neq a \\ x_n \to a \end{cases} f(x_n) \to A$$

1. Докажем, что из определения Коши следует определение Гейне

Возьмем $x_n \in D, x_n \neq a, x_n \to a$

Из определения Коши для ε :

$$\exists \delta > 0 \,\forall x \in D : 0 < \rho(x, a) < \delta \quad \rho(f(x), A) < \varepsilon$$

Из $x_n \to a$:

$$\exists N \ \forall n > N \ \rho(x_n, a) < \delta$$

Тогда $\rho(f(x_n), A) < \varepsilon$, ч.т.д.

2. Доказем, что из определения Гейне следует определение Коши Пусть определение Коши неверное

 $\exists\, \varepsilon>0: \ \forall\, \delta>0 \ \exists\, x\in D: \ 0<\rho(x,a)<\delta \quad \rho(f(x),A)\geq A$

Возьмем $\delta=1$

$$\exists x_1 \in D \ 0 < \rho(x_1, a) < 1 \quad \rho(f(x_1), A) \ge \varepsilon$$

:

. Возьмем
$$\delta=\frac{1}{n}$$
: $\exists\,x_n\in D\ 0<\rho(x_n,a)<\frac{1}{n}\quad \rho(f(x_n),A)\geq \varepsilon$
Отсюда $\rho(x_n,a)\to 0\Leftrightarrow x_n\to a,$ а $\rho(f(x_n),A)>\varepsilon$. Тогда $f(x_n)\nrightarrow A$

- противоречие

Замечание

- 1. a предельная точка $D\Rightarrow$ последовательности из определения 3 существуют
- 2. Если $a \in D$, то предел не зависит от f(a)
- 3. $f\equiv g$ на некоторой $\overset{ullet}{W}(a)$ (выколотой окрестности a) и $\exists\lim_{x\to a}f(x)=A$, то $\exists\lim_{x\to a}g(x)$ и $\lim_{x\to a}g(x)=A$
- 4. Определение 2 можно обобщить на случай $X=\overline{\mathbb{R}},Y=\overline{\mathbb{R}},D\subset\mathbb{R},a,A\in\overline{\mathbb{R}}$
- 5. X,Y метрические пространства

Определение 2 равносильно

$$\forall\, U\subset Y: A\in U, U-\text{открытое}\,\,\exists\, V\subset X: a\in V, V-\text{открытое}\,\,\forall\, x\in V, V$$

$$D \cap V \setminus \{a\} \ f(x) \in U$$

(Назовем его топологическим определением предела)

Доказательство ⇒

Выберем множество U. Тогда существует $U(A) \subset U$

Выберем множество V. Тогда существует $V(a) \subset V$

Пусть дано Определение 2. Для каждого U будем рассматривать только U(A), а вместо V будем брать только V(a)

Доказательство ←

Для каждого V существует $V(a) \subset V$. Сузим V до V(a). От этого утверждение не пострадает

Если для всех U утверждение верно, то и для всех U = U(A) работает, т.к. это частный случай

6. Попробуем обобщить Определение 1 для предела ∞. Для этого можно ввести метрику $\rho(a,b) = |\arctan a - \arctan b|$, считая, что $\arctan \pm \infty = \pm \frac{\pi}{2}$ Тогда $x_n \to \pm \infty \Leftrightarrow \rho(x_n, \pm \infty) \to 0$

Тогда
$$x_n \to \pm \infty \Leftrightarrow \rho(x_n, \pm \infty) \to 0$$

Свойства пределов отображений

 $f:D\subset X\to Y$

1. $\lim_{x\to a}f(x)=A, \lim_{x\to a}f(x)=B\Rightarrow A=B$ Доказательство

Предел последовательности $f(x_n)$ из определения Гейне единствен-

2. (Локальная ограниченность отображения, имеющего предел)

$$\lim_{x \to a} f(x) = A$$

 $\stackrel{x
ightarrow a}{\operatorname{Тогда}} \exists U(a): f|_{U(a) \cap D}$ - ограничено

Доказательство

Если $a \notin D$: Для $B(A) \exists U(a) \forall x \in U(a) \cap D \ f(x) \in B(A)$ Если $a \in D$: Для $B(A) = B(A, R + \rho(f(a), A)) \exists U(a) \forall x \in U(a) \cap$ $D f(x) \in B(A)$

3. (Теорема о стабилизации знака)

$$\lim_{\substack{x \to a \\ A \neq B}} f(x) = A$$

$$A \neq B$$

$$\exists U(a): \ \forall x \in U(a) \cap D \ f(x) \neq B$$

Доказательство

Для $B(A,\rho(A,B))$ $\exists \overset{\bullet}{U}(a) \ \forall x \in \overset{\bullet}{U}(a) \cap D \ f(x) \in B(A,\rho(A,B)),$ а значит $f(x) \neq B$

Следствие

$$B = 0$$

Tогда sign A = sign f(x) в некоторой окрестности

4. $g,f:D\subset X\to Y,\,X$ - метрическое пространство, Y - нормированное пространство

$$\lambda:D\to\mathbb{R}$$

$$f(x) \xrightarrow[x \to a]{} A \in Y, g(x) \xrightarrow[x \to a]{} B \in Y, \lambda(x) \xrightarrow[x \to a]{} L \in \mathbb{R}$$

Тогда

(a)
$$f(x) \pm g(x) \xrightarrow[x \to a]{} A \pm B$$

(b)
$$\lambda(x)f(x) \xrightarrow[x \to a]{} LA$$

(c)
$$||f(x)|| \xrightarrow[x \to a]{} ||A||$$

Доказательство

Из определения Гейне

Дополнение

При $B \neq 0$:

$$\frac{f(x)}{g(x)} \to \frac{A}{B}$$

Определение

Рассмотрим в $\overline{\mathbb{R}}$ метрику $\rho(x,y) = |\arctan x - \arctan y|$

1.
$$x_n \to a \in \mathbb{R} \Leftrightarrow \rho(x_n, a) \to 0$$

 $x_n \to +\infty \Leftrightarrow \rho(x_n, +\infty) \to 0$

- 2. Тогда из определения Гейне можно получить предел функции в $\overline{\mathbb{R}}$
- 3. Теоремы об арифметических свойствах предела последовательности в $\overline{\mathbb{R}}$ также выполняются при условии, что все операции имеют смысл (нет выражений вида $+\infty-\infty$ и т.д)
- 4. Также выполняются теоремы об арифметических свойствах пределов отображений

Теорема о предельном переходе в неравенствах

 $f,g:D\subset X o \mathbb{R},\, a$ - предельная точка D

 $\forall x \in D \setminus \{a\} \ f(x) \le g(x)$

 $\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B,$ где $A, B \in \overline{\mathbb{R}}$

x o a Тогда $A \leq B$ из определения Гейне

Следствие

 $f,g,h:D\subset X\to \mathbb{R},\,a$ - предельная точка D

 $f(x) \le g(x) \le h(x)$ при $x \in D \setminus \{a\}$

 $\lim_{x\to a}f(x)=A,\lim_{x\to a}h(x)=A.$ Тогда
 $\exists \, \lim_{x\to a}g(x)=A$ из Гейне

Определение

 $f:D\subset X o Y,\,a$ - предельная точка D

 $D' \in D$, a - предельная точка D'

Предел f(x) при $x \to a$ по множеству D': - это $\lim_{x \to a} f|_{D'}(x)$

Определение

 $f:D\subset\mathbb{R} o\mathbb{R},\,a$ - предельная точка D

 ${\it Левосторонний предел при } x o a, D' = (-\infty, a) \cap D$ - это

 $\lim_{x \to a} f|_{D'} = \lim_{x \to a-0} f(x)$

Правосторонний предел при $x \to a, D' = (a, +\infty) \cap D$ - это

 $\lim_{x \to a} f|_{D'} = \lim_{x \to a+0} f(x)$

Теорема о пределе монотонной функции

 $f: D \subset \mathbb{R} \to \mathbb{R}$ и монотонна, $a \in \overline{\mathbb{R}}$

 $D'=(-\infty,a)\cap D,\,a$ - предельная точка D'

Тогда

1. $f \uparrow$ и ограничена сверху $\Rightarrow \exists \lim_{x \to a-0} f(x)$ - конечный

Доказательство

Дополнение: $\lim_{x\to a-0} f(x) = \sup_{D'} f(x)$

Пусть $\sup_{D'} f(x) = A$

Докажем $\lim_{x\to a-0} f(x) = A$

 $\forall \varepsilon > 0 \ \exists x \in D' \ A - \varepsilon < f(x) \le A$

Пусть $\delta = |x - a|$

Тогда при $x': a-\delta=x < x' < a$ $A-\varepsilon < f(x) \le f(x') \le A$

T.e. $\forall \varepsilon > 0 \; \exists \delta \; \forall x : a - \delta < x < a \; A - \varepsilon < f(x) \leq A$

T.e. $f(x) \xrightarrow[x\to a-0]{} A$

Аналогично для неограниченной функции $f(x) \xrightarrow[x \to a-0]{} +\infty$

- 2. $f\downarrow$ и ограничена снизу $\Rightarrow \exists \lim_{x \to a-0} f(x)$ конечный
- 3. Аналогично для правого предела возрастающей ограниченной снизу последовательности
- 4. Аналогично для правого предела убывающей ограниченной сверху последовательности

Критерий Больцано-Коши для отображений

Пусть $f:D\subset X\to Y$ - полное

a - предельная точка D

Тогда данные выражения эквивалентны:

1.
$$\exists \lim_{x \to a} f(x) \in Y$$

2.
$$\forall \varepsilon > 0 \ \exists V(a) \ \forall x, x' \in D \cap V(a) \ \rho(f(x), f(x')) < \varepsilon$$

Доказательство

 $1 \Rightarrow 2$ Из существования предела:

$$\forall \, \varepsilon > 0 \,\, \exists \, V(a) \,\, \forall \, x \in D \cap \overset{\bullet}{V}(a) \,\, \rho(f(x),A) < \frac{\varepsilon}{2}$$

$$\forall \, \varepsilon > 0 \,\, \exists \, V(a) \,\, \forall \, x' \in D \cap \overset{\bullet}{V}(a) \,\, \rho(f(x),A) < \frac{\varepsilon}{2}$$
 Отсюда
$$\forall \, \varepsilon > 0 \,\, \exists \, V(a) \,\, \forall \, x,x' \in D \cap \overset{\bullet}{V}(a) \,\, \rho(f(x),f(x')) \leq \rho(f(x),A) + \rho(f(x'),A) < \varepsilon$$

 $2 \Rightarrow 1$ по Гейне

По Гейне
Возьмем
$$(x_n)$$
:
$$\begin{cases} x_n \in D \\ x_n \neq a \\ x_n \to a \end{cases}$$

$$\forall \, \varepsilon > 0 \, \exists \, V(a) \, \forall \, x, x' \in D \cap V(a) \, \rho(f(x), f(x')) < \varepsilon$$

$$\text{If } \forall \, \varepsilon > 0 \, \exists \, V(a) \, \exists \, N \, \forall \, n > N \, \, x_n \in V(a)$$

Тогда можем взять $x = x_n, n > N; x' = x_m, m > N$

Отсюда $(f(x_n))$ - фундаментальная, а значит в Y существует конечный предел $f(x_n)$, ч.т.д.

Следствие

 $f:D\in\mathbb{R}\to\mathbb{R},\,a$ - предельная точка D

Тогда
$$\exists \lim_{x \to a} f(x) \in \mathbb{R} \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in D: \ \ 0 < |x-a| < \delta \ \ |f(x) - f(x')| < \varepsilon$$
 Для $a = +\infty$ аналогично

3.3 Непрерывное отображение

Определение

Пусть $f:D\subset X\to Y,\,X,Y$ - метрические пространства $x_0\in D$

Говорят, что f непрерывна в x_0 , если верно одно из утверждений (на самом деле тогда верны все)

- 1. $\lim_{x \to x_0} f(x) = f(x_0)$ либо x_0 изолированная точка
- 2. (по Коши) $\forall \varepsilon > 0 \; \exists \, \delta > 0 \; \forall \, x \in D \; \rho(x,x_0) < \delta \; \rho(f(x),f(x_0)) < \varepsilon$
- 3. (на языке окрестностей) $\forall U(f(x_0)) \; \exists V(x_0) \; \forall x \in D \cap V(x_0) \; f(x) \in U(f(x_0))$ (Эквивалентна топологическому определению: $V(x_0)$ открытое множество, содержащее $x_0, \; U(f(x_0))$ открытое множество, содержащее $f(x_0)$)

4. (по Гейне)
$$\begin{cases} x_n \in D \\ x_n \to x_0 \end{cases} \Rightarrow f(x_0) \to f(x_0)$$

Доказательство эквивалентности аналогично доказательству эквивалентности определений пределов отображений

Определение

$$f: D \subset \mathbb{R} \to Y, x_0 \in D$$

Если $f|_{D\cap(-\infty,x_0]}$ - непрерывна в x_0 , то f - непрерывна в x_0 слева Если $f|_{D\cap[x_0,+\infty)}$ - непрерывна в x_0 , то f - непрерывна в x_0 справа Если f непрерывна слева и справа в точке x_0 , то она непрерывна в точке x_0

Обозначения

Для непрерывных функций

$$\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0)$$

$$\lim_{x \to x_0 - 0} f(x) = f(x_0 - 0)$$

Определение

Если $f(x_0 + 0), f(x_0 - 0) \in \mathbb{R}$ определены и $f(x_0 + 0) \neq f(x_0 - 0)$ или $x_0 \notin D$ или $f(x_0 \pm 0) \neq f(x_0)$, то в точке $x_0 f(x)$ имеет скачок(разрыв I poda)

В данном случае f не является непрерывной, т.е. имеет разрыв в x_0 Также бывает разрыв H рода - $\not \supseteq f(x_0+0) \in \mathbb{R}$ или $\not \supseteq f(x_0-0) \in \mathbb{R}$ Если $x_0 \notin D$ и $f(x_0+0) = f(x_0-0)$, то разрыв будем считать устранимым

Определение

 $f:D\subset X o Y$ непрерывна на D, если непрерывна в каждой точке D Арифметрические свойства

- 1. $f,g:D\subset X\to Y,Y$ нормированное пространство $\lambda:D\to\mathbb{R}$ $x_0\in D,f,g,\lambda$ непрерывны в x_0 Тогда $f+g,\lambda f,\|f\|$ непрерывны в x_0
- 2. $f,g:D\subset X\to \mathbb{R},\ x_0\in D,\ f,g$ непрерывные в x_0 Тогда f+g,fg,|f| непрерывны $\frac{f}{g},g(x_0)\neq 0$ непрерывна

Замечание

Для непрерывности на множестве D теоремы аналогичные

Теорема о стабилизации знака для непрерывных функций

$$f:D\subset X o\mathbb{R},\,x_0\in D,\,f$$
 - непрерывна в x_0 Тогда $f(x_0)>0\Rightarrow\exists\,U(x_0):f|_{U(x_0)}>0$

Теорема о непрерывности композиции

$$f:D\subset X o Y$$
 $g:E\subset Y o Z$ $f(D)\subset E,x_0\in D,f$ - непрерывна в $x_0,f(x_0)\in E,g$ - непрерывна в $f(x_0)$ Тогда $g\circ f$ непрерывна в x_0

Доказательство

$$\forall x_n: \begin{cases} x_n \in D \\ x_n \to x_0 \end{cases} \begin{cases} f(x_n) \in E \\ f(x_n) \to f(x_0) \end{cases}$$
 Тогда $g(f(x_n)) \to g(f(x_0))$

Теорема о пределе композиции

$$f:D\subset X o Y$$
 $g:E\subset Y o Z$ $f(D)\subset E, x_0$ - предельная точка $D,\lim_{x o x_0}f(x)=A$ A - предельная точка $E,\lim_{y o A}g(y)=B$ Пусть $\exists\, U(x_0)\,\,\forall\, x\in U(x_0)\cap D\,\, f(x)\neq A$ Тогда $\exists\, \lim_{x o x_0}g(f(x))=B$

Также предел будет существовать и равен B, если $A \in E, g$ - непрерывна в A

Доказательство

По Гейне
$$x_n \in D$$
 $x_n \to x_0$ $x_n \neq x_0$ $f(x_n) \to A$ $f(x_n) \in E$ $f(x_n) \neq A$ начиная с некоторого места $\} \Rightarrow g(f(x_n)) \to E$

Определение

Функции $\operatorname{const}, x^{\alpha}(\alpha \in \mathbb{R}), \sin x, \cos x, e^{x}, \ln x, \arcsin x, \arctan x$ и полученные из них конечным числом арифметрических операций и композиций называются элементарными функциями

Теорема

Все элементраные функции непрерывны на своих областях определения Теорема (о топологическом определении непрерывности)

 $f:X\to Y,\,X,Y$ - метрические пространства

Тогда f - непрерывна на $X \Leftrightarrow \forall G \subset Y$ - открытое в Y $f^{-1}(G)$ - открыто в X

Доказательство ←

Рассмотрим $a \in X$

Пусть $G \subset Y$ - открытое, $f(a) \in G$

Тогда $f^{-1}(G)$ - открыто в $X, a \in f^{-1}(G)$

Тогда $\exists U(a): U(a) \subset f^{-1}(G)$, ч.т.д.

Доказательство ⇒

Пусть $G \subset Y$ - открытое

Выберем $a \subset f^{-1}(G)$

Тогда $f(a) \in G$

Тогда по определению существует окрестность $U(a) \subset f^{-1}(G)$, ч.т.д.

Теорема Вейерштрасса о непрерывном образе компакта

Пусть $f: X \to Y$ - непрерывно на X, X, Y - метрические пространства, X - компактно

Тогда f(X) - компактно

Доказательство

Пусть
$$f(X) \subset \bigcup_{\alpha \in A} G_{\alpha}$$
, где G_{α} - открытые в Y

Тогда $X\subset\bigcup_{\alpha\in A}f^{-1}(G_{\alpha}).$ Из предыдущей теоремы $f^{-1}(G_{\alpha})$ - открыты

Тогда существует конечное подпокрытие $f^{-1}(G_{\alpha_i}): X \subset \bigcup_{i=1}^n f^{-1}(G_{\alpha_i})$

Тогда
$$f(X)\subset \bigcup_{i=1}^n G_{lpha_i}$$

Следствие ${f 1}$

В условиях теоремы f(X) - замкнутое и ограниченное в Y

Следствие 2(первая теорема Вейерштрасса)

Пусть $f:[a,b]\to\mathbb{R}$ - непрерывно на [a,b]

Тогда f([a,b]) - ограниченное

Следствие 3

 $f:X\neq\varnothing\to\mathbb{R}$ - непрерывна на X,X - компактно

Тогда $\exists \min f(X), \max f(X)$

Доказательство

f(X) - замкнуто и ограничено, а значит $\exists \sup f(X)$ и $\sup f(X) \in f(X)$, Ч.Т.Д.

Следствие 4(вторая теорема Вейерштрасса)

Пусть $f:[a,b]\to\mathbb{R}$, непрерывна на [a,b]

Тогда $\exists \max f, \min f$

Определение

Пусть A - метрическое пространство

A - cension, если невозможно представить A в виде объединения двух открытых непересекающихся множеств

Лемма (о связности отрезка)

[a,b] в $\mathbb R$ невозможно представить в виде объединения двух непересекающихся непустых открытых множеств

 $\nexists G_1, G_2$ - открытые в $\mathbb{R}: [a,b] \subset G_1 \cup G_2, [a,b] \cap G_1 \neq \varnothing, [a,b] \cap G_2 \neq \varnothing$

 $\varnothing, G_1 \cap G_2 = \varnothing$

Доказательство

Пусть G_1, G_2 существуют

Пусть $a \in G_1$

Пусть $t = \sup\{x : [a, x] \subset G_1\}$

Пусть $b_2 \in G_2$

Тогда $t \leq b_2$

t - корректно определенная точка на [a,b]

Если бы t лежал в G_1 , то она лежала бы там с некой окрестностью, а значит t не был бы sup. Тогда $t \notin G_1$.

Если бы t лежал в G_2 , то она лежала бы там с некой окрестностью, а значит t не был бы sup. Тогда $t \notin G_2$.

Отсюда $t \in [a, b], t \notin G_1 \cup G_2$, что невозможно.

Следствие

Утверждение верно не только для [a, b], но и для $\langle a, b \rangle$

Обозначение

 $C(\langle a,b\rangle)$ - множество функций $f:\langle a,b\rangle\to\mathbb{R}$, непрерывных на $\langle a,b\rangle$

Теорема Больцано - Коши о промежуточном значении

Пусть $f \in C[a,b]$. Тогда $\forall \min f(a), f(b) \le t \le \max f(a), f(b) \exists x \in [a,b]: f(x) = t$

Доказательство

Пусть существует t_0 , не удовлетворяющее этому условию

Тогда $[a,b] = f^{-1}((-\infty,t_0)) \cup f^{-1}((t_0,-\infty))$, что противоречит теореме

Теорема о бутерброде

Пусть $A, B \subset \mathbb{R}^2, A \cap B = \emptyset$ - выпуклые многоугольники

Тогда существует прямая l, рассекающая оба многоугольника на равные многоугольники

Доказательство

Для начала решим задачу разреза одного многоугольника прямой, параллельной вектору $v \in \mathbb{R}^2$

Будем двигать прямую по прямоугольнику и считать δ - разность площадей частей прямоугольника, расположенных по разные части от прямой δ принимает значения от $[-S_A, S_A]$

Заметим, что δ непрерывна (доказывается через две приближающиеся друг к другу прямые)

Тогда δ принимает все значения $[-S_A, S_A]$, а значит возможно добиться $\delta = 0$, т.е. разрезать прямоугольник на 2 равные по площади части

Будем задавать наш вектор v через угол ϕ . Для вектора построим прямую, разделяющую A на две равные по площади части

Рассмотрим $\sigma(\phi)$ - разность двух половин, на которые данная прямая рассекает B. σ будет принимать значения $[-S_B, S_B]$

Заметим, что $\sigma(\phi)$ и $\sigma(\phi + \pi)$ разных знаков

Заметим, что $\sigma(\phi)$ (доказывается черед два вектора с близкими друк другу углами. Не забываем, что иногда образуется не треугольник, а четырехугольник. Также уточняем, что точка пересечения прямых лежит в A)

Тогда σ пересекает 0, ч.т.д.

Теорема о сохранении промежутка

$$f \in C\langle a, b \rangle, m = \inf f, M = \sup f, m, M \in \overline{\mathbb{R}}$$

Тогда $f(\langle a,b\rangle) = \langle m,M\rangle$ (выбор скобок не согласован)

Доказательство

Достаточно проверить, что $\forall t \in (m, M) \exists c : f(c) = t$

Если это не так, рассмотрим t_0 , для которого это не выполняется. Тогда $\langle a,b\rangle=f^{-1}((-\infty,t_0))\cup f^{-1}((t_0,+\infty))$

Заметим, что $(-\infty, t_0)$ и $(t_0, +\infty)$ не пусто

Замечание

Тип промежутка не сохраняется

Доказательство

$$sin((0,2\pi)) = [-1,1]$$

Ho

По теореме Вейерштрасса образ отрезка - отрезок

Определение

Пусть $\gamma:[a,b]\to Y,Y$ - метрическое пространство, функция непрерывна Тогда γ - nymv

Определение

 $E \in Y, Y$ - метрическое пространство

E - линейно связное множество, если $\forall A, B \in E \exists$ непрерывная $\gamma: [a,b] \to Y: \gamma(a) = A, \gamma(b) = B$

Пример

$$E = (\Gamma_{y=\sin \frac{1}{z}}) \cup ([(0,-1),(0,1)]$$
 - отрезок)

E - связное, но не линейно связное

Лемма

 $E\subset\mathbb{R}$ - линейно связное $\Leftrightarrow E$ - промежуток

Доказательство ←

Пусть $A, B \in \langle a, b \rangle$

Тогда $\gamma(t \in [0,1]) = A + t(B-A)$ - искомая функция

Доказательство ⇒

 ${
m E}$ сли E=arnothing - очевидно

Иначе:

 $m = \inf E, M = \sup E$

Пусть $\exists t \in (m, M), t \notin E$

Из линейной связности для A < t < B существует непрерывный путь из A в B. А значит этот путь принимает все значения, включая t. Тогда $t \in E$.

Отсюда $(m, M) \in E$, а значит $E = \langle m, M \rangle$

Теорема о сохранении линейной связности

 $f: X \to Y$ - непрерывно

X - линейно связное

Тогда f(X) - линейно связное

Доказательство

Пусть $A, B \in f(X), U, V \in X, f(U) = A, f(V) = B$

Построим путь между U,V - $c:[a,b] \to X, c(a) = U,c(b) = V,c$ - непрерывно

Тогда $f \circ c$ - путь в f(x)

Теорема (о непрерывности монотонной функции)

Пусть $f:\langle a,b\rangle \to \mathbb{R}$ - монотонная функция Тогда

- 1. У такой функции не может быть разрывов второго рода
- 2. Непрерывность $f \Leftrightarrow f(\langle a,b \rangle)$ промежуток

Доказательство п.1

Не умоляя общности пусть f - возрастающая

Возьмем $x_1 \le x \le x_2$

Тогда $f(x_1) \leq f(x) \leq f(x_2)$

Заметим, что у такой функции есть предел (из теоремы о пределе монотонной функции)

Пусть $x \to x_2 - 0$

Тогда $f(x_1) \le f(x_1 + 0) \le f(x_2)$

Тогда у функции существует конечный односторонний предел справа

(аналогично слева)

Тогда в любой точке у данной функции существует односторонний предел, а значит не может быть разрывов второго рода, ч.т.д.

Доказательство п.2

⇒: из теоремы о сохранении промежутка

(=:

Рассмотрим $x_0 \in (a, b)$

Пусть $f(x_0 + 0) \neq f(x_0)$

Из монотоности $f(x_0) < f(x_0 + 0)$

Тогда $(f(x_0), f(x_0+0))$ не лежит в множестве значений (для $x < x_0$ $f(x) \le f(x_0)$, для $x > x_0$ $f(x) \ge f(x_0+0)$), но тогда множество значений - не промежуток - противоречие

Аналогично для левостороннего предела

Следствие

Пусть $f:\langle a,b\rangle\to\mathbb{R},\ f$ - монотонна

Тогда множество точек разрыва не более чем счетно

Доказательство

Не умоляя общности, пусть f возрастает

Пусть X - множество точек разрыва f

Построим инъекцию $\phi: X \to \mathbb{Q}$:

Пусть $x_0 \in X$ - точка разрыва. Тогда f имеет скачок в этой точке

Тогда $f(x_0 - 0) < f(x_0 + 0)$ (неравенство из разрывности)

Тогда $\forall x_1 < x_0 < x_2 \ f(x_1) \le f(x_0 - 0) < f(x_0 + 0) \le f(x_2)$ (см. доказательство п.1)

Отсюда пусть $\phi(x_0) =$ любое $a \in \mathbb{Q} \cap (f(x_0 - 0), f(x_0 + 0))$

Заметим, что ϕ является инъекцией, что и требовалось

Отсюда множество X не более чем счетно

Пример

Пусть
$$\{r_n, r \in \mathbb{N}\} = \mathbb{Q}$$

$$f(x) := \sum_{n=1}^{\infty} \frac{\operatorname{sign}(x - r_n)}{2^n}$$

Теорема (о существовании и непрерывности обратной функции)

Пусть $f \in C(\langle a,b \rangle), f$ - строго монотонна, $m=\inf f, M=\sup f$ Тогда

- 1. f обратима, $f^{-1}:\langle m,M\rangle\to\langle a,b\rangle$, функция биективна
- 2. f^{-1} строго монотонна и имеет ту же монотонность

3. f^{-1} непрерывна

Определение

Определим функцию $x^{\alpha}, \alpha \in \mathbb{Q} \leftrightarrow f_{\alpha}(x)$

- 1. $\alpha = 1 : f_1 = id$ $f_1(x)$ непрерывна
- 2. $f_n(x) = x \cdot \dots \cdot x, n \in \mathbb{N}, n \geq 2$ непрерывна как произведение При нечетном n непрерывна на \mathbb{R} При четном n непрерывна на $(-\infty, 0]$ и $[0, +\infty)$
- 3. $f_{-n}(x) = \frac{1}{f_n(x)}, n \in \mathbb{N}, x \neq 0$ Непрерывна на $\mathbb{R} \setminus \{0\}$ и монотонна на $(-\infty, 0)$ и $(0, +\infty)$
- 4. $f_0 = 1$ на \mathbb{R}
- 5. $f_{\frac{1}{n}}(x), n \in \mathbb{R}, n$ нечетная Рассмотрим f_n : $f_n: \mathbb{R} \to \mathbb{R}$, строго возрастает, непрерывна Тогда $\exists (f_n)^{-1}: \mathbb{R} \to \mathbb{R}$, она непрерывна и возрастает $f_{\frac{1}{n}}:=(f_n)^{-1}$
- 6. $f_{\frac{1}{n}}(x), n \in \mathbb{R}, n$ нечетная Рассмотрим сужение f_n на \mathbb{R}_+ : $f_n : \mathbb{R}_+ \to \mathbb{R}_+$, строго возрастает, непрерывна Тогда $\exists (f_n)^{-1} : \mathbb{R}_+ \to \mathbb{R}_+$, она непрерывна и возрастает $f_{\frac{1}{n}} := (f_n)^{-1}$
- 7. $f_{\frac{p}{q}}:=f_{\frac{1}{q}}\circ f_p, \frac{p}{q}$ несократимая дробь Если p четная или q нечетная, то $f_{\frac{p}{q}}:\mathbb{R}\to\mathbb{R}$ Иначе $f_{\frac{p}{q}}:\mathbb{R}_+\to\mathbb{R}_+$

Свойства

Пусть x > 0

$$1. \ x^{r+s} = x^r \cdot x^s$$

2.
$$x^{rs} = (x^r)^s$$

$$3. (xy)^s = x^s y^s$$

3.4 Показательная функция

Определение

Функция $f: \mathbb{R} \to \mathbb{R}$ называется показательной, если она

- 1. Непрерывна
- 2. Не является $f \equiv 0$ или $f \equiv 1$
- 3. Удовлетворяет свойству f(x+y) = f(x)f(y)

Свойства показательных функций

Пусть f - показательная функция. Тогда

- 1. f(x) > 0, f(0) = 1
 - Доказательство

T.K.
$$f \not\equiv 0, \exists x_0: f(x_0) \neq 0$$

Тогда
$$f(0+x_0) = f(0)f(x_0)$$

Отсюда
$$f(0) = 1$$

$$\forall x \ f(x) \neq 0$$
, т.к. если $f(x_1) = 0$, то $\forall t \ f(t) = f(x_1)f(t - x_1) = 0$, а

значит
$$f \equiv 0$$

 $f(x) = f(\frac{x}{2})f(\frac{x}{2}) > 0$

2. $\forall r \in \mathbb{Q} \ f(rx) = f(x)^r$

Доказательство

Если $r \in \mathbb{N}$, очевидно

Если
$$r = -n, n \in \mathbb{N}$$
: $1 = f(0) = f(nx - nx) = f(nx)f(-nx) = f(nx)f(rx)$

Тогда
$$f(rx) = \frac{1}{f(nx)}$$

Если
$$r=\frac{1}{n}, n\in\mathbb{N}$$
: $f(x)=f(n\frac{1}{n})=f(\frac{x}{n})^n$ Тогда $f(\frac{x}{n})=f(x)^{\frac{1}{n}}$

Тогда
$$f(\frac{x'}{n}) = f(x)^{\frac{1}{n}}$$

Если
$$r=\frac{m}{n},\frac{m}{n}$$
 - несократимая дробь: $f(rx)=f(m\frac{x}{n})=f(\frac{x}{n})^m=f(x)^{\frac{m}{n}}$

3. f строго монотонна

Пусть
$$a := f(1)$$

$$a \neq 1$$

$$a > 1 \Rightarrow f(x) \uparrow$$

 $a < 1 \Rightarrow f(x) \downarrow$

Доказательство

Если a=1, то $\forall r \in \mathbb{Q}$ f(r)=f(r-1)f(1)=f(r-1)

Тогда из непрерывности функция тождественна единице, что противоречит условию

Пусть a > 1

Тогда $\forall x > 0 \ f(x) > 1$:

 $f(1\cdot\frac{m}{n})=a^{\frac{m}{n}}>1,\frac{m}{n}$ - несократимая дробь - по свойствам степенной функции

Тогда $\forall x > 0 \ f(x) \ge 1$ (через предельный переход)

Тогда $\forall x > 0 \ f(x) > 1$, т.к. $\forall x > 0 \ \exists r \in \mathbb{Q}: \ 0 < r < x$

Тогда f(x) = f(r)f(x-r). f(r) > 1, $f(x-r) \ge 1$. Отсюда f(x) > 1

T.o. f(x) строго возрастает: $f(x+h) = f(x)f(h) > f(x) \cdot 1$

Убывание аналогично

4. Множество значений f - это $(0, +\infty)$

Доказательство

fстрого монотонна и непрерывна. Тогда множество значений f - $(\inf f,\sup f)$

Из свойств $a^r, r \in \mathbb{Q}$: inf f = 0, sup $f = +\infty$

5. Пусть f,g - показательные функции. Тогда если f(1)=g(1), то f=g

Теорема

Пусть существует f_0 - показательная функция такая, что $\lim_{x\to 0} \frac{f(x)-1}{x}=1$

Доказательство

Ниже Теорема

Пусть f - произвольная показательная функция

Тогда $\exists \alpha \in \mathbb{R}: \ \forall f(x) = f_0(\alpha x),$ где f_0 - функция из предыдущей теоремы

Доказательство

Множество значений f_0 - $(0, +\infty)$

$$f(1) = a > 0, a \neq 1$$

$$\exists \alpha \neq 0 : f_0(\alpha) = a$$

Пусть
$$g(x) = f_0(\alpha x)$$

q - показательная функция

$$g(1) = a$$

Из свойства 5 $f(x) = g(x) = f_0(\alpha x)$, ч.т.д.

Следствие 1

Существует единственная f_0 из теоремы 2

Доказательство

Пусть h - показательная функция из теоремы 2

Тогда
$$\exists \alpha : h(x) = f_0(\alpha x)$$

По теореме 2:
$$1 \leftarrow \frac{h(x) - 1}{x} = \frac{f_0(\alpha x) - 1}{\alpha x} \alpha \xrightarrow[x \to 0]{} \alpha$$
 Отсюда $\alpha = 1, h = f_0$, ч.т.д.

Определение

 f_0 - экспонента

$$f_0 = \exp$$

$$f_0(1) = e$$

<u>Обозначения</u> $\exp x$ и e^x эквивалентны

Следствие 2

Для любого $a > 0, a \neq 1$ существует единственная показательная функция f: f(1) = a

Такую функцию будем обозначать a^x

Доказательство

Существование:

Для a из условия $\exists ! \alpha : f_0(\alpha) = a$

Тогда $f(x) = f_0(\alpha x)$

Единственность из свойства 5

Следствие 3

$$\forall a > 0, a \neq 1 \ \forall x, y \in \mathbb{R} \ a^{xy} = (a^x)^y = (a^y)^x$$

Доказательство

Если x = 0, все тривиально (хотя по определению справа не показательная функция)

Если $x \neq 0$: $b := a^x$. Из свойств функции $b > 0, b \neq 1$

Для
$$y \in \mathbb{Q}$$
 $a^{xy} = (a^x)^y = b^y$ - из свойств

Для
$$y \in \mathbb{R}$$
 подберем $(r_k) \subset Q, r_k \to y$

$$a^{xr_k} = (a^x)^{r_k}$$

Тогда из непрерывности $a^{xr_k} \to a^{xy}, (a^x)^{r_k} \to (a^x)^y$

Отсюда $a^{xy} = (a^x)^y$

3.5 Логарифм

 $a^x: \mathbb{R} \to (0, +\infty)$ - строго монотонна и непрерывна

Тогда существует обратная функция $\log_a x:(0,+\infty)\to\mathbb{R}$ - непрерывная и строго монотонная

Свойства

 $a > 0, a \neq 1$

- 1. $\log_a xy = \log_a x + \log_a y$
- $2. \log_a b^x = x \log_a b$
- 3. $\log_a x = \log_a c \log_c x$

Доказательство

 $u = v \Leftrightarrow a^u = a^v$

- 1. $a^{\log_a xy} = xy = a^{\log_a x} a^{\log_a y} = a^{\log_a x + \log_a y}$
- 2. $a^{\log_a b^x} = b^x = a^{x \log_a b}$
- 3. $\log_a x = \log_a(c^{\log_c x}) = \log_a c \log_c x$

3.6 Степень с произвольным показателем

Пусть $\sigma \in \mathbb{R}, x > 0$

 $x^{\sigma}=e^{\sigma \ln x}$ - степенная функция

Теорема

Пусть $A \subset \mathbb{R}$ - рационально зависимое, если $\exists x_1, \ldots, x_n \in A : \exists r_1, \ldots, r_n \in \mathbb{Q}$ (не все нули): $r_1x_1 + \ldots + r_nx_n = 0$

Пусть X - множество всех рационально независимых подмножеств $\mathbb R$ Введем в X отношение частичного порядка $A\subset B$

//todo 11:30 12.12 аксиома выбора

3.7 Тригонометрические функции

Утверждение

При $0 < x < \frac{\pi}{2} \sin x < x < \operatorname{tg} x$ - из площадей

Следствие

 $|\sin x| \le |x|$

Утверждение

 $\sin x, \cos x$ - непрерывны на $\mathbb R$

Доказательство

Докажем для x_0 : $|\sin x - \sin x_0| = 2|\cos \frac{x + x_0}{2}\sin \frac{x - x_0}{2}| \le 2\frac{|x - x_0|}{2} = |x - x_0|$

Утверждение

sin монотонен на $[-\frac{\pi}{2},\frac{\pi}{2}]\Rightarrow \exists \arcsin:[-1,1]\to [-\frac{\pi}{2},\frac{\pi}{2}]$ cos монотонен на $[0,\pi]\Rightarrow \exists \arccos:[-1,1]\to [0,\pi]$

3.8 Асимптотические разложения

Определение

 $f,g:D\subset X\to\mathbb{R},\ a$ - предельная точка D Если существует $\phi:D\to\mathbb{R}$ и $\forall\,x\in D\setminus\{a\}$ $f(x)=\phi(x)g(x)$

- 1. ϕ ограничена на $V(a)\cap D$, то f ограничена по сравнению c g в V(a) f=O(g)
- 2. $\phi \xrightarrow[x \to a]{} 0$, то f бесконечно мала относительно g $npu \ x \to a$ f = o(g)
- 3. $\phi \xrightarrow[x \to a]{} 1$, то f эквивалентна g при $x \to a$ $f \sim g$

Аналогичные определения

 $f, g: D \subset \mathbb{R} \to \mathbb{R}$

- 1. $\exists\, C>0\;\forall\, x\in D\; |f(x)|\leq C|g(x)|\Leftrightarrow f=O(g)$ на D
- 2. f = O(g); g = O(f) f и g асимптотически сравнимы на D

Замечание

$$f = o(g); g \neq 0 \text{ B } \overset{\bullet}{V}(a) \cap D \Leftrightarrow \frac{f}{g} \xrightarrow[x \to a]{} 0$$

$$f \sim g; g \neq 0 \text{ B } \overset{\bullet}{V}(a) \cap D \Leftrightarrow \frac{f}{g} \xrightarrow[x \to a]{} 1$$

Примеры свойств

1. При
$$x \to a: f \sim g \Leftrightarrow f = g + o(g) = g + o(f)$$

2.
$$o(f) \pm o(f) = o(f)$$

Эквивалентные функции при $x \to 0$

$$\sin x \sim x \qquad \sin x = x + o(x)$$

$$e^{x} - 1 \sim x \qquad e^{x} = 1 + x + o(x)$$

$$(1+x)^{\alpha} - 1 \sim \alpha x \qquad (1+x)^{\alpha} = 1 + \alpha x + o(x)$$

$$\ln(1+x) \sim x \qquad \ln(1+x) = x + o(x)$$

Теорема о замене на эквивалентные функции

Пусть у нас есть функции $f,g,\widetilde{f},\widetilde{g}:D\subset X\to Y,$ a - предельная точка D

$$\widetilde{f} \sim \widetilde{f}, g \sim \widetilde{g}$$
 при $x \to a$ Тогла

- 1. $\exists \lim_{x \to a} f(x)g(x) \in \overline{\mathbb{R}} \Leftrightarrow \exists \lim_{x \to a} \widetilde{f}(x)\widetilde{g}(x) \in \overline{\mathbb{R}}$ и при существовании $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} \widetilde{f}(x)\widetilde{g}(x)$
- 2. $\exists \lim_{x \to a} \frac{f(x)}{g(x)} \in \overline{\mathbb{R}} \Leftrightarrow \exists \lim_{x \to a} \frac{\widetilde{f}(x)}{\widetilde{g}(x)} \in \overline{\mathbb{R}}$ и при существовании $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\widetilde{f}(x)}{\widetilde{g}(x)}$, если a предельная точка $D' = D \cap \{x : g(x) \neq 0\}$

Доказательство

$$f(x)=\phi(x)\widetilde{f}(x), g(x)=\psi\widetilde{g}(x)$$
 в $U(a)\cap D$ и $\phi,\psi \xrightarrow[x o a]{} 1$ Тогда

1.
$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} \phi(x)\psi(x)\widetilde{f}(x)\widetilde{g}(x) = \lim_{x \to a} \widetilde{f}(x)\widetilde{g}(x)$$
$$\exists \lim_{x \to a} f(x)g(x) \Rightarrow \exists \lim_{x \to a} \widetilde{f}(x)\widetilde{g}(x)$$

2.
$$\lim_{x \to a} \widetilde{f}(x)\widetilde{g}(x) = \lim_{x \to a} \frac{1}{\phi(x)} \frac{1}{\psi(x)} f(x)g(x) = \lim_{x \to a} f(x)g(x)$$
$$\exists \lim_{x \to a} \widetilde{f}(x)\widetilde{g}(x) \Rightarrow \exists \lim_{x \to a} f(x)g(x)$$

Определение

 $g_1, g_2, g_3, \ldots : D \subset X \to \mathbb{R}, a$ - предельная точка D Пусть $\forall k \ g_{k+1} = o(g_k), x \to a$ Тогда набор функций g_1, g_2, \ldots называют $m \kappa a n o u$

 $f=c_1g_1+c_2g_2+\ldots+c_ng_n+o(g_n), x\to a$ - асимптотическое разложение по шкале (g_k)

Теорема о единственности асимптотического разложения

 $f,g_1,\ldots,g_n:D\subset X o\mathbb{R},\,a$ - предельная точка D

 g_1,\ldots,g_n - шкала асимптотического разложения при x o a

$$f = c_1 g_1 + c_2 g_2 + c_3 g_3 \dots c_n g_n + o(g_n)$$

$$f = d_1 g_1 + d_2 g_2 + d_3 g_3 \dots d_n g_n + o(g_n)$$

Тогда $c_i = d_i, i = 1 \dots n$

Доказательство

Пусть $m := min\{k : c_k \neq d_k\}$

Тогда
$$f = c_1 g_1 + \ldots + c_m g_m + o(g_m)$$

$$f = d_1g_1 + \ldots + d_mg_m + o(g_m)$$

Отсюда
$$f - f = 0 = (c_m - d_m)g_m + o(g_m), x \to a$$

$$(d_m - c_m)g_m = o(g_m)$$

Отсюда $g_m = o(g_m)$, что невозможно, ч.т.д.

Пример

$$f(x) = ax + b + o(1), x \to +\infty$$
 (для шкалы x^1, x^0, x^{-1}, \ldots)

Тогда y = ax + b - наклонная асимптота к графику y = f(x)

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty}}} \frac{f(x)}{x} = a$$

Теорема (Формула Тейлора для многочленов)

 $f: \mathbb{R} \to \mathbb{R}$ - многочлен $\deg f = n, x_0 \in \mathbb{R}$

Тогда $\forall x \in \mathbb{R}$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Доказательство

Представим f в виде $f(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)^2 + \ldots + b_n(x - x_0)^n$ Тогда

$$f'(x) = 1 \cdot b_1 + 2 \cdot b_2(x - x_0) + \dots + n \cdot b_n(x - x_0)^{n-1}$$

$$f''(x) = 2 \cdot 1 \cdot b_2 + 3 \cdot 2 \cdot b_3(x - x_0) + \dots + n \cdot (n-1) \cdot b_n(x - x_0)^{n-2}$$

:

$$f^{(k)}(x) = k! \cdot b_k + \frac{(k+1)!}{2!} \cdot b_{k+1}(x-x_0) + \ldots + \frac{n!}{(n-k)!} \cdot b_n(x-x_0)^{n-k}$$

Отсюда $f(x_0) = b_0, f'(x_0) = 1! \cdot b_1, \dots f^{(k)}(x_0) = k! \cdot b_k$, из чего следует формула, ч.т.д.

Теорема (Формула Тейлора)

 $f:\langle a,b\rangle\to\mathbb{R}, x_0\in\langle a,b\rangle, f$ - m раз дифференцируема на $\langle a,b\rangle$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

3.9 Замечательные пределы

- 1. $\lim_{x\to 0} \frac{\sin x}{x} = 1$ Доказательство

При
$$x \in (0, \frac{\pi}{2}) \sin x < x < \operatorname{tg} x$$

$$1 \underset{x \to 0}{\longleftarrow} \cos x < \frac{\sin x}{x} < 1 \underset{x \to 0}{\longrightarrow} 1$$
Следствие
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

$$\lim_{x \to 0} \frac{x^2}{x} = 1$$

$$\lim_{x \to 0} \frac{\frac{\log x}{x}}{x} = 1$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\operatorname{arctr} x$$

$$\lim_{x \to 0} \frac{\underset{x \to 0}{x}}{\underset{x \to 0}{\operatorname{arctg}}} = 1$$
 Следствие 2

$$(\sin x_0)' = \lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{2\cos \frac{x + x_0}{2} \sin \frac{x - x_0}{2}}{x - x_0} = \cos x_0$$

2. $\lim_{x\to 0} \frac{e^x-1}{x}=1$ - из теоремы о существовании экспоненты Следствие $\lim_{x\to 0} \frac{a^x-1}{x}=\ln a$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

3. $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

Доказательство

Замена

Следствие

$$(\ln x)' = \frac{1}{x}$$

4.
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$
 Доказательство

Экспонента от предыдущего предела

Следствие

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

5.
$$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}=\alpha, \alpha\in\mathbb{R}$$
 Доказательство

Если
$$\alpha = 0$$
: $\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = 0$ Иначе: $f := (1+x)^{\alpha} - 1$

Иначе:
$$f := (1+x)^{\alpha} - 1$$

Заметим, что
$$\alpha \ln(1+x) = \ln(f+1)$$

Тогда
$$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{f(x)}{\ln(f(x)+1)} \cdot \frac{\alpha \ln(1+x)}{x} = \lim_{x\to 0} \frac{f(x)}{\ln(f(x)+1)}$$

Дифференциальное счисление 4

4.1Производная

Определение

Пусть
$$f:\langle a,b\rangle \to \mathbb{R}, x_0 \in \langle a,b\rangle$$

Если
$$\exists A \in \mathbb{R} : f(x) = f(x_0) + A(x - x_0) + o(x - x_0), x \to x_0$$
, то f - дифференцируема в x_0 , $A = f'(x_0)$ - производная в x_0

 $f'(x_0)$ однозначно определено по единственности асимптотического разложения

Определение 2

Пусть
$$f: \langle a, b \rangle \to \mathbb{R}, x_0 \in \langle a, b \rangle$$

Пусть
$$f:\langle a,b\rangle\to\mathbb{R}, x_0\in\langle a,b\rangle$$

Если $\exists\lim_{\substack{x\to x_0\\\text{производная}}}\frac{f(x)-f(x_0)}{x-x_0}=A\in\mathbb{R},$ то f - дифференцируема, $A=f'(x_0)$ - производная

Определения 1 и 2 равносильны

Замечание

1.
$$f'_{\pm}(x_0) = \lim_{x \to x_0 \pm 0} \frac{f(x) - f(x_0)}{x - x_0}$$
 - односторонняя производная

Если существуют и равны $f'_{+}(x_0)$ и $f'_{-}(x_0)$, то f дифференцируема

в
$$x_0, f'(x_0) = f'_{\pm}(x_0)$$

- 2. Если $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \infty$, то функция не считается дифференцируемой
- 3. f дифференцируема $\Rightarrow f$ непрерывна (для $f'(x_0) = \infty$ не действует)

Определение

Пусть $f:\langle a,b\rangle\to\mathbb{R},D$ - множество точек, где f дифференцируема

$$f'(x): D \to \mathbb{R}$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$

Рассмотрим в \mathbb{R}^2 прямую $y = f(x_0) + f'(x_0)(x - x_0)$ - *касательную* к графику функции в $(x_0, f(x_0))$

4.2 Правила дифференцирования

Теорема

Пусть $f, g : \langle a, b \rangle \to \mathbb{R}$

f,g дифференцируемы в x_0

Производные следующих функций существуют и равны ...:

1.
$$(f+g)' = f' + g'$$

2.
$$\forall \alpha \in \mathbb{R}(\alpha f)' = \alpha f'$$

3.
$$(fg)' = f'g + fg'$$

4.
$$g(x_0) \neq 0 : \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Доказательство

$$\lim_{h \to 0} \frac{\frac{f}{g}(x_0 + h) - \frac{f}{g}(x_0)}{h} = \lim_{h \to 0} \frac{f(x_0 + h)g(x_0) - f(x_0)g(x_0 + h)}{hg(x_0 + h)g(x_0)} = \lim_{h \to 0} \frac{\frac{f(x_0 + h) - f(x_0)}{h}g(x_0) - f(x_0)\frac{g(x_0 + h) - g(x_0)}{h}}{g(x_0 + h)g(x_0)} = \frac{f'g - fg'}{g^2}$$

Замечание без доказательств

Bозьмем
$$\left(\frac{x\sin x}{\ln x}\right)'$$

Выберем какой-то x. Все остальные x заменим на константу x_0 и выпишем производную такой функции. Сделаем так для всех x и возьмем сумму от результатов. В получившемся выражении заменим x_0 обратно

$$\left(\frac{x\sin x}{\ln x}\right)' = \frac{\sin x}{\ln x} + \frac{x}{\ln x}\cos x + x\sin\left(-\frac{1}{\ln^2 x}\cdot\frac{1}{x}\right)$$
 В общем виде $\left(\frac{f}{g}\right) = \frac{f'}{g} + f\left(-\frac{g'}{g^2}\right)$

TODO какие ограничения

Теорема

Пусть $f:\langle a,b\rangle \to \langle c,d\rangle$, дифференцируема на $x\in\langle a,b\rangle$

 $g:\langle c,d\rangle\to\mathbb{R}$, дифференцируема в y=f(x)

Тогда $g \circ f$ - дифференцируема в x и $(g \circ f)' = g'(f(x)) \cdot f'(x)$

Доказательство

$$f(x+h)=f(x)+f'(x)h+h\alpha(h), \alpha(h)$$
 бесконечно малая при $h o 0$ $g(y+k)=g(y)+g'(y)k+y\beta(k)$

Тогда
$$g(f(x+h)) = g(f(x) + f'(x)h + h\alpha(h))$$
. Заметим, что $f(x) = y, f'(x)h + h\alpha(h), \alpha(h)$ подходит под описание k

$$g(f(x+h)) = g(f(x)) + g'(f(x))(f'(x)h + h\alpha(h)) + (f'(x)h + h\alpha(h))\beta(k) = g(f(x)) + g'(f(x))f'(x)h + g'(f(x))h\alpha(h) + (f'(x)h + h\alpha(h))\beta(k)$$

Заметим, что
$$g'(f(x))h\alpha(h) + f'(x)h\beta(k) + h\alpha(h)\beta(k) = o(h)$$

Тогда
$$q(f(x+h)) = q(f(x)) + q'(f(x))f'(x)h + o(h)$$
, ч.т.д.

Замечание

Можно считать, что $\alpha(0) = \beta(0) = 0$. Тогда α, β непрерывные, а значит мы считаем композицию непрерывных функций. Отсюда производная существует

Теорема (о дифференцировании обратной функции)

Пусть $f:\langle a,b\rangle\to\mathbb{R}$, функция непрерывна на $\langle a,b\rangle$, строго монотонна, дифференцируема в $x,\,f'(x)\neq 0$

Тогда
$$f^{-1}$$
 - дифференцируема в $f(x)$ и $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$

T.e.
$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Доказательство

Пусть
$$x = f^{-1}(y), h = f^{-1}(y+k) - f^{-1}(y)$$

$$\frac{f^{-1}(y+k) - f^{-1}(y)}{k} = \frac{h(k)}{f(x+k) - f(x)} = \frac{1}{\frac{f(x+h(k)) - f(x)}{k(k)}} \xrightarrow[k \to 0]{} \frac{1}{f'(x)}, \text{ ч.т.д.}$$

Таблица производных

$$\bullet (x^{\alpha})' = \alpha x^{\alpha - 1}$$

•
$$(e^x)' = e^x$$

 $(a^x)' = \ln a \cdot a^x$

•
$$\sin' = \cos$$

 $\cos' = \sin$
 $tg' = \frac{1}{\cos^2} = tg^2 + 1$

$$\bullet \ (\ln x)' = \frac{1}{x}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(\arctan x)' = \frac{1}{1 + x^2}$$

4.3 Теорема о среднем

Лемма(о возрастании в точке)

Пусть
$$f:\langle a,b\rangle \to \mathbb{R}$$
, дифференцируема в $x_0 \in (a,b), f'(x_0) > 0$
Тогда $\exists \varepsilon > 0: \ \forall x \in (x_0,x_0+\varepsilon) \ f(x) > f(x_0)$
 $\forall x \in (x_0-\varepsilon,x_0) \ f(x) < f(x_0)$

Доказательство

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} > 0$$

При $h \to +0 (\Rightarrow h > 0) \; \exists \, \varepsilon \; f(x_0 + h) - f(x_0) > 0$ (из предела)

Аналогично для $h \to -0$

Теорема Ферма

Пусть $f:\langle a,b\rangle \to \mathbb{R}, x_0\in (a,b), f(x_0)=\max_{\langle a,b\rangle}f, f$ - дифференцируема в x_0

Тогда $f'(x_0) = 0$ (необходимое условие экстремума)

Доказательство

Очевидно из леммы

Теорема Ролля

Пусть $f:[a,b]\to\mathbb{R}$, непрерывная на [a,b], дифференцируема на (a,b), f(a) = f(b)

Тогда $\exists c \in (a, b) : f(c) = 0$

Доказательство

с - найдется среди точек максимума или минимума

По т. Вейерштрасса у этой функции существуют точки максимума или минимума

Если максимум и минимум достигаются только в a и b, то f=const Тогда c - любая точка (a,b)

Иначе c - любая точка максимума или минимума в (a,b)

Обозначение

$$Ln(x) = ((1-x^2)^n)^{(n)}$$
 - многочлен Лежандра

Пример-теорема

Многочлен $\operatorname{Ln}(x)$ имеет n различных вещественных корней

Доказательство

Пусть f, g - многочлены

Введем понятие:

Если
$$f(x) = (x - a)^k g(x), g(a) \neq 0$$

Тогда будем говорить, что a - корень кратности k

Заметим, что a - корень кратности k-1 у f'(x):

$$f(x)' = k(x-a)^{k-1}g(x) + (x-a)^k g'(x) = (x-a)^{k-1}(kg(x) - (x-a)g'(x))$$
The second results of the following seconds of the second results of the sec

Теперь докажем пример

У $(1-x^2)^n$ - корни -1, 1 имеют кратность n. Больше у него корней нет, т.к. их не больше 2n

Продифференцируем выражение

Тепер -1 и 1 имеют кратность n-1. По теореме Ролля в (-1,1) существует корень. Его кратность будет 1, т.к. всего корней 2n-1

Продифференцируем выражение еще раз

Тепер -1 и 1 имеют кратность n-2. c перестанет быть корнем. В (-1,c) и (c,1) будут корни по теореме Ролля. Их кратность будет 1

Тогда после n-1 дифференцирований корни -1 и 1 будут иметь кратность 1. Степень многочлена будет n+1

Аналогично предыдущим случаям будет n-1 корней кратности 1

После еще одного дифференцирования -1 и 1 перестанут быть корнями. Многочлен будет иметь n корней кратности 1. Т.о. все они различны, ч.т.д.

Теорема Лагранжа

Пусть $f:[a,b] \to \mathbb{R}$

Функция непрерывна на отрезке [a,b] и дифференцируема на (a,b)

Тогда
$$\exists c \in (a,b): \frac{f(b) - f(a)}{b - a} = f'(c)$$

Теорема Коши

Пусть $f, g : [a, b] \to \mathbb{R}$

Функции непрерывны на отрезке [a,b] и дифференцируемы на (a,b) $q'\neq 0$ в (a,b)

Тогда
$$\exists c \in (a,b): \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Замечание

Если g(b)=g(a), то g'(x) в какой-то момент будет 0 по теореме Ролля. Тогда $g(b)\neq g(a)$

Доказательство

Пусть F(x) = f(x) - kg(x)

Подберем k: F(a) = F(b):

$$k = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Т.к. F(a) = F(b), то $\exists c \in (a,b) \ F'(c) = 0$, т.е. f'(c) = kg'(c), ч.т.д.

Следствие

 $f:\langle a,b\rangle\to\mathbb{R}$, дифференцируема на $\langle a,b\rangle$

Пусть $\exists M > 0: \forall x \in \langle a, b \rangle |f'(x)| \leq M$

Тогда $\forall x, x + h \in \langle a, b \rangle |f(x+h) - f(x)| \leq M|h|$

Следствие 2

 $f \in C[x_0,x_0+h]$, дифференцируема на $(x_0,x_0+h]$

Пусть $\exists \lim_{x \to x_0 + 0} f'(x) = k \in \overline{\mathbb{R}}$

Тогда $\exists f'_+(x_0) = k$

Доказательство

$$f'_{+}(x_0) = \lim_{t \to +0} \frac{f(x_0 + t) - f(x_0)}{t}$$

По т. Лагранжа $\exists c \in (x_0, x_0 + t) : \frac{f(x_0 + t) - f(x_0)}{t} = f'(c)$

Тогда $f'_+(x_0) = \lim_{t \to +0} f'(c) = k$

Теорема Дарбу

 $f:[a,b] o\mathbb{R}$, дифференцируемая на [a,b]

Тогда $\forall C : \min(f'(a), f'(b)) < C < \max(f'(a), f'(b)) \exists c \in (a, b) : f'(c) = C$ (При этом производная не является непрерывной)

Доказательство

Пусть g(x) = f(x) - Cx

Тогда g'(a) и g'(b) разных знаков

Пусть g'(a) > 0, g'(b) < 0

По т. Вейерштрасса $\exists\, c: g(c) = \max_{[a,b]} g(x), c \neq a, b$ по лемме

Тогда g'(c) = 0

Следствие

Если f дифференцируема на $\langle a,b\rangle$, то $f'(\langle a,b\rangle)$ - промежуток

Следствие 2

f' не может иметь разрывов первого рода

4.4 Производные высших порядков

Определение

 $f:\langle a,b\rangle\to\mathbb{R}$, дифференцируемая на $\langle a,b\rangle$

Тогда $f': \langle a, b \rangle \to \mathbb{R}$

Если нашлась $x_0 \in \langle a, b \rangle : \exists (f')'(x_0)$, то говорят, что $(f')'(x_0)$ - это вторая производная в f_0

Аналогично далее

Аналогично для односторонних производных (заранее сужаем область определения до требуемой)

Пусть E - промежуток на \mathbb{R} . За $C^n(E)$ будем обозначать множество функций, определенных на E, n раз дифференцируемых на E, u $f^{(n)}$ - непрерывных на E

$$C^{\infty}E = \bigcap_{n \in \mathbb{N}} C^n(E)$$

Замечание

$$C^E \supseteq C^1(E) \supseteq C^2(E) \supseteq \dots \supset C^{\infty}(E)$$

Лемма

Пусть $r: \langle a, b \rangle \to \mathbb{R}, x_0 \in \langle a, b \rangle,$

r - n-1 раз дифференцируема на $\langle a,b \rangle$,

r - n раз дифференцируема в x_0 и $r(x_0) = r'(x_0) = \ldots = r^{(n)}(x_0) = 0$

Тогда $r(x) = o((x-x_0)^n), x \to x_0$

Доказательство

Докажем по индукции

1. База

$$r(x) = r(x_0) + r'(x_0)(x - x_0) + o(x - x_0)$$

Тогда $r(x) = o(x - x_0)$

2. Переход (от $n \times n+1$)

Пусть R(x) дифференцируема n раз на $\langle a,b\rangle,\ n+1$ раз - в $x_0,\ R(x_0)=\ldots=R^{(n+1)}(x_0)=0$ Тогда r(x):=R'(x) - удовлетворяет предположению индукции

Тогда
$$r(x) = o((x - x_0)^n)$$

Отсюда $\frac{R(x)}{(x - x_0)^{n+1}} = \frac{R(x) - R(x_0)}{x - x_0} \frac{1}{(x - x_0)^n}$

По теореме Лагранжа для некоторой $c \in (\min(x, x_0), \max(x, x_0))$:

$$\frac{R(x) - R(x_0)}{x - x_0} \frac{1}{(x - x_0)^n} = \frac{R'(c)}{(x - x_0)^n}$$

$$|\frac{R(x)}{(x - x_0)^{n+1}}| = \frac{|R'(c)|}{|x - x_0|^n} \le \frac{|R'(c)|}{|c - x_0|^n} = \frac{|r(c)|}{|c - x_0|^n} \xrightarrow{x \to x_0} 0$$

Формула Тейлора с остатком в форме Пеано

 $f:\langle a,b\rangle \to \mathbb{R},\, n-1$ раз дифференцируема на $\langle a,b\rangle,\, n$ раз - в $x_0\in\langle a,b\rangle$

Тогда
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \underset{x \to x_0}{o} ((x - x_0)^n)$$

Доказательство

$$r(x) := f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$r(x_0) = 0$$

$$r'(x_0) = f'(x_0) - \sum_{k=0}^{n-1} \frac{f^{(k+1)}(x_0)}{k!} (x - x_0)^k = 0$$

$$r^{(l)}(x_0) = f^{(l)}(x_0) - \sum_{k=l}^{n} \frac{f^{(k)}(x_0)}{(k-l)!} (x - x_0)^{k-l} = 0, l \le n$$

Из леммы
$$r(x) = o((x - x_0)^n)$$

Обозначения

$$T_n(f,x_0)(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$$
 - многочлен Тейлора n -ой степени

функции f в точке x_0

Формула Тейлора: $f(x) = T_n(f, x_0)(x) + R_n$, где R_n - остаток в формуле Тейлора

$$R_n = o((x - x_0)^n)$$

Теорема

Пусть у нас есть рациональная функция $\frac{P(x)}{Q(x)}, P, Q$ - многочлены, $\deg P <$

$$\deg Q$$

$$Q(x) = (x - a_1)^{k_1} \cdot \ldots \cdot (x - a_n)^{k_n}$$

Тогда существует n серий вещественных коэффициентов: $\alpha_1, \dots, \alpha_{k_1}; \beta_1, \dots, \beta_{k_2}; \dots; \omega_1, \dots, \omega_{k_n}$ таких, что

$$\frac{P(x)}{Q(x)} = \left(\frac{\alpha_1}{x - a_1} + \dots + \frac{\alpha_{k_1}}{(x - a_1)^{k_1}}\right) + \dots + \left(\frac{\omega_1}{x - a_n} + \dots + \frac{\omega_{k_n}}{(x - a_n)^{k_n}}\right)$$

Доказательство

Доказательство Получим серию
$$\alpha$$
: $\frac{P}{Q} = \frac{1}{(x-a_1)^{k_1}} \cdot F_1, F_1 = \frac{P(x)}{(x-a_2)^{k_2} \cdot \ldots \cdot (x-a_n)^{k_n}}$ Заметим, что $F_1 \in C^{\infty}$

$$\frac{P}{Q} = \frac{1}{(x-a_1)^{k_1}} \cdot (\alpha_{k_1} + \alpha_{k_1-1}(x-a_1) + \dots + \alpha_1(x-a_1)^{k_1-1} + \alpha_0(x-a_1)^{k_1} + \dots + \alpha_1(x-a_1)^{k_1-1} + \alpha_0(x-a_1)^{k_1} + \dots + \alpha_1(x-a_1)^{k_1-1} + \alpha_0(x-a_1)^{k_1-1} + \dots + \alpha_1(x-a_1)^{k_1-1} + \dots + \alpha_1(x-$$

$$o((x-a_1)^{k_1}) = \frac{\alpha_{k_1}}{(x-a_1)^{k_1}} + \ldots + \frac{\alpha_1}{(x-a_1)} + \alpha_0 + \frac{o((x-a_1)^{k_1})}{(x-a_1)^{k_1}}$$

Наблюление:

$$rac{P}{Q}-(rac{lpha_{k_1}}{(x-a_1)^{k_1}}+\ldots+rac{lpha_1}{(x-a_1)})\xrightarrow[x o a_1]{}lpha_0$$
 - т.е. это конечный предел.

Значит знаменатель $(x-a_1)$ полностью ушел из знаменателя (иначе бы предел был ∞)

Рассмотрим
$$R(x) = \frac{P}{Q} - (\frac{\alpha_{k_1}}{(x - a_1)^{k_1}} + \dots + \frac{\alpha_1}{(x - a_1)}) - (\frac{\beta_{k_2}}{(x - a_2)^{k_2}} + \dots + \frac{\beta_1}{(x - a_2)^{k_2}})$$

$$\frac{\beta_1}{(x-a_2)} - \dots - \left(\frac{\omega_{k_n}}{(x-a_n)^{k_n}} + \dots + \frac{\omega_1}{(x-a_n)}\right)$$

R(x) - рациональная дробь со знаменателем Q

По выше описанной логике в R(x) полностью сократятся все знаменате-

Т.о. R(x) - многочлен. При $x \to \infty$ $R(x) \to 0$. Отсюда $R(x) = \mathrm{const}$

T.e. $R(x) \equiv 0$

Замечание

Для нахождения числителей раскладываем F_i в формулы Тейлора //todo научиться это делать

Теорема (формула Тейлора с остатком в форме Лагранжа)

Пусть $f \in C^n(\langle a, b \rangle)$, существует $f^{(n+1)}$ на $\langle a, b \rangle, x_0, x \in \langle a, b \rangle$

Тогда $\exists C \in (x_0, x)$ (или (x, x_0))

$$f(x) = f(x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(n+1)}(C)}{(n+1)!} (x - x_0)^{n+1}$$

(Заметим, что C зависит от x)

Доказательство

$$\phi(t):=f(x)-\sum_{k=0}^n\frac{f^{(k)}(t)}{k!}(x-t)^k,t\in[x_0,x]$$
 (или наоборот)
$$\phi(x)=0$$

$$\phi(x_0)=f(x)-T_n(f,x_0)(x)=R_n(x)\text{ - остаток в формуле Тейлора}$$

$$\phi'(t)=-f'(t)-\sum_{k=1}^n(\frac{f^{(k+1)}(t)}{k!}(x-t)^k-\frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1})=-\frac{f^{(n+1)}(t)}{n!}(x-t)^n$$

$$\psi(t) = (x - t)^{n+1}$$

$$\psi(x) = 0, \psi(x_0) = (x - x_0)^{n+1}$$

По теореме Коши:

$$\frac{R_n(x)}{(x-x_0)^{n+1}} = \frac{\phi(x) - \phi(x_0)}{\psi(x) - \psi(x_0)} = \frac{\phi'(c)}{\psi'(c)} = \frac{-\frac{f^{(n+1)}(c)}{n!}(x-c)^n}{-(n+1)(x-c)^n}, c \in [x_0, x]$$
 Тогда $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$

Замечание

1. Теорема эквивалентна следующему утверждению:

$$\exists \theta \in (0,1): \ f(x) = T_n(f,x_0)(x) + \frac{f^{(n+1)}(x_0 + \theta(x-x_0))}{(n+1)!}(x-x_0)^{n+1}$$

2. В доказательстве вместо ψ можно взять функцию (x-t)

Тогда
$$R_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} (x - x_0)^{n+1} (1 - \theta)^n$$

Метод Ньютона

Пусть у нас есть дважды дифференцируемая функция f(x) с неизвестным корнем ξ и точка x_1 . Сгенерируем последовательность x_n , приближающуюся к ξ

Пусть x_{n+1} - точка пересечения ОХ и касательной к f в точке x_n

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Опенка

Найдем разность
$$\xi - x_{n+1} = \xi - x_n + \frac{f(x_n)}{f'(x_n)} = \frac{f(x_n) + f'(x_n)(\xi - x_n)}{f'(x_n)}$$

$$0 = f(\xi) = f(x_n) + \frac{f'(x_n)}{1!}(\xi - x_n) + \frac{f''(c)}{2!}(\xi - x_n)^2$$
 по формуле Тейлора, c - между ε и x_n

Тогда
$$\xi - x_{n+1} = -\frac{1}{2} \frac{f''(c)}{f'(x_n)} (\xi - x_n)^2$$

Пусть $m := \min_{\langle a,b \rangle} |f'(x)|$
 $M := \max_{\langle a,b \rangle} |f''(x)|$
 $|\xi - x_{n+1}| = \frac{1}{2} \frac{f''(c)}{f'(x_n)} |\xi - x_n|^2 \le \frac{M}{2m} |\xi - x_n|^2 \le \frac{M}{2m} \frac{M^2}{4m^2} |\xi - x_{n-1}|^4 \le \dots \le |\xi - x_1|^{2^n} \frac{M^{1+2+4+\dots+2^{n-1}}}{(2m)^{1+2+4+\dots+2^{n-1}}} = \frac{2m}{M} |\frac{M}{2m} (\xi - x_1)|^{2^n}$

Тогда при хорошем x_1 точность будет очень быстро увеличиваться с каждым шагом

Следствие

Пусть
$$f \in C^{\infty}\langle a, b \rangle$$
 и $\exists M, A \ \forall t \in \langle a, b \rangle \ \forall n \ f^{(n)}(t) \leq M \cdot A^n$ Тогда $\forall x, x_0 \in \langle a, b \rangle \ T_n(f, x_0)(x - x_0) \xrightarrow[n \to +\infty]{} f(x)$

Доказательство

Из предыдущей теоремы
$$|f(x) - T_n(f, x_0)(x)| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^n \right| \le \frac{MA^{n+1}}{(n+1)!} |x - x_0|^{n+1} = MA \frac{|A(x - x_0)|^{n+1}}{(n+1)!} \xrightarrow[n \to \infty]{} 0$$

Таблица формул Тейлора

При
$$x_0=0$$
 $e^x=1+x+\frac{x^2}{2!}+\ldots+\frac{x^n}{n!}+o(x^n)$ $\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+\ldots+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+o(x^{2n+2})$ $\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+\ldots+(-1)^n\frac{x^{2n}}{(2n)!}+o(x^{2n+1})$ $\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+\ldots+(-1)^{n-1}\frac{x^n}{n}+o(x^n)$ $(1+x)^\alpha=1+\binom{\alpha}{1}x+\binom{\alpha}{2}x^2+\ldots+\binom{\alpha}{n}x^n+o(x^n)$, где $\alpha\in\mathbb{R},\binom{\alpha}{n}=\frac{\alpha(\alpha-1)\cdot\ldots\cdot(\alpha-n+1)}{n!}$

4.5 Равномерная непрерывность

Определение

Пусть $f:X\to Y,X,Y$ - метрические пространства, f - непрерывная на

X

Если $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x, x_0 : \rho(x, x_0) < \delta \; \rho(f(x), f(x_0)) < \varepsilon$, то функция - равномерно непрерывная

Теорема Кантора

 $f:X\to Y$ - непрерывная на X,X - компактно, X,Y - метрическое пространство

Тогда f - равномерно непрерывна на X

Доказательство

Докажем от противного

Докажем, что $\exists \varepsilon > 0 : \forall n \in \mathbb{N} \ \exists x_n, x_n' \in X : \ \rho(x_n, x_n') < \frac{1}{n}, \rho(f(x_n), f(x_n')) \ge \varepsilon$

Т.к. X компактно, $\exists n_k : x_{n_k} \to a \in X$

Отсюда $x'_{n_k} \to a$

Тогда $ho(f(x_n),f(x_n')) o 0$ - противоречие

Следствие

 $f:[a,b] o \mathbb{R}$ - непрерывна

Тогда f - равномерно непрерывная

Замечание

Если отображение равномерно непрерывное на двух множествах, то оно непрерывно и на их объединении

TODO проверить

Минутка из теории игр

Пусть у нас есть "прямоугольное" поле для игры в Нех, играют два игрока - белый и черный

Игроку выделены две противоположные стороны прямоугольника. Требуется, закрашивая клетки, провести путь между клетками

Утверждается, что в этой игре не бывает ничьих

Доказательство

Встанем в нижний угол и будем оттуда вести линию так, чтобы слева от линии были белые клетки, а справа - черные

Заметим, что мы можем построить такую линию

Заметим, что длина линии конечна

Тогда когда-то линия упрется куда-то

Линия не может зациклиться

Тогда линия всегда упрется в какую-то стенку

Тогда вдоль линии будет находиться выигрышный путь для черных или белых

Теорема Брауэра о неподвижной точке

- 1. Пусть в \mathbb{R}^m B=B(0,1) и $f:B\to B$ непрерывная Тогда $\exists\,x\in B:f(x)=x$
- 2. Пусть $f:[0,1]^2 \to [0,1]^2$ непрерывное Тогда $\exists x \in [0,1]^2: f(x) = x$

Доказательство

Будем задавать точку следующим образом: $x = (x_1, x_2)$

$$f(x) = (f_1(x_1, x_2), f_2(x_1, x_2))$$

Рассмотрим $\rho(x,y) := \max |x_1-y_1|, |x_2-y_2|$ - непрерывная на нашем квадрате (т.к. зажата между 0 и евклидовой метрикой)

Для евклидовой метрики будем использовать ||x-y||

Пусть в квадрате нет неподвижных точек

Тогда рассмотрим функцию $x \mapsto \rho(x, f(x))$. Эта функция положительна, непрерывна

Тогда по т. Вейерштрасса существует минимум $\varepsilon := \max \rho(x, f(x)) > 0$

f по т. Кантора равномерно непрерывна, т.е. для ε \exists δ < ε : \forall x, x_0 : $\|x - x_0\| < \delta\sqrt{2} \ \|f(x) - f(x_0)\| < \varepsilon$

Возьмем доску для игры в $\operatorname{Hex}(n,n), n: \frac{\sqrt{2}}{n} < \delta$

Преобразуем ее, взяв центры ее клеток и соединив их. Тогда мы получим прямоугольную сетку с диагоналями. Покраска клеток теперь эквивалентна покраске ее центра

Стороны первого игрока - левая и правая, второго - верхняя и нижняя

Сожмем сетку до размеров 1×1 . Теперь каждому узлу (v_1, v_2) в сетке соответствует точка $(\frac{v_1}{n}, \frac{v_2}{n})$

Теперь покрасим точки следующим образом: $\operatorname{color}(v) = \min(i:|f_i(\frac{v_i}{n}) - \frac{v_i}{n}| \ge \varepsilon)$ (хотя бы одна координата подходит по выше описанным причинам)

По предыдущим рассуждениям существует одноцветный путь от нижней грани к верхней или от левой грани к правой

Пронумеруем вершины в этом пути: v^0, v^1, \dots, v^N

Пусть путь имеет цвет 1 (путь - слева направо)

Тогда $v_1^0 = 0$

$$f_1(rac{v^0}{n}) \geq 0$$
 - по условию

Т.к. цвет - 1, то
$$f_1(\frac{v^0}{n}) - \frac{v_1^0}{n} \ge \varepsilon$$

$$v_1^N = 1$$

$$f_1(\frac{v^N}{n}) \le 1$$

Т.к. цвет - 1, то
$$f_1(\frac{v^N}{n}) - \frac{v_1^N}{n} \le -\varepsilon$$

Заметим, что в какой-то момент мы перейдем от $f_1(\frac{v^i}{n}) - \frac{v_1^i}{n} \ge \varepsilon$ к

$$f_1(\frac{v^i}{n}) - \frac{v_1^i}{n} \le -\varepsilon$$

При переходе к следующему пункту значение $\frac{v_1^i}{n}$ меняеся на $\frac{1}{n} < \delta,$

$$f_1(rac{v^i}{n})$$
 - менее чем на $arepsilon$

Отсюда переход на 2ε невозможен, ч.т.д.

4.6 Монотонность и экстремумы

Теорема (критерий монотонности)

 $f \in C\langle a,b \rangle$, диффереренцируема на (a,b)

Тогда

 $f \uparrow$ (нестрого) на $\langle a,b \rangle \Leftrightarrow f' \geq 0$ на (a,b)

 $f\downarrow$ (нестрого) на $\langle a,b\rangle \Leftrightarrow f'\leq 0$ на (a,b)

Доказательство \Rightarrow

Из определения производной

Доказательство ←

Из т. Лагранжа:

Bозьмем $x_0 < x_1$

$$f(x_1) - f(x_0) = f'(c)(x_1 - x_0) \ge 0$$
 для некоторого $c \in (a, b)$

Следствие

$$f: \langle a, b \rangle \to \mathbb{R}$$

Тогда
$$f=\mathrm{const} \Leftrightarrow f\in C\langle a,b\rangle \wedge f'\equiv 0$$
 на (a,b)

 $oldsymbol{\mathcal{L}}$ оказательство \Rightarrow из определения

Доказательство \Leftarrow

Из теоремы f нестрого возрастает и нестрого убывает

Тогда f = const

Следствие 2

 $f \in C\langle a, b \rangle$, дифференцируема на (a, b)

Тогда f строго возрастает $\Leftrightarrow \begin{cases} f' \geq 0 \text{ на } (a,b) \\ f' = 0 \text{ (не является тождественным 0 ни на каком интервале)} \end{cases}$

Доказательство ⇒ по теореме и следствию 1

Доказательство ←

Она нестрого возрастает

Но если есть промежутки, где она константа, то в этих промежутках f'(x) - константа

Отсюда она строго возрастает, ч.т.д.

Следствие 3

Пусть $f,g \in C[a,b)$ и дифференцируемы на (a,b)

$$f(a) \le g(a)$$

При $x \in (a,b)$ $f'(x) \leq g'(x)$

Тогда $f(x) \leq g(x)$

Доказательство

Рассмотрим g(x) - f(x)

Она неотрицательна и всегда возрастает

Определение

Пусть $f: X \to \mathbb{R}$

Тогда $x_0 \in X$ - точка локального максимума, если $\exists U(x_0): \forall x \in U(x_0) \ f(x) \leq f(x_0)$

 $x_0 \in X$ - точка строгого локального максимума, если $\exists U(x_0): \forall x \in U(x_0)$

Локальный экстремум - локальный максимум или локальный минимум

Определение

Пусть $f: \langle a, b \rangle \to \mathbb{R}$

Точка x стационарная, если f'(x) = 0

Определение

$$f:\langle a,b\rangle \to \mathbb{R}$$

Точка x_0 - точка строгого возрастания, если $\exists U(x_0)$:

$$\forall x \in U(x_0), x > x_0 \ f(x) > f(x_0)$$

$$\forall x \in U(x_0), x < x_0 \ f(x) < f(x_0)$$

Теорема о необходимом и достаточном условии экстремума

$$f: \langle a, b \rangle \to \mathbb{R}$$

$$x_0 \in (a,b)$$

(интервал!!!)

Тогда

1. Если f - дифференцируема в x_0, x_0 - локальный экстремум. Тогда $f'(x_0) = 0$

Доказательство

По т. Ферма

2. Пусть f - n раз дифференцируема в окрестности x_0

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$

$$f^{(n)}(x_0) \neq 0$$

Если $f^{(n)}(x_0) > 0$:

Если n - четная, то x_0 - минимум

Если n - нечетная, то x_0 - не экстремум. x_0 - точка строгого возрастания

Если $f^{(n)}(x_0) < 0$:

Если n - четная, то x_0 - максимум

Если n - нечетная, то x_0 - не экстремум. x_0 - точка строгого убывания

Доказательство

Распишем формулу Тейлора

$$f(x) = f(x_0) + 0 + \ldots + \frac{f^{(n)}}{n!}(x - x_0)^n + o((x - x_0)^n)$$

Тогда в некоторой окрестности x_0 знак $\frac{f^{(n)}}{n!}(x-x_0)^n$ совпадает со

знаком
$$\frac{f^{(n)}}{n!}(x-x_0)^n + o((x-x_0)^n)$$

Отсюда свойства очевидны