

UNIVERSIDADE FEDERAL DO PIAUI – UFPI CAMPUS SENADOR HELVÍDIO NUNES DE BARROS - CSHNB CURSO DE BACHARELADO EM SISTEMAS DE INFORMAÇÃO

Engenharia de Software I

Diagramas UML – Parte 2 Atividade Prática

Professora Pâmela Carvalho 28/02/23

Diagrama de Classes Diagrama de Objetos

Diagrama de Classe

Objeto

- É uma entidade que incorpora uma abstração relevante no contexto de uma aplicação.
- Podem ser coisas concretas ou abstratas (carro, empresa, componente, pessoa, reserva de passagem aérea, ...).
- Partes básicas:
 - Estado
 - Componente
 - Identidade

2. Diagramas de Classe

A **UML** surgiu como uma proposta de ser uma linguagem para modelagem de dados que usa diversos artefatos para representar o modelo de negócio;

- um destes artefatos é o diagrama de classes.

2. Diagramas de Classe

- Os diagramas de classe são um tipo de diagrama da estrutura porque descrevem o que deve estar presente no sistema a ser modelado.
- Normalmente s\(\tilde{a}\)o utilizados por engenheiros para documentar a arquitetura de software.

2. Diagramas de Classe

- O diagrama de classe é o principal diagrama estrutural da UML.
- Diagramas de classe descrevem a estrutura de um sistema, modelando suas classes, atributos, operações e relações entre objetos.

 Os componentes de diagramação em um diagrama de classe podem representar as classes que serão realmente programadas, os principais objetos ou a interação entre classe e objeto.

UML	Banco de Dados	Estereótipo
Classe	Tabela	< <table>></table>
Atributo	Coluna	< <column>>, <<pk>>, <<fk>></fk></pk></column>
Tipos	Tipos de Dados	-
Associações	Relacionamentos	< <ld><<ld><<ld>>>,<<non-identifying>></non-identifying></ld></ld></ld>

Utilização de estereótipos para identificar os elementos

Diagrama de Classe

Resumindo...

- Em programação, um diagrama de classes é uma representação da estrutura e relações das classes que servem de modelo para objetos.
- Podemos afirmar de maneira mais simples que seria um conjunto de objetos com as mesmas características, assim saberemos identificar objetos e agrupá-los, de forma a encontrar suas respectivas classes.

2. Diagramas de Classe

COMPONENTES DE DIAGRAMAS DE CLASSE

Para responder à pergunta "o que é um diagrama de classe em UML?", você deve primeiro entender sua **composição básica:**

Classes - um template para a criação de objetos e implementação de comportamento em um sistema. Em UML, uma classe representa um objeto ou um conjunto de objetos que compartilham uma estrutura e comportamento comum.

Sinais - símbolos que representam comunicação unidirecional e assíncrona entre objetos ativos.

2. Diagramas de Classe

COMPONENTES DE DIAGRAMAS DE CLASSE

Tipos de dados - classificadores que definem valores de dados. Os tipos de dados podem modelar tipos primitivos e também enumerações.

Pacotes - esta forma reservatória é projetada para organizar classificadores relacionados em um diagrama.

Interfaces - semelhante a uma classe, exceto que uma classe pode ter uma instância do seu tipo, e uma interface deve ter pelo menos uma classe para implementá-la.

Subtipo	Descrição		
Empty	O Valor é zero para variáveis numéricas ou uma String de tamanho zero (" "), para variáveis de texto.		
Null	A variável não contém dados válidos.		
Boolean	Somente podem assumir dois valores: Verdadeiro ou Falso (True ou False).		
Byte	Valor inteiro, na faixa de 0 até 255.		
Integer	Valor inteiro, na faixa de -32768 até 32767.		
Currency	Valores na faixa de -923.337.203.685.447,5808 até 922.337.203.685.447,5807.		
Long	Valor inteiro, na faixa de -2.147.483.648 até 2.147.483.647.		
Date(Time)	É um número que representa a data entre 01 de janeiro do ano 100, até 31 de dezembro de 9999 (olha o bug do ano 10000 chegando).		
String	Texto de tamanho variável. Pode conter aproximadamente 2 bilhões de caracteres.		
Object	Pode conter um objeto qualquer, como um Controle Activex ou um objeto COM+		
Error	Pode conter um número de erro.		

2. Diagramas de Classe

Começando com as definições: "Um objeto é um termo que usamos para representar uma entidade do mundo real". (Fazemos isto através de um exercício de abstração.)

- Vou usar como exemplo nosso primeiro cachorro **Chronos**. Posso descrever o **Chronos** em termos de seus **atributos físicos**: grande, sua cor principal é marron, olhos azuis, orelhas médias e levantadas, rabo grande e peludo, etc.
- Posso também descrever algumas **ações** que ele faz (temos aqui os **métodos**): balança o rabo quando chego em casa, foge e se deita se o mando sair debaixo da mesa, pula na cama quando estamos nela, atende e corre quando o chamo pelo seu nome. Temos então a representação do Chronos.

2. Diagramas de Classe

Uma classe descreve como certos tipos de objetos se parecem do ponto de vista da programação, pois quando definimos uma classe precisamos definir duas coisas:

Propriedades - Informações específicas relacionadas a uma classe de objeto. São as características dos objetos que as classes representam.

Ex Cor, altura, tamanho, largura, etc...

Métodos: São ações que os objetos de uma classe podem realizar.

Ex: Latir, correr, sentar, comer, etc.

Clientes -codPessoa

+setCadastrar() -getConsultar()

numCliente

Atendentes

-codPessoa -numAtendente

Técnicos

codPessoa -numTecnico

Grupos

codGrupo -codFuncinario

Pedidos

-codOrdem -codDoc -codCliente -codFuncionario -codGrupo -codTipo codCategoria -codsubCategoria -coditem

Documentos

-codDoc -documento

Categorias

-codCategoria -categoria

Sub_Categorias

-codCategoria -subCategoria

Itens_da_Categoria

-coditem -item

Tipos de Serviços

-codTipo

Situação

-codSituação -situação

Histórico_de_Atendimento

-codHistórico -codDoc

Equipamentos

-codEquipamento

Porque é tão importante encontramos as classes para o desenvolvimento de um sistema? É simples, pois cada classe do diagrama representa uma tabela do banco de dados.

2. Diagramas de Classe

Class Name
+ attribute1:type = defaultValue + attribute2:type - attribute3:type
+ operation1(params):returnType - operation2(params) - operation3()

O diagrama de classes é composto de 3 partes:

- **1. Parte superior Nome da classe** Esta parte é sempre necessária, seja falando do classificador ou de um objeto.
- **2. Parte do meio Atributos da classe** Descrevem as variáveis que descrevem as qualidades da classe. É necessária quando se descreve uma instância específica de uma classe.
- **3. Parte inferior Operações da classe (métodos)** Formato de lista, cada operação ocupa sua própria linha. Operações descrevem como uma classe pode interagir com dados.

2. Diagramas de Classe

O diagrama de classes é composto de 3 partes:

UML

 Considere uma classe simples que representa um ponto no plano cartesiano:

```
class Point {
    private double x, y;
    Point(double x, double y) {
    this.x = x; this.y = y; }
    public double getX() { return x; }
    public double getY() { return y; }
    public double getDistFromOrigin() { ... }
}
```

Seu diagrama de classe correspondente:

```
Point

-x : double
-y : double

+Point( double x, double y )
+getX() : double
+getY() : double
+getDistFromOrigin() : double
```

2. Diagramas de Classe

Modificador de acesso de membro

Todas as classes têm diferentes níveis de acesso, dependendo do **modificador de acesso (visibilidade)**.

Veja os níveis de acesso com seus símbolos correspondentes:

```
Público (+) - visível em qualquer classe
```

Privado (-) - visível somente dentro da classe

Protegido (#) - qualquer descendente pode usar

Pacote (~)

Derivado (/)

Estático (sublinhado)

2. Diagramas de Classe

Relacionamento entre classes

Os objetos tem relações entre eles: um professor ministra uma disciplina para alunos numa sala, um cliente faz uma reserva de alguns lugares para uma data, etc.

Essas relações são representadas também no diagrama de classe.

A UML reconhece três tipos importantes de <u>relações</u>:

Associações : Agregação e composição

Generalização (herança)

Dependências

2. Diagramas de Classe

Relacionamento entre classes

Associação: São relacionamentos estruturais entre instâncias e especificam que objetos de uma classe estão ligados a objetos de outras classes.

Agregação Regular - tipo de associação (é parte de , todo/parte) onde o objeto parte é um atributo do todo.

Composição - Relacionamento entre um elemento (o todo) e outros elementos (as partes) onde as parte só podem pertencer ao todo e são criadas e destruídas com ele.

Generalização (herança : simples ou composta) - Relacionamento entre um elemento mais geral e um mais específico.

Dependência - São relacionamentos de utilização no qual uma mudança na especificação de um elemento pode alterar a especificação do elemento dependente.

2. Diagramas de Classe

HERANÇA

- A herança é quando um objeto filho assume todas as características de seu objeto pai.
 - Por exemplo, se tivéssemos o objeto veículo, uma classe carro filho herdaria todos os atributos (velocidade, número de passageiros, combustível) e métodos (andar(), parar(), mudar de direção()) da classe pai, além de atributos específicos (modelo e tipo, número de portas, fabricante do automóvel) e dos métodos de sua própria classe (rádio(), limpador de para-brisa(), ar condicionado/aquecedor()).
- A herança é exibida no diagrama de classe por meio de uma linha sólida com uma seta fechada e vazada.

2. Diagramas de Classe

CARDINALIDADE

Diagrama de Objetos

3. Diagramas de Objetos

Definição de Objetos

- Conceitual: representa uma entidade, "coisa", processo ou conceito do mundo real e que possui:
 - Identidade valor de uma característica que o identifica para reconhecimento
 - Atributos qualidades, características
 - Comportamento habilidade de processamento

3. Diagramas de Objetos

- O diagrama de objetos é uma variação do diagrama de classes e utiliza quase a mesma notação. A diferença é que o diagrama de objetos mostra os objetos que foram instanciados das classes.
- O diagrama de objetos é como se fosse o perfil do sistema em um certo momento de sua execução.
- Não são tão importantes como os diagramas de classes, mas eles são muito úteis para exemplificar diagramas complexos de classes ajudando muito em sua compreensão

3. Diagramas de Objetos

João: Pessoa

Nome = João

Idade = 32

Altura = 1.72

Peso = 70

Sexo = M

Nesse primeiro caso temos um objeto específico do mundo real, representado pelo <u>nome</u> <u>do</u> <u>objeto : nome da classe</u> que define o objeto

<u>:Pessoa</u>

Nome Idade Altura

Peso

Sexo

Também podemos usar a forma abreviada :nome da classe sem o nome do objeto.

Esta forma é conhecida como objeto anônimo*.

* Usamos esse tipo de objeto quando há necessidade de especificar o objeto que participa do diagrama, pois qualquer objeto dessa classe terá o mesmo comportamento.

3. Diagramas de Objetos

- Representam os objetos e as ligações entre eles;
- É uma instanciação do Diagrama de Classe;
- Utiliza a notação de objetos (nomes sublinhados) e todas as instâncias de um relacionamento;
- São também usados como parte do Diagrama de Colaboração.

Representação de classes e objetos em UML

3. Diagramas de Objetos

Diagramas de objetos são úteis nas seguintes situações:

- Durante a fase de análise de um projeto, você pode criar um diagrama de classes para descrever a estrutura de um sistema e criar um conjunto de diagramas de objetos como casos de teste para verificar a precisão e integridade do diagrama de classes.
- Antes de criar um diagrama de classes, você pode criar um diagrama de objetos para descobrir fatos sobre elementos de modelos específicos e seus links ou para ilustrar exemplos específicos de classificadores requeridos.

Trabalho Prático

Trabalho Prático

Valendo 4,0 pontos para 3º nota

- Equipe de até 3 pessoas.
- O trabalho consiste na documentação de um sistema que será escolhido pela equipe.
- O sistema escolhido deverá ser descrito para professora na reunião do dia 08/03.
- O foco da documentação será voltado para os requisitos do sistema e para elaboração de diagramas UML.
- Um modelo será disponibilizado para servir de base.
- O trabalho será enviado até o dia 14/03 e apresentado apenas para professora nos dias 14 e 15/03 com horário previamente agendado.

Agendamento dos horários para as equipes (até 3 pessoas)

TERÇA (14/03/23)				
1	8			
2	8:30			
3	9			
4	9:30			

QUARTA (15/03/23)				
5	14			
6	14:30			
7	15			
8	15:30			

Amanhã (01/03) será nossa 2ª avaliação

Conteúdo:

- Engenharia de Requisitos Parte 1 e 2;
- Introdução a UML
- Diagramas UML Parte 1 (Diagrama de Caso de Uso).

