

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 November 2001 (15.11.2001)

PCT

US

(10) International Publication Number WO 01/86427 A2

(51) International Patent Classification⁷: G06F 9/00

(21) International Application Number: PCT/US01/15276

(22) International Filing Date: 9 May 2001 (09.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/202,975 9 May 2000 (09.05.2000) 60/208,011 26 May 2000 (26.05.2000)

 60/208,011
 26 May 2000 (26.05.2000)
 US

 60/209,430
 2 June 2000 (02.06.2000)
 US

 60/209,140
 2 June 2000 (02.06.2000)
 US

 60/209,525
 5 June 2000 (05.06.2000)
 US

 09/663,563
 15 September 2000 (15.09.2000)
 US

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventors: SLAUGHTER, Gregory, L.; 3326 Emerson Street, Palo Alto, CA 94306 (US). SAULPAUGH, Thomas, E.; 6938 Bret Harte Drive, San Jose, CA 95120 (US). TRAVERSAT, Bernard, A.; 2055 California Street,

Apt. 402, San Francisco, CA 94109 (US). ABDELAZIZ, Mohamed, M.; 78 Cabot Avenue, Santa Clara, CA 95051 (US). DUIGOU, Michael, J.; 33928 Capulet Circle, Fremont, CA 94555 (US).

- (74) Agent: KOWERT, Robert, C.; Conley, Rose & Tayon, P.C., P.O. Box 398, Austin, TX 78767-0398 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: TRANSFORMATION OF OBJECTS BETWEEN A COMPUTER PROGRAMMING LANGUAGE AND A DATA REPRESENTATION LANGUAGE

(57) Abstract: A mechanism for compiling objects into representations of the objects, and for decompiling the representations of the objects into copies of the objects, is described. A virtual machine (e.g. the Java Virtual Machine (JVM)) may include extensions for compiling objects (e.g. Java Objects) into data representation language (e.g. XML) representations of the objects, and for decompiling representations of objects into objects. The virtual machine may supply an Applications Programming Interface (API) to the compilation/decompilation extensions. The client and service may be executing within virtual machines. The virtual machines may be on the same device or on different devices. The compiler/decompiler API may accept an object as input, and output a data representation language representation of the object and all its referenced objects (the object graph) in a data stream. In addition, the compiler/decompiler API may accept a data stream, which includes a representation of the object and all its referenced objects (the object graph), and output the object (and all the objects in its object graph). In one embodiment, an intermediary format may be used to represent a data representation language document and may be dynamically processed to generate a class instance from the data representation language document.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Español · Français ·

Confact

WIPO RatentScope

Activities & Services > PatentScope

Search result: 1 of '

Home
About Patents
PCT Resources
PCT Resources
PCT Electronic Filing
Patent & Technical
Information
Statistics
Law of Patents
Current Issues
Meetings
E-mail Updates
Contact

[Printable version]

TRANSFORMATION OF OBJECTS BETWEEN A COMPUTER. ANGUAGE AND A DATA REPRESENTATION LANGUAGE (WO/2001/086427 PROGRAMMING

Biblio. Data Description

Claims Documents

relates to virtual machines, and more particularly to transformation between computer programming language objects TITLE: TRANSFORMATION OF OBJECTS BETWEEN A COMPUTER PROGRAMMING LANGUAGE AND A DATA REPRESENTATION LANGUAGE BACKGROUND OF THE INVENTION 1. Field of the Invention This invention and data representation language representations of the objects.

as small footprint devices or "thin "devices. Thin devices may not be able to participate in differences in the computing power and storage capabilities of various intelligent devices. Devices with more limited networks interconnecting more capable devices. However, it may still be desirable to interconnect a wide variety of 2. Description of the Related Art Intelligent devices are becoming increasingly common. Such devices range from workstations, mainframes; even, super computers. Networks are also becoming an increasingly common way to interconnect intelligent devices so that they may communicate with one another. However, there may be large smart appliances, personal digital assistants (PDAs), cell phones, lap top computers, desktop computers different types of intelligent devices capabilities may be referred to

customers. Cellular phones, personal digital assistants and Internet- enabled computers systems such as security systems and temperature control thermostats. High bandwidth mediums such as cable and ASDL enable improved services such as Internet access video on demand, e-commerce, etc. Network systems are The desire to improve networking capabilities is ever increasing. Business networks are expanding to include direct and stereo equipment to home computers, and other devices to control intelligent are commonplace in both business and the home. Home networks are available for interconnecting audio/visual becoming pervasive. Even without a formal network,. it is still desirable for intelligent devices to be able to and share resources. equipment such as televisions interaction with suppliers and communicate with each other are complex to set up, expand and manage. For example, adding hardware or software to a network often requires a network administrator to load drivers and configure systems. Making small changes to a network configuration may require that the entire network be brought down for a period. In addition, certain intelligent ecessary interfaces to communicate on a given network. Currently, traditional networks devices may not support the n

What is needed is a simple way to connect various types of intelligent devices to allow for communication and sharing of resources while avoiding the interoperability and complex configuration problems existing in conventional networks. such as the Universal Serial Bus, 1394 and PCI, support plug and play or dynamic discovery protocols to simplify the Various technologies exist for improving the addition of devices to a network. For example, many modern I/O buses, addition of a new device on the bus. However, these solutions are limited to specific peripheral buses and are not suitable for general networks.

Jini allows for distributed computing where the capabilities of the various devices are shared on a network. The Jini technology seeks to enable users to share services and resources over a network. Another goal of the Jini technology i from Sun Microsystems, Inc., seeks to simplify the connection and sharing of devices son a network. A device that incorporates Jini may announce itself to the network, may user to change. Jini also seeks to simplify the task of building, maintaining and altering a network of devices, software capabilities, and may immediately become accessible to other devices on the network. is to provide users with easy access to resources anywhere on the network while allowing the network location of the A more recent technology, Jini such as printers and disk drive provide some details about its and users.

Jini requires that each Jini enabled device have a certain amount of memory and processing power.

technology centered. Java is a high level object oriented programming language developed by Sun Microsystems, Inc. Java source code may be compiled into a format called bytecode, which may then be executed by a Java Virtual Typically, a Jini enabled device is equipped with a Java Virtual Machine (JVM). Thus, Jini systems are Java Machine

Bytecode is computer source code that is processed by a virtual machine, rather than the "real" computer machine, the machine instructions (instructions that the computer's processor will understand). Using a language that comes with a any platform that supports the virtual machine. The Java programming language is an example of such a language, and the Java Virtual Machine (JVM) is an example of a virtual machine platform that supports programs written in the virtual machine for each platform, the source language statements may be compiled only once and may then run on hardware processor. The virtual machine converts generalized machine instruction (the bytecode) into specific Java programming language.

language is the implementation language for the components of the Jini system. The ability to dynamically download Since Java Virtual Machines may be provided for most computing platforms, Java and thus Jini provide for a certain amount of platform independence. The Jini architecture leverages off the assumption that the Java programming and run Java code is central to many features of the Jini architecture.

distributed system. A key concept within the Jini architecture is that of a service. A service is an entity that can be used by a person, a program, or another service. Two examples of services are printing a document and translating from Services are found and resolved in a Jini system by a look-up service. A look-up service another. Jini allows the members of a Jini system to share access to services. Services The purpose of the Jini architecture is to federate groups of devices and software components into a single dynamic with each other by using a service protocol, which is a set of interfaces written in the functionality provided by a service to sets of objects that implement the service. maps interfaces indicating the one word processor format to in a Jini system communicate Java programming language.

Descriptive entries may also be associated with a service. Devices and applications use a process known as discovery to register with the Jini network. Once registered, the device or application places itself in the look-up service. The

and/or an interface to the driver into the look-up service. When a client wants to use the printer, the driver and driver example, when a printer registers with the look-up service, it loads its printer driver interface are downloaded from the look-up service to the client. This code mobility means that clients can take only pointers to tnese services on the network, but also may store the code tor advantage of services from the network without pre-installing or loading drivers or other software. accessing these services. For look-up service may store not

RMI is a Java programming language enabled extension to traditional remote procedure call mechanisms. RMI allows Communication between services in a Jini system is accomplished using the Java Remote Method Invocation (RMI). not only data to be passed from object to object around the Jini network, but full objects including code as well. Jini systems depend upon this ability to move code around the network in a form that is encapsulated as a Java object.

Access to services in a Jini system is lease based. A lease is a grant of guaranteed access over a time. Each lease is may be requested for some period and access may be granted for some period presumably considering the request negotiated between the user of the service and the provider of the service as part of the service protocol. A service period. Leases must be renewed for a service to remain part of the Jini system.

(supported by JavaSpaces, leases, and object templates). Object communication in Jini is based on an RMI layer 14 over a TCP/IP capable networking layer 16. Figure 1 illustrates the basic Jini technology stack. The Jini technology defines a distributed programming model 12

for simplifying distributed computing. However, for certain types of devices, Jini may not PDA for example. It would be desirable for such devices to be able to communicate and share resources with devices type device that users take with them wherever they go. Such a device may be a combination of a cell phone and a where the composition of client services and content changes rapidly. The client of the future may be a companion be appropriate. The computing landscape is moving toward a distributed, Web-centric service and content model that are more powerful, as well as with thinner or less powerful devices. Jini is a promising technology

facilitates clients connecting to services in a reliable and secure fashion. Various clients from thick to thin and services need to be connected over the Internet, corporate Internets, or even within single computers. It is desirable to abstract the Internet and resulting explosion of devices connected to the net, a distributed programming model designed to leverage this phenomenon is needed. An enabling technology is needed that the distance, latency and implementation from both clients and services. In addition, with the advent of

small clients run native code only. In addition, most small devices have little more than flash memory or battery backed in current distributed computing technologies. The low end of the client spectrum, including embedded mobile devices, storage capabilities. Most small, embedded mobile devices do not support a Java Virtual Machine. Most code-capable clients such as embedded mobile devices. Current distributed computing technologies, such as Jini, may not be scalable enough for the needs of all types of clients. Some devices, such as small footprint devices or embedded devices, may lack sufficient memory resources and/or lack sufficient networking bandwidth to participate satisfactorily The key challenge for distributed computing technology is to be scalable from powerful thick clients down to very thin RAM as their sole persistent storage media. The size of the storage is often very small and sometimes read-only in nature. Furthermore, the access time of this type of storage media is often an order of magnitude greater than hard often have limited or fixed code execution environments. These devices also may have minimal or no persistent disk access time in clients that

ies, such as Jini, may not be as scalable as desired because they are too big. Existing connection technologi 43

code and data. When a client activates a Jini service, the service may return its results to the client, which may include concerns for small devices such as embedded devices. Jini works by clients and resources communicating by passing existing client platform by downloading new classes, which may pose security and size for a Java Virtual Machine. Furthermore, due to its use of RMI, Jini requires that clients be able to download code and all participants support Java; however, many small clients may not have the resources small foot print devices may not have the resources to participate effectively or at all in a large amount of code or content. In Jini, a client may call a method and a large object may be returned, and thus downloaded. The client may not have the resource to accept the returned object. In addition, RMI and Java itself content. Jini may augment the require a lot of memory. Many current distributed computing t For example, Jini requires that

distributed computing technologies is that they often require certain levels of connection capability and protocols. For example, Jini assumes the existence of a network of reasonable speed for connecting so requires devices to support TCP/IP network transport protocol. computers and devices. Jini al Another concern with existing

However, many smaller devices may have limited connection capabilities. Small devices may have high latency or low speed network connections and may not support TCP/IP

As mentioned above, Jini requires devices to support Java and thus include a Java Virtual Machine, which requires a certain amount of processing and storage capabilities that might not be present for many small devices.

requires Java, it may be deemed a homogenous environment. However, it is desirable to have a distributed computing facility for heterogeneous distributed computing that scales from extremely small embedded devices through PDA's This also restricts the flexibility of Jini in that non-Java devices may not directly participate in a Jini system. Since Jini and cell phones to laptops and beyond even to the most powerful computers.

or what operating system they're running on. However, CORBA does not address all of addressed by Jini. In addition, CORBA suffers from similar scalability problems as Jini. Other heterogeneous solutions exist, such as the Common Object Request Broker Architecture (CORBA). CORBA is an architecture that enables program objects to communicate with one another regardless of the programming the connection issues that are language they were written in

Technology such as Jini and CORBA use a code-centric programming model to define the interface between remote components. A code-centric programming model defines programmatic interfaces or API's for communication between these standards API's, the code that implements these API's must be present in the client platform. The code may be The API's may be defined in a particular programming language. The API's must be agreed to by all software components to ensure proper interoperability. Since all access to components is through statically linked into the platform or dynamically downloaded when needed. remote clients or components.

issues involved as well as the reliance on a single language and program execution environment. Data-centric models, Many embedded or mobile devices simply cannot accept code dynamically from a network due to the quality control such as networking protocols, may avoid the dependence on moving code; however, such protocols are not rich enough to easily provide for distributed computing and they also lack the ease of programming with code and other programming features, such as type safety

Call (RPC) is a basic mechanism for remotely calling a program or procedure. CORBA and Jini are both based on the remotely call a program on a second device and have the results returned to the first device. The Remote Procedure ability to remotely invoke program methods. However, communicating by passing code or objects, such as in Jini or Conventional distributed computing systems rely on the ability of a program executing on a first device to be able to

(JDK) rely upon the reflection API to determine the content of a Java object, and ultimately that code must consult the Virtual Machine. This code is quite large and inefficient. locations, some means of serialization/deserialization is needed. Such current facilities in the Java Development Kit Invocation (RMI) to communicate between services. In order for a client to move Java objects to and from remote CORBA, may be somewhat complex. For example, as mentioned above, Jini uses the Java Remote Method

object traversal model. Code outside the JVM does not know the structure or graph of a Java object and thus must traverse the object graph, pulling it apart, and ultimately must call upon the JVM. Traditional serialization and reflection devices. Some of the difficulties with Java reflection and serialization are that an object's graph (an object's transitive The fundamental problems with the current method for doing serialization/deserialization include its size, speed, and addition, serialization is a Java specific object interchange format and thus may not be used with non-Java devices. closure) reflection is difficult to do outside the JVM. Serialization is too large, requiring a large amount of code. In mechanisms for storing and moving Java objects are just not practical for all types of devices, especially thinner

is not platform independent since it may not be used by non-Java platforms to send and model requires the movement of Java objects between Java devices. Thus, the receive objects. Serialization is a homogenous object format-it only works on Java platforms. The Jini distributed computing serialization mechanism itself

native JVM dependent methods. The reflection API may provide a graph of objects, but is inefficient due to the number in API and may be limited by security concerns, which often must be addressed using the code calling the reflection methods. Serialization uses the reflectio of calls between the JVM and The use of Java reflection to serialize an object requires an application to ping pong in and out of the JVM to pick apart an object one field at a time as the transitive closure of the object is dynamically analyzed.

Deserializing an object using Java deserialization requires the application to work closely with the JVM to reconstitute serialization/deserialization is slow and cumbersome while also requiring large amounts of application and JVM code the object one field at a time as the transitive closure of the object is dynamically analyzed. Thus, Java as well as persistent storage space.

serialized-object parser. Even Java based thin clients may not be able to accept huge Java objects (along with needed classes) being returned (necessarily) across the network to the client as required in Jini. A more scalable distributed address security concerns and be expandable to allow for the passing of objects, such as Java objects, and even to Even for thin clients that do support Java, the Jini RMI may not be practical for thin clients with minimal memory footprints and minimal bandwidth. The serialization associated with the Jini RMI is slow, big, requires the JVM reflection API, and is a Java specific object representation. Java deserialization is also slow, big and requires a computing mechanism is needed. It may be desirable for a more scalable distributed computing mechanism to allow for process migration from one network mode to another.

persistent object containers. However, a JavaSpace can only store Java objects and cannot be implemented in small serialization. It may be desirable to have a heterogeneous object repository for distributed computing that may scale object storage are often language and operating system specific. In addition, these object storage systems are too complicated to be used with many small, embedded systems. For example, the Jini technology uses JavaSpaces Object based distributed computing systems need persistent storage. However, as discussed above, attempts at devices. Each object in a JavaSpace is serialized and pays the above-described penalties associated with Java from small to large devices.

7

science professor at Yale University. Gelernter's set of functions named"Linda"create a shared memory space called a stems, Inc., draws from the parallel processing work of David Gelernter, a computer TupleSpace, in which results of a computer's processes or the processes themselves may be stored for access by multiple CPUs. Linda therefore provides a global shared memory for multiple processors. JavaSpaces from Sun Microsy

functionality. TSpaces provides a set of network communication buffers and a set of APIs for accessing those buffers. Like many of the solutions discussed above, TSpaces therefore uses a code-centric programming model and shares the drawbacks of such a model. Additionally, TSpaces is implemented in the Java programming language and microprocessor. Therefore, TSpaces may be inappropriate for small-footprint devices which cannot devote sufficient TupleSpace framework with real data management and the ability to download new data types and new semantic therefore requires a Java Virtual Machine or other means of executing Java bytecode, such as a Java- capable Another technology which extends Linda is TSpaces from IBM Corporation. TSpaces extends the basic Linda bytecode. resources for executing Java |

within those repositories. As mentioned above, the Jini look-up server may not be practical for small devices with small It is desirable in object oriented distributed systems to be able to locate object repositories and find particular objects icient mechanism for locating object stores may be desirable. memory footprints. A more effi

include administrator or privileged functions. Also, current network protocols to locate services do not provide a flexible accessing a network service or provides"all or nothing"access to the full range of the service's capabilities, which may It may be desirable in a distributed network computing model for clients to have the ability to locate services. Current mechanism for finding services. Current protocols either do not provide any selective search capability at all (e. g UPnP) or only provide a primitive keyword and attribute grammar mechanism (e. g. SLP). Thus, current service network protocols either provide only a single standard service access interface that provides no security when discovery mechanism may be too inflexible in their security and search criteria mechanisms.

resources for certain service devices, such as devices whose functionality is available on a proximity basis, to support the discovery model. This is because such devices are already located by proximity (e. g. one device physically pointing to another one). Thus, an alternate light-weight discovery mechanism may also be desirable for such devices. Also, current service discovery models have a symmetric model for service location. However, it may be a waste of

desires a fair and efficient sharing mechanism. As described above Jini currently uses leasing mechanism to share objects. However, Jini leases are time based which may result in a number of problems. leasing mechanism does not provide a security mechanism for establishing, renewing and canceling of leases. Other addition, the use of time-based leases may require that time be synchronized between multiple machines. Moreover time based leasing may require operating system support. In addition, Jini leases are established and released via RMI. Thus, the Jini leasing mechanism suffers from the above-noted problems with using RMI. In addition, the Jini For example, the current object holder might have no idea how long to lease an object and may hold it too long. In leasing mechanisms may be desirable Distributed object access also

services, both legacy and new, in a distributed environment. The types of small clients may include cell phones and PDA's with a variety of different networking interfaces, typically low bandwidth. Often these devices have very small display and more sophisticated graphics capabilities. The services may be a wide range of applications as well as but they could include laptops and notebook computers, which may have a larger Generally speaking, it is desirable for small memory foot print mobile client devices to be able to run a variety of control programs for devices such as printers. It is desirable for a mobile client to be able to use these services displays with limited graphics, wherever they may be.

networks have the same dynamic address). Mobile clients often do not have the capability for a full function browser or The displays may limit the client from running certain applications. Traditional application a temporary dynamic network address, so networking messages it sends cannot be models are based on predetermined user interface or data characteristics. Any change to the application requires routed beyond that networking interface (otherwise there may be collisions when two different clients on different recompilation of the application. A mobile client will often be at other sophisticated software.

helpful, such as local restaurants, weather, traffic maps and movie information. Similarly, information about computing resources, such as printers in a particular location, may be helpful. Current technologies do not provide an automatic mechanism for locating services based on physical location of the client. Another need pervasiveness of mobile thin clients may also raise additional needs. For example, it may be desirable to locate services based on the physical location of the user and his mobile client. For example, information about the services in a platform-independent and language-independent typing such as that provided by extensible Markup Language (XML). Current approaches, including lookup mechanisms for Jini, Universal Plug and Play (UPnP), and the Service Location Protocol (SLP), do not support such a general- purpose document lookup mechanism. For example, the Jini The client may need to run even large legacy applications which could not possibly fit in the client's memory footprint. including services and/or service advertisements), where the documents are expressed ients to have a mechanism for finding and invoking distributed applications or services. lookup mechanism is limited to Java Language typing and is therefore not language-independent. UPnP and SLP services in a distributed computing environment may be desirable. A distributed computing model should provide ergonomic keyboards and monitors. The provision of such human factor services and/or the ability to locate such clients with a way to find transient documents and services. It may be desirable to have a mechanism for finding raised by thin mobile clients is that of addressing the human factor. Thin mobile clients typically do not contain As discussed above, current technology, such as Jini, may not be practical for small footprint devices. The support a discovery protocol only for services, not for general-purpose documents. It may be desirable for such cl general-purpose documents (i in a local vicinity may be very

decompiling the representations of the objects into copies of the objects, is described. A virtual machine (e. g. the Java language (e. g. XML) representations of the objects, and for decompiling representations of objects into objects. The virtual machine may supply an Applications Programming Interface (API) to the compilation/decompilation extensions. executing within virtual machines. The virtual machines may be on the same device or Virtual Machine (JVM)) may include extensions for compiling objects (e. g. Java Objects) into data representation SUMMARY OF THE INVENTION A mechanism for compiling objects into representations of the objects, and for The client and service may be on different devices. The compiler/decompiler API may accept an object as input, and output a data representation language representation of the object and all its referenced objects (the object graph) in a data stream. In addition, the compiler/decompiler API may accept a data stream, which includes a representation of the object and all its referenced objects (the object graph), and output the Java object (and all the objects in its object graph).

may supply the compiler/decompiler API to processes (clients and/or services) executing within the virtual machine to In one embodiment, the compiler and decompiler may be implemented as integrated functions of the virtual machine. extensions to the virtual machine; thus, the core virtual machine does not have to be modified. The virtual machine allow the processes to access the object compilation/decompilation functionality provided by the virtual machine. In ss to utilize the object compilation/decompilation, the virtual machine within which the vertice the compiler/decompiler functionality and API. In another embodiment, the compiler and decompiler may be embodied in API method invocations in standard one embodiment, for a proces process is executing must hav (b)

Implementing the object compilation/decompilation functionality within the virtual machine is advantageous because the virtual machine already understands the concept of, and contents of, an object graph. Thus, the compilation/decompilation functions may leverage the knowledge (and reuse code) of the virtual machine in parsing the object graph to produce the representation, and in parsing the representation to produce the object graph. Thus, the compilation/decompilation functions may not have to duplicate functionality that is provided by the virtual machine, as do object sending methods using reflection and serialization. This may allow the code footprint of the serialization. Also, an object may be complied or decompiled by a single call to the compiler/decompiler API compilation/decompilation functions to be smaller than that of object sending methods using reflection and

In addition, integrating the compilation/decompilation of objects with the virtual machine may allow the compilation and process may be slowed by the necessity of making repeated calls to the virtual machine, outside the code. Having the performed faster than methods using reflection and serialization because, in the object with reflection and serialization, the code outside the virtual machine does not know the compilation and decompilation functionality integrated with the virtual machine avoids having to make repeated calls repeatedly call upon the virtual machine to do the compilation (and the reverse process for decompilation). This from code outside the virtual machine to the virtual machine. In one embodiment, an object may be complied or tt, and thus must traverse the object graph, pulling it apart, and ultimately must decompiled by a single call to the compiler/decompiler API. decompilation of objects to be structure or graph of the objec traversal model implemented

may then pass the data stream to the decompilation function. The decompilation function may then decompile the data decompilation function using information about the object included in the representation, as the code for an object may Objects may include code (the object's methods) and data. An object's code may be non-transient; the code does not change once the object is created. An object's data, however, may be transient. Two objects created from the same class may include identical code, but the data in the two objects may be different. In one embodiment, the compilation stream to produce the object including its data. In one embodiment, the code for the object may be reproduced by the stored in a data stream and sent (e. g. in a message) to a receiving process (client or service). The receiving process function may compile a Java object's data into a representation of the object, but may not include the object's actual be statically defined and the virtual machine receiving the object may be able to reproduce the code (if necessary) code in the representation. In one embodiment, information about the object may be included in the compiled representation to indicate to the receiver how to recreate the code for the object. The representation may then be using its knowledge of the object. code in the representation. In

In one embodiment, the data representation language representation of an object produced by the compilation function decompilation function may recreate the code for the object using the information about the object and may decompile and data may be reproduced on the virtual machine executing the receiving client or service from the decompiled data the data from the data representation language data stream into the object. Thus, a complete object including its code object. An object signature may be included in the information and may be used to identify the object's class, etc. The and information about the object. The information may include class information for the and the information describing the object. In one embodiment, the information describing the object may be stored in from the information about the object. The decompilation process may proceed recursively through the object graph, stream may include a data representation language schema that describes the object, and the data representation language schema may be used to reconstruct the object from the decompiled data and reconstructing the objects referenced by the object by decompiling the referenced objects' data from the data stream and recreating the referenced objects'code from information about the one or more data representation language tags. In one embodiment, the client or service receiving the data representation language data stream. representation language data representation language data referenced objects in the data may include the object's data

data may be reproduced on the virtual machine executing the receiving client or service from the decompiled data and data for the object from the data representation language data stream. Thus, a complete object including its code and data stream. When received, the decompilation function may recreate the code for the le of the object may be stored in one or more data representation language tags in the function may include the object's data and information that identifies the code of an object. In one embodiment, the object using the information about the code from the data representation language data stream and decompile the In one embodiment, the data representation language representation of the object produced by the compilation code of the object. information identifying the cod data representation language the information describing the

corresponding data representation language document may be defined as a set of tags, with one tag for each instance stored in the intermediary representation. In one embodiment, the process may be limited to only one level of complex In one embodiment, an intermediary format may be used to represent a data representation language document and variable. When the document is parsed, an intermediary representation (e. g. a table such as a hash table) may be may be dynamically processed to generate a class instance from the data representation language document. The constructed where entries in the table may include the instance variable name as a key and the instance variable value as a value. If there are multiple occurrences of a complex instance variable, an enumeration value may be class may define a set of instance variables and set and get"methods to access the instance variables. A s, and the elements of the complex type may be homogeneous. types for the instance variable

the corresponding class. The data representation language document representation may use the class name as the document type. Having the class name embedded in the document may allow dynamic instantiation of the right class In one embodiment, a protected instance variable may be added to the class definition that may include the name of instance when the object is reconstructed

le representation and a generator method may be used to produce a data representation In one embodiment, upon receiving a document, a class instance generator method may be used to extract the class type and to parse the document to generate the intermediary hash table representation. The generator method may values. In one embodiment, the reverse process may also be performed where a class instance may be processed instantiate a new class instance and may use the set methods to initialize the instance object from the hash table language document from the hash table representation. into the intermediary hash tab

according to one embodiment; Figure 9 is an illustration of a distributed computing model in which results are stored in illustrates client profiles supporting static and formatted messages for a distributed computing environment according to one embodiment; Figure 6 is an illustration of a distributed computing model employing XML messaging according to one embodiment; Figure 7 illustrates a platform independent distributing computing environment according to one spaces according to one embodiment; Figure 10 is an illustration of client and service gates as messaging endpoints technology stack; Figure 2 is an illustration of a distributed computing environment programming model according to embodiment; Figure 8 is an illustration of a distributed computing model in which services are advertised in spaces in a distributed computing model according to one embodiment; Figure 10b is an illustration a message endpoint generation according to a schema for accessing a service according to one embodiment. advertising objects or services in a distributed computing environment according to one embodiment; Figure 5 IE DRAWINGS Figure 1 is an illustration of a conventional distributed computing embodiment; Figure 4 is an illustration of a discovery service for finding spaces one embodiment; Figure 3 is an illustration of messaging and networking layers for a distributed computing BRIEF DESCRIPTION OF TH environment according to one

12 is an illustration of possible gate components in a distributed computing environment according to one embodiment; Figure 1 la illustrates gate creation in a distributed computing environment according to one embodiment; Figure 1 lb illustrates gate creation and gate pairs in a distributed computing environment according to one embodiment; Figure

, di

the state of a process, according to one embodiment; Figure 38 illustrates a mobile client device accessing spaces in a local distributed computing network, according to one embodiment; Figure 39a illustrates a user of a mobile device discovering the location of docking stations, according to one embodiment; Figure 39b illustrates a mobile client device according to one embodiment; Figure 23 is an illustration of a default space in a distributed computing environment according to one embodiment; Figure 24 illustrates an example of a device bridging proximity-based devices onto another transport mechanism to allow the services provided by the proximity-based devices to be accessed by devices with an associated display and display service according to one embodiment; Figures 32A and 32B illustrate examples invocation interface to a service in a distributed computing environment according to one embodiment; Figure 15 is an diagrams illustrating embodiments where a virtual machine (e. g. JVM) includes extensions for compiling objects (e. g. Java Objects) into XML representations of the objects, and for decompiling XML representations of (Java) objects into environment according to one embodiment; Figure 14 illustrates the use of a method gate to provide a remote method is an illustration of a proxy mechanism according to one embodiment; Figure 31 illustrates one embodiment of a client Figure 19 is an illustration of space federations in a distributed computing environment according to one embodiment; devices controlled by a control system and accessible within the distributed computing environment, according to one computing environment to a space in the distributed computing environment according to one embodiment; Figure 30 Illustrates advertisement structure according to one embodiment; Figure 17 illustrates one example of advertisement illustration various space location mechanisms in a distributed computing environment according to one embodiment; state transitions that an advertisement may undergo during its lifetime according to one embodiment; Figure 18 is an service generating an authentication credential according to one embodiment; Figure 27 illustrates one embodiment embodiment; Figure 40b illustrates a device control system connected via a network (e. g. the Internet) to embedded flow diagram illustrating a mechanism for sending objects from services to clients using receiving a message from a client and using an authentication service to authenticate the message according to one embodiment; Figure 42c is a flow diagram illustrating the general process of a client and service exchanging lease renewal messages in a distributed computing environment according to one embodiment; Figure 26a is a flow of using schemas of dynamic display objects according to one embodiment; Figure 33A illustrates a typical string representation in the C programming language; Figure 33B illustrates an example of a conventional string function; environment, according to one embodiment; Figure 37 illustrates process migration using an XML representation of devices accessible within the distributed computing environment, according to one embodiment; Figure 41 is a flow (Java) objects; Figure 36 illustrates a client and a service accessing store mechanisms in the distributed computing connecting to a docking station, according to one embodiment; Figure 40a illustrates an embodiment of embedded Figure 20 is a flow diagram illustrating client formation of a session with a space service in a distributed computing embodiment; Figure 26b is a flow diagram expanding on step 1002 of Figure 26a and illustrating an authentication gate according to one embodiment; Figure 42a is a flow diagram illustrating a client systems such as embedded systems in particular according to one embodiment; Figure 34 illustrates a process of illustrating a mechanism for checking the integrity of messages according to one embodiment; Figure 44 is a flow diagrams illustrating various embodiments of a mechanism for communicating between clients and services using Illustration of the use of a space in a distributed computing environment according to one embodiment; Figure 16 the devices, according to one embodiment; Figure 25 is an illustration of the use of Figure 33C illustrates an efficient method for representing and managing strings in general, and in small footprint sending a message to a service according to one embodiment; Figure 42b is a flow diagram illustrating a service moving objects between a client and a service according to one embodiment; Figures 35a and 35b are data flow embodiment; Figure 22 is a flow diagram illustrating service instantiation in a distributed computing environment of a bridging mechanism; Figure 28 illustrates an example of a space discovery protocol mapped to an external discovery service according to one embodiment; Figure 29 illustrates bridging a client external to the distributed diagram illustrating a mechanism for leasing resources according to one embodiment; Figures 45a-45d are flow diagram illustrating an authentication service providing an authentication credential to a client according to one messages with embedded authentication credential according to one embodiment; Figure 43 is a flow diagram embodiment; Figure 21 is an illustration of a space event type hierarchy for one Figure 13 is an illustration of proxy client for a conventional browser to participate in the distributed computing XML representations of the objects; Figure 47 is a flow diagram illustrating a mechanism for secure object according to one embodiment; environment according to one outside the proximity range of diagram illustrating creating a method gates; Figure 46 is a

decompilation on a client device; and Figure 48 is a flow diagram illustrating a mechanism for migrating processes using data representation language representations of the processes in a distributed computing environment.

While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention

provide an interface for simple messages in a representation data or meta-data format, such as in the extensible Mark-up Language (XML). Note that while embodiments are described herein employing XML, other meta-data type languages or formats may be used in alternate embodiments. In some embodiments, the API layer may also provide Computing Turning now to Figure 2, a distributed computing environment programming model is illustrated. The model includes API layer 102 provides an interface that facilitates clients connecting to services. The ĂPI layer 102 is concerned with the discovery of and the connecting of clients and services. The API layer 102 provides send message and receive message capabilities. This messaging API may F EMBODIMENTS OF THE INVENTION Overview of Embodiments for Distributed an interface for messages to communicate between objects or pass objects, such as Java objects. DETAILED DESCRIPTION O

API's may be provided to discover an object repository or "space", find a particular object, claim and release an object, and write or take an object to or from the object repository. Objects accessible through API layer 102 may be representation of an object may be e object itself. manipulated, as opposed to th

format, such as XML. In one embodiment, XML messages are generated by messaging layer 104 according to calls to the API layer 102. The messaging layer 104 may provide defined static messages that may be sent between clients and services. Messaging layer 104 may also provide for dynamically generated messages. In one embodiment, an object, such as a Java object, may be dynamically converted into an XML representation. The messaging layer 104 may then send the XML object representation as a message. Conversely, the messaging layer 104 may receive an API layer 102 sits on top of a messaging layer 104. The messaging layer 104 is based on a representation data XML representation of an object. The object may then be reconstituted from that message. In one embodiment, messages sent by messaging layer 104 may include several basic elements, such as an address, sender and receiver. Thus, message transmission may be done asynchronously. In a preferred embodiment, no connection model is imposed. Thus, transports such as TCP are not required. Also, error conditions may be limited to mechanisms may be completely stateless. Any notion of state may be embedded in the message stream between authentication credentials, security tokens, and a message body. The message system transmission and receive non-delivery or security exceptions.

protocols are IrDA and Bluetooth network drivers beneath the transport layer. Networking layer 106 is not limited to a Messaging layer 104 sits on top of a message capable networking layer 106. In a preferred embodiment, messaging single reliable connection protocol, such as TCP/IP. Therefore, connection to a larger variety of devices is possible. specialized protocols such as the Wireless Application Protocol (WAP) may also be used. Other possible message layer 104 does not require that a particular networking protocol be used. TCP/IP and UDP/IP are examples of message capable protocols that may be used for message capable networking layer 106. However, other more

capable network layer 106 may be implemented from the networking classes provided In one embodiment, message

platform. Since J2ME already provides a message capable family of networking protocols (to support sockets), it follows that for the small footprint cost of adding messaging layer 104, distributing computing facilities may be provided devices that do not have the resources for a full Java platform or in which it would not be efficient to run a full Java by tne Javaz iviicro Edition (Jzivie) piattorm. The Javaz iviicro Edition piattorm may be suitable for smaller footprint for small devices that already

networking classes. Alternatively, any message capable networking facilities may be used for message capable networking layer 106. In a preferred embodiment, a reliable transport is not required, thus embedded devices supporting an unreliable data gram transport such as UDP/IP may still support the messaging layer. layer 106 may also be provided by the Java Development Kit's (JDK) java. net Message capable networking

above a basic networking protocol stack. As shown in Figure 3, a basic system includes messaging layer 104 on top of a networking layer 106. The networking layer may provide for reliable messages, e. g. TCP, or unreliable messages, e. g. UDP. The Internet Protocol (IP) is shown in Figure 3 as an example of protocol that may be used in networking layer 106. However, the distributed computing environment does not require IP. Other protocols may be used in the distributed computing environment besides IP. A network driver such as for Ethernet, Token Ring, Bluetooth, etc. may Thus, thin clients may participate in a distributed computing environment by simply adding a thin messaging layer 104 layer. Many small clients already provide a network driver and transport protocol such as UDP/IP. Thus, with the addition of the thin XML based messaging layer, the device may participate in the distributed computing environment. also be part of the networking

stributed computing environment is a simple message passing layer implemented on top a seamless fashion because Java code is not assumed on the sending or receiving end based on a data representation language such as XML and thus copies data, but not code, from source to destination, unlike RMI. By using a representation data language, such as XML, messaging layer 104 may interoperate with nonprogramming, instead of the synchronous, state-full style predicated by RMI. Moreover, message passing layer 104 is of reliable connection and/or unreliable data grams. The messaging technology is very different from communications technologies employed in other distribution computing systems, such as Jini which employs the Java remote method te RMI, messaging layer 104 does not require a reliable transport mechanism such as le passing layer 104 supports an asynchronous, stateless style of distributed Thus, the foundation for the di invocation (RMI). The messag Java and non-Jini platforms in of a message. Moreover, unlik

asynchronously. For flow control purposes a callback method may be supplied which is invoked in the event that the The message passing layer may provide simple send () and receive () methods to send a message specified as an send () method throws an exception indicating it cannot handle the send () request. The receive () method may be array or string of bytes, for example. The send () method may return immediately, performing the data transfer synchronous and may return the next available message.

moving the messages between client and server, protocol dependent host ID, protocol dependent port ID, and a space content in "spaces". A space is named and accessed on the network using an URI (Uniform Resource Identifier). The URI may be a URL (Uniform Resource Locator) or a simpler version of a URL. In some embodiments, the URL class The message passing layer may also provide methods for storing XML representations of objects, services and may be too large. For such embodiments a simpler resource locator may be used that specifies the protocol for name

layer. In one embodiment, the object and the client-specified name may be supplied as parameters. In one embodiment, the write method may translate the object into its XML representation. A take () method may be provided An XML representation of an object may be added to a space using a write () method provided by the messaging

Ň

∵

to return the object and remove it from the space. A find () method may be provided to return a specified object from its XML representation in a space. The find () method may also be used to return an array of matching objects in a space given a class. Each of these space methods is implemented using the message-passing layer. A lease mechanism may also be provided, as described in more detail below.

spaces without a browser or search facility on the client. The client only needs a simple facility that sends a string that embodiment, the discovery service receives a string specifying something to locate, and it sends an XML message to a known discovery front-end (perhaps found in a default space), which then parses the string and makes a does not require that the messaging be atop a connection-oriented transport. Thus, even very thin clients that do not have TCP could use such a discovery service. The discovery front-end makes it possible for the client to discover corresponding XML query to a search facility (which may be an internet search facility). The discovery front-end may discovery service simply to provide interface functionality to the client. The approach is illustrated in Figure 4. In one each found space) which it may send in an XML message to the client. It should be noted that the discovery service client to implement, the discovery service may offload the actual search to XML-based search facilities, leaving the attempt to define a complicated search protocol which may not be feasible for a thin search facility and repackage it as an array of strings (each string may be a URI for A discovery service may be provided for clients as a general search facility that may be used by a client to locate specifies keywords to the front-end, which interfaces with a search facility. parse what it obtains from the particular space. Rather than

A client may be any platform that can send a message using at least a subset of the API and messaging layers. In one embodiment the API layer may provide for both static (or raw) and formatted (or cooked) messages.

capable of receiving and fulfilling message requests. An explicit raw message send may messages to announce its presence and its status. Such small devices may also receive raw messages to implement be provided that moves a series of bytes from a client to a server or to another client. The message type may be specified as reliable (e. g. TCP) or unreliable (e. g. UDP). The smallest of devices may use raw unreliable message passing as their sole means of participation in the distributed computing environment. The device may use these certain functions, such as turning a feature on or off. A server may be any platform

dynamically formatted in XML and contain well-defined headers. Figure 5 illustrates client profiles supporting formatted Depending on the client, the static pre-defined messages may consume a small amount of memory (e. g. <200 bytes). Message-based services such as spaces may send and receive reliable formatted messages. A space message may Static messages may also be an option even for larger devices. On the other hand, the dynamic XML messages may and static messages. By using static messages, small devices may use a smaller profile of code to participate in the be formatted with a well-defined header and with XML. In one embodiment, a formatted message send may occur when a client uses a space method to claim, write, or take objects from a space. The message contents may be distributed computing environment. For example, a small device could just send basic pre-defined messages. are not known at compile time. be useful when object values

may provide for a heterogeneous distributed computing environment. Thus, client 110 may be implemented on almost any platform instead of a particular platform like Java. The messaging system may be implemented on any network capable messaging layer, such as Internet protocols (e. g. TCP/IP or UDP/IP). Thus, the computing environment may be distributed over the Internet. In one embodiment, the messaging system may also use shared memory as a quick Turning now to Figure 6, a distributed computing model is illustrated that combines a messaging system with XML messages and XML object representation. The platform independence of XML may be leveraged so that the system computer system. The distributed computing model of Figure 6 may also be very scalable because almost any size interprocess message passing mechanism when the client and/or space server and/or service are on the same client can be configured to send and/or receive XML messages. , v

clients 110. Services 112 may advertise their capabilities to clients wishing to use the service. The services 112 may advertise their capabilities in spaces 114. As illustrated in Figure 7, clients 110 and services 112 may or may not reside within the same network device. For example, devices 120 and 124 each support one client, whereas service 112a and client 110b are implemented in the same device 122. Also, as illustrated in Figure 7, no particular platform is As shown in Figure 6, two kinds of software programs may run in the distributed computing model: services 112 and clients 110. Services 112 may advertise their capabilities to clients wishing to use the service. The services 112 may required for the devices to support the clients and services. For example, device 120 is Java based, whereas device 124 provides a native code runtime environment.

even supercomputers. Both clients and services may be URI-addressable instances of software (or firmware) that run on devices. Using the distributed computing environment architecture, a client may run a service. A space is a service herein for readability. A software component may be both a client and service at different times. For example, when a transport addressable unit. Example devices include, but by no means are limited to: notebook computers, laptops, desktop computers, more powerful computer systems, that manages a repository of XML documents. Even though it is redundant, the term, space service, may be used advertise itself), that service is a client of the space. A device may be a networking PDAs, cellular/mobile phones, service uses a space (e. g. to

advertisement 132 to instantiate a gate 130. The gate 130 allows the client 110 to run the service 112, by sending (and area network such as the Internet. The network may also be a combination of networks such as a local area network (LAN) connected to a wireless network over the Internet. As shown in Figure 8, a service 112 publishes an advertisement 132 specifies the service's XML advertisement 132 specifies the service's XML Figure 8 illustrates the basic model of the distributed computing environment in one embodiment. The distributed computing environment may connect clients 110 to services 112 throughout a network. The network may be a wide schema and URI address. Then, a client 110 may look up the advertisement 132. The client 110 may use the and from) the service 112. receiving) XML messages to (Some results of running a service may be returned to the client in an XML message. However, since other results may are not limited to: returning in the message a URI referencing the results in a space, and: returning in the message an XML document including the URI of the results. Later, the client 110 may access the results, or pass them by reference to another service. The space in which results may be stored may be different from the space in which the be too large for a small client to receive and consume at once, a service 112 may put those results or an XML representation of the results 134 in a space 114, as shown in Figure 9, and return them by reference (in an XML message) to the client 110, rather than by value. Examples of methods of returning a reference to results include, but service is advertised.

defined in XML. Existing content types (e. g. developed for other environments) may also be described using XML as a because, similar to the way that Java provides universal code, XML provides universal data. XML is language agnostic and is self-describing. The XML content may be strongly typed and validated using schemas. Using a provided XML level of indirection (meta-data). XML provides a powerful means of representing data throughout a distributed system description. New content for the distributed computing environment (messages and advertisements for example) are schema, the system may ensure that only valid XML content is passed in a message. XML content may also be In one embodiment, the distributed computing environment uses XML for content definition, advertisement and translated, into other content types such as HTML and WML.

Thus, clients that do not understand XML may still use the distributed computing environment services.

In one embodiment, the distributed computing environment messages may define the protocol used to connect clients

different kinds of devices to participate in the protocol. Each device may be free to implement the protocol in a manner best suited to its abilities and role. For example, not all devices are capable of supporting a Java runtime environment. The distributed computing environment protocol definition does not require nor imply the use of Java on a device. Nor content in spaces and stores. The use of messages to define a protocol allows many with services, and to address does it preclude it.

without proper authorization. This model of capability definition allows for services levels to enforce the set of capabilities given to a client. For example, once a set of capabilities has been given to a client, the A service's capabilities may be expressed in terms of the messages the service accepts. A service's message set may environment may allow clients to use all or some subset of a service's capabilities. Security policies may be employed that range from a base set of capabilities to an extended set. Extensions may be added to services by adding to the be defined using an XML schema. An XML message schema defines each message format using XML typed tags. advertisement along with the service's message endpoint used to receive messages. The distributed computing The tag usage rules may also be defined in the schema. The message schema may be a component of an XML number of recognized messages client may not change that set

advertisement, a communication channel may be established which may enable bi-directional message passing to the service backing the advertisement. In one embodiment, the communication channel is authenticated. Results (which between clients and services. Storage (both transient and persistent) providers are examples of services that enable advertised and stored in a space, or advertised in a space, but stored persistently. Stored results may be addressed from service operations may be returned directly to the client in a response message, In one embodiment, all operations in the distributed computing environment are embodied as XML messages sent clients and services to store, advertise, and address content. Clients and services may find each other and broker advertisement may describe the content type or the capabilities of the service. Clients may subsequently browse content using a transient storage space. Services may place a content or service advertisement in a space. The using a URI (e. g. returned in the response message) and may have an associated authentication credential spaces looking for advertisements that match a desired set of capabilities. When a client finds a matching are just another content type)

description language, such as XML. XML may be used to describe a target entity (e. g. document, service, or client) to an extent such that code may be generated to access that entity. The generated code for accessing the target entity other distributed computing environments in that instead of passing the necessary code between objects necessary to access the other object, the environment provides access to XML descriptions of an object or target so that code may be generated based on the XML description to access the target. The distributed computing environment may use an may be referred to as a message gate. Thus, in one embodiment, the distributed computing environment differs from XML schema to ensure type safety as well as a programming model (e. g. supported messages) without having to above, the distributed computing environment leverages off the use of a data APIs, just XML schemas. Message Gates As discussed agree upon language specific

the local platform. The local platform may thus have control over the generated code to ensure that it is bug-free and produces only valid data according to the schema. The generated code may conform to schema may also incorporate the language, security, type safety, and execution the client's code execution environment (e. g. Java, C++, Smalltalk), as well as its management and security framework (Web-server and/or operating system). Code generated from an XML environment characteristics of

services, and then linked-in during the platform build process. Pre-generation of code may be useful for some clients, generated"on the fly"at runtime. Instead, some or all of the code may be pre-generated for categories (or classes) of such as embedded devices, where certain XML schemas are already known. In one embodiment, some or all of the Note that the distributed computing environment does not require that code generated from an XML schema be

one embodiment to augment the generation process. In addition, the distributed computing environment may specify, be generated at all. A private code-loading scheme (within the client) might be used in in some embodiments, an interface to download code for additional features in accessing a service (see, e. g., message conductors described below). Typically, such downloaded code may be small and the client may have the option to download the code or not. code doesn't actually have to

system) and that may be downloaded to the client system after generation. Binding time, however, may be at runtime. execution environment, or to code that is generated elsewhere (such as on the service system or on a space service The phrase "generated code" may refer to code that originates within the client under the control of the client code At runtime, the generated code may be bound to a service address (URI), so that a message may be sent to that service instance

Figure 10, the client 110 and service 112 may each construct a message gate 130 for communicating according to the specified XML schema. From the XML schema advertised for the service 112 (and possibly other information in the corresponding message gate 130c generated from the same XML schema may also exist on the service 112a. A gate correctness of XML messages when sending and/or receiving the messages. The message gate may also provide for service advertisement), a message gate 130a or 130b may be constructed by the client 110a or 1 IOb respectively. A As discussed above, the interface to any service in the distributed computing environment may be specified by an XML schema, defining the set of messages that a client may send (and receive from) that service. As illustrated in 130 is a message endpoint that may send and/or receive type-safe XML messages, and that may verify the type authentication and/or other security mechanisms to ensure that the message endpoint is secure.

In one embodiment, message gates are always secure.

atomic unit, the message. The distributed computing environment does not assume that the networking transport is IPgate. The messaging layer asynchronously delivers an ordered sequence of bytes, using a networking transport, from the sender to the receiver, maintaining the notion on both the sender and receiver that this sequence of bytes is one The distributed computing environment messaging layer described above may be coupled to or may be part of the based. Instead, the messaging layer may sit atop whatever networking transport layer is supported by the device.

mechanism to send and receive XML messages between clients and services. Message gates may provide a

message. An XML schema may be provided for a service that describes the set of messages accepted by the service and/or sent by the service. A message gate may verify the correctness of messages sent or received according to the XML schema for which the gate is constructed. The XML messages may be"typed". For example, the messages may include tags to indicate if a message data field is, e. g., integer, floating point, text data, etc. A message gate may be constructed to verify the type correctness of message gate also may authenticate (e. g. securely identify) the sender of a received messages sent or received. A

computing environment. In one embodiment, once the atomic unit of code and data for a message gate has been created, it cannot be altered as to its typing, message descriptors, and sender identification. In another embodiment, a single atomic unit of code and data that performs type verification and/or message sender identification for messages between a client and a service in the distributed the gate may be modified as to the contents of the message schema after the gate is created, including deleting, adding, or modifying messages in the message schema. A gate may be constructed as correctness verification and/or

A message gate is the message endpoint for a client or service in the distributed computing environment. A message

a service message gate which may authenticate the message and verify its correctness. service's capabilities. Each capability may be expressed in terms of a message that may be sent to a service. Each gate may provide a secure message endpoint that sends and receives type-safe XML messages. Messages gates such message may be sent through a client message gate which may verify the correctness of the message. The may allow clients and services to exchange XML messages in a secure and reliable fashion over any suitable message transport (e. g. HTTP). For a client, a message gate may represent the authority to use some or all of a message may be received by a secure communication endpoint that type checks XML messages. As further discussed messages that may be passed between client and service. In one embodiment, the authentication service may accept a client ID token (also referred to as a client token), a service ID token (also referred to as a client token), and a data representation language message schema that describes the set of data representation language messages that may be sent to or received from the service. For example, messages may be described that may be sent from a client to a service to invoke the service or to invoke aspects of the service. Messages may also be described that are to be sent from the service, such as response messages and event notification messages. Refer to the Authentication and Security section below for a further discussion of how the authentication service may be used in the construction and below, a message gate may also provide a mechanism to restrict the message flow between clients and services. In one embodiment when a client desires to access a service, a client and service message gate pair is created, if not authentication service that may negotiate the desired level of security and the set of and may be used to pair with client message gates when created. The creation of a message from the client message gate. In one embodiment, one or more service message gates may be created already existing. In one embodiment, the service message gate may be created when the service receives a first when the service is initialized, message gate may involve an A message gate may provide use of message gates.

A client message gate and a service message gate pair may allow messages to be sent between the client and the service. In one embodiment, message gates may be created that only send and/or receive a subset of the total set of message schema for a service. This limited access may be used within the distributed computing environment to implement a policy of least privilege whereby clients are only given access to specific individual message types, based on a security policy. Refer to the Authentication and Security section below for a further discussion of security checks for gate usage and gate creation. messages as described in the

perform the actual sending (and receiving) of the messages from the client to the Client and service gates may perform the actual sending (and receiving) of the messages from the client to the service, using the protocol specified in the service advertisement (URI of service in the service advertisement).

may access a service object through a message gate instead of accessing the service abstracts the service from the client, the service's code may not need to be loaded, and The client may run the service via this message passing. A message gate may provide a level of abstraction between then started, until the client first uses the service. a client and a service. A client object directly. Since the gate

against the XML schema may be performed by the service gate, e. g. if the client indicates it has not yet been verified. In some embodiments, verification may not be practical for simple clients and may thus not be required at the client. In The client gate may also perform verification of the message against the XML schema, or verification of the message may not be able to construct the right gate. To avoid this problem, service construction) may include a list of possible URIs for a service, so a variety of clients enablement and/or security schemes. In one embodiment, if a client does not support the protocol specified in the some embodiments, verification may be performed by the service. The gates may also perform authentication service advertisement, then it advertisements (used for gate may be supported.

•

הליכוניתיו מייי מייי מייים מונת יכיכונית מייים מייים מייים מייים מייים מייים מייים מייים מייים לכי B

ייי לחייי הייחה התחתה חייה יייחה ייי

response), asynchronous messages (response is disconnected from request), unicast messages (point to point), multidiscussed below. As illustrated in Figure IOb, a gate 130 may be generated according to lata may be the results themselves or a reference to the results, such as a URI to results an XML schema 132. The generated gate code verifies messages based upon the XML schema. The gate may verify correct message types and/or content through the message API. As illustrated in Figure I Ob, through the message cast messages (broadcast), and publish and subscribe (event messages), for example. Other type of messages may service. In response to the message, the service may generate results 180. The service may return result data 182 embodiment, message gates may support a fixed minimum API to send and receive messages. This API may be API a verified message may be sent to a service. The message may be received by a corresponding gate at the embodiments, the message API may support synchronous messages (requestthe gate, validating messages before sending and/or upon receiving. In one also be supported, such as remote method invocation messages. extended to other features as through its gate. The results d XML messages) in and out of stored in a space.. In various

Each message sent by a gate may include an authentication credential so that the receiving gate may authenticate the message. Each message may also include a token which includes information allowing the receiving gate to verify that the message has not been compromised or altered. For example, the sender may compute a hash or checksum of the message which may be verified by the receiver. The sender may also encrypt this token and/or the entire message using the sender's private key and may include in the encrypted message the corresponding public key so that the receiver may verify that the token was not changed. See the section below on Authentication and Security

provide a mechanism for communicating requests from clients to services and response directional message channel for request-response message passing. Thus, the distributed computing environment may employ a message transport in which a message gate exists on both the client and the service sides. The two from services to clients. Two associated message gate endpoints may be used to create a secure atomic bigates may work together to provide a secure and reliable message channel. A pair of message gates may

client 110 from a service advertisement or other service description 132. The client may have a gate factory 140 that is may ensure that the gate it generates is also trusted code, and that the code is correct with respect to the service advertisement. As shown in Figure 1 lb, a gate 130c may also be constructed at a service 112. The client gate 130a Turning now to Figure 11 a, an illustration is provided for one embodiment showing construction of a gate 130a in a trusted code on the client for generating gates based on XML service descriptions. The use of the gate factory 140 and the service gate 130c provide message endpoints for communications between the client and service.

In one embodiment, the pieces the gate factory needs to construct a gate 130 are the XML schema of the service (from the service advertisement). In another embodiment, an authentication credential may also be obtained and used in gate construction by running an authentication service specified in the service advertisement.

factory 140 may be a trusted package of code that is used to create gates. In one embodiment, each client and service device platform that desires to send and receive messages in the distributed computing environment may have a gate A gate factory may provide a trusted mechanism to create message gates. In some embodiments, in order to ensure that a message gate is a trusted message endpoint, the code used to create the gate must be trusted code. A gate factory. In some embodiments, gates may be pre-constructed by a separate gate factory so that a device with preconstructed gates may not need a full gate factory, or may include a partial gate factory for binding a service URI and/or an authentication credential to the pre-constructed gate at runtime (e. g. when messaging is desired) .*

execution environment characteristics of the local device platform. By constructing gates itself, a device has the ability gate code is bug-free, produces only valid data, and provides type-safety. An advantage code is also trusted code, because the client's runtime environment was involved in its ly generate gate code that may incorporate the language, security, type safety, and/or gate code as opposed to downloading code for accessing a service is that the client code management environment has the control. The generated code may conform to the client's code execution Smalltalk), as well as its management and security framework (Web-server and/or operating system). Generated code is also trusted code, because the client's runtime environment creation. Trusted security information therefore may also be added by the trusted generated code. A gate factory for a device ma to ensure that the generated g of a device generating its own environment (e. g. Java, C++,

downloaded) code may be run, may be configured so that gates may be generated only by trusted code. Open devices may employ a process model in which gates are enclosed in a protected, isolated code container that is not accessible Thus, a device may receive an XML message schema for a service and then construct a gate based on that schema to access the device. The XML schema may be viewed as defining the contract with the service and the generated apable of discovering the gate's implementation, especially the gates authentication gate code as providing a secure way to execute the contract. Note that open devices, in which un-trusted (e. g. to tools, such as debuggers, c credential.

A gate factory 140 may negotiate on behalf of a client with a service to create a gate to send messages to the service. Similarly, a gate may be constructed at the service to receive messages from the client gate and send messages to the client gate. Together, the client and service gates may form a secure bi-directional communication channel

instead of the client directly creating a gate to access the service, the gate may be created by a gate factory as part of level of abstraction in gate creation. For example, when a client desires to use a service, A gate factory may provide a instantiating the service.

Thus, a gate factory may be configured to optimize gate construction by checking whether authentication service as part of gate construction and may avoid included provisions for an authentication credential authentication service (e. g. specified by a service advertisement) to receive an authentication credential for the gate being constructed. For services that do not restrict access, a gate may be constructed without an authentication services may not need to send an authentication credential with each message since specified by a service advertisement) to create a gate matching that schema. The gate factory may also receive or download a URI for the service and/or for a service message gate for use in creating the client message gate to the service does not restrict access. The authentication service is an example of a service that does not restrict as part of the constructed gate. The gate factory may also receive or download an XML message schema (e. g. The gate factory may create or may include its own trusted message gate that is used to communicate with an a service restricts access. If the service does not restrict access, then the gate factory may avoid running an credential. The gates for such access, in one embodiment. 1 communicate with the URI.

checking of messages against a service's XML schema. The client may be too thin to perform the checking or may rely a client constructed to verify messages against the provided XML schema. In some embodiments, certain clients may have a In addition, another gate construction optimization may be employed for certain clients that do not desire to perform the checking or may simply choose not to perform the checking (e. g. to reduce gate constructed to verify outgoing messages only, or verify received messages only. Thus, in some embodiments, a cl may avoid or may chose to avoid building some or all of the gate code that checks the messages against the XML memory footprint). The gate factory may be configured to receive an indication of whether or not a gate should be gate factory that does not provide for message verification against a schema for its constructed gates. In some embodiments, gates may be pre-constructed not to verify messages. In some embodiments, a gate may be on the service gate to perform

The state of the s

*

When the gate is no longer being used, it is kept in the gate cache instead of being deleted. If the gate cache becomes In some embodiments, devices may maintain a cache of gates to avoid constructing them each time the same service is run. For example, when a new gate is constructed by a gate factory, the gate may be maintained in a gate cache. full, one or more gates may be removed from the gate cache according to a cache replacement algorithm, such as least recently used. When the gate factory is called to construct a gate, it first checks the gate cache to see if a matching gate already exists so that construction of a new gate may be avoided.

portions of each gate may be the same, and thus may be reused from gate to gate, such as parts of the message verification code. Also, for some devices, common gate code may be built into the system software for the device and made lightweight by appropriate reuse of pieces used to construct other gates. Certain simply bind the gate to this system software portion. For example, a system software shared by all gates on that device. Thus, the gate factory may avoid rebuilding this common code for each gate. portion may be provided to handle the message layer over whatever transports are provided on the device. The building of a gate may be Instead, the gate factory may

Space services in particular may be good candidates for many of the gate construction optimizations described above since a service gate constructed for a space service may perform many of the same functions as other service gates for that space service. Refer to the Spaces section below for more information on space services.

cient form of method invocation may exist. For example, if the target service runs in the sending a message. A gate binding time procedure may check for such an optimization and use it instead of running the gate factory to create a gate or bind an existing gate. Java dynamic proxy class for the service. In such a case, a java. lang. reflect. Method invocation may be faster than same Java Virtual Machine as the client application, a more efficient form of method invocation may be to create a In some instances, a more effi

runtime may not be desirable due to memory consumption and code generation time. Thus, instead of having a gate factory that generates gates at runtime, in some embodiments gates may be pre-generated and built into the device. In one embodiment, such as for special-purpose clients or small embedded devices, the generation of gate code at may not need a full gate factory, or may require only a partial gate factory for performing certain runtime binding to built-in secure message endpoint that does not have to be constructed at runtime. Thus, a client with built-in gates may be generated during the build of embedded software as a means of including a RI and/or authentication credential. built-in gate, such as for the U For example, message gates

A generation tool may be provided for the pre-construction of gates. The generation tool may include an XML parser, a and the code compiler may be a Java code compiler. During the build of the software for which built-in message gates code generator and a code compiler. In one embodiment, the code generator may be a Java source code generator is run with input from all the relevant XML schemas for which gates are desired. is desired, the generation tool

provide source code for a gate corresponding to the camera's schema. In some embodiments, the generation tool may for a device to have a built-in message gate that can send and receive messages from a into an internal form suitable for quick access during a message verification process. The tool's code generator may and the gate code may be linked into the software package for the device. At runtime, digital camera, the build of the device software may include running the gate generation tool with the camera's XML message schema as input. The XML schema may be parsed by the XML parser that may convert the XML schema the camera service may be discovered in the distributed computing environment. The message URI for the camera service may be bound to the built-in gate for the camera within the device. The binding of the URI to the preconstructed gate may be performed by a gate constructor within the device. This gate constructor may be a much As an example, if it is desired also compile the source code

smaller, simpler gate factory. When the camera service is instantiated, the URI for the camera service is passed to the essage. The gate constructor may then bind the URI to the pre-constructed gate gate constructor as an XML m

as the gate factory or the generation tool for pre-constructed gates may be a Java-based tool to provide some level of platform independence. Alternatively, gate generation tools may be provided in any language, such as the native code for a particular device in the distributed computing environment. binding process (e. g. for a URI or credential) performed at runtime. In one embodiment, a gate generation tool such or fully generated at runtime, or a gate may be pre-generated before runtime with a Thus, a gate may be partially

Note that the distributed computing environment does not preclude a device from downloading part or all of a gate's code. For example, in some embodiments, a service may provide gate code that may be downloaded by a client wishing to access that service. However, downloaded code may present size, security and/or safety risks.

and a transport URI 153. In other embodiments, a gate may also include an authentication credential 156. Some gates 150, a destination gate address 152, a valid XML schema (or internal form thereof) 154, possible gate components for one embodiment is shown in Figure 12. A gate may may also include a lease 158 and/or a message conductor 160 to verify message ordering. A more detailed illustration of include its address (or name)

A gate's name 150 may be a unique ID that will (for the life of the gate) refer only to it. A gate may be addressed using provide a virtual message endpoint address that may be bound and un-bound to a message transport address. In one embodiment, a gate's name may be a Universal Unique Identifier (UUID) that may, for the life of the gate, refer only to schema (e. g. from a service advertisement) and a random number, such as a 128-bit random number. The name 150 gate address is independent of the physical message transport address and/or socket layer. Thus, a gate name may may allow clients and services to migrate about the network and still work together. In a preferred embodiment, the its gate name 150. In one embodiment, gate names may be generated as a combination of a string from an XML

's transport address changes, a gate name (or gate names) may be re-bound to the so that the client may still access a service (s) that it previously accessed without having second client process executing within the same device that desires to run the same service may locate the gate by its insport address. In another example, a client may receive a dynamic IP address (e. g. a transport address, so that the message endpoint for the second client process is a combination of the gate name and process executing within a device to access a service. After the first client process has completed its activity with the service. To use the gate, the second client process may bind the gate to its message message transport address (e. g. IP and/or Port address). The gate may be stored in a gate cache or repository. A A gate name may persist as long as the gate persists so that different applications and clients executing within the same device may locate and use a particular gate repeatedly. For example, a gate may be created for a first client service, it may release the gate. Releasing the gate may involve un-binding the gate from the first client process's reate the gate. A gate name may also be useful for process migration. name and use it to access the the second client process's tra mobile client). When the client client's new transport address to relocate the service and rec

services to which it had access before being migrated. A gate may track the current location of another gate to which it is paired. Thus a service or client may be migrated and still be accessible. For example, replicated or load- balanced environment and moved to another node. The process may be restarted at the new node and the associated gates address for the new node so that the process will still have access to the external gates may be checkpointed or saved at one node in the distributed computing be abstracted from clients of the service by the gate. A process and any associated may be bound to the transport service implementations may

(L

endpoint (gate) may be moved from transport to transport by unbinding and rebinding to different underlying transport computing environment. A gate name may be used to locate and/or address a gate over a wide range of networks, les a flexible mechanism by which to address a message endpoint in the distributed from a local network to the Internet. Gate names may be independent of message transport so that a message addresses (e. g. IP/Port address pairs) inus, a gate name 150 provic

In one embodiment, a gate may also be separated from a service so that the same gate may be used to send requests to different services over time. This may involve un-binding the gate's destination gate address 152 and binding a new destination gate address to the gate.

gate may be reduced. A device in the distributed computing environment may have a large number of gates that need to send and receive messages. The message handling complexity for multiple gates may be reduced by sharing a common message transport. The transport reference 153 may be a transport (e. g. above. Multiple gates may share the same message transport. For example, multiple gates may have transport references 153 to the same TGP/IP socket. By sharing the same message transport, the size and complexity of each A gate may be implemented as a layer above a device's transport layer (e. g. networking sockets). Each gate may include a transport reference 153. The gate name 150 may be bound to the transport reference 153 as described

URL) or socket reference and may provide a mechanism for naming an underlying transport and sharing the transport with other gates. Multiple local gates may include a reference 153 to the same transport, however, each local gate the other local gates sending and receiving messages to and from its paired remote may behave independently of gate.

description of all messages that the client may send (that the provider supports), and the receives). In one embodiment, either the client or provider may send a particular request to the space service to obtain into an internal form suitable for quick access during a message verification process. In one embodiment, the schema provider service messages group includes the description of all messages that the provider may send (that the client a response message with either: the entire client service messages, the entire provider service messages, the entire The schema 154 may be downloaded from a space into the gate by the gate factory. The schema may be compiled may specify two groups of messages: client service messages and provider service messages. The client service client and provider service messages, or a specific message of either the client service messages or the provider service messages. In addition, once a gate has been constructed, a client may query as to the capabilities of the service without the gate actually sending a message, but instead by inspecting the gate's set of messages messages group includes the

which message to send next without requiring the client to have specific knowledge of the service. In one embodiment, the service may continually send response messages indicating the next input it needs. The service would then accept may need to know what message next to send to the service. It may be desirable for the client to be able to determine for a service instead of requiring an application-specific GUI. Of the possible messages in the XML schema, the client applications (services) for clients to run without any pre-existing specific functionality related to the application on the Client). For example, a Web browser may be used on a client as the GUI message content for type safety and according to an XML schema. However, it may also be desirable to verify that messages are sent between a client and a service in the correct order. It may be desirable to be able to provision As described above, a message gate may verify the sender of the message using an authentication credential, only the corresponding messages from the client with the requested input specified. Other ad hoc scheme for message ordering may also be employed.

In another embodiment, a message conductor 160 may be employed in the gate or associated with the gate to verify the correct sequence of messages, as opposed to verifying each message's syntax (which may already be performed

a application, a Java Script, WML script, or in other programming or scripting languages. indication in a schema may allow code to be generated on or downloaded to the client during gate construction, which in the gate according to the schema). Message conductor 160 may provide a more general approach for application may provide the choreography needed to decide which message to send next to the service. A message conductor provisioning. The message conductor 160 may be specified in a service's advertisement. The message conductor may be implemented as a Jav

this XML document into an internal form and enforce message ordering (and/or other rules) according to the enclosed ordering information. The conductor may prevent messages from being sent out of order. Or, if a message is sent out may send an automatic response message back declaring the ordering error. The sender may then resend messages advertisement) that presents the valid order or choreography for messages that may be sent between a client and the in the correct order. Note that in some embodiments, part or all of a conductor may be shared by several gates. Thus, of order, an exception may be raised within the sending device. If a message is received out of order, the conductor service. This XML document may also specify user interface information and other rules. The conductor may parse In one embodiment, the message conductor may accept as input an XML document (e. g. from a service multiple gates a conductor may be linked to

service interface may interact on the client with the user of the service to obtain input for running the service, and then may display results of running the service on the client. A"user"may be a human, embedded system, another client or In one embodiment of a distributed computing environment, front ends for services (service interfaces) may be built in the service. In one embodiment, the service interface may be provided to the client in the service advertisement. The the service interface may be a preconstructed user interface provided to the client by service, etc. In one embodiment, a client device may not be able to provision arbitrary services, as the client device may only be able to run services for which it has a front end built in. In one embodiment, a service interface for a service may be implemented in a Web browser on the client. to clients. In one embodiment,

download these very large objects. In one embodiment, the message conductor may send XML messages to services platform. In one embodiment, the message conductor may be written in the Java language. In one embodiment, the message conductor may not require the arbitrary downloading of objects, for example, Java objects, returned to the In one embodiment, a message conductor and/or service interface may be external to the gate and thus abstracted client device. In one embodiment, the message conductor may be written in code that may run on substantially any from the gate and client. The abstracted message conductor may provide provisioning of arbitrary services to any from the client device on behalf of the client. The message conductor may interact with the user of the service to client device. For example, very large objects may be returned, and the message conductor may choose to not receive input and display results

regarding the location of results, as appropriate. The service interface may be either part of a message conductor 160 or may be in addition to and work with message conductor 160. The service interface may either be: 1. Built in to the In one embodiment, a service interface may be provided that interacts with the client (e. g. thru a user interface) to obtain all information to run the service, and then may display either results of running the service or information client device and thus run on the client.

- 2. Downloaded to the client device from the space server.
- 3. Run on the space server.
- 4. Run on the service provider

43

•

In one embodiment, to a client, the distributed computing environment space server must support # 1 always, indicate if #2 is supported (by advertisement in space), indicate if at least one of #3 and #4 is supported.

embodiment, to a service provider, the distributed computing environment space server must support #4 always and Note that whether or not it supports #4 depends upon whether or not the service provider supports #4. In one indicate if it supports #3. ice interface runs, once a service is activated, the service interface may interact with the client, displaying (remotely) requests for input on the client's display, and then displaying (remotely) results of running the service. Such interaction with the client is implemented in terms of XML messages. Regardless of where the servi

read a typically large, dry computer manual to figure out how to use the service. As the obtained the necessary information from the client, it may send XML messages to the service provider that runs the service interface and/or message conductor interacts with the user to request all input that the service needs, they The service interface and/or message conductor may meet the needs of a client user that may have discovered a may even provide short descriptions of the input requested if the user requests it. Once the service interface has service. The ordering of the messages may be verified by the message conductor 160 in the gate. service, but does not want to

In a preferred embodiment, all messages flow through a gate. A gate may be configured to provide a flow control mechanism. For example, a service may need to handle a large amount of incoming and outgoing messages.

Flow control may allow a service to keep up with high traffic volume. Gates may be configured to monitor messages for flow control tags. When a gate receives a message, it may examine that message for a flow control tag

received message includes an OFF tag, the receiving gate will stop sending messages to its paired destination gate. XML tags. A message may include either an OFF tag or an ON tag, for example. If The flow control tags may be

If the gate receives a message including an ON tag, it may resume sending messages.

Thus, a service-side gate may monitor the use of its resources and trigger flow control if use of its resources exceeds a threshold. For example, a service may reduce its load by sending messages including OFF tags to one or more client gates. The client gates receiving the messages with OFF tags will stop sending messages to the service.

service is able to handle more requests, it may send messages to one or more clients with ON tags so that the clients Pending messages in the clients may be buffered or may be handled by internal flow control mechanisms. Once the may resume sending messages. In other embodiments, other flow control tags may be supported in addition to or instead of ON and OFF. Other flow control tags may indicate to reduce message flow or that message flow may be increased.

resources such as memory or threads). A gate may be configured to track the activity of a software program, such as a client, by monitoring how much a resource, such as a service, is used or which and how many service resources are used. In one embodiment, a gate may generate or may facilitate generation of a client activity log. Each message and Message gates may be configured to perform resource monitoring. For example, since all messages may flow through a gate, the gate may be configured to manage and/or track a client's use of a service (and possibly its associated be logged. its destination or sender may

4

back the flow of messages, for example. Thus, a client-side message gate may automatically trigger different flow control modes by monitoring the flow of outgoing messages. If the outgoing message flow exceeds a threshold, the gate may reduce or shut off its flow of outgoing messages. The threshold may be specified in a service's XML schema or advertisement. In some embodiments, the threshold may be specified only for messages using certain service A gate may also be configured to perform resource monitoring for flow control from the local (sending) side of a gate pair. If the client exceeds an allocated bandwidth of service (or resource) usage, the gate may automatically throttle resources or for all messages. The gate may also be configured to determine when message flow may be increased or resumed. In one embodiment, received. When matching responses are received by the client-side gate, the count of outstanding request messages may be decremented. When the counts decrements below a specified outstanding request message threshold, the the gate may maintain a count of outgoing messages that have been sent without the matching reply (response) sending new request messages. gate may increase or resume

based upon the number and/or kind of messages sent and/or received by a message gate. Since all messages to and from a client may pass through a gate, the gate may be configured to facilitate charging a client for service usage, for example on a per message basis or pay as you go". Thus, a billing system may be implemented within the distributed computing environment in which a user could be charged, for example, each time a message is sent and/or received A gate may be configured to support message-based accounting and/or billing. A billing system may be implemented by software running on behalf

requesting a specified service resource. The billing policy may also indicate different billing models for different clients or classes of clients. For example, a billing policy may be configured (e. g.. in a service's XML schema) so that some clients may pay a one-time charge when they create a gate to access the service. The policy may indicate clients that are to pay as they go (e. g. per message), or may indicate clients that are not to be charged at all. charge message to the charge-back URI specified in the XML schema. Gates so configured may be referred to as bill gates. The billing policy may indicate charge amounts per message or per cumulative message totals, etc. The billing be gate may receive billing information from an XML schema, e. g. for a service. The a billing policy and a charge-back URI. The charge-back URI may be used by the message gate to charge time or usage on behalf of a user. A message gate may make a charge-back by sending and/or how often (e. g. after every x number of messages sent and/or received) to charge the user. The policy may indicate that only certain types of messages trigger charges, such a messages In one embodiment, a messag policy may indicate how much billing information may denote

instantiate a service agent (which may include a gate) for each service to be used by the client. The service agent may verify permission to send messages; send messages to the provider, possibly queuing them until the provider can accept the next one; send messages to the client, possibly queuing them until the client can accept the next one; and manage the storing of results in a result or activation space. See also the Bridging section herein. In some embodiments, a client may be too thin to support a full gate, or a client may not include software to directly participate in the distributed computing environment. In such embodiments, a server (such as the space server in which the service is advertised or another server) may be a full or partial proxy gate for the client. The server may

, which may be used in connecting the browser to the proxy servlet. Scripts may also be participate directly in the messaging scheme described above. The browser 400 may be aided by a proxy servlet (agent) 402. The browser user may use a search engine to find a Web page that fronts (displays the contents of) a For example, as illustrated in Figure 13, a client may be a conventional browser 400 that does not support gates to space advertising services within the distributed computing environment. The user is able to point and click on the space Web page and, with the help of the servlet, to access services. The Web pages may include scripts, for example, Java or WML scripts

•;

•

hese actions may include navigating a space, starting services, and returning results. proxy serviet. The serviet agent may translate vveb page actions into messages on used to send messages to the behalf of the browser client. The

and clicking. The agent 402 provides the client interface between the conventional client and the distributed computing Result page URIs (referencing pages containing XML) may be returned directly (or translated into HTML or WAP if needed) to the browser, for display to the user. Thus, the browser-based client does not need to know how to start services, nor which messages to send during the service usage session. For example, a user of a WAP browser (e. g. on a cell phone) may connect to a space page, browse its contents (services), and then start a service, all by pointing environment.

The distributed computing environment may include several different types of message gates for communicating between clients and services that support different features. For example, as discussed above, some gates may support flow control or billing. Another type of message gate may support a form of remote method invocation. This type of gate may be referred to as a method gate.

method invocation (RMI) style gate may be referred to as a method gate. The direct data-centric gate may be referred to as a message gate. A snethod gate may be implemented as a"layer"on top of a message gate. The exact A gate is a secure message endpoint that sends and receives type-safe messages, e. g. XML messages. The remote implementation may be defined in the platform binding.

a method gate to provide a remote method invocation interface to a service. Figure 14 illustrates the use of

remote method invocations from client to service and from service to client. A method gate 172 may be generated from interfacing to one or more methods. Each method invocation (e. g. from a client application 176) in the generated code Method gates provide a method interface between clients and services. A method gate may be bi-directional, allowing includes XML defining a method interface (s). From this information, code may be generated as part of the gate for XML schema information 170 (e. g. from a service advertisement in a space). The XML schema information 170 may cause a message to be sent to the service containing the marshaled method parameters.

The message syntax and parameters to be included may be specified in the XML schema. Thus, the method gate 172 provides an XML message interface to remotely invoke a service method. The method gate may be generated on the client or proxied on a server, such as the space server where the service method was advertised or a special gateway server.

messages defined by the service's XML schema. Once a service's corresponding method receives a message from a client to invoke one of the service's methods, the service's method gate may unmarshal or unpack the parameters of correspondence between the object methods implemented by or linked to the service's method gate and the method the message invocation and then invoke the method indicated by the received message and pass the unmarshalled A service may have a corresponding method gate that implements or is linked to a set of object methods that correspond to the set of method messages defined in the service's XML schema. There may be a one to one parameters.

downloading result objects (and associated classes) into the client, only a result reference or references are returned methods causing services to return results. The underlying message passing mechanics may be completely hidden from the client. This form of remote method invocation may deal with method results as follows. Instead of in XML messages, in one embodiment. An object reference 178 may be a generated code proxy (e. g. results gate) a synchronous request-response message interface in which clients remotely call The method gate may provide

ď

representing the real object result 180 (still stored out on the net, for example). In other embodiments, the client may choose to receive the actual result object. In addition, once a client has received a result object reference, the client may use this reference to receive or manipulate the actual result object. In one embodiment, the result reference includes one or more URIs to

example). This temporary results space may act as a query results cache. The results cache (space) may be patrolled be stored in a service results space (which may be created dynamically by a servlet, for by server software (garbage collector) that cleans up old result areas. Results returned from each method invocation instantiated by a client, thus generating its own method gate. Therefore, the distributed computing environment may may be advertised in the results space. A result itself may be or may include a method that could then be remotely support recursive remote method invocation. The real result object (s) may

results gate may be generated to access the actual result. Thus, the client or client method gate may receive a result URI and perhaps a result XML schema and/or authentication credential for constructing a gate to access the remote As mentioned above, when a client uses a method gate to remotely invoke a service method, a reference to the method results may be returned from the service method gate instead of the actual results. From this reference, a method results. gate may create a"child gate"for the results. This child results gate may share the same and thus may not share the same authentication credential as its parent. For example, a payroll service may allow a authentication credential as its parent gate. In some embodiments, results may have a different set of access rights different set of users to initiate than to read the payroll service's results (paychecks). In one embodiment, a service

A service method gate may return a child results gate to the client gate as the result of the method. The client may then use the results gate to access the actual results. In one embodiment, the software program (client) receiving the results gate cannot distinguish between the results gate and the result itself in which case the results gate may be an object proxy for the actual result object. The results gate may also be a method gate that supports remote method this manner, a chain of parent and child method/results gates may be created invocation to result objects. In

correctly typed according to the Java typing system. When a Java method is remotely invoked as described above, the In one embodiment, the method gates and remote methods may be in Java. In this embodiment, method results are results gate may be cast into the Java type that matches the result type. In this embodiment, method gates may be method invocation and results may appear the same to the client Java software program whether the real object is used in the distributed computing environment to allow remote Java objects to behave as local Java objects. The local or remote.

See the Spaces section below for a further discussion on the use of spaces for results.

embodiment, each method invocation in the generated code (i. e. method gate) causes a single synchronous message to be sent to the service containing the marshaled method parameters. The method gate may then causes the current Method gates provide a method interface to clients, instead of just a raw message interface. In one embodiment, a method gate may be implemented on top of a message gate. The message gate provides the method gate with transport access, message content validation, and message content access (get & set content methods). In one thread to block, waiting for a response message from the service.

results gate. The results gate may or may not contain the same security credential as the input gate used to generate In one embodiment, some results produced by a service are advertised in a space and ultimately accessed using a

•

the results. Because input to a service is asynchronous from its output (the results), the results may have a different set of access rights associated with it. Using a B2B scenario, a payroll service may allow a different set of users to payroll service's results (paychecks) initiate payroll than to read the

XML documents sent as a response from a service) can be accessed using the message content access (e. g. get & set) methods available on message gates. Method results gate generation may be automatically initiated. In one embodiment, results gate generation for message gate results may be manually initiated. In-line results (e. g.

The method gate model of programming hides results gate generation, creating a seamless, remote method invocation le overhead of class loading or requiring the application programmer to manually programming model without the generate results gates.

call into a data representation language message. In one embodiment, the data representation language is XML. The message may include an identifier of the method and one or more parameter values of the method. The identifier may locally on the client device, but is implemented on a service device external to the client device. In step 2102, a client method gate on the client device may receive the method call. The client method gate may then marshal the method embodiment, more than one method call may share the same identifier, and may be distinguished by the parameters clients and services in a distributed computing environment using method gates. In Figure 45a, a client process executing within a client device may make a method call (i. e. invoke the method) at step 2100. In one embodiment, be a name, number, or other value used to identify the method to the receiver of the message. A method call may Figures 45a-45d are flow diagrams illustrating various embodiments of mechanisms for communicating between to a Java method. In one embodiment, the called method may not be implemented include one or more parameters, and when called, the caller supplies values for these parameters. In one the method call may be a call of the method.

45b, the client method gate may provide the message to a client message gate in step 2120. The client message gate may then provide the may then service message to a service message gate in step 2122. The service message gate may then provide the message to the service method gate in step 2124. The embodiment illustrated in Figure 45b frees the method gates method gate may send the message directly to the service method gate. In another embodiment, illustrated in Figure lling the sending and receiving of messages, and simplifies the programming model of In step 2104, the client method gate may send the message to the service device. In one embodiment, the client the distributed computing environment by compartmentalizing the RMI functionality and the message handling from the responsibility of hand functionality.

identifier included in the message to locate the template for the method call. The service method gate may implement message and pass the uninarshalled parameter values to the invoked method. The service method gate may use the received message the parameters of the message invocation and then invoke the method indicated by the received to one correspondence between the object methods implemented by or linked to the Returning to Figure 45a, in step 2106, the service method gate may unmarshal or unpack the method call from the or may be linked to a set of methods that correspond to the set of method messages defined in the service's XML method messages defined by the service's XML schema. schema. There may be a one service's method gate and the

In step 2108, the invoked method may be implemented or performed on the service. In step 2110, the invoked method embodiment, the service may place the results in a space and may provide a results invocation. In step 2112, the results of the method invocation may be provided to the client process that originally invoked the method. In one embodiment, the service may directly provide the results to the client in one or more may produce results output from the invocation in accordance with the parameter values received in the method results messages. In another מכעבשטוווץ ווזכ ובשחווש. הוצעוב אשר מוזע אשע ווועשנומוכ טווזכו בוווטטמווזוכונוש איוזכוב מ וכשחווש auvernsement to use chem for accessing the results. gate is provided to the client for accessing the results.

reference may be an address, e. g. a URI, for the results. In step 2132, the service message gate may send the results reference to the client message gate in a message. In step 2134, the client, after receiving the message, may create a message, and the client may create the results gate in accordance with the results advertisement in a similar manner to creating message gates from advertisements as described elsewhere herein. In step 2136, the client may use the gate, e. g. the URI of the service results gate may have been included in the results advertisement. Alternatively, the results gate to access the results. For example, the results may be on the service device, and the service may have generated a service results gate. The client results gate may be generated to communicate with the service results service may have stored the results elsewhere in the distributed computing environment and the client results gate may be configured to communicate with a results gate set up for the results. For example, the results may be on a embodiment, the results reference may be an advertisement to the results. In another embodiment, the results results gate from the results reference message. For example, a results advertisement may be provided in the In Figure 45c, the service method gate may provide a results reference to the service message gate. In one ate may communicate with a results gate on the space. space, and the client results g

client (in a message) in step 2142. The received results gate may then be used by the client to access the results. This In Figure 45d, the service may create a results gate in step 2140. The service may then send the results gate to the embodiment frees the client from the responsibility of setting up the results gate.

To the client process that originally invoked the method, the process of RMI as described herein is transparent. To the client process, it appears as if the method is being invoked locally, and that the results are being provided locally. Thus, the method gates, in combination with the message passing mechanism, may allow"thin" clients to execute processes that would otherwise be too large and/or complex to execute on the clients. A possible Java platform method gate implementation example follows. The actual Java method gate implementation for any Java platform is defined in the distributed computing environment platform binding. Each Java method gate example, if the result were an object of type Table, the result method gate class may be defined as follows: public class TableMethodGate object is cast to type granting access to a result is actually a Java class instance (an object) that implements the result's interface. For Table before being returned as the method invocation result.

instance are generated to represent the getNextCell result: public class CellMethodGate implements Cell {} The choice of which gate type (message or method) to use with a particular service is addressed in combination by the platform The process is recursive. That is, when the getNextCell method is invoked, a CellMethodGate class and object binding and each service advertisement. Some platforms may not support method gates.

events. Message gates with event support may be referred to as event gates. A service's XML schema may indicate a set of one or more events that may be published by the service. An event gate may be constructed from the XML If a platform does support method gates, the binding may define its precise implementation. Secondly, a service support a RMI-style programming model are flagged with the following XML attribute : &It;MethodGateInterface=true> Message gates may also support publish and subscribe message passing for advertisement's interface may or may not lend itself to RMI-style programming. Those service interfaces that do be configured to recognize some or all of the set of events published by a service, subscribe to those events, and distribute each event as the event is produced by the service. schema. The event gate may

The set of events for a service may be described in the service's XMI message schema. For each event message in

•

event gate may subscribe by sending a subscription message including the XML tag for the event to be subscribed to. the XML schema, the event gate may subscribe itself as a consumer of that event. In one embodiment, an event gate subscribes to all events indicated by the XML schema. Each event message may be named using an XML tag. The

document within the client platform. Each event consumer within the client platform may subscribe with the event gate for each type of event. On Java platforms, the typing system is Java (converted from the XML event type). indicating the occurrence of the event. The event message may contain an XML event document and may be sent to from the message and the process of distribution begins. Event distribution is the process of handing out the event each subscribed gate. When a subscribed gate receives the event message, the XML event document is removed When a corresponding event occurs with the service, the service may send an event message to subscribers

The event consumer may supply an event handler callback method to the event gate. The event gate may store a list of these subscriptions. As each event message arrives at the gate (from the service producing the event), the gate parameter. In one embodiment, the XML event document is the only parameter passed to the handler callback traverses the list of client consumers and calls each handler method, passing the XML event document as a method. gate automatically subscribes itself for events on behalf of the local consumer clients. As clients register interest with the gate, the gate registers interest with the event producer service. A client may also unsubscribe interest, which causes the gate to un-register itself with the service producing the event. In one embodiment the event

An event gate may type check the event document using the XML schema just like a regular message gate does in the standard request-response message passing style described above. An event gate may also include an authentication credential in messages it sends and verify the authentication credentials of received event messages.

Note that any combination of the gate functionality described above may be supported in a single gate.

methods for clients to find services and to negotiate the rights to use some or all of a service's capabilities. Note that a Each type has been described separately only for clarity. For example, a gate may be a message gate, a method and an event gate, and may support flow control and resource monitoring Service Discovery Mechanisms In one embodiment, the distributed computing environment may include a service discovery mechanism that provides space is an example of a service. The service discovery mechanism may be secure, and may track and match outgoing client requests with incoming service responses.

A service discovery mechanism may provide various capabilities including, but not limited to: Finding a service using flexible search criteria.

Requesting an authorization mechanism, for example, an authentication credential, that may convey to the client the right to use the entire set or a subset of the entire set of a service's capabilities.

Requesting a credential, document, or other object that may convey to the client the service's interface. In one embodiment, the service's interface may include interfaces to a requested set of the service's capabilities. The tracking of discovery responses to the original requests. In one embodiment, each client request may include a collection of data that may also be returned in matching responses, thus allowing the requests and responses to be

•

30355135

In one embodiment of the distributed computing environment, a service discovery mechanism may provide a flexible elements, if any, being searched for may be matched with elements in an XML document. In one embodiment, the XML document is the service advertisement for the service. XML may provide a flexible, extensible grammar for searching. XML also may provide type safety for matching elements. In one embodiment, the service names and extensible grammar. In one embodiment, a service name, service type, and other service types may be type checked with the element types in the XML service advertisement. search criteria based upon an

access rights. In one embodiment, the mechanism may be used to negotiate for a subset of a service's full capabilities. The result of the negotiation may be an authorization such as an authentication credential that conveys to the client ted computing environment may include a mechanism for clients to negotiate service the right to use the requested subset of the service's capabilities. In one embodiment, a distribut

from a service. In one embodiment, the client may present to the service a set of desired capabilities in the form of a protected (secure) advertisement. The service may then respond with a capability credential that may convey to the In one embodiment, the service discovery mechanism may allow a client to request a security capability credential client the rights to use the requested capabilities described in the protected advertisement. In one embodiment, the distributed computing environment may include a mechanism for a client to negotiate service access rights and to then obtain a security credential or document that may be used to present the service's access interface to the set or subset of the service's capabilities that were requested by the client.

- document. The generated advertisement may provide access to the service capabilities lat receives a capability credential from a service may generate a custom service access as granted to the client by the received capability credential. In one embodiment, an interface may be provided by the advertisement only to the service capabilities to which the client has been granted access by the capability credential. In one embodiment, the client may be granted access to only required capabilities and to which the client has access interface document that may be referred to as a "complete advertisement." In one embodiment, the complete In one embodiment, a client th advertisement may be an XML privileges.

In one embodiment, the distributed computing environment may provide a mechanism by which a client may negotiate capabilities with services. In one embodiment, the client may negotiate its capabilities to the service.

The service may then customize results based on the parameters negotiated with the client. For example, a client that a resolution of 160x200 may negotiate these parameters to the service, thus allowing ts for the client. is capable of one bit display at the service to customize result

that may allow clients to negotiate how a service is to return results of a service invocation. In one embodiment, during a capability credential request, a means by which to choose one of the results return methods may be conveyed to the The following is included as an example of an XML capabilities message and is not intended to be limiting in any way: <type name="Capabilities"> <element name="display"type="string"/> <element name="memory"type="string"/> <element name="mime"type="string"/> </type> The distributed computing environment may include a mechanism generate a custom service advertisement that may convey to the client the results Il as the service interface. service. The service may then mechanism to be used, as we

In one embodiment, the distributed computing environment may include a mechanism for tracking service discovery

the string or XML document is required to be returned in the response message. In one embodiment, the string or XML or XML document to pass custom search information between a client and service that may only be understood by the embodiment, this mechanism may also provide to clients a method for choosing services to access by using the string document may include additional information inserted in or appended to the string or document when returned in the of a request message is also returned in the response message. In one embodiment, search requests and responses to the requests. In one embodiment, search request and response messages may include a field that may be used to include a string or an XML document. In one embodiment, the string or XML response message. In one embodiment, this mechanism may be used in debugging complex systems. In one document included in the field client and service.

matching a component (for example, a service) specification interface with a requested interface. For example, a client exact specification of all aspects of the interface, thus providing a nearest match (fuzzy) (which may be a service) may desire a service that meets a set of interface requirements. Each component may have a requestor's interface requirements to be located. The specification interface matching mechanism may also allow for"fuzzy"matching of interface requirements. In other words, the mechanism may allow Matching Component (Service) Interfaces The distributed computing environment may provide a mechanism for a description of the interface to which it conforms. The specification interface matching mechanism may allow a component that best matches matching without requiring the mechanism.

In one embodiment, the specification interface matching mechanism may be implemented as a multi-level, subclassing model rather than requiring specification at a single interface level.

XSDL may provide a human-interpretable language for describing the interface, simplifying activities requiring human In one embodiment, a component may use an XML Schema Definition Language (XSDL) to describe its interface. intervention such as debugging. In one embodiment, the interface description may be provided as part of an service advertisement) as described elsewhere in this document. advertisement (for example, a

subclass-specific information may not be examined in this phase. Thus, the search may be performed generically. The identified components may be searched at the next (subclass) level. The search may become specific to the subclass subclasses until one or more components is determined which may provide the nearest and may be performed by interpreting the subclass information included in the interface description. The search may the components. In the search process, the class type hierarchy may be examined to determine if a given class is a The interface descriptions may include subclass descriptions describing more specifically the interfaces provided by component'interface descriptions. One or more components matching the basic desired interface may be identified. subclass of the search type. In one embodiment, subclasses may inherit properties of the base class, and thus the Using the specification interface matching mechanism, a basic desired interface may be compared to a set of match to the requestor's desired interface. continue through one or more

components that implement similar interfaces. In one embodiment, the interface matching mechanism may provide the In one embodiment, an interface matching mechanism may provide the ability to distinguish among two or more ability to distinguish among different revisions of the same component.

interface description and/or the component information may be used to differentiate among different implementations In one embodiment, a component description may be provided that includes a specification of the interface to which component description may also include information about the component itself. The of a given interface. The component descriptions may include a canonical identifier and version information. The s nart of an advertisement (for examnle a senvice advertisement) as described component revisions to be distinguished. In one embodiment, the component the component conforms. The version information may allow descrintion may he nrovided a ÷

elsewhere in this document.

components with matching canonical identifiers. The selection procedure may use an interface specification version, a In one embodiment, components may be searched for a particular canonical identifier. Two or more components may component implementation specification, a component implementation specification version, other information or a combination of information from the component description to produce a set of one or more components that best be identified with matching canonical identifiers. One or more components may be selected from among the match the requestor's requirements

providers may advertise services in a space 114. Clients 110 may find the advertisements in a space 114 and use the computing environment. Many spaces may exist, each containing XML advertisements that describe services or content. Thus, a space may be a repository of XML advertisements of services and/or XML data, which may be raw the distributed computing environment relies on spaces to provide a rendezvous ices or content to clients. Figure 15 illustrates the basic use of a space 114. Service information from an advertisement to access a service using the XML messaging mechanism of the distributed la, such as results. data or advertisements for dat mechanism that brokers servi Spaces As mentioned above,

A space itself is a service. Like any service, a space has an advertisement, which a client of the space must first obtain in order to be able to run that space service. A space's own advertisement may include an XML schema, a credential or credentials, and a URI which indicate how to access the space. A client may construct a gate from a space service's advertisement in order to access the space. A client of a space may itself be a service provider seeking to advertise in space service. A space's own advertisement may include an XML schema, a credential that space or modify an existing advertisement. Or a client of a space may be an application seeking to access a service or content listed by the space. Thus, spaces may provide catalysts for the interaction between clients and services in the distributed computing environment. A space may be a collection of named advertisements. In one embodiment, naming an advertisement is the process of associating a name string with an advertisement. The association may take place upon storing an advertisement in a space. Removing an advertisement from a space disassociates the name from the advertisement.

distributed computing environment does not dictate the structure of a space. That is, spaces may be structured as, for a single root advertisement that describes the space itself. Additional advertisements of advertisements or a graph of related advertisements (e. g. commercial database) may be added to a space. An advertisement's name may locate the advertisement within the space, including specifying any necessary graphing information such as a hierarchy of names. In a preferred embodiment, the example, a flat un-related set A space may be created with

Since, in a preferred embodiment, the distributed computing environment does not dictate how a space actually stores its content, spaces may be tailored to fit on More advanced spaces may be implemented on large severs employing large small devices, such as PDAs. commercial databases.

functionality of the service. The XML schema may define the client-service interface. Together, the URI and the XML specified in an advertisement may indicate how to address and access the service. Both the URI and schema may be computing environment. An advertisement may specify a URI for a service. In some embodiments, the URI may allow for the service to be accessible over the Internet. An advertisement may also include an XML schema for the service. mechanism for addressing and accessing services and/or content within the distributed As mentioned above, a space may contain advertisements for services in the distributed computing environment. An The XML schema may specify a set of messages that clients of the service may send to the service to invoke advertisement may provide a

.

distributed computing environment may be published as an advertisement in a space. Clients may discover a space sement in a space. Thus, a mechanism for addressing and accessing a service in a and then lookup individual advertisement for services or content. provided in XML as an adverti

documents, may include a series of hierarchically arranged elements 502. Each element 502 may include its data or additional elements. An element may also have attributes 504. Attributes may be name-value string pairs. Attributes Figure 16 illustrates advertisement structure according to one embodiment. An advertisement 500, like other XML may store meta-data, which may facilitate describing the data within the element.

space. The creator of an advertisement may construct it in a variety of ways, including using an XML editor. Access to In some embodiments, an advertisement may exist in different distinct states. One such state may be a drafted state. In one embodiment, advertisements may initially be constructed in a drafted state that exists outside the bounds of a elements and attributes in the drafted state may be at the raw data and meta-data levels using any suitable means. Typically, events are not produced for changes made to advertisements in the drafted state.

Therefore, the creator of the advertisement may be free to add, change, or delete elements as well as to achieve the publish the advertisement for the rest of the distributed computing environment to see. desired attribute set, and then

published state when inserted into a space. Once the advertisement is in a space, interested clients, and services may locate it, e. g. using its name and ! or its elements as search criteria. For example, search criteria may be specified as Published advertisements may represent"on-line"services ready for clients to use. The message address (URI) of the In one embodiment, another possible state for advertisements is a published state. Advertisements may move to the an XML template document that may be compared (e. g. by the space service) with the advertisements in the space. service may be stored as an element in the advertisement. Advertisements that are removed from the space may transition back to the drafted state where they may be discarded or held. Removal may generate an event so interested listeners may be made aware of the change. Message gates are typically created from published advertisements In one embodiment, yet another possible state for advertisements is a persistent archived state. An archival procedure may turn a live published advertisement into a stream of bytes that may be persistently stored for later reconstruction. Archived advertisements may be sent (e. g. in their raw XML form) from the space to an archival service. The URI for an advertisement's archival service may be stored as an element in the advertisement. XML may provide a format for implementation. The process of making a published advertisement persistent may prepare the advertisement for the storing and retrieving advertisements and representing the state of advertisement elements sufficient to reconstruct the advertisement object (s). Advertisements may be stored in other formats as well, depending on archival service persistent archived state. Persistent advertisements may be stored (e. g. by an archival service) for future use in a persistent storage location such as a file or a database. A space through the archival procedure may enable advertisements to be stored, however the space does not necessarily play a role in how persisted advertisement entries are actually stored. How persisted advertisements are stored may be determined by the advertisement's events are generated on behalf of archived advertisements. archival service. Typically, no

Also, changes may not be allowed for advertisements in the persistent archived state.

the advertisement to "fault-in" from its persistent backing store on demand. This feature may allow advertisements to be store a shadow version of the advertisement. Access to an archived service may cause Advertisements may be archived and removed or just archived. If an advertisement is archived without removing it Directory Access Protocol) entries for example, on demand. from the space, the space will filled, from LDAP (Lightweight •

lifetime. First, an advertisement may be constructed, as indicated at 1. During construction, the advertisement is in the drafted state. Then, the advertisement may be inserted as a published parent. The advertisement is in the published state after being inserted in a space. An event Figure 17 illustrates one example of advertisement state transitions that an advertisement may undergo during its generated when the advertisement is inserted in the space. (e. g. AdvInsertEvent) may be

which may transition the advertisement to the persistent archived state. An advertisement may also be published from the persistent archive state, as indicated at 4. An advertisement may be removed from a space and transition back to at 5. An event (e. g. AdvRemoveEvent) may be generated when the advertisement is Events are more fully discussed below. The advertisement may be archived and made persistent, as indicated at 3, the drafted state, as indicated In one embodiment, the archived, persistent state is not used. In, this embodiment, state changes 3 and 4 also are not advertisement is either in the drafted state or in the published state. used. In this embodiment, an

Advertisements stored in a space may have the following standardized elements and/or attributes: version (may be an element), creation date (may be an attribute), modification date (may be an attribute), implementation service URI (may be an element), and/or persistence archival service URI (may be an element).

A space itself is typically a service. A space service may provide the ability to search for advertisements in the space, which may include searching the space by type of advertisements. A space service may also provide facilities to read facilities to navigate space relationship graph by position; read, write or take advertisement elements; read, write or take advertisement attributes; and subscribe for advertisement event notification messages. advertisements, write (publish) advertisements, and take (remove) advertisements. A space may also provide the ability to subscribe for space event notification messages. Some spaces may provide extended facilities, such as

message schema. From the message schema, space address, and authentication credential, a client message gate in more detail below. A space's capabilities are embodied in a space advertisement's space and its facilities. may be created to access the Space facilities are described

Spaces and all advertisements within a space may be addressed using URIs. In one embodiment, space and advertisement names may follow URL naming conventions. The use of URIs, e. g. URLs, for addressing spaces may le throughout the Internet, in some embodiments. allow spaces to be addressab.

advertisement in a space. Pathnames may be either absolute or relative. Absolute pathnames name the space as well name the protocol that may be used to move messages between clients and the space (reliable or un-reliable sockets, service advertisement for the space. The URI may include a protocol, host, port number, and name. The protocol may for example). The host and port number may be protocol dependent IDs. The name may be the space name followed characters or sequences of characters. Pathnames to elements and attributes may also be specified using a URI. In pathnames are relative a designated advertisement within an assumed space. In one names may be appended to the pathname of an advertisement; such as: http://java. (a space service) may be specified using a URI which may have been received in a by advertisement, element and/or attribute name. In one embodiment, a pathname may be used to identify an , advertisement and space names therefore may not contain any URI reserved governing the construction of pathnames is that of the URI (Uniform Resource ement/element/attribute. The space message recipient as an advertisement. Relative embodiment, the syntax rules Identifier). In that embodiment general, element and attribute sun. com/spacename/advertis

space may be returned. In order for the client to access the documents or services advertised in the space, the client In one embodiment, the distributed computing environment may include a mechanism that allows a client to discover the URI of a space but restricts access to the service advertisement for the space. In one embodiment, rather than returning the full advertisement to the space, the URI of the space and the URI of an authentication service for the the authentication service at the URI provided in the return message. first may authenticate itself to

to the space. When the client receives the authentication credential, the client may attempt to connect to the space to The authentication service may then return an authentication credential that may allow the client partial or full access ice advertisements in the space. access the documents or serv The distributed computing environment may provide a mechanism or mechanisms that may enable a client to connect embodiment, a session lease mechanism may be used to transparently garbage collect the session if the client does connection mechanism may provide for client-space addressing, client authorization, connection may be referred to as a session. In one embodiment, a session may be assigned a unique session identification number (session ID). The session ID may uniquely identify a client-space connection. In one security, leasing, client capabilities determination, and client-space connection management. A client-space to a space. Embodiments of a not renew the lease. using such a connection mechanism according to one embodiment. A client may obtain client's request for access to the space. The client may obtain the authentication credential through the authentication request message may be used to determine the capabilities of the client to use the space. In one embodiment, each the authentication credential for the client and information about the connection lease sending a connection request message. In one embodiment, the connection request message may include the URI an authentication credential. In one embodiment, the space may provide an authentication service in response to a service. When the client receives the authentication credential, the client may initiate a connection to the space by authenticated using the authentication credential. In one embodiment, the information received in the connection the client is requesting. After the space receives the connection request message, the space may validate the , an XML schema may be used to validate the message. The client may then be client of a space may be assigned its own set of capabilities for using the space. The following is an example of message. In one embodiment, address of the space service,

In one embodiment, an access control list (ACL) that may include capability information about one or more clients of the space may be used in client capabilities determination. In one embodiment, the information received in the connection request message may be used to look up the client's capabilities in the ACL

determined, the structure for maintaining the client-space connection may be generated. After authenticating the client and determining the client's capabilities, the connection lease to grant the client may be activation space may be used to store results of services for the client when using the space. In one embodiment, client's capabilities may be used to determine if an activation space is to be created for the client. alternatively a pre-existing activation space may be assigned to, the client-space session. In one embodiment, an A session ID for the connection may be generated. In one embodiment, each client-space connection may be assigned a unique session ID. In one embodiment, an activation space may be created and assigned to, or determined. After the lease is

For example, a client may not have capabilities to access an activation space to store and retrieve results. A message or messages may be sent to the client informing the client that the connection has been established. The message or messages may include the session ID and information about the lease. The client may then use the space including, but not limited to: advertisement lookup, advertisement registering, and advertisement retrieval. In one embodiment,

he connection may remain open until the allocated lease expires or until the client sends a message requesting lease expires. If the lease expires before the client renews the lease, the connection may be dropped, causing the client to cancellation to the space. In one embodiment, the client may be responsible for renewing the lease before the lease lose the connection to the space. In one embodiment, to reconnect, the client may be required to repeat the connection procedure.

the functionality of a space service. However, the listener agent may be implemented on the same device or a different er agent 202 may listen on various network interfaces, and may receive either broadcast use to find a space. A listener agent 202 may be configured associated with one or more spaces to listen for discovery requests or unicast requests (at the URI of the agent) from clients 200a looking for a space (s). The listener agent 202 then responds with the service advertisement (s) or URIs for the service advertisements of the requested space (s). In advertisement are illustrated in Figure 18. For example, a space discovery protocol may In one embodiment, a client of a space may obtain a space's advertisement several different ways. Some of the ways one embodiment, the listener agent is, in general, separate from the space, because its functionality is orthogonal to be provided as part of the distributed computing environment. Space discovery is a protocol a client or service may requests. The discovery listen a client may obtain a space's device as a space service.

discovery protocol from the client's default space in order to discover additional spaces. The discovery protocol may be In one embodiment, the discovery protocol may be a service advertised in a default space. A client may instantiate the pre-registered with a client's default space. Alternatively, the discovery protocol may register itself with the default space by placing an advertisement in that space, e.g., when a client connects to a local network serviced by the discovery service.

In one embodiment, the space discovery protocol may be mapped to underlying device discovery protocols for other platforms, such as SLP, Jini, UPnP, etc. Thus, a client may use the discovery protocol of the distributed computing environment to find services in other environments. A bridge to these other environments may be provided, and advertisements provided to services in these other environments so that clients of the distributed computing may access them. Refer to the Bridging section. environment described herein

For each advertised discovery protocol, the distributed computing environment may create a subsequent results space listener agent may record this information. A device (either a client or service) may use the Multicast Request Protocol keywords of the space), and information that can be used to set up a TCP connection, for example, with each space more than one space manager (or multiple space listings from a listener agent), this information may help the client environment may use the Multicast Announcement Protocol (multicast UDP) to announce themselves on a LAN. A manager to perform operations on the respective space. Since the requesting device may receive responses from (multicast UDP) to initiate discovery of a space manager. In one embodiment, the space managers respond with information indicating the URI of their respective spaces. Alternatively, a listener agent may respond for multiple spaces. The discovery response may also include a short string that labels the each space (e. g. obtained from to hold the results of the discovery protocol. In one embodiment, space services in the distributed computing select which space it wishes to connect to In addition to the multicast discovery described above, the discovery service may also perform discovery using unicast be used regardless of whether the devices participating in the discovery support Java or messaging (e. g. over TCP) that can be used to discover a space manager at a known address on the network (e. g. the Internet, other WAN, LAN, etc). The unicast discovery message may include a request for a space service at a ce advertisement. The multicast and unicast discovery protocols are defined at the known URI to provide its servi message level, and thus may any other particular language. :

may have services that search for additional spaces, such as a service to access the discovery protocol or a service to The discovery protocol may facilitate the proliferation of clients independently of the proliferation of server content that supports those clients within the distributed computing environment. For example, a mobile client may have its initial default space built into its local platform. In addition to local services advertised in the default space, the mobile client access space search engines

messages and their responses that may allow clients to: Broadcast protocol-defined space discovery messages on In one embodiment, the distributed computing environment space discovery protocol may define a set of XML their network interfaces.

Receive from listeners XML messages describing candidate spaces that those listeners represent.

Select one of those discovered spaces as default, without the client needing to know the address of the selected space. Obtain information on the selected space, such as its address, so the client may later find that same space via means outside of the discovery protocol (useful if later the client wants to access a space which is no longer local, but which still is of interest to the client).

which it serves as agent. The network agent may also provide an interface for the device to the distributed computing distributed computing environment, a pre-discovery protocol may used to find an IP network capable agent. The pre-discovery protocol may include the device sending a message on a non-IP network interface requesting a network device and agent is set up, the agent participates in the discovery protocol on IP networks on behalf of the device for In some embodiments, the multicast and unicast discovery protocols may require an IP network. Although these discovery protocols meet the needs of devices that are IP network capable, there are many devices that may not be directly supported by these discovery protocols. To meet the needs of such devices in discovering spaces in the agent. The network agent may set up a connection between itself and the device. Once the connection between environment in general. For example, gates may be constructed in the agent on behalf of the device for running services advertised in discovered spaces. See the Bridging section.

another space. A space is a service, thereforeso, like any other service, it can be advertised in another space. As shown in Figure 18, a client 200b may find an advertisement 206 in a first space 204a for a second space 204b. Space locate spaces in the distributed computing environment is by advertisement of a space in 204b may in turn include advertisements to additional spaces. Because a service (implementing a space) may also act as a client, spaces may exchange advertisements or chain together to provide a federation of spaces, as illustrated in Figure 19. Any number of spaces may be included in the distributed computing environment. The number and topology of spaces may be implementation dependent. For example, spaces implemented on an IP network might each correspond to a different Another way that clients may

A third way a client may locate a space is through running a service 208, as shown in Figure 18. A service 208 may be In one embodiment, spaces within the distributed computing environment may be implemented as Web pages. Each based search tool. An example of such a service is the space look-up service described in conjunction with Figure 4. run which returns as its results the service advertisements of space services. Since service advertisements are XML documents and since the distributed computing environment may include the Internet, service 208 may be a Webdistributed computing environment. The space may include other searchable keywords as well to further define the space. A client may connect to a search service 208 and supply keywords to the search service in the form of XML a keyword that may be searched upon to identify the Web page as a space in the Web page space may include

messages. The search service may receive the keywords from the client and feed the keywords to an Internet search engine, which may be a conventional or third-party search engine. The search service may return the results from the client, either directly as XML messages or by reference to a results space. The results may be the URIs of spaces matching the search request. Internet search engine to the

or through a proxy) to access the selected space. Once the selected space is accessed, the client may look up service The client may then select a space from the search results and construct a gate (by itself Alternatively, the search service may contact spaces identified by the search, obtain the service advertisement for each such space, and return the space service advertisements to the client, either directly as XML messages or by advertisements within that space, which may lead to additional spaces. reference to a results space.

distributed computing environment. A device may have a program that accepts strings of keywords, which may be sent back to the client. Thus, a client may locate spaces through the Internet without having to support a program such as a Web browser. More capable devices may avoid the use of a proxy and initiate an Internet-based search service may be an XML-based Website, and as such may be searched via Internet Web search mechanisms. A space may include Internet searchable keywords. Some devices, such as small client devices, may to a proxy program on a server (e. g. a search service). The proxy may send the strings to a browser-based search parse it into strings (e. g. XML strings) representing each URI for the search results and send the response strings facility (e. g. an internet search facility) to perform the search. The proxy may receive the output of the search and not support an Internet browser. However, such devices may still perform Internet searches for spaces within the As described above, a space

A fourth way a client may locate a space is by obtaining or receiving information about a newly created empty space or a spawned space when an existing space is spawned. An existing space may include an interface for spawning an empty space with the same functionality (e. g. same XML schema) as the space from which it is spawned. Spawning of spaces is further described the advertisement of a space service, that client of the space may run the space service, uses the authentication credential, the XML schema of the space (from space's service advertisement), and the URI of the space (from space's service advertisement) to construct a gate for the space, as indicated at 302. The client of the space may then run the space service by using the gate to send messages to the space service. A first such message The authentication service may be specified in the service advertisement of the space service. The client of the space Note that the client of the space service may be another service (e. g. a service seeking space may first run an authentication service for the space to obtain an authentication credential, as indicated at 300. to advertise in the space). In one embodiment, as illustrated in Figure 20, to run a space service, the client of the Once a client of a space finds as it would any other service. is indicated at 304.

service advertisement of the space service) to authenticate the client, thus establishing its identity, as indicated at 306. The space service may determine the client's capabilities and bind them to the authentication credential, as indicated For embodiments employing authentication, when the space service receives the first message from the client, with the authentication credential embedded, the space service uses the same authentication service (specified in the at 308.

one embodiment, when a client of a space sends a request to the space service, it passes its authentication credential As indicated at 310, a client of a space may run various space facilities by sending messages to the space service. In in that request, so the space service can check the request against the client's specific capabilities.

embodiment, the base-level messages do not impose any relationship graph upon the advertisements. Messages, for being used by most clients, including small devices such as PDAs. It may be desirable example, to traverse a hierarchy of advertisements may be a space extension. Such additional functionality may be Each space is typically a service and may have an XML schema defining the core functionality of the space service. The XML schema may specify the client interface to the space service. In one embodiment, all space services may provide a base-level of space-related messages. The base-level space functionality may be the basic space e schema so that clients of an extended space may still access the space as a base to provide for additional functionality, e. g. for more advanced clients. Extensions to the base-level space may be provided through one or more extended XML space schemas or schema extensions for a space. The extended accomplished by adding more messages to the XML schema that advertises the space. For example, in one functionality that is capable of schemas may include the bas

and a transactional model. A mechanism for supporting persistence, hierarchy, and/or transactions is by extending the In one embodiment, a base space service may provide a transient repository of XML documents (e. g. advertisements persistence of space content, navigation or creation of space structure (e. g. hierarchy), XML schema. Since extended spaces still include the base XML schema, clients may still treat extended spaces as services). However, a base space service in one embodiment may not provide for base spaces, when just the base space functionality is all that is need or all that can be supported. of services, results of running advanced facilities to support

In one embodiment, the base space may be transient. The base space may be acceptable for many purposes. Service providers may register their services in various spaces. In one embodiment, services must continuously renew leases they may often be rebuilt and/or reconfirmed. However, it may be desirable to provide for some persistence in a space. For example, a space that has results may provide some persistence for users that want to be sure that results are not lost for some time. In one embodiment, persistence may be provided for by specifying a space interface where the persistence store. The persistence interface may be specified with extended XML schema for the space defining the client may control which objects in the space are backed by a persistent store and manage the maintenance of that on the publishing of information in the spaces. By this nature, the services advertisements may be transient in that interfaces for persistence.

identified by a string. The base space may not provide any hierarchy for the various so named XML documents in the space. In embodiments where hierarchy support is desired, additional interfaces may be defined (extending the XML In one embodiment, a base space may provide an interface where an XML document may be added to a space and those same documents, without any hierarchy. Interfaces for other space structure may be provided for as well in by position. However, other users may still use the base space interfaces to acces: schema) where the user can specify a hierarchy. Other interfaces may be specified to navigate the hierarchy or navigate a relationship graph extended space schemas. Extended XML space interfaces may also be provided for space transaction models. For example, an extended space four properties of an enterprise-level transaction. ACID stands for Atomicity, Consistency, Isolation, and Durability. Atomicity means that a transaction should be done or undone completely. In the event of a failure, all operations and procedures should be undone, and all data should rollback to its previous state. XML schema may be provided specifying an interface for ACID transactions. ACID is an acronym used to describe

Consistency means that a transaction should transform a system from one consistent state to another consistent state

Isolation means that each transaction should happen independently of other transactions occurring at the same time.

Uurability means that completed transactions should remain permanent, e. g. even during system failure. Other transaction models may also be specified in extended space schemas. Extended space schemas may be XML documents that specify the message interface (e. g. XML messages) for using extended space features, functionality or facilities. A space may have a base schema and multiple extended schemas. This may facilitate provided different levels of service to different clients depending upon the client authentication.

advertisement event notification messages. A space may provide virtually any number of facilities and arrange them in base and extended schemas as desired. In one embodiment, all base spaces must provide for advertisement reading, persistence, structure, and transactions, other space extensions may also be specified as desired. For example, extensions may be provided to manipulate advertisements at the element or attribute level: read, write or take advertisement elements; read, write or take advertisement attributes; and subscribe for writing, taking, and lookup facilities, and space event subscriptions. Besides extensions for space

such embodiment, the rest of the space functionality is not available until this is done. In Various space facilities may be provided. In some embodiments, a facility may be provided for the establishment of a other embodiments, the notion of a session is not provided for, or is optional and/or implementation dependent. session with the space. In one

to add or remove a service advertisement to or from the space. A space facility may also space service may check for uniqueness of an item before allowing the addition of the item. For example, each item be provided for adding or removing an XML document (not an advertisement, but perhaps a result in a space). The added to the space may be associated with a user-specified string that identifies the item and that may be used to Another space facility may be check for the uniqueness of th

XML schema. The client may indicate a particular XML schema, or part of a particular XML, to be searched for within In one embodiment, a client may request a listing, tree or other representation of all services advertised in the space. The look up facility may search by string to match for name, or wildcard, or even database query. The look up facility The user then may scroll or maneuver through the advertisements and select the desired service. A space may also embodiment, a space facility may provide a mechanism to look up a space entry that has been added to the space embodiment, the look-up facility may provide a mechanism to locate a service advertisement matching a particular provide a look-up facility that allows a client to search for a service by providing keywords or string names. In one may return multiple entries from which the client may select one or perform a further narrowing search. In one the space. Thus, a service may be searched for within a space according to its interface functionality.

general-purpose, typed document lookup mechanism. In one embodiment, the lookup mechanism may be based upon XML. The lookup mechanism may allow clients and services to find documents in general, including services through services and clients to find transient documents based upon a typing model such as XML. The mechanism may be a Another space facility that may be provided in the distributed computing environment is a mechanism that allows service advertisements. In one embodiment, a space lookup and response message pair may be used to allow clients and services to find XML documents stored within a network transient document store (space). The space may be a document space used to XML document stored in the space, including service advertisements and device driver advertisements. In one embodiment, a client (which may be another service) may use a discovery mechanism as described elsewhere to find are further described elsewhere herein. The lookup messages may work on any kind of one or more document spaces. Then, the client may use space lookup messages to locate documents stored in the in one embodiment, the documents are XML documents or non-XML documents encapsulated in XML. Spaces store a variety of documents.

•

•

שמפרם.

The distributed computing environment may include a mechanism that allows services and clients to subscribe to and documents to and from a transient XML document repository such as a space. In one embodiment, an event may be ication of XML documents. Events may include the publication of and removal of XML to another XML document. receive events about the publi an XML document that refers

to subscribe for events regarding documents that are added to or removed from a space. In one embodiment, an event subscription may be leased using the leasing mechanisms described elsewhere herein. In one embodiment, a In one embodiment, a space event subscription and response message pair may be used to allow clients and services subscription may be cancelled when the lease is cancelled or expires. In one embodiment, renewing the lease to the subscription may renew a subscription.

In one embodiment, an event subscription message may include an XML schema that may be used as a document matching mechanism. Documents that match the schema may be covered by the subscription. In one embodiment, any document added to a space and that matches the XML schema may generate a space event message.

In one embodiment, a client may register to be notified when a service having a name matching a specified string or a schema matching a specified schema (or schema portion) is added or deleted from the space. available or becomes unavailable, for example. A client may register with an event service to obtain such notification. A space facility may also be provided to which a client may register (or unregister) to obtain notification when something is added to or removed from the space. A space may contain transient content, reflecting services that at added and removed from the space. A mechanism may be provided to notify a client when a service becomes

the space event notification facility may be the same as or similar to that of the service look up facility described above. Thus, a query to register with

Events may be typed. In some embodiments, the event facilities supported by spaces may allow for event listeners to take advantage of, e. g., Java class (or XML types) hierarchies. For example, by listening for AdvElementEvent, the listener will receive events of type AdvElementEvent and all of its sub-classes (XML types). Thus, for this example all events pertaining to element changes (though not advertisement insertion and removal) are received. By way of further example, subscribing to or listening for a top-level event class or type, e. g. SpaceEvent, will result in the reception of all space events. Event class types may be distinguished via, for example, the Java instanceofoperator or the XML typing system.

sub-classes may contain a reference (e. g. URI or URL) to the affected advertisement. AdvElementEvent and its subclasses may be examined for the name of the affected element. The previous element value (URI or URL), may be An event may include a URI to the affected advertisement or element. For example, AdvertisementEvent and all its available, for example, from AdvElementRemoveEvent and AdvElementValueChangeEvent.

A space event type hierarchy for one embodiment is illustrated in Figure 21. Types may be defined in XML and usable in Java or any other suitable object-oriented language such as C++.

initialization done that allows a client to be able to run a service. On embodiment of service instantiation is illustrated in as indicated at 320. The client may use the various facilities, such as the look up facility, provided by the space to look Figure 22. To instantiate a service, a client may first select one of the service advertisements published in the space, for a client to instantiate a service advertised in the space. Service instantiation is the up the various advertisements in the space. Then the client may request the space to instantiate the service, as A space may provide a facility indicated at 322.

instantiate the requested service, as indicated at 324. The space service may perform this verification by examining an authentication credential is the credential the client received when it established a session with the space service. The space service may verify if the client is allowed to In one embodiment, service instantiation may include the following actions. After the client requests the space service instantiate the requested service according to the client's authentication credential and capabilities indicated for that to instantiate the selected service, as indicated at 322, the space service may then verify the client is allowed to and Security section herein. client. See the Authentication

Authentication and Security section herein for more information on an authentication service. Next, as indicated at 332, Assuming the client is authorized, the space service may also obtain a lease on the service advertisement for the client with the lease request time specified by the client, as indicated at 326. Leases are further discussed below. The the client may construct a gate for the service (for example, using the authentication credential and the XML schema environment. The client may then run the service using the constructed gate and XML messaging. The service may advertisement of the service, as indicated at 328. In one embodiment, the client may run an authentication service and service URI from the advertisement). Refer to the Gates section herein. The above described communication specified in the service advertisement and obtain an authentication credential, as indicated at 330. See the service is performed using the XML messaging of the distributed computing space service may then send a message to the client which includes the allocated lease and the service similarly construct a service gate for XML message communication with the client. between the client and space

service may include a schema which specifies one or more messages usable to invoke functions of the space service. advertisements may include information which is usable to access and execute a corresponding service. The space a client for the purpose of accessing or otherwise using a space.) The space service To summarize, an example use of a space is discussed as follows. A client may access (e. g., connect to) a space may store one or more service advertisements and/or other content in a space, and each of the service service. (A service may act as

The schema and service advertisements may be expressed in an object representation the client may search the one or more service advertisements stored in the space. The instantiation request to the space after selecting the desired service advertisements from the space. A lease may be service to the client. The client may then construct a gate for access to the desired service. The desired service may information such as an XML message (as specified in the schema) to the space service at an Internet address. In obtained for the desired service, and the lease and the selected service advertisement may be sent by the space client may select one of the service advertisements from the space. In one embodiment, the client may send an language such as extensible Markup Language (XML). In accessing the space service, the client may send For example, the schema may specify methods for reading advertisements from the space and publishing be executed on behalf of the client. accessing the space service, advertisements in the space.

be a service to another client) to dynamically create a new space. In one embodiment, as the space from which it is spawned. This facility may be useful for generating (e. g. space service may be the spawning or creation of an empty space. This space facility an interface for spawning an empty space with the same functionality (same XML may allow a client (which may this space facility may include schema or extended schema) Another facility provided by a

t ·

advertise results in the spawned space. The client may pass the spawned space URI and/or authentication credential credential to the client. In some embodiments, once a space is spawned, it may be discovered just like other spaces to the service. Or a service may spawn a space for results and pass the spawned space URI and/or authentication dynamically) spaces for results. For example, a client may spawn a space a request a service to place results or using one or more of the space discovery mechanisms described herein.

be allocated using the same facility used by the original space for storage. Also, a spawned space may share a common service facility with its original (or parent) space. For example, a new URI may be assigned to the new space. facility), new spaces may be created efficiently. For example, in one embodiment, storage for the spawned space may By using a mechanism in which a space may be created via an interface in another space (e. g. a space spawning Thus, a newly spawned space may use the same or some of the same service code as that of the original space. In one embodiment, the new URI may be a redirection to a common space facility shared with the original space.

monitored by a root space service. Old advertisements may be collected and disposed. See, e. g., the Leases section herein for when an advertisement may be considered old. The service implementing the space may be under the control of an administrator. The administrator may set policy in a service dependent manner. Space facilities may also space, and other administrative facilities. For example, the number and age of advertisements may be controlled and Space facilities may also include security administration, for example, to update the various security policies of the include a facility to delete an empty space.

provide support for mobile clients, such as: Assigning and administering temporary network addresses for the client. Certain spaces may include facilities or services to further support the proliferation of certain clients, such as mobile in spaces that a mobile client may discover, e. g. via the discovery protocol, may clients. For example, services

Proxying message passing for the client.

Providing search facilities for additional spaces. For example, a service may allow a client to specify keywords through a simple interface. The service then uses the keywords in conjunction with Web search engines to search for spaces on the Web, as further described herein. In other embodiments, a search service may constrain clients to searching only a few supported spaces within the distributed computing environment.

of running a service. Some services may generate a large amount of results. By using a space to store the results from results from a service run by a client. Using a space for results may allow a small client to receive in pieces the results As mentioned earlier (see Figure 9 and accompanying text), spaces may provide a convenient mechanism for storing a service, clients that do not have the resources to receive the full results at once may still use the service. Moreover, by using a space to store results, a service running on a fast busy server may be freed from interacting directly with a slow client when returning large results. Thus, the service may be freed sooner for use by other clients.

A space may provide a convenient mechanism for accessing a result by different clients and/or at different times. For using another client that can access it. For example, the result could be stock quote information, showing the current example, a client may not be able to use the entire result, but a user may want to access the rest of the result later a PDA), and showing a chart of stock prices (accessible by a laptop later). price of a stock (accessible by

service into another service, without the necessity of downloading the result first. For example, in the case of the stock quote information above, the PDA could feed the chart into another service, which prints the chart, without the PDA Also, using a space in the distributed computing environment for results may allow a client to feed the result of one itself. Thus, a results space may provide a mechanism for a client to pass to another having to download the chart client or service without the client having to handle or receive the results.

decision to use a space for results may be mandated by the service, mandated by the advertisement. In one embodiment, either the client or the service may spawn a new space for results or use an client, and/or requested by the client. A service may suggest the use of a space for its results, e. g., in its existing space for results. See the description herein regarding spawning spaces. In different embodiments, the

example, the client and the service may agree to call the result some particular name, and then the client may register message may be sent to client, referencing the result (e. g. including a URI to the result or to an advertisement for the In one embodiment, the use of a space for results does not necessarily mean that the service must put all results in that space. There may be alternatives for any result a service generates. For example, part or all of the result may be facility such as described above) to receive an event when a result so named is added sent in-line in a message to the client. Alternatively, the result may be put in the space, and then a notification result). Another option may be to put the result in the space, with notification via an event from the space. For ion above on event notification. with the space (using a space to the space. See the descript

be returned to the client by reference with the actual results (or advertisement for the actual results) put in a space and Thus, several different mechanisms may be employed within the distributed computing environment for a service to return results to a client. The actual results may be returned to the client by value in an XML message, or results may the client receiving a message referencing the results in the space. Moreover, results, or results advertisements, may be placed in a space and the client notified by event.

display service that may display the results for the original client. This display service may be on or associated with the ing results may be for the client to specify another service for the results to be fed to. For in order to run the other service and pass it the results. In this example, the result-producing service may be a client of of an advertisement for the other service so that the result-producing service may generate a gate to the other service messaging) to send the results to another service for further processing. This may involve the client indicating the URI service that will produce results, the client may instruct that service (e. g. through XML the other service. In some embodiments, the client may send the schema or a pre-constructed gate to the resultproducing service to access the service for further processing. An example of a service for further processing is a Another mechanism for handli example, when a client runs a same device as the client.

Result spaces and method gates may allow the distributed computing environment to provide a simple remote method thin clients with minimal memory footprints and minimal bandwidth, because it need not returned to a result space, and only if desired (and if they can reside on the client) are the actual objects downloaded across the network to the client as in conventional remote method invocation techniques. Instead, results may be have the adverse side effects of huge program objects (along with needed classes) being returned (necessarily) invocation that is practical for to the client.

follows (refer also to the description of method gates in the Gates section herein). An object may be advertised (e. g. as a service or as part of a service) in a space. The advertisement includes a reference that contains the URI (e. g. The mechanism by which the distributed computing environment may provide for remote method invocation is as other access parameters, such as security credentials and XML schema. URL) of the object, along with

service) itself may have a wrapper method that takes the method parameters and creates a request XML message to invoke a method of the object. The XML message is sent to a service gate that invokes the actual method on'the A client may have or may construct a client method gate for the object, which for every method of the object (or

hod returns a result object, the service gate may post the result object in a results space, the client with a reference to the result object. service object. When that metl and may return a message to

Instantiation may return the object URI to the client, and the client and service gates may be dynamically created when Thus, for a client to invoke a remote method, the client first sends a message to instantiate an object (e. g. service), such as described above. In one embodiment, instantiation of an object may include the creation or spawning of a a client requests instantiation. In some embodiments, a results space may already exist and be advertised by the object (service). Some part or all of the gates may also have been pre-constructed or reused. results space. In another embodiment, results space creation may be independent from the object instantiation.

Once a client has initiated an object, a local call of the appropriate client method gate will affect a remote call to the client gate is called. Note that such returned objects may already be instantiated. In some embodiments, the client environment may be recursive, with object references returned to the client, instead of the objects itself, when the actual remote object, as described above. The remote method invocation approach of the distributed computing load an entire object itself, rather than just remotely invoke it. may make a decision to downl

document. The method may return a child gate (or the schema, URI and credentials for the client to construct a child gate) for the references the references themselves. The client may then access the references through the A method or service invoked as described above may generate a child gate that is associated with the results also be a method gate. child gate. The child gate may As described above, this remote method invocation provided by the distributed computing environment allows the real example). The results space may be temporary. The results space may act as a query results cache. The results cache may be patrolled by server software (garbage collector) that cleans-up old result areas. Distributed garbage collection may be employed, as result spaces may fill up until they are destroyed by a client indicating it no longer result object (s) to be stored in a service results space (which also may be created dynamically, by a servlet for needs the space, or by an administrator on a server setting appropriate limits.

may provide at least one default space so clients can find an initial set of advertisements. A device may have a default locally on that device, and they may provide system software that enables or facilitates the device's participation in the space that exists locally, with a built-in pre-constructed gate. The services advertised in that default space may exist Turning now to Figure 23, an illustration of a default space 350 is provided. The distributed computing environment distributed computing environment.

One service in the default space may run the space discovery protocol described above to find external spaces. Also, The default space 350 may include one or more mechanisms 352 to locate external spaces, as shown in Figure 23. external spaces may be advertised in the default space. Additionally, a service (e. g. a search engine or a proxy service to a search engine) may be advertised in the default space that determines or finds external spaces. Each space may be analogous to a file system mount point. Thus, the distributed computing environment may provide searchable, dynamic mount points to services. A default space may be a client's initial mount point to the distributed computing environment.

that may exist on the device, a client execution environment for the distributed computing environment may be provided. A device's local services and default space service may have built-in pre-constructed gates. One of the built-A default space or access to a default space may be built in to a device. Through the default space and local services space may be a service to run the discovery protocol so that the client may locate in services listed in the default

E,

service may provide a simple user interface that allows a client to entire strings (e. g. keyword for space searches), view or browse result references (e. g. space listings, or service listings within a space), select items (e. g. to chose environment for clients that allows the client user to browse spaces, select, and then instantiate services. Such a ces. A default space may include a built-in sérvice that provides an execution and instantiate a service), etc. additional (e. g. external) spa

service advertisement within the LAN space, for example, by renewing its lease or updating the printer's XML schema, printer, may have a built-in default service that finds (perhaps through the discovery protocol) a space on a local area rvice to manage advertising itself in various spaces. For example, a device, such as a network and adds an advertisement for the printer service to that space. This service may also maintain the printer a service may also include a default space and may include a built-in service in the Devices that primarily provide default space that allows a se

service that provides printing functionality on the printer device. Also, some devices may connection requests. For example, a printer device with a printer service that is available on a proximity basis may not only maintain advertisements for their services in a certain vicinity or local network. Such a device may not desire to establishes a connection with the printer device (for example, a user with a laptop running a client desires to print a a service, the overhead of finding a space to advertise its service and maintain that advertisement is undesirable. In one embodiment, rather than searching for and maintaining a space or spaces to publish service advertisements, services on some devices may transmit their advertisements in response to a space (on the device or external to the device). Instead, when another device may transmit the service advertisement to provide the XML service schema for support or may not have access to transports for broader accessibility For some devices that provide document), the printer service connecting to and running the maintain an advertisement in

may provide advertisements of their functionality upon request. These advertisements may not be broadly accessible. carry a signal through atmospheric space rather than along a wire. In most wireless systems, radio frequency (RF) or Typically, in proximity-based wireless systems, a device comprising a transceiver must advertisements in a space is a device whose functionality is available on a proximity basis. Proximity-based services "wireless" may refer to a communications, monitoring, or control system in which electromagnetic or acoustic waves One example of a service device in which it may be desirable for the device to avoid or limit maintaining service services may be provided in a wireless communications system. The term another device to establish and maintain a communications channel. For example, proximity-based be within range (proximity) of infrared (IR) waves are used

A device may be a hub to connect other devices to a wireless Local Area Network (LAN).

IrDA point-to-point communications environment. In a proximity computing environment, the proximity mechanism may services without using lookup spaces as rendezvous points. An example of a proximity computing environment is an space that allows clients to rendezvous with services. In a proximity computing environment, one embodiment of the le service for the client. For example, in an IrDA environment, the client device may be As mentioned, embodiments of the distributed computing environment may provide a mechanism using a lookup distributed computing environment may provide a service discovery mechanism that clients may use to discover e including the service (s) that the client desires to use. find the "physical" location of th physically pointed at the devic

example, a PDA client device may establish a proximity connection to a printer device; the client may "know" to request than sending a lookup request to a lookup space to look for service advertisements. Since the client device may have The proximity service discovery mechanism may enable the client to directly look for service advertisements rather established a proximity connection to the service device, the client may directly request the desired service. For

ם מוווובו אבו אוכב כסונוובכווסוו סנו וווב מנווובו מבאוכב.

may send a proximity service discovery message to the service device. The message proximity connection. In one embodiment, a service on the service device may respond to the proximity service discovery message, and may send to the client the service advertisement that the client may use to connect to the desired service. The proximity service discovery message may also include information that may be used to may include information that may specify a desired service on the service device to which the client device has a authenticate the client and to establish the client's capabilities on the service. Using the received service establish a gate to establish communication with the desired service. In one embodiment, the client advertisement, the client may

their advertisements in a space that is broadly accessible. In one embodiment of a distributed computing environment, proximity-based device, may publish service advertisements received from the non-publishing device. For example, a may publish (or republish) service advertisements received from the proximity-based device in the alternate transport device that establishes a connection with a proximity-based device and that has an alternate transport connection (s) Nevertheless, it may still be desirable to publish advertisements for services that do not desire to or cannot maintain a device that establishes a connection with a device that does not publish its service advertisement (s), such as a environment, thus allowing the proximity-based device service (s) to be used by other devices (through the (re) published service advertisements) which are outside the normal proximity range of the device.

as described above. In one embodiment, the republished service advertisement may be made available as long as the Rules for how the service advertisements are republished may be provided by the local device or by an administrative containing the advertisement to send lease renewal messages to the publishing device. The publishing device may verify its connection to the local device, thus allowing the space to detect when the local device is no longer available. publishing device is disconnected from the local device (for example, moves out of proximity range of the device), the discovery and/or lookup service, or alternatively the service advertisement may not be published by the local service The publishing device may locate a locally published service advertisement for the proximity-based device through a device, but instead may be sent to the publishing device by the local device upon the establishment of a connection service advertisement may be made stale or removed. A lease mechanism may be provided to allow the space device maintaining the advertisement is connected to or able to connect to the local device. For example, if the policy for the local vicinity (e. g, proximity area) or local network.

lookup service for the proximity connections. The publishing device 1404 may then make the services provided by the allow the services provided by the proximity-based devices to be accessed by devices outside the proximity range of devices 1400 and 1404. Proximity connections may be wireless connections or wired LAN connections, for example. the devices, according to one embodiment. A publishing device 1404 may be connected to a network 1412, such as Figure 24 illustrates an example of a device bridging proximity-based devices onto another transport mechanism to connection, or, alternatively, the publishing device may locate the service advertisements using a discovery and/or an Ethernet LAN or the Internet, etc., and may establish and maintain proximity connections 1414 with proximity advertisements 1416 and 1418 in space 1406. Space 1406 may be stored on the publishing device or on other Proximity devices 1400 and 1402 may each send a service advertisement to the publishing device 1404 upon proximity devices available to other devices 1408 and 1410 on the network 1412 by republishing the service devices connected to the LAN (including devices 1408 and 1410).

republished service advertisements 1416 and 1418 for the proximity-based devices, establish gates to communicate to XML message passing methods described previously, and send requests and receive results to the proximity devices. those services (device 1404 may act as a proxy or bridge) on the proximity-based devices 1400 and 1402 using the Publishing device 1404 may act as a bridge between the network 1412 and the proximity connections 1414 to the Other devices on the LAN including devices 1408 and 1410 may then discover space 1406 and look up the

שיטואסיו שישים איוווון - חיווון אייווון

synchronization (scheduling), and to provide an orderly resource clean-up process. Leases may help the overall distributed system manage independent clients and services that may come and go. The various resources that clients obtain from services (including space services) may be leased from those services. In general, not every resource can or needs to be leased. In one embodiment, it is up to the implementation of each particular service to determine which need leasing or instead may require custom leasing protocols. This class of leasing may be left to the service provider. of its resources need to be leased. In particular, resources used by a large amount of clients simultaneously may not Leases Leases may be used in the distributed computing environment to deal with partial failure, resource

Custom protocols, such as those to implement transactions for example, may be built upon the base leasing scheme.

In one embodiment, the base leasing model is a relative time-based model.

that issue leases provide the following lease operations (only allowed by the owner of the lease): (i) renewing a lease functionality of a service is part of that service's XML schema. Thus, a client may use its gate (corresponding to the service's XML schema) to perform lease operations. In one embodiment, all services (parameters specified: lease (e. g. lease ID, lease credential), new lease time requested), and (ii) canceling a lease (parameter specified: lease (e. g. lease ID, lease credential)). In one embodiment, all leases are granted for a particular amount of relative time (duration of lease) that may be negotiated. The requestor may specify a certain clients and provide operations on those leases. In one embodiment, all such lease amount of time (e. g. in seconds), and the grantor may grant the lease for any amount up to that time. In one embodiment, a-1 value may be used to specify an indefinite lease. Services may issue leases to

the service. In one embodiment, the messages may be comprised in an XML schema in also include various leasing messages as described above. Leasing messages may include messages to renew and sent to a leasing URI. An example lease URI: <leaser>servicel ://resourcel</leaser> An advertisement may leasing addresses may be URIs. Standard leasing messages to renew and cancel service resource leases may be advertisement may include one or more leasing addresses. In one embodiment, the In one embodiment, a service cancel leases for resources of the advertisement.

and exclusive resource access. In one embodiment, all service resources either have no exclusive lease (resource is accessed by exactly one client at a time). In one embodiment, all resources begin in the no lease state state signifies there is no current access to the underlying resource, and indicates that there is an interest in the resource remaining in existence and thus available for leasing. The leasing level may be increased decrease the lease isolation level, or may be requested by the service to do so. A response message from the service lease (resource is not leased and therefore available), a shared lease (resource accessed by multiple clients), or an exclusive to shared, exclusive to none, and shared to none. In one embodiment, clients may voluntarily increase or exclusive, or shared to exclusive. Lease isolation levels may also be decreased from The leasing mechanism may provide a mechanism to detect service and client failure. Leases may also provide a may indicate if the isolation level change was accepted. mechanism to provide shared from none to shared, none to

environment doesn't necessarily define the complete composition of the message. In such an embodiment, service Request-response message pairs may be employed to claim, release, and renew a lease. Each message may be tagged using a reserved XML tag to indicate that the message is a leasing message. The distributed computing developers may append custom message content, as long as, the message is tagged as a leasing message.

intervals) by services to detect client failure cases. The interval (at which the renewal message is sent) may be service specific. If a response to the renewal message isn't issued after a specific amount of time (e. g. based on a time noted at same or different isolation level). Renewal messages may be sent (e. g. in regular in the service advertisement), a resource reclamation process may begin within the service, revoking the lease completely. In such an embodiment, renewal messages sent to clients should be handled in a timely fashion. exclusive, (ii) release the resource claim (if requested or if finished with resource), and (iii) respond to renewal In one embodiment, clients that use leased resources may be expected to: (i) claim the resource as shared or messages (with another claim

renewal messages both between a client and an instantiated service and between service provider and a space service. Note that both cases may be considered as the use of renewal messages between a client and a service, since a service provider may be a client to a space's advertisement service. Figure 25 illustrates the use of

Renewal messages may arrive in an"out of band"fashion that may be inconvenient for the client to handle.

cleaner client programming model. In one embodiment, the gate may allow clients to register lease event handlers to method, and/or event gate) may receive renewal messages and automatically respond to them without help from the contain a single, set-aside renewal response message that is automatically sent to the advertisement space service when the gate receives the renewal message. This "out of band" message is handled on behalf of the client, yielding client. The default response to a renewal request is to claim the lease at its current level. Each message gate may handling may complicate the client's logic and increase its complexity. To solve this problem, an automatic lease messages, and thus reduce client complexity. In the automatic lease renewal mechanism, each gate (message, That is, the client cannot predict when a renewal message will be sent from the service. Out of band message renewal mechanism may be implemented to relieve the client of the responsibility of handling the out of band specify different isolation levels in the response message.

credential in messages sent to the service. In one embodiment, the authentication service may have been specified in authentication service used by the client to generate the credential. Thus, the issuing and embedding of credentials in leasing messages may be used to provide a secure leasing environment. For example, the embedding of a credential Standard leasing messages may be defined in the distributed computing environment. In one embodiment, additional leasing messages may be defined by custom leasing models. In one embodiment, every service that issues leases message from the client. In one embodiment, the service may send the credential when first received to the same in a cancel lease message may effectively prohibit anyone but the authorized, credentialed client (and the service embedded credentials for authenticating the sender of the message. In one embodiment, a client may receive the credential (e. g. authentication credential) from an authentication service at service instantiation and embed the the service advertisement for the service. The service may then authenticate the credential when received in a may specify a URI where renew and cancel leasing messages may be sent. Leasing messages may include issuing the lease) from canceling the lease. See the "Authentication and Security" section for more detail. Figure 44 is a flow diagram illustrating a mechanism for leasing resources. In step 2000, a client may request a lease client. In another embodiment, leases may be non-time-based leases that are maintained until cancelled by the client advertisement by the space service on behalf of the client/service. In one embodiment, the client may send a request advertisement for another service and leased to the client by the space service. In one embodiment, the service may on a resource provided by a service. In one embodiment, leases may be time-based, i. e. granted for a period to the message to the service that specified the resource and requests the lease on the resource. In one embodiment, the e on behalf of the client. In one embodiment, the lease request message may be an message may specify a requested lease period. In one embodiment, a client message gate may send the lease or the service. In one embodiment, the service may be a space service, and the resource may be a service may itself be a service, and the resource may be the publishing of a service request message to the servic be a space service, the client

Ą.

XML message.

embodiment, the lease request message may include a requested lease period. In one embodiment, the service may requested lease period may be for an indefinite lease (i. e. the period does not expire). In this embodiment, the client grant the lease for a granted lease period less than or equal to the requested lease period. In one embodiment, the grant the lease on the resource to the client. In one embodiment, the service may receive a lease request message from the client. The service may then grant the lease on the resource. In one or service must cancel the lease, as the lease itself does not expire. In step 2002, the service may

by the service and requested by the client during access of the service. In one embodiment, the lease on the resource response to a request message from a client, instantiate a service from a service advertisement on the space service. may be granted at service instantiation time. In this embodiment, the client may not send a lease request message to The service advertisement provided to the client may be used in establishing an initial lease of resource (s) provided The service may grant the client leases on one or more resources provided by the service when instantiated without resources to the client when instantiated from the service advertisement. For example, a space service may, in the service requesting the lease. In this embodiment, the service may grant an initial lease on the resource or send a message requesting the leases. requiring the client to explicitly

one embodiment, the client may not send a lease renewal response message, and the service might assume, when no based leasing, the lease renewal response message may request that the lease be continued. In one embodiment, the response message is received by the service, that the client no longer requires the lease. For example, the client may In one embodiment, the lease renewal request message may be sent to the client prior have been disconnected from the network. This provides the service with a mechanism for detecting non-used leases client may return a lease renewal response message that instructs the service that the lease is no longer required. In In step 2004, the client may request renewal of the lease. In one embodiment, the service may send a lease renewal response message to the service requesting renewal of the lease. In one embodiment using time-based leasing, the lease renewal response message may include a requested lease period. In another embodiment using non-timeto expiration of a previously granted lease period. The client may respond to the message with a lease renewal and for garbage collecting resources including leasing resources. request message to the client.

In one embodiment, the service may not send a lease renewal request message to the client. In this embodiment, the requested new lease period for the lease of the resource. In one embodiment, the requested lease period may be for an indefinite lease (i. e. the period does not expire). If the client no longer desires the lease, the client may not send client may instead monitor a granted lease period and send a lease renewal message to the service prior to the granted lease period expiring. The lease renewal message may specify the resource that is being leased and a the renewal message, and thus may abandon the lease.

embodiment, the automatic sending may be performed periodically. In one embodiment, the client message gate may In one embodiment, a client message gate may handle lease renewal on behalf of the client process, thus freeing the automatically respond to lease renewal request messages send from the service. In one embodiment, a default lease monitor a currently granted lease period and may send a lease renewal message prior to the currently granted lease client process from responsibility of handling lease maintenance. In one embodiment, the client message gate may request messages. In this embodiment, the client gate may automatically send lease renewal messages. In one receiving the lease renewal request message. In another embodiment, the service may not send lease renewal renewal response message may be compiled into the gate and automatically sent to the service upon the gate period expiring.

In one embodiment, a lease may be at one of several access levels including exclusive access and shared access.

Exclusive access gives the client exclusive rights to the resource, prohibiting other clients from accessing the resource for the duration of the lease. Shared access gives other clients the right to contemporarily lease the same resource as embodiment, the client may hold a lease at one access level, and may send a lease renewal message requesting the the client, that is, to obtain a lease to the resource that overlaps the period of the lease held by the client. In one lease at another access level.

the service may deny the lease renewal request by the client. For example, the client may have exceeded a maximum prior to a previously granted lease period expiring. In one embodiment, the lease may be granted for a granted lease cumulative lease time, or another client may require exclusive lease access to the resource. In one embodiment, the service may send a lease renewal request message sent from the service to the client or may have been sent automatically by the client embodiment, the granted lease period may be less than or equal to the requested lease period. In one embodiment, In step 2006, the service, subsequent to receiving a lease renewal message from the client, the service may grant renewal of the lease of the resource to the client. The lease renewal message may have been sent in response to a message to the client to inform the client if the lease has been renewed. In one embodiment, the message may e lease renewal message may have requested a lease renewal period. In one include the granted lease period. period. In one embodiment, th

The service may cancel the lease in response to receiving a cancel lease request message as described in step 2008. In one embodiment, the service may also cancel the lease if a granted lease period expires without receiving a lease renewal message from the client. The service may also cancel the lease for a variety of other reasons. For example, specify the resource for which the client has a lease to be cancelled. In step 2010, the service may cancel the lease In step 2008, the client may send a message to the service requesting cancellation of the lease. The message may send a message to the client to inform the client if the lease has been cancelled. another client may request exclusive access to the resource, or the resource may become unavailable. In one embodiment, the service may

lease messages sent between the client and service as described in Figure 44. For example, the client may embed the receiving a message, may examine the credential to verify it is from the leaseholder, and thus to verify the authenticity credential, such as an authentication credential described below, may be included in security credential in lease renewal and lease cancel request messages sent to the service. The service, upon security in the leasing mechanism by preventing entities not having the proper client's current lease (s) with the service. In one embodiment, a security of the message. This provides credentials from modifying the

language. In one embodiment, the data representation language may be extensible Markup Language (XML). In one In one embodiment, the lease messages sent between the client and the service may all be in a data representation embodiment, all messages may be sent and received by a service message gate and a client message gate. In one embodiment, the lease messages may be described in an XML message schema provided to the client and used to construct the client message gate. In one embodiment, the XML message schema may have been acquired by the client in a service advertisement, for example, retrieved from a space service.

advertisement in a space, that service obtains a lease on this publishing of its advertisement. Each advertisement may lease, the service may have failed, or it may no longer wish to, or be able to provide the renewed, the space service marks the service advertisement stale, so it does not make service. When the lease is not renewed, the space service marks the service advertisement stale, so it does not make it available to clients. Services renew advertisements by sending a renewal message to the space. The space service service advertised is still being offered. The renewal time may be counted down towards zero by the space service. If contain a time by which the service promises to renew the advertisement. In one embodiment, all time-out values are The leasing mechanism may also provide a mechanism to detect stale advertisements. When a service publishes its specified in seconds. If the service continues to renew its lease, the space is provided some assurance that the the service does not renew its

receives these messages and resets the advertisement renewal time back to its initial value.

In one embodiment, stale advertisements are not automatically deleted. Depending upon the policies of the space, it may choose to delete stale service advertisements that have expired for a reasonably long period of time.

The deletion policy may be set by the space service. The space service may search for state advertisements and either delete them or bring them to the attention of an administrator, for example.

the space. For example, when a client desires to use a service, the space service may request a lease for the client as A space service may use leases to manage the resources its facilities provide to clients (including other services) of part of service instantiation. Service instantiation may be performed to allow a client to run a service.

space service may allow multiple clients to have a lease on use of a service advertisement if the advertisement has an request the space to instantiate the service. The lease acquired during service instantiation is on use of the service To instantiate a service, a client may first select one of the service advertisements published in a space. The client indication it is shared. Otherwise, the space service only allows one client at a time to have a lease on the service advertisement (not the same as the lease on publishing of the service advertisement). It should be noted that the provided by the space to look up advertisements in the space. Then the client may may use the various facilities advertisement (exclusive)

(could be a service) establishes a session with the space, the client may obtain a lease on the session. This allows the removed from a space. The registering client of the space may obtain a lease on this subscription to notifications. This when a client of the space registers to be notified when XML documents (e. g. service advertisements) are added or Another example of how a space service may uses leases to manage the resources its facilities provide to clients is necessary when a client has established an active session with the space. Also, note that when a client of a space lease enables the space service to know whether to continue sending notifications. Such a lease may not be space to manage any resources associated with the session.

based. The lease may be generated when an object is claimed for use. Instead of a time-based mechanism, the claim When another client desires a lease that is incompatible with the current leaseholder's method may accept a callback that notifies the current leaseholder that some other party wishes access the same object (e. g. service). Thus, as an alternative embodiment to time-based leases, instead clients may make claims on lease, the service may send a"callback message"to the client. Upon receiving the callback message, the client (i. e. client gate) may invoke a callback method to decide on a response to the callback message (keep the lease, cancel level to shared, etc.). Once a response has been determined, the client gate sends a response message to the service. This distributed mechanism for managing leases may be implemented using the stributed computing environment may employ a leasing mechanism that is not time-In another embodiment, the di space objects (e. g. services). the lease, change the access XML message-passing layer. For a non-time-based lease embodiment, the distributed computing environment may provide lease support for several levels (or kinds) of access that allow a distributed algorithm to determine lease compatibility. Those levels may include: (i) keep the object in the space (keepInSpace), (ii) read the object in the space (readShared), and (iii) read exclusively the object in the space (readExclusive)

distributed systems based upon an asynchronous message passing model, where data and/or objects may be representation language such as XML. In the distributed computing environment, clients may connect Authentication and Security The distributed computing environment provides for spontaneous and heterogeneous

1 1 1

to services throughout the Internet, for example. The distributed computing environment may enable large numbers of may define a protocol that substantially enables interoperability between compliant software components (clients and network devices to work together in a reliable, dynamic, and secure fashion. The distributed computing environment services). In the context of the distributed computing environment, a device may be a networking transport addressable unit: Clients and services may be implemented as Universal Resource Identifier (URI) addressable instances of software or firmware that run on devices.

content, whether it be a page of text, a video or sound clip, an image, software, firmware or other Internet content. The most common form of URI is the Web page address, which is a particular form or subset of URI called a Uniform Resource Locator (URL). A URI typically describes the mechanism used to access the resource, the specific computer many points of content. A URI is a method used to identify any of those points of and the specific name of the resource (typically a file name) on the computer. that the resource is housed in Internet space is inhabited by

Internet, a corporate intranet, a dynamic proximity network, within a single computer, or by other network connection models. The size and complexity of the devices supporting clients and services may range, for example, from a simple lementation issues to be dealt with by the underlying platform, yielding a loosely coupled Clients and services (both may be implemented on devices as software and/or firmware) may be connected over the abstracted, with a common discovery and communication methodology, creating a"black box"effect. This definition supercomputers. In some embodiments, the distance, latency, and implementation of clients and services may be light switch to a complex, highly available server. Example devices include, but are not limited to: PDAs ; cellular phones; notebook, laptop, and more powerful PCs; and more powerful computer systems, up to and including Internet proportions. approach allows software impl system that may be scaled to

Strongly typed data called content (addressed with URIs) Substantially unlimited amount of persistent content storage (e. g. stores), (containing XML and non-XML content, such as that identified by MIME types) Substantially unlimited The distributed computing environment may provide an Internet-centric programming model including WEB and XML amount of transient content memory called spaces (containing XML content) Descriptive XML metadata (data about content representation, dynamic device discovery, and secure device communication that is accessible from a wide abstracted above the CPU level. The programming model may include the following properties: URI addresses range of network devices. The distributed computing environment may include a network- programming model that may be stored in a space to notify interested clients. data) content advertisements

programs Services and clients may run as programs within the distributed computing environment. Services may advertise their capabilities to clients wishing to use the service. Clients may or may not reside within the same network A substantially unlimited number of instructions (embodied as messages) Secure message endpoints (gates) addressed by URIs Data flow support (event messages) to coordinate work flow between distributed software device, and that device's code execution environment may or may not support the Java platform.

addressing scheme. The address may specify the location of the content or endpoint, and may specify the route (or security credential may be used to control what clients are allowed access to the item, as well as which operations Items addressed using URIs also may have an associated security credential. The Using URIs to address content and message endpoints gives the distributed computing environment a powerful to perform on that item. transport protocol) to be used. authorized clients are allowed

The high degree of access provided by the distributed computing environment may be controlled by appropriate

service and vice versa; and a mechanism of describing a service's set of accepted messages to a client and enforcing the message requirements on messages received at the service. The above listed security and authorization features securely identifying the sender to the receiver; a mechanism to check the integrity of messages sent from a client to a may be leveraged in a single, atomic unit of code and data. The atomic unit of code and data may be dynamically created. In one embodiment, once created, the atomic unit of code and data may represent a message endpoint (gate), and may not be altered as to the security and authorization policies implemented during creation. are not limited to: verifying the typing correctness of XML content in a message; stems and methods. Authentication and security in the distributed computing authentication and security sy environment may include, but

A gate may represent the authority to use some or all of a service's capabilities. Each capability may be expressed in be sent to a service. Gates may also be used for failure case detection when a client terms of a message that may leases resources.

Authentication and security may also include a mechanism for verifying that a client attempting to use a service is authorized to use the service; that the space from which the client receives the service advertisement from is authorized to provide the service advertisement; and/or that the service advertisement itself is authorized

guarantee that valid XML messages are sent, and may provide mechanisms enabling a Message passing may be implemented in a messaging layer as the means of communicating requests from clients to services and of the services responding with results to the clients. The messaging layer of the distributed computing language-independent security model. In the messaging layer, a sending message endpoint may be linked to a receiving message endpoint. The two associated message endpoints may provide a secure, atomic, bi-directional request-response message passing between a client and a service. environment may substantially message channel suitable for receiving message endpoint.

also include a service ID token or credential in the advertisement, and may specify in the advertisement an authentication service to be used by both the client and the service. A client may then locate the service advertisement the client. In one embodiment, the client may pass the service ID token or credential from the service advertisement to authentication service specified in the advertisement to obtain an authentication credential for sending in messages to the authentication service, and the authentication service may then use the service token or credential to generate the In embodiments of a distributed computing environment, an advertisement may be published in a space for a service. An advertisement may be an XML document that includes the XML schema and URI of the service. The service may authentication credential for the client. In one embodiment, the client may include a gate factory that receives the te the message gate, and the gate factory may construct the message gate and on the space, and use the advertisement to instantiate a message gate on the client. The client may use the communicate with the authentication service to obtain the authentication credential for the client. necessary information to creat

A corresponding service message gate may be instantiated at the service.

received in the message. By sharing the same authentication service, any of a variety of authentication protocols may be employed, with the details of generating the authentication credentials separated from the client and the service. The client, at some point, sends a first message to the service. In one embodiment, the client message gate may embed the client's authentication credential constructed by the authentication service in the message. When the service receives the message, it may use the same authentication service to verify the authentication credential Thus, a client may use different authentication credential protocols with different services.

allowed to do on the service) upon first receiving the client authentication credential from the service. The capabilities In one embodiment, the authentication service may determine the capabilities of the client (e. g. what the client is

credential in every message sent from the client to the service. The messages may be received by the service message gate and then checked by the authentication service to ensure that the message is from the client and that the capabilities of the client. In another embodiment, the service message gate may the client's identity. Then, the client's message gate may embed the authentication handle capability determination and message checking for capabilities without using the authentication service. the message request is within of the client may be bound to

The client and service message gates may work together to provide a secure and reliable message channel.

re message endpoints that allow the client to run the service by sending and receiving secured, authorized XML messages to and from the service. The gates may serve as secur

services. The protocol used to connect clients with services, and to address content in spaces and stores, may be defined by the messages that can be sent between the clients and services. The use of messages to define a protocol Operations in the distributed computing environment may be embodied as XML messages sent between clients and may enable many different kinds of devices to participate in the protocol. Each device may be free to implement the protocol in a manner best suited to its abilities and role. A service's capabilities may be expressed in terms of the messages the service accepts. A service's message set may be defined using an XML schema. An XML message schema may define each message format using XML typed tags. The tag usage rules may also be defined in the schema. The message schema may be a component of an XML advertisement along with the service's message endpoint (gate) used to receive messages. Extensions (more services by adding messages to the XML message schema. capabilities) may be added to

be limited to using a subset of the service's capabilities. In one embodiment, once a set of capabilities has been given to a client, the client may not change that set without proper authorization. This model of capability definition may allow In the distributed computing environment, authorized clients may be able to use all of a service's capabilities, or may for services levels that run from a base set of capabilities to an extended set.

space to look up advertisements in the space. Then the client may request the space to instantiate the service. Service select one of the service advertisements published in a space. The client may use the various facilities provided by the Service instantiation may be performed to allow a client to run a service. To instantiate a service, a client may first s not limited to, the following steps: 1. Client requests space service to instantiate a instantiation may include, but service.

- 2. Space service verifies client is allowed to instantiate the service.
- the client. Alternatively, the service advertisement may be provided to the client without using the leasing mechanism. ise on the service advertisement for the client with the lease request time specified by 3. Space service obtains a lea
- sage to the client that includes the lease allocated in steps 3, and the service Space service sends a mes advertisement of the service.
- 5. Client runs the authentication service specified in the service advertisement, and obtains an authentication credential.
- 6 Client constructs a client message gate for communicating with the service

In order to provide trust between clients and services in the distributed computing environment, a series of dynamically generated numbers (keys, or tokens) may be used as security or authentication credentials for clients.

-3- 3-··

be used to verify the right of a client to use a service and to verify messages between the client and the service. Each client and service may have a unique credential. One or more credentials may

search. In one embodiment, an authentication credential is an opaque object that must be presented each time a client iment, the authentication credential may be presented by a message gate on behalf of a client in every message sent to a service. No matter what kind of authentication credential is required by a service, by using an authentication service external to the client and the service, the client and the service may not need to be The type of authentication credential needed to use a service may be returned to the client conducting a service aware of the authentication credential structure or of the authentication process. uses a service. In one embod

An authentication credential may also include a transport-specific ticket in addition to the service ticket.

When running a service, depending upon the networking transport specified in the service advertisement, the transport may provide a secure connection. In some cases, if the data link layer is already secure, it may not be necessary to use a secure transport over the already secure data link layer.

credential implementation. Levels of security may include, but are not limited to: 1. None (no message security-credential is empty or no credential) Messages with empty credentials or no credentials may be sufficient when The concept of an authentication credential is abstract enough to allow various levels of security based upon security is enforced by the physical connectivity properties of the transport. For instance, a smart light switch connected to just one light switch controller is secure because the switches are wired in a secure manner.

- ignatures) Signed messages may include a digital signature that enables the service (receiving the message) to verify the origin (client) of the message. 2. Signed messages (digital si
- port may handle this) Encrypted messages add another level of security by scrambling another credential is required to unscramble it. 3. Encrypted messages (trans the message contents so that
- capabilities on a user-by-user basis (e. g. what the user is allowed to do), and may allow for fine-grained access control to services and individual service functions. 4. Capability messages (service functionality and user aware) This level of security may provide for security

Multiple levels of security zones may be used, due to the heavyweight implementation necessary to enforce the higher levels of security (capabilities & encryption). If the message transport supports (or helps support) these security levels, to provide security level bridge services that bridge one level of security to another. the support may be leveraged

services may not send an authentication credential with each message, or may send an As mentioned above, services without any security model may accept empty authentication credentials. For services ate may be built without an authentication credential or with an "empty" authentication ication service is one example of a service that may not restrict access. that do not restrict access, a g credential. The gates for such empty credential. The authent

!

Other services may require a user and password pair.

public key and find the same public key embedded in the decrypted message, and thus verify that the message is from issue a credential that is substantially unforgeable, and that other entities may decrypt (with the appropriate public key) advertisement is authorized may be based upon a public key/private key asymmetric cryptographic mechanism. In this the authorized entity, since only that entity has the private key necessary to encrypt the message. Thus, an entity may an authorized client, for verifying that the service advertisement received by the client is mechanism, an authorized sending entity may embed a public key in a message and encrypt the message including an authorized service advertisement, and/or for verifying that the space from which the client received the service the public key with its private key. An entity receiving the encrypted message may decrypt the message using the Authenticating Service Access using Credentials In some embodiments, a mechanism for verifying that a client to verify messages sent by the entity. attempting to run a service is

entities in the client-service communications model. In one embodiment, a service may build a credential C1 including its public key X1. The service may then encrypt the credential using its private key Y1. In one embodiment, messages in the distributed computing environment may include several layers of encrypted The service may include the encrypted credential CI in a space as part of its service advertisement. public keys for authorizing the

sends the service advertisement and credential C2 to the client. When the client constructs a gate, it has the gate send messages to the service including another credential C3 which includes encrypted credential C2 and the client's public The space then may build a new credential C2 including credential CI and the space's public key X2. The space may space's public key X2 may also be sent with the messages. In one embodiment, the space's public key X2 may be included in C3, and thus encrypted in C3. In this embodiment, the client's public key X3 may be sent unencrypted in the messages. In another embodiment, the client's public key X3 and the space's public key X2 may be sent then encrypt the credential C2 with its private key Y2. When a client requests the service from the space, the space key X3. C3 may be encrypted using the client's private key Y3 prior to sending. The client's public key X3 and the unencrypted in the messages.

After the gates are created, in one embodiment, the client may send a message including encrypted credential C3 and embodiment, public key X2 may be included (unencrypted) in the message external to C3. When the service receives credential C2 against the space's public key X2, thus verifying that the space credential C2 came from an authorized the space's public key X2, and check the public key X2 embedded in the decrypted the message, it may decrypt credential C3 using the received client's public key X3 and check the public key X3 embedded in the decrypted credential C3 against the received public key X3 used to decrypt the message, thus lic key X2 may have been included in the message, external to C3. In yet another obtain the space's public key X2 elsewhere, for example, from the space itself. an authorized client. The service may then decrypt credential C2 (extracted from public key X3 to the service. In one embodiment, the space's public key X2 may be included in C3. In another space. In one embodiment, the space's public key X2 may have been included in credential C3. In another verifying the message is from embodiment, the space's publembodiment, the service may decrypted credential C3) with

Finally, the service may decrypt credential C1 (extracted from decrypted credential C2) with the service's public key XI, and check the decrypted credential to verify that the credential was created by the service (the credential should include the public key of the service)

Various key generation algorithms may be used in the distributed computing environment. The composition of keys may be hidden from both clients and services; thus, the client and service may not care what key generation algorithm is used. ple of a security credential that may be used in the distributed computing environment. for authenticating a request for a service in a computer network. A Kerberos ticket is one exam Kerberos is a secure method

Kerberos lets a user request an encrypted"ticket"from an authentication process that can then be used to request password does not have to pass through the network. particular service. The user's

Mechanisms may be provided by the distributed computing environment to substantially guarantee that messages sent methods for generating the information to embed in the message. In one embodiment, a hash of the message may be computed and sent with the message. Hashing may include the transformation of a string of characters into a usually recompute the hash and check it against the sent hash. If the message has been altered, it is highly unlikely that the shorter fixed-length value or key that represents the original string. Upon receiving the message, the receiver may are not compromised. In one embodiment, a sender may embed a token containing by the receiver to verify that the message has not been altered. There are several The sender may encrypt the hash and send the corresponding public key in the encrypted message to substantially ensure that the hash is not compromised. same hash will be generated. between clients and services information that may be used

embodiment using cyclic redundancy checking, the sender applies an n-bit polynomial to the message and appends they agree, the message has been received successfully. If not, the sender may be notified to resend the message, the resulting cyclic redundancy code (CRC) to the message. The receiver applies the same polynomial (which may In other embodiments, an error detection scheme such as cyclic redundancy checking may be used. Cyclic redundancy checking is a method of checking for errors in data that is transmitted on a communications link. In an also be passed in the message) to the message and compares its result with the result appended by the sender. I

policy at its disposal. In one embodiment, the authentication service administers the authentication policy on behalf of authentication service during the authentication process. In one embodiment, the service may use any authentication Gate factories may also play a role in security, since a gate factory may be"trusted"code. Using a trusted gate factory advertisement) when a client wishes to create a gate. As discussed herein, a client and service token pair may be ensure that gates are trusted code, and that the code is correct with respect to the credential may be referred to as an authentication credential. An authentication credential may be created by an service advertisement. Clients may be required to present a client ID token or credential to the gate factory as a means of authentication. Services may present a service ID token or credential to clients (e. g. through an used to create a third credential that may be used to allow the client to send messages to the service. This third the service, and thus the service does not have to be aware of the particular authentication policy being used. to generate gates may help to

credential in a first message from the client, the service may use the authentication service specified in the service the client, and thus may establish a binding of the authentication credential to the authentication service specified in the service advertisement. This may allow the constructed gate to send the authentication credential with each message to the service. When the service receives the first authentication The client may construct its gate using an authentication credential that the client receives by running an advertisement to authenticate identity of the client.

have a different set of access rights associated with it. For example, a payroll service may allow a different set of clients to initiate payroll than to read the payroll service's results (paychecks). Thus, a client may have to go through a senarate authentication process to obtain access rights to the results, which may include receiving an authentication As previously discussed, some results produced by a service may be advertised in a space and ultimately accessed using a results gate. The results gate may or may not contain the same security credential as the input gate used to generate the results. Because input to a service may be asynchronous from its output (the results), the results may

credential for the results from an authentication service specified in an advertisement for the results.

authenticating clients. A principle of least privilege may be supported by giving clients access to only those capabilities Message gates may offload most security checks from services. Services may focus on providing capability and that are requested (or assigned)

received). When a client requests access to an advertised item (service), the process of gate creation may begin. Security checks may occur when a gate is created and/or when a gate is used (when messages are sent and/or gate factory may work with the service to mutually authenticate each other. During this process, the client

during gate usage. After the service has authenticated the client, the service may determine specific capabilities for the client (e. g. what the client is allowed to do on the service), and associate the capabilities with the client's authentication credential. These specific capabilities may specify what operations the client is allowed to perform on the service. Since the gates may ensure that every message contains the authentication credential, the service can creation time may be extensive, and may minimize the number of checks performed then check each request when it is received against the capabilities of the authenticated client. The checks performed at gate

Gate creation checks may ensure that a client has permission to use some or all of the service capabilities designated password) may also be used to authenticate a client. In some embodiments, a hardware-based physical identification method may be used to authenticate the client. For example, the user may supply a physical identification such as a smart card for identification and authorization. Other mechanisms for authentication may be used in other authentication service such as Kerberos. A challenge-response sequence (such as by the XML message schema. In one embodiment, these checks may be implemented using access control lists (ACLs) in conjunction with an embodiments.

client and service, the gate factory may be aware of which authentication service to use, and the authentication service handles the authentication mechanism and policies. Gate factories may be product and environment dependent, or may even be controlled by a configuration management system. In one embodiment, the degree and method of client isolation may be platform dependent, but is known to the gate factory. In some embodiments, a hardware-based means is used to authenticate the client, the authentication may be invisible to both the may be used to authenticate the client. For example, the user may supply a physical card for identification and authorization. Other mechanisms for authentication may be In one embodiment, whatever physical identification method identification such as a smart used in other embodiments.

Message gates in the distributed computing environment are typically associated with a single client. The gate factory may determine the means of association. The checks performed at message send time may ensure that the proper embodiment, gates may be passed in messages, and may be cloned if a new client wishes to use the gate. The cloning process may perform a new set of creation checks. client is using the gate. In one

first run an authentication service that may be specified in the service advertisement of the space service to obtain an authentication mechanism. Running a space service may include, but is not limited to: 1. The client of the space may Once a client of a space (the client may be another service) fmds the advertisement of a space service, the client of service, as it would any other service. Running a space service may involve using an the space may run the space authentication credential.

2. The client of the space may use the authentication credential, the XML schema of the space (from space's service

auvernsement, and nie orn of the space (norm space's service auvernsement) to construct a gare for the space. In

- run the space service by using the gate to send messages to the service. 3. The client of the space may
- 4. When the space service receives the first message from the client, with the authentication credential embedded, the space service may use the same authentication service used by the client to obtain the authentication credential to authenticate the client, thus establishing the client's identity.
- 5. The space service may then determine the client's capabilities (e. g. what the client is allowed to do on the space service) and bind the capabilities to the authentication credential.

space, only the requestor may be allowed to access the spawned space. For example, the spawned space may be for substantially the same functionality (same XML schema) as the space from which it is spawned. The spawning facility may be useful, among other things, for dynamically generating spaces for results. When a requestor has spawned a As discussed in the Spaces section, a space's facilities may include an interface for spawning an empty space with that the client needs to keep secured. This security may be ensured by: Creating an initial root authentication credential, and initializing the authentication service of the spawned space, so that the authentication service only authenticates the root authentication credential, and so that it returns no other authentication credentials (no other clients of the spawned space allowed initially). storing results from a service

of the spawned space so that the root identity associated with the root authentication credential has access to all facilities of the space, including the security administration facilities. Initializing the security policies

Returning the root authentication credential and the service advertisement of the spawned space to the requestor of the spawned space. The requestor may build a gate to access the spawned space, since it is returned the authentication credential and the spawned space. Such limiting of access to the spawned space may be useful when a client and service are using that spawned space to store results, for example, if the client and service desire to keep the results private. service advertisement of the spawned space. In one embodiment, only the requestor and clients or services that the requestor passes the authentication credential and the spawned space's service advertisement may access the

spawned space's service advertisement may be made available to other clients of the spawned space (the other After running a service, the client may change the authentication policies of the spawned space using a security administration space facility, and other clients or services may then access the spawned space. In addition, the clients may be services) using the discovery protocol or other means.

security and integrity of communications among clients and services during transport. This security may be referred to as"wire security"or"transport security"to distinguish it from the authentication security implemented by the messaging system including gates. Encryption of messages may be provided at the message transport layer of the distributed computing environment. Services that request an encrypted transport may do so by tagging the XML advertisement. The gate factory may then create a gate (or gates) that uses a secure message transport such as those provided by The message transport layer in a distributed computing environment may include mechanisms for protecting the Bluetooth and HTTPS.

HILPS (Secure Hypertext Transfer Protocol) is a viveo protocol that encrypts and decrypts user page requests as well as the pages that are returned by the Web server. HTTPS may use a multi-bit key size (may vary from 40 to 128-bit or more) for a stream encryption algorithm (e. g. RC4), to provide an adequate degree of encryption for. commercial exchange. HTTPS may be used as a transport in the distributed computing environment.

Bluetooth is an emerging peer-to-peer wireless communications standard. The Bluetooth key generation algorithms computing environment. Bluetooth may support encryption keys. may be used in the distributed

dependent, while client, service, and combination keys may be transport independent. Encryption keys are transport

within the distributed computing environment. The authentication service may be executing on the same device as the including authenticating the client and/or service and negotiating the desired level of security and the set of messages that may be passed between the client and service. The authentication service may be a process that is executing service and/or the client, or alternatively the authentication service may be executing on a separate device such as an client in the distributed computing environment may desire a service to perform one or more functions on behalf of the illustrating an authentication service providing an authentication credential to a client according to one embodiment. A setting up a secure messaging channel. An authentication service may perform functions for the client and/or service authentication service may have its own address, for example, a Universal Resource Identifier (URI), through which Figure 26a-An authentication service providing an authentication credential to a client Figure 26a is a flow diagram client. In one embodiment, an authentication service may be provided for use by the client and the service when authentication server. In one embodiment, the authentication service may be an Internet-based service. The the client and/or service may communicate with the authentication service.

advertisement for the service. The client and service sharing an authentication service may help insure that a secure messaging channel may be established between the client and the service, as any of several security and ss of the authentication service may be provided to the client in the service authentication protocols may be used in the messaging channel. In one embodiment, the addre

In one embodiment, a client may present a client identification token or credential to an authentication service. The be sufficiently unforgeable to be used as proof of the client's identity. client token or credential may

can create the authentication credential, the service knows that the client did not forge the authentication credential. In authentication credential that only the authentication service can create. The authentication credential that is returned to the client is then sent in every message by the client to the service. In one embodiment, the client message gate is created by a gate factory, which includes the authentication credential in the message gate, and thus the message gate includes the authentication credential in every message that it sends to the service on behalf of the client. When receiving a message, the service may then check the authentication credential. Since only the authentication service client to ensure the authentication credential is valid, to verify that the client is an authorized client, and to find out the one embodiment, the service may pass the authentication credential to the same authentication service used by the The authentication service may then check the client identification token or credential, and issue to the client an identity of the client.

authenticates a client, the client may access the service. For example, in the case of a space service, a client may All services, including space services and authentication services, may authenticate their clients. Once a service then obtain XML advertisements from the space.

may have a prearranged credential that all clients of the service are to use. In this In one embodiment, a service

embodiment, the authentication may provide the prearranged credential to a requesting client. Any client presenting the service may be approved by the service. the prearranged credential to

service requesting the authentication credential. In one embodiment, the client may send information to a gate creation such as a URI for the authentication service. In one embodiment, the client may send information to the authentication credential to be used in accessing the service. In one embodiment, the service advertisement may include an address In step 1000, the client may request an authentication credential from the authentication service. In one embodiment, locate a service advertisement for the desired service. In one embodiment, the service process, for example, a gate factory, and the gate creation process may access the authentication service to obtain advertisement for the authentication service to be used to obtain an authentication advertisement may include an the client may search for and the authentication credential.

Figure 26b. In step 1004 of Figure 26a, the authentication service may return the authentication credential to the client. be returned to a gate creation process, for example, a gate factory, which may then use that may allow receivers of the messages to authenticate the sender of the message, to verify the message is from an authorized sender, and to verify that the message is a message the sender is allowed to send to the receiver. In one credential may be a data element or data structure that may be embedded in messages in a messaging system and In step 1002, the authentication service may generate an authentication credential for the client. The authentication embodiment of a distributed computing environment, an authentication credential may be unique to the messaging channel set up between a particular client and a particular service. Step 1002 is further illustrated and described in In one embodiment, the authentication credential may be returned directly to the client. In one embodiment, the the authentication credential in generating a gate. authentication credential may

e service advertisement URI to the authentication service, and the authentication service the service token may be a unique identifier for the service in the distributed computing environment. For example, the on step 1002 of Figure 26a and illustrating an authentication service generating an authentication credential according service. In one embodiment, the client may receive the service token in the service advertisement, and the client may the client token may be a unique identifier for the client in the distributed computing environment. In one embodiment, service generating an authentication credential Figure 26b is a flow diagram expanding service token. In another embodiment, the authentication service may obtain only a client token. In one embodiment, public keys from a public/private key encryption mechanism may be used as unique identifiers for the client and the to one embodiment. In step 1002a, in one embodiment, the authentication service may obtain a client token and a le service token to the authentication service. In another embodiment, the client may from the service advertisement. provide the client token and th provide the client token and th may retrieve the service token Figure 26b-An authentication

its service token to the authentication service. The authentication service may then verify that the client is attempting to ion service may use to authenticate the client and/or to authenticate the service the client to verify the client in step 1002b. In one embodiment, the client may have previously registered its client token with the access a valid service by comparing the received service token to the previously registered service token. Other types authentication service may use the client token and the service token obtained in step 1002a to verify the client and/or service. In another embodiment, only a client token was obtained in step 1002a, and thus only the client token is used of client and service authentication may also be used. For example, the client may provide a digital signature or digital token to verify the client as a valid client. In one embodiment, the client may access the authentication service using a may have previously registered with the authentication service, and may have provided challenge/response mechanism such as a logon account with password and thus may be verified as a valid client. In authentication service, and the authentication service may compare the received client token to the registered client In step 1002b, the authentication service may verify the client and/or the service. In one embodiment, the certificate that the authenticati one embodiment, the service

embodiment, the authentication service may use the client token and the service token in generating the authentication authentication credential. In yet another embodiment, the authentication service may not use an obtained token in the generation of the authentication credential, but may instead use an authentication credential generation algorithm to authentication credential may include an authentication token that only the authentication service can create. In one generate a substantially unforgeable authentication credential. In one embodiment, the authentication service may In step 1002c, the authentication service may generate an authentication credential. In one embodiment, the credential. In another embodiment, the authentication service may use just the client token to generate the combine the service token and client token to create a unique authentication credential.

For example, the service token and client token may be 64-bit values, and the two tokens may be combined to generate a 128-bit authentication credential. Other embodiments may use other methods to generate an authentication credential.

embodiment. In one embodiment, a gate factory may be trusted code on the client for generating gates based on XML service descriptions. In another embodiment, the gate factory may reside on a separate device and may be used by the client go generate gates. Figure 41-Creating a gate Figure 41 is a flow diagram illustrating the creation of a gate for a client according to one The use of the gate factory may ensure that generated gates are trusted code, and that the code is correct with respect to the service advertisement.

authentication service to be used, and the authentication service may be aware of the authentication mechanism and may be used to authenticate a client. In one embodiment, the client authentication and authentication service. In one embodiment, a challenge/response sequence (such as gate creation security checks may be hidden from the client and service, the gate factory may only be aware of the checks that need to be performed during gate usage. Security checks during gate creation may help ensure that a gate creation time may be extensive, and thus may minimize the number of security client has permission to use the set of service capabilities designated in the message schema retrieved from the embodiment, the security checks may be implemented using Access Control Lists service advertisement. In one logon and password account) Security checks performed at (ACLs) in conjunction with an policies.

authentication service and may then provide the authentication credential to the gate factory. In another embodiment, may obtain an authentication credential for the client to use in communicating with a service. In one embodiment, the client may have previously obtained the authentication credential from an the gate factory may obtain the authentication credential from the authentication service. In step 1010, the gate factory

The message schema may describe the set of messages that may be sent to or received factory may also obtain a message schema for the service. In one embodiment, the gate service or to invoke aspects of the service. Messages may also be described that may be sent from the service to the client, such as response messages and event notification messages. In one embodiment, the messages may be XML obtain the message schema. The message schema may describe the set of messages that may be sent to or receive from the service. For example, messages may be described that may be sent from a client to a service to invoke the factory may obtain the message schema from the client. In another embodiment, the gate factory may receive the advertisement to the gate factory, and the gate factory may connect to the service advertisement using the URI to message schema from a service advertisement. For example, the client may supply a URI for the service messages, and the message schema may be an XML message schema. In one embodiment, the gate f

may generate a client message gate. In one embodiment, the gate factory may embed s data in the generated message gate so that the message gate code may access the the authentication credential a In step 1012, the gate factory

one embodiment, a URI for the service may also be embedded in or provided to the nother embodiment, the authentication credential may be stored externally to the authentication credential. In an message gate on the client. In gate by the gate factory. In step 1012, the gate factory may also use the message schema in generating the client message gate. The message The gate factory may compile the message schema into the gate. The message schema may be compiled by the gate schema may be used to define the set of messages that the client may send to the service through the message gate. restricting the client's access to the service. In one embodiment, the authentication service may determine a subset of factory into the gate in an internal form suitable for quick access during the message verification process. Access to a upon the capabilities and/or access rights of the client, a restricted message schema may be provided to the client for the total set of messages that the client may send to the service. One or more levels of access may be provided for a service in the distributed computing environment. One level of access may provide a client of the service with access to all of the request messages in the message schema for the service, and thus to substantially all of the functions particular client using the schema, thus giving the client less than full access to the service. In one embodiment, when the client obtains the service advertisement, for example, from a space, based the service. Thus, the gate factory may compile a restricted message schema into the client message gate, thus provided by the service to clients in the distributed computing environment. service may be restricted for a

message schema, and thus to various subsets of the functionality of the service. In one embodiment, levels of access may also be determined by a client's capabilities. For example a thin client may not be able to download large data Other levels may provide a client of the service with access to various subsets of the request messages in the files, and thus may be restricted from using a message requesting the download of a large data file.

determine the access level of the client. Thus, the gate factory may generate a client message gate that is capable of access level for the client. In one embodiment, the information may include a request for a specific level of access to may provide information about the client to the authentication service to determine an set of messages described in the message schema to the service based upon the the service. In one embodiment, the gate factory may provide the information to the authentication service to capabilities and/or access level of the client. In one embodiment, the client sending a subset of the entire

one embodiment, the client message gate resides on the client. The client may then generate messages and pass the In step 1014, the gate factory has generated the client message gate, and may notify the client that the gate has been generated. In one embodiment, the client message gate is a distinct code module that is accessible by the client. In messages to the client message gate, which may verify the messages and send the messages to the service.

Embodiments of a gate pair mechanism for the client and service to exchange messages is further described in Figures 42c. Embodiments of gate factories are further described elsewhere herein.

A gate comprises code and data, and thus may itself be passed in a message. This provides an alternative method for creating gates on clients and/or services. In one embodiment, a gate passed in a message may be cloned if a new authentication of the new client. A new, unique authentication credential may be generated for the new client and The cloning process performs a new set of gate creation security checks including embedded in the cloned gate. client wishes to use the gate.

Figure 42a-A client sending a message to a service Figure 42a is a flow diagram illustrating a client sending a first message to a service according to one embodiment. In step 1020, the client may send a message to the client message gate may be an XML message. In step 1022, the message gate may

:

authentication credential may have been provided by an authentication service as part of gate construction as embed an authentication credential in the message prior to sending the message. In one embodiment, the described above. In one embodiment, the message gate may verify the data representation language type correctness, syntax, etc. of the message. In one embodiment, the message gate may compare the message to a message template in a data representation language message schema to determine data representation language type correctness of the

service as part of gate construction as described above. In one embodiment, the message gate may locate a message In one embodiment, the message may be an XML message, and the message gate may check the message against an XML message schema. In one embodiment, the message schema may have been provided by an authentication template for the message in the schema and compare the various items or fields in the message to the message template to determine type correctness of the items.

e and a service message gate. In one embodiment, the service message gate may not client by the authentication service may be used to determine the subset of allowed messages the client may send to essage may be a request message received from the client to be sent to the service, message are in the allowed subset of messages and/or service functions the client may send to the service. In one channel with the client. In one embodiment, the communications channel comprises a gate pair. The gate pair may schema to determine if the message is allowed. In one embodiment, an access level to the service provided to the the service. In one embodiment, the first request message may request the service to establish a communications and the message gate may determine if the message and/or the requested service function (s) specified by the embodiment, the message gate may compare the message to the subset of allowed messages in the message exist on the service when the first message is sent to the service. In one embodiment, the first m comprise a client message gat

to the client through the client message gate. Examples of addresses that may be used for message gates include, but specific service URI, thus creating a message channel from the client to the service. In one embodiment, the request message may include an address for the client message gate so that the service may establish a communications link connecting the client to the service. In one embodiment, the client message gate may send the message to a service embodiment, the client message gate may be created for a specific service URI so that all messages are sent to the URI. In one embodiment, the service URI may have been provided to the client in the service advertisement. In one are not limited to: Universal Unique Identifiers (UUIDs) or URIs. The process of a service receiving a first message In step 1024, the client message gate may send the first message to the service over the communications channel from a client is illustrated and described in Figure 42b.

may not exist on the service when the first message is received by the service. In one embodiment, the client message message from a client and using an authentication service to authenticate the message according to one embodiment. In step 1030, the service may receive a first message from the client. In one embodiment, the service message gate gate may send the first message to a URI at the service, and the service may receive the first message from the client a first message from a client, the service may generate a service gate to thus establish and then may generate a service message gate. In one embodiment, a mechanism on the service may be configured e message gate may communicate only with the client message gate and thus with the provided to the service in the first message from the client and may be used in generating the service message gate. a communications channel with the client through the gate pair consisting of the service message gate and the client a message from a client Figure 42b is a flow diagram illustrating a service receiving a message gate. In one embodiment, an address (for example, a UUID or URI) for the client message gate may be to generally receive messages including messages from clients at a URI provided to the client in the service Figure 42b-A service receiving advertisement. Upon receiving In one embodiment, the servic

client associated with the message gate. Thus, in some embodiments, there may be at least one unique service message gate for each client that is currently in communication with the service

one embodiment, the authentication service may be the same authentication service used by the client to generate the authentication credential. In one embodiment, the service message gate may send the authentication credential to the authentication service. message gate may have embedded an authentication credential in the first message sent to the service. In step 1032, the service may send the authentication credential to an authentication service. In As described above, the client

, the authentication service may compare the authentication credential received from the valid. If the verification process fails, the authentication service may notify the service that the authentication credential In step 1034, the authentication service may perform verification of the authentication credential. In one embodiment, the authentication service may include a copy of the authentication credential from the creation of the authentication authentication service may notify the service that the authentication credential has been verified and appears to be service with the copy of the authentication credential. If the authentication credentials match, in step 1036, the credential. In one embodiment appears to be invalid.

authentication service. In one embodiment, the authentication service may notify the service of the access level of the In one embodiment, the authentication service may establish an access level for the client to access the functionality client may be used by the service to determine a subset of request messages as of the service. In one embodiment, the client may have established an access level for the service with the described in the service message schema that the client may send to the service. client. The access level of the

allowed messages the client may send to the service. The service message gate may also include a message schema In step 1038, if the authentication service notified the service that the authentication credential is valid in step 1036, the service may generate a service message gate to pair with the client gate to form a gate pair. The service message instead may update the existing gate with information about the message channel to be established between the client service message gate to communicate with the client. In this embodiment, the service may not create a new gate, but include access level information for the client for verifying that messages received from the client are in the subset of another embodiment, a service message gate may already exist prior to step 1038 that may be used to generate the are in the allowed subset of messages. In one embodiment, the service may create a new service message gate. In comparison with the authentication credential in messages received from the client. The service message gate may for type checking and verifying the syntax of messages received from the client and for use in verifying if messages as a UUID or URI) for the client message gate. The service message gate may also gate may include the authentication credential to embed in messages sent from the service to the client, and for also include an address (such and the service.

In one embodiment, after the service generates the service message gate, the service may send a message to the client. The message may include information to identify the service message gate to the client message gate and thus to establish the communications channel between the client and the service using the message gate pair. In one embodiment, the message may include an address (such as a WID or URI) for the service message gate.

to one embodiment. In one embodiment, after the client message gate and the service message gate are established, messanes the client and service message dates may verify the message by comparing the embedded authentication and service exchanging messages with embedded authentication credential according the client and service may no longer require the services of the authentication service. When sending messages, the client and service message gates may embed the authentication credential in the messages. When receiving Figure 42c-Exchanging messages with embedded authentication credentials Figure 42c is a flow diagram illustrating the general process of a client

credential with the copy of the authentication credential included in the gate.

In step 1040, the sender (client or service) message gate may embed an authentication credential in a message prior to sending the message. In one embodiment, the authentication credential may have been provided by an embodiment, the message may be an XML message. authentication service. In one

For example, the message may be an XML message, and the message gate may include an XML message schema. The sender message gate may locate a message template for the message in the schema and compare the various XML items or fields in the message to the message template to determine type correctness of the items. compare the message to a message template in a message schema to determine type correctness of the message. In one embodiment, the sender message gate may also verify the data representation language type correctness, syntax, etc. of the message prior to sending the message. In one embodiment, the sender message gate may

determine if the requested function (s) specified by the message are in the subset of functions provided to the client by client, the message may not be checked for allowability. In another embodiment, response messages from the service to the client may be checked by the client message gate to insure that the client is authorized to receive the reconnection. lowed. In one embodiment, if the message is a response message from a service to a In one embodiment, the sender message gate may check the allowability of the message. In one embodiment, the the access level the client established with the service through the authentication service. In one embodiment, the message may be a request message received from a client to be sent to a service, and the message gate may message gate may compare the message to a subset of allowed request messages in a message schema to determine if the message is al message.

service) message gate over the communications channel connecting the source (client or service) to the destination In step 1042, the sender (client or service) message gate may then send the message to the destination (client or sender of the message by comparing the embedded authentication credential with the copy of the authentication (client or service). In one embodiment, when receiving the message, the receiver message gates may verify the credential included in the gate

For example, the message gate may pass the completed message to a driver process for a communications channel, perform the encryption. In another embodiment, a process external to the message gate may perform the encryption. and the driver process may perform encryption of the message. In one embodiment, encryption and decryption of In one embodiment, the message may be encrypted before sending. In one embodiment, the message gate may by a transport mechanism (e. g. HTTPS). messages may be performed

embodiment, if the message is encrypted, the message may be decrypted by a process prior to being received by the message gate. In another embodiment, if the message is encrypted, the message gate may decrypt the message. In step 1044, the receiver (client or service) message gate may receive the message sent in step 1042. In one

In step 1046, the receiver message gates may authenticate the sender of the message by comparing the embedded authentication credential with the copy of the authentication credential included in the receiver gate.

services may not require authentication credentials for at least some clients. In some embodiments, some In one embodiment, a client wishing to access a service for which no authentication credential is required for the client may generate a message gate without using an authentication service. In another embodiment, an authentication

authentication credentials. In another embodiment, a null, empty or otherwise generic service may return a null, empty or otherwise generic authentication credential to a client that does not require authentication to use a service. In one embodiment not requiring authentication, the message gates may send be embedded in messages by the message gates. messages without embedding authentication credential may

In one embodiment, the receiver message gate may verify the data representation language type correctness, syntax, etc. of the message upon receiving the message. In one embodiment, the receiver message gate may compare the message to a message template in a message schema to determine type correctness of the message.

For example, the message may be an XML message, and the message gate may include an XML message schema.

The receiver message gate may locate a message template for the message in the schema and compare the various XML items or fields in the message to the message template to determine type correctness of the items.

function (s) specified by the message are in the subset of functions provided to the client by the access level the client compare the message to a subset of allowed request messages in a message schema to determine if the message is established with the service through the authentication service. In one embodiment, the receiver message gate may In one embodiment, the receiver message gate may check the allowability of the message. In one embodiment, the message may be a request message received from a client, and the message gate may determine if the requested allowed

and the receiver may perform message verification. In still yet another embodiment, no another embodiment, the sender may perform message verification. In yet another embodiment, the sender may not In one embodiment, the sender and the receiver may verify the message for type correctness and/or allowability. In verification may be performed. perform message verification,

accepted from the service. In one embodiment, a minimal client message gate may be constructed for the client device some or all of the request message verification prior to sending request messages and the response message verification subsequent to receiving response messages as described above. For example, some simple client devices may include a small set of request messages that may be sent to a service, and a small set of responses that may be Some clients may be too"thin"to support the full functionality of a client message gate. These clients may not perform described above. In another embodiment, a proxy client message gate may be set up on another device that may provide some or all of the message verification, sending, and receiving as described above for the client. that sends request messages and receives response messages without performing the message verification as

message that may be verified by the receiver. The sender may also encrypt this token and/or the entire message using the sender's private key and include in the encrypted message the corresponding public key so that the receiver may of a service or a client, may receive the message. In step 1056, the receiver gate may Figure 43-Checking the integrity of messages Figure 43 is a flow diagram illustrating a mechanism for checking the integrity of messages according to one embodiment. In step 1050, the sender gate, acting on behalf of a client or a service, may embed a token in a message to be sent. This token is separate and distinct from the authentication credential as described above. The token may include information allowing the receiving gate to verify that the message has not been compromised or altered. For example, the sender may compute a hash or checksum of the verify that the token was not changed. In step 1052, the sender gate may send the message. In step 1054, the examine the message, and the embedded token, to verify that the message has not been compromised receiver gate, acting on behaff

generating the token to embed in the message. In one embodiment, a hash of the There are several methods for

message, the receiver may recompute the hash and check it against the sent hash. If the message has been altered, it is highly unlikely that the same hash will be generated. The sender may encrypt the hash and send the corresponding characters into a usually shorter, fixed-length value or key that represents the original string. Upon receiving the nd sent with the message. Hashing may include the transformation of a string of public key in the encrypted message to substantially ensure that the hash is not compromised. message may be computed ar

embodiment using cyclic redundancy checking, the sender applies an n-bit polynomial to the message and appends been received successfully. If not, the sender may be notified to resend the message. the resulting cyclic redundancy code (CRC) to the message. The receiver applies the same polynomial (which may also be passed in the message) to the message and compares its result with the result appended by the sender. If redundancy checking is a method of checking for errors in data that is transmitted on a communications link. In an In other embodiments, an error detection scheme such as cyclic redundancy checking may be used. Cyclic they agree, the message has

Other embodiments may include other methods for generating, embedding and checking tokens for checking messages for errors or malicious tampering

offered on such devices. The distributed computing environment may also leverage existing device discovery protocols environment. The distributed computing environment may include a mechanism to bridge such external devices to the Bridging Devices to the Distributed Network Environment There may be devices, external to the distributed computing distributed computing environment so that clients in the distributed computing environment may access the services environment, which do not support the message passing model implemented by the distributed computing environment. These devices may provide services that may be useful to clients in the distributed computing for discovering such external devices for use in the distributed computing environment.

Many technologies define discovery protocols for publishing and monitoring a network's device composition.

These technologies include, but are not limited to: Jini, SLP, Bluetooth, and UPnP. Furthermore, many I/O buses such leverage device discovery technologies by wrapping their implementations in an API. Leveraging other device discovery protocols and providing a method to bridge to other discovery protocols may allow the distributed computing as LonWorks, USB and 1394 also support dynamic discovery protocols. The distributed computing environment may environment to discover devices or services on a wide variety of network and I/O buses. Device discovery in the distributed computing environment may thus be applicable to a wide range of devices including small devices such as PDAs, even if they do not participate directly in the distributed computing environment. Discovery protocols may be defined at the message level.

specific device discovery protocol. Thus, service advertisements may be published for the services that operate the various devices discovered by the underlying wrapped device discovery protocols. The advertised services thus bridge allow for a discovery agent that discovers devices by a specific device discovery protocol to publish services for those devices in a space in the distributed computing environment. The services present an XML message schema interface to the distributed network environment to clients on the distributed network environment. distributed computing environment that would not otherwise be able to run it. When run, the bridging mechanism may Bluetooth's, in a messaging API for the distributed computing environment. Wrapping may include framing the device to clients in the distributed network environment, and are capable of operating the various devices discovered by the discovery protocol with code and/or data (the API) so that the protocol can be run by clients and/or services in the A bridging mechanism may be provided for "wrapping" one or more specific device discovery protocols, such as devices (or services) external

service advertisements 1206a-1206c in space 1200 to instantiate services on one of the agents 1204 that operates the tributed computing environment. Clients may then access the external devices using the wherein each one of advertisements 1206a-1206c corresponds to a device or service discovered by one of discovery mechanism 1202. When the wrapped device discovery protocols are run, discovery mechanism 1202 may publish service advertisements 1206a-1206c in space 1200, discovery agents 1204 may participate in an external discovery protocol and bridge to the distributed computing Figure 27 illustrates one embodiment of a distributed computing environment with a space 1200. One or more protocols 1204 outside the dist corresponding external device agents 1204 through bridging environment through bridging

to find devices. A service acting as a bridge to these devices may be published in a space and advertised, so clients of computing environment may use discovery agents wrapping device discovery protocols computing environment via another protocol or environment, thus bridging the outside device/service to the distributed computing environment. A client within the distributed computing environment "sees"only the advertised service within service is a service within the distributed computing environment that is able to invoke a device outside the distributed the distributed computing environment may access the services provided by the external devices. The advertised the distributed computing environment and may not even be aware of the outside device/service. Thus, clients of the distributed

In one embodiment, the distributed computing environment may provide a version of a space discovery message protocol, such as the discovery protocol described in the Spaces section, that may be mapped to an underlying external device discovery protocol, including the wrapped device discovery protocols described above

advertisement in that space. For each advertised discovery protocol, a subsequent results space to hold the results of The mapped discovery protocol may register itself or be registered with a space, e. g. a default space, by placing an provided. the discovery protocol may be

store the results (again through the API wrapper) to discovery results space 1226 as one or more advertisements 1227. Alternatively, results of executing discovery service 1220 may be stored to space 1224 or other pre-existing spaces in the distributed computing environment. A similar method as illustrated in Figure 28 may be used to discover advertisement 1225 for the discovery service 1220 may be added 1232 in space 1224. A client or service may locate the discovery service advertisement 1225 on space 1224. When the discovery service 1220 is executed (utilizing the new space 1226 may be created 1234 to store the results of the discovery process. The discovery service 1220 may API wrapper as a bridge between the discovery protocol 1220 and the distributed computing environment 1222) according to one embodiment. The Bluetooth discovery service 1220 may first register 1230 with the distributed Figure 28 illustrates an example of the space discovery protocol mapped to a Bluetooth discovery service 1220 computing environment. The Bluetooth discovery service 1220 may be wrapped in a bridging API, and an devices and other services using other underlying discovery protocols. As mentioned above, there may be devices, external to the distributed network environment, which do not support the may provide a mechanism to bridge the external clients or client devices to the distributed computing environment so may want to use services provided in the distributed computing environment. The distributed computing environment message passing model implemented by the distributed network environment. These devices may have clients that devices may access services in the distributed computing environment. that the clients on the external

computing environment. In one embodiment, an agent may have an XML-enabled back end capable of communicating Agents may be provided that serve as clients in the distributed computing environment to bridge external clients to the distributed computing environment, allowing the external clients to access services published in the distributed computing environment using the message passing model, and a proprietary protocol with services in the distributed

external client. Thus, a client external to the distributed computing environment may locate and access services in the responses from the services, including results data. For example, an external client may use the bridging agent to run the external device) on the front end to interface to the external device, and thus to the distributed computing environment through the bridging agent, and may send requests to the services and receive space discovery in the distributed computing environment, look up advertised services, and invoke services in the distributed computing environment (e. g. a protocol supported by

the dynamic advertisement of Jini services in distributed computing environment spaces, and that also may enable the accessing of a Jini service proxy from clients in the distributed computing environment. In one embodiment, there may distributed computing environment may communicate to services using messages such In one embodiment, the distributed computing environment may provide a bridging mechanism for accessing Jini services from a distributed computing environment client. Since Jini services may require Remote Method Invocation distributed computing environment client. In one embodiment, a connector mechanism may be defined that enables bridging mechanism may be provided to enable the access of a Jini Service by a be Jini services that may not be bridged to the distributed computing environment. (RMI), and since clients in the as XML messages, a protocol

and may register the advertisement in a space in the distributed computing environment. In one embodiment, an agent may register for event notification in the Jini Lookup service, and thus may be informed when a new Jini service is the new services. In one embodiment, when a Jini service is removed, the agent may receive an event notifying of the advertised Jini services and to update the distributed computing environment space with new XML advertisements for may be provided as a service in the distributed computing environment that bridges the For every registered Jini service, the agent may generate an XML advertisement that may correspond to the service services to XML messaging used by distributed computing environment clients. When may perform a lookup on the Jini spaces for Jini services that have a set of attributes. registered. When informed of a new Jini service, the agent may perform a lookup in Jini spaces to locate newly e agent may then remove the XML advertisement for the service from the space. In one embodiment, an agent Jini RMI protocol used by Jini the agent is started, the agent removal of the Jini service. Th

method through an RMI call to a service proxy. If the proxy is not instantiated, the agent may download the proxy code and instantiate a new instance of the proxy object. In one environment, every client connection may have a different message from the client may be converted by the agent into a method call for the proxy. se advertisement in the space and may send valid messages to the agent to access the a Jini service via an XML advertisement in a distributed computing environment space, service. The agent may invoke the proxy service corresponding to the Jini service by invoking the corresponding The result from the method call may be returned to the client as an outgoing message. In one embodiment, to invoke a client may look up the servic proxy-instance. The incoming

the agent may perform initial conversion from XML messages to an RMI method call invocation dynamically. Since, the agent knows the service interface, it may generate the corresponding set of messages that are advertised to the client. advertisements may indicate the location and access method of data for the complex Java types. In one embodiment, In one embodiment, only simple Java types may be used as arguments to an RMI method. If complex Java types are required, then one or more data advertisements may be passed as arguments to the call, where the data

distributed computing environment. Bridging agent 1252 may serve as the go-between between client 1250 and space Figure 29 illustrates bridging a client 1250 external to the distributed computing environment to a space 1254 in the 1254. Bridging agent 1252 may communicate with client 1250 in a communications protocol understandable by the client 1250. Bridging agent 1252 may map the client's communications protocol into the XML messaging protocol necessary to communicate with space 1254 perform the facilities provided by space 1254.

1250's request, may locate and run services on space 1254. For example, client 1250 Bridging agent 1252, at client

handling the results of the service other than directly returning the results to the client 1250 may be used as described above in the section titled Spaces. Bridging agent 1252 thus may act as a service of the external client 1250 (via the external client's protocol) and as a client within the distributed computing environment to bridge a service within the space, and the location of the results may be returned to the client 1250. Client 1250 may then choose to execute service advertisement 1256a, and may send a message (in the client 1250's communications protocol) to bridging represented by service advertisement 1256a, and may return the results of the service to client 1250. Methods of advertisements 1256a-c and return the results to client 1250. Alternatively, the results may be posted in a results 52 may then send the XML request message (s) necessary to execute the service may request a list of all services of a particular type from space 1254. Bridging agent 1252 may locate service distributed computing environment to the external client. agent 1252. Bridging agent 12

bridges client to service. The proxy's main job is to route messages between client and service through the space. The Sometimes, even within the distributed computing environment, clients and services cannot directly communicate with service proxy may be created dynamically. The creation mechanism may be dependent upon space implementation. communicate directly within the distributed computing environment, e. g., because they support different transport or network protocols. However, they both may be able to communicate with a space 552 that supports both protocols. space. In this case, the space service will automatically create a service proxy that Refer to Figure 30 for an illustration of a proxy mechanism. A client 554 and a service 556 may not be able to a proxy 550 to bridge the client 554 to the service 556. each other, only to a common The space service may create

translate conventional Web page requests into messages. Refer also to the description of space search services (and A common form of proxy is a browser proxy. A browser proxy (most commonly implemented as a servlet) may proxies therefore) in the Spaces section herein.

implement an enterprise service is Enterprise JavaBeans. Enterprise JavaBeans (EJB) is an architecture for setting up computing environment may include various enterprise services. Clients in the distributed computing environment may specific application, which is called a container. In Enterprise JavaBeans, there are two types of beans: session beans clients to enterprise services may include a client within the distributed computing environment, a bridge service within enterprise may be a corporation, small business, non-profit institution, government entity, or other kind of organization. An enterprise may utilize an enterprise computing environment for conducting a portion of its business. The enterprise environment to enterprise services. In one embodiment of a distributed computing environment, a method for bridging re generally known as servlets (little server programs). The application or container that desire to use services in the enterprise computing environment. An enterprise service may be based on a number of the distributed computing environment, and an enterprise service within the enterprise environment. The distributed computing environment bridge service serves as a bridge service between the client and the enterprise service. An component is a reusable program building block that may be combined with other components in the same or other computers in a distributed network to form an application. EJB is built on the JavaBeans technology for distributing and entity beans. An entity bean is described as one that, unlike a session bean, has persistence and can retain its original behavior or state. Using EJB, programs may be deployed across substantially all major operating systems. The distributed computing environment may provide a mechanism for bridging clients in the distributed computing architectures, such as three tiered client/server architectures. An example of an architecture that may be used to program components (Beans) to clients in a network. To deploy an EJB Bean or component, it must be part of a program components, written in the Java programming language, that run in the server parts of a enterprise environment using a client/server model. In object-oriented programming and distributed object technology, a runs the servlets is sometimes called an application server. EJB's program components ar

The bridge service interacts with the client via XML message passing to gather input parameters necessary to make requests to the enterprise service outside of the distributed network environment. For example, the bridge service may

the client), so the client does not have to support the architecture of the enterprise service. Multiple distributed network service may then receive results from the enterprise service and may return the results directly to the client (in XML messages) or may place the results in a space in the distributed network environment (e. g. a results space). To the client, the bridge service appears to be the only service (the enterprise service is hidden to architecture that the enterprise service can understand. As an example, if an enterprise ict with the enterprise service to run the enterprise service. This interaction may use an environment clients may use the same bridge service (each using a unique gate pair) to interact with the enterprise by the client just as any other service in the distributed computing environment. The service is implemented with Enterprise JavaBeans (EJB), a bridge service may communicate with the enterprise be looked up and instantiated bridge service then may intera service using EJB. The bridge interprocess communications service

to either the public members of a target object or the members declared by a given class. Once the bridge services are The bridge service or other agent may publish an advertisement for the bridge service (and thus for the enterprise service) in a space in the distributed computing environment. For example, a bridge service or other bridge agent may service advertisements for bridge services to the Beans and publish those advertisements in spaces in the distributed counterparts on objects, within security restrictions. The Reflection API accommodates applications that need access use Java Reflection to examine Beans for services in an enterprise system implemented with EJB, and then create computing environment. Reflection is a method for Java code to discover information about the fields, methods and advertised, clients may access the bridge services (and thus the corresponding enterprise services) similarly to any other advertised services in the distributed network environment, without knowledge of the architecture of the constructors of classes, and to use reflected fields, methods, and constructors to operate on their underlying enterprise service providing th

notebooks displays, etc; printers; speakers; and any other device capable of displaying, audio, or other perceptible format. The methods for displaying results may include, but may return results to a client directly or by reference, and the client may handle the distributed computing environment. Devices that may display results may include, but are not limited to: CRTs on Client Displays There are several methods in which results from a service run by a client may be displayed in a are not limited to: The service computers; LCDs on laptops, results of the service in visual display of the results.

The service may return results to a client directly or by reference, and the client may pass the results to a display service directly or by reference, and the display service may display the results.

The service may directly handle the displaying of the results.

The service may pass the results to a display service directly or by reference, and the display service may display the results. In the last method of displaying results, the client may specify the display service. For example, there may be a display when displaying results, the service invoked by the client becomes a client of the client's service on or associated with the device on which the client resides that the client wishes to use to display the results advertisement of the client's display service. The service may then build a gate that allows it to send messages to the of the service. When the client runs the service, the client may send a message to the service specifying the service display service and sends its results (directly or by reference) for display to that display service. More detail on the client-service relationship, gates, and messaging is included in other sections of this document. client's display service. Thus,

Conventional application models are typically based on predetermined, largely static user interface and/or data

altered without having to download new code, recompile, or re-link the application. Display schemas may be provided for displaying the same results in different formats, for extracting portions of the results for display, and for displaying services, etc) to describe dynamic display objects. Using the dynamic display objects, application behavior may be mechanisms described for advertising services and for specifying XML message schemas for communicating with services in the distributed computing environment may be used to provide a mechanism for applications (clients, מוזע ו סכטוווףוומווטוו, טומומוטיים ויסווסווסווסווסוסוסוס the results on different display Figure 31 illustrates one embodiment of a client 1300 with associated display 1302 and display service 1304 according to one embodiment. An advertisement 1306 for display service 1304 may be registered on space 1308. An one or more messages (1322) to service 1310. The one or more messages may include messages for running service 1310 and for instructing service 1310 to send results to display service 1304 for display, and may specify the location of display service advertisement 1306. The advertisement location may be specified as a Uniform Resource Identifier advertisement 1312 and display service advertisement 1306 may be registered on the same space. Client 1300 may form of XML messages specified in an XML schema received as part of advertisement 1312. Client 1300 may send requests to (and receive results or responses from) service 1310. In one embodiment, the messages may be in the search for and discover (1320) service advertisement 1312 on space 1314, and may then set up a gate to send advertisement 1312 for service 1310 may be registered on space 1314 by service 1310. Alternatively, service

to send requests to (and receive results from) display service 1304. In other embodiments, messages from client 1300 to service 1310 may include the XML schema and other information needed for service 1310 to construct a gate to necessary to interface with display service 1304. Service 1310 may then set up a gate produce displayable results. Service 1310 may retrieve display service advertisement 1306 from space 1308 based upon the location information received from client 1300. The service advertisement may include the XML message The messages from client 1300 to service 1310 may instruct service 1310 to perform one or more operations that display service 1304, or may include a pre-constructed gate to display service 1304. schema and other information

During, or after completing, operations requested by client 1300, service 1310 may send the results of the operations regard, service 1310 may be a client of display service 1304. Display service 1304 may then format and display the to display service 1304 in the manner specified by the schema for display service 1304 (e. g. encapsulated in XML message schema or by reference as parameters for the display service). In this results received from or indicated by service 1310 on display 1302 for the client.

shown). Service 1310 may then send a message to display service 1304 including a reference to the stored results of the operations. In one embodiment, the reference may be in the form of a URI. The display service 1304 may then In some embodiments, service 1310 may post the results of operations to a space such as a results space (not retrieve the results from the space and display the results on display 1302.

services, etc) to describe dynamic display objects. Using the dynamic display objects, application behavior may be mechanisms described for advertising services and for specifying XML message schemas for communicating with services in the distributed computing environment may be used to provide a mechanism for applications (clients, Conventional application models are typically based on predetermined, largely static user interface and/or data characteristics. Changes to conventional applications may require code modification and recompilation. The altered without having to download new code, recompile, or re-link the application. The dynamic display objects may be described in XML schemas. These schemas may be advertised in spaces. These schemas may be referred to as display schemas or presentation schemas. An application (or other services acting on then access the schemas from the service advertisements to display data based upon formatting, data type, and other information stored in the schemas. behalf of the application) may

presentation schema advertisement may include elements describing the data types, formatting specifications, fonts, locations, colors, and any other information used for displaying data for the application on display 1322. There may be multiple presentation schema advertisements for application 1320. For example, there may be one schema for each name="Name"type="string"/> <element name="Address"type="string"/> <element name="City"type="string"/> </element name="State"type="string"/> </type> Figures 32A and 32B illustrate examples of using schemas of dynamic display objects according to one embodiment. In Figure 32A, application 1320 (may be a client, a service, or other application) has been implemented with presentation schema advertisement 1324 stored in space 1326. A /type> The above schema may be changed to the following without requiring an application recompile: <element > <element name="City"type="string"/> <element name="State"type="string"/> a schema containing dynamic display objects: <element shipto"minOccurs="0"/> <type name="TextField"> <element : shipto" minOccurs="Oll/> <type name="TextField"> <element display page in a series of display pages (for example, Web pages on a Web site). The following is an example of name="delivery"type="Space: name="Address"type="string"/ name="delivery"type="Space

advertisements, and URIs to each of the schemas describing a particular display format, etc. Application 1320 may then schema, then schema, the XML document. Application 1320 may then parse the schema, breaking out the elements of the schema into user interface components. The components then may be used to locate, format, and display results data on the appropriate display. The result data may be from running a service or from a results space, for example. Thus, as opposed to having a static or predetermined display, the application 1320 is configured to display results according to a presentation schema that may be dynamically changed without requiring In one embodiment, application 1320 may invoke a discovery and/or lookup service to locate presentation schema advertisements. The discovery and/or lookup service may return an XML document listing one or more a rebuild of the application.

Presentation schemas may be provided for displaying the same results in different formats, for extracting portions of the results for display, and for displaying the results on different display devices.

distributed computing environment. As copies of an application are invoked on one or more devices, each copy of the application or for other applications. The display information may be modified in the central location without requiring In one embodiment, one or more presentation schema advertisements may be stored in one or more spaces in a applications. Thus, a central, persistent store of the display information may be kept for multiple instances of the application may run a search for services to discover advertisements for the presentation schemas used by the the recompilation and/or reinstallation of the applications.

1330, client 1328 may pass a location of presentation schema advertisement 1324 on space 1326 to service 1330. When service 1330 is ready to provide results to client 1328, it may display the results on display 1322 (which may be provided by presentation schema advertisement 1324. To change the way the results are displayed, the XML messages in the presentation schema advertisement 1324 may be modified, or a different presentation schema may In Figure 32B, client 1328 may locate a service advertisement for service 1330 on a space. When invoking service coupled to the device on which client 1328 is running) using the display information from the presentation schema changes at the client 1328 or service 1330. Service 1330 may be a display service. be selected, without requiring

provided by one or more services. Alternatively, a display schema may include information for displaying a variety of results for one or more clients. Thus, client 1328 may use one display schema or a plurality of display schemas. Two A client, application or service may provide a plurality of display schemas for displaying results of various operations

devices with different display capabilities, so two or more display schemas may be provided for supporting the display be provided for formatting and displaying the same results with different fonnats, or on display screen, and another for printing the results. Also, copies of the same application, client or service may run on different displays. For example, one display schema for a set of results may be provided for displaying results on a or more display schemas may requirements of the different d ndling in conventional systems is generally not very efficient, especially for variable sized strings, and may be wasteful of memory space, e. g. as the string is copied and/or moved in memory. This inefficiency in string handling may be particularly problematic in small memory footprint systems such as embedded systems. The systems. Thus, a more efficient method of handling strings in programs executing within small footprint systems such amount of memory, particularly stack space and space for dynamic allocation, may be limited in small footprint as embedded systems is desir String Management String ha

Figure 33A illustrates a typical string representation in the C programming language. In C, a string may be represented by a character pointer 1450 (stringl) containing a memory location (address) of the first character of a string 1452. locations in memory. Characters in C strings are typically 8-bit. The characters in C strings may be any ASCII character. A C string must be terminated by a NULL character. NULL is platform defined as one of the 256 possible 8bit values, but is typically the binary value ÓbO0000000. The string 1452 occupies 13 bytes (12 string characters plus Other characters follow the first character in the string 1452, and are typically stored in consecutive addressable byte the terminating character).

implementations. The strlenO function takes a string pointer as input and returns the length (in bytes) of the string, not including the terminating character. For example, passing the character pointer 1450 to the strlenO function would return the length 12. The strlen () function may be implemented by "walking" the string until the terminating character is An example of a string operation in C is the strien () function, typically provided with standard C library located, counting each character.

copies the string pointed to by the character pointer src (including the terminating character) to the string pointed to by character pointer dest. The strings may not overlap, and the destination string dest must be large enough to receive char *src); char *stmcpy (char *dest, const char *src, size t n); The strcpy () function handled by a strcpy () or a strncpy () C library functions, which are implemented as: String copying in C is typically char *strcpy (char *dest, const

character among the first n bytes of src, the result will not be tenninated. If desired, an instruction may be placed in the code following a strncpy () to add a termination character to the end of the dest string. In the case where the length of src is less than that of n, the remainder of dest will be padded with nulls. The strcpy () and strncpy () functions return a The strncpy () function is similar, except that not more than n bytes of src are copied. Thus, if there is no terminating pointer to the destination string dest

the following parameters: strncpy (string2, string+3, 5); where string2 is character pointer 1454 pointing to the first byte after the terminating character of string 1452, string+3 is character pointer 1450 incremented by 3 bytes, and 5 is the Figure 33B illustrates an example of the results of the strncpy () function on string 1452, when strncpy () is called with have been initialized to the terminating character prior to the copy). Thus, the two strings now occupy (13 + 6) = 19 bytes of memory. If the strcpy () function was applied with character pointer 1450 as the source string, the original character after the five characters copied from string 1 may be set to the terminating character (the character may to be copied from the source location stringl+3 to string2. After copying, the next string 1452 and the resultant new string would occupy (13 * 2) = 26 bytes. number of characters (bytes)

characters of string 1452. Using this string structure, the string's length may be efficiently computed by subtracting the Figure 33C illustrates an efficient method for representing and managing strings in general, and in small footprint systems such as embedded systems in particular. String 1452 is stored in memory as 12 bytes (no terminating character is required). String structure 1460 includes pointers (Address (A) and Address (L)) to the first and last pointer to the first character from the pointer to the last character.

Operations such as string copy operations strcpy () and strncpy () may also be handled more efficiently.

those illustrated in Figure 33C, a new string structure 1462 may be created, and the first and last character pointers may be initialized to point to the respective characters in string 1452. Thus, a portion or all thousands of characters long, the memory saved using the string structures and string methods implemented to take advantage of them may be considerable. This method of handling copies of portions or all of a string may be to be copied to new storage for the string. As strings can be hundreds or even called"substring management,"as it deals with the efficient handling of portions (substrings) of strings. With string structures such as the string 1452 does not have

string structure as illustrated in Figure 33C. Examples of other C string functions include, but are not limited to: strstr (), stroat (), and sprintf (). The string handling structures and methods as described in Figure 33C may be used, along messages) in systems with small memory footprints such as embedded systems. The following is a simple example of an XML schema defining a purchase order: <! DOCTYPE purchase, order SYSTEM"po. dtd"> < purchase, order> < date>22 May 2000</date> <billing. address> < name>John Smith</name> <description>Battery, AA, 4-pack</description> <unitcost>4. 95</unitcost> </item> </items> </purchase.</p> are recorded and processed recursively. String structures as described in regard to Figure 33C may be used to record Other string functions from the standard C string library may be replaced with string functions taking advantage of the of the document processed at each level of recursion. References to various portions number>248</product. number> <description>Decorative Widget, Red, Large</description> <unitcost>19.95</unitcost> order> The hierarchical structure of XML documents may allow them to be processed in a recursive fashion with with the hierarchical structure of XML documents, to provide more efficient handling of XML text (such as XML the various portions. In this manner, the content of specific XML tags (one line in the above example), in one of the XML document processed recursively, may be determined efficiently. successively smaller portions embodiment the smallest unit

Documents with repeated tags in the same scope may also be handled efficiently, as tags within a given scope may be enumerated and processed efficiently.

A recursive method for processing an XML document using string structures similar to those described in Figure 33C structure representing the substring of the entire document string containing the subsection to a processing function representing the entire XML document string and pointing to the first byte and the last for the subsection type. The subsection itself may be broken into another level of subsections represented by string byte in the document string. The method may then locate the next subsection of the document and pass a string structures passed to processing functions for the subsection type. The method may continue in the recursive processing of the XML document subsections until the entire document has been processed may accept a string structure

the subsections for processing. Copying of subsections may be particularly costly in recursive processing, because as Using the string structures with the recursive processing allows the processing to be done without creating copies of anh tha the recursion and deener mare and mare conide of the same data are made. Heina the string structures

ð.

characters such as those used to terminate C strings are not necessary, conserving memory in small footprint devices down to the next level. Other operations, such as determining the length of a subsection, may be performed efficiently using the address information stored in the string structures. Also, by using the address information stored in the string structures. pointers to the first and last bytes in the subsection needs to be created and passed string structure containing the such as embedded devices.

big, requires the JVM reflection API, and is a Java specific object representation. Java deserialization is also slow, big clients with minimal memory footprints and minimal bandwidth. The serialization associated with the Jini RMI is slow, XML representation of Objects As previously mentioned, Jini RMI may not be practical for some clients, such as thin and requires a serialized-object parser. Even Java based thin clients may not be able to accept huge Java objects (along with needed classes) being returned (necessarily) across the network to the client, as required in Jini

environment. A distributed computing environment may include an API layer for facilitating distributed computing. The A more scalable distributed computing mechanism may be provided by embodiments of a distributed computing API layer provides send message and receive message capabilities between clients and services. This messaging API may provide an interface for simple messages in a representation data or meta-data fonnat, such layer may also provide an interface for messages to communicate between objects or to pass objects, such as Java objects. Objects accessible through API layer 102 are represented by a representation data format, such as XML. other meta-data type languages or formats may be used in alternate embodiments. In some embodiments, the API as in the extensible Mark-up Language (XML). Note that while embodiments are described herein employing XML, Thus, an XML representation of an object may be manipulated, as opposed to the object itself.

identifying code and/or data segments of the XML representation, and use information stored in the tags to identify and such fonnat, such as XML. In one embodiment, XML messages are generated by the messaging layer according to calls to the API layer. The messaging layer may provide defined static messages that may be sent between clients and services. Messaging layer may also provide for dynamically generated messages. In one embodiment, an object, sucl as a Java object, may be dynamically converted (compiled) into an XML representation. The object may include code and/or data portions. The object's code and/or data portions may be compiled into code and data segments identified message. Conversely, the messaging layer may receive an XML representation of an object. The object may then be by XML tags in the XML representation. The messaging layer may then send the XML object representation as a The API layer may sit on top of a messaging layer. The messaging layer may be based on a representation data reconstituted (decompiled) from that message. The reconstitution may examine the XML representation for tags ta portions of the object. decompile the code and/or dat

in the distributed computing environment, including space services. Client 1500 employs a gate 1504, which may have been created using an XML schema received from a service advertisement for service 1502, to communicate with a between a client 1500 and a service 1502 according to one embodiment. Service 1502 may be any service supported representation of an Object Figure 34 illustrates a process of moving Java objects corresponding gate 1506 for service 1502 Creating and sending an XML

At some point, client 1500 may need to send Java object 1510 to service 1502. Java object 1510 may reference other objects, which may in turn reference other objects, and so on. Java object 1510 and its referenced objects, the objects they in turn reference, and so on, may be referred to as an object graph.

representation of the object graph. The XML representation of the object graph may be passed as an XML data stream Java object 1510 may be passed to a Java object compilation process 1512 to be compiled to produce an XML

graph. In one embodiment, the objects in the object graph may be stored recursively in the XML data stream 1514. 1514 to gate 1504. The XML data stream 1514 may include an XML representation of all the objects in the object

1506 of service 1502. Gate 1506 may extract the XML data stream 1514 from XML message 1516 and send the XML data stream decompilation process 1518 to be decompiled to produce the object (s) comprising the object graph, including Java object 1510. In one embodiment, the objects in the object graph may be the XML data stream 1514 in a message 1516 and send the message 1516 to gate stored recursively in the XML data stream 1514, and thus a recursive decompilation process may be used Gate 1504 may then package

When service 1502 needs to send a Java object to client 1500, a substantially similar process may be used.

representation of the object graph. The XML representation of the object graph may be passed as an XML data stream 1522 to gate 1506. Gate 1506 may then package the XML data stream 1522 in a message 1524 and send the message 1524 to gate 1504 of client 1500. Gate 1504 may extract the XML data stream 1522 from XML message 1524 and send the XML data stream 1522 to an XML data stream decompilation process 1518 to be decompiled to produce the object (s) comprising the object graph, including Java object 1520. Java object 1520 may be passed to a Java object compilation process 1512 to be compiled to produce an XML

In another embodiment, the gates may be responsible for the compilation and decompilation of Java objects.

object compilation process 1512 to be compiled to produce an XML representation of the object graph in an XML data stream 1514. Gate 1504 may then package the XML data stream 1514 in a message 1516 and send the message 1516 to gate 1506 of service 1502. Gate 1506 may extract the XML data stream 1514 from XML message 1516 and send the XML data stream 1514 to an XML data stream decompilation process 1518 to be decompiled to produce the object (s) comprising the object graph, including Java object 1510. The process of sending a Java object from service In this embodiment, Java object 1510 may be passed to gate 1504. Gate 1504 may then pass object 1510 to a Java 1502 to client 1500 may be substantially similar to the process of sending an object from the client to the service.

embodiment, XML schemas including descriptions of Java objects may be used on both be used in the compilation and decompilation of Java objects may be passed by the service to the client in the service similarly on the two devices, thus ensuring the object (s) output on one end are substantially identical to the object (s) the client and/or the service in the compilation and decompilation processes. In one embodiment, XML schema (s) to In one embodiment, object compilation process 1512 and object decompilation process 1518 may both exist on the client 1500 and the service 1502, and may be programmed to perform compilation and decompilation substantially input on the other end. In one advertisement.

object may not be limited to moving Java objects, but in some embodiments may be applied to moving objects of other platform-independent object representation format. Thus, the process as illustrated in Figure 34 where an object is compiled into an XML representation of the object and decompiled to reproduce the types between entities in a network. XML provides a language-and

embodiment, the compilation process may be integrated in the virtual machine within which the service is executing. In object. In step 2202, the service, after receiving the request, may provide the object to a compilation process. In one objects. In step 2200, a client may request an object from a service. In one embodiment, the object may be a Java object. In one embodiment, the client may send a message (e. g. an XML message) to the service requesting the one embodiment the virtual markine may be a laya Virtual Markine (IVM). In one embodiment the commilation Figure 46 illustrates a mechanism for sending objects from services to clients using XML representations of the

.

ect may include a name or identifier for the object and one or more instance variables for the object. An instance variable, in object-oriented programming, is one of the variables of a class template that may representation language representation of the object. In one embodiment, the data representation language is XML message. In one embodiment, the message is in the data representation language. Message gates, as described elsewhere herein, may be used for message passing between the client and service. language representation of the object to the client. In one embodiment, the representation may be packaged in a incriming indicated with the step 2204, the compilation process generates a data have a different value for each object of that class. In step 2206, the service may send the data representation process may be provided as a The representation of the obje - 33:-> \(\text{\tinc{\text{\tinc{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tin}\text{\ticl{\tin}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\texi}\tint{\text{\texict{\texict{\tin}\text{\text{\texict{\texit{\ticl{\tin}\tint{\text{\texicl{\tin}\tint{\texi{\texi{\texi{\texi{\tin}\tint{\texi{\texi{\texi{\texi{\texi}\tint{\texit{\tint{\tin}

Machine (JVM). In one embodiment, the decompilation process may be provided as an extension to the JVM. In step 2210, the decompilation may generate a copy of the object from the data representation language representation of representation to a decompilation process. In one embodiment, the decompilation process may be integrated in the virtual machine within which the client is executing. In one embodiment, the virtual machine may be a Java Virtual In step 2208, the client receives the data representation language representation of the object and provides the the object. The object may then be provided to the client.

virtual machine (e. g. JVM) includes extensions for compiling objects (e. g. Java Objects) into XML representations of the objects, and for decompiling XML representations of (Java) objects into (Java) objects. The JVM may supply an Applications Programming Interface (API) to the compilation/decompilation extensions. The client 1500 and service JVM compilation/decompilation API Figures 35a and 35b are data flow diagrams illustrating embodiments where a JVMs. The JVMs may be on the same device or on different devices. 1502 may be executing within

1510) in an XML data stream 1514. In addition, the JVM XML compiler/decompiler API 1530 may accept an XML data stream 1522, which includes an XML representation of object 1520 and all its referenced objects (the object graph of object 1520), and. output Java object 1520 (and all the objects in its object graph). In both Figure 35a and Figure 35b, the JVM XML compiler/decompiler API 1530 may accept a Java object 1510 as input, and output an XML representation of the object 1510 and all its referenced objects (the object graph of object

Figure 35a illustrates one embodiment where, when sending Java object 1510, the client calls the JVM XML compiler/decompiler API 1530, which compiles the object to then pass XML data stream 1514 to gate 1504. Gate 1504 may then package the XML message 1516 and send message 1516 to service 1502. produce its XML representation, stores the XML representation in XML data stream 1514, and outputs XML data stream 1514. The client may 1 data stream 1514 in an XML

Upon receiving XML message 1524 from service 1502, gate 1522 may extract XML data stream 1522 from message 1524 and pass data stream 1522 to client 1500. Client 1500 may then call the JVM XML compiler/decompiler API 1530, passing API 1530 the XML data stream 1522. The API 1530 may then decompile the XML data stream 1522 to produce Java object 1520 and other objects in its object graph, returning the objects to client 1500. Figure 35b illustrates another embodiment where, when sending Java object 1510, the JVM XML compiler/decompiler API 1530 is called by the gate. The client 1510 passes Java object 1510 to gate 1504. Gate 1504 then passes object 1510 to API 1530, which compiles the object to produce its XML representation, stores the XML representation in XML data stream 1514, and outputs XML data stream 1514. Gate 1504 may then package the XML data stream 1514 in an XML message 1516 and send message 1516 to service 1502.

Upon receiving XML message 1524 from service 1502, gate 1522 may extract XML data stream 1522 from message 1524 and pass data stream 1522 to the JVM XML compiler/decompiler API 1530. The API 1530 may then decompile

the XML data stream 1522 to produce Java object 1520 and other objects in its object graph.

The gate may then send Java object 1520 and the other objects to client 1500.

compiler/decompiler API 1530 to processes (clients and/or services) executing within the JVM to allow the processes to access the Java object compilation/decompilation functionality provided by the JVM. In one embodiment, the JVM XML compiler and decompiler may be implemented as integrated functions of the JVM. In another embodiment, the XML compiler and decompiler may be embodied in API method invocations in standard extensions to the JVM; thus, the core JVM does not have to be modified. The JVM may supply the JVM XML

ess to utilize the object compilation/decompilation, the JVM within which the process is XML compiler/decompiler functionality and API 1530. In one embodiment, for a proc executing must have the JVM

separate from the JVM. The application must repeatedly access the JVM to pick apart an object one field at a time as the transitive closure of the object is dynamically analyzed. This tends to be a slow and cumbersome process, while Methods using reflection and serialization to transform and send objects are typically implemented in applications also requiring large amounts of application and JVM code.

functions may leverage the knowledge (and reuse code) of the JVM in parsing the object graph to produce the XML compilation/decompilation functionality within the JVM is advantageous because the JVM already understands the concept of, and contents of, an object graph. Thus, the compilation/decompilation representation, and in parsing the XML representation to produce the object graph. Implementing the Java object

compilation/decompilation functions to be smaller than that of object sending methods using reflection and serialization. Also, an object may be complied or decompiled by a single call to the JVM XML compiler/decompiler API. Thus, the compilation/decompilation functions may not have to duplicate functionality that is provided by the JVM, as do object sending methods using reflection and serialization. This may allow the code footprint of the

traversal model implemented with reflection and serialization, the code outside the JVM does not know the structure or functionality integrated with the JVM, as described herein, avoids having to make repeated calls from code outside the performed faster than methods using reflection and serialization because, in the object graph of the Java object, and thus must traverse the object graph, pulling it apart, and ultimately must repeatedly call upon the JVM to do the compilation (and the reverse process for decompilation). This process may be slowed by the JVM to the JVM. In one embodiment, an object may be complied or decompiled by a single call to the JVM XML In addition, integrating the compilation/decompilation of objects with the JVM may allow the compilation and calls to the JVM, outside the code. Having the compilation and decompilation decompilation of objects to be necessity of making repeated compiler/decompiler API.

computing environment may use a search or discovery service to locate the compilation/decompilation service. The process (a client of the service) may then use the service by passing Java objects to be compiled into XML In one embodiment, the compilation/decompilation functionality may be implemented as a service in the distributed computing environment. The service may publish a service advertisement in a space. A process in the distributed representations and/or XML representations to be decompiled into Java objects to the service.

does not change once the object is created. An object's data, however, may be transient. Two objects created from the Java objects may include code (the object's methods) and data. An object's code may be non-transient; the code

representation may then be stored in an XML data stream and sent (e. g. in a message) to a receiving process (client or service). The receiving process may then pass the XML data stream to the decompilation function. The decompilation function may then decompile the XML data stream to produce the Java object including its data. In one identical code, but the data in the two objects may be different. In one embodiment, the the object's actual code in the XML representation. In one embodiment, information about the object may be included object included in the XML representation, as the code for an object may be statically defined and the JVM receiving compilation function may compile a Java object's data into an XML representation of the object, but may not include embodiment, the code for the object may be reproduced by the decompilation function using information about the in the compiled XML representation to indicate to the receiver how to recreate the code for the object. The XML the object may be able to reproduce the code (if necessary) using its knowledge of the object. same Java class may include

decompile the data from the XML data stream into the Java object. Thus, a complete object including its code and data data stream and recreating the referenced objects'code from information about the referenced objects in the XML data object's data and information about the Java object. The information may include class information for the Java object. may be reproduced on the JVM executing the receiving client or service from the decompiled data and the information decompilation function may recreate the code for the Java object using the information about the Java object and may describes the object, and the XML schema may be used to reconstruct the Java object from the decompiled data and In one embodiment, the XML representation of an object produced by the compilation function may include the Java graph, reconstructing the objects referenced by the object by decompiling the referenced objects'data from the XML from the information about the Java object. The decompilation process may proceed recursively through the object describing the object. In one embodiment, the information describing the object may be stored in one or more XML client or service receiving the XML data stream may include an XML schema that An object signature may be included in the information and may be used to identify the object's class, etc. The tags. In one embodiment, the

function may recreate the code for the Java object using the information about the code from the XML data stream and object's data and information that identifies the code of an object. In one embodiment, the information identifying the code of the object may be stored in one or more XML tags in the XML data stream. When received, the decompilation decompile the data for the object from the XML data stream. Thus, a complete object including its code and data may be reproduced on the JVM executing the receiving client or service from the decompiled data and the information In one embodiment, the XML representation of the object produced by the compilation function may include the describing the code of the object

services) in a distributed computing environment are included for clarification. These scenarios are exemplary and are IL representations of objects to transfer objects between entities (typically clients and Several scenarios of using XIV not intended to be limiting.

later may use the XML compiler/decompiler to compile the object into an XML representation of the object and return compiler/decompiler to decompile the XML representation and perform operations on the data within the object, and representation of the object and send the XML representation to a client. The client may the use the XML In a first scenario, a service may use the XML compiler/decompiler to compile a Java object into an XML object to the service. the XML representation of the

to reproduce the object, perform operations on the object at the request of the client (possibly modifying the data), use representation to another service, which may use the XML compiler/decompiler to decompile the XML representation to recompile the modified object into its XML representation, and send the XML In a second scenario, a service may use the XML compiler/decompiler to compile a Java object into an XML representation to a client. The client may then send the XML the XML compiler/decompiler Ĵ,

representation of the object to the client.

representation to reproduce the object. Alternatively, the client may send the location of the XML representation of the representation of the object and send the XML representation to an object repository or store space. The service may then send a message to a client informing the client of the location of the XML representation. The message may ntation from the store space, use the XML compiler/decompiler to decompile the XML object to another service, along with a request for operations to be performed on the object. The other service may include a Universal Resource Identifier (URI) for the XML representation. The client may then retrieve the XML representation of the object from the store space, and may use the XML compiler/decompiler to decompile the In a third scenario, a service may use the XML compiler/decompiler to compile a Java object into an XML representation to reproduce the object, and perform the requested operations on the object. then retrieve the XML represe

In a fourth scenario, a process (could be a client or service) may locate an object repository or store space in the distributed computing environment by searching for and finding a service advertisement for the store space.

compiler/decompiler to compile one or more of the objects into XML representations of the objects, and may send, as a client of the store space service, the XML representations of the objects to the store space to be stored for possible The process may, during execution, create or obtain a plurality of Java objects. The process may use the XML other processes later access, or for access by

method for providing file access security in the distributed computing environment may be desirable. This method may Security issues in the Decompilation of XML Representations of Objects Spaces, as described herein, may serve as file system in the distributed computing environment. Security may be provided for files in the system in the form of also be applied to the XML representations of Java objects that may be stored in spaces and transmitted between access rights. Access rights may be checked each time a file is accessed (opened, read, or written to). Thus, clients and services in the distributed computing environment.

authenticated when first accessing the client. In one embodiment, the user may supply a physical identification such as a smart card for identification and authorization. In another embodiment, a challenge- response mechanism (such as user ID and password) may be used for identification and authorization. Yet another embodiment may use electronic a client on a device in the distributed computing environment may be identified and signature for identification and authorization. Any other method of identification and In one embodiment, a user of identification such as a digital authorization may be used.

Once identified and authorized, the user may then perform various operations on the client, including accessing one or space service for (transitive or persistent) store. Some of the objects may be received from services (store services or more services in the distributed computing environment. During these operations, as described above, one or more objects may be created (locally) or acquired from elsewhere (e. g. from services or spaces). The objects may be modified and may be compiled into XML representations of the objects and stored locally by the client or sent to a other services) in the form of XML representations of the objects, which may be decompiled by the XML compiler/decompiler to recreate the objects on the client.

XML compiler/decompiler may not decompile the object for the user. In one embodiment, a security exception may be has access rights to the object. If the user does not have the proper access rights, the In one embodiment, during the decompilation of the XML representation of objects, each XML message may be thrown by the XML compiler/decompiler. In one embodiment, the user may be informed of the access violation. checked to verify that the user

delete, copy, etc.) for the object may be embedded in the XML message (s) containing the XML representation of the object. Access authorization may be determined during the identification and authorization of the user. For example, the object may allow"read only "access for most users, and "read/write" access for the creator of the object. If the user as the creator and access levels allowed (creator-only access, read only, read/write, read/write access rights, and the user did not create the object, the decompilation access violation, and may disallow the access and notify the user. Access right information, such tries to access an object using process may detect this as an user is done using the client, the user may log off or otherwise signal the user is finished smart card). Objects created on the client by decompilation may be automatically upon detecting that the user is finished. In another embodiment, a method may be provided to store at least some of the objects created on the client persistently (e. g. with access rights information), so that the client may later access accidentally accessing the user's objects. In one embodiment, all objects created by decompilation may be deleted deleted when the client detects that the user is finished. This may prohibit future users from intentionally or the objects, or provide the objects to other users for access. In one embodiment, when the with the client (e. g. remove a

the smart card. The client may detect the removal of the smart card, and thus detect that the client is finished, and may In one embodiment, the user may have a"smart card"or other physical device to gain access to the client. The user may insert the smart card into the client device to begin the session. When the client is finished, the client may remove created by decompilation of XML representations. then proceed to delete objects

log on to the client, for example, with a user name and password. In one embodiment, the user may provide a physical Figure 47 illustrates a mechanism for secure object decompilation on a client device. In step 2240, a user may access a client device. In one embodiment, the user may provide identification to the client. In one embodiment, the user may identification method, e. g. a smart card, to the client device to establish the user's identity with the device.

messages (e. g. an XML messages) to the services requesting the objects. The services, after receiving the requests, After the user has been authenticated, the client may request one or more objects from one or more services during access by the user. In one embodiment, the objects may be Java objects. In one embodiment, the client may send representations may be packaged in messages. Message gates, as described elsewhere herein, may be used for may send the data representation language representations of the objects to the client. In one embodiment, the message passing between the client and service.

representations of the objects. In one embodiment, the messages may be checked to make sure the client has access representations to a decompilation process. In one embodiment, the decompilation process may be integrated in the In step 2242, the client receives the data representation language representations of the objects and provides the virtual machine within which the client is executing. In one embodiment, the virtual machine may be a Java Virtual lects. The objects may then be provided to the client to be available for use during Machine (JVM). The decompilation may generate copies of the objects from the data representation language privileges to the requested obj access by the user. In step 2244, the user may end access to the client device. For example, the user may log off or, if one was used, may client has ended the access, the client device may automatically delete any objects that remove an identification device such as a smart card to signal to the client device that the user is ending access of the user during the access by the user. Deleting the objects may insure that the objects are be accidentally or intentionally accessed by subsequent users of the device. client. Upon detecting that the have been decompiled for the not left on the client device to

Alternatively, one or more of the objects may not be deleted when the user terminates access. Instead, the objects

.

may be stored (either locally or elsewhere in the distributed computing environment) for later access by the user. In one embodiment, access information of the client may be stored with the objects to prevent unauthorized users from accessing the objects.

storage technologies tend to be language and/or operating system specific. These storage systems also tend to be too desire transient and/or persistent storage of objects such as XML schemas, service advertisements, results generated by services, XML representations of Java objects and/or objects implemented in other languages, etc. Existing object XML-based object repositories in the distributed computing environment, processes (services and/or clients) may complicated to be used with small footprint systems such as embedded systems.

as previously described, and thus has the same limitations as previously described for objects and may be too large to be implemented in small devices with limited amounts of memory. Each object in a JavaSpaces in Jini is an existing object repository mechanism. A JavaSpace may be only capable of storing Java the reflection and serialization JavaSpace may be serialized

language or operating system dependent), that may scale from small to large devices, and that may provide transient or persistent storage of objects. In one embodiment, the store mechanism in the distributed computing environment A store mechanism may be provided for the distributed computing environment that may be heterogeneous (not may be implemented as an Internet Web page or set of pages defined in the XML markup language.

language-independent objects. Since the store mechanism is on the Web, devices of all mechanism implemented as Web pages. Internet administration mechanisms (existing and future) and XML tools may types and sizes (small to large) may access the store mechanisms. Web browsers may be used to view the store platfonn-independent object representation format enabling Java and non-Java mechanism implemented as Web pages. Web search engines may be used to search for contents in the store be used to administer the XML-based store mechanisms. XML provides a language-and software to store and retrieve

schemas, XML representations of objects (for example, Java objects compiled into XML representations as described IL object, an authorization credential such as a digital signature or certificate may be mechanisms may be used to store objects created, represented or encapsulated in s, and service results (data) encapsulated in XML. In one embodiment, to prevent included with the XML object, and a client wishing to access the XML object may be required to have the proper authorization credential to access the XML object. In one embodiment, the store mechanism may be a space as XML. Examples of objects that may be stored in the store mechanisms may include, but are not limited to: XML described in the Spaces section herein. above), service advertisement unauthorized access of an XM In one embodiment, the store

service. Some store services may be transient. For example, a space service that stores Store mechanisms may be services in the distributed computing environment. A store mechanism implemented as a a"store service". A store service may publish an advertisement in a space. The space service advertisements may be a transient store. Other store services may be persistent. service may be referred to as itself is an example of a store

For example, a store service that stores results from services may be a persistent store.

computing environment according to one embodiment. This illustration is intended to be exemplary and is not intended Figure 36 illustrates a client 1604 and a service A 1606 accessing store mechanisms 1600 and 1602 in the distributed to be limiting to the scope of this invention. In one embodiment, store mechanisms 1600 and 1602 may each be an Internet Web page or set of Web pages defined in XML and accessible by a Web browser and other Internet tools. ď

service advertisement 1608 in transient store 1600. Persistent store may also publish an XML service advertisement in Service A 1606 may perform one or more functions in response to the one or more request messages. One or more of Store mechanism 1600 is a transient store capable of storing objects implemented using XML. Store mechanism 1602 is a persistent store also capable of storing objects implemented using XML. Service A 1606 may publish an XML 1604 may require functionality provided by Service A 1606. Client 1604 may use a discovery and/or lookup service to 1608. Client 1604 may then construct a message gate, as described herein, and begin communications with Service A 1606. Client 1604 may send one or more XML request messages to Service A 1606. transient store 1600 (or on another transient store in the distributed computing environment). At some point, client the functions performed by Service A 1606 may produce results to be provided to client 1604. locate service advertisement

environment) and return the location of the advertisement 1616 to client 1604. The advertisement 1616 may include an For transient results 1610, Service A 1606 may encapsulate the results in an XML advertisement 1612 and publish the advertisement 1612 in transient store 1600 (or on another transient store in the distributed computing environment). 1600, or client 1604 may be notified by other mechanisms as described herein. Client 1604 may then retrieve transient results 1610 from advertisement 1612. The advertisement 1612 may include an XML schema describing the return a URI for the persistent results 1618 to client 1604 so client 1604 may access the results without looking up an results 1618 to Service A in an XML message. In one embodiment, persistent results 1618 may be stored in an Internet Web page or set of Web pages defined in XML and accessible by a Web browser. Service A 1606 may then store persistent results 1618 in persistent store 1602. Service A 1606 may then publish an XML advertisement 1616 Service A 1606 may then notify client 1604 that the results 1610 are stored in advertisement 1612 on transient store formatting, contents, type, etc. of the transient results 1610. The results may be encapsulated in XML. For example, encapsulated in XML as previously described. The advertisement may also include the URI of the persistent results advertisement. Note in some embodiments, the various advertisements shown in transient store 1600 may each be 1618. The client 1604 may then retrieve the advertisement 1616 and use it to locate and retrieve persistent results results. Alternatively, client 1604 may have previously located persistent store 1602 by locating its service advertisement 1616, and then may send a Universal Resource Identifier (URI) for a storage location for persistent 1606 may not publish an advertisement for persistent results 1618, but instead may persistent results 1618, Service A 1606 may use a service or other mechanism as described herein to locate XML service advertisement 1616 for persistent store 1602, and thus locate persistent store 1602 for storing persistent XML tags may be used to describe portions of the data: <XMLtagl> <datal> <XML tag2> <data2> For for the persistent results 1618 in transient store 1600 (or on another transient store in the distributed computing XML schema describing the formatting, contents, type, etc. of the persistent results 1618. The results may be stored in different transient stores or spaces. 1618. Alternatively, Service A

provide service advertisements to allow clients (which may be other services) to locate and use the store mechanisms. small footprint devices to supercomputers, may access the store mechanisms to store and retrieve the various objects Existing and future Web and XML tools may be used to manage the store mechanisms. The store mechanisms may store objects of various types implemented or encapsulated in XML. Clients on devices of substantially any size, from on the Internet. The clients may be Java or non-Java applications, as XML provides a language-independent storage environment. These store mechanisms may be implemented on a variety of devices in the environment, and may format. The transient or persistent object repositories may provide for a file system in the distributed computing be implemented as XML-based Internet Web pages in the distributed computing access checks and other security mechanism as described herein. environment and may include Thus, store mechanisms may

order to send representation of a class instance to another service, the object may be converted and represented as an XML document. In one embodiment, when receiving an XML document, a program may instantiate a class instance corresponding to the object represented by the document. In one embodiment, the objects may be Java objects, and environment may provide a mechanism to convert and represent an object class instance into an XML document. In Dynamically Converting a Java Object into an XML Document In one embodiment, the distributed computing

the program may be a Java program.

instance variable value. If there are multiple occurrences of a complex instance variable, an enumeration value may be variables and set and get methods to access the instance variables. A corresponding XML document may be defined processed to generate a class instance that represents the XML document. The class may define a set of instance as a set of tags, with one tag for each instance variable. When the document is parsed, a hashable representation In one embodiment, an intermediary format may be used to represent an XML document and may be dynamically stored in a hash table. In one embodiment, the process may be limited to only one level of complex types for the may be constructed where the hash key may include the instance variable name and the value may include the instance variables, and the elements may be homogeneous.

In one embodiment, a protected instance variable may be added to the class definition that may include the name of the corresponding class. The XML document representation may use the class name as the document type.

Having the class name embedded in the document may allow dynamic instantiation of the right class instance when the object is reconstructed. In one embodiment, upon receiving a document, a class instance generator method may be used to extract the class type and to parse the document to generate the intermediary hash table representation. The generator method may instantiate a new class instance and may use the set methods to initialize the instance object from the hash table values. In one embodiment, since the class type is defined and the hash table is generic, this process may be performed for any class that matches the above class definition.

intermediary hash table representation and a generator method may be used to produce an XML document from the hash table representation. This process may also be made generic so that it may be performed for any XML document In one embodiment, the reverse process may also be performed where a class instance may be processed into the that matches the above specification.

This method is not intended to be limited to Java Class objects, and may be applied to other computer- based objects, including class object instances of other programming languages. In addition, the method is not intended to be limited to XML representations of object instances; other representation formats including other data representation languages (such as HTML) may be substituted for XML. XML-Based Process Migration The distributed computing environment may enable the distribution and management of applications, and may migrate from one station to another in the distributed computing environment. Thus, one embodiment of the distributed computing environment may provide a method for migrating an executing application typically not provided on mobile devices such as PDAs, cell phones, etc. These mobile clients may run one or more (process) with its entire current state from a mobile client on one node to the same mobile client or another mobile dockable with stations that provide monitors, printers, keyboards, and various other input/output devices that are distributed applications. For example, the distributed computing environment may include mobile clients that are client at another node within the distributed computing environment.

In one embodiment, the XML representation of the state of the process may include a computation state of the device In one embodiment, an XML representation of the state of a process executing on a client or service may be created. and/or virtual machine on which the process is executing, wherein the computation state of the device and/or virtual nrocess state may include but is not limited to threads all objects referenced by the threads transient variables machine comprises information about the execution state of the process on the device and/or virtual machine. A

more leases representing grants of access to external services, obtained from spaces by the process, wherein the one created during the execution of the process, objects and their data, etc. In one embodiment, data describing one or or more external services are external to the device and/or virtual machine on which the process is executing, may also be represented in XML and stored with the process state. Leases are described in more detail in the Leases section of this document.

retrieved from the store mechanism to resume the process execution on the same node moved from node to node within the distributed computing environment, e. g. from node to node on the Internet. The XML representation of the state of a process may also be stored as an XML object in an XML-based store mechanism the state of a process and in regenerating the state of the process by decompiling the XML representation of the state compilation/decompilation process as described herein may be used in creating (compiling) an XML representation of Using XML and the messaging system as described herein, an XML representation of the state of a process may be or on a different node in the distributed computing environment. In one embodiment, the XML object as described above, and later of the process.

process, download the state of the process, and resume the process from the downloaded stored state at the point at which it was executing when the state was stored. Since the process state is stored in an XML format, the tools and search facilities described herein to store, locate and retrieve XML objects in XML-based store mechanisms may be used to enable the migration of the process. An advertisement of the stored XML representation of the state of the from an initial node. Subsequently, another node may locate the stored state of the process may be published to allow a client resuming the process execution on the same node or another node to locate and access the stored sate. Using this mechanism, an XML representation of the state of a process may be stored in an XML-based store mechanism, such as a space,

shutdown of the node. An advertisement of the stored state of the process may be published to allow clients to locate the stored state in the distributed computing environment. In one embodiment, to prevent unauthorized access of an thus may provide a persistent snapshot of the process. This may be used as a method to resume process execution certificate may be included with the stored state, and a client wishing to resume a process from the stored state may The XML representation of the state of a process may be stored to an XML-based persistent store mechanism, and on a node after the interruption of the process on the node, for example, due to the intentional or unintentional XML representation of the stored state of a process, an authorization credential such as a digital signature or authorization credential to access the stored state. be required to have the proper

Figure 37 illustrates process migration using an XML representation of the state of a process. according to one embodiment. Process A 1636a may be executing on node 1630. Process A 1636a may be a client or service.

execution, recalculate transient variables, re-establish leased resources, and perform any other functions necessary to Process A 1636b on the node 1632. Resuming Process A may include using the stored state 1638 to resume thread At some point during the execution of Process A 1636a, the state of execution of Process A 1636a may be captured and stored in an XML-encapsulated state of Process A 1638. The execution of Process A 1636a on node 1630 may then be stopped. Later, node 1632 may locate the XML-encapsulated state of Process A 1638 and use it to resume in the stored XML state of the process 1638. resume execution as recorded

execution at a later time at another (or the same) node. In one embodiment, the user may be prompted with a query to The following is an example of using XML-based process migration in the distributed computing environment, and is evice may desire to stop execution of Process A 1636a on node 1630, and to resume not intended to be limiting. A mobile client device may be connected to node 1630 and executing Process A 1636a. The user of the mobile client d

; ; ; ; .

determine if the user wishes to store the state of Process A 1636a and resume execution later. It the user replies in the affirmative, the XML-encapsulated state of the process may be captured and stored in persistent store 1634. Later, the user may connect the mobile computing device at node 1632. In one embodiment, the user may then execute process 1636b and select a"Resume from Stored State" option. The node 1632 may then search for and locate the XMLencapsulated state of Process A 1638, download it, and use it to resume Process A 1636b. Alternatively, the process spended"on another node, and may resume from the stored state without user input. may itself know that it was "sus

representations of the processes in a distributed computing environment. In step 2260, a process is executing within a first device. In step 2262, a current computation state of the process is converted into a data representation language process, and information about one or more objects of the process (such as objects held by the threads), wherein an representation of the current computation state, wherein the computation state of the process comprises information information about one or more threads of the process, information about one or more leases to services held by the about the execution state of the process within the first device. This information may include, but is not limited to, object is an instance of a class in a computer programming language (such as the Java programming language). Figure 48 illustrates a mechanism for migrating processes using data representation language (such as XML)

In step 2264, the data representation language representation of the current computation state of the process may be service. In one embodiment, the data representation language representation of the current computation state of the stored. In one embodiment, the representation may be stored locally. In one embodiment, the data representation language representation of the current computation state of the process may be stored to a space using a space process may be sent to the space service in one or more messages.

information in the advertisement to locate and access the stored data representation language representation. In step 2268, the process may be reconstituted at the current computation state within the second device from the accessed data representation language representation of the current computation state of the process. The process may then representation language representation, and the second device may receive or access the advertisement and use may access the stored data representation language representation of the current ss. In one embodiment, an advertisement may be provided for the stored data resume execution within the second device from the current computation state. In step 2266, a second device computation state of the proce

then subsequently access the stored data representation language representation of the current computation state of the process. The process may then be reconstituted at the current computation state within the first device from the Alternatively, the process execution may be ended on the first device subsequent to step 2264. The first device may data representation language representation of the current computation state of the process and execution of the in the first device from the current computation state. process may be resumed withi

messages through message gates). The process may then be reconstituted at the current computation state within the In another alternative, the data representation language representation of the current computation state of the process second device from the received data representation language representation of the current computation state of the generated at step 2262 may be sent directly to the second device (e. g. in one or more data representation language process. The process may then resume execution within the second device from the current computation state

be used to locate information about restaurants, weather, maps, traffic, movie information, etc within a certain distance information about networks and services near a client device may be desirable. For example, such a mechanism may data appear as local data to the user, provided the user has access to a browser. However, such technologies do not Applications Technologies exist that allow a user to access network data from remote locations, making the remote provide an automatic infrastructure to query networks near a client device's location. A mechanism for discovering (radius) of the client device, and to display desired information on the client device. An example of using this

in a movie theater to display the titles and show times of current features in the movie theater or in a restaurant to view mechanism may be a cell phone that can be used to automatically locate services in a local environment, for example, the distributed computing environment as described herein, such a mechanism may be used to discover spaces including local information and/or services proximate to the client device. The mechanism may also be applied in other distributed computing environments, for example, the Jini system from Sun menu selections and prices. In Microsystems, Inc.

environment. For example, one or more devices in the environment may include wireless connection technology to allow mobile client devices to connect to the network and to access the discovery mechanism via the XML messaging information about the entity the space represents. The discovery mechanism may include a GPS location or locations weather, traffic, etc. A space may include individual service and/or data advertisements for accessing services of and of the local distributed computing environment, entities represented by space services within the environment, and/or computing environment may include spaces that represent entities such as malls, movie theaters, local news, local advertisements for services and/or data to be made available to mobile clients. For example, a citywide distributed connection technology. Local distributed computing networks may be provided. For example, a city may provide a computing environment. A local distributed computing network may include a discovery mechanism to allow client system as described previously. A local distributed computing environment may include one or more spaces with client device may include Global Positioning System (GPS) capability and wireless citywide distributed computing environment. Another example may be a shopping mall with a local distributed devices to connect to the distributed computing environment and to discover services and data in the local the various services advertised in the spaces in the environment. In one embodiment, a mobile

and display for the mobile client device. In this embodiment, the location of the mobile client device may be provided to In one embodiment, wired connections may be provided to a local distributed computing network. In this environment, Internet. In one embodiment, a docking station may also provide input/output capabilities such as a keyboard, mouse, Examples of wired connections include, but are not limited to: Universal Serial Bus (USB), FireWire, and twisted-pair a user with a mobile client device may"plug in"directly to the network using a wired connection "docking station' the lookup or discovery mechanism by the docking station.

the mobile client. In one embodiment, the client may send its location information (e. g. via XML messaging) to a local In one embodiment, a mobile client device may connect to a distributed computing network. As the user of the mobile client device navigates within wireless communications range of the distributed computing network, the mobile client mechanism. The mobile client device may obtain the location vector from a GPS system built into or associated with device may constantly, or at various intervals, provide a location vector as input to the local lookup or discovery such as one of the space location mechanisms described herein. service discovery mechanism,

For example, the client may run the space discovery protocol specifying discovery for spaces offering services within a certain range of the client's location, or the client may instantiate a space search service to search for spaces or the client's vicinity. advertising services provided f

services and/or data stored in the space may be made available to the mobile client device. In embodiments where the client device regularly provides its location to a discovery mechanism, local services and/or data may automatically be As the mobile client device moves into a specified range of a space within the distributed computing environment, the location. Alternatively, the range may be specified in the configuration of the local distributed computing network. For example, a citywide distributed computing network may be configured to provide its services to all users within three miles of the city limits. In one embodiment, visual indicators, for example icons, representing the various services specified range of a space. For example, the user may choose to display all restaurants within one mile of a current made available to the client's user. In one embodiment, the user of the mobile client device may determine the

data are to be detected. For example, in a shopping mall, a user with a mobile client device may choose to display all more of the displayed services and/or data. In one embodiment, information from two or more spaces may be displayed simultaneously on the mobile client device. In one embodiment, the user may select what services and/or and/or data offered by the space may be displayed on the mobile client device. The client may then access one or shoe stores in the mall.

compilation/decompilation mechanism as described elsewhere herein may be used to compile the code and/or data to with mobile client devices may download interactive movie reviews from services in a space for the movie theater, and the service and some on the client. For example, the service may execute code to perform operations on a set of data le code and/or data used in the execution of the code may be downloaded to the mobile including data and optionally XML schemas describing the data. In one embodiment, some code may be executed on to execute an application provided by a service in the space. For example, moviegoers code and/or data on the mobile client device. In one embodiment, an executable version of a process may previously exist on the mobile client device, and a stored state of the process may be downloaded to the mobile client device to allow the user to execute the process using the stored state. In one embodiment, an executable version of a process device. For example, data may be downloaded for viewing with a viewer program on the mobile client device. In one passed to the client from the service in XML messages and allow the user of the mobile client device to enter and/or produce XML representations of the code and/or data, and to decompile the XML representations to reproduce the downloaded for execution on the mobile client device. In one embodiment, the service may execute the application may previously exist on the mobile client device, and data for the process may be downloaded to the mobile client embodiment, an executable version of a process, including the code and data for executing the process, may be remotely on behalf of the mobile client device, and the service and client may pass to each other XML messages such as numerical calculations. The mobile client device may execute code that may display portions of the data may thus perform real-time feedback about the movie they are watching. In one embodiment, an XML object to the service for performing one or more operations on the data. In one embodiment, executable client device to allow the user select data and send the data

network simultaneously. The services may be used independently or in conjunction for performing a series of tasks. For example, one service may be used by a remote client device to locate and/or perform operations on a set of data, client device may be connected to two or more services in the distributed computing and a second service may be used to print the set of data. In one embodiment, a mobile

Figure 38 illustrates a mobile client device accessing spaces in a local distributed computing network, according to one embodiment. A user of GPS-enabled mobile computing device 1700 may move into proximity of a local distributed computing environment. The mobile client device 1700 may provide its location provided by GPS 1702 to one or more then select one or more of the advertised services and/or data for execution and/or display on the mobile client device. advertisements 1710 from space 1704 to the mobile client device 1700. Alternatively, discovery mechanism 1706 may may have been discovered by the user using the lookup or discovery mechanism 1706, to execute the service using the XML-based messaging system as previously described data represented by content advertisements 1710 may then be displayed on mobile client device 1700. The user may discovery mechanisms 1706 in the local distributed computing network. The discovery mechanism 1706 may use the of the mobile computing device 1700 may connect the device at a docking station. The mobile client device 1700. Icons representing the various services advertised by service advertisements 1708 and/or determine when the user moves within a specified range of one or more spaces or a vicinity served by one or more spaces within the environment. For example, discovery mechanism 1706 may determine that mobile client device provided GPS location of the mobile client device and predetermined locations of spaces within the environment to provide a Universal Resource Identifier (URI) for space 1704, or for one or more advertisements in space 1704, to sements for the docking stations to discover the location and availability of docking 1700 may establish a wireless connection with the device offering the service and 1700 has moved within range of space 1704. Discovery mechanism 1706 may then provide one or more The mobile computing device location of the docking station and spaces containing adverti herein. Alternatively, the user communicate with the device

)

stations within a specified range of the user.

)

ertisements 1718 and content advertisements 1720 may then be made available to the 1714. The various service advertisements 1718 and content advertisements 1720 may then be made available to th user of the mobile client device 1700. When the mobile client device moves out of the specified range of one of the Discovery mechanism 1706 may also detect when mobile client device 1700 moves into a selected range of space spaces, the advertisements offered by that space may be removed from the mobile client device 1700's display

range of a particular service advertised on space 1718, and may provide (or remove) the service advertisement based provide. Thus, discovery mechanism 1706 may determine when mobile client device 1700 moves within a specified In one embodiment, advertisements on a space may include location information for the services or data that they upon the location of the mobile client device 1700.

keyboards, monitors, scanners, and printers. The limits on reducing the size of some components may prevent mobile client devices from truly assuming the role of personal computers. much of the functionality of a full-sized personal computer. However, some components of a computer system are not lies, etc. have been reduced in size to where small, mobile client devices may include easily shrinkable because of the human factor and other factors. These components include, but are not limited to Computing devices are shrinking while at the same time gaining power and functionality. Storage devices, CPUs, RAM, I/O ASICS, power supplies, etc. have been reduced in size to where small, mobile client devices may inclu

In one embodiment, docking stations may be provided that allow users with mobile client devices to connect to and use components that are not available on the mobile client device because of human or other factors. For example, docking stations may be provided in public places such as airports or libraries. The docking stations may printers or other devices for users with mobile client devices. In one embodiment, the connected by a user. The docking station may provide services such as various input/output functions to the client docking stations may not fully function without help from a real computing device such as a mobile client device the mobile client device. using the computing power of provide monitors, keyboards,

include wireless connections and wired connections. Examples of wireless connections include, but are not limited to: infrared such as IrDA and wireless network connections similar to those provided by a network interface card (NIC) in a notebook computer. Examples of wired connections include, but are not limited to: USB, FireWire, and twisted-pair A docking station may provide one or more connection options to a mobile client device. The connection options may a notebook computer. Exampl Ethernet.

docking stations. The mobile client device may provide a location to the discovery mechanism. In one embodiment, the location of the mobile client device. Alternatively, the discovery mechanism or lookup mechanism may return a URI of the space to provide the location of the one or more docking stations near the device. In one embodiment, the mobile the space containing the advertisements for the docking stations, and the mobile client device may then connect with discovery mechanism or a lookup mechanism may return the location of one or more docking stations closest to the client device may supply information to the lookup or discovery mechanism to specify requirements such as monitor another user using the docking station), components and capabilities of the various embodiment, information about the one or more docking stations may be supplied to the user on the mobile client computing network may be discovered using a discovery mechanism to discover spaces with advertisements for A mobile client device may discover the location of docking stations using a method substantially similar to that described above for mobile client devices. The location of one or more docking stations in a local distributed resolution, screen size, graphics capabilities, available devices such as printers and scanners, etc. In one device including availability (is docking stations. cking station, a claiming protocol may be initiated. When the docking station accepts the of the claim. A docking station release method may also be provided to allow the user to terminate the session on the claiming protocol may be initiated to give the user secure, exclusive connection to the docking station for the duration docking station and release the docking station for use by other users. In one embodiment, the claiming protocol may station. Alternatively, the user may select the docking station from one or more docking stations discovered using the lookup or discovery mechanism displayed on the mobile client device. When the user selects the docking station, the connections may be established between the mobile client device and the docking be a lease on the docking station service as described previously herein. When a user approaches a do claim, secure input and output

embodiment. Mobile client device 1750 may connect with discovery mechanism 1756. Mobile client device 1750 may provide a location obtained using GPS 1752 to discovery mechanism 1756. Mobile client device 1750 may also docking stations within a specified range of mobile client device 1750. Alternatively, discovery mechanism 1756 may locate a nearest docking station to mobile client device 1750 and provide the location to mobile client device 1750. provide docking station requirements to discovery mechanism 1756. Discovery mechanism 1756 may search one or more spaces 1754 for advertisements for docking stations 1758 that meet the requirements of mobile client device supplied location of mobile device 1750. Discovery mechanism 1756 may then provide the location of one or more specified range of mobile device 1750 by comparing location information stored in advertisements 1758 with the 1750. In one embodiment, a lookup or discovery mechanism may locate one or more docking stations within a Figure 39a illustrates a user of a mobile device discovering the location of docking stations according to one

station 1760. The claim may establish secure, exclusive rights to the docking station for the duration of the connection. Figure 39b illustrates a mobile client device 1750 connecting to a docking station 1760, according to one embodiment. In one embodiment, the user may move mobile client device 1750 into wireless range of docking station 1760 and connection to docking station 1760 by connecting one or more cables between docking station 1760 and mobile client described previously herein. In one embodiment, a user may be billed for use of the docking station. For example, the user may supply a credit card number as part of the process of claiming a docking station. make a wireless connection to the docking station 1760. In another embodiment, the user may establish a wired device 1750. In one embodiment, the user of the mobile client device 1750 may establish a claim to the docking In one embodiment, the claim mechanism may be a lease mechanism for a resource (the docking station) as

advertisements on other devices within the network, allowing the user to locate and use various services and content may also include a connection to a local distributed computing network and thus may provide the user of the mobile various facilities provided by the docking station 1760 such as keyboard, monitor, printer, etc. Docking station 1760 gates in the Message Gates section herein. Once connected, the user may use the client device 1750 connected to the docking station 1760 with discovery services for locating service and content in the distributed computing environment as described previously herein. Refer to the description of bill

embodiment, a docking station release mechanism may automatically be initiated when the mobile client device 1750 1760 established by the user of the mobile client device 1750. In one embodiment, the release mechanism may notify is disconnected from the docking station 1750. The release mechanism may clear any claim on the docking station the discovery mechanism 1756 and/or docking station advertisement 1758 that the docking station is available. When fmished, the user may disconnect the mobile client device 1750 from the docking station 1760. In one

mechanism. For example, a user in an airport may visually detect a docking station and connect a mobile client device to it. Another example may be a library providing a docking station room with a plurality of docking stations for use, In one embodiment, a user may connect a mobile client device to a docking station without using the discovery of the docking stations that are available where licers may access any

g

the device, request the state of the device) and to send one status message (the state of example of a simple embedded device is a"smart"switch (such as a light switch) with embedded circuitry for controlling memory for storing and executing program instructions. A simple embedded device may need to understand a limited Small Footprint and/or Embedded Devices Simple embedded or small footprint devices may have limited amounts of may manage the device to which it is connected by receiving its control requests from the switch and thus the device controlled by the switch. The smart switch may only need to understand two control set of control inputs for initiating functionality of the device and outputs for reporting the status of the device. An one or more control systems and reporting status messages to the one or more control systems. requests (change the state of the device). The smart switch

יין מוף מסטווווא סומווסווף מומו מוף מגמוומצוף.

with account print account array

device-capable protocol and the full protocol. The agent may perform the full protocol discovery for the small device, so the device may not be required to implement the full discovery protocol and service activation. In one embodiment, the small device may only need to send service-specific messages. In one embodiment, these messages may be preincoming message from the device to the service, and/or may forward replies from the service to the client. Thus, the activation to the agent. The agent may perform the service activation via the full protocol to the service and forward In one embodiment, the distributed computing environment may provide a framework (protocol) for including small devices that may not have the resource footprint (such as memory) necessary to implement the full protocol of the distributed computing environment. In one embodiment, an agent may be provided as a bridge between the small cooked on the small device, so the small device may only have to send messages that are part of the service agent may act as a service connector for the small client.

requests, report status, etc. In one embodiment, a control system may be configured to manage a variety of devices by iessages; the schema may be used by the embedded device and/or the control system sending XML request messages specific to each device or category of device that it controls and by receiving XML messages from the devices. In one embodiment, one or more XML schemas may be used to define an embedded In one embodiment of the distributed computing environment, an embedded device may be configured to receive a specific set of control requests in the form of XML messages and to send a specific set of XML messages to make device's specific set of XML m in sending and receiving XML lude a"thin"implementation of the XML messaging system as previously described herein may be associated with the virtual machine and the XML messaging layer may"sit on top" of the networking stack. It is that supports the specific set of messages for controlling and monitoring the simple embedded device. The implementation of the XML messaging system may be tailored for use with small footprint, simple embedded devices, and thus may fit in the limited memory of the small footprint devices. In one embodiment, the XML messaging system support the transport protocol for communications with one or more control systems) may be implemented in a small footprint with a virtual machine targeted at small footprint embedded devices (e. g. of the messaging system may be used in other devices than small footprint or An embedded device may incl noted that this implementation KVM). A networking stack (to embedded devices.

devices. The static messages may be precompiled and stored in the embedded devices. An incoming message may In one embodiment, static or pre-generated messages may be used for requests from control systems to embedded be compared with the stored static messages to find a match for the message and thus to perform the function requested by the message, thus reducing or eliminating the need for code to parse incoming messages.

Outgoing messages may be read directly from the stored static messages, thus reducing or eliminating the need to systems. For example, static Java objects (Java op codes) may be used for request messages. Thus, static messages may be used to reduce the code footprint of the dynamically compile outgoing messaging layer in embedded .

1

and status messages.

Control system 1800 may be networked with the devices 1804a and 1804b it controls in implementation of the XML messaging system for communicating with control system 1800 over network 1810. Control 1804b. In one embodiment, control system 1800 may include software and/or hardware responses from embedded devices 1804a and 1804b. In one embodiment, control system 1800 may include software Figure 40a illustrates an embodiment of embedded devices 1804a and 1804b controlled by a control system 1800, any of a variety of ways. The network 1810 may be wired (Ethernet, coaxial, twisted pair, power grid, etc.) and/or wireless (IrDA, microwave, etc.). In one embodiment, embedded devices 1804a and 1804b may include a thin and hardware configured to present an interface to allow a user to display the status of and remotely control the system 1800 may have an implementation of the XML messaging system for sending requests to and receiving ded devices 1804a and 1804b. embedded devices 1804a and according to one embodiment. for automatic control of embed

In one embodiment, embedded devices 1804a and 1804b may be part of another environment. The devices may not model implemented by the distributed network environment. For example, the devices automation and control system such as a LonWorks network. support the message passing may be nodes in a networked

other environment. The distributed computing environment may also provide a method or methods to wrap existing environment. Control system 1800 may serve as a bridge between the distributed computing environment and the Control system 1800 may include a control system hardware and/or software for controlling devices in the other device discovery protocols for discovering the devices for access from the distributed network environment.

Bridging and wrapping protocols are further described herein in the Bridging section.

Control system 1800 may be connected remotely or locally to one or more other systems in the distributed computing s control system 1800 connected to client 1806 via the Internet 1802. environment. Figure 40a show

system than the thin implementation on the embedded devices 1804a and 1804b. In one embodiment, client 1806 may Client 1806 may indirectly request the status of, and send control requests to, embedded devices 1804a and 1804b through control system 1800. Thus, control system 1800 may serve as a proxy or bridge for embedded devices 1804a and 1804b. See the Bridging section herein. To enable sophisticated communication between the client 1806 and the include software and hardware configured to present an interface to allow a user of client 1806 to display the status of correct authorization credentials to control system 1800 to enable the client 1806 to access embedded devices 1804a and 1804b. In one embodiment, client 1806 may be granted access at different levels. For example, client 1806 may the distributed computing environment, and thus may be accessed by client 1806 using the client-service method as described previously in this document. In one embodiment, client 1806 may be able to view the status of, and to devices. In one embodiment, control system 1800 may be a service, may have a service advertisement published in and the control system may have different implementations of the XML messaging of embedded devices 1804a and 1804b but not be allowed to remotely control the and remotely control the embedded devices 1804a and 1804b. In one embodiment, client 1806 must present the remotely control, control system 1800. control system 1800, the client only be able to view the status

implementation of the XML messaging system for communicating with client control system 1808 over the Internet 1802. Client control system 1808 may have an implementation of the XML messaging system for sending requests to 1804d, according to one embodiment. In one embodiment, embedded devices 1804c and 1804d may include a thin embedded devices 1804c and 1804d. In one embodiment, client control system 1808 Figure 40b illustrates client control system 1808 connected via the Internet 1802 to embedded devices 1804c and and receiving responses from

1

may mount somware and manyware commyned to present an interface to anow a user to display the status of and remotely control the embedded devices 1804c and 1804d. In one embodiment, client control system 1800 may include software and/or hardware for automatic control of embedded devices 1804c and 1804d.

functionality of the devices, may have published service advertisements in the distributed computing environment, and requiring a proxy (e. g. control system). Embedded devices 1804c and 1804d may include services for accessing the devices 1804c and 1804d may be accessed by one or more clients in the distributed computing environment without A difference between Figure 40a and Figure 40b is that, in the embodiment illustrated in Figure 40b, the embedded client-service method as described previously in this document. thus may be accessed via the

bridge service may interact with the client via XML messages to gather input parameters. The following is included as element name="urlstring"type="string"/> </type> Then, outside the distributed computing environment, the bridge The distributed computing environment may include a mechanism for a resource-limited client to retrieve Universal Resource Identifier (URI) addressed resources. For example, a client that is only capable of sending and receiving messages via an IrDA connection may not be able to establish a URI connection to retrieve results from a results space. In one embodiment, a service may be provided as a bridge between the client and the URI resource. The service may establish a URI connection and retrieve the resource. The resource may then be encapsulated as a an example of XML input message syntax and is not intended to be limiting in any way: <type name="HttpGet"> payload in one or more XML messages and sent to the client by the bridge service

system for maintaining an optimum energy consumption level. The plurality of devices may each include an embedded device for controlling the electronic devices. The embedded devices may include the thin implementation of the XML devices. When energy consumption levels need to be adjusted, XML control messages may be sent to one or more of controlling the devices. The control system may accept input from users, and may display and otherwise output status messaging system. One or more control systems may be coupled to the devices in a network, for example, a building LAN or even the Internet. A control system may store and execute a building management software package and an The following illustration of one possible use of embedded devices with thin implementations of the XML messaging system is included for exemplary purposes and is not intended to be limiting. A building may include a plurality of implementation of the XML messaging system configured to be used by the software package for monitoring and devices. Energy consumption may be monitored by receiving XML status messages from each of the plurality of electronic devices that consume energy (e. g. lights, air conditioners, office equipment), and thus may require a information for the building energy consumption system, including status information for each of the plurality of the devices to cause the energy consumption to change.

lets. The mechanism may provide functionality for developing services for the distributed embodiment, the distributed computing environment may provide a mechanism for Implementing Services In one implementing services as serv computing environment.

the status of the service. A user may access the status of the service by accessing the status page from a browser. In one embodiment, the API may be used to process incoming messages and to generate documents in response to the to generate an initialization status page, for example, an HTML page, that may define allow the service to be initialized and registered in a space. In one embodiment, the API may be used to invoke the In one embodiment, an Application Programming Interface (API) may be provided that provides the functionality to initialization of the service and

the client connection to the service (unique session ID) Management of an activation space that may be used to store mechanism may provide several functions including, but not limited to: Management of ement of leases on connections sessions and results in activation spaces Garbage results advertisements Manag An embodiment of the servlet

transformation service and a print service, combining the transformation and print service may create a third cascaded advertisement for a cascaded service is included for exemplary purposes and is not intended to be limiting in any way: <Service> &It;name>Complex Servicedname> <ID>... </ID> <description> ... </description> <AccessMethod> <AccessMethod> <name>com. transcode. jpg2psdname> <implementation>http://www. transcode.
com/software/jpg2ps. jardimplementation> </AccessMethod> <AccessMethod> <name>com/software/fpg2ps. jardimplementation> </AccessMethod> <AccessMethod> ftpPrint</implementationhttp://www. printer. com/software/ftpprint. jar</implementation>
</AccessMethod> </AccessMethod>

Conclusion Various embodiments may further include receiving, one embodiment, the distributed computing environment may provide a service cascading mechanism by which new, collection of sessions and results Authentication of clients Generation of client capabilities on a per session basis In and/or data implemented in accordance with the foregoing description upon a carrier a carrier medium may include storage media or memory media such as magnetic or optical media, e. g., disk or CD-ROM, volatile or non-volatile media such as RAM (e. g. SDRAM, RDRAM, SRAM, service. In one embodiment, two or more services may be combined into a complex service by defining access etc.), ROM, etc. as well as transmission media or signals such as electrical, electromagnetic, or digital signals, complex services may be constructed from other existing services. For example, from a JPEG-to- PostScript methods of the two or more services as the access methods of the cascaded service. The following service conveyed via a communication medium such as network and/or a wireless link. sending or storing instructions medium. Generally speaking,

Various modifications and changes may be made as would be obvious to a person skilled in the art having the benefit of this disclosure. It is intended that the invention embraces all such modifications and changes and, accordingly, the specifications, appendices and drawings are to be regarded in an illustrative rather than a restrictive sense. Home

Contact

Español · Français

Activities & S

Home > Activities & Services > PatentScope

Search result: 1 of

PCT Electronic Filing Patent & Technical PCT Resources E-mail Updates Law of Patents Current Issues About Patents Information Meetings Statistics Contact Home

[Printable version]

TRANSFORMATION OF OBJECTS BETWEEN A COMPUTER ANGUAGE AND A DATA REPRESENTATION LANGUAGE (WO/2001/086427 PROGRAMMING

Description Biblio. Data

Claims

Documents

WHAT IS CLAIMED IS 1. A method for representing computer programming language objects in a data representation programming language object to a compilation process of the virtual machine, wherein the first object is an instance of a class in the computer programming language; and the compilation process of the virtual machine converting the first object into a data representation language representation of the first object; wherein the data representation language language, the method comprising: a process executing within a virtual machine providing a first computer representation of the first object is configured for use in generating a copy of the first object.

- 2. The method as recited in claim 1, wherein the first object references one or more computer programming language representation language representation of the first object comprises the compilation process converting the one or objects, and wherein the compilation process of the virtual machine converting the first object into a data more objects into data representation language representations of the one or more objects.
- 3. The method as recited in claim 1, wherein the compilation process of the virtual machine converting the first object intermediary table representation of the first object; and processing the intermediary table representation of the first object into the data representation language representation of the first object. into a data representation language representation of the first object comprises: processing the first object into an
- 4. The method as recited in claim 3, wherein the first object comprises one or more instance variables, and wherein said processing the first object into an intermediary table representation comprises: for each of the one or more wherein the entry for each of the one or more instance variables includes an identifier of the instance variable and instance variables in the first object, generating an entry in the intermediary table representation of the first object value of the instance variable.
- an enumeration value that uniquely identifies the instance variable in the plurality of instance variables with the same identifier, and wherein the entry for each of the plurality of instance variables with the same identifier further includes aim 4, wherein the first object comprises a plurality of instance variables with the same 5. The method as recited in cl identifier.

 t_{ij}

Ċ

- the intermediary table representation of the first object, generating a corresponding element in the data representation of the first object, wherein the element in the data representation language representation of 6. The method as recited in claim 4, wherein said processing the intermediary table representation of the first object into the data representation language representation of the first object comprises: for each of one or more entries in the first object includes an identifier of the instance variable and a value of the instance variable.
- representation of the first object are configured for use in initializing one or more corresponding instance variables in 7. The method as recited in claim 6, wherein the one or more elements in the data representation language the copy of the first object.
- 8. The method as recited in claim 1, further comprising providing an application programming interface (API) for the compilation process, wherein the API comprises interfaces to one or more methods of the compilation process configured for use by processes executing within the virtual machine to convert computer programming language objects into data representation language representations of the objects.
- 9. The method as recited in claim 1, wherein said data representation language is extensible Markup Language (XML).
- 10. The method as recited in claim 1, wherein said computer programming language is the Java programming language.
- 11. The method as recited in claim 1, wherein the virtual machine is a Java Virtual Machine (JVM).
- representation of a first computer programming language object from a first process; a decompilation process of the representations of the objects, the method comprising: a virtual machine receiving a data representation language virtual machine generating the first object from the data representation language representation of the first object, providing the first object to a second process executing within the virtual machine. istance of a class in the computer programming language; and the decompilation 12. A method for generating computer programming language objects from data representation language wherein the first object is an in process of the virtual machine
- representation of the first object includes representations of the one or more referenced 13. The method as recited in claim 12, wherein the first object references one or more computer programming language objects, wherein the objects
- presentations of the one or more referenced objects included in the representation of the 14. The method as recited in claim 13, wherein the decompilation process of the virtual machine generating the first of the first object comprises the decompilation process generating the one or more object from the representation referenced objects from the re first object.
- representation language representation of the first object comprises: processing the data representation language representation of the first object; and generating the first 15. The method as recited in claim 12, wherein the decompilation process generating the first object from the data object from the intermediary table representation of the first object.
- 16. The method as recited in claim 15, wherein the data representation language representation of the first object commises one or more elements each representing an instance variable of the first object wherein each element in

.

N.

the data representation language representation comprises an identifier for the instance variable represented by the element and a value for the instance variable represented by the element

- 17. The method as recited in claim 16, wherein said processing the data representation language representation of the intermediary table representation of the first object for each of the one or more elements in the data representation first object into an intermediary table representation of the first object comprises generating an entry in the language representation of the first object
- representation of the first object comprises: instantiating the first object as an instance of the class; and for each of the one or more entries in the intermediary table representation of the first object, initializing a corresponding instance 18. The method as recited in claim 17, wherein said generating the first object from the intermediary table variable in the first object in accordance with the entry.
- 19. The method as recited in claim 17, wherein said processing the intermediary table representation of the first object le representation of the first object, invokeing a method corresponding to the identifier of into the first object comprises: instantiating the first object as an instance of the class; and for each of the one or more the instance variable from the entry to initialize a corresponding instance variable in the first object to the value of the instance variable from the entry entries in the intermediary tabl
- comprises an identifier of the class of the first object, and wherein the decompilation process generating the first object from the data representation language representation of the first object comprises instantiating the first object as an 20. The method as recited in claim 12, wherein the data representation language representation of the first object instance of the class associated with the class identifier.
- 21. The method as recited in claim 12, further comprising providing an application programming interface (API) for the decompilation process, wherein the API comprises interfaces to one or more methods of the decompilation process configured for use by processes executing within the virtual machine to generate computer programming language objects from data representation language representations of the objects.
- 22. The method as recited in claim 12, wherein said data representation language is extensible Markup Language (XML).
- 23. The method as recited in claim 12, wherein said computer programming language is the Java programming language.
- 24. The method as recited in claim 12, wherein the virtual machine is a Java Virtual Machine (JVM).
- representation of the object; sending the message to a second process; and the second process generating a copy of generating a representation of the object in a data representation language subsequent to said receiving; generating object, wherein the object is an instance of a class in the computer programming language; the first virtual machine 25. A method for passing computer programming language objects between processes in a distributed computing environment, comprising: a first virtual machine receiving from a first process a computer programming language message in the data representation language, wherein the message includes the data representation language the computer programming language object from the data representation language representation of the object included in the message,

- 26. The method as recited in claim 25, wherein the object references one or more computer programming language objects, and wherein said generating a representation of the object in a data representation language comprises generating data representation language representations of the one or more objects.
- 27. The method as recited in claim 25, wherein the object comprises one or more instance variables, and wherein said instance variables in the object, generating an element in the data representation language representation of the first the object in a data representation language comprises: for each of the one or more object, wherein the element for each of the one or more instance variables includes an identifier of the instance variable and a value of the instance variable. generating a representation of
- the second virtual machine generating the copy of the object from the data representation language representation of second process providing the data representation language representation of the object to a second virtual machine; 28. The method as recited in claim 25, wherein the second process generating the copy of the object comprises: the second process receiving the message including the data representation language representation of the object; the the object; and the second virtual machine providing the copy of the object to the second process.
- sentations of the one or more referenced objects, and wherein said generating the copy resentation language representation of the object comprises generating copies of the is from the data representation language representations of the one or more referenced 29. The method as recited in claim 28, wherein the first object references one or more computer programming data representation language representation of the first object includes data language objects, wherein the representation language repre of the object from the data rep one or more referenced object objects.
- comprises one or more elements each representing an instance variable of the object, and wherein said generating the copy of the object from the data representation language representation of the object comprises: instantiating the copy of the object as an instance of the class; and for each of the one or more elements in the data representation language representation of the object, initializing a corresponding instance variable in the copy of the object in 30. The method as recited in claim 28, wherein the data representation language representation of the object accordance with the element.
- 31. The method as recited in claim 25, wherein said data representation language is extensible Markup Language (XML).
- 32. The method as recited in claim 25, wherein said computer programming language is the Java programming language.
- 33. The method as recited in claim 25, wherein the first virtual machine is a Java Virtual Machine (JVM).
- process, wherein the message includes information representing a computer programming language object; the first 34. A method for passing computer programming language objects between processes in a distributed computing process providing the information representing the object to a virtual machine; the virtual machine generating the object from the information representing the object, wherein the object is an instance of a class in the computer environment, comprising: a first process receiving a message in a data representation language from a second programming language; and the virtual machine providing the generated object to the first process.
- 35. The method as recited in claim 34, wherein the information representing the object comprises information

Ţ

Ŋ

representing one or more instance variables of the object, wherein the information representing each of the one or more instance variables comprises an identifier for the instance variable and a value for the instance variable.

- initializing a corresponding instance variable in the object in accordance with the information representing the instance 36. The method as recited in claim 35, wherein said generating the object from the information representing the object comprises: instantiating the object as an instance of the class; and for each of the one or more instance variables variable
- 37. The method as recited in claim 34, wherein said data representation language is extensible Markup Language (XML)
- 38. The method as recited in claim 34, wherein said computer programming language is the Java programming language.
- 39. The method as recited in claim 34, wherein the virtual machine is a Java Virtual Machine (JVM).
- 40. A device comprising: a processor; a memory comprising virtual machine program instructions executable on the processor to: convert a first computer programming language object into a data representation language representation of the first object, wherein the first object is an instance of a class in the computer programming language; wherein the data representation language representation of the first object is configured for use in generating a copy of the first object.
- receive the first computer programming language object from a process executing 41. The device as recited in claim 40, wherein the virtual machine program instructions are further executable to: provide a virtual machine; and within the virtual machine.
- object into an intermediary table representation of the first object; and process the intermediary table representation of 42. The device as recited in claim 40, wherein, in said converting the first object into a data representation language representation of the first object, the virtual machine program instructions are further executable to: process the first the first object into the data representation language representation of the first object.
- 43. The device as recited in claim 42, wherein the first object comprises one or more instance variables, and wherein, are further executable to: generate an entry in the intermediary table representation of the first object for each of the in said processing the first object into an intermediary table representation, the virtual machine program instructions one or more instance variables in the first object, wherein the entry for each of the one or more instance variables includes an identifier of the instance variable and a value of the instance variable.
- object into the data representation language representation of the first object, the virtual machine program instructions are further executable to: generate a corresponding element in the data representation language representation of the variable and a value of the instance variable; wherein the one or more elements in the data representation language representation of the first object are configured for use in initializing one or more corresponding instance variables in 44. The device as recited in claim 43, wherein, in said processing the intermediary table representation of the first element in the data representation language representation of the first object includes an identifier of the instance first object for each of one or more entries in the intermediary table representation of the first object, wherein the the copy of the first object.

- programming language objects for conversion into data representation language representations of the objects; and 45. The device as recited in claim 44, wherein the memory further comprises: an application programming interface (API) to the virtual machine program instructions, wherein the API is configured to: receive as input computer provide as output the data representation language representations of the objects.
- 46. The device as recited in claim 40, wherein said data representation language is extensible Markup Language (XML).
- 47. The device as recited in claim 40, wherein said computer programming language is the Java programming language.
- provide a virtual machine configured to process bytecode into program instructions executable on the processor. 48. The device as recited in claim 40, wherein the virtual machine program instructions are further executable to
- 49. The device as recited in claim 48, wherein the virtual machine is a Java Virtual Machine (JVM).
- object is an instance of a class in the computer programming language; 51. The device as recited in claim 50, wherein processor to: receive a data representation language representation of a first computer programming language object; 50. A device, comprising: a processor; a memory comprising virtual machine program instructions executable on the generate the first object from the data representation language representation of the first object, wherein the first the virtual machine program instructions are further executable to: provide a virtual machine; and provide the generated first object to a process executing on the virtual machine.
- 52. The device as recited in claim 50, wherein the first object references one or more computer programming language instructions are further executable to generate the one or more referenced objects from the representations of the one objects, wherein the representation of the first object includes representations of the one or more referenced objects, wherein, in said generating the first object from the representation of the first object, the virtual machine program or more referenced objects included in the representation of the first object.
- 53. The device as recited in claim 50, wherein, in said generating the first object from the data representation language representation of the first object, the virtual machine program instructions are further executable to: process the data representation language representation of the first object into an intermediary table representation of the first object; and generate the first object from the intermediary table representation of the first object.
- the data representation language representation comprises an identifier for the instance variable represented by the comprises one or more elements each representing an instance variable of the first object, wherein each element in 54. The device as recited in claim 50, wherein the data representation language representation of the first object element and a value for the instance variable represented by the element.
- the first object into an intermediary table representation of the first object, the virtual machine program instructions are further executable to generate an entry in the intermediary table representation of the first object for each of the one or 55. The device as recited in claim 54, wherein, in said processing the data representation language representation of resentation language representation of the first object. more elements in the data rep
- object into the first object, the virtual machine program instructions are further executable to: instantiate the first object 56. The device as recited in claim 55, wherein, in said processing the intermediary table representation of the first

O

as an instance of the class; and for each of the one or more entries in the intermediary table representation of the first operable to initialize a corresponding instance variable in the first object to the value of the instance variable from the object, invoke a method corresponding to the identifier of the instance variable from the entry, wherein the method is entry.

- machine program instructions, wherein the API is configured to: receive as input the data representation language 57. The device as recited in claim 51, further comprising: an application programming interface (API) to the virtual representation of the first object; and provide as output the generated first object.
- 58. The device as recited in claim 50, wherein said data representation language is extensible Markup Language (XML)
- 59. The device as recited in claim 50, wherein said computer programming language is the Java programming language.
- provide a virtual machine configured to process bytecode into program instructions executable on the processor. laim 50, wherein the virtual machine program instructions are further executable to 60. The device as recited in cl
- 61. The device as recited in claim 60, wherein the virtual machine is a Java Virtual Machine (JVM)
- 62. A distributed computing system, comprising: a first device comprising: a first processor; a first memory comprising: enerate a representation of the object in a data representation language subsequent to first process a computer programming language object, wherein the object is an instance of a class in the computer process executable within the first virtual machine; wherein the first virtual machine is operable to: receive from the virtual machine program instructions executable on the first processor to provide a first virtual machine; and a first said receiving; wherein the first process is operable to: generate a message in the data representation language, wherein the message includes the data representation language representation of the object. programming language; and g
- 63. The system as recited in claim 62, further comprising: a second device comprising: a second processor; a second memory comprising: virtual machine program instructions executable on the second processor to provide a second virtual machine; a second process executable within the second virtual machine; wherein the first process is further operable to send the message to the second process.
- data representation language representation of the object; and provide the data representation language representation of the object to the second virtual machine; wherein the second virtual machine is operable to: generate 64. The system as recited in claim 63, wherein the second process is operable to: receive the message including the lata representation language representation of the object; and provide the copy of the a copy of the object from the c object to the second process.
- 65. The system as recited in claim 63, wherein the first virtual machine and the second virtual machine are further into program instructions executable on the processor. operable to process bytecode
- 66. The system as recited in claim 63, wherein the first virtual machine and the second virtual machine are Java Virtual Machines (JVMs).

sentations of the one or more referenced objects, and wherein, in said generating the copy of the object from the data representation language representation of the object, the second virtual machine is further operable to generate copies of the one or more referenced objects from the data representation language iaini oz, wnerem me msi objeci reierences one oi more computei programmi data representation language representation of the first object includes data representations of the one or more referenced objects. or. The system as reched in C language objects, wherein the representation language repre

comprises one or more elements each representing an instance variable of the object, and wherein, in said generating the copy of the object from the data representation language representation of the object, the second virtual machine elements in the data representation language representation of the object, initialize a corresponding instance variable is further operable to: instantiate the copy of the object as an instance of the class; and for each of the one or more 68. The system as recited in claim 62, wherein the data representation language representation of the object in the copy of the object in accordance with the element.

69. The system as recited in claim 62, wherein said data representation language is extensible Markup Language (XML).

70. The system as recited in claim 62, wherein said computer programming language is the Java programming language.

ing within a virtual machine providing a first computer programming language object to a representation language representation of the first object; wherein the data representation language representation of the first object is configured for use in generating a copy of the first object. 71. A carrier medium comprising program instructions, wherein the program instructions are computer- executable to programming language; and the compilation process of the virtual machine converting the first object into a data compilation process of the virtual machine, wherein the first object is an instance of a class in the computer implement : a process executi

Γ

72. The system as recited in claim 71, wherein, in said converting the first object into a data representation language representation of the first object, the program instructions are further computer-executable to implement: processing the first object into an intermediary table representation of the first object; and processing the intermediary table representation of the first object into the data representation language representation of the first object

further computer-executable to implement: for each of the one or more instance variables in the first object, generating 73. The carrier medium as recited in claim 72, wherein the first object comprises one or more instance variables, and wherein, in said processing the first object into an intermediary table representation, the program instructions are an entry in the intermediary table representation of the first object, wherein the entry for each of the one or more instance variables includes an identifier of the instance variable and a value of the instance variable.

74. The carrier medium as recited in claim 73, wherein, in said processing the intermediary table representation of the first object into the data representation language representation of the first object, the program instructions are further computer-executable to implement: for each of one or more entries in the intermediary table representation of the first wherein the element in the data representation language representation of the first object includes an identifier of the instance variable. object, generating a corresponding element in the data representation language representation of the first object

75. The carrier medium as recited in claim 71, wherein said data representation language is extensible Markup Language (XML).

t •

- 76. The carrier medium as recited in claim 71, wherein said computer programming language is the Java programming language.
- 77. The carrier medium as recited in claim 71, wherein the virtual machine is a Java Virtual Machine (JVM).
- implement: a virtual machine receiving a data representation language representation of a first computer programming language object from a first process; a decompilation process of the virtual machine generating the first object from the computer programming language; and the decompilation process of the virtual machine providing the first object to a 78. A carrier medium comprising program instructions, wherein the program instructions are computer- executable to data representation language representation of the first object, wherein the first object is an instance of a class in the second process executing within the virtual machine.
- processing the data representation language representation of the first object into an intermediary table representation 79. The carrier medium as recited in claim 78, wherein, in said generating the first object from the data representation language representation of the first object, the program instructions are further computer-executable to implement: of the first object; and generating the first object from the intermediary table representation of the first object
- representation of the first object, initializing a corresponding instance variable in the first object in accordance with the representation of the first object, the program instructions are further computer-executable to implement: instantiating 80. The carrier medium as recited in claim 79, wherein, in said generating the first object from the intermediary table the first object as an instance of the class; and for each of the one or more entries in the intermediary table entry.
- 81. The carrier medium as recited in claim 78, wherein said data representation language is extensible Markup Language (XML).
- 82. The carrier medium as recited in claim 78, wherein said computer programming language is the Java programming language.
- 83. The carrier medium as recited in claim 78, wherein the virtual machine is a Java Virtual Machine (JVM)
- line receiving from a first process a computer programming language object, wherein the a data representation language subsequent to said receiving; generating a message in the data representation language, wherein the message includes the data representation language representation of ing program instructions, wherein the program instructions are computer- executable to the object; sending the message to a second process; and the second process generating a copy of the computer from the data representation language representation of the object included in the object is an instance of a class in the computer programming language; the first virtual machine generating a 84. A carrier medium comprisi representation of the object in programming language object implement: a first virtual mach message.
- are further computer-executable to implement: for each of the one or more instance variables in the object, generating representation of the object in a data representation language, the program instructions an element in the data representation language representation of the first object, wherein the element for each of the one or more instance variables includes an identifier of the instance variable and a value of the instance variable. 85. The carrier medium as recited in claim 84, wherein the object comprises one or more instance variables, and wherein, in said generating a

language representation of the object to a second virtual machine; the second virtual machine generating the copy of instructions are further computer-executable to implement: the second process receiving the message including the data representation of the object; the second process providing the data representation the object from the data representation language representation of the object; and the second virtual machine 86. The carrier medium as recited in claim 84, wherein, in said generating the copy of the object, the program providing the copy of the object to the second process.

the copy of the object from the data representation language representation of the object, the program instructions are further computer-executable to implement: instantiating the copy of the object as an instance of the class; and for each of the one or more elements in the data representation language representation of the object, initializing a corresponding instance variable in the copy of the object in accordance with the element. 87. The carrier medium as recited in claim 86, wherein the data representation language representation of the object comprises one or more elements each representing an instance variable of the object, and wherein, in said generating

88. The carrier medium as recited in claim 84, wherein said data representation language is extensible Markup Language (XML). 89. The carrier medium as recited in claim 84, wherein said computer programming language is the Java programming language.

90. The carrier medium as recited in claim 84, wherein the first virtual machine is a Java Virtual Machine (JVM).

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.