SIMULATION OF UNCONTROLLED RECTIFIER ON MATLAB / SIMULINK

Objective: The objective of this experiment is to study the operation of single-phase uncontrolled rectifiers using MATLAB/SIMULINK.

Parameter:

Parameter	Value
Input voltage	230 V, 50 Hz
Source Inductance	10 mH
Case 1: Load	20 Ω
Case 2: Load	20 Ω in series with 20 mH Inductance
Case 3: Load	20 Ω in series with 200 mH Inductance
Case 4: Load with Source Inductance	20Ω in series with 200 mH inductance & L _s
	=10mH

Theory: Rectifier is a AC to DC converter. In this converter we are using diode so we do not have controlled output so it is an uncontrolled rectifier.

Avg. Output Voltage:

$$V_{o} = \frac{2V_{m}}{\pi}$$

Where V_m is maximum input voltage.

Overlap angle µ (when source inductance present):

$$Cos(\alpha + \mu) = Cos\alpha - \frac{2\omega L_s I_o}{V_m}$$

Design procedure and final design parameters obtained:

• In positive half cycle of input voltage D₁ and D₂ conducts, so

$$V_o = V_{in}$$

• In negative half cycle of input voltage D₃ and D₄ conducts, so

$$V_0 = -V_{in}$$

• Here we are taking 100 Samples for each Time period So, Sampling frequency is 100 times of maximum frequency(100Hz).

So, Sampling Time Period = 100μ Sec.

Circuit Diagram and Theoratical Waveforms:

Fig.1 Theoratical Diagram of Uncontrolled Rectifier

Simulation Model:

Fig.2 Simulation model without source inductance

Fig.3 Simulation model with source inductance

Waveforms and Results:

Case 1 : Load 1 ($R=20\Omega$)

	Theoratical	Practical
Avg. Output Voltage	207V	206V
Ripple in Output Current	16.25A	16A
Source V 200 200 200 200 200 200 200 200 200 2	15 10 5	Load Current
Source 0 90 00 00 00 00 00 00 00 00 0	10	Load Voltage 0.34 0.345 0.35 0.355 0.36 0.365 0.37
0 0.325 0.33 0.335 0.34 0.345 0.35 0.355 Time(Sec.0	0.36 0.365 0.37 0.325 0.33 0.335	0.34 0.345 0.35 0.355 0.36 0.365 0.37 Time(sec.)

Case 2 : Load 2 ($R=20\Omega \& L=20mH$)

Case 3: Load 3 ($R=20\Omega \& L=200mH$)

	Theoratical	Practical
Avg. Output Voltage	207V	206V
Ripple in Output Current	3.1A	3.8A

Case 4: Load 3 (R= 20Ω & L=20mH) with Source Inductance (L_m)

	Theoratical	Practical
Avg. Output Voltage	187V	185.4V
Ripple in Output Current	2.6A	3A
Overlap Angle	36.95 °	32.5 °

Result: Due to the source inductance there is reduction in output voltage observed.

SIMULATION OF PHASE CONTROLLED RECTIFIER ON MATLAB / SIMULINK

Objective: The objective of this experiment is to study the operation of single-phase controlled rectifiers using MATLAB/SIMULINK.

Parameters:

Parameter	Value
Input voltage	230 V, 50 Hz
Source Inductance	10 mH
Case 1: Load & Firing angle $\alpha = 30$	20Ω in series with 200 mH Inductance
Case 2: Load & Firing angle $\alpha = 60$	20Ω in series with 200 mH Inductance
Case 3: Load, $L_s \& \alpha = 30$	20 Ω in series with 200 mH inductance & L _s =10mH

Theory: Rectifier is a AC to DC converter. In this converter we are using diode so we do not have controlled output so it is an uncontrolled rectifier.

Avg. Output Voltage:

$$V_o = \frac{V_m}{\pi} (1 + \cos \alpha)$$
 valid for R load

Where V_m is maximum input voltage.

Avg. Output Voltage:

$$V_o = \frac{2V_m}{\pi} \cos \alpha$$
 valid for continuous conduction

Overlap angle μ (when source inductance present):

$$Cos(\alpha + \mu) = Cos\alpha - \frac{2\omega L_s I_o}{V_m}$$

Design procedure and final design parameters obtained:

• In positive half cycle of input voltage, Thyristor T₁ and T₂ conducts, so

$$V_o = V_{in}$$

• In negative half cycle of input voltage, Thyristor T₃ and T₄ conducts, so

$$V_0 = -V_{in}$$

• Here we are taking 100 Samples for each Time period So, Sampling frequency is 100 times of maximum frequency(100Hz).

So, Sampling Time Period = 100μ Sec.

Circuit Diagram and Theoratical Waveforms:

Simulation Model:

Fig.2 Simulation model without source inductance ($\alpha\text{=-}30^\circ\text{)}$

Fig.3 Simulation model without source inductance (α =90°)

Fig.3 Simulation model with source inductance (α =30°)

Waveforms and Results:

Case 1: Load 1 (R= 20Ω & L=200mH) (α = 30°)

	Theoratical	Practical
Avg. Output Voltage	179.33V	177.5V
Ripple in Output Current	8.96A	10.2A

Case 2 : Load 2 (R=20 Ω & L=200mH) (α =90 $^{\circ}$)

	Theoratical	Practical
Avg. Output Voltage	103.53V	101.2V
Ripple in Output Current	5.17A	7.3A

Case 4 : Load 3 (R=20 Ω & L=200mH) with Source Inductance (L_s) (α =30°)

	Theoratical	Practical
Avg. Output Voltage	166V	164.8V
Ripple in Output Current	3.25A	3A
Overlap Angle	9°	12°

Result: Due to the source inductance there is reduction in output voltage observed.