ASSIGNMENT-7

18 k4140031

Let us consider a sample dataset have one input (x) and one output (4,2), and number of samples 4.

Develop a simple linear regression model using BGD

Samples (i)	×å	Y,a
	0. 2	3.4
2 1911 T	0.4	3.8
31-40	0.6	4.2
4	0.8	4.6

Manual Calculations:

3tol: [x,y], epochs = a, m=1, (=-1, 2/=0.1, ng=2 X Y 3.4 3.8

styr3: $E = \frac{1}{2n_s} \sum_{i=1}^{n_s} (y_i - mx_i - c)^2$

$$\frac{\partial E}{\partial m} = -\frac{1}{n_s} \left[\sum_{i=1}^{n_s} (y_i - mx_i - c) x_i \right]$$

om
$$= \frac{1}{a} \left[(3.4 - (1)(0.2) + 1)(0.2) + (3.8 - (1)(0.4) + 1)(0.4) \right]$$

$$= -\frac{1}{a} \left[(4.2)(0.2) + (4.4)(0.4) \right] = -1.3$$

$$\frac{1}{2} \left[\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 4} \right] + \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 4} \cdot \frac{1}{4} + \frac{1}{4 \cdot 3}$$

$$\Delta m = -7 \frac{\partial E}{\partial m}$$

$$= -(0.1)(-1.3) = 0.13$$

$$\Delta C = -7 \frac{\partial E}{\partial c}$$

$$= -(0.1)(-4.3) = 0.43$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} = 1.13$$

$$C = C + \Delta C$$

$$= -1 + 0.43 = 0.57$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3}$$

$$\frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot 3} \cdot \frac{1}{4 \cdot$$

Step 4:
$$\delta m: -\gamma \frac{\partial t}{\partial m}$$

= $-(0.1)(-a.4333) = 0.24333$.

 $\Delta c = -\gamma \frac{\partial t}{\partial c}$

= $-(0.1)(-3.831) = 0.3831$

Step 5: $m = m + \Delta m$

= $1.13 + 0.24333 = 1.37333$
 $c = (+\Delta c)$

= $-0.57 + 0.3831 = -0.1869$

Step 6: $fr = fr + 1$

= $241 = 3$

Step 1: $9f = fr + 1$

= $241 = 3$

Step 3: $9f = fr + 1$

= $411 = 3$

Step 4: $9f = fr + 1$

= $9f = fr + 1$

=

11.39388