

### Feature Selection

| Subject | Feature 1 | Feature 2 | Feature 3 | Feature 4 | Feature 5 | Feature 6 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|
| Normal  | 3         | 5         | 5.1       |           |           |           |
| Normal  | 8.7       | 9         | 5         |           |           |           |
| Normal  | 6         | 8         | 4.9       |           |           |           |
| Normal  | 6.5       | 7         | 5.2       |           |           |           |
| AD      | 8         | 16        | 5         |           |           |           |
| AD      | 8.5       | 15        | 5         |           |           |           |
| AD      | 9.2       | 20        | 4.8       |           |           |           |
| AD      | 7.9       | 20        | 4.9       |           |           |           |



$$J(w) = -\frac{1}{m} \left[ \sum_{i=1}^m y^{(i)} \log h_w \big( x^{(i)} \big) + (1 - y^{(i)}) \log (1 - h_w \big( x^{(i)} \big)) \right] + \lambda \sum_{j=1}^n w_j^2$$

Repeat { 
$$w_0 \coloneqq w_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_0^{(i)}$$
 
$$w_j \coloneqq w_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 } 
$$(j = 0, 1, 2, 3, ..., n)$$



$$J(w) = -\frac{1}{m} \left[ \sum_{i=1}^{m} y^{(i)} \log h_w (x^{(i)}) + (1 - y^{(i)}) \log (1 - h_w (x^{(i)})) \right] + \lambda \sum_{j=1}^{n} |w_j|$$



$$J(w) = -\frac{1}{m} \left[ \sum_{i=1}^m y^{(i)} \log h_w \big( x^{(i)} \big) + (1 - y^{(i)}) \log (1 - h_w \big( x^{(i)} \big)) \right] + \lambda \sum_{j=1}^n |w_j|$$

Repeat { 
$$w_0 \coloneqq w_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_0^{(i)}$$
 
$$w_j \coloneqq w_j - \alpha \frac{\lambda}{m} sgn(w) - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 } 
$$(j = 0, 1, 2, 3, ..., n)$$



$$J(w) = -\frac{1}{m} \left[ \sum_{i=1}^{m} y^{(i)} \log h_w(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_w(x^{(i)})) \right]$$





### Feature Selection

| Subject | Feature 1 | Feature 2 | Feature 3 | Feature 4 | Feature 5 | Feature 6 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|
| Normal  | 3         | 5         | 5.1       |           |           |           |
| Normal  | 8.7       | 9         | 5         |           |           |           |
| Normal  | 6         | 8         | 4.9       |           |           |           |
| Normal  | 6.5       | 7         | 5.2       |           |           |           |
| AD      | 8         | 16        | 5         |           |           |           |
| AD      | 8.5       | 15        | 5         |           |           |           |
| AD      | 9.2       | 20        | 4.8       |           |           |           |
| AD      | 7.9       | 20        | 4.9       |           |           |           |



## **Entropy**

• Amount of information:  $log\{p(x)\}$ 

• Entropy:  $H(x) = -\Sigma_x p(x) \log\{p(x)\}$ 

• Joint entropy:  $H(X,Y) = -\sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) \log\{p(x_i, y_j)\}$ 

• Mutual information:  $I(X;Y) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i)p(y_j)}$ 

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$



## **Decision Tree**

| Subject | Feature 1 | Feature 2 | Feature 3 |
|---------|-----------|-----------|-----------|
| Normal  | 3         | 5         | 5.1       |
| Normal  | 8.7       | 9         | 5         |
| Normal  | 6         | 8         | 4.9       |
| Normal  | 6.5       | 7         | 5.2       |
| AD      | 8         | 16        | 5         |
| AD      | 8.5       | 15        | 5         |
| AD      | 9.2       | 20        | 4.8       |
| AD      | 7.9       | 20        | 4.9       |



#### mRMR Feature Selection

#### Minimum-redundancy-maximum-relevance(mRMR) feature selection

| Subject | Feature 1 | Feature 2 | Feature 3 |
|---------|-----------|-----------|-----------|
| Normal  | 3         | 5         | 5.1       |
| Normal  | 8.7       | 9         | 5         |
| Normal  | 6         | 8         | 4.9       |
| Normal  | 6.5       | 7         | 5.2       |
| AD      | 8         | 16        | 5         |
| AD      | 8.5       | 15        | 5         |
| AD      | 9.2       | 20        | 4.8       |
| AD      | 7.9       | 20        | 4.9       |

$$D(S,c) = \frac{1}{|S|} \sum_{f_i \in S} I(f_i;c)$$

$$R(S) = \frac{1}{|S|^2} \sum_{f_i, f_j \in S} I(f_i; f_j)$$

$$mRMR = \max_{S} \left[ \frac{1}{|S|} \sum_{f_i \in S} I(f_i; c) - \frac{1}{|S|^2} \sum_{f_i, f_j \in S} I(f_i; f_j) \right]$$



#### Feature Extraction





### **Feature Extraction**





### Auto-Encoder





## Class Activation Map





# Global Average Pooling





# **Class Activation Map**











# **Class Activation Map**





# **Applications**







# Weakly Supervised Learning







# Multiple Instance Learning







# Multiple Instance Learning