Air Quality Measurement in Poland

Content

- Area of interest
- Collected data
- Research Questions
- Proposed model
- Data visualization
- Conclusion

Area of Interest

PM_{10}

PM_{2.5}

Collected Data

- Particulate Matter:
 - PM₁₀
 - PM_{2.5}
- Weather data:
 - Temperature
 - Humidity
 - Wind direction
 - Windspeed
 - Precipitation
- Time period considered:
 - 2018 2022

Research Questions

- Is it possible for a neural network to generate an hourly forecast of particulate matter concentration over the next 14 days using a combination of CNN and LSTM?
 - Is it possible to predict the PM₁₀ value with a MAE below 10?
 - Is it possible to predict the PM_{2.5} value with a MAE below 10?
 - Is there a relationship between PM_{10} and $PM_{2.5}$ such that $PM_{2.5}$ can be predicted using the model for PM_{10} ?
 - How do our forecasts compare with those of the Polish Environmental Protection Agency? (for one day)
 - Does it make sense to combine stations into areas, so that the predictive power remains, is the same or improved compared to individual stations?

Model

- Supervised ML problem
- CNN-LSTM combination for solving the regression problem
 - Multi-Step Forecasting (PM₁₀)
- Train data and test data 1 year
 - Total 5 years collected
- Inclusion of 3 adjacent stations
 - Weighting according to distance
- Creation and Training in tensorflow

Heatmaps for PM₁₀ daily average value

Data insights

Data insights

Data insights

Correlation Analysis

Correlation analysis 2022, station 813 (Katowice); PM10 values >100ug/m^3

80 data points

Conclusion

- Although we would have expected otherwise, we did not find any (strong) correlation between the weather data and the particulate matter pollution.
- Therefore, we will try to feed as much data as possible into the neural network to achieve a learning effect.
- There is still a need to determine how to handle extreme outliers and predict days with particularly high pollution levels