UBC MATH CIRCLE 2024 PROBLEM SET 7

Problem 1. Let f be a real-valued function on the plane such that for every square ABCD in the plane, f(A) + f(B) + f(C) + f(D) = 0. Does it follow that f(P) = 0 for all P in the plane?

Problem 2. Let m be positive integers a_1, \ldots, a_m be given. Prove that there exist fewer than 2^m positive integers b_1, \ldots, b_n such that all sums of distinct b_k 's are distinct and all a_i for $1 \le i \le m$ occur among them.

Problem 3. For any polynomial $P \in \mathbb{C}[x]$ and for each complex number a, denote by P_a the set of all $z_0 \in \mathbb{C}$ such that $P(z_0) = a$. Let $P, Q \in \mathbb{C}[x]$ such that $P_2 = Q_2$ and $P_5 = Q_5$. Prove that P = Q.

Date: March 11, 2024.