計算機アーキテクチャレポート1 解答

[問1]

(1-2)

(i)

	R_{out}	R _{in}	ALU	R/W	Clear X	Y_{in}	С	WMS
ステップ 1	R1 _{out}	X _{in}	NONE	NONE	NONE	NONE	c=0	NONE
ステップ 2	$R2_{out}$	NONE	Add	NONE	NONE	Y _{in}	c=0	NONE
ステップ 3	Y _{out}	R2 _{in}	NONE	NONE	NONE	NONE	c=0	NONE

(ii)

	R_{out}	R _{in}	ALU	R/W	Clear X	Y_{in}	С	WMS
ステップ 1	R1 _{out}	MAR _{in}	NONE	Read	NONE	NONE	c=0	NONE
ステップ 2	R2 _{out}	X _{in}	NONE	NONE	NONE	NONE	c=0	WMS
ステップ 3	MDR _{out}	NONE	Add	NONE	NONE	Y_{in}	c=0	NONE
ステップ 4	Y _{out}	R2 _{in}	NONE	NONE	NONE	NONE	c=0	NONE

[問2]

オーバフローした場合:もとの数が両方とも正(最上位ビットが両方とも0)で、加算 $_2$ の結果の最上位ビットが $_1$ の時

アンダーフローした場合;もとの数が両方とも負(最上位ビットが両方とも1)で、加算₂の結果の最上位ビットが0の時

[問3]

- (3-1) $(11.11)_2=1*2+1*1+1*(1/2)+1*(1/4)=3.75$
- (3-2) 符号ビット x₉=0 指数部(x₈,x₇,x₆,x₅)=(1111) 仮数部(x₄,x₃,x₂,x₁,x₀)=(11111)
- $(1.111111*2^{15-7})_2 = (1.111111*2^8)_2 = 504$
- (3-3) 符号ビット x_9 =1 指数部 (x_8,x_7,x_6,x_5) =(0000) 仮数部 (x_4,x_3,x_2,x_1,x_0) =(00000)
- $(-1.00000*2^{0-7})_2$ = $(-1.0000*2^{-7})_2$ =-1/128=
- (3-4) ULP は(0.00001*2⁹⁻⁷)₂=(0.001)₂=1/8 絶対誤差はULPの半分であり 1/16
- (3-5) (β /2) β ^{-p} =(2/2)2⁻⁶=1/64=約 0.015