Thread Pool Mandelbrot

Philip Nelson 2017 February 4th

Hypothesis

As the program is divided up and pieces are given to different threads to execute, we should see a speed up until the number of threads exceeds the number of cores available on the CPU.

Process

For a given number of threads, the Mandelbrot set image was rendered 10 times. The average time and standard deviation were calculated for each. The set was rendered with one to nine threads as shown in figure 1

Findings

The Mandelbrot set was calculated with a single thread up to eight threads and as more threads were used interesting results were encountered. One thing was that the drop in performance was removed except when dividing by n chunks. Also one row at a time, multiple pixels less than one row and uneven rows had a linear speed up until 5 threads.

1 pixel					one row					rows divided by n chunks				
Threads	Average	Standard Dev	Speed up	Efficiency	Threads	Average	Standard Dev	Speed up	Efficiency	Threads	Average	Standard Dev	Speed up	Efficiency
1	832.012	14.7888	1	1	1	254.936	0.118637	1	1	1	253.927	0.265715	1	1
2	720.213	2.25284	1.155	0.578	2	129.171	3.00108	1.974	0.987	2	133.358	15.9108	1.904	0.952
3	680.558	12.3632	1.223	0.408	3	85.8801	0.181054	2.969	0.990	3	200.117	12.5949	1.269	0.423
4	673.9	18.607	1.235	0.309	4	64.6048	0.028623	3.946	0.987	4	123.821	11.8774	2.051	0.513
5	701.404	28.7398	1.186	0.237	5	66.0188	1.06416	3.862	0.772	5	133.582	0.284111	1.901	0.380
6	726.143	29.8088	1.146	0.191	6	67.6335	4.11349	3.769	0.628	6	152.787	26.8405	1.662	0.277
7	731.5	30.0666	1.137	0.162	7	70.2879	6.3716	3.627	0.518	7	144.187	30.3262	1.761	0.252
8	742.547	31.0157	1.120	0.140	8	67.1533	2.50222	3.796	0.475	8	142.975	32.605	1.776	0.222
multiple pixels less than one row				multiple rows unevenly divided										
Threads	Average	Standard Dev	Speed up	Efficiency	Threads	Average	Standard Dev	Speed up	Efficiency					
1	265.345	0.374052	1	1	1	264.289	0.850683	1	1					
2	139.227	16.2424	1.906	0.953	2	132.263	0.297334	1.998	0.999					
3	89.7436	0.070493	2.957	0.986	3	91.3345	8.88359	2.894	0.965					
4	69.8325	6.14018	3.800	0.950	4	71.4925	8.86943	3.697	0.924					
5	68.2355	0.551827	3.889	0.778	5	68.2867	1.81541	3.870	0.774					
6	69.0616	1.83284	3.842	0.640	6	68.707	1.53004	3.847	0.641					
7	74.2118	5.56399	3.576	0.511	7	72.067	4.40704	3.667	0.524					
8	70.3915	3.44014	3.770	0.471	8	70.9594	1.29702	3.725	0.466					

