A Taxonomy of Communication Networks

Y. Richard Yang

http://zoo.cs.yale.edu/classes/cs433/

09/04/2018

Outline

- > Admin and recap
- □ A taxonomy of communication networks

Admin

 Please check the Schedule page for links to related readings

Recap

- □ A protocol defines the format and the order of messages exchanged between two or more communicating entities, as well as the actions taken on the transmission or receipt of a message or other events.
- Key Internet milestones and their implications:
 - ARPANET is sponsored by ARPA → design should survive failures
 - The initial IMPs (routers) were made by a small company → keep the network simple
 - \circ Many networks \rightarrow

internetworking: need a network to connect networks

 \bigcirc Commercialization \rightarrow

Recall: Internet Physical Infrastructure

Observing Internet Connectivity

- Read the manual of traceroute, and try it on a zoo machine
 - % /usr/sbin/traceroute <machine_name>
 - look at the web sites of the routers you see through traceroute
 - look up info on autonomous networks (e.g., Yale)
 https://www.ultratools.com/tools/asnInfo
- Use routeviews to see connection info (e.g., neighbors) about a network, e.g.,
 - o at a glance: https://stat.ripe.net/AS29#tabId=at-a-glance
 - o routing: https://stat.ripe.net/AS29#tabId=routing

Recap: Complexity from Robustness

- Complexity in highly organized systems arises primarily from design strategies intended to create robustness to uncertainty in their environments and component parts.
 - Scalability
 - robustness to changes to the size and complexity of a system as a whole.
 - Evolvability
 - robustness of lineages to large changes on various (usually long) time scales.
 - Reliability
 - robustness to component failures.
 - Modularity
 - · robustness to component rearrangements.
 - Asynchrony
 - · robustness to uncertainty of performance.
 - Decentralization
 - robustness to single-point of failure.

Roadmap

- So far we have looked at only the topology and physical connectivity of the Internet: a mesh of computers interconnected via various physical media
- ☐ <u>A</u>basic question: how are data (the bits)
 transferred through communication networks?

Outline

- □ Admin. and recap
- > A taxonomy of communication networks

Taxonomy of Communication Networks

Broadcast networks

- o nodes share a common channel; information transmitted by a node is received by all other nodes in the network
- o examples: TV, radio

Switched networks

one) of the nodes

A Taxonomy of Switched Networks

- Circuit switching: dedicated circuit per call/session:
 - o e.g., telephone, cellular voice
- Packet switching: data sent thru network in discrete "chunks"
 - o e.g., Internet, cellular data

Outline

- Admin. and review
- > A taxonomy of communication networks
 - > circuit switched networks

Circuit Switching

- Each link has a number of "circuits"
 - sometime we refer to a "circuit" as a channel or a line
- An end-to-end connection reserves one "circuit" at each link

Key:

Host

Circuit switch

First commercial telephone switchboard was opened in 1878 to serve the 21 telephone customers in New Haven

<u>Circuit Switching: Resources/Circuits</u> (<u>Frequency</u>, <u>Time and others</u>)

Divide link resource into "circuits"

- frequency division multiplexing (FDM)
- time division multiplexing (TDM)
- others such as code division multiplexing (CDM), color/lambda division

Circuit Switching: The Process

- Three phases
 - 1. circuit establishment
 - 2. data transfer
 - 3. circuit termination

Timing Diagram of Circuit Switching

Delay Calculation in Circuit Switched Networks

Propagation delay: delay for the first bit to go from a source to a destination

Propagation delay:

- d = length of physical link
- \Box s = propagation speed in medium (~2×10⁵ km/sec)

Delay Calculation in Circuit Switched Networks

□ Transmission delay: time to pump data onto link at line rate

Transmission delay:

- R = reserved bandwidth (bps)
- □ L = message length (bits)

An Example

Propagation delay

 suppose the distance between A and B is 4000 km, then one-way propagation delay is:

$$\frac{4000 \, km}{200,000 \, km/s} = 20 \, ms$$

Transmission delay

- o suppose your iphone reserves a one-slot HSCSD channel
 - each HSCSD frame can transmit about 115 kbps
 - a frame is divided into 8 slots
- then the transmission delay of using one reserved slot for a message of 1 Kbits:

$$\frac{1kbits}{14kbps} \approx 70ms$$

An Example (cont.)

- Suppose the setup message is very small, and the total setup processing delay is 200 ms
- □ Then the delay to transfer a message of 1 Kbits from A to B (from the beginning until host receives last bit) is:

$$20 + 200 + 20 + 20 + 70 = 330ms$$

Outline

- Admin. and review
- > A taxonomy of communication networks
 - o circuit switched networks
 - > packet switched networks

Packet Switching

Each end-to-end data flow (i.e., a sender-receiver pair) divided into *packets*

Packets have the following structure:

- header and trailer carry control information (e.g., destination address, check sum)
- · where is the control information for circuit switching?
- □ At each node the entire packet is received, processed (e.g., routing), stored briefly, and then forwarded to the next node; thus packet-switched networks are also called store-and-forward networks. On its turn, a packet uses full link bandwidth

Packet Switching

Inside a Packet Switching Router

An output queueing switch

Outline

- Admin. and review
- > A taxonomy of communication networks
 - o circuit switched networks
 - packet switched networks
 - > circuit switching vs. packet switching

Packet Switching vs. Circuit Switching

- The early history of the Internet was a heated debate between Packet Switching and Circuit Switching
 - the telephone network was the dominant network

■ Need to compare packet switching with circuit switching

Circuit Switching vs. Packet Switching

	circuit switching	packet switching
resource usage		
reservation/setup		
resource contention effect		
charging		
header		
fast path processing		

Circuit Switching vs. Packet Switching

	circuit switching	packet switching
resource usage	use a single partition bandwidth	use whole link bandwidth
reservation/setup	need reservation (setup delay)	no reservation
resource contention	busy signal (session loss)	congestion (long delay and packet losses)
charging	time	packet
header	no per-pkt header	per packet header
fast path processing	fast	per packet processing

Key Issue to be Settled

☐ A key issue: what is the efficiency of resource partition?

- □ Tool used to analyze the issue: queueing theory
 - Some fundamental insight, techniques, and results in queueing theory can be quite useful in understanding systems.

Outline

- Admin. and review
- > A taxonomy of communication networks
 - o circuit switched networks
 - packet switched networks
 - o circuit switching vs. packet switching
 - > M/M queues and statistical multiplexing

Queueing Theory

- Strategy:
 - model system state
 - if we know the fraction of time that a system spends at each state, we can get answers to many basic questions about the system: how long does a new request need to wait before being served?
- System state changes upon events:
 - introduce state transition diagram
 - focus on equilibrium: state trend neither growing nor shrinking (key issue: how to define equilibrium)
- Our approach: We are not interested in mathematical-oriented derivation; rather, we use analytical techniques providing intuition

Warm up: Analysis of Circuit-Switching Blocking (Busy) Time

Assume a link has only a finite number of N circuits

 Objective: compute the percentage of time that a new session (call) is blocked

- Analogy in a more daily-life scenario?
- □ Key parameters?

Analysis of Circuit-Switching Blocking (Busy) Time

- Key parameters
 - \circ client requests arrive at a rate of λ (lambda/second)
 - \circ service rate: each call takes on average $1/\mu$ second
- ☐ Single arrival and service pattern: memoryless (Markovian)
 - O During a small interval Δt , the number of expected new arrivals is: $\lambda \Delta t$
 - O During a small interval Δt , the chance (fraction) of a current call finishes is: $\mu \Delta t$
- □ This model is also called an M/M/N model

Analysis of Circuit-Switching Blocking (Busy) Time: State

system state: # of busy lines

Goal: computes fraction of time at each state k in 0 to N

A Pure Math-Oriented Approach

Write down differential equation

Assume stationary
$$p_{i,j}(t) = p(X(s+t) = j) | p(X(s) = i)$$

Consider as birth and death process

$$p_{k,k+1}(t) = \lambda_k t, t \to 0$$

$$p_{k+1,k}(t) = \mu_{k+1} t, t \to 0$$

$$p_{k,k}(t) = 1 - (\lambda_k + \mu_{k+1}) t, t \to 0$$

Solve the equations to obtain solution.

Analysis of Circuit-Switching Blocking (Busy) Time: State

system state: # of busy lines

Goal: computes fraction of time at each state k in 0 to N

Approach: Compute $\{p_k\}$ at equilibrium, by characterizing equilibrium using relationship among $\{p_k\}$.

Equilibrium = Time Reversibility [Frank Kelly]

- Statistically cannot distinguish forward play vs backward play
- □ For example, pick statistics: the numbers of transitions between neighboring states in unit time, e.g., for each k

Analysis of Circuit-Switching Blocking (Busy) Time: Sketch

system state: # of busy lines

at equilibrium (time resersibility) in one unit time:

#(transitions $k \rightarrow k+1$) = #(transitions $k+1 \rightarrow k$)

$$p_k \lambda = p_{k+1}(k+1)\mu$$

$$p_{k+1} = \frac{1}{k+1} \frac{\lambda}{\mu} p_k = \frac{1}{(k+1)!} \left(\frac{\lambda}{\mu}\right)^{k+1} p_0$$

$$p_0 = \frac{1}{1 + \frac{1}{1!} \frac{\lambda}{\mu} + \frac{1}{2!} \left(\frac{\lambda}{\mu}\right)^2 + \dots + \frac{1}{N!} \left(\frac{\lambda}{\mu}\right)^N}$$

Queueing Analysis: Packet Switching Delay

- Four types of delay at each hop
 - nodal processing delay: check errors & routing
 - o queueing: time waiting for its turn at output link
 - transmission delay: time to pump packet onto a link at link speed
 - o propagation delay: router to router propagation
- The focus is on queueing and transmission delay

Packet Switching Delay

 $|p_0| = 1 - \rho$

system state: #packets in queue

at equilibrium (time reversibility) in one unit time: #(transitions $k \rightarrow k+1$) = #(transitions $k+1 \rightarrow k$)

$$p_k \lambda = p_{k+1} \mu$$

$$p_{k+1} = \frac{\lambda}{\mu} p_k = \left(\frac{\lambda}{\mu}\right)^{k+1} p_0 = \rho^{k+1} p_0$$

$$\rho = \frac{\lambda}{\mu}$$

Example

- Assume requests (packets) come in at a rate of one request per 50 ms
- □ Each request (packet) takes on average 20 ms
- What is the fraction of time that the system is empty?
- What is the chance that a packet newly arrived needs to wait for 3 early packets?