EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

04341463

PUBLICATION DATE

27-11-92

APPLICATION DATE

17-05-91

APPLICATION NUMBER

03113069

APPLICANT: MURATA MACH LTD;

INVENTOR:

SHIRAI SHINJI;

INT.CL.

B65H 54/44

TITLE

: PIRN WINDER DRIVE METHOD

ABSTRACT: PURPOSE: To obtain a specified forming by setting the winding speed of a thread from a pirn winder at a constant accurately.

> CONSTITUTION: A winding speed S1 of a thread from a roller 10 rotated by a frictional force of a thread Y is detected, and compared with a pre-set speed S0 to control the speed of a winding spindle 4 using an inverter so that the speed of the thread can be set at a constant.

COPYRIGHT: (C)1992,JPO&Japio

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-341463

(43)公開日 平成4年(1992)11月27日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

B65H 54/44

C 7814-3F

審査請求 未請求 請求項の数1(全 3 頁)

(21)出願番号

特願平3-113069

(71)出願人 000006297

村田機械株式会社

(22)出願日

平成3年(1991)5月17日

京都府京都市南区吉祥院南落合町3番地

(72)発明者 白井 慎治

京都府京都市伏見区竹田向代町136番地

村田機械株式会社本社工場内

(74)代理人 弁理士 絹谷 信雄

(54) 【発明の名称】 パーンワインダーの駆動方法

(57)【要約】

【目的】 パーンワインダーの糸の巻取速度をより高精 度に一定化し、所定のフォーミングを得る。

【構成】 糸Yのフリクション力によって回転するロー ラ10からの糸の巻取速度S1を検出し、予め設定され た速度S0と比較することにより、巻取スピンドル4の 速度をインバータを用いて糸速が一定になるように制御 する。

【特許請求の範囲】

【請求項1】 糸のフリクション力によって回転するロ ーラからの糸の巻取速度を検出し、予め設定された速度 と比較することにより、巻取スピンドルの速度をインバ 一夕を用いて糸速が一定になるように制御することを特 徴とするパーンワインダーの駆動方法。

【発明の詳細な説明】

[0 0 0 1]

【産業上の利用分野】本発明は、パーンワインダーの駆 動方法、特に巻取スピンドルの速度制御方法に関する。

【従来の技術】一般にパーンワインダーにおいては、フ ィラメント糸又はウーリー加工糸のパラレルチーズ,テ ーパーコーン、パーン巻など、あらゆる供給糸がパーン 形状に高速に巻取られ巻返される。

【0003】従来、パーンワインダーは、図3に示す如 く、給糸側からの糸Yをテンサ,トラバースガイド2等 を経て巻返す際、メインモータ6と巻取スピンドル4と をパリピッチプーリー駆動方式の無段変速装置50で連 より図4に示すように巻返し中の糸速をほぼ一定にし て、所定のフォーミングを得るようになっている。ま た、巻取ポピン、糸種、巻取方法(パーンフォーメーシ ョンの種類) によってギヤ比を設定し、上記無段変速装 置50によって巻取スピンドル4の回転数を変化させて いる。

[0004]

【発明が解決しようとする課題】しかし、従来の無段変 速装置による制御では、実際に糸速が一定であるか否か が定かでなく、高精度な巻き取りを行うことができな 30 器14の出力で表示器15により糸速度が表示される。 61

【0005】そこで、本発明の目的は、上記課題を解決 し、糸速をより高精度に一定化することができるバーン ワインダーの駆動方法を提供することにある。

[0006]

【課題を解決するための手段】上記目的を達成するた め、本発明のパーンワインダーの駆動方法は、糸のフリ クションカによって回転するローラからの糸の巻取速度 を検出し、予め設定された速度と比較することにより、 巻取スピンドルの速度をインバータを用いて糸速が一定 40 になるように制御するものである。

[0007]

【作用】実際の糸Yの糸速との対比により巻取速度を一 定化するため、従来の無段変速装置を用いた場合に比 べ、糸速を高精度に一定化することができる。また、巻 取ポピン、糸種、巻取方法(パーンフォーメーションの 種類)によるギヤ比の設定を一部省略することができ る。

[0008]

【実施例】以下、本発明の一実施例を添付図面に基づい 50

て詳述する。

【0009】図1はパーンワインダーの駆動制御系の一 例を示すものである。図示するように、給糸ポピン1か らのフィラメント糸Yは、図示してないテンサ,トラバ ースガイド2等を経て巻取ポピン3へ導かれ、トラバー スガイド2で矢印方向ヘトラパースされながら、所定の パーン形状に高速に巻取られる。この巻取ポピン3の巻 取スピンドル4は、ベルト5による動力伝達装置により メインモータ6の出力軸と連結されており、従来の無段 10 変速装置は取り除かれている。7はメインモータ6を可 変速駆動するためのインパータであり、速度指令発生器 8からの出力周波数指令つまり速度指令 52を受けて、 その速度指令に対応する周波数でメインモータ6を駆動 し、以てメインモータ6を可変速運転する。

【0010】一方、給糸ポピン1から巻取ポピン3へ導 かれるフィラメント糸Yの走行途中には、糸Yの巻取速 度を検出するため糸速検出器 9 が設けられている。この 糸速検出器9は、図2に示すように、糸Yのフリクショ ンカによって回転するローラ10と、該ローラ10に回 結して、スピンドル回転の変速を連続的に行い、これに 20 転軸が連結されたエンコーダ11とから成り、ローラ10 に対する糸Yの圧接力は、ローラ10の前後に設けた ガイド12, 13により適度に調節される。このエンコ ーダ11は、本実施例の場合パルスジェネレータから成 るが、交流又は直流のアナログ電圧を発生するタコジェ ネレータを用いることもできる。

【0011】上記糸速検出器9からパルス信号の形で出 力される糸の巻取速度信号S1は、信号変換器14に導 かれ、ここでパルス数に応じた直流電圧に変換された 後、上記速度指令発生器8に入力される。尚、信号変換

【0012】速度指令発生器8は、内蔵する比較器(図 示せず) により、上記信号変換器14からの巻取速度信 号(直流電圧)S1を、速度設定器16から入力される 予め設定された速度(直流電圧)S0と比較し、その比 較結果に応じて、設定速度 S 0 に対する実際速度 S 1 の 差がゼロとなるような速度指令 S 2 を作成し、これをイ ンパータ7に与える。インパータ7は、これを受けて速 度指令S2に対応する出力周波数でメインモータ7を回 転駆動し、結果として巻取スピンドル4の回転数が糸速 が一定になるように変化する。

【0013】このように、速度指令発生器8は、信号変 換器14からの巻取速度信号S1と速度設定器16によ る設定速度SOとを比較し、両者の差をなくすように速 度指令S2の値を上下させて、糸Yの糸速が設定値S0 に対して一定値になるように制御を行う。従って、実際 の糸Yの糸速との対比により巻取速度が一定化されるた め、従来の無段変速装置による場合に比べ、糸速を高精 度に制御することができる。

[0014]

【発明の効果】以上要するに本発明によれば、実際の糸

-418-

3

Yの糸速との対比により巻取速度が一定化されるため、 従来の無段変速装置に比べ、糸速を高精度に一定化する ことができる。また巻取ポピン、糸種、巻取方法 (パー ンフォーメーションの種類) によるギヤ比の設定を一部 省略することができる。

【図面の簡単な説明】

【図1】本発明の方法を実施するための制御系を示す系 統図である。

- 【図2】図1の糸速検出器の構成を例示した図である。
- 【図3】従来の構成例を示す概略図である。
- 【図4】巻取スピンドルの回転速度と糸速との関係を示すグラフである。

【符号の説明】

1 給糸ポピン

2 トラパースガイド

- 3 巻取ポピン
- 4 巻取スピンドル
- 5 ベルト
- 6 メインモータ
- 7 インパータ
- 8 速度指令発生器
- 9 糸速検出器
- 10 ローラ
- 10 11 エンコーダ
 - 12, 13 ガイド
 - 14 信号変換器
 - 15 表示器
 - 16 速度設定器

[図1]

14 信号变换器

[図2]

【図3】

[図4]

THIS PAGE BLANK (USPTO)