

DropMax: Adaptive Variational Softmax

Hae Beom Lee $^{1\,2}$ Juho Lee $^{3\,2}$, Saehoon Kim 2 , Eunho Yang $^{1\,2}$, and Sung Ju Hwang $^{1\,2}$ KAIST 1 , Altrics 2 , University of Oxford 3

Motivation

What if we apply **dropout** to **softmax** function?

- **Ensemble learning** with exponentially many different **sub-classification** problems.
- Stochastic classifier can consider confusing classes more often than others in input-adaptive manner.

The goal of this work is to figure out if such way of noise injection can improve the **generalization performance** of the classifier.

Approach

Softmax function:

$$p(y_t = 1|\mathbf{x}) = \frac{\exp(o_t(\mathbf{x}; \theta))}{\sum_k \exp(o_k(\mathbf{x}; \theta))}$$

Define DropMax:

$$z_k | \mathbf{x} \sim \text{Ber}(z_k; \rho_k(\mathbf{x}; \theta))$$

$$(z_k + \varepsilon) \exp(\rho_k \theta)$$

$$p(y_t = 1 | \mathbf{x}, \mathbf{z}; \theta) = \frac{(z_t + \varepsilon) \exp(o_t(\mathbf{x}; \theta))}{\sum_k (z_k + \varepsilon) \exp(o_k(\mathbf{x}; \theta))}$$

- Class k is completely excluded when $z_k = 0$.
- Target class t should not be dropped \rightarrow input dependent ρ .

$$z_k = \operatorname{sgm} \left\{ \frac{1}{\tau} \left(\log \frac{\rho_k(\mathbf{x}; \theta)}{1 - \rho_k(\mathbf{x}; \theta)} + \log \frac{u}{1 - u} \right) \right\}, \quad u \sim \mathcal{U}(0, 1)$$

Standard Variational Inference

We maximize the evidence lower bound (ELBO).

$$\log p(\mathbf{Y}|\mathbf{X}; \theta)$$

$$= \log \int p(\mathbf{Y}, \mathbf{Z}|\mathbf{X}; \theta) d\mathbf{Z}$$

$$\geq \int q(\mathbf{Z}|\mathbf{X}, \mathbf{Y}; \phi) \log \frac{p(\mathbf{Y}|\mathbf{X}, \mathbf{Z}; \theta)p(\mathbf{Z}|\mathbf{X}; \theta)}{q(\mathbf{Z}|\mathbf{X}, \mathbf{Y}; \phi)} d\mathbf{Z}$$

$$\sum_{\mathbf{X}} \int \mathbb{E} \left[\log p(\mathbf{Y}|\mathbf{X}, \mathbf{Y}; \phi) - \log \frac{p(\mathbf{Y}|\mathbf{X}, \mathbf{Z}; \theta)p(\mathbf{Z}|\mathbf{X}; \theta)}{q(\mathbf{Z}|\mathbf{X}, \mathbf{Y}; \phi)} \right] d\mathbf{Z}$$

 $\mathbf{z}_t \exp(o_t(\mathbf{x}))$

 $\sum_{k} \mathbf{z}_{k} \exp(o_{k}(\mathbf{x}))$

 O_1 O_2 O_t O_{K-1} O_K

0.0 0.2

1.0 . . 0.8 0.4

$= \sum_{i=1}^{N} \left\{ \mathbb{E}_{q(\mathbf{z}_{i}|\mathbf{x}_{i},\mathbf{y}_{i};\phi)} \left[\log p(\mathbf{y}_{i}|\mathbf{z}_{i},\mathbf{x}_{i};\theta) \right] - \text{KL} \left[q(\mathbf{z}_{i}|\mathbf{x}_{i},\mathbf{y}_{i};\phi) || p(\mathbf{z}_{i}|\mathbf{x}_{i};\theta) \right] \right\}$

Approximate Posterior

In modeling the approximate posterior $q(\mathbf{z}|\mathbf{x},\mathbf{y};\phi)$, how to utilize the label \mathbf{y} is not a straightforward matter.

→ Label is ignored

→ Too much computational cost

Structural form of true posterior

- The relationship between z and y is relatively simple in DropMax.
- We encode this property into the approximate posterior.

Encoding label information

- [Obs 1] \mathbf{z}_t is positively and $\mathbf{z}_{k\neq t}$ is negatively correlated with \mathbf{y} .
- [Obs 2] With mean field approx., $p(z_t = 1|\mathbf{x}, \mathbf{y}) = 1$, excluding $z_1 = \cdots = z_K = 0$.

From [Obs 1], we simply regress $\operatorname{sgm}(\mathbf{r})$ to \mathbf{y} :

$$\mathcal{L}_{\text{aux}}(\phi) = -\sum_{i} \sum_{k} \left\{ y_{i,k} \log \operatorname{sgm}(r_k(\mathbf{x}_i; \phi)) + (1 - y_{i,k}) \log(1 - \operatorname{sgm}(r_k(\mathbf{x}_i; \phi))) \right\}$$

From [Obs 2], we have

$$q(\mathbf{z}|\mathbf{x},\mathbf{y};\phi) = \text{Ber}(z_t;1) \prod_{k \neq t} \text{Ber}(z_k;g_k(\mathbf{x};\phi))$$

Regularized Variational Inference

 $p(\mathbf{z}|\mathbf{x};\theta)$ collapses into $q(\mathbf{z}|\mathbf{x},\mathbf{y};\phi)$ too easily, as $p(\mathbf{z}|\mathbf{x};\theta)$ is parametric with input x. We add entropy regularizer to $p(\mathbf{z}|\mathbf{x};\theta)$.

$$\mathcal{H}(p(\mathbf{z}|\mathbf{x};\theta)) = \sum_{k} \rho_k \log \rho_k + (1 - \rho_k) \log(1 - \rho_k)$$

The KL divergence and the final objective is

$$KL[q(\mathbf{z}|\mathbf{x},\mathbf{y};\phi)||p(\mathbf{z}|\mathbf{x};\theta)] = \log \frac{1}{\rho_t} + \sum_{k \neq t} g_k \log \frac{g_k}{\rho_k} + (1 - g_k) \log \frac{1 - g_k}{1 - \rho_k}$$

$$\mathcal{L}(\theta, \phi) = \sum_{i=1}^{N} \left\{ \frac{1}{S} \sum_{s=1}^{S} -\log p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{z}_i^{(s)}; \theta) + \text{KL}[q(\mathbf{z} | \mathbf{x}, \mathbf{y}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta)] - \mathcal{H} \right\} + \mathcal{L}_{\text{aux}}$$

Experiments

1. Generalization Performance

Classification error (%)				
Method	MNIST-1K	CIFAR-100	AWA	CUB
Softmax	7.09	30.60	30.29	48.84
Sparsemax [3]	6.57	31.41	36.06	64.41
Sampled Softmax [4]	7.36	30.87	29.81	49.90
Class Dropout	7.19	30.78	31.11	48.87
Deterministic Attention	6.91	30.60	30.98	49.97
DropMax (q=p)	7.52	29.98	29.27	42.08
DropMax	5.32	29.87	26.91	41.07

- Class Dropout: Randomly drops out non-target classes with a predefined probability.
- Deterministic (sigmoid) Attentions: are multiplied to the softmax exponentiations.
- DropMax (q=p): A variant of DropMax where we let $q(z|x, y) = p(z|x; \theta)$.

2. Reliability / Calibration

Classification error / Expected calibration error (ECE)

• DropMax improves calibration of output probabilities.

3. Qualitative Analysis

- When easy, $p(\mathbf{z}|\mathbf{x};\theta)$ pre-classifies with high confidence.
- When difficult, $p(z|x;\theta)$ selects multiple relevant classes for each instance differently.

References

- [1] J. Ba and B. Frey. Adaptive dropout for training deep neural networks. In NIPS, 2013.
- [2] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional generative models. In *NIPS*, 2015.
- [3] A. F. T. Martins and R. Fernandez Astudillo. From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification. In ICML, 2016.
- [4] S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On Using Very Large Target Vocabulary for Neural Machine Translation. In ACL, 2015.