

Universidade de Lisboa Instituto Superior Técnico

Fundamentos de Energia Eléctrica

Guia do 3º Trabalho Laboratorial

Máquina de Indução

Regime permanente

Laboratório de Máquinas Eléctricas

2023/24 P1

Índice

1. Objetivos	3
2. Introdução teórica	3
3. Lista de Material	7
4. Ensaios da Máquina de Indução	9
4.1. Ensaio em vazio	9
4.2. Ensaio com rotor bloqueado	10
4.3. Ensaios em carga	11
5. Trabalho pós-laboratorial	

1. Objetivos

Os objetivos principais deste trabalho são:

- Efetuar ensaios que permitam a determinação dos parâmetros do circuito equivalente da Máquina de Indução.
- Obter as características em regime permanente para carga mecânica variável.

2. Introdução teórica

As máquinas de indução de rotor em gaiola, que constitui o objecto de estudo deste trabalho, são constituídas por um estator com um circuito magnético no qual estão implantados três enrolamentos distribuídos em cavas e por um rotor constituído por um circuito magnético de ferro macio também com cavas onde se encontram barras condutoras curto-circuitadas nos topos (rotor em gaiola ou em curto-circuito).

Os enrolamentos do estator são percoridos por um sistema trifásico de correntes alternadas e sinusoidais quando forem alimentados por um sistema trifásico de tensões também alternadas e sinusoidais da mesma frequência f. Sendo p o número de pares de polos da máquina, estas correntes criam um campo girante de indução magnética que roda à velocidade de sincronismo, dada por:

$$N_s = \frac{60f}{p} \quad (\text{rpm}) \tag{1}$$

Rodando o rotor da máquina à velocidade de N_r (rpm), define-se o escorregamento relativo como:

$$s = \frac{N_s - N_r}{N_s} \tag{2}$$

O escorregamento relativo contêm a mesma informação que a velocidade, mas revela-se mais apropriado para o estudo destas máquinas.

O comportamento das máquinas elétricas em regime transitório rege-se por um sistema de equações diferenciais não lineares e variantes no tempo. Não faz parte dos temas desta disciplina.

Em regime permanente, o estudo das máquinas de indução pode ser feito com a ajuda de um esquema equivalente como o representado na Fig. 1, onde o índice r se refere ao rotor, o índice s ao estator e o índice s a magnetização.

Figura 1: Esquema equivalente por fase da máquina de indução.

A corrente do estator I_s é dada pela soma (vectorial) da corrente de magnetização I_m (fortemente indutiva) com a corrente **equivalente** do rotor I_r , a qual depende fortemente do escorregamento s.

O valor da resistência fictícia $R_r/s = R_r + R_r(1-s)/s$ determina o comportamento destas máquinas. Uma vez que o valor da resistência R_r do rotor é relativamente baixo, só se obterão valores de correntes razoáveis com escorregamentos s baixos, próximos de zero, de modo a que o valor da resistência fictícia R_r/s seja elevado. No arranque o escorregamento é unitário e, como consequência, a corrente nos enrolamentos do estator é elevada, podendo tomar valores de várias vezes o valor nominal (ver Figura 2).

A correntes de arranque elevadas correspondem quedas de tensão significativas, as quais constituem perturbações à alimentação dos consumidores vizinhos. Para diminuir estas perturbações é necessário reduzir o valor da corrente de arranque, usando métodos de arranque apropriados, que se adaptem às caracteristicas da rede onde o motor se encontra ligado e que sejam também adaptados à carga mecânica que este acciona. Estes métodos de arranque traduzem-se, entre outros, pela aplicação transitória de um valor relativamente baixo de tensão ou pela introdução temporária de impedâncias em série com os enrolamentos do estator.

Na Fig. 2, apresenta-se a variação de algumas grandezas importantes para a compreensão do funcionamento da Máquina de Indução. Estas grandezas estão representadas relativamente aos valores nominais. Note-se que, em funcionamento normal, apenas a zona próxima da velocidade de sincronismo é relevante (valores reduzidos de corrente, valores razoáveis do factor de potência, etc.).

Figura 2: Corrente do estator, corrente do rotor, binário, e fator de potência em função da velocidade de rotação da máquina, quando alimentada a tensão de valor eficaz e frequência constantes.

Na Fig. 3, apresenta-se a variação das grandezas da Máquina de Indução em função da carga mecânica, i.e., da potência mecânica disponibilizada no veio. Estas características são válidas apenas para a situação normal de funcionamento, caracterizada por valores reduzidos do escorregamento.

Figura 3: Rendimento, fator de potência, corrente do estator, binário e escorregamento em função da carga (potência mecânica).

Em funcionamento normal (baixos valores do escorregamento), o valor da resistência R_r/s é determinante, sendo a corrente I_r fortemente resistiva. O carácter resistivo vai diminuindo à medida que o valor do escorregamento aumenta. A corrente I_s resulta da soma de I_m com I_r , como se mostra na Fig. 4 para dois pontos de funcionamento (a e b). É possível mostrar que a corrente I_s descreve uma circunferência no plano de Argand. Como esta circunferência tem um diâmetro muito superior ao módulo das amplitudes complexas das correntes, na zona de funcionamento normal obtém-se um arco que, por ser pequeno comparado com o diâmetro da circunferência, pode ser confundido com um segmento de recta.

Figura 4: Diagrama vetorial da máquina em carga. (para dois pontos de funcionamento em carga).

3. Lista de Material

Grupo Máquina de Indução - Máquina de Corrente Contínua

No laboratório existem quatro grupos de máquinas, cada um constituído por uma Máquina de Indução e uma Máquina de Corrente Contínua, sendo disponibilizado um grupo por bancada. As duas máquinas de cada grupo encontram-se mecanicamente acopladas através dos seus veios, rodando, por isso, em conjunto (e à mesma velocidade). Na Fig. 5, ilustram-se os componentes de cada grupo.

Figura 5: Elementos do grupo Máquina de Indução – Máquina de Corrente Contínua: Máquina de Indução (1), Máquina de Corrente Contínua (2), acoplamento dos veios das máquinas (3), sensor de rotações do taquímetro (4) e ventilador da Máquina de Corrente Contínua (5).

Módulos de bancada

Figura 6: Módulo dos terminais acessíveis do estator da Máquina de Indução (a); módulo do taquímetro (b) e módulo do Disjuntor+contactor+relé (c).

Figura 7: Módulo do retificador trifásico (a) e módulo dos terminais acessíveis da Máquina de Corrente Contínua (b).

Multímetro Digital INTEGRA 1232

Além de poder medir as tensões e correntes do sistema trifásico, permite também medir a potência ativa, reativa, aparente e o fator de potência. Utiliza três transformadores de corrente com isolamento galvânico sendo alimentado através das tensões que está a medir.

Deverá ser usado nos ensaios da Máquina de Indução em vazio, com rotor bloqueado e em carga.

Fig. 8 Multímetro digital INTEGRA 1232

Carga resistiva

No ensaio da Máquina de Indução em carga, é utilizada como carga que absorve a potência (elétrica) gerada pela Máquina de Corrente Contínua.

Multímetro digital e Pinça Amperimétrica

Devem ser usados como alternativa de maior precisão aos instrumentos de painel com medições do induzido da Máquina de Corrente Contínua (Fig. 7.b).

4. Ensaios da Máquina de Indução

Neste trabalho estuda-se a Máquina de Indução em funcionamento como motor (conversão de energia elétrica em energia cinética rotacional) nas situações de vazio, rotor bloqueado e carga. O objetivo da realização dos ensaios em vazio e com rotor bloqueado é a determinação dos valores dos parâmetros do esquema monofásico equivalente (cf. Fig. 1); os ensaios em carga permitem o traçamento das principais curvas características (cf. Fig. 3).

4.1. Ensaio em vazio

Esquema das ligações

O esquema das ligações necessárias à realização do ensaio encontra-se representado na Fig. 9. A Máquina de Indução é alimentada através do autotransformador, o qual permite ajustar a tensão aplicada aos enrolamentos do estator da máquina. A medida das grandezas do estator da máquina é realizada pelo Multímetro Digital INTEGRA 1232.

Figura 9: Esquema de ligações para os ensaios em vazio e com rotor bloqueado.

Para ligar os enrolamentos do estator da Máquina de Indução em estrela, é necessário ligar entre si os terminais X, Y e Z do módulo da MI (cf. Fig. 6.a), como se ilustra na Fig. 10. A saída do autotransformador (terminais U,V, W e N) deverá ser ligada aos respetivos terminais de alimentação da MI (terminais U, V, W e ponto de neutro da estrela XYZ)

Figura 10: Esquema de ligação dos enrolamentos do estator da MI em estrela; cada par de terminais (U,X), (V,Y) e (W,Z) corresponde a um dos enrolamentos do estator.

Condução do ensaio

- 1) Comutando o interruptor do módulo do taquímetro (Fig. 6.b) para a posição ON, ligue o taquímetro do grupo.
- Assegure-se de que o cursor do autotransformador se encontra na posição zero. Ligue o disjuntor trifásico da bancada.
- 3) Atuando no cursor do autotransformador, aumente progressivamente a tensão aplicada à MI até um valor próximo do nominal (V_n = 400 V). A máquina deverá arrancar e acelerar até o veio (rotor) atingir uma velocidade próxima da velocidade de sincronismo (1500 rpm).
- 4) Registe os valores eficazes da tensão (simples) e da corrente numa das fases do estator, os valores das potências ativa e aparente absorvidas pela MI e os valores do fator de potência e da velocidade do rotor.
- 5) Atuando no cursor do autotransformador, reduza o valor da tensão aplicada até **zero**, de forma a parar a máquina de indução (verifique no taquímetro que a máquina para completamente). Desligue o disjuntor trifásico.

4.2. Ensaio com rotor bloqueado

Esquema das ligações

Neste ensaio, as ligações mantêm-se inalteradas relativamente às do ensaio em vazio (cf. Figura 8).

Condução do ensaio

- 1) Assegure-se de que o cursor do transformador se encontra na posição **zero**, que a máquina está parada (taquímetro) e que o disjuntor trifásico está desligado.
- 2) Bloqueie o rotor da MI.
- 3) Ligue o disjuntor trifásico. Atuando no cursor do autotransformador, aumente progressivamente a tensão aplicada à máquina até atingir o valor nominal de corrente nominal no estator ($I_n = 4.9 \text{ A}$).
- 4) Registe os valores eficazes da tensão (simples) e da corrente numa das fases do estator, os valores das potências ativa e aparente absorvidas pela MI e os valores do fator de potência e da velocidade do rotor.

4.3. Ensaios em carga

Nestes ensaios, a Máquina de Indução absorve potência da rede elétrica, convertendo-a em potência mecânica disponibilizada no seu veio, enquanto a Máquina de Corrente Contínua funciona como gerador, convertendo a energia mecânica do seu veio (fornecida pela MI) em energia elétrica, a qual é, por sua vez, absorvida por uma carga resistiva ligada ao induzido da MCC.

Esquema das ligações

O esquema de ligações da Máquina de Indução e da Máquina de Corrente Contínua encontrase representado na Fig. 11. De notar que, ao contrário dos ensaios em vazio e com rotor bloqueado, o autotransformador não é usado para alimentar a Máquina de Indução, alimentando agora o retificador trifásico. Os voltímetros e amperímetros encontram-se instalados nos respetivos módulos de bancada (cf. Fig. 7.a e Fig. 7.b). A carga da MCC é constituída pelo paralelo das três resistências de fase (R_1 , R_2 e R_3), cujos valores são ajustáveis, e pela resistência R (12 Ω) da carga resistiva.

Figura 11: Esquema de ligações para o ensaio em carga da Máquina de Indução.

Condução do ensaio

- 1) Assegure-se de que o cursor do transformador se encontra na posição **zero**, que a máquina está parada (taquímetro) e que o disjuntor trifásico está desligado.
- 2) Efetue as ligações relativas à Máquina de Indução, conforme ilustrado na parte superior da Fig. 10. (ligação dos terminais X, Y e Z entre si) e ligação dos módulos Disjuntor+contator+relé e Arrancador suave em cascata. Assegure-se de que o comutador do Arrancador Suave se encontra na posição OFF.
- 3) Efetue as ligações relativas à Máquina de Corrente Contínua, conforme ilustrado na parte inferior da Fig. 10: ligação em cascata do autotransformador, retificador trifásico e enrolamento de campo da MCC (terminais C e D) e ligação da carga resistiva ao induzido da MCC (terminais A e B), com todas as resistências da carga ligadas em paralelo.
- 4) Ajuste os comutadores A1, A2 e A3 da carga resistiva de forma a ter o valor mínimo de resistência na carga (posições 5-5-5).
- 5) Ligue o ventilador da carga resistiva.
- 6) Ligue a alimentação do módulo do Arrancador suave (use uma das tomadas disponíveis na bancada).
- 7) Ligue o taquímetro.
- 8) Ligue o disjuntor trifásico da bancada.
- 9) Comutando o interruptor do módulo da MI (cf. Fig. 6.a) para a posição ON, ligue o ventilador da MCC.
- 10) Ligando o módulo do Disjuntor+contator+relé (pressionado o botão ON) e o módulo do Arrancador suave (mudando o comutador para a posição ON), a Máquina de Indução deverá arrancar e a velocidade aumentar até atingir cerca de 1500 rpm. Caso isto não se verifique, não prossiga o ensaio e chame o docente.
- 11) Atuando no cursor do autotransformador, aumente a tensão aplicada/corrente no enrolamento de campo da MCC até que a Máquina de Indução esteja a absorver uma potência aparente da rede próxima da nominal ($S_n = 3,3 \text{ kVA}$), sendo também a corrente nas fases do estator da MI próxima da nominal ($I_n = 4,9 \text{ A}$).
 - a) Registe os valores eficazes da tensão (simples) e da corrente numa mesma fase do estator da MI, bem como das potências ativa e aparente absorvidas no estator, fator de potência e tensão e corrente no induzido da MCC (primeira linha da tabela).
- 12) Atuando no cursor do autotransformador, diminua a tensão aplicada/corrente no enrolamento de campo da MCC de forma a baixar o valor da tensão no induzido da MCC (V_{DC}) em intervalos de cerca de 10 V, até zero.

- a) Registe os valores das restantes linhas da tabela.
- 13) Assegure-se de que o cursor do autotransformador se encontra na posição **zero**. Desligue o ventilador da MCC (interruptor na posição OFF). Desligue o Arrancador suave (comutador na posição OFF), fazendo parar a MI. Desligue o módulo Disjuntor+contator+relé, pressionando o botão OFF. Desligue o disjuntor trifásico da bancada.

5. Trabalho pós-laboratorial

Nota: Os valores nominais da Máquina de Indução constam na primeira folha do relatório (folha de identificação do grupo).

- 1) Para os valores obtidos no ensaio em vazio, determine os valores pedidos das grandezas (tensão e corrente no estator, potências absorvidas no estator da MI).
- 2) Para os valores obtidos no ensaio com rotor bloqueado, determine os valores pedidos das grandezas (tensão e corrente no estator, potências absorvidas no estator da MI).
- 3) Determine os valores dos parâmetros do esquema equivalente da MI.
- 4) Para cada conjunto de valores obtidos no ensaio em carga, determine o valor do binário e da potência mecânica no veio das máquinas, os valores das grandezas em p.u., o escorregamento (s) e o rendimento (células a azul nas duas tabelas).
 - a) Os valores de tensão e corrente no induzido da máquina de corrente contínua (V_{DC} , I_{DC}) deverão ser tomados como medidas auxiliares que irão permitir determinar o valor do binário e da potência mecânica fornecida pela MI. Os valores a calcular podem ser obtidos a partir das expressões de cálculo apresentadas nesta página.
 - b) Após o cálculo dos valores, as curvas características da MI e do lugar geométrico da corrente *I*s deverão ser automaticamente geradas.
- c) Comente os resultados obtidos (valores calculados e curvas características).
 Fórmulas auxiliares de cálculo:

$$\begin{split} P_{mec} &= V_{DC}I_{DC} + r_aI_{DC}^2 \\ P_{mec} &= V_{DC}I_{DC} + 2I_{DC}^2 \\ T &= \frac{P_{mec}}{\frac{2\pi}{60}N_r} \\ \eta &= \frac{P_{mec}}{P_c} \end{split}$$