MODELLO STEAMCITY

BEST PRACTICE PER LA CREAZIONE E L'UTILIZZO DEL MODELLO IN OGNI PROTOCOLLO STEAMCITY

Modellare la città per aiutare gli studenti a comprenderne i problemi e contestualizzare il loro apprendimento

Coinvolgimento dei cittadini, governance e dati		
Protocollo	Implementazione sul campo con modello	Facilitazione educativa
Sfida del detective urbano	Testate soluzioni di gestione delle crisi su un modello per illustrare le vostre idee. Utilizzate la città nel modello come supporto per le situazioni di crisi e proponete soluzioni che tengano conto della dimensione spaziale.	Sperimenta la gestione delle crisi in un ambiente controllato. Comprendi l'impatto spaziale delle decisioni di emergenza. Sviluppa il pensiero sistemico.
Dati vs. Contesto	Utilizzare il modello urbano per preparare la ricerca dei dati in città, identificando i luoghi che potenzialmente contengono la maggior parte dei dati.	Garantisce visite sul campo attraverso una preparazione metodica. Fornisce supporto strutturato per il debriefing. Materializza la geografia invisibile dei dati urbani.
FactBusters - Decifrare la verità dalle bugie	Mappare le aree di fiducia/sfiducia in base alla qualità delle informazioni. Visualizzare la diffusione delle voci nell'area. Confrontare le fonti di informazione con la realtà locale.	Materializza la geografia delle informazioni. Comprende la diffusione spaziale delle voci. Sviluppa un pensiero territoriale critico.
Avventura di Bot Buddy	Convalidare la pertinenza dei suggerimenti del chatbot su un percorso fisico. Testare diversi profili utente (PMR, turisti) sul modello. Identificare potenziali punti di interesse fisici collegati al chatbot.	Trasforma l'esperienza digitale astratta in test di usabilità concreti. Sviluppa empatia per le sfide della navigazione urbana.
L'Odissea dell'IA	Pianifica il percorso utilizzando il modello identificando innanzitutto le aree da esplorare. Esercitati nel riconoscimento dei sensori sul modello prima dell'escursione. Crea miniature posizionabili di sensori/stazioni, quindi utilizzale per localizzare i sensori urbani osservati.	Garantisce visite sul campo attraverso una preparazione metodica. Fornisce supporto strutturato per il debriefing. Materializza la geografia invisibile dei dati urbani.

		_	
Amabionto	, benessere e sa	TIPO INTE	la la li cou
	Dellessele e su		

Protocollo	Implementazione sul campo con modello	Facilitazione educativa
Detective dei decibel	Creare un modello di classe con materiali acustici variabili. Utilizzare sorgenti sonore controllate e spazi modulari. Identificare configurazioni acustiche ottimali.	Comprende l'influenza diretta dell'ambiente fisico sull'apprendimento. Consente di sperimentare configurazioni non possibili in un'aula reale.
Esploratore AI di canti di uccelli	Identificare aree di osservazione promettenti in base alla vegetazione del modello. Posizionare altoparlanti che emettono canti; l'agente autonomo rileva gli uccelli. Confrontare i risultati sul campo con le previsioni del modello.	Sviluppa l'ipotesi scientifica e la validazione sperimentale. Crea un ambiente acustico controllato. Visualizza la relazione tra urbanizzazione e biodiversità.
I guardiani dei fiori	Utilizzare una mappatura sensibile per identificare le aree di osservazione prioritarie. Creare spazi verdi modulari, utilizzare impollinatori stampati in 3D. Segnalare le osservazioni sul campo con elementi fisici.	Osservazione naturalistica delle strutture. Visualizza l'ecosistema urbano. Comprende l'impatto dello sviluppo sull'impollinazione.
Luce contro Zzz	Identificare i punti di stress e rumore nei quartieri in cui gli studenti si muovono e vivono. Considerare i risultati attesi utilizzando le bandierine. Prendere le misure e visualizzarle sul modello.	Comprendere l'impatto dell'illuminazione urbana sul sonno. Visualizzare le disuguaglianze ambientali notturne. Contestualizzare le esperienze degli studenti.
Misurazione della CO2 interna	Testare le posizioni dei sensori sul modello dell'edificio. Simulare l'impatto delle aperture sulla circolazione dell'aria. Identificare le configurazioni architettoniche ottimali e verificare la struttura fisica.	Permette di sperimentare configurazioni non possibili in una vera classe. Comprende i problemi di salute ambientale.
Alberi contro automobili	Addestrare l'IA con gli elementi fisici del modello per l'algoritmo. Testare il riconoscimento con un modello di apprendimento supervisionato sugli elementi del traffico. Validare le prestazioni di riconoscimento degli oggetti in condizioni fisiche.	Rende tangibile il funzionamento dell'intelligenza artificiale e i suoi limiti. Comprende l'intelligenza artificiale applicata alla mobilità. Programma sistemi di classificazione.

Ambiente, benessere e salute pubblica

Protocollo	Implementazione sul campo con modello	Facilitazione educativa
Qualità dell'aria esterna	Seleziona i siti in base alla vegetazione, alle industrie e alle scuole. Utilizza adesivi colorati per identificare i livelli di qualità dell'aria previsti. Confronta le previsioni con le misurazioni sul campo.	Visualizzare la geografia dell'inquinamento. Comprendere le disuguaglianze ambientali. Sviluppare una consapevolezza ecologica territoriale.
Raccolta differenziata ottimizzata dei rifiuti	Testare la raccolta con diverse tipologie di rifiuti posizionabili. Programmare il robot come agente di raccolta autonomo tramite intelligenza artificiale. Validare le prestazioni di riconoscimento in condizioni fisiche.	Comprendere l'intelligenza artificiale applicata alla gestione urbana. Sperimentare la robotica di servizio. Testare i limiti tecnologici.
Inverdimento urbano e intelligenza artificiale	Testare le posizioni con spazi urbani modulari per le pareti verdi. Utilizzare sensori di luce, umidità e temperatura. Identificare le posizioni ottimali in base ai vincoli.	Sperimentare l'agricoltura urbana. Comprendere l'adattamento delle piante all'ambiente urbano. Sviluppare soluzioni di inverdimento.
SoundSquad	Identificare le aree di sperimentazione in base alle percezioni. Utilizzare diversi materiali acustici. Trasferire visivamente i risultati della mappatura sensoriale sul modello.	Materializza la geografia sonora. Sviluppa la sensibilità acustica. Comprende l'impatto del design urbano sull'atmosfera.
Whisper Walls - Esplorando il suono del silenzio	Personalizza creando "case" individuali e individuando le stanze. Testa i materiali utilizzando colori diversi per i materiali da costruzione. Ottimizza le combinazioni di isolamento in base alle esigenze degli studenti.	Contestualizza l'esperienza fisica nell'ambiente di vita degli studenti. Esperimenti con l'isolamento acustico del calcestruzzo
Impatto ecologico delle normative sulla mobilità	Scenari di test con zone di restrizione modulari, infrastrutture per la mobilità sostenibile. Compatibilità con Roobopoli, utilizzo di veicoli autonomi con regolamentazione. Monitoraggio dei flussi e della qualità ambientale.	Comprende i compromessi tra mobilità ed ecologia. Sperimenta la mobilità autonoma in condizioni controllate. Programma di comportamento ecologico.

Efficienza e	neraetica

Protocollo	Implementazione sul campo con modello	Facilitazione educativa
Brilla in modo intelligente, brilla in modo luminoso	Osservare l'illuminazione residenziale e commerciale in base al modello. Testare le configurazioni con sensori di illuminazione e luminosità programmabili. Ottimizzare l'equilibrio tra sicurezza, risparmio energetico e comfort.	Sperimenta l'illuminazione urbana intelligente. Comprendi le problematiche di sicurezza e risparmio energetico. Sviluppa soluzioni di illuminazione adattiva.
Dalle pareti isolate alle città fresche	Testare l'isolamento termico utilizzando edifici con materiali diversi e sensori termici. Utilizzare codici colore per la circolazione del calore. Identificare configurazioni architettoniche efficienti.	Sperimenta l'efficienza energetica. Comprendi il trasferimento termico in architettura. Testa soluzioni di isolamento urbano.
Energie in prospettiva	Simulare il mix con fonti energetiche fisiche (pannelli, turbine eoliche) e circuiti LED. Testare l'impatto dell'eliminazione di una fonte energetica. Visualizzare la circolazione dell'energia in città.	Visualizza la complessità e la vulnerabilità dei sistemi energetici. Comprende le interdipendenze territoriali. Sviluppa la consapevolezza ecologica.
Scenario Negawatt e sobrietà energetica	Condurre l'audit energetico utilizzando un modello scolastico con dati di consumo visibili. Testare le modifiche utilizzando attrezzature modificabili e osservarne gli impatti. Identificare leve concrete per l'azione.	Comprende le sfide della sobrietà energetica. Comprende l'impatto delle scelte sui consumi. Sviluppa soluzioni applicabili.
Simulatore di mix energetico	Riconfigurare l'infrastruttura energetica modulare. Testare l'impatto delle configurazioni sulla rete e sull'ambiente. Cercare un equilibrio tra prestazioni e sostenibilità.	Comprende le sfide tecniche e politiche della transizione energetica. Sperimenta i complessi compromessi energetici.

Mobilità sostenibile, trasporti e regolamentazione

Protocollo	Implementazione sul campo con modello	Facilitazione educativa
Impatto ecologico delle normative sulla mobilità	Scenari di test con zone di restrizione modulari, infrastrutture per la mobilità sostenibile. Compatibilità con Roobopoli, utilizzo di veicoli autonomi con regolamentazione. Monitoraggio dei flussi e della qualità ambientale.	Comprende i compromessi tra mobilità ed ecologia. Sperimenta la mobilità autonoma in condizioni controllate. Programma di comportamento ecologico.
Segnali stradali di domani	Testare la segnaletica con pannelli modulari programmabili sul circuito. Validarne l'efficacia con veicoli autonomi che riconoscono la segnaletica. Integrare la segnaletica creata per regolare la mobilità.	Testa l'efficacia della segnalazione intelligente. Comprende l'interazione uomo-macchina in mobilità. Programma comportamenti autonomi.
Safari oggetti connessi	Progetta oggetti con una città connessa a oggetti intelligenti programmabili. Crea interazioni compatibili con Roobopoli ed effetti domino tra oggetti. Valida l'utilità degli oggetti in un contesto urbano.	Comprendere l'Internet delle cose urbano. Programmare interazioni complesse. Visualizzare la città intelligente del futuro.
Alberi contro automobili	Addestrare l'IA con gli elementi fisici del modello per l'algoritmo. Testare il riconoscimento con un modello di apprendimento supervisionato sugli elementi del traffico. Validare le prestazioni di riconoscimento degli oggetti in condizioni fisiche.	Rende tangibile il funzionamento dell'intelligenza artificiale e i suoi limiti. Comprende l'intelligenza artificiale applicata alla mobilità. Programma sistemi di classificazione.

Intelligenza artificiale e nuove tecnologie

Protocollo	Implementazione sul campo con modello	Facilitazione educativa
L'Odissea dell'IA	Pianifica il percorso utilizzando il modello identificando innanzitutto le aree da esplorare. Esercitati nel riconoscimento dei sensori sul modello prima dell'escursione. Crea miniature posizionabili di sensori/stazioni, quindi utilizzale per localizzare i sensori urbani osservati.	Garantisce visite sul campo attraverso una preparazione metodica. Fornisce supporto strutturato per il debriefing. Materializza la geografia invisibile dei dati urbani.
Processi di apprendimento bio- ispirati	Utilizzare un modello come Roobopoli con ostacoli rimovibili per testare algoritmi e adattabilità. Riprodurre il comportamento del modello di intelligenza artificiale nella vita reale, verificarne le prestazioni in condizioni fisiche. Confrontare l'intuizione umana e la logica della macchina.	Confronta l'apprendimento umano e quello automatico a livello di apprendimento. Visualizza i processi per tentativi ed errori. Rende tangibile il funzionamento dell'intelligenza artificiale.
Alberi contro automobili	Addestrare l'IA con gli elementi fisici del modello per l'algoritmo. Testare il riconoscimento con un modello di apprendimento supervisionato sugli elementi del traffico. Validare le prestazioni di riconoscimento degli oggetti in condizioni fisiche.	Rende tangibile il funzionamento dell'intelligenza artificiale e i suoi limiti. Comprende l'intelligenza artificiale applicata alla mobilità. Programma sistemi di classificazione.
Avventura di Bot Buddy	Convalidare la pertinenza dei suggerimenti del chatbot su un percorso fisico. Testare diversi profili utente (PMR, turisti) sul modello. Identificare potenziali punti di interesse fisici collegati al chatbot.	Trasforma l'esperienza digitale astratta in test di usabilità concreti. Sviluppa empatia per le sfide della navigazione urbana.
Inverdimento urbano e intelligenza artificiale	Testare le posizioni con spazi urbani modulari per le pareti verdi. Utilizzare sensori di luce, umidità e temperatura. Identificare le posizioni ottimali in base ai vincoli.	Sperimentare l'agricoltura urbana. Comprendere l'adattamento delle piante all'ambiente urbano. Sviluppare soluzioni di inverdimento.

Intelligenza artificiale e nuove tecnologie

Protocollo	Implementazione sul campo con modello	Facilitazione educativa
BirdSong AI Explorer	Identificare aree di osservazione promettenti in base alla vegetazione del modello. Posizionare altoparlanti che emettono canti; l'agente autonomo rileva gli uccelli. Confrontare i risultati sul campo con le previsioni del modello.	Sviluppa l'ipotesi scientifica e la validazione sperimentale. Crea un ambiente acustico controllato. Visualizza la relazione tra urbanizzazione e biodiversità.
Raccolta differenziata ottimizzata dei rifiuti	Testare la raccolta con diverse tipologie di rifiuti posizionabili. Programmare il robot come agente di raccolta autonomo tramite intelligenza artificiale. Validare le prestazioni di riconoscimento in condizioni fisiche.	Comprendere l'intelligenza artificiale applicata alla gestione urbana. Sperimentare la robotica di servizio. Testare i limiti tecnologici.
Segnali stradali di domani	Testare la segnaletica con pannelli modulari programmabili sul circuito. Validarne l'efficacia con veicoli autonomi che riconoscono la segnaletica. Integrare la segnaletica creata per regolare la mobilità.	Testa l'efficacia della segnalazione intelligente. Comprende l'interazione uomo-macchina in mobilità. Programma comportamenti autonomi.