

Definição e Chamadas de Funções em *VBA*

Funções e Sub-Rotinas

TIPOS:

Variant

Integer

Double

String

Boolean

Range

. .

Variant é o padrão quando não declaramos o tipo explicitamente.

SUB-ROTINA:

ByRef (padrão) /ByVal

Sub <nome>(<p1> As <t1>, <p2> As <t2>,...)
<comandos>

End Sub

FUNÇÃO:

ByRef (padrão) /ByVal

DIMENSIONAMENTO DE VARIÁVEIS NO CORPO:

```
Dim <v1> As <t1>, <v2> As <t2>, ...
```

INDEXAÇÃO DE VARIÁVEIS NO CORPO:

$$Dim/ReDim < v > (To , To , ...) As$$

Elabore uma função em VBA para converter graus para radianos. Teste sua função em uma planilha. $r = \frac{\pi}{180}g$

Chame várias vezes	
--------------------	--

Teste Exercício 1				
0	GrauRad	RADIANOS		
0	0,0000	0,0000		
15	0,2618	0,2618		
30	0,5236	0,5236		
45	0,7854	0,7854		
60	1,0472	1,0472		
75	1,3090	1,3090		
90	1,5708	1,5708		
105	1,8326	1,8326		
120	2,0944	2,0944		
135	2,3562	2,3562		
150	2,6180	2,6180		
165	2,8798	2,8798		
180	3,1416	3,1416		

Elabore uma função em VBA para converter radianos para graus. Teste sua função em uma planilha. Inverta a fórmula abaixo.

$$r = \frac{\pi}{180}g$$

Teste Exercício 2				
rad	RadGrau	GRAUS		
0,0	0,0000	0,0000		
0,2	11,4592	11,4592		
0,4	22,9183	22,9183		
0,6	34,3775	34,3775		
0,8	45,8366	45,8366		
1,0	57,2958	57,2958		
1,2	68,7549	68,7549		
1,4	80,2141	80,2141		
1,6	91,6732	91,6732		
1,8	103,1324	103,1324		
2,0	114,5916	114,5916		
2,2	126,0507	126,0507		
2,4	137,5099	137,5099		

Fatorando o Escopo com With/End With

```
' Fica mais fácil com With/End With
Function Exemplo(x)
With WorksheetFunction

y = .Sinh(x) + .Cosh(x) + .Tanh(x)

com ponto

Exemplo = .BesselI(y, y ^ 2)

End With

com ponto

com ponto

com ponto
com ponto
```


Algumas Funções em VBA Pesquisador de Objetos: utilize no VBA a tecla F2

0

 $\begin{array}{c} \downarrow \\ 1 \\ \downarrow \\ \pi \end{array}$

i e

Exercício 3

Elabore uma função em *VBA* para converter graus Celsius para graus Fahrenheit. Teste sua função em uma planilha.

$$f = \frac{9}{5}c + 32$$

Function CelFah(c)
 ' Exercício 3
 CelFah = 9 / 5 * c + 32
End Function

Teste Exercício 3		
°C	CelFah	
-10,0	14,0	
-5,0	23,0	
0,0	32,0	
5,0	41,0	
10,0	50,0	
15,0	59,0	
20,0	68,0	
25,0	77,0	
30,0	86,0	
35,0	95,0	
40,0	104,0	
45,0	113,0	
50,0	122,0	

Elabore uma função em *VBA* para converter graus Fahrenheit para graus Celsius. Teste sua função em uma planilha. Inverta a fórmula abaixo.

$$f = \frac{9}{5}c + 32 \implies c = \frac{5}{9}(f - 32)$$

Teste Exercício 4			
°F	FahCel		
14,0	-10,0		
23,0	-5,0		
32,0	0,0		
41,0	5,0		
50,0	10,0		
59,0	15,0		
68,0	20,0		
77,0	25,0		
86,0	30,0		
95,0	35,0		
104,0	40,0		
113,0	45,0		
122,0	50,0		

Elabore uma função em VBA para calcular a média de 3 números. Teste sua função em uma planilha.

Teste Exercício 5					
Х	у	z Media		MÉDIA	
0,0	0,0	0,0	0,00	0,00	
1,0	2,0	10,0	4,33	4,33	
2,0	4,0	20,0	8,67	8,67	
3,0	6,0	30,0	13,00	13,00	
4,0	8,0	40,0	17,33	17,33	
5,0	10,0	50,0	21,67	21,67	
6,0	12,0	60,0	26,00	26,00	
7,0	14,0	70,0	30,33	30,33	
8,0	16,0	80,0	34,67	34,67	
9,0	18,0	90,0	39,00	39,00	
10,0	20,0	100,0	43,33	43,33	
11,0	22,0	110,0	47,67	47,67	
12,0	24,0	120,0	52,00	52,00	

$$m = \frac{x + y + z}{3}$$

Elabore uma função em VBA para calcular a distância entre dois pontos no plano cartesiano. Teste sua função em uma planilha.

$$dist = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Teste Exercício 6				
хА	yА	хВ уВ		Dist
0,0	0,0	0,0	0,00	0,00
1,0	2,0	5,0	10,00	8,94
2,0	4,0	10,0	20,00	17,89
3,0	6,0	15,0	30,00	26,83
4,0	8,0	20,0	40,00	35,78
5,0	10,0	25,0	50,00	44,72
6,0	12,0	30,0	60,00	53,67
7,0	14,0	35,0	70,00	62,61
8,0	16,0	40,0	80,00	71,55
9,0	18,0	45,0	90,00	80,50
10,0	20,0	50,0	100,00	89,44
11,0	22,0	55,0	110,00	98,39
12,0	24,0	60,0	120,00	107,33

Elabore uma função em *VBA* para calcular o volume de uma esfera. Teste sua função em uma planilha.

$$Volume = \frac{4}{3}\pi r^3$$

End Function

r	Volume
0,0	0,0
1,0	4,2
2,0	33,5
3,0	113,1
4,0	268,1
5,0	523,6
6,0	904,8
7,0	1436,8
8,0	2144,7
9,0	3053,6
10,0	4188,8
11,0	5575,3
12,0	7238,2

Teste Exercício 7

0

1 _____

Exercício 8

Elabore uma função em *VBA* para calcular área da superfície de uma esfera. Teste sua função em uma planilha.

$$Area = 4\pi r^2$$

Teste Exercício 8				
r	Area			
0,0	0,0			
1,0	12,6			
2,0	50,3			
3,0	113,1			
4,0	201,1			
5,0	314,2			
6,0	452,4			
7,0	615,8			
8,0	804,2			
9,0	1017,9			
10,0	1256,6			
11,0	1520,5			
12,0	1809,6			

Elabore uma função em *VBA* para para calcular a distância entre dois pontos no plano cartesiano (exercício 6). Em seguida, elabore outra função em *VBA* para calcular a área de um triângulo a partir das coordenadas cartesianas de seus vértices. A segunda função deve chamar a primeira. Teste suas funções em uma planilha.

$$l_{a} = \sqrt{(x_{C} - x_{B})^{2} + (y_{C} - y_{B})^{2}}$$

$$l_{b} = \sqrt{(x_{C} - x_{A})^{2} + (y_{C} - y_{A})^{2}}$$

$$l_{c} = \sqrt{(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}}$$

$$A_{t} = \sqrt{p(p - l_{a})(p - l_{b})(p - l_{c})}$$

$$p = \frac{l_{a} + l_{b} + l_{c}}{2}$$

 (x_B, y_B)

 (x_{C}, y_{C})

Exercício 09

Function At(xA, yA, xB, yB, xC, yC)
' Exercício 9

la = Dist(xB, yB, xC, yC) ' chamada
lb = Dist(xA, yA, xC, yC) ' outra chamada
lc = Dist(xA, yA, xB, yB) ' mais uma chamada
p = (la + lb + lc) / 2
At = Sqr(p * (p - la) * (p - lb) * (p - lc))

Teste Exercício 9						
хА	yA	хВ	yВ	хС	yC	At
0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	3,00	0,00	0,00	4,00	6,00
1,00	1,00	1,00	1,00	1,00	1,00	0,00
2,00	2,00	5,00	2,00	2,00	6,00	6,00
3,00	3,00	9,00	3,00	3,00	11,00	24,00
4,00	4,00	13,00	4,00	4,00	16,00	54,00
5,00	5,00	17,00	5,00	5,00	21,00	96,00
6,00	6,00	21,00	6,00	6,00	26,00	150,00

Obrigado, terminamos aqui!