MED for Model Selection

Kristyn Pantoja

6/25/2019

Simple Linear Regression: Unknown Slope

MED-generating Algorithms

Other Designs

Results

Simple Linear Regression: Unknown Slope and Intercept

Linear vs Quadratic

Simple Linear Regression: Unknown Slope

Design an Experiment that Estimates Slope

Two Proposed Linear Models

- ▶ Goal: Choose design $\mathbf{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ to gather data that will
 - 1. help distinguish these two slopes
 - 2. allow adequate estimation of β .
- Idea: Minimum Energy Design!

Minimum Energy Design

Minimum energy design (MED) is a deterministic sampling method which makes use of evaluations of the target distribution f to obtain a weighted space-filling design.

Definition:

Design $\mathbf{D} = \{\mathbf{x}_1,...,\mathbf{x}_N\}$ is a MED if it minimizes the total potential energy, given by:

$$\sum_{i\neq j}\frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

Choose the charge function, $q = \frac{1}{f^{1/2p}}$ so that the limiting distribution of the design points is target distribution, f.

Advantages of MED

Sampling the "Banana" Function

- ► *N* = 109
- K = 6
- ightharpoonup NK = 654 evaluations of f

Compared to other sampling methods, MED

- ▶ has fewer points and hence (unlike MCMC)
- requires fewer evaluations of f (unlike MCMC)
- is not prone to missing high-density regions (unlike QMC)

Simple Linear Regression without Intercept

- Assume $y_i = x_i \beta + \varepsilon_i$ with $\varepsilon_i \sim N(0, \sigma^2)$ and $\beta \sim N(\mu, \nu^2)$.
- \triangleright $y|\beta, X \sim N(X\beta, \sigma^2 I)$
- ▶ $y|X \sim N(X\mu, \sigma^2I + \nu^2XX^T)$ after marginalizing out β

Hypotheses

Suppose we suspect $\beta=\mu_0$ or $\beta=\mu_1$, i.e.

$$H_0: \beta \sim N(\mu_0, \nu_0^2)$$

$$H_1: \beta \sim N(\mu_1, \nu_1^2)$$

MED design may distinguish these two hypotheses and allow for adequate estimation of β .

Evaluating the Designs

Evaluating Methods

- ▶ Posterior Variance, i.e. $Var[\beta|y,X]$
- Expected Posterior Probabilities of Hypotheses & Bayes Factor
- Design Criteria:
 - ► Total Potential Energy
 - Criterion for One-at-a-Time Algorithm
 - Criterion for Fast Algorithm

Interpretations

- A design that is better for estimating β may have smaller posterior variance.
- A design that is better for hypothesis testing may give a larger expected posterior probability to the true model from simulated responses.

Posterior Variance

In the Bayesian linear regression framework,

$$y|\beta, X \sim N(X\beta + \sigma^2 I)$$

 $\beta \sim N(\mu, V)$

with $X \in \mathbb{R}^{N \times p}, \beta \in \mathbb{R}^p, V \in \mathbb{R}^{p \times p}$,

 $\hat{\beta} = \frac{1}{\sigma^2} \Sigma_B (X^T y + \sigma^2 V^{-1} \mu)$ with posterior distribution

$$\beta|y,X\sim N\left(m_B,\Sigma_B\right)$$

where

$$\Sigma_B = \sigma^2 (X^T X + \sigma^2 V^{-1} I)^{-1}$$

$$m_B = \frac{1}{\sigma^2} \Sigma_B (X^T y + \sigma^2 V^{-1} \mu)$$

 $ightharpoonup \Sigma_B$ can be used to evaluate a design ${f D}$'s ability to estimate eta

Posterior Probabilities of Hypotheses

▶ Posterior Probability of model $H_{\ell}, \ell \in 1, ..., M$:

$$P(H_{\ell}|y,X) = \frac{\pi_{\ell}L(y|H_{\ell},X)}{\sum_{m=1}^{M} \pi_{m}L(y|H_{m},X)}$$

where π_m is the prior on H_m (typically $\pi_m = \frac{1}{M}$), and $L(y|H_m,X)$ is the model evidence.

- ▶ $P(H_{\ell}|y,X)$ tells which hypothesis is more likely to give the correct model.
- ▶ $E[P(H_{\ell}|y,X)|H_r]$ may be estimated using MC approximation from simulated responses y under a chosen hypothesis H_r .
- ▶ $E[P(H_{\ell}|y, \mathbf{D})|H_r]$ can be used to evaluate a design \mathbf{D} 's ability to distinguish hypotheses

Estimate Expected Posterior Probability of a Hypothesis

Estimate the expected posterior probability of hypothesis H_{ℓ} for J simulations of Y under H_r , given design $\mathbf{D} = \{x_1, ..., x_N\}$:

- 1. For j = 1, ..., J:
 - 1.1 Draw $\beta \sim N(\mu_r, \nu_r^2)$
 - 1.2 Draw $y_i^{(j)}|\mathbf{D} \sim N(\mathbf{x}_i\beta, \sigma_r^2), \ \forall \mathbf{x}_i \in \mathbf{D}$
 - 1.3 $\forall m \in \{1,...,M\}$, calculate model evidences $L(y^{(j)}|H_m, \mathbf{D})$
 - model evidence $L(y|H_m, \mathbf{D})$ is the marginal likelihood $N(\mathbf{D}\mu_m, \sigma^2 I + \nu^2 \mathbf{D} \mathbf{D}^T)$ evaluated at y and \mathbf{D} .
 - 1.4 Calculate the posterior probability of H_{ℓ} , $P(H_{\ell}|y^{(j)}, \mathbf{D})$, from simulation j

$$P(H_{\ell}|y^{(j)}, \mathbf{D}) = \frac{\pi_{\ell}P(y^{(j)}|H_{\ell}, \mathbf{D})}{\sum_{m=1}^{M} \pi_{m}P(y^{(j)}|H_{m}, \mathbf{D})}$$

2. Average the estimated posterior probabilities of H_{ℓ} over $\forall j$ to obtain MC estimate of $E[P(H_{\ell}|y,\mathbf{D})|H_r]$

MED Criteria

 The Total Potential Energy, which both algorithms aim to minimize:

$$\sum_{i\neq j}\frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

2. One-at-a-Time Algorithm: minimize

$$\left\{\sum_{i\neq j} \left(\frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}\right)^k\right\}^{1/k}$$

which gives the Total Potential Energy criterion when k = 1.

3. Fast Algorithm: minimize

$$\max_{i \neq j} \frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

MED-generating Algorithms

One-at-a-Time Algorithm (2015)

Steps to obtain MED using One-at-a-Time algorithm:

- 1. Obtain numCandidates candidate points, \mathbf{x} , in [0,1].
- 2. Initialize D_N by choosing \mathbf{x}_j to be the candidate \mathbf{x} which optimizes f, where $f(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$ and

$$\phi_{0,\mathbf{x}} = N(\mu_0 \mathbf{x}, \sigma_0^2 + \mathbf{x}^2 \nu_0^2),$$

$$\phi_{1,\mathbf{x}} = N(\mu_1 \mathbf{x}, \sigma_1^2 + \mathbf{x}^2 \nu_1^2)$$

3. Choose the next point \mathbf{x}_{j+1} by:

$$\mathbf{x}_{j+1} = \operatorname*{arg\,min}_{\mathbf{x}} \sum_{i=1}^{j} \left(rac{q(\mathbf{x}_i) q(\mathbf{x})}{d(\mathbf{x}_i, \mathbf{x})}
ight)^k$$

where $q = 1/f^{(1/2p)}$, d(x, y) is Euclidean distance and k = 4p.

▶ This is a greedy algorithm for choosing points one at a time

Fast Algorithm (2018)

In each of S stages, create a new design to iteratively minimize

$$\max_{i \neq j} \frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

- 1. Initialize space-filling design $\mathbf{D}_1 = \{\mathbf{x}_1^{(1)} \dots \mathbf{x}_N^{(1)}\}$
- 2. For $s=1,\ldots,S-1$ steps, obtain each design point $\mathbf{x}_j^{(s+1)} \in \mathbf{D}_{s+1}$ by:

$$\mathbf{x}_{j}^{s+1} = \underset{\mathbf{x} \in \mathbf{C}_{j}^{s+1}}{\min} \max_{i=1:(j-1)} \frac{1}{f^{\gamma_{s}}(\mathbf{x}_{i})f^{\gamma_{s}}(\mathbf{x})d^{(2p)}(\mathbf{x}_{i},\mathbf{x})}$$

$$= \underset{\mathbf{x} \in \mathbf{C}_{i}^{s+1}}{\min} \max_{i=1:(j-1)} \frac{q^{\gamma_{s}}(\mathbf{x}_{i})q^{\gamma_{s}}(\mathbf{x})}{d(\mathbf{x}_{i},\mathbf{x})}$$

where $\gamma_s = s/(S-1)$ and \mathbf{C}_i^{s+1} is the candidate set for $\mathbf{x}_i^{(s+1)}$

Points migrate to more optimal locations in each stage

Designs from MED-Generating Algorithms

Other Designs

Other Designs

- ▶ Random designs: 50 random designs $(\mathbf{x} \sim U([0,1]^p), \forall \mathbf{x} \in \mathbf{D})$.
- ▶ Space-Filling Design: evenly spaced points over [0, 1]
- ▶ D = 1: $\forall x \in D, x = 1$.
- D-optimal Design: seeks to minimize the variance of the estimated regression coefficients.
 - generated by AlgDesign (using Federov's exchange algorithm).

Results

Results!

	1atT,k=1	1atT,k=4	Fast	Random	Space	D=1	D-opt
E[P(H0 Y,D) H0]	0.999	0.999	0.999	0.999	0.999	0.999	0.999
E[BF01 H0]	3.67e + 15	3.55e + 16	5.21e + 16	6.53e + 15	5.3e + 14	6.63e + 16	6.3e + 15
E[P(H1 Y,D) H1]	0.999	0.999	0.999	0.999	0.999	0.999	0.999
E[BF01 H1]	0.0108	0.00142	0.000913	0.0522	0.00318	0.00104	0.000738
PostVar b ×10e-4	6.33	6.25	6.28	9.15	9.09	3.47	6.41
TPE x10e3	2810	2870	2820	8050000	Inf	Inf	Inf
Fast ×10e3	97.5	43.7	44.5	7810000	Inf	Inf	Inf
$1atT(k=4) \times 10e3$	120	92.5	94.1	7810000	Inf	Inf	Inf
Mean(D)	0.674	0.689	0.684	NA	0.5	1	0.507
sd(D)	0.247	0.219	0.23	NA	0.295	0	0.504

Simple Linear Regression: Unknown Slope and Intercept

Design an Experiment that Estimates Slope and Intercept

SetUp

Similar to the unknown slope case,

- Assume $y_i = \beta_0 + x_i \beta_1 + \varepsilon_i$, where $\varepsilon_i \sim N(0, \sigma^2)$ and $\beta \sim N(\mu, V), \mu = (\mu_0, \mu_1)^T, V = \text{diag}(\nu_0^2, \nu_1^2)$.
- \triangleright $y|\beta, X \sim N(X\beta, \sigma^2 I)$
- \triangleright $y|X \sim N(X\mu, \sigma^2 I + XVX^T)$

Hypotheses

Suppose we suspect $\beta=\mu_0$ or $\beta=\mu_1$, i.e.

$$H_0: \beta \sim N(\mu_0, V_0),$$

$$\mu_0 = (\mu_{00}, \mu_{01})^T,$$

$$V_0 = \operatorname{diag}(\nu_{00}^2, \nu_{01}^2)$$

$$H_1: \beta \sim N(\mu_1, V_1),$$

$$\mu_1 = (\mu_{10}, \mu_{11})^T,$$

$$V_1 = \operatorname{diag}(\nu_{10}^2, \nu_{11}^2)$$

Compare Unknown Slope to Unknown Intercept & Slope

Table

	1atT,k=1	1atT,k=4	Fast	Space	D = 0	D = 1	D-opt
E[P(H0 Y,D) H0] E[BF01 H0] E[P(H1 Y,D) H1] E[BF01 H1] PostVar b0 x10e-4 PostVar b1 x10e-4	0.997 3.99e+10 0.992 0.0925 10.3 21.2	0.995 3.66e+09 0.993 0.0427 10.8 22.6	0.994 1.87e+10 0.994 0.0919 13 23.5	0.994 4.32e+10 0.994 1.03 8.01 21	0.5 1 0.5 1 3.47 50	0.991 5.72e+09 0.986 0.144 25.9 25.9	0.998 2.9e+13 0.997 0.00918 5.9 10.9
TPE x10e3 Fast x10e3 1atT(k=4) x10e3 Mean(D) sd(D)	2270 56.2 80.1 6.66e+09 1.63e+10	2190 24.1 62.1 0.611 0.255	2820 44.5 94.1 0.684 0.23	Inf Inf Inf 0.5 0.295	Inf Inf Inf O O	Inf Inf Inf 1	Inf Inf Inf 0.507 0.504

Linear vs Quadratic

Linear Model vs. Quadratic Model

SetUp

We compare the linear model $y_i = \beta_0 + x_i\beta_1 + \varepsilon_i$ with the quadratic model $y_i = \beta_0 + x_i\beta_1 + x_i^2\beta_2 + \varepsilon_i$

- \triangleright $y|\beta, X \sim N(X\beta, \sigma^2 I)$
- $\triangleright y|X \sim N(X\mu, \sigma_m^2 I + XVX^T)$

Hypotheses

$$\begin{split} \textit{H}_0: \beta &\sim \textit{N}\left(\mu_0, \textit{V}_0\right), \\ \mu_0 &= \left(\mu_{00}, \mu_{01}\right)^T, \\ \textit{V}_0 &= \mathsf{diag}(\nu_{00}^2, \nu_{01}^2) \\ \textit{H}_1: \beta &\sim \textit{N}\left(\mu_1, \textit{V}_1\right), \\ \mu_0 &= \left(\mu_{10}, \mu_{11}, \mu_{12}\right)^T, \\ \textit{V}_1 &= \mathsf{diag}(\nu_{10}^2, \nu_{11}^2, \nu_{12}^2) \end{split}$$

Table

	1atT,k=1	1atT,k=4	Fast	Space	D = 0.5	D=1	D-opt
E[P(H0 Y,D) H0]	1	1	1	1	1	0.511	0.52
E[BF01 H0]	5.66e+77	3e+75	5.69e+68	7.33e + 88	1.83e+47	1.06	1.12
E[P(H1 Y,D) H1]	1	1	1	1	1	0.51	0.516
E[BF01 H1]	1.18e-38	1.73e-40	1.09e-30	2.17e-50	1e-19	0.997	1.01
PostVar b0 x10e-4	8.39	8.67	9.77	8.12	14	33.7	6.2
PostVar b1 x10e-4	30.9	31.2	32.9	30.3	41	33.7	28.1
PostVar b2 x10e-4	32.2	32.4	34.7	30.9	47.7	33.7	28.1
TPE ×10e3	872	786	973	Inf	Inf	Inf	Inf
Fast ×10e3	40.2	11.7	12.9	Inf	Inf	Inf	Inf
$1atT(k=4) \times 10e3$	43.6	22.3	30	Inf	Inf	Inf	Inf
Mean(D)	0.494	0.501	0.51	0.5	0.5	1	0.507
sd(D)	0.272	0.263	0.217	0.295	0	0	0.504