Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Status: 01.04.2015

3.2 Epitaxy

Outline

- 3.2.1 Introduction
- 3.2.2 Process of Silicon Epitaxy
- 3.2.3 Equipment

3.2.1 Introduction

Epitaxy is the growth of single crystalline films upon the surface of a single crystal substrate.

<u>Homoepitaxy</u> <u>Heteroepitaxy</u>

identical different chemical composition of substrate and deposited film

Examples: Si/Si Ge/Si

SiGe Si/Al₂O₃ (Silicon on Saphire)

GaAlAs/GaAs (HEMT, HFET)

Applications: Bipolar: - Definition of transistor regions by vertical doping

- SiGe structures heterojunction bipolar transistors (HBT)

CMOS: - Minimization of the vertical "latch-up" effect (switching of a parasitic p-n-p-n

thyristor) by deposition of lightly doped epi-Si on heavily doped substrates

- Formation of strained Si on SiGe for higher electron mobility

<u>Techniques:</u> - Vapor-phase epitaxy (VPE, similar to CVD, dominating in Si processing)

special case: Molecular Beam Epitaxy (MBE)

- Liquid-phase epitaxy (LPE, III-V compounds)

- Solid-phase epitaxy (SPE, annealing of amorphous layers)

3.2.2 Process of Silicon Epitaxy

- Thermally activated CVD process
- Cold-wall reactors (quartz, stainless steel)
- Atmospheric or reduced pressure conditions
- Highly demanding requirements with regard to thickness uniformity and defects

Deposition Kinetics

Basic steps:

- Transport of gaseous species toward the growing surface in a non-isothermal flow field;
- Surface processes, such as absorption of precursors and surface diffusion of adatoms over the terrace, and their incorporation into step kinks or island clusters;
- Desorption of reactants and by products from the deposition surface;
- Transport of these species back into bulk gas phase.

Deposition characteristics of silicon precursors:

Deposition Imperature (°C)	Growth Rate (µm/min)	Remarks
1150 - 1250	0.4 - 1.5	Very high temperature, used in old processes
1110 - 1150	0.4 - 2.0	High temperature, popular source
1020 - 1120	0.4 - 3.0	Reasonable temperature, used for selective epi growth
650 - 900	0.2 - 0.3	Used in SOS and Si-Ge epi, gas phase nucleation> low pressure
400 - 600	< 0.1	Very low temperature
AsH ₃ , PH ₃ B ₂ H ₆		
H_2		
N_2		
HCI		Lecture Advanced Intregrated Circuit Technology
	mperature (°C) 1150 - 1250 1110 - 1150 1020 - 1120 650 - 900 400 - 600 AsH ₃ , PH ₃ B ₂ H ₆ H ₂ N ₂	mperature (°C) (μm/min) 1150 - 1250 0.4 - 1.5 1110 - 1150 0.4 - 2.0 1020 - 1120 0.4 - 3.0 650 - 900 0.2 - 0.3 400 - 600 < 0.1 AsH ₃ , PH ₃ B ₂ H ₆ H ₂ N ₂ HCl

Deposition chemistry:

Elementary steps

$$SiCl_4 + H_2$$
 \longrightarrow $SiHCl_3 + HCl$
 $SiHCl_3 + H_2$ \longrightarrow $SiH_2Cl_2 + HCl$
 SiH_2Cl_2 \longrightarrow $SiCl_2 + H_2$
 $SiHCl_3$ \longrightarrow $SiCl_2 + HCl$
 $SiCl_2 + H_2$ \longrightarrow $Si + 2 HCl$

Overall reactions

$$SiCl4 + 2 H2$$

$$Si + 4 HCl$$

$$SiH4$$

$$Si + 2 H2$$

$$Si + 2 HCl$$

A - reaction limited growth

B - mass-transport limited growth

Reversible reactions

Negative growth (etching by HCl) possible at T < 900°C & T > 1400°C

SiCl₄/H₂ Process flow:

- Evacuation
- Heating of the susceptor up to process temperature (~1200 °C)
- Removal of the native oxide by purging in H₂
- Etch back of the Si surface in SiCl₄/H₂ ambient
- Epitaxial deposition (changed SiCl₄/H₂ ratio)
- Cooling down

Doping:

Dopants supplied by gaseous precursors:

- AsH₃, PH₃, B₂H₆
 (diluted in H₂ to 20 ... 100 ppm)
- AsH₃, PH₃ reduce deposition rate (blockage of bonds)
- B₂H₆ increases deposition rate (support of H desorption)

Undesired Doping: Autodoping and Outdiffusion

- Outdiffusion from substrate (transport inside wafer) (A):
 - Undesired effect occurring at high temperature: dopant atoms diffuse from the material featuring high doping level to the material featuring low doping level; common in high temperature epitaxial deposition where it prevents sharp change in dopant concentration between epi layer and the substrate
- Autodoping (transport via gas phase) (B):

Dopant atoms evaporating from semiconductor surface region during high temperature treatments can be reintroduced into semiconductor causing undesired variations in dopant concentration at the surface; highly undesired effect; of particular concern in high-temperature epitaxial deposition processes.

Prevention:

- Reduce temperature by using suitable Si precursors {A+B}
- Use As instead of P (diffusivity) {A+B}
- Increase gas phase diffusivity by reduced pressure (As, P) {B}
- Avoid HCl etching at high temperature {A+B}
- Backside passivation (back-surface oxide seal) {B}

3.2.3 Equipment

Reactor configurations

Heating:

- IR radiative heating (quartz carrier can be used)
- Inductive heating (SiC covered graphite susceptors, chemically resistent, conducting)

Equipment: Single wafer chambers in clustertools

Process flow (example):

1. Step: 1100 °C, 60 s, H₂ 30 sccm, 60 Torr,

2. Step: 1050 °C, SiCl₂H₂

Deposition rate: 0.7 µm/min

Applied Materials Centura Epi RP