OBLIGATORISK TEORIØVING NR 1 - TFE4105

INNLEVERING I LÅSBARE BOKSER I KJELLER ELEKTRO B SOM ER MERKET MED LABPLASS-NUMMERET DERES.

FRIST:

Grupper med teoriøving i partallsuker: mandag 10/9 klokken 12:15. Grupper med teoriøving i oddetallsuker: mandag 17/9 klokken 12:15.

BESVARELSEN SKAL INNEHOLDE: Navn på de som er i gruppen, årskurs, studieprogram

KUN EN BESVARELSE PR. GRUPPE

Øving 1 Digitalteknikk og datamaskiner – TFE4105 – H12

Denne øvingen gjennomgår følgende emner i kapittel 1, 2 og 3 i Gajski:

- Forstå forskjellen på ulike designrepresentasjoner og abstraksjonsnivå.
- Forstå konvertering mellom og representasjon i forskjellige tallsystemer.
- Forenkle boolske uttrykk ved hjelp av boolsk algebra.
- Forstå sammenheng mellom boolske uttrykk og logiske kretsskjema.

NB: Alle indekser (som angir hvilket tallsystem tallet er representert i) er skrevet som desimaltall (tall i titallsystemet).

Oppgave 1: Designrepresentasjon og abstraksjonsnivå

(Hver deloppgave kan gi maks 0,5 poeng)

- a) I designprosessen benyttes ulike representasjoner som viser produktet fra ulike synsvinkler. Er det korrekt å si at en strukturell representasjon ikke direkte beskriver produktets funksjonalitet?
- b) Hvilke strukturelle komponenter benyttes til å beskrive et design på registernivå?

Oppgave 2: Generelle tallsystemer

(Deloppgave a) og b) kan gi maks 1 poeng, mens deloppgave c) gir maks 0,5 poeng)

- a) Konverter følgende tall til desimaltall, med 2 siffer etter desimalpunktum:
 - 1) 100**.**10₍₅₎ 2) 364**.**63₍₇₎
- b) Utfør følgende konverteringer og ta i hvert tilfelle med 3 siffer i deltallsdelen.
 - 1) 720.12₍₁₀₎ til 6-tallssystemet.
 - 2) 600.75₍₁₀₎ til 5-tallssystemet

Husk riktig avrunding.

- c) Resultat -573.34₍₈₎ er framkommet etter avrunding fra et tall med større presisjon (flere siffer etter radix-punkt).
 - 1) Hvilket tallområde dekker resultatet?
 - 2) Hva er usikkerheten til resultatet?

Oppgave 3: Viktige tallsystemer og koder

(Hver deloppgave kan gi maks 0,5 poeng)

- a) Konverter følgende oktaltall (8-tallssystemet) til binærtall (2-tallssystemet) 32.11₍₈₎
- b) Konverter følgende binærtall til oktaltall.

 $11100110111.01_{(2)}$

c) Konverter følgende hexadesimale tall (16-tallssystemet) til binærtall.

FADE. BABE (16)

d) Konverter følgende binære tall til hexadesimale tall.

1101 1101 1110 (2)

e) Tallet 00110110 er skrevet med BCD representasjon. Hvilken desimalverdi tilsvarer dette?

Oppgave 4: Komplement-tall-aritmetikk

(Deloppgave a), c) og e) kan gi maks 0,5 poeng, mens deloppgave b) og d) gir maks 1 poeng)

Desimaltall	Binærtall	Binærtall
	(Sign-magnitude)	(2's komplement)
7		
6		
5		
4		
3		
2		
1		
0		
-1		
-2		
-3		
-4		
-5		
-6		
-7		
-8		

- a) Fyll ut tabellen ovenfor. Kommenter tabellen. Hvor mange tall kan representeres v.h.a. 4 bit i henholdsvis sign-magnitude og 2's komplement? Er det noen forskjell, og hva er eventuelt grunnen til dette?
- b) Gitt tallene $A = 6_{(10)}$ og $B = 5_{(10)}$. Konverter tallene til binærtall med 4 siffers representasjon. Utfør deretter A-B og B-A med bruk av 2's komplement representasjon. Kontroller svaret ved å gjøre om til sign-magnitude hvis svaret er negativt.

c) Hva er regelen for når man får overflow når man utfører addisjon v.h.a. 2's komplement?

d) Gitt tallene $C = -8_{(10)}$ og $D = -3_{(10)}$ Representer C og D på 2's komplement form, 4 bits representasjon. Utfør C + D. Hvorfor blir svaret galt?

e) Tallet $10110_{(2)}$ er skrevet på 2s komplement form. Vi ønsker å representere tallet med 7 bit isteden for 5 uten at verdien til tallet endres. Hvilket av alternativene e1, e2 eller e3 gjengir en utvidet versjon av tallet (fortsatt på 2s komplement form)?

e1	e2	e3
1110110 ₍₂₎	1000110 ₍₂₎	1011000(2)

Oppgave 5: Binær multiplikasjon og divisjon

(Deloppgave a) kan gi maks 1,5 poeng, mens deloppgave b) gir maks 1 poeng)

a)
$$A = -11_{(10)}$$

 $B = -13_{(10)}$

Representer tallene på 2's komplement og 5 bits representasjon. Utfør A•B. Husk fortegnsutvidelse (sign extension) i partielle produkter og invertering av det siste partielle produktet.

b)
$$C = 160_{(10)}$$

 $D = 7_{(10)}$

Utfør binærdivisjonen C/D. (Her trenger du ikke tenke på fortegnsbit og hvor mange bit du trenger for å representere hvert av tallene.)

Oppgave 6: Gray-kode

(Hver deloppgave kan gi maks 0,5 poeng)

Gray-koden er ikke beskrevet i Gajski. Den er derimot svært mye brukt. Når man koder en binærsekvens av tall i Gray-kode, vil to påfølgende tall i sekvensen skille seg fra hverandre i kun *en* av bitposisjonene.

Et n-bits tall i vanlig binærkode kan skrives som:

$$B_nB_{n\text{-}1}.....B_1B_0$$

Et n-bits graykodet tall kan skrives som:

$$G_nG_{n-1}....G_1G_0$$

 G_0 og B_0 er LSB i tallene.

En regel som kan benyttes for omgjøring fra vanlig binærkode til Gray-kode er følgende (\oplus = XOR-operasjon der $0\oplus 0=0$, $0\oplus 1=1$, $1\oplus 1=0$):

$$G_n = 0 \oplus B_n$$

$$G_{n-1} = B_n \oplus B_{n-1}$$
 . .
$$G_1 = B_2 \oplus B_1$$

$$G_0 = B_1 \oplus B_0$$

Ved omgjøring tilbake til binærkode fra Gray-kode gjelder:

$$\begin{split} B_n &= 0 \oplus G_n \\ B_{n\text{-}1} &= B_n \oplus G_{n\text{-}1} \\ B_{n\text{-}2} &= B_{n\text{-}1} \oplus G_{n\text{-}2} \\ \cdot \\ \cdot \\ \cdot \\ B_1 &= B_2 \oplus G_1 \\ B_0 &= B_1 \oplus G_0 \end{split}$$

- a) Konverter følgende tall i Gray-kode til vanlig binærkode.
 - 1) 1101011
 - 2) 1001101
- b) Konverter følgende tall i binærkode til Gray-kode:
 - 1) 0111111
 - 2) 1000000

Oppgave 7: Boolske funksjoner, algebraisk forenkling av uttrykk, og forenkling av kretsskjema (Deloppgave a), c), d), e) og g) kan gi maks 1 poeng hver, mens deloppgave b) gir maks 0,5 poeng og deloppgave f) gir maks 1,5 poeng)

a) De Morgans teoremer er viktige i forbindelse med omforming av boolske uttrykk. Hvilket alternativ (a1, a2 eller a3) gjengir <u>ikke</u> et av disse teoremene?

	<u> </u>	
a1	a2	a3
x' + y' = (xy)'	xy + xy' = x	x'y' = (x + y)'

- b) Gitt to uttrykk (1) og (2) fra Boolsk algebra:
- (1): (A + B)C = AC + BC
- (2): AB + C = (A + C) (B + C)

Er (1) korrekt, (2) korrekt eller både (1) og (2) korrekt?

c) Gitt funksjonen F(A,B,C,D) = A B' C + A D + A B C' D'. Hvilke alternativ (c1, c2 eller c3) gjengir en beskrivelse av F' (den inverterte av funksjonen F)?

c1	(A' + B + C') (A' + D') (A' + B' + C + D)
c2	A' + D' (B + C') (B' + C + D)
c3	A' B C' + A' D' + A' B' C D

d) Skriv funksjonen F gitt av tabell 1.1 på kanonisk form, både som sum av mintermer og produkt av maxtermer.

	ABCD	F
0	0000	0
1	0001	0
2	0010	1
3	0011	1
4	0100	1
5	0101	1
6	0110	0
7	0111	0
8	1000	1
9	1001	0
10	1010	1
11	1011	1
12	1100	1
13	1101	1
14	1110	0
15	1111	0

Tabell 1.1: Sannhetstabell for funksjon

- e) Tegn kretsskjema for F med utgangspunkt i uttrykket for sum av mintermer. Bruk 4-inngangs AND-porter og 2-inngangs OR-porter i tillegg til inverterere.
- f) Bruk boolsk algebra til å forenkle uttrykket for sum av mintermer som du skrev opp i d). Det forenklede uttrykket skal være på standard form, sum av produkter.
- g) Tegn nytt kretsskjema for F basert på forenklingen fra f). Bruk XOR-, AND-, og OR-porter med 2 innganger, i tillegg til inverterere. Legg merke til hvor forenklet den nye kretsen blir.