Taylor Entwicklung

Die allgemeine Formel für die Taylor-Entwicklung einer Funktion f um den Punkt x_0 lautet:

$$f(x) = T_n(x) + R_n(x)$$

wobei $T_n(x)$ das Taylor-Polynom n-ten Grades ist und $R_n(x)$ das Restglied darstellt. Das Taylor-Polynom $T_n(x)$ wird wie folgt definiert:

$$T_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Das Restglied $R_n(x)$ in der Lagrange-Form ist gegeben durch:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

wobei ξ ein Wert zwischen x und x_0 ist. Rechenbeispiel: Betrachten wir die Funktion $f(x)=e^x$ und möchten die Taylor-Entwicklung um den Punkt $x_0=0$ (also eine Maclaurin-Entwicklung) bis zum Grad 3 berechnen. Funktion und ihre Ableitungen: $f(x)=e^x$ $f'(x)=e^x$ $f''(x)=e^x$ $f'''(x)=e^x$ Berechnung der Werte an $x_0=0$: $f(0)=e^0=1$ $f'(0)=e^0=1$ $f''(0)=e^0=1$ $f''(0)=e^0=1$ Aufstellen des Taylor-Polynoms $T_3(x)$: $T_3(x)=1+\frac{1}{1!}x+\frac{1}{2!}x^2+\frac{1}{3!}x^3$ $T_3(x)=1+x+\frac{x^2}{2}+\frac{x^3}{6}$ Das ist das Taylor-Polynom dritten Grades für e^x um $x_0=0$. Das Restglied $R_3(x)$ wird für praktische Zwecke oft vernachlässigt, wenn x nahe bei 0 ist und n groß genug ist.