

Agentes Baseados em Conhecimento

Capítulo 4:

Costa, E. e Simões, A. (2015). Inteligência Artificial – Fundamentos e Aplicações, 3.ª edição, FCA.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 1

Agentes Baseados em Conhecimento

- Os agentes de procura constituem uma forma simples de agentes baseados em conhecimento
- A diferença reside no facto de os agentes de procura usarem conhecimento que tem uma natureza geral, não sendo específico do problema que se pretende resolver

Generalidades

 Definição da arquitetura dos agentes baseados em conhecimento e das diferentes formas que podem assumir

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 3

Generalidades: Arquitetura

- Os agentes reativos são fundamentalmente constituídos por 2 módulos: um de perceção e outro de ação
- Mesmo com esta decomposição elementar, verificámos ser possível resolver uma classe de tarefas interessante
- Com os agentes de procura adicionámos a capacidade de decisão

Generalidades: Arquitetura

Estrutura de um agente

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 5

Generalidades: Arquitetura

- O módulo de decisão traduz-se na existência de uma memória ampla e na capacidade de organizar e explorar de forma disciplinada os elementos presentes nessa memória
- Para navegar de modo organizado por uma estrutura que vai sendo dinamicamente construída, o agente necessita de duas coisas: conhecimento e capacidade de raciocínio

Generalidades: Arquitetura

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 7

Generalidades: Arquitetura

- No caso dos agentes de procura, as capacidades de representar conhecimento e de raciocinar são genéricas e elementares:
- O conhecimento traduz-se em mecanismos de avaliação de situações e de heurísticas para guiar a procura
- O raciocínio consiste num método sistemático de atravessar grafos

Generalidades: Arquitetura

 Veremos que, nos agentes baseados em conhecimento, o uso de conhecimento e de mecanismos de raciocínio específicos pode aumentar o desempenho dos agentes

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 9

Generalidades: Arquitetura

Recorrendo à arquitetura abstrata definida para os agentes reativos, teremos agora a seguinte decomposição funcional:

Transformação dos estados do ambiente em perceções

Atualização da memória em função das novas perceções

Ação a ser executada sobre o ambiente

Generalidades: Arquitetura

 A função Decisão pode ser implementada seguindo vários paradigmas

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 11

Sistemas de Representação de Conhecimento e de Raciocínio

- Todo o agente inteligente vive num ambiente ou mundo e está permanentemente a tentar compreender e atuar sobre esse mundo, com vista à satisfação de um conjunto de objetivos
- Para poder realizar tarefas o agente tem de construir a sua imagem ou representação do mundo

Sistemas de Representação de Conhecimento e de Raciocínio

- A forma como o faz depende das suas capacidades: é necessário um mecanismo de representação do conhecimento
- Por outro lado, o agente interage de forma intencional com o ambiente com base nas representações que possui
- Para isso tem de possuir um mecanismo de raciocínio

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 13

Sistemas de Representação de Conhecimento e de Raciocínio

- Estas duas componentes definem um sistema (representação do conhecimento e raciocínio)
- Esses sistemas podem ser enquadrados em 3 grandes grupos (abordagens computacionais):
 - sistemas declarativos
 - sistemas procedimentais
 - sistemas híbridos

Sistemas de Representação de Conhecimento e de Raciocínio

 Existem outras abordagens aos sistemas baseados em conhecimento: sistemas conexionistas, sistemas biológicos, etc

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 15

O Mundo

 Consideremos um mundo simplificado, a 2D, fechado, formado por grelhas retangulares, que podem conter agentes biológicos, comida ou obstáculos

círculos: comida

quadrados: obstáculos

triângulos: agentes

Mundo bidimensional

O Mundo

- Cada agente pode capturar informação sobre o tipo de objeto presente nas suas 8 células adjacentes (a sua vizinhança)
- Os agentes têm noção da sua idade, género, nível de energia e posição no mundo
- Graças à sua memória, os agentes têm uma noção de território mais vasta do que a sua vizinhança

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 17

O Mundo

 Recordam as ações e os comportamentos que lhes deram satisfação ou, pelo contrário, que lhes foram nocivos

O Mundo

- O objetivo destes agentes é sobreviver
- A morte de um agente pode ocorrer se for atingido um valor de energia abaixo do limiar de sobrevivência ou se for excedido um valor de energia máximo
- O nascimento de um agente ocorre quando 2 agentes de géneros diferentes, com idade e energia adequadas, se encontram

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 19

O Mundo

- As ações do agente são de 3 tipos: comer, andar e reproduzir
- Essas ações envolvem troca de energia com o ambiente em diversas situações:
 - Quando o agente come, a sua energia é aumentada
 - Quando o agente entra num processo de reprodução, a sua energia diminui
 - Quando o agente caminha, a sua energia diminui

O Mundo

- O mundo existe com um certo número de agentes, comida e obstáculos
- Cada agente tem o valor dos seus atributos definido (idade, género, etc).

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 21

O Mundo

 O comportamento de cada agente pode ser definido pelo seguinte algoritmo

Função Agente

- 1. Repete até morrer
 - 1.1. Percepcionar o mundo na vizinhança;
 - 1.2. Decidir a acção a tomar;
 - 1.3. Executar a acção;
 - 1.4. Actualizar o nível de energia.

Fim_de_Repete

Fim_de_Função

Comportamento de um agente

As Abordagens Computacionais

 Cada uma destas abordagens tenta responder à necessidade de referenciar os objetos do mundo, as suas propriedades, o modo como se relacionam com outros objetos ou ainda as ações e respetivos efeitos que podem acontecer

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 23

Sistemas Declarativos

- Um sistema de base declarativa caracteriza-se fundamentalmente pelo facto de se preocupar com uma descrição do estado do mundo, uma descrição do que existe, deixando ao mecanismo de raciocínio o cuidado de derivar conhecimento implícito
- Por outro lado, o mecanismo de raciocínio tem a propriedade de, partindo de factos verdadeiros, determinar as consequências verdadeiras desses factos

- Representação do conhecimento
- Comecemos por descrever o tipo dos objetos:

```
tipo (a_1, agente)
tipo (c_1, comida)
tipo (o_1, obstáculo)
```

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 25

Sistemas Declarativos

• Nestas afirmações:

```
tipo é um predicado
```

 a_1 e agente são termos simples ou constantes

Algumas das propriedades dos objetos:

```
posição (a_1, coordXY(6,4))

idade (a_1, 30)

sexo (a_1, m)

energia (a_1, 50)

posição (c_1, coordXY(6,3))

energia (c_1, 15)

posição (o_1, coordXY(5,5))
```

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 27

Sistemas Declarativos

- posição, idade, sexo, energia são predicados
- m, 30, a₁ são termos simples
- coordXY(6,4) é um termo composto
- coordXY é um functor de aridade 2

Relações entre objetos:

```
vizinho (a_1, c_1)
vizinho (a_1, o_1)
gosta (a_1, c_1)
mesmo_sexo (a_1, a_3)
```

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 29

Sistemas Declarativos

- Afirmações sobre o mundo:
- Exemplo: 2 objetos distintos não podem ocupar a mesma posição

 $\forall z, w, x_1, x_2, y_1, y_2 (posição(z, coordXY(x_1, y_1)) \land posição(w, coordXY(x_2, y_2)) \land z \neq w) \\ \rightarrow (coordXY(x_1, y_1) \neq coordXY(x_2, y_2))$

 Exemplo em que dizemos que mesmo sexo é um predicado transitivo

$$\forall x, y, z (mesmo_sexo(x, y) \land mesmo_sexo(y, z)) \rightarrow mesmo_sexo(x, z)$$

- Vejamos agora as questões do Raciocínio:
- Os sistemas declarativos baseados numa linguagem lógica caracterizam-se por ter um mecanismo de inferência dedutiva que permite tirar conclusões a partir do conhecimento existente
- Esse mecanismo é constituído por regras
- As regras têm premissas (ou antecedentes) e têm conclusões (ou consequentes)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 31

Sistemas Declarativos

 Uma das regras de inferência mais conhecida e usada é a regra de modus ponens (do latim "modos de pôr")

$$\frac{P, P \to Q}{\therefore Q}$$

 Esta regra diz que se P for verdadeiro e se P implicar Q (premissas), então podemos inferir Q (conclusão)

Exemplo: Admitamos os seguintes factos

```
tipo (a_1, agente)
energia (a_1, 50)
50 <= 100
```

 Suponhamos ainda que o estado de fome se define por

```
\forall x, y (tipo(x, agente) \land energia(x, y) \land y \le 100) \rightarrow tem\_fome(x)
```

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 33

Sistemas Declarativos

 Usando a regra do modus ponens, podemos concluir que

tem_fome
$$(a_1)$$

ou seja, o agente a₁ tem fome

Sistemas Procedimentais

 Os sistemas procedimentais permitem representar conhecimento com base em factos e em regras do tipo

```
Se <condição> então <conclusão>
```

 São sistemas mais voltados para a ação, ou seja, mais preocupados em descrever como se alcança determinado objetivo

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 35

Sistemas Procedimentais

Exemplo:

Alguns factos e regras

```
vizinho(a_1, coordXY(6, 4), c_1, coordXY(6, 3))
tipo(a_1, agente)
tipo(c_1, comida)
energia(a_1, 50)
50 <= 100
```

Sistemas Procedimentais

Alguns factos e regras

```
R1:
Se tipo(x,agente),energia(x,y),y<=100
então tem_fome(x)

R2:
Se tem_fome(x),vizinho(x,coordXY(x1,y1),y,coordXY(x2,y2)),tipo(y,comida)
então comer(x,y)</pre>
```

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 37

Sistemas Procedimentais

- A maneira como, a partir deste conhecimento, se pode inferir novo conhecimento é feita através de um mecanismo de raciocínio que promove o encadeamento de regras
- Usando a R1 do exemplo anterior, podemos concluir que a1 tem fome
- Esse novo facto vem adicionar-se aos já conhecidos

Sistemas Procedimentais

- Assim, podemos usar a R2 para concluir que a₁ vai comer c₁
- Foi usado um mecanismo de encadeamento para a frente das regras: os factos iniciais permitiram chegar à conclusão de R1, conclusão essa que fazendo parte dos antecedentes da regra R2, por sua vez, permitiu chegar à sua conclusão

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 39

Sistemas Híbridos

- Os sistemas híbridos combinam aspetos declarativos com aspetos procedimentais
- Existem algumas variantes de sistemas híbridos: consideremos os chamados sistemas de enquadramentos (frame systems)
- Um enquadramento é uma entidade simples ou objeto que permite representar informação sobre a estrutura e o comportamento desse objeto

Sistemas Híbridos

- Um enquadramento tem vários atributos, podendo esses atributos ter diferentes facetas
- Enquadramento para um agente genérico:

➤Um agente é do tipo biológico

➤Tem 150 unidades de energia

➤ Pode ser do sexo masculino ou feminino

Nome: Agente

Tipo: biológico

Energia [defeito]: 150

Sexo: {f,m}

Enquadramento para um agente genérico

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 41

Sistemas Híbridos

 Exemplos de concretizações daquela definição genérica:

Nome: a₁

é_um(a): Agente

Tipo: biológico

Energia: 120

Sexo: m

Posição: (6,4)

Vizinhos: $\{o_1, c_1\}$

Nome: a₂

é_um(a): Agente

Tipo: biológico

Energia: 180

Sexo: f

Posição: (1,8)

Vizinhos: { }

Enquadramentos mais concretos

Sistemas Híbridos

- Na concretização podem existir outros atributos
- Neste exemplo: posição e lista de vizinhos
- Alguns destes atributos estabelecem relações entre os enquadramentos

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 43

Sistemas Híbridos

- Exemplo: a₁ é um caso concreto de Agente
- Em termos de implementação corresponde a um ponteiro

Sistemas Híbridos

- Este tipo de ligações permite o funcionamento do mecanismo essencial de raciocínio, designado por herança de propriedades
- Se for necessário saber o tipo de a₁, não havendo resposta no respetivo enquadramento, encontra-se essa informação no enquadramento mais geral de nome Agente
- Conseguimos inferir por herança que o tipo de a₁ é biológico

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 45

Sistemas Híbridos

- Também é possível acrescentar conhecimento procedimental através de demónios ou métodos
- Exemplos de demónios mais conhecidos e usados:

Se_Necessário

Permite calcular um valor associado a um atributo, caso seja desconhecido mas necessário

Se_Alterado

Permite repercutir no sistema o resultado de alterações em valores dos atributos

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 47

Outras Abordagens

- As abordagens anteriores estão relacionadas com o paradigma computacional
- Em que medida as abordagens conexionista e biológica lidam com o problema da representação do conhecimento e com o problema do raciocínio ?

Sistemas Conexionistas

- A arquitetura de um agente baseado em conhecimento inclui estado, memória, conhecimento e raciocínio
- Numa abordagem conexionista o mecanismo de representação e de raciocínio, responsável maior pelas decisões tomadas pelo agente, é uma rede neuronal, ou seja, uma rede de unidades TLU

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 49

Sistemas Conexionistas

Exemplo: Seja a seguinte regra

R:

Se um agente tem energia maior ou igual a 200 e idade maior ou igual a 20 Então deve tentar reproduzir

Sistemas Conexionistas

 Esta regra pode ser representada por uma rede de unidades TLU:

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 51

Sistemas Conexionistas

- Se os valores da energia e da idade forem superiores ou iguais aos valores dos respetivos limiares, as TLU disparam
- O nó terminal só ficará ativo se as duas entradas estiverem simultaneamente positivas e, nesse caso, a decisão corresponderá à ação reproduzir

Sistemas Conexionistas

- O mecanismo de raciocínio corresponde à propagação de valores ao longo da rede
- O módulo de memória guarda informação sobre a energia, a idade, o sexo, etc.
- O estado recebe informação do ambiente, como por exemplo indicação sobre os objetos na vizinhança

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 53

Sistemas Biológicos

- Suponhamos que o agente pretende comer o máximo possível, e admitamos que sabe qual é a localização da comida
- O seu objetivo poderá ser maximizar a energia ganha

Sistemas Biológicos

- Esta é uma tarefa de otimização semelhante ao problema do caixeiro-viajante: a partir de uma dada localização, passar uma e uma só vez por outras localizações e regressar à posição inicial
- O problema pode ser resolvido usando um algoritmo genético (tal como o problema das N rainhas)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 55

Sistemas Biológicos

 Em termos de representação, uma possibilidade é uma representação linear em que cada posição corresponde ao identificador da comida

Representação linear para um algoritmo genético

Sistemas Biológicos

- Cada indivíduo é na prática uma permutação dos diversos exemplares de comida existentes no ambiente
- O mecanismo de raciocínio é o próprio algoritmo genético que fará evoluir uma população de percursos possíveis

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES BASEADOS EM CONHECIMENTO 57

Sistemas Biológicos

- Não deverão ser gerados percursos sem sentido
- Devem ser usados um operador de cruzamento baseado na ordem e um operador de mutação por troca