Package 'HellCor'

October 12, 2022

,
Type Package
Title The Hellinger Correlation
Version 1.3
Date 2020-05-16
Author Gery Geenens [aut], Pierre Lafaye De Micheaux [aut, cre]
Maintainer Pierre Lafaye De Micheaux <lafaye@unsw.edu.au></lafaye@unsw.edu.au>
Description Empirical value of the Hellinger correlation, a measure of dependence between two continuous random variables. More details can be found in Geenens and Lafaye De Micheaux (2019) <arxiv:1810.10276v4>.</arxiv:1810.10276v4>
License GPL (>= 2)
LazyLoad yes
LazyData true
Depends R (>= 2.10.0), energy, FNN, orthopolynom
Imports stats
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-05-17 07:20:02 UTC
R topics documented:
Chagos HellCor wdemographics worlddemographics
Index 1

2 Chagos

Chagos

Coral fish, seabirds and reef productivity study by Graham et al (2018)

Description

Data set investigated in Graham et al (2018). It contains several variables describing fish and seabirds populations on twelve islands of the Chagos Archipelago (British Indian Ocean Territory).

Usage

data(Chagos)

Format

A data frame with 12 observations on the following 7 variables.

Atoll Factor with 3 levels. Atoll containing several islands.

Island Factor with 12 levels. Name of the island.

Treatment Factor with 2 levels. Presence or absence of rats on the island.

Seabirds_ha Numeric vector of the number of birds per hectare of island.

kg_N_ha_yr Numeric vector of nitrogen input (in kg) by seabirds per hectare of island over a one year period.

Number_of_fishes Integer vector of the number of fishes recorded during underwater visual surveys along the reef crest of each island on the lagoonal side of each atoll.

biomass numeric vector. Fish counts were converted into biomass using published length-weight relationships from FishBase.

Author(s)

Geenens G., Lafaye de Micheaux P.

References

Graham N. A. J., Wilson S. K., Carr P., Hoey A. S., Jennings S., MacNeil M. A. (2018). Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. *Nature* 559, 250–253.

Examples

data(Chagos)

HellCor The Hellinger Correlation	HellCor	The Hellinger Correlation	
-----------------------------------	---------	---------------------------	--

Description

Empirical value of the Hellinger correlation between two continuous random variables X and Y.

Usage

```
HellCor(x, y, Kmax = 20L, Lmax = 20L, K = 0L, L = 0L, alpha = 6.0, pval.comp = FALSE, conf.level = NULL, B1 = 200, B2 = 200, C.version = TRUE)
```

Arguments

x	Sample of X-values.
у	Sample of Y-values.
Kmax	Maximal number of terms to consider in the expansion of the square root of the copula density in the basis of Legendre polynomials.
Lmax	Maximal number of terms to consider in the expansion of the square root of the copula density in the basis of Legendre polynomials.
K	If K and L are not equal to zero, and Kmax = Lmax = 0, the number of terms is set to K in the expansion of the square root of the copula density in the basis of Legendre polynomials.
L	If K and L are not equal to zero, and $Kmax = Lmax = 0$, the number of terms is set to L in the expansion of the square root of the copula density in the basis of Legendre polynomials.
alpha	Parameter of the Beta(alpha,alpha) distribution used to fix boundary issues through transformation when estimating the Hellinger correlation.
pval.comp	Logical. Should we compute the p-value?
conf.level	If not NULL, a number in $(0, 1)$ that sets the confidence level for the computed confidence interval.
B1	Numeric. Number of Bootstrap replicates for the outer loop in the double bootstrap procedure used to obtain the confidence interval. Only used if conf.level is not NULL. For some examples, one might need to increase this value to 1,000.
B2	Numeric. Number of Bootstrap replicates for the inner loop in the double bootstrap procedure used to obtain the confidence interval. Only used if conf.level is not NULL.
C.version	Logical. If FALSE, the R version is used instead of the C version. Not really useful to change to FALSE unless one wants to understand the algorithm used.

Details

When Kmax = Lmax = K = L = 0, the value returned in Hcor is the unnormalized version of the empirical Hellinger correlation.

Value

List with the following components:

Hcor Value of the empirical Hellinger correlation.

p.value The p-value associated to the null hypothesis that the Hellinger correlation is

equal to 0 (computed using a Monte-Carlo simulation). Will be NA if pval.comp

is not set to TRUE.

conf.int Confidence interval for the population Hellinger correlation (computed using a

double Bootstrap). Will be NA if conf. level is not set to a value in (0,1).

Khat Value of K selected by cross-validation, if computed, otherwise NA. Value of L selected by cross-validation, if computed, otherwise NA.

Author(s)

Geenens G., Lafaye de Micheaux P.

References

Geenens G., Lafaye de Micheaux P., (2018). The Hellinger correlation. (), -.

Examples

```
# We illustrate the application of our new measure using data extracted
# from a study on the coral reef published in
  [Graham, N.A.J. and Wilson, S.K. and Carr, P. and Hoey, A.S. and
   Jennings, S. and MacNeil, M.A. (2018), Seabirds enhance coral reef
   productivity and functioning in the absence of invasive rats, Nature,
    559, 250--253.].
# The two variables we consider are the number of fishes and the nitrogen
# input by seabirds per hectare recorded on n = 12 islands in the Chagos
# Archipelago. Nitrogen input is an indirect measure of the abundance of
# seabirds. It is worthwhile to notice that nitrogen is absorbed by algae
# and that herbivorous fishes eat these algae. Fishes and birds living in
# two different worlds, it might seem odd to suspect a dependence between
# these two variables. Since our measure is tailored to capture dependence
# induced by a lurking variable, we can suspect the existence of such a
# hidden variable. This is indeed what researchers in (Graham et al., 2018)
# were able to show by finding that the presence and abundance of rats on
# an island had dramatic effects on the number of seabirds (the rats eating
# their eggs) and consequently on the input of nitrogen in seabirds' guano.
# In turn, this would diminish the abundance of algae and fishes eating
# these algae.
data(Chagos)
n <- nrow(Chagos)</pre>
par.save <- par()$mfrow
par(mfrow = c(1, 2))
plot(Chagos$Seabirds_ha, Chagos$Number_of_fishes, main = "Original data",
```

```
xlab = "Density of seabirds", ylab = "Density of fishes")
plot(rank(Chagos$Seabirds_ha) / (n + 1), rank(Chagos$Number_of_fishes) /
    (n + 1), main = "Rank-Copula transformed data",
    xlab = "Density of seabirds", ylab = "Density of fishes")
par(mfrow = par.save)
set.seed(1)
# Empirical Hellinger correlation
HellCor(Chagos$Seabirds_ha, Chagos$Number_of_fishes, pval.comp = TRUE)
# Pearson correlation
cor.test(Chagos$Seabirds_ha, Chagos$Number_of_fishes)
# Distance correlation
dcor.test(Chagos$Seabirds_ha, Chagos$Number_of_fishes, R = 200)
set.seed(1)
# Empirical Hellinger correlation
HellCor(Chagos$kg_N_ha_yr, Chagos$Seabirds_ha, pval.comp = TRUE)
# Pearson correlation
cor.test(Chagos$kg_N_ha_yr, Chagos$Seabirds_ha)
# Distance correlation
dcor.test(Chagos$kg_N_ha_yr, Chagos$Seabirds_ha, R = 200)
set.seed(1)
# Empirical Hellinger correlation
HellCor(Chagos$kg_N_ha_yr, Chagos$Number_of_fishes, pval.comp = TRUE)
# Pearson correlation
cor.test(Chagos$kg_N_ha_yr, Chagos$Number_of_fishes)
# Distance correlation
dcor.test(Chagos$kg_N_ha_yr, Chagos$Number_of_fishes, R = 200)
t.test(Chagos$kg_N_ha_yr ~ Chagos$Treatment)
# Geenens G., Lafaye de Micheaux P., (2020). The Hellinger correlation
# Figure 5.2
## Not run:
n <- 500
set.seed(1)
par(mfrow = c(3, 5))
XX <- .datagenW.corrected(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
title(main = substitute(W~~-~~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenDiamond(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
```

```
title(main = substitute(Diamond~~-~~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenParabola.corrected(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
title(main = substitute(Parabola~~-~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagen2Parabolas.corrected(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat<-HellCor(XX[,1], XX[,2])$Hcor
title(main = substitute(Two~~parabolae~~-~~hat(eta)==etahat, list(etahat
= round(etahat, 3))))
XX <- .datagenCircle.corrected(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor
title(main = substitute(Circle~~-~~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagen4indclouds(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
title(main = substitute(4~~clouds~~-~~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenCubic(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
title(main = substitute(Cubic~~-~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenSine(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor
title(main = substitute(Sine~~-~~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenWedge(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
title(main = substitute(Wedge~~-~~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenCross(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
title(main = substitute(Cross~~-~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenSpiral(n, sigma = 0.05)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
```

wdemographics 7

```
etahat <- HellCor(XX[,1], XX[,2])$Hcor
title(main = substitute(Spiral~~-~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagen4Circles(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
title(main = substitute(Circles~~-~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenHeavisine(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor
title(main = substitute(Heavisine~~-~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagenDoppler(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat<-HellCor(XX[,1], XX[,2])$Hcor
title(main = substitute(Doppler~~-~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
XX <- .datagen5Clouds(n)</pre>
plot(XX, xlab = expression(X[1]), ylab = expression(X[2]))
etahat <- HellCor(XX[,1], XX[,2])$Hcor</pre>
title(main = substitute(5~~clouds~~-~~hat(eta)==etahat, list(etahat =
round(etahat, 3))))
## End(Not run)
# Birth rate vs Death rate #
################################
data(worlddemographics)
x <- wdemographics$Death.Rate.Pop</pre>
y <- wdemographics$Birth.Rate.Pop</pre>
plot(x, y, xlab = "DEATHS/1,000 POPULATION", ylab =
"BIRTHS/1,000 POPULATION", main =
"Birth rate vs Death rate for 229 countries and territories (in 2020)", col = "orangered", pch = 20)
text(x, y, labels = wdemographics$Country, pos = 3, cex = 0.4, offset = 0.2)
## Not run:
HellCor(x, y, pval.comp = TRUE)
 cor.test(x, y) # Pearson
 dcor.test(x, y, R = 200)
## End(Not run)
```

8 worlddemographics

Description

This data set contains the birth rates and death rates of 229 countries in 2020 ranked in decreasing order

Usage

```
wdemographics
```

Format

Data frame with 229 observations and 3 variables.

Country Character. Name of the country.

Birth.Rate.Pop Numeric. Birth rate per 1,000 habitants.

Death.Rate.Pop Numeric. Death rate per 1,000 habitants.

Author(s)

Geenens G., Lafaye de Micheaux P.

References

Source: The World Factbook of the Central Intelligence Agency of the United States (https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html).

See also Figure 1.1 in "A consistent test of independence between random vectors", G. Boglioni Beaulieu, Master thesis, Universite de Montreal, (2016).

Examples

data(wdemographics)

worlddemographics

Birth rates and death rates for 229 countries in 2020

Description

This data set contains the birth rates and death rates of 229 countries in 2020 ranked in decreasing order.

Usage

worlddemographics

worlddemographics 9

Format

Data frame with 229 observations and 3 variables.

Country Character. Name of the country.

Birth.Rate.Pop Numeric. Birth rate per 1,000 habitants.

Death.Rate.Pop Numeric. Death rate per 1,000 habitants.

Author(s)

Geenens G., Lafaye de Micheaux P.

References

Source: The World Factbook of the Central Intelligence Agency of the United States (https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html).

See also Figure 1.1 in "A consistent test of independence between random vectors", G. Boglioni Beaulieu, Master thesis, Universite de Montreal, (2016).

Examples

data(worlddemographics)

Index