

FONDAMENTI DI INTELLIGENZA ARTIFICIALE

Connect4IA

Luca Del Bue - 0512116173 Salvatore Di Martino - 0512116932

Anno Accademico 2024 - 2025

 $Link\ GitHub:\ https://github.com/saldm04/Connect4IA.git$

Indice

Introduzione			2
1	Ana	alisi del Sistema	3
	1.1	Obiettivo	3
	1.2	Specifica PEAS dell'ambiente	3
		1.2.1 Caratteristiche dell'ambiente	4
	1.3	Analisi del problema	4

Introduzione

Connect 4, noto anche come Forza 4, è un popolare gioco da tavolo strategico per due giocatori, che si gioca su una griglia verticale di sette colonne e sei righe. L'obiettivo del gioco è semplice ma coinvolgente: allineare quattro pedine del proprio colore in una fila continua, che può essere orizzontale, verticale o diagonale, prima dell'avversario. Inventato negli anni '70, Connect 4 è stato ufficialmente introdotto sul mercato da Milton Bradley, oggi parte del marchio Hasbro, nel 1974, e ha rapidamente conquistato un pubblico vasto e intergenerazionale grazie alle sue regole facili da comprendere e alla sua profondità strategica.

La meccanica del gioco consiste nell'inserire una pedina in una delle colonne, dove cadrà fino a raggiungere la posizione più bassa libera, creando combinazioni e bloccando le mosse dell'avversario. A differenza di giochi simili come il tris, Connect 4 si distingue per l'elemento gravitazionale che limita le mosse possibili e aggiunge complessità strategica, poiché i giocatori devono anticipare sia le proprie mosse sia quelle dell'altro per impedire eventuali vittorie dell'avversario.

Connect 4 nella sua versione classica

1

Analisi del Sistema

1.1 Obiettivo

L'obiettivo principale è quello di sviluppare un'applicazione desktop in python che permetta di giocare al gioco Connect Four contro un agente di intelligenza artificiale.

Prima di iniziare una partita, l'applicazione permette all'utente di selezionare un livello di difficoltà, che va a modificare i parametri (...) dell'algoritmo influenzando le performance dell'agente.

1.2 Specifica PEAS dell'ambiente

L'ambiente in cui l'agente opera viene descritto dalla specifica **PEAS**:

- Performance: La misura di prestazione adottata prevede la minimizzazione dei tempi di ricerca della miglior mossa possibile in base ai parametri impostati dalla difficoltà selezionata.
- Enviroment: L'ambiente in cui opera l'agente è costituito da tutte le possibili combinazioni della griglia di gioco.
- Actuators: L'agente agisce sull'ambiente eseguendo la miglior mossa calcolata.
- Sensors: L'agente riceve le percezioni tramite la griglia che rappresenta lo stato del gioco.

1.2.1 Caratteristiche dell'ambiente

L'ambiente è caratterizzato dalle seguenti proprietà:

- Completamente osservabile: L'agente ha accesso a tutte le informazioni rilevanti sull'ambiente.
- **Deterministico**: Le azioni dell'agente determinano completamente lo stato successivo dell'ambiente.
- Sequenziale: Ogni azione dell'agente influenza gli stati futuri.
- Statico: L'ambiente rimane invariato durante le decisione dell'agente.
- Discreto: Lo spazio degli stati e quello delle azioni sono finiti.
- Multi-Agente: Nell'ambiente operano due agenti.

1.3 Analisi del problema

Nel contesto del gioco Connect Four, l'interazione avviene tra due agenti: uno rappresentato dal giocatore umano e l'altro dall'agente intelligente. A differenza dei problemi di ricerca tradizionali, in cui un singolo agente cerca di raggiungere un obiettivo senza opposizione, questo scenario richiede decisioni strategiche che tengano conto delle possibili mosse dell'avversario.

Un approccio ampiamente utilizzato per affrontare problemi di questo tipo è l'algoritmo minimax. Questo metodo prevede l'esplorazione completa dell'albero delle possibilità del gioco, conosciuto come albero di ricerca. L'obiettivo principale è determinare una sequenza di mosse che massimizzi il punteggio per un agente, assumendo che l'avversario giochi in modo ottimale, cioè adottando sempre la strategia che minimizza il punteggio del primo agente.

L'algoritmo valuta i nodi terminali dell'albero di gioco attribuendo loro un punteggio in base all'esito della partita (ad esempio, vittoria, sconfitta o pareggio). Questi valori vengono poi propagati verso l'alto nell'albero, consentendo di identificare la mossa iniziale che garantisce il miglior risultato possibile nel caso peggiore. Tale analisi presuppone che l'avversario adotti un comportamento infallibile, riflettendo quindi una visione pessimistica ma robusta per la presa di decisioni ottimale.

Bibliography

[1] Autore, "Titolo dell'articolo o libro", Editore, Anno.