

ALGORITMOS QUE REDUCEN DISTANCIAS Y EL ACOSO CALLEJERO PARA PEATONES EN MEDELLÍN

Presentación del equipo

Sofía Jaramillo
Informe e
implementación del
código

Jerónimo Guerrero Informe e implementación del código

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

Tres caminos que reducen tanto el riesgo de acoso como la distancia

Algoritmo de solución

Explicación del algoritmo

Algoritmo de Dijkstra para llegar de un vértice de origen a un vértice de destino encontrando el camino más corto con menor número de abusos.

Complejidad del algoritmo

	Complejidad temporal	Complejidad de la memoria
Algoritmo de Dijkstra	O(E + V · log(V))	O(V)

Complejidad en tiempo y memoria del nombre del algoritmo. V es el número de vértices del grafo y E es el número de aristas del grafo.

Primer camino que minimiza V = d*r

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	14394,3	0,33

Distancia y riesgo de acoso para el camino que minimiza **V=d*r**. Tiempo de ejecución de 0,065 segundos. En donde **d** representa la distancia y **r** el riesgo de abuso.

Segundo camino que minimiza V = d/100 + r

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	8080,76	0,55

Distancia y riesgo de acoso para el camino que minimiza **V=d/100+r**. Tiempo de ejecución de 0,06 segundos. En donde **d** representa la distancia y **r** el riesgo de abuso.

Tercer camino que minimiza V = d + 10*r

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	7889,8	0,61

Distancia y riesgo de acoso para el camino que minimiza V = d + 10*r. Tiempo de ejecución de 0,07 segundos. En donde d representa la distancia y r el riesgo de abuso.

Comparación visual de los tres caminos

Direcciones de trabajo futuras

Probabilidad

Otras
estimaciones
de riesgo

Probabilidad que sucedan 2 situaciones simultáneas

Optimización 1

Optimización Bi objetivo

Optimización
en tiempos
de respuesta
en bases de
datos

Estadística 2

Estimaciones de riesgo MV

• • • • •

M&S4

Estimación de Tráfico

Estimación de problemas viales

