

University of Stuttgart

Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW)

Presenting the Joint Work of all Five of Us

Every information about an asset in a single place

Jingxi Zhang
Institute for Control
Engineering of
Machine Tools and
Manufacturing Units

University of Stuttgart

Carsten Ellwein
Institute for Control
Engineering of
Machine Tools and
Manufacturing Units

University of Stuttgart

Malte Heithoff
Software Engineering
RWTH Aachen
University

Software Engineering
RWTH Aachen
University

Judith Michael

Institute for Control
Engineering of
Machine Tools and
Manufacturing Units
University of Stuttgart

The Asset Administration Shell is an Industrial Modelling Success Story

Every information about an asset in a single place

- Essentially a metamodeling framework for asset information (including data, models, and more)
- Standardized by Industrial Digital Twin Association (IDTA)¹
- 129 members, incl. ABB, Bosch, Danfoss, Dassault, Hitachi, Huawei, Mitsubishi, PTC; Siemens, SAP, Trumpf, VW, ...
- Core metamodel² building on industry standards
 - Data model based on ISO 13584-42, IEC 61360
 - ECLASS¹ ISO/IEC compatible data modeling standard
- Goal: Standard for Digital Twins in Industry
- Eclipse BaSyx for implementation (among others)

Asset Administration Shell Submodel «abstract» SubmodelElement «abstract» «abstract» DataElement SubmodelECollection Reference **Property** File Range Element **ECLASS**

^{1. &}lt;a href="https://industrialdigitaltwin.org">https://industrialdigitaltwin.org

^{2.} https://industrialdigitaltwin.org/wp-content/uploads/2023/04/IDTA-01001-3-0 SpecificationAssetAdministrationShell Part1 Metamodel.pdf

The AAS aims to Locate all Relevant Information About an Asset Centrally

Submodels are the main content of asset administration shells

Capabilities

- End milling
- Drilling

Maintenance

- Cutting time
- Latest service

Operational Data

- Sensor data
- Energy consumption

Asset

Technical Data

- Max. spindle speed
- Axis count

Digital Nameplate

- Contact data
- Serial number

3-axis milling machine

The AAS aims to Locate all Relevant Information About an Asset Centrally

Submodels are the main content of asset administration shells

AAS Submodel Templates Facilitate Structuring Asset Information

Standardizable data models within the IDTA

- Ca. 40 submodel templates published¹, incl.
 - Digital Nameplate
 - Provision of Simulation Models

Rest under development, incl.

Handover Documentation Prop "Zip" = 97816 Prop "CityTown" = Lohr am Main Bill of Material Prop "StateCounty" = Bayern Prop "ManufacturerProductFamily" = High-respones directional valve, direct operated Asset Interfaces Description Prop "SerialNumber" = 1201694127 Prop "BatchNumber" Prop "ProductCountryOfOrigin" = DE Software Bill of Materials Prop "YearOfConstruction" = 2019 SMC "Marking_CE" (2 elements) Nameplate for Software in Manufacturing SMC "Marking_IO-Link" (2 elements) Digital Battery Passport SMC "Connector IO-Link" (2 elements) SM "Document" [IRI, http://boschrexroth.com/ids/sm/2543_5072_7091_2660] Or build your own submodel templates SM "Service" [IRI, http://boschrexro Number of our SM "Identification" [IRI, http://bosc https://industrialdigitaltwin.org/en/content-hub/submodels

AAS "Bosch_R901509807_1201694127" [IRI, https://boschrexroth.com/ids/aas?p=p652370&m=R

SM "Nameplate" [IRI, http://boschrexroth.com/ids/sm/4343_5072_7091_3242]

Prop "ManufacturerProductDesignation" = 4WRPEH 6 C3 B40L-3X/M/24L1

Prop "ManufacturerName" = Bosch Rexroth AG

▲ SMC "PhysicalAddress" (5 elements) Prop "CountryCode" = DE

Prop "Street" = Zum Eisengießer 1

Question

Is the Asset Administration Shell a Digital Twin?

A Digital Twin is a Software System using Data, Models, and Services

That can represent and control its (cyber-physical) counterpart

<u>5 Dimensions</u> (1) CPS, (2) Data, (3) Models, (4) Services, (5) Connections

Observable Manufacturing Elements: Physical, biological, chemical, virtual,

¹ Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W: Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 2018.

^{2.} Qi et al.: Enabling technologies and tools for digital twin. In: Journal of Manufacturing Systems, Elsevier, 2019

^{3.} ISO 23247. Digital Twin Framework for Manufacturing, 2021.

There are Three Types of Asset Administration Shells

At different levels of maturity

Type 1 AAS

- Shells are serialized files
- Contain static information
- Data model governed by AAS meta model
- Describe types and instances of assets as-designed
- No automated dataflows from/to asset

Type 2 AAS

- Runtime instances: may contain static and dynamic information from asset
- Interact w. other components
- Ex: frontend for device services, live sensor data, ...
- Properties, operations, events via generic runtime interface
- Automated dataflows only from asset

Type 3 AAS

- Extend type 2 AAS
- Have active behavior
- Can start to communicate & to negotiate on their own
- Well-defined language and message structures (VDI/VDE 2193)
- Automated dataflows from/to asset

Question

How Much Digital Twin do the Three Asset Administration Shell Types Support?

We opted to Analyze very Popular and Important Digital Twin Definitions

Omitted many less useful defintions¹

ACADEMIC DEFINITIONS

- Based on data flows² (Kritzinger et. al)
- Based on dimensions³ (Qi et. al)

INDUSTRIAL DEFINITIONS

- ISO DT framework for manufacturing⁴
- Digital Twin Consortium (DTC) platform stack architecture for digital twins⁵
- DTC digital twin capability periodic table⁶

^{1.} List of 112 definitions of the term digital twin: http://www.wortmann.ac/digital-twin-definitions

^{2.} Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W: Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine. 2018.

^{3.} Qi et al.: Enabling technologies and tools for digital twin. In: Journal of Manufacturing Systems, Elsevier, 2019

^{4.} ISO 23247. Digital Twin Framework for Manufacturing, 2021.

https://www.digitaltwinconsortium.org/2023/11/understanding-dtcs-digital-twin-platform-stack-architectural-framework/

^{6. &}lt;a href="https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/">https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/

Common Requirements on Digital Twins

Based on popular definitions, characterizations, and architectures

Req.	The digital twin	Sources			
R1	can receive data from twinned counterpart	All			
R2	can send data to its twinned counterpart	All			
R3	has a user interface	DTC, ISO			
R4	can represent its counterpart digitally All				
R5	can synchronize (selected) properties with its counterpart.				
R6	can report information to selected recipients aside from the AAS, e.g., by sending a message to the asset's operator				
R7	can communicate with other digital twins DTC, ISO				
R8	can interact with third-party systems DTC, ISO				
R9	provides services to act on data and models. 5D, DTC, ISO				
R10	can reason about data from/about the twinned counterpart as well as about data obtained from other systems	DTC, ISO			

What IDTA Requires for a Type 1 AAS Based on Various White Papers

Type 1 AAS are serialized files that contain static information

Req.	Evaluation	Eval	Explanation
R1	receive data	0	Just an XML file without any activity
R2	send data	0	
R3	user interface	0	
R4	represent		Can represent asset information statically
R5	synchronize	0	
R6	report information	0	
R7	comm. w. digital twins	0	
R8	interact w. 3rd-party systems	0	
R9	services	0	
R10	can reason	0	
IDTA	requires ● suggests •	doe	s not require O that feature

What IDTA Requires for a Type 2 AAS Based on Various White Papers

Type 2 AAS are runtime things: may have static/dynamic information from asset

Req.	Evaluation	Eval	Explanation	
R1	receive data		Shall receive asset data via any connection	
R2	send data	0		
R3	user interface	0		
R4	represent		Can represent system statically and dynamically	
R5	synchronize	•	Supports unidirectional, timed synchronization	
R6	report information	•	Can use references between submodels to emulate	
R7	comm. w. digital twins	0		
R8	interact w. 3rd-party systems	0		
R9	services	•	There is an API for manipulating submodels	
R10	can reason	•	There is an API for manipulating submodels	
IDTA	requires ● suggests •	doe	s not require O that feature	

What IDTA Requires for a Type 3 AAS Based on Various White Papers

Type 3 AASs encompass Type 2 and yield software modules for added-value

Req.	Evaluation	Eval	Explanation	
R1	receive data		Active bidirectional communication with asset	
R2	send data		Active bidirectional communication with asset	
R3	user interface	0		
R4	represent		Can represent system statically and dynamically	
R5	synchronize	•	Supports unidirectional, timed synchronization	
R6	report information	•	Can use references between submodels to emulate	
R7	comm. w. digital twins		Possible via "Industry 4.0 language"	
R8	interact w. 3rd-party systems		Required via "Industry 4.0 language"	
R9	services	•	There is an API for manipulating submodels	
R10	can reason	•	There is an API for manipulating submodels	
IDTA	requires ● suggests •	doe	s not require O that feature	

Type 3 Asset Administration Shells are Digital Twins

The others not

Type 1 AAS

- Shells are serialized files
- Contain static information
- Data model governed by AAS meta model
- Describe types and instances of assets as-designed
- No automated dataflows from/to asset
- →Idealized, static, description of an asset

Type 2 AAS

- Runtime instances: may contain static and dynamic information from asset
- Interact w. other components
- Ex: frontend for device services, live sensor data, ...
- Properties, operations, events via generic runtime interface
- Automated dataflows only from asset
- **→Well-informed Dashboard**

Type 3 AAS

- Extend type 2 AAS
- Have active behavior
- Can start to communicate & to negotiate on their own
- Well-defined language and message structures (VDI/VDE 2193)
- Automated dataflows from/to asset
- Software interfacing asset

Digital Model

Digital Shadow

Digital Twin

Challenges and Opportunities for Future Research

Also exploitation

- Deriving Twins. Engineering model, e.g., AutomationML or SysML, comprise vast asset knowledge (connectivity, sensors, actuators, error modes, ...), yet much of this needs to be re-developed for the digital twins → needs means to derive parts of digital twins from engineering models
- 2. Component Reuse. Digital twins have many components to process data, interact with models, communicate to the asset, and run services, yet reusing these components between digital twins is hardly possible → needs digital twin reference architecture with well-defined component interfaces
- **3. Digital Twin Reuse.** Systems often comprise subsystems, hence their twins should comprise subtwins. The composition of digital twins is far from solved → needs systematic method to compose smaller digital twins into larger ones.
- 4. Low-Code Configuration. Digital twins will be configured, used, and understood by domain experts with little programming knowledge. Expecting them to grasp OO data models or stack traces is futile → needs DSLs and interfaces to properly configure and represent cross-cutting twin concerns.

Prof. Dr. rer. nat. habil. Andreas Wortmann

email wortmann@isw.uni-stuttgart.de

web www.wortmann.ac

phone +49 (0) 711 685-84624

University of Stuttgart
Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW)
Seidenstrasse 36 • 70174 Stuttgart • Germany

download these slides

A General Architecture of Type 3 Asset Administration Shells¹

A potential blueprint for digital twins

- Component manager orchestrates
 AAS behavior
- Service requester/provider interact with environment
- Algorithms perform computations
- Interact with models and asset
- Reference implementation, e.g., with BaSyx
- A lot of JSON...

^{1.} Belyaev, A., Diedrich, C. (2019). Aktive Verwaltungsschale von Industrie 4.0 Komponenten, in Automationkongress 2019, Baden-Baden.

