실험.실습 보고서

(3) 반

조원: (학번:12131489,이름:김영훈)

1. 제목

10주차 실습과제 - 임베디드 시스템에 프로그래밍 및 LED와 FND 사용해보기

2. 목적

AVR Studio4를 통해 코딩 후 컴파일한 뒤 ATmega128 임베디드 시스템에 프로그램을 옮겨 실행해본다. 이를 통해 LED와 FND를 조작하는 방법에 대해 익힌다.

3. 실습에 필요한 기초지식

ATmega128 GPIO의 레지스터에 대한 이해가 필요하다. LED, FND가 어떤 방식으로 동작하는지 알아야 하므로, GPIO 레지스터를 통해 입출력 설정 및 값이 표시되는 방법에 대해 원리를 알아야 한다. 이는 비트 단위로 on/off를 하기 때문에 비트 연산을 할 줄 알아야 한다.

4. 실습 절차, 내용 및 결과

1) LED 실습과제 1

DDRA 를 0xff 으로 함으로써 모든 비트를 1 로 만든다. 이는 모든 LED 를 출력상태로 만드는 것을 뜻한다. PORTA 를 이용하면 해당 LED 에 해당되는 비트를 1 로 만들었을 경우 LED 가 켜진다. light 변수 값을 1로 시작하여 PORTA 에 넣음으로써 가장 맨 오른쪽 LED 부터 켜지도록 한다. LED 가 켜진 후 0.2 초의 지연을 준 뒤, light 를 shift 를 통해 왼쪽으로 한 칸 밀어 옆의 LED 가 켜지도록 한다. light 의 값이 0x80 이 된 경우 가장

왼쪽에 있는 LED 가 켜졌으므로, direct 변수를 통해 방향을 오른쪽으로 바꿔준다. 그러면 이제 shift는 오른쪽으로 된다.

2) FND 실습과제 2

FND_DATA 는 FND 에서 각 숫자를 표현할 때 켜져야 할 부분의 비트를 1 로 표현한 배열이다. DDRC 를 0xff, DDRG 를 0x0f 로 함으로써 모두 출력상태로 만든다. PORTC 는 FND 에 7-Segment LED를 킨다. PORTG는 첫번째부터 네번째 자리 중 PORTC의 LED가 켜질 자리를 정하는 것이다.

for 문을 통해 변수 i 는 0 부터 시작하고, i 가 6000 까지 반복된다. i 의 변화를 FND 에 표시해주면 된다. PORTG 가 1 이면 가장 오른쪽 자리이므로 i 가 변할 때마다 바뀐다. 따라서 PORTC 에 FND_DATA[i%10]을 넣음으로써 i 의 마지막 자리에 따른 숫자를

출력한다. 두번째 자리(PORTG = 0x02)는 i 의 10 의 자리로 출력해주고, 세번째 자리는 i의 100 의 자리, 네번째 자리는 i의 1000 의 자리로 출력해주면 된다.

이 때 중점은 FND 에서 여러 자리를 한 번에 출력할 수 없다. 따라서 각 자리가 한번에 나타나는 것처럼 하기위해, 시분할을 하여 여러 개를 돌아가며 출력한다.

3) LED + FND 실습과제 3(optional)

LED 와 FND 를 출력상태로 만들기 위해 DDRA, DDRC, DDRG 레지스터에 각 0xff, 0xff, 0x0f 값을 줘서 출력상태로 만든다. rand() 함수를 이용하여 0 ~ 7의 random 한 값 N을 생성한다. PORTA 를 random 값만큼 왼쪽으로 밀어서 N 번째 LED 를 켠다. 또한 PORTC의 값을 FND_DATA[N]으로 설정하여 FND에 N에 해당되는 숫자가 출력하게 한다.이 때, FND 4 개 모두에 숫자를 출력하기 위해서 각 FND 를 돌아가면서 출력한다.

for 문을 이용하여 PORTG 를 0x01, 0x02, 0x04, 0x08 로 돌아가며 출력한다. 이 작업을 50 회 반복하며 출력 결과를 볼 수 있도록 지연시간을 둔다.

5. 결론

이번 과제를 통해 실제로 임베디드 시스템을 개발하고 임베디드에 실행시켜보았다. 교차개발 환경을 통해 PC에서 코드를 작성하고 컴파일하여 임베디드에 수월하게 프로그램을 옮겨 넣을 수 있었다. 그리고 LED와 FND 사용법을 익혔는데, 임베디드 시스템에서는 메모리의 효율성 등을 위해서 하드웨어를 비트단위로 조작함을 느꼈다. 코드를 효율적으로 짜기 위해서는 임베디드 시스템의 구조와 동작원리에 대해 더 상세히 알아야함을 느꼈다.