班级	学号	姓名	教师签字_	2/4
实验日期	2024/10/10	预习成绩	总成绩	7024.10.10

实验名称 用示波器观测磁滞回线

一. 实验目的

- 1. 37-39并掌握旅游、旅游回党和新比曲论的秘络。 2. 安全使用示收器,测信基本孤比曲论和旅游回论。 3. 研究不同树料的社会减品回党的区别,并确定潜运发年下初料的期,孤高统成力。

二. 实验预习

1. 剩磁、矫顽力、基本磁化曲线、动态磁滞回线的定义。

剩磁:对个磁动的扩射抽通外磁面后,表现如磁成运强度 Br 矫顽力· 使已磁化的铁磁质材料失气磁性 而幂的外加减场强度 Hc 基本温化曲线 小翻 张定据牌回晚顶上步成的曲线. 动态磁带曲线:铁磁质在超速磁场中磁化所得的各片曲线.

2. 示波器测量的 X轴信号 U_x 是谁的电压?和磁场强度 H是什么关系(写出公式)?示波器 测量的 Y轴信号 U_y 是谁的电压?和磁感应强度 B 是什么关系(写出公式)?

$$U_y$$
是只海海加电抗 $H = \frac{M}{LR_j}U_x$ U_y 是 Ciria netr $B = \frac{R_LC}{M_ZS}U_y$

三. 实验现象及数据记录

样品 1: 饱和磁滞回线

频率	R_1	R_2	С		1	2	3	4	5	6	7	8	9	10
50 Hz	8.0W	45KN	6.5 <i>M</i> F	UX mV	<i>6</i> 03	321	168	82.7	-10.7	- (ek	-164	-249	-316	-420
30 Hz				U_{Y}	w&	۰7. ه	15.0	11.8	6.20	-1.40	-6.20	-14.6	-17.0	-18/
					11	12	13	14	15	16	17	18	19	20
				U _X	-SKS	-312	-245	-122	-32.0	61.3	168	268	<i>२</i> ४४	448
				Uy MV	-194	-17.6	-12.8	-15.0	-8:20	-1.50	7.40	13.4	16,6	18.6

样品 1: 基本磁化曲线

频率	R_1	R_2	С		1	2	3	4	5	6	7	8	9	10
50.11	DOW	44160	砂杆	U_X	31.7	(80	150	193	237	293	३७०	413	473	<i>\$b)</i>
50 Hz			- /		1.52	4.0%	6.80	9.20	114	13.8	16.0	17.b	18.8	70.Y

样品 2: 饱和磁滞回线

频率	R_1	R_2	С		1	2	3	4	5	6	7	8	9	10
50 II-	920	in tro	+ + 1.T	U _X ,	1.421	1. 26 V	950	767	583	300	0	-483	-633	-950
50 Hz	0.00	g, (4)	o to 5.5,lif	U_{Y}	46¥	42.4	36.0	z4.8	8.80	-17.6	-30.Y	-392	-Ko.0	-43.2
					11	12	13	14	15	16	17	18	19	20
				U _X	-1.fov	-1.12V	-81)	-617	-400	-167	167	467	733	1.70
				Uy MV	-45.b	-392	-7810	-12.8	8.00	26.4	36.8	40.8	43.V	45.6

样品 2: 基本磁化曲线

频率	R_1	R_2	С		1	2	3	4	5	6	7	8	9	10
50 11-	8.0 N	lo to	t t AF	n'il	193	५००	387	507	607	683	Sto	917	1.20	いそろひ
50 Hz	pie.	0.64.	اسرد	Uy mV	4.Yo	(0.0	16-2	21.6	27.2	29.6	33. b	78.Y	44.8	46¥

教师	姓名
签字	るかか

四. 数据处理及作图

由
$$H = \frac{N_1}{LR_1}U_X$$
和 $B = \frac{R_2C}{N_2S}U_Y$ 得:

样品 1: 饱和磁滞回线

H(A/m)	86.97	46.30	24.23	11.93	-1.54	-15.00	-23.65	-35.91	-45.58	-60.58
B(T)	0.33	0.27	0.24	0.19	0.10	-0.02	-0.10	-0.23	-0.27	-0.28
H(A/m)	-78.61	-45.00	-35.34	-21.92	-4.61	8.84	24.23	38.65	55.96	64.62
B(T)	-0.31	-0.28	-0.25	-0.20	-0.13	-0.02	0.12	0.21	0.26	0.29

样品 1: 基本磁化曲线

H(A/m)	4.57	14.42	21.63	27.84	34.18	42.26	51.92	59.57	68.22	81.78
B(T)	0.02	0.06	0.11	0.14	0.18	0.22	0.25	0.28	0.30	0.32

样品 2: 饱和磁滞回线

H(A/m)	355	300	237.5	191.75	145.75	75	0	-120.75	-158.25	-237.5
B(T)	0.85	0.78	0.66	0.45	0.16	-0.32	-0.56	-0.72	-0.73	-0.79
H(A/m)	-350	-280	-204.25	-154.25	-100	-41.75	41.75	116.75	183.25	250
B(T)	-0.84	-0.72	-0.51	-0.23	0.15	0.48	0.67	0.75	0.79	0.84

样品 2: 基本磁化曲线

H(A/m)	48	75	97	127	152	171	200	229	300	358
B(T)	0.08	0.18	0.30	0.40	0.50	0.54	0.62	0.70	0.82	0.85

五. 实验结论及现象分析

对于铁磁性材料, 当外加电压变化时, 内部的 B 和 H 都发生变化且 B 的变化滞后于 H 的变化, 铁磁性材料的磁化过程不可逆, 会形成一闭合曲线, 即磁滞回线。

样品 1: 剩磁 $B_r = 0.09T$, 矫顽力 $H_c = 11A/m$, 为软磁材料。

样品 2: 剩磁 $B_r = 0.58T$,矫顽力 $H_c = 123A/m$,为硬磁材料。

六. 讨论问题

1. 某两种材料的磁滞回线,一个很宽一个很窄,它们各属于哪类磁性材料? 分别可以应用于什么场合?

磁滞回线很宽的是硬磁材料,其剩磁和矫顽力大,适合做永磁体;

磁滞回线很窄的是软磁材料,其剩磁和矫顽力小,易于磁化,也易于退磁,适合制作变压器、 电动机和发电机的铁芯。

2. 一钢制部件不慎被磁化,请设计一种退磁方案。

可将其置于线圈中,首先在线圈中通以足够大电流,使磁铁达到饱和状态。然后,边来回改变电流方向边减小电流大小,直至电流减为0。