Significance-Linked Connected Component Analysis for Very Low Bit-Rate Wavelet Video Coding

Jozsef Vass, Student Member, IEEE, Bing-Bing Chai, Member, IEEE, Kannappan Palaniappan, Member, IEEE, and Xinhua Zhuang, Senior Member, IEEE

Abstract—In recent years, a tremendous success in wavelet image coding has been achieved. It is mainly attributed to innovative strategies for data organization and representation of wavelet-transformed images. However, there have been only a few successful attempts in wavelet video coding. The most successful is perhaps Sarnoff Corp.'s zerotree entropy (ZTE) video coder. In this paper, a novel hybrid wavelet video coding algorithm termed video significance-linked connected component analysis (VSLCCA) is developed for very low bit-rate applications. There also has been empirical evidence that wavelet transform combined with those innovative data organization and representation strategies can be an invaluable asset in very low bit-rate video coding as long as motion compensated error frames are ensured to be free of blocking effect or coherent.

In the proposed VSLCCA codec, first, fine-tuned motion estimation based on the H.263 Recommendation is developed to reduce temporal redundancy, and exhaustive overlapped block motion compensation is utilized to ensure coherency in motion compensated error frames. Second, wavelet transform is applied to each coherent motion compensated error frame to attain global energy compaction. Third, significant fields of wavelet-transformed error frames are organized and represented as significance-linked connected components so that both the within-subband clustering and the cross-scale dependency are exploited. Last, the horizontal and vertical components of motion vectors are encoded separately using adaptive arithmetic coding while significant wavelet coefficients are encoded in bit-plane order by using high order Markov source modeling and adaptive arithmetic coding.

Experimental results on eight standard MPEG-4 test sequences show that for intraframe coding, on average the proposed codec exceeds H.263 and ZTE in peak signal-to-noise ratio by as much as 2.07 and 1.38 dB at 28 kbits, respectively. For entire sequence coding, VSLCCA is superior to H.263 and ZTE by 0.35 and 0.71 dB on average, respectively.

Index Terms—Data organization and representation, motion compensation, motion estimation, video coding, wavelet coding.

I. INTRODUCTION

VERY low bit-rate video coding has triggered intensive research in both academia and industry. The adopted ITU-T H.263 Recommendation [1], offering a solution for very low bit-rate videophony applications, is the first standard to break the 64 kbits-per-second (kbps) barrier in audio-visual

Manuscript received March 9, 1998; revised January 15, 1999. This paper was recommended by Associate Editor K. Aizawa.

J. Vass, K. Palaniappan, and X. Zhuang are with the Multimedia Communications and Visualization Laboratory, Department of Computer Engineering and Computer Science, University of Missouri, Columbia, MO 65211 USA (e-mail: vass@cccs.missouri.edu; zhuang@cccs.missouri.edu).

B.-B. Chai is with Sarnoff Corp., Princeton, NJ 08543 USA. Publisher Item Identifier S 1051-8215(99)04161-0.

communications. It can be viewed as a modified and enhanced version of previous block-based video coding standards such as H.261 [2], MPEG-1 [3], and MPEG-2 [4] but specifically tailored to very low bit-rate applications. The recently adopted MPEG-4 standard covers very low bit-rate to medium bit-rate multimedia communications. One of the functionalities of the emerging MPEG-4 standard is improved coding efficiency [5].

At very low bit rates, discrete cosine transform (DCT)-based image coders suffer from blocking effect and mosquito noise. Subband coding schemes, also popularly used for progressive image transmission and browsing, offer a possible alternative to the block-based DCT. Not even mentioning more advanced subband coding schemes, the conventional ones have already yielded comparable objective performance to block-based coders and showed superior visual quality by eliminating the disturbing blocking artifacts. As for video coding, there have been three conceptually different ways of using the wavelet transform reported in the literature:

- using three-dimensional (3-D) wavelet transform;
- wavelet transform of the original frames followed by motion estimation and motion compensation of wavelet coefficients:
- traditional time-domain motion estimation and motion compensation followed by wavelet transform of motion compensated error frames.

The extension of two-dimensional (2-D) subband image coding to include the time domain naturally leads to 3-D (temporal × spatial × spatial) subband video coding algorithms originally proposed in [6]. The advantages of 3-D wavelet video coding schemes include their low computational complexity and prevention of error propagation. The former is due to the fact that computationally expensive time-domain motion estimation and motion compensation are replaced by temporal filtering for which the Haar wavelet is usually used, i.e., in the time domain, two subbands are obtained as the sum and difference of two consecutive frames, respectively. The latter is due to the fact that there is no recursive loop in the coder architecture as is the case with hybrid coders. These features make 3-D subband video coders an attractive tool for mobile communications [7]. Nevertheless, temporal filtering has not been as successful as time-domain blockbased motion estimation and motion compensation algorithms for exploiting the temporal redundancy inherent in video sequences in general, as evidenced by the reduction of coding gain for high motion sequences at low frame rates. Although this problem can be alleviated by using motion-adaptation schemes [8], [9], 3-D subband video coding algorithms are mainly applicable for medium to high bit-rate applications [8]–[10].

A subband domain multiresolution motion estimation and motion compensation scheme was introduced in [11]. After wavelet transform of each original frame, hierarchical block-based motion estimation and motion compensation are carried out, followed by encoding of significant motion compensated wavelet coefficients. The proposed coder is well suited for medium and high bit-rate applications such as HDTV and provides an easy conversion between different video coding standards. But subband decomposition is a *space variant* process [12]. Thus, a translational motion between two consecutive frames may not be translated into a translational motion between two consecutive wavelet transformed frames. It was observed that the performance of multiresolution subband domain motion estimation and motion compensation deteriorated dramatically as the bit rate decreased.

In the third type of subband video coding algorithms, after time-domain motion estimation and motion compensation, motion compensated error frames are encoded in the wavelet domain. Superficially, the difference between this type of video coding algorithm and the traditional hybrid DCT video coding scheme is that wavelet transform replaces DCT in encoding of motion compensated error frames. However, the replacement seems not to be working adequately with error frames if generated by nonoverlapped block motion compensation methods. It is understandable that a global transform such as wavelet transform by no means tolerates localized blocking artifacts, and thus its strength in terms of energy compaction can be severely degraded. Fortunately, the inconsistency could be largely alleviated by using the overlapped block motion compensation (OBMC) technique [13], [14]. As was reported, OBMC not only mitigated the blocking effect but also reduced the overall energy of motion compensated error frames. The majority of recently proposed very low bit-rate wavelet video coding algorithms [15]-[17] were of this type and used OBMC.

In recent years, an impressive success of wavelet image coding has been achieved due to the use of innovative strategies for data organization and representation of wavelettransformed images. There were four such wavelet image coders published in the literature. Shapiro's embedded zerotree wavelet (EZW) [18] coder and Said and Pearlman's set partitioning in hierarchical trees (SPIHT) [19] use the regular tree structure and the set-partitioned tree structure to approximate insignificant wavelet coefficients across subbands. Servetto et al.'s morphological representation of wavelet data (MRWD) [20] finds irregular-shaped clusters of significant coefficients within subbands. Chai et al.'s significance-linked connected component analysis (SLCCA) [21]-[26] extends MRWD by exploiting both within-subband clustering of significant coefficients and cross-scale dependency of significant clusters. Among the above four wavelet image coding algorithms, SLCCA delivers the highest performance in general.

Despite success in still image coding, there have been only a few successful attempts in wavelet video coding. Bhutani and Pearlman proposed to use Shapiro's EZW algorithm to encode error frames obtained by recursive motion compensation [15]. Their coder showed superior performance when compared to the MPEG-1 standard. Kim and Pearlman proposed to extend SPIHT to 3-D subband video coding [27], and results superior to MPEG-2 were reported. Recently, Vass *et al.* applied the SLCCA data organization and representation strategy for low computational complexity, highly scalable video coding [28]. In Sarnoff Corp.'s zerotree entropy (ZTE) [16] video coder, after time-domain block-based motion estimation and motion compensation similar to that of H.263, an EZW variant algorithm was proposed for the representation and encoding of motion compensated error frames.

In the paper, a high performance hybrid wavelet video coding algorithm termed video significance-linked connected component analysis (VSLCCA) (partially presented in [29]) is developed for very low bit-rate applications. As is empirically evidenced, the wavelet transform with the aid of those innovative data organization and representation methods can be an invaluable asset in very low bit-rate video coding if motion compensated error frames are ensured to be free of blocking effect or coherent. In VSLCCA codec, first, finetuned time-domain motion estimation based on the H.263 Recommendation [1] is used to reduce temporal redundancy, and exhaustive overlapped block motion compensation is utilized to ensure the coherency in motion compensated error frames. Second, wavelet transform [30] is applied to each coherent motion compensated error frame to attain global energy compaction. While the within-subband clustering property of wavelet decomposition is exploited by organizing and representing significant wavelet coefficients as connected components [31] obtained by morphological conditioned dilation operation [32], the cross-scale dependency of significant wavelet coefficients is exploited by the significance linkage between clusters at different scales. Last, motion vectors are encoded directly, and significant wavelet coefficients are encoded in bit-plane order, both by using an adaptive arithmetic coder [33] with space-variant high order Markov source modeling. Performance evaluation on several MPEG-4 test sequences shows that for intraframe coding, the proposed VSLCCA codec exceeds H.263 and ZTE in peak signal-tonoise ratio (PSNR) by as much as 2.07 and 1.38 dB at 28 kbits on average, respectively. For entire sequence coding, VSLCCA is superior to H.263 and ZTE by 0.35 and 0.71 dB on average, respectively. The subjective advantage of VSLCCA over H.263 is also distinctive in that the disturbing blocking effects are entirely eliminated.

The rest of this paper is organized as follows. In the next section, the entire VSLCCA coding algorithm is presented in detail. Section III gives a thorough performance evaluation in comparison to other state-of-the-art video coders. The last section concludes the paper.

II. VSLCCA VIDEO-CODING ALGORITHM

In this section, after reviewing the SLCCA data organization and representation strategy, the VSLCCA video coding technique is described, which in addition includes fine-tuned motion estimation, exhaustive overlapped block motion compensation, and adaptive arithmetic coding of motion information.

A. Image Coding

The main building blocks of the SLCCA image coding technique include:

- multiresolution discrete wavelet transform and quantization;
- · connected component analysis within subbands;
- · postprocessing of significance map;
- · significance-link registration across scales;
- adaptive arithmetic coding with space-variant high order Markov source modeling.

1) Wavelet Transform and Quantization: Wavelet form decomposes a signal into different frequency components and then investigates each component with a resolution matched to its scale [34], [30]. The wavelet transform of a signal evolving in time depends on two variables: scale (or frequency) and time. Wavelets provide a tool for timefrequency localization. Thus, the wavelet transform represents an excellent alternative to short-time Fourier transform [35], well suited to the analysis of nonstationary signals. Due to the use of short-time windows at high frequencies and long-time windows at low frequencies, the wavelet transform is able to maintain a constant relative bandwidth analysis. Since its extension to multidimensional signal analysis [36], it recently has found significant applications in image and video coding [11], [16], [18]–[20], [25], [27]. The original Lena image and its corresponding three-scale wavelet decomposition are shown in Fig. 1(a) and (b), respectively.

A wavelet coefficient c is called *significant* with respect to a predefined threshold T if its magnitude is larger than or equal to T, i.e., $|c| \geq T$; otherwise, it is deemed *insignificant*. An insignificant coefficient is also known as a zero coefficient.

In SLCCA, all the wavelet coefficients are quantized with a single uniform scalar quantizer. The quantizer step size q is specified by the user and used to control the bit rate. All the wavelet coefficients that are quantized to nonzero are significant and are to be transmitted. Since a uniform midstep quantizer with a double-spaced dead zone is applied, T=q.

This quantization choice might seem oversimplified, but as was evidenced by our experiments and also stated in [37], using more sophisticated quantization and optimization schemes such as optimal bit allocation among bands [38], optimal nonuniform scalar quantization [39], or vector quantization [40], [41] was not justifiable when the aforementioned advanced data representation and organization strategies were used since the performance gain, if any, was only marginal.

2) Connected Component Analysis: For natural images, the majority of pixels belong to either homogeneous regions or texture regions. Most of the energy of homogeneous and texture regions is compacted into the low frequency subband by the wavelet transform. By contrast, highly condensed energy around edge regions is compacted into high frequency subbands distributed over their small spatial neighborhoods. This signifies that most of the high frequency coefficients

Fig. 1. Illustration of wavelet transform. (a) Original *Lena* image. (b) Three-scale wavelet decomposition of the *Lena* image. (c) Corresponding parent–child relationship between subbands at different scales.

are clustered (around discontinuities), a phenomenon called within-subband clustering [20]. This within-subband clustering property of wavelet transformation is exploited by organizing wavelet coefficients into irregular-shaped clusters or connected components implemented by morphological conditioned dilation operation.

First, some basic binary morphological operations relevant to our application are reviewed. More detailed discussion of mathematical morphology can be found in [42] and [31]. A binary image can be thought of as a subset of $E \times E$, where E denotes the set of numbers used to index a row or column position on a binary image. Clearly, pixels are in this subset if and only if they have the binary value one on the image. The dilation of set $A \subseteq E^2$ with set $B \subseteq E^2$ is defined by $A \oplus B = \bigcup_{b \in B} A_b$, where A_b denotes the translation of A by b. For a structuring element that contains the origin, the dilation operation produces an enlarged set entirely containing the original set A. The conditioned dilation operation [32] will be used to recursively find a cluster in a set. Let $A \subseteq E^2$ denote the set wherein a cluster is to be sought. Let $M \subseteq A \subseteq E^2$ represent a subset of A to be used as a seed to be grown into a cluster in A. Then the dilation of M by the structuring element B with the origin being included conditioned on A defines the conditioned dilation

$$D(M, B|A) = (M \oplus B) \cap A$$

where the structuring element B also plays a role in controlling the density and geometric shape of the cluster. If the conditioned dilation is recursively applied, i.e.,

$$D^{n}(M, B|A) = D(D^{n-1}(M, B|A), B|A)$$
 (1)

then a cluster is formed as the recursion terminates, i.e., $D^n(M, B|A) = D^{n-1}(M, B|A)$.

After quantization of wavelet coefficients, a *significance* map, which has the same size as the original image, is defined

$$A(x,y) = \begin{cases} 1, & \text{if the wavelet coefficient } c \text{ at} \\ & \text{location } (x,y) \text{ is significant} \\ 0, & \text{otherwise.} \end{cases}$$

The conditioned dilation can be progressively used for segmentation of the *significance map* into within-subband significant clusters.

The segments generated by the conditioned dilation seem to fall into a more restrictive category of clusters named connected components, which have been popularly used in machine vision for segmentation of a binary image over decades. A connected component is defined based on one of the three types of connectivity: four-, eight-, or six-connected geometric adjacency. Since the significant wavelet fields are only loosely clustered, the conventional definition of connected component using a strict geometric adjacency may produce too many components, affecting the coding efficiency. Thus, in SLCCA, we use symmetric structuring elements with a size larger than 3×3 square, but the segments generated by the conditioned dilation are still called connected components, even if they may not be geometrically connected. Some structuring elements tested in our experiments are shown in Fig. 2. Those in Fig. 2(a) and (b) generate four- and eight-connectivity, respectively. The structuring elements in Fig. 2(c) and (d) represent a diamond of size 13 and a 5 × 5 square, respectively. These latter two may not preserve geometric connectivity but perform better than the former two in terms of coding efficiency.

Fig. 2. Structuring elements used in conditioned dilation. (a) Four-connected, (b) eight-connected, (c) diamond of size 13, and (d) 5×5 square.

To delineate a significant cluster, all zero coefficients within the neighborhood B of each significant coefficient in the cluster are labeled as the boundary of the cluster. The boundary information needs to be transmitted to the decoder. As the size of the structuring element increases, the number of connected components decreases and the number of boundary zero coefficients increases. The optimal choice of structuring element is determined by the comparative costs of encoding boundary zero coefficients versus encoding the positioning information (seed position) of connected components. Both the encoder and the decoder must use the same structuring element, which is fixed during the entire coding process.

The conditioned dilation operation is used to recursively detect and transmit the significance map. At each step of the recursive conditioned dilation operation, the newly discovered significant and insignificant (boundary zero) coefficients are to be transmitted to the decoder after adaptive arithmetic coding, as described in Section II-A5. Since both the encoder and the decoder use the same structuring element and seed positions, the decoder can exactly replicate the operation of the encoder and thus construct the significance map.

3) Postprocessing of Significance Map: As very small clusters likely do not produce discernible visual effects but render a higher boundary-to-area ratio than large clusters, they are eliminated by using area thresholding to avoid their more expensive coding cost. As evidenced by several experiments, this area thresholding is quite practical to reach a higher coding gain without sacrificing the perceived image quality.

The connected component analysis and postprocessing are illustrated for the *Lena* image at 0.25 bits per pixel (bpp) in Fig. 3. The significance map is obtained by quantizing the wavelet coefficients with a q=20.98 uniform scalar quantizer. The 11 797 wavelet coefficients are organized in 930 clusters by using the diamond structuring element of Fig. 2(c). After removing isolated wavelet coefficients (clusters with only one coefficient), the 11 340 wavelet coefficients constitute 473 clusters [Fig. 3(a)]. Fig. 3(b) shows the *transmitted* significance map, which also includes boundary zero coefficients for delineating significant clusters. It is clear that only a small fraction of zero coefficients are to be transmitted.

4) Significance-Link Registration: Naturally, the seed position of each connected component must be available at the decoder. In the following, we will show how the cross-scale

Fig. 3. (a) Significance map for six-scale wavelet decomposition of *Lena* image after quantization (q=20.98) and removal of isolated wavelet coefficients. White pixels denote insignificant coefficients, and black pixels denote significant coefficients. (b) The transmitted significance map with a diamond structuring element [Fig. 2(c)]. White pixels denote insignificant coefficients that are not encoded at all. Black and gray pixels denote encoded significant and insignificant wavelet coefficients, respectively.

dependency property of the wavelet transform can be exploited to reduce the cost caused by explicit transmission of the cluster positioning information. Naturally, seed positions that cannot be predicted must be explicitly encoded and transmitted.

By definition of [18] and [43], relative to a given wavelet coefficient, all coefficients at finer scales of similar orientation that correspond to the same spatial location are called its *descendents*; accordingly, the given coefficient is called their *ancestor*. Specifically, the coefficient at the coarse scale is called the *parent*, and all four coefficients corresponding to the same spatial location at the next finer scale of similar orientation are called *children*. This parent—child dependency for a three-scale wavelet decomposition is illustrated in Fig. 1(c). Although the linear correlation between the values of parent and child wavelet coefficients has been empirically found to be extremely small, as expected, there is likely additional dependency between the magnitudes of parent and children. Experiments showed that the correlation coefficient between the squared magnitude of a child and its parent tends to

be between 0.2 and 0.6, with a strong concentration around 0.35 [18]. These properties of wavelet-transformed images can be seen in Figs. 1(b) and 3. The cross-subband similarity among insignificant coefficients in a wavelet pyramid has been exploited in EZW and SPIHT, which greatly improves the coding efficiency. On the other hand, it is found that the spatial similarity in the wavelet pyramid is not satisfied strictly, i.e., an insignificant parent does not warrant all four children's being insignificant. The "isolated zero" used in EZW indicates the failure of such a dependency. In SLCCA, as opposed to EZW and SPIHT, the spatial similarity among significant coefficients is exploited. However, SLCCA does not seek a very strong parent-child dependency for each and every significant coefficient. Instead, it predicts the existence of clusters at finer scales. The fact that statistically the magnitudes of wavelet coefficients decay from a parent to its children [44] implies that in a cluster formed within a fine subband, there likely exists a significant child whose parent at the coarser subband is also significant. In other words, a significant child can likely be traced back to its parent through this significance linkage. It is crucial to note that this significance linkage relies on a much looser spatial similarity.

Now, we define *significance link* formally. Two connected components or clusters are called *significance linked* if the significant parent belongs to one component, and at least one of its four children is significant and lies in another component. If the positioning information of the significant parent in the first component is available, the positioning information of the second component can be inferred through labeling the parent as having a significance-link. Since there are generally many significant coefficients in a connected component, the likelihood of finding a significance link between two connected components is fairly high. Apparently, labeling the significance link costs much less than directly encoding the position, and a significant savings on encoding cluster positions is thus achieved.

The efficiency of the significance-linkage technique is evidenced by the significant reduction of explicit seed positions. For the *Lena* image at 0.25 bpp, the seed positions of only seven out of 473 clusters need to be explicitly transmitted, which renders significant savings of the required bit budget.

5) Adaptive Arithmetic Coding of Significance Map and Significant Magnitudes: Usually, the last step of a coding algorithm is the entropy coding. The entropy coding techniques attempt to exploit the source statistics in order to generate an average code-word length closer to the source entropy for which, in SLCCA, adaptive arithmetic coding [33] is used. In contrast to a fixed arithmetic coder, which works well for a stationary Markov source, an adaptive arithmetic coder updates the corresponding conditional probability estimation every time the coder visits a particular context.

In SLCCA, both the significance map and the magnitudes of the significant coefficients in each subband are encoded by adaptive arithmetic coding. It is known that for the data stream generated by a nonstationary source such as natural images, the conditional probabilities may vary substantially from one section to another. The knowledge of the local probability distributions acquired by an adaptive model is more

Fig. 4. Conditioning context for adaptive arithmetic coder. Dependency on (a) neighboring pixels and (b) parent pixel.

robust than the global estimates and follows well the local statistical variation. To exploit the full strength of adaptive arithmetic coding, it is preferable to organize the outcomes of a nonstationary Markov source into a data stream such that each local probability distribution is in favor of one symbol. The well known lossless bit-plane encoding is built upon the above idea. In SLCCA, the magnitude of a significant coefficient in each cluster in a subband is converted into a fixed-length binary representation and encoded in bit-plane order, where the length is determined by the maximum magnitude in the subband. Generally, most magnitudes in any cluster in a subband are smaller than the maximum magnitude in the subband, implying that the more significant bit planes would contain significantly more "0" s than "1" s. Accordingly, the adaptive arithmetic coder would generate more accurate local probability distributions in which the conditional probabilities for "0" symbols are close to one for more significant bit planes. In the following, the intersection of a cluster in the subband with a bit plane is called a cluster section.

The context used to define the conditional probability models at each pixel is related to the status of significance of its eight neighbors and its parent as well. As shown in Fig. 4(a), the number of significant coefficients in the eight-connected neighborhood of a given pixel yields nine possible models. As shown in Fig. 4(b), the significance status of the parent is also used in determining the final context resulting in a total of $9 \times 2 = 18$ possible models. Those 18 contexts are used to define conditional probabilities needed for adaptive arithmetic coding of both the significance map in the subband and the cluster sections in every bit plane in the subband.

First, four symbols are used to encode the significance map in the subband. POS and NEG symbols are used to represent the sign of positive and negative significant coefficients, respectively; a ZERO symbol is used to label insignificant boundary pixels; and a special SL symbol is used to indicate that a significant pixel in a cluster has been assigned a significance link. All four children of the SL pixel belong to a new cluster or its boundary at finer scale, and at least one child must be inside the new cluster. To determine the context around a pixel in the significance map or its boundary,

TABLE I
BIT BUDGET DISTRIBUTION AMONG THE EXPLICIT SEED
POSITIONS, SIGNIFICANCE MAP, AND MAGNITUDES OF
SIGNIFICANT COEFFICIENTS FOR THE LENA IMAGE AT 0.25 bpp

Bitstream Component	Size [byte]
Explicit Seed Position	11
Significance Map	4989
Significant Magnitudes	3192
Total	8192

only the number of those significant neighbors that are already transmitted is counted.

Second, the significant magnitudes in the subband are encoded in bit-plane order. In each bit plane, cluster sections are encoded following the same order that the clusters in the subband are detected by the previously described conditioned dilation operation. Apparently, only two symbols, i.e., "0" and "1," are needed. This time with no change, the originally defined 18 contexts are used to adaptively calculate the conditional probabilities to be used in adaptive arithmetic coding.

The distribution of the bit budget for the *Lena* image at 0.25 bpp is as follows. As shown in Table I, 11 bytes are required to specify the seven seed positions needed to be transmitted explicitly. The majority of the bitstream (4989 bytes) is spent on transmitting the significance map, which includes implicit seed positions (SL symbol), the sign of the significant coefficients (POS and NEG symbols), and the boundary zero coefficients (ZERO symbol). Last, 3192 bytes are spent on specifying the magnitude of significant wavelet coefficients.

Timing results of both the encoder and decoder of SLCCA for the *Lena* image at 0.25 bpp executing on one 195 MHz R10000 CPU of an SGI Octane workstation are shown in Table II. As there is no optimization involved, both the decoder and the encoder have approximately equal low computational complexity comparable to that of zerotree algorithms.

B. Video Coding

The block diagram of the proposed VSLCCA video coding algorithm is shown in Fig. 5. As is seen, the SLCCA data

Fig. 5. Block diagram of the proposed VSLCCA video coding algorithm.

TABLE II SLCCA TIMING RESULTS (SECONDS) FOR 512 \times 512 Lena Image at 0.25 bpp

	En	coder	Decoder		
Function	Time	Relative	Time	Relative	
	[sec]	Time	[sec]	Time	
Wavelet Transformation	0.46	30.7%	0.55	39.3%	
Quantization	0.07	4.7%	0.11	7.9%	
Conditioned Dilation	0.14	9.3%	-	-	
Postprocessing	0.28	18.7%	-	-	
Encoding	0.55	36.6%	0.74	52.8%	
Total	1.50	100.0%	1.40	100.0%	

organization and representation technique is embedded in the VSLCCA video coding scheme. In addition, VSLCCA includes:

- motion estimation;
- motion compensation;
- adaptive arithmetic coding of motion information.

Fine-tuned block-based motion estimation following the spirit of the H.263 Recommendation is used to reduce temporal redundancy. Zero, one, or four motion vectors per macroblock are determined by using a full-search block-matching algorithm with half pixel refinement. Then, exhaustive overlapped block motion compensation [13] is used to reduce the artificial blocking effect caused by block-based motion estimation. Each predicted block in the current frame is formed as a weighted sum of as many as nine blocks from the previous reconstructed frame, which are determined by translating the current block using the motion vectors associated with the current block and its eight neighboring blocks. This fine-tuned motion estimation followed by exhaustive overlapped block motion compensation results in a coherent motion compensated error frame without artificial block boundaries, for which the wavelet transform can be efficiently applied to compact the frame energy into few significant coefficients.

After wavelet transform of a motion compensated error frame, all the wavelet coefficients are scalarly quantized. The SLCCA algorithm is then utilized to organize and represent significant wavelet coefficients as significance-linked connected components to exploit both the within-subband clustering and cross-scale dependency.

Last, adaptive arithmetic coding is used for the direct encoding of motion vectors and bit-plane encoding of significant coefficients modeled as a space-variant, high order Markov source.

1) Motion Estimation: The original frame is divided into nonoverlapping 16×16 macroblocks. As in the H.263 Recommendation [1], each macroblock may have zero, one, or four motion vectors. Full-search block-matching algorithm with integer pixel resolution is used on the luminance component to determine one motion vector per macroblock using meansquared error (MSE) criterion. In the current implementation, the previous reconstructed (instead of original) frame is used as a reference since it provides better performance. The search range is ± 15 pixels in both vertical and horizontal directions. As is well known, the performance of block matching can be substantially improved by using subpixel resolution. As was specified in the H.263 Recommendation, the initial integer motion vectors can be refined to half pixel resolution in both directions in terms of computationally inexpensive bilinear interpolation, and again, the previous reconstructed frame is used here as a reference. Each macroblock is then split into four 8×8 blocks, and one motion vector per block is searched and refined to half pixel resolution by using just the same procedure. The four block motion vectors are determined independent (as opposed to H.263 test model [45]) of the motion vector of the macroblock.

Afterwards, zero motion vectors per macroblock are decided when $\mathrm{MSE}_{\mathrm{zero}} < \mathrm{MSE}_{\mathrm{one}} + T_{\mathrm{null}}$, where $\mathrm{MSE}_{\mathrm{zero}}$ and $\mathrm{MSE}_{\mathrm{one}}$ are the resulting MSE of the macroblock by using zero motion vectors and one motion vector per macroblock, respectively, and T_{null} is a specified null margin. When this condition is not satisfied and $\mathrm{MSE}_{\mathrm{four}} + T_{\mathrm{split}} < \mathrm{MSE}_{\mathrm{one}}$, four motion vectors per macroblock are used, where $\mathrm{MSE}_{\mathrm{four}}$ denotes the macroblock MSE when four motion vectors per macroblock are used and T_{split} is a predefined split margin. Otherwise, one motion vector per macroblock is used. Naturally, the number of motion vectors used for each macroblock needs to be transmitted to the decoder as side information.

By increasing the null margin $T_{\rm null}$, the number of macroblocks with zero motion vectors increases. This results in a reduction of bandwidth spent on transmission of motion vectors and an increase of motion compensated error frame energy. By reducing the value of split margin $T_{\rm split}$, four motion vectors over one motion vector per macroblock are favored, resulting in an increase of motion vector information and a decrease of motion-prediction error energy. By using several test image sequences, it has been experimentally found that $T_{\rm split} \approx 6 \cdot T_{\rm null}$ matches well the *exhaustive* OBMC algorithm

Fig. 6. Exhaustive overlapped block motion compensation used in VSLCCA; M=8 denotes the block size.

to produce coherent motion compensated error frames with a significant reduction of MSE.

2) Motion Compensation: Blocking-effect-free coherent motion compensation is crucial to the success of VSLCCA. In DCT-based hybrid video coding algorithms, the effectiveness of DCT is not significantly degraded by artificial blocking effect introduced by block-based motion estimation and motion compensation due to the fact that the motion block boundaries are well aligned with the DCT block boundaries. However, in the case of a global transform such as wavelet transform, the introduced artificial blocking effect (discontinuities) may generate quite a lot of spurious high frequency components, and thus the effectiveness of wavelet transform in terms of its energy compaction is significantly degraded. As a remedy, in VSLCCA, exhaustive overlapped block motion compensation is used to alleviate the blocking effect of motion compensated error frames. OBMC not only provides a coherent motion compensated error frame but also decreases the motion compensated prediction error. Therefore, a simple OBMC algorithm is included as part of the H.263 Recommendation.

The operation of the *exhaustive* OBMC algorithm as applied in VSLCCA is illustrated in Fig. 6. The frame is divided into nonoverlapping blocks of 8×8 pixels, and one motion vector per block is assigned. That is, when one motion vector per macroblock is decided in motion estimation, that motion vector is replicated for each of the four constituent blocks. Each predicted block is composed as the weighted sum of as many as nine blocks from the previous reconstructed frame determined by translating the current block by using the nine motion vectors assigned to the current block and its eight neighboring blocks. Performance evaluation on several test image sequences shows that a *raised cosine* window with four-pixels overlap (Fig. 7) is a good choice for weighting.

3) Effectiveness of Proposed Motion Estimation and Motion Compensation Techniques: The effectiveness of the applied

Fig. 7. Raised cosine window for block size 8×8 with four pixels overlap. (0, 0) is the center of the block.

motion estimation and motion compensation schemes is evidenced by a significant reduction of MSE of the motion compensated error frames and a thorough elimination of the blocking effect as follows. For the *Foreman* sequence at 48 kbps, the H.263 test model spends 982 bits per frame (bpf) on average for motion vectors, while the averaged MSE of the motion compensated error frames is 90.06. On the other hand, the applied motion estimation and motion compensation techniques spend 1704 bpf for motion vector information but with a significant reduction of the averaged MSE of the motion compensated error frames to 72.76. As clearly shown in Fig. 8, the one-hundred-fifty-sixth motion compensated error frame of the *Foreman* sequence produced by the H.263 test model still suffers from blocking effect, while the error frame from the adopted technique is free of blocking artifacts.

This bit budget increase is due to two reasons. First, as shown in Fig. 9, in VSLCCA, a larger portion of the macroblocks is coded by using four motion vectors than in the H.263 test model. Second, unlike in H.263, in VSLCCA, the four motion vectors of each macroblock are independently determined from the initial one motion vector of the macroblock with the same search range, which requires more bits for the encoding. However, this motion vector bandwidth increase is inevitable in order to ensure the coherency of motion compensated error frames and is well compensated by the reduction of bandwidth spent on encoding of significant wavelet coefficients of motion compensated error frames.

The coding mode selection (zero, one, or four motion vectors per macroblock) for VSLCCA and H.263 for the *Foreman* sequence sampled at 5 frames per second (fps) is shown in Fig. 9. As is seen, there are two major differences between VSLCCA and H.263. First, in VSLCCA, the frequency of macroblocks with four motion vectors is approximately two-to-three times higher than in H.263. Second, as opposed to H.263, the probability of macroblocks with four motion vectors decreases as the bit rate increases. The explanation of this latter phenomena follows. In H.263 and its optimized mode-selection algorithm [46], as the bit rate decreases, more bits are spent on the encoding of motion compensated error frames than motion information, which increases the objective performance. However, as is well known, as the bit rate

Fig. 8. Motion compensated error frame for the one-hundred-fifty-sixth frame of *Foreman* sequence by (a) H.263 test model and (b) proposed motion estimation and motion compensation algorithm.

Fig. 9. Mode selection versus average bit rate for the Foreman sequence sampled at 5 fps by (a) H.263 and (b) VSLCCA.

decreases, more blocking artifacts are introduced. This cannot be tolerated in VSLCCA, where, due to the global wavelet transform, maintaining the coherency of motion compensated error frames is of key importance. Thus, at low bit rates, more accurate motion estimation is required in order to prevent the more apparent blocking effects of the block-based motion estimation and motion compensation schemes. At higher bit rates, where the difference between the reference and motion compensated error frame decreases, one motion vector per macroblock yields satisfactory performance.

The proposed motion estimation and motion compensation technique moderately increases the computational complexity of both the encoder and the decoder. Since H.263, ZTE, and VSLCCA all use full-search block-matching algorithm with subpixel refinement, the increase of computational complexity of motion estimation is due to the fact that in VSLCCA, the four motion vectors per macroblock are determined with ±15 pixels search range, whereas in the H.263 test model

and ZTE, only a few pixel refinement is used. Since the computational complexity of the full-search block-matching algorithm is quadratically proportional to both the search range and the block size, the computational complexity of the VSLCCA motion estimation scheme is at most twice that of H.263. The increase of computational complexity of motion compensation is due to the fact that in VSLCCA, nine blocks are used to determine each predicted block, whereas in H.263 and ZTE, only three blocks are used. Furthermore, VSLCCA uses a raised cosine window weighting function implemented with floating-point arithmetic compared to the integer implementation of H.263. Computer experiments show that while H.263 spends 99.7 ms for motion compensation per frame on average, VSLCCA requires 208.9 ms.

4) Adaptive Arithmetic Coding of Motion Vector Information: As mentioned, each macroblock may have zero, one, or four motion vectors associated. The number of motion vectors per macroblock is encoded by using adaptive arithmetic coding

Fig. 10. Illustration of the wavelet transform on the original and motion compensated error of the one-hundred-fourteenth frame of the *Foreman* sequence. (a) Original and (b) motion compensated error frames. Significance map after wavelet decomposition and quantization of the (c) original and (d) motion compensated error frames. (Motion compensated images have been processed for display.)

TABLE III
PERFORMANCE COMPARISON OF SLCCA AND SPIHT FOR
THE ONE-HUNDRED-FOURTEENTH MOTION-COMPENSATED
ERROR FRAME OF THE FOREMAN SEQUENCE

Bit Rate [bpp] Algorithm	0.0625	0.125	0.25	0.5
SLCCA	20.70	22.24	24.26	27.22
SPIHT	20.27	22.04	24.14	27.04

with a single model of three symbols and is transmitted to the decoder as side information. As in H.263, motion vector components are encoded separately, i.e., a different adaptive model is used for the vertical and horizontal components, respectively. In each model, each possible value of components is represented using a different symbol. Since the motion vector range is ± 15 pixels with half pixel resolution, a total of 64 symbols are needed to encode each component of the motion vector.

Note that, as opposed to H.263, motion vector prediction is not applied in VSLCCA. In H.263, each motion vector component is separately predicted by the median of already transmitted components of neighboring (left, above, and right) macroblocks. This is necessary due to the *nonadap*-

tive variable-length coding used for motion vector coding in H.263 (without Annex E). In VSLCCA, however, the adaptive arithmetic coder well exploits the local statistics of motion vector components, thereby making motion vector prediction unnecessary.

C. Justification of VSLCCA Algorithm

All the previously mentioned four top wavelet image coding algorithms can be applied for video coding. In this section, we show that SLCCA is more applicable for the encoding of motion compensated error frames generated by the proposed fine-tuned motion estimation and overlapped block motion compensation algorithms than zerotree-like algorithms.

Ideally, motion compensation should result in zero residual error. However, lack of a good match from the previous frame usually results in large error magnitudes. This includes [47]:

- 1) a new object coming into the scene, i.e., pixels belonging to the new object do not have a good match in the previous frame;
- 2) uncovered background areas, i.e., pixels belonging to these areas do not have a good match in the previous frame, where they were covered by the object;

		Lumir	iance, P	SNR [dB]	Chrominance, PSNR [dB]				
Sequence	File Size				U	V	Avg.	U	V
	[Bits]	H.263	ZTE	VSLCCA	II.:	263	ZTE	VSL	CCA
Akiyo	14000	33.06	34.62	35.34	35.23	37.38	36.19	37.12	39.45
Coast Guard	13888	30.12		31.17	41.98	44.94		42.83	45.12
Container									
Ship	14088	28.81		30.69	36.53	35.15		37.35	36.59
Foreman	13976	30.11	30.86	32.25	38.22	38.31	38.69	39.26	39.03
Hall Monitor	14104	29.68		31.83	36.04	39.99		37.40	40.29
Mother &									
Daughter	13624	33.78		35.53	39.27	39.67		40.85	41.57
News	14080	28.60	29.38	30.02	33.24	34.40	33.47	34.90	35.78
Silent Voice	13688	30.34		32.02	34.76	36.53		35.74	37.25

TABLE IV
PERFORMANCE COMPARISON OF INTRAFRAME CODING RESULTS AT 14 kbits

		Lumir	ance, P	SNR [dB]	Chrominance, PSNR [dB]				
Sequence	File Size				U	V	Avg.	U	V
	[Bits]	H.263	ZTE	VSLCCA	П.:	263	ZTE	VSL	CCA
Akiyo	28248	38.42	40.18	41.67	40.09	41.53	40.81	42.82	43.25
Coast Guard	29280	34.23		35.54	44.13	45.68		44.88	46.69
Container									
Ship	28088	34.33		36.49	39.36	38.71		40.46	39.85
Foreman	26968	35.05	35.27	37.02	40.19	41.23	40.76	41.46	42.51
Hall Monitor	29040	35.62		38.32	38.66	40.87		40.75	42.25
Mother &									
Daughter	28088	38.77		40.46	42.27	42.70		44.07	44.90
News	27320	33.38	34.49	35.38	36.87	37.90	36.84	38.34	39.26
Silent Voice	26536	34.27		35.72	37.44	38.90		39.20	40.32

3) moving texture areas, since texture areas have a high intensity variance and an even small deviation from the true motion can yield large magnitudes.

As a result, motion compensated error frames have very different statistics than natural images. Their histogram can be well modeled by a generalized Gaussian distribution, and the correlation between pixels is very low in comparison to natural images [48]. Furthermore, motion compensated error frames show both line structure belonging to the edges of moving components [49] and texture structure belonging to moving texture regions. This is clearly visible in Fig. 10(a) and (b), depicting the one-hundred-fourteenth original and motion compensated error frames of the *Foreman* sequence, respectively. The line structure and texture of the motion compensated error frame are also clearly recognizable in the wavelet-transformed error frame [Fig. 10(c)].

When texture- and edge-rich frames are encountered, wavelet transform is unlikely to give large zero regions due the lack of large homogeneous regions. Thus, the advantage of using the zerotree structure, as in EZW, or set-partitioned zerotree structure, as in SPIHT, is weakened. On the other hand, SLCCA uses significance-based clustering and significance-based between cluster linkage, which is not affected by the existence of texture and line structure.

In very low bit-rate video coding, motion compensated error frames are to be highly compressed. As is experimentally evidenced in [25], SLCCA is more applicable for very low bit-rate coding than zerotree-like algorithms, i.e., the objec-

tive performance measured by PSNR between SLCCA and SPIHT increases as the bit rate decreases. This is also empirically justified in Table III, where the performance of SLCCA and SPIHT is compared on the one-hundred-fourteenth motion compensated frame of the *Foreman* sequence shown in Fig. 10(b). As seen, at 0.0625 bpp, SLCCA outperforms SPIHT by as much as 0.43 dB in PSNR with an average increase of 0.23 dB.

III. CODING RESULTS

The performance comparison of different video coding algorithms is fairly difficult. One cause is that the MPEG-4 test sequences were distributed in original ITU-T 601 format, and everyone was welcome to use his own format conversion. Another cause is the wealth of different rate-control algorithms. To ensure a fair performance comparison among H.263, ZTE, and VSLCCA, the test sequences used in VSLCCA are the same as in [16], and there is no rate control being applied in both VSLCCA and H.263. Instead, all the frames have been quantized with the same uniform scalar quantizer, with the step size being used to adjust the final bit rate.

In VSLCCA, motion estimation is performed only on the luminance component. For motion compensation of the chrominance components, the corresponding luminance motion vectors are divided by two, and OBMC with block size 4×4 and raised cosine window function with two pixels overlap is applied. Then, four- and three-scale dyadic wavelet decom-

Fig. 11. Intraframe coding results of the first frame of the Akiyo sequence. (a) Original frame. Reconstructed frame by (b) H.263 at 14 kbits, PSNR = 33.06 dB; (c) VSLCCA at 14 kbits, PSNR = 35.34 dB; (d) H.263 at 28 kbits, PSNR = 38.42 dB; and (e) VSLCCA at 28 kbits, PSNR = 41.67 dB.

position is carried out on the luminance and chrominance components, respectively, by using a 9/7 biorthogonal filter bank [41]. Both the luminance and chrominance components are quantized with the same uniform scalar quantizer. In all of the experiments, a 5×5 square structuring element, shown in Fig. 2(d), is used, and clusters having fewer than three significant coefficients are removed. The objective performance

is measured by PSNR, defined as

$$PSNR [dB] = 20 \log_{10} \frac{255}{RMSE}$$

where RMSE is the root mean-squared error between the original and reconstructed frames. All the reported results (bit rates and PSNR performance) are computed from the decoded bitstream.

Fig. 12. Intraframe coding results of the first frame of the *Foreman* sequence. (a) Original frame. Reconstructed frame by (b) H.263 at 14 kbits, PSNR = 30.11 dB; (c) VSLCCA at 14 kbits, PSNR = 32.25 dB; (d) H.263 at 28 kbits, PSNR = 35.05 dB; and (e) VSLCCA at 28 kbits, PSNR = 37.02 dB.

Performance comparison is carried out on eight standard MPEG-4 test sequences (four Class-A sequences: Akiyo, Container Ship, Hall Monitor, and Mother & Daughter; and four Class-B sequences: Coast Guard, Foreman, News, and Silent Voice) in QCIF resolution.

Due to their prime importance, first intraframe coding results are given. Then, coding results of the entire sequences (including first intraframe followed by interframes) are presented.

A. Intraframe Coding

The intraframe coding comparison is done on the first frame of all eight test sequences at 14 kbits (0.55 bpp) and 28 kbits (1.10 bpp). First, H.263 was run; then the quantizer step size was adjusted in VSLCCA to exactly match the bit rate obtained by H.263. The results of H.263, ZTE, and VSLCCA are summarized in Tables IV and V at the corresponding two bit rates. As shown in Table IV, at 14 kbits, for the

		Lumir	iance, F	SNR [dB]	Chrominance, PSNR [dB]					
Sequence	Bit Rate				U	V	Avg.	U	V	
	[kbps]	H.263 ZTE VSI		VSLCCA	CA H.263		ZTE	VSLCCA		
Akiyo	8.87	34.61	34.61	35.55	38.45	40.52	39.86	39.81	41.43	
Container										
Ship	10.04	30.79		31.13	37.81	36.98		37.94	36.72	
Hall Monitor	8.18	30.36	30.25	31.51	36.21	39.35	38.05	37.45	39.95	
Mother &										
Daughter	9.54	33.40		33.87	38.91	39.79		39.96	40.54	

TABLE VII
PERFORMANCE COMPARISON OF CODING RESULTS FOR CLASS-A SEQUENCES AT 10 fps, 24 kbps

		Lumit	ance, P	SNR [dB]	Chrominance, PSNR [dB]				
Sequence	Bit Rate				U	V	Avg.	U	V
	[kbps]	H.263	H.263		ZTE	VSL	CCA		
Akiyo	22.29	37.46	36.64	37.98	41.77	42.53	44.02	42.31	43.05
Container									
Ship	23.30	32.84		33.20	39.05	38.20		38.97	37.82
Hall Monitor	21.41	34.46	34.11	34.74	38.35	40.41	39.63	38.77	41.15
Mother &									
Daughter	23.81	35.53		35.75	40.85	41.26		41.12	41.75

		Lumir	iance, P	SNR [dB]	Chrominance, PSNR [dB]					
Sequence	Bit Rate	-			U	V	Avg.	U	V	
	[kbps]	H.263	ZTE	VSLCCA	Н.:	263	ZTE	VSL	CCA	
Coast Guard	46.03	29.74	29.20	29.82	39.79	41.72	40.88	39.88	41.84	
Foreman	46.77	31.91		32.26	37.54	37.71		37.43	37.56	
News	49.85	35.10	35.17	35.41	38.76	39.45	40.46	38.77	39.64	
Silent Voice	49.94	35.94		36.10	39.36	40.18		39.70	40.52	

		Lumir	iance, P	SNR [dB]	Chrominance, PSNR [dB]					
Sequence	Bit Rate				U V		Avg.	U	V	
1	[kbps]	H.263	ZTE	VSLCCA	H.263		ZTE	VSL	CCA	
Coast Guard	111.63	31.50	31.01	31.54	40.74	42.57	41.90	40.66	42.37	
Foreman	118.62	34.47		34.49	39.25	39.73		39.16	39.30	
News	109.95	37.68	37.59	37.62	40.89	41.50	42.55	40.53	41.14	
Silent Voice	119.38	38.33		38.57	41.10	41.70		41.71	42.43	

luminance component, VSLCCA outperforms H.263 by 1.79 dB on average and also exceeds ZTE ranging from 0.64 to 1.39 dB. At 28 kbits, the difference between VSLCCA and H.263 increases, i.e., VSLCCA exceeds H.263 by 1.31–3.25 dB. At the same bit rate, VSLCCA is also superior to ZTE by 1.38 dB on average. For the chrominance components at 14 kbits, VSLCCA is superior to H.263 by 1.27 and 1.09 dB on average for the U and V components, respectively. At 28 kbits, VSLCCA outperforms H.263 by 1.62 and 1.44 dB on average for the U and V components, respectively. For the averaged chrominance components, VSLCCA also exceeds ZTE by 0.46–2.10 and 1.23–2.23 dB at 14 and 28 kbits, respectively.

The coding results for the *Akiyo* and *Foreman* sequences are shown in Figs. 11 and 12, respectively. Both figures include the original image and the reconstructed images from H.263

and VSLCCA at 14 and 28 kbits. At a bit rate as low as 14 kbits, the visual advantage of VSLCCA over H.263 is distinctive in both images by the elimination of the annoying blocking artifacts of H.263. As the bit rate increases to 28 kbits, the PSNR attained by both the algorithms in both images is quite high, and the visual quality of the two algorithms becomes more compatible even though VSLCCA maintains much higher PSNR.

B. Entire Sequence Coding

For interframe coding comparison, for H.263, both unrestricted motion vector mode and advanced prediction mode are used (Annexes D and F, respectively). Class-A sequences are sampled at frame rate 5 fps and encoded at bit rate 10 kbps, or sampled at 10 fps and encoded at 24 kbps. Class-B

Fig. 13. Interframe coding results of the fifty-fourth frame of the *Akiyo* sequence at 5 fps, 10 kbps. (a) The original frame, reconstructed frame by (b) VSLCCA and (c) H.263.

Fig. 14. Interframe coding results of the one-hundred-sixtieth frame of the *Foreman* sequence at 7.5 fps, 48 kbps. (a) The original frame, reconstructed frame by (b) VSLCCA and (c) H.263.

sequences are sampled at 7.5 fps and encoded at 48 kbps, or sampled at 15 fps and encoded at 112 kbps. The coding results are summarized in Tables VI–IX. First H.263 was run, and then in VSLCCA, the quantizer step size was adjusted to match the bit rate of H.263.

For the luminance component, for Class-A test sequences at 5 fps and 10 kbps, VSLCCA is superior to H.263 and ZTE

by 0.73 and 1.10 dB on average, respectively. At 10 fps and 24 kbps, VSLCCA is superior to H.263 and ZTE by 0.35 and 0.99 dB, respectively. For Class-B test sequences, for the luminance component at 7.5 fps and 48 kbps, VSLCCA still outperforms H.263 by 0.23 dB on average. However, as the bit rate increases to 112 kbps at a frame rate of 15 fps, the two coding algorithms in terms of objective performance are

Fig. 15. Performance comparison (PSNR [dB]) between H.263 and VSLCCA for the luminance component of the *Akiyo* sequence at 5 fps, 10 kbps.

compatible. When compared to ZTE, VSLCCA is superior by 0.24–0.62 and 0.03–0.53 dB at 7.5 fps and 48 kbps or at 15 fps and 112 kbps, respectively.

For the chrominance components, for Class-A test sequences at 5 fps and 10 kbps, VSLCCA outperforms H.263 by 0.95 and 0.50 dB on average for the U and V components, respectively. At 10 fps and 24 kbps for the averaged chrominance components, VSLCCA is superior to H.263 by 0.32 dB on average. For Class-B test sequences, the difference between VSLCCA and H.263 decreases; at 7.5 fps and 48 kbps, VSLCCA exceeds H.263 by 0.08 and 0.13 dB on average for the U and V components, respectively. At 15 fps and 112 kbps for the U component, the performances of the two algorithms are compatible, while for the V component, H.263 performs slightly better—by 0.07 dB on average.

The coding results for the fifty-fourth frame of the *Akiyo* and one-hundred-sixtieth frame of the *Foreman* sequences are shown in Figs. 13 and 14, respectively. The *Akiyo* sequence is coded at 5 fps, 10 kbps, and the *Foreman* sequence is coded at 7.5 fps, 48 kbps. Both figures include the original and decoded images from VSLCCA and H.263. The superior visual quality of VSLCCA is clearly visible in both sequences in the elimination of both mosquito noise and blocking artifacts of H.263. The frame-by-frame luminance PSNR comparison between H.263 and VSLCCA for the above two video sequences at the corresponding bit rates is given in Figs. 15 and 16, respectively.

IV. CONCLUSIONS

This paper presented a novel hybrid wavelet-based coding algorithm termed video significance-linked connected component analysis for very low bit-rate video coding applications. The proposed fine-tuned motion estimation combined with exhaustive overlapped block motion compensation produced coherent motion compensated error frames with significantly re-

Fig. 16. Performance comparison (PSNR [dB]) between H.263 and VSLCCA for the luminance component of the *Foreman* sequence at 7.5 fps, 48 kbps.

duced frame energy to which the wavelet transform associated with innovative data organization and representation strategies could be most successfully applied. In VSLCCA, significancelinked connected component analysis was used to organize and represent wavelet-transformed error frames. The information of significance-linked connected components or clusters in each subband was assumed to have an eighteenth-order Markov source with an alphabet of four symbols and encoded by adaptive arithmetic coding. The significant magnitudes in each subband were also assumed to have an eighteenth-order Markov source but with an alphabet of only two symbols and encoded in bit-plane order by adaptive arithmetic coding. The contexts used to define conditional probabilities needed by adaptive arithmetic coding in both cases were the same. With strong empirical evidence, we may say that wavelet transform with innovative data organization and representation strategies represents an invaluable asset for not only still-image coding but also video coding. Extensive computer experiments on several standard test sequences have shown that VSLCCA consistently outperforms both nonwavelet low bit-rate video coding standard H.263 and high performance wavelet low bitrate video coder ZTE. VSLCCA is among the best low bit-rate video coders.

ACKNOWLEDGMENT

The authors would like to thank Dr. H.-J. Lee from Sarnoff Corp. for providing the test video sequences used in the experiments and Telenor R&D for providing the H.263 test model software. The authors would also like to thank the reviewers for their invaluable comments and suggestions that improved the quality of the paper.

REFERENCES

 "Video coding for low bitrate communications," ITU-T Draft Rec. H.263, Dec. 1995.

- [2] "Video codec for audiovisual services at p×64 kb/s," ITU-T Rec. H.261, 1990.
- [3] "Coding of moving pictures and associated audio for digital storage media up to about 1.5 Mbit/s," Tech. Rep., ISO/IEC IS 11172 (MPEG-1), 1993.
- [4] "Generic coding of moving pictures and associated audio," Tech. Rep., ISO/IEC DIS 13818 (MPEG-2), 1994.
- [5] T. Sikora, "The MPEG-4 video standard verification method," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 7, pp. 19–31, Feb. 1997.
- [6] G. Karlsson and M. Vetterli, "Three dimensional sub-band coding of video," in *Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing*, 1988, pp. 1110–113.
- [7] C.-H. Chou and C.-W. Chen, "A perceptually optimized 3-D subband codec for video communication over wireless channels," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 6, pp. 143–156, Apr. 1996.
- [8] D. Taubman and A. Zakhor, "Multirate 3-D subband coding of video," IEEE Trans. Image Process., vol. 3, pp. 572–590, Sept. 1994.
- [9] J.-R. Ohm, "Three-dimensional subband coding with motion compensation," *IEEE Trans. Image Process.*, vol. 3, pp. 559–571, Sept. 1994.
- [10] C. I. Podilchuk, N. S. Jayant, and N. Farvardin, "Three-dimensional subband coding of video," *IEEE Trans. Image Process.*, vol. 4, pp. 125–139, Feb. 1995.
- [11] Y.-Q. Zhang and S. Zafar, "Motion-compensated wavelet transform coding for color video compression," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 2, pp. 285–296, Sept. 1992.
- [12] K. Tsunashima, J. B. Stampleman, and Jr. V. M. Bove, "A scalable motion-compensated subband image coder," *IEEE Trans. Commun.*, vol. 42, pp. 1894–1901, 1994.
- [13] J. Katto, J.-I. Ohki, S. Nogaki, and M. Ohta, "A wavelet codec with overlapped motion compensation for very low bit-rate environment," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 4, pp. 328–338, June 1994.
- [14] M. T. Orchard and G. J. Sullivan, "Overlapped block motion compensation: An estimation-theoretic approach," *IEEE Trans. Image Process.*, vol. 3, pp. 693–699, Sept. 1994.
- [15] G. Bhutani and W. A. Pearlman, "Image sequence coding using the zero-tree method," in *Proc. SPIE Conf. Visual Communications and Image Processing*, 1993, vol. 2094, pp. 463–471.
- [16] S. A. Martucci, I. Sodagar, T. Chiang, and Y.-Q. Zhang, "A zerotree wavelet video coder," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 7, pp. 109–118, Feb. 1997.
- [17] S. P. Voukelatos and J. J. Soragham, "Very low bit-rate color video coding using adaptive subband vector quantization with dynamic bit allocation," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 7, pp. 424–428, 1997.
- [18] J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," *IEEE Trans. Signal Processing*, vol. 41, pp. 3445–3462, Dec. 1993.
- [19] A. Said and W. A. Pearlman, "A new, fast, and efficient image codec based on set partitioning in hierarchical trees," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 6, pp. 243–250, June 1996.
- [20] S. Servetto, K. Ramchandran, and M. T. Orchard, "Wavelet based image coding via morphological prediction of significance," in *Proc. IEEE Int. Conf. Image Processing*, Oct. 1995, pp. 530–533.
- [21] B.-B. Chai, J. Vass, and X. Zhuang, "Highly efficient codec based on significance-linked connected component analysis of wavelet coefficients," in *Proc. SPIE AeroSense*, 1997.
- [22] _____, "Significance-linked connected component analysis for high performance low bit rate wavelet coding," in *Proc. IEEE Workshop Multimedia Signal Processing*, 1997, pp. 145–150.
- [23] _____, "Significance-linked connected component analysis for low bit rate image coding," in *Proc. IEEE Int. Conf. Image Processing*, 1997, pp. 637–640.
- [24] _____, "A novel data representation strategy for wavelet image compression," in *Proc. IEEE Workshop Nonlinear Signal and Image Processing*, Sept. 1997.
- [25] _____, "Significance-linked connected component analysis for wavelet image coding," *IEEE Trans. Image Processing*, vol. 8, June 1999.
- [26] ______, "Statistically adaptive wavelet image coding," in Visual Information Representation, Communication, and Image Processing, C.-W. Cheng and Y.-Q. Zhang, Eds. New York: Marcel Dekker, 1999.
- [27] B.-J. Kim and W. A. Pearlman, "An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT)," in *Proc. Data Compression Conf.*, 1997, pp. 251–260.
- [28] J. Vass, B.-B. Chai, and X. Zhuang, "3DSLCCA—A highly scalable very low bit rate software-only wavelet video codec," in *Proc. IEEE*

- Workshop Multimedia Signal Processing, Los Angeles, CA, Dec. 1998, pp. 474–479.
- [29] ______, "Significance-linked wavelet video coder," in *Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing*, Seattle, WA, May 1998, pp. 2829–2832.
- [30] M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Englewood Cliffs, NJ: Prentice–Hall, 1995.
- [31] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision. Reading, MA: Addison-Wesley, 1992.
- [32] L. Vincent, "Morphological grayscale reconstruction in image analysis: Applications and effective algorithms," *IEEE Trans. Image Process.*, vol. 2, pp. 176–201, Apr. 1963.
- [33] I. H. Witten, M. Neal, and J. G. Cleary, "Arithmetic coding for data compression," Commun. ACM, vol. 30, no. 6, pp. 520–540, June 1987.
- [34] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.
- [35] J. B. Allen and L. R. Rabiner, "A unified approach to short-time Fourier analysis and synthesis," *Proc. IEEE*, vol. 65, pp. 1558–1564, 1977.
- [36] M. Vetterli, "Multi-dimensional subband coding: Some theory and algorithms," Signal Process., vol. 6, pp. 97–112, 1984.
- [37] Z. Xiong, K. Ramachandran, and M. T. Orchard, "Space-frequency quantization for wavelet image coding," *IEEE Trans. Image Process.*, vol. 6, pp. 677–693, May 1997.
- [38] J. W. Woods and S. D. O'Neil, "Subband coding of images," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 1278–1288, Oct. 1986.
- [39] J. Kovačević, "Subband coding systems incorporating quantizer models," *IEEE Trans. Image Process.*, vol. 4, pp. 543–553, May 1995.
- [40] P. H. Westernik, D. E. Boekee, J. Biemond, and J. W. Woods, "Subband coding of images using vector quantization," *IEEE Trans. Commun.*, vol. 36, pp. 713–719, June 1988.
- [41] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, "Image coding using wavelet transform," *IEEE Trans. Image Process.*, vol. 1, pp. 205–220, Apr. 1992.
- [42] R. M. Haralick, S. R. Sternberg, and X. Zhang, "Image analysis using mathematical morphology," *IEEE Trans. Pattern Anal. Machine Intell.*, vol. PAMI-9, pp. 532–550, July 1987.
- [43] A. S. Lewis and G. Knowles, "A 64 Kb/s video codec using the 2-D wavelet transform," in *Proc. Data Compression Conf.*, Snowbird, UT, 1991
- [44] X. Li and X. Zhuang, "The decay and correlation properties in wavelet transform," University of Missouri, Columbia, Mar. Tech. Rep., 1997.
- [45] K. O. Lillevold et al.. (Dec. 1995). Telenor R&D, H.263 test model simulation software. [Online]. Available FTP: ftp://bonde.nta.no/pub/tmn/software.
- [46] T. Wiegand, M. Lightstone, M. Mukherjee, T. G. Campbell, and S. K. Mitra, "Rate-distortion optimized mode selection for very low bit rate video coding and the emerging H.263 standard," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 6, pp. 182–190, Apr. 1996.
- [47] J. Vass, K. Palaniappan, and X. Zhuang, "Automatic spatio-temporal video sequence segmentation," in *Proc. IEEE Int. Conf. Image Process*ing, Oct. 1998, pp. 958–962.
- [48] W. Li and M. Kunt, "Morphological segmentation applied to displaced frame difference coding," Signal Process., vol. 38, pp. 45–56, 1994
- [49] D. Wang, C. Labit, and J. Ronsin, "Segmentation-based motion compensated video coding using morphological filters," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 7, pp. 549–555, June 1997.

Jozsef Vass (S'97) received the Dipl. Eng. degree from the Technical University of Budapest, Hungary, in 1995 and the M.S. degree from the University of Missouri–Columbia in 1996, both in electrical engineering. He currently is pursuing the Ph.D. degree in the Department of Computer Engineering and Computer Science, University of Missouri–Columbia.

He was with NASA Goddard Space Flight Center, Greenbelt, MD, in the summer of 1996, in the development of robust algorithms for automatic

cloud height estimation. His research interests include speech, image, and video compression for multimedia communications, networking, computer vision, image processing, and pattern recognition. He is the author of more than 20 refereed technical journal and conference publications.

Bing-Bing Chai (M'98) received the B.S. degree in physics from Peking University, Beijing, China, in 1990 and the M.S degree in medical physics and the Ph.D. degree in electrical engineering from the University of Missouri–Columbia in 1992 and 1997, respectively.

From 1993 to 1997, she was a Teaching and Research Assistant in the Department of Electrical and Computer Engineering, University of Missouri–Columbia. In October 1997, she joined the Multimedia Technology Laboratory, Sarnoff Corp.,

Princeton, NJ. Her research interests include video and image compression, multimedia signal processing, digital communication, and networking.

Kannappan Palaniappan (S'84–M'90) received the B.A.Sc. and M.A.Sc. degrees in systems design engineering from the University of Waterloo, Waterloo, Canada, and the Ph.D. degree in electrical and computer engineering from the University of Illinois, Urbana-Champaign, in 1991.

He is currently an Associate Professor of computer engineering and computer science at the University of Missouri-Columbia. From 1991 to 1996, he was with NASA Goddard Space Flight Center working in the Laboratory for Atmospheres. He

has also been with the University of Illinois, University of Waterloo, Bell Northern Research (now Nortel), Bell Canada, the Atmospheric Environment Service in the Canadian Ministry of Environment, and Ontario Hydro. His research interests include developing techniques for human–computer interaction with large datasets, data mining, satellite image analysis, remote sensing, biomedical data visualization, mesh simplification, and geometry compression.

Dr. Palaniappan has received awards from the NASA Research and Education Network (1998), NASA Technology Commercialization Office (1998), and University of Missouri College of Engineering for Teaching (1998).

Xinhua Zhuang (SM'92) received the B.S., M.S., and Ph.D. degrees in mathematics from Peking University, Beijing, China, in 1959, 1960, and 1963, respectively.

He is currently a Professor of computer engineering and computer science at the University of Missouri-Columbia. He has been a Consultant to Siemens, Panasonic, NeoPath Inc., and NASA. He has been affiliated with a number of schools and research institutes, including Hanover University, Germany; Zhejiang University, China; the University

sity of Washington, Seattle; the University of Michigan, Ann Arbor; the Virginia Polytechnic Institute and State University of Virginia, Blacksburg; and the Research Institute of Computers. He has more than 200 publications in the areas of signal processing, speech recognition, image processing, machine vision, pattern recognition, and neural networks. He is a contributor to seven books.

Dr. Zhuang was Associate Editor of the IEEE Transactions on Image Processing from 1993 to 1995. Since 1997, he has been Chairman of the Benchmarking and Software Technique Committee for the International Association of Pattern Recognition. He has received awards from the National Science Foundation, NASA High Performance Computing and Communications, NASA Innovative Research, and the NATO Advisory Group of Aerospace Research and Development.