

M-2

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD A125580

TR-1218 AFOSR-77-3271

September 1982

A NOTE ON "GEOMETRIC TRANSFORMS" OF DIGITAL SETS

Azriel Rosenfeld

Computer Vision Laboratory Computer Science Center University of Maryland College Park, MD 20742

COMPUTER SCIENCE TECHNICAL REPORT SERIES

E FILE COPY

Approved for public release; distribution unlimited.

UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND

20742

STIC ELECTE MAR 1 4 1989

B

88 03 14 026

WELASS !-

TR-1218 AFOSR-77-3271

September 1982

A NOTE ON "GEOMETRIC TRANSFORMS" OF DIGITAL SETS

Azriel Rosenfeld

Computer Vision Laboratory Computer Science Center University of Maryland College Park, MD 20742

- Document Letines

ABSTRACT

We define a "geometric transform" on the digital plane as a function f that takes pairs (P,S), where S is a set and P a point of S, into nonnegative integers, and where f(S,P) depends only on the positions of the points of S relative to P. Transforms of this type are useful for segmenting and describing S. Two examples are "distance transforms," for which f(S,P) is the distance from P to S, and "isovist transforms," where f(S,P) is (e.g.) the area of the part of S visible from P. This note characterizes geometric transforms that have certain simple set—theoretic properties, e.g., such that $f(S\cap T,P)=f(S,\Gamma)\wedge f(T,P)$ for all S,T,P. It is shown that a geometric transform has this intersection property if and only if it is defined in a special way in terms of a meighborhood base"; the class of such "neighborhood transforms" is a generalization of the class of distance transforms.

AIR FORTH (AVSC) TO SCHOOL FOR SCHOOL FOR THE CAVE (AVSC)

ROTHER OF THE CAVE AND A SCHOOL FOR THE CAVE AVSC AND A SCHOOL FOR THE CAVE AVERAGE AND A SCHOOL FOR THE CAVE AVERAGE

The support of the U.S. Air Force Office of Scientific Research under Grant AFOSR-77-3271 is gratefully acknowledged, as is the help of Janet Salzman in preparing this paper.

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

1. Introduction

Given a subset S of a digital picture, there are various useful ways of defining functions on S that associate with each point P of S some geometric property of S "relative to P". An early example [1] is the <u>distance transform</u>, which associates with each P \in S the distance (with respect to some given metric) from P to \overline{S} (the complement of S). This transform is a useful tool for describing or segmenting S; for example, the well-known "medial axis transformation" of S is just the set of local maxima of its distance transform. A more recent example [2] is the class of "isovist transforms", which associate with each P some property of the part of S "visible" from P, e.g., its area; such transforms can be used, e.g., to find minimal sets of points from which all of S can be seen. (A point Q of S is said to be visible from P if the straight line segment \overline{PQ} lies entirely in S.)

In this note we give a general definition of such "geometric transforms" (for brevity: G-transforms). We also characterize G-transforms that have certain simple properties with respect to set-theoretic operations. In particular, we consider G-transforms having the "intersection property": for any two sets S and T, the transform values for SOT are (pointwise) the infs of the values for S and for T. We show that a G-transform has this property iff it can be defined in a special way in terms of a "neighborhood basis"; the class of such transforms includes the class of distance transforms. Interestingly, the analogously defined "union property" implies that the transform must be trivial.

2. G-transforms

Let Σ be a bounded set of lattice points in the plane (e.g., a digital picture), let 2^{Σ} be the set of subsets of Σ , and let f be a function defined on $2^{\Sigma} \times \Sigma$. For simplicity, we shall assume that f is integer-valued; that f(S,P)=0 whenever PfS; and that f(S,P)>0 whenever PfS. We call f a G-transform if f(S,P) depends only on the positions of the (other) points of S relative to P. This is a rather general definition; the following are a few examples of G-transforms:

- a) The characteristic function, i.e., f(S,P)=1 iff $P \in S$
- b) The distance transform, i.e., f(S,P)=the distance from P to \overline{S}
- c) The "area transform": f(S,P)=the area of the connected component of S that contains P
- d) The isovist transform: f(S,P)=the area of the part of S visible from P

Since a G-transform is defined in terms of positions relative to P, it is evidently shift-invariant -- in other words, shifting S cannot change the G-transform values of its points.* In particular, we have

<u>Proposition 1.</u> $f(\{P\},P)$ has the same value for any P. $\|$ For simplicity, we assume that this value is 1.

^{*}We assume that when S shifts, it remains inside Σ . Alternatively, we could allow cyclic shifts, and define f(S,P) in terms of the positions of the points of S relative to P "modulo Σ ".

We say that f has the <u>union property</u> if $f(SUT,P)=f(S,P)\vee f(T,P)$ for all S,T,P, and the <u>intersection property</u> if $f(S\cap T,P)=f(S,P)\wedge f(T,P)$ for all S,T,P. Evidently the characteristic function has both the union and the intersection property. In fact, it is the only G-transform that has the union property, as we see from <u>Proposition 2</u>. A G-transform f has the union property iff it is the characteristic function.

<u>Proof</u>: By Proposition 1, $f(\{P\},P)=1$ for all P. It follows from the union property that $f(\{P,Q\},p)=f(\{P\},P)\vee f(\{Q\},P)=1$ for all $\{P,Q\}$, i.e., for any two-element subset of Σ . By induction, the same is true for any finite subset of Σ .

The G-transforms that have the intersection property are less trivial; we shall characterize them in the next section.

Accessio	n For		
MTIS GF DTIC TAF Unannour Justific	i eed		
By			1
Aveit		•	;
Dist	et in som Tødet før	• ,	* (
A			

3. N-transforms

Let $n: \{0\}=N_0 \subseteq N_1 \subseteq N_2 \subseteq \dots$ be a nested set of finite subsets of Σ that contain the origin O. For any point P, let N_{pi} be the result of shifting N_i to bring O into the position of P; thus $n_p: \{P\}=N_{p_0}\subseteq N_{p_1}\subseteq N_{p_2}\subseteq \dots$ is a nested set of sets that contain P. We call n_p a neighborhood basis for P.

Let $1=n_0 \le n_1 \le n_2 \le \ldots$ be any monotonic nondecreasing sequence of positive integers. For any $S \in 2^{\Sigma}$ and any $P \in S$, there is a largest i, call it i(S,P), such that $N_{Pi} \subseteq S$. (Note that $N_{P0} = \{P\} \subseteq S$, and that S is finite.) Let the G-transform f be defined by $f(S,P)=n_{i(S,P)}$. We call such a G-transform an N-transform.

It is easily verified that a distance transform is a N-transform. In fact, let N_i be the "disk" of radius i centered at 0, i.e., the set of points whose distances from 0 are $\leq i$, and let n_i =i+1; then the distance transform f(S,P) is just n_{Pi} (1 greater than the radius of the largest disk centered at P and contained in S). Note also that the characteristic function is an N-transform, if we simply take n_i =1 for all i.

Theorem 3. A G-transform f has the intersection property iff it is an N-transform.

<u>Proof</u>: For any S and T we have $i(S\cap T,P)=i(S,P)\wedge i(T,P)$, since the N_p 's are nested. Thus if f is an N-transform we have $f(S\cap T,P)=n_{i(S,P)\wedge i(T,P)}^{*n}i(S,P)\wedge i(T,P)$ (since the n's are monotonic)= $f(S,P)\wedge f(T,P)$, so that f has the intersection property.

Conversely, let f be a G-transform and have the intersection property. For any k, if f(S,P)=f(T,P)=k, we have $f(S\cap T,P)=k$; thus if there are any sets S such that f(S,P)=k, there is a smallest such set, call it S_{pk} . By shift invariance, f(S,P)=k k implies f(S',P')=k, where S' is S shifted to make P coincide with P'; thus $S_{p'k}$ exists iff S_{pk} does, and they are translates of one another. Let $1=k_0< k_1<\dots$ be those k's for which S_{pk} exists; then $n_p:\{P\}=N_{p0} \not \in N_{p1} \not \in \dots$, where $N_{pi}=S_{pk_i}$, is a neighborhood basis for P. Moreover, for any S, let i(S,P) be the largest i such that $N_{pi} \subseteq S$, and let f(S,P)=m. If we had $m=k_j>k_i$, S would have to contain $S_{pk_j}=N_{pj}$, contradicting the definition of i. On the other hand, if $m=k_h< k_i$, by the intersection property $k_i=f(N_{pi},P)=f(S\cap N_{pi},P)=f(S,P) \land f(N_{pi},P)=k_h$, contradiction. Hence $f(S,P)=k_i$, so that f is an N-transform.

Thus we see that the intersection property characterizes a class of G-transforms that constitute a natural generalization of the distance transforms.

4. Concluding remarks

The main result of this note has been a "set-theoretic" characterization of the "distance-like" G-transforms. It would be of interest to develop characterizations of other useful classes of G-transforms.

References

- A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, <u>J. ACM 13</u>, 1966, 471-494.
- 2. L. S. Davis and M. L. Benedikt, Computational models of space: Isovists and isovist fields, Computer Graphics Image Processing 11, 1979, 49-72.

SECURITY CLASSIFICATION OF THIS PAGE When Deta Entered;

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
AFOSR-TR- 83-0066 AD-4/25 5	ts0		
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED		
A NOTE ON "GEOMETRIC TRANSFORMS" OF	Technical		
DIGITAL SETS	6. PERFORMING ORG. REPORT NUMBER		
	TR-1218		
7. AUTHOR(s)	B. CONTRACT OF GRANT NUMBER(*) AFOSR-77-3271		
A. Rosenfeld	112 ODK 77 - 3271		
9. PERFORMING ORGANIZATION NAME AND ADDRESS COMPUTER VISION Laboratory	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Computer Science Center			
University of Maryland	61142F 2304/A2		
College Park, MD 20742	12. REPORT DATE		
Math. & Info. Sciences, AFOSR/NM	September 1982		
Bolling AFB	13. NUMBER OF PAGES		
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)		
,	UNCLACCIETED		
	UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING		
	SCHEDULE		
Approved for public release; distribution unlimited			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)			
18. SUPPLEMENTARY NOTES			
19 KEY WORDS (Continue on reverse side if necessary and identify by block number)			
Image Processing Pattern recognition Geometric transforms			
Distance transforms			
20 ABSTRACT (Continue on reverse side II necessary and identify by block number)			
We define a "geometric transform" on the tion f that takes pairs (P,S), where S is a into nonnegative integers, and where f(S,P)	set and P a point of S, depends only on the		
positions of the points of S relative to P. Transforms of this type are useful for segmenting and describing S. Two examples are "dis-			
tance transforms," for which $f(S,P)$ is the distance from P to \overline{S} , and			
"isovist transforms," where f(S,P) is (e.g.) the area of the part of			

S visible from P. This note characterizes geometric transforms that

DD . 145 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

UNCLASSIF 1ED

SECURITY CLASSIFICATION OF THIS PAGE When Date Entered)

have certain simple set-theoretic properties, e.g., such that $f(S T, P)=f(S,P) \land f(T,P)$ for all S,T,P. It is shown that a geometric transform has this intersection property if and only if it is defined in a special way in terms of a "neighborhood base"; the class of such "neighborhood transforms" is a generalization of the class of distance transforms.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE When Do a Sore-